

# Track-based Muon Alignment: Updated Procedures, Tools, and Systematics Studies

Jim Pivarski, Alexei Safonov, Karoly Banicz, Vadim Khotilovich

Texas A&M University

18 September, 2007





# Overview

### Status

| Infrastructure for online alignment  DONE  Express stream Alignment producer (HIP algorithm)  Alignment DOM  Online monitoring  DB geometry comparisons  Offline Validation | Central path is<br>done; work on<br>DB monitor has<br>resumed |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Systematics studies                                                                                                                                                         | Some completed                                                |
| Background studies; finalize cuts                                                                                                                                           | CSA07 exercise                                                |
| Beam-halo alignment (Karoly Banicz)                                                                                                                                         | Checking<br>feasibility                                       |
| Cosmic ray and MTCC alignment (Alexey Kamenev)                                                                                                                              | Near future                                                   |



# What we're focusing on and why

#### Present

- ▶ Monitoring: to catch and fix mistakes quickly
- Systematics studies: quantify complicating effects and make sure they're not show-stoppers
- Beam-halo alignment: potential opportunity to align all CSC layers with tracks before first collisions





# What we're focusing on and why

#### Present

- Monitoring: to catch and fix mistakes quickly
- Systematics studies: quantify complicating effects and make sure they're not show-stoppers
- Beam-halo alignment: potential opportunity to align all CSC layers with tracks before first collisions

#### Near future

- ▶ Background studies: loosen event selection from  $Z \rightarrow \mu\mu$  to an inclusive  $p_T$  cut. Requires a realistic event sample with all backgrounds, which we can get from CSA07.
- ▶ MTCC: real data, includes  $\vec{B}(t)$  and an opportunity to connect track-based alignment with photogrammetry and laser system. Data must be re-processed in a 1\_5\_X+ release.



# Monitoring alignment changes in the database





# Examples from DB geometry comparison tool (1 of 2)

► Comparison of real alignment output (blue line) with a misalignment scenario (filled green)



Aligned - ideal local x in endcap





# Examples from DB geometry comparison tool (2 of 2)

- ▶ Time series of increasing misalignment
- (Response to misalignment of tracker: we'll see more later)



RMS of aligned - ideal global z in barrel

New student: Vadim Khotilovich



# Optimized alignment procedure





# Hierarchical 2–3 step process

- 1. Determine wheel/disk positions to 0.7 mm accuracy with a few hundred muons
- 2. Determine chamber positions to 100  $\mu$ m with 10 pb<sup>-1</sup>
- 3. Determine CSC layer positions, if necessary







### Degrees of freedom: barrel wheels





# Degrees of freedom: endcap disks







# Wheel/disk alignment results $\times$ 10 trials

x, y positions 0.71 mm z positions (barrel only) 0.89 mm  $\phi_{x}, \phi_{y}$  angles (barrel only) 0.20 mrad  $\phi_z$  angle 0.11 mrad



6 d.o.f. float in barrel only x, y,  $\phi_z$  in endcap

Independent of the number of muons ("brick wall" is  $\sim$ 20 tracks)





- ▶ Barrel stations 1–3: all 6 parameters float
- ▶ Barrel station 4 has no y measurement: x,  $\phi_v$ , and  $\phi_z$  only
- ▶ ME 1/1: could not find an optimal set— possible software bug
- ▶ Other endcap: all but  $\phi_{\star}$



# Barrel chamber results

#### (MB4 not shown)



MB 1-3 MB 4  $67~\mu \mathrm{m}$ 1.05 mrad  $28~\mu \mathrm{m}$  $\phi_{\mathsf{X}}$ Х Χ 384  $\mu$ m 0.56 mrad 0.57 mrad  $\phi_{z}$ 1.15 mm | 0.095 mrad 0.004 mrad



# Endcap chamber results

#### (ME1/1 not shown)



#### All but ME1/1

| Χ | 19 $\mu$ m  |           |                     |
|---|-------------|-----------|---------------------|
| У | 430 $\mu$ m | 0.16 mrad | $\phi_{\mathbf{y}}$ |
| Z | 3.0 mm      | 0.03 mrad | $\phi_z$            |

#### ME 1/1: possible software bug

|        | '                |
|--------|------------------|
| X      | 300 $\mu$ m      |
| У      | 2–6 mm asymmetry |
| angles | 1 mrad or more   |



