

Kalimat Logika Proposisional, Aturan Sintaktik, dan Interpretasi

MSIM4103 – Logika Informatika Prodi Sistem Informasi Jurusan Tehnik FST

Materi Inisiasi 1

- Bahasa Logika Proposisional (Proposisi dan Kalimat)
- Aturan Sintaktis
 (Aturan dan Kalimat Bagian)
- Notasi (Jenis Notasi dan Konversi Notasi)
- Interpretasi

Pendahuluan

Kalimat

Kalimat Deklaratif

- Fakta
- Dapat ditentukan nilai kebenaran (benar/salah)

Kalimat Non-Deklaratif

- Bukan Fakta
- Tidak dapat ditentukan nilai kebenaran (benar/salah)

1. Bahasa Logika Proposisional

- Proposisi
- Penghubung Proposisi

Kalimat Logika Proposional dan Proposisi

- Kalimat logika proposisional dibangun oleh proposisi-proposisi dan penghubung proposisional.
- Notasi kalimat:
 - menggunakan huruf brush script E, 7, 9, 74
 - menggunakan huruf brush script berindeks numerik \mathcal{E}_{n} , \mathcal{F}_{n} , \mathcal{G}_{n} , \mathcal{H}_{1}
- Proposisi adalah kalimat deklaratif yang memiliki nilai kebenaran true/ false. Nilai kebenaran proposisi hanya satu, tidak keduanya.

Contoh Proposisi dan Bukan Proposisi

Merkurius adalah planet terdekat dari Matahari.

- Fakta
- Nilai kebenaran: benar

Apakah Merkurius adalah planet terindah di tata surya?

- Pertanyaan
- Nilai kebenaran belum diketahui

Merkurius adalah planet terindah di tata surya.

- Opini
- Bukan fakta objektif

Bukan Proposisi

Contoh Proposisi dan Bukan Proposisi

1+3=2

- Fakta
- Nilai kebenaran: diketahui, yaitu salah

2x+1=3

- Fakta
- Nilai kebenaran belum dapat ditentukan karena nilai x belum diketahui.

Bukan Proposisi

Simbol-Simbol Proposisi

Simbol Kebenaran

Menuliskan nilai kebenaran proposisi

- True
- False

Simbol Proposisional

Menuliskan proposisi tanpa penulisan secara utuh.

Menggunakan huruf kapital

 Menggunakan huruf kapital dengan indeks numerik

$$P_1, Q_1, R_1, S_1,$$

$$P_2, Q_2, R_2, S_2$$

Penghubung Proposisional

- Menyatukan simbol-simbol proposisi
- Penghubung: not, and, or, if-then, if-then-else, if-and-only-if

Contoh

- **not** *P*
- *P* or not Q
- P and true

2. Aturan Sintaktik

- Aturan Sintaktik
- Kalimat Bagian

Aturan Sintaktik

I. Aturan Proposisi

Setiap proposisi merupakan kalimat.

II. Aturan Negasi

Apabila 7 kalimat, maka negasinya (not 7) merupakan kalimat.

III. Aturan Konjungsi

Apabila 7 dan 9 kalimat, maka konjungsinya 7 and 9 merupakan kalimat.

IV. Aturan Disjungsi

Apabila 7 dan 9 kalimat, maka disjungsinya 7 or 9 adalah kalimat.

Aturan Sintaktik

V. Aturan Implikasi

Apabila 7 dan 6 kalimat, maka implikasinya (if 7 then 6) adalah kalimat.

7 disebut antecedent dari if 7 then 9

¶ disebut consequent dari if ₹ then ¶

Kalimat if **9** then **7** disebut converse dari kalimat if **7** then **9**.

VI. Aturan Ekuivalensi

Apabila 7 dan 9 kalimat, maka ekuivalensinya (7 if and only if 9) adalah kalimat.

Kalimat $\mathcal F$ disebut sisi-kiri (left-hand-side)) dari $\mathcal F$ if and only if $\mathcal G$.

Kalimat $\mathcal G$ disebut sisi-kanan (right-hand side) dari $\mathcal F$ if and only if $\mathcal G$.

Aturan Sintaktik

VII. Aturan Kondisional

Apabila 7, 9 dan 4 kalimat, maka kondisionalnya (if 7 then 9 else 4) adalah kalimat.

