Generated on 2023-11-21 11:13:13 by gEcon version 1.2.1 (2023-01-18)

Model name: RSW

1 HIGHREGIME

1.1 Optimisation problem

$$\max_{p\!:\!H_t,y\!H_t,i\!H_t} U\!H_t = -0.5 \left(p\!i\!t\!H - p\!i\!t\!C\!B + p\!i\!H_t \right)^2 + \beta \left(p\!H\!\,\mathbf{E}_t \left[U\!H_{t+1} \right] + (1-p\!H) \,\mathbf{E}_t \left[U\!L_{t+1} \right] \right) - 0.5\kappa\theta^{-1}y\!H_t^{\ 2} \tag{1.1}$$

s.t.:

$$piH_{t-1} = \log etapi_{t-1} + \beta \left(pHpiH_t + piL_t \left(1 - pH \right) \right) + \kappa yH_{t-1} \quad \left(\lambda_t^{\text{HIGHREGIME}^1} \right)$$

$$\tag{1.2}$$

$$yH_{t-1} = pHyH_t + yL_t(1 - pH) - \sigma(iH_{t-1} - pHpiH_t - piL_t(1 - pH)) \quad \left(\lambda_t^{\text{HIGHREGIME}^2}\right)$$

$$(1.3)$$

1.2 First order conditions

$$- \textit{pi}tH + \textit{pi}tCB - \textit{pi}H_t + \beta \textit{pH}\lambda_t^{\mathrm{HIGHREGIME}^1} - \beta \textit{pH}\mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^1}\right] + \textit{pH}\sigma\lambda_t^{\mathrm{HIGHREGIME}^2} = 0 \quad \left(\textit{pi}H_t\right) \tag{1.4}$$

$$pH\lambda_t^{\text{HIGHREGIME}^2} + \beta pH\left(\kappa E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2}\right]\right) - \kappa \theta^{-1} yH_t = 0 \quad (yH_t)$$
(1.5)

$$-\beta p H \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2} \right] = 0 \quad (iH_t)$$
 (1.6)

2 LOWREGIME

2.1 Optimisation problem

$$\max_{p\!i\!L_t, y\!J\!L_t, i\!L_t} U\!L_t = -0.5 \left(-p\!i\!t\!C\!B + p\!i\!t\!L + p\!i\!L_t \right)^2 + \beta \left(p\!L\!E_t \left[U\!L_{t+1} \right] + (1 - p\!L) E_t \left[U\!H_{t+1} \right] \right) - 0.5\kappa\theta^{-1}y\!L_t^2$$

$$\tag{2.1}$$

s.t.

$$piL_{t-1} = \log etapi_{t-1} + \beta \left(pLpiL_t + piH_t \left(1 - pL \right) \right) + \kappa yL_{t-1} \quad \left(\lambda_t^{\text{LOWREGIME}^1} \right)$$
(2.2)

$$yL_{t-1} = pLyL_t + yH_t(1 - pL) - \sigma(iL_{t-1} - pLpiL_t - piH_t(1 - pL)) \quad \left(\lambda_t^{\text{LOWREGIME}^2}\right)$$

$$(2.3)$$

2.2 First order conditions

$$\textit{pitCB} - \textit{pitL} - \textit{piL}_t + \beta \textit{pL}\lambda_t^{\text{LOWREGIME}^1} - \beta \textit{pLE}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] + \textit{pL}\sigma\lambda_t^{\text{LOWREGIME}^2} = 0 \quad (\textit{piL}_t) \tag{2.4}$$

$$pL\lambda_t^{\text{LOWREGIME}^2} + \beta pL \left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right]\right) - \kappa \theta^{-1} yL_t = 0 \quad (yL_t)$$
(2.5)

$$-\beta pL\sigma E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2} \right] = 0 \quad (iL_t)$$
 (2.6)

3 EXOG

3.1 Identities

$$e tapi_t = e^{\epsilon_t^{\pi} + \phi \log e tapi_{t-1}} \tag{3.1}$$

4 Equilibrium relationships (after reduction)

$$-e t q p i_t + e^{\epsilon_t^{\pi} + \phi \log e t q p i_{t-1}} = 0 \tag{4.1}$$

$$pH\lambda_t^{\text{HIGHREGIME}^2} + \beta pH\left(\kappa E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2}\right]\right) - \kappa \theta^{-1} yH_t = 0$$
(4.2)

$$pL\lambda_t^{\text{LOWREGIME}^2} + \beta pL\left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right]\right) - \kappa \theta^{-1} yL_t = 0$$
(4.3)

