

Progetto I-MULE

www.progetto-imule.it

DIPARTIMENTO DI INGEGNERIA Informatica Automatica e Gestionale Antonio Ruberti

Motivazioni e finalità

- criticità dei sistemi di smistamento e instradamento dei bagagli mediante nastri trasportatori in ambito aeroportuale
 - o costosi, ingombranti, con tempi di set-up elevati
 - o poco flessibili, con basso parallelismo (fermo guasti)
- uso alternativo di una flotta di veicoli robotici tra check-in e baia di carico (interno aeroporto)
 - o autonomia completa dei veicoli, con supervisione centrale
 - o stessa gestione (controllo RX sicurezza, ecc.) per *singoli* bagagli
 - o dimensione veicoli compatibili con i sistemi esistenti (interfacce)
- pensato come sistema complementare per gestire 'late arrival' ai check-in di grandi aeroporti o come metodo esclusivo di trasporto bagagli nei nuovi piccoli aeroporti

Area di lavoro con componenti presenti

layout di test

o geometria e dimensioni (inclusa presenza di piani inclinati)

o zone libere e ostacoli fissi

• # veicoli robotici

o # banchi check-in

• # baie di carico

o 1-2 stazioni di ricarica

o 1-2 apparati rx sicurezza

#/capacità buffer (fisici o funzionali)

o # cammini e relative corsie (lanes, clearance)

o beacon per localizzazione globale/supervisione (copertura)

o telecamere sorveglianza

Architettura di sistema

supervisione, pianificazione, comunicazione, localizzazione, navigazione, controllo

Modellazione

esempi di eventi da gestire

- o richiesta da banco di check-in ⇒ assegnazione di un veicolo
- veicolo in approccio al check-in ⇒ attiva controllo per allineamento veicolo al banco (tolleranza laterale ± 2 cm)
- o check-in completato ⇒ instradamento verso baia di carico ("corridoio")
- o bagaglio scaricato in baia ⇒ veicolo torna in zona check-in
- o veicolo libero e in attesa ⇒ pronto a soddisfare nuova richiesta
- o code (eventuali) nei buffer
- o battery-low ⇒ va alla stazione di ricarica
- o failure: ostacolo non gestibile, perdita bagaglio, blocco veicolo ecc. ⇒ strategie diverse
- interfaccia grafica per visualizzazione stato del sistema

Reti di Petri

- modellazione e simulazione di sistemi a eventi discreti
 - o con Petri Nets (PN: posti, transizioni, archi pesati, token, inibizioni, struttura modulare)
 - o transizioni temporizzate (TimedPN, deterministiche/stocastiche) modellano: tempi di trasferta, controllo rx o ricarica batterie veicolo, intervalli di arrivo clienti ai check-in, MTBF, ...
 - o usi: throughput sistema (bagagli/h), analisi di code in buffer, deadlock, gestione concorrenze/conflitti, dimensionamento, ...

Layout

Veicolo robotico

specifiche di moto

- o velocità crociera = 2 m/s (= 7.2 km/h)
- o accelerazione max = $0.5-1 \text{ m/s}^2$ (1.6 m/s² max)
- o tempo di autonomia operativa
- o cinematica tipo uniciclo
 - capacità di rotazione sul posto
 - curve a raggio arbitrario percorribili a velocità costante
- profili orari a velocità trapezoidale per cammini rettilinei rest-to-rest
- o manovre di docking/parcheggio

due ruote azionate (servo-controllate in modo differenziale) + castor passivo

Il sistema I-Mule

• Tool di modellizzazione e simulazione con TPN (+ estensioni) sviluppato in Java (platform independent), con GUI interattiva in C++

Caratteristiche del tool

- estensioni delle Petri Nets incluse
 - o archi inibitori
 - disabilitano l'occorrenza di un evento
 - o check (in sola lettura) dei token presenti in un posto
 - per procedere con test logici: if, until, ...
 - o transizioni temporizzate
 - durata (nominale) degli eventi
 - o tempi non deterministici
 - eventi che accadono con diverse distribuzioni di probabilità
 - o posti con massima capacità (buffer limitati)
 - o transizioni con massima attivazione
 - massimo numero di eventi concorrenti

Alcune scelte operative

capacità

o sul #robot: buffer ⇒ check-in area ≤ 2; check-in ⇒ security check ≤ 3

tempi

o buffer → check-in: 10 sec; parking: 5 sec; loading: 5 sec; security → bay area: 20 sec (in base a velocità robot = 2 m/s); charging: 1000 sec; ...

