给几何人的平展上同调基础

温尊

2023年3月29日

摘要

平展上同调是代数几何中非常重要的一部分,同时也是比较基础的一部分,广泛应用在各个方向. 这篇笔记将以 Milne 的讲义为大体顺序,以几何人的视角讲述 平展上同调的基础理论,为后续代数几何的学习和研究扫清一些障碍. 本笔记也得到了舍友很多支持, 感谢他对这个笔记的贡献和帮助.

目录

1	平展上同调简介	4
2	平展基本群	5
3	景和层和层化	7
4	平展拓扑上的层 4.1 基本结果和例子 4.2 平展预层/层的茎 4.3 常值层和局部常值层 4.4 Abel 群预层和层构成的范畴 4.5 Kummer 理论和 Artin-Schreier 列 4.6 拟凝聚层	10 12 13 13
5	层的一些函子 5.1 直像	15
6	6.1 定义 6.2 群上同调一瞥 6.3 点的上同调 6.4 严格 Hensel 局部环的上同调 6.5 平展上同调和极限一瞥	18 18 19 19
	6.6 支撑在闭集的上同调及性质	20

7		2 1
	7.1 Čech 上同调	
	7.2 Cecn-专出值序列	
	7.4 应用 II——拟凝聚层的上同调	
	7.5 挠子理论一瞥和应用	
8	高阶直像	26
	8.1 基础性质	
	8.2 Leray 谱序列	27
9	曲线的上同调 I——基础结果	27
	9.1 Brauer 群和 C_r 域一瞥	28
	9.2 $\mathbb{G}_{m,X}$ 的上同调 \dots	
	9.3 $\mu_{n,X}$ 的上同调	
	9.4 支撑在点上的上同调	31
10	可构建层和挠层	32
	10.1 可构建层	
	10.2 挠层	33
11	曲线的上同调 II——挠层的上同调	34
	11.1 迹映射方法基础	
	11.2 挠层的上同调	34
12	上同调维数 I───一般情况	36
13	紧合基变换和光滑基变换	37
	13.1 经典拓扑里的紧合基变换	
	13.2 紧合基变换的叙述和证明	
	13.3 紧合基变换的应用	
	13.4 经典拓扑里的光滑基变换	
	13.6 光滑基变换的应用	
14	· 上同调维数 II——仿射情况	42
15	ℓ -进层和 ℓ -进上同调	42
16	平展上同调的 Künneth 公式	42
17	· · 比较定理	42
	17.1 常值层上同调-奇异比较定理	
	17.2 平展-奇异比较定理	
	17.3 其他比较定理	42

参:	考文献	44
索	3	43
	25.2 Mordell-Weil 定理	
	25.1 Abel 簇的平展上同调	
25	平展上同调的一些应用 II——Abel 簇相关	42
24	平展上同调的一些应用 I 24.1 Néron-Severi 定理	
23	Weil 上同调理论	42
22	Lefchetz 迹公式	42
2 1	Poincaré 对偶	42
2 0	链映射和 Chern 类	42
19	紧支上同调	42
18	纯性和 Gysin 序列	42

1 平展上同调简介

何为平展上同调? 举一个简单的例子, 取 X 为 $\mathbb C$ 上的代数簇, 其解析化 X^{an} 可以对应奇异上同调 $H^i(X^{\mathrm{an}},\mathbb Z)$ 满足

- (i) 是有限生成 ℤ 模;
- (ii) 群 $H^i(X^{an}, \mathbb{C})$ 有额外的结构;
- (iii) 和代数链有关系.

所以平展上同调的目标就是定义一个类似奇异上同调的上同调理论 (满足类似性质的上同调称为 Weil 上同调理论,还有其他的 Weil 上同调理论,例如经典的 de Rham上同调,代数 de Rham上同调和晶体上同调)使其适用于更加一般的概形上去.

在平展上同调中, 我们会发现挠系数的上同调, 例如 $\mathbb{Z}/n\mathbb{Z}$ 系数的上同调可以比较好的模拟奇异上同调. 但会发现 $H^2_{\mathrm{\acute{e}t}}(\mathbb{P}^1_{\mathbb{C}},\mathbb{Z})=0$ 而 $H^2(\mathbb{P}^1(\mathbb{C}),\mathbb{Z})=\mathbb{Z}$ 并不能很好的模拟奇异上同调, 另一方面我们发现如下结果:

定理 1.1 (Serre). 不存在上同调理论 H^* 使得 (i) 具有函子性;(ii) 满足 Kunneth 公式;(iii) 对所有椭圆曲线 E 满足 $H^1(E) \cong \mathbb{Q}^2$.

基本思路. 取 E 为超奇异椭圆曲线, 有一个事实是 $\operatorname{End}(E) \otimes \mathbb{Q}$ 是不分裂四元数代数. 根据 (i)(ii) 不难得到 $\operatorname{End}(E)$ 作用在 E 上会诱导出 $\operatorname{End}(E)$ 在 $H^1(E)$, 进而诱导出代数同态 $\operatorname{End}(E) \otimes \mathbb{Q} \to \operatorname{Mat}_{2\times 2}(\mathbb{Q})$. 而根据基本的表示论, 这种同态一定不存在! 故而没有这种上同调理论.

为了在非挠系数下也可以模仿奇异上同调, 我们会定义类似的 ℓ -进上同调理论, 其中 ℓ 和特征 p 互素 (不满足这个情况的需要晶体上同调理论):

$$H^i_{\text{\'et}}(X,\mathbb{Z}_\ell) = \varprojlim H^i_{\text{\'et}}(X,\mathbb{Z}/\ell^n\mathbb{Z}) \not \exists \Pi H^i_{\text{\'et}}(X,\mathbb{Q}_\ell) = H^i_{\text{\'et}}(X,\mathbb{Z}_\ell) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell,$$

这样也可以得到比较好的模拟.

顺便一提, 类似代数拓扑一样, 在概形情况下也可以模拟拓扑的基本群. 给定概形和固定的几何点 (X,\bar{x}) , 可以定义 $\pi_1^{\text{et}}(X,\bar{x})$ 为平展基本群, 其定义事实上是从代数拓扑里偷的, 运用了覆叠变换群和拓扑基本群的关系来定义, 十分合理. 当然之后还有更多的类似不变量, 例如高阶的平展同伦群等.

另一个发展平展上同调, 乃至 Grothendieck 发展代数几何的重要动机就是 Weil 猜想:

猜想 1 (Weil 猜想). 设 $X \in \mathbb{F}_q \perp n$ 维光滑紧合几何整的簇, 设

$$S_X(t) = \exp\left(\sum_{n>0} \frac{\#X(\mathbb{F}_{q^n})}{n} t^n\right),$$

则

- (i) 函数 $S_X(t)$ 是有理函数, 即 $S_X(t) = \prod_{i=0}^{2n} (-1)^{i+1} S_i(t)$, 其中 S_i 是满足一定条件的整系数多项式:
 - (ii) 满足函数方程 $S_X(q^{-n}t^{-1}) = \pm q^{nE/2}t^E S_X(t)$ 其中 $E \neq X$ 欧拉示性数;
 - (iii) 所有零点和极点的绝对值为 $q^{j/2}$ 其中 $j \in \mathbb{Z}$;
- (iv) 若 X 提升为代数整数环 $R \subset \mathbb{C}$ 上的光滑射影簇 Y, 则对于 i=0,...,2n, 流形 $Y(\mathbb{C})$ 的 Betti 数为 $S_i(t)$ 的次数 b_i .

最后结果. (i) 由 Dwork 运用 H^1 的有限生成性得到结果;

- (ii) 由 Gorthendieck 运用 Poincaré 对偶得到;
- (iii)(iv) 由 Deligne 证明.

因此平展上同调是相当成功的上同调理论,而本笔记就是为了在介绍基础理论的同时来阐述这些和代数拓扑,复几何类似的结果和性质.正如题所言,这个笔记是作为几何人的笔者写的,所以有很多我认为就算不知道也无妨,或者自己就能推理的无聊细节(主要集中在交换代数和点集拓扑)就会被我略去.因此可能不适合其他方向的人观看,推荐[10]里的Tag 0BQ6 和Tag 03N1,扶磊教授的书[5]和 Milne 的传世经典[6],我们也会多次引用里面的代数细节.

前置知识: 至少是经典代数几何教材 [3] 的前三章, 还有光滑, 无分歧和平展映射的基本性质, 还有基本的导出范畴. 最好懂一些下降理论. 而会一些基本的代数拓扑和复几何更好.

2 平展基本群

对于连通概形 X, 定义 Fét /X 为 X 上的有限平展态射构成的范畴, 而 Ét /X 为 X 上的平展态射构成的范畴. 给定概形和几何点 (X,\bar{x}) , 定义 (纤维) 函子

$$\mathfrak{F}_{\bar{x}}: \text{F\'et }/X \to \text{Sets}, (\pi:Y \to X) \mapsto \text{Hom}_X(\bar{x},Y).$$

我们寻求这个函子是否可表?也就是说是否存在万有覆叠空间?事实上不一定存在:

例 2.1. 考虑 \mathbb{C} 上射影直线 \mathbb{A}^1 , 存在有限平展映射 $\mathbb{A}^1\setminus\{0\}\to\mathbb{A}^1\setminus\{0\}, x\mapsto x^n$, 那么注定没有像拓扑里的 $\exp:\mathbb{C}\to\mathbb{C}\setminus\{0\}$ 来表示万有覆盖!

但是可以退而求其次, 考虑射可表性: 可以证明 (但我不证明, 事实上 [6] 也没证明. 而 [5] 里有很多证明, 想看的读者可以看看) 存在有限平展覆盖组成的定向逆系统

$$X' = ((X_i, f_i)_{i \in I}, \phi_{ij} : X_j \to X_i, f_i = \phi_{ij} \circ f_j, f_i \in \mathfrak{F}_{\bar{x}}(X_i))$$

使得

$$\operatorname{Hom}(X',Y) := \varinjlim \operatorname{Hom}_X(X_i,Y) \to \mathfrak{F}_{\bar{x}}(Y), \sigma \mapsto \sigma(f_i)$$

是同构. 事实上可以选取 X_i/X 为 Galois 覆盖, 也就是说 $\deg(X_i/X) = \#\mathrm{Aut}_X X_i$, 见 [6] 注 5.4.

选取好 Galois 覆盖, 对于 $\phi_{ij}: X_j \to X_i$ 可以诱导 $\operatorname{Aut}_X X_j \to \operatorname{Aut}_X X_i$ 如下: 注意到 $\operatorname{Aut}_X X_j \to \mathfrak{F}_{\bar{x}}(X_j), \sigma \mapsto \sigma(f_j)$ 是双射 (由于是 Galois 覆盖, 见 [5] 第三节), 则通过 $F(X_j) \to F(X_i), \alpha \mapsto \phi_{ij}(\alpha)$ 即得到映射.

定义 2.1. 对于连通概形 X 和几何点 \bar{x} , 考虑上述构造, 定义平展基本群为

$$\pi_1^{\text{\'et}}(X, \bar{x}) = \varprojlim \operatorname{Aut}_X X_i$$

赋予有限离散拓扑的射影极限拓扑,

定理 2.2. 考虑连通概形 X 和几何点 \bar{x} .

- (i) 函子 $\mathfrak{F}_{\bar{x}}$ 诱导出 Fét /X 到有限 $\pi_1^{\text{\'et}}(X,\bar{x})$ -集的等价;
- (ii) 取第二个几何点 \bar{x}' , 我们有 $\mathfrak{F}_{\bar{x}} \cong \mathfrak{F}_{\bar{x}'}$ 进而诱导 $\pi_1^{\text{\'et}}(X,\bar{x}) \cong \pi_1^{\text{\'et}}(X,\bar{x}')$, 并且和(i) 契合;
 - (iii) 平展基本群有函子性, 并且和 (i) 交换.

证明. 这些都比较复杂, 秉承几何人的优良品质, 我们直接默认它们吧! 参考Tag 0BND.

例 2.2. (i) 对一个点 $X = \operatorname{Spec}(k)$ 和几何点 Ω , 由定义知道 $\pi_1^{\text{\'et}}(X,\Omega) = \operatorname{Gal}(k^{\text{sep}}/k)$; (ii) 考虑 \mathbb{C} 上的 $X = \mathbb{A}^1 \setminus \{0\}$, 则考虑 $x \mapsto x^n$ 得到

$$\pi_1^{\text{\'et}}(X, \bar{x}) = \varprojlim \operatorname{Aut}_X X_i = \varprojlim \boldsymbol{\mu}_n(k) \cong \widehat{\mathbb{Z}} \cong \prod_{\ell} \mathbb{Z}_{\ell};$$

- (iii) 考虑代数闭域上的 $X = \mathbb{P}^1$, 由 Riemann-Hurwitz 公式不难得到 X 只有平凡的平展覆叠, 故 $\pi_1^{\text{\'et}}(X,\bar{x}) = 1$. 归纳可以得到 $\pi_1^{\text{\'et}}(\mathbb{P}^n,\bar{x}) = 1$;
- (iv) 事实上我们对 $\pi_1^{\text{\'et}}(\mathbb{A}_k^1, \bar{x})$ 都一无所知, 其中 k 是正特征域 (根据 Artin-Scheier 列, 起码不是平凡的群<math>);
 - (v) 对于正规簇 X, 考虑一般点上的几何点 \bar{x} , 假设

 $L = \bigcup \{ \Pi \in \mathcal{L} \setminus \{ \Pi \in \mathcal{L$

则 $\pi_1^{\text{\'et}}(X, \bar{x}) \cong \text{Gal}(L/K(X))$, 参考 [5] 命题 3.3.6.

自然的, 我们也会考虑平展基本群和拓扑基本群有何种联系? 我们有以下重要的比较定理:

定理 2.3 (Riemann 存在定理). 设 X 是 $\mathbb C$ 上的有限型概形, 则由范畴等价

$$(\text{F\'et}/X) \to (\text{FTopCov}/X^{\text{an}}).$$

特别的有 $\pi_1^{\text{\'et}}(X, \bar{x}) \cong \pi_1(\widehat{X^{\text{an}}}, x)$, 为射有限完备化.

证明. 这个证明更加复杂, 我们也直接承认, 请参考 [2] 的定理 XII.5.1.

这样我们就可以通过拓扑基本群来计算许多 € 上的有限型概形的平展基本群了.

注 2.4 (算术和数论人的最爱). (i) 对于 X 为 k 上几何连通的簇, 我们有正合列 (参考 [5] 命题 3.3.7):

$$1 \to \pi_1^{\text{\'et}}(X_{k^{\text{sep}}}, \bar{x}) \to \pi_1^{\text{\'et}}(X, \bar{x}) \to \text{Gal}(k^{\text{sep}}/k) \to 1;$$

(ii) 对于 $X = \mathbb{P}^1_{\mathbb{Q}} \setminus \{0,1,\infty\}$, 运用正合列得到

$$1 \to \pi_1^{\text{\'et}}(X_{\mathbb{Q}^{\text{al}}}, \bar{x}) \to \pi_1^{\text{\'et}}(X, \bar{x}) \to \operatorname{Gal}(\mathbb{Q}^{\text{al}}/\mathbb{Q}) \to 1.$$

嵌入 $\mathbb{O}^{al} \hookrightarrow \mathbb{C}$ 可以得到

$$\pi_1^{\text{\'et}}(X_{\mathbb{O}^{\text{al}}}, \bar{x}) \cong \langle a, b, \widehat{c|abc} = 1 \rangle.$$

而群 $\operatorname{Gal}(\mathbb{Q}^{\operatorname{al}}/\mathbb{Q})$ 则十分复杂, 如果完全了解它就可以了解相当一部分的算术猜想和结果 (摘自 J. Milne 的讲义 |7|).

3 景和层和层化

本质就是推广拓扑空间的定义.

定义 3.1 (Grothendieck 拓扑和景). 设 C 是范畴, 一个 C 上的 Grothendieck 拓扑由集合 $\{\{U_i \to U\}_{i \in I}\} = Cov(U)$ 组成, 其中 U 是任意对象, 满足

- (i) 若 $V \to X$ 是同构,则 $\{V \to X\} \in Cov(X)$;
- (ii) 若 $\{X_i \to X\}_{i \in I} \in \mathrm{Cov}(X)$ 且 $Y \to X$ 是任意态射, 则纤维积 $X_i \times_X Y$ 存在且

$${X_i \times_X Y \to Y}_{i \in I} \in Cov(Y);$$

(iii) 若 $\{X_i \to X\}_{i \in I} \in Cov(X)$ 且对任意 $i \in I$ 都给定 $\{V_{ij} \to X_i\}_{j \in J_i}$, 则

$${V_{ij} \to X_i \to X}_{i \in I, j \in J_i} \in Cov(X).$$

范畴 C 和其上的 Grothendieck 拓扑称为景.

例 3.1 (小 Zariski 景). 假设 X 是一个概形. 考虑范畴 Op(X) 由开子概形构成, 态射是包含关系. 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U = \bigcup_i U_i$. 记这个景为 X_{Zar} .

例 3.2 (大 Zariski 景). 假设 X 是一个概形. 考虑范畴 Sch/X, 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 为开浸入且 $U = \bigcup_i U_i$. 记这个景为 X_{ZAR} .

例 3.3 (小平展景). 假设 X 是一个概形. 考虑范畴 $\operatorname{Ét}/X$, 不难证明里面的态射都是平展的, 所以我们不假设条件. $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $\coprod_{i \in I} U_i \to U$ 是满射. 记这个景为 $X_{\operatorname{\acute{e}t}}$.

例 3.4 (大平展景). 假设 X 是一个概形. 考虑范畴 Sch/X , 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 平展且 $\coprod_{i \in I} U_i \to U$ 是满射. 记这个景为 $X_{\mathrm{\acute{E}t}}$.

例 3.5 (fppf 景). 假设 X 是一个概形. 考虑范畴 Sch/X , 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 平坦和局部有限表现,且 $\coprod_{i \in I} U_i \to U$ 是满射. 记这个景为 X_{fppf} .

定义 3.2. 景 C 上的预层为函子 $F: C^{op} \to Sets$;

定义 3.3. 给定景 C 和其上的预层 F.

- (i) 预层 F 称之为分离的, 如果对任意的 $U \in \mathcal{C}$ 和覆盖 $\{U_i \to U\}_{i \in I} \in \operatorname{Cov}(U)$, 诱导态射 $F(U) \to \prod_{i \in I} F(U_i)$ 是单射;
- (ii) 预层 F 称为层, 如果对任意的 $U \in \mathcal{C}$ 和覆盖 $\{U_i \to U\}_{i \in I} \in \operatorname{Cov}(U)$, 我们有如下等化子:

$$F(U) \longrightarrow \prod_{i \in I} F(U_i) \Longrightarrow \prod_{i,j \in I} F(U_i \times_U U_j)$$

其中态射被 $U_i \times_U U_i \to U_i$ 和 $U_i \times_U U_i \to U_i$ 诱导.

定义 3.4. 一个范畴称为 Grothendieck 意象 (Topos) 如果其等价于某个景上的层范畴.

