PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-222803

(43)Date of publication of application: 11.08.2000

(51)Int.CI.

G11B 17/04 G11B 25/04

(21)Application number: 11-023833

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

(22)Date of filing:

01.02.1999

(72)Inventor: ARIYOSHI YUJI

TANAKA TORU

WAKIKAWA MASANAO ISHIOKA KIYOSHI

(54) OPTICAL DISK APPARATUS

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain an optical disk apparatus in which the number of used motors is reduced, whose structure is simplified and which can enhance shock resistance, vibration resistance and productivity.

SOLUTION: A loading mechanism wherein a turntable 5, a first motor 3 for its drive, an optical pickup 6 and its driving mechanism are installed on a driver base 20 as a separate body from an apparatus base 10 which can be turned up and down and a disk loading mechanism is driven is installed. In addition, a motive—force transmission changeover mechanism wherein the transmission route of the driving force of a second motor 4 which gives a driving force to the loading driving mechanism and a pickup driving mechanism and which can be turned normally and reversely can be changed over between both driving mechanisms is installed. Then, when the second motor is turned continuously in one direction, the movement operation of the optical pickup,

the rasing and lowering operation of the turntable and the transfer operation of a disk are performed nearly continuously in this order. When the second motor is turned continuously in the reverse direction, the respective operations are performed nearly continuously in the reverse order in a direction opposite to the direction.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-222803 (P2000-222803A)

(43)公開日 平成12年8月11日(2000.8.11)

(51) Int.Cl. ⁷	蔵別記号	F I
G 1 1 B 17/04 25/04		G11B 17/04 315J 5D046
		3 1 5 C
		3 1 5 F
		3 1 5 Q
	04 101	25/04 1 0 1 P
		審査請求 未請求 請求項の数9 OL (全 24 頁
(21)出願番号	特顯平11-23833	(71)出願人 000005821
		松下電器産業株式会社
(22)出願日	平成11年2月1日(1999.2.1)	大阪府門真市大字門真1006番地
		(72)発明者 有吉 祐二
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(72)発明者 田中 徹
		大阪府門真市大字門真1006番地 松下電器
		産業株式会社内
		(74)代理人 100062144
		弁理士 青山 葆 (外1名)
		最終頁に統

(54) 【発明の名称】 光ディスク装置

(57)【要約】

【課題】 モータ使用個数を削減した上で、構造の簡素 化、耐衝撃性および耐振動性並びに生産性の向上を図る ことができる光ディスク装置を提供する。

【解決手段】 装置ベース10と別体の上下回動可能なトラバースベース20にターンテーブル5、その駆動用の第1モータ3、光ピックアップ6及びその駆動機構が設けられ、ディスクローディング機構を駆動するローディング駆動機構と、該ローディング駆動機構とピックアップ駆動機構に駆動力を与える正逆回転可能な第2モータ4の駆動力の伝達経路を両駆動機構間で切り換える動力伝達経路切換機構とが設けられており、第2モータを一方向へ連続回転させることによって光ピックアップ移動動作とターンテーブル昇降動作とディスク移送動作とがこの順序で略連続して行われ、逆方向へ連続回転させることによってこれら各動作が上記とは逆方向へ逆の順序で略連続して行われる。

【特許請求の範囲】

【請求項1】 光ディスクを回転可能に支持するターン テーブルと、該ターンテーブルで回転させられる光ディ スクに情報信号を書き込み及び/又は光ディスクに記録 された情報信号を読み出す光ビックアップと、該光ビッ クアップを光ディスクの内周側と外周側との間で往復動 可能に移動させるビックアップ駆動機構と、上記光ディ スクをターンテーブル上方の第1位置と装置外部の第2 位置との間で往復動可能に移送するディスクローディン グ機構とを備えた光ディスク装置であって、

装置本体の基台を構成する第1ベースと別体で該第1ベ ースに対し上下方向へ移動可能または回動可能に支持さ れた第2ベースが設けられ、該第2ベースに上記ターン テーブル及び該ターンテーブルを回転駆動する第1モー タと上記光ピックアップ及びピックアップ駆動機構が設 けられており、

上記第1及び/又は第2ベースに、上記ディスクローデ ィング機構を駆動するローディング駆動機構と、該ロー ディング駆動機構及び上記ピックアップ駆動機構に駆動 力を与える正逆回転可能な第2モータと、該第2モータ の駆動力の伝達経路を上記ローディング駆動機構側に伝 達する経路とピックアップ駆動機構側に伝達する経路と の間で切り換える動力伝達経路切換機構とが設けられ、 上記第2モータを第1回転方向へ連続して回転させると とによって上記光ピックアップの移動動作とターンテー ブルの昇降動作と光ディスクの移送動作とがこの順序で 略連続して行われ、上記第2モータを上記第1回転方向 と逆の方向へ連続して回転させることによってこれら各 動作が上記とは逆方向へ逆の順序で略連続して行われる ことを特徴とする光ディスク装置。

【請求項2】 上記第2ベースは、第1ベースに形成さ れた開口内に配置されるとともに、その一端側を中心に して上記第1ベースに対し上下方向へ回動可能に支持さ れる一方、第1ベースには、第2ベース他端側の近傍に 位置して該第2ベース他端側を昇降させるカム溝を外周 部に有するカムギヤが配置され、上記ローディング駆動 機構は複数のギヤで成るローディング駆動歯車列を備え ており、該ローディング駆動歯車列の最終出力ギヤが上 記カムギヤの外周歯部と噛み合うことにより、該カムギ ヤが回転させられて上記第2ベースの他端側を昇降させ 40 ることを特徴とする請求項1記載の光ディスク装置。

【請求項3】 上記カムギヤの外周歯部は、その縦断面 における歯筋形状が、上記第2ベースの回動動作に伴な って上記ローディング駆動歯車列の最終出力ギヤが上下 方向へ回動する際の回動軌跡に沿った円弧状もしくはと の円弧に近似した直線状に設定されていることを特徴と する請求項2記載の光ディスク装置。

【請求項4】 上記第2ベースの他端側には突起部が設 けられ、該突起部が上記カムギヤのカム溝に係合すると とにより、第2ペース他端側の上下方向の位置決めが行 50 ペースに対し浮動可能な状態で支持されていることを特

われることを特徴とする請求項2または請求項3に記載 の光ディスク装置。

【請求項5】 上記ディスクローディング機構はディス クを載置させるトレイを駆動するトレイ駆動ギヤを備え ており、上記カムギヤの外周歯部は、上記第2ベースが 第1ベースに対して所定位置まで下方へ回動した状態 で、上記トレイ駆動ギヤと噛み合うことを特徴とする請 求項2~請求項4のいずれか―に記載の光ディスク装 置。

【請求項6】 上記ピックアップ駆動機構は、光ピック アップを移動させる送りラックと、該送りラックを駆動 する複数のギヤで成るラック駆動歯車列とを備えてお り、上記送りラックは、光ピックアップを上記光ディス クの信号記録範囲の最内周端部位置まで移動させた後さ らに内周側の所定位置まで移動可能で、送りラックがこ の内周側の所定位置に移動することにより、該送りラッ クが上記動力伝達経路切換機構と係合し、この係合状態 で上記第2モータの駆動力の伝達経路が上記ピックアッ ブ駆動機構側に伝達する経路から上記ローディング駆動 機構側に伝達する経路に切り換えられ、上記送りラック 20 が上記所定位置からディスク外周側に移動して上記動力 伝達経路切換機構との係合状態が解除されることによ り、上記第2モータの駆動力の伝達経路が上記ローディ ング駆動機構側に伝達する経路から上記光ピックアップ 駆動機構側に伝達する経路に切り換えられることを特徴 とする請求項2~請求項5のいずれか一に記載の光ディ スク装置。

【請求項7】 上記第2ベースにその他端側から出没可 能な規制ロッドが設けられる一方、上記第1ベースには 上記規制ロッドを係合させ得る位置決め用溝部が設けら れ、上記送りラックは、第2ベースの一端側から他端側 に移動して所定位置に達すると上記規制ロッドに係合 し、その係合状態で送りラックが更に他端側へ移動する ことにより、上記規制ロッドが第2ベースの他端側から 突出して上記位置決め用溝部内に嵌合し、送りラック移 動方向に直交する横方向における第2ベースの第1ベー スに対する位置決めが行われることを特徴とする請求項 6記載の光ディスク装置。

【請求項8】 上記カムギヤにその外方へ突き出すフッ ク部が設けられる一方、上記第2ベースの表面にはカム ギヤの外周部と平行な円弧状の溝部が形成され、この円 弧状の溝部に上記フック部が係合することにより、第2 ベースの第1ベースに対する送りラック移動方向の位置 決めが行われることを特徴とする請求項6または請求項 7に記載の光ディスク装置。

【請求項9】 上記第2ベースの一端側を第1ベースに 支持する支持部と上記カムギヤを第1ベースに支持する 支持部とに弾性を有する緩衝部材がそれぞれ設けられ、 上記第2ベースは、上記緩衝部材の弾性範囲内で、第1

徴とする請求項2~請求項8のいずれか一に記載の光ディスク装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、例えばコンパクトディスク(所謂CD)など、情報記録媒体としての光ディスク(以下、適宜、単にディスクという。)に情報信号を記録及び/又は記録された情報信号を再生するための光ディスク装置(以下、適宜、単にディスク装置という。)に関する。

[0002]

【従来の技術】かかるディスク装置として、装置の前面パネルにディスクトレイ出し入れ用の開口部が設けられ、この開口部から出て来たトレイ上にディスクが装着された後、該ディスクがトレイごと自動的に装置内部の所定位置(ターンテーブルへの着脱位置)に引き込まれるように構成したものは、従来、一般に良く知られている。このタイプのディスク装置では、装置内部に引き込まれたディスクを、ターンテーブル上に装着しクランパとの間に挟み込んだ状態で所定の回転数で回転させなが 20 ら、例えば再生する場合にあっては、このディスク上に記録された情報信号を記録再生装置により再生する。すなわち、ディスク上の所定範囲に記録された信号のトラック位置に応じて、信号読み取りのための光ビックアップを移動させることにより、情報信号の再生が行われるようになっている。

