Advanced Machine Learning

Dual Algorithm

Constrained Optimisation, Lagrangians, Dual Algorithm

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Linear SVM

 SVMs finds hyperplane which separates two sets of linearly separable data with maximum margin

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Extended Feature Spaces

• If we map into an extended feature space

$$\mathbf{x} = (x_1, x_2, \dots, x_p) \to \vec{\phi}(\mathbf{x}) = (\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \dots, \phi_r(\mathbf{x}))$$

 $r\gg p$

• The optimisation problem becomes

$$\min_{\vec{w},\,b} \frac{\|\vec{w}\|^2}{2} \quad \text{subject to } y_k \, \left(\vec{w}^\mathsf{T} \vec{\phi}(\boldsymbol{x}_k) - b \right) \geq 1 \text{ for all } k = 1,\,2,\,\ldots,\,m$$

ullet $ec{w}$ is an r dimensional vector (laying in the extended feature space)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Constrained Optimisation

- Recall that when we try to solve an optimisation problem with constraints we can add Lagrange multipliers
- The optimisation problem becomes

$$\min_{\vec{w},b} \frac{\|\vec{w}\|^2}{2} \quad \text{subject to } y_k \left(\vec{w}^\mathsf{T} \vec{\phi}(x_k) - b \right) \geq 1 \text{ for all } k = 1,\,2,\,\dots,\,m$$

• Is equivalent to finding the extremal point of the Lagrangian

$$\mathcal{L}(\vec{w}, b, \alpha) = \frac{\|\vec{w}\|^2}{2} + \sum_{k=1}^{m} \alpha_k \left(y_k \left(\vec{w}^\mathsf{T} \vec{\phi}(\boldsymbol{x}_k) - b \right) - 1 \right)$$

• subject to $\alpha_k \geq 0$

Outline

- 1. Recap
- Constrained Optimisation
- 3. Duality

Adam Prügel-Bennett

OMP6208 Advanced Machine Learn

Finding Maximum Margin Hyperplane

• We showed to find the maximum margin hyper-plane we can solve

$$\min_{\pmb{w},b} \frac{\|\pmb{w}\|^2}{2} \quad \text{subject to } y_k \ \left(\pmb{w}^\mathsf{T} \pmb{x}_k - b\right) \geq 1 \text{ for all } k = 1,\,2,\,\ldots,\,m$$

(I've got rid of the hats on w and b because life is too short)

- This is a quadratic programme (a quadratic function with linear constraints)
- Quadratic programmes have a unique solution
- This is generally true of convex function optimisation

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Non-linearly Separation of Data

Outline

1. Recap

2. Constrained Optimisation

3. Duality

P6208 Advanced Machine Learning

Adam Prügel-Bennet

COMP6208 Advanced Machine Learning

Solving Constrained Optimisation Problems

• Suppose we have a problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $g(\boldsymbol{x}) = 0$

• A standard procedure is to define the Lagrangian

$$\mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) - \alpha g(\boldsymbol{x})$$

where α is known as a Lagrange multiplier

ullet In the extended space $(oldsymbol{x}, lpha)$ we have to solve

$$\max_{\alpha} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \alpha)$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Note on Gradients

ullet Note that for any function $f(oldsymbol{x})$ we can Taylor expand around $oldsymbol{x}_0$

$$f(x) = f(x_0) + (x - x_0)^{\mathsf{T}} \nabla_{\!\! x} f(x) + \frac{1}{2} (x - x_0)^{\mathsf{T}} \mathsf{H}(x - x_0) + \dots$$

where H is a matrix of second derivative known as the Hessian

ullet If we consider points perpendicular to $abla_{\!x} f(x_0)$ which go through x_0 these will have values

$$f(\boldsymbol{x}) = f(\boldsymbol{x}_0) + O(\|\boldsymbol{x} - \boldsymbol{x}_0\|^2)$$
 {x|(x