定义 3.5 (层化). 在某个景 \mathcal{C} 上, 取定 $\mathscr{D} \in \operatorname{PreSh}(\mathcal{C})$, 称 $\mathscr{D}^{\sharp} \in \operatorname{Sh}(\mathcal{C})$ 使得 $\mathscr{D} \to \mathscr{D}^{\sharp}$ 是 \mathscr{D} 的层化, 如果任取 $\mathscr{G} \in \operatorname{Sh}(\mathcal{C})$ 和 $\mathscr{D} \to \mathscr{G}$, 都有交换图:

$$\begin{array}{ccc} \mathscr{P} & \longrightarrow \mathscr{P}^{\sharp} \\ \downarrow & & \\ \downarrow & & \\ \mathscr{G} & & \\ \end{array}$$

定理 3.6. 在某个景 \mathcal{C} 上, 取定 $\mathscr{P} \in \operatorname{PreSh}(\mathcal{C})$. 对某个覆盖 $\mathfrak{U} = \{U_i \to U\} \in \operatorname{Cov}(U)$, 定义

$$\check{H}^0(\mathfrak{U},\mathscr{P}) := \ker \left(\prod_i \mathscr{P}(U_i)
ightrightarrows \prod_{i,j} \mathscr{P}(U_i imes_U U_j) \right).$$

故有典范映射 $\mathcal{P}(U) \to \check{H}^0(\mathfrak{U}, \mathcal{P})$. 不难证明不同覆盖可以诱导良定义的态射且和覆盖间映射选取无关 (参考 $Tag\ 03NQ$), 故定义

$$\mathscr{P}^+: U \mapsto \varinjlim_{\mathfrak{U}} \check{H}^0(\mathfrak{U}, \mathscr{P}).$$

- (i) 函子 9+ 是分离预层;
- (ii) 若 \mathscr{P} 是分离预层,则 \mathscr{P}^+ 是层且 $\mathscr{P} \to \mathscr{P}^+$ 单射;
- (iii) 若 \mathcal{P} 是层, 则 $\mathcal{P} \to \mathcal{P}^+$ 是同构;
- (iv) 不论如何 \mathscr{D}^{++} 一定是层, 且 $\mathscr{D}^{++} \cong \mathscr{D}^{\sharp}$.

证明. 这是纯粹的层论推导, 参考Tag 00WB.

П

推论 3.8. 在某个景 \mathcal{C} 上, 取定 $\mathscr{D} \in \operatorname{PreSh}(\mathcal{C})$. 则 \sharp : $\operatorname{PreSh}(\mathcal{C}) \to \operatorname{Sh}(\mathcal{C})$ 是个函子, 且若规定遗忘函子为 $i: \operatorname{Sh}(\mathcal{C}) \to \operatorname{PreSh}(\mathcal{C})$, 则有 (\sharp,i) 是伴随函子. 特别的, 函子 \sharp 是正合函子.

推论 3.9. 考虑图 $\mathscr{F}: \mathcal{I} \to \operatorname{Sh}(\mathcal{C})$, 则 $\varprojlim_{\mathcal{I}} \mathscr{F}$ 存在且和预层范畴内一样, 而 $\varinjlim_{\mathcal{I}} \mathscr{F}$ 存在且为预层范畴内的层化.

证明. 也是纯粹的层论验证, 见Tag 00W2和Tag 00WI.

4 平展拓扑上的层

我们一般考虑小平展景 $X_{\text{\'et}}$. 记 $Sh(X_{\text{\'et}})$ 是集合取值的平展层范畴, 而 $Ab(X_{\text{\'et}})$ 是 Abel 群取值的平展层. 类似的预层范畴也为 $PreSh(X_{\text{\'et}})$ 和 $PreAb(X_{\text{\'et}})$.

4.1 基本结果和例子

命题 **4.1.** 固定概形 X, 对于 $\mathscr{F} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$. 若 \mathscr{F} 在限制到 Zariski 开覆盖时满足层条件, 且对于仿射平展覆盖 $V \to U$ 满足层条件, 则 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$.

证明. 详细细节参考 [6] 命题 II.1.5. 简单来说就是运用 Zariski 开覆盖上的条件会给出:对于概形 $V = \coprod_i V_i$,我们有 $\mathscr{F}(V) = \prod_i \mathscr{F}(V_i)$. 运用这个我们发现如果单个映射组成的平展覆盖 $\coprod_i U_i \to U$ 满足等化子条件,那么 $\{U_i \to U\}$ 也满足等化子条件(因为 $\coprod_i U_i \times_U \coprod_j U_j = \coprod_{i,j} U_i \times_U U_j$). 根据仿射平展覆盖满足等化子条件,我们轻易得到 $\{U_i \to U\}_{i \in I}$ 也满足等化子条件,其中 I 有限且 U_i 仿射. 对于一般情况,需要证明相 互契合,追图细节略去.

例 4.1 (结构层). 给定概形 X. 定义 $\mathcal{O}_{X,\text{\'et}}$ 为 $\mathcal{O}_{X,\text{\'et}}(U) := \Gamma(U,\mathcal{O}_U)$. 我们断言 $\mathcal{O}_{X,\text{\'et}} \in \mathrm{Sh}(X_{\text{\'et}})$. 运用4.1, 这其实就是环的忠实平坦下降: 设环同态 $f:A \to B$ 忠实平坦,则有正合列:

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{b \mapsto 1 \otimes b - b \otimes 1}{\longrightarrow} B \otimes_A B$$

证明颇为经典, 分成三步:(a) 证明如果 f 有一个截面, 则命题成立;(b) 证明如果存在另一个忠实平坦同态 $A \to A'$ 使得命题对 $A' \to A' \otimes_A B$ 成立, 则也对 $A \to B$ 成立;(c) 发现 $B \to B \otimes_A B, b \mapsto b \otimes 1$ 存在截面 $b \otimes b' \mapsto bb'$.

例 4.2 (由概形表示的层). 给定概形 X. 取定 Z 为 X-概形, 定义为 $h_Z := \operatorname{Hom}_X(-, Z)$. 事实上通过 (i) 的正合列也容易得到 $h_Z \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$. 下面有几个常用的例子:

- (a) 定义 $\mu_{n,X}(T) = \{ \zeta \in \Gamma(T, \mathcal{O}_T) : \zeta^n = 1 \}$, 即 $\mu_{n,X}$ 被 $\underline{\operatorname{Spec}}_X \mathcal{O}_X[t]/(t^n 1)$ 表示;
 - (b) 定义 $\mathbb{G}_{a,X}(T) = \Gamma(T, \mathcal{O}_T)$, 即 $\mathbb{G}_{a,X}$ 是被 \mathbb{A}^1_X 表示的函子;
 - (c) 定义 $\mathbb{G}_{m,X}(T) = \Gamma(T, \mathscr{O}_T^*)$, 即 $\mathbb{G}_{m,X}$ 是被 $\underline{\operatorname{Spec}}_X \mathscr{O}_X[t, t^{-1}]$ 表示的函子;
 - (d) 定义 $\mathrm{GL}_{n,X}(T) = \mathrm{GL}_n(\Gamma(T,\mathcal{O}_T))$, 即 $\mathrm{GL}_{n,X}$ 是被

$$\underline{\operatorname{Spec}}_X \mathscr{O}_X[\{x_{ij}\}_{1 \leq i,j \leq n}][1/\det(x_{ij})]$$

表示的函子.

例 4.3 (拟凝聚层). 给定概形 X. 考虑 $\mathcal{M} \in \operatorname{Sh}(X_{\operatorname{Zar}})$ 是拟凝聚的, 定义 $\mathcal{M}^{\operatorname{\acute{e}t}}(\phi:U \to X) := \Gamma(U,\phi^*\mathcal{M})$. 运用4.1和更一般的正合列: 环同态 $f:A \to B$ 忠实平坦且 M 为 A-模, 则有正合列

$$0 \longrightarrow M \longrightarrow B \otimes_A M \Longrightarrow B \otimes_A B \otimes_A M$$

即可得到 $\mathcal{M}^{\text{\'et}} \in \text{Sh}(X_{\text{\'et}})$.

命题 **4.2** (点上的层范畴). 对于 $X = \operatorname{Spec} k$, 有范畴等价

$$\operatorname{Sh}(X_{\operatorname{\acute{e}t}}) \to (\operatorname{\mathbf{B}} \operatorname{\mathbb{R}} \operatorname{Gal}(k^{\operatorname{sep}}/k) - \operatorname{\mathbf{\$}}), \mathscr{F} \mapsto M_{\mathscr{F}} := \varinjlim_{k^{\operatorname{sep}} \supset k'/k \operatorname{\mathsf{f}} \operatorname{\mathbb{R}} \ \operatorname{Galois}} \mathscr{F}(\operatorname{Spec} k').$$

证明. 定义逆为 $M\mapsto \mathscr{F}_M:=(A\mapsto \operatorname{Hom}_G(\operatorname{Hom}_{k-\mathrm{alg}}(A,k^{\mathrm{sep}}),M))$. 见Tag 03QT. $\ \ \Box$

注 4.3. 类似的有范畴等价

$$Ab(X_{\text{\'et}}) \rightarrow ($$
离散 $Gal(k^{\text{sep}}/k) -$ 模).

4.2 平展预层/层的茎

定义 4.4 (平展邻域). 给定概形 X, 称几何点 \bar{x} 的一个平展邻域为如下图表:

$$\bar{x} \xrightarrow{\bar{u}} V \downarrow_f$$

$$\bar{x} \xrightarrow{\bar{x}} X$$

其中 f 平展. 我们记为 $(U, \bar{u}) \to (X, \bar{x})$.

引理 4.5. 给定概形 X 和几何点 \bar{x} , 则

- (*i*) 给定两个平展邻域 (U_i, \bar{u}_i)_{*i*=1,2}, 存在第三个平展邻域 (U, \bar{u}) 和态射 (U, \bar{u}) → (U_i, \bar{u}_i);
- (*ii*) 假设 $h_1, h_2: (U_1, \bar{u}_1) \to (U_2, \bar{u}_2)$ 是平展邻域的态射,则存在第三个平展邻域 (U, \bar{u}) 和态射 $h: (U, \bar{u}) \to (U_1, \bar{u}_1)$ 使得 $h_1 \circ h = h_2 \circ h$.
- 证明. (i) 只需考虑 $U = U_1 \times_X U_2$, 而 $\bar{s} \to U$ 被 (\bar{u}_1, \bar{u}_2) 定义;
 - (ii) 定义 U 为纤维积

$$U \xrightarrow{\Gamma} U_1 \\ \downarrow \qquad \downarrow^{(h_1, h_2)} \\ U_2 \xrightarrow{\Delta} U_2 \times_X U_2$$

并定义 $\bar{u} = (\bar{u}_1, \bar{u}_2)$.

注 4.6. 在 (ii) 内, 通过一些假设, 我们可以使得态射 $h_1 = h_2$: 若我们有诺特分离概形的图标

$$X \xrightarrow{g} Y$$

$$\downarrow^{q} q$$

$$X \xrightarrow{p} S$$

其中 Y 连通且 p,q 平展,则 g=g'. 这是因为 $\delta: X \to X \times_S X$ 平展且是闭浸入,则 $X \times_S X = \delta(X) \sqcup Z$ 为连通分支的无交并. 注意到 $g \times g': Y \to X \times_S X$ 有连通的像. 根据图知 $\delta(X) \cap \operatorname{Im}(g \times g') \neq \emptyset$,故 $\operatorname{Im}(g \times g') \subset \delta(X)$,故 g=g'.

定义 4.7. 给定概形 X 和 $\mathcal{P} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$. 给定几何点 \bar{x} , 定义 \mathcal{P} 在 \bar{x} 的茎为

$$\mathscr{P}_{\bar{x}} := \varinjlim_{(U,\bar{u})} \mathscr{P}(U)$$

其中余极限遍历所有平展邻域,根据引理4.5此为滤余极限.

注 4.8. 给定概形 X 和几何点 \bar{x} , 则不难看出 $\mathscr{F} \mapsto \mathscr{F}_{\bar{x}}$ 作为函子 $\operatorname{PreSh}(X_{\operatorname{\acute{e}t}}) \to \operatorname{Sets}$ 或者 $\operatorname{Sh}(X_{\operatorname{\acute{e}t}}) \to \operatorname{Sets}$ 或者 $\operatorname{Ab}(X_{\operatorname{\acute{e}t}}) \to \operatorname{AbGrps}$ 都是正合的. 如果你不放心, 请参考 $\operatorname{Tag}\ 03PT$.

定义 4.9. 给定概形 X 和几何点 \bar{x} , 给定集合 E, 定义 $E^{\bar{x}} \in Sh(X_{\text{\'et}})$ 为:

$$E^{\bar{x}}(U) := \bigoplus_{\operatorname{Hom}_X(\bar{x},U)} E.$$

注 4.10. 有几个简单的性质:

- (i) 这个 $E^{\bar{x}}$ 在平展拓扑下一定是层, 其他景上面不一定;
- (ii) 我们有伴随函子 $((-)_{\bar{x}}, (-)^{\bar{x}})$, 在预层范畴上这个伴随对任何景都对, 在层范畴上需要一定条件 (而小平展景显然满足), 若对这个有兴趣, 参考 Tag~00Y3;
 - (iii) 对于几何点 \bar{y} , 除非 \bar{y} 也在 \bar{x} 对应的点上, 否则 $(E^{\bar{x}})_{\bar{y}}=0$.

命题 **4.11.** 给定概形 X 和几何点 \bar{x} , 对于 $\mathscr{D} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$ 有 $\mathscr{D}_{\bar{x}} = \mathscr{D}_{\bar{x}}^{\sharp}$.

证明. 因为有伴随性, 对于任何集合 E, 我们有

$$\operatorname{Mor}_{\operatorname{Sets}}(\mathscr{P}_{\bar{x}}, E) = \operatorname{Hom}_{\operatorname{PreSh}(X_{\operatorname{\acute{e}t}})}(\mathscr{P}, E^{\bar{x}}) = \operatorname{Hom}_{\operatorname{Sh}(X_{\operatorname{\acute{e}t}})}(\mathscr{P}^{\sharp}, E^{\bar{x}}) = \operatorname{Mor}_{\operatorname{Sets}}(\mathscr{P}^{\sharp}_{\bar{x}}, E),$$
 因此成立.

对于结构层 $\mathcal{O}_{X,\text{et}}$, 它的茎有特殊的代数性质.

- 命题 4.12. 给定概形 X 和在 $x \in X$ 上的几何点 \bar{x} . 设 $\kappa(x) \subset \kappa(x)^{\text{sep}} \subset \kappa(\bar{x})$ 是可分代数闭包. 则有
 - (i) 有同构 $(\mathcal{O}_{X,x})^{\mathrm{sh}} \cong (\mathcal{O}_{X,\mathrm{\acute{e}t}})_{\bar{x}}$, 前者为 $\mathcal{O}_{X,x}$ 的严格 Hensel 化;
 - (ii) 设 \mathfrak{m}_x 是 $\mathscr{O}_{X,x}$ 的极大理想,则 $\mathfrak{m}_x(\mathscr{O}_{X,\mathrm{\acute{e}t}})_{\bar{x}}$ 是 $(\mathscr{O}_{X,\mathrm{\acute{e}t}})_{\bar{x}}$ 的极大理想,且满足

$$(\mathscr{O}_{X,\text{\'et}})_{\bar{x}}/\mathfrak{m}_x(\mathscr{O}_{X,\text{\'et}})_{\bar{x}} \cong \kappa(x)^{\text{sep}};$$

(iii) 对任何首一多项式 $f \in (\mathcal{O}_{X,\text{\'et}})_{\bar{x}}[T]$ 和任意 $\bar{f} \in \kappa(x)^{\text{sep}}[T]$ 的根 $\alpha_0 \in \kappa(x)^{\text{sep}}$ 使得 $\bar{f}'(\alpha_0) \neq 0$, 则存在 $\alpha \in (\mathcal{O}_{X,\text{\'et}})_{\bar{x}}$ 使得 $f(\alpha) = 0$ 且 $\alpha_0 = \bar{\alpha}$.

证明. 这些都是复杂的交换代数, 见Tag 04GE, Tag 04GP和04GW. 其中 (iii) 被称之为 Hensel 引理, 满足 (iii) 的环叫做 Hensel 局部环, 如果这个环的剩余类域可分代数闭,则称之为严格 Hensel 局部环. 所以我们这里就是一个严格 Hensel 环.

注 4.13. 我们之后将记 $\mathcal{O}_{X,\bar{x}}^{\mathrm{sh}} := (\mathcal{O}_{X,\mathrm{\acute{e}t}})_{\bar{x}}$, 也不会有歧义.

对于 Hensal 局部环, 我们还有如下常用的结论:

- 命题 **4.14** (Hensel 引理). 设 $(A, \mathfrak{m}, \kappa)$ 是 Hensal 局部环, 则
- (i) 任何有限 A-代数 S 都是在 R 上有限的局部环的乘积, 此时这些局部环依旧是 Hensal 局部环;
- (ii) 如果平展 A-代数 B 满足 B 的极大理想 $\mathfrak n$ 卧于 $\mathfrak m$ 上使得 $\kappa \cong B/\mathfrak n$, 则存在 同构 $\phi: B \cong A \times B'$ 使得 $\phi(\mathfrak n) = \mathfrak m \times B' \subset A \times B'$;
 - (iii) 我们有范畴等价:

 $\{ \text{有限平展} A \text{-代数} \} \longleftrightarrow \{ \text{有限平展} \kappa \text{-代数} \}, S \mapsto S/\mathfrak{m} S.$

证明. 纯粹的交换代数,参考Tag 04GG, Tag 04GH, Tag 04GK和Tag 03QH.

4.3 常值层和局部常值层

定义 4.15. 给定概形 X.

- (i) 对于 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ (或者 $\in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$), 则 \mathscr{F} 称为常值层如果存在集合 E(或者 Abel 群 G) 使得 $\mathscr{F} \cong (U \mapsto E)^{\sharp} =: E_X($ 或者 $\cong (U \mapsto G)^{\sharp} =: G_X$);
- (ii) 称 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ (或者 $\in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$) 是局部常值层, 如果存在覆盖 $\{U_i \to X\}$ 使得 $\mathscr{F}|_{U_i}$ 是常值层;
- (iii) 称 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ (或者 $\in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$) 是有限局部常值层, 如果 \mathscr{F} 是局部常值层且取值的集合 (或 Abel 群) 是有限集合.

注 4.16. 对于 (i)(ii) 可以定义一般的 Λ -模的常值层/局部常值层.

引理 **4.17** (有限平展映射的平展局部分解). (i) 设 $f: X \to S$ 有限无分歧, 取 $s \in S$, 则存在平展邻域 $(U,u) \to (S,s)$ 和有限无交分解 $X_U = \coprod_j V_j$ 使得所有 $V_j \to U$ 均为闭浸入.

(ii) 设 $f: X \to S$ 有限平展, 取 $s \in S$, 则存在平展邻域 $(U,u) \to (S,s)$ 和有限无交分解 $X_U = \coprod_i V_i$ 使得所有 $V_i \to U$ 均为同构.

证明. 首先, 有关各种映射的平展局部, 可参考Tag~024J. 二者究其本质都是拟有限态射的平展局部性质 (见Tag~02LM). 证明虽然不甚复杂, 但写于此意义也不大, 故这里我们略去证明, 证明参考Tag~04HJ和 Tag~04HN.

命题 4.18. 给定概形 X, 则有范畴等价

 $\{ \text{有限平展映射} U \to X \} \cong \{ \text{有限局部常值层} \}, (U \to X) \mapsto \mathscr{F} = h_U.$

证明. 根据引理4.17(ii),不难看出 h_U 确实是有限局部常值层. 另一方面,任取 \mathscr{F} 是有限局部常值层,则存在平展覆盖 $\{U_i \to X\}$ 使得 $\mathscr{F}|_{U_i}$ 是常值层,则可以被有限平展态射 $U_i \to X$ 表示(设取值集合的基数是 κ ,若是诺特分离概形,考虑注4.6,则令 $Z_i = \coprod_{i=1}^{\kappa} U_i$,故 $\mathscr{F}|_{U_i} = h_{Z_i}$). 根据仿射态射满足有效的忠实平坦下降 (fpqc),我们可以得到存在 $Z \to X$ 使得 $h_Z \cong \mathscr{F}$. 而由于有限性和平展性都是 fpqc 局部的,故 $Z \to X$ 仍然是有限平展映射.

命题 4.19. 给定连通概形 X 和几何点 \bar{x} .

(i) 存在范畴等价

 $\{$ 有限局部常值层 $\in Sh(X_{\text{\'et}}) \} \rightarrow \{$ 有限 $\pi_1^{\text{\'et}}(X, \bar{x})$ -集 $\};$

(ii) 存在范畴等价

 $\{$ 有限局部常值层 \in $Ab(X_{\text{\'et}})\} \rightarrow \{$ 有限 $\pi_1^{\text{\'et}}(X,\bar{x})$ -模 $\}$.

证明. (i) 根据定理2.2(i) 和命题4.18, 得到结论; (ii) 即为 (i) 赋予加法结构.

