Logistic 模型

1马尔萨斯人口模型

设时刻t时人口为x(t),单位时间内人口增长率为r,则 Δt 时间内增长的人口为:

$$x(t + \Delta t) - x(t) = x(t).r.\Delta t \tag{1}$$

当 Δt → 0,得到微分方程:

$$\frac{dx}{dt} = r.x, x(0) = x_0 \tag{2}$$

则: $x(t) = x_0.e^{r.t}$

待求参数 x_0, r 。

为便于求解,两边取对数有:

y = a + r.t, 其中 $y = \ln x, a = \ln x_0$, 该模型化为线性求解。

2、阻滞型人口模型

阻滞型人口模型

设时刻t时人口为x(t),环境允许的最大人口数量为 x_m ,人口净增长率随人口数量的增加而线性减少,即

$$r(t) = r.(1 - \frac{x}{x_m})$$

由此建立阻滞型人口微分方程:

$$\frac{dx}{dt} = r(1 - \frac{x}{x_m}).x, x(0) = x_0 \tag{3}$$

则:
$$x(t) = \frac{x_m}{1 + \left(\frac{x_m}{x_0} - 1\right) \cdot e^{-r \cdot t}}$$

待求参数 x_0, x_m, r 。此即为 Logistic 函数.

当
$$x = \frac{x_m}{2}$$
 时, x 增长最快,即 $\frac{dx}{dt}$ 最大。

 $dx / dt \sim x$ 图见图1, $x \sim t$ 图形见图2。

图 1(1) $dx/dt \sim x$ 图

图 $1(2)x \sim t$ 图

实例 1、美国人口数据处理

表 1 美国人口数据表(人口数量单位: 百万)

年	1790	1800	1810	1820	1830	1840	1850	1860
实际	3.9	5.3	7.2	9.6	12.9	17.1	23.2	31. 4
人口								
指数	4.1884	5.5105	7.2498	9.538	12.549	16.5097	1.7209	28.5769
模型	0.1.600	10.0220	10.007.5	170161	10.4006	22.4670	27.2706	22.2002
阻滞	8.1699	10.0238	12.2875	15.0464	18.4006	22.4670	27.3796	33.2893
模型								
年	1870	1880	1890	1900	1910	1920	1930	1940
实际	38.6	50.2	62.9	76.0	92.0	106.5	123.2	131.7
人口	30.0	30.2	02.7	70.0	72.0	100.5	123.2	131.7
指数	27.507	10.161	65.077	05 610				
模型	37.597	49.464	65.077	85.618				
阻滞	40.3625	48.7771	58.7152	70.3529	83.8457	99.3094	116.799	136.2846
模型								
年	1950	1960	1970	1980	1990	2000	2010年	
实际	150.7	150.7 179.3 204.	204.0	226.5	251.4	281.4	200.25	
人口			204.0				309.35	
指数								
模型								
阻滞	157.637	180.6116	204.851	229.9025	255.245	280.333	304.645	
模型								

(1) 由指数增长模型得到模型为

$$y = 3.1836e^{0.2743.t}$$
 (1790~1900 年数据)

均方误差根为 RMSE = 3.0215 结果图见图 2 (效果好)

$$y = 4.9384e^{0.2022.t}$$
 (1790~2000 年数据)

均方误差根为 RMSE = 39.8245 结果图见图 3(效果不好)

图 2 指数模型(1790~1900),'*'为原数据,实线为拟合值

图 3 美国人口指数模型(1790~2010), '*'为原数据, 实线为拟合值

指数模型求解 Matlab 程序 population_americal.m:

```
%美国人口模型,指数增长模型
x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,...
106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4,309.35]';
n=12;
xx=x(1:n);%1790 年到 1900 年数据
t=[ones(n,1),(1:n)'];
y=log(xx(1:n));
[b,bint,r,rint,stats]=regress(y,t);
RR=stats(1);%复相关系数
F=stats(2);%F 统计量值
prob=stats(3); % 概率
x0=exp(b(1)); %参数 x0;
r=b(2); %参数 r
```

plot(1:n,xx,'*',1:n,py); %作对比图

rmse=sqrt(sum(err.^2)/n); %均方误差根

err=xx-py;

(2) 阻滞型模型

拟合 1790 年到 2000 年数据,得到结果为:

$$x_0 = 6.6541, x_m = 486.9046, r = 0.2084$$

$$y = \frac{486.9046}{1 + 72.1733} e^{-0.2084t}$$

均方误差根为 RMSE = 4.7141,并预测 2020 年美国人口为 327.7204 百万. 结果图见图 4 (效果好)

图 4 美国人口阻滞型模型(1790~2010), '*'为原数据,实线为拟合值

Matlab 程序 population_america2.m

%美国人口模型,阻滞型增长模型

x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,...]

