

一阶电路的零输入响应

- ▶ 一阶电路
 电路中仅含一个独立的动态元件的电路;
- 特性方程一阶微分方程。
- 凡是可以用等效概念化归为一个等效动态 元件的电路都是一阶电路。
- ▶ 任意一阶电路,换路后总是可以等效为一个有源二端电阻网络外接一动态元件。

一阶电路基本形式

● RC电路的零输入响应

零输入响应:没有外加激励时的响应,仅由动态元件的初始状态(内激励)引起。

开关转换前,电容电压已经达到 U_0 。 换路后如图(b)所示。由换路定则得

$$u_{\rm C}(0^+) = u_{\rm C}(0^-) = U_0$$

电路分析基础A 第5章一阶电路分析

$$i_{\rm C} = C \frac{\mathrm{d}u_{\rm C}}{\mathrm{d}t}$$

代入KVI得以下方程:

$$RC\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + u_{\mathrm{C}} = 0 \quad (t \ge 0)$$

这是一个常系数一阶线性齐次微分方程

其通解为:
$$u_{\rm C}(t) = Ae^{st}$$

特征方程:

$$RCs+1=0$$

特征根:

$$s = -\frac{1}{RC}$$

于是响应电容电压为:

$$u_{\rm C}(t) = A \mathrm{e}^{-\frac{t}{RC}}$$

系数A是一个常量,由初始条件确定;

当
$$t=0^+$$
 时上式为: $u_{\rm C}(0^+) = Ae^{-RC}|_{t=0+} = A$

根据初始条件 $u_{\rm C}(0^+) = U_0$

故:
$$A = U_0$$

最后得到图(b)电路的零输入响应为:

$$u_{\rm C}(t) = U_0 e^{-\frac{t}{RC}} \quad (t > 0)$$

物理意义: 在电路的放电过程中电容电压随时间变化的规律。

$$i_{\mathrm{C}}(t) = C \frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} = -\frac{U_{0}}{R} e^{-\frac{t}{RC}} \quad (t > 0)$$

$$i_{\mathrm{R}}(t) = -i_{\mathrm{C}}(t) = \frac{U_{0}}{R} e^{-\frac{t}{RC}} \quad (t > 0)$$

不同时间常数的uc波形

时间常数在曲线上的意义

 $\tau: t=0^+$ 时切线与横轴的交点(切距); 电压衰减到原来值36.8%所需的时间。

说明:

- 1. 各电压电流均以相同的指数规律变化 变化的快慢取决于*I*和*C*的乘积。
- $2.\tau = RC$, τ 具有时间的量纲,称为RC 电路的时间常数。 $S=1/\tau$ 称为电路的固有频率。
- 3. 在一定的初始值情况下 C越大,衰减越快or慢? R越大,衰减越快or慢?

RC电路零输入响应的波形曲线

$$i_{C}(t) = -\frac{U_{0}}{R}e^{-\frac{t}{RC}} \quad (t > 0)$$

$$i_{C}(t) = \frac{U_{0}}{R}e^{-\frac{t}{RC}} \quad (t > 0)$$

$$i_{R}(t) = \frac{U_{0}}{R}e^{-\frac{t}{RC}} \quad (t > 0)$$

电压的变化与时间常数的关系

t	0	τ	2τ	3τ	4τ	5τ
$u_c(t)$	$oldsymbol{U}_0$	0. $368U_0$	0. $135U_{0}$	$0.050U_0$	0. $018U_{0}$	$0.007U_{0}$

 τ 的物理含义: u_c 与 i_c 衰减到初始值的 1/e(36.8%)时所经历的时间。

由于波形衰减很快,实际上只要经过 4~5τ的时间就可认为放电(瞬态)过 程基本结束。

电阻在电容放电过程中消耗的总能量:

$$W_{R} = \int_{0}^{\infty} i_{R}^{2}(t)Rdt = \int_{0}^{\infty} \left(\frac{U_{0}}{R}e^{-\frac{t}{RC}}\right)^{2}Rdt = \frac{1}{2}CU_{0}^{2}$$

