HTW Berlin SoSe 2018

1163150 - Übung 3

Name, Vorname:			
Matrikelnummer:			

- Abgabetermin der Übung ist der 19. Juli 2018
- Elektronische Abgaben erfolgen grundsätzlich über die Moodle-Plattform
- Handgeschriebene Lösungsaufgaben können ins Fach eingeworfen werden (WH C Etage 2)
- Für jeden Tag nach Abgabefrist werden 5 Punkte der Maximalpunktzahl abgezogen
- Über alle Übungen hinweg besitzten Sie 3 Bonustage, die Sie für eine verspätete Abgabe ohne Punktabzug verwenden können

Aufgabe:	1	2	3	Summe:
Punkte:	17	12	16	45
Ergebnis:				

1. (17 Punkte) Fully Connected Neural Network Bearbeiten Sie das beigelegte Jupyter Notebook fc_network.ipynb. Die genauen Aufgabenstellungen sowie die Punkteverteilung werden im Notebook erläutert.

2. Convolution und Pooling

- (a) (12 Punkte) Bearbeiten Sie das beigelegte Jupyter Notebook convolution_pooling.ipynb. Die genauen Aufgabenstellungen sowie die Punkteverteilung werden im Notebook erläutert.
- (b) (5 Bonuspunkte) Erweitern Sie das Notebook um die Implementierung der Faltungsoperation eines Atrous-Conv-Layers. Eine detailierte Beschreibung finden Sie in der wissenschaftlichen Veröffentlichung 'Rethinking Atrous Convolution for Semantic Image Segmentation' (https://arxiv.org/pdf/1706.05587.pdf). Eine Einfühung finden Sie in den Folien der Vorlesung 05.

3. Neural Network Framework

- (a) (16 Punkte) Coming soon
- (b) (15 Bonuspunkte) Coming soon

Name/MatNr.: 2/2