CORRECTION SÉANCE 8 (4 AVRIL)

Exercice 5. 4) Comme $\cos(z) = 1 \neq 0$, on sait que $\frac{1}{\cos(z)}$ se développe en série entière autour de 0. On pose $\cos(z) = \sum a_n z^n$ et $\frac{1}{\cos(z)} = \sum b_n z^n$. Le produit de ces deux séries est donné par

$$1 = \sum c_n z^n \text{ où } c_n = \sum_{i=0}^n a_i b_{n-i}$$

On obtient donc le système linéaire suivant pour les premiers c_i :

$$\begin{cases}
1 = c_0 = a_0 b_0 \\
0 = c_1 = a_1 b_0 + a_0 b_1 \\
0 = c_2 = a_2 b_0 + a_1 b_1 + a_0 b_2 \\
0 = c_3 = a_3 b_0 + a_2 b_1 + a_1 b_2 + a_0 b_3
\end{cases}$$

On sait par ailleurs que les premiers termes du développement en série entière de cosinus sont $a_0 = 1$, $a_1 = 0$, $a_2 = \frac{-1}{2}$, $a_3 = 0$, $a_4 = \frac{1}{24}$. En remplaçant ces valeurs dans le système ci-dessus, on trouve

$$\begin{cases} 1 = b_0 \\ 0 = b_1 \\ 0 = -\frac{b_0}{2} + b_2 \\ 0 = \frac{-b_1}{2} + b_3 \end{cases} \Leftrightarrow \begin{cases} 1 = b_0 \\ 0 = b_1 \\ \frac{1}{2} = b_2 \\ 0 = b_3 \end{cases}$$

Donc $\frac{1}{\cos(z)} = 1 + \frac{z^2}{2} + o(z^3)$.

5) On sait que $\exp(z) = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \frac{z^4}{24} + o(z^4)$ et que $\cos(z) = 1 - \frac{z^2}{2} + \frac{z^4}{24} + o(z^4)$. On a donc

$$\frac{e^z - \cos(z)}{z} = \frac{z + z^2 + \frac{z^3}{6} + o(z^4)}{z} = 1 + z + \frac{z^2}{6} + o(z^3)$$

6) On peut faire le produit de la série entière de $\frac{1}{\cos(z)}$ trouvé précédemment avec la série de $\sin(z)$ (qui est connue) ou bien dériver :

$$\tan'(z) = \frac{\cos^2(z) + \sin^2(z)}{\cos^2(z)} = 1 + \tan^2(z)$$

$$\tan''(z) = (1 + \tan^2(z))' = 2\tan'(z)\tan(z)$$

$$\tan'''(z) = 2\tan''(z)\tan(z) + 2(\tan'(z))^2$$

On a donc $\tan(0) = 0$, $\tan'(0) = 1$, $\tan''(0) = 0$ et $\tan'''(0) = 2$. On en déduit le développement

$$\tan(z) = z + \frac{z^3}{3} + o(z^3)$$

7) Malheureusement, on constate que cette fonction n'est pas définie en 0 et que ça limite en 0 est infinie. En revanche, on sait que $\lim_{z\to 0} \frac{\sin(z)}{z} = 1$, donc on a

$$\lim_{z \to 0} \frac{ze^z}{\sin(z)} = e^0 = 1$$

Et on peut calculer le développement de cette dernière fonction. On sait qu'elle est caractérisée par $\sin(z) \frac{ze^z}{\sin(z)} = ze^z$. Or, on connait déjà les premiers termes des séries de $\sin(z)$ et ze^z . On a

$$\sin(z) = \sum_{n \ge 0} a_n z^n = \sum_{k \ge 0} \frac{(-1)^k}{(2k+1)!} z^{2k+1} = z + \frac{-z^3}{3} + \frac{z^5}{120} + o(z^6)$$

$$ze^z = \sum_{n \ge 0} c_n z^n = \sum_{n \ge 0} \frac{z^{n+1}}{n!} = z(1 + z + \frac{z^2}{2} + \frac{z^3}{6} + o(z^3)) = z + z^2 + \frac{z^3}{3} + \frac{z^4}{6} + o(z^4)$$

