ST1131 Cheatsheet AY24/25 — @Jin Hang **Exploratory Data Analysis**

Variable: Any characteristic observed in a study.

- Quantitative: Observations take on numerical values.
- Discrete: usually countable.
- Continuous: infinitely many possible values
- Categorical: Each observation belongs to one of categories.
 - Ordinal: can be ordered, no specific quantitative values.
 - Nominal: have no specific ordering.
- **Difference:** Is distance between 2 points meaningful?
- Quant. \rightarrow Cate.: divide into n ranges, count # in each range.

Frequency Table - Categorical

- **Proportion:** aka relative frequency. # of obs. in 1 cat. Total # of obs.
- Modal Category: Category with highest frequency
- Relative Frequencies: Proportions and Percentages
- Summarizing: Modal category and its proportion

Bar Plots - Categorical

• Summarizing: Modal category and its proportion, Group of cat. with high/low proportions, Mention trends if ordinal

Histogram - Quantitative

- Skewed left/right: Left/right tail is longer
- Summarize: Unimodal/Bimodal/Multimodal, Skewed/ Symmetric, Outlier, Gap, Cluster
- (IQR, Range, $\bar{X} \pm 2s$) larger \rightarrow variability \uparrow , less peaked

Describing Center

- Mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - Linear Transformation: $\bar{Y} = b\bar{X} + a$
 - Sensitive to outliers, unlike median
 - Symmetric and Bell-shaped: Report Mean
- Median $(X_{(0.5)})$: $(\frac{n}{2})$ th or mean. $(\frac{n}{2}, \frac{n}{2} + 1)$
 - Robust to extreme observations
- highly skewed, report median to summarize centre tendancy
- If $\bar{X} > X_{(0.5)}$, skew right. If $\bar{X} < X_{(0.5)}$, skew left.

Describing Variability

- Range: Max.-Min., Sensitive to outliers Variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2$
 - Larger s means values are more spread out from mean.
- Standard deviation: $sd = \sqrt{S^2}$
 - Linear Transformation: $S_y^2 = b^2 s_x^2$, $S_y = |b| s_x$
 - **Empirical Rule:** $(\bar{X} \pm s) 68\%, (\bar{X} \pm 2s) 95\%$
- Quartile: (q_p) 100p% of observations are below q_p
 - Lower quartile (Q_1) , Median (Q_2) , Upper quartile (Q_3)

 - Also known as **percentiles**. For continuous RV, the 100*p*-th quartile, $q_p \Rightarrow P(X \leq q_p) = p$
- Inter-quartile Range (IQR): $Q_3 Q_1$, how spread out the "middle" of the sample is.
- Symm. \rightarrow Mean, Variance. Skewed \rightarrow Median, IQR.

Five-Number Summary: Min, Q_1 , Q_2 , Q_3 , Max Boxplot - Variability

- Identify Five-Number and Point out outliers
- Outliers: $< Q_1 1.5 \text{ IQR or } > Q_3 + 1.5 \text{IQR}$
- Min/Max Whisker Reach: Boundary of outliers
- Upper/Lower Whisker: Max/Min data within whisker reach
- Not portray certain features (i.e. mounds/gaps)
- If unimodal, can show skewness.
- Summarizing: Median, Outliers(# and which side of median), Compare medians, IQRs, Spread if > 1 boxplots, Skewness

Two Variables

- Response/Target Var.: variable on which comparisons are made
- Explanatory Var.: variable you believe the response depends on

- Sometimes unable to identify the role of variables ⇒ Equally Contingency Table - 2 categorical
- Conditional Percentage % out of total
- Be careful of phrasing (Eg. Ppl w/o cancer of PMH users vs. PMH users of those w/o cancer)
- Relative Risk Ratio of 2 percentages. (Eg. % of cancer in PMH users is 1.24 times the % of cancer in non-PMH users) Ratio is significantly different from $1 \Rightarrow$ association between breast cancer and PMH usage.
- Raw difference is a statistic **help explore** the association

Scatter Plot - 2 Quantitative Variables

• Summarizing: Pos./Neg./No association, Linear/Trend, Range of y value, Constant variability, Outliers

Correlation:
$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right) \in [-1, 1]$$

- $r = \pm 1 \rightarrow \text{Correlation is linear}$
- Correlation does not imply causation