 $\{\mathbf{x}|(\mathbf{x}-\mathbf{x}_0)^T \nabla f(\mathbf{x}_0) = 0\} \underbrace{\nabla f(\mathbf{x}_0)}_{\mathbf{x}_0}$

thus $\nabla_{\!\! x} f(x)$ is always orthogonal to the contour lines

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Example

- Minimise $f(x) = x^2 + 2y^2 xy$
- Subject to g(x) = x 2y 3 = 0
- Writing $\mathcal{L} = f(\boldsymbol{x}) \alpha g(\boldsymbol{x})$
- \bullet Condition for minima is ${\bf \nabla}_{\!\!\! x} {\cal L} = 0$

$$\nabla_{x} f(x) = \begin{pmatrix} 2x - y \\ -x + 4y \end{pmatrix} = \alpha \nabla_{x} g(x) = \alpha \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

and $\frac{\partial \mathcal{L}}{\partial \alpha} = g(\boldsymbol{x}) = x - 2y - 3 = 0$

• Solving simultaneous equations gives minima at $(x,y)=(\frac{3}{4},-\frac{9}{8})$ with $\alpha=\frac{21}{8}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Saddle-Point y = -9/8

Conditions on Optimum

• The optimisation problem is

$$\max_{\alpha} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \alpha) \quad \text{where} \quad \mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) - \alpha g(\boldsymbol{x})$$

Assuming differentiability

$$\nabla_{x} \mathcal{L}(x, \alpha) = \nabla_{x} f(x) - \alpha \nabla_{x} g(x) = 0$$
$$\frac{\partial \mathcal{L}}{\partial \alpha} = g(x) = 0$$

• The second condition is just the constraint

Adam Prugel-Bennett

COMP6208 Advanced Machine Learning

Constrained Optima

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Surface

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

Multiple Constraints

• Given an optimisation problem with multiple constraints

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $g_k(\boldsymbol{x}) = 0$ for $k = 1, 2, \ldots, m$

• We introduce multiple Lagrange multipliers

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}) = f(\boldsymbol{x}) - \sum_{k=1}^{m} \alpha_k g_k(\boldsymbol{x})$$

• The condition for an optima is $\nabla_{\!\!x} \mathcal{L}(x,\alpha) = 0$ which implies

$$\nabla_{x} f(x) = \sum_{k=1}^{m} \alpha_k \nabla_{x} g_k(x)$$

plus the original constraints $\frac{\partial\,\mathcal{L}(x,\alpha)}{\partial\,\alpha_k}=g_k(x)=0$

am Prügel-Bennett COMP6208 Advanced Machine Learn

Adam Prügel-Ben

COMP6208 Advanced Machine Learning

16

Example

- \bullet Minimise $f(\boldsymbol{x})=x^2+2\,y^2+5\,z^2-x\,y-x\,z$ subject to $g_1(\boldsymbol{x})=x-2\,y-z-3=0$ and $g_2(\boldsymbol{x})=2\,x+3\,y+z-2=0$
- Writing $\mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) \alpha_1 g_1(\boldsymbol{x}) \alpha_2 g_2(\boldsymbol{x})$
- Condition for minima is $\nabla_{\!\! x} \mathcal{L} = 0$ or $\nabla_{\!\! x} f(x) = \sum_{k=1}^2 \alpha_k \nabla_{\!\! x} g_k(x)$

$$\begin{pmatrix} 2x - y - z \\ -x + 4y \\ 10z - x \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

and $\frac{\partial \mathcal{L}}{\partial \alpha_i} = g_i(\boldsymbol{x}) = 0$

• Solving simultaneous equations gives minima at $(\frac{37}{20},-\frac{11}{20},-\frac{1}{20})$ with $\alpha_1=3$ and $\alpha_2=\frac{13}{20}$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Inside Region

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

KKT Conditions

• To minimise f(x) subject to $g(x) \ge 0$

$$\mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) - \alpha g(\boldsymbol{x})$$

• Then $\nabla_{\!\!x} \mathcal{L} = 0$ or

$$\nabla_{x} \mathcal{L} = \nabla_{x} f(x) - \alpha \nabla_{x} g(x) = 0$$

- where either
 - \star $\alpha=0$ and the solutions in the interior or
 - \star $\alpha>0$ and $g({m x})=0$, i.e. the solution is on the boundary
- These conditions are known as the Karush-Kuhn-Tucker conditions

