

Making Third Person Techniques Recognize First-Person Actions in Egocentric Videos

Sagar Verma, Pravin Nagar, Divam Gupta, and Chetan Arora

sagar.verma@centralesupelec.fr, pravinn@iiitd.ac.in, divam14038@iiitd.ac.in, chetan@iitd.ac.in

PROBLEM STATEMENT

A generic framework to recognize all categories of action classes for egocentric videos.

After cropping and resizing the objects become comparable to the objects in third person videos.

Contributions

- 1. Deep neural network trained on third person videos do not adapt to egocentric action due to large difference in size of the visible objects.
- 2. We propose curriculum learning by merging similar but opposite actions while training CNN.
- 3. Proposed framework is generic to all categories of egocentric actions.

Related Work

Earlier works on first person action recognition use hands and objects as important cues.[1, 2] On the other end many works only use motion information for first person action recognition.[3, 4] State of the art (SoTA) techniques focus only on one specific category of action classes.

ACKNOWLEDGEMENT

This work has been supported by Infosys Center for Artificial Intelligence, Visvesaraya Young Faculty Research Fellowship, and Visvesaraya Ph.D. Fellowship from Government of India. We thank Inria and CVN Lab at Centralesupelec to support travel for Sagar Verma.

Resize (300x300) Random Crop 224x224) ResNet50 LSTM, SoftMax, SoftMax, RGB Stream Central Crop (MxN) LSTM, SoftMax, SoftMax,

Flow Stream

RESULTS AND DISCUSSION

Dataset	Subjects	Frames	Classes	Accuracy	
				Current	Ours
GTEA [1]	4	31,253	11	68.50[5]	82.71
EGTEA + [1]	32	$1,\!055,\!937$	19	NA	66
Kitchen [6]	7	$48,\!117$	29	66.23[5]	71.92
ADL [2]	5	$93,\!293$	21	37.58[5]	44.13
UTE [7]	2	$208,\!230$	21	60.17[5]	65.12
HUJI [8]	NA	1,338,606	14	86[8]	93.92

Accuracy comparison
 of our method with
 SoTA and statistics of
 egocentric video
 datasets

Applicability in real life setting where different action categories are present

To validate the applicability of our method, we use mixed samples from GTEA and HUJI dataset. From the confusion matrix it is evident that the proposed network does not seem to have any confusion in the different category of actions.

Activity: Peanut

Top and bottom of each sub figure shows predicted and ground truth sequence respectively.

REFERENCES

- [1] Alireza Fathi, Xiaofeng Ren, and James M Rehg, "Learning to recognize objects in egocentric activities," in CVPR, 2011.
- [2] Hamed Pirsiavash and Deva Ramanan, "Detecting activities of daily living in first-person camera views," in CVPR, 2012.
- [3] Kris Makoto Kitani, Takahiro Okabe, Yoichi Sato, and Akihiro Sugimoto, "Fast unsupervised ego-action learning for first-person sports videos," in *CVPR*, 2011, pp. 3241–3248.
- [4] Suriya Singh, Chetan Arora, and C. V. Jawahar, "Trajectory aligned features for first person action recognition," *Pattern Recognition*, vol. 62, pp. 45–55, 2016.
- [5] Suriya Singh, Chetan Arora, and C V, Jawahar, "First person action recognition using deep learned descriptors," in *CVPR*, 2016, pp. 2620–2628.
- [6] Ekaterina H Spriggs, Fernando De La Torre, and Martial Hebert, "Temporal segmentation and activity classification from first-person sensing," in *CVPRW*, 2009, pp. 17–24.
- [7] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman, "Discovering important people and objects for egocentric video summarization.," in *CVPR*, 2012, pp. 1346–1353.
- [8] Yair Poleg, Ariel Ephrat, Shmuel Peleg, and Chetan Arora, "Compact cnn for indexing egocentric videos," in WACV. IEEE, 2016, pp. 1–9.