Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики **УНИВЕРСИТЕТ ИТМО** КАФЕДРА ФИЗИКИ

Группа <u>Р3113</u>	_К работе допущен
Студент <u>Ватан Хатиб</u>	Работа выполнена <u>Лаба 2</u>

Преподаватель Захаров Дмитрий Васильевич Отчет принят

Рабочий протокол и отчет по лабораторной работе №2

Изучение скольжения тележки по наклонной плоскости

- 1. Цель работы.
- + Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- + Определение величины ускорения свободного падения д.
- 2. Задачи, решаемые при выполнении работы.

Задание 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона Задание 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту

3. Объект исследования.

Движение тележки по наклоной плокости, под действием силы тяжести.

4. Метод экспериментального исследования.

Проведение серии измерений и расчетов.

5. Рабочие формулы и исходные данные.

$$1) v_x(t) = v_0 + a_x t.$$

2)
$$x(t) = x_0 + v_0 t + \frac{a_x t^2}{2}$$

3)
$$x - x = {a \over 1} (\underline{t^2} - t^2)$$
.

4)
$$m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{tp}$$

3)
$$x - x = {a \choose 2} (\underline{t^2} - t^2)$$
.
4) $m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{tp}$.
5) $\{0y : 0 = N - mg \cos \alpha\}$
 $\{0x : ma = mg \sin \alpha - \mu g \cos \alpha\}$

6)
$$a = g \sin \alpha - \mu g \cos \alpha$$
.

7)
$$a = g(\sin \alpha - \mu)$$

6. Измерительные прибор

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка на рельсе		0 – 1,3 m	5 m
2	Линейка на угольнике		0 – 250 mm	0,5 mm
3	ПКЦ-3 в режиме секундомера		0 – 100 c	0,1 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

РИС. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

x, m	x', m	h ₀ , mm	h' ₀ ,mm
0.220	1.00	204	201

	Измеренные величины №			т.	Рассчитанные	
Nº				величины		
	x_1, m	x_2,m	t_{l}, c	t_2,c	x ₂ -x ₁ , m	$\frac{t^2_2 - t^2_1}{2}$
1	0.15	0.40	1.7	2.7	$(250\pm5)\cdot10^{-3}$	2.2±0.223
						(2.20 ± 0.22)
2	0.15	0.50	1.6	3.0	$(350\pm5)\cdot10^{-3}$	3.22 ± 0.238
					·	(3.22 ± 0.24)
3	0.15	0.70	1.6	3.6	$(550\pm5)\cdot10^{-3}$	5.2 ± 0.2758
						(5.20 ± 0.28)
4	0.15	0.90	1.7	4.2	$(750\pm5)\cdot10^{-3}$	7.375 ± 0.3172
						(7.38 ± 0.32)
5	0.15	1.10	1.4	4.6	$(950\pm5)\cdot10^{-3}$	9.6 ± 0.3366
						(9.60 ± 0.34)
Таблица 3: Результаты прямых измерений (Задание 1)						

N _{пл}	h, мм	h', мм	No	<i>t</i> ₁ , <i>c</i>	t_2,c
1	195	200	1	1.6	4.9
			2	1.7	4.6
			3	1.7	4.66
			4	1.7	4.6
			5	1.6	4.6
			1	1.2	3.2
			2	1.2	3.3
2	185	199	3	1.1	3.4
			4	1.2	3.2
			5	1.2	3.3
	177	199	1	1.0	2.7
			2	1.0	2.7
3			3	0.9	2.7
			4	1.0	2.7
			5	1.0	2.7
	168	198	1	0.9	2.3
4			2	0.8	2.3
			3	0.8	2.3
			4	0.8	2.3
			5	0.8	2.3
5	157	198	1	0.7	2.1
			2	0.7	2.1
			3	0.7	2.1
			4	0.8	2.1
			5	0.8	2.1
N количаство пластии					

 $N_{\text{пл}}$ – количество пластин

h – высота на координате $x = 0.22 \ m$

h' – высота на координате x' = 1.00 m

Таблица 4: Результаты прямых измерений (Задание 2)

