

语音库自动构建若干问题的研究

IHCIL

张巍

中国海洋大学 计算机科学与技术系

主要内容

- 一、研究背景及研究意义
- 二、纯语音自动提取
- 三、文语自动对齐
- 四、无监督句子自动切分
- 五、无监督语种自动鉴别

- ■语音库(Corpus)是语音识别和语音合成的根基
- ■传统语音Corpus的构建

■主要缺点

- » 耗时,耗力,构建周期长
- » 带有人为主观性和片面性
- » 影响语音合成和识别的能力

- ■基于开放性资源快速构建语音Corpus
 - **University of Edinburgh CSTR Simple4all**
 - **CMU TTS from Audio Book**
 - **Our Research**

纯语音自动提取

GMM-VDHMM的音频分类

> 分帧

- ■每25毫秒一帧,且不互相重叠,我们用{x(0), x(1),..., x(N-1)}
- ▶ 特征参数抽取(共42维)
 - ■Mel频率倒谱系数(MFCC) $c_m = \sum_{k=1}^{L} (\log \widetilde{O}_k) \cos \left[m(k \frac{1}{2}) \frac{\pi}{L} \right], \quad m = 1, ..., L$
 - ■短时帧能量

$$E = \frac{1}{N} \sum_{n=0}^{N-1} x^2(n)$$

■过零率

$$ZCR = \frac{1}{N} \sum_{n=1}^{N} \frac{|\operatorname{sgn}\{x(n)\} - \operatorname{sgn}\{x(n-1)\}|}{2}$$

■频谱熵

$$H = -\sum_{i=0}^{L-1} n_i \cdot \log_2(n_i), i = 0, ..., L-1$$

> 特征参数抽取

话语和音乐音频的短时能量

话语和音乐音频的过零率

□ co-training协同训练

纯语音自动提取

> 实验分析

组号	话语准确率	混合准确率	音乐准确率	话语召回率	混合召回率	音乐召回率
1	0.96078	1	1	1	0.72079	0.99464
2	0.99244	0.7759	0.98475	1	0.96854	0.75341
3	0.99255	0.95037	0.99889	1	0.98101	0.92985
4	0.98278	0.98587	0.7483	1	0.80823	0.9814
5	0.95469	0.90588	1	0.99709	0.6428	0.99227
6	0.94394	0.96753	0.96264	1	0.72292	0.97386
7	0.97039	0.99424	0.97207	1	0.82792	0.99607
8	0.98027	0.9919	0.99608	1	0.84296	0.99694
9	0.96594	0.90236	1	1	0.73258	0.96492
10	0.99059	0.81357	0.96506	1	0.93401	0.82382
11	0.97514	0.9415	0.99949	1	0.7984	0.98338
12	0.97525	0.9956	0.99567	1	0.80321	0.99835
13	0.99407	0.97716	1	1	0.94082	0.99643
平均	0.975295	0.938606	0.970996	0.999776	0.824938	0.952718

•语音识别器的识别结果

•原始的文本

- •全国
- •人大常委会
- •副委员
- •陈成之
- •国务委员
- •杨杰
- •出席
- •欢迎
- •仪式

8710000 9210000 •全国

9210000 1100000 •人大常委会

1100000 1310000 •副委员长

1310000 1420000 •陈昌智、

1420000 1600000 •国务委员

1600000 1710000 •杨洁篪、

1710000 1810000 •出席

18100000 1920000 •欢迎

1920000 2100000

•仪式。

Google voice recognition (GVR)

多引擎多次重识别

▶GVR识别的问题

缺少了识别文本的时间信息

>解决方法

有限状态自动机(Finite State Automaton, 简记为FSA)的语言模型

▶GVR-FSA 的语言模型

Skip Network:

W1 W2 W3 W4

W1 W3

▶GVR-FSA 的声学模型

≻GVR-FSA

≻Improved_SailAlign

▶实验分析

ISA和GVR的性能比较

改进前后的SailAlign性能比较

error margin

例子:

算法得到的时间信息 中共中央 12000-13000 (ms)

实际该词所对应的时间信息 中共中央 12500-13500

本文的允许error margin 为50ms,超过50ms,认为对齐错误这里我们用WER来表示不匹配的概率,即对齐错误字的总数占文本中总字数的百分比

ISA和GVR的字错误率能比较

无监督句子自动切分

整体框架

整体框架-续

语音&文本 YES 转换程序 句点增加? ZLSS MLSS NO HashMap追踪 句点时间 特征抽取 查找 正确的句子 Replacing Program

无监督句子自动切分

- > 迭代算法
 - **>ZLSS和MLSS**
 - >相同的时间标度,基于同一时间轴互为输入输出,相互翻滚迭代

- > 迭代算法关键步骤
 - >ZLSS算法(Zero-labeling Sentence Segmentation)
 - •无标注的句子切分算法
 - •得到初始的精标数据集
 - >MLSS算法(Minimum Labeling Sentence Segmentation)
 - ·半监督学习算法(Co_training)[10]
 - •二元分类器-基于最大熵
 - **HashMap**追踪查找机制
 - •利用哈希表追踪定位每一次迭代相对原始篇幅语音数据的位置

> ZLSS算法的迭代过程

ZLSS提供 标注数据

▶ MLSS算法的迭代过程

图4 MLSS算法迭代过程

无监督句子自动切分

- > 实验分析
 - > 切分系统经过完整的四次迭代过程(中文结果)
 - 标注系统用于提供少量的精标数据集
 - > 分类系统在此基础上,继续训练探测出更多的句子边界

迭代次数	标注系统	分类系统	句子总数	正确比率
1	411	218	629	64.7%
2	720	108	828	89.3%
3	875	35	910	93.6%
4	920	15	935	96.2%

无监督语种鉴别

Slides

无监督语种鉴别

Slides

Thank you

Q&A

