

Contexte

+ de 700 sites côtiers hypoxiques recensés au cours des 50 dernières années

Manque de données de qualité pour observer la déoxygénation des océans

Processus

L' oxygène dissous est un paramètre vital qui gouverne la majorité des processus biologiques des écosystèmes aquatiques.

Facteurs physiques

- échanges à l'interface air-eau (gain ou perte),
- diffusion et mélanges au sein de la masse d'eau

Facteurs chimiques

- photo-oxydation (perte)
- oxydation chimique (perte)

Facteurs biologiques

- respiration des organismes aquatiques, y compris minéralisation (perte)
- nitrification (perte)
- photosynthèse (gain)

$$(CH_{2}O)_{106}(NH_{3})_{16}H_{3}PO_{4} + 106O_{2} \longrightarrow 106CO_{2} + 106H_{2}O + 16NH_{3} + H_{3}PO_{4}$$

$$16NH_{3} + 32O_{2} \longrightarrow 16HNO_{3} + 16H_{2}O$$

$$106CO_{2} + 122H_{2}O + 16HNO_{3} + H_{3}PO_{4} \longrightarrow (CH_{2}O)_{106}(NH_{3})_{16}H_{3}PO_{4} + 138O_{2}$$

Solubilité de l'oxygène

Solubilité (ou saturation) dépendante de la température, de la salinité, de la pression atm.

Unités d'expression de l'oxygène dissous

Unités volumétriques

ml/l, μmol/l, mg/l

Conversions liées au volume molaire et à la masse molaire de l'oxygène

(1)
$$O_2(\mu mol/l) = 44,6596 * O_2(ml/l)$$

(2)
$$O_2 (\mu mol/l) = 31,2512 * O_2 (mg/l)$$

(3)
$$O_2(mg/l) = 1,4291 * O_2(ml/l)$$

Unité gravimétrique

μmol/kg

Division par la masse volumique **p** de l'échantillon (density en anglais) en kg/m³ à 1 atm. selon Millero et al. 1981

(4)
$$O_2 (\mu mol/kg) = O_2 (\mu mol/l)/\rho$$

Historique de mesure

Référence => Méthode de Winkler (1888)

Norme internationale ISO

Principe

- 1- Fixation de O₂ par une solution de manganèse
- 2- Oxydation d'une solution d'iode mesurée par :
 - titrage volumétrique
 - ou mesure spectrophotométrique

Historique de mesure

≈1950 : Electrode à membrane, dite sonde de Clark

Principe

Cellule contenant 1 cathode + 1 anode dans un électrolyte séparé du milieu à mesurer par une membrane perméable à l'oxygène

Mesure de la réduction de l'oxygène à la cathode sous tension constante de 790 mV.

Le courant produit est proportionnel à la pression partielle de O_2 . Selon loi des gaz parfaits (PV = nRT), on obtient la concentration en O_2

Historique de mesure

≈2000 : apparition sur le marché d'optodes

Principe général

- 1- Excitation d'un luminophore contenu dans une membrane
- 2- Mesure de l'énergie retransmise sur une photodiode :
 - + le signal est faible,
 - + la concentration d'O₂ est forte

Description du foil

- Couche optique d'isolation

Perméable aux gaz

Noire pour éviter interférences dues à la umière et au matériel fluorescent

- Couche indicatrice

Luminophore (ex : porphyrine de platine) incorporé dans une couche de polymère

- Couche support

Constitution d'une optode

Foil

visé sur fenêtre optique

Fenêtre optique

- 1 LED bleue verte pour exciter le film
- 1 photodiode pour mesurer la lumière fluorescente, équipée d'un filtre coloré
- 1 LED rouge, dite de référence, pour compenser une éventuelle dérive de l'électronique de l'émetteur et du récepteur

« Dynamic luminescence quenching »

Fluorescence

- absorption de la lumière à un certain niveau
- réémission plus tard à une énergie + faible (λ + grande)

Particularité des luminophores

- modification de la fluorescence d'autres molécules
- transmission de son énergie d'excitation en émettant quelques photons

Fonctionnement du foil

- excitation avec une lumière bleue verte (505 nm)
 - -> renvoi d'une lumière rouge
- si O₂ dans l'eau, cet effet de fluorescence éliminé

