杭州电子科技大学 学生考试 答卷

→,	一、选择题(每空1分,共20分)									
	1,	_D	2,	_B	3、	D	4、	_B	5、	C
	6、	A	7、	B	8、	B	9、	C	10、	C
	11、_	B	12、_	C	13、_	C	14、_	A	15、	_D
	16、_	B	17、_	D	18、_	A	. 19、_	B	20、	_D
Ξ,	填空是	娅(每空1分	分,共 2	0分)						
	1,	UDP	_							
	2、	比特流	`	帧_						

4、	SMTP 协议	`	POP3 协议	,	IMAP 协议

- 5、____应用层_____、 、 ____表示层_____、 、 ____点到点_____
- **6**, ___FIN_____, __201_

3、____分片_____ 、 __目的主机___

- 7、__重组_____
- 8、__时分多路复用____
- 9、 长连接

10,

协议	中文名称或英文全称谓
SSH	安全外壳协议
RIP	路由信息协议
ТСР	传输控制协议
НТТР	超文本传输协议

- 三、分析简答题(每题3分,共15分)
 - 1. 每个要点给1分
- 1) ARP 协议的功能是将主机的 IP 地址解析为相应的物理地址。

- 2) 当主机 A 要向主机 B 发送数据时,必须知道主机 B 的 MAC 地址,为此,先根据主机 B 的 IP 地址在本机的 ARP 缓冲表内查找,如找到 E2,则把 E2 填到 MAC 帧中,并把数据发送给主机 B;
- 3)如果在本机的 ARP 缓冲表内找不到主机 B 的 MAC 地址,则主机 A 产生一个 ARP 询问包,其中包含主机 A 的 IP 地址, MAC 地址 E1, 主机 B 的 IP 地址,并广播到网络上询问谁知道主机 B 的 MAC 地址;
- 4) 主机 B 收到 ARP 询问包后,根据询问者的 IP 和 MAC 地址 E1 立即向主机 A 会送一个 ARP 响应包,其中包含主机 1 的 IP 地址, MAC 地址 E1, 主机 B 的 IP 地址和 MAC 地址 E2,从而主机 A 获得了主机 B 的 MAC 地址 E2。

2. 每个要点给1分

- 1)应用层。HTTP: WWW 访问协议; DNS: 域名解析协议。
- 2) 传输层。TCP: 为 HTTP 提供可靠的数据传输; UDP: DNS 使用 UDP 传输。
- 3) 网络层。IP: IP 数据报传输和路由选择; ICMP: 提供网络传输中的差错检测; ARP: 将本机的默认网 关 IP 地址映射成物理 MAC 地址。

3. 每个要点 0.75 分

- 1) 仅和相邻路由器交换信息。
- 2)交换的信息是当前本路由器自己的路由表:"到本自治系统中所有网络的(最短)距离,以及到每个网络应经过的下一跳路由器"。
- 3)相邻路由器周期性交换路由信息。
- 4)路由器根据收到的路由信息使用距离向量算法更新路由表。

4. 每个要点 0.6 分

- 1) 为了保证数据包的可靠传递,发送方必须把已发送的数据报保留在缓冲区;
- 2) 并为每个已发送的数据包启动一个超时定时器;
- 3)如在定时器超时之前收到了对方发来的应答信息(可能是对本包的应答,也可以是对本包后续包的应答),则释放该数据包占用的缓冲区;
- 4) 否则, 重传该数据包, 直到收到应答或重传次数超过规定的最大次数为止。
- 5)接收方收到数据包后,先进行 CRC 校验,如果正确则把数据交给上层协议,然后给发送方发送一个累积应答包,表明该数据已收到,如果接收方正好也有数据要给发送方,应答包也可放在数据包中捎带

第 1 页 共 3 页

5. 每个要点给1分

新估计 RTT= $(1-\alpha)*(||RTT)+\alpha*(新RTT||$ 样本),因此有

- 1) RTT= (1-0.2) *35+0.2*27 = 33.4ms
- 2) RTT= (1-0.2) *33.4+0.2*30 = 32.7ms
- 3) RTT= (1-0.2) *32.7+0.2*21 = 30.4ms

所以当第三个确认报文到达后,新的 RTT 估计值是 30.4.

四、论述计算题(共45分):

1、(8分)

可以采用划分子网的方法对该公司的网络进行划分。由于该公司包括 4 个部门,共需要划分为 4 个子网。(2 分)

子网号包含已经包含 192. 168. 161, 所以后面分的可以全 0 和全 1 的,这样不违背整个子网号不能全 0 和全 1,此处可以分为 8 个子网,答案不唯一

4 个子网的网络地址分别为: 192.168.161.32、192.168.161.64、192.168.161.96、192.168.161.128。 子网掩码为 255.255.255.224。(2 分)

子网 192. 168. 161. 32 的主机 IP 范围为: 192. 168. 161. 33~62;

子网 192. 168. 161. 64 的主机 IP 范围为: 192. 168. 161. 65~95;

子网 192. 168. 161. 96 的主机 IP 范围为: 192. 168. 161. 97~126;

子网 192. 168. 161. 128 的主机 IP 范围为: 192. 168. 161. 129~158; (2分)

2、(6分)

在慢启动和拥塞避免算法中,拥塞窗口初始为 1 ,窗口大小开始按指数增长。当拥塞窗口大于慢开始门限后停止使用慢启动算法,改用拥塞避免算法。(2 分)此处慢开始的门限值初始为 12 ,当拥塞窗口增大到 12 时改用拥塞避免算法,窗口大小按线性增长,每次增加 1 个报文段,当增加到 16 时,出现超时,重新设门限值为 8 (16 的一半),拥塞窗口再重新设为 1 ,执行慢启动算法,到门限值 8 时执行拥塞避免算法。(2 分)

