

Brief Recap

Machine Perception of Real-World Environments

We perceive and interact with a 3D world

ASIMO, Honda

Star Trek TNG (Phantasms)

How to represent 3D?

Discrete:
Meshes,
Point Samples

Parametric

Implicit:
Distance Fields

Poisson Surface Reconstruction

- State-of-the-art reconstruction
- Oriented points to implicit function
- Formulates reconstruction as a variational problem

$$\min_{f} \|\nabla f - V\|$$

where *V* is the vector field defined by the point samples

Poisson Surface Reconstruction

- No machine learning
- No data-driven priors

How to fill in large holes?

Poisson Surface Reconstruction

- Great with dense point samples
- Can be sensitive to V
 - Normal estimates need to be reliable
 - If multiple sensor measurements are taken, alignment must be good
- No general or semantic priors

Registration and Alignment

Geometry Acquisition

• 3D Scanning and Motion Capture (IN2354)

3D Alignment

• Many applications, e.g., 3D scanning, SLAM

3D Alignment

• Many applications, e.g., 3D scanning, SLAM

3D Alignment

Many applications

Protein Structure Alignment:

- (red) from humans
- (yellow) from fly Drosophila melanogaster.

3D Alignment (Registration)

- Input:
 - 2 shapes A and B with partial overlap
- Problem:

• Register B to A by rigid transform, minimizing distance between A and

B

How to measure distance?

• Measure of success for registration problem

$$\min_{T} \delta(A, T(B))$$

T: rigid transform to bring B to A

 Fundamental for geometric similarity, classification, general machine learning losses

How to evaluate 3D distance?

- What about common function norms, e.g., ℓ_2 ?
 - We don't have correspondences across 3D structures, shapes
- Should support partial matches

- Trade-off between support size and aggregated distance
- Distance for partial matches not a metric

Alignment Estimation

Given shapes A and B

• Establish correspondences between A and B

 Find optimal transform that best aligns correspondences together, based on a distance measure

Transform Estimation

Degrees of freedom

• Rigid motion has 6 degrees of freedom (3 rotation, 3 translation)

Typically estimate with more correspondences -> overdetermined problem

 More general transforms -> more degrees of freedom, e.g., nonrigid deformations

Alignment Challenges

- Correspondence Estimation
 - Combinatorial search

- Transform Estimation
 - Transforms can be non-linear
- Difficult optimization -> look for good features, lowdimensional transforms

Rigid 3D Alignment

• Find 6DoF rigid transform that best aligns shapes, even if the shapes are different

Rigid 3D Alignment (Given Correspondences)

- Given correspondences $\{x_i\}$, $\{y_i\} \in \mathbb{R}^3$
- Find rigid transform \mathbf{R} , t that minimizes $\sum_{i=1}^{N} ||\mathbf{R}x_i + t y_i||_2^2$

Solved as orthogonal Procrustes problem in 1966

Rigid 3D Alignment (Given Correspondences)

$$\min_{R,t} \sum_{i=1}^{N} ||Rx_i + t - y_i||_2^2$$

- How to solve for R, t?
- Consider coordinate system centered at the mean of the x_i

$$\min_{R,t} \sum_{i=1}^{N} ||t-y_i||_2^2 - 2 \sum_{i=1}^{N} \langle Rx_i, y_i \rangle$$
 translation part rotation part

Rigid 3D Alignment (Given Correspondences)

$$\min_{\mathbf{R},t} \sum_{i=1}^{N} ||t - y_i||_2^2 - 2 \sum_{i=1}^{N} \langle \mathbf{R} x_i, y_i \rangle$$

- Translation: $t = \frac{1}{N} \sum_{i=1}^{N} y_i$ (align centroids)
- Remove translation by mean-centering:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i \qquad X = [x_0 - \bar{x}, \dots, x_n - \bar{x}]^T \qquad Y = [y_0 - \bar{y}, \dots, y_n - \bar{y}]^T \qquad Y$$

- Compute SVD: $XY^T = UDV^T \leftarrow 3 \times 3$ matrix
- Define $S = \begin{cases} I, & \text{if } \det(U) \det(V) = 1 \\ diag(1, ..., 1, -1) & \text{otherwise} \end{cases}$

 $R = USV^T$

How to get correspondences?

How to get correspondences?

- Iterate between finding correspondences and solving for the best transform for those correspondences
- ➤ Iterative Closest Points (ICP)

 Various methods to explicitly match features (handcrafted or learned), which can also be refined with ICP

Iterative Closest Points (Besl and McKay '92)

• Developed for aligning 3D shapes

• Nice analysis: Efficient variants of the ICP algorithm (Rusinkiewicz and Levoy 2001)

- How to find correspondences?
- Assume that closest points correspond
- Align the P_a points to their closest P_B neighbors; repeat
- Converges if starting positions are "close enough"

- Given a pair of shapes, A and B
- Iterate:
 - Find corresponding points P_A and P_B based on proximity
 - Find optimal transform \mathbf{R} , t minimizing $\underset{\mathbf{R},t}{\operatorname{argmin}} \sum_i ||\mathbf{R}x_i + t y_i||_2^2$
 - Apply optimized **R**, t

- Given a pair of shapes, A and B
- Iterate:
 - Find corresponding points P_A and P_B based on proximity
 - Find optimal transform \mathbf{R} , t minimizing $\underset{\mathbf{R},t}{\operatorname{argmin}} \sum_i ||\mathbf{R}x_i + t y_i||_2^2$
 - Apply optimized **R**, t

