

APOSR-TR-72-1918

AD 750002

By Y. H. WANG

Division of Statistics
The Ohio State University

DIVISION OF STATISTICS

THE OHIO STATE UNIVERSITY

COLUMBUS, OHIO

Approved for public release;
distribution unlimited.

R
TO

A NOTE ON HOMOGENEOUS PROCESSES WITH INDEPENDENT INCREMENTS

By Y. H. WANG

Division of Statistics
The Ohio State University

June, 1972

D D C
RECORDED
OCT 10 1972
RECORDED
D

Research partially sponsored by the Air Force Office of the Scientific Research, ~~Office of Aerospace Research~~, United States Air Force, under AFOSR Grant No. AF-AFOSR-1301-57. The United States government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding copyright notation hereon.

111

Approved for public release;
distribution unlimited.

Security Classification

DOCUMENT CONTROL, DATA - R & D

(Security classification of title, brief abstract and indexing annotation must be entered when the overall report is classified)

ORIGINATING ACTIVITY (Corporate author)
The Ohio State University
 Division of Statistics
 Columbus, Ohio 43210

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

2b. GROUP

3. REPORT TITLE

A NOTE ON HOMOGENEOUS PROCESSES WITH INDEPENDENT INCREMENTS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Scientific Interim

5. AUTHOR(S) (First name, middle initial, last name)

Y. H. Wang

6. REPORT DATE June 1972	7a. TOTAL NO. OF PAGES 6	7b. NO. OF REFS 2
8a. CONTRACT OR GRANT NO AF-AFOSR 1305-67	8b. ORIGINATOR'S REPORT NUMBER(S)	
8c. PROJECT NO. 9749		
c. 61102F	8d. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) AFOSR - TR - 72 - 1918	
d. 681304		

10. DISTRIBUTION STATEMENT

A. Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES TECH, OTHER	12. SPONSORING MILITARY ACTIVITY Air Force Office of Scientific Research/NM 1400 Wilson Blvd Arlington, Virginia 22209
---	--

13. ABSTRACT

A class of stochastic processes, $X(t)$ is characterized based in the property that the conditional mean and variance of $X(t)$, given $X(t_1) = y$, for some $0 < t < t_1$, are linear functions of y . Two particular cases resulting in Wiener and Poisson processes are discussed.

Security Classification

14 KEY WORDS	LINK A		LINK B		LINK C	
	HOLE	WT	ROLE	WT	HOLE	WT
Characterization Stochastic process Wiener Process Poisson processes						

A NOTE ON HOMOGENEOUS PROCESSES WITH INDEPENDENT INCREMENTS

Y. H. WANG

The Ohio State University

1. INTRODUCTION.

Let $X(t)$, $t \geq 0$, be a homogeneous stochastic process with independent increments. Fix $t_1 > 0$. Then, given $X(t_1) = y$, the process $X(t)$, for $0 \leq t \leq t_1$, is called a tied-down process with end point equals y . Suppose $X(t)$ is a Poisson process, then the conditional distribution of $X(t)$ given $X(t_1) = y$, for all $0 \leq t \leq t_1$, is binomial with parameter $(y, t/t_1)$, and therefore the conditional expectation and variance of $X(t)$ given $X(t_1) = y$ are linear functions of y . Suppose $X(t)$ is a Wiener process, then the conditional distribution of $X(t)$ given $X(t_1) = y$, for all $0 \leq t \leq t_1$, is normal with parameter $((t/t_1)y, \sigma^2 t(1 - t/t_1))$, and hence the conditional expectation of $X(t)$ given $X(t_1) = y$ is a linear function of y and the conditional variance does not depend upon y .

