Security of distributed Model Predictive Control under False Data injection

Rafael Accácio NOGUEIRA

2022-12-09

https://bit.ly/3g3S6X4

- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)

- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)

"Necessity is the mother of invention"

- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management

(include your problem here)

- Electricity Distribution System
- Heat distribution
- Water distribution
- Traffic management (include your problem here)

- Multiple systems interacting
- Coupled by constraints
 Technical/ Comfort
- Optimization objectives
 Minimize energy consumption
 Maximize user satisfaction
 Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical / Comfort
- Optimization objectives
 - Maximize energy consumption
 Maximize user satisfaction
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumptionMaximize user satisfactionFollow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution \rightarrow MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution → MPC

- Multiple systems interacting
- Coupled by constraints
 - Technical/ Comfort
- Optimization objectives
 - Minimize energy consumption
 - Maximize user satisfaction
 - Follow a trajectory
- Solution → MPC

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions,

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

- We need an optimization problem
 - Decision variable is the control sequence
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

minimize
$$\frac{J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k])}{\boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k])} \overset{\forall \xi \in \{1,\dots,N\}}{\underset{h_1(\boldsymbol{x}|\xi-1|k|,\boldsymbol{u}[\xi-1|k]) = 0}{\forall \xi \in \{1,\dots,N\}}}$$
 subject to

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{matrix} \forall \xi \in \{1, \dots, N\} \\ \forall i \in \{1, \dots, m\} \\ \forall j \in \{1, \dots, p\} \end{matrix}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\boldsymbol{\xi}|\boldsymbol{k}] = f(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\boldsymbol{\xi}-1|k],\boldsymbol{u}[\boldsymbol{\xi}-1|k]) = 0 \end{aligned} \right\} \overset{\forall \boldsymbol{\xi} \in \{1,\ldots,N\}}{\forall i \in \{1,\ldots,m\}}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{matrix} \forall \xi \in \{1,\ldots,N\} \\ \forall i \in \{1,\ldots,m\} \\ \forall j \in \{1,\ldots,p\} \end{matrix}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

$$\begin{aligned} & \underset{\boldsymbol{u}[0:N-1|k]}{\text{minimize}} & & J(\boldsymbol{x}[0|k],\boldsymbol{u}[0:N-1|k]) \\ & \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \\ & \text{subject to} & & g_i(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) \leqslant 0 \\ & & h_j(\boldsymbol{x}[\xi-1|k],\boldsymbol{u}[\xi-1|k]) = 0 \end{aligned} \right\} \begin{array}{l} \forall \xi \in \{1,\ldots,N\} \\ \forall i \in \{1,\ldots,m\} \\ \forall j \in \{1,\ldots,p\} \end{aligned}$$

- We need an optimization problem
 - Decision variable is the control sequence (Over horizon N)
 - Objective function to optimize
 - System's Model (states and inputs)
 - Other constraints to respect (QoS, technical restrictions, ...)

minimize
$$J(\boldsymbol{x}[0|k], \boldsymbol{u}[0:N-1|k])$$

$$\boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \begin{cases} \boldsymbol{x}[\xi|k] = f(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \\ g_i(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) \leq 0 \\ h_j(\boldsymbol{x}[\xi-1|k], \boldsymbol{u}[\xi-1|k]) = 0 \end{cases} \begin{cases} \forall \xi \in \{1, \dots, N\} \\ \forall i \in \{1, \dots, m\} \\ \forall j \in \{1, \dots, p\} \end{cases}$$

In a nutshell

Find optimal control sequence

10

In a nutshell

Find optimal control sequence

In a nutshell

Find optimal control sequence, apply first element

In a nutshell

Find optimal control sequence, apply first element, rinse repeat

In a nutshell

Find optimal control sequence, apply first element, rinse repeat \rightarrow Receding Horizon

In a nutshell

Find optimal control sequence, apply first element, rinse repeat \rightarrow Receding Horizon

Nothing is perfect

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

Nothing is perfect

Problems

- Complexity of calculation
- Topology (Geographical distribution)
- Flexibility (Add/remove parts)
- Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- Problems
 - Complexity of calculation
 - Topology (Geographical distribution)
 - Flexibility (Add/remove parts)
 - Privacy
- Solution: Divide and Conquer (distributed MPC)
 - Break calculation
 - Make Systems Communicate

- We break the MPC into multiple
- Make them Communicate
 - Many flavors to choose from

- We break the MPC into multiple
- Make them Communicate
 - Many flavors to choose from

- We break the MPC into multiple
- Make them Communicate
 - Many flavors to choose from
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from
 - Hierarchical / Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from¹
 - Hierarchical / Anarchical
 - Sequential/Paralle
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Paralle
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous

- We break the MPC into multiple
- Make them Communicate, But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate . But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- We break the MPC into multiple
- Make them Communicate . But how?
 - Many flavors to choose from¹
 - Hierarchical/Anarchical
 - Sequential/Parallel
 - Synchronous/Asynchronous
 - Bidirectional/Unidirectional

- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Conv

- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Convergence

- Coordinator → Hierarchical
- Bidirectional
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \to \mathsf{Synchronous}$
- ullet Agents solve local problems ullet Until
- Variables are updated Convergence

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous
- Agents solve local problems | Until
- Variables are updated Convergence

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous
- Agents solve local problems Until
- Variables are updated

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous
- Agents solve local problems | Until
- Variables are updated

- Coordinator → Hierarchical
- Bidirectional
- No delay \rightarrow Synchronous
- Agents solve local problems | Until
- Variables are updated

Negotiation works if agents comply.

But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Negotiation works if agents comply. But what if some agents are ill-intentioned and attack the system?

- How can an agent attack?
- What are the consequences of an attack?
- Can we mitigate the effects?

Literature

• [Vel+17a; CMI18] present attacks

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake reference
 - Fake constraints
 - Liar agent

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Deception Attacks

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 Salfish Attack
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints
 - Liar agent

Deception Attacks

Literature

- [Vel+17a; CMI18] present attacks
 - Objective function
 Solfish Attack
 - Selfish Attack
 - Fake weights
 - Fake reference
 - Fake constraints

Liar agent

Deception Attacks (Internal change)

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

- We are in coordinator's shoes
- What matters is the interface
 - Attacker changes communication
 - False Data Injection

Consequence of an attack

Attack modifies optimization problem

Optimum value is shifted

Original minimum.

Minimum after attack.

Consequence of an attack

Attack modifies optimization problem

Optimum value is shifted

Original minimum.

Minimum after attack.

Consequence of an attack

- Attack modifies optimization problem
 - Optimum value is shifted

Original minimum.

Minimum after attack.

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

Ignore attacker.

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

Ignore attacker.

Recover original behavior.

- We can recover by
 - Ignoring attacker
 - Recuperating original behavior (at least trying)

Ignore attacker.

Recover original behavior.