Data Collection

- Confounding Variable: Occurs when two explanatory var. are associated with a response var., but are also associated with
 - Observed variable that is included in the dataset.
 - difficult to tell which of the two explanatories is causing a change in the response.
- Lurking Variable: usually unobserved, that influences the association between the variables of primary interest
 - Typically not measured in the study
- Experimental Study: Assign subjects (experimental units) to certain experimental conditions(treatments) and observe resp.
 - Control lurking var. by randomly assigning the treatment. More confident to determine causality between exp./resp.
- Observational Study: Explanatory and response variable observed for subjects. No treatments.

Sample Survey

- 1. Identify the Population
- 2. Compile Sampling Frame: Where sample is from
 - Ideally, sampling frame lists all subjects in population.
- 3. Sampling design: How to choose subjects from frame
- 4. Collect data from the chosen sample.

Simple Random Sample: Same chance of being chosen

- Ensures it is representative of the general population.
- Allow us to make inferences about the population.
- Cluster Random Sampling, Stratified Random Sampling...

Sources of Bias in Sample Survey:

- Sampling Bias: Sample not random or undercoverage
- Non-response Bias: No response from subject
- Response Bias: Incorrect resp./misleading gns

A large sample size does not guarantee an unbiased sample.

Convenience Sample: selected based on ease of access. E.g. outside a mall or at an MRT station.

Volunteer samples: People are encouraged to participate in the survey via a flyer or email. This can yield incorrect inferences. Elements of Good Experimental Study:

- Control comparison group
- Randomization: Eliminate lurking variables
- Blinding the study: Placebo

Sample Space: Set of all possible outcomes of a random phem. **Event:** Subset of the sample space S.

- corresponds to a particular or a group of possible outcomes.
- Complement(A^C) consists of all outcomes $\notin A$.
- Mutually Exclusive: $A \cap B = \emptyset$

- Independent: $A \perp B \Rightarrow P(AB) = P(A) \cdot P(B)$
 - 1. 独立和互斥的关系: 独立不互斥, 互斥不独立
 - 2. S and \emptyset are independent of any other event.
 - 3. If $A \perp B$, then $A \perp B'$, $A' \perp B$, and $A' \perp B'$
 - 4. $A \perp B \Rightarrow P(A) = P(A|B) \& P(B) = P(B|A)$
- 5. $P(A) = 0/1 \Rightarrow A$ is **independent** of any B
- 6. 0 < P(A), P(B) < 1, 若AB互斥/包含 ⇒ 不独立
- Intersection: $A \cap B$ contains elements common to both
- 1. $A \cap A' = \emptyset$ 6. $(A \cup B)' = A' \cap B'$
- $A \cap \emptyset = \emptyset$ 7. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 3. $A \cup A' = S$ 8. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 4. (A')' = A9. $A \cup B = A \cup (B \cap A')$ 5. $(A \cap B)' = A' \cup B'$ 10. $A = (A \cap B) \cup (A \cap B')$

 $A \subset B$ if all elements in event A are in event B, if $A \subset B$ and $B \subset A$ then A = B. We assume **contained** means proper subset.

- **Probability Axioms** $\overline{\bullet P(A \cup B) = P(A) + P(B)} \le 1 \quad \bullet \quad P(AB) \le P(A) \text{ or } P(B)$
- $P(A) = P(A \cap B) + P(A \cap B')$ $A \subset B \Rightarrow P(A) < P(B)$
- If $P(A) \neq 0$, $A \perp B$ if and only if $P(B \mid A) = P(B)$

Properties of Independent Events

- 1. P(B|A) = P(B) and P(A|B) = P(A)
- 2. A and B cannot be mutually exclusive if they are independent. supposing P(A), P(B) > 0
- 3. A and B cannot be independent if they are mutually exclusive
- 4. Sample space S and empty set \emptyset are independent of any event
- 5. If $A \subset B$, then A and B are dependent unless $B = \overline{S}$.

