CS300 Homework #6

TA: Jiman Hwang molehair@kaist.ac.kr

Total 100 points

Due: December 4 at 18:00:00 KST

1 True / False (30 points)

Give true or false for each of the following statements. Briefly justify your answer in less than four sentences.

- 1) If 3-CNF-SAT \in **P**, then CLIQUE \in **P**. [10 points]
 - sol) True. Since both 3-CNF-SAT and CLIQUE are **NP-complete**, CLIQUE \leq_p 3-CNF-SAT. Thus, CLIQUE \in **P**.
- 2) For decision problems $L_1, L_2 \in \mathbb{NP}$, if $\mathbb{P} \neq \mathbb{NP}$, $L_1 \leq_p L_2$ and $L_2 \leq_p L_1$, then L_1 and L_2 are \mathbb{NP} -complete. [10 points]
 - sol) False. Let $L = L_1 = L_2$ be any decision problem in **P**. Then, $L_1 \le_p L_2$ and $L_2 \le_p L_1$ but L_1 and L_2 are not **NP-complete**.
- 3) For decision problems $L_1, L_2 \in \mathsf{NP\text{-}complete}$, if $L_1 \notin \mathsf{P}$, then $L_2 \notin \mathsf{P}$. [10 points]
 - sol) True. Contrapositive: $L_2 \in \mathbf{P} \to L_1 \in \mathbf{P}$. Since $L_1 \leq_p L_2$, the statement is true.

2 Closest string (70 points)

Given two binary strings $x = x_1 \cdots x_n$, $y = y_1 \cdots y_n$, let d(x, y) denote the number of different bit pairs. That is,

$$d(x,y) = \sum_{i=1}^{n} (x_i \oplus y_i) \quad \text{with } x_i \oplus y_i = \begin{cases} 1 & \text{if } x_i \neq y_i \\ 0 & \text{otherwise} \end{cases}$$

For example, d(0011,0001) = 1 and d(0011,1100) = 4. We define the Closest String Problem as follow.

Definition Closest String Problem(CSP) Given a natural number k and m strings s_1, s_2, \dots, s_m where $s_i \in \{0,1\}^n$ for $i = 1, \dots, m$, is there a string $t \in \{0,1\}^n$ such that $d(t, s_i) \leq k$ for all i?

- 1) Assuming $m = O(n^c)$ for some constant c, prove that $CSP \in NP$. [10 points]
 - sol) Given the certificate $t \in \{0,1\}^n$, computing $d(t,s_i)$ takes O(n). Repeating this for $i=1,\dots,m$ takes O(mn), taking polynomial time with respect to n.

1

We'll show that $CSP \in NP$ -hard by proving 3-CNF-SAT $\leq_p CSP$, thus $CSP \in NP$ -complete.

Given a boolean formula $\phi = C_1 \wedge \cdots \wedge C_m$ of variables x_1, \cdots, x_n in 3-CNF, generate the strings s_1, \cdots, s_{6n+m} each of length 2n-bit as follow.

For $i = 1, \dots, 2n$

$$s_i = b_1 b_2 \cdots b_{2n}$$
 with $b_j = \begin{cases} 0 & j = i \\ 1 & \text{otherwise} \end{cases}$ (1)

For $i=2n+1,\cdots,4n,\ s_i=\overline{s_{i-2n}}$ where \overline{s} is bit-wise negation of s.

For $i = 4n + 1, \dots, 5n$

$$s_i = b_1 b_2 \cdots b_n c_1 c_2 \cdots c_n \quad \text{with } b_j = c_j = \begin{cases} 0 & j = i - 4n \\ 1 & \text{otherwise} \end{cases}$$
 (2)

For $i = 5n + 1, \dots, 6n$, $s_i = \overline{s_{i-n}}$ where \overline{s} is bit-wise negation of s.

For $i = 6n + 1, \dots, 6n + m$,

$$s_i = b_1 b_2 \cdots b_n c_1 c_2 \cdots c_n$$
 with

$$b_{j} = \begin{cases} 1 & \text{if } C_{i-6n} \text{ includes the literal } x_{j} \\ 0 & \text{otherwise} \end{cases} \quad c_{j} = \begin{cases} 1 & \text{if } C_{i-6n} \text{ includes the literal } \neg x_{j} \\ 0 & \text{otherwise} \end{cases}$$
(3)

For each string $s = b_1 \cdots b_n c_1 \cdots c_n$, b_j corresponds to x_j , and c_j does $\neg x_j$. For example, given $\phi = (x_1 \lor x_2 \lor \neg x_4) \land (x_1 \lor \neg x_3 \lor x_4)$, we generate

Note that this process runs in polynomial time.

At first, we show that if 3-CNF-SAT produces the positive answer, then so does CSP.

