SEQUENCE LISTING

```
<110> Genencor International, Inc.
      Fox, Judith A.
      Harding, Fiona A.
       Schellenberger, Volker
<120> CAB Molecules
<130> GC822-PCT
<140> PCT/US2004/041429
<141> 2004-12-10
<150> US 60/529,354
<151> 2003-12-12
<150> US 60/577,255
<151> 2004-04-06
<160> 133
<170> PatentIn version 3.2
<210> 1
<211> 231
<212> PRT
<213> Artificial Sequence
<220>
<223> CDRs of CAB1 protein
<220>
<221> MISC_FEATURE
<222> (1)..(25)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (36)..(49)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE <222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
```

<220> <221> MISC_FEATURE <222> (191)..(222) <223> X = any amino acid <400> 1 1 5 10 15 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Asn Ile Lys Asp Ser 40 Xaa Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 55 70 75 80 85 90 95 Xaa Xaa Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Xaa Xaa Xaa 120 130 135 140 155 145 150 Ser Ser Ser Val Ser Tyr Met His Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175 Xaa Xaa Xaa Xaa Xaa Xaa Ser Thr Ser Asn Leu Ala Ser Xaa Xaa 180 185 190

195 200 205

Arg Ser Ser Tyr Pro Leu Thr 225 230

<210> 2

<211> 605

<212> PRT

<213> Artificial Sequence

<220>

<223> CAB1 protein

<400> 2

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Thr 1 5101515

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30

Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45

Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 60

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 65 70 75 80

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly 115 120 125

Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140

	le 45	Met	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
S	er	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
S	er	Pro	Lys	Leu 180	Trp	Ile	Tyr	Ser	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Р	ro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
I	le	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
	rg 25	Ser	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
L	ys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
А	la	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
А	la	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
L	ys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
	lu 05	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
А	la	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Τ	rp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
L	eu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
V	al	Thr	Asp	Asn	Ala	Ser	Leu	Leu	Arg	Phe	Tyr	Gln	Asn	Trp	Gln	Pro

370 375 380

Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly
Leu	Gly	Trp 515	Glu	Met	Leu	Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val
Glu	Thr 530	Ser	Phe	Gly	Asn	Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu
Val 545	Asn	Pro	Pro	Ala	Pro 550	Pro	Val	Lys	Ala	Ser 555	Trp	Val	His	Lys	Thr
Gly	Ser	Thr	Gly	Gly 565	Phe	Gly	Ser	Tyr	Val 570	Ala	Phe	Ile	Pro	Glu 575	Lys
Gln	Ile	Gly	Ile 580	Val	Met	Leu	Ala	Asn 585	Thr	Ser	Tyr	Pro	Asn 590	Pro	Ala
Arg	Val	Glu 595	Ala	Ala	Tyr	His	Ile 600	Leu	Glu	Ala	Leu	Gln 605			

```
<210> 3
<211> 361
<212> PRT
<213> Artificial Sequence
<220>
<223> BLA protein
<400> 3
Thr Pro Val Ser Glu Lys Gln Leu Ala Glu Val Val Ala Asn Thr Ile
                          10
Thr Pro Leu Met Lys Ala Gln Ser Val Pro Gly Met Ala Val Ala Val
          20
Ile Tyr Gln Gly Lys Pro His Tyr Tyr Thr Phe Gly Lys Ala Asp Ile
                    40
Ala Ala Asn Lys Pro Val Thr Pro Gln Thr Leu Phe Glu Leu Gly Ser
   50 55 60
Ile Ser Lys Thr Phe Thr Gly Val Leu Gly Gly Asp Ala Ile Ala Arg
                70 75 80
Gly Glu Ile Ser Leu Asp Asp Ala Val Thr Arg Tyr Trp Pro Gln Leu
Thr Gly Lys Gln Trp Gln Gly Ile Arg Met Leu Asp Leu Ala Thr Tyr
                        105
Thr Ala Gly Gly Leu Pro Leu Gln Val Pro Asp Glu Val Thr Asp Asn
      115
                      120
                                      125
Ala Ser Leu Leu Arg Phe Tyr Gln Asn Trp Gln Pro Gln Trp Lys Pro
                135 140
   130
Gly Thr Thr Arg Leu Tyr Ala Asn Ala Ser Ile Gly Leu Phe Gly Ala
145
      150 155 160
Leu Ala Val Lys Pro Ser Gly Met Pro Tyr Glu Gln Ala Met Thr Thr
            165 170 175
```

Arg Val Leu Lys Pro Leu Lys Leu Asp His Thr Trp Ile Asn Val Pro

180 185 190

Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg Asp Gly Lys Ala 195 200 205

Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala Tyr Gly Val Lys 210 220

Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala Asn Met Ala Pro 225 230 235 240

Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile Ala Leu Ala Gln $245 \\ 250 \\ 255$

Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly Leu Gly Trp Glu 260 265 270

Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val Glu Thr Ser Phe 275 280 285

Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu Val Asn Pro Pro 290 295 300

Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr Gly Ser Thr Gly 305 310 315

Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys Gln Ile Gly Ile 325 330 335

Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala Arg Val Glu Ala 340 345 350

Ala Tyr His Ile Leu Glu Ala Leu Gln 355 360

<210> 4

<211> 3

<212> PRT

<213> Unknown

<220>

<223> skipped

<400> 4

```
<210> 5
<211> 231
<212> PRT
<213> Artificial Sequence
<220>
<223> CDRs of CAB1.6 protein variant
<220>
<221> MISC_FEATURE
<222> (1)..(25)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (36)..(49)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (191)..(222)
<223> X = any amino acid
<400> 5
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Asn Ile Lys Asp Ser
         20
                          25
```

40

45

Ala Ala Ala

Xaa Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 60

Xaa Xaa Gly Leu Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Xaa Xaa Xaa 100 105 110

Ser Ser Ser Val Ser Tyr Met His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 $170 \hspace{1.5cm} 175$

Xaa Xaa Xaa Xaa Xaa Xaa Asp Thr Ser Asn Leu Ala Ser Xaa Xaa 180 185 190

Arg Asp Ser Tyr Pro Leu Thr 225 230

<210> 6

<211> 231

<212> PRT

<213> Artificial Sequence

<220>

<223> CDRs of CAB1.7 protein variant

```
<220>
<221> MISC_FEATURE
<222> (1)..(25)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (36)..(49)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (191)..(222)
<223> X = any amino acid
<400> 6
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Asn Ile Lys Asp Ser
3.5
                  40
Xaa Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe
  50
                55
70
65
                        75
85 90 95
Xaa Xaa Gly Leu Pro Leu Gly Ala Ile Tyr Asn Asp Tyr Xaa Xaa Xaa
```

100 105 110

115 120

140 130 135

145 150 155 160

Ser Ser Ala Val Tyr Ala Met His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170 175

Xaa Xaa Xaa Xaa Xaa Xaa Asp Thr Ser Asn Leu Ala Ser Xaa Xaa 185 190

195 200 205

210 215 220

Arg Asp Ser Tyr Pro Leu Thr 230

<210> 7

<211> 605 <212> PRT

<213> Artificial Sequence

<220>

<223> CAB 1.6 protein variant

<400> 7

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly 1 5 10 15

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 30 25

Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 40

Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Leu	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Asn	Glu	Gly	Leu 100	Pro	Thr	Gly	Pro	Tyr 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala	Val	Ile	Tyr	Gln	Gly	Lys	Pro	His	Tyr	Tyr	Thr	Phe	Gly

Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Туз
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glı
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Glr
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Alá
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala	Leu	Ala	Gln	Ser	Arg	Tyr	Trp	Arg	Ile	Gly	Ser	Met	Tyr 510	Gln	Glz

Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 515 520 525

Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 530 540

Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 555 560

Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 565 570 575

Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590

Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605

<210> 8

<211> 605

<212> PRT

<213> Artificial Sequence

<220>

<223> CAB1.6i protein variant

<400> 8

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30

Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 60

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 65 70 75 80

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Asn	Glu	Gly	Leu 100	Pro	Thr	Gly	Pro	Tyr 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Gly	Gly	Gly	Gly	Ser 125	Gly	Gly	Gly
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ser	Val	Ser 165	Tyr	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Ala 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320

Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly
Leu	Gly	Trp 515	Glu	Met	Leu	Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val
Glu	Thr 530	Ser	Phe	Gly	Asn	Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu

Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 555 Gly Ser Thr Gly Gly Phe Gly Ala Tyr Val Ala Phe Ile Pro Glu Lys 570 Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590 Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605 <210> 9 <211> 605 <212> PRT <213> Artificial Sequence <220> <223> CAB1.7 protein variant <400> 9 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly 10 Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 55 60 Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys Asn Glu Gly Leu Pro Leu Gly Ala Ile Tyr Asn Asp Tyr Trp Gly Gln 105 100 110 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly

120

125

Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ala	Val	Tyr 165	Ala	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Asp	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp

Leu Ala	Thr Tyr 355	Thr Ala	ı Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val Thr 370		n Ala Sei	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln Trp 385	Lys Pro	Gly Thi		Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu Phe	Gly Ala	Leu Ala 405	ı Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala Met	Thr Thi	Arg Val	. Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile Asn	Val Pro 435) Lys Ala	ı Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp Gly 450	_	ı Val Arç	y Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala
Tyr Gly 465	Val Lys	Thr Asr		Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn Met	Ala Pro	Glu Asr 485	n Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala Leu	Ala Glr 500	n Ser Arç	J Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly
Leu Gly	Trp Glu 515	ı Met Leı	ı Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val
Glu Thr 530		e Gly Asr	n Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu
Val Asn 545	Pro Pro	Ala Pro 550		Val	Lys	Ala	Ser 555	Trp	Val	His	Lys	Thr 560
Gly Ser	Thr Gly	Gly Phe	e Gly	Ser	Tyr	Val 570	Ala	Phe	Ile	Pro	Glu 575	Lys

Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590

Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605

<210> 10

<211> 605

<212> PRT

<213> Artificial Sequence

<220>

<223> CAB1.7i protein variant

<400> 10

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly 1 5 10 15

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30

Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 60

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 65 70 75 80

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Asn Glu Gly Leu Pro Leu Gly Ala Ile Tyr Asn Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly 115 120 125

Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140

Ile Val Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 145 150 155 160

Ser	Ser	Ala	Val	Tyr 165	Ala	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr
Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Asp	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Ala 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Lys	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro

Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala
Tyr 465	Gly	Val	Lys	Thr	Asn 470	Val	Gln	Asp	Met	Ala 475	Asn	Trp	Val	Met	Ala 480
Asn	Met	Ala	Pro	Glu 485	Asn	Val	Ala	Asp	Ala 490	Ser	Leu	Lys	Gln	Gly 495	Ile
Ala	Leu	Ala	Gln 500	Ser	Arg	Tyr	Trp	Arg 505	Ile	Gly	Ser	Met	Tyr 510	Gln	Gly
Leu	Gly	Trp 515	Glu	Met	Leu	Asn	Trp 520	Pro	Val	Glu	Ala	Asn 525	Thr	Val	Val
Glu	Thr 530	Ser	Phe	Gly	Asn	Val 535	Ala	Leu	Ala	Pro	Leu 540	Pro	Val	Ala	Glu
Val 545	Asn	Pro	Pro	Ala	Pro 550	Pro	Val	Lys	Ala	Ser 555	Trp	Val	His	Lys	Thr 560
Gly	Ser	Thr	Gly	Gly 565	Phe	Gly	Ala	Tyr	Val 570	Ala	Phe	Ile	Pro	Glu 575	Lys
Gln	Ile	Gly	Ile 580	Val	Met	Leu	Ala	Asn 585	Thr	Ser	Tyr	Pro	Asn 590	Pro	Ala
Arg	Val	Glu 595	Ala	Ala	Tyr	His	Ile 600	Leu	Glu	Ala	Leu	Gln 605			

