Algorithms and Data Structures 2010 May Exam

Nathan Sharp | s1869292 | B130263

15-12-2020

Question 1

(a). State the definitions of a 'spanning subgraph', 'weight' of a subgraph and 'minimum spanning tree'.

spanning subgraph of a graph, $\mathcal{G} = VE$, is a subset of \mathcal{G} containing all vertices, V and a subset of the edges E.

weight of a subgraph the weight of a subgraph is the summation of the individual weight of all its edges.

minimum spanning tree of a graph \mathcal{G} is a connected spanning subgraph \mathcal{T} of \mathcal{G} of minimum weight.

(b). State prim' algorithm in pseudocode. For an input graph with n vertices and m edges what is its running time?

Algorithm $Prim(\mathcal{G}: (VE), w: Weight Matrix) \to \mathcal{T}: MST$

- 1. $\mathcal{T} \leftarrow \text{arbitrary } v \in G \quad \# v \text{ is an vertex in } V$
- 2. while fringe edge exists in \mathcal{T} :
- 3. add fringe edge of minimum weight to \mathcal{T}
- 4. return \mathcal{T}

where a **fringe edge** is an edge of the subtree \mathcal{T} with exactly one endpoint in \mathcal{T} .

Runtime is dependent on how the data structure is implemented, specifically, the *priority queue* used to find the minimum weight fringe edge in \mathcal{T} with runtimes as follows,

Data Structure	Runtime
Array Heap Fibonacci Heap	$T(n,m) = \Theta(n^2)$ $T(n,m) = \Theta((n+m)\log(n))$ $T(n,m) = \Theta(n\log(n) + m)$

- (c). Illustrate how Prim's algorithm processes the following input by indicating for each step of the main loop what edges Prim's algorithm has selected.
 - 1. {AB}
 - 2. {AB, BC}
 - 3. {AB, BC, CD}
 - 4. {AB, BC, CD, DE}
 - 5. {AB, BC, CD, DE, DH}
 - 6. {AB, BC, CD, DE, DH, EI}
 - 7. {AB, BC, CD, DE, DH, EI, IF}
 - 8. {AB, BC, CD, DE, DH, EI, IF, IG}
 - 9. {AB, BC, CD, DE, DH, EI, IF, IG}
- (d). Assume that $\mathcal{G} = VE, w$) is a connected edge-weighted graph and that $T \subset V$ is a non-empty set of vertices. A 'Steiner tree' for T is a connected (but not necessarily spanning) subgraph $H = (V_H, E_H)$ of G that is a tree and whose vertex set V_H contains T as a subset. Its weight is

$$w(H) = \sum_{e \in E_H} w(e)$$

In the example graph from (c), find a steiner tree of minimum weight for $T = \{C, E, F, G\}$.

Solution,

(e). Suppose that an edge weighted connected graph G = (V, E, w) with n vertices

and m edges and a set $T \subset V$ are given. Devise an algorithm that computer an optimal Steiner tree in time $(2 + o(1))^n$. Also provide an informl argument as to why your algorithm produces the correct output and why it has the desired running time.

```
def steiner(G,w,T) -> H:
    H = T[0] # any edge in T will do
    # initialise a priority queue of edges in T
# sorted by path distance to H
    Q = priorityQueue(T, dist_to_H)
    while not Q.isEmpty():
        t = Q.pop()
        H += min_path(t, H)

return H
```

The algorithm produces the correct output