Data Science and Video Games

Zach Heick

The Rise of Online Gaming

- Professional video game scene is growing rapidly
- Huge prize pools for annual and seasonal tournaments
- Teams using data science to provide best win conditions

Game Rules

Two teams of 5 human players, each picks unique hero

Each player also bans a hero from the other team

- **■** Blue Turret
- Red Turret

- **V**Rift
- Dragon

Features

Turret

Rift / Dragon

Kill

Data and Assumptions

- Downloaded datasets from Kaggle
 - Game history containing 51490 games
 - Hero information about 138 unique heroes

Modeling

Algorithms and Hyperparameters

- Support Vector Machines: Budget
- Decision Tree: Depth and criterion
- Random Forest: Depth and number of trees
- Logistic Regression: Regularization Strength
- Bernoulli Naive Bayes: None

Algorithms and Hyperparameters

Support Vector Machines: Budget

Algorithm Analysis

	Bernoulli NB	Decision Tree	Logistic Regression	Random Forest	SVM
0	10	10	1	10	10
1	14	14	10	14	14
2	15	15	14	15	15
3	16	19	15	19	16
4	19	21	19	21	19
5	21	22	21	22	21
6	22	23	22	23	22
7	23	24	23	24	23
8	24	27	24	27	24
9	27	28	27	28	27

	Bernoulli NB	Decision Tree	Logistic Regression	Random Forest	SVM
0	10	10	1	10	10
1	14	14	10	14	14
2	15	15	14	15	15
3	16	19	15	19	16
4	19	21	19	21	19
5	21	22	21	22	21
6	22	23	22	23	22
7	23	24	23	24	23
8	24	27	24	27	24
9	27	28	27	28	27

	Bernoulli NB	Decision Tree	Logistic Regression	Random Forest	SVM
0	10	10	1	10	10
1	14	14	10	14	14
2	15	15	14	15	15
3	16	19	15	19	16
4	19	21	19	21	19
5	21	22	21	22	21
6	22	23	22	23	22
7	23	24	23	24	23
8	24	27	24	27	24
9	27	28	27	28	27

	Bernoulli NB	Decision Tree	Logistic Regression	Random Forest	SVM
0	10	10	1	10	10
1	14	14	10	14	14
2	15	15	14	15	15
3	16	19	15	19	16
4	19	21	19	21	19
5	21	22	21	22	21
6	22	23	22	23	22
7	23	24	23	24	23
8	24	27	24	27	24
9	27	28	27	28	27

How Do I Choose an Algorithm?

- Accuracy
- Interpretability
- Computation Speed
- Support Vector Machine!

Conclusion

- Used Support Vector Machine for final model
- 24 Features
- Final scores
 - Accuracy: 71.74 %
 - Precision: 71.66 %
 - Recall: 73.01 %
 - o F1: 72.33 %

Thanks for listening!

Appendix

The Rise of Online Gaming

- Big name sponsors and investors
- Teams using data science to provide best win conditions

Data and Assumptions

- 1. The games are played on the same ranked scale.
- 2. Each player is playing their hero to full capacity.
- 3. Each player knows how to play all 138 heroes at equal levels.

Modeling Pipeline

- 1. Use cross validation to tune hyperparameters
- 2. Plot learning curve
- 3. Create model with best hyperparameters and record scores
- 4. Analyze

Conclusion

Game objectives more important than team composition

Future Improvements

- Add more data regarding individual game stats
- Only look at high ranked games
- Try and measure hero synergy

