

Lecture 10. Clustering Graphs and Networked Data

- ☐ Graph and Network Clustering: Basic Concepts
- ☐ Graphs, Networks, and Their Representations
- Typical Evaluation Measures
- Approaches for Graph Clustering
- Spectral Clustering
- SCAN: Density-Based Clustering of Networks
- Summary

Graph and Network Clustering: Basic Concepts

- □ Most real-world data are inter-connected, forming gigantic networks/graphs
- ☐ Homogeneous networks vs. heterogeneous networks
 - Homogeneous networks: Vertices and edges are of one type
 - □ Web search engines, e.g., click through graphs and Web graphs
 - □ Social networks, friendship networks, coauthor graphs
 - ☐ Heterogeneous networks: Vertices and edges are of multiple types
 - ☐ Two-typed graphs, e.g., customers and products, authors and conferences
 - □ Multiple-typed graphs, e.g., research networks, medical networks, Freebase
- ☐ Clustering vs. graph partitioning vs. community discovery
 - Clustering objects into groups, hard/soft, complete/partial, balanced/skewed
 - ☐ **Graph partitioning:** Hard, complete, typically balanced
 - □ **Community discovery:** Can be partial, often interested only in finding the densely connected components and not in the cluster assignment of every vertex

Graph Clustering: Challenges of Finding Good Cuts

- High computational cost
 - Many graph cut problems are computationally expensive
 - Need to tradeoff between efficiency/scalability and quality
- Sophisticated graphs
 - May involve weights and/or cycles
- High dimensionality
 - A graph can have many vertices
 - ☐ In a similarity matrix, dimensionality is the number of vertices in the graph
- Sparsity
 - □ A large graph is often sparse, meaning each vertex on average connects to only a small number of other vertices
 - A similarity matrix from a large sparse graph can also be sparse

Graphs, Networks, and Their Representations

- \square A **network/graph**: G = (V, E), where V: vertices/nodes, E: edges/links
 - \Box E: A subset of $V \times V$, n = |V| (order of G), m = |E| (size of G)
 - Multi-edge if there exist more than one edge between the same pair of vertices

- \triangle $A_{ij} = 1$ if there is an edge between vertices *i* and *j*; 0 otherwise
- □ **Directed graph** (digraph) if each edge has a direction (tail → head)
 - \triangle $A_{ii} = 1$ if there is an edge from j to i; 0 otherwise
- lacktriangle Weighted graph: If a weight w_{ij} (usually a real number) is associated with each edge v_{ij}

Vertex Degree for Undirected & Directed Networks

- \Box Let a network G = (V, E)
- Undirected Network
 - Degree (or degree centrality) of a vertex: $d(v_i)$

$$d(v_i) = |v_j| \ s.t. \ e_{ij} \in E \land e_{ij} = e_{ji}$$

- \Box # of edges connected to it, e.g., d(A) = 4, d(H) = 2
- ☐ Directed network
 - \square In-degree of a vertex $d_{in}(v_i)$: $d_{in}(v_i) = |v_j| \ s.t. \ e_{ij} \in E$
 - \square # of edges pointing to v_i
 - \Box E.g., $d_{in}(A) = 3$, $d_{in}(B) = 2$
 - Out-degree of a vertex $d_{out}(v_i)$: $d_{out}(v_i) = |v_j| \ s.t. \ e_{ji} \in E$
 - \square # of edges from v_i
 - \Box E.g., $d_{out}(A) = 1$, $d_{out}(B) = 2$

Typical Evaluation Measures for Graph Clustering

- ☐ Commonly used **measures for graph cutting** To be covered in this session

 - ☐ Mincut, ratio cut, normalized cut, conductance, modularity
- A better cut than *mincut*

- ☐ Typical **similarity measures across networks**
 - SimRank
- To be covered in this session
- Personalized Pagerank
- ☐ Minimum cut (*mincut*):
 - Given the number k of partitions, choose a partition C_1 , ..., C_k that minimizes $cut(C_1, C_2, ..., C_k) = \frac{1}{2} \sum_{i=1}^k W(C_i, \overline{C}_i)$
 - where $W(C_i, \overline{C_i})$ is the sum of the weights of the edges connecting C_i and those in other partitions
 - Mincut can be a poor cut (e.g., cutting one node from the remaining of the graph)

