Basics of Game Theory

Daniel Khashabi

Fall 2015 Last Update: November 12, 2015

1 Introduction

The file contains some example implementations to demonstrate the implementation of ideas in practice ¹.

2 Basics

Mixed strategy: The average payoff of player i is:

$$U_i(\mu_i, \mu_{-i}) = \sum_{a_1 \in A_1} \sum_{a_2 \in A_2} \dots \sum_{a_N \in A_N} u_i(a_1, a_2, \dots, a_N) \mu_1(a_1) \dots \mu_N(a_N)$$

Nash equilibrium point: $\mu^* = (\mu_1^*, \dots, \mu_N^*)$ is a equilibrium point, iff:

$$U_i(\mu_i, \mu_{-i}^*) \le U_i(\mu_i^*, \mu_{-i}^*)$$

Best response of player:

$$BR_i(\mu_{-i}) \in \arg\max_{\mu_i} U_i(\mu_i, \mu_{-i})$$

Alternate view of NE: It can be thought of as, fixed points of the best responses:

$$\begin{bmatrix} \mu_1 \\ \vdots \\ \mu_N \end{bmatrix} \in \begin{bmatrix} BR_1(\mu_{-1}^*) \\ \vdots \\ BR_N(\mu_{-N}^*) \end{bmatrix}$$

Example 1. Consider the following partnership game:

$p1 \setminus p2$	Work hard	Be lazy
Work hard	(10, 10)	(-5, 5)
Be lazy	(-5, 5)	(0,0)

¹Codes available at https://github.com/danyaljj/gameTheory

• (W, W) and (L, L) are pure-strategy NEs.

To find mixed strategy NEs we use the best responses.

• Best response for player 1: $\max_{x \in [0,1]} 10xy - 5x(1-y) + 5(1-x)y = \max_{x \in [0,1]} 5x(2y-1) + 5y$, which can be simplified as

$$\begin{cases} x^* \in [0,1] & y = 1/2 \\ x^* = 1 & y > 1/2 \\ x^* = 0 & y < 1/2 \end{cases}$$

• Best response for player 2: $\max_{y \in [0,1]} 10xy + 5x(1-y) - 5(1-x)y = \max_{y \in [0,1]} 5y(2x-1) + 5x$, which similar to the previous result:

$$\begin{cases} y^* \in [0,1] & x = 1/2 \\ y^* = 1 & x > 1/2 \\ y^* = 0 & x < 1/2 \end{cases}$$

This results in a mixed-strategy NE of $(x^*, y^*) = (1/2, 1/2)$, with corresponding payoff 5/2, 5/2.

Theorem 1 (Nash). For any game, a NE exists.

The proof is using fixed-point theorems.

Here are some theorems and definitions we need to know outside the scope of Game Theory.

Definition 1 (Closed graph). f has closed graph if for any sequence $\{x_n\} \in C$ and $\{y_n\}$, s.t.

- $x_n \to x \text{ as } n \to \infty$.
- $y_n \in f(x_n) \ \forall y_n \to y \ as \ n \to \infty$.

we have $y \in f(x)$.

Theorem 2 (Brouwer). Let $C \subseteq \mathbb{R}^n$ be a convex, closed, bounded set. If the function $f: C \to C$ be continuous, then f has a fixed point in C (i.e. $\exists x \in C$, s.t. f(x) = x).

Theorem 3 (Kukutani). If C is a closed, bounded and convex subset of \mathbb{R}^n . Consider f to be a mapping from each element of C to a subset of C (i.e. $f: C \to 2^C$). Suppose $f(x) \neq \emptyset$, $\forall x$. f has a closed graph, and f(x) is a convex set, $\forall x$. Then f has a fixed-point in C.

With Brouwer	theorem.	Suppose	(μ_1,\ldots,μ_N)	are a set	of strategies.	If instead	of these	strategies,
With Kukutani	theorem.							

3 Zero-sum games

In general the payoff can be represented as $U_1(x,y) = \sum_{i,j} A(i,j)x_iy_j = x^\top Ay$, and specifically for zero-sum games we have $U_1(x,y) = -U_2(x,y)$.

