

FACULTAD DE CS. EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPTO DE MATEMÁTICA. SEGUNDO CUATRIMESTRE DE 2015 CÁLCULO VARIACIONES PRÁCTICA 5: TEOREMAS DE EXISTENCIA

Ejercicio 1 Sea $F:[a,b]\times\mathbb{R}^n\to\mathbb{R}$ una función tal que $F(\cdot,z)$ es medible para todo $z\in\mathbb{R}^n$ y que $F(x,\cdot)$ es continuamente diferenciable para casi todo $x\in[a,b]$. Además supongamos que existe $a:[0,+\infty)\to[0,+\infty)$ continua y $0\le b\in L^1([a,b],\mathbb{R})$ tal que

$$|F(x,z)| + |D_z F(x,z)| \le a(|z|)b(x).$$

Demostrar que para 1 la integral de acción

$$I(u) = \int_a^b \frac{|u'(x)|^p}{p} + F(x, u(x))dx$$

satisface:

- a. I es d.s.s.c.i. Ayuda: la intregral es suma de una funcional convexa y continua en la norma, y en el otro sumando se puede usar que $u_n \rightharpoonup u$ en $W^{1,p}((a,b),\mathbb{R}^n)$ implica $u_n \to u$ uniformemente cuando 1 < p.
- b. Demostrar que I es diferenciable Gâteaux y expresar la diferencial de I.
- c. Supongamos que I tiene un punto crítico u sobre

$$\{u \in W^{1,p}((a,b), \mathbb{R}^n) | u(a) = \alpha, u(b) = \beta\},\$$

 $\mbox{con } 1 < p.$ Demostrar que u satisface las ecuaciones de Euler-Lagrange, que en este caso son

$$\begin{cases} \frac{d}{dx} (|u(x)|^{p-2} u(x)) = D_z F(x, u(t)) & \text{a.e. } x \in (a, b) \\ u(a) = \alpha \text{ y } u(b) = \beta \end{cases}$$
 (1)

Ejercicio 2 Supongamos que $L:(a,b)\times\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ satisface

- a. $L(x, u, p), L_p(x, u, p)$ son continuas.
- b. L(x, u, p) convexa respecto a p.

c.

$$L(x, u, p) > \theta(p) + a(x)$$
,

donde $a \in L^1([a,b],\mathbb{R})$ y θ es superlineal.

Demostrar que existe un mínimo de la integral de acción sobre el conjunto $\{u \in W^{1,1}((a,b),\mathbb{R}^n)|u(a)=\alpha,u(b)=\beta\}$

Ejercicio 3 Encontrar condiciones suficientes sobre $V:(a,b)\to\mathbb{R}$ para que

$$I(u) = \int_a^b \frac{|p|^2}{2} + V(x)dx$$

satisfaga el Teorema de existencia de Tonelli de modo que el problema

$$\min \left\{ I(u) \middle| u \in W^{1,1}((a,b),\mathbb{R}), u(a) = \alpha, u(b) = \beta \right\}$$

tenga solución. Encontrar condiciones sobre V que garanticen que I es diferenciable Gâteaux y hallar las ecuaciones de Euler-Lagrange que satisface un mínimo.

Ejercicio 4 Demostrar la siguiente afirmación. $L:(a,b)\times\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ es cuasiconvexa si y solo si para $(x_0,u_0)\in[a,b]\times\mathbb{R}^n$ fijos la funcional

$$\int_a^b L(t_0, u_0, \phi'(x)) dx,$$

alcanza un mínimo en u sobre el conjunto

$$\{\phi \in W^{1,\infty}((a,b),\mathbb{R}^n)|\phi(a)=\alpha,\phi(b)=\beta\},$$

si y solo si u es la recta que une α con β . Una de las implicaciones fue demostrada durante las clases teóricas.

Ejercicio 5 Generalizar, una vez más el teorema de existencia de Tonelli, de la siguiente forma. Supongamos que $L:(a,b)\times\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ satisface las hipótesis del ejercicio 2, excepto el item c) que es modificado como sigue

c')
$$L(x, u, p) \ge \theta(p) + b|u| + a(x),$$

donde $a \in L^1([a, b], \mathbb{R}), b \in \mathbb{R}$ y θ es superlineal.

Demostrar que bajo la suposiciones anteriores, aún existe un mínimo de la integral de acción sobre el conjunto $\{u \in W^{1,1}((a,b),\mathbb{R}^n)|u(a)=\alpha,u(b)=\beta\}$

Ejercicio 6 Sea $1 y <math>\alpha : [0,1] \to (0,+\infty)$ una función en $L^{infty}([0,1])$ tal que existe s < 1/(1-p) tal que $\alpha^s \in L^1([0,1])$. Demostrar que el problema

$$\min \left\{ \int_0^1 \alpha(x) |u'|^p dx \middle| u \in W^{1,p}([0,1], \mathbb{R}), u(0) = a, u(1) = b \right\}.$$

tiene una única solución. Demostrar que se satisfacen las ecuaciones de Euler-Lagrange, resolverlas para expresar las soluciones del problema como

$$u(x) = a + (b - a) \left(\int_0^1 \alpha^{\frac{1}{1 - p}}(t) dt \right)^{-1} \left(\int_0^x \alpha^{\frac{1}{1 - p}}(t) dt \right)$$

Ejercicio 7 Demostrar que el problema

$$\min \left\{ \int_0^1 (1-|u'(x)|^2)^2 + u dx \middle| u \in W^{1,1}([0,1],\mathbb{R}), u(0) = a, u(1) = b \right\}.$$

tiene solución única.