Пусть $f:K \to L$ – изоморфизм колец.

Тогда $f^{-1}:L o K$ — изоморфизм колец.

Пусть $f:K \to L$ – изоморфизм колец.

Тогда $f^{-1}:L o K$ — изоморфизм колец.

Очевидно, что $f^{-1}:L \to K$ – биекция.

Пусть $f:K \to L$ – изоморфизм колец.

Тогда $f^{-1}:L o K$ — изоморфизм колец.

Очевидно, что $f^{-1}:L \to K$ — биекция.

Осталось доказать, что f^{-1} – гомоморфизм.

T.e.
$$f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$$

Пусть $f: K \to L$ — изоморфизм колец. Тогда $f^{-1}: L \to K$ — изоморфизм колец.

Очевидно, что $f^{-1}:L \to K$ – биекция.

Осталось доказать, что f^{-1} – гомоморфизм.

T.e.
$$f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$$

Пусть
$$w = f^{-1}(a+b) - f^{-1}(a) - f^{-1}(b)$$

$$f(w) = f(f^{-1}(a+b)) - f(f^{-1}(a)) - f(f^{-1}(b))$$

Пусть $f:K \to L$ — изоморфизм колец.

Тогда $f^{-1}:L o K$ — изоморфизм колец.

Очевидно, что $f^{-1}:L \to K$ – биекция.

Осталось доказать, что f^{-1} – гомоморфизм.

T.e.
$$f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$$

Пусть
$$w = f^{-1}(a+b) - f^{-1}(a) - f^{-1}(b)$$

$$f(w) = f(f^{-1}(a+b)) - f(f^{-1}(a)) - f(f^{-1}(b))$$

Из f(w) = 0 = f(0) и того, что f – биекция следует, что w = 0.

Пусть $f:K \to L$ — изоморфизм колец.

Тогда $f^{-1}:L o K$ — изоморфизм колец.

Очевидно, что $f^{-1}:L \to K$ – биекция.

Осталось доказать, что f^{-1} – гомоморфизм.

T.e.
$$f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$$

Пусть
$$w = f^{-1}(a+b) - f^{-1}(a) - f^{-1}(b)$$

$$f(w) = f(f^{-1}(a+b)) - f(f^{-1}(a)) - f(f^{-1}(b))$$

Из f(w) = 0 = f(0) и того, что f – биекция следует, что w = 0.

Следовательно
$$f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$$
.

Абсолютное аналогичное доказательство для умножения.

Если существует изоморфизм $f: K \to L$, то говорят, что это кольца изоморфны $K \simeq L$.

Если существует изоморфизм $f: K \to L$, то говорят, что это кольца изоморфны $K \simeq L$.

— отношение эквивалентности на множестве колец.

Если существует изоморфизм $f: K \to L$, то говорят, что это кольца изоморфны $K \simeq L$.

— отношение эквивалентности на множестве колец.

Рефлексивность очевидна.

Если существует изоморфизм $f: K \to L$, то говорят, что это кольца изоморфны $K \simeq L$.

— отношение эквивалентности на множестве колец.

Рефлексивность очевидна.

1) Симметричность следует из предыдущей леммы.

Если существует изоморфизм $f: K \to L$, то говорят, что это кольца изоморфны $K \simeq L$.

— отношение эквивалентности на множестве колец.

Рефлексивность очевидна.

- 1) Симметричность следует из предыдущей леммы.
- 2) Композиция двух биекций биекция.

Если существует изоморфизм $f: K \to L$, то говорят, что это кольца изоморфны $K \simeq L$.

— отношение эквивалентности на множестве колец.

Рефлексивность очевидна.

- 1) Симметричность следует из предыдущей леммы.
- 2) Композиция двух биекций биекция.
- 3) Дальше просто докажем изоморфность биекций.

$$gf(a+b) = g(f(a+b)) = g(f(a) + f(b)) = g(f(a)) + g(f(b)) = gf(a) + gf(b).$$