3.1

(i)

$$(||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2) = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle$$

$$= 2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle$$

$$= 4\langle \mathbf{x}, \mathbf{y} \rangle$$

$$\frac{1}{4}(||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2) = \langle \mathbf{x}, \mathbf{y} \rangle$$

as desired.

(ii)

$$(||\mathbf{x} + \mathbf{y}||^2 + ||\mathbf{x} - \mathbf{y}||^2) = ||\mathbf{x}||^2 + ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + ||\mathbf{y}||^2$$

$$= 2||\mathbf{x}||^2 + 2||\mathbf{y}||^2$$

$$= 2(||\mathbf{x}||^2 + ||\mathbf{y}||^2)$$

$$\frac{1}{2}(||\mathbf{x} + \mathbf{y}||^2 + ||\mathbf{x} - \mathbf{y}||^2) = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$$

as desired.

3.2

$$\frac{1}{4}(||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2 + i||\mathbf{x} - i\mathbf{y}||^2 - i||\mathbf{x} + i\mathbf{y}||^2)
= \frac{1}{4}(4\langle \mathbf{x}, \mathbf{y} \rangle)
= \langle \mathbf{x}, \mathbf{y} \rangle$$

(Note that $i||\mathbf{x} - i\mathbf{y}||^2 - i||\mathbf{x} + i\mathbf{y}||^2 = i\langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + i\langle \mathbf{y}, \mathbf{y} \rangle - i\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{y} \rangle - i\langle \mathbf{y}, \mathbf{y} \rangle = 0$ 3.3

(i)
$$\cos \theta = \frac{\int_0^1(x)(x^5)dx}{\sqrt{\int_0^1 x^2 dx} \sqrt{\int_0^1 x^{10} dx}} = \frac{1/7}{\sqrt{1/3}\sqrt{1/11}} = \frac{1/7}{\sqrt{1/33}} = \frac{\sqrt{33}}{7}; \quad \theta = \cos^{-1}\left(\frac{\sqrt{33}}{7}\right)$$

(ii)
$$\cos \theta = \frac{\int_0^1 x^6 dx}{\sqrt{\int_0^1 x^4 dx} \sqrt{\int_0^1 x^8 dx}} = \frac{1/7}{\sqrt{1/5} \sqrt{1/9}} = \frac{3\sqrt{5}}{7}; \quad \theta = \cos^{-1} \left(\frac{3\sqrt{5}}{7}\right)$$

3.8

(i) *Proof.* Let V be the inner product space $C([-\pi, \pi]; \mathbb{R})$ with inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt$$

Let $X = \operatorname{span}(S) \subset V$, where $S = \{\cos(t), \sin(t), \cos(2t), \sin(2t)\}$. Observe that

$$\langle \cos(t), \sin(t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(t) dt = 0$$

$$\langle \cos(t), \cos(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(2t) dt = 0$$

$$\langle \cos(t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(2t) dt = 0$$

$$\langle \sin(t), \cos(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \cos(2t) dt = 0$$

$$\langle \sin(t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \sin(2t) dt = 0$$

$$\langle \cos(2t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \sin(2t) dt = 0$$

Thus, each function is orthogonal to each other. Now, observe that

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(t) dt = 1$$
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \sin(t) dt = 1$$
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \cos(2t) dt = 1$$
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \sin(2t) dt = 1$$

Therefore, S is an orthonormal set.

(ii)
$$||t|| = \frac{1}{\pi} \int_{-\pi}^{\pi} t^2 dt = \frac{1}{\pi} (\frac{2\pi^3}{3}) = \frac{2\pi^2}{3}$$

(iii) Recall from part (i) that each component of S is orthogonal to one another. Using this fact, $\operatorname{proj}_X(\cos(3t)) = 0$

(iv) Note that $\langle \cos(t), t \rangle = 0$ and $\langle \cos(2t), t \rangle = 0$. Now, $\langle \sin(t), t \rangle \sin(t) = 2\sin(t)$ and $\langle \sin(2t), t \rangle \sin(2t) = -\sin(2t)$ Take the sum of each of these yields $\boxed{\operatorname{proj}_X(t) = 2\sin(t) - \sin(2t)}$

3.9

Proof.
$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 Now observe that

$$R_{\theta}^{H}R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2} \theta + \sin^{2} \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ \sin \theta \cos \theta - \cos \theta \sin \theta & \sin^{2} \theta + \cos^{2} \theta \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= I$$

By Theorem 3.2.15, the rotation is an orthonormal transformation. \Box

3.10

(i) Let $Q \in M_n(\mathbb{F})$ be an orthonormal matrix with $x \in \mathbb{F}^n$. Observe that

$$\langle x, x \rangle = \langle Qx, Qx \rangle$$
$$= x^H Q^H Qx$$
$$= \langle x, Q^H Qx \rangle$$

and hence $x = Q^H Q x$. Thus $Q^H Q = I$, which implies that $Q^{-1} = Q^H$ since Q is square. Thus $QQ^H = I$.

Now let $Q^HQ=I$ and let $x,y\in\mathbb{F}^n.$ Observe that

$$\langle Qx, Qy \rangle = x^H Q^H Qy$$

= $x^H y$
= $\langle x, y \rangle$

Therefore Q is an orthonormal matrix.

