Problem 3 (16 points). A switching circuit has two control inputs (**A** and **B**), two data inputs (**C** and **D**), and one output (**Z**). The circuit performs logic operations on the two data inputs, as shown in this table

A B	Function performed by this
	circuit
0 0	$OR(\mathbf{C}, \mathbf{D})$
0 1	$AND(\mathbf{C}, \mathbf{D})$
1 0	$XOR(\mathbf{C}, \mathbf{D})$
0 1	$XNOR(\mathbf{C}, \mathbf{D})$

- (a). (4 points) Use the Shannon's expansion theorem to expand the Boolean function $\mathbf{Z}(\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{D})$ about variables \mathbf{A} and \mathbf{B} .
- (b). (5 points) Use a Karnaugh map to obtain the minimal product of sum (POS) of **Z(A,B,C,D)**.
- (c). (7 points) Convert the above minimal POS to a NAND network, and draw the circuit diagram.