- Given a pair of shapes, A and B
- Iterate:
 - Find corresponding points P_A and P_B based on proximity
 - Find optimal transform \mathbf{R} , t minimizing $\underset{\mathbf{R},t}{\operatorname{argmin}} \sum_i ||\mathbf{R}x_i + t y_i||_2^2$
 - Apply optimized **R**, t

ICP: Runtime Analysis

- Each iteration:
 - Find closest points:
 - $O(N_B)$ per point
 - $O(N_B * N_A)$ total
 - Compute optimal alignment: $O(N_A)$
 - Update scene $O(N_A)$
- Speed up with fast or approximate nearest-neighbor data structures, e.g., kd-tree

ICP Analysis

- Selection of points
- Matching correspondences
- Weighting correspondences
- Rejecting outlier correspondences
- Assigning error metric to the current transform
- Minimizing error metric w.r.t transform

ICP Analysis

How to select correspondences?

But: Uneven Sampling

Ideally, 1:1 correspondences

ICP Analysis

How to select correspondences?

In practice: faster convergence than point-point ICP

ICP

- Solve for rigid transform between two surfaces
- Still used today
- Small basin of convergence
 - needs a good initialization
 - Hard to find correspondences
 - Need "sufficient" overlap

How to establish correspondences?

How to establish correspondence?

 When do two points on different shapes/scans represent the same feature?

Are the surrounding regions similar?

Feature descriptors summarize surrounding regions

Classical Descriptors

Curvature

 Differential features describe characteristics of surrounding surface

 Differential features can be noisy on meshes and real-world captured data

Classical Descriptors: Spin Images

- Create image associated with neighborhood of a feature point
- "Spin" image along point normal
- Collect contributions of each other point by their distance to tangent and distance to normal

• 2D spin image comparison

Spin Images [Johnson and Hebert '99]

Classical Descriptors: Point Feature Histograms

- For a point p find its k neighbors $\{q_i\}$
- Compute histogram from tuples of $\{(p, q_i)\}$ based on distances, normal, optionally curvature etc.

Classical Descriptors

- Often fast to compute
- Designed to be used with Euclidean distances, can use accelerated search structures for fast matching

- In practice: often have RGB images
 - Use classical RGB features (e.g., SIFT, SURF, etc.)

Non-rigid Deformations

Rigid vs Deformable Registration

- Rigid: uniformly applied rigid transformation
 - Rotation, translation
 - Maintains same shape and size
- Deformable: allows non-uniform mapping between surfaces
 - Applications: to correct for small distortions in measurement
 - Modeling non-rigid shape movement over time

Non-Rigid Shape Matching

- Consider near-isometric cases
- Find correspondences that preserve intrinsic (geodesic) distances on the shapes

Measuring intrinsic shape similarity

- Gromov-Hausdorff distance
- Hausdorff distance: maximin
 - Maximum of all minimum distances between two sets of points

- Gromov-Hausdorff: infimum of all Hausdorff distances over mappings or correspondences
 - Over all correspondences -> difficult to compute!

Near isometries preserve local structure

- Optimal alignment can be defined, but difficult to compute
- Define descriptors of local regions -> establish good mappings

How large should a local region be?

Scale for local features?

 Given a point on a shape, find other points with similar neighborhoods

 How to meaningfully compare neighborhoods at different scales?

Heat kernel signature

- Spectral shape analysis
- Heat kernel $k_t(x, y)$: amount of heat transferred from x to y in time t

$$f(x,t) = \int_{M} k_{t}(x,y)f(y)dy$$

- Invariant under isometric deformations
- Multi-scale description

As-Rigid-As-Possible (ARAP)

Idea: maximize local rigidity

Machine Learning for 3D Geometry [Sorkine et al. '07]

As-Rigid-As-Possible (ARAP)

Idea: maximize local rigidity

- Ask all star edges to transform rigidly by some rotation R
 - Shape of cell is preserved

$$\min \sum_{j \in N(i)} \| (v_i' - v_j') - R_i (v_i - v_j) \|^2$$

As-Rigid-As-Possible (ARAP)

• If v, v' are known, then R_i is uniquely defined

- Build covariance matrix $S = VV'^T$
- SVD: $S = U\Sigma W^T$, $R_i = UW^T$

ARAP Deformation Energy

$$\min \sum_{i=1}^{n} \sum_{j \in N(i)} \| (v_i' - v_j') - R_i (v_i - v_j) \|^2$$

- Variables: v', R
- Can iteratively optimize alternating solving for v', R
 - Solve for R_i with fixed v, v_i
 - With fixed R_i , minimize energy by finding v':Lv'=b

ARAP

Good at preserving edge lengths

Fast on small meshes

No understanding of volume

Slow propagation on large meshes

Scene Flow

• 3D motion field of points in the world

Scene Flow

- Between two 3D observations P_t , P_{t+1}
- Flow is vector field Δ_t ; for each point in P_t defining the motion to P_{t+1}
- $P_{t+1}(x, y, z) = P_t(x + \Delta x, y + \Delta y, z + \Delta z)$

Additional References

- Efficient variants of the ICP algorithm [Rusinkiewicz et al. '01]
 - http://www.pclusers.org/file/n4037867/Rusinkiewicz_Effcient_Variants_of_ICP.pdf
- As-Rigid-As-Possible Surface Modeling [Sorkine et al '07]
 - https://igl.ethz.ch/projects/ARAP/