(ii) *Proof.* Let $Q \in M_n(\mathbb{F})$ be an orthonormal matrix. Observe that

$$||x||^2 = \langle x, x \rangle = \langle Qx, Qx \rangle = ||Qx||^2$$

(iii) *Proof.* Let $Q \in M_n(\mathbb{F})$ be an orthonormal matrix. Observe that

$$\begin{split} QQ^H &= Q^H Q = I \\ \Rightarrow Q^H &= Q^{-1} \end{split}$$

Now observe that

$$(Q^H)^H = Q$$

 $(Q^H)(Q^H)^H = (Q)^H Q = I$

So $Q^H = Q^{-1}$ is an orthonormal matrix.

(iv) Let $Q \in M_n(\mathbb{F})$ be an orthonormal matrix. We know from part(i) that

 $Q^HQ=I$. Observe that

$$I = \begin{bmatrix} q_1^H \\ q_2^H \\ \vdots \\ q_n^H \end{bmatrix} [q_1q_2...q_n]$$

$$= \begin{bmatrix} q_1^Hq_1 & q_1^Hq_2 & \dots & q_1^Hq_n \\ q_2^Hq_1 & q_2^Hq_2 & \dots & q_2^Hq_n \\ \vdots & \vdots & \ddots & \vdots \\ q_n^Hq_1 & q_n^Hq_2 & \dots & q_n^Hq_n \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Hence $q_i^H q_i = 1$ and $q_i^H q_j = 0$ for all $i \neq j$. Therefore, the columns of an orthonormal matrix $Q \in M_n(\mathbb{F})$ are orthonormal.

(v) Let $Q \in M_n(\mathbb{F})$ be an orthonormal matrix. We know from part (i) that $Q^HQ = I$. Furthermore, $\det(Q^H) = \det(Q)$, also $\det(Q^HQ) = \det(Q^H)\det(Q)$. Observe that

$$1 = \det(I)$$

$$= \det(Q^{H}Q)$$

$$= \det(Q^{H})\det(Q)$$

$$= (\det(Q))$$

That is $|\det(Q)| = 1$.

Now Let $Q = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$ so $Q^T = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$. Note that $\det(Q) = 1$. Observe that

$$\begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & \frac{1}{4} \end{bmatrix} \neq I$$

and Q is not orthonormal

(vi) Let $Q_1, Q_2 \in M_n(\mathbb{F})$ be orthonormal matrices. Hence, $Q_1^H Q_1 = I$ and $Q_2^H Q_2 = I$. Let $Q = Q_1 Q_2$. Observe that

$$Q^{H}Q = (Q_{1}Q_{2})^{H}(Q_{1}Q_{2})$$

$$= Q_{2}^{H}Q_{1}^{H}Q_{1}Q_{2}$$

$$= Q_{2}^{H}Q_{2}$$

$$= I$$

Therefore, Q_1Q_2 is an orthonormal matrix.

3.11 When we apply the Gram-Schmidt orthonormalization process to a collection of linearly dependent vectors then the kth step will produce $\mathbf{0}$ since \mathbf{x}_k is a linear combination of $\mathbf{x}_1, ..., \mathbf{x}_{k-1}$. Note also that by producing the zero vector or any multiple of it, the length of it will not be equal to one, which is a necessary condition to be orthonormal.

3.16

- (i) Proof. Let $D_{n\times n}$ be a diagonal matrix with 1's along the diagonal, and where the entry of the last row and column is not 1. Note that $D=D^{-1}$, and let the QR decomposition of A be denoted by A=QR. It follows that $A=QR=QDD^{-1}R=\widetilde{Q}\widetilde{R}$. By exercise 3.10, it must be that $\widetilde{Q}=QD$ is orthonormal. Now, it is also the case that $\widetilde{R}=D^{-1}R$ is upper diagonal. Thus, we have that $A=\widetilde{Q}\widetilde{R}$ is a QR decomposition. Therefore, the QR decomposition is not unique.
- (ii) Proof. Let A be an invertible matrix. Now, suppose that there are two distinct QR decompositions for A, namely $A = QR = \hat{Q}\hat{R}$. Note that Q and \hat{Q} are orthonormal, and that R and \hat{R} have positive diagonal elements. By our assumption, it must be that Q, Q, R, and R are all invertible. Thus $(\hat{Q})^{-1}Q = \hat{R}R^{-1}$. Now, on the LHS we have $(\hat{Q})^{-1}$ which is orthonormal by exercise 3.10 and $(\hat{Q})^{-1}Q$ is orthonormal. Given that $\hat{R}R^{-1}$ is upper triangular, then we have that $(\hat{Q})^{-1}Q = I = \hat{R}R^{-1}$. This, $\hat{Q} = Q$ and $\hat{R} = R$ and the QR decomposition is unique.