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

N _{пл}	$\sin \alpha$	$\langle t_1 \rangle \pm \Delta t_1, \qquad c$	$\langle t_2 \rangle \pm \Delta t_2, \qquad c$	$\langle a \rangle \pm \Delta a, \qquad \frac{m}{c^2}$
1	0.0103	1.66±0.095 (1.7± 0.1)	4.672 ± 0.1826 (4.67±0.18)	0.0996 ± 0.0394 $(100 \pm 39) \cdot 10^{-3}$
2	0.0218	1.18 ± 0.086 (1.18 \pm 0.09)	3.28 ± 0.1201 (3.28 ± 0.12)	0.20286 ± 0.05368 (0.20 ± 0.05)
3	0.0321	0.98 ± 0.086 (0.98 \pm 0.09)	2.7 ± 0.667 $(270 \pm 7) \cdot 10^{-2}$	0.3001 ± 0.0494 $(30\pm5)\cdot10^{-2}$
4	0.0423	0.82 ± 0.086 (0.82 ± 0.09)	2.3 ± 0.667 $(230 \pm 7) \cdot 10^{-2}$	0.4114 ± 0.06714 $(41 \pm 7) \cdot 10^{-2}$
5	0.0564	0.74 ± 0.0953 (0.7 ± 0.1)	2.1 ± 0.0667 $(210 \pm 7) \cdot 10^{-2}$	0.4919 ± 0.08046 $(49 \pm 8) \cdot 10^{-2}$

 $N_{\Pi\Pi}$ - Количество пластин

$$\langle t_{1,2} \rangle = \frac{1}{N} \sum_{i=1}^{N} t_{1i,2i}$$

Таблица 5: Результаты расчетов (Задание 2)

10. Расчет погрешностей измерений (для прямых и косвенных измерений). Задание 1)

• Погрешность для X_2 - X_1 , $\frac{t^2_2-t^2_1}{2}$

$$\begin{split} \Delta_y &= \sqrt{\left(\frac{\partial y}{\partial x_1} \Delta_{x_1}\right)^2 + \left(\frac{\partial y}{\partial x_2} \Delta_{x_2}\right)^2} = \sqrt{(\Delta_{x_1})^2 + (\Delta_{x_2})^2} \quad , \Delta_{x_1} = \Delta_{x_2} = \frac{2}{3} \Delta_{\mathsf{H}} = \frac{2}{3} \cdot \frac{5}{1000} = 0.003333m = 0.0033 \, \mathrm{m} \\ &= \sqrt{(0.0033)^2 + (0.0033)^2} \quad \to \Delta_y = 0.0046669m = 0.005 \, \mathrm{m} \end{split}$$

$$\Delta_{z_i} &= \sqrt{\left(\frac{\partial z}{\partial t_{1i}} \Delta_{t_1}\right)^2 + \left(\frac{\partial z}{\partial t_{2i}} \Delta_{t_2}\right)^2} = \sqrt{(t_1 * \Delta_{t_1})^2 + (t_2 \cdot \Delta_{x_2})^2} \quad , \Delta_t = \Delta_{t_2} = \frac{2}{3} \Delta_{\mathsf{H}t} = \frac{2}{3} \cdot 0.1 = 0.06666667c = 0.07 \, \mathrm{c} \\ \sqrt{(1.7 \cdot 0.07)^2 + (2.7 \cdot 0.07)^2} = 0.223 \, c^2 = 0.22 \, c^2 \\ \sqrt{(1.6 \cdot 0.07)^2 + (3 \cdot 0.07)^2} = 0.238 \, c^2 = 0.24 \, c^2 \\ \sqrt{(1.7 \cdot 0.07)^2 + (4.2 \cdot 0.07)^2} = 0.3172 \, c^2 = 0.302c^2 \\ \sqrt{(1.4 \cdot 0.07)^2 + (4.6 \cdot 0.07)^2} = 0.3366 \, c^2 = 0.34 \, c^2 \end{split}$$

(Результат косвенных погрешности zi, yi написал в таблице 3)

- ускорение тележки методом наименьших квадратов (МНК).
 - коэффициент а

$$a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2} = \frac{2.2 \cdot 0.25 + 3.22 \cdot 0.35 + 5.2 \cdot 0.55 + 7.375 \cdot 0.75 + 9.6 \cdot 0.95}{2.2^2 + 3.22^2 + 5.2^2 + 7.375^2 + 9.6^2}$$

$$=0.1016(\text{m/}c^2)=0.1(\text{m/}c^2)$$

среднеквадратическое отклонение (СКО)

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (y_i - az_i)^2}{(N-1)\sum_{i=1}^{N} z_i^2}}$$

$$=\frac{(0.25-0.1\cdot 2.2)^2+(0.25-0.1\cdot 3.22)^2+(0.55-0.1\cdot 5.2)^2+(0.3-0.1\cdot 7.4)^2+(0.95-0.1\cdot 9.6)^2}{4\cdot (2.25^2+3.22^2+5.22^2+7.4^2+9.6^2)}$$

$$\rightarrow \sigma_a = 0.000103354 (\text{M}/c^2)$$

абсолютная погрешность коэффициент а

$$\Delta a = 2 \cdot \sigma_a = 2 \cdot 0.000103354 = 0.000206708 \, (\text{m/}c^2) = 0.00021 \, (\text{m/}c^2)$$

