1 toeljava tipov

Primer $\lambda f. \lambda x. f(fx) \xrightarrow{\text{laster simple}^2} (\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow \alpha$

1. faza: dolocino tipe in nastavimo enache med parametri - za tipe

Hindley-
Plindley-
Plindley-
Algoritem

$$\frac{\Box + f : \beta}{\Box + f : \beta} \quad \frac{\Box + f : \beta}{\Box + f : \beta} \quad \frac{\Box + f : \beta}{\Box + f : \beta} \quad \frac{\Box + f : \beta}{\Box + f : \beta} \quad \frac{\Box + f : \beta}{\Box + f : \beta} \quad \frac{\Box + f : \beta}{\Box + f : \beta} \quad \frac{\Box + f : \beta}{\Box + \beta} \quad$$

2. faza: regins enache

$$\frac{\beta = \gamma \rightarrow \delta}{\beta = \delta \rightarrow \epsilon} \qquad \frac{\gamma = \delta}{\delta = \epsilon}$$

$$\frac{\beta = \delta \rightarrow \epsilon}{\beta \rightarrow \gamma \rightarrow \delta} \qquad \Rightarrow \frac{\gamma = \delta}{\beta \Rightarrow \gamma \rightarrow \delta}$$

Ce dobljeno substitucijo uperasime na typu $(S \rightarrow Y \rightarrow E \rightarrow E) \rightarrow E \rightarrow E$, kar je to, kar sna hoteli.

Nastavljanje enach

$$A := bool \mid int \mid A \rightarrow B \mid \alpha$$

 $E := \emptyset \mid A_1 = A_{2_1} \in A$

[| Γ + M : α | A₁ = A₂ → α, ξ₁, ξ₂ | α svc̄₁)

P+m: int 10

 $\frac{\Gamma + M : A_1 \mid \mathcal{E}_1 \qquad \Gamma + N : A_2 \mid \mathcal{E}_2}{\Gamma + M + N : int \mid A_1 = int, A_2 = int, \mathcal{E}_1, \mathcal{E}_2}$

astalo doma

THM: ALE THM: ATE THUZ: AZIEZ (x svez) Trifm than No eloc No: 0 | d=A1. x=A2, A=bool, E, E1 &2

Γ, f: α→B, x: α+ M: A | € Threefx.M: an A B=A, &

Resevanje enach

σ::= Ø | α → A, σ ti = (tri) D J (bool) = bool $\Gamma(A \rightarrow B) = \Gamma(A) \rightarrow \Gamma(B)$ $\Gamma(\alpha) = \begin{cases}
A & (\alpha C \mapsto A) \in \Gamma \\
\alpha & \text{sice}
\end{cases}$ (000)= $(\alpha_i \mapsto \sigma'(A_i))$ $(\alpha_i \mapsto A_i) \in \sigma$ $(\alpha_i \mapsto A_i) \in \sigma'$

 $\frac{\int rddev}{(\sigma' \cdot \sigma)(A)} = \sigma'(\sigma(A))$

$$fp(int) = \emptyset$$

 $fp(bool) = \emptyset$
 $fp(A \rightarrow B) = fp(A|v(p(B))$
 $fp(\alpha) = \{\alpha\}$

$$\phi > \phi$$

$$(\alpha \mapsto A)(\mathcal{E}) \searrow \sigma$$
 $\alpha \notin f_{\mathcal{P}}(A)$
 $\alpha = A, \mathcal{E} \searrow \alpha \mapsto \sigma(A), \sigma$

$$\frac{A_1 = A_{21} B_1 = B_{21} }{A_1 \rightarrow B_1 = A_2 \rightarrow B_{21} } \leq 3$$

$$(\alpha \mapsto A)(\xi) \searrow \sigma \qquad \alpha \notin f_{P}(A)$$
 $A = \alpha, \xi \searrow \alpha \mapsto \sigma(A), \sigma$

$$\frac{\sigma(A) = \sigma(B)}{\sigma \models (A = B, \mathcal{E})}$$

<u>| roliter</u> Ce velja r

Te veja THM: AIE in JFE
potem veja tudi o(N+M: o(A)

Dokaz

Z indukcijo ne PTM:AIE. Npr. zn aplikacijo dobima

CHM: A118, CHN: A2182

PHN: α | An=Az→α, En, Ez

Ker velje $\sigma \models A_1 = A_2 \rightarrow \alpha$, \mathcal{E}_1 , \mathcal{E}_2 velje $\sigma(A_1) = \sigma(A_2) \rightarrow \sigma(\alpha)$ for $\sigma \models \mathcal{E}_1$ in $\sigma \models \mathcal{E}_2$ Telej po I.P. velje $\sigma(\Gamma) \vdash M : \sigma(A_1)$ is $\sigma(\Gamma) \vdash N : \sigma(A_2)$.

Tedaj velje $\sigma(A_1)$ $\sigma(\Gamma) + M : \sigma(A_2) + \sigma(A_1)$ $\sigma(\Gamma) + M N : \sigma(A_1)$

WW

Troliter Te & SIO, poten O F &.

Dokaz 2 indukcije ne & SIO.

Lema Ce obstaja o da velja o E so!

Dokaz

Glavno vprašanje je, ali se naš algoritem sploh konča. Tega ne moremo polezati z indukcije na \mathcal{E} , saj se med posame zvimi koraki dolžine lahko tudi poveča. Namesto tega uporabimo leksikografsko wedutev na $\left(\left|\int p(\mathcal{E})\right|, |\mathcal{E}|\right)$

(≥(:= ≥ |A|+|B| A=B∈E $| int | = | boe | | = | \alpha | = \Lambda$ $| A \rightarrow B | = | A | + | B | + \Lambda$