Capteur	Temps de moyennage
Oeil	0.06 s
Caméra CCD	$< 10^{-3} s$
Photodiode	$< 10^{-6} \text{s}$
Capteur photoélectrique	10^{-6} à 10^{-8} s

Période d'un rayonnement dans le spectre visible: $\sim 10^{-15}~\text{s}$

Schéma du montage des fentes de Young

Figure d'interférence des fentes de Young

Figures réalisées avec python

Moyenné sur < 0.1 s

Moyenné sur 3 s

Profils d'intensités produites par deux longueurs d'onde distinctes

Profil d'intensité résultant de la somme des deux profils

Figure d'interférence

(a) source monochromatique

(b) source possédant une largeur spectrale

Cause d'élargissement spectral	Largeur spectrale typique
Elargissement Doppler	10 ⁹ Hz
Elargissement naturel	10 ⁸ Hz
Elargissement collisionnel	10 ⁸ Hz

Laser : $\Delta \nu = 10^9 Hz$

Source spectrale : $\Delta \nu = 10^{11} Hz$

Figure d'interférence

(a) source monochromatique

(b) source possédant une largeur spectrale

Profils d'intensités produites par des longueurs d'onde du domaine visible

Echelle des teintes de Newton (1)

(1) http://olivier.granier.free.fr/

Cohérence spatiale

$$\frac{ax}{D} + \frac{aX}{L}$$

 $\delta(M) =$

Source de largeur b, perpendiculaire aux fentes, centrée sur l'axe z: on additionne les intensités $dI = \frac{I(X)}{h} dX$

$$I = I_0 \left(1 + \operatorname{sinc}\left(\frac{\pi a b}{\lambda L}\right) \cos\left(\frac{2\pi a x}{\lambda D}\right) \right)$$

$$C = \left| \operatorname{sinc} \left(\frac{\pi ab}{\lambda L} \right) \right|$$
 terme de constraste

Cohérence spatiale

Contraste *C* de la figure d'interférence en fonction de la largeur de la source *b*, supposée monochromatique

Figures d'interférence pour différentes largeurs de source *b*