

FCC 47 CFR PART 22H and 24E

Product Type : PDA phone

Applicant : ModeLabs manufacture

Address

11 Bis, RUE ROQUEPINE, 75008, PARIS, FRANCE

Trade Name : TAG Heuer

Model Number : TH02M

Test : FCC 47 CFR PART 22H: Oct, 2009 Specification : FCC 47 CFR PART 24E: Oct, 2009

ANSI/TIA-603-C 2004

Issue Date : Apr. 14, 2011

Issue by

A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City,
Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

Note: This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Revised By
00	Apr. 14, 2011	Initial Issue	

Verification of Compliance

Issued Date: 2011/04/14

Product Type : PDA phone

Applicant : ModeLabs manufacture

Address : 11 Bis, RUE ROQUEPINE, 75008, PARIS, FRANCE

Trade Name : TAG Heuer

Model Number : TH02M

FCC ID : WCKTH02M EUT Rated Voltage : DC 5.0V, 1.0A

Test Voltage : 120 Vac / 60 Hz

Applicable : FCC 47 CFR PART 22H: Oct, 2009 Standard FCC 47 CFR PART 24E: Oct, 2009

ANSI/TIA-603-C 2004

Test Result : Complied

Performing Lab. : A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade City

Taoyuan County 334, Taiwan R.O.C.

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number:

1330

http://www.atl-lab.com.tw/e-index.htm

The above equipment was tested by A Test Lab Techno Corp. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 22H, Part 24E.

The test results of this report relate only to the tested sample identified in this report.

Approved By

(Manager)

(Miller Lee)

Reviewed By

(Testing Engineer)

(Gan Wu)

TABLE OF CONTENTS

1	Gen	eral Information	6
	1.1.	EUT Description	6
	1.2.	Mode of Operation	7
	1.3.	EUT Exercise Software	7
	1.4.	Configuration of Test System Details	8
	1.5.	Test Site Environment	8
	1.6.	Summary of Test Result	8
2	RF C	Output Power Test	9
	2.1.	Limit	9
	2.2.	Test Instruments	9
	2.3.	Test Setup	9
	2.4.	Test Procedure	9
	2.5.	Uncertainty	10
	2.6.	Test Result	10
3	Effe	ctive Radiated Power / Equivalent Isotropic Radiated Power Test	14
	3.1.	Limit	14
	3.2.	Test Instruments	14
	3.3.	Setup	15
	3.4.	Test Procedure	16
	3.5.	Uncertainty	16
	3.6.	Test Result	17
4	Occi	upied Bandwidth Test	20
	4.1.	Limit	20
	4.2.	Test Instruments	20
	4.3.	Setup	20
	4.4.	Test Procedure	21
	4.5.	Uncertainty	21
	4.6.	Test Result	22
5	Con	ducted Emission Test	42
	5.1.	Limit	42
	5.2.	Test Instruments	42
	5.3.	Setup	42
	5.4.	Test Procedure	43
	5.5.	Uncertainty	43
	5.6.	Test Result	43

Field	I Strength of Spurious Radiation Test	93
6.1.	Limit	93
6.2.	Test Instruments	93
6.3.	Setup	94
6.4.	Test Procedure	94
6.5.	Uncertainty	95
6.6.	Test Result	96
Freq	uency Stability (Temperature Variation) Test	108
7.1.	Limit	108
7.2.	Test Instruments	108
7.3.	Setup	108
7.4.	Test Procedure	109
7.5.	Uncertainty	109
7.6.	•	
Freq	uency Stability (Voltage Variation) Test	112
8.1.	Limit	112
8.2.	Test Instruments	112
8.3.	Setup	112
8.4.	Test Procedure	112
8.5.	Uncertainty	113
8.6.		
AC F		
9.1.	Limit	115
9.2.	Test Instruments	115
9.3.		
9.4.	·	
	•	
	6.1. 6.2. 6.3. 6.4. 6.5. 6.6. Freq 7.1. 7.2. 7.3. 7.4. 7.5. Freq 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. AC F 9.1. 9.2.	6.1. Limit

1 General Information

1.1. EUT Description

Applica	nt	ModeLabs manufacture						
Applicant Address		11 Bis, RUE ROQUEPINE, 75008, PARIS, FRANCE						
Manufacturer			os manufacture	·				
	cturer Address		RUE ROQUEPINE, 75008,	PARIS, FRANCE				
Product	Туре	PDA pho						
Trade N		TAG He						
Model N	Number	TH02M						
FCC ID		WCKTH	02M					
IMEI NO)	3576310	40015514					
	OOM/ODDO/	Band	UL Frequency (MHz)	DL Frequency (MHz)	Modulation			
	GSM/GPRS/ EGPRS	850	824.2 ~ 848.8	869.2 ~ 893.8	GMSK/8PSK			
Mode	LOFKO	1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8	GMSK/8PSK			
iviode	WCDMA/	Band	UL Frequency (MHz)	DL Frequency (MHz)	Modulation			
	HSDPA/	II	1852.4 ~ 1907.6	1932.4 ~ 1987.6	QPSK			
	HSUPA	V	826.4 ~ 846.6	871.4 ~ 891.6	QPSK			
Channe	el Control	Auto						
Type of	Antenna	Internal ⁻	Гуре					
Antenna	a Gain (dBi)	GSM/GPRS/EGPRS 850: -6.2 dBi						
		GSM/GPRS/EGPRS 1900: -2.0 dBi						
		WCDMA/ HSDPA/ HSUPA Band II: -2.0 dBi						
		WCDMA/ HSDPA/ HSUPA Band V: -6.2 dBi						
Max. R	F Output power	GSM/GPRS/EGPRS 850: 32.70 dBm / 1.862 W						
			PRS/EGPRS 1900: 30.10 c					
		WCDMA/HSDPA/ HSUPA Band II: 27.70 dBm / 0.589 W						
		WCDMA/HSDPA/ HSUPA Band V: 28.07 dBm / 0.641 W						
Max. El	RP/EIRP	GSM 850: 27.30 dBm / 0.537 W						
		GPRS 850: 27.47 dBm / 0.558 W						
		EGPRS 850: 24.02 dBm / 0.252 W						
		GSM 1900: 26.54 dBm / 0.451 W						
		GPRS 1900: 26.48 dBm / 0.445 W						
		EGPRS 1900: 26.39 dBm / 0.436W						
		WCDMA Band II: 25.50 dBm / 0.355 W						
Emissis	n Designator	WCDMA Band V: 19.84 dBm / 0.096 W						
LIIISSIC	Emission Designator		GSM 850: 245KGXW GPRS 850: 249KGXW					
			850: 245KG7W					
			000: 245KGXW					
			900: 248KGXW					
			1900: 245KG7W					
			Band II: 4M07F9W					
			Band V: 4M04F9W					
		VVCDIVIA DATIU V. 4IVIU4F3VV						

1.2. Mode of Operation

ATL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

est Mode	
lode 1: GSM 850 Link	
lode 2: GSM 1900 Link	
lode 3: WCDMA Band II Link	
lode 4: WCDMA Band V Link	
lode 5: GPRS 850 Link	
lode 6: GPRS 1900 Link	
Node 7: EGPRS 850 Link	
lode 8: EGPRS 1900 Link	

Note: Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.

WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power. Based on the investigation results, the highest peak power and enhanced data rate is the worst-case scenario for all measurements.

Worst case modes:

■ Cellular & PCS bands for GSM and WCDMA

For the fundamental investigation, since the EUT is a portable device that has three orientations; therefore XY, YZ and ZX orientations have been investigated, also with AC/DC adapter and headset and the worst case was found to be on EUT only at ZX orientation for both Cell and for PCS band.

Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Product	Manufacturer	Model Number	Serial Number	Power Cord
	1.	Universal Radio Communication Tester	R&S	CMU200	109369	N/A

1.3. EUT Exercise Software

1.	Setup the EUT and Base Station (CMU200) as shown on 1.4.
2.	Turn on the power of all equipment.

1.4. Configuration of Test System Details

1.5. Test Site Environment

Items	Required (IEC 68-1)	Actual	
Temperature (°C)	15-35	25	
Humidity (%RH)	25-75	50	
Barometric pressure (mbar)	860-1060	950	

1.6. Summary of Test Result

Description	FCC Rule	IC Rule	Limit	Result
Conducted Output Power	§2.1046	N/A	N/A	Pass
Effective Radiated Power	§22.913(a)(2)	RSS-132(4.4) SRSP-503(5.1.3)	< 7 Watts for FCC (<6.3 Watts for IC)	Pass
Equivalent Isotropic Radiated Power	§24.232(c)	RSS-133 (6.4) SRSP-510(5.1.2)	< 2 Watts	Pass
Occupied Bandwidth	§2.1049 §22.917(a) §24.238(a)	N/A	N/A	Pass
Band Edge Measurement	§2.1051 §22.917(a) §24.238(a)	RSS-132 (4.5.1)RSS-133 (6.5.1)	< 43+10log ₁₀ (P[Watts])	Pass
Conducted Emission	§2.1051 §22.917(a) §24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	< 43+10log ₁₀ (P[Watts])	Pass
Field Strength of Spurious Radiation	§2.1053 §22.917(a) §24.238(a)	RSS-132 (4.5.1) RSS-133 (6.5.1)	< 43+10log ₁₀ (P[Watts])	Pass
Frequency Stability for Temperature & Voltage	§2.1055 §22.355 §24.235	RSS-132(4.3) RSS-133(6.3)	< 2.5 ppm	Pass

2 RF Output Power Test

2.1. Limit

N/A

2.2. Test Instruments

Describe	Manufacturer	Model No.	Serial No.	Cal. Date	Remark
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	109369	07/29/2009	(2)
Single Channel PK Power Sensor	Agilent	N1911A	MY45101619	07/19/2010	(1)
Wideband Power Meter	Agilent	N1921A	MY45241957	07/19/2010	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

2.3. Test Setup

2.4. Test Procedure

The measurement is made according to ANSI/TIA-603-C-2004 as follows:

- 1. The transmitter output was connected to power meter and base station through power divider.
- 2. Set base station for EUT at GSM 850: PCL=5 and PCS 1900: PCL=0.
- 3. Set base station for EUT at WCDMA Band V and WCDMA Band II, power level was set to maximum.
- 4. Select lowest, middle, and highest channels for each band.

