NOWAELETRONICA

N.º 15 - MAIO - 1978

COM SUPLEMENTO

URSO DE LINGUACENS DE PROGRAMAÇÃO - 6.º 1620

LGEBRA BOOLEANA -1/ Vição (sepjemento e

NATIONAL AND LIFE CHESCO PRÉAMPLIFICADOR PAIR CAPSWASS ANGINETAS: PROJUNASIAN OS CIPCUITOS IMPRESSOS (Resirgis) FRANCINASIAN OS CIPCUITOS (RESIRGIS CONTINUES CONTINU

EDITOR E DIRETOR RESPONSÁVEL LEONARDO BELLONZI CONSULTORIA TÉCNICA

Geraldo Coen
Josepn E. Blumenfeld
Juliano Barsali
Leonardo Bellonzi
REDAÇÃO
Juliano Barsali
Jose Roberto da S. Caetano

Yasuhiro Sato

ARTE

Auro Costa

Carlos W. Malagoli

Devanir V. Ferreira

João Antônio Ramos

CORRESPONDENTE EM NEW YORK

Guido Forgnoni

CORRESPONDENTE

EM MILÃO Mário Magrone

COMPOSIÇÃO J.G. Propaganda

IMPRESSÃO Abril S.A. Cultural e Industrial

Abril S.A. Cultural e Industrial

DISTRIBUIÇÃO

Abril S.A. Cultural e Industrial

NOVA ELETRÔNICA é uma publicação de propriedade de EDITELE — Editora Técnica Eletrônica Ltda. Redação, Administração e Publicidade: R. Georgia, 1051 — S.P.

TODA CORRESPONDÊNCIA DEVE SER EXCLUSIVAMEN-TE ENDEREÇADA A NOVA ELETRÔNICA — CX. POSTAL 30.141 — 01000 — S. Paulo — SP. REGISTRO n.º 9.949-77 P153

NOVA ELETRONIGA

SUMÁRIO

Kits

259/3 LPC-CMOS

265/9 Milivoltímetro CMOS

271/15 Pré-amplificador para cápsulas magnéticas

Seção do principiante

276/20 Bancada de serviço: Acessórios úteis para facilitar

suas montagens

281/25 Introdução aos circuitos de computadores analógicos

Teoria, em geral

287/31 Não está nos livros!

288/32 Como são fabricados os circuitos impressos, em escala

industria

297/41 Etapas de projeto com amplificadores operacionais

301/45 A radioastronomia, essa misteriosa — 4.ª parte

304/48 Novidades industriais

307/51 Tornando os dispositivos CMOS mais compatíveis com

os TTL

308/52 Noticiário

Seção PY/PX

312/56 Código «Q»

Áudio

313/57 A técnica da biamplificação

Engenharia

321/65 Os circuitos impressos flexíveis

332/76 Prancheta do projetista

Eventos

336/80 8.ª Feira da Eletro-Eletrônica

1.ª Feira Internacional de Energia

Suplemento BYTE

339/83 Os dispositivos CCD no processamento digital

348/92 Curso de linguagens — 6.ª lição

Cursos

351/95 Álgebra Booleana — 1.ª lição

(suplemento do curso de técnicas digitais)

355/99 Curso de semicondutores — 5.ª lição

Todos os direitos reservados; proibe-se a reprodução parcial ou total dos textos e ilustrações desta publicação, assim como traduções e adaptações, sob pena das sanções estabelecidas em lei. Os artigos publicados são de inteira responsabilidade de seus autores. É vedado o emprego dos circuitos em carater industrial ou comercial, salvo com expressa autorização escrita dos Editores; apenas e permitida a realização para aplicação dilentatistica ou didatica. Não assumimos nenhuma responsabilidade pelo uso de circuitos descritos e se os mesmos fazem parte de patentes. Em virtude de variações de qualidade e condições dos componentes, os Editores não se responsabilizam pelo não funcionamento ou desempenho deficiente dos dispositivos montados pelos leitores. Não se obriga a Revista, nem seus Editores, a nenhum tipo de assistência técnica nem comercial; os protótipos são minuciosamente provados em laboratorio proprio antes de suas publicações. NÚMEROS ATRASA-DOS: preço da ultima edição à venda, por intermedio de seu jornaleiro, no Distribuidor ABRIL de sua cidade. A Editele vende numeros atrasados mediante o acrescimo de 50% do valor da última edição posta em circulação. ASSINA-TURAS: não remetemos pelo reembolso, sendo que os pedidos deverão ser acompanhados de cheque visado pagavel em S. Paulo, mais o frete registrado de superficie ou aereo, em nome da EDITELE — Editora Tecnica Eletrônica Ltda. Temos em estoque somente as últimas nove edições (veja as páginas internas).

MATEUR RADIO EQUIPMENT BYDIO EQUIPMENT

Líder em Radiocomunicação na Zona Franca de Manaus

Kit's Nova Eletrônica — Componentes

Comercial Bezerra Ltda.

Rua Costa Azevedo, 139 — Fone: 232-5363 — Manaus

Rua Salvanha Marinho, 606 — Sub-Loia n.º 31

LPC - CMOS

Com baixo consumo e alta imunidade a ruídos, o contador ideal para aplicações industriais.

- Próprio para o uso em ambientes industriais, de alta presença de ruídos.
- Baseado em moderna tecnologia CMOS
- Imune a interferências com nível até 45% da tensão de alimentação
- Baixíssimo consumo, podendo ser utilizado até mesmo em aparelhos portáteis a bateria.
- Larga faixa de alimentação, não exigindo fonte altamente regulada.
- Presença do acesso
 Blanking Input, que
 possibilita a manutenção
 da contagem, conservando
 os displays apagados.

Procurando manter-se numa linha, que objetiva possibilitar ao leitor comum a aquisição de novas informações e o acompanhamento do crescente avanço da tecnologia eletrônica, a NOVA ELETRÔNICA apresenta agora um novo módulo contador, que emprega a tecnologia CMOS, e com isso permite uma considerável redução do consumo e do nível de ruído, além de uma larga faixa de alimentação. Mais do que a simples informação, a NE através de sua equipe técnica facilita o acesso a mais esse aperfeiçoamento tecnológico, lancando um kit com o novo contador, de especial interesse aos que lidam com equipamentos industriais.

Os contadores CMOS-LPC (low power counter — contadores de baixa potência) mostramse superiores quando comparados aos contadores TTL comuns. como por exemplo o já conhecido 7490 e o decodificador 9368. utilizados na revista 12. Fazendo uma comparação do consumo destes dispositivos TTL e dos novos dispositivos CMOS. temos os seguintes resultados:

dificultam o uso de dispositivos TTL convencionais. Estes possuem uma pobre rejeição a ruídos e, desse modo, as interferências misturam-se ao sinal, falseando dados, disparando prematuramente ou prejudicando o funcionamento perfeito do circuito. Existem famílias de TTL que possuem alta imunidade a ruído, mas devido à velocidade, consumo, custo total e

	TTL (5 Volts) CMOS-LPC		
estático *	150 mA'*	>1 mA *	
dinâmico *	160 mA a 1 MHz*	50 mA a 1 MHz *	

Ao ligarmos os respectivos displays, serão somados aos dados da tabela os valores por eles consumidos. Teremos portanto, os valores do consumo total:

disponibilidade no mercado, sua utilização prática é bastante reduzida.

Já o CMOS, com seu alto nível de rejeição a ruído, não apre-

	TIL	CMOS-LPC
estático	350 mA	210 mA
dinâmico	360 mA	250 mA

Considerações quanto

com alta imunidade a ruídos.

à alimentação

Ainda comparando o TTL com o CMOS, este apresenta vantagens quanto à alimentação. Os dispositivos TTL exigem uma alimentação de 5V ±5% (mínima 4,75 V e máxima 5,25 V), com uma baixa impedância. Com os CMOS não há esse tipo de restrição, pois não exigem alimentação fixa, embora dela dependa o limite máximo de resposta em frequência e a imunidade a ruídos. Podem trabalhar na faixa de 3 a 15 V, com consumo a médias velocidades inferior ao TTL; não requerem alta regulação na fonte, não produzem grandes variações de carga e não necessitam grande número de capacitores de desacoplamento entre grupos de integrados.

Podem ser alimentados por baterias devido ao seu baixo consumo, o que facilita seu emprego em equipamentos portáteis. Pelas características enumeradas, a fonte requerida é de menor complexidade e portanto mais barata, o que também serve para compensar o preço mais elevado da tecnologia CMOS.

Ficam demonstradas assim, as vantagens oferecidas pelos contadores LPC quanto ao consumo.

Imunidade a ruídos

Outro fator que torna o CMOS-LPC atraente, é seu alto nível de rejeição a ruídos. Seu índice de rejeição varia de 35 a 45% da tensão de alimentação. Isso significa que o circuito está imune à interferência de qualquer sinal espúrio que não exceda esse limite. Essa característica habilita-o a ser usado em ambientes industriais, pois nesses ambientes a presença de ruídos eletroeletrônicos, devido a arcos de chaveamento, interferência de RF de SCRs e TRIACs, e outros tipos comuns de interferência,

Parâmetro	TIL	CMOS
Atraso/propagação	10 ns	20 ns (V _{CC} = 10 V)
Potência dissipada em Repouso	10 mW	10 nW (V _{CC} = 10 V)
lmunidade a ruídos	>1 V	±40% V _{CC}

senta as desvantagens do TTL, visto que, com 15 V de alimentação, pode rejeitar ruídos de até 6,75 V. Seu custo não é elevado, e tende a cair ainda mais, já que quase todos os fabricantes de TTL também o fabricam. Sua freqüência de trabalho alcança os 15 MHz, o que não acontece para as famílias lógicas especiais

Relação entre frequência, dissipação e alimentação

Pode-se notar, observando a tabela acima, que o atraso de propagação é o único parâmetro em que os dispositivos TTL superam os CMOS. Este parâmetro ganha especial importância, quando estudamos a resposta do dispositivo em relação à fre-

	TIL	CMOS	CMOS	CMOS
V _{cc}	5 V	5 V	10 V	15 V
Resposta em freqüência	45 MHz	4 MHz	10 MHz	15 MHz

quência. Mostramos acima, as características típicas da resposta em frequência, em função da tensão de alimentação dos TTL e CMOS.

Nota-se, portanto, analisando os dados, que os CMOS exigem uma tensão de alimentação major à medida que aumentamos a frequência do sinal. O mesmo não acontece com os TTL, cuja alimentação é fixa e o limite máximo de frequência é superior. A explicação para o aumento do consumo dos CMOS está no fato de que ao se aumentar a frequência do sinal, a transição dos estados lógicos dos transistores internos (vide figura 1) é tão rápida que durante algum tempo ambos estarão em condução. Consequentemente haverá um aumento da corrente sobre eles, devido à diminuição da resistência interna e assim, uma maior dissipação de potência.

Podemos tirar como conclusão, que os contadores CMOS apresentam-se praticamente ideais em aplicações onde a freqüência não seja elevada, devido às suas características de consumo, imunidade a ruídos e custo relativamente baixo. Não recomendaríamos, no entanto, o seu emprego em circuitos de velocidades mais altas, onde é necessário um menor atraso de propagação e características freqüência/consumo mais satisfatórias.

Montagem

Na figura 2, temos o diagrama de blocos do contador CMOS-LPC, representando suas três partes básicas: contador, decodificador e mostrador ou display. Observe que tanto os contadores como os displays, estão em unidades duplas, enquanto que os decodificadores usados, são encapsulados separadamente. Nas figuras 3A/3B estão representadas as placas de circuito impresso dos contadores/decodificadores e dos dis-

plays, mostrando a distribuição dos componentes e as respectivas faces cobreadas.

Essas placas foram elaboradas de modo que a montagem final deva resultar num «T» formado por elas. Na placa da figura 3A o único componente a ser fixado, é o display duplo Monsanto 6740. A face cobreada contém pontos de conexão, reservados

à união posterior com a placa da figura 3B. Atenção para a colocação do **display**, cuja pinagem você poderá verificar observando a figura 4.

Montada a primeira placa, passe à segunda, na qual serão colocados os outros componentes: contadores, decodificadores e resistores. Para identificação dos pinos dos Cls, utilize

ainda a figura 4.

A montagem deve ser efetuada com cuidados especiais para os integrados CMOS. Evite tocálos com as mãos, devendo os mesmos ser mantidos em suas embalagens até o momento de colocá-los no circuito. Inicie a montagem soldando os **jumpers**, ou ligações de fios, nos lugares indicados. Passe, em seguida, à colocação dos 14 resistores li-

mitadores de corrente dos displays, soldando-os à placa e cortando-lhes o excesso dos terminais. Solde os circuitos integrados, desligando o ferro no instante da soldagem para evitar pequenas descargas provenientes da rede, que poderiam danificar os Cls.

Por último, conecte as duas placas, soldando-as segundo o detalhe da figura 5.

Após a montagem completa do módulo, verifique se não houve escorrimentos de solda, que poderiam causar curtos ou ligações indesejáveis.

A figura 6 apresenta o esquema elétrico do módulo com todas as ligações. Observe que temos indicações de 7 tipos de acesso ao circuito, os quais passamos a descrever:

Vcc — terminal onde deve ser ligado o positivo da tensão de alimentação. Esta poderá ser de 5 a 15 V. Lembramos que, quanto menor for a tensão Vcc, tanto menor será a resposta em freqüência do circuito. Por outro lado, com o aumento da freqüência deve aumentar o consumo, mas sem ultrapassar jamais o valor de 500 mA com os displays no máximo brilho.

Vss — Terminal de terra (0 V) da alimentação.

EL — Latch Enable — Apenas memoriza a contagem dos decodificadores, mantendo estática a leitura no display. É ativado quando conectado à Vss (GND); quando ligado à Vcc, permanece inativo.

IB — Blanking Input — Apaga os displays mantendo-os, porém, a contagem normal. É um acesso bastante útil quando se usa bateria para alimentação, já que os displays são responsáveis por mais de 90% do consumo de potência do circuito. Do mesmo modo que EL, é ativado quando ligado à terra, permanecendo inativo quando conectado à Vcc.

Reset 1 e 2 — Zeram os contadores para iniciar nova contagem. Para sua atuação, devem

ser ligados à Vcc. Durante o processo normal de contagem, devem permanecer à terra.

Entrada — Acesso destinado à injeção de sinais. Quando utilizados vários contadores, deve ser conectado à saída do contador anterior.

Saída — Permite o acesso à saída dos contadores. Se usados vários contadores, deve ser ligado à entrada do próximo.

Através desses terminais de acesso, podemos manipular o contador da maneira que nos convier. Naturalmente, deixamos em suas mãos a tarefa de procurar a melhor forma de aproveitá-los, dentro das suas exigências particulares.

Relação de Materiais

1 Cl duplo contador 4518B

2 CIs decodificadores 4511B

1 display Monsanto 6740

14 resistores 1 kΩ 1/4 W

1 placa de CI NE 3060A

1 placa de CI NE 3060B

1 metro de fio rígido

1 metro de solda

ATENÇÃO

Técnicos e estudantes de eletrônica, ganhem muito dinheiro, montando e vendendo

KIT'S NOVA ELETRÔNICA

Peça pelo reembolso ou mande cheque pagável em Porto Alegre.

DIGITAL - Componentes Eletrônicos Ltda. Rua Conceição, 383 - Fone: (0512) 24-4175 Porto Alegre - RS

TRANSFORME SEU MULTÍMETRO EM UM MILIVOLTÍMETRO ELETRÔNICO

Este novo kit pode tornar seu voltímetro ou multímetro mais versátil, suprindo a necessidade de escalas de baixa tensão, em corrente contínua.

 Pode ser utilizado em instrumentos analógicos ou digitais

Não requer conexões internas no seu instrumento

– Oferece uma alta impedância de entrada (10 $M\Omega$)

Utiliza um único amplificador operacional do tipo CMOS - BIFET

EQUIPE TÉCNICA DA NOVA ELETRÔNICA

- Leitura efetuada diretamente na escala do multímetro
- Apresenta um baixo consumo
- Alimentado por uma única bateria de 9 volts
- Utiliza resistores de precisão
- Mede tensões até 300 milivolts, em corrente contínua
- Supercompacto, pode ser utilizado como ponta de prova.
- Dimensões: 14 × 3 × 2 cm.

Nas muitas aplicações onde são necessárias medições abaixo de 1 volt, com a consequente elevada impedância do instrumento, este circuito é de grande ajuda, ampliando suas possibilidades na bancada, com grande precisão. Além de ser preciso, ele é prático, pois foi projetado para ter o formato de uma ponta de prova, que pode ser manipulada facilmente; para utilizá-lo, basta ligar seus dois plugs aos terminais de entrada de seu aparelho de medida. E, ainda por cima, tem um consumo bastante baixo, podendo assim ser alimentado por uma pequena bateria de 9 volts, inserida na mesma caixa, juntamente com o circui-

O milivoltímetro CMOS adapta-se a qualquer instrumento, porque não passa de um amplificador de tensão. Pode ser defini-

do, mais exatamente, como um amplificador de alta impedância de entrada e ganho ajustável, duas características que, hoje em dia, podem ser facilmente obtidas com amplificadores operacionais integrados.

Como o circuito vai trabalhar com tensões muito reduzidas, é importante que sua impedância de entrada seja elevada, pois, em caso contrário, as medições serão pouco precisas ou totalmente incorretas. Em nosso caso, isso não é problema, já que o circuito eletrônico oferece uma impedância de 10 megohms em sua entrada; isto significa que ele exige uma corrente mínima para seu funcionamento, não tendo quase influência sobre o circuito onde está sendo feita a medição.

Tais níveis de impedância de entrada tornaram-se possíveis

graças à introdução, recentemente, em nosso mercado, dos excelentes amplificadores operacionais BIFET. Eles formam uma nova geração de operacionais integrados, combinando características e vantagens dos transistores de efeito de campo (FET) e dos transistores bipolares comuns (caso você deseje obter maiores informações sobre os BIFET, recorra ao artigo «Venha conhecer os BIFET», nas págs. 2/5 do n.º 8 de Nova Eletrônica).

O amplificador operacional que utilizamos em nosso kit é o CA3130, da RCA, e possui transistores do tipo MOSFET em seu estágio de entrada. Para se ter uma idéia da superioridade desse componente sobre os operacionais normais, em apenas um parâmetro, basta dizer que o tradicional 741 apresenta uma impedância de somente 6 megohms, em sua entrada, contra os 1000 Mn do CA 3130.

A característica do ganho ajustável não é segredo, pois é obtida facilmente com uma realimentação adequada do amplificador operacional (figura 1).

Descrição do funcionamento

Na figura 2, temos o circuito completo de nosso milivoltimetro CMOS. Trata-se de um amplificador CC não inversor, realimentado de modo a exibir um ganho igual a 10, aproximadamente. De modo a evitar problemas que poderiam surgir, devido à elevada sensibilidade do circuito, colocou-se o resistor de 10 megohms (R3) em paralelo com a entrada, reduzindo a impedância a esse valor. O resistor R4, em série com a entrada não inversora, limita a corrente que circularia pela mesma, caso houvesse uma sobretensão na entrada. Os capacitores C1 e C2 proporcionam uma melhor estabilidade ao circuito, enquanto os resistores R1 e R2 fazem parte da malha de realimentação (que produz o ganho de 10). E R5, por fim, é um trimpot, com a função de providenciar o «null offset», ou seja, zero volt na saída, quando tivermos zero volt

FIGURA 3

na entrada; tal ajuste torna-se necessário, devido a eventuais desbalanceamentos da fonte simétrica de alimentação.

Falando da fonte de alimentação, é ela mesma que aparece na parte inferior da figura 2, formada pela bateria, um transistor e três resistores. R7, R8, R9 e Q1 constituem um divisor de tensão, para transformar os +9 V da bateria nos +4,5 V; —4,5 V necessários para a alimentação do circuito; o ponto de união entre R7 e o emissor de Q1 foi tomado como o terminal terra do circuito.

Como já havíamos dito, o ganho do circuito é igual a 10, o que significa qué toda tensão aplicada ao mesmo será amplificada 10 vezes. Entretanto, há uma limitação quanto à tensão máxima a ser medida, que é de ± 300 milivolts, sem introdução de erro na leitura. A partir dos ± 350 mV de entrada, o circuito entra em saturação e apresenta a tensão constante de ±3.5 V na saída. Dessa forma, lembrese, quando for utilizar a sonda, de não ultrapassar esse valor de tensão de 300 mV.

Observação: Esse conselho tem mais o objetivo da fidelidade de leitura do que de proteção ao circuito. A sonda não será danificada, se sua tensão de entrada ultrapassar os 300 ou 350 mV; na realidade, ela conta com uma boa margem de proteção, de até 200 volts. Assim, é necessário um certo cuidado ao manusear a sonda, como qualquer outro instrumento de medida, mas ela não correrá perigos até os 200 volts de entrada.

Montagem do kit

A montagem do milivoltímetro CMOS é bastante simples, graças aos poucos componentes envolvidos. Todos eles serão instalados sobre uma pequena placa de circuito impresso, ficando de fora apenas a bateria. Não é preciso se preocupar com polaridade de componentes, também; o único componente que vai exigir um pouco mais de atenção é o amplificador operacional, como veremos mais

adiante.

Na figura 3, pode-se observar a placa de circuito impresso da sonda, em tamanho natural, e vista pelo lado dos componentes.

A montagem, como regra geral, deve sempre começar pelos componentes mais «robustos», ou seja, aqueles mais resistentes ao calor, e terminar com a soldagem dos circuitos integrados. Isto vale também para o nosso caso: inicie a montagem soldando todos os resistores em seus lugares. Como estão incluídos, nesse circuito, três resistores de precisão (1%, metal film), talvez você tenha alguma dificuldade em interpretar o código de valores impresso nos mesmos; em caso de dúvida, consulte a relação de componentes, onde há uma equivalência código/valores.

A seguir, solde os dois capacitores do circuito e, depois, o trimpot. Em seguida, instale e solde a chave miniatura liga/desliga.

Você pode soldar o transistor, agora; para identificar seus terminais, consulte a figura 4. Os terminais de ligação devem ser soldados a todos os pontos de entrada e saída da placa de circuito impresso.

Finalmente, chegou a vez do circuito integrado. Ao contrário da maioria dos integrados que estamos acostumados a ver, o CI1 tem encapsulamento metálico e os terminais dispostos em círculo; na figura 4, junto com o transistor, pode-se ver a distri-

buição e a localização dos pinos de CI1.

Esse integrado, pelo fato de ser confeccionado pela tecnologia CMOS, é sensível a cargas eletrostáticas; ele possui proteção interna, que resolve esse problema, mas, de qualquer modo, é conveniente tomar certas precauções ao manipulá-lo. Essas precauções se resumem em não tocar demasiadamente nos pinos do integrado e de não colocá-lo, na medida do possível, sobre superfícies isolantes e sim, sobre superfícies metálicas e condutoras. Caso você queira estar seguro da integridade de CI1 enquanto o estiver soldando à placa, apanhe um pedaço de fio nu, de uns 2 cm de comprimento, e enrole-o em volta de todos os terminais do integrado, próximo à carcaca do mesmo; não esqueça, porém, de retirar o fio, depois de ter soldado o integrado.

Uma outra precaução a ser observada **durante** a soldagem: é preferível soldar o integrado com o soldador desligado, isto é, aquecê-lo o suficiente, retirar

FIGURA 5

seu «plug» da tomada e então, soldar os pinos de CI1; caso o soldador esfrie demais, antes que você tenha concluído a ope-

tegrado.

Terminada essa operação, não é preciso mais se preocuparcom CI1, pois ele passa a ser externas).

ração, lique-o novamente, espeprotegido pelo circuito da placa. re que esquente, desligue-o e Observe, na figura 5, o aspecto prossiga na soldagem. Isto é da placa de circuito impresso necessário, para evitar que qualcom todos os componentes já quer pequena tensão, quase instalados (mas sem as ligações sempre presente nas pontas dos Essas ligações externas desoldadores, possa danificar o inplaca de circuito impresso bateri

vem ser feitas agora e consistem em: ligação com o conector da bateria e ligações de entrada e saída. Elas aparecem na figura 6: o fio vermelho do conector da bateria deve ser ligado ao ponto «+» da placa, e o fio preto, ao ponto «-»; os fios conectados na entrada e na saída do circuito, devem ser passados pelos seus respectivos orifícios, feitos na caixa da sonda, antes de serem soldados à placa.

Uma observação a respeito dos fios ligados à entrada e saída do circuito: eles são constituídos por um par de pontas de prova de multimetro, uma vermelha e uma preta, que não são fornecidas com o kit; você deverá adquirí-las separadamente. Essas pontas de prova devem ser cortadas, a 10 cm, aproximadamente, da extremidade que possui o terminal banana (veja a figura 6); essa metade será soldada à saída do circuito (para que os dois terminais banana sejam conectados ao multimetro, como se vê na foto de entrada).

A outra metade, a dos terminais de prova, será conectada à entrada do circuito e servirão, depois de pronta a sonda, como pontas de prova da mesma (visíveis, também, na foto de entrada).

Dessa forma, depois de cortar as pontas de prova da maneira descrita, introduza as duas metades, vermelha e preta, pelos furos apropriados da caixa, e solde-os à placa (os fios pretos nos pontos de terra e os fios vermelhos aos pontos «A» e «B», como indica a figura 6).

Pausa para calibração

Antes de concluir a montagem e fechar a caixa, é conveniente proceder à calibração de seu milivoltímetro CMOS. Essa operação não oferece dificuldades, pois trata-se apenas de ajustar o «null offset» do circuito, pois, como já dissemos, devido ao fato da fonte não ser perfeitamente simétrica, a sonda poderia apresentar alguma tensão na saída, sem a presença de sinal em sua entrada; como isso po-

FIGURA 7

deria introduzir erros nas medidas, torna-se necessário o ajuste, através de um trimpot. Quanto ao ajuste de ganho, ele tornou-se desnecessário, graças ao emprego de resistores de precisão na malha de realimentação do operacional.

Para efetuar a calibração, proceda da seguinte maneira: primeiramente, curto-circuite os terminais do capacitor C1 (com um pedaço de fio nu, por exemplo); em seguida, ligue um multímetro à saída do amplificador, comutado para a escala de 3 VCC, ou menos, e ponha a sonda para funcionar. Observe, agora, o comportamento da agulha do instrumento (ou valor representado no «display», no caso de multímetro digital); se ele apresentar alguma leitura, gire o trimpot R5 da sonda, até que essa leitura seja igual a zero volt. Feito isto, a sonda está calibrada; retire o curto de C1 e, se quiser, fixe R5 com um pingo de cera de vela.

Voltando à montagem

Concluindo a montagem,

resta apenas fixar a placa à caixa, parafusando-se a chave liga/ desliga à tampa da mesma. A bateria deve ser inserida na caixa, também, ficando ao lado da placa, depois de pronto o conjunto. No geral, o kit montado ficará com o aspecto do desenho da figura 7.

Agora, é só fazer medições e mais medições, explorando convenientemente a área das tensões menores de 1 volt. Bom proveito.

Relação de componentes

 $R1 - 100 \, k\Omega - 1\%$ (código: 1003)

R2 - 10 kg - 1% (código: 1002)

 $R3 - 10 M\Omega - 5\% - 1/8W$

 $R4 - 2.2 M\Omega - 5\% - 1/8W$

R5 — 100 ka — trimpot miniatura, linear

 $R6 - 1M\Omega - 1\%$ (código: 1004)

R7 - 5.6 kg - 5% - 1/8W

R8 - 39 kg - 5% - 1/8W

 $R9 - 56 k_{\Omega} - 5\% - 1/8W$

 $C1 - 10 \text{ nF} (0.01 \mu\text{F})$

C2 — 1 nF (0,001 µF)

Q1 — BC 237

CI1 — CA 3130

B1 — bateria de 9 volts

CH1 — chave HH miniatura

Placa de circuito impresso n.º 3058 — Nova Eletrônica

Conector para bateria

Solda trinúcleo

CASA DEL VECCHIO

O SOM MAIOR

EQUIPAMENTOS P/ SALÕES, BOITES, FANFARRAS E CONJUNTOS MUSICAIS.

novos representantes dos Kits Nova Eletrônica

BRASÍLIA
YARA ELETRÔNICA

CLS 201 Bloco E Loja 19 Fone 224-4058 225-9668

FLORIANÓPOLIS

ELETRÔNICA RADAR LTDA

Rua General Liberato Bitencur, 1999

SALVADOR

TV-PEÇAS LTDA

Rua Saldanha da Gama,9-Sé

Fone: 242-2033

Kits Nova Eletrônica

Tirístores

Diodos

C-MOS

TTL

Lineares

Transistores

Circuitos integrados

reprodução sonora de seus discos. apresentamos um pré-amplificador para cápsulas magnéticas que, empregando um método particular de equalização, possibilita a redução de ruído típico destes circuitos.

musical é registrada toda uma na transmissão radiofônica, é a faixa de frequências audíveis: da atenuação das baixas fre- com a sua origem. Nesse probaixas, médias e altas. Estas fre- quências (ou reforço das altas) cesso, inversamente, atenuamquências no entanto, são dife- na fase de captação sonora. Es- se as altas frequências ou agurentemente susceptíveis à pene- se processo recebe o nome de dos, o que é chamado de deêntração de ruídos. A experiência pré-ênfase. Por outro lado, as prática mostrou que a maior pre-baixas frequências também sença de ruídos se dá na região contém informações, que se das baixas frequências (graves). procura levar ao ouvinte com o e deênfase porém, não são fei-Para minimizar este problema, máximo de fidelidade ao som tas aleatoriamente; na gravação uma solução universalmente original. Portanto, na recepção e reprodução comercial são obe-

Num sistema de gravação aceita na gravação de discos e ou reprodução, torna-se necessário igualar ou equalizar o sinal

As operações de pré-ênfase

decidas curvas padrões, como por exemplo as ditadas pela

****** As aplicações são várias; da-≯ mos apenas algumas sugestões:* ¥Tacômetros, velocimetros, indicadores ★ 💃 de nível de combustível, pressão de óleo 🌂 ★(mili), amperimetros, voltimetros, medi-* ★dores de resistência, potência, frequen-* ≠cimetro, etc.

★Substitui o tradicional gal- ¾ vanômetro com a vantagem⊁ ∡de não possuir peças mó-≛veis que desgastam com o¾

tempo.

sição e na escolha das cores dos led's, ox que torna o circuito versátil para as vá-* rias aplicações que você imaginar.

alimentação de 9 a 12 VCC.

Pode funcionar como temporizador,* 🖈 bastando para isto acrescentar um ca 🌂 pacitor e um resistor.

KIT'S NOVA ELETRÔNICA* Para amadores e profissionais. *

SAO PAULO - Filcres Import. e Repres Ltda. RIO DE JANEIRO – Deltronic Com. de Equip. Ltda. PORTO ALEGRE – Digital Compon. Eletr. Ltda. CAMPINAS - Brasitone

BELO HORIZONTE - Casa Sinfonia Ltda. CURITIBA - Transiente Com. Apar. Eletr. Ltda.

RECIFE-Barto Eletrônica FORTALEZA-Eletrônica Apolo ESPIRITO SANTO-Casa Strauch

BRASILIA - Yara Eletrônica Ltda. FLORIANOPOLIS - Eletrônica Radar Ltda. SALVADOR - TV-Peças Ltda.

RIAA (Recording Industry Association of America). Nas figuras 1 e 2, podemos ver as curvas RIAA de gravação e reprodução.

Pré-amplificadores e Equalização

Quando usadas cápsulas de reprodução magnética, o método mais comum de se obterem os efeitos de equalização consiste em criar, no estágio inicial de amplificação, uma reação dependente da frequência. Com este sistema consegue-se ainda fazer com que a amplificação resultante seja, como de hábito, suficiente para elevar o nível do sinal disponível a um valor admissível.

Todavia, assim como qualquer ruído parasita, produzido internamente pelo amplificador, não chega completamente atenuado à parte onde se opera a reação, quando é feita correção nas freqüências mais altas ocorre um fenômeno absolutamente indesejável. O que de fato acontece é que, uma parte do sinal útil chega atenuado em maior medida que o ruído que se deseia suprimir.

No esquema que propomos (vide figura 3), este processo vem subdividido em duas partes. O sinal é primeiro amplificado linearmente em relação à fregüência e, em seguida, vem acoplado o efeito de equalização, resultando que ambos, sinal e ruído do primeiro estágio, estão sujeitos a este efeito. Em consegüência, o ruído a frequências elevadas também é atenuado, e desse modo se obtém o funcionamento com base no assim chamado «ruído escuro», com consegüente melhoria da relação sinal/ruído.

Funcionamento

No esquema mostrado na figura 3, o primeiro circuito integrado é um amplificador operacional, conectado numa montagem amplificadora, com resposta linear e ganho próximo a 13.

A impedância da cápsula magnética é baixa em relação à impedância de entrada do amplificador; este é o motivo pelo qual é preferível adotar um circuito reativo em série, próprio para manter o ruído no menor valor possível.

O sinal de entrada é aplicado ao pino 3 de CI₁ (entrada não-in-

versora), através de C₁, sendo parte de um circuito reativo, ao qual também pertence R₁. No terminal inversor (pino 2) estão conectados R₃ e C₂, que devem fornecer a tensão necessária à polarização e constituem um sistema de estabilização térmica.

No pino 7 do primeiro integrado, deve ser aplicado um potencial contínuo, positivo

numeros atrasados da n.e.!

do nº 1 ao nº 13

encontram-se na:

av. ipiranga, esquina com a rua sta efigenia

S.P.

"banca do juarez"

(+V_{CC}) em relação à terra, entre 15 e 24 volts, para alimentação do circuito. O mesmo potencial deve ser aplicado ao pino 7 de Cl₂ e os pinos 4 (de Cl₁ e Cl₂) devem ser ligados à terra.

No pino 6 de Cl₁, temos a saída do primeiro estágio de amplificação, a qual é aplicada através de R₄, ao pino 2 de Cl₂,

parte de um circuito reativo cuja característica dinâmica varia com a frequência do sinal recebido. Na realidade, faz-se uso de um circuito reativo em série, constituído por R₆, R₇, C₃ e C₄, que permite obter a curva de compensação necessária próxima da curva RIAA. O ganho deste estágio é igual a 1, na frequência de 1 kHz.

O ganho total do circuito é tal que, nos permite dispor de um sinal na saída com amplitude considerável (de 65 a 70 mV), utilizando-se da quase totalidade do sinal fornecido por uma cápsula magnética moderna: 5 mV, à velocidade de 5 cm/seq. na freqüência de 1 kHz.

O ganho do primeiro estágio pode porém, ser calculado de acordo com a sensibilidade do transdutor de entrada, possibilitando ainda que se reduza a largura de banda em favor de um ganho mais alto, devido às características de compensação interna fixa dos amplificadores operacionais 741.

A figura 4A é um gráfico que representa a curva típica de equalização em função da frequência, do pré-amplificador, comparada com a curva padrão RIAA que deve ser usada na reprodução do sinal. A tabela da figura 4B contém os valores usados na construção do gráfico. sendo que os valores experimentais foram tomados sem carga na saída. Nota-se pela curva, que o nível do sinal atinge o valor de 20 dB na freqüência de 15 Hz e uma atenuação de -20 dB na freqüência de 15 kHz.

f (Hz)	Nosso pré-amplificador G (dB)	Norma RIAA G (dB)
20 k	— 20,3	— 19,6
15 k	— 17,8	— 17,2
10 k	— 13,5	— 13,7
8 k	— 12,0	— 11,9
6 k	— 9,3	— 9,6
5 k	8,0	— 8,2
4 k	— 6,3	- 6,6
3 k	— 5,0	— 4,8
2 k	— 2,7	— 2,6
1,5 k	— 1,1	— 1,4
1,0 k	0	0
800	0,6	0,7
500	1,8	2,6
400	2,4	3,8
300	4,0	5,5
200	6,1	8,2
150	8,1	10,3
100	10,8	13,1
80	12,3	14,5
60	15,0	16,1
50	16,1	17,0
40	17,4	17,8
30	20,0	18,6
20	21,5	19,3

FIGURA 4B

Montagem do pré-amplificador

O kit do pré-amplificador constitui-se apenas da placa de

circuito impresso e dos respectivos componentes, sem qualquer encapsulamento ou caixa que o contenha. Desse modo, você está livre para elaborar a sua própria caixa ou incorporar o pré-amplificador ao equipamento que já possui.

A montagem, portanto, resume-se em soldar os componentes na placa, a qual pode ser observada pela figura 5, onde estão superpostas as duas faces: dos componentes e cobreada.

Comece soldando os componentes menores, capacitores e resistores. Em seguida, identifique a pinagem dos Cls, com o auxílio da figura 6. Note que os pinos utilizados são apenas o 2, 3, 4, 6 e 7. Os Cls devem, sempre que possível, ser soldados por último, pois são mais sensíveis à elevação da temperatura e poderiam ser danificados ao se soldar os outros componentes.

Fixados os componentes, o pré-amplificador está pronto para a ação. Observe que a entrada e a saída do circuito estão

indicadas respectivamente como IN e OUT. As ligações externas deverão ser feitas utilizando cabos blindados, sendo que a blindagem deve ser conectada junto aos pontos assinalados como terra do circuito. Os condutores centrais dos cabos, devem ser ligados à entrada (aquele que provém da cápsula magnética) e à saída (o destinado ao estágio de amplificação).

Concluindo, o nosso circuito apresentou nos testes as seguintes características:

Saída	70 mV
Relação Sinal/Ruído	
Equalização RIAA	

Lista de componentes

 $R_1 - 47 k\Omega$

 $R_2 - 10 k \Omega$

 $R_3 - 120 k\Omega$

 $R_4 - 3k3 \Omega$

 $R_5 - 2k7\Omega$

 $R_6 - 39 k \Omega$ $R_7 - 3k3 \Omega$

 $R_8 - 12 k\Omega$

R₉ — 12 kΩ

Todos os resistores

são de ¼ de W

 $C_1 - 2,2 \,\mu\text{F} \times 25 \,\text{V}$

 $C_2 - 4 \mu F \times 25 V$

 $C_3 - 100 nF \times 160 V$ $C_4 - 22 nF \times 250 V$

 $C_5 - 2,2 \, \mu F \times 25 \, V$

 $C_6 - 50 \,\mu\text{F} \times 25 \,\text{V} \,\text{ou}$

 $47 \mu F \times 16 V$

Cl₁ e Cl₂ — µA 741 (ou equivalente em

encapsulamento plástico)

Diversos:

Placa de circ impr (NE 3059)100 x 50 mm

1 m de solda trinúcleo.

National em módulos para relógio digital

MA 1003

prontos para serem instalados, com aplicação em automóveis, barcos, aviões ou como rádio-relógios

A VENDA NA FILCRES
Rua Aurora,165 S.P.
Tel. 221–3993

Um dos aspectos que não deve ser menosprezado por qualquer pessoa que tenta se iniciar na eletrônica, é o do conhecimento da melhor forma de utilização das diversas ferramentas de trabalho, aliado à boa organização da bancada de serviço.

Neste artigo, procuraremos mostrar aos aficcionados da eletrônica, em especial aos principiantes, diversos intrumentos que poderão ser valiosos na execução de trabalhos práticos.

T. Fukuchima, Y. Kanayama, M.A. de Souza, F.A. Tavares, D. Hilsdorf e P. Zóboli.

Em qualquer profissão que se pretenda seguir, mesmo fregüentando boas escolas, não é possível que se aprenda tudo nos mínimos detalhes, principalmente no que se refere à parte prática. Somente com tempo e muita dedicação é possível dominá-la satisfatoriamente. Com relação à eletrônica, o problema nem sempre está concentrado na sua extensa teoria. Explicando melhor: através de diagramas esquemáticos e muita leitura, podemos entendê-la qualquer que seja o campo com o qual estejamos lidando. A questão principal, é a transposição do papel à prática. São justamente os obstáculos complementares que atrapalham bastante a execução efetiva. E preciso conhecer os componentes, a técnica de soldagem, manuseio de alicates, chaves de fenda, instrumentos de medição, etc.

Para facilitar ao máximo o desenvolvimento da prática, seja numa montagem, conserto, experiência, etc., existem acessórios e ferramentas que oferecem inúmeros recursos. Colocam mais ordem na mesa de trabalho, além de torná-la mais racional e produtiva. Permitem maior clareza nas experiências, análises e medições; mantém a
«cabeça fresca», o que resulta
num melhor aproveitamento.

Em muitos casos, tratam-se de apetrechos que devem ser usados também por profissionais já tarimbados, visto que ajudam bastante na produtividade.

SUPORTE PARA FERRO DE SOLDA

Em geral, para descanso dos ferros de solda quando fora de uso, existem pezinhos, às vezes rudimentares, que não são verdadeiramente práticos numa sequência de montagem. As indústrias, nas linhas de produção, usam tubos bem largos para tal fim. Entretanto, existe um suporte bem simples, adequado para quase todas as marcas de ferros de até 50 ou 60 W. É constituído de uma base com um certo peso para manter o equilibrio e uma espiral cônica, feita de arame, que serve de bainha e mantém a temperatura da ponta do ferro sempre equilibrada. Evita-se desse modo, a perda de tempo em repousar o ferro, além do que, tem-se uma maior segurança quanto a acidentes por

queimaduras e danos materiais por descuido. Em geral, o suporte possui na parte frontal, um receptáculo onde é colocada uma espuma de borracha ou pano, que embebidos em água servem para limpeza da ponta do ferro (figura 1). Este processo tem a vantagem de não gastar a ponta prematuramente (o que não ocorre quando a mesma é limada, lixada ou raspada), além de mantê-la sempre estanhada.

SUPORTE PARA PLACAS DE CIRCUITO IMPRESSO

Outro interessante dispositivo, de aplicação garantida, é um suporte para fixação de placas de circuito impresso. Pode ser preso na mesa ou bancada por meio de mordente (figura 2) ou parafusado, num modelo mais simples. Os «chifres» que recebem a placa, têm canais em «V» para facilitar o encaixe da mesma, independentemente da sua espessura. São reguláveis e mantêm a placa firme, o que torna o seu manuseio extremamente fácil e prático. Encontra aplicação nos consertos, experiências, análises, medições, etc (figura 3). Possibilita o desenvolvimento de uma técnica de montagem bastante simples, cujas etapas podem ser resumidas nas seguintes:

 A — colocam-se todos os componentes nos seus respectivos furos;

 b — com uma esponja bem espessa servindo de almofada

gira-se a placa para trás (figura 4);

c — faz-se a soldagem (figura 5);
 d — cortam-se os terminais em excesso.

FERRAMENTAS PARA DESSOLDAGENS

Apesar da grande evolução tecnológica da eletrônica, está

evidente que não se chegou à perfeição; em razão disso, os danos e conseqüentes consertos são inevitáveis. Com a progressiva compactação e miniaturização dos componentes e circuitos é preciso que, paralelamente, se apurem a habilidade manual e os instrumentos de repa-

ro, para evitar que um defeito simples se transforme em algo irrecuperável.

A remoção de qualquer componente soldado é problemática, principalmente se este for um circuito integrado ou fizer parte de um circuito de densidade elevada. O cuidado maior a

Você só tem que escolher: 10 ou 20 W de potência.

TDA 2020 e TDA 2010 Já está pronto. De montagem fácil, consta de apenas um CI e alguns resístores e capacitores.

Especificações técnicas:

— Tensão de alimentação:

5 a 18 V (2010) 5 a 22 V (2220)

— Resposta em freqüência: 10 a 30000Hz

- Distorção: 0,3%

— Impedância de entrada: 100 Kohms.

— Ganho de tensão em dB: malha aberta — 100

malha fechada — 30

COMPROVE.

KIT's NOVA ELETRÔNICA Para amadores e profissionais.

À venda

SAO PAULO — Filcres Import. e Repres Ltda.
RIO DE JANEIRO — Deltronic Com. de Equip. Ltda.
PORTO ALEGRE — Digital Compon. Eletr. Ltda.
CAMPINAS — Brasitone
BELO HORIZONTE — Casa Sinfonia Ltda.
CURITIBA — Transiente Com. Apar. Eletr. Ltda.
RECIFE—Barto Eletrônica
FORTALEZA— Eletrônica Apolo
ESPIRITO SANTO— Casa Strauch
BRASILIA — Yara Eletrônica Ltda.
FLORIANOPOLIS — Eletrônica Radar Ltda.
SALVADOR — TV-Peças Ltda.

ser tomado é relativo aos filetes condutores da placa impressa, evitando que eles se descolem, o que resultaria em trabalho adicional para repará-los. Outro problema, é o de impedir que a solda derretida se espalhe provocando interligações imperceptíveis e indesejáveis.

Sugadores de solda

Para auxiliar na resolução desses problemas, existem ferramentas adequadas; dentre elas estão os sugadores de solda a vácuo, que podem ser manuais ou automáticos. Os manuais, cujo formato lembra uma seringa hipodérmica, produzem vácuo através de um pistão acionado por mola, quando esta é disparada por um gatilho (figura 6). O seu uso é simples: uma vez armado, com um ferro de solda derrete-se o ponto desejado e dispara-se o soldador com o bico sobre o ponto, fazendo assim a sucção (figura 7). Há diversos tamanhos de bico para sugadores, em geral recambiáveis.

O sugador automático é composto da mesma seringa sugadora e por um sistema de vácuo motorizado ou a pistão. Geralmente é usado em indústrias ou assistência técnica, que exi-

gem maior rapidez.

No sistema a motor, o vácuo é contínuo, sendo a sucção controlada por um dispositivo mecânico. No outro, o vácuo é produzido por um pistão acionado por meio de uma bobina eletromagnética (figura 8).

Dessoldadores

Os dessoldadores diferenciam-se dos sugadores, por eles

FIGURA 9

FIGURA 10

mesmos derreterem a solda e fazerem a sucção. Existem três modelos conhecidos. Todos são constituídos por um ferro de solda provido de um bico oco especial, adequado à sucção, e uma câmara onde a solda é acumulada. A diferença entre os diversos modelos, está no sistema de sucção.

FIGURA 11

O tipo manual, possui uma bombinha de vácuo, localizada no cabo do ferro de solda, podendo esta ser a pistão (figura 9) ou à seringa de borracha (figura 10). A cada sugada, o sistema deve ser rearmado manualmente. O ferro nesse tipo de sugador é geralmente de 50 a 100 watts.

O dessoldador a pedal, tem o vácuo produzido por um êmbolo, acionado a pedal, e que se mantém içado por intermédio de uma mola (figura 11). O automático, possui um sistema de vácuo a motor ou a pistão, acionado por um solenóide, idêntico ao usado no sugador automático

(figura 12).

Acreditamos que o instrumental apresentado, tenha mostrado a você boa parte de sua utilidade e potencial de aplicação. Diante disso você realmente não deverá mais ter dúvida, em incorporá-los à sua bancada de serviço.

BARTÔ ELETRÔNICA

Rua da Concordia, 312 - Tel. 224 - 3699 / 224 - 3580

INTRODUÇÃO AOS CIRCUITOS

DE COMPUTADORES Este ANALÓGICOS ANALÓGICOS ANALÓGICOS

Estamos vivendo numa época em que praticamente qualquer problema matemático pode ser resolvido por um computador digital, desde a pequena calculadora de bolso, até o grande sistema de computadores. Apesar de os computadores digitais terem provado sua eficácia nesse campo, existem muitos problemas que podem ser solucionados mais facilmente com o auxílio de um computador analógico. Veremos, assim, este mês, como é possível montar um circuito básico de cálculo analógico, efetuando divisão e multiplicação, com apenas um amplificador operacional tipo 741 e mais uns poucos componentes.

Este circuito, logicamente, não pretende ser tão preciso quanto uma calculadora comercial de bolso, mas executa bem o seu trabalho, que é o de demonstrar a operação de várias funções importantes dos computadores analógicos. Comparemos, antes de passarmos ao circuito, as vantagens e desvantagens relativas dos computadores analógicos e digitais.

Analógico x digital

Todos aqueles que já utilizaram uma calculadora, portátil ou não, sabem que o resultado de um cálculo, no «display», é preciso até o último dígito, pelo me-

nos. Assim, a precisão típica de tais máquinas pode variar de 8 a 16, ou mais, dígitos.

Os computadores analógicos, por sua vez, não exibem, nem de longe, tal nível de precisão. Na realidade, o resultado de um cálculo de um computador analógico pode apresentar um erro de até alguns por cento. Mas, mesmo sendo menos preciso que as máquinas digitais, os computadores analógicos podem ser usados para «simular» um problema do mundo real com uma fidelidade muito maior. Um computador analógico pode, por exemplo, ser utilizado para simular o vôo de uma aeronave ou o fluxo de um rio. Girando-se simples controles no painel do mesmo, é possível variar inúmeros parâmetros e receber os resultados de imediato. O operador desse computador teria a possibilidade, também, de estudar os efeitos do vento, temperatura, chuva e outros fenômenos atmosféricos, sobre a fumaça lançada por uma chaminé, ao girar potenciômetros, que simulariam a variação da velocidade e direção do vento, precipitação e temperatura. E, ao contrário dos computadores digitais, os resultados de um computador analógico são fornecidos no «tempo real», ou seia, tornam-se disponíveis instantaneamente.

Em conclusão, poderíamos resumir as diferenças básicas entre os dois tipos de máquinas: enquanto os computadores digitais são projetados para processamento de dados em larga escala e para exibir uma grande precisão, os computadores analógicos não têm rival na simulação de um complexo problema matemático ou físico.

O amplificador operacional

O amplificador operacional é o componente básico dos computadores analógicos. Antigamente, era difícil montar um desses amplificadores, devido à grande quantidade de componentes envolvidos. Hoje em dia, graças à eletrônica integrada, existem amplificadores operacionais encapsulados em circui-

FIGURA 1

tos integrados de apenas 8 pinos.

Para que você compreenda melhor o circuito que vamos expor, é conveniente que você aprenda ou relembre alguns pontos básicos sobre os circuitos de amplificadores operacionais:

O amplificador operacional consiste de um amplificador diferencial, com duas entradas; uma delas é chamada de entrada inversora (—) e a outra, de entrada não-inversora (+). Um sinal, aplicado à entrada inversora, tem sua polaridade invertida, na saída do amplificador; a polaridade do sinal não é modificada, se ele for aplicado à entrada não inversora.

FIGURA 2

Por outro lado, se aplicarmos um sinal a cada entrada, simultaneamente, teremos, na saída, a diferença desses dois sinais. Exemplo: se injetarmos 6 volts à entrada não inversora e 2 volts à entrada inversora, teremos 4 volts na saída do amplificador operacional.

Na prática, a operação do amplificador operacional é mais complexa, pois apresenta **ganho**, que aparece multiplicado pela diferença de tensões, na saída. Uma fórmula bastante simples exprime essa relação:

$$V_{\text{saida}} = G(V_1 - V_2),$$

onde G é o ganho, e V₁ e V₂ são as tensões aplicadas às entradas não inversora e inversora, respectivamente.

Essa fórmula é muito importante, porque mostra qual o nível de tensão que podemos esperar na saída do amplificador operacional, conforme os vários ganhos e tensões de entrada. Ela mostra, também, como um único amplificador operacional pode ser utilizado como um multiplicador, fazendo seu ganho ser multiplicado pelas diferenças de tensões de entrada.

É possível empregar o amplificador operacional da maneira descrita, utilizando-se apenas um sinal (e, portanto, apenas uma entrada), se a entrada não utilizada for ligada à terra. As-

sim, considerando o potencial de terra igual a zero, aquela fórmula teria o seguinte aspecto:

$$V_{\text{saida}} = G(V_1 - 0) = G \times V_1$$

É possível, ainda, variar o ganho do amplificador operacional, de maneira controlada e previsível, ao variar o valor de um resistor de realimentação, conectado entre a entrada inversora e a saída do amplificador.

Juntando tudo isso, podemos construir um simples circuito multiplicador e divisor analógico. plica e divide. Considere, por exemplo, que R₁ seja de 1 ohm; desta forma, teríamosuma multiplicação:

$$V_{\text{saida}} = R_2 \times V_{\text{entr.}}$$

Por outro lado, caso a tensão de entrada fosse igual a 1 volt, a tensão de saída seria igual a R₂÷ R₁, assim:

Na figura 1, o resistor R3 e a pilha B1 formam uma fonte de tensão variável para o circuito. na saída do amplificador operacional, basta ligar um simples voltímetro (ou multímetro, comutado para as escalas de tensão CC) à mesma.

Para começar, você pode utilizar o valor de 100 quilohms, tanto para R1 como para R2. Caso você esteja usando um potenciômetro em R2, ajuste R2 e R3 na posição central do cursor. Ligue, também, o voltímetro à saída do amplificador operacional, entre o pino 6 e o terra. Como este circuito é um amplificador inversor, a tensão de saída,

FIGURA 3

O circuito prático

Na figura 1, vemos o circuito completo do multiplicador/divisor analógico. Esse circuito opera de acordo com a seguinte fórmula:

Vsaída = $(R_2 \times V_{entr.})/R_1$ onde R_1 é o resístor série, R_2 é o resístor de realimentação e $V_{entr.}$ é a tensão de entrada.

Você deve ter percebido que, nessa fórmula, o valor R₂/R₁ é equivalente ao valor G da fórmula anterior. Outra coisa que podemos ver nessa fórmula é a maneira pela qual o circuito multi-

Girando o cursor de R3, você pode obter desde uma pequena fração de volt, até a tensão total da pilha (1,5 V).

Aplicando o circuito

A alimentação do circuito é fornecida por duas baterias de 12 volts. Você poderá utilizar, no lugar delas, duas baterias de 9 volts, que são mais comuns; no entanto, assim você obterá uma faixa menor de tensões na saída.

R1 e R2 podem ser resistores fixos ou «trimpots», de acordo com sua conveniência. Para «ler» o resultado das operações, no pino 6, será negativa, em relação à terra; dessa maneira, a ponta de prova positiva do voltimetro deverá ser ligada à terra e a negativa, ao pino 6 do amplificador operacional. Você poderá usar qualquer voltimetro que tenha uma escala de 10 a 15 volts (ou qualquer multimetro, ajustado para essa escala).

Estando tudo conectado e em ordem, gire o cursor de R3, até que o voltímetro indique 1 volt; o circuito estará, desse modo, calibrado para dividir R2 por R1. Não há necessidade de calibrar o circuito para efetuar a divisão de outros valores de R2

Dê asas à sua imaginação.

LUZES SEQUENCIAIS

«Jogue» com as cores e formas e consiga efeitos maravilhosos com este circuito. Com ele você pode fazer a luz «movimentar-se» da maneira que quiser. De fácil montagem e aplicações que vão desde a iluminação de vitrines, animação de bailes, até o que sua imaginação permitir.

KIT'S NOVA ELETRÔNICA Para amadores e profissionais. A venda:

SAO PAULO — Filcres Import. e Repres Ltda.
RIO DE JANEIRO — Deltronic Com. de Equip. Ltda.
PORTO ALEGRE — Digital Compon. Eletr. Ltda.
CAMPINAS — Brasitone
BELO HORIZONTE — Casa Sinfonia Ltda.
CURITIBA — Transiente Com. Apar. Eletr. Ltda.
RECIFE—Barto Eletrônica
FORTALEZA — Eletrônica Apolo
ESPIRITO SANTO — Casa Strauch
BRASILIA — Yara Eletrônica Ltda.
FLORIANOPOLIS — Eletrônica Radar Ltda.
SALVADOR — TV-Peças Ltda.

e R1; basta, simplesmente, variar os valores de R2, de 1 quilohm a 1 megohm, e ler os resultados diretamente no voltímetro.

Você verá que esse divisor é razoavelmente preciso. Na figura 2 há um gráfico, resultante dos valores obtidos ao se dividir os valores de 1 quilohm a 1 megohm de R2 pelo valor de 100 quilohms de R1, com uma tensão de entrada de 1 volt.

O circuito pode ser usado para multiplicar, variando-se o valor de Ventr, fornecido por B1 e R3. Troque o resistor R1 por um de 1 ohm e ajuste o valor de R2 para 1 quilohm; em seguida, ajuste R3, até que o voltimetro indique uma tensão de 10 volts (isto, com baterias de alimentação de 12 volts). O circuito, agora, funoiona como um multiplicador, onde o valor de R2 é multiplicado por 0,001 (comprove, através da fórmula da multiplicação). É claro que você pode variar esse fator de multiplicação, variando a posição de R3.

Sugestão de montagem

Você pode dispor todos os componentes sobre uma placa perfurada, como aquela da figura 3, ou sobre uma placa de circuito impresso padronizado. Observe a posição correta dos pinos do circuito integrado.

Conclusão

Os amplificadores operacionais podem ser utilizados em inúmeras outras funções, no interior de computadores analógicos, incluindo integração, diferenciação, adição, subtração e extração de raízes. Caso você deseje maiores informações sobre tais circuitos, procure bons livros sobre o assunto, em livrarias ou bibliotecas.

Relação de componentes

R1 — 100 quilohms

R2 — trimpot 1 megohm

R3 — trimpot 1 megohm

CI1 — amplificador operacional tipo 741

B1 - pilha de 1,5 volt

B2, B3 — baterias de 9 ou 12 volts (ver texto)

Preencha os dados abaixo e envie-nos acompanhado de um cheque visado pagável em São Paulo ou Vale Postal a favor de:

À EDITELE — Editora Técnica Eletrônica Ltda. C. Postal 30 141 01000 — S. Paulo — SP.

Em anexo estou-lhes remetendo a importância de Cr\$ 320,00 para pagamento da assinatura de 12 números de NOVA ELETRÔNICA, a partir da próxima edição posta em circulação.

	Postal n.º		ntra o Banco	
Receberei, com	o BRINDE, inteira	mente grátis, o li	vro	
É a primeira ass	inatura 🗆 ou está	á renovando sua a	assinatura 🗆	
NOME		11111		
ENDEREÇO				
NÚMERO	АРТО.	BAIRRO		
CEP	CIDADE			
EST.		+++++		
DATA / _		9	• •	Assinatura

Aviso para os assinantes que pretendem remeter Vale Postal:

Como o Correio não permite que outros papéis sejam enviados no mesmo envelope do Vale Postal, pedimos aos que usarem tal forma de pagamento que enviem, ao mesmo tempo, outro envelope, contendo nosso cupom de assinatura.

