Отчёт по лабораторной работе №6

Дисциплина: Архитектура компьютера

Машков Илья Евгеньевич

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Символьные и численные данные в NASM	6 10
4	Ответы на вопросы по программе 4.1 Выполнение заданий для самостоятельной работы	15
5	Список литературы	18

Список иллюстраций

5.1	директория набов	•	•	•	•	•	•	•	0
3.2	Создание рабочего файла								6
3.3	Код программы								7
3.4	Результат выполнения программы								8
3.5	Результат второго выполнения программы								8
3.6	Создание файла lab6-2.asm								8
3.7	Код программы								9
3.8	Результат выполнения программы								9
3.9	Результат второго выполнения программы								10
3.10	Результат третьего выполнения программы								10
	Создание файла lab6-3.asm								10
	Код программы								11
3.13	Результат выполнения программы								11
3.14	Изменённый код программы								12
	Результат второго выполнения программы								12
3.16	Создание файла variant.asm								13
	Результат второго выполнения программы								13
	Код программы.								14
4.1	Строки кода, выводящие сообщение о моём варианте.								15
4.2	Строки кода, вычисляющие вариант								15
4.3	Строки кода, выводящие результат вычислений								16
4.4	Создание файла lab6-4.asm								16
4.5	Получение и запуск исполняемого файла								17
4.6	Результаты выполненй программы								17

1 Цель работы

Цель данной лабораторной работы - освоение арифметческих инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Символьные и численные данные в NASM

Ещё в прошлой лабораторной работе я по ошибке создал папку **lab06** (рис. [3.1]).

```
temashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc$ ls CHANGELOG.md lab04 labs Makefile README.en.md template config lab05 lamkdir prepare README.git-flow.md COURSE lab06 LICENSE presentation README.md iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc$
```

Рис. 3.1: Директория lab06.

Далее я перехожу в эту директорию и создаю файл **lab6-1.asm** с помощью команды **'touch'** (Рис. [3.2]).

```
iemashkov@iemashkov:~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ touch lab6-1.asm iemashkov@iemashkov:~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ls lab6-1.asm iemashkov@iemashkov:~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ [
```

Рис. 3.2: Создание рабочего файла.

Затем я ввожу код в .asm файл (Рис. [3.3]).

```
%include 'in out.asm'
SECTION .bss
buf1: RESB 80
 SECTION .text
 GLOBAL start
 _start:
mov eax, '6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.3: Код программы.

Создаю исполняемый файл и запускаю программу (Рис. [3.4]). В выводе программы я получаю символ 'j', который по системе ASCII соответствует сумме двоичных кодов символов 6 и 4.

```
temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ nasm -f elf lab6-1.asm temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ld -m elf_i386 lab6-1 lab6-1.o ld: невозможно найти lab6-1: her такого файла или каталога temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ls in_out.asm lab6-1 lab6-1.asm la
```

Рис. 3.4: Результат выполнения программы.

Теперь я убираю кавычки у символов **6** и **4**, создаю исполняемый файл и запускаю программу (Рис. [3.5]). В выводе я получаю неотображающийся символ с кодом **10** - это **символ перевода строки**.

```
lemashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ nasm -f elf lab6-1.asm temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ld -m elf_l386 -o lab6-1 lab6-1.o temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ./lab6-1 lab6-1.o temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ./lab6-1
```

Рис. 3.5: Результат второго выполнения программы.

Создаю файл **lab6-2.asm** (Рис. [3.7]).

```
iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ touch lab6-2.asm iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ls in_out.asm lab6-1 lab6-1.asm lab6-2.asm
```

Рис. 3.6: Создание файла lab6-2.asm.

Ввожу код программы (Рис. [??]).

```
1 %include 'in_out.asm'
2 SECTION .bss
3 buf1: RESB 80
4 SECTION .text
5 GLOBAL _start
6 _start:
7
8 mov eax,'6'
9 mov ebx,'4'
10 add eax,ebx
1 call iprintLF
12 call quit
```

Рис. 3.7: Код программы.

Создаю исполняемый файл и запускаю программу (Рис. [3.9]). В выводе получаю число **106**, т.к. программа позволяет вывести число, а не символ, хоть и по-прежнему происходит сложение кодов символов **6** и **4**.

```
iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ nasm -f elf lab6-2.asm iemashkov@iemashkovz-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ./lab6-2 lab6-2 lab6-2.o iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ []
```

Рис. 3.8: Результат выполнения программы.

Теперь убираю кавычки и заново создаю исполняемый файл и запускаю программу и в выводе получаю **10**, т.к. в этом случае программа складывает сами

числа, а не их коды (Рис. [??]).

```
temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ nasm -f elf lab6-2.asm temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ld -m elf_i386 -o lab6-2 lab6-2.o temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ./lab6-2 lab6-2 lo temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ./lab6-2
```

Рис. 3.9: Результат второго выполнения программы.

Затем меняю параметр 'iprintLF' на 'iprint', создаю исполняемый файл и запускаю программу (Рис. [3.10]). В выводе получаю то же число, но без символа переноса строки.