2) Prove that if ϕ has a satisfying assignment, then there exists $t \in \{0,1\}^{2n}$ such that $d(t,s_i) \le n+1$ for all i. [15 points]

(Hint: Convert the satisfying assignment $b_1, \dots, b_n(1 \text{ for TRUE}, 0 \text{ for FALSE})$ into $t = b_1 \dots b_n c_1 \dots c_n$ with $c_i = \neg b_i$)

sol) Let b_1, \dots, b_n be the satisfying assignment and $t = b_1 \dots b_n c_1 \dots c_n$ with $c_j = \neg b_j$. Note that t has exactly n 1s and n 0s.

For any s_i where $i=1,\cdots,2n,\,t$ and s_i have at least (n-1) 1s in common positions, thus $d(t,s_i)\leq n+1$. For any s_i where $i=2n+1,\cdots,4n,\,t$ and s_i have at least (n-1) 0s in common positions, thus $d(t,s_i)\leq n+1$. For any s_i where $i=4n+1,\cdots,5n,\,t$ and s_i have at least (n-1) 1s in common positions, thus $d(t,s_i)\leq n+1$. For any s_i where $i=5n+1,\cdots,6n,\,t$ and s_i have at least (n-1) 0s in common positions, thus $d(t,s_i)\leq n+1$. For any s_i where $i=6n+1,\cdots,6n+m,\,t$ and s_i have at least a 1 in a common position (satisfying assignment) and at least (n-2) 0 in common positions (there are exactly 3 1s in each s_i). Thus $d(t,s_i)\leq n+1$.

Next, we show that if CSP produces the positive answer, then so does 3-CNF-SAT. For the problems 3) - 5), assume that there exists $t \in \{0,1\}^{2n}$ such that $d(t,s_i) \le n+1$ for all i.

3) Prove that t has exactly n 1s and n 0s. [15 points] (Hint: Use (1) to show that t contains at least n 1s)

sol) Note that t includes at least a $1(\because s_1, \cdots, s_{2n})$. We assert that t includes at least n 1s. Suppose t has at most (n-1) 1s. It follows that t has at least (n+1) 0s. Then, there exists s_i with $i \in [1, 2n]$ such that at least (n+1) 0s in t correspond to (n+1) 1s in s_i , and the 0 in s_i corresponds to a 1 in t, followed by $d(t, s_i) \ge n + 2$.

$$s_i = 1 \cdots 111011$$

$$t = \underbrace{0 \cdots 0}_{\geq n+1} \underbrace{1 \cdots 1}_{\leq n-1}$$

This is contradiction, thereby, t has at least n 1s. Similarly, we can use s_{2n+1}, \dots, s_{4n} to show that t has at least n 0s. Therefore, t has exactly n 1s and n 0s.

4) Prove that if $t = b_1 \cdots b_n c_1 \cdots c_n$ (binary string), then $b_j \neq c_j$ for j. [15 points] (Hint: Use (2) to show that there does not exist k such that $b_k = c_k = 1$)

sol) Suppose $b_k = c_k = 1$ for some k. Then, $d(t, s_{4n+k}) \ge n+2$ because n 0s in t correspond to n 1s in s_{4n+k} , and the two 0s in s_{4n+k} correspond to $b_k = c_k = 1$ in t.

$$s_{4n+1} = 01 \cdots 1 \ 01 \cdots 1$$

$$t = 1? \cdots ? \ 1? \cdots ? \quad \text{(when } k=1 \text{, for example)}$$

This is contradiction, thereby, there doesn't exist k such that $b_k = c_k = 1$. Similarly, we can use s_{5n+1}, \dots, s_{6n} to show that there doesn't exist k such that $b_k = c_k = 0$. Therefore, $b_j \neq c_j$ for all j.

5) Prove that ϕ has a satisfying assignment. [15 points] (Hint: Use (3) to show that t and s_{6n+i} where $i=1,\cdots,m$ have at least a 1 in a common position.)

sol) We assert that t and s_{6n+i} where $i=1,\dots,m$ have at least a 1 in a common position. Suppose t and s_{6n+i} have no 1 in common position. Then, $d(t,s_{6n+i})=n+3$ because s_{6n+i} has exactly three 1s that correspond to three 0s in t, and t has n 1s that correspond to n 0s in s_{6n+i} .

$$s_{6n+i} = 1110000 \cdots 0000$$
$$t = 0000 \underbrace{1 \cdots 1}_{n} 0 \cdots 0$$

This is contradiction, thereby, t and s_{6n+i} where $i=1,\dots,m$ have at least a 1 in common position. Since t is expressed as $t=b_1\cdots b_nc_1\cdots c_n$ with $c_j=\neg b_j$, (b_1,\dots,b_n) is an assignment for $\phi(\text{TRUE for 1},\text{FALSE for 0})$. Moreover, each s_{6n+i} where $i=1,\dots,m$ corresponds to the clause C_i . As t and s_{6n+i} have at least a 1 in common position, the clause C_i has a literal, assigned as TRUE.