On a donc

$$a_0 = 0$$
, $a_1 = 1$, $a_2 = 0$, $a_3 = \frac{-1}{3}$, $a_4 = 0$, $a_5 = \frac{1}{120}$
 $c_0 = 0$, $c_1 = 1$, $c_2 = 1$, $c_3 = \frac{1}{3}$, $c_4 = \frac{1}{6}$

Comme à la question 4), on résout alors le système

$$\begin{cases} 0 = c_0 = a_0b_0 \\ 1 = c_1 = a_1b_0 + a_0b_1 \\ 1 = c_2 = a_2b_0 + a_1b_1 + a_0b_2 \\ \frac{1}{3} = c_3 = a_3b_0 + a_2b_1 + a_1b_2 + a_0b_3 \\ \frac{1}{6} = c_4 = a_4b_0 + a_3b_1 + a_2b_2 + a_1b_3 + a_0b_4 \end{cases} \Leftrightarrow \begin{cases} 0 = 0b_0 \\ 1 = b_0 \\ 1 = b_1 \\ \frac{1}{3} = \frac{-b_0}{3} + b_2 \\ \frac{1}{6} = \frac{-b_1}{3} + b_3 \end{cases} \Leftrightarrow \begin{cases} 1 = b_0 \\ 1 = b_1 \\ \frac{2}{3} = b_2 \\ \frac{5}{6} = b_3 \end{cases}$$

On trouve donc

$$\frac{ze^z}{\sin(z)} = 1 + z + \frac{2}{3}z^2 + \frac{5}{6}z^3 + o(z^3)$$

En divisant ceci par z, on trouve les premiers termes du développement en série de Laurent de $\frac{e^z}{\sin(z)}$

$$\frac{e^z}{\sin(z)} = \frac{1}{z} + 1 + \frac{2}{3}z + \frac{5}{6}z^2 + o(z^2)$$

FEUILLE 4

Exercice 1. Les trois fonctions sont holomorphes sur leur domaine de définition, qui est un ouvert contenant 1. Elles sont en particulier analytiques au voisinage de 1.

1. Soit f une fonction analytique autour de 1, on peut écrire $f(z) = \sum_{n \ge 0} a_n (z-1)^n$, on a alors $f(z+1) = \sum_{n \ge 0} a_n z^n$, calculer le DSE de f autour de 1 revient donc à calculer celui de $z \mapsto f(z+1)$ autour de 0. Dans notre cas, on a

$$z+1 \mapsto \frac{(z+1)^2}{z+1-2} = \frac{z^2+2z+1}{z-1} = -(z^2+2z+1)\frac{1}{1-z}$$

L'utilité, c'est que l'on connait le DSE de $\frac{1}{1-z}$ autour de 0, il est donné par $\frac{1}{1-z} = \sum_{n\geqslant 0} z^n$. On a alors

$$f(z+1) = -(z^{2} + 2z + 1) \frac{1}{1-z}$$

$$= -(z^{2} + 2z + 1) \sum_{n \ge 0} z^{n}$$

$$= -\left(\sum_{n \ge 0} z^{n+2} + \sum_{n \ge 0} 2z^{n+1} + \sum_{n \ge 0} z^{n}\right)$$

$$= -\left(\sum_{n \ge 2} z^{n} + \sum_{n \ge 1} 2z^{n} + \sum_{n \ge 0} z^{n}\right)$$

$$= -\left(\sum_{n \ge 2} z^{n} + 2z + \sum_{n \ge 2} 2z^{n} + 1 + z + \sum_{n \ge 2} z^{n}\right)$$

$$= -\left(1 + 3z + \sum_{n \ge 2} 4z^{n}\right)$$

Et donc

$$f(z) = \frac{z^2}{z-2} = -1 - 3(z-1) - \sum_{n \ge 2} 4(z-1)^n$$

2) On décompose la fraction rationnelle considérée en éléments simples, on a

$$\frac{z-2}{z(z+1)} = \frac{a}{z} + \frac{b}{z+1} = \frac{az+a+bz}{z(z+1)}$$

et donc a = -2, b = 3. On calcule alors le développement en série entière en 1 de

$$\frac{-2}{z} + \frac{3}{z+1}$$

Par série géométrique, on a $\frac{1}{z} = \sum_{n \geqslant 0} (1-z)^n$. Ensuite, on a par une récurrence immédiate que

$$\forall n \geqslant 0, \left(\frac{1}{z+1}\right)^{(n)} = \frac{(-1)^n n!}{(z+1)^{n+1}}$$

