Funções Polinomiais, Racionais, Algébricas, Exponenciais e Logarítmicas

Fabiano José dos Santos

1 de setembro de 2010

Funções Polinomiais do 1º Grau 1

Funções polinomiais do 1º grau são funções $f: \mathbb{R} \to \mathbb{R}$ da forma

$$f(x) = ax + b (1)$$

em que a e b são constantes reais. Sua representação no plano cartesiano é uma reta (Figura 1). A constante a é chamada coeficiente angular e, por definição, é dada pela tangente do ângulo formado entre a reta e o semi eixo positivo da abscissas. A constante b é chamada coeficiente linear e geometricamente é a ordenada do ponto em que a reta intercepta o eixo-y. A raiz² é dada por x = -b/a.

Figura 1: Coeficiente angular, coeficiente linear e raiz de uma função linear

1.1 **Problemas Propostos**

1 Esboce o gráfico das duas funções dadas no plano cartesiano e determine (se existir) o ponto de interseção.

(a)
$$f(x) = x - 2$$
 e $f(x) = -2x + 4$:

(a)
$$f(x) = x - 2$$
 e $f(x) = -2x + 4$; (c) $f(x) = 3x - 1$ e $f(x) = -5x + 2$;

(b)
$$f(x) = 2x - 7$$
 e $f(x) = -2x + 1$; (d) $f(x) = 2x - 5$ e $f(x) = 2x + 5$;

(d)
$$f(x) = 2x - 5$$
 e $f(x) = 2x + 5$

2 Dada a função $f: \mathbb{R} \to \mathbb{R}$, tal que y = f(x) = 2x - 10,

¹Lembre-se que o símbolo $\mathbb R$ denota o conjunto de todos os números reais. Assim $f:\mathbb R\to\mathbb R$ indica que a função f tem como domínio (o $\mathbb R$ antes da flecha) e contra-domínio (o $\mathbb R$ depois da flecha) todos os números reais.

²As raízes, ou zeros, de uma função são todos os valores do domínio que anulam sua imagem, ou seja, são todos os elementos do domínio que possuem imagem zero. Determinamos as raízes de uma função f resolvendo a equação f(x) = 0.

- (a) determine as coordenadas do ponto em que seu gráfico intercepta o eixo x;
- (b) determine as coordenadas do ponto em que seu gráfico intercepta o eixo y;
- (c) utilize as informações obtidas para esboçar seu gráfico.
- **3** Dada a função $f: \mathbb{R} \to \mathbb{R}$, tal que f(x) = 3x 4, determine as constantes a e b sabendo-se que f(a) = 2b e f(b) = 9a 28.
- 4 Uma função polinomial do 1º grau é tal que f(3) = 2 e f(4) = 2f(2). Determine f.
- 5 Uma função polinomial do 1º grau é tal que f(0) = 1 + f(1) e f(-1) = 2 f(0). Determine f(3).
- 6 Um avião parte de um ponto P no instante t=0 e viaja para o oeste a uma velocidade constante de $450\,\mathrm{Km/h}$.
 - (a) Escreva uma expressão para a distância d (em Km) percorrida pelo avião em função do tempo t (em horas).
 - (b) Trace o gráfico $d \times t$.
 - (c) qual o significado do coeficiente angular da reta obtida?

2 Funções Polinomiais do 2º grau

Funções polinomiais do 2^o grau (ou funções quadráticas) são funções $f: \mathbb{R} \to \mathbb{R}$ da forma

$$y = f(x) = ax^2 + bx + c, \quad a \neq 0.$$

Sua representação no plano cartesiano é uma parábola. As duas raízes são dadas pela Fórmula de Báskara

$$x = \frac{-b \pm \sqrt{\Delta}}{2a};\tag{2}$$

em que o discriminante (ou delta) é dado por $\Delta = b^2 - 4ac$. Temos que:

- se $\Delta > 0$: duas raízes reais distintas;
- se $\Delta = 0$: duas raízes reais iguais (raiz dupla);
- se $\Delta < 0$: duas raízes complexas³

Para o traçado do gráfico de funções quadráticas é útil lembrar que as coordenadas do vértice da parábola são dadas por:

$$\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right). \tag{3}$$

³Neste caso as raízes são conjugadas, pois estamos tratando de funções quadráticas de coeficientes reais.

2.1 Forma fatorada de uma função quadrática

Se os números r_1 e r_2 são as raízes de uma função quadrática $f(x) = ax^2 + bx + c$ então podemos reescrevê-la na forma fatorada

$$f(x) = ax^{2} + bx + c = a(x - r_{1})(x - r_{2}).$$

Exemplo 1 Dada a função $y = -4x^2 + 2x + 6$ temos

- raízes: $\Delta = 2^2 4(-4)6 = 100$; logo $x = \frac{-2 \pm 10}{-8}$ e as raízes são x = -1 e $x = \frac{3}{2}$;
- coordenadas do vértice: $\left(\frac{-2}{-8}, \frac{-100}{-16}\right) = \left(\frac{1}{4}, \frac{25}{4}\right)$;
- forma fatorada: $f(x) = -4\left(x \frac{3}{2}\right)\left(x + 1\right)$.

2.2 Problemas Propostos

7 Dadas as funções $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$, tais que f(x) = x + 1 e $g(x) = x^2 - 5x + 6$,

- (a) determine as raízes de f;
- (b) determine as raízes de g e reescreva-a na forma fatorada;
- (c) resolva a equação $\frac{g(2)-f(x)}{g(1)f(2)} = \frac{g(4)}{f(-2)}$
- (d) resolva a equação $\frac{g(x)-f(x)}{g(0)f(0)} = \frac{g(-2)}{f(1)}$

8 Dada a função $f: \mathbb{R} \to \mathbb{R}$, tal que $y = f(x) = x^2 - 10x + 9$,

- (a) determine as coordenadas do ponto em que seu gráfico intercepta o eixo x;
- (b) determine as coordenadas do ponto em que seu gráfico intercepta o eixo y;
- (c) determine as coordenadas do vértice da parábola;
- (d) utilize as informações obtidas para esboçar seu gráfico.

9 Dada a função quadrática $f(x) = 4x^2 - 11x - 3$ determine o valor de k sabendo-se que f(k) = f(k+1).

10 Sabe-se que a função quadrática $y = 3x^2 + bx + c$ tem como raízes os números -2 e 6. Determine as coordenadas do vértice de seu gráfico e esboce-o.

11 (UFPI) Uma fábrica produz $p(t) = t^2 - 2t$ pares de sapatos t horas após o início de suas atividades diárias. Se a fábrica começa a funcionar as 8:00 horas, quantos pares de sapatos serão produzidos entre 10:00 e 11:00.

12 (UFGO) Se f(x) = x-3, determine os valores de x que satisfazem a equação $f(x^2) = f(x)$.

13 (UFAL-AL) São dadas as funções $f, g : \mathbb{R} \to \mathbb{R}$ definidas por $f(x) = x^2 - 2x - 3$ e $g(x) = \frac{3}{2}x + m$. Se f(0) + g(0) = -5, determine o valor da expressão f(m) - 2g(m).

14 (PUC-SP) Qual é a função quadrática cuja única raiz é -3 e cujo gráfico passa pelo ponto (-2,5)?

15 De uma função quadrática sabe-se que uma das raízes é 3 e que as coordenadas do vértice de seu gráfico são (-1,-16). Determine a outra raiz e esboce seu gráfico.

16 De uma função quadrática sabe-se que $f(m+3) = 2m^2 - 2m + 1$.

(a) Determine f(1) e f(-2);

(b) Determine f(x).

