北京化工大学 2018——2019 学年第一学期 《基础化学》期末考试试卷样卷

课程代码 C H M 1 0 7 0 0 T
--

	课程代码	CH	M	1	0	7	0	0	Т		
班级:		姓名: _	学号:				分数:				
题号	_		三		四		五总		总	分	
得分											
每小题: 1. (2. (3. (4. (5. (7. (8. (X) 在多电 Y) Fe (III)、 X) B₂H₆ 为² X) 18 电子 Y) 配合物的 X) 乙炔分子 X) 所有气体 	共价键组成的 子原子中,核 Co (III)、Ni(I P面形分子。	分子一定是外电子的能II)的氧化性素在周期表决于中心离验	极性 级别弱的 开键	分子。 与主量 的次序 位置主 民用的系 能的三	P: 子数 为: F 要为 杂化类	303 n 有关, Fe (III) < ds 区。 述型。	n 越力	大,能组 II) < Ni	及越高。 (Ⅲ)	
11. (✓) 反应熵、×) 对氢原✓) H₂O ⁻	子来说,其原	子轨道能级	顺序	为 1s<2	2s<2p	<3s<3p<		。P241		
二、在下列各题中,选择出符合题意的答案,将其代号填入下表内(本大题分 10 小题,每小题 2 分,共 20 分) 1、 CH ₄ 、NH ₃ 、H ₂ O、HF 等氢化物的还原性递减顺序是(A)。											
(C) C 2、从离 A.	CH ₄ > NH ₃ > H ₂ CH ₄ > H ₂ O > NH ₃ = H ₂ CH ₄ > H ₂ O > NH ₂ CH ₄ = MgCl ₂ = MgCl ₂ = -0.	H ₃ > HF 考率,下列各 B . AlCl ₃	(D) F 物质中熔点 C.SiO ₂	IF > E 最低的	I ₂ O>N 的是(D. PCl ₅	NH ₃ > (CH ₄	C)		

A	. 0.268V	B, -0.41V		C、-0.2	68V	D. 0.41V	
4、	下列原子核外电	已子排布错误的是	:(C)			
A	$1s^2 2s^2 2p^6 3$	s^2	В、	$1s^2 2s^2$	$2p^63s^23p^63d$	$2^{5}4s^{1}$	
	$1s^2 2s^2 2p^7 3$				$2p^63s^23p^63a$		
5、	_{己知} E ⁶ (O₂/H₂C	$(C_2)_{=0.68V;} E^{\theta}(C_1)$	₂ /Cl ⁻) ₌₁	.36V,贝	反应 Cl ₂ +H ₂ O	$2^{-2}2Cl^{-}+O_2+$	2H ⁺ 的标准平
衡常	7数为(B)。						
A	$10^{4.8}$	$3. 10^{23.0}$	$C.10^{32.2}$		D. 10 ^{37.0}		
6.	对配位反应中的	条件稳定常数描	述正确的	是(D)。		
(A)	条件稳定常数是	是理想状态下的稳	急定常数				
(B)	酸效应系数总是	是小于配位效应系	数				
(C)	所有的副反应均	的使条件稳定常数	域增大				
(D)	条件稳定常数能		已位化合物	勿的稳定 ⁽	生		
7、	氯的含氧酸的酸	性大小顺序是(D)				
A	、HClO>HClO ₂	>HClO ₃ >HClO ₄	B, F	HClO ₃ >H	ClO ₄ >HClO ₂ >H	IClO	
C	、HClO>HClO4	>HClO ₃ >HClO ₂	D, I	HClO ₄ >H	ClO ₃ >>HClO ₂ >	HClO	
8、村	艮据杂化轨道理	论和价层电子对	互斥理论	,下列分	子或离子中,多	空间构型不是	是直线型的是
`	D)						
		B _v CO ₂					
9、)		电子数来说,下				(B)	
		$m_s = +1/2;$					
10), m _s =-1/2;			$m=1, m_s=+1/2$		
		可只存在色散力的			一层儿型和一弦	: //v r些	D田輪和小
1	A. 吳美和四录》	七碳; B.碘化	圣州小;	C	_羊化恢和领	江化恢;	D. 中肾和小
三、	填空题(每空)	1分,共28分)					
1.	实验测得 $K_4[M]$	$In(CN)_6]_{A} K_3[C]$	$r(C_2O_4)_3$]的磁矩分	分别为 μ = 2.00) B.M.和 μ =	= 3.38 B.M.,
		内轨			·	•	
		型分别为 <u>d²sp</u>					<i>)</i> / 3 -3,3
2		En 加加					2d10dg1
2.				-			
3.		子中,Cu ⁺ 采用			D.放键,Cu 的主	上于构型为	[Ar]3q ²
		可构型为直					
4.		的元素,其原子					元素符号为
	<u>Au</u> ; 在居	别表中位于第_	六	周期;	属于 <u>IB</u> _	族元素。	
5.	己知在 EDTA 图	配位滴定中,溶液	友的 pH 越	战低, 则	α _{Y(H)} 值越	大	,滴定的 pM

