Projeto de loT com Cloud na Disciplina de APLIC. DE CLOUD, IOT E INDÚSTRIA 4.0 EM **PYTHON**

Desenvolvendo um projeto inovador de cafeteria IoT, conectando dispositivos e sensores à nuvem, com o telefone e monitoramento de parâmetros ambientais. Uma colaboração de 4 membros, utilizando tecnologias como Arduino e um broker MQTT na cloud.

Equipe

Estevam

Entusiasta em IoT, encarregado da implementação do broker MQTT e da lógica de controle dos dispositivos.

João

Designer de interface, responsável pela criação de uma experiência intuitiva e atraente para os usuários finais.

() Leonardo

Especialista em sensores e atuadores, garantindo a coleta e o controle preciso dos dados da cafeteria.

Gabriel

Líder do projeto e desenvolvedor full stack, responsável pela arquitetura geral e integração com a nuvem.

Preparação do Café e Apresentação do Projeto

Enquanto preparamos o café para os participantes, aproveitamos para iniciar a apresentação do nosso projeto de IoT para a disciplina de Aplicações de Cloud, IoT e Indústria 4.0 em Python.

O projeto é uma cafeteria IoT que conecta diversos dispositivos e sensores à nuvem, permitindo o monitoramento remoto de parâmetros ambientais e o controle dos processos de preparo do café.

Componentes

Arduino Giga R1 Wifi

O Arduino Giga R1 Wifi é o controlador principal do nosso projeto de Cafeteria IoT. Ele é responsável pela comunicação MQTT com o broker na nuvem e pelo gerenciamento de todos os sensores e atuadores do sistema.

Sensores de Temperatura e Umidade

Esses sensores fornecem dados em tempo real sobre as condições ambientais da cafeteria, permitindo que o sistema monitore e ajuste as configurações conforme necessário.

Atuadores de Água e Energia

Os atuadores controlam o fluxo de água e a energia elétrica, permitindo que o sistema lique, deslique e requle os recursos da cafeteria de forma automatizada.

Código do Projeto IoT em C++

O código do nosso projeto de Cafeteria IoT foi desenvolvido em C++, uma linguagem de programação amplamente utilizada em aplicações embarcadas e de alto desempenho. Essa escolha nos permitiu criar um sistema robusto e eficiente, aproveitando ao máximo os recursos do nosso Arduino Giga R1 Wifi.

A lógica de controle do sistema, a comunicação MQTT com o broker na nuvem e a integração com os sensores e atuadores foram implementadas em C++, garantindo uma execução rápida e confiável.

Cafeteria IoT utilizando Broker MQTT na Cloud (Cloud MQTT ONE)

A Cafeteria IoT desenvolvida no projeto utiliza um Broker MQTT na nuvem (Cloud MQTT ONE) para conectar e controlar diversos dispositivos IoT na cafeteria. Com esse sistema, é possível ligar e desligar equipamentos, medir a temperatura e umidade do ambiente, além de controlar o nível de água de forma remota e automatizada.

Utilização de Broker MQTT na Cloud

Arquitetura MQTT

O broker MQTT na nuvem atua como um intermediário central, conectando os diversos dispositivos IoT (clientes MQTT) e permitindo a troca de dados de forma rápida e eficiente.

Modelo Pub/Sub

O broker MQTT utiliza o modelo de publicação e assinatura (Publish/Subscribe), onde os dispositivos publicam dados em tópicos específicos e outros assinam esses tópicos para receber as informações.

Vantagens da Nuvem

Ao utilizar um broker MQTT na nuvem, os desenvolvedores podem aproveitar a escalabilidade, confiabilidade e recursos avançados oferecidos pela infraestrutura de computação em nuvem.

O que Significa MQTT?

MQTT (Message Queuing Telemetry Transport) é um protocolo de comunicação leve e eficiente, amplamente utilizado em aplicações IoT (Internet das Coisas). Ele permite a troca de mensagens entre dispositivos e serviços na nuvem de forma simples e escalável.

O MQTT se baseia em um modelo de publicação/assinatura, onde os clientes (dispositivos IoT) podem publicar dados em tópicos específicos e outros clientes podem se inscrever nesses tópicos para receber as informações.

Porque não utilizamos o Arduino Cloud?

Escolha do Cloud MQTT ONE

Optamos por utilizar o Cloud MQTT ONE, uma plataforma de nuvem com um broker MQTT gratuito, pois atende melhor às necessidades do nosso projeto de loT na cafeteria.

