How Important Are Study Designs?

A Simulation Approach in Assessing Bias in VE Estimation with Time-Varying Vaccine Coverage, and Heterogeneous Testing and Baseline Attack Rates

Jing Lian Suah a Naor Bar-Zeev b Masliyana Husin a Boon Hwa Tng a Maria Deloria Knoll b† Sheamini Sivasampu a†

^aInstitute for Clinical Research, National Institutes of Health, Malaysia ^bBloomberg School of Public Health, John Hopkins University † Co-Senior Authors

June 27, 2022

Any views expressed are that of the researchers, and should not be taken to represent those of the Government of Malaysia

Highlights

- This paper simulated a theoretical model with frictions in vaccination, testing, baseline disease risks, and heterogeneous vaccine effectiveness to evaluate estimation bias across four cohort and two test-negative designs.
- In theory, bias depends on behavioural asymmetries (in testing, and baseline risk) between the vax-willing and vax-unwilling, and the speed of vaccination rollout.
- Even under 'ideal' conditions (no frictions), there is intrinsic estimation bias across all study designs of different magnitudes.
- In scenarios that may be reflective of past SARS-CoV-2 waves, the **degree of bias can be substantial**, attributable to variation in assumed testing and baseline risk frictions.
- A formal regression-based decomposition indicates that study designs have visibly different primary sources of estimation bias, and degree of robustness in general.
- This study warrants a re-benchmarking of methodology and reporting checklists for VE research, and informs the design of cost-effective surveillance by quantifying part of the bias-implementation cost trade-off.

Research Question and Approach

Research Question

How do commonly used VE study designs (variations of cohorts, and TNDs) perform in the presence of (i) time-varying vaccine coverage, (ii) latent selection of testing and risk behaviours on willingness to vaccinate, and (iii) 'leaky' vaccines?

Analytical Steps

- 1. Deriving an expression for the theoretical bias in a conceptual model of the epidemiological environment
- 2. Simulate data using the conceptual model, and compute the VE estimation bias under various configurations of cohorts and TNDs
- 3. Analyse the relative importance of the various drivers of bias

Logic of the entire study

k parameter sets $\Xi = (\Xi_1 \Xi_2 \Xi_3 \dots \Xi_k)$, as **input**, which contains the mean of the VE distribution, μ_{VE} , which is used to calculate estimation bias $(\widehat{VE} - \mu_{VE})$

Set up a **theoretical model** detailing the 'epidemiological environment' as a function f(.), which describes how people get vaccinated, get tested, develop outcomes (generalisable), and how vaccines confer protection at the individual- & population-levels, etc

Use the theoretical model f to **simulate data** from every parameter set in Ξ , producing k sets of simulated data (y_k) ; use **parallel processing** to speed up computation

For every set of simulated data y_k , estimate VE using M study designs (variations of cohorts and TNDs), and calculate the respective estimation bias

Concatenate all of the estimation biases by study designs, and parameter sets for **specific analysis**

Scenario analysis: Zoom into special parameter sets e.g., similar to SARS-CoV-2 waves

Drivers decomposition: Linear regression to analyse relative importance of sources of bias

Relative ranks (Additional): Compute stability of relative bias between study designs

4 D > 4 B > 4 B > 4 B > 9 Q P

Computational logistics of the study

- The simulation was run on a AWS EC2 c6i.32xLarge Amazon Linux instance (128 vCPUs), which took 415516 seconds (115.42 hours).
 - Running on a Windows 10, 4-core (8 logical processors) 11th gen i5 local machine would have taken at least 1154 hours (48 days), subject to sufficient memory.
 - Virtual machines can be expensive! This means that stress tests, fail-safes, and minimum working examples need to be implemented thoroughly beforehand.
- Post-simulation analyses were run on Windows 10, 4-core (8 logical processors)
 10th gen i7 local machine, as no parallel processing is required.