Proof. Let $A \in M_{m \times n}$ have rank $n \leq m$, and let $A = \hat{Q}\hat{R}$ be a reduced QR decomposition. Note that \hat{Q} is an $m \times n$ orthonormal matrix and \hat{R} is an $n \times n$ upper-triangular matrix (see Remark 3.3.10). Observe that

$$A^{H}A\mathbf{x} = A^{H}\mathbf{b}$$
$$(\hat{Q}\hat{R})^{H}\hat{Q}\hat{R}\mathbf{x} = (\hat{Q}\hat{R})^{H}\mathbf{b}$$
$$\hat{R}^{H}\hat{Q}^{H}\hat{Q}\hat{R}\mathbf{x} = \hat{R}^{H}\hat{Q}^{H}\mathbf{b}$$
$$\hat{R}^{H}\hat{R}\mathbf{x} = \hat{R}^{H}\hat{Q}^{H}\mathbf{b}$$
$$\hat{R}\mathbf{x} = \hat{Q}^{H}\mathbf{b}$$

3.23 Let $(V, ||\cdot||)$ be a normed linear space. Observe that

$$||x - y + y|| \le ||x - y|| + ||y||$$
$$||x|| \le ||x - y|| + ||y||$$
$$||x|| - ||y|| \le ||x - y||$$

Also observe that

$$||y - x + x|| \le ||y - x|| + ||x||$$
$$||y|| \le ||x - y|| + ||x||$$
$$||y|| - ||x|| \le ||x - y||$$

Therefore, $|||x| - ||y|||| \le ||x - y||$

3.24 Let $C([a,b];\mathbb{F})$ be the vector space of all continuous functions from $[a,b] \subset \mathbb{R}$ to \mathbb{F} .

(i)
$$||f||_{L^1} = \int_a^b |f(t)| dt$$

- positivity: $|f(t)| \ge 0$ by definition. If f(t) = 0, then |f(t)| = 0 and if $f(t) \ne 0$ then $|f(t)| \ne 0$. Thus $\int_a^b |f(t)| dt$ is positive.
- scale preservation: Let $\alpha \in \mathbb{R}$ be a scalar. Note that $||\alpha f(t)||_{L^1} = \int_a^b |\alpha f(t)| dt = \int_a^b |\alpha| |f(t)| dt = |\alpha| \int_a^b |f(t)| dt$

• triangle inequality:

$$||f + g||_{L^{1}} = \int_{a}^{b} |f(t) + g(t)| dt$$

$$\leq \int_{a}^{b} |f(t)| + |g(t)| dt$$

$$= \int_{a}^{b} |f(t)| dt + \int_{a}^{b} |g(t)| dt$$

Therefore, $||f||_{L^1}$ is a norm on $C([a,b];\mathbb{F})$.

- (ii) $||f||_{L^2} = \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$
 - positivity: |f(t)| is positive (see exercise 3.24 (i)). It follows that $|f(t)|^2$ is also positive. Hence $\int_a^b |f(t)|^2 dt$ is positive. Now, if $\int_a^b |f(t)|^2 dt = 0$ then $\left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}} = 0$. But if $\int_a^b |f(t)|^2 dt \neq 0$ then $\left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}} \neq 0$ and so $\left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$ is positive.
 - scalar preservation: For some scalar $\alpha \in \mathbb{R}$ observe that

$$||\alpha f||_{L^2} = \left(\int_a^b |\alpha f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$= \left(\int_a^b |\alpha|^2 |f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$= \left(|\alpha|^2 \int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$= |\alpha| \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$$

• triangle inequality: $||f+g||_{L^2} = \left(\int_a^b |f(t)+g(t)|^2\right)^{\frac{1}{2}}$. Observe that

$$(||f+g||_{L^{2}})^{2} = \int_{a}^{b} |f(t)+g(t)|^{2} dt$$

$$= \int_{a}^{b} |f(t)|^{2} + 2|f(t)g(t)| + |g(t)|^{2} dt$$

$$= ||f||_{L^{2}} + 2|f(t)g(t)| + ||g||_{L^{2}}$$

$$\leq ||f||_{L^{2}} + 2||f||_{L^{2}}||g||_{L^{2}} + ||g||_{L^{2}}$$

$$= (||f||_{L^{2}} + ||g||_{L^{2}})^{2}$$

Hence $||f + g||_{L^2} \le ||f||_{L^2} + ||g||_{L^2}$

Therefore $||f||_{L^2}$ is a norm on $C([a,b];\mathbb{F})$.

(iii)
$$||f||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x)|$$

- positivity: $|f(x)| \ge 0$ by definition. If f(x) = 0 then |f(x)| = 0, and if $f(x) \ne 0$ then $|f(x) \ne 0$. Thus $\sup_{x \in [a,b]} |f(x)|$ is positive.
- scalar preservation: For some scalar $\alpha \in \mathbb{R}$ observe that

$$||\alpha f||_{L^{\infty}} = \sup_{x \in [a,b]} |\alpha f(x)|$$
$$= \sup_{x \in [a,b]} |\alpha||f(x)|$$
$$= |\alpha| \sup_{x \in [a,b]} |f(x)|$$

• triangle inequality: Observe that

$$||f + g||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x) + g(x)|$$

$$\leq \sup_{x \in [a,b]} (|f(x)| + |g(x)|)$$

$$= \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |g(x)|$$

Therefore, $||f||_{L^{\infty}}$ is a norm on $C([a, b]); \mathbb{F}$.

