

Prof. Dr. Stefan Michael Blawid Departamento de Engenharia de Computação Centro de Informática

Tel. (81) 2126-8430 r: 4328 <u>sblawid@cin.ufpe.br</u> <u>https://sites.google.com/a/cin.ufpe.br/if817/</u>

## **LE3: Fourier Transforms**

## Séries de Fourier (Aula 5-1)

- 1. Encontre a série de Fourier em  $-\pi \le x \le \pi$  para  $f(x) = |\sin(x)|$ , uma função par (série cosseno)
- 2. Suponha que G(x) tenha um período 2L em vez de  $2\pi$ . Então G(x + 2L) = G(x) e as funções básicas da série de Fourier precisam mudar de exp(ikx) para  $exp(ik\pi x/L)$ . Explique por que e deriva uma fórmula para os coeficientes de Fourier.
- 3. Se a condição de contorno da equação de Laplace for  $u_0 = 1$  para  $0 < \theta < \pi$  e  $u_0 = 0$  para  $-\pi < \theta < 0$ , encontre a solução da série de Fourier  $u(r, \theta)$  dentro do círculo unitário. O que é u na origem r = 0?
- 4. Uma onda quadrada centralizada tem F(x) = 1 para  $|x| \le \pi/2$ .
  - (a) Encontre sua energia  $\int |F(x)|^2 dx$  por integração direta (Integre de  $-\pi$  a  $\pi$ )
  - (b) Calcule seus coeficientes de Fourier ck como números específicos
  - (c) Calcule (a) integrando as séries de Fourier e somando sobre todos | c<sub>K</sub>|<sup>2</sup>
- 5. Encontre a série complexa de Fourier para  $F(x) = \exp(x)$  em  $-\pi \le x \le \pi$ . Essa função  $\exp(x)$  parece suave, mas deve haver um salto oculto para obter os coeficientes  $c_k$  proporcionais a 1/k. Onde está o salto?
- 6. Resolva Ay "+ By '+ Cy = f(x) para  $f(x) = \exp(ikx)$  and  $f(x) = \sum c_k \exp(ikx)$ .

## **Aula 5-3**

- 7. Resolva a equação do calor  $u_1 = c u_{xx}$  em uma barra infinita começando em  $u_0(x) = \delta(x)$ .
- 8. Resolva a equação de calor  $u_t = u_{xx}$  em uma barra finita  $x \in [-\pi, \pi]$  a partir de uma fonte pontual  $u_0(x) = \delta(x)$  com condições de contorno livre  $u'(\pi, t) = u'(-\pi, t) = 0$ .
- 9. A questão é sobre como resolver a equação de onda unidimensional  $\mathbf{u}_{tt} = \mathbf{c}^2 \, \mathbf{u}_{xx}$ : Sob um oceano plano com  $\mathbf{u}_0(\mathbf{x}) = 1$ , um terremoto produz  $\mathbf{v}_0(\mathbf{x}) = \delta(\mathbf{x})$ . Um tsunami unidimensional começa a se mover com velocidade c. Qual é a solução no tempo t?
- 10. A questão é sobre como resolver a equação de onda unidimensional  $u_{tt} = c^2 u_{xx}$ : Suponha que uma corda de guitarra comece com velocidade zero  $v_0(x)=0$  de uma função de chapéu:  $u_0(x)=2x/L$  para x<L/2 e  $u_0(x)=2(L-x)/L$  para x>L/2. Encontre os coeficientes de Fourier  $b_k$  e os dois primeiros termos diferentes de zero da série de Fourier para u(t, x).