第一章 线性映射

本章开始,我们转向线性映射的研究。

我们将用三章完成线性映射的研究。本章我们将从映射最基本的研究方式:向量的作用 开始

线性映射的独特之处在于:一方面它能在常规的映射加法和纯量乘法下构成一个线性空间;另一方面,如果我们将复合视为乘法,它可以构成一个幺环。

第一节中,我们将给出线性映射的定义及运算,并研究基本性质;

第二节中,我们将研究两种由线性映射导出的子空间,核和像,并借此提出一个概念: 秩。它和我们之前的秩也有很强的联系;

第三节到第五节中,我们将研究矩阵,它是将线性映射在基下的作用写成的一张数表,非常便于在数值上研究矩阵;

第六节中,我们将研究行列式,它是一个反对称多线性函数,我们以此为工具,为后续我们对线性映射分解的研究铺垫。

1.1 线性映射的定义和运算

1.1.1 线性映射的定义

我们首先给出线性映射的定义

定义 1.1.1: 线性映射

设 V_1, V_2 是一个 F 上的两个线性空间,, 映射 $A: V_1 \to V_2$ 如果满足:

 $\forall \alpha, \beta \in V_1, k \in F$

 $A(\alpha + \beta) = A(\alpha) + A(\beta)$

 $A(k\alpha) = kA(\alpha)$

那么我们称 A 是一个从 V_1 到 V_2 的线性映射

全体 V_1 到 V_2 的线性映射的集合记作 $\hom_F(V_1,V_2)$, 或简记作 $\hom(V_1,V_2)$

特别地,如果 $V_1 = V_2$,我们称 A 是一个 V_1 上的线性变换

有一些常用的线性映射,我们在这里列出来:

定义 1.1.2: 一些常用的线性映射

- 1. 恒等变换: $I: V \ni \alpha \mapsto \alpha \in V$
- 2. 数乘变换: $k: V \ni \alpha \mapsto k\alpha \in V$
- 3. 零变换: $0: V_1 \ni \alpha \mapsto \mathbf{0}_{V_2} \in V_2$

1.1.2 线性映射的运算

前面我们定义了线性映射,现在我们开始赋予 $hom(V_1, V_2)$ 线性空间和环的性质。 我们会定义三种运算:加法、纯量乘法、乘法

定义 1.1.3: 线性映射的运算

我们定义:

映射 $+: \text{hom}(V_1, V_2) \times \text{hom}(V_1, V_2) \rightarrow \text{hom}(V_1, V_2)$, 称为加法, 如果满足:

$$\forall A, B \in \text{hom}(V_1, V_2), \alpha \in V_1, (A + B)(\alpha) = A(\alpha) + B(\alpha) \tag{1.1}$$

映射 $\cdot: F \times \text{hom}(V_1, V_2) \to \text{hom}(V_1, V_2)$,称为纯量乘法,如果满足:

$$\forall k \in F, A \in \text{hom}(V_1, V_2), \alpha \in F, (k \cdot A)(\alpha) = kA(\alpha)$$
(1.2)

映射。: $hom(V_1, V_2) \times hom(V_1, V_2) \rightarrow hom(V_1, V_2)$, 称为乘法, 如果满足:

$$\forall A, B \in \text{hom}(V_1, V_2), \alpha \in V_1, (A \circ B)(\alpha) = A(B(\alpha)) \tag{1.3}$$

我们也常常把 $k \cdot A$ 简记为 kA, 将 $A \circ B$ 简记为 AB

显然, $(hom(V_1, V_2), F, +, \cdot)$ 是一个线性空间,0 是它的零向量;

 $(\text{hom}(V_1,V_2),+,\circ)$ 是一个幺环,0 是它的加法单位元,I 是它的乘法单位元

除此之外,还有一些运算,但是它们是针对特殊的线性映射的,比如说:

定义 1.1.4: 线性变换的幂

 $\forall A \in \text{hom}(V, V)$

我们定义:
$$A^m := \begin{cases} A \circ A^{m-1}, m \geqslant 1 \\ I, m = 0 \end{cases}$$
 , $m \geqslant 0$

如果一个映射的幂不会使其本身变化,我们称它是一个幂等变换

定义 1.1.5: 幂等映射

 $A \in \text{hom}(V, V)$ 如果有:

 $A = A^2$

我们称它是一个幂等变换

我们不再讨论其他的运算,我们接下来转入线性映射一般性质的研究

1.1.3 线性映射的性质

1.