2.5. Uncertainty

The measurement uncertainty is defined as for RF output power measurement is 1.2 dB.

2.6. Test Result

Model Number	TH02M					
Test Item	RF Output Power					
Date of Test	01/31/2011			Test Site	TE02	
Bands	Data Rate Frequency		Averag	ge Power	Peak	Power
Danus	Dala Kale	(MHz)	(dBm)	(W)	(dBm)	(W)
		824.2	32.40	1.738	32.60	1.820
GSM 850		836.4	32.50	1.778	32.70	1.862
		848.8	32.40	1.738	32.60	1.820
		824.2	32.50	1.778	32.60	1.820
	4Down1Up	836.4	32.50	1.778	32.70	1.862
		848.8	32.50	1.778	32.70	1.862
	3Down2Up	824.2	32.50	1.778	32.70	1.862
		836.4	32.50	1.778	32.70	1.862
CDDC 050		848.8	32.50	1.778	32.60	1.820
GRRS 850	2Down3Up	824.2	32.20	1.660	32.40	1.738
		836.4	32.30	1.698	32.50	1.778
		848.8	32.20	1.660	32.40	1.738
	1Down4Up	824.2	31.30	1.349	31.50	1.413
		836.4	31.40	1.380	31.60	1.445
		848.8	31.30	1.349	31.50	1.413
		824.2	27.70	0.589	30.40	1.096
	4Down1Up	836.4	27.80	0.603	30.60	1.148
		848.8	27.70	0.589	30.50	1.122
		824.2	27.70	0.589	30.50	1.122
	3Down2Up	836.4	27.80	0.603	30.60	1.148
ECDDO 050		848.8	27.70	0.589	30.50	1.122
EGPRS 850		824.2	26.90	0.490	29.70	0.933
	2Down3Up	836.4	27.00	0.501	29.80	0.955
		848.8	26.90	0.490	29.70	0.933
		824.2	25.70	0.372	28.50	0.708
	1Down4Up	836.4	25.80	0.380	28.60	0.724
		848.8	25.70	0.372	28.60	0.724

Model Number	TH02M						
Test Item	RF Output Power						
Date of Test	01/31/2011			Test Site	TE02		
Bands	Data Rate	Frequency	Averag	e Power	Peak	Power	
Danus	Data Nate	(MHz)	(dBm)	(W)	(dBm)	(W)	
		1850.20	30.00	1.000	30.10	1.023	
GSM 1900		1880.00	29.90	0.977	30.00	1.000	
		1909.80	29.90	0.977	30.00	1.000	
		1850.20	30.00	1.000	30.10	1.023	
	4Down1Up	1880.00	30.00	1.000	30.10	1.023	
		1909.80	29.90	0.977	30.10	1.023	
	3Down2Up	1850.20	30.00	1.000	30.20	1.047	
		1880.00	30.00	1.000	30.20	1.047	
GRRS 1900		1909.80	29.90	0.977	30.10	1.023	
GKK3 1900	2Down3Up	1850.20	29.70	0.933	29.90	0.977	
		1880.00	29.70	0.933	29.90	0.977	
		1909.80	29.60	0.912	29.80	0.955	
	1Down4Up	1850.20	28.70	0.741	28.90	0.776	
		1880.00	28.60	0.724	28.70	0.741	
		1909.80	28.60	0.724	28.80	0.759	
		1850.20	26.40	0.437	29.50	0.891	
	4Down1Up	1880.00	26.40	0.437	29.40	0.871	
		1909.80	26.40	0.437	29.30	0.851	
		1850.20	26.50	0.447	29.60	0.912	
	3Down2Up	1880.00	26.40	0.437	29.50	0.891	
EGPRS 1900		1909.80	26.40	0.437	29.40	0.871	
EGFK3 1900		1850.20	26.20	0.417	29.30	0.851	
	2Down3Up	1880.00	26.20	0.417	29.20	0.832	
		1909.80	26.20	0.417	29.30	0.851	
		1850.20	25.00	0.316	28.20	0.661	
	1Down4Up	1880.00	25.10	0.324	28.30	0.676	
		1909.80	25.00	0.316	28.20	0.661	

Model Number	TH02M					
Test Item	RF Output P	ower				
Date of Test	01/31/2011			Test Site	TE02	
Bands	Sub-Test	Frequency	Averag	je Power	Peak	Power
Danus	Sub-Test	(MHz)		(W)	(dBm)	(W)
		1852.4	23.98	0.250	27.70	0.589
WCDMA Band II		1880.0	23.81	0.240	27.48	0.560
Danu II		1907.6	23.75	0.237	27.68	0.586
		1852.4	21.97	0.157	25.69	0.371
	1	1880.0	21.85	0.153	25.52	0.356
		1907.6	22.00	0.158	25.93	0.392
		1852.4	21.90	0.155	25.62	0.365
	2	1880.0	21.85	0.153	25.52	0.356
HSDPA		1907.6	21.97	0.157	25.90	0.389
Band II		1852.4	21.47	0.140	25.17	0.329
	3	1880.0	21.33	0.136	24.96	0.313
		1907.6	21.50	0.141	25.42	0.348
		1852.4	21.43	0.139	25.18	0.330
	4	1880.0	21.34	0.136	25.00	0.316
		1907.6	21.44	0.139	25.41	0.348
		1852.4	21.91	0.155	25.63	0.366
	1	1880.0	21.91	0.155	25.58	0.361
		1907.6	21.97	0.157	25.90	0.389
		1852.4	19.89	0.097	23.57	0.228
	2	1880.0	19.90	0.098	23.54	0.226
		1907.6	19.96	0.099	23.84	0.242
		1852.4	20.90	0.123	24.59	0.288
HSUPA Band II	3	1880.0	20.88	0.122	24.55	0.285
Danu II		1907.6	20.89	0.123	24.88	0.308
		1852.4	19.88	0.097	23.56	0.227
	4	1880.0	19.84	0.096	23.55	0.226
		1907.6	19.93	0.098	23.81	0.240
		1852.4	21.83	0.152	25.57	0.361
	5	1880.0	21.83	0.152	25.51	0.356
		1907.6	21.95	0.157	25.88	0.387

Model Number	TH02M						
Test Item	RF Output P	ower					
Date of Test	01/31/2011			Test Site	TE02	E02	
Donada	Cub Toot	Frequency	Averag	ge Power	Peak	Power	
Bands	Sub-Test	(MHz)	(dBm)	(W)	(dBm)	(W)	
VACCIDADA		826.4	24.24	0.265	28.07	0.641	
WCDMA Band V		836.4	24.07	0.255	27.71	0.590	
Dana v		846.4	23.97	0.249	27.75	0.596	
		826.4	22.55	0.180	26.33	0.430	
	1	836.4	22.23	0.167	25.87	0.386	
		846.4	22.50	0.178	26.18	0.415	
		826.4	22.50	0.178	26.33	0.430	
	2	836.4	22.31	0.170	25.92	0.391	
HSDPA		846.4	22.48	0.177	26.18	0.415	
Band V	3	826.4	22.50	0.178	26.37	0.434	
		836.4	22.30	0.170	25.90	0.389	
		846.4	22.46	0.176	26.18	0.415	
		826.4	22.50	0.178	26.33	0.430	
	4	836.4	22.31	0.170	25.92	0.391	
		846.4	22.43	0.175	26.15	0.412	
		826.4	21.69	0.148	25.52	0.356	
	1	836.4	21.65	0.146	25.29	0.338	
		846.4	21.63	0.146	25.41	0.348	
		826.4	19.68	0.093	23.48	0.223	
	2	836.4	19.60	0.091	23.21	0.209	
		846.4	19.57	0.091	23.36	0.217	
1101104		826.4	20.61	0.115	24.52	0.283	
HSUPA Band V	3	836.4	20.61	0.115	24.24	0.265	
Danu v		846.4	20.58	0.114	24.36	0.273	
		826.4	19.61	0.091	23.44	0.221	
	4	836.4	19.59	0.091	23.25	0.211	
		846.4	19.62	0.092	23.40	0.219	
		826.4	21.66	0.147	25.44	0.350	
	5	836.4	21.63	0.146	25.22	0.333	
		846.4	21.61	0.145	25.38	0.345	

3 Effective Radiated Power / Equivalent Isotropic Radiated Power Test

3.1. Limit

For FCC Part 22.913(a)(2): The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

For FCC Part 24.232(b): The EIRP of mobile transmitters and auxiliary test transmitters must not exceed 2 Watts.