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

Attack free

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

Attack free When attack detected

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - 2 Mitigation

Attack free When attack detected

- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

```
Attack free
When attack detected
```


- Passive (Robust) 1 mode
- Active (Resilient) 2 modes
 - ① Detection/Isolation
 - Mitigation

```
Attack free
When attack detected
```


	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
[Vel+17b] [Vel+18]	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-		
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
[Vel+17b] [Vel+18]	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-		
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
[Vel+17b] [Vel+18]	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-		
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
[Vel+17b] [Vel+18]	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	-	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
$ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	_	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
$ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	_	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

State of art

Security dMPC

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
$ \begin{array}{c} \text{[Vel+17b]} \\ \text{[Vel+18]} \end{array}$	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	-	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

State of art

Security dMPC

	Decomposition	Resilient/Robust	Detection	Mitigation
[Vel+17a] [Mae+21]	Dual	Robust (Scenario)	NA	NA
$ \begin{array}{c} [Vel + 17b] \\ [Vel + 18] \end{array}$	Dual	Robust (f-robust)	NA	NA
[CMI18]	Jacobi-Gauß	-	-	-
[Ana+18] [Ana+19] [Ana+20]	Dual	Resilient	Analyt./Learn.	Disconnect (Robustness)
Our	Primal	Resilient	Active Analyt./Learn.	Data reconstruction

- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- Resilient Primal Decomposition-based dMPC for deprived systems
- Resilient Primal Decomposition-based dMPC using Artificial Scarcity
- 4 Conclusion

- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- 2 Resilient Primal Decomposition-based dMPC for deprived systems
- Resilient Primal Decomposition-based dMPC using Artificial Scarcity
- 4 Conclusion

- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- 2 Resilient Primal Decomposition-based dMPC for deprived systems
- 3 Resilient Primal Decomposition-based dMPC using Artificial Scarcity
- 4 Conclusion

- 1 Vulnerabilities in distributed MPC based on Primal Decomposition
- Resilient Primal Decomposition-based dMPC for deprived systems
- 3 Resilient Primal Decomposition-based dMPC using Artificial Scarcity
- 4 Conclusion

1 Vulnerabilities in distributed MPC based on Primal Decomposition What is the Primal Decomposition? How can an agent attack? Consequences

Allocation θ_i

Allocation $oldsymbol{ heta}_i$ Dissatisfaction $oldsymbol{\lambda}_i$

- Objective is sum of local ones
- Constraints couple variables
- $oldsymbol{0}$ Allocate $oldsymbol{ heta}_i$ for each agent
- They solve local problems and
- $oldsymbol{3}$ Send dual variable $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i + \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- lacktriangle Allocate $heta_i$ for each agent
- They solve local problems and
- \odot Send dual variable λ_i
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum_{i \in \mathcal{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum_{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & ext{ For each } i \in \mathcal{M} \end{array}$$

$$egin{aligned} u_i \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{aligned}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- lacksquare Allocate $oldsymbol{ heta}_i$ for each agent
- ② They solve local problems and
- $oldsymbol{3}$ Send dual variable $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1, \ldots, oldsymbol{u}_M} & \sum_{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & \mathrm{s.t.} & \sum_{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & \downarrow & \mathsf{For \ each} \ i \in \mathcal{M} \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- lacksquare Allocate $oldsymbol{ heta}_i$ for each agent
- They solve local problems and
- $oldsymbol{3}$ Send dual variable $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1, \ldots, oldsymbol{u}_M} & \sum _{i \in \mathcal{M}} J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & \mathrm{s.t.} & \sum _{i \in \mathcal{M}} oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathcal{M} \end{array}$$

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- $oldsymbol{0}$ Allocate $oldsymbol{ heta}_i$ for each agent
- They solve local problems and
- \odot Send dual variable λ_i
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum _{i\in \mathbb{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathbb{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathbb{M} \end{array}$$

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- **11** Allocate θ_i for each agent
- They solve local problems and
- **3** Send dual variable λ_i
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum _{i\in \mathbb{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathbb{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathbb{M} \end{array}$$

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: \lambda_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables
- $oldsymbol{0}$ Allocate $oldsymbol{ heta}_i$ for each agent
- They solve local problems and
- $oldsymbol{3}$ Send dual variable $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} & \min _{oldsymbol{u}_1,...,oldsymbol{u}_M} & \sum _{i\in \mathbb{M}} J_i(oldsymbol{x}_i,oldsymbol{u}_i) \ & ext{s.t.} & \sum _{i\in \mathbb{M}} oldsymbol{h}_i(oldsymbol{x}_i,oldsymbol{u}_i) \leq oldsymbol{u}_{\mathsf{total}} \ & & \downarrow & \mathsf{For \ each} \ i \in \mathbb{M} \end{array}$$

$$egin{array}{ll} & \min _{oldsymbol{u}_i} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables

- **1** Allocate θ_i for each agent
- They solve local problems and
- \odot Send dual variable λ_i
- Allocation is updated (respecting global constraint)

$$egin{array}{ll} ext{minimize} & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)} \boldsymbol{\lambda}[k]^{(p)})$$

- Objective is sum of local ones
- Constraints couple variables

- **1** Allocate θ_i for each agent
- They solve local problems and
- $oldsymbol{3}$ Send dual variable $oldsymbol{\lambda}_i$
- Allocation is updated (respecting global constraint)

$$egin{aligned} & \min & J_i(oldsymbol{x}_i, oldsymbol{u}_i) \ & ext{s. t.} & oldsymbol{h}_i(oldsymbol{x}_i, oldsymbol{u}_i) \leq oldsymbol{ heta}_i: oldsymbol{\lambda}_i \end{aligned}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\$}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

Until everybody is equally dissatisfied

- λ_i is the only interface
- ullet λ_i depends on local parameters
- ullet Malicious agent modifies $oldsymbol{\lambda}_i$

- λ_i is the only interface
- ullet $oldsymbol{\lambda}_i$ depends on local parameters
- ullet Malicious agent modifies $oldsymbol{\lambda}_i$

- λ_i is the only interface
- $oldsymbol{\lambda}_i$ depends on local parameters
- Malicious agent modifies $oldsymbol{\lambda}_i$

- ullet $oldsymbol{\lambda}_i$ is the only interface
- ullet $oldsymbol{\lambda}_i$ depends on local parameters
- Malicious agent modifies $oldsymbol{\lambda}_i$

$$ilde{oldsymbol{\lambda}}_i = \gamma_i(oldsymbol{\lambda}_i)$$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Attacker satisfied only if it really is
- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Attacker satisfied only if it really is
- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Attacker satisfied only if it really is
- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

- Attacker satisfied only if it really is
- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- ullet $\lambda=0$ means complete satisfaction

Assumptions

Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

• Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing

$$\lambda_b > \lambda_a \to \gamma(\lambda_b) > \gamma(\lambda_a)$$

- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

How does an agent lie?

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- ullet $\lambda=0$ means complete satisfaction

Assumptions

Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

How does an agent lie?

Liar, Liar, Pants of fire

- $\lambda \ge 0$ means dissatisfaction
- $\lambda = 0$ means complete satisfaction

Assumptions

• Attacker satisfied only if it really is

•
$$\gamma(\lambda) = 0 \to \lambda = 0$$

- Attacker is greedy $\gamma(\lambda) > \lambda$
- Attack is monotonically increasing $\lambda_b > \lambda_a \rightarrow \gamma(\lambda_b) > \gamma(\lambda_a)$
- Invertible
- If $\tilde{\lambda}_i = T_i[k]\lambda_i \to \exists T_i[k]^{-1}$

- Agent 1 is non-cooperative
- ullet It uses $ilde{oldsymbol{\lambda}}_1=\gamma_1(oldsymbol{\lambda}_1)= au_1Ioldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $\tilde{\lambda}_1 = \gamma_1(\lambda_1) = \tau_1 I \lambda_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if \(\tau_1\) increases
 (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $\lambda_1 = \gamma_1(\lambda_1) = \tau_1 I \lambda_1$
- We can observe 3 things
 - Global minimum when $\tau_1=1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $\tilde{\boldsymbol{\lambda}}_1 = \gamma_1(\boldsymbol{\lambda}_1) = \tau_1 I \boldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1=1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $\tilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- Agent 1 is non-cooperative
- It uses $ilde{oldsymbol{\lambda}}_1 = \gamma_1(oldsymbol{\lambda}_1) = au_1 I oldsymbol{\lambda}_1$
- We can observe 3 things
 - Global minimum when $\tau_1 = 1$
 - Agent 1 benefits if τ_1 increases (inverse otherwise)
 - All collapses if too greedy

