

Learning Video Representations from Correspondence Proposals

Xingyu Liu¹, Joon-Young Lee², Hailin Jin²
¹Stanford University ²Adobe Research

Motivation

Correspondences between positions – Dynamic Component of Videos. Its pattern different than regular structured data:

1. Correspondence have similar visual or semantic features.

Assumption underlying many computer vision tasks, such as image matching and flow estimation.

- Correspondence can span arbitrarily long spatiotemporal ranges.
 Spatially: fast motion/low frame rate; temporally: disappear and then re-appear in videos across a long time.
- **3.** Potential correspondence in other frames are small in percentage. Given a position, usually only small portion of positions in other frames can be potential correspondence. Other dissimilar positions can be safely ignored.

Challenges: sparsity, irregularity, feature space similarity

Our solution: Learn from Correspondence Proposals

- For each position, the potential correspondence are the k-NN in video representation tensor in feature space.
- 2. Each of the k feature pairs is processed **identically** and **independently** by a neural network (instantiated by **MLP**).
- 3. Then max pooling is applied to select the strongest response.

Output is the encoded representation of correspondence, i.e. dynamic component in videos

Suppose j-th k-NN of $(t^{i_0}, h^{i_0}, w^{i_0}, f^{i_0})$ is $(t^{i_j}, h^{i_j}, w^{i_j}, f^{i_j}), (t^{i_j}, h^{i_j}, w^{i_j})$ normalize to [0, 1], then

$$g^{i_0} = \underset{j \in \{1,2,\dots,k\}}{MAX} \{ \zeta(f^{i_0}, f^{i_j}, t^{i_j} - t^{i_0}, h^{i_j} - h^{i_0}, w^{i_j} - w^{i_0}) \}$$

Ablation Studies	(b) A	blation on CI	module's k	values used i	n training and	l testing time	.			
(a) number of CP modules	top-1/top-5	op-1/top-5				test				
	accuracy	k = 1	k = 2	k = 4	k = 8	k = 16	k = 32	(c) CP 1	nodulo n	ositions
model top-1 top-5	k = 1	59.9/82.3	59.2/81.6	56.6/79.4	52.5/76.1	49.0/72.6	44.6/58.5	(c) CF I	nouuie p	OSITIONS
C2D 56.9 79.5	k = 2	59.1/81.8	60.2/82.5	59.6/81.8	56,9/80,1	53.0/77.1	48.9/73.5	model	top-1	top-5
1 CP 60.3 82.4	k = 4	59.0/81.2	60.2/82.4	60.5/82.6	59.0/81.7	55.3/79.2	49.2/73.5	C2D	56.9	79.5
2 CPs 60.4 82.4	train $k = 4$	53,4/76,3	56.8/79.5	59.6/81.9	60.7/82.8	59.7/82.1	57.0/80.3	res ₃	60.4	82.4
4 CPs 61.0 83.1	k = 16		53.8/77.3	56.8/79.7	59.8/82.1	60,6/82.8	59.2/81.8	res ₄	60.8	82.8
6 CPs 61.1 83.1	k = 32		53.8/77.7	55.5/79.1	58.2/80.8	60.0/82.2	60.4/82.4	res ₅	59.2	81.6

Kinetics-400 Results					ResNet-101 model							
				frame rate	1/12 of original frame rate			1/4 of original frame rate				
	val configuration	1-clip, 1 crop		25-clip, 10 crops		1-clip, 1 crop		25-clip, 10 crops				
ResNet-18 Model			accuracy	top-1	top-5	top-1	top-5	top-1	top-5	top-1	top-5	
model	params (M)	top-1	top-5	C2D	56.9	79.5	61.3	83.6	54.1	77.4	60.8	83.3
I3D Inception [3]	25.0	72.1	90.3	C3D [28]	58.3	80.7	64.4	85.8	55.0	78.5	63.3	85.2
Inception-ResNet-v2 [2]	50.9	73.0	90.9	NL C2D Net [33]	58.6	81.3	63.3	85.1	55.3	78.6	62.1	84.2
NL C2D ResNet-101 [33]	48.2	75.1	91.7	ARTNet [32]	59.1	81.1	65.1	86.1	56.1	78.7	64.2	85.6
CPNet C2D ResNet-101 (ours)	42.1	753	92.4	CIDAL + (O	(1.1	02.1	(()	07.1	57.0	00.0	(10	06.5

Toy Example: A Failing of several previous methods

- White 2×2 block moving on 32×32 black canvas, step size random between 7 and 9
- Four labels of moving directions: up, down, left, right
- Two layers of 3×3 conv allowed
- Classification fails (with random guess): insufficient receptive fields or lack positional info

layer	I3D NL Net [33]	ARTNet [32]	TRN [39]	C2D CPNet (ours)	
conv ₁	$3 \times 3 \times 1,16$	$3 \times 3 \times 3,16$	$3 \times 3 \times 1,16$	$3 \times 3 \times 1,16$	
	NL block	-	-	CP module	
conv ₂	$1 \times 1 \times 3,16$	SMART-	$3 \times 3 \times 1.16$	3 × 3 × 1.16	
	$3 \times 3 \times 1,16$	$3 \times 3 \times 3,16$	3 × 3 × 1,10	3 × 3 × 1,10	
	pooling,	pooling,	pooling, temporal	pooling,	
	fc	fc	relation, fc	fc	
train	27.8	26.8	27.1	97.9	

Model Run Time

GTX 1080 Ti: 10.1 videos/s for frame length of 8, 3.9 videos/s for frame length of 32.