относительная погрешность ускорения

$$\varepsilon_a = \frac{\Delta a}{a} \cdot 100\% = \frac{0.00021}{0.1} = 0.21\%$$

Задание 2)

значение синуса угла наклона рельса к горизонту

га угла наклона рельса к горизонту
$$\sin\alpha = \frac{(h_0-h)-(h_0'-h')}{x'-x} = \frac{\frac{(204-195)-(201-200)}{1000-220}}{\frac{(204-185)-(201-199)}{1000-220}} = 0.0218$$

$$\frac{\frac{(204-177)-(201-199)}{1000-220}}{\frac{(204-168)-(201-198)}{1000-220}} = 0.0321$$

$$\frac{\frac{(204-168)-(201-198)}{1000-220}}{\frac{(204-157)-(201-198)}{1000-220}} = 0.0564$$

(h0 =204mm, h0' = 201mm, x' = 1000mm, x = 220mm) (Значения для h и h' используются из таблицы 4)
$$\Rightarrow$$
 Значение для $\sin \alpha$ записаны в таблице 5

средние значения времени для
$$<\!\! t \!\! > \!\! = \!\! \frac{1}{n} \sum_{i=1}^n t_i = \!\! \frac{4.9 + 4.6 + 4.66 + 4.6 + 4.6}{5} \!\! = \!\! 4.672 \ c$$

Все осталные значениях средния значения времени и погришности с округлинием будут в таблице 5

Оценка среднего квадратического отклонения (СКО)

него квадратического отклонения (СКО)
$$S_{\bar{x}} = \sqrt{\frac{\sum_{i=1}^{n} (t_1 - \bar{t})^2}{n(n-1)}} = \sqrt{\frac{(4.9 - 4.672)^2 + (4.6 - 4.672)^2 + (4.6 - 4.672)^2 + (4.6 - 4.672)^2 + (4.6 - 4.672)^2}{20}} = 0.05817 \text{ c} = 0.06 \text{ c}$$

$$\Delta \bar{t} = 0.05817 \cdot 2.78 = 0.1668 = 0.17c$$

$$\Delta t = \sqrt{\Delta \bar{t}^2 + (\frac{2}{3}\Delta_{\text{HT}})^2} = \sqrt{0.1668^2 + (\frac{2}{3}\cdot 0.1)^2} = 0.1826c = 0.18c$$

$$< a> = \frac{2(x_2 - x_1)}{< t_2 >^2 - < t_1 >^2} = \frac{2(1.1 - 0.15)}{4.672^2 - 1.66^2} = 0.09962 \, (\text{m/c}^2) = 0.1 \, (\text{m/c}^2)$$

Погрешность ускорения

$$\Delta a = < a > \cdot \sqrt{\frac{\Delta x^2_{u2} + \Delta x^2_{u1}}{(x_2 - x_1)^2}} + 4 \cdot \frac{(< t_1 > \Delta t_1)^2 + (< t_2 > \Delta t_2)^2}{(< t_2 >^2 - < t_1 >^2)^2}$$

$$= 0.1 \cdot \sqrt{\frac{0.00005^2 + 0.00005^2}{(1.1 - 0.15)^2}} + 4 \cdot \frac{(0.1 \cdot 1.7)^2 + (0.18 \cdot 4.66)^2}{(4.66^2 - 1.7^2)^2} = 0.03946 (\text{m/c}^2) = 0.039(\text{m/c}^2)$$

$$= 0.2 \cdot \sqrt{\frac{0.00005^2 + 0.00005^2}{(1.1 - 0.15)^2}} + 4 \cdot \frac{(0.086 \cdot 1.18)^2 + (0.12 \cdot 3.28)^2}{(3.28^2 - 1.18^2)^2} = 0.05368 (\text{m/c}^2) = 0.05(\text{m/c}^2)$$

$$= 0.3 \cdot \sqrt{\frac{0.00005^2 + 0.00005^2}{(1.1 - 0.15)^2}} + 4 \cdot \frac{(0.086 \cdot 0.98)^2 + (0.07 \cdot 2.7)^2}{(2.7^2 - 0.98^2)^2} = 0.0494 (\text{m/c}^2) = 0.05(\text{m/c}^2)$$

$$= 0.41 \cdot \sqrt{\frac{0.00005^2 + 0.00005^2}{(1.1 - 0.15)^2}} + 4 \cdot \frac{(0.086 \cdot 0.82)^2 + (0.07 \cdot 2.3)^2}{(2.3^2 - 0.82^2)^2} = 0.06714 (\text{m/c}^2) = 0.07(\text{m/c}^2)$$

$$= 0.49 \cdot \sqrt{\frac{0.00005^2 + 0.00005^2}{(1.1 - 0.15)^2}} + 4 \cdot \frac{(0.1 \cdot 0.7)^2 + (0.07 \cdot 2.1)^2}{(2.1^2 - 0.7^2)^2} = 0.08067 (\text{m/c}^2) = 0.08(\text{m/c}^2)$$

