UNIVERSITY OF TECHNOLOGY, SYDNEY FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY

49275 NEURAL NETWORKS AND FUZZY SYSTEMS

ASSIGNMENT 2

QUESTION ONE [The Generalised XOR Problem] [50 marks]

A neural network model with two input neurons, three hidden neurons in a single hidden layer, and an output neuron is used to learn the decision surface of the well-known generalised XOR problem:

$$d = \operatorname{sgn}(x_1 x_2)$$

The input range is [-1,1]. The desired output value is either -1 (corresponds to logical zero) or 1 (corresponds to logical one).

This generalised XOR problem has been utilised recently to compare the effectiveness of various neural network learning algorithms. A simplified version is used in this question. Eight input samples $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_7, \mathbf{x}_8$ and their corresponding target vectors $\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_7, \mathbf{d}_8$ in the training set are:

$$\mathbf{x}_{1} = \begin{bmatrix} 0.7826 \\ 0.5242 \end{bmatrix}, \ \mathbf{x}_{2} = \begin{bmatrix} 0.9003 \\ -0.5377 \end{bmatrix}, \ \mathbf{x}_{3} = \begin{bmatrix} -0.0871 \\ -0.9630 \end{bmatrix}, \ \mathbf{x}_{4} = \begin{bmatrix} -0.1795 \\ 0.7873 \end{bmatrix},$$

$$\mathbf{x}_{5} = \begin{bmatrix} 0.2309 \\ 0.5839 \end{bmatrix}, \ \mathbf{x}_{6} = \begin{bmatrix} 0.2137 \\ -0.0280 \end{bmatrix}, \ \mathbf{x}_{7} = \begin{bmatrix} -0.6475 \\ -0.1886 \end{bmatrix}, \ \mathbf{x}_{8} = \begin{bmatrix} -0.6026 \\ 0.2076 \end{bmatrix}$$

$$\mathbf{d}_1 = [1], \ \mathbf{d}_2 = [-1], \ \mathbf{d}_3 = [1], \ \mathbf{d}_4 = [-1], \ \mathbf{d}_5 = [1], \ \mathbf{d}_6 = [-1], \ \mathbf{d}_7 = [1], \ \mathbf{d}_8 = [-1]$$

Assume that the network as shown in Figure 1 has 3 hidden neurons, 1 output neuron, and all continuous perceptrons use the bipolar activation function $f_2(\nu) = \frac{1 - e^{-\nu}}{1 + e^{-\nu}}$.

Note that due to the necessary augmentation of inputs and of the hidden layer by one fixed input, the trained network should have 3 input nodes, 4 hidden neurons, and 1 output neuron. Assign -1 to all augmented inputs.

1.1 Assume that the learning constant is $\eta = 0.2$, and the initial random output layer weight matrix W(1) and hidden layer weight matrix $\overline{W}(1)$ are

$$W(1) = \begin{bmatrix} 0.3443 & 0.6762 & -0.9607 & 0.3626 \end{bmatrix}$$

$$\overline{W}(1) = \begin{bmatrix} -0.2410 & 0.4189 & -0.6207\\ 0.6636 & -0.1422 & -0.6131\\ 0.0056 & -0.3908 & 0.3644 \end{bmatrix}$$

Using the error back propagation training, calculate the next weight updates $W(2), \overline{W}(2)$.

[25 marks]

1.2 The above training set was trained with the same set of initial random output layer weight matrix W(1) and hidden layer weight matrix $\overline{W}(1)$ as above, and a learning constant of $\eta = 0.2$. The training set was recycled when necessary. Determine the final weight matrices $W_f = W(4001)$ and $\overline{W}_f = \overline{W}(4001)$ after 500 cycles. Plot the cycle error curve for this training exercise.

[20 marks]

Consider two particular input vectors of the test set

$$\mathbf{x}_{t1} = \begin{bmatrix} 0.6263 \\ -0.9803 \end{bmatrix} \quad \text{and} \quad \mathbf{x}_{t2} = \begin{bmatrix} 0.0700 \\ 0.0500 \end{bmatrix}$$

Classify these two test input vectors using the final weight matrices and discuss the results.

[5 marks]

Figure 1 Multilayer Neural Network

Backing up a truck to a loading dock is a nonlinear control problem. The truck and loading zone are shown in Figure 2.1. The truck position is exactly determined by the three state variables ϕ , x, y where ϕ is the angle of the truck with the horizontal. Control to the truck is the angle θ .

Only backing up is considered. The truck moves backward by a fixed unit distance every stage. For simplicity, assume that there is enough clearance between the truck and the loading dock such that y does not have to be considered as an input. The task here is to design a control system, whose inputs are $\phi \in [-90^{\circ}, 270^{\circ}], x \in [0, 20]$ and whose output is $\theta \in [-40^{\circ}, 40^{\circ}]$ such that the final stages will be $(x_f, \phi_f) = (10, 90^{\circ})$.

