Construction of Concurrent Rules with NACs

Jonas S. Bezerra jsbezerra@inf.ufrgs.br

Instituto de Informática Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil http://www.inf.ufrgs.br

September 19, 2016

Outline of this talk

Negative Application Condition

 ${\sf Shifting}\,\,{\sf NACs}$

Concurrent rules for a rule sequence

Outline of this talk

Negative Application Condition

Shifting NACs

Concurrent rules for a rule sequence

Negative Application Conditions I

Definition (NAC): A negative application condition or NAC($\mathfrak n$) on L is an arbitrary graph morphism $\mathfrak n:L\to N.$

Definition (NAC satisfiability): A graph morphism $g: L \to G$ satisfies NAC(n) on L, written $g \models NAC(n)$, iff $\nexists q: N \to G$ such that q is injective and $q \circ n = g$

Negative Application Conditions II

▶ A set of NACs on L is denoted by $NAC_L = \{NAC(n_i) | i \in I\}$. A graph morphism $g: L \to G$ satisfies NAC_L if and only if g satisfies all single NACs on L i.e. $g \models NAC(n_i) \forall i \in I$.

Negative Application Conditions III

move_up

Different NAC satisfaction and AGG approach I

- ▶ The *definition* demands the non-existing morphism to be injective.
- Another interpration of NACs the satisfaction of NACs demands the morphism $q:N\to G$ to be non-injective only on $N\backslash n(L)$. (See Remark 2.3.4)
- ▶ With this interpretation q may glue the same parts as the match is gluing.
- ▶ Without this, for each kind o potential gluing of the LHS, a corresponding NAC needs to be added.

Outline of this talk

Negative Application Condition

 ${\sf Shifting}\,\,{\sf NACs}$

Concurrent rules for a rule sequence

Over a Rule I

Definition (construction of Left from right NACs): For each NAC(n_i) on R with $n_i: R \to N_i$ of a rule $p = (L \leftarrow K \to R)$, the equivalent left application condition $L_p(NAC(n_i))$ is defined in the following way:

- ▶ If the pair $(K \to R, R \to N_i)$ has a pushout complement complement, we construct $(K \to Z, Z \to N_i)$ as the pushout complement (1). Then we construct pushout (2) with the morphism $\mathfrak{n}_i': L \to N_i'$. Now we define $L_p(NAC(\mathfrak{n}_i)) = NAC(\mathfrak{n}_i')$.
- ▶ If the pair $(K \to R, R \to N_i)$ does not have a pushout complement, we define $L_p(NAC(n_i)) = true$

Over a Rule II

Theorem (inverse direct transformation with NACs): For each direct transformation with NACs $G\Rightarrow H$ via a rule $p=(L\leftarrow K\rightarrow R)$ with NAC $_p$ a set of left NACs on p, there exists an inverse direct transformation with NACs $H\Rightarrow G$ via the inverse rule p^{-1} with NAC $_{p^{-1}}$

Over a Rule III

Figure: Shifting right NAC into left NAC for Elevator example

Over a Morphism I

- ▶ Consider a graph A with NACs, and some graph morphism $\mathfrak{m}: A \to B$.
- ▶ It is not enough to consider the PO of m and the single NACs on A in order to obtain the equivalent NACs on B.
- ▶ All overlaps have to be considered, where in addition graph elements not stemming from A may be glued.

Definition (construction of NACs on B from NACs on A with $\mathfrak{m} \to B$). Consider the following diagram:

Over a Morphism II

$$N'_{j} \xrightarrow{e_{ji}} N_{i}$$

$$n'_{j} \uparrow \qquad (1) \quad n_{i} \uparrow$$

$$A \xrightarrow{m} B$$

For each $NAC(\mathfrak{n}_i')$ on A with $\mathfrak{n}_i':A\to N_i'$ and $\mathfrak{m}:A\to B,$ let

$$D_{\mathfrak{m}}(NAC(\mathfrak{n}'_{\mathfrak{j}})) = \{NAC(\mathfrak{n}_{\mathfrak{i}}) | \mathfrak{i} \in I, \mathfrak{n}_{\mathfrak{i}} : B \rightarrow N_{\mathfrak{i}}\}$$

where I and n_i are constructed as follows:

- ▶ $i \in I$ iff (e_{ji}, n_i) with $e_{ji} : N'_i \to N_i$ jointly surjective
- $ightharpoonup e_{ji} \circ n_i = n_i \circ m$
- ▶ e_ji injective