Other Graph Cutting Measures (I)

- Motivation: Make partitions balanced
- □ Ratio cut

- The sum of the edge weights connecting a cluster C to the rest of the graph normalized by the size of C $NCut(C_1, C_2, ..., C_k) = \frac{1}{2} \sum_{i=1}^k \frac{W(C_i, \overline{C_i})}{d(C_i)}$
- Normalized cut
 - □ The sum of the edge weights connecting C to the rest of the graph normalized by the total degree of cluster C
 - Low normalized cut: Good communities (well connected among themselves and sparsely connected to the rest of the graph)
- Conductance

- Conductance(C) = $\frac{\sum_{i \in C, j \in \overline{C}} W(i, j)}{\min(\sum_{i \in C} d(i), \sum_{i \in \overline{C}} d(j))}$
- Similar to normalized cut
- The sum of conductance of a partition of a graph into k clusters $C_1, ..., C_k$ is the sum of the normalized cut or conductance of the individual partitions C_i for i = 1, ..., k

Other Graph Cutting Measures (II)

Modularity

Formula:

$$Q = \sum_{i=1}^{k} \left| \frac{W(C_i, C_i)}{e} - \left(\frac{d(C_i)}{2e} \right)^2 \right|,$$

where C_i s are clusters, e is the number of edges, and $d(C_i)$ represents the total degree of cluster C_i

- \Box For k clusters, the **modularity** of a clustering assesses the quality of the clustering: The optimal clustering of graphs maximizes the modularity
- Definition of modularity: The sum of the differences, for each cluster, between fraction of internal edges and fraction of edges that are expected to be inside a random cluster with same total degree
- Interpretation: The modularity of a clustering of a graph is the difference between the fraction of all edges that fall into individual clusters and the fraction that would do so if the graph vertices were randomly connected
- □ Unfortunately, optimizing any of these *normalized* objective functions is NP-hard

SimRank: Similarity Based on Random Walk and Structural Context

- Walk in a graph G between nodes X and Y: Ordered sequence of vertices, starting at X and ending at Y, such that there is an edge between every pair of consecutive vertices
- □ **SimRank:** Structural-context similarity (i.e., based on the similarity of its neighbors)
 - **Neighborhood:** In a directed graph G = (V, E),
 - □ Individual *in-neighborhood* of $v: I(v) = \{u \mid (u, v) \in E\}$
 - □ Individual *out-neighborhood* of $v: O(v) = \{w \mid (v, w) \in E\}$
- □ **Similarity** defined by SimRank: (where *C* is a constant between 0 and 1)

$$s(u,v) = \frac{C}{|I(u)||I(v)|} \sum_{x \in I(u)} \sum_{y \in I(v)} s(x,y) \qquad \text{Initialization:} \quad s_0(u,v) = \begin{cases} 0 & \text{if } u \neq v \\ 1 & \text{if } u = v \end{cases}$$

- \square Then compute s_{i+1} from s_i based on the definition
- ☐ It is costly to compute SimRank
 - Many efficient computation methods have been proposed

Approaches for Graph Clustering

- □ Partition with geometric information (e.g., Geometric Bisection)
 - ☐ Limited to graphs whose geometric info (i.e., meshes) is known
- Graph growing and greedy algorithms
 - □ Ex. Kernigham-Lin (K/L) (1970): Take random partitions and then apply K/L to it
 - □ K/L: At each iteration, swap pairs of vertices to maximize the gain
- Agglomerative and divisive clustering
 - Ex. Newman (2004): Merge small communities if it increases the graph's modularity
- □ Spectral clustering To be covered in the next session
 - One of the most popular clustering methods recently
- Markov clustering
 - □ Iteratively apply *Expand* and *Inflate* on the transition probability matrix
 - Prune away the smaller values in each column and renormalize it for next iteration

Why Spectral Clustering?