【0003】上記タイプのディスク装置では、モータ駆動力を要する基本的な動作として、トレイを駆動してディスクを装置外部におけるトレイへの着脱位置と装置内部におけるターンテーブルへの着脱位置との間で往復移動させるディスクローディング動作と、ターンテーブルを駆動してディスクを回転させるディスク回転動作と、上記光ピックアップを主としてディスクの外周側と内周側との間で往復移動させるピックアップ送り動作の3つの動作が必要とされる。そして、従来では、これら3つの動作が必要とされる。そして、従来では、これら3つの動作をそれぞれ別個のモータを駆動源として(つまり、合計3個のモータを用いて)行わせるのが、一般的であった。

【0004】これに対して、例えば実開平3-49682号公報には、ディスクの出入り及びディスクのチャッキング並びにピックアップの駆動を、単一のローディングモータを正逆回転制御して行わせることにより、モータ数を2個に削減するようにしたディスクブレーヤ(ディスク装置)が提案されている。この従来技術に係る構成では、装置ケースと実質的に一体に固定シャーシが設けられ、この固定シャーシにターンテーブル及びその駆動用のモータが取り付けられている。すなわち、ターンテーブルの上下位置は固定されているので、ディスクの出し入れを行う際には、ターンテーブルとの干渉を回避するためにディスクを上下方向に移動させる必要があ

る。また、ターンテーブル上に載置されたディスクをターンテーブルに対して固定(クランプ)するために、クランパ側(チャック板)を上下方向に駆動する必要がある。

[0005]

【発明が解決しようとする課題】このため、上記従来のディスク装置では、トレイのディスク載置面に対しディスクを持ち上げるディスクホルダを設け、トレイの移動タイミングに応じてこのディスクホルダを上下方向に回動させることにより、ディスク出し入れ時におけるディスクとターンテーブルとの干渉を回避するようにしている。また、チャックアームを介して固定シャーシに対し上下回動可能に支持されたチャック板を設け、ディスクの着脱タイミングに応じてこのチャック板を上下方向に回動させることにより、ディスクのターンテーブルに対する固定および固定解除を行うようにしている。従って、装置の構造および各構成要素の作動がかなり複雑なものとなり、構造の簡素化および良好な作動を安定して得る上で不利である。

【0006】また、上記従来のディスク装置では、トレイ及びその駆動系統を除く全ての駆動部品は上記固定シャーシに設けられており、しかも、これら部品は固定シャーシに対して剛構造で(つまり、リジッド(rigid)に)取付/支持されているので、装置(ディスクプレーヤ)に衝撃荷重が加わった場合あるいは振動入力があった場合には、これら衝撃荷重あるいは振動力が固定シャーシから直接的に各駆動部品に作用することとなり、大きなダメージを受け易く、これら外力の作用に対するディスク装置の耐久性の向上を図る上で不利となる

【0007】また、各構成部品が固定シャーシに対しリジッドに取付/支持されている関係上、部品相互の位置関係を極めて精確に保つ必要があるので、部品製作および組立作業について非常に高い精度が求められ、特に量産を前提とした場合には、生産性を高める上でも不利となる

【0008】そこで、この発明は、モータの使用個数を削減することができるとともに、構造をより簡素化でき、また、衝撃や振動の作用に対する耐久性の向上、更には、生産性の向上を図ることができるディスク装置を提供することを、基本的な目的としてなされたものである。

[0009]

【課題を解決するための手段】このため、本願の請求項 1に係る発明(以下、第1の発明という)は、ディスクを 回転可能に支持するターンテーブルと、該ターンテーブ ルで回転させられるディスクに情報信号を書き込み及び /又はディスクに記録された情報信号を読み出す光ビッ クアップと、該光ビックアップをディスクの内周側と外 50 周側との間で往復動可能に移動させるビックアップ駆動

機構と、上記ディスクをターンテーブル上方の第1位置 と装置外部の第2位置との間で往復動可能に移送するデ ィスクローディング機構とを備えたディスク装置であっ て、装置本体の基台を構成する第1ベースと別体で該第 1ベースに対し上下方向へ移動可能または回動可能に支 持された第2ベースが設けられ、該第2ベースに上記タ ーンテーブル及び該ターンテーブルを回転駆動する第1 モータと上記光ピックアップ及びピックアップ駆動機構 が設けられており、上記第1及び/又は第2ベースに、 上記ディスクローディング機構を駆動するローディング 10 駆助機構と、該ローディング駆動機構及び上記ピックア ップ駆動機構に駆動力を与える正逆回転可能な第2モー タと、該第2モータの駆動力の伝達経路を上記ローディ ング駆動機構側に伝達する経路とピックアップ駆動機構 側に伝達する経路との間で切り換える動力伝達経路切換 機構とが設けられ、上記第2モータを第1回転方向へ連 続して回転させることによって上記光ビックアップの移 動動作とターンテーブルの昇降動作とディスクの移送動 作とがこの順序で略連続して行われ、上記第2モータを 上記第1回転方向と逆の方向へ連続して回転させること によってこれら各動作が上記とは逆方向へ逆の順序で略 連続して行われることを特徴としたものである。この構 成においては、第1ベースと別体でターンテーブルを取 り付けた第2ベースが、第1ベースに対し上下方向へ移 動可能または回動可能に支持されている。そして、1個 のモータ (第2モータ)を正方向 (第1回転方向)また はその逆方向へ連続して回転させることにより、光ビッ クアップの移動動作とターンテーブルの昇降動作とディ スクの移送動作とがこの順序で略連続して、または逆の 方向へ逆の順序で略連続して行われる。

【0010】また、本願の請求項2に係る発明(以下、 第2の発明という)は、上記第1の発明において、上記 第2ベースは、第1ベースに形成された開口内に配置さ れるとともに、その一端側を中心にして上記第1ベース に対し上下方向へ回動可能に支持される一方、第1ベー スには、第2ベース他端側の近傍に位置して該第2ベー ス他端側を昇降させるカム溝を外周部に有するカムギヤ が配置され、上記ローディング駆動機構は複数のギヤで 成るローディング駆動歯車列を備えており、該ローディ ング駆動歯車列の最終出力ギヤが上記カムギヤの外周歯 部と噛み合うことにより、該カムギヤが回転させられて 上記第2ベースの他端側を昇降させることを特徴とした ものである。この構成においては、ローディング駆動歯 車列からの動力伝達でカムギヤが回転させられて第2ベ ースの他端側が昇降させられ、これにより、第2ベース がその一端側を中心にして第1ベースに対し上下方向へ 回動させられる。

【0011】更に、本願の請求項3に係る発明(以下、 第3の発明という)は、上記第2の発明において、上記 カムギヤの外周歯部は、その縦断面における歯筋形状

が、上記第2ベースの回動動作に伴なって上記ローディ ング駆動歯車列の最終出力ギヤが上下方向へ回動する際 の回動軌跡に沿った円弧状もしくはこの円弧に近似した 直線状に設定されていることを特徴としたものである。 この構成においては、ローディング駆動歯車列の最終出 力ギヤは、第2ベースの回動動作に伴なって上下方向へ 回動した場合でも、カムギヤの外周歯部と確実に噛み合

【0012】また、更に、本願の請求項4に係る発明 (以下、第4の発明という)は、上記第2または第3の発 明において、上記第2ベースの他端側には突起部が設け られ、該突起部が上記カムギヤのカム溝に係合すること により、第2ベース他端側の上下方向の位置決めが行わ れることを特徴としたものである。この構成において は、第2ベース他端側の第1ベースに対する上下方向位 置は、カム溝と突起部との係合により確実に定められ

【0013】また、更に、本願の請求項5に係る発明 (以下、第5の発明という)は、上記第2~第4のいずれ か一の発明において、上記ディスクローディング機構は ディスクを載置させるトレイを駆動するトレイ駆動ギヤ を備えており、上記カムギヤの外周歯部は、上記第2ベ ースが第1ベースに対して所定位置まで下方へ回動した 状態で、上記トレイ駆動ギヤと嘲み合うことを特徴とし たものである。この構成においては、トレイは第2ベー スが確実に下方へ回動した状態で駆動される。

【0014】また、更に、本願の請求項6に係る発明 (以下、第6の発明という)は、上記第2~第5のいずれ か一の発明において、上記ピックアップ駆動機構は、光 30 ピックアップを移動させる送りラックと、該送りラック を駆動する複数のギヤで成るラック駆動歯車列とを備え ており、上記送りラックは、光ピックアップを上記ディ スクの信号記録範囲の最内周端部位置まで移動させた後 さらに内周側の所定位置まで移動可能で、送りラックが この内周側の所定位置に移動することにより、該送りラ ックが上記動力伝達経路切換機構と係合し、この係合状 態で上記第2モータの駆動力の伝達経路が上記ピックア ップ駆動機構側に伝達する経路から上記ローディング駆 動機構側に伝達する経路に切り換えられ、上記送りラッ クが上記所定位置からディスク外周側に移動して上記動 力伝達経路切換機構との係合状態が解除されることによ り、上記第2モータの駆動力の伝達経路が上記ローディ ング駆動機構側に伝達する経路から上記光ピックアップ 駆動機構側に伝達する経路に切り換えられることを特徴 としたものである。この構成においては、送りラック が、光ピックアップをディスクの信号記録範囲の最内周 端部位置まで移動させた後、さらに内周側の所定位置ま で移動することにより、または、この所定位置からディ スク外周側へ移動することにより、第2モータの駆動力 50 の伝達経路が切り換えられる。

【0015】また、更に、本願の請求項7に係る発明 (以下、第7の発明という)は、上記第6の発明におい て、上記第2ベースにその他端側から出没可能な規制ロ ッドが設けられる一方、上記第1ベースには上記規制ロ ッドを係合させ得る位置決め用溝部が設けられ、上記送 りラックは、第2ベースの一端側から他端側に移動して 所定位置に達すると上記規制ロッドに係合し、その係合 状態で送りラックが更に他端側へ移動することにより、 上記規制ロッドが第2ベースの他端側から突出して上記 位置決め用溝部内に嵌合し、送りラック移動方向に直交 10 する横方向における第2ベースの第1ベースに対する位 置決めが行われることを特徴としたものである。この構 成においては、送りラックが所定位置を越えて他端側へ 移動することにより、規制ロッドが駆動されて第2ベー スの他端側から突出する。これにより、上記規制ロッド が第1ベースの位置決め用溝部内に嵌合し、送りラック 移動方向に直交する横方向における第2ベースの第1ベ ースに対する位置関係が定められる。

