© Laurent Garcin MP Dumont d'Urville

Devoir à la maison $n^{\circ}07$

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 1.a Soit $P \in E_n$. Tout d'abord, $t \mapsto P(t)e^t$ est continue sur \mathbb{R} .

De plus, par croissance comparée, $t^2 P(t) e^t \longrightarrow_{t \to -\infty} 0$ i.e. $P(t) e^t = o\left(\frac{1}{t^2}\right)$. Comme l'intégrale $\int_{-\infty}^{-1} \frac{dt}{t^2}$ converge et $t \mapsto \frac{1}{t^2}$ est positive, l'intégrale $\int_{-\infty}^{x} P(t) e^t dt$ converge quelque soit le réel x. Ainsi l'application L(f) est bien définie sur \mathbb{R} .

L'application L est donc bien définie sur E_n .

1.b Pour tout $x \in \mathbb{R}$,

$$L(1)(x) = e^{-x} \int_{-\infty}^{x} e^{t} dt = e^{-x} \left[e^{t} \right]_{t=-\infty}^{t=x} = e^{-x} e^{x} = 1$$

Ainsi L(1) = 1.

1.c Soient $k \in [0, n-1]$ et $x \in \mathbb{R}$. Les applications $t \mapsto t^{k+1}$ et $t \mapsto e^t$ sont de classe \mathcal{C}^1 sur \mathbb{R} et $\lim_{t \to -\infty} t^{k+1} e^t = 0$ par croissances comparées donc, par intégration par parties,

$$\begin{split} \mathbf{L}(\mathbf{X}^{k+1})(x) &= e^{-x} \int_{-\infty}^{x} t^{k+1} e^{t} \, \, \mathrm{d}t \\ &= e^{-x} \left(\left[t^{k+1} e^{t} \right]_{t=-\infty}^{x} - \int_{-\infty} (k+1) t^{k} e^{t} \, \, \mathrm{d}t \right) \\ &= e^{-x} \left(x^{k+1} e^{x} - (k+1) \int_{-\infty}^{x} t^{k} e^{t} \, \, \mathrm{d}t \right) \\ &= x^{k+1} - (k+1) \mathbf{L}(\mathbf{X}^{k})(x) \end{split}$$

Ainsi $L(X^{k+1}) = X^{k+1} - (k+1)L(X^k)$.

- **1.d** On a bien $L(1) = 1 \in E_n$ et si $L(X^k) \in E_n$ pour un certain $k \in [0, n-1]$, alors $L(X^{k+1}) = X^{k+1} (k+1)L(X^k) \in E_n$. Par récurrence, $L(X^k) \in E_n$ pour tout $k \in [0, n]$. De plus, L est clairement linéaire et $(X^k)_{0 \le k \le n}$ est une base de E_n donc L est bien un endomorphisme de E_n .
- **2 2.a** Pour tout $x \in \mathbb{R}$,

$$g(x) = L(f)(x) = e^{-x} \int_{-\infty} f(t)e^t dt$$

De plus, $x \mapsto e^{-x}$ est de dérivable sur \mathbb{R} , de même que $x \mapsto \int_{-\infty} f(t)e^t dt$. La dérivée de cette seconde fonction est $x \mapsto f(x)e^x$ donc g est dérivable comme produit de fonctions dérivables et

$$\forall x \in \mathbb{R}, \ g'(x) = -e^{-x} \int_{-\infty} f(t)e^t \ dt + e^{-x} \cdot e^x f(x) = -L(f)(x) + f(x) = -g(x) + f(x)$$

g est donc bien solution sur \mathbb{R} de l'équation différentielle y' + y = f.

- **2.b** Si $f \in \text{Ker L}$, alors g = L(f) = 0 et, d'après la question précédente, f = g' + g = 0. On en déduit que $\text{Ker(L)} = \{0\}$. L'endomorphisme L est donc injectif. Puisque E_n est de dimension finie, L est un automorphisme de E_n .
- 3 3.a Comme Ker $f = \{0\}$, 0 n'est pas valeur propre de E_n .
 - **3.b** D'après une question précédente, $g = L(f) = \lambda f$ est solution de l'équation différentielle y' + y = f. Ainsi $\lambda f' + \lambda f = f$ ou encore $\lambda f' + (\lambda 1)f = 0$. f est bien solution de l'équation différentielle $\lambda y' + (1 \lambda)y = 0$.

1

© Laurent Garcin MP Dumont d'Urville

- **3.c** D'après le cours, les solutions de l'équation différentielle (\mathcal{E}) sont les fonctions $x \mapsto Ce^{\frac{(1-\lambda)x}{\lambda}}$ avec $C \in \mathbb{R}$.
- **3.d** Soit P une éventuelle solution polynomiale de (\mathcal{E}) . En notant d son degré, on a donc $P^{(d+1)} = 0$. Mais la question précédente montre qu'il existe $C \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, \ P(x) = Ce^{\frac{(1-\lambda)x}{\lambda}}$$

Alors

$$\forall x \in \mathbb{R}, \ P^{(d+1)}(x) = C\left(\frac{1-\lambda}{\lambda}\right)^{d+1} e^{\frac{(1-\lambda)x}{\lambda}}$$

Cette fonction n'est pas nulle à moins que $\lambda = 1$ ou C = 0. On en déduit que

- si $\lambda \neq 1$, l'unique solution polynomiale de (\mathcal{E}) est la fonction nulle;
- si $\lambda = 1$, les solutions polynomiales de (\mathcal{E}) sont les fonctions constantes.
- **3.e** D'après ce qui précède, la seule valeur propre de L est 1 et le sous-espace propre associé est l'ensemble des fonctions constantes i.e. $\mathbb{R}_0[X] = \text{vect}(1)$.
- **3.f** Comme 1 est la seule valeur propre de L, si L était diagonalisable, on aurait L = Id. Ceci n'est pas le cas puisque, par exemple, L(X) = X L(1) = X 1. Par conséquent, L n'est pas diagonalisable.
- **4 4.a** Soit $P \in E_n$. On a vu que L(P) est solution de l'équation différentielle y' + y = P donc L(P)' + L(P) = P ou encore $(D + Id) \circ L(P) = P$. On en déduit que $(d + Id) \circ L = Id$. Comme L est un automorphisme de E_n , $D + Id = L^{-1}$.
 - **4.b** La matrice de L⁻¹ dans la base \mathcal{B} est donc la matrice de D + Id dans la base \mathcal{B} . Pour tout $k \in [0, n]$, $(D + Id)(X^k) = X^k + kX^{k-1}$. Ainsi

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 2 & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & 0 \\ \vdots & & \ddots & 1 & n \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

4.c On en déduit que $\chi_{L^{-1}} = (X-1)^{n+1}$. Ainsi 1 est la seule valeur propre de L^{-1} . Soit λ une valeur propre de L. Il existe donc $P \in E_n$ non nul tel que $L(P) = \lambda P$. Ainsi $P = \lambda L^{-1}(P)$. On a déjà vu plus haut que $\lambda \neq 0$ donc $L^{-1}(P) = \frac{1}{2}P$. Donc $1/\lambda$ est une valeur propre de L^{-1} et donc $1/\lambda = 1$ i.e. $\lambda = 1$.