Distributed systems I **Winter Term 2019/20**

G2T1 - Assignment 5 (theoretical part)

Felix Bühler 2973410

Clemens Lieb 3130838

Steffen Wonner 2862123

Fabian Bühler 2953320

January 13, 2020

10/10|1 - Two-Phase Locking

a) 5/5

See figure 1

2/2 b)

The transactions 2 and 3 need to be aborted / rolled back. This is because the abort of transaction 1 does not happen until after the locks for reading uncommitted data have been acquired, resulting in incorrect reads. To enforce consistency, the transactions must be aborted when transaction 1 is aborted.

c) 3/3

See figure 2

Cascading abort does not happen with strict two phase locking because updated information from one transaction is only available for other transactions to read after the transaction either aborted or committed.

 T_1 T_2 T_3 T_4 $rL_3[v] + rU_4[o] +$ $wU_1[v] +$ $bU_1[v] + bU_1[x] + bU_1[x] + bU_2[x] + bU_3[x] + bU_4[y] + bU_4$ $w_1[x] +$ $wU_1[x] +$

Figure 1: Operation timeline for History H_1 using non-strict two-phase locking

20 G2T1 – Assignment 5 (theoretical part)

Figure 2: Operation timeline for History H_1 using strict two-phase locking

7.5/9 2 - Two-Phase Commit

a) 3/3

Shown in figure 3. N_2 and N_4 are blocked until the 'COMMIT'-Message is received. N_3 will try to resend the 'COMMIT'-Message until it receives the 'ACK'-Message.

Distributed systems I Winter Term 2019/20 G2T1 – Assignment 5 (theoretical part)

Figure 3: simple termination protocol

4/4 b)

Shown in figure 4. N_1 is getting sent a 'DECISION-REQ'-Message to send the 'COMMIT'-Message to N_2 . Same for N_5 because N_4 is not reachable.

Figure 4: cooperative termination protocol

c) 0.5/2

Shown in figure 5.

Distributed systems I Winter Term 2019/20 G2T1 – Assignment 5 (theoretical part)

Figure 5: cooperative termination protocol with node failure

9.5/11 3 - Data Replication

4.5/6 a)

 $q[X_A] = 1$ $q[X_B] = 1$

 $q[X_C] = 3$

 $q[X_D] = 1$

 $q_w[X]$ 1: X_C , X_A

 $q_w[X]$ 2: X_C , X_B

 $q_w[X]$ 3: X_C , X_D

 $q_w[X]$ 4: X_C , X_A , X_B

 $q_w[X]$ 5: X_C , X_A , X_D

 $q_w[X]$ 6: X_C , X_B , X_D

Distributed systems I Winter Term 2019/20 G2T1 – Assignment 5 (theoretical part)

$$q_w[X]$$
 7: X_C , X_A , X_B , X_D

$$q_r[X]$$
 1: X_A , X_B , X_D

$$q_r[X] 2: X_C$$

$$q_r[X]$$
 3: X_C , X_A

$$q_r[X]$$
 4: X_C , X_B

$$q_r[X]$$
 5: X_C , X_D

$$q_r[X]$$
 6: X_C , X_A , X_B

$$q_r[X]$$
 7: X_C , X_A , X_D

$$q_r[X]$$
 8: X_C , X_B , X_D

$$q_r[X]$$
 9: X_C , X_A , X_B , X_D

No justification

3/3 b)

$$q_w[X] = 6$$

$$q_w[x]$$
 1: X_C , X_D , X_A

$$q_w[x]$$
 2: X_C , X_D , X_B

$$q_w[x]$$
 3: X_C , X_D , X_A , X_B

2/2 c)

 $p_r(Y) = 1 - ((1-p_K)^*(1-p_L)) - ((1-p_L)^*(1-p_M)) - ((1-p_M)^*(1-p_K)) - ((1-p_K)^*(1-p_L)^*(1-p_M))$ To be readable a majority of nodes have to be available, which is 2 in this case. That means that $1-p_r(Y)$ is the probability that more than 1 node fails.