For zero-sum games a mixed-strategy NE (x^*, y^*) is a saddle-point, since it satisfies:

$$\begin{cases} x^{*\top} A y^* \ge x^{\top} A y^* \\ x^{*\top} A y^* \le x^{*\top} A y \end{cases}$$

Minimax Theorem (von Neumann):

$$\min_{y} \max_{x} x^{\top} A y = \max_{x} \min_{y} x^{\top} A y$$

and the solution to this problem could be found via either of the following LPs:

$$LP1: \begin{cases} \max_{x,v_1} v_1 \\ \text{s.t. } v_1 \leq (x^\top A)_j, & \forall j \\ x \geq 0 \\ 1^\top x = 1 \end{cases} \qquad LP2: \begin{cases} \min_{y,v_2} v_2 \\ \text{s.t. } v_2 \geq (Ay)_i, & \forall i \\ y \geq 0 \\ 1^\top y = 1 \end{cases}$$
 These two LPs are duals of

Example 2. We can easily write numerical programs

Symmetric zero-sum games: A game is called symmetric zero-sum if the payoff matrix is skew-symmetric, i.e. $A = -A^{\top}$ (or $a_{ij} = -a_{ji}$, and a_{ii} for all i). The average pay-off (value of the game) in such games is zero. Consider distributions x and y over actions of the first and second players; the value of the game is:

$$x^{\top} A y = y^{\top} A^{\top} x = -y^{\top} A x$$

And in the special x = y, $x^{T}Ax = -x^{T}Ax$, which implies that $x^{T}Ax = 0$. In addition, we know that

$$\min_{y} x^{\top} A y \leq x^{\top} A y \leq \max_{x} x^{\top} A y$$

This holds for the special case x = y as well:

$$\begin{cases} \min_{y} x^{\top} A y \le x^{\top} A x = 0 \\ \max_{x} x^{\top} A y \ge y^{\top} A y = 0 \end{cases}$$

Based on von Neumann's minimax theorem we know that:

$$\min_{y} \max_{x} x^{\top} A y = \max_{x} \min_{y} x^{\top} A y = 0$$

which would imply that the value of this game is always zero. In addition, x = y for any value of x results in a zero value which clearly is a solution to this problem. Therefore if x is a saddle-point strategy for player 1, x is also a saddle-point mixed strategy for player 2 as well.

Figure 1: Convergence of the empirical mixed strategy to its optimal point, with primal-dual iterations.

Example 3. Instead of solving the LP programs directly, we can have an iterative primal-dual method to approximate the objective. Essentially at each iteration each agent plays its pure-strategy, and we replace x and y with their empirical definition (the number of repetitions for a pure-strategy over the total number of actions). The pure action is chosen based on other player's empirical mixed strategy. For example player 2 choses the action j with the smallest of $(x^{\top}A)_j$. The outputs of such strategy for an example game are shown in Figure 1.

4 Continuous action spaces

The assumption is that each action is continuous $a_i \in A_i \subseteq \mathbb{R}^n$. In this setting each action has its own constrained space of possible actions. Similarly, the actions spaces can be coupled. In other words, the stacked vector for all actions is in $\Omega \subseteq \mathbb{R}^{n_1+\ldots+n_N}$.

Theorem 4. In the case uncoupled continuous actions $\Omega = A_1 \times ... \times A_N$. Assuming that each action space A_i is closed and bounded, and each payoff $u_i(a_i, a_{-i})$ is continuous on Ω , then there exists a mixed-strategy NE.

Idea behind the proof: Discretize the action space; by Nash's theorem, there exist a mixed strategy NE for the discretized game. The rest is showing NE converges to the NE of the continuous space as the size of the discretization becomes smaller.

Theorem 5 (Rosen). Let Ω be a coupled constrained set, convex, closed and bounded set. Further, if the payoff $u_i(a_i, a_{-i})$ is concave in a_i , for any a_{-i} . Then there exist a pure-strategy NE.

