

Information Technology, Mathematics & Mechanics (ITMM) institute Software & Supercomputing Technology department

#### **CS255. Computer Graphics Introduction Course**

# Обработка изображений. Часть 2

Турлапов Вадим Евгеньевич проф. каф. МОСТ, ИТММ, ННГУ

По материалам Владимира Вежневец (МГУ)

# Раздел 4. Устранение шума в полутоновых и цветных изображениях

- Усреднение (box filter)
- Медианный фильтр
- Фильтр Гаусса (gaussian blurring)
- Адаптивные фильтры

#### Причины и примеры шума изображения

- Причины возникновения шума:
  - Несовершенство регистрирующих приборов
  - > Хранение и передача изображений с потерей данных



Шум фотоаппарата





Сильное сжатие JPEG

#### Операция «свертка» (convolution)

 Свертка двумерной функции f по функции g в непрерывном и дискретном случае.

$$< f * g > (i, j) = \sum_{l=n_0}^{n_1} \sum_{k=m_0}^{m_1} f(i-l, j-k) \cdot g(l, k)$$

Часто, свертка изображения по какой-либо функции называется применением фильтра к изображению.

### Усреднение (box filter)

Операция усреднения значения каждого пикселя – свертка по константной функции:

$$I'(i,j) = \sum_{l=-n}^{n} \sum_{k=-m}^{m} I(i-l,j-k) \cdot \frac{1}{(2n+1)(2m+1)}$$

#### Результат применения:









# Подавление и устранение шума. Медианный фильтр.

- Устранение шума в полутоновых, цветных и бинарных изображениях с помощью медианного фильтра - выбор медианы среди значений яркости пикселей в некоторой окрестности.
- Определение медианы:

$$A_i$$
,  $i = \overline{1,n}$ ; - отсортированный набор чисел,  $A_{[n/2]}$  – медиана набора.

 Медианный фильтр радиусом r – выбор медианы среди пикселей в окрестности [-r,r].

# Пример очистки изображения с помощью медианного фильтра

Фильтр с окрестностью 3х3



#### Быстрая реализация медианного фильтра

- Медианный фильтр считается дольше, чем операция свертки, поскольку требует частичной сортировки массива яркостей окрестных пикселей.
- Возможности ускорения:
  - Использовать алгоритмы быстрой сортировки
  - Конкретная реализация для каждого радиуса (3х3, 5х5)
  - Не использовать сортировку вообще считать через гистограмму окрестности точки

## Фильтр Гаусса (gaussian blurring)

Двумерный фильтр Гаусса (свертка):

$$I'(i,j) = \sum_{l=-n}^{n} \sum_{k=-m}^{m} I(i-l,j-k) \cdot \frac{1}{2\pi\sigma^{2}} e^{-\frac{d^{2}}{2\sigma^{2}}}$$

$$d = \sqrt{l^{2} + k^{2}}$$

$$G(l,k) = \frac{1}{2\pi\sigma^{2}} e^{-\frac{l^{2} + k^{2}}{2\sigma^{2}}} = G(l) \cdot G(k),$$

$$G(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^{2}}{2\sigma^{2}}}$$



▶ На графике функция G(x),  $\sigma = 1$ 

Задание: Оценить размер матрицы фильтра с величиной сигма = 1рх, при точности = 0.01

# Фильтр Гaycca (gaussian blurring)

#### The Gaussian filter kernel with $\sigma = 0.84089642$ (Wikipedia):

| 0.00000067 | 0.00002292 | 0.00019117 | 0.00038771 | 0.00019117 | 0.00002292 | 0.00000067 |
|------------|------------|------------|------------|------------|------------|------------|
| 0.00002292 | 0.00078634 | 0.00655965 | 0.01330373 | 0.00655965 | 0.00078633 | 0.00002292 |
| 0.00019117 | 0.00655965 | 0.05472157 | 0.11098164 | 0.05472157 | 0.00655965 | 0.00019117 |
| 0.00038771 | 0.01330373 | 0.11098164 | 0.22508352 | 0.11098164 | 0.01330373 | 0.00038771 |
| 0.00019117 | 0.00655965 | 0.05472157 | 0.11098164 | 0.05472157 | 0.00655965 | 0.00019117 |
| 0.00002292 | 0.00078633 | 0.00655965 | 0.01330373 | 0.00655965 | 0.00078633 | 0.00002292 |
| 0.00000067 | 0.00002292 | 0.00019117 | 0.00038771 | 0.00019117 | 0.00002292 | 0.00000067 |

This shows how smoothing affects edge detection. With more smoothing, fewer edges are detected (Wikipedia)









## Фильтр Гаусса (gaussian blurring)

Результаты свертки по функции Гаусса и по константной функции (усреднения).







Фильтр Гаусса с Sigma = 4

Усреднение по 49 пикселям (7x7)

Исходное изображение

Важное свойство фильтра Гаусса – он по сути является низкочастотным фильтром!

