

Applied Group Workshop 2016 Scott Morgan

# Linear Stability of the Rotating Disk Boundary Layer

Scott Morgan

Supervisor: Dr. Chris Davies



Applied Group Workshop 2016 Scott Morgan

■ Why study rotating disks?

#### CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Applied Group Workshop 2016

Scott Morgan

- Why study rotating disks?
- Why study oscillatory motion on the disk?



## Introduction to the Rotating Disk - Setup



Figure 1: Rotating Disk Profile



## Introduction to the Rotating Disk - History

- Why is it an interesting problem?
  - Canonical example of a three-dimensional boundary layer.



## Introduction to the Rotating Disk - History

- Why is it an interesting problem?
  - Canonical example of a three-dimensional boundary layer.
  - Approximation to swept-wing flow.



## Introduction to the Rotating Disk - History

- Why is it an interesting problem?
  - Canonical example of a three-dimensional boundary layer.
  - Approximation to swept-wing flow.
  - More amenable to experiments.

• First studied in 1921 by Theodore von Kármán who derived an exact similarity solution to the Navier Stokes equations.

$$F(z)=rac{U^*}{r^*\Omega^*},\quad G(z)=rac{V^*}{r^*\Omega^*},\quad H(z)=rac{W^*}{(
u\Omega^*)^{rac{1}{2}}}$$

where  $\mathbf{U} = \mathbf{U}^*(z)$  is the velocity profile in cylindrical polars,  $\Omega^*$  is the rotation rate of the disk and  $\nu$  is the kinematic viscosity.

## Introduction to the Rotating Disk - Setup

Applied Group Workshop 2016 Scott Morgan

■ First studied in 1921 by Theodore von Kármán who derived an exact similarity solution to the Navier Stokes equations.

$$F(z)=rac{U^*}{r^*\Omega^*},\quad G(z)=rac{V^*}{r^*\Omega^*},\quad H(z)=rac{W^*}{(\nu\Omega^*)^{rac{1}{2}}}$$

where  $\mathbf{U} = \mathbf{U}^*(z)$  is the velocity profile in cylindrical polars,  $\Omega^*$  is the rotation rate of the disk and  $\nu$  is the kinematic viscosity.

Worth noting - Reynolds number is equivalent to radial position on the disk.

## Introduction to the Rotating Disk - Setup

Applied Group Workshop 2016 Scott Morgan

• First studied in 1921 by Theodore von Kármán who derived an exact similarity solution to the Navier Stokes equations.

$$F(z)=rac{U^*}{r^*\Omega^*},\quad G(z)=rac{V^*}{r^*\Omega^*},\quad H(z)=rac{W^*}{(\nu\Omega^*)^{rac{1}{2}}}$$

where  $\mathbf{U} = \mathbf{U}^*(z)$  is the velocity profile in cylindrical polars,  $\Omega^*$  is the rotation rate of the disk and  $\nu$  is the kinematic viscosity.

- Worth noting Reynolds number is equivalent to radial position on the disk.
- Non-dimensional base flow

$$\mathbf{U}^{B} = \left(\frac{r}{R}F, \frac{r}{R}G, \frac{1}{R}H\right)$$



Applied Group Workshop 2016 Scott Morgan

■ The disk admits an inviscid *crossflow* instability, similar to the one present in swept-wing flow, hence the analogy.



- The disk admits an inviscid crossflow instability, similar to the one present in swept-wing flow, hence the analogy.
- In 1995, Rebecca Lingwood discovered a local absolute instability in the rotating disk boundary layer - important because of its proximity to the experimentally observed critical Reynolds number for transition to turbulence.

- The disk admits an inviscid crossflow instability, similar to the one present in swept-wing flow, hence the analogy.
- In 1995, Rebecca Lingwood discovered a local absolute instability in the rotating disk boundary layer - important because of its proximity to the experimentally observed critical Reynolds number for transition to turbulence.
- This absolute instability is not present in the swept-wing configuration due to the lack of periodicity.

- Applied Group Workshop 2016 Scott Morgan
- The disk admits an inviscid crossflow instability, similar to the one present in swept-wing flow, hence the analogy.
- In 1995, Rebecca Lingwood discovered a local absolute instability in the rotating disk boundary layer - important because of its proximity to the experimentally observed critical Reynolds number for transition to turbulence.
- This absolute instability is not present in the swept-wing configuration due to the lack of periodicity.
- The disk flow is globally linearly stable, and even in strongly absolutely unstable regions, convective behaviour dominates eventually.



