Smart Conveyor System with Automated Inspection & Reject Handling Studio 5000 Emulator-Based Automation Project

1. Project Objective

This project implements a **multi-zone conveyor line** that detects, inspects, and rejects defective parts automatically.

It was built entirely in **Studio 5000 Logix Designer** and tested with the **ControlLogix 5570 Emulator**, allowing a full industrial-style design without physical hardware.

The system mimics a real manufacturing inspection station where products move through several conveyor zones, undergo quality checks (label, seal, weight), and are either passed downstream or automatically diverted if they fail.

2. Scope of Work

- Implement Auto/Manual mode selection with safe start/stop sequencing.
- Develop **zone conveyor control** using reusable AOI_ConveyorMotor blocks.
- Build a **FIFO queue** (FFL/FFU) to track every part from entry to exit.
- Implement inspection logic (label, seal, weight) and pass/fail result assignment.
- Actuate a **reject mechanism** automatically for failed parts.
- Design a scalable alarm/notification system using AOI_Alarm.
- Organize ladder logic into **modular routines** for clarity and reuse.
- Simulate and test the entire system in the **Studio 5000 Emulator** no chassis or real I/O needed.

3. Modes of Operation

Manual Mode

- Operator can jog conveyor zones, trigger the reject actuator, and test sensors individually.
- Useful during debugging and simulation.

Auto Mode

- Start command initiates full conveyor sequence.
- Each detected part enters the **FIFO queue**, moves zone-by-zone, is inspected, and either passes or is rejected automatically.
- Alarms trigger on jams, inspection timeouts, or motor feedback faults.

4. Software Architecture

The controller is organized into **clear**, **purpose-built routines**:

Routine	Purpose
MainRoutine	Entry point; calls all modular routines
IO_Map	Logical tag mapping and virtual I/O stubs
Mode_Handling	Auto/Manual selection and safety interlocks
Conveyor_Control	Zone motor logic (start/stop, feedback proving, fault detection)
Part_Inspection	Simulated quality checks and result assignment
FIFO	FFL/FFU-based queue for part tracking
Alarm_Notification	Centralized alarm logic built on AOI_Alarm
ONS_RE	One-shot rising edge triggers for sensors
Sim_Routine	Allows forcing and testing without hardware
PowerUp_Reset	Clears queues and resets system safely at startup

Reusable Building Blocks

- AOI_ConveyorMotor Standard motor start/stop with feedback proving and fault detection.
- AOI_Alarm Modular latching alarm with trip, acknowledge, and reset signals.
- UDT_Alarms Alarm metadata and state bits.
- **UDT_PartInfo** Per-part inspection data (label/seal/weight/result).

5. UDTs & AOIs

5.1 User Defined Data Types

UDT Name	Purpose
UDT_ConveyorMTR	Encapsulates motor run command, feedback, and fault bits.
UDT_Alarms	Holds alarm trigger, latch, acknowledge, and active status bits.
UDT_PartInfo	Tracks each part's LabelOK, SealOK, Weight, and Result (PASS/FAIL).

5.2 Add-On Instructions

AOI_ConveyorMotor

• Inputs: Cmd_Run, Fb_Running

• Outputs: Fault, Cmd_Out

• Handles motor start/stop and feedback proving.

AOI_Alarm

• Inputs: TripCond, Ack

• Outputs: Latched, Active

• Provides latching alarm logic with trip, acknowledge, and reset signals.

6. Functional Test Criteria

Test Case	Expected Behavior
Start in Auto & toggle RunCmd	Zone 1–3 motors start sequentially; conveyor runs
Simulate PE_Entry pulse	Part added to FIFO queue
Set Label_OK=0 or Seal_OK=0	Part flagged as FAIL
Simulate PE_Inspect	FIFO updates; inspection routine runs
FAIL part reaches reject	RejectCylinder actuates; part removed

Jam condition (JamDetect=1)	Alarm trips; AlarmHorn=ON; alarm visible
Trigger ResetAlarms	Clears all active/latched alarms
Manual Mode ON	Individual zones can be jogged; reject works manually

7. Summary & Highlights

This project demonstrates:

- Data-driven PLC programming with UDTs & AOIs.
- FIFO-based part tracking common in production/inspection lines.
- Reusable motor & alarm logic ready for scaling.
- Auto/Manual mode handling for safe commissioning.
- Fully emulated testing no hardware required.

The design mirrors **OEM/integrator standards** for modularity, scalability, and maintainability