In this note, we shall characterize a class of stochastic processes based on the property that the conditional mean and variance of $X(t)$, given $X(t_1) = y$, for some $0 < t < t_1$, are linear functions of y . It will be proved that if $E(X(t) | X(t_1) = y) = \alpha_0 + \alpha_1 y$, then 1) $\text{Var}(X(t) | X(t_1) = y) = \text{constant}$ a.e. if and only if $X(t) = W(t) + \mu t$, where $W(t)$ is a Wiener process and μ is a real constant,

(1) $\text{Var}(X(t) \mid X(t_1) = y) = \beta_0 + \beta_1 v$ ($\beta_1 \neq 0$) if and only if $X(t) = cY(t) - vt$, where $Y(t)$ is a Poisson process and v and c are real constants. To avoid trivial cases, we shall assume that $X(t)$ is not a degenerate process. Also all stochastic processes $X(t)$, $t \geq 0$, considered in this note are assumed to be homogeneous, second-order and with independent increments.

For a recent survey of the results on characterizations of stochastic processes see the paper [1] by Lukacs.

2. THE RESULT.

We need the following two lemmas.

LEMMA 1. If $E(X(t) \mid X(t_1) = y) = \alpha_0 + \alpha_1 v$, then $\alpha_0 = 0$ and $\alpha_1 = t/t_1$, for all $0 \leq t \leq t_1 < \infty$.

PROOF. Since $X(t)$ is a homogeneous, second-order process with independent increments, it follows that $\mu(t) = E(X(t)) = \mu t$, $\sigma^2(t) = \text{Var}(X(t)) = \sigma^2 t$, for all $t \geq 0$, and $\rho(t_1, t_2) = \text{Corr. Coeff.}(X(t_1), X(t_2)) = \min(t_1, t_2)/\sqrt{t_1} \sqrt{t_2}$, for all $t_1 > 0$ and $t_2 > 0$, where $\mu = E(X(1))$ and $\sigma^2 = \text{Var}(X(1))$.

Therefore

$$\alpha_1 = \rho(t, t_1) \sigma(t)/\sigma(t_1) = t/t_1,$$

and

$$\alpha_0 = \mu(t) - \alpha_1 \mu(t_1) = 0.$$

LEMMA 2. Let $\kappa(s, t) = E(e^{isX(t)})$ be the characteristic function of $X(t)$ and $z(s) = \kappa(s, 1)$. Then

$$E(X(t_0)e^{isX(t_1)}) = -it_0 g^{t_1-t}(s) g'(s)$$

and

$$\begin{aligned} E(X^2(t_0)e^{isX(t_1)}) &= -t_0(t_0-1)g^{t_1-t}(s)(g'(s))^2 \\ &\quad - t_0 g^{t_1-t}(s) g''(s), \end{aligned}$$

for all $0 < t_0 < t_1$ and real s .

PROOF. Because $X(t)$ is a homogeneous, second-order process with independent increments, $g(s, t) = g^{t-s}(s)$ and the second partial derivative of $g(s, t)$ w.r.t. s exists for all t and s . It then follows that

$$E(X(t)e^{isX(t)}) = -itg^{t-t}(s) g'(s)$$

and

$$\begin{aligned} E(X^2(t)e^{isX(t)}) &= -t(t-1)g^{t-t}(s)(g'(s))^2 \\ &\quad - t g^{t-t}(s) g''(s), \end{aligned}$$

for all real s and $t > 0$.

Then Lemma 2 follows from the fact that

$$E(X^k(t_0)e^{isX(t_1)}) = E(X^k(t_0)e^{isX(t_0)}) g(s, t_1 - t_0)$$

for all k , $0 \leq t_0 \leq t_1$ and real s .

We now state and prove the main result of this note. For more detail of the proof, especially the last part, see the proof of theorem 2.1 in [2] by this author.

THEOREM. Let $0 < t_0 < t_1$. Then the necessary and sufficient condition that

$$(1) \quad E(X(t_0) | X(t_1) = y) = \alpha_0 + \alpha_1 y$$

and

$$(2) \quad \text{Var}(X(t_0) | X(t_1) = y) = \beta_0 + \beta_1 y \quad \text{a.e.,}$$

where α_0 , α_1 , β_0 and β_1 are constants w.r.t. y , is not

1) $X(t) = W(t) + \mu t$, if $\beta_1 = 0$, where $W(t)$ is a Wiener process

and μ is a real constant,

2) $X(t) = cY(t) - vt$, if $\alpha_1 \neq 0$, where $Y(t)$ is a Poisson process

and v and c are real constants.