5 Optimal Auctions

The theorem is due to Myerson [?]. Here is the scenario:

- A seller is selling one item to one of the N buyers.
- The buyer's valuations are i.i.d. A buyer i has valuation distributed with pdf f_i .
- Each bidder selects a bid $b_i \in \mathcal{B}_i$.
- Allocation rule: The probability that the bidder i gets the object is $\Pi_i(b_i, b_{-i})$ ($\Pi_i \geq 0, \forall i$ and $\sum_i \Pi_i = 1$).
- Payment rule: If the bidder i gets the object, it pays $q_i(b_i, b_{-i})$. The valuations are in the bounded range $v_i \in [0, \theta_{i,\max}]$.
- Mechanism: A set of rules announced by the seller.

<u>Problem:</u> The mechanism design problem for the seller is to select the space \mathcal{B} , the allocation function $\{\Pi_i\}$ and the payment rule $\{q_i\}$, to maximize the expected revenue of the seller.

Define the following notations:

- $\alpha_i(\theta_i) = \mathbb{P} \left(\text{bidder } i \text{ gets the object} | \theta_i \right) = \mathbb{E}_{\theta_{-i}} \left[\Pi_i(\theta_i, \theta_{-i}) \right]$
- $m_i(\theta_i) = \mathbb{E}\left[\text{ Payment of the bidder } i|\theta_i| = \mathbb{E}_{\theta_{-i}}\left[q_i(\theta_i, \theta_{-i})\Pi_i(\theta_i, \theta_{-i})\right]\right]$

Revelation principle: each bidder truthfully reveal their bids.

Incentive Compatibility (IC): Each bidder will bid their true valuation (in other words, it is not beneficial for each user to lie about their valuation). The payoff for bidder is $\theta_i \alpha_i(\theta_i) - m_i(\theta_i)$. If the bidder reports its valuation as $\hat{\theta}_i$, IC entails:

$$\theta_i \alpha_i(\theta_i) - m_i(\theta_i) \ge \theta_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i), \quad \forall \theta, \tilde{\theta}, i$$

Individual Rationality (IR): Says that the bidders will participate voluntarily:

$$\theta_i \alpha_i(\theta_i) - m_i(\theta_i) \ge 0 \quad \forall i, \theta_i$$

Lemma 1. IC is equivalent to the following two:

$$m_i(\theta_i) = m_i(0) + \theta_i \alpha_i(\theta_i) - \int_0^{\theta_i} \alpha_i(\theta) d\theta$$
 (1)

$$\alpha_i$$
 is a non-decreasing function (2)

Proof. We prove each direction separately. First lets prove that IC entails the Equation 1 and Equation 2.

Based on IC the utility function $\theta_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i)$, where $\tilde{\theta}_i$ is the reported valuation, reaches its maximum when $\tilde{\theta}_i = \theta_i$. Therefore

$$\frac{\partial}{\partial \tilde{\theta}_i} \left[\theta_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i) \right] \bigg|_{\tilde{\theta}_i = \theta_i} = 0$$

$$\Rightarrow \theta_i \alpha_i'(\theta_i) - m_i'(\theta_i) = 0 \Rightarrow m_i(\theta_i) = m_i(0) + \int_0^{\theta_i} z \alpha_i'(z) dz$$

$$= m_i(0) + \left[z \alpha_i(z) \Big|_0^{\theta_i} - \int_0^{\theta_i} \alpha_i(z) dz \right]$$

$$= m_i(0) + \theta_i \alpha_i(\theta_i) - \int_0^{\theta_i} \alpha_i(z) dz$$

Which finishes the proof of "IC \Rightarrow Equation 1".

