CSC 450 - COMPUTER NETWORKS

Design Philosophy & Applications

Part 2

Recap

- Application Protocol: HTTP
- Parallel vs Persistent connections (pipelines)

Applications and Application-Layer Protocols

- Application: communicating, distributed processes
 - Running in network hosts in "user space"
 - Exchange messages to implement app
 - e.g., email, file transfer, the
 Web
- Application-layer protocols
 - One "piece" of an app
 - Define messages exchanged by apps and actions taken

Server and Client

Server and Client exchange messages over the network through a common Socket API

HTTP Request

HTTP caching and proxies

Enabling content reuse

Motivation: Web Caching

- Users often revisit web pages
 - Big win from reusing local copy!
 - This is caching

- Key question:
 - When is it OK to reuse local copy?

Web Caching

- Locally determine copy is still valid
 - Based on expiry information such as "Expires" header from server
 - Or use a heuristic to guess (cacheable, freshly valid, not modified recently)
 - Content is then available right away

Web Caching

- Revalidate copy with remote server
 - Based on timestamp of copy such as "Last-Modified" header from server
 - Or based on content of copy such as "Etag" header from server
 - Content is available after 1 RTT

Putting the pieces together

Web Proxies

- Place intermediary between pool of clients and external web servers
 - Benefits for clients include greater caching and security checking
 - Organizational access policies too!
- Proxy caching
 - Clients benefit from larger, shared cache
 - Benefits limited by secure / dynamic content, as well as "long tail"

Web Proxies

Clients contact proxy; proxy contacts server

Future of HTTP

- How will we make the web faster?
- A brief look at some approaches

Modern Web Pages

Waterfall diagram shows progression of page load

webpagetest tool for http://coursera.org (Firefox, 5/1 Mbps, from VA, 3/1/13)

Modern Web Pages

Yikes!

-23 requests

-1 Mb data

-2.6 secs

webpagetest tool for http://coursera.org (Firefox, 5/1 Mbps, from VA, 3/1/13)

Modern Web Pages

Yay! (Network used well)

- Waterfall and PLT depends on many factors
 - Very different for different browsers
 - Very different for repeat page views
 - Depends on local computation as well as network

Recent work to reduce PLT

Pages grow ever more complex!

- Larger, more dynamic, and secure
- How will we reduce PLT?
- Better use of the network
 - HTTP/2 effort based on SPDY
- Better content structures
 - mod_pagespeed server extension

SPDY ("speedy")

- A set of HTTP improvements
 - Multiplexed (parallel) HTTP requests on one TCP connection
 - Client priorities for parallel requests
 - Compressed HTTP headers
 - Server push of resources
- Now being tested and improved
 - Default in Chrome, Firefox
 - Basis for an HTTP/2 effort

mod_pagespeed

Observation:

- The way pages are written affects how quickly they load
- Many books on best practices for page authors and developers

Key idea:

- Have server re-write (compile) pages to help them load quickly!
- mod_pagespeed is an example

mod_pagespeed

- Apache server extension
 - Software installed with web server
 - Rewrites pages "on the fly" with rules based on best practices
- Example rewrite rules:
 - Minify Javascript
 - Flatten multi-level CSS files
 - Resize images for client
 - And much more (100s of specific rules)

Email Applications

- Application Protocols
 - HTTP
 - Email
 - POP3 (Post Office Protocol Version 3)
 - IMAP (Internet Message Access Protocol)
 - SMTP (Simple Mail Transfer Protocol)