Data Science Toolbox

Mike Micatka

April 13, 2016

Contents

2	Ma	chine Learning Techniques
	2.1	Supervised Learning
		2.1.1 Averaged One-Dependence Estimators (AODE)
		2.1.2 Bayesian Statistics
		2.1.3 Case-Based Reasoning
		2.1.4 Gaussian Process Regression
		2.1.5 Gene Expression Programming
		2.1.6 Group Method of Data Handling (GMDH)
		2.1.7 Inductive Logic Programming
	2.2	Unsupervised Learning
	2.3	Semi-Supervised Learning
	2.4	Reinforcement Learning
	2.5	Deep Learning

What is Data Science?

This is a work in progress. Mainly made for learning purposes. Hopelessly abbreviated, will do my best to provide sources/other resources.

Chapter 1

Data Techniques

Chapter 2

Machine Learning Techniques

2.1 Supervised Learning

2.1.1 Averaged One-Dependence Estimators (AODE)

Averaged One-Dependence Estimators is a probabilistic classification technique. It is an improvement on the Naive Bayes Estimator. This technique produces class probabilities rather than single classes which allows more flexibility by having the end-user set the threshold for selection. The computational complexity for training is $O(ln^2)$ and $O(kn^2)$ for classification where n is the number of features, l is the number of training samples, and k is the number of testing samples. The equation for this classifier is as follows:

$$\hat{P}(y|x_1,...,x_n) = \frac{\sum_{i:1 \le i \le n \land F(x_i) \ge m} \hat{P}(y,x_i) \Pi_{j=1}^n \hat{P}(x_j|y,x_i)}{\sum_{y' \in Y} \sum_{i:1 \le i \le n \land F(x_i) \ge m} \hat{P}(y',x_i) \Pi_{j=1}^n \hat{P}(x_j|y',x_i)}$$

Where $\hat{P}(\cdot)$ is the estimate of $P(\cdot)$, $F(\cdot)$ is the frequency of the agrument in the sample data. m is the user specified minimum frequency, usually set at 1. The computational complexity makes this technique infeasible for high-dimensional data but is linear with respect to the number of samples so can handle large amounts of training data.

Implementations:

• Weka

- 2.1.2 Bayesian Statistics
- 2.1.3 Case-Based Reasoning
- 2.1.4 Gaussian Process Regression
- 2.1.5 Gene Expression Programming
- 2.1.6 Group Method of Data Handling (GMDH)
- 2.1.7 Inductive Logic Programming
- 2.2 Unsupervised Learning
- 2.3 Semi-Supervised Learning
- 2.4 Reinforcement Learning
- 2.5 Deep Learning

Chapter 3

Choosing the Right Algorithm