## **Understanding Stability**

Applied Group Workshop 2016 Scott Morgan

> Local behaviour can be analysed using standard techniques for solving the temporal or spatial Orr-Sommerfeld eigenvalue problem as discussed.



## **Understanding Stability**

- Local behaviour can be analysed using standard techniques for solving the temporal or spatial Orr-Sommerfeld eigenvalue problem as discussed.
- Global behaviour can be analysed using direct numerical simulations (DNS).



Applied Group Workshop 2016 Scott Morgan

#### **Usual Approach**

- Derive perturbation equations in a similar fashion to the Orr-Sommerfeld problem.
- $\blacksquare$  Reduce to a set of six first order ODEs which can be solved for the wavenumber  $\alpha$ .

Applied Group Workshop 2016 Scott Morgan

#### Usual Approach

- Derive perturbation equations in a similar fashion to the Orr-Sommerfeld problem.
- Reduce to a set of six first order ODEs which can be solved for the wavenumber  $\alpha$ .

#### Alternate Approach

 Solve a velocity-vorticity formulation, reducing perturbation equations to a set of three second order PDEs.

Applied Group Workshop 2016 Scott Morgan

#### Usual Approach

- Derive perturbation equations in a similar fashion to the Orr-Sommerfeld problem.
- Reduce to a set of six first order ODEs which can be solved for the wavenumber  $\alpha$ .

#### Alternate Approach

 Solve a velocity-vorticity formulation, reducing perturbation equations to a set of three second order PDEs.

#### Normal mode approximation

$$\hat{\phi}(r,\theta,z,t) = \phi(z)e^{i(\alpha r + \beta R\theta - \omega t)}$$



CARDIFF

## Velocity-vorticity Formulation

Workshop 2016 Scott Morgan

 $\frac{\partial \xi_r}{\partial t} + \frac{1}{r} \frac{\partial N_r}{\partial \theta} - \frac{\partial N_{\theta}}{\partial z} - \frac{2}{R} \left( \xi_{\theta} + \frac{\partial w}{\partial r} \right) = \frac{1}{R} \left[ \left( \nabla^2 - \frac{1}{r^2} \right) \xi_r - \frac{2}{r^2} \frac{\partial \xi_{\theta}}{\partial \theta} \right]$ 

$$\frac{\partial t}{\partial t} + \frac{1}{r} \frac{\partial \theta}{\partial \theta}$$

$$\frac{\partial \xi_{\theta}}{\partial t} + \frac{\partial N_r}{\partial z} - \frac{\partial N_r}{\partial z}$$

$$\frac{\partial \xi_{\theta}}{\partial t} + \frac{\partial N_r}{\partial z}$$

$$\frac{\sin^2 + \frac{\sin^2 z}{\partial z}}{\cos^2 z}$$

$$\mathbf{u} = (u_r, u_\theta, w), \quad \boldsymbol{\xi} = (\xi_r, \xi_\theta, \xi_z)$$
  
 $N_r, N_\theta, N_z) = (\nabla \times \mathbf{U}_B) \times \mathbf{u} + \boldsymbol{\xi}$ 

$$N_r, N_{\theta},$$

$$N_z) = (V_z)$$

$$u_r = -\int_{-\infty}^{\infty} \left(\xi_{\theta} + \frac{\partial w}{\partial r}\right) dz, \quad u_{\theta} = \int_{-\infty}^{\infty} \left(\xi_r - \frac{1}{r} \frac{\partial w}{\partial \theta}\right) dz$$

 $\xi_z = \frac{1}{r} \int_{-\infty}^{\infty} \left( \frac{\partial (r\xi_r)}{\partial r} + \frac{\partial \xi_{\theta}}{\partial \theta} \right) dz$ 

$$\mathbf{N} = (N_r, N_\theta, N_z) = (\nabla \times \mathbf{U}_B) \times \mathbf{u} + \boldsymbol{\xi} \times \mathbf{U}_B$$

$$\mathsf{U}_B) imes \mathsf{u}$$

$$(\xi_{ heta}, \xi_{z})$$
 $(\mathbf{u} + \boldsymbol{\xi})$ 

$$(\xi_{ heta}, \xi_{z})$$
  
 $\mathbf{u} + \boldsymbol{\xi} imes$ 

$$-\frac{3(\sqrt{30})}{\partial r}$$

$$\left(-\frac{1}{r^2}\right)\xi_{ heta} + \frac{2}{r^2}\frac{\partial \xi_{ heta}}{\partial t}$$
 $\left(-\frac{\partial (r\xi_{ heta})}{\partial r}\right)$ 

$$\left(\frac{r^2-\frac{1}{r^2}}{r^2}\right)\xi_{\theta} + \frac{2}{r^2}\frac{\partial \delta}{\partial r^2}$$
  
