- 1. a) This language is decidable. If l is greater than the pumping length p, then we check to see if $\langle M \rangle \in ALL_{DFA}$. If so, then $\langle M \rangle \in LorBIGGER_{DFA}$. This is because all strings larger than the pumping length will eventually loop down to strings within the pumping length. We know ALL_{DFA} is decidable.
 - Now, if $0 \le l \le p$ then we check to see if all strings from length l to p are in the language of M. If they are then we make sure that there are no transitions from a state further than l transitions away from the start state to a state that is within l steps from the start state that has a path to a reject state. If so, then $\langle M \rangle \in \text{LorBIGGER}_{DFA}$.
 - d) If a Turing Machine rejects a finite number of inputs, then it belongs to BIG-ENUF $_{TM}$ as l will equal one more than the length of the largest rejected string. However, if a Turing Machine rejects infinitely many inputs then no such l exists. Now, Consider the computable function

$$f(w) = w$$
 if w is not a valid TM description
= M' if $w = \langle M \rangle$

where M' is a machine identical to M except its reject state leads to a sink state where all future inputs with the same prefix are rejected.

This function shows that $ALL_{TM} \leq_m BIG\text{-}ENUF_{TM}$ because if M accepts all input, then M' will behave identically to M and accept all inputs. This leads to l=0 as all strings over $\Sigma_{M'}^*$ will be accepted, so $\langle M' \rangle \in BIG\text{-}ENUF_{TM}$. On the other hand, if M rejects some input, M' will reject all inputs with that as a prefix, making the number of rejected inputs infinite so $\langle M' \rangle \notin BIG\text{-}ENUF_{TM}$.

At the same time, f shows that $\overline{ALL_{TM}} \leq_m \overline{\mathrm{BIG}\text{-}\mathrm{ENUF}_{TM}}$

We know that neither ALL_{TM} nor $\overline{ALL_{TM}}$ is recognizable. Therefore, we can conclude that neither BIG-ENUF_{TM} nor $\overline{\text{BIG-ENUF}_{TM}}$ is recognizable.

Final 1

2. a) Assume that P=NP for the sake of contradiction. We know that $L\in P$ given that $L\in NP$. This means that an instance of L can be verified in polynomial time and that there is some polynomial-time algorithm for solving it. Since L is not NP-complete then we know an NP-complete problem cannot be reduced to L. This means that an instance of L cannot be solved in polynomial time to solve an instance of any NP-complete problem. However, this violates our statement that there is some polynomial-time algorithm for solving L, so our assumption that P=NP is incorrect. Therefore, if there exists an $L\in NP$ that is not NP-complete then it must be the case that $P\neq NP$.

Final 2