Public universities

Dmitry

25 марта 2022 г

Читаем данные

```
data<-read_xls("PUBLIC_shortname.xls") %>% data.frame()

## New names:
## * `` -> ...1
```

```
kable_new(data[1:5, 1:10])
```

1	PPIND	FICE ST	ATE TYPE	AVRMATH	AVRVERB	AVRCOMB	AVR_ACT	MATH_1
Alabama Agri. & Mech	1	1002 AL	IIA	NA	NA	NA	17	NA
University of Montev	1	1004 AL	IIA	NA	NA	NA	21	NA
Auburn University-Ma	1	1009 AL	ı	575	501	1076	24	520
University of North	1	1016 AL	IIB	NA	NA	NA	NA	NA
Jacksonville State U	1	1020 AL	IIA	NA	NA	NA	20	NA

Взглянем на признаки

```
## [1] "...1" "PPIND" "FICE" "STATE" "TYPE" "AVRMATH"
## [7] "AVRVERB" "AVRCOMB" "AVR_ACT" "MATH_1" "MATH_3" "VERB_1"
## [13] "VERB_3" "ACT_1" "ACT_3" "APP_REC" "APP_ACC" "NEW_STUD"
## [19] "NEW10" "NEW25" "FULLTIME" "PARTIME" "IN_STATE" "OUT_STAT"
## [25] "R_B_COST" "ROOM" "BOARD" "ADD_FEE" "BOOK" "PERSONAL"
## [31] "PH_D" "TERM_D" "SF_RATIO" "DONATE" "INSTRUCT" "GRADUAT"
## [37] "SAL_FULL" "SAL_AC" "SAL_AS" "SAL_ALL" "COMP_FUL" "COMP_AC"
## [43] "COMP_AS" "COMP_ALL" "NUM_FULL" "NUM_AC" "NUM_AS" "NUM_INS"
## [49] "NUM_ALL"
```

Отберём интересующие признаки

UNIV	STATE	TYPE	AVRMATH	AVRVERB	AVRCOMB	OUT_STAT	R_B_COST	TERM_D	SF_RATIO	GRADUAT	SAL_AC	SAL_ALL	APP
Alabama Agri. & Mech	AL	IIA	NA	NA	NA	3400	2550	53	14.3	40	369	350	
University of Montev	AL	IIA	NA	NA	NA	4440	3030	72	18.9	51	385	388	

UNIV	STATE	TYPE	AVRMATH	AVRVERB	AVRCOMB	OUT_STAT	R_B_COST	TERM_D	SF_RATIO	GRADUAT	SAL_AC	SAL_ALL	APP
Auburn University- Ma	AL	I	575	501	1076	6300	3933	91	16.7	69	437	455	
University of North	AL	IIB	NA	NA	NA	2970	2536	68	19.4	76	412	411	
Jacksonville State U	AL	IIA	NA	NA	NA	2610	2600	67	20.1	33	389	386	
Livingston Universit	AL	IIB	NA	NA	NA	1740	2449	58	18.8	36	304	300	
Troy State Universit	AL	IIA	510	470	980	2883	2570	50	23.0	48	385	350	

Взглянем на pairs-plot

Признаки с результатами экзаменов сильно коррелируют, отсекаем часть из них

```
fdata<-dplyr::select(fdata, -all_of(c("AVRVERB", "AVRCOMB")))
```

```
fdata %>% group_by(TYPE) %>% summarize(n = n())
```

```
## # A tibble: 3 x 2
## TYPE n
## <chr> <int>
## 1 I 123
## 2 IIA 220
## 3 IIB 96
```

```
fdata %>% group_by(REGION) %>% summarize(n = n())
```

```
fdata_I<-filter(fdata, TYPE == "I")
fdata_noIIB<-filter(fdata, TYPE != "IIB")

q1<-ggplot(filter(fdata_noIIB, TYPE == "I", !is.na(SF_RATIO)), aes(sample = (SF_RATIO - mean(SF_RATIO))/sd(SF_RATIO))) + ge
om_qq() + labs(title = "Normal probability plot for TYPE I 's SF_RATIO ")+geom_abline()
q2<-ggplot(filter(fdata_noIIB, TYPE == "IIA", !is.na(SF_RATIO)), aes(sample = (SF_RATIO - mean(SF_RATIO))/sd(SF_RATIO))) +
geom_qq() + labs(title = "Normal probability plot for TYPE IIA 's SF_RATIO ")+geom_abline()
q3<-ggplot(filter(fdata_noIIB, TYPE == "II", !is.na(GRADUAT)), aes(sample = (GRADUAT - mean(GRADUAT)))/sd(GRADUAT))) + geom_q
q() + labs(title = "Normal probability plot for TYPE I 's GRADUAT ")+geom_abline()
q4<-ggplot(filter(fdata_noIIB, TYPE == "IIA", !is.na(GRADUAT)), aes(sample = (GRADUAT - mean(GRADUAT)))/sd(GRADUAT))) + geom_q
q() + labs(title = "Normal probability plot for TYPE IIA 's GRADUAT ")+geom_abline()
grid.arrange(q1, q2,q3,q4, nrow = 2)</pre>
```

Public universities

Рассмотрим собственно университеты. Здесь распределение переменной TERM_D скошено вправо. Развернув значения этого признака, получаем новый признак — NTERM_D — число представителей преподавательского состава без высшего образования. Он уже скошен влево и разумно его логарифмировать. Скошенность R_B_COST тоже требует логарифмирования.

Будем предсказывать средний результат по математике

Взглянем на отфильтрованные данные

kable_new	v(fdata_1	[_t[1:5	,])									
UNIV	STATE	TYPE	AVRMATH	OUT_STAT	logR_B_COST	logNTERM_D	SF_RATIO	GRADUAT	SAL_AC	SAL_ALL	APP_ACC_r	REGION
Auburn University- Ma	AL	I	575	6300	8.277	2.197	16.7	69	437	455	0.900	Southeas
University of Alabam	AL	I	NA	5424	8.169	2.197	17.3	50	447	463	0.787	Southeas
University of Alabam	AL	I	NA	4440	8.552	1.386	6.7	33	445	461	0.701	Southeas
University of Alaska	AK	I	499	5226	8.186	NA	10.0	NA	560	508	0.771	West
Arizona State Univer	AZ	I	521	7434	8.487	1.946	18.9	48	449	489	0.805	Southwe

summary(fdata_I_t)

```
STATE TYPE
Length:123 Length:123
                                                          AVRMATH
## Length:123
                                                       Min. :390.0
## Class :character Class :character Class :character 1st Qu.:511.8
## Mode :character Mode :character Mode :character Median :535.5
##
                                                         3rd Qu.:574.2
##
                                                        Max. :655.0
##
                                                        NA's :43
                   logR_B_COST
##
     OUT STAT
                                  logNTERM_D
                                                  SF_RATIO
## Min. : 2279 Min. :7.641 Min. :0.000 Min. : 6.70
## 1st Qu.: 6326 1st Qu.:8.134 1st Qu.:1.609 1st Qu.:13.45
## 3rd Qu.: 8838 3rd Qu.:8.389 3rd Qu.:2.583 3rd Qu.:18.95
## Max. :15732 Max. :8.796 Max. :3.497 Max. :24.70
## NA's :1 NA's :11
## GRADUAT SAL_AC SAL_ALL APP_ACC_r
## Min. :10.00 Min. :364.0 Min. :362.0 Min. :0.3301
## 1st Qu.:44.50 1st Qu.:436.0 1st Qu.:455.0 1st Qu.:0.6767
## Median :54.00 Median :460.0 Median :495.0 Median :0.7575
## Mean :54.73 Mean :464.6 Mean :500.2 Mean :0.7415
## 3rd Qu.:66.00 3rd Qu.:490.0 3rd Qu.:551.0 3rd Qu.:0.8361
## Max. :95.00 Max. :611.0 Max. :665.0 Max. :0.9886
## NA's :4 NA's :1
## REGION
## Length:123
## Class :character
## Mode :character
##
##
##
##
```

Немного преобразуем данные: удалим столбец с типом, разобьём их на две части: где AVR_MATH известно и где неизвестно (можем применить потом для предскзания готовые данные), пропуски заполним средними значениями (пропусков мало, искусственно дисперсию мы не занизим)

```
fdata_I_t_nT<-fdata_I_t %>% dplyr::select(-TYPE)
tdata<-fdata_I_t_nT %>% filter(!is.na(AVRMATH))
testdata<-fdata_I_t_nT %>% filter(is.na(AVRMATH)) %>% dplyr::select(-AVRMATH)

NA2mean <- function(x) replace(x, is.na(x), mean(x, na.rm = TRUE))
tdata<-replace(tdata, TRUE, lapply(tdata, NA2mean))

## Warning in mean.default(x, na.rm = TRUE): argument is not numeric or logical:
## returning NA

## Warning in mean.default(x, na.rm = TRUE): argument is not numeric or logical:
## returning NA

## Warning in mean.default(x, na.rm = TRUE): argument is not numeric or logical:
## returning NA

## Warning in mean.default(x, na.rm = TRUE): argument is not numeric or logical:
## returning NA</pre>
```

Строим стандартную модель со всеми признаками

```
model_default<-lm(AVRMATH ~ OUT_STAT + logR_B_COST + logNTERM_D + SF_RATIO + GRADUAT + SAL_AC + SAL_ALL + APP_ACC_r ,data =
tdata)
summary(lm.beta(model_default))</pre>
```

```
## lm(formula = AVRMATH ~ OUT STAT + logR B COST + logNTERM D +
##
         SF_RATIO + GRADUAT + SAL_AC + SAL_ALL + APP_ACC_r, data = tdata)
## Residuals:
## Min
                   1Q Median
                                      3Q
                                                Max
## -68.407 -19.743 -3.784 18.248 131.036
##
## Coefficients:
##
                    Estimate Standardized Std. Error t value Pr(>|t|)
## 1087_B_COST -5.169727 -0.021083 23.398687 -0.221 0.82577 ## 1087TERM_D -12.044243 -0.184798 5.578688 -2.159 0.03423 * ## SF_RATIO -0.096340 -0.007215 1.084499 -0.089 0.92946 ## GRADUAT 1.529480 0.477414 0.317686 4.814 8.07e-06 *** ## SAL_AC -0.375415 -0.348017 0.163795 -2.292 0.02488 * ## SAL_ALL 0.436100 0.564773 0.128760 3.387 0.00156 **
## APP_ACC_r -38.938710 -0.107048 29.824943 -1.306 0.19591
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 31.12 on 71 degrees of freedom
## Multiple R-squared: 0.6407, Adjusted R-squared: 0.6002
## F-statistic: 15.82 on 8 and 71 DF, p-value: 4.019e-13
```

Возможно, мы получим более хорошую модель, если поработаем с коррелированностью признаков

Взглянем на доверительный эллипс для, например, GRADUAT и SAL_ALL

```
ellipse68<-ellipse(model_default, which = c(6, 8))
ggplot()+geom_point(aes(x = ellipse68[,1], y = ellipse68[,2]))+
xlab("GRADUAT")+ylab("SAL_ALL")</pre>
```


Построим таблицу избыточности и частных корреляций

```
pcorrelations < -pcor(tdata[c(-1,-2,-12)])$estimate
spcorrelations < -spcor(tdata[c(-1,-2,-12)])$estimate
formula<-.~OUT_STAT + logR_B_COST + logNTERM_D + SF_RATIO + GRADUAT + SAL_AC + SAL_ALL + APP_ACC_r
modelOUS<-lm(update(formula, OUT STAT ~ .-OUT STAT), data = tdata)</pre>
modelRBC<-lm(update(formula, logR_B_COST ~ .-logR_B_COST), data = tdata)</pre>
\verb|modelNTD<-lm(update(formula, logNTERM_D \sim .-logNTERM_D), | data = tdata)|
modelSFR<-lm(update(formula, SF_RATIO ~ .-SF_RATIO), data = tdata)</pre>
{\tt modelGRA<-lm(update(formula, GRADUAT \sim .-GRADUAT), \ data = tdata)}
modelSAC < -lm(update(formula, SAL\_AC \sim .-SAL\_AC), data = tdata)
modelSAL<-lm(update(formula, SAL ALL ~ .-SAL ALL), data = tdata)</pre>
modelAPC<-lm(update(formula, APP_ACC_r ~ .-APP_ACC_r), data = tdata)</pre>
mcorOUT<-cor(tdata$OUT STAT, modelOUS$fitted.values)^2</pre>
mcorRBC<-cor(tdata$logR_B_COST, modelRBC$fitted.values)^2</pre>
mcorNTD<-cor(tdata$logNTERM_D, modelNTD$fitted.values)^2</pre>
\verb|mcorSFR<-cor(tdata\$SF_RATIO, modelSFR\$fitted.values)^2|
mcorGRA<-cor(tdata$GRADUAT, modelGRA$fitted.values)^2</pre>
mcorAPC<-cor(tdata$APP_ACC_r, modelAPC$fitted.values)^2</pre>
rsq<-c(mcorOUT, mcorRBC, mcorNTD, mcorSFR, mcorGRA, mcorSAC, mcorSAL, mcorAPC)
info<-data.frame(tolerance = 1 - rsq,</pre>
                         = rsq,
               Rsq
               partialcors = pcorrelations[1, 2:9],
           semipartialcors = spcorrelations[1, 2:9], row.names = names(tdata)[4:11])
                             Rsq partialcors semipartialcors
              tolerance
```

Уберём logR_B_COST и SF_RATIO

```
feat.nums<-c(4,6,8:11)
model1<-lm(AVRMATH ~ OUT_STAT + logNTERM_D + GRADUAT + SAL_AC + SAL_ALL + APP_ACC_r ,data = tdata)
summary(model1)</pre>
```

```
## lm(formula = AVRMATH ~ OUT_STAT + logNTERM_D + GRADUAT + SAL_AC +
##
      SAL_ALL + APP_ACC_r, data = tdata)
## Residuals:
##
     Min
             1Q Median
                           30
                                 Max
## -68.088 -18.973 -3.872 17.666 132.158
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 480.522663 54.139581 8.876 3.19e-13 ***
## OUT_STAT -0.002175 0.001767 -1.230 0.222523
## logNTERM_D -12.063651 5.385851 -2.240 0.028144 *
## GRADUAT 1.529781 0.312813 4.890 5.81e-06 ***
            ## SAL AC
## SAL_ALL
## APP_ACC_r -38.276019 29.295429 -1.307 0.195466
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 30.7 on 73 degrees of freedom
## Multiple R-squared: 0.6404, Adjusted R-squared: 0.6108
## F-statistic: 21.66 on 6 and 73 DF, p-value: 1.877e-14
```

Посмотрим на результаты перебора

```
leaps(tdata[,c(-1,-2,-3, -12)], tdata[, 3], method = "adjr2", names = names(tdata)[4:11], nbest = 1)
```

```
## $which
## OUT_STAT logR_B_COST logNTERM_D SF_RATIO GRADUAT SAL_AC SAL_ALL APP_ACC_r
## 1 FALSE
                         FALSE FALSE TRUE FALSE FALSE
FALSE FALSE TRUE FALSE TRUE
## 2 FALSE FALSE FALSE FALSE TRUE FALSE
## 3 FALSE FALSE TRUE FALSE
## 4 FALSE FALSE TRUE FALSE
## 4 FALSE FALSE TRUE FALSE
                                                                                                 FALSE
                                                                                    TRUE FALSE
                                                                                    TRUE
        TRUE TRUE TRUE TRUE TRUE TRUE

-- FALSE TRUE FALSE TRUE TRUE TRUE TRUE

TRUE FALSE TRUE FALSE TRUE TRUE TRUE

TRUE TRUE TRUE FALSE TRUE TRUE TRUE

TRUE TRUE TRUE TRUE TRUE TRUE
## 4 FALSE
## 5 FALSE
## 6
## 7
## 8
##
## $label
## [1] "(Intercept)" "OUT_STAT" "logR_B_COST" "logNTERM_D" "SF_RATIO" "## [6] "GRADUAT" "SAL_AC" "SAL_ALL" "APP_ACC_r"
## $size
## [1] 2 3 4 5 6 7 8 9
## $adir2
## [1] 0.4682037 0.5383781 0.5802288 0.6037046 0.6081005 0.6108023 0.6056797
```

```
leaps(tdata[,c(-1,-2,-3, -12)], tdata[, 3], method = "Cp", names = names(tdata)[4:11], nbest = 1)
```

```
## $which
## OUT_STAT logR_B_COST logNTERM_D SF_RATIO GRADUAT SAL_AC SAL_ALL APP_ACC_r
## 1 FALSE
                       FALSE FALSE FALSE TRUE FALSE FALSE
FALSE FALSE TRUE FALSE TRUE FALSE
## 2 FALSE
## 3 FALSE
                     FALSE TRUE FALSE TRUE FALSE TRUE FALSE
       FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
TRUE FALSE TRUE FALSE TRUE TRUE TRUE
TRUE TRUE TRUE FALSE TRUE TRUE TRUE
TRUE TRUE TRUE FALSE TRUE TRUE TRUE
TRUE TRUE TRUE TRUE TRUE TRUE TRUE
TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## 4 FALSE
## 5 FALSE
## 6
## 7
## 8
##
## $label
## [1] "(Intercept)" "OUT_STAT" "logR_B_COST" "logNTERM_D" "SF_RATIO"
                        "SAL_AC" "SAL_ALL"
## [6] "GRADUAT"
                                                        "APP_ACC_r"
## $size
## [1] 2 3 4 5 6 7 8 9
## [1] 27.744454 14.900056 7.790495 4.337031 4.532291 5.058828 7.007891
```

Взглянем на пошаговую регрессию по C_p -критерию Mallow (эквивалентен AIC в нормальной модели)

```
(ols_step_backward_p(model_default))

##
##
##
Elimination Summary
```

```
(ols_step_forward_p(model_default))
```

```
##
                         Selection Summary
## ------
      Variable
                                Adj.
## Step Entered R-Square R-Square C(p) AIC
                                                            RMSE
## -----
  1 GRADUAT 0.4749 0.4682 27.7445 803.8732
    2 SAL_ALL 0.5501 0.5384 14.9001 793.5198
3 logNTERM_D 0.5962 0.5802 7.7905 786.8711
4 SAL_AC 0.6238 0.6037 4.3370 783.2075
5 APP_ACC_r 0.6329 0.6081 4.5323 783.2413
6 OUT_STAT 0.6404 0.6108 5.0588 783.5994
##
                                                            33,4373
##
                                                            31.8855
   4 SAL_AC
                                                            30.9811
##
                                                            30.8088
                                                           30.7024
##
```

Проанализируем остатки новой модели. Сначала нормальность

```
shapiro.test(model1$residuals)

##
## Shapiro-Wilk normality test
##
## data: model1$residuals
## W = 0.93934, p-value = 0.0008877

ggplot(tdata, aes(sample = model1$residuals))+geom_qq()+geom_qq_line()
```

```
100-
50-
50-
-50-
```

Каков график predicted-residuals

```
ggplot(tdata ,aes(x = model1$fitted.values,y=model1$residuals))+
  geom_point()+
  geom_text(aes(label=ifelse(abs(model1$residuals)>50,as.character(reorder(1:dim(tdata)[1],model1$fitted.values)),'')),hjust
=0,vjust=0)+
  xlab("Predicted")+ylab("Residuals")
```


График residuals-deleted residuals

График расстояний Кука

```
gdata1<-data.frame('n' = 1:dim(tdata)[1], 'dist' = cooks.distance(model1))
ggplot(gdata1, aes(x = n, y = dist))+geom_point()+geom_text(aes(label=ifelse(dist >0.04,as.character(n),'')),hjust=0,vjust=0
)+xlab("n")+ylab("Cook's distance")
```


График расстояний Махаланобиса

ols_plot_resid_lev(model1)

Outlier and Leverage Diagnostics for AVRMATH

Кандидаты на удаление:

to.delete<-c(2,30,32,46,61,68,69,76,79)
kable_new(tdata[to.delete,])</pre>

	UNIV	STATE	AVRMATH	OUT_STAT	logR_B_COST	logNTERM_D	SF_RATIO	GRADUAT	SAL_AC	SAL_ALL	APP_ACC_r	REGION
2	University of Alaska	AK	499	5226	8.186	2.051	10.0	56.312	560	508	0.771	West
30	University of Southe	MS	531	4652	7.812	0.000	18.7	45.000	438	438	0.717	Southeast
32	University of Missou	МО	655	9057	8.189	2.485	14.4	49.000	508	564	0.973	Midwest

	UNIV	STATE	AVRMATH	OUT_STAT	logR_B_COST	logNTERM_D	SF_RATIO	GRADUAT	SAL_AC	SAL_ALL	APP_ACC_r	REGION
46	Kent State Universit	ОН	462	7854	8.207	2.639	20.8	46.000	473	502	0.330	Midwest
61	Texas Southern Unive	TX	390	7860	8.120	3.219	18.2	10.000	455	423	0.747	Southwest
68	University of Vermon	VT	553	15516	8.503	2.303	9.9	79.000	450	458	0.784	Northeast
69	College of William a	VA	640	11720	8.366	2.079	12.1	93.000	499	525	0.436	Southeast
76	University of Michig	MI	634	15732	8.447	0.693	11.5	87.000	577	605	0.676	Midwest
79	University of Texas	TX	632	4536	8.508	1.386	20.8	56.312	505	557	0.716	Southwest

```
model2<-lm(form1, data = tdata[-to.delete,])
summary(lm.beta(model2))</pre>
```

$R^2_{ad\,i}$ улучшился значительно

Эта же модель получается при автоматическом отборе признаков по AIC в обоих направлениях

```
model_default_d<-model_default<-lm(AVRMATH ~ OUT_STAT + logR_B_COST + logNTERM_D + SF_RATIO + GRADUAT + SAL_AC + SAL_ALL + A
PP_ACC_r ,data = tdata[-to.delete,])

(ols_step_forward_aic(model_default_d))</pre>
```

```
##

##

Selection Summary

##

Variable AIC Sum Sq RSS R-Sq Adj. R-Sq

##

GRADUAT 691.457 55555.070 64804.113 0.46158 0.45377

## APP_ACC_r 668.464 74784.352 45574.831 0.62134 0.61021

## logNTERM_D 659.501 81305.269 39053.914 0.67552 0.66099

## OUT_STAT 658.108 83127.235 37231.949 0.69066 0.67191

## SAL_ALL 655.472 85480.912 34878.271 0.71022 0.68792

## SAL_AC 643.400 91751.735 28607.448 0.76232 0.74003

##
```

```
(ols_step_backward_aic(model_default_d))
```

Остатки нормальны

```
##
## Shapiro-Wilk normality test
##
## data: model2$residuals
## W = 0.98331, p-value = 0.4667
```

Пересмотрим модель

Признак GRADUAT скорее является следствием из результатов AVRMATH

```
model_default_noGRADUAT<-lm(AVRMATH ~ OUT_STAT + logR_B_COST + logNTERM_D + SF_RATIO + SAL_AC + SAL_ALL + APP_ACC_r, data =
tdata)
summary.beta(model_default_noGRADUAT)</pre>
```

```
## Call:
## lm(formula = AVRMATH ~ OUT_STAT + logR_B_COST + logNTERM_D +
        SF_RATIO + SAL_AC + SAL_ALL + APP_ACC_r, data = tdata)
## Residuals:
                   1Q Median
                                     30
## -89.700 -17.757 -1.835 16.781 117.664
##
## Coefficients:
                   Estimate Standardized Std. Error t value Pr(>|t|)
## logNTERM_D -20.334665   -0.312000   6.068757   -3.351   0.001286 **
## SF_RATIO   0.201231   0.015070   1.238320   0.163   0.871365
## SAL_AC   -0.386467   -0.358262   0.187314   -2.063   0.042700 *
## SAL_ALL   0.554535   0.718152   0.144550   3.836   0.000265 **
## SAL_ALL 0.554535 0.718152 0.144550 3.836 0.000265 ***
## APP_ACC_r -61.318931 -0.168574 33.693778 -1.820 0.072933 .
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 35.59 on 72 degrees of freedom
## Multiple R-squared: 0.5233, Adjusted R-squared: 0.477
## F-statistic: 11.29 on 7 and 72 DF, p-value: 1.444e-09
```

Посмотрим на доверит. эллипсоид для зарплат

```
ellipse67<-ellipse(model_default_noGRADUAT, which = c(6, 7))
ggplot()+geom_point(aes(x = ellipse67[,1], y = ellipse67[,2]))+
    xlab("SAL_AC")+ylab("SAL_ALL")</pre>
```


Эллипс захватывает часть прямой SAL_AC == 0, поэтому его можно исключить

```
model3<-lm(AVRMATH ~ OUT_STAT + logR_B_COST + logNTERM_D + SF_RATIO+ SAL_ALL + APP_ACC_r, data = tdata)
summary.beta(model3)
## Call:
## lm(formula = AVRMATH ~ OUT STAT + logR B COST + logNTERM D +
      SF_RATIO + SAL_ALL + APP_ACC_r, data = tdata)
## Residuals:
##
    Min
              10 Median
                            30
                                   Max
## -99.471 -19.908 -1.233 21.783 118.109
## Coefficients:
##
               Estimate Standardized Std. Error t value Pr(>|t|)
## (Intercept) 401.781589 0.000000 206.981499 1.941 0.056101 .
## OUT_STAT 0.001325 0.062006 0.002162 0.613 0.541911 
## logR_B_COST 4.795119 0.019555 26.535831 0.181 0.857101
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 36.38 on 73 degrees of freedom
## Multiple R-squared: 0.4952, Adjusted R-squared: 0.4537
```

Продолжим отбор. Автоматический отбор признаком по AIC и adj. \mathbb{R}^2 в отдельности дают:

F-statistic: 11.93 on 6 and 73 DF, p-value: 2.732e-09

```
model4<-lm(AVRMATH ~ logNTERM_D + SAL_ALL + APP_ACC_r, data = tdata)
summary.beta(model4)</pre>
```

```
##
## Call:
## lm(formula = AVRMATH ~ logNTERM_D + SAL_ALL + APP_ACC_r, data = tdata)
## Residuals:
             1Q Median
## -98.812 -21.166 -0.578 18.005 116.497
##
## Coefficients:
            Estimate Standardized Std. Error t value Pr(>|t|)
0.32588
                        0.42203
                                  0.07384 4.414 3.31e-05 ***
## APP ACC r -51.45573
                       -0.14146 33.46188 -1.538 0.128265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\mbox{\tt \#\#} Residual standard error: 35.85 on 76 degrees of freedom
## Multiple R-squared: 0.4894, Adjusted R-squared: 0.4693
## F-statistic: 24.29 on 3 and 76 DF, p-value: 4.008e-11
```

Остатки

```
ggplot(tdata, aes(sample = model4$residuals))+geom_qq()+geom_qq_line()
```


predicted-residuals:

```
ggplot(tdata ,aes(x = model4$fitted.values,y=model4$residuals))+
  geom_point()+
  geom_text(aes(label=ifelse(abs(model4$residuals)>50,as.character(reorder(1:dim(tdata)[1],model4$fitted.values)),'')),hjust
=0,vjust=0)+
  xlab("Predicted")+ylab("Residuals")
```


residuals-deleted residuals

Расстояния Кука

Расстояния Махаланобиса


```
ols_plot_resid_lev(model4)
```

Outlier and Leverage Diagnostics for AVRMATH

Имеет смысл отбросить 30, 32, 46

```
model5<-lm(AVRMATH ~ logNTERM_D + SAL_ALL + APP_ACC_r, data = tdata[-c(30,32,46),])
summary.beta(model5)</pre>
```

```
##
32, 46), ])
##
## Residuals:
##
      Min
               10 Median
                              30
                                     Max
## -105.995 -17.051
                   0.281
                          19.125
##
## Coefficients:
##
              Estimate Standardized Std. Error t value Pr(>|t|)
## (Intercept) 574.69884 0.00000 52.90799 10.862 < 2e-16 ***
                                   5.61241 -3.992 0.000154 ***
## logNTERM_D -22.40657
                         -0.34294
## SAL_ALL
              0.21184
                          0.28572
                                   0.06847 3.094 0.002799 **
## APP_ACC_r
           -128.79616
                       -0.34367 32.69981 -3.939 0.000186 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\mbox{\tt \#\#} Residual standard error: 30.89 on 73 degrees of freedom
## Multiple R-squared: 0.595, Adjusted R-squared: 0.5783
## F-statistic: 35.75 on 3 and 73 DF, p-value: 2.524e-14
```

Что-нибудь спрогнозируем. Например, для Государственного университета штата Иллинойс. По данным на 2000-2002 годы 99% поступивших сдавали экзамен АСТ, а не SAT;

C9. Percent and number of first-time, first-year (freshman) students enrolled in fall 2001 who submitted national standardized (SAT/ACT) test scores. Include information for ALL enrolled, degree-seeking, first-time, first-year (freshman) students who submitted test scores. Do not include partial test scores (e.g., mathematics scores but not verbal for a category of students) or combine other standardized test results (such as TOEFL) in this item. SAT scores should be recentered scores. The 25th percentile is the score that 25 percent scored at or below; the 75th percentile score is the one that 25 percent scored at or above.

Percent submitting SAT scores		Number submitting SAT scores	
Percent submitting ACT scores	99%	Number submitting ACT scores	3,307

	25th Percentile	75th Percentile
SAT I Verbal		
SAT I Math		
ACT Composite	20	25
ACT English	20	25
ACT Math	19	25

Percent of first-time, first-year (freshman) students with scores in each range:

	SAT I Verbal	SAT I Math
700-800		
600-699		
500-599		
400-499		
300-399		
200-299		

	ACT Composite	ACT English	ACT Math
30-36	3	4	4
24-29	37	35	36
18-23	59	52	50
12-17	1	9	10
6-11		0	
Below 6			

Why Do Some States Require the ACT?

In 2001, when states were first implementing statewide assessment programs, Illinois and Colorado decided that, rather than creating their own tests for high school juniors, **they would contract with ACT, Inc. to use the ACT as a statewide assessment**. (The ACT is generally considered more content based than the SAT, and therefore a better for assessments.)

This plan had the added advantages of **providing every student with the chance to take a college admissions test** and, ideally, **encouraging students who might not have otherwise considered college to apply**.

predic	.lm(model5, testdata[9,])		
## ## 510	9			

Тем не менее результаты можно сопоставить

ACT MATH SCORE	SAT MATH SCORE (Before March 2016)	SAT MATH SCORE (After March 2016)
30	680	710
29	660	690
28	640	660
27	620	640
26	600	620
25	580	600
24	560	580
23	540	570
22	520	550
21	500	530
20	480	510