突跃越小。

- 6. 如果指示剂与金属离子结合形成的配合物比金属离子与 EDTA 结合的稳定性大,EDTA 不能将示剂替换出来,滴定到化学计量点时也不能发生颜色变化,这种现象称为<u>指示剂的封闭</u>;而由于金属离子与指示剂形成的配合物形成胶体或者沉淀,使终点拖长的现象称为<u>指示剂的僵化</u>。
- 7. 在元素周期表的同一主族中,元素自上而下的电负性逐渐<u>减小</u>,主族元素同一周期中自左向右电负性逐渐<u>增大</u>。
- 8. 配位化合物[Co(NH₃)₄(H₂O)₂]₂(SO₄)₃ 的中心离子是<u>Co³⁺</u>,配位体是<u>NH₃、H₂O</u>,配位数为<u>6</u>,该配位化合物的名称为<u>硫酸四氨•二水合钴(III)</u>。
- 9. 原子中的电子在排布时应该遵循<u>泡利不相容原理</u>、<u>能量最低原理</u>、 <u>洪德规则</u>三个规则。
- 10. 己知 E° (Ce⁴⁺/Ce³⁺)=1.44V, E° (Fe³⁺/Fe²⁺)=0.68V。则用 Ce(SO₄)₂ 溶液在硫酸介质中滴定 Fe²⁺到终点时,体系的电位为 1.06 V 。

四、完成并配平下列反应方程式(本大题共5小题,每小题2分,共10分)

- 1, $2Mn^{2+} + 5NaBiO_3 + 14H^+ = 2MnO_4^- + 5Bi^{3+} + 5Na^+ + 7H_2O_3$
- $2 \cdot 2S_2O_3^{2-} + I_2 = S_4O_6^{2-} + 2I^{-}$
- 3, $Cr_2O_7^{2-} + 3H_2O_2 + 8H^+ = 2Cr^{3+} + 3O_2 \uparrow + 7H_2O$
- $4 \cdot 2Ni_2O_3 + 4H_2SO_4 = 4NiSO_4 + O_2 + 4H_2O_3$
- 5、2B + $3H_2SO_4$ (热浓) = $2B(OH)_3 + 3SO_2$

五、根据题目要求,解答下列各题(本大题共3小题,总计30分)

1、(10分) 已知 I 的标准电极电势图(电势单位 V):

- (1) 计算 E_1° 、 E_2° 、 E_3° 。
- (2) 判断哪些物质可以发生歧化反应?
- (3) 写出 I_2 与 NaOH 溶液反应的总方程式,并计算其平衡常数 K° 。

解:
$$(1) 4 \times 0.169 + 1 \times E_3^{\theta} = 5 \times 0.216$$

 $E_3^{\theta} = 0.404 \text{ V}$
同理: $E_1^{\theta} = 0.470 \text{ V}$ $E_2^{\theta} = 0.269 \text{ V}$

(2) 可能发生歧化反应的物质有 I_2 和 IO_3 ($E_{\pm}^{\theta} > E_{\pm}^{\theta}$)。

(3)
$$I_2 + 6NaOH = NaIO_3 + 5NaI + 3H_2O$$

正极: $1/2I_2 + e = 2I^ E_+{}^\theta = 0.535 \text{ V}$
负极: $1/2\,I_2 - 5e + 6OH^- = IO_3^- + 3H_2O$ $E_-{}^\theta = 0.216 \text{ V}$
 $1gK^\theta = Z\ (E_+{}^\theta - E_-{}^\theta)/0.0592$
 $K^\theta = 10^{26.94} = 8.76 \times 10^{26}$