17 (Cesgranrio-RJ) Para quais valores de b a parábola $y = x^2 + bx$ tem um único ponto em comum com a reta y = x - 1?

3 Funções Polinomiais

Uma função polinomial $f: \mathbb{R} \to \mathbb{R}$ é uma função da forma

$$y = f(x) = a_n x^n + \ldots + a_3 x^3 + a_2 x^2 + a_1 x + a_0;$$

em que:

- n é o grau do polinômio;
- $a_n, \ldots, a_3, a_2, a_1, a_0$, chamados coeficientes do polinômio, são constantes $(a_n \neq 0)$;
- x é a variável independente; o domínio de toda função polinomial é \mathbb{R} ;
- y = f(x) é a variável dependente.

Exemplo 2 $y = 4x^3 - 2x^2 + 1$ é um polinômio de grau 3; seus coeficientes são 4, -2, 0 e 1.

3.1 Resultados Importantes

Identidade de Polinômios

Dois polinômios são ditos idênticos se os coeficientes das parcelas de mesma potência são iguais.

Exemplo 3 Determine os valores de m, n e p para que os polinômios

$$P(x) = (m+n)x^2 + 3nx - 4$$
 e $Q(x) = 2mx^2 - 6x + 4p$

sejam idênticos.

Solução: comparando-se as parcelas de mesma potência temos o sistema

$$\begin{cases} m+n &= 2m \\ 3n &= -6 \\ 4p &= -4 \end{cases}$$

cuja solução é m = -2, n = -2 e p = -1 (verifique!).

Polinômio Identicamente Nulo

O polinômio identicamente nulo é aquele no qual todos os coeficientes são nulos, ou seja,

$$y = f(x) = 0x^{n} + 0x^{n-1} + \dots + 0x^{3} + 0x^{2} + 0x + 0 = 0, \ \forall x \in \mathbb{R}.$$

Qual o grau de um polinômio identicamente nulo? o que você quiser.

Teorema do Resto

A divisão do polinômio P pelo fator linear (x-r) é igual a P(r).

Exemplo 4 Determine o valor de m de modo que a divisão do polinômio $f(x) = (m-4)x^3 - mx^2 - 3$ por g(x) = x - 2 dê resto 5.

Solução: pelo Teorema do Resto devemos ter f(2) = 5; logo

$$f(2) = 8(m-4) - 4m - 3 = 5$$

 $4m = 40$
 $m = 10$.

Pelo Teorema do Resto observamos que se r é uma raiz de um polinômio P, isto é, se P(r) = 0, então P é divisível por (x - r) (este resultado é conhecido como Teorema de D'Alembert). Generalizando este resultado, se P é divisível pelos fatores lineares $(x - r_1)$, $(x - r_2)$,..., $(x - r_n)$, então P também é divisível pelo produto

$$(x-r_1)(x-r_2)\dots(x-r_n);$$

onde os números r_1, r_2, \ldots, r_n são todos raízes de P.

Teorema Fundamental da Álgebra - TFA

Todo polinômio de grau n possui n raízes. No TFA devemos considerar:

- a existência de raízes complexas;
- a existência de raízes múltiplas (repetidas).

Forma Fatorada de um Polinômio

A importância do TFA é que ele garante que todo polinômio $P(x) = a_n x^n + ... + a_3 x^3 + a_2 x^2 + a_1 x + a_0$, de grau n, pode ser escrito na forma fatorada

$$P(x) = a_n(x - r_1)(x - r_2)(x - r_3) \dots (x - r_n)$$

em que os números $r_1, r_2, r_3, \ldots, r_n$ são suas raízes (mais uma vez: podem existir raízes complexas e/ou múltiplas). Evidentemente que para escrevermos um polinômio na forma fatorada devemos inicialmente determinar suas raízes; para polinômios de grau maior que 2 isto nem sempre é uma tarefa simples⁴.

Exemplo 5 As raízes do polinômio $P(x) = x^3 - 3x^2 + 2x$ são x = 0, x = 1 e x = 2 (verifique). Logo sua forma fatorada é

$$P(x) = (x-0)(x-1)(x-2) = x(x-1)(x-2).$$

Exemplo 6 As raízes do polinômio $P(x) = x^4 + 3x^3 - 25x^2 - 39x + 180$ são x = -5, x = -4, x = 3 e x = 3 (verifique). Logo sua forma fatorada é (observe que 3 é uma raiz dupla)

$$P(x) = (x+5)(x+4)(x-3)(x-3) = (x+5)(x+4)(x-3)^{2}.$$

⁴Visite o site www-history.mcs.st-andrews.ac.uk/history/HistTopics/Quadratic_etc_equations.html pra uma discussão sobre a determinação exata das raízes de polinômios cúbicos (Método de Tartaglia) e quárticos (Método de Ferrari) por métodos algébricos (métodos que envolvem apenas adição, subtração multiplicação, divisão e raízes de expressões nos coeficientes do polinômio).

3.2 Problemas Propostos

18 Determine todos os valores de k para que o polinômio

$$P(x) = (k^2 - k - 6)x^3 - (k - 3)x^2 + kx - 2$$

(a) seja de grau 1;

- (b) seja de grau 2.
- 19 (Mack-SP) Para quais valores de m o polinômio $P(x) = (m-4)x^3 + (m^2-16)x^2 + (m+4)x + 4$ é de grau 2?
- **20** Dados $A(x) = x^2 + 3x + 1$, $B(x) = -2x^2 + x 1$ e $C(x) = x^3 x + 1$, determine:
 - (a) $P(x) = (2A + B)^2 4C$;

- (b) $Q(x) = (B A)^2 2(B + C)$.
- **21** (FGV-SP) Sabe-se que em um polinômio P do 3° grau o coeficiente de x^{3} é 1, duas de suas raízes são 1 e 2 e que P(3) = 30. Determine P(-1).
- **22** (Fuvest-SP) Sabe-se que um polinômio $P(x) = x^3 + ax^2 + bx + c$ tem as seguintes propriedades: P(1) = 0 e P(-x) + P(x) = 0, $\forall x \in \mathbb{R}$. Determine P(2).
- 23 Determine as constantes A, B e C na identidade

$$A(x^2 - x + 1) + (Bx + C)(x + 1)) = 1.$$

- **24** Determine as constantes α , β , γ e δ para que os polinômios $P(x) = \alpha(x+\gamma)^3 + \beta(x+\delta)$ e $Q(x) = x^3 + 6x^2 + 15x + 14$ sejam idênticos.
- **25** (PUC-SP) Determine as constantes m, n e p para que os polinômios $P(x) = (m+n+p)x^4 (p+1)x^3 + mx^2 + (n-p)x + n$ e $Q(x) = 2mx^3 + (2p+7)x^2 + 5mx + 2m$ sejam idênticos.
- **26** Determine m e n para que o polinômio $f(x) = x^3 + 12x^2 + mx + n$ seja um cubo perfeito⁵.
- **27** Determine o quociente Q e o resto R da divisão do polinômio $f(x) = x^3 7x^2 x + 8$ pelo polinômio $g(x) = x^2 4$.
- **28** Em uma divisão de polinômios, o divisor é $Q(x) = x^3 x^2 + 3$, o quociente é q(x) = x + 2 e o resto é $R(x) = x^2 9$. Determine o dividendo.
- **29** Em uma divisão de polinômios, o dividendo é $P(x) = x^4 2x^2 + x 7$, o quociente é $q(x) = x^2 + x 1$ e o resto é R(x) = -7. Determine o divisor.
- **30** Determine as constantes α e β para que o polinômio $P(x) = x^4 + \alpha x^3 + \beta x^2 + 2x$ seja divisível pelo polinômio $Q(x) = x^2 + 1$.
- **31** Determine o valor de m para que o polinômio $P(x) = (m^2 1)x^2 + 2mx 1$ seja divisível pelo polinômio Q(x) = 2x 1.
- 32 (ITA-SP) Um polinômio P divido por x-1 dá resto 3. O quociente desta divisão é então dividido por x-2, obtendo-se resto 2. Determine o resto da divisão de P por (x-1)(x-2).

