TEORIA(OPCION A)

- 1.- La resistencia de un conductor eléctrico se escribe como $R = \rho \frac{L}{S}$, donde ρ es la resistividad, y L y S son la longitud y la sección del cable, respectivamente. Por tanto, las unidades de la resistividad deben ser...
 - a) Ohmios b) Ohmios—1 <u>c) Ohmios-metro</u> d) Ohmios/metro
- 2.- Suponed que una partícula en movimiento cumple la ley de escala $x \sim t^3$, donde x es la posición respecto del origen y t es el tiempo. Eso significa que la velocidad de la partícula cumplirá la ley de escala $v \sim t^{\alpha}$, donde...
 - a) $\alpha=1$ b) $\alpha=2$ c) $\alpha=3$ d) $\alpha=4$
- 3.- Si la cantidad de gases contaminantes emitidos por un coche a velocidad v (en km/h) sigue la ley 10^4 - $100v+v^2$, estonces la velocidad a la cual ese coche contamina menos es...
 - a) 10 km/h b) 40 km/h c) 50 km/h d) 100 km/h
 - 4.- El valor g=9.8 m/s² para la aceleración gravitatoria terrestre...
- a) Es válido en cualquier punto de la atmósfera. b) Es válido sólo cerca de la superficie terrestre, y disminuye a medida que nos alejamos de La Tierra. c) Es válido sólo cerca de la superficie terrestre, y aumenta a medida que nos alejamos de La Tierra. d) Es válido sólo cerca de la superficie; la aceleración vale 0 cuando salimos de la atmósfera.
 - 5.- El efecto de Coriolis es más intenso...
 - a) Cerca de los Polos terrestres. b) Cerca del Ecuador terrestre. c) En el hemisferio Norte. d) En el hemisferio Sur.
 - 6.- En un movimiento oscilatorio simple...
 - a) El punto de elongación máxima coincide con el punto de máxima velocidad. b) El punto de elongación máxima coincide con el punto de aceleración máxima. c) El punto de máxima velocidad coincide con el punto de aceleración máxima. d) Ninguna de las tres respuestas anteriores es correcta.
 - 7.- ¿Cuál de las 4 fuerzas del dibujo hará que el momento angular de la esfera se conserve?
 - a) A b) B c) C d) D

- 8.- Si una partícula está realizando un movimiento circular, necesariamente...
- a) Su momento lineal se conserva. b) Debe haber alguna fuerza actuando sobre ella. c) Su momento angular varía en el tiempo. d) El módulo de su velocidad varía en el tiempo.
- 9.- Una bola de billar de masa m se desplaza con velocidad v hasta chocar con otra bola idéntica que está quieta. Como resultado del choque, la primera bola se queda parada y la segunda comienza a desplazarse en la misma dirección que la primera con velocidad v. Podemos asegurar que ese choque...
- a) Viola la primera ley de Newton. b) Es elástico. c) Es inelástico. d) Podría ser elástico o inelástico; depende de m y v.
 - 10.- En un sistema en el que sólo intervienen fuerzas disipativas...
- a) El trabajo de esas fuerzas es igual a la variación de energía cinética en el sistema. b) La energía mecánica del sistema se conserva. c) La energía mecánica del sistema aumenta. d) Las tres respuestas anteriores son falsas.
- 11.- Imaginad dos saltos de agua. El primero tiene el doble de altura que el segundo, pero el río del primer salto lleva la mitad de caudal que el segundo. Sin tener en cuenta pérdidas energéticas de ningún tipo, ¿en cuál de los dos saltos obtendremos mayor energía si instalamos una central hidroeléctrica?
- a) En el primer salto obtendremos el doble que en el segundo. b) En el primero obtendremos cuatro veces más. c) En el segundo obtendremos el doble. d) Obtendremos la misma energía en los dos.

