ISING PROJECT

Бондарь Роман Пяткин Станислав Семененко Александр

Долгопрудный 2020

Содержание

1	Введение			
	1.1	Цель проекта	2	
		Краткое описание	2	
2	Теория			
	2.1	Описание модели	3	
	2.2	Алгоритмы модели	4	
		2.2.1 Heat bath algorithm	4	
		2.2.2 Cluster algorithm	4	
	2.3	Работа алгоритмов	5	
3	Инструкция по использованию			
	3.1	Технические требования	7	
	3.2	Сборка проекта	7	
	3.3	Пример работы	7	
4	Реализация			
	4.1	Распределение обязанностей	8	
5	Сре	едства разработки	8	
C	Список источников			

1 Введение

1.1 Цель проекта

Смоделировать фазовый переход с помощью двумерной модели Изинга (математическая модель, предназначенная для описания намагничивания материала). Исследовать её поведение при различных температурах, а также создать удобный графический интерфейс для визуализации модели в работе.

1.2 Краткое описание

Каждому узлу кристаллической решетки сопоставляется число, равное ± 1 («направление вверх»/«направление вниз»). С помощью программы в реальном времени можно наблюдать, как эволюционирует модель. От внешних условий будет зависеть ориентация спинов, а именно будет ли она у всех одинакова или хаотически распределена.

2 Теория

2.1 Описание модели

Состояние модели полностью описывается значениями спинов в узлах решетки, и несколькими дополнительными параметрами. Значения спинов и их количество хранится в объекте базового класса lattice:

lattice::N - число спинов.

lattice::L - массив из N значений спинов σ_i .

lattice::nbrs - степень узла решетки (число соседей каждого спина).

Параметры модели и симуляции хранятся в объекте класса parameters:

parameters::beta - величина β , обратная температуре:

$$\beta = \frac{1}{kT} \tag{1}$$

parameters::J - энергия взаимодействия соседних в решетке спинов.

parameters::H - внешнее магнитное поле H.

 $\mathbf{parameters::mu}$ - магнитный момент спина μ .

Каждому состоянию S из 2^N возможных приписывается энергия, равная:

$$E(S) = -J \sum_{i,j-neighbors} \sigma_i \sigma_j - H \sum \mu \sigma_i$$
 (2)

Алгоритм симуляции heat bath simulate предельно прост:

- Выбрать произвользый спин σ .
- Присвоить $\sigma = +1$ вероятностью π_h^+ , и -1 с вероятностью $(1 \pi_h^+)$.
- Повторить $N \cdot$ steps раз.

 π_h^+ можно вычислить, используя распределение Гиббса по энергиям:

$$p(S) \sim e^{-\beta E(S)}$$
 (3)
 $\pi_h^+ = \frac{e^{-\beta E^+}}{e^{-\beta E^+} + e^{-\beta E^-}}$

где E^+ и E^+ - энергии состояний, в которых $\sigma = +1$ и -1 соответственно.

Количество шагов алгоритма **steps** берется достаточное, чтобы система пришла в термодинамическое равновесие.

Однако вблизи температуры фазового перехода β_c , сказывается так называемый "эффект критического замедления", когда $steps \to \infty$, и $heat_bath_simulate$ неэффективен.

Для преодоления этого эффекта реализован алгоритм **clusters_simulate**. В отличие от **heat_bath_simulate**, спины переворачиваются не поодиночке, а кластерами. Вот краткое описание его работы:

• Начать собирать кластер с произвольного спина σ .

- Добавлять в кластер соседние спины того же знака, что и σ , с вероятностью $\pi(\beta)$, и по завершении перевернуть кластер.
- Повторить **steps** раз.

Подробнее оба алгоритма и их реализация описаны в следующем разделе.

2.2 Алгоритмы модели

2.2.1 Heat bath algorithm

Алгоритм достаточно прост, и вся его смысловая часть заключена в трех строчках внутри двойного цикла.

Был значительно оптимизирован подсчет π_h^+ :

$$\pi_h^+ = \frac{e^{-\beta E^+}}{e^{-\beta E^+} + e^{-\beta E^-}} = \frac{1}{1 + e^{-2J\beta h - \mu H}}$$

где h - сумма спинов соседей (высчитывается методом $\operatorname{sum_nbr}$). Также, поскольку $h \in [-\operatorname{nbrs}, +\operatorname{nbrs}]$, то число возможных значений π_h^+ ограничено, и равно $1+2\cdot\operatorname{nbrs}$. Все возможные вероятности записываются в массив prob arr перед началом алгоритма.

Рис. 1: Алгоритм heat bath simulate

2.2.2 Cluster algorithm

В алгоритме cluster_simulate спины переворачиваются кластерами, что весьма ускоряет процесс симуляции.