PROOF. The sufficient condition can be verified by a straight-forward calculation.

To prove the necessary condition. Suppose the conditions (1) and (2) hold. Then by lemma 1, the conditions (1) and (2) imply

$$(3) \quad E(X^2(t_0)e^{isX(t_1)}) - (t_0/t_1)^2 E(X^2(t_1)e^{isX(t_1)}) \\ = \beta_0 E(e^{isX(t_1)}) + \beta_1 E(X(t_1)e^{isX(t_1)})$$

for all real s .

By lemma 2, equation (3) is equivalent to

$$(4) \quad t_0(1 - t_0/t_1)\left\{ g^{(1)}(s)(g'(s))^2 - g^{(1)}(s)g''(s) \right\} \\ = \beta_0 g(s) - i\beta_1 t_1 g^{(1)}(s)g'(s),$$

for all real s .

Without loss of generality, we may assume that $g(s) \neq 0$ for all s .

And we rewrite equation (4) in the form

$$(5) \quad \frac{d}{ds}\left(\frac{g'(s)}{g(s)}\right) = -\beta_0 + i\beta_1\left(\frac{g'(s)}{g(s)}\right),$$

where $B_0 = \beta_0/(t_0(1 - t_0/t_1))$ and $B_1 = \beta_1 t_1/(t_0(1 - t_0/t_1))$.

Because the second derivative of $g(s)$ exists and does not vanish for the s in a neighborhood N of the origin and $g'(s)/g(s)$ is independent of t_0 and t_1 , B_0 and B_1 are independent of t_0 and t_1 . In addition, it is easy to check that if $\beta_1 = 0$, then $B_0 > 0$. The solution of equation (4) is, if $\beta_1 = 0$,

$$g(s) = \exp\left\{ i\mu s - \frac{1}{2} \sigma^2 s^2 \right\},$$

where μ is a real sonstant and $\sigma^2 = B_0 > 0$, and if $\beta_1 \neq 0$,

$$g(s) = \exp\left\{ -ivs + \lambda(e^{ics} - 1) \right\},$$

where λ is a positive real constant independent of t and s , and $v = B_0/B_1$, $c = B_1$.

Therefore, the characteristic function of $X(t)$ is, if $\beta_1 = 0$,

$$g(s,t) = \exp\left\{ i\mu ts - \frac{1}{2}\sigma^2 ts^2 \right\},$$

and, if $\beta_1 \neq 0$,

$$g(s, t) = \exp\left\{ -ivts + \lambda t(e^{ics} - 1) \right\}.$$

This completes our proof of the theorem.

The following two corollaries of the theorem are characterizations of the Wiener and the Poisson processes.

COROLLARY 1. If $E(X(t)) = 0$ for some $t > 0$. Then the necessary and sufficient condition that $X(t)$ is a Wiener process is that

$E(X(t_0) | X(t_1) = y)$ is a linear function of y and $\text{Var}(X(t_0) | X(t_1) = y)$ is constant a.e. for some $0 < t_0 < t_1$.

COROLLARY 2. The necessary and sufficient condition that $X(t)$ is a Poisson process is that $E(X(t_0) | X(t_1) = y)$ is a linear function of y and $\text{Var}(X(t_0) | X(t_1) = y) = (t_0/t_1)(1 - t_0/t_1)y$ a.e. for some $0 < t_0 < t_1$.

This work was partially sponsored by U.S. Air Force Office of Scientific Research AF-AFOSR-1305-67.

REFERENCES

- [1] Lukacs, E. (1970), Characterization theorems for certain stochastic processes, Review of the International Statistical Institute, 38, 333-343.
- [2] Wang, Y.H. (1972), On characterization of certain probability distributions, To appear in the Proc. Cambridge Philos. Soc. 70.