7 disebut klausa if dari if 7 then 4 else 74

¶ disebut klausa then dari if 7 then ¶ else %

disebut klausa then dari if 7 then 9 else

Pemeriksaan Kalimat Logika Proposisional

Langkah:

- 1.Perhatikan simbol-simbol yang ada dalam ekspresi.
 Periksa apakah merupakan simbol kebenaran atau simbol proposisi.
 Periksa apakah memenuhi aturan sintaktik I.
- 2.Perhatikan penghubung proposisional yang ada dalam ekspresi. Periksa apakah memenuhi aturan sintaktik II-VII.

Contoh 2.1

Apakah ekspresi \mathcal{E} : **not** P adalah kalimat logika proposisional? (Silahkan dikerjakan sebelum melihat jawaban pada slide selanjutnya.)

Jawaban Contoh 2.1

Untuk ekspresi \mathcal{E} : **not** P

- 1.Perhatikan simbol-simbol yang ada dalam ekspresi.
 Simbol yang ada dalam ekspresi adalah *P. P* merupakan simbol proposisional.
 Berdasarkan aturan sintaktik I, *P* merupakan kalimat.
- 2.Perhatikan penghubung proposisional yang ada dalam kalimat. Penghubung yang ada dalam kalimat adalah **not**.

Periksa apakah memenuhi aturan sintaktik II-VII. Karena P merupakan kalimat, berdasarkan aturan sintaktik II, **not** P merupakan kalimat.

Jadi, ekspresi \mathcal{E} : **not** P merupakan kalimat.

Contoh 2.2

Apakah ekspresi \mathcal{F} : if P then (Q or not P) adalah kalimat logika proposisional?

(Silahkan dikerjakan sebelum melihat jawaban pada slide selanjutnya.)

Jawaban Contoh 2.2

- Perhatikan simbol yang ada dalam kalimat.
 Dalam kalimat 7, simbol yang ada: P, Q.
 P dan Q merupakan simbol proposisi. Menurut aturan sintaktik I, P dan Q adalah kalimat.
- 2. Perhatikan penghubung proposisional yang ada dalam kalimat. Dalam kalimat 7, penghubung yang ada: if-then, not dan or.
 - Menurut aturan negasi, karena P: kalimat, maka not P: kalimat.
 - Menurut aturan disjungsi, karena Q dan not P kalimat, maka Q or not P: kalimat.
 - Menurut aturan implikasi, karena P dan (Q or not P) kalimat, maka if P then (Q or not P) juga kalimat.

Jadi, ekspresi 7 adalah kalimat logika proposisional.

Kalimat Bagian

Kalimat-kalimat yang membangun kalimat logika proposisional dari bagian terkecilnya (simbol dalam logika proposisional) hingga kalimat logika proposisionalnya secara lengkap

Penentuan Kalimat Bagian

Langkah:

- 1.Perhatikan simbol logika proposisional.

 Periksa apakah merupakan simbol kebenaran atau simbol proposisi.

 Periksa apakah memenuhi aturan sintaktik I.
- 2.Perhatikan penghubung proposisional. Periksa apakah memenuhi aturan sintaktik II-VII.
- 3.Buat daftar semua kalimat yang terbentuk berdasarkan langkah 1 dan 2.

Contoh 2.3

Tentukan kalimat bagian dari \mathcal{E} : **not** P!

(Silahkan dikerjakan sebelum melihat jawaban pada slide selanjutnya)

Jawaban Contoh 2.3

- 1.Perhatikan simbol-simbol yang ada dalam kalimat.
 Simbol yang ada dalam kalimat adalah *P. P* merupakan simbol proposisional.
 Berdasarkan aturan sintaktik I, *P* merupakan kalimat.
- 2.Perhatikan penghubung proposisional yang ada dalam kalimat. Penghubung yang ada dalam kalimat adalah **not**.

Periksa apakah memenuhi aturan sintaktik II-VII. Karena P merupakan kalimat, berdasarkan aturan sintaktik II, **not** P merupakan kalimat.

3.Buat semua daftar kalimat dari langkah 1 dan 2. Kalimat yang ada berdasarkan langkah 1 dan 2 adalah P dan **not** P. Jadi, kalimat bagian dari \mathcal{E} adalah $\{P, \text{ not } P\}$.

