CS 581 – ADVANCED ARTIFICIAL INTELLIGENCE

TOPIC: REINFORCEMENT LEARNING

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

Sources

- Reinforcement Learning an Introduction
 - by Sutton & Barto
 - http://incompleteideas.net/book/the-book-2nd.html
- Introduction to RL lectures
 - by DeepMind; David Silver
 - https://deepmind.com/learning-resources/-
 introduction-reinforcement-learning-david-silver
 - https://www.youtube.com/playlist?list=PLqYmG7hTr
 aZDM-OYHWgPebj2MfCFzFObQ

REQUIRED BACKGROUND

MDPs

- Value function V, action-value function Q, policy π
- Bellman equations
- Value iteration
- Policy iteration
- Multi-armed bandits
 - Exploration vs exploitation trade-off
 - ϵ -greedy approach

RL AND MDPs

- MDPs are building blocks for RL
- RL has the additional complexity that the agent does not have access to the full specification of the MDP. For e.g.,
 - Transition probabilities are often unknown
 - Reward function is often unknown

PREDICTION AND CONTROL

- Prediction
 - Given a policy, estimate the value function
- Control
 - Find the optimal policy

Model-Free vs Model-Based

• Model-free:

• The agent does not have and does not learn a model of the how the environment works

• Model-based:

- The agent learns/improves a model of the environment
- Note: we are not talking about an approximate "model" of a state representation (such as DL for value estimations of states); rather, we mean model of the environment, such as transition probabilities

OUTLINE

- Prediction
 - Monte Carlo methods
 - Temporal-difference learning
- Control
 - Monte Carlo methods
 - Temporal-difference learning
 - Sarsa, N-step TD, TD(λ)
 - Q-learning
- Approximate methods
 - MC prediction
 - TD prediction

MONTE CARLO PREDICTION

- Task: prediction
 - Policy is given; compute the value functions
- Unknown environment dynamics
 - If the transition probabilities and the reward function were given, we could use the algorithms we saw earlier for complete MDPs
- Learn from *experience* samples of episodes
- *Episode* is a sequence of state, action, reward triplets
- Assume all episodes reach a terminal state
- Basic idea: expectation = average over samples

8

MC Prediction – Pseudocode

- Given a policy π
- Initialize V(s) for all s
- Loop:
- TRETTER -- TRET Sample an episode: $S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, \overline{A_{T-1}}, R_T$
 - For each state s in the episode, compute the cumulative discounted reward starting from that state s G \uparrow
- \circ V(s) is the average cumulative discounted reward starting from state $s = \frac{5}{1} \frac{1}{M}$
- If s appears multiple times in a single episode (i.e., loops):
 - First-visit MC: for each episode, only the first appearance of the state s is considered
 - Every-visit MC: every appearance is considered and averaged accordingly
- Converges to the true values as the number of visits approach infinity

MC Prediction – Pseudocode

- Given a policy π
- Initialize Q(s, a) for all (s, a) pairs
- Loop:
 - Sample an episode: $S_0, A_0, R_1, S_1, A_1, R_2, ..., S_{T-1}, A_{T-1}, R_T$
 - For each state (s,a) pair in the episode, compute the cumulative discounted reward starting from that state s and taking action a
- Q(s, a) is the average cumulative discounted reward starting from state s and taking action a
- Advantage of estimating Q instead of V:
 - Can use Q values to find a better policy, i.e., for control
 - Caveat: we need to explore other actions to find a better one (remember the exploration vs exploitation trade-off)

INCREMENTAL UPDATE

- Task: update the mean over a sequence at each step
- Assume we have seen $x_1, x_2, ..., x_n$
- We receive x_{n+1}

- $\mu_{n+1} = \mu_n + \frac{1}{n+1} (x_{n+1} \mu_n)$
- Next estimate = current estimate + learning rate * error

INCREMENTAL UPDATE

- When can incrementally update the MC means for the value (or action-value) functions after each episode
- Using a fixed α instead of $\frac{1}{n+1}$ allows us to handle non-stationary cases where the dynamics of the system changes
 - Recent experiences count more than earlier ones

TEMPORAL DIFFERENCE

- o In MC, each episode had to end at a terminal state
- MC ignored the Bellman equations
- Can we learn from partial/incomplete episodes?
 - Yes, but we need estimates of the values
- The method we will use is called Temporal Difference (TD) learning

TD PREDICTION

- Given a policy π
- For an episode:
 - MC
 - $V(S_t) \leftarrow V(S_t) + \alpha [G_t V(S_t)]$
 - Need to wait till the end to calculate G_t
 - TD: take one step and use Bellman equation
 - $V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
- This is called TD(0) because it updates values based on a single look ahead