命题 1.1.1.
$$\forall A \in \text{hom}(V_1, V_2), A(\mathbf{0}_{V_1}) = \mathbf{0}_{V_2}$$

证明:
$$A(\mathbf{0}_{V_1}) = A(0 \cdot \mathbf{0}_{V_1}) = 0 \cdot A(\mathbf{0}_{V_1}) = \mathbf{0}_{V_2}$$

2.

命题 **1.1.2.**
$$\forall A \in \text{hom}(V_1, V_2), A(-\alpha) = -A(\alpha)$$

证明:
$$A(-\alpha) = A((-1) \cdot \alpha) = (-1) \cdot A(\alpha) = -A(\alpha)$$

3.

命题 1.1.3.
$$\forall A \in \text{hom}(V_1, V_2), A(\sum_{i=1}^n k_i \alpha_i) = \sum_{i=1}^n k_i A(\alpha_i)$$
 证明: 对 n 使用数学归纳法易证。

值得注意,这个定理并不能随意地推广到 \aleph_0 ,因为此时依赖于度量线性空间或线性映射的进一步性质。

4.

命题 1.1.4. $\forall A \in \text{hom}(V, V), m \ge 1, A^m = A^{m-1} \circ A$

证明: 对m作数学归纳法。

首先, 当 m=2 时, $A^2=A\circ A$, 命题成立

现在假设 m 时成立, 我们来证明 m+1 时命题也成立:

$$A^m = A \circ A^{m-1} = A \circ A^{m-2} \circ A = A^{m-1} \circ A$$
,于是命题得证。

这个命题看似显然,但是是必要的,因为线性映射环不交换。这个命题指出:递归式地推导幂时,从左右方向都是等价的。进一步,在递归中不断变换方向也不会影响结果。

5.

命题 1.1.5. $\forall A \in \text{hom}(V_1, V_2)$

如果 $\alpha_1, \cdots, \alpha_s$ 线性相关,那么 $A(\alpha_1), \cdots, A(\alpha_s)$ 也线性相关

证明: $\alpha_1, \dots, \alpha_s$ 线性相关

$$\Rightarrow \exists k_1, \dots, k_s, k_1\alpha_1 + \dots + k_n\alpha_s = \mathbf{0}$$
,其中 k_1, \dots, k_s 不全为零

$$\Rightarrow A(k_1\alpha_1 + \dots + k_n\alpha_s) = k_1A(\alpha_1) + \dots + k_nA(\alpha_s) = \mathbf{0}$$

$$\Rightarrow A(\alpha_1), \cdots, A(\alpha_n)$$
 线性无关

5

值得注意的是,不同于同构映射,在这个命题中把线性相关改为线性无关会使命题变得不成立。比如说,零映射会把任何线性无关的向量组变得线性相关

6.

命题 **1.1.6.** $\forall T, Y \in \text{hom}(V_1, V_2)$, $B \neq V_1$ 的一个基

如果 $\forall \alpha \in B, T(\alpha) = Y(\beta)$, 那么 T = Y

证明: 只需证明: $\forall \gamma \in V_1, T(\gamma) = Y(\gamma)$

因为 $B \in V_1$ 的基,所以一定有 $\gamma = k_1\alpha_1 + \cdots + k_s\alpha_s, \alpha_1, \cdots, \alpha_s \in B$

此时, $T(\gamma)=k_1T(\alpha_1)+\cdots+k_sT(\alpha_s)=k_1Y(\alpha_1)+\cdots+k_sY(\alpha_s)=Y(\gamma)$,于是命题得证。

这个命题指出,线性映射完全由其在基上的作用决定,因为我们其实只需要指定基上的像就指定了线性映射本身。

最后,还有一个问题未被解决: hom(V, W) 的维数和 dim V, dim W 有什么关系。这个问题比较复杂,因为涉及无限维时,维数的公式会变得和有限情形完全不同。在讲解行列式后,我们将在附录一中解决这个问题。