- 12.- Si un aerogenerador de 2MW funciona todo el año a 0.5 MW, su rendimiento global (sabiendo que un año tiene 8760 horas) ha sido de...
 - a) 4210 h.a.e. b) 2190 h.a.e. c) 3200 h.a.e. d) 2520 h.a.e.
- 13.- Aplicamos el mismo esfuerzo de tracción a dos barras metálicas con la misma sección y hechas del mismo material, pero una más larga que la otra. Suponiendo que se cumple la Ley de Hooke $\sigma=E\varepsilon$, ¿cuál de las dos barras se alargará una distancia mayor?
- a) Las dos se alargarán la misma distancia <u>b) La más larga</u> c) La más corta d) No tenemos datos suficientes para asegurarlo
 - 14.- Si el régimen elástico de un determinado material es muy corto eso implica que...
- a) Es muy fácil romper ese material. b) La Ley de Hooke es válida sólo si los esfuerzos aplicados son pequeños. c) Ese material se deforma muy lentamente. d) El módulo de Young de ese material es nulo.
 - 15.- El empuje hidrostático que experimenta un objeto completamente hundido dentro de un fluído...
- a) Aumenta a medida que el objeto va acercándose a la superficie del fluido. b) Es mayor cuando la densidad del objeto es mayor que la densidad del fluído. c) Es mayor cuando la densidad del objeto es menor que la densidad del fluído. d) Es independiente de la densidad del objeto.
- 16.- Si estamos regando el jardín con una manguera y queremos que el chorro llegue más lejos, una manera típica de hacerlo es tapando parcialmente el agujero de salida del chorro. ¿Qué ecuación nos permite explicar fácilmente ese fenómeno?
 - a) La ecuación de continuidad b) La Ley de Bernouilli c) La ley de Poiseuille d) La ley de Stokes
- 17.- Para que a una partícula en movimiento dentro de un fluído le podamos aplicar la Ley de Stokes, se debe cumplir necesariamente...
- a) Que la velocidad de la partícula sea muy grande b) Que la viscosidad del fluido sea muy grande c) Que el número de Reynolds para la partícula sea mucho menor que 1 d) Las tres respuestas anteriores son correctas
 - 18.- Los efectos de capilaridad de la savia a través de los xilemas de una planta son mayores cuanto...
- a) Mayor es la altura de la planta. b) Menor es la altura de la planta. c) Más anchos son los xilemas. d) Más estrechos son los xilemas.
 - 19.- Entre 0°C y 4°C, el agua presenta un comportamiento anómalo que consiste en que...
- a) Puede cambiar de fase sin que se produzca intercambio alguno de energía. b) Puede variar de temperatura sin que se produzca intercambio alguno de energía. c) Su volumen aumenta al aumentar la temperatura. d) Su volumen disminuye al aumentar la temperatura.
 - 20.- La energía necesaria para convertir hielo a - 10° C en agua a 20 $^{\circ}$ C es directamente proporcional...
- a) A la diferencia de temperaturas (30°C). b) A la masa de hielo que tengamos. c) Al calor específico del hielo. d) Las tres respuestas anteriores son falsas.
- 21.- Imaginad que sois un astronauta caminando por un planeta sin atmósfera (es decir, sin aire) y cuya temperatura ambiente es de unos 15°C (es decir, parecida a la de La Tierra). En esa situación, las pérdidas de calor de vuestro cuerpo serían...
- a) Prácticamente idénticas a las que tendríais en La Tierra. b) Nulas. c) Considerablemente menores que en La Tierra. d) Considerablemente mayores que en La Tierra.
- 22.- Imaginad que vais a la gasolinera a hinchar las ruedas del coche. Si comparáis el gas que había en los neumáticos antes de hincharlos con el que hay después, y suponiendo que ese gas cumpliera la ley de los gases ideales PV=nRT, entonces debe pasar necesariamente que...
- a) La presión del gas sea igual antes y después. b) El producto PV sea igual antes y después. c) El cociente PV/T sea igual antes y después. d) Las tres respuestas anteriores son falsas.
- 23.- Tenemos una estufa calentando una habitación gracias a la energía suministrada por una batería. De acuerdo con la definición dS = dQ/T, podemos asegurar que la entropía del sistema "estufa+batería" ...
- a) Está aumentando <u>b) Está disminuyendo</u> c) Se mantiene constante d) Esta en contradicción con el segundo principio de la termodinámica.
- 24.- Si la turbina de una central térmica convencional tiene un rendimiento del 50%, una central térmica de ciclo combinado funcionando con 2 turbinas iguales que esa tendrá un rendimiento aproximado del...
 - a) 50% b) 100% c) 75% d) 95%