【0016】また、更に、本願の請求項8に係る発明(以下、第8の発明という)は、上記第6または第7の発 20明において、上記カムギヤにその外方へ突き出すフック部が設けられる一方、上記第2ベースの表面にはカムギヤの外周部と平行な円弧状の溝部が形成され、この円弧状の溝部に上記フック部が係合することにより、第2ベースの第1ベースに対する送りラック移動方向の位置決めが行われることを特徴としたものである。この構成においては、カムギヤのフック部が上記円弧状の溝部に係合することにより、第2ベースの第1ベースに対する送りラック移動方向の位置関係が定められる。

【0017】また、更に、本願の請求項9に係る発明(以下、第9の発明という)は、上記第2~第8のいずれか一の発明において、上記第2ベースの一端側を第1ベースに支持する支持部と上記カムギヤを第1ベースに支持する支持部とに弾性を有する緩衝部材がそれぞれ設けられ、上記第2ベースは、上記緩衝部材の弾性範囲内で、第1ベースに対し浮動可能な状態で支持されていることを特徴としたものである。この構成においては、第2ベースは、第1ベースに対して剛構造で(リジッドに)支持されるのではなく、上記緩衝部材の弾性範囲内で第1ベースに対し浮動可能な状態で支持されている。【0018】

【発明の実施の形態】以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。図1は本実施の形態に係る光ディスク装置(以下、ディスク装置あるいは単に装置という。)の組立状態を示す全体斜視図、図2はこのディスク装置の分解斜視図、また、図3および図4はこの図2の斜視図の一部をそれぞれ拡大して示す説明図である。これらの図に示すように、本実施の形態に係るディスク装置1は、装置1の主要な構成要素に対する取付基部としての装置ベース10と、装置1の駆動機構の

大部分を支持する支持部材としてのトラバースベース20とを備えている。上記装置ベース10はその全体形状が平面視で略矩形フレーム状に形成され、図5に示すように、該装置ベース10の内側開口部10Hに上記トラバースベース20が組み付けられている。尚、上記装置ベース10及びトラバースベース20が、本願請求項に記載した「第1ベース」及び「第2ベース」にそれぞれ相当している。

【0019】上記ディスク装置1では、例えばコンパク トディスク(所謂CD)とされた情報記録媒体としての ディスクを載せて移送するトレイ55が、装置ベース1 0のフレームに沿って図1及び図2における斜め方向に 往復移動する。すなわち、装置1内にあるディスクを外 部へ引き出す際にはトレイ55が図1及び図2における 左斜め下方に移動し、ディスクを外部から装置1内に引 き込む (挿入する)際にはトレイ55が図1及び図2に おける右斜め上方に移動する。本実施の形態において は、ディスクが(つまりトレイ55が)装置1内から引 き出される側(図1及び図2における左斜め下側)をデ ィスク装置1の前側と称し、この逆にディスクが挿入さ れる側(図1及び図2における右斜め上側)をディスク 装置の後側と称する。また、図1及び図2における上側 及び下側を、装置1の上側及び下側というものとする。 【0020】上記装置ベース10の後部(図1及び図2 における右斜め上側部分) には左右一対のトラバースベ ース支持軸11が立設されている。上記トラバースベー ス20の後端の両角部には切欠部21がそれぞれ形成さ れており、この切欠部21に例えばゴム製の弾性を有す るブッシュ29 (フローティングブッシュ) がそれぞれ 30 装着されている。そして、これらフローティングブッシ ュ29を上記トラバースベース支持軸11にそれぞれ嵌 合させることにより、トラバースベース20の後部が、 上記左右のトラバースベース支持軸11の先端部の中心 を結ぶ水平な直線Lh (図5参照)を中心にして、装置 ベース10に対し上下方向へ回動可能に支持されてい る。また、トラバースベース20の後部は、左右のフロ ーティングブッシュ29を介して、装置ベース10に対 し一定範囲内(つまり、上記フローティングブッシュ2 9の弾性範囲内)で浮動可能な状態(フローティング状 40 態)で支持されている。尚、上記図5においては、トラ バースベース支持軸11及び切欠部21を明瞭に表示す るために、左右のフローティングブッシュ29の図示は 省略されている。

【0021】上記フローティングブッシュ29は、図8に詳しく示されるように、一端が閉じられ他端が開口した中空状に一体形成され、その長手方向に配列された比較的大径の第1及び第2の緩衝部29a及び29bと、両緩衝部間に位置する比較的小径の装着部29c(第1装着部)とを備えている。との第1装着部29cは、上50記両緩衝部29a,29b間がネック状に絞られて形成

されており、本フローティングブッシュ29によってフ ローティング支持されるべき第1部材としてのトラバー スペース20に装着される部分である。具体的には、該 トラバースベース20の後端角部の切欠部21に設けら れたブッシュ取付板21bの穴部に、上記第1装着部2 9 c の外周部を嵌合させて装着される。また、上記第1 緩衝部29aの端末側には、フローティングブッシュ2 9の内部空間を閉塞する第2装着部29 dが一体的に形 成されている。との第2装着部29 dは、本フローティ ングブッシュ29によってフローティング支持されるべ 10 き第2部材としての装置ベース10に装着される部分で ある。具体的には、上記トラバースベース支持軸110 先端部11 dに上記第2装着部29 dが装着される。

【0022】一方、上記第2緩衝部29bの端末側は開 口しており、この開口部から上記トラバースベース支持 軸11がフローティングブッシュ29内に挿入される。 第2緩衝部29hの端末部は、装置ベース10のブッシ ュ支持面10fに対面している。そして、より好ましく は、トラバースベース20の後部がフローティングブッ シュ29を介して装置ベース10に組み付けられ、トラ 20 バースベース20及びそれに搭載された各種部品類の重 力のみが作用している標準状態では、第2緩衝部29 b の端末部は、ある程度の弾性力をもって上記ブッシュ支 持面10 f に当接している。

【0023】ディスク装置1の使用時あるいは製作時な どにおいて装置1に振動が加わり、装置ベース10とト ラバースペース20との相対移動を生じさせる加振力が 作用した場合には、上記第2緩衝部29bの弾性範囲内 での圧縮変形に伴なう緩衝作用によって、トラバースベ ース20の後部が下方に移動する向きの(つまり、上記 30 ブッシュ取付板21 bがブッシュ支持面10 fに近づく 向きの)振動成分を有効に吸収することができる。尚、 上記標準状態において第2緩衝部29bの端末部が上記 ブッシュ支持面10fに当接していることは、上記第2 級衝部29bによる振動吸収効果を得る上で、必ずしも 必須の要件ではない。両者の間にある程度の隙間が生じ ていても、その隙間に相当する分だけ振動吸収性が低下 するだけで、装置ベース10とトラバースベース20と の相対移動量が上記隙間を越える場合には、その隙間を 越える分に相当するだけ振動吸収効果を発揮することが

【0024】また、トラバースベース20の後部が下方 に移動する場合には、上記ブッシュ取付板2 1 b がトラ パースベース支持軸11の先端部11dから遠ざかるこ ととなり、第2装着部29dの頂部がトラバースベース 支持軸11の先端部11はによって突き上げられた状態 で、上記第1緩衝部29 aがその弾性範囲内で伸びるよ うに変形する。従って、第2緩衝部29bの圧縮変形に 伴なう緩衝作用に加えて、第1緩衝部29aの伸び変形 に伴なう緩衝作用によっても振動吸収を行うことがで

【0025】更に、上記第2装着部29dは、例えばゴ ム製とされたフローティングブッシュ29の一部である ので弾性に富んでおり、装置ベース10とトラバースベ ース20との相対移動を生じさせる加振力が作用した場 合には、上記第2装着部29dの弾性によって、振動吸

き、非常に効果的に振動を吸収することができる。

収効果および騒音発生の抑制効果を更に高めることがで きる。尚、フローティングブッシュ29の上記第2装着 部29dは、必ずしもフローティングブッシュ29の内 部空間の一端側(上側)を完全に閉塞するものでなくても 良い。つまり、上記第2装着部29dは、トラバースベ ース支持軸11の先端部11付からの突き上げ荷重を受 けた際に該先端部11 dが突き抜けることがない範囲で 開口を有していても良い。

【0026】一方、トラバースベース20の後部が上方 に移動する向きの(つまり、上記ブッシュ取付板21b がトラバースベース支持軸11の先端部11 dに近づく 向きの)振動成分については、上記第1緩衝部29aの 弾性範囲内での圧縮変形に伴なう緩衝作用によって有効 に吸収することができる。また、トラバースベース20 の前後方向及び左右方向などのベース面に平行な振動成 分は、フローティングブッシュ29の横方向における弾 性範囲内での変形によって吸収される。

【0027】上記トラバースベース支持軸11の先端部 11 dは、より好ましくは、縦断面の外縁形状が円形の 一部を成すように構成されており、これに装着されるフ ローティングブッシュ29の第2装着部29dも、その 縦断面の内縁形状が円形の一部を成すように構成されて いる。従って、上記第2装着部29 dは(つまりフロー ティングブッシュ29全体も)、トラバースベース支持 軸11の先端部11dの中心C11の周りに回動すると とができる。トラバースベース20が装置ベース10に 対し上下方向へ回動する際の回動軸線しh (図5参照) は、左右のトラバースベース支持軸11の先端部11d の中心Cllを結ぶ直線である。

【0028】また、より好ましくは、上記第2装着部2 9dの内周とトラバースベース支持軸11の先端部11 dの外周との間には所定の隙間が設けられており、上記 第2装着部29 dには複数の突起部29 eが形成されて 40 いる。 これら突起部29 e は、第2装着部29 d の内周 の中心を(従って、装着状態ではトラバースベース支持 軸11の先端部11dの中心C11を)指向している。 すなわち、フローティングブッシュ29の第2装着部2 9 dは、上記突起部29 eを介してトラバースベース支 持軸11の先端部11 dに装着されており、両者の間に は一定の隙間が保持されているので、上記第2装着部2 9 dのトラバースベース支持軸 1 1 の先端部 1 1 d に対 する回動動作を非常にスムースなものとすることができ る。

【0029】以上のように、フローティングブッシュ2

9が第1及び第2の緩衝部29a及び29b並びに第1及び第2の装着部29c及び29dを備えているので、トラバースベース20が振動した際、トラバースベース20の全体の荷重を支え、かつ上下の抜け止め作用を行うとともに、有効に振動を吸収することができ、省スペースにしかも安価で取り付けの簡単なフローティング装置を提供することが可能となる。また、回転中心部を備えたことで、他に回動中心を設けることなく、かつ正確に回動中心を確保できる。