⁵Isto é, para que f seja da forma $f(x) = (ax + b)^3$

- 33 Sabe-se que o polinômio $P(x) = x^3 + 2x^2 9x 18$ é divisível pelo fator linear x + 2. Determine todas as raízes de P e reescreva-o na forma fatorada.
- 34 Dado a função polinomial $P(x) = x^4 8x^2 9$ determine suas raízes e reescreva-a na forma fatorada.
- 35 Sabendo-se que 2 é uma raiz dupla da função polinomial $P(x) = x^5 2x^4 3x^3 + 4x^2 + 4x$, determine suas outras 3 raízes e reescreva-a na forma fatorada.
- **36** (ESAN-SP) Seja $P(x) = Q(x) + x^2 + x + 1$. Sabendo-se que 2 é raiz de P e 1 é raiz de Q determine P(1) Q(2).
- **37** (UFMG) Os polinômios $P(x) = px^2 + q(x) 4$ e $Q(x) = x^2 + px + q$ são tais que P(x+1) = Q(2x), $\forall x \in \mathbb{R}$. Determine p e q.
- 38 (UFES) Seja f é um polinômio tal que a soma de seus coeficientes é zero. Determine f(1).
- **39** (ITA-SP) Sejam a, b e c números reais que nesta ordem formam uma progressão aritmética de soma 12. Sabendo-se que os restos das divisões de $P(x) = x^{10} + 8x^8 + ax^5 + bx^3 + cx$ por x-2 e x+2 são iguais, determine a razão da progessão aritmética.
- **40** Para todo $n \in \mathbb{N}^*$ a expressão $(x+4)^n + (x+3)^{2n} 1$ define formalmente um polinômio em x. Mostre que qualquer polinômio assim obtido é divisível pelo produto (x+3)(x+4).

4 Estudo do Sinal de uma Função

Nesta Seção discutimos o problema do estudo do sinal de uma função, assunto muitas vezes tratado de forma rápida e superficial nos ensinos básico e médio. Daremos aqui uma maior cobertura a este tópico uma vez que se trata de um pré-requisito fundamental para se aprender o Cálculo Diferencial e Integral. Também introduzimos dois novos tipos de funções: as funções racionais e as funções algébricas.

Estudar o sinal de uma função consiste em determinar os intervalos nos quais a função tem imagem negativa e os intervalos nos quais a função tem imagem positiva.

4.1 Estudo do sinal de funções polinomiais

Como toda função polinomial tem como domínio todo o conjunto \mathbb{R} e é sempre contínua⁶, suas imagens só podem mudar de sinal em suas raízes reais.

4.1.1 Estudo do sinal de funções polinomiais do 1º grau

Neste caso o estudo de sinal é bastante simples, pois a função apresenta uma única raiz (obviamente real) e portanto muda de sinal uma única vez.

Exemplo 7 A única raiz da função polinomial y = 2x - 6 é x = 3. Assim (Figura 2)

- a função é positiva em $\{x \in \mathbb{R} | x > 3\}$ (isto significa que qualquer valor de x maior que 3 resulta em uma imagem positiva);
- a função é negativa em $\{x \in \mathbb{R} | x < 3\}$ (isto significa que qualquer valor de x menor que 3 resulta em uma imagem negativa).

⁶Uma discussão detalhada de *continuidade* depende do conhecimento da teoria de *limites* (Veja Seção 2.5 e Apêndices B.2 e B.3 de George F. Simmons, Cálculo com Geometria Analítica - Volume 1, McGraw-Hill, São Paulo, 1987. Grosseiramente falando, uma função é contínua quando seu gráfico não apresenta falhas ou saltos.

Figura 2: Estudo de sinal da função y = 2x - 6

4.1.2 Estudo do sinal de funções polinomiais do 2º grau

Inicialmente determinamos as raízes reais (se existirem) do polinômio quadrático. A seguir podemos estudar o sinal utilizando o gráfico da função ou o quadro de sinais (com a função na forma fatorada). O Exemplo a seguir ilustra tais possibilidades.

Exemplo 8 As raízes da função polinomial $y = x^2 - 3x - 4$ são x = -1 e x = 4.

(i) Forma gráfica: como o coeficiente do termo quadrático é positivo, o gráfico da função é uma parábola com concavidade voltada para cima (Figura 3).

Figura 3: Estudo de sinal da função $y = x^2 - 3x - 4$

(ii) Quadro de sinais: escrevemos a função na forma fatorada

$$y = (x+1)(x-4)$$

e analisamos os sinais dos fatores nos subintervalos formados pelas raízes de cada fator (Figura 4).

	_	$\cdot 1$	4
x+1	_	+	+
x-4	_	_	+
y	+	_	+

Figura 4: Estudo de sinal da função $y = x^2 - 3x - 4 = (x+1)(x-4)$

Temos:

- a função é positiva em $\{x \in \mathbb{R} | x < -1 \text{ ou } x > 4\};$
- a função é negativa em $\{x \in \mathbb{R} | -1 < x < 4\}$.

4.1.3 Estudo do sinal de uma função polinomial qualquer

Neste caso devemos ser capazes de determinar as raízes do polinômio (não se frustre: para polinômios de grau maior que 2 isto nem sempre é fácil). Se pudermos determinar as raízes reais da função, podemos reescrevê-la na forma fatorada e então estudarmos seu sinal com o auxílio do quadro de sinais.

Exemplo 9 As raízes da função polinomial $y = x^3 - x^2 - 6x$ são x = -2, x = 0 e x = 3 (verifique); logo sua forma fatorada é

$$y = x(x+2)(x-3).$$

Analisamos então os sinais dos fatores nos subintervalos formados pelas raízes de cada fator (Figura 5). Temos:

- a função é negativa em $\{x \in \mathbb{R} | x < -2 \text{ ou } 0 < x < 3\};$
- a função é positiva em $\{x \in \mathbb{R} | -2 < x < 0 \text{ ou } x > 3\}.$

	_	2		3
\overline{x}	_	_	+	+
x+2	_	+	+	+
x-3	_	_	_	+
\overline{y}	_	+	_	+

Figura 5: Estudo de sinal da função $y = x^3 - x^2 - 6x$

4.2 Funções Racionais

Funções racionais são dadas por razões de polinômios, ou seja, são funções da forma

$$f(x) = \frac{P(x)}{Q(x)}$$

em que P e Q são polinômios quaisquer. Evidentemente, **como não existe divisão por zero**, o domínio de uma função racional são todos os números reais para os quais $Q(x) \neq 0$. As raízes de uma função racional são as próprias raízes de P (caso não anulem Q).