Limitações do Arduino Cloud

Diferente do Arduino Cloud, o Cloud MQTT ONE nos permite maior flexibilidade na integração de diversos tipos de dispositivos IoT, além de ser uma opção gratuita e escalável.

Alinhamento com a Equipe

A escolha do Cloud MQTT ONE foi alinhada com a expertise da nossa equipe, que estava mais familiarizada com essa tecnologia e plataforma de nuvem.

Funcionalidades da Cafeteria IoT

Liga/Desliga

O sistema permite ligar e desligar a cafeteira remotamente, com o toque de um botão no aplicativo ou comando de voz.

Monitoramento Ambiental

Sensores medem a temperatura e umidade do ambiente, garantindo as condições ideais para a preparação do café.

Controle de Água

O sistema monitora e controla automaticamente o nível de água, mantendo a cafeteira sempre abastecida e pronta para uso.

Objetivos do Projeto

Automação

Automatizar os principais processos da cafeteria, como ligar/desligar equipamentos, controlar temperatura e umidade, e monitorar o nível de água.

Monitoramento

Coletar e analisar dados em tempo real sobre o ambiente da cafeteria, como temperatura, umidade e consumo de água.

Eficiência

Melhorar a eficiência operacional da cafeteria, reduzindo desperdícios e otimizando recursos.

Alguns projetos utilizando MQTT na indústria 4.0

A tecnologia MQTT tem sido amplamente adotada na Indústria 4.0 para permitir a comunicação eficiente entre diferentes dispositivos e sistemas. Alguns exemplos incluem:

- Monitoramento remoto de ativos industriais, como máquinas e equipamentos
- Automação de processos de produção, com controle e ajuste em tempo real
- Integração de sensores e atuadores em linhas de montagem inteligentes
- Comunicação entre células de manufatura e sistemas de gestão empresarial

Próximos passos

Os próximos passos do projeto de Cafeteria IoT incluem a integração de mais sensores para monitorar parâmetros importantes, a implementação de ações automáticas com base nos dados coletados e o desenvolvimento de uma plataforma para visualizar e analisar esses dados de forma eficiente. Dessa forma, poderemos aprimorar ainda mais o controle e a eficiência da nossa cafeteria inteligente.

Metodologia Ágil e Integração no Github Projects

Metodologia Ágil

Utilizamos uma abordagem ágil para o desenvolvimento do projeto da Cafeteria IoT, com revisões periódicas, entregas incrementais e adaptação rápida às mudanças.

Integração no Github

Todo o código, documentação e gestão do projeto estão organizados e integrados no nosso repositório Github, facilitando a colaboração e o acompanhamento da equipe.

Acompanhamento de Tarefas

Utilizamos o GitHub Projects
para acompanhar o andamento
das tarefas, com quadros
Kanban que permitem uma
visão clara do progresso do
projeto.

Aprendizados Obtidos

Complexidade da Comunicação IoT

Aprendemos que os protocolos de comunicação IoT são mais complexos do que aparentam, exigindo dedicação, foco e pesquisa para sincronizar o projeto físico com a nuvem.

Superando Desafios

Com esforço e determinação, conseguimos superar os desafios iniciais e integrar com sucesso a cafeteria IoT com a plataforma de nuvem, alcançando os objetivos do projeto.

Trabalho em Equipe

O trabalho em equipe e a comunicação efetiva entre os membros da equipe foram fundamentais para o desenvolvimento e entrega deste projeto de cafeteria IoT.

Dificuldades Enfrentadas

As principais dificuldades enfrentadas durante o desenvolvimento do projeto de Cafeteria IoT foram encontrar um protocolo de comunicação IoT que permitisse a integração perfeita entre o projeto físico pré-pronto e a programação desenvolvida, bem como sua conexão com a plataforma de nuvem.

Isso exigiu um esforço redobrado da equipe para pesquisar, testar e implementar a solução mais adequada, garantindo o funcionamento completo e integrado da Cafeteria IoT.

Algumas features que podem ter

Sensores monitoram temperatura, umidade e pressão durante o preparo do café, enviando esses dados em tempo real para a nuvem.

Ajuste Automático

O sistema ajusta automaticamente os parâmetros da máquina de café com base nas informações coletadas, garantindo consistência e qualidade.

Notificação para o Cliente

Quando a bebida está pronta, uma notificação é enviada diretamente para o aplicativo do cliente, informando que o pedido foi servido.