What is Decision tree

A decision tree is a graphical representation of possible solution to a decision based on certain condition it's called a decision tree.

How does a tree decide where to split

1.GINI INDEX

Measure the impurity used to build a decision tree.

2. Information Gain

Select the node will be highest information gain.

3. Reduction in variance

If your data is pure then less variance in data. Lowest variance is good for creating a variance

entropy

- Measure the impurity of the substances.
- What is impurity
- Impurity=0
- Impurity ≠ 0

Entropy(s) =- $P(yes) log_2 P(yes) - P(no) log_2 P(no)$

Entropy(features)= -P(yes)log2P(Yes) -P(No)log2P(No) Entropy(outlook=sunny)= P(yes)

Information gain

Decide which attribute should be selected as the decision tree node.

Information Gain = Entropy(S) – [(Weighted Avg) x Entropy(each feature)]

Day	outlook	Temperature	Humidity	Wind	Play/Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot '	High	strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes /
D5	Rain	Cool	Normal	Weak	Yes /
D6	Rain	Cool	Normal	strong	No /
D7	Overcast	Cool	Normal	strong	Yes.
D8	Sunny	Mild	High	Weak	No .
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	strong	Yes
D12	Overcast	Mild	High	strong	Yes -
D13		Hot	Normal	Weak	Yes
D14	Rain	Mild	High	strong	No

Skp 0) Out of 14 Instances we have 9 Yes And 5 NO
compute the Entropy of entire data-set
ECS) = - P(YES) log PCYES) - PCNO) log PCNO)
$= -\left(\frac{9}{14}\right) \times \log_{2}\left(\frac{9}{14}\right) - \left(\frac{5}{14}\right) \log_{2}\frac{5}{14}$
ECZ) = 0.11 +0.23
= 0.94

Find Entropy

Entropy(features)= -P(yes)log2P(Yes) -P(No)log2P(No) Entropy(outlook=sunny)= $-\frac{2}{5}$ log($\frac{2}{5}$)- $\frac{3}{5}$ log($\frac{3}{5}$) =0.971 Entropy(outlook=overcast)= $-\frac{4}{4}$ log2(1)-0 =0 E(outlook=Rainy)= $-\frac{3}{5}$ log2($\frac{3}{5}$)- $\frac{2}{5}$ log2($\frac{2}{5}$)=0.971 Information from outlook=sum of(weight*E(each)) Information from outlook= $\frac{5}{14}$ 0.971+ $\frac{4}{14}$ 0.971=0.693 Information gained from outlook =E(S)-Information(Outlook)

Entropy(target)
Entropy(Play/tennis)=-P(yes)log2(P(yes)-P(NO)*log2(No)

P(yes)=9/14 P(no) =4/14 Entropy(Target)=-9/14*log2(9/14)-(5/14)*log2(5/14)=0.94 Information gained from outlook =E(S)-Information(Outlook) E(S)=entropy of target

IG=0.94-0.693=0.247(outlook)