Exemplo 10 Dada a função $y = \frac{x-3}{x-1}$, temos:

- domínio: $x 1 \neq 0$, assim $D(f) = \{x \in \mathbb{R} | x \neq 1\}$;
- ullet raiz: x-3=0, assim a função possui uma única raiz x=3;
- estudo de sinal: utilizamos o quadro de sinais e analisamos os sinais dos fatores nos subintervalos formados pelas raízes de cada fator (Figura 6):

		1 ;	3
x-1	_	+	+
x-3	_	_	+
\overline{y}	+	_	+

Figura 6: Estudo de sinal da função $y = \frac{x-3}{x-1}$

Temos:

- a função é positiva em $\{x \in \mathbb{R} | x < -1 \text{ ou } x > 3\};$
- a função é negativa em $\{x \in \mathbb{R} | -1 < x < 3\}$.

Exemplo 11 Dada a função $y = \frac{x-3}{x^2-9}$, temos:

- domínio: $x^2 9 \neq 0$, assim $D(f) = \{x \in \mathbb{R} | x \neq \pm 3\}$;
- raiz: x-3=0 e neste caso x=3 seria a provável raiz. Como 3 não está no domínio, esta função não possui raiz⁷
- ullet estudo de sinal: como x=3 é raiz do numerador e do denominador o fator linear x-3 poderá ser cancelado

$$y = \frac{x-3}{x^2-9} = \frac{x-3}{(x-3)(x+3)} = \frac{1}{x+3}, \quad x \neq 3.$$

Temos:

- $a função \'e positiva em \{x \in \mathbb{R} | x > -3\};$
- a função é negativa em $\{x \in \mathbb{R} | x < -3\}$.

Uma função racional $f(x) = \frac{P(x)}{Q(x)}$ se diz **própria** se o grau do polinômio P é menor que o grau do polinômio Q; caso contrário a função racional se diz **imprópria**. Em particular, toda função racional imprópria pode ser reescrita na forma

$$f(x) = \frac{P(x)}{Q(x)} = q(x) + \frac{r(x)}{Q(x)};$$
 (4)

onde o polinômio q é o quociente e o polinômio r é o resto da divisão de P por Q.

Exemplo 12 Na divisão do polinômio $x^3 - 3x^2$ por x - 1 o quociente é $x^2 - 2x - 2$ e o resto é -2. Assim a função racional $f(x) = \frac{x^3 - 3x^2}{x - 1}$ pode ser reescrita como

$$f(x) = \frac{x^3 - 3x^2}{x - 1} = x^2 - 2x - 2 + \frac{-2}{x - 1}.$$

4.3 Funções Algébricas

Funções algébricas são aquelas obtidas por qualquer manipulação algébrica de polinômios. Muitas vezes tais funções envolvem a extração de raízes e/ou divisões de polinômios. No caso de funções algébricas determinamos o seu domínio observando dois fatos:

- (i) não existe divisão por zero;
- (ii) não existe raiz par de número negativo.

Exemplo 13 Determine o domínio e as raízes da função $f(x) = \sqrt{21 - 18x - 3x^2}$.

Solução: uma vez que só podemos extrair a raiz quadrada de números não negativos, devemos ter

$$21 - 18x - 3x^2 > 0$$
.

A Figura 7 ilustra graficamente a solução desta inequação. Observamos então que o domínio da função é $D(f) = \{x \in \mathbb{R} | -7 \le x \le <1\}$. As raízes são x = -7 e x = 1, uma vez que $f(-7) = f(1) = \sqrt{0} = 0$.

⁷Cuidado: conforme podemos observar neste Exemplo a primeira providência quando analisamos uma função é determinar seu domínio. Se você começasse tentando encontrar as raízes poderia cometer um (grave) erro.

Figura 7: Determinando o domínio da função $f(x) = \sqrt{21 - 18x - 3x^2}$

4.4 Problemas Propostos

41 Determine as raízes e estude o sinal da função $f(x) = x^2 - 5x + 6$.

42 Determine as raízes e estude o sinal da função $f(x) = -x^2 + 4x$.

43 Determine as raízes e estude o sinal da função $f(x) = x^2 - 4x + 4$.

44 Determine as raízes e estude o sinal da função $f(x) = -x^2 + 4x - 13$.

45 Determine as raízes e estude o sinal da função $f(x) = x^3 - 6x^2 - 27x + 140$, sabendo-se que uma de suas raízes é 7.

46 Determine as raízes e estude o sinal da função $f(x) = x^4 - 13x^2 + 36$.

47 Dada a $função f(x) = \frac{x^2 - 3x - 4}{x - 2}$

(a) determine seu domínio;

(b) determine suas raízes (se existirem);

(c) faça o estudo de seu sinal.

48 Classifique as funções racionais como própria ou imprópria. Para as impróprias, reescreva-a na forma (4).

(a)
$$\frac{x+1}{x^2+x-7}$$

(d)
$$\frac{x^3+8}{x^4+2x^2+4}$$

(b)
$$\frac{x^4-3x+1}{x^2-x}$$

$$(c) \frac{x^3+5x^2+2x+7}{x^3+x}$$

$$(e) \ \frac{x^6 + 5x^5 + 11x^4 + 7x^3 + x^2 - 1}{x^2 - 1}$$

49 Faça o estudo de sinal das funções do Problema 48

50 Dada a função $f(x) = \frac{\sqrt{x^3 + x^2 - 2x}}{x - 1}$, determine

(a) seu domínio;

(b) suas raízes (se existirem);

(c) seu estudo de sinal.

51 Dada a função $f(x) = \sqrt{\frac{x+3}{x-5}}$, determine

(a) seu domínio;

- (b) suas raízes (se existirem);
- (c) seu estudo de sinal.
- **52** Dada a função $f(x) = \sqrt{\frac{x^2+x-6}{x^2-x-6}}$, determine
 - (a) seu domínio;
 - (b) suas raízes (se existirem);
 - (c) seu estudo de sinal.
- **53** Determine as constantes A e B que sastifazem a igualdade

$$\frac{7x+14}{x^2+x-12} = \frac{A}{x-3} + \frac{B}{x+4}$$

54 Determine as constantes A, B e C que sastifazem a igualdade

$$\frac{19}{x^3 + x^2 - 14x + 6} = \frac{A}{x - 3} + \frac{Bx + C}{x^2 + 4x - 2}$$

55 O estudo de sinal de uma função quadrática pode ser imediatamente determinado a partir do valor de seu discriminante e do sinal do coeficiente do termo quadrático. Faça um quadro resumo ilustrando as seis possibilidades de estudo de sinal para tais funções.

56 Podemos afirmar que $\frac{x^2+2x-3}{x-1} = x + 3$? Explique.

5 Funções Exponenciais

Dados $b \in \mathbb{R}$ e $n \in \mathbb{N}$, denota-se por b^n o produto de b por si mesmo n vezes, isto é:

$$b^n = b \cdot b \cdot b \cdots b \text{ (n fatores)}. \tag{5}$$

Em (5) a constante b é denominada base da potência e n seu expoente. Como conseqüências imediatas de (5) temos as seguintes propriedades para as potências $(m, n \in \mathbb{N})$:

(i)
$$b^m b^n = b^{m+n}$$

(v)
$$b^0 = 1$$
, se $b \neq 0$

(ii)
$$\frac{b^m}{b^n} = b^{m-n}$$

(vi)
$$0^n = 0$$
, se $n \neq 0$

(iii)
$$(b^m)^n = b^{mn}$$

(vii)
$$0^0 \not\equiv$$

(iv) $b^{-n} = \frac{1}{b^n}$

Além disto, definimos expoentes racionais (fracionários) como

$$b^{m/n} = \sqrt[n]{b^m}$$

onde fica subententido que m/n é uma fração irredutível e que a raiz n-ésima de b^m exista. A validade de (5) quando n é um número irracional é bem mais difícil de se estabelecer. Por exemplo, qual o significado de $3^{\sqrt{2}}$? Apesar desse incoveniente, admitiremos, sem provas, que tanto (5) como as propriedades listadas continuam válidas para expoentes reais quaisquer.

