

Blatt 6: multivariate Differentiation

Mittelwert Ihrer Selbsteinschätzung:

- -1: "hab nicht mal die Aufgabe gelesen"
- 0: "weiß nicht wie ich anfangen soll"
- 1: "habe begonnen, bin dann aber hängen geblieben"
- 2: "konnte alles rechnen, bin aber unsicher, ob es stimmt"
- 3: "alles klar hier"

Aufgabe 1	Α	uf	g	dc	е	1	
-----------	---	----	---	----	---	---	--

Berechnen Sie die Gradienten

(a)

$$v(a, b, c, d) = \frac{a}{b} + c \cdot d$$

(b)

$$p(x, y, z) = \cos z + \sin x \cdot \tan y$$

(c)

$$f(x_1, x_2) = x_1^2 \ln x_2$$

(d)

$$q(\alpha, \beta) = \alpha^{2\beta}$$

Selbsteinschätzung:

Lösung auf Seite 4

Aufgabe 2:

Berechnen Sie jeweils die Richtungsableitungen zu den angegebenen Richtungen und werten Sie diese am gegebenen Punkt aus.

(a)

$$v(a, b, c, d) = \frac{a}{b} + c \cdot d$$

Richtung:
$$\alpha = \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)$$
 am Punkt $P = \left(\begin{array}{c} 1 \\ 2 \\ 0 \\ 3 \end{array} \right)$.

(b)

$$p(x, y, z) = \cos z + \sin x \cdot \tan y$$

Richtung:
$$b=\left(\begin{array}{c}1\\2\\3\end{array}\right)$$
 am Punkt $Q=\left(\begin{array}{c}\frac{\pi}{4}\\\frac{\pi}{4}\\\pi\end{array}\right)$.

Mathematik II

Selbsteinschätzung:		Lösung auf Seite 4
Aufgabe 3:		Ç
_	ntungsableitu	ing orthogonal zum Gradienten von
		$f(x_1, x_2) = x_1^2 \ln x_2$
Was stellen Sie fest?		
Selbsteinschätzung:		Lösung auf Seite 5
Aufgabe 4:		
	pereits berecl	atrix zu den Funktionen der obigen Aufgabe. Sie dürfen hneten Gradienten beginnen. Werten Sie dann noch an
1.		$v(a, b, c, d) = \frac{a}{b} + c \cdot d$
${\rm Am} \ {\rm Punkt} \ P = ($	1, 2, 0, 3).	
2.		$f(x_1, x_2) = x_1^2 \ln x_2$
${\rm Am} \ {\rm Punkt} \ P = ($	-2, 1).	
3. Wie lautet zu v u	and f jeweils ϵ	der Laplace; mit und ohne Punktauswertung?
Selbsteinschätzung:		Lösung auf Seite 5
Aufgabe 5:		
Es sei $u(x,y) = x^2 \ln y$	<i>J</i> .	
(a) Berechnen Sie		$\Delta u = u_{xx} + u_{yy} .$
(b) Berechnen Sie		$\Delta u = u_{\tau\tau} + u_{\nu\nu}$
für $ u= au^\perp$ und $ au$ =	$=(4,3)^T\frac{1}{5}.$	
Selbsteinschätzung:		Lösung auf Seite 7

Aufgabe 6:_

Berechnen Sie die Jakobimatrix von

$$f(x_1, x_2, x_3) = \begin{pmatrix} x_1 \sin(x_2) + x_3 \\ x_1 x_2^2 x_3^3 \end{pmatrix}.$$

Selbsteinschätzung:

Lösung auf Seite 8

Aufgabe* 7:_

E sei $x \in {\rm I\!R}^n$ und $u : {\rm I\!R}^n \to {\rm I\!R}$. Berechnen Sie folgende Ausdrücke:

- $(a) \nabla |x| \qquad (b) \nabla \frac{1}{|x|} \qquad (c) \nabla |u(x)| \qquad (d) \nabla \frac{1}{|u(x)|} \qquad (e) \operatorname{grad} \frac{\nabla u}{|\nabla u(x)|}$

Selbsteinschätzung:

Lösung auf Seite 8