$$-piH_{t-1} + \log etapi_{t-1} + \beta (pHpiH_t + piL_t(1 - pH)) + \kappa yH_{t-1} = 0$$
(4.4)

$$-piL_{t-1} + \log e^{t}pi_{t-1} + \beta (pLpiL_t + piH_t (1 - pL)) + \kappa yL_{t-1} = 0$$
(4.5)

$$-yH_{t-1} + pHyH_t - \sigma(iH_{t-1} - pHpiH_t - piL_t(1 - pH)) + yL_t(1 - pH) = 0$$

$$(4.6)$$

$$-yL_{t-1} + pLyL_t - \sigma (iL_{t-1} - pLpiL_t - piH_t (1 - pL)) + yH_t (1 - pL) = 0$$

$$(4.7)$$

$$UH_{t} + 0.5 \left(pitH - pitCB + piH_{t} \right)^{2} - \beta \left(pHE_{t} \left[UH_{t+1} \right] + (1 - pH) E_{t} \left[UL_{t+1} \right] \right) + 0.5 \kappa \theta^{-1} yH_{t}^{2} = 0$$

$$(4.8)$$

$$UL_{t} + 0.5\left(-pitCB + pitL + piL_{t}\right)^{2} - \beta\left(pLE_{t}\left[UL_{t+1}\right] + (1 - pL)E_{t}\left[UH_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yL_{t}^{2} = 0$$

$$(4.9)$$

$$-pi\!H + pi\!C\!B - pi\!H_t + \beta p\!H\lambda_t^{\rm HIGHREGIME^1} - \beta p\!H\!E_t \left[\lambda_{t+1}^{\rm HIGHREGIME^1}\right] + p\!H\sigma\lambda_t^{\rm HIGHREGIME^2} = 0 \tag{4.10}$$

$$pi\!\!\!/\!\!\!/ CB - pi\!\!\!/\!\!\!/ L - pi\!\!\!/\!\!\!/ L_t + \beta p\!\!\!/ L \lambda_t^{\rm LOWREGIME^1} - \beta p\!\!\!/ L E_t \left[\lambda_{t+1}^{\rm LOWREGIME^1} \right] + p\!\!\!/ L \sigma \lambda_t^{\rm LOWREGIME^2} = 0 \tag{4.11}$$

$$-\beta pH\sigma \mathbf{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^2} \right] = 0 \tag{4.12}$$

$$-\beta p L \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2} \right] = 0 \tag{4.13}$$

 \sim

5 Steady state relationships (after reduction)

$$-\epsilon tqpi_{ss} + e^{\phi \log \epsilon tqpi_{ss}} = 0 ag{5.1}$$

$$pH\lambda_{\rm ss}^{\rm HIGHREGIME^2} + \beta pH\left(-\lambda_{\rm ss}^{\rm HIGHREGIME^2} + \kappa\lambda_{\rm ss}^{\rm HIGHREGIME^1}\right) - \kappa\theta^{-1}yH_{\rm ss} = 0 \tag{5.2}$$

$$pL\lambda_{\rm ss}^{\rm LOWREGIME^2} + \beta pL \left(-\lambda_{\rm ss}^{\rm LOWREGIME^2} + \kappa \lambda_{\rm ss}^{\rm LOWREGIME^1} \right) - \kappa \theta^{-1} yL_{\rm ss} = 0$$
 (5.3)

$$-piH_{ss} + \log etapi_{ss} + \beta \left(pHpiH_{ss} + piL_{ss}\left(1 - pH\right)\right) + \kappa yH_{ss} = 0$$

$$(5.4)$$

$$-piL_{ss} + \log etapi_{ss} + \beta \left(pLpiL_{ss} + piH_{ss}\left(1 - pL\right)\right) + \kappa yL_{ss} = 0$$

$$(5.5)$$

$$-yH_{ss} + pHyH_{ss} - \sigma(iH_{ss} - pHpiH_{ss} - piL_{ss}(1 - pH)) + yL_{ss}(1 - pH) = 0$$
(5.6)

$$-yL_{ss} + pLyL_{ss} - \sigma(iL_{ss} - pLpiL_{ss} - piH_{ss}(1 - pL)) + yH_{ss}(1 - pL) = 0$$
(5.7)

$$UH_{ss} + 0.5 (pitH - pitCB + piH_{ss})^{2} - \beta (pHUH_{ss} + UL_{ss}(1 - pH)) + 0.5\kappa\theta^{-1}yH_{ss}^{2} = 0$$
(5.8)

$$UL_{ss} + 0.5 \left(-pitCB + pitL + piL_{ss} \right)^{2} - \beta \left(pLUL_{ss} + UH_{ss} \left(1 - pL \right) \right) + 0.5\kappa \theta^{-1} yL_{ss}^{2} = 0$$
(5.9)

