CS 245: Database System Principles

Notes 09: Concurrency Control

Hector Garcia-Molina

CS 245 Notes 09

Example:

Constraint: A=B

CS 245 Notes 09

Schedule A			١ _
	T 2	_A	В
<u>T1</u>	T2	25	25
Read(A); $A \leftarrow A+100$ Write(A); Read(B); $B \leftarrow B+100$;		125	
Write(B);			125
	Read(A);A \leftarrow A \times 2; Write(A); Read(B);B \leftarrow B \times 2;	250	
	Write(B);		250
,	with with the state of the stat	250	250
CS 245	Notes 09		4

Schedule B		Α	В
T1	T2	25	25
	Read(A);A \leftarrow A \times 2; Write(A); Read(B);B \leftarrow B \times 2; Write(B);	50	50
Read(A); $A \leftarrow A+100$ Write(A);		150	
Write(B); B ← B+100; Write(B);		150	150 150
CS 245	Notes 09		5

Schedule C			
		Α	В
	T2	25	25
Read(A); A \leftarrow A+100			
Write(A);		125	
	Read(A);A \leftarrow A \times 2;		
	Write(A);	250	
Read(B); B \leftarrow B+100;	<i>、,,</i>		
Write(B);			125
	Read(B);B \leftarrow B \times 2;		
	Write(B);		250
'	Witte(D),	250	250
CS 245	Notes 09		6

Schedule D			
Scricudic D		Α	В
	T2	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A);A \leftarrow A \times 2;		
	Write(A);	250	
	Read(B);B \leftarrow B \times 2;		
	Write(B);		50
Read(B); $B \leftarrow B+100$;			150
Write(B);		250	150 150
		250	150
CS 245	Notes 09		7

	ame as Schedule D but with new T2'		
		Α	В
T1	T2'	25	25
Read(A); $A \leftarrow A+100$			
Write(A);		125	
	Read(A); $A \leftarrow A \times 1$;		
	Write(A);	125	
	Read(B);B \leftarrow B \times 1;		
	Write(B);		25
Read(B); $B \leftarrow B+100$;	(),		
Write(B);			125
		125	125
CS 245	Notes 09		8

- Want schedules that are "good", regardless of
 - initial state and
 - transaction semantics
- Only look at order of read and writes

Example:

 $Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$

CS 245 Notes 09 9

However, for Sd: $Sd=r_1(A)w_1(A)r_2(A)w_2(A) r_2(B)w_2(B)r_1(B)w_1(B)$

• as a matter of fact, $T_2 \text{ must precede } T_1$ in any equivalent schedule, i.e., $T_2 \rightarrow T_1$

CS 245 Notes 09 11

• $T_2 \rightarrow T_1$ • Also, $T_1 \rightarrow T_2$ $T_1 \qquad \Box \qquad \text{Sd cannot be rearranged}$ into a serial schedule $\Box \qquad \text{Sd is not "equivalent" to}$ any serial schedule $\Box \qquad \text{Sd is "bad"}$ $CS 245 \qquad \text{Notes 09} \qquad 12$

Returning to Sc

 $Sc = r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$ $T_1 \to T_2 \qquad T_1 \to T_2$

 no cycles ⇒ Sc is "equivalent" to a serial schedule (in this case T₁,T₂)

CS 245 Notes 09

Concepts

Transaction: sequence of $r_i(x)$, $w_i(x)$ actions Conflicting actions: $r_1(A)$ $w_2(A)$ $w_3(A)$ $w_4(A)$ $w_4(A)$ $w_4(A)$ $w_4(A)$

Schedule: represents chronological order in which actions are executed Serial schedule: no interleaving of actions or transactions

CS 245 Notes 09 14

What about concurrent actions?

So net effect is either

- $S=...r_1(x)...w_2(b)...$ or
- S=...w₂(B)...r₁(x)...

CS 245 Notes 09 16

What about conflicting, concurrent actions on same object?

- Assume equivalent to either r₁(A) w₂(A)
 or w₂(A) r₁(A)
- ⇒ low level synchronization mechanism
- Assumption called "atomic actions"

CS 245 Notes 09 17

Definition

 S_1 , S_2 are <u>conflict equivalent</u> schedules if S_1 can be transformed into S_2 by a series of swaps on non-conflicting actions.

Definition

A schedule is conflict serializable if it is conflict equivalent to some serial schedule.

CS 245

Notes 09

<u>Precedence graph</u> P(S) (S is schedule)

Nodes: transactions in S Arcs: $Ti \rightarrow Tj$ whenever

- p_i(A), q_j(A) are actions in S

- $p_i(A) <_S q_j(A)$

- at least one of pi, qj is a write

CS 245 Notes 09

Exercise:

• What is P(S) for

 $S = w_3(A) w_2(C) r_1(A) w_1(B) r_1(C) w_2(A) r_4(A) w_4(D)$

• Is S serializable?

