Class 8

Def. $L = \{ \text{Lebesgue measurable subets of } \mathbb{R} \}$ (\rightarrow from measure theory)

 $B = \{ \text{Borel subsets of } \mathbb{R} \} \qquad (\to \text{from topology})$

m = Lebesgue measurable on \mathbb{R}

Relations between *L&B*:

Def.
$$C = [0,1] \setminus (I_1 \cup I_2 \cup I_3 \cup ...)$$
 (cf. Ex. 1.9.12)

Cantor set

Properties:

(1) C bdd & closed \Rightarrow compact & Borel

(∵ intersection of closed sets)

(2)
$$m(C) = 0$$
 Pf: $m(C) = 1 - \frac{1}{3} - \frac{2}{9} - \frac{4}{27} - \dots = 1 - \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = 0$

Set Theory: study <u>number of elements</u> of infinite set

cardinality

G. Cantor (1845-1918)

A, B sets

Def. #A = #B if $\exists f: A \rightarrow B \ 1-1 \& \text{ onto}$

 $\#A \leq \#B$ if $\exists f: A \rightarrow B \ 1-1$

Def. $(\#A) + (\#B) = \#(A \cup B)$ (disjoint union of A & B)

$$(\# A) \cdot (\# B) = \#(A \times B)$$

$$\#A^{\#B} = \#\{f: B \to A\}$$

$$\aleph_0 = \# \, \mathbb{N}$$

$$\aleph_1 = \# \mathbb{R}$$

Thm. 1. #
$$\wp(A) = 2^{\#A}$$

Thm. 2. $\#A \le \#B \& \#B \le \#A \implies \#A = \#B$ (Schröder-Bernstein)

Thm. 3. $\#A < 2^{\#A}$

Thm. 4. A infinite set \Leftrightarrow A has a subset $C \ni \#A = \#C$

Thm. 5. A infinite set \Leftrightarrow A has a subset $B \ni \#B = \#\mathbb{N}$

Thm. 6. $\aleph_1 = 2^{\aleph_0}$

Note: 1. specific sets in $L \setminus B$ difficult to give. (typical for modern analysis)

2. $m \mid B$ not complete. Reason: \exists subsets of C, not in B. ($\because \#2^C = 2^{\aleph_1} > \aleph_1 = \#B$)

3. m is the completion of $m \mid B$. (see below)

Thm 1.
$$E \subseteq \mathbb{R}$$
 (cf. Royden, p. 62)

Then
$$E \in L \Leftrightarrow \forall \varepsilon > 0$$
, \exists open $O \supseteq E \ni m^*(O \setminus E) < \varepsilon$
Pf. " \Rightarrow "(Ex. 1.9.7)

"
$$\Leftarrow$$
" Check: $m^*(A) \ge m^*(A \cap E) + m^*(A \setminus E) \quad \forall A \subset \mathbb{R}$

$$\because O \in L$$

$$: m^*(A) = m^*(A \cap O) + m^*(A \setminus O)$$

$$m^*(A \cap E)$$
 $m^*(A \setminus E) - m^*(O \setminus E) \ge m^*(A \setminus E) - \varepsilon$

$$:: A \setminus E \subseteq (A \setminus O) \cup (O \setminus E)$$

$$:: m^*(A \setminus E) \le m^*(A \setminus O) + m^*(O \setminus E)$$

$$\Rightarrow m^*(A) \ge m^*(A \cap E) + m^*(A \setminus E) - \varepsilon$$

Let $\varepsilon \to 0$

Thm 2.
$$E \subseteq \mathbb{R}$$

Then
$$E \in L \Leftrightarrow \forall \varepsilon > 0$$
, \exists closed $F \subseteq E \ni m^*(E \setminus F) < \varepsilon$

Pf. "
$$\Rightarrow$$
" $E \in L \Rightarrow E^{c} \in L$

Apply Thm 3 to
$$E^{c} \Rightarrow \exists$$
 open $O \supseteq E^{c} \Rightarrow m^{*}(O \setminus E^{c}) < \varepsilon$
 $E \supseteq O^{c} \Rightarrow m^{*}(E \setminus F) = m^{*}(E \setminus O^{c}) = m^{*}(O \setminus E^{c}) < \varepsilon$

$$2 O^{c} \ni m^{*}(E \setminus F) = m^{*}(E \setminus O^{c}) = m^{*}(O \setminus E^{c}) < \varepsilon$$

F

$$E \cap O = O \cap (E^c)^c$$

closed

" \Leftarrow " Check: $E^c \in L$ by reversing above arguments.

Thm 3. $A \subseteq \mathbb{R}$

Then
$$A \in L \Leftrightarrow A = C \cup N$$
, where $C \in B$, $N \in L \& m(N) = 0$

"
$$\Rightarrow$$
" (Ex. 1.9.8)

Thm 2.
$$\Rightarrow \forall n \ge 1, \exists \operatorname{closed} F_n \ni F_n \subseteq A \& m^*(A \setminus F_n) < \frac{1}{n}$$

Let
$$C = \bigcup_{n=1}^{\infty} F_n \in B$$
, $C \subseteq A$

Let
$$N = A \setminus C \in L$$

$$m(N) = m(A \setminus C) \le m(A \setminus F_n) < \frac{1}{n} \quad \forall n \ge 1$$

$$\Rightarrow m(N) = 0$$

Note.1. *m* is the completion of $m \mid B \& \overline{B} = L$

2. Thm's 1-3 true for \mathbb{R}^n

Littlewood principles (Royden, p. 72, Sec. 3.6)

Principle I:
$$A \in L \Leftrightarrow A \sim \bigcup_{i=1}^{n} I_i$$

Then
$$E \in L \Leftrightarrow \forall \varepsilon > 0$$
, \exists finite open intervals $\{I_i\}_{i=1}^n \ni m^*(E \triangle (\bigcup_{i=1}^n I_i)) < \varepsilon$

Pf. "⇒":

Thm 1
$$\Rightarrow \forall \varepsilon > 0$$
, \exists open $O \supseteq E \ni m(O \setminus E) < \varepsilon$

Note: $O \subseteq \mathbb{R}$, O open $\Leftrightarrow O = \bigcup_{n=1}^{\infty} I_n$, where $\{I_n\}$ disjoint open intervals.

"⇒":

Define
$$x \sim y$$
 if $\overline{xy} \subseteq O$ for $x, y \in O$.

Then"~" equivalence relation.

Each equivalence class is an open interval

$$\Rightarrow O = \bigcup_{\alpha} I_{\alpha}$$

 \because Correspond each I_{α} to different rational no. in I_{α} . $\Rightarrow \{I_{\alpha}\}$ countably many

$$\therefore O = \bigcup_{n=1}^{\infty} I_n.$$

$$:: O \setminus \bigcup_{i=1}^{n} I_{i} \downarrow \phi$$

$$\Rightarrow m(O\setminus (\bigcup_{i=1}^{n} I_i)) < \varepsilon \text{ for large } n$$

$$\Rightarrow m(E \triangle (\bigcup_{i=1}^{n} I_{i})) \leq m(E \setminus (\bigcup_{i} I_{i})) + m((\bigcup_{i} I_{i}) \setminus E)$$

$$\land \land \qquad \qquad \land \land \qquad \qquad$$

$$((J))$$
 $m(O) F$

$$m(O\setminus (\bigcup_{i}I_{i})) \quad m(O\setminus E)$$

" \Leftarrow " as in Thm 1.

Homework: Ex 1.9.7, 1.9.14, 1.9.15

