ANALYSIS OF DATA SYNCHRONIZATION METHODS AND FRAMEWORK IN WIRE ARC ADDITIVE MANUFACTURING

TRANSPORT AND **TELECOMMUNICATION INSTITUTE**

(WAAM)

Author: Sergejs Kopils

Study Programme: Data Analytics and Artificial Intelligence

Supervisor: Professor, Dr. sc. ing. Mihails Savrasovs Consultant: Invited lecturer, Mg. sc. ing. Arsenii Kisarev

Background

In Wire Arc Additive Manufacturing (WAAM), synchronizing multiple asynchronous data streams—3D scans data, process data, and initial data—is vital for quality control, anomaly detection, and process optimization.

Research Question

- Which synchronization method provides the most reliable alignment between scan and process data in the absence of timestamps?
- How effective is geometric segmentation compared to clusteringbased approaches in detecting deposition layers?
- Can rule-based anomaly detection reliably identify irregularities in the WAAM process based solely on geometric data?

Objectives

- Analyze synchronization methods for WAAM
- Develop a modular synchronization and visualization framework
- Compare segmentation techniques for layer detection
- Implement rule-based anomaly detection
- Visualize anomalies and layer data in 3D

Process Data

Final interactive interface of the modular WAAM data synchronization

and anomaly detection framework.

SERGEJS KOPILS +371 2914 5182 serqejs.kopils@qmail.com www.linkedin.com/in/sergejs-kopils

Methodology

Study Design: Experimental evaluation using WAAM dataset (Initial Data, Process Data and Scan Data).

Materials and Tools:

- Industrial robot (Yaskawa),
- Welding power source (Fronius),
- Laser scanner (Wenglor).
- Python, Dash, Plotly

Data Collection & Data Analysis:

- Post-layer 3D scans
- Process logs (Arc On/Off, robot path, TS, WFS)
- Segmentation: 6 methods (KMeans, DBSCAN, Geometry-based, etc
- Accuracy metrics (Precision, Accuracy %, Recall, F1-score, IoU)
- Rule-based anomaly logic
- Interactive 3D dashboard

Results and Discussion

- Geometry-based segmentation (Method 5) had highest robustness without timestamps.
- KDE+KMeans method performed best under noisy scan data.
- Anomaly detection flagged Z-depressions, arc gaps.

F1-score

Structure of the DataFrame produced by the synchronization engine

Method 6: Hierarchical Auto	55.3	53.5	48	49.1	34.8
Method 5: Geometry Based	100	100	100	100	100
Method 4: Cluster DBSCAN Auto	14.4	2.4	16.7	4.2	2.4
Method 3: Cluster KMeans Auto	14.4	4.7	16.7	7.4	4.7
Method 2: Cluster KMeans Known	57.1	53.9	49.3	51	36.7

Conclusions / Outcomes

Developed a modular, reusable synchronization framework for WAAM. Proposed and benchmarked 5 segmentation methods + 1 ground truth.

Integrated anomaly detection logic and created a 3D analysis dashboard.