表明: 电容在放电过程中释放的能量全部转换为电阻消耗的能量。

说明:

- 1. 电路瞬态过程的长短由时间常数 t决定,与初始值和外加激励无关;
- 2. T的大小由R和C决定,R和C越大,响应衰减得越慢。
- 3. RC电路的零输入响应由初始值和时间常数决定。

$$r_{zi}(t) = r_{zi}(0^{+})e^{-\frac{t}{\tau}}, \quad t > 0$$

例10 已知 $u_C(0^-)=6V$ 。求t>0的电容电压。

解: 在开关闭合瞬间, 电容电压不能跃

变,则 $u_{\rm C}(0^+) = u_{\rm C}(0^-) = 6 \text{V} = U_0$

从电容两端看进去的电阻等效为

$$R_0 = (8 + 6 / /3) k\Omega = 10 k\Omega$$

$$\tau = R_0 C = 10 \times 10^3 \times 5 \times 10^{-6}$$
$$= 5 \times 10^{-2} = 0.05s$$

故有:

$$u_{\rm C}(t) = U_0 e^{-\frac{t}{\tau}} = 6e^{-20t} V$$
 $(t \ge 0)$

假如还要计算电容中的电流 $i_c(t)$,则

$$i_{\rm C}(t) = C \frac{\mathrm{d}u_{\rm C}(t)}{\mathrm{d}t} = 5 \times 10^{-6} \times 6(-20)\mathrm{e}^{-20t} = -0.6\mathrm{e}^{-20t} \,\mathrm{mA}$$

或:
$$i_{\rm C}(t) = -\frac{U_0}{R} e^{-\frac{t}{\tau}} = -0.6 e^{-20t} \text{mA} \quad (t > 0)$$

● RL电路的零输入响应

开关连接于1端已很久,电感中的电流等于 I_0 ,换路后的电路如图(b)。

电路分析基础A 第5章一阶电路分析

(b)

列方程: $u_R = u_L$ 代入元件VCR, 得 $-Ri_L = L\frac{di_L}{di_L}$

得到以下常系数一阶线性齐次微分方程:

该微分方程的通解为 $i_L(t) = Be^{-\frac{R}{L}t}$ $(t \ge 0)$

代入初始条件 $i_L(0^+)=I_0$ 求得: $B=I_0$

则:响应电感电流和电感电压为:

$$i_{L}(t) = I_{0}e^{-\frac{R}{L}t} = I_{0}e^{-\frac{t}{\tau}} \quad (t \ge 0)$$

$$u_{L}(t) = L\frac{di_{L}}{dt} = -RI_{0}e^{-\frac{R}{L}t} = -RI_{0}e^{-\frac{t}{\tau}} \quad (t > 0)$$

其中: $\tau = L/R$, 具有时间的量纲,称它为RL电路的时间常数。

其波形如下图:

RL电路零输入响应也是按指数规律衰减,衰减的快慢取决于时间常数τ。

电阻在电感放电过程中消耗的总能量:

$$W_{R} = \int_{0}^{\infty} i_{L}^{2}(t)Rdt = RI_{0}^{2} \int_{0}^{\infty} e^{-\frac{2Rt}{L}} dt = \frac{1}{2} LI_{0}^{2}$$

表明: 电感在放电过程中释放的能量全部转换为电阻消耗的能量。

例11 开关 S_1 连1端已很久,t=0时 S_1 倒向2端,开关 S_2 也同时闭合。求t≥0时的 $i_L(t)$ 和 $u_L(t)$ 。

电路分析基础A 第5章一阶电路分析

解: 换路瞬间,电感电压有界,电感电流不能跃变,故 $i_{\rm L}(0^+)=i_{\rm L}(0^-)=0.1{\rm A}$

图(b) 电路的时间常数为

$$\tau = \frac{L}{R_0} = \frac{0.2}{200} = 10^{-3} \,\text{s} = 1 \,\text{ms}$$

电感电流和电感电压为

$$i_{\rm L}(t) = I_0 e^{-\frac{t}{\tau}} = 0.1 e^{-1000t} \text{mA} \quad (t \ge 0)$$