<211> 244 <212> PRT <213> Artificial Sequence <220> <223> CAB1 protein fragment <400> 11 Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Thr 1 5 10 Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30 Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 55 Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 70 75 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 110 100 105 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly 115 120 125 Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140 Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 155 Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr 165 170

Ser Pro Lys Leu Trp Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val 180 185 190 Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr
195 200 205

Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 210 215 220

Arg Ser Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu 225 230 235 240

Lys Arg Ala Ala

<210> 12

<211> 5178

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic pME27.1 plasmid sequence

<400> 12

aggaattate atatgaaata eetgetgeeg accgetgetg etggtetget geteeteget 60 gcccagccgg ccatggccca ggtgaaactg cagcagtctg gggcagaact tgtgaggtca 120 qqqacctcaq tcaaqttqtc ctqcacaqct tctqqcttca acattaaaqa ctcctatatq 180 240 cactggttga ggcaggggcc tgaacagggc ctggagtgga ttggatggat tgatcctgag aatggtgata ctgaatatgc cccgaagttc cagggcaagg ccacttttac tacagacaca 300 tectecaaca cageetacet geageteage ageetgacat etgaggacae tgeegtetat 360 tattqtaatq aqqqqactcc qactqqqccq tactactttq actactqqqq ccaaqqqcdc 420 acqqtcaccq tctcctcaqq tqqaqqcqqt tcaqqcqqaq qtqqctctqq cqqtqqcqqa 480 540 tcagaaaatg tgctcaccca gtctccagca atcatgtctg catctccagg ggagaaggtc accataacct gcagtgccag ctcaagtgta agttacatgc actggttcca gcagaagcca 600 ggcacttctc ccaaactctg gatttatagc acatccaacc tggcttctgg agtccctgct 660 cgcttcagtg gcagtggatc tgggacctct tactctctca caatcagccg aatggaggct 720 gaagatgctg ccacttatta ctgccagcaa agatctagtt acccactcac gttcggtgct 780 ggcaccaage tggagetgaa aegggeggee acaceggtgt cagaaaaaaca getggeggag 840 qtqqtcqcqa atacqattac cccqctqatq aaaqcccaqt ctqttccaqq catqqcqqtq 900 qccqttattt atcaqqqaaa accqcactat tacacatttq qcaaqqccqa tatcqcqqcq 960

aataaacccg	ttacgcctca	gaccctgttc	gagctgggtt	ctataagtaa	aaccttcacc	1020
ggcgttttag	gtggggatgc	cattgctcgc	ggtgaaattt	cgctggacga	tgcggtgacc	1080
agatactggc	cacagetgae	gggcaagcag	tggcagggta	ttcgtatgct	ggatctcgcc	1140
acctacaccg	ctggcggcct	gccgctacag	gtaccggatg	aggtcacgga	taacgcctcc	1200
ctgctgcgct	tttatcaaaa	ctggcagccg	cagtggaagc	ctggcacaac	gcgtctttac	1260
gccaacgcca	gcatcggtct	ttttggtgcg	ctggcggtca	aaccttctgg	catgccctat	1320
gagcaggcca	tgacgacgcg	ggtccttaag	ccgctcaagc	tggaccatac	ctggattaac	1380
gtgccgaaag	cggaagaggc	gcattacgcc	tggggctatc	gtgacggtaa	agcggtgcgc	1440
gtttcgccgg	gtatgctgga	tgcacaagcc	tatggcgtga	aaaccaacgt	gcaggatatg	1500
gcgaactggg	tcatggcaaa	catggcgccg	gagaacgttg	ctgatgcctc	acttaagcag	1560
ggcatcgcgc	tggcgcagtc	gcgctactgg	cgtatcgggt	caatgtatca	gggtctgggc	1620
tgggagatgc	tcaactggcc	cgtggaggcc	aacacggtgg	tcgagacgag	ttttggtaat	1680
gtagcactgg	cgccgttgcc	cgtggcagaa	gtgaatccac	cggctccccc	ggtcaaagcg	1740
tcctgggtcc	ataaaacggg	ctctactggc	gggtttggca	gctacgtggc	ctttattcct	1800
gaaaagcaga	tcggtattgt	gatgctcgcg	aatacaagct	atccgaaccc	ggcacgcgtt	1860
gaggcggcat	accatatcct	cgaggcgcta	cagtaggaat	tcgagctccg	tcgacaagct	1920
tgcggccgca	ctcgagatca	aacgggctag	ccagccagaa	ctcgccccgg	aagaccccga	1980
ggatgtcgag	caccaccacc	accaccactg	agatccggct	gctaacaaag	cccgaaagga	2040
agctgagttg	gctgctgcca	ccgctgagca	ataactagca	taaccccttg	gggcctctaa	2100
acgggtcttg	aggggttttt	gctgaaagga	ggaactatat	ccggattggc	gaatgggacg	2160
cgccctgtag	cggcgcatta	agegeggegg	gtgtggtggt	tacgcgcagc	gtgaccgcta	2220
cacttgccag	cgccctagcg	cccgctcctt	tegetttett	cccttccttt	ctcgccacgt	2280
tcgccggctt	tccccgtcaa	gctctaaatc	gggggctccc	tttagggttc	cgatttagtg	2340
ctttacggca	cctcgacccc	aaaaaacttg	attagggtga	tggttcacgt	agtgggccat	2400
cgccctgata	gacggttttt	cgccctttga	cgttggagtc	cacgttcttt	aatagtggac	2460
tcttgttcca	aactggaaca	acactcaacc	ctatctcggt	ctattctttt	gatttataag	2520
ggattttgcc	gatttcggcc	tattggttaa	aaaatgagct	gatttaacaa	aaatttaacg	2580
cgaattttaa	caaaatatta	acgcttacaa	tttcctgatg	cggtattttc	tccttacgca	2640
tctgtgcggt	atttcacacc	gcatatggtg	cactctcagt	acaatctgct	ctgatgccgc	2700

atagttaagc	cagccccgac	acccgccaac	acccgctgac	gcgccctgac	gggcttgtct	2760
gctcccggca	tccgcttaca	gacaagctgt	gaccgtctcc	gggagctgca	tgtgtcagag	2820
gttttcaccg	tcatcaccga	aacgcgcgag	acgaaagggc	ctcgtgatac	gcctattttt	2880
ataggttaat	gtcatgataa	taatggtttc	ttagacgtca	ggtggcactt	ttcggggaaa	2940
tgtgcgcgga	acccctattt	gtttattttt	ctaaatacat	tcaaatatgt	atccgctcat	3000
gagacaataa	ccctgtggca	gcatcacccg	acgcactttg	cgccgaataa	atacctgtga	3060
cggaagatca	cttcgcagaa	taaataaatc	ctggtgtccc	tgttgatacc	gggaagccct	3120
gggccaactt	ttggcgaaaa	tgagacgttg	atcggcacgt	aagaggttcc	aactttcacc	3180
ataatgaaat	aagatcacta	ccgggcgtat	tttttgagtt	atcgagattt	tcaggagcta	3240
aggaagctaa	aatggagaaa	aaaatcactg	gatataccac	cgttgatata	tcccaatggc	3300
atcgtaaaga	acattttgag	gcatttcagt	cagttgctca	atgtacctat	aaccagaccg	3360
ttcagctgga	tattacggcc	tttttaaaga	ccgtaaagaa	aaataagcac	aagttttatc	3420
cggcctttat	tcacattctt	gcccgcctga	tgaatgctca	tccggaattc	cgtatggcaa	3480
tgaaagacgg	tgagctggtg	atatgggata	gtgttcaccc	ttgttacacc	gttttccatg	3540
agcaaactga	aacgttttca	tcgctctgga	gtgaatacca	cgacgatttc	cggcagtttc	3600
tacacatata	ttcgcaagat	gtggcgtgtt	acggtgaaaa	cctggcctat	ttccctaaag	3660
ggtttattga	gaatatgttt	ttcgtctcag	ccaatccctg	ggtgagtttc	accagttttg	3720
atttaaacgt	ggccaatatg	gacaacttct	tegececegt	tttcacgatg	ggcaaatatt	3780
atacgcaagg	cgacaaggtg	ctgatgccgc	tggcgattca	ggttcatcat	gccgtctgtg	3840
atggcttcca	tgtcggcaga	atgcttaatg	aattacaaca	gtactgcgat	gagtggcagg	3900
gcggggcgta	aagacagatc	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	3960
cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	ttaatttaaa	4020
aggatctagg	tgaagatcct	ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	4080
tcgttccact	gagcgtcaga	ccccgtagaa	aagatcaaag	gatcttcttg	agatcctttt	4140
tttctgcgcg	taatctgctg	cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	4200
ttgccggatc	aagagctacc	aactcttttt	ccgaaggtaa	ctggcttcag	cagagcgcag	4260
ataccaaata	ctgttcttct	agtgtagccg	tagttaggcc	accacttcaa	gaactctgta	4320
gcaccgccta	catacctcgc	tctgctaatc	ctgttaccag	tggctgctgc	cagtggcgat	4380

aagtcgtgtc	ttaccgggtt	ggactcaaga	cgatagttac	cggataaggc	gcagcggtcg	4440
ggctgaacgg	ggggttcgtg	cacacagccc	agcttggagc	gaacgaccta	caccgaactg	4500
agatacctac	agcgtgagct	atgagaaagc	gccacgcttc	ccgaagggag	aaaggcggac	4560
aggtatccgg	taagcggcag	ggtcggaaca	ggagagcgca	cgagggagct	tccaggggga	4620
aacgcctggt	atctttatag	tcctgtcggg	tttcgccacc	tctgacttga	gcgtcgattt	4680
ttgtgatgct	cgtcaggggg	gcggagccta	tggaaaaacg	ccagcaacgc	ggccttttta	4740
cggttcctgg	ccttttgctg	gccttttgct	cacatgttct	ttcctgcgtt	atcccctgat	4800
tctgtggata	accgtattac	cgcctttgag	tgagctgata	ccgctcgccg	cageegaaeg	4860
accgagcgca	gcgagtcagt	gagcgaggaa	gcggaagagc	gcccaatacg	caaaccgcct	4920
ctccccgcgc	gttggccgat	tcattaatgc	agctggcacg	acaggtttcc	cgactggaaa	4980
gcgggcagtg	agcgcaacgc	aattaatgtg	agttagctca	ctcattaggc	accccaggct	5040
ttacacttta	tgcttccggc	tcgtatgttg	tgtggaattg	tgagcggata	acaatttcac	5100
acaggaaaca	gctatgacca	tgattacgcc	aagctattta	ggtgacacta	tagaatactc	5160
aagctttcta	gattaagg					5178

<210> 13 <211> 120

<212> PRT

<213> Artificial Sequence

<220>

<223> CAB1 heavy chain sequence

<400> 13

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Thr 5

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser

Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 40

Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 55

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 70 75 65 80

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Thr Val Thr Val Ser Ser 115

<210> 14

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> CAB1 linker sequence

<400> 14

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser 1 5 10

<210> 15

<211> 110 <212> PRT

<213> Artificial Sequence

<220>

<223> CAB1 light chain sequence

<400> 15

Glu Asn Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly 10

Glu Lys Val Thr Ile Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met 20 25 30