Now we prove Equation 2. We know, for two arbitrary valuations $\tilde{\theta}$ and $\hat{\theta}$:

$$\tilde{\theta}_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i) \ge \tilde{\theta} \alpha_i(\hat{\theta}_i) - m_i(\hat{\theta}_i)$$

$$\hat{\theta}_i \alpha_i(\hat{\theta}_i) - m_i(\hat{\theta}_i) \ge \hat{\theta} \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i)$$

Adding these two we would get

$$\left(\tilde{\theta} - \hat{\theta}_i\right) \alpha_i(\tilde{\theta}_i) \ge \left(\tilde{\theta} - \hat{\theta}_i\right) \alpha_i(\hat{\theta}_i) \Rightarrow \left(\tilde{\theta} - \hat{\theta}_i\right) \left(\alpha_i(\tilde{\theta}_i) - \alpha_i(\hat{\theta}_i)\right) \ge 0$$

This α_i is non-decreasing.

Now we prove the other direction: "Equation 1 and Equation $2 \Rightarrow IC$ ". We want to prove that:

$$\theta_i \alpha_i(\theta_i) - m_i(\theta_i) - (\theta_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i)) \ge 0$$

We simplify the LHS:

$$\theta_i \alpha_i(\theta_i) - m_i(\theta_i) - (\theta_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i)) = \theta_i \alpha_i(\theta_i) - m_i(\theta_i) - (\tilde{\theta}_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i) + (\theta_i - \tilde{\theta}_i)\alpha_i(\tilde{\theta}_i)) \ge 0$$

Also we know:

$$\begin{cases} m_i(\theta_i) = m_i(0) + \theta_i \alpha_i(\theta_i) - \int_0^{\theta_i} \alpha_i(\theta) d\theta \Rightarrow \int_0^{\theta_i} \alpha_i(\theta) d\theta - m_i(0) = \theta_i \alpha_i(\theta_i) - m_i(\theta_i) \\ m_i(\tilde{\theta}_i) = m_i(0) + \tilde{\theta}_i \alpha_i(\tilde{\theta}) - \int_0^{\tilde{\theta}} \alpha_i(\theta) d\theta \Rightarrow \int_0^{\tilde{\theta}_i} \alpha_i(\theta) d\theta - m_i(0) = \tilde{\theta}_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i) \end{cases}$$

Therefore:

$$\theta_i \alpha_i(\theta_i) - m_i(\theta_i) - (\theta_i \alpha_i(\tilde{\theta}_i) - m_i(\tilde{\theta}_i)) = \int_0^{\theta_i} \alpha_i(\theta) d\theta - \int_0^{\tilde{\theta}_i} \alpha_i(\theta) d\theta - (\theta_i - \tilde{\theta}_i) \alpha_i(\tilde{\theta}_i)$$

which is essentially greater or equal to zero, size α_i is non-decreasing.

Lemma 2. IR and IC are equivalent to Equation 1, Equation 2, and

$$m_i(0) \le 0 \tag{3}$$

Proof. We know that IR means

$$\theta_i \alpha_i(\theta_i) - m_i(\theta_i) > 0 \quad \forall i, \theta_i$$

We use the result of the previous lemma, and rewrite the LHS of above:

$$\int_0^{\theta_i} \alpha_i(\theta) d\theta - m_i(0) \ge 0$$

If we replace $\theta_i = 0$, we would get the desired result that $m_i(0) \leq 0$.

The goal of the optimal auction is to maximize the seller's revenue. In other words, we desire to solve:

$$\begin{cases} \max_{\{\Pi_i\},\{q_i\}} \sum_{i=1}^{N} \mathbb{E}\left(m_i(\theta_i)\right) \\ \text{s.t. Equation 1, Equation2, Equation3} \end{cases}$$
 (4)

