

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000327495 A

(43) Date of publication of application: 28.11.00

(21) Application number: 11136415
(22) Date of filing: 17.05.99

(71) Applicant: JAPAN SCIENCE & TECHNOLOGY CORP
(72) Inventor: SASAKI TAKATOMO MORI YUSUKE

(54) METHOD FOR GROWING GALLIUM NITRIDE SINGLE CRYSTAL

(57) Abstract:

PROBLEM TO BE SOLVED: To control the generation of nuclei and to synthesize a high-quality large bulky gallium nitride single crystal at relatively low temperature and low pressure.

SOLUTION: A substrate with a thin gallium nitride (GaN) film or a thin aluminum nitride (A1N) film deposited on the surface and starting materials of nitrogen and gallium are heated to generate nuclei on only the surface of the substrate and the objective bulky gallium nitride single crystal is grown. A sapphire substrate, a GaAs substrate, a GaP substrate or a silicon substrate is preferably used as the substrate.

COPYRIGHT: (C)2000,JPO

YAMANE HISANORI

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-327495 (P2000-327495A)

(43)公開日 平成12年11月28日(2000.11.28)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

C30B 29/38

C30B 29/38

D 4G077

審査請求 未請求 請求項の数6 OL (全 6 頁)

(21)出願番号

特顧平11-136415

(22)出願日

平成11年5月17日(1999.5.17)

特許法第30条第1項適用申額有り 1998年11月17日 社 団法人応用物理学会応用電子物性分科会発行の「応用電 子物性分科会誌 第4巻 第5号 (1998)」に発表 (71) 出願人 396020800

科学技術振與事業団

埼玉県川口市本町4丁目1番8号

(72)発明者 佐々木 孝友

大阪府吹田市山田西2-8

(72)発明者 森 勇介

大阪府交野市私市8-16-9

(72)発明者 山根 久典

宮城県仙台市宮城野区安登寺2丁目10番12

-405 号

(74)代理人 100093230

弁理士 西澤 利夫

Fターム(参考) 40077 AA02 AA03 BE43 BE46 DA03

EC01 ED06

(54) 【発明の名称】 窒化ガリウム単結晶の育成方法

(57)【要約】

【課題】 核発生制御を可能とし、比較的低温・低圧 で、高品質で大きなバルク状窒化ガリウム単結晶を合成 する。

【解決手段】 窒化ガリウム (GaN) 薄膜または窒化 アルミニウム (AlN) 薄膜を表面に堆積させた基板、窒素原料、および、ガリウム原料を加熱して、バルク状窒化ガリウム単結晶を基板表面上にのみ核発生させて育成する。

1

【特許請求の範囲】

【請求項1】 窒化ガリウム (GaN) 薄膜または窒化 アルミニウム(AlN)薄膜を表面に堆積させた基板 と、窒素原料およびガリウム原料とを加熱して、基板表 面上にのみ核発生させてバルク状窒化ガリウム単結晶を 育成することを特徴とする窒化ガリウム単結晶の育成方

【請求項2】 基板として、サファイア基板、GaAs 基板、GaP基板またはシリコン基板を用いる請求項1 の窒化ガリウム単結晶の育成方法。

【請求項3】 レーザーアブレーション法により、Ga N薄膜またはA1N薄膜を表面に堆積させた基板を用い る請求項1または2の窒化ガリウム単結晶の育成方法。

【請求項4】 窒素原料として、アジ化ナトリウム (N a N₃)を用いる請求項1ないし3のいずれかの窒化ガ リウム単結晶の育成方法。

【請求項5】 ガリウム原料として、単体ガリウム金属 を用いる請求項1ないし4のいずれかの窒化ガリウム単 結晶の育成方法。

5のいずれかの窒化ガリウム単結晶の育成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この出願の発明は、窒化ガリ ウム単結晶の育成方法に関するものである。さらに詳し くは、この出願の発明は、比較的低温低圧で、高品質な バルク状の窒化ガリウム単結晶を育成することのできる 新しい方法に関するものである。