His Trp Phe Gln Gln Lys Pro Gly Thr Ser Pro Lys Leu Trp Ile Tyr 40

Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser 50

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu 70 75

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Arg Ser Ser Tyr Pro Leu Thr 85 90

Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Ala Ala Thr 105

<210> 16 <211> 360

<212> PRT

<213> Artificial Sequence

<220>

<223> BLA protein fragment

<400> 16

Pro Val Ser Glu Lys Gln Leu Ala Glu Val Val Ala Asn Thr Ile Thr 10

Pro Leu Met Lys Ala Gln Ser Val Pro Gly Met Ala Val Ala Val Ile 20 25

Tyr Gln Gly Lys Pro His Tyr Tyr Thr Phe Gly Lys Ala Asp Ile Ala 35 40

Ala Asn Lys Pro Val Thr Pro Gln Thr Leu Phe Glu Leu Gly Ser Ile 50 55

Ser Lys Thr Phe Thr Gly Val Leu Gly Gly Asp Ala Ile Ala Arg Gly 75 80 65 70

Glu Ile Ser Leu Asp Asp Ala Val Thr Arg Tyr Trp Pro Gln Leu Thr 90 95

Gly Lys Gln Trp Gln Gly Ile Arg Met Leu Asp Leu Ala Thr Tyr Thr 105 110

Ala Gly Gly Leu Pro Leu Gln Val Pro Asp Glu Val Thr Asp Asn Ala 115 120

Ser Leu Leu Arg Phe Tyr Gln Asn Trp Gln Pro Gln Trp Lys Pro Gly 130 135 140

Thr Thr Arg Leu Tyr Ala Asn Ala Ser Ile Gly Leu Phe Gly Ala Leu 155 145 150 160 Ala Val Lys Pro Ser Gly Met Pro Tyr Glu Gln Ala Met Thr Thr Arg 170 175 165 Val Leu Lys Pro Leu Lys Leu Asp His Thr Trp Ile Asn Val Pro Lys 180 185 190 Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg Asp Gly Lys Ala Val 195 200 205 Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala Tyr Gly Val Lys Thr 210 215 220 Asn Val Gln Asp Met Ala Asn Trp Val Met Ala Asn Met Ala Pro Glu 230 235 240 Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile Ala Leu Ala Gln Ser 245 250 255 Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly Leu Gly Trp Glu Met 260 265 270 Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val Glu Thr Ser Phe Gly 275 280 285 Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu Val Asn Pro Pro Ala 300 290 295 Pro Pro Val Lys Ala Ser Trp Val His Lys Thr Gly Ser Thr Gly Gly 305 310 315 Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys Gln Ile Gly Ile Val 325 330 335 Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala Arg Val Glu Ala Ala 345 Tyr His Ile Leu Glu Ala Leu Gln 355 360

<210> 17 <211> 605 <212> PRT

<213> Artificial Sequence <220> <223> SW149.5 protein <400> 17 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly 10 5 Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30 Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45 Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 75 80 70 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 Asn Glu Gly Leu Pro Leu Gly Ala Ile Tyr Asn Asp Tyr Trp Gly Gln 100 105 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly 115 120 125 Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140 Ile Val Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 150 155 Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr 165 170 Ser Pro Lys Leu Val Ile Tyr Asp Thr Ser Asn Leu Ala Ser Gly Val 180 185 190 Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr

200

205

Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp

Ile Asn Val Pro Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arq 435 440 Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala 455 Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465 470 475 480 Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 495 Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 500 505 510 Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 515 520 525 Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 535 540 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 555 545 550 Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 565 570 575 Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590 Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605 <210> 18 <211> 605 <212> PRT <213> Artificial Sequence <220> <223> CAB1.1 protein variant <400> 18 Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly

Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 40 Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 55 Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 70 75 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 100 105 110 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly 120 125 115 Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 135 140 Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 150 155 Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr 165 170 Ser Pro Lys Leu Val Ile Val Ser Thr Ser Asn Leu Ala Ser Gly Val 180 185 190 Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr 195 200

Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln

Arg Ser Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu

235 240

210 215 220

230

225

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser

Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arg
Asp	Gly 450	Lys	Ala	Val	Arg	Val 455	Ser	Pro	Gly	Met	Leu 460	Asp	Ala	Gln	Ala

Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465 475 470 Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 490 495 Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 505 Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 515 520 Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 530 535 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 555 Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 570 575 565 Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590 Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 600 <210> 19 <211> 1815 <212> DNA <213> Artificial Sequence <2.2.0> <223> CAB1.2 variant coding sequence <400> 19 caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg 60 tectgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg 120 cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat 180 gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac 240 ctgcagctca gcagcctgac atctgaggac actgccqtct attattgtaa tgaggggact 300 ccqactqqqc cqtactactt tqactactqq qqccaaqqqa ccacqqtcac cqtctcctca 360

ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtcgtcacc	420
cagtctccag	caatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttata	gcacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc	aaagatctag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga	tgaaagccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttcgctggac	gatcgggtga	ccagatactg	gccacagctg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg	cctggggcta	tcgtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
tegegetaet	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gcgggtttgg	cagctacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc	tacag					1815

<210> 20

<211> 605

<212> PRT

<213> Artificial Sequence

<223> CAB1.2 protein variant

<400> 20

Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30

Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe 50 60

Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 65 70 75 80

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 100 105 110

Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Gly Ser Gly Gly 115 120 125

Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140

Ile Val Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala
145 150 155 160

Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr 165 170 175

Ser Pro Lys Leu Val Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val 180 185 190

Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr 195 200 205

Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln

Arg 225	Ser	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 24(
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Туг
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glı
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gl ₃ 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Glr
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp
Ile	Asn	Val 435	Pro	Lys	Ala	Glu	Glu 440	Ala	His	Tyr	Ala	Trp 445	Gly	Tyr	Arç

Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465 470 475 Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 495 Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 500 505 510 Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 520 Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 530 535 540 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 550 555 560 545 Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 565 570 575 Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605 <210> 21 <211> 231 <212> PRT <213> Artificial Sequence <220> <223> CDRs of CAB1.4 protein variant <220> <221> MISC_FEATURE <222> (1)..(25) <223> X = any amino acid

<220>

```
<221> MISC_FEATURE
<220>
<221> MISC FEATURE
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (191)..(222)
<223> X = any amino acid
<400> 21
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Asn Ile Lys Asp Ser
                              30
40
Xaa Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe
  50
             55
65
           70
                       75
                                  80
Xaa Xaa Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Xaa Xaa Xaa
      100
                  105 110
115
               120
                     125
```

```
130
              135
                           140
150
                        155
Ser Ser Ser Val Ser Tyr Met His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         165 170 175
Xaa Xaa Xaa Xaa Xaa Xaa Asp Thr Ser Asn Leu Ala Ser Xaa Xaa
       180
            185 190
195
        200 205
215
 210
                      220
Arg Asp Ser Tyr Pro Leu Thr
<210> 22
<211> 771
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding CDRs of CAB1.4 variant
<220>
<221> misc_feature
<222> (1)..(153)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (184)..(225)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (274)..(372)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (406)..(552)
<223> n = a,t,c, or q
```

```
<220>
<221> misc_feature
<222> (583)..(627)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 22
60
120
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnggcttca acattaaaga ctcctatatg
                                               180
240
aatggtgata ctgaatatgc cccgaagttc cagnnnnnnn nnnnnnnnn nnnnnnnn
                                               300
                                               360
420
nnnnnnnnn nngggactcc gactgggccg tactactttg actacnnnnn nnnnnnnnn
480
540
                                               600
nnnnnnnnn nnagtgccag ctcaagtgta agttacatgc acnnnnnnnn nnnnnnnnn
nnnnnnnnn nnnnnnnnn nnnnnnngat acatccaacc tggcttctnn nnnnnnnnn
                                               660
720
                                               771
nnnnnnnnn nnnnnnnnn nnnncagcaa agagatagtt acccactcac g
<210> 23
<211> 1815
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding CAB1.4 variant
<400> 23
                                                60
caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg
tectgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg
                                               120
cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat
                                               180
gccccqaaqt tccaqqqcaa qqccactttt actacaqaca catcctccaa cacaqcctac
                                               240
                                               300
ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggact
```

ccgactgggc	cgtactactt	tgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag	caatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttatg	atacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc	aaagagatag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga	tgaaagccca	gtctgttcca	ggcatggcgc	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg	cctggggcta	tcgtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
tcgcgctact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gcgggtttgg	cagctacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc	tacag					1815

<210> 24 <211> 605 <212> PRT

<213> Artificial Sequence <220> <223> CAB1.4 protein variant <400> 24 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly 10 5 Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30 Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45 Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 75 80 70 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 100 105 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly 120 115 125 Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140 Ile Val Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 150 155 Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr 165 170 Ser Pro Lys Leu Val Ile Tyr Asp Thr Ser Asn Leu Ala Ser Gly Val 185 190 180 Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr

200

205

Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Lys 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp

Ile Asn Val Pro Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arq 435 440 Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala 455 Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465 470 475 480 Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 495 Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 500 505 510 Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 515 520 525 Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 535 540 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 555 Gly Ser Thr Gly Gly Phe Gly Ser Tyr Val Ala Phe Ile Pro Glu Lys 570 565 Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590 Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605 <210> 25 <211> 771 <212> DNA <213> Artificial Sequence <220> <223> sequence encoding CDRs of CAB1.6 variant <220> <221> misc_feature

<222> (1)..(153)

```
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (184)..(225)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (274)..(372)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (406)..(552)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (583)..(627)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 25
                                           60
120
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnggcttca acattaaaga ctcctatatg
                                           180
240
aatggtgata ctgaatatgc cccgaagttc cagnnnnnnn nnnnnnnnn nnnnnnnnn
                                           300
360
nnnnnnnn nngggctccc gactgggccg tactactttg actacnnnnn nnnnnnnnn
                                           420
480
540
nnnnnnnnn nnagtgccag ctcaagtgta agttacatgc acnnnnnnnn nnnnnnnnn
                                           600
nnnnnnnnn nnnnnnnnn nnnnnnngat acatccaacc tggcttctnn nnnnnnnnn
                                           660
720
nnnnnnnnn nnnnnnnnn nnnncagcaa agagatagtt acccactcac g
                                           771
```