1.2 线性映射的核和像

本节中,我们将借助核与像继续研究线性映射。所谓核,即是线性映射映到零的那一部分,像则是值域。

同时,我们会引入对偶映射,借助本节中核与像的工具,我们将看到对偶和本身之间的联系。

1.2.1 核与像的定义

定义 1.2.1: 线性映射的核

设 $A \in \text{hom}(V_1, V_2)$,我们定义:

$$\ker A := \{\alpha \in V_1 | A(\alpha) = \mathbf{0}_{V_2}\} \tag{1.4}$$

称为线性映射 A 的核

定义 1.2.2: 线性映射的像

设 $A \in \text{hom}(V_1, V_2)$, 我们定义:

$$Im A := A(V_1) := \{ A(\alpha) | \alpha \in V_1 \}$$
(1.5)

称为线性映射 A 的像

特别地,核与像的维数我们分别称为零化度和秩:

定义 1.2.3: 线性映射的零化度

设 $A \in \text{hom}(V_1, V_2)$,我们定义:

$$\operatorname{nullity}(A) := \dim(\ker A)$$
 (1.6)

称为线性映射 A 的零化度

定义 1.2.4: 线性映射的秩

设 $A \in \text{hom}(V_1, V_2)$, 我们定义:

$$rank(A) := dim(Im A) \tag{1.7}$$

称为线性映射 A 的秩

事实上,线性映射的秩和之前我们曾提及的向量组的秩有着很大的联系,我们将在后续看到这一点。

为了方便后续性质的研究,接下来我们给出对偶映射的概念

定义 1.2.5: 对偶映射

设 $T \in \text{hom}(V_1, V_2)$,我们定义对偶映射 $T^* \in \text{hom}(V_2^*, V_1^*)$

如果满足: $\forall f \in V_2^*, \alpha \in V_1$

$$(T^*(f))(\alpha) = (f \circ T)(\alpha) \tag{1.8}$$

1.2.2 核与像的性质

接下来研究核与像的性质

1.

命题 1.2.1. $\forall A \in \text{hom}(V, W)$, ker A, Im A 都是线性空间

证明: 先证明 ker A 是一个线性空间

注意到, $\mathbf{0}_V \in \ker A$,因为 $A(\mathbf{0}_V) = \mathbf{0}_W$,因此 $\ker A$ 非空

那么,只需注意到 $\forall \alpha, \beta \in \ker A, A(\alpha + \beta) = A(\alpha) + A(\beta) = \mathbf{0}_W \Rightarrow \alpha + \beta \in \ker A$

 $\forall \alpha \in \ker A, k \in F, A(k\alpha) = kA(\alpha) = \mathbf{0}_W \Rightarrow k\alpha \in \ker A$

再证明 Im A 是一个线性空间

注意到, $\mathbf{0}_W = A(\mathbf{0}_V) \in \operatorname{Im} A \Rightarrow \operatorname{Im} A \neq \emptyset$

那么,只需注意到 $\forall A(\alpha), A(\beta) \in \text{Im } A, A(\alpha) + A(\beta) = A(\alpha + \beta) \in \text{Im } A$

 $\forall A(\alpha) \in \operatorname{Im} A, k \in F, kA(\alpha) = A(k\alpha) \in \operatorname{Im} A$

于是命题得证

2.

命题 1.2.2. $A \in \text{hom}(V, W)$, 那么:

A 是单射 $\Leftrightarrow \ker A = \{\mathbf{0}_V\}$

证明: 先证明充分性。注意到, $A(\mathbf{0}_V) = \mathbf{0}_W$,而 A 为单射,于是一定有 $\ker A = \{\mathbf{0}_V\}$ 再证明必要性。设 $A(\alpha) = A(\beta)$,那么 $A(\alpha - \beta) = \mathbf{0}_W \Rightarrow \alpha - \beta = \mathbf{0}_V \Rightarrow \alpha = \beta \Rightarrow A$ 是单射

3.

