

1	1a	1b
H_2O	L	V
HDO	L_{11}	V_{11}
HTO	L_{12}	V_{12}
D_2O	L_{13}	V_{13}
DTO	L_{22}	V_{22}
T_2O	L_{23}	V_{23}
	L_{33}	V_{33}

2	2a
	G
H_2	G_{11}
HD	G_{12}
HT	G_{13}
D_2	G_{22}
DT	G_{23}
T_2	G_{33}

TO DETERMINE THE EQUILIBRIUM

Fig. 2

Fig. 3

Fig. 4

10054494-111301

$$L_{11} \Leftrightarrow V_{11} \quad (\text{E1}')$$

$$V_{11} + G_{12} \Leftrightarrow G_{11} + V_{12} \quad (\text{EK}')$$

$$V_{12} \Leftrightarrow L_{12} \quad (\text{E2}')$$

Fig. 5

Fig. 6

100044194-111301