Over a Morphism III

For each set of NACs NAC $_A=NAC(N_j)|j\in J$ on A the downward shift of NAC $_A$ is then defined as:

$$D_{\mathfrak{m}}(\mathsf{NAC}_\mathsf{A}) = \cup_{j \in J} D_{\mathfrak{m}}(\mathsf{NAC}(\mathfrak{n}'_j))$$

 $D_{\mathfrak{m}}$ is also called the *Downward shift of* NAC_A

Over a Morphism IV

Figure: Example of shifting a NAC over a morphism

Outline of this talk

Negative Application Condition

Shifting NACs

Concurrent rules for a rule sequence

Concurrency I

Let t be a transformation via some rule sequence $p_0, \ldots, p_{n-1}, p_n$ with matches $g_0, \ldots, g_{n-1}, g_n$ and sets of NACs $NAC_{p_0}, \ldots, NAC_{p_{n-1}}, NAC_{p_n}$:

- ▶ In general there will be casual dependencies, so that is not always possible to summarize the transformation sequence via the *Parallelism Theorem*.
- ▶ It is possible to formulate a *Concurrency Theorem* expressing how to summarize such a sequence into one equivalent transformation step via a concurrent rule.

Without NACs I

Definition (concurrent rule for a rule sequence):

- ▶ n = 0 The *concurrent rule* p_c for p_0 is p_0 itself.
- ▶ $n \geqslant 1$ A concurrent rule p_c for the rule sequence $p_0, \ldots, p_{n-1}, p_n$ is defined by $p_c = (l \circ k_c : K \to L, r \circ k_n : K \to R)$ as show in the following diagram, where
 - $p_c': L_c' \leftarrow K_c' \rightarrow R_c'$ is a concurrent rule for the sequence p_0, \ldots, p_{n-1}
 - (e'_c, e_n) is jointly surjective
 - ▶ (1), (2), (3) and (4) are pushouts
 - ▶ (5) is a pullback

Without NACs II

Figure: Construction of a concurrent rule without NACs.

▶ The concurrent rule p_c may also be denoted as $p_c' *_E p_n$.

With NACs I

Definition (concurrent rule with NACs for a rule sequence):

- ▶ n = 0 The concurrent rule p_c with NACs for rule p_0 with NACs is p_0 with NACs itself.
- ▶ $n \geqslant 1$ A concurrent rule $p_c = p_c' *_E p_n$ with NACs for the rule sequence $p_0, \ldots, p_{n-1}, p_n$ is defined recursively as in the definition without NACs and equals $p_c = (l \circ k_c : K \to L_c, r \circ k_n : K \to R)$

With NACs II

Figure: Construction of a concurrent rule with NACs.

with

- ▶ $NAC_{p_c} = DL_{p_c}(NAC_{L_n}) \cup D_{m_c}(NAC_{L'_c})$ where:
 - $\blacktriangleright \ D_{\mathfrak{m}_c}(NAC_{L'_c})$ is the Downward shift NAC over $\mathfrak{m}_c: L'_c \to L_c$
 - ▶ $DL_{p_c}(NAC_{L_n})$ with $NAC_{L_n} = \{NAC(n_j)|j \in J\}$ constructed as follows:

With NACs III

$$DL_{p_c}(NAC_{L_{\mathfrak{n}}}) = \cup_{j \in J} DL_{p_c}(NAC(\mathfrak{n}_j)) = \cup_{j \in J} L_p(D_{\mathfrak{e}_{\mathfrak{n}}}(NAC(\mathfrak{n}_j)))$$

with

- $\blacktriangleright \ p = L_c \leftarrow C_1 \rightarrow E$
- \blacktriangleright $D_{e_{\mathfrak{n}}}$ is the Downward shift NAC over $e_{\mathfrak{n}}:\mathsf{L}_{\mathfrak{n}}\to\mathsf{E}$
- \blacktriangleright L_p is the left shift NAC over rule p

References

Lambers, Leen. (2010). Certifying Rule-Based Models using Graph Transformation. Elektrotechnik und Informatik der Technischen Universitat Berlin. https://depositonce.tu-berlin.de/handle/11303/2645

Construction of Concurrent Rules with NACs

Jonas S. Bezerra jsbezerra@inf.ufrgs.br

Instituto de Informática Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil http://www.inf.ufrgs.br

September 19, 2016