We expand the objective using Equation 1:

$$\mathbb{E}(m_{i}(\theta_{i})) = m_{i}(0) + \mathbb{E}[\theta_{i}\alpha_{i}(\theta_{i})] - \mathbb{E}\left[\int_{0}^{\theta_{i}}\alpha_{i}(\theta)d\theta\right]$$

$$= m_{i}(0) + \int_{0}^{\theta_{i,\max}}\theta_{i}\alpha_{i}(\theta_{i})f_{i}(\theta_{i})d\theta_{i} - \int_{0}^{\theta_{i,\max}}\left[\int_{0}^{\theta_{i,\max}}\alpha_{i}(\theta)d\theta\right]f_{i}(\theta_{i})d\theta_{i}$$

$$= m_{i}(0) + \int_{0}^{\theta_{i,\max}}\theta_{i}\alpha_{i}(\theta_{i})f_{i}(\theta_{i})d\theta_{i} - \int_{0}^{\theta_{i,\max}}\left[\int_{\theta}^{\theta_{i,\max}}f_{i}(\theta_{i})d\theta_{i}\right]\alpha_{i}(\theta)d\theta$$

$$= m_{i}(0) + \int_{0}^{\theta_{i,\max}}\theta_{i}\alpha_{i}(\theta_{i})f_{i}(\theta_{i})d\theta_{i} - \int_{0}^{\theta_{i,\max}}(1 - F_{i}(\theta_{i}))\alpha_{i}(\theta)d\theta$$

$$= m_{i}(0) + \int_{0}^{\theta_{i,\max}}\alpha_{i}(\theta_{i})f_{i}(\theta_{i})\left[\theta_{i} - \frac{1 - F_{i}(\theta_{i})}{f_{i}(\theta_{i})}\right]d\theta_{i}$$

Let $\psi_i(\theta_i) = \theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)}$. We replace $\alpha_i(\theta_i)$ with its definition and convert the integration over θ_i to $\theta = \theta_1 \times ... \times \theta_N$, and also $f(\theta) = \prod_i f_i(\theta)$.

$$\mathbb{E}(m_i(\theta_i)) = m_i(0) + \int_0^{\theta_{i,\text{max}}} \alpha_i(\theta_i) f_i(\theta_i) \psi_i(\theta_i) d\theta_i$$
$$= m_i(0) + \int_0^{\theta_{i,\text{max}}} \Pi_i(\theta_i, \theta_{-i}) f(\theta) \psi_i(\theta_i) d\theta$$

Therefore the overall objective function is:

$$\sum_{i=1}^{N} \mathbb{E}\left(m_i(\theta_i)\right) = \sum_{i=1}^{N} m_i(0) + \int_0^{\theta_{i,\text{max}}} \left[\sum_{i=1}^{N} \Pi_i(\theta_i, \theta_{-i}) \psi_i(\theta_i)\right] f(\theta) d\theta$$

The objective in Equation 4 is over the set of all $\{\Pi_i\}, \{q_i\}$. The maximizer of this objective, ignoring the constraints, is achieved when:

$$\Pi_i(\theta_i, \theta_{-i}) > 0 \iff \psi_i(\theta_i) = \max_i \psi_j(\theta_j)$$

Essentially the object will be assigned to the bidder which has the highest virtual bid. To satisfy the objective in Equation 1, choose:

$$q_i(\theta_i, \theta_{-i}) = \theta_i \Pi_i(\theta_i, \theta_{-i}) - \int_0^{\theta_i} \Pi_i(\theta, \theta_{-i}) d\theta$$

To verify that Equation 2 is satisfied we need the following assumption:

Figure 2: Pigou's Example

Assumption 1. ψ_i is a strictly increasing function.

Since $\psi_i(\theta_i) = \theta_i - \frac{1 - F_i(\theta_i)}{f_i(\theta_i)}$, $\frac{1 - F_i(\theta_i)}{f_i(\theta_i)}$ should be non-increasing $\iff \frac{f_i(\theta_i)}{1 - F_i(\theta_i)}$ should be non-decreasing.

Consider two scenarios:

- If $\Pi_i(\theta_i, \theta_{-i}) > 0$, then for any $\tilde{\theta}_i \geq \theta_i \ \Pi_i(\tilde{\theta}_i, \theta_{-i}) = 1$, therefore $\Pi_i(\tilde{\theta}_i, \theta_{-i}) \geq \Pi_i(\theta_i, \theta_{-i})$ for any $\tilde{\theta}_i$.
- If $\Pi_i(\theta_i, \theta_{-i}) = 0$, therefore trivially $\Pi_i(\tilde{\theta}_i, \theta_{-i}) \geq \Pi_i(\theta_i, \theta_{-i})$ for any $\tilde{\theta}_i$.

