Санкт-Петербургский Политехнический университет Петра Великого

Институт прикладной математики и механики
Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе 7 по дисциплине "математическая статистика"

Выполнил студент:

Аникин Александр Алексеевич, группа $3630102\80201$

Проверил:

к.ф.-м.н., доцент

Баженов Александр Николаевич

Санкт-Петербург

Содержание

1 Постановка задачи						
2	Teo	рия	4			
	2.1	Метод максимального правдоподобия	4			
	2.2	Проверка гипотезы о законе распределения генеральной совокупности крите-				
		рием χ^2	4			
3	Pea	лизация	6			
4	Результаты					
	4.1	Проверка гипотезы о законе распределения генеральной совокупности крите-				
		рием χ^2	7			
		4.1.1 Нормальное распределение $N(x,\hat{\mu},\hat{\sigma})$	7			
		4.1.2 Исследование критерия χ^2 на чувствительность	7			
5	Обо	суждение	10			
Л	итер	атура	11			

Список таблиц

1	Нормальное распределение, проверка гипотезы	7
2	Равномерное распределение, проверка на устойчивость	8
3	Распределение Лапласа, проверка на устойчивость	ç

1 Постановка задачи

Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x,0,1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x,\hat{\mu},\hat{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$. Привести таблицу вычислений χ^2 . Исследовать точность (чувствительность) критерия - сгенерировать выборки равномерного распределения и распределения Лапласа малого объема, проверить их на нормальность.

2 Теория

2.1 Метод максимального правдоподобия

 $L(x_1,...,x_n,\theta)$ - функция правдоподобия, рассматриваемая как функция неизвестного параметра θ :

$$L(x_1, ..., x_n, \theta) = f(x_1, \theta) f(x - 2, \theta) ... f(x_n, \theta)$$
(1)

Оценка максимального правдоподобия:

$$\hat{\theta} = \arg\max_{\theta} L(x_1, ..., x_n, \theta) \tag{2}$$

Система уравнений правдоподобия (в случае дифференцируемости функции правдоподобия):

$$\frac{\partial l}{\partial \theta_k} = 0$$
 или $\frac{\partial \ln l}{\partial \theta_k} = 0$, $k = 1, ..., m$ (3)

2.2 Проверка гипотезы о законе распределения генеральной совокупности критерием χ^2

Выдвинута гипотеза H_0 о генеральном законе распределения с функцией распределения F(x). Рассматриваем случай, когда гипотетическая функция распределения F(x) не содержит неизвестных параметров.

Правило проверки гипотезы о законе распределения критерием χ^2 :

- Выбирается уровень значимости α ;
- По таблице ([1], стр. 358) выбирается квантиль $\chi^2_{1-\alpha}(k-1)$ порядка 1- α с k-1 степенями свободы;
- С помощью гипотетической функции распределения F(x) вычисляются вероятности $p_i = P(X \in \Delta_i), \quad i = 1, ..., k;$
- \bullet Находятся частоты n_i попадания элементов выборки в подниножества $\Delta_i, i=1,\dots$
- Вычисляется выборочное значение статистики критерия χ^2 :

$$\chi_B^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i} \tag{4}$$

• Сравниваются χ^2_B и квантиль $\chi^2_{1-lpha}(k-1)$:

- если $\chi_B^2 < \chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 на данном этапе проверки принимается;
- если $\chi_B^2\chi_{1-\alpha}^2(k-1)$, то гипотеза H_0 отвергается, выбирается одно из альтернативных распределений, и процедура проверки повторяется.

3 Реализация

Лабораторная работа выполнена на языке Python $3.8~\mathrm{c}$ помощью загружаемых пакетов SciPy, NumPy. Исходный код лабораторной работы находится на GitHub репозитории.

4 Результаты

4.1 Проверка гипотезы о законе распределения генеральной совокупности критерием χ^2

4.1.1 Нормальное распределение $N(x, \hat{\mu}, \hat{\sigma})$

Основная гипотеза H_0 : $F(x) = N(x, \bar{\mu}, \bar{\sigma})$.

