Aktivierung mit Neutronen

Leander Flottau leander.flottau@tu-dortmund.de

 ${\it Jan~Gaschina} \\ {\it jan.gaschina@tu-dortmund.de}$

Durchführung: 26.01.2021 Abgabe: 02.02.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	3
2	Theorie	3
	2.1 Grundlagen	. 3
	2.2 Kernreaktionen mit Neutronen	. 3
	2.3 Wirkungsquerschnitt	. 3
	2.4 Erzeugung von Neutronen	. 4
	2.5 Zerfall radioaktiver Isotope	. 4
	2.6 Nulleffekt	. 5
3	Versuchsdurchführung	5
	3.1 Versuchsaufbau	. 5
	3.2 Messungen	. 6
4	Messwerte	6
5	Fehler	9
6	Auswertung	9
	6.1 Der Zerfall von Vanadium	. 9
	6.2 Der Zerfall von Rhodium	. 12
7	Diskussion	16
8	Literatur	17
9	Anhang	17

1 Zielsetzung

Im vorliegenden Experiment sollen Rhodium und Vanadium durch Neutronen-beschuss radioaktiv aktiviert werden, um anschließend die Zerfallsrate bzw. die Halbwertszeit bestimmen zu können.

2 Theorie

2.1 Grundlagen

Atomkerne sind nur innerhalb einer bestimmten Anzahl an Neutronen in Relation zu den Protonen stabil. Außerhalb dieses Bereichs zerfällt der Kern unter Aussendung radioaktiver Strahlung und wandelt sich in einen anderen, abhängig vom Ursprungszustand stabilen oder instabilen, Kern um. Die Wahrscheinlichkeit, dass ein solcher Zerfall stattfindet variirt stark abhängig vom beobachteten Nuklid und lässt sich mithilfe der sogenannten Halbwertszeit beschreiben. Diese ist definiert als die Zeitspanne, in der von einer hinreichend großen Anzahl eines bestimmten radioaktiven Nuklids die Hälfte zerfallen ist. Dies bietet sich an, da der Zerfall asymptotisch verläuft und somit nie den Wert N=0 erreicht. Vergleichsweise geringe Halbwertszeiten lassen sich am besten messen indem stabile nuklide mit Neutronen beschossen und dadurch instabil werden, ihre Halbwertszeit kann im Anschluss gemessen werden.

2.2 Kernreaktionen mit Neutronen

Wenn ein Neutron in einen Kern A eindringt entsteht ein sogenannter Zwischen- oder Compoundkern A*, dessen Energie um die Gesamtenergie des absorbierten Neutrons größer als die des Ausgangskerns A ist. Diese zusätzliche Energie verteilt sich über die Nukleonen und erhöht deren Energiezustand. Dies führt nach ca. 10^{-16} s zur Emmission eines γ -Quants, sodass der Kern unter folgender Reaktion in seinen Ursprungszustand zurückkehrt.

$$_{z}^{m}A+_{0}^{1}n\implies{}_{z}^{m+1}A*\implies{}_{z}^{m+1}A+\gamma$$

Aufgrund des zusätzlichen Neutrons ist dieser Kern instabil und zerfällt unter Emission eines Elektrons zu einem stabilen Kern

$$_{z}^{m+1}A\implies _{z+1}^{m+1}C+\beta^{-}+E_{kin}+v_{e}$$

 $(v_e = Antineutrino).$

2.3 Wirkungsquerschnitt

Der Wirkungsquerschnitt σ ist eine imaginäre Fläche, die die Wahrscheinlichkeit für das Einfangen eines Neutrons beschreibt. Sie wird so gewählt, dass jedes Neutron, welches auf diese Fläche trifft, vom Nuklid eingefangen werden würde. Die Wahrscheinlichkeit und damit der Wirkungsquerschnitt hängt dabei auch von der Geschwindigkeit des Neutrons ab. Ausgehend davon, dass eine Absorption immer dann Eintritt, wenn die

