Programozáselmélet - A specifikáció tétele

Készítette: Borsi Zsolt

1. Specifikáció tétele

Definíció: Azt mondjuk hogy a B halmaz az $F \subseteq A \times A$ feladat egy paramétertere, ha léteznek olyan $F_1 \subseteq A \times B$ és $F_2 \subseteq B \times A$ relációk, melyekre $F = F_2 \circ F_1$.

Megjegyzés: Bármely $F \subseteq A \times A$ feladatnak létezik paramétertere. Hiszen legyen B = A, és válasszuk az $F_1 \subseteq A \times B$ és $F_2 \subseteq B \times A$ relációkat úgy, hogy $F_1 = id$ (azaz a minden A-beli elemhez önmagát rendelő reláció) és $F_2 = F$. Ekkor nyilvánvalóan teljesül hogy $F \circ id = F$.

Definíció: Legyenek A és B tetszőleges nemüres halmazok és $R \subseteq A \times B$ tetszőleges reláció. Az R reláció inverze:

$$R^{(-1)} ::= \{ (b, a) \in B \times A | (a, b) \in R \}$$

azaz olyan B-ről A-ra képező reláció, ami pontosan akkor tartalmaz egy $(b,a) \in B \times A$ párt, ha $(a,b) \in R$.

Tétel: Legyen $F \subseteq A \times A$ feladat, B az F egy paramétertere (azaz léteznek olyan $F_1 \subseteq A \times B$ és $F_2 \subseteq B \times A$ relációk úgy hogy $F = F_2 \circ F_1$). Legyen $b \in B$ tetszőleges paraméter, amihez definiáljuk a $Q_b \colon A \to \mathbb{L}$ és $R_b \colon A \to \mathbb{L}$ logikai függvényeket az igazsághalmazaik megadásával:

$$\lceil Q_b \rceil ::= F_1^{(-1)}(b)$$
$$\lceil R_b \rceil ::= F_2(b)$$

Ekkor ha $\forall b \in B : Q_b \implies lf(S, R_b)$ akkor az S program megoldja az F feladatot.

 $\lceil Q_b \rceil = \{a \in A \mid (a,b) \in F_1\}$, azaz Q_b igazsághalmazában olyan $a \in A$ állapotok vannak, melyekhez az F_1 reláció hozzárendeli a $b \in B$ paramétert.

 $\lceil R_b \rceil = \{a \in A \mid (b,a) \in F_2\}$, azaz R_b igazsághalmazában olyan $a \in A$ állapotok vannak, melyeket az F_2 reláció a $b \in B$ paraméterhez rendel.

2. Feladat specifikációja

Tekintsük azt a feladatot, amikor egy adott pozitív egész egy osztóját kell megadnunk. A feladat állapottere $A=(n:\mathbb{N}^+,d:\mathbb{N}^+)$. Ezt a feladatot le tudjuk formálisan írni, mint olyan $(u,v)\in A\times A$ párok halmaza ahol u és v állapotok n változó szerinti értékei megegyeznek és

v célállapot d változóhoz tartozó értéke osztója az u kiindulási állapot n változóhoz tartozó értéknek:

$$\{(u, v) \in A \times A \mid n(u) = n(v) \land d(v) | n(u) \}$$

Felhasználva a specifikáció tételének jelöléseit, írjuk fel más módon - de formálisan - a feladat specifikációját. Azt vesszük észre, hogy minden $a \in A$ állapothoz melyekre n(a) megegyezik, a feladat ugyanazt rendeli; nem függ a kiindulási állapot d változó szerinti értékétől. Írjuk fel az F feladatot a F_1 és F_2 relációk kompozíciójaként, úgy hogy azokhoz az állapotokhoz melyeknek F szerinti képe azonos, F_1 ugyanazt a paramétert rendelje. Mivel ezek az állapotok megegyeznek az n változóhoz tartozó értékükben, célszerű hozzájuk ugyanezt a (címkézett) értéket rendelni, F_1 reláció szerint. Azaz, a feladat egy paramétertere legyen a pozitív egész számok halmaza, ahol az értékre az n' változó segítségével (egy komponens lévén, nem lenne szükség változóra, de általános esetben kell) hivatkozhatunk: $B = (n':\mathbb{N}^+)$.

Azt, hogy F_1 pontosan akkor rendel egy $a \in A$ állapothoz egy $b \in B$ értéket, a specifikáció tételében szereplő Q_b logikai függvénnyel adhatjuk meg. Legyen $b \in B$ tetszőleges, ekkor $\forall a \in A : Q_b(a) = (n(a) = n'(b))$.

Természetesen úgy kapjuk meg F feladatot az F_1 és F_2 relációk kompozíciójaként, ha F_2 a $b \in B$ paraméterhez olyan állapottérbeli a pontot rendel, melynek d változóhoz tartozó értéke osztója a kiindulási állapot n változóhoz tartozó értékének. Épp ezért tetszőleges $b \in B$ esetén legyen R_b olyan logikai függvény, melyre

$$\forall a \in A : R_b(a) = (n(a) = n'(b) \land d(a)|n(a)).$$

Vegyük észre hogy a n(a) = n'(b) kikötésre szükségünk van, anélkül csak annyit mondanánk hogy a célállapotban a d változóhoz tartozó érték osztója kell legyen az n változóhoz tartozó aktuális értéknek, nem fogalmaznánk meg szorosabb kapcsolatot a kiindulási állapot és a célállapot között. A feladat specifikációja tehát

```
A = (n:\mathbb{N}^+, d:\mathbb{N}^+) B = (n':\mathbb{N}^+) \forall b \in B: Q_b(a) = (n(a) = n'(b)) \text{ (ahol } a \in A \text{ tetszőleges állapot)} \forall b \in B: R_b(a) = (n(a) = n'(b) \land d(a)|n(a)) \text{ (ahol } a \in A \text{ tetszőleges állapot)}
```

A továbbiakban a feladatnak ezen leírását (tehát ami tartalmazza a feladat állapotterét és a feladat egy paraméterterének megadását; minden $b \in B$ paraméterre a hozzá tartozó Q_b és R_b logikai függvények definícióját) a feladat specifikációjának nevezzük. Mivel d az A állapottérről \mathbb{N} -re képező függvény (azaz argumentumába egy $a \in A$ elemet írhatunk), hasonlóan Q_b egy $b \in B$ paraméterhez definiált, $a \in A$ állapotokhoz logikai értéket rendelő függvény; az egyértelmű jelöléseket elhagyva a következőket kapjuk:

```
A = (n:\mathbb{N}^+, d:\mathbb{N}^+)
B = (n':\mathbb{N}^+)
Q = (n = n')
R = (Q \wedge d|n)
```