도서관 빅데이터를 활용한 20대 성별에 따른 대출 트랜드 분석

202044069 배예진

https://github.com/daraeyaa/data-analysis

魯 목차

- 1. 데이터 수집 방법
- 2. 데이터 전처리 20대 성별에 따른 대출 트랜드 분석
- 3. 데이터 시각화 20대 성별에 따른 대출 트랜드 분석
- 4. 데이터 전처리 2021년 기준, 20대 성별 · 분기별 대출건수와 KDC 분석
- 5. 데이터 시각화 2021년 기준, 20대 성별 · 분기별 대출건수와 KDC 분석
- 6. 프로젝트 리뷰

1. 데이터 수집 방법

사용 데이터: 도서관 정보나루 제공 데이터 https://data4library.kr/

수집 방법 : 도서관 정보나루 사이트의 '인기대출도서' 데이터를 수집한다.

조건 1) 기간(금년), 성별(여성, 남성), 연령(20대) 조건 2) 기간(작년, 분기별 설정), 성별(여성, 남성), 연령(20대)

⇒여성과 남성의 데이터를 따로 받아야 하므로 동시에 선택하지 않고 각각 선택하여 csv 파일을 다운 받는다.

https://www.data4library.kr/loanDataL

1. 데이터 수집 방법

[최종 사용 데이터]

- 1) 20대 성별에 따른 대출 트렌드 분석용 : 2022년_20대_남성_인기도서 2022년_20대_여성_인기도서
- 2) 20대 성별, 분기별 대출 트랜드 분석용: 2021_n분기_남성, 2021_n분기_여성

■ 2021_1분기_남성.csv

- 2021_1분기_여성.csv
- 2021_2분기_남성.csv
- 2021_2분기_여성.csv
- 2021_3분기_남성.csv
- 2021_3분기_여성.csv
- 2021_4분기_남성.csv
- 2021_4분기_여성.csv
- 2022년_20대_남성_인기도서.csv
- 2022년_20대_여성_인기도서.csv

[csv 파일 구성 내용]

순위, 서명, 저자, 출판사, 출판년도, 권, ISBN, ISBN부가기호, KDC, 대출건수 (파일당 200건)

	Α	В	С	D	E	F	G	Н	1	J	
1	순위	서명	저자	출판사	출판년도	권	ISBN	ISBN부가기	KDC	대출건수	
2	1	지구 끝의	지은이: 김	Giant Boo	2021		9.79E+12	3810	813.7	5176	
3	2	달러구트 :	지은이: 이	팩토리나인	2020		9.79E+12	3810	813.7	5028	
4	3	시선으로부	지은이: 정	문학동네	2020		9.79E+12	3810	813.7	4891	
5	4	우리가 빛	지은이: 김	허블	2019		9.79E+12	3810	813.7	4763	

2. 데이터 전처리

[] # 단계 1: 폰트 설치

1) 한글 사용을 위한 폰트 적용

```
import matplotlib.font_manager as fm
     !apt-get -qq -y install fonts-nanum > /dev/null
     fontpath = '/usr/share/fonts/truetype/nanum/NanumBarunGothic.ttf'
     font = fm.FontProperties(fname=fontpath, size=9)
     fm._rebuild()
    # 단계 2: 런타임 재시작
     import os
     os.kill(os.getpid(), 9)
[1] # 단계 3: 한글 폰트 설정
     import matplotlib.pyplot as plt
     import matplotlib as mpl
     import matplotlib.font_manager as fm
     # 마이너스 표시 문제
     mpl.rcParams['axes.unicode_minus'] = False
     # 한글 폰트 설정
     path = '/usr/share/fonts/truetype/nanum/NanumGothicBold.ttf'
     font_name = fm.FontProperties(fname=path, size=18).get_name()
     plt.rc('font', family=font_name)
     fm._rebuild()
```

2) 라이브러리 불러오기

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt

데이터 가공 : pandas, numpy 데이터 시각화 : seaborn, matplotlib

3) csv -> 데이터프레임 변환

```
# 파일 경로
file_path_man = '/content/2022년_20대_남성_인기도서.csv'
file_path_woman = '/content/2022년_20대_여성_인기도서.csv'

# 데이터프레임 변환(인코딩 에러 -> encoding 파라미터 활용)
df_man = pd.read_csv(file_path_man, encoding='cp949')
df_woman = pd.read_csv(file_path_woman, encoding='cp949')
```

4) 성별 열 추가

```
#성별 열 추가

df_man['성별'] = '남성'

print('2022년_20대_남성_인기도서')

print(df_man.head())

df_woman['성별'] = '여성'

print('2022년_20대_여성_인기도서')

print(df_woman.head())
```

남녀 csv를 각각 따로 다운 받아서 합칠 예정이므로, 구분을 위해 성별 열을 추가한다.

