

1 | Setup

The ball launcher problem involves an energetic optimization to figure, given the situation as shown in the above image, the parameters h_0 and θ_0 that would best create a maximum launch distance x_f .

In this problem, we will define the axis such that the "lower-left" corner of the wood block (corner sharing x value of the starting position of the marble, but on the "ground") as (-w,0), where w is the width of the wooden block. Therefore, we derive the x-value of the location of the launch of the projectile as x=0. We define the direction towards with the marble is launching as positive-x, so as the marble rolls, its position's x value increases. We will define the location of the marble before starting as positive y, and as the marble decreases in height, its position's y value decreases.

We define the start of the experiment as time t_0 , the moment the marble leaves the track and travels as a projectile as t_1 , and the end — in the moment when the marble hits the ground — as t_f . We will call the marble m_0 .

2 | Figuring the Velocity at t_1

In order to expedite the process of derivation, we will leverage an energetic argument instead of that of kinematics for figuring the velocity at launch. The change-in-height that m_0 experiences before t_1 is $\Delta h =$ $H-h_0$. Therefore, the potential energy expenditure is $\Delta PE_{grav}=mg\Delta h=m_0g(H-h_0)$. Assuming that the marble starts out with 0 kinetic energy, we deduct that, at the moment of it finishing its descent, it will possess kinetic energy $KE = 0 + m_0 g(H - h_0) = m_0 g(H - h_0)$.

For this derivation, for now, we ignore $KE_{rotational}$, hence, we could roughly deduct the statement that $KE_{translational} \approx m_0 g(H - h_0).$

Creating this statement, we could deduct a statement that we could leverage to solve for the velocity at t_1 named $\vec{v_0}$.

$$m_0 g(H - h_0) = \frac{1}{2} m_0 \vec{v_0}^2 \tag{1}$$

$$g(H - h_0) = \frac{1}{2}\vec{v_0}^2 \tag{2}$$

$$2g(H - h_0) = \vec{v_0}^2 \tag{3}$$

$$\vec{v_0} = \sqrt{2g(H - h_0)}$$
 (4)

This velocity vector could be easily split into its two constituent parts. Namely:

$$\begin{cases} \vec{v_{0x}} = \sqrt{2g(H - h_0)}cos(\theta_0) \\ \vec{v_{0y}} = \sqrt{2g(H - h_0)}sin(\theta_0) \end{cases}$$

3 | Figuring the Maximum Possible Travel Distance

Here, we devise an function for x_f w.r.t. $\vec{v_{0y}}$, $\vec{v_{0x}}$, h_0 , m_0 .

3.1 | Setup for Kinematics

We first will leverage the parametric equations for position in kinematics in order to ultimately result in a function for x_f .

$$\begin{cases} x(t) = \frac{1}{2}a_{0x}t^2 + v_{0x}t + x_0 \\ y(t) = \frac{1}{2}a_{0y}t^2 + v_{0y}t + y_0 \end{cases}$$

Given the situation of our problem, we could modify the pair as follows:

$$\begin{cases} x(t) = v_{0x}t \\ y(t) = \frac{-1}{2}gt^2 + v_{0y}t + h_0 \end{cases}$$

- there are no acceleration in the x-direction at the point of launch
- · the only acceleration in the y-direction is that due to gravity
- the start x-position of the marble at launch is, as defined above, x=0
- the start y-position of the marble at launch is, as defined above, $y=h_0$

3.2 | Solving for $\frac{dx_f}{d\theta_0}$

We need to maximize $\frac{dx_f}{d\theta_0}$ as one out of two components to optimize for. Once we figure that value, we then supply the corresponding maximum value then optimize again for We maximize The position equations above could be leveraged to figure a value for x_f . We first create a set of equations modeling the location of the marble at t_f .

$$\begin{cases} x(t_f) = x_f = v_{0x}t_f = t_f\sqrt{2g(H - h_0)}cos(\theta_0) \\ y(t_f) = 0 = \frac{-1}{2}gt_f^2 + v_{0y}t_f + h_0 = \frac{1}{2}gt_f^2 + t_f\sqrt{2g(H - h_0)}sin(\theta_0) + h_0 \end{cases}$$

To simplify calculations initially, we set $\sqrt{2g(H-h_0)}$ back as $\vec{v_0}$ for the ease of initial simplification.

$$\begin{cases} x(t_f) = x_f = v_{0x}t_f = t_f\vec{v_0}cos(\theta_0) \\ y(t_f) = 0 = \frac{-1}{2}g{t_f}^2 + v_{0y}t_f + h_0 = \frac{-1}{2}g{t_f}^2 + t_f\vec{v_0}sin(\theta_0) + h_0 \end{cases}$$

We first solve for t_f , and supply it to the first equation.

$$t_f = \frac{x_f}{\vec{v_0}cos(\theta_0)} \tag{5}$$

Finally, we substitute the definition of t_f into $y(t_f)$.