

CS120: Computer Networks

Lecture 12. Other Topics in IP

Zhice Yang

Outline

- IPv6
- NAT
- MPLS
- Router Implementation

IPv6 Address

- 16 bytes
 - 1500 addresses per square foot (Earth's surface)
- Classless addressing/routing (similar to CIDR)
 - Notation: x:x:x:x:x:x:x:x (x = 16-bit hex number)
 - Contiguous 0s are compressed: 47CD::A456:0124
 - IPv4-mapped IPv6 address: ::FFFF:123.45.67.8
- Address assignment: more hierarchy

010	RegistryID	ProviderID	SubscriberID	SubnetID	InterfaceID
					64bit

IP Version 6 (IPv6)

- Motivation
 - 32 bits IPv4 Address is not enough
 - Other Features
 - Stateless auto configuration
 - Source Routing
- IPv6 "base" Header
 - 40 bytes "base" header
 - 16 bytes addresses
- Extension headers
 - Fragmentation
 - Source routing
 - Authentication and security
 - etc.

Transition from IPv4 to IPv6

- IETF began looking at the problem of IPv4 address space in 1991
- Not all routers can be upgraded simultaneously

How will network operate with mixed IPv4 and IPv6 routers?

Transition from IPv4 to IPv6

• Tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Transition from IPv4 to IPv6

Why haven't IPv6 replaced IPv4?

```
Wireless LAN adapter Wi-Fi:

Connection-specific DNS Suffix . :
   Link-local IPv6 Address . . . : fe80::d1b5:35be:9832:af6c%9
   IPv4 Address . . . . . . . . : 192.168.31.143
   Subnet Mask . . . . . . . . . : 255.255.255.0
   Default Gateway . . . . . . . . : 192.168.31.1
```

Address range	Subnet mask	Provides	Addresses per LAN
10.0.0.0 - 10.255.255.255	255.0.0.0	1 class A LAN	16,777,216
172.16.0.0 - 172.31.255.255	255.255.0.0	16 class B LANs	65,536
192.168.0.0 - 192.168.255.255	25.255.255.0	256 class C LANs	256

Multi Layer NAT

NAT translation table R1			
LAN	WAN		
192.168.1.2:1234	10.1.1.8:6321		

NAT translation table R2			
LAN	WAN		
10.1.1.8:6321	59.23.1.8:6000		

Demo

- 16-bit port-number field (see later lecture)
 - 60,000 simultaneous connections with a single IPv4 address
 - Hosts uses LAN addresses
 - 192.168.0.0/16
 - 10.0.0.0/8
 - 172.16.0.0/12
 - etc.
- Problems
 - NAT is "impure"
 - Routers should not touch higher layers
 - Efficiency
 - Traversal Connections

NAT Traversal Problem

- How to initiate connections to Host 1 from external network?
 - e.g. IP Phone

NAT Traversal Problem

- Solution 1: Static Configure
 - Configure NAT to forward incoming connection requests at given port to the host

Need to know the port

192.168.1.2 H1	192.168.1.22 H2	192.168.1.222 H3
Network 2 (Ethernet)	192.168.1.1	
R		.23.1.8

NAT translation table		
LAN	WAN	
192.168.1.2	59.23.1.8: <u>6000</u>	
192.168.1.2	59.23.1.8: <u>6000</u>	

NAT Traversal Problem

- Solution 2: Relay
 - NATed host establishes connection to relay
 - External host connects to relay
 - Relay bridges packets between to connections

Outline

- IPv6
- NAT
- MPLS
- Router Implementation

Longest Prefix Matching

 When looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

SubnetNum	NextHop	
197.168.0.0/22	R4	11000101.10101000.000000**.******
197.168.3.0/24	R7	11000101.10101000.00000011.*****
197.168.4.0/22	R9	11000101.10101000.000001**.*****

How to Accelerate Prefix Matching in Backbone Routers?

