SUBJECT CODE : 24-509-0105

SUBJECT NAME : DIGITAL INTEGRATED CIRCUITS LAB

STUDENT NAME : MADHU KRISHNAN A P

MOSFET CHARACTERISTICS

MOSFET is a very popular kind of IG-FET. The full form of MOSFET is the Metal Oxide Semiconductor Field Effect Transistor. It is a three-terminal device that uses the electric field to regulate and maintain the flow of current. The three terminals are Gate, Drain, and Source

LONG CHANNEL n-MOSFET

A long channel n-MOSFET with following dimensions were placed in Cadence Virtuoso.

Length, $L = 1 + (Roll Number/5) = 1 + (10/5) = 3 \mu m$

Width, $W = 1 + (Roll Number/5) = 1 + (10/5) = 3 \mu m$

Technology: 90 nm Technology

 $V_{DD} = 1V$ is connected to the MOSFET.

Schematic diagram

For this specific MOSFET, (W/L) = 1.

THRESHOLD VOLTAGE V_{T0}

 V_{SB} is kept at 0V. The threshold voltage V_{T0} is found using DC analysis. V_{GS} is raised from 0 to 1V. The V_{GS} of corresponding point in DC analysis graph at which the I_{DS} turn from nanoampere range to microampere range is noted as V_{T0}

 I_{DS} vs V_{DS} for $V_{GS} = 1V$

$V_{T0} = 238 \times 10^{-3} V$

The I_D vs V_{DS} graph is plotted using DC analysis for varying V_{GS} and the following graph is obtained.

 I_D vs V_{DS} for varying V_{GS}

EXTRACTION OF PARAMETERS

 V_{T0} is found from the graph. The following calculations are done to calculate $\mu_n C_{ox}$ and λ .

2 Points are taken in saturation region with same V_{GS}

$$I_{DS} = \mu_n C_{ox} (W/2L) (V_{GS} - V_T)^2 (I + \lambda V_{DS})$$
 [1]

For M1

 $I_{DS} = 30.9817 \times 10^{-6} A$

W/L = 1

 $VGS = 666.7 \times 10^{-3} V$

For M2

$$I_{DS} = 31.1165 \times 10^{-6} A$$

W/L = 1

 $VGS = 666.7 \times 10^{-3} V$

Substituting the above values in [1], we get

 $\lambda = 0.0296751 \text{ V}^{-1}$

Substituting the value of λ and M1 in [1], we get $\mu_{\text{\tiny B}} C_{\text{\tiny OX.}}$

 $\mu_n C_{ox} = 331.2862 \ \mu A/V^2$

EXTRACTION OF PARAMETERS WITH VSB \neq 0

 V_{SB} is introduced between source and body. The corresponding DC analysis results are as following.

 $V_{SB} = 0.250 \text{ V}$

Schematic diagram for NMOS with $V_{SB} = 0.250 \text{ V}$

DC Analysis Graph for $V_{SB} = 0.250 \text{ V}$

Threshold voltage, $V_T = 271 \text{ mV}$

$V_{\text{SB}} = 0.500 \text{ V}$

Schematic diagram for NMOS with $V_{SB} = 0.500 \text{ V}$

DC Analysis Graph for $V_{SB} = 0.500 \text{ V}$

Threshold voltage, $V_T = 301 \text{ mV}$

$V_{SB} = 0.750 \text{ V}$

Schematic diagram for NMOS with $V_{SB} = 0.750 \text{ V}$

DC Analysis Graph for $V_{SB} = 0.750 \text{ V}$

Threshold voltage, $V_T = 328 \text{ My}$

The results are tabulated as following

$\mathbf{V}_{\mathtt{SB}}$	$\mathbf{V}_{\mathtt{T}}$
0 V	238 mV
250 mV	271 mV
500 mV	301 mV
750 mV	328 mV

We know,

$$V_{TH} = V_{T0} + \gamma \sqrt{(-2 \varphi_F + V_{SB}) - \sqrt{(-2 \varphi_F)}}$$

 $V_{TH} = Threshold Voltage$

 $V_{\text{T0}} = \text{Threshold voltage for } V_{\text{SB}} = 0V$

 $\phi_F = Fermi potential for substrate$

 γ = Body effect coefficient

When V_{SB} is increased $|-2 \phi_F + V_{SB}|$ is increased and $\gamma \sqrt{(|-2 \phi_F + V_{SB}|)} - \sqrt{(|-2 \phi_F|)}$ is increased. This makes V_{T0} to increase. We can say that the body effect comes into action when V_{SB} is provided. The V_{SB} opposes the gate voltage. The gate must be provided a higher voltage than V_{T0} so that the MOSFET goes past the cutoff region and turns on. This body effect can be observed in both short channel and long channel MOSFETs.