The dynamics of the truck backer-upper procedure can be approximated by:

$$x(k+1) = x(k) + \cos[\phi(k) + \theta(k)] + \sin[\theta(k)]\sin[\phi(k)]$$

$$y(k+1) = y(k) + \sin[\phi(k) + \theta(k)] - \sin[\theta(k)]\cos[\phi(k)]$$

$$\phi(k+1) = \phi(k) - \sin^{-1}\left[\frac{2\sin[\theta(k)]}{b}\right]$$

where b is the length of the truck. Assume that b = 4.

Fuzzy logic is required for this truck backer-upper control. In this simple fuzzy logic controller, a set of linguistic variables is chosen to represent 5 degrees of truck angle (ϕ) error $[-90^{\circ},70^{\circ},90^{\circ},110^{\circ},270^{\circ}]$, 5 degrees of truck position (x) error [0m,7m,10m,13m,20m], and 5 degrees of control angle (θ) $[-40^{\circ},-10^{\circ},0^{\circ},10^{\circ},40^{\circ}]$ as shown in Figure 2.2. The generic rule set in the form of "Fuzzy Associative Memories" is shown in Figure 2.3.

The initial states of this truck are assumed to be $(\phi(1), x(1), y(1)) = (35^{\circ}, 15m, 15m)$.

2.1 If the Centre of Area (COA) defuzzification strategy is used with the fire strength α_i of the i-th rule calculated from

$$\alpha_i = \min(\mu_{X_{1i}}(x_1), \mu_{X_{2i}}(x_2))$$

determine the defuzzified control angle $\theta(1)$ and the next state $[\phi(2), x(2), y(2)]$.

[20 marks]

2.2 If the Mean of Maximum (MOM) defuzzification strategy is used with the fire strength α_i of the i-th rule calculated from

$$\alpha_i = \mu_{X_{1i}}(x_1).\mu_{X_{2i}}(x_2)$$

determine the defuzzified control angle $\theta(1)$ and the next state $[\phi(2), x(2), y(2)]$. Then continue and calculate $\theta(2)$ and $[x(3), \phi(3), y(3)]$.

Write a computer program to calculate the system state vector $[x(k+1), \phi(k+1), y(k+1)]$ and the defuzzified control angle $\theta(k)$ for 100 consecutive sampling points. Plot the corresponding vertical truck position y(k) against the horizontal truck position x(k) for these 100 sampling points. Plot the defuzzified control angle $\theta(k)$ for these 100 sampling points.

[20 marks]

Find the dominant rule which contributes the highest fire strength to the control action for the defuzzified control angle $\theta(1)$. If softer control action (for slower response) is required, modify this dominant rule and recalculate the new defuzzified control angle $\theta^*(1)$ and the next state vector $[\phi(2), x(2), y(2)]$. Using the modified FAM table, plot the corresponding vertical truck position y(k) against the horizontal truck position x(k) for these 100 sampling points. Plot the new defuzzified control angle $\theta^*(k)$ for these 100 sampling points.

[10 marks]

Figure 2.1 Diagram of truck and loading zone

Figure 2.2 Membership functions of a truck backer-upper system

Position (X)						
	NM	NS	ZE	PS	PM	
NM	ZE	NS	NM	NM	NM	
NS	PS	ZE	NS	NM	NM	
ZE	PM	PS	ZE	NS	NM	
PS	PM	PM	PS	ZE	NS	
PM	PM	PM	PM	PS	ZE	

Figure 2.3 Generic Fuzzy Associative Memories

Truck Angle (Φ)

MARKING SCHEME

Assignment 2: Neural Networks and Fuzzy Logic

Student Name:	Mark:
---------------	-------

Requirement	Criteria	Comment	
Standard "Declaration of Originality" cover page as provided by the Faculty	At front of report, completed and signed		Yes/no
Question 1 1.1 Neural Network: Back Propagation	• Presentation • $W(2)$ • $\overline{W}(2)$ • Calculation/software code		/20
Question 1 1.2 Neural Network: Training and Test	 Presentation W(4001) W(4001) Cycle error curve Software code Test samples Improved training 		/30
Section 2 2.1 Fuzzy Logic: COA defuzzification	 Fuzzification Combined fuzzy inference Moment calculation Area calculation Defuzzified control angle θ(1) Next state vector [φ(2), x(2), y(2)] 		/20
Section 2 2.2 Fuzzy Logic: MOM defuzzification	 Fuzzification Defuzzified control angle θ(1) and next state vector [φ(2), x(2), y(2)] θ(2) and [φ(3), x(3), y(3)] Truck position plot and defuzzified control angle plot (100 points) Software code Dominant rule Modified FAM Table New defuzzified control angle θ*(1) New truck position plot and defuzzified control angle plot (100 points) Software code 		/30