## **Exercises-Roots-Questions**

All figures shown in this document are created by NvG, UvA (2018)

- What will happen if the bisection method is applied to the function f(x) = 1/(x-2) on the 1. following intervals?
- [3,7]a.
- [1,7].b.

Suppose  $f(x) = \tan(x)$ . What will happen if the bisection method is applied on the intervals

- [3,4] c.
- d. [1,3]
- Which function can be used to approximate  $\sqrt{2}$  using the bisection method? 2a.
- Carry out 8 iterations of the bisection method for the interval [1.35, 1.45]. b.
- 3. Determine algebraically whether the next functions have a unique fixed point for the following intervals
- $g(x) = 1 x^2 / 4$  on [0,1] a.
- $g(x) = 2^{-x}$  on [0, 1]b.
- g(x) = 1/x on [0.5, 2] c.

Hint: suppose  $g \in C[a,b]$ , then there exists a unique fixed point if

- (i)  $y = g(x) \in [a,b]$  for all  $x \in [a,b]$
- (ii) |g'(x)| < 1 for all  $x \in [a,b]$
- Determine graphically if the fixed point method converges for 4.





g(x) = 1 + 2 / x for  $x_0 = 4$ .



c. 
$$h(x) = x^2 / 3$$
 for  $x_0 = 3.5$ .







- 5. Suppose  $f(x) = x^2 2$ .
- a. Derive the iteration equation for the Newton-Raphson algorithm.
- b. Carry out 3 iterations to approximate  $\sqrt{2}$  using the starting value  $x_0 = 1.4$ .
- 6. Determine graphically what happens if the Newton-Raphson algorithm is applied to  $f(x) = xe^{-x}$  for  $x_0 = 2$ .



7. Let 
$$f(x) = \begin{cases} \sqrt{x} & x \ge 0 \\ -\sqrt{-x} & \text{otherwise.} \end{cases}$$

- a. Derive the iteration equation for the Newton-Raphson algorithm.
- b. What will happen for a random stating value different from zero?
- 8. Can Newton-Raphson be used to solve f(x) = 0 for  $f(x) = x^{1/3}$ ? Motivate your answer.
- 9. Use the Secant method with  $x_0 = -2.6$  and  $x_1 = -2.4$  to approximate the root x = -2 for the function  $f(x) = x^3 3x + 2$ .