Count models

Silje Synnøve Lyder Hermansen

2020-11-19

The dependent variable

The dependent variable

Count data is common in political science

▶ Discrete: consists only in integers (0, 1, 2, ... no digits)

Count data is common in political science

▶ Discrete: consists only in integers (0, 1, 2, ... no digits)

- ▶ Discrete: consists only in integers (0, 1, 2, ... no digits)
- Bounded at zero, often long tail upwards.

- ▶ Discrete: consists only in integers (0, 1, 2, ... no digits)
- Bounded at zero, often long tail upwards.

- ▶ Discrete: consists only in integers (0, 1, 2, ... no digits)
- Bounded at zero, often long tail upwards.

Count models: What are they good for?

Count models: What are they good for?

The data generating process allows us to

observe and count a number of events and

The data generating process allows us to

observe and count a number of events and

- observe and count a number of events and
- define a time frame or geographical space for the occurence(s)

- observe and count a number of events and
- define a time frame or geographical space for the occurence(s)

- observe and count a number of events and
- define a time frame or geographical space for the occurence(s)
- \Rightarrow e.g. number of meetings between decision makers, violent events, legislative proposals, etc.

Why not a binomial logistic regression?

These are indeed binary outcomes

Why not a binomial logistic regression?

These are indeed binary outcomes but we don't have information on the event level

Why not a binomial logistic regression?

These are indeed binary outcomes but we don't have information on the event level

 \Rightarrow Variables are on the exposure level; related to when (where) the events took place.

The variable could be approximated to a continuous measure but

it is bounded at zero, so predictions would be wrong

The variable could be approximated to a continuous measure but

it is bounded at zero, so predictions would be wrong

The variable could be approximated to a continuous measure but

ightharpoonup it is bounded at zero, so predictions would be wrong ightharpoonup same problems as logit

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- ▶ it is scewed. Some people add a constant and logtransform: log(y + 0.1)

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- ▶ it is scewed. Some people add a constant and logtransform: log(y + 0.1)

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- ▶ it is scewed. Some people add a constant and logtransform: $log(y+0.1) \rightarrow but$ heteroskedasticity and non normal errors remain

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- ▶ it is scewed. Some people add a constant and logtransform: $log(y+0.1) \rightarrow but$ heteroskedasticity and non normal errors remain
- ⇒ We replace the normal distribution with another probability distribution

There are many count models

▶ Poisson model: the base-line

There are many count models

▶ Poisson model: the base-line

- Poisson model: the base-line
- ▶ Other models: to address problems with the poisson

- Poisson model: the base-line
- ▶ Other models: to address problems with the poisson

- Poisson model: the base-line
- ▶ Other models: to address problems with the poisson

The Poisson model

The Poisson model

Poisson process

The poisson distribution maps probabilities of events within a window to outcomes

Poisson process

The poisson distribution maps probabilities of events within a window to outcomes

Exposure (t, t + h): A window of opportunity between two bounaries (geographical or spacial)

Poisson process

The poisson distribution maps probabilities of events within a window to outcomes

Exposure (t, t + h): A window of opportunity between two bounaries (geographical or spacial)

- **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- **Probability of event (** λ **):** Simply the logtransformed mean of events within that window

- **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- **Probability of event (** λ **):** Simply the logtransformed mean of events within that window

- **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- **Probability of event (** λ **):** Simply the logtransformed mean of events within that window
 - Probability of event = $h\lambda$

- **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- **Probability of event (** λ **):** Simply the logtransformed mean of events within that window
 - Probability of event = $h\lambda$

- **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- **Probability of event (** λ **):** Simply the logtransformed mean of events within that window
 - Probability of event = $h\lambda$
 - Probability of no event = 1 $h\lambda$

- **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- **Probability of event (** λ **):** Simply the logtransformed mean of events within that window
 - Probability of event = $h\lambda$
 - Probability of no event = 1 $h\lambda$

- **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- **Probability of event (** λ **):** Simply the logtransformed mean of events within that window
 - Probability of event = $h\lambda$
 - Probability of no event = 1 $h\lambda$

Formula

The equation the model estimates:

$$E(y_i) \equiv h\lambda_i = h \times \exp(\alpha + \beta \times x_i) \tag{1}$$

What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

▶ **Offset:** Move it into the equation but constrain parameter: $exp(\alpha + \beta \times x_i + 1 \times log(h_i))$

