يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۱۶

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

مرور

مرور

remove all undesirable productions using the following sequence of steps:

- 1. Remove λ -productions.
- 2. Remove unit-productions.
- 3. Remove useless productions.

 $S \rightarrow 0S1 \mid 0S0S \mid 0$ $0011 \in L(G)$?

For reference below, we will call this **exhaustive search parsing** or **brute force parsing**. It is a form of **top-down parsing**, which we can view as the construction of a derivation tree from the root down.

تجزيه

THEOREM 5.2

Suppose that G = (V, T, S, P) is a context-free grammar that does not have any rules of the form

$$A \rightarrow \lambda$$
,

or

$$A \to B$$
,

where $A, B \in V$. Then the exhaustive search parsing method can be made into an algorithm that, for any $w \in \Sigma^*$, either produces a parsing of w or tells us that no parsing is possible.

Proof: For each sentential form, consider both its length and the number of terminal symbols. Each step in the derivation increases at least one of these. Since neither the length of a sentential form nor the number of terminal symbols can exceed |w|, a derivation cannot involve more than 2|w| rounds, at which time we either have a successful parsing or w cannot be generated by the grammar.

total number of sentential forms cannot exceed

$$M = |P| + |P|^{2} + \dots + |P|^{2|w|}$$
$$= O(P^{2|w|+1}).$$

تجزيه

- به دنبال روش کارآمدتری برای تجزیه هستیم.
- الگوریتمهای دیگری نیز هستند که در درسهای بعدی خواهید دید (گرامر).
 - نیاز به معرفی فرم نرمال چامسکی

فرم نرمال چامسکی (CNF)

DEFINITION 2.8

A context-free grammar is in *Chomsky normal form* if every rule is of the form

$$\begin{array}{c} A \to BC \\ A \to a \end{array}$$

where a is any terminal and A, B, and C are any variables—except that B and C may not be the start variable. In addition, we permit the rule $S \to \varepsilon$, where S is the start variable.

فرم نرمال چامسکی (CNF)

THEOREM 2.9

Any context-free language is generated by a context-free grammar in Chomsky normal form.

PROOF IDEA We can convert any grammar G into Chomsky normal form. The conversion has several stages wherein rules that violate the conditions are replaced with equivalent ones that are satisfactory. First, we add a new start variable. Then, we eliminate all ε -rules of the form $A \to \varepsilon$. We also eliminate all unit rules of the form $A \to B$. In both cases we patch up the grammar to be sure that it still generates the same language. Finally, we convert the remaining rules into the proper form.

- تبدیل در ۵ گام:
- گام ۱: استارت

First, we add a new start variable S_0 and the rule $S_0 \to S$, where S was the original start variable. This change guarantees that the start variable doesn't occur on the right-hand side of a rule.

$$S \rightarrow aSa \mid bSb \mid \epsilon$$

$$S' \rightarrow S$$

$$S \rightarrow aSa \mid bSb \mid \epsilon$$

- تبدیل در ۵ گام:
- گام ۲: حذف سمت راستیهای با متغیر و ترمینال

$$S' \to S$$

$$S \to \mathbf{a}S\mathbf{a} \mid \mathbf{b}S\mathbf{b} \mid \epsilon$$

$$S' \to S$$

$$S \to ASA \mid BSB \mid \epsilon$$

$$A \to a$$

$$B \to b$$

- تبدیل در ۵ گام:
- گام ۳: حذف سمت راستیهای با بیش از دو متغیر

$$S' \rightarrow S$$

 $S \rightarrow ASA \mid BSB \mid \epsilon$
 $A \rightarrow a; B \rightarrow b$

$$S' \rightarrow S$$

 $S \rightarrow AX \mid BY \mid \epsilon$
 $X \rightarrow SA; Y \rightarrow SB$
 $A \rightarrow a; B \rightarrow b$

IUT-ECE

فرم نرمال چامسکی

- تبدیل در ۵ گام:
- €-rules کام ۴: حذف

Second, we take care of all ε -rules. We remove an ε -rule $A \to \varepsilon$, where A is not the start variable. Then for each occurrence of an A on the right-hand side of a rule, we add a new rule with that occurrence deleted. In other words, if $R \to uAv$ is a rule in which u and v are strings of variables and terminals, we add rule $R \to uv$. We do so for each occurrence of an A, so the rule $R \to uAvAw$ causes us to add $R \to uvAw$, $R \to uAvw$, and $R \to uvw$. If we have the rule $R \to A$, we add $R \to \varepsilon$ unless we had previously removed the rule $R \to \varepsilon$. We repeat these steps until we eliminate all ε -rules not involving the start variable.

