

AN4646 应用笔记

STM32F401 和 STM32F411 系列上的外设内部互联

前言

在 STM32F4 系列最高性能和最低价格的基础上,STM32F401/411 外设可以通过名为 "外设内部互联矩阵"的网络实现自主通信,无需 CPU 介入。

STM32F401/411 系列产品的这一新特性增强了 CPU 的实时性能,并显著降低了功耗。

本文档首先描述了外设内部互联矩阵的特性,然后概述了外设内部互联以及如何根据应用对其进行配置。详细的应用实例使描述更加完整。

本应用笔记必须与 STM32F401 系列参考手册 (RM0383) 和 STM32F411 系列参考手册 (RM0368) 一起阅读。两参考手册均可从 http://www.st.com/stm32 下载。

表 1. 适用产品

类型	产品线
微控制器	STM32F401
	STM32F411

目录 AN4646

目录

1	模块	概述		5
2	外设	内部互取	烪矩阵	7
	2.1	定时器	· · · · · · · · · · · · · · · · · · · ·	8
		2.1.1	从 TIM 到 TIM	8
		2.1.2	从 TIM 到 ADC	9
		2.1.3	从 TIM 到 DMA	9
	2.2	模拟模	· 莫块	. 10
		2.2.1	从温度传感器到 ADC1	. 10
		2.2.2	从模拟模块到 DMA	. 10
	2.3	时钟模	莫块	. 10
		2.3.1	从 CSS 到 TIM	. 10
		2.3.2	从 LSE、 LSI、 RTC 到 TIM	. 10
	2.4	系统模	莫块	11
		2.4.1	从 VBAT、 VREFINT 到 ADC	. 11
		2.4.2	从 EXTI 到模拟模块	. 11
	2.5	通信接	。 妾口	11
		2.5.1	从 USB 模块到 TIM	. 11
		2.5.2	从通信接口到 DMA	. 12
	2.6	DMA 柞	模块	. 12
3	应用	程序示例	列	. 13
	3.1	硬件说	も明	. 13
	3.2	软件说	台明	. 13
4	结论			. 15
5	修订	历史		. 16

AN4646 表格索引

表格索引

	适用产品	
表 2.	STM32F401/411 外设内部互联矩阵	. 7
表 3.	外设内部互联配置信息	14
表 4.	文档修订历史	16
表 5	中文文档修订历史	16

图片索引 AN4646

图片索引

	STM32F401/411 系列的外设内部互联概览	
	主 / 从定时器概述	
	主 TIM/ 从 ADC 概述	
图 4.	SOF 连接1	1
图 5.	应用概述	3

AN4646 模块概述

1 模块概述

若干外设可以直接进行互联和配置,用以发送或响应可以被路由到器件上其他外设的事件信号。

STM32F401/411 系列的自带外设包括:

- 定时器 直接在内部互联或连到 DMA 或模拟模块。
- 模拟模块 接收来自定时器的事件或向 DMA 发送事件。
- 时钟模块 向定时器发送事件。
- 系统模块 向模拟模块发送事件。
- 通信接口 向定时器或 DMA 发送事件。

STM32F401/411 系列的外设内部互联见图 1: STM32F401/411 系列的外设内部互联概览。

AN4646 外设内部互联矩阵

2 外设内部互联矩阵

STM32F401/411 的外设通过名为 "外设内部互联矩阵"的网络实现互联,该网络可以使某一外设在不唤醒 CPU 的情况下与另一个外设直接相连。

根据不同外设,互联可以工作于运行(Run)、休眠(Sleep)和停止(Stop)模式。响应事件的外设称为**用户**,发送事件的外设则称为**发生器**。

表 2. STM32F401/411 外设内部互联矩阵⁽¹⁾

		用户								
415 et 1919		定时器							DMA	
发生器		TIM 1	TIM 2	TIM 3	TIM 4	TIM 5	TIM 11	DMA1	DMA2	ADC1
	TIM1	-	Х	Х	Х	-	-	-	Х	Х
	TIM2	Х	-	Х	Х	Х	-	Х	-	Х
定时器	ТІМЗ	Х	Х	-	Х	Х	-	Х	-	Х
	TIM4	Х	Х	Х	-	Х	-	Х	-	Х
	TIM5	Х	-	Х	-	-	-	Х	-	Х
144.144	ADC1	-	-	-	-	-	-	-	Х	-
模拟	VSENSE	-	-	-	-	-	-	-	-	Х
时钟	LSI	-	-	-	-	Х	-	-	-	-
	LSE	-	-	-	-	Х	-	-	-	-
	RTC	-	-	-	-	Х	Х	-	-	-
	css	Х	-	-	-	-	-	-	-	-

外设内部互联矩阵 AN4646

表 2. STM32F401/411 外设内部互联矩阵⁽¹⁾(续)

