In Class Assignment #1 Macro Economics

Institute for Financial Management & Research (Batch: 2019-21)

03 October, 2019

Maximum Points: 10 Duration: 30 minutes

You learnt about the money multiplier in the class on financial markets. Assume the following: The public holds no currency. The ratio of reserves to deposits is 0.1. The demand for money is given by

$$M_d = Y \cdot (0.8 - 4i)$$

Initially, the monetary base is ₹100 billion, and nominal income is ₹5 trillion.

1. (2 points) What is the demand for central bank money?

Solution: Demand for central bank money, H_d equals the demand for cash CU_d+ the demand for reserves $\theta \cdot R_d$. We know that there is no hard cash in this economy. Therefore, $CU_d=0$. Now, the demand for reserves becomes: $\theta \cdot R_d=\theta \cdot (1-c)M_d$.

We know that $M_d = Y \cdot (0.8 - 4i)$, and that $\theta = 0.1$.

Therefore, $H_d = 0.1 \cdot Y \cdot (0.8 - 4i)$.

2. (2 points) Find the equilibrium interest rate by setting the demand for central bank money equal to the supply of central bank money.

Solution: The demand for central bank money, $H_d = 0.1 \cdot Y \cdot (0.8 - 4i)$.

The supply of central bank money, $H_s=100$. Equating the two, we get:

$$0.1 \cdot Y \cdot (0.8 - 4i) = 100$$

 $i^* = 0.15$

(Y = 5000) or the interest rate is 15%.

3. (2 points) What is the overall money supply? Is it equal to the overall demand for money at the interest rate you found in question 2?

Solution: Overall money supply M_s will be equal to H_s/θ . (Recall the money multiplier discussion from the class.)

 $M_s = 100/0.1 = 1000$ billion.

At $i^* = 15\%$, $M_d = Y \cdot (0.8 - 0.6) = 0.2Y = 1000$ billion.

4. (2 points) Compute the change in interest rate when central bank money is increased to ₹300 billion.

Solution: $i_2^*=5\%$. (Plug numbers into the equation in the first question.) $i_2^*-i^*=5\%-15\%=-10\%$

5. (2 points) When overall money supply goes up to ₹3,000 billion, compute the change in interest rate.

Solution: $i_2^*=5\%$. (This flows from $M_s=M_d$.) $i_2^*-i^*=5\%-15\%=-10\%$