Contoh 2.4

Tentukan kalimat bagian dari \mathcal{F} : **if** P then $(P \text{ or } \mathbf{not} P)$! (Silahkan dikerjakan sebelum melihat jawaban pada slide selanjutnya)

Jawaban Contoh 2.4

- 1.Perhatikan simbol-simbol yang ada dalam kalimat.
 Simbol yang ada dalam kalimat adalah *P. P* merupakan simbol proposisional.
 Berdasarkan aturan sintaktik I, *P* merupakan kalimat.
- 2.Perhatikan penghubung proposisional yang ada dalam kalimat. Penghubung yang ada dalam kalimat adalah **not, or, if-then**.

Periksa apakah memenuhi aturan sintaktik II-VII.

- Karena P: kalimat, **not** P merupakan kalimat. (Aturan Negasi)
- Karena P dan **not** P: kalimat, maka P **or not** P: kalimat. (Aturan Disjungsi)
- Karena *P* dan (*P* or not *P*): kalimat, maka if *P* then (*P* or not *P*): kalimat. (Aturan Implikasi)

Jawaban Contoh 2.4

3. Buat semua daftar kalimat dari langkah 1 dan 2. Kalimat yang ada berdasarkan langkah 1 dan 2 adalah *P*, **not** *P*, *P* **or not** *P*, **if** *P* **then** (*P* **or not** *P*).

Jadi, kalimat bagian dari \mathcal{E} adalah $\{P, \text{ not } P, P \text{ or not } P, \text{ if } P \text{ then } (P \text{ or not } P)\}$.

3. Notasi

- Jenis Notasi
- Konversi Notasi

Jenis Notasi

- Notasi Matematika
- Notasi Pseudocode
- Notasi Function

Notasi Matematika	Notasi Pseudocode	Notasi Function
-	not	not()
٨	and	and(,)
V	or	or(,)
\rightarrow	if-then	Ifthen(,)
\leftrightarrow	lf-and-	Ifandonlyif(,)
Tidak ada	If-then-else	Ifthenelse(,,)

Konversi Notasi

Notasi Matematika	Notasi Pseudocode	Notasi Function
Tidak ada	true, false	true, false
P, Q, R, S	P, Q, R, S	P, Q, R, S
¬P	not P	not(P)
P^Q	P and Q	and(<i>P, Q</i>)
P [∨] Q	P or Q	or(<i>P</i> , <i>Q</i>)
$P \rightarrow Q$	If P then Q	Ifthen(<i>P</i> , <i>Q</i>)
$P \longleftrightarrow Q$	P If and only if Q	Ifandonlyif(P, Q)
Tidak ada	If P then Q else R	Ifthenelse(P, Q, R)

Konversi Notasi

Langkah:

- 1. Perhatikan penghubung dalam kalimat
- 2. Lakukan konversi sesuai tabel konversi

Contoh 3.1

Ubahlah notasi kalimat \mathcal{E} : not (P or Q) ke dalam bentuk notasi matematika dan notasi function!

(Silahkan dikerjakan sebelum melihat jawaban pada slide selanjutnya.)

Jawaban Contoh 3.1

- 1. Perhatikan penghubung dalam kalimat \mathcal{E} : not (P or Q), yaitu not dan or.
- 2. Lakukan konversi berdasarkan tabel.
 - Notasi matematika dari not adalah ¬ dan or adalah ¬. Jadi, notasi matematika kalimat \mathcal{E} adalah \mathcal{E} : ¬ $(P \lor Q)$.
 - Notasi function dari not adalah not(...) dan or adalah or(..., ...). Jadi, notasi function kalimat \mathcal{E} adalah \mathcal{E} : not(or(P, Q)).

4. Interpretasi

Interpretasi

- Interpretasi merupakan pemberian nilai kebenaran **true** atau **false** ke masing-masing simbol proposisional.
- Interpretasi I untuk suatu kalimat 7 akan memberikan nilai kebenaran true atau false pada masing-masing simbol proposisional yang ada dalam kalimat 7.
- Interpretasi dapat dilakukan terhadap beberapa kalimat sekaligus.

Penulisan Interpretasi

Interpretasi I untuk suatu kalimat 7 yang dituliskan sebagai berikut

I: $\{P \leftarrow \text{true}, Q \leftarrow \text{false}\}$

merupakan interpretasi yang memberikan

- nilai kebenaran false ke simbol proposisional *Q*.
- nilai kebenaran true ke simbol proposisional P.