```
iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ nasm -f elf lab6-2.asm iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ id -m elf_i386 -o lab6-2 lab6-2.o iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ./lab6-2 lab6-2 lab6-2.o iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ .
```

Рис. 3.10: Результат третьего выполнения программы.

3.2 Выполнение арифметических операций в NASM

Создаю файл **lab6-3.asm** (при создании я забыл дать ему расширение .asm, но потом переименовал его) (Рис. [3.11]).

```
10iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab0«$ touch lab6-3 iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab0«$ ls in_out.asm lab6-1 lab6-1.asm lab6-1.o lab6-2 lab6-2.sm lab6-2.o lab6-3 iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab0«$ □
```

Рис. 3.11: Создание файла lab6-3.asm.

Теперь ввожу в него код программы, который будет вычислять выражение f(x) = (5*2 + 3)/3 (Рис. [3.12]).

```
SECTION .data
 3 div: DB 'Результат: ',0
 5 SECTION .text
 6 GLOBAL start
   _start:
  ; ---- Вычисление выражения
11 mov eax,5 ; EAX=5
  mov ebx,2 ; EBX=2
  mul ebx ; EAX=EAX*EBX
4 add eax,3 ; EAX=EAX+3
5 хог edx,edx ; обнуляем EDX для корректной работы div
  div ebx ; EAX=EAX/3, EDX=остаток от деления
 8 mov edi,eax ; запись результата вычисления в 'edi'
🛈 ; ---- Вывод результата на экран
  mov eax,div ; вызов подпрограммы печати
 3 call sprint ; сообщения 'Результат: '
4 mov eax,edi ; вызов подпрограммы печати значения
 5 call iprintLF ; из 'edi' в виде символов
  mov eax, rem ; вызов подпрограммы печати
  call sprint ; сообщения 'Остаток от деления: '
 8 mov eax,edx ; вызов подпрограммы печати значения
 9 call iprintLF ; из 'edx' (остаток) в виде символов
0 call quit ; вызов подпрограммы завершения
```

Рис. 3.12: Код программы.

Далее создаю исполняемый файл и запускаю программу (Рис. [3.13]).

```
temashkov@lemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab00% nasm -f elf lab6-3.asm temashkov@lemashkov!-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab00% ld -n elf_1386 -o lab6-3 lab6-3.o temashkov@lemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab00% ./lab6-3 Peayльтат: 4
Остаток от деления: 1
temashkov@lemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab00% [
```

Рис. 3.13: Результат выполнения программы.

Изменяю код программы так, чтобы она вычисляла выражение f(x) = (4*6 + 2)/5 (Рис. [3.14]).

```
SECTION .data
  div: DB 'Результат: ',0
 5 SECTION .text
6 GLOBAL start
   _start:
  ; ---- Вычисление выражения
 1 mov eax,4; EAX=4
  mov ebx,6 ; EBX=6
  mul ebx ; EAX=EAX*EBX
4 add eax,2 ; EAX=EAX+2
5 хог edx,edx ; обнуляем EDX для корректной работы div
17 div ebx ; EAX=EAX/5, EDX=остаток от деления
8 mov edi,eax ; запись результата вычисления в 'edi'
🛛 ; ---- Вывод результата на экран
  mov eax,div ; вызов подпрограммы печати
 3 call sprint ; сообщения 'Результат: '
4 mov eax,edi ; вызов подпрограммы печати значения
 5 call iprintLF ; из 'edi' в виде символов
  mov eax, rem ; вызов подпрограммы печати
  call sprint ; сообщения 'Остаток от деления: '
8 mov eax,edx ; вызов подпрограммы печати значения
 9 call iprintLF ; из 'edx' (остаток) в виде символов
0 call quit ; вызов подпрограммы завершения
```

Рис. 3.14: Изменённый код программы.

Создаю исполняемый файл и запускаю программу (Рис. [3.15]).

```
lemashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab00$ nasm -f elf lab6-3.asm temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab00$ ld -m elf_i386 -o lab6-3 lab6-3.o temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab00$ ./lab6-3 Pe3ynbrat: 5 Остаток от деления: 1 temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab00$
```

Рис. 3.15: Результат второго выполнения программы.

Создаю файл variant.asm с помощью команды 'touch' (Рис. [3.16]).

```
iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ touch variant.asm iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ ls in_out.asm lab6-1 lab6-1.asm lab6-2 lab6-2.asm lab6-2.o lab6-3 lab6-3.asm lab6-3
```

Рис. 3.16: Создание файла variant.asm.

Теперь ввожу в него код программы, которая по номеру студенческого должна мне выдать номер моего варианта (Рис. [3.17]).

