

Computer vision in the new era of Artificial Intelligence and Deep Learning

Visión por computador en la nueva era de la Inteligencia Artificial y el Deep Learning

Rubén Usamentiaga*, Alberto Fernández°

- * University of Oviedo
- ° TSK

Gijón (Spain) 5 – 16 April 2021

Scikit-learn

learn

Introduction to metrics in scikit-learn

metrics for classification with scikit learn.ipynb

metrics for classification with scikit learn.ipynb

Study evaluating a test that screens people for a disease. The test outcome can be:

- Positive: classifying the person as having the disease
- Negative: classifying the person as not having the disease
- True positive (TP): Sick people (actual = 1) correctly identified as sick (predicted = 1)
- False positive (FP): Healthy people (actual = 0) incorrectly identified as sick (predicted = 1)
- True negative (TN): Healthy people (actual = 0) correctly identified as healthy (predicted = 0)
- False negative (FN): Sick people (actual = 1) incorrectly identified as healthy (predicted = 0)

Confusion Matrix		Predicted	
		Negative	Positive
Actual	Negative	True Negative	False Positive
	Positive	False Negative	True Positive

Study evaluating a test that screens people for a disease. The test outcome can be:

- Positive: classifying the person as having the disease
- **Negative**: classifying the person as not having the disease
- True positive (TP): Sick people (actual = 1) correctly identified as sick (predicted = 1)
- False positive (FP): Healthy people (actual = 0) incorrectly identified as sick (predicted = 1)
- True negative (TN): Healthy people (actual = 0) correctly identified as healthy (predicted = 0)
- False negative (FN): Sick people (actual = 1) incorrectly identified as healthy (predicted = 0)

Using TP, FP, FN and TN, we can calculate some metrics: sensitivity (or recall), specificity, and precision.

- Sensitivity (recall) is a measure of how well a test can identify true positives
- **Specificity** is a measure of how well a test can identify true negatives.
- **Precision** (positive predictive values (PPV)). It is the proportions of positive results that are true positive

- Sensitivity (recall) is a measure of how well a test can identify true positives
- Specificity is a measure of how well a test can identify true negatives.
- Precision (positive predictive values (PPV)). It is the proportions of positive results that are true positive (how sure you are of your true positives).

		Real	
		Positive	Negative
Predicted	Positive	1	2
	Negative	0	7

$$precision = \frac{tp}{tp + fp} = \frac{1}{3} = 33\%$$

$$recall = \frac{tp}{tp + fn} = \frac{1}{1} = 100\%$$

$$specificity = \frac{tn}{tn + fp} = \frac{7}{9} = 78\%$$

$$sensitivity = recall = 100\%$$

Accuracy: 80.00% (8/10)

F1 score (2 * (precision * recall) / (precision + recall)): 50.00%:

Metrics for classification in scikit-learn

```
from sklearn.metrics import <u>accuracy score</u>
from sklearn.metrics import balanced accuracy score
from sklearn.metrics import confusion matrix
from sklearn.metrics import <u>precision score</u>
from sklearn.metrics import <u>recall score</u>
from sklearn.metrics import <u>f1 score</u>
from sklearn.metrics import <u>classification report</u>
```

Metrics for classification in scikit-learn

Receiver Operating Characteristic (ROC) curve

from sklearn.metrics import <u>roc curve</u>

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)

from sklearn.metrics import <u>roc auc score</u>

Trade-offs between true positive (benefits) and false positive (costs)

	actual_label	model_RF	model_LR
0	1	0.639816	0.531904
1	0	0.490993	0.414496
2	1	0.623815	0.569883
3	1	0.506616	0.443674
4	0	0.418302	0.369532
		/	

As you decrease the threshold you get higher TPR at the cost of a higher FPR

Metrics for classification in scikit-learn

from sklearn.metrics import <u>precision recall curve</u>

As you decrease the threshold you get higher recall at the cost of a lower precision (I will be not sure about my positives)

Recall = Sensitivity how well we can identify true positives

Scikit-learn

Introduction to metrics in scikit-learn

