Math 206

Fall 2015

8/26

Definitions

```
A norm on a vector space X (over \mathbb{F}) is a function ||| : X \to \mathbb{R}^+ such that ||x|| = 0 iff x = 0 ||\alpha x|| = |\alpha| ||x|| (for \alpha \in F) ||x + y|| \le ||x|| + ||y|| An algebra \mathscr{A} over \mathbb{F} is a vector space with distributive \cdot satisfying cx \cdot y = c(x \cdot y) x \cdot cy = c(x \cdot y) for all c \in F A normed algebra over \mathbb{R} or \mathbb{C} is an algebra \mathscr{A} equipped with (vector space) norm satisfying ||ab|| \le ||a|| ||b|| for all a, b \in \mathscr{A} A norm on \mathscr{A} induces a metric d(a,b) = ||a - b|| on \mathscr{A} and therefore a topology if \mathscr{A} is complete for this norm, it is a Banach algebra
```

To figure out (use https://www.math.ksu.edu/ nagy/real-an/2-05-b-alg.pdf)

```
Supposing \mathscr{A} is not necessarily complete
```

 $||ab|| \le ||a|| ||b||$ gives uniform continuity on the product

hence the norm can be extended to the completion $\bar{\mathscr{A}}$ to form a Banach algebra A metric space M is complete if all Cauchy sequences converge to an element of M The completion M is all equivalence classes of Cauchy sequences where

$$\{a_n\} \sim \{b_n\} \text{ iff } \lim_{x \to \infty} d(a_n - b_n) = 0$$

Examples

```
For M a compact space, C(M) the set of continuous \mathbb{R}/\mathbb{C}-valued functions on M pointwise operations \|f\|_{\infty} = \sup\{|f(x)| : x \in M\} For M locally compact, C_{\infty}(M)
```

the set of continuous \mathbb{R}/\mathbb{C} -valued functions on M vanishing at ∞ vanishing at ∞ : $\forall e \exists$ a compact subset of M, outside of which $f < \epsilon$ note that this is non-unital (lacks an identity)

For $\mathscr{O} \subset \mathbb{C}^n$ open

 $H^{\infty}(\mathscr{O})$ the set of all bounded holomorphic functions on \mathscr{O}

(M, d) metric space and $f \in C(M)$

Lipschitz constant (which can be $+\infty$) $L_d(f) = \sup\{\frac{|f(x) - f(y)|}{d(x,y)} : x,y \in M, x \neq y\}$

The Lipschitz functions $\mathcal{L}_d(M,d) = \{f : L(f) < \infty\}$

These form a dense subalgebra of C(M) and are in fact a *-subalgebra

 $||f||_d := ||f||_{\infty} + L_d(f)$, can be shown as a normed-algebra norm

 $L_d(M,d)$ is complete for this norm

so $L_d(M,d)$ is a Banach algebra

 L_d is a seminorm on $\mathcal{L}_d(M,d)$ since it takes value 0 on the constant functions can recover d from L_d

M a differentiable manifold (e.g. $T = \mathbb{R}/\mathbb{Z}$ the circle)

 $C(M) \supseteq C^{(1)}(M)$ the singly-differentiable functions

$$f \in C^{(2)}(T) \to Df: T_xM \to \mathbb{R}, \mathbb{C}$$

with Df the derivative and T_x the tangent space

If we put on a Riemmannian metric, define $||f||^{(1)} = ||f||_{\infty} + ||Df||_{\infty}$

If
$$f \in C^{(1)}(T) : ||f||^{(1)} = ||f||_{\infty} + ||f'||_{\infty}$$

Banach algebra norm, for which this space of functions is complete

For the circle,
$$C^{(2)}(T) \to ||f||^{(2)} = ||f||_{\infty} + ||f'||_{\infty} + \frac{1}{2}||f''||_{\infty}$$

the factor $\frac{1}{2}$ ensures that this satisfies the normed algebra condition

$$C^{(n)}(T) = \sum_{k=0}^{n} \frac{1}{k!} ||f^{(k)}||_{\infty}$$

For $C^{\infty}(T)$ using the collection of norms $\{\|\|^{(n)}\}_{n=1}^{\infty}$ yields a Fréchet algebra A Fréchet algebra has a topology defined by a countable family of seminorms that respect the algebra structure and is complete **(clarify)**