3.26 Reflexive: Note that $||x||_a = ||x||_a$. Given $0 \le m \le M$ we have $m||x||_a \le ||x||_a \le M||x||_a$ where $||x||_a \le ||x||_a \le ||x||_a$ for m, M = 1. Thus, $||x||_a \sim ||x||_a$.

Symmetric: Suppose $||x||_a \sim ||x||_b$. There exists $m, M \in R$ with $0 < m \le M$ such that $m||x||_a \le ||x||_b \le M||x||_a$. Hence $\frac{1}{M}||x||_b \le ||x||_a \le \frac{1}{m}||x||_b$. Thus $||x||_b \sim ||x||_a$

Transitive: Suppose $||x||_a \sim ||x||_b$ and $||x||_b \sim ||x||_c$. There exists $m_1, M_1, m_2, M_2 \in \mathbb{R}$ with $0 < m_1 \le M_1$ and $0 < m_2 \le M_2$ such that $m_1||x||_a \le ||x||_b \le M_1||x||_a$ and $m_2||x||_b \le ||x||_c \le M_2||x||_b$. Now $m_2||x||_b \le ||x||_c$ so $m_1m_2||x||_a \le ||x||_c$ and $||x||_c \le M_2||x||_b$. So $||x||_c \le M_1M_2||x||_a$. Putting it all together we have $m_1m_2||x||_a \le ||x||_c \le M_1M_2||x||_a$. Thus $||x||_a \sim ||x||_c$.

Therefore, topological equivalence is an equivalence relation.

(i)

$$|x_1|^2 + |x_2|^2 + \dots + |x_n|^2 \le (|x_1| + |x_2| + \dots + |x_n|)^2$$
$$(|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{\frac{1}{2}} \le |x_1| + |x_2| + \dots + |x_n|$$
$$||x||_2 \le ||x||_1$$

Now, $|\langle x, \mathbf{1} \rangle| \le ||x||_2 ||\mathbf{1}||_2$ (Cauchy-Schwartz) where $||\mathbf{1}||_2 = (1^2 + 1^2 + \dots + 1^2)^{\frac{1}{2}} = \sqrt{n}$. So, $||x||_1 \le \sqrt{n}||x||_2$. Therefore, $||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$

- (ii) Let $\in \mathbb{F}^n$. Now WLOG assume that for $1 \leq k \leq n$ we have that $|x_k| = ||x||_{\infty}$. Now, $||x||_{\infty} = |x_k| = (\sum_{i=1}^n |x_i|^2)^{\frac{1}{2}} = ||x||_2$. It follows that $||x||_{\infty} \leq ||x||_2$. Now, $(||x||_2)^2 \sum_{i=1}^n \leq n|x_k|^2$, and hence we have that $||x||_2 \leq \sqrt{n}|x_k| = \sqrt{n}||x||_{\infty}$. Putting what we have altogether, we have that $||x||_{\infty} \leq ||x||_2 \leq \sqrt{n}||x||_{\infty}$
- **3.28** Let A be an $n \times n$ matrix.
 - (i) *Proof.* By exercise 3.26 observe that

$$\frac{1}{\sqrt{n}||x||_2} \le \frac{1}{||x||_1} \le \frac{1}{||x||_2}$$

Furthermore, we have that

$$||Ax||_2 \le ||Ax||_1 \le \sqrt{n}||Ax||_2$$

Hence, it follows that

$$||A||_1 \ge \frac{||Ax||_1}{||x||_1} \ge \frac{||Ax||_2}{\sqrt{n}||x||_2}$$

by definition. It follows that

$$||A||_1 \ge \frac{1}{\sqrt{n}}||A||_2$$

Now, observe that

$$\sqrt{n}||A||_2 \ge \frac{\sqrt{n}||Ax||_2}{||x||_2} \ge \frac{||Ax||_1}{||x||_1}$$

by definition. It follows that

$$\sqrt{n}||A||_2 \ge ||A||_1$$

Now, by combining what we have derived, we have that

$$\frac{1}{\sqrt{n}}||A||_2 \le ||A||_1 \le \sqrt{n}||A||_2$$

(ii) *Proof.* By exercise 3.26 observe that

$$\frac{1}{\sqrt{n}||x||_{\infty}} \le \frac{1}{||x||_{2}} \le \frac{1}{||x||_{\infty}}$$

Furthermore, we have that

$$||Ax||_{\infty} \le ||Ax||_2 \le \sqrt{n}||Ax||_{\infty}$$

Hence, it follows that

$$||A||_2 \ge \frac{||Ax||_2}{||x||_2} \ge \frac{||Ax||_\infty}{\sqrt{n}||x||_\infty}$$

by definition. It follows that

$$||A||_2 \ge \frac{1}{\sqrt{n}}||A||_{\infty}$$

Now, observe that

$$\sqrt{n}||A||_{\infty} \ge \frac{\sqrt{n}||Ax||_{\infty}}{||x||_{\infty}} \ge \frac{||Ax||_2}{||x||_2}$$

by definition. It follows that

$$\sqrt{n}||A||_{\infty} \ge ||A||_2$$

Now, by combining what we have derived, we have that

$$\frac{1}{\sqrt{n}}||A||_{\infty} \le ||A||_2 \le \sqrt{n}||A||_{\infty}$$

3.29

Proof. Let $Q \in M_n(\mathbb{F})$ be an orthonormal matrix. Observe that

$$||Q|| = \sup_{x \neq 0} \frac{||Qx||_2}{||x||_2}$$
$$= \sup_{x \neq 0} \frac{||x||_2}{||x||_2}$$
$$= 1$$

as desired.

