

Design Calculation Sheet for Grad Proj

Designer: Mohamed

Location: Cairo

City: Cairo

Country: Egypt

Date: 2020-06-23 09:12:30

Table of Contents

1-Secondary Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

2-Main Beams

- Design For Flexural and shear
- Design For serviceability
- Connections Design

3-Columns

• Design For Normal Stress

Secondary Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
44	(20,4,4)	(20,8,4)	4	0.04	0.04

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 0.04 t.m

Vd: 0.04 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: 0 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 15.58 < 81.98 => Compact Web

c/tf= 3.06 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 59.39 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 0.22 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.01 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd = 0.04 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0 \text{ t/cm}^2 \text{ a q} = 0 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0 t/cm^2$ $qmt = 0 t/cm^2 => qres = (q^2 + qmt^2)^0.5 = 0 t/cm^2 < 0.2Fu = 0.72 t/cm^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
14	(0,4,4)	(0,8,4)	4	1.04	1.04
65	(10,7,4)	(14,7,4)	4	1.04	1.04
34	(14,0,4)	(14,4,4)	4	1.04	1.04
36	(14,8,4)	(14,12,4)	4	1.04	1.04
37	(16,0,4)	(16,4,4)	4	1.04	1.04
39	(16,8,4)	(16,12,4)	4	1.04	1.04
40	(18,0,4)	(18,4,4)	4	1.04	1.04
42	(18,8,4)	(18,12,4)	4	1.04	1.04
43	(20,0,4)	(20,4,4)	4	1.04	1.04

45	(20,8,4)	(20,12,4)	4	1.04	1.04
64	(10,5,4)	(14,5,4)	4	1.04	1.04
63	(6,6,4)	(10,6,4)	4	1.18	1.18

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 1.18 t.m

Vd: 1.18 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: -0.3 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 26.08 < 81.98 => Compact Web

c/tf= 4.21 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 105.86 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.08 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.15 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.55 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.18 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.08 \text{ t/cm}^2 \text{ a} = 0.05 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.12 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.05 \text{ t/cm}^2 \text{ a qmt} = 0.08 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.1 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.1 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
20	(4,4,4)	(4,8,4)	4	2.04	1.54
17	(2,4,4)	(2,8,4)	4	2.04	1.54
66	(8,10,4)	(12,10,4)	4	2.04	1.54
62	(0,10,4)	(6,10,4)	6	2.41	1.61

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 2.41 t.m

Vd: 1.61 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.3 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 29.65 < 81.98 => Compact Web

c/tf= 4.56 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 129.1 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.24 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.14 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.24 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.61 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.11 \text{ t/cm}^2 \text{ a} = 0.07 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.17 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.07 \text{ t/cm}^2 \text{ a qmt} = 0.11 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.13 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.14 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout => L = 189 mm & tp = 10 mm & Sw = 6 mm

Main Beams

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
35	(14,4,4)	(14,8,4)	4	1.09	1.09

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 1.09 t.m

Vd: 1.09 ton

Service Limit State

Combo: LIVE

Span: 4 m

Load: -0.3 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 23.92 < 81.98 => Compact Web

c/tf= 3.95 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 94.24 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.41 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.17 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.88 cm < dall= 1.33 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.09 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.08 \text{ t/cm}^2 \text{ a} = 0.05 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.11 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.05 \text{ t/cm}^2 \text{ a qmt} = 0.08 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.09 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.09 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
15	(0,8,4)	(0,12,4)	4	1.65	0.85
23	(6,4,4)	(6,8,4)	4	2.23	1.64
12	(14,12,4)	(20,12,4)	6	2.25	1.15
9	(14,8,4)	(20,8,4)	6	2.25	1.15
6	(14,4,4)	(20,4,4)	6	2.25	1.15
3	(14,0,4)	(20,0,4)	6	2.25	1.15

29	(10,4,4)	(10,8,4)	4	2.27	1.68
10	(0,12,4)	(6,12,4)	6	2.41	1.61

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 2.41 t.m

Vd: 1.61 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.2 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 29.65 < 81.98 => Compact Web

c/tf= 4.56 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 129.1 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.24 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.14 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 0.83 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.61 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.11 \text{ t/cm}^2 \text{ a} = 0.07 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.17 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.07 \text{ t/cm}^2 \text{ a qmt} = 0.11 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.13 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.14 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
27	(8,8,4)	(8,12,4)	4	2.59	1.82
33	(12,8,4)	(12,12,4)	4	2.59	1.82
24	(6,8,4)	(6,12,4)	4	2.65	1.85
4	(0,4,4)	(6,4,4)	6	3.25	1.65

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 3.25 t.m

Vd: 1.65 ton

Service Limit State

Combo: LIVE

Span: 6 m

Load: -0.37 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 31.06 < 81.98 => Compact Web

c/tf= 4.66 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 142.01 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE270

fact= 1.29 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.13 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.06 cm < dall= 2 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 1.65 ton