Para a desigualdade $b^x > b^y$ observamos que:

- (i) se b > 1 então x > y;
- (ii) se 0 < b < 1 então x < y.

Notação Científica

Na notação científica, qualquer número racional pode ser escrito como o produto de um número x, $1 \le x < 10$, multiplicado por uma potência de 10 adequada. Por exemplo:

•
$$0.02 = 2 \cdot 10^{-2}$$

•
$$10.000 = 1 \cdot 10^4$$

•
$$5.300 = 5, 3 \cdot 10^3$$

•
$$0,00083 = 8,3 \cdot 10^{-4}$$

5.1 A Função Exponencial

Uma função exponencial é uma função da forma

$$f(x) = A \cdot b^{kx} \,, \tag{6}$$

em que A e k são constantes reais quaisquer e a base b é qualquer real positivo diferente de 1 $(b \in \mathbb{R}^+_* e \ b \neq 1)$. O leitor deve ficar atento para distinguir função potência, da forma x^a (a variável está na base), de função exponencial, da forma b^x (a variável está no exponente).

Em (6), quando A > 0 e k > 0, se b > 1 então a função exponencial é crescente - Figura 8(a); se 0 < b < 1 a função exponencial é decrescente - Figura 8(b).

Figura 8: Gráficos das funções exponenciais

Juros compostos

Se uma quantia de capital C é capitalizada periodicamente a uma taxa de juros j, pode-se mostrar⁸ que o montante de capital M após t períodos é dado pela função exponencial

$$M(t) = C\left(1 + \frac{j}{100}\right)^t. \tag{7}$$

5.2 Problemas Propostos

57 Escreva a expressão

$$\sqrt{\frac{x}{\sqrt[3]{x^4}}} \frac{\sqrt[5]{x^3}}{\sqrt{x^7}}$$

na forma de expoente fracionário.

58 Sabendo-se que
$$A = \frac{3^x + 3^{-x}}{2}$$
 e $B = \frac{3^x - 3^{-x}}{2}$, determine $A^2 + B^2$.

59 Determine o valor da expressão $2x^0 + x^{\frac{1}{3}} + 24x^{-\frac{1}{2}}$ para x = 64.

⁸Veja o Problema 70.

$$\frac{2^{n+4} + 2^{n+2} + 2^{n-1}}{2^{n-2} + 2^{n-1}}.$$

61 Resolva as equações exponenciais

(a)
$$3^{x^2+1} = 243$$
;

(e)
$$2^x 3^x = 216$$
;

(b)
$$27^x = \sqrt{3}$$
;

(f)
$$4^{x+2} + 4^{x-1} - 4^{x+1} + 4^x = 212$$
;

(c)
$$(0.5)^{x^2+x-12} = 1$$
:

(g)
$$16^x 4^{x+3} - 8^{x+2} = 0$$
;

(d)
$$8^{x-2} = 8\sqrt{2}$$
;

(h)
$$2^{8x} - 4 \cdot 2^{4x} - 32 = 0$$
:

62 [ITA-SP] Resolva a equação
$$4^{x^2} - 5 \cdot 2^{x^2} + 4 = 0$$
.

63 Resolva as inequações exponenciais

(a)
$$2^{x+2} + 2^{x-1} > 3^{x-1} + 3^x$$
:

(c)
$$2^x - 3 > -2^{2-1}$$
:

$$(b) \left(\frac{1}{\sqrt{2}}\right)^{\frac{x-1}{x-2}} \ge 8^{\frac{x-1}{x}};$$

64 Para cada produto indicado, escreva os fatores em notação científica, determine o valor do produto e expresse-o em notação científica

(a)
$$0,00002 \cdot 12300$$

$$(c) 0,00025 \cdot 1200000 \cdot 1300$$

(b)
$$102400 \cdot 0,0005$$

$$(d) 0,004 \cdot 0,000001 \cdot 240000$$

65 Em uma colônia de bactérias, o número N de indivíduos em função do tempo t (em dias) é dado pela função exponencial $N(t) = M2^{kt}$, onde M e k são constantes.

- (a) Determine M e k sabendo-se que a população inicial (no tempo t=0) é de 100 bactérias e que esta população se quadruplicou após um dia.
- (b) Determine o número de bactérias presentes na colônia após dois dias.
- (c) Determine o número de bactérias presentes na colônia após cinco dias.
- (d) Esboce o gráfico $N \times t$ no intervalo $0 \le t \le 5$.

66 [Unicamp-SP] Suponha que o número P de indivíduos de uma dada população em função do tempo t, em anos, seja dado pela função exponencial $P(t) = P_o \cdot 2^{-bt}$, em que P_o e b são constantes.

- (a) Determine P_o e b sabendo-se que a população inicial (no tempo t=0) é de 1024 indivíduos e que se reduziu à metade após 10 anos.
- (b) Qual o tempo mínimo para que a população se reduza à 25% da população inicial?
- (c) Qual o tempo mínimo para que a população se reduza à 12,5% da população inicial?
- (d) Esboce o gráfico $P \times t$ no intervalo $0 \le t \le 40$.

67 Em uma cultura de bactérias, estima-se que após t dias a população P seja dada por

$$P(t) = A \cdot \left(1 + 2^{\frac{t}{4}}\right) ,$$

em que A é uma constante positiva. Sabendo-se que a população inicial da cultura é de 20.000 indivíduos, determine em quantos dias a população de bactérias atingirá 90.000 habitantes.

- 68 Na ausência de predadores, restrições de espaço e restrições de alimentos, as populações de topos os tipos de seres vivos, de bactérias a mamíferos de grande porte, tendem a crescer exponencialmente. Como exemplo, considere uma população de microorganismos, inicialmente com 1.000 indivíduos, e que triplica a cada 20 minutos.
 - (a) Qual o tamanho desta população após 1 hora? e após 2 horas?
 - (b) Determine uma função que determine o tamanho da população de microorganismos após t horas.
- 69 Se um raio de luz de intensidade k, em lux/m^2 , é projetado verticalmente para baixo na água, então a intensidade luminosa I a uma profundidade de h metros é dada por

$$I(h) = k3^{\alpha t} [=] lux/m^2,$$

onde k e α são constantes.

- (a) Determine k e α sabendo-se que a intensidade luminosa é de $12 lux/m^2$ na superfície e de $4 lux/m^2$ a um metro de profundidade;
- (b) determine a intensidade luminosa a 3 metros de profundidade.
- 70 Suponha que uma quantia de capital C é capitalizada periodicamente a uma taxa de juros j. Use indução matemática para mostrar que o montante de capital M após n períodos é dado pela função exponencial

$$M(n) = C\left(1 + \frac{j}{100}\right)^n.$$

6 Logaritmos

Definimos aqui o logaritmo como o inverso da exponencial, no seguinte sentido:

$$\log_b(a) = c \iff b^c = a \tag{8}$$

Em (8) utilizamos a seguinte nomenclatura

- *b* é a base do logaritmo;
- a é o logaritmando;
- c é o logaritmo.

Condição de existência de $\log_b(a)$

Como na exponencial $b^x = a$ a base satisfaz a condição b > 0 e $b \ne 1$, temos que $a > 0 \,\forall \, x \in \mathbb{R}$. Assim, para $\log_b(a)$ também devemos ter:

- b > 0 e $b \neq 1$:
- a > 0, isto é, só existe logaritmo de números positivos.