Probability

- Conditional: $P(A|B) = \frac{P(A \cap B)}{P(B)}$, if $Pr(A) \neq 0$
- Multiplicative: $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$
- LoTP: $P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$ Bayes: $P(A_k|B) = \frac{P(A_k)P(B|A_k)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$

Epidemiological Terms

- Sensitivity: P(+|D), Given has disease, prob. of positive test.
- Specificty: $P(-|\bar{D})$ Given has no disease, prob. of neg. test
- Prevalence: $P(D) = \frac{\text{\# of people with disease}}{T}$ Total population
- Positive Predictive Value: P(D|+)

Random Variable

Discrete

- $\sum_i P_i = 1$ $\mu = \sum_x x P_x$ $\sigma^2 = \sum_x P_x (x \mu)^2$ Visualize: Bar Plot Width of each rectangle is identical, but the height is proportional to p_x

Continuous Random Variables: Distribution represented by probability density function, area under curve = 1.

- $\mu = \int x f(x) dx$
- $\sigma^2 = \int (x \mu)^2 f(x) dx$
- If $x_1, ..., x_n$ have same prob. distri., mean of these variables (X)is a random variable where $E(\bar{X}) = \frac{1}{n} \sum_{i=1}^{n} \mu_i = \mu$
- a large number of observations from a population, sample mean of those observations would be close to the mean of that probability distribution.

Variance

Mean

• $Var(\bar{X}) = \frac{\sigma^2}{\pi}$

Binomial Distribution Bin(n, p)

- 1. n independent trials with 2 outcomes
- 2. Each trial has probability of p to succeed

Binomial Random Variable - # of successes in n trials

- Bernoulli $(p) \Leftrightarrow Bin(1,p) \Rightarrow \sum Bernoulli(p) = Bin(n,p)$
- $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$
- \bullet E(X) = np
- Var(X) = np(1-p)

Poisson Distribution: k is num(occurrences) of events

- $P(X=k) = \frac{e^{-\mu}\mu^k}{k!}$
 - $-\lambda$ is the expected no. of events per time unit $-\mu = \lambda t$ is the expected no. of events over time period t.
- $V(X) = \lambda$ • $X \sim \text{Poisson}(\lambda)$ \bullet $E(X) = \lambda$
- $n \to \infty, p \to 0$, $Bin(n, p) \to Poisson(np)$ if n > 20 and p < 0.05, or if n > 100 and np < 10.

Normal(Gaussian) distribution: $X \sim N(\mu, \sigma^2)$

- If d > 0, $P(X < \mu d) = P(X > \mu + d)$.
- $q_{1-p} = 2\mu q_p$
- N(0,1) between -1 and $1 \sim 68\%$
- N(3,4) between -1 and $7 \sim 95\%$
- $X, Y \sim N(\mu, \sigma^2) \Rightarrow aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$
- $X \sim N(\mu, \sigma^2) \Rightarrow Z = \frac{X \mu}{\sigma} \sim N(0, 1)$ [Z-Score of X]
- $Z \sim N(0,1) \Rightarrow -Z \sim N(0,1) \Rightarrow \sigma Z + \mu \sim N(\mu, \sigma^2)$
- Sensitivity $p: \exists$ cut-off value C s.t. P(X > C) = p
- Approximation: For n is moderately large and p is not close to 0 or 1, if $np(1-p) \ge 5$, $X \sim Bin(n,p) \sim N(np, np(1-p))$

Sampling Distribution

- Data Distribution Distribution of some observations from a single sample. Larger n, closer data distribution to the pop. distribution.
- Sampling Distribution Distribution of \bar{X} and \hat{p}
- Central Limit Theorem Suppose there are independent observations that form a distribution (not necessarily normal) with mean μ and variance σ^2 and sample size n is large, then sample mean $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ Sample Proportion $\hat{p} = \frac{X_1 + \ldots + X_n}{n}$ • Population Proportion - p that we want to estimate

- Population Distribution Ber(p) where $\mu = p$ and
- When $np(1-p) \ge 5$, $\hat{p} \sim N(p, \frac{p(1-p)}{n})$ approximately by CLT

Sample Mean \bar{X} : when population distribution is

- $E(\bar{X}) = \mu$ and $Var(\bar{X}) = \frac{\sigma^2}{n}$
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ exactly 2. not normal
- - $E(\bar{X}) = \mu$ and $Var(\bar{X}) = \frac{\sigma^2}{n}$
- When $n \geq 30$, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ approximately by CLT

Statistics Inference: There are two main types of inference

- estimation of population parameters, and
- testing hypotheses.

