

b) RESISTANCE BETWEEN x= thb & SURN

$$R_{\rho} = \frac{+h}{\kappa A_{c}}, \quad R_{c} = \frac{R_{c}^{"}}{A_{S}}, \quad R_{conv} = \frac{1}{hA_{S}}, \quad R_{rad} = \frac{1}{\sigma \epsilon A_{S} (\tau_{H}^{2} + \tau_{c}^{2})(\tau_{H} + \tau_{c})}$$

$$g_x' + g = g_x' + \frac{dg_x}{dx} dx$$

$$\frac{\dot{g}^{\parallel}}{\dot{g}^{\parallel}} A_{c} dx = \frac{d\dot{i}x}{dx} dx$$

$$\frac{\dot{g}^{\parallel}}{\dot{g}^{\parallel}} A_{c} dx = \frac{d\dot{i}x}{dx} dx$$

$$\frac{\dot{g}^{\parallel}}{\dot{g}^{\parallel}} A_{c} = \frac{d\dot{i}x}{dx} \left(-|k| dx \frac{d\vec{i}}{dx} \right) \longrightarrow \frac{-\dot{g}^{\parallel}}{i} = \frac{d^{2}T}{dx^{2}}$$

$$\frac{\dot{g}^{\parallel}}{\dot{g}^{\parallel}} A_{c} = \frac{d\dot{i}x}{dx} \left(-|k| dx \frac{d\vec{i}x}{dx} \right) \longrightarrow \frac{-\dot{g}^{\parallel}}{i} = \frac{d^{2}T}{dx^{2}}$$

$$\dot{g}''' A c = \frac{d}{dx} \left(- K A c \frac{dT}{dx} \right)$$

$$\frac{d}{dx}\left(\frac{dT}{dx}\right)^{\frac{1}{2}} = \int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{dx}{dx}$$

$$\frac{df}{dx} = \frac{g''}{\kappa} \times + C_1$$

e)
$$T(x) = -\frac{5}{3x}x^{2} + (x + c_{2})$$

$$U(THW) BHTT$$

$$f)$$
 BCI) $\frac{dT}{dx}\Big|_{x=0} = 0$

BATT

$$\hat{q}$$
 thrule = \hat{q} cond \hat{C} BATT EDGE

$$\left[\frac{T_{I}-T_{S}}{Req} = -1cA_{c}\frac{d\Gamma}{dx}\Big|_{x=4hb}\right]$$

$$Teq = Retal$$

PLOTE: $\frac{d\hat{q}}{dx} = 0$ $\hat{q} = -1cA_{c}\frac{dT}{dx}$

"Yes, the temperature remains below the maximum limit of T_max."

EES Ver. 11.373: #100: For use only by Students and Faculty, College of Engineering University of Wisconsin - Madison

\$UNITSYS SI K Pa J mass rad

```
// ME364 HW02 Kyle Adler
// Problem 1
// b)
// givens
T_max = converttemp('C','K',100[C])
                                              // given tmax
g dot = 35 [W]
                                              // given total generation
w = 10[cm]*convert(cm,m)
L = 10[cm]*convert(cm,m)
th b = 7[mm]*convert(mm,m)
th_p = 5[mm]*convert(mm,m)
R dprime c = 2e-3 [K-m^2/W]
k_p = 2 [W/m-K]
kb=kp
T infinity = convertemp('C','K',15[C])
h_bar = 100 [W/m^2-K]
epsilon = 1
A_c = w^*L
A_s = A_c
T S = T infinity + 15[K]
                                              // initial guess, rule of thumb to guess around 15K above surroundings
T_C = T_infinity
// thermal resistances
R p = th p/(k p*A c)
R c = R dprime c/A s
R_{conv} = 1/(h_{bar}*A_s)
R_rad = 1/(sigma\#^*epsilon^*A_s^*(T_S^2+T_C^2)^*(T_S+T_C))
R_{total} = R_p + R_c + (1/R_{conv} + 1/R_{rad})^{-1}
// c) The radiation resistance has a very small contribution that can be neglected, since it is in parallel with a small resistance of
convection. This can be shown by leaving it out and noting the difference:
R total norad ratio = (R p + R c + (1/R conv)^{-1})/R total
                                                                                         // results in 4% change
// The other resistances have a significant contribution.
// f) solve for unknown constants of integration
g_dot_tprime = g_dot/(w*L*(th_p+th_b))
x = th b
                                              // x at edge of battery
// BC2 equation
q_dot_cond = -k_b*A_c*(-g_dot_tprime/k_b*x)
q dot cond = (T interface - T S)/R total // equate q dot cond with T I-T S/Req to get T interface, q dot cond at interface is
equal to q dot in plate
T_{interface} = -g_{dot\_tprime}/(2*k_b)*x^2+C_2 // use T_{interface} in temp equation at x = th_b to get C_2
// g) plot temp with x
//T_x = -g_dot_tprime/(2*k_b)*x_var^2+C_2
```

EES Ver. 11.373: #100: For use only by Students and Faculty, College of Engineering University of Wisconsin - Madison

// h) multiple batteries stacked

 $T_wall = C_2$

"Comment out th_b and inspect table of $T_wall vs th_b to find T_max$, resulting in $th_b_max = 0.035 = 5*th_b$. 5 batteries can be stacked before overheating occurs."

