CS201

MATHEMATICS FOR COMPUTER SCIENCE I

LECTURE 4

Why Sets in a Discrete Mathematics Course?

- Study of sets captures all of mathematics, whether discrete or continuous.
- Arguments used are, therefore, applicable everywhere.
- ullet Discrete mathematics is study of discrete sets: all finite sets, ${\mathbb Z}$ etc.
- Arguments from set theory find many applications.

RELATIONS

- Structure of a set is captured by relationships between its elements.
- A k-ary relation on set A is typically viewed as a predicate taking true or false value on any collection of k-elements of A.
- Examples:
 - $ightharpoonup \subseteq$ is a 2-ary relation (also called binary) on $\mathcal{P}(A)$ for any set A: \subseteq (X, Y) is true iff $X \subseteq Y$ for $X, Y \subseteq A$.
 - \triangleright < is a binary relation on set of numbers: < (a, b) is true iff a < b.
 - ▶ For any function $f: A \mapsto A$, f defines a binary relation on A: $R_f(a, b)$ is true iff f(a) = b.
 - \blacktriangleright + is a 3-ary relation on set of numbers: +(a,b,c) is true iff a+b=c.
 - ▶ Set membership is a unary relation: given $A \subseteq B$, $R_A(b)$ is true for $b \in B$ iff $b \in A$.

RELATIONS

A relation can be represented as a set: if R is a k-ary relation on set
A, then the set

$$\{(a_1, a_2, \dots, a_k) \mid a_1, \dots, a_k \in A \text{ and } R(a_1, \dots, a_k) \text{ is true}\}$$

is set representation of R. It is also denoted by R.

• We will focus on special kind binary relations as these are easier to analyze and still capture interesting structures.

Manindra Agrawal CS201: Lecture 4 5/16

Transitive Relations

- Let R be a binary relation on set A.
- Instead of R(a, b), we write aRb.
- R is a transitive relation if the following condition is satisfied: For every $a, b, c \in A$, if aRb and bRc then aRc.
- Examples:
 - ▶ ⊂ is transitive
 - < is transitive</p>
 - ▶ Relation induced by function *f* is not transitive

Transitive Relations

- Transitive relations give an ordering to elements of the set:
 - Say a is "below" or "less than equal to" b iff aRb for a transitive relation R.
 - ► transitivity of *R* ensures that the intuitive expectation from an ordering is satisfied.
- There are two special classes of transitive relations. These are defined using reflexive and symmetric properties.

REFLEXIVE RELATIONS

- Relation R on set A is reflexive if aRa for every $a \in A$.
- Examples:
 - ► ⊂ and < are reflexive.</p>
 - ▶ If elements of A are sets, define Equal cardinality relation \equiv on A as: $a \equiv b$ iff |a| = |b|.
 - ▶ ≡ is reflexive.
 - ▶ Relation < is not reflexive.

Symmetric and Antisymmetric Relations

- Relation R on set A is symmetric if aRb implies bRa for every $a, b \in A$.
- Relation R on set A is antisymmetric if aRb and bRa implies a = b for every $a, b \in A$.
- Examples:
 - ightharpoonup \subseteq and \le are antisymmetric.
 - ightharpoonup is symmetric.

EQUIVALENCE RELATIONS

DEFINITION

Relation R on set A in an equivalence relation if R is transitive, reflexive and symmetric.

• ≡ is an equivalence relation.

STRUCTURE INDUCED BY EQUIVALENCE RELATIONS

DEFINITION

If R is an equivalence relation on A then an equivalence class of (A, R) is a subset X of A such that aRb for every $a, b \in X$, and aRb is false for every $a \in X$ and $b \in A \setminus X$.

• All subsets of cardinality 1 of $\mathcal{P}(\mathbb{Z})$ form an equivalence class of $(\mathcal{P}(\mathbb{Z}), \equiv)$.

Manindra Agrawal CS201: Lecture 4 11/16

STRUCTURE INDUCED BY EQUIVALENCE RELATIONS

THEOREM

An equivalence relation R on set A splits it into disjoint equivalent classes.

Proof.

• Let $a \in A$. Consider subset X_a of A such that

$$X_a = \{b \mid b \in A \text{ and } aRb\}.$$

• X_a is an equivalence class of (A, R).

PARTIAL ORDERS

DEFINITION

Relation R on set A is a partial order if R is transitive, reflexive, and anti-symmetric.

 $\bullet \subseteq \text{and} \subseteq \text{are partial orders}.$

TOTAL ORDERS

DEFINITION

Relation R on set A is a total order if R is a partial order on A and for every $a, b \in A$, either aRb or bRa.

 $\bullet \le$ is a total order but \subseteq is not.

STRUCTURE INDUCED BY PARTIAL ORDERS

- Let R be a partial order on set A.
- A chain of (A, R) is a subset C of A such that aRb or bRa for any two $a, b \in C$.
- Clearly, R is a total order on C since R remains a partial order on any subset of A.
- A maximal element of (A, R) is an element $a \in A$ such that there is no $b \in A$ with aRb.
- A minimal element of (A, R) is an element $a \in A$ such that there is no $b \in A$ with bRa.

TOTAL ORDERS ON SETS

- Every set admits a partial order trivially: define an empty relation on the set.
- Is it possible to define a total ordering on all sets?
- Yes if set is finite:
 - ▶ Let

$$A = \{a_1, a_2, \ldots, a_k\}.$$

- ▶ Define relation R such that $a_i Ra_i$ for $i \leq j$.
- What about infinite sets?
- Leads to Axiom of Choice, Well-ordering Principle, and Zorn's Lemma!