Gene sets expression

Vincent Detours

IRIBHM, Université Libre de Bruxelles (U.L.B.) vdetours@ulb.ac.be

Limits of the gene-wise view of gene expression data

- The gene-wise view focus on large regulation amplitudes but will miss biological processes that involve groups of genes coordinately regulated at low levels
- Higher-level biological processes rely on the activity of many genes, not single genes
- Nearly all microarray-derived markers rely on multi-genes signatures

Limits of the gene-wise view of gene expression data

- Pleiotropy is ubiquous: over-expression of a given gene provides ambiguous information about the underlying biological process
- Biological systems are highly redundant, non expression of a gene may be complemented by another

2

Limits of the gene-wise view of gene expression data

- The overlap of gene lists from replicated microarray studies has been notoriously low
- Interpreting lists of 100-1,000 of regulated genes is difficult in practice...
- ...or too easy: one can always make a biological argument by focusing on a subset of the list

Limits of the gene-wise view of gene expression data

It make sense to study the collective behavior of sets of functionally related genes, but

- What genes sets?
- What statistical procedures?

5

The Gene Ontology: structure

 GO is a directed acyclic graph, i.e. a hierarchical structure. It goes from general to specific concepts

The Gene Ontology

- "The Gene Ontology project provides a controlled vocabulary to describe gene and gene product attributes in any organism"
- It is a gene-centered database of gene function curated by human beings
- See www.geneontology.org

6

The Gene Ontology: main branches

There are three ontologies

- Biological process: cell cycle, apoptosis, oxydative phosphorylation,...
- Molecular function: catalytic activity, transporter,...
- Cellular compartment: nucleus, membrane,...

The Gene Ontology: evidence codes

Assignment of genes to GO categories are documented with evidence codes, for example:

- TAS: Traceable Author Statement
- EXP: Inferred from Experiment
- ISS: Inferred from Sequence or Structural Similarity
- Etc.

The Gene Ontology: some limits

- Biological functions are hard to describe with verbal language
- Gene functions are context-sensitive
- · Assignments are biased by the history of biology research

• Sets from high-throughput experiments

• Signalling pathways (KEGG, Biocarta)

• Chromosme cytobands

• Protein families

• Shared contribution to genetic diseases (from OMIM)

• Targets of known transcription factors, miRNAs

Other gene sets databases

Neighborhoods of known genes

• Domains from same proteins

• Etc.

Most available tools operate downstream of gene selection

The user

- provides a list of differentially expressed genes from his/her microarray experiments, e.g. the output of SAM
- 2. (provides a background gene list, e.g. genes present on the microarrays; it's the negative control)
- 3. selects a collection of functionally characterized gene sets (e.g. some level of the Gene Ontology)

The statistical procedure

- 1. measures how each functional gene set overlaps with the user-supplied list of step #1.
- 2. corrects for multiple testing (many gene sets tested)

13

This very popular approach is flawed and anticonservative

- Biological samples, not genes are replicated in actual microarrays experiments: the power of the test should increase with the number of samples, it is not
- Genes expression levels are not independent variables
- Artificially high power due to (inapropriate) gene sampling---there are >20,000 genes
- Overstated p-values due to departure from independence

The significance of overlap is estimated with a test of independence in a 2x2 contigency table

	Differentially expressed	Not differentially expressed
In gene set	18	31
Not in gene set	486	11,800

May use

- χ²
- · hypergeometric test
- etc.,...

14

Gene Set Enrichment Analysis

Subramanian et al. (PNAS, 2005) proposed a method, GSEA, that

- uses patient sampling
- does not require gene expression threshold
- comes with a large collection of experimentally derived gene sets

Step 2: estimate the significance of ES

Do many times:

- 1. permute sample labels at random
- 2. recompute ES

Compute p-values from permutation ES distribution

- > Power does depend on sample size
- Gene correlation structure is preserved

21

MSigDB

Gene sets from the Broad Institute (check updates)

- C1: cytogenetics
- C2: Functional sets (from experiments)
- C3: Regulatory motifs
- C4: Neighborhood sets
- C5: Gene Ontology
- C6: Oncogenic signatures
- C7: Immunological signatures

Step 3: Adjust for multiple testing

Once steps 1 and 2 have been run for all gene sets

- 1. For all gene set S, adjust its ES for gene set size, by dividing ES(S, original) and ES(S, perm) by the mean of ES(S, perm)
- 2. Compute FDRs from normalized original and permutation

22

Control: Male vs. Female Lymphoblastoid cells lines

mRNA profiles from 15 male and 17 female lymphoblastoid cell lines

- testing C1 in the male>female comparizon detects chromosome Y, and cytobands Yp11 and Yq11 (the most gene-dense)
- surprisingly, testing C2 yields genes enriched in reproductive organs, testis and uterus, even when analysis is restricted to autosomal genes

Application: cytogenetic abnormalities in acute leukemias

• cancer cells often have an abnormal karyotype

Human chromosomes, metaphase state

25

Application: p53 status in cell lines

- p53 is mutated in a much as 50% of all human cancers
- it is a transcription factor that regulates genes in response to various cellular stresses, including DNA damage

Idea

use published NCI-60 cell lines expression profiles (the p53 mutational status of 50 of them has been determined, 17 p53^{wt}, 33 p53^{mut})

27

Application: cytogenetic abnormalities in acute leukemias

• Run GSEA with C1 on 24 acute lymphoid leukemias vs. 24 acute myeloid leukemias

ALL > AML:

Application: p53 status in cell lines

Run C2 gene sets

Enriched in p53 mutant	
Ras signaling pathway	0.171
Enriched in p53 wild type	
Hypoxia and p53 in the cardiovascular system	0.001
Stress induction of HSP regulation	0.001
p53 signaling pathway	0.001
p53 up-regulated genes	0.013
Radiation sensitivity genes	0.078

Application: outcome in two lung cancer studies

- Two lung cancer data sets of 62 and 86 primary tumors mRNA profiles
- Patients stratified in 'good' and 'bad' outcome
- Gene-wise analysis detects no outcomerelated genes at q<0.05, in either study
- The two top-100 genes lists seems very discordant (intersect of 12 genes)

30

Application: outcome in two lung cancer studies

- S1 = top 100 outcome-related genes in study 1
- S2 = top 100 outcome-related genes in study 2

GSEA finds that

- NES for S1 in study 2 is 1.9, p<0.001
- NES for S2 in study 1 is 2.1, p<0.001

Gene sets are more robust than individual genes

1

Application: outcome in two lung cancer studies

	_	
	Enriched in poor outcome	
study 1	Hypoxia and p53 in the cardiovascular system	0.050
	Aminoacyl tRNA biosynthesis	0.144
	Insulin upregulated genes	0.118
	tRNA synthetases	0.157
	Leucine deprivation down-regulated genes	0.144
	Telomerase up-regulated genes	0.128
	Glutamine deprivation down-regulated genes	0.146
	Cell cycle checkpoint	0.216
	Enriched in poor outcome	
study 2	Glycolysis gluconeogenesis	0.006
	vegf pathway	0.028
	Insulin up-regulated genes	0.147
	Insulin signalling	0.170
	Telomerase up-regulated genes	0.188
	Glutamate metabolism	0.200
	Ceramide pathway	0.204
	p53 signalling	0.179
	tRNA synthetases	0.225
	Breast cancer estrogen signalling	0.250
	Aminoacyl tRNA biosynthesis	0.229 ³²

The connectivity map Lamb et al. (Science, 2006) proposed a map connecting diseases and small molecules (e.g. drugs) via gene expression SAM-like GSEA's NES methods

The connectivity map: connecting small molecules Histone deacetylase (HDAC) are enzymes that promote the binding of histones to DNA, hence the packing of DNA, hence they modulate gene expression

The connectivity map

The first generation connectivity map

- 164 'perturbagen: FDA-approved drugs
- 4 cell lines: (MCF7, breast cancer; PC3, prostate cancer; HL60, leukemia; SKMEL5, melanoma)
- concentrations: 10µM
- timing: 6-12hrs
- untreated controls for each array batches

564 Affymetrix arrays (U133+, ~22,000 genes), 453 unique experiments

Deacetylate

HDAC complex

MBD

CH₃ CH₃

Histone Tails

The connectivity map: connecting small molecules Glaser et al. (Cancer Ther., 2003) uncovered 13 genes responsive to 3 HDAC inhibitors in 2 breast cancer cell lines. It can be used to query the cmap: Compounds studied by Glaser et al. Compounds not studied by Glaser et al.

The connectivity map: connecting small molecules

Connecting molecules is of upmost relevance to toxicology

Major drugs have been recently withdrawn frommarket because of unexpected toxicities (e.g. Merk's painkiller, COX-2 inhibitor, Vioxx)

The European Union REACH regulations require

- proving the innocuity of tens thousands chemicals
- minimize animal testing

38

The connectivity map: connections with diseases

In another publication (Wei et al., Cancer Cell 2006), the cmap was used to investigate the resistance of acute lymphoblastic leukemia to glucocorticoids

- GC is a class of steroid hormones that suppress the immune system
- · GC resistance is a marker of bad prognosis in ALL
- · Resistance mechanisms are unknown
- Wei et al. investigate apoptosis as a possible mechanism

The connectivity map: connections with diseases • Expression analysis of pre-treatment ALL samples • GC resistance determined according to apoptosis (sensitive IC50 < 150mg/ml prednisolone, resistant otherwise) CMAP Sirolimus (Rapamycin)

The connectivity map: connections with diseases

- Rapamicyn is an immunosuppressant
- It inhibits mTOR, which is activated by the PI3K/Akt pathway

GSEA on the sensitive/resistant ALL samples detect the following Biocarta pathways

Strenghts of GSEA

Flexible set up

- · Choice of expression metrics
- Choice of gene sets with a virtually infinite range of biological significations
- > Really takes advantage of the universality microarrayderived mRNA phenotypes

Statistically sound

- sample permutation
- preserve genes correlation sctructure
- · robust investigation of data at metagenes level

Criticisms of GSEA

- Kolmogorov-Smirnov-like statistics lacks statistical power, Efron & Tibshirani proposed an alternative (Ann. Appl. Stat., 2007)
- Not clear how it bahaves with respect to gene set size
- Crude gene set definition, no sophisticated gene expression directionality, for example

45

LINCS

- L1000: 1000 genes that capture 80% of global gene expression variance across
- So far, L1000 profiles available for
 - ~20,500 compounds
 - ~18,500 gene shRNA inhibitions assays
 - − ~3,500 gene overexpression assays
 - In 59 cell lines, 10 primary cultures types,...
 - About 10⁶ LINCS profiles, overall

47

CMAP development

- CMAP 2.0 contains profiles of 1,309 FDAapproved compounds
- Library of Integrated Network-based Cellular Signatures (LINCS):
 - 1 million profiles!
 - 1000 genes capturing 80% expression variance
 - 24,413 compounds, 22,119 gene KO and overexpression assays
 - 18 cell types
 - https://clue.io