ÁLGEBRA II (61.08 - 81.02)

Evaluación integradora Duración: 3 horas Segundo cuatrimestre – 2022 14/XII/22 – 9:00 hs.

Apellido y Nombres:

Legajo:

Curso:

En R² con el producto interno ⟨·, ·⟩ definido por

$$\langle x, y \rangle = y^T \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} x$$

se considera Π la proyección ortogonal de \mathbb{R}^2 sobre el subespacio $\mathbb{S} = \{x \in \mathbb{R}^2 : 3x_1 + 5x_2 = 0\}$. Hallar todos los $x \in \mathbb{R}^2$ tales que $\Pi(x) = \begin{bmatrix} -5 & 3 \end{bmatrix}^T$ cuya distancia al subespacio \mathbb{S} sea igual a 1.

2. Hallar, si existe, una matriz $\Lambda \in \mathbb{R}^{2 \times 2}$ tal que $tr(\Lambda) = -6$ tal que

$$A^2 + 3A - 2I = \begin{bmatrix} -1 & 3 \\ 3 & -1 \end{bmatrix}.$$

3. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz definida por

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 0 \end{bmatrix}.$$

Hallar todas las soluciones de la ecuación $\lim_{k\to\infty} A^k x = \begin{bmatrix} 6 & -6 & 6 \end{bmatrix}^T$.

4. Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz de rango 2 tal que $\begin{bmatrix} -2 & 1 & 2 \end{bmatrix}^T \in \text{nul}(A)$ y

$$A \begin{bmatrix} 2 & 1 \\ 2 & -2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} \frac{3}{7} & 0 \\ 0 & \frac{3}{14} \end{bmatrix}.$$

Halar todas las soluciones por cuadrados mínimos de la ecuación $Ax = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ y determinar la de norma mínima.

5. Sea $T: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal definida por T(x) = Ax, donde

$$A = \begin{bmatrix} -8 \\ 6 \end{bmatrix} \begin{bmatrix} 6 & 3 & 2 \end{bmatrix} + \begin{bmatrix} 6 \\ 8 \end{bmatrix} \begin{bmatrix} -6 & 4 & 12 \end{bmatrix}.$$

Hallar entre todos los $x \in \mathbb{R}^3$ que satisfacen ||x|| = 1 aquellos que maximizan ||T(x)|| v