(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-319682

(P2001-319682A)

(43)公開日 平成13年11月16日(2001.11.16)

			(43)公開日	平原	又13年11	月10	(2001. 11. 10)
		FΙ					-73-}*(多考) 5H011
(51) Int.Cl.7	BMC 10 - 1	H01M	10/28			Z	
H01M 10/28			2/02			A	5 H 0 2 2
2/02			2/22			С	5 H O 2 8
2/22			2/26			В	5 H O 5 O
2/26			4/24			J	
4/24	審査請求	未請求請求	マリンチ R項の数10	OL	(全 11	I 頁) ——	最終頁に続く
(21)出願番号	特顧2000-134542(P2000-134542)	(71) 出願	松下電	器産業	株式会	社	o stilith
(22) 出顧日	平成12年5月8日(2000.5.8)	(71) 出願	門真市大字門真1006番地 3207 自動車株式会社 豊田市トヨタ町1番地				
		(72)発明	用者 湯浅 静岡県	真一 脚西F		55番坻	g パナソニック
		(74) (C !	里人 10009 弁理:		内 寛幸	≩ (外5名)
							最終頁に続

(54) 【発明の名称】 角形アルカリ蓄電池、並びにこれを用いた単位電池及び組電池

(57)【要約】

【課題】 発熱量、放熱量及び蓄熱量のバランスを最適 化し、高出力で、充放電の繰り返しや長期間の使用にお いても優れた電池特性を有する角形アルカリ蓄電池を提 供する。

【解決手段】 それぞれ長方形状の正極板1と負極板2 とを同じく長方形状のセパレータ3を介して交互に積層 し、電極群を構成する。これらの電極群を、アルカリ電 解液と共に角形の電槽内に収納する。内部抵抗を5 mΩ 以下、電極群の厚みを30mm以下、電解液量を1.3 ~8.0g/Ahにそれぞれ設定する。

10

1

【特許請求の範囲】

【請求項1】 正極板と負極板とがセパレータによって 隔離され、アルカリ電解液とともに電槽内に収納された 角形アルカリ蓄電池であって、内部抵抗が5 m Ω以下で あり、前記正極板と前記負極板と前記セパレータとから なる電極群の厚みが30mm以下であり、放熱面積が6 0 c m² 以上であり、電解液量が1.3~8.0g/A hであることを特徴とする角形アルカリ蓄電池。

【請求項2】 電極群の幅方向の両端に正極板と負極板 にそれぞれ接合された正極と負極の集電板を備え、各集 電板を電槽の短側面に固定して前記電極群を前記電槽内 に収納した請求項1に記載の角形アルカリ蓄電池。

【請求項3】 正極板がニッケル酸化物を主体とする正 極板であり、負極板が電気化学的に水素の吸蔵放出が可 能な水素吸蔵合金を含む負極板である請求項2に記載の 角形アルカリ蓄電池。

【請求項4】 セパレータの厚みが0.1~0.3 mm である請求項1~3のいずれかに記載の角形アルカリ蓄 電池。

【請求項5】 電解液のイオン伝導度が400~600 mS/cmである請求項1~3のいずれかに記載の角形 アルカリ蓄電池。

【請求項6】 電槽材料の熱伝導度が0.15W/m・ K以上であり、電槽の厚みが0.5~1.5 mmである 請求項1~3のいずれかに記載の角形アルカリ蓄電池。

【請求項7】 3~40個の単電池を電気的に直列に接 続した単位電池であって、前記単電池として請求項1~ 6のいずれかに記載の角形アルカリ蓄電池を用いたこと を特徴とする単位電池。

【請求項8】 幅の狭い短側面と幅の広い長側面とを有 する複数の直方体状の電槽をその短側面を隔壁として共 用して一体的に成形した一体電槽の各電槽内に電極群を 収納して各電槽ごとに単電池を構成すると共に、これら の単電池を電気的に直列に接続した請求項7に記載の単 位電池。

【請求項9】 単位電池当たりの熱伝導度が0.3W/ m・K以上である請求項7又は8に記載の単位電池。

【請求項10】 単位電池を複数個電気的に直列及び/ 又は並列に接続し、隣接する前記単位電池間に冷却媒体 が通過可能な通路が設けられた組電池であって、前記単 位電池として請求項7~9のいずれかに記載の単位電池 を用いたことを特徴とする組電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ニッケル・カドミ ウム蓄電池やニッケル・水素蓄電池で代表されるアルカ リ蓄電池、特に角形アルカリ蓄電池に関する。さらに詳 細には、発熱量、放熱量及び蓄熱量のバランスを最適化 する電極群、電解液及び電槽の設計に関する。

[0002]

【従来の技術】ニッケル・カドミウム蓄電池やニッケル ・水素蓄電池で代表されるアルカリ蓄電池は、エネルギ 一密度が高く、信頼性に優れていることから、例えば、 ビデオテープレコーダー、ノートパソコン、携帯電話等 のポータブル機器の電源として数多く使用されている。 実際の使用においては、数個から十数個の単電池を樹脂 ケースやチューブの中に収納して使用されるのが一般的 である。

【0003】また、これらのアルカリ蓄電池は、電池容 量が〇. 5 A h ~ 3 A h 程度であること、使用される機 器が消費する電力も小さいことから、充放電時における 単電池当たりの発熱量は小さい。従って、樹脂ケースや チューブの中に収納して使用する場合であっても、発熱 と放熱がバランス良く行われ、電池の温度上昇に関する 顕著な課題はなかった。

[0004]

【発明が解決しようとする課題】ところで、最近、家電 製品から電気自動車や電気モータで動力をアシストする ハイブリッド自動車等の電動車輌に至る移動体用電源と して、エネルギー密度が高く、高出力で高信頼性の蓄電 池が要望されている。このような用途で電池が使用され る場合、数Ah~100Ah程度の電池容量が必要とな る。また、車輌の十分な駆動力を確保するためには、電 池電圧を大きくする必要がある。従って、数個から数百 個の単電池を直列に接続すること、数十A〜数百Aの負 荷電流の入出力を可能にすることが必要となる。

【0005】電池には、充放電に伴って、電極反応によ る反応熱やジュール熱が発生し、温度上昇が生ずるが、 単電池の電池容量や負荷電流値が増大すると、発生する 熱量が増加して、電池外部への放熱が遅れ、発生した熱 が電池内部に蓄積されてしまう。その結果、従来の小型 電池よりも電池温度が上昇する。また、このような単電 池を電気的に直列に接続した単位電池や、単位電池を電 気的に直列あるいは並列に接続した組電池は、数十セル から数百セルを隣接させて配置されるため、さらに放熱 が遅れ、電池温度の上昇が促進される。そして、このよ うに充電時及び放電時の電池の温度上昇が大きくなる と、充電効率の低下、及び電池内に配置されたセパレー タや電極内の結着剤などの分解が促進され、電池のサイ クル寿命が短くなるという問題が生じる。 40

【0006】本発明者等は、電池の発熱量、放熱量及び 蓄熱量の関係について検討を行った結果、以下の知見を 得た。

【0007】電池の発熱量は、直流電流を印加した場合 の電圧降下によって求められる電池の内部抵抗(R:電 極の反応抵抗と集電部抵抗との総和)により支配され、 この内部抵抗値と負荷電流値(I)の二乗との積(RI)によって表される。電池の放熱量は、電池内部で発 生した熱の外部への移動、すなわち熱伝導性によって支 50 配されるため、極板の厚みや、複数枚の極板とセパレー

タとにより構成される電極群の厚みが重要な因子とな る。また、電池の放熱量は、電池から熱を奪うための手 段(電池外部に流通させる空気や水等の冷媒種やその 量) に著しく影響される。また、電池の蓄熱量は、最も 熱容量の大きい電解液の量に支配される。

【0008】電池の温度上昇は、これらの発熱量、放熱 量及び蓄熱量のバランスで決定される。すなわち、電池 に電流が印加されると、その電流の大きさと電池状態

(充電量) に従った電池の内部抵抗とによって熱が発生 する。そして、発生した熱は、電池の蓄熱量の大きさに 10 応じて電池温度を上昇させる。また、電池内部で発生し た熱は、外部へと伝達し、電池外部との温度差に応じた 量の熱が放出される。このような電力の入出力が所定の 電池状態の近傍で繰り返されると、発熱量、放熱量及び 蓄熱量のそれぞれの大きさとそのバランスに応じた割合 で電池温度が上昇し、見かけ上電池温度が一定となる。

【0009】従って、電池の温度上昇を抑制し、高出力 で長寿命のアルカリ蓄電池を得るためには、電池の発熱 量、放熱量及び蓄熱量のバランスの最適化を図った電極 群、電解液及び電槽の設計が必要となる。

【0010】本発明は、以上の知見に基づいてなされた ものであり、発熱量、放熱量及び蓄熱量のバランスを最 適化し、高出力で、充放電の繰り返しや長期間の使用に おいても優れた電池特性を有する角形アルカリ蓄電池、 並びにこれを用いた単位電池及び組電池を提供すること を目的とする。

[0011]

【課題を解決するための手段】前記目的を達成するた め、本発明に係る角形アルカリ蓄電池の構成は、正極板 と負極板とがセパレータによって隔離され、アルカリ電 30 解液とともに電槽内に収納された角形アルカリ蓄電池で あって、内部抵抗が5 m Ω以下であり、前記正極板と前 記負極板と前記セパレータとからなる電極群の厚みが3 Omm以下であり、放熱面積が60c㎡ 以上であり、 電解液量が1.3~8.0g/Ahであることを特徴と する。この角形アルカリ蓄電池の構成によれば、発熱 量、放熱量及び蓄熱量のバランスが最適化され、高出力 で、充放電の繰り返しや長期間の使用においても優れた 電池特性を有する角型アルカリ蓄電池を実現することが

【0012】また、前記本発明の角形アルカリ蓄電池の 構成においては、電極群の幅方向の両端に正極板と負極 板にそれぞれ接合された正極と負極の集電板を備え、各 集電板を電槽の短側面に固定して前記電極群を前記電槽 内に収納するのが好ましい。

【0013】また、前記本発明の角形アルカリ蓄電池の 構成においては、正極板がニッケル酸化物を主体とする 正極板であり、負極板が電気化学的に水素の吸蔵放出が 可能な水素吸蔵合金を含む負極板であるのが好ましい。 【0014】また、前記本発明の角形アルカリ蓄電池の 50