Key assumptions of the theoretical model

- 1. Vaccination coverage at least increases over time (vaccination rollout is either pre-completed, or ongoing throughout the study)
- 2. A share of the population is vaccination-willing (vax-willing; conversely vaccination-unwilling or vax-unwilling) but may not necessarily receive the vaccine
- 3. A share of the population is test-willing (conversely, test-unwilling) but may not necessarily test for the disease
- 4. The vax-unwilling's probability of testing, suppose test-willing, may differ from that of the vax-willing
- 5. Vaccine effectiveness differs between individuals, but is distributed along a particular mean/mode
- 6. Suppose not yet infected, then the risk of infection follows a memoryless process
- 7. All individuals can be infected at most once, hence no re-infections
- 8. The baseline infection risk of the vax-unwilling may differ from that of the vax-willing

Hence, there are four groups — (1) Vax-willing and test-willing, (2) Vax-willing but test-unwilling, (3) Vax-unwilling but test-willing, (4) Vax-unwilling and test-unwilling

There are 10 parameters in the model (888125 valid combinations)

Parameter	Meaning	Values for Simulation
N	Simulated population size	1000
T	Number of time periods used in the simulation; this is equivalent to the follow-up	20, 30, 40, 50, 60
	duration	
Θ_{ν}	Fraction of population that is willing to be vaccinated (vax-willing); fraction Θ_{ν} takes	0.3, 0.4, 0.5, 0.6, 0.7
	values $ heta_{ m v}=1$ and fraction $1-\Theta_{ m v}$ takes values $ heta_{ m v}=0$	
Pv	Probability of being vaccinated if not already vaccinated but vax-willing in period t ;	0.15, 0.3, 0.4, 0.5, 0.6,
	$ ho_{ m v}=1$ implies static coverage, such that all vax-willing start off vaccinated, and $ ho_{ m v} o 0$	0.85, 1
	the opposite	
Θ_{τ}	Fraction of population that is willing to be tested (test-willing); fraction Θ_{τ} takes values	0.5, 0.65, 0.75, 0.85, 1
	$ heta_{ au}=1$ and fraction $1-\Theta_{ au}$ takes values $ heta_{ au}=0$	
p_{τ}	Probability of being tested if test-willing in period t	0.5, 0.65, 0.75, 0.85, 1
$k_{ au}$	Ratio of probability of being tested of the vax-unwilling to the vax-willing $(rac{p_{\tau}^{\rho_{\nu}=0}}{p_{\rho}^{\rho_{\nu}=1}});\;k_{ au}<1$	0.5, 0.75, 0.9, 1, 1.1,
	indicates that the vax-unwilling are less likely to be tested than the vax-willing	1.25, 1.5
α_b	Baseline attack rate for the vax-willing, which is the daily probability of contracting the	0.025
	disease if vax-willing but unvaccinated	
k_{α}	Ratio of the baseline infection rate of the vax-unwilling relative to that of the vax-willing	0.5, 0.75, 0.9, 1, 1.1,
	$\left(\frac{\alpha_{b}^{\theta_{v}=0}}{\alpha_{b}}\right)$; $k_{\alpha}<1$ indicates that the baseline infection rate of the vax-unwilling is lower	1.25, 1.5
	than that of the vax-willing	
μ_{VE}	Mean of the VE distribution, $VE_i \sim Beta(\alpha = 9, \beta = \frac{\alpha}{\mu_{VE}} - \alpha), \ 0 < \mu_{VE} < 1$ for	0.5, 0.6, 0.7, 0.8, 0.9
	individual i	

Bias is decreasing in p_{ν} , and increases as k_{τ} and k_{α} diverge from 1

$$\textit{Bias}\{\widehat{\textit{VE}}\} = \widehat{\textit{VE}} - \textit{VE} = \sum_{t=0}^{T} w_t \left(\frac{\Theta_v(1 - \Theta_v)\phi_v\phi'_{uv}(\Omega' - \Omega)}{\left(\Theta_v\phi_{uv} + (1 - \Theta_v)\phi'_{uv}\right)\left(\Theta_v\phi_{uv}\Omega + (1 - \Theta_v)\phi'_{uv}\Omega'\right)} \right) \tag{1}$$

where
$$VE = \sum_{t=0}^{T} w_t VE_t = \sum_{t=0}^{T} w_t \left(1 - \frac{\Theta_v \phi_v}{\Theta_v \phi_{uv} + (1 - \Theta_v) \phi'_{uv}} \right)$$
 (2)

