

Fundamentals of Data Communications

DHCP & DNS

Levi Perigo, Ph.D.
University of Colorado Boulder
Department of Computer Science
Network Engineering

Review

Dynamic Host Configuration Protocol (DHCP)

- Every device needs an IP address
 - Used to be manual on every machine
- Dynamically assigns IP addresses
 - IP address
 - Subnet mask
 - Default-gateway
 - Primary DNS server
 - Secondary DNS server
- Server service
 - Windows, Linux, Router
- UDP
 - Ports 67 & 68

Scope

- Administrative grouping of range of addresses server can hand out
- · 10.1.1.100 10.1.1.200
- Keep static servers out of scope
 - Reservations
 - Exclude Range
- Host (hardware)
- Options
 - DNS, Gateway, TFTP server, etc.

Lease

- Limited number of addresses in the (pool/scope)
- 1 day, 10 days, 100 days, etc.
 - Coffee shop (1 day)
 - Large desktop enterprise (100 days)
- 50% of lease time; client requests to renew for another lease period
 - Will re-try a random period of time (if can't contact server)
 - · CSMA/CD

DHCP – (DORA)

- Client
 - Discover Request (Broadcast)
- Server
 - Offer
- Client
 - Request
- Server
 - Acknowledgement

Security

- Multiple DHCP servers
 - First response
- What else?

Notes

- Misconfigure
- Multiple DHCP server
- Lease times

- Wireless Routers
 - Rouge

Domain Name System (DNS)

Human Interaction

- How do you call a business on the phone?
 - You dial their phone number
 - You can't dial "Neptune Mountaineering"
- How do you send someone postal mail?
 - You label the postage with the address
- How does this work for the Internet?
 - I need to check my online checking account at Bank of America.
 - What is Bank of America's IP address?

Human Interaction

- Computers use binary numbers (numerical IP addresses)
 - IPv4: 173.252.110.27
 - IPv6: 2a03:2880:2110:df07:face:b00c:0:1
- Humans typically can't remember multiple, long, arbitrary numbers
- Need a <u>system</u> to convert the numbers to a human-readable format
 - Domain Name System (DNS)

Domain Name System (DNS) - Overview

- What is a **DOMAIN NAME**?
 - "Memorable," "easy-to-spell" address that is unique on the Internet - (adtran.com vs. 76.164.174.122)
- What is an Uniform Resource Locator (URL)?
 - Domain name is part of a URL
 - Much more specific: folder, machine, protocol, etc.
 - adtran.com/support/tse_software
- DNS The most recognized <u>SYSTEM</u> for assigning named addresses to hosts (Internet Web servers).

Remember!

- ***Domain Name System (DNS) is an international "phone book" for the Internet: it matches human-readable names to numbers (IP addresses) machines can understand.
 - Phone book/contacts maps phone number to name:
 - 303-555-1000 = Levi Perigo
 - DNS maps IP address to domain name:
 - 128.138.183.242 = raveninnovation.com

DNS - Understanding

- What does DNS stand for?
 - Domain Name System
- What three pieces of information does a computer need to access the Internet?
 - IP Address
 - Subnet Mask
 - Default Gateway
- True or False: A computer must have a DNS server configured to access the Internet. Why or Why not?
 - False. You can use the IP address of the server.
- What are common DNS server IP addresses?
 - 4.2.2.2 (Verizon)
 - 8.8.8.8 (Google)
 - 75.75.75.(Comcast)
 - 208.67.222.222 (OpenDNS)

History

- Manual, centralized, 1:1 mapping system
 - HOSTS.TXT
 - harvard.edu -> 69.172.200.24
 - howard.edu -> 138.238.144.31
 - howard.com -> 65.183.106.166
- This system failed
- DNS RFC 882 & 883 (1983)

Design

Distributed Database

Not centralized like "TEXT.TXT"

UDP port 53 (some use TCP for large files)

DNS is a hierarchical tree structure

- .com -> google.com -> mail.google.com

Syntax

- 127 levels
- 63 characters each
- Max of 255 characters
- LDH letters, digits, hyphen; not case sensitive
- Organized right to left
- *Trivia most US servers use three-letter TLDs (other countries often use two: .au; .ca; etc.)

Tree Structure

Top Level Domains (TLDs)

Tree Structure

Tree Zones

Administration

- Internet Corporation for Assigned Names and Numbers (ICANN) - Root
- VeriSign (gov; net)
- Network Solutions (com)
- Educause (edu)

DNS: root name servers

- Contacted by local name server that can not resolve name
- Root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD & Authoritative Servers

Top-level domain (TLD) servers:

- Responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
 - Network Solutions maintains servers for .com TLD
 - Educause for .edu TLD

Authoritative DNS servers:

- Organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- Can be maintained by organization or service provider

Local DNS Name Server

- Does not strictly belong to hierarchy
- Each ISP (residential ISP, company, university) has one
 - also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

Server Responsibilities

- Authority over specific portion of the tree
- Maintains the records for the hosts in its tree

- Knows the root servers
 - "Default route"