[0002]

材料として注目されている。そして、窒化ガリウムは、 エピタキシャル成長による薄膜として、例えば、サファ イア基板を用いたヘテロエピタキシャル成長によるもの が知られている。しかしながら、このような薄膜として の窒化ガリウムには、基板と薄膜との格子定数差(1 3.8%)、熱膨張係数差(25.5%)、および、壁 開面の違いがネックとなり、基板との整合性が悪いこと から、充分な結晶性を得ることが難しいという問題があ る。

【0003】このような問題点を考慮して、窒化ガリウ 40 ム単結晶基板上にホモエピタキシャル成長によるデバイ スを作製する方法が検討されており、その基板となるバ ルク状窒化ガリウム単結晶の実現が重要な課題となって いる。しかしながら、GaN、AlNなどのバルク状の 窒化物結晶は、融点における窒素の平衡蒸気圧が1万気 圧以上であるため、GaNの融液成長では1200℃、 8000気圧、AlNではそれ以上の高温・高圧を必要 とし、このようなバルク状単結晶の育成は極めて困難で あった。

【0004】一方、ごく最近になって、Naを触媒に用 50 化アルミニウム (AlN) の薄膜を表面に堆積させた基

いると800℃・100気圧という比較的低温・低圧で 高品質のバルク状窒化ガリウム単結晶を合成できること が見出されている。このバルク状窒化ガリウム単結晶の 合成方法は注目されるものであるが、まだ多くの問題点 が残されていることが明らかとなってきた。それは、自 然核発生による結晶成長では核発生制御ができないた め、多量に核が発生してしまうということである。した がって、合成された窒化ガリウム単結晶は、非常に小さ い結晶としてしか得られないという問題点があった。

【0005】そこでこの出願の発明は、以上の通りの事 10 情に鑑みてなされたものであり、核発生の制御を可能と し、比較的低温・低圧で、髙品質な、大きなバルク状の 窒化ガリウム単結晶を合成する新しい方法を提供するこ とを課題としている。

[0006]

【課題を解決するための手段】この出願の発明は、上記 の課題を解決するものとして、第1には、窒化ガリウム (GaN) 薄膜または窒化アルミニウム (A1N) 薄膜 を表面に堆積させた基板と、窒素原料およびガリウム原 【請求項6】 600℃以上で加熱する請求項1ないし 20 料とを加熱して、基板表面上にのみ核発生させてバルク 状窒化ガリウム単結晶を育成することを特徴とする窒化 ガリウム単結晶の育成方法を提供する。

【0007】さらに、この発明は、第2には、基板とし て、サファイア基板やGaAs基板、GaP基板または シリコン基板を用いる方法を、第3には、レーザーアブ レーション法により、GaN薄膜またはAlN薄膜を表 面に堆積させた基板を用いる方法を、第4には、窒素原 料として、アジ化ナトリウム (NaN₃) を用いる方法 を、第5には、ガリウム原料として、単体ガリウム金属 【従来の技術とその課題】窒化ガリウム青色発光素子の 30 を用いる方法を、第6には、600℃以上で加熱する方 法をも提供する。

> 【0008】以上のとおりのこの出願の発明は、発明者 らにより見いだされた次のとおりの新しい知見に基づい て完成されている。すなわち、GaN薄膜またはA1N 薄膜を表面に若干堆積させた基板を導入すると、バルク 状窒化ガリウム単結晶はその表面上にしか核発生せず、 一方、薄膜を堆積させずに基板のみを導入しても、それ ら基板上には窒化ガリウムの核は発生しないことであ る。

【0009】したがって、従来のNa触媒を用いた自然 核発生法では不可能であった窒化ガリウムの核発生位置 の制御がこの出願の発明によって可能となり、大面積で 高品質のバルク状窒化ガリウム単結晶の提供を可能とさ れる。

[0010]