and
$$\widehat{VE} = \sum_{t=0}^{T} w_t \widehat{VE}_t = \sum_{t=0}^{T} w_t \left(1 - \frac{\Theta_v \phi_v \Theta_\tau \Omega}{\Theta_v \phi_{uv} \Theta_\tau \Omega + (1 - \Theta_v) \phi'_{uv} \Theta_\tau \Omega'} \right)$$
 (3)

and
$$\phi_V = \sum_{m}^{t-1} (1 - \rho_V)^{t-1-m} \rho_V \sum_{n}^{t-1} (1 - \alpha_{uV})^n (1 - \alpha_V)^{t-1-n} \alpha_V$$
 (4)

and
$$\phi_{uv} = \sum_{m}^{t} (1 - \rho_v)^m \sum_{n}^{t-1} (1 - \alpha_{uv})^n \alpha_{uv}$$
 (5)

and
$$\phi'_{uv} = \sum_{m}^{t-1} (1 - k_{\alpha} \alpha_{uv})^m k_{\alpha} \alpha_{uv}$$
 (6)

and
$$\Omega = j(p_{\tau}) = \sum_{m}^{t} p_{\tau} \sum_{n}^{t-1} (1 - p_{\tau})^{n} p_{\tau} \sum_{q}^{t-1} (1 - p_{\tau}) p_{\tau}^{q} \sum_{r}^{t-1} (1 - p_{\tau})^{t-1-r} p_{\tau}^{r}$$
 (7)

and
$$\Omega' = j(k_{\tau}p_{\tau}) = \sum_{m}^{t} k_{\tau}p_{\tau} \sum_{n}^{t-1} (1 - k_{\tau}p_{\tau})^{n} k_{\tau}p_{\tau} \sum_{q}^{t-1} (1 - k_{\tau}p_{\tau})k_{\tau}p_{\tau}^{q} \sum_{r}^{t-1} (1 - k_{\tau}p_{\tau})^{t-1-r} (k_{\tau}p_{\tau})^{r}$$
 (8)

Interpreting the theoretical bias equation

- Bias is a function of the behavioural asymmetries between the vax-willing and vax-unwilling $(\Theta_{\tau}, p_{\tau}, \text{ and } k_{\tau})$, and the speed of vaccination rollout (p_{ν})
- Unambiguously, if the testing behaviour of the vax-willing and vax-unwilling are identical ($k_{\tau}=1$, hence $\Omega=\Omega'$), then theoretical bias is nil
- The prevalence of test-willing individuals (Θ_{τ}) does not matter, but the prevalence of vax-willing (Θ_{ν}) matters

Simulation focuses on commonly used cohorts and test-negative designs

Study Design	Estimation Approach	Notes
Cohort using aggregated data, with	Negative binomial regres-	Commonly used where aggregate data is preferred or acces-
person-days as offset	sion (count analysis)	sible in lieu of granular data, albeit often with a Poisson re-
		gression
Cohort using aggregated data, with	Negative binomial regres-	Same as above but uses directly population, which may be
daily population as offset	sion (count analysis)	time-varying, instead of person-days
Cohort using individual-level data,	Cox Regression (survival	Often used in prospective cohorts where time-to-event is of in-
adjusting for immortal time bias	analysis)	terest, and where the quality of exposure-censoring time vari-
		ables are robustly collected
Cohort using individual-level data	Logistic regression (binary	Often used where time measures are unreliable, when time-to-
	outcomes)	event not of interest, as opposed to occurrence of outcomes,
		or when assumptions necessary for survival models, e.g., pro-
		portional hazards, fail
TND using individual-level data,	Logistic regression (binary	Often used when testing data from ambulatory care set-
keeping only the first positive, and,	outcomes)	tings, healthcare facility screening, administrative registers,
if never positive, the first negative		and ILI/SARI surveillance are deployed
test		
TND using individual-level data,	Logistic regression (binary	Used when multiple follow-up points per unique individuals
keeping only the first positive, but	outcomes)	are available, such as through community infection surveys
allowing for multiple negative tests		