Now, Let
$$x \in \mathbb{F}^n$$
. Observe that $||R_x|| = \sup_{A:||A|| \neq 0} \left(\frac{||Ax||_2}{||A||}\right)$. But $||A|| =$

$$\sup_{y \neq 0} \left(\frac{||Ay||_2}{||y||_2} \right) \geq \frac{||Ax||_2}{||x||_2}. \text{ So, it follows that } ||R_x|| \leq \sup_{A:||A|| \neq 0} \left(\frac{||Ax||_2||x||_2}{||Ax||_2} \right) = ||x||_2. \text{ Given } A \text{ orthonormal, then this actually holds with equality. Hence } ||R_x|| = ||x_2|| \text{ since } ||Ax||_2 = ||x||_2 \text{ and } ||A|| = 1$$

3.30

- *Proof.* Positivity: Let $A \in M_n(\mathbb{F})$. Since $||\cdot||$ is a matrix norm, it follows that $||A||_S = ||SAS^{-1}|| \ge 0$. Now, since $||\cdot||$ is a matrix norm, it also follows that $||A||_S = ||SAS^{-1}|| = 0$ iff $SAS^{-1} = 0$. But given that S is invertible implies that A = 0.
 - Scale Preservation: Let $\alpha \in \mathbb{R}$. Given that $||\cdot||$ is a matrix norm, observe that

$$||\alpha A||_S = ||\alpha S A S^{-1}||$$
$$= \alpha ||S A S^{-1}||$$
$$= \alpha ||A||_S$$

• Let $B \in M_n(\mathbb{F})$. Given that $||\cdot||$ is a matrix norm, observe that

$$||A + B||_s = ||S(A + B)S^{-1}||$$

= $||SAS^{-1} + SBS^{-1}||$
 $\leq ||SAS^{-1}|| + ||SBS^{-1}||$
= $||A||_S + ||B||_S$

By definition 3.5.15, any norm $||\cdot||$ on the finite-dimensional vector space $M_n(\mathbb{F})$ that satisfies the submultiplicative property is called a *matrix norm*. Observe that

$$||AB||_S = ||SABS^{-1}||$$

= $||SAS^{-1}SBS^{-1}||$
 $\leq ||SAS^{-1}||||SBS^{-1}||$
= $||A||_S||B||_S$

Thus, $||AB||_S \leq ||A||_S ||B||_S$, and the submultiplicative property is satisfied. Therefore by definition 3.5.15, $||\cdot||_S$ is a matrix norm on M_n

3.37 Let $p \in V$ such that $p = ax^2 + bx + c$. We can express this as a vector in \mathbb{R}^3 , namely (a, b, c). Now, we need to find a unique $q \in V$ such that L[p] = p'(1) = p'q = 2a + b. Thus, q = (2, 1, 0)

3.38 Let $p \in V$ such that $p = ax^2 + bx + c$. Given that $p = (a, b, c)^T$,

and
$$p' = D(p) = (0, 2a, b)^T$$
, it follows that $D = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, of which the

Hermitian is represented by $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

3.39

Proof. let V and W be finite-dimensional inner-product spaces.

(i) Let $S, T \in \mathcal{L}(V; W)$. Observe that

$$\langle (S+T)(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, (S+T)^*(\mathbf{w}) \rangle$$

which follows from the definition of adjoint. Now,

$$\langle (S+T)(\mathbf{v}), \mathbf{w} \rangle = \langle S(\mathbf{v}) + T(\mathbf{v}), \mathbf{w} \rangle$$

$$= \langle S(\mathbf{v}), \mathbf{w} \rangle + \langle T(\mathbf{v}), \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, S^*(\mathbf{w}) \rangle + \langle \mathbf{v}, T^*(\mathbf{w}) \rangle$$

$$= \langle \mathbf{v}, (S^* + T^*)(\mathbf{w}) \rangle$$

Hence, $(S+T)^* = S^* + T^*$ Now, observe that for $\alpha \in \mathbb{F}$

$$\langle (\alpha T)(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, (\alpha T)^*(\mathbf{w}) \rangle$$

Additionally,

$$\langle (\alpha T)(\mathbf{v}), \mathbf{w} \rangle = \langle \alpha T(\mathbf{v}), \mathbf{w} \rangle$$
$$= \alpha \langle \mathbf{v}, T^*(\mathbf{w}) \rangle$$
$$= \langle \mathbf{v}, \bar{\alpha} T^*(\mathbf{w}) \rangle$$