Et donc

$$\frac{1}{z+1} = \sum_{n>0} \frac{(-1)^n}{2^{n+1}} (z-1)^n = \frac{1}{2} \sum_{n>0} \left(\frac{1-z}{2}\right)^n$$

Notons qu'en étant très astucieux, on aurai pu remarquer que

$$\frac{1}{1+z} = \frac{1}{2-1+z} = \frac{1}{2} \frac{1}{1-\frac{1-z}{2}} = \frac{1}{2} \sum_{n>0} \left(\frac{1-z}{2}\right)^n$$

Au final, on a donc

$$f(z) = -2\sum_{n\geqslant 0} (1-z)^n + \frac{3}{2} \sum_{n\geqslant 0} \left(\frac{1-z}{2}\right)^n$$
$$= \sum_{n\geqslant 0} \left(-2 + \frac{3}{2^{n+1}}\right) (1-z)^n$$
$$= \sum_{n\geqslant 0} \left(-2 + \frac{3}{2^{n+1}}\right) (-1)^n (z-1)^n$$

3) Ici, on calcule directement les dérivées successives de la fonction. On a

$$f(z) = \frac{z}{e^z - 1}$$

$$f'(z) = \frac{e^z(1 - z) - 1}{(e^z - 1)^2}$$

$$f''(z) = \frac{e^z(e^z(z - 2) + z + 2)}{(e^z - 1)^3}$$

$$f'''(z) = \frac{e^z(e^{2z}(z - 3) + 4e^z z + z + 3)}{(e^z - 1)^4}$$

Et donc
$$f(1) = \frac{1}{e-1}$$
, $f'(1) = \frac{-1}{(e-1)^2}$, $f''(1) = \frac{e(-e+3)}{(e-1)^3}$, $f'''(z) = \frac{e(2e+4)}{(e-1)^4}$
$$f(z) = \frac{1}{e-1} + \frac{-1}{(e-1)^2}(z-1) + \frac{e(-e+3)}{2(e-1)^3}(z-1)^2 + \frac{e(2e+4)}{6(e-1)^4}(z-1)^3 + o((z-1)^3)$$

Exercice 2.

1) Soit r le rayon de convergence de la série de Taylor de R en z_0 . Par l'absurde, on suppose que $r > \rho$. On considère $f: \mathbb{D}(z_0, r) \to \mathbb{C}$ définie par

$$f(z) = \sum_{n>0} \frac{R^{(n)}(z_0)}{n!} (z - z_0)^n$$

C'est la série de Taylor de R. On a par définition que f est une fonction analytique sur $\mathbb{D}(z_0, r)$, et qui coïncide avec R sur un disque de la forme $\mathbb{D}(z_0, a)$ avec $a \leq r$.

Par hypothèse, R est définie et analytique sur $\mathbb{D}(z_0, \rho)$. Comme f est une autre fonction analytique sur $\mathbb{D}(z_0, \rho) \subset \mathbb{D}(z_0, r)$ qui coïncide avec R sur un ouvert (le disque non vide $\mathbb{D}(z_0, a)$) le principe du prolongement analytique nous donne que R = f sur $\mathbb{D}(z_0, \rho)$. Soit α un pôle de R situé à une distance ρ de z_0 . Par continuité de f sur $\mathbb{D}(z_0, r)$, on a

$$f(\alpha) = \lim_{\substack{z \to \alpha \\ |z - z_0| < \rho}} f(z) = \lim_{\substack{z \to \alpha \\ |z - z_0| < \rho}} R(z)$$

Or, comme R admet un pôle en α , cette dernière limite n'est pas définie, ce qui est une contradiction.