<212> DNA

<213> Artificial Sequence

<220>

<223> sequence encoding CAB1.6 protein variant

<400> 26

caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg 60 tectgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg 120 180 cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac 240 300 ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc 360 ccgactgggc cgtactactt tgactactgg ggccaaggga ccacggtcac cgtctcctca 420 ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtcgtcacc cagtctccag caatcgtgtc tgcatctcca ggggagaagg tcaccataac ctgcagtgcc 480 ageteaagtg taagttacat geactggtte cageagaage caggeactte teecaaacte 540 gtgatttatg atacatccaa cctggcttct ggagtccctg ctcgcttcag tggcagtgga 600 totgggacct ottactotot cacaatcago ogaatggagg otgaagatgo tgocacttat 660 tactgccage aaagagatag ttacccacte acgttcggtg ctggcaccaa gctggagetg 720 780 aaacgggcgg ccacaccggt gtcagaaaaa cagctggcgg aggtggtcgc gaatacgatt 840 accccgctga tgaaagccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga 900 aaaccgcact attacacatt tggcaaggcc gatatcgcgg cgaataaacc cgttacgcct 960 cagaccctgt tcgagctggg ttctataagt aaaaccttca ccggcgtttt aggtggggat 1020 gccattgctc gcggtgaaat ttcgctggac gatgcggtga ccagatactg gccacagctg 1080 acgggcaagc agtggcaggg tattcgtatg ctggatctcg ccacctacac cgctggcggc ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa 1140 1200 aactggcagc cgcagtggaa gcctggcaca acgcgtcttt acgccaacgc cagcatcggt 1260 ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg cgggtcctta agccgctcaa gctggaccat acctggatta acgtgccgaa agcggaagag 1320 gcgcattacg cctggggcta tcgtgacggt aaagcggtgc gcgtttcgcc gggtatgctg 1380 1440 gatgcacaag cctatggcgt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca 1500 aacatggege eggagaaegt tgetgatgee teaettaage agggeatege getggegeag

t	cgcgctact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
(cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
(cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
Ç	ggctctactg	gcgggtttgg	cagctacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
Ç	gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
(ctcgaggcgc	tacag					1815
*	<220>	5 ificial Sequ uence encod:		protein va	ciant		
	<400> 27			process. va.			
		tgcagcagtc	tggggcagaa	cttgtgaaat	cagggggctc	agtcaagttg	60
t	cctgcacag	cttctggctt	caacattaaa	gactcctata	tgcactgggt	gaggcagggg	120
(cctgaacagg	gcctggagtg	gattggatgg	attgatcctg	agaatggtga	tactgaatat	180
Ç	gccccgaagt	tccagggcaa	ggccactttt	actacagaca	catcctccaa	cacagcctac	240
(ctgcagctca	gcagcctgac	atctgaggac	actgccgtct	attattgtaa	tgaggggctc	300
(ccgactgggc	cgtactactt	tgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
Ç	ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
(cagtctccag	caatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
ā	agctcaagtg	taacttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
Ç	gtgatttatg	atacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
t	ctgggacct	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
t	tactgccagc	aaagagatag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
ć	aaacgggcgg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
ć	accccgctga	tggcggccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
ć	aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
(cagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
Ç	gccattgctc	gcggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020

acgggcaagc agtggcaggg tattcgtatg ctggatctcg ccacctacac cgctggcggc 1080

```
ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa
                                                                    1140
aactggcage cgcagtggaa gcctggcaca acgcgtcttt acgccaacgc cagcatcggt
                                                                    1200
ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg
                                                                    1260
cgggtcctta agccgctcaa gctggaccat acctggatta acgtgccgaa agcggaagag
                                                                    1320
gcgcattacg cctggggcta tcgtgacggt aaagcggtgc gcgtttcgcc gggtatgctg
                                                                    1380
gatgcacaag cctatggcgt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca
                                                                    1440
aacatggcgc cggagaacgt tgctgatgcc tcacttaagc agggcatcgc gctggcgcag
                                                                    1500
tegegetaet ggegtategg gteaatgtat eagggtetgg getgggagat geteaaetgg
                                                                    1560
                                                                    1620
cccgtggagg ccaacacggt ggtcgagacg agttttggta atgtagcact ggcgccgttg
ccctqqqcaq aaqtqaatcc accqqctccc ccqqtcaaaq cqtcctqqqt ccataaaacq
                                                                    1680
ggctctactg gcgggtttgg cgcgtacgtg gcctttattc ctgaaaagca gatcggtatt
                                                                    1740
gtgatgctcg cgaatacaag ctatccgaac ccggcacgcg ttgaggcggc ataccatatc
                                                                    1800
ctcgaggcgc tacag
                                                                    1815
<210> 28
<211> 771
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding CDRs of CAB1.7 protein variant
<220>
<221> misc_feature
<222> (1)..(153)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (184)..(225)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (274)..(372)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (406)..(552)
<223> n = a,t,c, or g
```

```
<220>
<221> misc_feature
<222>
    (583)..(627)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 28
60
120
                                               180
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnggcttca acattaaaga ctcctatatg
240
aatqqtqata ctqaatatqc cccqaaqttc caqnnnnnnn nnnnnnnnn nnnnnnnnn
                                               300
360
nnnnnnnnn nngggctccc gctcggggcc atttacaacg actacnnnnn nnnnnnnnn
                                               420
480
540
nnnnnnnnn nnagtgccag ctcagctgta tatgccatgc acnnnnnnnn nnnnnnnnn
                                               600
                                               660
nnnnnnnnn nnnnnnnnn nnnnnnngat acatccaacc tggcttctnn nnnnnnnnn
720
                                               771
nnnnnnnnn nnnnnnnnn nnnncagcaa agagatagtt acccactcac g
<210> 29
<211> 1815
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding CAB1.7 protein variant
<400> 29
                                                60
caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg
tcctgcacag cttctggctt caacattaaa gactcctata tgcactgggt gaggcagggg
                                               120
cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat
                                               180
qccccqaaqt tccaqqqcaa qqccactttt actacaqaca catcctccaa cacaqcctac
                                               240
ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc
                                               300
```

ccgctcgggg cc	catttacaa	cgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
ggtggaggcg gt	tcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag ca	aatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcagctg ta	atatgccat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttatg at	acatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct ct	tactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc aa	agagatag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg co	cacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga to	gaaagccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact at	tacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt to	egagetggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc gc	eggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020
acgggcaagc ac	gtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac ac	ggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc co	gcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg cg	gctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta ag	gccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gegeattaeg ee	ctggggcta	tcgtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag co	ctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc cg	ggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
tegegetaet ge	gcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg cc	caacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag aa	agtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg gc	egggtttgg	cagctacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgeteg eg	gaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc ta	acag					1815

<210> 30 <211> 1815 <212> DNA <213> Artificial Sequence

<220> <223> sequence encoding CAB1.7i protein variant

<400> 30 caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg 60 120 tectgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat 180 240 gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac 300 ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc 360 ccgctcgggg ccatttacaa cgactactgg ggccaaggga ccacggtcac cgtctcctca 420 ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc 480 cagtetecag caategtgte tgeateteca ggggagaagg teaceataae etgeagtgee 540 ageteagetg tatatgeeat geactggtte cageagaage caggeaette teecaaacte 600 gtgatttatg atacatccaa cctggcttct ggagtccctg ctcgcttcag tggcagtgga totgggacct ottactotot cacaatcago ogaatggagg otgaagatgo tgocacttat 660 tactgccage aaagagatag ttacccactc acgttcggtg ctggcaccaa gctggagctg 720 aaacgggcgg ccacaccggt gtcagaaaaa cagctggcgg aggtggtcgc gaatacgatt 780 840 accccgctga tggcggccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga 900 aaaccgcact attacacatt tggcaaggcc gatatcgcgg cgaataaacc cgttacgcct 960 cagaccctgt tcgagctggg ttctataagt aaaaccttca ccggcgtttt aggtggggat 1020 gccattgctc gcggtgaaat ttcgctggac gatgcggtga ccagatactg gccacagctg 1080 acgggcaagc agtggcaggg tattcgtatg ctggatctcg ccacctacac cgctggcggc 1140 ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa aactggcagc cgcagtggaa gcctggcaca acgcgtcttt acgccaacgc cagcatcggt 1200 1260 ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg 1320 cgggtcctta agccgctcaa gctggaccat acctggatta acgtgccgaa agcggaagag gegeattacg cetggggeta tegtgaeggt aaageggtge gegtttegee gggtatgetg 1380 1440 gatgcacaag cctatggcgt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca aacatggcgc cggagaacgt tgctgatgcc tcacttaagc agggcatcgc gctggcgcag 1500 1560 tegegetaet ggegtategg gteaatgtat eagggtetgg getgggagat geteaaetgg

```
cccgtggagg ccaacacggt ggtcgagacg agttttggta atgtagcact ggcgccgttg
                                                          1620
cccqtqqcaq aaqtqaatcc accqqctccc ccqqtcaaaq cqtcctqqqt ccataaaacq
                                                          1680
ggctctactg gcgggtttgg cgcgtacgtg gcctttattc ctgaaaagca gatcggtatt
                                                          1740
gtgatgctcg cgaatacaag ctatccgaac ccggcacgcg ttgaggcggc ataccatatc
                                                          1800
ctcgaggcgc tacag
                                                          1815
<210> 31
<211> 771
<212> DNA
<213> Artificial Sequence
<220>
<223> sequence encoding CDRs of CAB1 protein
<220>
<221> misc_feature
<222> (1)..(153)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (184)..(225)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (274)..(372)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (406)..(552)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (583)..(627)
<223> n = a,t,c, or g
<220>
<221> misc_feature
<222> (649)..(744)
<223> n = a,t,c, or g
<400> 31
60
120
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnggcttca acattaaaga ctcctatatg
                                                          180
```

cacnnnnnnn nnnnnnnnnn nnnnnnnnn nnnnnnnn	240
aatggtgata ctgaatatgc cccgaagttc cagnnnnnnn nnnnnnnnn nnnnnnnnn	300
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn	360
nnnnnnnnn nngggactcc gactgggccg tactactttg actacnnnnn nnnnnnnnn	420
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn	480
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn	540
nnnnnnnnn nnagtgccag ctcaagtgta agttacatgc acnnnnnnnn nnnnnnnnn	600
nnnnnnnnn nnnnnnnnnn nnnnnnnage acatecaace tggettetnn nnnnnnnnn	660
nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnnnnnn	720
nnnnnnnnn nnnnnnnnn nnnncagcaa agatctagtt acccactcac g	771
<210> 32 <211> 1815 <212> DNA <213> Artificial Sequence <220> <223> sequence encoding CAB1 protein	
<pre><223> sequence encoding CAB1 protein <400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg</pre>	60
<400> 32	60 120
<400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg	
<400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg	120
<pre><400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat</pre>	120 180
<pre><400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccacttt actacagaca catcctccaa cacagcctac</pre>	120 180 240
<pre><400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccacttt actacagaca catcctccaa cacagcctac ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggact</pre>	120 180 240 300
<pre><400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggact ccgactgggc cgtactactt tgactactgg ggccaaggga ccacggtcac cgtctcctca</pre>	120 180 240 300 360
<pre><400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggact ccgactgggc cgtactactt tgactactgg ggccaaggga ccacggtcac cgtctcctca ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc</pre>	120 180 240 300 360 420
<pre><400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggact ccgactgggc cgtactactt tgactactgg ggccaaggga ccacggtcac cgtctcctca ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc cagtctccag caatcatgtc tgcatctcca ggggagaagg tcaccataac ctgcagtgcc</pre>	120 180 240 300 360 420 480
<pre><400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggact ccgactgggc cgtactactt tgactactgg ggccaaggga ccacggtcac cgtctcctca ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc cagtctccag caatcatgtc tgcatctcca ggggagaagg tcaccataac ctgcagtgcc agctcaagtg taagttacat gcactggttc cagcagaagc caggcacttc tcccaaactc</pre>	120 180 240 300 360 420 480 540
<pre><400> 32 caggtgaaac tgcagcagtc tggggcagaa cttgtgaggt cagggacctc agtcaagttg tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccactttt actacagaca catcctcaa cacagcctac ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggact ccgactgggc cgtactactt tgactactgg ggccaaggga ccacggtcac cgtctccaa ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc cagtctccag caatcatgtc tgcatctcca ggggagaagg tcaccataac ctgcagtgcc agctcaagtg taagttacat gcactggttc cagcagaagc caggcacttc tcccaaactc tggatttata gcacatccaa cctggcttct ggagtccctg ctcgcttcag tggcagtgga</pre>	120 180 240 300 360 420 480 540 600