 $\left(\frac{r^2-\frac{\partial (r\xi_{\theta})}{\partial r^2}}{r^2}\right)$ 

$$\frac{\partial \xi_{\theta}}{\partial t} + \frac{\partial N_{r}}{\partial z} - \frac{\partial N_{z}}{\partial r} + \frac{2}{R} \left( \xi_{r} - \frac{1}{r} \frac{\partial w}{\partial \theta} \right) = \frac{1}{R} \left[ \left( \nabla^{2} - \frac{1}{r^{2}} \right) \xi_{\theta} + \frac{2}{r^{2}} \frac{\partial \xi_{r}}{\partial \theta} \right]$$
$$\nabla^{2} w = \frac{1}{r} \left( \frac{\partial \xi_{r}}{\partial \theta} - \frac{\partial (r\xi_{\theta})}{\partial r} \right)$$

Applied Group Workshop 2016 Scott Morgan



(a) Neutral Curve for  $\alpha_r$ 



(b) Neutral Curve for  $n = \beta R$ 

Applied Group Workshop 2016 Scott Morgan

Recall base flow profiles

$$\mathbf{U}^{B} = \left(\frac{r}{R}F, \frac{r}{R}G, \frac{1}{R}H\right)$$

Applied Group Workshop 2016 Scott Morgan

Recall base flow profiles

$$\mathbf{U}^{B} = \left(\frac{r}{R}F, \frac{r}{R}G, \frac{1}{R}H\right)$$

■ Parallel flow approximation amounts to setting r = R.

Applied Group Workshop 2016 Scott Morgan

Recall base flow profiles

$$\mathbf{U}^B = \left(\frac{r}{R}F, \frac{r}{R}G, \frac{1}{R}H\right)$$

- Parallel flow approximation amounts to setting r = R.
- But base flow *varies with radius*, so this is not entirely physical.

Applied Group Workshop 2016 Scott Morgan

Recall base flow profiles

$$\mathbf{U}^{B} = \left(\frac{r}{R}F, \frac{r}{R}G, \frac{1}{R}H\right)$$

- Parallel flow approximation amounts to setting r = R.
- But base flow varies with radius, so this is not entirely physical.
- Small effect on local, eigenvalue analysis but major effect on global analysis when full temporal and radial variation incorporated.

#### **Direct Numerical Simulations**

Applied Group Workshop 2016 Scott Morgan

Imagine an impulsive forcing to the disk surface at some radially localised location  $r = r_e$ .





- (a) Time history at r = 540
- (b) Spatio-temporal development

Figure 3: Azimuthal mode number n=68 and impulsive disturbance excited at r=520 - homogeneous flow

#### **Direct Numerical Simulations**

Applied Group Workshop 2016 Scott Morgan

Imagine an impulsive forcing to the disk surface at some radially localised location  $r=r_e$ .





- (a) Time history at r = 540
- (b) Spatio-temporal development

Figure 4: Azimuthal mode number n=68 and impulsive disturbance excited at r=520 - inhomogeneous flow

### **Direct Numerical Simulations**

Applied Group Workshop 2016 Scott Morgan Imagine an impulsive forcing to the disk surface at some radially localised location  $r=r_e$ .



Figure 5: Wavepacket envelopes at r = 540 azimuthal mode number n = 68 and an impulse excited at  $r_e = 520$ 



## Summary So Far

Applied Group Workshop 2016 Scott Morgan

■ Flow is *convectively* unstable for R > 286.



## Summary So Far

- Flow is *convectively* unstable for R > 286.
- Flow has a *local absolute instability* which occurs for R > 507.



## Summary So Far

- Flow is *convectively* unstable for R > 286.
- Flow has a *local absolute instability* which occurs for R > 507.
- Flow is globally stable when radial inhomogeneity is incorporated.