CS 245

Notes 09

Another Exercise:

• What is P(S) for

 $S = w_1(A) r_2(A) r_3(A) w_4(A) ?$

CS 245

21

23

Notes 09

22

24

Lemma

 S_1 , S_2 conflict equivalent $\Rightarrow P(S_1)=P(S_2)$

Proof:

Assume $P(S_1) \neq P(S_2)$

 \Rightarrow \exists $T_i\text{: }T_i \rightarrow T_j \text{ in } S_1 \text{ and not in } S_2$

 $\Rightarrow S_1 = ...p_i(A)... q_j(A)...$ p_i, q_j $S_2 = ...q_j(A)...p_i(A)...$ conflict

 \Rightarrow S₁, S₂ not conflict equivalent

Note: $P(S_1)=P(S_2) \not\Rightarrow S_1$, S_2 conflict equivalent

Counter example:

 $S_1=w_1(A) r_2(A)$ $w_2(B) r_1(B)$

 $S_2=r_2(A) w_1(A)$ $r_1(B) w_2(B)$

CS 245

Notes 09

Theorem

 $P(S_1)$ acyclic \iff S_1 conflict serializable

 (\Leftarrow) Assume S₁ is conflict serializable

- $\Rightarrow \exists S_s: S_s, S_1 \text{ conflict equivalent}$
- \Rightarrow P(S_s) = P(S₁)
- \Rightarrow P(S₁) acyclic since P(S_s) is acyclic

CS 245 Notes 09

Theorem

CS 245

 $P(S_1)$ acyclic \iff S_1 conflict serializable

 (\Rightarrow) Assume P(S₁) is acyclic Transform S₁ as follows:

- (1) Take T1 to be transaction with no incident arcs
- (2) Move all T₁ actions to the front

$$S_1 = q_j(A)......p_1(A).....$$

- (3) we now have $S1 = \langle T1 \text{ actions } \rangle \langle ... \text{ rest } ... \rangle$
- (4) repeat above steps to serialize rest!

245 Notes 0

- - -

How to enforce serializable schedules?

Option 1: run system, recording P(S); at end of day, check for P(S) cycles and declare if execution was good

CS 245 Notes 09

How to enforce serializable schedules?

Option 2: prevent P(S) cycles from occurring

Notes 09 28

A locking protocol

Two new actions:

lock (exclusive): li (A) unlock: ui (A)

29

Rule #1: Well-formed transactions

Ti: ... li(A) ... pi(A) ... ui(A) ...

Rule #2 Legal scheduler

$$S = \dots \lim_{i(A)} \lim_{i \to a} u_i(A) \dots \lim_{i \to a} u_i(A) \dots$$

CS 245 Notes 09

Exercise:

What schedules are legal?
 What transactions are well-formed?

 $S1 = l_1(A)l_1(B)r_1(A)w_1(B)l_2(B)u_1(A)u_1(B)$ $r_2(B)w_2(B)u_2(B)l_3(B)r_3(B)u_3(B)$

 $S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$ $I_2(B)r_2(B)w_2(B)I_3(B)r_3(B)u_3(B)$

 $S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$

 $l_2(B)r_2(B)w_2(B)u_2(B)l_3(B)r_3(B)u_3(B)$

CS 245 Notes 09 32

Exercise:

What schedules are legal?
 What transactions are well-formed?
 S1 = l₁(A)l₁(B)r₁(A)w₁(B)(2(B)u₁(A)u₁(B)

 $S1 = I_1(A)I_1(B)r_1(A)w_1(B)I_2(B)U_1(A)U_1(B)$ $r_2(B)w_2(B)U_2(B)I_3(B)r_3(B)U_3(B)$

 $S2 = I_1(A)r_1(A)w_1(B)u_1(A)u_1(B)$

l2(B)r2(B)w2(B)(l3(B))r3(B)u3(B)

 $S3 = I_1(A)r_1(A)u_1(A)I_1(B)w_1(B)u_1(B)$

 $l_2(B)r_2(B)w_2(B)u_2(B)l_3(B)r_3(B)u_3(B)$

CS 245 Notes 09 33

Schedule F

CS 245

T1	TO	
l1(A);Read(A)		
$A \leftarrow A+100$; Write(A); $u_1(A)$		
	l ₂ (A);Read(A)	
	A←Ax2;Write(A);u ₂ (A)	
	l ₂ (B);Read(B)	
	B←Bx2;Write(B);u ₂ (B)	
I ₁ (B);Read(B)		
B ← B+100; Write(B); u ₁ (B)		
CS 245	Notes 09	3

Schedule F В 25 25 T2 I₁(A);Read(A) A ← A+100; Write(A); u₁(A) 125 l₂(A);Read(A) A ← Ax2; Write(A); u₂(A) 250 I₂(B);Read(B) B←Bx2;Write(B);u₂(B) 50 I₁(B);Read(B) B ← B+100; Write(B); u₁(B) 150 250 150 Notes 09

Rule #3 Two phase locking (2PL) for transactions

Notes 09

Next step:

Show that rules $#1,2,3 \Rightarrow$ conflictserializable schedules

CS 245 Notes 09

Conflict rules for li(A), ui(A):

- l_i(A), l_j(A) conflict
- l_i(A), u_j(A) conflict

Note: no conflict < ui(A), uj(A)>, < li(A), rj(A)>,...

