

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Pooling layer: Max pooling

Pooling layer: Average pooling

Types of layer in a convolutional network:

- Convolution (CONV) -
- Pooling (foot) -
- Fully connected (←c) ←

Pooling layer: Max pooling

Pooling layer: Average pooling

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32, 32, 3)	- 3,072 a ^{ta}	0
CONV1 (f=5, s=1)	(28,28,8)	6,272	208
POOL1	(14,14,8)	1,568	0
CONV2 (f=5, s=1)	(10,10,16)	1,600	416
POOL2	(5,5,16)	400	0
FC3	(120,1)	120	48,001
FC4	(84,1)	84	10,081
Softmax	(10,1)	10	841

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{\mathbf{y}}^{(i)}, \mathbf{y}^{(i)})$$

Use gradient descent to optimize parameters to reduce J

Convolutions has less parameters as parameter sharing is done

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Classic networks:

- LeNet-5 <
- AlexNet <
- VGG <

RESNET INCEPTION

ResNet

RESNET

