

MATERIA: RELACIONES UTILES PAG: 1

AULA:

EXAMEN:

FECHA: / / 2021

LEGAJO Nº:

COMISION:

CARRERA:

APELLIDO Y NOMBRE:

Transformada de un trem periodice de deltas

$$S_{T}(t) = \sum_{m=-\infty}^{\infty} S(t-mT) = \sum_{m=-\infty}^{\infty} C_{m} C_{m}^{2} C$$

Serie de Fourier

$$C_m = \frac{1}{T} \int_{-T}^{T/2} f(t) e^{-jm\omega_s t} dt$$
 $f(t) = S_T(t)$

$$C_{m} = \int_{-T/2}^{T/2} S(t) e^{-jm\omega_{s}t} dt = \frac{1}{T} e^{jm\omega_{s}t} = \frac{1}{T} e^{-\frac{1}{T}}$$

1 (madepende de m)

$$S(t) = \frac{1}{T} \sum_{m=-\infty}^{\infty} e^{jm\omega_s t}$$

Expresion ALTERNATIVA de S_T(t)

1) Recordan que:

Resumisupo:

$$S_{T}(t) = \sum_{n=-\infty}^{\infty} S(t-mT) = \frac{1}{T} \sum_{m=-\infty}^{\infty} J^{m} \omega_{s} t$$

EXAMEN:

PAG: 2 DE:

FECHA: / /

LEGAJO Nº: _

COMISION:

AULA:

CARRERA:

APELLIDO Y NOMBRE:

$$\left(\mathcal{J}_{r}(E) \right) = \frac{1}{r} \sum_{m=-\infty}^{\infty} 2\pi S(w-m w_{s})$$

$$= \left(\frac{2\pi}{T}\right) \sum_{m=1}^{\infty} S(w-m\omega_s)$$

$$\mathcal{F}\left[S_{r}(t)\right] = w_{s} \sum_{m=-\infty}^{\infty} S(w-m\omega_{s})$$

Espectro De un trem de deltas.

FECHA: ___

PAG: 3 DE:

COMISION:

AULA:

CARRERA:

APELLIDO Y NOMBRE:

LEGAJO No:

TRANSFORMADA DE UNTREN DE PULSOS

EXAMEN:

Ws. [(w-mws)

 $F[p(t)] = 6. Simc(\frac{5}{2}\omega)$ Apemdice 2

F(Rft)) = Ws \(\Sim\(\omega \omega

 $(G \cdot \omega_S = G \cdot \frac{2\pi}{T} = 2\pi \cdot \frac{2}{T})$

Ceros Simc $(\frac{z}{z}\omega) = 5 \text{ Son } (\frac{z}{z}\omega) = 0$

5 W2 = KM W2 (5/2) K,

Cerros de la Sinc

K= ±1, ±2,

COMISION:

LEGAJO No:

APELLIDO Y NOMBRE:

CARRERA:

d (ω-mωs) La Panción Pr(w) es 7 Ø solo cuando W= m cos. Pou lo tanto PT (E) serce un tren deltas ponderadas por Sinci w= mws. Entonces: PT-(w)= 2TT & Sime (Emws) . S(w-mws) Notese que los ceras Wz = 2T x counciden con m Ws Solo cuando: Wz = m Wz = ZTT K endecinque: mws = m 211 = 211 x => m = T x : T debe see entero

MATERIA: _____ PAG:

AULA: ____ FECHA: _____

LEGAJO Nº: _____ COMISION: _____ CARRERA: ____

APELLIDO Y NOMBRE:

MATERIA: ______ PAG: _____ DE: ______

AULA: ____ EXAMEN: _____ FECHA: ___/ __/

COMISION: _____ CARRERA: _____

APELLIDO Y NOMBRE

LEGAJO Nº:

APELLIDO I NOIVIBRE:		
	FILTRO	Recuperador IDEAL
H(jw) {c	jωto	IWI Z WC
I	0	[w] 7 Wc
1 His	111/111	(1 IWIZ We
- We We	1 H (7.m)	1 (0 1w1) wc
	\emptyset ($j\omega$)	5-wto 1w16wc
		[w1>w0
ROSDURSTA	1 montil	SIVA DEL FIGTRO IDEAL
hz (t) = (2	H (Jw)]=====================================
= 1	e-jwto.	e Jwt Jw
64	ر لار	
211	we jw	(t-to) dw
	C	

WILL BATTAL

: 7 DE:

AULA:

EXAMEN:

FECHA:

CARRERA:

LEGAJO Nº:

COMISION:

APELLIDO Y NOMBRE:

$$h_{\pm}(t) = \frac{1}{2\pi} \cdot \frac{1}{j(t-t_0)} \cdot e^{j\omega(t-t_0)} \Big|_{-\omega_c}$$

$$=\frac{1}{2\pi} \cdot \frac{1}{J(t-to)} \left[e^{j\omega_{a}(t-to)} - \frac{j\omega_{c}(t-to)}{e^{-j\omega_{c}(t-to)}} \right]$$

$$=\frac{1}{2\pi}\int_{0}^{1}\left[e^{j\omega_{c}(t-t_{0})}-e^{-j\omega_{c}(t-t_{0})}\right]\omega$$

$$= \frac{\omega_c}{\pi} = \frac{e^{j\omega_c(t-t_0)} - e^{-j\omega_c(t-t_0)}}{2j} = \frac{\omega_c(t-t_0)}{\omega_c(t-t_0)}$$

$$= \frac{\omega_c}{w} \quad \text{Sen} \left[\omega_c \left(t - t_0 \right) \right]$$

$$= \frac{\omega_c}{w} \quad \frac{\omega_c \left(t - t_0 \right)}{\omega_c \left(t - t_0 \right)}$$

L Respuesta impalsiva del FILTRO Ideal.

PAG: 8 DE:

EXAMEN: AULA: _

FECHA: __/_

LEGAJO No:

COMISION:

CARRERA:

APELLIDO Y NOMBRE:

Ceros:

ta KTg t to

MATERIA: PAG: 1 DE: 1 AULA: **EXAMEN:** FECHA: / COMISION:

CARRERA:

APELLIDO Y NOMBRE:

LEGAJO Nº:

APENDICE 1

$$\begin{aligned}
\mathcal{F}\left[\left\{\left\{\left(t-t_{o}\right)\right\}\right] - \int_{0}^{\infty} \left\{\left(t-t_{o}\right)e^{-j\omega t}dt\right\} \\
&= e^{-j\omega t} = e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(t-t_{o}\right)\right\}\right] - e^{-j\omega t_{o}} = e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left\{\left(\omega-\omega_{o}\right)\right\}\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left(\omega-\omega_{o}\right)\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left(\omega-\omega_{o}\right)\right] - \frac{1}{2T}\int_{0}^{\infty} \left\{\left(\omega-\omega_{o}\right)e^{j\omega t}d\omega\right\} \\
&= e^{-j\omega t_{o}} \\
\mathcal{F}\left[\left(\omega-\omega_{o}\right)\right] - \frac{1}{2T}\int_{0}^{\infty} \left(\omega-\omega_{o}\right)e^{j\omega t}d\omega$$

$$= \frac{1}{2\pi} e^{j\omega t} = \frac{1}{2\pi} e^{j\omega_0 t}$$

$$= \frac{1}{2\pi} e^{j\omega_0 t}$$

$$= \frac{1}{2\pi} e^{j\omega_0 t}$$

F[Cjwot] = 21 S(w-wo)

PAG: 1 DE: 2

AULA:

EXAMEN:

FECHA:

LEGAJO Nº:

COMISION:

CARRERA:

APELLIDO Y NOMBRE: __

APENDICEZ

Transformada de un Pulso -jwt (e-jw = = jw = A (c-jw 6/2-c+jw 5/2) $= \frac{A}{J\omega} \left(e^{+j\omega} \frac{\sigma_{12}}{-e^{-j\omega}} - e^{-j\omega} \frac{\sigma_{2}}{2} \right) \times \frac{2}{2}$ Sen (45) = 34 \ Sen (45) = A 6 Sem (W 6/2) P(w) = A 6 Sinc (26)

Simc (x) = Sen (x)

MATERIA: ______ PAG: Z DE: Z

AULA: ___ EXAMEN: ____ FECHA: __/ /

COMISION: ____ CARRERA:

APELLIDO Y NOMBRE:

LEGAJO No:

PAG: 1 DE: 1 MATERIA: Instituto Tecnológico de Buenos Aires AULA: FECHA: __/_ **EXAMEN:** LEGAJO Nº: COMISION: CARRERA: Apendice 3 APELLIDO Y NOMBRE: Transformada de un trem periodico de pulsos 6/2 6 5-jmast elmast m=-00 6/2