

Fatigue Prediction Using Multi-channel EEG recordings during a sustained-attention driving task

Deepesh Bhardwaj

Gnan Reddy B.

Project Supervisor: Mrs. Shabnam Samima

Overview

- Project Introduction
- Problem Statement
- Methodology
- Implementation
- Results
- Future Work

Introduction: Driver Fatigue

- Driver fatigue is a major cause of road accidents
- EEG-based detection can provide early warning
- Developing a real-time monitoring system
- Dataset: 62 sessions from 27 participants

The Problem

- How to effectively process EEG signals for fatigue detection?
- What EEG features best indicate fatigue?
- How to implement real-time monitoring?

Data Acquisition Setup

EEG Recording:

- 32-channel EEG System
- Edited International 10-20 Placement
- Impedance $< 5k\Omega$
- Custom Channel Location Mapping

Fig. 4 The layout of electrodes and impedance of electrodes in the EEG cap used in the experiments. (a) The blue electrodes use the international 10–20 system, and the green electrodes are additional electrodes on the cap. (b) The contact impedance between all of the electrodes and the skin was kept below $5\,\mathrm{k}\Omega$.

Data Acquisition Setup

Dataset Scale:

- 27 participants
- 62 recording sessions
- 81,576 total events
- Comprehensive coverage of fatigue states

Subject No.	Number of Sessions	Numbers of Events
S01	5	4827
S02	2	2028
S04	1	1083
S05	4	6378
S06	1	1077
S09	3	2112
S11	1	1290
S12	2	1869
S13	2	2244
S14	2	2181
S22	4	5022
S23	1	1317
S31	2	3618
S35	2	3285
S40	2	3921
S41	5	6747
S42	2	2430
S43	3	5709
S44	4	7269
S45	2	4023
S48	1	1050
S49	3	3102
S50	2	2085
S52	1	717
S53	3	3654
S54	1	615
S55	1	1923
Total	62	81576

Data Acquisition Setup

Plotted Power spectral density using custom 32 channel EEG location data.

Fatigue Classification

- Low (0): Alert state
- Medium (1): Onset of fatigue
- High (2): Significant fatigue
- 32-channel EEG recordings
- Event markers for lane departures
 - o Left (251)
 - o Right (252)
- Response onset times
- 62 experimental sessions

System Architecture

EEG Analysis & Feature Importance

Key EEG Features:

- Alpha band: Most significant (26% importance)
- Beta band: Second most important (20%)
- Theta band: Strong indicator (22%)
- Delta band: Moderate impact (15%)
- Reaction times: Supporting features (~8% each)

Feature Importance in Fatigue Detection

Fatigue Level Classification

Low Fatigue (0)

- Low alpha/theta power
- High beta activity
- Fast reaction times

Medium Fatigue (1)

- Increased alpha power
- Decreased beta activity
- Moderate reaction delays

High Fatigue (2)

- High theta/alpha power
- Very low beta activity
- Significant RT delays

Real Time Monitoring

- Continuous EEG band power tracking
- Fatigue level history visualization
- Immediate state classification

Real-time Fatigue Detection

Low Fatigue

EEG Band Powers

Fatigue Level History

Implementation n Details

- Data Preprocessing
- File splitting based on event markers
- Reaction time calculation
- Signal filtering
- Feature Extraction
- Band power calculation
- Statistical features

Model Development

- Gradient Boosting Classifier
- Three-level classification:
 - Low fatigue
 - Medium fatigue
 - High fatigue

Results

Model Performance:

• Overall Accuracy: 95%

• Precision: 97% (macro avg)

• Recall: 93% (macro avg)

• F1-Score: 95% (weighted avg)

Results

Reaction Time Statistics:

- Mean RT: 2.15 seconds
- Median RT: 0.96 seconds
- Standard Deviation: 8.91

seconds

Real-time Pipeline

- Continuous EEG monitoring
- Feature extraction
- Fatigue classification
- Alert generation

Future Work

- Enhanced feature extraction
- Mobile application development
- Integration with vehicle systems
- Multi-modal analysis

THANK YOU!