

Trung Hieu Tran, Thu Ba T. Nguyen, Hoa Sen T. Le, Duc Chinh Phung

DSSC master's student Pietro Morichetti

Chapters

01

Problem Intro

Agricultural waste mismanagement 02

Modelling

Location-Assignment-Routing-Problem

11/

03

Case studies & Scalability analysis

LARP optimal solution

Water Flow Algorithm

A meta-heuristic improvement

01 Problem Introduction

Agricultural waste management

the street of th

- In developing countries, agricultural sectors have rapidly developed nto become major contributions in the economy.
- Agricultural waste management has posed a challange for rural planner due to lack of efficient planning tool.
- Burning the agricultural waste at fields after each harvesting season is the present solution, this caused air and water pollution in rural areas.

11/

Agricultural waste around the world for developing countries

source: International Journal of Environmental Research and Public Health

45,22 million tons

Rice straw

10 millions tons

Vegetable by-products

6,33 millions tons

Maize by-products

MA

source: Ministry of Agriculture and Rural Development of Vietnam

An efficient way to recover agricultural waste

Modelling

Location-Assignment-Routing-Problem

Logistic problem

Which and how many places should be chosen where storages should be built to ensure coverage over all cultivation fields?

Location Assignment Problem

Which roads should trucks take to visit all the storages and bring agricultural waste to the fertiliser factory?

Routing Problem

Model Formulation

111

Sets and indexes

- I Set of agricultural waste fields (indexed by) i
- J Set of storages (indexed by) j
- J_0 Set of storages and the facility, i.e., $J_0 = J \cup 0$ indexed by u, v

Paramenters

117

n Number of agricultural waste fields

m Number of storages

 f_j Fixed cost to open a storage j

 $c_{i,j}c_{u,v}$ Distance between nodes i, j or u, v

- d_i Ammount of agricultural waste to be collected at field i
- q_j Capacity of storage j
- k Number of vehicles
- Q Capacity of vehicle

Decision variables

$$X_j = \begin{cases} 1 & \text{if storage is located at site j} \\ 0 & \text{otherwise} \end{cases}$$
 $Y_{ij} = \begin{cases} 1 & \text{if field i is served by storage j} \\ 0 & \text{otherwise} \end{cases}$
 $Z_{uv} = \begin{cases} 1 & \text{if a vehicle travels from node u to node v} \\ 0 & \text{otherwise} \end{cases}$
 T_u, T_v Auxiliary variables

Model Formulation

M

$$\min \sum_{j \in J} f_j \cdot X_j + \sum_{i \in I} \sum_{j \in J} c_{ij} \cdot d_i \cdot Y_{ij} + \sum_{u \in J_0} \sum_{v \in J_0: u! = v} c_{uv} \cdot Z_{uv}$$

$$(C1) \sum_{i \in I} Y_{ij} = 1 \quad \text{for each} \quad i \in I$$

$$(C1)\sum_{j\in J}Y_{ij}=1$$
 for each $i\in I$

$$(C2)\sum_{i\in I} d_i \cdot Y_{ij} \le q_j \cdot X_j$$
 for each $j\in J$

$$(C3) \sum_{u \in J} Z_{u0} = k$$
$$(C4) \sum_{v \in J} Z_{0v} = k$$

Legenda

- Capacitated facility location cstrs.
- TSP adjusted for CVRP cstrs.
- Assignment cstrs.

$$\frac{1}{j \in J} (C2) \sum_{i \in I} d_i \cdot Y_{ij} \le q_j \cdot X_j \quad \text{for each} \quad j \in J \quad (C5) \sum_{u \in J_0: u! = v} X_u \cdot Z_{uv} = X_v \quad \text{for each} \quad v \in J$$

$$(C6) \sum_{v \in J_0: v! = u} X_v \cdot Z_{uv} = X_u \quad \text{for each} \quad u \in J$$

$$(C7)T_u - T_v + Q \cdot Z_{uv} \le Q - \frac{1}{k} \cdot \sum_{i \in I} d_i \cdot Y_{iv}$$
 for each $u, v \in J : u! = v$

$$(C8)\frac{1}{k} \cdot \sum_{i \in I} d_i \cdot Y_{iv} \le T_u \le Q \quad \text{for each} \quad u \in J$$

$$(C9)X_i \in 0, 1$$
 for each $u, vin J0: u \neq v$

$$(C10)Y_{ij} \geq 0$$
 for each $i \in I$, for each $j \in J$

$$(C11)Z_{uv} \ge 0$$
 for each $u \in J$

$$T_u \ge 0$$
 for each $u \in J$

Model Formulation

M

117

Product of decision variables

$$(C5) \sum_{u \in J_0: u! = v} \overline{X_u \cdot Z_{uv}} = X_v \quad \text{for each} \quad v \in J$$

$$(C6) \sum_{v \in J_0: v! = u} X_v \cdot Z_{uv} = X_u \quad \text{for each} \quad u \in J$$

