

SEM training using R

Session 1: Exploratory Factor Analysis

04 August 2021

Factor analysis process

Stage 1: Objectives of factor analysis

Stage 2: Designing an Exploratory factor analysis

Stage 3: Assumptions in Exploratory factor analysis

Stage 4: Deriving factors and assessing overall fit

Stage 5: Interpreting the factors

Stage 1: Objectives of factor analysis

Types of factor analysis

Exploratory factor analysis

- Use when you do not have a well-developed theory
- Estimate all possible variable/ factor relationships
- Looking for patterns in the data

Confirmatory factor analysis

- Testing a theory that you know in advance
- Only specified variables/factor relationships

Types of factor analysis

Exploratory factor analysis

- Difficult to interpret without a theory.
- factor loadings: meanings can sometimes be inferred from patterns.

Types of factor analysis

Confirmatory factor analysis

- Model fit: how well the hypothesized model fits the data.
- Factor loadings: how well items measure their corresponding constructs.

Stage 2: Designing an EFA

Variable selection and measurement issues

- 1. What types of variables can be used in factor analysis?
 - Primary requirement: a correlation value can be calculated among all variables.
 - o e.g., metric variables, scale items, dummy variables to represent nonmetric variables.
- 2. How many variables should be included?
 - Five or more per factor for scale development.
 - Three or more per factor for factor measurement (based on how degrees of freedom is computed).

Sample size

Some recommended guidelines:

- 1. absolute size of the dataset
 - should not fewer than 50 observation
 - o preferably 100 and larger
 - o 200 and larger as the number of variables and expected factors incerases
- 2. ratio of cases to variables
 - observation is 5x as the number of variables
 - sample size is 10:1 ratio
 - o some proposes 20 cases per variables

Stage 3: Assumptions in EFA

How many dimensions do you have?

Dataset

(Info here!)

хб	x7	x8	х9	x10	x11	x12
<qp + p ></qp + p >						
8.5	3.9	2.5	5.9	4.8	4.9	6.0
8.2	2.7	5.1	7.2	3.4	7.9	3.1
9.2	3.4	5.6	5.6	5.4	7.4	5.8
6.4	3.3	7.0	3.7	4.7	4.7	4.5
9.0	3.4	5.2	4.6	2.2	6.0	4.5
6.5	2.8	3.1	4.1	4.0	4.3	3.7
6.9	3.7	5.0	2.6	2.1	2.3	5.4
6.2	3.3	3.9	4.8	4.6	3.6	5.1
5.8	3.6	5.1	6.7	3.7	5.9	5.8
6.4	4.5	5.1	6.1	4.7	5.7	5.7
1-10 of 100) rows 1-7	of 11 col	. Previous	1 2 3	4 5 6	10 Next

Source: J.F. Hair (2019): Multivariate data analysis.

- 1. Bartlett Test
- 2. Measure of Sampling Adequacy

1. Bartlett Test

- Examines the entire correlation matrix
- Test the hypothesis that correlation matrix is an identity matrix.
- A significant reulst signifies data are appropriate for FA

```
BARTLETT(data, N= nrow(data))
```

```
v The Bartlett's test of sphericity was significal These data are probably suitable for factor and <U+0001D712>2(55) = 619.27, p < .001
```

- Measure of sampling adequacy
- Indicate the proportion of variance explained by the underlying factor.
- Guidelines:
 - $\circ \geq 0.90$ marvelous
 - $\circ \geq 0.80$ meritorious
 - $\circ \geq 0.70$ middling
 - $\circ~\geq 0.60$ mediocre
 - $\circ \geq 0.50$ miserable
 - $\circ < 0.50$ unacceptable

```
    library(psych)

    KMO(data)
```

- When overall MSA is less than 0.50
 - Identify variables with lowest MSA subject for deletion.
 - Recalculate MSA
 - Repeat unitl overall MSA is 0.50 and above
- Deletion of variables with MSA under 0.50 means variable's correlation with other variables are poorly representing the extracted factor.

```
# Deselecting X15
data_deselect <- data %>%
  select(-x15, -x17)
KMO(data_deselect)
```

Let's practice!

Selecting factor extraction method

Partitioning the variance of a variable

Unique variance

- Variance associated with only a specific variable.
- Not represented in the correlations among variables.
- Specific variance
 - associated uniquely with a single variable.
- *Error variance*
 - May be due to unreliability of data gathering process, measurement error, or a random component in the measured phenomenom.

Common variance

- Shared variance with all other variables.
- High common variance are more amenable for factor analysis.
- Derived factors represents the shared or common variance among the variables.

Partitioning the variance of a variable

Source: JF Hair et al. (2019) Multivariate data analysis.

PCA vs Common factor analysis

Principal component analysis (PCA)

- Considers the total variance
- data reduction is a primary concern

Common factor analysis

- Considers only the common variance or shared variance
- Primary objective si to identify the laten dimensions or constructs

Source: JF Hair et al. (2019) Multivariate data analysis.