SHORT CHANNEL n-MOSFET

A short channel n-MOSFET with following dimensions is placed in cellview.

Length, 200 nm

Width,
$$W = 1 + (Roll Number/5) = 1 + (10/5) = 3 \mu m$$

$$W/L = 15$$

 $V_{DD} = 1 \text{ V}$ is connected to the MOSFET.

$$V_{\text{SB}} = 0 \text{ V}$$

Schematic diagram

 I_{DS} vs V_{DS} for $V_{GS} = 1V$

EXTRACTION OF PARAMETERS

Parametric analysis is done for varying V_{GS} to extract parameters. The graph is plotted.

Parametric analysis graph

The following equation is used to find $I_{D \, SAT}$ and $\mu_n \, C_{ox}$

$$I_{D SAT} = \mu_n C_{ox} (W/L) ([V_{GS} - V_T] V_{D SAT} - (V_{D SAT})^2/2)$$
 [2]

2 Points M1 and M2 with different V_{GS} is taken

For M1

 $V_{GS} = 777.8 \text{ mV}$

 $I_{D \text{ SAT}} = 552.249 \ \mu A$

For M2

 $V_{GS} = 888.9 \text{ mV}$

 $I_{\text{D SAT}}=724.964~\mu A$

The above values are substituted in equation [2] and V $_{D \; SAT}$ is found. This is then substituted along with parameters of M1 to find $\mu_n \; C_{ox}$

 $V_{DSAT} = 0.56796 V^{-1}$

 $\mu_n C_{ox} = 182.691 \ \mu A/V^2$

 V_{GS} is varied and V_{T} is noted using DC analysis of I_{DS} vs V_{DS} .

For $V_{GS} = 0.250 \text{ V}$

Schematic diagram

DC Analysis graph

Schematic diagram

DC Analysis graph

Schematic diagram

DC Analysis graph

The results are tabulated

$\mathbf{V}_{ ext{SB}}$	$\mathbf{V}_{\mathtt{T}}$
0 V	139 mV
250 mV	166 mV
500 mV	190 mV
750 mV	212 mV

A short channel n-MOSFET with following dimensions is placed in cellview.

Length, 100 nm

Width,
$$W = 1 + (Roll Number/5) = 1 + (10/5) = 3 \mu m$$

$$W/L = 30$$

 $V_{DD} = 1 \text{ V}$ is connected to the MOSFET.

$$V_{\scriptscriptstyle SB} = 0 \ V$$

Schematic diagram

 I_{DS} vs V_{DS} for $V_{GS} = 1V$

 $V_{T0} = 62 \text{ mV}$

EXTRACTION OF PARAMETERS

Parametric analysis is done for varying V_{GS} to extract parameters. The graph is plotted.

Parametric analysis graph

The following equation is used to find $I_{D\,SAT}$ and μ_{n} C_{ox}

$$I_{D SAT} = \mu_n C_{ox} (W/L) ([V_{GS} - V_T] V_{D SAT} - (V_{D SAT})^2/2)$$
 [3]

2 Points M1 and M2 with different V_{GS} is taken

For M1

 $V_{GS} = 777.8 \text{ mV}$

 $I_{D \text{ SAT}} = 1.16296 \text{ mA}$

For M2

 $V_{GS} = 888.9 \text{ mV}$

 $I_{D \text{ SAT}} = 1.49589 \text{ mA}$

The above values are substituted in equation [3] and V $_{D\,SAT}$ is found. This is then substituted along with parameters of M1 to find μ_n C_{ox}

 $V_{DSAT} = 0.60582 \text{ V}^{-1}$

 $\mu_n C_{ox} = 154.976 \ \mu A/V^2$

 V_{GS} is varied and V_{T} is noted using DC analysis of I_{DS} vs V_{DS} .

For $V_{GS} = 0.250 \text{ V}$

Schematic diagram

DC Analysis graph

For $V_{GS} = 0.500 \text{ V}$

Schematic diagram

DC Analysis graph

For $V_{GS} = 0.750 \text{ V}$

Schematic diagram

DC Analysis graph

The results are tabulated

$\mathbf{V}_{ ext{SB}}$	$\mathbf{V}_{ ext{T}}$
0 V	62 mV
250 mV	72 mV
500 mV	85 mV
750 mV	91 mV

The threshold voltage is found to be reduced for equal $V_{\rm GS}$ and reduced length. The $V_{\rm D\,SAT}$ is observed to be higher for 100nm MOSFET. The body effect can be seen in both 100nm and 200nm MOSFET.

p-MOSFET

A p-MOSFET having following dimension is placed in cellview.

L = 200 nm

 $W = 3 \mu m$

Schematic diagram

Parametric analysis graph

Parametric analysis is performed for V_{DS} vs I_{DS} with varying V_{GS}