

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ (ИУ5)

ОТЧЕТ

по лабораторной работе

ПО	дисцип	лине:	<u>Технологии</u>	машинного	<u>обучения</u>		
на т	ему: <u>Раз</u>	<u>ведочн</u>	ый анализ дан	ных. Исслед	ование и визуалі	изация данных	
							_
							_
							_
							_
Студ	тепт И	У5-62 <u>Б</u>				<u>Карягин А.Д.</u>	
CTY		<u>У 3-02Б</u> (Группа)		(1	Подпись, дата)	(И.О.Фамилия)	

 И.Е.

 Руководитель

(Подпись, дата) (И.О.Фамилия)

Лабораторная работа №1

1) Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных Diabets dataset https://scikit-learn.org/stable/datasets/index.html#toy-datasets Для каждого из n = 442 больных сахарным диабетом были получены десять исходных переменных, возраст, пол, индекс массы тела, среднее артериальное давление и шесть измерений сыворотки крови, а также интересующая нас реакция - количественная мера прогрессирования заболевания через год после исходного уровня.

import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt
%matplotlib inline sns.set(style="ticks")

data = pd.read_csv('data/diabetes.tab.txt', sep="\t")

[7]:

2) Основные характеристики датасета

In [9]:

Out[9]

	AG E	SE X	B MI	ВР	S 1	S2	S3	S 4	S 5	S 6	Y
0	59	2	32 .1	101 .0	1 5 7	93. 2	38 .0	4 0	4.85 98	8 7	15 1
1	48	1	21 .6	87. 0	1 8 3	103 .2	70 .0	3 0	3.89 18	6 9	75
2	72	2	30 .5	93. 0	1 5 6	93. 6	41 .0	4 0	4.67 28	8 5	14 1

```
20
6
                                  131
                                                     4.89
3 24
                25
                      84.
                                         40
                                                             8
                .3
                                                       03
                                          .0
                             1
9
2
                                                     4.29
05
                                                4
4 50
          1
                23
                     101
                                  125
                                          52
                                                             8
                                                                 13
                .0
                                                             0
                                                                  5
                       .0
                                    .4
                                          .0
```

```
In [10]:
```

Out[10]: (442, 11)

In [11]:

Всего строк: 442

In [12]:

Out[12]: Index(['AGE', 'SEX', 'BMI', 'BP', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'Y'], dtype='object')

```
Out[13]: AGE
                  int64
           SEX
                   int64
           BMI float64
           BP float64
           S1
                 int64
           S2
                float64
           S3
                float64
           S4
                float64
           S5
                float64
           S6
                 int64
           Y
                 int64
           dtype: object
```

In [14]:

In [13]:

AGE - 0 SEX - 0 BMI - 0 S1 - 0 S2 - 0 S3 - 0 S4 - 0 S5 - 0 S6 - 0

Y - 0

In [15]:

Out[15]: AGE SEX BMI BP S1 S2 S3

count	442.000000 442.0	000000 442.0	000000 442.000	0000 442.000	0000 442.000	000 442.000000	442.0)
mean	48.518100	1.468326	26.375792	94.647014	189.140271	115.439140	49.788462	4.07
std	13.109028 12.934202	0.499561 1.2	4.41812	22 13	.831283	34.608052	30.413081	}
min	19.000000	1.000000	18.000000	62.000000	97.000000	41.600000	22.000000	2.00
25% 40.25	38.250000 50000 3.0	1.000000	23.2000	000 84	.000000 164	.250000 96.0	50000)
50%	50.000000	1.000000	25.700000	93.000000	186.000000	113.000000	48.000000	4.00
75%	59.000000 5.0	2.000000	29.2750	000 105.000	0000 209.75	0000 134.5000	000 57.750000)
max	79.000000	2.000000	42.200000	133.000000	301.000000	242.400000	99.000000	9.09

```
In [21]:
```

Out [21]: array([2, 1], dtype=int64)

3) Визуальное исследование датасета

In [38]:

Out [38]: <matplotlib.axes._subplots.AxesSubplot at 0xe70c610>

In [42]:

Out [42]: <matplotlib.axes._subplots.AxesSubplot at 0xfd81e70>

Гистограмма

In [43]:

Out [43]: <matplotlib.axes._subplots.AxesSubplot at 0xfd816b0>

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

In [44]:

Out [44]: <seaborn.axisgrid.JointGrid at 0xfd663b0>

In [48]:

Out [48]: <seaborn.axisgrid.JointGrid at 0x1041bab0>

In [49]:

Out [49]: <seaborn.axisgrid.JointGrid at 0x1079f450>

"Парные диаграммы"

In [54]:

Out [54]: <seaborn.axisgrid.PairGrid at 0x207eb810>

In []:

Ящик с усами

Отображает одномерное распределение вероятности.

