DT

```
#import sys
#print(sys.executable)
#import sys
#!{sys.executable} -m pip install pandas
#import sys
#!{sys.executable} -m pip install matplotlib
#import sys
#!{sys.executable} -m pip install seaborn
#import sys
#!{sys.executable} -m pip install scikit-learn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import mean_squared_error, confusion_matrix, classification_report
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, plot_tree
cs = pd.read_csv('https://raw.githubusercontent.com/PratheepaJ/datasets/master/Carseats.csv'
cs.info()
cs.head(5)
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 400 entries, 0 to 399
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype	
0	Sales	400 non-null	float64	
1	CompPrice	400 non-null	int64	
2	Income	400 non-null	int64	
3	Advertising	400 non-null	int64	
4	Population	400 non-null	int64	
5	Price	400 non-null	int64	
6	ShelveLoc	400 non-null	object	
7	Age	400 non-null	int64	
8	Education	400 non-null	int64	
9	Urban	400 non-null	object	
10	US	400 non-null	object	
11	High	400 non-null	object	

dtypes: float64(1), int64(7), object(4)

memory usage: 37.6+ KB

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban U
0	9.50	138	73	11	276	120	Bad	42	17	Yes
1	11.22	111	48	16	260	83	Good	65	10	Yes
2	10.06	113	35	10	269	80	Medium	59	12	Yes
3	7.40	117	100	4	466	97	Medium	55	14	Yes
4	4.15	141	64	3	340	128	Bad	38	13	Yes 1

Convert categories onto dummy vatiables

```
cat = ['ShelveLoc', 'Urban', 'US']
cs = pd.get_dummies(cs,columns=cat)
```

cs.head(5)

	Sales	CompPrice	Income	Advertising	Population	Price	Age	Education	High	ShelveLoc_Bac
0	9.50	138	73	11	276	120	42	17	Yes	True
1	11.22	111	48	16	260	83	65	10	Yes	False
2	10.06	113	35	10	269	80	59	12	Yes	False
3	7.40	117	100	4	466	97	55	14	No	False
4	4.15	141	64	3	340	128	38	13	No	True

Sales CompPrice Income Advertising Population Price Age Education High ShelveLoc_Ba

terminal

Github link

Github link