■ Strength of spectral clustering

- Makes no assumptions on the shapes of clusters, can handle intertwined spirals, etc.
- EM or the like require an iterative process to find local minima and multiple restarts

Process of spectral clustering

- Construct a similarity graph (e.g., KNN graph) for all the data points
- □ Embed data points in a low-dimensional space (*spectral embedding*), in which the clusters are more obvious, with the use of the eigenvectors of the graph Laplacian
- \square A classical clustering algorithm (e.g., k-means) is applied to partition the embedding

Matrix Representations of a Graph

□ Adjacency Matrix: n x n symmetric matrix

$$A_{ij} = \begin{cases} w_{ij} & : \text{weight of edge } (i,j) \\ 0 & : \text{if no edge between } i,j \end{cases}$$

☐ The Laplacian

$$L = D - A$$

$$d_i = \sum_{\{j \mid (i,j) \in E\}} w_{ij}$$

 $d_1 = W_{12} + W_{13}$

where D is the diagonal matrix of degrees

$$L_{ij} = \begin{cases} d_i & \text{: if } i = j \\ -w_{ij} & \text{: if } (i,j) \text{ is an edge} \\ 0 & \text{: if no edge between } i, j \end{cases}$$

		1	2	3	4
w_{ij}	1	0	W ₁₂	W ₁₃	0
A =	2	W ₁₂	0	W ₂₃	W ₂₄
d _ w	3	W ₁₃	W ₂₃	0	0
$d_1 = W_{12} + W_{13}$ $d_2 = W_{12} + W_{23} + W_{24}$	4	0	W ₂₄	0	0
12 12 12 12 14 12 14 14 15 16 16 17 17 17 17 17 17 17 17					

	1	2	3	4
1	d ₁	-W ₁₂	-W ₁₃	0
2	-W ₁₂	d ₂	-W ₂₃	-W ₂₄
3	-W ₁₃	-W ₂₃	d_3	0
4	0	-W ₂₄	0	d_4

Eigenvalue and Eigenvector of Graph Adjacency Matrix

 \Box For a matrix **A**, λ is an *eigenvalue* of **A** if for some vector **v**,

$$A\nu = \lambda\nu$$

 ${\bf v}$ is the *eigenvector* of ${\bf A}$ corresponding to λ

□ For a graph G with n nodes, its adjacency matrix has n eigenvalues $\{\lambda'_{1}, \lambda'_{2}, ..., \lambda'_{n}\}$ where $\lambda'_{1} \ge \lambda'_{2} \ge ... \ge \lambda'_{n}$ and n corresponding eigenvectors $\{\mathbf{v'}_{1}, \mathbf{v'}_{2}, ..., \mathbf{v'}_{n}\}$

Spectrum of a graph: $\lambda'_1 \ge \lambda'_2 \ge ... \ge \lambda'_n$

Figure 1. Graph G with adjacency matrix A

	1	2	3	4	5	6
1	0	0.8	0.6	0.1	0	0
2	0.8	0	0.9	0	0	0
3	0.6	0.9	0	0	0	0.2
4	0.1	0	0	0	0.6	0.7
5	0	0	0	0.6	0	0.8
6	0	0	0.2	0.7	0.8	0

λ' ₁ = 1.584	v ' ₁ = [-0.48, -0.53, -0.52, -0.26, -0.25, -0.30]
λ'_2 = 1.355	$\mathbf{v'}_{2}$ = [0.25, 0.30, 0.24, -0.48, -0.52, -0.52]
λ'_{3} = -0.482	$\mathbf{v'}_{3}$ = [-0.57, 0.06, 0.48, -0.56, 0.19, 0.31]
$\lambda'_{4} = -0.642$	v ' ₄ = [-0.37, -0.03, 0.36, 0.53, -0.66, 0.13]
λ'_{5} = -0.832	v ′ ₅ = [-0.46, 0.44, 0.00, 0.30, 0.37, -0.61]
λ'_{6} = -0.993	v ' ₆ = [-0.17, 0.65, -0.56, -0.11, -0.25, 0.39]

Eigenvalues and eigenvectors of A

Eigenvalue and Eigenvector of Graph Laplacian

- \square The graph Laplacian of G, L_G , also has
 - \square eigenvalues $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ where $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$, and
 - \square eigenvectors { $\boldsymbol{v}_1, \, \boldsymbol{v}_2, \, ..., \, \boldsymbol{v}_n$ }

Spectrum of the Laplacian:

$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

- □ Eigenvalues reveal global graph properties not apparent from edge structure
 - □ If 0 is the eigenvalue of L with k different eigenvectors, i.e., $0 = \lambda_1 = \lambda_2 \dots = \lambda_k$, then G has k connected components
 - \square If the graph is connected, $\lambda_2 > 0$ and λ_2 is the **algebraic connectivity** of G
 - \square The greater λ_2 , the more connected G is

Both L_{G1} and L_{G2} have $0 = \lambda_1$ and $\lambda_2 > 0$. $\lambda_2(L_{G1}) < \lambda_2(L_{G2})$

Bi-Partitioning via Spectral Methods

 $\lambda_2(L_G) = 0.189$

- ightharpoonup To find the bipartition, we take the second eigenvector of the Laplacian, \mathbf{v}_2 , corresponding to λ_{2} , the algebraic connectivity of G
 - \square The smaller λ_2 , the better quality of the partitioning
- \Box For each node *i* in *G*, assign it the value $\mathbf{v}_2(i)$ e.g., $\mathbf{v}_2(1)$ = 0.41 in *G*
- □ To find clusters C_1 and C_2 , assign nodes with $\mathbf{v}_2(i) > 0$ to C_1 and $\mathbf{v}_2(i) < 0$ to C_2

$$C_1 = \{ i \mid \mathbf{v}_2(i) > 0 \},\$$

 $C_2 = \{ i \mid \mathbf{v}_2(i) < 0 \}$

Laplacian of *G*

Second eigenvector of L_G

Nodes in G mapped onto v_2 Bipartition of G based v_2

Extension to k partitions

☐ The Ng-Jordan-Weiss (NJW) Algorithm (2002)

$$L_{norm} = D^{-1/2} L D^{-1/2}$$

- \square Compute the first k eigenvectors v_1 , v_2 , ..., v_k of L_{norm} , the normalized Laplacian
- □ Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k as columns
- \Box For i = 1, ..., n, take the i-th row of U as its feature vector after normalizing to norm 1
- \square Cluster the points with k-means into k clusters $C_1, ..., C_k$
- Commonly used as a dimension reduction technique for clustering

	1	2	3	4	5	6
1	1.0	-0.5	-0.4	-0.1	0	0
2	-0.5	1.0	-0.5	0	0	0
3	-0.4	-0.5	1.0	0	0	-0.1
4	-0.1	0	0	1.0	-0.4	-0.5
5	0	0	0	-0.4	1.0	-0.5
6	0	0	-0.1	-0.5	-0.5	1.0

_	ν ₁	V ₂	V ₃	
1>	v ₁ (1)	v ₂ (1)	v ₃ (1)	
2	v ₁ (2)	v ₂ (2)	v ₃ (2)	
3	v ₁ (3)	v ₂ (3)	v ₃ (3)	
4	v ₁ (4)	v ₂ (4)	v ₃ (4)	
5	v ₁ (5)	v ₂ (5)	v ₃ (5)	
6	v ₁ (6)	v ₂ (6)	v ₃ (6)	
	2 3 4 5	$ \begin{array}{c ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & &$	$\begin{array}{c cccc} & v_1(1) & v_2(1) \\ \hline 2 & v_1(2) & v_2(2) \\ \hline 3 & v_1(3) & v_2(3) \\ 4 & v_1(4) & v_2(4) \\ \hline 5 & v_1(5) & v_2(5) \end{array}$	

 $L_{norm}(G)$

U for k = 3

Clustering and Social Network Analysis

- Cliques, hubs, and outliers
 - ☐ Individuals in a tight social group, or clique, know many of the same people, regardless of the size of the group
 - Individuals who are <u>hubs</u> know many people in different groups but belong to no single group. Politicians, for example bridge multiple groups
 - Individuals who are <u>outliers</u> reside at the margins of society. Hermits, for example, know few people and belong to no group
- Application of cluster analysis
 - Given information about who associates with whom
 - □ Can we identify clusters of individuals with common interests or special relationships (families, cliques, or terrorist cells)?