命题 1.2.3. $A \in \text{hom}(V, W)$, 那么:

A 是单射 \Leftrightarrow Im A = W

证明: 这是显然的。

4. 秩-零化度定理 在给出定理前,我们先给出一个引理。它是一个线性空间的"同态基本定理",证明方法也很相似

引理 1.2.1

 $\forall A \in \text{hom}(V, W)$

$$V/\ker A \cong \operatorname{Im} A \tag{1.9}$$

8

证明: 设 $\phi: V/\ker A \ni \alpha + \ker A \mapsto A(\alpha) \in \operatorname{Im} A$

首先验证它的确是一个映射

假设 $\alpha + \ker A = \beta + \ker A$

那么
$$\alpha - \beta \in \ker A \Rightarrow A(\alpha - \beta) = \mathbf{0}_W \Rightarrow A(\alpha) = A(\beta)$$

所以 ϕ 的确是一个映射

接下来验证它是一个单射

设
$$\phi(\alpha + \ker A) = \phi(\beta + \ker A)$$

$$\Rightarrow A(\alpha) = A(\beta) \Rightarrow A(\alpha - \beta) = \mathbf{0}_W$$

$$\Rightarrow \alpha - \beta \in \ker A \Rightarrow \alpha + \ker A = \beta + \ker A$$

于是 ϕ 是单射。 ϕ 显然是满射

接下来验证线性性:

 $\forall \alpha + \ker A, \beta + \ker A \in V / \ker A, k \in F$

$$\phi\left((\alpha + \ker A) + (\beta + \ker A)\right) = \phi\left((\alpha + \beta) + \ker A\right) = A(\alpha + \beta) = A(\alpha) + A(\beta) = \phi(\alpha + \ker A) + \phi(\beta + \ker A)$$

$$\phi\left(k\cdot(\alpha+\ker A)\right)=\phi(k\alpha+\ker A)=A(k\alpha)=kA(\alpha)=k\phi(\alpha+\ker A)$$
于是命题得证。

它的直接推论是被称为秩-零化度定理的结论,它揭示了秩和零化度的联系

定理 1.2.2: 秩-零化度定理

 $\forall A \in \text{hom}(V, W)$

$$rank(A) + nullity(A) = \dim V \tag{1.10}$$

证明: $V/\ker A \cong \operatorname{Im} A$

- $\Rightarrow \dim(V/\ker A) = \dim \operatorname{Im} A$
- $\Rightarrow \dim V \dim \ker A = \dim \operatorname{Im} A$

$$\Rightarrow \operatorname{rank}(A) + \operatorname{nullity}(A) = \dim V$$

5. 有限维映射和其对偶的秩相同 我们先证明一个引理:

9

引理 1.2.3: 子空间及其零化子维数和为原空间维数

设 V 是一个 F 上的线性空间, $\dim V = n < \aleph_0$,U 是 V 的一个线性子空间

我们定义 $U' = \{A \in V^* | \forall \alpha \in U, A(\alpha) = 0\}$

那么有: $\dim U + \dim U' = \dim V$

证明: 设 dim $U = m, 0 \leq m \leq n$

取 U 的一个基 $\{\alpha_1, \dots, \alpha_m\}$,并补全为 V 的一个基 $\{\alpha_1, \dots, \alpha_n\}$

设 $\{\alpha_1, \dots, \alpha_n\}$ 的对偶基为 $\{f_1, \dots, f_n\}$

我们来证明: $\{f_{m+1}, \dots, f_n\}$ 是 U' 的一个基

取 $\forall A \in U'$ 。因为 $U' \subseteq V^*$,那么 A 一定可以被对偶基线性表出

不妨设 $A = \sum_{i=1}^{n} k_i f_i$

注意到,当 $1 \leqslant j \leqslant m, A(\alpha_j) = \sum_{i=1}^n k_i f_i(\alpha_j) = k_j$

但因为 $\alpha_j \in U$,因此 $k_j = A(\alpha_j) = 0$

因此有 $A = \sum_{i=m+1}^{n} k_i f_i$

这说明 U' 可由 $\{f_{m+1},\cdot,f_n\}$ 线性表出。又因为 $\{f_1,\cdots,f_n\}$ 线性无关,因此 $\{f_{m+1},\cdot,f_n\}$