PARTICIPE DAQUILO QUE AJUDOU A CONSOLIDAR...

Dê sua opinião, critique, elogie, aconselhe, sugira. Selecione os artigos que mais gostou. Faça suas ressalvas. Enfim, ajude-nos a tornar a revista Nova Eletrônica mais adequada a seus gostos e necessidades.

Como você deve ter notado, tentamos, com o passar do tempo, atingir todos os graus de complexidade em eletrônica e todas as faixas desse campo, desde o principiante até o engenheiro. Queremos, agora, aperfeiçoar essas inovações, ouvindo os principais interessados: os leitores.

Em conclusão, esta não é uma pesquisa comum. Ela pode fazer com que você seja um leitor participante, auxiliando a melhorar sua publicação preferida de eletrônica.

NOME
CIDADE ONDE RESIDE ESTADO
PROFISSÃO
SE ESTUDANTE, NOME DO ESTABELECIMENTO ONDE ESTUDA
ENDEREÇO DO ESTABELECIMENTO DE ENSINO
CURSO SÉRIE / ANO
EMPRESA EM QUE TRABALHA
Quais foram os artigos da NE que mais interesse despertaram em você? Cite alguns assuntos que gostaria de ver tratados na NE: Quanto à linguagem empregada nos artigos, você a considera pesada demais , simplificada demais , ou na dosagem
correta ☐ ?
No seu entender, o que poderia ser feito para melhorar ainda mais a NE?
Qual dos kits lançados pela NE já o interessou?
Que tipo de kit, segundo você, está faltando na NE?
Qual dos cursos publicados pela NE você acompanhou ou acompanha?
A revista Nova Eletrônica é facilmente encontrada em sua cidade? Ela é vendida regularmente, todos os meses?
Você é assinante? Em caso afirmativo, recebe NE normalmente, sem problemas?
DATA / /19

NÃO ESTÁ NOS LIVROS!

SUGESTÕES DA NOVA ELETRÔNICA

Gerador de sinais de freqüência ultrabaixa, com 555

Usando apenas pequenos capacitores, os três temporizadores 555 da figura 1, podem gerar fregüências ultrabaixas, como 10⁻³ Hz.

Os temporizadores T_1 e T_2 , operam no modo monoestável e T_3 opera como um astável. Durante o intervalo em que a saída de T_3 , pino 3, está baixa, o transistor Q_1 conduz, e o capacitor C_3 se carrega através de R_3 (veja as formas de onda da figura 2). Quando a saída de T_3 se torna alta, Q_1 é cortado e C_3 mantém a carga previamente acumulada. Este processo contínuo,se repete com T_3 oscilando até que a carga de C_3 atinja 2/3 V_{CC} , o que forçará a saída de T_1 , pino 3, para um nível baixo e disparará o pino 3 de T_2 , a um nível alto, via C_2 .

Agora os papéis de T_1 e T_2 são invertidos e o processo é repetido, com C_4 se carregando através de Q_2 e R_4 .

O tempo necessário para C3 e C4 se carregarem

Usando apenas pequenos capacitores, os três até 2/3 V_{CC} é determinado pelas seguintes equações:

$$T_1 = 1,1R_3.C_3[2 + (R_5/R_6)]$$

e

$$T_2 = 1,1R_4.C_4[2 + (R_5/R_6)]$$

Portanto a frequência é:

$$F = (T_1 + T_2)^{-1}$$

Quando R3.C3 = R4.C4,

$$f = \frac{1}{2,2.R_3.C_3[2 + (R_5/R_6)]}$$

A frequência total é ajustada por R₅, e o «meio» período por R₃ e R₄. Por exemplo, com:

$$R_3 = R_4 = 500 k\Omega$$

$$C_3 = C_4 = 2 \mu F$$

$$R_5/R_6 = 48$$

então

$$F = 9.10^{-3} Hz$$

1 — Freqüências ultrabaixas podem ser geradas com este circuito, e apenas pequenos capacitores são necessários.

2-0 «timer» T_3 trabalha livremente e acumula tensão em C_3 , na forma de degraus de tensão, até que 2/3 V_{CC} seja atingido. Então, T_1 é disparado e C_4 é carregado em degraus. O ciclo continuamente se repete entre T_1 e T_2 .

COMO SÃO FABRICADOS OS CIRCUITOS IMPRESSOS

EM ESCALA INDUSTRIAL

O que se entende por «circuito impresso»? Pode-se definí-lo como uma placa isolante, sobre a qual estão distribuídos condutores metálicos. Esse conjunto tem duas funções bem definidas: primeira, a de substituir parte ou a totalidade da fiação de um circuito eletrônico; segunda, a de sustentar os componentes eletrônicos desse circuito.

Os circuitos impressos podem ser divididos em duas categorias principais:

Os circuitos impressos de face única, que apresentam condutores em apenas um dos lados da base isolante;

Os circuitos impressos de dupla face, que possuem condutores em ambos os lados da base isolante; neste caso, a continuidade elétrica entre os condutores de uma face para outra é obtida através da metalização dos furos que interligam as faces (em outras palavras, esses furos são revestidos de material condutor).

O material da placa base do circuito impresso pode ser constituído por folhas de papel isolante ou fibra de vidro, devidamente impregnadas com resinas fenólicas ou à base de epóxi. Tais resinas são tratadas com processos especiais, de modo a apresentarem as características mecânicas e físico-químicas deseiadas.

Tais características são classificadas assim:

- a) Comportamento durante o trabalho mecânico, tal como furação, prensagem (a frio ou a quente);
- b) Condutividade térmica e resistência aos choques térmicos;

- c) Resistência ao fogo:
- d) Absorção de umidade;
- e) Grau de adesão (peel strength) da película de cobre à base isolante;
- f) Características elétricas de isolação.

o método de fabricação

A fabricação de um circuito impresso é constituída por três diferentes etapas: mecânica, química e de impressão.

A fase mecânica compreende todas as operações de furação, fresagem e estampagem.

A fase química compreende todas as operações químicas e eletroquímicas, que se prestam a:

- a) Cobrear quimicamente os furos da placa, de forma a torná-los eletricamente condutivos:
- b) Cobrear eletroquimicamente toda a placa (o que se denomina método «panel») ou parte dela, isto é, apenas as pistas e furos (o que se denomina método «pattern»).
- c) Depositar eletricamente, sobre as pistas, após a fase de impressão, um metal ou liga que exiba boas características quanto à soldagem e quanto à resistência às soluções empregadas para a corrosão química do circuito.
- d) Corrosão química do circuito impresso (também chamada decapagem), que dá origem ao traçado final do circuito.

Por **fase de impressão** entende-se:

 a) — Todas as operações de impressão fotográfica ou serigráfica (silk-screen) executadas sobre as placas cobreadas, com o objetivo de estampar, sobre as mesmas, o desenho do traçado do circuito:

Todos certamente sabem alguma coisa a respeito da confecção de circuitos impressos e recordam, pelo menos, os passos básicos do processo: a impressão do traçado, por serigrafia (silk screen) ou método fotográfico, a corrosão do cobre, a furação. Mas, qual é o processo empregado quando se quer produzir circuitos impressos em grande escala e com grande precisão? Como são feitos os chamados furos metalizados? E as placas com elevada densidade de componentes, com pistas finíssimas? A tudo isso e muito mais a Nova Eletrônica responde neste artigo, escrito a partir de uma visita feita a uma das mais conceituadas indústrias do ramo.

b) — Todas as operações de «silk-screen», com o objetivo de aplicar sobre o circuito impresso pronto, vernizes limitadoras de soldagem (chamadas «solder resist»), assim como símbolos,

números e palavras.

Da rápida descrição feita, conclui-se, basicamente, que é possível empregar dois diferentes tipos de revestimento em cobre («panel» ou «pattern»), e dois sistemas de impressão (fotográfico ou serigráfico). A esco-Iha entre os dois tipos de revestimento e impressão é feita em função da largura das pistas condutoras do circuito e do diâmetro das áreas de soldagem. em relação ao diâmetro dos furos. Esses dois parâmetros dependem, por sua vez, do tipo de componentes que a placa irá receber (discretos ou integrados).

Assim, a forma final de classificação dos circuitos impressos deve levar em conta, além do número de faces, o processo de fabricação e o tipo de componentes envolvidos (veja a tabela «Classificação dos Circuitos Impressos»).

Ciclo de fabricação

A fabricação de circuitos impressos divide-se, devido a certas diferenças básicas, em dois tipos principais:

1) - Circuitos impressos simples, de uma só face e sem furos metalizados;

NOVA ELETRÔNICA 289

 Circuitos impressos de face dupla e furos metalizados, em geral.

Os primeiros passam por processos muito parecidos com os métodos caseiros de confecção de circuitos impressos, como impressão do traçado por «silk-screen», decapagem por líquidos especiais, remoção do verniz, furação e assim por diante. Naturalmente, sendo feitos em escala industrial, todos esses processos são automatizados e muito mais precisos.

Os circuitos impressos do segundo tipo nos interessam mais, pelo fato de terem de empreender um maior número de etapas, mais complexas, precisas e elaboradas. Dessa forma, daqui para a frente nos restringiremos à descrição dos processos de fabricação dos circuitos impressos de face dupla e furos metalizados.

Na figura 1, pode-se ver um diagrama que mostra a seqüência de etapas exigidas para a confecção desse tipo de circuitos impressos. Todos esses passos serão examinados mais detidamente e, durante a descrição, poderemos nos referir, eventualmente, ao diagrama.

Na fabricação de circuitos impressos, certos departamentos devem trabalhar paralelamente. Desse modo, por um lado, o laboratório fotográfico recebe o desenho do traçado do circuito e faz reproduções do mesmo, em uma máquina como a da figura 2, onde o desenho é fixado na tela e então fotografado, para ser transformado em fotolito (reprodução do desenho sobre uma folha de celulóide, em positivo ou negativo, de acordo com a necessidade). Como se percebe pela figura 1, a intervenção do laboratório de fotografia será necessária, várias vezes, ao longo da produção. como veremos adiante.

Enquanto o fotolito do traçado está sendo preparado, as placas cobreadas estão sendo cortadas de chapas maiores, por meio de guilhotinas especiais, já em seu tamanho correto.

Devido à futura presenca de furos metalizados, essas placas devem sofrer, antes de mais nada, toda a furação necessária. Essa operação é efetuada em furadeiras automáticas, que são capazes de efetuar diversos furos simultaneamente, sob o controle de um sistema eletrônico programado (figura 3). Como as furadeiras são automáticas, seu sistema eletrônico deve ser programado com a exata localização dos furos, em cada caso; a matriz dos furos é fornecida pelo departamento de fotografia, como se vê na figura 1. Uma vez alimentado com essa matriz, o circuito eletrônico controla a furadeira, para que ela execute a mesma distribuição de furos em quantas placas forem necessárias.

Vencida essa etapa, as placas devem ser remetidas à galvanização, para que seus furos sejam metalizados. Para isso, emprega-se o método «panel». que consiste em revestir toda a placa com uma fina película de cobre (veja o quadro «Os métodos de metalização de furos»). Tal operação é efetuada em um sistema automático de galvanização, como o da figura 4. Nos tanques que se vê na figura (chamados células eletrolíticas), as placas fazem o papel de catodo e o anodo é constituído por barras de cobre eletrolítico.

Na figura 5, temos um detalhe ampliado de um furo metalizado em corte.

A etapa seguinte oferece duas alternativas básicas, sendo que uma delas subdivide-se em duas outras opções. Trata-se da fase de impressão do traçado sobre a placa, que pode ser feita por «silk-screen» (método serigráfico) ou pelo processo fotográfico. Este último, por sua vez, pode ser efetuado de duas maneiras: por emulsões líquidas fotossensíveis ou pela aplicação de uma película seca (dry film).

Antes de seguirmos com a descrição, é conveniente colo-

TABELA I CLASSIFICAÇÃO DAS PLACAS DE CIRCUITO IMPRESSO

CIRCUITOS IMPRESSOS DE UMA FACE — Tais placas não requerem furos metalizados e, em geral, recebem impressão pelo método serigráfico. Apresentam uma baixa densidade de componentes e suas pistas não recebem revestimento. O materialbase da placa pode ser fenolite ou fibra de vidro.

CIRCUITOS IMPRESSOS DE DUPLA FACE, PARA COMPONEN-TES DISCRETOS — Apresentam uma densidade média de componentes, podendo receber impressão pelo método serigráfico. Possuem furos metalizados e pistas com largura mínima de 0,4 mm.

Os condutores, depois de pronto o circuito, podem ser protegidos por uma liga de estanho/chumbo ou níquel/ouro. É possível incluir, na placa, conectores revestidos com níquel/ouro. O revestimento de cobre é geralmente executado pelo método «panel».

CIRCUITOS IMPRESSOS DE DUPLA FACE, PARA CIRCUITOS INTEGRADOS — Tais circuitos exibem uma elevada densidade de componentes e recebem impressão pelo método fotográfico. Possuem furos metalizados e condutores com largura mínima de 0,25 mm, podendo estes ser protegidos por uma liga de estanho/chumbo (Sn/Pb) ou níquel/ouro (Ni/Au).

Como no caso anterior, essas placas podem ser providas de conectores revestidos de Ni/Au. O revestimento em cobre pode ser efetuado pelo método «panel» e, em alguns casos, pelo método «pattern».

CIRCUITOS IMPRESSOS DE DUPLA FACE, COM UMA DENSI-DADE ELEVADÍSSIMA — Esses circuitos, providos de furos metalizados, apresentam uma densidade de componentes bastante elevada e condutores com uma largura mínima de 0,13 mm. Por tais razões, o revestimento em cobre é efetuado pelo método «pattern» e a impressão do traçado, pelo processo fotográfico.

carmos uma observação, para proporcionar uma melhor compreensão do que vai ser exposto, daqui para a frente: o traçado que é impresso sobre as placas de dupla face e furos metalizados é uma impressão em negativo do tracado final, ou seia, apenas as áreas de cobre que mais tarde serão eliminadas pela decapagem é que ficam tas. Isto porque as pistas do circuito serão depois recobertas por um metal ou uma liga metálica, que servirá de «etching resist» (veja o quadro «Os métodos de metalização de furos») e também de proteção ao traçado, quando o circuito impresso estiver pronto.

Fechando parênteses, sigamos com os métodos de impressão:

Processo serigráfico («silk-screen») — Este método baseia-se no emprego de telas de serigrafia, feitas em aço inoxidável, e impermeabilizadas nas regiões formadas pelo traçado do circuito. Assim, por intermédio dessas telas, imprime-se sobre as placas o desenho em negativo do circuito impresso, mediante a ação de um cursor de borracha, que pressiona o verniz pela tela.

Essas telas são incorporadas a máquinas semi-automáticas, que elevam e abaixam a moldura da tela, movimentam o cursor de borracha ao longo da mesma e permitem o alinhamen-

FIGURA 5

to do traçado com a placa (figura 6). Depois de aplicado à placa, o verniz deve ser posto para secar

em um forno de ar quente, como aquele que se vê em primeiro plano, na figura 7.

Métodos fotográficos — Os processos deste tipo destinamse a placas de maior precisão (de grande densidade de componentes e pistas estreitas). As placas tornam-se fotossensíveis mediante a aplicação de emulsões ou películas fotográficas. As primeiras se apresentam sob a forma líquida, e são aplicadas às placas por intermédio de máquinas especiais, dotadas de cilindros. As películas, ou «dry films», são constituídas por uma fita de material fotopolimerizável, sustentada por uma fita su-

Os métodos de metalização de furos

«Panel» — Por este método, toda a placa recebe um revestimento de cobre, depois da furação e antes da impressão do traçado do circuito. Mas, como neste tipo de placa utiliza-se um metal ou uma liga metálica, e não um verniz, no papel de «etching resist» (material resistente à corrosão, que tem a função de proteger o traçado, durante o processo de decapagem), temos uma consegüência que se torna problemática, em alguns casos: se observarmos a seção transversal de uma pista desse circuito, depois de pronto, veremos que a camada de metal «etching resist» sobressai, em relação à camada inferior de cobre; tal fenômeno recebe o nome de subincisão (undercutting) e é muito perigoso, em certas aplicações do circuito impresso, pois a camada superior de metal pode romperse e causar curto-circuitos acidentais.

Além disso, em circuitos com pistas muito estreitas, o valor da subincisão é capaz de reduzir a largura das mesmas abaixo dos valores mínimos aceitáveis.

Nos casos em que possam advir tais problemas, é preferível adotar o método «pattern».

«Pattern» — Com este método, a espessura da película de cobre é obtida em duas fases: uma, antes da impressão (como no método «panel»), ocasião em que se deposita uma camada de 5 a 8 µm de cobre, e outra, depois da impressão (apenas sobre o traçado, portanto), com a qual se atinge a espessura desejada. Dessa maneira, graças a uma menor espessura de cobre, na ocasião da decapagem, o fenômeno da subincisão terá seus efeitos atenuados, assim como todos os inconvenientes originados por ela.

Na figura ao lado, vê-se um detalhe bastante ampliado da junção de uma pista de circuito impresso com um furo metalizado, tomada de perfil. A porção inferior, mais escura, é a base isolante do circuito impresso. Observe que acima dela existem, ao todo, quatro camadas de metalização: a primeira, inferior, é a película original de cobre da placa; a segunda, também de cobre, é a metalização efetuada antes da impressão, pelo método «panel»; na terceira, o cobre foi depositado pelo método «pattern» após a impressão do traçado: e a última camada, formada por uma liga estanho/ chumbo, recobre todo o traçado do circuito.

porte, transparente; os «dry films» são aplicados a quente sobre as placas, também mediante o emprego de máquinas especiais.

As placas, tornadas fotossensíveis por um dos dois métodos descritos, são agora sensibilizadas, por um processo de impressão por contato, que prevê o uso de uma reprodução positiva do traçado do circuito (fornecida pelo laboratório fotográfico) e de máquinas adequadas, que possuam duas características básicas:

- a) Que possam criar vácuo na mesa onde a placa descansa, para proporcionar um contato íntimo entre a mesma e o desenho do traçado;
- b) Que possam, depois, sensibilizar as placas, fazendo passar sobre elas uma lâmpada de ultravioleta de alta potência, automaticamente e a uma velocidade constante, que irá provocar a fotopolimerização da película fotográfica, nos locais onde o traçado permitir.

FIGURA 7

Feito isto, as placas sensibilizadas são levadas à máquina reveladora, que dissolve a película fotográfica nos locais não atingidos pela luz, através da pulverização de solventes. Após a revelação, as placas terão, sobre si mesmas, um desenho do traçado do circuito, em negati-

vo, igual ao que é obtido pelo método serigráfico.

Durante os processos de aplicação da película fotográfica, sensibilização e revelação, utiliza-se, nos ambientes, uma iluminação especial, que não provoque a polimerização prematura das películas.

<u>Logical</u>

INSTRUMENTOS DIGITAIS DE PAINEL

LVP	002-AC	-	Voltimetro para tensões alternadas	3	digitos
LYP	002-DC	-	Voltimetro para tensões continuas	3	digitos
LAP	002-AC	-	Amperimetro para tensões alternadas		digitos
LAP	002-DC	-	Amperimetro para tensões continuas	- 3	digitos
	001-AF	-	Frequencimetro		digitos
LFP	001-BF	-	Frequencimetro para baixas frequências	5	digitos
LTP	001-P.U	-	Tacômetro para pick-up magnético	4	digitos
LTP	001-DF	-	Tacômetro para decodificador ótico	4	digitos
LTP	002-DF		Tacometro para decodificador ótico	3	digitos
LTP	002-TG	-	Tacômetro para taco gerador	3	digitos
LCP	001-PL	-	Contador de pulsos	5	digitos
LCP	001-TP	-	Contador de tempo	5	digitos

Rasgo no painel 68x68 mm (Padrão DIN)

OUTROS EQUIPAMENTOS:-

- * Fontes de alimentação:- linha didática e linha profissional,caixa padrão rack 19"
- * Frequencimetro digital de mesa:- 5 digitos,15 MHz,sensibilidade 50 mV
- * Sensores de proximidade :- capacitivos e indutivos vários modêlos * Controladores de nível para sólidos e liquidos (condutores ou isolantes)

LMP COMÉRCIO E MONTAGEM DE EQUIPAMENTOS ELETRÔNICOS LTDA.

Nos dois casos vistos (impressão serigráfica e fotográfica), o desenho em negativo sobre a placa pode ser chamado de «plating resist», pois vai permitir a deposição seletiva de um metal ou liga metálica sobre as pistas e furos do circuito, conforme veremos na próxima etapa.

O próximo passo consiste na eletrodeposição Sn/Pb, ou seja, em recobrir as pistas e parte interna dos furos, deixadas a descoberto pelo desenho impresso sobre a placa, com uma liga de estanho/chumbo. A liga só vai aderir onde há cobre nú, recobrindo, portanto, o traçado exato do circuito: esse fato o torna ideal para ser utilizado como «etching resist» (material resistente à decapagem).

Tal operação é efetuada dentro de uma célula eletrolítica, a exemplo da operação de metalização já descrita. Essa célula pode ser vista na figura 8, juntamente com algumas placas que estão para ser mergulhadas em seu interior.

Vencida mais esta etapa, torna-se necessário eliminar o «plating resist» da placa (constituído pela verniz serigráfica ou película fotográfica), para permitir a operação de decapagem ou corrosão do cobre não protegido pelo revestimento de estanho / chumbo. Essa operação de corrosão é executada por máquinas especializadas (figura 9), que pulverizam soluções corrosivas seletivas, isto é, eliminam o cobre, mas não o metal ou a liga empregada como «etching resist». Tais máquinas contêm. ainda, reservatórios que permitem a neutralização e solubilização dos sais resultantes das reações, e outros reservatórios, para a lavagem posterior das placas acabadas.

Contatos para conectores

Em certas placas de circuito impresso, é necessária a presença de contatos, para permitir que a mesma seja inserida em conectores, nos sistemas onde será instalada. Tais contatos, assim, são feitos nas bordas da

FIGURA 8

placa, em cobre, e depois são revestidos com uma liga de níquel/ ouro (que exibe ótimas características mecânicas e elétricas).

Se as placas em produção estiverem providas de contatos. este é o momento de revestí-los com essa liga especial. Primeiramente, cobre-se o restante da placa com uma fita auto-adesiva e, em seguida, mergulha-se o circuito impresso em uma solução apropriada para eliminar o revestimento de Sn/Pb dos contatos, deixando descoberto o cobre dessa área.

A sequir, em outro conjunto de células eletrolíticas, os contatos são recobertos de níquel e depois, de ouro. O restante da placa não é afetado, pois continua revestido pela fita auto-adesiva protetora; terminada essa operação, a fita é retirada.

Refusão do revestimento de estanho/chumbo

Esta operação é opcional, a pedido do cliente, e consiste em criar uma verdadeira liga Sn/Pb, do ponto de vista metalúrgico. em eliminar o excesso dessa liga, sobre a placa e tornar a placa mais estética (pois o revestimento, após a refusão, torna-se brilhante).

Nesta etapa, a placa é exposta à pulverização de líquidos aquecidos à temperatura de 220°C, que causam a fusão e acomodação da liga de estanho/ chumbo. Nessa ocasião, os contatos niquelados e dourados, caso existam, deverão ser protegidos por uma fita auto-adesiva resistente ao calor, para evitar que gotas de metal líquido fundido sejam ali depositadas e causem curto-circuitos.

Aplicação de «solder resist» e símbolos

Aqui temos mais duas etapas opcionais e independentes entre si; a única coisa que têm em comum é o processo de apli-

FIGURA 9

cação à placa, que é serigráfico. O «solder resist» é um verniz especial, destinado a limitar as soldagens aos seus locais corretos, evitando excessos; tem uma coloração verde-escura e deixa a descoberto apenas as áreas em torno dos furos. Na figura 10, pode-se ver um detalhe de uma placa revestida com «solder resist»: a porção mais escura está recoberta com esse verniz; as regiões mais claras

são de cobre nú, que vai receber a solda; e as partes brancas são os furos propriamente ditos.

Aplicado o «solder resist», pode-se então imprimir, na placa, os símbolos, números e palavras necessários, por meio de «silk-screen». Nos dois processos que acabamos de ver, a placa precisa passar por fornos de secagem do verniz.

Controle de qualidade e laboratório químico

Pode-se observar, através da

figura 1, que ao longo do processo de fabricação, existe uma operação que entra em cena constantemente: o controle de qualidade. Esse departamento se compromete a verificar, após cada operação, a qualidade e precisão das furações, revestimentos, decapagem, rejeitando ou aprovando placas, de modo que toda a produção seja mantida dentro dos rígidos padrões desejados. Tais operações são levadas a termo com equipamentos semelhantes ao que se ve na fig. 11.

Um outro departamento de presença constante durante a produção, é o laboratório químico, que produz e controla a qualidade de todos os líquidos utilizados no processo. O laboratório possui todos os instrumentos e equipamentos necessários à experimentação e análise desses líquidos (figura 12).

Ao longo do processo, existem ainda várias operações mecânicas, efetuadas na placa, que têm a finalidade de dar o acabamento e a forma final à mesma.

Vimos, assim, que o avanço tecnológico na confecção de circuitos impressos, no Brasil, está apto a seguir o desenvolvimento constante da eletrônica, fornecendo base segura e precisa para a crescente miniaturização dos componentes.

INFORMAÇÕES TÉCNICAS CEDIDAS PELA MICRO-ELETRÔNICA S.A.

Etapas de Projeto para Amplificadores Inversores e Não-Inversores.

Complementando os artigos publicados nas revistas n.ºs 6, 8 e 9, a respeito de parâmetros dos amplificadores operacionais, apresentaremos algumas etapas de projeto de amplificadores inversores e não-inversores, utilizando amplificadores operacionais.

A série de artigos anteriores, discutiu os mais importantes parâmetros dos amplificadores operacionais e ofereceu um guia para escolher o amplificador adequado para uma aplicação particular. Agora, como este guia será transladado para um projeto prático de amplificador? Este artigo irá apresentar algumas etapas simples que conduzirão a algumas exigências básicas para o projeto de amplificadores usando amplificadores operacionais. Para melhor en-

tendimento é importante o conhecimento dos parâmetros discutidos anteriormente, aos quais serão feitas referências.

ESPECIFICAÇÕES PARA AMPLIFICADORES INVERSORES

Primeiro, é claro, deve-se estabelecer as especificações do circuito, que são necessárias para a aplicação. Para esta discussão, as seguintes especificações serão assumidas:

Frequência mínima com ate-

- nuação de 3 dB, f_C = 10 kHz — Amplitude máxima do sinal de
- entrada, V₁ = 2 V_{pp} — Máxima tensão «offset» CC de
- Máxima tensão «offset» CC de saída, V_{0(máx)} = ± 25 mV
 Resistência de entrada, R_{IN} =
- Resistência dé entrada, R_{IN} = = 10kΩ
- «Drift» (flutuação, desvio) CC de 0 a 70°C, △V_{0(máx)}≤15mV

Etapa 1 - Configuração do circuito Usando o circuito da figura 1

$$\frac{V_{OUT}}{V_{IN}} = \frac{R_2}{R_1} = A = -9$$
; $\frac{R_2}{R_1} = 9$

Etapa 2 -Resposta em freqüência

A primeira especificação do amplificador operacional a ser considerada, é o ganho de tensão mínimo em malha aberta, AVOL, necessário para conhecer as exigências de resposta em freqüência, do amplificador. Isto é fácil de fazer usando o gráfico da figura 2. Desde que Rol $R_1 = 9$, então $(R_2 + R_1)/R_1 = 10$, localize a razão 10 (20 dB) no eixo (R2 + R1)/R1. Suba até a linha de 3 dB e leia no eixo vertical o mínimo AVOI requerido, 28 dB. Portanto, para assegurar que o ganho do amplificador não caia mais que 3 dB na f_C, o amplificador operacional deve ter um ganho em malha aberta de

Primeira Exigência:

AVOL \geq 28 dB em f_c(10 kHz)

Etapa 3 - Variação na saída

Visto que a amplitude máxima do sinal de entrada é 2 V_{pp},a variação máxima da tensão de saída será de 18 V_{pp}. Portanto, é necessário um amplificador

operacional com um «slew rate» bastante rápido para dar 18 V_{pp} acima de 10 kHz. Verificando a figura 3, fica evidente que é necessário um amplificador operacional com

Segunda Exigência: «slew rate» 0,8 V/us

Etapa 4 — Máxima tensão «offset» CC de saída (V₀)

A tensão «offset» de saída, V_0 , para o circuito da figura 1, dada pelas equações Para $R_3 = 0$,

 $V_0 = [1 + (R2/R1)] \cdot V_{OS} + I_{CC} R_2(2)$ Para $R_3 = R_1$ em paralelo com R_2 ,

 $V_0 = [1 + (R_2/R_1)].V_{OS} + R_2.I_{OS}(3)$ onde $V_{OS} = \text{tensão}$ «offset» de entrada; $I_{OS} = \text{corrente}$ «offset» de entrada, e $I_{CC} = \text{corrente}$ de polarização de entrada.

A menos que a tensão «offset» de saída especificada seja muito grande, é mais econômico acrescentar R3, do que usar uma corrente de polarização de entrada muito baixa, para o amplificador operacional. Por exemplo, neste caso, $R_3 = R_1$ em paralelo com R2. Da equação 3, pode ser visto que o valor de VO será baixo quando R2 for pequeno; portanto deverá ser escolhido o menor valor possível para R2. Para a configuração inversora, a resistência de entrada RIN é menor que R₁. Portanto, escolha R₁ de maneira que

 $R_1 \geqslant R_{IN} \geqslant 10 k\Omega$ (4)

Pelas equações 1 e 4, R₂/R₁ = 9 e R₁ \geqslant 10 kΩ; portanto, quando R₁ é 10 kΩ , R₂ = 90 kΩ e R₃ = 9 kΩ . A equação 3 torna-se

 $V_O = (1 + 9)V_{OS} + (90.10^3)I_{OS}$

Assim, precisamos de um amplificador operacional cujos VOS e los dêem

Terceira Exigência:

 $10V_{OS} + (90.10^3)I_{OS} \le 25 \text{ mV} \le V_{O(máx)}$

Para simplificar a procura de um amplificador operacional que satisfaça esta exigência, observe primeiramente aquele que tem as seguintes especificações:

VOS < VO(máx) / 10 ou < 25/10mV IOS < VO(máx)/90.10³ ou < 270nA

Etapa 5 — «Drift» O «drift» é dado pela

Quarta Exigência:

 $\triangle V_O = 10 \triangle V_{OS} + (90.10^3) \triangle I_{OS} \le V_{O(m\acute{a}x)} \qquad (15 \text{ mV})$

onde V_{OS} e I_{OS} são variações na tensão «offset» de entrada e na corrente «offset» de entrada, acima da faixa de 0 a 70°C na temperatura.

Sugestões finais na escolha do amplificador operacional adequado

E usualmente melhor, começar descobrindo os amplificadores operacionais que satisfaçam às primeira e segunda exigências; isto irá eliminar muitos deles. Em seguida verifique o me-Ihor para a terceira e quarta exigências, começando com os de mais baixo custo. Há, geralmente, outras especificações, como tensão e corrente de alimentação, corrente de carga, rejeição da fonte, etc., que deverão ser consideradas. Entretanto, os amplificadores operacionais que satisfizerem as exigências estarão num campo de escolha limitado a apenas alguns; então, eles podem ainda ser verificados para se saber se satisfazem as especificações restantes.

ESPECIFICAÇÕES PARA AMPLIFICADORES NÃO-INVERSORES

As etapas de projeto para os amplificadores não-inversores são similares àquelas dos amplificadores inversores. Do mesmo modo que para aqueles, faremos referência a parâmetros dos amplificadores operacionais vistos em artigos já publicados. Para esta discussão assumiremos as seguintes especificações:

- Ganho = A = 10
- Frequência mínima com atenuação de 3 dB, f_C = 10 kHz
- Amplitude máxima do sinal de entrada, V₁ = 2 V_{pp}
- Resistência de entrada, R_{IN} = = 5 MΩ min
- Máxima tensão «offset» CC de saída, V_{O(máx)} = ±25 mV
- «Drift» CC de 0 a 70°C, △VO(máx) ≤ 15 mV

Etapa 1 - Configuração do circuito No circuito da figura 4

$$V_{OUT}/V_{IN} = (R_2 + R_1)/R_1 = A = 10$$
(5)

Etapa 2 - Resposta em freqüência

Como no projeto do amplificador inversor, a primeira especificação do amplificador operacional a ser verificada é o ganho de tensão mínimo em malha aberta, AVOL, necessário para satisfazer às exigências de resposta em frequência do amplificador. Isto é fácil de fazer, usando o mesmo gráfico da figura 2. Sendo que $(R_2 + R_1)/R_1 = 10$, localize a razão 10 (20 dB) no eixo $(R_2 + R_1)/R_1$. Suba na linha de 3 dB e leia no eixo vertical, o Avol mínimo requerido, 28 dB. Portanto, para assegurar que o ganho do amplificador não caia mais que 3 dB na f_c, o amplificador operacional deve ter um ganho em malha aberta de

Primeira Exigência:

AVOL ≥28 dB em f_C (10 kHz)

Examinando a curva de ganho em malha aberta em função da freqüência, em vários folhetos de dados de amplificadores operacionais, determinaremos rapidamente que dispositivos

satisfarão esta exigência. A figura 5 é um bom exemplo. Um amplificador operacional com um produto ganho-banda passante de 25000 (28 dB.10 kHz), fará o trabalho, supondo que o amplificador operacional tem apenas um polo. $Z_{IN} = Z_{IN} = Z_{IN$

Etapa 3 — Variação na saída

Uma vez que a amplitude máxima do sinal de entrada é 2 V_{pp}, a variação máxima na saída será de 20 V_{pp}. Portanto precisa-se de um amplificador operacional com um «slew rate» bastante rápido para dar 20 V_{pp} acima de 10 kHz. Observando a figura 6, fica evidente que é necessário um amplificador operacional com

Segunda Exigência:

«Slew rate» ≥ 0,85 V/ us

Etapa 4 - Resistência de entrada

A impedância de entrada para a configuração não-inversora é dada por

onde Z é a impedância de entrada do amplificador operacional e R₃≪Z.

O amplificador operacional para este projeto deve satisfazer à exigência da impedância de entrada ser maior que 5 MΩ para freqüências menores que 10 kHz. Na etapa 2, foi determinado que o amplificador operacional deve ter um A_{VOL}, de não menos que 28 dB (ou 25 V/V) na freqüência de 10 kHz. Portanto, o amplificador operacional exigido deve ter uma impedância de entrada em 10 kHz, de pelo menos a seguinte:

Terceira Exigência:

$$Z \geqslant \frac{Z_{\text{IN}}}{1 + A_{\text{VOL}}(10 \text{kHz})} = \frac{5 \text{ M}\Omega}{1 + (25/10)} = \frac{5 \text{M}\Omega}{3,5}$$

$$Z \geqslant 1,4 \text{ M}\Omega$$

Das curvas, tais como as da figura 7, de resistência e capacitância de entrada, como função da freqüência, é fácil selecionar um amplificador operacional para satisfazer o requisito de impedância de entrada.

Etapa 5 — Máxima tensão «offset» CC de saída (V_O)

A tensão «offset» CC de saída, V_O, para o circuito da figura 4 é dada pela seguinte equação: Para R₃ = 0

 $V_O = [1 + (R_2/R_1)] \cdot V_{OS} + I_{CC} \cdot R_2$ (7) Para $R_3 = R_1$ em paralelo com R_2 = $(R_1 \cdot R_2) / (R_1 + R_2)$

 $V_0 = [1 + (R_2/R_1)].V_{OS} + R_2.I_{OS}^{(8)}$

onde V_{OS} = tensão «offset» de entrada; I_{OS} = corrente «offset» de entrada, e I_{CC} = corrente de polarização de entrada.

A menos que a tensão de saída especificada seja muito grande, é usualmente mais econômico adicionar R_3 do que usar um amplificador operacional de corrente de polarização de entrada muito baixa. Por exemplo neste caso, $R_3 = R_1$ em paralelo com R_2 . Da equação 8, pode ser visto que o valor de V_O será baixo quando R_2 for pequeno; portanto, o menor valor possível deverá ser escoihido para R_2 . Pelas equações 5 e 6,

$$(R_1 + R_2) / R_1 = 10 e R_3 \ll Z$$

Portanto, escolha $R_1=10k\Omega$; então $R_2=90k\Omega$ e $R_3=9k\Omega$ e a equação 8 se torna

$$V_O = (1 + 9)V_{OS} + (100.10^3) \cdot I_{OS}$$

Assim, é preciso um amplificador operacional cujo V_{OS} e I_{OS} satisfaçam à

Quarta Exigência

 $10V_{OS} + (100.10^3).I_{OS} \le 25 \text{ mV} \le V_{O(máx)}$

Para simplificar a busca de um amplificador operacional que satisfaça essa exigência, observe um que tenha as seguintes especificações

V_{OS} < V_{O(máx)}/10 ou < 25mV/10 I_{OS} < V_{O(máx)}/100.10³ ou < 250 nA

Etapa 6 — «Drift» O «drift» é dado pela

Quinta Exigência

$$V_{O} = 11 \triangle V_{OS} + (100.10^{3}) \triangle I_{OS} \le$$

$$\leq V_{O(m\acute{a}x)} \qquad (15 \text{ mV})$$

onde VOS e lOS são variações na tensão «offset» e na corrente «offset» de entrada, acima da faixa de temperatura de 0 a 70°C.

Sugestões finais na escolha do amplificador operacional adequado

Da mesma forma que para o amplificador inversor, a escolha do operacional correto para sua aplicação específica deve observar inicialmente as duas primeiras exigências básicas. Restringindo os amplificadores operacionais a apenas aqueles que preenchem estes requisitos, escolha dentre eles os que também satisfizerem a terceira e a quarta exigências.

Aqui, comece por utilizar o mesmo critério descrito anteriormente, ou seja, faça de seu ponto de partida os de custo mais reduzido. Não se esqueça de levar em conta as características de alimentação, carga e outras desejadas. A sua escolha então, deverá estar limitada a um número reduzido de dispositivos; verifique os que preenchem as demais especificações e pronto, já encontrou o amplificador operacional certo para o seu projeto!

A RADIOASTRONOMIA, ESSA MISTERIOSA

4.ª PARTE

Chegou a hora de falarmos das famosas "pulsars".
O que são, de que são feitas e como fazem para emitir sinais cronometricamente regulares?
Muitas hipóteses foram construídas em torno desse assunto, todas muito válidas e aceitáveis, de acordo com os atuais conhecimentos de física teórica.
Veremos, assim, algumas delas, neste capítulo.

GERLANDO SCÓZZARI

A descoberta do fenômeno das pulsars remonta ao ano de 1968, quase por acaso, por meio de uma análise precisa de estranhos sinais vindos de uma determinada região do espaço, explorada com um radiotelescópio que operava a uma freqüência de 81,5 MHz.

Como seria muito extensa a narração de todas as fases de pesquisa sobre esses corpos celestes, passaremos de imediato a ver algumas das teorias mais lógicas, incluindo uma do próprio autor (que espera não criar polêmicas a esse respeito).

A pulsar seria um corpo este-

lar emissor de ondas eletromagnéticas de grande intensidade, ao longo de um extenso espectro de frequências, com uma regularidade tão perfeita quanto a de um relógio atômico. Conforme as teorias mais aceitas atualmente, a pulsar seria uma estrela de nêutrons, ou seja, uma estrela composta exclusivamente por essas partículas que ocupam o núcleo dos átomos. Dessa forma, a densidade de tal aglomerado de matéria seria tão elevada, a ponto de uma «colherada» da mesma pesar algumas toneladas.

Sabe-se que a pulsar, para emitir sinais regulares, deve girar em torno de seu próprio eixo a uma grande velocidade. Isso implica que seu diâmetro seja extremamente reduzido, da ordem de algumas dezenas de quilômetros. Ela seria o resultado final do colapso de uma estrela que expulsou todos seus elétrons e prótons, após uma grande explosão, causadora da cisão dos átomos.

Girando a velocidades vertiginosas em torno do núcleo (algumas pulsars exibem tempos de rotação bem inferiores a um segundo), esses corpos criam ao seu redor um campo magnético circular, o qual emite, por uma certa região, um cone de ondas eletromagnéticas de potência elevadíssima. Muitas pulsars emitem, também, ondas luminosas que variam com a mesma velocidade dos impulsos eletromagnéticos. A única

Relação de algumas das pulsars mais conhecidas, com suas respectivas posições, períodos e distâncias.

PULSAR	ASCENÇÃO RETA	DECLINAÇÃO	PERÍODO(s)	DISTÂNCIA (PARSEC)
CP0328	3h28m52s	54° 23'	0,714518563	268
CP0808	8h8m50s	74° 42'	1,29224126	58
CP0834	8h34m22s	6° 7'	1,2737642	128
CP0950	8h50m29s	8º 11'	0,2530646	30
CP1133	11h33m36s	16° 8'	1,187911	49
HP1506	15h7m50s	55° 41'	0,739677626	196
CP1919	19h19m37s	21° 47'	1,33730113	126
PSR1749	17h49m49s	28° 6'	0,5626451	509
PSR2045	20h45m48s	—16° 28'	1,9616633	114

As duas ou três primeiras letras indicam o local de observação:

CP = Cambridge Pulsar

HP = Harvard Pulsar

PSR = simplesmente Pulsar

1 PARSEC = 3,26 anos-luz

delas na qual podemos observar ambos os fenômenos (óptico e eletromagnético), é a chamada «Crab Pulsar» ou pulsar do caranguejo, localizada na nebulosa do mesmo nome, e cuja foto foi publicada na 3.ª parte desta série.

Na prática, esses estranhos corpos celestes poderiam servir como «faróis» na «escuridão» cósmica, para as naves espaciais, que disporiam, assim, de pontos de referência durante suas viagens interestelares, facilmente identificáveis e com precisos tempos de emissão de sinais.

Na tabela I, foi feita uma lista de algumas das pulsars mais conhecidas, juntamente com seus respectivos tempos, distâncias e suas coordenadas no plano galáctico. A CP 0950, por exemplo, deveria ser a menor ou a mais veloz entre elas, devido à reduzida duração de seu impulso. Num desses modelos, existe ainda a possibilidade de que os corpos

A pulsar, no centro, tem um período de rotação pouco superior a um segundo. Algumas pulsars, entretanto, possuem períodos de vários segundos.

Modelo tipo «farol», proposto por J.P. Orsiker: admite que a pulsar seja uma «anã branca», ou seja, uma estrela extremamente densa, muito luminosa e com dimensões quase iguais à da terra. Por razões não muito claras, ainda, as emissões de luz e ondas eletromagnéticas «escapam» por uma fenda.

Modelo tipo «farol»: A luz e a emissão de P1 são focalizadas pelas forças gravitacionais de P2. O corpo P1 poderia ser uma anã branca, isto é, uma estrela que entrou em colapso e apresenta um tamanho mil vezes maior que uma estrela de nêutrons.

E o corpo P2 poderia ser o estágio final do colapso de uma anã branca, transformada em uma estrela de nêutrons. O conjunto todo seria, na realidade, o que chamamos de «pulsar».

sejam dois, e não apenas um. Esses dois corpos estariam girando um em redor do outro, criando assim a ilusão, por eclipse ou desvio de campos magnéticos, de impulsos que são identificados como vindos de uma só direção.

O modelo de pulsar que vai ser exposto a partir de agora é, por assim dizer, menos sofisticado, se comparado aos já expostos. Esse modelo foi imaginado pelo autor desta série de artigos, que partiu da Crab Pulsar», a fim de desenvolvê-lo.

A pulsar do caranguejo é o resultado, como havíamos dito em um artigo anterior, da explosão de uma estrela supernova, observada a catalogada pelos chineses, no ano de 1054. Procu-

Modelo proposto pelo autor. As vistas

são perpendiculares ao eixo de rotação:

A = invólucro de elétrons livres

C = estrela de nêutrons

B = plasma

remos então imaginar o tremendo colapso, na ocasião da explosão, e a posterior contração da estrela em uma esfera composta apenas de nêutrons, girando sobre si mesma. Ora, poderia acontecer que, pelo efeito dessa «dissociação atômica», os elétrons que giravam em torno da nova matéria estelar fossem atraídos, por efeito gravitacional, e iniciassem também uma rotação ao redor do «globo» de nêutrons.

Toda a matéria, então, que havia sido expelida, composta por uma espessa nuvem de elétrons livres, poderia criar, por meio de campos magnéticos recíprocos e campos gravitacionais, uma compacta barreira óptica e eletromagneticamente «opaca».

Contudo, talvez devido a um efeito dinâmico resultante da explosão, ou, mais razoavelmente, devido a uma certa disposição dos elétrons, uma «janela» tenha sido criada, por onde escapam as ondas eletromagnéticas, geradas pelo «efeito síncroton» (ver 1.ª parte desta série), pelos elétrons mais internos. Tais elétrons seriam ativados pela ação dos campos gravitacionais da esfera de nêutrons.

Neste ponto, seria fácil explicar como podem as pulsars emitir sinais tão breves e precisos. Apesar de não estar baseada em cálculos matemáticos, fica tal sugestão como mais uma contribuição ao conjunto de hipóteses formuladas sobre as pulsars, mesmo porque não é possível chegar até elas, por enquanto, para se confirmar ou desmentir teorias.

(Continua)

CHICAGES LINGUSTRINS

Chips com controle remoto, auto-clock, entrada em teclado e saídas analógica e digital.

A American Microsystems, Inc., está apresentando um chip com 31 comandos de controle remoto, entradas de teclados, osciladores e saídas receptoras analógicas e digitais, tudo sobre a mesma pastilha.

tor S2601, o que reduz as partes contidas no equipamento, projetado para controle remoto via radiofrequência, infravermelho, ultra-som ou por meio

de fiação. Entre as aplicações para os dispositivos estão: brinquedos (bonecas, brinquedos motoriza-Consiste de um transmissor S 2600 e um recep- dos, trens e barcos), sistemas de segurança do lar,

equipamentos automáticos de chamada telefônica, controles de estéreo e TV, e controles de tráfego para veículos de emergência.

Os AMI S2600 e S2601 eliminam a necessidade de cristais externos; apenas um resistor e um capacitor são requeridos externamente para uma referência de freqüência. O receptor S2601 tolerará acima de 24% de diferença na freqüência de temporização operando tranquilamente. O circuito, entretanto, tem uma imunidade muito alta a ruídos ou a comandos espúrios.

A rejeição a comandos espúrios, é conseguida através de um sistema codificado de comando, de 5 bits, o qual requer que comandos idênticos e apropriados sejam transmitidos duas vezes em sucessão, antes do receptor emitir uma saída. Além disso, deve ser recebido corretamente um código de cinco bits preliminarmente fixado (máscara programável).

O transmissor S2600 é uma pastilha CMOS de baixa potência de dreno (dissipando apenas 20 mW), com um oscilador, onze entradas de teclados, um teclado codificador, um **shift-register** e controle lógico. Sua saída é uma onda quadrada de 40 kHz, que é modulada em código de pulso (outras pastilhas usam chaveamento da freqüência de deslocamento, o que demanda um cristal externo muito preciso e caro, tanto para o transmissor quanto para o receptor).

O receptor S2601 é uma pastilha MOS canal-P com um oscilador, cinco entradas de teclado, um sinal de entrada de 40 kHz, decodificação lógica e onze saídas. Uma memória guarda os comandos recebidos e a lógica compara-os com as últimas recepções. Se os códigos não estão condizentes, o receptor guarda o último código recebido para sua próxima tentativa de comparação. Quando dois códigos idênticos sucessivos são recebidos, uma saída válida é emitida.

Transistores RF de potência, para UHF, são fabricados pela Motorola.

Quatro transistores UHF de potência, classe C, estão sendo anunciados pela Motorola para uso em rádios móveis, cujo mercado está em grande expansão. Variando de 1 a 20 watts de saída contínua, a série está caracterizada para operação em FM na faixa de 806-947 MHz, com fontes de 12,5 V.

O MRF 838 e o MRF 838A, são dispositivos para 1 watt de potência. O MRF 840, fixado para 7 watts e o MRF 842 para 20 watts, são ambos conectados para operação em base comum, no encapsulamento (CQ) CS 12, de entrada internamente casada, da Motorola. A entrada casada é otimizada para 100 MHz de largura de banda instantânea, com robustez garantida por 100% de teste a 16 volts, com 50% a mais de sinal de RF e coeficiente de onda estacionária de 20:1, com carga descasada. Os equivalentes série das impedâncias de entrada e de saída são especificados para condições do sinal de operação realisticamente grandes, com ganhos de potência variando de 6 a 8 dB.

Plotters digitais aparelhados para a indústria de controladores numéricos

Finalmente um plotter (tracador de gráficos) digital, feito especialmente para aplicações de controle numérico. Com a instalação da Rate Slowdown Option (opção de ritmo lento), em seu plotter digital DP-3, a Houston Instrument consequiu um novo avanço, atendendo às requisições de um largo segmento da indústria de desenho.

O tracador digital DP-3 atende à necessidade de verificação de fita N/C, com sua superfície visual plana de 56 cm de largura e capacidade de receber uma alimentação contínua de 45,7 metros de papel. A opção de ritmo lento, ajuda o programador de controle numérico a visualizar seções críticas no curso do gráfico, literalmente, incremento por incremento ou polegada por polegada. Ao mesmo tempo, tem a capacidade de acelerar até a velocidade total especificada para o DP-3, sobre as secões não-críticas.

A Centronics apresenta uma micro-impressora com interface em série

com interface em série, no Mini/Micro Show em de hotel e comunicação entre matrizes e filiais. Anaheim, Califórnia, A nova impressora, auxilia o usuário a selecionar ritmos de baud, paridade, e o número de bits de parada.

A unidade está dirigida para os mercados de microprocessadores, aparelhos domésticos e aparelhos para hobby. Está idealmente equipada para o uso em sistemas de diagnóstico, como copiadora automática para TRC, instrumentação industrial e impressão de mensagens. Entretanto, uma vez que RS-232, a S1 deverá ser vista em frequente uso codamente. Por exemplo, na transmissão de ordens quer máquina copiadora.

A Centronics Data Computer Corp. (NYSE), re- de um restaurante à cozinha, sistemas de despacentemente apresentou a Micro-impressora-S1 cho de aeroportos e hotéis, mensagens a hóspedes

> Destacando um interface RS-232 de sete bits em série, e um conjunto de caracteres padrão ASCII 96, o S1 opera de 50 a 9600 bauds e produz cópias sobre um papel coberto de alumínio, descarregando um arco elétrico para penetrar a cobertura, que tem menos de um micron de espessura. Não são necessárias tintas e fitas.

Os caracteres impressos, ao contrário daqueles muitos terminais de TRC requerem um interface resultantes de impressão térmica, são insensíveis à luz, temperatura e umidade. Além disso, a página mo uma impressora de mensagens colocada isola- de impressão final pode ser reproduzida em qual-

Como tornar o CMOS mais compatível com TTL

Circuitos lógicos CMOS (portas, flip-flops e MSI — integração em escala média) são quase, mas não completamente, compatíveis com TTL. Quando consideramos o uso destes dois tipos de circuitos conjuntamente, quatro diferentes situações de interligação são possíveis e devem ser analisadas:

- Alto nível de TTL comandando uma entrada CMOS
- Baixo nível de TTL comandando uma entrada CMOS
- Alto nível de CMOS comandando uma entrada TTL
- Baixo nível de CMOS comandando uma entrada TTL

Com uma fonte comum, a segunda e a terceira condições não constituem problemas. A saída de nível baixo do TTL é garantida para ser menor que 0,4 V, mesmo quando completamente carregada; isto dá quase 2,0 V de imunidade a ruído quando comandando um CMOS. A saída de nível alto do CMOS é aproximadamente igual a fonte de tensão positiva, com uma impedância na entrada próxima de 1 KΩ, facilmente capaz de fornecer a corrente de entrada de 40 µA para cada entrada TTL.

As duas condições de interligação remanescentes são mais problemáticas. A saída de nível alto do TTL não é rigorosamente definida. Quando completamente carregada ela garante ser maior que 2,4 V, que é exatamente a metade da entrada mínima da CMOS. A tensão de saída sem carga depende da configuração de saída do TTL; em alguns projetos está a uma queda de diodo abaixo de V_{CC}, sendo assim aceitável para a interligação com CMOS. Na maioria dos circuitos TTL entretanto, a queda é de dois diodos abaixo de V_{CC}, o que é apenas razoavelmente aceitável para a interligacão com CMOS. Obviamente este problema pode ser sobrepujado com um resistor de «pull-up», que manterá o nível próximo a V_{CC}, por exemplo, 5,6 K Ω . A quarta condição de interligação é a mais difícil, porque a maioria das saídas CMOS não fornece corrente bastante para acionar constantemente uma entrada TTL no estado baixo.

A impedância de saída de todo dispositivo CMOS é razoavelmente alta, aproximadamente 1 K Ω na maioria dos projetos. A saída CMOS pode, portanto, fornecer apenas 400 μA enquanto mantém a imunidade a ruído do

TTL. Isto representa ¼ de uma unidade de carga normal do TTL e significa que o CMOS pode acionar apenas TTL de baixa potência ou TTL-Schottkly de baixa potência. Ambas as famílias são menos disponíveis e mais caras que o TTL normal.

Há um modo simples para superar estas dificuldades das condições de interligação. Usar uma fonte de 6,0 V, em vez de 5,0 V. e operar o TTL entre +6,0 V e +1,0 V, enquanto operamos o CMOS entre +5,0 V e a terra. Isto dá um volt a mais de imunidade a ruído quando o nível alto do TTL comanda um CMOS; sacrifica-se 1,0 V quando um baixo TTL aciona um CMOS, mas isso é plenamente aceitável. Ainda mais importante, este arranjo aumenta a capacidade de acionamento do CMOS. O «fan-out» do CMOS é assim incrementado para praticamente uma unidade de carga TTL (1,6 mA).

Acrescentando-se uma outra fonte de tensão, pode haver sérias implicações, dependendo da aplicação, e em muitos casos pode ser impraticável. Mas, sob circunstâncias apropriadas, é a única saída para o problema da interligação TTL-CMOS.

ICIÁRIO:NOTICIÁRIO:NOTICIÁRIO:NOTI

PASSAGEIROS DE TRENS ALEMÃES PODEM FAZER CHAMADAS TELEFÔNICAS POR DISCAGEM DIRETA

A Rede Ferroviária Federal da Alemanha Ocidental, sempre soube tirar proveito da tecnologia eletrônica para me-Ihorar seus serviços. Agora iniciou algo novo: um serviço telefônico de discagem direta por push -buttons, para seus trens interurbanos de alta velocidade e expressos Trans-Europeus. O novo servico, iniciado em janeiro, substitui um processo por meio do qual um empregado da ferrovia tinha de chamar um operador em uma estação próxima. para contatar o indivíduo que fez a chamada à pes-

soa desejada. O equipamento radiotelefônico que efetua o serviço procede da TE-KA-DE, uma produtora de equipamentos de comunicação, estabelecida em Nuremberg, parcialmente pertencente à Philips. O servico pode ser expandido para outros tipos de trem. A Rede Ferroviária Federal também está aperfeiçoando a malha com mais antenas ao lado das ferrovias, para os sinais radiofônicos. A medida permitirá aos passageiros fazer chamadas de áreas onde boas ligações eram impossíveis devido à topografia.

EUROPA FORNECERÁ CÂMARA E **EQUIPAMENTO SOLAR PARA** TELESCÓPIO ESPACIAL

A Agência Européia do Espaço (ESA) irá suprir a NASA com a câmara para objetos de pouco brilho e o equipamento espacial de energia solar, para a missão do telescópio espacial. Programado para ser colocado em órbita a 500 km de altitude. em 1983, pelo lançador espacial, o observatório espacial cilíndrico de 10 toneladas, irá estudar o universo com uma resolução muito maior do que jamais foi possível antes. Em troca de sua participação, os astrônomos da ESA irão partilhar de 15% do tempo de observação do telescópio.

Através de um acordo entre a NASA e seu correspondente europeu, a câmara e seu detetor asfótons irão possibilitar uma imagem de alta resolucão, da região do ultravioleta, passando pela região visível do espectro, tros fabricantes. A pastiaté o infravermelho próximo. A câmara estará apta a separar corpos que estejam afastados por arcos menores que 1/10 de segundo e observar objetos celestes que são da primeira câmara de víaproximadamente 100 deo a cores, usando disvezes mais fracos que os positivos de carga acoatualmente observáveis, plada (CCD), foram mosdurante seu tempo de vi- trados pela RCA Corp. na da previsto para 10 anos. 39.ª Convenção e Exibi-

III SEMINÁRIO DE METROLOGIA. **NORMALIZAÇÃO E QUALIDADE INDUSTRIAL**

A Secretaria de Tecnologia Industrial do Ministério da Indústria e Comércio. Departamento de Assuntos Universitários do MEC e Escola de Engenharia Mauá, promoverão dias 16 e 17 de maio o III Seminário de Metrologia, Normalização e Qualidade Industrial, destinado a engenheiros e engenheirandos das áreas de mecânica, civil, transportes, indústria automobi lística, química e elétrica.

No programa destacamse os seguintes temas: Aspectos Básicos da Normalização, Normalização em Nível Nacional na área da Qualidade e da Confiabilidade, e Sistema Nacional de Metrologia.

Local: Instituto de Engenharia (São Paulo). Viaduto Dona Paulina, 80, 8.º andar.

Os interessados poderão obter maiores informações pelos telefones: 34-7069 e 239-3070.

