Vector Spaces: The set of *n*-dimensional vectors $\mathbb{R}^n = \left\{ \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \middle| a_1, a_2, \dots, a_n \in \mathbb{R} \right\}$ forms a vector space.

A set V is a vector space if it satisfies the following rules for all vectors $\vec{u}, \vec{v}, w \in V$ and all scalars $c, d \in \mathbb{R}$.

1.
$$\vec{u} + \vec{v} \in V$$
,

5.
$$(\vec{u} + \vec{v}) + w = \vec{u} + (\vec{v} + w),$$

9.
$$(cd)\vec{\mathbf{u}} = c(d\vec{\mathbf{u}}),$$

2.
$$c\vec{\mathsf{u}} \in \mathsf{V}$$
,

6.
$$\vec{u} + (-\vec{u}) = 0$$
,

10.
$$1\vec{u} = \vec{u}$$
,

3.
$$\vec{v} + 0 = 0 + \vec{v} = \vec{v}$$
,

7.
$$c(\vec{\mathsf{u}} + \vec{\mathsf{v}}) = c\vec{\mathsf{u}} + c\vec{\mathsf{v}}$$
,

$$10. \ 1\vec{\mathsf{u}} = \vec{\mathsf{u}},$$

4.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
,

8.
$$(c+d)\vec{\mathbf{u}} = c\vec{\mathbf{u}} + d\vec{\mathbf{u}}$$
,

11.
$$0\vec{u} = 0$$
.

Subspaces: We are interested in subsets $S \subseteq \mathbb{R}^n$ that are also vector spaces. These are called *subspaces*. To be a subspace, S must satisfy three properties:

- 0. $\mathbf{0} \in S$ (contains the zero vector)
- 1. If $\vec{u}, \vec{v} \in S$ then $\vec{u} + \vec{v} \in S$ (closed under addition)
- 2. If $\vec{\mathsf{u}} \in S$ and $c \in \mathbb{R}$, then $c\vec{\mathsf{u}} \in S$ (closed under scalar multiplication).

From these two properties, we can also derive: (3) $c\vec{u} + d\vec{v} \in S$ (closed under linear combinations).

Three Important Examples

A. The set of solutions to Ax = 0 forms a subspace: $S = \{\vec{x} \mid A\vec{x} = 0\}$

B. The set of solutions to $Ax = \vec{b}$ (with $\vec{b} \neq 0$) does not form a subspace: $S = \{\vec{x} \mid A\vec{x} = \vec{b}\}\$

C. The span of a set of vectors forms a subspace: $S = \text{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = \{x_1\vec{v}_1 + x_2\vec{v}_2 + \dots + x_n\vec{v}_n \mid x_i \in \mathbb{R}\}$

1. Which of the following subsets of \mathbb{R}^2 are subspaces?

2. Describe the possible subspaces of \mathbb{R}^3 from smallest to largest?

3. Which of the following subsets of \mathbb{R}^3 are subspaces?

$$A = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mid x_1 x_2 x_3 \ge 0 \right\}, \qquad B = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mid x_1^2 + x_2^2 + x_3^2 \le 1 \right\}, \qquad C = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mid 5x_1 - 2x_2 - x_3 = 0 \right\}.$$

- (a) For the ones that are not subspaces, give a specific example of vectors that break rules 1 and 2 above.
- (b) For those that are, show that the rules above are satisfied for any vectors \vec{u}, \vec{v} and any scalar c.

4. Decide if the following subsets are subspaces. As in the previous examples, if it is not, give a specific example of vectors that break rules 1 and 2 above, and if it is, show that the rules above are satisfied for any vectors \vec{u}, \vec{v} and any scalar c.

(a)
$$S = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \mid b = 2a, \ c = 2b, \ d = 2c \right\} \subseteq \mathbb{R}^4$$

(b)
$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mid x_3 = \max(x_1, x_2) \right\} \subseteq \mathbb{R}^3$$

(c) Here $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation and T is the set of fixed points:

$$S = \{\vec{\mathsf{x}} \in \mathbb{R}^n \mid T(\vec{\mathsf{x}}) = \vec{\mathsf{x}}\} \subseteq \mathbb{R}^n$$

(d) Here $T:\mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and S is the image:

$$S = {\vec{y} \in \mathbb{R}^m \mid T(\vec{x}) = \vec{y} \text{for some } \vec{x} \in \mathbb{R}^n} \subseteq \mathbb{R}^m$$

(e) We can encode polynomials $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ with vectors as follows:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 =
$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

For example, if we consider the set \mathcal{P}_3 of polynomials of degree 3 or less, here are some examples of their encoding as 4 dimensional vectors in \mathbb{R}^4 :

$$1 + 2x + 3x^{2} + 4x^{3} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \qquad x = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \qquad 2 - 5x^{2} - 3.14x^{3} = \begin{bmatrix} 2 \\ 0 \\ -5 \\ 3.14 \end{bmatrix}, \qquad 1 + x - x^{2} + x^{3} = \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}.$$

Notice that the polynomials in \mathcal{P}_n , of degree n or less, correspond to \mathbb{R}^{n+1} .

Observe that polynomial addition is the same as the corresponding vector addition:

$$\frac{p(x) = 1 + 2x + 3x^2 + 4x^3}{q(x) = 1 + x - x^2 + x^3} \quad \text{in } \mathcal{P}_3 \qquad \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} + \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix} = \begin{bmatrix} 2\\3\\2\\5 \end{bmatrix} \quad \text{in } \mathbb{R}^4.$$

and scalar multiplication of polynomials is the same as scalar multiplication of vectors:

$$2p(x) = 2 + 4x + 6x^2 + 8x^3$$
 in \mathcal{P}_3 $2\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} = \begin{bmatrix} 2\\4\\6\\8 \end{bmatrix}$ in \mathbb{R}^4 .

Thus \mathcal{P}_n is really the same as \mathbb{R}^{n+1} . The only difference is cosmetic. We say that \mathcal{P}_n and \mathbb{R}^{n+1} are isomorphic vector spaces.

Here are two subsets of \mathcal{P}_4 . Decide if they are subspaces. In each case, if it is not a subspace, give examples using specific polynomials to show that one of the rules is broken, and if it is a subspace, show that the subspace rule holds for any two polynomials p(x), q(x) and any constant $c \in \mathbb{R}$.

i.
$$U = \{p(x) \in \mathcal{P}_4 \mid p(1) = 0\}$$

ii.
$$V = \{p(x) \in \mathcal{P}_4 \mid p(0) = 1\}$$