I Dressed Graphene Model

I.1 Lattice Structure of Graphene

Structure of honeycomb lattice following [1].

Monolayer graphene forms a hexagonal lattice.

Primitive lattice vectors of the hexagonal lattice:

$$\mathbf{a}_1 = \frac{a}{2} \left(\frac{1}{\sqrt{3}} \right) \tag{I.1}$$

$$\mathbf{a}_2 = \frac{a}{2} \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} \tag{I.2}$$

with lattice constant $a \approx 2.46 \,\text{Å}$ (distance between unit cells). Have

$$a = \sqrt{3}a_0 \tag{I.3}$$

with the nearest-neighbour distance a_0 .

Vectors to the nearest-neighbor B_i (i = 1, 2, 3,) atoms from atom A:

$$\delta_{AB,1} = \begin{pmatrix} 0 \\ \frac{a}{\sqrt{3}} \end{pmatrix}, \delta_{AB,2} = \begin{pmatrix} \frac{a}{2} \\ -\frac{2a}{2\sqrt{3}} \end{pmatrix}, \delta_{AB,3} = \begin{pmatrix} -\frac{a}{2} \\ -\frac{a}{2\sqrt{3}} \end{pmatrix}$$
(I.4)

Vectors to the nearest-neighbor A_i (i = 1, 2, 3,) atoms from atom B:

$$\delta_{BA,1} = \begin{pmatrix} 0 \\ -\frac{a}{\sqrt{3}} \end{pmatrix}, \delta_{BA,2} = \begin{pmatrix} \frac{a}{2} \\ \frac{a}{2\sqrt{3}} \end{pmatrix}, \delta_{BA,3} = \begin{pmatrix} -\frac{a}{2} \\ \frac{a}{2\sqrt{3}} \end{pmatrix}$$
(I.5)

Figure I.1: *Graphene lattice structure*

The vectors between the Graphene A atom and the six neighbours on the same sub lattice can be found by rotating \mathbf{a}_1 six times by $1/6 * 2\pi = \pi/3$:

$$\delta_{AA,1} = \mathbf{a}_1 = \frac{a}{2} \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix} = a \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix} = a \begin{pmatrix} \sin\left(\frac{\pi}{6}\right) \\ \cos\left(\frac{\pi}{6}\right) \end{pmatrix}$$
 (I.6)

$$\delta_{AA,2} = a \begin{pmatrix} \sin\left(\frac{3\pi}{6}\right) \\ \cos\left(\frac{3\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (I.7)

$$\delta_{AA,3} = a \begin{pmatrix} \sin\left(\frac{5\pi}{6}\right) \\ \cos\left(\frac{5\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.8)

$$\delta_{AA,4} = a \begin{pmatrix} \sin\left(\frac{7\pi}{6}\right) \\ \cos\left(\frac{7\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.9)

$$\delta_{AA,5} = a \begin{pmatrix} \sin\left(\frac{9\pi}{6}\right) \\ \cos\left(\frac{9\pi}{6}\right) \end{pmatrix} = a \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 (I.10)

$$\delta_{AA,6} = a \begin{pmatrix} \sin(\frac{11\pi}{6}) \\ \cos(\frac{11\pi}{6}) \end{pmatrix} = a \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$
 (I.11)

Figure I.2: *Graphene Brillouin Zone*

The primitive reciprocal lattice vectors $\mathbf{b}_1, \mathbf{b}_2$ fulfill

$$\mathbf{a}_1 \cdot \mathbf{b}_1 = \mathbf{a}_2 \cdot \mathbf{b}_2 = 2\pi \tag{I.12}$$

$$\mathbf{a}_1 \cdot \mathbf{b}_2 = \mathbf{a}_2 \cdot \mathbf{b}_1 = 0 , \qquad (I.13)$$

so we have:

$$\mathbf{b}_1 = \frac{2\pi}{a} \left(\frac{1}{\frac{1}{\sqrt{3}}} \right) \tag{I.14}$$

$$\mathbf{b}_2 = \frac{2\pi}{a} \begin{pmatrix} 1\\ -\frac{1}{\sqrt{3}} \end{pmatrix} \tag{I.15}$$