$$S' \rightarrow S$$

 $S \rightarrow AX \mid BY \mid \epsilon$
 $X \rightarrow SA; Y \rightarrow SB$
 $A \rightarrow a; B \rightarrow b$

$$S' \rightarrow S \mid \epsilon$$

 $S \rightarrow AX \mid BY$
 $X \rightarrow SA \mid A; Y \rightarrow SB \mid B$
 $A \rightarrow a; B \rightarrow b$

- تبدیل در ۵ گام:
- unit rules کام ۵: حذف

Third, we handle all unit rules. We remove a unit rule $A \to B$. Then, whenever a rule $B \to u$ appears, we add the rule $A \to u$ unless this was a unit rule previously removed. As before, u is a string of variables and terminals. We repeat these steps until we eliminate all unit rules.

$$S' \rightarrow S \mid \epsilon$$

$$S \rightarrow AX \mid BY$$

$$X \rightarrow SA \mid A; Y \rightarrow SB \mid B$$

$$A \rightarrow a; B \rightarrow b$$

$$S' \rightarrow AX \mid BY \mid \epsilon$$

$$S \rightarrow AX \mid BY$$

$$X \rightarrow SA \mid a; Y \rightarrow SB \mid b$$

$$A \rightarrow a; B \rightarrow b$$

مثال (تبدیل به CNF)

$$A \rightarrow BAB \mid B \mid \varepsilon$$
 $B \rightarrow 00 \mid \varepsilon$

$$S \to A$$

$$A \to BAB \mid B \mid \varepsilon$$

$$B \to 00 \mid \varepsilon$$

$$S \to A$$

$$A \to BA_1 \mid B \mid \varepsilon$$

$$B \to 00 \mid \varepsilon$$

$$A_1 \to AB$$

$$S \to A \mid \varepsilon$$

$$A \to BA_1 \mid B \mid A_1$$

$$B \to 00$$

$$A_1 \to AB \mid B \mid A$$

مثال (تبدیل به CNF)

$$S \to A \mid \varepsilon$$

$$A \to BA_1 \mid B \mid A_1$$

$$B \to 00$$

$$A_1 \to AB \mid B \mid A$$

$$S \rightarrow BA_1 \mid \varepsilon \mid 00 \mid AB$$

$$A \rightarrow BA_1 \mid 00 \mid AB$$

$$B \rightarrow 00$$

$$A_1 \rightarrow AB \mid 00 \mid BA_1$$

$$S \to BA_1 \mid \varepsilon \mid ZZ \mid AB$$

$$A \to BA_1 \mid ZZ \mid AB$$

$$B \to ZZ$$

$$A_1 \rightarrow AB \mid ZZ \mid BA_1$$

$$Z \rightarrow 0$$

فرم نرمال چامسکی (CNF): مثال

$$L = \{ w \mid w \in \{a, b\}^* \text{ and } w = w^R \}$$

$$S \rightarrow a|b|aSa|bSb|\epsilon$$

فرم نرمال چامسکی (CNF): مثال

$$L = \{ w \mid w \in \{a, b\}^* \text{ and } w = w^R \}$$

$$S \to AU \mid BV \mid a \mid b \mid \varepsilon$$

$$T \rightarrow AU \mid BV \mid a \mid b$$

$$U \to TA$$

$$V \to TB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

baaab

$$S \Rightarrow BV$$

$$\Rightarrow$$
 b V

$$\Rightarrow$$
 b TB

$$\Rightarrow$$
 b AUB

$$\Rightarrow$$
 ba UB

$$\Rightarrow$$
 ba TAB

$$\Rightarrow$$
 baa AB

$$\Rightarrow$$
 baaa B

2|w|-1

1. The original CFG G_6 is shown on the left. The result of applying the first step to make a new start variable appears on the right.

$$S
ightarrow ASA \mid aB$$
 $A
ightarrow B \mid S$ $B
ightarrow b \mid arepsilon$

$$egin{aligned} S_\mathbf{0} &
ightarrow S \ S &
ightarrow ASA \mid \mathtt{a}B \ A &
ightarrow B \mid S \ B &
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{aligned}$$