Consequências da definição

Como conseqüências da definição (8), dados $a, b, c \in \mathbb{R}_*^+$, $b \neq 1$ e $n \in \mathbb{R}$, temos os seguintes resultados imediatos:

- (i) $\log_b(1) = 0$, pois $b^0 = 1$;
- (ii) $\log_b(b) = 1$, pois $b^1 = b$;
- (iii) $\log_b(b^n) = n$, pois $b^n = b^n$;
- (iv) $\log_b(a) = \log_b(c) \Rightarrow a = c$
- (v) se b > 1, $\log_b(a) > \log_b(c) \Rightarrow a > c$
- (vi) se 0 < b < 1, $\log_b(a) > \log_b(c) \Rightarrow a < c$

Propriedades dos logaritmos

Também como conseqüência da definição (8), dados $a,b,c\in\mathbb{R}_*^+,\ b\neq 1$ e $n\in\mathbb{R}$, temos as seguintes propriedades para os logaritmos:

(i) o logaritmo do produto é a soma dos logaritmos:

$$\log_b(ac) = \log_b(a) + \log_b(c); \tag{9a}$$

(ii) o logaritmo do quociente é a diferença dos logaritmos:

$$\log_b\left(\frac{a}{c}\right) = \log_b(a) - \log_b(c); \tag{9b}$$

(iii) o logaritmo da potência é o expoente vezes o logaritmo:

$$\log_b(a^n) = n \log_b(a); \tag{9c}$$

(iv) exponencial do logaritmo de mesma base:

$$a^{\log_a(b)} = b; (9d)$$

(v) Mudança de base, em que $B \in \mathbb{R}_*^+$ e $B \neq 1$:

$$\log_b(a) = \frac{\log_B(a)}{\log_B(b)} \tag{9e}$$

Provamos aqui a propriedade (9a) e deixamos as provas das demais para o leitor⁹. Sejam

$$\log_b(ac) = x \quad \therefore \quad b^x = ac; \tag{10a}$$

$$\log_b(a) = y \quad \therefore \quad b^y = a; \tag{10b}$$

$$\log_b(c) = z \quad \therefore \quad a^z = c. \tag{10c}$$

Substituindo (10b) e (10c) em (10a) temos

$$a^x = bc = a^y a^z = a^{y+z}$$
 \therefore $x = y + z$ \therefore $\log_a(bc) = \log_a(b) + \log_a(c)$.

⁹Veja Problema 90

Bases importantes

- Logaritmo comum: é o logaritmo de base 10, isto é, $\log_{10}(a)$. Para o logaritmo comum geralmente omitimos o valor da base, isto é, $\log_{10}(a) = \log(a)$.
- Logaritmo natural (ou neperiano): é o logaritmo de base e, isto é, $\log_e(a)$. O logaritmo natural geralmente é denotado por ln, isto é, $\log_e(a) = \ln(a)$.
- Outro logaritmo importante é o logaritmo de base 2, isto é, $\log_2(a)$.

Historicamente os logaritmos mais utilizados eram o comum e o natural. Com o advento dos computadores digitais o sistema de numeração binária tornou-se amplamente utilizado, e por conseqüência, também o logaritmo de base 2.

Evidentemente, conhecendo-se os valores dos logaritmos em uma base, podemos determinálos em qualquer outra base através da equação (9e). Se o leitor possuir uma calculadora científica poderá verificar que ela calcula logaritmos apenas em algumas bases; geralmente apenas nas 3 aqui citadas.

6.1 A função logarítmica

Figura 9: Gráficos das funções logarítmicas

Dado $b \in \mathbb{R}_*^+$ e $b \neq 1$ definimos a função logarítmica $f : \mathbb{R}_*^+ \longrightarrow \mathbb{R}$ dada por $y = f(x) = \log_b(x)$. Se a > 1 então a função logarítmica é crescente, Figura 9(a). Se 0 < b < 1 então a função logarítmica é decrescente, Figura 9(b).

É importante ressaltar que, como só existe logaritmo de número positivo, para determinarmos o domínio de uma função logarítmica devemos obrigar o logaritmando ser positivo.

Exemplo 14 Para a função logarítmica $f(x) = \log(4 - x^2)$ devemos ter $4 - x^2 > 0$: -2 < x < 2. Assim o domínio é $\{x \in \mathbb{R} \mid -2 < x < 2\}$.

6.2 Problemas Propostos

71 Calcule os logaritmos

(a) $\log_2(32)$

 $(d) \log_5(0,0016)$

(g) $\log_{\sqrt{8}}(0.125)$

(b) $\log_5(625)$

(e) $\log_{10}(0,00001)$

(h) $\log_{2\sqrt{2}}(256)$

 $(c) \log_9(243)$

 $(f) \log_{1/3} (81)$

(i) $\log_{2/\sqrt{3}}(9/16)$

72 As igualdades a seguir são verdadeiras? Sob quais condições?

$$(a) \log\left(\frac{ab}{c^2}\right) = \frac{\log(a) + \log(b)}{2 \cdot \log(c)}$$

(b)
$$\log(a) = -\log(\frac{1}{a})$$

73 A igualdade $\log_q(p) = \frac{1}{\log_p(q)}$ é verdadeira? Sob quais condições?

74 Avalie as expressões.

(a) $\log_5(1) + 4^{\log_4(5)} + \log_3(\log_5(125))$

(b) $49^{\log_7(2)} - 25^{\log_5(3)}$

75 Sabendo-se que $\log(a) = 2$, $\log(b) = 3$ e $\log(c) = -6$, calcule

 $(a) \log(ab)$

 $(c) \log\left(\frac{ab}{c}\right)$

(e) $\log\left(\frac{\sqrt[5]{ab}}{\sqrt{c}}\right)$

 $(b) \log(abc)$

(d) $\log\left(\frac{a^3\sqrt{c}}{b^2}\right)$

 $(f) \log \left(\frac{\sqrt{a^2b^2}}{c^3} \right)$

76 Sabendo-se que $\log_2(3) = a$, calcule (em função de a)

(a) $\log_6(9)$

 $(b) \log_{36}(64)$

77 Sabendo-se que $\log_a(x) = 2$, $\log_b(x) = 3$ e $\log_c(x) = 5$, calcule

(a) $\log_{ab}(x)$

(b) $\log_{abc}(x)$

 $(c) \log_{\frac{ab}{c}}(x)$

78 [UEPB] Sabendo-se que log(x) = 8, determine o valor da expressão

$$\log \sqrt{\frac{x^3\sqrt{x}}{\sqrt[3]{x}\cdot\sqrt[4]{x}}}$$

79 [UFCE] Se $\log_7(875) = a$, determine $\log_{25} 245$.