accccgctga tgaaagccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga

```
aaaccqcact attacacatt tqqcaaqqcc qatatcqcqq cqaataaacc cqttacqcct
                                                                     900
cagaccctgt tcgagctggg ttctataagt aaaaccttca ccggcgtttt aggtggggat
                                                                     960
gccattgctc gcggtgaaat ttcgctggac gatgcggtga ccagatactg gccacagctg
                                                                    1020
acgggcaagc agtggcaggg tattcgtatg ctggatctcg ccacctacac cgctggcggc
                                                                    1080
ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa
                                                                    1140
                                                                    1200
aactggcagc cgcagtggaa gcctggcaca acgcgtcttt acgccaacgc cagcatcggt
ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg
                                                                    1260
                                                                    1320
cgggtcctta agccgctcaa gctggaccat acctggatta acgtgccgaa agcggaagag
                                                                    1380
gcgcattacq cctqqqqcta tcqtqacqqt aaaqcqqtqc qcqtttcqcc qqqtatqctq
                                                                    1440
gatgcacaag cctatggcgt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca
                                                                    1500
aacatggcgc cggagaacgt tgcggatgcc tcacttaagc agggcatcgc gctggcgcag
                                                                    1560
tegegetaet ggegtategg gteaatgtat eagggtetgg getgggagat geteaaetgg
cccgtggagg ccaacacggt ggtcgagacg agttttggta atgtagcact ggcgccgttg
                                                                    1620
cccgtggcag aagtgaatcc accggctccc ccggtcaaag cgtcctgggt ccataaaacg
                                                                    1680
ggctctactg gcgggtttgg cagctacgtg gcctttattc ctgaaaagca gatcggtatt
                                                                    1740
                                                                    1800
gtgatgctcg cgaatacaag ctatccgaac ccggcacgcg ttgaggcggc ataccatatc
                                                                    1815
ctcgaggcgc tacag
<210> 33
```

```
<210> 33
<211> 231
<212> PRT
<213> Artificial Sequence
<220>
<223> CDRs of SW149.5 protein

<220>
<221> MISC_FEATURE
<222> (1)..(25)
<223> X = any amino acid

<220>
<221> MISC_FEATURE
<222> (36)..(49)
<223> X = any amino acid
```

<220>

<221> MISC_FEATURE

```
<222> (66)..(98)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (110)..(158)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (169)..(183)
<223> X = any amino acid
<220>
<221> MISC_FEATURE
<222> (191)..(222)
<223> X = any amino acid
<400> 33
10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Phe Asn Ile Lys Asp Ser
     20
            25 30
35 40 45
Xaa Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe
70
                   75
8.5
                  90
Xaa Xaa Gly Leu Pro Leu Gly Ala Ile Tyr Asn Asp Tyr Xaa Xaa Xaa
      100
              105
120 125
   115
130 135 140
```

Ser Ser Ser Val Ser Tyr Met His Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 165 170

Xaa Xaa Xaa Xaa Xaa Xaa Asp Thr Ser Asn Leu Ala Ser Xaa Xaa 180 185 190

195 200

210 215 220

Arg Asp Ser Tyr Pro Leu Thr

<210> 34 <211> 771

<212> DNA

<213> Artificial Sequence

<220>

<223> sequence encoding CDRs of SW149.4 protein

<220>

<221> misc_feature

<222> (1)..(153)

<223> n = a,t,c, or g

<220>

<221> misc_feature

<222> (184)..(225)

<223> n = a,t,c, or g

<220>

<221> misc_feature

<222> (274)..(372)

<223> n = a,t,c, or g

<220>

<221> misc_feature

<222> (406)..(552)

<223> n = a,t,c, or g

<220>

<221> misc_feature

<222> (583)..(627)

<223> n = a,t,c, or g

<220> <221> misc_feature (649)..(744) <222> <223> n = a,t,c, or q <400> 34 60 120 nnnnnnnnn nnnnnnnnn nnnnnnnnn nnnggettea acattaaaga eteetatatg 180 240 aatggtgata ctgaatatgc cccgaagttc cagnnnnnnn nnnnnnnnn nnnnnnnnn 300 360 420 nnnnnnnnn nngggetece geteggggee atttacaaeg aetaennnnn nnnnnnnnn 480 540 nnnnnnnnn nnagtgccag ctcaagtgta agttacatgc acnnnnnnnn nnnnnnnnn 600 nnnnnnnnn nnnnnnnnn nnnnnnngat acatccaacc tggcttctnn nnnnnnnnn 660 720 771 nnnnnnnnn nnnnnnnnn nnnncagcaa agagatagtt acccactcac g <210> 35 <211> 1815 <212> DNA <213> Artificial Sequence <220> <223> sequence encoding SW149.5 protein 60 caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg tectgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg 120 cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat 180 gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac 240 ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc 300 ccgctcgggg ccatttacaa cgactactgg ggccaaggga ccacggtcac cgtctcctca 360 ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc 420 480 cagtetecag caategtgte tgeateteca ggggagaagg teaceataae etgeagtgee

ageteaagtg taagttacat geactggtte cageagaage caggeactte teecaaacte 540 gtgatttatg atacatccaa cctggcttct ggagtccctg ctcgcttcag tggcagtgga 600 totgggacct ottactotot cacaatcago ogaatggagg otgaagatgo tgocacttat 660 720 tactgccagc aaagagatag ttacccactc acgttcggtg ctggcaccaa gctggagctg aaacgggcgg ccacaccggt gtcagaaaaa cagctggcgg aggtggtcgc gaatacgatt 780 840 accccgctga tgaaagccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga aaaccgcact attacacatt tggcaaggcc gatatcgcgg cgaataaacc cgttacgcct 900 960 cagaccctgt tcgagctggg ttctataagt aaaaccttca ccggcgtttt aggtggggat 1020 gccattgctc gcggtgaaat ttcgctggac gatgcggtga ccagatactg gccacagctg 1080 acgggcaagc agtggcaggg tattcgtatg ctggatctcg ccacctacac cgctggcggc 1140 ctgccgctac aggtaccgga tgaggtcacg gataacgcct ccctgctgcg cttttatcaa 1200 aactggcagc cgcagtggaa gcctggcaca acgcgtcttt acgccaacgc cagcatcggt ctttttggtg cgctggcggt caaaccttct ggcatgccct atgagcaggc catgacgacg 1260 cgggtcctta agccgctcaa gctggaccat acctggatta acgtgccgaa agcggaagag 1320 gegeattacg cetggggeta tegtgaeggt aaageggtge gegtttegee gggtatgetg 1380 1440 gatgcacaag cetatggegt gaaaaccaac gtgcaggata tggcgaactg ggtcatggca 1500 aacatggcgc cggagaacgt tgctgatgcc tcacttaagc agggcatcgc gctggcgcag 1560 tegegetaet ggegtategg gteaatgtat eagggtetgg getgggagat geteaaetgg 1620 cccgtggagg ccaacacggt ggtcgagacg agttttggta atgtagcact ggcgccgttg cccgtggcag aagtgaatcc accggctccc ccggtcaaag cgtcctgggt ccataaaacg 1680 1740 ggctctactg gcgggtttgg cagctacgtg gcctttattc ctgaaaagca gatcggtatt gtgatgctcg cgaatacaag ctatccgaac ccggcacgcg ttgaggcggc ataccatatc 1800 1815 ctcgaggcgc tacag

<210> 36 <211> 1083

<211> 1000 <212> DNA

<213> Artificial Sequence

<220>

<223> sequence encoding BLA protein

<400> 36

acaccggtgt cagaaaaaca	gctggcggag	gtggtcgcga	atacgattac	cccgctgatg	60
aaagcccagt ctgttccagg	catggcggtg	gccgttattt	atcagggaaa	accgcactat	120
tacacatttg gcaaggccga	tatcgcggcg	aataaacccg	ttacgcctca	gaccctgttc	180
gagctgggtt ctataagtaa	aaccttcacc	ggcgttttag	gtggggatgc	cattgctcgc	240
ggtgaaattt cgctggacga	tgcggtgacc	agatactggc	cacagctgac	gggcaagcag	300
tggcagggta ttcgtatgct	ggatctcgcc	acctacaccg	ctggcggcct	gccgctacag	360
gtaccggatg aggtcacgga	taacgcctcc	ctgctgcgct	tttatcaaaa	ctggcagccg	420
cagtggaage ctggcacaac	gcgtctttac	gccaacgcca	gcatcggtct	ttttggtgcg	480
ctggcggtca aaccttctgg	catgccctat	gagcaggcca	tgacgacgcg	ggtccttaag	540
ccgctcaagc tggaccatac	ctggattaac	gtgccgaaag	cggaagaggc	gcattacgcc	600
tggggctatc gtgacggtaa	agcggtgcgc	gtttcgccgg	gtatgctgga	tgcacaagcc	660
tatggcgtga aaaccaacgt	gcaggatatg	gcgaactggg	tcatggcaaa	catggcgccg	720
gagaacgttg ctgatgcctc	acttaagcag	ggcatcgcgc	tggcgcagtc	gcgctactgg	780
cgtatcgggt caatgtatca	gggtctgggc	tgggagatgc	tcaactggcc	cgtggaggcc	840
aacacggtgg tcgagacgag	ttttggtaat	gtagcactgg	cgccgttgcc	cgtggcagaa	900
gtgaatccac cggctccccc	ggtcaaagcg	tcctgggtcc	ataaaacggg	ctctactggc	960
gggtttggca gctacgtggc	ctttattcct	gaaaagcaga	tcggtattgt	gatgctcgcg	1020
aatacaagct atccgaaccc	ggcacgcgtt	gaggcggcat	accatatcct	cgaggcgcta	1080
cag					1083

<210> 37

<211> 1815

<212> DNA

<213> Artificial Sequence

<220>

<223> sequence encoding CAB1.1 protein variant

<400> 37

caggtgaaac tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg 60
tcctgcacag cttctggctt caacattaaa gactcctata tgcactggtt gaggcagggg 120
cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat 180
gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac 240
ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggact 300

ccgactgggc cgtactactt	tgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
ggtggaggcg gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag caatcatgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg taagttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttata gcacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc aaagatctag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacgggcgg ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga tgaaagccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
gagaccctgt tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc gcggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020
acgggcaagc agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg cctggggcta	tcgtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
tcgcgctact ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	ggcgccgttg	1620
cccgtggcag aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg gcgggtttgg	cagctacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800
ctcgaggcgc tacag					1815

<210> 38 <211> 605 <212> PRT

<213> Artificial Sequence <220> <223> CAB1.2i protein variant <400> 38 Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Lys Ser Gly Gly 10 5 Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser 20 25 30 Tyr Met His Trp Val Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile 35 40 45 Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr 75 80 70 Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln 100 105 Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly 120 115 125 Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala 130 135 140 Ile Val Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala 150 155 Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr 165 170 Ser Pro Lys Leu Val Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val 185 190 180 Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr

200

205

Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Ser	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Ala 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu 405	Ala	Val	Lys	Pro	Ser 410	Gly	Met	Pro	Tyr	Glu 415	Gln
Ala	Met	Thr	Thr 420	Arg	Val	Leu	Lys	Pro 425	Leu	Lys	Leu	Asp	His 430	Thr	Trp