3.2. Test Instruments

		3 Meter Chambe	r		
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
RF Pre-selector	Agilent	N9039A	MY46520256	01/17/2011	(2)
Spectrum Analyzer	Agilent	E4446A	MY46180578	02/24/2010	(1)
Pre Amplifier	Agilent	8449B	3008A02237	02/24/2010	(1)
Pre Amplifier	Agilent	8447D	2944A10961	02/24/2010	(1)
Bi-log Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	9163-270	08/02/2010	(1)
Horn Antenna	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	9120D-550	06/29/2010	(1)
Horn Antenna	SCHWARZBECK MESS-ELEKTRONIK	BBHA9170	9170-320	06/29/2010	(1)
Test Site	ATL	TE01	888001	07/30/2010	(1)

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

3.3. Setup

Below 1 GHz

Above 1 GHz

For Substituted Method Test Set-UP

3.4. Test Procedure

The measurement is made according to ANSI/TIA-603-C-2004 as follows:

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25 –1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

3.5. Uncertainty

The measurement uncertainty is defined as for Field Strength of Spurious Radiation measurement is ± 3.072 dB.

3.6. Test Result

Model Number	TH02M	ТН02М						
Test Item	ERP/EIRP	ERP/EIRP						
Date of Test	01/31/2011				Test Site	TE01		
Bands	Frequency (MHz)	Ant. Polar.	Read Level (dBm)	Correction factor (dBm)		RP	Limit	
	(IVII IZ)	H	8.31	11.95	(dBm) 20.26	(W) 0.106	< 7W	
	824.2							
		V	12.90	11.29	24.19	0.262	< 7W	
GSM 850	836.4	Н	8.82	12.07	20.89	0.123	< 7W	
GOW 000	030.4	V	13.58	11.34	24.92	0.310	< 7W	
	848.8	Н	8.59	12.50	21.09	0.129	< 7W	
		V	15.83	11.47	27.30	0.537	< 7W	
	824.2	Н	10.83	11.96	22.79	0.190	< 7W	
		V	14.29	11.29	25.58	0.361	< 7W	
GPRS 850	836.4	Н	10.77	12.07	22.84	0.192	< 7W	
GPR3 650	030.4	V	14.88	11.34	26.22	0.419	< 7W	
	848.8	Н	11.05	12.50	23.55	0.226	< 7W	
	040.0	V	16.00	11.47	27.47	0.558	< 7W	
	824.2	Н	9.05	11.95	21.00	0.126	< 7W	
	024.2	٧	10.24	11.30	21.54	0.143	< 7W	
EGPRS 850	836.4	Н	8.48	12.07	20.55	0.114	< 7W	
EGPRS 000	030.4	V	11.39	11.34	22.73	0.187	< 7W	
	848.8	Н	8.58	12.52	21.10	0.129	< 7W	
		V	12.55	11.47	24.02	0.252	< 7W	

Note: 1. ERP/EIRP = Read Level + Correction factor.

^{2.} For WCDMA signals, a peak detector is used with RBW = VBW = 5MHz.

^{3.} For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW= 1 MHz.

Model Number	TH02M						
Test Item	ERP/EIRP						
Date of Test	01/31/2011				Test Site	TE01	
Bands	Frequency	Ant.	Read Level	Correction factor	EII	RP	Limit
banus	(MHz)	Polar.	(dBm)	(dBm)	(dBm)	(W)	LIIIIII
	1850.20	Η	11.64	10.42	22.06	0.161	< 2W
	1630.20	V	18.01	8.26	26.27	0.424	< 2W
GSM 1900	1880.00	Η	11.70	10.44	22.14	0.164	< 2W
GSIVI 1900	1880.00	V	18.00	8.50	26.50	0.447	< 2W
	1909.80	Н	12.18	10.44	22.62	0.183	< 2W
		V	17.82	8.72	26.54	0.451	< 2W
	1850.20	Η	13.34	10.42	23.76	0.238	< 2W
		V	17.98	8.26	26.24	0.421	< 2W
GPRS 1900	1880.00	Η	13.43	10.44	23.87	0.244	< 2W
GPR3 1900	1000.00	V	17.94	8.50	26.44	0.441	< 2W
	1909.80	Η	14.60	10.43	25.03	0.318	< 2W
	1909.00	V	17.76	8.72	26.48	0.445	< 2W
	1850.20	Н	10.57	10.42	20.99	0.126	< 2W
	1030.20	٧	17.90	8.26	26.16	0.413	< 2W
EGPRS 1900	1880.00	Н	11.35	10.44	21.79	0.151	< 2W
LGFK3 1900	1000.00	V	17.87	8.50	26.37	0.434	< 2W
	1909.80	Н	11.45	10.43	21.88	0.154	< 2W
	1303.00	V	17.66	8.73	26.39	0.436	< 2W

Note: 1. ERP/EIRP = Read Level + Correction factor.

- 2. For WCDMA signals, a peak detector is used with RBW = VBW = 5MHz.
- 3. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW= 1 MHz.

Model Number	TH02M							
Test Item	ERP/EIRP							
Date of Test	07/05/2010				Test Site	TE0)1	
Bands	Frequency (MHz)	Ant. Polar.	Read Level (dBm)	Correction factor (dBm)	or dBm	EIR	RP (W)	Limit
	1852.4	Н	9.57	10.43	20.00)	0.100	< 2W
	1002.4	V	17.21	8.29	25.50)	0.355	< 2W
WCDMA	1880.0	Н	9.01	10.44	19.45	5	0.088	< 2W
Band II	1000.0	V	16.99	8.48	25.47	7	0.352	< 2W
1	1907.6	Н	10.16	10.44	20.60)	0.115	< 2W
	1907.6	V	16.56	8.70	25.26	3	0.336	< 2W

Model Number	TH02M							
Test Item	ERP/EIRP							
Date of Test	07/05/2010				Test Site	TE01		
Bands	Frequency (MHz)	Ant. Polar.	Read Level (dBm)	Correction facto (dBm)	r (dBm	ERP	(W)	Limit
	000.4	Н	5.34	11.97	17.31		0.054	< 7W
	826.4	V	7.50	11.30	18.80)	0.076	< 7W
WCDMA	836.4	Н	4.61	12.06	16.67	7	0.046	< 7W
Band V	٧	7.65	11.33	18.98	3	0.079	< 7W	
946.4	Н	3.35	12.38	15.73	3	0.037	< 7W	
	846.4	V	8.42	11.42	19.84	ı	0.096	< 7W

Note: 1. ERP/EIRP = Read Level + Correction factor.

- 2. For WCDMA signals, a peak detector is used with RBW = VBW = 5MHz.
- 3. For AMPS, GSM, and NADC TDMA signals, a peak detector is used, with RBW = VBW= 1 MHz.

4 Occupied Bandwidth Test

4.1. Limit

The Occupied Bandwidth Limit:

N/A.

The Band Edge Limit:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

4.2. Test Instruments

Describe	Manufacturer	Model No.	Serial No.	Cal. Date	Remark
Spectrum Analyzer	Agilent	E4445A	MY46181986	05/14/2009	(2)
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	109369	07/29/2009	(2)
Attenuator	RADIALL	R41572000	0603033073	N.C.R.	
Power divider	Agilent	87302C	3239A00760	N.C.R.	
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

4.3. Setup

4.4. Test Procedure

The measurement is made according to FCC rules part 22 and 24:

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The occupied bandwidth of middle channel for the highest and lowest RF powers was measured.
- 3. The band edge of low and high channels for the highest RF powers within the transmitting frequency band were measured. Setting RBW as roughly BW/100.
- 4. The band edge setting:
 - a. RB=3 kHz; VB=3 kHz for GSM 850 and PCS 1900.
 - b. RB=100 kHz; VB=100 kHz for WCDMA Band V and WCDMA Band II.