80 Resolva as equações logarítmicas

(a) $\log_5(x^2+3) = \log_5(x+3)$

(d) $[\log_8(x)]^2 - 3[\log_8(x)] + 2 = 0$

(b) $\log_2(14 - 5x) = 2$

(e) $\log(3x^2+7) - \log(3x-2) = 1$

(c) $\log_{\frac{1}{2}}(x^2 + 3x - 1) = -2$

(f) $\log(x+1) + 2 = \log(4x^2 - 500)$

81 Em um triângulo retângulo, sejam A a medida da hipotenusa e B e C as medidas dos catetos, tais que $A \pm C \neq 1$ e $B \neq 1$. Mostre que

$$2 \cdot \log_{A+C}(B) \cdot \log_{A-C}(B) = \log_{A+C}(B) \, + \, \log_{A-C}(B).$$

82 Resolva as inequações logarítmicas

(a)
$$[\log(x)]^2 - \log(x) > 0$$

(b)
$$\log(x^2 - 2x - 7) < 0$$

(c)
$$2[\log(x)]^2 - \log(x) > 6$$

$$(d) \ \log_2 \biggl[\log_{\frac{1}{4}} (x^2 - 2x + 1) \biggr] < 0$$

83 Determine o domínio e esboce o gráfico das funções dadas.

$$(a) \ f(x) = \log(x - 1)$$

(b)
$$f(x) = \log(x^2 - 1)$$

(c)
$$f(x) = -\log_{\frac{1}{2}}(x^2 - 1)$$

$$(d) \log(\log(x))$$

84 Após o consumo de uma dose substancial de cerveja, a concentração C de álcool no sangue de uma mulher atinge $0,3~mg/mm^3$. Ao parar de beber, a concentração diminui com o tempo, e é dada pela função

$$C(t) = 0, 3 \cdot (0, 5)^t$$

em que t é o tempo, em horas, após o instante em que a mulher parou de beber. Se a concentração máxima admitida na localidade é de $0,0375~mg/mm^3$, quanto tempo esta mulher deverá esperar para dirigir?

85 Uma aplicação financeira é capitalizada a uma taxa de 50% a.a., isto é, 50% ao ano. Para um depósito inicial de R\$ 1.000, 00, determine o tempo mínimo para que o montante da aplicação atinja R\$ 10.000, 00.

Dados: $log(2) = 0.30 \ e \ log(3) = 0.48$.

86 A intensidade M de um terremoto medido na escala Richter é um número que varia de M=0 (nenhum tremor) até M=8,9 (maior terremoto conhecido). O valor de M é dado pela fórmula empírica

$$M = \frac{2}{3} \log \left(\frac{E}{E_0} \right),$$

onde E é a energia liberada no terremoto (em KWh - kilowatt-hora) e E_0 é uma constante que vale 7×10^{-3} KWh.

- (a) Qual a energia liberada em um terremoto de grandeza M = 6?
- (b) Uma cidade de cerca de 300.000 habitantes consome cerca de 3.5×10^6 KWh de energia elétrica por dia. Se a energia de um terremoto pudesse ser convertida em energia elétrica, quantos dias de fornecimento de energia para esta cidade obteríamos com a energia liberada em um terremoto de grandeza M=8?

87 O pH de uma solução salina é definido pela fórmula

$$pH = -\log[H^+]$$

19

onde $[H^+]$ é a concentração, em mols por litro, do íon Hidrogênio.

- (a) Qual o pH da água pura, sabendo-se que sua concentração de $[H^+]$ vale $1,00 \times 10^{-7}$?
- (b) Uma solução é dita ácida se sua concentração de $[H^+]$ é maior que a da água, e dita básica (ou alcalina) se sua concentração de $[H^+]$ é menor que a da água. Quais os valores de pH caracterizam as soluções ácidas? Quais os valores de pH caracterizam as soluções básicas?
- 88 [Vunesp-SP] O corpo de uma vítima de assassinato foi encontrado às 22:00. Às 22:30 o médico da polícia chegou e imediatamente mediu a temperatura do cadáver, que era de 32,5°C. Uma hora mais tarde mediu a temperatura outra vez e encontrou 31,5°C. A temperatura do ambiente foi mantida constante a 16,5°C. Admita que a temperatura normal de uma pessoa viva seja de 36,5°C e suponha que a lei matemática que descreve o resfriamento do cadáver seja dada por

$$D(t) = D_o \cdot 2^{-2\alpha t} ,$$

em que t é o tempo em horas, D_o é a diferença da temperatura do cadáver com a do ambiente no instante t = 0, D(t) é a diferença da temperatura do cadáver com a do ambiente em um instante t qualquer e α uma constante positiva. Determine o horário do assassinato.

89 No estudo da acústica é usual denotarmos por I a intensidade sonora (medida em watts por metro quadrado, w/m^2) de uma fonte de som. Outra grandeza importante em acústica é a altura L do som, medida em decibéis, e dada por

$$L = 10 \cdot log(\frac{I}{I_o}) ,$$

em que I é a intensidade do som para a qual desejamos determinar a altura e a constante $I_o = 10^{-12} \ w/m^2$ é o valor mínimo de intensidade sonora para que o som seja perceptível pelo sistema auditivo humano (valor médio, obtido para uma freqüência de 100 hertz).

- (a) Sabe-se que para o sistema auditivo humano a intensidade sonora máxima suportável (limiar de dor) é de 100 w/m^2 . Determine a altura máxima audível pelo sistema auditivo humano.
- (b) Qual a intensidade sonora, em uma agitada sala de aula, na qual a altura do som é de 90 decibéis.
- 90 Use a definição (8) para provar as propriedades (9b), (9c), (9d) e (9e).
- **91** Se $\log_b(x + \sqrt{x^2 1}) = a$, mostre que $x = \frac{1}{2}(b^a + b^{-a})$.
- **92** Mostre que $\log_b(x + \sqrt{x^2 1}) = -\log_b(x \sqrt{x^2 1})$.

7 Respostas dos Problemas Propostos

• Problema 1 (página 1)

(a) (2,0) (b) (2,-3) (c) $(\frac{3}{8},\frac{1}{8})$ (d) paralelas

• Problema 2 (página 1)

- (a) (5,0) (b) (0,-10)
- Problema 3 (página 2) a = b = 4
- Problema 4 (página 2) $f(x) = \frac{2}{3}x$
- Problema 5 (página 2) $f(3) = -\frac{5}{2}$
- Problema 6 (página 2) d(t) = 450t
- Problema 7 (página 3)
 - (a) x = 2 e x = 3 (b) x = -1 (c) x = 11 (d) x = -5 ou x = 11
- Problema 8 (página 3)
- (a) (1,0) e (9,0); (b) (0,9); (c) (5,-16)
- Problema 9 (página 3) $k = \frac{7}{8}$.
- Problema 10 (página 3) (2, -48).
- Problema 11 (página 3) p(3) p(2) = 3 pares de sapatos.
- Problema 12 (página 3) x = 0 ou x = 1.
- Problema 13 (página 3) 15.
- Problema 14 (página 3) $f(x) = 5(x+3)^2$.
- Problema 15 (página 3) x = -5.
- Problema 16 (página 3)

(a)
$$f(1) = 13 \text{ e } f(-2) = 61;$$
 (b) $f(x) = 2x^2 - 14x + 25.$

- Problema 17 (página 4) b = -1 ou b = 3.
- Problema 18 (página 6)

(a)
$$k = 3;$$
 (b) $k = -2.$

- $\bullet\,$ Problema 19 (página 6) para nenhum m.
- Problema 20 (página 6)

(a)
$$P(x) = -4x^3 + 49x^2 + 18x - 3;$$
 (b) $Q(x) = 9x^4 + 10x^3 + 20x^2 + 8x + 4.$

- Problema 21 (página 6) P(-1) = 66.
- Problema 22 (página 6) P(2) = 6.
- Problema 23 (página 6) $A = \frac{1}{3}, B = -\frac{1}{3}, C = \frac{2}{3}$.
- Problema 24 (página 6) $\alpha=1,\,\beta=3,\,\gamma=\delta=2.$
- Problema 25 (página 6) m = 1, n = 2 e p = -3.
- $\bullet\,$ Problema 26 (página 6) m=48e n=64.
- Problema 27 (página 6) Q(x) = x 7 e R(x) = 3x 20.
- Problema 28 (página 6) $P(x) = x^4 + x^3 x^2 + 3x 3$
- Problema 29 (página 6) $Q(x) = x^2 x$.

