Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa IZ07IO2

ALGORYTMY PRZETWARZANIA OBRAZÓW

Implementacja progowania obrazu prawdopodobieństwa przypasowania do zadanej tekstury przy użyciu metody SIFT

Autor:

Piotr Bródka

Prowadzący: dr. Hab. Anna Korzyńska

Spis treści

1.	Wpr	owadzenie	3
	1.1	Wymagania systemowe	3
	1.2	Uruchomienie programu	3
	1.3	Funkcje aplikacji	3
	1.4	Wykorzystane narzędzia i repozytoria	3
	1.5	Pobranie kodu programu	3
2.	Inte	rfejs i podstawowe funkcje	4
	2.1	Interfejs aplikacji	4
	2.2	Otworzenie obrazu	4
3.	Szuk	anie zadanej tekstury	5
	3.1	Wykrywanie wspólnych cech metodą SIFT	5
	3.2	Generowanie obrazu prawdopodobieństwa	6
4.	Ope	racje progowania	7
	4.1	Progowanie	7

1. Wprowadzenie

1.1 Wymagania systemowe

- System operacyjny: dowolny system z zainstalowanym Java 17;
- Java 17

1.2 Uruchomienie programu

Program jest dostępny w postaci jednego pliku wykonywalnego jar. Program uruchamia się za pomocą podwójnego kliknięcia, lub z linii poleceń komendą: java -jar <nazwa_pliku>.

1.3 Funkcje aplikacji

Aplikacja została stworzona w celu przeprowadzeniu wykrycia cech wspólnych dwóch obrazów. Wśród zaimplementowanych funkcji znajdują się:

- Podstawowy podgląd dowolnego obrazu z dysku
- Porównanie dwóch obrazów oraz podgląd wykrytych cech wspólnych
- Wygenerowanie obrazu prawdopodobieństwa przypasowania do zadanej tekstury przy użyciu metody SIFT
- Operacje progowania na wygenerowanym obrazie prawdopodobieństwa

1.4 Wykorzystane narzędzia i repozytoria

Program został napisany w języku Java w wersji 17. Do zbudowania interfejsu została wykorzystana biblioteka Swing. W projekcie znajduje również biblioteka OpenCV w wersji 4.5.5.1 oraz wykorzystywany jest plik jar biblioteki OpenCV w wersji 4.6.0.0.

1.5 Pobranie kodu programu

Kod źródłowy programu jest dostępny na serwisie GitHub pod linkiem:

https://github.com/PioBro13/APO Projekt SIFT.git

2. Interfejs i podstawowe funkcje

2.1 Interfejs aplikacji

Interfejs aplikacji jest w języku angielskim. Funkcję otworzenia obrazu oraz porównywanie dwóch obrazów metodą SIFT można uruchomić przez otworzenie odpowiedniego przycisku

Rysunek 1 Ogólny interfejs aplikacji

2.2 Otworzenie obrazu

W celu otworzenia i podglądu obrazu należy nacisnąć przycisk "Open file". Następnie pojawi się okno dialogowe z możliwością wyboru pliku (Rysunek 2 Okno wyboru obrazu). Wspierane są powszechne formaty obrazów takie jak: bmp, jpeg, png itp.. Po wyborze obrazu i naciśnięciu "Open" w odstępnym oknie pojawi się wybrany obraz (Rysunek 3 Otworzony obraz). UWAGA: operacja porównywania metodą SIFT wymaga wybrania dwóch obrazów (poniższe menu wyboru pojawi się dwukrotnie).

Rysunek 2 Okno wyboru obrazu

Rysunek 3 Otworzony obraz

3. Szukanie zadanej tekstury

3.1 Wykrywanie wspólnych cech metodą SIFT

Operację wykrycia wspólnych cech dwóch obrazów uruchamiamy poprzez naciśnięcie przycisku "SIFT". Po wybraniu dwóch obrazów pojawi się oddzielne okno wraz z wykonanym wykryciem cech wspólnych. Wszystkie elementy wyznaczone przez metodę SIFT są graficznie wyszczególnione. Pod podglądem wykrycia wspólnych cech znajduję się przycisk do wygenerowania obrazu prawdopodobieństwa. Jego działanie zostanie wyjaśnione w następnym punkcie

Rysunek 4 Wykrycie cech wspólnych dwóch obrazów

3.2 Generowanie obrazu prawdopodobieństwa

Wygenerowanie obrazu prawdopodobieństwa jest możliwe po uprzednim wykryciu cech wspólnych dwóch wybranych obrazów (Patrz 3.1). Obraz prawdopodobieństwa zostanie wygenerowany poniżej przycisku(Rysunek 5 Wygenerowany obraz prawdopodobieństwa). W przypadku zbyt małej ilości cech wspólnych wybranych obrazów widoczny będzie komunikat z błędem (Rysunek 6 Komunikat o błędnych obrazach). Dodatkowo poniżej wygenerowanego obrazu pojawi się przycisk pozwalający przejście do interfejsu operacji progowania.

Rysunek 5 Wygenerowany obraz prawdopodobieństwa

Rysunek 6 Komunikat o błędnych obrazach

4. Operacje progowania

4.1 Progowanie

Operacja progowania dostępna jest w oddzielnym oknie. Aby go uruchomić, należy najpierw wygenerować obraz prawdopodobieństwa (Patrz 3.2). Interfejs składa się z: suwaka z wyborem typu progowania, suwaka z wartością progu, polem tekstowym do wpisania wartości progu oraz radio buttonem do trybu progowania adaptacyjnego (Rysunek 7 Interfejs progowania). W polu tekstowym jest włączona walidacja: możliwe są tylko liczby całkowite z zakresu od 0 do 255. Wartość progu potwierdzamy naciśnięciem przycisku pod polem, a w przypadku niepoprawnej wartości wyskoczy pop-up z informacją (Rysunek 8 Komunikat po podaniu błędnej wartości). Progowanie z automatycznym progiem jest możliwe przy wykorzystaniu metody Otsu (numer 5 na pierwszy suwaku).

Rysunek 7 Interfejs progowania

Rysunek 8 Komunikat po podaniu błędnej wartości