4.4 Abel 群预层和层构成的范畴

固定概形 X, 可以看出 $PreAb(X_{\text{\'et}})$ 一定是 Abel 范畴, 它里面的正合性, 核, 余核, 积, 极限和余极限等皆为正常的定义方法. 我们主要考虑的是满子范畴 $Ab(X_{\text{\'et}})$, 它是加性范畴, 我们将要证明它为 Abel 范畴 (其正合性, 核, 余核, 积, 极限和余极限等和一般拓扑空间上类似, 皆为层化).

命题 4.20. 给定概形 X 和范畴 $Ab(X_{\text{\'et}})$ 内的列

$$0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$$
,

则下述命题等价:

- (i) 列 $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ 在 $Ab(X_{\text{\'et}})$ 内 (函子性的) 正合;
- (ii) 列 $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ 在 $\operatorname{PreAb}(X_{\operatorname{\acute{e}t}})$ 内正合且 $\mathscr{F} \to \mathscr{F}''$ 满足对任意 的 $U \in X_{\operatorname{\acute{e}t}}$ 和 $s \in \mathscr{F}''(U)$, 存在 $\{U_i \to U\} \in \operatorname{Cov}(U)$ 使得 $s|_{U_i}$ 在 $\mathscr{F}(U_i) \to \mathscr{F}''(U_i)$ 的像内:
 - (iii) 对所有几何点 $\bar{x} \to X$, 都有 $0 \to \mathscr{F}'_{\bar{x}} \to \mathscr{F}_{\bar{x}} \to \mathscr{F}''_{\bar{x}} \to 0$ 正合.
- 证明. (ii) 推 (i), 平凡. (i) 推 (iii) 由于取茎是正合函子, 故也平凡.
- (iii) 推 (ii), 先证明满射部分. 任取 $U \in X_{\text{\'et}}$ 和几何点 $\bar{u} \to U$. 设 $\bar{x} : \bar{u} \to U \to X$ 也为几何点. 根据定义有 $\mathscr{F}_{\bar{u}} = \mathscr{F}_{\bar{x}}$, 故 $\mathscr{F}_{\bar{u}} \to \mathscr{F}_{\bar{u}}''$ 也是满射. 再由定义知道成立. 对于其他部分, 注意到 $s \in \mathscr{F}(U)$ 为零当且仅当 $s_{\bar{u}} = 0$ 即可, 这也是定义.

推论 4.21. 给定概形 X, 则范畴 $Ab(X_{\text{\'et}})$ 是 Abel 范畴.

4.5 Kummer 理论和 Artin-Schreier 列

类似于复几何里的正合列 $0\to\mathbb{Z}\to\mathbb{C}\xrightarrow{\exp}\mathbb{C}^*\to 0$, 我们有如下正合列 (以此取逆极限来模拟):

定理 **4.22** (Kummer 正合列). 给定概形 X 和正整数 n 使得 n 在 X 内可逆 (不被任何剩余类域的特征整除),则有 $Ab(X_{\mathrm{\acute{e}t}})$ 内的正合列

$$0 \to \boldsymbol{\mu}_{n,X} \to \mathbb{G}_{m,X} \xrightarrow{t \mapsto t^n} \mathbb{G}_{m,X} \to 0.$$

证明. 显然 $\mu_{n,X}$ 为 $\mathbb{G}_{m,X} \stackrel{t\mapsto t^n}{\longrightarrow} \mathbb{G}_{m,X}$ 的核. 故只需要证明满射. 取 $U = \operatorname{Spec} A$ 是仿射的平展 X-概形, 任取 $a \in \Gamma(U,\mathbb{G}_{m,X})$, 根据假设知典范映射 $V = \operatorname{Spec} A[t]/(t^n-a) \to U$ 是平展映射. 注意到对应的环同态是有限自由的, 故忠实平坦, 于是是满射. 因此 $V \to U$ 是平展覆盖, 根据4.20即可得到结论.

定理 4.23 (Artin-Schreier 列). 给定概形 X 和素数 p 使得在 $\Gamma(X, \mathcal{O}_X)$ 内 p=0,则有 $\mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 内的正合列

$$0 \to \mathbb{Z}/p\mathbb{Z}_{X} \to \mathbb{G}_{a,X} \xrightarrow{t \mapsto t^{p}-t} \mathbb{G}_{a,X} \to 0.$$

证明. 类似于 Kummer 正合列, 注意到此时 Spec $A[t]/(t^p-t-a) \to \operatorname{Spec} A$ 是平展覆盖即可.

4.6 拟凝聚层

定义 4.24. 考虑景 $X_{\text{\'et}}$ 上的 $\mathcal{O}_{X,\text{\'et}}$ -模 \mathscr{F} 称之为拟凝聚的如果任取 $U \in X_{\text{\'et}}$, 存在 $\{U_i \to U\} \in \text{Cov}(U)$ 使得

$$\mathscr{F}|_{X_{\operatorname{\acute{e}t}}/U_i} \cong \operatorname{coker} \left(\bigoplus_{k \in K} \mathscr{O}_{X, \operatorname{\acute{e}t}/U_i} \to \bigoplus_{l \in L} \mathscr{O}_{X, \operatorname{\acute{e}t}/U_i} \right).$$

其中 X_{et}/U_i 是局部景, 其中的对象皆为 $V \to U_i$, 覆盖皆为 U_i -映射.

注 4.25. 这个在所有景上面都可以定义.

作为下降理论的应用, 我们有如下令人震惊的结论:

定理 4.26. 如下拟凝聚层范畴是范畴等价:

$$\operatorname{Qcoh}(X_{\operatorname{Zar}}) \to \operatorname{Qcoh}(X_{\operatorname{\acute{e}t}}), \mathscr{F} \mapsto \mathscr{F}^{\operatorname{\acute{e}t}}.$$

证明. 这个是下降理论的直接应用, 需要用到纤维范畴 QCOH 然后可以证明其为有效的 fpqc 下降, 但这个的证明非常复杂 (参考 [1] 定理 4.23). 我们推荐感兴趣的读者阅读 [9] 命题 4.3.15.

注 4.27. 作为推广我们可以考虑一些特殊的景, 也满足类似结论. 见 Tag 03OJ.

5 层的一些函子

5.1 直像

定义 5.1. 考虑概形映射 $f: X \to Y$, 设 $\mathscr{P} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$, 定义直像为

$$f_* \mathscr{P}(U \to Y) = \mathscr{P}(U \times_Y X \to X).$$

命题 5.2. 概形映射 $f: X \to Y$, 设 $\mathscr{F} \in Sh(X_{\text{\'et}})$.

- (i) 必然有 $f_* \mathcal{F} \in Sh(Y_{\text{\'et}})$;
- (ii) 对于 $g: Y \to Z$, 我们有 $(g \circ f)_* = g_* \circ f_*$;
- (iii) 若视作函子 $f_*: Ab(X_{\text{\'et}}) \to Ab(Y_{\text{\'et}})$, 则左正合.

证明. 此乃定义, 略去.

命题 5.3. 考虑概形映射 $f: X \to Y$ 和几何点 $\bar{y} = \operatorname{Spec} k \to Y$, 设 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$.

(i) 若 f 是闭浸入,则

$$(f_*\mathscr{F})_{\bar{y}} = \begin{cases} \{*\} & \text{\preceq} & \bar{y} \not\in X \\ \mathscr{F}_{\bar{y}} & \text{\preceq} & \bar{y} \in X \end{cases}$$

其中 {*} 指单点集;

- (ii) 若 f 是开浸入, 若 $\bar{y} \in X$, 则 $(f_* \mathscr{F})_{\bar{y}} = \mathscr{F}_{\bar{y}}$;
- (iii) 如果 f 是有限态射, 则

$$(f_*\mathscr{F})_{\bar{y}} = \prod_{\bar{x}: \operatorname{Spec} k \to X, f(\bar{x}) = \bar{y}} \mathscr{F}_{\bar{x}}.$$

若 $\mathscr{F} \in Ab(X_{\text{\'et}})$, 则 $(f_*\mathscr{F})_{\bar{y}} = \bigoplus_{\bar{x}: \operatorname{Spec} k \to X, f(\bar{x}) = \bar{y}} \mathscr{F}_{\bar{x}}$.

证明. (ii) 是平凡的;(iii) 颇为麻烦, 需要用到严格 Hensel 环的性质, 我们略去, 参考Tag 03QP.

(i) 当 $\bar{y} \notin X$, 这是显然的. 下面考虑 $\bar{y} \in X$ 的情况. 考虑两个事实:

事实 1. 对任意两个平展态射 $U, U' \to Y$, 设 $h: U_X \to U'_X$ 是 X-态射, 则存在 $a: W \to U, b: W \to U'$ 使得 $a_X: W_X \to U_X$ 是同构且 $h = b_X \circ (a_X)^{-1}$.

事实 1 的证明: 设 $M=U\times_Y U'$ 和图像 $\Gamma_h\subset M_X$. 注意到 Γ_h 是平展映射 $\mathrm{pr}_{1,X}:M_X\to U_X$ 一个截面的像, 故是开的. 则存在开子概形 $W\subset M$ 使得 $W\cap M_X=\Gamma_h$. 故 取 $a=\mathrm{pr}_1|_{W},b=\mathrm{pr}_2|_{W}$ 即可.

事实 2. 对平展态射 $V \to X$, 存在一族平展态射 $U_i \to Y$ 和态射 $U_{i,X} \to V$ 使得 $\{U_{i,X} \to V\}$ 是 V 的是 Zariski 覆盖.

事实 2 的证明: 不妨设 Y,V 皆为仿射的, 则化为以下简单的交换代数: 假设环 R 和理想 $I \subset R$, 设 $R/I \to S'$ 平展, 则存在平展同态 $R \to S$ 使得 $S' \cong S/IS$ 是 R/I-代数同构. 这是因为平展同态总可以写成 $S' = (R/I)[x_1,...,x_n]/(\bar{f}_1,...,\bar{f}_n)$ 其中 $\overline{\Delta} = \det\left(\frac{\partial \bar{f}_i}{\partial x_j}\right)$ 在 S' 里可逆. 只需要提升成某些 $f_1,...,f_n$ 且设

$$S = R[x_1, ..., x_n, x_{n+1}]/(f_1, ..., f_n, x_{n+1}\Delta - 1),$$

其中 $\Delta = \det\left(\frac{\partial f_i}{\partial x_j}\right)$ 即可.

回到原结论. 注意到 $(f_*\mathscr{F})_{\bar{y}} = \varinjlim_{(U,\bar{u})} \mathscr{F}(U_X)$ 且 $\mathscr{F}_{\bar{y}} = \varinjlim_{(V,\bar{v})} \mathscr{F}(V)$, 故 $\{(U,\bar{u})\}$ 在 $\{(V,\bar{v})\}$ 内共尾, 则得证.

5.2 逆像

定义 5.4. 考虑概形映射 $f: X \to Y$, 设 $\mathscr{F} \in Sh(Y_{\text{\'et}})$, 定义逆像为

$$f^{-1}\mathscr{F} = \left((U \to X) \mapsto \varinjlim_{U \to X \times_Y V} \mathscr{F}(V \to Y) \right)^{\sharp}.$$

命题 5.5. 考虑概形映射 $f: X \to Y$, 则

- (i) 有伴随函子 (f^{-1}, f_*) ;
- (ii) 函子 $f^{-1}: \mathrm{Sh}(Y_{\mathrm{\acute{e}t}}) \to \mathrm{Sh}(X_{\mathrm{\acute{e}t}})$ 和 $f^{-1}: \mathrm{Ab}(Y_{\mathrm{\acute{e}t}}) \to \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 正合;
- (iii) 对几何点 $\bar{x} \to X$ 和 $\mathscr{F} \in Sh(Y_{\mathrm{\acute{e}t}})$, 设 $\bar{y} = \to X \to Y$, 则 $(f^{-1}\mathscr{F})_{\bar{x}} \cong \mathscr{F}_{\bar{y}}$;
- (v) 对平展映射 $V \to Y$, 有 $f^{-1}h_V = h_{X \times V}$.

证明. (i)(ii) 略去.(iv) 和 (v) 由伴随性和 Yoneda 引理显然. 考虑 (iii), 注意到

$$(f^{-1}\mathscr{F})_{\bar{x}} = \varinjlim_{(U,\bar{u})} (f^{-1}\mathscr{F})(U)$$

$$= \varinjlim_{(U,\bar{u})} \varinjlim_{a:U \to X \times_Y V} \mathscr{F}(U)$$

$$= \varinjlim_{(V,a \circ \bar{u})} \mathscr{F}(V) = \mathscr{F}_{\bar{y}}$$

即可.

命题 5.6 (基变换). 考虑纤维积

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

其中 f 有限, 则 $f'_* \circ (g')^{-1} = g^{-1} \circ f_*$.

证明. 只需验证茎即可. 注意到纤维积, 对 $\mathscr{F} \in Sh(X_{\mathrm{\acute{e}t}})$ 考虑几何点 $\bar{y}': \operatorname{Spec} k \to Y'$, 我们有

$$(f'_{*}(g')^{-1}(\mathscr{F}))_{\bar{y}'} = \prod_{\bar{x}': \operatorname{Spec} k \to X', f' \circ \bar{x}' = \bar{y}'} ((g')^{-1}(\mathscr{F}))_{\bar{x}'}$$

$$= \prod_{\bar{x}': \operatorname{Spec} k \to X', f' \circ \bar{x}' = \bar{y}'} \mathscr{F}_{g' \circ \bar{x}'}$$

$$= \prod_{\bar{x}: \operatorname{Spec} k \to X, f \circ \bar{x} = g \circ \bar{y}'} \mathscr{F}_{\bar{x}} = (f_{*}\mathscr{F})_{g \circ \bar{y}'} = (g^{-1}f_{*}\mathscr{F})_{\bar{y}'}$$

得到结论.

5.3 零扩张函子(下叹号函子)

定义 5.7. 考虑平展映射 $j: U \to X$, 定义 $j_!: \mathrm{Ab}(U_{\mathrm{\acute{e}t}}) \to \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 为

$$j_! \mathscr{F} = \left((V \mapsto X) \mapsto \bigoplus_{V \to U} \mathscr{F}(V \to U) \right)^{\sharp}.$$

命题 5.8. 对平展映射 $j:U\to X$, 有

- (i) 有伴随函子 $(j_!, j^{-1})$;
- (ii) 对 $\mathscr{F} \in Ab(U_{\operatorname{\acute{e}t}})$ 和几何点 $\bar{x} : \operatorname{Spec} k \to X$ 我们有

$$(j_!\mathscr{F})_{\bar{x}} = \bigoplus_{\bar{u}: \operatorname{Spec} k \to U, j(\bar{u}) = \bar{x}} \mathscr{F}_{\bar{u}},$$

特别的, 函子 j_1 正合;

- (iii) 若 i 有限平展, 则存在 $i_1 \rightarrow i_*$ 使得对任何 $Ab(U_{\acute{e}t})$ 都同构;
- (iv) 若 j 是开浸入,则对 $\mathscr{F} \in Ab(U_{\mathrm{\acute{e}t}})$ 有 $j^{-1}j_{*}\mathscr{F} \to \mathscr{F}$ 和 $\mathscr{F} \to j^{-1}j_{!}\mathscr{F}$ 是同构. 事实上 $j_{!}\mathscr{F}$ 是唯一一个使得限制在 U 上是 \mathscr{F} , 且在其他地方的茎是 0 的 Abel 群层.

证明. (i)(iv) 平凡, 略去.(iii) 只需要考虑平展局部, 用引理4.17(ii) 即可验证.

考虑 (ii), 映射为

$$(j_{!}\mathscr{F})_{\bar{x}} = \varinjlim_{(V,\bar{v})} (j_{!}\mathscr{F})(V) = \varinjlim_{(V,\bar{v})} \bigoplus_{\phi:V \to U} \mathscr{F}(\phi)$$

$$\to \bigoplus_{\bar{u}: \operatorname{Spec} k \to U, j(\bar{u}) = \bar{x}} \mathscr{F}_{\bar{u}}.$$

同构参考Tag 03S5.

命题 5.9 (基变换). (i) 设 $f:Y\to X$ 是概形映射且 $j:V\to X$ 平展, 考虑纤维积

$$\begin{array}{ccc} Y \times_X V & \xrightarrow{f'} & V \\ \downarrow j' & & \downarrow j \\ Y & \xrightarrow{f} & X \end{array}$$

则在 $Ab((-)_{\text{\'et}})$ 和 Λ -模层都有 $j'_i \circ (f')^{-1} = f^{-1} \circ j_!;$

(ii) 设 $f: X \to Y$ 是有限映射且 $j: V \to Y$ 开浸入, 且基变换之后 $g: U = X \times_Y V \to V$ 平展, 设 $j': U \to X$, 则在 $Ab((-)_{\text{et}})$ 内有 $f_* \circ j_*' = j_! \circ g_*$.

证明. (i) 考虑二者的右伴随函子, 然后因为直像和平展局部化交换即可得到结论;

(ii) 首先考虑 Y 的不在 U 内的几何点上的茎不难得知二者皆为零. 其次用命题5.8(iv) 和命题5.6, 得到同构

$$j^{-1}f_*j'_!\mathscr{F} = g_*(j')^{-1}j'_!\mathscr{F} = g_*\mathscr{F}.$$

再次用命题5.8(iv) 即可得到结论.

命题 5.10. 对于概形 X 和闭子概形 $i:Z\to X$ 及其补 $j:U\to X$, 则对任何 $\mathscr{F}\in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 有正合列

$$0 \to j_! j^{-1} \mathscr{F} \to \mathscr{F} \to i_* i^{-1} \mathscr{F} \to 0.$$

证明. 分情况不难根据定义得到取茎之后正合, 然后用命题4.20即可.

6 平展上同调的定义和基本性质

6.1 定义

引理 6.1. 对概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 存在内射对象 $\mathscr{I} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 使得有单射 $\mathscr{F} \hookrightarrow \mathscr{I}$.

证明. 任取 $x \in X$ 和在其上的几何点 $i_x : \bar{x} \to X$, 取内射 Abel 群满足 $\mathscr{F}_{\bar{x}} \hookrightarrow I(x)$. 则 $\mathscr{I}(x) := i_{x,*}I(x)$ 是内射的, 故取 $\mathscr{I} = \prod_{x \in X} \mathscr{I}(x)$ 即可得到 $\mathscr{F} \hookrightarrow \prod_{x \in X} \mathscr{F}_{\bar{x}} \hookrightarrow \mathscr{I}(x)$

定义 6.2. 对概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 不难得知截面函子 $\Gamma(X_{\mathrm{\acute{e}t}},-)$ 左正合. 由引 理6.1知有内射预解 $\mathscr{F} \hookrightarrow \mathscr{I}^*$. 则定义 X 上 \mathscr{F} 的平展上同调为

$$H^i_{\mathrm{\acute{e}t}}(X,\mathscr{F}) := R^i\Gamma(X_{\mathrm{\acute{e}t}},\mathscr{F}) = H^i\Gamma(X_{\mathrm{\acute{e}t}},\mathscr{I}^*).$$

和我们之前定义的上同调理论类似, 我们也有如下基本结果:

命题 **6.3.** (i) 满足 $H^0_{\text{\'et}}(X,\mathscr{F}) = \Gamma(X,\mathscr{F})$;

- (ii) 若 \mathscr{I} 内射, 则当 i>0 时 $H^i_{\mathrm{\acute{e}t}}(X,\mathscr{I})=0$;
- (iii) 短正合列 $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ 会诱导长正合列

$$0 \to H^0_{\text{\'et}}(X, \mathscr{F}') \to H^0_{\text{\'et}}(X, \mathscr{F}) \to H^0_{\text{\'et}}(X, \mathscr{F}'') \to H^1_{\text{\'et}}(X, \mathscr{F}') \to \cdots.$$

注 **6.4.** (a) 若 $g: U \to X$ 平展,则 $g^{-1} \circ \Gamma(U, -) = \Gamma(U, -)$,故 $H^i_{\text{\'et}}(U, \mathscr{F}|_U) = H^i_{\text{\'et}}(U, \mathscr{F})$;

(b) 对于 $f: X \to Y$, 因为有 $\mathscr{F} \to f_*f^{-1}\mathscr{F}$, 则诱导 $R\Gamma(Y,\mathscr{F}) \to R\Gamma(X,f^{-1}\mathscr{F})$, 故可以诱导映射 $H^i_{\mathrm{\acute{e}t}}(Y,\mathscr{F}) \to H^i_{\mathrm{\acute{e}t}}(X,f^{-1}\mathscr{F})$.

