MEDICAL COST PREDICTION

REGRESSION

MACHINE LEARNING PORTFOLIO

DEREK RODRIGO SÁNCHEZ SEGUAME

1.Task Definition

2.EDA

3. Model and Results

Task Definition

PROBLEM STATEMENT | MEDICAL PREMIUM CHARGE

SaludVital Analytics is the advanced-analytics division of a leading Mexican health insurer that underwrites policies for individuals and families across middle- and upper-income segments. Leveraging an extensive distribution network and product portfolio, the insurer has achieved strong premium growth but now faces claim costs that are rising faster than actuarial forecasts.

To address this, we will implement a machine-learning-powered predictive engine using the Medical Charges dataset, which includes age, sex, region, BMI, smoking status, number of dependents and actual annual medical charges. By applying sophisticated regression models and robust feature selection, the project will refine premium pricing to align rates with predicted claim costs. It will also optimize reserve adequacy and regulatory capital planning through more precise loss forecasts. Additionally, the engine will identify high-cost segments for targeted wellness programs and personalized member engagement—enhancing underwriting profitability and strengthening the insurer's competitive positioning in Mexico's health-insurance market.

MEDICINE AND DATA | MEDICAL MANAGEMENT POWERED BY PREDICTIVE MODELS

Business Context

- The client, SaludVital is the analytics division of a Mexican insurer
- Their target market are families across middle and upper income segments

The Problem

- Due to the insurer's extensive distribution network and portfolio, they've achived significant premium growth
- The downside: they are facing claims costs higher than expected

Solution

- We will implement a
 Machine Learning Model
 to refine premium
 predictions to ensure fair
 pricing and a sustainable
 business model
- By applying an advanced Regression Model, premium costs will be aligned with claim costs

Exploratory Data

Analysis

OVERVIEW | FEW, BUT POWERFUL PREDICTORS

of Features | By data type

	#Features
Numerical	3
Categorical	3
Total	6

of Categorical Features | By # of unique observations

	Two Unique	Four Unique	Five+ Unique
	Obs	Obs	Obs
#Features	2	1	0

Categorical Features Distributions

Note:

NUMERICAL VARIABLES | HEATMAP, DISTRIBUTIONS AND BOXPLOTS

Model Selection

and Results

MODEL SELECTION | RANDOM FOREST PERFORMED THE BEST IN R2 SCORE; OPTIMAL FOR CLAIM PREDICTION

DATA SOLUTIONS FOR OPTIMAL MANGAMENT | USING MACHINE LEARNING TO FIND THE OPTIMAL INSURANCE PREMIUM

- Costs are influenced mainly by BMI, Age and Number of Children of the patient
- Male smokers from the southeast have the most expenisve costs
- Male non-smokers from the southeast have the least expensive costs
- Random Forest is the model that best captures the underlying relationships in the data to predict cost. It achieved a R2 Score of 91%
- Given that the dataset uses few features for prediction, R2 is a realistic indicator of goodness of fit
- Deploy the model and monitor to achieve a better distribution of siniestrality and a fair pricing scheme for the customers
- The provisions of the insurer will have more accurate estimates, positively impacting P&L results

11