Database Systems Introduction (Lecture-02)

Dr. Rudra Pratap Deb Nath

Associate Professor
Department of Computer Science & Engineering
University of Chittagong

rudra@cu.ac.bd

4th Semester 2025

Overview

- 1 Course
 - Course outline
 - Course in a rapid mode

Main questions to be addressed

Questions:

- How to model and design data?
- How to store data reliably and durably?
- How to process data efficiently?
- How to handle concurrent access of multiple users?

Course contents

Contents:

- Relational Model
- Relational Algebra
- Entity Relationship Model (ER model)
- Database Design (Normalization)
- (Advanced) SQL
- Transactions
- Recovery
- Query processing and optimization
- Introduction to current and advanced database technologies

Entrance to the problem solving world

Model some part of the real world (mini-world)

- What do we need to model?
- What level of details?
- Identify of entities
- Identify their roles
- Identify how they are connected to each other

Requirement gathering and analysis

Mini world: CSE Dept \rightarrow requirement analysis Some facts

- Department offers lectures
- Instructors conduct the courses
- Students attend courses
-

Requirement gathering and analysis

Mini world: CSE Dept \rightarrow requirement analysis Main constructs

- Identification of organizational units
- Identification of relationships
- Identification of processes
- Formalization
- Requirement specifications

Entity relationship modeling

How the customer explained it

How the Project Leader understood it

http://www.fuki.ch/

Entity relationship modeling

How the Analyst designed it

wrote it

http://www.fuki.ch/

Entity relationship modeling

really needed

http://www.fuki.ch/

Entity relationship modeling

- 1 Entity o Entity type
- $\begin{array}{c} 2 \ \ \text{Relationship} \rightarrow \text{Relationship} \\ \text{type} \end{array}$
- 3 Attribute
- 4 Primary key

Another ER example: Banking enterprise

Relational model

 $\mathsf{ER} \to \mathsf{relations}$

For instance

- student(<u>stuID</u>, name, semester)
- course(<u>courseID</u>, credit, title)

Relational Algebra

Type of operations

- \blacksquare selection σ
- lacksquare projection π
- cross product X
- join ⋈
- \blacksquare rename ρ
- difference –
- ...

Examples

 $\sigma_{student.stuID=s197010110}(student)$

Relational Algebra

Type of operations

- \blacksquare selection σ
- lacksquare projection π
- cross product X
- join ⋈
- \blacksquare rename ρ
- difference —
- ...

Examples

```
\sigma_{\textit{student.stuID}=s197010110}(\textit{student})
\pi_{\textit{customer}_{\textit{name}}}(\sigma_{\textit{branch}_{\textit{name}}} = "\textit{Downtown}" (\textit{depositor} \bowtie \textit{account})) \cap \pi_{\textit{customer}_{\textit{name}}}(\sigma_{\textit{branch}_{\textit{name}}} = "\textit{Uptown}" (\textit{depositor} \bowtie \textit{account}))
```

Tables and SQL

student		
<u>studID</u>	name	
26120	K. Pedersen	
25403	T. Jensen	

attend		
<u>studID</u>	<u>courseID</u>	
25403	5022	
26120	5001	

course		
<u>courseID</u>	title	
5001	DBS	
5022	Robotics	

SELECT name
FROM student, attend, course
WHERE student.studID = attend.studID AND
 attend.courseID = course.courseID AND
 course.title = 'DBS'

Tables and SQL

student		
<u>studID</u>	name	
26120	K. Pedersen	
25403	T. Jensen	

attend		
<u>studID</u>	<u>courseID</u>	
25403	5022	
26120	5001	

course			
<u>courseID</u>	title		
5001	DBS		
5022	Robotics		

UPDATE course

SET title = 'Database Systems'

WHERE courselD = 5001

Integrity constraints

- Uniqueness
- avoid data inconsistencies

CREATE TABLE student

(studID INTEGER PRIMARY KEY, name VARCHAR(30) NOT NULL, semester INTEGER **CHECK semester BETWEEN 1 AND 13**)

Normalizations

Goal:avoiding redundancy

empid	name	rank	office	courseld	title	ects
2125	Socrates	C4	226	5041	Ethics	4
2125	Socrates	C4	226	5049	DBS	2
2125	Socrates	C4	226	4052	Logics	4
2137	Kant	C4	7	5001	Basics	4
2126	Russel	C4	232	5043	Theory of Cognition	3
2126	Russel	C4	232	5052	Theory of Science	3
2128	Russel	C2	230	5216	Bioethics	2
2133	Popper	C3	52	5259	Advanced Algorithms	2
2134	Augustinus	C3	309	5022	Belief and Knowledge	2
2137	Kant	C4	7	4630	Constructive Criticism	4
-	-	-		4000	Data Structures	4

- Insert a new course
- Update the office to 338 who teaches Ethics
- What happen if constructive criticism course is deleted from the syllabus?

Transactions

How to handle concurrent transactions

	transaction 1	transaction 2
1.	x:=balance	
2.	x:=x+2000 // salary	y:=balance
3.	balance:=x	y=y-100 // withdrawal
4.		balance:=y

Transactions

How to handle concurrent transactions

	transaction 1	transaction 2
1.	x:=balance	
2.	x:=x+2000 // salary	y:=balance
3.	balance:=x	y=y-100 // withdrawal
4.		balance:=y

This is a lost update

Transactions

Synchronization

- Resolve problems arisen when multiple users concurrently read/write data
- The database system allows concurrent access but prevents conflicts

Recovery

Failure at time t

- Transactions committed successfully prior to t must not be lost
- All aborted transaction should be completely deleted

Indexing

Increase performance

- Problem: Efficient search in big database
- lacktriangle Mapping: Keys o set of entries
- Main memory too small for all data
- Hard disk access is expensive

B+ tree

Reading in blocks instead of bit by bit Better than a binary tree

- n-ary tree
- One page on disk = one node/leave
- Data are stored in leaves

Query processing and optimization

Efficient execution of queries

- lacksquare a query ightarrow an executable query plan
- Cost model: find the cheapest execution plan.

Acknowledgement

- Katja Hose, Aalborg University
- slides of Database System concept book

DBS-Introduction
L_Course

Course in a rapid mode

Thank you

Self-studies

- Review the concepts of "Relations" you studied in your Discrete Math course.
- Review the concepts of class diagram you studied in your OOP course.