Exploring possible factor

1. Kaiser-Guttman Criterion

- Only consider factors whose eigenvalues is greater than 1.
- Rationale is that factor should account for the variance of at least a single variable if it is to be retained for interpretation.

```
library(EFAtools)
KGC(Data, eigen_type = "EFA")
```

N factors suggested by Kaiser-Guttman criterion with EFA: 2

Exploring possible factors

2. Scree test

- Identify the optimum number of factors that can be extracted before the amount of unique variance begins to dominate the common variance.
- Inflection point or the "elbow"

library(psych)
scree(data)

Exploring possible factors

3. Parallel Test

- Generates a large number of simulated dataset.
- Each simulated dataset is factor analyzed.
 - Results is the average eigenvalues across simulation.
 - Values are then compared to the eigenvalues extracted from the original dataset.
 - All factors with eigenvalues above those average eigenvalues are retained.

```
library(psych)
fa.parallel(data, fa = "fa")
```

Let's practice!

Three process of factor intepretation

- 1. Factor extraction
- 2. Factor rotation
- 3. Factor interpretation and re-specification

Factor extraction

Loadings

- Correlation of each variable and the factor.
- Indicate the degree of correspondence between variable and factor.
- Higher loadings making the variable representative of the factor.

fa_unrotated <- fa(r = data, nfactors = 4,rotate
print(fa_unrotated\$loadings)</pre>

```
Loadings:
                         MR4
    MR1
           MR2
                  MR3
    0.201 - 0.408
                          0.463
     0.290
           0.656
                   0.267
                          0.210
     0.278 - 0.382
x8
                   0.744 - 0.169
     0.862
                  -0.255 - 0.184
x10
    0.287 0.456
                          0.127
    0.689 -0.454 -0.141 0.316
    0.398
           0.807
                   0.348
                          0.255
x13 -0.231 0.553
                         -0.287
    0.378 -0.322 0.730 -0.151
x16
    0.747
                  -0.176 -0.181
x18
    0.895
                  -0.304 - 0.198
                 MR1
                       MR2
                             MR3
                                    MR4
SS loadings
               3.215 2.226 1.500 0.679
Proportion Var 0.292 0.202 0.136 0.062
Cumulative Var 0.292 0.495 0.631 0.693
```

Factor extraction

Loadings

- $<\pm 0.10 \approx {\sf zero}$
- ± 0.10 to ± 0.40 meet the minimal level
- $\geq \pm 0.50$ practically significant
- $> \pm 0.70 \approx$ well-defined structure

SS loadings

- Eigenvalues column sum of squared factor loadings.
- Relative importance of each factor in accounting for the variance associated with the set of variables.

fa_unrotated <- fa(r = data, nfactors = 4,rotate
print(fa_unrotated\$loadings)</pre>

```
Loadings:
    MR1
           MR2
                  MR3
                          MR4
     0.201 - 0.408
x6
                           0.463
     0.290
           0.656
                   0.267
                          0.210
x8
     0.278 - 0.382
                   0.744 - 0.169
                  -0.255 - 0.184
     0.862
     0.287 0.456
                          0.127
     0.689 -0.454 -0.141 0.316
     0.398
            0.807
                   0.348 0.255
x13 - 0.231
            0.553
                          -0.287
     0.378 - 0.322
                   0.730 - 0.151
x16
    0.747
                  -0.176 -0.181
x18
    0.895
                  -0.304 - 0.198
                       MR2
                              MR3
                                    MR4
SS loadings
               3.215 2.226 1.500 0.679
Proportion Var 0.292 0.202 0.136 0.062
Cumulative Var 0.292 0.495 0.631 0.693
```

Why do factor rotation?

- To simplify the complexity of factor loadings.
- Distribute the loadings more clearly into the factors.
- Facilitate interpretation.


```
par(mfrow = c(1, 2))
plot(fa_unrotated$loadings[,
     xlab = "Factor 1", ylab
     ylim = c(-1, 1), xlim =
     main = "No rotation",
     pch = 19, col = "#6c757"
     abline(h=0, v=0)
     text(fa unrotated$loadi
          labels = rownames(
          pos = 4, cex = 0.5
plot(fa_rotated$loadings[,1]|
     xlab = "Factor 1", ylab
     ylim = c(-1, 1), xlim =
     main = "With rotation",
     pch = 19, col = "#6c757]
     abline(h=0, v=0)
     text(fa_rotated$loading
          labels = rownames(
          pos = 4, cex = 0.5
```


Orthogonal rotation

- axes are maintained at 90 degrees
- orthogonal rotation methods
 - o Varimax most commonly used
 - Quartimax
 - Equimax
- Check-out some of these references
 - o IBM
 - Factor analysis

Orthogonal rotation

Oblique rotation rotation

- allow correlated factors
- suited to the goal of theoretically meaningful constracts
- oblique rotation methods
 - Promax
 - Oblimin
- Note: no specific rules in selecting a between rotation method.

Oblique rotation

Let's practice!