

MA2201/TMA4150

Vår 2015

Norges teknisk–naturvitenskapelige universitet

Institutt for matematiske fag

Løsningsforslag — Øving 10

Seksjon 20

[2] Her er nok det enkleste å prøve seg fram med ulike elementer i mengden av enheter i \mathbb{Z}_{11} . Generatorene er 2, 6, 7 og 8.

8

$$\begin{split} \phi(p^2) = & |\{n \in \mathbb{Z}^+ | n \le p^2 \wedge \gcd(n, p) = 1\}| \\ = & |\{n \in \mathbb{Z}^+ | n \le p^2\} \setminus \{n \in \mathbb{Z}^+ | n \le p^2 \wedge \gcd(n, p) \ne 1\}| \\ = & |\{n \in \mathbb{Z}^+ | n \le p^2\}| - |\{n \in \mathbb{Z}^+ | n \le p^2 \wedge \gcd(n, p) \ne 1\}| \\ = & p^2 - |\{p, 2p, \dots p^2\}| \\ = & p^2 - p \end{split}$$

Sagt med ord: $\phi(p^2)$ er antall positive heltall mindre enn eller lik p^2 som er relativt primiske til p^2 . Det er p^2 positive heltall mindre enn eller lik p^2 , og p av disse (nemlig $p, 2p, \ldots p^2$ er ikke relativt primiske til p^2 . Dermed har vi at $\phi(p^2) = p^2 - p$.

27 Hvis a er sin egen invers, har vi $a^2 = 1$, og dermed

$$0 = a^2 - 1 = (a - 1)(a + 1).$$

Siden \mathbb{Z}_p er en kropp har vi ingen nulldivisorer; dermed må vi ha a=1 eller a=-1=p-1.

28 Vi vet at:

$$(p-1)! = (p-1)(p-2)\cdots(2)(1).$$

For p = 2 har vi (p - 1)! = 1! = p - 1.

For $p \geq 3$ vet vi at for hver faktor i (p-1)! er også inversen en faktor (\mathbb{Z}_p er en kropp, og alle dens elementer unntatt null er faktorer i (p-1)!). For alle faktorer unntatt p-1 og 1 er inversen en annen faktor; vi kan dermed gjøre om uttrykket for (p-1)! til

$$(p-1)! = (p-1)(1) \cdots (1)(1) = p-1$$

Seksjon 22

Vi ser etter røtter til polynomet $2x^{219} + 3x^{74} + 2x^{57} + 3x^{44}$. Vi ser umiddelbart at x = 0 er en rot, så anta i det følgende at $x \neq 0$. Da er x relativt primisk til 5, så dermed har vi fra Fermats lille teorem at $x^4 \equiv 1 \mod 5$. Vi skriver derfor om polynomet:

$$2x^{219} + 3x^{74} + 2x^{57} + 3x^{44} = 2(x^4)^{54}x^3 + 3(x^4)^{18}x^2 + 2(x^4)^{14} + 3(x^4)^{11}$$

Det er nå relativt mye enklere å sette inn de restrerende verdiene (x^4 -faktorene blir jo alle lik 1), og vi står igjen med at 0, 1, 2 og 3 er røtter i polynomet.

24 La $f(x) = a_n x^n + \dots + a_1 x + a_0$ og $g(x) = b_m x^m + \dots + b_1 x + b_0$ være to polynomer i D[x], og anta $a_n \neq 0 \neq b_m$. Da har vi at

$$f(x)g(x) = a_n b_m x^{n+m} + (a_{n-1}b_m + a_n b_{m-1})x^{n+m-1} + \dots + a_0 b_0$$

Siden D er et integritetsområde, er $a_n b_m \neq 0$; dermed er $f(x)g(x) \neq 0$, og D[x] er et integritetsområde.

- 25 a) Som vi så i forrige oppgave er et produkt av ett polynom av grad m og ett av grad n et polynom av grad m+n. Dette kan være lik 1 hvis og bare hvis m=n=0. På den andre siden, dersom $p(x)=a\neq 0$, så vet vi at a har en invers b, og q(x)=b blir da inversen til p(x). Derfor er enhetene i D[X] nettopp alle polynomer av grad 0 som ikke er lik 0.
 - **b**) 1 og -1
 - **c)** 1, 2, 3, 4, 5 og 6

Eksamensoppgaver

H2011-2 a) I denne oppgaven skal vi vise at enhetene (elementene med multiplikativ invers) i en ring R med enhet (multiplikativ identitet) danner en abelsk gruppe under multiplikasjon. Vi sjekker derfor gruppeaksiomene:

Mengde med binæroperasjon: Før vi kan bruke aksiomene må vi sjekke det nulte aksiomet": At enhetene i R er en mengde, og at multiplikasjonen fra R er en binæroperasjon. Det første følger av at elementene i R utgjør er en mengde. Det andre er oppfylt dersom mengden av enheter i R er lukket under multiplikasjon; la derfor a og b være enheter, med a' og b' som deres respektive inverser. Vi har da at (ab)(b'a') = 1, så ab er igjen en enhet i R.