也线性无关

因此 $\{f_{m+1},\cdot,f_n\}$ 是 U' 的一个基,那么 $\dim U'=n-m$,命题得证。

接下来给出命题

命题 1.2.4. 设 $T \in \text{hom}(V, W)$, dim $V = m < \aleph_0$, dim $W = n < \aleph_0$

那么 $\operatorname{rank}(T) = \operatorname{rank}(T^*)$

证明: 只需注意到, $\ker T^* = \{f \in W^* | T^*(f) = \mathbf{0}_{V^*} \}$

 $=\{f\in W^*|f\circ T=\mathbf{0}_{V^*}\}$

 $=\{f\in W^*|\forall\alpha\in V, f(T(\alpha))=0\}$

 $=\{f\in W^*|\forall\beta\in\operatorname{Im}T,f(\beta)=0\}$

而按照引理,有: $\dim\operatorname{Im} T + \dim\{f \in W^* | \forall \beta \in \operatorname{Im} T, f(\beta) = 0\} = \dim W$

 $\Rightarrow \dim \operatorname{Im} T + \dim \ker T^* = \dim W$

再运用秩-零化度定理,有: $\dim \operatorname{Im} T^* + \dim \ker T^* = \dim W^* = \dim W$

因此有 $\dim \operatorname{Im} T = \dim \operatorname{Im} T^* \Rightarrow \operatorname{rank}(T) = \operatorname{rank}(T^*)$,命题得证

1.3 矩阵 10

命题 1.2.5. 设 $A \in \text{hom}(V, W)$, 如果 $\dim V = \dim W$, 那么:

A 是满射 ⇔ A 是单射

证明: 因为 $V/\ker A \cong \operatorname{Im} A$

A 是满射 \Leftrightarrow $\operatorname{Im} A = W \Leftrightarrow \operatorname{Im} A \cong W \Leftrightarrow \operatorname{Im} A \cong W \cong V$

1.3 矩阵

为了方便后续的研究,我们引入一种"数表",即矩阵。它和有限维空间上的线性映射完全同构

1.3.1 矩阵的定义

定义 1.3.1: 矩阵

形如以下的矩形阵列称为一个域 F 上的矩阵 $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, a_{ij} \in F$

简记为 $(a_{ij})_{m\times n}$ 或 (a_{ij}) 。 m 称为矩阵的行数,n 称为矩阵的列数。

特别地,如果 m = n,我们称它是一个 m 阶方阵。

F 上的全体 $m \times n$ 矩阵的集合记作 $M_{m \times n}(F)$,特别地如果 m = n,记作 $M_n(F)$ 。

我们也将矩阵 A 在 m 行 n 列处的元素记作 A_{ij}

我们也常常将
$$\pmb{A}=(a_{ij})_{m\times n}$$
 记作 $(\alpha_1,\cdots,\alpha_n)$ 或 $\begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix}$,其中 $\alpha_i=\begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}$, $\beta_j=(a_{i1},\cdots,a_{in})$

1.3.2 矩阵的运算

1. 相等

定义 1.3.2: 矩阵的相等

设 $A \in M_{m \times n}(F)$, $B \in M_{m \times n}(F)$, 如果 $\forall i, j, A(i; j) = B(i; j)$, 则称 A = B。

1.3 矩阵 11

2. 转置

定义 1.3.3: 矩阵的转置

设 $A \in M_{m \times n}(F)$,

我们定义矩阵 $A^T \in M_{n \times m}(F)$ 为满足 $A^T(i;j) = A(i;j)$ 的矩阵, 称为 A 的转置。

3. 加法

定义 1.3.4: 矩阵的加法

设 $A \in M_{m \times n}(F), B \in M_{m \times n}(F)$

我们定义: (A+B)(i;j) = A(i;j) + B(i;j)。

4. 纯量乘法

定义 1.3.5: 矩阵的纯量乘法

设 $A \in M_{m \times n}(F), k \in F$,

我们定义矩阵 $k \cdot A \in M_{m \times n}(F)$ 为满足 $(k \cdot A)(i;j) = k \cdot A(i;j)$ 的矩阵。