Neutronenenergie der Differenz zweier Energieniveaus von A* entspricht, lässt sich der Wirkungsquerschnitt gemäß

$$\sigma(E) = \sigma_0 \sqrt{\frac{E_{ri}}{E}} \frac{c}{(E - E_{ri})^2 + c}$$

mit den Konstanten σ_0 , c und den Energieniveaus E_{ri} beschreiben. Daraus folgt, dass der Wirkungsquerschnitt umgekehrt proportional zur Geschwindigkeit ist, was sich darauf zurückführen lässt, dass sich ein langsames Elektron länger im Wirkungsbereich des Nuklids befindet.

2.4 Erzeugung von Neutronen

Davon ausgehend bieten sich für experimentelle Untersuchungen niederenergetische Neutronen mit einem dementsprechend hohen Wirkungsquerschnitt an. Diese lassen sich durch Beschuss von Berillium Kernen mit α -Strahlung gewinnen

$${}_{4}^{9}Be + {}_{2}^{4}\alpha \implies {}_{6}^{12}C + {}_{0}^{1}n$$

Die so erzegten Neutronen werden gebremst, indem sie durch mehrere Materieschichten geleitet werden und dort einen Anteil ihrer Energie durch elastische Stöße an die Materie abgeben. Da sich für den maximalen Energieübertrag bei einem solchen Stoß möglichst ähnliche Massen am besten eignen, wird als Stoßpartner Paraffin verwendet. Aus diesem Prozess resultieren sogenannte thermische Neutronen mit der benötigten vergleichsweise geringen mittleren Geschwindigkeit von ca.2.2 km/s.

2.5 Zerfall radioaktiver Isotope

Bestimmte Isotope lassen sich wie in Kapitel 2.2 beschrieben durch diese Neutronen Aktivieren und stabilisieren sich unter β^- -Zerfall mit einer Halbwertszeit von einigen Sekunden bis zu einer Stunde. Die Zahl der verbliebenen nicht zerfallenen Kerne N als Funktion der Zeit lässt sich mithilfe des Zerfallsgesetzes

$$N(t) = N_0 e^{-\lambda t} \tag{1}$$

beschreiben. Dabei ist λ die sogenannte Zerfallkonstante und N_0 der Anfangswert, also die Zahl der Kerne zum Zeitpunkt t=0. Die Zerfallskonstante hängt von der Wahrscheinlichkeit für den Zerfall ab und steht in direkter Relation zur Halbwertszeit T. Diese ergibt sich aus $N(t=T)=N_0/2$ zu

$$T = \frac{\ln(2)}{\lambda} \tag{2}$$

Umgekehrt lässt sich durch Messung von $T_{1/2}$ die Zerfallkonstante

$$\lambda = \frac{ln(2)}{T}$$

bestimmen. Da die Zahl der nicht zerfallenen Kerne N(t) ein äußerst schwierig zu erhebender Wert ist, bietet es sich an stattdessen die Zahl der in einem fest definierten Zeitintervall stattfindenden Zerfälle mit einem Zählrohr zu bestimmen . Dieser Wert ergibt sich aus dem Zerfallsgesetz zu

$$N_{\Delta t}(t) = N(t) - N(t + \Delta t) = N_0 e^{-\lambda t} - N_0 e^{-\lambda (t + \Delta t)}$$

$$\tag{3}$$

$$N_{\Delta t}(t) = N_0 e^{-\lambda t} (1 - e^{-\lambda \Delta t}) \tag{4}$$

$$\iff ln(N_{\Delta t}(t)) = -\lambda t + ln(N_0(1 - e^{-\lambda \Delta t})) \tag{5}$$

