Séquence : 06

Document : TP01 Lycée Dorian Renaud Costadoat Françoise Puig

Convertisseurs statiques

Reference	506 - 1701
Compétences	C1-06: Proposer une démarche permettant de déterminer des grandeurs électriques.
	C2-11: Déterminer les signaux électriques dans les circuits.
	E1-05: Lire et décoder un document technique.
	E2-01: Choisir un outil de communication adapté à l'interlocuteur.
Description	Etude des convertisseurs statiques par la simulation et par la mesure à l'aide d'un oscilloscope.
Système	Scilab: Xcos

1 Introduction

Après avoir lancé le logiciel Scilab, le module Xcos démarre en cliquant sur 'Applications/Xcos'.

L'ensemble des éléments nécessaire au câblage des circuits suivants se trouve dans la palette SIMM située dans le « Navigateur de palettes », disponible sur la fenêtre Xcos en cliquant sur 'Vue/Navigateur de palettes'.

L'ensemble des éléments nécessaire à la conception des circuits suivant ont été présenté dans le cours, il est possible de retrouver ces composants par identification.

2 Commande d'un hacheur série

Le schéma suivant est celui d'un hacheur série.

Question 1 : Réaliser le câblage de ce montage sur le logiciel Scilab : Xcos.

Question 2 : Mettre en place une commande par signal créneaux en entrée de l'interrupteur afin de piloter ce montage.

Question 3 : Faire varier le rapport cyclique du signal d'entrée et constater l'influence de ce paramètre sur :

- la tension aux bornes du moteur,
- le sens de rotation,
- le courant dans le moteur.

3 Hacheur 4 quadrants

Le schéma suivant est celui d'un hacheur 4 quadrants.

Les ensembles IGBT/Diodes K_i seront modélisés par des interrupteurs comme sur le cours.

Question 4 : Réaliser le câblage de ce montage sur le logiciel Scilab : Xcos.

Question 5 : Mettre en place une commande par signal créneaux en entrée des interrupteurs afin de piloter ce montage. Un seul signal devra piloter tous les interrupteurs.

Question 6 : Faire varier le rapport cyclique du signal d'entrée et constater l'influence de ce paramètre sur :

- la tension aux bornes du moteur,
- le sens de rotation,
- le courant dans le moteur.

4 Commande d'un onduleur

Le schéma suivant présente le cablage d'un onduleur. Il est semblable à celui d'un hacheur car la seule différence entre les deux tient à la commande.

Question 7 : Réutiliser le montage précédent pour cette étude en modifiant la charge.

Question 8 : Proposer une solution de génération du signal de l'onduleur et câbler cette solution.

Question 9 : Faire varier la forme du signal modulé et modulant et constater l'influence de ce paramètre sur :

- la tension aux bornes du circuit R,L,
- le courant dans le circuit.

5 Asservissement d'un moteur

Le bloc **PWM** demande en entrée une valeur de rapport cyclique et génère en sortie un signal créneau correspondant.

Question 10 : Utiliser ce bloc afin de réaliser un asservissement en position d'un moteur électrique. Montrer l'influence des divers réglages sur les critères d'évaluation de l'asservissement (rapidité, précision, stabilité).