

Inference

Template Models

Inference in Template Models

DBN Template Specification

Ground Bayesian Network

Can unroll DBN for given trajectory and run inference over ground network

Plate Model

Can unroll plate model for given set of objects and run inference over ground network

Belief State Tracking

$$\frac{\sigma^{(t)}(S^{(t)}) = P(S^{(t)} \mid o^{(1:t)})}{\sigma^{(t+1)}(S^{(t+1)})} \stackrel{\triangle}{=} P(S^{(t+1)} \mid o^{(1:t)})$$

$$= \sum_{S^{(t)}} P(S^{(t+1)} \mid S^{(t)}, o^{(1:t)}) P(S^{(t)} \mid o^{(1:t)})$$

$$= \sum_{S^{(t)}} P(S^{(t+1)} \mid S^{(t)}, o^{(1:t)}) P(S^{(t)} \mid o^{(1:t)})$$

$$= \sum_{S^{(t)}} P(S^{(t+1)} \mid S^{(t)}, o^{(t)}(S^{(t)})$$
The state of the

Belief State Tracking

$$\sigma^{(t)}(S^{(t)}) = P(S^{(t)} \mid o^{(1:t)})$$

$$\sigma^{(\cdot t+1)}(S^{(t+1)}) \stackrel{\triangle}{=} P(S^{(t+1)} \mid o^{(1:t)})$$

$$\sigma^{(t+1)}(S^{(t+1)}) = P(S^{(t+1)} \mid o^{(1:t)}, o^{(t+1)})$$

$$= \frac{P(o^{(t+1)} \mid S^{(t+1)}, o^{(1:t)}) P(S^{(t+1)} \mid o^{(1:t)})}{P(o^{(t+1)} \mid S^{(t+1)}) \sigma^{(\cdot t+1)}(S^{(t+1)})}$$

$$= \frac{P(o^{(t+1)} \mid S^{(t+1)}) \sigma^{(\cdot t+1)}(S^{(t+1)})}{P(o^{(t+1)} \mid o^{(1:t)})}$$

$$= \frac{P(o^{(t+1)} \mid S^{(t+1)}) \sigma^{(\cdot t+1)}(S^{(t+1)})}{P(o^{(t+1)} \mid o^{(1:t)})}$$

$$= \frac{P(o^{(t+1)} \mid S^{(t+1)}) \sigma^{(\cdot t+1)}(S^{(t+1)})}{P(o^{(t+1)} \mid o^{(1:t)})}$$

Robot Localization

Fox, Burgard, Thrun

Computational Issues

Minimal sepset must separate future from past

⇒ must involve at least all of the persistent variables

wellers (Craven et al, Proc AAAI98; Tasker et al, UAI2002)

Collective Webpage Classification

Summary

- Inference in template and temporal models can be done by unrolling the ground network and using standard methods
- Temporal models also raise new inference tasks, such as real-time tracking, which require that we adapt our methods
- Moreover, ground network is often large and densely connected, requiring careful algorithm design and use of approximate methods

Inference

Summary

Inference Methods and Evaluation

MAP vs Marginals

Marginals

- Less fragile
- Confidence in answers
- Supports decision making

MAP

- Coherent joint assignment
- More tractable model classes
- Some theoretical guarantees

Approximate inference

 Errors are often attenuated

 Ability to gauge whether algorithm is working

Algorithms for Marginals

· Exact inference

- Loopy message passing
- Sampling methods

Algorithms for MAP

```
• Exact inference low treew: ath associative models
```

- · Optimization methods:
 - exact or approximate (dual decomposition)
- Search-based methods (including sampling)

Factors in Approximate Inference

- Connectivity structure
- Strength of influence
- Opposing influences
- Multiple peaks in likelihood

So, now what?

- Identify "problem regions" in network
- Try to make <u>inference</u> in these regions more exact
 - Larger clusters in cluster graph
 - Proposal moves over multiple variables
 - Larger "slave" in dual decomposition