5) 데이터프레임 병합, 가공

```
# 데이터프레임 합치기(행 방향으로 합치기)
df = pd.concat([df_man, df_woman])
print(df.info()) #400row 확인
#합친 데이터 프레임 가공
#권,ISBN 부가기호 열 삭제
df.drop(['권', 'ISBN부가기호'], axis=1, inplace=True)
#KDC 결측치 처리(396 non-null, 4건의 NaN)
df['KDC'].fillna(method='bfill', inplace=True)
print(df.info())
```

- 남녀 데이터프레임을 행 방향으로 합친다.

각 데이터가 200건이므로 concat 이후에 info()로 400건의 데이터를 확인한다.

- 필요한 데이터만 사용하기 위해 '권', 'ISBN부가기호' 열을 삭제한다.
- KDC(한국십진분류법) 열에 결측값이 있어 결측값을 제거한다.

6) 데이터 전처리 전후 비교

```
# Column Non-Null Count Dtype
# Column Non-Null Count Dtype
0 순위 400 non-null int64
                                               0 순위 400 non-null int64
1 서명 400 non-null object
                                               1 서명 400 non-null object
2 저자 400 non-null object
                                               2 저자 400 non-null object
3 출판사 400 non-null object
                                               3 출판사 400 non-null object
4 출판년도 400 non-null object
                                               4 출판년도 400 non-null object
5 권 41 non-null float64
                                               5 ISBN 400 non-null float64
6 ISBN 400 non-null float64
                                               6 KDC 400 non-null float64
7 ISBN부가기호 394 non-null float64
                                               7 대출건수 400 non-null int64
8 KDC 396 non-null float64
                                                       400 non-null object
9 대출건수 400 non-null int64
10 성별 400 non-null object
```

열이 삭제되고, 결측값이 제거된 것을 확인할 수 있다.

7) KDC(한국십진분류법) 기반 분류를 위해 함수를 적용한다.

```
def kdcFunc(x):
 if (x > 0 \text{ and } x < 100):
  return '총류'
 elif (x > = 100 \text{ and } x < 200):
  return '철학'
 elif (x > = 200 \text{ and } x < 300):
  return '종교'
 elif (x > = 300 \text{ and } x < 400):
  return '사회과학'
 elif (x > = 400 \text{ and } x < 500):
  return '자연과학'
 elif (x >= 500 and x < 600):
  return '기술과학'
 elif (x > =600 \text{ and } x < 700):
  return '예술'
 elif (x > = 700 \text{ and } x < 800):
  return '언어'
 elif (x >=800 and x<900):
  return '문학'
 elif (x > = 900 \text{ and } x < 1000):
  return '역사'
 else:
  return '미상'
df['sorted_KDC'] = df.apply(lambda x:kdcFunc(x['KDC']), axis=1)
```


csv에는 KDC가 숫자로 입력되어 있어 한글로 변환한 새로운 열을 추가하기 위해 함수를 적용한다.

8) 함수 적용 후 데이터 확인

```
Column
             Non-Null Count Dtype
                                           문학
                                                  220
            400 non-null int64
                                           사회과학
                                                     103
            400 non-null object
                                                   37
            400 non-null object
                                                   13
             400 non-null object
                                           자연과학
              400 non-null object
                                           기술과학
  ISBN
           400 non-null float64
  KDC
           400 non-null float64
                                           예술
   대출건수
              400 non-null int64
                                           Name: sorted_KDC, dtype: int64
            400 non-null object
  sorted KDC 400 non-null object
dtypes: float64(2), int64(2), object(6)
```

[400 rows x 10 columns]

df.info()를 통해 sorted_KDC가 추가된 것을 확인.

df['sorted_KDC'].value_counts()를 통해 고유값 확인

KDC 가 함수를 통해 sorted_KDC 열에 한글로 입력되어 있음을 확인.

1) 성별에 따른 대출건수 시각화

#성별별 대출건수 합산을 위한 groupby 연산
grouped_sex = df.groupby(df['성별'])['대출건수'].sum()

#성별별 대출건수 시각화
colors=['darkseagreen', 'mediumpurple']
grouped_sex.plot.bar(color=colors, rot=0)

[2022년 12월 10일까지 남녀 대출 건수 비교]

남성 70985 여성 295929

⇒ 여성이 남성의 4배 이상 대출건수가 많은 것을 확인할 수 있다.

