北京化工大学 2012——2013 学年第二学期 《分析化学》期末考试试卷

课程代码	С	Η	M	3	2	2	0	T
------	---	---	---	---	---	---	---	---

班级:		姓名:	学号:			
	题号	—	=	三	总分	
	得分					
_	、 填空:	(每空 0.5 分	,共 20 分)			
1,	检验两组数	数据是否存在显	著性差异先采用	<u>F</u> 检验,再	手进行 <u>t</u>	
	检验。					
2、	某溶液 pH	[=4.35,则[H ⁺]=	4.5*10 ⁻⁵	mol/L。		
3、	测定一物质	质中某组分的含	量, 测定结果为 (%	6):49.82,50.06,	49.86, 50.24,	
	则平均偏差	差为 0.16%	, 标准偏差为	0.19%	0	
4、			水溶液的		- [H ⁺]+2[H ₃ PO ₄]	
		4]=[OH]+[NH3			<u>,, -,</u> ,,	
5		_	<u> </u>	买田仕ヶ基准物 居	和指示剂。	
٥,	11112 1 211	标准溶液	基准物质	指示剂	(44)1471/110	
		EDTA	ZnO、Zn	铬黑 T、二甲酚	橙	
		KMnO ₄	Na ₂ C ₂ O ₄	自身指示剂		
		HCl \exists	心水碳酸钠、硼砂	酚酞、甲基红		
6、	浓度一定	时,酸碱滴定	的 pH 突跃的大小	小与 Ka (Kb)	,滴定剂浓度	
	有关;络仓	合滴定的 pM 突	跃的大小与 <u>K_{MY} '</u>	和浓度	有关。	
7、	下列物质	HCO ₃ NH ₄ ,	Ac ⁻ 中,属于质子酉	後的有 <u>HCO₃¯、N</u>	<u>H4</u> - ,其共轭	
	碱是 <u>CO3</u> 2	- 、NH ₃ ,属于	质子碱的有 <u>HCO₃-</u> 、	Ac , 其共轭	酸是 <u>H₂CO₃、</u>	
	HAc .	_				
8、			E KNO ₃ 溶液中的	的溶解度比在水	く中的溶解度	
			盐效应 ; 而			
			<u>变小</u> ,这种现象			
Q. 4			文小			
				<u> 1 ТИН ФОТЕГ</u>	, <u>TTHHIXIAC</u> ,	
	<u> </u>	印 <u>结果报告</u> 。				

10、沉淀滴定法最常用的方法称为<u>银量法</u>法,其中莫尔法与佛尔哈德法的指示剂分别为<u>铬酸钾(K2CrO4)和铁铵矾((NH)4Fe(SO4)2)。</u>
11、某基准物质 A 的摩尔质量为 50g/mol, 用来标定 0.2mol/L 的 B 溶液,设反应 A+2B=P,每份基准物的称量范围应为<u>0.10-0.15 克</u>。
12、BaSO4法测定钡的含量,下述情况使测定结果偏高或偏低,还是无影响?
(1) 沉淀中包藏了 BaCl2 低
(2) 灼烧过程中部分 BaSO4 被还原为 BaS 低
13、基准物质必须符合的条件是<u>物质的组成与化学式相符</u>,<u>试剂的纯度足够高(99.9%以上)</u>,和<u>试剂稳定</u>。
14、沉淀形和称量形可能相同,也可能不同.如水泥中 SO3 的测定,沉淀形为BaSO4</u>,称量形为<u>BaSO4</u>;重量法测定 Ca²⁺,沉淀形为 CaC₂O4·H₂O,

二、简答题(共30分)

称量形为 CaO

- 1、简述系统误差的分类和产生的主要原因及减免系统误差的方法。(6分)
- 答:系统误差分为:仪器误差、方法误差、试剂误差、操作误差 (2分) 仪器误差:由于仪器不准造成的,可校正;(1分) 方法误差:由于方法不完善造成的,可做对照实验或用其他方法;(1分) 试剂误差:由于试剂不纯造成的,可做空白实验或用更纯的试剂;(1分) 操作误差:由于个人偏见造成的,可加强训练。 (1分)
- 2、写出高锰酸钾法滴定的原理;标定高锰酸钾标准溶液如果采用草酸钠作为基准物,写出标定反应式,描述标定反应条件。(12分)

基准物: Na2C2O4(常用)
2MnO4-+5C2O42-+16H+=2Mn2++10CO2+8H2O

温度: 75~85°C

酸度: 0.5~1 mol·dm-3 的 H2SO4 介质

速度:滴定开始时速度要缓慢

3、写出沉淀形成过程、类型及各自的沉淀条件。(12分) 答:沉淀的类型大致分两种:晶型沉淀和无定型沉淀 (2分)

沉淀形成过程:(略)

形成晶型沉淀的条件:

- (1) 沉淀应在适当稀的溶液中进行;
- (2) 应在不断搅拌下,缓慢地加入沉淀剂
- (3) 沉淀在热溶液中进行; (4) 陈化 (4分)

形成无定型沉淀的条件:

- (1) 在较浓的溶液中进行; (2) 在热溶液中进行且不断搅拌;
- (3) 沉淀时加入大量电解质或能引起沉淀凝聚的胶体; (4) 不必陈化(4分)

三、计算题(50分)

1、预用0.2000 mol/L的NaOH滴定20.00 mL, 0.2000 mol/LHAc, 计算化学计量点的pH值以及滴定突跃范围; 如果采用酚酞做指示剂 (pT=8.0),计算终点误差。已知HAc的离解常数pK_a=4.76 (10分)