- Problema 30 (página 6) $\alpha = 2$ e $\beta = 1$.
- Problema 31 (página 6) m = -5 ou m = 1
- Problema 32 (página 6) 2x + 1
- Problema 33 (página 7) x = -3, x = -2, x = 3; P(x) = (x + 3)(x + 2)(x 3).
- Problema 34 (página 7) $x = \pm 3$ e $x = \pm i$; P(x) = (x+3)(x-3)(x+i)(x-i).
- Problema 35 (página 7) x=0 (raiz simples), x=-1 (raiz dupla); $P(x)=x(x+1)^2(x-2)^2$.
- Problema 36 (página 7) P(1) Q(2) = 10
- Problema 37 (página 7) p = 4 e q = 0.
- Problema 38 (página 7) f(1) = 0.
- Problema 39 (página 7) $\frac{28}{5}$
- Problema 41 (página 11)
 - raízes: x = -1 e x = 6;
 - estudo de sinal
 - * a função é positiva em $\{x \in \mathbb{R} | x < -1 \text{ ou } x > 6\};$
 - * a função é negativa em $\{x \in \mathbb{R} | -1 < x < 6\}$.
- Problema 42 (página 11)
 - raízes: x = 0 e x = 4;
 - estudo de sinal
 - * a função é positiva em $\{x \in \mathbb{R} | 0 < x < 4\};$
 - * a função é negativa em $\{x \in \mathbb{R} | x < 0 \text{ ou } x > 4\}.$
- Problema 43 (página 11)
 - raízes: x = 2 (dupla);
 - estudo de sinal
 - * a função é positiva em $\{x \in \mathbb{R} | x \neq 2\}$;
 - * a função nunca é negativa.
- Problema 44 (página 11)
 - raízes: não existe raiz real (as raízes são $x=2\pm 3i$);
 - estudo de sinal: a função nunca é negativa $\forall x \in \mathbb{R}$.
- Problema 45 (página 11)
 - raízes: x = -5, x = 4 e x = 7;
 - estudo de sinal
 - * a função é positiva em $\{x \in \mathbb{R} \, | \, -5 < x < 4 \text{ ou } x > 7\};$
 - * a função é negativa em $\{x \in \mathbb{R} \mid x < -5 \text{ ou } 4 < x < 7\}.$
- Problema 46 (página 11)
 - raízes: x = -3, x = -2, x = 2 e x = 3;
 - estudo de sinal
 - * a função é positiva em $\big\{x \in \mathbb{R} \,|\, x < -3 \text{ ou } -2 < x < 2 \text{ ou } x > 3\big\};$
 - * a função é negativa em $\big\{ x \in \mathbb{R} \, | \, -3 < x < -2 \text{ ou } 2 < x < 3 \big\}.$
- Problema 47 (página 11)
 - (a) domínio: $\{x \in \mathbb{R} \mid x \neq 2\};$
 - (b) raízes: x = -1 e x = 4;
 - (c) estudo de sinal.

- a função é positiva em $\{x \in \mathbb{R} \mid -1 < x < 2 \text{ ou } x > 4\};$
- a função é negativa em $\{x \in \mathbb{R} \mid x < -1 \text{ ou } 2 < x < 4\}.$
- Problema 48 (página 11)
 - (a) própria
 - (b) imprópria $\frac{x^4 3x + 1}{x^2 x} = x^2 + x + 1 + \frac{-2x + 1}{x^2 x}$
 - (c) imprópria $\frac{x^3+5x^2+2x+7}{x^3+x}=1+\frac{5x^2+x+7}{x^3+x}$
 - (d) própria
 - (e) imprópria $\frac{x^6 + 5x^5 + 11x^4 + 7x^3 + x^2 1}{x^2 1} = x^4 + 5x^3 + 12x^2 + 12x + 13 + \frac{12x + 12}{x^2 1}$
- Problema 50 (página 11)
 - (a) domínio: $\{x \in \mathbb{R} \mid -2 \le x \le 0 \text{ ou } x > 1\};$
 - (b) raíz: x = -2 e x = 0.
- Problema 51 (página 11)
 - (a) domínio: $\{x \in \mathbb{R} \mid x \le -3 \text{ ou } x > 5\};$
 - (b) raíz: x = -3.
- Problema 52 (página 12)
 - (a) domínio: $\{x \in \mathbb{R} \mid x \le -3 \text{ ou } -2 < x \le 2 \text{ ou } x > 3\};$
 - (b) raíz: x = -3 e x = 2.
- Problema 53 (página 12) A = 5 e B = 2
- Problema 54 (página 12) $A=1,\,B=-1$ e C=-7
- Problema 57 (página 13) $x^{-15/46}$
- Problema 58 (página 13) $\frac{3^{2x}+3^{-2x}}{2}$
- $\bullet\,$ Problema 60 (página 14) 82/3
- Problema 61 (página 14)

(a)
$$x = \pm 2$$

(d)
$$x = 19/6$$

(g)
$$x = 0$$

(b)
$$x = 5/3$$

(e)
$$x = 3$$

(c)
$$x = -4$$
 ou $x = 3$

(f)
$$x = 2$$

(h)
$$x = 3/4$$

• Problema 63 (página 14)

(a)
$$x < 3$$

(b)
$$0 < x \le 1$$
 ou $12/7 \le x2$ (c) $x > 0$

(c)
$$x > 0$$

• Problema 65 (página 14)

(a)
$$M = 100 e k = 2$$

(b)
$$N(5) = 102.400$$

• Problema 69 (página 15)

(a)
$$K = 12$$
 e $\alpha = -1$

(b)
$$I(3) = 12/27$$

• Problema 71 (página 17)

(0)	- 5
(a)	·

(d)
$$-4$$

(g)
$$-1$$
)

(e)
$$-5$$
)

(c) 5/2

$$/2$$
 (f) -4

• Problema 74 (página 18)

(b)
$$-5$$

• Problema 75 (página 18)

(b)
$$-1$$

(d)
$$-3$$

• Problema 76 (página 18)

(a)
$$\frac{2a}{1+a}$$

(b)
$$\frac{3}{1+a}$$

• Problema 77 (página 18)

(c)
$$30/19$$

• Problema 80 (página 18)

(a)
$$x = 0 e x = 1$$

(c)
$$x = -5 e x = 2$$

(e)
$$x = 1 e x = 9$$

(b)
$$x = 2$$

(d)
$$x = 8 e x = 64$$

(f)
$$x = -5 \text{ e } x = 30$$

• Problema 82 (página 19)

(a)
$$\left\{ x \in \mathbb{R} \mid 0 < x < 1 \text{ ou } x > 10 \right\}$$

(b)
$$\left\{ x \in \mathbb{R} \, | \, 0 < x < \frac{1}{10\sqrt{10}} \text{ ou } x > 100 \right\}$$

(c)
$$\left\{ x \in \mathbb{R} \mid \frac{1}{2} < x < \frac{3}{2} \text{ e } x \neq 1 \right\}$$

• Problema 86 (página 19)

(a)
$$7 \times 10^6$$
 KWh

(b) 2000 dias! (aproximadamente 5 anos e 6 meses)

• Problema 87 (página 19)

(b) ácidas: 0 < pH < 7; básicas: 7 < pH < 14