Algunas propiedades del álgebra de cardinales

Marcelo M. Lynch Lógica Computacional - ITBA

Decimos que dos conjuntos A y B son coordinables si existe una función biyectiva entre ellos. Notamos $A \sim B$ (\sim es una relación de equivalencia). Decimos #A = #B si $A \sim B$. Decimos que $\#A \leq \#B$ si existe una función $f: A \to B$ inyectiva.

En lo que sigue, A, B, C son conjuntos disjuntos dos a dos y a=#A, b=#B, c=#C.

Recordemos que con a+b se denota al cardinal del conjunto $A \cup B$, con con ab se denota al cardinal del conjunto $A \times B$, y con a^b el cardinal del conjunto de funciones con dominio en B y codominio en A (llamamos a este conjunto A^B).

Propiedad. a(b+c) = ab + ac

Demostración. Por propiedades de conjuntos, sabemos:

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Luego, por la reflexividad de \sim tenemos $A \times (B \cup C) \sim (A \times B) \cup (A \times C)$. \square

Propiedad. $a^{b+c} = a^b a^c$

Demostración. Llamamos:

$$X = \{f : B \cup C \rightarrow A : f \text{ es función}\}\$$

$$Y = \{(f,g) \mid f: B \to A \text{ es función y } g: C \to A \text{ es función}\}\$$

Notemos que $\#X = a^{b+c}$ y $\#Y = a^b a^c$. Definimos entonces una biyeccion:

$$\Phi: X \to Y$$

$$\Phi(f) = (f|_B, f|_C)$$

i. Φ es inyectiva: Sean $f,g\in X$, tenemos $\Phi(f)=\Phi(g)\Rightarrow (f|_B,f|_C)=(g|_B,g|_C)$ luego las imágenes de f y g coinciden en todo su dominio $(B\cup C)$, es decir, f=g.

ii. Φ es sobreyectiva: Sea $(g,h) \in Y$, defino:

$$f:\ B\cup C\to A$$

$$f(t)=\begin{cases} g(t) & \text{si } t\in B\\ h(t) & \text{si } t\in C \end{cases}$$

 $f \in X$, y además $\Phi(f) = (g, h)$. Luego Φ es sobreyectiva. Entonces Φ es biyectiva, es decir, $X \sim Y$, o sea $a^{b+c} = a^b a^c$

Propiedad. $(a^b)^c = a^{bc}$

Demostración. Queremos ver $(A^B)^C \sim A^{B \times C}$. Recordemos que en $(A^B)^C$ tenemos funciones de $C \to \{\text{funciones } B \to A\}$, y en $A^{B \times C}$ tenemos funciones de $B \times C \to A$.

Definimos entonces la función $\Omega:A^{B\times C}\to (A^B)^C$ según:

$$\Omega(g) = f_g : C \to A^B$$

$$f_g(c) = h_{g,c} : B \to A$$

$$h_{g,c}(x) = g(x,c)$$

Para entender Ω se puede pensar que con el argumento de f_g se "fija" el segundo argumento de g (un elemento del conjunto C), y se devuelve una función $h_{g,c}$ que "fija" el primero (un elemento de B): es decir, al evaluar $h_{g,c}$ en un $x \in B$ se está evaluando la función g que es parámetro de Ω , con el elemento c como segundo parámetro, y el elemento c como primer parámetro.

Probemos la inyectividad de Ω mostrando que si $\alpha, \beta \in A^{B \times C}$ con $\alpha \neq \beta$ entonces $\Omega(\alpha) \neq \Omega(\beta)$. Si $\alpha \neq \beta$, por la definición de igualdad de funciones debe existir un elemento $(b_0, c_0) \in B \times C$ tal que $\alpha(b_0, c_0) \neq \beta(b_0, c_0)$.

Pero por como definimos Ω , tenemos $\alpha(b_0, c_0) = \Omega(\alpha)(c_0)(b_0)$ (¿se ve que primero se fija c_0 y luego b_0 , evaluando α con esos parámetros?) y $\beta(b_0, c_0) = \Omega(\beta)(c_0)(b_0)$.

Pero así $\Omega(\alpha)(c_0)(b_0) \neq \Omega(\beta)(c_0)(b_0)$ es decir, $h_{\alpha,c_0}(b_0) \neq h_{\beta,c_0}(b_0)$

Entonces, por igualdad de funciones: $h_{\alpha,c_0} \neq h_{\beta,c_0}$ (ya que difieren en b_0).

Pero $h_{\alpha,c_0} = f_{\alpha}(c_0)$, y $h_{\beta,c_0} = f_{\beta}(c_0)$, luego, de la misma manera, por igualdad de funciones es $f_{\alpha} \neq f_{\beta}$.

Como $\Omega(\alpha) = f_{\alpha}$ y $\Omega(\beta) = f_{\beta}$, entonces $\Omega(\alpha) \neq \Omega(\beta)$, que era lo que queríamos ver. Luego Ω es inyectiva.