What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

▶ **Offset:** Move it into the equation but constrain parameter: $exp(\alpha + \beta \times x_i + 1 \times log(h_i))$

What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

▶ **Offset:** Move it into the equation but constrain parameter: $\exp(\alpha + \beta \times x_i + 1 \times log(h_i)) \rightarrow we \ don't \ see \ it \ in \ the \ BUTON$

What to do with the exposure parameter?

$$E(y_i) \equiv {}^{\mathsf{h}}\lambda_i = {}^{\mathsf{h}} \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

- ▶ **Offset:** Move it into the equation but constrain parameter: $exp(\alpha + \beta \times x_i + 1 \times log(h_i)) \rightarrow we don't see it in the BUTON$
- **Estimate a parameter:** $exp(\alpha + \beta_1 \times x_i + \beta_2 \times log(h_i))$

What to do with the exposure parameter?

$$E(y_i) \equiv {}^{\mathsf{h}}\lambda_i = {}^{\mathsf{h}} \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

- ▶ **Offset:** Move it into the equation but constrain parameter: $exp(\alpha + \beta \times x_i + 1 \times log(h_i)) \rightarrow we don't see it in the BUTON$
- **Estimate a parameter:** $exp(\alpha + \beta_1 \times x_i + \beta_2 \times log(h_i))$

What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

- ▶ **Offset:** Move it into the equation but constrain parameter: $\exp(\alpha + \beta \times x_i + 1 \times log(h_i)) \rightarrow we \ don't \ see \ it \ in \ the \ BUTON$
- **Estimate a parameter:** $exp(\alpha + \beta_1 \times x_i + \beta_2 \times log(h_i))$
- \Rightarrow If the exposure is the same for all units, we set it to 1 and ignore it.

Interpretation is relatively easy with all count models

► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)

Interpretation is relatively easy with all count models

► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- We back-transform (for interpretation): $exp(\lambda)$ is simply an approximation (with digits) of our counts!

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- We back-transform (for interpretation): $exp(\lambda)$ is simply an approximation (with digits) of our counts!

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- We back-transform (for interpretation): $exp(\lambda)$ is simply an approximation (with digits) of our counts!

Interpretation is relatively easy

► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)

Interpretation is relatively easy

► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- ▶ We back-transform (for interpretation):

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- ▶ We back-transform (for interpretation):
 - Predicted value: $exp(\hat{\lambda})$ is simply an approximation (with digits) of our counts

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- ▶ We back-transform (for interpretation):
 - Predicted value: $exp(\hat{\lambda})$ is simply an approximation (with digits) of our counts

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- We back-transform (for interpretation):
 - Predicted value: $exp(\hat{\lambda})$ is simply an approximation (with digits) of our counts
 - Effect of β : $exp(\beta)$ is multiplicative of predicted $\hat{\lambda}$

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- We back-transform (for interpretation):
 - Predicted value: $exp(\hat{\lambda})$ is simply an approximation (with digits) of our counts
 - Effect of β : $exp(\beta)$ is multiplicative of predicted $\hat{\lambda}$

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- ▶ We back-transform (for interpretation):
 - Predicted value: $exp(\hat{\lambda})$ is simply an approximation (with digits) of our counts
 - Effect of β : $exp(\beta)$ is multiplicative of predicted $\hat{\lambda} \to easy!$
- ⇒ Make scenarios, predict, knock yourself out

Dispersion

Dispersion

The model assumes equidispersion: The spread equals the mean

▶ The y can be overdispersed, but not the $\hat{\lambda}$

The model assumes equidispersion: The spread equals the mean

▶ The y can be overdispersed, but not the $\hat{\lambda}$

The model assumes equidispersion: The spread equals the mean

lacktriangle The y can be overdispersed, but not the $\hat{\lambda}
ightarrow$ as in OLS

The model assumes equidispersion: The spread equals the mean

- lacktriangle The y can be overdispersed, but not the $\hat{\lambda}
 ightarrow$ as in OLS
- ⇒ The standerd errors will be too small

Identifying overdispersion

▶ Poissonness plot

Identifying overdispersion

▶ Poissonness plot

- ► Poissonness plot
- Rootograms

- ► Poissonness plot
- Rootograms

- Poissonness plot
- Rootograms
- ► Formal tests: Using residuals and significance tests.

