

Elemento estructurante

1	1	1
1	1	1
1	1	1

В

Objeto binario como conjunto

$$A = \{(x_i, y_i) \mid I(x_i, y_i) = 1\}$$

y existe un camino de puntos (x_j, y_j) tales que $I(x_j, y_j) = 1$ y cada par consecutivo es adyacente

- I(x, y) es corresponde a la intensidad en la posición (x, y), siendo 1 blanco y 0 negro.
- Un camino de puntos es tal que cada par consecutivo (x_j, y_j) y (x_{j+1}, y_{j+1}) es adyacente según la definición de **4-conectividad**:

Dos píxeles (x_j, y_j) y (x_{j+1}, y_{j+1}) son 4-adyacentes si (x_{j+1}, y_{j+1}) está en $(x_j \pm 1, y_j)$ o $(x_j, y_j \pm 1)$

O según la definición de 8-conectividad (incluye también las diagonales):

Dos píxeles (x_j, y_j) y (x_{j+1}, y_{j+1}) son 8-adyacentes si (x_{j+1}, y_{j+1}) está en $(x_j \pm 1, y_j \pm 1)$, $(x_j \pm 1, y_j)$ o $(x_j, y_j \pm 1)$

$$A \oplus B = \left\{ z \mid (\hat{B})_z \cap A \neq \emptyset \right\}$$

$$A \oplus B = \left\{ z \mid \left[(\hat{B})_z \cap A \right] \subseteq A \right\}$$

$$A \oplus B = \left\{ z \mid (\hat{B})_z \cap A \neq \emptyset \right\}$$

$$A \oplus B = \left\{ z \mid \left[(\hat{B})_z \cap A \right] \subseteq A \right\}$$

$$A \oplus B = \left\{ z \mid (\hat{B})_z \cap A \neq \emptyset \right\}$$

$$A \oplus B = \left\{ z \mid \left[(\hat{B})_z \cap A \right] \subseteq A \right\}$$

$$A \oplus B = \left\{ z \mid (\hat{B})_z \cap A \neq \emptyset \right\}$$

$$A \oplus B = \left\{ z \mid \left[(\hat{B})_z \cap A \right] \subseteq A \right\}$$