probabilità

- o uniformi (o esponenziali): buffer → check-in area: 0.95; parking: 0.95; check-in → security: 1; ...
- o il complemento a 1 sono errori recuperabili ("nuovo tentativo")

arrivi clienti

- o intervalli $t = -\log(1-r)/\lambda$ (tassi di arrivo λ , r uniforme in [0,1])
- failures (vari malfunzionamenti)
 - o hanno una probabilità di insorgenza, richiedono un tempo di recovery

Alcune failures

Test effettuati

- tassi di arrivo clienti
 - \circ $\lambda = 72/h$, 180/h, 720/h
- numero robot e banchi check-in
 - o #robot = 1, 2, 3, ..., 7+; #banchi check-in: 2, anche 3 per 720/h
- 24h di simulazione
 - o con sampling 2 ÷ 5 min (+ zoom ogni 10 sec per 2.7h = 100K campioni)
- indici di prestazione (media e varianza su esperimenti ripetuti)
 - o throughput (#bagagli/h)
 - #clienti medio in attesa
 - o max #clienti in coda
 - o max durata coda (clearing) 10

Risultati – 72/h

- 1 robot: 34.8 clienti/h serviti
- 2 robot: 68.4 clienti/h serviti
- 3+ robot: coda limitata
 - o max coda in 24h = 14 clienti
 - o clearing in 52 minuti

72 Hourly Arrivals - 3 Robots

Risultati – 72/h

4 robot

72 Hourly Arrivals - 4 robots

• 5 & 6 robot

72 Hourly Arrivals - 6 robots

Risultati – 72/h

Riassunto – 72/h

• al variare del numero di robot

max lunghezza coda attesa

800 700 600 500 400 200 100 0 1 2 3 4 5 6 7 8

media #clienti in attesa/unità tempo

Risultati – 180/h

• risultati adeguati con 8 robot, ideali con 10, da 12+ molti robot inutilizzati

	8 r	obots	
	Max Q. Duration	Max Q. Size	Average Q. Size
1	10	7	0,047
2	15	1	0,02
3	20	10	0,08
4	10	3	0,01
5	15	2	0,06
6	15	7	0,12
7	20	6	0,01
8	20	6	0,07
9	10	6	0,08
10	15	9	0,16
Average	15	5,7	0,07
Variance	16,66	8,46	0,0001

Risultati – 180/h

• risultati ideali con 10, da 12+ molti robot rimangono inutilizzati

10 robots			
	Max Q. Duration	Max Q. Size	Average Q. Size
1	10	7	0,14
2	5	1	0,02
3	10	3	0,08
4	5	3	0,01
5	10	2	0,06
6	10	7	0,12
7	5	1	0,01
8	5	2	0,07
9	15	3	0,08
10	10	9	0,16
Average	8,50	3,80	0,08
Variance	11,38	7,96	0,0001

Risultati – 720/h

	Max Queue Duration	
Robots	2 check-in	3 check-in
25	1252,5	102
30	881,5	32,5
35	409	22,5
40	269,5	12,5

	Max Queue Size	
Robots	2 check-in	3 check-in
25	326,3	64,7
30	168,6	36,9
35	94,7	19,4
40	73,7	15,3

	Average Queue Size	
Robots	2 check-in	3 check-in
25	149,97	10,20
30	64,19	3,11
35	25,71	1,11
40	13,62	0,52

	SB/RFS	
Robots	2 check-in	3 check-in
25	0,9822	0,9987
30	0,9922	0,9992
35	0,9961	0,9992
40	0,9964	0,9992

SB/RFS = ServedBaggages/RequestsFromStart

Sviluppi

- studio delle proprietà strutturali
- inclusione di altri aspetti e miglioramenti possibili
 - o nuovo layout + introduzione di corsie
 - o raffinamento processo di ricarica
 - o eventuali logiche alternative di gestione
 - o verifica RX direttamente al check-in
- interfaccia con visualizzazione 2D/3D del sistema
- controllo del moto e navigazione
 - o uso di sistema di visione esterno nelle zone di manovra
 - o localizzazione dei robot con EKF (beacon fissi + odometria)

Nuovo layout

Nuovo layout semplificato

Simulazione 3D della navigazione