構成においては、セパレータの厚みが0.1~0.3 m mであるのが好ましい。

【0015】また、前記本発明の角形アルカリ蓄電池の 構成においては、電解液のイオン伝導度が400~60 0 m S / c mであるのが好ましい。

【0016】また、前記本発明の角形アルカリ蓄電池の 構成においては、電槽材料の熱伝導度が0.15W/m ・K以上であり、電槽の厚みが0.5~1.5 mmであ るのが好ましい。この条件を満たす電槽材料としては、 例えば、ポリフェニレンエーテル樹脂とポリオレフィン 樹脂を主体とするポリマーアロイ等の樹脂材料を挙げる ことができる。

【0017】また、本発明に係る単位電池の構成は、3 ~40個の単電池を電気的に直列に接続した単位電池で あって、前記単電池として前記本発明の角形アルカリ蓄 電池を用いたことを特徴とする。

【0018】また、前記本発明の単位電池の構成におい ては、幅の狭い短側面と幅の広い長側面とを有する複数 の直方体状の電槽をその短側面を隔壁として共用して一 体的に成形した一体電槽の各電槽内に電極群を収納して 各電槽ごとに単電池を構成すると共に、これらの単電池 を電気的に直列に接続するのが好ましい。

【0019】また、前記本発明の単位電池の構成におい ては、単位電池当たりの熱伝導度が0.3W/m・K以 上であるのが好ましい。

【0020】この単位電池の構成によれば、温度上昇を 抑制して、髙出力で、充放電の繰り返しや長期間の使用 においても優れた電池特性を有する単位電池を実現する ことができる。

【0021】また、本発明に係る組電池の構成は、単位 電池を複数個電気的に直列及び/又は並列に接続し、隣 接する前記単位電池間に冷却媒体が通過可能な通路が設 けられた組電池であって、前記単位電池として前記本発 明の単位電池を用いたことを特徴とする。この組電池の 構成によれば、温度上昇を抑制して、高出力で、充放電 の繰り返しや長期間の使用においても優れた電池特性を 有する組電池を実現することができる。

[0022]

【発明の実施の形態】以下、本発明の実施の形態を、角 形アルカリ蓄電池の代表的な電池である角形ニッケル・ 水素蓄電池を例に挙げて説明する。

【0023】本実施の形態で用いたニッケル正極及び水 素吸蔵合金負極は、以下のようにして作製した。

【0024】すなわち、ニッケル正極の活物質である水 酸化ニッケル固溶体としては、平均粒径10μm、嵩密 度約2.0g/ccのCo及びZnを固溶した粒子を使 用した。そして、水酸化ニッケル固溶体粒子の100重 量部に水酸化コバルト7.0重量部と適量の純水とを加 えて混合分散させ、活物質スラリとした。この活物質ス ラリを多孔度95%、厚み1.3mmの発泡ニッケル多

5

孔体基板に充填し、80℃の乾燥機内で乾燥させた。そ の後、ロールプレスを用いて厚みが0.4mmとなるよ うに圧延した。そして、これを、下記(表1)に示す長 方形状の所定の寸法に切断して、ニッケル正極とした。

【0025】また、合金組成がMmN i 1.5 C O 0.75 A la3 Mna4 の水素吸蔵合金をボールミルによって粉 砕して平均粒径20μm程度とした合金粉末を結着剤と* * 共にパンチングメタルに塗着し、乾燥させた。その後、 厚みが0.28mmとなるように圧延した。そして、こ れを、下記(表1)に示す長方形状の所定の寸法に切断 して、水素吸蔵合金負極とした。

6

[0026]

【表 1 】

	程度とし7 の 極 群 厚み	た合金粉末を紅 正 極 サ イ ズ [□□X□□]	正極厚正極	枚 負極サイズ [maxas]	負極厚み [un]	負 極 枚数
[Ab]	[nn]		[mm] [枚]	4 8 × 8 3	0 . 2 8	[枚]
8	1 0	4 8 × 8 3 4 8 × 4 8	0.49	4 8 X 4 8	0 . 2 8	1 7
8	3 0	4 8 × 3 2	0 . 4 2 5	4 8 x 3 2	0.28	2 6
8	3 5	4 8 X 2 8	0.429	4 8 X 2 8	0 . 2 8	3 0

【0027】図1は本発明の一実施の形態における角形 ニッケル・水素蓄電池の電極群の構成を示す斜視図であ

【0028】図1に示すように、上記(表1)に示す正 20 極板1及び負極板2を、同じく長方形状の親水化処理を 施したポリプロピレン繊維不織布からなるセパレータ3 を介して交互に積層し、電極厚みの異なる電極群を構成 した。この電極群の幅方向両端のリード1 a、2 aに、 鉄にニッケルメッキを施した集電板4、5を端面溶接 し、正極、負極の電極端子とした。これらの電極群は、 水酸化カリウムを主成分とする電解液と共にポリプロピ レン樹脂とポリフェニルエーテル樹脂を主体とするポリ マーアロイ製の角形電槽に各集電板4、5を電槽の短側 面に固定して収納した。これにより、電池容量8Ahの 30 角形ニッケル・水素蓄電池が得られた。

【0029】以上のような構成を備えた角形ニッケル・ 水素蓄電池(単電池)の内部抵抗、電極群の厚み、放熱 面積、電解液量、電解液のイオン伝導度、電槽の厚み、 電槽材料の熱伝導度をそれぞれ変化させ、それらと充放 電時の電池の温度上昇及びサイクル寿命との関係につい て調べた。

【0030】内部抵抗は、電極の反応抵抗、電解液のイ オン導電性に関わる抵抗、集電部及び電極芯材の抵抗の 総和である。そのため、電池容量、極板面積、集電部や 40 電極芯材の材質や厚み、形状に大きく影響される。しか し、本実施の形態において行った実験では、電池容量及 び電池内の極板面積はほぼ一定となるように行ったこと から、これらの影響は無視されると考えられる。そのた め、ニッケルメッキを施した鉄製の集電板4、5の厚み 及びニッケルメッキの厚みを変化させることによって、 電池の内部抵抗を変化させた。

【0031】また、内部抵抗の測定は、以下に示す方法 によって行った。すなわち、後述する利用率の測定に用 いた測定方法により、作製した電池の実容量 [Ah]を 50

求めた。そして、放電状態の電池に実容量に対して50 %の充電を施した後、環境温度を25℃として、3時間 放置した。その後、下記(表2)に示す条件で電流を印 加し、10秒後の電池電圧を測定した。印加した電流値 を横軸に、測定した電池電圧を縦軸にプロットした図を 作成した。この図から求められる傾きは、オームの法則 $(V = R \times I)$ より、電池の内部抵抗を示していると考 えられる。従って、電池の内部抵抗は、上記の方法によ り最小二乗法を用いて算出した。

[0032]

【表2】

状態	7 電旅館 [A]	時間 [移]
放電	1 0	1 0
休止	_	6 0
充 组	1 0	1 0
休止	_	6 0
放電	2 5	1 0
休止		6 0
充电	2 5	1 0
休止	<u> </u>	6 0
放電	4 0	1 0
休止		6 0
充電	4 0	1 0
休止		6 0
放電	6 0	1 0
休止		6 0
充電	6 0	1 0
休止	<u> </u>	6 0
放電	8 0	1 0
休止		6 0
充電	8 0	1 0
休止		6 0
放電	1 0 0	1 0
休止		6 0

*【0033】また、電極群の厚みとは、正極板1と負極 板2とセパレータ3とからなる集合体の厚みを意味して いる(単位:mm)。放熱面積とは、電池外側面で冷却 媒体と直接接する面積のことである(単位:cm²)。 電解液量は、電池の1Ah容量当たりの電解液の重量で ある(単位: g/Ah)。電解液のイオン伝導度は、電 解液比重に支配される。

8

【0034】サイクル寿命は、初期容量の80%以下と なったサイクル数のことである。

(1) 内部抵抗と温度上昇、サイクル寿命との関係 下記(表3)に、電極群の厚みを20mm、放熱面積を 100 c m² 、電解液量を3 g / A h、セパレータの厚 みを0.2mm、電解液のイオン伝導度を500mS/ c mとし、内部抵抗を $3\sim6$ m Ω と変化させたときの、 充放電時の電池の温度上昇とサイクル寿命の測定結果を 示す。下記(表3)中の『利用率』は、以下のようにし て算出される。すなわち、電池を充電レート0.10m Aで15時間充電し、放電レート0.2CmAで電池電 圧が1.0 Vになるまで放電させるサイクルを5サイク 20 ル繰り返し、5サイクル目の容量を測定する。このよう にして測定した電池容量を理論容量(正極中に充填した 水酸化ニッケルの重量に、水酸化ニッケルが1電子反応 するとしたときの電気容量289mAh/gを乗じて得 た値)で除することにより、利用率が算出される。

[0035]

【表3】

				* [表3】			
-0,0,	極群厚み	放熱面積 [cm ²]	液量 [g/Ah]		dン伝導度 [mS/cm]	利用率 [%]	温度上昇 [℃]	寿命サイクル
[mΩ]	[mm]	[[CIII-]	(9/ ///3			95	5	1000
3		\		1	Ì	95	5	1000
4	20	100	3	0.2	500	92	7	900
5] ''	'**				88	14	300
6	1	i	<u> </u>	<u> </u>	<u> </u>			

【0036】上記(表3)に示すように、内部抵抗が3 $m\Omega$ 、 $4m\Omega$ 、 $5m\Omega$ のとき、充放電時の電池の温度上 昇はそれぞれ5℃、5℃、7℃、サイクル寿命はそれぞ れ1000、1000、900であった。一方、内部抵 抗が6mΩのとき、充放電時の電池の温度上昇は14℃ と高くなり、電池のサイクル寿命は300と短くなって いる。内部抵抗が大きくなると、充放電時の電池の発熱 40 量、ひいては電池の温度上昇が大きくなると考えられ る。そして、電池の温度上昇が大きくなると、充電効率 の低下、及び電池内に配置されたセパレータや電極内の 結着剤などの分解が促進され、電池のサイクル寿命が短 くなると考えられる。

【0037】従って、電池の内部抵抗は、5mΩ以下で

あるのが望ましい。

(2) 電極群の厚みと温度上昇、サイクル寿命との関係 下記(表4)に、電池の内部抵抗を4mΩ、放熱面積を 100 c m² 、電解液量を3 g / A h、セパレータの厚 みを0.2 mm、電解液のイオン伝導度を500 m S / c mとし、電極群の厚みを10~35mmと変化させた ときの、充放電時の電池の温度上昇とサイクル寿命の測 定結果を示す。尚、電極群の厚みが異なる電池について 放熱面積を一定の値(100cm²)に調整するため に、各電池の電槽外表面に断熱シートを貼った。