Points of high symmetry in the Brillouin zone are:

$$\Gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{I.16}$$

$$M = \frac{\pi}{a} \left(\frac{1}{\sqrt{3}} \right)$$

$$K = \frac{4\pi}{3a} \left(\frac{1}{0} \right)$$
(I.17)
(I.18)

$$K = \frac{4\pi}{3a} \begin{pmatrix} 1\\0 \end{pmatrix} \tag{I.18}$$

I.2 EG-X Model

Graphene lattice and a site X. Real-life motivation: layer of graphene on top

Figure I.3: *EG-X model*

of a substrate of another material (which provides the additional X atoms). There is no spin-orbit coupling considered in the model (but when according to Niklas: when mapping to substrates Sn or Pb, it could be necessary (but does not the qualitative result?)).

Spin-orbit coupling, drop second spin index?

Without interaction:

$$H_{0} = -t_{X} \sum_{\langle ij \rangle, \sigma\sigma'} d_{i,\sigma}^{\dagger} d_{j,\sigma'} + \text{h.c.} - t_{Gr} \sum_{\langle ij \rangle, \sigma\sigma'} \left(c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} + c_{j,\sigma'}^{(B),\dagger} c_{i,\sigma}^{(A)} + \text{h.c.} \right)$$

$$+ V \sum_{i,\sigma\sigma'} \left(d_{i,\sigma}^{\dagger} c_{i,\sigma'}^{(A)} + c_{i,\sigma'}^{(A),\dagger} d_{i,\sigma'} \right)$$

$$(I.20)$$

with:

- *d* operators on the X atom
- $c^{(\epsilon)}$ operators on the graphene site $(\epsilon = A, B)$
- *t*_X NN hopping for X
- t_{Gr} NN hopping of Gr
- V hybridization between X and Graphene B sites

We can also introduce an onsite Hubbard interaction:

$$H_{\text{int}} = U_{X} \sum_{i} d_{i,\uparrow}^{\dagger} d_{i,\downarrow}^{\dagger} d_{i,\downarrow} d_{i,\uparrow} + U_{\text{Gr}} \sum_{i,\epsilon=A,B} c_{i,\uparrow}^{(\epsilon)\dagger} c_{i,\downarrow}^{(\epsilon)\dagger} c_{i,\downarrow}^{\epsilon} c_{i,\uparrow}^{\epsilon}$$
(I.21)

I.2.1 Review: Hubbard model on the honeycomb lattice

Write review for Hubbard model on the honeycomb lattice

I.2.2 BAND STRUCTURE OF THE NON-INTERACTING EG-X MODEL

To treat eq. I.20, we first write out the sums over nearest neighbours $\langle i,j \rangle$ explicitly, writing δ_X , δ_ε ($\varepsilon=A,B$) for the connections to the nearest neighbours of the X atoms and Graphene A,B sites. Doing the calculation for the example of the X atoms:

$$-t_{X}\sum_{\langle ij\rangle,\sigma\sigma'}(d_{i,\sigma}^{\dagger}d_{j,\sigma'}+d_{j,\sigma}^{\dagger}d_{i,\sigma'})$$
(I.22)

$$= -\frac{t_X}{2} \sum_{i,\sigma,\sigma'} \sum_{\delta_X} d_{i,\sigma}^{\dagger} d_{i+\delta_X,\sigma'} - \frac{t_X}{2} \sum_{j,\sigma,\sigma'} \sum_{\delta_X} d_{j,\sigma}^{\dagger} d_{j+\delta_X,\sigma'}$$
(I.23)

$$= -t_X \sum_{i,\sigma,\sigma'} \sum_{\delta_X} d_{i,\sigma}^{\dagger} d_{i+\delta_X,\sigma'} \tag{I.24}$$

(The factor 1/2 is to account for double counting when going to the sum over all lattice sites i)

Now we can input the discrete Fourier transform (for both graphene and X operators) into eq. I.24

$$c_i = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}}$$
 (I.25)

$$c_i^{\dagger} = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{r}_i} c_{\mathbf{k}}^{\dagger} \tag{I.26}$$

with the completeness relation:

$$\sum_{i} e^{i\mathbf{k}\mathbf{r}_{i}} e^{-i\mathbf{k}'\mathbf{r}_{i}} = N\delta_{\mathbf{k},\mathbf{k}'}. \tag{I.27}$$

