Heuristic functions

- Admissible heuristic function $0 \le h(x) \le h^*(x)$
 - Why?
 - What if h(x) = 0?
 - What if $h(x) = h^*(x)$?
- How to verify admissible heuristic function?
 - Consistent heuristic functions: $h(n) \le c(n, a, n') + h(n') -> f$ is increasing
 - Consistent functions are admissible!

Sample complexity

- f = g + h contours
- Complete if $n: f(n) \le f(G) = f^*(G)$ finite
- Space complexity $|\{n: f(n) \le f(G) = f^*(G)\}|$
- Time complexity: f(S) increase to $f(G) = f^*(S)$
- $\tilde{\mathcal{O}}\left(b^{(f^*(S)-f(S))/\varepsilon}\right)$, (not covered, skip if you want)
 - $m{\epsilon}$: minimal difference between successive f