6 Price of Anarchy

Suppose there are two routes between A and B. Each pas has its delay (cost) with we denote with c(x), and it is a function of its flow x:

- The delay of the first path: $c_1(x_1)$
- The delay of the second path: $c_2(x_2)$

In usual scenarios we assume that the total flow is constant and fixed, say $x_1 + x_2 = 1$.

The average cost of the routing can be calculated as

$$\frac{x_1c(x_1) + x_2c(c_2)}{x_1 + x_2}$$

Definition 2 (Selfish routing). At equilibrium if both path 1 and 2 are used, then $c_1(x_1) = c_2(x_2)$. If only path 1 is used, $c_1(x_1) \le c_2(x_2)$. If only path 2 is used $c_2(x_2) \le c_1(x_1)$. Such an (x_1, x_2) are said to be Wardrop equilibrium.

Example 4 (Pigou's example).] Consider the costs based on Figure 2. The costs are $c_1(x_1) = 1$ and $c_2(x_2) = x_2$. The Wardrop equilibrium in these example is either $(x_1, x_2) = (1, 0)$ or $(x_1, x_2) = (0, 1)$.

Definition 3 (Price of Anarchy (PoA)). PoA is defined as

Figure 3: Braess's Network.

Example 5 (Braess's Paradox). Consider the network shown in Figure 3 (a). The cost of each path is 1 + x. for a flow of x. The equilibrium flow for each path is $x_1 = x_2 = 1/2$. Note the scenario that $(x_1, x_2) = (1, 0)$ or (0, 1) is contradictory with the definition of the Wardrop equilibrium. The total average cost under this strategy is $0.5(1 + 0.5) \times 2 = 1.5$.

Suppose we add a zero-cost link between the two path, as shown in Figure 3 (b). How do we expect the flows in each route to change? It is easy to verify that in this case all of the flow will go in the path $s \to v \to w \to t$ (why?). In this case, the total cost becomes 2 which is more than the previous case.

This relatively surprising behavior is called Braess's Paradox, which is result of selfish behavior of individuals; individual elements (flow) chose to go through the edges which has zero delay (cost), although the overall cost increased.

Example 6 (PoA for linear latency). Consider a two-node network with linear latency. If the input flow is r the costs of the two edges are:

$$c_1(x_1) = ar + b, \quad c_2(x_2) = ax_2 + b$$

The socially optimal answer is

$$\min_{x_2 \in [0,r]} \frac{(r-x_2)(ar+b) + (ax_2+b)x_2}{r}$$

$$\Rightarrow -(ar+b) + 2ax_2 + b = 0 \Rightarrow x_2 = r/2$$

This would result in average delay of

$$\frac{(ar+b)r/2 + (ar/2+b)r/2}{r} = 3a/4 + b$$

The Wardop optimal answer is $(x_1, x_2) = (0, r)$, which results in average delay of (ar + b). The Price of Anarchy is:

$$\alpha = \max_{a,b} \frac{ar+b}{3a/4+b} \le 4/3$$

Example 7 (PoA for quadratic latency). Consider a two-node network with linear latency. If the input flow is r the costs of the two edges are:

$$c_1(x_1) = ar^2 + br + c$$
, $c_2(x_2) = ax_2^2 + bx_2 + c$

The socially optimal answer is

$$\min_{x_2 \in [0,r]} \frac{(r-x_2)(ar^2+br+c) + (ax_2^2+bx_2+c)x_2}{r}$$

$$\Rightarrow -(ar^2 + br + c) + 3ax_2^2 + 2bx_2 + c = 0 \Rightarrow x_2 = r/2$$

This would result in average delay of

$$\frac{(ar+b)r/2 + (ar/2+b)r/2}{r} = 3a/4 + b$$

The Wardop optimal answer is $(x_1, x_2) = (0, r)$, which results in average delay of (ar + b).