2. Remove ε -rules $B \to \varepsilon$, shown on the left, and $A \to \varepsilon$, shown on the right.

$$S_0
ightarrow S$$
 $S
ightarrow ASA \mid aB \mid \mathbf{a}$
 $A
ightarrow B \mid S \mid \boldsymbol{\varepsilon}$
 $B
ightarrow \mathbf{b} \mid \boldsymbol{\varepsilon}$

$$S_0 o S$$
 $S o ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \mid S$
 $A o B \mid S \mid oldsymbol{arepsilon}$
 $B o \mathtt{b}$

3a. Remove unit rules $S \to S$, shown on the left, and $S_0 \to S$, shown on the right.

$$S_0 \to S$$

$$S \to ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$S \to ASA \mid aB \mid a \mid SA \mid AS \mid S$$

$$S \to ASA \mid aB \mid a \mid SA \mid AS$$

$$S \to ASA \mid aB \mid a \mid SA \mid AS$$

$$A \to B \mid S$$

$$A \to B \mid S$$

$$B \to b$$

3b. Remove unit rules $A \to B$ and $A \to S$.

$$S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \qquad S_0 \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\ S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \qquad S \rightarrow ASA \mid aB \mid a \mid SA \mid AS \\ A \rightarrow B \mid S \mid \mathbf{b} \qquad A \rightarrow S \mid \mathbf{b} \mid ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS \\ B \rightarrow \mathbf{b} \qquad B \rightarrow \mathbf{b}$$

4. Convert the remaining rules into the proper form by adding additional variables and rules. The final grammar in Chomsky normal form is equivalent to G_6 . (Actually the procedure given in Theorem 2.9 produces several variables U_i and several rules $U_i \to a$. We simplified the resulting grammar by using a single variable U and rule $U \to a$.)

$$S_0
ightarrow AA_1 \mid UB \mid$$
 a $\mid SA \mid AS$ $S
ightarrow AA_1 \mid UB \mid$ a $\mid SA \mid AS$ $A
ightarrow$ b $\mid AA_1 \mid UB \mid$ a $\mid SA \mid AS$ $A_1
ightarrow SA$ $U
ightarrow$ a $B
ightarrow$ b

تجزيه

- به دنبال روش کارآمدتری برای تجزیه هستیم.
- الگوریتمهای دیگری نیز هستند که در درسهای بعدی خواهید دید.
 - نیاز به معرفی فرم نرمال چامسکی

الگوريتم CYK

Assume that we have a grammar G = (V, T, S, P) in Chomsky normal form and a string

$$w = a_1 a_2 \cdots a_n$$
.

We define substrings

$$w_{ij} = a_i \cdots a_j,$$

and subsets of V

$$V_{ij} = \left\{ A \in V : A \stackrel{*}{\Rightarrow} w_{ij} \right\}.$$

Clearly, $w \in L(G)$ if and only if $S \in V_{1n}$.

الگوريتم CYK

$$V_{ij} = \left\{ A \in V : A \stackrel{*}{\Rightarrow} w_{ij} \right\}.$$

- To compute V_{ij} , observe that $A \in V_{ii}$ if and only if G contains a production $A \to a_i$.
- for j > i, A derives w_{ij} if and only if there is a production $A \to BC$, with $B \stackrel{*}{\Rightarrow} w_{ik}$ and $C \stackrel{*}{\Rightarrow} w_{k+1j}$ for some k with $i \le k, k < j$. In other words,

$$V_{ij} = \bigcup_{k \in \{i, i+1, \dots, j-1\}} \{A : A \to BC, \text{ with } B \in V_{ik}, C \in V_{k+1, j}\}.$$
 (6.8)

الگوريتم CYK

$$V_{ij} = \left\{ A \in V : A \stackrel{*}{\Rightarrow} w_{ij} \right\}.$$

An inspection of the indices in (6.8) shows that it can be used to compute all the V_{ij} if we proceed in the sequence

- 1. Compute $V_{11}, V_{22}, ..., V_{nn}$,
- **2.** Compute $V_{12}, V_{23}, ..., V_{n-1,n},$

Dynamic programming

3. Compute $V_{13}, V_{24}, ..., V_{n-2,n}$

and so on.