### Dependence on integrated luminosity: accuracy



- ▶ Points: RMS of distribution, Line: 100  $\mu$ m
- x accuracy reaches 100  $\mu$ m with 10 pb<sup>-1</sup>



### Dependence on integrated luminosity: Z, Z' resolution





▶ To do: higher moments of distribution— Drell-Yan smearing



# CSC layer-by-layer alignment

► CSC layers known to be misaligned (Karoly, Andrey, Oleg. . . )

|                | current (RMS) | after 82 pb <sup>-1</sup> alignment (RMS) |
|----------------|---------------|-------------------------------------------|
| X              | $190~\mu$ m   | 38 $\mu$ m                                |
| y              | 340 $\mu$ m   | 860 $\mu$ m                               |
| $\phi_{\it z}$ | 0.04 mrad     | 0.06 mrad                                 |
|                |               |                                           |





# Systematics studies



# Effect of tracker misalignment (1 of 3)

► Wheel/disk procedure: becomes significant when tracker is misaligned 2–3 times worse than "short-term scenario"



▶ Black: wheels/disks include large chamber misalignments Red: chambers are perfectly aligned on wheels/disks





# Effect of tracker misalignment (2 of 3)

- ▶ Most sensitive parameters: x and  $\phi_z$
- ightharpoonup Accuracy versus  $N \times$  tracker "short-term" scenario (ST)













Outer endcap (1/3, 2/2, 3/2) only widens

But inner endcap (1/2, N/1) gets more outliers

May need to apply standalone procedure to these, if tracker is bad





#### Effect of miscalibration



Systematics studies



- ▶ 10 pb<sup>-1</sup> miscalibration scenario
- Small influence on tails

#### Barrel ( $\triangle$ RMS)

| X | 6% | 0%  | $\phi_{x}$         |
|---|----|-----|--------------------|
| у | 1% | 3%  | $\phi_{	extsf{y}}$ |
| Z | 0% | 10% | $\phi_{\it z}$     |

#### Endcap ( $\triangle$ RMS)

|   |     | `   |                    |
|---|-----|-----|--------------------|
| X | 15% |     |                    |
| у | 9%  | 3%  | $\phi_{	extsf{y}}$ |
| Z | 2%  | 17% | $\phi_{\it z}$     |





# Systematics studies

# Dependence on muon momentum

▶ Divide  $Z \rightarrow \mu\mu$  sample along 60 GeV median





DIVIC

#### Δ Resolution

Barrel: < 5% in each parameter

|         |               | core         | KIVI5        |
|---------|---------------|--------------|--------------|
| Endcap: | X             | ×1.5         | ×3           |
|         | У             | $\times 1.5$ | $\times 3$   |
|         | Z             | $\times 3$   | $\times 3$   |
|         | $\phi_{m{y}}$ | $\times 1.6$ | $\times 3.5$ |
|         | $\phi_{z}$    | $\times 1.2$ | $\times 2$   |

Note asymmetric tail in y!



looks like





# Beam-halo studies (Karoly)





# Alignment plans with beam-halo



Jim Pivarski

- Before first collisions
  - Accumulate beam-halo muons from accelerator studies with constant conditions (constant  $\vec{B}(t)$ , detector positions)
  - ► Align CSC layers; remains valid even after chambers/disks move
  - ▶ Will the rate be high enough? To be determined...
- With collisions
  - Combine muons from the vertex with beam-halo muons: requires a new trigger (under discussion)
  - Alignment will be improved by more orthogonal tracks





#### Beam-halo illumination



Top: z (cm) Bottom: r (cm) All four stations covered Chambers in outer rings will get uneven statistics A few tracks connect both sides



Number of hits





# Conclusions

- Basic infrastructure is in place for CSA07 and beyond; we are developing monitors
- Continuing to improve the baseline procedure
- ▶ Problem with ME1/1, possible software bug
- Learning quantitative relevance of systematic effects, some of which are responsible for outliers
  - Tracker misalignment important if worse than "short-term"
  - Chamber miscalibration only small effects
  - Muon momentum degradation in endcap with 20–60 GeV
- Karoly is making great progress with beam-halo alignment feasibility studies
- MTCC/alignment with cosmic rays is a high priority