In [56]:

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x3066f290>

In [57]:

 ${\tt Out[57]:} < matplotlib.axes._subplots. Axes Subplot at 0x3095a350 >$

In [61]:

Out [61]: <matplotlib.axes._subplots.AxesSubplot at 0x301089d0>

Violin plot

In [59]:

Out [59]: <matplotlib.axes._subplots.AxesSubplot at 0x313a38d0>

In [62]:

Out [62]: <matplotlib.axes._subplots.AxesSubplot at 0x2e5efe10>

In [65]:

 ${\tt Out[65]:} < matplotlib.axes._subplots. Axes Subplot \ at \ 0x305b53b0 >$

In [79]:

Out [79]: <seaborn.axisgrid.FacetGrid at 0x340379b0>

4) Информация о корреляции признаков

In [68]:

Out[68]:

•	AGE	SEX	ВМІ	ВР	S1	S2	S3	S 4	
AG	1.00000	0.17373	0.18508	0.33542	0.2600	0.21924	-0.0751	0.20384	0.270
E	0	7	5	8	61	3	81	1	7
SE	0.17373	1.00000	0.08816	0.24101	0.0352	0.14263	-0.3790	0.33211	0.149
X	7	0	1	0	77	7	90	5	9
BM	0.18508	0.08816	1.00000	0.39541	0.2497	0.26117	-0.3668	0.41380	0.446
I	5	1	0	1	77	0	11	7	1
ВР	0.33542	0.24101	0.39541	1.00000	0.2424	0.18554	-0.1787	0.25765	0.393
	8	0	1	0	64	8	62	0	4
S1	0.26006 1	0.03527 7		0.24246 4	1.0000 00	0.89666 3	0.05151 9	0.54220 7	0.515 5
S2	0.21924	0.14263	0.26117	0.18554	0.8966	1.00000	-0.1964	0.65981	0.318
	3	7	0	8	63	0	55	7	3
S3	-0.0751	-0.3790	-0.3668	-0.1787	0.0515	-0.1964	1.00000	-0.7384	-0.39
	81	90	11	62	19	55	0	93	85
S4	0.20384	0.33211	0.41380	0.25765	0.5422	0.65981	-0.7384	1.00000	0.617
	1	5	7	0	07	7	93	0	8
S5	0.27077 4	0.14991 6	0.44615 7	0.39348 0	0.5155 03	0.31835 7	-0.3985 77	0.61785 9	1.000
S6	0.30173	0.20813	0.38868	0.39043	0.3257	0.29060	-0.2736	0.41721	0.464
	1	3	0	0	17	0	97	2	6
Y	0.18788	0.04306	0.58645	0.44148	0.2120	0.17405	-0.3947	0.43045	0.565
	9	2	0	2	22	4	89	3	8

In [69]:

Out[69]:

	AGE	SEX	ВМІ	ВР	S1	S2	S3	S4	
AG	1.00000	0.17373	0.18508	0.33542	0.2600	0.21924	-0.0751	0.20384	0.270
E	0	7	5	8	61	3	81	1	7

SE	0.17373	1.00000	0.08816	0.24101	0.0352	0.14263	-0.3790	0.33211	0.149
X	7	0	1	0	77	7	90	5	9
BM	0.18508	0.08816	1.00000	0.39541	0.2497	0.26117	-0.3668	0.41380	0.446
I	5	1	0	1	77	0	11	7	1
ВР	0.33542	0.24101	0.39541	1.00000	0.2424	0.18554	-0.1787	0.25765	0.393
	8	0	1	0	64	8	62	0	4
S1	0.26006	0.0352	0.24977	0.24246	1.0000	0.89666	0.05151	0.54220	0.515
	1	77	7	4	00	3	9	7	5
S2	0.21924	0.1426	0.26117	0.18554	0.8966	1.00000	-0.19645	0.65981	0.318
	3	37	0	8	63	0	5	7	3
S3	-0.0751	-0.3790	-0.3668	-0.1787	0.0515	-0.1964	1.00000	-0.7384	-0.39
	81	90	11	62	19	55	0	93	85
S4	0.20384	0.3321	0.41380	0.25765	0.5422	0.65981	-0.73849	1.00000	0.617
	1	15	7	0	07	7	3	0	8
S5	0.27077	0.1499	0.44615	0.39348	0.5155	0.31835	-0.39857	0.61785	1.000
	4	16	7	0	03	7	7	9	0
S6	0.30173	0.2081	0.38868	0.39043	0.3257	0.29060	-0.27369	0.41721	0.464
	1	33	0	0	17	0	7	2	6
Y	0.18788	0.0430	0.58645	0.44148	0.2120	0.17405	-0.39478	0.43045	0.565
	9	62	0	2	22	4	9	3	8

