QUANTUM COMPUTING

what why how

About Me

- Software Engineer
- Commercial Software Engineering @ Microsoft
- Quantum Enthusiast

Schrödinger's Cat: Dead or Alive?

- 1. Schrödinger's cat: a cat, a flask of poison, and a radioactive source are placed in a sealed box.
- 2. If an internal monitor (e.g. Geiger counter) detects radioactivity (i.e. a single atom decaying), the flask is shattered, releasing the poison, and killing the cat.
- 3. The Copenhagen interpretation of quantum mechanics implies that after a while, the cat is simultaneously alive and dead. [Superposition]
- 4. Yet, when one looks in the box, one sees the cat either alive or dead not both alive and dead. [Measurement]
- 5. So when exactly does quantum superposition end, and when does reality collapse into one possibility or the other?

WHAT?

What is classical computing?

- Information is stored in bits, which take the discrete values 0 and 1.
 - Bits are composed into larger numbers. 1001 => 9
 - Allowed values are discrete, rational numbers.
- Calculations are done essentially the same way as "by hand"
 - Everything is addition
- Physically implemented by transistors and logic gates
 - There are billions of transistors in your phone.
 - von Neumann architecture implements the Turing machine

TURING MACHINE

Computational Complexity (Classical)

what can my computer do, and when will it be finished?

- Given some well defined problem, how hard is it to solve?
 - Expressed as a function $n \rightarrow f(n)$, where n is the size of the input.
 - How much space (i.e. memory) is required?
 - How much time is required?
- Classical computers (i.e. Turing machines) can solve problems in the complexity class BPP (bounded-error probabilistic polynomial time)

Complexity Classes

Complexity classes are related to each other, and some classes are entirely contained within others.

- P: The class of problems which we can solve efficiently using a conventional algorithm -> class of all problems solvable by a deterministic Turing machine bounded in time by a polynomial function of the input length.
- NP: the set of problems such that someone can convince you of a yes answer in a reasonable amount of time.
- BPP: The class of problems that are solvable efficiently by randomized algorithms.
- BQP: The class of all problems that admit an efficient solution by quantum computers.

What is Quantum Computing?

The really short version

- A quantum computer exploits fundamental laws of the cosmos to do computational tasks
 - Simulating quantum mechanics is hard*, so let's use quantum mechanics to perform hard* computation.
- Physical implementations
 - Superconducting electron qubits or topological qubits
 - Quantum gates and circuits
- Information is stored as quantum bits, a.k.a. qubits

Quantum States

- Vector of norm 1 in n-dimensional Hilbert space
 - Hilbert space: generalizes the notion of Euclidean space.
 - Complex numbers
 - Vector amplitudes encode probability of measurement outcomes
- Quantum operators interact with quantum states
 - E.g. a measurement, transformation, or time evolution
 - Represented as matrices in Hilbert space
- Dirac notation
 - a,b are complex amplitudes
 - and u,d are complex vectors

$$|\psi\rangle = a|u\rangle + b|d\rangle.$$

Qubits

- Qubits are the simplest quantum state
- The standard basis is called the computational basis

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Note that the numbers inside the $kets \mid \cdot \rangle$ are just labels. Any state of this system is thus represented as a superposition of these two basis states:

$$|\Psi\rangle = a|0\rangle + b|1\rangle$$

$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{-\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{-\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{bmatrix}$ $\frac{\frac{1}{\sqrt{2}}}{\frac{1}{-\sqrt{2}}}$ $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{-\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{bmatrix}$

Bloch Sphere

Qubit Intuition

Definitely a One

$$|x\rangle = 0|0\rangle - 1|1\rangle$$

Definitely a Zero

$$|y\rangle = 1|0\rangle + 0|1\rangle$$

A half-dead cat

$$| snuggles \rangle = 1\sqrt{2} | dead \rangle - 1\sqrt{2} | alive \rangle$$

Logic Circuits

the classical version

- Logic gates take bits as input, and produce a bit as output
- Implemented in silicon via transistors
 - All gates can be implanted by a universal logic gate i.e. the NAND and NOR gates.
- Gates are composed to form logical circuits (e.g. the half-adder)

Gate	Notation	Matrix
NOT (Pauli-X)	-X	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Z	-Z	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard	-H	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
CNOT (Controlled NOT)		$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

QUANTUM GATES

Logic Circuits

the quantum version

- Example: The X-Gate
 - $\mathcal{X} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
 - Names: Pauli X, X, NOT, bit flip, σ_x
 - Perform equivalent of NOT gate in traditional computing
- All quantum gates are rotations around an axis on the Bloch sphere.
- Quantum gates are composed into quantum circuits

Entanglement

- Two qubits with correlated measurement outcomes
- We can create entangled qubits!
- Used for control and execution of quantum operations

What is Quantum Computing?

Again

- Implements quantum circuits
 - From universal quantum gates we can approximate any quantum gate.
- Model any quantum system
 - with less effort than the equivalent simulation on a classical computer.
- Quantum circuits implement quantum algorithms
 - Some class of problems (BQP) are much easier to solve.
- Solves hard* problems

What Quantum Computing is NOT

- NOT a really fast computer
- NOT a massively parallel computer
- NOT, for most problems, better than classical computers
- NOT cheap
- NOT magic

WHY?