ускорения свободного падения.

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i\right)^2};$$

$$\frac{(0.0103 \cdot 0.1 + 0.0218 \cdot 0.202 + 0.0321 \cdot 0.3 + 0.0423 \cdot 0.41 + 0.0564 \cdot 0.49)}{0.0103^2 + 0.0218^2 + 0.0321^2 + 0.0423^2 + 0.0564^2}$$

$$-\frac{\frac{(0.0103 \cdot 0.1 + 0.0218 \cdot 0.202 + 0.0321 \cdot 0.3 + 0.0423 \cdot 0.41 + 0.056 \cdot 0.49}{5}}{-\frac{\frac{(0.0103 + 0.0218 + 0.0321 + 0.0423 + 0.0564)^{2}}{5}}{}$$

$$=8.7137(\text{m/c}^{2})=8.7(\text{m/c}^{2})$$

$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right).$$

$$\frac{(0.099+0.202+0.3+0.41+0.49)-(0.01+0.022+0.032+0.042+0.056)}{5} = 0.0165 (m/c^2)$$

$$di = a_i - (A + B \sin \alpha_i)$$

$$=0.0996-(0.0165+8.7\cdot0.0103)=-0.00951(\text{m/c}^2)$$

$$=0.20286-(0.0165+8.7\cdot0.0218)=-0.0033(\text{m/c}^2)$$

$$=0.3001-(0.0165+8.7\cdot0.0321)=0.00424(\text{m/c}^2)$$

$$=0.4114-(0.0165+8.7\cdot0.0423)=0.02689 \text{ (m/c}^2)$$

$$=0.4919-(0.0165+8.7\cdot0.0564)=-0.01528(m/c^2)$$

$$D = \sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i \right)^2.$$

$$=0.0103^{2} + 0.0218^{2} + 0.0321^{2} + 0.0423^{2} + 0.0564^{2} - \frac{(0.01+0.022+0.032+0.042+0.056)^{2}}{5}$$

$$= 0.001275 (\text{m/c}^{2}) = 0.0013 (\text{m/c}^{2})$$

• СКО для ускорение свободного падения

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} d_i^2}{D(N-2)}} \cdot \sqrt{\frac{(-0.00951)^2 + (-0.0033)^2 + (0.00424)^2 + (0.02689)^2 + (-0.01528)^2}{0.0013(3)}}$$

$$= 0.525224787 \text{m/c}^2$$

• абсолютная погрешность ускорение свободного падения

$$\Delta g = 2\sigma_g = 2 \cdot 0.525224787 = 1.050449574 \text{ (m/c}^2) = 1.1 \text{ (m/c}^2)$$

• относительная погрешность g:

$$\varepsilon_g = \frac{\Delta g}{g} = 12.074 = 12^{\circ}\%$$

11.Графики (перечень графиков, которые составляют Приложение 2).

12.Окончательные результаты.

Залание 1:

$$a = (1100 \pm 34) \cdot 10^{-4} \text{ m/c}^2$$
 $\varepsilon_a = 3\%$ $\alpha = 0.9$

Задание 2:

$$\begin{split} g_{\text{эксп}} &= (8.7 \pm 1.1) \text{ m/c}^2 & \epsilon_g = 12\% \\ g_{\text{табл}} &\sim 9.820 \text{ m/c}^2 \\ &\blacktriangleright \mid g_{\text{эксп -}} g_{\text{табл}} \mid = \mid 8.7 - 9.8 \mid = 1.1 \text{ m/c}^2 \end{split}$$

13.Выводы и анализ результатов работы

Задание 1: на основе полученных данных движение тележки можно считать равноускоренным, потомоу что у полученного гравика 1 линейный характер

Задание 2: можно отметить что $|g_{
m эксп}-g_{
m табл}|=1.1\,$ м/с² и абсолютная погрешность равные $(g_{
m табл}$ падает в Доверителный интервал), а это значит что ускорение свободного падения достоверно.