[0038]

【表4】

					(0)			10	
-	電池内部抵抗	極群厚み	放熱面積 [cm²]	液量 [g/Ah]		付ン伝導度 [mS/cm]	利用率 [%]	温度上昇 [℃]	寿命サイクル
	[mΩ]	[mm]	[CHI-]	[3/7.1.3]			94	7	900
		10	ļ		0.2	500	95	5	1000
	4	20	100	3	0.2	300	93	7	900
		30	4				88	12	400
	ì	35	1	1	<u> </u>				

【0039】上記(表4)に示すように、電極群の厚み が10mm、20mm、30mmのとき、充放電時の電 池の温度上昇はそれぞれ7℃、5℃、7℃、サイクル寿 10 命はそれぞれ900、1000、900であった。一 方、電極群の厚みが35mmのとき、充放電時の電池の 温度上昇は12℃と高くなり、電池のサイクル寿命は4 00と短くなっている。電極枚数が多く、電極群の厚み が大きい場合には、熱拡散速度が小さくなり、電池内部 での熱伝導度が小さくなるために、電池の温度上昇が大 きくなると考えられる。そして、電池の温度上昇が大き くなると、充電効率の低下、及び電池内に配置されたセ パレータや電極内の結着剤などの分解が促進され、電池

- * 【0040】従って、電極群の厚みは、30mm以下で あるのが望ましい。
- (3) 放熱面積と温度上昇、サイクル寿命との関係 下記(表 5)に、電池の内部抵抗を 4 m Ω、電極群の厚 みを20mm、電解液量を3g/Ah、セパレータの厚 みを0.2 mm、電解液のイオン伝導度を500 m S / c mとし、放熱面積を 50~120 c m² と変化させた ときの、充放電時の電池の温度上昇とサイクル寿命の測 定結果を示す。尚、放熱面積は、電槽外表面に断熱シー トを貼ることにより、所定の面積に調整した。

[0041] 【表5】

のサイクル寿命が短くなると考えられる。

۲	竜極内の船省所 寿命が短くなる	と考えられ	nる。		*20		THE DESTREE	温度上昇	寿命サイクル
	電池内部抵抗	極群厚み	放熱面積 [cm²]	液量 [g/Ah]	tパ厚み [mm]	イン伝導度 [mS/cm]	利用率 [%]	温度工舞	X 00717%
	[mΩ]	[mm]		L3/ 13			87	13	300
		ļ	50		}		93	7	900
			60	4	١	500	95	5	1000
	4	20	80] 3	0.2	500	95	5	1000
	}	1	100	4	1		95	4	1000
	1		120	<u> </u>	<u>i</u>	l	1		

【0042】上記(表3)に示すように、放熱面積が6 0 cm^2 , 80 cm^2 , 100 cm^2 , 120 cm^2 Ø 30 とき、充放電時の電池の温度上昇はそれぞれ7℃、5 ℃、5℃、4℃、サイクル寿命はそれぞれ900、10 00、1000、1000であった。一方、放熱面積が $50\,\mathrm{cm}^2$ のとき、充放電時の電池の温度上昇は $1\,3\,\mathrm{C}$ と高くなり、電池のサイクル寿命は300と短くなって いる。放熱面積が小さい場合には、放熱量が小さくなる ために、電池の温度上昇が大きくなると考えられる。そ して、電池の温度上昇が大きくなると、充電効率の低 下、及び電池内に配置されたセパレータや電極内の結着

- ※ると考えられる。
- 【0043】従って、放熱面積は、60cm゚以上であ るのが望ましい。
 - (4) 電解液量と温度上昇、サイクル寿命との関係 下記(表6)に、電池の内部抵抗を4 m Ω、電極群の厚 みを20mm、放熱面積を100cm²、セパレータの 厚みを0.2mm、電解液のイオン伝導度を500mS /cmとし、電解液量を1.2~8.1g/Ahと変化 させたときの、充放電時の電池の温度上昇とサイクル寿 命の測定結果を示す。

[0044]

下、及び電流	他内に配置され	たセパレー	-タや電極 マカル老会	内の結有 ぶ妬くた	; . -≫40 [表6】			
剤などの分	解が促進され、	電池のサイ	イグル舞叩	液量	t小。厚み	イオン伝導度	利用率		寿命サイクル
	電池内部抵抗	極許序の [mm]	[cm ²]	[g/Ah]		[mS/cm]	[%]	[℃]	
լ	[mΩ]	[,,,,,]		1.2			82	12	400
			}	1.3	ł		93	7	900
	ı	1	1	1.5	1		95	5	1000
	4	20	100	6	0.2	500	95	5	1000
	,		Ì	1-0	┪		95	4	900
	i	}	1	8.1	1		95	4	500
		<u> </u>	<u> </u>	0.1	ــــــــــــــــــــــــــــــــــــــ	1			

50 1.3g/Ah,3g/Ah,6g/Ah,8g/Ah 【0045】上記(表6)に示すように、電解液量が

10

11 のとき、充放電時の電池の温度上昇はそれぞれ7℃、5 ℃、5℃、4℃、サイクル寿命はそれぞれ900、10 00、1000、900であった。一方、電解液量が 1.2g/Ahのとき、充放電時の電池の温度上昇は1 2℃と高くなり、電池のサイクル寿命は400と短くな っている。また、電解液量が8.1g/Ahのとき、充 放電時の電池の温度上昇は4℃であるが、電池のサイク ル寿命は500と短くなっている。電解液量が少ない場 合には、蓄熱量が小さくなるために、充放電時の電池の 発熱量、ひいては電池の温度上昇が大きくなると考えら れる。そして、電池の温度上昇が大きくなると、充電効 率の低下、及び電池内に配置されたセパレータや電極内 の結着剤などの分解が促進され、電池のサイクル寿命が 短くなると考えられる。また、電解液量が多い場合に は、蓄熱量が大きくなるために、充放電時の電池の発熱 量、ひいては電池の温度上昇は小さくなるが、その一方 で、充電効率が低下して電池の内圧が上昇するために、 電池のサイクル寿命は短くなると考えられる。

* A h であるのが望ましい。

【0047】以上(1)~(4)の結果をまとめると、 内部抵抗が5 m Ω以下、電極群の厚みが30 m m以下、 放熱面積が60cm~以上、電解液量が1.3~8.0 g/Ahである場合に、発熱量、放熱量及び蓄熱量のバ ランスが最適化され、髙出力で、充放電の繰り返しや長 期間の使用においても優れた電池特性を有する角形ニッ ケル・水素蓄電池が実現される。

(5) セパレータの厚みと温度上昇、サイクル寿命との 関係

下記(表7)に、電池の内部抵抗を4 m Ω、電極群の厚 みを20mm、放熱面積を100cm゜、電解液量を3 g/Ah、電解液のイオン伝導度を500mS/cmと し、セパレータの厚みを0.08~0.32mmと変化 させたときの、充放電時の電池の温度上昇とサイクル寿 命の測定結果を示す。

[0048]

【表7】

【0046】従って、電解液量は、1.3~8.0g/*

) 	】従って、電解 電池内部抵抗 「mΩ]	極群厚み [mm]		. 0 g/ 液量 [g/Ah]	* セパ厚み [mm]	イオン伝導度 [mS/cm]	[%]	温度上昇 [℃]	寿命サイクル 400
Ì					0.08		95 95	7	900
	4	20	100	3	0.15	500	95 95	4	1000
	7				0.25	}	95	7	900
	,				0.32	1	85	12	500

【0049】上記(表7)に示すように、セパレータの 厚みが0.1mm、0.15mm、0.2mm、0.2 5 mm、0.3 mmのとき、充放電時の電池の温度上昇 はそれぞれ7℃、4℃、4℃、4℃、7℃、サイクル寿 命はそれぞれ900、1000、1000、1000、 900であった。一方、セパレータの厚みが0.08m mのとき、充放電時の電池の温度上昇は7℃であるが、 電池のサイクル寿命は400と短くなっている。また、 セパレータの厚みが 0.32 mmのとき、充放電時の電 池の温度上昇は12℃と高くなり、電池のサイクル寿命 40 は500と短くなっている。セパレータの厚みが小さい 場合には、セパレータの吸収する電解液量が少ないこと から、結果として電極内の電解液量が多くなり、蓄熱量 が大きくなるため、充放電時の電池の発熱量、ひいては 電池の温度上昇は小さくなるが、その一方で、充電効率 が低下して電池の内圧が上昇するために、電池のサイク ル寿命は短くなると考えられる。また、セパレータの厚 みが大きい場合には、セパレータの吸収する電解液量が 多いことから、結果として電極内の電解液量が少なくな

り、電極の反応抵抗が大きくなるために、充放電時の電 池の発熱量、ひいては電池の温度上昇が大きくなると考 えられる。そして、電池の温度上昇が大きくなると、充 電効率の低下、及び電池内に配置されたセパレータや電 極内の結着剤などの分解が促進され、電池のサイクル寿 命が短くなると考えられる。

【0050】従って、セパレータの厚みは、0.1~ 0.3mmであるのが望ましい。

(6) 電解液のイオン伝導度と温度上昇、サイクル寿命 との関係

下記(表8)に、電池の内部抵抗を4 mΩ、電極群の厚 みを20mm、放熱面積を100cm²、電解液量を3 g/Ah、セパレータの厚みをO.2mmとし、電解液 のイオン伝導度を370~650mS/cmと変化させ たときの、充放電時の電池の温度上昇とサイクル寿命の 測定結果を示す。尚、電解液のイオン伝導度は、電解液 の比重を変えることにより、所定の値に調整した。

[0051]

【表8】

	13						14	
電池内部抵抗 [mΩ]	極群厚み [mm]	放熱面積 [cm ²]	液量 [g/Ah]	tハ°厚み [mm]	イオン伝導度 [mS/cm]	利用率[%]	温度上昇 [℃]	寿命サイクル
					370	75	12	400
İ	'				400	96	7	900
4	20	100	3	0.2	500	98	5	1000
					600	96	7	900
					650	88	13	400

