THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Solutions to Logic – Week 2 Practice Class

MATH1064: Discrete Mathematics for Computing

Exercises: Section 1.1: Questions 1, 3, 5, 11, 12, 40, 41, 48, 49; Section 1.2: Questions 1, 5, 6, 15, 34, 37 Section 1.3: Questions 1, 5, 7, 10, 16–28

Here is a list of **problems** for the contact class. Try to solve them before you go to class!

- 1. Let r = "Bruce has red hair," u = "Bruce has a ute" and f = "Bruce likes to eat figs." Translate the following statements into symbolic from.
 - (a) Bruce does not like to eat figs.
 - (b) Bruce has red hair and does not have a ute.
 - (c) Bruce likes to eat figs, and he has red hair or a ute.
 - (d) It is not the case that Bruce has a ute or he has red hair.
 - (e) It is not the case that Bruce has a ute, or he has red hair.
 - (f) Bruce has a ute and red hair, or he has a ute and likes to eat figs.

Solution:

- (a) $\neg f$
- (b) $r \land \neg u$
- (c) $f \wedge (r \vee u)$
- (d) $\neg (u \lor r)$
- (e) $\neg u \lor r$
- (f) $(u \wedge r) \vee (u \wedge f)$
- **2.** If p is the statement "it is raining" and q is the statement "it is hot," translate the following into English sentences: (a) $p \land \neg q$; (b) $(p \lor q) \land \neg (p \land q)$.

Solution:

- (a) It is raining and it is not hot.
- (b) It is either raining or hot, but not both.

3. Construct a truth table to determine the truth values for $(p \lor q) \land \neg p$. *Solution:*

p	q	$((p \lor q) \land \neg p)$	
F	F	F	
F	T	Т	
T	F	F	
T	T	F	

4. Construct a truth table to determine the truth values for $(p \lor q) \land \neg (p \lor r)$. *Solution:*

p	q	r	$ ((p \lor q) \land \neg (p \lor r)) $	
F	F	F	F	
F	F	T	F	
F	T	F	T	
F	T	T	F	
T	F	F	F	
T	F	T	F	
T	T	F	F	
T	T	T	F	

5. Are the statement forms $p \land \neg q$ and $(p \lor q) \land \neg q$ logically equivalent? *Solution:*

$$(p \lor q) \land \neg q \equiv (p \land \neg q) \lor (q \land \neg q)$$

$$\equiv (p \land \neg q) \lor \text{ (contradiction)}$$

$$\equiv (p \land \neg q)$$

Hence, the statements are equivalent.

6. Verify that $p \wedge (q \vee r)$ is not logically equivalent to $(p \wedge q) \vee r$. *Solution:*

p	q	r	$(p \land (q \lor r))$	$((p \land q) \lor r)$
F	F	F	F	F
F	F	T	F	T
F	T	F	F	F
F	T	T	F	T
T	F	F	F	F
T	F	T	T	T
T	T	F	T	Т
T	T	T	Т	T

The two logical statements are not logical equivalent, because they take different values in the truth table (rows two and four).

7. Find a simpler statement that is logically equivalent to $p \land \neg (\neg p \lor \neg q)$.

Solution:

$$p \land \neg (\neg p \lor \neg q) \equiv p \land (p \land q)$$
$$\equiv (p \land p) \land q$$
$$\equiv p \land q$$

8. Using logical equivalences, show that the statement $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution:

$$(p \land q) \rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv (\neg p \lor p) \lor (\neg q \lor q)$$

$$\equiv (tautology) \lor (tautology)$$

$$\equiv (tautology)$$

Here are two **puzzles** that you can think about during week 2; they are related to the first lecture. Feel free to ask your tutors or lecturer for more hints!

- A Suppose each point of the plane is coloured either red or blue. Show that the four vertices of some rectangle are all of the same colour.
 - Hint: Draw three parallel lines. What do you notice when you draw a common perpendicular to them?
- B Suppose you label 10 points on a circle randomly with the numbers 1,...,10, with each number used exactly once. Show that there are always 3 consecutive points whose labels sum to strictly more than 16.