Método diagonal de Cantor

- ► Publicado em 1891;
- Mostra como obter um conjunto diferente de todos os conjuntos de uma dada coleção de conjuntos, seja ela finita ou infinita;
- Cada um dos conjuntos dessa coleção, por sua vez, pode conter um número finito ou infinito de elementos;
- O número de elementos usados para caracterizar tais conjuntos também pode ser finito ou infinito;
- Bastante usado até os dias de hoje.

Método diagonal de Cantor

Características:

- Matriz com linhas e colunas;
- Cada coluna representa um certo elemento (podem existir infinitas colunas);
- Cada linha representa um conjunto criado com esses elementos (se a quantidade de colunas for infinita, podem existir infinitos conjuntos);
- ▶ O cruzamento de uma linha com uma coluna é marcado para indicar se aquele elemento pertence (1) ou não pertence (0) ao respectivo conjunto;
- Considere a diagonal e troque 0s por 1s e vice-versa;
- O conjunto assim obtido é diferente de todos os conjuntos representados na matriz.

Método diagonal de Cantor Exemplo

- Suponha que os elementos são números naturais;
- Cada coluna representa um número natural;
- Cada linha representa um subconjunto dos números naturais.
- Quaisquer que sejam os conjuntos considerados nas linhas, a complementação da diagonal principal produz um novo subconjunto desses mesmos elementos que difere de todos os considerados nas linhas da matriz.

Linguagem \mathcal{L}_d

Método diagonal de Cantor Exemplo

	0	1	2	3	4	***
S_I	1	1	1	0	1	
S_2	1	1	0	0	1	
S_3	1	0	0	1	0	
S_4	0	1	1	1	0	•••
S_5	0	0	1	0	0	
	•••					•••

Método diagonal de Cantor Exemplo

Na figura anterior, temos:

- $ightharpoonup S_1 = \{0, 1, 2, 4, ...\};$
- $ightharpoonup S_2 = \{0, 1, 4, ...\};$
- $ightharpoonup S_3 = \{0, 3, ...\};$
- $ightharpoonup S_4 = \{1, 2, 3, ...\};$
- \triangleright $S_5 = \{2, ...\};$
- ▶ Diagonal: 11010...;
- ▶ Diagonal complementada: 00101...;
- ► Conjunto obtido: $X = \{2, 4, ...\};$
- $X \neq S_i, i \geq 0.$

Método diagonal de Cantor

Aplicações

Serve, por exemplo, para demonstrar que $|\mathbb{N}| < |2^{\mathbb{N}}|$:

- ▶ Suponha que $|\mathbb{N}| = |2^{\mathbb{N}}|$;
- ▶ Então, existe uma bijeção entre \mathbb{N} e $2^{\mathbb{N}}$;
- As colunas representam os números naturais;
- Cada linha representa um subconjunto dos números naturais dessa bijeção; suponha que eles sejam rotulados por números naturais, a partir de zero;
- Sempre é possível obter um novo subconjunto que não foi considerado pela bijeção;
- A hipótese é falsa e não existe tal bijeção;
- $|\mathbb{N}| < |2^{\mathbb{N}}|.$