Virtual Circuit

Virtual Circuit Table

Switch1				
Incoming Interface	Incoming VCI	Outgoing Interface	Incoming VCI	
2	5	1	11	
Switch2				
Incoming Interface	Incoming VCI	Outgoing Interface	Incoming VCI	
3	11	0	7	
Switch3				
Incoming Interface	Incoming VCI	Outgoing Interface	Incoming VCI	
0	7	3	4	

Asynchronous Transfer Mode (ATM)

- Evolved from telephony
 - Connection-oriented packet-switched network
 - Guaranteed Service: strict timing, reliability, etc.
- Packets are called cells

ATM Switch

- Packet Length is Fixed
 - Easier to switch in hardware
- VCI Length is Fixed
 - VCI looking up complexity is O(1)

Multiprotocol Label Switching (MPLS)

- Original Motivation
 - Enable IP forwarding on devices that do not have IP forwarding ability (i.e., ATM Switches)
 - Capability (Support IP in ATM)
 - Speed
- Benefit: Destination-Based Forwarding

IP Forwarding with Normal Routers

• IP Forwarding with Labels

IP Forwarding with Labels

• IP Forwarding with Labels

• IP Forwarding with Labels

IP Forwarding with Labels

IP Forwarding with LabelsUse labels along the path

- IP Forwarding with Labels
 - The forwarding hardware is based on label

MPLS: Destination-Based Forwarding

- IP Forwarding with Labels
 - The forwarding hardware is based on label

MPLS: Destination-Based Forwarding

MPLS: Destination-Based Forwarding

- Transform ATM switches into IP Routers
 - Only software changes are needed
 - IP routers connected by ATM network are able to see better network topoloty

- MPLS Forwarding Decisions
 - Can follow IP routing algorithm
 - Same path as IP forwarding
 - Can differ from IP routing algorithm
- Application
 - Traffic engineering
 - Use destination and source addresses to route flows to same destination differently
 - Fast reroute
 - pre-computed backup paths

- IP Routing: path to destination determined by destination address alone
 - Contains no information about the traffic of certain path

MPLS routing: path to destination can be based on source and

destination address

Dest	Interface	L_IN	L_OUT
Α	0	25	3
Α	1	12	4

Dest	Interface	L_IN	L_OUT
Α	0	/	25

Dest	Interface	L_IN	L_OUT
А	0	/	12

MPLS routing: path to destination can be based on source and

destination address		Dest	Interface	L_IN		
			ı	Α	0	25

Dest	Interface	L_IN	L_OUT
Α	0	/	25
Α	0	/	26

Dest	Interface	L_IIN	L_OUT
А	0	25	3
Α	1	26	4
		DG	

MPLS: Tunneling

IPv4 Tunneling

MPLS: Tunneling

MPLS Tunneling

Centralize or Decentralize?

That is the question

Router Architecture

- Two Key Functions:
 - Routing algorithms (e.g, RIP, OSPF, etc.)
 - Forwarding packets from input to output ports
- Performance: packet per second

Control Processor

- Function
 - Control
 - Ports and switch fabrics
 - Calculation
 - Routing Algorithm (Router)
 - Push forwarding tables into ports
 - Switches does not run routing algorithms

Input Port

- Deliver Packet to Fabric
 - Handle Different Protocols
- Output Port Looking Up
 - Given packet destination lookup output port
 - Ethernet
 - Using table: destination MAC ⇔ port
 - ATM
 - Using table: VCI ⇔ port
 - Goal: complete input port processing at "line speed"
 - 2.48Gbps link, 64byte packet
 - 4.83*10^6 pps
- Buffer

Input Port

Head-of-line Blocking

Input Port

- Deliver Packet to Network
- Buffer

Inside Routers

Inside Routers

• Freescale P1010 SoC

Inside Routers

AR8327 Switch

Switching Fabrics

- Function
 - Transfer packet from input buffer to appropriate output buffer
- Switching Throughput
 - Rate at which packets can be transfer from inputs to outputs
 - N inputs: switching throughput N times line rate desirable
- Four Types
 - Shared Bus
 - Shared Memory
 - Crossbar
 - Self-routing

Shared Bus/Memory

- Datagram from input port to output port via a shared bus
 - 2 bus crossings per datagram
 - Bus and memory bandwidth determines switch throughput

Crossbar

 A crossbar switch is a matrix of pathways that can be configured to connect any input port to any output port

Routing Header

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - 0=> up
 - 1=> down

- Switching Element
 - Collision: Two packets with same output ports

- Banyan Network
 - Collision Free
 - Input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Input Packets are sorted according to routing header

- Banyan Network
 - Collision Free
 - Input Packets are sorted according to routing header

Open Sourced Wireless Router

• Linksys WRT54G

Reference

- Textbook 4.1
- Textbook 4.3
- Textbook 3.4