RPBS Ressource Parisienne en Bioinformatique Structurale.

Web-based 3D molecular viewers: an update

Ressource Parisienne en Bioinformatique Structurale.

Before:

- Only desktop applications could make use of GPU-based hardware acceleration through OpenGL (Chimera, VMD, PyMol etc...)
- Web browsers couldn't display 3D content without plug-ins
- Development of java applets-based viewers:
 - Jmol
 - OpenAstex Viewer

Recently:

- Java install base is shrinking due to heavily publicized java security failures
- User is annoyed with multiple security prompt
- Java applets are no longer supported in Chrome
- Development of JavaScript-based viewers:
 - Jmol → java2script (java to javascript converter) → Jsmol:
 - Same as Jmol but very slow
 - Old fashioned

Ressource Parisienne en Bioinformatique Structurale.

Now:

- Modern browsers can use hardware-accelerated graphics through the WebGL standard :
 - Firefox since version 5 (2010)
 - Chrome since version 9 (2011)
 - Safari since version 5.1 (2011)
 - Opera since version 12 (2012)
 - Internet Explorer since version 11 (2013)
- GLMol is the first Web-based 3D molecule viewer to make use of WebGL
 - Relies on three.js library
 - Still relatively slow
- New WebGL viewers start to appear since 2013 :
 - PV
 - NGL
 - 3DMol.js
 - Molmil
 - Jolecule

Ressource Parisienne en Bloinformatique Structurale.

<u>Usage:</u>

	Citations	Notable sites using it	
NGL	32	RCSB(PDB)	
3Dmol.js	27	CATH	
Molmil	4	PDBj	
PV	N/A	RCSB(PDB) SWISS-MODEL	
Jolecule	N/A	?	

Ressource Parisienne en Bloinformatique Structurale.

Features:

	PV	NGL	3DMol.js	MolMil
File supports	pdb, sdf	pdb, sdf, mol2, pqr, gro, cif, mmtf	pdb, sdf, mol2, xyz	pdb, cif, gro, trr, xtc, cor, mpbf, ccp4,mdl, mol2
Molecular surface				
Sphere, stick, line, trace, cartoon etc				
Clickable interactivity				
Geometric shapes				
Hosted viewer				

Ressource Parisienne en Bioinformatique Structurale.

Performance comparison:

	JMol	JSMol	GLMol	PV	NGL	3Dmol.js
Construct	0.136s	0.874s	6.372s	2.146	1.095s	0.776s
Rotate	0.053s	0.207s	0.673s	0.001s	0.002s	0.002s

Time to load 3M8L (capsid protein) with 12,375 atoms and then rotate it.

Conclusion : 3Dmol.js may be a bit faster at building large molecules. But once loaded, PV, NGL and 3Dmol.js performances are rather similar.

Ressource Parisienne en Bioinformatique Struct

Development activity:

3Dmol.js

Molmil

Ressource Parisienne en Bloinformatique Structurale.

API usage:

	deployment speed	documentation	examples
NGL	++	++	+++
3Dmol.js	+++	++	+
PV	++	+++	-
Molmil	?	+	-

Ressource Parisienne en Bioinformatique Structurale.

PV:

- https://github.com/biasmv/pv
- Developed by Marco Biasini (+ 12 other contributors)
- MIT license
- Very light (156 K)
- Beautiful renderings
- Oriented towards proteins only
- Embedded viewer only (no hosted viewer)
- No longer developped (last commit: Feb 23rd 2017)
- Lacked some features at the beginning like multi-model pdb files management, coloration by b-factor, etc.
- Still lacks surfaces rendering

Ressource Parisienne en Bioinformatique Structurale.

<u>PV:</u>

Installation:

```
git clone https://github.com/biasmv/pv
```

Invocation:

```
<body>
  <div id="viewport"></div>
</body>
<script src='jquery.js'></script>
<script src='pv.min.js'></script>
<script>
  var pv = pv.Viewer(document.getElementById("viewport"), {
   width: 658,
   height: 616,
    antialias: true,
    quality: 'high',
    outline: false
  });
  var structure;
  $(document).ready(function() {
    $.ajax({ url : file, success : function(data) {
      structure = io.pdb(data);
      pv.cartoon("cartoon", structure, { color: color.ssSuccession() });
   }});
  });
</script>
```

Ressource Parisienne en Bioinformatique Structurale.