- But can we mitigate these effects?
- Yes! (At least in some cases)

- But can we mitigate these effects?
- Yes! (At least in some cases)

- But can we mitigate these effects?
- Yes! (At least in some cases)

- But can we mitigate these effects?
- Yes! (At least in some cases)

Outline

Resilient Primal Decomposition-based dMPC for deprived systems
 Analyzing deprived systems
 Building an algorithm
 Applying mechanism

- Unconstrained Solution $\mathring{\boldsymbol{U}}_{i}^{\star}[k]$
- $\bar{\Gamma}_i \mathring{U}_i^{\star}[k] \geq \theta_i[k] \rightarrow \mathsf{Scarcity}$
 - Solution projected onto boundary
 - Same as with equality constraints²

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

- Unconstrained Solution $\mathring{\boldsymbol{U}}_{i}^{\star}[k]$
- $\bar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \geq m{ heta}_i[k]
 ightarrow \mathsf{Scarcity}$
 - Solution projected onto boundary
 - Same as with equality constraints²

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \left\| \boldsymbol{U}_{i}[k] \right\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

- Unconstrained Solution $\mathring{\boldsymbol{U}}_{i}^{\star}[k]$
- $\bar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \geq m{ heta}_i[k]
 ightarrow \mathsf{Scarcity}$
 - Solution projected onto boundary
 - Same as with equality constraints

$$\begin{array}{ll}
\text{minimize} & \frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k] \\
\text{subject to} & \bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]
\end{array}$$

- Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- $\bar{\Gamma}_i \mathring{\boldsymbol{U}}_i^{\star}[k] \geq \boldsymbol{\theta}_i[k] \rightarrow \text{Scarcity}$
 - Solution projected onto boundary
 - Same as with equality constraints²

minimize
$$\frac{1}{U_i[k]} \|U_i[k]\|_{H_i}^2 + f_i[k]^T U_i[k]$$
subject to
$$\bar{\Gamma}_i U_i[k] \le \theta_i[k] : \lambda_i[k]$$

- Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- $ar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \geq m{ heta}_i[k]
 ightarrow \mathsf{Scarcity}$
 - Solution projected onto boundary
 - Same as with equality constraints²

$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

- Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- $\bar{\Gamma}_i \mathring{\boldsymbol{U}}_i^{\star}[k] \geq \boldsymbol{\theta}_i[k] \rightarrow \mathsf{Scarcity}$
 - Solution projected onto boundary
 - Same as with equality constraints²

minimize
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$

subject to $\bar{\Gamma}_i U_i[k] \le \theta_i[k] : \lambda_i[k]$

- Unconstrained Solution $\mathring{m{U}}_i^{\star}[k]$
- $\bar{\Gamma}_i \mathring{m{U}}_i^{\star}[k] \geq m{ heta}_i[k]
 ightarrow \mathsf{Scarcity}$
 - Solution projected onto boundary
 - Same as with equality constraints²

minimize
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$

subject to $\bar{\Gamma}_i U_i[k] = \theta_i[k] : \lambda_i[k]$

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromis
 - → Agents may cheat

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromis
 - → Agents may cheat a

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - → Agents may cheat

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - → Agents may cheat

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - → Agents may cheat

But why?

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

Scarcity

- → Competition
- → Consensus/Compromise
- ightarrow Agents may cheat $rac{\pi}{10}$

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - ightarrow Agents may cheat \overline{w}

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - → Consensus/Compromise
 - ightarrow Agents may cheat \overline{w}

But why?

- No Scarcity
 - → All constraints satisfied
 - → No coordination needed
 - → No incentive to cheat

- Scarcity
 - → Competition
 - $\,\to\, \mathsf{Consensus}/\mathsf{Compromise}$
 - → Agents may cheat

CentraleSupélec

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$

subject to $\bar{\Gamma}_i U_i[k] = \theta_i[k] : \lambda_i[k]$

$$oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] - oldsymbol{s}_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] - oldsymbol{s}_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$

subject to $\bar{\Gamma}_i U_i[k] = \theta_i[k] : \lambda_i[k]$

$$oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] - oldsymbol{s}_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$oldsymbol{\lambda}_i[k] = -P_ioldsymbol{ heta}_i[k] - oldsymbol{s}_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] = \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\lambda_i[k] = -\frac{P_i}{\theta_i}[k] - s_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\frac{1}{2} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- P_i is time invariant
- $s_i[k]$ is time variant

Analysis

Assumptions

- Quadratic local problems
- Scarcity
- Solution is analytical and affine

minimize
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] = \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- ullet P_i is time invariant
- $s_i[k]$ is time variant

Under attack!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \theta_i[k] - s_i[k]$$

• Under attack $\rightarrow \lambda_i = T_i[k]\lambda_i$ • Parameters modified

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \lambda_i = T_i[k]\lambda_i$
 - Parameters modified

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $ightarrow ilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $ightarrow ilde{oldsymbol{\lambda}}_i = T_i[k] oldsymbol{\lambda}_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -T_i[k]P_i\boldsymbol{\theta}_i[k] - T_i[k]\boldsymbol{s}_i[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\boldsymbol{\lambda}}_i = T_i[k]\boldsymbol{\lambda}_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\boldsymbol{\lambda}}_i = T_i[k]\boldsymbol{\lambda}_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait! P_i is not supposed to change!
- Change → Probably an Attack! Let's take advantage of this!

- Normal behavior
 - Affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

- Under attack $\rightarrow \tilde{\lambda}_i = T_i[k]\lambda_i$
 - Parameters modified

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\tilde{P}_i[k]\boldsymbol{\theta}_i[k] - \tilde{\boldsymbol{s}}_i[k]$$

- But wait! P_i is not supposed to change!
- ullet Change o Probably an Attack! Let's take advantage of this!

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\lambda}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

• If
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i \right\|_{\scriptscriptstyle E} > \epsilon_P o \mathsf{Attack}$$

• Ok, but how can we estimate $\widehat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\lambda}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\mathbf{s}}}_i[k]$$

• If
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i\right\|_F > \epsilon_P o ext{Attack}$$

• Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\lambda}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\mathbf{s}}}_i[k]$$

• If
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i\right\|_F > \epsilon_P o ext{Attack}$$

• Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

• If
$$\left\|\hat{\tilde{P}}_i[k] - \bar{P}_i \right\|_F > \epsilon_P o ext{Attack}$$

• Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- ullet If $\left\| \hat{ ilde{P}}_i[k] ar{P}_i
 ight\|_F > \epsilon_P o ext{Attack}$
- Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- If $\left\|\hat{\tilde{P}}_i[k] \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$
- Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Assumption

We know nominal \bar{P}_i

• If we estimate $\hat{P}_i[k]$ and $\hat{\tilde{s}}_i[k]$ such as:

$$\tilde{\boldsymbol{\lambda}}_i[k] = -\hat{\tilde{P}}_i[k]\boldsymbol{\theta}_i - \hat{\tilde{\boldsymbol{s}}}_i[k]$$

- If $\left\| \hat{\tilde{P}}_i[k] \bar{P}_i \right\|_F > \epsilon_P o \mathsf{Attack}$
- Ok, but how can we estimate $\hat{\tilde{P}}_i[k]$?

