Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 7 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійного пошуку в послідовностях»

Варіант__30___

Виконав студент	ІП-15 Розін Олексій Іванович
	(шифр, прізвище, ім'я, по батькові)
Перевірив	Вечерковська Анастасія Сергіївна
	(прізвище, ім'я, по батькові)

Лабораторна робота 7

Дослідження лінійного пошуку в послідовностях

Мета - дослідити методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 30

Постановка задачі

Розробити алгоритм та написати програму, яка складається з наступних дій:

- 1. Опису трьох змінних індексованого типу з 10 символьних значень.
- 2. Ініціювання двох змінних виразами згідно з таблицею.
- 3. Ініціювання третьої змінної рівними значеннями двох попередніх змінних.
- 4. Обробки третьої змінної згідно з варіантом.

Вираз для обчислення елемента		Знайти
1-го масиву	2-го масиву	
43 - i	37 + i	Добуток елементів, коди
		яких більше 40

Математична модель

Змінна	Тип	Ім'я	Призначення
Перший масив	Символьний	arr1	Початкові дані
Другий масив	Символьний	arr2	Початкові дані
Третій масив	Символьний	arr3	Проміжні дані
Лічильник	Цілий	i	Проміжні дані
зовнішнього циклу			
Лічильник	Цілий	k	Проміжні дані
внутрішнього циклу			
Реузльтат	Цілий	res	Вихідні данні

Оголошуємо змінні атт1, атт2, атт3 індексованого типу з 10 символьних значень. Ініціалізуємо змінну res (res = 1). За допомогою арифметичного з лічильником i = 0; умовою i < 10 та кроком i += 1 ініціалізуємо змінні атт1, атт2, атт3 (arт1[i] = 43 – I; arт2[i] = 37 + I; arr3[i] = 0). Щоб ініціювати третю змінну рівними значеннями двох попередніх змінних використаємо вкладений арефмитичний цикл. У тілі зовнішнього циклу з лічильником i = 0; умовою i < 10 та кроком i += 1 завдамо вкладений арефметичний цикл з лічильником k = 0; умовою k < 10 та кроком k += 1. У тілі внутрішнього циклу за допомогою умовного оператору ініціалізуємо змінну атт3 (якщо arr1[i] == arr2[k], то arr3[i] = arr1[i]). Далі за допомогою арефмитичного циклу та умовного оператору обчислюємо значення res. В тілі арефметичного циклу з лічильником i = 0; умовою i < 10 та кроком i += 1 використовуємо умовний оператор (якщо arr3[i] > 0, то res *= arr3[i]). В кінці виводимо значення змінної res.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Ініціалізація arr1, arr2, arr3, res.

Крок 3. Ініціалізація атт3.

Крок 4. Обчислення res.

Крок 5. Виведення res.

Псевдокод

Крок 1

початок

для і від 0 до 9 повторити

$$arr1[i] = 43 - i$$

$$arr2[i] = 37 + i$$

$$arr3[i] = 0$$

все повторити

Ініціалізація агг3

Обчислення res

Виведення res

кінець

Крок 2

початок

для і від 0 до 9 повторити

$$arr1[i] = 43 - i$$

$$arr2[i] = 37 + i$$

$$arr3[i] = 0$$

все повторити

```
для і від 0 до 9 повторити
```

для к від 0 до 9 повторити

To
$$arr3[i] = arr1[i]$$

все якщо

все повторити

все повторити

Обчислення res

Виведення res

кінець

Крок 3

початок

для і від 0 до 9 повторити

$$arr1[i] = 43 - i$$

$$arr2[i] = 37 + i$$

$$arr3[i] = 0$$

все повторити

для і від 0 до 9 повторити

для k від 0 до 9 повторити

$$\mathbf{To} \operatorname{arr3}[i] = \operatorname{arr1}[i]$$

все якщо

все повторити

все повторити

для і від 0 до 9 повторити

якщо arr3[i] > 40

все якщо

все повторити

Виведення res

кінець

Блоксхема

Код програми

```
📧 Консоль отладки Microsoft Visual Studio
```

Випробування

Блок	Дія
	Початок
1	Робота першого циклу $(i = 0, 9, 1)$
	arr1 = {+, *,), (, ', &, %, \$, #, "}
	$arr2 = {\%, \&, `, (,), *, +, ., -, .}$
	$arr3 = \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}$
2	Робота другого циклу $(i = 0, 9, 1)$

2.1	Робота внутрішнього циклу $(k = 0, 9, 1)$
	arr3 = {+, *,), (, ', &, %}
3	Робота третього циклу
	res = 74046
4	Вивід res

Висновки

Ми дослідили методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набули практичних навичок їх використання під час складання програмних специфікацій. В результаті виконання лабораторної роботи ми отримали алгоритм знаходження масиву з елементами, які ϵ однаковими значеннями двох данних нам масивів та знайшли добуток елементів знайденого масива, коди яких більші за 40.