

Hypergraphs beyond directedness: heterogeneity and spectral centralities

Gonzalo Contreras Aso, Miguel Romance and Regino Criado

Department of Applied Mathematics, Universidad Rey Juan Carlos, Madrid, Spain

Three colliding views on (hyper)edge directionality

Hypergraphs have been on the rise for the last decade. However, little to no attention has been paid to non-undirected interactions.

In graphs, the translation between sets, matrix components and topological structures is clear. In hypergraphs, until recently [1] the only description of non-undirected interactions was set-theoretic [2].

Figure 1. Topological, algebraic and set-theoretic perspective of a directed edge (left) and hyperedge (right).

Set theory point of view (old)

Directed hyperedges [2] are tuples $E_k = (T(E_k), H(E_k))$ where $T(E_k)$ is the tail set ("input" nodes) and $H(E_k)$ is the head set ("output" nodes) of the interaction.

Figure 2. Example of directed hyperedges.

This perspective is rather limiting: it can't even describe something as simple as E_4 in Figure 2.

Application to spectral centralities

Benson defined the eigenvector centrality of undirected hypergraphs [3], based on the spectral theory of hypermatrices and satisfying existence theorems. The \mathcal{H} -eigenvector centrality is defined as

$$\lambda c_{i_1}^{k-1} = \sum_{i_2,\dots,i_k=1}^{N} T_{i_1 i_2 \dots i_k}^{(k)} c_{i_2} \dots c_{i_k}, \quad c_i > 0 \ \forall i.$$
 (4)

In [1], we extended this centrality measure to three types of heterogeneous hypergraphs cyclical, directed and k-step, after suitably defining the transposition of a hypermatrix.

Algebraic point of view (new)

Hyperedges correspond to components of the adjacency hypermatrices $A_{ij}, T_{ijk}^{(3)}, T_{ijkl}^{(4)}, \dots$

A hypergraph specified from its adjacency hypermatrices is "heterogeneous" [1]. Underlying symmetries accommodate other types:

- Undirected: for any permutation σ

$$T_{i_1...i_k}^{(k)} = T_{\sigma(i_1...i_k)}^{(k)}.$$
 (1)

- Cyclical: for any odd or even permutation σ

$$T_{i_1...i_k}^{(k)} = T_{\sigma(i_1...i_k)}^{(k)}.$$
 (2)

- **Directed:** for any permutations $\sigma^{\mathrm{in}}, \sigma^{\mathrm{out}}$

$$T_{i_1...i_s i_{s+1}...i_k}^{(k)} = T_{\sigma^{\text{in}}(i_1...i_s)\sigma^{\text{out}}(i_{s+1}...i_k)}^{(k)}$$
 (3)

etc.

Example: chemical interactions

We constructed several hypergraphs. Among them, directed ones of astrochemical reactions, using data from [4], and computed their spectral centralities.

Figure 3. Spearman' ρ correlation between eigenvector centrality (EC) and \mathcal{H} -eigenvector centrality (HEC).

References

[1] G. Contreras-Aso et al. "Beyond directed hypergraphs: heterogeneous hypergraphs and spectral centralities" *Journal of Complex Networks, Volume 12, Issue 4, 2024.*

Funding

^[2] G. Gallo et al. "Directed hypergraphs and applications" Discrete Applied Mathematics, Volume 42, 1993.

^[3] A. R. Benson. "Three Hypergraph Eigenvector Centralities", SIAM Journal on Mathematics of Data Science, Volume 1, Issue 2, 2019.

^[4] P. P. Plehiers et al. "Automated reaction database and reaction network analysis: extraction of reaction templates using cheminformatics". *Journal of Cheminformatics* 10.1, 2018.