A MATSUSHITA OFERECE **UMA PASTILHA BIPOLAR PARA** CONTROLE DE SATURAÇÃO DE COR

Um circuito integrado que usa o sinal de entrada VIR (intervalo de referência vertical) para controlar precisamente a saturação de cor, aparecerá brevemente nos aparelhos de TV japoneses. O dispositivo da Matsushita Electronics Co. estará sociado de contagem de nos aparelhos Panasonic originados da Matsushita e nos aparelhos Quasar de suas subsidiárias nos EUA e será vendido a ou-

lha bipolar de 3,2 por 2,9 mm tem 481 elementos dispostos em ambos os lados do circuito, linear e digital. Ela reguer apenas cerca de 60 partes periféricas e dispensa ajustes de linha de montagem. A primeira geração de circuitos controladores VIR desenvolvidos e usados pela GE nos EUA, têm cerca de 180 partes, incluindo cinco Cls e 30 transistores e necessita ajustes de produção.

PRIMEIRA CÂMARA CCD DE TV A CORES É MOSTRADA PELA RCA

Modelos montados

ção Áudio-Visual Nacional dos Estados Unidos, em Houston, de 14 a 17 de janeiro. A câmara, planeiada para o mercado audiovisual, oferece quatro vantagens principais

TICIÁRIO:NOTICIÁRIO:NOTICIÁRIO:NOT

sobre os modelos de vidicon, segundo a RCA. A primeira: ela não sofre retardo e queima da imagem; segunda, pesa apenas perto de 1,8 kg; terceira, é completamente de estado sólido e segura; e quarta, é de baixo consumo.

DISCOS RÍGIDOS APARECEM COMO SUBSTITUTOS DOS DISCOS FLEXÍVEIS NOS COMPUTADORES

Este ano assistiremos ao nascimento de um novo periférico de computador - um subsistema de memória por disco, com prato rígido não removível. Com aproximadamente o mesmo tamanho de um floppy disk padrão (disco flexível) - 21 cm - ele armazena de 10 a 100 megabytes, em comparação a 1 megabyte para os flexíveis. Estão trabalhando em tal sistema, que não ocupará mais espaço que um diskette, a Shugart

Associates Inc., a IBM Corp. e duas outras firmas menores. Embora os caminhos dos vários fabricantes seiam distintos alguns irão usar cabecas de película fina ou membranas, enquanto outros irão se fixar no padrão de tecnologia Winchester - todos têm confianca no seu sucesso, acreditando que substituirá os muito menos confiáveis discos flexíveis, auxiliando ainda na diminuição do custo por bit dos sistemas de minicomputadores.

O último avanço em matéria de receptores de televisão a cores remotamente controlados, é a possibilidade de controlar um segundo canal, que está sendo oferecida em aparelhos introduzidos pela Barco Eletronics, da Bélgica.

Usando dispositivos de carga acoplada (CCD), os engenheiros da Barco projetaram um sistema que insere uma imagem miniatura do programa apresentado em um segundo canal, no canto superior esquerdo de um programa que está sendo visto. Um espectador simplesmente pressiona a chave de modo CCD. na unidade de controle remoto, e então seleciona o número do segundo canal a ser monitorado.

Duas seções receptoras são usadas para produzir os sinais de vídeo individuais. O segundo sinal de vídeo é então interpretado em dois dispositivos de carga acoplada, que reduzem a largura de banda de 5 MHz para 1,6 MHz. Pela leitura do sinal de saída dos CCDs a um ritmo três vezes maior, a largura de banda de 5 MHz é rearmazenada.

As operações de recepção e emissão para os CCDs são sincronizados pelos pulsos de campo e sincronismo do sinal de vídeo principal. Como resultado, os dois sinais de vídeo podem ser combinados e mostrados como um único, na tela de TV.

NOVO SISTEMA PERMITE O ACOMPANHAMENTO DE DUAS IMAGENS, SIMULTANEAMENTE, NUMA TELA DE TV

ENERGIA SOLAR PODERA POSSIBILITAR ENCONTRO COM COMETA

A energia solar poderá ser a fonte de combustivel fundamental para uma nave espacial que se encontrará com o cometa de Halley em 1986. Se os cientistas da NASA forem bem sucedidos, a energia solar será usada na produção de eletricidade para mover motores de íons de mercúrio, que irão fornecer a verdadeira força motriz para a navegação espacial. Os foquetes de motores iônicos e sistemas de «velas solares» têm sido investigados por muitos anos. Mas o padrão foi escolhido finalmente para ser a fonte de energia dos lancadores interplanetários a ser usados depois de 1980. O acionamento iônico foi escolhido principalmente porque é menos arriscado e tem um potencial de desenvolvimento maior. A nave espacial acionada ionicamente estará pronta para lançamento, através do Lançador Espacial (Space Shuttle), no fim de 1981 ou princípio de 1982, mas provavelmente não será usada para aplicacões maiores antes do esperado encontro com o cometa de Halley.

KITS DE AUDIO

M-201

Pré-amplificador de alta fidelidade

Pré-amplificador-equalizador, dotado de chave seletora, controles de volume, graves e agudos, para qualquer tipo de fonte de material de programa (sintonizador AM/FM, gravador magnético, toca-discos com cápsula cerâmica ou magnética, etc.).

Projetado para uso em conjunto com qualquer módulo amplificador de potência, em particular o M-150A, formando, com este último, um excepcional amplificador Hi-Fi monofônico de 50 W.

O kit compreende todo o material, inclusive fios e cabos, para a montagem do pré-amplificador. Um detalhado manual de instruções de montagem facilita a tarefa do montador, mesmo que tenha pouca experiência.

M-202

Pré-amplificador estereofônico de alta fidelidade

De características idênticas àquelas do M-201, este kit possui, além dos usuais, controles de equilíbrio e separação. Estes controles permitem, respectivamente, realizar uma variação entre os volumes dos dois canais e efetuar uma superposição ajustável de ambos.

Pode ser realizado com módulos de potência de qualquer tipo. Projeto otimizado para utilização com dois módulos M-150A, com os quais forma um conjunto estereofônico de superior desempenho, com potência de $50~\mathrm{W}+50~\mathrm{W}$.

O M-202 vem acompanhado de um detalhado manual de instruções, que facilita sobremaneira a montagem e instalação.

ESPECIFICAÇÕES

Tensão nominal	20 V
Alimentação Tensões opcionais Corrente média	12 a 45 V 3,5 mA
Controle de graves (20 Hz) - reforço atenuação	17 dB 21 dB
Controle de agudos (20 kHz) - reforço atenuação	16 dB 20 dB
Impedância de carga (valor mínimo) Tensão máxima de saída	100 kΩ 2 V 10 mV
Tensão máxima de saída p/gravador Distorção (p/350 mV de saída)	0,15%

M-150 A

Amplificador de 50 W

Este módulo possibilita a construção de aparelhagens de som monofônicas de até 50 W ou estereofônicas de até 100 W (usando-se duas unidades), próprio para sonorização de grandes ambientes. Trata-se de um conjunto versátil, que pode ser usado em conjunto com qualquer pré-amplificador de boa qualidade como por exemplo: o M-201 (monofônico) ou M-202 (estereofônico). O kit contém todas as pecas necessárias à montagem do amplificador e da respectiva fonte de alimentação (exceto o transformador). Um manual de instruções fartamente ilustrado simplifica ainda mais a sua execução.

ESPECIFICACÕES

Tensão de alimentação	45 V	45 V
Impedância de carga	4Ω	8.0
Potência com 10% de distorção		
(1 kHz)	52 W	31 W
Potência nominal	50 W	30 W
Consumo de corrente sem sinal	15 mA	15 mA
Consumo de corrente referente à		
potência nominal	1,68 A	0.94A
Sensibilidade referente ao início de	.,	0,0
ceifamento	270 mV	290mV
Impedância de entrada	100 kΩ	100 kΩ
Resposta em frequência (-3 dB)	30 Hz a	
Relação sinal/ruído	90 dB	90 dB

M-302

Amplificador de 1,7 W com circuito integrado

Este amplificador pode funcionar com alimentação por pilhas ou pela rede; a comutação de um tipo de alimentação para outro é automática. Permite a construção de eletrolas portáteis, intercomunicadores, porteiros eletrônicos, etc. ou a sonorização de elevadores, salas-de-espera, etc.; pode também ser usado como unidade de áudio em equipamentos de telecomunicações, etc. Compõe-se de dois módulos, um amplificador e uma fonte de alimentação estabilizada (exceto o transformador). O conjunto é de fácil montagem, graças a um projeto simples e bem elaborado e um explícito manual de instruções.

ESPECIFICAÇÕES

IBRAPE

M-204

Pré-amplificador estereofônico universal

Embora destinado especificamente para a pré-amplificação e equalização de sinais fornecidos por cápsulas de relutância variável, em conjunto com os amplificadores M-320 e M-350, este módulo possui uma infinidade de outras aplicações, tais como, misturador, pré-amplificador estereofônico para microfone ou para gravador, etc.; seus dois canais podem ser usados em conjunto ou separadamente.

ESPECIFICAÇÕES

Alimentação CC	9 a 19 V
Consumo	0,8 a 1,3 mA
Ganho (1 kHz/250 mV)	35 dB
Sensibilidade (1 kHz/250 mV)	4.3 mV
Impedância de entrada	47 kΩ
Tensão máxima de entrada	30 a 60 mV
Tensão nominal de saída	250 mV
Tensão máxima de saída	2 a 3 V
Impedância de carga	100 kΩ
Relação sinal/ruído	> 80 dB
Distorção (1 kHz/250 mV)	< 0.05 %

M-320

Amplificador estereofônico completo de 10 W + 10 W

Reúne, em uma só placa de circuito impresso, pré-amplificador, controles, amplificadores de potência e fonte de alimentação (exceto o transformador), Sua montagem é extremamente fácil, pois todas as interligações estão contidas na placa de circuito impresso. Possui chave seletora de entrada, chave mono/estéreo/estéreo invertido, controles de volume, graves, agudos e equilibrio. Pode ser usado com gravador alto e baixo nível, sintonizador e cápsula cerâmica; com a adição do M-204, pode também receber sinais de cápsulas de relutância variável (magnética).

Otima solução para sonorização de pequenos ambientes. Um detalhado manual de instruções facilita a montagem, mesmo aos menos experientes.

ESPECIFICAÇÕES

Service Services	2 x 10 W		
Potência a 1% de distorção (1 kHz)			
	8 U		
Resposta em frequência dentro de 3 dB (controles em posição de resposta plana)			
- reforço atenuação	19 dB 22 dB		
reforço atenuação	16 dB 14 dB		
	11 mV sobre 100 kΩ		
	ro de 3 dB sposta plana) - reforço atenuação		

M-350

Amplificador estereofônico completo de 25 W + 25 W

Apresenta as mesmas características e vantagens do M-320, oferecendo, porém, potência consideravelmente maior, sem aumento nas dimensões do amplificador propriamente dito, graças ao emprego de transistores Darlington na saída. Solução indicada para a sonorização de ambientes de tamanho médio.

ESPECIFICAÇÕES

Potência nominal		2 x 25 W
Potência a 1% de distorção (1	kHz)	2 x 20 W
Alto-falantes (impedância)		80
Resposta em frequência dentr (controles em posição de resp	o de 3 dB oosta plana)	20 Hz a 25 kHz
Controle de graves (30 Hz)	- reforço atenuação	19 dB 22 dB
Controle de agudos (20 dB)	- reforço atenuação	16 dB 14 dB
Saída para gravador		11 mV sobre 100 kΩ

Código "Q"

QAP — Estou na freqüência à sua disposição

QRA — Nome do operador da estação

QRX — Aguarde (ou aguardo) um pouco na freqüência

QRM — Interferência ou ruído

QRT — Vou desligar — Parando de operar o rádio

QSL — Tudo OK, tudo entendido, confirmo tudo.

QSO — Comunicado, contato, conversa, diálogo

QSJ — Dinheiro

QTH — Endereço da estação

QTR — Horas, horário

QRV — Estou à sua disposição

QTC — Notícia ou mensagem

73 — Abraço

88 — Beijo

60 Watts

DE SOM ESTEREOFÔNICO E LUZ RÍTMICA

PARA VOCE MESMO MONTAR E TRANSFORMAR SEU CARRO NUMA DISCOTHEQUE

Inclui todos os componentes eletrônicos, caixa-chassi, suportes e manual de instruções

LMP COMÉRCIO E MONTAGEM DE EQUIPAMENTOS ELETRÔNICOS LTDA.

rua venceslau braz, 234 — são caetano do sul — sp — fone: (011) 441-1661 — cep: 09500

BIAMPLIFICAÇÃO

Há alguns anos atrás, a demanda pela reprodução sonora em alta fidelidade e altos níveis acústivos trouxe o conceito da biamplificação para uma posição de destaque entre os audiófilos e profissionais de som. Nas situações em que o amplificador do sistema está sendo levado a seus limites e o uso de amplificadores maiores pode resultar em falhas nos alto-falantes, a biamplificação proporciona um meio de se conseguir baixa distorção no som, assim como níveis elevados de pressão acústica. Este artigo focalizará casos onde a biamplificação é útil, descrevendo algumas vantagens teóricas e práticas desse sistema, para a obtenção de níveis mais elevados de pressão sonora. Diversos experimentos, objetivos e subjetivos, serão descritos, experimentos esses visando determinar as características ideais de potência máxima e freqüência de transição, para o amplificador de potência. Os resultados desse trabalho mostrarão porque a biamplificação pode aprimorar a qualidade de um sistema de som. Finalmente, será descrito um sistema típico de reamplificação de som, adequado para uso em aplicações de altos níveis de pressão acústica.

POTÊNCIA

JOHN M. LOVDA e STEPHEN MUCHOW, SHURE BROS, INC.

Sistema de amplificador único

Um sistema convencional, composto por um amplificador simples, alimentando um grupo de alto-falantes, está apresentado na figura 1. A saída do amplificador está ligada a um divisor de fregüências passivo, para sinais de níveis elevados, que contém um filtro passa-baixas, um passa-altas e, geralmente, um atenuador de altas frequências. Em muitos sistemas residenciais de alta fidelidade, ou sistemas de monitorização, em estúdios de som, encontra-se também um alto-falante para fregüências médias e um filtro passa-faixas, divisor de frequências.

As freqüências de corre e as rampas desses filtros divisores são otimizadas, de forma a «casarem-se» com as características acústicas dos alto-falantes e para protegê-los de freqüências que poderiam ser danosas. A área de atenção mais comum,

cecmoon by

MATERIAL GRAVADO

FREQUÊNCIA DE TRANSIÇÃO

Sistema de amplificação simples
 FIGURA 1

quanto à possibilidade de riscos para os alto-falantes de alta frequência é o ponto de ressonância dos «drivers» de altas frequências. Dependendo do material interno de amortecimento do diafragma, os sinais na região de ressonância poderão causar excursões excessivas, danificando o mesmo.

Para minimizar esse problema, quando se trata de altos níveis de operação, os divisores de freqüência das faixas alta e média devem ser projetados com rampas suficientemente abruptas, de modo a manterem a saída acústica para o «driver», na região de ressonância, a 20 dB abaixo, pelo menos, do nível normal da banda passante.

A saída do filtro passa-altas é normalmente conectada a um atenuador resistivo, proporcionando um ajuste de nível para o «tweeter», mantendo-o no balanço acústico desejado. Isto é necessário, pelo fato de os «tweeters» serem geralmente mais eficientes que os alto-falantes de fregüências baixas.

A vantagem básica do arranjo com amplificador único é a simplicidade, pois o amplificador e o sistema de alto-falantes são os únicos componentes necessários. Existem, entretanto, desvantagens consideráveis, caso o sistema venha a ser operado a níveis elevados de saída acústica.

Em primeiro lugar, os componentes do filtro divisor de freqüências, incluindo o atenuador de altas freqüências, precisam ser selecionados para operar em níveis elevados de potência. Nas aplicações de reamplificação ou reforço sonoro, onde a regra é o equipamento que produza picos de alta potência, os capacitores envolvidos devem apresentar tensões de isolação bastante elevadas (1000 V ou mais) e baixo fator de dissipação (menos de 1%, a 1 kHz). Além disso, valores de capacitância de 50 µF poderão ser necessários, se o sistema trabalhar com alto-falantes de 4 ohms e uma baixa freqüência de transição.

Os indutores utilizados poderão ser tanto do tipo a «ar», como de núcleo de ferro, mas não do tipo saturado. A bitola do fio de seu enrolamento deve ser grande, a fim de manter o «Q» (fator de mérito) elevado e reduzir a perda de potência ao mínimo

Os resistores ou reostatos utilizados para os atenuadores de altas freqüências são geralmente de alta potência, devido à necessidade de redução da sensibilidade do «tweeter». É possível utilizar, nesses casos, autotransformadores dotados de derivações, o que proporciona perdas muito baixas. No entanto, estes precisam, também, ser suficientemente grandes para evitar a saturação e são mais dispendiosos que os resistores.

Uma segunda desvantagem está relacionada com a geração de componentes de distorção, durante o ceifamento do amplificador. Considere, a princípio, um sinal de alta amplitude e de baixa freqüência; se o sinal chegar a ser suficientemente alto para «ceifar» o amplificador,

componentes de distorção de alta frequência serão gerados, e suas distribuições de frequências dependerão do grau de ceifamento.

Inversamente, se informação de alto nível e alta frequência estiver presente em forma de pulsos, que leve o amplificador ao ceifamento, componentes de distorção de baixa frequência serão gerados a frequências múltiplas da frequência dos pulsos.

Sistema por biamplificação

Um sistema de biamplificação consiste em um divisor de frequências de baixo nível, passivo ou ativo, e de dois amplificadores de potência (ver figura 2). O sinal de entrada, de baixo nível, é, em primeiro lugar, dividido em bandas de alta e baixa frequência e, então, levado a amplificadores de potência separados. Esses amplificadores são conectados diretamente a seus alto-falantes de alta e baixa freqüência. Apesar disto não ser uma necessidade, um sistema corretamente projetado para uso em biamplificação deverá ter algum meio de proteção para os alto-falantes de altas fregüências. Estes circuitos auxiliarão a prevenir falhas, devidas a: conexões invertidas dos alto-falantes de altas e baixas fregüências. aos transientes de desligamento dos amplificadores e a falhas nos amplificadores. Apesar do custo do sistema por biamplificação ser maior, devido à adição de um segundo amplificador de potência, diversas vantagens resultam deste sistema.

Em primeiro lugar, uma flexibilidade muito maior no projeto dos circuitos é obtida, porque o filtro opera com níveis baixos de sinal, e é conectado às altas impedâncias das entradas dos amplificadores de potência. Com um divisor passivo para a biamplificação, os componentes terão seu custo reduzido, e potências mais elevadas poderão ser utilizadas nos amplificadores. Capacitores de altos valores, baixas perdas e alto preço

são desnecessários, devido às impedâncias mais elevadas. Se um divisor eletrônico for utilizado, empregando filtros ativos, os indutores poderão ser eliminados completamente. O projeto com filtros ativos também permite a utilização de divisores com rampas extremamente abruptas, quando necessário, a um custo razoável e também razoável simplicidade. Um certo circuito comercial emprega uma nova idéia onde o sinal de alta frequência é obtido diretamente pela filtragem e o de baixa fregüência, através da diferença entre a entrada e os sinais de alta frequência. Desprezando a tolerância dos componentes, pode-se dizer que as saídas de alta e baixa freqüência deste circuito se complementam exatamente na região de «crossover» ou fregüência de transição. A seleção da frequência de transição pode ser conseguida com um chaveamento mínimo dos componentes.

A segunda vantagem consiste na habilidade de dirigir diferentes quantidades de potência às diferentes faixas de frequências. Casando-se a capacidade de tensão de pico do amplificador de potência com a máxima tensão de pico permitida para o alto-falante de alta frequência, os picos do sinal e os de ruído serão ceifados e limitados a um valor seguro. Tal proteção é proporcionada sem a necessidade de se ajustar previamente o ganho nos vários estágios anteriores ou os níveis de tensão presentes no alto-falante de baixa freqüência.

O uso de «super»-amplificadores ou pares «bridge», conectados a um sistema único de amplificação, não pode proporcionar esse fator de segurança,
sem circuitos externos de proteção. Em muitas aplicações, porém, pode-se utilizar pequenos
amplificadores para as freqüências altas, sem comprometer a
qualidade do sistema. Conforme
veremos mais adiante, esse requisito está relacionado diretamente com a eficiência dos alto-

Sistema biamplificado
 FIGURA 2

falantes e com a seleção da fregüência de transição.

A possibilidade de se alimentar um número ilimitado de amplificadores de potência, com a utilização de um só divisor, é uma outra vantagem do sistema de biamplificação. Esse arranjo torna-se possível com amplificadores de alta impedância de entrada.

Em termos de benefícios acústicos, talvez a mais amplamente discutida vantagem do sistema de biamplificação seia sua habilidade em obter níveis mais elevados de pressão acústica, sem ceifamento, em comparação a um só amplificador, de igual tamanho. Consideremos, por exemplo, um sinal composto pelas frequências de 250 Hz e 10 kHz e suponhamos que a componente de baixa freqüência seja duas vezes maior que a de alta freqüência; se esse sinal for entregue a um amplificador, com uma capacidade de 40 V de pico na saída, os sinais de baixa e alta fregüência poderão atingir os níveis de 26,7 e 13,3 V, respectivamente, antes de haver ceifamento. Empregando, ao invés disso, dois amplificadores, com capacidade para tensões de pico de 26,7 e 13,3 V, obteríamos o mesmo nível de saída, sem distorção. Convertendo essas tensões em valores RMS e supondo um sistema de alto-falantes de 8 ohms, verificaremos que um sistema biamplificado capaz de produzir 55,6 W (44,5 + 11,1 W), proporcionará a mesma qualidade que um outro, comum, de 100 W de potência (quando o amplificador de baixas freqüências entra em ceifamento, a distorção harmônica produzida aparece apenas no alto-falante correspondente).

Ainda que não existam fórmulas exatas para especificação dos parâmetros dos sistemas de biamplificação, parece ser evidente que a fregüência de transição, o tamanho do amplificador de potência e as características de frequências do espectro musical precisam ser inter-relacionadas. Os experimentos sequintes foram criados para examinar as relações entre estas variáveis e para determinar as linhas básicas para o projeto e otimização de sistemas práticos de biamplificação.

Níveis de pico para biamplificação

Em um experimento realizado, três tipos de programa, diferentes em seu espectro, foram analisados eletricamente. O material de programa para o experimento foi separado de acordo com três classificações: grande conteúdo de baixas freqüências, grande conteúdo de altas frequências e conteúdo equilibrado de frequências altas e baixas. Seleções retiradas de discos foram utilizadas para as distribuições de baixa frequência e de frequências equilibradas, enquanto que uma gravação em fita, de voz feminina, em uma apresentação ao vivo, foi utilizada como base para a distribuição pesada de altas frequências. Pelo fato de que este material de programa poderia ser utilizado mais tarde, em um teste auditivo, todas as três fontes de programa foram casadas subjetivamente, para um nível

Aparato para o teste de nível de pico, em biamplificação FIGURA 3

equivalente, e cuidadosamente gravadas em fita para conveniência e possibilidade de repetição. Antes da análise, a saída da fita foi, primeiramente, separada por um divisor eletrônico, com frequências comutáveis de transição de 200,500, 800, 2600 e 5000 Hz. A saída do sinal foi então medida com um medidor de picos e um osciloscópio do tipo memorizador, de forma a ser possível observar e medir visualmente as características de tensão do pico de saída. As medições da tensão de pico foram feitas nos sinais de saída de alta e baixa freqüência, como é mostrado na figura 3. Usando este equipamento, a tensão de pico, dentro de um espectro escolhido, podia ser medida e comparada em uma tabela. Representacões gráficas dos resultados medidos aparecem nas figuras 4, 5 e 6.

As curvas levantadas repre-

sentam a diferença numérica entre os picos de altas e baixas freqüências, expressas em decibéis; 0 dB, no gráfico, é correspondente a picos iguais de altas e baixas freqüências. Os valores em decibéis no eixo vertical representam as tensões ou potências que seriam requeridas para um ceifamento uniforme dos sinais das bandas de altas e baixas freqüências, nas várias frequências de transição. Essas tensões, ou relações de tensão. supõem idênticas sensibilidades e impedâncias para ambos os alto-falantes. Como é esperado, a inclinação da curva, em todos os casos, indica que a energia de pico das baixas freqüências é maior que a energia de pico das altas freqüências, quando a frequência de corte é elevada. O inverso é também verdade, com o ponto de igual distribuição localizado aproximadamente em 300 Hz, para o material de

maior distribuição de baixa freqüência e de distribuição equilibrada de frequências e, aproximadamente em 700 Hz, para o material de distribuição pesada de altas frequências. Esses resultados parecem indicar que, para biamplificar eficientemente um programa de largo espectro de frequências, utilizando amplificadores de potências idênticas, um divisor com frequência de transição de 300 Hz deveria ser utilizado. Pode também ser visto nesses gráficos que, à medida em que a frequência de transição é elevada para 2600 Hz, por exemplo, os picos de altas frequências estarão 6 dB mais abaixo. Isto indica que o amplificador de alta frequência utilizado poderia ser menor, requerendo aproximadamente metade da capacidade de tensão máxima, antes do ceifamento, em relação ao amplificador utilizado para as frequências baixas. Inversamente, o amplificador de baixas frequências requer um nível de ceifamento 6 dB mais alto que o amplificador de altas freqüências, para reproduzir claramente o material de amplo espectro. Destes resultados, um mínimo teórico na relação de alta para baixa freqüência pode ser determinado, em vários pontos de transição, para um dado tipo de programa.

Os resultados destas medições podem ser interpretados como um guia para determinar as potências dos amplificadores de altas e de baixas frequências. em função da frequência de transição. Nossa experiência, no entanto, mostrou que um nível elevado de baixas frequências, quando comparados com altas frequências, no ceifamento, é aparentemente tolerável, sem deterioração da qualidade sonora. Esta tolerância ao ceifamento levou-nos a dois experimentos em psico-acústica, para conseguir uma visão adicional quanto aos requerimentos necessários para os sistemas de biamplificação.

A primeira destas experiências foi projetada para propiciar

 Relação dos níveis de pico de alta (V_H) e baixa (V_L) freqüência com a freqüência de transição, para um sinal com um grande conteudo de altas frequências.
 FIGURA 4

informações que relacionassem níveis de potência e frequências de transição. Um sistema de biamplificação controlável por meio de chaves foi preparado, de forma que o ouvinte podia comparar um sinal não distorcido com um sinal distorcido, apenas na seção de altas frequências, ou apenas na seção de baixas freqüências. A figura 7A mostra o aparato utilizado para o ceifamento das baixas frequências, enquanto na figura 7B temos o que foi utilizado para o ceifamento das altas frequências.

Os amplificadores A e B estavam trabalhando bem abaixo de seus níveis de ceifamento. Estes amplificadores permitiam a observação do sistema sem distorção.

O ponto de ceifamento do amplificador C era variável, continuamente, de 8 a 40 V RMS, por meio de um autotransformador variável, conectado como alimentação CA. Antes deste teste, as características de distorção desse amplificador foram verificadas, para serem uniformemente baixas, por toda a faixa de ajustamento. O amplificador D foi introduzido para que o nível de audição pudesse ser facilmente ajustado, enquanto fosse mantido um nível de ceifamento pré-determinado. Os dois filtros passa-baixas mostrados nas saídas dos amplificadores B e C, na figura 7A, foram aí colocados para proporcionar uma simulação da atenuação normal das altas fregüências das seções de alto-falantes de baixas frequências. Este filtro tinha uma inclinação de corte de 6 dB por oitava, com a frequência de corte localizada acima do ponto de transição.

Durante cada experimento, os ouvintes do teste receberam ordens de reduzir o nível de ceifamento do amplificador C, enquanto o comparavam ao amplificador sem ceifamento (B), até que uma diferença ou aumento na distorção fosse notado. Pela combinação dos resultados de cada experimento, uma

¥ Predominância de altas frequências

¥ ¥ Níveis de pico iguais

¥ ¥ ₱ Predominância de baixas frequências

 Mesma relação da fig. anterior, para um sinal de conteúdo equilibrado entre baixas e altas freqüências.
 FIGURA 5

relação de potência entre as altas e as baixas frequências foi determinada, para cada pessoa submetida ao teste. Diversos fenômenos interessantes foram notados nos dados obtidos. Em primeiro lugar, a tolerância à distorção pelos ouvintes era muito variável; algumas pessoas aceitavam ceifamento substancial nos picos e faziam julgamentos em níveis médios, somente, enquanto que outras mostravamse sensíveis às menores diferencas. Esta variação foi mais severa na gravação ao vivo, que exibia a relação mais alta entre os picos e o nível médio. Em segundo lugar, com a seleção das freqüências de transição a 200 ou 500 Hz, a distorção em baixas frequências era essencialmente inaudível, mesmo com os sinais substancialmente ceifados. O conteúdo dos graves do programa diminuía substancialmente,

à medida que a distorção se tornava mais severa e, apenas com tensões de ceifamento extremamente baixas, a distorção se tornava intolerável. Essas observacões faziam sentido quando se considerava que os sistemas de alto-falantes de baixa frequências tendem a cortar os componentes de distorção de altas fregüências. Em adição, esses componentes de distorção de alta frequência reproduzidos são mascarados pela saída da seção de altas fregüências. Este efeito diminuía à medida em que a fregüência de corte era aumentada, mas era notado por todos, a não ser no caso do ajuste de fregüência de transição a 5000 Hz.

Considerando o grau de ceifamento observado em um osciloscópio, durante os testes, é evidente que a biamplificação proporciona um meio psicoacústico de redução da distor-

 ♣ Predominância de altas frequências

 ★ Níveis de pico iguais

 ★ Prêdominância de baixas frequências

FIGURA 6

— Mesma relação da fig. anterior, para um sinal com um grande conteúdo de freqüências baixas.

 Aparato experimental para o teste psico-acústico de ceifamento das baixas frequências.
 FIGURA 7A

ção perceptível. As relações de potências observadas seguiam a mesma linha geral que fora previamente medida, mas as grandes variações entre os ouvintes sugeria que uma curva média seria de pequena ajuda. Os dados presentes nas figuras 4 até 6, consequentemente, representam uma diretriz razoável para determinarmos as potências relativas entre os amplificadores.

O segundo experimento foi projetado para medir a tolerância do ouvinte à distorção por ceifamento. Para este teste, foram repetidamente apresentadas as mesmas passagens musicais e pedidas aos ouvintes relações em uma tabela, que relacionava cinco critérios de qualidade que iam de «muito limpo» (não ceifado) a «muito distorcido» (ceifado). A cada vez que a passagem musical era repetida, o ponto de ceifamento das baixas freqüências era modificado, de maneira aleatória, enquanto que o canal das altas frequências se mantinha livre de distorcão. Cinco níveis de tensão de saída ceifada, espacados de 6 dB, foram selecionados. No decorrer do experimento, cada nível foi utilizado duas vezes, para estabelecer se os ouvintes tinham qualquer medida da repetição. Uma seleção sem ceifamento foi reproduzida como referência ao ouvinte e foi introduzida mais tarde, em uma seqüência aleatória.

Como no experimento anterior, as opiniões dos ouvintes variaram grandemente, quanto à qualidade das seleções. A habilidade de um indivíduo casar duas seleções de mesmo nível de distorção, quando separada por um período de tempo, era muito pequena. Havia uma tendência conservadora, denominando as passagens limpas e de pequeno nível de distorção como boas, e as passagens muito ceifadas como más.

Como parte do experimento, o canal não ceifado de alta freqüência foi desligado e os ouvintes puderam comparar o nível de distorção aparente do amplificador ceifado, sozinho. Em quase todos os casos, a quantidade de distorção percebida aumentava dramaticamente quando o sinal de alta freqüência, limpo, era removido. Isto proporcionava mais uma verifi-

cação de que o sinal não distorcido nas altas fregüências trazia um efeito de mascaramento benéfico nos produtos de distorcão, gerados pelo canal ceifado. em termos de psico-acústica. Esse efeito era maior em fregüências de transição mais baixas, mas continuava a ser substancial mesmo nas mais altas frequências de transição. Considerando o fato de que muitos amplificadores de sistemas de reforçamento sonoro estão ceifados durante grande parte do tempo, este efeito de mascaramento é a razão principal da qualidade subjetivamente major encontrada nos sistemas de biamplificação e dos níveis mais altos conseguidos por esses sistemas.

SUMÁRIO

Ao se projetar sistemas de reprodução de alto nível de pressão sonora, uma adequada consideração dos efeitos de mascaramento e dos limites de potência para as altas freqüências, produzirá a desejada combinação de baixa distorção e alta confiabilidade. Os passos seguintes deverão ser considerados, de forma a determinar os

 Aparato experimental para o teste psico-acústico de ceifamento das altas frequências.

FIGURA 7B

amplificadores corretos, em sua potência, para um sistema de biamplificação:

- 1 A freqüência de transição, as capacidades de potência e as sensibilidades das várias seções de alto-falantes deverão ser computadas.
- 2 As figuras 4 a 6 deverão ser revisadas, com alguma dose de cuidado, com respeito ao tipo de programa a ser reproduzido. Baseadas nestes pontos, as potências de saída deverão ser determinadas.
- 3 A relação acima deverá ser modificada, de acordo com quaisquer diferenças na sensibilidade dos alto-falantes que forem utilizados, nas diferentes seções de freqüências.
- 4 As dimensões dos amplificadores de potência serão então computadas, com base nas passagens especificadas, requeridas para a aplicação.
- 5 Se os requisitos de potência excederem a capacidade do sistema, alto-falantes adicionais, alto-falantes mais eficientes, ou modificações nas freqüências de corte, deverão ser

 Sistema típico de reamplificação ou reforço de som, biamplificado, para níveis elevados de SPL.
 FIGURA 8 A

- Esquema de ligação do sistema «bridge» ou ponte. FIGURA 8B

considerados.

Deve ser notado que muitos sistemas de operação em faixa ampla, capazes de operação em biamplificação, foram otimizados, em certas fregüências de transição e poderá ocorrer degradação da qualidade e perigo de danos físicos, se a frequência de transição for alterada.

A fig. 8A mostra um sistema de reforçamento de som, típico,

* 本 × * * **FONTE PX** Fornece uma tensão de saida de 12 a*

14 V estabilizada, uma corrente de 5A,* apresentando pouquissimo ripple, de* 🖈 montagem facílima, possui poucos 🤻 ★ componentes.

Ideal para operar transceptores na ★ faixa do cidadão, ou para aqueles que ★ prefiram «curtir» o som do toca-fitas em * casa.

*KIT's NOVA ELETRÔNICA Para amadores e profissionais.

≱ À venda:

SAO PAULO - Filcres Import. e Repres Ltda. RIO DE JANEIRO - Deltronic Com. de Equip. Ltda. PORTO ALEGRE - Digital Compon. Eletr. Ltda. * ★ CAMPINAS - Brasitone BELO HORIZONTE - Casa Sinfonia Ltda. * *

*

CURITIBA - Transiente Com. Apar. Eletr. Ltda.

* RECIFE-Barto Eletrônica ★ FORTALEZA – Eletrônica Apolo

FSPIRITO SANTO-Casa Strauch

BRASILIA - Yara Eletrônica Ltda. FLORIANOPOLIS - Eletrônica Radar Ltda.

★ SALVADOR - TV-Peças Ltda.

plo espectro de fregüências, a altos níveis de pressão acústica. O sistema consiste em um divisor eletrônico, com frequência de transição única de 2600 Hz, quatro amplificadores de potência, cada qual com 28 V RMS de saída máxima e quatro sistemas de alto-falantes portáteis de 16 ohms e faixa larga. Um amplificador alimenta todas as seções de alta fregüência, a um máximo de 50 watts cada. O nível de alta fregüência pode ser facilmente ajustado, utilizando-se o controle de ganho do amplificador. Os quatro amplificadores de baixas frequências estão conectados para formarem dois pares «bridge», ou amplificadores conectados em série, sendo cada par capaz de proporcionar 200 watts (57 V RMS) a cada sistema de baixa frequência. Um diagrama detalhado da conexão em ponte (bridge) é mostrado na figura 8B. As entradas dos amplificadores são conectadas em paralelo e defasadas uma da outra; as saídas são conectadas em série. Este arranjo proporciona o dobro da tensão de saída e quatro vezes a potência de saída de um simples amplificador. Ambos os terminais de saída estão flutuando com respeito ao terra e não podem ser conectados ao chassis. Note que cada alto-falante de baixa frequência pode receber mais potência que seu respectivo alto-falante de altas frequências, proporcionando ainda isolação dos «drivers» de alta frequência protegendo-os

utilizado para programa de am-

dos picos de 80 V. O sistema sonoro pode facilmente ser ampliado pela conexão de amplificadores adicionais e alto-falantes nas saídas do divisor.

CONCLUSÕES

Em sistemas convencionais de reforço de som, de larga faixa de frequências, onde amplificadores únicos são facilmente levados ao ceifamento, o uso da biamplificação pode, frequentemente, ser benéfico. A biamplificação oferece menor distorção audível, requer potências menores nos amplificadores e oferece proteção major para os alto-falantes. A redução na distorção aparente, em um sistema corretamente projetado, é em parte devida à atenuação das altas fregüências, pelo alto-falante de baixas frequências e ao mascaramento dos produtos da distorção de baixa frequência pelo programa «limpo» de alta freqüência.

As medições dos picos do programa indicam que a distribuição da tensão de pico nas bandas de alta e baixa frequências de um sistema de biamplificação são aproximadamente iguais nas freqüências de transição entre 200 e 500 Hz. Quando a fregüência de transição é elevada, o conteúdo dos picos de sinal, na seção de baixas freqüências, aumenta, enquanto que na seção de altas frequências os picos são reduzidos. Em fregüências de transição mais elevadas, a potência destinada ao amplificador e alto-falante de altas frequências é reduzida, o que diminui a possibilidade de danos aos alto-falantes.

A biamplificação oferece vantagens fora do campo acústico também, tais como a flexibilidade no projeto dos divisores de frequência, facilidade de expansão do sistema e meios simplificados de ajuste do nível, nos setores de baixas e altas frequências. E bastante evidente que a biamplificação oferece muitas vantagens dignas de séria consideração, na área dos sistemas com níveis elevados de pressão acústica.

© — Copyright revista Audio

OS CIRCUITOS FLEXÍVEIS DOBRAM-SE A VONTADE DOS PROJETISTAS.

COMPETINDO AGORA COM OS CIRCUITOS IMPRESSOS RÍGIDOS, OS CIRCUITOS IMPRESSOS FLEXÍVEIS PODEM FORMAR CONEXÕES EM DIVERSOS PLANOS, ALÉM DE POUPAREM PESO, TEMPO DE MONTAGEM E DINHEIRO.

De fato, devido à sua eficácia como técnica de interconexão, é atualmente obrigatório, para muitas empresas, tentar, antes de mais nada, um projeto utilizando circuitos impressos flexíveis.

JERRY LYMAN

O método mais comum de fabricação envolve ca espessura, adesivo, e filme flexível isolante, laminados todos juntos. Após a laminação, o traçado do circuito é gravado, no lado cobreado do substrato. O dispositivo resultante poderá ser utilizado como uma conexão, um circuito impresso para o suporte dos componentes, ou como uma combinação dos dois.

A firma Sanders Associates Inc., de Manchester, criou o circuito flexível em 1952, quando precisou desenvolver esta técnica para uma aplicação militar, onde o espaço e o peso eram preciosos.

A figura 1, por exemplo, mostra um sistema mium substrato, composto de folhas de cobre de pou- litar, que foi convertido de circuito rígido com fiação, para um circuito flexível. Essas fotografias ilustram uma das principais vantagens dos circuitos flexíveis - sua habilidade de serem modelados em mais de um plano ou de se adaptarem a um suporte irregular. Tais circuitos podem também ser dobrados sobre si mesmos, para aproveitar espaço (digamos, em um pequeno módulo) e podem ramificar-se em diversas direções, como é mostrado na figura 2.

FLEXIONANDO O CIRCUITO

Uma outra vantagem deste tipo de circuito é

sua possibilidade de ser continuamente flexionadepois voltar ao seu comprimento total. Essa qualidade conta votos para a popularidade dos circuitos impressos flexíveis em seu uso como conexão, nos pontos móveis dos sistemas de levantamento de curvas (plotting boards) e de discos magnéticos.

Os circuitos flexíveis são, também, extremamente finos. Sua espessura varia entre 100 e 280 mícrons, em média, enquanto que um circuito rígido comum, de dupla face, tem 1600 mícrons de espessura. Tal qualidade dos circuitos flexíveis, somada à leveza do filme isolante, implica automaticamente numa drástica redução de peso.

Hoje em dia, muitos circuitos flexíveis estão substituindo sistemas de interconexão completos. e não apenas circuitos impressos individuais. Nestes casos, além de pouparem espaço e peso, eliminam erros de fiação, reduzem o tempo de testes, as correções e os custos de montagem. Vic St. Amand, diretor de marketing da Teledyne Electro-Mechanisms, exemplifica: na caixa preta de aviação (avionics black box), redesenhada pelos engenheiros de sua companhia, com circuitos flexíveis, pouparam-se 129 horas por caixa em tempo de montagem e reduziu-se o peso em 29%. Uma conversão similar, em outro sistema militar, reduziu 140 horas no tempo de montagem de cada unidade e reduziu, também, o peso, em 50%.

podem também eliminar a necessidade de conectodo, de uma configuração dobrada ou enrolada, para res. Uma outra vantagem ainda é a resistência ao choque. As vibrações e os choques que poderiam rachar um circuito impresso rigido, tem pouco ou nenhum efeito sobre o circuito impresso flexível. Daí, a razão porque este aparece em equipamentos tão diferentes quanto sistemas eletrônicos para mísseis e módulos de relógios.

PROBLEMAS

É claro, os circuitos impressos flexíveis têm suas desvantagens. Uma delas é que, para o trabalho com altas frequências, é difícil controlar a impedância característica das linhas de transmissão, formadas pelo sistema laminado usado nas configurações flexíveis, devido às muitas variações na espessura das camadas de cobre, adesivo e filme de isolação. Também, muitos usuários dos circuitos impressos flexíveis queixam-se que estes são difíceis de usar com equipamento de inserção automática de componentes, sem a presença de esticadores. No entanto, a Teledyne Electro-Mechanisms insere componentes em circuitos impressos flexíveis sem a utilização de suportes esticadores, rotineiramente.

O que, então, reteve o crescimento da utilização dos circuitos impressos flexíveis, em relação aos circuitos impressos rígidos, acompanhados de fiação? Um dos fatores foi a existência de problemas com os materiais. Os primeiros filmes isolantes Se pinos, fios ou furos metalizados forem pre- eram instáveis durante o processamento, causanvistos em suas extremidades, os circuitos flexíveis do maus contatos, capacidade limitada para supor-

Flexíveis × rígidos — Uma caixa de controle de um sistema militar, é apresentada em suas versões com circuito rígido (à esquerda) e com um circuito flexível. Observe como o encapsulamento para o circuito flexível é menos congestionado e desordenado. A conversão de um sistema para a técnica dos circuitos flexíveis resulta em economia de espaço, peso e tempo de montagem.

FIGURA 2

Multiplanar - Os circuitos impressos flexíveis podem ser acomodados em certos espaços onde os circuitos rígidos não caberiam. Este circuito flexível é dobrado em quatro planos diferentes, além de exibir duas dobragens superpostas de 180º, que proporcionam reversão no circuito. O objetivo do conjunto é uma câmera portátil de cinema.

tar dimensões reduzidas, bem como soldagem de impressos flexíveis, é mostrada na figura 3. baixa qualidade. Uma outra limitação era uma falta de métodos de conexão e terminação para se acoplar circuitos impressos flexíveis com as outras partes de um sistema.

A introdução dos laminados de poliamida, em 1965, trouxe à indústria um filme de alta temperatura, de boa soldagem, que resolveu os problemas com os materiais. Agora, existem quatro laminados flexíveis à escolha. Em adição a isto, muitos esquemas de interconexão têm sido projetados especialmente para acoplamento com circuitos flexíveis.

Hoje, o maior problema dos fabricantes de circuitos impressos flexíveis é a resistência dos engenheiros projetistas, acostumados aos circuitos impressos rígidos. Como afirma Steve Gurley, diretor marketing da firma Sheldahl Inc., de vendas e «nosso maior problema é educar pessoas para utilizarem os circuitos impressos flexíveis. Muitas companhias estão, simplesmente, recusando-se a dar uma oportunidade a uma técnica que desconhecem».

Apesar da resistência, as vendas totais dos circuitos flexíveis foram de 128 milhões de dólares, em 1977, e crescerão para 177 milhões de dólares, em 1980, de acordo com Steve Grossman, diretor de estudos de interconexões para a Gnostic Concepts Inc. A divisão entre a produção disponível ao público e a produção por encomenda, dos circuitos chama, tem um custo próximo ao da Kapton.

Os materiais base para isolamento flexível são literalmente e figuradamente a espinha dorsal dos circuitos impressos flexíveis. Nos primeiros dias dos circuitos flexíveis, materiais como o Vinil, o Teflon, o Kel-F e o Teflon reforçado com vidro, foram testados e descobriu-se que deixavam a desejar. Hoje, quatro materiais isolantes - o Kapton, o Dacron-epoxy, o Nomex e o Mylar - dominaram o mercado (ver tabela). (Kapton, Dacron, Nomex e Mylar são marcas registradas da E.I., du Pont de Nemours & Co., Wilmington, Del.)

MATERIAIS-BASE

A «Kapton», uma película à base de poliamida, é, talvez, a mais largamente utilizada, particularmente em projetos espaciais e militares. Tem boa estabilidade dimensional, boas características elétricas e resistência a altas temperaturas, suportando, inclusive, temperaturas geradas pela soldagem por ondas. No entanto, é o mais caro material, entre os quatro.

O «Dacron-epoxy», utilizado extensivamente pela Western Electric e pela ITT, consiste de fibras de poliester «mergulhadas» em resina epóxi. Tem excelente estabilidade dimensional, alta resistência à umidade e à ruptura, e boas características elétri-

Soldável pelo processo de ondas e resistente à

Soldagem por ondas — Processo utilizado para se conectar componentes a um circuito impresso. Após os componentes terem sido colocados em seus lugares, a placa é

transportada ao longo de um tanque, contendo solda fundida, que toca apenas a superficie da face cobreada do circuito impresso, soldando assim todos os componentes à placa.

Um mercado crescente — De acordo com a firma Gnostic Concepts, o mercado de circuitos impressos flexíveis crescerá 38,2%, em 1980. A produção por encomenda irá reter a maior parcela deste campo em crescimento, principalmente em sistemas automotivos e para telecomunicações.

«Nomex», um isolante de nylon e papel, é soldável por ondas, mas extremamente absorvente de umidade. É usado em aplicações comerciais — especialmente em câmaras fotográficas e carros, onde a umidade não é um fator crítico.

Um filme à base de poliester, com boas propriedades elétricas e boa estabilidade dimensional à temperatura ambiente, o Mylar tem más características em altas temperaturas e possibilidades de soldagem limitadas. É largamente utilizado em circuitos flexíveis para painéis automotivos (principalmente como conexão), onde a soldagem é freqüentemente eliminada.

Sabe-se, ainda, que uma película isolante de baixo custo, com propriedades similares às do «Kapton», poderá aparecer em breve. A Exxon Chemical Co. tem estado a desenvolver tal película, feita com ácido poliparabônico, já há algum tempo. Chamada «Tradlon», tem propriedades que se aproximam daquelas da «Kapton», e custa apenas 65 a 75% do preço desta. A «Tradlon» está sendo avaliada por diversos fabricantes. No entanto, a Exxon está fabricando este produto apenas como um programa-piloto.

FABRICAÇÃO

Os circuitos impressos flexíveis, como os circuitos rígidos, podem ser fabricados pelo processo aditivo ou pelo processo subtrativo. No processo aditivo, o cobre é seletivamente depositado em um

substrato. O processo subtrativo remove o cobre, seletivamente, pela decapagem ou eliminação química. Praticamente todos os circuitos impressos flexíveis são produzidos pelo processo subtrativo, que é mostrado na figura 4a, para um circuito impresso de uma só face e, na figura 4b, para um circuito impresso de dupla face, com furos metalizados.

Como nos mostra o fluxograma da figura 4a, a tinta ou o revestimento que resiste ao banho químico pode tanto ser aplicado pelo processo de «silkscreen» ou pelo processo fotográfico. Normalmente, para linhas e espaços de 300 µm, ou menos, muitos fabricantes de circuitos flexíveis passam do processo «silk-screen» para aquele que usa o sistema fotográfico.

LINHAS ESTREITAS

Como no caso dos circuitos impressos rígidos, a grande maioria dos circuitos flexíveis é baseada em linhas de 300 a 500 µm. No entanto, quase todos os fabricantes de circuitos flexíveis podem fornecer circuitos com espaços e linhas condutoras de 80 µm. Além disso, em um certo modelo de engenharia, a firma Sanders Associates produziu condutores de 30 µm, utilizando o processo subtrativo. Circuitos com linhas condutoras estreitas (80 µm, ou menos) são, é claro, muito mais dispendiosos do que os circuitos com linhas condutoras normais, porque o processamento é mais complexo. Eles estão sendo utilizados em conexões com cabeças gravadoras ou diretamente em circuitos integrados.

Neste ponto, muitos fabricantes de circuitos impressos flexíveis estão apenas começando a investigar o uso de revestimento aditivo. Somente as firmas Buckbee Mears Co., Nashua e a Pactel Corp. têm programas para o uso do processo aditivo, enquanto que a Flexible Circuits Inc. combina os processos aditivo e subtrativo, para fabricação de alguns circuitos especiais.

A Buckbee Mears tem um processo aditivo patenteado, para adicionar condutores em «Kapton», que tem sido usado em trabalhos com mísseis. A Pactel instala condutores de cobre em finas folhas de poliamida e tem suprido circuitos impressos flexíveis com 150 µm de espessura, linhas de 120 µm e espaços de 250 µm, para vários projetos espaciais e militares. Tem produzido ainda circuitos impressos flexíveis com linhas de 30 µm e es-

PARÂMETROS DOS MATERIAIS ISOLANTES FLEXÍVEIS						
	Espessura (μm)	Resistência à dobragem (ciclos)	Alongamento máximo	Absorção de umidade	Tensão de isolação (V)	Temperatura de operação (°C)
"Kapton"	25	10 000	70%	3%	7 000	-250 a + 250
R/400 Dacron-epoxi	100	50 000	15%	1%	3 100	-60 a + 150
"Nomex"	50	5 000	10%	5%	600	-60 a + 120
"Mylar"	25	14 000	100%	0,01%	7 000	-60 A + 95

3433444444

Processamento da pelicula — Tanto o processo de face única (a) como o de dupla face (b), com furos metalizados, utilizados em circuitos impressos flexíveis, parecem-se com os empregados em circuitos rígidos. As principais diferenças residem no uso de um substrato flexível, de um revestimento e de adesivos espe

Soldagem interna — A companhia Teledyne Electro-Mechanisms utiliza este processo, como uma alternativa barata para o método dos furos metalizados. Cria-se uma cavidade (a e b) entre um condutor superior e uma área cobreada inferior. Durante a soldagem por ondas, a solda preenche a cavidade (c), originando uma conexão entre faces.

pera estar preparada para produzir linhas de 15 µm. Além disto, a Pactel utiliza seu processo aditivo para fabricar tiras de portadoras de películas (uma portadora de película ou «film carrier» é, na realidade, uma série de circuitos flexíveis repetidos).

Usualmente, um dos últimos passos na fabricação dos circuitos impressos flexíveis é o de revestir com uma proteção os condutores de cobre (ver a figura 4a). A cobertura de proteção é uma película transparente, removida nos pontos onde o circuito precisa ser estanhado. Já há algum tempo, a Flexible Circuits vinha incluindo, aditivamente, planós ou traços de terra na camada de cobertura, para atuar como blindagem de rádiofreqüência para o circuito envolvido. O terra é distribuído por um furo metalizado por processo aditivo, estendendo-se por todas as camadas do circuito impresso flexível.

Um outro método ainda de criar condutores em um substrato flexível consiste em se aplicar, por

meio de telas, uma tinta condutora, que seca à baixa temperatura, em uma película de «Mylar». Esta técnica de baixo custo está agora sendo utilizada pela Chomerics Inc., em teclados de telefones eletrônicos, em teclados para calculadoras e outras aplicações que combinam teclados, placas de circuitos e interconexões, sendo ideal para circuitos flexíveis de única face, em produtos para o consumo.

É também possível imprimir resístores nas películas, com o uso de telas. No entanto, o problema de soldar componentes discretos à tinta condutiva está ainda para ser resolvido.

Não importando a técnica, adição ou subtração, os circuitos flexíveis podem aparecer em três formas: de única fase, de dupla face, com furos metalizados, e de múltiplas camadas.

PLACAS DOBRÁVEIS

Os circuitos flexíveis de uma face são geralmente utilizados para as mais simples aplicações de baixo custo. A grande maioria de circuitos flexíveis é feita, hoje em dia, com dupla face e com furos metalizados, conectando os circuitos de ambas as faces. Os furos são usualmente metalizados por um processo aditivo, após o circuito principal ter sido impresso subtrativamente (fig. 4b); no entanto, já houve casos de circuitos impressos de dupla face onde os furos recebiam pinos ou «ilhoses».

A companhia Teledyne Electro-Mechanisms, apareceu com um novo processo de conectar eletricamente as camadas de um circuito impresso flexível de dupla face. O ponto de partida do método (patenteado) é um circuito flexível completamente pronto, de dupla face, sem qualquer conexão entre as faces. Suponha que um condutor, situado num dos lados do circuito impresso, deva ser conectado a uma área circular, situada no outro lado, diretamente abaixo do condutor. Uma cavidade é criada sob ocondutor superior e sobre a área circular, pela remoção do filme isolante entre ambos (figuras 5a e 5b). Durante a soldagem por ondas, a cavidade é preenchida com solda, conectando o condutor superior com a área inferior (fig. 5c).

A soldagem custa menos que a metalização dos furos. Duas outras vantagens para o processo: as conexões são 100% inspecionáveis visualmente, e podem ser reparadas com equipamento comum.

CIRCUITOS MULTICAMADAS FLEXÍVEIS

Os mais complexos circuitos flexíveis feitos hoje em dia são os tipos de camadas múltiplas. O processo para construí-los é semelhante àquele usado para produzir os circuitos multicamadas rígidos, no qual várias camadas são laminadas em conjunto, em uma grande prensa e sob calor e pressão. Os circuitos flexíveis têm sido produzidos com um total de 23 camadas, mas o uso de muitas camadas resulta em uma perda de flexibilidade. Muitos fabricantes concordam que o limite para um circuito

verdadeiramente flexível é de cinco a seis camadas condutoras. Os circuitos flexíveis multicamadas são confinados quase que exclusivamente para trabalhos militares, mas estão agora encontrando seu caminho entre os computadores, também, devido à crescente densidade de interconexões e de componentes em tais aparelhos, nos mais recentes modelos.

Esses circuitos multicamadas não são simples cópias flexíveis dos circuitos de multicamadas rígidos. Cada camada pode ser estendida separadamente, para servir como conexão com algum ponto do sistema e as extensões poderão sair para diferentes planos. Isto permite que os pontos do sistema seiam conectados a pontos específicos de uma camada particular.

Os circuitos flexíveis podem ser laminados entre as camadas de vários circuitos rígidos, formando o sistema rígido-flexível da Parlex Corp., multicamadas, apresentado na figura 6. Isto traz a possibilidade de se fazer furos metalizados que se estendam através do circuito flexível e do circuito rígido. O circuito impresso flexível serve como uma conexão pré-moldada, para conectar placas rígidas individuais e o resto do sistema. Além disso, o circuito flexível acrescenta duas camadas condutivas a cada placa multicamadas rígida.

SUSTENTAÇÃO RÍGIDA

Esta combinação levou, por seu turno, a uma variação redutora de custos, que é especialmente popular na produção de pequenos módulos para instrumentos. Um circuito impresso flexível de dupla face, composto de várias cópias de um circuito eletrônico dado, é laminado em uma grande base rígida, do tipo mostrado na figura 7. A base rígida tem furos realizados previamente, a fim de aceitar os componentes de cada circuito flexível, e áreas que posteriormente serão eliminadas e correspondem aos espaços entre os circuitos, nas placas flexíveis.

Nas instalações do cliente, as partes são automaticamente inseridas no conjunto e então soldadas por ondas. Se qualquer reparo for necessário, ele será feito durante a montagem. A seguir, as bordas da placa rígida são aparadas e os circuitos são dobrados, como mostra a parte inferior da figura 7, ou dispostos em qualquer outra configuração deseiada.

Em geral, os componentes são soldados ao circuito impresso flexível. A soldagem pode ser realizada manualmente, ou por ondas, ou por imersão. ou por soldagem com raios infravermelhos. Em aplicações do tipo portadora de película, os circuitos integrados têm sido soldados por temperatura e compressão aos condutores de cobre; no entanto, os condutores requerem um banho de ouro especial.

Em geral, antes da soldagem, é importante coisolante flexível e do adesivo usados. É também im-

Rigidos + flexíveis — O circuito flexível apresentado tem um duplo objetivo. Ele interliga os nove circuitos impressos multicamadas, rígidos, entre si e, ao mesmo tempo, serve como um conjunto de duas camadas de interconexão, em cada placa multicamadas. Os furos metalizados estendem-se através de todas as camadas.

portante ter em mente que um componente pode ser substituído muito menos vezes em um circuito flexível, do que em um circuito rígido. Por exemplo. na Gull Airborne Instruments Inc., um fabricante de instrumentos para aviação, um componente pode ser substituído apenas duas vezes em circuito flenhecer as limitações de temperatura da película xível, em contraste com a dúzia de vezes, em circuito rígido. Soldagem excessiva, em circuito flexível,

Sustentação rígida — Vários circuitos flexíveis idênticos podem então os componentes, sendo soldado por ondas. Em seguida, as unidades individuais são separadas, cada qual com sua respectiva sustentação, para serem dobradas, formando módulos.

pode fazer com que as camadas se separem ou até mesmo fazer com que os fios de cobre se descasquem.