【0030】一方、図4及び図5から良く分かるように、装置ベース10の内側開口部10Hの前縁部分には、 無縁形状が円形の一部をなす凹部12が形成されている。該凹部12の底面中央には枢支軸12sが立設されており、この枢支軸12sに略円筒状の歯車部材30(カムギヤ)の中央ボス部31が回転自在に嵌合されている。該カムギヤ30の底部と装置ベース10の凹部12の底面との間にはコイル状のバネ部材39(フローティングバネ)が介装されている。カムギヤ30は、その中央ボス部31が上記枢支軸12sに挿通され、この枢支軸12sの先端部に例えばゴム製の弾性を有するカラで部材38(フローティングカラー)を介してネジ部材37(ストップスクリュー)が螺着されている。

【0031】つまり、カムギヤ30は、その上側が上記フローティングカラー38で当て止められ、下側が上記フローティングバネ39で支持され、両弾性部材38,39で上下から挟み込まれた状態で装置ベース10の凹部12内に収納されており、装置ベース10に対して一定範囲内(すなわち、上記フローティングカラー38及びフローティングバネ39の弾性範囲内)で浮動可能な状態(フローティング状態)で支持されている。

【0032】尚、上記フローティングカラー38及びフローティングバネ39並びに前に述べた左右のフローティングブッシュ29が、本願請求項に記載した「緩衝部材」に相当している。また、上記フローティングブッシュ29及びフローティングカラー38の材質としては、上述のゴムに限定されるものではなく、例えば軟質の樹脂など、所定の弾性を有するものであれば、他の種々のものを用いることができる。

【0033】上記カムギヤ30の外周部には、図24~図29に詳しく示すように、上下方向の(つまり、カム 40ギヤ30の長手方向軸線しまに平行な)歯筋を有する歯部30g(外周歯部)が設けられるとともに、上下の水平満部分33a,3cと斜め溝部分33bとを有するカム溝33が形成されている。また、カムギヤ30の外周部には、歯部30gが刻まれていない欠け歯部34が設けられている。一方、トラバースベース20の前端部には、このカム溝33に摺動自在に係合する突起部20P(図2及び図3参照)が設けられており、トラバースベース20の前部は、この突起部20Pが上記カム溝33に係合するととにより、カムギヤ30を介して装置べ 50

【0034】すなわち、上記トラバースベース20は、図6及び図7に示すように、その後部がフローティングブッシュ29を介して、また、その前部がフローティングカラー38及びフローティングバネ39で支持されたカムギヤ30を介して、装置ベース10に対し一定範囲内(すなわち、上記フローティングブッシュ29,フロ

ーティングカラー38及びフローティングバネ39の弾 性範囲内)で浮動可能な状態(フローティング状態)で

10 支持されている。

ース10に支持されている。

【0035】このように、上記トラバースベース20は、装置ベース10に対して、従来のように剛構造で(リジッドに)支持されるのではなく、上記名緩衝部材(フローティングブッシュ29,フローティングカラー38及びフローティングバネ39)の弾性範囲内で装置ベース10に対し浮動可能な状態で支持されているので、ディスク装置1に衝撃荷重が加わった場合あるいは振動入力があった場合でも、上記緩衝部材29,38及び39で衝撃あるいは振動を吸収することができ、これら衝撃荷重あるいは振動力が装置ベース10から直接的にトラバースベース20の各機構部品に作用することを防止できる。すなわち、衝撃や振動の作用に対するディスク装置1の耐久性を向上させることができるのである。

【0036】また、トラバースベース20は上記緩衝部材29,38及び39の弾性範囲内で装置ベース10に対し浮動可能な状態で支持されているので、剛構造で(つまり、リジッド(rigid)に)支持されている場合に比べて、装置ベース10およびトラバースベース20にそれぞれ取り付けられた機構部品について、部品相互の位置関係を浮動可能な範囲で調節することができ、部品製作および組立作業の精度をある程度低く設定することが可能になり、生産性を高めることもできるようになる。

【0037】上記トラパースベース10の下面側には、第1及び第2の2個の電動モータ3,4(例えば図2及び図3参照)と、これらモータ3,4を駆動制御する制御回路を備えた回路基板2とが固定されている。一方、トラパースベース10の上面側には、ディスク9(図5~図7参照)が上面に載置されるターンテーブル5が配置され、このターンテーブル5は第1モータ3(スピンドルモータ)の出力軸3s(図3参照)に連結されている。また、トラパースベース10の上面側には、ディスク9に情報信号を書き込み及び/又は記録された情報信号を読み出するための光ビックアップ6が取り付けられるとともに、ディスク装置1を作動させるための種々の駆動機構が配置されている。

P(図2及び図3参照)が設けられており、トラバース 【0038】以下、これら駆動機構について説明する。 ベース20の前部は、この突起部20Pが上記カム溝3 図3及び図5から良く分かるように、上記トラバースベ 3に係合することにより、カムギヤ30を介して装置べ 50 ース20には、前後方向(図5では上下方向)に広がる

開口部20Hが形成され、その左右両側には光ピックアップ6の前後方向への移動動作を案内する一対のピックアップがイド溝部22,23が位置している。尚、上記ターンテーブル5は、より好ましくは、これらピックアップがイド溝部22,23及び開口部20Hの前端部近傍もしくはそれよりも前方に位置している。光ピックアップ6は、その左右の脚部6fが上記ピックアップがイド溝部22,23にそれぞれスライド自在に係合することにより、トラバースベース20に前後方向へ移動可能に支持されている。尚、上記開口部20Hには、光ピックアップ6と回路基板2とを電気的に接続する例えば可撓性の接続部材(例えばフレキシブルプリント配線板:不図示)が挿通している。

【0039】上記一対のピックアップガイド溝部22, 23のうち片側(図3及び図5における右側)のピック アップガイド溝部23の側方には、該ガイド溝部23と 平行に伸長するレール部材24 (ガイドレール)が配置 され、該ガイドレール24にはラック部材40(送りラ ック)がその長手方向へスライド自在に係合している。 この送りラック40には、光ピックアップ6の一端部 (図3及び図5における右端部)がネジ部材49(図3参 照)によって連結されている。そして、送りラック40 がガイドレール24上をスライドすることにより、光ピ ックアップ6が、上記ガイド溝部22,23で案内され ながら、前後方向へ往復移動できるようになっている。 【0040】上記送りラック40は、図30~図34に 詳しく示すように、その片方の側部(図3及び図5にお ける右側部) に略全長にわたるラック歯41 (受動ラッ ク部)が形成され、他方の側部にはその前側部分に所定 長さのラック歯42 (切換ラック部) が形成されてい る。尚、送りラック40の裏面から突出する脚部40f はピックアップガイド溝部23に係合しており、送りラ ック40が後方(図5における上方へ)へ移動する際に は、脚部40 fが上記ガイド溝部23の後端壁部に当て 止められることにより、送りラック40の後方への移動 動作が規制されるようになっている。

【0041】この送りラック40を駆動して光ビックアップ6を前後方向へ往復移動させるために、トラバースベース20には一群の歯車で構成される歯車列51(ラック駆動歯車列)が配設されている。このラック駆動歯40車列51は、図9~図13に詳しく示すように、上記第2モータ4の出力軸4s(図3参照)に固着されたモータギヤ4Gと、該モータギヤ4Gと噛み合う大径の入力ギヤ52A(第1トラバース入力ギヤ52B(第1トラバース出力ギヤ)を有する第1トラバースギヤ52と、上記第1トラバース出力ギヤ52Bと噛み合う大径の入力ギヤ53A(第2トラバース入力ギヤ)及びその下側に一体的に付設された小径の出力ギヤ53B(第2トラバース入力ギャ53B(第2トラバース出力ギヤ)を有する第2トラバースギャ53とで構50

成されている。そして、上記第2トラバース出力ギヤ53Bが送りラック40の受動ラック部41と噛み合っている。

【0042】上記第2モータ4が駆動されてモータギヤ4Gが例えば図9〜図13における反時計回り方向(この方向が、本願請求項に記載した「第1回転方向」に相当する。)に所定の回転速度で回転すると、この回転が上記ラック駆動歯車列51により所定の減速比で減速して出力側に伝達され、最終の出力ギヤ53B(第2トラバース出力ギヤ)は減速された回転速度で反時計回り方向に回転する。これにより、送りラック40は、予め設定された所定の送り速度でガイドレール24に沿って前方(図9〜図13における下方)に向かって移動する。第2モータ4が上記の場合と逆方向に回転駆動されると、送りラック40の移動方向も上記の場合と逆になる。

【0043】このように、上記送りラック40は(従って、光ピックアップ6は)、第2モータ4の回転方向を正逆切り換えることによりその移動方向が切り換えられ、前後方向に往復移動できるようになっている。尚、基本的には上記送りラック40とラック駆動歯車列51とで、光ピックアップ6をディスク9の内周側と外周側との間で往復動可能に移動させる光ピックアップ駆動機構が構成され、これが本願請求項に記載した「光ピックアップ駆動機構」に相当している。また、上記ピックアップガイド溝22,23及びガイドレール24が光ピックアップ6の駆動を助勢している。

【0044】上記装置ベース10の前部には、トレイ55を、装置1の前面におけるトレイ55へのディスク着 施位置(アンローディング位置)と装置1の内部におけるターンテーブル5へのディスク着脱位置(ローディング位置)との間で往復移動させるトレイ駆動ギヤ56が配置されている。尚、このローディング位置およびアンローディング位置が、それぞれ本願請求項に記載した「第1位置」および「第2位置」に相当している。