【発明の実施の形態】この出願の発明は上記のとおりの 特徴を有するものであるが、以下にその実施の形態につ いて説明する。まず、この発明の窒化ガリウム単結晶の 育成方法においては、窒化ガリウム (GaN) または窒

板の使用が欠かせない。この場合のGaN、A1Nの薄 膜は、CVD、レーザーCVD、レーザーアブレーショ ン、反応性スパッタリング、反応性イオンプレーティン グ、クラスターイオン成膜法、その他の各種の気相法、 あるいは可能とされるその他の方法によって成膜堆積さ れたものであってよい。たとえばより具体的には、この 発明においては、GaN薄膜またはAIN薄膜の堆積方 法として、例えば、レーザーアプレーション法を好適に 用いることができる。

【0011】基板として、サファイア基板やGaAs基 10 板、AaAlAs基板、GaP基板、InP基板、シリ コン基板などの各種の基板を用いることができる。Ga N、AlNの薄膜の厚さについては特に限定はない。た だ、この薄膜は、バルク状G a N単結晶成長の核を選択 的に生成させる役割を触媒的に果たしていることから、 その厚みは、基本的には、このような役割を果たす限り の薄いものであってよい。もちろん、その平面大きさ は、基板の大きさとともに、バルク単結晶の大きさを左 右するとの観点により定めればよい。

【0012】以上のとおりの基板とともに用いるこの発 20 明の方法の窒素原料およびガリウム原料は、固体物質と して各種のものでよく、育成反応時に、窒素およびガリ ウムを生成しやすく、GaNの生成を阻害することのな いものであればよい。Na (ナトリウム) が触媒的作用 を示すことが知られていることを考慮すると、Naの含 窒素化合物、特に、Naのアジド、アジン、ヒドラジ ド、等の化合物が好適なものとして例示される。その他 のアルカリ金属やアルカリ土類金属等のGaとの間で化 合物等を生成させることのない元素の含窒素化合物であ ってもよい。

【0013】ガリウム原料についても、単体金属、合 金、化合物の各種のものでよい。なかでもガリウムの単 体金属が取扱いの上からも好適なものの一つである。加 熱反応は、ステンレス容器等の耐熱性で、耐圧性、そし て非反応性の容器内で行うことができる。この発明にお いては、600℃という比較的低温でも、窒化ガリウム 単結晶が核発生する。この温度は、従来の自然核発生法 では核発生がほとんど不可能な温度である。

【0014】以下実施例を示し、さらにこの発明につい て詳しく説明する。

[0015]

【実施例】<u>実施例1</u>

この発明の製造方法を用いて、基板の種類を変えて、バ ルク状窒化ガリウム単結晶育成を行った。まずはじめ に、出発原料であるアジ化ナトリウム (NaN₃) と単 体ガリウム金属をステンレスチューブに封入し、800 ℃程度まで加熱した。GaとNaN3の秤量比はy=N a/(Na+Ga) で定義した。

【0016】できるだけ視覚的に種結晶の効果が見られ る育成を行うために、GaNとの格子定数差の小さい基 板(約25 mm²)を出発原料に加えて、チューブ(内 径12mm、長さ10cm)内に封入して育成を試み た。基板としては、サファイア基板上にAlN薄膜を堆 積させたAIN薄膜サファイア基板と、従来技術である 薄膜を堆積させない基板、すなわち、SiC基板、Si 基板およびサファイア基板をも用いた。各基板面は、A 1 N薄膜(0001)面(サファイア基板上)、従来技 術のSi基板(111)面、サファイア基板(000 1) 面、およびSiC基板(0001) 面とした。Ga Nと各基板との格子定数差は表1に示すとおりであり、 本発明の格子定数は、非常に小さい。

[0017]

【表1】

基板	格子定數差(%)	熱膨張係数差 (×10-°)
AIN基板 (発明)	2. 4	0. 0.5
Si基板 (従来)	20.1	2. 0
サファイア基板 (従来)	13.8	1. 9
SiC基板 (従来)	3. 4	1. 4

