EE 127AT/227AT 8/28/2018

Instructors: L. El Ghaoui, A. Bayen

GSI: P. Hidalgo-Gonzalez

Discussion #1 Solutions

Exercise 1 (Subpaces and dimensions) Consider the set S of points such that

$$x_1 + 2x_2 + 3x_3 = 0$$
, $3x_1 + 2x_2 + x_3 = 0$.

Show that \mathcal{S} is a subspace. Determine its dimension, and find a basis for it.

Solution 1 The set S is a subspace, as can be checked directly: if $x, y \in S$, then for every $\lambda, \mu \in \mathbb{R}$, we have $\lambda x + \mu y \in S$. To find the dimension, we solve the equation and find that any solution to the equations is of the form $x_1 = x_3$, $x_2 = -2x_3$, where x_3 is free. Hence the dimension of S is 1, and a basis for S is the vector (1, -2, 1).

Exercise 2 (Direct sum) Find
$$k \in \mathbb{R}$$
 such that $\mathbb{R}^3 = S \oplus T$, with $S = span \left\{ \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix} \right\}$ and $T = \{(x, y, z) \in \mathbb{R}^3 : kx + y - z = 0\}$

Solution 2 (Direct sum)
$$S \oplus T \to S + T = \mathbb{R}^3$$
 and $S \cap T = \{\vec{0}\}$

To ensure those two conditions (span \mathbb{R}^3 and only the zero vector in the intersection) we need a basis for T. For this we write in vector form the conditions to belong to T. We know that z = kx + y, then

$$T = \{(x, y, z) : (x, y, z) = (x, y, kx + y) \text{ with } x, y \text{ free}\}$$

$$T = \{(x, y, z) : (x, y, z) = (x, 0, kx) + (0, y, y) \text{ with } x, y \text{ free}\}$$

$$T = \{(x, y, z) : (x, y, z) = (1, 0, k)x + (0, 1, 1)y \text{ with } x, y \text{ free}\}$$

$$T = \text{span}\{(1, 0, k), (0, 1, 1)\}$$

 $S \cap T = \{\vec{0}\} \to \text{ vectors in basis of } T \text{ and } S \text{ are linearly independent. To enforce linear independence, we form a matrix using the vectors in the basis as columns. We then perform Gaussian elimination and find conditions over <math>k$ so the three columns have a pivot.

$$\begin{bmatrix} -3 & 0 & 1 \\ 4 & 1 & 0 \\ 1 & 1 & k \end{bmatrix} \sim \begin{bmatrix} 0 & 3 & 1+k \\ 0 & -3 & -4k \\ 1 & 1 & k \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & 1-k \\ 0 & -3 & -4k \\ 1 & 1 & k \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & k \\ 0 & -3 & -4k \\ 0 & 0 & 1-k \end{bmatrix}$$

To force a pivot in the third column, $1 - k \neq 0$. Thus $k \neq 1$.

Exercise 3 (Extrema of inner product over a ball) Let $y \in \mathbb{R}^n$ be a given non-null vector, and let $\mathcal{X} = \{x \in \mathbb{R}^n : ||x||_2 \le r\}$, where r is some given positive number.

- 1. Determine the optimal value p_1^* and the optimal set (i.e., the set of all optimal solutions) of the problem $\min_{x \in \mathcal{X}} |y^\top x|$.
- 2. Determine the optimal value p_2^* and the optimal set of the problem $\max_{x \in \mathcal{X}} |y^\top x|$.
- 3. Determine the optimal value p_3^* and the optimal set of the problem $\min_{x \in \mathcal{X}} y^\top x$.
- 4. Determine the optimal value p_4^* and the optimal set of the problem $\max_{x \in \mathcal{X}} y^\top x$.

Solution 3 (Extrema of inner product over a ball) The problems are related to the extrema of the inner product $y^{\top}x$ (or its absolute value) over an Euclidean ball of radius r. From the Cauchy-Schwartz inequality we know that, for fixed norm of x, the amplitude of $y^{\top}x$ is maximized when $x = \alpha y$, while $y^{\top}x = 0$ if x is orthogonal to y. Let us denote with $V \in \mathbb{R}^{n,n-1}$ a matrix containing by columns an orthonormal basis for the subspace orthogonal to y.

1. Clearly, the minimum value of $\min_{x \in \mathcal{X}} |y^{\top}x|$ is $p_1^* = 0$. This value is attained either by x = 0, or by any vector $x \in \mathcal{X}_r$ orthogonal to y. The optimal set is therefore the set

$$\mathcal{X}_{\text{opt}} = \{x : x = Vz, \ \|z\|_2 \le r\}$$

(note that we used the fact that the ℓ_2 norm is invariant by orthogonal transformations, i.e., $||x||_2 = ||Vz||_2 = ||z||_2$, for matrices V with orthonormal columns).

2. The optimal value $\max_{x \in \mathcal{X}} |y^{\top}x|$ is attained for any $x = \alpha y$ with $||x||_2 = r$, thus for $|\alpha| = r/||y||_2$, for which we have $p_2^* = r||y||_2$. The optimal set contains two points:

$$\mathcal{X}_{\text{opt}} = \{ x : x = \alpha y, \ \alpha = \pm \frac{r}{\|y\|_2} \}.$$

- 3. For problem $\min_{x \in \mathcal{X}} y^{\top} x$ we have $p_3^* = -r ||y||_2$, which is attained at the unique optimal point $x^* = -\frac{r}{||y||_2} y$.
- 4. For problem $\max_{x \in \mathcal{X}} y^{\top} x$ we have $p_4^* = r ||y||_2$, which is attained at the unique optimal point $x^* = \frac{r}{||y||_2} y$.

Exercise 4 (Inner product) Let $x, y \in \mathbb{R}^n$. Under which condition on $\alpha \in \mathbb{R}^n$ does the function

$$f(x,y) = \sum_{k=1}^{n} \alpha_k x_k y_k$$

define an inner product on \mathbb{R}^n ?

Solution 4 The axioms for inner product are all satisfied for any $\alpha \in \mathbb{R}^n$, except the conditions

$$f(x,x) \ge 0;$$

 $f(x,x) = 0$ if and only if $x = 0.$

These properties hold if and only if $\alpha_k > 0$, k = 1, ..., n. Indeed, if the latter is true, then the above two conditions hold. Conversely, if if there exist k such that $\alpha_k \leq 0$, setting $x = e_k$ (the k-th unit vector in \mathbb{R}^n) produces $f(e_k, e_k) \leq 0$; this contradicts one of the two above conditions.