

La disagliante of CX egcx (che rate in an intrus dix)

Passa al limite of CX eg CX x lim of CX e lim gcx) Ese losse fcx egex)! $A = (o, +\infty)$ $g(x) = \frac{1}{x}$, $g(x) = -\frac{1}{x}$ Junegus Vxso $\lim_{x \to +\infty} \int_{CX} Cx = 0$ $\lim_{x \to +\infty} \int_{CX} Cx = 0$

Le disaglianze shelte tra funzioni possono direntare deboli	
nel limite, aise	
fcxegcx) > lin fcx) < lin gcx).	
Teorema de avaninieri:	
ACIR, $x_0 \in Acc(A)$, $f,g,h:A \rightarrow \mathbb{R}$.	
Se esistano lim gcx=lim hcx)=le	
Se $\exists Ve Jcx_0 + .c. \times e V \cap A \cdot \{x_0\} \rightarrow f(x) \leq g(x) \leq hcx$	