We get:

$$-t_{X}\frac{1}{N}\sum_{i,\sigma,\sigma'}\sum_{\delta\chi}d^{\dagger}_{i,\sigma}d_{i+\delta\chi,\sigma'} = -t_{X}\frac{1}{N}\sum_{i,\sigma,\sigma'}\sum_{\delta\chi}\sum_{\mathbf{k},\mathbf{k}'}e^{-i\mathbf{k}\mathbf{r}_{i}}d^{\dagger}_{\mathbf{k},\sigma}e^{i\mathbf{k}'\mathbf{r}_{i}}e^{i\mathbf{k}'\delta\chi}d_{\mathbf{k}',\sigma'} \quad (I.28)$$

$$= -t_{X}\frac{1}{N}\sum_{\mathbf{k},\mathbf{k}',\sigma,\sigma'}\sum_{\delta\chi}d^{\dagger}_{\mathbf{k},\sigma}e^{i\mathbf{k}'\delta\chi}d_{\mathbf{k}',\sigma'}\sum_{i}e^{-i\mathbf{k}\mathbf{r}_{i}}e^{i\mathbf{k}'\mathbf{r}_{i}} \quad (I.29)$$

$$= -t_{X} \frac{1}{N} \sum_{\mathbf{k}, \mathbf{k}', \sigma, \sigma'} \sum_{\delta_{Y}} d_{\mathbf{k}, \sigma}^{\dagger} e^{i\mathbf{k}'\delta_{X}} d_{\mathbf{k}', \sigma'} N \delta_{\mathbf{k}, \mathbf{k}'}$$
(I.30)

$$= -t_X \sum_{\mathbf{k}, \sigma, \sigma'} d_{\mathbf{k}, \sigma}^{\dagger} d_{\mathbf{k}, \sigma'} \sum_{\delta_{\mathbf{x}}} e^{i\mathbf{k}\delta_{\mathbf{x}}}$$
 (I.31)

The nearest neighbours for X atoms are the vectors $\delta_{AA,i}$ from section I.1. With that, we can calculate:

$$f_X(\mathbf{k}) = -t_X \sum_{\delta_X} e^{i\mathbf{k}\delta_X}$$
 (I.32)

$$= -t_X \left(e^{ia(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})} + e^{iak_x} + e^{ia(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} \right)$$
 (I.33)

$$+ e^{ia(-\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2})} + e^{-iak_x} + e^{ia(-\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2})}$$
 (I.34)

$$= -t_X \left(2\cos(ak_x) + 2e^{ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) + 2e^{-ia\frac{\sqrt{3}k_y}{2}}\cos(\frac{a}{2}k_x) \right)$$
 (I.35)

$$= -2t_X \left(\cos\left(ak_x\right) + 2\cos\left(\frac{a}{2}k_x\right)\cos\left(\sqrt{3}\frac{a}{2}k_y\right)\right) \tag{I.36}$$

We can do the same for the hopping between Graphene sites, for example:

$$-t_{\rm Gr} \sum_{\langle ij\rangle,\sigma\sigma'} c_{i,\sigma}^{(A),\dagger} c_{j,\sigma'}^{(B)} = -t_{\rm Gr} \sum_{i,\sigma\sigma'} \sum_{\delta_{AB}} c_{i,\sigma}^{(A),\dagger} c_{i+\delta_{AB},\sigma'}^{(B)}$$
(I.37)

$$= -t_{Gr} \sum_{\mathbf{k}, \sigma, \sigma'} c_{\mathbf{k}, \sigma}^{(A)\dagger} c_{\mathbf{k}, \sigma'}^{(B)} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}}$$
 (I.38)