4.5. Uncertainty

The measurement uncertainty is defined as ± 10Hz

4.6. Test Result

99% Occupied Bandwidth

Model Number	TH02M					
Test Item	Occupied Bandwidth	Occupied Bandwidth				
Test Mode	Mode 1: GSM 850 Link	Mode 1: GSM 850 Link				
Date of Test	01/31/2011	Test Site	TE02			
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)		Note		
128	824.2	244.7947	RBW:3KHz , VBW:10KHz			
190	836.4 245.0474 RBW:3KHz , VBW:10KHz					
251	848.8	244.7650	RBW:3KHz	z , VBW:10KHz		

Model Number	TH02M					
Test Item	Occupied Bandwidth	Occupied Bandwidth				
Test Mode	Mode 2: GSM 1900 Link					
Date of Test	01/31/2011	Test Site	TE02			
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)		Note		
512	1850.20	241.7705	RBW:3K	Hz , VBW:10KHz		
661	1880.00 243.9053 RBW:3KHz , VBW:10KHz					
810	1909.80	244.7901	RBW:3K	Hz , VBW:10KHz		

Model Number	TH02M					
Test Item	Occupied Bandwidth					
Test Mode	Mode 3: WCDMA Band II Lin	k				
Date of Test	01/31/2011	Test Site	TE02			
Channel No.	Frequency (MHz)	99% Bandwidth (MHz)		Note		
9262	1852.4	4.0423	RBW:51KHz	RBW:51KHz , VBW:160KHz		
9400	1880.0 4.0588 RBW:51KHz , VBW:160KHz					
9538	1907.6	4.0672	RBW:51KHz	z , VBW:160KHz		

Model Number	TH02M					
Test Item	Occupied Bandwidth					
Test Mode	Mode 4: WCDMA Band V Lin	k				
Date of Test	01/31/2011	Test Site	TE02			
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)		Note		
4132	826.4	4.0397	RBW:51K	RBW:51KHz , VBW:160KHz		
4182	836.4 4.0377 RBW:51KHz , VBW:160KHz					
4233	846.4	4.0436	RBW:51K	Hz , VBW:160KHz		

Model Number	TH02M			
Test Item	Occupied Bandwidth			
Test Mode	Mode 5: GPRS 850 Link			
Date of Test	04/12/2011		Test Site	TE02
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)	Note	
128	824.2	249.0312	RBW:3KHz , VBW:10KHz	
190	836.4	246.5070	RBW:3KHz , VBW:10KHz	
251	848.8	248.6562	RBW:3KHz , VBW:10KHz	

Model Number	TH02M			
Test Item	Occupied Bandwidth			
Test Mode	Mode 6: GPRS 1900 Link			
Date of Test	04/12/2011		Test Site	TE02
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)	Note	
512	1850.20	248.3418	RBW:3KHz , VBW:10KHz	
661	1880.00	248.3925	RBW:3KHz , VBW:10KHz	
810	1909.80	246.1950	RBW:3KHz , VBW:10KHz	

Model Number	TH02M			
Test Item	Occupied Bandwidth			
Test Mode	Mode 7: EGPRS 850 Link			
Date of Test	01/31/2011		Test Site	TE02
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)	Note	
128	824.2	243.2720	RBW:3KHz , VBW:10KHz	
190	836.4	244.8094	RBW:3KHz , VBW:10KHz	
251	848.8	242.8587	RBW:3KHz , VBW:10KHz	

Model Number	TH02M			
Test Item	Occupied Bandwidth			
Test Mode	Mode 8: EGPRS 1900 Link			
Date of Test	01/31/2011		Test Site	TE02
Channel No.	Frequency (MHz)	99% Bandwidth (kHz)	Note	
512	1850.20	244.6972	RBW:3KHz , VBW:10KHz	
661	1880.00	244.6880	RBW:3KHz , VBW:10KHz	
810	1909.80	238.5596	RBW:3KHz , VBW:10KHz	

Channel 810

Band Edge

Model Number	TH02M								
Test Item	Band Edge								
Test Mode	Mode 1: GSM 8	lode 1: GSM 850 Link							
Date of Test	01/31/2011		Test Site	TE02					
Band	Channel	Frequency (MHz)	Bandwidth (dBm)	Limit (dBm)	Result				
Lower	128 824.0000		-13.26	-13	Pass				
Higher	251	849.0000	-19.41	-13	Pass				

Higher Band

Model Number	TH02M				
Test Item	Band Edge				
Test Mode	Mode 2: GSM 19	900 Link			
Date of Test	01/31/2011		Test Site	TE02	
Band	Channel	Frequency (MHz)	Bandwidth (dBm)	Limit (dBm)	Result
Lower	512	1850.000	-15.46	-13	Pass
Higher	810	1910.000	-23.01	-13	Pass
		Lower	Band		
-90	7001849.80 1849.90	1850.00 1850.10 1850	A A A A A A A A A A A A A A A A A A A	Limit: — Margin: —	ZO MHz
		Higher	Band		
-30.0	dBm	Mark Mark Mark Mark Mark Mark Mark Mark	l "lulu	Limit Margin: -	

1909.70

1909.80 1909.90

1910.00

1910.10

1910.30 MHz

1909.3001909.40 1909.50 1909.60

Model Number	TH02M	TH02M								
Test Item	Band Edge	Band Edge								
Test Mode	Mode 3: WCDM	Mode 3: WCDMA Band II Link								
Date of Test	01/31/2011		Test Site TE02							
Band	Channel	Frequency (MHz)	Bandwidth (dBm)	Limit (dBm)	Result					
Lower	9262	1850.000	-24.22	-13	Pass					
Higher	9538	1910.000	-24.67	-13	Pass					

Lower Band

Test Mode Mo Date of Test 01/	nd Edge de 4: WCDM. /31/2011 Channel 4132	A Band V Lin Frequency 824.00	/ (MHz)	Test Site Bandwidth -24.4		TE02 Limit (dBm)	Result
Date of Test 01/ Band Lower	731/2011 Channel 4132	Frequency	/ (MHz)	Bandwidth		Limit (dBm)	Result
Band Lower	Channel 4132			Bandwidth		Limit (dBm)	Result
Lower	4132						Result
		824.00	000	-24.47	7	4.0	
Higher	4233				1	-13	Pass
•	4233 849.0000		-28.0	5	-13	Pass	
			Lower	Band			•
30.0 dBm							
		-2.40/400	Maria Maria	yny Mynny new were		Limit Margin:	
		A CONTRACTOR OF THE CONTRACTOR	19 Charleston Straffer	Willell - a chief will will a color	w.		
		1					
-30 jugaramended	ومراكبين أمرست المعالي مربيه ملياك والمراكب والم	^			programme (handely and property of the property of the second	
-90							
821.400 82	2.41 823.41	824.41 825	5.41 826.4	41 827.41	B28.41 8	329.41 831.	40 MHz

845.60

846.60

847.60

848.60

849.60

851.60 MHz

841.600 842.60

843.60

844.60

5 Conducted Emission Test

5.1. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

5.2. Test Instruments

Describe	Manufacturer	Model No.	Serial No.	Cal. Date	Remark
Spectrum Analyzer	Agilent	E4445A	MY46181986	05/14/2009	(2)
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	109369	07/29/2009	(2)
Attenuator	RADIALL	R41572000	0603033073	N.C.R.	
Power divider	Agilent	87302C	3239A00760	N.C.R.	
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

5.3. **Setup**

Below 2.8GHz

Above 2.8GHz

5.4. Test Procedure

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The middle channel for the highest RF power within the transmitting frequency was measured.
- 3. The conducted spurious emission for the whole frequency range was taken.
- 4. Test setting at GSM 850 RB>100 kHz, VB>100 kHz; PCS 1900 RB>1MHz, VB>1MHz.

5.5. Uncertainty

The measurement uncertainty is evaluated as ± 2.24 dB.

5.6. Test Result

Model Number	TH02M						
Test Item	Conducted Emission						
Mode	Mode 1: GSM 850 Link						
	Mode 2: GSM 1900 Link						
	Mode 3: WCDMA Band II Link						
	Mode 4: WCDMA Band V Link						
Date of Test	01/31/2011	Test Site	TE02				

6 Field Strength of Spurious Radiation Test

6.1. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

6.2. Test Instruments

		3 Meter Chambe	r		
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
RF Pre-selector	Agilent	N9039A	MY46520256	01/17/2011	(2)
Spectrum Analyzer	Agilent	E4446A	MY46180578	02/24/2010	(1)
Pre Amplifier	Agilent	8449B	3008A02237	02/24/2010	(1)
Pre Amplifier	Agilent	8447D	2944A10961	02/24/2010	(1)
Bi-log Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	9163-270	08/02/2010	(1)
Horn Antenna	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	9120D-550	06/29/2010	(1)
Horn Antenna	SCHWARZBECK MESS-ELEKTRONIK	I BRHA9170 I 9170-320		06/29/2010	(1)
Test Site	ATL	TE01	888001	07/30/2010	(1)

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

6.3. Setup

6.4. Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 meters height, top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 30 MHz to 26.5 GHz is investigated.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna (mode VULB9163) at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna (model BBHA9120D&9170) was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20dB/decade).

For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

(1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)

FI= Reading of the field intensity.

AF= Antenna factor.

CL= Cable loss.

P.S Amplitude is auto calculate in spectrum analyzer.

(2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)

The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:

(a) For fundamental frequency: Transmitter Output < +30dBm

(b) For spurious frequency: Spurious emission limits = fundamental emission limit /10

6.5. Uncertainty

The measurement uncertainty is defined as for Field Strength of Spurious Radiation measurement is ± 3.072 dB.

