Assignment 9 MAT 315

Q2ai: First note that by previous results, we have that $|M^{\times}| = p^{\deg(s(x))} - 1$. Hence the order of any element can not exceed $p^{\deg(s(x))} - 1$. Since we have that M^{\times} is cyclic there must exist some element of order exactly $p^{\deg(s(x))} - 1$.

2aii: Let α be a root of $\Phi_{p^m-1}(x)$. Then by HW8Q2a, we have that $\alpha \in M^{\times}$ and therefore by HW8Q3 we have that the order of α is p^m-1 . It follows by Lagranges theorem that $p^m-1|p^{\deg(s(X))}-1$ and clearly

2aiii: It has been shown that $gcd(p^a - 1, p^b - 1) = p^{gcd(a,b)} - 1$. The euclidean algorithm then gives us that gcd(a,b) = gcd(b,r). Hence we have that

$$gcd(p^a - 1, p^b - 1) = p^{\gcd(b,r)} - 1 \le p^r - 1$$

Since $\gcd(b,r) \leq r$. It follows that if $p^b - 1|p^a - 1$, then $\gcd(a,b) = \gcd(b,r) = b$ but by assumption r < b. Hence $p^a - 1 \nmid p^b - 1$. Reasoning contrapositively, by above if $m \nmid \deg(s(x))$ then $p^m - 1 \nmid p^{\deg(s(x))} - 1$.

Q2iv: Since alpha is a root of Φ_{p^m-1} it must have an order of p^m-1 . Therefore, $\alpha^{p^m-1}=1$ and so $\alpha^{p^m}=\alpha$.