Point Estimate A single number that is best guess for pop. para.

- $\bar{X} \rightarrow \mu$, $s^2 \rightarrow \sigma^2$, $\hat{p} \rightarrow p$, $X_{0.5} \rightarrow q_{0.5}$
- Does not show how close they are to true value

Interval Estimate Interval of numbers within which the parameter value is believed to fall.

- Indicates precision by an interval of nums around point est.
- The interval is made up of numbers that are the most believable values for the unknown parameter, based on the data observed.

Confidence Intervals: CI = Point estimate $\pm Margin$ of error

- Margin of error measures how accurate the point estimate is likely to be in estimating a parameter.
- Standard Error (SE) Estimated sd of sampling distribution
- We have X% confidence that p falls in the interval ..
- We could have 100%-CI without any sample \Rightarrow do use that!
- Sample Size $\uparrow \Rightarrow$ SE $\downarrow \Rightarrow$ Length(CI) = $2 \times q_{1-\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}} \downarrow$

Find CI given confidence lvl. (x):

- 1. Find \hat{p} and check $n\hat{p}(1-\hat{p}) > 5$
- 2. Let $\alpha = 1 x$
- 3. $CI = \hat{p} \pm q_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \hat{p} \pm q_{1-\frac{\alpha}{2}} SE$

Determine sample size (n) before study:

- 1. Decide confidence level (x) and width of CI (D)
- 2. $n \ge (\frac{2q_{1-\frac{\alpha}{2}}}{D})^2 p(1-p)$ where $p = \frac{1}{2}$ Confidence Interval for Mean

- σ^2 of pop. will affect Len of interval, but we cannot change it. **t-distribution** For $\bar{X} \sim N(\mu, \sigma^2/n), \frac{\bar{X}-\mu}{s/\sqrt{n}} \sim t_{n-1}$
- Has thicker tails and more variability than that of N(0,1)
- (t_{df}) Approaches N(0,1) as $df \uparrow \Rightarrow df \geq 30 \Rightarrow t_{df} \sim N(0,1)$

Find CI given confidence lvl. (x):

- 1. **Assumptions:** Sample is random (**not robust**, crucial); Data distribution symmetric or n is big(**robust**)
- 2. CI = $\bar{X} \pm t_{n-1;1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$. Note: If n is large enough and σ is known, then the margin of error is $z_{\alpha/2}(\sigma/\sqrt{n})$ instead.

Robustness of Assumptions: A statistical method is said to be robust with respect to a assumption if it performs adequately even when that assumption is modestly violated.

Determine sample size (n) before study:

- 1. Decide confidence level (x) and width of CI (D)
- 2. Length(CI) = $2 \times t_{n-1;1-\alpha/2} \frac{s}{\sqrt{n}} \le D \Rightarrow n \ge (\frac{2t_{n-1;1-\alpha/2} \cdot s}{D})^2$
- 3. We don't know $n, s \Rightarrow \text{use } n \ge (\frac{2q_{1-\alpha/2} \cdot s}{D})^2$ For s, look for similar studies. Ensure n > 30.

Hypothesis Testing

- Test statistic: How far point estimate falls from guess
- Null distribution: Distribution of test stat. under H_0
- p-value: How unlikely observed value is, if H_0 is true
- Significance level(α): Tells us how strong the evidence should be. Reject H_0 if p-value $< \alpha$ Test is statistically significant when we reject H_0

Two Errors: Increase sample size to reduce both errors

- Type I: Reject H_0 , but H_0 is true $\alpha = P_{H_0}(z \geq c_{\text{reject}}) \Rightarrow \text{The smaller } \alpha \text{ the better!}$
- Type II. Do not reject H_0 , but H_0 is false $\beta = \alpha = P_{H_1}(z \ge c_{\text{reject}}) \Rightarrow$ The smaller β the better!
- Power of Test = 1β , probability of correctly rejecting H_0 , when it is in fact false.
- Cannot reduce both types of errors simultaneously.
- $\alpha \downarrow \Rightarrow \beta \uparrow$, but impossible $\alpha = 0, \beta = 1$

One sample, Proportion

- 1. Assumptions: Categorical, Random, $np_0(1-p_0) \geq 5$
- 2. Hypothesis: $H_0: p = p_0 \text{ and } H_1: p(>/</\neq)p_0$
- 3. Test statistic: $z = \frac{\hat{p} p_0}{\sqrt{p_0(1-p_0)}}$ and $z \sim N(0,1)$
- 4. **p-value:** Right sided P(Z > z); 2-sided 2P(Z > z)
- 5. Reject H_0 if p-value $\leq \alpha$.