6.2 群上同调一瞥

几何人可以通过这里速成一下群的上同调理论.

定义 6.5. 设 G 是拓扑群.

- (i) 一个 Abel 群 M(赋予离散拓扑) 称为 G-模, 如果有连续作用 $G \times M \to M$;
- (ii) 设 Mod_G 是 G-模构成的范畴. 根据 $Tag\ 04JF$, 范畴 Mod_G 有足够内射对象. 考虑左正合函子

$$\Gamma_G : \mathrm{Mod}_G \to \mathrm{AbGrps}, M \mapsto M^G,$$

定义群 G 的 (连续) 上同调为 $H^i(G,M) = R^i\Gamma_G(M)$. 若 G 是 Galois 群则成为 Galois 上同调.

命题 6.6. 对于群 G, 考虑群环 $\mathbb{Z}[G]$, 那么有自然的范畴等价 $\mathrm{Mod}_G \to \mathrm{Mod}_{\mathbb{Z}[G]}$. 设 \mathbb{Z} 可以经过平凡 G 作用来作为 $\mathbb{Z}[G]$ 模, 则 $H^i(G,M) \cong \mathrm{Ext}^i_{\mathbb{Z}[G]}(\mathbb{Z},M)$.

定理 6.7 (Tate). 设 M 是拓扑群并且赋予连续 G-作用. 考虑复形

$$C^*_{\mathrm{cont}}(G,M): M \to \mathrm{Maps}_{\mathrm{cont}}(G,M) \to \mathrm{Maps}_{\mathrm{cont}}(G \times G,M) \to \cdots$$

其中边界算子为当 n=0, 则 $m\mapsto (g\mapsto g(m)-m)$; 当 n>0 时定义为

$$d(f)(g_1, ..., g_{n+1}) = g_1(f(g_2, ..., g_{n+1}))$$

$$+ \sum_{j=1}^{n} (-1)^j f(g_1, ..., g_j g_{j+1}, ..., g_{n+1})$$

$$+ (-1)^{n+1} f(g_1, ..., g_n).$$

这样定义 Tate 连续上同调为 $H^i_{\text{cont}}(G,M) := H^i(C^*_{\text{cont}}(G,M))$. 则对于 $M \in \text{Mod}_G$,存在典范映射 $H^i(G,M) \to H^i_{\text{cont}}(G,M)$. 并且当 G 是离散群或者射有限群, 则为同构 $H^i(G,M) \cong H^i_{\text{cont}}(G,M)$.

证明. 映射 $H^i(G,M) \to H^i_{cont}(G,M)$ 通过万有 δ -函子不难诱导. 证明见 [8] 第二章.

6.3 点的上同调

和代数拓扑里不同,一个点的平展上同调也是很复杂的.

引理 6.8. 设 $x = \operatorname{Spec} k$, 固定几何点 $\bar{x} = \operatorname{Spec} \Omega$. 取 $\mathscr{F} \in \operatorname{Sh}(x_{\operatorname{\acute{e}t}})$, 则

$$\Gamma(x,\mathscr{F}) \cong (\mathscr{F}_{\bar{x}})^{\operatorname{Gal}(k^{\operatorname{sep}}/k)}.$$

证明. 根据命题4.18和命题4.2, 我们用 Yoneda 引理有

$$\Gamma(x,\mathscr{F}) = \mathrm{Hom}_{\mathrm{Sh}(X_{\mathrm{\acute{e}t}})}(h_x,\mathscr{F}) = \mathrm{Hom}_{\mathrm{Gal}(k^{\mathrm{sep}}/k) - \#}(\{*\},\mathscr{F}_{\bar{x}}) = (\mathscr{F}_{\bar{x}})^{\mathrm{Gal}(k^{\mathrm{sep}}/k)}$$

得到结论.

定理 6.9. 设 $x = \operatorname{Spec} k, \bar{x} = \operatorname{Spec} k^{\operatorname{sep}}$ 和 $\mathscr{F} \in \operatorname{Ab}(x_{\operatorname{\acute{e}t}})$, 则对任意 $i \geq 0$,

$$H^i_{\mathrm{\acute{e}t}}(X,\mathscr{F}) \cong H^i(\mathrm{Gal}(k^{\mathrm{sep}}/k),\mathscr{F}_{\bar{x}}).$$

证明. 根据引理, 我们得知 $\Gamma(x,\mathscr{F}) = \Gamma_{\mathrm{Gal}(k^{\mathrm{sep}}/k)}(\mathscr{F}_{\bar{x}}) := (\mathscr{F}_{\bar{x}})^{\mathrm{Gal}(k^{\mathrm{sep}}/k)}$, 故我们有

$$H^i_{\text{\'et}}(X,\mathscr{F}) = R^i\Gamma(x,\mathscr{F}) = R^i\Gamma_{\mathrm{Gal}(k^{\mathrm{sep}}/k)}(\mathscr{F}_{\bar{x}}) = H^i(\mathrm{Gal}(k^{\mathrm{sep}}/k),\mathscr{F}_{\bar{x}})$$

即可得到结论.

注意到当 $x = \bar{x}$ 且当 i > 0 时, 就有 $H^i_{\text{et}}(X, \mathcal{F}) = 0$, 这和几何上是一样的.

6.4 严格 Hensel 局部环的上同调

我们时常会使用严格 Hensel 局部环的谱的上同调消失的结论如下:

定理 **6.10.** 设 R 是严格 Hensel 局部环, 设 $X = \operatorname{Spec} R$ 和闭点 \bar{x} . 则对任何 $\mathscr{F} \in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$ 都有 $\Gamma(X,\mathscr{F}) = \mathscr{F}_{\bar{x}}$. 特别的, 函子 $\Gamma(X,-)$ 正合, 故对任何 $\mathscr{F} \in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$ 和 i > 0 都有 $H^i_{\operatorname{\acute{e}t}}(X,\mathscr{F}) = 0$.

证明. 设平展邻域 (U, \bar{u}) , 取 \bar{u} 的的仿射邻域 $\operatorname{Spec} A$, 故 $R \to A$ 平展且 $\kappa(\bar{x}) = \kappa(\bar{u})$. 由命题4.14(ii) 得知作为 R-代数有 $A \cong R \times A'$ 且和 $\kappa(\bar{x}) = \kappa(\bar{u})$ 契合. 故我们有截面 $X \to \operatorname{Spec} A$. 因此平展邻域 (X, \bar{x}) 是共尾的, 故 $\Gamma(X, \mathscr{F}) = \mathscr{F}_{\bar{x}}$. 其他结论就平凡了.

6.5 平展上同调和极限一瞥

我们这里只给出叙述, 不给出证明, 详细细节参考Tag 03Q4.

定义 6.11. 设 I 是预序集, 考虑逆系统 $(X_i,f_{i'i})_I$. 一个在其上定义的层系统 $(\mathcal{F}_i,\varphi_{i'i})$ 为满足

- (i) 层 $\mathscr{F}_i \in Sh(X_{i,\text{\'et}});$
- (ii) 对 $i' \geq i$, 有 $Sh(X_{i,\text{\'et}})$ 内的映射 $\varphi_{i'i}: f_{i'i}^{-1}\mathscr{F}_i \to \mathscr{F}_{i'}$

使得 $\varphi_{i''i} = \varphi_{i''i'} \circ f_{i''i'}^{-1} \varphi_{i'i}$.

定理 6.12 (Tag 09YQ). 考虑定向逆系统 $(X_i, f_{i'i})_I$ 使得 X_i 拟紧拟分离且 $f_{i'i}$ 仿射. 对于其上定义的层系统 $(\mathscr{F}_i, \varphi_{i'i})$,假设 $f_i: X = \varprojlim X_i \to X_i$ 且 $\mathscr{F} := \varinjlim f_i^{-1} \mathscr{F}_i$,则有

$$\varinjlim H^i_{\mathrm{\acute{e}t}}(X_i,\mathscr{F}_i)\cong H^i_{\mathrm{\acute{e}t}}(X,\mathscr{F}).$$

6.6 支撑在闭集的上同调及性质

首先, 不难证明如下事实: 对概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 取截面 $s \in \Gamma(U,\mathscr{F})$, 则存在开集 $W \subset U$ 使得

- (i) W 是 U 内最大的开集使得 $s|_{W}=0$;
- (ii) 对任何几何点 $\bar{u} \to U$, 设 $\bar{s} = (U \to S) \circ \bar{u}$, 则

$$0 = (U, \bar{u}, s) \in \mathscr{F}_{\bar{s}} \Leftrightarrow \bar{u} \in W.$$

读者可以自己证明, 如果想当懒狗, 参考Tag 04FR.

定义 6.13. 对概形 X 和 $\mathcal{F} \in Ab(X_{\text{\'et}})$.

- (i) 层 \mathscr{F} 的支集为点集 $\mathrm{supp}(\mathscr{F}) \ni s$ 使得对所有 $(- \operatorname{e})s$ 上的几何点 \overline{s} 都有 $\mathscr{F}_{\overline{s}} \neq 0$;
 - (ii) 截面 $s \in \Gamma(U, \mathcal{F})$, 其支集 supp(s) 定义为闭集 $U \setminus W$.

注 6.14. 层的支集不一定是闭的, 但如果取值是环, 那一定是闭的, 因为这时相当于单位截面的支集.

定义 6.15. 对概形 X, 闭子概形 $Z \subset X$ 和 $\mathscr{F} \in Ab(X_{\text{\'et}})$, 定义

$$\Gamma_Z(X, \mathscr{F}) = \{ s \in \mathscr{F}(X) : \operatorname{supp}(x) \subset Z \}.$$

定义支撑在 Z 的平展上同调为

$$H^i_{Z, \text{\'et}}(X, \mathscr{F}) := R^i \Gamma_Z(X, \mathscr{F}).$$

命题 6.16. 对概形 X, 闭子概形 $Z \subset X$ 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 设 $U = X \setminus Z$, 则有好三角:

$$R\Gamma_Z(X,\mathscr{F}) \to R\Gamma(X,\mathscr{F}) \to R\Gamma(U,\mathscr{F}) \to R\Gamma_Z(X,\mathscr{F})[1]$$

进而诱导出正合列:

$$\cdots \to H^i_{Z,\text{\'et}}(X,\mathscr{F}) \to H^i_{\text{\'et}}(X,\mathscr{F}) \to H^i_{\text{\'et}}(U,\mathscr{F}) \to H^i_{Z,\text{\'et}}(X,\mathscr{F}) \to \cdots$$

证明. 任取内射对象 $\mathscr{I} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 我们断言 $\mathscr{I}(X) \to \mathscr{I}(U)$ 是满的. 设 $j: U \to X$, 注意到对任何 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 都有

$$\operatorname{Hom}(j_! \underline{\mathbb{Z}}_U, \mathscr{F}) = \operatorname{Hom}(\underline{\mathbb{Z}}_U, \mathscr{F}|_U) = \Gamma(U, \mathscr{F}),$$

因为 \mathscr{I} 是内射的, 故只需证明 $j_! \underline{\mathbb{Z}}_U \to \underline{\mathbb{Z}}_X$ 是单射. 根据层化函子是正合的, 只需证明 对平展映射 $V \to X$, 典范映射

$$\bigoplus_{V \to U} \underline{\mathbb{Z}}(U) \to \bigoplus_{V \to X} \underline{\mathbb{Z}}(U)$$

是单射, 而这是显然的, 故断言成立.

不难发现上述满射的核为 $\Gamma_Z(X, \mathcal{I})$, 因此立即得到好三角

$$R\Gamma_Z(X,\mathscr{F}) \to R\Gamma(X,\mathscr{F}) \to R\Gamma(U,\mathscr{F}) \to R\Gamma_Z(X,\mathscr{F})[1].$$

而长正合列因此是显然的.

定理 6.17 (切除). 设 $f: X' \to X$ 平展和闭子概形 $Z' \subset X'$ 使得

- (i) 设 Z := f(Z') 是闭集且 $f|_{Z'} : Z' \cong Z$ 同构;
- (ii) 有 $f(X' \setminus Z') \subset X \setminus Z$.

则对任意的 $\mathcal{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 都有对任意 i 的同构

$$H^i_{Z,\text{\'et}}(X,\mathscr{F}) \cong H^i_{Z',\text{\'et}}(X',f^{-1}\mathscr{F}).$$

证明. 设 $U' = X' \setminus Z', U = X \setminus Z,$ 考虑

$$U' \xrightarrow{j'} X' \xleftarrow{i'} Z'$$

$$\downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow \cong$$

$$U \xrightarrow{j} X \xleftarrow{i} Z$$

得到

$$0 \longrightarrow \Gamma_{Z}(X, \mathscr{F}) \longrightarrow \Gamma(X, \mathscr{F}) \longrightarrow \Gamma(U, \mathscr{F})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \Gamma_{Z'}(X', f^{-1}\mathscr{F}) \longrightarrow \Gamma(X', f^{-1}\mathscr{F}) \longrightarrow \Gamma(U', f^{-1}\mathscr{F})$$

其中虚线为诱导出来的映射. 由于 f^{-1} 正合且和内射对象交换, 则只需证明诱导的

$$g:\Gamma_Z(X,\mathscr{F})\to\Gamma_{Z'}(X',f^{-1}\mathscr{F})$$

是同构. 注意到若 $s \in \ker g$, 则 s 在 $\Gamma(X',\mathscr{F})$ 和 $\Gamma(U,\mathscr{F})$ 是 0. 而 $\{X',U\}$ 是平展覆盖, 则 s=0, 故是单射. 另一方面, 取 $s' \in \Gamma_{Z'}(X',f^{-1}\mathscr{F}) \subset \Gamma(X',f^{-1}\mathscr{F})$. 注意到 s',0 在 U' 是 0; 另外 s' 限制 $X' \times_X X' \rightrightarrows X'$ 都是相等的, 因此可以粘合成 $s \in \Gamma(X,\mathscr{F})$, 故满射.

推论 6.18. 对概形 X 和闭点 $x \in X$, 任取 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 则有

$$H^i_{x,\text{\'et}}(X,\mathscr{F}) \cong H^i_{x,\text{\'et}}(\operatorname{Spec}\mathscr{O}^{\operatorname{sh}}_{X,x},\mathscr{F}).$$

证明. 用定理6.17和定理6.12即可.

7 Čech 上同调和挠子

7.1 Čech 上同调

定义 7.1. 考虑概形 X 和一族平展覆盖 $\mathfrak{U}=\{U_i\to X\}_{i\in I}$, 考虑 $\mathscr{D}\in\operatorname{PreAb}(X_{\operatorname{\acute{e}t}})$, 定义

$$\check{C}^r(\mathfrak{U},\mathscr{P}) = \prod_{(i_0,\dots,i_r)\in I^{r+1}} \mathscr{P}(U_{i_0} \times_X \dots \times_X U_{i_r})$$

和映射 $d^r: \check{C}^r(\mathfrak{U}, \mathscr{P}) \to \check{C}^{r+1}(\mathfrak{U}, \mathscr{P})$ 为

$$s = (s_{i_0,\dots,i_r}) \mapsto \left(\sum_{j=0}^{r+1} (-1)^j (s_{i_0,\dots,i_{j-1},i_{j+1},\dots,i_{r+1}})|_{U_{i_0,\dots,i_{r+1}}}\right)_{i_0,\dots,i_{r+1}}.$$

复形 $\check{C}^*(\mathfrak{U}, \mathscr{P})$ 称为 $\check{C}ech$ 复形, 其上同调

$$\check{H}^i(\mathfrak{U},\mathscr{P}) := H^i(\check{C}^*(\mathfrak{U},\mathscr{P}))$$

称为 罗 关于覆盖 以的 Čech 上同调.

注 7.2. 不难注意到 Čech 复形可以重新写成:

$$\check{C}^*(\mathfrak{U},\mathscr{P}) = \mathrm{Hom}_{\mathrm{PreAb}(X_{\mathrm{\acute{e}t}})} \left(\left(\bigoplus_{i_0 \in I} \underline{\mathbb{Z}}_{U_{i_0}} \leftarrow \bigoplus_{(i_0,i_1) \in I^2} \underline{\mathbb{Z}}_{U_{i_0} \times_X U_{i_1}} \leftarrow \cdots \right), \mathscr{P} \right).$$

而且直接 (大量) 计算会得到 Hom 里面的复形 \mathbb{Z}_3^* 是正合的 (参考 $Tag \ 03AT$).

例 7.1. 考虑覆盖 $\mathfrak{U} = \{Y \to X\}$ 使得 $Y \to X$ 是 Galois 覆叠 G. 对 $\mathscr{P} \in \operatorname{PreAb}(X_{\operatorname{\acute{e}t}})$, 假设其吧无交并映成积, 应用定理6.7则有 $\check{H}^i(\mathfrak{U},\mathscr{P}) \cong H^r(G,\mathscr{P}(Y))$.

命题 7.3. 给定概形 X 和平展覆盖 $\mathfrak{U} = \{U_i \to X\}_{i \in I}$.

- (i) 对任何内射对象 $\mathscr{I} \in \operatorname{PreAb}(X_{\operatorname{\acute{e}t}})$, 对 i > 0 我们有 $\check{H}^i(\mathfrak{U}, \mathscr{I}) = 0$;
- (ii) 在 $\operatorname{PreAb}(X_{\operatorname{\acute{e}t}})$ 内 $\check{H}^{i}(\mathfrak{U},-)$ 是 $\check{H}^{0}(\mathfrak{U},-)$ 的导出函子;
- (iii) 若 $\mathscr{F} \in Ab(X_{\operatorname{\acute{e}t}})$,则 $\check{H}^0(\mathfrak{U},\mathscr{F}) = \Gamma(X,\mathscr{F})$.

证明. (ii) 运用万有 δ 函子理论即可;(iii) 就是层的条件之一;(i) 注意到

$$\check{H}^i(\mathfrak{U},\mathscr{I}) = H^i(\mathrm{Hom}_{\mathrm{PreAb}(X_{\mathrm{\acute{e}t}})}(\underline{\mathbb{Z}}_{\mathfrak{U}}^*,\mathscr{I}))$$

且 墨 正合和 》 内射即可.

定义 7.4. 考虑概形 X 和一族平展覆盖 $\mathfrak{U}=\{U_i\to X\}_{i\in I}$. 这个覆叠的一个加细指覆盖 $\mathfrak{V}=\{V_j\to X\}_{j\in J}$ 满足对任意的 $V_j\to X$ 都存在分解 $V_j\to U_{\alpha(j)}\to X$. 这样会自然诱导一个 $\alpha^*:\check{C}^*(\mathfrak{U},\mathscr{P})\to \check{C}^*(\mathfrak{V},\mathscr{P})$ 为 $(\alpha^rs)_{j_0,\ldots,j_r}=s_{\alpha(j_0),\ldots,\alpha(j_r)}|_{V_{j_0,\ldots,j_r}}$. 因此诱导 $\rho(\mathfrak{V},\mathfrak{U}):\check{H}^i(\mathfrak{U},\mathscr{P})\to\check{H}^i(\mathfrak{V},\mathscr{P})$. 故而可以定义 $\check{C}ech$ 上同调为

$$\check{H}^i_{\text{\rm \'et}}(X,\mathscr{P}) := \varinjlim_{\mathfrak{U}} \check{H}^i(\mathfrak{U},\mathscr{P}).$$

命题 7.5. 给定概形 X.

- (i) 对任何内射对象 $\mathscr{I} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 对 i > 0 我们有 $\mathring{H}^{i}_{\mathrm{\acute{e}t}}(X, \mathscr{I}) = 0$;
- (ii) 若 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$,则 $\check{H}^0_{\mathrm{\acute{e}t}}(X,\mathscr{F}) = \Gamma(X,\mathscr{F})$.