$$u_{\rm L}(t) = L \frac{\mathrm{d}i_{\rm L}}{\mathrm{d}t} = -0.2 \times 0.1 \times 10^3 \,\mathrm{e}^{-1000t} \,\mathrm{V}$$

$$= -20e^{-1000t}V \qquad (t > 0)$$

一阶电路零输入响应的一般公式

各电压电流响应均从其初始值开始,按照指数规律衰减到零,一般形式为

$$r_{zi}(t) = r_{zi}(0^+)e^{-\frac{t}{\tau}}, \quad t > 0$$

时间常数τ:

RC电路, $\tau=RC$; RL电路, $\tau=L/R$ 。 R为断开动态元件后的戴维南等效电路的等效电阻。

确定一阶电路零输入响应的一般步骤

- 1、画出0⁻时的等效电路,计算 $u_c(0^-)$ 和 $i_L(0^-)$
- 2、由换路定则确定基本初始值 $u_c(0^+)$ 和 $i_L(0^+)$
- 3、画出 0^+ 时的等效电路,其中电容用电压源 $u_c(0^+)$ 、电感用电流源 $i_L(0^+)$ 替代,计算所求零输入响应的初始值 $r_{z_i}(0^+)$;
- 4、画出求 τ 时的等效电路,求等效电阻时令所有的独立电源置0,计算时间常数 τ ;
- 5、代入零输入响应的一般形式。

$$r_{zi}(t) = r_{zi}(0^+)e^{-\frac{t}{\tau}}, \quad t > 0$$

例12(P143例5-6) 已知 i_L (0⁻)=1.5A, L=0.5H, 求 i_1 (t)和 u_L (t)。

解: (1) 求_u_C(0⁺) 及 i_L(0⁺): 由换路定则,得:

$$i_{\rm L}(0^+) = i_{\rm L}(0^-) = 1.5A$$

(2) 画 0^+ 图,求初始值 $i_1(0^+)$ 和 $u_L(0^+)$ 。

网孔法:

$$i_I = i_1(0^+),$$
 $i_{II} = i_L(0^+) = 1.5A$

$$-4i_{1}(0^{+}) + i_{1}(0^{+})$$
 $u_{L}(0^{+})$
 $t=0^{+}$
 $t=0^{+}$
图

网孔方程:
$$(5+10)i_1(0^+)-5\times1.5=0$$

即:
$$i_1(0^+) = 0.5 A$$

$$u_{\rm L}(0^+) = -4i_1(0^+) + 10i_1(0^+) = 3 \,\rm V$$

(3) 求时间常数: 先求电感两端的等效电阻,用加压求流法:

$$\begin{cases} \boldsymbol{u} = -4\boldsymbol{i}_1 + 10\boldsymbol{i}_1 = 6\boldsymbol{i}_1 \\ \boldsymbol{i}_1 = \frac{5}{5+10}\boldsymbol{i} \end{cases}$$

$$i_{L}$$
 i_{1}
 i_{1}
 i_{1}
 i_{1}
 i_{2}
 i_{3}
 i_{4}
 i_{1}
 i_{2}
 i_{3}
 i_{4}
 i_{5}
 i_{1}
 i_{1}

消去
$$i_1$$
得: $u = 2i$ 即: $R_{eq} = \frac{u}{i} = 2\Omega$
则: $\tau = \frac{L}{R} = \frac{0.5}{2} = \frac{1}{4}s$

(4) 初始值和时间常数代入一般形式:

$$r_{zi}(t) = r_{zi}(0^+)e^{-\frac{t}{\tau}}, t > 0$$

有:

$$i_1(t) = 0.5e^{-4t}A, \quad t > 0$$

 $u_L(t) = 3e^{-4t}V, \quad t > 0$