这样,拥塞窗口的变化就为 1 , 2 , 4 , 8 , 12 , 13 , 14 , 15 , 16 , 1 , 2 , 4 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 16 , \cdots 。可见从出现超时时拥塞窗口为 16 到恢复拥塞窗口大小为 16 ,需要的 往返时间次数是 12 。(2 分)

3、(5分)

$$G(x) \rightarrow 11001) 1101111001 11001 11001 11110 11001 11111 ← (X) (3 分)$$

因为余数R(x)不为0,所以收到的信息不正确。(2分)

4、(6分)

数据帧的长度为 512B ,即 512 * 8bit = 4.096kbit,一个数据帧的发送时延为 4.096/64 = 0.064s。因此一个发送周期时间为 0.064 + 2 * 0.27 = 0.604s。(2分)

因此当窗口尺寸为 1 时,信道的吞吐率为 1 * 4.096 / 0.604 = 6.8 kb/s ; 当窗口尺寸为 7 时,信道的吞吐率为 7 * 4.096/0.604 二 47.5kb/s。(2 分)

由于一个发送周期为 0.604s,发送一个帧的发送延时是 0.064s,因此当发送窗口尺寸大于 0.604/0.064,即大于等于 10 时,发送窗口就能保证持续发送.因此当发送窗口大小为 17 和 117 时,信道的吞吐串达到完全速率,与发送端的数据发送速率相等,即 64kb/s。(2分)

5、(10分)

距离-向量路由算法要求每一个路由器维护一张路由表,该表给出了到达每个目的地址的已知最佳 距离(最小代价)和下一步的转发地址。算法要求每个路由器定期与所有相邻路由器交换整个路由表,并 更新自己的路由表项。注意从邻接结点接收到了路由表不能直接进行比较,而是要加上相邻结点传输消耗 后再进行计算。(3分)

C 到 B 的距离是 6, 那么从 C 开始通过 B 到达各结点的最短距离矢量是 (11, 6, 14, 18, 12, 8)。同理,通过 D 和 E 的最短距离矢量分别是 (19, 15, 9, 3, 12, 13) 和 (12, 11, 8, 14, 5, 9)。那么 C 到所有结点的最短距离应该是 (11, 6, 0, 3, 5, 8)。 (3分)

始-终	最短路径	路径值
C-A	C-B-A	6+5=11
C-B	C-B	6
C-D	C-D	3
С-Е	C-E	5
C-F	C-B-F	6+2=8

(4分)

6、(10分)

- 1)使用 CIDR 时,可能会导致有多个匹配结果,应当从当前匹配结果中选择具有最长网络前缀的路由。
- ① 123.121.48.0 / 24 与 123.121.49.33 不匹配,因为前 24 位不同。
- ② 131.121.49.24 / 28 与 123.121.49.33 的前 24 位匹配,只需看后面 4 位是否匹配,24 转换为二进制为 0001 1000, 33 转换为二进制为 0010 0001,不匹配
- ③ 131.121.49.24 / 26 与 123.121.49.33 的前 24 位匹配,只需要看后面 2 位是否匹配, 24 转 换为二进制为 0001 1000 , 33 转换为二进制为 0010 0001 , 匹配,且匹配了 26 位。(1 分)
 - ④ 123.121.0.0 / 16 与 123.121.49.33 匹配,且匹配了 16 位。综上,对于分组 A,第 3 、 4 项都能与之匹配,但根据最长网络前缀匹配原则,应该选择网络前缀为 123.121.49.24/26 的表项进行转发,下一跳路由器为 C 。同理,对于分组 B ,路由表中第 1 和 4 项都能与之匹配,但是根据最长网络前缀匹配原则,应该选择第 2 个路由表项转发,下一跳路由器为 A。(2 分)
- 2) 要想该路由表项使得以 123. 121. 49. 32 为目的地址的 IP 分组选择 "A"作为下一跳,而不影响其他目的地址的 IP 分组转发,只需构造 1 条网络前缀和该地址匹配 32 位的项即可(1 分)。增加的表项为: 网络前缀 123. 121. 49. 32/32;下一跳 A。(1 分)
- 3) 增加 1 条默认路由: 网络前缀 0.0.0.0/0; 下一跳 E。(2分)
- 4)要划分成8个规模尽可能大的子网,需要从主机位中划出3位作为子网位。(1分) 子网掩码均为 11111111 11111111 11111111 11100000,即 255.255.255.224。而地址范围中不能包含主机位全0或全1的。(2分)

子网	,	有效的主机	,	Γ,	播地址
123. 121. 49. 0	,	123.121.49.1 到 123.121.49.30		,	123. 121. 49. 31
123. 121. 49. 32	,	123.121.49.33 到 123.121.49.62		,	123. 121. 49. 63
123. 121. 49. 64	,	123.121.49.65 到 123.121.49.94		,	123. 121. 49. 95
123. 121. 49. 96	,	123. 121. 49. 97 到 123. 121. 49. 126		,	123. 121. 49. 127
123. 121. 49. 128	,	123. 121. 49. 129 到 123. 121. 49. 158	3	,	123. 121. 49. 159
123. 121. 49. 160	,	123.121.49.161 到 123.121.49.190)	,	123. 121. 49. 191
123. 121. 49. 192	,	123.121.49.193 到 123.121.49.222	2	,	123. 121. 49. 223
123. 121. 49. 224	,	123. 121. 49. 225 到 123. 121. 49. 254	Į	,	123. 121. 49. 255