Program Extraction from Large Proof Developments

Luís Cruz-Filipe^{a,b} (com Bas Spitters^a)

^a University of Nijmegen, Netherlands
 ^b Centro de Lógica e Computação, Portugal

Disclaimer

Por motivos alheios à responsabilidade dos autores, não foi possível executar nenhum dos programas que aqui serão discutidos. Por este motivo, todas as afirmações de tipo

o programa A é
$$\left\{ \begin{array}{c} \text{mais} \\ \text{tão} \\ \text{menos} \end{array} \right\}$$
 eficiente $\left\{ \begin{array}{c} \text{que} \\ \text{como} \\ \text{que} \end{array} \right\}$ o programa B

devem ser interpretadas de espírito aberto.

Dead code removal

a priori (labeling)

- Existem tipos distinguidos que nunca são extraídos
- Rápida, modular

a posteriori

- Os termos que efectivamente contribuem para a computação são marcados e extraídos
- Melhor optimização

Extracção

Externa

- Reutilização de software existente: interfaces, compiladores, debuggers
- Interacção com outro software

Interna

- Compilador para redução- β
- Independência das premissas: $\exists x[P \to A(x)] \to P \to \exists x[A(x)]$
- Axioma da escolha: $\forall x \exists y [A(x,y)] \rightarrow \exists f \forall x [A(x,f(x))]$

Limitação: os sistemas SN não permitem termos incompletos.

Conectivos

onde $\{s,s_1,s_2\}$ denotam Set ou Prop, t_\forall é um tipo proposicional ou de dados e t_\exists é um tipo de dados genérico

$$\frac{|(x_m - x_n)| \leq \frac{\varepsilon}{2}}{|(x_m - x_n) + (y_m - y_n)| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}} \leq + \leq -|\cdot|$$

$$\frac{|(x_m - x_n) + (y_m - y_n)| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}}{|(x_m - x_n) + (y_m - y_n)| \leq \varepsilon} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x_m - x_n) + (y_m - y_n)|}{|(x_m + y_m) - (x_n + y_n)|} \leq -\text{wd}$$

$$\frac{|(x+y)_m - (x+y)_n| \le \frac{\varepsilon}{2} \quad \frac{\varepsilon}{2} < \varepsilon}{|(x+y)_m - (x+y)_n| < \varepsilon} \le -<-\text{trans}$$

Lema de Kneser

Lema: Seja $n \geq 2$. Então existe um número real $q \in]0,1[$ tal que, para todo o polinómio da forma

$$f(x) = x^{n} + b_{n-1}x^{n-1} + \dots + b_{1}x + b_{0},$$

se verifica a seguinte desigualdade:

$$\forall_{c>|b_0|} \exists_{z \in \mathbb{C}} \left[|z| < c^{\frac{1}{n}} \wedge |f(z)| < qc \right]$$

Prova: Sejam r=|z|, $a_i=|b_i|$ e $q=1-3^{-2n^2-n}$; então existem a_0 , η , ε e k tais que a seguinte sequência de desigualdades se verifica:

$$\left| \sum_{i=0}^{n} b_{i} z^{i} \right| \leq \left| b_{0} + b_{k} z^{k} \right| + \sum_{i \neq 0, k} a_{i} r^{i}$$

$$\leq \left(a_{0} - a_{k} r^{k} + \eta \right) + \left(\left(1 - 3^{-n} \right) a_{k} r^{k} + 3^{n} \varepsilon \right)$$

$$= a_{0} - 3^{-n} a_{k} r^{k} + 3^{n} \varepsilon + \eta$$

$$\leq a_{0} - 3^{-n} \left(3^{-2n^{2}} a_{0} - 2\varepsilon \right) + 3^{n} \varepsilon + \eta$$

$$= \left(1 - 3^{-2n^{2} - n} \right) a_{0} + 3^{n} \varepsilon + 3^{-n} 2\varepsilon + \eta$$

$$\leq \left(1 - 3^{-2n^{2} - n} \right) a_{0} + 3^{n} \varepsilon + \varepsilon + \eta$$

$$= q a_{0} + 3^{n} \varepsilon + \varepsilon + \eta$$

$$< q c$$

$$\frac{|f(z)| \le qa_0 + 3^n \varepsilon + \varepsilon + \eta \quad qa_0 + 3^n \varepsilon + \varepsilon + \eta < qc}{|f(z)| < qc} \le -<-\text{tr}$$

Alteração	Reais (Mb)	fta (Mb)	Total (Mb)	$\Delta(\%)$
Original	7.5	7.5	15	
Def. seq. Cauchy	1.5	6.5	8	47
Lema de Kneser	1.5	5.0	6.5	19
Divisão	1.4	2.0	3.4	48
Diversos	1.4	1.6	3.0	12

Descrição	Tamanho (kb)	% do total
Código "relevante"	110	6.5
inlining de $\mathbb C$	1050	62.5
inlining de polinómios $(R[x])$	330	19.5
Coerções	190	11.5
Total	1680	100

Uma possível solução...

Hierarquia de tipos em Coq: actual (à esquerda) e proposta (à direita)

Conectivos II

```
 \neg : \operatorname{Prop} \to \operatorname{Prop}^{-} \\ \to : \operatorname{Prop} \to s \to s \\ \lor : \operatorname{Prop} \to \operatorname{Prop} \to \operatorname{Prop}^{+} \\ \underline{\lor} : \operatorname{Prop} \to \operatorname{Prop} \to \operatorname{Prop}^{-} \\ \land : s_{1} \to s_{2} \to \begin{cases} \operatorname{Prop}^{-} s_{1} = s_{2} = \operatorname{Prop}^{-} \\ \operatorname{Prop}^{+} s_{1} = \operatorname{Prop}^{+} \text{ ou } s_{2} = \operatorname{Prop}^{+} \\ \forall : \Pi(A:t_{\forall}).(A \to s) \to s \\ \exists : \Pi(A:t_{\exists}).(A \to \operatorname{Prop}) \to \operatorname{Prop}^{+} \\ \exists : \Pi(A:t_{\exists}).(A \to \operatorname{Prop}) \to \operatorname{Prop}^{-} \end{cases}
```

onde $\{s,s_1,s_2\}$ denotam Prop^+ ou Prop^- , t_\forall é um tipo proposicional ou de dados e t_\exists é um tipo de dados genérico

Conclusões

- Motivação proveniente de exemplos
- Dicas referentes à escrita de provas
- Melhoramento do mecanismo de extracção