## Periodic Modulation - Motivation

Applied Group Workshop 2016 Scott Morgan

We can adapt the steady problem to include a time-dependent part by way of oscillations of the disk.



### Periodic Modulation - Motivation

- We can adapt the steady problem to include a time-dependent part by way of oscillations of the disk.
- Adding oscillations to channel flow can be stabilising.

## Periodic Modulation - Motivation

Applied Group Workshop 2016 Scott Morgan

- We can adapt the steady problem to include a time-dependent part by way of oscillations of the disk.
- Adding oscillations to channel flow can be stabilising.

$$u = \gamma_1 U_1^S + \gamma_2 U_2^P$$

where  $U_1^S$  and  $U_2^P$  are the steady base flow profiles for purely oscillatory channel flow ( $\gamma_1 = 0$ ) and Poiseuille channel flow ( $\gamma_2 = 0$ ).



## Periodic Modulation - Setup

Applied Group Workshop 2016 Scott Morgan

 We can alter the von Kármán similarity variables to include a time-dependent structure

$$F(z, \mathbf{t}) = \frac{U^*(z, \mathbf{t})}{r^* \Omega^*}, \quad G(z, \mathbf{t}) = \frac{V^*(z, \mathbf{t})}{r^* \Omega^*}, \quad H(z, \mathbf{t}) = \frac{W^*(z, \mathbf{t})}{(\nu \Omega^*)^{\frac{1}{2}}}$$

## Periodic Modulation - Setup

Applied Group Workshop 2016 Scott Morgan

time-dependent structure 
$$F(z,t) = \frac{U^*(z,t)}{r^*\Omega^*}, \quad G(z,t) = \frac{V^*(z,t)}{r^*\Omega^*}, \quad H(z,t) = \frac{W^*(z,t)}{(v\Omega^*)^{\frac{1}{2}}}$$

■ We can alter the von Kármán similarity variables to include a

System of ODEs becomes time-dependent

$$\frac{\partial F}{\partial t} = F^2 - (G+1)^2 + F'H - F''$$

$$\frac{\partial G}{\partial t} = 2F(G+1) + G'H - G''$$

$$H' = -2F$$

with

$$U(0, t) = W(0, t) = 0, \quad V(0, t) = A\cos(\omega t)$$
 $U \to 0 \quad V \to -1 \quad \text{as} \quad z \to \infty$ 

ROTATING FRAME

# Periodic Modulation - Setup

Applied Group Workshop 2016 Scott Morgan We can alter the von Kármán similarity variables to include a

time-dependent structure 
$$F(z, t) = \frac{U^*(z, t)}{r^*\Omega^*}, \quad G(z, t) = \frac{V^*(z, t)}{r^*\Omega^*}, \quad H(z, t) = \frac{W^*(z, t)}{(v\Omega^*)^{\frac{1}{2}}}$$

System of ODEs becomes time-dependent

$$\frac{\partial F}{\partial t} = F^2 - G^2 + F'H - F''$$

$$\frac{\partial G}{\partial t} = 2FG + G'H - G''$$

$$H' = -2F$$

with

$$U(0,t)=W(0,t)=0, \hspace{0.5cm} V(0,t)=1+A\cos(\omega t)$$
  
 $U o 0 \hspace{0.5cm} V o 0 \hspace{0.5cm} ext{as} \hspace{0.5cm} z o \infty$ 

NON-ROTATING (LAB) FRAME

Applied Group Workshop 2016

Scott Morgan

■ Map semi-infinite domain  $[0,\infty)$  to computational domain (0,1] using mapping  $\eta = \frac{1}{l+z}$ 

Applied Group Workshop 2016

Scott Morgan

- Map semi-infinite domain  $[0,\infty)$  to computational domain (0,1] using mapping  $\eta = \frac{l}{l+z}$
- Express *F* and *G* in terms of odd Chebyshev series and *H* in terms of even ones:

$$\{F,G\}(\eta) \sim \sum_{n=1}^{\infty} a_n T_{2n-1}(\eta), \quad H(\eta) \sim \frac{b_0}{2} + \sum_{n=1}^{\infty} b_n T_{2n}(\eta)$$

Applied Group Workshop 2016 Scott Morgan

- Map semi-infinite domain  $[0, \infty)$  to computational domain (0, 1] using mapping  $\eta = \frac{1}{l+z}$
- Express *F* and *G* in terms of odd Chebyshev series and *H* in terms of even ones:

$$\{F,G\}(\eta) \sim \sum_{n=1}^{\infty} a_n T_{2n-1}(\eta), \quad H(\eta) \sim \frac{b_0}{2} + \sum_{n=1}^{\infty} b_n T_{2n}(\eta)$$