We note

$$\sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} = \left(\sum_{\delta_{BA}} e^{i\mathbf{k}\delta_{BA}}\right)^* = \sum_{\delta_{BA}} e^{-i\mathbf{k}\delta_{BA}}$$
(I.39)

and calculate

$$f_{Gr} = -t_{Gr} \sum_{\delta_{AB}} e^{i\mathbf{k}\delta_{AB}} \tag{I.40}$$

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{i\frac{a}{2\sqrt{3}}(\sqrt{3}k_x - k_y)} + e^{i\frac{a}{2\sqrt{3}}(-\sqrt{3}k_x - k_y)} \right)$$
(I.41)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + e^{-i\frac{a}{2\sqrt{3}}k_y} \left(e^{i\frac{a}{2}k_x} + e^{-i\frac{a}{2}k_x} \right) \right)$$
 (I.42)

$$= -t_{Gr} \left(e^{i\frac{a}{\sqrt{3}}k_y} + 2e^{-i\frac{a}{2\sqrt{3}}k_y} \cos(\frac{a}{2}k_x) \right)$$
 (I.43)

All together, we get:

$$H_{0} = \sum_{\mathbf{k},\sigma,\sigma'} \begin{pmatrix} c_{k,\sigma}^{A,\dagger} & c_{k,\sigma}^{B,\dagger} & d_{k,\sigma}^{\dagger} \end{pmatrix} \begin{pmatrix} 0 & f_{Gr} & V \\ f_{Gr}^{*} & 0 & 0 \\ V & 0 & f_{X} \end{pmatrix} \begin{pmatrix} c_{k,\sigma}^{A} \\ c_{k,\sigma}^{B} \\ d_{k,\sigma} \end{pmatrix}$$
(I.44)

The band structure for the non-interacting EG-X model is easily obtained by diagonalising the matrix in eq. I.44. This was done in fig. I.4.

Values used for calculation:

- $a_0 = 1$
- $t_{\rm Gr} = 1$
- $t_{\rm X} = 0.01$

V is the control parameter. (According to Niklas), a range from V=0.1 to V=2 can be mapped onto materials in experiment.

Figure I.4: Bands of the non-interacting EG-X model. All the bands are spin-degenerate.

I.3 Multiband BCS?

Define sublattice index

$$\alpha = 1, 2, 3 \tag{I.45}$$

with $1 \cong Gr_1, 2 \cong Gr_2, 3 \cong X$. Then we can write the non-interacting term as

$$H_0 = -\sum_{\langle i,j\rangle,\alpha,\beta,\sigma} [\mathbf{t}]_{i\alpha,j\beta} c_{i\alpha}^{\dagger} c_{j\beta}$$
 (I.46)

with the matrix

$$\mathbf{t} = \begin{pmatrix} 0 & t_{\mathrm{Gr}} & 0 \\ t_{\mathrm{Gr}} & 0 & -V\delta_{ij} \\ 0 & -V\delta_{ij} & t_{\mathrm{X}} \end{pmatrix}$$
 (I.47)

Add chemical potential:

$$-\mu \sum_{i\alpha\sigma} n_{i\alpha\sigma} \tag{I.48}$$

Also write the interaction part with α (with changed signs compared to Niklas, to keep in line with papers about the attractive Hubbard model):

$$H_{int} = -\sum_{i\alpha} U_{\alpha} c_{i\alpha\uparrow}^{\dagger} c_{i\alpha\downarrow}^{\dagger} c_{i\alpha\downarrow} c_{i\alpha\uparrow}$$
 (I.49)

Fourier transformation:

$$H_{int} = -\frac{1}{N^2} \sum_{\alpha, \mathbf{k}_{1,2,3,4}} U_{\alpha} e^{i(\mathbf{k}_1 + \mathbf{k}_4 - \mathbf{k}_1 - \mathbf{k}_3) r_{i\alpha}} c_{\mathbf{k}_1 \alpha \uparrow}^{\dagger} c_{\mathbf{k}_3 \alpha \downarrow}^{\dagger} c_{\mathbf{k}_2 \alpha \downarrow} c_{\mathbf{k}_4 \alpha \uparrow}$$
(I.50)

Impose zero-momentum pairing: $\mathbf{k}_1 + \mathbf{k}_3 = 0$ and $\mathbf{k}_2 + \mathbf{k}_4 = 0$:

$$H_{int} = -\sum_{\alpha, \mathbf{k}, \mathbf{k}'} U_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} c_{-\mathbf{k}'\alpha\downarrow} c_{\mathbf{k}'\alpha\uparrow}$$
(I.51)

