CMPE 185 Autonomous Mobile Robots

Coordinate Transformation

Dr. Wencen Wu

Computer Engineering Department

Wheeled Robot

- Wheeled locomotion
 - Highly efficient on hard surfaces
 - Generally restricted to man-made surfaces

Cartesian Coordinates

- Describes unique position of points in a plane with respect to the axis
- For each dimension there is 1 axis
- Coordinates are measured in "units" in the direction parallel to the axis
- The origin is fixed to the plane

Position

- Key Question: how can we describe the position and the orientation of a robot in 2D plane?
 - All positions must be described in a coordinate system
 - One can use Cartesian coordinates to describe a robot's position

- Any position can be described as a vector
- x is the projection of vector q onto the horizontal axis and y is the projection of q onto the vertical axis

Polar Coordinates

 In polar coordinates, we specify points on a 2D plane using the length of a radius arm and an angle

Cylindrical Coordinates

 For specifying point locations in 3D, cylindrical coordinates can be used by specifying the length of a radius arm, an angle, and a height

Polar to Cartesian

 How do we convert from polar coordinates to Cartesian coordinates?

$$x = r \cos\theta$$
$$y = r \sin\theta$$

Coordinate Frames

- Right-handed by convention
- Inertial/Global frame
 - Fixed, usually relative to earth
- Body/Robot frame
 - Attached to vehicle, with the origin at the center of gravity, or center of rotation
- Sensor frame
 - Attached to sensors. Convenient for expressing sensor measurements

https://www.mathworks.com/help/driving/ug/coordinate-systems.html

Global (Inertial) Coordinate Frame

Global (Inertial) Coordinate Frame

- Anchor a coordinate frame to the environment
- The angle θ describes the orientation of the robot

Global (Inertial) Coordinate Frame

 With this frame, we describe the robot state as

$$\xi_I = [x, y, \theta]$$

Define the position vector as

$$'\mathbf{q} = [x, y]$$

Anchor a coordinate frame to the robot

Global (Inertial) Frame & Local (Body) Frame

• Putting the global frame and local frame together...

Global (Inertial) v.s. Local Coordinate Frame

• The angle θ describes the orientation of a mobile robot

$$\cos\theta = x_R \cdot x_I$$

- It is often necessary to assign a sign to θ
- Convention:
 - We restrict the value of θ to be $-\pi < \theta < \pi$
 - If $\theta > 0$, then $X_{\mathbb{R}}$ is in the counterclockwise direction of X_{I}
 - If θ < 0, then X_{μ} is in the clockwise direction of X_{I}

• With is coordinate frame, we describe the robot state as (position + orientation):

$$\xi_R = [x, y, \theta]_R = [0, 0, 0]$$

- The local frame is useful when considering taking measurements of environment objects
- Example: consider the detection of a wall using a range finder

- The measurement is taken relative to the robot's local coordinate frame (ρ_{object} , α_{object})
- We can calculate the position of the measurement in local coordinate frames:

$$x_{object, R} = \rho_{object} \cos(\alpha_{object})$$

 $y_{object, R} = \rho_{object} \sin(\alpha_{object})$
 $p_{object, R} = \rho_{object} \sin(\alpha_{object})$

Local to Global Coordinate Frame Transformation

 With the measurement taken in the local coordinate frame, how to convert it to the position in inertial frame?

Rotation Matrix

 The transformation between the two frames can be described by the rotation matrix R

$$R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \quad R^{-1} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

$$'p = R^{R}p + 'q$$

$$^{R}p = R^{-1}('p - 'q)$$

Coordinate Change – Example

- Suppose a range sensor mounted on a robot detects an obstacle at position $[1,3]^T$. Suppose the robot is at position $[2,0]^T$ in the inertial frame with orientation $\pi/3$. Find the position of the obstacle in the inertial frame.
- Step 1: find the rotation matrix

$$R = \begin{bmatrix} \cos\frac{\pi}{3} & -\sin\frac{\pi}{3} \\ \frac{\pi}{\sin\frac{\pi}{3}} & \cos\frac{\pi}{3} \end{bmatrix}$$

• Step 2: find the position

$$q = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, Rp = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

 The local frame is also useful when considering velocity states:

$$\frac{d\xi_R}{dt} = \left[\frac{dx}{dt}, \frac{dy}{dt}, \frac{d\theta}{dt}\right]_R = \left[\dot{x}, \dot{y}, \dot{\theta}\right]_R = \dot{\xi}_R$$

 Often we know the velocities of the robot in the local coordinate frame:

$$\dot{x}_R = v$$
 robot's linear speed $\dot{y}_R = 0$ robot's angular speed

Transformations

- We are also interested in the robot's velocities with respect to the global frame
- To calculate these, we need to consider the transformation *R* between the two frames:

$$\dot{\xi}_R = R(\theta) \, \dot{\xi}_I$$

$$\dot{\xi}_I = R^{-1}(\theta) \, \dot{\xi}_R$$

 Note that R is a function of theta, the relative angle between the two frames

Recall: Global (Inertial) v.s. Local Coordinate Frame

 With inertial frame, we describe the robot state as

$$\xi_I = [x, y, \theta]$$

• With local frame, we describe the robot state as

$$\xi_R = [x, y, \theta]_R = [0, 0, 0]$$

- Let's obtain the velocities in global coordinate frame
- Start with the X, direction

$$\dot{x}_I = \dot{x}_R \cos\theta = v \cdot \cos\theta$$

• Now the *Y_i* direction

$$\dot{y}_I = \dot{x}_R \sin\theta = v \cdot \sin\theta$$

What about rotational speed?

$$\dot{\theta}_I = \dot{\theta}_R = \mathbf{w}$$

• In summary, we have

$$\dot{x}_{I} = v \cdot \cos \theta$$

$$\dot{y}_{I} = v \cdot \sin \theta$$

$$\dot{\theta}_{I} = \dot{\theta}_{R} = \omega$$

• This is the unicycle model

Transformations

Let's put our equations in matrix form:

$$\begin{pmatrix} \dot{x}_I \\ \dot{y}_I \\ \dot{\theta}_I \end{pmatrix} = \begin{pmatrix} \cos(\theta) & 0 & 0 \\ \sin(\theta) & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \dot{x}_R \\ \dot{y}_R \\ \dot{\theta}_R \end{pmatrix} \begin{vmatrix} \dot{x}_I & \dot{x}_I & \dot{x}_I \\ \dot{y}_I & \dot{y}_I & \dot{y}_I \\ \dot{\theta}_I & \dot{\theta}_I & \dot{\theta}_I \end{vmatrix}$$

$$\frac{\dot{\chi}_I}{\dot{\xi}_I} = \dot{\chi}_R \cos \theta$$

$$\dot{\eta}_I = \dot{\eta}_R \sin \theta$$

$$\dot{\theta}_I = \dot{\theta}_R$$

Or we can rewrite:

$$\dot{\xi}_I = \begin{pmatrix} \cos(\theta) & 0 \\ \sin(\theta) & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix}$$

• Thank You!