CS 245 Notes 09

<u>Theorem</u> Rules $#1,2,3 \Rightarrow conflict$ (2PL) serializable schedule

To help in proof:

<u>Definition</u> Shrink(Ti) = SH(Ti) = first unlock action of Ti

CS 245

Lemma

 $Ti \rightarrow Tj \text{ in } S \Rightarrow SH(Ti) <_S SH(Tj)$

Proof of lemma:

 $\text{Ti} \rightarrow \text{Tj}$ means that

So, $SH(Ti) <_S SH(Tj)$

 $S = ... p_i(A) ... q_j(A) ...; p,q conflict$

By rules 1,2:

 $S = ... p_i(A) ... u_i(A) ... l_j(A) ... q_j(A) ...$

SH(Tj) By rule 3: SH(Ti)

CS 245

<u>Theorem</u> Rules #1,2,3 \Rightarrow conflict (2PL) serializable schedule

Proof:

(1) Assume P(S) has cycle

$$T_1 \mathop{\rightarrow} T_2 \mathop{\rightarrow} T_n \mathop{\rightarrow} T_1$$

- (2) By lemma: $SH(T_1) < SH(T_2) < ... < SH(T_1)$
- (3) Impossible, so P(S) acyclic
- (4) \Rightarrow S is conflict serializable

Notes 09 47

- Beyond this simple 2PL protocol, it is all a matter of improving performance and allowing more concurrency....
 - Shared locks
 - Multiple granularity
 - Inserts, deletes and phantoms
 - Other types of C.C. mechanisms

CS 245 Notes 09

Shared locks

So far:

$$S = ...l_1(A) r_1(A) u_1(A) ... l_2(A) r_2(A) u_2(A) ...$$

Do not conflict

Instead:

$$S = ... ls_1(A) r_1(A) ls_2(A) r_2(A) us_1(A) us_2(A)$$

CS 245 Notes 09 4

Lock actions

I-ti(A): lock A in t mode (t is S or X) u-ti(A): unlock t mode (t is S or X)

Shorthand:

u_i(A): unlock whatever modes T_i has locked A

CS 245 Notes 09 50

Rule #1 Well formed transactions

$$\begin{split} T_i = &... \ I\text{-}S_1(A) \ ... \ r_1(A) \ ... \ u_1 \ (A) \ ... \\ T_i = &... \ I\text{-}X_1(A) \ ... \ w_1(A) \ ... \ u_1 \ (A) \ ... \end{split}$$

CS 245 Notes 09 51

 What about transactions that read and write same object?

Option 1: Request exclusive lock $T_i = ... I-X_1(A) ... r_1(A) ... w_1(A) ... u(A) ...$

CS 245 Notes 09 52

• What about transactions that read and write same object?

Option 2: Upgrade

(E.g., need to read, but don't know if will write...)

$$T_i = \dots \ I - S_1(A) \ \dots \ r_1(A) \ \dots \ I - X_1(A) \ \dots w_1(A) \ \dots u(A) \dots$$

$$Think \ of \\ - \ Get \ 2nd \ lock \ on \ A, \ or \\ - \ Drop \ S, \ get \ X \ lock$$

Notes 09

Rule #2 Legal scheduler

$$S = \dots I - S_i(A) \dots \dots u_i(A) \dots$$

$$no \ I - X_j(A)$$

$$S = \dots I - X_i(A) \dots \dots u_i(A) \dots$$

$$no \ I - X_j(A)$$

$$no \ I - S_j(A)$$

A way to summarize Rule #2

Compatibility matrix

Comp

	S	Χ
S	true	false
Χ	false	false

CS 245 Notes 09

Rule # 3 2PL transactions

No change except for upgrades:

- (I) If upgrade gets more locks $(e.g.,\,S\to\{S,\,X\})\ \ \, \text{then no change!}$
- (II) If upgrade releases read (shared) lock (e.g., $S \rightarrow X$)

- can be allowed in growing phase

CS 245 Notes 09 56

Proof: similar to X locks case

Detail:

 $I-t_i(A)$, $I-r_j(A)$ do not conflict if comp(t,r) $I-t_i(A)$, $u-r_j(A)$ do not conflict if comp(t,r)

CS 245 Notes 09 57

Lock types beyond S/X

Examples:

- (1) increment lock
- (2) update lock

CS 245 Notes 09 58

Example (1): increment lock

- Atomic increment action: IN_i(A)
 {Read(A); A ← A+k; Write(A)}
- IN_i(A), IN_j(A) do not conflict!

$$A=5 \xrightarrow[IN_{j}(A)]{} A=7 \xrightarrow[+10]{} A=17$$

$$A=15 \xrightarrow[IN_{j}(A)]{} A=15 \xrightarrow[IN_{j}(A)]{} A=17$$

How does locking work in practice?