Aus der letzten Gleichung kann mithilfe einer linearen Ausgleichsrechnug die Zerfallskonstante bestimmt werden, da $\ln(N_0(1-e^{\lambda \Delta t}))$ nur von konstanten Faktoren abhängt. Für diesen Ansatz ist es wichtig eine passende Messzeit Δ t zu wählen, da bei einem zu kleinen Intervall ein großer Messfehlerauftritt, wogegen ein großes Intervall eine scheinbare Δ t Abhängigkeit von λ vortäuscht und somit zu einem systematischen Messfehler führt. In diesem Experiment wurden Messwerte für zwei verschiedene Isotope aufgenommen. Zum einen wurde Vanadium verwendet, welches gemäß folgender Gleichung

$${}^{51}_{23}V + {}^{1}_{0}n \implies {}^{52}_{23}V \Longrightarrow {}^{52}_{24}Cr + \beta^{-} + v_{e} \tag{6}$$

nach dem Neutronen-beschuss unter Emission von β^- -Strahlung zu Chrom zerfällt. Des weiteren wurden Messdaten für Rhodium erhoben, für welches zwei verschiedene Zerfälle mit unterschiedlichen Wahrscheinlichkeiten eintreten

Da das Geiger-Müller-Zählrohr sowohl β^- - als auch γ -Strahlung detektieren kann entspricht die Messrate der Summe beider Zerfälle, die simultan ablaufen. Die Zerfälle besitzen unterschiedliche Halbwertszeiten, sodass nach einer bestimmten Zeitspanne t* der kurzlebigere Verfall vernachlässigbar klein wird und nur noch der langlebigere Zerfall verbleibt. Für diesen kann (für t>t*) die Zerfallskonstante bestimmt werden. Anschließend kann die aus dieser Konstante berechnete Zahl an Zerfällen für t< t* von der Gesamtaktivität abgezogen werden um den anderen Zerfall zu erhalten.

2.6 Nulleffekt

Aufgrund diverser natürlicher Phänomene existiert ein Grundwert für Strahlung der als Nulleffekt bezeichnet wird. Um exakte Messwerte zu erhalten muss zunächst der Nulleffekt gemessen und anschließend von späteren Messungen abgezogen werden.

3 Versuchsdurchführung

3.1 Versuchsaufbau

Für den Versuch wurde eine Anordnung entsprechend der Darstellung verwendet. Das Zählrohr wird hinter einer Blei-Abschirmung platziert um den Einfluss des Nulleffektes zu minimieren. Die vom Zählrohr registrierten Impulse werden an einen Zähler weitergeleitet, an welchem das gewünschte Messintervall Δt eingestellt werden kann. Er besitzt zwei Anzeigevorrichtungen, zwischen denen nach Δt umgeschaltet wird, sodass zu jedem Zeitpunkt eine der Anzeigen zählt und die jeweils andere das Ergebnis des vorrangegangenen Zeitintervalls anzeigt.

Abbildung 1: Versuchsaufbau, Quelle:1.

3.2 Messungen

Zunächst wurde der Nulleffekt gemessen, wobei ein großes Zeitintervall von $\Delta t = 300$ s verwendet wurde, um den Messfehler zu minimieren.

Anschließend wurden Messwerte für das Vanadium direkt nach Aktivierung der Probe erhoben, dabei wurde als Zeitintervall $\Delta t = 30$ s gewählt. Eine analoge Messung wurde für Rhodium durchgeführt, jedoch mit einer Messzeit von $\Delta t = 15$ s.

4 Messwerte

In diesem Kapitel sind alle Messwerte und deren Umrechnungen aufgeführt. Die Originalmesswerte sind im Anhang Abschnitt 9 zu finden.

