TD 5 2018

Exercice 1. Soit X une v.a. de densité :

$$f(x) = \frac{1}{2}e^{-|x-\theta|}, x \in \mathbb{R}$$

où θ est un paramètre réel inconnu.

- 1. Calculer $E_{\theta}[X]$ et $Var_{\theta}[X]$. En déduire un estimateur T_n de θ .
- 2. Construire un intervalle de confiance de niveau asymptotique 95% pour θ dans le cas où n=200.

Exercice 2. On rappelle que dans le modèle uniforme $\mathcal{P} = \{\mathcal{U}[0,\theta], \theta > 0\}$, l'Estimateur du Maximum de Vraisemblance de θ est $\hat{\theta}_n = \max(X_1,...,X_n)$.

- **1.** Pour $x \in \mathbb{R}$, calculer $\mathbb{P}_{\theta}(\frac{\hat{\theta}_n}{\theta} \leq x)$ et en déduire que la loi de $\frac{\hat{\theta}_n}{\theta}$ ne dépend pas de θ .
- **2.** Construire un intervalle de confiance de niveau 1α pour θ .

Exercice 3. Soit $X_1, ..., X_n$ un échantillon de loi

$$f(x,\theta) = e^{-(x-\theta)} \mathbf{1}_{[\theta,\infty[}(x)$$

- 1. Donner la vraisemblance associée à l'échantillon ci-dessus.
- 2. Déterminer l'estimateur du maximum de vraisemblance $\hat{\theta}_n$.
- 3. Déterminer la loi de $\hat{\theta}_n$. Est-il un estimateur sans biais ? asymptotiquement sans biais ?
- 4. Montrer que $T_n = \hat{\theta}_n \theta$ est une statistique libre pour θ . Déterminer sa loi.
- 5. Construire un intervalle de confiance de θ à un niveau de confiance $\alpha \in [0,1]$.
- 6. Montrer que $\hat{T}_n = n \left(1 e^{-(\hat{\theta}_n \theta)}\right)$ est une statistique libre pour θ . Déterminer sa loi.
- 7. En déduire un intervalle de confiance asymptotique pour θ avec un niveau de confiance α .

Exercice 4. Les lecteurs de tension artérielle systolique (TAS) (en mm Hg) sur un individu la même heure pendant 7 jours consécutifs ont fournis les données suivantes

jour 1 2 3 4 5 6 7
$$x_i$$
 161 155 142 157 150 192 156

- 1. Calculer la moyenne empirique et la médiane de l'échantillon.
- 2. En faisant l'hypothèse que la mesure de tension X suit une loi $\mathcal{N}(\mu, \sigma^2)$, avec $\sigma^2 = 100$, donner un intervalle de confiance (IC) (bilatéral) à 95% pour μ .

- 3. Combien de jours faut-il observer la TSA pour que la longueur de l'IC à 95% n'excède pas 5mm de Hg.
- 4. Que devient l'IC calculé pour répondre à la question (b) si on suppose que σ^2 est inconnue.
- 5. Donner un intervalle de confiance unilatéral (de la forme [0,U]) à 95% sur σ^2 en supposant $\mu=160$, puis en supposant μ inconnu.