NGL:

- https://github.com/arose/ngl
- Developped by AS. Rose and PW. Hildebrand (Charité-Universitätsmedizin Berlin, Germany)
- MIT license
- Can read both proteins and RNA/DNA molecules
- Very well documented, gallery with lots of examples
- Very complete
- Embedded viewer as well as hosted viewer :
- http://proteinformatics.charite.de/ngl-tools/ngl/html/ngl.htr
- Maybe not as pretty as PV (more aliasing)

Ressource Parisienne en Bioinformatique Structurale.

NGL:

Installation:

```
git clone https://github.com/arose/ngl
```

Invocation:

Ressource Parisienne en Bioinformatique Structurale.

3Dmol.js:

- https://github.com/3dmol/3Dmol.js
- Developed by N. Rego and D. Koes (University of Pittsburgh, USA)
- BSD licence
- Looks very promising (not tested yet!)
- Hosted viewer at http://3dmol.csb.pitt.edu/viewer.html
- Can be used in 3 ways:

JavaScript API

HTML

```
<div style="height: 600px; width: 600px;"
class='viewer_3Dmoljs' data-pdb='3M8L'
data-backgroundcolor='0xffffff'
data-selectl='chain:A'
data-style1='sphere'
data-select2='chain:B'
data-style2='cartoon:color=spectrum'
data-select3='chain:C'
data-style3='stick'></div>
```

Hosted viewer

http://3dmol.csb.pitt.edu/viewer.html? pdb=3M8L&select=chain:A&style=sphere& select=chain:B&style=cartoon:color~spectrum& select=chain:C&style=stick

Ressource Parisienne en Bioinformatique Structurale.

3Dmol.js:

Installation:

```
Can be invoked directly from http://3Dmol.csb.pitt.edu/build/3Dmol-min.js
Or downloaded:
git clone https://github.com/dkoes/3Dmol.js.git
```

Invocation:

```
<body>
  <div id="viewport"></div>
</body>
<script src="http://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
<script type="text/javascript">
  var viewer = $3Dmol.createViewer($("#div"));
  $3Dmol.download("pdb:1MO8", viewer, {multimodel:true, frames:true}, function() {
     viewer.setStyle({}, {cartoon:{color:"spectrum"}});
     viewer.render();
     viewer.addSurface($3Dmol.SurfaceType.VDW, {
       opacity:0.85,
       voldata: new $3Dmol.VolumeData(volumedata, "cube"),
       volscheme: new $3Dmol.Gradient.ROYGB(range[1],range[0])
     },{});
 });
</script>
```

Integration into Mobyle / Galaxy

Mobyle	Galaxy
 Type-specific visualizations (applets) 	Type-specific visualizations
Service-specific visualizations	

Ressource Parisienne en Bioinformatique Structurale.

Integration into Mobyle:

Type-specific visualizations are set up with XML files

/opt/mobyle/core/Local/Services/Viewers/pv.xml

```
<interface type="viewer">
   <center xmlns="http://www.w3.org/1999/xhtml" style="height: 100%">
   <applet codebase="/data/services/servers/local/viewers/jmol" code="JmolApplet" archive="JmolApplet.jar">
        <param data-parametername="structfile" name="load" value="data-url"/>
        <param name="progressBar" value="true"/>
   </applet>
   </center>
 </interface>
</head>
<parameters>
 <parameter>
  <name>structfile</name>
  orprompt>3D Structure/prompt>
  <type>
    <datatype>
     <superclass>AbstractText</superclass>
     <class> 3DStructure</class>
    </datatype>
    <dataFormat>PDB</dataFormat>
    <dataFormat>mol2</dataFormat>
    <dataFormat>sdf</dataFormat>
  </type>
 </parameter>
</parameters>
```

Ressource Parisienne en Bioinformatique Structurale.

