Disciplina: Introdução à Computação

Professor: Adriano Lorena Inacio de Oliveira Título: Relatório - Projeto Inteligência Artificial

Grupo: Guilherme Siqueira, Walter Crasto, Ivo Neto, Pedro Fischer e Niltton Szpak

Neste trabalho, mostraremos o desenvolvimento da criação de um algoritmo de árvore de decisão utilizando o Orange Data Mining. Inicialmente, escolhemos o conteúdo que seria estudado pela nossa árvore, ou seja, buscamos um dataset que possuísse informações suficientes para o aprendizado da máquina. O dataset escolhido foi um sobre Avaliação de Carros, que possui 1.73k exemplos, de forma que dividimos 80% para o aprendizado do nosso algoritmo e 20% para testes e previsões.

No Orange Data Mining, criamos esse esquema, que funciona da seguinte forma:

- Primeiro, importamos o nosso dataset escolhido: <u>https://archive.ics.uci.edu/dataset/19/car+evaluation</u>
- 2) Em seguida, na aba de Edit Domain, realizamos os ajustes de nome nas variáveis do dataset, para a visualização ficar mais fácil depois, visto que, por padrão, as variáveis vem com nome: X.0, X.1, X.2, etc.

3) Como terceiro passo, partimos para a seção de Select Columns, em que escolhemos os atributos que serão utilizados como features e o target da árvore, ou seja, o que será usado como parte do estudo e a variável que será o objetivo do nosso estudo. Nesse caso, estamos em busca de prever a Classe que o carro se encontra: unacceptable (inaceitável), acceptable (aceitável), good (bom), very good (muito bom). E como ferramentas de avaliação usaremos: o preço do carro, o preço de manutenção, o número de portas, a capacidade de pessoas, o tamanho da mala e a segurança do carro.

- 4) Em seguida, usando a aba do Data Sampler, dividimos a nossa amostra em Treinamento e Teste, fazendo uma divisão de 80% para treino e 20% para teste.
- 5) Agora, após o tratamento dos dados, podemos criar a nossa árvore, que pode ser observada usando o Tree Viewer:

Ou seja, temos uma árvore muito grande, vai tomando decisões em cada nó e chega na conclusão de que classe o carro se encaixa. Nessa árvore, temos

117 nós e 59 folhas, ou seja, existem 117 nós a serem percorridos e 59 "destinos finais" em que se existe uma conclusão.

Vale ressaltar que essa árvore foi criada utilizando os seguintes parâmetros:

Ou seja, no primeiro nós induzimos a criação de uma árvore que se divide de forma binária, gerando 2 nós-filhos de cada nó. Em seguida, temos o mínimo de casos que precisam ser colocados em cada folha, de forma que precisamos de no mínimo 2 casos da amostra de teste se encaixando naquela folha para a criação dela. Depois, temos a proibição da divisão de nós com menos de 5 casos em questão, ou seja, se houver menos de 5 casos, aquele ramo da árvore se encerra ali mesmo. E o último parâmetro é a limitação de níveis da árvore, em que nesse caso, colocamos 100, mas ela não chega atingir isso.

6) Depois da árvore de decisão montada, podemos testar o funcionamento dela na aba Predictions, em que ligamos nossa base de dados e nosso algoritmo e observamos o rendimento dele.

Em que nas informações da árvore, podemos observar que obtemos uma precisão de 0.971, ou seja, 97,1% de precisão na análise dos dados de teste. Para observar de maneira mais clara, podemos observar uma matriz de performance para avaliar o desempenho do nosso algoritmo:

		Predicted							
		acc	good	unacc	vgood	Σ			
	acc	81	0	2	0	83			
_	good	2	17	0	1	20			
Actual	unacc	1	2	224	0	227			
	vgood	1	1	0	13	15			
	Σ	85	20	226	14	345			

Em que temos:

- Dos 83 aceitáveis, acertamos 81
- Dos 20 bons, acertamos 17
- Dos 227 inaceitáveis, acertamos 224
- Dos 15 muito bons, acertamos 13

Em seguida, iremos alterar alguns valores dos parâmetros para observar o comportamento da árvore e como essas mudanças alteram o desempenho da mesma.

1) Vamos alterar o tamanho máximo da árvore. Na nossa configuração normal, usamos o tamanho máximo como 100, dando liberdade para a árvore crescer bastante. Acabou que nosso algoritmo ficou com 11 níveis e agora vamos alterar para 5 para ver o que ocorre com o desempenho da mesma.