$$-pitH + pitCB - piH_{ss} + pH\sigma\lambda_{ss}^{HIGHREGIME^2} = 0$$
(5.10)

$$pitCB - pitL - piL_{ss} + pL\sigma\lambda_{ss}^{LOWREGIME^2} = 0$$
(5.11)

$$-\beta p H \sigma \lambda_{\rm ss}^{\rm HIGHREGIME^2} = 0 \tag{5.12}$$

$$-\beta pL\sigma \lambda_{\rm ss}^{\rm LOWREGIME^2} = 0 \tag{5.13}$$

6 Parameter settings

ಬ

$$\beta = 0.99 \tag{6.1}$$

$$\kappa = 0.2465 \tag{6.2}$$

$$\phi = 0.95 \tag{6.3}$$

$$pitH = 0 ag{6.4}$$

$$pitCB = 0 (6.5)$$

$$pitL = 2 (6.6)$$

$$pH = 0.99 \tag{6.7}$$

$$pL = 0.99$$
 (6.8)

$$\sigma = 1 \tag{6.9}$$

$$\theta = 6 \tag{6.10}$$

7 Steady-state values

	Steady-state value
etapi	1
$i\!H$	-0.0224
iL	-1.9776
$\lambda^{ m HIGHREGIME^1}$	0.0137
$\lambda^{ m HIGHREGIME^2}$	0
$\lambda^{ ext{LOWREGIME}^1}$	-0.0275
$\lambda^{ ext{LOWREGIME}^2}$	0
$p\!i\!H$	0
piL	-2
$y\!H$	0.0803
yL	-0.1615
UH	-0.0266
UL	-0.0402

8 The solution of the 1st order perturbation

Matrix P

	$etapi_{t-1}$	iH_{t-1}	iL_{t-1}	$p\!i\!H_{t-1}$	$p\!i\!L_{t-1}$	yH_{t-1}	yL_{t-1}
$etapi_t$	/ 0.95	0	0	0	0	0	0 \
$i\!H_t$	-581.3663	-1.9645	1.9668	262.9418	-6.4295	-12.245	0.2885
$i\!L_t$	-6.5904	3e - 04	-1.9645	-0.0364	5.9614	0.0016	-0.279
piH_t	-1.0101	0	0	1.0204	-0.0206	-0.0202	4e - 04
piL_t	-0.5051	0	0	-0.0052	1.0204	1e - 04	-0.0203
yH_t	12.5752	0.2819	-0.2512	-12.7036	0.2566	1.2617	-0.0256
yL_t	6.256	-0.0014	12.3731	0.0638	-12.6397	-0.0063	1.2617

Matrix Q

$$\begin{array}{c} \epsilon^{\pi} \\ \text{etapi} \\ iH \\ iL \\ piH \\ piL \\ yL \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 1 \\ -338.5676 \\ -3.838 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

Matrix R

Matrix S

$$\begin{array}{c} \epsilon^{\pi} \\ \lambda^{\rm HIGHREGIME^1} \\ \lambda^{\rm HIGHREGIME^2} \\ \lambda^{\rm LOWREGIME^1} \\ \lambda^{\rm LOWREGIME^2} \\ UH \\ UL \\ \end{array} \begin{pmatrix} -196.1584 \\ 0.5246 \\ -97.5864 \\ 0.5246 \\ 5.3648 \\ -9.2172 \\ \end{pmatrix}$$

9 Model statistics

9.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
etapi	1	0.1303	0.017	Y
$i\!H$	-0.0224	34.4315	1185.5279	Y
iL	-1.9776	0.3903	0.1523	Y
$\lambda^{ m HIGHREGIME^1}$	0.0137	21.6778	469.9288	Y
$\lambda^{ m HIGHREGIME^2}$	0	0.0506	0.0026	N
$\lambda^{ ext{LOWREGIME}^1}$	-0.0275	10.7845	116.3044	Y
$\lambda^{ ext{LOWREGIME}^2}$	0	0.0506	0.0026	N
$p\!i\!H$	0	0.0985	0.0097	N
piL	-2	0.0492	0.0024	Y
$y\!H$	0.0803	8.6232	74.3602	Y
yL	-0.1615	4.29	18.4037	Y
UH	-0.0266	0.7264	0.5277	Y
UL	-0.0402	1.2362	1.5281	Y