 ${\bf Tabelle~1:}~{\bf Zerfallszahlen~Vanadium~mit~Poisson-Fehler$

t[s]	$N[{ m Imp}]$
30,000	189.000 ± 13.748
60,000	197.000 ± 14.036
90,000	150.000 ± 12.247
120,000	159.000 ± 12.610
150,000	155.000 ± 12.450
180,000	132.000 ± 11.489
210,000	117.000 ± 10.817
240,000	107.000 ± 10.344
270,000	94.000 ± 9.695
300,000	100.000 ± 10.000
330,000	79.000 ± 8.888
360,000	69.000 ± 8.307
390,000	81.000 ± 9.000
420,000	46.000 ± 6.782
450,000	49.000 ± 7.000
480,000	61.000 ± 7.810
510,000	56.000 ± 7.483
540,000	40.000 ± 6.325
570,000	45.000 ± 6.708
600,000	32.000 ± 5.657
630,000	27.000 ± 5.196
660,000	43.000 ± 6.557
690,000	35.000 ± 5.916
720,000	19.000 ± 4.359
750,000	28.000 ± 5.292
780,000	27.000 ± 5.196
810,000	36.000 ± 6.000
840,000	25.000 ± 5.000
870,000	29.000 ± 5.385 18.000 ± 4.243
900,000	18.000 ± 4.243 17.000 ± 4.123
930,000 960,000	24.000 ± 4.123 24.000 ± 4.899
990,000	24.000 ± 4.599 21.000 ± 4.583
1020,000	25.000 ± 4.000 25.000 ± 5.000
1050,000	21.000 ± 4.583
1080,000	24.000 ± 4.899 24.000 ± 4.899
1110,000	25.000 ± 5.000
1140,000	17.000 ± 4.123
1170,000	20.000 ± 4.472
1200,000	19.000 ± 4.359
1230,000	20.000 ± 1.555 20.000 ± 4.472
1260,000	18.000 ± 4.243
1290,000	16.000 ± 1.210 16.000 ± 4.000
1320,000	$17_{7}000 \pm 4.123$
	17-20 = 2.220

 ${\bf Tabelle~2:~Zerfallszahlen~Rhodium~mit~Poisson-Fehler}$

t[s]	$N[{ m Imp}]$
15,000	667.000 ± 25.826
30,000	585.000 ± 24.187
45,000	474.000 ± 21.772
60,000	399.000 ± 19.975
75,000	304.000 ± 17.436
90,000	253.000 ± 15.906
105,000	213.000 ± 14.595
120,000	173.000 ± 13.153
135,000	152.000 ± 12.329
150,000	126.000 ± 11.225
$165,\!000$	111.000 ± 10.536
180,000	92.000 ± 9.592
$195,\!000$	79.000 ± 8.888
$210,\!000$	74.000 ± 8.602
$225,\!000$	60.000 ± 7.746
240,000	52.000 ± 7.211
$255,\!000$	56.000 ± 7.483
270,000	53.000 ± 7.280
285,000	41.000 ± 6.403
300,000	36.000 ± 6.000
315,000	37.000 ± 6.083
330,000	32.000 ± 5.657
345,000	36.000 ± 6.000
360,000	38.000 ± 6.164
375,000	34.000 ± 5.831
390,000	40.000 ± 6.325
405,000	21.000 ± 4.583
420,000	35.000 ± 5.916
435,000	33.000 ± 5.745
450,000	36.000 ± 6.000
465,000	20.000 ± 4.472
480,000	24.000 ± 4.899
495,000	30.000 ± 5.477 30.000 ± 5.477
510,000	
525,000	26.000 ± 5.099 28.000 ± 5.292
540,000 555,000	28.000 ± 3.292 23.000 ± 4.796
570,000	20.000 ± 4.472 20.000 ± 4.472
585,000	28.000 ± 4.472 28.000 ± 5.292
600,000	17.000 ± 4.123
615,000	26.000 ± 5.099
630,000	19.000 ± 4.359
645,000	13.000 ± 3.606 13.000 ± 3.606
660,000	15.000 ± 3.000 $17,000 \pm 4.123$
	18000 14.120

