

第19讲(代码优化_4)要点

▶基于数据流分析技术的代码优化

- ▶删除公共子表达式
- ▶删除无用代码
- ▶常量合并
- 户代码移动
- ▶强度削弱
- ▶删除归纳变量

- ▶删除公共子表达式
 - →如果表达式xopy先前已被计算过,并且从先前的计算到现在,xopy中变量的值没有改变,那么xopy的这次出现就称为公共子表达式(common subexpression)
 - ▶如果上一次对该表达式的计算位于同一个基本块中,则它是一个局部公共子表达式;否则它是一个全局公共子表达式

删除局部公共子表达式

DAG

▶删除公共子表达式

局部公共 子表达式

▶删除公共子表达式

删除局部公共子表达式 DAG 删除全局公共子表达式 可用表达式分析

例

可用表达式分析

	$IN[B]^1$	$OUT[B]^1$
\boldsymbol{B}_1	Φ	$m-1; 4*n; a[t_1]$
\boldsymbol{B}_2	$m-1$; $4*n$; $a[t_1]$	$ 4*i; a[t_2]; m-1; 4*n; a[t_1]$
B_3	$4*i; a[t_2]; m-1; 4*n; a[t_1]$	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n; a[t_1]$
B_4	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n; a[t_1]$	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n; a[t_1]$
B_5	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n; a[t_1]$	4*j; 4*i; m-1; 4*n
$\boldsymbol{B_6}$	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n; a[t_1]$	4*j; 4*i; m-1; 4*n
	$IN[B]^2$	$OUT[B]^2$
\boldsymbol{B}_1	Φ	$m-1; 4*n; a[t_1]$
B_2	m-1; 4*n;	$ 4*i; a[t_2]; m-1; 4*n$
B_3	$4*i; a[t_2]; m-1; 4*n$	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$
B_4	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$
B_5	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$	4*j; 4*i; m-1; 4*n
B_6	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$	4*j; 4*i; m-1; 4*n
	$IN[B]^3$	$OUT[B]^3$
\boldsymbol{B}_1	Φ	$m-1; 4*n; a[t_1]$
\boldsymbol{B}_2	m-1; 4*n;	$4*i; a[t_2]; m-1; 4*n$
B_3	$4*i; a[t_2]; m-1; 4*n$	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$
B_4	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$
B_5	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$	4*j; 4*i; m-1; 4*n
B_6	$4*j; a[t_4]; 4*i; a[t_2]; m-1; 4*n$	4*j; 4*i; m-1; 4*n

删除局部公共子表达式

DAG

▶删除公共子表达式

删除全局公共子表达式

可用表达式分析

- ▶删除无用代码
 - ▶ 计算结果永远不会被使用的语句称为无用代码(死代码 Dead-Code)

- ▶删除公共子表达式
- ▶删除无用代码

都有用?

活跃变量分析(du链)

	· · · · · · · · · · · · · · · · · · ·
	OUT[B]
B_6	Φ
B_5	$i; j; v; t_1;$
B_4	$i; j; v; t_1; t_3; t_5;$
B_3	$i; j; v; t_1; t_3; t_5$
B_2	$i; j; v; t_1; t_3;$
B_1	$i; j; v; t_I;$

- ▶删除公共子表达式
- ▶删除无用代码
 - ▶删除无用复制语句
- ▶对于复制语句s: x=y,如果在x的所有引用点都可以用对y的引用代替对x的引用(复制传播),那么可以删除复制语句 x=y

- ▶删除公共子表达式
- ▶删除无用代码
 - ▶删除无用复制语句

可用表达式 (复制语句) 分析

	$OUT[B]^0$	$IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$	$IN[B]^3$	$OUT[B]^3$
\boldsymbol{B}_{l}	U	Φ	j=n	Φ	j=n	Ф	j=n
\boldsymbol{B}_2	U	j=n	j=n	Ф	Ф	Φ	Φ
B_3	U	j=n	Ф	Ф	Ф	Φ	Φ
B_4	U	Ф	Ф	Ф	Ф	Φ	Φ
B_5	U	Ф	$x = t_3$	Φ	$x=t_3$	Ф	$x=t_3$
B_6	U	Φ	$x = t_3$	Ф	$x = t_3$	Ф	$x = t_3$

$$B_6$$
 $x = t_3$ $t_{14} = a[t_1]$ $a[t_2] = t_{14}$ $a[t_1] = x$ 复制传播

活跃变量分析(du链)

	OUT[B]				
B_6	$oldsymbol{\Phi}$				
B_5	$i; j; v; t_1;$				
B_4	$i; j; v; t_1; t_3; t_5;$				
B_3	$i; j; v; t_1; t_3; t_5$				
B_2	$i; j; v; t_1; t_3;$				
\boldsymbol{B}_1	$i; j; v; t_1;$				

Į	制传播	$B_4 if i >= j ge$	oto R
	$x = t_3$	$\frac{y^{ij-jg0}}{}$	
	$a[t_2] = t_5$	$a[t_2] = t_5$	t ₁₄ =
	$a[t_4] = t_3$	$a[t_4] = t_3$	$a[t_2]$
	goto B ₂	goto R	$a[t_i]$