证明. (i) 注意到遗忘函子保持内射性质, 于是在 $Ab(X_{\mathrm{\acute{e}t}})$ 内也满足; (ii) 由于对所有覆盖都满足, 因此余极限也满足.

7.2 Čech-导出谱序列

类似于 Zariski 上同调, 平展上同调也有类似的 Čech-导出的比较结论.

引理 7.6. 考虑概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$. 考虑预层 $\underline{H}^i(\mathscr{F}) : U \mapsto H^i_{\mathrm{\acute{e}t}}(U,\mathscr{F}|_U)$. 考虑遗忘函子 $i : \mathrm{Ab}(X_{\mathrm{\acute{e}t}}) \to \mathrm{PreAb}(X_{\mathrm{\acute{e}t}})$, 我们有 $\underline{H}^r(-) = R^ri(-)$. 特别的 $\underline{H}^i(\mathscr{F})^\sharp = 0$.

证明. 考虑 $Ab(X_{\text{\'et}}) \stackrel{i}{\longrightarrow} PreAb(X_{\text{\'et}}) \stackrel{\sharp}{\longrightarrow} Ab(X_{\text{\'et}})$,则取内射预解 $\mathscr{F} \hookrightarrow \mathscr{I}^*$ 我们有 $\underline{H}^r(\mathscr{F}) = H^r(i(\mathscr{I}^*))$. 因此 $\underline{H}^r(-) = R^ri(-)$.

推论 7.7. 考虑概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$. 对 r > 0, 任取 $s \in H^r_{\mathrm{\acute{e}t}}(X,\mathscr{F})$ 都存在平展覆盖 $\{U_i \to X\}$ 使得 s 在每个 $H^r_{\mathrm{\acute{e}t}}(U_i,\mathscr{F}|_{U_i})$ 内均为 0.

证明. 这是引理7.6的直接推论.

定理 7.8. 考虑概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$. 考虑预层 $\underline{H}^i(\mathscr{F}): U \mapsto H^i_{\mathrm{\acute{e}t}}(U,\mathscr{F}|_U)$, 则有谱序列

$$E_2^{p,q} = \check{H}_{\mathrm{\acute{e}t}}^p(X, \underline{H}^q(\mathscr{F})) \Rightarrow H_{\mathrm{\acute{e}t}}^{p+q}(X, \mathscr{F}).$$

证明. 对 $Ab(X_{\text{\'et}}) \xrightarrow{i} PreAb(X_{\text{\'et}}) \xrightarrow{\check{H}_{\text{\'et}}^0(X,-)} AbGrps$, 因为 $\check{H}_{\text{\'et}}^0(X,-) \circ i = \Gamma(X,-)$, 引用上述引理和 Grothendieck 谱序列, 我们得到结论.

作为应用, 我们有如下比较结果:

命题 7.9. 考虑概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$. 对于 r=0,1,我们有 $\check{H}^r_{\mathrm{\acute{e}t}}(X,\mathscr{F})\cong H^r_{\mathrm{\acute{e}t}}(X,\mathscr{F})$.

证明. 考虑谱序列 $E_2^{p,q} = \check{H}_{\text{\'et}}^p(X,\underline{H}^q(\mathscr{F})) \Rightarrow H_{\text{\'et}}^{p+q}(X,\mathscr{F})$. 根据推论7.7, 我们得知对 s>0 有 $E_2^{0,q}=0$. 观察谱序列第二页:

即可得知对于 r = 0, 1, 有 $\check{H}_{\text{\'et}}^r(X, \mathscr{F}) \cong H_{\text{\'et}}^r(X, \mathscr{F})$.

注 7.10. 如果 X 拟紧且对任何有限子集都包含在某个仿射开集内,则对任何 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 和任何 r, 我们都有 $\check{H}^r_{\mathrm{\acute{e}t}}(X,\mathscr{F}) \cong H^r_{\mathrm{\acute{e}t}}(X,\mathscr{F})$. 参考 [6] 内的 III.2.17.

7.3 应用 I——Mayer-Vietoris 列

定理 7.11 (Mayer-Vietoris). 设概形 $X = U \cup V$ 为开集的并, 给定 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 我们有正合列:

证明. 设覆盖为 $\mathfrak{U} = \{U \to X, V \to X\}$. 根据 Čech 上同调定义, 我们有如下正合列:

$$0 \longrightarrow \check{H}^0(\mathfrak{U},\underline{H}^s(\mathscr{F})) \longrightarrow H^s_{\mathrm{\acute{e}t}}(U,\mathscr{F}) \oplus H^s_{\mathrm{\acute{e}t}}(V,\mathscr{F}) \longrightarrow \\ H^s_{\mathrm{\acute{e}t}}(U \cap V,\mathscr{F}) \longrightarrow \check{H}^1(\mathfrak{U},\underline{H}^s(\mathscr{F})) \longrightarrow 0.$$

另一方面,考虑谱序列 $E_2^{p,q} = \check{H}_{\text{\'et}}^p(X,\underline{H}^q(\mathscr{F})) \Rightarrow H_{\text{\'et}}^{p+q}(X,\mathscr{F})$. 注意到当 r>1 时有 $\check{H}^r(\mathfrak{U},H^s(\mathscr{F}))=0$,运用谱序列结论 [4] 命题 2.2.4 我们有如下正合列

$$0 \to \check{H}^1(\mathfrak{U},\underline{H}^s(\mathscr{F})) \to H^{s+1}_{\mathrm{\acute{e}t}}(X,\mathscr{F}) \to \check{H}^0(\mathfrak{U},\underline{H}^{s+1}(\mathscr{F})) \to 0.$$

综合两个正合列即可得到结论.

注 7.12. 直接证明参考 Tag 0A50. 还有相对版本的 Mayer-Vietoris 列, 我们不再赘述, 见 Tag 0EYK.

7.4 应用 II——拟凝聚层的上同调

接下来介绍一个意料之中的结果.

引理 7.13. 设 $X = \operatorname{Spec} A$ 仿射, 取拟凝聚层 $\mathscr{F}^{\text{\'et}}$, 则对 i > 0 都有 $H^i_{\text{\'et}}(X, \mathscr{F}^{\text{\'et}}) = 0$. 证明. 我们用对 i 的归纳法.

先考虑 i=1. 取 $\xi \in H^1_{\mathrm{\acute{e}t}}(X,\mathscr{S}^{\mathrm{\acute{e}t}})$. 将覆盖加细可以假设 U_i 仿射. 根据命题7.9得到其对应 $\eta' \in \check{H}^1(\mathfrak{U},\mathscr{S}^{\mathrm{\acute{e}t}})$. 设 $\mathfrak{V} = \{\sqcup_i U_i \to X\}$ 不难看出 $\check{H}^1(\mathfrak{U},\mathscr{S}^{\mathrm{\acute{e}t}}) = \check{H}^1(\mathfrak{V},\mathscr{S}^{\mathrm{\acute{e}t}})$. 假设 $\mathfrak{V} = \{\operatorname{Spec} B \to \operatorname{Spec} A\}$, 则复形 $\check{C}^*(\mathfrak{V},\mathscr{S}^{\mathrm{\acute{e}t}})$ 为

$$B \otimes_A M \to B \otimes_A B \otimes_A M \to B \otimes_A B \otimes_A B \otimes_A M \to \cdots$$

故成立.

对于 i>1, 取 $\xi\in H^i_{\mathrm{\acute{e}t}}(X,\mathscr{P}^{\mathrm{\acute{e}t}})$, 由推论7.7存在平展覆盖 $\mathfrak{U}=\{U_i\to X\}$ 使得 $\eta|_{U_i}=0$. 将覆盖加细可以假设 U_i 仿射. 注意到 $U_{i_0}\times_X U_{i_1}\times_X\cdots\times_X U_{i_p}$ 皆为仿射, 考虑谱序列7.8

$$E_2^{p,q} = \check{H}^p_{\text{\'et}}(X, \underline{H}^q(\mathscr{F})) \Rightarrow H^{p+q}_{\text{\'et}}(X, \mathscr{F}).$$

根据归纳假设知道对 0 < q < p 都有 $E_2^{p,q} = 0$,我们可以看出 ξ 必然来自 $\xi' \in \check{H}^i(\mathfrak{U},\mathscr{S}^{\mathrm{\acute{e}t}})$.继续 i=1 情况的证明即可.

定理 7.14 (平展-Zariski 的拟凝聚上同调比较定理). 对概形 X 和拟凝聚层 \mathscr{F} , 对任何 $i \geq 0$ 我们都有

$$H^i(X, \mathscr{F}) \cong H^i_{\text{\'et}}(X, \mathscr{F}^{\text{\'et}}).$$

证明. 我们只考虑概形 X 分离的情况 (一般情况可以由Tag 03F3和 Tag 03DW得到). 取 Zariski 开覆盖 $\mathfrak{U}=\{U_i\to X\}$, 根据分离性, $U_{i_0}\times_X U_{i_1}\times_X \cdots \times_X U_{i_p}$ 皆为仿射. 则 谱序列7.8除了第一行全是零. 故我们有

$$H^i_{\mathrm{\acute{e}t}}(X,\mathscr{F}^{\mathrm{\acute{e}t}})=\check{H}^i(\mathfrak{U},\mathscr{F}^{\mathrm{\acute{e}t}})=\check{H}^i(\mathfrak{U},\mathscr{F})=H^i(X,\mathscr{F})$$

即可得到结论.

定理 7.15 (拟凝聚层). 计算拟凝聚层的平展上同调只需要计算对应小 Zariski 景内拟凝聚层的上同调.

证明. 运用定理4.26和定理7.14即可.

因此, 我们只需要计算不是拟凝聚层的平展上同调即可. 比如挠层, 这是我们一大目标之一.

7.5 挠子理论一瞥和应用

类似于概型理论里的挠子理论, 我们可以将其推广至小平展景.

定义 7.16. 对概形 X 和平展覆盖 $\mathfrak{U} = \{U_i \to X\}_{i \in I}$. 取取值为群 (不一定交换) 的平展层 \mathcal{G} ,设 $U_{i_0 \cdots i_p} = U_{i_0} \times_X \cdots \times_X U_{i_p}$. 我们定义取值在 \mathcal{G} 的 1-余链为 $g = (g_{ij})_{(i,j) \in I^2}$ 使得 $g_{ij} \in \mathcal{G}(U_{ij})$ 满足

$$g_{ij}|_{U_{ijk}}g_{jk}|_{U_{ijk}}=g_{ik}|_{U_{ijk}}.$$

两个 1-余链 g, g', 定义 $g \sim g'$ 使得存在 $(h_i)_{i \in I}$ 其中 $h_i \in \mathcal{G}(U_i)$ 满足

$$g'_{ij} = h_i|_{U_{ij}}g_{ij}(h_j|_{U_{ij}})^{-1}.$$

定义 $\check{H}^1(\mathfrak{U}, \mathscr{G}) := \{g\} / \sim.$

注 7.17. 根据构造, 对于短正合列 $1 \rightarrow \mathcal{G}' \rightarrow \mathcal{G} \rightarrow \mathcal{G}'' \rightarrow 1$, 我们有

$$1 \to \Gamma(X, \mathscr{G}') \to \Gamma(X, \mathscr{G}) \to \Gamma(X, \mathscr{G}'') \to \check{H}^1(\mathfrak{U}, \mathscr{G}') \to \check{H}^1(\mathfrak{U}, \mathscr{G}) \to \check{H}^1(\mathfrak{U}, \mathscr{G}'').$$

定义 7.18. 对概形 X 和取值为群 (不一定交换) 的平展层 \mathscr{G} . 设 $\mathscr{S} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ 存在右 \mathscr{G} -作用. 我们称 \mathscr{S} 是 \mathscr{G} -挠子如果满足

- (i) 存在平展覆盖 $\{U_i \to X\}$ 使得 $\mathcal{S}(U_i) \neq \emptyset$;
- (ii) 对任意的平展映射 $U \to X$ 和 $s \in \Gamma(U, \mathcal{S})$, 映射 $\mathcal{G}|_{U} \to \mathcal{S}|_{U}, g \mapsto sg$ 是同构.

我们称 $\mathscr S$ 被 $\{U_i \to X\}$ 平凡化. 如果 $\mathscr S(X) \neq \emptyset$ 我们称 $\mathscr S$ 是平凡 $\mathscr S$ -挠子.

这两个概念出现不是偶然, 事实上我们有如下结论:

定理 7.19. 对概形 X 和取值为群 (不一定交换) 的平展层 \mathscr{G} . 我们有双射

$$\{ 被 \mathfrak{U}$$
平凡化的 \mathcal{G} -挠子 $\}/\cong \longleftrightarrow \check{H}^1(\mathfrak{U},\mathcal{G}).$

证明. 我们阐述映射如何诱导. 给定被 $\mathfrak U$ 平凡化的 $\mathcal G$ -挠子 $\mathcal S$. 对 $\mathfrak U = \{U_i \to X\}_{i \in I}$,给定 $s_i \in \mathcal S(U_i)$,由于作用单可迁,存在 $g_{ij} \in \mathcal G(U_{ij})$ 使得 $(s_i|_{U_{ij}})g_{ij} = s_j|_{U_{ij}}$. 则得到 $g = (g_{ij})_{I^2}$. 对另一组 s_i' ,我们可以有 $s_i' = s_i h_i$,故会得到 $g \sim g'$,因此良定义. 有关这个证明因为没什么意思所以我们略去,参考 [7] 命题 11.1.

注 7.20. 如果 G 是有限常值群层且 X 连通, 则

 $\{G-$ 挠子 $\}/\cong=\{Galois$ 群为G的X的 Galois 覆盖 $\}=\operatorname{Hom}_{\operatorname{cont}}(\pi_1^{\operatorname{\acute{e}t}}(X,\bar{x}),G).$

定理 7.21 (向量丛和挠子). 对概形 X 和秩 n 局部自由模构成的群 $\operatorname{Vect}_{\operatorname{Zar}}^n(X)$, 我们有

$$\mathrm{Vect}^n_{\mathrm{Zar}}(X) \cong \check{H}^1_{\mathrm{Zar}}(X,\mathrm{GL}_{n,X}) \cong \check{H}^1_{\mathrm{fppf}}(X,\mathrm{GL}_{n,X}) \cong \check{H}^1_{\mathrm{\acute{e}t}}(X,\mathrm{GL}_{n,X}).$$

证明. 忽略, 参考 [7] 定理 11.4.

推论 7.22. 我们有

$$H^1_{\text{\'et}}(X, \mathbb{G}_{m,X}) \cong \text{Pic}(X).$$

证明. 注意到 $\mathbb{G}_{m,X}$ 交换, 根据命题7.9和定理7.21即得到结果.

推论 7.23 (Hilbert 定理 90). 对于有限 Galois 扩张 L/k, 有 $H^1(Gal(L/k), L^*) = 0$. 证明. 注意到

$$H^1(\operatorname{Gal}(k^{\operatorname{sep}}/k), (k^{\operatorname{sep}})^*) = \varinjlim_{\text{fig Galois } \overline{q} \stackrel{\circ}{=} L/k} H^1(\operatorname{Gal}(L/k), L^*)$$

其中后者是 $L\subset L'$ 诱导 $H^1(\mathrm{Gal}(L/k),L^*)\hookrightarrow H^1(\mathrm{Gal}(L'/k),(L')^*)$. 根据推论7.22和 定理6.9得到当 $X=\mathrm{Spec}\,k$ 有 $H^1_{\mathrm{\acute{e}t}}(X,\mathbb{G}_{m,X})\cong H^1(\mathrm{Gal}(k^{\mathrm{sep}}/k),(k^{\mathrm{sep}})^*)$ 且

$$H^1_{\text{\'et}}(X, \mathbb{G}_{m,X}) \cong \operatorname{Pic}(\operatorname{Spec} k) = 0$$

即可得到结论.

8 高阶直像

8.1 基础性质

定义 8.1. 对概形态射 $f: X \to Y$ 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 因为 f_* 左正合, 故可以得到高阶 直像 $R^if_*\mathscr{F}$.

命题 8.2. 对概形态射 $f: X \to Y$ 和 $\mathscr{F} \in Ab(X_{\text{\'et}})$, 则有

$$R^i f_* \mathscr{F} = (U \mapsto H^i_{\text{\'et}}(U \times_Y X, \mathscr{F}))^{\sharp}.$$

证明. 定义函子 $f_*^{\mathrm{pre}}: \mathrm{PreAb}(X_{\mathrm{\acute{e}t}}) \to \mathrm{PreAb}(Y_{\mathrm{\acute{e}t}})$ 为 $\mathscr{P} \mapsto (U \mapsto \Gamma(U \times_Y X, \mathscr{P}))$. 考虑交换图

$$\begin{array}{ccc} \operatorname{PreAb}(X_{\operatorname{\acute{e}t}}) & \stackrel{f^{\operatorname{pre}}_{*}}{\longrightarrow} \operatorname{PreAb}(Y_{\operatorname{\acute{e}t}}) \\ & & \downarrow \\ \operatorname{Ab}(X_{\operatorname{\acute{e}t}}) & \stackrel{f_{*}}{\longrightarrow} \operatorname{Ab}(Y_{\operatorname{\acute{e}t}}) \end{array}$$

由于 \sharp , f_*^{pre} 正合, 取内射预解 $\mathscr{F} \hookrightarrow \mathscr{I}^*$ 得到

$$R^r f_* \mathscr{F} = H^i(f_* \mathscr{I}^*) = H^r(\sharp \circ f_*^{\operatorname{pre}} \circ i \mathscr{I}^*) = (f_*^{\operatorname{pre}} H^r(i \mathscr{I}^*))^\sharp = (f_*^{\operatorname{pre}} \underline{H}^r(\mathscr{F}))^\sharp$$

即可.

推论 8.3. 对于几何点 \bar{y} , 我们有

$$(R^i f_* \mathscr{F})_{\bar{y}} = \varinjlim_{(U, \bar{u})} H^i_{\text{\'et}}(U \times_Y X, \mathscr{F}).$$

推论 8.4. 如果 f 拟紧拟分离, 我们有

$$(R^i f_* \mathscr{F})_{\bar{y}} = H^i_{\text{\'et}}(\operatorname{Spec} \mathscr{O}^{\operatorname{sh}}_{Y,y} \times_Y X, \mathscr{F}).$$

证明. 根据定义, 上述命题还有定理6.12即可得到结论 (这个在导出范畴内也对, 参考Tag 03Q7). □

例 8.1. 参考 [7] 定理 12.4, 如果 X 是正规整概形, 考虑一般点 $f: \eta \to X$, 则有 $(R^if_*\mathscr{F})_{\eta} = H^i_{\mathrm{\acute{e}t}}(\mathrm{Spec}\,\mathrm{Frac}\mathscr{O}^{\mathrm{sh}}_{X,x} \times_Y X,\mathscr{F}).$

推论 8.5. 如果 $f: X \to Y$ 是有限映射, 则对 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 有对于所有 i > 0 有 $R^i f_* \mathscr{F} = 0$.

证明. 这时我们有

$$(R^if_*\mathscr{F})_{\bar{y}} = \varinjlim_{(U,\bar{u})} H^i_{\mathrm{\acute{e}t}}(\operatorname{Spec}\mathscr{O}_{Y,y}^{\operatorname{sh}} \times_Y X, \mathscr{F}).$$

由于 f 有限, 那么 $\operatorname{Spec} \mathscr{O}_{Y,y}^{\operatorname{sh}} \times_Y X$ 在 $\operatorname{Spec} \mathscr{O}_{Y,y}^{\operatorname{sh}}$ 上有限. 故 $\operatorname{Spec} A = \operatorname{Spec} \mathscr{O}_{Y,y}^{\operatorname{sh}} \times_Y X$. 根据命题4.14(i) 得到 $A \cong A_1 \times \cdots \times A_r$ 为 Hensel 局部有限 $\mathscr{O}_{Y,y}^{\operatorname{sh}}$ -代数. 故而 A_i 也是严格 Hensel 局部环. 此时 $\operatorname{Spec} A = \coprod_{i=1}^r \operatorname{Spec} A_i$, 运用定理6.10得到对 i>0 有 $(R^if_*\mathscr{F})_{\bar{y}}=0$.