6.6. Test Result

Standard: FCC Part 22 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 1 Date: 2011/01/31

Frequency: 824.2 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	40.0000	-40.88	9.64	-31.24	-13.00	-18.24	peak	Н
2	159.0000	-41.38	1.13	-40.25	-13.00	-27.25	peak	Н
3	200.5000	-42.69	2.83	-39.86	-13.00	-26.86	peak	Н
4	538.0000	-37.86	8.19	-29.67	-13.00	-16.67	peak	Н
5	631.5000	-36.24	7.20	-29.04	-13.00	-16.04	peak	Н
6	962.0000	-36.08	14.79	-21.29	-13.00	-8.29	peak	Н
7	2476.000	-47.91	11.92	-35.99	-13.00	-22.99	peak	Н
8	4948.000	-61.86	19.59	-42.27	-13.00	-29.27	peak	Н
9	9064.000	-68.80	26.84	-41.96	-13.00	-28.96	peak	Н
1	130.5000	-41.17	14.09	-27.08	-13.00	-14.08	peak	V
2	161.0000	-42.00	11.75	-30.25	-13.00	-17.25	peak	V
3	201.0000	-42.73	10.04	-32.69	-13.00	-19.69	peak	V
4	630.5000	-37.27	8.76	-28.51	-13.00	-15.51	peak	V
5	732.0000	-37.44	10.63	-26.81	-13.00	-13.81	peak	V
6	996.0000	-36.74	13.09	-23.65	-13.00	-10.65	peak	V
7	2476.000	-44.31	12.00	-32.31	-13.00	-19.31	peak	V
8	5764.000	-62.35	23.05	-39.30	-13.00	-26.30	peak	V
9	10216.000	-72.31	31.83	-40.48	-13.00	-27.48	peak	V

Standard: FCC Part 22 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model:total} \mbox{Model:} \qquad \mbox{Th02M} \qquad \mbox{Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad 26({^{\circ}$C})/60\%\mbox{RH}$

Mode: Mode 1 Date: 2011/01/31

Frequency: 836.4 MHz Test By: Gary Wu

No.	Frequency (MHz)	Reading (dBm)	Correct	Result	Limit	Margin (dB)	Remark	Ant.Polar.
	(IVITIZ)	(ubiii)	Factor(dB)	(ubiii)	(dBm)	(ub)		П/ V
1	40.5000	-41.77	9.56	-32.21	-13.00	-19.21	peak	Н
2	200.5000	-42.53	2.83	-39.70	-13.00	-26.70	peak	Н
3	534.5000	-38.59	8.10	-30.49	-13.00	-17.49	peak	Н
4	630.5000	-35.97	7.25	-28.72	-13.00	-15.72	peak	Н
5	791.0000	-37.54	10.76	-26.78	-13.00	-13.78	peak	Н
6	984.0000	-36.11	14.36	-21.75	-13.00	-8.75	peak	Н
7	2512.000	-48.10	12.04	-36.06	-13.00	-23.06	peak	Н
8	5020.000	-65.10	19.97	-45.13	-13.00	-32.13	peak	Н
9	9208.000	-68.43	27.94	-40.49	-13.00	-27.49	peak	Н
1	130.0000	-42.16	14.37	-27.79	-13.00	-14.79	peak	V
2	160.5000	-42.44	12.20	-30.24	-13.00	-17.24	peak	V
3	201.5000	-41.77	9.97	-31.80	-13.00	-18.80	peak	V
4	538.5000	-38.37	4.16	-34.21	-13.00	-21.21	peak	V
5	737.0000	-37.19	10.54	-26.65	-13.00	-13.65	peak	V
6	988.5000	-36.84	12.82	-24.02	-13.00	-11.02	peak	V
7	1672.000	-46.86	6.88	-39.98	-13.00	-26.98	peak	V
8	2512.000	-45.13	12.23	-32.90	-13.00	-19.90	peak	V
9	5020.000	-63.59	23.26	-40.33	-13.00	-27.33	peak	V

Standard: FCC Part 22 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model:total} \mbox{Model:} \qquad \mbox{Th02M} \qquad \mbox{Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad 26({^{\circ}$C})/60\%\mbox{RH}$

Mode: Mode 1 Date: 2011/01/31

Frequency: 848.8 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	43.0000	-39.50	9.12	-30.38	-13.00	-17.38	peak	Н
2	200.5000	-42.47	2.83	-39.64	-13.00	-26.64	peak	Н
3	540.5000	-38.49	8.25	-30.24	-13.00	-17.24	peak	Н
4	665.0000	-36.76	7.13	-29.63	-13.00	-16.63	peak	Н
5	817.5000	-37.52	11.84	-25.68	-13.00	-12.68	peak	Н
6	965.0000	-35.56	14.71	-20.85	-13.00	-7.85	peak	Н
7	2548.000	-47.47	12.16	-35.31	-13.00	-22.31	peak	Н
8	5944.000	-68.11	22.81	-45.30	-13.00	-32.30	peak	Н
9	9340.000	-68.24	28.92	-39.32	-13.00	-26.32	peak	Н
1	130.5000	-41.44	14.09	-27.35	-13.00	-14.35	peak	V
2	160.5000	-41.47	12.20	-29.27	-13.00	-16.27	peak	V
3	210.5000	-40.43	8.76	-31.67	-13.00	-18.67	peak	V
4	630.0000	-36.36	8.76	-27.60	-13.00	-14.60	peak	V
5	738.0000	-35.83	10.52	-25.31	-13.00	-12.31	peak	V
6	996.0000	-36.04	13.09	-22.95	-13.00	-9.95	peak	V
7	1696.000	-47.85	7.07	-40.78	-13.00	-27.78	peak	V
8	2548.000	-44.89	12.53	-32.36	-13.00	-19.36	peak	V
9	5092.000	-65.34	23.29	-42.05	-13.00	-29.05	peak	V

Standard: FCC Part 24 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model:model:thmodel} \mbox{TH02M} \qquad \mbox{Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad 26($^{\circ}$C)/60RH

Mode: Mode 2 Date: 2011/01/31

Frequency: 1850.2 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	39.5000	-41.39	9.50	-31.89	-13.00	-18.89	peak	Н
2	158.5000	-41.59	0.97	-40.62	-13.00	-27.62	peak	Н
3	201.0000	-41.00	2.73	-38.27	-13.00	-25.27	peak	Н
4	534.0000	-37.97	8.09	-29.88	-13.00	-16.88	peak	Н
5	816.5000	-37.36	11.80	-25.56	-13.00	-12.56	peak	Н
6	961.5000	-36.27	14.80	-21.47	-13.00	-8.47	peak	Н
7	3700.000	-61.83	15.75	-46.08	-13.00	-33.08	peak	Н
8	5548.000	-55.89	21.80	-34.09	-13.00	-21.09	peak	Н
9	9256.000	-65.57	28.28	-37.29	-13.00	-24.29	peak	Н
1	133.0000	-40.82	12.74	-28.08	-13.00	-15.08	peak	V
2	160.0000	-42.13	12.68	-29.45	-13.00	-16.45	peak	V
3	201.5000	-41.31	9.97	-31.34	-13.00	-18.34	peak	V
4	630.0000	-36.52	8.76	-27.76	-13.00	-14.76	peak	V
5	791.0000	-37.49	11.60	-25.89	-13.00	-12.89	peak	V
6	995.0000	-36.57	13.05	-23.52	-13.00	-10.52	peak	V
7	3700.000	-62.27	19.81	-42.46	-13.00	-29.46	peak	V
8	5548.000	-56.05	23.40	-32.65	-13.00	-19.65	peak	V
9	9256.000	-71.32	26.43	-44.89	-13.00	-31.89	peak	V

Standard: FCC Part 24 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model:total} \mbox{Model:} \qquad \mbox{Th02M} \qquad \mbox{Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad 26($^{\circ}$C)/60$\%RH$

Mode: Mode 2 Date: 2011/01/31

Frequency: 1880.0 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	42.0000	-41.28	9.28	-32.00	-13.00	-19.00	peak	Н
2	90.0000	-40.27	0.02	-40.25	-13.00	-27.25	peak	Н
3	157.0000	-41.45	0.49	-40.96	-13.00	-27.96	peak	Н
4	200.5000	-42.62	2.83	-39.79	-13.00	-26.79	peak	Н
5	623.0000	-36.96	7.56	-29.40	-13.00	-16.40	peak	Н
6	959.0000	-36.53	14.83	-21.70	-13.00	-8.70	peak	Н
7	3760.000	-64.67	15.89	-48.78	-13.00	-35.78	peak	Н
8	5644.000	-54.37	22.05	-32.32	-13.00	-19.32	peak	Н
9	9400.000	-64.64	29.36	-35.28	-13.00	-22.28	peak	Н
1	130.5000	-41.04	14.09	-26.95	-13.00	-13.95	peak	V
2	156.5000	-40.36	11.00	-29.36	-13.00	-16.36	peak	V
3	203.5000	-41.20	9.73	-31.47	-13.00	-18.47	peak	V
4	651.5000	-36.78	9.07	-27.71	-13.00	-14.71	peak	V
5	869.0000	-36.61	11.28	-25.33	-13.00	-12.33	peak	V
6	985.5000	-36.22	12.71	-23.51	-13.00	-10.51	peak	V
7	3760.000	-62.13	19.98	-42.15	-13.00	-29.15	peak	V
8	5644.000	-53.42	23.25	-30.17	-13.00	-17.17	peak	V
9	9400.000	-74.25	27.59	-46.66	-13.00	-33.66	peak	V

Standard: FCC Part 24 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model:total} \mbox{Model:} \qquad \mbox{Th02M} \qquad \mbox{Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad 26({^{\circ}$C})/60\%\mbox{RH}$

