IC (System) Trust

• Objective:

• Ensure that the *fabricated chip/system* will carry out only our desired function and <u>nothing more</u>.

• Challenges:

- **Tiny**: several gates to millions of gates
- Quiet: hard-to-activate (rare event) or triggered itself (time-bomb)
- Hard to model: human intelligence
- Conventional test and validation approaches fail to reliably detect hardware Trojans.
 - Focus on manufacture defects and does not target detection of additional functionality in a design

Classification of Trojan Detection Approaches

- Destructive Approach: Expensive and time consuming
 - Reverse engineering to extract layer-by-layer images by using delayering and Scanning Electron Microscope
 - Identify transistors, gates and routing elements by using a templatematching approach – needs golden IC/layout

Classification of Trojan Detection Approaches

Non-destructive Approach

- Run-time monitoring: Monitor abnormal behavior during run-time
 - Exploit pre-existing redundancy in the circuit
 - Compare results and select a trusted part to avoid an infected part of the circuit.
- **Test-time Authentication**: Detect Trojans throughout test duration.
 - Logic-testing-based approaches
 - Side-channel analysis-based approaches

Hardware Trojan Benchmarks

- A set of **trust benchmarks** for researchers in academia, industry, and government is needed to
 - Provide a baseline for examining diverse methods developed
 - Establishing a sound basis for the hardness of each benchmark instance
 - Help increase reproducibility of results by others who intend to employ certain methodologies in their design flow
- See NSF supported Trust-Hub website (<u>www.trust-hub.org</u>)
 - Complete taxonomy of Trojans
 - More than 120 trust benchmarks available which were designed at different abstraction levels, triggered in several ways, and have different effect mechanisms
 - More than 300 publications used these benchmarks

Logic Testing Approach

- Logic-testing approach focuses on test-vector generation for
 - Activating a Trojan circuit
 - Observing its malicious effect on the payload at the primary outputs
 - Both functional and structural test vectors are applicable.

Pros & Cons:

- Pros:
 - Straight-forward and easy to differentiate
- Cons:
 - The difficulty in exciting or observing low controllability or low observability nodes.
 - Intentionally inserted Trojans are triggered under rare conditions. (e.g., sequential Trojans)
 - It cannot trigger Trojans that are activated externally and can only observe functional Trojans.

Functional Test Deficiency

- Functional patterns could potentially detect a "functional" Trojan.
 - Exhaustive test would be effective, but certainly not applicable for large circuits
 - E.g. 64 input adder \rightarrow 2⁶⁵ input combination (including carry in)
 - $2^{65} > 10^{18}$ This is impractical
 - 100MHz is used \rightarrow 10¹⁰ s \rightarrow 317 years
 - Only a few and more effective patterns are used → Trojan can escape.
 - The fault coverage is low for manufacturing test
- In practice, structural tests are used.

Functional Testing

Feasible Trojan space inordinately large!

<u>Deterministic</u> test generation infeasible

A statistical approach is, more effective

- MERO: Multiple Excitation of Rare Occurrence: A Statistical Approach
 - Find the rare events in the circuit
 - Generate vectors to trigger each rare node <u>N times</u>
 - Provides high confidence in detecting unknown Trojans!

a=0, b=1, c=1

Trojan Trigger Condition

MERO

• MERO:

- Generates a set of test vectors that can trigger each rare node to its rare value multiple times (N times)
- It improves the probability of triggering a Trojan activated by a rare combination of a selection of the nodes
- One-time trigger cannot ensure the Trojan will be activated.
- Proposed to increase the test coverage.
- It is still effective for sequential Trojans.
- The Trojan detection coverage increases for higher values of "N", at the cost of increased test length.

■ Challenge: Triggering each net N times in a large circuit is challenging

Side-Channel Trojan Detection

- Side-Channel Approach for Trojan Detection relies on observing Trojan effect in physical side-channel parameter, such as switching current, leakage current, path delay, electromagnetic (EM) emission
- Due to process variations, it is extremely challenging to detect the Trojan by considering F_{max} or I_{DDT} (the transient current from the power supply) individually.

Side Channel Signal Analysis -- Power

- Hardware Trojans inserted in a chip can change the power consumption characteristics.
- Partial activation of Trojan can be extremely valuable for power analysis.
- The more number of cells in Trojan is activated the more the Trojan will draw current from power grid.
- An example of IDDT (transient current) Trojan detection method is presented.
- Extra transient current is induced by Trojan with partial activation.