Challenges and Opportunities

NITROGEN FIXATION

CARBON SEQUESTRATION

ANTIBIOTIC RESISTANCE

CRYPTOGRAPHY

ARTIFICIAL INTELLIGENCE

Nitrogen Fixation

or how to feed the world

- Crops consume nitrogen as fertiliser
- The Haber-Bosch process
 - Converts atmospheric nitrogen (N2) to ammonia (NH3)
 - Uses 1-2% of global annual energy supply
- FeMoco
 - Catalyses the conversion of atmospheric N2 into ammonia (NH3) a.k.a. nitrogen fixation.
 - 200 qubits can simulate FeMoco

Carbon sequestration

combat climate change

- Current State of the Art in carbon sequestration is ineffective and inefficient
- Can we find a low energy catalyst for carbon sequestration?
 - Capture atmospheric or oceanic carbon

Antibiotic Resistance

molecular modelling

- Antigens are important molecules for fighting disease
 - Usually proteins, peptides (amino acid chains) and polysaccharides
 - Vaccines are examples of antigens
 - Antigens bind to foreign/ infected cells
 - T cells selectively recognize the antigens, based on HLA proteins
- Can we model antigen/ pathogen interaction?
 - Potentially thousands of atoms
 - We can do it (with enough qubits)

Quantum Cryptography

Perfectly Private Communication

- Quantum Key Exchange
 - enables two parties to produce a shared random secret key known only to them.
- Alice and Bob can detect the presence of any third party attempting to intercept comms
- Exploits quantum entanglement
 - "spooky action at a distance" Einstein
 - Two quantum states that, when measured, will have correlated outcomes regardless of distance.

Artificial Intelligence

optimising machine learning

Quantum software to enable machine learning that is faster than that of classical computers.

- Grover's Search
- Linear algebra simulation with quantum amplitudes
- Enhanced reinforcement learning
- Fast sampling from generic probabilistic models

Quantum Supremacy

- Quantum supremacy means:
 - Solving a really hard* problem on a quantum computer
 - Not solving that same problem on a classical computer
 - Some confidence that the problem is **classically not solvable**.

HOW?

Quantum Hardware

- Superconducting Qubits (Rigetti, Google, IBM)
- Topological Qubits (Microsoft)
- Advantages of a topological qubit
 - Longer decoherence time
 - Robust to noise = scale with fewer resources
 - Information is stored non-locally, meaning fewer errors
 - Less overhead on long (i.e. useful) computations
- Quantum Compute Stack
 - Quantum Processor
 - Cryogenic Control Machine
 - Application Computer

Quantum Software

Cirq - Python library for writing, manipulating, and optimizing quantum circuits

Qiskit - for developing quantum computing applications and working with NISQ (Noisy-Intermediate Scale Quantum) computers such as IBM Q.

pyQuil - library for easily generating Quil programs to be executed using the Rigetti Forest platform.

QDK – Quantum Development Kit including Q# language, simulators and libraries

Q#

Quantum-focused Programming Language

- Built ground-up for Quantum
- Native type system
- Windows, MacOS and Linux
- Fully integrated into Visual Studio and VS Code
- Python interoperability

```
licrosoft Visual Studio
   Build Debug Team Tools Test Analyze Window Help
    9 - C - Debug - Any CPU

    H2SimulationSample

    ► Start *

                 ExampleH2.gs
qs 🗢 🗙 Program.cs
                               Program.fs
   /// ## there
   /// A qubit intitially in the |0) state that we want
   /// the state of msg to.
   operation Teleport(msg : Qubit, there : Qubit) : ()
       body {
            using (register = Qubit[1]) {
                // Ask for an auxillary qubit that we can
                // for teleportation.
                let here = register[0];
                // Create some entanglement that we can
                H(here);
                CNOT(here, there);
                // Move our message into the entangled page
                CNOT(msg, here);
                H(msg);
                // Measure out the entanglement.
                if (M(msg) == One) { Z(there); }
                if (M(here) == One) { X(there); }
                // Reset our "here" qubit before releasi
                Reset(here);
                                                Ln 43
```

Quantum Simulator

Run locally or in the cloud

Local simulator

Simulate a 30 qubit computer
Visual Studio and VS Code integration
Full debugging support

Azure simulator

Available for up to 40 qubits – with 16TB of memory!

QDKLibraries and Samples

New Features

New chemical simulation library Q# language improvements Improved developer experience

Samples

Database search and integer factorisation
H2 molecular simulation
Ferromagnetic simulation
Interop with Qiskit and OpenQasm

Quantum as a Service

- Quantum computing will be provided as an auxiliary service, similar to:
 - FPGA's (Project Brainwave)
 - Graphics Cards
 - Cognitive Services
- It's a 'back-end' service
 - You won't have a quantum computer in your pocket!

DEMOMEASUREMENT

Hadamard transformation: 180 degree rotation around the diagonal X+Z axis of the Bloch sphere.

DEMOTELEPORTATION

DEMO H2 BOND ENERGY

