Proof: Suppose $S = SU, U_{1}, ..., U_{p}^{2}$ is an orthogonal set of non-gers victoris and suppose court court court of D = 0.

Taking the moon product with D = 0. $C_{1}(U_{1}, U_{1}) + 8... + C_{p}(U_{1}, U_{p}) = 0$ Since $C_{1}(U_{1}, U_{1}) + 8... + C_{p}(U_{1}, U_{p}) = 0$ $C_{2}(U_{1}, U_{1}) + 8... + C_{p}(U_{1}, U_{p}) = 0$ Similarly $C_{2}(U_{1}, U_{1}) + 0$ Uppose, the set $C_{1}(U_{1}, U_{1}) + 0$ Uppose, the set $C_{1}(U_{1}, U_{1}) + 0$ Uppose, the set $C_{2}(U_{1}, U_{1}) + 0$ Uppose, the set $C_{2}(U_{1}, U_{1}) + 0$ Uppose, the set $C_{2}(U_{1}, U_{1}) + 0$ Uppose the set $C_{2}(U_{1}, U_{1}) + 0$ Uppose the set $C_{2}(U_{1}, U_{2}) + 0$ Uppose the set C_{2