Task 3

Process	BurstTime	Arrival Time	Process	BurstTime	Arrival Time
T1	1	0	T6	8	11
T2	2	0	T7	6	11
T3	4	0	T8	4	11
T4	6	0	T9	2	11
T5	8	0	T10	1	11

Time quantum for RR scheduler is 3 units

Testing scheduling of 43 quanta of time

Round Robin scheduling

Shortest waiting time: T1 = 0q

Longest waiting time: T8 = 21q

Total execution time: 41q

Average waiting time:
$$\frac{T1+T2+T3+T4+T5+T6+T7+T8+T9+T10}{number\ of\ processes} = \frac{0+1+9+10+32+22+19+22+13+15}{10} = 14,3q$$

With RR the average waiting time is higher than FCFS, but the highest waiting time for a process is lower. The total execution time is shorter. This means that with a lot of processes, the short processes won't be buried under long processes hogging the CPU quanta and they are rather delegated a timeslot where they can be completed within a reasonable time. This halts bigger processes which will be resumed after their preemption, which in turn increases the average waiting time.

First Come First Serve scheduling

Shortest waiting time: T1 = 0q

Longest waiting time: T10 = 30q

Total execution time: 42q

Average waiting time: $\frac{T1+T2+T3+T4+T5+T6+T7+T8+T9+T10}{number\ of\ processes} = \frac{0+1+3+7+13+10+18+24+28+30}{10} = 13,4q$

With FCFS the average waiting time is lower than with RR, but the highest waiting time for a process is higher. The total execution time is longer. This means that with a lot of processes, some short processes may wait for a long time, if not "forever" to just run a tiny process, because the longer processes will have to finish before they can execute.