【0052】上記(表8)に示すように、電解液のイオ 0mS/cmのとき、充放電時の電池の温度上昇はそれ ぞれ7°C、5°C、7°C、サイクル寿命はそれぞれ90 0、1000、900であった。一方、電解液のイオン 伝導度が370mS/cmのとき、充放電時の電池の温 度上昇は12℃と高くなり、電池のサイクル寿命は40 0と短くなっている。また、電解液のイオン伝導度が6 50mS/cmのとき、充放電時の電池の温度上昇は1 3℃と高くなり、電池のサイクル寿命は400と短くな っている。電解液のイオン伝導度が小さい場合には、電 解液比重が小さく、液量(c c) 過多となって、電極の 20 反応抵抗が大きくなるために、充放電時の電池の発熱 量、ひいては電池の温度上昇が大きくなると考えられ る。また、電解液のイオン伝導度が大きい場合には、電 解液比重が大きく、液量(cc)が少なくなって、放熱 性が同じであっても蓄熱量は最も熱容量の大きい電解液 によって支配されるために、蓄熱量も少なくなり、電池 の温度上昇が大きくなると考えられる。そして、電池の*

* 温度上昇が大きくなると、充電効率の低下、及び電池内 ン伝導度が400mS/cm、500mS/cm、60 10 に配置されたセパレータや電極内の結着剤などの分解が 促進され、電池のサイクル寿命が短くなると考えられ

> 【0053】従って、電解液のイオン伝導度は、400 ~600mS/cmであるのが望ましい。

> (7) 電槽材料の熱伝導度と温度上昇、サイクル寿命と の関係

下記(表9)に、電池の内部抵抗、電極群の厚み、放熱 面積、電解液量、セパレータの厚み、電解液のイオン伝 導度を上記(1)~(6)において説明した望ましい値 に設定し、電槽の厚みを1.0mmに設定して、電槽材 料の熱伝導度を0.13~0.18W/m・Kと変化さ せたときの、充放電時の電池の温度上昇とサイクル寿命 の測定結果を示す。電槽材料の熱伝導度は、使用する樹 脂の熱伝導性に支配され、ポリマーアロイ樹脂ではその 配合比に支配される。

[0054]

【表9】

	曹厚み	熱伝導度 [W/m・K]	利用率 [%]	温度上昇 [℃]	寿命サイクル
		0.13	82	14	400
1	4.0	0.14	88	11	500
ŀ	1.0	0.15	93	7	900
	_	0.18	95	5	1000

【0055】上記(表9)に示すように、電槽材料の熱 伝導度が0.15W/m・K、0.18W/m・Kのと き、充放電時の電池の温度上昇はそれぞれ7℃、5℃、 サイクル寿命はそれぞれ900、1000であった。一 方、電槽材料の熱伝導度が0.13W/m・K、0.1 4W/m・Kのとき、充放電時の電池の温度上昇はそれ 40 ぞれ14℃、11℃と高く、電池のサイクル寿命はそれ ぞれ400、500と短くなっている。電槽材料の熱伝 導度が小さい場合には、電池の温度上昇が大きくなり、 充電効率の低下、及び電池内に配置されたセパレータや 電極内の結着剤などの分解が促進されて、電池のサイク

ル寿命も短くなると考えられる。

(8) 電槽の厚みと温度上昇、サイクル寿命との関係 下記(表10)に、電池の内部抵抗、電極群の厚み、放 熱面積、電解液量、セパレータの厚み、電解液のイオン 伝導度を上記(1)~(6)において説明した望ましい 値に設定し、電槽材料の熱伝導度を0.2W/m・Kに 設定して、電槽の厚みをO. 4~1.6 mmと変化させ たときの、充放電時の電池の温度上昇とサイクル寿命の 測定結果を示す。

[0056]

【表10】

16

Ċ	,				
	電槽厚み [mm]	熱伝導度 [W/m・K]	利用率 [%]	温 度上昇 [℃]	寿命サイクル
	0.4		96	4	400
	0.5		96	4	900
	0.8		96	5	1000
	1.0	0.2	96	5	1000
	1.2		95	5	1000
	1.5		93	7	900
	1.6		86	12	500

【0057】上記(表10)に示すように、電槽の厚み が0.5mm、0.8mm、1.0mm、1.2mm、 1. 5 mmのとき、充放電時の電池の温度上昇はそれぞ 11.4 °C、5 °C、5 °C、7 °C、サイクル寿命はそれ ぞれ900、1000、1000、1000、900で あった。一方、電槽の厚みが0.4mmのとき、充放電 時の電池の温度上昇は4℃であるが、電池のサイクル寿 命は400と短くなっている。また、電槽の厚みが1. 6 mmのとき、充放電時の電池の温度上昇は12℃と高 くなり、電池のサイクル寿命は500と短くなってい る。電槽の厚みが小さい場合には、放熱性が良好となる ために、充放電時の電池の発熱量、ひいては電池の温度 上昇は小さくなるが、電池内圧に対して電槽の厚みが不 足するために、電槽が変形し、電池のサイクル寿命が短 くなると考えられる。また、電槽の厚みが大きい場合に は、放熱性が悪くなるために、充放電時の電池の発熱 量、ひいては電池の温度上昇が大きくなると考えられ る。そして、電池の温度上昇が大きくなると、充電効率 の低下、及び電池内に配置されたセパレータや電極内の 結着剤などの分解が促進され、電池のサイクル寿命が短 くなると考えられる。

【0058】従って、(7)、(8)の結果から、電槽材料の熱伝導度が0.15W/m·K以上であり、電槽の厚みが<math>0.5~1.5mmであるのが望ましい。

【0059】この条件を満たす電槽材料としては、例えば、ポリフェニレンエーテル樹脂とポリオレフィン樹脂を主体とするポリマーアロイ等の樹脂材料を挙げることができる。

【0060】次に、上記のような構成を備えた3~40個の角形ニッケル・水素蓄電池(単電池)を電気的に直列に接続して単位電池を作製した。

【0061】図2に、6個の角形ニッケル・水素蓄電池 (単電池)を電気的に直列に接続して単位電池を構成したときの一体電槽の斜視図を示す。図2に示すように、幅の狭い短側面と幅の広い長側面とを有する6個の直方体状の電槽6を、その短側面を隔壁7として共用して一体的に成形した一体電槽8の各電槽6内に電極群(図示せず)が収納されている。すなわち、隣接する単電池同士が隔壁7の上部で電気的に直列に接続されている。両 50

端の端壁9の上部には、上記単位電池の極端子(図示せず)がそれぞれ設けられている。一体電槽8の上部解放面は、上部カバー(図示せず)によって一体的に閉塞されている。また、一体電槽8の長側面には、隣接する単位電池との間に冷却媒体が通過可能な通路を形成するためのリブ状突起10が設けられている。

(9)単位電池当たりの熱伝導度と温度上昇、サイクル 寿命との関係

下記(表11)に、6個の角形ニッケル・水素蓄電池 (単電池)を電気的に直列に接続して構成した単位電池 において、各単電池の内部抵抗、電極群の厚み、放熱面 積、電解液量、セパレータの厚み、電解液のイオン伝導 度を上記(1)~(6)において説明した望ましい値に 設定し、単位電池当たりの熱伝導度を0.2~0.4W /m・Kと変化させたときの、充放電時の単位電池の温 度上昇とサイクル寿命の測定結果を示す。尚、単位電池 当たりの熱伝導度は、電槽樹脂材料の配合比、電槽の厚 みを変えることにより、所定の値に調整した。

[0062]

【表11】

熱伝導度 [W/m・K]	利用率 [%]	温度上昇 [℃]	寿命サイクル
0.2	82	13	400
0.3	95	6	900
0.4	96	5	1000

【0063】上記(表11)に示すように、単位電池当たりの熱伝導度が0.3W/m・K、0.4W/m・Kのとき、充放電時の単位電池の温度上昇はそれぞれ6℃、5℃、サイクル寿命はそれぞれ900、1000であった。一方、単位電池当たりの熱伝導度が0.2W/m・Kのとき、充放電時の単位電池の温度上昇は13℃と高く、単位電池のサイクル寿命は400と短くなっている。単位電池当たりの熱伝導度が小さい場合には、放熱性が悪くなるために、充放電時の単位電池の発熱量、ひいては単位電池の温度上昇が大きくなると考えられる。そして、単位電池の温度上昇が大きくなると考えられる。そして、単位電池の温度上昇が大きくなると、充電効率の低下、及び単電池内に配置されたセパレータや電極内の結着剤などの分解が促進され、単位電池のサイク

ル寿命が短くなると考えられる。

【0064】従って、単位電池当たりの熱伝導度は、 0. 3W/m・K以上であるのが望ましい。

17

【0065】 このように、上記(1)~(9) において 説明した望ましい値に設定された角形ニッケル・水素蓄 電池(単電池)を用いて単位電池を構成し、かつ、単位 電池当たりの熱伝導度を0.3W/m・K以上に設定す ることにより、温度上昇を抑制して、髙出力で、充放電 の繰り返しや長期間の使用においても優れた電池特性を 有する単位電池を実現することができる。

【0066】次に、上記のような構成を備えた単位電池 を複数個電気的に直列及び/又は並列に接続して組電池 を作製した。隣接する単位電池間には、冷却媒体が通過 可能な通路が設けられている。この場合にも、(9)に おいて説明した望ましい値に設定された単位電池を用い て組電池を構成することにより、温度上昇を抑制して、 髙出力で、充放電の繰り返しや長期間の使用においても 優れた電池特性を有する組電池を実現することができ た。

[0067]

【発明の効果】以上説明したように、本発明によれば、 発熱量、放熱量及び蓄熱量のバランスを最適化し、高出* *力で、充放電の繰り返しや長期間の使用においても優れ た電池特性を有する角形アルカリ蓄電池を実現すること ができる。また、本発明の角形アルカリ蓄電池を用いる ことにより、温度上昇を抑制して、髙出力で、充放電の 繰り返しや長期間の使用においても優れた電池特性を有 する単位電池及び組電池を実現することもできる。

18

【図面の簡単な説明】

【図1】本発明の一実施の形態における電極群構成を示 す斜視図

【図2】本発明の一実施の形態における単位電池を構成 10 する一体電槽を示す斜視図

【符号の説明】

- 正極板
- 負極板
- 3 セパレータ
- 4 集電板
- 5 集電板
- 電槽
- 7 隔壁
- 20 8 一体電槽
 - 9 端壁
 - 10 リブ状突起

【図1】

フロントページの続き

(51) Int. Cl. 7

識別記号

H O 1 M 4/32

H O 1 M 4/32

FΙ

テーマコード(参考)

(72)発明者 森下 展安

静岡県湖西市境宿555番地 パナソニック

E Vエナジー株式会社内

(72)発明者 谷口 明宏

静岡県湖西市境宿555番地 パナソニック

E Vエナジー株式会社内

(72)発明者 生駒 宗久

静岡県湖西市境宿555番地 パナソニック

EVエナジー株式会社内

F ターム(参考) 5HO11 AAO4 CCO2 KKOO KKO1

5HO22 AAO4 AA19 BB11 CC12 CC19

CC22 CC25

5H028 AA06 AA07 CC05 HH00 HH02

НН05 НН10

5H050 AA02 AA07 BA11 CA03 CB17

DAO4

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-319682

(43) Date of publication of application: 16.11.2001

(51)Int.Cl.