5 Fehler

Der Mittelwert:

$$\bar{x} = \frac{1}{n} \sum_{i=0} x_i \tag{7}$$

Die Standardabweichung:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \tag{8}$$

Der Fehler des Mittelwertes:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \tag{9}$$

Die Poissonverteilung:

$$\Delta N = \sqrt{N} \tag{10}$$

Die Gaußsche Fehlerfortpflanzung:

$$\sigma_x = \sqrt{(\frac{\partial f}{\partial x_1})^2 \sigma_{x_1}^2 + (\frac{\partial f}{\partial x_2})^2 \sigma_{x_2}^2 + \dots + (\frac{\partial f}{\partial x_n})^2 \sigma_{x_n}^2} \tag{11}$$

6 Auswertung

In diesem Kapitel werden die aufgenommenen Messwerte ausgewertet.

6.1 Der Zerfall von Vanadium

Die Untergrundstrahlung beläuft sich auf 13.9 \pm 0.4Imp also etwa 14 Zerfälle in einem Zeitintervall von $\Delta t=30\,\mathrm{s}$. Dazu wurde über Gleichung 7 der Mittelwert und mit Gleichung 9 dessen Fehler bestimmt. Diese wurde von der Gemessenen Strahlung abgezogen anschließend wird eine Kurve nach Gleichung 4 an die Messwerte angepasst. Daraus ergeben sich diese Werte für λ und N_0 :

$$\begin{split} \lambda_V &= 0.00342 \pm 0.000121/\mathrm{s} \\ N_0 &= 2141.83363 \pm 48.62828 \end{split}$$

Die Anzahl der noch nicht zerfallenen Kerne wird nach Gleichung 1 beschrieben mit:

$$N(t) = (2141.83363 \pm 48.62828) e^{-(0.00342 \pm 0.00012)\frac{1}{s}t}$$

Die Halbwertszeit $T_{1/2}$ lässt sich über Gleichung 2 direkt aus λ bestimmen:

$$T_{1/2} = (203 \pm 7)$$
s

Da ab der etwa 660. Sekunde der Fehler der Zerfallszahlen in der Größenordung der Messwerte selbst liegt wurde das Zerfallsgesetz erneut nur bis zur 660. Sekunde angepasst. Daraus ergeben sich dann folgende Werte:

$$\begin{split} \lambda_V &= (0.00342 \pm 0.00018) 1/\mathrm{s} \\ N_0 &= 2141.83363 \pm 69.64741 \\ T_{1/2} &= (203 \pm 11) \mathrm{s} \end{split}$$

Im nachstehenden Plot Abbildung 2 sind die Zerfallszahlen ohne Untergrundstrahlung mit zugehörigem Fehler nach Gleichung 10, die Untergrundstrahlung und das angepasste Zerfallsgesetz dargestellt:

Abbildung 2: Zerfall von Vanadium

Tabelle 3: Zerfallszahlen Vanadium mit Poisson-Fehler ohne Untergrundstrahlung

t[s]	$N[{ m Imp}]$
30,000	175.071 ± 13.755
60,000	183.071 ± 14.043
90,000	136.071 ± 12.256
120,000	145.071 ± 12.617
150,000	$141.071\ \pm 12.458$
180,000	118.071 ± 11.498
210,000	$103.071\ \pm 10.826$
240,000	93.071 ± 10.354
270,000	80.071 ± 9.706
300,000	86.071 ± 10.010
330,000	65.071 ± 8.899
360,000	55.071 ± 8.319
390,000	67.071 ± 9.011
420,000	32.071 ± 6.797
450,000	35.071 ± 7.014
480,000	47.071 ± 7.823
510,000	42.071 ± 7.497
540,000	26.071 ± 6.340
570,000	31.071 ± 6.723
600,000	18.071 ± 5.674
630,000	13.071 ± 5.215
660,000	29.071 ± 6.573 21.071 ± 5.933
690,000 720,000	5.071 ± 4.382
750,000	14.071 ± 4.362 14.071 ± 5.310
780,000	13.071 ± 5.310 13.071 ± 5.215
810,000	22.071 ± 6.017
840,000	11.071 ± 5.020
870,000	15.071 ± 5.404
900,000	4.071 ± 4.266
930,000	3.071 ± 4.147
960,000	10.071 ± 4.919
990,000	7.071 ± 4.604
1020,000	11.071 ± 5.020
1050,000	7.071 ± 4.604
1080,000	10.071 ± 4.919
1110,000	11.071 ± 5.020
1140,000	3.071 ± 4.147
1170,000	6.071 ± 4.494
$1200,\!000$	5.071 ± 4.382
1230,000	6.071 ± 4.494
1260,000	4.071 ± 4.266
1290,000	2.071 ± 4.025
1320,000	$3_{1}971 \pm 4.147$