- 25.- Estamos situados a una cierta distancia de una mesa, sobre la cual tenemos dos frascos cerrados. El primero contiene una sustancia A y el segundo contiene la misma cantidad de otra sustancia B. Tanto la sustancia A como la B emiten un olor apreciable por nuestro olfato. Si abrimos los frascos a la vez ¿de qué sustancia nos llegará el olor antes?
- a) Depende de los coeficientes de difusión de cada sustancia. b) Depende de los umbrales olfativos de cada c) Las respuestas a) y b) son las dos correctas. d) Las respuestas a) y b) son las dos falsas.
- 26.- Tenemos una chimenea que va emitiendo gases contaminantes, los cuales son arrastrados por el viento hacia dos puntos A y B tal como se observa en el dibujo. Podemos asegurar que...
- a) La concentración máxima que llega a A siempre será mayor que la concentración máxima en B. b) Las concentraciones máximas serán iguales en A y en B. c) La concentración máxima será mayor en A o en B dependiendo de la velocidad del viento. d) Todas las respuestas anteriores son falsas.

- 27.- En una situación atmosférica anticiclónica es muy probable que...
- a) El coeficiente de difusión de un gas contaminante disminuya. b) La velocidad del viento a nivel de superficie c) Se produzcan situaciones de inversión por subsidencia. d) Los niveles de contaminantes en la sea muy grande. superficie se reduzcan.
 - 28.- Si la derivada de la temperatura atmosférica T_a respecto de la altura z es positiva, eso implica...
- a) Que los gases contaminantes tenderán a dispersarse hacia las capas altas de la atmósfera. b) Un periodo de inversión térmica. c) Que la temperatura de los gases contaminantes será mayor que la atmosférica. d) Una situación atmosférica con estratificación inestable.
 - 29.- En una onda transversal, cada partícula del sistema se mueve...
- a) En la dirección de propagación de la onda. b) En la dirección de oscilación. c) La respuesta a) es correcta para algunos puntos, mientras que para otros la respuesta correcta es b). d) En la misma dirección que si la onda fuera longitudinal.
 - 30.- En un movimiento oscilatorio amortiguado...
- a) La energía mecánica del sistema se conserva. b) La energía cinética del sistema se conserva. c) El trabajo realizado por las fuerzas disipativas es nulo. d) Las tres respuestas anteriores son falsas.
- 31.- Si un motor en marcha provoca en un punto un ruido de 70 dB, 4 motores iguales juntos provocarán un ruido de aproximadamente...
 - a) 74 dB b) 79 dB c) 280 dB d) 76 dB
- 32.- Cuando una onda de luz viajando por el agua (índice de refracción del agua: 1.33) se encuentra con la superficie de un vidrio (índice de refracción del vidrio: 1.5), podemos asegurar que...
- a) No hay reflexión de la onda. b) La intensidad de la onda refractada será mayor que la intensidad de la onda incidente. c) No existe ángulo crítico para este caso, d) La ley de Snell no es aplicable a este caso.
- 33.- Imaginad que tenemos un cable que va desde el suelo hasta el techo de una habitación y por el cual circula una corriente eléctrica en sentido ascendente. Imaginad también que dentro de la habitación tenemos una partícula cargada en movimiento. ¿Cómo afectará a esa partícula la fuerza magnética provocada por el cable?
- a) La partícula será atraída hacia el cable. b) La partícula será repelida por el cable. c) La fuerza magnética del cable no afectará al movimiento de la partícula. d) Necesitaríamos el signo de la carga para saberlo.
- 34.- En un espectrómetro de masas, hacemos pasar una partícula cargada a través de un campo magnético constante B, por lo cual ésta describe un movimiento circular de radio R. Si ahora repetimos el experimento usando un campo magnético más intenso, ¿como varía el movimiento de la partícula?

- a) Hará el mismo movimiento circular pero con mayor velocidad. b) Hará un movimiento circular con un radio mayor que antes. c) Hará un movimiento circular con un radio menor que antes. d) Hará el mismo movimiento circular que antes pero con menor velocidad.
 - 35.- La ley de Lenz nos sirve para determinar...
- a) La dirección del campo magnético provocado por una corriente inducida. b) La dirección de la fuerza magnética provocada por un campo B. c) La dirección de la corriente inducida por un campo magnético. d) La dirección en que se mueve una partícula cargada libre.