Name Resolution

- Every host knows a local DNS server
 - Sends all queries to the local DNS server
- If the local DNS can answer the query, then you're done
 - 1. Local server is also the **authoritative** server for that name
 - 2. Local server has **cached** the record for that name
- Otherwise, go down the hierarchy and search for the authoritative name server
 - Every local DNS server knows the root servers
 - Use cache to skip steps if possible
 - Skip the root and go directly to .edu if the root file is cached

DNS Name Resolution (example)

 Host at cs.colorado.edu wants IP address for gaia.cs.umass.edu

- Iterated query:
 - contacted server replies with name of server to contact
 - "I don't know this name, but ask this server"

root DNS server

From Host to Server (in detail)

Indirect Advantage of DNS

Human-readable

- Scalability
 - Many:1
 - 1:many
- Dynamic DNS

Dynamic DNS

Mobile employees

Remote offices

Virtual Private Network (VPN)

- dyndns.org
 - Mirai Botnet 2016

DNS "Hairpin" / Split DNS

- What if the DNS server resolution (Web server) is on the same LAN, the PC uses the public address, and the gateway (router) DNATs?
 - PC Resolves Domain to IP address
 - PC -> HTTP/TCP SYN -> Default-gateway
 - Router -> NAT
 - Server -> HTTP/TCP SYN_ACK -> PC
 - What does the PC do?

DNS "Hairpin" Diagram

DNS "Hairpin" / Split DNS

Solutions?

- Internal devices point to internal DNS server
- Router acts as DNS proxy
- Server on different subnet; DNAT
 - Make sure it is placed above the "matchall" NAT

DNS Records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain/zone

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

Records

- Address record (A record) maps hostname to 32bit IPv4 address
 - Generally 1x1 mapping of top level domain/subdomain
- AAAA record (quad A) maps hostname to 128-bit IPv6 address
 - Generally 1x1 mapping of top level domain/subdomain
- Mail exchange record (MX record) maps a domain to a list of mail exchange servers for that domain
 - Allows 1xMany mappings
 - Email destined for a particular domain can be routed to one of many listed MX records

Open DNS (Umbrella) and Alternative DNS

- Bypasses sensors and filters
- Speed
- Negatives?

DNS - Security

DNS was not designed with security in mind

Trust DNS

mybankaccount.com

Spoofing

paypal.com vs. paypa1.com

Denial of Service (DoS)

- Local no DNS
- Server no domain

DNS Hijacking

Virus on OS changes local DNS server: mybankaccount.com to badguybank.com

Security

- Domain Name Security Extensions (DNSSEC)
 - Keys for cryptographically signed responses
 - Hierarchy of trust within zones
 - Deployment 2010
- Device Hardening
 - DNS Proxy

Interdisciplinary - Politics

- VeriSign
 - "Site Finder" Redirecting
- Unites States political influence over ICANN
 - .xxx TLD
 - COVID-19

DNS: caching, updating records

- Once (any) name server learns mapping, it caches mapping
 - Cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - Root name servers not often visited
- Cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire
- Update/notify mechanisms proposed IETF standard
 - RFC 2136

DNS Protocol Messages

query and reply messages, both with same message format

Message Header

- identification: 16 bit # for query, reply to query uses same #
- flags:
 - query or reply
 - · recursion desired
 - · recursion available
 - reply is authoritative

2 bytes 2 bytes	
identification	flags
# questions	# answer RRs
# authority RRs	# additional RRs
questions (variable # of questions)	
answers (variable # of RRs)	
authority (variable # of RRs)	
additional info (variable # of RRs)	

DNS Protocol Messages

Inserting Records into DNS

- Example: new startup "Network Utopia"
- Register name networkuptopia.com at *DNS registrar* (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com
 TLD server:

 (networkutopia.com, dns1.networkutopia.com, NS)
 (dns1.networkutopia.com, 212.212.212.1, A)
- Create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com

- name is hostname
- value is IP address

type=NS

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain/zone

type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX

 value is name of mailserver associated with name

Challenge

- What is the IP address of:
 - www.raveninnovation.com

nslookup

Troubleshooting Tool

IP address to name resolution

```
Administrator: Command Prompt
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
H:∖>nslookup telecom.colorado.edu
Server: dc1-w-admindc1p.dvuadmin.net
Non-authoritative answer:
Name: telecom.colorado.edu
Address: 128.138.183.242
H:\>
```

nslookup

- Multiple IPv4 server addresses
- IPv6 address

```
Administrator: Command Prompt
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
H:∖>nslookup google.com
Server: dc1-w-admindc1p.dvuadmin.net
Address: 10.154.239.20
DNS request timed out.
timeout was 2 seconds.
Non-authoritative answer:
Name:
         google.com
Addresses: 2607:f8b0:4009:800::1006
```

Resolution Test

Ping domain

```
Administrator: Command Prompt
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
H:\>ping google.com
Pinging google.com [74.125.225.41] with 32 bytes of data:
Reply from 74.125.225.41: bytes=32 time=39ms TTL=53
Reply from 74.125.225.41: bytes=32 time=35ms TTL=53
Reply from 74.125.225.41: bytes=32 time=35ms TTL=53
Reply from 74.125.225.41: bytes=32 time=36ms TTL=53
Ping statistics for 74.125.225.41:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
    Minimum = 35ms, Maximum = 39ms, Average = 36ms
H:\>_
```


Questions?