One sample, Mean

- 1. Quantitative, Random, Approx. normal (or n > 30)
- 2. Test statistic: $T = \frac{\bar{X} \mu_0}{\frac{s}{\sqrt{n}}}$ and $T \sim t_{n-1}(0,1)$
- 3. Result of 2-sided test for mean is same as using CI

Two sample, Independent, Equal variance

- 1. Assumptions: Quantitative, Random, Independent samples, Pop. distri. is approx. normal (or n is large enough), Equal variance test > 0.05
- 2. Hypothesis: $H_0: \mu_1 = \mu_2 \text{ and } H_1: \mu_1 > < \neq \mu_2$

3. Test statistic: $T = \frac{(\bar{X} - \bar{Y}) - 0}{SE} \sim t_{n_1 + n_2 - 2}$ where SE = $s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ and $S_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ (Pooled estimate of common variance)

Two sample, Independent, Unequal variance

- 1. Assumptions: Same, except pop. var. is different
- 2. Test statistic: $T = \frac{(\bar{X} \bar{Y}) 0}{\text{SE}} \sim t_{df}$ where $\text{SE} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ and df needs R \Rightarrow Use R to get p-value and df

Two sample, Dependent

- 2 samples are dependent \leftrightarrow Each obs. has matching pair (Eg. Before and after)
- Take difference of matched observations and compare mean of difference with 0. Similar to 1 sample test.

Normality Assumption: Sample distribution is approximately Normal \Rightarrow high probability that the population follows it as well. QQ Plot

- Right \checkmark , Left $\nearrow \Rightarrow$ Longer; Right \nwarrow , Left $\searrow \Rightarrow$ Shorter
- Summary: longer/shorter tail than normal, occurs on which side of the mean

Shapiro-Wilk Test: Good for small samples only.

- H_0 : Sample is from a Normal distribution. H_1 : Not normal. Regression Model
- Linear refers to the linearity in the parameters.
- $-Y = \beta_0 + \beta_1 \sin(X_1) + \beta_2 \log(X_2) + \beta_3 e^{X_3} + \varepsilon$ is linear $-Y = \beta_0 \sin(\beta_1 X) + \varepsilon$, $Y = \beta_0 e^{\beta_1 X} + \varepsilon$ are non-linear

Simple Linear Regression: $Y = \beta_0 + \beta_1 x + \epsilon$

- ullet Response Variable: Y, Explanatory Variable: x, Regressor: X
- Assumptions: Random data, Relationship is linear, $\epsilon \sim N(0, \sigma^2)$ $\Rightarrow Y \sim N(\beta_0 + \beta_1 x, \sigma^2)$ (Check if resp. is symmetric)
- We check the assumptions after fitting the model
- $\hat{\sigma} = \text{Residual standard error in model summary}$
- Ordinary Least Square Estimate Line with least sum of square residuals. $ss_{Res} = \sum_{i=1}^{n} e_i^2$ where $e_i = y_i - \hat{y}_i$ • Interpretation: Point estimates of Y mean at different X val.
- Interpolation: Estimate not observed. Within range
- Extrapolation: Estimate that's outside range. Avoid!

T-test and F-test

- **T-test:** Test significance of 1 coefficient
- **F-test:** Test significance of entire model \Rightarrow F-test not significant \Rightarrow new model without any regressor $Y = \beta_0 + \varepsilon$ reduce to **intercept model** $Y = \beta_0$
- Simple: only one F-test \Leftrightarrow T-test. Multi: > 1 T-test
- 1. **Assumptions:** Same as building model
- 2. **T-test:** $H_0: \beta_1 = 0$ (Regressor X is not signif.), $H_1: \beta_1 \neq 0$
- 3. **F-test:** H_0 : All coeff. $\beta_0 = 0$, H_1 : At least 1 coeff. $\neq 0$.
- 4. $t = \hat{\beta}_1/SE(\hat{\beta}_1)$: Check from summary. Null distri: $t_{\rm n}$ # of coeff
- 5. **F-stat:** Simple: $F = t^2$. Null Distri: $F_{\# \text{ of coeff: } n} \# \text{ of coeff}$

Regression Diagnostics

- Scatter plot Y againest X
 - Linearity assumption violated: add higher order terms in X.
 - Variance not constant: Try ln(Y), \sqrt{Y} or 1/Y.
 - Transformation will change interpretation the coefficient β_1 .
- Residual (raw residual $e_i = Y_i \hat{Y}_i$) plots to check for
- normality assumption \Rightarrow Histogram and QQ plot
- non-constant variance and the need to transform Y.
- need to add higher order terms in X.
- $\Rightarrow r_i(SR)$ on y-axis vs. \hat{Y}_i/X on x-axis with interval (-3,3) \star Funnel Shape \to non-constant variance; Curve \to Linearity
- Standard Residual (SR) = $\frac{Y \hat{Y}}{\text{standard error of } (Y \hat{Y})}$

- Outliers: Identified by the residuals, far from rest data point.
- **Influential Point:** affects the parameter estimates greatly.
- Outlier may or may not be influential
- Points with a large Cook's distance (measures the effect of deleting a given observation).

Coefficient of Determination (R^2) : Goodness of fit

- Interpretation: proportion of total variation of the response (about the sample mean Y) that is explained by the model.
- $|\operatorname{Cor}(x,y)| = \sqrt{R^2} = R$, $\hat{\beta_1} < 0 \to \operatorname{Cor}(x,y) < 0$
- More variables $\to R^2 \uparrow \to$ use Adjusted $R^2_{adj} = 1 \frac{(1-R^2)(n-1)}{n-k-1}$
- R^2 cannot compare two model, use R^2_{adi}

Multivariate Linear Regression Regression Function with Categorical Var:

- Indicator Variable: 1 if cat. is observed. 0 otherwise.
- Reference Category: The category not in equation

Eg. $Y = \beta_0 + \beta_1 x_1 + \beta_2 I(x_2 = Auto) + \epsilon$

- Auto: $Y = \beta_0 + \beta_1 x_1 + \beta_2 + \epsilon$
- Manual: $Y = \beta_0 + \beta_1 x_1 + \epsilon$

Interaction between variables:

 $Y = \beta_0 + \beta_1 x_1 + \beta_2 I(x_2 = Auto) + \beta_3 x_1 I(x_2 = Auto) + \epsilon$ Interpretation of Coefficients:

$$y_1 = \beta_0 + \beta_1 X_1 + \beta_2 I(X_2 = 1)$$

- For any fixed X_2 , when X_1 increases by 1 unit, the y will increase by β_1 unit
- For any fixed X_1 , the y of type 1 $(X_2 = 1)$ is β_2 more than the one of type $0 (X_2 = 0)$

$$y_2 = \beta_0 + \beta_1 X_1 + \beta_2 I(X_2 = 1) + \beta_3 X_1 \times I(X_2 = 1)$$

• For type 1 $(X_2 = 1)$ when X_1 increases by 1 unit, y will increase by $(\beta_1 + \beta_3)$ unit. For type 0 $(X_2 = 0)$ when X_1 increases by 1 unit, y will increase by $\beta_1 unit$.

Reference

Sample Statistics: Sample resembles Population!

Population parameters: Values Computed (μ, σ, p)

Statistic: Suppose a random sample of $n, (X_1, ..., X_n)$ has been taken. A function of (X_1, \ldots, X_n) is called a **statistic**. 1. **Sample mean:** $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \ (\bar{X}, S \text{ are Random Var.})$

- 2. Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$

Mean and Variance of \bar{X} :

- $\bullet \quad \mu_{\bar{X}} = E(\bar{X}) = \mu_X \qquad \bullet \quad \sigma_{\bar{X}}^2 = V(\bar{X}) = \frac{\sigma_X^2}{n}$ $\bullet \quad E\left(S^2\right) = E\left[\frac{1}{n-1}\sum_{i=1}^n\left(X_i \bar{X}\right)^2\right] = \sigma^2$
- \bar{X} estimates μ_X , $n \uparrow$. $\sigma_X^2/n \downarrow \Rightarrow \mu_X \to \bar{X}$.