5. 乘法

定义 1.3.6: 矩阵的乘法

设 $A \in M_{m \times n}(F), B \in M_{n \times p}(F)$,

我们定义矩阵 $A\cdot B\in M_{m\times p}(F)$ 为满足 $(A\cdot B)(i;j)=\sum_{k=1}^n A(i;k)B(k;j)$ 的矩阵

6. 幂

定义 1.3.7: 方阵的幂

 $\forall \boldsymbol{A} \in M_n(F)$

我们定义:
$$\mathbf{A}^m := egin{cases} \mathbf{A} \cdot \mathbf{A}^{m-1}, m \geqslant 1 \\ \mathbf{I}, m = 0 \end{cases}, m \geqslant 0$$

1.4 特殊矩阵 12

1.3.3 线性映射的矩阵

定义 1.3.8: 线性映射的矩阵

设 $A \in \text{hom}(V, W), \dim V = m < \aleph_0, \dim W = n < \aleph_0$

取 V 的一个基 $\{\alpha_1,\cdots,\alpha_m\}$,W 的一个基 $\{\beta_1,\cdots,\beta_n\}$

如果矩阵 $\mathbf{A} = (a_{ij}) \in M_{m \times n}(F)$ 满足:

$$(A(\alpha_1),\cdots,A(\alpha_m))=(\beta_1,\cdots,\beta_n)\begin{pmatrix} a_{11}&\cdots&a_{1m}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nm} \end{pmatrix} \eqno(1.11)$$

那么我们称 A 是线性映射 A 在 $\{\alpha_1, \dots, \alpha_m\}$ 和 $\{\beta_1, \dots, \beta_n\}$ 下的矩阵

特别地,如果 V=W 且 $\alpha_i=\beta_i$,我们称 ${\bf A}$ 是线性变换 A 在 $\{\alpha_1,\cdots,\alpha_m\}$ 下的矩阵

1.3.4 矩阵的性质

- 1.4 特殊矩阵
- 1.5 可逆矩阵
 - 1.6 行列式

1.6.1 行列式的定义和性质

定义 1.6.1: 行列式

设 F 是一个域, V 是 F 上的一个线性空间, 并且 $dim_F V = n$

映射 $\det: V^n \to F$ 如果满足:

- $\textcircled{1} \det(\alpha_1, \cdots, \alpha_i + \beta_i, \cdots, \alpha_n) = \det(\alpha_1, \cdots, \alpha_i, \cdots, \alpha_n) + \det(\alpha_1, \cdots, \beta_i, \cdots, \alpha_n)$
- $\forall k \in F, \det(\alpha_1, \dots, k \cdot \alpha_i, \dots, \alpha_n) = k \cdot \det(\alpha_1, \dots, \alpha_i, \dots, \alpha_n)$
- $2 \det(\alpha_1, \dots, \alpha_i, \dots, \alpha_i, \dots, \alpha_n) = -\det(\alpha_1, \dots, \alpha_i, \dots, \alpha_i, \dots, \alpha_n)$
- ③ 存在 V的一组基 $\gamma_i,\cdots,\gamma_n,\det(\gamma_1,\cdots,\gamma_n)=1$

那么我们称 det 是一个 V 上的 n 阶行列式

由行列式的定义, 我们可以推导出行列式的基本性质

1.6 行列式 13

命题 1.6.1. 向量组 $\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n$ 如果有 $\alpha_i=\alpha_j$ 那么 $\det(\alpha_1,\cdots,\alpha_i,\cdots,\alpha_i,\cdots,\alpha_n)=0$

推论 1.6.1: 存在成比例变量的行列式为零

向量组 $\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n$ 如果有 $\alpha_i=k\alpha_j,k\in F$ 那么 $\det(\alpha_1,\cdots,\alpha_i,\cdots,\alpha_j,\cdots,\alpha_n)=0$

证明:
$$\det(\alpha_1, \dots, \alpha_i, \dots, \alpha_i, \dots, \alpha_n) = k \cdot \det(\alpha_1, \dots, \alpha_i, \dots, \alpha_i, \dots, \alpha_n) = 0$$