Метод максимального правдоподобия:

$$\hat{\mu} = -0.035$$
 $\hat{\sigma} = 1.041$

Критерий χ^2 :

- Количество промежутков: k = 7;
- Уровень значимости: $\alpha = 0.05$;
- Квантиль распределения $\chi^2_{0.95}(6) = 12.59;$

i	границы Δ_i	n_i	p_i	np_i	$n_i - np_i$	χ_i^2
1	[-∞,-1.0]	18	0.175	17.530	0.47	0.013
2	[-1.0,-0.6]	11	0.114	11.374	-0.374	0.0120
3	[-0.6, -0.2]	12	0.140	13.994	-1.994	0.284
4	[-0.2, 0.2]	16	0.150	14.960	1.040	0.072
5	[0.2 , 0.6]	17	0.139	13.894	3.106	0.694
6	[0.6 , 1.0]	7	0.112	11.211	-4.211	1.582
7	$[1.0,\infty]$	19	0.170	17.037	1.963	0.226
\sum	-	100	1	100	0	$\chi_B^2 = 2.146$

Таблица 1: Нормальное распределение, проверка гипотезы

 $\chi_B^2=2.146<\chi_{0.95}^2(6)=12.59,$ значит, на данном этапе проверки текущая гипотеза принимается.

4.1.2 Исследование критерия χ^2 на чувствительность

Генерируются выборки равномерного распределения и распределения Лапласа по 20 элементов и проверяется гипотеза, что полученные наборы данных являются выборками нормального распределения.

• Равномерное распределение U(x, -1.5, 1.5): Метод максимального правдоподобия:

$$\hat{\mu} = 0.421 \quad \hat{\sigma} = 0.577$$

Критерий χ^2 :

— Количество промежутков: k = 5;

– Уровень значимости: $\alpha = 0.05$;

— Квантиль распределения $\chi^2_{0.95}(4) = 9.49;$

i	границы Δ_i	n_i	p_i	np_i	$n_i - np_i$	χ_i^2
1	$[-\infty, -1.0]$	1.0	0.159	3.173	-2.173	1.488
2	[-1.0, -0.333]	3.0	0.211	4.216	-1.216	0.351
3	[-0.333, 0.333]	6.0	0.261	5.222	0.778	0.116
4	[0.333 , 1.0]	4.0	0.211	4.216	-0.216	0.011
5	[1.0 , \infty]	6.0	0.159	3.173	2.827	2.518
\sum	-	20	1	20	0	$\chi_B^2 = 4.484$

Таблица 2: Равномерное распределение, проверка на устойчивость

 $\chi_B^2=4.484<\chi_{0.95}^2(6)=9.49,$ значит, на данном этапе проверки текущая гипотеза принимается.

• Распределение Лапласа L(x, 0, 1):

Метод максимального правдоподобия:

$$\hat{\mu} = 0.165 \quad \hat{\sigma} = 1.232$$

Критерий χ^2 :

- Количество промежутков: k=5;
- Уровень значимости: $\alpha = 0.05$;
- Квантиль распределения $\chi^2_{0.95}(4) = 9.49;$

i	границы Δ_i	n_i	p_i	np_i	$n_i - np_i$	χ_i^2
1	$[-\infty, -1.0]$	2.0	0.159	3.173	-1.173	0.434
2	[-1.0, -0.333]	7.0	0.211	4.216	2.784	1.839
3	[-0.333, 0.333]	4.0	0.261	5.222	-1.222	0.286
4	[0.333 , 1.0]	3.0	0.211	4.216	-1.216	0.351
5	$[1.0,\infty]$	4.0	0.159	3.173	0.827	0.215
\sum	-	20	1	20	0	$\chi_B^2 = 3.124$

Таблица 3: Распределение Лапласа, проверка на устойчивость

 $\chi_B^2=3.124<\chi_{0.95}^2(6)=9.49,$ значит, на данном этапе проверки текущая гипотеза принимается.

5 Обсуждение

Проведенное исследование показало, что метод χ^2 неэффективен для выборок малого размера - по результатам исследования на чувствительность выборки распределения Лапласа и равномерного распределения воспринимались как выборки нормального распределения, поэтому для более точной проверки гипотез о законах распределения следует проводить проверку на большем объеме данных.

Список литературы

[1] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. — СПб.: Изд-во Политехн. ун-та, 2009. — 395 с. (Математика в политехническом университете).