non-commutative algebras

X a Banach space

 $\mathcal{B}(X)$ the algebra of bounded operators on X

 $\parallel \parallel$ operator norm \rightarrow Banach algebra

Any closed subalgebra of $\mathcal{B}(X)$ is a Banach algebra

8/28

Sketch of the course

X a Banach space, B(X) bounded functions on the space

 \mathscr{H} a Hilbert space, $\mathscr{B}(\mathscr{H})$ bounded operators on the space

for
$$T \in \mathcal{B}(\mathcal{H}) \exists$$
 adjoint operator $T^* \in \mathcal{B}(\mathcal{H})$

$$< T\xi, \eta > = < \eta, T^*\xi > \text{for } \xi, \eta \in \mathcal{H}$$

adjoint is additive, conjugate linear, $T^{**} = T$, $(ST)^* = T^*S^*$

An algebra A over $\mathbb R$ or $\mathbb C$ is a *-algebra if it has a * : $A \to A$ satisfying

certain properties (look up)

A *-normal algebra is a normal *-algebra such that

$$(\forall a \in A) \|a^*\| = \|a\|$$

A *Banach* *-*algebra* is a *-normal algebra that is a Banach algebra.

For any $T \in \mathcal{B}(\mathcal{H})$, have $||T^*T|| = ||T||^2$ (check: parse through defns)

For M a locally compact space, $A = C_{\infty}(M, \mathbb{C})$, $f^* := \bar{f}$ is a Banach *-algebra

Also have $||f^*f|| = ||f||^2$ (verify: should be easier than the other)

Little Gelfand-Naimark theorem:

Let *A* be a commutative Banach *-algebra satisfying $||a^*a|| = ||a||^2$.

Then $A \cong C_{\infty}(M)$ for some locally compact M.

One view of the "spectral theorem"

Let $T \in \mathcal{B}(\mathcal{H})$ with $T^* = T$

Let *A* be the closed subalgebra of $\mathscr{B}(\mathscr{H})$ generated by T and I (i.e. $p(T) := \Sigma \alpha_k T^K$)

Polynomials closed or stable under *

If $S \in A$ then $S^* \in A$ (i.e. A is a *-subalgebra of $\mathcal{B}(\mathcal{H})$

So *A* is a Banach *-suubalgebra satisfying $||S^*S|| = ||S||^2$

Moreover, *A* is commutative. (unital, since generated by I)

Then by the Little Gelfand-Naimark theorem, $A \cong C(M)$

Indeed $M \subset \mathbb{R}$, the spectrum of T

If \mathcal{H} is finite dimensional, then M is the set of eigenvalues of T

T is normal if $TT^* = T^*T$

A C*-algebra is a Banach *-algebra over ℂ satisfying

$$||a^*a|| = ||a||^2$$

Theorem: A commutative C*-algebra is $\cong C_{\infty}(M)$.

Big Gelfand-Naimark Theorem: (Math 208, C*-algebras)

Any C*-algebra is \cong to a closed *-subalgebra of $\mathscr{B}(\mathscr{H})$ for some Hilbert space \mathscr{H} .

Tangent

algebraic topology, differential geometry, Riemann manifolds, "non-commutative geometry" (Connes)

A von-Neumann algebra is a *-subalgebra of $\mathscr{B}(\mathscr{H})$

which is closed under the strong operator topology.

Every commutative von-Neumann algebra is $\cong L^{\infty}(X, S, \mu)$ (measure spaces) acting on $L^2(X, S, \mu)$ by positive sldkjfalksdjf

For group G, $\alpha : G \to Auto(X) \subseteq \mathcal{B}(X)$

 $\overline{Auto(X)}$ a Banach space

Look at subalgebra of $\mathcal{B}(X)$ generated by $\alpha(G)$.

Leads to considering l'(G) with product $(f \star g)(x) = \Sigma f(y)g(y^{-1}x)$ convolution

 $f^*(x) = f(x^{-1})$

Banach *-algebra, G commutative \rightarrow Fourier transform