【0045】該トレイ駆動ギヤ56は、トレイ55の裏面に設けられたラック歯55g(トレイラック歯:図19~図21参照)と噛み合う大径の出力ギヤ56Bと、この出力ギヤ56Bの下側に位置する小径の入力ギヤ56Aとを有している。このトレイ駆動ギヤ56は上記カムギヤ30の側方に位置しており、その入力ギヤ56Aがカムギヤ30の外周歯部30gと噛み合っている。尚、上記トレイ55とトレイラック歯55gとトレイ駆動ギヤ56とで、ディスク9をターンテーブル5上方のローディング位置(第1位置)と装置1の外部のアンローディング位置(第2位置)との間で往復動可能に移送するディスクローディング機構が構成されており、これが本願請求項に記載した「ディスクローディング機構」に相当している。

io 【0046】そして、上記トレイ55を駆動してディス

ク9をアンローディング位置とローディング位置との間 で移送するために、一群の歯車で構成される歯車列61 (ローディング駆動歯車列:図9~図13参照)がトラ パースペース20の上面側に設けられている。このロー ディング駆動歯車列61は、上記第2モータ4の出力軸 4 s に固着されたモータギヤ4 G と、該モータギヤ4 G と噛み合う大径の入力ギヤ62A(第1ローディング入 カギヤ) 及びその上側に一体的に付設された小径の出力 ギヤ62B(第1ローディング出力ギヤ)を有する第1 ローディングギヤ62と、上記第1ローディング出力ギ 10 ヤ62Bと噛み合う大径の入力ギヤ63A(第2ローデ ィング入力ギヤ)及びその上側に一体的に付設された小 径の出力ギヤ63B(第2ローディング出力ギヤ)を有 する第2ローディングギヤ63と、上記第2ローディン グ出力ギヤ63Bと噛み合う大径の第3ローディングギ ヤ64とで構成されている。そして、この第3ローディ ングギヤ64が上記カムギヤ30の外周歯部30gと噛 み合っている。

【0047】上記カムギヤ30の外周歯部30gの縦断面における歯筋形状は、図29に詳しく示すように、よ 20 り好ましくは側面視で曲線状をなすように形成されている。この曲線は、トラバースベース20とカムギヤ30とを装置ベース10に組み付けた状態で、トラバースベース20がその後端側を支点にして装置ベース10に対し上下方向へ回動する際(図6および図7参照)に、第3ローディングギヤ64の前端部の回動軌跡Cgに沿った円弧状曲線Cg'の一部をなすように設定されている。

【0048】従って、トラバースベース20が装置ベース10に対して回動し傾斜した状態(図29における破 30線表示および図7参照)でも、トラバースベース20上の第3ローディングギヤ64と上記カムギヤ30の外周歯部30gの縦断面はおける歯筋形状は、カムギヤ30の長手方向の軸線Lgに対して傾斜し上記曲線Cg'に近似した直線状であっても良い。尚、図6及び図7においては、上記カムギヤ30の外周歯部30gと噛み合う第3ローディングギヤ64を明瞭に表示するために、第2ローディングギヤ63の図示は省略されている。 40

【0049】このように、カムギヤ30の外周歯部30gの縦断面における歯筋形状が、上記トラバースベース20の回動動作に伴なって上記ローディング駆動歯車列61の最終出力ギヤである第3ローディングギヤ64が上下方向へ回動する際の回動軌跡に沿った円弧状もしくはこの円弧に近似した直線状に設定されているので、トラバースベース20の回動動作に伴なってローディング駆動歯車列61が上下方向へ回動した場合でも、その最終出力ギヤ64をカムギヤ30の外周歯部30gと確実かつスムースに噛み合わせることができるのである。

尚、基本的には上記ローディング駆動歯車列61とかムギヤ30 (具体的にはその外周歯部30q)とで、上記ディスクローディング機構を駆動するローディング駆動機構が構成され、これが本願請求項に記載した「ローディング駆動機構」に相当している。

【0050】前述の光ピックアップ6は、ディスク9上において信号が記録されている信号記録範囲よりも更に内周側の所定位置まで移動できるように設定されている。そして、光ピックアップ6が第2モータ4の駆動力によりラック駆動歯車列51を介してディスク9の外周側から内周側に向かって移動して来た際、光ピックアップ6がディスク9の信号記録範囲を越えて上記所定位置に達すると、第2モータ4の駆動力はローディング駆動歯車列61に伝達されるように、その伝達経路が切り換えられるように設定されている。

【0051】すなわち、図14~図18に詳しく示すよ うに、トラパースベース20の前部には縦軸20 sが立 設され、この縦軸20sに動力伝達経路切換用のトリガ レバー71が回動可能に枢支されている。また、このト リガレバー71の近傍にはその位置を規制し得るロック レバー73が配置されている。上記トリガレバー71 は、図35~図37に詳しく示すように、上記縦軸20 sに回転可能に嵌合する基部71bと、該基部71bの 外周の一部に形成された部分ギヤ71gと、上記カムギ ヤ30と係合する一対の係合アーム71aとを備えてい る。また、トリガレバー71の基部71bの外周部に は、上記ロックレバー73の爪部73dと係合し得るス トッパ部71sが設けられている。上記部分ギヤ71g は前述の送りラック40の切換ラック部42と嚙合可能 であり、一方、上記係合アーム71aはカムギヤ30の 外周から突出したフック部32に係合可能に設定されて いる。

【0052】上記ロックレバー73は、図38から図4 0に詳しく示すように、トラバースベース20の前端部 に嵌合固定される基部73bと、該基部73bから略し 字状に伸びるレバー部73aと、上記基部73bから略 円弧状に伸びるスプリング部73cとを備えている。上 記レバー部73aには、トリガーレバー71のストッパ 部71sと係合し得る爪部73dと、上方に突出する突 出ピン73pとが一体的に形成されている。また、上記 基部73 bには、後述する位置決めロッド75の規制ロ ッド部75sをスライド自在に挿通させる溝部73s (ガイドスロット)が形成されている。上記送りラック 40の裏面側には、図30及び図32から良く分かるよ うに、平面視で屈曲状に形成されたカム溝43が設けら れ、該カム溝43の前端側は送りラック40の前方に向 かって開かれている。上記ロックレバー73の突出ピン 73 pは、このカム溝43 にスライド自在に係合するよ うになっている。

50 【0053】また、上記装置ベース10とトラバースベ

ース20には、それぞれに取り付けられた機構部品どうしの連係状態を精確に保持するための位置決め機構が設けられている。すなわち、トラバースベース20の前部には、該トラバースベース20の装置ベース10に対する左右方向の位置を行うための位置決め部材75(位置決めロッド)が配設されている。この位置決めロッド75は、図41~図43に詳しく示すように、トラバースベース20の上面に形成された前後方向のガイド溝26に前後スライド可能に係合する係合基部75bと、該基部75bから前方に伸びる延長受け部75cと、上記係10合基部75bおよび延長受け部75cから右方にオフセットした位置で前後方向(図14~図18における上下方向)に伸びる規制ロッド部75sを備えている。

【0054】この規制ロッド部75sは、上述のように、上記ロックレバー73の基部73bに形成されたガイドスロット75sに前後方向へスライド自在に挿通されている。また、上記延長受け部75cは、後で詳しく説明するように、組立状態において、その前面部がロックレバー73のスプリング部73cに当接して後方に付勢され、一方、その後面部は送りラック40の前端面に 20当接可能で、この送りラック40の前方移動に伴なって位置決めロッド75全体が前方へ移動するようになっている。

【0055】図14~図18に示されるように、装置ベース10の内側開口部10Hの前縁壁面には、上記位置決めロッド75の規制ロッド部75sを出没可能に嵌合させる位置決め溝13が設けられており、送りラック40が前方へ移動しその移動量が一定以上に達すると、送りラック40の前端面が位置決めロッド75の上記延長受け部75cの後面に当接してこれを押し、係合基部75bが上記ガイド溝26に沿った状態で位置決めロッド75全体が前進する。そして、これに伴なって上記規制ロッド部75sが装置ベース10の位置決め溝13内に嵌入することにより、トラバースベース20の装置ベース10に対する左右方向の位置関係が正確に定められる。

【0056】一方、トラバースベース20の前端部分における上面には平面視で円弧状のカム溝27(円弧溝)が設けられている。上記カムギヤ30のフック部32の裏面には係合凸部32pが設けられており、この係合凸部32pが上記円弧溝27に係合することにより、トラバースベース20の装置ベース10に対する前後方向の位置規制が行われる。更に、前述のように、トラバースベース20の前端に設けた突起部20pがカムギヤ30のカム溝33に係合することにより、トラバースベース20の前端部の装置ベース10に対する上下方向の位置関係が正確に定められる。

【0057】以上により、トラバースベース20の前端 部の装置ベース10に対する左右方向,前後方向および 上下方向の直交する3方向の位置関係が正確に定めら れ、装置ベース10とトラバースベース20にそれぞれ に取り付けられた機構部品どうしを正確かつ確実に係合 させることができる。とりわけ、第2モータ4の駆動力 の伝達経路を切り換える際に、装置ベース10に設けら れたディスクローディング機構とトラバースベース20 に設けられたローディング駆動機構との連係状態を正確 に保持できるのである。

【0058】一方、上記ディスク装置1は、ターンテーブル5と協働してディスク9を挟持するクランパ96が組み付けられたクランプ板95を備えている(図1,図2,図4,図22及び図23参照)。上記クランパ96は、その中心部にマグネット97が組み込まれるとともに、下側のディスク当接面にはフェルト98が貼り付けられている。上記クランプ板95は、左右両側に設けられた複数の(本実施の形態では前後2個ずつの)取付脚部95fに爪部95dがそれぞれ形成されており、これら爪部95dを装置ベース10の側部に係合させることによって該装置ベース10に組み付けられる。そして、この組付状態でクランパ96の中心をターンテーブル5の回転中心に対し実質的に一致させることができるようになっている。

【0059】上記クランプ板95は、上記左右両側の取 付脚部95fを支持する左右の水平基部95bと、上記 クランパ96を支持する略環状の中央ホルダ部95a と、該ホルダ部95aと上記水平基部95bとを連結す る水平連結部95cとを備えている。本実施の形態で は、中央ホルダ部95aの左右の根元部と各水平基部9 5 b との間に切欠部 9 5 e が形成されており、上記水平 連結部95 cの幅は、この切欠部95 eに対応する分だ 30 け水平基部95 bの幅よりも小さくなっている。つま り、水平連結部95cは、水平基部95bに比べてその 剛性が低く上下方向に撓み易くなっている。従って、デ ィスク装置1が落下した際など、装置1に大きな衝撃荷 重が作用し、ターンテーブル5がクランプ板95に当接 した場合でも、該クランプ板95が容易に上下方向に撓 むので衝撃荷重を吸収することができ、ターンテーブル 5 (及びこれに連結されたスピンドルモータ3)が大き な損傷を受けることを有効に防止できる。