Scenarios to illustrate bias of existing VE estimates in practice

Scenario	Approximant	p_{v}	Θ_{τ}	$p_{ au}$	$k_{ au}$	k_{α}	μ_{VE}
Scenario A (Slow rollout, comprehensive testing and	Wild Type	0.15	1	1	1	1.25	0.9
tracing, vax-unwilling-biased baseline risks)							
Scenario B (Slow rollout, partly comprehensive test-	Alpha/ Beta/	0.15	0.75	1	1	1.25	0.9
ing and tracing, vax-unwilling-biased baseline risks)	Gamma						
Scenario C (Gradual rollout, selective testing and	Delta	0.3	0.75	0.75	1	1	0.7
tracing, symmetric baseline risks)							
Scenario D (Fast rollout, highly selective testing and	Omicron BA1-2	0.5	0.75	0.5	0.75	0.75	0.5
tracing, vax-willing-biased baseline risks)							
Scenario E (Rapid rollout, minimal testing and trac-	Omicron BA3-5	0.85	0.5	0.5	0.75	0.75	0.5
ing, vax-willing-biased baseline risks)							
Scenario A & B (Severe Outcomes)	Wild Type/	0.15	1	1	1	1	0.9
	Alpha/ Beta/						
	Gamma						
Scenario C (Severe Outcomes)	Delta	0.3	1	1	1	1	0.9
Scenario D (Severe Outcomes)	Omicron BA1-2	0.5	1	1	1	1	0.9
Scenario E (Severe Outcomes)	Omicron BA3-5	0.85	1	1	1	1	0.9

Estimate bias-parameter sensitivities using OLS linear regressions — (1) design-stratified, and (2) dummy fixed effects

Parameters are redefined to help interpret relative importance

- $k_ au o |k_ au 1|$; absolute deviation from 1 (deviation from **independent testing rates**)
- $p_{
 m v}
 ightarrow |p_{
 m v}-1|$; absolute shortfall from 1 (deviation from static vaccine coverage)
- $p_ au o |p_ au 1|$; absolute shortfall from 1 (deviation from **perfect testing if test-willing**)
- $\Theta_{ au} o |\Theta_{ au} 1|$; absolute shortfall from 1 (deviation from full test-willing population)
- $\Theta_{\nu} \to |\Theta_{\nu} 1|$; absolute shortfall from 1 (deviation from **full vax-willing population**)
- $\mu_{VE}
 ightarrow |\mu_{VE} 1|$; absolute shortfall from 1 (deviation from 'perfect' vaccine)
- *Invariable parameters (N, and α_b) are omitted 'Ideal' conditions refers to when $p_v=1$, $\Theta_{\tau}=1$, $p_{\tau}=1$, $k_{\tau}=1$, and $k_{\alpha}=1$

Under 'ideal' assumptions, survival analysis and count analysis cohorts, and TNDs with multiple negative tests perform best

Downward bias is sizeable in scenarios D and E, where deviations from 'ideal' are largest, and most representative of the recent Omicron waves

Summary of findings on drivers of bias

- Across all study designs, the deviation in the mean of the VE distribution (μ_{VE}) from 'perfect' protection (100%) exerts a downward bias; this reflects the asymmetry in the beta distribution
- In binary outcomes and survival analysis cohorts, k_{τ} , and p_{τ} are most important. Of secondary importance are k_{α} , p_{ν} , Θ_{ν} , and Θ_{τ}
- In count analysis cohorts, k_{τ} , p_{ν} , p_{τ} , and Θ_{ν} are most important
- ullet In TNDs with only one test per individual, only $k_ au$ stood out, followed secondarily by $p_ au$, and k_lpha
 - As this configuration aims to remove the influence of timing of vaccination on the risk of disease exposure, p_v has a smaller association with bias; same goes for Θ_{τ}
- In the TND with multiple negative tests per individual, k_{α} is important, followed secondarily by k_{τ} , Θ_{ν} , and p_{ν} .
- Both specifications of TNDs are more robust to 'less-than-ideal' conditions than cohorts, making TNDs attractive when vaccine rollout is dynamic, and when testing is imperfect, such as during resource-constrained periods.
- Immense gains if steps are taken to mitigate selective testing in respective infectious disease surveillance systems, such as through randomness in community sampling.