Non-linear constrains

117

Linearization of non-linear constrains

$$W_{uv} = X_u \cdot Z_{uv}$$
 for each $u, v \in J_0 : u \neq v$

$$W'_{uv} = X_v \cdot Z_{uv}$$
 for each $u, v \in J_0 : u \neq v$

$$(C12) \sum_{v \in J_0: u! = v} W_{uv} = X_u \quad \text{for each} \quad u \in J$$

$$(C13)W_{uv} \leq X_u$$
 for each $u, v \in J_0 : u! = v$

$$(C14)W_{uv} \le Z_{uv}$$
 for each $u, v \in J_0 : u! = v$

$$(C15)W_{uv} \ge X_u + Z_{uv} - 1$$
 for each $u, v \in J_0 : u! = v$

$$(C16) \sum_{v \in J_0: u! = v} W'_{uv} = X_v \quad \text{for each} \quad u \in J$$

$$(C17)W'_{uv} \leq X_v$$
 for each $u, v \in J_0 : u! = v$
 $(C18)W'_{uv} \leq Z_{uv}$ for each $u, v \in J_0 : u! = v$

$$(C18)W'_{uv} \le Z_{uv}$$
 for each $u, v \in J_0 : u! = v$

$$(C15)W_{uv} \ge X_u + Z_{uv} - 1$$
 for each $u, v \in J_0 : u! = v$ $(C19)W'_{uv} \ge X_v + Z_{uv} - 1$ for each $u, v \in J_0 : u! = v$

Three scenarios for a proof-of-concept

X3

111

Main facilities where bio-fertilizer is produced from the agricultural wastes (only one per scenario)

117

X6

Storages with a certain capacity and fix opening cost

X7

Cluster of agricultural fields with a certain amount of agricultural waste

X3

Truks with a certain capacity and capable to move agricultural wastes from storages to the main facility

Graphical representations

di

 All the scenarios share the same assignments among storages and agricultural fields

11/

 Storages «S3» and «S6» are not considered in the result, it means that opening a storage to these locations is not suggested

Location cost = 400 Assignment cost = 80,2

Graphical representations

Mi

scenario 1

111

Transportation cost = 57,0 Total cost = 537,2

scenario 2

Transportation cost = 119,2 Total cost = 599,4

R1 composed by: F1, S1, S4, F1 R2 composed by: F1, S2, F1

R3 composed by: F1, S5, F1

R1 composed by: F2, S1, S2, F2

R2 composed by: F2, S4, F2

R3 composed by: F2, S5, F2

scenario 3

117

Transportation cost = 55,0

Total cost = 535,2

R1 composed by: F3, S1, F3 R2 composed by: F3, S4, S2, F3 R3 composed by: F3, S5, F3

Scalability analysis (1)

Parameters used for the experiment:

Facility = 'F'

Num iterations = 10

Num fields = [100]

Num storages = [10, 20, 530, 40]

Num vehicles = [3, 6, 9, 12]

Vehicle capacity = 2000 (tons)

Proposed model formulation is clearly not able to provide an optimal solution for different sizes of the problem, in «acceptable» timeframe.

Scalability plot confirms the **NP-hard** nature of the problem.

Scalability analysis (2)

Fields, Storages, Vehicles

04 Water Flow

A meta-heuristic improvement

Algorithm

References

- Formulation and solution technique for agricultural waste collection and transport network design, European Journal of Operational Research
- Waste Mismanagement in Developing Countries: A Review of Global Issues,
 International Journal of Environmental Research and Public Health
- <u>Statistics Report (2019)</u>, Ministry of Agriculture and Rural Development of Vietnam
- A Waterflow Algorithm for Optimization Problems (2011), Tran Trung Hieu

111

11/

11/