## Преобразование Фурье



### Адаптивные фильтры

- У Что нужно
  - Размывать шум, резкие границы сохранять.
- Как этого добиться
  - Предположение: перепады яркости из-за шума относительно перепадов на резких границах невелики
  - Алгоритм: При расчете новой яркости усреднять только по тем пикселям из окрестности, которые не сильно отличаются по яркости от обрабатываемого

### Адаптивный фильтр. Программа

```
for (each pixel of the current video frame)
 GetRGB (source pixel, r, q, b);
  tot red = tot green = tot blue = 0;
  count red = count green = count blue = 0;
  for (each pixel in the specified radius)
   GetRGB (neighbour pixel, r1, g1, b1);
    if (abs(r1-r) < Threshold)
      {tot red += r1; count red ++;}
    if (abs(g1-g) < Threshold)
      {tot green += g1; count green ++;}
    if (abs(b1-b) < Threshold)
      {tot blue += b1; count blue ++;}
  destination pixel = RGB (tot red / count red,
                           tot green / count green ,
                           tot blue / count blue );
```

## Адаптивные фильтры - пример

Примеры таких фильтров:http://www.compression.ru/video/denoising/denoising.pdf







## «Продвинутые» фильтры

▶ Примеры таких фильтров (см. лек. А. Лукина, G&MLab BMK МГУ)



#### В чем отличие разных фильтров?

- Box filer (простое размытие) помимо подавления шума портит резкие границы и размывает мелкие детали изображения
- Gaussian filter меньше размывает мелкие детали, лучше убирает шум
- Median filter резких границ не портит, убирает мелкие детали, изображение становится менее естественным
- Адаптивные фильтры меньше портят детали, зависят от большего числа параметров. Иногда изображение становится менее естественным.
- «Продвинутые» фильтры лучшее сохранение деталей, меньше размытие. Часто сложны в реализации и очень медленные.

Что лучше – зависит от конкретной задачи

## Как бороться с шумом аппаратуры?

 Предположим, камера, которой производится съемка заметно «шумит». Обычно шум измерительной аппаратуры моделируется как нормально распределенная случайная величина с нулевым средним - Err(i,j);

$$I(i, j) = g_r(i, j) + Err(i, j);$$

$$\bar{I}(i, j) = \frac{1}{N} \sum_{k=1}^{N} I_k(i, j);$$

$$E(\bar{I}(i, j)) = g_r(i, j);$$

#### Примеры шумоподавления







Зашумленные изображения

Усреднение по 10 изображениям

Так работают камеры в некоторых сотовых телефонах

# Примеры шумоподавления



Исходное изображение



Испорченное изображение

# Примеры шумоподавления



Усреднение по 9 пикселям (3x3)



Медианный фильтр (3x3)

#### Разд.5. Выделение контуров

- 1. Введение
- 2. Оконтуривание объектов
- Пример оконтуривания
- 4. Подчеркивание краев на основе анализа градиента и второй производной яркости

#### Выделение контуров объекта

Рассмотрим выделение краев (границ)
Край (edge) – резкое изменение яркости на изображении, часто соответствует границам объектов на изображении.



#### Операция оконтуривания объекта

При работе с бинарными изображениями контуры объекта можно получить с помощью операций математической морфологии

Внутреннее оконтуривание

$$C_1 = A - (A (-) B)$$

Внешнее оконтуривание

$$C_0 = (A (+) B) - A$$



#### Выделение точек контура

Нас интересуют области резкого изменения яркости – нахождение таких областей можно организовать на основе анализа первой и второй производной изображения.



#### Выделение точек контура. Градиент

 Наибольшее изменение функции происходит в направлении ее градиента. Величина изменения измеряется абсолютной величиной градиента.

$$\nabla I(x, y) = \left(\frac{\partial I}{\partial x}(x, y), \frac{\partial I}{\partial y}(x, y)\right);$$

$$|\nabla I(x, y)| = \sqrt{\left(\frac{\partial I}{\partial x}(x, y)\right)^2 + \left(\frac{\partial I}{\partial y}(x, y)\right)^2}$$

 Часто используется приближенное вычисление градиента:

$$\left|\nabla I(x,y)\right| \cong \left|\frac{\partial I}{\partial x}(x,y)\right| + \left|\frac{\partial I}{\partial y}(x,y)\right|$$

# Выделение контура. Приближения (маски) Робертса, Превитта и Собеля

 Семейство методов основано на приближенном вычислении градиента, анализе его направления и абсолютной величины. Свертка по функциям:

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \quad \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Робертса **Roberts** cross convolution masks. Gradient Slope = 45°

Превитта **Prewitte** 

Собеля Sobel

- Математический смысл приближенное вычисление производных по направлению + подавление шума.
- <u>Дополнительный материал (eng)</u>

#### Выделение точек контура. Примеры

#### Примеры применения операторов подчеркивания краев:





Робертса



Собеля

Превитта

#### Источники

- Gary Bradski and Adrian Kaehler. Learning OpenCV/ Published by O'Reilly Media, Inc., 2008. -577pp.
- Курсы и материалы лаборатории Graphics & Media Lab при ВМиК МГУ (<a href="http://graphics.cs.msu.su/courses/cg/">http://graphics.cs.msu.su/courses/cg/</a>)
- ▶ Ватолин Д.С. Сжатие изображений. :Изд. МГУ, 1999. -76с. (local)
- Open Source Computer Vision Library. *Reference Manual*. Copyright © 1999-2001 Intel Corporation. Issued in U.S.A. Order Number: 123456-001 (<a href="http://developer.intel.com">http://developer.intel.com</a>)
- Рекомендации для начинающих пользователей: PROGRAMMING WITH INTEL IPP (INTEGRATED PERFORMANCE PRIMITIVES) AND INTEL OPENCV (OPEN COMPUTER VISION) UNDER GNU LINUX: A BEGINNER'S TUTORIAL.( j.Landre@iutlecreusot.u-bourgogne.fr)
- Intel® OPEN SOURCE COMPUTER VISION LIBRARY
- Image Analysis Cookbook 6.0. <a href="http://www.reindeergraphics.com/foveaprotutorial.html">http://www.reindeergraphics.com/foveaprotutorial.html</a>

#### OpenCV

- Open Computer Vision (OpenCV) sources, download site http://sourceforge.net/projects/opencvlibrary
- Open Computer Vision (OpenCV) mailing list and group http://groups.yahoo.com/group/OpenCV

