### Course Details

**CSE 259: Computer Architecture and Organization** 

3.00 Credit, 3 Hours/Week

Micro-computer Organization and Its Basic Components: Carry look ahead adders, Carry save adder, Multipliers (e.g. Booth's algorithm), Divider, Fixed and Floating point (IEEE754) number representations, Finite State Machine (FSM) representation. Basic Accumulator based CPU: Organization, Instruction set, Programming considerations, RISC and CISC Processors-Instruction Sets, Addressing modes. Introduction to the Basic MIPS: Instruction set. Fixed Point ALUs: Combinational and sequential ALUs, ALU expansion. Floating Point Arithmetic Circuits: Pipelined processing, Systolic arrays, Resolving structural, Data, Control and Name hazards, Analyzing processor performance, Memory mapping (e.g. RAM, cache), Non-blocking cache memories, Memory protection, Translation and Virtualization, Synchronization, Consistency and Coherence, Direct-mapped and Associative caches, Write-through and writeback caches, Pipelined caches, Analyzing memory performance. Processor Architecture: Superscalar execution, Out-of-order execution, Register renaming, Memory disambiguation, Branch prediction, Speculative execution, Multithreaded, VLIW and SIMD processors. Hardwired and Micro programmed Control Design. Buses, Bus arbitration, I/O control, Interrupts and Direct Memory Access (DMA), Virtual memory mapping and Addressing.

#### Reference Books

- 1. David A. Patterson, John L. Hennessy, *Computer Organization and Design: The Hardware/Software Interface*, Morgan Kaufmann, 5<sup>th</sup> edition, 2013.
- 2. John L. Hennessy, David A. Patterson, *Computer Architecture: A Quantitative Approach*, Morgan Kaufmann, 5<sup>th</sup> edition, 2011.
- 3. William Stallings, Computer Organization and Architecture, Prentice Hall, 9th edition, 2012.
- 4. Douglas E. Comer, *Essentials of Computer Architecture*, Addison-Wesley, 1<sup>st</sup> edition, 2004.
- 5. John P. Hayes, *Computer Architecture*, McGraw-Hill International Educations, 1998.
- 6. V. Carl Hamacher, Safwat G. Zaky, Zvonko G. Vranesic, *Computer Organization*, McGraw-Hill Publication.

All the information of the PPTs (CSE 259) are collected from books, research articles, and online source.

## Computer Architecture

- It refers to how a computer system is designed.
- It is a set of rules stating how computer software and hardware are joined together and interact to make a computer work.
- It consists of rules and methods or procedures which describe the implementation and functionality of the computer systems.
- It is the structure of a digital computer that encompasses the design and layout of its instruction set and storage registers.
- Organization of a computer system defines the way system is structured.

### Computer Architecture vs. Computer Organization

| Computer Architecture                                                                                                 | Computer Organization                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Computer Architecture is concerned with the way hardware components are connected together to form a computer system. | Computer Organization is concerned with the structure and behaviour of a computer system as seen by the user. |
| It acts as the interface between hardware and software.                                                               | It deals with the components of a connection in a system.                                                     |
| Computer Architecture helps us to understand the functionalities of a system.                                         | Computer Organization tells us how exactly all the units in the system are arranged and interconnected.       |
| A programmer can view architecture in terms of instructions, addressing modes and registers.                          | Whereas Organization expresses the realization of architecture.                                               |
| While designing a computer system architecture is considered first.                                                   | An organization is done on the basis of architecture.                                                         |
| Computer Architecture deals with high-level design issues.                                                            | Computer Organization deals with low-level design issues.                                                     |
| Architecture involves Logic (Instruction sets, Addressing modes, Data types, Cache optimization)                      | Organization involves Physical Components (Circuit design, Adders, Signals, Peripherals)                      |

# Block Diagram of a Computer



### Functions of Different Units

- Input Unit: Consists of hardware devices such as keyboard, mouse, scanner, etc.
  - ➤ Works as a medium between the user and computer for inputting data or instructions.
  - Converts the data or instructions into binary for processing.
  - Sends data to the main memory.
- CPU: Processes all the operations of a computer.
  - Control unit (a part of the CPU) controls input/output, memory, and other devices connected to the CPU.
  - > Control unit (CU) controls all the activities of a computer, handles all control signals.
  - The CU selects and retrieves instructions from the main memory and interprets them so that other functional elements get active and perform their operations.
  - The CU controls data flow inside the processor.

# Functions of Different Units<sub>contd</sub>.

- Arithmetic Logic Unit (ALU), another part of the CPU, performs all arithmetic and logic operations.
- ➤ The CU tells the ALU what operation to perform.
- The ALU loads data from the input registers (a small amount of storage as a part of the CPU), performs operation and stores result in the output registers.
- Memory Unit: Capacity of storage unit. Storage capacity is expressed in terms of bytes.
  - > Stores all data and instructions for processing.
  - ➤ Holds all intermediate results.
  - > Receives and sends all inputs and outputs.
- Output Unit: Delivers the result from the computer to an external device. Monitor, speaker, printer, etc.
  - Translates the result/output, received by the processor, to a usable/understandable form for the user.

### Von Neumann Architecture

- The modern computers are based on the concept introduced by John Von Neumann.
- All digital computers are based on this fundamental architecture.
- This architecture was proposed by the mathematician John von Neumann in 1945.

• Instructions can only be done one at a time and can only be carried out sequentially. This is commonly referred to as the 'Von Neumann

bottleneck'.



#### Question:

Difference between electric and electronic devices??