

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Нелинейные системы управления **Отчет по выполнению задания №4.**

> Студент: Евстигнеев Д.М. Группа: R34423 Преподаватель: Зименко К.А.

Задача: линеаризовать систему двойного перевернутого маятника на подвижной платформе и синтезировать стабилизирующее линейное управление.

Дано:

Система №1
$$\begin{cases} \dot{x}_1 = x_2 + \sin{(x_1)} \\ \dot{x}_2 = \theta_1 x_1^2 + (2 + \theta_2) u \end{cases}$$
, где $|\theta_1| \le 1$, $|\theta_2| \le 1$

Система №2
$$\begin{cases} \dot{x}_1 = x_2 + a_1 x_1 \sin{(x_1)} \\ \dot{x}_2 = a_2 x_1 x_2 + 3u \end{cases}$$
, где $|a_1 - 1| \le 1, |a_2 - 1| \le 1$

Ход работы:

Система №1

$$\begin{cases} \dot{x}_1 = x_2 + \sin(x_1) \\ \dot{x}_2 = \theta_1 x_1^2 + (2 + \theta_2) u \end{cases}$$

$$s = ax_1 + x_2 = 0$$

$$x_2 = -ax_1$$

Из этого следует что:

$$\dot{x}_1 = -ax_1 + \sin(x_1), a > 1$$

$$\dot{s} = a\dot{x}_1 + \dot{x}_2 = a(x_2 + \sin(x_1)) + \theta_1 x_1^2 + (2 + \theta_2)u$$

Сделаем замену и подставим в предыдущее выражение:

$$u = -a(x_2 + \sin(x_1)) + v$$

$$\dot{s} = a(-1 - \theta_1)(x_2 + \sin(x_1)) + \theta_1 x_1^2 + (2 + \theta_2)v$$

Выберем функцию Ляпунова

$$V = \frac{1}{2}s^2$$

$$\begin{split} \dot{V} &= s\dot{s} = sa(-1 - \theta_1)(x_2 + \sin(x_1)) + s\theta_1x_1^2 + s(2 + \theta_2)v \\ &\leq |s|x_1^2 + 2a|s||x_2 + \sin(x_1)| + s(2 + \theta_2)v \\ &\leq |s|x_1^2 + 2a|s||x_2 + \sin(x_1)| - \beta(x)|s| \end{split}$$

$$eta(x) = x_1^2 + 2a|x_2 + \sin(x_1)| + eta_0$$
, где $eta_0 = const$ и $eta_0 > 0$

Разрывный регулятор: $u = -\beta(x)sign(s)$

Непрерывный регулятор: $u = -\beta(x)sat\left(\frac{s}{\varepsilon}\right)$

Рисунок 1 - Схема моделирования со стабилизирующим регулятором

Разрывный регулятор:

Рисунок 2 - График вектора состояния со стабилизирующим разрывным регулятором

Рисунок 3 - График вектора состояния со стабилизирующим разрывным регулятором Непрерывный регулятор

Рисунок 4 - График вектора состояния со стабилизирующим непрерывным регулятором

Рисунок 5 - График вектора состояния со стабилизирующим непрерывным регулятором

Система №2

$$\begin{cases} \dot{x}_1 = x_2 + a_1 x_1 \sin(x_1) \\ \dot{x}_2 = a_2 x_1 x_2 + 3u \end{cases}$$

$$s = bx_1 + x_2 = 0 \rightarrow x_2 = -bx_1$$

Из этого следует, что:

$$\dot{x}_1 = -bx_1 + a_1x_1\sin(x_1) \to b > 2$$

$$\dot{s} = a\dot{x}_1 + \dot{x}_2 = b(x_2 + a_1x_1\sin(x_1)) + a_2x_1x_2 + 3u$$

Выберем функцию Ляпунова

$$V = \frac{1}{2}s^{2}$$

$$\dot{V} = s\dot{s} = sb(x_{2} + a_{1}x_{1}\sin(x_{1})) + sa_{2}x_{1}x_{2} + 3su$$

$$\leq b|s||x_{2} + a_{1}x_{1}\sin(x_{1})| + a_{2}|s||x_{1}x_{2}| + 3su$$

$$\leq b|s||x_{2} + a_{1}x_{1}\sin(x_{1})| + a_{2}|s||x_{1}x_{2}| - \beta(x)|s|$$

$$eta(x)=b|x_2+a_1x_1\sin(x_1)|+a_2|x_1x_2|+eta_0$$
, где $eta_0=const$ и $eta_0>0$

Разрывный регулятор: $u = -\beta(x) sign(s)$

Непрерывный регулятор: $u = -\beta(x)sat\left(\frac{s}{\varepsilon}\right)$

Рисунок 6 Схема моделирования со стабилизирующим регулятором

Разрывный регулятор

Рисунок 7 График вектора состояния со стабилизирующим разрывным регулятором

Рисунок 8 График вектора состояния со стабилизирующим разрывным регулятором

Непрерывный регулятор

Рисунок 9 График вектора состояния со стабилизирующим непрерывным регулятором

Рисунок 10 График вектора состояния со стабилизирующим непрерывным регулятором

Вывод:

В ходе выполнения работы были построены стабилизирующие регуляторы для двух систем.

По полученным результатам видно, что регулятор обеспечивает глобальную устойчивость, однако разрывный регулятор при приближении вектора состояния к нулю начинает колебать около положения равновесия, в то время как непрерывный сводит состояние в ноль.