1.6.2 行列式在基上的展开

定理 1.6.2: 行列式的展开

设 F 是一个域,V 是 F 上的一个线性空间,并且 $dim_FV=n$,

V 上的 n 阶行列式 det 满足 $\det(\gamma_1,\cdots,\gamma_n)=1$,其中 $\{\gamma_1,\cdots,\gamma_n\}$ 是 V 的一组基那么,有:

$$\det(\alpha_1,\cdots,\alpha_n) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \tag{1.12}$$

其中 $\alpha_i = \sum_{j=1}^n a_{i,j} \gamma_j$

证明:
$$\det(\alpha_1,\cdots,\alpha_n) = \det\left(\sum_{i_1=1}^n a_{1,i_1}\gamma_{i_1},\cdots,\sum_{i_n=1}^n a_{n,i_n}\gamma_{i_n}\right)$$

$$= \sum_{i_1=1}^n \cdots \sum_{i_n=1}^n \left(\prod_{k=1}^n a_{k,i_k} \det(\alpha_{i_1},\cdots,\alpha_{i_n})\right)$$

$$= \sum_{\sigma \in S_n} \left(\prod_{k=1}^n a_{k,\sigma(k)} \mathrm{sgn}(\sigma)\right)$$

事实上,我们也可以改变第一个求和指标,使之称为一个固定但是可以随意选取的置换

1.6 行列式 14

推论 1.6.3

设 F 是一个域,V 是 F 上的一个线性空间,并且 $dim_FV=n$,

V 上的 n 阶行列式 det 满足 $\det(\gamma_1,\cdots,\gamma_n)=1$,其中 $\{\gamma_1,\cdots,\gamma_n\}$ 是 V 的一组基那么,有:

$$\det(\alpha_1,\cdots,\alpha_n) = \operatorname{sgn}(\rho) \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\rho(i),\sigma(i)} \tag{1.13}$$

其中 $\alpha_i = \sum_{j=1}^n a_{i,j} \gamma_j$, ρ 是一个置换

证明:
$$\det(\alpha_1, \dots, \alpha_n) = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \prod_{i=1}^n a_{i,\tau(i)}$$

对指标作置换 ρ ,累乘的结果不会变化,所以有:

$$\det(\alpha_1,\cdots,\alpha_n)=\sum_{\tau\in S_n}\operatorname{sgn}(\tau)\prod_{i=1}^n a_{\rho(i),(\rho\circ\tau)(i)}$$

记
$$\sigma=\rho\circ au$$
,那么 $\det(lpha_1,\cdots,lpha_n)=\sum_{
ho^{-1}\circ\sigma\in S_n}\operatorname{sgn}(
ho^{-1}\circ\sigma)\prod_{i=1}^na_{
ho(i),\sigma(i)}$

但是, $\rho^{-1}\circ\sigma\in S_n$ 其实就是 $\sigma\in S_n$,并且我们知道 $\mathrm{sgn}(\rho^{-1}\circ\sigma)=\mathrm{sgn}(\rho)\mathrm{sgn}(\sigma)$

所以
$$\det(\alpha_1,\cdots,\alpha_n)=\mathrm{sgn}(\rho)\sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)\prod_{i=1}^n a_{\rho(i),\sigma(i)}$$

1.6.3 矩阵的行列式

我们之前已经指出, $M_n(F)\cong F^{n^2}\cong (F^n)^n$,因此,我们可以对矩阵定义行列式:

定义 1.6.2: 矩阵的行列式

设矩阵 $A=(\alpha_1,\cdots,\alpha_n)\in M_n(F)$,我们定义:

$$|A|=\det(A):=\det(\alpha_1,\cdots,\alpha_n)$$

并且有 $\det(e_1,\cdots,e_n)=1$,其中 e_i 是标准基向量 $(0,\cdots,1,\cdots,0)$,1 在第 i 个位置上。

矩阵的行列式也可以类似地在标准基上展开

定理 1.6.4: 矩阵的行列式的展开

设 F 是一个域,矩阵 $A=(a_{ij})\in M_{n\times n}(F)$ 那么,有:

$$|A| = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$
(1.14)

1.6 行列式 15

1.6.4 矩阵的行列式的余子式展开

1.6.5 矩阵乘积的行列式