CIRCUITO CONECTÁVEL

ma dos componentes que precisam ser substituídos. A montagem do instrumento da figura 8 é uma combinação de circuito flexível com esticador rígido. Soquetes para os circuitos integrados sensíveis ao calor e para os «displays» dos LED's montados na base rígida, permitem a remoção dos dispositivos, sem que seja preciso recorrer à soldagem.

Como foi mostrado anteriormente, o usuário agora tem muitas maneiras de conectar seu circuito flexível ao resto do sistema. Existem numerosos tipos de conectores, incluindo os retangulares, os cilíndricos, os conectores pela borda, os de contato por pressão, projetados especificamente para os circuitos flexíveis. Também, muitos fabricantes soldam, por meio de ondas, ou instalam pinos nos circuitos flexíveis, para eliminar um conector macho. Em algumas aplicações, as extremidades dos circuitos são estanhadas e soldadas diretamente ao mais próximo ponto de contato, tal como um circuito rígido ou um outro circuito flexível.

UM CONECTOR «DIP»

Um novo sistema de conexão, usado na Teledyne Electro-Mechanisms, é construído em uma base de terminais, com seus terminais externos distanciados entre si de 1 décimo de polegada. Os terminais estanhados de um circuito flexível são soldados aos terminais interiores da base de terminais. Então, os terminais externos são dobrados para baixo e inseridos num encapsulamento plástico do tipo «dual-in-line». O conector resultante, mostrado na figura 9, pode ser inserido num circuito impresso rígido, num painel, ou num circuito impresso flexível.

Os primeiros circuitos impressos flexíveis encontraram aplicação nos sistemas eletrônicos de ser montados sobre uma sustentação rígida. O conjunto recebe mísseis teleguiados. À medida que mais e mais circuitos são colocados em espaços cada vez menores, a densidade e o número de conexões eletrônicas cresceu rapidamente. A General Dynamic Corp., que trabalhou em programas de mísseis para a Marinha norte-americana desde 1964, rapidamente passou para os circuitos flexíveis.

«Nossa força diretriz era, principalmente, a densidade do circuito e, em segundo lugar, a confiabili-A Gull contornou de maneira simples o proble- dade», relembra Marvin Abrams, chefe de tecnolo-

A presença dos soquetes — Esta é uma combinação circuito impresso flexível-sustentação rígida, usada no indicador de combustível de uma aeronave. A fim de facilitar a troca dos circuitos integrados, emprega-se soquetes, que são montados na sustentação rígida e soldados ao circuito impresso flexível. A placa flexível tem as funções de circuito impresso e de conexão múltipla.

gia avançada da GD Pomona. Para chegar aos requerimentos de densidade que cresceram de 775 condutores por polegada quadrada, em 1964, para 10500, aproximadamente, em 1972, a divisão GD começou em 1965 com projetos que permitiam 825 condutores por polegada quadrada, com linhas e espaços de 130 µm. Estes projetos utilizavam circuitos impressos flexíveis de dupla face, realizados com película do tipo «Kapton». As dimensões gerais dos circuitos flexíveis variavam de 130 a 2500 µm de espessura, 10 a 20 cm de largura e 15 a 60 cm de comprimento.

Atualmente, a GD Pomona, onde agora a fabricação é desenvolvida, está fabricando circuitos impressos de seis camadas flexíveis, condutoras, de até 87 cm de comprimento, com linhas e espaços de 650 a 250 um. Utilizado na pré-produção do «Standard Missile 2», ele permite a redução de um subsistema, nesse míssil, para um quarto do tamanho de um subsistema equivalente, no «Standard Missile 1».

As vantagens dos circuitos flexíveis foram também rapidamente reconhecidas na aviação — uma outra área onde o espaço é parâmetro de major importância. Na Grumman Aerospace Corp., o pessoal está enfrentando agora um novo sistema de vida: uma ordem recente especificou que o novo equipamento tem que ser projetado com circuitos flexíveis, onde quer que possam ser empregados e, como mais uma evidência de sua importância, a companhia está preparando seu próprio manual de projetos a respeito do assunto.

Michael LaTorre, chefe do grupo de engenheiros projetistas da Grumman Aerospace, estabelece: «É óbvio para nós que esse é um método superior de interconexão.»

Como um exemplo, ele cita um caso em que o tempo de montagem de um sistema foi reduzido de 45 horas, para a versão convencional, para 2 horas, na versão que utilizava o circuito impresso flexível.

POUPANDO ESPAÇO

A divisão de telefonia da Instrument Systems Corp. tem utilizado os circuitos flexíveis desde 1964, em sistemas para aviação. Os engenheiros mecânicos dessa divisão tiveram seu primeiro contato com os circuitos flexíveis quando estavam montando o sistema de entretenimento multiplexado, para o Jumbo 747 da Boeing. Como medida de economia de peso, os circuitos impressos flexíveis foram utilizados, ao invés de circuitos impressos rígidos, com conectores, para interligar os módulos do sistema. Circuitos impressos de «Kapton», de uma só face, foram os principais substitutos.

nhavam mais experiência com os circuitos flexí- como 25 unidades, e a conexões que tenham apeveis, foram entrando em projetos mais sofistica- nas 10 fios. A companhia converteu muitas unidados, tais como o das interconexões do sistema ele- des em circuitos flexíveis, dois anos atrás, e as fatrônico da cabine do Lockheed 1011, para interco- lhas dos circuitos, em trabalho de campo, caíram municação. Originalmente todo o circuito eletrôni- para menos de ¼ %.

Um conector «DIP» — Nesta unidade, as extremidades estanhadas são soldadas aos terminais internos de uma base, cujos terminais externos estão afastados de um décimo de polegada entre si. Ao acoplarmos o conjunto a um encapsulamento tipo «dual-in-line», teremos um conector que se adapta a outros circuitos, flexíveis ou rígidos.

co era montado em dois circuitos impressos rígidos, dentro de um espaço reduzido.

Em 1971, novos requerimentos exigiam uma maior quantidade de componentes eletrônicos e de fiação, a serem adicionados à unidade já existente. Ficou logo evidente que não poderiam ser acrescentados mais circuitos impressos rígidos ao sistema. Portanto, os projetistas decidiram combinar todo o sistema antigo, acrescido do novo sistema, em um circuito único, flexível, de dupla face, feito com o «Kapton». A versão final ficou sendo um exemplo de circuito impresso que somente poderia ser realizado na forma flexível.

Agora, os engenheiros da empresa estão aplicando a técnica já descrita, da sustentação rígida com o circuito flexível, para montar um pequeno controlador de potência, no qual duas placas de fiação são dobradas para cima e colocadas numa pequena embalagem cúbica.

Uma outra empresa de aviação de Long Island, a Gull Airborne Instruments, utiliza sua combinação de circuitos impressos flexíveis com circuitos impressos rígidos, visível na figura 8, para trabalhar como um circuito impresso e uma conexão, num medidor de combustível digital. A combinação resultou em uma poupança de custos de montagem de até 30%, em relação à montagem realizada em circuito impresso rígido.

Dick Holtz, gerente da engenharia de produção da Gull, achou ser efetivamente uma poupança de custos aplicar os circuitos impressos flexíveis a À medida que os engenheiros dessa divisão ga- sistemas que têm uma linha de produção pequena,

Circuito para câmera — Um circuito flexível de 200 µm de espessura, produzido pela Sheldahl, para a câmera SX 70 da Polaroid, distribui a alimentação para os circuitos eletrônicos, interruptores, motores de enrolamento da película e para o solenóide do disparador. Essa peça sofre flexões toda vez que a câmera é aberta ou fechada.

PRODUTOS PARA O CONSUMIDOR

A maior área para o crescimento dos circuitos impressos flexíveis, nos próximos anos, será a dos sistemas eletrônicos destinados ao público consumidor. Esse método já encontrou seu caminho em aparelhos tais como câmaras, calculadoras, relógios, rádios da faixa do cidadão, jogos de vídeo e fornos de micro-ondas. Dentro dos próximos poucos anos, será encontrado em quase todo produto eletrônico para o consumidor.

A Polaroid Corp. e a Eastman Kodak Co., as duas principais fabricantes de câmaras fotográficas dos Estados Unidos, têm utilizado os circuitos flexíveis há algum tempo. A Polaroid, em particular, tem aplicado este sistema em várias câmaras, por duas razões diferentes, dependendo do tipo da câmara.

A câmara modelo SX 70 da Polaroid foi projetada para dobrar-se na forma de uma embalagem extremamente compacta. Para conseguir isto, os projetistas da Polaroid selecionaram um circuito impresso dobrável feito de «Kapton», para acomodar o sistema eletrônico na parte traseira da câmara e por trás do disparador. O circuito, que se dobra e desdobra quando a câmara abre e fecha, é um tipo de uma só face, com 200 µm de espessura (fig. 10).

Nas câmaras modelos «Pronto» e «One-Step», instantâneas, da Polaroid, que não se dobram, os

sua possibilidade de fazer as conexões em múltiplos planos. Foram utilizados para acomodar a fiação das câmaras que se dobravam em ângulos retos e que tinham que ser conectadas em vários pontos diferentes e em diferentes níveis.

FLEXÕES MÚLTIPLAS

John Burgarella, diretor de engenharia para a parte eletrônica dos produtos da Polaroid, diz que o circuito flexível tem provado ser 25% menos custoso que a fiação dos modelos mais antigos da SX-70. Ele acrescenta que comprovaram ser também isentos de problemas. Os únicos problemas surgiram nos primeiros protótipos, quando os circuitos, dobrados em ângulos agudos, quebravam-se. Modificando-se o raio das dobragens, os engenheiros consequiram resolver estes problemas.

Em muitas aplicações dos circuitos flexíveis, estes são dobrados, moldados ou curvados apenas uma vez, quando são instalados. No entanto, no campo das memórias dos computadores, periféricas e rotativas, os circuitos flexíveis deram razão de ser a seu nome. Por exemplo, um circuito projetado pela Rogers Corp. conecta circuitos de processamento de sinal a uma cabeca magnética para memória em disco, vista na figura 11. Ao longo do curso da operação normal da cabeça, o circuito poderá ser flexionado mais de 400 milhões de vezes. A Rogers utilizou cobre laminado, ao invés de cobre eletrodepositado, que trabalha melhor em função da flexão. Em adição a isto, a companhia emprega tratamentos especiais para fazer o circuito verdadeiramente flexível.

Outra área que se vê às voltas com a poupança de espaço é a dos instrumentos médicos eletrônicos. Os circuitos flexíveis têm sido parte dos marca-passos há algum tempo — e a aceitação de uma técnica qualquer em marca-passos é testemunho de sua confiabilidade.

A empresa Flexible Circuits fabrica um circuito impresso flexível que é utilizado em outro instrumento médico altamente confiável — um gravador de eventos cardíacos. Módulos híbridos bastante pesados são montados sem suporte no substrato de «Kapton» de 300 µm de espessura, o que não é usualmente feito quando se utiliza circuitos impressos flexíveis; o circuito, de 97 cm de comprimento, e um gravador miniaturizado são introduzidos numa embalagem, que é ligada a um cinto no paciente; neste sistema, o gravador tem uma vida útil média, sem falhas, de três anos. Somente o circuito flexível pode proporcionar a embalagem diminuta e a confiabilidade necessárias para este instrumento.

O FUTURO

Os circuitos flexíveis serão uma das áreas de major crescimento no campo da fiação. Muitos de seus fabricantes prevêem uma taxa de crescimento de 25%, nos próximos anos.

Uma boa parte desse crescimento ocorrerá circuitos impressos flexíveis foram escolhidos por quando este se espalhar por novas áreas dos siste-

Em forma de "U" — Este circuito interliga uma cabeça magnética, em uma memória de disco. Durante as movimentações normais da cabeça, o circuito permanece dobrado em torma de "U", sendo flexionado mais de 400 milhões de vezes. Processos e tratamentos especiais são utilizados para a confecção deste circuito de grande flexibilidade.

mas eletrônicos destinados ao público consumidor. No campo automotivo, as aplicações dos circuitos impressos flexíveis não ficarão mais limitados à presente utilização em painéis e seus circuitos; em vez disso, novas utilizações aparecerão nos circuitos que a indústria está desenvolvendo para o controle da ignição, injeção de combustível totalmente eletrônica e controle de poluição — tanto quanto circuitos verdadeiramente flexíveis, com os componentes soldados sobre os mesmos.

Na tecnologia dos circuitos flexíveis muitas novidades estão por aparecér. Uma delas, trazida por pressões no sentido de se fazerem circuitos ainda mais densos, e pelo uso de circuitos integrados sem encapsulamento, é uma mudança geral para linhas e espaços de 80 a 100 um, deixando de lado os 250 µm atuais.

De acordo com David Cianciulli, gerente de marketing da divisão de Aparelhos para Conexão da Hughes Aircraft Co., «deverá haver um grande incremento no uso e na fabricação dos circuitos impressos flexíveis, já que os métodos de fabricação estão largamente estabilizados». Novamente, a demanda de maior densidade de embalagem, poderá ser satisfeita apenas com a utilização dos circuitos impressos flexíveis de camadas múltiplas e a possibilidade de interconexão multiplanar dos mesmos.

Um aquecedor flexível

O cobre não é o único material metálico que pode ser laminado em uma base flexível. Uma certa liga de níquel-cromo, em lâminas, é um outro material utilizável. Empregando tal princípio, a firma Parlex Corp., entre outras, está produzindo circuitos flexíveis para aquecedores, pela decapagem seletiva de uma base de «Kapton», coberta por níquel-cromo. Assim como seus equivalentes, usados para o suporte de componentes, o circuito aquecedor flexível pode ser confeccionado e dobrado sob formas pouco comuns. Além disso, o calor em vários pontos do circuito pode ser controlado pela variação do traçado dos condutores e de sua espessura. Para evitar que o calor seja aplicado em determinados setores, a liga metálica pode ser revestida com cobre. Os aquecedores circulares flexíveis estão agora sendo utilizados para controlar a temperatura dos encapsulamentos de giroscópios, em mísseis.

Um outro aspecto dos circuitos flexíveis, que estará em franco crescimento, é sua utilização ao lado dos circuitos impressos rígidos, em combinação com os mesmos. O sistema de sustentação rígida está se tornando mais e máis popular, enquanto que aplicações onde se combinam um circuito rígido multicamadas ou um circuito rígido de dupla face, com uma camada de circuito impresso flexível, tornar-se-ão, também, mais aceitas.

Traga seu PROJETO, SUA IDEIA e nós converteremos tudo isso numa realidade.
Desenvolveremos para você os DESENHOS necessários para cada projeto ou idéia, estudaremos para você a melhor forma e a mais econômica, ao realizar seu projeto.
Faremos os FOTOLITOS correspondentes e até providenciaremos seu CIRCUITO IMPRESSO.

O tempo de entrega??... Muito menor do que você imagina. Venha nos visitar. AGORA VOCÊ CONTA CONOSCO.

Conversor de leitura direta fornece indicações de temperatura

por James Williams e Thomas Durgavich

Massachusetts Institute of Technology, Cambridge, Mass.

É possível converter precisamente a temperatura em uma freqüência numericamente equivalente, para fins de medida ou instrumentação. O circuito aqui descrito emprega um diodo comum (tipo 1N 914) como sensor de temperatura, proporcionando uma resolução de medida de 0,1°C, de 0 a 100°C, com uma precisão de ±0,3°C, ao longo de toda a faixa.

O amplificador operacional 301A está ligado como um integrador; o capacitor de 150 pF, conectado entre a entrada inversora e o pino 1 do amplificador, fornece compensação para uma «slew rate» elevada.

O transistor unijunção tipo 2N2646 providencia o «reset» do integrador, toda vez que o capacitor de 4300 pF é carregado a —10 V. O diodo zener é o responsável por uma tensão de referência que deter-

mina o ponto de disparo do unijunção, além de proporcionar estabilidade no começo e fim de escala e enviar uma corrente de 1 mA para o diodo sensor de temperatura.

O transistor 2 N2222 e seus componentes associados, por fim, estão aí para fazer com que os pulsos de saída sejam compatíveis com a lógica TTL.

Quando em operação, o circuito funciona como um conversor tensão/freqüência. A tensão presente no cursor do potenciômetro de 1 quilohm é integrada, até que o ponto de disparo do transistor UJT seja alcançado; assim que o transistor entra em operação, provoca a descarga do capacitor de 4300 pF. A freqüência de oscilação do sistema está relacionada com a temperatura devido ao diodo sensor, que polariza o integrador, através de sua entrada não-inversora. A única tensão variável fornecida ao

Conversor temperatura/freqüência — Neste circuito, a freqüência de um oscilador de relaxação varia de acordo com a tensão sobre o diodo 1N 914, a qual depende da temperatura. Ao longo da faixa medida de 0 a 100°C, a freqüência estende-se de 0 a 1000 Hz, linearmente, o que significa que um freqüencímetro, ligado à saída do circuito, é capaz de indicar diretamente a temperatura. Sua excelente precisão e baixo custo fazem deste circuito um aparelho bastante útil.

332 NOVA ELETRÔNICA 76

FULL BUILDER

integrador é o potencial presente nesse que depende da temperatura (cerca de $-2.2 \text{mV/}^{\circ}\text{C}$).

Para calibrar o circuito, deve-se colocar o diodo em um ambiente com temperatura de 100°C e. então, girar o potenciômetro de 10 k, até que a frequência de saída seja de 1000 Hz; em seguida, coloajusta-se o potenciômetro de 1 k, de modo que a címetro ligado à saída indicará 375 Hz.

diodo, frequência de saída seja 0 Hz. Normalmente, tal procedimento precisa ser repetido duas ou três vezes, até que os dois ajustes não sofram mais interação mútua. Calibrado o circuito, a regra é: a freqüência de saída indica um valor 10 vezes superior ao da temperatura avaliada; assim, por exemplo, caca-se o diodo à temperatura ambiente de 0°C e so a temperatura a medir seja de 37,5°C, o frequên-

Um divisor de freqüência + um amplificador operacional produzem uma senóide aproximada

por John Taylor — NOAA, Boulder, Colo.

Um grupo de circuitos analógicos e digitais pode ser combinado, de forma a produzir um tom de áudio, a partir de um trem de pulsos digital. Sabe-se que, normalmente, um «flip-flop» pode produzir uma onda quadrada simétrica, sem problemas; entretanto, para certas aplicações, seria ideal ter-se à disposição algo bem próximo de uma senóide.

O circuito visto na figura pode satisfazer tal necessidade. O divisor de fregüência da entrada, formado por dois «flip-flops» e uma porta OU-exclusivo, aceita uma frequência de valor «3f», em onda quadrada e fornece, em sua saída, uma onda quadrada de frequência «f». O uso de uma porta OUexclusivo na entrada justifica-se por duas vantagens sobre o sistema convencional divisor por 3: primeira, a saída resulta simétrica e segunda, a entrada «3f» fica 180° defasada da terceira harmônica

da saída «f».

Essa relação de fase é vital neste circuito, pois se as freqüências «f» e «3f» forem somadas, nessas condições, no amplificador operacional (com pesos de 1/3 e 1, respectivamente), obtém-se o cancelamento da terceira harmônica de «f», o que vai dar origem a uma forma de onda em degraus, de frequência «f», que é uma aproximação mais fiel a uma senóide, em relação a uma onda quadrada.

Caso seja necessário um valor médio igual a zero, para a senóide, pode-se incluir uma tensão CC na soma. E, se a aproximação obtida na saída do amplificador operacional não for satisfatória, basta passar o sinal de saída por um filtro passa-baixas comum, já que a harmônica mais baixa, a ser rejeitada, é igual a 5 vezes a fundamental.

Dos pulsos ao sinal de áudio — Uma porta OU-exclusivo, um circuito divisor de dois estágios e um amplificador operacional são utilizados para somar a freqüência fundamental à terceira harmônica de uma onda quadrada, de forma a produzir uma aproximação, em degraus, de uma senóide.

© — copyright Electronics International

Para amplificadores operacionais — Este conversor CC/CC produz uma saída de —15V, a partir de uma alimentação de +15V. O temporizador integrado, conectado como um oscilador de relaxação, alimenta um dobrador de tensão. O temporizador sofre um «reset», inibindo a saída, caso a mesma apresente uma queda de tensão, mais negativa que —15V. A regulação do circuito é de 1%, para correntes de carga até 30 mA.

Temporizador integrado e dobrador de tensão formam um conversor CC/CC por Todd Gartner, Motorola Inc.

Tal conversor é ideal para alimentar amplificadores operacionais em equipamentos portáteis, a bateria, onde só se dispõe de uma tensão positiva. O circuito fornece uma tensão de -15 V, com uma regulação de 1%, a uma corrente de carga de 30 mA. O consumo do circuito, na ausência de carga, é de 11 mA.

O 555 forma um oscilador de relaxação e sua zado. frequência é determinada pelos resistores RA e RB e pelo capacitor C1; a saída do oscilador está conectada ao sistema dobrador de tensão, composto pelos diodos D1 a D4 e pelos capacitores C1 a C4.

Sem a presença da realimentação entre o dobrador de tensão e a entrada «reset» do temporizador, a saída do circuito vai flutuar em torno dos 30 V menos 4 tensões de diodos. Com a realimentação, o divisor de tensão formado pelos diodos D5 e D6 e pelos resistores R1 e R2 injetam uma tensão de 0,7 V na entrada «reset» do temporizador quando a tensão negativa de saída toma o mesmo valor da tensão positiva de entrada.

cilação do temporizador é inibida e, em consequência, o sinal para o dobrador é removido, o que provoca uma regulação chaveada da tensão de saída.

O dobrador merece um pouco mais de atenção, pois talvez seu funcionamento não seja muito evidente; quando a saída do 555 torna-se positiva, o capacitor C1 é carregado através de D1, enquanto D2 está inversamente polarizado. Por outro lado, quando a saída torna-se negativa, um pouco da carga de C1 é transferida para o capacitor C2, por meio de D2, enquanto agora D1 está inversamente polari-

Assim que o sinal do 555 passa novamente para um valor positivo, o capacitor C3 carrega-se por intermédio de C2 e D3, até 2 vezes a tensão de alimentação, aproximadamente; e na próxima transicão do 555 para um valor negativo, essa carga desloca-se para C4, através de D4, dobrando a tensão de saída do temporizador. Esse tipo de dobrador requer que o dispositivo de comando possa agir tanto como um fornecedor e consumidor de corrente.

A tensão de saída do conversor CC/CC segue a tensão de alimentação com uma precisão razoável. Se R1 e R2 forem substituídos por um único potenciômetro de 100 quilohms, a tensão de saída torna-Se a tensão de saída cair abaixo de —15 V, a os- se variável, de zero até o valor mínimo (—15 V).

ente, contra as variações da alimentação, o resistor apenas para melhorar o rastreio saída-entrada do R2 pode ser substituído por um diodo zener. Por circuito.

Caso seia necessária uma regulação mais efici- fim, os diodos D5 e D6 são opcionais, pois estão aí

Filtro redutor de ruido para chaveamento de constantes de tempo por Martin V. Thomas, **Boston University Medical Center**

Reduzir o ruído de alta frequência em um sinal, sem distorcê-lo consideravelmente, é algo além da capacidade dos filtros passa-baixas convencionais. Para tais finalidades, um filtro linear especial é bem mais eficiente, especialmente para formas de ondas complexas, tais como ondas quadradas e dente de serra.

O circuito da figura 1 atinge tal objetivo, com um bom desempenho sinal/ruído, tendo sido utilizado na determinação precisa de amplitudes de sinal na presenca de ruído. Ele tira proveito do fato de que, embora a amplitude do sinal possa variar significativamente com o tempo, a variação no tempo do valor RMS do ruído superposto é menor e relativamente constante. Assim, este filtro, normalmente, tem uma constante de tempo relativamente ções no laço de realimentação. longa (T1), que dá lugar a uma de menor valor (T2), sempre que o sinal de entrada exceda um certo nível mínimo. Sendo assim, o circuito permite a passagem de grandes transientes, praticamente intactos, mas filtra as pequenas variações (ou seja, o ruído).

As tensões do sinal de entrada surgem imediatamente na junção dos resistores R1 e R2, de modo que o tempo normal de resposta do circuito é R2C2. ou 100 µs. Caso a entrada seja constante ou de variação lenta, quanto à amplitude, não há diferença de tensão entre a saída e a junção dos resistores; as baixas frequências chegam à saída e o ruído é reduzido pela longa constante de tempo do circuito.

Entretanto, um certo diodo é ativado, se a tensão na junção ultrapassar a tensão de saída de 0.7 R2/(R1 + R2) volts, ou 30 milivolts, em nosso caso. O chaveamento do diodo é possível graças ao retardo na tensão de saída, produzido pelo circuito RC e aguito só ocorre se uma tensão de variação rápida surgir na entrada do amplificador operacional. Nessa situação, cria-se um caminho adicional de corrente por R3 e a constante de tempo do circuito passa a ser igual a R3R2C2/(R1 + R2) ou 2 µs, assumindo que R3 seja bem inferior ao valor R1 + R2. Isso permite que o transiente de alta frequência alcance a saída, quase sem distorção. Apesar de que qualquer ruído sobreposto ao sinal é também deixado passar, nesse instante, a relação sinal/ruído média do circuito, para toda a banda de frequências, é bem maior do que se poderia esperar com circuitos convencionais.

Na figura 2, vê-se as saídas obtidas no filtro, «overshoot».

Filtro com duplo valor de constante de tempo — Nesse filtro, para um melhor desempenho, C2 tem um valor elevado, R3 mantém a estabilidade limitando a corrente de carga e C1 evita oscila-

Resposta para onda quadrada — Saída obtida no circuito, pela utilização de duas constantes de tempo. Se o filtro utilizasse somente apenas a constante de tempo mais longa, a saída seria uma onda triangular, resultado de uma sobrefiltragem.

com uma entrada de onda quadrada de 1 volt e 5 kHz. A onda resulta sem distorção, devido à utilização das duas constantes de tempo. A onda triangular seria o resultado na saída, caso uma só constante de tempo (a maior) fosse empregada.

A constante de tempo e o chaveamento do diodo podem ser variados dentro de uma certa faixa. Em algumas situações, seria conveniente limitar a banda de passagem do sinal de entrada, em relação ao inverso do valor da menor constante de tempo, de modo a minimizar distorções causadas por

8.ª FEIRA DA ELETRO-ELETRÔNICA 1.ª FEIRA INTERNACIONAL DE ENERGIA

Alcançaram grande repercussão as feiras da Energia e Eletro-Eletrônica, realizadas de 10 a 16 de abril, no Parque Anhembi, em São Paulo.

A Feira Internacional de Energia, em sua estréia, foi a grande inovação deste ano, atraindo o interesse de milhares de pessoas. Criada em época oportuna, quando todos os países buscam fontes alternativas de energia, para substituir as atuais, já escassas, essa feira proporcionou, pela primeira vez no Brasil, a oportunidade de se observar o que está sendo feito, em nosso país e em vários outros, nos diversos setores da geração de energia, tanto para o presente como para o futuro. Praticamente todo tipo de energia viável estava lá representado: eólica, solar, térmica, geotérmica, hidroelétrica, nuclear e do petróleo, além dos vários serviços e processos correlatos.

A já tradicional Feira da Eletro-Eletrônica, em seu oitavo ano, contou também com a participação de um grande número de empresas, nacionais e estrangeiras, abrangendo quase todos os ramos do setor, desde a indústria de semicondutores, até a de grandes transformadores.

Estavam presentes às feiras, ainda, algumas entidades governamentais, ligadas ao setor de energia, como a Petrobrás, a Eletrobrás e a Cesp, além do Ministério das Minas e Energia.

Havia também algumas publicações técnicas, entre as quais estava a Nova Eletrônica, que obteve grande sucesso em suas exposições e promoções.

Embora ambas as exposições estivessem montadas no mesmo pavilhão (Palácio das Exposições do Anhembi), foram separadas fisicamente por um corredor central, o que facilitou muito o acesso e a localização das áreas de interesse.

Em resumo, a Feira da Eletro-Eletrônica e a Feira Internacional de Energia foram duas realizações de sucesso, atingindo plenamente seu objetivo, que é o de atualizar constantemente nosso país em importantes setores tecnológicos.

Sistema terminal de vídeo TTV 3216: A quinta e última parte da série, referente à montagem completa do sistema, será publicada na ocasião em que o kit já estiver disponível aos leitores interessados. Aguardem!

DISPOSITIVOS CCD NO PROCESSAMENTO DIGITAL

1.ª PARTE

Os dispositivos de cargas acopladas (CCD — Charge Coupled Devices) conquistaram seu lugar em aplicações analógicas, tais como reprodução de imagens a baixo nível de luz e processamento de sinais. Firmara-se, também, como memórias digitais de grande capacidade, de até 65 536 bits. Agora, os dispositivos CCD estão prontos para avançar em um campo extremamente promissor: o de processamento digital de sinais.

THOMAS ZIMMERMAN E DAVID F. BARBE

Essa aplicação de acoplamento de cargas combina todas as características desejáveis do mundo digital, com os atributos inerentes aos CCD: baixo consumo e densidade elevada. E oferece a possibilidade de se reunir, numa mesma "pastilha", sistemas de memória de grande capacidade e processamentos complexos de sinais digitais. Tal combinação pode fornecer uma capacidade de computação bem mais elevada que outras tecnologias.

A tabela I mostra porque a tecnologia CCD tornou-se uma grande rival das outras principais tecnologias do tipo integração em larga escala. Existem, por outro lado, limitações de velocidade impostas pelo princípio de transferência de cargas dos dispositivos CCD, que determinam o emprego de técnicas especiais, seriadas, para permitir uma maior velocidade de operação.

Devido a essa limitação, a tecnologia CCD é melhor aplicada em algumas técnicas, do que em outras. Certas funções que são, por natureza, do tipo seriado, como a transformada rápida de Fourier,

COMPARAÇÃO DE TECNOLOGIAS										
Tecnologia	porta lógica		estágio «shift register»							
	velocidade potência (pJ)	Ārea (µm²)	potência/bit a 1 MHz (μW)	Área/bit (μm²)	velocidade máx. (MHz)	tipo de lógica				
CCD VLSI de tripla	0,2	1290	1	320	0,5	dinâmica				
difusão	3	6450	100	19400	100	estática				
I ² L	2	6450	50	19400	5	estática				
sos	5	12900	100	48400	50	estática				

Observações: VLSI — Very Large Scale Integration (integração em altissima escala). SOS — Silicon on Sapphire (silicio sobre safira).

1²L — Integrated Injection Logic (lógica de injeção integrada).

Extensão natural — Aplicando-se as tensões apropriadas a eletrodos vizinhos, os portadores móveis de carga serão transferidos a locais adjacentes (a). Isto constitui a operação básica de um «shift register» (b), no qual os pacotes individuais de carga são deslocados da entrada para a saida.

adaptam-se melhor à técnica seriada. Em outras operações digitais, onde o resultado de uma computação deve ser obtido, antes que a operação seguinte tenha lugar, aconteceria uma drástica redução de velocidade, caso fosse utilizada a tecnologia CCD.

No entanto, conjuntos digitais, empregando dispositivos de cargas acopladas, foram projetados e estão sendo testados em laboratório. Até agora, surgiram apenas somadores de 2 palavras e 8 bits e multiplicadores de 2 palavras e 3 bits, mas já está em consideração a produção, em uma única «pastilha», de 4 multiplicadores 16 por 16, 3 somadores de 16 bits, e todas as funções necessárias para a execução da operação «kernel» da transformada rápida de Fourier. Dadas as vantagens potenciais dos integrados CCD digitais, o futuro promete, com certeza, sistemas de grande potência para o processamento digital.

Tecnologia CCD

Os dispositivos de cargas acopladas, ou CCDs, são conjuntos de capacitores de metal-óxido-semicondutor (MOS), ao longo dos quais a carga é transferida. Um campo elétrico cria uma região no substrato semicondutor, que funciona como um potencial mínimo localizado para os portadores móveis da carga (figura 1A). Ao se aplicar as tensões adequadas aos eletrodos vizinhos, os portadores móveis mantidos em um certo potencial mínimo podem ser transferidos para uma posição adjacente. Tal propriedade é característica da organização dos registradores de deslocamento (shift-registers - fipara deslocar cada «pacote de cargas» individual do circuito de entrada ao de saída.

Na prática, porém, a transferência de carga de um local de armazenagem a outro, no dispositivo CCD, não é 100% eficiente. A pequena quantidade de carga perdida de um «pacote», a cada transferência, introduz um efeito de amplitude e fase que depende do número total de transferências (N) e da eficiência da transferência de cargas.

Diagrama de blocos básico

O «shift register» linear é o dispositivo CCD mais simples. Várias estruturas e organizações de memórias digitais desenvolveram-se a partir dessa forma básica.

Uma das primeiras geometrias utilizadas para elevar a densidade da armazenagem de cargas foi a organização de canal em serpentina. Nesse caso, o canal CCD «serpenteia» ao longo do silício, de modo a aumentar ao máximo o número de locais de memória em uma determinada área. Apesar de aproveitar bem o silício, esse tipo de estrutura é muito longa e sua inerente ineficiência de transferência, consequentemente, vai exigir o uso de regeneradores de carga, que mantém o sinal no seu valor original, à medida que é transferido de uma seção a outra da memória. O emprego de tais circuitos geram dois problemas: a potência necessária para ativá-los torna-se um fator considerável, assim como a área que ocupam.

À medida que a tecnologia foi «amadurecendo», outras estruturas foram desenvolvidas, para fazer frente a essas limitações. A organização série-paralela-série (SPS), por exemplo, tira proveito da habilidade dos «pacotes de cargas» de se moverem ao longo de dois eixos, de acordo com a estrutura que os estiver controlando.

Esta organização aceita dados na forma seriada, até que o registro de entrada esteja preenchido; um dos eletrodos, então, é ativado, e os dados são deslocados em paralelo, para um conjunto de registros paralelos. Esse deslocamento toma apenas o tempo de um bit seriado e o registro série da entrada é preenchido ininterruptamente; após o intervalo apropriado, o eletrodo de controle permite, novamente, que os dados passem do registro série para o conjunto de registros paralelos.

O processo é repetido, com os dados sendo deslocados pelos registros paralelos, a uma frequência bem inferior à do registro série. Os registros paralelos operam a uma frequência igual à divisão da frequência seriada de deslocamento pelo número de bits do registro série.

Para os sistemas externos, tudo se passa como se a memória estivesse funcionando à máxima frequência seriada; internamente, porém, grande parte dos bits estão, realmente, sendo deslocados a mais baixa freqüência paralela. Já que o consumo apresentado por um dispositivo CCD é proporciogura 1B), onde «clocks» de duas fases são usados nal à sua frequência de deslocamento, a organização SPS tem ai a sua maior vantagem.

Uma outra vantagem que ela apresenta é a sua elevada razão capacidade-transferência. A capacidade de armazenagem é aproximadamente igual ao produto do número de bits do registro seriado pelo número de bits em qualquer um dos registros paralelos. Por outro lado, o número de transferências que um determinado bit deve executar, ao passar pelo registro, é simplesmente a soma dos bits do registro série com os bits de qualquer um dos registros paralelos. Isto representa uma razão capacidade-transferência bem superior à do «shift register» da figura 1B, onde a capacidade é igual ao número de transferências, somente.

As majores memórias, a serem fabricadas pela Fairchild, pela Intel e pela Texas, serão, muito provavelmente, do tipo SPS.

Os sistemas do futuro necessitarão de quantidades substanciais de memória, que exibam características que estão além das possibilidades atuais, e os dispositivos CCD parecem ser capazes de satisfazer muitas dessas necessidades antecipadas. Como são mais adequados a aplicações de memória seriada que requeiram grandes quantidades de atraso em massa, ao invés de aplicações de acesso aleatório, serão melhor empregados em sistemas que exijam memórias de grande capacidade.

Extensão lógica

Os circuitos integrados de memória são apenas a estréia dos dispositivos CCD no mundo digital. Os conjuntos somadores e multiplicadores do tipo CCD já existem e eles são a chave que permitirá a confecção de integrados LSI que poderão executar processamento local, na própria pastilha.

Para se executar funções lógicas digitais por meio do princípio de transferência de cargas, é necessário haver interação com a informação contida nos «shift-registers» CCD. Essa interação pode ser conseguida de duas maneiras: uma delas é chamada «eliminadora de bits» (bit destructive), porque, durante o processo, os bits originais perdem suas identidades individuais. A outra, designada como «preservadora de bits», detecta a presença ou ausência de carga, sem perturbar a corrente de bits. Tal detecção controla o fluxo de carga em outro registro.

Generalizando, pode-se dizer que qualquer dos métodos utilizados para se obter pontos de derivacão com «peso», em filtros CCD analógicos, pode ser adaptado para uso em uma operação de percepção de carga não-destrutiva, adequada para circuitos lógicos de preservação de bits. Em tais aplicações digitais, os métodos de derivação e atribuição de pesos são relativamente fáceis de executar, já

- 1 PERFURADOR
- SUPORTE PARA PLACA
- SUPORTE PARA FERRO
- FONTE ESTABILIZADA DC
- DESSOLDADOR AUTOMÁTICO
- DESSOLDADOR MANUAL
- 7 TRACADOR DE SINAIS
- 9 CORTADOR DE PLACA
- 10 SUGADOR DE SOLDA AUTOM, ao simples toque de botão. Em 110 V.
- 12 INJETOR DE SINAIS

Fura com perfeição, rapidez e simplicidade placas de circuito impresso. Não trinca a placa. Em 2 modelos.

Torna o manuseio da placa bem mais fácil, seja na montagem, conserto, experiência etc.

Coloca mais ordem e segurança na mesa de trabalho. Equipado com esponja limpadora de bico.

Fornece tensões fixas e ajustáveis de 1,5 a 12 VDC. Corrente de saida 1A, Entrada 110/220 VAC.

A solução para remoção de circuitos integrados e demais componentes. Ele derrete a solda e ao simples toque de botão faz a sucção. Bico especial de longa

O maior quebra-galhos do técnico reparador. Localiza com incrivel rapidez o local do defeito em rádios, gravadores, vitrolas etc.

Caneta especial para traçagem de circuito impresso 8 — CANETA PARA CIRCUITO IMPR. diretamente sobre a placa cobreada. Recarregável.

A maneira mais simples e econômica de cortar placas de circuito impresso.

Para quem tem muita pressa no serviço. Faz a sucção

A ferramenta do técnico moderno, Indispensável na 11 — SUGADOR DE SOLDA MANUAL remoção de qualquer componente eletrônico. Em vários tamanhos e modelos.

> Para localização de defeitos em rádio, TV, gravador, vitrola etc. Funciona c/ 1 pilha pequena.

PRODUTOS CETEISA

Vendas por REEMBOLSO POSTAL para todo o Brasil

Componentes Eletrônicos Ltda

Av. Lins de Vasconcelos, 755 — Cambuci S.Paulo — CEP 01537 — Cx. Postal 15017 Fones: 278-1208 e 279-3285

SOLICITE CATALOGOS

Nome

Endereço _ Bairro

CIDADE_

ESTADO _____ CEP _

que os valores de derivação necessários devem ser rar portas OU e OU exclusivo, com uma configuraequivalentes apenas a «1» ou «0».

Os dois processos citados encontram muitas aplicações, mas há uma diferença básica entre eles. O de preservação de bits permite inúmeras operações na corrente original de bits, já que a mesma não é destruída.

Mas, o processo de eliminação de bits pode operar apenas uma vez em cada corrente de bits.

Na porta E básica, construída com lógica CCD, e vista na figura 2A, os «shift registers» A e B estão conectados a duas portas de transferência, em série. Essas duas portas devem estar ativadas, para que os portadores minoritários móveis alcancem a porta assinalada como «C». Sob a forma de símbolos lógicos, temos:

$$C = A.B = E$$

Uma porta OU pode ser construída de forma semelhante (figura 2B). As portas controladas de transferência estão agora em paralelo. Pela mesma dedução, temos: C = A + B = OU

Esses dois esquemas são do tipo «preservador de bits» e não perturbam as séries de bits controladoras. Os bits são simplesmente detectados e utilizados como controladores para outros registros.

trutivos bastante úteis. Com eles, é possível elabo- somente se não houver carga sob a porta D; a fun-

ção ligeiramente mais complexa. Na figura 2C, por exemplo, os «shift registers» A e B injetam seus pacotes de cargas diretamente no poço de potencial, sob a porta C. Uma outra porta, D. está polarizada de modo a aceitar cargas, mas está separada da porta C por uma barreira de potencial, criada por implantação de íons ou controlada por uma tensão separada de porta.

Nos dois casos, a capacidade dos poços de potencial sob as portas A, B, C e D é a mesma; portanto, se as portas A e B são preenchidas à sua máxima capacidade, seus pacotes de cargas combinados excedem a capacidade da porta C. Nesse caso, a barreira permite que o excesso de carga seja enviado para a porta D; mas, se apenas a porta A ou a porta B estiver carregada, a porta C será completamente preenchida e a porta D permanecerá vazia. Em conclusão, a porta C representa uma função OU e a porta D, uma função E: C = A + B = OU

$$D = A.B = E$$

Levando a elaboração um pouco mais longe, consegue-se uma porta OU exclusivo. A figura 2D mostra que a porta D contém um elemento sensor de carga e controla uma das duas portas de transferência em paralelo, as quais controlam o fluxo de carga da porta C. O elemento sensor de carga per-Existem, por outro lado, circuitos lógicos des- mitirá que a carga passe da porta C para a porta E

Somador completo — Adicionando-se algumas portas à função OU exclusivo da figura 2d, obtém-se um somador completo, com saídas «soma» e «transporte». Tal circuito corresponde à tabela da verdade e à função lógica apresentadas.

ta E, e uma função E, com a porta D, essas duas desvantagens de tal processo. portas formam, juntas, um meio somador completo, de 2 bits, com soma e transporte.

O meio somador pode ser expandido para um somador completo, com algumas portas adicionais (figura 3). Tais portas permitem o aparecimento de um outro local de armazenagem e, naturalmente, de uma terceira entrada. A operação do circuito baseia-se no fato de que a porta D terá carga somente se, pelo menos, duas das três entradas exibam carga. E a porta G receberá carga apenas se as três entradas apresentarem carga. As equações lógicas e a tabela da verdade correspondente, para os vários locais de porta, estão incluídas na figura 3.

As portas E e D representam as funções «soma» e «transporte» do somador completo. Tal circuito levou à confecção de dispositivos que efetuam funcões aritméticas mais complexas, como somadores binários e conjuntos multiplicadores.

Funções digitais em larga escala

Além de «shift registers» e funções lógicas básicas, somadores e multiplicadores, é possível sintetizar qualquer função digital. Algumas dessas funções adaptam-se melhor à tecnologia CCD, devido às características da mesma.

vos e que requerem uma quantidade mínima de bar- nos somadores TTL de 16 bits o transporte é efeximo proveito das características de acoplamento dos. de cargas, em «shift registers», serão os mais eficientes. Já que o somador completo requer a execução de uma sequência de eventos, antes que a saída torne-se disponível, os sistemas que utilizarem serialização de dados e evitarem realimentações serão os melhores.

dos registros CCD implica que os sistemas parale- menos e o mais significativo disponíveis simulta-

cão da porta F é a de «remover» a carga estocada los devem ser projetados para circuitos com elevaem C, caso não tenha sido movida para E. Além de das freqüências de dados. Entretanto, a alta densise conseguir uma função OU exclusivo, com a por- dade desses dispositivos compensa largamente as

Limitações de projeto

As máximas frequências de operação estão sendo constantemente elevadas e, de fato, até mesmo o funcionamento acima de 1 gigahertz parece viável. Como a freqüência máxima de operação de um dispositivo CCD é determinada pelo ponto em que as perdas de transferência degradam o sinal a níveis inaceitáveis, a operação digital pode ser efetuada a freqüências ainda maiores, pois a perda de carga não é uma limitação tão severa como no caso da operação analógica, onde qualquer perda significa perda de sinal. Além do mais, as funções digitais CCD podem ser facilmente programadas, simplesmente pela alteração da palavra digital que representa o coeficiente multiplicador.

A serialização é um mal necessário porque, enquanto soluciona o problema de velocidade, por outro lado é a maior limitação nos tipos de funções que os dispositivos podem elaborar. Sua utilização deriva da operação do princípio de transferência de cargas. Para formar um somador digital, por exemplo, várias transferências de carga devem ocorrer antes que o transporte do bit menos significativo esteja disponível como entrada para o próximo bit Como os sistemas CCD produzem geralmente mais significativo. Em um somador CCD de 16 bits, estruturas funcionais bastante densas, eles são essa operação precisa ser repetida 16 vezes, o que ideais para constituir circuitos altamente repetiti- dá origem a um atraso interno. Em comparação, ramentos. Também, os sistemas que tirarem o má- tuado por todos os 16 bits em 30 ou 40 nanossegun-

Ao invés de aceitar os longos atrasos impostos pela lógica CCD, os projetistas podem empregar a serialização, de forma a obterem uma velocidade aceitável de operação. Os adendos são armazenados em «shift registers» paralelos, com o atraso aumentando do bit menos significativo ao mais sig-Além disso, a velocidade relativamente baixa nificativo. Para sincronizar as entradas, tornando o

FIGURA 4 Alterável eletronicamente — Apesar de que o uso principal do integrado aritmético seja calcular transformadas de Fourier, suas funções podem ser utilizadas, em seqüências selecionadas, para a execução de outros algoritmos, o que proporciona ao usuário diversas alternativas

rem muito pouco espaço na pastilha CCD.

Formato mais rápido

A serialização (pipelining) permite a execução de somas a um ritmo determinado pelo atraso em apenas 1 bit de adição, ao invés de 16 bits; o atraso sempenho e a complexidade funcional obtida com ao longo dos 16 bits pode chegar a alguns microssegundos, em um somador CCD de 16 bits. Com a utilização da serialização, as somas são obtidas a tais configurações não terem sido fabricadas, as cada 200 ns, nos conjunto somadores e multiplica- funções dos vários componentes foram testadas dores já existentes.

Por outro lado, a operação de circuito aritmétia as limitações já descritas. co CCD no modo seriado, de forma a se obter boas velocidades, impõe limitações nas funções realizáveis. Aquelas funções de cálculo em cadeia (tais como a transformada rápida de Fourier, por exemplo) adaptam-se melhor ao método seriado. Entretanto, em operações aritméticas digitais, onde o resultado de uma computação deve ser obtido antes que a operação tenha continuidade, perde-se muito em velocidade. Um exemplo típico poderia ser uma CPU do tipo CCD, na qual a saída controladora do passo seguinte do programa fosse extremamente lenta.

sulamentos atuais para circuitos integrados, restri- (TRF). tos a 64 pinos, nos modelos padrão; os encapsula-

neamente, são necessários vários estágios de nizados e, portanto, são mais caros. Uma solução «shift registers»; felizmente, tais sistemas reque- para contornar esse problema é a de multiplexar no tempo os sinais de entrada/saída, no mesmo conjunto de pinos. Contudo, dessa forma a velocidade é cortada pela metade.

Configurações dos integrados

A melhor maneira de se examinar o nível de dea tecnologia atual, é descrever alguns integrados CCD de processamento digital de sinais. Apesar de em laboratório, com os projetos levando em conta

Um integrado aritmético é o dispositivo básico, de modo que ele deve ser aplicado de forma a tornar-se útil em muitas aplicações. Conforme já dissemos, a transformada rápida de Fourier adapta-se muito bem aos CCDs, encontrando emprego nas áreas de sonar, radar e processamento de comunicações e voz. Graças à sua elevada densidade de componentes, um único integrado aritmético CCD pode proporcionar uma considerável capacidade de computação. Além disso, organizando-se cuidadosamente a função aritmética e incluindo-se funções de controle, permite-se ao integrado a execu-Uma outra importante limitação dos dispositi- ção de outras operações de processamento de sivos CCD é o número limitado de pinos nos encap- nais, além das transformadas rápidas de Fourier

O coração da aritmética de uma TRF é a operamentos com maior número de pinos não são padro- ção central (kernel), que deve efetuar seis opera-

Configuração do integrado de memória — Incrementando o atraso em cada um dos blocos, pode-se obter uma reordenação apropriada dos dados, para as transformadas de Fourier em larga escala. Contadores, um divisor por 5 e acumuladores proporcionam a temporização e o controle necessários para o integrado aritmético. Os blocos coloridos de vários tamanhos indicam acréscimo nos atrasos.

ções de soma/subtração e quatro multiplicações. No entanto, os circuitos de adição e subtração são idênticos, pois apenas um complemento lógico e um transporte os diferencia.

Para uma maior velocidade, as quatro multiplicações são efetuadas em paralelo. Um único circuito somador/subtrator pode ser operado no regime de partilha de tempo, de maneira a efetuar duas operações, durante o tempo de uma multiplicação. Assim, todas as operações aritméticas podem ser executadas com 4 multiplicadores e 3 somadores/ subtratores. O diagrama de blocos da figura 4 pertence a um integrado aritmético capaz de efetuar a operação kernel.

A sua grande capacidade de cálculo pode ser aproveitada para executar uma série de funções de filtragem digital, através de sinais de controle, portas adicionais e sequências de temporização.

O integrado da memória TRF

O princípio da organização das memórias CCD está ilustrado na figura 5. O acesso à memória não é aleatório, seguindo um padrão regular. É importante ter em mente tal detalhe, em projetos com CCD, pois enquanto as memórias seriadas (tais como os «shift registers») são fáceis de se obter, as memórias RAM, por outro lado, apresentam dificuldades.

As duas sequências de dados (A e B), são lidas pelas memórias seriadas, cada entrada ocupando tos executa a soma ou integração dos 32 produtos. metade do comprimento total da memória. Assim Tal sistema soma todos os 32 produtos simultaneaque o sinal A move-se para a segunda metade de mente e fornece um número digital, com precisão seu conjunto, é desviado para o segundo bloco da de 13 bits, que representa a correlação. Para se obmemória B, enquanto o sinal B caminha para a se- ter uma soma simultânea, deve-se aceitar um certo gunda metade de seu conjunto e é desviado para a atraso, já que a soma propaga-se ao longo dos soprimeira metade da memória A. Desse moto, ob- madores em série. tém-se o artifício necessário na sequência de saída.

A operação é controlada por dois contadores. O futuro Para'uma TRF de 256 pontos, um contador de 3 bits

das em cada passo, utiliza-se duas contagens, mas para designar os componentes reais e imaginários.

A organização dessa memória aparece, com majores detalhes, na figura 6. A fim de se obter uma operação em alta velocidade, vários blocos aritméticos e de memória podem operar em paralelo. Os blocos multiplexadores são externos; não foi possível incluí-los no integrado devido ao número limitado de pinos dos encapsulamentos padrão.

Um correlator digital

O sistema do correlator digital pode ser adaptado à operação em cadeia compatível com as técnicas de serialização, adequadas aos dispositivos CCD. O correlator da figura 7 pode ser utilizado com um integrado aritmético, de modo a formar um filtro digital não repetitivo, ou uma série de conjuntos de correlação em cascata, adaptados a funções de qualquer comprimento.

Nesse caso, três «shift registers» de 32 estágios manipulam o sinal, a referência em fase e a referência em quadratura. Cada sinal pode ser quantificado em 4 bits, o que estabelece uma capacidade de 384 bits de armazenagem para o integrado. Conectados entre cada uma das 32 amostras de sinal e as correspondentes amostras das referências, estão os multiplicadores de 4 x 4 bits.

Uma estrutura formada por somadores comple-

Os resultados práticos obtidos em dispositivos indica a posição nos oito passos, e um contador de CCD já existentes mostram que aqueles de canal 8 bits indica a posição dentro de cada passo. Na re- superficial operam na faixa de 3 a 15 MHz, enquanalidade, apenas 128 operações centrais são efetua- to aqueles experimentais, de canal imerso, alcan-

Correlator digital — Estabelecendo uma correlação entre um sinal e referências em tase e em quadratura, cada um quantificado em 4 bits; isto é obtido ao se utilizar multiplicadores 4 × 4 em cada um dos 32 estágios, após o que se efetua uma soma simultânea das multiplicações.

çam as centenas de MHz. Conseguiu-se velocidades da ordem de 1 GHz, em um «shift register» experimental, o que demonstra que a tecnologia CCD não está limitada às faixas menores dos MHz.

Memórias de grande densidade, onde cada bit ocupa uma área de apenas 65 µm², já existem; tais densidades, entretanto, serão elevadas ainda mais, à medida que as técnicas mais sofisticadas de fotolitografia, por feixe de elétrons e raios X, forem sendo introduzidas.

Isso fará com que os dispositivos CCD sejam mobilizados para outras áreas, hoje ocupadas por outras tecnologias, como é o caso dos dispositivos de ondas acústicas de superfície, usados em altíssimas freqüências.

Combinações com memória e lógica

À medida que a sofisticação dos sistemas de processamento de sinais é elevada, a combinação de memórias CCD e funções lógicas digitais, em um único circuito integrado monolítico, começa a parecer mais viável. A alta precisão (comprimentos de palavras de 16 ou 32 bits), a elevada imunidade a ruídos dos CCDs, nesses casos, além das grandes densidades e baixo consumo, em comparação a outras tecnologias, tornam essa alternativa bastante atraente. Por outro lado, tal combinação requer uma maior complexidade nos circuitos, cujo custo seria elevado demais, a não ser que um alto grau de integração seja adotado.

Naturalmente, as «pastilhas» desses integrados terão de 0,2 a 0,3 mm de lado.

Os integrados que vão conter todos os circuitos necessários para representarem uma porção significativa de alguns sistemas de processamento de sinais poderão requerer milhares de bits de memória e um grande número de funções de computação, tais como soma e multiplicação. Essas funções poderão ser interligadas permanentemente, no caso de integrados que executem somente uma ou duas funções básicas.

Existem algumas vantagens óbvias, na utilização desses componentes complexos:

Todo o esquema de interconexão para os sistemas de processamento de sinais será consideravelmente reduzido, o que vai afetar a construção do sistema, a confiabilidade, as dimensões, além de reduzir o número de pinos por encapsulamento.

Já que os integrados irão conter funções inteiras, os dados de entrada serão completamente processados, antes de deixar o integrado, reduzindo, assim, o número de acessos de cada um deles. Com um decréscimo da interação fora do integrado, os ritmos de computação internos poderão ser elevados. E os requisitos de potência serão reduzidos, graças à diminuição do consumo de «clock» e do consumo para ativar e desativar o integrado.

Existe ainda uma outra vantagem, menos óbvia: com tal poder de computação, concentrado em um único integrado, novos algoritmos, mais eficientes, poderão executar as funções de processamento de sinais. Melhores meios de se efetuar funções de sistemas complexos serão investigados e as arqui-

teturas desses sistemas poderão mudar para organizações que manipulem blocos de dados e adaptem-se a um formato encadeado. Tais organizações utilizarão melhor o poder adicional de computação que proporciona uma conexão entre informações disponível nos integrados LSI tipo memória/lógica.

Os complexos sistemas militares serão os primeiros a serem beneficiados com tais simplificacões. É óbvio, entretanto, que a tendência geral em todos os tipos de sistemas seja em direção à análise complexa de dados e a um processamento de dados mais completo. O poder de computação dos dispositivos CCD levará à introdução de novos al- ser uma previsão, a cada momento, do que deveria goritmos, elaborações e formulações para procedi- ser, realmente, o sinal de entrada. mentos padrão. O que, por si só, é capaz de criar © Copyright Electronics International

uma nova aplicação para essa tecnologia.

GLOSSÁRIO

Transformada de Fourier: Relação matemática no domínio da freqüência e no domínio do tempo.

Detecção de correlação: Método de detecção, onde um certo sinal é comparado, ponto por ponto, com uma referência gerada internamente. A saída de tal sistema é uma medida do grau de similaridade entre a entrada e o sinal de referência.

O sinal de referência é estabelecido de forma a

O SUPERTESTER PARA **TÉCNICOS EXIGENTES!!!**

CARACTERÍSTICAS TÉCNICAS

10 funções, com 80 faixas de medição:

VOLTS C.A. - 11 faixas de medição: de 2 V a 2500 V 13 faixas de medição: de 100 mV a 2000 V VOLTS C.A. - 12 faixas de medição: de 50 uA a 10 A AMP. C.C. - 10 faixas de medição: de 200 uA a 5 A AMP. C.A.

 6 faixas de medição: de 1/10 de ohm a 100 megohms **OHMS**

 1 faixa de medição, de 0 a 10 Megohms **REATANCIA** 6 faixas de medição: de 0 a 500 pF - de CAPACITANCIA -

0 a 0,5 uF — e de 0 a 50 000 uF, em quatro escalas

2 faixas de medição: de 0 a 500 e de 0 a 5000 HZ **FREQUÊNCIA**

 9 faixas de medição: de 10 V a 2500 V V SAÍDA **DECIBÉIS** - 10 faixas de medição: de -24 a + 70 dB

Fornecido com pontas de prova, garras jacaré, pilhas, manual e estojo.

PREÇOS ESPECIAIS PARA REVENDEDORES

Estamos admitindo representantes ou vendedores autônomos PEÇAM FOLHETOS ILUSTRADOS COM TODOS OS INSTRUMENTOS FA-BRICADOS PELA «I.C.E.» — INDÚSTRIA COSTRUZIONI — ELETTROMECCANICHE, MILÃO

Comercial Importadora Alp Ltda.

Alameda Jaú. 1528 — 4.º andar — conj. 42 — fone: 881-0058 (direto) 852-5239 (recados) CEP 01420 — S. Paulo — SP

CURSO DE LINGUAGENS

FORTRAN

6.º LIÇÃO

A linguagem de programação mais utilizada para programas científicos e para cálculos é, de longe, o fortran, sendo utilizada em universidades e centros de estudo. Além disso, foi a primeira linguagem de alto nível a se impor ao uso.