Rleast= 2.85 ton

N= 3 with Pitch= 63 mm & Full Layout: (31;63 63 31.5)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.12 \text{ t/cm}^2 \text{ a} = 0.08 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.17 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.08 \text{ t/cm}^2 \text{ a qmt} = 0.12 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.14 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.14 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout => L = 189 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
7	(0,8,4)	(6,8,4)	6	5.5	3.15
5	(6,4,4)	(14,4,4)	8	7.65	2.98
11	(6,12,4)	(14,12,4)	8	7.92	3.96

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 7.92 t.m

Vd: 3.96 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.41 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 36.23 < 81.98 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 193.65 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE300

fact= 1.42 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.19 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1.25 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd= 3.96 ton

Rleast= 3.07 ton

N= 3 with Pitch= 70 mm & Full Layout: (35;70 70 35)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.23 \text{ t/cm}^2 \text{ a} = 0.16 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.35 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.16 \text{ t/cm}^2 \text{ a qmt} = 0.23 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.28 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.27 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 210 mm & tp = 10 mm & Sw = 6 mm

Beam ID	Start Point	End Point	Span (m)	Mmax (t.m)	Vmax (ton)
8	(6,8,4)	(14,8,4)	8	11.28	4.8

Design Limit state:

Combo: 1*Dead + 1*Live

Md: 11.28 t.m

Vd: 4.8 ton

Service Limit State

Combo: LIVE

Span: 8 m

Load: -0.64 t/m'

Design Checks

1-Check Local Buckling

dw/tw= 38.65 < 81.98 => Compact Web

c/tf= 5.38 < 10.91 => Compact Flange

2-Check Lateral Torsional Buckling

Luact= 0 m < Lumax= 219.47 m => Supported (No LTB)

3-Check Bending Stress

Section: IPE360

fact= 1.25 t/cm^2 < Fb= 1.54 t/cm^2

4-Check Shear Stress

qact= 0.17 t/cm^2 < qall= 0.84 t/cm^2

5-Check Deflection

dact= 1 cm < dall= 2.67 cm

Group Connection Design (Simple Shear Plate Connection)

1-Bolts Design

Bolts: M20 of Grade 8.8

Vd=4.8 ton

Rleast= 3.46 ton

N= 3 with Pitch= 84 mm & Full Layout: (42;84 84 42)

2-Stresses Induced in Fillet Weld Lines at Plane(1-1)

 $f = 0.19 \text{ t/cm}^2 \text{ a} = 0.16 \text{ t/cm}^2 => feq = (f^2 + 3q^2)^0.5 = 0.34 \text{ t/cm}^2 < 1.1 * 0.2Fu = 0.79 \text{ t/cm}^2 => OK$

3-Stresses Induced in Fillet Weld Lines at Plane(2-2)

 $q = 0.16 \text{ t/cm}^2 \text{ a qmt} = 0.19 \text{ t/cm}^2 => qres = (q^2 + qmt^2)^0.5 = 0.25 \text{ t/cm}^2 < 0.2Fu = 0.72 \text{ t/cm}^2 => OK$

4-Check Thickness of Plate

 $f = (6*Vd*e)/(tp*L^2) = 0.23 t/cm^2 < 0.72*Fy = 1.73 t/cm^2 => OK$

Plate Layout \Rightarrow L = 252 mm & tp = 10 mm & Sw = 6 mm

Columns

Column ID	Start Point	End Point	Height (m)	Nmax (ton)
55	(6,8,0)	(6,8,4)	4	-11.61
56	(14,8,0)	(14,8,4)	4	-8.26
59	(6,12,0)	(6,12,4)	4	-7.59
51	(6,4,0)	(6,4,4)	4	-6.44
52	(14,4,0)	(14,4,4)	4	-6.44
60	(14,12,0)	(14,12,4)	4	-6.33
54	(0,8,0)	(0,8,4)	4	-5.22
50	(0,4,0)	(0,4,4)	4	-2.87
58	(0,12,0)	(0,12,4)	4	-2.63
53	(20,4,0)	(20,4,4)	4	-2.41
57	(20,8,0)	(20,8,4)	4	-2.41
48	(14,0,0)	(14,0,4)	4	-2.37
49	(20,0,0)	(20,0,4)	4	-2.37
61	(20,12,0)	(20,12,4)	4	-2.37

Design Limit state:

Combo: 1*Dead + 1*Live

Nd: -11.61 ton

1-Check Local Buckling

dw/tw= 36.23 < 37.44 => Compact Web

c/tf= 5.68 < 10.91 => Compact Flange

2-Check Normal Stress

Section: IPE300

lambda = 119.4 > 100

fc= 0.22 t/cm^2 < Fc= 0.53 t/cm^2