Метод Ветвей и Грани

P			
p1	<i>p</i> ₂	<i>p</i> 3	P4

Составим матрицы соединений R графа и расстояний D множества позиций.

		x1	x2	х3	x4
	x1	0	3	4	2
R=	x2	3	0	1	3
	х3	4	1	0	0
	x4	2	3	0	0

D=		p1	p2	р3	p4
	p1	0	1	2	3
	p2	1	0	1	2
	р3	2	1	0	1
	p4	3	2	1	0

Определим нижнюю границу целевой функции для этих исходных данных. Для этого упорядочим составляющие вектора г в невозрастающем порядке, а вектора d – в неубывающем.

$$r = \{4, 3, 3, 2, 1, 0\}$$

$$d = \{1, 1, 1, 2, 2, 3\}$$

$$r \times d = 4 + 3 + 3 + 4 + 2 + 0 = 16$$

Значит, F(P) не может быть меньше 16.

1. Помещаем x1 в позицию p1. Неразмещенные элементы {x2, x3, x4}, свободные позиции {p2, p3,

$$F(q) = 0$$

$$r_1 = \{4\ 3\ 2\}\ d_1 = \{1\ 2\ 3\} \to w(P) = r_1 \times d_1 = 4 + 6 + 6 = 16$$

$$r = \{3\ 1\ 0\}\ d = \{1\ 1\ 2\} \rightarrow v(P) = r \times d = 3 + 1 + 0 = 4$$

Таким образом F(P) = 16 + 4 + 0 = 20

2. Помещаем x1 в позицию p2. Неразмещенные элементы {x2, x3, x4}, свободные позиции {p1, p3, p4}.

$$F(q) = 0$$

$$r_1 = \{4\ 3\ 2\}\ d_2 = \{1\ 1\ 2\} \to w(P) = r_1 \times d_2 = 4 + 3 + 4 = 11$$

$$r = \{3\ 1\ 0\}\ d = \{1\ 2\ 3\} \rightarrow v(P) = r \times d = 3 + 2 + 0 = 5$$

Таким образом F(P) = 0 + 11 + 5 = 16

Ввиду симметричности позиций (p_1 и p_4) и (p_2 и p_3) будут получены те же результаты для симметричных позиций. Назначаем элемент х1 в позицию р2.

3. Помещаем x2 в позицию p1. Неразмещенные элементы {x3, x4}, свободные позиции {p3, p4}.

$$F(q) = r_{12}d_{21} = 3$$

$$r_1 = \{4\ 2\ \}\ d_2 = \{1\ 2\} \rightarrow r_1 \times d_2 = 4 + 4 = 8$$

$$r_2 = \{3\ 1\}\ d_1 = \{2\ 3\} \rightarrow r_2 \times d_1 = 6 + 3 = 9$$

$$w(P) = 8 + 9 = 17$$

$$r = \{0\} d = \{1\} \rightarrow v(P) = r \times d = 0$$

Таким образом F(P) = 17 + 3 + 0 = 20

4. Помещаем x2 в позицию p3. Неразмещенные элементы {x3, x4}, свободные позиции {p1, p4}.

$$F(q) = r_{12}d_{23} = 3$$

$$r_1 = \{4\ 2\} d_2 = \{1\ 2\} \rightarrow r_1 \times d_2 = 4 + 4 = 8$$

$$r_2 = \{3\ 1\}\ d_3 = \{1\ 2\} \rightarrow r_2 \times d_3 = 3 + 2 = 5$$

$$w(P) = 7 + 4 = 13$$

$$r = \{0\} d = \{3\} \rightarrow v(P) = r \times d = 0$$

Таким образом
$$F(P) = 13 + 3 + 0 = 16$$

5. Помещаем x2 в позицию p4. Неразмещенные элементы {x3, x4}, свободные позиции {p1, p3}.

$$F(q) = r_{12}d_{24} = 6$$

$$r_1 = \{4\ 2\ \}\ d_2 = \{1\ 1\} \rightarrow r_1 \times d_1 = 4 + 2 = 6$$

$$r_2 = \{3\ 1\}\ d_4 = \{1\ 3\} \rightarrow r_2 \times d_4 = 3 + 3 = 6$$

$$w(P) = 6 + 6 = 12$$

$$r = \{0\} d = \{2\} \rightarrow v(P) = r \times d = 0$$

Таким образом
$$F(P) = 12 + 6 + 0 = 18$$

Назначаем элемент х2 в позицию р3.

6. Помещаем х3 в позицию р1. Неразмещенный элемент {х4}, свободная позиция {р4}.

$$F(q) = r_{12}d_{23} + r_{23}d_{31} + r_{13}d_{21} = 3 + 2 + 4 = 9$$

$$r_1 = \{ 2 \} d_2 = \{ 3 \} \rightarrow r_1 \times d_2 = 6$$

$$r_2 = \{3\} d_3 = \{1\} \rightarrow r_2 \times d_3 = 3$$

$$r_3 = \{ 0 \} d_1 = \{ 3 \} \rightarrow r_3 \times d_3 = 0$$

$$w(P) = 6 + 3 + 0 = 9$$

Неразмещенный элемент один, v(P) = 0

Таким образом
$$F(P) = 9 + 9 + 0 = 18$$

7. Помещаем х3 в позицию р4. Неразмещенный элемент {х4}, свободная позиция {p1}.

$$F(q) = r_{12}d_{23} + r_{23}d_{34} + r_{13}d_{24} = 3 + 1 + 8 = 12$$

$$r_1 = \{ 2 \} d_2 = \{ 3 \} \rightarrow r_1 \times d_1 = 6$$

$$r_2 = \{3\} d_3 = \{1\} \rightarrow r_2 \times d_2 = 3$$

$$r_3 = \{ 0 \} d_4 = \{ 0 \} \rightarrow r_3 \times d_4 = 0$$

$$w(P) = 6 + 0 + 0 = 6$$

Неразмещенный элемент один, v(P) = 0

Таким образом F(P)12 + 9 + 0 = 21

Назначаем элемент х3 в позицию р1.

8. Помещаем х4 в позицию р4. Неразмещенный элемент {х4}, свободная позиция {р4}.

$$F(q) = r_{12}d_{23} + r_{13}d_{21} + r_{14}d_{24} + r_{23}d_{31} + r_{24}d_{34} + r_{34}d_{14} = 3 + 4 + 4 + 2 + 3 + 0 = 16$$

 $w(P) = v(P) = 0.$ $F(p) = 20$

Назначаем элемент х4 в позицию р4.

Получено размещение элементов:

