UFOs: Where will we see the next one(s)?

By:

Tobias Imhof

Sara Jahangiri

Link to GitHub: https://github.com/imhoftob/AdvancedBigDataP
roject

Agenda

- 1. Our data
- 2. First analytics
- 3. Deeper analytics
- 4. Comparison
- 5. Number of clusters k-mean
- 6. Impact of radius and min. cluster size Random Forest
- 7. Conclusion
- 8. Random forest regressor
- 9. Our learnings

1. Our Data

• A dataset of UFO sightings from Kaggle

	datetime	city	state	country	shape	duration	comments latitude	longitude
0	10/10/1949 20:30	san marcos	tx	us	cylinder	2700	This event took place in early fall around 194 29.8830556	-97.941111
1	10/10/1949 21:00	lackland afb	tx	NaN	light	7200	1949 Lackland AFB, TX. Lights racing acros 29.38421	-98.581082
2	10/10/1955 17:00	chester (uk/england)	NaN	gb	circle	20	Green/Orange circular disc over Chester, En 53.2	-2.916667
3	10/10/1956 21:00	edna	tx	us	circle	20	My older brother and twin sister were leaving 28.9783333	-96.645833
4	10/10/1960 20:00	kaneohe	hi	us	light	900	AS a Marine 1st Lt. flying an FJ4B fighter/att 21.4180556	-157.803611

2. First Analytics

- First impression of the UFO sigting data
- Sharp increase from the 1990s onward

3. Deeper analytics

- Visualizing data
- Finding most likely Ailien bases using centroids
- Creating time-geo clusters
 - Directly using DateTime and special data
 - Weighting DateTime more than special data
 - 2-step approach: first clustering based on date-time and within each cluster do a second clustering based on spatial data
- Trying to create UFO flight patterns

Time taken (K-Means): 0.0163 seconds Time taken (DBSCAN): 6.9040 seconds Time taken (HDBSCAN): 2.8197 seconds

4. Comparison

K-means

- Is sensitive to the number of clusters specified
- Does not work well with outliers and noisy datasets
- Input: Number of Clusters
- More efficient for large datasets

DBScan

- Does not require us to specify number of clusters
- Handles outlier and noisy datasets well
- Input: Radius and min. number of points
- Not so efficient for large datasets

HDBScan

- Improves DB Scan by adding hierarchical approach. This allows for clusters of varying density
- No need to specify Radius
- No need to specify number of clusters
- Handles outlier and noisy datasets well

5. Nr of clusters for K-means

- Elbow method used and decided on k=6
- No significant time increase compared to k=2

Time taken (K-Means): 0.0210 seconds Time taken (DBSCAN): 3.1113 seconds Time taken (HDBSCAN): 2.8373 seconds

6. Impact of radius and min. cluster size

DB Scan gets faster with smaller radius

Time taken (K-Means): 0.0188 seconds Time taken (DBSCAN): 0.2729 seconds Time taken (HDBSCAN): 2.8580 seconds

7. Conclusion

K-means

- Defining the number of clusters is really dificult and has huge impact
- Does not allow clusters within clusters which with our messy data would be very useful
- Our data is too messy for K-means
- It is really fast!

DBScan

- Does not require us to specify number of clusters
- Handles our noisy data well
- Allows for great control over the clusters
- It is slower in most cases

HDBScan

- All the benefits from DB Scan
- Needs even less input than DBScan
- Due to hierarchical nature it can be even slower than DBScan
- Depending on the needs can create more meaningful clusters

8. Random forest regressor Why Reg

Why Regressor and not classifier? Because our data is numeric.

 Objective: To accurately forecast the coordinates and timing of UFO sightings based on specified dates

• Challenges:

- DateTime format has to be split in its components
- Many different DateTime formats making the split difficult
- Outcome:
 - An objectively not satisfying model!

Yes, it is still really bad.

Mean Absolute Error (MAE): 13.279331921709591 Mean Squared Error (MSE): 521.3834387049584 R-squared (R²): -0.0943280963344783 When and where can we see a UFO today? (According to this very unsatisfying model)

```
# Prepare the input data for prediction
test_data = pd.DataFrame({
    'day': [5],
    'month': [11],
    'year': [2024]
})
```

longitude latitude hour minute 0 -60.954127 27.39091 17.168892 23.249875

9. Our Learnings

• Folium creates beautiful maps which can get really huge!

- Even the most advanced model cannot yield satisfactory outcomes if the quality of the data is poor
- Use HDBScan more often!
- UFO sighting Data is not high-quality data:
 - UFO sightings rely on human observers, and areas with higher populations tend to report more sightings
 - Interpreting an unidentified object as a UFO involves significant socio-cultural influences
 - Predominantly English-speaking countries are represented

Questions?