História do FORTRAN

Por ter sido um dos primeiros esforços significativos para a elaboração de uma linguagem de alto nível, a história do FORTRAN é parte integrante da própria história da programação. As primeiras especificações para o «FORmula TRANslating System» — FORTRAN (sistema para tradução de fórmulas), foram publicadas em 1954, elaboradas por um grupo de pesquisadores da IBM, liderados por J.W. Backus.

Em 1957 surgiu o primeiro compilador para o computador IBM 704; logo em seguida, surgiu uma nova versão, melhorada, que recebeu o nome de FORTRAN II. A aceitação do FORTRAN e da própria idéia de linguagem de alto nível teve uma resistência, no início, mas acabou se impondo. Em 1963, praticamente todos os fabricantes de computadores já haviam incluído em suas linhas um compilador FORTRAN.

Àquela altura, o problema da compatibilidade entre os vários compiladores já tinha se tornado problemática. Sendo assim, o comitê de padronizações do governo americano publicou especificações para uma nova versão, chamada FORTRAN IV. O FORTRAN foi a primeira linguagem padronizada oficialmente, em 1966.

Características funcionais do FORTRAN

Na figura 1 aparece uma lista das instruções de FORTRAN II, tais como foram especificadas originalmente.

O FORTRAN tem uma notação bastante natural para expressões algébricas e bem concisa, para outros comandos. Nas primeiras versões, principalmente, possui instruções típicas das máquinas para as quais foi desenvolvida. Nas versões posteriores, procurou-se eliminar essa característica, de forma a fazer dela uma linguagem realmente universal. Em seu conjunto, o FORTRAN é simples e relativamente fácil de ser assimilado por um cientista ou engenheiro.

Pelo fato de ter sido desenvolvida e inicialmente controlada por um só fabricante (IBM), o FORTRAN não tem muitos «dia-

letos», o que facilita o transporte de programas de um computador a outro.

Características técnicas do FORTRAN

Na figura 2 temos um exemplo de um programa em FORTRAN, que consiste de uma subrotina com dois parâmetros: A e B. Para cada número inteiro K entre A e B, a sub-rotina calcula V3K+sen K, se K for um número primo, ou então calcula V4K+cos K, em caso contrário. Ela imprime, também, em ca-

Se o seu caso é enriquecer o

som de sua guitarra, sintetizador de instrumentos musicais
ou vozes, sem entretanto «embrulhar» as notas, fornecendo

um som «limpo», temos a solu
cão.

DISTORCEDOR "R-VIII" - VOCÊ MESMO MONTA.

- timbre claro e firme em todas as notas.
 sustenção máxima, inclusive nas pri meiras cordas.
- resposta excelente e nítida à palhe-*
 tada.
- ausência de RF e ruídos.
- pode ser usado para acordes na máxi.
 ma medida em que um distorcedor
 «Fuzz» pode fazê-lo.
- colocado antes do «phaser» nota-se com mais nitidez o efeito «phasing».

Monte o kit (não é necessário nenhum ajuste) e comprove a eficiência e qualidade do circuito.

*KIT's NOVA ELETRÔNICA *Para amadores e profissionais.

🖈 À venda:

★ SÃO PAULO − Filcres Import. e Repres Ltda.
★ RIO DE JANEIRO − Deltronic Com. de Equip. Ltda.
★ PORTO ALEGRE − Digital Compon. Eletr. Ltda.
★ CAMPINAS − Brasitone

➤ BELO HORIZONTE — Casa Sinfonia Ltda.

➤ CURITIBA — Transiente Com. Apar. Eletr. Ltda.

RECIFE—Barto Eletrônica Apolo
FORTALEZA—Eletrônica Apolo
FSPIRITO SANTO—Casa Strauch
BRASILIA—Yara Eletrônica Ltda.
FLORIANOPOLIS—Eletrônica Radar Ltda.
SALVADOR—TV-Peças Ltda.

	Número de		Nome	Tipo de	
Função intrínseca	Definição a	argumentos	simbólico	argumento	função
Absolute value	a	1	ABS IABS	Real Integer	Real Integer
Float	Conversion from inte	ger 1	FLOAT	Integer	Real
Fix	Conversion from real to integer	. 1	IFIX	Real	Integer
Transfer of sign	Sign of a_2 times $ a_1 $	2	SIGN ISIGN	Real Integer	Real Integer
Função externa bás	sica				
Exponential	e^a	1	EXP	Real	Real
Natural logarithm	$\log_e(a)$	1	ALOG	Real	Real
Trigonometric sine	sin (a)	1	SIN	Real	Real
Trigonometric cosi	ne cos (a)	1	cos	Real	Real
Hyperbolic tangent	tanh (a)	1	TANH	Real	Real
Square root	$(a)^{1/2}$	1	SQRT	Real	Real
Arctangent	arctan (a)	1	ATAN	Real	Real

da caso, o número K, o valor calculado e informa se K é ou não é primo. Supõe-se que exista uma sub-rotina, chamada PRIME, que determina de K é primo.

O FORTRAN, ao contrário de linguagens como o ALGOL ou PL/1, foi definido a partir de um conjunto mínimo de caracteres, encontrado nos periféricos de qualquer computador. As variáveis, em FORTRAN, têm nomes formados por um ou mais caracteres. A identificação das instruções, para fins de referência, nos desvios, é feita por dígitos. As variáveis podem ser indexadas.

As expressões aritméticas correspondem à notação matemática usual, restrita a uma só dimensão. Existem, também, as 4 operações e mais a exponenciação.

Como se pode observar pelo exemplo, o formato de um programa FORTRAN é bastante rígido, com uma instrução por linha e colunas fixas, lembrando o uso de cartões perfurados, da época em que essa linguagem foi definida.

O programa FORTRAN é formado por várias declarações, que definem o tamanho das matrizes utilizadas, o tipo de variáveis e as funções especiais.

A seguir, temos as instruções de controle e manipulação de dados: o FORTRAN trabalha com números inteiros ou números «ponto flutuante»; existem regras precisas para expressões com números de tipos diferentes.

A instrução básica do FORTRAN é a do tipo: A = E, onde A é uma variável, com ou sem índices, e E é uma expressão aritmética. O valor dessa expressão é calculado e, em seguida, é atribuído à variável A, cujo valor antigo é substituído pelo atual. Exemplo: X2 = 3*(PI + 12).

As instruções são normalmente executadas uma após a outra. Para quebrar o fluxo normal de controle, existem várias instruções, tal como a instrução GOTO K, por exemplo, que força o desvio para uma outra, identificada pelo número K. Nesse caso, pode-se dispor de uma forma especial, do tipo GOTO (K₁, K₂, K₃,, K_n), i, através da qual o programa é desviado para a instrução K_i.

Uma instrução do tipo CALL S(A, B,...) chama uma sub-rotina, passando os argumentos A, B,... A sub-rotina retorna ao ponto de chamada com a instrução

SUBROUTINE PROBLEM (A, B) INTEGER A, B J = 2*(A/2) + 1DO 10 K = J, B, 2T = KIF (PRIME(K) .EQ. 1) GO TO 2 E = SQRT (4.*T + COS(T))WRITE (1, 5) K, E GO TO 10 2 E = SQRT (3.*T + SIN(T))WRITE (1, 6) K, E 10 CONTINUE 5 FORMAT (6, F8.2, 4X, 'NONPRIME FORMAT (6, F8.2, 4X, 'PRIME') RETURN FND

Programa exemplo FIGURA 2

RETURN. (Uma das maiores contribuições do FORTRAN foi a de acostumar os programadores ao uso sistemático da sub-rotina e, daí, à programação modular.)

A instrução condicional tem a forma IF (E) K₁, K₂, K₃. Se o valor da expressão aritmética E for negativo, haverá um desvio para a instrução K1; se for igual a zero, o desvio será para a instrução K2, e se o mesmo for positivo, para a instrução K3.

O controle de ciclos pode ser feito explicitamente pelo programador, com instruções IF e GOTO, ou implicitamente, por meio da instrução DO. Esta últi-

ma tem a forma DO n $i = n_1, n_2,$ na, que significa que o conjunto de instruções que se seguem ao DO, até a instrução n, é repetido de modo que i varie de n₁ a n₂, com incrementos iguais a n3. Assim por exemplo, se a instrução for DO 300 l = 1, 5, 1, significa que o conjunto de instruções, até 300, será repetido 5 vezes, com i tomando, sucessivamente, os valores 1, 2, 3, 4 e 5.

Há, ainda, instruções de entrada e saída, READ e WRITE, além de instruções auxiliares do tipo BACKSPACE ou REWIND. As instruções READ e WRITE especificam qual dispositivo deve funcionar, as variáveis que recebem os dados (entrada) ou que fornecem os resultados (saída). As entradas e saídas, em FORTRAN, utilizam o conceito de «formato» e uma instrução especial, denominada FORMAT, descreve o formato dos dados, os tipos, as conversações a serem efetuadas, os tamanhos e caracteres especiais.

Além das operações aritméticas, existem no FORTRAN várias funções matemáticas à disposição (veja a figura 3).

O FORTRAN IV acrescenta várias extensões às instruções já descritas. No entanto, a estrutura básica da linguagem não foi alterada, tendo sido introduzidas variáveis lógicas, seqüências de caracteres e variáveis de precisão dupla. Além disso, surgiram novos tipos e instrucões.

Contribuições do FORTRAN à tecnologia

O FORTRAN foi, provavelmente, o desenvolvimento que maior impacto causou sobre as técnicas de computação, pois através dele a linguagem de alto nível firmou-se. Por ter sido a primeira linguagem a ser desenvolvida, ela pode ser considerada obsoleta em quase todos os seus aspectos, atualmente. Todavia, devido à sua simplicidade e facilidade de uso, ela se impôs como um padrão de fato, antes de ser um padrão oficial. Ainda hoje é a mais usada, como linquagem numérica.

Ponha a eletrônica ? para facilitar a sua vida,

e com economia, monte você mesmo

A resposta para os problemas com a bateria de seu carro.

Carga lenta, corrente de 2A constante, tensão que depende da tensão da bateria. Possui proteção interna contra curto-circuito, de dimensões reduzidas (15 × 10 × 10) de fácil utilização, permite que você carregue sua bateria em casa.

≹KIT's NOVA ELETRONICA Para amadores e profissionais.

À venda:

SÃO PAULO - Filcres Import. e Repres Ltda. RIO DE JANEIRO — Deltronic Com. de Equip. Ltda. PORTO ALEGRE — Digital Compon. Eletr. Ltda. CAMPINAS — Brasitone
BELO HORIZONTE — Casa Sinfonia Ltda.
CURITIBA — Transiente Com. Apar. Eletr. Ltda. RECIFE—Barto Eletrônica FORTALEZA—Eletrônica Apolo ESPIRITO SANTO—Casa Strauch BRASILIA – Yara Eletrônica Ltda. FLORIANOPOLIS – Eletrônica Radar Ltda. SALVADOR - TV-Peças Ltda.

3-----

Instruções aritméticas (fórmulas aritméticas e definição de funções)

Instruções de controle

GO TO n GO TO n, (n1, n2, . . . , nm) ASSIGN I TO n GO TO (n1, n2, . . . , nm), i IF (a) n1, n2, n3 SENSE LIGHT I IF (SENSE LIGHT i) n1, n2 IF (SENSE SWITCH i) n1, n2 IF ACCUMULATOR OVERFLOW . n1, n2 IF QUOTIENT OVERFLOW n1, n2 IF DIVIDE CHECK n1, n2 PAUSE or PAUSE n STOP or STOP n DO n i=m1, m2 or DO n i=m1, m2, m3 CONTINUE CALL name (argument list) PETLIAN END (i1, i2, i3, i4, i5)

Instruções do FORTRAN II

Instruções de entrada/saída

FORMAT (specification) READ n. list READ INPUT TAPE i, n, list PUNCH n. list PRINT n, list WRITE OUTPUT TAPE i, n, list READ TAPE i, list READ DRUM i, j, list WRITE TAPE i, list WRITE DRUM i, j, list END FILE i REWIND i BACKSPACE ,

Instruções de especificação

DIMENSION v, v, v, . . . EQUIVALENCE (a, b, c, . . .), (d, e, f, . . .), . . . FREQUENCY n(i, j, ...), m(k, l, ...), SUBROUTINE name (argument list) FUNCTION name (argument list) COMMON a, b, c, . . .

FIGURA 3

ÁLGEBRA BOOLEANA

(Suplemento do Curso de Técnicas Digitais)

$$Z = (AB + \bar{A}\bar{B})(C + \bar{A}C)$$

$$S = \epsilon(C+T)$$

$$C = A.B$$

A álgebra Booleana é a linguagem especial dos circuitos lógicos digitais. É um recurso matemático para se expressar, analisar e projetar circuitos lógicos. De muitas formas, é similar à álgebra convencional, sendo, porém, mais simples e exibindo algumas diferenças fundamentais. Como é fácil aprender a usá-la e pelo fato de ser essencial para o completo entendimento e emprego dos circuitos digitais, dedicamos a ela uma série de capítulos especiais, onde você aprenderá a utilizá-la, além de se familiarizar com o uso de tabelas da verdade. Tudo isto o ajudará a montar circuitos lógicos e a compreendê-los melhor.

Os circuitos práticos serão introduzidos na terceira parte do curso.

$$M = \overline{V}W + YX + \overline{W}\overline{V}Y$$

$$f = T(U+\overline{V})(\overline{V}+W)$$

1.ª LIÇÃO

Relacionando circuitos lógicos digitais e equações Booleanas

A álgebra Booleana é, em princípio, um sistema matemático simplificado, empregado para se manipular funções binárias. Através dela, pode-se exprimir as várias funções lógicas, tanto simples como complexas, de um modo conveniente. Temse, assim, um método prático de entender e projetar circuitos lógicos digitais.

Ao se expressar matematicamente as funções lógicas, temos um meio conveniente de análise e expressão de operações em circuitos digitais. Em projetos, também, a álgebra Booleana é de grande ajuda, pois sua aplicação resulta sempre em circuitos que são os mais simples, mais baratos e mais eficientes.

Uma expressão Booleana é uma equação que define a saída de um circuito lógico, nos termos de suas entradas. Você foi iniciado no estudo das expressões Booleanas quando passamos pela análise de portas lógicas básicas (lições 3 e 4, respectivamente nos n.ºs 9 e 10 de NE). As entradas e saídas binárias são expressas como letras do alfabeto, combinações alfa-numéricas (letras + números), abrevia-

ções ou palavras curtas, denominadas mnemônicos.Naporta E da figura 1-1, por exemplo, as entradas são «A» e «B» e a saída é «C», definida nos termos das entradas. O ponto, localizado entre

as letras A e B, indica a função lógica E. E a expressão C = A.B lê-se «C é igual a A E B » (lembrese que as entradas e saídas desses circuitos são sinais que podem assumir os estados «0» ou «1» binários).

A função E estabelece que a saída somente será o nível binário «1», se todas as entradas estiverem no mesmo nível «1». Caso uma ou mais entradas estejam no nível binário «0», a saída correspondente será «0». Consulte, para maior informação, a tabela da figura 2-1, que relaciona todas as entradas e saídas

possíveis para uma porta E de duas entradas.

Outras funções lógicas, tal como a inversão, também podem ser escritas sob a forma de expressões Booleanas. Assim, na álgebra Booleana, a saída de um inversor é representada colocando-se uma barra sobre a variável da entrada, que significa inversão ou complemento (veja a figura 3-1).

Exemplificando, caso a entrada de um inversor seja o nível binário «1», a saída será o nível «0», e vice-versa.

Uma outra função lógica bastante comum é a função OU. A saída de uma porta OU só será «1» se **pelo menos** uma das entradas exibir o nível «1». Uma porta OU típica e a expressão correspondente de saída aparecem na figura 4-1; o sinal «+»

entre as variáveis designa a função **OU**.

É muito importante saber construir o diagrama lógico correspondente a uma dada expressão Booleana, assim como saber escrever a equação Booleana, a partir de um certo diagrama lógico. Veremos isso mais a fundo na próxima seção.

Circuitos lógicos de construção mais complexa

Como já vimos em lições anteriores, a saída de um circuito lógico depende dos estados das entradas e, naturalmente, das características do próprio circuito.

Enquanto, por um lado, algumas simples operações digitais podem ser representadas por uma única porta lógica, em geral é necessário utilizar várias portas lógicas para se obter a função desejada. Quando dois ou mais elementos lógicos são combinados, o resultado é conhecido como «circuito lógico combinacional». Tal circuito possui múltiplas entradas e tanto pode ter uma única saída como várias delas, dependendo de sua função exata.

Qualquer combinação de várias portas E, OU e de inversores é designada como um circuito lógico combinacional. Esses circuitos são empregados para executar sofisticadas funções de tomada de decisão.

Indiferentemente ao tipo de circuito combinacional, existem duas apresentações básicas dos mesmos: circuitos soma de produtos e circuitos produto de somas. O termo «produto», aqui, refere-se à função E, enquanto «soma» refere-se à função OU. As expressões tipo «soma de produtos» e «produto de somas» combinam as funções E e OU numa grande variedade de formas.

A expressão Booleana mais comumente usada, entre as funções complexas, é a soma de produtos. A expressão X = A.B + + C.D.E é um exemplo, e a figura 5-1 mostra o circuito lógico que dá origem a ela. Nesse caso,

a porta E n.º 1 forma o produto lógico AB, enquanto a porta n.º 2 dá origem ao produto CDE; esses produtos são somados pela porta n.º 3, de onde surge a expressão de saída. Isto, em linhas gerais, é o que chamamos de «soma de produtos».

O outro tipo de expressão Booleana é o produto de somas. Como exemplo, temos a expressão L = (M + N) (P + Q), cujo circuito equivalente está na figura 6-1. Vê-se que as entradas M e N

são introduzidas em uma porta OU, enquanto as entradas P e Q são injetadas em outra porta do mesmo tipo. As duas somas lógicas são introduzidas na porta E, que produz o produto final.

Tente familiarizar-se com esse processo, pois ele permitirá que você escreva a expressão Booleana de qualquer circuito lógico e, também, que você construa o circuito lógico equivalente de uma equação Boolea-

Para poder escrever a equação de um circuito lógico dado, comece pelas entradas e escreva a expressão de saída de cada uma das portas que compõem o circuito, da esquerda para a direita, até chegar à expressão fi-

nal de saída. A figura 7-1 ilustra esse procedimento:

Escreve-se, primeiramente, as expressões de saída das duas portas E; tais expressões tornam-se as entradas da porta OU, e pode-se assim chegar à expressão de saída F = ABC + DE.

Esse processo também se

adapta à determinação de produtos de somas, como aquele que se vê na figura 8-1. Aqui, novamente, você trabalha da esquerda para a direita, desenvolvendo a saída de cada porta, até a formação da expressão final.

Por outro lado, para que você possa construir o diagrama correspondente a uma expressão dada, é necessário, em primeiro lugar, estudar a equação e verificar em quais dos dois tipos pode ser encaixada: na soma de produtos ou no produto de somas. Tal verificação vai lhe fornecer o tipo da porta de saída do circuito (um circuito «soma de produtos» tem uma porta OU na saída e um circuito «produto de somas»,tem uma porta E).

Feito isso, você deve trabalhar da direita para a esquerda, agora, a partir da saída, desenvolvendo as entradas e as saídas. Considere, por exemplo, a expressão Q = LM + ĈE; ela é do tipo soma de produtos, portanto conclui-se, à primeira vista, que a porta de saída do circuito equivalente é uma porta OU. As entradas dessa porta são, então, LM e ĈE, que são, por sua vez.

produtos originados por duas portas E, com as entradas apropriadas. Veja o resultado, na figura 9-1.

A figura 10-1 mostra um desenvolvimento semelhante, a partir da expressão S = E(C + T), que é um produto de somas.

Até agora, lidamos com apenas dois níveis de lógica, ou seja, com circuitos onde as entradas são condicionadas por dois conjuntos ou níveis de portas lógicas, em cascata (portas E que caem em uma porta OU, ou viceversa). Os sistemas lógicos mais complexos empregam três, quatro ou mais níveis de lógica. A expressão e o circuito representados na figura 11-1 são um exemplo, onde os formatos «soma de produtos» e «produto de somas» estão combinados.

Como seria o circuito correspondente à expressão $F = (A + \overline{B})$. $(\overline{A} + B) + (B + \overline{C})\overline{A}$? Tente construí-lo, antes de olhar o resultado, na figura 12-1.

Os mesmos princípios de conversão de circuito para equação e de equação para circuito, que você aprendeu para a lógica de dois níveis valem para circuitos mais complexos, com múltiplos níveis.

Pequeno teste de revisão

- 1. O formato lógico mais usado é o do tipo
- a soma de produtos
- b produto de somas
- c combinação de «a» e «b»
- d nem «a», nem «b»
- 2. Construa o circuito correspondente à expressão

- $M = \overline{V}W + XY + \overline{W}\overline{X}Y.$
- 3. Construa o circuito correspondente à expressão $F = T(U + \overline{V}).(\overline{I} + W)$.
- 4. Escreva a expressão Booleana equivalente ao circuito da figura 13-1.
- 5. Idem, para o circuito da figura 14-1.

Respostas

- 1. (a) soma de produtos
- 2. Veja a figura 15-1.
- 3. Veja a figura 16-1.
- $4. T = JK + \overline{K}L + \overline{M}$
- 5. $F = (\overline{A} + B) (C + D + E)$.

ALFATRONIC

CONECTORES COAXIAIS

MINIATURA, SUBMINIATURA E MICROMINIATURA
PARA UHF e S.H.F.

SMA — SMB — SMC — BNC — N

CONHEX — NANOHEX — KWICK — KONNECT

DE ACORDO COM A MIL — C — 39012

ALFATRONIC - IMP.EXP.REPR.LTDA — Av. Rebouças, 1498 — São Paulo — CEP 05402 TEL. PBX 282-0915 — 280-3520 — 280-3526 — Telex (011) 24317

CURSO DE SEMICONDUTORES

A essa altura do curso, você está apto para examinar um componente eletrônico estreitamente relacionado ao diodo de junção PN que estudamos no capítulo anterior. Este dispositivo é comumente chamado de diodo zener e é largamente usado por toda a indústria eletrônica. Devido ao fato do diodo zener ser um componente eletrônico de extrema importância, você deverá estudar este capítulo muito cuidadosamente. Procedendo dessa maneira, estará familiarizado com mais um importante componente de estado sólido e, ao mesmo tempo, expandindo seus conhecimentos de diodos semicondutores em geral.

(5.ª LIÇÃO)

Capítulo III

O DIODO ZENER

CARACTERÍSTICAS DOS DIODOS ZENER

No capítulo anterior, você aprendeu que uma junção PN comum se rompe e conduz uma corrente reversa relativamente alta quando é submetida a uma tensão de polarização reversa suficiente. Esta corrente reversa alta, ocorre porque uma tensão reversa elevada é capaz de arrancar elétrons de valência de seus átomos originais e aumentar o número de portadores minoritários presentes nas seções N e P do diodo. A tensão reversa que causa a ruptura em um diodo de junção PN comum, é comumente conhecida como tensão de ruptura do diodo.

Diodos de junção PN comuns, podem ser danificados se forem submetidos a suas respectivas tensões de ruptura. Isto acontece porque altas correntes reversas podem produzir mais calor do que os diodos possam dissipar seguramente. Entretanto, são construídos diodos especiais, que podem operar a tensões iguais ou maiores que os valores da tensão de ruptura. Estes diodos especiais são denominados diodos zener.

Nós iremos examinar agora, a exata relação existente entre a corrente que flui através de um diodo zener, e a tensão sobre este dispositivo. Consideraremos a ação que ocorre quando o diodo zener está diretamente e re-

versamente polarizado, mas estaremos preocupados, em princípio, com o que acontece no ponto de ruptura. Veremos então, como um diodo zener é classificado de acordo com a sua tensão de ruptura.

Embora muito breve, esta discussão sobre as características do diodo zener é muito importante. Dedique particular atenção aos novos termos e símbolos que serão apresentados. Você usará estes termos e símbolos por todo este capítulo.

Caracteristicas tensão-corrente

Uma típica curva característica V-I (tensão-corrente) de um diodo zener, é mostrada na figura 1-5. Note que as características gerais, direta e reversa, do diodo zener, são similares àquelas dos diodos de junção comuns. A diferença principal é simplesmente que, o diodo zener é projetado especificamente para operar com uma tensão de polarização reversa que é muito alta, e faz com que o dispositivo atinja a região de ruptura e conduza uma alta corrente reversa. Como se observa na figura 1-5, a corrente reversa do diodo zener permanece a um valor muito baixo até que a tensão reversa suba a um valor que é suficiente para que o diodo atinja a ruptura. Então, a corrente reversa através do diodo cresce a uma proporção extremamente rápida, com o crescimento da tensão reversa

após o ponto de ruptura. A curva V-I, portanto, mostra que, após o ponto de ruptura, uma grande variação na corrente reversa é acompanhada por apenas uma pequena mudança na tensão reversa. Isto ocorre porque a resistência do diodo cai consideravelmente com o acréscimo da tensão reversa após o ponto de ruptura. Uma vez que o ponto de ruptura foi ultrapassado, diz-se que o diodo está operando em sua região de ruptura zener ou simplesmente na região zener. A corrente que passa pelo diodo enquanto ele está operando em sua região zener é frequentemente referida como a corrente zener e pode ser representada pelo símbolo l₇.

Se você examinar a figura 1-5 atentamente, notará que a ruptura não ocorre instantaneamente. A curva é arredondada na proximidade do ponto de ruptura. Quando um diodo zener tem na sua curva um «joelho» com uma extremidade muito aguda, ele atinge a região de ruptura muito rapidamente. Entretanto, quando o «joelho» é mais arredondado, a região de ruptura é atingida a um ritmo mais lento. A importância desta consideração será explanada mais tarde, neste capítulo.

Tensão zener

A ruptura de um diodo zener é determinada pela sua resistividade, a qual por sua vez, pode

FIGURA 1-5

ser controlada pelas várias técnicas de dopagem que são usadas para constituir o dispositivo. Um diodo zener é feito para ter um valor específico de tensão de ruptura, o qual é comumente denominado de tensão zener e é designado como Vz. Os valores típicos de V7 podem variar de alguns volts a váriás centenas de volts. Por exemplo, qualquer das unidades mais comuns de baixas tensões, têm valores de 3,3 -4,7 - 5,1 - 5,6 - 6,2 e 9,1volts; entretanto, valores de tensão diferentes também podem ser encontrados facilmente.

É importante perceber que quando um diodo zener é classificado com uma tensão zener específica (V7), esse valor não representa a tensão reversa que é necessária inicialmente para levar o diodo à ruptura. A tensão zener é um valor nominal que representa a tensão reversa sobre o diodo, quando a corrente zener é um valor qualquer especificado, chamado de corrente de teste zener (IZT). A curva V-I na figura 1-5 mostra os valores da tensão zener relativa (V7) e da corrente de teste zener (IZT) para um diodo zener típico. Note que estes valores estão localizados na região de ruptura zener da curva. A corrente de teste zener (IZT) simplesmente representa um valor típico de corrente reversa que é sempre menor que a máxima corrente reversa com a qual o diodo pode trabalhar seguramente.

Assim como os resistores e capacitores, os diodos zener não podem ser produzidos sempre com tensões de ruptura que sejam exatamente iguais aos valores especificados. Portanto, é necessário especificar um limite mínimo e um máximo da tensão de ruptura, para cada dispositivo. Isto é feito, especificando-se uma tolerância na tensão de ruptura para cada tipo de diodo que é fabricado. Os padrões de tolerância das tensões de ruptura zener são: ± 20 por cento, ± 10 por cento e ± 5 por cento; porém, dispõe-se de diodos zener de fabricação especial com tolerância de ± 1 por cento. Por exemplo, um diodo zener de 6,8 volts, ± 10 por cento terá uma tensão zener dentro da faixa de 6,12 a 7,48 volts.

DISSIPAÇÃO DE POTÊNCIA NOS DIODOS ZENER

Os fabricantes de diodos zener também especificam a máxima dissipação de potência de cada dispositivo. Alguns dispositivos estão classificados para apenas algumas centenas de miliwatts, enquanto outros são feitos para potências tão altas

guanto 50 watts. Todavia, alguns dos mais populares e mais usados dispositivos, têm valores relativamente baixos: 400 miliwatts, 500 miliwatts e 1 watt. Um diodo zener tem seu valor de dissipação de potência dado para uma temperatura de operação determinada. Frequentemente, o valor da potência é dado para uma temperatura de 25° centígrados, 50° centígrados ou 75° centígrados. Entretanto, o valor real da potência que um diodo zener pode dissipar seguramente decrescerá, se a temperatura subir acima deste nível especificado ou aumentará, se a temperatura cair abaixo desse mesmo nível. Além disso, se o diodo tem terminais axiais, seu valor de potência é especificado para um determinado comprimento dos terminais ou vários valores são dados para vários comprimentos de terminais. Isso se deve ao fato de que a capacidade de dissipação de potência dos diodos aumenta, à medida que seus terminais são encurtados. Os terminais mais curtos (quando soldados apropriadamente em um circuito eletrônico) são mais eficazes na condução de calor para fora da junção PN do diodo.

Potência: curvas de temperatura

Para simplificar a relação entre o máximo valor da potência de um diodo zener, sua temperatura, e o comprimento de seus terminais, uma curva de desvio potência-temperatura é comumente fornecida com cada tipo de diodo fabricado. Uma típica curva, para um diodo que tem uma dissipação de potência de 500 miliwatts, à temperatura de 75°C, com terminais de comprimento igual a 3/8 de polegada, é mostrada na figura 2-5. Observe que três curvas são mostradas para três diferentes comprimentos de terminais: 1/8, 3/8 e 1 polegada. O valor de potência especificado, 500 miliwatts, ocorre apenas quando o comprimento dos terminais é igual a 3/8 de polegada, e a temperatura é igual a 75° centígrados. Se a temperatura aumentar ou diminuir, a po-

tência também irá variar, de maneira inversa a esta. Note também, que um menor comprimento dos terminais (1/8") contribui para que o diodo dissipe mais potência sob a mesma temperatura, enquanto que um comprimento dos terminais (1 polegada) reduz o valor total da potência dissipada pelo diodo. Ao examinar a figura 2-5, tenha em mente que estão indicadas as temperaturas reais dos terminais dos diodos, e não apenas a temperatura ambiente, que é muitas vezes mostrada em curvas menos específicas. Supõese também que os terminais estão soldados em uma placa de circuito adequado ou num componente que sirva como dissipador para o calor produzido pelo dispositivo.

Fator de desvio

Se um diodo zener de alta potência está contido em uma cápsula de metal ou num encapsulamento que pode ser acoplado a um dissipador, uma curva de desvio potência-temperatura pode ser conseguida, mostrando os valores da potência para diversas temperaturas do encapsulamento. Entretanto, em muitos casos o fabricante dará simplesmente um valor de potência para um diodo (independentemente do tipo), com um determinado comprimento de terminal, encapsulamento ou temperatura ambiente e então, especificará o que é conhecido como fator de desvio. O fator de desvio é geralmente dado em miliwatts por grau centígrado, e pode ser usado para determinar valores de potência diferentes daquele especificado. Por exemplo, um diodo zener pode ter um fator de desvio de 6 miliwatts por grau centígrado. Isto simplesmente significa que o valor da potência do diodo diminui 6 miliwatts para cada grau centígrado de acréscimo na temperatura.

Pequeno teste de revisão

1 — Diodos zener são projetados para operar seguramente em suas regiões de ruptura zener. a. Verdadeira

b. Falsa

1 POLEGADA (") = 25,4 mm

FIGURA 2-5

2 — A região da curva V-l próxima ao ponto onde ocorre a ruptura zener, é chamada de ______ da curva.

3 — A corrente que flui através de um diodo zener que está operando em sua região de ruptura zener, é conhecida como a corrente ______ do diodo.

4 — Uma vez que é impossível fabricar diodos zener que sejam exatamente iguais aos valores especificados, é necessário indicar os limites mínimo e máximo da tensão de ruptura, especificando uma ______ da tensão zener para cada componente.

5 — Um valor de dissipação de potência para um diodo zener, é usualmente dado para uma ______ específica de operação.

6 — De modo geral, a potência real que um diodo zener pode dissipar seguramente irá decrescer se a temperatura

7 — A capacidade de um diodo para dissipar potência é aumentada quando seus terminais são _______.

8 — A relação entre o valor máximo da potência de um diodo zener, sua temperatura, e o comprimento de seus terminais é freqüentemente expressa graficamente na forma de uma curva de ______.

9 — Valores de potência para

um diodo zener, sob diversas temperaturas, também podem ser determinados usando um _____, que é usualmente dado em miliwatts por grau centígrado.

Respostas

- 1. (a) Verdadeira
- 2. «joelho»
- 3. zener
- 4. tolerância
- temperatura
- 6. aumentar
- 7. encurtados
- 8. desvio potência-temperatura
- 9. fator de desvio

LIMITAÇÕES DE CORRENTE NOS DIODOS ZENER

A máxima corrente reversa que pode fluir em um diodo zener sem exceder o seu limite de dissipação de potência é comumente chamada de **máxima corrente zener** e está representada no gráfico da figura 1-5 pelo símbolo I_{ZM}. O valor de I_{ZM} para um diodo zener é geralmente especificado pelo fabricante. Porém, se este valor não foi indicado, ele pode ser obtido dividindo-se o valor da potência pela tensão de ruptura (tensão zener):

I_{ZM} = valor da potência

tensão zener

Entretanto, é melhor para o seu funcionamento seguro, que se use o limite máximo da tensão zener nos cálculos. Por exemplo, suponha que você tem um diodo cuja potência é de 10 watts, com uma tensão zener de 5,1

FIGURA 3-5

volts e tolerância de ± 10 por cento. O limite máximo da tensão deverá ser igual a 5,1 mais 10 por cento deste valor: 5,61 volts. A máxima corrente zener portanto, será de:

 $I_{ZM} = 10 / 5,61 = 1,78$ ampères

A curva V-I da figura 1-5 também mostra que uma pequena corrente reversa ou de fuga (IR), passa pelo diodo antes que o ponto de ruptura seja atingido. Sendo que o diodo zener normalmente é usado em sua região de ruptura, esta corrente não é, de modo geral, muito importante. Entretanto, há certas aplicações dos diodos zener que requerem uma mínima corrente de fuga antes que o ponto de ruptura seja atingido. Desse modo, os fabricantes geralmente especificam o valor de IR dos diodos zener a uma certa tensão que é menor que a tensão zener V7 (na maior parte 80 por cento de \overline{V}_7).

EFEITOS DA TEMPERATURA NA TENSÃO ZENER

Os diodos zener também têm outras características que devem ser consideradas em certas aplicações. Por exemplo, a tensão zener varia ligeiramente com as mudanças de temperatura. A variação de tensão ocorrida é usualmente expressa como uma porcentagem de variação da tensão zener para cada grau centígrado aumentado na temperatura, e é denominada coeficiente zener de temperatura-tensão. Diodos zener que têm ten-

sões de ruptura de 5 volts ou mais, geralmente têm coeficientes zener de temperatura-tensão positivos. Isto significa que suas tensões de ruptura crescem com a elevação da temperatura. No entanto, a maior parte dos diodos que têm tensões de ruptura abaixo ou próximas de 4 volts, possuem coeficientes negativos. Isto quer dizer que suas tensões de ruptura decrescem com o aumento da temperatura. Quando as tensões de ruptura se situam entre 4 e 5 volts, os coeficientes podem ser tanto positivos quanto negativos. Exemplificando, um diodo zener pode ter uma tensão de ruptura de 3,9 volts, com um coeficiente zener de temperatura-tensão igual a -0,025 por cento por grau centígrado. Para esse diodo, a tensão zener irá diminuir 0,025 por cento (ou aproximadamente 0,001 volt) para cada grau centígrado acrescido na temperatura.

DIODOS ZENER COMPENSADOS TERMICAMENTE

Existem diodos zener de construção especial que são termicamente compensados, de modo que os valores de suas tensões zener permanecem quase constantes com as variações de temperatura. Estes diodos especiais são comumente chamados de diodos zener compensados termicamente ou diodos de referência de tensão. Um diodo compensado termicamente é formado conectando-se um ze-

ner em série com um diodo de junção PN comum. Entretanto, os dois diodos são conectados com polaridades contrárias, de maneira que o diodo comum esteja diretamente polarizado, enquanto o zener está reversamente polarizado. Os zener têm geralmente tensões zener maiores que 5 volts e portanto têm coeficientes de temperatura positivos. O diodo de junção comum tem no entanto, uma queda de tensão direta de 0,6 ou 0,7 volt e um coeficiente de temperatura negativo. Os componentes devem ser selecionados cuidadosamente, para que os coeficientes de temperatura seiam iguais e opostos; assim as variações de temperatura serão efetivamente canceladas. Além disso, a queda de tensão sobre os dois dispositivos deverá ser somada para obter o valor total da tensão do dispositivo termicamente compensado. Por exemplo, quando um diodo zener de 5,6 volts é conectado em série com um diodo de junção comum que tem uma queda de tensão direta de 0,6 volts, um zener termicamente compensado de 6,2 volts está formado. Em alguns casos, mais de um diodo comum pode ser usado para obter a compensação desejada. Diodos zener termicamente compensados têm coeficientes de temperatura que variam de 0,01 a 0,0005 por cento por grau centígrado. Entretanto, a melhor estabilização com a temperatura ocorre em uma, ou próximo de uma, corrente de operação que é normalmente especificada pelo fabri-

IMPEDÂNCIA DO DIODO ZENER

cante.

Uma outra importante característica que deve ser considerada quando se examina qualquer tipo de diodo zener é a impedância zener (Z_{ZT}). Esta é determinada pela variação da corrente zener acima ou abaixo da corrente de teste zener especificada (I_{ZT}), e pela correspondente variação na tensão zener (V_Z), como mostra a figura 3-5. A impedância zener é igual à variação da tensão zener (Δ V_Z) dividida

pela variação da corrente zener (A 17), e varia consideravelmente de um diodo para outro. Alguns dispositivos com baixos valores de tensão zener têm uma Z₇T de apenas alguns ohms. De modo geral, quanto menor a impedância zener, maior a inclinação da curva na região de ruptura. Um baixo valor de ZZT indica portanto, que a tensão zener varia ligeiramente com as alteracões na corrente zener. Um diodo ideal não deveria sofrer variações em sua tensão de ruptura com as mudanças da corrente zener, e assim deveria ter uma impedância zener de zero ohm. A impedância zener de um diodo é também útil na determinação das variações da tensão zener ocorridas quando o diodo é usado com correntes maiores ou menores que IZT. E um meio simples de calcular estas variações pelo uso de um valor conhecido da impedância zener ou dos desvios na corrente zener.

Quando expressa matematicamente, a variação na tensão zener é igual a:

$V_Z = I_Z \times Z_{ZT}$

A mesma técnica empregada para determinar ZZT pode também ser usada para calcular a impedância no «joelho» da curva, próximo ao ponto onde ocorre a ruptura. Esta impedância é comumente chamada de impedância do joelho zener (Z7K). A impedância do joelho zener fornece uma indicação da inclinação ou agudez do «joelho» da curva. Os fabricantes de diodos zener usualmente especificam ambas as impedâncias: a impedância zener (Z_{ZT}) e a do joelho zener (ZZK), para cada dispositi-VO.

ENCAPSULAMENTO DOS DIODOS ZENER

Basicamente, os diodos zener são encapsulados da mesma maneira que os diodos de junção PN comuns. Os dispositivos de baixa potência têm normalmente terminais axiais, e são montados em cápsulas de vidro ou epoxy, enquanto as unidades de alta potência aparecem conti-

FIGURA 4-5

das em encapsulamento metálico para facilitar a dissipação de calor e/ou a conexão com dissipadores. Um típico diodo zener de baixa potência é mostrado na figura 4-5a e o seu símbolo mais usado aparece na figura 4-5b. Um anel é usado para identificar as posições do catodo e do anodo. Portanto, a aparência e o símbolo do diodo zener, são similares aos do diodo comum. A única diferença é que o catodo é representado por um zigzag ou uma barra em forma de Z, ao invés de uma barra em linha reta.

Pequeno teste de revisão

10 — A máxima corrente reversa que pode fluir através de um diodo zener sem exceder o valor da potência de dissipação deste diodo é chamado de _____ do diodo.

11 — O máximo valor da corrente reversa suportável seguramente por um diodo zener, pode ser calculado dividindo-se sua potência pela sua ______.

12 — Os fabricantes freqüentemente especificam a corrente que flui através de um zener, antes que seu ponto de ruptura seja alcançado.

13 — Um diodo que tem uma tensão de ruptura zener de 9,1 volts, possui um coeficiente de temperatura-tensão zener _____

14 — Um diodo que tem uma tensão de ruptura de 3,3 volts deve ter, provavelmente, um co-

_	
	eficiente de temperatura-tensão zener
	15 — Quando a tensão de ruptura de um diodo decresce com a elevação da temperatura, seu coeficiente zener de temperatura-tensão é
	16 — Diodos zener termicamente compensados são formados pela conexão de um diodo zener em série com um ou mais
	17 — Em um diodo zener termicamente compensado, a porção zener do dispositivo geralmente tem um coeficiente de temperatura
	18 — A impedância zener de um diodo é determinada dividindo-se sua variação na pela variação correspondente na corrente zener.
	19 — Um diodo zener ideal deveria ter uma impedância zener de ohms.
	20 — A impedância zener no «joelho» da curva é denominada do
	diodo.
	21 — Os diodos zener de baixa potência são normalmente encapsulados em ou
	22 — O material usado para encapsular os diodos zener de alta potência, a fim de facilitar a dissipação de calor, é geralmente um
	23 — O símbolo do diodo zener é semelhante ao do diodo comum, mas tem uma barra em forma de ou, ao invés de uma barra em linha reta.
	Respostas 10. máxima corrente zener 11. tensão zener 12. reversa ou de fuga 13. positivo 14. negativo 15. negativo

16. diodos de junção comuns

17. positivo

18. tensão zener

19, zero

20. impedância do joelho zener

21. epoxy — vidro

22. metal

23. Z — zig-zag.

Anunciantes deste número:

nome De Comma De Comm	pagina
Alfatronic	8
Alp9	1 olsm ne
Apolo Eletrônica·····4	0
Bartô Eletrônica	4
Brasitone	8
Casa Del Vecchio	The state of the state of
Casa Sinfonia2	2
Casa Strauch	4
Ceteisa-Atlas	5
Comercial Bezerra	2
Deltronic	3
Digital	3
Editele 29	9
Electrodesign	5
Filcres 109	5
lbrape	5
LMP	6
Malitron 3ª cap	a
National	9
Novik 2ªcap	a 191700 6
Transiente 3	9

CADERNO ESPECIAL FILCRES

FILCRES IMPORTAÇÃO E REPRESENTAÇÕES LTDA

Rua Aurora, 165 - CEP 01209 - Caixa Postal 18767 TEL. 2214451 - 2213993 - 2216760 - São Paulo

NOVOS DRODUTOS

- UNGAR -**EQUIPAMENTO PARA SOLDAGENS**

Descrição geral:

O conjunto UNGAR matic com controle de temperatura proporciona uma grande capacidade de produção na soldagem, com a temperatura controlada através de seu sistema «closedloop».

Sua construção inteiramente modular permite a fácil reposição e troca de peças, dando assim a máxima economia com grande flexibilidade de produção.

Características:

- Fornecido em 3 tipos com temperaturas diferentes: 600°F, 700°F e 800°F.
- · Controle não-magnético.
- · Sistema de baixa voltagem; 3 fios à terra.
- · Design biomecânico, não esquenta e proporciona grande conforto ao operador, com fio superflexível resistente ao fogo.
- · Esponja com grande capacidade de limpeza.
- Pontas especiais de longa duração.
- Ideal para uso com componentes sensíveis.

Seleção de temperatura:

A temperatura do soldador pode ser selecionada de acordo com as necessidades do operador, usando-se o elemento aquecedor adequado, o qual terá a sua temperatura mantida estável pelo controlador de temperatura.

Pontas:

Existem vários tipos de pontas, as quais o operador selecionará de acordo com o tipo e tamanho do material a ser soldado.

PONTAS ACESSÓRIAS

93438/93448 Memória ROM programável ISOPLANAR SCHOTTKY

Descrição geral:

A memória ROM programável 93438/93448 possui 4096 bits organizados em 512 palayras de 8 bits cada, as quais diferem entre si somente no estágio de saída: a memória 93438 tem coletor aberto e a 93448 tem 3 estágios de saída. Todos os estágios são ativados quando CS₁ e CS₂ estão em estado LOW e CS₃ e CS4 em HIGH.

Estas memórias são fornecidas com todos seus bits em estado "1"S" e podem ser programadas para estado de lógica "O"S".

Características:

- Programada pelo usuário.
- Organizada em 512 palavras de 8 bits.
- Coletor aberto: 93438
- 3 estágios de saída: 93448.
- Totalmente decodificada.
- Decoder, endereçador e buffer no chip.
- O chip seleciona as entradas, dando assim uma grande expansão na memória.
- Possibilidade de tornar o circuito «OR» através de ligações no integrado.
- Pinagem 24 pinos standard.
- · Links de níquel-cromo.
- Substitui duas 256×8 PROMs, ocupando o mesmo espaço com o mesmo consumo na alimentação.

uA 757 — AMPLIFICADOR DE FI COM GANHO CONTROLADO.

DESCRIÇÃO GERAL:

O uA 757 é um amplificador duplo para estágios de FI, que operam em freqüências desde a faixa de áudio até 25 MHz. Seus dois estágios podem ser usados tanto separadamente quanto em cascata. O uA 757 é especialmente designado para uso em estágios de FI em receptores de AM e FM, e tem uma excelente performance quando usado como amplificador limitador em estágios de FM.

CARACTERÍSTICAS:

- Ganho de 70 dB em 10,7 MHz.
- Variação de 70 dB no AGC em 10,7 MHz.
- Capacidade de entrada de 300 mV.
- Impedância de entrada e saída constantes com o AGC.
- Ganho estável na faixa de temperatura e tensão.

Para medidas em 10,7 MHz, a capacitância do interestágio e da saída do segundo estágio são variadas por fora do circuito. O pino 9 deve ser conectado à massa.

2N 2919 AMPLIFICADOR DIFERENCIAL DUPLO DE BAIXO NÍVEL E BAIXO RUÍDO.

Descrição geral:

O 2N 2919 encapsulado em capsula TO5-9 é um duplo transistor para aplicações em circuitos amplificadores diferenciais de baixo nível e baixo ruído.

Valores nominais:

 CÁPSULA TO-5

DIAGRAMA DE CONEXÃO

Valores máximos absolutos:

temperatura de estocagem —65 a 200°C dissipação:

c/ temperatura de invólucro de 25C : 1,5 W

CIF	RCUIT	OS IN	TEGR	ADOS	TTL	- 4	_			TIP0 74LS352		C-N	IOS PRECO	- CR\$ (po	r unid.)	TIPO	PREÇO -	CR\$ (por	unid.)
P0	PREÇOS 1 à 9		r unidade 50 ā 100	TIPO	PREÇOS 1 a 9	- CR\$ (p	or unidade) 9 50 à 100	74L123	30,00	74LS353 74LS365 74LS377	79,00	1.270	1 a 9 peças		50 à 100 peças	4075	1 à 9 peças 14,50	10 a 49 peças 13,20	50 a 16 peças 12,7
100	peças 8,00	peças 7,50	peças 7,50	74174	peças 44,60	peças 40,80	pecas 39,10	74L154 74L164 74L165	207,00	74LS378	73,00	4000 4001	10,00	9,00	8,70 8,70	4077 4078	30,00	29,00	28,0
01	9,50 9,20	8,80 8,50	8,50 8,40	74175 74176	37,50 35,90	34,20 32,70	32,70 31,30	74L187 74L192	106,00	74LS368	20,00	4002 4006	10.00	9,00 50,00	8,70 47,90	4081 4082	11,50 16,50	10,50	10,0
03	9,20 9,90	9,30	- 8,40 9,20	74177 74178 74179	35,90 49,50 49,50	32,70 45,20 45,20	31,30 43,30 43,30	74L193	HOTTKY	74LS393		4007	11,50 52,00 23,50	47,50	9,90 45,50 20,50	4085	41,30	37,60 37,60	35,9 35,9
105 106	10,30	9,30 13,60 13,60	9,20 12,90 12,90	74180	37,50 112,50	34,00 102,50	32,70 98,00	TIPO	PREÇO	95H28	CR\$295,00	4009 4010 4011	23,50	21,50	20,50	4089 4093 4094	122,00 53,60	48,90	107,0
07 08 109	14,90 9,20 9,20	8,50 8,30	8,30 8,20	74182 74184	37,50 92,40	34,00 84,00	32,70 80,50	74LS00 74LS07	9,50		CR\$300,00	4012	11,50	10,50	9,90	4096	123,00 68,90 120,00	113,00 62,80 118,00	108,0 60,0 116,0
10	8,60 9,20	8,00	7,90 8,40	74185 74188	92,40 111,50	84,00 101,80	80,50 97,30	74LS02 74LS03 74LS04	25,50 9,50 24,50	TIP0 74S00	PREÇO 34,50	4014 4015	50,00 49,80	45,50	43,50 43,50	4099	192,00 174,80	174,80 158,70	168,
12 13	10,20	9,30	8,90 17,20	74190	52,30 48,70	47,70 44,40	45,70 42,50	74LS05 74LS08	23,00	74S02 74S03	34,50 29,50	4016 4017	23,60	45,50	20,50 43,60	4511 4512	57,00 73,00	52,00 66,60	49, 63,
14 16	47,00 14,00	44,00 12,50	41,00 12,00	74192 74193 74194	44,90 44,90 46,30	40,90 40,90 41,00	39,10 39,10 40,30	74LS09 74LS10	34,50 29,50	74S04 74S05	34,50 37,00	4018	49,80 23,60 56,90	21,50	43,50 20,60 49,50		50,00 50,00	45,60 45,60	43,
7 20 21	14,00 8,60	12,50 8,00	12,50 7,90 11,90	74195 74196	38,70 35,90	35,20 32,70	33,70 31,30	74LS11 74LS12	26,50 9,50	74S08 74S09	25,00 34,50 29,50	4020 4021 4022	49,00	45,50	43,60 87,80	4539	68,90 62,00	62,80 56,50	60, 54,
2	13,60 10,90 12,30	12,50 10,00 11,20	9,50	74197 74198	35,90 59,80	32,70 54,70	31,30 52,30	74LS15 74LS20	23,00	74S10 74S11 74S15	26,50 28,00	4023	11,50	10,20	9,70 34,30	4556	46,00 46,00 350,00	42,50 42,50 340,00	40, 40, 330,
5	12,30	11,20	10,80	74199 74221	56,20 41,30	51,20 37,60	48,90 35,90	74LS22 74LS30	23,00 31,50 44,00	74S20 74S22	31,00 31,00	4025 4026	17,00 342,00	311,00	14,90 298,00	4703 4710	758,00 512,00	690,00	660,
7 8	12,60 17,20	10,90 15,70	10,50	74290 74298	28,80 77,20	26,30 70,20	25,20 67,20	74LS32 47LS37 74LS38	23,00	74S30 74S32	31,00 44,00	4027 4028	28,50 50,00	45,50	24,80 43,50	4723	227,00 142,50	207,00	198, 124,
2	9,80 12,60	8,70 11,00	8,40 10,60	74367 74390 74393	24,10 44,00	21,90 40,10 51,40	21,00 38,40 49,20	74LS40 74LS42	23,00 54,50	74S40 74S51	26,50 30,00	4029	60,50 23,60 121,00	21,50	52,80 20,60 104,50	40097	70,50 49,50	64,00 45,20	61, 43,
3 7 8	19,20	17,50 12,30	16,70 11,80	74490	56,40 60,30 REÇOCR\$	57,70 TIPO	55,20 PREÇOCR\$	74LS47 74LS49	42,50 42,50	74S64 74S65	30,00 30,00	4031 4033 4034	278,50 125,00	253,00	243,00	40098 40160 40161	49,50 57,50	45,20 52,00	43, 49,
0	13,80 9,80 26,20	12,30 8,80 23,80	12,00 8,40 22,80	9002	30,00	MC4024 MC4027	180,00	74LS51 74LS54	23,00 51,00	74S74 74S86 74S112	77,00 29,00 70,00	4035 4036	64,00	58,50 161,00	55,90 154,00	40162	57,50 57,50 57,50	52,00 52,00 52,00	49, 49, 49,
3	69,00 70,00	64,00 64,50	60,00	9014 9015	56,00 40,00	MC4037 MC4048	199,00 212,00	74LS55 74LS73 74LS74	9,50 74,50 34,50	745112 745113 745114	70,00	4039 4040	579,00	527,00 45,50	504,00 43,50	40174	53,50 53,50	48,80 48,80	46 46
5	49,50 41,40	45,00 39,00	43,00 36,80	9016 9020	50,00 76,00	MC4324 4930	198,00	74LS75 74LS76	74,50 65,00	74S124 74S132	90,00 54,00	4041 4042	50,00 42,50	39,00	43,50 37,50	40192 40193	57,00 57,00	52,00 52,00	49 49
7	37,40 37,40	33,90 34,00	32,40 32,60	9022	89,00 57,00 49,00	4931 4934 93145	15,00 19,00 49,00	74LS77 74LS78	123,00 15,00	74S133 74S138	75-,00	4043 4044 4045	50,00 50,00 111,50	45,50	43,60 43,60 96,60		49,80	45,50 45,50	43
) 3	9,80 9,20 9,80	8,80 8,50 8,80	8,40 8,40 8,40	9093 9094 9097	37,00 37,00	93161 9341	58,00 _143,00	74LS83 74LS84	131,50	74S139 74S140	25,50	4045 4046 4047	82,00 57,80	74,80	71,60 50,40		11,50	10,50	10, 10
1	9,80	8,80 8,80	8,40 8,40	9300 9301	46,00		SPEED PREÇOCR\$	74LS85 74LS86	75,00 25,50	74S121 74S151 74S157	138,00	4048 4049	23,60	21,50	20,60	74008	11,50 11,50 11,50	10,50	10, 10, 10,
2	14,90	13,40	12,70 11,90	9302 9304	81,00	74H00 74H01	17,00 17,00	74LS90 74LS92 74LS93	70,00 48,50 70,00	74S158 74S174	115,00	4050 4051	23,60	21,50 35,80	20,60 34,20	74C20 74C30	11,50	10,50	10
3 4	14,90 13,80	13,40 12,50	11,90 11,90	9305 9307	72,00 90,00	74H04 74H05	19,00 19,00	74LS95 74LS96	95,50 177,00	74S175 74S194	265,00	4052 4053	39,40 82,00	75,50	34,20 72,20	74C32 74C42	11,50	10,50 45,50	10,
5 6	22,40 17,20	20,30 15,80	19,40 14,90	9308 9309	125,00 72,00	74H08 74H10	32,50 19,00	74LS95 74LS96	.,,,.,	74S251 74S523	125,00	4055	132,40	119,60 119,60 1243,00	115,00 115,00 1190,00	74C74	32,00 24,90	29,30	27 21
9 0 1	28,70 31,60	26,30 28,70	25,20 27,60	9310 9311 9312	68,00 121,00 72,00	74H11 74H20	21,50 19,00	74LS107 74LS109	36,00 15,00	74S257 74S258	136,00	4057 4059 4060	316,50 178,50	289,00	276,00 155,50	74089	32,30	111,80	
2	46,80 46,80 51,60	42,70 42,70 47,00	40,80 40,80 45,00	9313 9314	66,00	74H21 75H22	19,00 19,00	74LS112 74LS113	32,50 15,00	74S287 74S301 74S387	186,50	4061	1357,00	1243,00	1190,00	74093	73,00 74,80 7 32,20	69,00	63, 65, 28,
4	51,60 48,50	47,00 44,30	45,00 42,30	9315 9316	81,00	74H30 74H40 74H50	19,00 18,50 18,50	74LS114 74LS122 74LS125	15,00 18,50 31,50	74S431 74S472	248,00	4066 4067	26,90 316,50	24,50 288,70	23,50 276,00	74C154	135,50	123,00	119
6	19,80 123,00	17.90 112,70	17,00	9317 9318	115,00 138,00	74H51 74H52	19,00 25,50	74LS126 74LS132	31,50 52,00	L	INE	4068 4069	19,40	10,50	16,80 10,00	74019	89,50	81,60	78, 222
0	22,20	20,40	19,50 29,50	9321 9322	8,,00	74H53 74H54	18,50 19,00	74LS133 74LS136	23,00	TIPO	IVER PREÇOCRS	4070 4071 4072	24,90 11,50 34,40	10,50	21,80 10,00 30,00	MC145.	50,00 36 (por u	46,00 nid)- 40	9,00 9,00
2 3 4	23,30 23,30 46,80	21,00 21,00 42,70	20,00 20,00 41,00	9324 9328 9334	115,00 145,00 186,00	74H55 74H60	19,00 19,00	74L 138 74LS139	64,50 60,00	MC1488 MC1489		4073	11,50	10,50	10,00	4/24	62,50		×.
5	29,90 32,50	27,40 29,70	26,30	9338 9342	149,00	74H61 74H62 74H71	19,00 25,50	74LS151 74LS153 74LS155	84,00 57,50 64,50	75107 75108	171,00 171,00	O MAT	023 CON	OS P	UM MODUL	O COMPL	ETO PAR	RA RELOGI	O DIGI
7 00	166,80 129,90	151,80 118,50	144,90 114,00	9344 9348	575,00 137,00	74H72 74H73	23,00 39,50	74L 156 74LS157	64,50	75109 75110	171,00 171,00	ACRES	CENTAR	TANDO DIS	1 TRANSFO	RMADOR	E CHAVES	DE SELE	ÇÃO.
04 07	39,90 15,60	36,50 14,20	34,80 13,70	9350 9356	40,00 64,00	74H74 74H76	42,50 49,50	74LS158 74LS160	55,50 33,50	75150 75154	311,00	DATME	TE DE T	M: RELŌGI NSTRUMENT ETRO DE (TOS ETC	O RPTI	HO PODE	SER VARI	ADO P
09 10 11	21,90 17,90 23,50	20,10 16,30 21,40	19,20 15,70 20,50	9357 9360 9366	52,00 45,00 60,00	74H78 74H101	49,50	74LS161 74LS162	72,50 33,50	75200	242,00 242,00 173,00	BRILL	IO/DIM.	9 neças					
16	115,70 49,50	105,50 45,50	100,90	9368 9370	52,00 54,00	74H106 74H108		74LS163 74LS164	66,50 218,50 46,00	75450	57,00 44,00	0.145	460	00	403,	00	CONS	ulte-nos	DINA O
21 22	16,90 26,10	15,50 23,80	14,70	9374 9386	114,00	LOWI	POWER PREÇOCR\$	74LS168 74LS169 74LS170	79,50 68,00	75453	42,00 56,50	TOS E	JITO DE M DISPL	RELOGIO N RELOGIO N AY FLUORE DEMAIS CO	ONOLITIC SCENTE V	O MOS/L	SI MM537 VACUO, (77, COM 4	DIGI-
23	26,50 24,00	23,90	22,80	9395	37,00 75,00	74L00 74L01	32,50 36,00	74LS174 74LS173	132,50 49,50	75491	56,50 85,50 85,50	LCOMPL	LETU PAR	DEMAIS CO E MUDANÇA	AU IZVUC	. E PRU	IEGIDO (JUNIKA I	MINDIEN
26 28 32	22,30 26,10 33,70	20,20 23,80 30,70	19,30 22,80 29,50	93410 93415 93416	230,00 500,00 311,00	74L02 74L03	25,50 25,50	74LS175 74LS189	80,00 162,50	7528	92,00 MHTL	BRILL	O APAGA	O DISPLA	AY COM A	IGNICÃO	DESLIG	ADA, REDI	JZ O BR
36 41	20,70	18,80 45,20	18,00 43,30	93421 93433	400,00	74L04 74L05	27,50 27,50	74LS191 74LS190	107,00 51,00 40,50	TIPO	TIPO TIPO 663 852	SÃO S	SIMPLIFI	CADAS ATE 9 peças	RAVES DE	UM CONE	CTOR DE acima de	6 PINOS. e 50 peça	
44 45	158,70 33,70	143,80 30,70	138,30	93436 93446	345,00 300,00	74L08 74L09 74L10	27,50 30,00 28,00	74LS192 74LS193 74LS194	40,50	948	667 853 668 855	MC	690 S. L.S	,00 UAD 64 B:	633,00 FCM7030			lte-nos	195, 247,
47 48	74,80 56,30	68,30 51,30	65,30 49,10	9600	95,00	74L11 74L11 74L20	29,00 26,50	74LS195 74LS196	64,50 64,50	951 962	830 861 831 863	3342 3349 2513	PC GER	UAD 64 B IEX 32 B DOR DE C	II STATIC IT STATIC RACTERES	SHIFT 64 X A	REGISTE	S SII	218, 667,
50 51	47,20 33,60	43,00 30,60	41,20 29,30	9601 9602 9603	50,00 67,00	74L26 74L30	29,00 25,50	74LS197 74LS221	64,50 41,50	963 1800	832 932 834 933	2519 2533	HEX	40 BIT ST	TATIC SHI	FT REGI	STER		690,
52 53 54	267,90 33,70 53,80	255,30 30,70 49,00	244,90 29,50 46,80	9603 9604 9615	20,00 145,00 145,00	74L32 74L42	29,00 120,00	74LS247 74LS248		1802	835 930 836 935	3257 3258	64 2	5 X 7 OL 7 X 5 OL	JT CHARAC	TER GEN	ERATOR ERATOR	1	563, 563,
55 56	33,70 33,70	30,70	29,40	9717 9620	230,00	74L51 74L54	28,00 25,50	74LS249 74LS251	42,50 67,00 64,50	1805	840 936 845 937 846 944	3260 32628	64 X 3 TV-5	9 X 7 OL YNCR. GEN	JT CHARAC NERATOR D	TER GEN	ERATOR ER. CLO	CK	736,
57 58	33,70 106,00	30,70 96,60	29,40 92,50	9624 9625	219,00 189,00	74L55 74L71 74L72	25,50 32,50 32,50	74LS253 74LS257 74LS258	64,50 67,00 70,00	9157	848 945	3341	DIGI	TAL VOLT	METER ARR		MUKY		402, 299, 299,
60 61	41,40	37,60 37,60	36,20 36,20	9650 - 9664	96503 58,00	74L73 74L74	39,50 71,50	74LS259 74LS266	154,00 16,50		TL	3815 3816 3817	DIVI	DE COUNTE DE BY 262 IGIO DIGIT	2 145 PRO	M COUNT	ER		299, 299, 195,
62	41,40	37,60 37,60	36,20 36,20	96503 MC4000 MC4001	230,00 106,00 46,00	74L75 74L78	30,00 39,50	74LS273 74LS279	99,00 31,50	789 826	824 825 843 885		376 BIT	ROM/KEYBO	DARD ENCO	DER SPERTAD	OR/CALE	NDĀRIO	575,
164 165 166	46,40 46,40 54,00	42,30 42,30 49,10	40,50 40,50 46,90	MC4007 MC4007 MC4012	114,00	74L85 74L86	130,00 39,50	74LS283 74LS289	38,00 162,50	886 889	837 888 9719	FCM70	002 RELO	GIO DIGIT GIO DIGIT	ΓAL SATDA ΓAL CALEN	BCD D./DIA/			391, 391,
167	161,00 82,80	146,00 75,10	140,30 71,80	MC4015 MC4016	142,00 190,00	74L90 74L91	142,00 103,00	74LS290 74LS293	54,00	H202		FCM70	10 RADI	O/RELOGIO ERSOR ANA	SEM SEG LOGO DIG	UNDOS ITAL			287,
73	67,40	61,40	58,80	MC4018 MC4022	279.00	74L93 74L95	145,00 115,00	74LS295 74LS324			CR\$58,00 CR\$58,00	LD111		ERSOR AND ERSOR AND	LOGO DIG	ITAL			345, 690,

