UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i	MAT-INF 1100 — Modellering og
Eksamensdag:	beregninger. Fredag 10. oktober 2008.
Tid for eksamen:	15:00 – 17:00.
Oppgavesettet er på 6	sider.
Vedlegg:	Formelark.
Tillatte hjelpemidler:	Godkjent kalkulator.
	oppgavesettet er komplett før ner å besvare spørsmålene.
Husk å fylle	inn kandidatnummer under.
	Kandidatnr:
spørsmål, men det er bare eller lar være å krysse av p	er altså 50. Det er 5 svaralternativer for hvert ett av disse som er riktig. Dersom du svarer feil å et spørsmål, får du null poeng. Du blir altså beng for å svare feil. Lykke til!
O	ppgave- og svarark
Oppgave 1. Det binære tallet □ 37 ✓ 45 □ 36 □ 43 □ 49 □ 49	tallet 101101 er det samme som det desimale
Oppgave 2. Skrevet i tot □ 1110111111 □ 111010111 □ 1110101111 □ 1110101011 □ 1110101011	tallssystemet blir det heksadesimale tallet $3af_{16}$

Op	pgave 3.	Desimaltallet 1.625 kan skrives på binær form som
\checkmark	1.101	
	1.0011	
	1.01	
	1.001	
	krever uen	delig mange binære siffer
Op	pgave 4.	På heksadesimal form blir det binære tallet 11.00111
	$c.11_{16}$	
	$3.3e_{16}$	
	3.31_{16}	
\checkmark	3.38_{16}	
	$c.f4_{16}$	
Op	pgave 5.	Tallet
		$\frac{\ln \sqrt{e^{\pi}}}{\pi}$
er		π
	et irrasjona	alt tall
	et rent ima	aginært tall
	0	
	eksisterer i	kke
\checkmark	et rasjonal	t tall
		En følge er definert ved $x_n = 1 + 1/n^2$ for $n \ge 1$. Hva er kranke for tallmengden gitt ved $\{x_n \mid n \ge 1\}$?
	1/2	
П	er ikke defi	inert
П	0	
	1	
	∞	
Op Hva	pgave 7. a blir da kod 99 100 445	Anta at vi multipliserer ut parentesene i uttrykket $(1+x)^{100}$. effisienten foran x^{99} ?
	1	

	pgave 8. $y = x^3$?	Hva er taylorpolynomet om $a=0$ av grad 2 for funksjonen
	x^3 x^2	
\checkmark	0	
	x $1 + 3x + 6x$	
	1 + 3x + 6x	x^2
_	pgave 9. $(x) = x^3$?	Hva er taylorpolynomet om $a=1$ av grad 2 for funksjonen
	x^3	
	x^2	
	0	2
	0 $1 + 3x + 3x$ $1 - 3x + 3x$	g- _n 2
V	1-3x+3x	b
		Vi har funksjonen $f(x) = x^2$ og punktene $x_0 = 0, x_1 = 1$ har den dividerte differansen $f[x_0, x_1, x_2]$ verdien
	0	
	2	
\overline{V}		
	1/2	
	-1	
_	$\mathbf{pgave} \ 11.$	Taylorpolynomet av grad 3 om $a=0$ til funksjonen $\cos x$ er
	$1 + x + x^2 /$	$x^{2}/2+x^{3}/6$
\checkmark	$1 + x - x^2 /$	$x^{2}/2-x^{3}/6$
	$1 - x + x^2 /$	$x^{2}/2-x^{3}/6$
	-1-x+x	
	-1+x-x	$x^{2}/2 + x^{3}/6$
av g		Vi interpolerer funksjonen $f(x) = x^2$ med et polynom p_3 nktene 0, 1, 2 og 3. Hva blir da $p_3(4)$, altså verdien av $p_3(x)$
\checkmark	16	
	0	
	8	
	4	
	2	

Oppgave 13. Anta at vi beregner Taylorpolynomet av grad n om punktet $a=0$ for funksjonen $f(x)=\cos x$. Hva kan vi da si om feilleddet $R_n(x)$?
Feilleddet vil for hver x bli større når n øker
For ethvert reelt tall x vil feilleddet gå mot 0 når n går mot ∞
Feilleddet er 0 overalt
Feilleddet vil gå mot 0 for alle x i intervallet $[-\pi,\pi]$, men ikke for andre verdier av x
$\ \ \ \ \ \ \ \ \ \ \ \ \ $
Oppgave 14. Hvilken av de følgende differensligningene er lineær og har konstante koeffisienter?
$x_{n+2} - (\ln 2)x_{n+1} + x_n = -\cos(n)$
Oppgave 15. Differensligningen
$2x_{n+2} - 3x_n = 15 \cdot 2^n$
har en partikulærløsning (med notasjonen $a \cdot b$ menes a multiplisert med b)

Oppgave 17. Vi har gitt en differensligning med tilhørende startverdi,

$$x_{n+1} = x_n/(2n), \quad n \ge 1, \quad x_1 = 1.$$

Hva er løsningen?

$$x_n = 1/((n-1)! \, 2^{n-1})$$

$$x_n = 1/n$$

$$x_n = 1/(n! \, 2^n)$$

$$x_n = 1/(n!)^2$$

$$x_n = 1/n^2$$

$$x_n = 1/(n!)^2$$

$$x_m = 1/n^2$$

Oppgave 18. Vi har differensligningen

$$x_{n+1} - x_n/3 = 1$$
 $n \ge 1$, $x_1 = 1$

og simulerer denne med 64-bits flyttall på datamaskin. For store n vil da den beregnede løsningen \bar{x}_n nærme seg

1

0

 $3^{1-n}/2$

 $\sqrt{}$ 3/2

Oppgave 19. Vi har differensligningen

$$3x_{n+2} + 4x_{n+1} - 4x_n = 0$$
, $x_0 = 1$, $x_1 = 2/3$

og simulerer denne med 64-bits flyttall. For store n vil da den beregnede løsningen \bar{x}_n gi som resultat

underflow

1

 $(2/3)^n$

overflow

Oppgave 20. Vi lar P_n betegne påstanden

$$\sum_{i=1}^{n} i2^{i} = n2^{n+1} - 2.$$

Et induksjonsbevis for at P_n er sann for alle heltall $n \geq 1$ kan være som følger:

- 1. Vi ser lett at P_1 er sann.
- 2. Anta nå at vi har bevist at P_1, \ldots, P_k er sanne. For å fullføre induksjonsbeviset må vi vise at P_{k+1} også er sann. Siden P_k er sann har vi

$$\sum_{i=1}^{k+1} i2^i = \sum_{i=1}^k i2^i + (k+1)2^{k+1}$$
$$= k2^{k+1} - 2 + (k+1)2^{k+1}$$
$$= (2k+2)2^{k+1} - 2$$
$$= (k+1)2^{k+2} - 2.$$

Vi ser dermed at om P_k er sann så må også P_{k+1} være sann. Hvilket av følgende utsagn er sanne?

Påstanden P_n er sann, men del 2 av induksjonsbeviset er feil Påstanden P_n er feil, og del 2 av induksjonsbeviset er feil Påstanden P_n er feil, og del 1 av induksjonsbeviset er feil Både påstanden P_n og induksjonsbeviset er riktige Beviset er riktig, men det er ikke noe induksjonsbevis

Det var det!