- \mathcal{G}_1 Multiplikasjonen er assosiativ i R (fordi R er en ring), så da er den det her også.
- \mathcal{G}_2 Det multiplikative identitetetselementet er en enhet, og fungerer som identitetselement også i gruppa.

 \mathcal{G}_3 Inversen av en enhet er igjen en enhet.

b) \mathbb{Z}_n er en kommuttativ ring. Enhetene i \mathbb{Z}_n er elementene som er relativt primiske til n, og som vi har sett i (a) danner disse en abelsk gruppe U. Per definisjon er $|U| = \phi(n)$. Dermed har vi at for $u \in U$, så er $u^{\phi(n)} = u^{|U|} = 1$, identiteten i U - dette følger for eksempel fra Lagranges teorem. Altså har vi at for a relativt primisk til n så er $a^{\phi(n)} \equiv 1 \mod n$.

H2006-1 a) Det finnes to abelske grupper av orden 12 opp til isomorfi: $\mathbb{Z}_4 \times \mathbb{Z}_3$ og $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$.

b) Det finnes 12 enheter i \mathbb{Z}_{21} , nemlig $\{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}$. Ingen av disse har orden 4. Dermed må gruppen være isomorf til $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$.

Ekstra utfordring

- a) $1 \Rightarrow 2$ Anta at $\operatorname{Im} \phi \leq \operatorname{Ker} \psi$, og la $h \in H$. Da er $(\psi \circ \phi)(h) = \psi(\phi(h)) = 0$, for $\phi(h) \in \operatorname{Im} \phi$. Altså er $\psi \circ \phi = 0$. $2 \Rightarrow 1$ Anta at $\phi \circ \psi = 0$. For alle $h \in H$ er da $\psi(\phi(h)) = 0$, så $\phi(h) \in \operatorname{Ker} \psi$. Følgelig er $\operatorname{Im} \phi \subseteq \operatorname{Ker} \psi$. Videre vet vi at både $\operatorname{Im} \phi$ og $\operatorname{Ker} \psi$ er undergrupper av G, da er i tillegg $\operatorname{Im} \phi \leq \operatorname{Ker} \psi$.
 - b) ϕ er injektiv hvis og bare hvis Ker $\phi = 0$ hvis og bare hvis Ker $\phi = \text{Im } 0$. ψ er surjektiv hvis og bare hvis Im $\psi = L$ hvis og bare hvis Im $\psi = \text{Ker } 0$. Dermed ser vi at alle betingelsene i (1) er oppfylt hvis og bare hvis alle betingelsene i (2) er oppfylt.
 - c) Ved hjelp av (2) fra oppgave (b) ser vi at ι er injektiv, π er surjektiv, og Im $\iota = H = \operatorname{Ker} \pi$. Altså er følgen eksakt.

d)

$$\mathbb{K}$$
 er eksakt \Leftrightarrow Ker $f_n = \operatorname{Im} f_{n+1}$ $\forall n \in \mathbb{Z}$
 \Leftrightarrow Ker $f_n / \operatorname{Im} f_{n+1} = (0)$ $\forall n \in \mathbb{Z}$
 $\Leftrightarrow H_n(\mathbb{K}) = (0)$ $\forall n \in \mathbb{Z}$

e) Betingelse (i) og (ii) er lett å se at stemmer; vi har grupper og gruppehomomorfier mellom disse gruppene. Betingelse (iii) kan vi med litt regning også se at holder. Dermed er dette tre komplekser.

$$\cdots \xrightarrow{\cdot 5} \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \xrightarrow{\cdot 5} \mathbb{Z} \xrightarrow{\cdot 0} \mathbb{Z} \xrightarrow{\cdot 5} \cdots$$

er ikke eksakt, for $\operatorname{Im}(\cdot 5) = 5\mathbb{Z} \neq \mathbb{Z} = \operatorname{Ker}(\cdot 0)$.

$$\cdots \xrightarrow{\cdot 2} \mathbb{Z}_6 \xrightarrow{\cdot 3} \mathbb{Z}_6 \xrightarrow{\cdot 2} \mathbb{Z}_6 \xrightarrow{\cdot 3} \mathbb{Z}_6 \xrightarrow{\cdot 2} \cdots$$

er eksakt, for $\text{Im}(\cdot 3) = \{0, 3\} = \text{Ker}(\cdot 2)$ og $\text{Im}(\cdot 2) = \{0, 2, 4\} = \text{Ker}(\cdot 3)$.

$$\cdots \xrightarrow{\cdot 4} \mathbb{Z}_8 \xrightarrow{\cdot 4} \mathbb{Z}_8 \xrightarrow{\cdot 4} \mathbb{Z}_8 \xrightarrow{\cdot 4} \mathbb{Z}_8 \xrightarrow{\cdot 4} \cdots$$

er ikke eksakt fordi $Im(\cdot 4) = \{0, 4\} \neq \{0, 2, 4, 6\} = Ker(\cdot 4)$