Создание кластера Cluster начинается с выбора произвольного спина. Он кладется в Cluster и в дополнительный список Pocket. В Pocket хранятся спины, чьи соседи еще не обработаны алгоритмом.

Для каждого спина из **Pocket**, рассматриваются его соседи того же знака, и с вероятностью **prob** добавляются в **Cluster**.

Когда **Pocket** пуст, создание кластера прекращается, и все спины в нем меняют знак.

Вероятность **prob** берется равной:

$$\pi(\beta) = 1 - e^{-2\beta} \tag{4}$$

```
void Monte_Carlo::clasters_simulate(lattice *l, int steps) const {
   int spin, nbrs = l->getnbrs(), nbr_arr[nbrs], *L = l->getL(), N = l->getN();|
   int prob = RAND_MAX * (1 - exp(-2 * beta)); // Магическое число
     for (int j = 0; j < steps; ++j)
          spin = big_rand() % N; // Произвольный выбор спина vector <int> Claster {spin}, Pocket {spin}; // Кладем его в кластер и в карман
           while (!Pocket.empty())
                spin = Pocket[big_rand() % Pocket.size()]; // Произвольный выбор из кармана
                1->get_nbrs(spin, nbr_arr);
                                                                           // Получить соседей спина
                for (int i = 0; i < nbrs; ++i)
                                                                           // Проверить всех соседей
                         (L[spin] == L[nbr_arr[i]] &&
!vcontains(C[aster, nbr_arr[i]) &&
                                                                                    Если спин соседа совпадает
                                                                                    и его еще нет в кластере,
                           rand() < prob)
                                                                                // то с вероятностью prob
                          Pocket.push_back(nbr_arr[i]);
Claster.push_back(nbr_arr[i]);
                                                                                        Добавление в карман
                                                                                     // Добавление в кластер
                }
vdel(Pocket, spin);
                                                                           // Удалить из кармана
               (auto i = Claster.begin(); i != Claster.end(); ++i)
                L[*i] = - L[*i];
                                                                     // Переворот кластера
     }
}
```

Рис. 2: Алгоритм clusters simulate

2.3 Работа алгоритмов

Для анализа работы алгоритма **heat_bath_simulate** и поведения системы можно построить график средней намагниченности **avg_magn** от обратной к температуре величины **beta**.

Рис. 3: График средней намагниченности avg magn or beta

На промежутке [0.4; 0.5] - фазовый переход: наблюдается резкое повышение средней намагниченности. Это говорит о том, что спины группируются в более-менее постоянные области одного знака.

С использованием алгоритма clusters_simulate можно подробнее изучить область, где происходит фазовый переход: На более подробном графике видно,

Рис. 4: График средней намагниченности avg_magn от beta

что скачок происходит при $\mathbf{beta} \in [0.44; 0.46]$, что согласуется с полученным аналитически Л. Осагнером значением

$$\beta_c = \frac{\ln(1+\sqrt{2})}{2J} \approx 0.44$$

3 Инструкция по использованию

3.1 Технические требования

Версия Qt 5.14.1, компилятор C++ 11.

3.2 Сборка проекта

Windows 10:

- 1. Клонировать репозиторий с github.com/gitrbond/ising_project
- 2. Убедиться, что qmake, make и windeployqt в РАТН, перейти в директорию проекта (файл .pro)
- 3. qmake
- 4. make
- 5. windeployqt . (при необходимости)
- 6. ising model.exe

Linux:

- 1. qmake
- 2. make
- 3. linuxdeployqt . (при необходимости)
- 4. ./ising_model

3.3 Пример работы

ising model.exe

4 Реализация

4.1 Распределение обязанностей

- Бондарь Роман → Автор идеи и структуры проекта; Реализация алгоритмов; Создание графического интерфейса; Построение графиков;
- Пяткин Станислав → Автоматизация вычисления заданных точек для графика; Исследование полученных графиков и подбор параметров вычисления для получения наиболее подходящего(близкого к теории) графика за минимальное время; Вычисление большой решётки; Создание 3D решётки; Предложил несколько оптимизаций в simulate.
- Семененко Александр → Создание документации; Имплементация разных типов решеток; Поддержка безопастности работы программы; Реализация типовой решётки; Подбор теоретической справки.

5 Средства разработки

Язык программирования C++. Среды: CodeBlocks, CLion, Visual Studio. Графический интерфейс реальзован с помощью Qt в среде QtCreator.

Список источников

- [1] Werner Krauth: Statistical Mechanics: Algorithms and Computations
- [2] Jesper Jacobsen, Stephane Ouvry: Exact Methods in Low-dimensional Statistical Physics and Quantum Computing 2008
- |3| Wikipedia: Ising model
- [4] A.B.Третьяков : drawing 6.4E1 (A simple GUI popular-scientific drawing framework)