The Price of Anarchy is:

$$\alpha = \max_{a,b} \frac{ar+b}{3a/4+b} \le 4/3$$

Theorem 6. The pure PoA of any generalized routing problem (G, L) with linear latencies is less than 4/3.

7 Blackwell Approachability

Define the reward to player for choosing action i to be a vector r(i, j), when adversary has chosen action j. Define a mixed strategy reward to be

$$\sum_{i,j} r(i,j)p(i)q(j) = R(p,q)$$

In the decision making p_t is allowed to be a function of $H_t = \{p_1, ..., p_{t-1}, q_1, ..., q_{t-1}\}$, and q_t is a function of $H_t \cup \{p_t\}$.

Approachability: Given a set S it is called approachable, if it is possible for the player to choose a sequence of mixed strategies $\{p_t\}$ s.t.

$$d\left(\frac{1}{T}\sum_{t=1}^{T}R(p_t,q_t),S\right)\to 0 \text{ as } T\to +\infty$$

for some distance measure $d(x, S) = \min_{y \in S} ||x - y||^2$.

Proposition 1. Let S be a half-space

$$S = \{x : w^{\top} x \ge b\}$$

then S is approachable if and only if the zero-sum game with payoff $w^{\top}r(i,j)$ to player has a value $\geq b$.

Theorem 7 (Blackwell approachability). Let S be a compact convex set. Then S is approachable if and only if every half-space containing S is approachable.

Proof. It is easy to observe that if S is approachable, any superset of S is also approachable.

Now we show that if every half-space containing S is approachable, S is approachable too. The proof is constructive, i.e. we show it by providing an algorithm.

Algorithm: At time T suppose $\bar{R}_T = \frac{1}{T} \sum_{t=1}^{T} R(p_t, q_t) \in S$, then pick an arbitrary distribution p_t

Example 8. Player chooses action i and adversary chooses action j. The cost of the player is c(i,j). Denote the mixed strategies of the player and adversary at time t with p_t and q_t . p_t is chosen based on H_t , and H_t , and H_t , and H_t , we use Blackwell approachability to show that for any valid choice of H_t :

$$\lim_{T \to +\infty} \left(\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{j=1}^{m} c(i,j) p_t(i) q_t(j) - \min_{i \in \{1,2,\dots,n\}} \frac{1}{T} \sum_{t=1}^{T} c(i,j) q_t(j) \right) \le 0$$
 (5)

Suppose we denote the minimizer with i^* ; we can rewrite the above objective function in the following way:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{j=1}^{m} (c(i,j)p_t(i)q_t(j) - c(i^*,j)p_t(i)q_t(j))$$

We define the following short-hand notation $C_t(p,q) \in \mathbb{R}^n$:

$$l_t(i^*, p, q) = \sum_{i=1}^n \sum_{j=1}^m (c(i, j)p_t(i)q_t(j) - c(i^*, j)p_t(i)q_t(j))$$

$$C_t(p,q) = [l_t(1,p,q), \dots, l_t(n,p,q)]^{\top}$$

We will show the average cost of $C_t(p,q)$ (average over time), is approachable to the set $S = \{(x_1,...,x_n)|x_1,...,x_n \leq 0\}$ (negative orthant), for any distribution of q_t . In other words, for any choice of q_t , there always exists sequence of distributions p_t such that for any sequence of distribution q_t , the average cost will converge to S for big enough T. This would result in the desired in Equation 5.

Now we prove the approachability of the average cost vectors. We can use Blackwell's theorem here; the average cost is approachable to S, if and only if it is approachable to any half-space containing S (i.e. $\{x|a^{\top}x \leq b\}$, for arbitrary a and $b \geq 0$).

For any choice of a, we can choose p_t to be $p_t = a/\|a\|$. Now we can verify that for any choice of a, $a^{\top}C_t(a/\|a\|, q) = 0$. This shows that the there exists an algorithm for any choice of q_t and any choice of a, the average cost is inside the set S.

8 Bibliographical notes

Preliminary version mostly based on R. Srikant's Game Theory course in UIUC.