中山大学本科生期末考试

考试科目:《高等代数》(A卷)

姓 名: _____

学 号:_____

学年学期: 2017 学年第 1 学期

学 院/系:数据科学与计算机学院

(a) (5%) prove that a_1, a_2, a_3 form a basis of \mathbb{R}^3 .

(b) (5%) compute the coordinates of b_1 , b_2 relative to this basis $\{a_1, a_2, a_3\}$.

考试方式: 闭卷	年级专	业:		
考试时长: 120 分钟	班	别:		
任课老师:				
警示《中山大学授予学士学位工作	细则》第八多	条:"考试	:作弊者,	不授予学士学
位。" 以下为试题区域,共 三 道大题	5, 总分 100 分	>,考生请在	答题纸上位	作答
一、客观题(共 5 小题,每小题 3 分	,共 15 分)		
1) (3%) Each eigenvalue of A is also an eigen	ivalue of A^2 . (7)	True or Fals	se, justify)	
2) (3%) If W is a subspace of \mathbb{R}^n , then W and	nd W^{\perp} have no	o vectors in	common. (True or False, justify)
3) (3%) If $\alpha_1 = (1,1,0,0), \alpha_2 = (0,0,1,1), \alpha_3 = (0,0,1,1)$	$x_3 = (1,0,1,0),$	$\alpha_4 = (1,1,$	1,1), then	the maximal linearly
independent set is				
(A) α_1, α_2 (B) $\alpha_1, \alpha_2, \alpha_3$ (C)	$\alpha_1, \alpha_2, \alpha_4$	(D) α_1 ,	$\alpha_2, \alpha_3, \alpha_4$	
4) (3%) The general solution of $A\mathbf{x} = 0$ is \mathbf{x}	$= c_1 \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + c_2$	$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, the	n A is	
(A) $(-2 \ -1 \ 1)$ (B) $\begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$	(C) $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 2 \\ -1 \end{pmatrix}$	(D) (-2	1 1)
5) (3%) If A is a $n \times n$ matrix, x_1, x_2 are so	olutions of Ax	$= \beta$, and β	$x_1 \neq x_2$, th	en the determinant of
A is				
(A) 0 (B) 1 (C) $x_1^T x_2$ (D) the de	terminant of A	depends	on whether	β is 0 .
二、计算题(共 6 小题,共 65 分)				
1) Let $A = (a_1 \ a_2 \ a_3) = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$	$, B = (\boldsymbol{b_1} \boldsymbol{b}$	$_{2}) = \begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix}$	4 3 2),	

2) (10%) Compute the determinant of the following matrix:

$$D = \begin{vmatrix} a & b & c & d \\ a & a+b & a+b+c & a+b+c+d \\ a & 2a+b & 3a+2b+c & 4a+3b+2c+d \\ a & 3a+b & 6a+3b+c & 10a+6b+3c+d \end{vmatrix}$$

3) Let
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
,

- (a) (5%) compute the eigenvalues of the given matrix.
- (b) (5%) compute the eigenvectors of the eigenvalues in (a).

4) Let
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}$$
, (a) (5%) diagonalize A . (b) (5%) compute A^n .

5) Given the Vandermonde determinant:
$$D = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ \dots & \dots & \dots & \dots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{bmatrix}$$

- (a) (5%) when n = 2, compute D.
- (b) (5%) determine the general form of the determinant.

6) Let
$$A = \begin{pmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{pmatrix}$$
,

- (a) (5%) prove columns of A are linearly independent.
- (b) (5%) find an orthogonal basis for *ColA*.
- (c) (5%) find a QR factorization of A.

三、证明题(共3小题,共20分)

- 1) (5%) If $a_1 + a_2$, $a_2 + a_3$, $a_3 + a_4$, $a_4 + a_5$, $a_5 + a_1$ are linearly independent, prove that a_1, a_2, a_3, a_4, a_5 are linearly independent.
- 2) (5%) Let A is $n \times n$ symmetric matrix, U,V are two subspaces of \mathbb{R}^n , and $U = \{x \in \mathbb{R}^n | Ax = \mathbf{0}\}$, $V = \{Ax \mid x \in \mathbb{R}^n\}$. Please prove that U is the orthogonal complement of V in \mathbb{R}^n .
- 3) Let A, B are $n \times n$ matrics, please prove:

(a) (5%) If
$$A^3 = B^3$$
, $A^2B = B^2A$, and $A^2 + B^2$ is invertible, then $A = B$.

(b) (5%) If
$$A + B$$
 is invertible, then $A(A + B)^{-1}B = B(A + B)^{-1}A$.