Formal Methods in Software Developement SAT Solving

Mădălina Erașcu

West University of Timișoara Faculty of Mathematics and Informatics

Based on slides of the lecture Satisfiability Checking (Erika Ábrahám), RTWH Aachen

October 20, 2018

Given:

■ Propositional logic formula φ in CNF.

Question:

■ Is φ satisfiable?

(Is there a model for φ ?)

SAT-solving: Components

- Decision (enumeration)
- Boolean constraint propagation (BCP) discussed in the previous lecture
- Conflict resolution and backtracking discussed in the previous lecture

SAT-solving: Components

- Decision (enumeration)
- Boolean constraint propagation (BCP)
- Conflict resolution and backtracking

Enumeration algorithm

- Naive approach yields 2ⁿ candidate models to check
- Solution: decision heuristics

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

For unsatisfiable problems, all assignments need to be checked. For satisfiable problems, variable and sign ordering might strongly influence the running time.

Static variable order x < y < z, sign: try positive first

For unsatisfiable problems, all assignments need to be checked. For satisfiable problems, variable and sign ordering might strongly influence the running time.

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \vee y \vee z\right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z\right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

Decision heuristics

Dynamic Largest Individual Sum (DLIS): Choose an assignment that increases the most the number of satisfied clauses

- For each variable x, let C_x be the number of unresolved clauses in which x appears positively.
- For each variable x, let $C_{\neg x}$ be the number unresolved clauses in which x appears negatively.
- Let x be a variable for which C_x is maximal ($C_x \ge C_z$ for all variables z).
- Let y be a variable for which $C_{\neg y}$ is maximal $(C_{\neg y} \ge C_{\neg z})$ for all variables z).
- If $C_x > C_{\neg y}$ choose x and assign it TRUE.
- Otherwise choose y and assign it FALSE.
- Requires $\mathcal{O}(\#literals)$ queries for each decision.

$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

$$\underbrace{\left(\neg x \vee y \vee z \right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z \right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y \right)}_{c_3} \qquad \begin{array}{c} C_x = 0 & C_y = 2 & C_z = 1 \\ C_{\neg x} = 2 & C_{\neg y} = 1 & C_{\neg z} = 1 \end{array}$$

$$C_x = 0$$
 $C_y = 2$ $C_z = 1$
 $C_{\neg x} = 2$ $C_{\neg y} = 1$ $C_{\neg z} = 1$

Dynamic Largest Individual Sum (DLIS) literal order

$$\underbrace{\left(\neg x \vee y \vee z\right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z\right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y\right)}_{c_3} \qquad \begin{aligned} C_x &= 0 & C_y &= 2 & C_z &= 1 \\ C_{\neg x} &= 2 & C_{\neg y} &= 1 & C_{\neg z} &= 1 \end{aligned}$$

$$C_x = 0$$
 $C_y = 2$ $C_z = 1$
 $C_{\neg x} = 2$ $C_{\neg y} = 1$ $C_{\neg z} = 1$

Dynamic Largest Individual Sum (DLIS) literal order

$$\underbrace{\left(\neg x \vee y \vee z\right)}_{c_1} \wedge \underbrace{\left(y \vee \neg z\right)}_{c_2} \wedge \underbrace{\left(\neg x \vee \neg y\right)}_{c_3} \qquad \begin{aligned} C_x &= 0 & C_y &= 1 & C_z &= 0 \\ C_{\neg x} &= 0 & C_{\neg y} &= 0 & C_{\neg z} &= 1 \end{aligned}$$

$$C_x = 0$$
 $C_y = 1$ $C_z = 0$
 $C_{\neg x} = 0$ $C_{\neg y} = 0$ $C_{\neg z} = 1$

Dynamic Largest Individual Sum (DLIS) literal order

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3} \qquad \begin{aligned} C_x &= 0 & C_y &= 0 \\ C_{\neg x} &= 0 & C_{\neg y} &= 0 \end{aligned}$$

$$C_x = 0$$
 $C_y = 0$ $C_z = 0$
 $C_{\neg x} = 0$ $C_{\neg y} = 0$ $C_{\neg z} = 0$

Dynamic Largest Individual Sum (DLIS) literal order

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3} \qquad \begin{aligned} C_x &= 0 & C_y &= 0 \\ C_{\neg x} &= 0 & C_{\neg y} &= 0 \end{aligned}$$

$$C_x = 0$$
 $C_y = 0$ $C_z = 0$
 $C_{\neg x} = 0$ $C_{\neg y} = 0$ $C_{\neg z} = 0$

Dynamic Largest Individual Sum (DLIS) literal order

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3} \qquad \begin{aligned} C_x &= 0 & C_y &= 0 \\ C_{\neg x} &= 0 & C_{\neg y} &= 0 \end{aligned}$$

$$C_x = 0$$
 $C_y = 0$ $C_z = 0$
 $C_{\neg x} = 0$ $C_{\neg y} = 0$ $C_{\neg z} = 0$

Dynamic Largest Individual Sum (DLIS) literal order

Decision heuristics

Jersolow-Wang method

Compute for every literal / the following static value:

$$J(I): \sum_{I \in c, c \in \phi} 2^{-|c|}$$

$$c$$
 – clause, ϕ – formula

- Choose a literal I that maximizes J(I).
- This gives an exponentially higher weight to literals in shorter clauses

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$J(x) = 0$$
, $J(\neg x) = \frac{1}{8} + \frac{1}{4}$, $J(y) = \frac{1}{8} + \frac{1}{4}$, $J(\neg y) = \frac{1}{4}$, $J(z) = \frac{1}{8}$, $J(\neg z) = \frac{1}{4}$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$J(x) = 0$$
, $J(\neg x) = \frac{1}{8} + \frac{1}{4}$, $J(y) = \frac{1}{8} + \frac{1}{4}$, $J(\neg y) = \frac{1}{4}$, $J(z) = \frac{1}{8}$, $J(\neg z) = \frac{1}{4}$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$J(x) = 0$$
, $J(\neg x) = \frac{1}{8} + \frac{1}{4}$, $J(y) = \frac{1}{8} + \frac{1}{4}$, $J(\neg y) = \frac{1}{4}$, $J(z) = \frac{1}{8}$, $J(\neg z) = \frac{1}{4}$

$$\underbrace{\left(\neg x \lor y \lor z\right)}_{c_1} \land \underbrace{\left(y \lor \neg z\right)}_{c_2} \land \underbrace{\left(\neg x \lor \neg y\right)}_{c_3}$$

$$J(x) = 0$$
, $J(\neg x) = \frac{1}{8} + \frac{1}{4}$, $J(y) = \frac{1}{8} + \frac{1}{4}$, $J(\neg y) = \frac{1}{4}$, $J(z) = \frac{1}{8}$, $J(\neg z) = \frac{1}{4}$