Side-channel Signals

- All the side-channel analyses are based on observing the effect of an inserted Trojan on a physical parameter such as
 - **IDDQ**: Extra gates will consume leakage power.
 - **IDDT**: Extra switching activities will consume more dynamic power.
 - Path Delay: Additional gates and capacitance will increase path delay.
 - EM: Electromagnetic radiation due to switching activity

Pros & Cons

- **Pros**: It is effective for Trojan which does not cause observable malfunction in the circuits.
- **Cons**: Large process variations in modern nanometer technologies and measurement noise can mask the effect of the Trojan circuits, especially for small Trojan.

Golden chip required!

Sensitivity Metric

Improving Detection Sensitivity

$$Sensitivity = \frac{I_{tampered} - I_{original}}{I_{original}} \times 100\%$$

Comparing Approaches

	Logic Testing	Side-Channel Analysis
Pros	Robust under process noiseEffective for ultra-small Trojans	Effective for large TrojansEasy to generate test vectors
Cons	Difficult to generate test vectorsLarge Trojan detection challenging	Vulnerable to process noiseUltra-small Trojan Det. challenging

- A combination of logic testing & side-channel analysis could provide the good coverage!
- Online validation approaches can potentially provide a second layer of defense!

Current (Charge) Integration Method

Current consumption of Trojan-free and Trojan-inserted circuits

$$Q_{trojan\text{-}free}(t) = \int I_{trojan_free}(t) . dt$$

$$Q_{trojan-inserted}(t) = \int I_{trojan_inserted}(t)$$
. $dt = \int (I_{trojan_free}(t) + I_{trojan}(t))$. dt

Power Analysis -- Challenges

- **▶** Pattern Generation
 - ► How to increase switching activity in Trojans?
 - How to reduce background noise?
 - Switching locality
 - Random Patterns
 - ▶ No observation is necessary , Similar to test-per-clock
 - Measurement Device Accuracy
 - Measurement noise
 - Process Variations
 - Calibration
 - On-Chip Measurement
 - ▶ Vulnerable to attack
 - Authentication Time
 - Trojans can be inserted randomly

Side Channel Analysis -- Delay

- Hard to detect using power analysis are:
 - Distributed Trojans
 - Hard-to-activate Trojans
- Path delay: A change in physical dimension of the wires and transistors can also change path delay.
- Some methods can detect additional delays on each path of the circuit.

Delay-based Methods

- Shadow-register provides a possible solution for measuring internal path delay.
- From this architecture, it can be seen that the basic unit contains one shadow register, one comparator and one result register.

Shadow registers are used here to measure internal

delays

• Limitations:

- Process Variation
- Overhead
- S-clock
- Output

Clock Sweeping Technique

- Clock sweeping involves applying a pattern at different clock frequencies, from a lower speed to higher speeds.
- Some paths sensitized by the pattern which are longer than the current period start to fail when the clock speed increases.
- The obtained start-to-fail clock frequency can indicate the delays of the paths sensitized by the patterns

Delay Analysis -- Challenges

- Major advantage over power analysis:No activation is required.
 - Detection and Isolation
 - ► How significant is the delay inserted by Trojan?
 - **▶** It depends on Trojan size and type
 - **▶** Location: on short paths or long paths
 - Pattern Generation
 - Delay test patterns
 - Path Coverage
 - Process Variations (V_{th}, L, T_{ox})
 - ► Impact circuit delay characteristics significantly
 - Differentiate between Trojan and PV
 - Trojan can have impact on multiple paths (an advantage over PV)

Trojan Detection

| Trojan | | | | Power
Analysis | Delay
Analysis | Fully
Activation |
|------------------------------|-------------------------------|-----------------|------------------|-------------------|-------------------|---------------------|
| Trojan
Classifi
cation | Physical
Characteristics | Туре | Functional | D | Р | Р |
| | | | Parametric | Р | D | Р |
| | | Size | Small | | D | Р |
| | | | Large | D | Р | Р |
| | | Distribution | Tight | D | D | Р |
| | | | Loose | Р | D | Р |
| | | Structure | Modify
Layout | Р | D | |
| | Activation
Characteristics | Always-on | | | D | |
| | | Condition-based | Logic-based | D | Р | Р |
| | | | Sensor-
based | D | | |
| | Action
Characteristics | Modify Function | | D | Р | |
| | | Modify Spec. | Defects | P | D | P |
| | | | Reliability | P | Р | P |

P: Detection is possible D: High level of confidence

Self-similarity in Space & Time – for Trust Verification

Uncorrelated switching in time due to a seq. Trojan!

Simultaneously detects
Trojan & aged/recycled ICs!

No golden chip required!!!