Mat 1375 HW 16

Exercise 16.2

Determine the final amount in a savings account under the given conditions.

- \$700, compounded quarterly, **(4)** \$1400, compounded annually,
- at 3%, at 2.25%,
- for 7 years for 5 years
- \$1400, compounded continuously,
- at 2.25%. for 5 years

a) Initial = \$700 compounded quarterly > 4 rate = 0.03. N=7 years

- Final amount = $700 \cdot (1 + \frac{0.03}{4})^{4.7}$

b) Initial = \$1400 compounded annually -> 1

rate = 0.0225 N = 5 years

- Final amount = $1400 \left(1 + \frac{0.025}{1} \right)^{1.5}$

C) Initial = \$1400 compounded continuously

rate = 0.0225 N = 5 years

r=0,05

Final amount = 1400 P. 0.0225.5

Exercise 16.3

(a) Find the amount P that needs to be invested at a rate of 5% compounded quarterly for 6 years to give a final amount of 2000.

$$P \cdot \left(1 + \frac{0.05}{4}\right)^{4.6} = 2000$$

 $\Rightarrow p = \frac{2000}{(1+0.05)^24} = 1484.39...$

Find the present value
$$P$$
 of a future amount of $A=\$3500$ invested at 6% compounded annually for 3 years.

$$P \cdot \left(1 + \frac{0.06}{1.3}\right)^{1.3} = 3500$$

$$\Rightarrow P = \frac{3500}{(1.06)^3}$$

rate of 4.9% compounded continuously for 7 years.

$$P \cdot e^{0.049 \cdot 7} = 1000 \Rightarrow P = \frac{1000}{e^{0.049 \cdot 7}}$$

At what rate do we have to invest \$1900 for 4 years compounded monthly to obtain a final amount of \$2250?

$$|900 \cdot (1 + \frac{1}{12})^{12 \cdot 4} = 2250$$

$$\Rightarrow (1 + \frac{1}{12})^{12} = \frac{2250}{1900} \Rightarrow 1 + \frac{1}{12} = 48 \frac{2250}{1900}$$

$$\Rightarrow \frac{1}{12} = 48 \frac{2250}{1900} - 1 \Rightarrow 1 = 12 \left(48 \frac{2250}{1900} - 1\right)$$

$$= 0.042343 \dots = 4.23\%$$

At what rate do we have to invest \$1300 for 10 years compounded continuously to obtain a final amount of \$2000?

$$|360 \cdot e^{r \cdot 10}| = 2000 \implies e^{10r} = \frac{2060}{(300)}$$

$$\Rightarrow \ln(e^{10r}) = \ln(\frac{2000}{(300)}) \Rightarrow 10r \cdot \ln(e) = \ln(\frac{2000}{(300)})$$

$$\Rightarrow \ln(e^{10r}) = \ln(\frac{2000}{(300)}) = 0.043078 \dots \Rightarrow 4.30\%$$

V Exercise 16.4

An unstable element decays at a rate of 5.9% per minute. If 40mg of this element has been produced, how long will it take until 2mg of the element are left? Round your answer to the nearest thousandth.

Exercise 16.5

A substance decays radioactively with a half-life of 232.5 days. How much of 6.8 grams of this substance is left after 1 year?

$$b = (\frac{1}{2})^{\frac{1}{232.5}} = 1 \text{ year} = 365 \text{ days.}$$

$$6.8 \cdot (\frac{1}{2})^{\frac{365}{232.5}} = 2.290467... \Rightarrow 2.290 \text{ grams}$$

Exercise 16.6

Fermium-252 decays in 10 minutes to 76.1% of its original mass. Find the half-life of fermium-252.

1 after 10 mins 0.76[, half time
$$h = 7$$
 $b = (\frac{1}{2})^{\frac{1}{h}}$ (h's unit is minute)

1. $(\frac{1}{2})^{\frac{1}{h}} = 0.76[$

Take "In" on the both sides: In $(\frac{1}{2})^{\frac{10}{h}} = \ln(0.76[)$
 $\frac{10}{h} \cdot \ln(\frac{1}{2}) = \ln(0.76[) \Rightarrow \frac{10}{h} = \frac{\ln(0.76[)}{\ln(0.5[)}$
 $h = \frac{10 \cdot \ln(0.5)}{\ln(0.76[)} = 25.3786... \Rightarrow \frac{25.379 \text{ (mins.)}}{25.379 \text{ (mins.)}}$

Exercise 16.7

How long do you have to wait until 15mg of beryllium-7 have decayed to $\boxed{4\text{mg}}$ if the half-life of beryllium-7 is $\boxed{53.12}$ days?

$$t = ? (t's unit is day) b = (\frac{1}{2})^{53.12}$$

$$15 \cdot (\frac{1}{2})^{53.12} = 4 \Rightarrow (\frac{1}{2})^{53.12} = \frac{4}{15}$$
Take "In" on the both sides:
$$\ln(\frac{1}{2})^{53.12} = \ln(\frac{4}{15})$$

$$\frac{t}{53.12} \cdot \ln(0.5) = \ln(\frac{4}{15}) \Rightarrow \frac{t}{53.12} = \ln(\frac{4}{15})$$

$$\Rightarrow t = 53.12 \cdot \frac{\ln(\frac{4}{15})}{\ln(0.5)} = 101.294028 \dots \Rightarrow [01.294 (days.)]$$

Exercise 16.8

If Pharaoh Ramses II died in the year 1213 BC, then what percent of the carbon-14 was left in the mummy of Ramses II in the year 2000?

Half-life of (arbon-14 is 5730 years (based on Google)

?
$$\Rightarrow$$
 | $(\frac{1}{2})^{\frac{1}{5730}} \cdot \frac{3213}{3213} = ?$

1213 BC 2000 AD

 $t = \text{total passing } 2000 + 1213 = 3213 \text{ years}$
 \Rightarrow $(\frac{1}{2})^{\frac{3213}{5730}} = ? \Rightarrow ? = 0.677957 \cdots \Rightarrow 67.796\%$

Exercise 16.9

In order to determine the age of a piece of wood, the amount of carbon-14 was measured. It was determined that the wood had lost 33.1% of its carbon-14. How old is this piece of wood? t=7 (t's unit is year)

Half-life of (arbon-14 is 5730 years (based on Google (3))

10st 33.1%
$$\rightarrow$$
 remain $|-0.33| = 0.669$
 $|\cdot \left(\frac{1}{2}\right)^{\frac{1}{5730}} = 0.669$.

Take "In" on the both sides: In $\left(\left(\frac{1}{2}\right)^{\frac{1}{5730}}\right) = \ln(0.669)$
 $\Rightarrow \frac{t}{5730} \cdot \ln(\frac{1}{2}) = \ln(0.669)$
 $\Rightarrow t = 5730 \cdot \frac{\ln(0.669)}{\ln(0.5)} = 3322.95239 \dots \Rightarrow \frac{3322.952}{\text{years}}$

Exercise 16.10

Archaeologists uncovered a bone at an ancient resting ground. It was determined that 62% of the carbon-14 was left in the bone. How old is the bone?

Half-life of Carbon-14 is 5730 years

$$| (\frac{1}{2})^{5730} = 0.62$$
Take "In" on the both sides: $\ln((\frac{1}{2})^{5730}) = \ln(0.62)$

$$\Rightarrow \frac{t}{5730} \cdot \ln((\frac{1}{2})^{5730}) = \ln(0.62)$$

$$\Rightarrow t = 5730 \cdot \frac{\ln(0.62)}{\ln(0.62)} = 3951.75110 \cdot \dots = 3951.751 \text{ years}$$