Příklad 1.2.15

Marek Jukl*

2. září 2023

Věta 1. [1, str. 29] Buďte \mathcal{B} a \mathcal{C} , $\mathcal{B} = \langle P; \vec{e}_1, \vec{e}_2, \cdots, \vec{e}_n \rangle$, $\mathcal{C} = \langle Q; \vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n \rangle$, libovolné afinní báze prostoru \mathcal{A}_n a nechť

$$Q = [b_1, b_2, \cdots, b_n]_{\mathcal{B}},$$

$$\vec{a}_i = (a_{i1}, a_{i2}, \cdots, a_{in})_{\mathcal{B}_0}, \quad 1 \le i \le n.$$

Pak pro každý bod $X \in \mathcal{A}_n$, $X = [x_1, \cdots, x_n]_{\mathcal{B}}$, platí: $X = [y_1, \cdots, y_n]_{\mathcal{C}}$, právě když skaláry x_1, \cdots, x_n , y_1, \cdots, y_n vyhovují relacím

$$x_j = \sum_{i=1}^n a_{ij} y_i + b_j, \quad 1 \le j \le n.$$

^{*}Sazbu provedl Petr Kotlan

Petr Kotlan Úvod do Latexu

Příklad [1, str. 31–32] Nechť je dán afinní prostor \mathcal{A}_3 a v něm afinní báze \mathcal{B} , \mathcal{C} takto:

$$\mathcal{B} = \langle P; \vec{e}_1, \vec{e}_2, \vec{e}_3 \rangle, \mathcal{C} = \langle Q; \vec{a}_1, \vec{a}_2, \vec{a}_3 \rangle,$$

přičemž platí:

$$P = [1, 0 - 1]_{\mathcal{C}}, \vec{e}_1 = (2, 0, 1)_{\mathcal{C}_0}, \vec{e}_2 = (1, 1, 0)_{\mathcal{C}_0}, \vec{e}_1 = (0, -1, 1)_{\mathcal{C}_0}$$

Napište transformační rovnice pro přechod od soustavy souřadné dané bází \mathcal{B} k soustavě dané bází \mathcal{C} .

Řešení:

K nalezení rovnic pro přechod od $S_{\mathcal{B}}$ k $S_{\mathcal{C}}$ je třeba znát souřadnice prvků báze \mathcal{C} vzhledem k bázi \mathcal{B} (viz věta 1).

Jednou z možností je tedy postupem známým z lineární algebry nalézt prvky a_{ij} s vlastností

$$\vec{a}_i = a_{i1}\vec{e}_1 + a_{i2}\vec{e}_2 + a_{i3}\vec{e}_3, \quad 1 \le i \le 3$$

Známým postupem bychom potom zjistili (proveďte!), že:

$$\vec{a}_1 = (1, -1, -1)_{\mathcal{B}_0}, \ \vec{a}_2 = (-1, 2, 1)_{\mathcal{B}_0}, \ \vec{a}_1 = (-1, 2, 2)_{\mathcal{B}_0}$$

Transformační rovnice z věty 1 pro náš příklad tedy znějí ($[x_1, x_2, x_3]$ jsou souřadnice vůči \mathcal{B} , $[y_1, y_2, y_3]$ vůči \mathcal{C}):

$$x_1 = y_1 - y_2 - y_3 + b_1$$

 $x_2 = -y_1 + 2y_2 + 2y_3 + b_2$
 $x_3 = -y_1 + y_2 + 2y_3 + b_3$

Je tedy již jen třeba nalézt konstanty b_1 , b_2 , b_3 , což lze provést např. tak, že využijeme znalosti souřadnic některého bodu v obou soustavách – tímto je bod P, pro nějž současně platí (proč?):

$$P = [1, 0, -1]_{\mathcal{C}} = [0, 0, 0]_{\mathcal{B}}$$

Dosazením do rovnic zjistíme, že $b_1 = -2$, $b_2 = 3$ a $b_3 = 3$.

Lze také postupovat jinak – zřejme můžeme ihned napsat transformační rovnice pro přechod soustavy souřadnic určené bází \mathcal{C} k soustavě určené bází \mathcal{B} ([x_1, x_2, x_3] jsou opět souřadnice \mathcal{B} , [y_1, y_2, y_3] vůči \mathcal{C}):

$$\begin{aligned}
 y_1 &= 2x_1 + x_2 & + 1 \\
 y_2 &= x_2 - x_3 & \\
 y_3 &= x_1 & + x_3 - 1
 \end{aligned}$$
(1)

Nalézt předpis pro přechod inverzní, tj. od $\mathcal{S}_{\mathcal{C}}$ k $\mathcal{S}_{\mathcal{B}}$, znamena vyjádřit x_1 , x_2 , x_3 pomocí y_1 , y_2 , y_3 , neboli pohlížet na (1) jako na soustavu lineárních rovnic o neznamých x_1 , x_2 , x_3 (y_1 , y_2 , y_3 představují parametry rovnic) a tuto vyřešit.

Petr Kotlan Úvod do Latexu

Matice této soustavy zní:

$$\left(\begin{array}{ccc|c}
2 & 1 & 0 & y_1 - 1 \\
0 & 1 & -1 & y_2 \\
1 & 0 & 1 & y_3 + 1
\end{array}\right)$$

známým způsobem nalezneme její řešení ve tvaru:

$$x_1 = y_1 - y_2 - y_3 - 2$$

 $x_2 = -y_1 + 2y_2 + 2y_3 + 3$
 $x_3 = -y_1 + y_2 + 2y_3 + 3$

což právě jsou hledané rovnice.

Reference

[1] Jukl, M. (2014). Analytická geometrie. Univerzita Palackého v Olomouci. https://kag.upol.cz/data/upload/15/AG-Jukl.pdf