Hence, $(\alpha T^*) = \bar{\alpha} T^*$

(ii) Let $S \in \mathcal{L}(V; W)$. Observe that

$$\langle (S^*)^*(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, (S^*)^*(\mathbf{w}) \rangle$$

Additionally,

$$\langle S^*(\mathbf{w}), \mathbf{v} \rangle = \overline{\langle \mathbf{v}, S^*(\mathbf{w}) \rangle}$$
$$= \overline{\langle S(\mathbf{v}), \mathbf{w} \rangle}$$
$$= \langle \mathbf{w}, S(\mathbf{v}) \rangle$$

Hence, $(T^*)^* = T$

(iii) Let $S, T \in \mathcal{L}(V)$. Observe that

$$\langle (ST)(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, (ST)^*(\mathbf{w}) \rangle$$

Additionally,

$$\langle (ST)(\mathbf{v}), \mathbf{w} \rangle = \langle S(T(\mathbf{v})), \mathbf{w} \rangle$$

$$= \langle T(\mathbf{v}), S^*(\mathbf{w}) \rangle$$

$$= \langle \mathbf{v}, T^*(S^*(\mathbf{w})) \rangle$$

$$= \langle \mathbf{v}, (T^*S^*)(\mathbf{w}) \rangle$$

Hence, $(ST)^* = T^*S^*$

(iv) Let $T \in \mathcal{L}(V)$ and suppose T is invertible. Observe that

$$(T^*)^{-1}T^* = I$$
$$((T^*)^{-1}T^*)^* = I^*$$

But $I^* = I$. From property (iii) we have that $T^{**}((T^*)^{-1})^* = I$. Note that $T^{**} = T$, so we have that

$$T((T^*)^{-1})^* = I$$

 $((T^*)^{-1})^* = T^{-1}$
 $(T^*)^{-1} = (T^{-1})^*$

3.40 Let $M_n(\mathbb{F})$ be endowed with the Frobenius inner product. We are given that any $A \in M_n(\mathbb{F})$ defines a linear operator on $M_n(\mathbb{F})$ by left multiplication.

(i) Proof. Let $B, C \in M_n(\mathbb{F})$. Observe that

$$\langle B, AC \rangle = \langle \operatorname{tr}(B^H AC) \rangle$$

= $\operatorname{tr}((A^H B)^H C)$
= $\langle A^H B, C \rangle$

Thus, $A^* = A^H$

(ii) *Proof.* Let $A_1, A_2, A_3 \in M_n(\mathbb{F})$. Observe that

$$\langle A_2, A_3 A_1 \rangle = \text{tr}(A_2^H A_3 A_1)$$

= $\text{tr}(A_1 A_2^H)$
= $\text{tr}((A_2 A_1^H)^H A_3)$
= $\langle A_2 A_1^H, A_3 \rangle$

From part(i), $A_1^H = A_1^*$. Thus, $\langle A_2, A_3 A_1 \rangle = \langle A_2 A_1^*, A_3 \rangle$

(iii) Proof. Let $A, B, C \in M_n(\mathbb{F})$. Given the linear operator definition pro-

vided in the exercise, we have that

$$\langle B, AC - CA \rangle = \langle B, AC \rangle - \langle B, CA \rangle$$

By part (ii) we have that

$$\langle B, CA \rangle = \langle BA^*, c \rangle$$

Note also that

$$\langle B, AC \rangle = \operatorname{tr}(B^H AC)$$

$$= \operatorname{tr}((A^H B)^H C)$$

$$= \langle A^H B, C \rangle$$

$$= \langle A^* B, C \rangle$$

Therefore, all of this together means that we have $(T_A)^* = T_{A^*}$

3.44

Proof. Let $A \in M_{m \times n}(\mathbb{F})$ and $\mathbf{b} \in \mathbb{F}^m$. First, observe that the Fredholm alternative is equivalent to $A\mathbf{x} = \mathbf{b}$ has a solution $\mathbf{x} \in \mathbb{F}$ iff for all $y \in \mathcal{N}(A^H)$ we have that $\langle \mathbf{y}, \mathbf{b} \rangle = 0$. Now, assume $A\mathbf{x} = \mathbf{b}$ has a solution $x \in \mathbb{F}$, and let $y \in \mathcal{N}(A^H)$. Observe that

$$\langle \mathbf{y}, \mathbf{b} \rangle = \langle \mathbf{y}, A\mathbf{x} \rangle$$
$$= \langle A^H \mathbf{y}, \mathbf{x} \rangle$$
$$= \langle 0, \mathbf{x} \rangle$$
$$= 0$$

which makes sense since $\mathbf{y} \in \mathcal{N}(A^H) \Rightarrow A^H \mathbf{y} = 0$.

Now, assume that $\langle \mathbf{y}, \mathbf{b} \rangle = 0$ for all $\mathbf{y} \in \mathcal{N}(A^H)$. Furthermore, assume by way of contradiction that there is no solution for $A\mathbf{x} = \mathbf{b}$. Hence $\mathbf{b} \notin \mathcal{R}(A) \Rightarrow \mathbf{b} \in \mathcal{R}(A^H)$. So $\langle \mathbf{b}, \mathbf{b} \rangle = 0$, which happens when $\mathbf{b} = 0$. Now, for $A\mathbf{x} = \mathbf{b}$ and $\mathbf{b} = 0$, then $\mathbf{x} = 0$. Then by contradiction, $A\mathbf{x} = \mathbf{b}$ has a solution $\mathbf{x} \in \mathbb{F}$.

