I. Nemzetközi Magyar Matematika Verseny

Révkomárom, 1992. ápr. 9-12.

10. osztály

1. feladat: Igazoljuk, hogy ha $x, y, z \in \mathbb{R}$, akkor

$$x^{2} + y^{2} + z^{2} - xy - yz - zx \ge \frac{3}{4} \max \left[(x - y)^{2}, (y - z)^{2}, (z - x)^{2} \right].$$

Bencze Mihály (Brassó)

2. feladat: Hány olyan háromszög van, amelynek oldalai *n*-nél nagyobb, de 2*n*-nél nem nagyobb egész számok? Ezek közül a háromszögek közül hány egyenlőszárú és hány egyenlőoldalú van?

Urbán János (Budapest)

3. feladat: Jelölje N azt az 1992 jegyű számot, amelynek az összes számjegye 9-es. Mennyi N^2 számjegyeinek összege?

Bencze Mihály (Brassó)

4. feladat: Bizonyítsuk be, hogy

$$82! \left(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{82}\right)$$

osztható 1992-vel.

Mészáros József (Galánta)

5. feladat: Adott ABC háromszög. Legyen O a körülírt körének a középpontja. B és C csúcsokból az AC és AB oldalakra bocsátott merőlegesek talppontjai E és F. Igazoljuk, hogy $AO \perp EF$.

Nagel tétele ()

6. feladat: Az ABC derékszögű háromszög S súlypontjából bocsássunk merőlegeseket az oldalakra. Legyenek ezek talppontjai A_1, B_1, C_1 . Számítsuk ki a $Ter(ABC)/Ter(A_1B_1C_1)$ arányt.

Mészáros József (Galánta)