8.2 Leray 谱序列

定理 8.6 (Leray 谱序列). 对概形态射 $f: X \to Y$ 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 则有谱序列

$$E_2^{p,q} = H_{\text{\'et}}^p(Y, R^q f_* \mathscr{F}) \Rightarrow H_{\text{\'et}}^{p+q}(X, \mathscr{F}).$$

证明. 注意到 $\Gamma(X,-)\circ f_*=\Gamma(Y,-)$, 由于 f_* 保持内射, 根据 Grothendieck 谱序列得到

$$E_2^{p,q} = H^p_{\text{\'et}}(Y, R^q f_* \mathscr{F}) \Rightarrow H^{p+q}_{\text{\'et}}(X, \mathscr{F})$$

即可.

9 曲线的上同调 I——基础结果

我们已经知道, 计算拟凝聚层的平展上同调只需要计算对应小 Zariski 景内拟凝聚层的上同调, 因此只需要考虑不是拟凝聚的情况. 眼下我们只能解决最简单的情况——代数闭域上光滑曲线的上同调, 我们主要关心的是它上面挠层的上同调. 本节我们讨论挠层里的基石——Z/nZ-系数的上同调, 求出这个我们根据有限生成 Abel 群就可以得到常值层的上同调, 之后的内容在后续章节阐述.

9.1 Brauer 群和 C_r 域一瞥

定义 9.1. 考虑所有域 k 上的 (有限维) 中心单代数构成的集合 $\mathrm{CSA}_k,$ 定义等价关系 为 $A \sim B$ 当且仅当存在中心除环 D 使得 $A \cong \mathrm{Mat}_m(D), B \cong \mathrm{Mat}_n(D).$ 定义 Brauer 群为 $\mathrm{Br}(k) := \mathrm{CSA}_k / \sim.$

注 9.2. 由定义, $Mat_n(D) \sim D$.

事实上根据 Wedderburn 定理, 域 k 上任何中心单代数都形如 $\mathrm{Mat}_n(D)$. 也就是说, $\mathrm{Br}(k)$ 给出了 k 上中心除环的分类! 结合代数理论告诉我们, 如果 A 是中心单代数,那么 $A\otimes_k k^{\mathrm{sep}}\cong\mathrm{Mat}_n(k^{\mathrm{sep}})$ (参考 Tag 0753). 也就是说,中心除环平展局部地是局部环,而这一点能让我们使用 Galois 下降.

此外, 我们还能在一般的概形上定义中心单代数, 也就是所谓的 Azumaya 代数. 伽罗瓦上同调告诉我们 $Br(k) = H^2(Gal(k^{sep}/k), (k^{sep})^*)$, 根据定理6.9, 我们有 $Br(k) = H^2_{et}(Spec(k), \mathbb{G}_m)$, 于是我们可以通过这个来定义一般概形的 Brauer 群.

定义 9.3. 域 K 称之为 C_r 的,如果对任何 $0 < d^r < n$ 和任何 d 次齐次多项式 $f \in K[T_1,...,T_n]$,都存在不全是零的 $\alpha = (\alpha_1,...,\alpha_n) \in K^n$ 使得 $f(\alpha) = 0$.

命题 **9.4.** 若 $K \not\in C_1$ 的,则 Br(K) = 0.

证明. 不然, 考虑 K 上非平凡的有限维除环 D, 则 $D \otimes_K K^{\text{sep}} \cong \operatorname{Mat}_d(K^{\text{sep}})$. 考虑行列式映射 $\det: D \otimes_K K^{\text{sep}} \cong \operatorname{Mat}_d(K^{\text{sep}}) \to K^{\text{sep}}$. 取 $\operatorname{Gal}(K^{\text{sep}}/K)$ -不变元得到映射 $N: D \to K$. 因为 K 是 C_1 的, 若 d > 1, 则存在非零 $x \in D$ 使得 N(x) = 0. 这会推出 x 不可逆, 这不可能!

定理 9.5 (Tsen 定理). 代数闭域 k 上的 r 维代数簇的函数域是 C_r 的.

Tsen 定理告诉我们为什么 C_r 域的条件如此奇怪. 事实上我们还会使用 Serre 的如下定理:

定理 9.6 (Serre). 假设对于 K, 若对所有的有限扩张 K'/K 都有 Br(K')=0, 则对所有 $q\geq 1$ 都有

$$H^q(\operatorname{Gal}(K^{\operatorname{sep}}/K), (K^{\operatorname{sep}})^*) = 0.$$

证明. 参考Tag 03R8.

9.2 $\mathbb{G}_{m,X}$ 的上同调

定理 9.7 (基本正合列). 设 X 是整正规概形, 设一般点嵌入为 $g: \eta \to X$ 和余一维点的嵌入 $i_z: z \to X$, 则有正合列:

$$0 \to \mathbb{G}_{m,X} \to g_* \mathbb{G}_{m,\eta} \to \bigoplus_{\operatorname{codim}(z)=1} i_{z,*} \underline{\mathbb{Z}}.$$

如果 X 光滑,则也右正合,进而正合.

证明. 取平展映射 $\phi: U \to X$, 不妨设 $U = \operatorname{Spec} A$ 连通仿射. 则根据正规性, 这个列限制在 U_{Zar} 上正合:

$$0 \to A^* \to K^* \xrightarrow{\oplus v_{\mathfrak{p}}} \bigoplus_{\operatorname{ht}(\mathfrak{p})=1} \mathbb{Z}.$$

故我们得到正合列

$$0 \to \mathbb{G}_{m,X} \to g_*\mathbb{G}_{m,\eta} \to \bigoplus_{\operatorname{codim}(z)=1} i_{z,*}\underline{\mathbb{Z}}.$$

当 X 光滑, 因为此时 Weil 除子和 Cartier 除子重合, 因此局部主, 故而右正合.

引理 9.8. 设 k 是代数闭域且 K/k 是超越度为 1 的域扩张, 则对 $r \ge 1$ 有

$$H^r_{\text{\'et}}(\operatorname{Spec} K, \mathbb{G}_m) = 0.$$

证明. 根据定理6.9, 只需考虑 $H^q(\operatorname{Gal}(K^{\operatorname{sep}}/K), (K^{\operatorname{sep}})^*)$. 再根据定理9.6 我们只需证明对所有的有限扩张 K'/K 都有 $\operatorname{Br}(K')=0$. 设 $K'=\lim_{K''}K''$ 为在 k 上超越度为 1 的有限生成扩张, 故 $\operatorname{Br}(K')=\lim_{K''}\operatorname{Br}(K'')$. 于是只需考虑 k 上超越度为 1 的有限生成扩张. 根据 Tsen 定理9.5, 我们得知这样的域都是 C_1 的, 再根据命题9.4即可得到结论.

定理 9.9. 设 X 是代数闭域 k 上的光滑射影曲线, 则

$$H^q_{\operatorname{\acute{e}t}}(X,\mathbb{G}_{m,X}) = \left\{ \begin{array}{ll} \Gamma(X,\mathscr{O}_X)^* & q = 0, \\ \operatorname{Pic}(X) & q = 1, \\ 0 & q \geq 2. \end{array} \right.$$

证明. 根据推论7.22, 只需要考虑 $q \ge 2$ 的情况.

• 步骤 1. 对任何 $q \ge 1$, 考虑一般点嵌入 $j: \eta \to X$, 则 $R^q j_* \mathbb{G}_{m,\eta} = 0$. 考虑茎即可. 考虑闭点 $\bar{x} \to X$, 取仿射邻域 Spec A, 设 $K = \operatorname{Frac}(A)$, 则

$$(\operatorname{Spec} \mathscr{O}_{X,\bar{x}}^{\operatorname{sh}}) \times_X \eta = \operatorname{Spec} (\mathscr{O}_{X,\bar{x}}^{\operatorname{sh}} \otimes_A K),$$

其中后者是 DVR 的局部化. 由于现在极大理想生成元可逆, 故

$$\mathscr{O}_{X,\bar{x}}^{\operatorname{sh}} \otimes_A K = \operatorname{Frac}(\mathscr{O}_{X,\bar{x}}^{\operatorname{sh}}) =: K_{\bar{x}}^{\operatorname{sh}}.$$

因此 $(R^q j_* \mathbb{G}_{m,\eta})_{\bar{x}} = H^q_{\text{\'et}}(\operatorname{Spec} K^{\operatorname{sh}}_{\bar{x}}, \mathbb{G}_m)$. 根据引理9.8 得到结论. 若一般点, 考虑几何点 $\bar{\eta}$, 则 $\mathcal{O}^{\operatorname{sh}}_{\bar{\eta}} = \kappa(\eta)^{\operatorname{sep}}$, 故

$$(R^{q} j_{*} \mathbb{G}_{m,\eta})_{\bar{\eta}} = H^{q}_{\text{\'et}}(\operatorname{Spec}(\kappa(\eta)^{\text{sep}}) \times_{X} \eta, \mathbb{G}_{m})$$

$$= H^{q}_{\text{\'et}}(\operatorname{Spec}(\kappa(\eta)^{\text{sep}}), \mathbb{G}_{m})$$

$$= H^{q}_{\text{\'et}}(\operatorname{Gal}(\kappa(\eta)^{\text{sep}}/\kappa(\eta)^{\text{sep}}), (\kappa(\eta)^{\text{sep}})^{*}) = 0,$$

于是步骤 1 成立.

• 步骤 2. 对任何 $q \ge 1$, 有 $H_{\text{\'et}}^q(X, j_*\mathbb{G}_{m,\eta}) = 0$.

根据定理8.6得到

$$E_2^{p,q} = H_{\text{\'et}}^p(Y, R^q j_* \mathbb{G}_{m,\eta}) \Rightarrow H_{\text{\'et}}^{p+q}(\eta, \mathbb{G}_{m,\eta}).$$

再根据引理9.8得到当 $p+q\geq 1$ 时有 $H^{p+q}_{\mathrm{\acute{e}t}}(\eta,\mathbb{G}_{m,\eta})=0$. 取 q=0 再利用步骤 1 即可得到步骤 2.

• 步骤 3. 对任何 $q \ge 1$ 和闭点嵌入 $i_x : x \to X$, 有 $H^q_{\text{\'et}}\left(X, \bigoplus_{x \in \mathbb{Z}} i_{x,*}\mathbb{Z}\right) = 0$. 只需证明对闭点嵌入 $i_x : x \to X$ 和 q > 0 有 $H^q_{\text{\'et}}(X, i_{x,*}\mathbb{Z}) = 0$. 根据推论8.5和定理8.6得到 $H^q_{\text{\'et}}(X, i_{x,*}\mathbb{Z}) = H^q_{\text{\'et}}(x, \mathbb{Z})$. 由于代数闭, 步骤 3 成立.

● 步骤 4. 完成证明.

根据步骤 2 和步骤 3 还有正合列9.7即可得到结论.

9.3 $\mu_{n,X}$ 的上同调

引理 9.10. 若概形 X 在基概形 $\mathrm{Spec}\,A$ 上, 其中 A 是严格 Hensel 局部环且 $n\in A^*$, 则 $\pmb{\mu}_{n,X}\cong \mathbb{Z}/n\mathbb{Z}_X$.

证明. 因为 $\mu_{n,X} = \underline{\operatorname{Spec}}_X \mathscr{O}_X[t]/(t^n-1)$, 由于严格 Hensal, 多项式 t^n-1 会分裂. 故得到平凡的平展覆盖 $\mu_{n,X} \to X$, 则 $\mu_{n,X} \cong \mathbb{Z}/n\mathbb{Z}_X$ (参考 [5] 命题 7.2.2).

定理 9.11. 设 X 是代数闭域 k 上的亏格 g 光滑射影曲线, 且 $n \in k^*$, 则

$$H_{\text{\'et}}^q(X, \boldsymbol{\mu}_{n,X}) = \begin{cases} \boldsymbol{\mu}_n(k) & q = 0, \\ \operatorname{Pic}^0(X)[n] & q = 1, \\ \mathbb{Z}/n\mathbb{Z} & q = 2, \\ 0 & q \ge 3. \end{cases}$$

根据引理
$$9.10$$
我们有 $H_{\mathrm{\acute{e}t}}^{q}\left(X, \underline{\mathbb{Z}/n\mathbb{Z}}_{X}\right) = \left\{ egin{array}{ccc} \mathbb{Z}/n\mathbb{Z} & q=0, \\ (\mathbb{Z}/n\mathbb{Z})^{\oplus 2g} & q=1, \\ \mathbb{Z}/n\mathbb{Z} & q=2, \\ 0 & q\geq 3. \end{array} \right.$

证明. 根据 Kummer 正合列4.22和定理9.9引出长正合列为:

$$0 \longrightarrow \boldsymbol{\mu}_{n}(k) \longrightarrow k^{*} \xrightarrow{(-)^{n}} k^{*} \longrightarrow$$

$$H^{1}_{\text{\'et}}(X, \boldsymbol{\mu}_{n,X}) \longrightarrow \text{Pic}(X) \xrightarrow{(-)^{n}} \text{Pic}(X) \longrightarrow$$

$$H^{2}_{\text{\'et}}(X, \boldsymbol{\mu}_{n,X}) \longrightarrow 0 \longrightarrow \cdots$$

故而当 $q \geq 3$ 时 $H_{\text{\'et}}^q(X, \mu_{n,X}) = 0$. 只需考虑 q = 1, 2. 由于代数闭, 映射 $(-)^n$: $k^* \to k^*$ 是满射, 因此对于 $(-)^n$: $\text{Pic}(X) \to \text{Pic}(X)$, $H_{\text{\'et}}^1(X, \mu_{n,X}) = \text{ker}(-)^n$ 且 $H_{\text{\'et}}^2(X, \mu_{n,X}) = \text{coker}(-)^n$. 考虑交换图

$$0 \longrightarrow \operatorname{Pic}^{0}(X) \longrightarrow \operatorname{Pic}(X) \longrightarrow \mathbb{Z} \longrightarrow 0$$

$$\downarrow^{[n]} \qquad \downarrow^{(-)^{n}} \qquad \downarrow^{\times n}$$

$$0 \longrightarrow \operatorname{Pic}^{0}(X) \longrightarrow \operatorname{Pic}(X) \longrightarrow \mathbb{Z} \longrightarrow 0$$

根据 Abel 簇的知识我们知道 [n] 是满射且 $\ker[n] = \operatorname{Pic}^0(X)[n] \cong (\mathbb{Z}/n\mathbb{Z})^{\oplus 2g}$. 运用蛇引理即可得到结论.

定理 9.12. 设 X 是代数闭域 k 上的仿射光滑曲线且 $n \in k^*$. 取光滑紧化 $X \subset X'$, 设 $g \to X'$ 亏格, 设 $r = \#(X' \setminus X)$, 则

$$H_{\text{\'et}}^q(X, \boldsymbol{\mu}_{n,X}) = \begin{cases} \boldsymbol{\mu}_n(k) & q = 0, \\ (\mathbb{Z}/n\mathbb{Z})^{\oplus 2g + r - 1} & q = 1, \\ 0 & q \ge 2. \end{cases}$$

证明. 设 $X = X' \setminus \{x_1, ..., x_r\}$, 则 $\operatorname{Pic}(X) = \operatorname{Pic}(X)/R$ 其中 R 被 $\mathcal{O}_{X'}(x_i)$ 生成. 由于 R 非空, 则 $\operatorname{Pic}^0(X') \to \operatorname{Pic}(X)$ 是满射, 故 $\operatorname{Pic}(X)$ 可除, 因此不难得知 $H^0_{\operatorname{\acute{e}t}}(X, \boldsymbol{\mu}_{n,X}) = \boldsymbol{\mu}_n(k)$ 且当 $q \geq 2$ 有 $H^q_{\operatorname{\acute{e}t}}(X, \boldsymbol{\mu}_{n,X}) = 0$. 只需证明 $H^1_{\operatorname{\acute{e}t}}(X, \boldsymbol{\mu}_{n,X}) = (\mathbb{Z}/n\mathbb{Z})^{\oplus 2g+r-1}$. 注意到我们有

$$\begin{split} &H^1_{\text{\'et}}(X, \pmb{\mu}_{n,X}) = \{(\mathcal{L}, \alpha): \mathcal{L} \in \operatorname{Pic}(X), \alpha: \mathcal{L}^{\otimes n} \cong \mathscr{O}_X\} / \cong \\ &= \frac{\{(\mathcal{L}', D, \alpha'): \mathcal{L}' \in \operatorname{Pic}^0(X), \operatorname{supp}(D) \subset \{x_1, ..., x_r\}, \alpha': (\mathcal{L}')^{\otimes n} \cong \mathscr{O}_{X'}(D)\}}{\{(\mathscr{O}_{X'}(D), nD, 1^{\otimes n}): \deg D = 0, \operatorname{supp}(D) \subset \{x_1, ..., x_r\}\}} \end{split}$$

则有

$$0 \longrightarrow H^1_{\text{\'et}}(X', \boldsymbol{\mu}_{n, X'}) \longrightarrow H^1_{\text{\'et}}(X, \boldsymbol{\mu}_{n, X}) \stackrel{f}{\longrightarrow} (\mathbb{Z}/n\mathbb{Z})^{\oplus r} \stackrel{\sum}{\longrightarrow} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

其中 f 为 $(\mathcal{L}', D = \sum a_i[x_i], \alpha') \mapsto (a_i)_{i=1}^r$. 运用定理9.11计算秩即可.

9.4 支撑在点上的上同调

命题 9.13. 设 U 是代数闭域 k 上的光滑曲线且 $n \in k^*$. 取闭点 $x \in U$, 则

$$H_{x,\text{\'et}}^q(U,\boldsymbol{\mu}_{n,U}) = \left\{ egin{array}{ll} \mathbb{Z}/n\mathbb{Z} & q=2, \\ 0 & q \neq 2. \end{array} \right.$$

证明. 由推论6.18得知 $H^i_{x,\text{\'et}}(U,\mathscr{F})\cong H^i_{x,\text{\'et}}(\operatorname{Spec}\mathscr{O}^{\operatorname{sh}}_{U,x},\mathscr{F})$. 根据定理9.9得到当 i>0时

$$H^i_{\text{\'et}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}},\mathbb{G}_m)=0.$$

再根据命题6.16得到正合列

$$\cdots \longrightarrow H^{i}_{x,\text{\'et}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}},\mathbb{G}_{m}) \longrightarrow H^{i}_{\text{\'et}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}},\mathbb{G}_{m}) \longrightarrow H^{i}_{\text{\'et}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}},\mathbb{G}_{m}) \longrightarrow \cdots$$

得到对 $i \neq 1$ 有

$$H^{i-1}_{\text{\'et}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}}\setminus\{x\},\mathbb{G}_m)\cong H^i_{x,\operatorname{\'et}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}},\mathbb{G}_m).$$

由于 Spec $\mathcal{O}_{U,x}^{\mathrm{sh}} \setminus \{x\} = \mathrm{Spec}\,K$,根据引理9.8我们有当 $i \geq 1$ 时

$$H^i_{\text{\'et}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}}\setminus\{x\},\mathbb{G}_m)=0.$$

故

$$H^1_{x,\text{\'et}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}},\mathbb{G}_m) = \frac{H^0_{\operatorname{\acute{e}t}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}}\backslash\{x\},\mathbb{G}_m)}{H^0_{\operatorname{\acute{e}t}}(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}},\mathbb{G}_m)} \cong \mathbb{Z},$$

且当 $i \neq 1$ 时候有 $H_{x,\text{\'et}}^i(\operatorname{Spec}\mathscr{O}_{U,x}^{\operatorname{sh}},\mathbb{G}_m)=0$. 再根据 Kummer 正合列即可得到结论.

10 可构建层和挠层

10.1 可构建层

定义 10.1. 设 X 是概形, 设 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ 称为可构建的, 如果任取仿射开集 $U \subset X$,存在有限分解 $U = \prod_i U_i$ 为可构建局部闭集使得 $\mathscr{F}|_{U_i}$ 是有限局部常值层.