3.45

Proof. Consider the vector space $M_n(\mathbb{R})$ with the Frobenius inner product. Let $A \in \operatorname{Skew}_n(\mathbb{R})$, and let $B \in \operatorname{Sym}_n(\mathbb{R})$. Observe that

$$\langle A, B \rangle = \langle -A, B \rangle$$

= $-\langle A, B \rangle$
= $\operatorname{tr}(AB)$

Furthermore, observe that

$$\langle A, B \rangle = \langle B, A \rangle$$

= $\operatorname{tr}(B^T A)$
= $\operatorname{tr}(BA)$
= $\operatorname{tr}(AB)$

with $B^T = B$ since B is symmetric. Note that this follows from the fact that inner products are symmetric with respect to the reals. Now, we have that

$$-\mathrm{tr}(AB) = \mathrm{tr}(AB)$$

and hence it must be that $\operatorname{tr}(AB)=0$. It follows that $\langle A,B\rangle=0$ hence $A\in\operatorname{Sym}_n(\mathbb{R})^\perp.$

Now let $A \in \operatorname{Sym}_n(\mathbb{R})^{\perp}$ and also let $B \in \operatorname{Sym}_n(\mathbb{R})$. So $\operatorname{tr}(A^T B) = 0$. Suppose we have $A + A^T \in \operatorname{Sym}_n(\mathbb{R})$ which follows from $(A + A^T)^T = (A + A^T)$.

Observe that

$$\langle A + A^T, B \rangle = \langle A, B \rangle$$

$$= \langle A^T, B \rangle$$

$$= \operatorname{tr}(A^T B) + \operatorname{tr}(A B)$$

$$= \operatorname{tr}(A B)$$

$$= \operatorname{tr}(A B^T)$$

$$= \operatorname{tr}(B^T A)$$

$$= \operatorname{tr}((A^T B)^T)$$

$$= \operatorname{tr}(A^T B)$$

$$= 0$$

But if we have that $B = A + A^T$ it must be that $\langle A + A^T, A + A^T \rangle \geq 0$ from the positivity definition of inner products. We showed that this holds as a strict equality being equal to 0. That is, $A + A^T = 0$ and so $A^T = -A$. Hence, $A \in \text{Skew}_n(\mathbb{R})$. Therefore, $\text{Skew}_n(\mathbb{R})^{\perp} = \text{Skew}_n(\mathbb{R})$

3.46

(i) Let $\mathbf{x} \in \mathcal{N}(A^H A)$. Observe that

$$A^H A \mathbf{x} = A^H (A \mathbf{x})$$
$$= 0$$

and $A\mathbf{x} \in \mathcal{N}(A^H)$. Now $\mathcal{R}(A)$ is the set of all possible linear combinations of the columns of the matrix A, and so $A\mathbf{x} \in \mathcal{R}(A)$.

- (ii) Let $\mathbf{x} \in \mathcal{N}(A)$, hence $A\mathbf{x} = 0$. It follows that $A^H A\mathbf{x} = 0$ and $\mathbf{x} \in \mathcal{N}(A^H A)$. Now, let $\mathbf{x} \in \mathcal{N}(A^H A)$, hence $A^H A\mathbf{x} = 0$. Suppose we have $\langle A\mathbf{x}, A\mathbf{x} \rangle = \mathbf{x}^H A^H A\mathbf{x} = 0$. Thus $||A\mathbf{x}|| = 0$ and so $A\mathbf{x} = 0$.
- (iii) Suppose A has dimension j and rank n. It follows that $\mathcal{N}(A)$ has dimension j-n. From part (ii), we know that $\mathcal{N}(A^HA) = \mathcal{N}(A)$ and

so it must be that $\mathcal{N}(A^H A)$ has dimension j-n. Thus $A^H A$ has rank n as well. Therefore A and $A^H A$ have that same rank.

- (iv) Let A have linear independent columns. This implies that A has full rank. We know that A^HA is square, and by part (iii) A and A^HA have the same rank. Therefore, A^HA is nonsingular.
- **3.47** Assume A is an $m \times n$ matrix of rank n. Let $P = A(A^H A)^{-1} A^H$

(i)

$$P^{2} = A(A^{H}A)^{-1}A^{H}A(A^{H}A)^{-1}A^{H}$$
(0.1)

$$= A(A^{H}A)^{-1}A^{H} (0.2)$$

(0.3)

(ii)

$$P^{H} = (A(A^{H}A)^{-1}A^{H})^{H}$$

$$= A((A^{H}A)^{-1})^{H}A^{H}$$

$$= A((A^{H}A)^{H})^{-1}A^{H}$$

$$= A(A^{H}A)^{-1}A^{H}$$

$$= P$$

(iii)

$$rank(P) = rank(A(A^{H}A)^{-1}A^{H})$$

Now because P is idempotent by (i) we have that

$$\operatorname{tr}(A(A^{H}A)^{-1}A^{H}) = \operatorname{tr}(A^{H}A(A^{H}A)^{-1})$$

= $\operatorname{tr}(I)$

where I is $n \times n$, so it has rank n. Therefore, rank(P)=n.