6.2 Der Zerfall von Rhodium

Die Untergrundstrahlung beläuft sich auf 6.96 ± 0.22 Imp also etwa 7 Zerfälle in einem Zeitintervall von $\Delta t=15\,\mathrm{s}$. Sie wurde wie oben berechnet. Diese wird von der gemessenen Gesamtstrahlung subtrahiert und die Ergebnisse im folgenden Diagramm Abbildung 3 mit den nach Gleichung 10 berechneten Fehlern dargestellt. Da Rhodium auf zwei Arten zerfällt:

$$^{103}_{45} \mathrm{Rh} + \mathrm{n} \rightarrow ^{104i}_{45} \mathrm{Rh}$$

 $^{103}_{45} \mathrm{Rh} + \mathrm{n} \rightarrow ^{104}_{45} \mathrm{Rh}$

wird analog zu Unterabschnitt 6.1 zunächst an den bedeutend langsameren Zerfall, der sich anhand der Steigungsänderung identifizieren lässt angepasst. Anschließend wird die Anzahl der zerfälle zurückgerechnet und von der gesamten Messreihe abgezogen. Das Resultat ist der Verlauf des schnelleren Zerfalls der in Abbildung 4 zu sehen ist.

Abbildung 3: Zerfall von Rhodium

An diese Abbildung 4 Messreihe kann dann erneut das Zerfallsgesetz nach Gleichung 4 angepasst werden.

Es ergibt sich also Zerfallsvorschrift:

$$N(t) = N_0 e^{-\lambda t}$$

 ${\bf Tabelle~4:}~{\bf Zerfallszahlen~Rhodium~mit~Poisson-Fehler}$

t[s]	$N[{ m Imp}]$
15,000	660.036 ± 25.827
30,000	578.036 ± 24.188
45,000	467.036 ± 21.773
60,000	392.036 ± 19.976
75,000	297.036 ± 17.437
90,000	246.036 ± 15.908
105,000	206.036 ± 14.596
120,000	166.036 ± 13.155
$135,\!000$	145.036 ± 12.331
150,000	119.036 ± 11.227
165,000	104.036 ± 10.538
180,000	85.036 ± 9.594
$195,\!000$	72.036 ± 8.891
$210,\!000$	67.036 ± 8.605
225,000	53.036 ± 7.749
240,000	45.036 ± 7.215
255,000	49.036 ± 7.487
270,000	46.036 ± 7.284
285,000	34.036 ± 6.407
300,000	29.036 ± 6.004
315,000	30.036 ± 6.087
330,000	25.036 ± 5.661
345,000	29.036 ± 6.004
360,000	31.036 ± 6.168 27.036 ± 5.835
375,000	27.036 ± 5.835 33.036 ± 6.328
390,000 405,000	14.036 ± 4.588
420,000	28.036 ± 5.920
435,000	26.036 ± 5.749
450,000	29.036 ± 6.004
465,000	13.036 ± 4.478
480,000	17.036 ± 4.904
495,000	23.036 ± 5.482
510,000	23.036 ± 5.482
525,000	19.036 ± 5.104
540,000	21.036 ± 5.296
555,000	16.036 ± 4.801
570,000	13.036 ± 4.478
585,000	21.036 ± 5.296
600,000	10.036 ± 4.129
615,000	19.036 ± 5.104
630,000	12.036 ± 4.365
645,000	6.036 ± 3.612
660,000	193036 ± 4.129