Adam Prügel-Bennett

08 Advanced Machine Learning

Outline

- 1. Recap
- Constrained Optimisation
- 3. **Duality**

Inequality Constraints

• Suppose we have the problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $g(\boldsymbol{x}) \geq 0$

- Looks much more complicated, but
- Only two things can happen
 - \star Either the minimum of f(x), x^* , satisfies $g(x^*) > 0$
 - * We then have an unconstrained optimisation problem
 - \star Otherwise, it satisfies $g(x^*) = 0$
 - * We have a constrained optimisation problem

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

18

On the Boundary

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

vanced Machine Learning 20

Many Inequalities

Given the problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 subject to $g_k(\boldsymbol{x}) \geq 0$ for $k = 1, 2, \ldots, m$

• We introduce multiple Lagrange multipliers

$$\mathcal{L}(\boldsymbol{x}, \alpha) = f(\boldsymbol{x}) - \sum_{k=1}^{m} \alpha_k g_k(\boldsymbol{x})$$

• The condition for an optima is

$$\nabla_{x} f(x) = \sum_{k=1}^{m} \alpha_k \nabla_{x} g_k(x)$$

ullet Plus the constraints that either $lpha_k=0$ or $lpha_k>0$ and $g_k(oldsymbol{x})=0$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Back to the SVM

 We showed that the quadratic programming problem can be written as

$$\max_{\alpha} \min_{\boldsymbol{w}, b} \mathcal{L}(\boldsymbol{w}, b, \alpha)$$
 subject to $\alpha_k \geq 0$

• Where the Lagrangian is

$$\mathcal{L}(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{k=1}^{m} \alpha_k \left(y_k \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_k - b \right) - 1 \right)$$

- $\nabla_{\!\!w}\mathcal{L}=w-\sum_{k=1}^m \alpha_k\,y_k\,x_k=0$ implies that $w^*=\sum_{k=1}^m \alpha_k\,y_k\,x_k$
- $\frac{\partial \mathcal{L}}{\partial b} = \sum_{k=1}^m \alpha_k y_k = 0$ implies $\sum_{k=1}^m \alpha_k y_k = 0$

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Dual Form of Quadratic Programming

ullet Substituting in $oldsymbol{w}^*$ the optimisation condition becomes

$$\max_{\alpha} \sum_{k=1}^{m} \alpha_k - \frac{1}{2} \sum_{k,l=1}^{m} \alpha_k \alpha_l y_k y_l \boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{x}_l$$

- Subject to $\sum_{k=1}^{m} \alpha_k y_k = 0$ and $\alpha_k \geq 0$ for all k
- This is also a quadratic programming problem!
- It is known as the dual form and depends on the number of training examples (it is solved by a standard package)
- ullet It doesn't involve w and involves only the dot products $x_k^{\mathsf{T}} x_l$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

25

Support Vectors

- Where $\alpha_k > 0$ the constraints are exactly met so $y_k(\boldsymbol{x}_k^{\mathsf{T}} \boldsymbol{w} b) = 1$
- These data points are known as *support vectors*

• In high dimensions there can be many support vectors

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

27

Dealing with Slack Variables

• Our new Lagrangian is

$$\mathcal{L} = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{k=1}^{n} \xi_k - \sum_{k=1}^{m} \alpha_k \left(y_k \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_k - b \right) - 1 + \xi_k \right) - \sum_{k=1}^{m} \beta_k \xi_k$$

 \bullet Minimise with respect to ξ_k

$$\frac{\partial \mathcal{L}}{\partial \xi_k} = C - \alpha_k - \beta_k = 0$$

- But $\beta_k \ge 0 \quad \Rightarrow \quad \alpha_k \le C$
- $\bullet \ \, \mathsf{Thus} \,\, 0 \leq \alpha_k \leq C$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learnin