Integration into Mobyle:

Mobyle was designed to integrate java-applet viewers only: can be overcome with the use of iframes

/opt/mobyle/core/Local/Services/Viewers/pv.xml

```
<parameters>
 <parameter>
  <name>structfile</name>
  oprompt>3D Structure/prompt>
  <type>
   <datatype>
    <superclass>AbstractText</superclass>
    <class> 3DStructure</class>
   </datatype>
   <dataFormat>PDB</dataFormat>
  </type>
  <interface type="viewer">
   <center xmlns="http://www.w3.org/1999/xhtml" style="height: 100%">
    <iframe frameborder="0" id="pv frame" src="/portal/js/pv/viewer.html"/>
    <param data-parametername="structfile" name="load" value="data-url"/>
   </center>
  </interface>
 </parameter>
</parameters>
```

Ressource Parisienne en Bioinformatique Structurale.

Integration into Mobyle:

Glimpse of JavaScript code which is integrated into the iframe

/opt/mobyle/htdocs/portal/js/pv/viewer.html

```
function getURLParameter(name) {
    return decodeURIComponent((new RegExp('[?|&]' + name + '=' + '([^&;]+?)(&|#|;|$)').exec(document.referrer)||[,''''])...
}
$(document).ready(function() {
    var structfile;
    var param_structfile = getURLParameter("parameter");
    if (!param_structfile) {
        structfile = $(window.frameElement).parent().find('param').prop('value');
    } else {
        structfile = param_structfile.split("|")[1];
    }
    loadModel(structfile, "protein", cartoon);
});
```

Ressource Parisienne en Bioinformatique Structurale.

Integration into Mobyle:

Type-specific visualizations

Ressource Parisienne en Bioinformatique Structurale.

Integration into Mobyle:

Service-specific visualizations are set up with Jinja templates

/service/templates/pepfold3.vis.html

```
$(document).ready(function() {
{% if receptor is defined %}
     loadModel('{{ wdir }}/{{ receptor }}', "receptor");
{% endif %}
     var q = queryString.parse(location.search);
     if (q.model == null) {
      g.model = $("#slider option:first").attr('value');
     $("#slider select").change(function () {
      var model file = $(this).find(":selected").attr('value');
      loadModel('{{ wdir }}/' + model file, "protein");
      g.model = model file;
      $('#bookmark').attr('href', location.origin + location.pathname + '?' + gueryString.stringify(g));
     $("#slider select").val(q.model).change();
     $('#{{ color }}').prop("checked", true);
  });
```

Ressource Parisienne en Bioinformatique Structurale.

Integration into Mobyle:

Service-specific visualizations:

- Each service can produce its own visualization (html page)
- The result page aggregates all results
- The result page can be bookmarked

Ressource Parisienne en Bioinformatique Structurale.

Live example:

http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#jobs::InterEvDock.O30995888458967

http://mobyle.rpbs.univ-paris-diderot.fr/data/jobs/MTiOpenScreen/H07673856726885/output.vis.html

Ressource Parisienne en Bioinformatique Structurale.

Integration into Galaxy:

Type-specific viewers are set up with XML config file and make template

/opt/galaxy/config/plugins/visualizations/pv/templates/pv.mako

```
<script type="text/javascript">
  var hdald = '$\{\text{trans.security.encode id( hda.id )}\}',
     hdaExt = '\{hda.ext\}',
     ajaxUrl = "${h.url for(controller='/datasets', action='index')}/" + hdaId + "/display?to ext=" + hdaExt;
  var viewer = pv.Viewer(document.getElementById('gl'), {
          width: 600,
          height: 600,
          antialias: true.
          quality: 'medium',
          outline: false
        });
  $(document).ready(function() {
     $("#color input option:first").prop('checked', true);
     loadModel(ajaxUrl, 'main', cartoon);
  });
</script>
```

Ressource Parisienne en Bioinformatique Structurale.

Integration into Galaxy:

Type-specific visualizations