Decomposition of simulated bias using dummy FE and stratified OLS regression shows vast heterogeneity in the parameter-bias nexus

		een Parameters E	
j	-0.052	-0.054	-0.049
<u>}</u>	-0.77	-1	-0.5
Š.	3.7	3.6	3.9
eters	1.4	1.2	1.7
Parameters p(t) b(t)	7.5	7.2	7.7
(£)			
(g)	-9.9	-10	-9.6
(JA)ri	-1.5	-1.8	-1.2
	Point Estimate	Lower Bound	Upper Bound

TMD: First Day First Non

Average and Largest Sensitivity Between Parameters Ξ and Absolute Bias (Parameter With Largest Sensitivity on Vertical Axis)

Discussion

- 1. Study design choices have non-trivial effects on VE estimation bias
- 2. Findings warrant a re-benchmarking of methodology
 - Recommendations for VE research need to reflect COVID-19-specific nuances
 - Use heat maps of bias-parameter sensitivities to 'adjust' VE estimates
 - Future research ought to layout the sources of bias discussed to help form judgment on the extent
 of estimation bias → additional reporting checklist
- 3. Helps design cost-effective surveillance systems by quantifying part of the **estimation** bias vs. implementation cost trade-off
 - Conceptually, the policymaker 'chooses' a system that (1) mitigates sources of bias, and (2) geared towards the least biased VE study design, given resource constraint
 - Resource-constrained countries may opt to concentrate their surveillance systems on major outbreak zones to use TNDs, rather than more resource-intensive cohorts
- 4. Disease progression, or severity of symptoms, that is correlated with testing propensity can be discussed within the model
 - Low testing rate amongst the test-willing $(p_{\tau} \ll 1)$ + lower testing rate amongst the vax-willing $(k_{\tau} \gg 1)$ \rightarrow symptoms tend to be milder amongst the vaccinated, hence less likely to test

We recommend future VE research to report the following, in addition to the STROBE checklist

No.	Item	Purpose
1	Pace of vaccination (daily time series or average) during the study period, including	To gauge p_v
	trend breaks, e.g., surge in doses given	
2	Vaccine coverage by the end of the study period	To gauge Θ_{ν} (and potentially k_{ν})
3	The pace of vaccination rollout after the study period	To gauge Θ_{ν} (and potentially k_{ν})
4	Testing rate in the study population, and the overall population	To gauge $\Theta_{ au}$ and $p_{ au}$
5	Testing rate by vaccination status or relevant comparator groups	To gauge $k_ au$
6	Contact tracing regime (if relevant for disease studied) in place during the study period,	To gauge $\Theta_{ au}$, and $p_{ au}$
	e.g., comprehensive forward and backward, symptomatic forward only, no contact tracing	
7	Testing regime in place during the study period, including scope, eligibility, barriers	To gauge $\Theta_{ au}$, $p_{ au}$, and $k_{ au}$
	of accessibility (direct and indirect), and selection criteria related to vaccination, e.g.,	
	universal (including asymptomatic) testing with private cost, symptomatic testing with	
	private cost, symptomatic testing with price or queue discrimination on vaccination	
	status	
8	Presence of NPIs to influence vaccine take-up via restrictions on disease transmission-	To gauge k_{α}
	relevant activities	
9	[For TNDs] Baseline characteristics of study participants stratified by vaccination status	To gauge k_{lpha} , and $k_{ au}$
	(usually reported by test-positive, and test-negative)	
10	[Where available] VE estimates from meta-analyses, and systematic reviews specific	To form priors on $\mu_{V\!E}$ beyond the study
	to the disease, pathogenic variant, and clinical outcome of interest	

Limitations

- 1. Tests with sub-100% sensitivity and specificity is not explicitly modelled
 - Reasonable sensitivities and specificities (in the region of 80% to 90%) \rightarrow minimal bias for both cohorts and TNDs (*Jackson and Rothman (2015*))
- 2. Re-infections are not explicitly modelled
 - Past infections compound with vaccines → undetected infections amongst vaccinated > unvaccinated → overestimate VE
- 3. Observed confounding is not explicitly modelled
 - Requires strong and non-generalisable assumptions on the structure between potential confounders, vaccination choice, and disease

