SIO2 2017

TD Nº 7: VOCABULAIRE ENSEMBLISTE

Exercice 1

- 1. Soit A et B des parties d'un ensemble E. Illustrer graphiquement les ensembles suivants : $\overline{A} \cap B$, $\overline{A} \cup \overline{B}$, $\overline{A} \cap \overline{B}$.
- 2. Soit A, B et C des parties d'un ensemble E. Illustrer graphiquement les ensembles suivants : $A \cap B \cap C$, $A \cap B \cap \overline{C}$, $A \cap \overline{B} \cap \overline{C}$, $(\overline{A} \cap B) \cup (B \cap C)$ et $(A \cap \overline{B}) \cup (B \cap \overline{A})$.

Exercice 2

Soit A et B des parties d'un ensemble E.

- 1. On suppose $A \subset B$. Que peut-on dire de $A \cap B$ et de $A \cup B$?
- 2. Inversement si on suppose que $A \cap B = A$, que peut on en conclure?
- 3. Et si on suppose que $A \cup B = B$, quelle conclusion tirez vous?

Exercice 3

Soit A et B des parties d'un ensemble E. Simplifier :

 $\begin{array}{lll} A\cap\varnothing, & A\cup\varnothing, & A\cap E, & A\cup E, & A\cap (A\cap B), & A\cup (A\cup B), & A\cap \overline{A}, & A\cup \overline{A}, \\ A\cap (\overline{A}\cap B), & A\cup (\overline{A}\cup B). & \end{array}$

Exercice 4

Soit A, B et C des parties d'un ensemble E. Simplifier : $(\overline{A} \cap B) \cup (A \cap B), \qquad A \cup \overline{A} \cup (A \cap B), \qquad (A \cap B) \cup (A \cap \overline{B} \cap \overline{C}) \cup (A \cap \overline{B} \cap C), \qquad (A \cup B \cup \overline{C}) \cap C \cap \overline{B}.$

Exercice 5

Pour A et B des parties d'un ensemble E, on définit la différence positive de A et de B notée $A \setminus B$ par

$$A \backslash B = A \cap \overline{B}$$

- 1. Illustrer cette notion par une figure;
- 2. Déterminer $\overline{A} \setminus \overline{B}$, $A \setminus A$, $A \setminus E$ et $A \setminus \emptyset$.
- 3. Montrer que si A, B et C sont des parties d'un ensemble E, on a $(A \setminus B) \setminus C = A \setminus (B \cup C)$.

Exercice 6

Pour A et B des parties d'un ensemble E, on définit la différence symétrique de A et de B notée $A \triangle B$ par la différence de $A \cup B$ et de $A \cap B$, c'est-à-dire

$$A\triangle B = (A \cup B) \setminus (A \cap B)$$

- 1. Illustrer cette notion par une figure.
- 2. Justifier que $A \triangle B = B \triangle A$.
- 3. Exprimer $A\triangle B$ uniquement à l'aide des opérateurs de complémentation, d'intersection et de réunion.
- 4. Déterminer $A \triangle A$, $A \triangle E$, $A \triangle \varnothing$.

Exercice 7

 \mathcal{R} est une relation binaire sur un ensemble E. Ecrire ce que signifie :

- \mathcal{R} n'est pas réflexive;
- R n'est pas symétrique;
- \mathcal{R} n'est pas antisymétrique;
- \mathcal{R} n'est pas transitive;

Exercice 8

Dans l'ensemble $E = \{a, b, c, d, e, f\}$, la relation \mathcal{R} définie par l'ensemble des couples

$$\Gamma = \{(a, a), (c, c), (c, d), (d, d), (d, f), (f, c), (f, d), (f, f), (c, f), (d, c)\}$$

est elle réflexive? symétrique? antisymétrique? transitive?

Exercice 9

Dans chaque cas déterminer si la relation binaire \mathcal{R} définie sur l'ensemble \mathbb{Z} est réflexive, symétrique, antisymétrique, transitive.

- 1. xRy si et seulement si x + y est pair.
- 2. xRy si et seulement si x + y est impair.
- 3. xRy si et seulement si xy est pair.

Exercice 10

Soit $E = \{1, 5\}, F = \{2, 3\}$ et $G = \{1, 4\}$. Décrire les ensembles :

$$E \times F$$
, $E \times \{1\}$, $E \times \emptyset$, $F \times (E \cap G)$, $(F \times E) \cap G$

Exercice 11

Soit f l'application de E dans F définie par le diagramme ci dessous :

- 1. Soit $A = \{a, b, c\}$ et $A' = \{a, d, e\}$.
 - a) Déterminer f(A) et f(A').
 - b) Comparer $f(A \cap A')$ et $f(A) \cap f(A')$.
 - c) Déterminer $f(A \cup A')$ et $f(A) \cup f(A')$.
- 2. Soit $B = \{1, 2\}$ et $B' = \{3, 4\}$.
 - a) Déterminer $f^{-1}(B)$ et $f^{-1}(B')$.
 - b) Comparer $f^{-1}(B \cap B')$ et $f^{-1}(B) \cap f^{-1}(B')$.
 - c) Déterminer $f^{-1}(B \cup B')$ et $f^{-1}(B) \cup f^{-1}(B')$.
- 3. f est elle injective?
- 4. f est elle surjective?
- 5. Soit g définie de F dans E par le graphe $\Gamma = \{(1, a), (2, c), (3, c), (4, e)\}.$

Déterminer l'application $g \circ f$.

 $g \circ f$ est elle injective? $g \circ f$ est elle surjective?