SCAN: Density-Based Clustering of Networks

- \square The **neighborhood** of a vertex v: $\Gamma(v)$
 - Given a vertex v, $\Gamma(v)$ is defined as v and the immediate neighborhood of v (e.g., the set of people that an individual knows)
- □ Similarity between two vertices v and w: $\sigma(v, w)$

$$\sigma(v, w) = \frac{|\Gamma(v) \cap \Gamma(w)|}{\sqrt{|\Gamma(v)||\Gamma(w)|}}$$

- ☐ The desired features tend to be captured by a measure called *Structural Similarity*
- □ Structural similarity is large for members of a clique and small for hubs and outliers

Structural Connectivity (Similar to DBSCAN)

Structural similarity is defined similarly as DBSCAN (KDD'06)

Please check Lecture 5: Density-Based Clustering for details

- □ ε -Neighborhood: $N_{\varepsilon}(v) = \{ w \in \Gamma(v) \mid \sigma(v, w) \ge \varepsilon \}$
- □ Direct structure reachable:

$$DirReach_{\varepsilon,\mu}(v,w) \Leftrightarrow CORE_{\varepsilon,\mu}(v) \land w \in N_{\varepsilon}(v)$$

- \square Structure reachable (REACH(u, v))
 - Transitive closure of direct structure reachability
- □ Structure connected:

 $CONNECT_{\varepsilon,\mu}(v,w) \Leftrightarrow \exists u \in V : REACH_{\varepsilon,\mu}(u,v) \land REACH_{\varepsilon,\mu}(u,w)$

Illustration of the concepts of density-based clustering

Structure-Connected Clusters

Structure-connected cluster C

□ Connectivity: $\forall v, w \in C : CONNECT_{\varepsilon,\mu}(v,w)$

■ Maximality: $\forall v, w \in V : v \in C \land REACH_{\varepsilon,\mu}(v,w) \Rightarrow w \in C$

☐ Hubs:

- Do not belong to any cluster
- Bridge to many clusters
- Outliers:
 - Do not belong to any cluster
 - Connect to fewer clusters

The Execution of the Scan Algorithm (I)

The Execution of the Scan Algorithm (II)

The Execution of the Scan Algorithm (III)

The Execution of the Scan Algorithm (IV)

The Execution of the Scan Algorithm (V)

- □ Continuing execution will group vertices {0, 1, 2, 3, 4, 5} into one cluster
- ☐ It finally generates two clusters, one hub vertex {6} and one outlier vertex {13}
- Experiments on several real-world data sets generate interesting clusters (see Xu et al. KDD 2007)
- \square One major issue: How to set up desirable parameters, μ and ε ?
 - Several follow-up studies to handle the problem

Efficiency of the Scan Algorithm

- Computational complexity
 - \square Running time = O(|E|)
 - \Box For sparse networks = O(|V|)

- ☐ The comparison algorithm:
 - [2] A. Clauset, M. E. J. Newman, & C. Moore, Phys. Rev. (2004)

Ack.: Xiaowei Xu@UA-LittleRock.edu

Summary: Clustering Graphs and Networked Data

- ☐ Graph and Network Clustering: Basic Concepts
- ☐ Graphs, Networks, and Their Representations
- Typical Evaluation Measures
- Approaches for Graph Clustering
- Spectral Clustering
- SCAN: Density-Based Clustering of Networks
- Summary

Recommended Readings

- S. Arora, S. Rao, and U. Vazirani. Expander Flows, Geometric Embeddings and Graph Partitioning. *J. ACM*, 56:5:1–5:37, 2009
- G. Jeh and J. Widom. SimRank: A Measure of Structural-Context Similarity. *KDD'02*
- U. Luxburg. A Tutorial on Spectral Clustering. *Statistics and Computing*, 17, 2007
- A. Y. Ng, M. I. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an Algorithm.
 NIPS'01
- S. E. Schaeffer. Graph Clustering. *Computer Science Review*, 1:27–64, 2007
- X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: A Structural Clustering Algorithm for Networks. *KDD'07*
- M. J. Zaki and W. Meira, Jr.. Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014
- S. Parthasarathy and S. M. Faisal. Network Clustering, in C. Aggarwal and C. K. Reddy (eds.), Data Clustering: Algorithms and Applications (Chapter 17). CRC Press, 2014