Ile Asn Val Pro Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arq 435 440 Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala 455 Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465 470 475 480 Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 495 Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 500 505 510 Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 515 520 525 Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 535 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 555 Gly Ser Thr Gly Gly Phe Gly Ala Tyr Val Ala Phe Ile Pro Glu Lys 565 570 Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590 Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605 <210> 39 <211> 1815 <212> DNA <213> Artificial Sequence <220> <223> sequence encoding CAB1.2i protein variant <400> 39 caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg 60 tectgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg 120

cctgaacagg	gcctggagtg	gattggatgg	attgatcctg	agaatggtga	tactgaatat	180
gccccgaagt	tccagggcaa	ggccactttt	actacagaca	catcctccaa	cacagcctac	240
ctgcagctca	gcagcctgac	atctgaggac	actgccgtct	attattgtaa	tgaggggact	300
ccgactgggc	cgtactactt	tgactactgg	ggccaaggga	ccacggtcac	cgtctcctca	360
ggtggaggcg	gttcaggcgg	aggtggctct	ggcggtggcg	gatcagaaaa	tgtgctcacc	420
cagtctccag	caatcgtgtc	tgcatctcca	ggggagaagg	tcaccataac	ctgcagtgcc	480
agctcaagtg	taagttacat	gcactggttc	cagcagaagc	caggcacttc	tcccaaactc	540
gtgatttata	gcacatccaa	cctggcttct	ggagtccctg	ctcgcttcag	tggcagtgga	600
tctgggacct	cttactctct	cacaatcagc	cgaatggagg	ctgaagatgc	tgccacttat	660
tactgccagc	aaagatctag	ttacccactc	acgttcggtg	ctggcaccaa	gctggagctg	720
aaacggggcg	ccacaccggt	gtcagaaaaa	cagctggcgg	aggtggtcgc	gaatacgatt	780
accccgctga	tggcggccca	gtctgttcca	ggcatggcgg	tggccgttat	ttatcaggga	840
aaaccgcact	attacacatt	tggcaaggcc	gatatcgcgg	cgaataaacc	cgttacgcct	900
cagaccctgt	tcgagctggg	ttctataagt	aaaaccttca	ccggcgtttt	aggtggggat	960
gccattgctc	gcggtgaaat	ttcgctggac	gatgcggtga	ccagatactg	gccacagctg	1020
acgggcaagc	agtggcaggg	tattcgtatg	ctggatctcg	ccacctacac	cgctggcggc	1080
ctgccgctac	aggtaccgga	tgaggtcacg	gataacgcct	ccctgctgcg	cttttatcaa	1140
aactggcagc	cgcagtggaa	gcctggcaca	acgcgtcttt	acgccaacgc	cagcatcggt	1200
ctttttggtg	cgctggcggt	caaaccttct	ggcatgccct	atgagcaggc	catgacgacg	1260
cgggtcctta	agccgctcaa	gctggaccat	acctggatta	acgtgccgaa	agcggaagag	1320
gcgcattacg	cctggggcta	tcgtgacggt	aaagcggtgc	gcgtttcgcc	gggtatgctg	1380
gatgcacaag	cctatggcgt	gaaaaccaac	gtgcaggata	tggcgaactg	ggtcatggca	1440
aacatggcgc	cggagaacgt	tgctgatgcc	tcacttaagc	agggcatcgc	gctggcgcag	1500
tegegetact	ggcgtatcgg	gtcaatgtat	cagggtctgg	gctgggagat	gctcaactgg	1560
cccgtggagg	ccaacacggt	ggtcgagacg	agttttggta	atgtagcact	gccgccgttg	1620
cccgtggcag	aagtgaatcc	accggctccc	ccggtcaaag	cgtcctgggt	ccataaaacg	1680
ggctctactg	gcgggtttgg	cgcgtacgtg	gcctttattc	ctgaaaagca	gatcggtatt	1740
gtgatgctcg	cgaatacaag	ctatccgaac	ccggcacgcg	ttgaggcggc	ataccatatc	1800

ctcgaggcgc tacag 1815

<210 <211 <212 <213	L> 2>	40 605 PRT Arti:	ficia	al Se	equer	nce									
<220 <223		CAB1	.13i	prot	cein	vari	iant								
<400)>	40													
Gln 1	Val	Gln	Leu	Gln 5	Gln	Ser	Gly	Ala	Glu 10	Leu	Val	Lys	Ser	Gly 15	Gly
Ser	Val	Lys	Leu 20	Ser	Cys	Thr	Ala	Ser 25	Gly	Phe	Asn	Ile	Lys 30	Asp	Ser
Tyr	Met	His 35	Trp	Val	Arg	Gln	Gly 40	Pro	Glu	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Trp 50	Ile	Asp	Pro	Glu	Asn 55	Gly	Asp	Thr	Glu	Tyr 60	Ala	Pro	Lys	Phe
Gln 65	Gly	Lys	Ala	Thr	Phe 70	Thr	Thr	Asp	Thr	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Leu	Gln	. Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Asn	Glu	Gly	Leu 100	Pro	Leu	Gly	Ala	Ile 105	Tyr	Asn	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Thr 115	Val		Val			_	_	_	_	Ser 125	Gly	Gly	Gly
Gly	Ser 130	Gly	Gly	Gly	Gly	Ser 135	Glu	Asn	Val	Leu	Thr 140	Gln	Ser	Pro	Ala
Ile 145	Val	Ser	Ala	Ser	Pro 150	Gly	Glu	Lys	Val	Thr 155	Ile	Thr	Cys	Ser	Ala 160
Ser	Ser	Ala	Val	Tyr 165	Ala	Met	His	Trp	Phe 170	Gln	Gln	Lys	Pro	Gly 175	Thr

Ser	Pro	Lys	Leu 180	Val	Ile	Tyr	Ser	Thr 185	Ser	Asn	Leu	Ala	Ser 190	Gly	Val
Pro	Ala	Arg 195	Phe	Ser	Gly	Ser	Gly 200	Ser	Gly	Thr	Ser	Tyr 205	Ser	Leu	Thr
Ile	Ser 210	Arg	Met	Glu	Ala	Glu 215	Asp	Ala	Ala	Thr	Tyr 220	Tyr	Cys	Gln	Gln
Arg 225	Asp	Ser	Tyr	Pro	Leu 230	Thr	Phe	Gly	Ala	Gly 235	Thr	Lys	Leu	Glu	Leu 240
Lys	Arg	Ala	Ala	Thr 245	Pro	Val	Ser	Glu	Lys 250	Gln	Leu	Ala	Glu	Val 255	Val
Ala	Asn	Thr	Ile 260	Thr	Pro	Leu	Met	Ala 265	Ala	Gln	Ser	Val	Pro 270	Gly	Met
Ala	Val	Ala 275	Val	Ile	Tyr	Gln	Gly 280	Lys	Pro	His	Tyr	Tyr 285	Thr	Phe	Gly
Lys	Ala 290	Asp	Ile	Ala	Ala	Asn 295	Lys	Pro	Val	Thr	Pro 300	Gln	Thr	Leu	Phe
Glu 305	Leu	Gly	Ser	Ile	Ser 310	Lys	Thr	Phe	Thr	Gly 315	Val	Leu	Gly	Gly	Asp 320
Ala	Ile	Ala	Arg	Gly 325	Glu	Ile	Ser	Leu	Asp 330	Asp	Ala	Val	Thr	Arg 335	Tyr
Trp	Pro	Gln	Leu 340	Thr	Gly	Lys	Gln	Trp 345	Gln	Gly	Ile	Arg	Met 350	Leu	Asp
Leu	Ala	Thr 355	Tyr	Thr	Ala	Gly	Gly 360	Leu	Pro	Leu	Gln	Val 365	Pro	Asp	Glu
Val	Thr 370	Asp	Asn	Ala	Ser	Leu 375	Leu	Arg	Phe	Tyr	Gln 380	Asn	Trp	Gln	Pro
Gln 385	Trp	Lys	Pro	Gly	Thr 390	Thr	Arg	Leu	Tyr	Ala 395	Asn	Ala	Ser	Ile	Gly 400
Leu	Phe	Gly	Ala	Leu	Ala	Val	Lys	Pro	Ser	Gly	Met	Pro	Tyr	Glu	Gln

Ala Met Thr Thr Arg Val Leu Lys Pro Leu Lys Leu Asp His Thr Trp 420 425 Ile Asn Val Pro Lys Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg 435 440 445 Asp Gly Lys Ala Val Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala 450 455 460 Tyr Gly Val Lys Thr Asn Val Gln Asp Met Ala Asn Trp Val Met Ala 465 470 475 480 Asn Met Ala Pro Glu Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile 485 490 495 Ala Leu Ala Gln Ser Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly 500 505 510 Leu Gly Trp Glu Met Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val 515 520 525 Glu Thr Ser Phe Gly Asn Val Ala Leu Ala Pro Leu Pro Val Ala Glu 530 535 540 Val Asn Pro Pro Ala Pro Pro Val Lys Ala Ser Trp Val His Lys Thr 545 550 560 Gly Ser Thr Gly Gly Phe Gly Ala Tyr Val Ala Phe Ile Pro Glu Lys

Gln Ile Gly Ile Val Met Leu Ala Asn Thr Ser Tyr Pro Asn Pro Ala 580 585 590

565 570 575

Arg Val Glu Ala Ala Tyr His Ile Leu Glu Ala Leu Gln 595 600 605

<210> 41

<211> 1814

<212> DNA

<213> Artificial Sequence

<220>

<400> 41 caggtgcagc tgcagcagtc tggggcagaa cttgtgaaat cagggggctc agtcaagttg 60 tectgeacag ettetggett caacattaaa gaeteetata tgeactgggt gaggeagggg 120 180 cctgaacagg gcctggagtg gattggatgg attgatcctg agaatggtga tactgaatat gccccgaagt tccagggcaa ggccactttt actacagaca catcctccaa cacagcctac 240 300 ctgcagctca gcagcctgac atctgaggac actgccgtct attattgtaa tgaggggctc 360 ccgctcgggg ccatttacaa cgactactgg ggccaaggga ccacggtcac cgtctcctca 420 ggtggaggcg gttcaggcgg aggtggctct ggcggtggcg gatcagaaaa tgtgctcacc 480 cagtetecag caategtgte tgeateteca ggggagaagg teaccataac etgeagtgee 540 ageteagetg tatatgeeat geaetggtte eageagaage eaggeaette teecaaaete 600 gtgatttata gcacatccaa cctggcttct ggagtccctg ctcgcttcag tggcagtgga 660 tetgggacet ettaetetet cacaateage egaatggagg etgaagatge tgecaettat tactgccage aaagagatag ttacccacte acgttcggtg ctggcaccaa gctggagetg 720 aaacgggcgg ccacaccggt gtcagaaaaa cagctggcgg aggtggtcgc gaatacgatt 780 accocgctga tggcggccca gtctgttcca ggcatggcgg tggccgttat ttatcaggga 840 900 aaaccgcact attacacatt tggcaaggcc gatatcgcgg cgaataaacc cgttacgcct 960 cagaccetgt tegagetggg ttetataagt aaaacettea eeggegtttt ggtggggatg 1020 ccattgctcg cggtgaaatt tcgctggacg atgcggtgac cagatactgg ccacagctga 1080 cgggcaagca gtggcagggt attcgtatgc tggatctcgc cacctacacc gctggcggcc tgccgctaca ggtaccggat gaggtcacgg ataacgcctc cctgctgcgc ttttatcaaa 1140 1200 actggcagcc gcagtggaag cctggcacaa cgcgtcttta cgccaacgcc agcatcggtc tttttggtgc gctggcggtc aaaccttctg gcatgcccta tgagcaggcc atgacgacgc 1260 1320 gggtccttaa gccgctcaag ctggaccata cctggattaa cgtgccgaaa gcggaagagg 1380 cgcattacgc ctggggctat cgtgacggta aagcggtgcg cgtttcgccg ggtatgctgg atgcacaagc ctatggcgtg aaaaccaacg tgcaggatat ggcgaactgg gtcatggcaa 1440 acatggcgcc ggagaacgtt gctgatgcct cacttaagca gggcatcgcg ctggcgcagt 1500 cgcgctactg gcgtatcggg tcaatgtatc agggtctggg ctgggagatg ctcaactggc 1560

ccgtggaggc caacacggtg gtcgagacga gttttggtaa tgtagcactg gcgccgttgc

ccgtggcaga agtgaatcca ccggctcccc cggtcaaagc gtcctgggtc cataaaacgg	1680									
getetactgg egggtttgge gegtaegtgg eetttattee tgaaaageag ateggtattg	1740									
tgatgetege gaatacaage tateegaace eggeaegegt tgaggeggea taccatatee	1800									
tegaggeget acag										
<210> 42 <211> 623 <212> PRT <213> Artificial Sequence										
<220> <223> CAB1.13i protein variant										
<400> 42										
Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Leu Gly 1 5 10 15										
Gln Arg Ala Thr Met Ser Cys Arg Ala Gly Glu Ser Val Asp Ile Phe 20 25 30										
Gly Val Gly Phe Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35 40 45										
Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Val 50 55 60										
Arg Phe Ser Gly Thr Gly Ser Gly Thr Asp Phe Thr Leu Ile Ile Asp 70 75 80										
Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Thr Asn 85 90 95										
Glu Asp Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Gly 100 105 110										
Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly 115 120 125										
Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Glu Val Gln 130 135 140										
Leu Gln Gln Ser Gly Ala Glu Leu Val Glu Pro Gly Ala Ser Val Lys 145 150 155 160										