CLT:
$$n \to \infty \Rightarrow \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \to Z \sim N(0, 1) \Leftrightarrow \bar{X} \to N\left(\mu, \frac{\sigma^2}{n}\right)$$

- 1. $\lim_{n\to\infty} P\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le x\right) = \Phi(x)$
- 2. X_1, X_2, \ldots, X_n independent and $N(\mu, \sigma^2)$, then

 $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ or $\frac{\bar{X} - \mu}{\sigma^2/\sqrt{n}} \sim N(0, 1)$ regardless n.

t-distribution: $Z \sim N(0,1), U \sim \chi^2(n)$. If Z and U independent, then $T = \frac{Z}{\sqrt{U/n}} \sim t(n)$

Properties

- 1. The t-distribution approaches N(0,1) as $n\to\infty$ i.e. $n\geq 30$
- 2. If $T \sim t(n)$, then E(T) = 0 and V(T) = n/(n-2) for n > 2.
- 3. $X_i \sim N(\mu, \sigma^2), \frac{\bar{X} \mu}{S/\sqrt{n}} \sim t(n-1)$

If X_1, \ldots, X_n independent & identically distributed $X_i \sim N(0, 1)$, \bar{X} is the sample mean and S^2 is the sample variance, then

• $n\bar{X} \sim N(0,n)$.

• $\frac{\sqrt{n}\bar{X}}{C} \sim t_{n-1}$.

Estimation

Unbiased Estimator Let $\hat{\Theta}$ be an unbiased estimator of θ . Then $\hat{\Theta}$ is a random variable based on the sample s.t. $E(\hat{\Theta}) = \theta$

- \bar{X} is a good estimator of μ
- $E(\bar{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}E(X_i) = \frac{1}{n}\sum_{i=1}^{n}\mu_X = \mu_X$
- $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2, E(S^2) = \sigma^2$
- $\operatorname{var}(\bar{X}) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{var}(X_{i}) =$

 z_{α} : Number with upper-tail prob. of α s.t. $P(Z > z_{\alpha}) = \alpha$. Maximum Error of Estimate: $\bar{X} \neq \mu \Rightarrow \bar{X} - \mu$ measures difference between estimator and the true value of the parameter. If population is normal or n is large, $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ follows a standard

$$\begin{split} P\left(\frac{|\bar{X}-\mu|}{\sigma/\sqrt{n}} \leq z_{\alpha/2}\right) &= P\left(|\bar{X}-\mu| \leq z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha \\ \Rightarrow E &= z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \end{split}$$

normal or an approximately standard normal distribution.

Determine Sample Size: $z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le E_0 \Rightarrow n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{E_0}\right)^2$

Interval Estimator: For (a, b) you are fairly certain the parameter of interest lies in, quantified by confidence level $(1-\alpha)$ s.t. $P(a < \mu < b) = 1 - \alpha$. (a, b) is $(1 - \alpha)$ confidence interval.

- $(1-\alpha)$ confidence interval can be written as $\bar{X} \pm E$.
- $\bar{X} \pm E$ has probability (1α) of containing μ
- Once computed, μ is either in it or not \Rightarrow no more randomness.
- n is large when n > 30

Comparing Two Population: Confidence Intervals for $\mu_1 - \mu_2$

- Independent samples: complete randomization.
- Matched pairs samples: randomization between pairs.

Pooled estimator(S_n^2): σ^2 can be estimated by the **pooled**

sample variance $S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$ with S_1^2 and S_2^2 being the sample variances of the first and second samples respectively.

Roughly assume equal variance if $1/2 \le S_1/S_2 \le 2$

not sensitive to small difference between population var. **Paired Data:** For $(X_1, Y_1), \ldots, (X_n, Y_n)$

- X_i and Y_i are dependent. (X_i, Y_i) are independent
- Define random sample $D_i = X_i Y_i, \mu_D = \mu_1 \mu_2$.
- Small and Normal: $\bar{d} \pm t_{n-1;\alpha/2} \cdot \frac{s_D}{\sqrt{n}}$; Large: $\bar{d} \pm z_{\alpha/2} \cdot \frac{s_D}{\sqrt{n}}$

Hypothesis Tests

- Null: Try to it's false (Type I may happen reject null.), makes an assertion that a parameter equals to some constant.
- Ater.: Prove to be true, againest null. Reject $H_0 \Rightarrow \text{Concl. } H_1$ Type II occur if do not reject null
- Reject null. \Rightarrow enough evidence to support alternative.