2) 인기대출도서의 KDC 항목별 개수 (성별 통합)

#대출 순위 200위 내 KDC 항목별 개수 그래프

sns.set_palette("hls")

df.sort_values(by=['sorted_KDC'], inplace=True) #가나다순 정렬 sns.countplot(data=df, x='sorted_KDC')

[인기대출도서의 KDC 순위(총 400건)]

문학 -> 사회과학 -> 철학 -> 총류 -> …

=> 문학과 사회과학이 차지하는 비중이 크다.

3) 인기대출도서의 KDC 항목별 개수 (성별 기준)


```
sns.set_palette("Set2")
ax = sns.countplot(data=df, x='sorted_KDC', hue='성별')
# countplot에 값 표시
for p in ax.patches:
  height = p.get_height()
  ax.text(p.get_x() + p.get_width() / 2,
  height + 1, height, ha = 'center', size = 9)
```

여성의 경우 인기대출도서 200권 중 문학과 사회과학 도서의 차이가 크지만, 남성의 경우 두 분류가 비등함을 그래프로 확인할 수 있다.

4) KDC별 대출건수 시각화 (성별 통합)

[KDC별 대출건수 순위 (성별 통합)]

문학 -> 사회과학 -> 철학 -> 자연과학 -> 기술과학 -> 총류 -> 역사 -> 예술

상위 5개 항목의 원그래프로 비율을 비교했을 때, 문학의 비율이 72.3% 그 다음으로 많은 사 회과학이 15.8%로 문학의 총 대출건수가 압도 적임을 확인할 수 있다.

4) KDC별 대출건수 시각화 (성별 통합)

20대 전체 기준 KDC별 대출건수 시각화 (bar chart)

```
sumKDC = df.groupby(df['sorted_KDC'])['대출건수'].sum().sort_values(ascending=False)
print(sumKDC)
colors=['lightcoral', 'orange', 'gold', 'olive', 'skyblue', 'darkblue', 'purple', 'grey']
sumKDC.plot.bar(color=colors, rot=0)
# 20대 전체 기준 KDC별 대출건수 시각화(상위 5개 항목의 pie chart)
sumKDC2 = sumKDC.head() #상위 5개 행 추출
print(sumKDC2)
plt.axis('equal')
plt.title('상위 5개 항목의 원그래프')
color_list = plt.cm.Set3(np.linspace(0.45, 1, 5))
wedgeprops={'width': 0.7, 'edgecolor': 'w', 'linewidth': 1}
# autopct 숫자 소수점 한자리 표현 #shadow=True
plt.pie(sumKDC2, labels=sumKDC2.index, colors=color_list, autopct='%.1f%%', counterclock=False,
    wedgeprops=wedgeprops, textprops={'fontsize': 11}, )
plt.show()
```

```
sorted_KDC
문학 255819
사회과학 55997
철학 26224
자연과학 9199
기술과학 6616
총류 5450
역사 5304
예술 2305
Name: 대출건수, dtype: int64
```

```
sorted_KDC
문학 255819
사회과학 55997
철학 26224
자연과학 9199
기술과학 6616
Name: 대출건수, dtype: int64
```

5) KDC별 대출건수 시각화 (성별 기준)

[KDC별 대출건수 순위 (성별 기준)]

남녀 총 대출건수 차이로 인해 대부분의 항목들이 여성의 대출건수가 많지만,

사회과학의 경우 여성 28,995건, 남성 27,002 건으로 비슷하며 총류의 경우 여성 1,870, 남성 3,580건으로 남성의 대출건수가 높다는 특징이 있다.

5) KDC별 대출건수 시각화 (성별 기준)

```
# 20대 전체 기준 KDC별 대출건수 시각화 (bar chart)
sumKDC = df.groupby(['성별','sorted_KDC'])['대출건수'].sum()
sumKDC = sumKDC.to_frame().reset_index()
print(sumKDC)
colors=['lightcoral', 'orange', 'gold', 'olive', 'skyblue', 'darkblue', 'purple', 'grey']
ax1 = plt.subplot(2, 1, 1)
ax1 = sns.barplot(data=sumKDC, x='sorted KDC', y='대출건수', hue='성별')
plt.xticks(visible=False)
ax2 = plt.subplot(2, 1, 2, sharex=ax1)
ax2 = sns.barplot(data=sumKDC, x='sorted_KDC', y='대출건수', hue='성별')
ax1.set_ylim(200000, 230000)
ax2.set_ylim(0, 30000)
```