In [70]:

Out[70]:

	AGE	SEX	BMI	ВР	S1	S2	S3	S4	
AG	1.00000	0.14658	0.13653	0.24211	0.1822	0.15361	-0.0738	0.16089	0.180
E	0	0	5	1	20	2	46	8	5
SE	0.14658	1.00000	0.08042	0.21573	0.0228	0.11020	-0.3261	0.29733	0.143
X	0	0	4	3	09	8	88	5	1
BM	0.13653	0.08042	1.00000	0.28177	0.1941	0.19858	-0.2498	0.33562	0.344
I	5	4	0	0	71	3	31	5	7
ВР	0.24211	0.21573	0.28177	1.00000	0.1880	0.14025	-0.1310	0.20594	0.268
	1	3	0	0	67	3	14	8	8
S1	0.18222	0.02280	0.19417	0.18806	1.0000	0.71722	0.01069	0.39336	0.356
	0	9	1	7	00	9	5	7	2
S2	0.15361 2	0.11020 8	0.19858 3	0.14025 3	0.7172 29	1.00000 0	-0.1333 32	0.50357 9	0.242
S 3	-0.0738	-0.3261	-0.2498	-0.1310	0.0106	-0.1333	1.00000	-0.6386	-0.31
	46	88	31	14	95	32	0	33	17
S4	0.16089	0.29733	0.33562	0.20594	0.3933	0.50357	-0.6386	1.00000	0.485
	8	5	5	8	67	9	33	0	4
S 5	0.18054	0.14317	0.34472	0.26886	0.3562	0.24225	-0.3117	0.48541	1.000
	4	2	0	3	68	0	75	0	0
S6	0.20178	0.16819	0.26637	0.26456	0.2271	0.19408	-0.2005	0.30739	0.316
	4	9	3	6	39	2	45	7	2
Y	0.13070	0.03063	0.39119	0.28935	0.1540	0.12966	-0.2788	0.32473	0.408
	9	0	5	2	16	5	84	4	9

In [71]:

Out[71]:

	AGE	SEX	BMI	ВР	S1	S2	S3	S4	
AG F	1.00000	0.17746	0.20055 4	0.35085 9	0.2625	0.22171	-0.1069 73	0.22101	0.265

SE	0.17746	1.00000	0.09807	0.26150	0.0277	0.13469	-0.3945	0.33752	0.174
X	3		9	8	90	5	84	4	6
BM	0.20055	0.09807	1.00000	0.39798	0.2878	0.29549	-0.3711	0.45906	0.491
I	4	9	0	5	29	4	72	8	6
ВР	0.35085	0.26150	0.39798	1.00000	0.2752	0.20563	-0.1910	0.28079	0.396
	9	8	5	0	24	8	33	9	0
S 1	0.26252	0.02779	0.28782	0.27522	1.0000	0.87879	0.01530	0.52067	0.512
	4	0	9	4	00	3	8	4	8
S2	0.22171	0.13469	0.29549	0.20563	0.8787	1.00000	-0.1974	0.65228	0.349
	1	5	4	8	93	0	35	3	9
S 3	-0.1069	-0.3945	-0.3711	-0.1910	0.0153	-0.1974	1.00000	-0.7896	-0.45
	73	84	72	33	08	35	0	94	04
S4	0.22101	0.33752	0.45906	0.28079	0.5206	0.65228	-0.7896	1.00000	0.640
	7	4	8	9	74	3	94	0	3
S5	0.26517	0.17462	0.49160	0.39607	0.5128	0.34994	-0.4504	0.64039	1.000
	6	5	9	1	64	7	20	0	0
S6	0.29623	0.20327	0.38466	0.38121	0.3321	0.28648	-0.2908	0.41370	0.453
	5	7	4	9	73	3	63	0	0
Y	0.19782	0.03740	0.56138	0.41624	0.2324	0.19583	-0.4100	0.44893	0.589
	2	1	2	1	29	4	22	1	4

In [72]:

Out [72]: <matplotlib.axes._subplots.AxesSubplot at 0x31bc55d0>

In [74]:

Out [74]: <matplotlib.axes._subplots.AxesSubplot at 0x2ccbdf70>

In [75]:

Out [75]: <matplotlib.axes._subplots.AxesSubplot at 0x31c7b790>

In [76]:

Out [76]: <matplotlib.axes._subplots.AxesSubplot at 0x31ae5f10>

In [77]:

Корреляционные матрицы, построенные различными методами

In []: