Analog Electronics

References

A TEXTBOOK OF

ELECTRICAL TECHNOLOGY

IN S.I. UNITS
VOLUME IV

ELECTRONIC DEVICES
AND CIRCUITS

S. CHAND

B.L. THERAJA A.K. THERAJA

Transistor Load Line Analysis

The value of collector-emitter voltage V_{CE} at any time is given by ;

$$V_{CE} = V_{CC} - I_C R_C \qquad \dots (i)$$

Fig. 8.35

As V_{CC} and R_C are fixed values, therefore, it is a first degree equation and can be represented by a straight line on the output characteristics. This is known as d.c. load line and determines the locus of $V_{CE} - I_C$ points for any given value of R_C . To add load line, we need two end points of the straight line. These two points can be located as under:

 (i) When the collector current I_C = 0, then collector-emitter voltage is maximum and is equal to V_{CC} i.e.

$$\begin{aligned} \text{Max. } V_{CE} &= V_{CC} - I_C \, R_C \\ &= V_{CC} \qquad (\because I_C = 0) \end{aligned}$$

This gives the first point B ($OB = V_{CC}$) on the collector-emitter voltage axis as shown in Fig. 8.35 (ii).

Transistor Load Line Analysis

(ii) When collector-emitter voltage $V_{CE} = 0$, the collector current is maximum and is equal to V_{CC}/R_C i.e.

or
$$V_{CE} = V_{CC} - I_C R_C$$
$$0 = V_{CC} - I_C R_C$$
$$\therefore \quad \text{Max. } I_C = V_{CC} / R_C$$

This gives the second point A ($OA = V_{CC}/R_C$) on the collector current axis as shown in Fig. 8.35 (ii). By joining these two points, d.c. *load line AB is constructed.

Importance. The current (I_C) and voltage (V_{CE}) conditions in the transistor circuit are represented by some point on the output characteristics. The same information can be obtained from the load line. Thus when I_C is maximum $(=V_{CC}/R_C)$, then $V_{CE}=0$ as shown in Fig. 8.36. If $I_C=0$, then V_{CE} is maximum

and is equal to V_{CC} . For any other value of collector current say OC, the collector-emitter voltage $V_{CE} = OD$. It follows, therefore, that load line gives a far more convenient and direct solution to the problem.

Operating Point

The zero signal values of I_C and V_{CE} are known as the operating point.

It is also called quiescent (silent) point or Q-point because it is the point on I_C- V_{CE} characteristic when the transistor is silent i.e. in the absence of the signal.

Example 8.22. For the circuit shown in Fig. 8.38 (i), draw the d.c. load line.

Example 8.22. For the circuit shown in Fig. 8.38 (i), draw the d.c. load line.

 $V_{CE} = V_{CC} - I_C R_C$

 $V_{CE} = V_{CC} = 12.5 \text{ V}$

Solution. The collector-emitter voltage V_{CF} is given by ;

When $I_C = 0$, then,

This locates the point B of the load line on the collector-emitter voltage axis.

 $I_C = V_{CC}/R_C = 12.5 \text{ V}/2.5 \text{ k}\Omega = 5 \text{ mA}$ This locates the point A of the load line on the collector current axis. By joining these two points, we get the d.c. load line AB as shown in Fig. 8.38 (ii).

Example 8.23. In the circuit diagram shown in Fig. 8.39 (i), if $V_{CC} = 12V$ and $R_C = 6 k\Omega$, draw the d.c. load line. What will be the Q point if zero signal base current is $20\mu A$ and $\beta = 50$?

Example 8.23. In the circuit diagram shown in Fig. 8.39 (i), if $V_{CC} = 12V$ and $R_C = 6 k\Omega$, draw the d.c. load line. What will be the Q point if zero signal base current is $20\mu A$ and $\beta = 50$?

Solution. The collector-emitter voltage V_{CE} is given by :

$$V_{CE} = V_{CC} - I_C R_C$$

When $I_C = 0$, $V_{CE} = V_{CC} = 12$ V. This locates the point B of the load line. When $V_{CE} = 0$, $I_C = V_{CC}/R_C = 12$ V/6 k $\Omega = 2$ mA. This locates the point A of the load line. By joining these two points, load line AB is constructed as shown in Fig. 8.39 (ii).

Zero signal base current, $I_R = 20 \,\mu\text{A} = 0.02 \,\text{mA}$

Current amplification factor, $\beta = 50$

$$\therefore$$
 Zero signal collector current, $I_C = \beta I_B = 50 \times 0.02 = 1 \text{ mA}$

Fig. 8.39

Zero signal collector-emitter voltage is

$$V_{CE} = V_{CC} - I_C R_C = 12 - 1 \text{ mA} \times 6 \text{ k} \Omega = 6 \text{ V}$$

Operating point is 6 V, 1 mA.

Fig. 8.39 (ii) shows the Q point. Its co-ordinates are $I_C = 1$ mA and $V_{CE} = 6$ V.

Example 8.24. In a transistor circuit, collector load is 4 $k\Omega$ whereas quiescent current (zero signal collector current) is ImA.

- (i) What is the operating point if $V_{CC} = 10 \text{ V}$?
- (ii) What will be the operating point if $R_C = 5 k\Omega$?

Example 8.24. In a transistor circuit, collector load is 4 $k\Omega$ whereas quiescent current (zero signal collector current) is lmA.

- (i) What is the operating point if V_{CC} = 10 V?
- (ii) What will be the operating point if $R_C = 5 k\Omega$?

Solution.
$$V_{CC} = 10 \text{ V}, I_C = 1 \text{ mA}$$

(i) When collector load $R_C = 4 \text{ k } \Omega$, then,

$$V_{CE} = V_{CC} - I_C R_C = 10 - 1 \text{ mA} \times 4 \text{ k } \Omega = 10 - 4 = 6 V$$

- .. Operating point is 6 V, 1 mA
- When collector load $R_C = 5 \text{ k} \Omega$, then, $V_{CE} = V_{CC} - I_C R_C = 10 - 1 \text{ mA} \times 5 \text{ k} \Omega = 10 - 5 = 5 V$
- ∴ Operating point is 5 V, 1 mA.

Thank You All