groupby 이후 to_frame으로 시리즈를 데이터프레임으로 변환하고, reset_index로 인덱스를 재설정한다.

```
성별 sorted_KDC
                                                         대출건수
                                                기술과학
                                                          1812
                                                 문학 26648
                                                사회과학 27002
                                                      1566
                                                 예술
                                                        267
# 그래프 사이의 경계선 제거
                                                자연과학 1678
                                                 철학
                                                       8432
ax1.spines['bottom'].set_visible(False)
                                                       3580
ax2.spines['top'].set_visible(False)
                                        여성
                                                기술과학
                                                         4804
ax1.xaxis.tick top()
                                        여성
                                                 문학 229171
ax1.tick params(labeltop=False)
                                      10 여성
                                                 사회과학
                                                         28995
ax2.xaxis.tick bottom()
                                      11 여성
                                                  역사 3738
                                      12 여성
                                                  예술
                                                        2038
ax2.get legend().remove()
                                      13 여성
                                                 자연과학
ax1.axes.xaxis.set_visible(False)
                                      14 여성
                                                  철학 17792
                                      15 여성
                                                  총류 1870
# y축에 물결선 표시
kwargs = dict(marker=[(-1, -0.5), (1, 0.5)], markersize=12,
       linestyle="none", color='k', mec='k', mew=1, clip_on=False)
ax1.plot([0, 1], [0, 0], transform=ax1.transAxes, **kwargs)
ax2.plot([0, 1], [1, 1], transform=ax2.transAxes, **kwargs)
plt.show()
```

여성의 문학 대출건수(229,170건)가 다른 항목의 값에 비해 7배 이상 높아서 그래프를 2개 그려 합친다.

6) 인기대출도서의 KDC 항목별 개수와 KDC 항목별 대출건수 비교

- ⇒ 사회과학의 경우 여성이 27권으로 남성(76권)보다 49권 적지만 대출건수는 높다.
- ⇒ 총류의 경우 컴퓨터과학, 프로그래밍 도서, 지식 및 학문 일반 도서로 인해 남성이 높은 수치를 보였다.

1) csv -> 데이터프레임 변환

```
# csv 불러오기
file_path_man1 = '_content/2021_1분기_남성.csv'
file_path_man2 = '_content/2021_2분기_남성.csv'
file_path_man3 = '_content/2021_3분기_남성.csv'
file_path_man4 = '_content/2021_4분기_남성.csv'
file_path_woman1 = '_content/2021_1분기_여성.csv'
file_path_woman2 = '_content/2021_2분기_여성.csv'
file_path_woman3 = '_content/2021_3분기_여성.csv'
file_path_woman4 = '_content/2021_3분기_여성.csv'
```

8개의 CSV를 앞서 변환한 방법과 같은 방식으로 데이터 프레임으로 변환한다.

2) 성별, 분기 열 추가

```
# 성별, 분기 열 추가
man_list = [df_man1, df_man2, df_man3, df_man4]
woman_list = [df_woman1, df_woman2, df_woman3, df_woman4]
num_list = [1, 2, 3, 4]

for i, j in zip(man_list, num_list):
    i['성별'] = '남성'
    i['분기'] = str(j)+ '분기'

for i, j in zip(woman_list, num_list):
    i['성별'] = '여성'
    i['분기'] = str(j)+ '분기'
```

분기별 분석을 위해, 각 csv 별로 분기 열을 추가한다.

3) 데이터프레임 병합, 가공

8개의 데이터프레임을 병합하고 불필요한 행을 삭제한 뒤, KDC 결측치를 처리한다. (기존 2-5번과 동일)

이후 KDC 처리 함수를 통해 한글로 된 KDC 열을 추가한다. (기존 2-7번과 동일)

#	Column	Non-Null Count Dtype					
0	순위	1600 non-null int64					
1	서명	1600 non-null object					
2	저자	1600 non-null object					
3	출판사	1600 non-null object					
4	출판년도	1600 non-null object					
5	KDC	1600 non-null float64					
6	대출건수	1600 non-null int64					
7	성별	1600 non-null object					
8	분기	1600 non-null object					
9	sorted_K	DC 1600 non-null object					
dty	dtypes: float64(1), int64(2), object(7)						

20121

1) 분기별 대출건수 비교 (bar, pie chart)

19200

20000

[20대 남녀의 공통적인 특징]