9.2 Correlation matrix

	etapi	$i\!H$	iL	$\lambda^{ ext{HIGHREGIME}^1}$	$\lambda^{ m HIGHREGIME^2}$	$\lambda^{ ext{LOWREGIME}^1}$	$\lambda^{ ext{LOWREGIME}^2}$	piH	piL
etapi	1	-0.301	-0.301	-0.825	0.436	-0.825	0.436	-0.491	-0.49
$i\!H$		1	1	0.567	-0.977	0.567	-0.977	-0.323	-0.3
iL			1	0.567	-0.977	0.567	-0.977	-0.323	-0.3
$\lambda^{ m HIGHREGIME^1}$				1	-0.725	1	-0.725	0.567	0.56
$\lambda^{ m HIGHREGIME^2}$					1	-0.725	1	0.116	0.11
$\lambda^{ ext{LOWREGIME}^1}$						1	-0.725	0.567	0.56
$\lambda^{ m LOWREGIME^2}$							1	0.116	0.11
$p\!i\!H$								1	1
piL									1
$y\!H$									
yL									
UH									
UL									

9.3 Cross correlations with the reference variable (*iH*)

5.5 Cross correlations with the reference variable (ar)											
	$\sigma[\cdot]$ rel. to $\sigma[iH]$	iH_{t-5}	iH_{t-4}	iH_{t-3}	iH_{t-2}	iH_{t-1}	iH_t	iH_{t+1}	iH_{t+2}	iH_{t+3}	iH_{t+4}
$etapi_t$	0.004	0.098	0.131	0.177	0.258	0.444	-0.301	-0.254	-0.21	-0.169	-0.132
$i\!H_t$	1	-0.028	-0.035	-0.051	-0.093	-0.219	1	-0.219	-0.093	-0.051	-0.035
$i\!L_t$	0.011	-0.028	-0.035	-0.051	-0.093	-0.219	1	-0.219	-0.093	-0.051	-0.035
$\lambda_t^{ ext{HIGHREGIME}^1}$	0.63	-0.078	-0.1	-0.134	-0.204	-0.385	0.567	0.47	0.151	0.043	0.003
$\lambda_t^{ m HIGHREGIME^2}$	0.001	0.04	0.051	0.071	0.122	0.269	-0.977	0.043	0.043	0.041	0.038
$\lambda_t^{ ext{LOWREGIME}^1}$	0.313	-0.078	-0.1	-0.134	-0.204	-0.385	0.567	0.47	0.151	0.043	0.003
$\lambda_t^{ m LOWREGIME^2}$	0.001	0.04	0.051	0.071	0.122	0.269	-0.977	0.043	0.043	0.041	0.038
$p\!i\!H_t$	0.003	-0.046	-0.056	-0.071	-0.096	-0.156	-0.323	0.852	0.236	0.04	-0.022
$p\!i\!L_t$	0.001	-0.046	-0.056	-0.071	-0.096	-0.156	-0.323	0.852	0.236	0.04	-0.022
yH_t	0.25	-0.069	-0.092	-0.121	-0.164	-0.245	-0.443	0.551	0.273	0.164	0.111
yL_t	0.125	-0.069	-0.092	-0.121	-0.164	-0.245	-0.443	0.551	0.273	0.164	0.111
UH_t	0.021	0.098	0.13	0.176	0.256	0.439	-0.266	-0.303	-0.218	-0.166	-0.126
UL_t	0.036	-0.098	-0.13	-0.176	-0.256	-0.44	0.275	0.292	0.217	0.166	0.127

9.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
etapi	0.713	0.471	0.271	0.11	-0.016
iH	-0.219	-0.093	-0.051	-0.035	-0.028
iL	-0.219	-0.093	-0.051	-0.035	-0.028
$\lambda^{ m HIGHREGIME^1}$	0.51	0.081	-0.065	-0.117	-0.134
$\lambda^{ m HIGHREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
$\lambda^{ ext{LOWREGIME}^1}$	0.51	0.081	-0.065	-0.117	-0.134
$\lambda^{ m LOWREGIME^2}$	-0.074	-0.071	-0.066	-0.06	-0.054
piH	0.22	-0.024	-0.095	-0.11	-0.107
$p\!i\!L$	0.22	-0.024	-0.095	-0.11	-0.107
$y\!H$	0.504	0.261	0.116	0.017	-0.055
yL	0.504	0.261	0.116	0.017	-0.055
UH	0.731	0.453	0.248	0.091	-0.029
UL	0.728	0.456	0.253	0.095	-0.026

10 Impulse response functions

Figure 1: Impulse responses $(i\!H,i\!L,p\!i\!H,p\!i\!L,y\!H)$ to ϵ^π shock

Figure 2: Impulse response $(y\!L)$ to ϵ^π shock