Mean-field approximation:

$$H_{int} \approx \sum_{\alpha, \mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$$
 (I.52)

with

$$\Delta_{\alpha} = -U_{\alpha} \sum_{\mathbf{k}'} \langle c_{-\mathbf{k}'\alpha\downarrow} c_{\mathbf{k}'\alpha\uparrow} \rangle \tag{I.53}$$

$$\Delta_{\alpha}^{*} = -U_{\alpha} \sum_{\mathbf{k}'} \langle c_{\mathbf{k}'\alpha\uparrow}^{\dagger} c_{-\mathbf{k}'\alpha\downarrow}^{\dagger} \rangle \tag{I.54}$$

This gives the BCS mean field Hamiltonian:

$$H_{BCS} = \sum_{\mathbf{k}\alpha\beta\sigma} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} c_{\mathbf{k}\alpha\sigma}^{\dagger} c_{\mathbf{k}\beta\sigma} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{\mathbf{k}\alpha\sigma} + \sum_{\alpha,\mathbf{k}} (\Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} + \Delta_{\alpha}^{*} c_{-\mathbf{k}\alpha\downarrow} c_{\mathbf{k}\alpha\uparrow})$$
(I.55)

with Nambu spinor

$$\Psi_{\mathbf{k}} = \begin{pmatrix}
c_{1,\mathbf{k}\uparrow} \\
c_{2,\mathbf{k}\uparrow} \\
c_{3,\mathbf{k}\uparrow} \\
c_{1,-\mathbf{k}\downarrow}^{\dagger} \\
c_{2,-\mathbf{k}\downarrow}^{\dagger} \\
c_{3,-\mathbf{k}\downarrow}^{\dagger}
\end{pmatrix} (I.56)$$

we have:

$$H_{MF} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \mathcal{H}(\mathbf{k}) \Psi_{\mathbf{k}}$$
 (I.57)

with

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} H_{0,\uparrow}(\mathbf{k}) - \mu & \Delta \\ \Delta^{\dagger} & -H_{0,\downarrow}^{*}(-\mathbf{k}) + \mu \end{pmatrix}$$
(I.58)

with $H_{0,\sigma}$ being the F.T. of the kinetic term and $\Delta = diag(\Delta_1, \Delta_2, \Delta_3)$.

I.3.1 BdG Hamiltonian in band basis

Use transformation

$$c_{\mathbf{k}\alpha\sigma}^{\dagger} = \sum_{n} [\mathbf{G}]_{\alpha n}^{*} d_{n\mathbf{k}\sigma}^{\dagger} \tag{I.59}$$

where the columns are made up of the eigenvectors of $\mathbf{H}_{0,\sigma}$ for a given \mathbf{k} :

$$\mathbf{G} = \begin{pmatrix} \mathbf{G}_1 & \mathbf{G}_2 & \mathbf{G}_3 \end{pmatrix} \tag{I.60}$$

with that:

$$\mathbf{G}_{\sigma}^{\dagger}(\mathbf{k})\mathbf{H}_{0,\sigma}(\mathbf{k})\mathbf{G}_{\sigma}(\mathbf{k}) = \begin{pmatrix} \epsilon_{1} & 0 & 0 \\ 0 & \epsilon_{2} & 0 \\ 0 & 0 & \epsilon_{3} \end{pmatrix}$$
(I.61)

So the kinetic part of the BdG Hamiltonian becomes:

$$\sum_{\mathbf{k}\alpha\beta\sigma} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} \sum_{n} [\mathbf{G}(\mathbf{k})]_{\alpha n}^* d_{n\mathbf{k}\sigma}^{\dagger} \sum_{m} [\mathbf{G}(\mathbf{k})]_{\beta m} d_{m\mathbf{k}\sigma} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{n\mathbf{k}\sigma}$$
(I.62)

$$= \sum_{mn\mathbf{k}\sigma} d_{n\mathbf{k}\sigma}^{\dagger} d_{m\mathbf{k}\sigma} \sum_{\alpha\beta} [\mathbf{G}(\mathbf{k})]_{\alpha n}^{*} [H_{0,\sigma}(\mathbf{k})]_{\alpha\beta} [\mathbf{G}(\mathbf{k})]_{\beta m} - \mu \sum_{\mathbf{k}\alpha\sigma} n_{n\mathbf{k}\sigma}$$
(I.63)