Leu Ser Cys	Thr Ala 165	_	Phe	Asn	Ile 170	Lys	Asp	Thr	Tyr	Met 175	His
Trp Val Lys	Gln Arg 180	Pro Glu		Gly 185	Leu	Glu	Trp	Ile	Gly 190	Arg	Ile
Asp Pro Ala		Asn Ser	Lys 200	Tyr	Val	Pro	Lys	Phe 205	Gln	Gly	Lys
Ala Thr Ile	Thr Ala	Asp Thr 215		Ser	Asn	Thr	Ala 220	Tyr	Leu	Gln	Leu
Thr Ser Leu 225	. Thr Ser	Glu Asp 230	Thr	Ala	Val	Tyr 235	Tyr	Cys	Ala	Pro	Phe 240
Gly Tyr Tyr	Val Ser 245		Ala	Met	Ala 250	Tyr	Trp	Gly	Gln	Gly 255	Thr
Ser Val Thr	Val Ser 260	Ser Thr		Val 265	Ser	Glu	Lys	Gln	Leu 270	Ala	Glu
Val Val Ala 275		Ile Thr	Pro 280	Leu	Met	Ala	Ala	Gln 285	Ser	Val	Pro
Gly Met Ala 290	Val Ala	Val Ile 295	_	Gln	Gly	Lys	Pro 300	His	Tyr	Tyr	Thr
Phe Gly Lys	Ala Asp	Ile Ala 310	Ala	Asn	Lys	Pro 315	Val	Thr	Pro	Gln	Thr 320
Leu Phe Glu	Leu Gly 325		Ser	Lys	Thr 330	Phe	Thr	Gly	Val	Leu 335	Gly
Gly Asp Ala	Ile Ala 340	Arg Gly		Ile 345	Ser	Leu	Asp	Asp	Ala 350	Val	Thr
Arg Tyr Trp 355		Leu Thr	Gly 360	Lys	Gln	Trp	Gln	Gly 365	Ile	Arg	Met
Leu Asp Leu 370	Ala Thr	Tyr Thr		Gly	Gly	Leu	Pro 380	Leu	Gln	Val	Pro

Asp 385	Glu	Val	Thr	Asp	Asn 390	Ala	Ser	Leu	Leu	Arg 395	Phe	Tyr	Gln	Asn	Trp 400
Gln	Pro	Gln	Trp	Lys 405	Pro	Gly	Thr	Thr	Arg 410	Leu	Tyr	Ala	Asn	Ala 415	Ser
Ile	Gly	Leu	Phe 420	Gly	Ala	Leu	Ala	Val 425	Lys	Pro	Ser	Gly	Met 430	Pro	Tyr
Glu	Gln	Ala 435	Met	Thr	Thr	Arg	Val 440	Leu	Lys	Pro	Leu	Lys 445	Leu	Asp	His
Thr	Trp 450	Ile	Asn	Val	Pro	Lys 455	Ala	Glu	Glu	Ala	His 460	Tyr	Ala	Trp	Gly
Tyr 465	Arg	Asp	Gly	Lys	Ala 470	Val	Arg	Val	Ser	Pro 475	Gly	Met	Leu	Asp	Ala 480
Gln	Ala	Tyr	Gly	Val 485	Lys	Thr	Asn	Val	Gln 490	Asp	Met	Ala	Asn	Trp 495	Val
Met	Ala	Asn	Met 500	Ala	Pro	Glu	Asn	Val 505	Ala	Asp	Ala	Ser	Leu 510	Lys	Gln
Gly	Ile	Ala 515	Leu	Ala	Gln	Ser	Arg 520	Tyr	Trp	Arg	Ile	Gly 525	Ser	Met	Tyr
Gln	Gly 530	Leu	Gly	Trp	Glu	Met 535	Leu	Asn	Trp	Pro	Val 540	Glu	Ala	Asn	Thr
Val 545	Val	Glu	Thr	Ser	Phe 550	Gly	Asn	Val	Ala	Leu 555	Ala	Pro	Leu	Pro	Val 560
Ala	Glu	Val	Asn	Pro 565	Pro	Ala	Pro	Pro	Val 570	Lys	Ala	Ser	Trp	Val 575	His
Lys	Thr	Gly	Ser 580	Thr	Gly	Gly	Phe	Gly 585	Ala	Tyr	Val	Ala	Phe 590	Ile	Pro
Glu	Lys	Gln 595	Ile	Gly	Ile	Val	Met 600	Leu	Ala	Asn	Thr	Ser 605	Tyr	Pro	Asn

<210> 43 <211> 1869 <212> DNA <213> Artificial Sequence <220> <223> sequence encoding CAB1.11i protein variant <400> 43 gacategtee tgacecagag eeeggcaage etgtetgttt eeetgggeea gegtgeeact 60 120 atgtcctgca gagcgggtga gtctgttgac attttcggtg tcggttttct gcactggtac 180 caacagaaac cgggtcagcc gccaaaactg ctgatctatc gtgcttctaa cctggagtcc qqcatcccqq tacqtttctc cqqtactqqc tctqqtactq attttaccct qattatcqac 240 ccggtggaag cagacgatgt tgccacctac tattgccagc agaccaacga ggatccgtac 300 accttcggtg gcggtactaa actggagatc aaaggcggtg gtggttctgg tggtggtggt 360 agcggtggcg gtggtagcgg tggcggtggc agcggtggtg gtggctctgg tggcggtggc 420 tetgaagtge agetgeagea gteeggtgeg gagetegttg aacegggege ttetgtgaaa 480 ctgtcttgca ctgcatctgg tttcaacatt aaggacacct acatgcactg ggtgaaacaa 540 600 cgcccggaac agggtctgga gtggatcggt cgcatcgatc cggctaacgg taacagcaaa tacgtgccaa aattccaggg taaagcaacc atcactgctg atacctcctc taacactgct 660 720 tacctgcagc tgacttccct gactagcgaa gacaccgcgg tttattactg cgctccgttc 780 ggctactatg tcagcgatta cgcaatggcc tactggggtc agggcacctc tgttaccgtt totagcacae eggtgteaga aaaacagetg geggaggtgg tegegaatae gattaceeeg 840 ctgatggcgg cccagtctgt tccaggcatg gcggtggccg ttatttatca gggaaaaccg 900 960 cactattaca catttggcaa ggccgatatc gcggcgaata aacccgttac gcctcagacc 1020 ctgttcgagc tgggttctat aagtaaaacc ttcaccggcg ttttaggtgg ggatgccatt 1080 gctcgcggtg aaatttcgct ggacgatgcg gtgaccagat actggccaca gctgacgggc aagcagtggc agggtattcg tatgctggat ctcgccacct acaccgctgg cggcctgccg 1140 ctacaggtac cggatgaggt cacggataac gcctccctgc tgcgctttta tcaaaactgg 1200 cagoogoagt ggaagootgg cacaacgogt otttacgooa acgooagoat oggtottttt 1260 ggtgcgctgg cggtcaaacc ttctggcatg ccctatgagc aggccatgac gacgcgggtc 1320

cttaago	eege	tcaagctgga	ccatacctgg	attaacgtgc	cgaaagcgga	agaggcgcat	1380
tacgcct	ggg	gctatcgtga	cggtaaagcg	gtgcgcgttt	cgccgggtat	gctggatgca	1440
caagcct	tatg	gcgtgaaaac	caacgtgcag	gatatggcga	actgggtcat	ggcaaacatg	1500
gcgccgg	gaga	acgttgctga	tgcctcactt	aagcagggca	tcgcgctggc	gcagtcgcgc	1560
tactggd	cgta	tcgggtcaat	gtatcagggt	ctgggctggg	agatgctcaa	ctggcccgtg	1620
gaggcca	aaca	cggtggtcga	gacgagtttt	ggtaatgtag	cactggcgcc	gttgcccgtg	1680
gcagaag	gtga	atccaccggc	tcccccggtc	aaagcgtcct	gggtccataa	aacgggctct	1740
actggcg	gggt	ttggcgcgta	cgtggccttt	attcctgaaa	agcagatcgg	tattgtgatg	1800
ctcgcga	aata	caagctatcc	gaacccggca	cgcgttgagg	cggcatacca	tatcctcgag	1860
gcgctac	cag						1869
<210><211><211><212><213><223>		ificial Sequ chetic oligo					
<400> cggccat	44 Eggc	ccaggtgcag	ctgcagcagt	ctggggc			37
<210> <211> <212> <213>	45 37 DNA Arti	lficial Sequ	ıence				
<220> <223>	synt	thetic oligo	onucleotide				
<400> ctggggc	45 caga	acttgtgaaa	tcagggacct	cagtcaa			37
<210> <211> <212> <213>	46 37 DNA Arti	ificial Sequ	ience				
<220> <223>	synt	thetic oligo	onucleotide				
<400>	46 aact	tgtgaggccg	gggacctcag	tcaagtt			37

```
<210> 47
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 47
aacttgtgag gtcagggggc tcagtcaagt tgtcctg
                                                                    37
<210> 48
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 48
gcacagette tggetteace attaaagaet eetatat
                                                                    37
<210> 49
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 49
                                                                    37
cagettetgg etteaaettt aaagaeteet atatgea
<210> 50
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 50
cttctggctt caacattagc gactcctata tgcactg
                                                                    37
<210> 51
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 51
```

actcct	atat gcactgggtg aggcaggggc	ctgaaca	37
	52 37 DNA Artificial Sequence		
<220> <223>	synthetic oligonucleotide		
<400> tgcacto	52 ggtt gaggcaggcg cetgaacagg	gcctgga	37
<210> <211> <212> <213>	53 37 DNA Artificial Sequence		
<220> <223>	synthetic oligonucleotide		
<400> ggttga	53 ggca ggggcctggc cagggcctgg	agtggat	37
<210><211><212><212><213>	54 37 DNA Artificial Sequence		
<220> <223>	synthetic oligonucleotide		
<400> cccgaa	54 agtt ccagggccgt gccactttta	ctacaga	37
<210> <211> <212> <213>	55 37 DNA Artificial Sequence		
<220> <223>	synthetic oligonucleotide		
<400> cgaagt	55 tcca gggcaagttc acttttacta	cagacac	37
<210><211><211><212><213>	56 37 DNA Artificial Sequence		
<220>			