【0060】以上のように構成されたディスク装置1の 40 作動について説明する。まず、ディスク装置1内にディスク9がローディングされ、該ディスク9 に記録された 信号を光ピックアップ6によって再生している信号再生 状態(図9参照)では、図6に示されるように、トラバースベース20は、その前端の突起部20 Pがカムギヤ30のカム溝33における上側の水平溝部33aに嵌合することにより、装置ベース10と略平行に保持されている。このとき、図14に示されるように、トリガレバー71は、そのストッパ部71 sがロックレバー73の 爪部73 dに係止されるとともに、係合アーム71 aが カムギヤ30のフック部32に係合している。この状態

では、トリガレバー71は、図9及び図14における時 計回り方向の限度まで回動されている。

【0061】上記の状態で、ディスク9からの信号の再 生は、スピンドルモータ3を駆動させてディスク9を載 せたターンテーブル5を所定の回転数で回転させなが ら、光ピックアップ6を再生しようとしている目的の信 号トラックの略下方位置に移動させ、この光ピックアッ プ6に設けられた光学素子(レンズ及びレーザ源などを 含む光学系)でディスク9上の信号を読み取ることによ って行われる。ここで、再生しようとしている信号トラ 10 ックが光ピックアップ6の現在位置の上方に無いとき、 あるいは数十本以上の信号トラックにまたがって信号再 生を行う場合には、光ピックアップ6をディスク9の内 周方向(ディスク装置1の前側方向) および外周方向 (ディスク装置1の後側方向)に移動させる必要がある。 【0062】この光ピックアップ6の移動は光ピックア ップ駆動機構によって行われる。すなわち、前述したよ うに、第2モータ4が駆動されてモータギヤ4Gが回転 すると、この回転が上記ラック駆動歯車列51により所 ヤ53B(第2トラバース出力ギヤ)は減速された回転 速度で回転し、送りラック40が(従って、これに連結 された光ピックアップ6が)前後方向に移動する。この とき、モータギヤ4Gの回転方向が図9~図13におけ る反時計回り方向であれば、光ピックアップ6は前方 (図9~図13における下方:ディスク9の内周方向) に向かって移動し、モータギヤ4Gの回転方向がその逆 であれば、光ピックアップ6は後方(図9~図13にお ける上方:ディスク9の外周方向) に向かって移動す る。

【0063】尚、との信号再生状態では、第2モータ4 の駆動に伴なってローディング駆動歯車列61も回転す ることになるが、その最終の出力ギヤである第3ローデ ィングギヤ64の歯部は、カムギヤ30の欠け歯部34 に位置し、外周歯部30gとは噛み合わないように設定 されている。従って、この信号再生状態で、第2モータ 4の駆動力がカムギヤ30に(従って、トレイ駆動ギヤ 56に) 伝達されることはない。

【0064】図10及び図15は、ディスク9の信号が 記録されている記録位置範囲(信号記録範囲)の最内周 40 部分に記録された信号を再生している状態を示してい る。この状態では、光ピックアップ6は光ピックアップ 駆動機構によって前方へ移動させられて、ディスク9の 信号記録範囲の内周端部位置Srまで移動しており、送 りラック40の受動ラック部41は、その後端部分がラ ック駆動歯車列51の最終の出力ギヤ53B (第2トラ バース出力ギヤ)と噛み合っている。また、切換ラック 部42は、トリガレバー71の部分ギヤ71gにかなり 接近している。

囲は、ディスク規格に基づいて、ディスク9の中心から の距離で定められている。そして、従来のディスク装置 では、この信号位置範囲の最内周位置に対応する位置に 光ピックアップの位置検出スイッチを設け、光ピックア ップが最内周位置に有ること/最内周位置に移動してき たことを検出し、光ピックアップがそれ以上内周側に移 動しないように制御している。これに対して本実施の形 態に係るディスク装置1においては、ディスク9の信号 記録範囲の内周端部位置Srを内周端部切り換え位置と して、ここに内周検出スイッチ7を設けている。この内 周検出スイッチ7は、オフのときには光ピックアップ6 が最内周位置に有ること/最内周位置に移動してきたこ とを検出する点は従来の光ディスク装置と同じである。 しかしながら、オンとしたときには、光ピックアップ6 が内周検出スイッチ7を動作させても光ピックアップ6 のそれ以上の内周側への移動を規制せず、光ピックアッ ブ6が更に内周側へ移動できるように設定されている点 が従来とは異なっている。

【0066】上記内周検出スイッチ7は、例えば、従来 定の減速比で減速して出力側に伝達され、最終の出力ギ 20 から良く知られた機械式の作動を行うもので、トラバー スペース20の上面に対して上下方向に出没可能に設け られ、光ピックアップ6がこの内周検出スイッチ7の上 方に達した際には、その下面がスイッチ7に干渉し、ス イッチバネ(不図示)の付勢力に抗してこの内周検出ス イッチ7をトラバースベース20内に押し下げるように なっている。尚、この内周検出スイッチ7としては、上 記の方式のものに限らず、例えば非接触式のものなど、 従来から良く知られた種々の構造のものを用いることが できる。

【0067】図11及び図16は、光ピックアップ6が 上記内周端部位置Sr に移動し内周検出スイッチ7を動 作させた後、さらに光ピックアップ6が内周側に移動し て来た状態を示したものである。ここで、図10及び図 15の状態と図11及び図16の状態の違い、並びにそ の状態の移行動作について説明する。図10及び図15 の状態から図11及び図16の状態への光ピックアップ 6の移動は、オンとした内周検出スイッチ7が光ピック アップ6により動作させられた図10及び図15の状態 から、第2モータ4が更に同じ方向に(反時計周り方向 に)回転することによって行われる。光ピックアップ6 が更に内周側に移動することによって、光ピックアップ 6を前後動させる送りラック40の切換ラック部42 が、トリガレバー71の部分ギヤ71gと噛み合い、ト リガレバー71を時計周り方向に回転させる。これに伴 なって、トリガレバー71の係合アーム71aがカムギ ア30のフック部32を反時計回り方向に回動させる。 【0068】これにより、カムギア30が反時計回り方 向に回動し、その外周歯部30gとローディング駆動歯 車列61の最終の出力ギヤ64(第3ローディングギ 【0065】周知のように、光ディスク9の信号記録範 50 ヤ)とが嘲合い始める。この状態では、まだ、送りラッ

ク40の受動ラック部41は、上記ラック駆動歯車列5 1の最終の出力ギヤ53B(第2トラバース出力ギヤ) と噛み合い状態を保っている。また、トリガレバー71 のストッパ部71sと係合して該トリガレバー71を位 置固定していたロックレバー73は、その突出ピン73 pが送りラック40のカム溝43に沿って移動すること によって回動し、爪部73 dによるトリガレバー71の 位置固定が解除される。

【0069】図12および図17は、上記カムギア30 がローディング駆動歯車列61の最終の出力ギヤである 10 第3ローディングギア64に噛み合い始めた状態から、 更に、この第3ローディングギア64からの駆動力によ り、カムギア30が反時計回り方向に回動した状態を示 している。この動作も、第2モータ4によりモータギヤ 4 Gが、光ピックアップ6を内周側に送るときの回転方 向と同じく、反時計回り方向に回転することによって行

【0070】とのようなカムギア30の動作により、ト リガレバー71は、このカムギア30で規制される位置 まで更に時計回り方向に回転し、送りラック40の受動 20 ラック部41と第2トラバース出力ギヤ53Bの噛み合 いが外れる位置まで、光ピックアップ6を更なる内周位 置(前方位置)まで引き込む。従って、これ以降は、上 記モータギヤ4Gがそれ以上反時計回り方向に回転して も、第2モータ4の駆動力が送りラック40に(従っ て、光ビックアップ6に)伝達されることはない。ま た、このとき、ロックレバー73の突出ピン部73p は、送りラック40のカム溝43に案内されてその傾斜 部にさしかかり、ロックレバー73のバネ力により反時 計回り方向に回動する。そして、トリガレバー71は、 カムギア30と完全に離間する位置まで、時計回り方向 に回動させられる。尚、基本的にはトリガレバー71, ロックレバー73及びカムギヤ30(具体的には、その フック部32及び欠け歯部34)、より詳細には、これ らに加えて、送りラック40の切換ラック部42及びカ ム溝43等で、第2モータ4の駆動力の伝達経路を切り 換える動力伝達経路切換機構が構成され、これが本願請 求項に記載した「動力伝達経路切換機構」に相当してい

【0071】また、以上のように、送りラック40は、 光ピックアップ6を上記ディスク9の信号記録範囲の最 内周端部位置Srまで移動させた後さらに内周側の所定 位置まで移動可能で、送りラック40が、この内周側の 所定位置まで移動することにより、または、この所定位 置からディスク外周側へ移動することにより、第2モー タ4の駆動力の伝達経路が切り換えられるので、1個の モータ(第2モータ4)の駆動により、光ピックアップ6 の信号読み取り動作と第2モータ4の駆動力の伝達経路 の切換とを連携して行わせることができる。更に、信号 の再生状態にある光ピックアップ6を、第2モータ4に 50 パースペース20の前端突起部20Pのカム溝33に対

より光ディスク9上の信号記録範囲の内周端部位置Sr に移動させた後、さらに回転方向をかえることなく同モ ータ4をまわしつづけることにより、自動的にターンテ ーブル5による光ディスク9のクランプの解除、装置外 への光ディスク9の排出を行うことができ、従来の光デ ィスク装置において必要とされていたディスクローディ ング専用のモータを廃止することができる。そして、装 置内で使用するモータの数を減らすことにより、より安 価な光ディスク装置を提供することが可能になる。

【0072】また更に、光ピックアップ6を第2モータ 4の駆動によりディスク9上の信号の最内周位置Srに 移動させ、内周検出スイッチ7により光ピックアップ6 の位置を検出した後、上記第2モータ4の回転方向を変 えたり回転を停止させることにより、装置外へディスク 9を排出すること無く、同ディスク9の信号の連続した 再生/記録を行わせることも可能である。また、更に、 従来必要とされていたディスクが装置内に搬入されたこ とを検出する検出スイッチやディスクのクランプ動作を 検出する検出スイッチがなくても、内周検出スイッチ7 により上記状態の検出が可能になるため、検出スイッチ の数を減らすことができ、より安価な光ディスク装置を 提供することも可能になる。