 $a[t_2] = t_5$

 $a[t_4] = x$

goto B_2

$$a[t_2] = t_5$$

$$a[t_4] = t_3$$

$$goto B_2$$

$$\begin{aligned} a[t_2] &= t_5 \\ a[t_4] &= t_3 \\ a[t_2] &= t_{14} \\ a[t_1] &= t_3 \end{aligned} \qquad \begin{aligned} a[t_2] &= t_{14} \\ a[t_1] &= t_3 \end{aligned} \qquad \begin{aligned} a[t_1] &= t_{3} \end{aligned}$$

 $= a[t_4]$ $t_5 > v \ goto \ B_3$

	$IN[B]^0$	OUT[B]	1	$IN[B]^1$	
\boldsymbol{B}_6	Φ	Ф		$t_3; t_1;$	
B_5	Φ	Φ		$t_3; t_5;$	
B_4	Φ	$t_1; t_3; t_5$	•	$t_1; t_3; t_5;$	
B_3	Φ	$t_1; t_3; t_5$	•	$j; v; t_1; t_3;$	
\boldsymbol{B}_2	Φ	$j; v; t_1;$	t_3	$i; j; v; t_1;$	
\boldsymbol{B}_{l}	Φ	i; j; v; t	ı;	m; n;	
	OU.	$T[B]^2$	I I	V[<i>B</i>] ²	
B_6	Ф			$t_3; t_1;$	
B_5	i; j; v;	t_1 ;	$i; j; v; t_1; t_3; t_5;$		
B_4	i;j;v;	$t_1; t_3; t_5;$	$i; j; v; t_1; t_3; t_5;$		
B_3	i;j;v;	$t_1; t_3; t_5$	$i; j; v; t_1; t_3$		
\boldsymbol{B}_2	i;j;v;	$t_1; t_3;$	$i; j; v; t_1;$		
\boldsymbol{B}_{1}	i; j; v;		m	; n ;	
	OU.	$T[B]^2$	I]	V[<i>B</i>] ²	
$\boldsymbol{B_6}$	Φ			$t_3; t_1;$	
B_5	i; j; v;	t_1 ;	i;	$j; v; t_1; t_3; t$	5;
B_4	i; j; v;	$t_1; t_3; t_5;$	$i; j; v; t_1; t_3; t_5;$		
B_3				$j; v; t_1; t_3$	
\boldsymbol{B}_2	i; j; v;	$t_1; t_3;$	i;	$j; v; t_1;$	
\boldsymbol{B}_{1}	i; j; v;			; n ;	

$\begin{array}{c} B_2 \\ B_2 \\ t_2 = 4 * i \\ t_3 = a[t_2] \\ if t_3 < v \text{ goto } B_2 \end{array}$

$$B_5 \begin{vmatrix} x = t_3 \\ a[t_2] = t_5 \\ a[t_4] = x \\ goto B_2 \end{vmatrix}$$

 $x = t_3$

 $a[t_2] = t_5$

 $a[t_4] = t_3$

goto B₂

$If i >= j goto B_6$

可用复制语句(表达式)分析

	$OUT[B]^0$	$IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$	$IN[B]^3$	$OUT[B]^3$
\boldsymbol{B}_1	U	Φ	j=n	Φ	j=n	Ф	j=n
\boldsymbol{B}_2	U	j=n	j=n	Ф	Ф	Ф	Ф
B_3	U	j=n	Ф	Ф	Ф	Φ	Ф
B_4	U	Ф	Ф	Ф	Ф	Φ	Ф
B_5	U	Ф	$x = t_3$	Ф	$x=t_3$	Ф	$x=t_3$
B_6	U	Ф	$x = t_3$	Φ	$x=t_3$	Φ	$x = t_3$

- ▶删除公共子表达式
- ▶删除无用代码
- ▶常量合并
 - 》如果在编译时刻推导出 一个表达式的值是常量, 就可以使用该常量来替 代这个表达式。该技术 被称为常量合并

- ▶删除公共子表达式
- ▶删除无用代码
- ▶常量合并
 - 》如果在编译时刻推导出 一个表达式的值是常量, 就可以使用该常量来替 代这个表达式。该技术 被称为常量合并

- ▶删除公共子表达式
- ▶删除无用代码
- ▶常量合并
- 一代码移动

- ▶删除公共子表达式
- ▶删除无用代码
- ▶常量合并
- 一代码移动
- ▶强度削弱
 - 》用较快的操作代替 较慢的操作,如用 加代替乘

例:归纳变量的检测

- ▶循环{B₃、B₄}
 - ≽e
- \triangleright 循环{ B_2 、 B_3 、 B_4 、 B_5 }
 - >b
 - \triangleright c

例:归纳变量的检测

- ▶循环{B₃、B₄}
 - ≽e
- \triangleright 循环{ B_2 、 B_3 、 B_4 、 B_5 }
 - **>**b
 - \triangleright c

归纳变量的检测

i是基本归纳变量

 t_2 是i族归纳变量,可以表示为(i, 4, 0)

j是基本归纳变量

 t_4 是j族归纳变量,可以表示为(j, 4, 0)

例

- ▶删除公共子表达式
- ▶删除无用代码
- ▶常量合并
- 一代码移动
- ▶强度削弱
- ▶删除归纳变量
 - ▶强度削弱后,有些 归纳变量的作用只 是用于测试

回边 (Back Edges)

- 》如果存在从结点n到d的有向边 $n \rightarrow d$,且d dom n,那么这条边称为回边
- \times 》假定流图中存在两个结点d和n满足d dom n。如果存在从结点 n到d的有向边 $n \rightarrow d$,那么这条边称为回边