3.48 Let
$$P(A) = \frac{A+A^T}{2}$$
 be the map $P: M_n(\mathbb{R}) \to M_n(\mathbb{R})$

(i) Let $A, b \in M_n(\mathbb{R})$ with scalars $x, y \in \mathbb{R}$. Observe that

$$P(xA + yB) = \frac{(xA + yB) + (xA + yB)^{T}}{2}$$
$$= x\frac{A + A^{T}}{2} + y\frac{B + B^{T}}{2}$$
$$= xP(A) + yP(B)$$

and P is linear as desired.

(ii)

$$P^{2}(A) = \frac{P(A) + P(A)^{T}}{2}$$

$$= \frac{\frac{A+A^{T}}{2} + \frac{A+A^{T}}{2}}{2}$$

$$= \frac{A+A^{T}}{2}$$

$$= P(A)$$

and $P^2 = P$ as desired.

(iii) We know that P^* must satisfy $\langle A, P(B) \rangle = \langle P^*(A), B \rangle$ for all $A, B \in M_n(\mathbb{R})$. Now suppose A = B. Observe that

$$\langle A, P(A) \rangle = \langle P^*A, A \rangle$$

$$= \operatorname{tr}((P^*(A))^T A)$$

$$= \operatorname{tr}((A^T P^*(A))^T)$$

$$= \operatorname{tr}(A^T P^*(A))$$

$$= \langle A, P^*(A) \rangle$$

and $P = P^*$ as desired.

(iv) Let $A \in \mathcal{N}(P)$. Hence P(A)A = 0. Observe that

$$0 = \frac{A + A^T}{2}A$$
$$= \frac{AA + A^TA}{2}$$

Hence $AA = -A^TA$. Thus $-A = A^T$ and so $A \in \text{Skew}_n(\mathbb{R})$. Now suppose $A \in \text{skew}_n(\mathbb{R})$. Hence $A^T = -A$. Observe that

$$P(A)A = \frac{A + A^{T}}{2}A$$

$$= \frac{AA + A^{T}A}{2}$$

$$= \frac{AA - AA}{2}$$

$$= 0$$

and $A \in \mathcal{N}(P)$ and so $\mathcal{N}(P) = \operatorname{Skew}_n(\mathbb{R})$.

(v) Let $A \in \operatorname{Sym}_n(\mathbb{R})$, hence $A^T = A$. Observe that

$$P(A) = \frac{A + A^{T}}{2}$$
$$= \frac{2A}{A}$$
$$= A$$

and $A \in \mathcal{R}(P)$.

Now let $A \in \mathcal{R}(P)$. So there is some $B \in M_n(\mathbb{R})$ where P(B) = A. That is $\frac{B+B^T}{2} = A$. Observe that

$$A^{T} = \left(\frac{B + B^{T}}{2}\right)^{T}$$
$$= \frac{B + B^{T}}{2}$$
$$= A$$

and $A^T=A.$ Thus $A\in \mathrm{Sym}_n(\mathbb{R}).$ Therefore, $\mathscr{R}(P)=\mathrm{Sym}_n(\mathbb{R}).$

(vi) Observe that

$$\begin{aligned} ||A - P(A)||_F^2 &= \langle A - P(A), A - P(A) \rangle \\ &= \langle A - \frac{A + A^T}{2}, A - \frac{A + A^T}{2} \rangle \\ &= \langle \frac{A - A^T}{2}, \frac{A - A^T}{2} \rangle \\ &= \operatorname{tr}\left(\left(\frac{A - A^T}{2}\right)^T \left(\frac{A - A^T}{2}\right)\right) \\ &= \operatorname{tr}\left(\frac{A^T - A}{2} \frac{A - A^T}{2}\right) \\ &= \operatorname{tr}\left(\frac{A^T A - A^2 - (A^T)^2 + AA^T}{4}\right) \\ &= \operatorname{tr}\left(\frac{A^T A - A^2 - A^2 + A^T A}{4}\right) \\ &= \operatorname{tr}\left(\frac{A^T A - A^2}{2}\right) \\ &= \frac{\operatorname{tr}(A^T A) - \operatorname{tr}(A^2)}{2} \end{aligned}$$

Taking the square root of both sides yields the desired result.

3.50 $rx^2 + sy^2 = 1 \Leftrightarrow y^2 = \frac{1}{s} - \frac{r}{s}x^2$. Hence

$$A = \begin{bmatrix} 1 & x_1^2 \\ 1 & x_2^2 \\ \vdots & \vdots \\ 1 & x_n^2 \end{bmatrix}$$
$$x = \begin{bmatrix} \frac{1}{s} \\ \frac{-r}{s} \end{bmatrix}$$
$$b = \begin{bmatrix} y_1^2 \\ y_2^2 \\ \vdots \\ y_n^2 \end{bmatrix}$$

and solve $A^{H}Ax = A^{H}b$ for r and s.