- Poissonness plot
- Rootograms
- ► Formal tests: Using residuals and significance tests.

- Poissonness plot
- Rootograms
- ► Formal tests: Using residuals and significance tests.

► Lack of exposure time

► Lack of exposure time

- Lack of exposure time
- Poor choice of variables (include more, also random intercepts)

- Lack of exposure time
- Poor choice of variables (include more, also random intercepts)

- Lack of exposure time
- ▶ Poor choice of variables (include more, also random intercepts)
- Too many zeros

- Lack of exposure time
- ▶ Poor choice of variables (include more, also random intercepts)
- Too many zeros

- ► Lack of exposure time
- ▶ Poor choice of variables (include more, also random intercepts)
- ▶ Too many zeros
- Events are related

Adressing overdispersion

 \blacktriangleright Adds an additional parameter, ϕ , to the variance estimation

 \blacktriangleright Adds an additional parameter, ϕ , to the variance estimation

 \triangleright Adds an additional parameter, ϕ , to the variance estimation \rightarrow similar to robust standard errors

lacktriangle Adds an additional parameter, ϕ , to the variance estimation o similar to robust standard errors

 $\Rightarrow \beta$ remains the same, standard errors are larger

The event is in fact generated by two processes

The event is in fact generated by two processes

The event is in fact generated by two processes

- $\lambda_i = \exp(\beta \times x_i + 1 \times u_i)$
- $\mathbf{v} = exp(u_i)$ is in itself generated by a gamma distribution $v_i \sim f\Gamma(\alpha)$

The event is in fact generated by two processes

- $\lambda_i = \exp(\beta \times x_i + 1 \times u_i)$
- $\mathbf{v} = exp(u_i)$ is in itself generated by a gamma distribution $v_i \sim f\Gamma(\alpha)$
- ▶ The latent variable is manipulated directly: the rate increases over y

21 / 24

The event is in fact generated by two processes

- $\lambda_i = \exp(\beta \times x_i + 1 \times u_i)$
- $\mathbf{v} = exp(u_i)$ is in itself generated by a gamma distribution $v_i \sim f\Gamma(\alpha)$
- ▶ The latent variable is manipulated directly: the rate increases over y

21 / 24

The event is in fact generated by two processes

- $\lambda_i = \exp(\beta \times x_i + 1 \times u_i)$
- $\mathbf{v} = exp(u_i)$ is in itself generated by a gamma distribution $v_i \sim f\Gamma(\alpha)$
- ▶ The latent variable is manipulated directly: the rate increases over y

21 / 24

Substantially that two data generating processes are at work.

One producing zeros

Substantially that two data generating processes are at work.

One producing zeros

- One producing zeros
- One producing (at least some) positive counts

- One producing zeros
- One producing (at least some) positive counts

- One producing zeros
- \triangleright One producing (at least some) positive counts \Rightarrow We can model this in two parallel regressions

If you pass the threshold in the first model, the positive counts are included in a second regression.

▶ Hurdle part: A binomial logit. Where success is y > 0

If you pass the threshold in the first model, the positive counts are included in a second regression.

▶ Hurdle part: A binomial logit. Where success is y > 0

- ▶ Hurdle part: A binomial logit. Where success is y > 0
- Count model: A zero-truncated poisson on all the positive counts.

- ▶ Hurdle part: A binomial logit. Where success is y > 0
- Count model: A zero-truncated poisson on all the positive counts.

- ▶ Hurdle part: A binomial logit. Where success is y > 0
- Count model: A zero-truncated poisson on all the positive counts.
- ⇒ The two models can have different predictors

- ▶ Hurdle part: A binomial logit. Where success is y > 0
- Count model: A zero-truncated poisson on all the positive counts.
- ⇒ The two models can have different predictors
- ⇒ Can accomodate under-dispersion too.

The results from two models are mixed

► Zero-inflated part: A binomial logit where success is the "always zeros".

The results from two models are mixed

► Zero-inflated part: A binomial logit where success is the "always zeros".

- Zero-inflated part: A binomial logit where success is the "always zeros".
- Count model: A poisson or negative binomial.

- Zero-inflated part: A binomial logit where success is the "always zeros".
- Count model: A poisson or negative binomial.

- Zero-inflated part: A binomial logit where success is the "always zeros".
- Count model: A poisson or negative binomial.
- ⇒ The two models can have different predictors