【0018】圧力100気圧、yNa=0, 4、温度保 00℃、600℃、500℃と低温化して育成を行っ た。その結果、600℃以上で、GaNともっとも格子 定数差の小さい、本発明のAIN薄膜上にのみ窒化ガリ ウム単結晶成長が起こった。しかしながら、従来技術の Si基板、サファイア基板、および、SiC基板上には 窒化ガリウム単結晶成長は起こらなかった。

【0019】AlN薄膜(サファイア基板)上のGaN 結晶のSEM写真と光学顕微鏡写真を図1として示し た。光学顕微鏡写真にも示されているように、六角形状

レインサイズが小さくなっている。窒化ガリウム単結晶 持時間24時間とし、最高到達温度を800℃から、7 40 のX線回折測定結果は図2に示した通りであった。この 図2より、600℃以上でGaN (0002) 面からの 回折ピークが得られ、AIN薄膜上の窒化ガリウム単結 晶はC軸配向していることが分かった。

【0020】また、この発明の窒化ガリウム単結晶の結 晶性を評価するために、X線ロッキングカーブ測定とカ ソードルミネッセンス測定を行った。そのX線ロッキン グカーブ測定の結果は図3(a)(b)に示した通りで あった。この図3から温度が低くなる程、結晶性や配向 性が悪くなっていることがわかる。さらにカソードルミ のグレインが配列しており、温度が低くなるにつれてグ 50 ネッセンス測定の結果は図4に示した通りであり、約

3.4 (eV) のバンド端付近発光を観測し、温度が低い程半値幅が大きくなっていることがわかる。

【0021】以上の実施例より、基板を導入することによって、自然核成長より低温の600℃でA1N薄膜上に窒素ガリウム単結晶成長が起こることがわかる。

比較例

基板を挿入することなく、自然核成長による窒化ガリウム単結晶の育成を行った。基板を挿入することを除いては、実施例1と同様の条件であった。すなわち、内径7mm、長さ10cmのステンレスチューブを用いて、最 10高到達温度を800℃とし、チューブ内の圧力が100気圧となるようにNaN3を秤量してγNa=0.25~0.64の範囲で育成を行ったところ、γNa=0.4~0.47で窒化ガリウム単結晶が得られた。

【0022】しかしながら、結晶は多数できてしまい、サイズは最大のもので0.5mm程度の非常に小さいものしかできなかった。結晶の一つに注目すると平板状の結晶になっていた。次に、従来技術で生成された窒化ガリウム単結晶について、結晶の平板な面に対するX線回折、ロッキングカーブ、および、カソードルミネッセン 20スを測定した。その結晶 X線回折測定結果は、図5

(A) (B) に示した通りであり、(0002) 面に対応する回折ピークが観察され、平板な面が(0002) 面であることがわかった。さらに、この面に対するロッ

6

キングカーブを測定したところ半値幅77秒という値が得られた。また、カソードルミネッセンス測定の結果、 室温で図6のような約3.4(eV)にピークをもつバンド端付近発光を観測した。

[0023]

【発明の効果】以上詳しく説明したように、この発明により、核発生の制御を可能とし、比較的低温・低圧で、 高品質な大きなバルク状窒化ガリウム単結晶を育成する ことができる。

【図面の簡単な説明】

【図1】この発明の実施例としてのSEM写真と光学顕 微鏡写真を示したものである。

【図2】この発明の実施例であって、この発明の結晶の X線回折結果である。

【図3】(a)(b)は、この発明の実施例であって、この発明の結晶のX線ロッキングカーブ測定結果である。

【図4】この発明の実施例であって、この発明の結晶の カソードルミネッセンス測定結果である。

0 【図5】従来方法で得られた結晶のX線ロッキングカーブ測定結果である。

【図 6 】従来方法で得られた結晶のカソードルミネッセンス測定結果である。

[図2]

2θ/θ (deg.)

【図4】

【図5】

[図1]