【0073】本実施の形態では、上述のように、トラバ ースベース20は、その後端部を中心にして上下方向に 回動するよう構成されており、前端部の突起部20P が、カムギア30に形成されたカム溝33に係合してい る。とのカム溝33は、前述のように、上下の水平溝部 分33a及び33cと両者をつなぐ斜め溝部分33bと を備えており(図24~図29参照)、上記突起部20 30 Pがこれら3つの溝部33a~33cのどの部分と係合 するかによって(つまり、カムギヤ30の回動方向及び 回動量によって)、トラバースベース20の前端部の上 下方向位置が定まる。従って、トラバースベース20 は、カムギア30の回動方向及び回動量に応じて、その 後端部を中心にして上下方向へ回動することになる。

【0074】このように、上記トラバースベース20 は、その一端側を中心にして装置ベース10に対し上下 方向へ回動可能に支持されている。具体的には、ローデ ィング駆動歯車列61からの動力伝達でカムギヤ30が 回転させられてトラバースベース20の他端側が昇降さ せられ、これにより、トラバースベース20がその前端 側を中心にして装置ベース10に対し上下方向へ回動さ せられる。すなわち、1個のモータ(第2モータ4)の駆 動により、トラバースベース20の上下方向への回動動 作と(従って、ターンテーブル5の昇降動作と)ディス ク9の移送動作とを連携して行わせることが可能になる のである。

【0075】そして、図13及び図18に示すように、 カムギア30が更に反時計回り方向に回転すると、トラ

うに、この規制ロッド部75sが装置ベース10の位置 決め溝13内に嵌入することにより、トラバースベース 20の装置ベース10に対する左右方向の位置決めが行

する係合位置は、上側水平溝部33aから斜め溝部33 bを経て、下側水平溝部33cへと移動するように設定 されている。すなわち、図9及び図14に示した状態で は、突起部20 Pが上側水平溝33aに係合しており、 トラバースベース20は、図6に示すように、装置ベー ス10に対して平行で両者の上面が略面―となるように 維持されている。従って、ディスク9をターンテーブル 5上に載置してクランバ96との間で水平に保持するこ とができる。

【0076】そして、図10~図13及び図15~図1 10 8に示すように、送りラック40が前方に移動し、その 移動量が一定以上に達するとカムギヤ30が回動し始 め、トラバースベース20の前端突起部20Pが、カム 溝33の斜め溝部33bを経て下側水平溝部33cと係 合するようになる。この結果、図7に示すように、トラ バースベース20が、その後部を中心に下方へ回動し装 置ベース10に対し傾斜する。この状態では、ターンテ ーブル5が傾斜状態で下方に移動しているので、装置1 の外部からディスク9をターンテーブル5の上方へ引き 込む際、及びディスク9をターンテーブル9の上方から 装置1の外部へ排出する際には、ディスク9がターンテ ーブル9と干渉することはないようになっている。

【0077】この場合、カムギヤ30の外周歯部30g は、トラバースベース20が装置ベース10に対して所 定位置(トラバースベース20の前端突起部20Pがカ ム溝33の斜め溝部33bを経て下側水平溝部33cと 係合する位置)まで下方へ回動した状態で、ディスクロ ーディング機構のトレイ駆動ギヤ56と噛み合うので、 上記トレイ55はトラバースベース20が確実に下方へ 回動した状態で駆動される。従って、トレイ駆動時(つ まりディスク移送時)、トレイ55が(つまりディスク 9が) ターンテーブル5と干渉することを確実に回避す ることができるのである。

【0078】尚、上記のようにトラバースベース20が 傾斜した状態では(図13及び図18並びに図7参 照)、第3ローディングギヤ64も傾斜した状態でカム ギヤ30の外周歯部30gと噛み合うことになるが、前 述したように(図29参照)、この外周歯部30gは、 その縦断面における歯筋形状が曲線状もしくはカムギヤ 30の軸線Lgに対して傾斜した形状に設定されている 40 夕制御回路によって第2モータ4が以上とは逆方向に回 ので、両ギヤ64,30gは確実かつスムースに噛み合 うととができる。また、以上のように送りラック40が (つまり光ピックアップ6が)前方へ移動し、トラバー スペース20が傾斜動作を行う間、図14~図18に示 すように、送りラック40の前方への移動に伴って該送 りラック40の前端部が上記位置決めロッド75の延長 受け部75 cの後面に当接してこれを前方に押す。これ により、位置決めロッド75の規制ロッド部75sが、 ロックレバー73の基部73bのガイドスロット73s

われる。 【0079】尚、上記位置決めロッド75の延長受け部 75 cの前部は、ロックレバー73のスプリング部73 cに当接しており、このスプリング部73cによって後 方に付勢されている。上記とは逆に送りラック40が後 方へ移動する場合には、位置決めロッド75は上記スプ リング部73cの付勢力によって後方へ移動させられる ようになっている。更に、トラバースベース20の前端 側に設けられた円弧溝27にカムギヤ30のフック部3 2の係合凸部32pが係合することにより、トラバース ベース20が装置ベース10に対して略平行で両者の上 面が略面一に維持されている間、両者の前後方向の位置

決めが行われている。

【0080】図19及び図20は、第2モータ4によっ てモータギヤ4Gを更に同じ方向(反時計回り方向)に 回転させ、ローディング駆動歯車列61を介してカムギ ヤ30を更に反時計回り方向に回動させた状態を示して いる。図9~図13に示す状態の間は、トレイ駆動ギヤ 56の入力ギヤ56Aはカムギヤ30の外周歯部30g とは噛み合っておらず、その欠け歯部34に対応してい る。従って、カムギヤ30が回転してもトレイ駆動ギヤ 56が回転することはない。しかし、カムギヤ30が図 19及び図20に示される状態まで回動すると、カムギ ヤ30の外周歯部30gがトレイ駆動ギヤ56の入力ギ ヤ56Aと噛み合い始め、カムギヤ30の回転によって トレイ駆動ギヤ56が回転させられる。そして、これに 伴って、図21に示すように、トレイ駆動ギヤ56の出 カギヤ56B及びこれと噛み合うトレイラック歯55g を介して、トレイ55が前方へ引き出されるようになっ ている。

【0081】尚、以上の説明は、トレイ55をディスク 装置1の内部から外部に引き出す場合について(つま り、信号再生状態から光ディスク9のクランプ解除およ びディスク9の排出の動作について)のものであった が、この逆に、トレイ55をディスク装置1の外部から 内部に引き込む場合には、回路基板2に設けられたモー 転させられ、モータギヤ4Gが時計回り方向に回転駆動 される。これにより、ディスク装置1内への光ディスク 9の搬入、ディスク9のクランプそして信号再生状態へ の移行を、一連の動作として行わせることができる。 【0082】以上、説明したように、本実施の形態によ れば、装置ベース10と別体でターンテーブル5を取り 付けたトラバースペース20が、装置ベース10に対し 上下方向へ回動可能に支持されており、1個のモータ (第2モータ4)を正方向(第1回転方向)またはその に案内された状態で前方へ移動する。そして、前述のよ 50 逆方向へ連続して回転させることにより、光ピックアッ

プ6の移動動作とターンテーブル5の昇降動作とディス ク9の移送動作とがこの順序で略連続して、または逆の 方向へ逆の順序で略連続して行われるので、ディスク9 の出し入れを行う際、ディスクタを上下方向に移動させ ることなくターンテーブル5との干渉を回避することが できる。従って、従来のディスク装置のように、ディス クを持ち上げるディスクホルダを設ける必要は無い。 【0083】また、ターンテーブル5を取り付けたトラ

パースベース20を装置ベース10に対し上下方向へ回 動させる動作を利用して、ディスク9のターンテーブル 10 る。すなわち、1個のモータ(第2モータ)の駆動によ 5に対する固定(クランプ)及び固定解除を行うことが 可能になる。従って、従来のディスク装置のように、ク ランパ側 (チャック板)を上下方向に駆動する必要は無 い。この場合において、光ピックアップ6の移動動作と ターンテーブル5の昇降動作とディスク9の移送動作と を1個のモータ(第2モータ4)で行えるので、ターン テーブル回転駆動用の第1モータ3と併せて、合計2個 のモータでディスク装置1を作動させることができる。 すなわち、モータの使用個数を削減した上で、ディスク 装置1の構造をより簡素化し、各構成要素の良好な作動 20 をより安定して得ることができるのである。

【0084】尚、本発明は、以上の実施態様に限定され るものではなく、その要旨を逸脱しない範囲において、 種々の改良あるいは設計上の変更が可能であることは言 うまでもない。

[0085]

【発明の効果】本願の第1の発明によれば、第1ベース と別体でターンテーブルを取り付けた第2ベースが、第 1ベースに対し上下方向へ移動可能または回動可能に支 持されており、1個のモータ(第2モータ)を正方向 (第1回転方向)またはその逆方向へ連続して回転させ ることにより、光ビックアップの移動動作とターンテー ブルの昇降動作とディスクの移送動作とがこの順序で略 連続して、または逆の方向へ逆の順序で略連続して行わ れるので、ディスクの出し入れを行う際、ディスクを上 下方向に移動させることなくターンテーブルとの干渉を 回避することができる。従って、従来のディスク装置の ように、ディスクを持ち上げるディスクホルダを設ける 必要は無い。また、ターンテーブルを取り付けた第2ベ ースを第1ベースに対し上下方向へ移動または回動させ 40 る動作を利用して、ディスクのターンテーブルに対する 固定(クランプ)及び固定解除を行うことが可能にな る。従って、従来のディスク装置のように、クランパ側 (チャック板) を上下方向に駆動する必要は無い。この 場合において、光ピックアップの移動動作とターンテー ブルの昇降動作とディスクの移送動作とを1個のモータ で行えるので、ターンテーブル回転駆動用の第1モータ と併せて、合計2個のモータでディスク装置を作動させ ることができる。すなわち、モータの使用個数を削減し

な作動をより安定して得ることができる。

【0086】また、本願の第2の発明によれば、基本的 には、上記第1の発明と同様の効果を奏することができ る。特に、上記第2ベースは、その一端側を中心にして 上記第1ベースに対し上下方向へ回動可能に支持されて いる。具体的には、ローディング駆動歯車列からの動力 伝達でカムギヤが回転させられて第2ベースの他端側が 昇降させられ、これにより、第2ベースがその一端側を 中心にして第1ベースに対し上下方向へ回動させられ り、第2ベースの上下方向への回動動作と(従って、タ ーンテーブルの昇降動作と)ディスクの移送動作とを連 携して行わせることができる。

