

DEPARTMENT OF INFORMATION SYSTEMS AND COMPUTER SCIENCE

Vectors and Circles

A Review

Lecture Time!

- ▶ Vectors: Math
- ► Circles: More Math
- ► SFML: Now With More Math

WARNING

- ► This should be a review of linear algebra
- Since this subject is primarily for DGDD majors, I am going to fast-forward through a lot of this

Vectors

- An n-tuple of numbers from the domain of real numbers
 - Number of dimensions = n
 - ► Therefore, an example of a 2-D vector would be (4, –8.9)
- Interpreted as displacement from the origin to a specific point
 - ▶ Position
 - Can be used for other things (like a size)

▶ Vector addition:

$$a + b = (a_x + b_x, a_y + b_y)$$

- ➤ What is the resulting vector?
- ► Useful for:
 - ► Translation (motion, update of position)
 - ► Subtraction (a b = a + (-b))

▶ Vector subtraction:

$$a - b = (a_x - b_x, a_y - b_y)$$

- ► What is the resulting vector if b is used as an origin?
- ► Useful for:
 - Distance (between two points, used in conjunction with getting a vector's magnitude)
 - Getting an "opposing" vector (faces the opposite direction, same magnitude)

- ► Multiplying a vector with a scalar: sa = (sa_x, sa_y)
 - ➤ What is the resulting vector?
 - Division is just multiplying by a reciprocal of the divisor
- ► Useful for:
 - Scaling (shrinking or enlarging relative to a local origin)
 - Normalization

- ► Getting the magnitude of a vector: $|a| = sqrt(a_x^2 + a_y^2)$
 - ► What is magnitude, assuming a line segment formed by point a and the origin?
- ► Useful for:
 - Distance (between two points, used in conjunction with subtraction)
 - Speed (given a velocity vector)

► Normalizing a vector:

$$\hat{a} = (a_x / |a|, a_y / |a|)$$

- ➤ What is the resulting vector?
- ► Useful for:
 - ► Emphasis on direction without scale (using non-unit vectors may add extra "corrective" steps in some operations)

Dot Product

▶ Dot product of two vectors:

$$a \bullet b = a_x b_x + a_y b_y$$

- ► Also known as scalar product
- ► Useful for:
 - ► Lots of stuff

Dot Product

- ►a b = $|a||b| \cos \theta$
 - being the smallest angle between a and b
- $\blacktriangleright a \bullet a = |a|^2$

Pseudo Cross Product

- ▶ Perp-dot product of two vectors: a^P b
 - ▶ a^P is counterclockwise vector perpendicular to a
 - $ightharpoonup a = (x, y), a^P = (-y, x)$
- ► Useful for:
 - Determining if b is counterclockwise (positive), clockwise (negative), or along a (zero)

Lines

- ► A line can be defined as the set of points expressible as the linear combination of two distinct points A and B:
 - ightharpoonup L(t) = (1 t)A + tB = A + t(B A)
 - ► In other words, just need a point and a direction
- ► A ray is a line but t ≥ 0
- ► A segment is a line but $0 \le t \le 1$

Projection onto a Vector

- Useful for things like Separating Axis Theorem
- Assume u is a unit length vector and any other vector v
- ► The projection of v onto u is another vector along u
 - Can be expressed as some value L multiplied by u

Projection onto a Vector

- \triangleright L = V \bullet U
- ► The projection of v onto u therefore is proj(v, u) = (v u)u
 - Proof will be or was already taught in Linear Algebra
- Projecting v onto a non-unit vector d: proj(v, d) = ((v ● d) / (d ● d))d

Circles

- Usually rendered as a polygon with many sides
- Represented by a vector indicating its center and a value representing its radius
 - Most memory-efficient compared to other
 2-D shape representations

Circles

- Overlap test involves checking if the distance between two circle centers is less than or equal to the sum of their radii
 - ▶ But square root operations are expensive
 - ► Is there a way to perform this check without the square root operation?

SFML Window

```
int main()
    // create window
    sf::RenderWindow window (
         sf::VideoMode (480, 320),
         "Title Goes Here" );
    // other initializations here
```


SFML Window

```
while( window.isOpen() )
{
       // check all the window's events that were triggered
       // since the last iteration of the loop
       sf::Event event;
       while( window.pollEvent( event ) )
              // "close requested" event
              if( event.type == sf::Event::Closed )
                     window.close();
```


SFML Graphics

```
// in initialization part, after creating window
sf::CircleShape circ;
sf::RectangleShape rect;
circ.setPosition(40,40);
circ.setRadius(100.0f);
circ.setFillColor(sf::Color(0, 255, 0));
rect.setPosition(340, 180);
rect.setSize(sf::Vector2f(100.0f,60.0f));
rect.setFillColor(sf::Color(0,0,255));
```


SFML Graphics

```
// in window.isOpen() loop
// always clear buffer at start of current frame
window.clear( sf::Color::Black );
// draw shapes
window.draw(circ);
window.draw( rect );
// always call next line at end of current frame
window.display();
```


Exercises

- ► Make programs that draw the following:
 - RectangleShape that travels left and right
 - CircleShape that also moves in a circle
 - RectangleShape that slowly changes size and color
 - Should eventually loop back to its original size and color
- ► Ensure that your programs run at (roughly) 60 frames per second

Homework

- Create an array of 60 CircleShapes and 40 RectangleShapes
 - ► CircleShape radius is 30.0f
 - RectangleShape dimensions are 50.0f x 50.0f
 - Assign different colors to each shape
 - Cycle through red, green, blue, yellow, cyan, and white
 - ► Do consider a convenience function for this

Homework

- Starting positions of these shapes should be random
 - \blacktriangleright (0, 0) to (window_w 1, window_h 1)
- CircleShapes should drift downwards at a rate of 20 pixels per second
- RectangleShapes should drift to the right at a rate of 20 pixels per second
 - Not 20 pixels per tick (movement should be very smooth)