Rafael Accácio Nogueira

- We estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously using RLS
- Challenge: Online estimation during negotiation fails
 - Update function couples $heta_i^p$ and $\lambda_i^p o$ low input excitation
- Solution: Send a random³ sequence to increase excitation until convergence.

³A random signal has persistent excitation of any order (

Rafael Accácio Nogueira

- We estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously using RLS
- Challenge: Online estimation during negotiation fails
 - ullet Update function couples $heta_i^p$ and $\lambda_i^p o$ low input excitation
- Solution: Send a random³ sequence to increase excitation until convergence.

³A random signal has persistent excitation of any order (

- We estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously using RLS
- Challenge: Online estimation during negotiation fails
 - ullet Update function couples $oldsymbol{ heta}_i^p$ and $oldsymbol{\lambda}_i^p o$ low input excitation
- Solution: Send a random³ sequence to increase excitation until convergence.

- We estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously using RLS
- Challenge: Online estimation during negotiation fails
 - Update function couples $oldsymbol{ heta}_i^p$ and $oldsymbol{\lambda}_i^p o$ low input excitation
- Solution: Send a random³ sequence to increase excitation until convergence.

Rafael Accácio Nogueira

- We estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously using RLS
- Challenge: Online estimation during negotiation fails
 - Update function couples $oldsymbol{ heta}_i^p$ and $oldsymbol{\lambda}_i^p o$ low input excitation
- Solution: Send a random³ sequence to increase excitation until convergence.

Estimating $\hat{P}_i[k]$

- We estimate $\hat{\tilde{P}}_i[k]$ and $\hat{\tilde{s}}_i[k]$ simultaneously using RLS
- Challenge: Online estimation during negotiation fails
 - Update function couples $oldsymbol{ heta}_i^p$ and $oldsymbol{\lambda}_i^p o$ low input excitation
- Solution: Send a random³ sequence to increase excitation until convergence.

Classification of mitigation techniques

- Active (Resilient)
 - Detection/Isolation
 - Mitigation

Classification of mitigation techniques

- Active (Resilient)
 - Detection/Isolation
 - Mitigation ??

Reconstructing λ_i

- Now, we have $\hat{\tilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\hat{oldsymbol{\lambda}}_i^{ ext{rec}} = -ar{P}_i oldsymbol{ heta}_i - \widehat{T}_i \widehat{ar{\hat{oldsymbol{s}}}}_i [k]$$

$$oldsymbol{\lambda}_i^{\mathsf{nod}} = egin{cases} ilde{\lambda}_i, & \mathsf{if} \ \mathsf{attack} \ detected \ ilde{\lambda}_i, & \mathsf{otherwise} \end{cases}$$

Reconstructing λ_i

- Now, we have $\hat{\tilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\hat{\boldsymbol{\lambda}}_{i}^{\mathrm{rec}} = -\bar{P}_{i}\boldsymbol{\theta}_{i} - \widehat{T_{i}[k]^{-1}}\widehat{\tilde{\boldsymbol{s}}}_{i}[k]$$

Reconstructing λ_i

- Now, we have $\hat{\tilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\hat{oldsymbol{\lambda}}_i^{ ext{rec}} = -ar{P}_i oldsymbol{ heta}_i - \widehat{T}_i \widehat{ar{\hat{oldsymbol{s}}}}_i [k]$$

$$oldsymbol{\lambda}_i^{ ext{pod}} = egin{cases} ilde{oldsymbol{\lambda}}_i, & ext{if attack detected} \ ilde{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$

Reconstructing λ_i

- Now, we have $\hat{\tilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

• Reconstruct λ_i

$$\overset{\scriptscriptstyle\mathsf{rec}}{\pmb{\lambda}}_i = -ar{P}_i \pmb{\theta}_i - \widehat{T_i[k]^{-1}} \widehat{\tilde{\pmb{s}}}_i[k]$$

$$oldsymbol{\lambda}_i^{ ext{nod}} = egin{cases} ilde{\lambda}_i^{ ext{rec}}, & ext{if attack detected} \ ilde{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$

Reconstructing λ_i

- Now, we have $\hat{\tilde{P}}_i[k]$
 - Since $\tilde{P}_i[k] = T_i[k]\bar{P}_i$
 - We can recover $T_i[k]^{-1}$

$$\widehat{T_i[k]^{-1}} = P_i \widehat{\tilde{P}}_i[k]^{-1}$$

ullet Reconstruct $oldsymbol{\lambda}_i$

$$\overset{\scriptscriptstyle\mathsf{rec}}{\pmb{\lambda}}_i = -ar{P}_i \pmb{\theta}_i - \widehat{T}_i \widehat{\pmb{[}k]}^{-1} \widehat{\hat{\pmb{s}}}_i [k]$$

$$oldsymbol{\hat{\lambda}}_i^{ ext{mod}} = egin{cases} \hat{oldsymbol{\lambda}}_i, & ext{if attack detected} \ \hat{oldsymbol{\lambda}}_i, & ext{otherwise} \end{cases}$$

Complete Mechanism

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

Two Phases

- Detect which agents are non-cooperative
- $lue{}$ Reconstruct $oldsymbol{\lambda}_i$ and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- ullet Reconstruct $oldsymbol{\lambda}_i$ and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- oxdot Reconstruct $oldsymbol{\lambda}_i$ and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- lacksquare Reconstruct $oldsymbol{\lambda}_i$ and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- Detect which agents are non-cooperative
- 2 Reconstruct λ_i and use in negotiation

- Supervise exchanges by inquiring the agents
- Estimate how they will behave

- 1 Detect which agents are non-cooperative
- **2** Reconstruct λ_i and use in negotiation

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 5 Section 105
 - Agent Laborta (dMPC)
 - Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - N Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Ament Laborta (dMBC)
 - Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (GMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

- Houses modeled using 3R-2C (monozone)
- Not enough power
- Period of 5h
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-DS)

Temporal

Temperature in house I. Error $E_I(k)$.

Nominal, S Selflish, C Corrected

Applying mechanism

Temporal

Temperature in house I. Error $E_I(k)$.

- Agent starts cheating in k=6
- S Agent increases its comfort
- Restablish behavior close to §

Temporal

Temperature in house I. Error $E_I(k)$.

- Agent starts cheating in k=6
- S Agent increases its comfort
- Restablish behavior close to f

Temporal

Temperature in house I. Error $E_I(k)$.

- Agent starts cheating in k=6
- S Agent increases its comfort
- Restablish behavior close to f

Temporal

Temperature in house I. Error $E_I(k)$.