Penentuan Interpretasi Kalimat

Langkah:

- 1.Tentukan simbol proposisional dalam kalimat.
- 2.Berikan nilai kebenaran pada simbol proposisional tersebut.
- 3. Tuliskan interpretasi

Penentuan Kemungkinan Interpretasi Kalimat

Banyaknya interpretasi yang mungkin untuk suatu kalimat dapat dihitung dengan:

2ⁿ

dimana *n* merupakan banyak simbol proposisional yang ada dalam kalimat.

Apabila kita menemukan 3 simbol proposisional (misalkan P, Q, R) dalam suatu kalimat \mathcal{G} , maka banyak interpretasi yang mungkin untuk kalimat \mathcal{G} adalah 2^3 =8 buah.

Pemeriksaan Interpretasi Kalimat

Langkah:

- 1. Tentukan simbol proposisional dalam kalimat.
- 2.Periksa apakah dalam interpretasi, semua simbol proposisional sudah diberikan nilai kebenaran atau belum. Jika ya, interpretasi merupakan interpretasi kalimat yang bersesuaian. Jika tidak, interpretasi merupakan interpretasi kalimat yang bersesuaian.

Contoh 4.1

Tentukan suatu interpretasi untuk kalimat \mathcal{E} : not P! (Silahkan dikerjakan sebelum melihat jawaban pada slide selanjutnya.)

Jawaban Contoh 4.1

- 1. Tentukan simbol proposisional dalam kalimat. Simbol proposisional yang ada dalam kalimat \mathcal{E} adalah P.
- 2. Berikan nilai kebenaran pada simbol proposisional tersebut. Misalkan *P* diberikan nilai kebenaran **true.**
- 3. Tuliskan interpretasi
 Interpretasi ini dapat dituliskan sebagai I:{P←true}.

Contoh 4.2

Tentukan semua interpretasi yang mungkin untuk kalimat \mathcal{E} : not P!

Jawaban Contoh 4.2

- 1. Tentukan simbol proposisional dalam kalimat. Simbol proposisional yang ada dalam kalimat \mathcal{E} adalah P.
- 2. Berikan nilai kebenaran pada simbol proposisional tersebut. Misalkan *P* diberikan nilai kebenaran **true** atau **false.**
- 3. Tuliskan interpretasi
 - Interpretasi 1: P diberikan nilai kebenaran true.
 Interpretasi 1 ini dapat dituliskan sebagai I₁:{P←true}.
 - Interpretasi 2: P diberikan nilai kebenaran false.
 Interpretasi 2 ini dapat dituliskan sebagai I₂:{P←false}.

Contoh 4.3

Apakah interpretasi I: $\{P \leftarrow true\}$ merupakan interpretasi untuk kalimat \mathcal{E} : if Q then **not** P?

(Silahkan dikerjakan sebelum melihat jawaban pada slide selanjutnya.)

Jawaban Contoh 4.3

- 1.Tentukan simbol proposisional dalam kalimat. Simbol proposisional dalam kalimat adalah *P* dan *Q*.
- 2.Periksa apakah dalam interpretasi, semua simbol proposisional sudah diberikan nilai kebenaran atau belum. Interpretasi yang diberikan adalah I: $\{P \leftarrow \text{true}\}$. Interpretasi I hanya memberikan nilai kebenaran untuk P saja, padahal terdapat simbol proposisional Q dalam kalimat.

Jadi, interpretasi I bukan merupakan interpretasi untuk kalimat \mathcal{E}_{\cdot}

Referensi

- 1. Suprapto. (2020). Logika Informatika (BMP). Tangerang Selatan: Universitas Terbuka.
- 2. Bergman, M, Moor, J, and Nelson, J. (2014). The Logic Book (6th Edition). New York: McGraw Hill.
- 3. Wooldridge, M. (2000). Lecture 07: Proportional Logic (1). Diunduh 22 Maret 2020 dari https://www.cs.ox.ac.uk/people/michael.wooldridge/teaching/soft-eng/lect07.pdf
- 4. Lee, C. (2004). Introduction to the Discrete Mathematics Course and to Propositional Logic. Diunduh tanggal 22 Maret 2020 dari
 - http://www.ms.uky.edu/~lee/amsputma504/Lec01%20Propositional%20Logic.ppt