			TRANSIST	ORES MAT. POL. ENCAP. C	TIPO APLICA	CÃO	MAT.POL.ENCAP.	CR\$
TIPO 2N5322 2N5490 2N5631 2N5684 2N5686	APLICAÇÃO . MEDIA POT. USO GERAL MEDIA POT. COMUTAÇÃO ALTA POTE AUDIO ALTA POTENCIA ALTA POTENCIA	MAT.POL.ENCAP. CR\$ S P T039 23,00 S N T0220 43,00 S N T03 104,00 S P T03 224,00 S N T03 201,00	EM4239 SAIDA DE AUDIO EM4248 BAIXA POTÊNCIA EM4249 LOW NOISE AMPLIFIER EM4250 LOW NOISE AMPLIFIER	S N T039 20 S P R1246 S P T0106 S P T0106	R\$ BC169 BAIXA 0,00 BC178 BAIXA 5,00 BC237 AMPLIF 5,00 BC238 BAIXA	POTENCIA POTENCIA . USO GERAL FREQ. USO GERAL	S N T092 S P T018 S N T092 S N T0106	4,00 8,00 6,00 6,00 6,00 6,00 6,00
2N5838 2N4034 2N5884 2N5886 2N6121 2N6126 2N6130 2N6133	POTENCIA RF USO GERAL (UHF) ALTA POTENCIA ALTA POTENCIA AMPLIF: USO GERAL POT. USO GERAL ALTA POTENCIA AUDIO ALTA POT. AUDIO	S N 52,00 S P T018 14,00 S P T03 87,00 S N T03 72,00 S N T0220 17,00 S P T0220 17,00 S N T0220 17,00 S P T0220 17,00	EMS838 COMUTAÇÃO ALTA VOLT. EMS840 COMUTAÇÃO ALTA VOLT. EMS121 ALTA PÓTENCIA EM6122 AUDIO DRIVER EM6123 AUDIO DRIVER EM6123 AUDIO DRIVER EM6124 AUDIO DRIVER EM6125 AUDIO DRIVER	S N T03 44 T03 57 S N T0220 11 S N T0220 11 S N T0220 11 S P T0220 11 S P T0220 11	5,00 BC327 BAIXA 5,00 BC328 AMPLIF 5,00 BC337 BAIXA 5,00 BC338 AMPLIF 5,00 BC527 AMPLIF	. USO GERAL FREQ. USO GERAL . USO GERAL . USO GERAL PLIF. AUDIO POT. BAIXO RUIDO . USO GERAL POT. USO GERAL . USO GERAL . FI OSCILADOR	S P T092 S N T092 S N T092 S P T092 S N T092 S N T092 S N T092 S P T092	6,00 6,00 8,00 8,00 8,00 8,00 7,00
2N6134 2N6250 2N6251 2N6282 2N6283 2N6284 2N6285 2N6286 2N6287	APLICAÇÃO - MEDIA POT. USO GERAL MEDIA POT. COMUTAÇÃO ALTA POT. DE AUDIO ALTA POTENCIA ALTA POTENCIA POTENCIA RE USO GERAL (UHF) ALTA POTENCIA ALTA POTENCIA ALTA POTENCIA ALTA POTENCIA ALTA POTENCIA AUDIO POTENCIA AUDIO ALTA POTENCIA AUDIO ALTA POTENCIA AUDIO POTENCIA USO GERAL CHAVEAMENTO ALTA POTENCIA	S P T0220 17,010 N T03 147,00 S N T03 105,00 S N T03 155,00 S N T03 130,00 S P T03 130,00 S P T03 133,00 S P T03 141,00	EM6129 EM6130 AMPLIF: USO GERAL EM6133 AMPLIF. USO GERAL EM6134 AMPLIF. SUO GERAL EM7055 MEDIA POTENCIA EM9161 AUDIO DRIVER EM6163 AUDIO DRIVER	S P T0220 18 S N T0220 18 S P T0220 18 S P T0220 18 S N T039 14 S N T0220 14 S N T0220 14	8,00 BC558 8,00 BD137 COMPL. 8,00 BD138 COMPL. 4,00 MJ1802 ALTA P 4,00 MJ2267 AMPLIF 4,00 MJ4502 ALTA P 4,00 ZA245 FET	DE BAIXA FREQ. OTÊNCIA . DE POTÊNCIA OTÊNCIA	S N T03 S P T03 S P T03 S N T092	6,00 6,00 17,00 17,00 127,00 58,00 68,00 20,00 21,00
EM48 EM50 EM359 EM401 EM403	POTENCIA ALTA TENSÃO MEDIA POTENCIA ALTA TENS DARLINGTON POTENCIA	S N T0220 17,00 XO S N T0220 17,00 S N T03 101,00 S N T03 55,00 52,00 40,00	EM9166 AUDIO DRIVER EM9300 DARLINGTON EM9301 USO GERAL ALTA VOLT. EM9302 USO GERAL ALTA VOLT. EM9303 DARLINGTON EM9304 DARLINGTON EM9305 DARLINGTON	S P T0220 14 S P T0220 14 S N T0220 2 S N T0220 2 S N T0220 2 S N T0220 3 S N T03 3 S N T03 3	7,00 2SC901 ALTA P 4,00 2SD200 ALTA P 3,00 2SD577 3,00 SE9300 DARLIN 5,00 SE9305 DARLIN 5,00 SE9400 DARLIN 5,00 TIP29A POTÊNC 8,00 TIP29B POTÊNC 2,00 TIP29B POTÊNC	OTENCIA OT. ALTA VOLT. GTON GTON GTON IA AUDIO IA AUDIO	S N T03 S N T03 S N T03 S N T0220 S N T03 S P T0220 S N T066 S N T066 S N T066	69,00 69,00 92,00 23,00 37,00 23,00 14,00 15,00
EM3108 EM3109 EM3110	POTENCIA SAIDA DE AUDIO (VMF) R.F. USO GERAL BAIXA POTENCIA FI DE AM/FM USO GERAL AUDIO SAIDA DE AUDIO AUDIO DRIVER LINE INDUSTR. HIGH VOLT	S N T039 14,0 S N T039 14,0	EM9401 DARLINGTON EM9402 DARLINGTON EM9403 DARLINGTON EM9404 DARLINGTON EM9405 DARLINGTON EM9405 DARLINGTON EM9405 POTENCIA EM9406 POTENCIA EM9406 POTENCIA EM9407 POTENCIA EM9407 POTENCIA	S P T0220 2 S P T0220 2 S P T03 3 S P T03 3 S P T03 3 S N T0220 1! S P T0220 1! S N T092 S N T092	4,00 TIP30 POTENC 5,00 TIP30A POTENC 5,00 TIP30B POTENC 7,00 TIP31 POTENC 7,00 TIP31A POTENC 5,00 TIP31B POTENC 5,00 TIP32A POTENC 7,00 TIP32A POTENC 7,00 TIP32A POTENC 7,00 TIP32B POTENC	GTON GTON GTON IA AUDIO IA I	S P T0220 S N T066 S P T066 S P T0220 S N T066 S N T066 S P T0220 S P T0220 S P T066	14,00 15,00 16,00 13,00 13,00 15,00 15,00 16,00
EM3440 EM3643 EM3715 EM3790 EM4030 EM4031 EM4032 EM4033	ALTA POTENCIA USO GERAL EM AUDIO SAIDA DE AUDIO DRIVER COMPLEMENTO DE EM3108	S N T05 15,0 S N T0105 14,0 28,0 S P T03 46,0 S P T039 15,0 P T039 15,0 P T039 15,0	FT401 ALTA POTENCIA FT410 ALTA POTENCIA FT413 ALTA POTENCIA FT431 ALTA POTENCIA FT601 FET FT2955 SAIDA DE AUDIO FT3055 SAIDA DE AUDIO BC109 BAIXA POTENCIA USO GERAL	S N T03 6 S N T03 55 S N T03 55 S N T03 66 S P T0220 18 S N T0220 18	5,00 TIP42A POTENO 8,00 TIP42B POTENO 8,00 TIP47 POTENO 2,00 TIP48	IA IA IA	S P T066 S P T066 S N T066	18,00 18,00 21,00 20,00 21,00 23,00 18,00 17,00
EM4034 EM4035 EM4235 EM4236	ALTA POTÊNCIA SAIDA DE AUDIO APLICAÇÃO CR\$		BC160 BC161 BAIXA POTENCIA USO GERAL BC167 BAIXA POTENCIA TIRÍSTOF	S P 1039 14 S P 1039 14 S N 1092	7,00 TIPSO POTENC 4,00 TIP32C POTENC 4,00 MPF102 FET	TIPO AF	PLICAÇÃO	24,00 18,00 17,00 41,00 CR\$
40662 40669 2N1602 2N3896 2N3897 2N3898 2N3899 2N4442 2N4443	SCR 200V X 3A 299 C SCR 100V X 35A 196 C SCR 200V X 35A 215 C SCR 400V X 35A 307 C SCR 200V X 8A 70 C	ON 2N5445 TRIAC 400V	40A 384,00 TIC106A SCR 100V X 40A 322,00 TIC106B SCR 200V X 4A 29,00 TIC106C SCR 400V X 4A 40,00 TIC106C SCR 50V X 0V 23,00 TIC116B SCR 200V X 10A 76,00 TIC116B SCR 400V X	(10A 84,00 TIC116 (14A 40,00 TIC116 (15A 22,00 TIC126 (15A 25,00 TIC126 (15A 25,00 TIC216 (15A 25,00 TIC216 (15A 25,00 TIC216 (15A 31,00 TIC216 (15A 31,00 TIC216 (15A 31,00 TIC216 (15A 31,00 TIC226 (15A 31,00 T	E SCR 500V X 8A M SCR 600V X 8A	CR\$ TIC236B TF 49,00 TIC236D TF 60,00 TIC253D TF 42,00 TIC253B TF 57,00 Q4010L4 TF 56,00 S40B 37,00 TIC 26B 43,00 SKT 12/04 36,00 SKT 12/06	RIAC 200V X 20A RIAC 400V X 20A RIAC 400V X 10A	106,00 120,00 45,00 50,00 31,00 294,00 359,00
TIPO 1N746 1N747 1N748 1N749 1N759 1N751 1N752 1N753	3,3V 4,00 1N753A 6,2V 3,6V 4,00 1N754 6,8V 3,9V 4,00 1N755 7,5V 4,3V 4,00 1N756 8,2V	mM CR\$ TIPO 400mW C V 5,00 N964 13V 4, V 6,00 N965 15V 4, V 4,00 N966 16V 4, V 4,00 N968 20V 4, V 4,00 N970B 24V 4, 4,00 N970B 24V 4, 4,00 N970B 24V 4, 4,00 N970B 33V 4, 4,00 BZX46C 3,9V 6,	00 BZX79C 19V 7,00 1N4728 3,3 0 BZX79C 13V 7,00 1N4728 3,3 0 BZX79C 13V 7,00 1N4728 3,6 0 BZX79C 15V 7,00 1N4729 3,6 0 BZX79C 2,4V 6,00 1N4731 4,3 0 1N5240 10V 4,00 1N4732 4,7	W 19,00 1N4733 5,11V 6,00 1N4735 6,21V 6,00 1N4735 6,21V 6,00 1N4736 6,81V 6,00 1N4737 7,51V 6,00 1N4738 8,21V 6,00 1N4739 9,11V 6,00 1N4739 1,01V 6,00 1N4739 1,01V	W CRS TIPO 1,0 W V 6,00 1N4740 10V V 6,00 1N4741 11V V 6,00 1N4742 12V V 6,00 1N4743 13V V 6,00 1N4745 16V V 6,00 1N4745 16V V 6,00 1N4746 18V V 6,00 1N4746 20V	6,00 1N4750 27V 6,00 1N4751 30V 6,00 1N4752 33V	6,00 BZX87 1,5 6,00 BZY95C 12\ 6,00 BZY95C 24\ 17,00 Z; 17,00 BZX70C 18\ 17,00 10 10 10	1 V 23,00 5 V 23,00 5 W 7 72,00 V 72,00 5 W V 32,00
1N60 1N775 1N825 1N914 1N4001 1N4002 1N4003 1N4004	APLICAÇÃO GERMÂNIO 50V X 40mA DIODO DE SINAL DIODO DE REFERÊNCIA COMUT.RÃP.75V X 400mA RETIFICADOR 50V X 1A RETIFICADOR 100V X 1A RETIFICADOR 200V X 1A RETIFICADOR 20V X 1A	217,00 FDH999 RETIF 1,50 FH1100 HOT'C 3,00 RETIF 3,00 RETIF 3,00 SM112 12000 3,50 SM 800\	RÅP. 55v X 200mA 1,50 1CADOR 30V X 200mA 1,50 SKNI ARRIER IV X 10mA 1,50 SKNI SKNI CADOR 10v X 20A 37,00 SKNI SKNI X 1A 3,50 SKNI X 1A 3,00 SKNI S	0 APLICAÇÃO RETIFICADO 6/02 200V X 5A 56/04 400V X 5A 5/12 1200V X 5A 5/16 1600V X 5A 5/16 1600V X 5A 12/02 200V X 12A 12/04 400V X 12A	58,00 63,00 69,00 81,00 92,00 81,00 89,00	RETIFICA SKE1/02 200V X SKE1/04 400V X SKE1/08 800V X SKE1/12 1200V X SKE1/16 1600V X SKE1/TV 500V X SKE4F1/01 RAP. 10	1A 1A 1A 1A 1A 1A	4,00 6,00 6,00 9,00 10,00 6,00
1N4006/ 1N4148 3052 6052 3054 BA216 BA218 BAX13	RETIFICADOR 600V X 1A '7 RETIFICADOR 800V X 1A 'COMUTAÇÃO RĂPIDA 75V RETIFICADOR 200V X 3A RETIFICADOR 200V X 6A RETIFICADOR 400V X 3A RET.USO GERAL 10V X 75mA RET.USO GERAL 50V X 75,A COMUT.ALTA VELOC.50V X 75 RET.USO GERAL 50V X 200	4,00 SKR12/02 4 4,00 SKR12/04 4 1,50 SKR12/08 8 17,50 SKR12/12 12 34,50 SKR12/16 16 18,50 SKR13/02 2 1,50 SKR13/12 12 1,50 SKR13/12 12 5mA 1,70 SKR20/02	00V X 12A 84,00 SKN 00V X 12A 102,00 SKN 00V X 12A 139,00 SKN 00V X 12A 140,00 SKN 00V X 13A 92,00 SKN 00V X 13A 168,00 SKN 00V X 13A 230,00 SKN 00V X 13A 212,00 SKN 00V X 13A 121,00 SKN	12/08 800V X 12A 12/12 1200V X 12A 12/16 1600V X 12A 20/02 200V X 20A 20/04 400V X 20A 20/12 1200V X 20A 20/12 1200V X 20A 20/16 1600V X 20A 21/02 200V X 21A 21/04 400V X 21A	107,00 147,00 201,00 121,00 127,00 137,00 226,00 277,00 138,00	SKE4F1/04 RAP. 46 SKE4F1/08 RAP. 86 SKN1M20/4 RAP. 86 TV18 ALTA TI PONTE RETIF BSKB250/220 2,5A BSKB500/445 2,5A BSKB500/445 4,0A	DOV X 1,4A DOV X 1,4A DOV X 1,4A DOV X 20A ENSÃO 18KV I CADORA MONOFÁSIO X 800V X 1200V X 1200V	13,00 20,00 29,00 255,00 64,00 CA 207,00 213,00 232,00
BAX17 BAX21 BX1619 BY126 BY127 BYX10 F1 FDB128	RET.USO GERAL 180V X 2000 RETIJESO GERAL 200V X 200 RETIFICADOR 50V X 115mA POT.BAIXA SINAL 10V X 10 RETIFICADOR 650V X 1A RET.USO GERAL 800V X 2A USO GERAL 20V X 50mA USO GERAL RET, 20V X 0,1 D RET.BAIXA FUGA 125V X 0 RETIFICADOR 75V X 200mA RETIFICADOR 75V X 200mA RETIFICADOR 75V X 200mA RETIFICADOR 75V X 200mA	mA 1,70 SKR20/08 1,70 SKR20/12 1,70 SKR20/12 1,70 SKR20/16 16 16 9,60 SKR21/02 8,00 SKR21/04 8,60 SKR21/08 1,30 SKR21/16 16 A 2,00 SKR26/10 1,50 SKR26/10 SK	00V X 20A 174,00 SKN 00V X 20A 282,00 SKN 00V X 20A 350,00 SKN 00V X 21A 120,00 SKN 00V X 21A 136,00 SKN 00V X 21A 189,00 SKN 00V X 21A 345,00 SKN 00V X 21A 345,00 SKN 00V X 45A 207,00 SKN 00V X 45A 231,00 SKN	21/08 800V X 21A 21/16 1600V X 21A 45/02 200V X 45A 45/04 400V X 45A 45/08 800V X 45A 45/12 1200V X 45A 100/02 200V X 100A 100/04 400V X 100A 100/08 800V X 170A	204,00 245,00 218,00 245,00 340,00 351,00 368,00 447,00 518,00	SKB1,2/04 1,2A SKBB500/C1000 1,2. MSKB500/445 1,5A SKB1,2/08 1,2A B40C 3200/2200SI SAB500/C600 0,6A SKB40/C1200 1,2A SKB40/C1400 1,7A	X 80V A X 500V X 1200V X 80V 2,2A X 40V 1,0A X 40V X 500V X 40V X 40V X 40V	24,00 44,00 127,00 48,00 37,00 35,00 62,00 29,00 33,00 32,00 44,00

OPTOS - LEDS - DISPLAYS DISPLAY NUMERICO 7 SEGMENTOS COM DIODOS EMISSORES DE LUZ DISPLAY NUMERICO DE FILAMENTO $I_{f(mA)}$ $\frac{V_{f}(V)}{V_{f}(V)}$ PREÇO DR2000 7 SEGMENTOS DR2010 7 SEG, C/ PTO. DEC. DR2020 C/ + e - 1 DR2030 C/ + e - 1, e PTO. (.) DR2100 7 SEGMENTOS DR2110 7 SEG. E PTO. DECIM. 69.00 TIPO **DESCRIÇÃO** INT. DE LUZ PREÇO 103,00 3 1/2 dig. 0.8" verm. 4 dig. 0.8" verm. 4 dig. 1/2" verm. 1 dig. 1/4" verm. 1 dig. 1/4" verm. equivalente ao 357 FCS8000 cat. com. 3500udc 311.00 cat. com. cat. com. cat. com. 3500udc 3500udc 2500udc 24 69 00 FCS8025 173 00 104,00 FNA5420 53.00 FND71 53,00 53,00 FND357 cat. com. 2500udc cat. com. 8000udc I_F(mA) $V_{F}(V)$ DIODO EMISSOR DE LUZ INT. LUZ PREÇO dig 1/2" verm. e - 1 51.00 FND500 cat. com. 3500udc + e - 1 dig 1/2" verm. + e - 1 600udc 46,00 FND501 cat. com. an. com. 3500udc 3500udc 51,00 + e - 1 + e - 1 dig. 1/2" verde. dig. 1/2" amar. dig. 1/2" verm. 40.00 **FND508** an. com. 3500udc 51.00 3000udc 14,00 cat. com. 2500udc 3500udc 55,00 138,00 FND358 FND530 72 00 FND550 cat. com. 3500udc 138.00 52,00 FND560 FND561 8000udc 8000udc 52,00 2000udc cat. com. 12,00 12,00 13,50 17,00 17,00 11,50 dig. 3/4" verm. dig. 0,56"verm. dig. 0,3" verde. dig. 0,3" amar. 1000udc 8000udc 500udc 500udc FND800 cat. com. 127,00 1000udc *MAN6740 *MAN54A cat. com. 1000udc cat, com. 138.00 3200udc *MAN84A 8000udc AS INTENSIDADES DE LUZ INDICADAS ACIMA SÃO PARA CONDIÇÕES DE TESTE COM CORRENTE DE 20mA, E TENSÃO DE 1,7V POR SEGMENTO. # GRANDE ÂNGULO DE VISÃO NOVO LED NSL5056 1,7V, 20mA, 1300udc, VERMELHO COM DIFUSOR GRANDE ÂNGULO DE VISÃO " Ic(mA) Vceo 40 250 2N5778 40.00 PREÇ0 COM LENTE REDONDA COM LENTE REDONDA COM LENTE REDONDA 25 25 15 23,00 FPT131 LDR VT-723E RESIST. CLARO: 360ohms, RESIST. ESCURO: MAIOR QUE: 20Mohms LDR VT 735E RESIST. CLARO: 150ohms, RESIST. ESCURO: MAIOR QUE: 5Mohms LDR VT 737E RESIST. CLARO: 165ohms, RESIST. ESCURO: MAIOR QUE: 20Mohms 95,00 58,00 FPT500 60 50 FPT560 48.00 COM LENTE CHATA 58,00 MDR150 20.00 TRANSDUTOR ULTRASONICO EQUIVALENTE à FPT500A MRD300 25 PARA ALARMES ULTRASONICOS 40 Kc REDONDO MOD-MK109 PREÇO CR\$ 230,00 $I_F(mA)$ Ic(mA) ACOPLADOR OPTICO Vf(V) Vceo(V) PREÇO DARLINGTON OUTPUT 1,5 1,2 1,3 46.00 JANSJAN DARLINGTON OUTPUT FCD810 equival. a FPLA810, 4N27 FCD820 equival. a FPLA820 FCD820B equival. a MCTZE, 4N25 TIL111 equival. a FCD820A TIL113 equival. a FCD850 4N33 80 30 100 40,00 NOVOS LED DA MONSANTO MV5174-B LARANJA MV5274-B VERDE MV5374-B AMARELO 30 25 60 40.00 30 44,00 10 60 PROTO BOARD - 1930,00 EMISSOR RECEPTOR INFRA-VERMELHO 2,0 1,5 1,25 **7** 55 TII 139 DARLINGTON OUTPUT C/ 9 ELEMENTOS C/12 ELEMENTOS 1,6 135,00 1725,00 1610,00 20 20 FPA100 1,25 FPA101 75 75 20 25 25 173,00 H13B2 10 100 (nA) 206,00

OSCILOSCÓPIOS DYNATECH

B5-20/C

NOVO OSCILOSCOPIO DINATECH

CANAL VERTICAL (EIXO Y)

*IMPEDĀNCIA DE ENTRADA:
1 M , 3 PF.
ATENUADOR CALIBRADO:
9 POS. DE 20 MV ATĒ 10
V/ CM COM AJUSTE CONTINUO ENTRE POSIÇÕES.
SENSIRII IJADĀF.

*SENSIBILIDADE: 250 MV / CM. *RESPOSTA DE FREQUÊNCIA: *CC Å 7MHZ + 3DB.

CANAL HORIZONTAL (EIXO X)

IMPEDÂNCIA DE ENTRADA:

100 K.

TUU K.
SENSIBILIDADE.
*250 MV / CM
*RESPOSTA DE FREQUÊNCIA:
CC Å 100 KHZ.
*ENTRADA EXTERNA C/ATENUADOR X1 E X10

VARREDURA

*FAIXAS: *DE200 MS À 2US E AJUSTE VARIAVEL.

* SINCRONISMO

AUTOMÁTICO C/ AJUSTE DE NIVEL E GATILHO: 3 ENTRADAS : INT. EXT. E REDE. 7 SISTEMAS : CC, CA, TV,+, -,AUT.E NORM.

FONTE DE REFERÊNCIA

* SAIDA: * 1 KHZ, ONDA QUADRADA 1VPP CALIBRADA EM TENSÃO E FREQUÊNCIA.

* RETICULA: * GRAVADA 6 x 10CMS.

* GRAVADA 6 x 10CMS.

**TUBD:

**TUBD:

**NONACELERADO, FACE PLANA, PERSISTENCIA MEDIA.
CONEXOES:

**AMPLIFICADOR VERTICA! CONECTOR BNC, AMPLIFICADOR HORIZONTAL - CONECTOR
TIPO BANANA. TERRA- CONECTOR TIPO BANANA.

**SAIDA DE REFERÈNCIA:
CONECTOR TIPO BANANA.

**ALIMENTAÇÃO:
110 a 120 v e 220 a 240 v COMUTAÇÃO POR CHAVE.

**DIMENSÕES:
**425 x 270 x 170 m/m.

425 x 270 x 170 m/m.

CR\$ 14.355,00

RELES TIPO ZA; ZK; ZE; ZL; ZU

ZU100006 ZU201725 284,00 ZK040006 136,00 155,00 155,00 129,00 ZU202725 ZU300006 ZU301006 Zu101006 ZU102006 ZK040012 ZK040024 136,00 284.00 161,00 711100012 187.00 ZK040048 148.00 ZU101012 ZU102012 ZU302006 ZU302006 187,00 187,00 ZK040060 ZK040110 155.00 711300012 711100024 129.00 161.00 7K060006 175.00 155,00 155,00 ZU301012 ZU302012 187,00 187,00 ZK060012 ZK060024 ZU101024 ZU102024 175.00 181,00 711100110 181.00 711300024 161.00 7K060048 ZU101110 ZU102110 200,00 ZU301024 ZU302048 187,00 187,00 ZK060060 ZK060110 213.00 ZU300110 ZU301110 711100220 187.00 207.00 ZE020006 207,00 ZU302110 232.00 ZU102220 7F020024 129,00 ZU100512 ZU101512 ZU300125 ZU300220 213,00 ZE020048 ZE020060 185 00 210.00 7U301220 7F020110 207,00 70102512 252.00 ZU302220 ZU300524 ZU301524 711100524 185,00 252,00 220,00 ZE040006 ZE040012 155.00 7F040024 711102524 210.00 245,00 155 00 ZU100510 ZU101610 193,00 ZU302524 ZU300610 245,00 225,00 ZE040048 ZE040060 175,00 207,00 711102510 220,00 711301610 252,00 7F040110 252,00 271,00 ZE801006 ZE801012 258.00 ZU101220 ZU300725 123,00 ZU102220 ZU200006 258.00 711301725 297,00 297,00 7F801024 ZU201006 168.00 ZA020006 116.00 ZE801060 143.00 ZU202006 ZU200012 ZA020012 ZA020024 116,00 ZE801110 ZL020006 187,00 123,00 168.00 ZA020048 70201012 168.00 129.00 ZL020012 123.00 ZA0200110 ZA040006 ZA040012 ZU202012 ZU200024 168,00 143,00 181,00 143,00 ZL020024 ZL020048 136.00 711201024 168,00 168,00 143,00 ZL020006 168.00 ZU202024 ZU200110 ZA040024 ZA040048 ZL020110 ZL040006 193,00 155.00 153.00 220,00 220,00 207,00 155,00 193,00 181,00 711201110 7A040060 71 040012 ZA040110 ZA060006 ZL040024 ZL040048 ZU200220 170.00 232,00 ZA060012 ZA060024 181,00 181,00 ZU201220 71 040060 170,00 200,00 187,00 187,00 220,00 110,00 84,00 84,00 84,00 ZU200524 200,00 ZA060048 ZL880006 200,00 225,00 213,00 240,00 240,00 258,00 ZL880012 ZL880024 ZL880048 ZU202524 ZU200610 ZA060060 ZA060110 ZK020006 ZU201610 103.00 ZK020040 ZK020110 ZL880060 ZL880110 175.00

DATA BOOKS TEXAS

ì	POWER CR\$	299,00
	TTLCR\$	342,00
	TRANSISTOR AND DIODECR\$	446,00
	LINEAR AND INTERFACECR\$	257,00
	LINEAR CONTROL	191,00
	MEMORYCR\$	191,00
	OPTOELECTRONICSCR\$	191,00
	SEMICONDUTORES DE SILÍCIOCR\$	75,00

SEM CHAVE SIMPLES - CR\$ 18 50 COM CHAVE SIMPLES - CR\$ 21,00 SEM CHAVE DUPLO - CR\$ 26,00 DESI TZANTE - CR\$ 26,50

POTENCIÔMETRO MULTIVOLTAS

47Kohms 10Kohms PREÇOCR\$ 23,00

PO	TEN	CIÓ	MET	RO DESLIZANTE
500 1K 2K 5K 10K 20K	ohms	50K	ohms	
1K	ohms	100K	ohms	
2K	ohms	250K	ohms	Comment Top Comment
5K	ohms	500K	ohms	
10K	ohms	1M	ohms	
20K	ohms	PREÇO		CR\$ 21,00

POTENCIÔMETRO DE PRECISÃO E DIAL 2626 ESPECIFICAÇÕES.

	7286	ESTECTI TOTIQUEST	
	FAIXA DE RESISTE	NCIA	100 ā 100Kohms.
ı			
ı	POTÊNCIA		Z.OW a 709C
	MAXIMA TENSÃO DE	ENTRADA	1000V DC
l	RESISTENCIADE IS	SOLAÇÃO	1M ohm
١	NO DE VOLTAS		10
ı	PESO		22gr.
ı	DIÂMETRO		22,225mm.
l	TERMINAIS SOLDAY	VEIS.	
ı	PRECO		339,00
ı	0616		
	2616		

2616
DIAL MINIATURA, NUMERAIS BEM CONTRASTADOS, PERMITEM UMA LEITURA FĀCIL, A SOLUÇÃO P/ APLICAÇÕES
ONDE O ESPAÇO E LIMITADO. AJUSTES DE 1 à 15 GIROS
MECANISMO DE TRAVA P/ PREVENIR MUDANÇAS ACIDENTAIS
DEVIDO À CHOQUES OU VIBRAÇÕES. DIÂMETRO: 22,225mm PREÇO......CR\$ 670,00

ZOSCO
PERMITE FÁCIL LEITURA. COMPATIBILIDADE COM POTEN-CIÓMETRO MULTIVOLTAS PEQUENOS. C/ DISPOSITIVO DE TRAVA.LEITURA PRECISA DE 1/100 DE UM GIRO COM IN-TERPOLAÇÃO PRATICA PARA 1/1200 DE UM GIRO. DIÂMETRO: 25,4mm PESO: 10gr.

TOURS DE DECOIO TO

PREÇO......CR\$ 477,00

TRIMPOT 15 VOLTAS	S DE PRECISAO
10 ohms 10K ohms 100ohms 20K ohms 500ohms 30K ohms 1K Ohms 50K ohms 2K ohms 500Kohms 5K ohms 500Kohms 1M ohms PREÇOCR\$ 60,00	500ohms

TRIMPOT **MINIATURA**

TRIMPOT CONSTANTA

	,,,,		
1	100Ω	2K2Ω	47K -Ω
	220Ω	3K3Ω	100ΚΩ
	330Ω	4K7Ω	150ΚΩ
	470Ω	10ΚΩ	220ΚΩ
PREÇO	1Κ Ω	15ΚΩ	330ΚΩ
CR\$ 5,50	1K5Ω	22KΩ	470ΚΩ
0.1.4			1Μ Ω

RESISTÊNCIA 1% IMPORTADA METAL FÎLM CURVAS DE DESVIO MIL 20 0 25 Ω 50 Ω 100Ω AK O 5K Ω 7K Ω 200Ω 10ΚΩ 250Ω 500Ω 700Ω 12KΩ 15K Ω 20K Ω 25K Ω 1K20 50K Ω 100KΩ 200KΩ 500KΩ 1 K5Ω 1K8Ω 2K Ω 500KΩ 2K2Ω 1M Ω

PREÇO:....CR\$ 6,00
TODOS OS VALORES ACIMA SÃO DE 1/4W - CŪDIGO RN-600
TIPO MILITAR - COEFICIENTE DE TEMPERATURA: +50PPM,
TOLERÂNCIA PADRÃO:.1,.25,.5,1.
VALOR: 2M ohm - 1/2W - PREÇO.....CR\$ 10,50

%

4,99Ω 6,98Ω 5,11Ω 7,15Ω 5,23Ω 7,32Ω	10 Ω 20 Ω	3,01KΩ	RESISTÊNCIA 19 METAL FILM
5,36Ω 7,50Ω 5,49Ω 7,68Ω 5,62Ω 7,87Ω	49,9 Ω		NACIONAL
5,76Ω 8,06Ω 5,90Ω 8,25Ω 6,04Ω 8,45Ω	249 Ω	10K Ω 12,1KΩ 15K Ω	TODOS OS VALORES SÃO DE 1/4W.
6,19Ω 8,66Ω 6,34Ω 8,87Ω	715 Ω 1K Ω	20K Ω 24,9KΩ	COEFICIENTE DE
6,49n 9,09n 6,65n 9,31n 6.81n 9.53n	1,5K Ω		TEMPERATURA: + 50PPM. PREÇOCR\$ 3,50
	2K Ω	499Κ Ω	1 NE 90 CR3 3,50

RESISTÊNCIAS 5% CONSTANTA

ILLOIDIL	HOING O' GOIL	SIMIN
VALORES COME	RCIAIS:	
1 Ω	10 Ω120Ω1Κ2Ω15Κ Ω180ΚΩ	1M2Ω
1,2Ω	12 Ω150Ω1Κ5Ω18Κ Ω220ΚΩ	1M5Ω
1,5Ω	15 Ω180Ω1K8Ω22K Ω270KΩ	1M8Ω
1,8Ω	18 Ω220Ω2Κ2Ω27Κ Ω330ΚΩ	2M2Ω
2,20	22 Ω270Ω2Κ7Ω33Κ Ω390ΚΩ	2M7 ^Ω
2,7Ω	27 Ω330Ω3Κ3Ω39Κ Ω470ΚΩ	3M3Ω
3,2Ω	33 Ω390Ω3Κ9Ω47Κ Ω560ΚΩ	3M9Ω
3,3Ω	39 Ω470Ω4Κ7Ω56Κ Ω680ΚΩ	4M7 Ω
3,9Ω	47 Ω560Ω5Κ6Ω68Κ Ω820ΚΩ	5M6Ω
4,7Ω	56 Ω580Ω6K8Ω82K Ω1M Ω	6M8Ω
5,6Ω	68 Ω680Ω8Κ2Ω100ΚΩ	8M2Ω
6,80	82 Ω820Ω10KΩ120KΩ	10ΜΩ
8,2Ω	100Ω1Κ Ω12ΚΩ150ΚΩ	1 1
1/8W(0,33W)	1/8W (0,33W*)	
CR\$ 107,00	CR\$ 46,00	
1/4W(0,5W)*	1/4W (0,5W)*	1/4W(0,33W*)
CR\$ 108,00	CR\$ 47,00	CR\$ 37,00
1/2W(0,67W*)	1/2W (0,67W)	1/2W(0,67W*)
CR\$ 114,00	CR\$ 49,50	CR\$ 38,00
1W (1,15W)*	1W (1,15W)*	1W (1,15W)*
CR\$ 190,00	CR\$ 80,50	CR\$ 63,50
* POTENCIA RE		
PREÇOS POR CE	NTOVENDA SÕMENTE ACIMA	DE 100 PEÇAS

CAPACITORES DE TÂNTALO

0	~	~	J 1 1 1	J 1 L	. •			••	IIALU	
47 uF	X	3 1	V CF	R\$ 12.	601	1,5	uF	X	25V CR\$	8,8
100 uF	X	3	VCI	R\$18.	90	2.2	uF	X	25VCR\$	8,8
47 uF	X	6	V CI	R\$ 20 .:	20	4.7	uF	X	25VCR\$	12,6
4.7uF	X	6,3	VCI	R\$ 8.	80	10	uF	X	25VCR\$	17,7
	X	6,3	VCI	R\$10.					25VCR\$	
22 uF	X	6,3	VCI	R\$12.		47			25VCR\$	
47 uF	X	6,3	VC	R\$18.					35VCR\$	
100 uF	X	10	VCI	R\$37.	90	0.1	uF	X	35VCR\$	8,8
4,7uF			V CI						35VCR\$	
100 uF			V CI						35VCR\$	
6,8uF			V CI						35VCR\$	
22 uF			VC						35VCR\$	
2,2uF			VC						35VCR\$	
4,7uF			V C						35VCR\$	
10 uF			VC			22	uF	X	35VCR\$	25,8
22 uF			V C			47	uF	X	35VCR\$	82,2
15 uF			VC						50VCR\$	
4,7uF			VC			1.0	uF	X	50V€R\$	13,8
47 uF			VC						50VCR\$	
100 uF			VC						50VCR\$	
1,0uF			VC			47			50VCR\$	
,,,,,,				٠,		18	1			

56 pf 3300pf 68 pf 4700pf 75 pf 5600pf 82 pf 5,6pf 150 pf 8,2pf 1000pf 10 pf 1500pf 12 pf	22 pF 3,3pF 27 pF 3,9pF 30 pF 4,7pF 33 pF 5,0pF 39 pF 6,8pF 1,0pF 7,0pF 1,2pF 7,5pF	DE DISCO 10K pF. 16VCR\$ 1,20 22K pF. 16VCR\$ 2,00 10K pF. 16VCR\$ 2,00 10K pF. 32VCR\$ 1,20 22K pF. 32VCR\$ 1,20 47K pF. 32VCR\$ 2,00
1500pF 12 pF 1800pF 15 pF 2200pF 18 pF	1,5pF	
	AÇÃO 500V. VE	NDA SOMENTE ACIMA DE 10 EÇAS

CONDE	NSADO	DR 440	A Ó	LEO «C	A»
3 uF 4 uF 5 uF 6 uF		CR\$	76,00 81,00	CR\$100,00 CR\$121,00	A
10uFCR\$104,00 20uF		CR\$2	76.00		

DISSIPADORES CODIGO TAMANHO ALETA ALT. CAPSULA PREÇOCR\$ BR870 5 X 1.3cm | 8 0.5cm 1-T092 12,2X 8,0cm 12,2X 4,0cm BR120AA 3,2cm 3,2cm **BR130A** 20 1-T03 12,2X 8,0cm 12,2X 8,0cm 12,2X 4,0cm BR214AA BR214K 16 16 16 6,5cm 6,5cm 2-T03 113.00 S/FURO 1-T03 1-T03 2-T03 107,00 6,5cm 3,0cm 3,0cm BR220A 12,2X 4,0cm 10,5X 4,0cm 10,5X 8,0cm 10,5X 4,0cm 12,2X 4,0cm 12,2X 4,0cm 12,2X 4,0cm 12,2X 4,0cm 2,5 X 2,5cm BR1234A BR1224AA 43 00 67,00 45,00 3,0cm 1,3cm 1,3cm 1,3cm BR123459 1-T066 10 10 10 2-T03 1-T03 2-T066 46,00 30,00 33,00 BR1132AA BR1146A BR114655 20 3,0cm 2-T066 1-T039 35,00 BR150SS BR333 679.00 BR605K DISSIPADOR P/ DIODOS DISSIPADOR P/ DIODOS S/FURO BR607K S/FURO 380,00 S/FURO S/FURO 2-T03 S/FURO 2-T03 S/FURO 3,0 X 2,7cm | 4 | 1,6cm 2,7 X 1,5cm | 4 | 1,6cm 8,5 X 7,5cm | 8 | 2,0cm 8,5 X 3,7cm | 8 | 2,0cm 8,5 X 3,7cm | 8 | 2,0cm 8,5 X 3,7cm | 8 | 2,0cm 12 X 8,0cm | 12 | 4,5cm BR812 BR822 BR1440AA BR1440D 3 50 39,00 BR1454A 29 00 BR2211K S/FURO BR1234 BR812/822 BR 870 1111

SENSOR DE PROXIMIDADE

SENSOR PARA SER LIGADO DIRETAMENTE À RÊDE CON TENSÕES DE 40 À 250V; E CORRENTES DE ATÉ 150MA. CONTATO NORMALMENTE ABERTO PARA SER ACOPLADO EM SERIE COM O CIRCUITO DE COMANDO.
DISTÂNCIA SENSIBILIDADE FRONTAL ATÉ 12 mm.

DIMENSÕES: DIÂMETRO - 25,4mm COMPRIMENTO - 90,02 mm MOD-08 220 M....PREÇO CR\$ 943,00

TENSÃO DE ALIMENTAÇÃO: 4,5 à 27 Vcc CORRENTE DE ALIMENTAÇÃO: 1mA CARGA NA SAÍDA: 50mA SENSIBILIDADE FRONTAL: até6,0mm CANCHA NA SALDA: SOMA
SENSIBILIDADE FRONTAL: até6,0mm
TEMPERATURA AMBIENTE: MAXIMO 709C.
TERMINAIS: VERWELHO - ALIMENTAÇÃO POSITIVA
PRETO - ALIMENTAÇÃO NEGATIVA
BRANCO - SAÍDA NORMALMENTE ABERTA

DIMENSÕES: DIÂMETRO - 16.2mm COMPRIMENTO - 70mm DISTÂNCIA FURAÇÃO DA MONTAGEM : 25,4mm CABO: 1,5mm MOD-FC 06 027....PREÇO CR\$ 787,00

12 220 P FUNCIONA COM TENSÕES DE 220Vca. DISTÂNCIA DE COMUTACÃO: até 12mm. MOD-12 220 P....PREÇO CR\$ 943,00

SR-12027
FUNCIONA COM TENSÕES DE 4,5 a 27Vcc.
DISTÂNCIA DE COMUTAÇÃO: até 12mm.
MOD-SR 12027.....PREÇO CR\$ 934,00

PREÇO CR\$ 704,00

PREÇO CR\$ 504,00

PS 2470 TUBULAR E PLASTICO

ATUA POR APROXIMAÇÃO FRONTAL DE METAIS MAGNÉTICOS COMO O FERRO, SEM CONTATO FÍSICO E COM DISTÂNCIAS DE COMUTA ÇÃO DE ATÉ 5mm, NÃO POSSUE PEÇAS MECÂNICAS MOVEIS, SEÑ EM ESTADO SOLIDO COM SATDA DO TIPO COLETOR ABERTO, TOR NANDO O DISPOSITIVO COMPATÍVEL COM TODAS LÖGICAS DIGITATAS, É ENCAPSULADO EM RESINA EPOXI, PODENDO TRABALHAR EM REGIOS ÚMIDAS OU COM POETRA.

DADOS TÉCNICOS: TENSÃO DE ALIMENTAÇÃO: -24V ± 20% CONSUMO: 20mA
CORRENTE DE SATDA: 250mA mãx.
SENSIBILIDADE P/ FERRO: 5mm
PESO: 1000rs.

PESO: 100grs.

ZU

RELES SCHRACK DO BRASIL

EQUIPAMENTOS ELÉTRICOS S. A.

CHAVE D	O CODIGO		2.0
MODELO	NO DE CONTATOS	MAT. DE CONT. E TIPOS DE TERM	.TENSÃO NOM.
ZA	04 02-2 reversores 04-4 reversores 06-6 reversores	O- Ag FK dourado 1- Ag FK dourado duplo 2- Ag Pd 70/30	O12 002-110 p/CC 512-610 p/CA 202-310 p/CC
ZK	04	0	012
	02-2 reversores 04-4 reversores	0- Ag FK dourado p/soquete 1- Ag FK dour: (duplo)p/soq	.c/prisioneiro

06-6 reversores 2- Ag Pd 70/30 048 02 **7F** 0- Ag FK dourado 002-110 p/CC 512-725 p/CA 02-2 reversores 1- Ag Cd 0 04-4 reversores

0 02 ZL O- Ag FK dourado 1- Ag Cd O 02-2 reversores 04-4 reversores NO DE CONTATOS Cd 0 AL APRESENTAÇÃO MATERIAL 2

3 0- Ag Cd0 0-base quadrada 1 - Ireversor AgPd 1-base redonda AgNi p/CC 8 ou 11 pinos 2 - 2reversores

2-base redonda 3 - 3reversores

RELE ABERTO

CR\$

138.00

138.00

143,00 143,00

134.00

134,00

263.00

165,00

154.00

164.00

164,00 154,00

154.00

TIPO

RI 320012

RL320024 RL320110

RI 320220

RL325110 RL325220

RI 105006

RL105012

RL105024

RI 105048

RL105220

RL100006 RL100012

RL100024

RL100048 RL100110

RI 100220

RL205006 RL205012

-TIPO RL

179,00

228,00

193,00

165.00

165.00

173,00

179,00 186,00

159.00

159,00

168,00 186,00 208,00

181,00

181.00

024

002-115 p/CC

TENSÃO NOM.

048

000-220 p/CC

512-725 p/CA

TIP0 CR\$ RL205048 181,00

RL205110 193,00 RL205220 200,00

RL200006 146.00

RI 305006 208,00

RL305012 208,00 RL305024 208,00

RL305048 219,00

RL305220 229,00

RL300006 208,00 RL300012 208,00

RL300024 208.00

RL300048 219,00 RL300110 236,00

RI 300220 256,00

220

TENSÃO NOMINAL

TENSÃ0

FM VOLT

146,00

153.00 RL200110 189,00 RL200220 229,00

RL200012 RL200024

RL 200048

RL305110

c/prisioneiro

PRATEX

PARA PRATEAR CIRCUITOS IM-PRESSOS DANDO UM ACABAMENTE PERFEITO EVI-TANDO A OXIDA ÇÃO, E FACILT TANDO NA SOL-DAGEM. CR\$ 40,00

INTERRUPTOR DE PROXIMIDADE DE ATUAÇÃO MAGNETÍCA

CONSTITUIDO POR UM INTERRUPTOR DE LAMINAS MOLDADO EM MATERIAL ISOLANTE TERMOFIXO, C/ TERMINAIS P/ LIGAÇÃO SOLIDA,GARANTINDO ROBUSTEZ MECÂNICA COM PROTEÇÃO EM AMPOLA DE VIDRO. CONTATOS: 1NA DE RO,200VCC;0,5A;10W INTENSIDD CAMPO MAG.:800-1000GAUSS TERMINAIS DE LIG.:TIPOS FASTON 2,8mm FIXAÇÃO: POR ILHOS DE 1,6mm,ou

ou parafuso ZX200125....

RELE DE CIRCUITO **IMPRESSO** Tipo RU 110

Tipo	Corrente nominal da bobina mA	Preço Cr\$
RU 110 006	135	94,50
RU 110 012	64	-94,50
RU 110 024	33,5	144,00
RU 110 048	17,4	113,00
RU 110 060	13,3	118,00
RU 110 110	7,1	157,00

RUI			1 0	006
TIPO N	QV	DE	CONTATOS	TENSÃO NOM.
				DA BOBINA
	1	CO	ntato	6Vcc
		re	versor	12Vcc
				24Vcc
				48Vcc
				60Vcc
				110Vcc

Encapsulado em rèsina sintética	Encapsula bobina do	do com relé ZA
Pino de solda. Trama modular de circuito impresso 2,5 mm.	Diretame circuito i	
13 Contatos NA ou de reversão	1 NA	1 Rev.
máx. 300 V c.a.	200 V c.c.	28 V c.c.
máx. 3 A	0,5 A	0,25 A
máx. 100 VA, 100 W	10 W	3 W
Rodio, Tungstenio	Rodio	
348 V c.c.	348 V c.c.	
2512000 Ω	7220000 Ω	
0,801,25xU _N		
0,120,40W	-	
60°C	60	*C
60°C	60	rC
1,5.10 ⁴ por hora	1,5.104	por hora
12 conforme o tipo	11	ms
0,4 ms	0.4	ms
1500/2000 V ef	1500	Vef
≥ 100.106 operações	≥ 100.106 c	perações

o de Conexão mero, classe Ancia nominal de ligação aterial de contato standard sistência da bobina nite de operação em 25°C tência nominal m 30% da corr. nominal mero máximo de op mpo de resposta aprox mpo de sprendimento aprox este de isolação ida mecânica útil

RU510024 RI 125006 CR\$ 52,00 RL125012 RU610103-RL125024 CR\$ 68,00 RL125110 RU610106-CR\$ 69,00 RU610112-CR\$ 69,00 RI 120006 RL120012 RL120024 RU610124-CR\$ 52,00 RU620103-RI 120110 RL120220 RL225006 CR\$103,00 RU620106-RI 225012 RL225024 CR\$110,00 RU620112-CR\$117,50 RL225110 RI 225220 RU620124 CR\$113,00 RU627106-RL220012 RL220024 RL220110 CR\$359,00 RU627112-RL220220 CR\$359 OC

Fate 1

CR\$372,00 RU630103-CR\$154,00 RU630106-CR\$154,00 RU630112-CR\$157 00 RU630124-CR\$157,00 CR\$159,00

CHAVE DO CÓDIGO 5

_			_				
R	ELE	MINIA	TI	JRA -	TIPO	RA	9
	TIPO	CR\$		TIPO	CR\$		
RA	400006	175,00			184,00	9	T T T
RA	400012			310012	184,00		1 1 1
RA	400024	175,00	RA	310024	184,00	14.2.1	
RA	400048			310048	207,00		
RA	400060			310060	207,00	00	10 11
RA	400090			310090	235,00	w m 85 55	
RA	400110			310110	235,00		
RA	410506			310506	194,00	医检验	1 2 3 4
RA	401512	187,00	RA	310512	194,00	5000	2000
RA	410524	187,00	RA	310524	194,00		5 6 7 8
RA	410548	187,00			194,00	第1年度 原	9 10 11 12
RA	410560			310560	194,00		
RA	410615	207,00	RA	310615	214,00	office on the	13 440 14

RA 410720 239,00 RA 310720 248,00 RA 210720 239,00 524 TENSÃO RA APRESENTAÇÃO MAT.CONTATO CONTATO ..110 P/CC O-STANDARD O-PRATA DOUR. 1-PRATA-OXIDO 2-2 rev. 1-P/ CIRC IMPRESSO DE CADMIO

3 0 CONTATOS **APRESENTAÇÃO** 1-1 REVERSOR 3-3 REVERSOR

O-RELE P/SOQUETE C/CAPA RESISTENTE AO CALOR 1-RELE COM CAPA DE POLIESTIRENO

Esquema des Ligeções (visto pelo lado da bobina)

TIPLE

ALIMENTAÇÃO

5- C.A. 50.

0- C.C.

CODIGO PREÇOCR\$ KIT'S SIRENE. 3001 58,00 BARGRAPF 3002 92,00 SUSTAINER 3003 92,00 WILLTANTED 20040 138,00 MULTIMETRO.....3004A.....138,00 3010B. 35,00 ALARME. 3011 230,00 PHASER. 3014A. 35,00 3014B..... 69,00 RELOGIO DIGITAL.. RELOGIO DIGITAL....3019......115,00 FONTE DE ALIMENTAÇÃO3020.....92,00 FREQUENCIMETRO....3021A....288,00 3021B........173,00 DISTORCEDOR. 3023. 92,00 BRIDGE. 3024 115,00 GERADOR DE FUNÇÕES. 3025A. 230,00 3025B...... 58,00 3025C..... 58,003027.......173.00 THEREMIN. 3028 92,00 FONTE PX 3031 230,00 TACOMETRO NOVO 3032A 115,00 3032B.....230,00 FONTE REGULADA 0-15.3022.....230,00 COMPRESSOR.. COMPRESSOR. 3034. 138,00 PASSARO ELETRÔNICO. 3036. 58,00 CONTROLE DE VELOCIDADE3037. 68,00 CARREGADOR DE BATERIA. 3038. 230,00 LUZES SEQUENCIAIS. 3043. 230,00 NOVO INTERCOMUNICAD.3044A. 115,00 3044B..... 58,00 LOTECA......3046......69,00 TRANSMISSOR DE FM...3048......58,00 PRESCALER......3049B......173,00 CONTADORES......3050......80

CHAPAS DE CIRCUITO IMPRESSO VIRGENS

	FEN	OLITE	TUICI	DE TIDITO
	ESP: 1,6	mm	1,6mm e	0,8mm
TAMANHO	1 FACE	2 FACES	1 FACE	2 FACES
5 X 10 10 X 10 10 X 20 10 X 30 20 X 20 20 X 30 20 X 40 30 X 30 30 X 40	35,00 52,00 69,00 81,00	17,50 29,00 46,00 58,00 81,00 115,00 127,00 207,00	11,50 22,00 46,00 75,00 110,00 171,00 244,00 291,00 434,00	11,50 25,00 54,00 86,00 122,00 206,00 289,00 342,00 478,00

SUPORTE PARA PLACA

DE CIRCUITO IMPRESSO

CIRCUITO IMPRESSO P/ KITS PLACAS DE CIRCUITO IMPRESSO PADRÃO CONECTOR PRECOCRS CODIGO NO TAMANHO MATERIAL TIPO CTC009 12,3X7,5cm 4CI.DIL, 15 pinos 143,00 12,3X7,5cm 17,5X12 cm FIBRA 6CI.DIL, 15 pinos 9CI.DIL. 12CI.DIL 15 pinos .15 pinos CICOIC 17.5X12 cm CIC012 FIBRA X5,5 cm X12 cm 0501 1012 FFNOI DISCRETOS 50,00 DISCRETOS XX 40,00 80,00 DISCRETOS XX 12CI.DIL.22 pinos DISCRETOS18 pinos DISCRETOS18 pinos 20CI DIL.22 pinos DISCRETOS XX 1222 /A 11 X11 cm FENOL. X9 cm X9 cm X12 cm FENOL 100,00 110,00 120,00 1302 2022 F1001 F1002 FENOL. 21 X5 11 X5 DISCRETOS XX DISCRETOS XX 20.00 15,00 11111111 Spinier Spinie 9696 96 96 46 46 46 F CIC 009 CIC 012 1012 F1002

HS10 - CR\$186,00

REGULAVEL

2022

1301 |||||||||||||||

.....