```
SECTION .data
msg: DB 'Введите № студенческого билета: ',0
rem: DB 'Ваш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
xor edx,edx
mov ebx,20
div ebx
inc edx
mov eax, rem
call sprint
mov eax,edx
call iprintLF
call quit
```

Рис. 3.17: Результат второго выполнения программы.

Создаю исполняемый файл и запускаю его (Рис. [4.1]). Мой вариант - 5.

```
temashkov@temashkov:-/work/study/2023-2024/Архитектура компыятера/arch-pc/lab86$ nasm. rf elf variant.asm temashkov@temashkov:-/work/study/2023-2024/Архитектура компыятера/arch-pc/lab86$ ld -m elf_i386 -o variant variant.o temashkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab86$ ./variant Beognite W студенческого билета:
1132231984
Ваш вариант: 5
семаskkov@temashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab86$ []
```

Рис. 3.18: Код программы.

4 Ответы на вопросы по программе

1. За вывод сообщения "Ваш вариант:" отвечают эти строки кода (Рис. [??]):

Рис. 4.1: Строки кода, выводящие сообщение о моём варианте.

- 2. 'mov ecx, x' используется для того, чтобы внести адрес вводимой строки 'x' в регистр 'ecx'. 'mov edx, 80' запись в регистр 'edx' длинны вводимой строки. 'call sread' вызов подпрограммы из внешнего файла, которая обеспечивает ввод сообщения с клавиатуры.
- 3. **'call atoi'** подпрограмма из внешнего файла, преобразующая код символа в целое число и записывающая его в регистр **'eax'**.
- 4. За вычисление варианта отвечают строки (Рис. [4.2]):

```
хог edx,edx ; обнуление параметра edx для безошибочной работы с делением mov ebx,20 ; ebx = 20 div ebx ; eax = eax/20, edx - остаток от деления inc edx ; edx = edx + 1
```

Рис. 4.2: Строки кода, вычисляющие вариант.

- 5. При выполнении инструкции 'div ebx' остаток от деления записывается в регистр 'edx'.
- 6. Инструкция 'inc edx' увеличивает значение регистра 'edx' на 1
- 7. За вывод на экран результатов вычислений отвечают строки (Рис. [4.3]):

Рис. 4.3: Строки кода, выводящие результат вычислений.

4.1 Выполнение заданий для самостоятельной работы

1. Создаю файл **lab6-4.asm** (Рис. [4.4]).

```
iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ touch lab6-4.asm iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$ ls in_out.asm lab6-1.asm lab6-2 lab6-2.o lab6-3.asm lab6-4.asm variant.asm lab6-1.o lab6-2.asm lab6-3.o variant variant.o iemashkov@iemashkov:-/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06$
```

Рис. 4.4: Создание файла lab6-4.asm.

Ввожу код программы, которая будет вычислять выражение 'f(x) = (9x - 8)/8'. Именно это выражение стоит под номером 5 в таблице (Рис. [4.5]).

```
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data
msg: DB 'Beeдите значение x: ', 0
rem: DB 'Peзультат: ',0
SECTION .bss
x: RESB 80 ; Переменная, значение которой запрашивается у пользователя
SECTION .text
GLOBAL _start
_start:

; ---- Вычисление выражения (9x - 8)/8
mov eax,msg ;
call sprint;
mov ecx, x;
mov edx, 80 ;
call sread;
mov eax,x ; вызов подпрограммы преобразования
call atoi;
mov ebx,9 ; EBX=9
mul ebx ; EAX=EAX*EBX
sub eax,8 ; EAX=EAX-8
xor edx,edx;
mov ebx,8 ; EAX=EAX-8
xor edx,edx;
mov ebx,8 ; EAX=EAX/8
mov edi,eax ; запись результата вычисления в 'edi'

; ---- Вывод результата на экран
mov eax,rem ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF ; из 'edi' в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 4.5: Получение и запуск исполняемого файла.

Создаю исполняемый файл и запускаю его со значением '8', а потом и со значением '64' (Рис. [4.6]).

```
iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ nasm -f elf lab6-4.asm iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ ld -m elf_i386 -o lab6-4 lab6-4.o iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ ./lab6-4 lab6-4.o iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ ./lab6-4 lab6-4.o iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ ./lab6-4 lab6-4 lab6-4.o iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ ./lab6-4 lab6-4 lab6-4.o iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура компьютера/arch-pc/lab06$ ./lab6-4 lab6-4.o iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура komnьютера/arch-pc/lab06$ ./lab6-4 lab6-4.o iemashkov@iemashkov:-/work/study/2023-2024/Apxитектура komnьютера/arch-pc/lab06$ ./lab6-4 lab6-4.o iemashkov@iemashkov@iemashkov@iemashkov@iemashkov@iemashkov@iemashkov@iemashkov@iemashkov@iemashkov@iemashkov@iemashkov@iemashkov
```

Рис. 4.6: Результаты выполненй программы.

Эти результаты я проверил, а это значит, что программа отработала верно. # Выводы

При выполнении данной лабораторной работы я освоил арифметические инструкции языка ассемблера NASM.

5 Список литературы

Архитектура ЭВМ Таблица кодов ASCII