H01M 10/28 HO1M

HO1M

(21)Application number : 2000-134542

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

TOYOTA MOTOR CORP

(22)Date of filing:

08.05.2000

(72)Inventor: YUASA SHINICHI

MORISHITA NOBUYASU TANIGUCHI AKIHIRO **IKOMA MUNEHISA**

(54) SQUARE ALKALINE STORAGE BATTERY, AND UNIT BATTERY AND ASSEMBLED BATTERY **USING THE SAME**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a square alkaline storage battery that can optimize the balance between heat generation volume, heat radiation volume and heat storage volume, and has high output and excellent battery characteristics even in the repetition of charge and discharge and in a long-term use.

SOLUTION: Rectangular positive plates 1 and negative plates 2 are laminated alternately through also rectangular separators 3, and electrode groups are constructed. These electrode groups are housed in a square casing together with alkaline electrolyte. Inside resistance is set at 5 m Ω or less, thickness of the electrode groups at 30 mm or less, and the volume of the electrolytic solution is at 1.3 to 8.0 g/Ah, respectively.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] It is the square shape alkaline battery with which it was isolated with the separator and the positive-electrode plate and the negative-electrode plate were contained in the battery case with the alkali electrolytic solution, the thickness of the electrode group which internal resistance is less than [5mohm], and becomes from said positive-electrode plate, said negative-electrode plate, and said separator is 30mm or less, and a heat sinking plane product is 2 60cm. Square shape alkaline battery characterized by being above and the amount of electrolytic solutions being 1.3 - 8.0 g/Ah.

[Claim 2] The square shape alkaline battery according to claim 1 which was equipped with the collecting electrode plate of the positive electrode joined to the positive-electrode plate and the negative-electrode plate by the both ends of the cross direction of an electrode group, respectively, and a negative electrode, fixed each collecting electrode plate to the short side face of a battery case, and contained said electrode group in said battery case.

[Claim 3] The square shape alkaline battery according to claim 2 which a positive-electrode plate is a positive-electrode plate which makes a nickel oxide a subject, and is the negative-electrode plate with which a negative-electrode plate contains electrochemically the hydrogen storing metal alloy in which occlusion emission of hydrogen is possible.

[Claim 4] The square shape alkaline battery according to claim 1 to 3 whose thickness of a separator is 0.1-0.3mm.

[Claim 5] The square shape alkaline battery according to claim 1 to 3 whose ionic conductivity of the electrolytic solution is 400 - 600 mS/cm.

[Claim 6] The square shape alkaline battery according to claim 1 to 3 whose thickness of a battery case the thermal conductivity of a battery case ingredient is 0.15 or more W/m-K, and is 0.5-1.5mm.

[Claim 7] The unit cell which is a unit cell which connected 3-40 cells to the serial electrically, and is characterized by using a square shape alkaline battery according to claim 1 to 6 as said cell.

[Claim 8] The unit cell according to claim 7 which connected these cells to the serial electrically while containing the electrode group and really which shared the short side face as a septum, and fabricated in one the battery case of the shape of two or more rectangular parallelepiped which has the short side face where width of face is narrow, and the long side face where width of face is wide constituting the cell for every battery case in each battery case of a battery case.

[Claim 9] The unit cell according to claim 7 or 8 whose thermal conductivity per unit cell is 0.3 or more W/m-K.

[Claim 10] The group cell which is a group cell by which two or more unit cells were electrically connected to a serial and/or juxtaposition, and the path which can pass a cooling medium was prepared between said adjoining unit cells, and is characterized by using a unit cell according to claim 7 to 9 as said unit cell.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the alkaline battery represented with a nickel cadmium battery, or nickel and a hydrogen battery, especially a square shape alkaline battery. Furthermore, it is related with the design of the electrode group which optimizes the balance of calorific value, heat release, and the amount of accumulation in a detail, the electrolytic solution, and a battery case.

[0002]

[Description of the Prior Art] The alkaline battery represented with a nickel cadmium battery, or nickel and a hydrogen battery has a high energy density, and are used from excelling in dependability as a power source of portable devices, such as a video tape recorder, a notebook computer, and a cellular phone, for example. [many] In a actual activity, it is common that about ten cells are used into a resin case or a tube from some, containing.

[0003] Moreover, since the power with which cell capacity's being 0.5Ah(s) - 3Ah extent and the device used consume these alkaline batteries is also small, the calorific value per cell at the time of charge and discharge is small. Therefore, even if it was the case where it was contained and used into a resin case or a tube, generation of heat and heat dissipation were performed with sufficient balance, and there was no remarkable technical problem about the temperature rise of a cell.

[Problem(s) to be Solved by the Invention] By the way, as a power source for mobiles which results in electric vehicles, such as a hybrid car which assists power by the electric vehicle or the electric motor from home electronics, an energy density is high and the highly reliable battery is demanded by high power recently. When a cell is used for such an application, the cell capacity which is Number Ah - 100Ah extent is needed. Moreover, in order to secure sufficient driving force of a vehicle, it is necessary to enlarge cell voltage. Therefore, it is necessary to connect hundreds of cells to a serial from some, and to enable I/O of the load current of several 10A - hundreds A.

[0005] Although the heat of reaction and the Joule's heat by electrode reaction occur on a cell and a temperature rise arises in connection with charge and discharge on it, if the cell capacity and the load current value of a cell increase, the heating value to generate increases, the heat dissipation to the cell exterior will be accumulated in delay, and the generated heat will be accumulated in the interior of a cell. Consequently, cell temperature rises rather than the conventional small cell. Moreover, since the unit cell which connected such a cell to the serial electrically, and the group cell which connected the unit cell to a serial or juxtaposition electrically make hundreds cels adjoin and is arranged from dozens cels, lifting of delay and cell temperature is further promoted for heat dissipation. And if the temperature rise of the cell at the time of charge and discharge becomes large in this way, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and the problem that the cycle life of a cell becomes short will arise.

[0006] this invention person etc. acquired the following knowledge, as a result of considering relation between the calorific value of a cell, heat release, and the amount of accumulation.

[0007] The calorific value of a cell is governed by the internal resistance (R: total with reaction resistance of an electrode, and current collection section resistance) of the cell called for by the voltage drop at the time of impressing a direct current, and is expressed by the product (RI2) with square of this internal resistance value and a load current value (I). Since the heat release of a cell is governed by the migration to the exterior of the heat generated inside the cell, i.e., thermal conductivity, the thickness of a plate and the thickness of the electrode group constituted with the plate of two or more sheets and a separator serve as an important

factor. Moreover, the heat release of a cell is remarkably influenced by the means (refrigerant kinds which circulate the cell exterior, such as air and water, and amount of those) for taking heat from a cell. Moreover, the amount of accumulation of a cell is governed by the amount of the electrolytic solution with the largest heat capacity.

[0008] It opts for the temperature rise of a cell in the balance of such calorific value, heat release, and the amount of accumulation. That is, if a current is impressed to a cell, heat will occur with the magnitude of the current, and the internal resistance of the cell according to a cell condition (charge). And the generated heat raises cell temperature according to the magnitude of the amount of accumulation of a cell. Moreover, the heat generated inside the cell is transmitted to the exterior, and the heat of the amount according to a temperature gradient with the cell exterior is emitted. If I/O of such power is repeated near the predetermined cell condition, cell temperature will rise at a rate according to each magnitude and its balance of calorific value, heat release, and the amount of accumulation, and cell temperature will become fixed seemingly.

[0009] Therefore, in order to control the temperature rise of a cell and to obtain a long lasting alkaline battery by high power, the design of the electrode group aiming at optimization of the balance of the calorific value of a cell, heat release, and the amount of accumulation, the electrolytic solution, and a battery case is needed.

[0010] This invention is made based on the above knowledge, optimizes the balance of calorific value, heat release, and the amount of accumulation, is high power and aims at offering the square shape alkaline battery which has the cell property which was excellent also in the repeat of charge and discharge, or the prolonged activity, the unit cell which used this for the list, and a group cell.

[Means for Solving the Problem] In order to attain said object, the configuration of the square shape alkaline battery concerning this invention It is the square shape alkaline battery with which it was isolated with the separator and the positive-electrode plate and the negative-electrode plate were contained in the battery case with the alkali electrolytic solution. The thickness of the electrode group which internal resistance is less than [5mohm], and becomes from said positive-electrode plate, said negative-electrode plate, and said separator is 30mm or less, and a heat sinking plane product is 2 60cm. It is above and is characterized by the amount of electrolytic solutions being 1.3 - 8.0 g/Ah. According to the configuration of this square shape alkaline battery, the balance of calorific value, heat release, and the amount of accumulation is optimized, and the square shape alkaline battery which has the cell property which was excellent in high power also in the repeat of charge and discharge or the prolonged activity can be realized.

[0012] Moreover, in the configuration of the square shape alkaline battery of said this invention, it is desirable to have the collecting electrode plate of the positive electrode joined to the positive-electrode plate and the negative-electrode plate by the ends of the cross direction of an electrode group, respectively and a negative electrode, to fix each collecting electrode plate to the short side face of a battery case, and to contain said electrode group in said battery case.

[0013] Moreover, in the configuration of the square shape alkaline battery of said this invention, it is desirable that it is the positive-electrode plate with which a positive-electrode plate makes a nickel oxide a subject, and is the negative-electrode plate with which a negative-electrode plate contains electrochemically the hydrogen storing metal alloy in which occlusion bleedoff of hydrogen is possible.

[0014] Moreover, in the configuration of the square shape alkaline battery of said this invention, it is desirable that the thickness of a separator is 0.1-0.3mm.

