Решение уравнения Рейнольдса в рамках теории газовой смазки методом конечных элементов

Докладчик: Пиневич В. Г. Научный руководитель: Селиванов А. В.

группа ФН2-81Б

21 мая 2024 г.

Постановка задачи

Уравнение Рейнольдса

$$\frac{\partial}{\partial x} \left(h^3 \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(h^3 \frac{\partial p}{\partial z} \right) = 6\mu U \frac{\partial h}{\partial x}$$

Граничные условия

U — скорость в направлении $oldsymbol{x}$,

 $ho_{\scriptscriptstyle
m B}$ — повышенное давление,

 p_{H} — пониженное давление

Описание величин

h = h(x) — толщина слоя,

p = p(x, z) — давление,

 μ — коэффициент вязкости

Рис. Схема области решения задачи

Решение уравнения Рейнольдса с помощью слабой формы Галеркина

Функции формы

$$\begin{cases} N_1 = 1 - \frac{x}{l} - \frac{z}{h} + \frac{xz}{lh}, \\ N_2 = \frac{x}{l} - \frac{xz}{lh}, \\ N_3 = \frac{xz}{lh}, \\ N_4 = \frac{z}{h} - \frac{xz}{lh} \end{cases}$$

Входные данные

$$\begin{cases} h = 0.0001 \text{ M}, \\ vertical Length = 0.005 \text{ M}, \\ horizontal Length = 0.005 \text{ M}, \\ \mu = 8.90*10^{-4} \text{ Πa*c}, \\ U = 10 \text{ M/c}, \\ p_{\text{H}} = 100 \text{ κΠa}, \\ p_{\text{B}} = 150 \text{ κΠa} \end{cases}$$

Аппроксимирующая функция

$$\phi = c_0 N_1 + c_1 N_2 + c_2 N_3 + c_3 N_4$$

Решение на сетке 10 на 10

Рис. График решения уравнения Рейнольдса для h = 0.0001 м на сетке 10 на 10 элементов

Рис. График значений узлов решения уравнения Рейнольдса для h=0.0001 м на сетке 10 на 10 элементов

Решение на сетке 20 на 20

Рис. График решения уравнения Рейнольдса для h = 0.0001 м на сетке 20 на 20 элементов

Рис. График значений узлов решения уравнения Рейнольдса для h = 0.0001 м на сетке 20 на 20 элементов

Сравнение решения с Wolfram Mathematica

Рис. График решения уравнения Рейнольдса для h = 0.0001 м полученный с помощью Wolfram Mathematica

Размерность сетки	Разность, Па	Погрешность, %
5 на 5	4612	4.51
10 на 10	1538	1.38
20 на 20	1290	1.02

Результаты

Сделано

- Создана программная реализация метода конечного элемента для решение уравнения Рейнольдса
- ② Полученные значения решения уравнения Рейнольдса были сравнены с результатами решения, полученного с помощью функции NDSolve в Wolfram Mathematica

Будет сделано

- Получение базы аэродинамических усилий для различных углов наклона и смещения верхней стенки на основе решения уравнения Рейнольдса
- Исследование динамического поведения пластинки с двумя степенями свободы, находящей под действием аэродинамических усилий со стороны потока жидкости