COMPUTER SCIENCE & IT

DIGITAL LOGIC

Lecture No: 06

Sequential Circuit

Recap of Previous Lecture

Sy	unchronous	Counter

Synchrono	us Counter		
Ü			

Question

A sequential circuit is as given below:

If initial state of counter is $Q_2Q_1Q_0 = (001)_2$, then after 8th clock pulse, counter will be in state (\perp)₁₀.

fux/2 fax/2 fax/2
$$Q_1 Q_0$$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_1 Q_0$
 $Q_2 Q_1 Q_0$
 $Q_1 Q$

$$(001)_2 \xrightarrow{2X4} (001)_2$$

Question

Pw

The output of the two FFs, Q_1 and Q_2 are initially at '0'. The sequence generated at Q_1 after application of clock pulses:

Q. A sequential CKt is as given below:

$$Q_{0}(n+1) = T_{0}Q_{0}$$

$$+ K_{0}Q_{0}$$

$$+ Q_{2}Q_{0}Q_{1}$$

$$+ Q_{2}Q_{0}Q_{1}$$

$$= Q_{2}Q_{1}Q_{0}Q_{0}$$

$$= Q_{2}Q_{1}Q_{0}Q_{0}Q_{0}$$

$$= Q_{2}(n)Q_{1}(n)$$

$$+ Q_{0}(n)$$

$$= Q_{0}(n)Q_{0}(n)$$

The CKt starts with a. 101, 111, 011

929, Qo = (000) 2 then next three state of the counter will be b |0|,000,111 (C/10),011,111 d |11,011,101

D. A sequential CKt is as given below:

$$Q_2(n+1) = T_2 \oplus Q_2(n) = I \oplus Q_2(n) = \overline{Q_2}(n) , \quad Q_1(n+1) = T_1 \oplus Q_1(n) = Q_2(n) \oplus Q_1(n)$$

$$Q_0(n+1) = T_0 \oplus Q_0(n) = Q_1(n) \oplus Q_0(n)$$

This circuit starts with 929,00 = (100/s then state of the counter after 3rd dock edge will be a. (010)2 b. (111)2 c. (100)2 b. (000)2

Q. A sequential CKt is as given below:

#Q. Disign a counter (saturated counter) with transition as given below:

[HW] (00-11-01-10-10) - unity (a) JKFTs
(b) TFFs

Synchronous Series Carry Counter

4-bit synchronous series carry counter:

Lest analyze the sequence and design it:

	Q_3	Q_2	Q_1	Q_0
	0	0	0	0
18+	0	0	0	
2nd	0	0		0
389	0	70		
,	0	12	0	0
,	0		0	
	0		1	0
V .	05	15	J	
,	K	01	0	0
		0	0	
		0		Ó

Q_3	Q_2	Q_1	Q_0
	D		
	1	0	0
	1	0	1
1			0
اح		1	
70	O	Ö	0

Design using J-K FF : →

No. of AND gate require is: For n-bit synchronous series carry counter, (n-2)

Synchronous parallel carry counter:

• No. of AND gestes required for n-bit synchronous parallel carry counter = (n-2)• The highest multi i/P AND gate = (n-1) i/P AND gate

Ring Counter

$$Q_3(n+1) = D_3 = Q_0(n)$$
, $Q_2(n+1) = D_2 = Q_3(n)$

4-bit Ring Counter:

$$Q_1(n+1) = D_1 = Q_2(n)$$
, $Q_0(n+1) = D_0 = Q_1(n)$

$$Q_0(n+1) = D_0 = Q_1(n)$$

Circuit Design:

Working:

Imp points of Ring Counter: →

- gn a n-but ring counter no of und states = n as MOD no = n always
- · No. of unused states=(2 n)
- Frequency at the old of each ff will be $f_{\alpha} = \frac{f_{\alpha} \kappa}{n}$ i.e. divided by Modro at each δ/p .

A 4-bit ring country started with state (1010)2, then its MOD no ——.

HW. and the next three states (1)10, (1)10.

Topic: 2 Min Summary

-> synchronous counter

Thank you

Seldiers!

