TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2076 Ashwin

Exam.	Back		
Level	BE	Full Marks	80
Programme	All (Except BAR)	Pass Marks	32
Year / Part	I/I	Time	3 hrs.

Subject: - Engineering Mathematics I (SH 401)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. If $y = \sin(m\sin^{-1}x)$, show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2 n^2)y_n = 0$, where suffices of y denote the respective order of derivatives of y. [5]
- 2. State Lagrange's mean value theorem. Verify it for the function $y = \sin x$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. Is this theorem valid for the function $y = \tan x$ on $[0, \pi]$?
- 3. Evaluate $x \xrightarrow{\lim} 0 \left(\frac{\tan x}{x}\right)^{1/x}$ [5]
- 4. Find the asymptotes of the curve $(x+y)^2(x+2y+2) = x+9y-2$. [5]
- 5. Find the pedal equation of the curve $y^2 = 4a(x+a)$. [5]
- 6. Evaluate, if possible $\int_0^e \ln x dx$. [5]
- 7. Apply differentiation under integral sign to evaluate $\int_0^\infty \frac{e^{-ax} \sin x}{x} dx$ and then show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$ [4+1]
- 8. Define Beta and Gamma function and use it to show that, $\int_{0}^{\pi/6} \cos^4 3\theta \sin^2 6\theta \ d\theta = \frac{5\pi}{192} \ .$ [5]
- 9. Find the volume of the solid formed by the revolution of the cardioid $r = a(1 + \cos \theta)$ about the initial line. [5]
- 10. Solve the differential equation $\frac{dy}{dx} + y \cot x = 2\cos x$. [5]
- 11. If p stands for $\frac{dy}{dx}$, then solve the differential equation $y 2px + ayp^2 = 0$. [5]
- 12. Solve the differential equation $(D^2 2D + 5) y = e^{2x} \sin x$. [5]
- 13. Solve the differential equation $(x^2D^2 + xD + 1)y = \sin(\log x^2)$ [5]
- 14. Define ellipse and obtain the equation of ellipse in standard form. [5]

[5]

- 15. Prove that the locus of a point which moves in such a way that the difference of its distances from the point (5, 0) and (-5, 0) is 2 is a hyperbola.
- 16. Describe and sketch the graph of the conic $r = \frac{10}{3 + 2\sin\theta}$ [5]