- Agent starts cheating in k=6
- S Agent increases its comfort

Costs

Objective functions J_i (Normalized error %)

Agent	Selfish	Corrected
ı	-36.3	0.503
Ш	21.671	-0.547
Ш	17.387	-0.004
IV	17.626	-0.09
Global	3.526	0.016

Costs

Objective functions J_i (Normalized error %)

Agent	Selfish	Corrected
ı	-36.3	0.503
Ш	21.671	-0.547
Ш	17.387	-0.004
IV	17.626	-0.09
Global	3.526	0.016

Outline

Resilient Primal Decomposition-based dMPC using Artificial Scarcity Relaxing some assumptions Adapting the algorithm Applying mechanism

Relaxing scarcity assumption

- Systems are not completely deprived
 - We can't change our constraints to equality ones anymore
 - Nor use the simpler update equation

minimize
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$
subject to
$$\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \operatorname{Proj}^{8}(\boldsymbol{\theta}[k]^{(p)} + \boldsymbol{\rho}^{(p)} \boldsymbol{\lambda}[k]^{(p)})$$

Relaxing scarcity assumption

Systems are not completely deprived

- We can't change our constraints to equality ones anymore
- Nor use the simpler update equation

minimize
$$\frac{1}{U_i[k]} \| U_i[k] \|_{H_i}^2 + f_i[k]^T U_i[k]$$

subject to $\bar{\Gamma}_i U_i[k] \le \theta_i[k] : \lambda_i[k]$
 $\theta[k]^{(p+1)} = \operatorname{Proj}^{\mathbb{S}}(\theta[k]^{(p)} + \rho^{(p)}\lambda[k]^{(p)})$

Relaxing scarcity assumption

- Systems are not completely deprived
 - We can't change our constraints to equality ones anymore
 - Nor use the simpler update equation

minimize
$$\begin{array}{ll} \underset{\boldsymbol{U}_{i}[k]}{\text{minimize}} & \frac{1}{2} \|\boldsymbol{U}_{i}[k]\|_{H_{i}}^{2} + \boldsymbol{f}_{i}[k]^{T} \boldsymbol{U}_{i}[k] \\ \text{subject to} & \bar{\Gamma}_{i} \boldsymbol{U}_{i}[k] \leq \boldsymbol{\theta}_{i}[k] : \boldsymbol{\lambda}_{i}[k] \end{array}$$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathbb{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

Relaxing scarcity assumption

- Systems are not completely deprived
 - We can't change our constraints to equality ones anymore
 - Nor use the simpler update equation

minimize
$$\frac{1}{U_i[k]} \| \boldsymbol{U}_i[k] \|_{H_i}^2 + \boldsymbol{f}_i[k]^T \boldsymbol{U}_i[k]$$

subject to $\bar{\Gamma}_i \boldsymbol{U}_i[k] \leq \boldsymbol{\theta}_i[k] : \boldsymbol{\lambda}_i[k]$

$$\boldsymbol{\theta}[k]^{(p+1)} = \text{Proj}^{\mathcal{S}}(\boldsymbol{\theta}[k]^{(p)} + \rho^{(p)}\boldsymbol{\lambda}[k]^{(p)})$$

Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\boldsymbol{\lambda}_i[k] = -P_i\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\lambda_i[k] = \begin{cases} -P_i^{(0)}\theta_i[k] - s_i^{(0)}[k], & \text{if } \theta_i[k] \in \mathcal{R}_{\lambda_i}^0 \\ \vdots & \vdots \\ -P_i^{(2^{n_{\text{ineq}}}-1)}\theta_i[k] - s_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \theta_i[k] \in \mathcal{R}_{\lambda}^{2^{n_{\text{ineq}}}-1} \end{cases}$$

Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^0 \\ \vdots & \vdots \\ -P_i^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\text{ineq}}}-1} \end{cases}$$

Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^0 \\ \vdots & \vdots \\ -P_i^{(2^{n_{\mathsf{ineq}}-1)}}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(2^{n_{\mathsf{ineq}}-1)}}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\mathsf{ineq}}-1}} \end{cases}$$

Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^0 \\ \vdots & \vdots \\ -P_i^{(2^{n_{\text{ineq}}}-1)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}_{\boldsymbol{\lambda}_i}^{2^{n_{\text{ineq}}}-1} \end{cases}$$

Solution for $\lambda_i[k]$

Instead of having one single affine solution

$$\lambda_i[k] = -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$

Now, we may have multiple (Piecewise affine function)

$$\boldsymbol{\lambda}_i[k] = \begin{cases} -P_i^{(0)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}^0_{\boldsymbol{\lambda}_i} \\ \vdots & \vdots \\ -P_i^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_i[k] \in \mathcal{R}^{2^{n_{\text{ineq}}}-1}_{\boldsymbol{\lambda}_i} \end{cases}$$

Solution for $\lambda_i[k]$ (Continued)

Solution for $\lambda_i[k]$ (Continued)

Separation surfaces depend on state and local parameters.

Unknown by the coordinator.

Solution for $\lambda_i[k]$ (Continued)

$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases}$$
 Scarcity Sparsity

All constraints active
$$-P_i^{(0)}\theta_i[k] - s_i^{(0)}[k] \qquad \rightarrow \qquad -P_i\theta_i[k] - s_i[k]$$
 None constraints active
$$-P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\theta_i[k] - s_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k] \qquad \rightarrow \qquad \mathbf{0}$$

$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases}$$
 Scarcity

All constraints active
$$-P_i^{(0)}\theta_i[k] - s_i^{(0)}[k] \qquad \rightarrow \qquad -P_i\theta_i[k] - s_i[k]$$
 None constraints active
$$-P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\theta_i[k] - s_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k] \qquad \rightarrow \qquad \mathbf{0}$$

$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases} \quad \text{Scarcity} \quad \text{Sparsity}$$

All constraints active
$$-P_i^{(0)}\theta_i[k] - s_i^{(0)}[k] \qquad \rightarrow \quad -P_i\theta_i[k] - s_i[k]$$
 None constraints active
$$-P_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}\theta_i[k] - s_i^{\left(2^{n_{\mathsf{ineq}}}-1\right)}[k] \qquad \rightarrow \quad \mathbf{0}$$

$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases}$$
 Scarcity Sparsity

All constraints active
$$\begin{array}{ccc} -P_i^{(0)} \boldsymbol{\theta_i}[k] - \boldsymbol{s_i^{(0)}}[k] & \rightarrow & -P_i \boldsymbol{\theta_i}[k] - \boldsymbol{s_i}[k] \\ \text{None constraints active} & -P_i^{\left(2^{n_{\text{ineq}}}-1\right)} \boldsymbol{\theta_i}[k] - \boldsymbol{s_i^{\left(2^{n_{\text{ineq}}}-1\right)}}[k] & \rightarrow & 0 \end{array}$$

$$\boldsymbol{\lambda}_{i}[k] = \begin{cases} -P_{i}^{(0)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(0)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{0} \\ \vdots & \vdots \\ -P_{i}^{(2^{n_{\text{ineq}}}-1)}\boldsymbol{\theta}_{i}[k] - \boldsymbol{s}_{i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \boldsymbol{\theta}_{i}[k] \in \mathcal{R}_{\boldsymbol{\lambda}_{i}}^{2^{n_{\text{ineq}}}-1} \end{cases}$$
 Scarcity Sparsity

All constraints active
$$-P_i^{(0)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{(0)}[k] \qquad \rightarrow \quad -P_i \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i[k]$$
 None constraints active
$$-P_i^{\left(2^{n_{\text{ineq}}}-1\right)} \boldsymbol{\theta}_i[k] - \boldsymbol{s}_i^{\left(2^{n_{\text{ineq}}}-1\right)}[k] \quad \rightarrow \quad \boldsymbol{0}$$

Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\widetilde{P_i}^{(0)} \pmb{\theta}_i[k] - \widetilde{\pmb{s}_i}^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\widetilde{P_i}^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \widetilde{\pmb{s}_i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- ullet If we can estimate $\widetilde{P}_i^{\,(0)}$ we can use same strategy than before
- ullet Problem: We don't known in which region $oldsymbol{ heta}_i$ is
- Solution: Let's force it using Artificial Scarcity

Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\widetilde{P_i}^{(0)} \pmb{\theta}_i[k] - \widetilde{\pmb{s}_i}^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\widetilde{P_i}^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \widetilde{\pmb{s}_i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- ullet If we can estimate $\widetilde{P}_i^{\,(0)}$ we can use same strategy than before
- ullet Problem: We don't known in which region $heta_i$ is
- Solution: Let's force it using Artificial Scarcity

Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P_i}^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}_i}^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P_i}^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}_i}^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- If we can estimate $\widetilde{P}_i^{\,(0)}$ we can use same strategy than before
- Problem: We don't known in which region θ_i is
- Solution: Let's force it using Artificial Scarcity

Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P}_i^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P}_i^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- If we can estimate $\widetilde{P}_i^{\,(0)}$ we can use same strategy than before
- Problem: We don't known in which region θ_i is
- Solution: Let's force it using Artificial Scarcity

Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P}_i^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P}_i^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- ullet If we can estimate $\widetilde{P}_i^{\,(0)}$ we can use same strategy than before
- Problem: We don't known in which region θ_i is
- Solution: Let's force it using Artificial Scarcity

Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P}_i^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P}_i^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- ullet If we can estimate $\widetilde{P}_i^{\,(0)}$ we can use same strategy than before
- ullet Problem: We don't known in which region $oldsymbol{ heta}_i$ is
- Solution: Let's force it using Artificial Scarcity

Under attack!

$$\tilde{\boldsymbol{\lambda}}_i[k] = T_i[k]\boldsymbol{\lambda}_k$$

$$\tilde{\pmb{\lambda}}_i[k] = \begin{cases} -\tilde{P}_i^{(0)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(0)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^0 \\ \vdots & \vdots \\ -\tilde{P}_i^{(2^{n_{\text{ineq}}}-1)} \pmb{\theta}_i[k] - \tilde{\pmb{s}}_i^{(2^{n_{\text{ineq}}}-1)}[k], & \text{if } \pmb{\theta}_i[k] \in \mathbb{R}^{2^{n_{\text{ineq}}}-1}_{\pmb{\lambda}_i} \end{cases}$$

- \bullet If we can estimate $\widetilde{P}_i^{\,(0)}$ we can use same strategy than before
- Problem: We don't known in which region θ_i is
- Solution: Let's force it using Artificial Scarcity

Who is it? Who is it?

Assumption

We known a point $\overset{\circ}{\theta}_i$ which activates all constraints⁴

$$\theta_{i(2)}$$

$$\lambda_{i(1)} = 0$$

$$\lambda_{i(2)} \neq 0$$

$$\lambda_{i(2)} = 0$$

$$\lambda_{i(2)} = 0$$

$$\lambda_{i(1)} \neq 0$$

$$\lambda_{i(1)} \neq 0$$

$$\lambda_{i(2)} \neq 0$$

$$\lambda_{i(2)} = 0$$

CentraleSupélec

⁴If we have local constraints, we suppose this point respects then

Who is it? Who is it?

Assumption

We known a point $\overset{\circ}{ heta}_i$ which activates all constraints⁴

$$\theta_{i(2)}$$

$$\lambda_{i(1)} = 0$$

$$\lambda_{i(2)} \neq 0$$

$$\lambda_{i(2)} = 0$$

$$\lambda_{i(2)} = 0$$

$$\lambda_{i(1)} \neq 0$$

$$\lambda_{i(1)} \neq 0$$

$$\lambda_{i(2)} \neq 0$$

$$\lambda_{i(2)} = 0$$

CentraleSupélec

⁴If we have local constraints, we suppose this point respects them.

Rafael Accácio Nogueira

Artificial Scarcity

Who is it? Who is it?

Assumption

We known a point $\overset{\circ}{\theta}_i$ which activates all constraints⁴

CentraleSupélec

Who is it? Who is it?

Assumption

We known a point $\check{ heta}_i$ which activates all constraints⁴

CentraleSupéleo

⁴If we have local constraints, we suppose this point respects them.

Who is it? Who is it?

Assumption

We known a point $\overset{\circ}{\theta}_i$ which activates all constraints⁴

CentraleSupélec

Who is it? Who is it?

Assumption

We known a point $\overset{\circ}{\theta}_i$ which activates all constraints⁴

CentraleSupélec

⁴If we have local constraints, we suppose this point respects them.

Who is it? Who is it?

Assumption

We known a point $\overset{\circ}{\theta}_i$ which activates all constraints⁴

- How to known the radius?
 - We don't.
 - Let's estimate $\widehat{\widetilde{P}}_i^{(0)}[k]$ nonetheless

⁴If we have local constraints, we suppose this point respects them.

Who is it? Who is it?

Assumption

We known a point $\overset{\circ}{\boldsymbol{\theta}}_i$ which activates all constraints⁴

- How to known the radius?
 - We don't.
 - Let's estimate $\widehat{\widetilde{P}}_{i}^{(0)}[k]$ nonetheless

⁴If we have local constraints, we suppose this point respects them.

Artificial Scarcity

Who is it? Who is it?

Assumption

We known a point $\overset{\circ}{\theta}_i$ which activates all constraints⁴

- How to known the radius?
 - We don't.
 - Let's estimate $\widehat{\widetilde{P}}_i^{(0)}[k]$ nonetheless

⁴If we have local constraints, we suppose this point respects them.

- Iterative method to estimate parameters of multimodal models⁵
- We give multiple observations $m{ heta}_i^o[k]$ and $ilde{m{\lambda}}_i^o[k]$
- At each step we calculate
 - lacktriangle the probability of each $(\widetilde{P}_i^{(n)}[k],\widehat{\hat{s}}_i^{(n)}[k])$ having generated each $ilde{\lambda}_i^o[k]$
 - mew estimates $(\widetilde{P}_i^{(n)}[k],\widehat{s}_i^{(n)}[k])$ based on the probabilities
- At the end we have
 - Parameters with associated region index
 - Observations with associated region index
- We consult the index associated to $\overset{\circ}{ heta}_i$
- We recover the associated parameter, i.e., $\widehat{\tilde{P}}_i^{(0)}[k]$

CentraleSupélec

⁵Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models⁵
- We give multiple observations $m{ heta}_i^o[k]$ and $ilde{m{\lambda}}_i^o[k]$
- At each step we calculate
 - lacksquare the probability of each $(\widetilde{P}_i^{(n)}[k], \widehat{s}_i^{(n)}[k])$ having generated each $ilde{\lambda}_i^o[k]$
 - mew estimates $(P_i^{(n)}[k], \hat{s}_i^{(n)}[k])$ based on the probabilities
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to $\overset{\circ}{\theta_i}$
- \bullet We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_i^{(0)}[k]$

⁵Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models⁵
- We give multiple observations $m{ heta}_i^o[k]$ and $ilde{m{\lambda}}_i^o[k]$
- At each step we calculate
 - lacksquare the probability of each $(\widetilde{P}_i^{(n)}[k], \widehat{s}_i^{(n)}[k])$ having generated each $ilde{\lambda}_i^o[k]$
 - mew estimates $(P_i^{(n)}[k], \hat{s}_i^{(n)}[k])$ based on the probabilities
- At the end we have
 - Parameters with associated region index
 - Observations with associated region index
- We consult the index associated to $\overset{\circ}{\theta_i}$
- \bullet We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

⁵Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models⁵
- ullet We give multiple observations $oldsymbol{ heta}_i^o[k]$ and $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
 - lacksquare the probability of each $(\widetilde{P}_i^{(n)}[k],\widetilde{s}_i^{(n)}[k])$ having generated each $ilde{\lambda}_i^o[k]$
 - M new estimates $(P_i^{(n)}[k], \hat{s}_i^{(n)}[k])$ based on the probabilities
- At the end we have
 - Parameters with associated region index
 - Observations with associated region index
- ullet We consult the index associated to $\overset{\circ}{ heta}_i$
- \bullet We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

