Updates on calorimetric trigger timing

Nico De Simone for the L0Calo working group

$\pi^{+}\pi^{0}$ LKr Efficiency

- $| \Delta t | < \pm 20 \text{ ns} \rightarrow \text{Eff} = 99 \%$
- $| \Delta t | < \pm 10 \text{ ns} \rightarrow \text{Eff} = 88 \%$

- $| \Delta t | < \pm 20 \text{ ns} \rightarrow \text{Eff} = 99 \%$
- $| \Delta t | < \pm 10 \text{ ns} \rightarrow \text{Eff} = 88 \%$

Finetime Finder Logic

Finetime Finder Logic

Finetime Finder Logic

- Saturation at $2^8 \times 56 \text{ MeV} = 14 \text{ GeV}$
- Not an issue in 2015 (8b encoding from CREAMs)
- Became an issue in 2016 (12b encoding from CREAMs)
- It only affects the finetime of the peak (timestamp, energy are ok)

Thanks

$\pi^+\pi^0$ Selection

- Minimum Bias (chod) + mask0 (RICHxNewCHODx!MUV3)
- QualityMask=0 (to exclude events in which LOTP sent corrupted data)
- Good Tracks:
 - χ^2 < 20;
 - 4 chambers hit:
 - GTK not used;
 - cda with nominal kaon direction 40 mm;
 - Cedar > 4 sectors hit;
 - Cedar Track time < 2 ns;
 - Vertex 130 m < Z < 175 m:
 - CHANTI as veto.
- Pion selection:
 - P track < 70 GeV;
 - [missing mass (K+ π +)]²= π ⁰mass² ± 0.01;
 - No MUV3 candidates in time;
 - No LAV candidates in time;

All the efficiencies are taken into account, no requirements on LKr in the selection of the $\pi^+\pi^0$ sample