 $\blacksquare$  Integrate equations twice with respect to  $\eta$  - e.g. for first equation

$$\iint \left(\frac{\partial F}{\partial t} + \mathcal{D}^2 F\right) = \iint \left(F^2 - G^2 - H \mathcal{D} F\right)$$

where 
$$\mathcal{D} = \frac{d}{dz} = -\frac{\eta^2}{l} \frac{d}{dn}$$
 and similarly for  $\mathcal{D}^2$ 

Applied Group Workshop 2016 Scott Morgan

- Map semi-infinite domain  $[0, \infty)$  to computational domain (0, 1] using mapping  $\eta = \frac{1}{l+z}$
- Express *F* and *G* in terms of odd Chebyshev series and *H* in terms of even ones:

$$\{F,G\}(\eta) \sim \sum_{n=1}^{\infty} a_n T_{2n-1}(\eta), \quad H(\eta) \sim \frac{b_0}{2} + \sum_{n=1}^{\infty} b_n T_{2n}(\eta)$$

 $\blacksquare$  Integrate equations twice with respect to  $\eta$  - e.g. for first equation

$$\iint \left( \frac{\partial F}{\partial t} + \mathcal{D}^2 F \right) = \iint \left( F^2 - G^2 - H \mathcal{D} F \right)$$

where  $\mathcal{D} = \frac{d}{dz} = -\frac{\eta^2}{l} \frac{d}{dz}$  and similarly for  $\mathcal{D}^2$ 

■ Matrix operators are pentadiagonal.

Applied Group Workshop 2016 Scott Morgan

 $\blacksquare$  Integrate equations twice with respect to  $\eta$  - e.g. for first equation

$$\iint \left(\frac{\partial F}{\partial t} + \mathcal{D}^2 F\right) = \iint \left(F^2 - G^2 - H \mathcal{D} F\right)$$

Applied Group Workshop 2016 Scott Morgan

 $\blacksquare$  Integrate equations twice with respect to  $\eta$  - e.g. for first equation

$$\iint \left(\frac{\partial F}{\partial t} + \mathcal{D}^2 F\right) = \iint \left(F^2 - G^2 - H \mathcal{D} F\right)$$

Apply backward three-level scheme for time-discretisation

$$\left(\frac{\partial f}{\partial t}\right)_{l} = \frac{1}{2\Delta t} \left(3f_{l} - 4f_{l-1} + f_{l-2}\right)$$

Applied Group Workshop 2016 Scott Morgan

 $\blacksquare$  Integrate equations twice with respect to  $\eta$  - e.g. for first equation

$$\iint \left(\frac{\partial F}{\partial t} + \mathcal{D}^2 F\right) = \iint \left(F^2 - G^2 - H \mathcal{D} F\right)$$

Apply backward three-level scheme for time-discretisation

$$\left(\frac{\partial f}{\partial t}\right)_{l} = \frac{1}{2\Delta t} \left(3f_{l} - 4f_{l-1} + f_{l-2}\right)$$

Solve using predictor-corrector

$$\left(\frac{3}{2\Delta t}\iint + \iint \mathcal{D}^2\right) F_{l+1} = \frac{2}{\Delta t}\iint F_l - \frac{1}{2\Delta t}\iint F_{l-1} + \iint \left(F_l^2 - G_l^2 - H_l \mathcal{D} F_l\right)$$

Applied Group Workshop 2016 Scott Morgan

 $\blacksquare$  Integrate equations twice with respect to  $\eta$  - e.g. for first equation

$$\iint \left( \frac{\partial F}{\partial t} + \mathcal{D}^2 F \right) = \iint \left( F^2 - G^2 - H \mathcal{D} F \right)$$

Apply backward three-level scheme for time-discretisation

$$\left(\frac{\partial f}{\partial t}\right)_{l} = \frac{1}{2\Delta t} \left(3f_{l} - 4f_{l-1} + f_{l-2}\right)$$

Solve using predictor-corrector

$$\left(\frac{3}{2\Delta t} \iint + \iint \mathcal{D}^2\right) F_{l+1} = \frac{2}{\Delta t} \iint F_l - \frac{1}{2\Delta t} \iint F_{l-1} + \iint \left(F_l^2 - G_l^2 - H_l \mathcal{D} F_l\right)$$

Oscillation is added after steady state is reached.