SOLUTION

Unit Settings: SI K Pa J mass rad

$A_c = 0.01 \text{ [m}^2\text{]}$	$A_s = 0.01 [m^2]$
$C_2 = 335.2 [K]$	ε = 1 [-]
ġ = 35 [W]	g " = 291667 [W/m ³]
$\overline{h} = 100 \text{ [W/m}^2\text{-K]}$	$k_b = 2 [W/m-K]$
$k_p = 2 [W/m-K]$	L = 0.1 [m]
•qcond = 20.42 [W]	$R_c = 0.2 [K/W]$
$R_{conv} = 1 [K/W]$	$R'_c = 0.002 [K-m^2/W]$
$R_P = 0.25 [K/W]$	Rrad = 17.05 [K/W]
Rtotal = 1.395 [K/W]	Rtotal,norad,ratio = 1.04 [-]
$th_b = 0.007 [m]$	$th_p = 0.005 [m]$
Tc = 288.2 [K]	T _∞ = 288.2 [K]
Tinterface = 331.6 [K]	$T_{max} = 373.2 [K]$
Ts = 303.2 [K]	Twall = 335.2 [K]
w = 0.1 [m]	x = 0.007 [m]

No unit problems were detected.

KEY VARIABLES

Rtotal = 1.395 [K/W]	b) total thermal resistance from edge of battery
$R_c = 0.2 [K/W]$	c)
$R_{rad} = 17.05 [K/W]$	c)
$R_{conv} = 1 [K/W]$	c) convection resistance
$R_p = 0.25 [K/W]$	c)
Rtotal,norad,ratio = 1.04 [-]	c) ratio of R_total without radiation to R_total, 4% difference
$C_2 = 335.2 \text{ [K]}$	f) 2nd constant of integration. C 1 found by hand

Parametric Table: T wall vs th b

	l wall	τη _b
	[K]	[m]
Run 1	335.2	0.007
Run 2	336.7	0.007636
Run 3	338.1	0.008273
Run 4	339.4	0.008909
Run 5	340.7	0.009545
Run 6	341.9	0.01018
Run 7	343	0.01082
Run 8	344.1	0.01145
Run 9	345.2	0.01209
Run 10	346.2	0.01273
Run 11	347.2	0.01336
	•	

Parametric Table: T wall vs th b

T _{wall} th _b		
	- wall [K]	[m]
	[[N]	[m]
Run 12	348.1	0.014
Run 13	349.1	0.01464
Run 14	350	0.01527
Run 15	350.9	0.01591
Run 16	351.8	0.01655
Run 17	352.6	0.01718
Run 18	353.4	0.01782
Run 19	354.3	0.01845
Run 20	355.1	0.01909
Run 21	355.9	0.01973
Run 22	356.6	0.02036
Run 23	357.4	0.021
Run 24	358.2	0.02164
Run 25	358.9	0.02227
Run 26	359.7	0.02291
Run 27	360.4	0.02355
Run 28	361.1	0.02418
Run 29	361.9	0.02482
Run 30	362.6	0.02545
Run 31	363.3	0.02609
Run 32	364	0.02673
Run 33	364.7	0.02736
Run 34	365.4	0.028
Run 35	366	0.02864
Run 36	366.7	0.02927
Run 37	367.4	0.02991
Run 38	368.1	0.03055
Run 39	368.7	0.03118
Run 40	369.4	0.03182
Run 41	370.1	0.03245
Run 42	370.7	0.03309
Run 43	371.4	0.03373
Run 44	372	0.03436
Run 45	372.7	0.035
Run 46	373.3	0.03564
Run 47	373.9	0.03627
Run 48	374.6	0.03691
Run 49	375.2	0.03755
Run 50	375.8	0.03818
Run 51	376.5	0.03882
Run 52	377.1	0.03945
Run 53	377.7	0.04009
Run 54	378.4	0.04073
Run 55	379	0.04136
Run 56	379.6	0.042
Run 57	380.2	0.04264
Run 58	380.8	0.04327
Run 59	381.5	0.04391
Run 60	382.1	0.04455
Run 61	382.7	0.04518
Run 62	383.3	0.04582
Run 63	383.9	0.04645

Parametric Table: T wall vs th b

	T_{wall}	th _b
	[K]	[m]
Run 64	384.5	0.04709
Run 65	385.1	0.04773
Run 66	385.7	0.04836
Run 67	386.3	0.049
Run 68	387	0.04964
Run 69	387.6	0.05027
Run 70	388.2	0.05091
Run 71	388.8	0.05155
Run 72	389.4	0.05218
Run 73	390	0.05282
Run 74	390.6	0.05345
Run 75	391.2	0.05409
Run 76	391.8	0.05473
Run 77	392.3	0.05536
Run 78	392.9	0.056
Run 79	393.5	0.05664
Run 80	394.1	0.05727
Run 81	394.7	0.05791
Run 82	395.3	0.05855
Run 83	395.9	0.05918
Run 84	396.5	0.05982
Run 85	397.1	0.06045
Run 86	397.7	0.06109
Run 87	398.3	0.06173
Run 88	398.9	0.06236
Run 89	399. <i>4</i>	0.063
Run 90	400	0.06364
Run 91	400.6	0.06427
Run 92	401.2	0.06491
Run 93	401.8	0.06555
Run 94	402.4	0.06618
Run 95	403	0.06682
Run 96	403.5	0.06745
Run 97	404.1	0.06809
Run 98	404.7	0.06873
Run 99	405.3	0.06936
Run 100	405.9	0.07

EES Ver. 11.373: #100: For use only by Students and Faculty, College of Engineering University of Wisconsin - Madison