⁵Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models⁵
- ullet We give multiple observations $oldsymbol{ heta}_i^o[k]$ and $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
 - $\qquad \qquad \textbf{(b)} \ \ \, \text{the probability of each} \ \, (\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k]) \ \, \text{having generated each} \ \, \widetilde{\lambda}_i^o[k]$
 - Moreover new estimates $(\widetilde{P}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k])$ based on the probabilities
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to $\overset{\circ}{\theta}_{i}$
- We recover the associated parameter, i.e., $\widehat{\tilde{P}}_i^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models⁵
- ullet We give multiple observations $oldsymbol{ heta}_i^o[k]$ and $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
 - $\textbf{ (b)} \ \ \, \text{the probability of each } (\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k]) \ \, \text{having generated each } \widehat{\boldsymbol{\lambda}}_i^o[k]$
 - ${\Bbb M}$ new estimates $(\widetilde{P}_i^{(n)}[k],\widehat{\hat{s}}_i^{(n)}[k])$ based on the probabilities
- At the end we have
 - Parameters with associated region index
 - Observations with associated region index
- We consult the index associated to $\overset{\circ}{\theta}_i$
- We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

⁵Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models⁵
- ullet We give multiple observations $oldsymbol{ heta}_i^o[k]$ and $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
 - $\textbf{ ($\widehat{\widetilde{P}}_i^{(n)}[k]$, $\widehat{\widetilde{s}}_i^{(n)}[k]$) having generated each $\widetilde{\pmb{\lambda}}_i^o[k]$}$
 - ${f M}$ new estimates $(\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k])$ based on the probabilities
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to $\overset{\circ}{\theta}_i$
- We recover the associated parameter, i.e., $\widehat{\tilde{P}}_i^{(0)}[k]$

CentraleSupélec

⁵Such as our PWA function using some tricks

- Iterative method to estimate parameters of multimodal models⁵
- ullet We give multiple observations $oldsymbol{ heta}_i^o[k]$ and $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
 - $\textbf{ ($\widehat{\widetilde{P}}_i^{(n)}[k]$, $\widehat{\widetilde{s}}_i^{(n)}[k]$) having generated each $\widetilde{\pmb{\lambda}}_i^o[k]$}$
 - $extbf{M}$ new estimates $(\hat{\widetilde{P}}_i^{(n)}[k],\hat{\widetilde{s}}_i^{(n)}[k])$ based on the probabilities
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to $\overset{\circ}{ heta}_i$
- We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models⁵
- ullet We give multiple observations $oldsymbol{ heta}_i^o[k]$ and $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
 - $\textbf{ (b)} \ \ \, \text{the probability of each } (\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k]) \ \, \text{having generated each } \widehat{\boldsymbol{\lambda}}_i^o[k]$
 - ${\bf M}$ new estimates $(\hat{\tilde{P}}_i^{(n)}[k],\hat{\tilde{s}}_i^{(n)}[k])$ based on the probabilities
- At the end we have
 - 1 Parameters with associated region index
 - Observations with associated region index
- We consult the index associated to $\overset{\circ}{\theta}_i$
- We recover the associated parameter, i.e., $\hat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models⁵
- We give multiple observations $\theta_i^o[k]$ and $\tilde{\lambda}_i^o[k]$
- At each step we calculate
 - $lackbox{lack}$ the probability of each $(\widehat{\widetilde{P}}_i^{(n)}[k],\widehat{\widetilde{s}}_i^{(n)}[k])$ having generated each $\widetilde{m{\lambda}}_i^o[k]$
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to $\tilde{\theta}_i$
- We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_{z}^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models⁵
- ullet We give multiple observations $oldsymbol{ heta}_i^o[k]$ and $ilde{oldsymbol{\lambda}}_i^o[k]$
- At each step we calculate
 - lacksquare the probability of each $(\hat{\widetilde{P}}_i^{(n)}[k],\hat{\widetilde{s}}_i^{(n)}[k])$ having generated each $\widetilde{m{\lambda}}_i^o[k]$
 - ${f M}$ new estimates $(\hat{\widetilde{P}}_i^{(n)}[k],\hat{\widetilde{s}}_i^{(n)}[k])$ based on the probabilities
- At the end we have

- 1 Parameters with associated region index
- Observations with associated region index
- ullet We consult the index associated to $\stackrel{\circ}{ heta}_i$
- \bullet We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_i^{(0)}[k]$

CentraleSupélec

- Iterative method to estimate parameters of multimodal models⁵
- We give multiple observations $\theta_i^o[k]$ and $\tilde{\lambda}_i^o[k]$
- At each step we calculate
 - **(E)** the probability of each $(\widehat{\widetilde{P}}_{i}^{(n)}[k], \widehat{\widetilde{s}}_{i}^{(n)}[k])$ having generated each $\widetilde{\lambda}_{i}^{o}[k]$
- At the end we have

- Parameters with associated region index
- Observations with associated region index
- We consult the index associated to $\tilde{\theta}_i$
- \bullet We recover the associated parameter, i.e., $\widehat{\widetilde{P}}_{i}^{(0)}\lceil k \rceil$

CentraleSupélec

Same same, but different

Assumption

We know nominal $ar{P}_i{}^{(0)}$

Detection

$$\left\|\widehat{\widetilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)}\right\|_{F} \geqslant \epsilon_{P_{i}^{(0)}}$$

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\tilde{P}}_i^{(0)}[k]^{-1}.$$

$$\hat{oldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{oldsymbol{\lambda}}_i.$$

Same same, but different

Assumption

We know nominal $\bar{P}_i^{(0)}$

Detection

$$\left\| \widehat{\widetilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \geqslant \epsilon_{P_{i}^{(0)}}$$

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\widetilde{P}}_i^{(0)}[k]^{-1}.$$

$$\hat{oldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{oldsymbol{\lambda}}_i$$

Same same, but different

Assumption

We know nominal $\bar{P}_i^{(0)}$

Detection

$$\left\| \hat{\tilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \ge \epsilon_{P_{i}^{(0)}}$$

$$\widehat{T_i[k]^{-1}} = \overline{P_i}^{(0)} \widehat{P_i}^{(0)}[k]^{-1}.$$

$$\hat{oldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{oldsymbol{\lambda}}_i.$$

Same same, but different

Assumption

We know nominal $\bar{P}_i^{(0)}$

Detection

 $\left\| \hat{\tilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \ge \epsilon_{P_{i}^{(0)}}$

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\hat{P}}_i^{(0)}[k]^{-1}.$$

$$\hat{oldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{oldsymbol{\lambda}}_i.$$

Same same, but different

Assumption

We know nominal $\bar{P}_i^{(0)}$

Detection

$$\left\| \hat{\tilde{P}}_{i}^{(0)}[k] - \bar{P}_{i}^{(0)} \right\|_{F} \ge \epsilon_{P_{i}^{(0)}}$$

$$\widehat{T_i[k]^{-1}} = \bar{P}_i^{(0)} \widehat{\hat{P}}_i^{(0)}[k]^{-1}.$$

$$\hat{\boldsymbol{\lambda}}_i = \widehat{T_i[k]^{-1}} \tilde{\boldsymbol{\lambda}}_i.$$

Example

District Heating Network (4 Houses)

- Houses modeled using 3R-2C
- Not enough power
- Period of 5h $(T_s = 0.25h)$
 - 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-AS)

Applying mechanism

Example

District Heating Network (4 Houses)

- Houses modeled using 3R-2C
- ullet Not enough power (Change $(oldsymbol{x}_0,oldsymbol{w}_0)$)
- Period of $5h (T_s = 0.25h)$
- 3 scenarios
 - Nominal
 - Agent I cheats (dMPC)
 - S Agent I cheats (RPdMPC-AS)

Results

Temporal

Temperature in house I. Error $E_I(k)$.