Mode: Mode 2 Date: 2011/01/23

Frequency: 1909.8 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	38.5000	-40.63	9.20	-31.43	-13.00	-18.43	peak	Н
2	201.5000	-42.70	2.61	-40.09	-13.00	-27.09	peak	Н
3	410.0000	-38.53	3.00	-35.53	-13.00	-22.53	peak	Н
4	544.0000	-37.95	8.17	-29.78	-13.00	-16.78	peak	Н
5	791.0000	-37.20	10.76	-26.44	-13.00	-13.44	peak	Н
6	951.0000	-35.99	14.85	-21.14	-13.00	-8.14	peak	Н
7	3820.000	-59.87	16.03	-43.84	-13.00	-30.84	peak	Н
8	5728.000	-54.40	22.26	-32.14	-13.00	-19.14	peak	Н
9	9544.000	-62.84	30.33	-32.51	-13.00	-19.51	peak	Н
1	130.0000	-42.78	14.37	-28.41	-13.00	-15.41	peak	V
2	159.5000	-41.66	12.45	-29.21	-13.00	-16.21	peak	V
3	204.5000	-41.60	9.62	-31.98	-13.00	-18.98	peak	V
4	631.0000	-35.75	8.74	-27.01	-13.00	-14.01	peak	V
5	798.0000	-37.63	11.81	-25.82	-13.00	-12.82	peak	V
6	992.5000	-36.45	12.95	-23.50	-13.00	-10.50	peak	V
7	3820.000	-59.76	20.13	-39.63	-13.00	-26.63	peak	V
8	5728.000	-52.48	23.11	-29.37	-13.00	-16.37	peak	V
9	9544.000	-70.15	28.61	-41.54	-13.00	-28.54	peak	V

Standard: FCC Part 24 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 3 Date: 2011/01/31

Frequency: 1852.4 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	41.0000	-40.89	9.47	-31.42	-13.00	-18.42	peak	Н
2	160.5000	-41.90	1.05	-40.85	-13.00	-27.85	peak	Н
3	200.5000	-41.45	2.83	-38.62	-13.00	-25.62	peak	Н
4	551.0000	-38.58	8.01	-30.57	-13.00	-17.57	peak	Н
5	629.5000	-36.91	7.27	-29.64	-13.00	-16.64	peak	Н
6	943.5000	-36.87	14.85	-22.02	-13.00	-9.02	peak	Н
7	1852.000	-64.59	10.42	-54.17	-13.00	-41.17	peak	Н
8	3700.000	-67.47	15.75	-51.72	-13.00	-38.72	peak	Н
9	6940.000	-70.06	27.48	-42.58	-13.00	-29.58	peak	Н
1	130.5000	-41.26	14.10	-27.16	-13.00	-14.16	peak	V
2	159.5000	-42.83	12.45	-30.38	-13.00	-17.38	peak	V
3	207.5000	-41.20	9.25	-31.95	-13.00	-18.95	peak	V
4	631.0000	-37.39	8.74	-28.65	-13.00	-15.65	peak	V
5	789.5000	-37.25	11.57	-25.68	-13.00	-12.68	peak	V
6	942.5000	-36.26	12.69	-23.57	-13.00	-10.57	peak	V
7	1852.000	-60.62	8.27	-52.35	-13.00	-39.35	peak	V
8	4276.000	-68.52	21.41	-47.11	-13.00	-34.11	peak	V
9	7216.000	-70.75	25.94	-44.81	-13.00	-31.81	peak	V

Standard: FCC Part 24 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 3 Date: 2011/01/31

Frequency: 1880.0 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	46.5000	-39.52	8.49	-31.03	-13.00	-18.03	peak	Н
2	158.5000	-42.07	0.97	-41.10	-13.00	-28.10	peak	Н
3	200.0000	-41.91	2.95	-38.96	-13.00	-25.96	peak	Н
4	541.5000	-37.54	8.24	-29.30	-13.00	-16.30	peak	Н
5	847.5000	-37.70	12.44	-25.26	-13.00	-12.26	peak	Н
6	973.5000	-35.94	14.50	-21.44	-13.00	-8.44	peak	Н
7	1876.000	-61.07	10.43	-50.64	-13.00	-37.64	peak	Н
8	4948.000	-69.72	19.59	-50.13	-13.00	-37.13	peak	Н
9	7672.000	-71.52	29.35	-42.17	-13.00	-29.17	peak	Н
1	130.5000	-42.46	14.10	-28.36	-13.00	-15.36	peak	V
2	160.5000	-41.90	12.20	-29.70	-13.00	-16.70	peak	V
3	200.0000	-41.57	10.15	-31.42	-13.00	-18.42	peak	V
4	628.5000	-35.86	8.77	-27.09	-13.00	-14.09	peak	V
5	791.5000	-37.35	11.61	-25.74	-13.00	-12.74	peak	V
6	999.0000	-36.91	13.19	-23.72	-13.00	-10.72	peak	V
7	1876.000	-61.04	8.46	-52.58	-13.00	-39.58	peak	V
8	3712.000	-67.65	19.85	-47.80	-13.00	-34.80	peak	V
9	7204.000	-70.28	25.92	-44.36	-13.00	-31.36	peak	V

Mode 3

Mode:

Report Number: 1101FR16

2011/01/31

Standard: FCC Part 24 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model:model:thmodel} \mbox{Th02M} \qquad \mbox{Temp.($^{\circ}_{\mathbb{C}}$)/Hum.(%RH):} \qquad 26($^{\circ}_{\mathbb{C}}$)/60%RH$

Date:

Frequency: 1907.6 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	44.0000	-40.81	8.94	-31.87	-13.00	-18.87	peak	Н
2	160.5000	-41.62	1.05	-40.57	-13.00	-27.57	peak	Н
3	200.5000	-42.37	2.83	-39.54	-13.00	-26.54	peak	Н
4	541.5000	-38.68	8.24	-30.44	-13.00	-17.44	peak	Н
5	820.5000	-36.06	11.92	-24.14	-13.00	-11.14	peak	Н
6	964.5000	-35.97	14.72	-21.25	-13.00	-8.25	peak	Н
7	1912.000	-58.74	10.43	-48.31	-13.00	-35.31	peak	Н
8	5080.000	-70.67	20.18	-50.49	-13.00	-37.49	peak	Н
9	9544.000	-69.40	30.33	-39.07	-13.00	-26.07	peak	Н
1	130.5000	-42.60	14.10	-28.50	-13.00	-15.50	peak	V
2	200.0000	-42.18	10.15	-32.03	-13.00	-19.03	peak	V
3	310.5000	-37.45	1.84	-35.61	-13.00	-22.61	peak	V
4	646.5000	-36.98	8.87	-28.11	-13.00	-15.11	peak	V
5	791.5000	-37.19	11.61	-25.58	-13.00	-12.58	peak	V
6	969.5000	-35.56	12.44	-23.12	-13.00	-10.12	peak	V
7	1912.000	-56.54	8.74	-47.80	-13.00	-34.80	peak	V
8	4720.000	-69.10	22.60	-46.50	-13.00	-33.50	peak	V
9	7216.000	-70.64	25.94	-44.70	-13.00	-31.70	peak	V

Standard: FCC Part 22 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model:total} \mbox{Model:} \qquad \mbox{Th02M} \qquad \mbox{Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad 26($^{\circ}$C)/60$\%RH$

Mode: Mode 4 Date: 2011/01/31

Frequency: 826.4 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	45.5000	-40.48	8.67	-31.81	-13.00	-18.81	peak	Н
2	158.0000	-42.04	0.82	-41.22	-13.00	-28.22	peak	Н
3	201.0000	-42.37	2.73	-39.64	-13.00	-26.64	peak	Н
4	547.0000	-38.02	8.10	-29.92	-13.00	-16.92	peak	Н
5	781.5000	-37.15	10.26	-26.89	-13.00	-13.89	peak	Н
6	985.5000	-35.29	14.38	-20.91	-13.00	-7.91	peak	Н
7	1648.000	-50.72	10.39	-40.33	-13.00	-27.33	peak	Н
8	2476.000	-60.39	11.92	-48.47	-13.00	-35.47	peak	Н
9	5776.000	-69.97	22.39	-47.58	-13.00	-34.58	peak	Н
1	130.5000	-41.50	14.10	-27.40	-13.00	-14.40	peak	V
2	160.0000	-43.29	12.68	-30.61	-13.00	-17.61	peak	V
3	203.0000	-41.01	9.79	-31.22	-13.00	-18.22	peak	V
4	629.5000	-37.16	8.75	-28.41	-13.00	-15.41	peak	V
5	787.0000	-36.80	11.48	-25.32	-13.00	-12.32	peak	V
6	950.0000	-35.53	12.57	-22.96	-13.00	-9.96	peak	V
7	1648.000	-46.70	6.70	-40.00	-13.00	-27.00	peak	V
8	2476.000	-58.89	12.00	-46.89	-13.00	-33.89	peak	V
9	5776.000	-68.07	23.03	-45.04	-13.00	-32.04	peak	V

Mode 4

Mode:

Report Number: 1101FR16

2011/01/31

Standard: FCC Part 22 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model:model:thmodel} \mbox{Th02M} \qquad \mbox{Temp.($^{\circ}_{\mathbb{C}}$)/Hum.(%RH):} \qquad 26($^{\circ}_{\mathbb{C}}$)/60%RH$

Date:

Frequency: 836.4 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	43.0000	-40.59	9.12	-31.47	-13.00	-18.47	peak	Н
2	160.0000	-41.87	1.45	-40.42	-13.00	-27.42	peak	Н
3	201.5000	-42.06	2.61	-39.45	-13.00	-26.45	peak	Н
4	537.5000	-38.08	8.18	-29.90	-13.00	-16.90	peak	Н
5	791.0000	-36.58	10.76	-25.82	-13.00	-12.82	peak	Н
6	930.5000	-37.02	14.81	-22.21	-13.00	-9.21	peak	Н
7	1672.000	-56.21	10.39	-45.82	-13.00	-32.82	peak	Н
8	2512.000	-60.94	12.04	-48.90	-13.00	-35.90	peak	Н
9	5824.000	-70.66	22.51	-48.15	-13.00	-35.15	peak	Н
1	130.0000	-42.45	14.37	-28.08	-13.00	-15.08	peak	V
2	158.5000	-42.03	11.96	-30.07	-13.00	-17.07	peak	V
3	200.0000	-40.56	10.15	-30.41	-13.00	-17.41	peak	V
4	628.0000	-36.91	8.79	-28.12	-13.00	-15.12	peak	V
5	765.5000	-37.52	11.04	-26.48	-13.00	-13.48	peak	V
6	999.0000	-36.74	13.19	-23.55	-13.00	-10.55	peak	V
7	1672.000	-50.00	6.88	-43.12	-13.00	-30.12	peak	V
8	2512.000	-59.82	12.23	-47.59	-13.00	-34.59	peak	V
9	5020.000	-70.25	23.26	-46.99	-13.00	-33.99	peak	V

Standard: FCC Part 22 Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 4 Date: 2011/01/31

Frequency: 846.4 MHz Test By: Gary Wu

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark	Ant.Polar.
	(MHz)	(dBm)	Factor(dB)	(dBm)	(dBm)	(dB)		H/V
1	40.5000	-40.76	9.56	-31.20	-13.00	-18.20	peak	Н
2	160.5000	-42.39	1.05	-41.34	-13.00	-28.34	peak	Н
3	205.5000	-40.94	1.67	-39.27	-13.00	-26.27	peak	Н
4	627.0000	-37.07	7.39	-29.68	-13.00	-16.68	peak	Н
5	805.0000	-37.20	11.41	-25.79	-13.00	-12.79	peak	Н
6	985.5000	-35.56	14.38	-21.18	-13.00	-8.18	peak	Н
7	1696.000	-53.47	10.40	-43.07	-13.00	-30.07	peak	Н
8	2536.000	-57.45	12.13	-45.32	-13.00	-32.32	peak	Н
9	5920.000	-67.11	22.75	-44.36	-13.00	-31.36	peak	Н
1	131.5000	-41.54	13.57	-27.97	-13.00	-14.97	peak	V
2	160.0000	-42.13	12.68	-29.45	-13.00	-16.45	peak	V
3	203.0000	-42.68	9.79	-32.89	-13.00	-19.89	peak	V
4	717.5000	-37.09	10.78	-26.31	-13.00	-13.31	peak	V
5	799.5000	-36.32	11.86	-24.46	-13.00	-11.46	peak	V
6	974.5000	-36.81	12.48	-24.33	-13.00	-11.33	peak	V
7	1696.000	-48.34	7.07	-41.27	-13.00	-28.27	peak	V
8	2536.000	-53.90	12.44	-41.46	-13.00	-28.46	peak	V
9	5920.000	-65.32	22.79	-42.53	-13.00	-29.53	peak	V

7 Frequency Stability (Temperature Variation) Test

7.1. Limit

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5ppm) of the center frequency.

7.2. Test Instruments

Describe	Manufacturer	Model No.	Serial No.	Cal. Date	Remark
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	109369	07/29/2009	(2)
Temperature & Humidity Chamber	TAICHY	MHU-225LA	980729	08/26/2009	(2)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

7.3. Setup

7.4. Test Procedure

The measurement is made according to FCC rules part 22 and 24:

- 1. The EUT and test equipment were set up as shown on the following section.
- 2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was note within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests were performed for the worst case.
- 5. Test data was recorded.

7.5. Uncertainty

The measurement uncertainty is defined as for Frequency Stability (Temperature Variation) measurement is ± 10Hz.

7.6. Test Result

Model Number	TH02M							
Test Item	Frequency Stability (Ten	Frequency Stability (Temperature Variation)						
Test Mode	Mode 1: GSM 850 Link	Mode 1: GSM 850 Link						
Date of Test	01/31/2011		Test Site	TE02				
Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Result				
-30	-15.00	-0.018	±2.5	Pass				
-20	-14.00	-0.017	±2.5	Pass				
-10	-13.00	-0.016	±2.5	Pass				
0	-15.00	-0.018	±2.5	Pass				
10	-14.00	-0.017	±2.5	Pass				
20	-12.00	-0.014	±2.5	Pass				
30	-16.00	-0.019	±2.5	Pass				
40	-15.00	-0.018	±2.5	Pass				
50	-13.00	-0.016	±2.5	Pass				

Model Number	TH02M							
Test Item	Frequency Stability (Ten	Frequency Stability (Temperature Variation)						
Test Mode	Mode 2: GSM 1900 Link							
Date of Test	01/31/2011		Test Site	TE02				
Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Result				
-30	-28.00	-0.015	±2.5	Pass				
-20	-25.00	-0.013	±2.5	Pass				
-10	-27.00	-0.014	±2.5	Pass				
0	-30.00	-0.016	±2.5	Pass				
10	-26.00	-0.014	±2.5	Pass				
20	-25.00	-0.013	±2.5	Pass				
30	-26.00	-0.014	±2.5	Pass				
40	-23.00	-0.012	±2.5	Pass				
50	-31.00	-0.016	±2.5	Pass				

Model Number	TH02M							
Test Item	Frequency Stability (Ter	Frequency Stability (Temperature Variation)						
Test Mode	Mode 3: WCDMA Band	II Link						
Date of Test	01/31/2011		Test Site	TE02				
Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Result				
-30	11.00	0.006	±2.5	Pass				
-20	13.00	0.007	±2.5	Pass				
-10	-10.00	-0.005	±2.5	Pass				
0	7.00	0.004	±2.5	Pass				
10	12.00	0.006	±2.5	Pass				
20	12.00	0.006	±2.5	Pass				
30	11.00	0.006	±2.5	Pass				
40	11.00	0.006	±2.5	Pass				
50	9.00	0.005	±2.5	Pass				

Model Number	TH02M							
Test Item	Frequency Stability (Ten	Frequency Stability (Temperature Variation)						
Test Mode	Mode 4: WCDMA Band	Mode 4: WCDMA Band V Link						
Date of Test	01/31/2011		Test Site	TE02				
Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Result				
-30	7.00	0.008	±2.5	Pass				
-20	9.00	0.011	±2.5	Pass				
-10	10.00	0.012	±2.5	Pass				
0	8.00	0.010	±2.5	Pass				
10	8.00	0.010	±2.5	Pass				
20	11.00	0.013	±2.5	Pass				
30	13.00	0.016	±2.5	Pass				
40	14.00	0.017	±2.5	Pass				
50	11.00	0.013	±2.5	Pass				

8 Frequency Stability (Voltage Variation) Test

8.1. Limit

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5ppm) of the center frequency.

8.2. Test Instruments

Describe	Manufacturer	Model No.	Serial No.	Cal. Date	Remark
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	109369	07/29/2009	(2)
Temperature & Humidity Chamber	TAICHY	MHU-225LA	980729	08/26/2009	(2)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

8.3. Setup

8.4. Test Procedure

- 1. The EUT was placed in a temperature chamber at 25 ± 5 °C and connected as the following section.
- 2. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

8.5. Uncertainty

The measurement uncertainty is defined as for Frequency Stability (Voltage Variation) measurement is \pm 10Hz.

8.6. Test Result

Model Number	TH02N	1								
Test Item	Freque	Frequency Stability (Voltage Variation)								
Test Mode	Mode '	lode 1: GSM 850 Link								
Date of Test	01/31/2	/31/2011 Test Site TE02								
Level		Voltage [V]	Deviation [Hz]	Deviation [ppm]	Limit [ppm]	Result				
Battery full	point	4.07	-11.00	-0.013	±2.5	Pass				
Normal	nal 3.70 -18.0			-0.022	±2.5	Pass				
Battery cut-of	f point	3.33	-19.00	-0.023	±2.5	Pass				

Model Number	TH02N	1								
Test Item	Freque	ency Stability (Volta	age Variation)							
Test Mode	Mode 2	ode 2: GSM 1900 Link								
Date of Test	01/31/2	/31/2011 Test Site TE02								
Level		Voltage [V]	Deviation [Hz]	Deviation [ppm]	Limit [ppm]	Result				
Battery full	point	4.07	-28.00	-0.015	±2.5	Pass				
Norma		3.70	-25.00	-0.013	±2.5	Pass				
Battery cut-of	ff point	3.33	-26.00	-0.014	±2.5	Pass				

Model Number	TH02N	1								
Test Item	Freque	Frequency Stability (Voltage Variation)								
Test Mode	Mode 3	Mode 3: WCDMA Band II Link								
Date of Test	01/31/2	1/31/2011 Test Site TE02								
Level		Voltage [V]	Deviation [Hz]	Deviation [ppm]	Limit [ppm]	Result				
Battery full	point	4.07	11.00	0.006	±2.5	Pass				
Norma		3.70	13.00	0.007	±2.5	Pass				
Battery cut-of	f point	3.33	10.00	0.005	±2.5	Pass				

Model Number	TH02N	Л								
Test Item	Freque	ency Stability (Volta	age Variation)							
Test Mode	Mode 4	ode 4: WCDMA Band V Link								
Date of Test	01/31/2	/31/2011 Test Site TE02								
Level		Voltage [V]	Deviation [Hz]	Deviation [ppm]	Limit [ppm]	Result				
Battery full	point	4.07	10.00	0.012	±2.5	Pass				
Norma		3.70 12.00 0.014 ±2.5								
Battery cut-of	ff point	3.33	9.00	0.011	±2.5	Pass				

9 AC Power Conducted Emissions Test

9.1. **Limit**

Francisco de (MIII-)	Limits (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5.0	56	46				
5.0 to 30	60	50				

9.2. Test Instruments

Describe	Manufacturer	Model No.	Serial No.	Cal. Date	Remark
Test Receiver	R&S	ESCI	100367	07/01/2009	(1)
LISN	R&S	ENV216	101040	03/02/2010	(1)
LISN	R&S	ENV216	101041	03/02/2010	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. (2) Calibration period 2 years.

