

Loughborough University

Diagnosing Performance Differences in Model Checkers via Runtime-Guided Problem Generation

Yibo Dong 1,3

Yicong Xu³

¹National University of Singapore

Wenjing Deng³ Yu Chen^{4,3} Xiaoyu Zhang³ Jianwen Li³

²Loughborough University

³East China Normal University

Chengyu Zhang²

⁴Chuzhou University

Geguang Pu³

Background

Safety model checking could be reduced to reachability analysis.

Figure 1. Simple Safety Model Checking

In practical designs, each state is a complete assignment to all variables, leading to a state space that grows exponentially with the number of variables.

Figure 2. Practical Safety Model Checking

Motivation

SOTA model checkers are COMPLEX

- Accumulation of intricate optimizations
- Fine-tuned implementation details
- > It's just a minor fix!
- > Why is there such a huge change in performance! > How could we diagnose?

Approach

Figure 3. Workflow: Feedback-guided Generation

Key insight: Safe Remaining

Figure 4. After expansion, safe cases remain safe.

Evalution: Efficiency

Figure 5. Comparison of the max solving time

Evaluation: Compactness

Table 1. Difficulty and Size of Top-50 generated

	AIGROW	AIGFUZZ	AIGEN
	time(s) size	time(s) size	time(s) size
PDR	1532.59 219	11.96 22,790	0.79 180,120
IC3ref	371.37 224	562.75 29,036	1.81 180,186
B. CAR	775.94 51	1694.85 20,815	2.07 180,204
F. CAR	1599.03 159	1389.48 24,570	133.34 180,214

Evalution: Effectiveness

Figure 6. Comparison of the solving time of different checkers

Case Study: From a Tiny Generated Problem to an **Algorithmic Breakthrough**

Table 2. Detailed runtime comparison on one case, pdr_101.

	Original CAR	CAR-DT
Runtime	> 3600 s (timeout)	166 s
Final Frame Reached	275	412 (proved safe)
Total # of UCs	79,751	57,875

Figure 7. Inefficient patterns recognized.

Table 3. Impact of inspired optimization, i.e. CAR-DT

Benchmark	#(And+Latch)	Original CAR (s)	CAR-DT (s)
pdr_97	40 + 204	timeout	130.03
pdr_103	39 + 169	timeout	464.58
fcar_153	58 + 180	856.23	109.16
ic3ref_487	18 + 53	2333.53	633.04
ic3ref_560	16 + 55	3185.52	2.15

Table 4. Performance comparison on latest HWMCC benchmarks.

HWMCC'24 Benchmark	Original CAR (s)	CAR-DT (s)
ILA-Piccolo-BEQ-sanity	> 3600 (timeout)	3397.90
ILA-Piccolo-BGEU-sanity	> 3600 (timeout)	3519.51
Problem05-label42+token-ring.08.cil-2	> 3600 (timeout)	2883.56
Problem10-label08	> 3600 (timeout)	2812.81
a16-p148	> 3600 (timeout)	1870.37
brp2.3.prop2-func-interl	> 3600 (timeout)	1310.36
qspiflash-dualflexpress-divfive-p162	> 3600 (timeout)	1156.33
yosyshq-appnote-123-cv32e40x-p500	> 3600 (timeout)	2099.85
yosyshq-appnote-123-cv32e40x-p502	> 3600 (timeout)	2774.43
yosyshq-appnote-123-veer-axi-p62	> 3600 (timeout)	121.03