Results

Temporal

Results

Costs

Objective functions J_i (Normalized error %)

Agent	Selfish	Corrected
1	-36.489	-0.0
П	35.813	0.0
Ш	29.225	0.0
IV	37.541	0.0
Global	10.689	-0.0

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick bes
 - Associate with other methods of the same family

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

Too good to be true!

It's a kind of magic!

- Unfortunately EM is not magic
 - Slow convergence
 - Dependency on initialization
 - No guarantees of achieving global optimal
- Some "solutions":
 - Force some parameters to converge faster (case dependant)
 - Run multiple times with different initialization and pick best
 - Associate with other methods of the same family

Outline

- How can an agent attack? ✓
 - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack? ✓
 - Suboptimality and maybe instability
- Can we mitigate the effects?
 - Yes! By exploring the scarcity of the systems!

- How can an agent attack? ✓
 - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack?
 - Suboptimality and maybe instability
- Can we mitigate the effects?
 - Yes! By exploring the scarcity of the systems!

- How can an agent attack? ✓
 - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack?
 - Suboptimality and maybe instability
- Can we mitigate the effects?
 - Yes! By exploring the scarcity of the systems!

- How can an agent attack? ✓
 - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack?
 - Suboptimality and maybe instability
- Can we mitigate the effects?
 - Yes! By exploring the scarcity of the systems!

- How can an agent attack? ✓
 - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack? ✓
 - Suboptimality and maybe instability
- Can we mitigate the effects?
 - Yes! By exploring the scarcity of the systems!

- How can an agent attack? ✓
 - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack? ✓
 - Suboptimality and maybe instability
- Can we mitigate the effects?
 - Yes! By exploring the scarcity of the systems!

- How can an agent attack? ✓
 - Attacker can change the communication to receive more ressources.
- What are the consequences of an attack? ✓
 - Suboptimality and maybe instability
- Can we mitigate the effects? ✓
 - Yes! By exploring the scarcity of the systems!

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Insights from the analysis of the solutions of the optimization problems
 - We found some parameters that are constant when there is no cheating
 - The same parameters change when system is attacked
- Exploiting the solution, we find how to invert the cheating function
 - Straightforward if system is scarce
 - If not scarce we try to force it artifically
- But what if scarcity information is not available even artificially?

- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)

• ...

- Partial/incremental reconstruction of cheating matrix
- Study of robustness + noise
- Resilient strategy with soft constraints
- Recursive EM (or alternative)
- ...

Thank you!

 ${\begin{tabular}{l} Repository\\ https://github.com/Accacio/thesis\\ \end{tabular}}$

Contact rafael.accacio.nogueira@gmail.com

For Further Reading I

K.J. Åström and B. Wittenmark. <u>Adaptive Control</u>. Addison-Wesley series in electrical and computer engineering: Control engineering. Addison-Wesley, 1989. ISBN: 9780201097207. DOI: 10.1007/978-3-662-08546-2\ 24.

José M Maestre, Rudy R Negenborn, et al.

<u>Distributed Model Predictive Control made easy.</u> Vol. 69. Springer, 2014. ISBN: 978-94-007-7005-8.

Wicak Ananduta et al. "Resilient Distributed Model Predictive Control for Energy Management of Interconnected Microgrids". In: Optimal Control Applications and Methods 41.1 (2020), pp. 146–169. DOI: 10.1002/oca.2534. URL: https://onlinelibrary.wiley.com/doi/pdf/10.1002/oca.2534.

For Further Reading II

José M. Maestre et al. "Scenario-Based Defense Mechanism Against Vulnerabilities in Lagrange-Based Dmpc". In: Control Eng Pract 114 (2021), p. 104879. ISSN: 0967-0661. DOI: 10.1016/j.conengprac.2021.104879.

Pablo Velarde et al. "Vulnerabilities in Lagrange-Based Distributed Model Predictive Control". In:

Optimal Control Applications and Methods 39.2 (Sept. 2018), pp. 601–621. DOI: 10.1002/oca.2368.

Wicak Ananduta et al. "Resilient Distributed Energy Management for Systems of Interconnected Microgrids". In:

2018 IEEE Conference on Decision and Control (CDC). 2018, pp. 3159–3164. DOI: 10.1109/CDC.2018.8619548.

For Further Reading III

Wicak Ananduta et al. "A Resilient Approach for Distributed MPC-Based Economic Dispatch in Interconnected Microgrids". In: 2019 18th European Control Conference (ECC). 2019, pp. 691–696. DOI: 10.23919/ECC.2019.8796208.

P. Chanfreut, J. M. Maestre, and H. Ishii. "Vulnerabilities in Distributed Model Predictive Control based on Jacobi-Gauss Decomposition". In: 2018 European Control Conference (ECC). June 2018, pp. 2587–2592. DOI: 10.23919/ECC.2018.8550239.

Pablo Velarde et al. "Scenario-based defense mechanism for distributed model predictive control". In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE. Dec. 2017, pp. 6171–6176. DOI: 10.1109/CDC.2017.8264590.

For Further Reading IV

Pablo Velarde et al. "Vulnerabilities in Lagrange-Based DMPC in the Context of Cyber-Security". In:

2017 IEEE International Conference on Autonomic Computing (ICAC). July 2017, pp. 215–220. DOI: 10.1109/ICAC.2017.53.

Conditions

♦ back

One way to ensure this, is to make the original constraint (??) to have at most as many rows as columns, i.e., $\#u_{\max} \leq n_u$, although it may be a little restrictive.

θ dynamics

√ back

$$\boldsymbol{\theta}^{(p+1)} = \mathcal{A}_{\boldsymbol{\theta}} \boldsymbol{\theta}^{(p)} + \mathcal{B}_{\boldsymbol{\theta}}[k]$$

where

$$\mathcal{A}_{\theta} = \begin{bmatrix} I - \frac{M-1}{M} \rho^{(p)} P_{1} & \frac{1}{M} \rho^{(p)} P_{2} & \dots & \frac{1}{M} \rho^{(p)} P_{M} \\ \frac{1}{M} \rho^{(p)} P_{1} & I - \frac{M-1}{M} \rho^{(p)} P_{2} & \dots & \frac{1}{M} \rho^{(p)} P_{M} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{M} \rho^{(p)} P_{1} & \frac{1}{M} \rho^{(p)} P_{2} & \dots & I - \frac{M-1}{M} \rho^{(p)} P_{M} \end{bmatrix}$$

$$\mathcal{B}_{\theta}[k] = \begin{bmatrix} -\frac{M-1}{M} \rho^{(p)} s_{1}[k] + \frac{1}{M} \rho^{(p)} s_{2}[k] \cdots - \frac{1}{M} \rho^{(p)} s_{M}[k] \\ \frac{1}{M} \rho^{(p)} s_{1}[k] - \frac{M-1}{M} \rho^{(p)} s_{2}[k] \cdots - \frac{1}{M} \rho^{(p)} s_{M}[k] \\ \vdots & \vdots \\ \frac{1}{M} \rho^{(p)} s_{1}[k] + \frac{1}{M} \rho^{(p)} s_{2}[k] \cdots - \frac{M-1}{M} \rho^{(p)} s_{M}[k] \end{bmatrix}$$

