Homework 8

Jaden Wang

Problem (9.14). Since h_u is linear, its derivative $dh_{up}: T_p\Gamma \to T_p\mathbb{R}$ is just itself $\langle p, u \rangle$. The only critical points of h_u are those points s.t. $dh_{up} = 0 = \langle p, u \rangle$, *i.e.* points that are orthogonal to u. So it suffices to show that there are finitely many points on M that are orthogonal to u.

Let $f: \Gamma \to S^1$ be the function that maps any point on the curve to a vector orthogonal to it (by 90 degree clockwise rotation). Then f is linear and therefore smooth. Then by Sard's Theorem, almost all $u \in S^1$ are regular values of f. That is, for almost every $u \in S^1$, $f^{-1}(u)$ is a 0-dimensional manifold, *i.e.* a set of points in Γ . Since S^1 is compact, so is Γ . Then by homework we know that $f^{-1}(u)$ is a finite number of points. Thus we show that there are only finitely many points of Γ that is orthogonal to u.

Problem (10.1). Sard's Theorem says that all except for measure zero set of elements in N are regular values of f. But since dim $M < \dim N$, df_p can at most have rank dim M so none of the elements in f(M) can be regular value. Hence they must be in the measure zero set.

Problem (10.2). Given $[f] \in \pi_1(S^2)$, where $f: S^1 \to S^2$ is continuous, we can always choose a smooth representative by Weierstrass Approximation Theorem, *i.e.* perturbing f into a polynomial $\overline{f}: S^1 \to S^2$, which is smooth. (This is because we can take an 2ε tube around the curve $f(S^1)$ and we know \overline{f} is in this 2ε tube. Since this 2ε tube is an hyper-annulus, it is homotopic to a hyper-circle so we can always homotop f to \overline{f} . If \overline{f} lies outside of S^n , then we just project it to S^n which is still in the 2ε tube. Since projection is smooth, composition of smooth functions are smooth so we get a smooth function on S^n .) So we can assume f is smooth. Then by 10.1, since dim $S^1 < \dim S^n$, $f(S^1)$ has measure zero in S^n and thus misses at least one point in S^2 . But $S^n - \{p\}$ is diffeomorphic to \mathbb{R}^n via stereographic projection. Since \mathbb{R}^n is contractible, so is $f(S^1) \subseteq S^n - \{p\}$. Therefore, the loop f is homotopic to the constant loop, i.e. $\pi_1(S^n) = 0$. Since S^n is path-connected, we see that it is simply connected.

Problem (10.3). Every hyperplane is completely identified by its outward normal vector and the offset from origin.

Consider the unit normal vector field $\nu: M \to S^n$. Since M is a smooth manifold, its unit normal vector field is also smooth. Then by Sard's Theore, almost every $u \in S^n$ is a regular value of f. That is, almost every $\nu^{-1}(u)$ is a 0-dimensional manifold (as dim $M = \dim S^n = n$), i.e. a set of points. Since M is compact, $\nu^{-1}(u)$ is a finite set of points. That is, only a finite number of points in M that have tangent planes parallel to H. If H happens to be tangent to M then a small perturbation would give us a hyperplane that either has a normal vector that is not tangent or an offset that doesn't land on M. Either way this hyperplane will be transversal. So almost all hyperplanes are transversal.

Problem (10.5). For any smooth map $f: M \to N$ and a critical point $p \in M$, then df_p has rank less than n. We can choose charts (U, ϕ) of M around p, (V, ψ) of N around q := f(p). Let $g := \psi \circ f \circ \phi^{-1} : \phi(U) \subseteq \mathbb{R}^m \to \mathbb{R}^n$, it is clearly smooth. Then $dg_{\phi^{-1}(p)} = d\psi \circ df_p d\phi_p^{-1}$ also has rank less than n. Thus $\phi^{-1}(p)$ is a critical point and g(p) is a critical value. Therefore, any critical value of f yields a critical value of g. Since the set of critical value is measure zero, since ψ^{-1} is smooth, it follows that the critical value of f is also measure zero. Thus almost all points of N are regular values of f.