TD2: Optimisation et complexité

Exercice 1:

On considère le modèle mathématique suivant :

Maximiser
$$3x_1 + 2x_2$$

 S/C
 $x_1 + 2x_2 \le 6$ (1)
 $2x_1 + x_2 \le 8$ (2)
 $-x_1 + x_2 \le 1$ (3)
 $x_2 \le 2$ (4)
 $x_1 \ge 0, x_2 \ge 0$

Ce modèle mathématique représente l'activité d'une entreprise qui fabrique deux types de peintures : peinture extérieure et peinture intérieure. La fabrication de la peinture est basée sur 2 types de ressources : A et B. La quantité disponible de ressource A est 6 tonnes/jours tandis que celle de B est 8 tonnes/jour.

Pour fabriquer 1 tonne de peinture intérieure il faut 1 tonne de ressource A et 2 tonnes de ressource B.

Pour fabriquer 1 tonne de peinture extérieure il faut 2 tonnes de ressource A et 1 tonne de ressource B.

L'estimation de la demande journalière a montré que la demande de la peinture extérieure ne peut pas excéder celle de la peinture intérieure de 1 tonne, et que la demande de la peinture intérieure ne dépasse pas 2 tonnes/jour.

Questions:

- 1- Sachant que l'entreprise gagne 3 UM (unité monétaire) par tonne de peinture intérieure et 2 UM par tonne de peinture extérieure, donner l'interprétation des variables de décision, de la fonction économique et des contraintes du PML.
- 2- Déterminer la solution optimale du PML en se basant sur une méthode de résolution graphique

Exercice 2 : Soit le programme mathématique linéaire suivant :

Minimiser
$$10x_1 + 4x_2 + 5x_3$$

 S/C
 $5x_1 - 7x_2 + 3x_3 \ge 50$ (1)
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Maher REBAI EFREI 2019-2020

- 1- Déterminer le PML dual de ce PML primal.
- 2- Trouver les solutions optimales du dual et du primal.

Exercice 3:

En utilisant la méthode de résolution par les systèmes, déterminer la solution optimale du PML suivant :

Maximiser
$$2x_1 + 4x_2$$

 S/C
 $x_1 + 4x_2 \le 5$ (1)
 $x_1 + x_2 \le 4$ (2)
 $x_1 \ge 0, x_2 \ge 0$

Exercice4:

En utilisant la méthode de simplex, déterminer la solution optimale du PML suivant :

Maximiser
$$3x_1 + 9x_2$$

 S/C
 $3x_1 + 2x_2 \le 12$ (1)
 $x_1 + x_2 \le 5$ (2)
 $x_1 + x_2 \ge 2$ (3)
 $x_1 \ge 0, x_2 \ge 0$

Exercice5:

En utilisant la méthode de simplex, déterminer la solution optimale du PML suivant :

Maximiser
$$3x_1 + 2x_2 + 5x_3$$

 S/C
 $x_1 + 2x_2 + x_3 \le 430 (1)$
 $3x_1 + 2x_3 \le 460 (2)$
 $x_1 + 4x_2 \le 420 (3)$
 $x_1 \ge 0, x_2, x_3 \ge 0$

Maher REBAI EFREI 2019-2020