

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Similarly, $\cos \rho' = (\sin R - \sin r) / \sin (R - r)$. $\therefore \rho = \rho'$. These equations reduce to $\tan^2 \frac{1}{2} \rho = \tan^2 \frac{1}{2} \rho' = \tan \frac{1}{2} R \tan \frac{1}{2} r$.

Professor Philbrick gave a solution of this problem at the time it was published but it did not fill the requirements because it was not a pure spherical geometry solution.

290. Proposed by J. J. QUINN, Scottdale, Pa.

(a) Suppose a circle described around the origin. Then at the end of a uniformly revolving radius r, a line equal to the diameter is pivoted. Find the equation of the locus of its extremity, if for every unit of angle its projection on the X axis is a constant linear unit, being the same part of the diameter as the angle is of π radians.

(b) Show how it can be applied to the trisection or multisection of an angle.

Solution by G. B. M. ZERR, A. M., Ph. D., 4243 Girard Avenue, Philadelphia, Pa.

(a) Let angle $POB=\theta$. Then CD, the projection of PQ=2r on AB, is $r\theta/90$. $OD=x=r\cos\theta+r\theta/90$.

$$DQ = y = r\sin \theta + r_1/[4 - (\theta/90)^2].$$

 $\rho^2 = x^2 + y^2 = 5r^2 + 2r^2\cos \theta(\theta/90)$

 $+2r^2\sin\theta\sqrt{[4-(\theta/90)^2]}$ is the polar equation sought.

(b) Let $m\phi$ be the angle to be multisected.

 $m\phi/m=\phi$. Lay off $OD=x=r\cos\phi+r\phi/90$.

Then erect $DQ=y=r\sin\phi+r_{1/2}[4-(\phi/90)^{2}]$ perpendicular to OD at D. From Q as center, with radius equal to 2r describe an arc cutting the circumference of the given circle at P.

Draw PO; then $\angle POD = \phi$.

300. Proposed by J. J. QUINN, Ph. D., Scottdale, Pa.

Trisect an angle by means of a tractrix.

Solution by G. B. M. ZERR, A. M., Ph. D., 4243 Girard Avenue, Philahelphia, Pa.

The length of the tangent between the axis of abscissas and the point of tangency is constant.

Let α =length of this tangent, y=an ordinate opposite angle θ , z=an ordinate opposite angle ϕ . Also let θ ==3 ϕ .

$$\therefore y = a\sin \theta = 3a\sin \phi - 4a\sin^3 \phi, z = a\sin \phi.$$

:
$$y/z = 3 - 4\sin^2 \phi$$
 or $\sin \phi = \frac{1}{2} \sqrt{(3z - y)/z}$.

$$\therefore z^2/a^2 = \frac{3z-y}{4z}$$
 or $y = \frac{(3a^2-4z^2)z}{a^2}$.

Let
$$PD=z$$
, $PCD= \angle \phi$. Construct $QB=y=\frac{(3a^2-4z^2)z}{a^2}$.

Let $QAB = \theta$ where PC = QA = a. Then $\theta = 3\phi$.

 \therefore Parallel to PC draw AR, then $\angle RAB = \frac{1}{3} \angle QAB$.

PD=z cannot be greater than $\frac{1}{2}a$, then y=a, $\theta=\frac{1}{2}\pi$, $\phi=\frac{1}{6}\pi$.