【0087】更に、本願の第3の発明によれば、基本的 には、上記第2の発明と同様の効果を奏することができ る。特に、カムギヤの外周歯部の縦断面における歯筋形 状が、上記第2ベースの回動動作に伴なって上記ローデ ィング駆動歯車列の最終出力ギヤが上下方向へ回動する 際の回動軌跡に沿った円弧状もしくはこの円弧に近似し た直線状に設定されているので、第2ベースの回動動作 に伴なってローディング駆動歯車列が上下方向へ回動し た場合でも、その最終出力ギヤをカムギヤの外周歯部と 確実かつスムースに噛み合わせることができる。

【0088】また、更に、本願の第4の発明によれば、 基本的には、上記第2又は第3の発明と同様の効果を奏 することができる。特に、第2ベースの他端側に設けら れた突起部がカムギヤのカム溝に係合することにより、 第2ベース他端側の上下方向の位置決めが行われるの で、第2ベース他端側の第1ベースに対する上下方向位 30 置を確実に定めて、精確な位置決めを行うことができ る。これにより、第1ベース上の機構部品と第2ベース 上の機構部品とを、精確かつ確実に係合させることが可 能になる。

【0089】また、更に、本願の第5の発明によれば、 基本的には、上記第2~第4の発明のいずれか一と同様 の効果を奏することができる。特に、上記カムギヤの外 周歯部は、上記第2ベースが第1ベースに対して所定位 置まで下方へ回動した状態で、ディスクローディング機 構のトレイ駆動ギヤと噛み合うので、上記トレイは第2 ベースが確実に下方へ回動した状態で駆動される。従っ て、トレイ駆動時(つまりディスク移送時)、トレイが (つまりディスクが) ターンテーブルと干渉することを 確実に回避することができる。

【0090】また、更に、本願の第6の発明によれば、 基本的には、上記第2~第5の発明のいずれか一と同様 の効果を奏することができる。特に、送りラックは、光 ピックアップを上記ディスクの信号記録範囲の最内周端 部位置まで移動させた後さらに内周側の所定位置まで移 動可能で、送りラックが、この内周側の所定位置まで移 た上で、装置の構造をより簡素化し、各構成要素の良好 50 動することにより、または、この所定位置からディスク

【図1】 本発明の実施の形態に係るディスク装置の組 立状態を示す全体斜視図である。

【図2】 上記ディスク装置の分解斜視図である。

【図3】 図2の一部を拡大して示す説明図である。

【図4】 図2の一部を拡大して示す説明図である。

【図5】 上記ディスク装置のトラバースベースと装置 ベースの組立状態を示す平面説明図である。

【図6】 上記トラバースベースの装置ベースに対する 支持構造を概略的に示す部分断面側面図である。

【図7】 上記トラバースベースの装置ベースに対する 傾斜動作を示す概略的な部分断面側面図である。

【図8】 上記トラバースベースに装着されたフローティングブッシュを拡大して示す縦断面説明図である。

【図9】 上記ディスク装置の駆動機構の動作を示す一連の平面説明図の一つである。

【図10】 上記駆動機構の動作を示す一連の平面説明 図の一つである。

【図11】 上記駆動機構の動作を示す一連の平面説明図の一つである。

20 【図12】 上記駆動機構の動作を示す一連の平面説明 図の一つである。

【図13】 上記駆動機構の動作を示す一連の平面説明 図の一つである。

【図14】 上記駆動機構の動力伝達経路の切換動作を 示す一連の拡大平面説明図の一つである。

【図15】 上記駆動機構の動力伝達経路の切換動作を 示す一連の拡大平面説明図の一つである。

【図16】 上記駆動機構の動力伝達経路の切換動作を 示す一連の拡大平面説明図の一つである。

【図17】 上記駆動機構の動力伝達経路の切換動作を 示す一連の拡大平面説明図の一つである。

【図18】 上記駆動機構の動力伝達経路の切換動作を示す一連の拡大平面説明図の一つである。

【図19】 トレイとトレイ駆動ギヤの係合状態を示す 拡大平面説明図である。

【図20】 トレイ格納状態を示す上記ディスク装置の 平面説明図である。

【図21】 トレイ引き出し状態を示す上記ディスク装置の平面説明図である。

【図22】 上記ディスク装置のディスククランプ機構を示す拡大平面説明図である。

【図23】 図22のY23-Y23線に沿ったディスククランプ機構の縦断面説明図である。

【図24】 上記駆動機構のカムギヤの平面説明図である

【図25】 図24のY25-Y25矢印方向から見た カムギヤの側面説明図である。

【図26】 図24のY26-Y26矢印方向から見た カムギヤの側面説明図である。

50 【図27】 図24のY27-Y27矢印方向から見た

外周側へ移動することにより、第2モータの駆動力の伝達経路が切り換えられるので、1個のモータ(第2モータ)の駆動により、光ピックアップの信号読み取り動作と第2モータの駆動力の伝達経路の切換とを連携して行わせることができる。

【0091】また、更に、本願の第7の発明によれば、 基本的には、上記第6の発明と同様の効果を奏すること ができる。特に、送りラックが所定位置を越えて他端側 へ移動することにより、規制ロッドが駆動されて第2べ ースの他端側から突出し、これにより、上記規制ロッド 10 が第1ベースの位置決め用溝部内に嵌合して、送りラッ ク移動方向に直交する横方向における第2ベースの第1 ベースに対する位置決めが行われるので、第2ベース他 端側の第1ベースに対する横方向位置を確実に定めて、 精確な位置決めを行うことができる。これにより、第1 ベース上の機構部品と第2ベース上の機構部品とを、精 確かつ確実に係合させることが可能になる。また、この 場合において、1個のモータ(第2モータ)を駆動すると とにより、送りラックの第2ベース他端側への移動動作 と上記位置決め動作とを連携して行わせることができ る。

【0092】また、更に、本願の第8の発明によれば、基本的には、上記第6又は第7の発明と同様の効果を奏することができる。特に、カムギヤに設けたフック部が第2ベース表面に形成した円弧状の溝部に係合することにより、第2ベースの第1ベースに対する送りラック移動方向の位置関係を確実に定めることができる。これにより、第1ベース上の機構部品と第2ベース上の機構部品とを、精確かつ確実に係合させることが可能になる。

【0093】また、更に、本願の第9の発明によれば、 基本的には、上記第2~第8の発明のいずれか一と同様 の効果を奏することができる。特に、第2ベースは、第 1ベースに対して、従来のように剛構造で(リジッド に) 支持されるのではなく、上記緩衝部材の弾性範囲内 で第1ベースに対し浮動可能な状態で支持されているの で、ディスク装置に衝撃荷重が加わった場合あるいは振 動入力があった場合でも、上記緩衝部材で衝撃あるいは 振動を吸収することができ、これら衝撃荷重あるいは振 動力が第1ベースから直接的に第2ベースの各駆動部品 に作用することを防止できる。すなわち、衝撃や振動の 40 作用に対するディスク装置の耐久性を向上させることが できる。また、第2ベースは上記緩衝部材の弾性範囲内 で第1ベースに対し浮動可能な状態で支持されているの で、剛構造で(つまり、リジッド(rigid)に)支 持されている場合に比べて、第1ベースおよび第2ベー スにそれぞれ取り付けられた部品について、部品相互の 位置関係を浮動可能な範囲で調節することができ、部品 製作および組立作業の精度をある程度低く設定して、生 産性を高めることができる。

【図面の簡単な説明】

カムギヤの側面説明図である。

【図28】 図24のY28-Y28矢印方向から見た カムギヤの側面説明図である。

【図29】 上記カムギヤの縦断面における歯筋形状を 示す部分断面説明図である。

【図30】 上記駆動機構の送りラックの平面説明図である。

【図31】 図30のY31-Y31矢印方向から見た送りラックの側面説明図である。

【図32】 上記送りラックの背面説明図である。

【図33】 図30のY33-Y33矢印方向から見た送りラックの側面説明図である。

【図34】 図30のY34-Y34矢印方向から見た送りラックの側面説明図である。

【図35】 図36のY35-Y35矢印方向から見たトリガレバーの側面説明図である。

【図36】 上記駆動機構のトリガレバーの平面説明図である。

【図37】 図36のY37-Y37線に沿ったトリガレバーの縦断面説明図である。

【図38】 上記駆動機構のロックレバーの平面説明図である。

【図39】 図38のY39-Y39矢印方向から見たロックレバーの側面説明図である。

【図40】 図38のY40-Y40矢印方向から見た ロックレバーの側面説明図である。

【図41】 図42のY41-Y41矢印方向から見たロックレバーの側面説明図である。

【図42】 上記駆動機構のロックレバーの平面説明図である。

【図43】 図42のY43-Y43矢印方向から見たロックレバーの側面説明図である。

【符号の説明】

1…ディスク装置

3…第1モータ (スピンドルモータ)

* 4…第2モータ

5…ターンテーブル

6…光ビックアップ

9…光ディスク

10…装置ベース

10H…(装置ベースの)内側開口部

13…位置決め溝

20…トラバースベース

20 P… (トラバースベースの) 前端突起部

10 22, 23…ピックアップガイド溝部

24…ガイドレール

27…円弧溝

29…フローティングブッシュ

30…カムギヤ

30g… (カムギヤの) 外周歯部

32… (カムギヤの) フック部

33… (カムギヤの) カム溝

34… (カムギヤの) 欠け歯部

38…フローティングカラー

20 39…フローティングバネ

40…送りラック

41…受動ラック

42…切換ラック

43…(送りラックの)カム溝

51…ラック駆動歯車列

55…トレイ

55g…トレイラック歯

56…トレイ駆動ギヤ

61…ローディング駆動歯車列

30 64…第3ローディングギヤ

71…トリガレバー

73…ロックレバー

75 s…(位置決めロッドの)規制ロッド部

S r …ディスクの信号記録範囲の内周端部位置

【図6】

【図25】

【図41】

【図42】

フロントページの続き

(72)発明者 脇川 政直

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 石岡 清

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Fターム(参考) 5D046 CB16 EA15 EB01 FA01 FA03 FA13 HA01