Ejercicios de Estadística

Temas: Estadística descriptiva

Titulaciones: Ciencias de la Salud

Alfredo Sánchez Alberca (asalber@ceu.es)

(5)Copyleft

En un grupo de personas sometidas a una anestesia general se ha medido la dosis de sustancia anestésica recibida (X) en mg y el tiempo que estuvieron dormidas (Y) en horas. Las frecuencias observadas aparecen en la siguiente tabla:

(20,30] 14 10 0 (30,40] 12 26 7 (40,50] 2 12 17	$X \backslash Y$	[1,2)	[2,3)	[3,4)	n_{x}
	(20,30]	14	10	0	24
(40,50) 2 12 17	(30, 40]	12	26	7	45
	(40, 50]	2	12	17	31
<i>n</i> _y 28 48 24	n_y	28	48	24	100

Se pide:

- 1. ¿En qué variable es más representativa la media? Justificar la respuesta.
- 2. ¿Por encima de cuánto tiempo estarán dormidas el 10 % de las personas que reciben una dosis entre 30 y 40 mg?
- 3. ¿En qué variable hay más asimetría? Justificar la respuesta.
- 4. Según el modelo de regresión lineal, ¿cuánta sustancia anestésica será necesaria para domir a alguien durante al menos dos horas? ¿Es fiable la predicción? Justificar la respuesta.

1. ¿En qué variable es más representativa la media? Justificar la respuesta

=Dosis de anestesia en

X=Dosis de anestesia en mg Y=Tiempo dormidas en horas

25

2. ¿Por encima de cuánto tiempo estarán dormidas el 10 % de las personas que reciben una dosis entre 30 y 40 mg?

Y	ni	1 fi	Fi]	F= 00
\(\frac{\fig}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}	12	027	0127	790
[2,3)	26	0,28	0,82	
→ C3,4]	17	0,72	1	
	Top	4-	l	

Dutos
X=Dosis de anestesia en mg
Y=Tiempo dormidas en horas

$X \backslash Y$	[1,2)	[2,3)	[3,4)	n_x
(20,30]	14	10	0	24
(30,40]	12	26	7	45)
(40, 50]	2	12	17	31
n_y	28	48	24	100

$$t_{q} = \frac{1 - 085}{4 - 3} = \frac{015}{1} = 015$$

$$t_{q} = \frac{04 - 085}{P_{q0} - 3} = \frac{005}{P_{q0} - 3}$$

$$P_{q0} = 3 + \frac{005}{015} = \frac{3}{33} \text{ hozes}$$

Datos

3. ¿En qué variable hay más asimetría? Justificar la respuesta.

Datos

X=Dosis de anestesia en mg V-Tiempo dormidas en horas

		25	25	315	
	$X \backslash Y$	[1,2)	[2,3)	[3,4)	n_x
25	(20,30]	14	10	0	24
35	(30, 40]	12	26	7	45
46	(40,50]	2	12	17	31
	n_y	28	48	24	100

$$\frac{x = 35,7 \text{ mg}}{\bar{y} = 2,46 \text{ horas}}, s_x = 7,3831 \text{ mg}}{\bar{y} = 2,46 \text{ horas}}, s_y = 0,72 \text{ horas}}$$

4. Según el modelo de regresión lineal, ¿cuánta sustancia anestésica será necesaria para domir a alguien durante al menos dos horas? ¿Es fiable la predicción? Justificar la respuesta.

Recta de regresión de x sobre?
$$X = \overline{X} + \frac{Sx7}{S_{7}^{2}} (y-\overline{y})$$

$$Sxy = \frac{Z \text{ Vi y j n vij}}{y} - \overline{x}\overline{y}$$

Datos

X=Dosis de anestesia en mg Y=Tiempo dormidas en horas

a	•	15	25	8,2	
	$X \backslash Y$	[1,2)	[2,3)	[3, 4)	n_{x}
25	(20,30]	14	10	0	24
35	(30, 40]	12	26	7	45
45	(40, 50]	2	12	17	31
	n_y	28	48	24	100

$$\bar{x} = 35.7 \text{ mg}, s_x^2 = 54.51 \text{ mg}^2$$

 $\bar{y} = 2.46 \text{ horas}, s_y^2 = 0.5184 \text{ horas}^2$

$$= \frac{29.15 \cdot 14 + 25 \cdot 25 \cdot 10 + 25 \cdot 25 \cdot 0 + 35 \cdot 15 \cdot 12 + 35 \cdot 25 \cdot 26 + 35 \cdot 35 \cdot 7 + 165 \cdot 15 \cdot 2 + 18 \cdot 25 \cdot 12 + 165 35 17}{160}$$

$$- 35 \cdot 7 \cdot 2 \cdot 16 = \frac{9075}{100} - 35 \cdot 7 \cdot 2 \cdot 16 = 2 \cdot 928 \text{ mg. horas}$$

$$x = 35 \cdot 7 + \frac{2928}{0 \cdot 5184} \cdot (y - 2 \cdot 16) = 5 \cdot (64917 + 21 \cdot 8056) \times (2) = 5 \cdot (681 \cdot 2 + 21) \cdot 8056 = 33 \cdot 1016 \cdot 1000$$

$$z^{2} = \frac{527}{54 \cdot 57^{2}} = \frac{2^{1}928}{54 \cdot 57} \cdot \frac{2^{1}928}{54 \cdot 57} = \frac{2333}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{2333}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{2333}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{2333}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} \cdot \frac{1000}{54 \cdot 57} = \frac{93033}{54 \cdot 57} \cdot \frac{920}{54 \cdot 57} = \frac{93033}{54 \cdot 57} =$$