Compound Semiconductors Overview & Comparative Study

Dapsara Kapuge 2190009

1. Introduction

What Are Semiconductors

Electrical conductivity between conductors and insulators.

```
Silicon (Si)
Germanium (Ge)
```

What Are Compound Semiconductors

Materials formed by combining two or more elements

```
Silicon Carbide(SiC)
Gallium Nitride (GaN)
Gallium Arsenide (GaAs)
```

2. Compound Semiconductor Materials

Bonding

Silicon Carbide(SiC)

Has a strong covalent bond Crystal structure 4H-SiC.

Gallium Nitride (GaN)

Has a strong covalent bond Robust crystal structure has an ionic character

Gallium Arsenide (GaAs)

Has a strong covalent bond Zinc blende crystal structure Has an ionic character

Comparative Analysis

Property	Silicon Carbide (Sic)	Gallium Nitride (GaN)	Gallium Arsenide (GaAs)
Bandgap	3.26 eV	3.4 eV	1.42 eV
Electron Mobility	Moderate	High	Very High
Thermal Conductivity	High	Moderate	Low
Switching Frequency	High	Very High	Moderate
Temperature Tolerance	Very High	High	Moderate
Cost	Relatively High	High	Lower than SiC & GaN
Best User Cases	High-power Electronics	RF, High-frequency charges	Optoelectronic , RF Devices
Radiation Resistance	Excellent	Good	Moderate

3. User cases

Silicon Carbide (SiC)

SiC MOSFETs and Diodes Industrial Power Systems; power converters, motor drives, solar inverters and wind turbines High-voltage direct current (HVDC) systems Military radar and communications systems

Gallium Nitride (GaN)

Power Electronics and Fast Chargers 5G network infrastructure, Audio amplifiers Medical equipment

Gallium Arsenide (GaAs)

High-speed digital circuits
Radio frequency (RF) and microwave devices
Optoelectronic Devices; LEDs, laser diodes, and photodetectors
Satellite-based communication systems

4. Disadvantages

Silicon Carbide (SiC)

High Production Cost Manufacturing Complexity Limited Short Term Adoption

Gallium Nitride (GaN)

Cost Manufacturing Challenges Material Availability Limited Market Adoption

Gallium Arsenide (GaAs)

Fragility
Thermal Conductivity
Environmental and Safety Concerns:
Limited Substrate Size

5. Can Silicon be Replaced in SoC Applications?

Compound semiconductors are more likely to coexist with silicon, complementing it in hybrid designs or specialized areas where their unique properties provide a distinct performance advantage.

SiC and GaN could dominate power management and high-efficiency modules within SoCs

GaAs may continue to lead in optoelectronics and RF applications

5. Future Trends

Advancements in SiC Wafer Technology Integration with Other Semiconductors Cost Reduction Strategies Sustainable and Green Technology Broader Market Penetration

7. Resources

- A. H. Wilson, "The theory of electronic semi conductors," Proceedings of the Royal Society of London. Series a Containing Papers of a Mathematical and Physical Character, vol. 133, no. 822, pp. 458–491, Oct. 1931, doi:10.1098/rspa.1931.0162.
- S. F. Fang et al., "Gallium arsenide and other compound semiconductors on silicon," Journal of Applied Physics, vol.68, no. 7, pp. R31–R58, Oct. 1990, doi: 10.1063/1.346284.
- I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, no. 11, pp.5815–5875, Jun. 2001, doi: 10.1063/1.1368156.
- Nishino, J. A. Powell, and H. A. Will, "Production of large-area single-crystal wafers of cubic SiC for semiconductor devices," Applied Physics Letters, vol. 42, no. 5, pp. 460–462, Mar. 1983, doi: 10.1063/1.93970.
- A. Syed-Khaja, "Diffusion Soldering for the High temperature Packaging of Power Electronics," Diffusion Soldering for High-temperature Packaging of Power Electronics, Jan. 2018, doi: 10.25593/978-3-96147-1638.
- B. Xu et al., "Controlled growth of III-V compound semiconductor nano-structures and their application in quantum-devices," 13th International Conference on Semiconducting and Insulating Materials, 2004. SIMC XIII-2004., Beijing, China, 2004, pp. 113-118, doi: 10.1109/SIM.2005.1511398

Thank You!