Veamos que Ω es sobreyectiva. Sea $\gamma \in (A^B)^C$, definimos $g: B \times C \to A: g(b,c) = \gamma(c)(b)$. Para cualquier $c_0 \in C$, dado cualquier $b_0 \in B$ es $\Omega(g)(c_0)(b_0) = g(b_0,c_0) = \gamma(c_0)(b_0) \Rightarrow \Omega(g)(c) = \gamma(c) \ \forall c \in C$, luego $\Omega(g) = \gamma$. Concluimos que Ω es sobreyectiva.

Entonces Ω es biyectiva y así $(A^B)^C \sim A^{B \times C}$.

Propiedad. $b \le c \Rightarrow b^a \le c^a$

Demostraci'on. Como $b \leq c$ existe $g: B \to C$ inyectiva. Definimos $\Psi: B^A \to C^A$ según:

$$\Psi(f) = g \circ f : A \to C$$
$$g \circ f(x) = g(f(x))$$

Queremos ver que Ψ es inyectiva: $\Psi(f_1) = \Psi(f_2) \Rightarrow g(f_1(x)) = g(f_2(x))$, $\forall x \in A$. Como g es inyectiva, esto implica $f_1(x) = f_2(x)$. Como esto se cumple para cualquier $x \in A$, tenemos $f_1 = f_2$. Luego Ψ es inyectiva, y $b^a \leq c^a$. \square

Propiedad. $b \le c \Rightarrow a^b \le a^c$

Demostración. Como $b \leq c$ existe $g: B \to C$ inyectiva.

Definimos $f: B \to Im(g) \ / \ f(x) = g(x)$. La funcion f es biyectiva, por como esta definida (ya que g es inyectiva, y porque siendo el codominio la imagen de g se garantiza la sobreyectividad), luego existe $f^{-1}: Im(g) \to B$. Definimos $\Psi: A^B \to A^C$ según:

$$\Psi(\gamma) = h: C \to A$$

$$h(x) = \begin{cases} \gamma \circ f^{-1}(x) & \text{si } x \in Im(g) \\ a_0 \in A & \text{si } x \notin Im(g) \end{cases}$$

Donde a_0 es un elemento fijo cualquiera de A.

Veamos que Ψ es inyectiva. Tomemos $\alpha, \beta \in A^B$. Si $\Psi(\alpha) = \Psi(\beta)$, por igualdad de funciones tenemos que $\forall x \in C$ se cumple $\Psi(\alpha)(x) = \Psi(\beta)(x)$.

En particular, $\forall x \in Im(g)$, $\alpha \circ f^{-1}(x) = \beta \circ f^{-1}(x)$, con x = f(y) para algún $y \in B$ por ser x parte de la imagen de g. (Notemos que todo $x \in Im(g)$ tiene un único $y \in B$ tal que x = f(y) por ser f biyectiva, y que existe f(y) para todo $y \in B$ por ser f función).

Luego $\forall y \in B, \ \alpha(f^{-1}(f(y))) = \beta(f^{-1}(f(y))) \Rightarrow \forall y \in B, \ \alpha(y) = \beta(y) \Rightarrow \alpha = \beta,$ por igualdad de funciones. Luego Ψ es inyectiva, y así $a^b \leq a^c$.

Propiedad. $b \le c \Rightarrow ab \le ac$

Demostraci'on.Como $b \leq c$ existe $g: B \rightarrow C$ inyectiva.

Definimos $f: A \times B \to A \times C / f(x,y) = (x,g(y))$

f es inyectiva: $f(x,y)=f(z,w)\Rightarrow (x,g(y))=(z,g(w))\Rightarrow x=z\wedge g(y)=g(w)\Rightarrow x=z\wedge y=w,$ por ser g inyectiva. Entonces (x,y)=(z,w). Entonces f es inyectiva, g probamos g g g0.

Propiedad. $(ab)^c = a^c b^c$

Demostración. Definimos $\Phi: A^C \times B^C \to (A \times B)^C$ según:

$$\Phi(\alpha, \beta) = \gamma : C \to A \times B$$
$$\gamma(x) = (\alpha(x), \beta(x))$$

Vemos la invectividad de Φ :

 $\Phi(\alpha_1, \alpha_2) = \Phi(\beta_1, \beta_2) \Rightarrow \forall x \in C, \ (\alpha_1(x), \alpha_2(x)) = (\beta_1(x), \beta_2(x)) \Rightarrow \alpha_1 = \beta_1 \land \alpha_2 = \beta_2 \Rightarrow (\alpha_1, \alpha_2) = (\beta_1, \beta_2).$

Veamos la sobreyectividad de Φ :

Sea $\gamma \in (A \times B)^C$, tenemos $\gamma(x) = (\gamma_1(x), \gamma_2(x))$. Definimos $f: C \to A / f(x) = \gamma_1(x)$ y $g: C \to B / g(x) = \gamma_2(x)$.

 $(f,g) \in A^C \times B^C$, y $\Phi(f,g) = \gamma$. Por lo tanto Φ es sobreyectiva.

Luego Φ es biyectiva y $A^C \times B^C \sim (A \times B)^C$, o sea $a^c b^c = (ab)^c$.

4