Гео + дорешивание прошедших задач

Задача 1. Прямая, перпендикулярная биссектрисе угла $\angle BAC$, пересекает стороны угла в точках M и N. Докажите, что треугольник AMN равнобедренный.

Задача 2. На сторонах угла $\angle CAD$ отмечены точки В и Е так, что В лежит на отрезке AC, а E на AD. Причём AC=AD, AB=AE. Докажите, что $\angle CBD=\angle DEC$.

Задача 3. Дан четырёхугольник ABCD. Известно, что AC = BD, AB = CD. Докажите, что $\angle CAD = \angle BDA$ и $\angle BAC = \angle CDB$.

Задача 4. В треугольниках ABC и $A_1B_1C_1$ известно, что медианы BM и B_1M_1 равны, также $AB=A_1B_1,\ AC=A_1C_1.$ Докажите, что данные треугольники равны.

Задача 5. На рисунке $AB=BC,\ CD=ED.$ Докажите, что AB параллельно ED.

Задача 6. В треугольнике $ABC \angle A = 40$, $\angle B = 70$. Через вершину B проведена прямая BD так, что луч BC—биссектриса угла ABD. Докажите, что AC параллельно BD.

Задача 7. Степень каждой вершины графа меньше d. Докажите, что его вершины можно покрасить в d цветов npaвильным образом (т.е. так что вершины одного цвета не были соединены ребром)

Задача 8. В гандбольном турнире в один круг участвовали несколько студенческих команд и две школьных. Каждая команда сыграла с каждой ровно один матч. За победу давалось 2 очка, за ничью — 1, за проигрыш — 0. Известно, что все студенческие команды набрали одинаковое число очков, а обе школьные — по 14 очков. Сколько студенческих команд могло участвовать в турнире?

Задача 9. Есть 10 одинаковых бочек. Из них 9 доверху заполнены вином своего сорта, а десятая пустая. Можно переливать из любой бочки в любую любое количество вина. Докажите, что можно сделать так что каждая из 10 бочек будет на 9/10 заполнена равномерной смесью 9 вин.

Задача 10. а) На плоскости нарисован квадратик размером 1×1 . Рома каждый раз пририсовывает к имеющемуся прямоугольнику возле большей стороны квадрат. Какой прямоугольник он получит после 5 пририсовываний? После n пририсовываний?

б) Используя пункт а) найдите $F_1^2 + F_2^2 + \ldots + F_n^2$.

Задача 11. Коля берёт прямоугольный бумажный лист $m \times n$ см, отрезает от него квадрат со стороной, равной меньшей стороне прямоугольника, и кидает его на пол. От оставшегося прямоугольника он снова отрезает квадрат, кидает на пол и так далее, до тех пор, пока это возможно. Что же останется в руках у Коли, когда он закончит свою деятельность и приступит к уборке мусора? (в парочке задач было нечто схожее, поэкспериментируйте с маленькими m и n и угадайте ответ)