Anexo Clase 4

CBC-MAC

CBC-MAC (Gen, Mac, Vrfy)

•Gen: $K \leftarrow \{0,1\}^n$

•Mac:

 $\circ |K| = n$

o | m | = I(n).n

El mensaje m se parte en I bloques de longitud n

t_o=On

 $t_i = F_k(t_{i-1_{\bigoplus}}m_i) \Rightarrow emite t_i$

La construcción anterior es infalsificable SÓLO si se permiten mensajes de una misma longitud.

Ejemplo de falsificación si se permiten mensajes de distintas longitudes:

Experimento $MAC - Forge_{A,\pi}(n)$

- 1) k←Gen(n)
- 2) El adversario A que tiene acceso al oráculo, solicita el $Mac_k(m_1)$ donde m_1 =A

(A tiene el tamaño de un bloque)

$$Q = \{ < A, F_k(A) > \}$$

El adversario A puede obtener un par <m₂,t₂> válido haciendo

$$m_2 = A \mid t_1 x \text{ or } A$$

El || es concatenacion

 $t_2 = t_1$

Otra forma de hacerlo:

Experimento $MAC - Forge_{A,\pi}(n)$

- 1) k←Gen(n)
- 2) El adversario A que tiene acceso al oráculo, solicita el Mac_k(m₁) donde m₁=A y Mac_k(m₂) donde m₂=A | | B (A y B tienen el tamaño un bloque)

$$Q = \{ \langle A, F_k(A) \rangle, \langle A | B, F_k(B \times F_k(A)) \rangle, \}$$

El adversario A puede obtener un par <m₃,t₃> válido haciendo

$$m_3 = A | |B| | (A xor t_1)$$

 $t_3 = t_2$

Opciones seguras para CBC-MAC para mensajes de longitud arbitraria:

Opción 1:
$$k_l = F_k(|m|)$$
 y $t \leftarrow CBC - MAC_{kl}(m)$

Opción 2:
$$m' \coloneqq |m| \parallel m \text{ y } t \leftarrow CBC - MAC_k(m')$$

Opción 3:

$$k_1 \leftarrow \{0, 1\}^n$$
 $k_2 \leftarrow \{0, 1\}^n$
 $t \leftarrow CBC - MAC_{k1}(m)$
 $\hat{t} \leftarrow F_{k2}(t)$

ipor qué no es seguro poner la longítud del mensaje al final?

Experimento $MAC - Forge_{A,\pi}(n)$

El adversario A que tiene acceso al oráculo, que siempre efectúa:

 $Mac_k(m)=CBC-MACk(m')$ donde m'=m || |m|

Efectúa consultas para:

 m_1 =AAA

 $m_2 = BBB$

Y obtiene una etiqueta válida para m_4 = BBB3XC

Donde $X = T_1 \times T_2 \times T_2$

La etiqueta válida será $T_4 = T_3$