Name: Xuhui Ying WFU ID: 06648543 Section: C

1. Results from the stationarity test. Be sure to clearly state the hypotheses and the significance level that you used for conducting the test along with your conclusion.

```
H<sub>0</sub>: Series is non-stationary
H<sub>a</sub>: Series is stationary
Significance level: 0.05
 # Augmented Dickey-Fuller Test Unit Root Test #
 Test regression drift
 call:
 lm(formula = z.diff \sim z.lag.1 + 1 + z.diff.lag)
 Residuals:
   Min
          1Q Median
                      3 Q
                            Max
 -24689 -8605 -3191
                     7751 49979
 Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) 2.839e+04 1.204e+04 2.359 0.02920 *
 z.lag.1
           -1.957e-01 7.982e-02 -2.452 0.02405 *
 z.diff.lag 5.557e-01 1.785e-01
                               3.112 0.00574 **
```

p-value = 0.02405 < 0.05, reject the null hypothesis. So, the series is stationary.

2. The values of p, d, and q for the chosen model along with a series plot, plots of the ACF and PACF, and some justification for why you chose these values of p, d, and q *** NOTE: You may present an auto.arima model as your final model. However, you need to include the results from at least one other model that you built on your own - and explain why you felt the auto.arima model was better than the model that you built.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ACF and PACF plots:

Since the model is stationary, I used d = 0.

Since ACF decays, PACF cuts off quickly, I used significant ACF.

So I started with AR(1) and iterated until residuals are white noise.

When I used ARIMA(1,0,0), in the Ljung-Box test, p-value = 0.03545 < 0.05, reject the null hypothesis. So, residuals are not white noise. This is not a good model.

Ljung-Box test

data: Residuals from ARIMA(1,0,0) with non-zero mean $Q^* = 10.315$, df = 4, p-value = 0.03545

Model df: 1. Total lags used: 5

Then I used ARIMA(2,0,0), Since all terms are significant, residuals are white noise, and have low forecast error. Thus, this is a good model.

\$ttable

	Estimate	SE	t.value	p.value
ar1	1.4699	0.1569	9.3707	0.0000
ar2	-0.6156	0.1648	-3.7345	0.0012
xmean	124399.0388	24664.5847	5.0436	0.0001

Ljung-Box test

data: Residuals from ARIMA(2,0,0) with non-zero mean $Q^* = 5.8338$, df = 3, p-value = 0.12

Model df: 2. Total lags used: 5

Finally, I used auto.arima model. I found all terms are significant, residuals is white noise, and the model has low forecast error. Therefore, this is also a good model.

Ljung-Box test

data: Residuals from ARIMA(1,1,0) Q* = 2.9228, df = 4, p-value = 0.5708

Model df: 1. Total lags used: 5

By comparison, in the ARIMA(2,0,0) model, MAPE = 15.01429; while in the auto.arima model, MAPE = 11.18161. Thus, auto.arima is the better model.

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1

Training set 4550.782 22222.04 17143.87 0.6122979 15.01429 0.255094 0.4353424

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 1500.392 17645.09 12915.86 -1.691429 11.18161 0.1921829 -0.2194434

Therefore, I chose auto.arima model as my final model.

3. A table of parameter estimates for the chosen model

Coefficients:

ar1

0.5383

s.e. 0.1755

4. Residual plots for the chosen model

5. A test of white noise for the residuals (either a single p-value from a Ljung-Box test or a plot of the p-values from the Ljung-Box test that is automatically generated by R)

Ljung-Box test

data: Residuals from ARIMA(1,1,0) Q* = 2.9228, df = 4, p-value = 0.5708

Model df: 1. Total lags used: 5

In the Ljung-Box test, since p-value = 0.5708 > 0.05, fail to reject the null hypothesis. So, residuals is white noise.

6. The values of the RMSE and MAPE for the chosen model

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 931.7514 18722.18 13300.08 1.804659 10.21507 0.1979 -0.02802576

RMSE = 18722.18, MAPE = 10.21507

7. A forecast plot and the forecast values for the 3 time periods requested above.

Forecasts from ARIMA(1,1,0)

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Jan 2013	108128.27	83067.95	133188.6	69801.813	146454.7
Feb 2013	99738.80	53758.67	145718.9	29418.257	170059.3
Mar 2013	95222.63	30315.20	160130.0	-4044.712	194490.0