<223>	synthetic oligonucleotide	
<400> tccaggo	56 gcaa ggccactatt actacagaca catcete	37
<212>	57 37 DNA Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
<400> gcaaggo	57 ccac ttttactcgc gacacatcct ccaacac	37
<211> <212>	37	
<220> <223>	synthetic oligonucleotide	
<400> ttactac	58 caga cacatccaaa aacacageet aeetgea	37
<210> <211> <212> <213>	37	
<220> <223>	synthetic oligonucleotide	
<400> ctgccgt	59 tota ttattgtgog gaggggaoto ogaotgg	37
<210> <211> <212> <213>	60 37 DNA Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
<400> ccgtcta	60 atta ttgtaatege gggaeteega etgggee	37
<210> <211> <212>	61 37 DNA	

<213>	Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
<400> ctggcgg	61 gtgg cggatcacag aatgtgctca cccagtc	37
<210> <211>		
<211>		
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>	62	0.7
gcggtg	gcgg atcagaaagc gtgctcaccc agtctcc	37
<210>	63	
<211>		
<212>	DNA Artificial Sequence	
	Michigan Dequence	
<220> <223>	synthetic oligonucleotide	
<400> gaaaat	63 gtgc tcacccagcc gccagcaatc atgtctgc	38
<210>		
<211> <212>	37 DNA	
	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>	64	
tgctca	seca gtetecaage ateatgtetg catetee	37
<210> <211>	65 37	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide	
<400>	65	27
cccagt	ctec ageaategtg tetgeatete eagggga	37

```
<210> 66
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 66
tgtctgcatc tccagggcag aaggtcacca taacctg
                                                                    37
<210> 67
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 67
ctgcatctcc aggggagacc gtcaccataa cctgcag
                                                                    37
<210> 68
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 68
                                                                    37
taagttacat gcactggtac cagcagaagc caggcac
<210> 69
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 69
gcacttctcc caaactcgtg atttatagca catccaa
                                                                    37
<210> 70
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<400> 70
```

tggctt	etgg agteeetgat egetteagtg	gcagtgg	37
<210> <211> <212> <213>	71 37 DNA Artificial Sequence		
<220> <223>	synthetic oligonucleotide		
<400> ctcgcti	71 ccag tggcagtaaa tctgggacct	cttactc	37
<210> <211> <212> <213>	72 37 DNA Artificial Sequence		
<220> <223>	synthetic oligonucleotide		
<400> gtggat	72 ctgg gacctctgcg tctctcacaa	tcagccg	37
<210> <211> <212> <213>	73 37 DNA Artificial Sequence		
<220> <223>	synthetic oligonucleotide		
<400> ctctcac	73 caat cageegaetg gaggetgaag	atgctgc	37
	74 37 DNA Artificial Sequence		
<220> <223>	synthetic oligonucleotide		
<400> gaatgga	74 aggc tgaagatgaa gccacttatt	actgcca	37
<210><211><211><212><213>	75 37 DNA Artificial Sequence		
<220>			

<223>	synthetic oligonucleotide	
<400> aggctga	75 aaga tgctgccgat tattactgcc agcaaag	37
<210><211><211><212><213>	76 37 DNA Artificial Sequence	
<220> <223>	synthetic oligonucleotide	
	76 cac gttcggtggc ggcaccaagc tggagct	37
<210> <211> <212> <213>	37	
<220> <223>	primer	
	77 gett caacattsat gacteetata tgeactg	37
<210> <211> <212> <213>	37	
<220> <223>	primer	
<400> ctggctt	78 caa cattaaasat teetatatge aetgggt	37
<210> <211> <212> <213>	79 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> gcttcaa	79 acat taaagacsat tatatgcact gggtgag	37
<210> <211> <212>	80 37 DNA	

```
<213> Artificial Sequence
<220>
<223> primer
<400> 80
tcaacattaa agactccsat atgcactggg tgaggca
                                                                     37
<210> 81
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 81
                                                                     37
ttaaagactc ctatatgsat tgggtgaggc aggggcc
<210> 82
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 82
                                                                     37
gcctggagtg gattggasat attgatcctg agaatgg
<210> 83
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 83
                                                                     37
agtggattgg atggattsat cctgagaatg gtgatac
<210> 84
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 84
ttggatggat tgatcctsat aatggtgata ctgaata
                                                                     37
```

```
<210> 85
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 85
gatggattga tcctgagsat ggtgatactg aatatgc
                                                                     37
<210> 86
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 86
                                                                     37
ttgatcctga gaatggtsat actgaatatg ccccgaa
<210> 87
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 87
                                                                     37
atcctgagaa tggtgatsat gaatatgccc cgaagtt
<210> 88
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 88
ctgagaatgg tgatactsat tatgccccga agttcca
                                                                     37
<210> 89
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 89
```

gtgata	ctga atatgccsat aagttccagg gc	aaggc	37
<210><211><211><212><213>	90 37 DNA Artificial Sequence		
<220> <223>	primer		
<400> atactg	90 aata tgccccgsat ttccagggca ag	gccac	37
<210><211><212><212><213>	91 37 DNA Artificial Sequence		
<220> <223>	primer		
<400> aatatg	91 cccc gaagttcsat ggcaaggcca ct	tttac	37
<210><211><211><212><213>	92 37 DNA Artificial Sequence		
<220> <223>	primer		
<400> ccgtct	92 atta ttgtaatsat gggactccga ct	gggcc	37
<210> <211> <212> <213>	93 37 DNA Artificial Sequence		
<220> <223>	primer		
<400> tctatt	93 attg taatgagsat actccgactg gg	ccgta	37
<210> <211> <212> <213>	94 37 DNA Artificial Sequence		
<220>			

<223>	primer	
<400> attatto	94 gtaa tgaggggsat ccgactgggc cgtacta	37
	95 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> attgtaa	95 atga ggggactsat actgggccgt actactt	37
<211> <212>	96 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> gtaatga	96 aggg gactccgsat gggccgtact actttga	37
<212>	37	
<220> <223>	primer	
	97 ggac teegaetsat eegtaetaet ttgaeta	37
<210><211><211><212><213>	98 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> aggggad	98 etcc gactgggsat tactactttg actactg	37
<210> <211> <212>	99 37 DNA	

```
<213> Artificial Sequence
<220>
<223> primer
<400> 99
ctccgactgg gccgtacsat tttgactact ggggcca
                                                                      37
<210> 100
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 100
                                                                      37
taacctgcag tgccagcsat agtgtaagtt acatgca
<210> 101
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 101
cctgcagtgc cagctcasat gtaagttaca tgcactg
                                                                      37
<210> 102
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 102
                                                                      37
gcagtgccag ctcaagtsat agttacatgc actggtt
<210> 103
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 103
gtgccagctc aagtgtasat tacatgcact ggttcca
                                                                      37
```

```
<210> 104
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 104
ccagctcaag tgtaagtsat atgcactggt tccagca
                                                                     37
<210> 105
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 105
                                                                     37
ctcccaaact cgtgattsat agcacatcca acctggc
<210> 106
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 106
                                                                     37
ccaaactcgt gatttatsat acatccaacc tggcttc
<210> 107
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 107
aactcgtgat ttatagcsat tccaacctgg cttctgg
                                                                     37
<210> 108
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 108
```

tcgtga	ttta tagcacasat aacctggctt ctggagt	37
	109 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> tgattta	109 atag cacateesat etggettetg gagteee	37
<211> <212>	110 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> atagca	110 catc caacctgsat tctggagtcc ctgctcg	37
<210> <211> <212> <213>	111 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> gcacate	111 ccaa cctggctsat ggagtccctg ctcgctt	37
<210> <211> <212> <213>	112 37 DNA Artificial Sequence	
<220> <223>	primer	
<400> cttatta	112 actg ccagcaasat tctagttacc cactcac	37
<211> <212>	113 36 DNA Artificial Sequence	
<220>		

<223>	primer	
<400>	113	
	gcca gcaaagasat agttacccac tcacgt	36
2010s	111	
	114 36	
<212>		
	Artificial Sequence	
<220>		
<223>	primer	
	114	36
actycca	agca aagatetsat tacceaetea egtteg	30
<210>	115	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	primer	
.220	FILMOT	
<400>	115	
gccagca	aaag atctagtsat ccactcacgt tcggtg	36
<210>	116	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	primer	
<400>	116	
	ctag ttacccasat acgttcggtg ctggcac	37
-		
-0.1.0	118	
<210> <211>	117 17	
<211>	DNA	
<213>	Artificial Sequence	
_	•	
<220>		
<223>	primer	
<400>	117	
	acag ctatgac	17
2099000		_ ·
<210>	118	
<211>	22	
<212>	DNA	

```
<213> Artificial Sequence
<220>
<223> primer
<400> 118
ggaccacggt caccgtctcc tc
                                                                       22
<210> 119
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<220>
<221> misc_feature
<222> (18)..(19)
<223> n = a,t,c, or g
<400> 119
attattgtaa tgaggggnns ccgactgggc cgtacta
                                                                       37
<210> 120
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide
<220>
<221> misc_feature
<222> (19)..(20)
<223> n = a,t,c, or g
<400> 120
                                                                       37
tagtacggcc cagtcggsnn cccctcatta caataat
<210> 121
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature <222> (18)..(19)
```

```
<223> n = a,t,c, or g
<400> 121
                                                                    37
gtaatgaggg gctgccgnns gggccgtact actttga
<210> 122
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (19)..(20)
<223> n = a,t,c, or g
<400> 122
                                                                    37
tcaaagtagt acggcccsnn cggcagcccc tcattac
<210> 123
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (18)..(19)
<223> n = a,t,c, or g
<400> 123
                                                                    37
cgactgggcc gtactacnns gactactggg gccaagg
<210> 124
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (19)..(20)
<223> n = a,t,c, or g
<400> 124
```

```
37
ccttggcccc agtagtcsnn gtagtacggc ccagtcg
<210> 125
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (22)..(22)
<223> n = a,t,c, or g
<400> 125
                                                                  47
gaggggctcc cgctcgggrv cntttacaac gactactggg gccaagg
<210> 126
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (26)..(26)
<223> n = a,t,c, or g
<400> 126
                                                                    47
ccttggcccc agtagtcgtt gtaaangbyc ccgagcggga gcccctc
<210> 127
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 127
                                                                    37
cttctggctt caacattacc gactcctata tgcactg
<210> 128
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> primer
<400> 128
                                                                    36
gcctggagtg gattggattt attgatcctg agaatg
<210> 129
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<220>
<221> misc_feature
<222> (41)..(41)
<223> n = a,t,c, or g
<400> 129
gatectgaga atggtswtre tgaatatgee ebgaagtter neggeaagge caettttae 59
<210> 130
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 130
ctgcagtgcc agctcadctg taymtdccat gcactggttc cagc
                                                                    44
<210> 131
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 131
cgtgatttat gatacarvca acctggctrs tggagtccct gctcgcttc
                                                                  49
<210> 132
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 132
```

gattac	cccg ctgatggcgg cccagtctgt tccag	35
<220> <223>	primer	
<400> ctactg	133 gegg gtttggegeg taegtggeet ttatteetg	39