<u> 26:1</u>

MATH 364: Lecture 26 (11/14/2024)

Today: * Fixed Charge IP

* either-or Statements

2. Fixed charge (or set up cost) problem

3 A manufacturer can sell product 1 at a profit of \$2/unit and product 2 at a profit of \$5/unit. Three units of raw material are needed to manufacture 1 unit of product 1, and

6 units of raw material are needed to manufacture 1 unit of product 2. A total of 120 units of raw material are available. If any of product 1 is produced, a setup cost of \$10 is incurred, and if any of product 2 is produced, a setup cost of \$20 is incurred. Formulate an IP to maximize profits.

Decisions: 1) produce any of product 1,2 at all? YES/NO

2 how many of each to produce?

d.V. \leq let $y_i = \begin{cases} 1 & \text{if we make any of product } i, & i=1,2 \\ 0, & \text{otherwise} \end{cases}$

and $x_i = \#$ units of product i made, i = 1, 2.

We need yi E Soils, Xi70

So, $y_i = \begin{cases} 1 & \text{if } x_i > 0 \\ 0 & \text{otherwise} \end{cases}$ i = 1, 2. This is just the definition (or description) of y_i .

We need to enforce the relationship between y and Xi using linear inequalities.

Constraints

$$3x_1+bx_2 \leq 120$$
 (raw matl.)

 $X_1 \leq M_1 Y_1$, $M_1 = 0$ (M_1 large, positive). $X_2 \leq M_2 Y_2$, $M_2 = 0$

 $M_1 = \frac{120}{3} = 40$ and $M_2 = \frac{120}{6} = 20$ work here.

If no such info is known, can use $M_1 = M_2 = 10^5$, say. Let's see why these constraints are correct:

If x_{170} , the only way this constraint will hold is with $y_{1}=1$. Hence y=1 when x, >0.

If $x_1=0$, the constraint holds with $y_1=0$ or with $y_1=1$.

In particular, $X_1=0$ does not force $y_1=0$ here objective function doing this forcing!

Objective function: $\max Z = 2x_1 + 5x_2 - 10y_1 - 20y_2$ (profit)

The coefficient of y_i is -10 in a max obj. In, hence y_i is forced to 0 when possible. Hence when $x_i=0$, we get $y_i=0$ in the optimal solution.

The whole MIP:

 $\max \ Z = 2x_1 + 5x_2 - 10y_1 - 20y_2$ (profit) ≤ 120 (raw matl.) s.t. $3x, +6x_2$ < 40 y, (forcing const.) X₁ X₂ $\leq 20 y_2 (11 112)$ x,, 2 70, 4,, 42 6 50, 13.

 $x_1 \leq M_1 y_1$: With $y_1 = 1$, this constraint specifies an upper bound on x_1 ; hence we use the bound as suggested by raw material availability.

When $y_{i=1}$, the constraint is $\exists x_{j} x_{j} \leq M$.

We use the smallest M that makes sense from data. If not able to estimate, use $M=10^5$, say, or some similar large number.

See the course web page for AMPL files.

When should we insist on integrality?

1. Should we build dorm on campus ? YES/NO

(2. How many rooms to include?

We do need binary variable here...

) could get away w/ a continuous variable.

Say, x = 234.6; Choosing x = 234 or 235 may not make a huge difference.

$$f(x_1,...,x_n) \le 0$$
 ——(1)
 $g(x_1,...,x_n) \le 0$ ——(2)

Model: Either (1) or (2) must hold.

Use an extra binary var:

Let
$$y = \begin{cases} 1 & \text{if } (z) \text{ holds, and} \\ 0 & \text{otherwise} \Rightarrow (1) \text{ holds} \end{cases}$$

Assume there is M>0 large enough such that $f(x_1,...,x_n) \leq M$ and $g(x_1,...,x_n) \leq M$ always hold.

Model:

$$f(x_1,...,x_n) \leq My$$
 — (3)
 $g(x_1,...,x_n) \leq M(1-y)$ — (4)
 $y \in \{0,1\}$ — (5)

$$g(y) = 0$$
, $g(y) \Rightarrow f(y) = 0$ and $g(y) \Rightarrow g(y) = M$

redundant

If
$$y=1$$
 (3) $\Rightarrow f(\cdot) \leq M$ and (4) $\Rightarrow g(\cdot) \leq 0$.

Notice $f(\cdot) \leq M$ is always true, and is **not** implying (2) holds.

In the basketball starting line-up problem, we had (5) either player 2 or 3 must start. We whole $x_2 + x_3 = 1$ does allow both to start $x_2 = 1$ $x_3 = 1$ (from logic). or x221, x321 So, we want 1-x≥≤0 or 1-x3 ≤0 $1-x_2 \leq y$ M=1 works here. So we can write 1-73= 1-y 1-X2≤1 as X2E30,13 y 6 20,13 When y=1, we get $1-x_2 \le 1 \Rightarrow x_2 > 0$ / $1-x_3 \le 0 \Rightarrow x_3 > 1$ Adding these two inequalities, we get 1-3+1-3=1 i.e., X2+X3 >1 If we want to allow both (1) and (2) to hold together, we can write f(·) ≤ M(1- yp) Note: If we write $g(\cdot) \leq M(1-yg)$ $y_f + y_g = 1$, we yf + yg = 1 get the previous

yf, yg & 20,13

model.

If we have more than two alternatives:

$$f(\cdot) = 0$$

at least one alternative holds

 $f_k(\cdot) = 0$

We can write $f_{i}(\cdot) \leq M(1-y_{i})$ \vdots $f_{k}(\cdot) \leq M(1-y_{k})$ $y_{i} + y_{2} + \dots + y_{k} \leq 1$ $y_{i} \in \mathcal{L}_{0}$