VII VARIOS MODELOS

1302

ALICATE-PINÇA

HW15 - CR\$318,00

AJUDA NA SOLDAGEM DE COMPONENTES DELICADOS.EVITA QUE O CALOR SE PROPAGUE PELOS SEUS LIDES E DANIFIQUE O COMPO NENTE POR SUPERAQUECIMENTO, PODE SER UTILIZADO COMO UMA TERCEIRA MÃO, FACILITANDO O TRABALHO. É APRESENTADO EM DOIS MODELOS: RETO E CURVO.

SUPORTE P/ FERRO DE SOLDAR

ALEM DE FACILITAR A
AFERIÇÃO E CALIBRAÇÃO. NOS CONSERTOS:
MEDIÇÕES, DISSOLDAGENS E SUBSTITUIÇÕES
DE COMPONENTES SE
TIORNAM MAIS RAPIDAS E SEGURAS. TREMENDAMENTE REGULAVEI
AJUSTÂVEL P/ CADA CASO, RECEBA PLACAS DE ATE 220mm DE
COMPRIMENTO. LARGURA LIVRE.

COS 184 00

UTILIZAÇÃO DO SUPORTE NAS MONTAGENS: PERMITE

MAIOR RAPIDEZ E PER-FEIÇÃO. EVITA ERROS, ALEM DE FACILITAR A

SUPORTE PARA FERRO DE SOLDAR COM ESPONJA LIMPADORA DE BICO. PREÇO.....CR\$57,00

LIMPADOR DE SOLDA MANUAL À VÁCUO

P/ REMOÇÃO E SUBSTITUIÇÃO DE COMPONENTES ELETRÔNICOS, INCLUSIVE INTEGRADOS. LEVE, DE SIMPLES MANUSEIO EVITA A DESCOLAGEM DO IMPRESSO. BICO COM PONTA DE TEFLON. TODAS AS PEÇAS SÃO CAMBIÁVEIS E PODERÃO SER ADQUIRIDAS MAS CASA DO PAMA. DAS NAS CASAS DO RAMO.

	STANDARD TIPO LSM-4 (BICO GROSSO)	190,00
	STANDARD TIPO SBF-6 (BICO FINO)CR\$	215,00
I	MODELO MINICR\$	170,00
١	BICOS PARA O LSM-4CR\$	50,00
	BICOS PARA O SBF-6CR\$	50,00

PERFURADOR DE PLACA **DE CIRCUITO IMPRESSO**

PREÇ0 PP1 CR\$ 486,00 PP2 CR\$ 243,00

FURA COM PERFEIÇÃO RAPIDEZ E SIMPLICIDADE SEJA FE-NOLITE OU EPOXI. NÃO TRINCA A PLACA. IDEAL PARA O ESTUDANTE, LABORATORIO, HOBISTA E TAMBÉM PARA PE-QUENAS LINHAS DE PRODUÇÃO.

DE SOLDAR FERROS

Nº 00 - 120/24W - CR\$ 46,00 Nº 0 - 120/28W - CR\$ 61,00 Nº 8 - 120/35W - CR\$ 69,00 8 - 120/35W - CR\$ 69,00 9 - 120/26W - CR\$ 70,00 PRODUTOS AEROFIL - acabaram-se os problemas devido à mau contato, sujeira, ferrugem ou corrosão.

1 SPRAYON

REMOVE INSTANTÂNEAMENTE SUJEIRA E OXIDOS QUE SE ACU-MULAM NAS CABECAS MAGNÉTICAS DE GRAVADORES, COMPUTADO RES E CONTATOS ELETRICOS E ELETRÔNICOS, RESTAURANDO A CONTINUIDADE ELETRICA E MECÂNICA.CR\$ 66,00

2 CONTACMATIC

3 PENETROL

OLEO PENETRANTE, DESENGRIPA RĂPIDAMENTE PORCAS, PARA-FUSOS E MECANISMOS EMPERRADOS, AO MESMO TEMPO EM QUE LUBRIFICA E PROTEGE CONTRA FERRUGEM E CORROSÃO.CR\$ 50,00

4 SILIMATIC

4 SILIVIA IO

UTIL NA LOCALIZAÇÃO DE FALHAS INTERMITENTES EM COMPONENTES TERMICAMENTE SENSÍVEIS, TAIS COMO CAPACITORES,
SEMI-CONDUTORES, RESISTORES OU RUPTURA DE CIRCUITO
IMPRESSO, CONEXOSE DEFEITUOSAS, SOLDAS OU CONTATOS
MAL SOLDADOS.

202 302 202

.....CR\$ 103,00

5 COOLERMATIC LUBRIFICA È PROTEGE EQUIPAMENTO ELETRÔNICO E DE PRECI SÃO À SECO. PREÇO...........CR\$ 129,00

PARA SER DISSOLVIDO NA PROPORÇÃO DE DUAS PARTES DE ÁGUA POR UMA DE PER-CLORETO. UTILIZADO NA FABRICAÇÃO DE CIRCUITOS IMPRESSO. -CR\$ 46.00 PREÇO POR QUILO...

DESSOLDADOR AUTOMÁTICO SIMPLIFICA TERMENDA/E A OPERAÇÃO DE REMOÇÃO DE COMPONENTES, SEM DANIFICAR POR SUPERAQUECIMENTO.

COMPONENTES, SEM DANTITICAR POR SUPERAQUECIMENT EVITA, NA DESSOLDAGEM, O ESCORRIMENTO DA SOLDA DEIXA SEMPRE UMA DAS MÃOS LIVRES. PERMITE GRANDE ECONOMÍA DE TEMPO. IDEAL PARA LABORATORIOS, LINHAS DE MONTAGEM TODAS AS PEÇAS SÃO RECAMBIAVEIS. PREÇ0......CR\$ 2329,00

TERMINAIS

TERMINAIS FABRICADOS EM COBRE DE ALTA CONDUTIVIDADE E ESTANHAÇÃO ELETROLÍTICA RESISTENTE À CORROSÃO. LUVA ISOLÁNTE DE PVC.

RAPIDEZ, SEGURANÇA, ECONOMIA DE APLICAÇÃO.

INCRIVELMENTE EFICIENTE NA RREMOÇÃO DE INTEGRADOS DERRETE E SUCCIONA TODO EXCESSO DE SOLDA. RESIS -TENCIA DE 50W. PESO: 300gar. TODAS AS PEÇAS SÃO RECAMBIAVEIS. ASSISTÊNCIA TÉCNICA PERMÁNENTE....CRS 633,00

05

42 7 03

CONECTORES

15,00 17,50

EM BARRAS

CONECTORES MULTIPOLARES

	ES'	101	QUE	PINOS	PREÇ0
	42	S	01	04	22,50
	42	S	03	09	38,00
	42	S	05	15	60,00
l					

(CONECT	ORES	
CONTATOS	PROCEDENCIA	PRECUCR\$	22 PINOS
06 - SIMPLES	NACONAL	30,00	DUPLO
10 - SIMPLÉS	NACIONAL	41,00	DOLLO
10 - DUPLO	IMPORTADO	175,00	
10 - SIMPLES	IMPORTADO	56,00	(i) (ii)
15 - SIMPLES	NACIONAL	56,00	700
15 - SIMPLES	IMPORTADO	156,00	
15 - DUPLO	IMPORTADO	222,00	
18 - SIMPLES	NACIONAL	64,50	
18 - SIMPLES	IMPORTADO	84,00	9 5 f
18 - DUPLO	IMPORTADO	74,00	15 PINOS
18 - DUPLO	IMPORTADO	252,00	SIMPLES
22 - SIMPLES	NACIONAL	76,00	SIMPLES
22 - SIMPLES	IMPORTADO	170,00	300
22 - DUPLO	IMPORTADO	219,00	
36 - SIMPLES	NACIONAL	125,50	C (8)

SOQUETE P/ CIRCUITOS

8 PINOS - NACIONAL CR\$ 9,50 8 PINOS - IMPORTADOCR\$12,00 NACIONAL CR\$12,00 IMPORTADOCR\$17,50 14 PINOS -14 PINOS - IMPORTADOCR\$17,50
14 PINOS - WIRE WRAPCR\$40,50

14 PINOS - MACIONAL CR812,00 16 PINOS - NACIONAL CR812,00 16 PINOS - IMPORTADOCR817,50 16 PINOS - MITE WRAPCR841,50 24 PINOS - NACIONAL CR829,00 40 PINOS - IMPORTADOCR846,00

PLUG 4 PINOS

PREÇO FEMEACR\$ 95,00 PREÇO MACHOCR\$133,00

JACK — FÊMEA (mono e estéreo)

JACK PARA USO GERAL EM TELEFONES AMPLIFICADORES, GUITARRAS,.... EM DOIS TIPOS MONO E ESTEREO

PREÇO ...MONO......CR\$ 16,50 PREÇO ...ESTEREO.....CR\$ 21,00

MANIPULADOR ELETRÔNICO INCTEST PONTOS E TRAÇOS QUE SE COMPLETAM AUTOMATICA -

MENTE, POSSUE MONITOR PROPRIO O QUAL TORNA O ME-1 APROPRIADO PARA O APRENDIZADO DO CÓDIGO

ALIMENTAÇÃO PROPRIA COM 4 PILHAS PEQUENAS. PODE SER UTILISADO COM QUALQUER TRANSCEPTOR. PODE SER USADO PROFISSIONALMENTE.

CONSUMO NORMAL DE 20mA.

POSSUE INTERRUPTOR PARÀ SINTONIA DO TRANSMISSOR. PREÇO: CR\$ 1553,00

CR\$ 96,00

CR\$35,00 CARACTERISTICAS:

CARACTERISTICAS:
MATERIAL FOTOSENSTYEL Cds.
ESPECTRO DE RESPOSTA: 5500A
MAXIMA VOLTAGEM: 300V.
VT-732 E: Rclaro- 3600;Rescuro->20M0
VT-735 E: Rclaro- 1650 Rescuro- 5M0
VT-737 E: Rclaro- 1650 (850-870)Re-20M

			- ivi	_ 0
TIPO	DIÂMETRO	C/C	S/C	PREC
PC28,2	22mm		X	46.5
PC63,3	22mm	X		46,5
PC79,2	22mm	X		46.5
PC100	22mm	X		46.5
PC28,2	30mm		X	52.0
PC63,3	30mm		X	52.0
PC79,2	30mm		X	52,0
PC100	30mm		X	52,0

RM - 6 DIMENSÕES- 17,9x8,2x12,5mm PREÇO - CR\$25,50

TRANSFORMADORES

CODIGO	PRIMARIO	SECUNDARIO	CORRENTE	PREÇOCR\$	
27F05	1100	9/100	600mA	62,00	
27F07	1100	9/10V	1 A	69,00	
27F09	1100	6/7 V	600mA	46,00	
27F11	1100	6/7 V	1 A	69,00	
27F15	1107	16+16V	600mA	98,00	
27F17	1100	16+16V	1 A	110,00	
27F19	1100	25+25V	1 A	155,00	
27F21	1107	25+25V	3 A	430,00	
27F23	1107	91	3 A	110,00	
27F25	1100	12+12V	200mA	40,00	
27F27	1107	12+12V	300mA	46,00	
27F29	1100	12+12V	600mA	69,00	
27F31	1100	12+12V	1 A	110,00	
27F33	1107	12+12V	2 A	155,00	
27F35	1100	9 +9 V	200mA	46,00	
27F37	1100	9 +9 V	300mA	40,00	
27F39	1101	9 +9 V	600mA	69,00	
27F41	1100	9 +9 V	1 A	98,00	
27F43	1100	9 +9 V	2 A	155,00	
27F45	1100	6 +6 V	200mA	35,00	
27F47	1100	6 +6 V	300mA	40,00	
27F49	1100	6 +6 V	600mA	69,00	
27F51	1101	6 +6 V	1 A	81,00	
27F53	1107	6 +6 V	2 A	110,00	
27F55	1100	16+16V	200mA	46,00	
27F57	110Ý	16+16V	300mA	60,00	
27F59	1107	16+16V	2 A	179,00	
27F61	1100	16+16V	3 A	339,00	
TRANSFOR	RMADORES D	DE IGNIÇÃO		149,00	

TRANSFORMADORES DE PULSO

COM 4 FIUS CR\$ 31,00 COM 6 FIOS CR\$ 36,00

NÚCLEOS DE FERRITE EM «E» COM CARRETEL

- 10			_			
T	IP0	SECÇ	40	CENTRAL	PRE	0
E	20	0,20	cm	SIMPLES	CR\$	23,00
E	30	0,5	cm	SIMPLES	CR\$	23,00
E	30	,1	cm	DUPLO	CR\$	34,50
E	42	1,8	cm	SIMPLES	CR\$	52,00

E 65S/C 2,5 cm SIMPLES CR\$115,00 CRISTAL PARA OSCILADOR

IPO		CAPSULA	CR\$ PREÇO	
00 1 ,44 2 ,93216 5	KHZ MHZ MHZ MHZ MHZ* MHZ MHZ	H 13 U HC 6 U HC 6 U HC 6 U HC 6 U HC 6 U	347,00 268,00 268,00 231,00 268,00 268,00 268,00	

OSCILADOR MOS

SATDA 60HZ COMPATIVEL COM TECNOLOGIA MOS. BATKO CONSUMO DIMENSÕES DA PLACA: 53 X 39 mm

PREÇ0.....CR\$ 437,00

OSCILADOR PADRÃO 60 Hz à CRISTAL

SAIDAS DE : 1440KHz, 120KHz, 60 Hz, 10 Hz PREÇO....CR\$380,00

C/ DIVISÃO TTL-1MHz, 100KHz, 10 KHz, 1KHz, 100Hz, 10 Hz, 1Hz. PREÇO.....CR\$ 437,00

CABO DE FORCA FIO SHIELD

COMPRIMENTO 2 METROS FIO Nº22AWG CR\$ 17.50

PARA MICROFONE - BITOLA 22 PREÇO - CR\$ 5,00 (metro)

CABO PARALELO

18 VEIAS ... CR\$ 34,50 3 VEIAS ... CR\$ 6,00 2 VEIAS ... CR\$ 3.50

CLIP E BATERIA

CLIP......CR\$ 6,00 BATERIA.....CR\$ 30,00

KNOBS

K17....CR\$10,00 K22....CR\$11,30 Knob NO 4 3151 BAIXO 3151 K22....CR\$12,50 CR\$ 4,50 CR\$ 4,50 CR\$ 4 CR\$ 4,50

PORTA-FUSÍVEL

1 C/CAPA PROTETORA....CR\$14,00 2 C/CAPA PROTETORA....CR\$25,50

MOLEX

EM TIRAS DE 50 E 100 PINOS; P/ SER SOLDADO DIRETA/E NA PLACA DE CIRCUITO IMPRESSO, COM A VANTAGEM DE PODER RE TIRAR O INTEGRADO SEM DANIFICA-LO. FACILITA NA MANUTEN ÇÃO DAS PLACAS DO CIRCUITO IMPRESSO E NA TROCA DO MES-

MU. PREÇO......50 TIRAS CR\$ 29,00 100 TIRAS CR\$ 57,50

CONECTOR COAXIAL UHF

PI 259 - MACHO CR\$ 64,50

FACA SUAS MONTAGENS SEM SOLDA USANDO PAÇA SUAS MONTAGENS SEM SOLDA USANDO AS FERRAMENTAS DA WIRE WRAP, OS FIOS SÃO ENROLADOS DIRETAMENTE NO TERMI – NAL DOS SOQUETES, PROPORCIONANDO AS-SIM GRANDE RAPIDEZ NA MONTAGEM, E O-TIMO COMTATO SEM NESCESSIDADE DE SOL DAS DEFINITIVAS, PODENDO SER FACIL — MENTE RETIRADO USANDO-SE A PRÓPRIA

FIO DESCASCADO

INSERIR O FIO

INSERIR NO TERMINAL

PISTOLA ELETRICA

PLACA DE CIRCUITO IMPRESSO

EM FIBRA DE VIDRO OU FENOLITE, COM LIGAÇÃO PARA CONECTOR DU-PLO DE 22 PINOS, COM ESPAÇAMENTO STANDARD. PODE RECEBER CIRCUITOS INTEGRADOS E COMPONENTES DISCRETOS, QUE PODEM SER SOLDADOS NA PLACA DIRETAMENTE OU UTILIZANDO SOQUETES OU WIRE WRAP. DISPOSIÇÃO DOS FILETES: DOIS SISTEMAS INDEPENDENTES PARA PO-

DISPOSIÇÃO DOS FILEIES: DUIS SISTEMAS INDEPENDENTES PARA PO-SITIVO E TERRA DE CADA LADO DA PLACA, DO LADO DO COMPONENTE 14 FILETES INDEPENDENTES AO LONGO DA PLACA PARA MAIOR FLEXIBILIDADE DE SEU USO. ESTES FILETES PER-MITEM ACESSO DOS CONTATOS DAS MARGENS PARA COMPONENTES DISTAN-TES, E PODEM SER "CORTADOS" SE NECESSÁRIO PARA APLICAÇÕES DI-

MODELO H-PCB-1 (FIBRA DE VIDRO - 10X10cm)...CR\$ 188,00
MODELO H-PCB-1 (FENOLITE - 10X10cm)....CR\$ 114,00

WIRE WRAP

FERRAMENTA PARA INSERÇÃO DE INTEGRADOS. CR\$ 587,00 ROLO DE FIO AWG-30 (0.25mm), COM 15,24m. CR\$ 265,00 FERRAMENTA ENROLADORA DE FIO P/ CONEXÃO ENTRE TERMINAIS, MÂNUAL. CR\$ 397,00 FERRAMENTA ENROLADORA DE FIO P/ CONEXÃO ENTRE TERMINAIS, DE ACIONAMENTO ELETRICO COM MOTOR, ACIONADO POR BATERIA (SEM BATERIA). CR\$4082,00 PONTA ENROLADORA DE FIO P/ FERRAMENTA ELETRICA. CR\$ 210,00 CONJUNTO DE MONTAGEM DE CABO E TERMINAIS DIP (14 pinos). CR\$ 682,00 CONJUNTO DE MONTAGEM DE CABO E TERMINAIS DIP (16 pinos). CR\$ 755,00CR\$ 755,00

JOTO

TOMADAS BIPOLARES C/ BASE DE FENOLITE

PINOS REF.:96/8...CR\$38,00 PINOS REF.:96/6...CR\$28,00 4 PINOS REF.:96/4...CR\$20,00 2 PINOS REF.:96/2...CR\$ 9,50 1 PINO REF.:96/1...CR\$ 6,00

PASSA-FIO

CONEXÃO FEITA 5

PRECO - CR\$ 1,50

GARRAS JACARÉ

ISOL. PRETO OU VERMELHO REF-66 REF-266 REF-766 CR\$8,50 CR\$6,00 CR\$5,50 CR\$8,50

CR\$4.50

CONECTORES DE BAQUELITE

REF-202CH CAP 1000V 10A CR\$ 196,00

ACCACALANT TARRESTANT REF-T-110 REGUA PARA CAIXA TELEFONICA REF-120/3 CAP 500V TOA REF-200/2 CAP 500V TOA CR\$ 17,50 CR\$ 79,00 CR\$ 173,00

CR\$8,00

REF761 REF.:161 REF.:661 S/ ISOLADOR CR\$8.00

PLUGS E TOMADAS BIPOLARES

REF- 280 REF- 180 C/ CABO PARA MICROFONE C/ CABO PARA MICROFONE CINZA SIMPLES MARFIM PARALELO CR\$ 78,00 CR\$ 37,00

REF-90 REF-80 CR\$ 11,50 CR\$ 11,50

18,50

RFF-2261

CR\$16,00 CR\$18,50 CR\$17,50 CR\$6,00 CR\$25,50 CR\$3,50 CR\$4,50 PONTAS DE PROVA

REF-1261 REF-1561 REF261 REF-3261 REF1161 REF.:61

REF.:620-CR\$38,00 REF.:630-CR\$55,00 REF.:640-CR\$76,00

5X20mm REF-650 1/4"X1.1/4" 1/4"X1.1/4" CR\$24,00 CR\$6,00 5X20mm

REF-550 CR\$7,00

REF-250 CR\$24.00 REF-350 CR\$24,00 REF-750T C/PROTECÃO CR\$7,00

REF-1750T C/PROTEÇÃO CR\$7,00

BORNES DE PRESSÃO

2 PINOS REF.: 75/2... CR\$15.00 4 PINOS REF.:75/4...CR\$29,00 8 PINOS REF.:75/8...CR\$56,50

KNOBS

REF-153 CR\$10,50 REF-156 CR\$22,00 REF-154 CR\$11,50 REF-157 REF-55 CR\$15,00 REF-155 CR\$15,00 CR\$13,00 REF-54 CR\$11,50 REF-156 CR\$22,00

PINÇAS PARA TESTE

AVIII SA

PORTA-FUSÍVEL

REF-350 REF-850 CR\$24,00 CIRC.IMPR. 1/4"X1.1/4" CR\$14,00

CORPO: GLASS KID ALAVANCA: NYLON BOTÃO: POLISTIRENO CONTATOS:

CONJUNTO (2pēças) REF-165 ASTE FLEXIVEL REF-65 ASTE RIGIDA CR\$ 115,00 CR\$ 184,00

BORNES **METALICOS DE PRESSÃO**

REF.: 71 REF.: 170 RFF.: 70 CR\$11,50 C/ISOLADOR CR\$14,00 CR\$12,50

REF.:171 REF.:1170 REF.:1171 CR\$23,00 CR\$15,00 CR\$16,00

TERMINAIS REF- 67

TOMADA DIN

REDUTORES **COM ESCALA**

INTERRUPTORES DE PRESSÃO

LATÃO C/ BANHO DE OURO

11200-CR\$71,50 10100-CR\$17,50 NORM. ABERTU, 10100 11100-CR\$63,50

MICROCHAVES INVERSORAS

ı	COR		MA DE	PULUS		PU	DE A	LAVANCA	•
	1- PRET. 2 e 3-V		1-UNI HA 2-BIP	POLAR OLAR	1-	MET	AL M	EQ.	
ı	TIPO DE	CONT	ATO	n			AL G	LAST.	
	1-BANHO 2-BANHO 3-PRATA	DE O		100/200-200					
I				86	1100	_	CR\$	39,00	
ı	1200	- CR	\$ 44,00	1	2100	-	CR\$		
ı	2200	CR	\$ 59,00	Carlos	3100	-	CR\$		
l	3200	- CR	\$115,00	1103 2103 3103	1101	-	CR\$		
ı	1201	- CR	\$ 45,00		2101	-	CR\$		
١	2201	- CR	\$ 61,00	and the same	3101	-	CR\$		
١	3201		\$117,00		3131	-	CR\$		
۱	1202	- CR	\$ 47,00	87	1102	-	CR\$		
١			\$ 64,50	1102 2102 3102	2102	-	CR\$		
I	3203		\$121,00		3102	-	CR\$		
۱	1-00		\$ 39,00	- 100	1103	-	CR\$	37,00	
۱			\$ 57,50	and the	1131	-			
ı	3203	- CF	\$107.00		2103	-	CR\$	48,50	

CAIXAS PLASTICAS PLAST-O-BOX

CAIXAS PLÁSTICAS SUPER-RESISTENTES, FEITAS DE POLIESTIRENOALTO IMPACTO, PAINEL EM CHAPA DE ALU-MINIO DE Imm DE ESPESSURA, ACABAMENTO FÔSCO, É APRESENTADA EM DOIS TAMANHOS:

APRESENTADA EM DOIS TAMANHOS: CPO1 - 116 X 78 X 50 mm CPO2 - 142 X 90 X 55 mm PREÇOS : CPO1 - CR\$ 74,00 CPO2 - CR\$ 80,00 * E APRESENTADA EM DUAS CORES:

PRETO E VERMELHO.

BASTIDORES PARA CIRCUITO IMPRESSO

CAPACIDADE PARA 25 CARTOES DE 160 X 1.15 mm CAPACIDADE PARA 25 CARTOES DE 160 X 115 mm
DISTÂNCIA ENTRE CARTÕES - 17mm
GUIAS DE ALUMÍNIO
MATERIAL - ALUMÍNIO ANODIZADO (NORMAS MILITARES)
COMPRIMENTO - 475 mm
ALTURA - 132 mm 2 mm

NUMERO DE ESTOQUE - "R-1" PREÇO......CR\$ 3.264,00

CAPACIDADE PARA 25 CARTUES DE 11 X 110mm DISTÂNCIA ENTRE CARTUES - 15mm GUIAS DE PLÁSTICO
MATERIAL - ALUMÍNIO ANODIZADO
COMPRIMENTO - 450mm ALTURA - 137mm NUMERO DE ESTOQUE - "R-2"

.......... CR\$ 1.898,00

CAPACIDADE PARA 25 CARTOES DE 246 X 110 mm DISTÂNCIA ENTRE CARTOES - 15mm GUIAS DE PLÁSTICO MATERIAL ALUMINIO ANODIZADO COMPRIMENTO - 450mm

ALTURA - 272mm

NUMERO DE ESTOQUE - "R-3" CR\$ 2.597.00 PRECO....

CAPACIDADE PARA : 6 CARTŪES DE 246 X 110mm 36 CARTŪES DE 111 X 110mm DISTÂNCIA ENTRE OS CARTŪES - 15mm GUIAS DE PLĀSTICO MATERIAL - ALUMINIO ANODIZADO COMPRIMENTO - 450mm AI TURA -372mm

NUMERO DE ESTOQUE - "R-4" PREÇO CR\$ 3.599,00

CAIXA PARA LUZ SEQUENCIAL

CAIXAS MODULARES

NOVABOX E A GARANTIA DA MELHOR VALORIZAÇÃO E ACABAMENTO DOS SEUS EQUIPAMENTOS. NOVA-PERFIL PARA CANTO : REF. C-1000

PREÇO POR METRO - CR\$145,00

NOVA-PERFIL PARA EXTENSÃO : REF. E-1000

PRECO POR METRO - CR\$ 145 00

ı		WEÃO I	N PIL I NO	- CK	\$ 145,00
	REF.	A(mm)	B(mm)	C (mm) PREÇOCR\$
	170	50	50	25	37,00
	171	50	50	50	48,00
	172	100	50	50	82,00
	173	100	100	50	95,00
	174	100	100	100	152,00
	175	100	150	50	121,00
	176	50	50	100	61,00
	177	50	50	150	110,00
	178	50	50	200	124,00
	180	50	100	100	104,00
	181	50	100	150	147,00
	182	50	100	200	189,00
	183	100	100	150	199,00
	184	100	100	200	252,00
	185	100	150	100	162,00
	186	100	150	150	223,00
	187	100	150	200	365,00
	188	100	200	100	270,00
	189	100	200	150	354,00
	190	100	200	200	290,00
	191	50	150	100	134,00
			OS SÃO		COR NATURAL DO
	ALUMI		RA AS C		PRETO E DOURADO
	HA 20	% DE AC	RESCIMO		6

_			
	CODIGO	TAMANHO	PREÇOCR\$
	1.184.436.2	1806 X 565 X 470	14, 157,00
	1.184,420.2	1096 X 565 X 470	14.157,00 12.176,00
	1.185.420.2	7096 X 565 X 470	
	1.185.436.2	1806 X 565 X 470	

CHASSIS FECHADO COM VENTILAÇÃO

TAMANHO CODIGO PREÇOCR\$ 132,5 X 443 X 353 1.311,00 177 X 443 X 353 1.413,00 132,5 X 443 X 453 1.436,00 177 X 443 X 453 1.551,00 .095.383.2 095 384 2 1.095.484.2 177

GAVETAS COM ALÇAS E LATERAIS

PREÇOCR\$ PLUG-IN CODIGO 2.031.003.6 standard 2.031.003.6 simples 130,5 X 483 X 253 - FECHAD 130,5 X 483 X 253 1.273,00 - ABERTA - FECHADA

130,5 X 34,3 X 245,5 516,00 130,5 X 68,6 X 245,5 575,00 130,5 X 103,1% 245,5 629,00 130,5 X 206,2X 245,5 776,00 2.020 013 8 2.020.033.8

GAVETAS

CODIGO PREÇOCR\$ 1.093.283.8 + 1.096.003.8 986,00 1.095.283.8 + 1.096.003.8 1.342,00

1.096.000.7 - CANTONEIRA DE FIXAÇÃO DE MOLDURA CR\$ 24,00

MHHHH PRECOCR\$ 40.00

CODIGO CODIGO
5.032.005.0-GUIAS PLĀSTICAS
5.041.045.7-PORCAS DESLIZANTES M4
CLIPS PLĀSTICOS 5.041.093.7-PARAFUSOS M4X6

PARAFUSOS M5 - GALVANIZADO

ARMÁRIOS PARA CHASSIS

CAIXAS PADRONI-

- ZADAS

MODULOS

SEM PORTA FRONTAL- COM PORTA TRASEIRA SEM PORTA FRONTAL- COM PORTA TRASEIRA COM PORTA DE ACRÍLICO - COM PORTA TRASEIRA COM PORTA DE ACRÍLICO - COM PORTA TRASEIRA

1.097.084.2 219,4X 333 X353 1.286,00

(OM VENTILAÇÃO	(a)		SEM VENTILAÇÃO	
CODIGO	TAMANHO	PRECOCR\$	CODIGO	TAMANHO	PREÇOCR\$
1.097.100.2	41,6 X 111 X 153	666,00	1.097.000.2	41,6 X 111 X153	631,00
1.097.101.2	86,1 X 111 X 153	708.00	1.097.001.2	86,1 X 111 X153	673,00
1.097.102.2	130,5X 111 X 153	750,00	1.097,002.2	130,5X 111 X153	715,00
1.097.103.2	175 X 111 X 153	791,00	1.097.003.2	175,0X 111 X153	756,00
1.097.104.2	219,4X 111 X 153	831,00	1.097.004.2	219,4X 111 X153	797,00
1.097.110.2	130,5X 111 X 253	844,00	1.097.010.2	130,5X 111 X253	794,00
1.097.111.2	175 X 111 X 253	716,00	1.097.011.2	175,0X 111 X253	841,00
1.097.122.2	219,4X 111 X 253	937,00	1.097.012.2	219,4X 111 X253	889,00
1.097.132.2	41,6 X 222 X 153	722,00	1.097.032.2	41,6 X 222 X153	689,00
1.097.133.2	86,1 X 222 X 153	779,00	1.097.033.2	86,1 X 222 X153	749,00
1.097.134.2	130,5X 222 X 153	841,00	1.097.034.2	130,5X 222 X153	806,00
1.097.135.2	175 X 222 X 153	900,00	1.097.035.2	175,0X 222 X153	867,00
1.097.136.2	219,4X 222 X 153	957,00	1.097.036.2	219,4X 222 X153	922,00
1.097.142.2	130,5X 222 X 253	658,00	1.097.040.2	41,6 X 222 X253	775,00
1.097.143.2	175 X 222 X 253	1.012,00	1.097.022.2	130,5X 222 X253	899,00
1.097.144.2	219,4X 222 X 253	1.076,00	1.097.043.2	175 X 222 X253	961,00
1.097.150.2	130,5X 222 X 353	1.051,00	1.097.044.2	219,4X 222 X253	1.029,00
1.097.151.2	175 X 222 X353	1.021,00	1.097.050.2	130,5X 222 X353	988,00
1.097.152.2	219,4X 222 X353	1.194,00	1.097.051.2	175 X 222 X353	1.061,00
1.097.165.2	86,1 X 333 X153	856,00	1.097.052.2	219,4X 222 X353	1.133,00
1.097.173.2	86,1 X 333 X253	971,00	1.097.065.2	86,1 X 333 X153	821,00
1.097.174.2	130,5X 333 X253	1.051,00	1.097.073.2	86,1 X 333 X253	1.252,00
1.097.175.2	175 X 333 X253	1.134,00	1.097.074.2	130,5X 333 X253	1.005,00
1.097.176.2	219,4X 333 X253	1.217,00	1.097.075.2	175 X 333 X253	1.086,00
1.097.182.2	130,5X 333 X253	1.168,00	1.097.076.2	219,4X 333 X253	1.167,00
1.097.183.2	175 X 333 X353	1.259,00	1.097.082.2	130,5X 333 X353	1.107,00
1.097.194.2	219,4X 333 X353	1.433,00	1.097.083.2	175 X 333 X353	1.194,00

CONJUNTO PARA MONTAGEM DE CIRCUITOS DIVERSOS

CONJUNTO PARA DIVERSOS FINS, COMPOSTO DE:

CAPA DE POLIESTIRENO - RN 16022CR\$46,00 BASE 11 PINOS - RN 74104CR\$40,00

SOQUETE FEMEA 11 POLOS COM TERMINAIS PARA SOLDAR OU TAMBÉM PODE SER UTILIZADO COM CONEXOES SEM SOLDA. .CR\$40,00 OBS: PODE SER USADO COM CIRCUITO INTEGRADO.

CAIXA P/ KITS IBRAPE

ACOMPANHA A CAIXA: 14 PARAFUSOS 2X6mm (COM AS PORCAS) 2 PARAFUSOS 2X38mm(COM AS PORCAS) 2 PARAFUSOS 2X15mm(COM AS PORCAS)

PLUGS DIN PORTA-FUSÍVEL

4 CONECTORES P/ ALTO-FALANTE: 2 VERMELHOS, 2 PRETOS. 2 CONECTORES FEMEA DE 4 LUGS-RCA TOMADA DE FORCA

6 KNOBS TRANSFORMADOR DE FORÇA. PREÇO....M320 - CR\$ 879,00 M350 - CR\$ 924,00

SIMPSON

WATTÍMETRO DE RF

FREQU.: 1,8 ā 54Mhz IMP.: 50 ohms. PRECISÃO: 5% em 27Mhz, 10% em 54Mhz. 5 FAIXAS. POT.: 1000mW. DIM.: 13,6 X 20,3 X 11,4c

10% em 54Mhz. 5 FAIXAS. POT.: 1000mM. DIM.: 13,6 X 20,3 X 11,4cm. PREÇO:CR\$ 7.970,00

KIT P/ LIMPESA DE DISCOS CR\$ 190,00 KIT P/ LIMPESA DE GRAVADORES K - 7 CR\$ 178,00

MALISOM

MALIPOWER

FONTE DE ALIMENTAÇÃO P/ FURADEIRA MALLI -DRIL MTO10 110 V OU 220V, 50 / 60Hz. PREÇO CR\$ 224,00

MALIDRIL E MALIPOWER NUM SÕ ESTOJO. CR\$ 559,00

FREQUENCIMETRO DIGITAL MULTÍMETRO DIGITAL

l seg. RESOL.: 0,1Khz ou 1Hz: ALIM.: 120 VAC, 50 ā 400Hz. DIM.: 5,0 X 14,2 X 11,6cm.

MODELO

461 CR\$ 11.613,00

TENSÃO DC: 200mV 3 1000V / 1Mohms.
SOBRE CARGA: 1100V DC.
TENSÃO AC: 200mV 3 600V AC / 10Mohms.
SOBRE CARGA: 650 V AC rms.
SENS.: 100 uV NA ESCALA DE 200mV.
TEMPO DE RESP.: 0,5 seg.
RESIST.: 2000ohms a 20 Mohms.
CORRENTE: 200uA a 2A. AC e DC.

PREÇO: CR\$ 11.903,00

FREQU. : 10Hz a 60Mhz. TEMPO RESP. : 10 mseg

OSCILADOR E DETETOR LÓGICO C/ MEMÓRIA PREÇO CR\$ 420,00

MALIKIT

CONTEM:
CORTADOR, CANETA (MALIGRAF),
PRATEX P/ PRATEAR O CIRCUITO ,
BANHEIRA (EMBALAGEM), FURA DEIRA (MALIDRIL), PLACA DE
FRONLITE 10 X 15cm, ÄCIDO PARA
CORROER O COBRE, CLEANER, RE GUA E INSTRUÇÕES DE USO.

MKII - S/FURADEIRA CR\$ 299,00 MKIII - C/FURADEIRA CR\$ 449,00

MALIBOARD

CHAPA PADRÃO DE CIRCUITO IMPRES-SO QUE QCEITA TODO TIPO DE COMPO NENTE PREÇO:

MALIGRAF

CANETA PARA
CONFECÇÃO DE
CIRCUITOS
IMPRESSOS
RESISTENTE A
ACIDOS
PREÇO:
CR\$ 83.00

KIT BELL VOX

KIT COMPLETO C/ CAIXA CHASSI P/ MONTAGEM DO AMPLIFICADOR DE 20W (10 + 10W) HI-FI. PREÇO DO KIT : CR\$ 1.014,00

KIT MONIC 10 MONO

DADOS TECNICOS

DADUS TECNTLOUS
POT: 10W IHF C/ 0,15% TDH.
RESP. FREQU.: 50 à 20.000Hz.
IMP.ENTR.: 470 ohms.
FAT. AMORT.: 45.
TENS. ENTR.: 300mW.
ALIM: 110 / 220V CA.
PREÇO KIT COMPLETO: CR\$ 771,00
PREÇO KIT JĀ MONT.: CR\$1081,00

MALIDRIL MINIFURADEIRA 12V

PARA FURAR PLACAS DE CIRCUITO IMPRESSO 12V PREÇO CR\$ 354,00 BROCA AVULSA CR\$ 28,00

3 FONE DE OUVIDO MONOFÓNICO COM MICROFONE"AFM-MC"

5BOBINA CAPTADORA "BC" TIPO MAGNETICO; RESISTENCIA 1Kohms + 10% IMPEDANCIA - 3K ohms + 10% a 1000Hz. SENSIBILIDADE - -70dB (0dB = 1V) PREÇO......CR\$ 80,00

SELENIUM — TWEETERS

E'S PECIFICA ÇOES

REPRODUÇÃO-"TS-10"-SKAZ a 22KHz
"TS-108"-3KHZ a 19KHZ
CROSSOVER RECOMENDADO- 3500HZ
CARGA MĀX.APLICĀVEL-"TS-10"-30NATTS
DISPERSÃO SONORA- 909 VERTICAL
1809 HORIZONTAL
CAMPO MAG.- "TS-10" 35.000 GAUSS
"TS-108"18.000 GAUSS
"TS-108"18.000 GAUSS
"TS-108"18.000 MW
DIMENSÕES- "TS-10" -10" 35000 MW
DIMENSÕES- "TS-10" -10" 3600 MW
DIMENSÕES- "TS-10" -600gr
"TS-108" -520gr
IMPEDĀNCIA - 8. ohms

IMPEDĀNCIA - 8 ohms PREÇO - "TS-10" - CR\$ 428,00 "TS-10B"- CR\$ 378,00

FONES ESTÉREO SELENIUM

HF-800 ESTĒREO HI-FI ESPECIAL PARA EQUIPAMENTOS DE ALTA QUALIDADE,UTILIZA ALTO-FALANTES DINĀMICOS,DIAFRAGMA EXTRA-LEVE QUE DINAMICOS, DIAPRAGIMA EXTRA-LEVE QUE ASSEGURA UMA REPRODUÇÃO PERFEITA E AMPLA CURVA DE RESPOSTA. E PRODUZI DO COM IMPEDÂNCIAS DE 8 OU 600Ω : CABO ESPIRALADO DE 2,5m

SELEVIUM

PESO: 270gramas. PRECO - HF-800 8Ω CR\$ 635,00 HF-800 6000 CR\$ 739,00

IDEAL EM PROJETOS ONDE SEJA NECESSÁRIO BOM DESEMPENHO COM ECONOMIA DE ESPAÇO. IMPEDÂNCIA - 8 ohms.

PREÇO......CR\$ 46,00

PDT-1 PROVADOR DE DIODOS

ETRANSISTORES
ESPECIFICAÇÕES.
ALIMENTAÇÃO: 2 PILHAS PEQUENAS (3V)
DIMENSÕES : 100 X 150 X 80mm. PESO. : 300 gramas.

PF-1 PROVADOR DE FLY-BACK **EYOKES**

O PC-2 VEM ACABAR COM A INDECISÃO DO TECNICO REPARA-DOR QUANTO À SUBSTITUIÇÃO DE UM TRANSFORMADOR DE SAÍDA HORIZONTAL (FLY BACK) OÙ BOBINAS DEFLETORAS (YOKE). ALIMENTAÇÃO: 4 PILHAS PEQUENAS (1,5V). DIMENSOES: 100 X 120 X 70mm. PFS0 : 300gramas. PREÇO.CR\$ 656,00

GST-1 GERADOR DE SINAIS

1) EM RĀDIOS : PARA CALIBRAÇÃO DO ESTĂGIO DE FI E
DOS ESTĂGIOS DE ALTAS FREQUENCIAS.
2) EM TELEVISÃO : PARA O AJUSTE DO CANAL DE SOM
(FREQUENCIAS DE 4,5MHz)
3) EM TV A CORES : PARA VERIFICAR O FUNCIONAMENTO
DO AMPLIFICAD (FREQUENCIA DE 3,58MHz)

CARACTERÍSTICAS FAIXAS:

FAIXAS:
1) de 420 a 1MHz (FUNDAMENTAL)
2) de 840 a 2MHz (29 HARMONICA)
3) de 3,4 a 9MHz (FUNDAMENTAL)
4) de 6,4 a 18MHz (29 HARMONICA)
MODULAÇÃO INTERNA DE APROX. 500Hz - SENOIDAL FORNE

CIDA POR GERADOR RC SATDA SENOIDAL PARA TESTES DE AMPLIFICADORES DE

ATENUAÇÃO DUPLA, SENDO UM CONTINUO E OUTRO EM DE-DIMENSÕES : 15 X 10 X 8 cm

PESO : APROX. 1000gramas ALIMENTAÇÃO A PILHAS (4 PILHAS PEQUENAS)

MEDIDOR DE INTENSIDADE **DE CAMPO**

FAIXAS DE FREQUENCIA 41 à 65MHz 65 à 110MHz VHF 155 à 180MHz 470 a 840MHz UHF PRECISÃO: 3dB EM VHF 6dB EM UHF ĀLIMENTAÇÃO: 3 PILHAS DE 1,5V DIMENSÕES: 230 X 130 X 90mm SENSIBILIDADE: SENSIBILIDADE: 10uV até 10kuV 0U até 1V COM ATENUADOR INT. IMPEDÂNCIA DE ENTRADA-

75ohms DESBALANCEADA, 3Kohms BALANCEADA.

PREÇO........CR\$ 9.775,00

WATTIMETRO DE RF SÉRIE 1000

ESPECIFICAÇÕES:

FAIXA DE POTÊNCIA : 0,1W à 10KW. FAIXA DE FREQUÊNCIA : 2MHz à 1GHz. VSWR : 1,05:1 PRECISÃO : +5% FS PRECISAU: +5% F3 LINHA, DIAMETRO: 7/8" IMPEDANCIA: 500hms. PLUG ELEMENTO DETETOR: FAIXAS DE 5W

10KW EM ONZE ESCALAS.

OSCILOSCÓPIO DYNATECH

B5-20 CR\$ 11.500,00

B5-50 CR\$ 12.871,00 ESPECIFICAÇÕES

CANAL VERTICAL (EIXO Y)

IMPEDÂNCIA DE ENTRADA......100Kohm.

FAIXAS......5Hz a 1KHz - 1KHz a 500KMz. SINCRONISMO - AUTOMÁTICO COM AJUSTE DE NÍVEL DE GATI FONTE DE REFERÊNCIA - SAÍDA 1KHZ , ONDA QUADRADA, LHO 1Vpp CALIBRADA EM FREQUÊNCIA E TENSÃO.

RETTCULAGRAVADA 6 X 10cm

NECTOR TIPO BANANA, TERRA CONE TOR TIPO BANANA SAIDA DE REFERÊNCIA... CONECTOR TIPO BANANA. ALIMENTAÇÃO - 100 à 2200V e 220 à 240V COM COMUTAÇÃO POR CHAVE, 50/60 Hz, 35W. DIMENSOES: 425 X 270 X 170mm.

RESTAURADOR DE CINESCÓPIO -

DINATECH

TESTES E FUNÇÕES

-EMISSÃO DE CANHÕES DE TUBOS DE TV PRETO E BRANCO E À CORES; VERIFICAÇÃO DE SUAS CONDIÇÕES DE OPE RAÇÃO. -LIMPEZA DE CADA CANHÃO POR MEIO DE TENSÃO CA.

-LIMPEA DE CAUA CANHAU PUR MEIO DE TENSAU CA.
-RESTAURAÇÃO DO CATODO OU COTODOS.
-TESTE DE CURTO-CIRCUITO.
-TESTE DE OPERAÇÃO DE GRADE DE CONTROLE E INDICAÇÃO DE POSSIBILIDADE DE GASES NO TUBO OU ABERTURA DE GRADE AUMENTADA.
-INDICAÇÃO DE VIDA RESTANTE A SER ESPERADA PELO

TUBO. PREÇO......CR\$ 6.547,00

GERADOR DE BARRAS PAL-M SINCLER

CARACTERISTICAS

- PADRÃO DE CONVERGÊNCIA - AJUSTES DE CONVERGÊN-CIA ESTĂTICA E DINÂMICA, LINEARIDADE E EFEITO PINCUSHION (ALMOFADA). ESCALA DE CINZA PARA TESTES NO CIRCUITO DE VÎ-

EO.
PADRÃO VERMELHO PARA VERIFICAÇÃO DE PUREZA.
SINAL PARA SINCRONIZAR OSCILOSCÓPIO.
SINAL DE VÍDEO COM AMPLITUDE.
SAÍDA DE RF AJUSTÁVEL PARA TESTE DO AGC.
SISTEMA PAL-M E NTSC.
DIMENSÕES: 80 X 220 X 200mm.

PREÇO......CR\$ 13.570,00

FILCRES PRECOS ESPECIAIS PARA GRANDES QUANTIDADES, CONSULTE-NOS.

ANALISADOR LÓGICO

P/ CIRCUITOS INTEGRADOS DAS FAMÍLIAS DTL,TTL,HTL,MOS. INDICA AUTOMATICAMENTE OS ESTADOS LÓGICOS ESTÁTICO E DINÂMICO DE CIRCUITOS INTEGRADOS TIPO "DUAL IN LINE", ATÉ 16 PINOS. ALIMENTADO PELO PROPRIO "CIRCUITO ANALI-ALE PONTOS DE ALIMENTAÇÃO.

MOSTRADOR FORMADO POR 16 LEDS.

DADOS TECNICOS:

TENSÃO DE ENTRADA MINIMA : 2,0V + 0,2V.
IMPEDÂNCIA DE ENTRADA : 100Koñms
TENSÕES DE OPERAÇÃO : MIN. 4,0V
(EM DUAS OU MAIS ENTRADAS: MAX. 15V.
CONSUMO MĀXIMO : 200mA (ā 10V)
DIMENSÕES : 102 X 51 X 44mmCR\$ 5.175,00

CONTADOR PROGRAMÁVEL

MODELOS PARA 3 e 4 PROGRAMAÇÕES.
CABEÇOTE DETETOR ÔPTICO E OUTROS TIPOS OPCIONAIS.
LEITURA DIGITAL DE GRANDE VISIBILIDADE.
VELOCIDADE DE CONTAGEM MAIOR QUE 100PULSOS/SEGUNDO.
RESET MANUAL OU AUTOMATICO, QUANDO A CONTAGEM ATINGE
O VALOR PROGRAMADO DISPARA UM RELE.
IDEAL PARA MAQUINAS DE BOBINAR, EMBALAGEM DE ALTA VE
LOCIDADE E CONTADOR DE PEÇAS.
MODELO P/ 3 PROGRAMAÇÕES......CR\$ 7.705,00
MODELO P/ 4 PROGRAMAÇÕES.....CR\$ 9.016,00

MICROPROCESSADOR

MICRO PROGRAMADOR LEARNING MODULE LCM 1001:

SEQUINDO O MANUAL DE INSTRUÇÕES E UTILIZANDO O MODULO, VOCE VAI SE FAMILIARIZAR COM A RELAÇÃO FUNDAMENTAL ENTRE HARDWARE E SOFTWARE. A LEM DISSO VAI APRENDER MICRO PROGRAMAÇÃO, DESENVOLVER SIMPLES ALGORITMOS, DESENVOLVER INSTRUÇÕES SIMPLES, ESTABELECER BASES P/ TECNICAS DE PROJETO DE CONTROLADORES.

CONTROLE **AUTOMATICO DE TEMPO** CRONOMAT

UM "SERVIDOR" IMUNE AO SONO E ÀS FALHAS DA MEMORIA

PREÇO.... CR\$96,00

MINIINJETOR LOCALIZA RAPIDA/E QUALQUER DE-DE SINAIS ELEVISÃO, AMPLIFICADORES, ETC. FUNCIONA COM APENAS UMA PILHA. MEDE 11cm.

MOTORES E SOLENÓIDES SERMAR

CARACTERÍSTICAS GERAIS:

-CONSTRUÇÃO DUPLO T*
-CONSTRUÇÃO FERRO LAMINADO* -ESTRUTURA: FERRO LAM -TERMINAIS LAMINADOS

-BASE EM AÇO -DOTADOS DE MOLA DE AMORTECIMENTO QUE PROPORCIONA BLOQUEIO FIRME

BLOQUEIO FIRME
-ENROLAMENTO COM FIO ESPECIALMENTE TRATADO
-BASE DOS TERMINAIS E BOBINAS MONTADOS NUM SÓ BLOCO
-PARTES METÁLICAS PROTEGIDAS POR TRATAMENTO ANTI-CORROSIVO APLICADO POR ELETRO-DEPOSIÇÃO.
CARACTERÍSTICAS MECÂNICAS:

TEMPO CURSO CONS. MODELOS ESFORÇOS (g) TEMPO CURSO TRAÇ. SUST. TRABALHO (mm) 860 100 100 continuo s/lim. 12 801 400 700 continuo s/lim. 15 *EXCESSÃO DO MODELO 860. PREÇO....860...CR\$ 91,00

MOTORES DE INDUÇÃO:

CARACTERISTICAS CONSTRUTIVAS:

-RAPIDA DISSIPAÇÃO DE CALOR. -BUCHAS SINTETIZADAS, AUTO-LUBRIFICADAS. -EIXO TEMPERADO E RETIFICADO, MANCAIS FLUTUANTES, (AUTO-AL INHADOS)

PADRONIZADOS, SUBSTITUEM UNIDADES DE OUTRAS PROCEDEN-CIAS. CONSTRUTDOS PARA 110V - 60Hz

CARACTERÍSTICAS ELETRO-MECANICAS:

VOLTAGEM - 115V
FREQUÊNCIA - 60Hz
FRM SEM CARGA - 3500
TORQUE DE PARTIDA - g X cm - 1,6
TORQUE EM REGIME - g X cm - 1,15
POTÊNCIA DO EIXO À 3000RPM - 1/16HP
CORRENTE NA PARTIDA - 0,65A
CORRENTE EM REGIME - 0,6A
POTÊNCIA DE CONSUMO À 3000RPM - 35W
PECO: 9400R

APLICAÇÕES: MOTORES DE INDUÇÃO- VENTILADORES,AQUECEDO RES,TOCA-DISCOS,BONECOS ANIMADOS,MAQUINAS DE ESCRITÓRIO ANTENAS ROTATIVAS,CONTROLE REMOTO,SECADORAS E LAVADORAS SOLENÓIDES- ACIONAMENTO DE FREID,BOMBOS VALVULAS,TRAVES,E QUALQUER DISPOSITIVO QUE REQUEIRA

ACIONAMENTO ELETROCOMANDADO.

MOTORES RONEG

MOTORES PARA GRAVADORES, TOCA-DISCOS, TOCA-FITAS....
EM DOIS MODELOS:
PARA ALIMENTAÇÃO DE 3V .CR\$ 69,00
PARA ALIMENTAÇÃO DE 12V .CR\$ 69,00
REGULADOR DE VELOCIDADE .CR\$ 46,00

OS MOTORES RONEG SUBSTITUEM PERFEITA MENTE OS USADOS NAS MARCAS PHILLIPS, DELTA, E OUTROS.

LIMPEZA POR ULTRA-SOM

ONDAS DE ELEVADA FREQUÊNCIA SÃO PRODUZIDAS DENTRO DE UM RECEPIENTE DESTINADO À LIMPEZA DE PEÇAS. OTIL NA MEDICINA P. LIMPEZA DE LÂMINAS, SERINGAS, AGULHAS HI-PODERMICAS, DENTADURAS, BROCAS DE DENTUSTAS, E VARIAS OUTRAS APLICAÇÕES. OTIL NA INDÚSTRIA E COMÉRCIO NA LIMPEZA DE MOTORES, BIELAS, ROLAMENTOS, APARELHOS ÓPTI-COS, CRISTAIS, FERRITES, TIPOS DE MÂQUINAS DE ESCREVER.

CARACTERÍSTICAS TECNICAS:

ENTRADA: 110V AC 50/60Hz(monofásico) POTENCIA: 60W POTENCIA: 50W SATDA: 40KHz TOTALMENTE TRANSISTORIZADO CAPACIDADE: 1290 ml COM RELOGIO CR\$ 5.025,00 SEM RELOGIO CR\$ 4.554,00

TRANSCEPTOR HB650 - LAFAYETTE

ESPECIFICAÇÕES TECNICAS:

CIRCUITO.....SINTETIZADOR DIGITAL COM PPL. REJEIÇÃO DE IMAGEM..40dB. TRANSMISSOR POTÊNCIA DE SAÍDA RF ACIMA DE 4W (13,8VDC) VARIOS
LIMPEDÂNCIA DE ENTRADA DE ANTENA.NOMINAL 500hms
CORRENTE.....MENOS QUE 1A EM 12VDC
DIMENSÕES......162 X 57 X 228mm

AMPLIBELL ICE

PREÇO...CR\$ 3.232,00 PERMITE MOVIMENTAR ENQUANTO CONTINUA À CONVERSAÇÃO. PERMITE GRAVAÇÕES DO TELEFONEMA COM TODO TIPO DE GRA-

VADOR.

VOCĒ PODĒRĀ PARTICIPAR DE REUNIŪES EM SUA EMPRESA POR MEIO DE UM SIMPLES TELEFONEMA.
COMPLETAMENTE TRANSISTORIZADO.
CONSUMO DE ENERGIA: 250ma
MICROFONE DINĀMICO MULTIDIRECIONAL: 909
EVENTUAIS DEFEITOS NO AMPLIBELL NÃO PREJUDICARÃO A
LINHA TELEFÔNICA, QUE CONTINUARÃ FUNCIONANDO REGU-

QIMENSÕES: 220 X 220 X 70mm.

ANTENA PARA TRANSCEPTOR NA FAIXA DO CIDADÃO

CONFECCIONADA EM AÇO CROMADO. RESISTENTE AS INTEMPERIES. FACIL DE INSTALAR. ACOMPANHA MANUAL EXPLICATIVO. FACIL DE SINTONIZAR.

PREÇO.... CR\$ 1.570,00

PROTO-CLIP P/ 16 E 24 PINOS

PERMITE ACESSO FACIL E
SEGURO AOS TERMINAIS DE
QUALQUER TIPO DE CIRCUI
TO INTEGRADO "IN LINE",
PERMITINDO QUE SE EFETUEM
TESTES E MEDIÇÕES SEM O
RISCO DE SE CAUSAREM
QUETO_CIPULTOS ACIDENTAIS CURTO-CIRCUITOS ACIDENTAIS ENTRE OS TERMINAIS DO INTEGRADO.

PREÇO CR\$ 207,00 16 PINOS 24 PINOS 40 PINOS PREÇO CR\$ 230,00 PREÇO CR\$ 437,00 PREÇO CR\$ 863,00

KITS IBRAPE

M-110 MOD. AMPL. POT. 10W CR\$ 495.00 M-150 MOD. AMPL. POT. 50W CR\$ 805.00 M-201 MOD. PRE-AMPL. MONO CR\$ 351.00 M-202 MOD. PRE AMPL. ST. CR\$ 684.00 M-204 MOD. PRE AMPL. ST. UN.CR\$ 108.00 M-320 MOD. AMPL. POT. 10+10WCR\$ 949.00 M-350 MOD. AMPL. POT. 25+25 CR\$1162.00

L-33-DX

DC-0-0,25-2,5-10-50-250-1000V (2000Ω/V)
AC-0-10-50-250-1000(2KΩ/V)
DC- 0-500uA-10-250mA
OHM-0-5-50-500Kohms dB - - 20 ā +36 dB BATERIA - 1X 1,5V DIMENSOES - 128 X 88 X 48mm PESO - 300gr. PREÇO......CR\$ 1.092,00

A-10

BUILD IN SIGNAL INJECTOR BURN OUT PROOF OVERSIZED SCALE FACE - 6-1/2" X 3 WIDE RANGE DC.V-0-0,5-2,5-10-50-250-500-1000 (30Kg/Y)

DC. Y-O-0,5-2,5-10-50-250-500-1000 (30Ks)
0-5000-25000 (10Ks/Y)
AC. Y-O-2,5-10-50-250-500-1000 (10Ks/Y)
DC. A-O-50uA-1-50-250mA-1-10A
AC. A-O-1-10A
OHM-0-10K-100K-1M-100Mohms
dB- -20 ā +20; +20 ā +36dB
SIGNAL INJECTOR-BLOCKING
OSCILLATOR CIRCUIT
SORBFCABEA - 2 DIODOS 7FNFR

P-70

DC.V-0-5-25-250-1K(2Kohms/V) AC.V-0--5-25-250-1K(2Kohms/V) DC.A-0-500uA-10250mA DC.A-0-500UA-10250MA OHM-0-3K-300Kohms dB--20 a +23dB BATERIA - 1 X 1,5V DIMENSÕES - 110 X 89 X 42mm PESO - 300gr.