TD(0) PREDICTION

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0,1] Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop for each episode: Initialize S Loop for each step of episode: A \leftarrow \text{action given by } \pi \text{ for } S Take action A, observe R, S' V(S) \leftarrow V(S) + \alpha \left[ R + \gamma V(S') - V(S) \right] S \leftarrow S' until S is terminal
```

Figure from http://incompleteideas.net/book/the-book-2nd.html

MC CONTROL

- Unlike prediction, we are not given a policy
- The environment dynamics are unknown
- The agent needs to find an optimal policy through experience
 samples of episodes
- Can't we combine policy iteration of MDPs and MC sampling?
 - Yes, but
 - We need to learn a Q function; V function would not be useful because we do not have the transition function to read the policy from V values
 - We cannot sample from a deterministic policy; otherwise, the agent does not learn
 - We need to balance exploration vs exploitation
 - We will use ϵ -greedy approach
 - During sampling an episode:
 - With ϵ probability, choose a random action
 - Otherwise, choose the action recommended by the policy

MC Control – Pseudocode

- Initialize Q(s, a) for all (s, a) pairs
- Initialize a policy π
- Loop:
 - Sample an episode: $S_0, A_0, R_1, S_1, A_1, R_2, ..., S_{T-1}, A_{T-1}, R_T$
 - For choosing an action A_i at state S_i :
 - With ϵ probability, choose a random action
 - Otherwise, choose the action recommended by the current policy
 - For each state (s,a) pair in the episode, compute the cumulative discounted reward starting from that state s and taking action a
 - Update Q using the sample averages
 - Update π using the updated Q

TD CONTROL – SARSA

- Like MC Control, except we use the one step look ahead instead of waiting till the episode terminates
- $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1} + A_{t+1}) Q(S_t, A_t)]$
- Because we use S_t , A_t , R_{t+1} , S_{t+1} , A_{t+1} , this algorithm is also called SARSA
- Like MC Control, we need to introduce randomness into choosing actions, rather than strictly following a deterministic policy
 - Use ϵ -greedy approach

SARSA ALGORITHM

Sarsa (on-policy TD control) for estimating $Q \approx q_*$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]$ $S \leftarrow S'$; $A \leftarrow A'$; until S is terminal

Figure from http://incompleteideas.net/book/the-book-2nd.html

Q-LEARNING

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Take action A, observe R, S'

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]

S \leftarrow S'

until S is terminal
```

Figure from http://incompleteideas.net/book/the-book-2nd.html

N-STEP TD

- TD(0) bootstraps the value functions and looks at one step in the future
- MC does not bootstrap; considers the full episode where the episode ends at a terminal state
- TD(n) is generalization that looks at n steps to the future
- \circ TD(∞) is equivalent to MC
- $TD(\lambda)$ considers all steps with proper weighting

N-STEP TD

$TD(\lambda)$

23

APPROXIMATE METHODS

- So far, we assumed we could represent the V and Q functions as tables
- This is unrealistic in real-world settings
- When the state and/or action space is large, we need to approximate the V and Q functions
- $o v(s; \mathbf{w}) \approx v_{\pi}(s)$
 - w can be the weights of linear model, a neural network, etc.
- A good/useful model allows one to generalize from one state to another
- We can use supervised learning methods, with some caveats
 - For e.g., the data is not stationary, the sequences in an episode are not i.i.d., etc.

PREDICTION

- $\bullet MSVE = \sum_{s} P(s) [v_{\pi}(s) v(s; \mathbf{w})]^{2}$
- Gradient-based approach
 - $\mathbf{w}_{i+1} = \mathbf{w}_i \frac{1}{2}\alpha\nabla[v_{\pi}(s) v(s; \mathbf{w}_i)]^2$
 - $\mathbf{w}_{i+1} = \mathbf{w}_i \alpha[v_{\pi}(s) v(s; \mathbf{w})] \nabla v(s; \mathbf{w}_i)$
- Replace $v_{\pi}(s)$ with its MC or TD estimate

MC PREDICTION

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}
Algorithm parameter: step size \alpha > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop forever (for each episode):
Generate an episode S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T using \pi
Loop for each step of episode, t = 0, 1, \ldots, T - 1:
```

 $\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$

Figure from http://incompleteideas.net/book/the-book-2nd.html

TD PREDICTION

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathcal{S}^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal},\cdot) = 0
Algorithm parameter: step size \alpha > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A \sim \pi(\cdot|S)
Take action A, observe R, S'
\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) \right] \nabla \hat{v}(S, \mathbf{w})
S \leftarrow S'
until S is terminal
```

Figure from http://incompleteideas.net/book/the-book-2nd.html

OTHER TOPICS

- Control with approximate functions
 - Estimate the Q function instead of the V function
- Policy gradient methods
 - The policy is a parameterized function that can select actions without going indirectly through the value functions
- Eligibility traces
 - Efficient and iterative implementation of TD(n)
- Off policy learning
 - Two policies: a *target policy* the policy being learned, and a *behavior policy* the policy that generates the sequences