Nesse caso, observamos que existem diversas folhas que não possuem conclusões certeiras sobre o veredito da classe que aquele automóvel se encontra, o que vai afetar na precisão de acerto da árvore.

Podemos observar que nossa árvore ficou com 80,2% de precisão, reduzindo bastante em relação ao comportamento dela com 11 níveis.

		Predicted						
		acc	good	unacc	vgood	Σ		
	acc	74	0	8	1	83		
Actual	good	15	0	0	5	20		
	unacc	26	0	199	2	227		
	vgood	6	0	0	9	15		
	Σ	121	0	207	17	345		

Na nossa matriz de análise, podemos perceber falhas claras, como, por exemplo, a falta da classe "good" na árvore, de forma que nenhuma folha possui essa conclusão, e das 20 possibilidades na amostra de teste, nenhuma delas foi adivinhada. Além disso, a falta de precisão na hora de adivinhar os veículos da classe "very good", em que de 15 possibilidades, apenas 9 foram previstas corretamente, e tivemos 14 erros distribuídos pela tabela em relação a essa classe, seja o veículo sendo "very good" e a classe prevista foi outra, ou o veículo sendo de outra classe mas a conclusão do algoritmo foi "very good".

2) A próxima alteração nos parâmetros que iremos fazer é a busca de uma precisão extremamente grande, de forma que as folhas poderão representar casos isolados e os nós podem se dividir mesmo que tenham poucos casos a serem resolvidos. Além disso, iremos colocar o limite de níveis da árvore em 100, dando liberdade para ela crescer bastante.

Utilizando esses parâmetros vamos obter a árvore:

Que é claramente uma árvore muito grande (temos 145 nós e 73 folhas) que busca o veredito utilizando diversos detalhes. O que se espera de uma árvore assim? Que a precisão seja superior a todas as outras possíveis árvores, visto que estaríamos analisando minuciosamente cada atributo que influencia no veredito final. Mas, por incrível que pareça, a precisão diminui em relação aos parâmetros utilizados na árvore do início do projeto, tendo apenas 96,5% de precisão (menos que o 97,1% obtido anteriormente)

	Tree	error	class	buying	maint	doors	persons	lug_boot	safety
	un	0.000	unacc	low	low	2	2	small	high
2	acc	0.000	асс	vhigh	med	4	4	med	med
3	acc	0.000	acc	high	low	3	4	med	high
4	un	0.000	unacc	low	high	2	2	med	low
5	un	0.000	unacc	vhigh	med	2	4	small	low
6	un	0.000	unacc	vhigh	vhigh	2	more	big	high
7	acc	1.000	good	low	med	2	more	big	med
8	un	0.000	unacc	high	vhigh	2	2	med	high
9	un	0.000	unacc	low	low	4	2	med	high
10	acc	0.000	acc	low	vhigh	5more	4	small	high
11	un	0.000	unacc	vhigh	med	2	4	med	med
12	un	0.000	unacc	vhigh	vhigh	3	4	small	med
13	acc	0.000	acc	high	med	5more	more	small	high
14	un	0.000	unacc	med	high	4	more	small	med
15	un	0.000	unacc	high	vhigh	3	4	small	med
16	un	0.000	unacc	low	high	4	2	big	med
17	go	0.000	good	low	low	4	more	med	med
18	un	0.000	unacc	high	med	3	4	med	low
19	go	0.000	good	low	med	4	more	med	med
20	un	0.000	unacc	high	high	5more	more	small	low
21	acc	0.000	acc	low	high	4	more	big	med
<		>	<				()		
Z Sł	now perf	omance so	tores Tar	get class: (Average	over classes)	~			
Mod	del AU	C CA	F1 Prec	Recall MCC					
Tree	0.96	0.965	0.965 0.965	0.965 0.931					

Esse fenômeno é conhecido como *overfitting* que é o ajuste demasiado dos dados de treinamento de forma que dados que possuem algum tipo de "ruído" acabam perdendo precisão em estruturas de árvores mais complexas.

		Predicted							
		acc	good	unacc	vgood	Σ			
	acc	79	0	4	0	83			
Actual	good	4	16	0	0	20			
	unacc	0	2	225	0	227			
	vgood	1	1	0	13	15			
	Σ	84	19	229	13	345			