Abbildung 4: Schneller Zerfall von Rhodium

 ${\bf Tabelle~5:}~{\bf Zerfall~Rhodium~ohne~langsamen~Zerfall~mit~Poisson-Fehler$

t[s]	$N[{ m Imp}]$
15,000	566.472 ± 35.689
30,000	489.921 ± 32.739
45,000	384.052 ± 29.384
60,000	313.885 ± 26.638
75,000	223.436 ± 23.473
90,000	176.722 ± 21.190
105,000	140.759 ± 19.191
120,000	104.560 ± 17.204
135,000	87.140 ± 15.796
150,000	64.512 ± 14.268
$165,\!000$	52.687 ± 13.156
180,000	36.677 ± 11.922
195,000	26.493 ± 10.957
210,000	24.146 ± 10.402
$225,\!000$	12.643 ± 9.440
240,000	6.996 ± 8.797
255,000	13.211 ± 8.872
270,000	12.297 ± 8.593
285,000	2.262 ± 7.781
300,000	-0.888 ± 7.394
315,000	1.855 ± 7.424
330,000	-1.504 ± 7.054
345,000	4.042 ± 7.317
360,000	7.497 ± 7.442
375,000	4.868 ± 7.160
390,000	12.159 ± 7.560
405,000	-5.625 ± 6.166
420,000	9.520 ± 7.200 8.598 ± 7.045
435,000 450,000	8.598 ± 7.045 12.613 ± 7.237
465,000	-2.430 ± 6.006
480,000	2.470 ± 6.303
495,000	9.319 ± 6.733
510,000	10.117 ± 6.701
525,000	6.870 ± 6.360
540,000	9.578 ± 6.478
555,000	5.245 ± 6.038
570,000	2.874 ± 5.738
585,000	11.466 ± 6.355
600,000	1.023 ± 5.371
615,000	10.548 ± 6.108
630,000	$4.042\ \pm 5.455$
645,000	-1.492 ± 4.819
660,000	$2_{1}946 \pm 5.166$
-	10

mit folgenden Werten für den langsameren Zerfall, die Halbwertszeit $T_{1/2}$ ergibt sich wieder über Gleichung 2:

$$\begin{split} \lambda_{Rh1} &= 0.004 \pm 0.001 \\ N_{01} &= 1944.551 \pm 349.657 \\ T_{1/2} &= (170 \pm 40) \mathrm{s} \end{split}$$

und diesen Werten für den schnellen Zerfall:

$$\begin{split} \lambda_{Rh2} &= 0.015 \pm 0.000 \\ N_{02} &= 2930.865 \pm 48.629 \\ T_{1/2} &= (46.2098 \pm 0) \mathrm{s} \end{split}$$