注 10.2. 对 $Ab(X_{\text{\'et}})$ 也同理定义, 但对一般的 Λ -模层, 需定义 $\mathscr{F}|_{U_i}$ 是有限型的局部常值层.

命题 10.3. 设概形 X 是拟紧拟分离且 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ (或 $\operatorname{Ab}(X_{\operatorname{\acute{e}t}})$ 和 Λ -模层, 这时需假设 Λ 诺特), 则 \mathscr{F} 可构建当且仅当存在开覆盖 $X = \bigcup_i U_i$ 使得 $\mathscr{F}|_{U_i}$ 可构建当且仅当存在分解 $X = \bigcup_i U_i$ 可构建局部闭集使得 $\mathscr{F}|_{U_i}$ 是有限局部常值层.

证明. 纯粹的点集拓扑和层论, 参考Tag 095E.

命题 **10.4.** (i) 设 $f: X \to Y$ 是概形映射, 令 $\mathscr{S}Sh(Y_{\text{\'et}})$ (或 $Ab(Y_{\text{\'et}})$ 和 Λ -模层, 其中 Λ 诺特) 是可构建的, 则 $f^{-1}\mathscr{S}$ 也是可构建的;

- (ii) 设 X 是概形,则 $Sh(X_{\text{\'et}})$ 内的可构建层关于有限极限和余极限封闭,若为 $Ab(Y_{\text{\'et}})$ 和 Λ -模层 (其中 Λ 诺特),则为弱 Serre 子范畴;
- (iii) 若 X 拟紧拟分离, 若 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ (或 Λ -模层, 其中 Λ 诺特) 可构建, 则 $\mathrm{supp}(\mathscr{F})$ 也可构建.

引理 10.5. 设 $j:U\to X$ 是拟紧拟分离概形间的平展映射, 则

- (i) 层 h_U 可构建;
- (ii) 对于有限 Abel 群 M(或 Λ -模, 其中 Λ 诺特), 层 $\underline{j_!M_{II}}$ 可构建.

证明. 运用如下结论:

- 事实. 若 $U \to X$ 是拟紧拟分离概形间的平展映射, 则存在有限分解 $X = \coprod_i X_i$ 为可构建局部闭集使得 $\pi_i : X_i \times_X U \to X_i$ 是有限平展映射.(参考Tag 03S0)
 - (i) 根据这个事实和命题4.18即可得到结论.
 - (ii) 运用命题5.9(i) 和命题5.8(iii) 可以得到

$$(j!\underline{M}_U)|_{X_i} = \pi_{i,!}\underline{M} = \pi_{i,*}\underline{M}.$$

此时 π_i 有限平展, 则根据直像是平展局部的且引理4.17(ii), 因此 $\pi_{i,*}\underline{M}$ 必然是有限局部常值.

命题 10.6. 设概形 X 拟紧拟分离. 若 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ (或 Λ -模, 其中 Λ 诺特), 则 \mathscr{F} 是可构建层的滤余极限.

证明. 我们需要如下结论 (参考Tag 093C):

• 事实 1. 任何 $Sh(X_{\text{\'et}})$ 内的层都可以写成

Coequalizer
$$\left(\coprod_{j=1,\dots,m} h_{V_j} \rightrightarrows \coprod_{i=1,\dots,n} h_{U_i} \right)$$

其中 V_i, U_i 均为 $X_{\text{\'et}}$ 内的拟紧拟分离元.

• **事实 2.** 任何 (Λ 诺特)Λ-模都可以写成

$$\operatorname{coker}\left(\coprod_{j=1,\ldots,m} j_{V_j,!}\underline{\Lambda}_{V_j} \longrightarrow \coprod_{i=1,\ldots,n} j_{U_i,!}\underline{\Lambda}_{U_i}\right)$$

其中 V_j , U_i 均为 X_{et} 内的拟紧拟分离元. 故根据命题10.4和引理10.5即可得到.

10.2 挠层

定义 10.7. 设 X 是概形, 设 $\mathcal{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 如果任何 $\mathcal{F}(U)$ 是挠群, 则称其为挠层.

命题 10.8. 若 $f: X \to Y$ 拟紧拟分离, 则若 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 是挠层, 则 $R^n f_* \mathscr{F}$ 也是挠 层.

证明. 注意到

$$R^n f_* \mathscr{F} = (U \mapsto H^n_{\text{\'et}}(U \times_Y X, \mathscr{F}))^{\sharp}.$$

可以取仿射 V 使得 $X \times_Y V$ 是拟紧拟分离的 (因为 f 是如此). 因此只需要证明若 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 是挠层且 X 拟紧拟分离, 则 $H^n_{\mathrm{\acute{e}t}}(X,\mathscr{F})$ 是挠群. 设 $\mathscr{F} = \bigcup_d \mathscr{F}[d]$ 其中 $\mathscr{F}[d]$ 是 d-挠元的部分,根据定理6.12我们有

$$H^n_{\text{\'et}}(X,\mathscr{F}) = \varinjlim_{d} H^n_{\text{\'et}}(X,\mathscr{F}[d]).$$

而 $H_{\text{et}}^n(X, \mathscr{F}[d])$ 也是 d-挠群, 故成立.

命题 10.9. 若 \mathscr{F} ∈ $Ab(X_{\text{\'et}})$ 是挠层, 则 \mathscr{F} 是可构建层的滤余极限.

证明. 设 $\mathscr{F}=\bigcup_d\mathscr{F}[d]$ 其中 $\mathscr{F}[d]$ 是 d-挠元的部分, 视 $\mathscr{F}[d]$ 为 $\mathbb{Z}/d\mathbb{Z}$ -模. 根据命题10.6即可得到结论.

11 曲线的上同调 II——挠层的上同调

11.1 迹映射方法基础

考虑 $Ab((-)_{\text{\'et}})$ 内的函子. 对于平展映射 $f: Y \to X$, 有伴随对 $(f_!, f^{-1})$ 和 (f^{-1}, f_*) . 因此得到映射 $id \to f_* f^{-1}$ 和 $f_! f^{-1} \to id$.

定义 11.1. 根据命题5.8(iii), 当 f 有限平展时 $f_* = f_!$, 因此有映射 $f_* f^{-1} \to id$, 称之为迹映射.

命题 11.2. 设 $f: Y \to X$ 有限平展, 则迹映射被如下性质所决定:

- (a) 和 X 上的平展局部化交换;
- (b) 若 $Y = \prod_{i=1}^d X$, 则迹映射是求和映射 $f_* f^{-1} \mathscr{F} = \mathscr{F}^{\oplus d} \to \mathscr{F}$.

证明. 根据引理4.17, 用 (a) 考虑平展局部上自然是 (b) 中的情况.

命题 11.3 (迹映射方法). 设 $f: Y \to X$ 处处满足 $\deg f = d$, 则不难看出 $\mathscr{F} \to f_* f^{-1} \mathscr{F} \to \mathscr{F}$ 是乘 d 映射. 如果 $\mathscr{F} \in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$ 满足乘 d 映射是同构, 则有单射

$$H^n_{\text{\'et}}(X,\mathscr{F}) \hookrightarrow H^n_{\text{\'et}}(Y,f^{-1}\mathscr{F}).$$

特别的, 如果 $H_{\text{\'et}}^n(Y, f^{-1}\mathscr{F}) = 0$, 则 $H_{\text{\'et}}^n(X, \mathscr{F}) = 0$.

证明. 注意到因为 f 有限, 则 $H_{\text{\'et}}^n(Y, f^{-1}\mathscr{F}) = H_{\text{\'et}}^n(X, f_*f^{-1}\mathscr{F})$. 乘 d 映射诱导

$$H^n_{\mathrm{\acute{e}t}}(X,\mathscr{F}) \to H^n_{\mathrm{\acute{e}t}}(Y,f^{-1}\mathscr{F}) \to H^n_{\mathrm{\acute{e}t}}(X,\mathscr{F})$$

是同构, 于是成立.

11.2 挠层的上同调

定理 11.4. 设 X 是代数闭域 k 上的分离有限型一维概形且 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 是挠层,则

- (i) 对任何 q > 2 有 $H_{\text{\'et}}^q(X, \mathcal{F}) = 0$;
- (ii) 若 X 仿射, 则对任何 q > 1 有 $H^q_{\text{ot}}(X, \mathcal{F}) = 0$;
- (iii) 若 $p = \operatorname{char}(k) > 0$ 且 \mathscr{F} 是 p-幂次挠层,则对任何 q > 1 有 $H_{\operatorname{et}}^q(X,\mathscr{F}) = 0$;
- (iv) 如果 \mathscr{F} 是可构建层且和 char(k) 互素的挠层,则 $H_{ct}^q(X,\mathscr{F})$ 有限;
- (v) 如果 \mathscr{F} 是可构建层且 X 紧合, 则 $H_{\text{et}}^q(X,\mathscr{F})$ 有限;
- (vi) 对任何代数闭扩张 K/k, 如果 $\mathscr F$ 是 $\mathrm{char}(k)$ 互素的挠层, 则 $H^q_{\mathrm{\acute{e}t}}(X,\mathscr F)\cong H^q_{\mathrm{\acute{e}t}}(X_K,\mathscr F|_{X_K});$
 - (vii) 对任何代数闭扩张 K/k, 如果 X 是紧合,则 $H^q_{\mathrm{\acute{e}t}}(X,\mathscr{F}) \cong H^q_{\mathrm{\acute{e}t}}(X_K,\mathscr{F}|_{X_K});$ (viii) 对任何开集 $U \subset X$, 映射 $H^2_{\mathrm{\acute{e}t}}(X,\mathscr{F}) \to H^2_{\mathrm{\acute{e}t}}(U,\mathscr{F})$ 是满射.

参考Tag 03SB. 这是本节最重要的结论, 这些命题的证明事实上是殊途同归的, 我们只以 (i) 和 (iii) 在光滑的情况下来举例说明. 对于不光滑的情况, 取概形的既约结构, 因为是一个加厚所以不改变上同调. 然后取正规化, 我们总能得到一个交换图和一些函子运算的交换性. 最后, 把曲线分解成连通分支即可, 更多细节我们不在介绍.

这里按照惯例我们定义局部系为有限局部常值层, 记作 Loc(X). 我们首先证明如下结论:

定理 11.5. 设 X 是代数闭域 k 上的光滑曲线且 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{ft}})$ 是挠层 ℓ 且挠部分在 k中可逆), 则对 q > 2 有 $H_{\text{et}}^q(X, \mathcal{F}) = 0$.

引理 11.6. 设 X 是代数闭域 k 上的光滑曲线且局部系 \mathscr{F} 的挠部分在 k 中可逆, 则 对 q > 2 有 $H_{\text{et}}^q(X, \mathcal{F}) = 0$.

证明. 设 ℓ 在 k 中可逆, 如果 \mathscr{F} 是一个 $\mathbb{Z}/\ell\mathbb{Z}$ -层, 即对于每个平展开集 U, 层 $\mathscr{F}(U)$ 是 $\mathbb{Z}/\ell\mathbb{Z}$ 线性空间. 对于某个 k 中可逆的 d, 取 d 次平展覆叠 $\pi:U\to X$ 使得 $\mathscr{F}|_U$ 是常 值层. 由于是线性空间上, 故乘 d 为同构, 根据命题11.3 和定理9.11, 我们得知对 q > 2有 $H_{\text{\'et}}^q(X,\mathscr{F})=0.$

一般地, 将 \mathscr{F} 分解成 $\mathscr{F}_1 \oplus ... \oplus \mathscr{F}_r$, 其中 \mathscr{F}_i 被 ℓ_i 的幂次消灭, \mathscr{F} 被某个 ℓ 的幂 次消灭. 最后, 记 $\mathscr{F}[\ell]$ 为 \mathscr{F} 的 ℓ -挠部分, 考虑正合列 $0 \to \mathscr{F}[\ell] \to \mathscr{F} \to \mathscr{F}/\mathscr{F}[\ell] \to 0$, 然后归纳即可.

引理 11.7. 设 X 是代数闭域 k 上的光滑曲线且可构建层 Ø 的挠部分在 k 中可逆. 根 据点集拓扑推导不难得知存在稠密开浸入 $j:U\to X$ 使得 $\mathscr{F}|_U\in\mathrm{Loc}(U)$. 考虑下面 命题等价:

- (a) $\forall q > 2 \text{ fi } H^q_{\text{\'et}}(X, \mathscr{F}) = 0;$ (b) $\forall q > 2 \text{ fi } H^q_{\text{\'et}}(X, j_! j^{-1} \mathscr{F}) = 0.$

证明. 设 $Z = X \setminus U$ 和 $i: Z \to X$, 根据命题5.10有正合列

$$0 \to j_! j^{-1} \mathscr{F} \to \mathscr{F} \to i_* i^{-1} \mathscr{F} \to 0.$$

注意到 $H^q_{\operatorname{ct}}(X,i_*i^{-1}\mathscr{F})=H^q(Z,i^{-1}\mathscr{F})$ 且 Z 是代数闭域的谱的乘积, 因此诱导长正合 列即可得到证明.

定理11.5的证明. 根据命题10.9, 只需考虑可构建层的情况. 再根据引理11.7, 我们只需 要证明: 对稠密开浸入 $j: U \to X$ 和 $\mathscr{F} \in \text{Loc}(U)$, 对 q > 2 有 $H^q_{\text{\'et}}(X, j_!\mathscr{F}) = 0$.

再次使用迹映射方法, 取合适的有限平展覆盖 $g:V\to U$, 只需考虑形如 $j_!g_*g^{-1}\mathscr{F}$ 的上同调且使得 g^{-1} 多 是常值层. 由 Zariski 主定理, 有分解

为开浸入 a 和有限态射 b 的复合. 不难验证得到 $j_!g_*=b_*a_!$, 只需要证明对 q>2 有 $H^q_{\text{et}}(Y, a_! \mathbb{Z}/\ell \mathbb{Z}) = 0$,其中 ℓ 在 k 里可逆. 只需要考虑 $a_! a^{-1} \mathbb{Z}/\ell \mathbb{Z}$,根据引理11.7和引 理11.6.

再考虑如下:

定理 11.8. 设 X 是代数闭域 k 上的光滑曲线, 设 $p = \operatorname{char}(k) > 0$ 且 \mathscr{F} 是 p-幂次挠 E,则对任何 q > 1 有 $H^q_{\text{\'et}}(X, \mathscr{F}) = 0$.

引理 11.9. 设 k 是一个特征 p 代数闭域, 设 V 是有限维 k-线性空间. 设线性映射 $F:V\to V$ 是加性的且 $F(ax)=a^pF(x)$. 那么 $F-\mathrm{id}:V\to V$ 是满射.

证明. 交换代数,参考Tag 0A3L.

命题 11.10. 设 X/k 是 d 维紧合概形, 那么对于 q > d, 有 $H^q_{\text{\'et}}(X, \mathbb{Z}/p\mathbb{Z}) = 0$.

证明. 考虑 Artin-Schreier 正合列定理4.23:

$$0 \to \underline{\mathbb{Z}/p\mathbb{Z}_X} \to \mathbb{G}_{a,X} \xrightarrow{t \mapsto t^p - t} \mathbb{G}_{a,X} \to 0.$$

诱导长正合列为

$$\cdots \to H^d_{\text{\'et}}(X,\mathscr{O}_X) \xrightarrow{\mathrm{Fid}} H^d_{\text{\'et}}(X,\mathscr{O}_X) \to H^{d+1}_{\text{\'et}}(X,\underline{\mathbb{Z}}/p\mathbb{Z}) \to 0 \to \cdots.$$

其中根据定理7.14和 Grothendieck 消灭定理得知当 q>d 有 $H^q_{\mathrm{\acute{e}t}}(X,\mathcal{O}_X)=0$, 因此之后的项是 0. 因此当 q>d+1 时 $H^q_{\mathrm{\acute{e}t}}(X,\underline{\mathbb{Z}/p\mathbb{Z}})=0$. 再根据引理11.9得到 $H^{d+1}_{\mathrm{\acute{e}t}}(X,\mathbb{Z}/p\mathbb{Z})=0$, 于是得到结果.

定理11.8的证明. 类似定理11.5的证明, 化归到局部系, 然后再到可构建层即可, 略去.

事实上定理11.4的某些可以减弱至可分闭域:

命题 **11.11** (参考Tag 0A5E). 设 K/k 是可分闭域的扩张, 设 X 在 Spec k 上紧合且维数不大于 1, 则对挠层 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 有 $H^q_{\mathrm{\acute{e}t}}(X,\mathscr{F}) \cong H^q_{\mathrm{\acute{e}t}}(X_K,\mathscr{F}|_{X_K})$.

12 上同调维数 Ⅰ———般情况

定义 12.1. 对于概形 X, 定义其 (平展) 上同调维数为

$$cd(X) := min\{d : 对于所有挠 Abel 层 多都有当q > d时有 $H_{et}^q(X, \mathscr{F}) = 0\}$$$

或者 $\operatorname{cd}(X) = \infty$.

引理 12.2 (Tate). 设 L/K 是域扩张, 那么 $cd(L) \leq cd(K) + trdeg(L/K)$.

证明. 首先断言: 若 X 是 K 上的一维代数概形, 则 $\operatorname{cd}(X) \leq \operatorname{cd}(K) + 1$. 对 $f: X \to \operatorname{Spec} K$ 和挠层 \mathscr{F} 用 Leray 谱序列

$$E_2^{p,q} = H^p_{\text{\'et}}(\operatorname{Spec} K, R^q f_* \mathscr{F}) \Rightarrow H^{p+q}_{\text{\'et}}(X, \mathscr{F}).$$

注意到对于几何点 $\bar{x}: \operatorname{Spec} \bar{K} \to \operatorname{Spec} K$, 由推论8.4 有 $(R^q f_* \mathscr{F})_{\bar{x}} = H^q(X_{\bar{K}}, \mathscr{F})$. 当 q > 1 时由定理11.4知为 0. 分析谱序列得到断言成立.

回到引理本身. 若 $\operatorname{trdeg}(L/K) = \infty$ 则显然成立. 当超越度有限时, 根据归纳法不妨设 $\operatorname{trdeg}(L/K) = 1$. 设 $L = \varinjlim_i A_i$ 是一些有限生成 K 代数的滤余极限, 这些 A_i 的维数都不超过 1. 再利用断言和定理6.12即可得到结论.

定理 12.3. 设 X 是代数闭域 k 上的代数簇, 则 $cd(X) \le 2 \dim X$.

证明, 固定一个挠层 多, 用归纳法,

• **步骤 1.** 对一般点含入 $j: \eta \to X$, 划归到形如 $j_* \mathscr{F}$ 的情况.

注意到映射 $\mathscr{F} \to j_* j^{-1} \mathscr{F}$ 诱导同构 $(\mathscr{F})_{\eta} \cong (j_* j^{-1} \mathscr{F})_{\eta}$. 其核和余核都是支撑在维数更小的闭子概形上的层. 根据归纳假设只需要证明 $j_* \mathscr{F}$ 的情况.

• 步骤 2. $R^q j_* \mathcal{F}$ 支撑在维数 dim X-q 的子簇上.

对于 X 的任何不可约闭子簇 Z, 设 Z 的一般点为 ξ , 然后选择一个几何点 $\bar{\xi} \to \xi \to Z$. 注意到由推论8.4得到 $(R^q j_* \mathscr{F})_{\bar{\xi}} = H^q(\operatorname{Frac}(\mathscr{O}_{\bar{\xi}}^{\operatorname{sh}}), \mathscr{F})$. 由于 $\operatorname{Frac}(\mathscr{O}_{\bar{\xi}}^{\operatorname{sh}})/\operatorname{Frac}(\mathscr{O}_{\bar{\xi}})$ 是代数扩张 (因为其为有限扩张的极限), 注意到

$$\operatorname{trdeg}(\operatorname{Frac}(\mathcal{O}_{\bar{\xi}})/k) = \dim X - \dim Z,$$

根据引理12.2得知成立.

步骤 3. 完成证明.