						用户				
// // DD	发生器		定时器 DMA							
发生器			TIM 2	TIM 3	TIM 4	TIM 5	TIM 11	DMA1	DMA2	ADC1
	OTG FS	-	Х	-	-	-	-	-	-	-
	SPI1/I2S1	-	-	-	-	-	-	-	Х	-
	SPI2/I2S2	-	-	-	-	-	-	Х	-	-
	SPI3/I2S3	-	-	-	-	-	-	Х	-	-
	SPI4/I2S4	-	-	-	-	-	-	-	Х	-
	SPI5/I2S5	-	-	-	-	-	-	-	Х	-
通信接口	I2C1	-	-	-	-	-	-	Х	-	-
	I2C2	-	-	-	-	-	-	Х	-	-
	I2C3	-	-	-	-	-	-	Х	-	-
	USART1	-	-	-	-	-	-	-	Х	-
	USART2	-	-	-	-	-	-	Х	-	-
	USART6	-	-	-	-	-	-	-	Х	-
	SDIO	-	-	-	-	-	-	-	Х	-
	VBAT	-	-	-	-	-	-	-	-	Х
系统	VREFINT	-	-	-	-	-	-	-	-	Х
	EXTI	-	-	-	-	-	-	-	-	Х

^{1.} 灰色部分表示外设仅适用于 STM32F411 产品。

2.1 定时器模块

2.1.1 从 TIM 到 TIM

某些定时器从内部连接在一起,以实现定时器同步或链接。当某个定时器 (TIMx) 被配置为主模式时,可对另一个配置为从模式的定时器 (TIMy) 的计数器执行复位、启动、停止操作或为其提供时钟。

主输出为 TIMx_TRGO 信号。该输出通过 TIMx_CR2 寄存器配置为定时器事件,并发送至 TIMy_ITR0/ITR1/ITR2/ITR3 输入。

图 2: 主/从定时器概述简要介绍了触发选择和主模式选择框图。

AN4646 外设内部互联矩阵

主TIM 从TIM 时钟 MMS SMS TS UEV TRGO **ITR** CK_PSC 主模式 从模式 预分频器 计数器 预分频器 计数器 控制 控制 MS35838V1

图 2. 主 / 从定时器概述

关于该特性的描述见 RM0368 和 RM0383 参考手册的定时器同步章节,所有可能的主 / 从连接详见 TIMx 内部触发连接。

2.1.2 从 TIM 到 ADC

一些定时器可用于产生 ADC 触发事件。

定时器输出可以是 TIMx_TRGO 信号或 TIMx_CHx 事件。它输出为 ADC EXTSEL[3:0] 和 JEXTSEL [3:0] 信号。

图 3: 主 TIM/ 从 ADC 概述简要介绍了触发选择和主模式选择框图。

图 3. 主 TIM/ 从 ADC 概述

关于 ADC 同步的相关描述见 RM0385 参考手册的*外部触发和触发极性*章节。关于定时器和 ADC 常规及注入通道间连接的更多信息,请参见 RM0385 参考手册的*常规通道外部触发*表格和*注入通道外部触发*表格。

2.1.3 从 TIM 到 DMA

请参见第 2.6 节: DMA 模块。

外设内部互联矩阵 AN4646

2.2 模拟模块

模拟模块包括:

- ADC 模块 (ADC1)
- 温度传感器模块

2.2.1 从温度传感器到 ADC1

在 STM32F401/411 器件上, 温度传感器在内部与 ADC1_IN18 输入通道相连。 ADC1_IN18 用于将传感器输出电压或 VBAT 转换为数字值。

温度传感器参考手册章节描述了传感器和 ADC 之间的连接以及读取转换器的程序。

2.2.2 从模拟模块到 DMA

请参见第 2.6 节: DMA 模块。

2.3 时钟模块

时钟模块包括:

- LSE 时钟
- LSI 时钟
- 时钟安全系统 (CSS)
- 实时时钟 (RTC)

2.3.1 从 CSS 到 TIM

CSS 可生成系统错误。此时,时钟故障事件发送至 TIM1 刹车输入。

刹车功能的目的是保护由 TIM1 和 TIM8 定时器产生的 PWM 信号所驱动的电源开关。

可能的刹车源列表见使用刹车功能 (TIM1) 参考手册章节。

2.3.2 从 LSE、LSI、 RTC 到 TIM

外部时钟 (LSE)、内部时钟 (LSI) 和 RTC 唤醒中断可用作通用定时器 (TIM5 通道 4/TIM11 通道 1) 的输入。

该特性描述见 RM0368 和 RM0383 参考手册的下列章节:

- 基于 TIM5/TIM11 的内部 / 外部时钟测量
- TIM5 选项寄存器 (TIM5 OR)
- TIM11 选项寄存器 1 (TIM11_OR)

AN4646 外设内部互联矩阵

2.4 系统模块

系统模块包括:

- 内部参考电压 (V_{REFINT})
- V_{BAT} 电源电压
- 外部中断 / 事件控制器 (EXTI)