Additional Findings

(Part 1/2) Unless indicated otherwise, range of colours = [-20, 20]

- A hypothetical 20 ppt over-estimation represents a substantial gap in estimated, and 'true' protection offered.
- A 20 ppt over-estimation puts this the estimated COVID-19 vaccine effectiveness against death from a meta-analysis of 8 vaccine platforms spanning 5 VOCs (Higdon et al, 2022) from the neighbourhood of 60% - 99% to 40% - 79%.
- The equivalent for severe disease goes from 55% 99% to 35% 79%, and that of SARS-CoV-2 infection to well below 50%.

(Part 2/2) Unless indicated otherwise, range of colours = [-20, 20]

• For sufficiently low baseline attack rates (< 1%), as is for severe COVID-19, 20 ppt can represent sizeable changes in NNV even when the estimated VE is high

Figure: Contour Map of NNV against VE, Conditional on α_b

Figure: Contour Map of first derivative of NNV against VE, Conditional on α_b

Rank reversals are common; these rankings need to consider real-world frequency of the corresponding parameter settings

	StudyDesign	Encoding
0	Cohort: True y	0
1	Cohort (immortal time correction): True y	1
2	Cohort (aggregate; PD): True y	2
3	Cohort (aggregate; N): True y	3
4	Cohort: Observed y	4
5	Cohort (immortal time correction): Observed y	5
6	Cohort (aggregate; PD): Observed y	6
7	Cohort (aggregate; N): Observed y	7
8	TND: First Pos, First Neg	8
9	TND: First Pos, Multiple Neg	9

Rescaled (1) Association Between Parameters Ξ and Absolute Bias

(Scenario D: $p_v = 0.5$; $\Theta_\tau = 0.75$; $p_\tau = 0.5$; $k_\tau = 0.75$; $k_\alpha = 0.75$)

Resc		Cohort: Observed y Between Paramete	r: rs Ξ and Absolute B	Resc		rtal time correction Between Parameter		Bi Resc		aggregate; PD): Ob Between Paramete	oserved y: ers I and Absolute B	Bi Rescal	Cohort (led Association	(aggregate; N): Obs Between Parameter	erved y:	Bias 30
p	-0.12	-0.13	-0.12	p	0.013	0.011	0.016	- -	-0.068	-0.071	-0.065	pe -	-0.2	-0.2	-0.2	
8 -	0.53	0.45	0.61	<u>8</u> -	2	2	2.1	<u> </u>	5.5	5.4	5.6	8 -	2.1	2	2.2	- 15
8-	2	1.9	2.1	8.	-2.7	-2.7	-2.6	8-	-9.2	-9.3	-9.2	8-	-2.7	-2.7	-2.6	10
ege.	-2.1	-2.2	-2	eters (1)	0.45	0.4	0.5	- 0(1)	-0.26	-0.32	-0.2	eters (1)	0.36	0.3	0.42	
Mg G.	5.8	5.7	5.9	Ple Dir	8.3	8.2	8.4	Peram D.C.	9.3	9.2	9.4	2 G -			11	
g.	-7	-7.1	-6.9	g -	-5.9	-5.9	-5.8	g -	-3.2	-3.3	-3.2	8-	-4.6	-4.7	-4.6	10
3 -	-2.4	-2.4	-2.3	3 -	-1.5	-1.6	-1.5	흏.	0.3	0.25	0.36	3 -	-0.63	-0.69	-0.57	15
Q -	-3.9	-4.1	-3.8	G.	-7.5	-7.6	-7.3	G.			-12	G.			-10	-20
	Point Estimate	Lower Bound	Upper Bound		Point Estimate	Lower Bound	Upper Bound		Point Estimate	Lower Bound	Upper Bound		Point Estimate	Lower Bound	Upper Bound	