MULTITESTES HIOKI

L-55

DC.V-0-0,3-1,2-6-30-120-600(10M Ω /V AC.V-0-3-12-60-120-600(10K Ω /V) DC.A-0-0,12-120mA OHM-RX1-RX100-RX10K-RX1Mohms BATERIA- 1,5V"UM3" p/ ohmimetro p/ DC - bateria 9V DIMENSÕES - 130 X 90 X 50mm PESO- 450gr.
PREÇO......CR\$ 4,200,00

AF-105

POLARITY REVERSING SWITCH-OFF RANGE BURN OUT PROOF DC. Y-O-O, 3-12-60-120-300-600-1200 (50Kohms/V)

0-30000(10Kohms/V)
AC.V-0-6-30-120-300-600-1200(10KΩ/V)
DC.A-0-30uA-6-60-300mA-12A
ESCALAS 0HM- RX1, X100, X1K, X10K ESCALAS UMM- KXI, XIUU, XIK, XIUK dB - -20 ā +17dB VSAIDA- capacitor em série c/ escala A SOBRECARGA - 2 DIODOS ZENER CAPACITOR .05uF BATERIA - 1,5V X 2; 22,5V X 1 DIMENSOES -164 X 108 X 60mm PESCA 6.70g

PESO: 670gr. PREÇO..... CR\$ 3.105,00

CT-300 CLAMP TESTER CT-100

AC. V-0-150-300-600V AC.A-0-6-15-60-150-300A OHM-1Kohm(CENTRAL 30ohm) TOLER.-AMP.AC 3% grad.max. OHM 3% da escala BATERIA E FUSIVEL TENSÃO DE PICO - 2000V

DIMENSOES:85X196X46mm PESO: 380gr. PREÇQ.....CR\$ 4.044,00 AC. V-0-300V (2KΩ/V) AC.A-0-50-100A DIMENSOES-63X125X36mm PESO: 215gr. PRECO...CR\$ 1.950,00

6 00

AS-100D

POLARITY REVERSING SWITCH OFF RANGE BURN OUT PROOF DC.V-0-12-60-120-300-600 1200 (100Kohms/V) AC.V-0-6-30-120-300-600 (10ΚΩ/V) DC.A-0-12u-6-60-300m-12A OHM-0-2K-200K-2M-200Mohm dB- -20 a +17, +15 a 30dB VOUT- CAPACITOR EM SERIE C/ ES DE AC.

SOBRECARGA: 2 diodos zener capacitor .05uF BATERIA: 2 X 1,5 ; 1 X 22,5V DIMENSÜES: 190 X 143 X 65mm PESO: 1,020gr. PREÇO...... CR\$ 3.558,00

P-32

DC.V - 0-15-150-1000 1Kohms/V AC.V - 0-15-150-1000 1Kohms/V DC.A - 0-150mA OHM - 0-100Kohms OHM - 0-IOUKOMMS
DIMENSDES- 62 X 94 X 36 mm
PESO - 145g C/ BATERIA
PRECISÃO- +3% at FULL SCALE - DC
+4% at FULL SCALE - AC
+10% at ind.value -OHMS PREÇO...... CR\$ 970,00

105-FET

VOLTIMETRO ELETRÔNICO; C/ TRANS. FET DC VOLTS: 0,5 - 2,5-10-50-250-1K V 1 - 5 - 20-100-500-2K V AC VOLTS: 5 - 25-50-2500-1000V OHMS: 1K,100K,10M,1000M OHMS. dB: -10/+30 BATERIA: 1,5V DIMENSOES: 163 X 108 X 67mm

PESO: 580gr.

VOLTS C.A 6 ESCALAS : 2V ā 2500V (4KV/VOLT) VOLTS C.C 7 ESCALAS : 0,1V ā 1000V (20KV/VOLT) AMP. C.C. 6 ESCALAS : 50uA ā 5A AMP.CA. 5 ESCALAS : 250uA ā 2,5A **680/G** Ohms: 6 ESC. 0,1Ω ā 10Mω DET. REAT. : 0 ā 10Mω CAPAC.:5 ESC.: 0 ā 5KpF 0 ā 0,5uF

3 ESC.: 0 a 2KuF FREQ. 2 ESC.: 0 a 500Hz 0 a 5KHz YOUT. :5 ESC.:10V a 2500V dB : 5 ESC.:-10dB a +70dB

PREÇO.....CR\$ 1.851,00

MICRO 80

MULTITESTES I.C.E.

VOLTS CA. 6 ESCALAS:1,5V ā 1KV (4KV/VOLT) VOLTS CC: 5 ESCALAS:0,1V ā 1KV

AMP. CC.:6 ESCALAS:50uA ā 2,5A AMP. CA.:5 ESCALAS:50uA ā 2,5A AMP. CA.:5 ESCALAS:250uA ā 2,5A OHMS: 4 ESCALAS: 0,10hms ā SKON NOUT: 5 ESCALAS: 1,5V ā 1 KV DECIBEIS: 5 ESC. : +6dB ā +62Db CAPAC: 4 ESCALAS:

VCA. 11 ESCALAS : 2V ā 2500V (4KV/VOLT)
VCC. 13 ESCALAS : 0,1V ā 2000V (20KV/VOLT)
AMP. CC. 12 ESCALAS : 50uA ā 10A
AMP: CA. 10 ESCALAS : 200uA ā 5A
OHMS: 6 ESCALAS : 0,1ohm ā 100Mohms
DET. REAT. : 0 ā 10Mohms
CAPAC. 6 ESCALAS : 0 ā 500PF
0 ā 0,5uF
4 ESCALAS : 0 ā 500F
DET. REAT. : 0 ā 500F

4 ESCALAS : 0 a 50KUF FREQ. 2 ESCALAS: 0 ā 50Hz 0 ā 5KHz VOUT 9 ESCALAS : 10V ā 2K5V dB : 10 ESCALAS : -24dB ā +70dB

MODELO 134

MULTÍMETROS DIGITAIS

MODELO 1450

DISPLAY DE 4 1/2 DIGITOS RESOLUÇÃO DE 0,005% 21 ESCÁLAS; 100% OVERRANGE.

PREÇO......CR\$ 27.610,00

MEDE TENSÃO E CORRENTE EM CC E CA

MEDE TENSÃO E CORRENTE EM CC E CA.

RESISTÊNCIA DENTRO E FORA DO CIRCUITO.

5 ESCALAS EM CADA, OVERRANGE 100%.

RESOLUÇÃO -0,1 UA EM CC E CA.

100m0HNS em resistência MODELO 175

PRECISÃO DE 0,1% SEM NECESSIDADE DE

CALIBRAÇÃO CONSTANTE. RESPOSTA ATE 50KHZ EM CA.

BATERIAS - NÎQUEL-CADMIO, PODEM SER CARREGADAS DIRETAMENTE DA REDE,

COM CARREGADOR PROPRIO. ACOMPANHA COMPLETO MANUAL DE INSTRUÇÕES. PREÇO..... CR\$ 16,340,00

MULTIMETRO NOVO

DIMENÇÃO: 150x106x50mm PESO: 650g PREÇO: CR\$ 1.863,00

SPRING-BACKED JEWEL BEARING
A PROVA DE SOBRE CARGA
ALTA SENSIBILIDADE: 20,000 OHMS/V DC
DC.Y: 0-0,25 1 2.5 1 0 50 250 500 1,000V
20,000 OHMS/V 0-5,000 atē 4,0000HMS/V
AC.Y: 0-10 50 250 1,000V atē 8,0000HMS/V
DC.A: 0-50uA 1 50 500mA 10A
DHMS: 0-4K 400K 4M 40M OHMS OHMS: 0-4K 40W 0HMS
dB: -20 +22 +20 +36
CAPACIDADE: 250mmf, a 0,02mf
INDUTANCIA: 0 a 5,000 HERRIES
CORRENTE DE CARGA: 0-75UA 750MA
PROTEÇÃO DE SOBRE CARGA: 2 DIODO E 1 CAPACITOR BATERÍA: 1.5V(UM-3)x2, 22.5V(BL-015)x1

MILIAMPERÍMETRO E VOLTÍMETRO HIOKI —

0-1 mA. CR\$642,00 KR-45-DC 0-1 mA. CR\$598,00 0-50 mA. CR\$642,00 KR-45-DC 0-50mA. CR\$598,00 0-100mA. CR\$642,00 KR-45-DC 0-200mA. CR\$598,00 0-10mA. CR\$598,00 0-1 mA. CR\$598,00 KR-45-DC 0-200mA. CR\$598,00 0-50 mA. CR\$590,00 KR-45-DC 0-300mA. CR\$590,00 KR-45-DC 0-50 mA. CR\$590,00 KR-45-DC 0-50 mA. CR\$790,00 0-200mA. CR\$590,00 KR-52-DC 0-50 mA. CR\$790,00 C-200mA. CR\$590,00 KR-65-DC 0-300mA. CR\$790,00 0-100mA. KR-65-DC KR-65-DC KR-65-DC KR-52-DC KR-52-DC KR-52-DC

	VOLTIMETRO	
KR-65-AC	0-150V	
KR-65-AC	0-300VCR\$690,00	
KR-52-AC	0-150V	
KR-52-AC	0-300V	
KR-45-AC	0-150V CR\$690,00	
KR-45-AC	0-300V CR\$690,00	

SÉRIE KR

MICROAMPERIMETRO E VU-METER HIOKI

SÉRIE MK

	MICROA	MPERT	METRO
MK-65-DC	0-100	uA	CR\$640,00
MK-52-DC	0-50	uA	CR\$640,00
MK-52-DC	0-100	uA	CR\$640,00
MK-45-DC	0-50	u A	CR\$640,00
MK-45-DC	0-100	uA	CR\$640,00
VU-METER	MODELO	MK	38CR\$805,00
VU-METER	MODELO	MK -	45CR\$805,00
VU-METER	MODELO		52CR\$890,00
VU-METER	MODELO	MK -	65CR\$890,00

INSTRUMENTOS DE TESTE CHINAGLIA

CARACTERÍSTICAS GERAIS:

OS INSTRUMENTOS DE TESTE DOLOMITI, DINO, MAJOR, AUTO-ANALYSER, TACOMETRO E ANALISADOR DE TRANSISTOR, POSSUEM INDICADOR À BOBINA MOVEL E NÚCLEO MAGNÉTICO CENTRAL, INSENSÍVEL AO CAMPO EXTERNO, SENDO A PARTE MOVEL MONTADA SOBRE SUSPENÇÃO ELÁSTICA ANTI-CHOQUE.

DOLOMITI ESPECIAL, MINOR, MAJOR E DINO USI POSSUEM DISPOSITIVO DE PROTEÇÃO DO EQUIPAMENTO MOVEL E DO CIRCUITO DE ENTRADA CONTRA SOBRE-CARGA DEVIDO A ERRO DE MEDIÇÃO.

DOLOMITI ESPECIAL

CARACTERÍSTICAS GERAIS:

QUADRANTE COM 6 ESCALAS COLORIDAS E ESPELHO ANTI-PARALAXE.

DEFLEXÃO 1109

DEFLEXACIONOS TOUS LARGURA DE ESCALA AV 92mm.
PONTA DE PROVA VERMELHA COM FUSÍVEL DE PROTEÇÃO.
DIMENSÕES : 130 X 125 X 40mm.

- PESO: 600gr. CARACTERÍSTICAS TECNICAS:

LARACIEKISITAS IEUNIUAS:

- SENSIBILIDADE: 40uA - 3000 ohms.
- PRECISÃO: +2% em CC; ±2,5% em OHM.
- V.CC: 20K ohms/V - 150-500mV, 1,5 - 5 - 15 - 50 - 150 - 500 - 1500V.
- V.CA: 4 DIODOS DE GERMÂNIO EM PONTE - CAMPO DE FREQUÊNCIA - 20Hz à 20KHZ.
SENSIBILIDADE: 20K ohms/V - 5 - 15 - '50 - 150 - 500 - 1500V.
- I.CC: 50 - 500uA, 5 - 50 - 500mA, 5A.
- I.CA: 5 - 50 - 500mA, 5A.
- Ohm CC: 500 ohms, 5 - 50 - 500K ohms, 5 - 50M ohms
- Ohm CA: 5 - 50 - 50 M ohms.
- Vbf: 5 - 15 - 50 - 150 - 500 - 1500V
- dB: -10/+65
- DF:0.05 - 0.5UF.

- dB: -10/465
- pF:0,05 - 0,5uF.
- ALIMENTAÇÃO: 2 pilhas de 1,5V para circuito ôhmico.
1 pilha de 22,5V para dispositivo de proteção.
rêde - 110/220V p/ capacimetro e ohmimetro em CA.
- DOLOMITI SPECIAL: PROVIDO DE DISPOSITIVO ELETROMECÂNICO DE PROTEÇÃO
COMANDADO ELETRONICAMENTE, DESLIGANDO O APARELHO QUANDO A GRANDEZA MEDIDA SUPERAR DE 10V O VALOR NOMINAL DO APARELHO.

MINOR

CARACTERÍSTICAS GERAIS:

QUADRANTE COM 4 ESCALAS COLORIDAS E ESPELHO ANTI-PARALAXE. DIMENSOES : 150 X 80 X 40mm.

- PESO: 350gr. CARACTERISTICAS TECNICAS:

PRECO...CR\$ 1.502,00

CARACIERISITCAS IEUNICAS: PREÇU...CR\$ 1,502,00

- SENSIBILIDADE: 40uA - 2500 ohms.
- PRECISÃO: +2,5% em CC, +3% em CA, +2,5% ohms.
- V.CC. 20K ohms/V. 0,1 - 1,5 - 5 - 15 - 50 - 150 - 500 - 1500V.
- V.CA: 2 DIODOS DE GREMANIO - CAMPO DE FREQUÊNCIA : 20Hz à 20HZ.
4K ohms/V - 7,5 - 25 - 75 - 250 - 750 - 2500V.
- I.CC: 50uA, 5 - 50 - 50omA, 2,5A.
- I.CA: 25 - 250mA, 2,5 - 12,5A.
- Vbf: 7,5 - 25 - 250 - 750 - 2500V.
- dB: -10/469.
- OHM CC: 10K ohms, 10M ohms.
- CAPACIMETRO: PERMITE A MEDIDA DE ELEVADA CAPACIDADE COM 0 MÉTODO BALTSTICO.

ALIMENTAÇÃO: 2 PILHAS DE 1;5V PARA CIRCUITO ÔHMICO.

AUTO-ANALISADOR AM-425

EARACTERISTICAS GERAIS:

INSTRUMENTO COM ZERO CENTRAL. DIMENSÕES: 156 X 100 X 40mm.

PESO: 500ax CARACTERÍSTICAS TECNICAS:

- VOLTÍMETRO:

WOLIDHERWS: MEDIDA DE TENSÃO DA BATERIA E DE ELEMENTO DE BATERIA. MEDIDA DE QUEDA DE TENSÃO DA BATERIA COM CARGA NOMINAL MEDIDA DA QUEDA DE TENSÃO DA BATERIA NA PARTIDA. MEDIDA DE TENSÃO DO DÍNAMO.

AMPERIMETRO: MEDIDA DE CORRENTE, SEJA INVERSA OU DIRETA, INERENTE AO CIRCUITO DE AUTO.

PREÇO.....CR\$1.989,00

DINO USI

CARACTERISTICAS GERAIS:

- QUADRANTE COM 5 ESCALAS COLORIDAS E ESPELHO ANTI-PARALAXE - DIMENSÕES: ,156 X 100 X 40mm.

CARACTERÍSTICAS TECNICAS:

CARACTERÍSTÍCAS TÉCNICAS:

- PRECISÃO: ±2,5% em CC, ±2,5% em CA, ±2% OHM.

SENSIBILIDADE: 40uA - 2500 ohms.

- V.CC: 0,1 - 0,5 - 1,5 - 5 - 15 - 50 - 150 - 500 - 1500V.

- V.CA: 5 - 15 - 50 - 150 - 500 - 1500V.

- V.CA: 5 - 50 - 500uA, 5 - 50 - 500mA, 5A.

- I.CA: 5 - 50 - 500mA, 5A.

- I.CA: 5 - 50 - 500mA, 5A.

- OHM CC: 1 - 10 - 100K ohms, 1- 10 - 100M ohms.

- dB . -10/+66.

- Vbf: 5 - 15 - 50 - 150 - 500 - 1500V.

- ALIMENTAÇÃO: 1 pilha de 9 V para consumo do circuito eletrônico(700uA).

- EQUIPADO COM INJETOR UNIVERSAL DE SINAIS PARA CONTROLE DINÂMICO
DE APARELHO DE RÃDIO E TV. ESTE DISPOSITIVO É FORMADO POR DOIS
GERADORES DE SINAIS, SENDO UM EM AUDIO-FREQUÊNCIA E 0 OUTRO EM F.

MAJOR

MAJOR

CARACTERISTICAS GERAIS:

QUADRANTE COM 6 ESCALAS COLORIDAS E ESPELHO ANTI-PARALAXE. DIMENSÕES: 156 X 100 X 40mm.

- PESO: 650gr. CARACTERÍSTICAS TECNICAS: PREÇO... CR\$ 2.179,00

SENSIBILIDADE: 17,5uA - 5000 ohms.

PRECISÃO: ±2% em cc, ±2,5% em cA, ±2% 0hM.

V.CC: 420mA, 1,2 - 3 - 12 - 30 - 120 - 300 - 1200V.

V.CA: 4 DIDOOS DE GERMÂNIO EM PONTE - CAMPO DE FREQUÊNCIA -20Hz à 10KHz.

3 - 12 - 30 - 120 - 300 - 1200V.

CIRCUITO DE COMPENSAÇÃO TÉMBICA COM NTC.

I.CC: 30 - 300uA, 3 - 30 - 300mA, 3A.

I.CA: 3 - 30 - 300mA, 3A.

OHM CC: 2 - 20 - 200K0HMs, 2 - 20 - 200M ohms

OHM CA: 20 - 500Hz, 5KHz.

50 - 500Hz, 5KHz.

PF: 50 - 500HF, 5kHZ. PF: 50 - 500F. MAJOR USI : EQUIPADO COM INJETOR UNIVERSAL DE SINAIS PARA CONTROLE DINÂMICO DE APARELHO DE RADIO E TV. ESTE DISPOSITIVO E FORMADO POR DOIS GERADORES DE SINAIS, SENDO UM EM AUDIO FREQUENCIA E O OUTRO EM RADIO FREQUENCIA.

TESTADOR DE TRANSISTOR CARACTERISTICAS GERAIS:

QUADRANTE COM ESCALAS COLORIDAS EM SETORES. GARRA E SOQUETE DE PROVA PARA TRANSISTOR E DIODO. POSSIBILITA TESTAR O COMPONENTE SEM RETIRÃ-LO DO CIRCUITO.

- DIMENSOES: 156 X 100 X 40mm. - PESO: 550gr. CARACTERISTICAS TECNICAS:

PREÇO....CR\$ 1.423.00

CONTROLÈ DA CORRENTE DE FUGA EM DUAS ESCALAS: PARA TRANSISTOR DE POTÊNCIA E BAIXA POTENCIA MEDIDA DE GANHO DE CORRENTE EM LEITURA DIRETA: FAIXAS DE O À 100 E DE O À

CONTROLE DA RESISTÊNCIA DIRETA E INVERSA DO DIODO. ALIMENTAÇÃO À PILHA : 2 pilhas de 1,5V.

TACÔMETRO ELETRÔNICO T720 CARACTERISTICAS GERAIS:

DIMENSÕES: 156 X 100 X 40mm. PESO: 600gr. CARACTERÍSTICAS TECNICAS:

TACOMETRO: 1500, 3000, 6000, G/MIN.
PARA MOTORES À DOIS E QUATRO TEMPOS E DE 1 à 8 CILINDROS.
DWELL : ÂNGULO DO CAME 459, 609, 909, 1809 ; PARA MOTORES À 2, 4

6 e 8 CILINDROS. ALIMENTAÇÃO: 1 pilha de 9V, 2 pilhas de 1,5V

PREÇO..... CR\$ 1.989,00

FONTE DE ALIMENTAÇÃO

CC185

CARACTERÍSTICAS ENTRADA DE VOLTAGEM: 100 - 120VAC (48 à 62Hz) SATDA DE VOLTAGEM: 0 - 18VDC

SATDA DE VOLTAGEM: 0 - 18VDC
SATDA DE CORRENTE:
 X 1 de 0 à 2,5A FIXO
 X 2 de 0 à 5,0A REGULAVEL
RIPPLE: 2mVrms
LINHA DE REGULAGEM: 0,02% + 4mV
CARGA DE REGULAGEM: 0,04% + 3mV
DIMENSOES: 208 X 128 X 308mm
DESCO: 6,35% PESO: 6,35Kg PREÇO......CR\$ 6.851,00

CARACTERISTICAS:

ENTRADA DE VOLTAGEM: 100 - 120 VAC (48 à 62 Hz) SATDA DE VOLTAGEM: 0 - 30 VDC SATDA DE CORRENTE: X1 de 0à 1A X2 de 0 à 2A

LINHA DE REGULAGEM: 0,01% +2mV RIPPLE: 1mVrms CARGA DE REGULAGEM: 0,02% +2mV

CANGA DE REGULAGEM: 0,22 ** ± cmv
IMPEDÂNCIA DE SATOA:

MENOR QUE 0,02 ohms de DC à 100Hz
MENOR QUE 0,05 ohms de 100Hz à 1KHz
MENOR QUE 0,80 ohms de 100KHz à 100KHz
MENOR QUE 3,00 ohms de 100KHz à 1MHz COMPONENTES:

MFUNENIES: SEMICONDUTORES DE SILÍCIO À PROVA DE CURTO-CIRCUITO BAIXA TENSÃO DE RIPPLE BAIXO TEMPO DE RECUPERAÇÃO COM CARGA TRANSISENTE.

CC182

CARACTERISTICAS:

ENTRADA DE VOLTAGEM: 100 - 120VAC (48 ā 62Hz) SATDA DE VOLTAGEM: 0 - 18VDC SATDA DE CORRENTE: X1 de 0 ā 1A X2 de 0 ā 2AA

LINHA DE REGULAGEM: 0,01% +2mV CARGA DE REGULAGEM: 0,02% ∓2mV IMPEDĀNCIA DE SAIDA:

MENOR QUE 0,02 ohms de DC à 100Hz MENOR QUE 0,05 ohms de 100Hz à 1KHz MENOR QUE 0,80 ohms de 1KHz à 100KHz MENOR QUE 3,00 ohms de 100KHz à 1MHz

COMPONENTES: SEMICONDUTORES DE SILÍCIO À PROVA DE CURTO-CIRCUITO BAIXA TENSÃO DE RIPPLE BAIXO TEMPO DE RECUPERAÇÃO COM CARGA TRANSISENTE.
DIMENSÕES: 208 X 128 X 308 mm

PESO: 3,4Kg. PREÇO......CR\$ 4.822,00

FONTE ESTABILIZADA CETEISA

IMPRESCINDIVEL NA BANCADA.
SUBSTITUI COM VANTAGEM BATERIAS E PILHAS. CARACTERISTICAS:

ENTRADA: 110/220 VAC
SAÍDA: FIXOS: 1,5 - 3 - 4,5 - 5 - 6 - 7,5 - 9 - 12 Volts.
CORRENTE DE SAÍDA: 1000mA
PROTEÇÃO INTERNA CONTRA CURTO-CIRCUITO.

PREÇO...... CR\$ 1.159,00

OSCILOSCÓPIO

1307

ESPECIFICAÇÕES TECNICAS:

AMPLIFICADOR VERTICAL:

SENSIBILIDADE - 50mV/DIV. IMPEDĀNCIA - 1MΩ/40pF RESP.FREQUENCIA - 0 ā 7MHz

AMPLIFICADOR HORIZONTAL: IMPEDÂNCIA - 10MΩ/30pF IMPEDANCIA - 10M2/30pp SENSIBILIDADE - 1Vpp PERMITE MODULAÇÃO DO EIXO "Z" TENSÃO DE BLANKING - 20Vpp a 100Vpp ALIMENTAÇÃO - 110/220 V - 50/60Hz

ESPECIFICAÇÕES TECNICAS:

AMPLIFICADOR VERTICAL:

SENSIBILIDADE - 5mV/DIV. TENSÃO MĀXIMA - 400Vpp IMPEDĀNCIA - 10MG/35pF RESP.FREQUÊNCIA - 0 ā 10MHz AMPLIFICADOR HORIZONTAL:

SENSIBILIDADE - 1Vpp IMPEDĀNCIA - 10ΟΚΩ/V RESP.FREQUĒNCIA - 3Hz Ā 1MHz GERADOR DE BASE DE TEMPO:

FREQUÊNCIA DE VARREDURA - .5us/div à 50ms/div. DISTORÇÃO MENOR QUE 1% ALIMENTAÇÃO - 110/220 V - 50/60Hz DIMENSÕES - 200 X 300 X 410mm

PESO - 11,5Kg PRECO......CR\$ 20.847,00

1315-2F

ESPECIFICAÇÕES TECNICAS:

AMPLIFICADOR VERTICAL: SENSIBILIDADE - 5mV/div. TENSÃO MĀXIMA - 400Vpp IMPEDĀNCIA - 1MΩ/35pF RESP.FREQUENCIA - 0 a 15MHz

AMPLIFICADOR HORIZONTAL:

SENSIBILIDADE - 1Vpp IMPEDĀNCIA - 100KΩ/V RESP.FREQUÊNCIA - 3Hz ā 1MHz GERADOR DE BASE DE TEMPO:

FREQUÊNCIA DE VARREDURA - .5us/div à 50ms/div. FREQUENCIA DE VARREDURA - .5us/G DISTORÇÃO MENOR QUE 1% ALIMENTAÇÃO - 110/220V -50/60Hz DIMENSŪES - 200 X 300 X 410mm PESO - 11,5Kg

.....CR\$ 36.059,00

PROVADOR DE CINESCÓPIO

PROJETADO ESPECIALMENTE PARA TESTAR E REJUVENESCER PROJETADO ESPECIALMENTE PARA TESTAR E REJUVENESCER OS TIPOS DE CINESCÓPIO EXISTENTES-PARA TV. - PROVA O CURTO-CIRCUITO ENTRE OS ELEMENTOS. - PROVA A EMISSÃO DE CATODO COM CORRENTE CONTÍNUA. - PROVA AS CARACTERÍSTICAS DE CONTROLE DE CORRENTE DA PRIMEIRA GRADE. - REJUVENESCE O CATODO DO TUBO. - RESSOL DA CATODOS ABERTOS, EMPREGANDO UM CIRCUITO DE SOLDA POR DESCARGA DE CAPACITOR.

PORTĀTIL. ALIMENTAÇÃO - 110/220V DIMENSÕES - 20cm X 12cm X 33cm.

- 4,55Kg PREÇO......CR\$ 7.200,00

FONTE DE ALIMENTAÇÃO

FR-2504 FR-2515

ESPECIFICAÇÕES

SATDA: 0 \$\frac{a}{2}\$5VDC - 0 \$\frac{a}{4}\$400mA
*0 \$\frac{a}{2}\$5VDC - 0 \$\frac{a}{1}\$,5A
MEDIDOR: 0 \$\frac{a}{3}\$30V ou 0 \$\frac{a}{5}\$500mA
*0 \$\frac{a}{3}\$30V ou 0 \$\frac{a}{2}\$A
REGULAÇÃO: TENSÃO DE SATDA: MELHOR QUE 50V OCCORPUSED ON TOUE 50V OCCORPUSED ON TOU

- CORRENTE DE SATDA MELHOR QUE 500uA

MELHUR IUE SUUUA
ONDULAÇÃO E RUIDO : VDC - 10mV
IDC - 50UA
PROTEÇÃO CONTRA SOBRE-CARGA:
FUSÍVEL E SISTEMA DE LIMITAÇÃO DE CORRENTE
3 TERMINAIS DE SAÍDA: POSÍTIVO, NEGATIVO E
TERPA.

FR2550

ESPECIFICAÇÕES:

TENSÃO DE SATDA: 0 ã 25 VOLTS CORRENTE MĀXIMA: 4,5A(ajust.) REGULAÇÃO: 1% - 4,5A PERDAS: RUIDO MENOR QUE 10mV ALIMENTAÇÃO: 115V - 60Hz DIMENSÕES: 140X300X220mm

FR3015

0FERTA

ESPECIFICAÇÕES:

TENSÃO DE SAÍDA: 0 à 30V CORRENTE MĂXIMA: 1,5A REGULAÇÃO: 1% - 1,5A PERDAS: RUÍDO MENOR QUE 10mV ALIMENTAÇÃO: 115V - 60HZ DIMENSÕES: 140X200X200mm PREÇO..... CR\$ 4.500,00

ESPECIFICAÇÕES: FR200/1

VOLTÍMETRO ELETRÔNICO VAV-71B

PREÇO..... CR\$ 4.000,00

ANALISADOR DE TRANSÍSTOR AT-1

MEDIDA DE h_{fe}: O ā 800. CORRENTE DE FUGA: I_{CO} - 2uA ā 10mA TENSÃO DE Vce: O ā 20V. TENSAU DE VCE: U a 20V. CORRENTE DE POLARIZAÇÃO: 1 à 10mA ALIMENTAÇÃO: 110V - 60Hz DIMENSÕES: 150 X 200 X 150mm

GERADOR DE RF F-6

FAIXA DE FREQUÊNCIA: 190KHZ ā 80MHZ (6 faixas)
MODULAÇÃO INTERNA E EXTERNA
DUPLO ÁTENUADOR: CONTÍNUO (0 ā 80%)

5 DEGRAUS, 20dB/DEGRAU ERRO MENOR QUE 2% ERRO MENOR QUE 2%
ALIMENTAÇÃO: 110/220VAC, 50/60Hz
CONSUMO MENOR QUE 10W
DIMENSÕES: 195 X 295 X 170mm PES0: 5Kg PREÇ0....CR\$ 4.500,00 *0FERTA*

GERADOR DE ÁUDIO A-17B

FAIXA DE FREQUÊNCIA: 15Hz q 1,5MHz (5 faixas)
FORMAS DE ONDA: SENOIDAL; QUADRADA(C/ SATDAS IDEPENDENTES)
MÁXIMA AMPLITUDE DE SATDA: 10Vpp CIRCUITO ABERTO(SENŌIDE)
5 Vpp " " (QUADRADA)

IMPEDÂNCIA DE SATDA: 6000hms constante (senoide)

75 ohms (quadrada)
ERRO: 3% SALVO 5% DE FUNDO DE ESCALA E la FAIXA
DISTORÇÃO DA ONDA SENOIDAL: 5% P/ MĀXIMA AMPLITUDE

DISTORÇÃO DA ONDA SENOTDAL: 5% P/ MAXIMA AMPLITUDE ERRO DE SIMETRIA ONDA QUADRADA: ± 0,2 DIV. ā 500Hz 3 PERIODOS NA TELA TEMPO DE SUBIDA: 70nS (EM 20KHz). ALIMENTAÇÃO: 110/220V AC , 50/60Hz. CONSUMO: MENOR QUE 15W. DIMENSOES: 200 X 300 X 190 mm

GERADOR DE BARRAS GP-2B

CALIBRAÇÃO NOS SISTEMAS PAL E NTSC
SUB-PORTADORA DE COR: 3.575.611 Hz (+ 10Hz)
PORTADORA DE SOM: 4,5MHz (desTigave1)
BURST: AMPLITUDE AJUSTĀVEL DE 0 - 180%
FASE: PAL-M ALTERNADA DE + 1359
LARGURA: 9+1 ciclos.
POSICÃO: 5,5US APOS A FRENTE ANTERIOR.

POSIÇÃO: 5,5us APOS A FRENTE ANTERIOR.
IMPULSO DE SINCRONISMO: VERTICAL - 250us
HORIZONTAL - 4Us
SINAIS: RETICULADO, FASF, R-Y, B-Y, PONTOS BRANCOS
BARRAS DE COR, ESCALA CINZÁ, CAMPO VERMELHO, CAMPO BRANCO.
SAÍDA DE VIDEO: AMPLITUDE: 1,0Vpp + 0,2Vpp
POLARIDADE NEGATIVÃ.
IMPEDÂNCIA: 750hms
SAÍDA DE RF: ESTABILIDADE: 10-3
SINTONIA: CANAIS 8, 9, 10
TENSOES DE SAÍDA: 2mV/300n,30mV/300n
SAÍDA DE SINCRONISMO: AMPLITUDE: 4Vpp+ 0,5Vpp
IMPEDÂNCIA: 2Kg
ALIMENTAÇÃO: 110/220 VAC - 50/60Hz
CONSUMO: MENOR QUE 10VA

CONSUMO: MENOR QUE 10VA DIMENSOES: 100 X 300 X 270mm PESO: 4,5Kg PREÇO......CR\$ 12.935,00

CAPACIMETRO CAP-2

CR\$ 4.960,00

ESPECIFICAÇÕES TECNICAS ESPECIFICAÇOES TECNICAS
FAIXAS DE MEDIÇÃO: 1pF â 1kpF
10kpF â 10kpF
10kpF â 10kpF
100kpF â 1uF
PRECISÃO: MELHOR QUE 3%
ALIMENTAÇÃO: 110/220V
PROCESSAMENTO DIGITAL.

LEITURA ANALOGICA.
DIMENSÕES: 11 X 24 X 17cm
PESO: 2,3Kg.

GERADOR DE FUNÇÕES GF-03

FAIXA DE FREQUENCIA: 1Hz à 100kHz (5 faixas)
FORMAS DE ONDA: SENOIDAL, TRIANGULAR, QUADRADA
MAXIMAS AMPLITUDES DE SATDA: 20Vpp, circuito aberto
IMPEDÂNCIA DE SATDA: 600 ohms (constante)
ESCALA LINEAR; PRECISÃO: +5% FUNDO DE ESCALA
DISTORÇÃO DE ONDA SENOIDAE: 5% PARA MÁXIMA AMPLITUDE
DE SATDA
DE SATDA

ERRO DE SIMETRIA P/ ONDA QUADRADA:-0,2 div. ā 70KHz
C/ 3 PERIODOS NA TELA.

ALIMENTAÇĂ: 110/220 VAC; 50/60Hz
TEMPERATURA DE OPERAÇÃO: 0 ă 509C
CONSUMO MENOR QUE 10W
DIMENSDES: 110 X 240 X 166mm
PESO: 2.5Ka PESO: 2.5Kg PREÇO.....CR\$ 4.500,00 *OFERTA*

PONTAS DE PROVA **DEMODULADORA E BAIXA** CAPACITÂNCIA P/ 134-C

ATENUADORA 1:10 ESPECIAL P/ 1311 E 1315

PREÇO......CR\$ 1553,00

			MICROPROCESSADORES				
STATI	C MOS RAM'S		MODEM		UART		
2102FPC MCM6810L 1101A 2101-1N 2111-1N	1024 BIT (1024 X 1) 350ns 128 X 8 BIT STATIC MOS RAM 256 BIT RAM - 1,5us 1024 BIT (256 X 4) RAM 256 X 4 MOS RAM 500ns	100,00 575,00 403,00 200,00 138,00		1.000,00	AY5-1013	UART GENERAL INSTRUMENTS	500,00
271,71	*		MEMORY SUPPORT		MPU (I	Motorola)	
DYNA	MIC MOS RAM'S 1024 BIT (1024 X 1) DYNAMIC RAM	219,00	3222 REFRESH CONTROLLER FOR 4K	518,00	MC 6800B 6820 6821 6850	8 BIT CENTRAL PROCESSOR PIA - PARAL. INERFACE SPIA - (STATIC PIA) ACIA - ASSINCR. COMM. INTERFACE	1200,00 400,00 400,00 400,00
			STANDARD CPU INTERFACE				
ISOPL	ANAR RAM'S		8080A 8 BIT CENTRAL PROCESSOR 2us CYCLE	1.000,00		Land Halle days	A 1 1 2
93410 93415 93411 93421 93425	246 BIT RAM 1024 BIT RAM 256 BIT X 1 256 BIT RAM 1024 X 1	200,00 500,00 200,00 400,00 500,00	8228 SYSTEM CONTROL. AND BUS DRIV.FOR 808 8212 8 INPUT/OUTPUT PORT	30 540,00 433,00	2708 1702 A	PROM'S 1024 X 8 MOS ERASEBLE E PROM 2048 BIT ELETRICAL PROGRAM AND ERA: PROM - 1,7 us	1500,00 SABLE 500,00

OMO COMPRAR NA FILCRES

A) — Cheque visado: Quando a compra for efetuada desta forma, o cliente deverá enviar pelo correio, juntamente com seu pedido, um cheque visado pagável em São Paulo, em nome de «Filcres Imp. Repres. Ltda.», especificando o nome da transportadora e a via de transporte - correio, aérea ou rodoviária.

B) — Reembolso aéreo:

No caso do cliente residir em local atendido pelo reembolso aéreo da Varig, poderá fazer seu pedido por carta ou por telefone, diretamente ao nosso departamento de vendas. Muito cuidado ao colocar o endereco e o telefone de sua residência ou firma, pois disto dependeá o perfeito atendimento por este sistema.

C) - Vale Postal:

Neste caso, o cliente deverá dirigir-se a qualquer agência do correio, onde poderá adquirir um vale postal no valor desejado, em nome de «Filcres Imp. Repres. Ltda.»; o vale deve ser enviado juntamente com o pedido, especificando o nome da transportadora e a via de transporte — correio, aérea ou rodoviária.

Em qualquer um dos sistemas descritos, o cliente deverá remeter a importância de Cr\$ 20,00, para cobrir as despesas de procedimento e embalagem. O frete da mercadoria e os riscos de transporte da mesma correrão sempre por conta do cliente.

Nos casos em que o produto solicitado estiver em falta, no momento do pedido, o cliente será avisado dentro de um prazo máximo de 15 dias e, caso tenha enviado cheque ou vale postal, estes serão devolvidos.

Na Capital:

Atendimento: Rua Aurora, 165, ou pelos telefones 221-3993 221-4451 - 221-6760.

Fora da Capital:

Material diverso - Pedido mínimo Cr\$ 500,00 - Kits da Nova Eletrônica - qualquer valor.

Atenção

- 1) Não atendemos pelo «reembolso postal»
- 2) Precos sujeitos a alterações.
- 3) Cópias de características técnicas Cr\$ 10.00 por tipo.

FILCRES IMPORTAÇÃO E REPRESENTAÇÕES LTDA.

Rua Aurora, 165 - CEP 01209 — Caixa postal 18 767 Tels.: 221-4451 — 221-3993 — 221-6760 — São Paulo

"KITS" NOVA ELETRÔNICA

Pré-amplificador para cápsulas magnéticas — Publicado na NE n.º 14. Pequeno módulo pré-amplificador para ser utilizado com cápsulas fonocaptoras do tipo magnético. Possui equalização RIAA interna, com excelente resposta. Apresenta, também, uma ótima relação sinal/ruído, igual a 65 dB.

LPC-CMOS — Publicado na NE n.º 14. Contador de dois digitos, ampliável, empregando integrado da tecnologia CMOS e «display» monobloco. Apresenta uma série de vantagens, em relação aos contadores TTL: maior flexibilidade na alimentação, menor consumo e maior rejeição de ruidos (até 45% de sua tensão de alimentação). Essa última característica o torna ideal para ser utilizado em ambientes industriais, saturados de ruídos.

Milivoltímetro CMOS — Publicado na Nova Eletrônica de n.º 14. Consiste de um amplificador de tensão com alta impedância de entrada e ótima precisão, utilizando um único amplificador operacional do tipo CMOS — BIFET e projetado para ser acoplado à entrada de voltimetros ou multimetros, analógicos ou digitais, com a finalidade de estender a escala dos mesmos para a área dos milivolts. Possibilita medidas até 300 mV, e fica acondicionado em uma caixa própria de pequenas dimensões, com o formato de uma ponta de prova. Possui alimentação própria, constituída por uma pequena bateria de 9 volts, de longa duração.

compre os seguintes kits montados prontos para usar

- * FREQUENCÍMETRO Cr\$ 3.000,00 Cr\$ 850,00 * MOS-TIME II

"KITS" NOVA ELETRÔNICA

Bridge — Publicado na NE n.º 4, é um amplificador de áudio com 14 W de potência, e alimentad til, presta-se muito bem para o estudo prático do sistema de ligação em ponte (bridge), servindo como problema das baixas potências de saida sobre alto-falantes de 8 ohms, devido à tensão reduzida das ba em automóveis, usando-se divisores eletrônicos, com excelentes resultados em alta-fidelidade e potência.	base para projetos maiores. Util Iterias dos veículos. Pode fazer pa cia acústica.	iza dois integrados TBA 810 e resolve o arte de projetos maiores de sonorização
PREÇO COM CAIXA		
Luzes psicodélicas — Publicado na NE n.º 2, é um aparelho que controla luzes col		
qualquer outra fonte de sinais de áudio. Possui três canais, ou seja, graves, médios e agudos, controla	indo, cada um deles, lâmpadas de	e até 400 watts. Seus efeitos podem ser
adaptados a boates, shows, festas, conjuntos musicais, residências, etc. Apenas para 110 V.		
PREÇO COM CAIXA		
Distorcedor R-VIII — Publicado em duas partes, na NE n.ºs 4 e 5, é o aparelho mo jovens» em geral. Além de produzir efeitos em guitarras elétricas, serve para qualquer instrumento mu impo nas cordas agudas. Trabalha sozinho ou como 3.º módulo do Sintetizador para Instrumentos Mus	isical eletrificado. Não «embaralh icais e Vozes, do Cláudio César.	na» os acordes e tem som prolongado e
PREÇO COM CAIXA		, Cr\$ 370,00
TBA 810 — Publicado na NE n.º 2, é um moderno amplificador de áudio, com 7 W de saida, qu fácil de montar e ideal para auto-rádios e equipamento portátil, alimentado por baterias.	e utiliza um só circuito integrado	(e proteção contra sobretensão). Em kit
preço		
Sustainer — Publicado na NE n.º 1, é um dispositivo dos mais úteis para o guitarrista ou mu lhos importados. Pode ser usado sozinho, como pedal, com bateria, ou em conjunto com os outros mód sar. Prolonga o som de qualquer guitarra ou instrumento eletrificado, tornando-o continuo e facilitando PREÇO COM PRÉ. PREÇO SEM PRÉ.	ulos do Sintetizador para Instrum o solo e acompanhamento.	entos Musicais e Vozes, do Cláudio Cé
Phaser — Publicado na NE n.º 3, vem a calhar para o músico profissional ou amador que utiliz		
etc, etc. Bastante útil no estúdio de gravação, caseiro ou profissional, pode ser empregado tanto em se trumentos Musicais e Vozes, do Cláudio César. Produz o efeito de um avião a jato «passando» pela músi	parado como em conjunto com o ca, ou um «vibrato acentuado».	utros módulos do Sintetizador para Ins
PREÇO COM PRÉ PREÇO SEM PRÉ		Cr\$ 780,00
Alarme ultra-sônico — Publicado na NE n.º 3, em artigo superdetalhado, consis (movimentos) em seu campo ultra-sônico. Possui alcance suficiente para salas normais de até 6 metro: parado, acionará qualquer equipamento, diretamente em 110 V, ou comandará relés, para potências alta das. O detalhamento da descrição permite ao leigo uma montagem bem sucedida. Vem disfarçado em u PREÇO COM CAIXA	s, podendo ter sua sensibilidade : is. Útil na vigilância de crianças, c ma pequena caixa de som, combi	ajustada, conforme a necessidade. Dis- loentes e em aplicações das mais varia- nando com qualquer ambiente.
Luzes dançantes — Consiste de um circuito que, ligado diretamente à saida do amp da música. Possui três canais de luzes, sendo que cada qual responde apenas a uma certa faixa de frec sação de união de sons com imagens. Ideal para bailes ou experiências. Publicado na Nova Eletrônica n	olificador, faz com que um conjun qüências da música: graves, médi	to de luzes acompanhe o ritmo
PREÇO COM CAIXA		Cr\$ 690,00
Digitempo — Novo relógio digital, com «display» de LED's de quatro digitos, sendo dois pa eletrônico, que pode ser programado para despertar em um horário preciso, através de um alto-falante p ço «rápido» e «lento». Sua caixa, confeccionada em plástico de alto impacto, oferece a opção por quatro nica n.º 13. PREÇO	róprio, embutido. O ajuste da hor o cores: preta, laranja, branca e c KIT	a é feito pelo processo de avan- inza. Publicado na Nova Eletrô- MONTADO
COM DESPERTADOR SEM DESPERTADOR	Cr\$990,00 Cr\$890,00	Cr\$ 1.250,00 Cr\$ 1.150,00
Theremin — Publicado na NE n.º 6. Kit de efeitos sonoros para principiantes, agindo com a i auxílio de um rádio normal, portátil ou não.		
PREÇO		Cr\$ 170,00
Strobo — Publicado na NE n.º 6, é «aquela» luz estroboscópica incrementada, para festas e bailo que a torna útil, também, para experiências e fotografías técnicas ou científicas.		
PREÇO COM CAIXA		
Amplificador TDA 2010 / 2020 — Amplificador de alta-fidelidade, uti Publicado na revista Nova Eletrônica n.º 11.		
PREÇO TDA 2010		
Multimetro digital — Publicado nos números 1 e 2 de NE, é um instrumento de grar te continua. Seu mostrador é digital, ou seja, fornece as medidas sob a forma de números, diretamente,	e é de 3½ dígitos.	•
PREÇO COM CAIXA		Cr\$ 2.950,00
Sirene eletrônica — Publicado na NE n.º 1, produz um som semelhante ao das sirenes PREÇO		

locimetros, indicadores de niv	el de combustível, multimetros, etc. Adapt	The Broad and the State of the		
				Cr\$ 425,00
Aceita base de tempo da rede proteger o instrumento.	ou, para ainda maior precisão, um oscilad	s 4, 5 e 6. Mede, digitalmente, freqüèncias de lor padrão a cristal. Vem com uma caixa mo	dular de alumínio, fácil de montar, e ba	stante robusta, para
	The state of the s			
cuitos TTL. Adapta se, porém,	a qualquer outra aplicação que necessite			
reduzidas, e conta de 0 a 9. Am	pliável para contar até 99.999, etc. Pode se	blicado na NE n.º 3, consiste em um conjunt ir empregado em qualquer aplicação que lhe	forneça pulsos de no máximo 5 V na ent	rada.
O NOVO tacôr	netro digital - Publicado na	a NE n.º 7, conta o número de rotações do m ro de tempos e cilindros. Seu mostrador é diç	otor do automóvel, proporcionando eco	
PREÇO COM CAIX	ΚΑ		·····	. Cr\$ 800,00
lhante à da bateria do carro). Ú	til, também, para quem desejar ouvir músi	7, foi idealizada para servir aos operadores o ca de toca-fitas, em casa.		
PREÇO COM CAIX	(A			Cr\$ 1.200,00
que uma tecla é apertada. Publ	licado no n.º 11 de Nova Eletrônica.	a. Funciona com 3 LED's, indicando aleatoria		
mesmo, sem causar distorçõe:	s. Adaptável a microfones dinâmicos ou de	ito para ser instalado entre o microfone e o e cristal. Publicado na revista Nova Eletrônic	a n.º 11.	10 mm 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pal é um módulo que já vem mo	ontado e, portanto, para ter o relógio opera co rápido e lento. Publicado na revista Nov	s, que funciona com digitos de LED's. Pode ndo, basta ligá-lo ao transformador de alime a Eletrônica n.º 11.	ntação e montá-lo em sua caixa de alum	Seu circuito princi- ínio. O acerto da ho-
PREÇO COM CAIX	<Α			. Cr\$ 690,00
Gerador de fui das em seis faixas. Muito útil e	nções — Publicado na NE n.º 7, for em áudio, para análise de amplificadores e	nece formas de onda senoidais, quadradas, l outros equipamentos; de grande utilidade, l	triangulares, em rampa e pulsos, de 0,1	
PRECO COM CALX	erador de ondas quadradas ou pulsos. (Δ			Cr\$ 1.350.00
and the second s		circuito dirigido aos principiantes, como uma		
		unigido aos principiantes, como unia		. Cr\$ 260,00
		E n.º 8, utiliza um.TRIAC e apenas mais cinc		dade de batedeiras.
furadeiras, liquidificadores, ve prático e superportátil, não nec	ntiladores, etc., e a luminosidade de abaju cessitando nenhuma troca de componente	res. Pode ser usado com aparelhos até 500 \ es para operação em 220 V.	W, em 110 V, e com aparelhos de 1000 W	, em 220 V. É um kit
PREÇO COM CAIX				. Cr\$ 220,00
«carga concluida», por meio do n.º 9 de Nova Eletrônica.	o acendimento de um LED. Além disso, co	a da bateria do carro, em casa. Fornece um enta com uma proteção interna contra curto	-circuitos. E um conjunto seguro e com	possui indicação de pacto. Publicado no
PREÇO COM CAIX	(A			Cr\$ 780,00
amador de eletrônica. Fornece e curto-circuitos e apresenta u	uma tensão, em variação contínua, de 0 a m «ripple» baixíssimo na saída	— Publicada no n.º 9 de Nova Eletrônica, 15 volts e 2 ampères de corrente, em qualqu	ier tensão. É dotado de proteção interna	de todo técnico ou contra sobrecargas
				Cr\$ 1.300,00
gitos e o ponto decimal é auto	ligital — Mede, com grande precisá mático, proporcionando uma leitura em u úmeros 13 e 14 de Nova Eletrônica.	io, capacitâncias entre 100 pF e 1000 uF, div F, em todas as escalas. Seu circuito inclui, a	ididas em três escalas. O aparelho poss ainda, indicação automática de sobrecar	ui quatro di- rga de medi-
PRECO COM C	AIXA		Cr\$ 1	1.250,00
Interruptor pe um simples contato dos dedos	lo toque — Sistema eletrônico, s com uma placa de alumínio. Permite dois	imples e compacto, apropriado para acende níveis de acendimento: meio brilho e brilho	r e apagar lâmpadas incandescentes em	abajures, a
PRECO COM C	ntegrados da tecnologia CMOS. Publicado			100.00
Relógio digital	l para automóveis_	telógio digital, semelhante ao Mos Time, par stá desligado, o «display» permanece apaga:	ra ser instalado no painel do carro. Indic	
funciona ininterruptamente, de PREÇO COM CAIX	e maneira a fornecer a hora certa, sempre c	ue o motor é ligado. Publicado nos n.ºs 8 e 9	de Nova Eletrônica.	. Cr\$ 950,00
componentes, inclusive o alto-		letrônico, com 9 notas e que não exige afina os sobre a placa de circuito impresso. Um b		
Nova Eletrônica n.º 9. PREÇO SEM CAIX	A			. Cr\$ 200,00

uma luz correndo sequencialmente sobre qua	publicado no n.º10de Novà Eletrônica. Consiste em um circuito para produzir efeitos luminosos em bailes e festas, sob a forma de tro canais de lámpadas. Os efeitos criados são inumeros, variar no se o número de lámpadas por canal e também acordas mesmas. Cr\$ 690,00
Transmissor de FM — Paté uma distância de 10 ou 20 m. Ideal para se	ublicado no n.º 12 de Nova Eletrônica. Consiste de um aparelho portátil, através do qual pode de transmitir voz ao receptor de FM, rvir de comunicador de uma via, ou em brincadeiras, transmitindo programas «caseiros» de rádio para o receptor de FM. Cr\$ 220,00
Novos contadores am forma de módulos ampliáveis, de dois digitos	pliáveis, de dois dígitos — Publicados em Nova Eletrônica n.º 12. São dois tipos de contadores, sob a cada. Um deles é um contador unidirecional (somente contagem progressiva), enquanto o outro é um bidirecional (contagem pro-
PREÇO UNIDIRECIONAL PREÇO BIDIRECIONAL	
consiste de um «alargador» de faixa, permitino PREÇO	e Nova Eletrônica. Ideal para ser adaptado ao frequêncimetro digital da Nova Eletrônica ou a qualquer outro frequencimetro digital, do um alcance de medida de até 250 MHz. Na realidade, é um divisor por 10 de alta velocidade, que emprega a lógica ECL. Cr\$ 650,00
bo adequado. Utiliza um único circuito integra PREÇO	Or — Publicado na Nova Eletrônica n.º 12. Este novo aparelho permite conexões, entre seus dois postos, de até 80 m, com o cado (amplificador operacional). De aparência sóbria, adapta-se a qualquer tipo de ambiente, seja ele familiar ou comercial. Cr\$ 530,00
AMPLIFICADOR EST cápsulas magnética e cerâmica, gravador e sir plificador de potência é formado por um único	ÉREO 7+7 W — Publicado no n.º 14 de Nova Eletrônica. Excelente amplificador de dois canais, com entradas para itonizadores. É composto por um controle de tonalidade tipo Baxandall (graves e agudos separados) e controle de balanço. Seu amcircuito integrado tipo TBA 810. Aceita conexão tanto em 110 como em 220 volts. A distorção harmônica é de 0,3%, a 3 watts. Cr\$ 1.300,00
cente, sendo mais econômico que os displays	
PREÇO COM CAIXA	TO DODERÃO SER ENCONTRADOS.
	TS PODERAO SER ENCONTRADOS:
SAO PAULO	Filores Imp. e Repres. Ltda. — Rua Aurora, 165
DIO DE IANEIDO	CEP 01209 — CP. 18.767-SP — Tels.: 221-4451 — 221-3993 Deltronic Com. de Equipamentos Ltda.
KIU DE JANEIRO	Rua República do Líbano, 25 — Tel.: 252-2640
RIO GRANDE DO SUL	Digital Componentes Eletrônicos Ltda. Porto Alegre — Rua da Conceição, 381 — Tel.: (0512) 24-4175
CAMPINAS	
PARANÁ	Transiente Comércio de Aparelhos Eletrônicos Ltda. Curitiba — Av. Sete de Setembro, 3.664 — Tel.: 24-7706
MINAS GERAIS	Casa Sinfonia Ltda.
	Belo Horizonte — Rua Levindo Lopes, 22 — Tels.: 223-3412 - 225-3470
PERNAMBUCO:	Bartô Eletrônica
	Recife — Rua da Concórdia, 312 — Tels.: 224-3699 — 224-3580
CEARÁ:	Eletrônica Apolo 226-0770
VITÓRIA:	Fortaleza — Rua Pedro Pereira, 484 — Tels.: 231-0770 Casa Strauch
VII ONIA.	Espírito Santo — Av. Jerônimo Monteiro, 580 — Tel.: 223-4657
BRASTTTA.	Yara Eletrônica
many Luia.	CLS201 Bloco E Loja 19 Tel.: 224-4058 225-9668
SALVADOR:	TV-Peças Ltda Rua Saldanha da Gama, 9 - Sé Tel.: 242-2033
florianópolis:	Eletrônica Radar Ltda Rua General Liberato Bitencur, 1999
	espondente ao kit que deseja, peça a e nos a enviaremos, juntamente com o kit. É necessário ter a revista em mãos para efetuar a
	Goes Para receber a revista, adicione, ao preço do kit, o preço de capa do último número nas bancas. O DEPARTAMENTO TECNICO DA FILCRES PARA RESOLVER
	ER DÚVIDA NA MONTAGEM DOS KITS NOVA ELETRÔNICA.

FOTOMalikit

LABORATÓRIO
PARA A PRODUÇÃO
DE PLACAS DE
CIRCÚITO IMPRESSO
POR PROCESSO
FOTOGRÁFICO

- Sistema fácil e prático.
- Material de fácil reposição.
- Possibilita a gravação de traços milimátricos
- Permite a produção do próprio fotolito.

ideal para

- Produção industrial em pequena
- Protétions
- Prototipos
- Hobistas

- Sistema fácil e prático
 - Material de fácil reposição
 - Possibilita a gravação de traços milimétricos
- Produz o próprio fotolito (filme fotográfico)

Ideal para:

- Produção industrial em pequena escala
- Protótipos
- **Amadores**
- **Hobistas**

VENDA NA FILCRES IMP. REPR.

LTDA.

RUA AURORA, 165 CEP 01209 -CAIXA POSTAL 18.767 TEL.: 221-4451,

221-3933, - S.P.

NATIONAL SEMICONDUCTOR:

Esta é uma visão precisa, mas altamente simplificada, da fábrica de circuitos integrados da National Semiconductor, sediada em Santa Clara, na Califórnia. Não poderíamos, realmente, fazer justiça a todos os aspectos técnicos de um processo que requer, freqüentemente, tolerâncias da ordem de 75 milionésimos de polegada; não poderíamos nem mesmo revelar a enorme variedade de processos exclusivos que utilizamos.

Mas queremos que você saiba que mais de 700 engenheiros, físicos, metalúrgicos e projetistas da National estão constantemente aperfeiçoando a tecnologia e os processos. E os esforços de todos eles estão orientados de modo a fornecer a você o produto mais avançado e confiável do nosso tempo.