2.4.1 从 VBAT、 VREFINT 到 ADC

 V_{BAT} 通道连接到通道 ADC1_IN18。通过 ADC_IN18 通道,它可以转换为注入通道或常规通道。

V_{REFINT} 连接到 ADC_IN17 通道。

参见下列参考手册章节,获得关于 V_{BAT}、 V_{REFINT} 和 ADC 之间互联的详细信息:

- 通道选择
- 电池充电监视

2.4.2 从 EXTI 到模拟模块

EXTI 可用于生成 ADC 触发事件或启动 DAC 转换。

关于 ADC 同步的相关描述见 RM0385 参考手册的 外部触发和触发极性章节。

2.5 通信接口

2.5.1 从 USB 模块到 TIM

USB OTG_FS SOF 脉冲信号可以触发 TIM2 通用定时器。

577

外设内部互联矩阵 AN4646

关于 USB 和 TIM2 互联的描述, 详见 RM0368 和 RM0383 参考手册的 SOF 触发章节。

2.5.2 从通信接口到 DMA

请参见第 2.6 节: DMA 模块。

2.6 DMA 模块

每个数据流都与一个 DMA 请求相关联,此 DMA 请求可以从 8 个可能的通道请求中选出。此选择由 DMA_SxCR 寄存器中的 CHSEL[2:0] 位控制。来自外设的 8 个请求 (TIM、ADC、SPI、I2C 等)独立连接到每个通道,具体的连接取决于产品实现情况。

该特性描述见 RM0368 和 RM0383 参考手册的下列表格:

- DMA1 请求映射
- DMA2 请求映射

AN4646 应用程序示例

应用程序示例 3

本应用示例演示了如何在 STM32F401/411 产品上使用外设内部互联矩阵,如何在并行模式 中同步 TIM 外设。

该固件基于 STM32F4xx HAL 驱动器,后者属于 STM32CubeF4 系列。

硬件说明 3.1

本例中使用了三个定时器:

- TIM1 配置为主定时器:
 - PWM 模式使能
 - TIM2 更新事件用作触发输出。
- TIM2 和 TIM3 作为 TIM1 的从设备使用
 - PWM 模式使能
 - ITR0(TIM1) 用作两个从定时器的输入。

图 5. 应用概述

1. 发生器 (TIM1) 表示为黄色,用户模块 (TIM2 和 TIM3) 表示为灰色高亮。

软件说明 3.2

TIM1 计数器时钟频率为 84 MHz。

TIM1 主定时器工作在 TIM1 频率:

- TIM1 频率 = TIM1 计数器时钟 / (TIM1 周期 + 1) = 328.125 KHz
- 占空比等于 TIM2_CCR1/ (TIM2_ARR + 1) = 25%。

应用程序示例 AN4646

TIM2 从定时器工作频率为:

- (TIM1 频率)/ (TIM2 周期 + 1) = 32.815 KHz
- 占空比等于 TIM2_CCR1/ (TIM2_ARR + 1) = 30%。

TIM3 从定时器工作频率为:

- (TIM1p 频率)/(TIM3 周期 + 1) = 65.630 KHz
- 占空比等于 TIM3_CCR1/ (TIM3_ARR + 1) = 60%。

表 3: 外设内部互联配置信息给出了配置上述 TIM1、 TIM2 和 TIM3 的代码示例。

表 3. 外设内部互联配置信息

互联	示例	注释
TIM1 主定时 器	sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE; HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig);	配置 TIM2 更新事件为 触发输出
TIM2 从定时 器	sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED; sSlaveConfig.InputTrigger = TIM_TS_ITR0; HAL_TIM_SlaveConfigSynchronization(&htim2, &sSlaveConfig); sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode=TIM_MASTERSLAVEMODE_DISABL E; HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);	配置 ITR0 为两个从设备的触发输入。 使能门控模式,从而通
TIM3 从定时 器	sSlaveConfig.SlaveMode = TIM_SLAVEMODE_GATED; sSlaveConfig.InputTrigger = TIM_TS_ITR0; HAL_TIM_SlaveConfigSynchronization(&htim2, &sSlaveConfig); sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode=TIM_MASTERSLAVEMODE_DISABL E; HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig);	过主触发器输出信号 (更新事件)控制从计 数器的启动 / 停止。

AN4646 结论

4 结论

本应用笔记通过引入外设内部互联矩阵,对 STM32F401/411 数据手册和参考手册加以补充。

本应用笔记给出了详细的基本示例,可以作为您自主开发应用程序的入门教材。

修订历史 AN4646

5 修订历史

表 4. 文档修订历史

日期	版本	变更
2015年3月19日	1	初始版本。

表 5. 中文文档修订历史

日期	版本	变更
2015年9月9日	1	中文初始版本。

重要通知 - 请仔细阅读

意法半导体公司及其子公司("ST")保留随时对 ST 产品和 / 或本文档进行变更、更正、增强、修改和改进的权利,恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。 ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用, ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定,将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利 2015