106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4,309.35];

n=length(x);

y=x(1:n);%1790年到2010年数据

t=(1:n)';

beta0=[5.3,0.22,400,]; %[x0,r,xm]

[beta,R,J]=nlinfit(t,y,'logisfun',beta0);

%R 为残差,beta 为待求参数

py=beta(3)./(1+(beta(3)/beta(1)-1)*exp(-beta(2)*t));%预测各年人口

p24=beta(3)./(1+(beta(3)/beta(1)-1)*exp(-beta(2)*24));%预测 2020 年人口

rmse=sqrt(sum(R.^2)/n); %均方误差根

plot(1:n,y,'*',1:n,py); %作对比图

%拟合函数

logisfun.m

function yhat=logisfun(beta,x)

yhat=beta(3)./(1+(beta(3)./beta(1)-1).*exp(-beta(2)*x));

实例 2 根据山东省职工历年平均工资统计表,预测未来 40 年工资

表 2 山东省工资表 (单位:元)

		`	,
年份	平均工资	年份	平均工资
1978	566	1995	5145
1979	632	1996	5809
1980	745	1997	6241
1981	755	1998	6854
1982	769	1999	7656
1983	789	2000	8772
1984	985	2001	10007
1985	1110	2002	11374
1986	1313	2003	12567
1987	1428	2004	14332
1988	1782	2005	16614
1989	1920	2006	19228
1990	2150	2007	22844

1991	2292	2008	26404
1992	2601	2009	29688
1993	3149	2010	32074
1994	4338		

图 5 三次函数拟合结果

采用阻滞型模型:

$$x(t) = \frac{x_m}{1 + \left(\frac{x_m}{x_0} - 1\right) \cdot e^{-r \cdot t}}$$

将 1978 到 2010 年共 33 年的年平均工资代入该模型:

$$x_0 = 550, r = 0.13, x_m = 120000$$

图 6 Logistic 拟合结果

实例 3 2011-ICMC 电动汽车问题

在该论文中,将汽车的类型分为传统的燃油型(CV)、电动型(EV)和混合型(HEV)三种类型,对比分析了未来 50 年在环境、社会、经济和健康方面的影响。选定的代表性国家有三个: 法国,美国和中国。法国作为欧洲的代表,中国作为亚洲的代表,美国作为美洲的代表。

对汽车总量及 CV、EV 和 HEV 未来变化的预测

在该部分中,首先预测未来 50 年汽车总量,然后估计未来 50 年 CV、EV 和 HEV 的变化。

(1) 汽车总量预测

论文首先预测了未来 50 年三个国家汽车的增长。采用了阻滞型的 Logistic 模型。

建立的微分方程为:

$$\begin{cases} \frac{dx}{dt} = r.x.(1 - \frac{x}{M}) \\ x(0) = x_0 \end{cases} \tag{4}$$

由该方程得到的解为:

$$x(t) = \frac{M}{1 + (\frac{M}{x_0} - 1).e^{-rt}}$$
 (5)

其中r为增长率,M为饱和量,也就是汽车最大容量, x_0 为初始值,取 2010 年的汽车总量。需要预测的是未来一段时间的汽车总量。

在该模型中,首先需要估计模型的参数:汽车最大容量M和年增长率r。论文根据 2005年到 2010年三个国家的历史数据进行估计。这三个国家历史数据见表 3.

国家		2005	2006	2007	2008	2009	2010
法国(10	7)	3	3. 17	3. 34	3. 51	3. 68	3.8
美国(10	8)	2. 4	2.5	2.9	3. 0	3. 1	3. 2
中国(10	8)	1	1. 11	1.24	1. 37	1. 52	1. 68

表 3 2005--2010 年法国、美国和中国的汽车拥有量

估计得到的三个国家的模型参数见表 4。

表 4 三个国家的模型参数估计值

参数	法国	美国	中国		
M	60, 000, 000	600, 000, 000	1, 400, 000, 000		
r	0. 115	0.115	0. 115		

以 2010 年的数据作为初始值,利用估计得到参数值 M 和 r ,对未来 50 年每年汽车拥有量进行预测。得到的法国、美国和中国的预测结果曲线见图 7。

图 7 法国、美国和中国未来 50 年汽车拥有量的预测

结果显示, 法国汽车拥有量在 2030 年左右保持稳定, 饱和量是 60,000,000 辆; 美国的汽车拥有量在 2030 年后也变化很小, 其饱和量也是 600,000,000 辆; 中国在 2015 年迅速增长, 一直增长到 2050 年, 其饱和量为 1,400,000,000。