- 2、(10 分)某原电池的一个半电池由金属Co浸在 1.0 mol·L^{-1} 的Co²⁺溶液中组成,另一半由Pt片浸入 1.0 mol·L^{-1} 的Cl⁻溶液中,并不断通入Cl₂ [P(Cl₂)=100 KPa] 组成。实验测得该电池电动势为 1.63 V,钴为负极。已知E $^{\theta}$ (Cl₂/Cl⁻)=1.36 V。
 - (1) 写出原电池符号及电池反应方程式;
 - (2) 计算 $E^{\theta}(Co^{2+}/Co)$;
 - (3) P(Cl₂)增大时,原电池电动势将如何变化?
 - (4) 当 Co^{2+} 浓度为 0.010 $mol \cdot L^{-1}$ 时,电池电动势为多少?
- 解: (1) 原电池符号为 (-) Co |Co²⁺(1.0 mol·L⁻¹) || Cl⁻(1.0 mol·L⁻¹) |Cl₂(100kPa) |Pt (+) 正极反应式为: Cl₂ + 2e = 2Cl⁻ 负极反应式为: Co -2e =Co²⁺ 电池反应方程式为: Co+Cl₂ = 2Cl⁻ + Co²⁺
 - (2) 在该电池反应中, $E(Co^{2+}/Co) = E^{\theta}(Co^{2+}/Co)$ $E(Cl_2/Cl^-) = E^{\theta}(Cl_2/Cl^-)$ $E = E_+ - E_- = E(Cl_2/Cl^-) - E(Co^{2+}/Co) = E^{\theta}(Cl_2/Cl^-) - E^{\theta}(Co^{2+}/Co) = 1.63V$ $E^{\theta}(Co^{2+}/Co) = 1.36 - 1.63 = -0.27V$.
 - (3) P(Cl₂)增大时, E(Co²⁺/Co)= E^θ(Co²⁺/Co) 不变,

$$E(Cl_2/Cl^-) = E^{\theta}(Cl_2/Cl^-) + \frac{0.0592}{2} lg \frac{P(Cl_2)/P\theta}{CCl^-/C\theta}$$

P(Cl₂)增大, E+增大, E-不变, 所以原电池电动势 E增大

(4)
$$E(Co^{2+}/Co) = E^{\theta}(Co^{2+}/Co) + \frac{0.0592}{2} lg(Co^{2+}/C^{\theta})$$

3. (10 分) PH=9.00 时,计算 Zn^{2+} 在 $^{c}(NH_{\bullet}^{+}+NH_{\bullet})$ = 0.10 $mol \cdot L^{-1}$ 溶液中的 lgK_{ZnY}^{θ} 值?在此条件下可否用EDTA标准溶液准确滴定 Zn^{2+} ? (已知 lgK_{ZnY}^{θ} = 16.5,PH=9.0 时, $lg\alpha_{Y(H)}$ = 1.28, $lg\alpha_{Zn(OH)}$ = 0.20; Zn^{2+} -NH₃的 $lg\beta_{1}\sim lg\beta_{4}$ 分别为 2.37,4.81,7.31,9.46, K_{b}^{θ} = 1.8×10⁻⁵)

解:

$$K_a^{\theta}(NH_4^+) = \frac{K_w^{\theta}}{K_b^{\theta}} = 5.6 \times 10^{-10}$$

$$[\mathrm{NH_2}] = c\delta_{\mathrm{NH_2}} = c\frac{K_a^\theta}{K_a^\theta + [\mathrm{H}^+]} = 0.10 \times \frac{5.6 \times 10^{-10}}{5.6 \times 10^{-10} + 10^{-9}} = 0.036 = 10^{-1.44} mol \cdot L^{-1}$$

$$\begin{split} \alpha_{\rm Zn(NH_3)} &= 1 + \beta_1 [{\rm NH_3}] + \beta_2 [{\rm NH_3}]^2 + \beta_3 [{\rm NH_3}]^3 + \beta_4 [{\rm NH_3}]^4 \\ &= 1 + 10^{2.27 - 1.44} + 10^{4.81 - 2.88} + 10^{7.21 - 4.22} + 10^{9.46 - 5.76} = 10^{2.78} \end{split}$$

$$\alpha_{\rm Zn} = \alpha_{\rm Zn(NH_2)} + \alpha_{\rm Zn(OH)} - 1 = 10^{2.78} + 10^{0.20} - 1 = 10^{2.78}$$

$$\lg K_{\rm ZnY}^{\rm g^*} = \lg K_{\rm ZnY}^{\rm g} - \lg \alpha_{\rm Y} - \lg \alpha_{\rm Zn} = 16.50 - 1.28 - 3.78 = 11.44$$

 $\lg K_{ZnY}^{Q'} > 8$,所以可以直接用 EDTA 滴定。