考虑 Leray 谱序列 $E_2^{p,q} = H^p_{\text{\'et}}(X, R^q j_* \mathscr{F}) \Rightarrow H^{p+q}_{\text{\'et}}(\eta, \mathscr{F})$ 如图 $(n = \dim X)$:

根据归纳, 当 p > 2(n-q) 且 q > 0 时 $E_2^{p,q} = 0$; 由引理12.2知当 p+q > n 时 $H^{p+q}(\eta,\mathscr{F}) = 0$. 故在图中 l_1 右方区域均收敛至 0, 在 l_2 右方的区域均为零. 于是考虑当 $p > 2\dim X$ 时有 $E_2^{p-1,1} = 0$, 故 $E_2^{p,0} = E_\infty^{p,0}$. 在虚线 L 上全部收敛至 0, 因此 $E_2^{p,0} = 0$, 则证明完毕.

13 紧合基变换和光滑基变换

13.1 经典拓扑里的紧合基变换

定义 13.1. 连续映射 $f: X \to S$ 称为紧合的如果 f 是万有闭的且 $\Delta: X \to X \times_S X$ 是闭映射. 如果 f 紧合当且仅当紧集的逆像仍然是紧的, 我们称 f 是拟紧合 (更多的参考 Tag~005M).

以下假设均为 Hausdorff 空间.

引理 13.2. 设 S 是局部紧拓扑空间且 $f: X \to S$ 是紧合的映射, 则对于任何 X 上的 $S \in S$ 和点 $S \in S$ 都有

$$(R^r f_* \mathscr{F})_s \cong H^r(X_s, \mathscr{F}),$$

其中 $X_s = f^{-1}(s)$.

证明. 我们需要如下结论:

• 设 Z 是局部紧空间 X 的紧子集, 则对任何 X 上的层 $\mathscr F$ 都有 $\varinjlim_{U\supset Z} H^r(U,\mathscr F)\cong H^r(Z,\mathscr F|_Z)$.

回到引理本身. 根据定义有 $(R^r f_* \mathscr{F})_s = \varinjlim_{s \in V} H^r(f^{-1}(V), \mathscr{F})$. 由于 f 闭,则对所有开邻域 $U \supset f^{-1}(s)$,集合 $f(X \setminus U)$ 是闭的且 $V := X \setminus f(X \setminus U)$ 是 s 开邻域. 由于 $f^{-1}(V) \subset U$,我们有 $(R^r f_* \mathscr{F})_s = \varinjlim_{f^{-1}(s) \in U} H^r(U, \mathscr{F})$. 根据上述结论我们得到引理.

定理 13.3 (拓扑紧合基变换). 设 S 是局部紧拓扑空间且 $\pi: X \to S$ 是紧合的映射, 设 $f: T \to S$ 是连续映射, 考虑纤维积

$$X' := X \times_S T \xrightarrow{f'} X$$

$$\downarrow^{\pi'} \qquad \downarrow^{\pi} \qquad \downarrow^{$$

则对任何 X 上的层 \mathscr{F} 都有 $f^{-1}(R^r\pi_*\mathscr{F}) \cong R^r\pi'_*((f')^{-1}\mathscr{F})$.

证明. 首先定义映射 $f^{-1}(R^r\pi_*\mathscr{F}) \to R^r\pi'_*((f')^{-1}\mathscr{F})$. 根据伴随性给出 $R^r\pi_*\mathscr{F} \to R^r\pi_*\circ f'_*\circ (f')^{-1}\mathscr{F}$. 由于由 Leray 谱序列得到有映射 $R^r\pi_*\circ f'_*\to R^r(\pi\circ f')_*$, 由于还有 $R^r(f\circ\pi')_*\circ (f')^{-1}\to f\circ R^r\pi'_*\circ (f')^{-1}$, 我们得到映射 $f^{-1}(R^r\pi_*\mathscr{F})\to R^r\pi'_*((f')^{-1}\mathscr{F})$. 因此只需要验证茎即可, 根据引理13.2即可得到结论.

13.2 紧合基变换的叙述和证明

但平展上同调的紧合基变换类比没有这么容易.

引理 13.4. 对概形的紧合映射 $f: X \to S$ 和几何点 $\bar{s} \to S$, 对任意的 $\mathscr{F} \in \mathrm{Sh}(X_{\mathrm{\acute{e}t}})$ 都有双射

$$(f_*\mathscr{F})_{\bar{s}} \to \Gamma(X_{\bar{s}},\mathscr{F}_{\bar{s}}).$$

证明. 这个需要 Hensel 对的一些结果, 见Tag 0A3T.

引理 13.5. 设 ℓ 是任一素数且 A 是严格 Hensel 局部环, 设 $X \to \operatorname{Spec}(A)$ 紧合, 那么对于挠层 $\mathscr{F} \in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$ 有

$$H^q_{\mathrm{\acute{e}t}}(X,\mathscr{F})\cong H^q_{\mathrm{\acute{e}t}}(X_0,\mathscr{F}|_{X_0}),$$

其中 X_0 是特殊纤维.

证明. 这个结论颇为复杂, 直接证明需要 Artin 逼近等技术, 我们略去. 读者可以用紧合基变换来推出它 (其实和紧合基变换等价). 而 [10] 内只证明了 \mathbb{F}_{ℓ} -模层且 $X = \mathbb{P}_A^1$ 的情况 (我们也只需要这个条件), 我们简述一下这种情况: 取 \mathbb{F}_{ℓ} -模内射预解 $\mathscr{F} \hookrightarrow \mathscr{F}^1$, 可以证明 $\mathscr{F}^*|_{X_0}$ 是 $\mathscr{F}|_{X_0}$ 的右 $H^0_{\mathrm{\acute{e}t}}(X_0,-)$ -零调的 (参考Tag 0A5H), 于是 $H^q_{\mathrm{\acute{e}t}}(X_0,\mathscr{F}|_{X_0})$ 可以由 $H^0_{\mathrm{\acute{e}t}}(X_0,\mathscr{F}|_{X_0})$ 得到, 再由引理13.4即可得到结论.

注 13.6. 在复几何里有一个给予动机的类比 (证明见 [11] 定理 9.3):

• Ehresmann 定理. 设 $f:\mathcal{X}\to(B,0)$ 是微分流形之间的紧合浸没, 其中 B 是可缩的流形且 0 是其上的一个基点. 则存在微分同胚 $T:\mathcal{X}\cong\mathcal{X}_0\times B$ 使得对投影 $p:\mathcal{X}_0\times B\to B$ 满足 $p\circ T=f$. 因此在此种情况下有同伦等价 $\mathcal{X}\simeq\mathcal{X}_0$, 因此有相同的上同调.

定理 13.7 (紧合基变换). 设 $f:X\to Y$ 是概形间的紧合映射, 对任何概形映射 $g:Y'\to Y$ 和纤维积

$$X' := X \times_Y Y' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad f \downarrow \qquad \qquad f \downarrow \qquad \qquad Y' \xrightarrow{g} Y$$

对任何挠层 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$,都有同构

$$g^{-1}Rf_*\mathscr{F} \longrightarrow Rf'_*(g')^{-1}\mathscr{F}.$$

证明. 我们需要如下几个步骤来得到证明.

- 步骤 1. 先证明不导出的情况对任意的 $\mathscr{F} \in Sh(X_{\text{\'et}})$ 成立. 映射不难由伴随性给出, 同构只需要在茎上验证, 根据引理13.4即可得到结论.
- 步骤 2. 研究几个基变换的重要关系.

为了方便, 如果对任何 $S' \to S$ 和基变换 $X \times_S S'$ 和挠层 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 都满足定理的结论, 我们就称 $f: X \to S$ 和上同调的基变换交换. 则我们有如下结论:

•• (a) 紧合映射 $f: X \to Y$ 和上同调的基变换交换当且仅当对任何素数 ℓ 和内射 \mathbb{F}_{ℓ} -模层 $\mathscr{I} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ 和任何 $Y' \to Y$ 和定理的基变换 $X \times_Y Y'$, 对任何 q > 0 都有层 $R^q f'_*(g')^{-1} \mathscr{I} = 0$.

这个不太困难, 首先设 $\mathscr{F}=\varinjlim\mathscr{F}[n]$, 根据定理6.12不难得出高阶直像和滤余极限交换, 而逆像本来就交换, 因此只需要假设 \mathscr{F} 被某个 n 零化. 取素数 $\ell|n$, 考虑

$$0 \to \mathscr{F}[\ell] \to \mathscr{F} \to \mathscr{F}/\mathscr{F}[\ell] \to 0,$$

运用 5-引理, 只需对 $\mathscr{F}[\ell]$, $\mathscr{F}/\mathscr{F}[\ell]$ 证明即可. 不断重复这一步骤, 则不妨设 \mathscr{F} 被某个素数 ℓ 零化. 取 \mathbb{F}_{ℓ} -模内射预解 $\mathscr{F} \hookrightarrow \mathscr{I}^*$, 只需证明对 \mathscr{I}^* 运用步骤 1 即可.

- ●● (b) 若 $f: X \to Y$ 有限,则其和上同调的基变换交换.这个基本上平凡,运用 (a) 和推论8.5即可得到结果.
- ●● (c) 对紧合映射 $f: X \to Y$ 和 $g: Y \to Z$, 若 f, g 都和上同调的基变换交换, 则 $g \circ f$ 也是如此;
- ●● (d) 对紧合映射 $f: X \to Y$ 和 $g: Y \to Z$, 若 $f, g \circ f$ 都和上同调的基变换交换且 f 是满射, 则 g 也是如此.
- (b)(c) 证明类似, 运用相对 Leray 谱序列即可, 参考 $Tag\ 0A4C\ 和Tag\ 0A4D$, 我们略去.
- 步骤 3. 将问题划归到 (相对) 射影空间.

根据命题8.2, 我们可以考虑 Zariski 局部, 于是不妨设 Y 仿射. 由 Chow 引理得到如下交换图:

其中 π 是 (H-) 射影满射且 f'' 是紧合映射. 根据步骤 2 的 (b), 则 i 和上同调的基变换交换. 如果我们证明了对形如 $\mathbb{P}_S^n \to S$ 的映射也和上同调的基变换交换, 那么根据步骤 2 的 (c) 得到 f'', π 和上同调的基变换交换, 再根据步骤 2 的 (d), 我们就得到了 f 和上同调的基变换交换. 因此问题划归到了形如 $\mathbb{P}_S^n \to S$ 的映射.

• 步骤 4. 将问题划归到 (相对) 射影直线.

注意到对于 n > 0, 有有限满射

$$\mathbb{P}^1_S \times_S \cdots \times_S \mathbb{P}^1_S \to \mathbb{P}^n_S$$

为 $((x_1:y_1),(x_2:y_2),\ldots,(x_n:y_n))\mapsto (F_0:\ldots:F_n)$, 其中 F_i 是 x_i,y_i 的整系数多项式满足

$$\prod_{i} (x_i t + y_i) = F_0 t^n + F_1 t^{n-1} + \dots + F_n.$$

因此根据步骤 2 的 (c) 和 (d) 只需要考虑 $\mathbb{P}^1_S \to S$ 的情况.

• 步骤 5. 完成证明.

对任何 $g: T \to S$ 和 \mathscr{F} 是 \mathbb{F}_{ℓ} 模层 (根据步骤 2 的 (a) 的证明, 只需考虑这种情况), 观察交换图

$$\begin{array}{ccc}
\mathbb{P}_T^1 & \xrightarrow{g'} & \mathbb{P}_S^1 \\
f' \downarrow & & f \downarrow \\
T & \xrightarrow{g} & S
\end{array}$$

只需要在茎上验证. 首先注意到对几何点 $s' \to S$, 根据引理13.5和推论8.4我们有

$$(R^qf_*\mathscr{F})_{\bar{s}'}=H^q(\mathbb{P}^1_{\mathscr{O}^{\mathrm{sh}}_{S,\bar{s}'}},\mathscr{F}|_{\mathbb{P}^1_{\mathscr{O}^{\mathrm{sh}}_{S,\bar{s}'}}})=H^q(\mathbb{P}^1_{\kappa(s')^{\mathrm{sep}}},\mathscr{F}|_{\mathbb{P}^1_{\kappa(s')^{\mathrm{sep}}}}).$$

因此考虑几何点 $\bar{t} \to T$, 设 $\bar{s} = g(\bar{t})$, 考虑映射 $g^{-1}R^q f_* \mathscr{F} \to R^q f'_*(g')^{-1} \mathscr{F}$ 的茎为

$$H^q(\mathbb{P}^1_{\kappa(s)^{\rm sep}}, \mathscr{F}|_{\mathbb{P}^1_{\kappa(s)^{\rm sep}}}) \to H^q(\mathbb{P}^1_{\kappa(t)^{\rm sep}}, \mathscr{F}|_{\mathbb{P}^1_{\kappa(t)^{\rm sep}}}).$$

根据命题11.11即可得到结论.

13.3 紧合基变换的应用

13.4 经典拓扑里的光滑基变换

定义 13.8. 我们称拓扑空间间的连续映射 $f: X \to Y$ 是光滑的, 如果对任何 $x \in X$, 存在其开邻域同胚于 $U \times [0,1]^n$, 其中 U 是 f(x) 的开邻域.

定理 13.9 (拓扑的光滑基变换). 对任何 $\mathscr{F} \in Loc(X)$ 和纤维积

$$X' = X \times_S S' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad f \downarrow$$

$$S' \xrightarrow{g} S$$

如果 g 光滑, 则有 $g^{-1}R^if_*\mathscr{F}\cong R^if'_*(g')^{-1}\mathscr{F}$.

证明. 映射类似于拓扑紧合基变换, 由于高阶直像可以是上同调群的层化, 我们只需证明

$$H^i(X \times [0,1]^n, (g')^{-1}\mathscr{F}) \cong H^i(X, \mathscr{F}).$$

因为有同伦等价 $X \times [0,1]^n \simeq X$, 如果局部系的上同调在同伦等价下不变, 我们就得到结论.

我们只需证明若 $h_0, h_1: Y' \Rightarrow Y$ 是同伦的映射,那么会诱导相同的 $H^i(Y, \underline{A}) \rightarrow H^i(Y', \underline{A})$,其中 \underline{A} 是常值 Abel 群层. 设同伦为 $F: [0,1] \times Y' \rightarrow Y$ 使得 $F|_{0 \times Y} = f_0, F|_{1 \times Y} = f_1$. 取 $j_t: Y' \rightarrow Y' \times [0,1]$ 为 $j' \mapsto (t, y')$,则有 $f_0 = F \circ j_0, f_1 = F \circ j_1$,因此只需证明对任何 $t \in [0,1]$,映射 j_t 都诱导相同的 $H^i(Y' \times [0,1], \underline{A}) \rightarrow H^i(Y', \underline{A})$. 考虑 $\pi: [0,1] \times Y' \rightarrow Y'$ 为自然投影,则有 $\pi \circ j_t = \mathrm{id}_{Y'}$,因此只需要考虑 π 诱导上同调群同构.

根据 Leray 谱序列有 $E_2^{p,q} = H^p(Y', R^q \pi_* \underline{A}) \Rightarrow H^{p+q}([0,1] \times Y', \underline{A})$. 根据拓扑的 紧合基变换 XXX 得到对任意的 $y' \in Y'$ 有自然同构 $R^i \pi_* (\underline{A})_{y'} \cong H^i([0,1], \underline{A})$. 由层上同调-奇异上同调比较定理17.1得知当 i > 0 时有

$$H^{i}([0,1],\underline{A}) \cong H^{i}_{sing}([0,1],A) = 0.$$

故有典范同构 $\underline{A} \cong \pi_* \underline{A}$ 且当 i > 0 有 $R^i \pi_* \underline{A} = 0$. 因此 Leray 谱序列退化, 故而所有 边界映射

$$H^p(Y', \pi_*\underline{A}) \to H^p([0, 1] \times Y', \underline{A})$$

是同构. 最后, 不难验证得到此映射即为:

$$H^p(Y', \pi_* A) \to H^p([0, 1] \times Y', \pi^{-1} \pi_* A) \to H^p([0, 1] \times Y', A),$$

故而因为 $\pi^*\underline{A} \to \pi^{-1}\pi_*\underline{A} \to \underline{A}$ 是单位, 故边界映射和 $\underline{A} \cong \pi_*\underline{A}$ 诱导的同构即为 π 诱导的映射.

13.5 光滑基变换一瞥

定理 13.10 (光滑基变换). 对概形映射 $f: X \to S$ 和挠群 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 使得挠阶数 在 S 内可逆. 对于纤维积

$$X' = X \times_S S' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad f \downarrow$$

$$S' \xrightarrow{g} S$$

其中 $S'=\varprojlim_{\lambda}S_{\lambda}$ 为光滑 S 概形 S_{λ} 构成的拟系统满足转移映射 $S_{\lambda'}\to S_{\lambda}$ 是仿射的,因此有典范同构

$$g^{-1}R^if_*\mathscr{F}\cong R^if'_*(g')^{-1}\mathscr{F}.$$

- 13.6 光滑基变换的应用
- 14 上同调维数 II——仿射情况
- 15 ℓ -进层和 ℓ -进上同调
- 16 平展上同调的 Künneth 公式
- 17 比较定理
- 17.1 常值层上同调-奇异比较定理

定理 17.1. 设 X 是局部可缩拓扑空间,则对任何交换环 G 都有典范同构 $H^i_{\mathrm{sing}}(X,G)\cong H^i(X,\underline{G}).$

证明. 待添加, 参考 [11] 定理 4.47.

- 17.2 平展-奇异比较定理
- 17.3 其他比较定理
- 18 纯性和 Gysin 序列
- 19 紧支上同调
- 20 链映射和 Chern 类
- 21 Poincaré 对偶
- 22 Lefchetz 迹公式
- 23 Weil 上同调理论
- 24 平展上同调的一些应用 I
- 24.1 Néron-Severi 定理
- 24.2 待添加
- 25 平展上同调的一些应用 II——Abel 簇相关
- 25.1 Abel 簇的平展上同调
- 25.2 Mordell-Weil 定理
- 25.3 待添加

索引

1-余链, 25 C_r 域, 28 G-模, 18 $GL_{n,X}, 9$ $\mathbb{G}_{a,X}, 9$ $\mathbb{G}_{m,X}, 9$ $\mu_{n,X}, 9$ **G**-挠子, 25 $\mathscr{O}_{X,\bar{x}}^{\mathrm{sh}}, 11$

Brauer 群, 28

Galois 上同调, 18 Grothendieck 意象, 7 Grothendieck 拓扑, 7

Hensel 局部环, 11 Hensel 引理, 11

Riemann 存在定理, 6

Tate 连续上同调, 18 Tsen 定理, 28

Weil 猜想, 4

Čech 上同调, 22

严格 Hensel 化, 11

严格 Hensel 局部环, 11

分离预层, 7 切除, 21 可构建层, 32 局部常值层, 12 层, 7 层化,8 常值层, 12 平凡 🛭 - 挠子, 25 平展上同调,17

拟凝聚层,9 摩天大厦层,11

平展基本群,5

景, 7

有限局部常值层,12

直像, 14 纤维函子, 5 结构层,9 群上同调,18

茎, 10

逆像, 15 零扩张函子, 16 预层, 7

参考文献

- [1] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli. Fundamental Algebraic Geometry, Grothendieck's FGA Explained. AMS, 2005.
- [2] Alexander Grothendieck and Michele Raynaud. Revêtements étales et groupe fondamental (SGA 1). Springer-Verlag, 1971.
- [3] Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.
- [4] Fu Lei. Algebraic geometry. TsingHua and Springer, 2006.
- [5] Fu Lei. Étale Cohomology Theory, Revised Version. World Scientific, 2015.
- [6] James S. Milne. Étale Cohomology. Princeton university press, 1980.

- [7] James S. Milne. Lectures on étale cohomology, 2013.
- [8] James S. Milne. Class field theory, 2020.
- [9] Martin Olsson. Algebraic Spaces and Stacks. AMS, 2016.
- [10] Stacks project collaborators. The stacks project, 2023.
- [11] Claire Voisin. Hodge Theory and Complex Algebraic Geometry I. Cambridge University Press, 2002.