

以太坊基础

以太坊中的基础概念

讲师: 康烁

本节目标

- 1. 理解以太坊虚拟机
- 2. 理解以太坊的账号和交易

以太坊虚拟机

以太坊的帐户

- 1. 外部所有者帐户
- 2. 智能合约帐户

以太坊的交易

- 1. 交易是以太坊里的基本操作
- 以太坊的交易有两个基本类型,
 一种是汇款交易,
 一种是智能合约调用交易

	Transaction
nonce	How many times the sender has sent a transaction
to	Address of account this money is going to
value	Amount of ether to send to the target address
gasPrice	Amount of ether the sender is willing to pay per unit gas to get this transaction processed
startGas/gasLimit	Units of gas that this transaction can consume
v	Cryptographic pieces of data that can be used to generate the senders account address. Generated from the sender's private key.
r	
s	

以太坊相对于比特币的几处改动

- 1. 挖矿: Ethash/Keccak 哈希算法, 防止 ASIC 加速
- 2. 更短的出块时间 (14-15秒)
- 3. 对叔块 (Uncle/Ommer block) 予以奖励
- 4. 基于账户的模型 (EOA 账户和合约账户)
- 5. 智能合约和 EVM
- 6. Gas、Gas Price、以太市和经济系统
- 7. 社区治理

以太坊要实现一个全球计算机,除了要有统一的 CPU 之外,各节点还需要有一致的内存和硬盘数据状态。我们将内存和硬盘数据状态视为一体,在以太坊中被统称为状态("state")

- 在合约执行当中,可以发布事件。其他合约可以检测事件,从 而可以作出相应的动作
 - 举例: 如果有一个智能合约 专门负责收款,另一个智能 合约负责分钱,那么当收款 的智能合约收到款的时候, 它可以发送一个事件,说 "已经收到款了",而负责 分钱的智能合约监听到这个 事件之后,就会执行分钱的 操作,按照事先的约定,把 款项分给相应的 EOA

消息

一个合约可以向另一个合约发送消息 (messages),消息是 EVM 环境内的虚 拟对象,不会被序列化或者保存起来。消 息其实跟交易是非常相似的,只不过交易 是由 EOA 发起的,而消息则是由一个合 约发给另一个合约的 msg.sender: 发起交易的账户

msg.receiver: 接受交易的账户

msg.value: 随着该消息发送的汇款的数量,以

wei 为单位 (1 wei = 10E-18 ETH)

msg.data: 一个可选字段,其中包括输入数据。

汇款交易没有输入数据,所以这个字段为空。

msg.startgas: 限定了由这个 msg 触发的运算所

能消耗的 Gas 上限

以太坊交易处理的完整过程

- 1. 新的交易提交给一个节点,该节点首先验证交易是否合法,如不合法则拒绝
- 2. 合法交易向全网广播, 接收到的矿工节点首先将交易放入交易池中候选
- 3. 矿工节点选择本回合打包的交易,并验证交易是否合法
 - 检查交易签名
 - 检查交易发送者合法
 - · 检查交易的 nonce 值与交易发送者账户中的 nonce 值是否一致
 - · 确认本交易的 gas limit 大于交易静态 gas 消耗
 - 如果是支付操作,确认汇款方账户余额充足
 - · 确认本交易消耗的 gas 不会突破整个区块的 gas limit
- 4. 执行每一个智能合约, 实施状态变迁
- 5. 矿工节点检查六代之内的叔块 (uncles/ommers)
- 6. 将叔块矿工应得的奖励写入下一个区块(Applying)
- 7. 寻找 Nonce 值,一旦找到立刻向全网广播新区块;若没有找到 Nonce 值,而是收到了别的节点获胜的消息,那么就迅速对比获胜节点发来的区块、交易池和自己正在打包的交易,剔除掉已经被别人打包的交易,选取新的一组交易,马上开始下一轮挖矿、打包的竞赛。

以太坊的最大问题: 性能

交易速度:

比特币:4TPS

以太坊: 13TPS

VISA: 2000TPS

延迟:

比特币30分钟,

以太坊一分钟左右;

加密猫阻塞以太坊

https://qz.com/1145833/cryptokitties-is-causingethereum-network-congestion

https://etherscan.io/chart/tx

总结

- 1. 以太坊的虚拟机
- 2. 以太坊的交易和事件

布置作业

- 必做内容:
- 理解以太坊的账号和交易
- 理解以太坊的事件