[0015] Moreover, in the configuration of the square shape alkaline battery of said this invention, it is desirable that the ionic conductivity of the electrolytic solution is 400 - 600 mS/cm.

[0016] Moreover, in the configuration of the square shape alkaline battery of said this invention, the thermal conductivity of a battery case ingredient is 0.15 or more W/m-K, and it is desirable that the thickness of a battery case is 0.5-1.5mm. As a battery case ingredient which fulfills this condition, resin ingredients, such as a polymer alloy which makes polyphenylene ether resin and polyolefin resin a subject, can be mentioned, for example.

[0017] Moreover, the configuration of the unit cell concerning this invention is the unit cell which connected 3-40 cells to the serial electrically, and is characterized by using the square shape alkaline battery of said this invention as said cell.

[0018] Moreover, in the configuration of the unit cell of said this invention, while containing an electrode group and really which shared the short side face as a septum, and fabricated in one the battery case of the shape of two or more rectangular parallelepiped which has the short side face where width of face is narrow,

and the long side face where width of face is wide constituting a cell for every battery case in each battery case of a battery case, it is desirable to connect these cells to a serial electrically.

[0019] Moreover, in the configuration of the unit cell of said this invention, it is desirable that the thermal conductivity per unit cell is 0.3 or more W/m-K.

[0020] According to the configuration of this unit cell, a temperature rise can be controlled and the unit cell which has the cell property which was excellent in high power also in the repeat of charge and discharge or the prolonged activity can be realized.

[0021] Moreover, the configuration of the group cell concerning this invention is the group cell by which two or more unit cells were electrically connected to a serial and/or juxtaposition, and the path which can pass a cooling medium was prepared between said adjoining unit cells, and is characterized by using the unit cell of said this invention as said unit cell. According to the configuration of this group cell, a temperature rise can be controlled and the group cell which has the cell property which was excellent in high power also in the repeat of charge and discharge or the prolonged activity can be realized.

[Embodiment of the Invention] Hereafter, the square shape nickel and the hydrogen battery which is a typical cell of a square shape alkaline battery about the gestalt of operation of this invention are mentioned as an example, and is explained.

[0023] The nickel positive electrode and hydrogen storing metal alloy negative electrode which were used with the gestalt of this operation were produced as follows.

[0024] That is, as the nickel hydroxide solid solution which is the active material of a nickel positive electrode, the mean particle diameter of 10 micrometers and the particle which dissolved Co and Zn of about 2.0g/cc of bulk density were used. And the cobalt hydroxide 7.0 weight section and the pure water of optimum dose are added to the 100 weight sections of a nickel hydroxide solid-solution particle, mixed distribution was carried out, and it considered as the active material slurry. The foaming nickel porous body substrate with a% [of porosity] of 95 and a thickness of 1.3mm was filled up with this active material slurry, and it was made to dry within a 80-degree C dryer. Then, it rolled out so that thickness might be set to 0.4mm using a roll press. And this was cut in the predetermined dimension of the shape of a rectangle shown below (table 1), and was made into the nickel positive electrode.

[0025] Moreover, an alloy presentation is MmNi3.5 Co0.75aluminum0.3 Mn0.4. The punching metal was made to apply and dry with a binder the end of an alloy powder which the ball mill ground the hydrogen storing metal alloy, and was made into about 20 micrometers of mean diameters. Then, it rolled out so that thickness might be set to 0.28mm. And this was cut in the predetermined dimension of the shape of a rectangle shown below (table 1), and was made into the hydrogen storing metal alloy negative electrode. [0026]

Α	tai	ole	П	

111 池 容	電極群	正極サイズ	正極厚工	正 極 枚	負極サイズ	負極厚み	負 極 枚
舐	厚み	[mm×mm]	み 数	数	[muxum]	[mm]	数
[Ah]	[ma]		[66.67]	[枚]			[枚]
8	1 0	4 8 x 8 3	0 . 4	9	4 8 × 8 3	0.28	1 0
8	2 0	4 8 X 4 8	0 . 4	1 6	4 8 X 4 8	0.28	1 7
8	3 0	4 8 X 3 2	0 . 4 2	2 5	4 8 X 3 2	0.28	2 6
8	3 5	4 8 X 2 8	0 . 4 2	2 9	4 8 x 2 8	0.28	3 0

[0027] <u>Drawing 1</u> is the perspective view showing the configuration of the electrode group of the square shape nickel and the hydrogen battery in the gestalt of 1 operation of this invention.

[0028] As shown in <u>drawing 1</u>, the laminating of the positive-electrode plate 1 and the negative-electrode plate 2 which are shown above (table 1) was carried out by turns through the separator 3 which consists of a polypropylene fiber nonwoven fabric which similarly performed rectangle-like processing

[hydrophilization], and the electrode group from which electrode thickness differs was constituted. Endface welding of the collecting electrode plates 4 and 5 which performed nickel plating to iron was carried out, and it considered as the electrode terminal of a positive electrode and a negative electrode at the leads la and 2a of the crosswise ends of this electrode group. These electrode groups fixed and contained each collecting electrode plates 4 and 5 on the short side face of a battery case with the electrolytic solution which uses a potassium hydroxide as a principal component to the square shape battery case made from a polymer alloy which makes polypropylene resin and polyphenyl-ether resin a subject. Thereby, the square shape nickel and the hydrogen battery of cell capacity 8Ah were obtained.

[0029] The internal resistance of the square shape nickel and a hydrogen battery equipped with the above configurations (cell), the thickness of an electrode group, a heat sinking plane product, the amount of electrolytic solutions, the ionic conductivity of the electrolytic solution, the thickness of a battery case, and the thermal conductivity of a battery case ingredient were changed, respectively, and were investigated about the relation between the temperature rise of the cell at the time of them and charge and discharge, and a cycle life.

[0030] Internal resistance is total of resistance of reaction resistance of an electrode, the resistance in connection with the ion conductivity of the electrolytic solution, the current collection section, and an electrode core material. Therefore, it is greatly influenced by cell capacity, plate area, the current collection section, the construction material of an electrode core material and thickness, and the configuration. however, in the experiment conducted in the gestalt of this operation, since it carried out so that cell capacity and the plate area in a cell might serve as about 1 law, it is thought that these effects are disregarded. Therefore, the internal resistance of a cell was changed by changing the thickness of the iron collecting electrode plates 4 and 5 which performed nickel plating, and the thickness of nickel plating. [0031] Moreover, measurement of internal resistance was performed by the approach shown below. That is, the net volume [Ah] of the produced cell was calculated with the measuring method used for measurement of the utilization factor mentioned later. And after performing 50% of charge to the cell of a discharge condition to net volume, it was left for 3 hours, having used environmental temperature as 25 degrees C. Then, the current was impressed on the conditions shown below (table 2), and the cell voltage of 10 seconds after was measured. Drawing which plotted the cell voltage which measured the impressed current value on the axis of abscissa on the axis of ordinate was created. The inclination called for from this drawing is considered that the internal resistance of a cell is shown from Ohm's law (V=RxI). Therefore, the internal resistance of a cell was computed using the least square method by the above-mentioned approach.

[A table 2]

table 2		
状態	電流値【A】	時間 [秒]
放電	1 0	1 0
休止	_	6 0
充電	1 0	1 0
休止	_	6 0
放電	2 5	1 0
休止	_	6 0
充電	2 5	1 0
休止		6 0
放電	4 0	1 0
休止	_	6 0
充電	4 0	1 0
休止	_	6 0
放電	6 0	1 0
休止		6 0
充電	6 0	1 0
* 止	_	6 0
故電	8 0	1 0
木止	-	6 0
充電	8 0	1 0
木止	_	6 0
故鋜	1 0 0	1 0
*止	_	6 0
	状放休充休放休充休放休充休放休充木皮木充木皮煎罐止罐止罐止罐止罐止罐止罐止罐止罐止罐止罐止罐	状態 電流値 [A] 放館 1 0 休止 — 充館 1 0 休止 2 5 休止 2 5 休止 4 0 休止 4 0 休止 5 館 4 0 休止 6 0 休止 6 0 休止 6 0 休止 1 6 0

[0033] Moreover, the thickness of an electrode group means the thickness of the aggregate which consists of the positive-electrode plate 1, a negative-electrode plate 2, and a separator 3 (unit: mm). A heat sinking plane product is an area which touches a cooling medium directly by the cell lateral surface (unit: cm2). The amount of electrolytic solutions is the weight of the electrolytic solution per 1Ah capacity of a cell (unit: g/Ah). The ionic conductivity of the electrolytic solution is governed by electrolytic-solution specific gravity.

[0034] A cycle life is the number of cycles which became 80% or less of initial capacity.

(1) Thickness of an electrode group is made to 20mm, ionic conductivity of 0.2mm and the electrolytic solution is made [a heat sinking plane product / 2 and the amount of electrolytic solutions] into 500 mS/cm for the thickness of 3 g/Ah and a separator 100cm, and the measurement result of the temperature rise of the cell at the time of charge and discharge when changing internal resistance with 3-6mohm and a cycle life is shown in the related following (table 3) of internal resistance, and a temperature rise and a cycle life. The "utilization factor" in the following (table 3) is computed as follows. That is, a cell is charged by charge rate 0.1CmA for 15 hours, and the capacity of 5 cycle repeat and 5 cycle eye is measured for the cycle made to discharge until cell voltage is set to 1.0V by discharge rate 0.2CmA. Thus, a utilization factor is computed by **(ing) measured cell capacity by geometric capacity (value which multiplied by it and obtained electric capacity 289 mAh/g when presupposing that one electron of nickel hydroxide reacts in the weight of the nickel hydroxide with which it was filled up into the positive electrode).

[A table 3]

10010 0								
電池内部抵抗 [mΩ]	極群厚み [mm]	放熱面積 [cm ²]	液量 [g/Ah]		dシ伝導度 [mS/cm]	利用率 [%]	温度上昇 [℃]	寿命サイクル
3						95	5	1000
4	00	400			500	95	5	1000
5	20	100	3	0.2	500	92	7	900
6	i					88	14	300

[0036] As shown above (table 3), when internal resistance was 3mohm, 4mohm, and 5mohm, 5 degrees C, 5 degrees C, 7 degrees C, and the cycle lives of the temperature rise of the cell at the time of charge and discharge were 1000, 1000, and 900, respectively. On the other hand, when internal resistance is 6mohm, the temperature rise of the cell at the time of charge and discharge becomes high with 14 degrees C, and the cycle life of a cell is short with 300. If internal resistance becomes large, it will be thought that the calorific value of the cell at the time of charge and discharge, as a result the temperature rise of a cell become large. And if the temperature rise of a cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and it will be thought that the cycle life of a cell becomes short.

