Булгаков Илья, Гусев Илья

Московский физико-технический институт

Москва, 2021

Содержание

- 🚺 Декартово дерево
 - Общее описание
 - Почему декартово?
 - Операции
 - Merge
 - Split
 - Insert
 - Remove
 - Build

Деревья поиска

Виды самобалансирующихся деревьев

- AVL-дерево (рассматривали прошлый раз)
- Splay-дерево
- Красно-черное дерево

Другие деревья

Декартово дерево (не является самобалансирующимся в обычном смысле)

Общее описание

Структура данных, объединяющая в себе бинарное дерево поиска и бинарную кучу

- Двоичное дерево поиска по ключу х
- Куча по приоритету у
- В одной вершине храним х и у
- Если приоритеты задаются случайно, то это может использоваться для балансировки

Другие названия:

- treap (tree + heap)
- дуча (дерево + куча)
- дерамида (дерево + пирамида)
- курево (куча + дерево)

Почему декартово?

По х - дерево поиска, по у - куча

Основные операции

Основные операции

- Вставка элемента: в среднем O(log(N))
- Удаление элемента: в среднем O(log(N))
- Поиск по ключу: в среднем O(log(N))
- Построение по отсортированному массиву за O(n)
- Поиск k-порядковой статистики: в среднем O(log(N)), нужно O(n) доп. памяти
- \bullet Сумма, минимум, максимум на отрезке: в среднем O(log(N)), нужно O(n) доп. памяти

Внутренние операции

Для реализации используется 2 вспомогательные функции

- Merge склейка 2 деревьев; все ключи одного меньше всех ключей другого: в среднем O(log(N))
- Split разрезание по ключу на 2 дерева: в среднем O(log(N))

Декартово дерево Merge

Операция Merge. На вход приходит два дерева. Цель - объединить в единое дерево.

Условие: все ключи (x) дерева L меньше ключей дерева R

Merge

Алгоритм функции Merge:

- Пусть приоритет (у) корня левого дерева больше приоритета корня правого дерева. Новый корень корень левого дерева (без огр. общн.)
- Тогда R точно в правом поддереве нового корня
- L.Left точно левое поддерево нового корня
- Рекурсивно сливаем L.Right и R
- База рекурсии: хотя бы одно дерево пустое

Merge

Псевдокод функции Merge

```
Treap merge(t1: Treap, t2: Treap):
if t2 == null
  return t1
if t1 == null
  return t2
else if t1.y > t2.y
  t1.right = merge(t1.right, t2)
  return t1
else
t2.left = merge(t1, t2.left)
return t2
```

Декартово дерево Merge

Оценка функции Merge

ullet Сложность: сумма высот деревьев, в среднем O(log(n) + log(m))

Декартово дерево Split

Операция split (разрезать) позволяет разрезать исходное дерево T по ключу k. Возвращает пару таких деревьев T1,T2, что в дереве T1 ключи меньше k, а в дереве T2 все остальны.

• Разделяем по ключу x_o

Декартово дерево Split

Алгоритм функции Split

- Без огр.общности: ключ корня меньше x_0
- Рекурсивно делим правое поддерево корня на L' и R'
- L' новое правое поддерево корня

Псевдокод функции Split

```
(Treap, Treap) split(t: Treap, k: int):
 if t == null
     return (null, null)
 else if k > t.x
     (t1, t2) = split(t.right, k)
     t.right = t1
     return t , t 2
 else
     (t1, t2) = split(t.left, k)
     t.left = t2
 return (t1, t)
```

Декартово дерево Split

Оценка функции Split

• Сложность: высота изначального дерева, в среднем O(log(n))

Insert

Как реализовать функцию Insert?

2. (x, y)

3. (x, y)

Вставка элемента (x, y)1 Split + 2 Merge

Remove

Как реализовать функцию Remove?

Удаление элементов с ключом x 2 Split + 1 Merge

Как реализовать построение дерева?

- ullet В случае неотсортированного массива n вставок, $O(n \cdot log(n))$
- В случае отсортированного массива всегда рассматриваем самую правую ветку и вставляем в самую правую ветку \to каждый элемент рассматривается не больше 2 раз $\to O(n)$
- Нужны ссылки на предков и на последнюю вставленную вершину

Build-1

Build-2

y = 16:

Build-3

y = 11:

