Coding Assignment 1 Write-up

Andrew Sivaprakasam

03/20/2021

Question 2 One-Way Sensitivity Analysis Tornado Plots

Observations of how sensitive the model output is to the specified parameters.

Question 3a Full-Factorial Histograms

0.91 0.92

0.93 0.94 0.95

0.95 0.96 0.97 0.98 0.99

0.93 0.94 0.95

Question 3a Full-Factorial Fitted Distributions

Question 3b Full-Factorial Percent ¿ 300 (from Code)

The percent of trials where the difference $|LB_{cost} - MRE_{cost}| > 300$ was <u>61.7188</u>%

```
See q3.m 252-253:
diff = abs(Fib4MRE_cost_out-Fib4LB_cost_out);
percent_greater = sum(diff>300)*100/L;
```

Question 3c Full-Factorial Sensitivity Analysis on MRE

The effect of varying MRE specificity and sensitivity params (speM & senM) on the cost difference between MRE and LB can be visualized as follows:

79% of the simulated outputs for cost difference were greater than 300.

Question 3d Full-Factorial Sensitivity Analysis on LB

The effect of varying LB specificity and sensitivity params (speM & senM) on the cost difference between MRE and LB can be visualized as follows:

49% of the simulated outputs for cost difference were greater than 300.

Sample-Based Sensitivity Analysis

Here is a verification that my sampling was done correctly. I created a brute-force method for orthogonal sampling, orth_samples.m.

Question 3e | Sample-Based Sensitivity Analysis for MRE

Here are the 3D plots, regression equations and Pearson's correlation coefficients for the MRE sample-based Sensitivity Analysis.

Question 3f | Sample-Based Sensitivity Analysis for LB

Here are the 3D plots, regression equations and Pearson's correlation coefficients for the LB sample-based Sensitivity Analysis.