[0037] Therefore, as for the internal resistance of a cell, it is desirable that it is less than [5mohm]. (2) Internal resistance of a cell is made to 4mohm, ionic conductivity of 0.2mm and the electrolytic solution is made [a heat sinking plane product / 2 and the amount of electrolytic solutions] into 500 mS/cm for the thickness of 3 g/Ah and a separator 100cm, and the measurement result of the temperature rise of the cell at the time of charge and discharge when changing the thickness of an electrode group with 10-35mm and a cycle life is shown in the related following (table 4) of the thickness of an electrode group, and a temperature rise and a cycle life. In addition, in order to adjust a heat sinking plane product to a fixed value (100cm2) about the cell by which the thickness of an electrode group differs, the heat insulation sheet was stuck on the battery case outside surface of each cell.

[A table 4]

電池内部抵抗 [mΩ]	極群厚み [mm]	放熱面積 [cm²]	液量 [g/Ah]		イオン伝導度 [mS/cm]	利用率 [%]	温度上昇 [℃]	寿命サイクル
	10					94	7	900
4	20	100	3	0.2	500	95	5	1000
	30					93	7	900
	35					88	12	400

[0039] As shown above (table 4), when the thickness of an electrode group was 10mm, 20mm, and 30mm, 7 degrees C, 5 degrees C, 7 degrees C, and the cycle lives of the temperature rise of the cell at the time of charge and discharge were 900, 1000, and 900, respectively. On the other hand, when the thickness of an electrode group is 35mm, the temperature rise of the cell at the time of charge and discharge becomes high with 12 degrees C, and the cycle life of a cell is short with 400. There is much electrode number of sheets, and since a thermal diffusion rate becomes small and the thermal conductivity inside a cell becomes small when the thickness of an electrode group is large, it is thought that the temperature rise of a cell becomes large. And if the temperature rise of a cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and it will be thought that the cycle life of a cell becomes short.

[0040] Therefore, as for the thickness of an electrode group, it is desirable that it is 30mm or less.
(3) the related following (table 5) of a heat sinking plane product, and a temperature rise and a cycle life -the internal resistance of a cell -- the thickness of 4mohm and an electrode group -- 20mm and the amount of
electrolytic solutions -- the thickness of 3 g/Ah and a separator -- the ionic conductivity of 0.2mm and the
electrolytic solution -- 500 mS/cm -- carrying out -- a heat sinking plane product -- 50-120cm2 The
measurement result of the temperature rise of the cell at the time of charge and discharge at the time of
making it change and a cycle life is shown. In addition, the heat sinking plane product was adjusted to a
predetermined area by sticking a heat insulation sheet on a battery case outside surface.

[A table 5]

A table 3								
電池内部抵抗 [mΩ]	極群厚み [mm]	放熱面積 [cm²]	液量 [g/Ah]	tパ厚み [mm]	イオン伝導度 [mS/cm]	利用率 [%]	温度上昇 [℃]	寿命サイクル
	50				87	13	300	
	l .	60	3	'	500 96 95	93	7	900
4	20	80		0.2		95	5	1000
		100				95	5	1000
		120				95	4	1000

[0042] it is shown above (table 3) -- as -- a heat sinking plane product -- 60cm2, 80cm2, 100cm2, and 120cm2 it is -- the time -- the time of charge and discharge -- 7 degrees C, 5 degrees C, 5 degrees C, 4 degrees C, and the cycle lives of the temperature rise of a cell were 900, 1000, 1000, and 1000, respectively. on the other hand -- a heat sinking plane product -- 50cm2 it is -- the time -- the time of charge and discharge -- as for a temperature rise, a cell becomes high with 13 degrees C, and the cycle life of a cell is short with 300. Since heat release becomes small when a heat sinking plane product is small, it is thought that the temperature rise of a cell becomes large. And if the temperature rise of a cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and it will be thought that the cycle life of a cell becomes short. [0043] Therefore, a heat sinking plane product is 2 60cm. It is desirable that it is above. (4) Thickness of 4mohm and an electrode group is made to 20mm, ionic conductivity of 0.2mm and the electrolytic solution is made [the internal resistance of a cell / a heat sinking plane product] into 500 mS/cm for the thickness of 2 and a separator 100cm, and the measurement result of the temperature rise of the cell at the time of charge and discharge when changing the amount of electrolytic solutions with 1.2 - 8.1 g/Ah and a cycle life is shown in the related following (table 6) of the amount of electrolytic solutions, and a temperature rise and a cycle life.

[0044]

[A table 6]

電池内部抵抗 [mΩ]	極群厚み [mm]	放熱面積 [cm²]	液量 [g/Ah]	tパ厚み [mm]	イオン伝導度 [mS/cm]	利用率 [%]	温度上昇 [℃]	寿命サイクル
			1.2	0.2		82	12	400
			1.3		500	93	7	900
1 4	20	100	3			95	5	1000
, ,	20	100	6			95	5	1000
			8.1			95	4	900
					95	4	500	

[0045] As shown above (table 6), when the amounts of electrolytic solutions were 1.3 g/Ah, 3 g/Ah, 6 g/Ah, and 8 g/Ah, 7 degrees C, 5 degrees C, 5 degrees C, 4 degrees C, and the cycle lives of the temperature rise of the cell at the time of charge and discharge were 900, 1000, 1000, and 900, respectively. On the other hand, when the amount of electrolytic solutions is 1.2 g/Ah, the temperature rise of the cell at the time of charge and discharge becomes high with 12 degrees C, and the cycle life of a cell is short with 400. Moreover, when the amount of electrolytic solutions is 8.1 g/Ah, although the temperature rise of the cell at the time of charge and discharge is 4 degrees C, the cycle life of a cell is short with 500. Since the amount of accumulation becomes small when there are few amounts of electrolytic solutions, it is thought that the calorific value of the cell at the time of charge and discharge, as a result the temperature rise of a cell become large. And if the temperature rise of a cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and it will be thought that the cycle life of a cell becomes short. Moreover, since the amount of accumulation becomes large when there are many amounts of electrolytic solutions, the calorific value of the cell at the time of charge and discharge, as a result the temperature rise of a cell become small, but it is one of these, and since charging efficiency falls and the internal pressure of a cell rises, it is thought that the cycle life of a cell becomes short.

[0046] Therefore, as for the amount of electrolytic solutions, it is desirable that it is 1.3 - 8.0 g/Ah. [0047] When the result of (1) - (4) is summarized above, for the thickness of less than [5mohm] and an electrode group, 30mm or less and a heat sinking plane product are [internal resistance] 2 60cm. When the amount of electrolytic solutions is 1.3 - 8.0 g/Ah above, the balance of calorific value, heat release, and the amount of accumulation is optimized, and the square shape nickel and the hydrogen battery which has the cell property which was excellent in high power also in the repeat of charge and discharge or the prolonged activity are realized.

(5) Thickness of 4mohm and an electrode group is made to 20mm, ionic conductivity of 3 g/Ah and the electrolytic solution is made [the internal resistance of a cell / a heat sinking plane product] into 500 mS/cm for 2 and the amount of electrolytic solutions 100cm, and the measurement result of the temperature rise of the cell at the time of charge and discharge when changing the thickness of a separator with 0.08-0.32mm and a cycle life is shown in the related following (table 7) of the thickness of a separator, and a temperature rise and a cycle life.

[A table 7]

電池内部抵抗 [mΩ]	極群厚み [mm]	放熱面積 [cm ²]	液量 [g/Ah]	tパ厚み [mm]	イオン伝導度 [mS/cm]	利用率 [%]	温度上昇	寿命サイクル
				0.08		95	7	400
,			0.1		95	7	900	
			3	0.15	500	95	4	1000
4	20	100		0.2		96	4	1000
			ĺ	0.25		95	4	1000
			0.3		93	7	900	
				0.32		85	12	500

[0049] As shown above (table 7), when the thickness of a separator was 0.1mm, 0.15mm, 0.2mm, 0.25mm, and 0.3mm, 7 degrees C, 4 degrees C, 4 degrees C, 4 degrees C, 7 degrees C, and the cycle lives of the temperature rise of the cell at the time of charge and discharge were 900, 1000, 1000, 1000, and 900,

respectively. On the other hand, when the thickness of a separator is 0.08mm, although the temperature rise of the cell at the time of charge and discharge is 7 degrees C, the cycle life of a cell is short with 400. Moreover, when the thickness of a separator is 0.32mm, the temperature rise of the cell at the time of charge and discharge becomes high with 12 degrees C, and the cycle life of a cell is short with 500. Since there are few amounts of electrolytic solutions which a separator absorbs, the amount of electrolytic solutions in an electrode increases as a result and the amount of accumulation becomes large when the thickness of a separator is small, the calorific value of the cell at the time of charge and discharge, as a result the temperature rise of a cell become small, but it is one of these, and since charging efficiency falls and the internal pressure of a cell rises, it is thought that the cycle life of a cell becomes short. Moreover, since there are many amounts of electrolytic solutions which a separator absorbs, the amount of electrolytic solutions in an electrode decreases as a result and reaction resistance of an electrode becomes large when the thickness of a separator is large, it is thought that the calorific value of the cell at the time of charge and discharge, as a result the temperature rise of a cell become large. And if the temperature rise of a cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and it will be thought that the cycle life of a cell becomes short. [0050] Therefore, as for the thickness of a separator, it is desirable that it is 0.1-0.3mm.

(6) Thickness of 4mohm and an electrode group is set to 20mm, thickness of 3 g/Ah and a separator is set [the internal resistance of a cell / a heat sinking plane product] to 0.2mm for 2 and the amount of electrolytic solutions 100cm, and the measurement result of the temperature rise of the cell at the time of charge and discharge when changing the ionic conductivity of the electrolytic solution with 370 - 650 mS/cm and a cycle life is shown in the related following (table 8) of the ionic conductivity of the electrolytic solution, and a temperature rise and a cycle life. In addition, the ionic conductivity of the electrolytic solution was adjusted to the predetermined value by changing the specific gravity of the electrolytic solution.