$$= \sum_{mn\mathbf{k}\sigma} d_{n\mathbf{k}\sigma}^{\dagger} d_{m\mathbf{k}\sigma} \epsilon_n \delta_{nm} - \mu \sum_{\mathbf{k}\sigma\sigma} n_{n\mathbf{k}\sigma}$$
 (I.64)

$$= \sum_{n\mathbf{k}\sigma} \epsilon_n d_{n\mathbf{k}\sigma}^{\dagger} d_{n\mathbf{k}\sigma} - \mu \sum_{\mathbf{k}\sigma\sigma} n_{n\mathbf{k}\sigma}$$
 (I.65)

$$=: \sum_{n \mathbf{k}, \sigma} \xi_{\mathbf{k}} d_{n \mathbf{k} \sigma}^{\dagger} d_{n \mathbf{k} \sigma} \tag{I.66}$$

with $\xi_{\mathbf{k}} \coloneqq \epsilon_{\mathbf{k}} - \mu$. The pairing terms become:

$$\sum_{\mathbf{k}\alpha} \Delta_{\alpha} c_{\mathbf{k}\alpha\uparrow}^{\dagger} c_{-\mathbf{k}\alpha\downarrow}^{\dagger} = \sum_{\mathbf{k}\alpha} \Delta_{\alpha} \sum_{n} [\mathbf{G}_{\uparrow}(\mathbf{k})]_{\alpha n}^{*} d_{n\mathbf{k}\uparrow}^{\dagger} \sum_{m} [\mathbf{G}_{\downarrow}(-\mathbf{k})]_{\beta m}^{*} d_{m-\mathbf{k}\downarrow}^{\dagger}$$
(I.67)

$$= (I.68)$$

So that:

$$\mathcal{H}(\mathbf{k}) = \begin{pmatrix} \epsilon_{\mathbf{k}} - \mu & G^{\dagger} \Delta G \\ G^{\dagger} \Delta^{\dagger} G & -\epsilon_{\mathbf{k}} + \mu \end{pmatrix}$$
 (I.69)

with

$$\boldsymbol{\epsilon}_{\mathbf{k}} = \begin{pmatrix} \epsilon_1(\mathbf{k}) & 0 & 0 \\ 0 & \epsilon_2(\mathbf{k}) & 0 \\ 0 & 0 & \epsilon_3(\mathbf{k}) \end{pmatrix}$$
 (I.70)

Concrete example for transformation of gaps from orbital to band basis at $K = \frac{4\pi}{3a} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. There, the non-interacting part becomes simply:

$$\mathcal{H}_0 = \begin{pmatrix} 0 & 0 & V \\ 0 & 0 & 0 \\ V & 0 & 3t_X \end{pmatrix} \tag{I.71}$$

The eigenvalue problem can be solved e.g. via sympy:

$$G = \begin{pmatrix} \frac{-3t_{X} - \sqrt{4V^{2} + 9t_{X}^{2}}}{\sqrt{4V^{2} + \left(3t_{X} + \sqrt{4V^{2} + 9t_{X}^{2}}\right)^{2}}} & 0 & \frac{-3t_{X} + \sqrt{4V^{2} + 9t_{X}^{2}}}{\sqrt{4V^{2} + \left(3t_{X} - \sqrt{4V^{2} + 9t_{X}^{2}}\right)^{2}}} \\ 0 & 1 & 0 \\ \frac{2V}{\sqrt{4V^{2} + \left(3t_{X} + \sqrt{4V^{2} + 9t_{X}^{2}}\right)^{2}}} & 0 & \frac{2V}{\sqrt{4V^{2} + \left(3t_{X} - \sqrt{4V^{2} + 9t_{X}^{2}}\right)^{2}}} \end{pmatrix}$$
 (I.72)

So for $V \rightarrow 0$:

$$G = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{I.73}$$

but for V > 0, there are off-diagonal elements, e.g. V = 0.1:

$$G = \begin{pmatrix} -0.7578 & 0 & 0.6526 \\ 0 & 1 & 0 \\ 0.6526 & 0 & 0.7578 \end{pmatrix}$$
 (I.74)