7 Diskussion

In diesem Versuch sollten die Halbwertszeiten $T_{1/2}$ des Zerfalls von $^{51}_{23}$ V und den beiden Zerfällen von $^{103}_{45}$ Rh ermittelt werden. Dazu wurde an die mittels Geiger-Müller-Zählrohr ermittelten Zerfallszahlen das Zerfallsgesetz angepasst. Auf diese Weise wurde zunächst die Zerfallskonstante von Vanadium bestimmt, sie beläuft sich auf: $(0.00342 \pm 0.00012)^{\frac{1}{2}}$ der Literaturwert liegt bei $0.003086\frac{1}{a}$ und weicht damit nur um etwa 10.8% von der errechneten Größe ab. Da die Messwerte ab etwa 660 Sekunden in der Größenordung ihres eigenen Fehlers liegen wurde die Zerfallskonstante nochmal bis zur 660. Sekunde berechnet diese liegt dann bei $(0.00342 \pm 0.00018)^{\frac{1}{8}}$, weicht also ebenfalls um circa 10,8% vom Literaturwert ab hat allerdings einen geringfügig größeren Fehler. Die Zerfallskonstante für den langsamen Rhodium-Zerfall liegt der Berechnung nach bei $\lambda_{Rh1} = (0.004 \pm 0.001) \frac{1}{s}$ für den schnelleren bei $\lambda_{Rh2} = 0.015\frac{1}{s}$. Es konnte in der Literatur nur ein Wert für die Zerfallskonstante ermittlet werden sie liegt demnach bei $0.01639^{\frac{1}{2}}$, was einer Abweichung von mindesten 9,3% entspricht. Als nächstes konnten aus den Zerfallskonstanten die Halbwertszeiten bestimmt werden, diese liegt für Vanadium bei $T_{1/2}=(203\pm7)\mathrm{s},$ bzw. für die Messung bis 660s bei (203 ± 11) s der zugehörige Literaturwert liegt $T_{1/2L}=224,6$ s und weicht damit je nur um etwa 10,3% ab. Für den schnellen Rhodiumzerfall liegt die errechnete Halbwertszeit bei $T_{1/s}=(46.2098\pm0)$ s, die Halbwertszeit in der Literatur liegt bei $T_{1/2L} = 42.3$ s und weicht damit um etwa 9% ab. Für den zweiten Zerall von Rhodium konnte kein Literaturwert zum Vergleich gefunden werden. Die sehr kleine Abweichung beim Vanadium kann leicht durch Verfälschungen durch die Untergrundstrahlung erklärt werden welche zwar im Vorhinein ausgemessen wurde jedoch nur als gemittelte Größe von den späteren Messungen der Kernreaktion an sich abgeszogen wurde. Es können also keine genauen Aussagen zur Untergrundstrahlung während der Messung getroffen werden. Die selben Gründe können für den großen Fehler bei der Messung der Rhodium Zerfallskonstanten aufgeführt werden. Hier ist allerdings auch zu beachten das der schnelle Zerfall nach kurzer Zeit weitgehend, aber nicht vollständig abgeschlossen ist und so das Ergebnis für den langsamen Zerfall verfälscht. Da das Ergebnis für den schnellen Zerfall allerdings vom Ergebnis für den langsamen Zerfall abhängt führt dieser Umstand auch zu einer Verfälschung des Messergebnisses. Eine weitere Problematik besteht darin, das es beim langsamen Zerfall bedeutend weniger Zerfälle gibt sodas viel davon im Untergrund verschwindet und zu großen Ungenauigkeiten führt. Weiter Fehler können durch Ablesefehler und nicht mitgezählte Zerfälle beim umschalten der Zählvorrichtung am Messgerät entstehen sowie durch den Umstand das die Probe nach ihrer Erzeugung erst zum Messgerät gebracht werden muss und während dieser Zeit natürlich schon teilweise zerfällt. Zudem wurde der Zeitpunkt ab dem der schnellere Zerfall abgeschlossen ist völlig willkürlich gewählt, wenn dieser also schlecht gewählt wurde verfälscht auch das das Ergebnis. Als Resultat kann gesagt werden das die Messung der Vanadium-Zerfallskonstante sehr gut funktioniert hat, während die der Rhodium-Zerfallskonstante nur ausreichte um die Größenordung festzustellen.

8 Literatur

- 1. TU-Dortmund, V702 Aktivierung mit Neutronen
- 2. http://www.periodensystem-online.de/ (01.02.2021) Die Zerfallskonstanten

9 Anhang

Auf den folgenden Seiten finden sich die Originalmesswerte.