Type I/II Error	Do not reject H_0	Reject H_0
H_0 is true	Correct Decision	Type I error
H_0 is false	Type II error	Correct Decision

- The Type I error: serious \rightarrow control P(Type I)
- Thus prior to conducting a hypothesis test, we set the significance level α to be small, typically at $\alpha = 0.05$ or 0.01
- Did not "prove" that H_0 is true \Rightarrow Not accept

p-value(observed level of significance): Probability of obtaining a test statistic at least as extreme (\leq or \geq) than the observed sample value, given H_0 is true.

$\mu \neq \mu_0$	$\mu < \mu_0$	$\mu > \mu_0$
P(Z > z)	P(Z < - z)	P(Z> z)

• p-value $< \alpha$, reject H_0 ; p-value $> \alpha$, do not reject H_0

H_1	Rejection Region	p-value
$\mu_1 - \mu_2 > \delta_0$	$z>z_{\alpha}$	P(Z > z)
$\mu_1 - \mu_2 < \delta_0$	$z < -z_{\alpha}$	P(Z<- z)
$\mu_1 - \mu_2 \neq \delta_0$	$z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$	2P(Z> z)

Level of significance:

 $\alpha = P(\text{Type I error}) = P(\text{Reject } H_0 \mid H_0 \text{ is true})$

Power of Test: $1 - \beta = P$ (Reject $H_0 \mid H_0$ is false), where $\beta = P(\text{Type II error}) = P(\text{Do not reject } H_0 \mid H_0 \text{ is false})$ $\alpha \uparrow \beta \downarrow \quad \alpha + \beta \neq 1$

Rejection Region:

- $H_1: \mu \neq \mu_0, z < -z_{\alpha/2} \text{ or } z > z_{\alpha/2}$
- $H_1: \mu < \mu_0, z < -z_{\alpha}$
- $H_1: \mu > \mu_0, z > z_0$
- Step 1: Set the null and alternative.
- **Step 2:** Set $\alpha = 0.05$
- Step 3: Use test with test statistics, determine rejection region
- Step 4: Calculate observed value use Step 3 distribution
- Step 5: Reject/Not Reject

R syntax

Dataframe: Similar to the Matrix object but columns can have different modes.

```
v <- c(1:6) // 1 2 3 4 5 6
m <- matrix(v, nrow=2, ncol=3)</pre>
                                        // 1 3 5
m <- matrix(v, nrow=2, ncol=3, byrow=T) // 1 2 3
                                       // 1 2 3
ab_{row} \leftarrow rbind(c(1,2,3),c(4,5,6))
ab_col <- cbind(ab_row, c(9, 10))
                                        // 1 2 3 9
rt = data.frame(response, treatment)
read.csv(...) / read.table(...)
scan(..., what = "character") // Only Read one type
prop.table(table(lung$Gender)) // frequency table (prob)
lung$Gender <- ifelse(lung$Gender=="0", "Female", "Male")</pre>
barplot(table(lung$Gender), ylab="..", xlab="..", col=c
     (2,5), main="header..") // bar plot 'col' is color
pie(table(lung$gender), col=c(2,5), main="....")
hist(mark, prob=TRUE, col=2, xlab=".", ylab=".", main=".")
boxplot(mark, ylab = ".", main = ".", col=5)
abline(h = median(mark), col = "red") // add a line
pnorm(1800, mean = 1500, sd = sqrt(90000))
pnorm(1630, mean = 1500, sd = sqrt(90000), lower.tail =
FALSE)
```

-*_*-*-*- PLEASE DELETE THIS PAGE! -*-*-*-*-

Information

Course: ST1131 Introduction to Statistics and Statistical

Computing

Type: Cheat Sheet
Date: May 22, 2025
Author: QIU JINHANG

Link: https://github.com/jhqiu21/Notes

-*-*-*-*- PLEASE DELETE THIS PAGE! -*-*-*-*-