So the transformation of the gap from orbital to band space reads:

$$G^{\dagger}\Delta G = \begin{pmatrix} \frac{3\Delta_{1}t_{X} - 3\Delta_{3}t_{X} + (\Delta_{1} + \Delta_{3})\sqrt{4V^{2} + 9t_{X}^{2}}}{2\sqrt{4V^{2} + 9t_{X}^{2}}} & 0 & \frac{V(-\Delta_{1} + \Delta_{3})}{\sqrt{4V^{2} + 9t_{X}^{2}}} \\ 0 & \Delta_{2} & 0 \\ \frac{V(-\Delta_{1} + \Delta_{3})}{\sqrt{4V^{2} + 9t_{X}^{2}}} & 0 & \frac{-3\Delta_{1}t_{X} + 3\Delta_{3}t_{X} + (\Delta_{1} + \Delta_{3})\sqrt{4V^{2} + 9t_{X}^{2}}}{2\sqrt{4V^{2} + 9t_{X}^{2}}} \end{pmatrix}$$

$$(I.75)$$

So in particular there is no interband pairing for $V \rightarrow 0$:

$$G^{\dagger} \Delta G = \begin{pmatrix} \Delta_1 & 0 & 0 \\ 0 & \Delta_2 & 0 \\ 0 & 0 & \Delta_3 \end{pmatrix}$$
 (I.76)

But for V > 0, there is interband pairing (e.g. V = 0.1):

$$G^{\dagger}\Delta G = \begin{pmatrix} 0.5742\Delta_1 + 0.4258\Delta_3 & 0 & -0.4945\Delta_1 + 0.4945\Delta_3 \\ 0 & \Delta_2 & 0 \\ -0.4945\Delta_1 + 0.4945\Delta_3 & 0 & 0.4258\Delta_1 + 0.5742\Delta_3 \end{pmatrix}$$
 (I.77)

I.3.2 Grand Potential

See [2], especially supplementary material, notes 1 and 3.

Mean-Field Hamiltonian (with the last two terms due to exchange of anticommuting fermion operators and the term quadratic in the expectation value from the mean-field decoupling respectively):

$$H_{MF} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \mathcal{H}(\mathbf{k}) \Psi_{\mathbf{k}} + \sum_{\mathbf{k}} \operatorname{Tr}(H_{\mathbf{k}}^{\downarrow}) + \sum_{\mathbf{k}\alpha} \frac{|\Delta_{\alpha}|^2}{U}$$
 (I.78)

The second term is the trace of the non-interacting Hamiltonian.

Thermodynamic grand potential (which at zero temperature is equivalent to the mean-field energy):

$$\Omega(T,\Delta) = -\frac{1}{\beta} \ln Z_{\Omega} = -\frac{1}{\beta} \ln \text{Tr}(e^{-\beta H_{MF}})$$
 (I.79)

$$= \sum_{\mathbf{k}} \operatorname{Tr}(H_{\mathbf{k}}^{\downarrow}) + \sum_{\mathbf{k}\alpha} \frac{|\Delta_{\alpha}|^{2}}{U} - \frac{1}{\beta} \ln \operatorname{Tr}(e^{-\beta \Psi_{\mathbf{k}}^{\dagger} \mathcal{H}(\mathbf{k}) \Psi_{\mathbf{k}}})$$
 (I.80)

Zero temperature limit:

$$\Omega(\Delta) = \sum_{\mathbf{k}} \operatorname{Tr}(H_{\mathbf{k}}^{\downarrow}) + \sum_{\mathbf{k}\alpha} \frac{|\Delta_{\alpha}|^2}{U} - \frac{1}{2} \sum_{\mathbf{k}} \operatorname{Tr}([|\mathcal{H}_{\mathbf{k}}|])$$
 (I.81)

where a function of a matrix H (such as taking the absolute value of the BdG Hamiltonian $\mathcal{H}_{\mathbf{k}}$) is defined for the diagonal matrix of eigenvalues D and the unitary matrix U that diagonalizes H:

$$f(H) = Uf(D)U^{\dagger} \tag{I.82}$$

The route to finding the value of the order parameter for a fixed interaction U is minimizing the grand potential with respect to Δ .