

A Reproducibility Study of Question Retrieval for Clarifying Questions

Sebastian Cross, Guido Zuccon, and Ahmed Mourad g.zuccon@uq.edu.au ielab, The University of Queensland, Australia www.ielab.io

Clarifying Questions

- Creating a single query that is complex and detailed enough to retrieve the required information accurately is a difficult task
- Systems designed to assist the user with query formulation
 - Clarifying questions is such an approach
- Goal: identify a user's information-seeking intent by posing a clarifying question to the user, expecting their answer to clarify aspects of their query.

Clarifying Questions Increasingly Useful Feature for Conversational Search (and beyond)

From: Aliannejadi, et al., "Asking clarifying questions in open-domain information-seeking conversations.", SIGIR 2019

Zamani et al. WWW'20: asking clarifying questions is useful in web search

Zou et al. CIKM'20: question-based systems helpful towards completing tasks

Lotze et al. ECIR'21: exploit predicted user engagement with clarification pane

Bi et al. SIGIR'21: clarifying questions from negative feedback

Zhao et al. SIGIR'22: Generate clarifying questions from web search results

Sekulić et al. ICTIR'21: **GPT-2** to generate clarifying questions with respect to query and facets

Wang&Li CIKM'22: Template-guided clarifying question generation

How to Generate

Useful

Signals

Asking Clarifying Questions in Open-Domain Information-Seeking Conversations

- Key milestone for research in methods for asking clarifying questions
- Provided a blue-print architecture for the task
 - Not just in terms of pipeline components, but also subtasks, evaluation
- Contributed a rich dataset (Qulac)
- Evaluated common baselines for components, developed new methods

SIGIR 2019's Retrieval with Clarifying Questions

SIGIR 2019's Retrieval with Clarifying Questions

K-fold Cross-Validation in Machine Learning

K-fold Cross-Validation in Machine Learning

K-fold Cross-Validation in IR

K-fold Cross-Validation in IR

The Key Experimental Issue with Aliannejadi et al.'s SIGIR 2019

The Key Experimental Issue with Aliannejadi et al.'s SIGIR 2019

The Key Experimental Issue with Aliannejadi

The Key Experimental Issue with Aliannejadi

Fold Formation in Aliannejadi et al.'s SIGIR 2019

- Each fold contained a subset of topics and a subset of all candidate clarifying questions
- Each clarifying questions subset always contained all the relevant questions for a given topic
- Each clarifying questions subset contained far less non-relevant clarifying questions than those present in the question-bank

Differences in Data Preparation

	Avg # of topics per fold	Avg # clarifying questions per topic
Train	118.8	2,593
Validation	39.6	2,593
Test	39.6	2,593

	Avg # of topics per fold	Avg # clarifying questions per topic
Train	118.8	1,558.8
Validation	39.6	521.8
Test	39.6	521.8

Differences in Data Preparation

CREATE CHANGE

Our Data Preparation

Content of testing data

SIGIR 2019 Data Preparation

Content of testing data

Our Data Preparation

A relevant clarifying question X is ranked last in the ranking

Contribution made by X to MAP

Content of testing data

Our Data Preparation

SIGIR 2019 Data Preparation

A relevant clarifying question X is ranked last in the ranking

 $g(X) = 3.8565 \times 10^{-4}$

 $g(X) = 1.9164 \times 10^{-3}$

What we do in this paper

 Replicate the methods of Aliannejadi et al. to investigate the impact of difference in data preparation

- Further analyse results with respect to the use of keyword matching scores as only features in learning to rank
 - Zero-valued representations

lab

Keyword Matching

- •could not reproduce results
- consistently higher effectiveness than reported
- Hypothesis: Aliannejadi et al. did not execute the keyword matching against the same data preparations used for learnt models.
- ?Results obtained against the whole question bank?

lab

Learning to Rank

 could not obtain same results, but values very close

- Hypothesis: mismatch in original result reporting & data
- differences due to feature files they originally used containing more questions than the ones they gave us

we obtained values close to the ones reported

Exp. 2: Our Data Preparation

Keyword Matching

ie lab we could not obtain same results, but values reasonably close (in context of setup)

• *Hypothesis:* Differences ascribed to tools (Anserini vs. Galago), model parameters, and question bank size.

Exp. 2: Our Data Preparation

lab

Learning to Rank

- could not obtain same results.
- Difference in trend: LTR lower effectiveness than keyword matching models

 Expected given they used only part of the available data for retrieval (i.e. fold VS. whole question bank)

Exp. 2: Our Data Preparation

BERT

- performs worst than in original work.
- BERT still best method, but gains over keyword matching sensibly lower
- e.g. +7.64% in ours vs.+24.33% in theirs.
- Gains not anymore significant

Take-aways

- We showed how data preparation affects the results reported in the original work
 - learning to rank cannot outperform keyword matching
 - BERT does outperform keyword matching, but much smaller gains (not statistically significant)
- We do not believe this is a generalisable result:
 - (i) amount of training data is likely too little for those models (especially BERT)
 - (ii) feature representation particularly poor for LTR, where most questions had identical representation.
- Data sharing and genuine collaboration b/w reproduction team and original team was fundamental to identify the data preparation aspect

BONUS SLIDES

CREATE CHANGE

Zero-valued Representations

- LTR feature representation: 3 features QL, BM25, RM3 scores
 - Many relevant query-question pairs share same non-zero representation
 - Many query-question pairs with all features zero-valued
 - often for non-relevant questions, sporadically for relevant questions

At test time, LTR often ends up assigning to pairs one of two scores: 0 or 1 — thus,
 ties

Treatment of Ties

Output of Ranker

d-A	0.9
d-C	0.8
d-B	0.8
d_D	0.7

d-A	0.9
d-C	0.8
d-B	0.8
d_D	0.7

RankLib eval

Treatment of Ties

d-A	0.9
d-C	0.8
d-B	0.8
d_D	0.7

trec_eval

d-A	0.9
d-B	0.8
d-C	0.8
d_D	0.7

Treatment of Ties

d-A	0.9
d-C	0.8
d-B	8.0
d_D	0.7

d-A

d-C

d-B

 d_D

0.9

8.0

8.0

0.7

trec_eval

d-A	0.9
d-B	0.8
d-C	0.8
d_D	0.7

Treatment of Ties

RankLib eval

0.6728

trec_eval no ties 0.6728

d-A	0.9
d-C	0.8
d-B	0.8
d_D	0.7

d-A

d-C

d-B

 d_D

0.9

8.0

8.0

0.7

trec_eval

d-A	0.9
d-B	0.8
d-C	8.0
d_D	0.7

Treatment of Ties

RankLib eval 0.67280.7233trec_eval trec_eval no ties 0.6728

d-A	0.9
d-C	0.8
d-B	0.8
d_D	0.7

d-A

d-C

d-B

 d_D

trec_eval

0.9

8.0

8.0

0.7

d-A	0.9
d-B	0.8
d-C	0.8
d_D	0.7

Treatment of Ties

RankLib eval	0.6728
${\tt trec_eval}$	0.7233
${\tt trec_eval} \ no \ ties$	0.6728

- Unsure what original study used
- In our experiments, we use trec_eval and break ties