- Every system is different
 - (E.g., may not even provide CONFLICT-SERIALIZABLE schedules)
- But here is one (simplified) way ...

CS 245 Notes 09 6

Sample Locking System: (1) Don't trust transactions to request/release locks (2) Hold all locks until transaction commits # locks # time

Parent locked in	Child can be locked by same transaction	n in
IS IX S SIX X	IS, S IS, S, IX, X, SIX [S, IS] not necessary X, IX, [SIX] none	P
CS 245	Notes 09	81

Rules (1) Follow multiple granularity comp function (2) Lock root of tree first, any mode (3) Node Q can be locked by Ti in S or IS only if parent(Q) locked by Ti in IX or IS (4) Node Q can be locked by Ti in X,SIX,IX only if parent(Q) locked by Ti in IX,SIX (5) Ti is two-phase (6) Ti can unlock node Q only if none of Q's children are locked by Ti

Modifications to locking rules: (1) Get exclusive lock on A before deleting A (2) At insert A operation by Ti, Ti is given exclusive lock on A

This approach can be generalized to multiple indexes...

CS 245

Notes 09

95

Next: • Tree-based concurrency control • Validation concurrency control

Why does this work?

- Assume all Ti start at root; exclusive lock
- $T_i \rightarrow T_j \Rightarrow T_i$ locks root before T_j

 Actually works if we don't always start at root

CS 245 Notes 09 99

Rules: tree protocol (exclusive locks)

- (1) First lock by Ti may be on any item
- (2) After that, item Q can be locked by Ti only if parent(Q) locked by Ti
- (3) Items may be unlocked at any time
- (4) After Ti unlocks Q, it cannot relock Q

CS 245 Notes 09 100

Tree-like protocols are used typically for B-tree concurrency control

Root

Ro

Tree Protocol with Shared Locks

Rules for shared & exclusive locks?

Tree Protocol with Shared Locks

- Need more restrictive protocol
- Will this work??
 - Once T_1 locks one object in X mode, all further locks down the tree must be in X mode

CS 245 Notes 09 104

Validation

Transactions have 3 phases:

- (1) Read
 - all DB values read
 - writes to temporary storage
 - no locking
- (2) Validate
 - check if schedule so far is serializable
- (3) Write
 - if validate ok, write to DB

CS 245 Notes 09 105

Key idea

- · Make validation atomic
- If T₁, T₂, T₃, ... is validation order, then resulting schedule will be conflict equivalent to S_s = T₁ T₂ T₃...

CS 245 Notes 09 106

To implement validation, system keeps two sets:

- <u>FIN</u> = transactions that have finished phase 3 (and are all done)
- <u>VAL</u> = transactions that have successfully finished phase 2 (validation)

CS 245 Notes 09 107

Example of what validation must prevent: \bigcirc RS(T3)={A,B} $\neq \emptyset$ $RS(T_2)=\{B\}$ $WS(T_2)=\{B,D\}$ $WS(T_3)=\{C\}$ T2 T₂ Тз T3 start validated validated start time CS 245 Notes 09 108


```
\begin{tabular}{lll} \hline Validation rules for Tj: \\ \hline (1) When Tj starts phase 1: \\ & ignore(Tj) \leftarrow FIN \\ \hline (2) at Tj Validation: \\ & if check (Tj) then \\ & [ VAL \leftarrow VAL \ U \ \{Tj\}; \\ & do \ write \ phase; \\ & FIN \ \leftarrow FIN \ U \ \{Tj\} \ ] \\ \hline \hline \end{tabular}
```

```
Check (T<sub>j</sub>):

For T<sub>i</sub> \in VAL - IGNORE (T<sub>j</sub>) DO

IF [ WS(T<sub>i</sub>) \cap RS(T<sub>j</sub>) \neq \emptyset OR

T<sub>i</sub> \notin FIN ] THEN RETURN false;
RETURN true;

Is this check too restrictive ?
```


Validation (also called optimistic concurrency control) is useful in some cases:

- Conflicts rare
- System resources plentiful
- Have real time constraints

CS 245 Notes 09 116

Summary

Have studied C.C. mechanisms used in practice

- 2 PL
- Multiple granularity
- Tree (index) protocols
- Validation