29

Classifying New Data

- Having trained the SVM we now have to use it
- ullet Given a new input x we decide on the class

$$\operatorname{sgn}\left(\vec{w}^{\mathsf{T}}\vec{\phi}(\boldsymbol{x}) - b\right)$$
 but $\vec{w} = \sum_{k=1}^{m} \alpha_k y_k \vec{\phi}(\boldsymbol{x}_k)$

• In the dual representation this becomes

$$\operatorname{sgn}\left(\sum_{k=1}^{m} \alpha_k y_k K(\boldsymbol{x}_k, \boldsymbol{x}) - b\right)$$

where we only need to sum over the non-zero α_k (i.e. the support vectors $\mathrm{SVs})$

Duality

ullet We can either work in the n-dimensional weight space

$$\min_{\boldsymbol{w},\,b} \frac{\|\boldsymbol{w}\|^2}{2} \quad \text{subject to } y_k \; \left(\boldsymbol{w}^\mathsf{T} \boldsymbol{x}_k - b\right) \geq 1 \; \text{for all } k = 1,\,2,\,\ldots,\,m$$

• Or the *m*-dimensional Lagrange multiplier space

$$\max_{\pmb{\alpha}} \sum_{k=1}^m \alpha_k - \frac{1}{2} \sum_{k,l=1}^m \alpha_k \, \alpha_l \, y_k \, y_l \, \pmb{x}_k^\mathsf{T} \, \pmb{x}_l \quad \text{with } \sum_{k=1}^m \alpha_k \, y_k = 0 \, \, \& \, \, \alpha_k \geq 0$$

- Both require sophisticated quadratic programming algorithms to solve
- ullet Which is easiest depends or whether m is greater or less than p

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

26

Soft Margins

• Recall we can relax constraints by introducing $slack \ variables,$ $\xi_k \geq 0$

- Minimise $\frac{\|\boldsymbol{w}\|^2}{2} + C \sum_{k=1}^m \xi_k$
- subject to $\xi_k \geq 0$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Extended Feature Space

• In the extended feature space

$$\min_{\vec{w},b} \frac{\|\vec{w}\|^2}{2} \quad \text{subject to } y_k \left(\vec{w}^\mathsf{T} \vec{\phi}(\boldsymbol{x}_k) - b \right) \geq 1 \text{ for all } k = 1, \, 2, \, \dots, \, m$$

• Giving the dual problems

$$\max_{\alpha} \sum_{k=1}^{m} \alpha_k - \frac{1}{2} \sum_{k,l=1}^{m} \alpha_k \, \alpha_l \, y_k \, y_l \, \vec{\phi}(\boldsymbol{x}_k)^\mathsf{T} \, \vec{\phi}(\boldsymbol{x}_l) \quad \text{with } \sum_{k=1}^{m} \alpha_k \, y_k = 0 \, \, \& \, \, \alpha_k \geq 0$$

ullet When $ec{\phi}(oldsymbol{x}_k)^{\mathsf{T}}\,ec{\phi}(oldsymbol{x}_l)=K(oldsymbol{x}_k,\,oldsymbol{x}_l)$ then

$$\max_{\alpha} \sum_{k=1}^m \alpha_k - \frac{1}{2} \sum_{k,l=1}^m \alpha_k \, \alpha_l \, y_k \, y_l \, K(\boldsymbol{x}_k,\, \boldsymbol{x}_l) \quad \text{with } \sum_{k=1}^m \alpha_k \, y_k = 0 \, \, \& \, \, \alpha_k \geq 0$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learn

30

32

Conclusion

- We can solve for the maximum-margin hyper-plane either in the primal form (space of weights and bias) or the dual form (space of Lagrange multipliers)
- In the dual form the solution only depends on the dot product $x_i^\mathsf{T} x_j$ or $\vec{\phi}(x_i)^\mathsf{T} \vec{\phi}(x_j)$
- If $K(x, y) = \vec{\phi}(x)^{\mathsf{T}} \vec{\phi}(y)$ we never have to explicitly compute $\vec{\phi}(x)$ —the kernel trick
- This allows us to work in a very high dimensional space (giving low bias) while finding a maximum-margin hyper-plane (simple machine with low variance) magic!

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning