

Прикладная статистика и анализ данных _{Съезд XII}

Построение графов

причинно-следств. связей

Метод индуктивной причинности

 Δ ано: признаки V

выборка $X_1,...,X_n$, где $X_i=(X_{iv})_{v\in V}$

Выход: ориентированный (м.б. частично) граф G = (V, E).

Процедура:

1. Для всех вершин $A, B \in V$ ищем множество вершин $S_{AB} \subset V$ (в т.ч. $S_{AB} = \emptyset$), при котором $A \perp \!\!\! \perp B \mid S_{AB}$ и $A, B \notin S_{AB}$.

Если такого множества не существует, то соединяем A и B неориент. ребром

Если существует, то скорее всего связь не прямая.

2. Если A и B не связны, но имеют общего соседа (A-C-B), то проверяем, верно ли что $C \in \mathcal{S}_{AB}$?

Если нет, то образуем коллайдр: $A \longrightarrow C \longleftarrow B$.

Если та непрямая связь обусловлена С, то это только коллайдр.

(P) (D)

Метод индуктивной причинности

Процедура:

- 3. Циклически устанавливаем направления еще ненаправл. ребрам:
 - а). Если A и B связны (A-B) и из A в B есть неориентир. путь $A\longrightarrow ...\longrightarrow B$, то ориентируем ребро: $A\longrightarrow B$
 - b). Если A и B не связны и при этом $A \longrightarrow C, C B,$ то ориентируем ребро: $C \longrightarrow B$ Коллайдр не может по п. 2.

Если полный перебор затруднителен, то используют различные эвристики.

Критерии качества: AIC, BIC.

Проверка условной независимости

Пусть X,Y,Z — связные выборки. Как проверить по данным, что $X \perp \!\!\! \perp Y \mid Z$?

1. Категориальные признаки

Критерий хи-квадрат для трехмерных таблиц сопряженности.

Нужно спец. образом задать соотношения на вероятности и получить критерий из обобщенного крит. хи-квадрат.

2. Вещественные признаки

Частная корреляция + критерий Стьюдента

3. Временные ряды

Причинность по Грейнджеру

Частная корреляция

Определение. Пусть X, Y, Z — случайные величины.

Тогда частная корреляция X и Y при условии Z равна

$$corr(X, Y \mid Z) = \frac{corr(X, Y) - corr(X, Z)corr(Y, Z)}{\sqrt{[1 - corr^2(X, Z)][1 - corr^2(Y, Z)]}}.$$

Утверждение

$$corr(X, Y \mid Z) = corr(\widetilde{X}, \widetilde{Y}),$$

где
$$\widetilde{X}=X-aZ,\ \widetilde{Y}=Y-bZ,$$
 числа a,b подобраны из условий $corr(\widetilde{X},Z)=0$ и $corr(\widetilde{Y},Z)=0$

Смысл: ч. к. пытается снять лин. зависимость от третьего признака.

Рекуррентная формула

$$corr(X, Y \mid Z, W) = \frac{corr(X, Y \mid W) - corr(X, Z \mid W)corr(Y, Z \mid W)}{\sqrt{[1 - corr^2(X, Z \mid W)][1 - corr^2(Y, Z \mid W)]}}$$

Частная корреляция

Выборочный коэфф. корреляции

Получается заменой corr на $\widehat{
ho}$ — корреляция Пирсона.

Критерий Стьюдента

Пусть $X_1,X_2\in\mathbb{R},X_3\in\mathbb{R}^d$, причем (X_1,X_2,X_3) — нормальный вектор.

$$H_0$$
: $corr(X_1, X_2 \mid X_3) = 0$

Тогда

$$T(X) = \frac{\widehat{\rho}_{X_1, X_2 \mid X_3} \sqrt{n - d - 2}}{\sqrt{1 - \widehat{\rho}_{X_1, X_2 \mid X_3}^2}} \quad \stackrel{d_0}{\sim} \quad T_{n - d - 2}$$

Причинность по Грейнджеру

Пусть $x_1,...,x_T$ и $y_1,...,y_T$ — временные ряды.

Между ними существует причинно-следственная связь $x_t \longrightarrow y_t$ если дисперсия ошибки оптимального прогноза \widehat{y}_{t+1} по $(x_1,...,x_T,y_1,...,y_T)$ меньше чем только по $(y_1,...,y_T)$.

Ряды взаимосвязаны если $x_t \longrightarrow y_t$ и $y_t \longrightarrow x_t$.

Критерий

Обучаем линейную модель

$$y_t = \alpha + \sum_{j=1}^{k_1} \varphi_{1j} y_{t-j} + \sum_{j=1}^{k_2} \varphi_{2j} x_{t-j} + \varepsilon_t,$$

где k_1 и k_2 выбираются по информационному критерию.

Если $x_t \longrightarrow y_t$, то существует $j \in \{1,...,k_2\}$ т.ч. $\varphi_{2j} \neq 0$. Тогда проверяем гип. $\mathsf{H}_0\colon \varphi_{21} = ... = \varphi_{2k_2} = 0$ критерием Фишера (см. лин. регр.).

Многомерный случай

Пусть $x_1, ..., x_T$ и $y_1, ..., y_T$ — временные ряды.

Пусть
$$z_1^{(\ell)},...,z_T^{(\ell)}$$
 — другие ряды, $\ell=1,...,m$

Добавляем в модель зависимость от остальных признаков

$$y_{t} = \alpha + \sum_{j=1}^{k_{1}} \varphi_{1j} y_{t-j} + \sum_{j=1}^{k_{2}} \varphi_{2j} x_{t-j} + \sum_{\ell=1}^{m} \sum_{j=1}^{k_{\ell+2}} \varphi_{\ell+2,j} z_{t-j}^{(\ell)} + \varepsilon_{t},$$

и проверяем ту же гипотезу H_0 : $\varphi_{21} = ... = \varphi_{2k_2} = 0$.