[0051]

[A table 8]

電池内部抵抗 [mΩ]	極群厚み [mm]	放熱面積 [cm ²]	液量 [g/Ah]	い°厚み [mm]	イオン伝導度 [mS/cm]	利用率 [%]	温度上昇	寿命サイクル
				370	75	12	400	
					400	96	7	900
4	4 20	100	3	0.2	500	98	5	1000
					600	96	7	900
					650	88	13	400

[0052] As shown above (table 8), when the ionic conductivity of the electrolytic solution was 400 mS/cm, 500 mS/cm, and 600 mS/cm, 7 degrees C, 5 degrees C, 7 degrees C, and the cycle lives of the temperature rise of the cell at the time of charge and discharge were 900, 1000, and 900, respectively. On the other hand, when the ionic conductivity of the electrolytic solution is 370 mS/cm, the temperature rise of the cell at the time of charge and discharge becomes high with 12 degrees C, and the cycle life of a cell is short with 400. Moreover, when the ionic conductivity of the electrolytic solution is 650 mS/cm, the temperature rise of the cell at the time of charge and discharge becomes high with 13 degrees C, and the cycle life of a cell is short with 400, case the ionic conductivity of the electrolytic solution is small -- electrolytic-solution specific gravity -- small -- volume (cc) -- since it becomes excessive and reaction resistance of an electrode becomes large, it is thought that the calorific value of the cell at the time of charge and discharge, as a result the temperature rise of a cell become large. Moreover, when the ionic conductivity of the electrolytic solution is large, electrolytic-solution specific gravity is large, volume (cc) decreases, even if heat dissipation nature is the same, since the amount of accumulation is governed with the electrolytic solution with the largest heat capacity, the amount of accumulation also decreases, and it is thought that the temperature rise of a cell becomes large. And if the temperature rise of a cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and it will be thought that the cycle life of a cell becomes short.

[0053] Therefore, as for the ionic conductivity of the electrolytic solution, it is desirable that it is 400 - 600 mS/cm.

(7) To the related following (table 9) of the thermal conductivity of a battery case ingredient, and a temperature rise and a cycle life Set it as the desirable value which explained the internal resistance of a cell. the thickness of an electrode group, a heat sinking plane product, the amount of electrolytic solutions, the thickness of a separator, and the ionic conductivity of the electrolytic solution in above-mentioned (1) - (6), and the thickness of a battery case is set as 1.0mm. The measurement result of the temperature rise of the cell at the time of charge and discharge when changing the thermal conductivity of a battery case ingredient with 0.13 - 0.18 W/m-K and a cycle life is shown. The thermal conductivity of a battery case ingredient is governed by the thermal conductivity of the resin to be used, and is governed by the compounding ratio by polymer alloy resin.

[0054]
[A table 9]

電槽厚み [mm]	熱伝導度 [₩/m・K]	利用率 [%]	温度上昇	寿命サイクル
	0.13	82	14	400
1.0	0.14	88	11	500
1.0	0.15	93	7	900
L	0.18	95	5	1000

[0055] As shown above (table 9), when the thermal conductivity of a battery case ingredient was 0.15 W/m-K and 0.18 W/m-K, 7 degrees C, 5 degrees C, and the cycle lives of the temperature rise of the cell at the time of charge and discharge were 900 and 1000, respectively. On the other hand, when the thermal conductivity of a battery case ingredient is 0.13 W/m-K and 0.14 W/m-K, the temperature rise of the cell at the time of charge and discharge is as high as 14 degrees C and 11 degrees C respectively, and the cycle life of a cell is short with 400,500, respectively. When the thermal conductivity of a battery case ingredient is small, the temperature rise of a cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. is promoted, and it is thought that the cycle life of a cell also becomes short.

(8) To the related following (table 10) of the thickness of a battery case, and a temperature rise and a cycle life Set it as the desirable value which explained the internal resistance of a cell, the thickness of an electrode group, a heat sinking plane product, the amount of electrolytic solutions, the thickness of a separator, and the ionic conductivity of the electrolytic solution in above-mentioned (1) - (6), and the thermal conductivity of a battery case ingredient is set as 0.2 W/m-K. The measurement result of the temperature rise of the cell at the time of charge and discharge when changing the thickness of a battery case with 0.4-1.6mm and a cycle life is shown.

[A table 10]

11 tubic 10]									
電槽厚み [mm]	熱伝導度 [₩/m·K]	利用率 [%]	温度上昇 [℃]	寿命サイクル					
0.4		96	4	400					
0.5		96	4	900					
0.8		96	5	1000					
1.0	0.2	96	5	1000					
1.2		95	5	1000					
1.5		93	7	900					
1.6		86	12	500					

[0057] As shown above (table 10), when the thickness of a battery case was 0.5mm, 0.8mm, 1.0mm, 1.2mm, and 1.5mm, 4 degrees C, 5 degrees C, 5 degrees C, 5 degrees C, 7 degrees C, and the cycle lives of the temperature rise of the cell at the time of charge and discharge were 900, 1000, 1000, 1000, and 900, respectively. On the other hand, when the thickness of a battery case is 0.4mm, although the temperature rise of the cell at the time of charge and discharge is 4 degrees C, the cycle life of a cell is short with 400. Moreover, when the thickness of a battery case is 1.6mm, the temperature rise of the cell at the time of charge and discharge becomes high with 12 degrees C, and the cycle life of a cell is short with 500. Since heat dissipation nature becomes good when the thickness of a battery case is small, the calorific value of the cell at the time of charge and discharge, as a result the temperature rise of a cell become small, but since the

a result the temperature rise of a cell become large. And if the temperature rise of a cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and it will be thought that the cycle life of a cell becomes short. [0058] Therefore, it is desirable for the thermal conductivity of a battery case ingredient to be 0.15 or more W/m-K, and for the thickness of a battery case to be 0.5-1.5mm from the result of (7) and (8). [0059] As a battery case ingredient which fulfills this condition, resin ingredients, such as a polymer alloy which makes polyphenylene ether resin and polyolefin resin a subject, can be mentioned, for example. [0060] Next, 3-40 square shape nickel and hydrogen batteries equipped with the above configurations (cell) were electrically connected to the serial, and the unit cell was produced. [0061] The perspective view of the one battery case when connecting electrically six square shape nickel and hydrogen batteries (cell) to a serial, and constituting a unit cell in drawing 2, is shown. As shown in drawing 2, the electrode group (not shown) is really which shared the short side face as a septum 7, and fabricated in one the six rectangular parallelepiped-like battery case 6 which has the short side face where width of face is narrow, and the long side face where width of face is wide contained in each battery case 6 of a battery case 8. That is, adjoining cells are electrically connected to the serial in the upper part of a septum 7. The pole terminal (not shown) of the above-mentioned unit cell is prepared in the upper part of the end wall 9 of ends, respectively. The up release side of a battery case 8 is really blockaded in one with up covering (not shown). Moreover, in the long side face of a battery case 8, the rib-like projection 10 for forming the path which can pass a cooling medium is really formed between adjoining unit cells. (9) In the unit cell which connected and constituted electrically six square shape nickel and hydrogen batteries (cell) in the serial at the related following (table 11) of the thermal conductivity per unit cell, and a temperature rise and a cycle life The internal resistance of each cell, the thickness of an electrode group, a heat sinking plane product, the amount of electrolytic solutions, the thickness of a separator, It is set as the desirable value which explained the ionic conductivity of the electrolytic solution in above-mentioned (1) -(6), and the measurement result of the temperature rise of the unit cell at the time of charge and discharge when changing the thermal conductivity per unit cell with 0.2 - 0.4 W/m-K and a cycle life is shown. In addition, the thermal conductivity per unit cell was adjusted to the predetermined value by changing the compounding ratio of a battery case resin ingredient, and the thickness of a battery case. [0062]

thickness of a battery case runs short to cell internal pressure, a battery case deforms and it is thought that the cycle life of a cell becomes short. Moreover, since heat dissipation nature worsens when the thickness of a battery case is large, it is thought that the calorific value of the cell at the time of charge and discharge, as

A table II]	A table 1.	Ιj
-------------	------------	----

熱伝導度 [W/m・K]	利用率 [%]	温度上昇	寿命サイクル
0.2	82	13	400
0.3	95	6	900
0.4	96	5	1000

[0063] As shown above (table 11), when the thermal conductivity per unit cell was 0.3 W/m-K and 0.4 W/m-K, 6 degrees C, 5 degrees C, and the cycle lives of the temperature rise of the unit cell at the time of charge and discharge were 900 and 1000, respectively. On the other hand, when the thermal conductivity per unit cell is 0.2 W/m-K, the temperature rise of the unit cell at the time of charge and discharge is as high as 13 degrees C, and the cycle life of a unit cell is short with 400. Since heat dissipation nature worsens when the thermal conductivity per unit cell is small, it is thought that the calorific value of the unit cell at the time of charge and discharge, as a result the temperature rise of a unit cell become large. And if the temperature rise of a unit cell becomes large, disassembly of the decline in charging efficiency, the separator arranged in a cell, the binder in an electrode, etc., etc. will be promoted, and it will be thought that the cycle life of a unit cell becomes short.

[0064] Therefore, as for the thermal conductivity per unit cell, it is desirable that they are 0.3 or more W/m-K.

[0065] Thus, by constituting a unit cell using the square shape nickel and the hydrogen battery (cell) set as the desirable value explained in above-mentioned (1) - (9), and setting the thermal conductivity per unit cell as 0.3 or more W/m-K, a temperature rise can be controlled and the unit cell which has the cell property which was excellent in high power also in the repeat of charge and discharge or the prolonged activity can

be realized.

[0066] Next, two or more unit cells equipped with the above configurations were electrically connected to a serial and/or juxtaposition, and the group cell was produced. The path which can pass a cooling medium is prepared between adjoining unit cells. Also in this case, by constituting a group cell using the unit cell set as the desirable value explained in (9), the temperature rise was able to be controlled and the group cell which has the cell property which was excellent in high power also in the repeat of charge and discharge or the prolonged activity was able to be realized.

[Effect of the Invention] As explained above, according to this invention, the balance of calorific value, heat release, and the amount of accumulation can be optimized, and the square shape alkaline battery which has the cell property which was excellent in high power also in the repeat of charge and discharge or the prolonged activity can be realized. Moreover, by using the square shape alkaline battery of this invention, a temperature rise can be controlled and the unit cell and group cell which have the cell property which was excellent in high power also in the repeat of charge and discharge or the prolonged activity can also be realized.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Translation done.]