Exercices : Représentation binaire et hexadécimale

Exercice 1 : Conversion décimal → binaire

1. 13 ₁₀
2. 57 ₁₀
3. 102 ₁₀

Exercice 2 : Conversion binaire → décimal

1. 10101 ₂
2. 110011 ₂
3. 1111111 ₂

Exercice 3 : Capacité de représentation

1. Combien d'entiers différents peut-on coder avec 5 bits ?
2.a) 6 bits non signés :
2.b) 6 bits signés (complément à deux) :

Exercice 4 : Petits problèmes

1. Un codeur souhaite représenter les entiers de 0 à 999. Combien de bits minimum lui faut-il ?
2. Un ordinateur utilise 8 bits pour stocker les entiers non signés. Quelle est la valeur maximale stockable ?

Exercice 5 : Conversion décimal → hexadécimal

1. 12 ₁₀
2. 25 ₁₀
3. 31 ₁₀
4. 42 ₁₀

Exercice 6 : Conversion hexadécimal → décimal

1. A ₁₆
2. 1C ₁₆
3. 3F ₁₆
4. 7B ₁₆
5. FF ₁₆

Exercice 7 : Passage binaire \leftrightarrow hexadécimal