Title

D. Zack Garza

Friday 25th September, 2020

Contents

1 Friday, September 25

1

Friday, September 25

• For X, Y topological spaces, consider

$$hom_{Top}(X,Y) := \{ f : X \to Y \mid f \text{ is continuous} \}.$$

- Topologize with the *compact-open* topology: $U \in \text{hom}_T(X, X)$ open iff for every $f \in U$, f(K) is open for every compact $K \subseteq X$.
 - * If Y = (Y, d) is a metric space, this is the topology of "uniform convergence on compact sets": for $f_n \to f$ in this topology iff

$$||f_n - f||_{\infty,K} := \sup \left\{ d(f_n(x), f(x)) \mid x \in K \right\} \stackrel{n \to \infty}{\to} 0 \quad \forall K \subseteq X \text{ compact.}$$

In words: $f_n \to f$ uniformly on every compact set.

- Some special cases:
 - *X = I:

$$\mathcal{L}(X, x_0) := \left\{ f : I \to X \mid f(0) = \right\}.$$

Since these are homeomorphisms, everything is invertible, so equip with function composition to form a group.

_