MPP-E1180 Lecture 1: Introduction to the Course

Christopher Gandrud

11 September 2014

Christopher Gandrud

Contact:

- Public
 - Hertie_Collab_Data_Science/issues
 - @ChrisGandrud
- Private
 - gandrud@hertie-school.org

Official Office Hours:

- ▶ Room: 1.52
- Wednesday 15:00-17:00

Objectives for the week

- ▶ Introduce the course goals, plan, and expectations/assessment
- ▶ Introduce Collaborative & Reproducible Data Analysis
- ▶ Set up computational research environment

Objectives for the course

Collaboratively and reproducibly

- ► Gather/clean social data
- Analyse it
- Present results (in a variety of mediums)

Learn how to actually do data analysis using best practices

Motivation: Academic

- Skills needed to do original quantitative research for your thesis.
 - ▶ The final project will be a **trial version** of your thesis.
- State-of-the-art tools needed for future high-level academic research.
 - ► Take advantage of new data sources.
 - Avoid effort duplication.
 - Make your research reproducible.
 - Present your results in multiple forums.

Motivation: Government

► Government agencies are increasingly adopting the technologies and methods of open data science.

Motivation: Government

- Public data is being made increasingly accessible.
 - e.g. World Bank Development Indicators, GovData Germany, data.gov.uk, New York City, data.gov
- Governments rely on data analysis for evidence based decision-making.
 - ► Tools of open data analysis enable better use of data within and between government actors.
 - Governments can take advantage of analyses done by third parties.

Motivation: Government

- They are also sharing and collaboratively developing code; reducing development costs and improving applications.
- Version control to increase engagement with the legislative process.
 - San Francisco laws are now forkable.

Motivation: Business

▶ Data analysis and R programming skills in particular are **highly** valued in businesses such as finance and management.

AVERAGE SALARY FOR High Paying Skills and Experience		
SKILL	2013	YR/YR CHANGE
R	\$ 115,531	n/a
NoSQL	\$ 114,796	1.6%
MapReduce	\$ 114,396	n/a
PMBok	\$ 112,382	1.3%
Cassandra	\$ 112,382	n/a
Omnigraffle	\$ 111,039	0.3%
Pig	\$ 109,561	n/a
SOA (Service Oriented Architecture)	\$ 108,997	-0.5%
Hadoop	\$ 108,669	-5.6%
Mongo DB	\$ 107,825	-0.4%

Why Collaborative?

- ▶ Research is collaborative (even if you don't know it).
- Need tools and shared best practices to enable effective collaboration between explicit research partners.
- Need tools and shared best practices to enable collaboration between researchers who are **not explicitly** working together often in **unexpected ways**.
 - ► Avoids effort duplication
 - Enables cumulative knowledge development
- Tools for collaboration tend to enhance reproducibility.

What is reproducibility?

Really reproducible research (Peng 2011, 1226):

the data and code used to make a finding are available and they are sufficient for an independent researcher to recreate the finding.

- In practice reproduciblity is enhanced by literate programming where the data, analysis, and presentation of the results are 'weaved' or 'knitted' together.
 - Make available the research, not just the advertising for the findings (e.g. papers, book).

Reproducibility vs. Replication?

Reproducibility: an independent study makes the same findings using the **same data** and **code** as the original researchers.

Replicability: an independent study makes the same conclusions as the original using **other data, code, and even methods**, i.e. independent verification.

Reproducibility vs. Replication?

"A study can be reproducible and still be wrong" Peng 2014.

E.g. a finding that is statistically significant in one study may remain statistically significant when reproduced using the original data/code, but **replication studies are unable to find a similar result**.

The original finding could just have been noise.

- ▶ **Replication** is the "**ultimate standard**" for judging scientific claims (Peng 2011).
- Reproducibility
 - Enhances replication (other researchers can understand how an analysis was actually done)
 - Is a minimum standard for judging scientific claims when replication is not possible.

- Reproducibility helps avoid effort duplication:
- Others don't need to waste time:
 - Gathering data that has already been gathered.
 - Discovering procedures that have already been discovered.
- This enables effort duplication.

- Reproducibility also makes it possible to find and correct errors.
 - ▶ Recent example: translation errors in the World Values Survey.
- Data errors can cause spurious findings that ultimately waste researchers time, because they try to explain 'wrong' findings.

► Higher research impact

Reproducible research is likely to be more useful for other researchers. They can use your data and learn from your code and methods.

Better work habits

- If you are thinking about reproducibility from the beginning your files will be better organised and your work will be better documented.
- ► This allows you to **build on your own work** more effectively.

Reproducible Workflow

Practical Tips for Reproducible Research

- Document Everything!
- Everything is a (text) file.
- All files should be human readable.
- Explicitly tie your files together.
- ▶ Have a plan to organise, store, and make your files available.

