VE270 Homework 7

Liu Yihao 515370910207

Problem 1.

Inputs: X; Outputs: Y

Problem 2.

Encode the states (s_1s_0) : Wait: 00, On1: 10, On2: 11, End: 01.

The truth table is

s_1	s_0	X	$\mid n_1 \mid$	n_0	Y
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	1	0	1	1

The euqations are

$$n_1 = s_0'X + s_1s_0'$$

$$n_0 = s_0X + s_1s_0'$$

$$Y = s_1$$

The schematics is

Problem 3.

Problem 4.

Problem 5.

Inputs: I; Outputs: x, y, z

Problem 6.

Encode the states $(s_2a_1s_0)$: C1: 000, W1: 001, C2: 010, W2: 011, C3: 100, W3: 101, C4: 110.

The truth table is

s_2	s_1	s_0	I	n_2	n_1	n_0	X	Y	Z
0	0	0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0	0	0
0	0	1	0	0	0	1	0	0	0
0	0	1	1	0	0	0	0	0	0
0	1	0	0	0	1	1	0	0	1
0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	1	0	0	1
0	1	1	1	0	0	0	0	0	1
1	0	0	0	1	0	1	0	1	0
1	0	0	1	1	1	0	0	1	0
1	0	1	0	1	0	1	0	1	0
1	0	1	1	0	0	0	0	1	0
1	1	0	0	1	1	0	1	0	0
1	1	0	1	0	0	0	1	0	0
1	1	1	0	X	X	X	X	X	X
1	1	1	1	X	X	X	X	X	X

The euqations are

$$n_{2} = s'_{2}s_{1}s'_{0}I + s_{2}s'_{1}s'_{0} + s_{2}I'$$

$$n_{1} = s'_{1}s'_{0}I + s_{1}I'$$

$$n_{0} = s'_{2}I' + s'_{1}I'$$

$$X = s_{2}s_{1}$$

$$Y = s_{2}s'_{1}$$

$$Z = s'_{2}s_{1}$$

The schematics is

Problem 7.

Inputs: B; Outputs: s_1, s_0

Encode the states $(s_2s_1s_0)$: Time (Wait): 000, Time: 001, Alarm (Wait): 010, Alarm: 011, Stopwatch (wait): 100, Stopwatch: 101, Date (Wait): 110, Date (Wait): 111.

The truth table is

s_2	s_1	s_0	B	n_2	n_1	n_0	s_1	s_0
0	0	0	0	0	0	1	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	1	0	0
0	0	1	1	0	1	0	0	0
0	1	0	0	0	1	1	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	1	1	0	1
0	1	1	1	1	0	0	0	1
1	0	0	0	1	0	1	1	0
1	0	0	1	1	0	0	1	0
1	0	1	0	1	0	1	1	0
1	0	1	1	1	1	0	1	0
1	1	0	0	1	1	1	1	1
1	1	0	1	1	1	0	1	1
1	1	1	0	1	1	1	1	1
1	1	1	1	0	0	0	1	1

The euqations are

$$n_{2} = s'_{2}s_{1}s_{0}B + s_{2}s'_{1} + s_{2}s'_{0} + s_{2}B'$$

$$n_{1} = s'_{1}s_{0}B + s_{1}s'_{0} + s_{1}B'$$

$$n_{0} = B'$$

$$s_{1} = s_{2}$$

$$s_{0} = s_{1}$$

The schematics is

Problem 8.

Same as Problem 7.