#### Preliminary Results

Applied Group Workshop 2016 Scott Morgan Imagine an impulsive forcing to the disk surface at some radially localised location  $r=r_e$ . Boundary conditions in the rotating frame are of the form  $G(z=0)=\epsilon\cos(\omega t)$ .



Figure 6: Wavepacket envelopes at r = 450 with azimuthal mode number n = 28 and an impulse excited at  $r_e = 400$ 



# Comparison with Garrett et. al. (2016) - Roughness

Applied Group Workshop 2016 Scott Morgan

- Garrett et. al. (2016) use boundary conditions on *G* to approximate anisotropic roughness.
- They show that roughness component can be stabilising.
- Roughness component, in some sense, is similar to oscillatory motion.



#### Future Work

Applied Group Workshop 2016 Scott Morgan

> • Incorporate Floquet theory to further understand oscillatory component.



#### Future Work

Applied Group Workshop 2016 Scott Morgan

- Incorporate Floquet theory to further understand oscillatory component.
- Quantify any apparent effects and provide a physical reasoning.



#### Future Work

Applied Group Workshop 2016 Scott Morgan

- Incorporate Floquet theory to further understand oscillatory component.
- Quantify any apparent effects and provide a physical reasoning.
- Is an oscillatory component stabilising for the rotating disk?

Applied Group Workshop 2016 Scott Morgan

Take normal mode approximation of the form

$$p(r, \theta, z, t) = \hat{p}(z, t)e^{\mu\tau}e^{i(\alpha r + \beta R\theta)}$$

where  $\hat{p}(z,t)$  is periodic in t and all of the exponential growth in time of p is factored into  $e^{\mu t}$ . Also  $\tau = \omega t$  non-dimensionalises the time scale.

Applied Group Workshop 2016 Scott Morgan

Take normal mode approximation of the form

$$p(r, \theta, z, t) = \hat{p}(z, t)e^{\mu\tau}e^{i(\alpha r + \beta R\theta)}$$

where  $\hat{p}(z,t)$  is periodic in t and all of the exponential growth in time of p is factored into  $e^{\mu t}$ . Also  $\tau = \omega t$  non-dimensionalises the time scale.

Decompose time dependent base flow into

$$\mathbf{U}^{B}(z,t) = \mathbf{U}^{VK}(z) + \sum_{n=-\infty}^{\infty} u_{n}(z)e^{i\tau}$$

Applied Group Workshop 2016 Scott Morgan

Take normal mode approximation of the form

$$p(r, \theta, z, t) = \hat{p}(z, t)e^{\mu\tau}e^{i(\alpha r + \beta R\theta)}$$

where  $\hat{p}(z,t)$  is periodic in t and all of the exponential growth in time of p is factored into  $e^{\mu t}$ . Also  $\tau = \omega t$  non-dimensionalises the time scale.

Decompose time dependent base flow into

$$\mathbf{U}^{B}(z,t) = \mathbf{U}^{VK}(z) + \sum_{n=-\infty}^{\infty} u_{n}(z)e^{i\tau}$$

■ Decompose  $\hat{p}$  into harmonics such that

$$\hat{p} = \sum_{n=-\infty}^{\infty} \hat{p}_n(z) e^{in\tau}$$

and substitute into equations.

Applied Group Workshop 2016 Scott Morgan

Take normal mode approximation of the form

$$p(r, \theta, z, t) = \hat{p}(z, t)e^{\mu\tau}e^{i(\alpha r + \beta R\theta)}$$

where  $\hat{p}(z,t)$  is periodic in t and all of the exponential growth in time of p is factored into  $e^{\mu t}$ . Also  $\tau=\omega t$  non-dimensionalises the time scale.

Decompose time dependent base flow into

$$\mathbf{U}^{B}(z,t) = \mathbf{U}^{VK}(z) + \sum_{n=-\infty}^{\infty} u_{n}(z)e^{i\tau}$$

■ Decompose  $\hat{p}$  into harmonics such that

$$\hat{p} = \sum_{n=-\infty}^{\infty} \hat{p}_n(z)e^{in\tau}$$

and substitute into equations.

lacksquare Gives system of perturbation equations to solve for  $\mu$ .