NOTE: N.C.R. = No Calibration Request.

9.3. Setup

9.4. Test Procedure

The measurement is made according to FCC rules15.207:

The power line conducted emission measurements were performed in a shielded enclosure. The EUT was assembled on a wooden table which is 80 centimeters high, was placed 40 centimeters from the back wall and at least 1 meter from the sidewall.

Power was fed to the EUT from the public utility power grid through a line filter and EMCO Model 3162/2 SH Line Impedance Stabilization Networks (LISN). The LISN housing, measuring instrumentation case, ground plane, etc., were electrically bonded together at the same RF potential. The Spectrum analyzer was connected to the AC line through an isolation transformer. The 50-ohm output of the LISN was connected to the spectrum analyzer directly. Conducted emission levels were in the CISPR quasi-peak detection mode. The analyzer's 6 dB bandwidth was set to 9 KHz. No post-detector video filter was used.

The spectrum was scanned from 150 KHz to 30 MHz. The physical arrangement of the test system and associated cabling was varied (within the scope of arrangements likely to be encountered in actual use) to determine the effect on the unit's emanations in amplitude and frequency. All spurious emission frequencies were observed. The highest emission amplitudes relative to the appropriate limit were measured and have been recorded in section 10.6.

9.5. Uncertainty

The measurement uncertainty is defined as for AC power conducted emission measurement is ± 2.24 dB.

9.6. Test Result

Standard: FCC Part 22H Line: L1 Test item: Conducted Emission Power: AC 120V/60Hz Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26(°C)/60%RH Mode: Mode 1 2011/02/01 Date: Test By: Gary Wu Description:

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1540	37.64	13.36	10.11	47.75	23.47	65.78	55.78	-18.03	-32.31	Pass
2	0.1780	32.47	7.27	10.09	42.56	17.36	64.58	54.58	-22.02	-37.22	Pass
3	0.2260	29.63	8.74	10.07	39.70	18.81	62.60	52.60	-22.90	-33.79	Pass
4	0.9620	27.55	12.01	9.78	37.33	21.79	56.00	46.00	-18.67	-24.21	Pass
5	2.7180	25.27	14.94	9.81	35.08	24.75	56.00	46.00	-20.92	-21.25	Pass
6	21.6500	29.70	20.19	10.68	40.38	30.87	60.00	50.00	-19.62	-19.13	Pass

Standard: FCC Part 22H Line: N

Test item: Conducted Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 1 Date: 2011/02/01

Test By: Gary Wu

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1540	38.41	13.59	10.10	48.51	23.69	65.78	55.78	-17.27	-32.09	Pass
2	0.2380	33.24	16.59	10.06	43.30	26.65	62.17	52.17	-18.87	-25.52	Pass
3	0.7540	23.78	13.97	9.85	33.63	23.82	56.00	46.00	-22.37	-22.18	Pass
4	2.5340	23.24	13.22	9.77	33.01	22.99	56.00	46.00	-22.99	-23.01	Pass
5	16.7180	27.92	18.06	10.32	38.24	28.38	60.00	50.00	-21.76	-21.62	Pass
6	20.0580	24.78	16.57	10.68	35.46	27.25	60.00	50.00	-24.54	-22.75	Pass

Standard: FCC Part 24E Line: L1

Test item: Conducted Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 2 Date: 2011/02/01

Test By: Gary Wu

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1524	38.14	13.77	10.11	48.25	23.88	65.87	55.87	-17.62	-31.99	Pass
2	0.1940	31.11	7.87	10.08	41.19	17.95	63.86	53.86	-22.67	-35.91	Pass
3	1.3300	27.05	13.14	9.73	36.78	22.87	56.00	46.00	-19.22	-23.13	Pass
4	2.9740	26.11	16.24	9.84	35.95	26.08	56.00	46.00	-20.05	-19.92	Pass
5	16.3340	34.23	28.42	10.25	44.48	38.67	60.00	50.00	-15.52	-11.33	Pass
6	23.3620	28.64	19.46	10.62	39.26	30.08	60.00	50.00	-20.74	-19.92	Pass

Standard: FCC Part 24E Line: N

Test item: Conducted Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 2 Date: 2011/02/01

Test By: Gary Wu

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1580	35.76	11.43	10.10	45.86	21.53	65.57	55.57	-19.71	-34.04	Pass
2	0.1860	32.80	10.38	10.08	42.88	20.46	64.21	54.21	-21.33	-33.75	Pass
3	1.2660	24.67	14.86	9.72	34.39	24.58	56.00	46.00	-21.61	-21.42	Pass
4	15.8260	28.60	18.95	10.29	38.89	29.24	60.00	50.00	-21.11	-20.76	Pass
5	19.6620	24.71	16.26	10.65	35.36	26.91	60.00	50.00	-24.64	-23.09	Pass
6	22.4220	23.90	16.63	10.78	34.68	27.41	60.00	50.00	-25.32	-22.59	Pass

Standard: FCC Part 24E Line: L1

Test item: Conducted Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 3 Date: 2011/02/01

Test By: Gary Wu

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	36.94	13.86	10.11	47.05	23.97	66.00	56.00	-18.95	-32.03	Pass
2	0.1900	32.36	8.04	10.09	42.45	18.13	64.04	54.04	-21.59	-35.91	Pass
3	0.2380	35.88	20.22	10.07	45.95	30.29	62.17	52.17	-16.22	-21.88	Pass
4	1.0700	28.59	12.51	9.75	38.34	22.26	56.00	46.00	-17.66	-23.74	Pass
5	2.8340	27.07	16.77	9.82	36.89	26.59	56.00	46.00	-19.11	-19.41	Pass
6	21.4700	29.77	20.22	10.67	40.44	30.89	60.00	50.00	-19.56	-19.11	Pass

Standard: FCC Part 24E Line: N

Test item: Conducted Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 3 Date: 2011/02/01

Test By: Gary Wu

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1580	35.50	11.61	10.10	45.60	21.71	65.57	55.57	-19.97	-33.86	Pass
2	0.1860	32.92	10.02	10.08	43.00	20.10	64.21	54.21	-21.21	-34.11	Pass
3	1.1500	22.77	10.85	9.74	32.51	20.59	56.00	46.00	-23.49	-25.41	Pass
4	3.9660	20.72	12.92	9.84	30.56	22.76	56.00	46.00	-25.44	-23.24	Pass
5	15.8260	28.36	18.77	10.29	38.65	29.06	60.00	50.00	-21.35	-20.94	Pass
6	19.0860	24.02	15.96	10.59	34.61	26.55	60.00	50.00	-25.39	-23.45	Pass

Standard: FCC Part 22H Line: L1

Test item: Conducted Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 4 Date: 2011/02/01

Test By: Gary Wu

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1580	35.56	10.78	10.11	45.67	20.89	65.57	55.57	-19.90	-34.68	Pass
2	0.1940	31.87	7.42	10.08	41.95	17.50	63.86	53.86	-21.91	-36.36	Pass
3	1.0740	28.61	13.06	9.75	38.36	22.81	56.00	46.00	-17.64	-23.19	Pass
4	2.9740	25.53	15.60	9.84	35.37	25.44	56.00	46.00	-20.63	-20.56	Pass
5	16.8460	30.75	19.26	10.27	41.02	29.53	60.00	50.00	-18.98	-20.47	Pass
6	22.4020	29.34	20.09	10.66	40.00	30.75	60.00	50.00	-20.00	-19.25	Pass

Standard: FCC Part 22H Line: N

Test item: Conducted Emission Power: AC 120V/60Hz

Model: TH02M Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: Mode 4 Date: 2011/02/01

Test By: Gary Wu

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1620	32.71	8.51	10.10	42.81	18.61	65.36	55.36	-22.55	-36.75	Pass
2	0.1980	29.73	10.11	10.07	39.80	20.18	63.69	53.69	-23.89	-33.51	Pass
3	0.2260	27.83	8.69	10.06	37.89	18.75	62.60	52.60	-24.71	-33.85	Pass
4	3.9420	20.64	12.88	9.84	30.48	22.72	56.00	46.00	-25.52	-23.28	Pass
5	18.1180	25.07	15.76	10.46	35.53	26.22	60.00	50.00	-24.47	-23.78	Pass
6	22.0420	24.60	16.72	10.79	35.39	27.51	60.00	50.00	-24.61	-22.49	Pass