-> Quantité de lumière renvoyée inversement proportionnelle à conc. O₂

Fonctionnement du foil

- Si conc. O₂ élevée, délai entre excitation du luminophore et l'émission de lumière diminue
- Durée de vie de la luminescence mesurée en excitant la couche indicatrice avec une lumière bleueverte modulée à 5 kHz
- -> période du signal reçu fonction de la durée de vie

Intensité du signal + période du signal pression partielle de O₂

équation de Stern-Volmer

$$[O_2] = \frac{1}{K_{SV}} \left\{ \frac{\tau_0}{\tau} - 1 \right\}$$

avec τ = durée de vie, τ 0 = durée de vie en l'absence d'O₂, KSV = constante de Stern-Volmer

Changement des capacités d'observation de l'O₂

Winkler data since $1900 \cong$ sensors data over the last 10 years

Etalonnage d'une optode

- Recommandations internationales

ex: GO-SHIP, Uchida et al. 2010

- Etalonnage recommandé en trois points dont 0 et 100 % de saturation avec comparaison avec mesures Winkler

Atelier Calib'O₂ – Môle Ste Anne - oct. 2021

Surface

Gradient

Couche anoxique

-> 15 optodes autonomes ou déportées en mode profil

Atelier O₂ Pavin – Lac Pavin – juin 2024

Problématique comparaison optodes

Boites noires.... Quelles formules sont utilisées?

```
pO_2 = (C_0 * t^{m0} * calphase^{n0}) + (C_1 * t^{m1} * calphase^{n1}) + (C_2 * t^{m2} * calphase^{n2}) \\ + \dots + (C_{27} * t^{m27} * calphase^{n27}) avec t = \text{temp\'erature mesur\'ee par l'optode} \\ \text{calphase = phase calibr\'ee mesur\'ee par l'optode} \\ \text{C}_0 \grave{\text{a}} \text{ C}_{13} = \text{coefficients FoilCoefA}, \\ \text{C}_{14} \grave{\text{a}} \text{ C}_{27} = \text{coefficients FoilCoefB}, \\ \text{m}_{0\cdot 27} = \text{coefficients FoilPolyDegT} \\ \text{n}_{0\cdot 27} = \text{FoilPolyDeg0}
```

```
\begin{aligned} O_2\% &= \left(pO_2*100\right)/\left[1013.25 - p_{vap}(t)\right]*0.209446\\ \text{avec} & 1013.25 = \text{pression normale en mbar}\\ 0.29446 &= \text{valeur nominale d'}O_2 \text{ dans l'air}\\ P_{vap}(t) &= \text{pression de la vapeur d'eau à une température donnée en mbar} \end{aligned}
```

Compensation t°C? Compensation salinité? Compensation pression (atm + prof.)?

Problématique comparaison optodes

Compensation salinité?

$$f_{S}(ml/l) = [(S - S_{0}) * (B_{0} + B_{1}T_{s} + B_{2}T_{s}^{2} + B_{3}T_{s}^{3})] + C_{0} * (S^{2} - S_{0}^{2})$$

avec

 S_0 = valeur de salinité paramétrée dans les réglages internes de

l'optode (valeur par défaut= 0)

S = valeur de salinité mesurée en parallèle à l'optode

 $T_s = \ln[(298,15-t)/(273,15+t)]$

Compensation profondeur?

$$O_{2 Cprof} = O_2 * [1 + (C_{prof} * p) / 1000]$$

avec

p = profondeur en m

C_{prof} = 0.021 (cette valeur peut dépendre de l'optode)

 O_2 = concentration en oxygène dissous (ou pourcentage de saturation) non

compensée en profondeur

Compensation pression atm.?

$$O_{2\ C\ Patm}\ \% = O_{2}\ \% * P_{atm}/1013.25$$

avec

P_{atm} = pression atmosphérique mesurée en mbar

 O_2 = concentration n oxygène dissous (ou pourcentage de saturation) non

compensée en altitude

Cost effective O₂ sensors / DIY

Optodes marché

- cher = 1500 €

mais uniquement pour fonctionnement sur plateforme

DIY

quasi monopole de fabrication de foils par PreSens

FIGURE 1 | Left: Miniature dissolved oxygen optode assembly (left) in a bio-logging tag platform. The ruler scale is in centimeters. Right: O₂ sensing cube (PreSens, Germany) (courtesy by Dr. Z. A. Wang, WHOI, United States).

Suivi Mastodon O₂ – baie de Vilaine