- ⇒ 1, 3분기 대출량 증가
- ⇒ 2, 4분기 대출량 감소

1) 분기별 대출건수 비교 (bar, pie chart)

```
# 여성
                                                                        #남성
quater woman = df quater[df quater['성별']=='여성']
                                                                        quater man = df quater[df quater['성별']=='남성']
grouped_woman = quater_woman.groupby(['분기'])['대출건수'].sum()
                                                                        grouped man = quater man.groupby(['분기'])['대출건수'].sum()
print(grouped_woman)
# pie chart
plt.axis('equal')
plt.title('여성의 분기별 대출비율')
color_list = plt.cm.Pastel1((np.linspace(0, 1, 4)))
wedgeprops={'width': 0.7, 'edgecolor': 'w', 'linewidth': 1}
# autopct 숫자 소수점 한자리 표현
plt.pie(grouped_woman, labels=grouped_woman.index, colors=color_list, autopct='%.1f%%',
    counterclock=False, wedgeprops=wedgeprops, textprops={'fontsize': 11}, startangle=90)
plt.show()
# bar chart
colors=['lightsalmon', 'thistle', 'wheat', 'lightgrey']
ax = grouped woman.plot.bar(color=colors, rot=0)
for p in ax.patches:
  height = p.get_height()
  ax.text(p.get_x() + p.get_width() / 2, height + 5, height, ha = 'center', size = 10)
```

Bar chart에 값을 표시하여 가독성을 높이고 분기별 비율을 알기 위해 Pie chart를 사용함.

1) 분기별 대출건수 비교 (line chart)


```
#남녀 라인플롯 합치기
ax1 = plt.subplot(2, 1, 1)
ax1 = sns.lineplot(data=grouped woman, label='women', color='lightsalmon')
plt.xticks(visible=False)
ax2 = plt.subplot(2, 1, 2, sharex=ax1)
ax2 =sns.lineplot(data=grouped_man, label='man', color='lightskyblue')
ax1.set ylim(50000, 80000)
ax2.set ylim(15000, 25000)
# 그래프 사이의 경계선 제거
ax1.spines['bottom'].set visible(False)
ax2.spines['top'].set visible(False)
ax1.xaxis.tick_top()
ax1.tick_params(labeltop=False)
ax2.xaxis.tick_bottom()
# ax2.get_legend().remove()
ax1.axes.xaxis.set_visible(False)
# v축에 물결선 표시
kwargs = dict(marker=[(-1, -0.5), (1, 0.5)], markersize=12,
        linestyle="none", color='k', mec='k', mew=1, clip_on=False)
ax1.plot([0, 1], [0, 0], transform=ax1.transAxes, **kwargs)
ax2.plot([0, 1], [1, 1], transform=ax2.transAxes, **kwargs)
plt.show()
```

2) 분기별 대출도서의 KDC 비교 (성별 통합)


```
# 분기별 대출도서 유형 분류
sns.set_palette("Set2")
sns.countplot(data=df_quater, x='sorted_KDC', hue='분기')
```

분기별 대출 도서의 KDC 건수를 비교한다.

문학은 1~3분기에 증가 추세를 보이다가 4분기에 대출건수가 감소하여 분기 중 가장 적은 대출건수를 보였고, 사회과학은 4분기의 대출건수가 가장 많은 것을 확인할 수 있다.

6. 프로젝트 리뷰

도서관 빅데이터를 활용해서 20대 성별에 따른 대출 트랜드를 파악할 수 있었다. 한 학기 동안 배운 내용을 통해 직접 데이터를 수집하여 분석한 뜻깊은 경험이었다.

[주요한 특징]

- 20대 여성은 20대 남성에 비해 4배 이상 대출량이 많다.
- 20대 여성의 대출량 1위는 문학이며, 이는 2위인 사회과학의 7배 이상의 대출량이다.
- 20대 남성의 대출량 1, 2위인 문학과 사회과학은 매우 근소한 차이이다.
- 20대 남성은 20대 여성에 비해 총류에 속하는 도서에 관심이 많다.
- 도서의 대출량은 1,3분기가 2,4분기에 비해 높다.

[보완할 점]

- 20대에 한정해서 데이터를 분석해 보았는데, 전 연령층을 대상으로 분석하지 못한 아쉬움이 남는다.
- 전 연령층을 대상으로 데이터를 분석하면 도서관 운영 시 도움이 되는 정보가 도출될 것이라고 생각한다.
- 도서관 정보나루의 데이터와 국가통계포털의 전자책 관련 데이터를 비교해 보고 싶다는 생각이 들었다. ex) 도서관 대출량 추이와 전자책 독서량 추이 비교·예측, 도서관 대출 도서와 전자책 선호도서 비교 등