Course Prerequisites

Introductory-level statistics

- Basic descriptive statistics (e.g. data types, ways of describing distributions)
- Basic inferential statistics: (significance testing, linear regression)
- Exposure to statistics software (e.g. SPSS, STATA)
- Knowledge of particular software or computer programming is not expected
- Patience
 - Work hard so you can be lazy.

Course Outline (1)

Part I: Motivation and Getting Started

- Introduction to the Course
- ► Files, Files Structures, Version Control, and Collaboration
- Introduction to the R Programming Language

Part II Markup Languages and Literate Programming

- ► Introduction to Markup Languages and Literate Programming (1)
- ► Introduction to Markup Languages and Literate Programming (2)

Course Outline (2)

Part III: Data Gathering, Trasformations, and Analysis

- ► Automatic Data Gathering via Curl, API Packages + Cleaning
- Automatic Data Gathering via Web Scraping
- Statistical Modelling with R

Part IV: Communicating Results from Statistical Analyses

- Automatic Table Generation and Static Visualisation
- Dynamic Visualisation

Part V: Collaborative Research Project

Typical Class Plan

- ~ 1 hour lecture
- ~ 1 hour seminar
 - ▶ **Apply** what we learned in the lecture/readings to achieve specific goals, i.e. **no set pattern** to copy by rote.
 - ▶ Pair programming: work together with others to acheive these goals.
 - ▶ **Documentation**: document your work with Git/GitHub.
 - Your seminar work should be reproducible.
 - It should be useful to your future self and others.

Assessment

- ▶ 3 Pair Assignments (Weeks 3, 6, 9)
 - ▶ 10% each
- ▶ Collaborative Research Project (Presentation: Week 12, Website/Paper: Exam Week)
 - **>** 50%
- ► Attendance & Active Participation
 - ▶ 20%
- No traditional midterm or final exam

Assessment Details (1)

- ► All assignments must be developed and submitted electronically on GitHub.
- ▶ Late assignments: -10% every day that the assignment is late.
- All assignments must be completed in pairs.
 - ▶ Each pair member receives the same score
 - Exception: very large discrepancy in contributor statistics

Assessment Details (2)

- ► All assignments must be **reproducible**.
- ▶ **Due**: Midnight on Friday of the week it is due.
- More details will be given on the specific pair assignments/research project in future classes.

Assessment (attendance, participation)

- ▶ Usual Hertie Rules for attendance (examination rules §4)
- Participation:
 - Traditional Participation, e.g. engaging in class discussions, doing readings
 - Non-Traditional Participation: pair programming in seminars, document your seminar work on GitHub, pull request to the course repository (syllabus/lecture slides) and other groups' projects

Syllabus

https://github.com/christophergandrud/Hertie_Collab_ Data_Science

- ► The syllabus will be updated. Check regularly.
 - Course difficulty is monotonically decreasing from the original (11 September) baseline.

Lecture Slides

https://github.com/christophergandrud/Hertie_Collab_ Data_Science/tree/master/LectureSlides

- Accessible as both HTML (recommended) or PDF.
- Slides will be optimized for the web.

Reading

Core Texts

- Gandrud, Christopher. 2013. Reproducible Research with R and RStudio. Chapman & Hall/CRC Press, Oxford. (RRRR)
- ► Crawley, Michael J. 2005. *Statistics: An Introduction Using R.* John Wiley and Sons Ltd., Chichester.

Both are available in the library.

Other readings generally available online (see syllabus) or I will make a copy available.

Seminar to-do

- ▶ **Objective**: setup software (all software is free)
- ► Highly recommend: use your own laptop

Modern Web browser

- ▶ Make sure you have a modern web browser, e.g.:
 - Chrome

GitHub

Setup Git/GitHub for version control, collaboration, and remotely storing your files.

- Set up (free) GitHub account: https://github.com/join
- ► Give me your GitHub username so that I can add you to the HertieDataScience2014 group (https://github.com/HertieDataScience2014).
- Install GitHub application:
 - Mac: https://mac.github.com/
 - ▶ Windows: https://windows.github.com/

Statistics software

- Install software:
 - R: http://cran.rstudio.com/
 - RStudio (dev build): http://www.rstudio.org/download/daily/desktop/
- Make sure that you can install R packages:

```
# Install the ggplot2 package
install.packages('ggplot2')

# Check to see if it loads properly
library(ggolot2)

ggplot(mtcars, aes(hp, mpg)) + geom_point()
```

LaTeX

- Install a LaTeX distribution. Creates well formatted PDF versions of your presentation documents.
 - Mac: https://tug.org/mactex/
 - Windows: http://miktex.org/download
- ▶ This is a large download, so maybe do it in your spare time.

Pandoc

Install Pandoc. We won't use this directly, but it is needed for creating presentation documents in multiple formats.

▶ http://johnmacfarlane.net/pandoc/installing.html

Post-Installation

Play around with the software (especially RStudio)