Resca		D: First Pos, First N Between Paramete		Bi Resca		: First Pos, Multiple Between Paramete		Bias 2
pe -	-0.052	-0.054	-0.049	H -	-0.095	-0.097	-0.093	- 12
(A) -	-0.23	-0.31	-0.15	<u>(\$</u> -	2	1.9	2	- 11
- <u>B</u>	1.9	1.8	1.9	. (V	-3.4	-3.4	-3.3	- 5
eters o(t)	0.36	0.3	0.42	eters o(t)	0.41	0.37	0.45	- 0
Parameters piti olti	3.7	3.6	3.8	Parameters piti olti	-0.94	-1	-0.86	1
흝-	-7.4	-7.5	-7.4	흝-	-1.5	-1.5	-1.5	1
(E) -	-2.5	-2.5	-2.4	- E	-3.3	-3.3	-3.2	
GVII	-0.76	-0.9	-0.62	(S) -	-10	-10	-9.9	
	Point Estimate	Lower Bound	Upper Bound		Point Estimate	Lower Bound	Upper Bound	

Rescaled (2) Association Between Parameters Ξ and Absolute Bias

(Scenario D + Mitigation of Selection in Testing: $p_v = 0.5$; $\Theta_\tau = 0.75$; $p_\tau = 0.75$; $k_\tau = 0.95$; $k_\alpha = 0.75$)

Rescal		ohort: Observed y letween Paramete	: rs Ξ and Absolute B	Resca		rtal time correction Between Parameter		Bi Resc	Cohort (a aled Association E	ggregate; PD): Ob Between Paramete	oserved y: ers E and Absolute Bi	Resca	Cohort (a led Association B	iggregate; N): Obs etween Paramete	served y: ers E and Absolute	Bias
p	-0.12	-0.13	-0.12	H -	0.013	0.011	0.016	+ -	-0.068	-0.071	-0.065	. .	-0.2	-0.2	-0.2	
<u>></u>	0.53	0.45	0.61	(A) -	2	2	2.1	<u> </u>	5.5	5.4	5.6	(A) -	2.1	2	2.2	
8-	2	1.9	2.1	8-	-2.7	-2.7	-2.6	8-	-9.2	-9.3	-9.2	8-	-2.7	-2.7	-2.6	
eters (1)	-2.1	-2.2	-2	eters (1)	0.45	0.4	0.5	eters o(t)	-0.26	-0.32	-0.2	o(t)	0.36	0.3	0.42	
Param DC	2.9	2.8	3	Peram DC	4.1	4.1	4.2	Param DT-	4.6	4.6	4.7	Pig.	5.2	5.1	5.3	
윤-	-1.4	-1.4	-1.4	£ -	-1.2	-1.2	-1.2	윤-	-0.65	-0.66	-0.63	£ -	-0.93	-0.94	-0.91	
3 -	-2.4	-2.4	-2.3	8 -	-1.5	-1.6	-1.5	흏.	0.3	0.25	0.36	3 -	-0.63	-0.69	-0.57	
G -	-3.9	-4.1	-3.8	g -	-7.5	-7.6	-7.3	G.			-12	G.				
	Point Estimate	Lower Bound	Upper Bound		Point Estimate	Lower Bound	Upper Bound		Point Estimate	Lower Bound	Upper Bound		Point Estimate	Lower Bound	Upper Bound	

Resca		D: First Pos, First N Jetween Paramete		Bi Resca		First Pos, Multiple Between Paramete	
p	-0.052	-0.054	-0.049	+ -	-0.095	-0.097	-0.093
30 -	-0.23	-0.31	-0.15	3 -	2	1.9	2
- M	1.9	1.8	1.9	<u> </u>	-3.4	-3.4	-3.3
o(t)	0.36	0.3	0.42	eters o(t)	0.41	0.37	0.45
Parameters p(t) o(t)	1.9	1.8	1.9	Parameters p(t) o(t)	-0.47	-0.51	-0.43
2	-1.5	-1.5	-1.5	£-	-0.3	-0.31	-0.29
- K	-2.5	-2.5	-2.4	(g -	-3.3	-3.3	-3.2
GVI4	-0.76	-0.9	-0.62	GV.	-10	-10	-9.9
	Point Estimate	Lower Bound	Upper Bound		Point Estimate	Lower Bound	Upper Bound

FE estimates of drivers of bias (average within-design sensitivities)