解: 化学计量点时产物为: Ac 是一个碱

$$c \cdot K_b = 0.1000 \times \frac{10^{-14}}{10^{-4.76}} = 10^{-10.24} > 20 Kw$$

$$\frac{K_b}{c} = \frac{10^{-14}}{10^{-4.76} \times 0.1000} = 10^{-8.24} \langle 2.5 \times 10^{-3}$$

用最简式计算

$$\begin{split} &[\text{OH}^-] = \sqrt{c \cdot K_b} = \sqrt{\frac{0.2000}{2} \times \frac{10^{-14}}{10^{-4.76}}} = 10^{-5.12} \, \text{mol/L} \\ & \text{pH} = 8.88 \\ & \Delta \text{pH} = \text{pH}_{\text{ep}} - \text{pH}_{\text{sp}} = \text{PT} - \text{pH}_{\text{sp}} = 8.0 - 8.88 = -0.88 \\ & E_t = \frac{10^{\Delta \text{pH}} - 10^{-\Delta \text{pH}}}{\sqrt{c \cdot K_t}} = \frac{10^{-0.88} - 10^{0.88}}{\sqrt{\frac{0.2000}{2} \times \frac{10^{-4.76}}{10^{-14}}}} = 0.06\% \end{split}$$

2、计算 CaC_2O_4 在pH = 4.00的0.10 mol·L⁻¹草酸溶液中的溶解度(已知: CaC_2O_4 的 Ksp = $10^{-7.8}$, $H_2C_2O_4$ 的 pKa_1 = 1.1, pKa_2 = 4.0) (10分)

解:
$$\alpha_{C_2O_4^{2-}(H)} = 1 + \beta_1[H^+] + \beta_2[H^+]^2 = 1 + \frac{[H^+]}{K_{a_2}} + \frac{[H^+]^2}{K_{a_1} \cdot K_{a_2}} = 2.0 = 10^{0.3}$$

$$[C_{2}O_{4}^{2^{-1}}] = S + 0.10 \approx 0.10 \text{mol/L}$$

$$S = [Ca^{2^{+}}] = \frac{K_{sp}'}{[C_{2}O_{4}^{2^{-1}}]} = \frac{K_{sp} \times \alpha_{C_{2}O_{4}^{2^{-}}}}{[C_{2}O_{4}^{2^{-1}}]} = \frac{10^{-7.8} \times 10^{0.3}}{0.10} = 3.2 \times 10^{-7} \text{mol/L}$$

3、称取混合碱试样(可能含有NaOH、Na₂CO₃、NaHCO₃中的一种或两种)0.3010g, 用酚酞作指示剂滴定时,用去0.1060 mol/L HCl 20.10mL; 继续用甲基橙作指示剂滴定,用去HCl 47.70 mL。试计算试样中各组分的质量分数。(8分) (M_{NaOH} = 40.00, M_{Na2CO3} = 105.99, M_{NaHCO3} = 84.01)。

解:

 $Na_2CO_3\% = (0.1060 \times 20.10 \times 10^{-3} \times 105.99)/0.3010 = 75.02\%$

NaHCO₃%=(0.1060×(27.60-20.10) ×10⁻³×84.01)/0.3010=22.19%

4 计算 pH = 10.00,0.20 mol·dm NH – NH Cl 缓冲溶液中 CuY 的 lg K'_{CuY} 为多大? 在此条件下可否用 0.020 mol·dm 的 EDTA 准确滴定 0.020 mol·dm 的 Cu?(已知: lg K^{Θ}_{CuY} = 18.83,pH = 10.00 时 lg $\alpha_{Y(H)}$ = 0.45,lg $\alpha_{Cu(OH)}$ = 1.70, $K_b^{\Theta}_{(NH_3\cdot H_2O)}$ = 1.75×10⁻⁵,[Cu(NH₃)4]²⁺ 的 lg β_1 = 4.13,lg β_2 = 7.61,lg β_3 = 10.48,lg β_4 = 12.59)(12 分)

解:

$$lg \; C_{sp} \, K' \; {}_{CuY} = lg \; 0.01 \times 10^{10.15} = 8.15 \geq 6$$

能准确滴定

5、用0.1000 mol·L⁻¹ Ce(SO₄)₂标准溶液滴定20.00 mL,0.1000 mol·L⁻¹ Fe²⁺溶液,溶液的酸度保持在1 mol/L H₂SO₄介质中,计算化学计量点的电极电势和滴定突跃范围。已知φθ′ (Ce⁴⁺/Ce³⁺) = 1.44V,φθ′ (Fe³⁺/Fe²⁺) = 0.68V(10分)

解: 反应为
$$Ce^{4+} + Fe^{2+} = Ce^{3+} + Fe^{3+}$$
 化学计量点时电位: $\varphi_{sp} = \frac{n_1 \varphi^{\theta'}_1 + n_2 \varphi^{\theta'}_2}{n_1 + n_2} = \frac{0.68 + 1.44}{2} = 1.06V$ 电位突跃范围: $\varphi_{\text{还原剂}}^{\theta'} + \frac{3 \times 0.059}{n_2} \sim \varphi_{\text{氧化剂}}^{\theta'} - \frac{3 \times 0.059}{n_1}$ $= 0.68 + \frac{3 \times 0.059}{1} \sim 1.44 - \frac{3 \times 0.059}{1}$ $= 0.86 \sim 1.26 \text{ V}$