MATH/CSCI 387

Homework 2

Due Thursday, February 13

Practice exercises from the book

1.29, 1.46, 2.1, 2.4, 2.5, 2.6, 2.9, 2.10, 2.15

Problems

- 1. For each of the following languages, prove either that it is regular or that it is not regular. In all cases $\Sigma = \{0, 1\}$.
 - (a) $L = \{w \mid w \text{ contains an equal number of 0s and 1s}\}$
 - (b) $L = \{1^k y \mid y \in \Sigma^*, k \ge 1, \text{ and } y \text{ contains at least } k \text{ 1s}\}$
 - (c) $L = \{1^k y \mid y \in \Sigma^*, k \ge 1, \text{ and } y \text{ contains at most } k \text{ 1s}\}$
- 2. Consider the language $L = \{0^i 1^j 2^k \mid i, j, k \ge 0 \text{ and if } i = 1 \text{ then } j = k\}.$
 - (a) Show that L is not regular.
 - (b) Show that L does not look irregular as far as the pumping lemma goes. That is, give a pumping length p and show that L satisfies the conditions of the pumping lemma.
 - (c) Explain why the two things you've shown above do not contradict.
- 3. For each of the following languages, give a CFG that generates the language. In all cases $\Sigma = \{0, 1\}$.
 - (a) $L = \{w \mid w \text{ contains at least three 1s} \}.$
 - (b) $L = \{w \mid w \text{ has odd length and its middle symbol is } 0\}.$
 - (c) $L = \{0^m 1^n \mid m \neq n\}.$
 - (d) $L = \{0^i 1^j 0^k \mid j > i + k\}.$
- 4. Draw the state diagram of a PDA that accepts each of the following languages. In all cases $\Sigma = \{0, 1\}$.
 - (a) $L = \{0^m 1^n \mid m \neq n\}.$
 - (b) $L = \{w \mid w \text{ contains more 0s than 1s}\}.$

Bonus problems

1. Our goal in this problem is to show that the representation of objects can affect whether or not a given set can be recognized by a machine. Consider a set A of natural numbers. Let $B_k(A)$ be the set of strings that represent numbers from A in base k (with no leading zeros). For example, if $A = \{3, 5\}$ then $B_2(A) = \{11, 101\}$ and $B_3(A) = \{10, 12\}$. We can think of $B_k(A)$ as a language with a k-symbol alphabet. Give a set A for which $B_2(A)$ is regular but $B_3(A)$ is not (and prove it).

2. Let G be the following CFG:

$$S \to aSb \mid bY \mid Ya$$
$$Y \to bY \mid aY \mid \epsilon$$

Give a simple English description of the language of G. Use this description to give a CFG that recognizes the complement of that language.

- 3. $L = \{xy \mid |x| = |y| \text{ and } x \neq y\}.$
 - (a) Give a CFG that generates the language L.
 - (b) Give a PDA that accepts the language L.