Principal Components Analysis (PCA)

- An exploratory technique used to reduce the dimensionality of the data set to 2D or 3D
- Can be used to:
 - Reduce number of dimensions in data
 - Find patterns in high-dimensional data
 - Visualize data of high dimensionality
- Example applications:
 - Face recognition
 - Image compression
 - Gene expression analysis

Principal Components Analysis Ideas (PCA)

- Does the data set 'span' the whole of d dimensional space?
- For a matrix of *m* samples x *n* genes, create a new covariance matrix of size *n* x *n*.
- Transform some large number of variables into a smaller number of uncorrelated variables called principal components (PCs).
- developed to capture as much of the variation in data as possible

Principal Component Analysis

Principal Component Analysis: one

attribute first

- Question: how much spread is in the data along the axis?
 (distance to the mean)
- Variance=Standard deviation^2

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{(n-1)}$$

Temperature	
4	12
4	10
2	24
3	30
1	5
1	8
1	5
3	30
1	5
3	80
3	35
3	30
	10
3	30
	4

Now consider two dimensions

Covariance: measures the correlation between X and Y

- cov(X,Y)=0: independent
- •Cov(X,Y)>0: move same dir
- •Cov(X,Y)<0: move oppo dir

(N. N.)	$\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$
cov(X,Y) =	(n-1)

X=Temperature	Y=Humidity
40	90
40	90
40	90
30	90
15	70
15	70
15	70
30	90
15	70
30	70
30	70
30	
40	5 70
20	00

More than two attributes: covariance matrix

• Contains covariance values between all possible dimensions (=attributes):

$$C^{nxn} = (c_{ij} \mid c_{ij} = \text{cov}(Dim_i, Dim_j))$$

• Example for three attributes (x,y,z):

$$C = \begin{pmatrix} cov(x, x) & cov(x, y) & cov(x, z) \\ cov(y, x) & cov(y, y) & cov(y, z) \\ cov(z, x) & cov(z, y) & cov(z, z) \end{pmatrix}$$

Eigenvalues & eigenvectors

- Vectors **x** having same direction as A**x** are called *eigenvectors* of A (A is an n by n matrix).
- In the equation $A\mathbf{x}=\lambda\mathbf{x}$, λ is called an *eigenvalue* of A.

$$\begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} x \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix} = 4x \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Eigenvalues & eigenvectors

- $A\mathbf{x} = \lambda \mathbf{x} \Leftrightarrow (A \lambda \mathbf{I})\mathbf{x} = 0$
- How to calculate **x** and λ:
 - Calculate $det(A-\lambda I)$, yields a polynomial (degree n)
 - Determine roots to $det(A-\lambda I)=0$, roots are eigenvalues λ
 - Solve (A- λI) **x**=0 for each λ to obtain eigenvectors **x**

Principal components

- 1. principal component (PC1)
 - The eigenvalue with the largest absolute value will indicate that the data have the largest variance along its eigenvector, the direction along which there is greatest variation
- 2. principal component (PC2)
 - the direction with maximum variation left in data, orthogonal to the 1. PC
- In general, only few directions manage to capture most of the variability in the data.

Steps of PCA

- Let \overline{X} be the mean vector (taking the mean of all rows)
- Adjust the original data by the mean

$$X' = X - \overline{X}$$

- Compute the covariance matrix C of adjusted X
- Find the eigenvectors and eigenvalues of C.

- For matrix *C*, *v*ectors **e** (=column vector) having same direction as *C***e**:
 - eigenvectors of C is \mathbf{e} such that $C\mathbf{e}=\lambda\mathbf{e}$,
 - λ is called an *eigenvalue* of
 C.
- $Ce = \lambda e \Leftrightarrow (C \lambda I)e = 0$
 - Most data mining packages do this for you.

Eigenvalues

- Calculate eigenvalues λ and eigenvectors \mathbf{x} for covariance matrix:
 - Eigenvalues λ_j are used for calculation of [% of total variance] (V_j) for each component j:

$$V_{j} = 100 \cdot \frac{\lambda_{j}}{\sum_{1}^{n} \lambda_{x}} \qquad \sum_{x=1}^{n} \lambda_{x} = n$$

Principal components - Variance

Transformed Data

- Eigenvalues λ_j corresponds to variance on each component j
- Thus, sort by λ_j
- Take the first p eigenvectors $\mathbf{e_{i}}$; where p is the number of top eigenvalues
- These are the directions with the largest variances

$$\begin{pmatrix} y_{i1} \\ y_{i2} \\ \dots \\ y_{ip} \end{pmatrix} = \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_p \end{pmatrix} \begin{pmatrix} x_{i1} - \overline{x_1} \\ x_{i2} - \overline{x_2} \\ \dots \\ x_{in} - \overline{x_n} \end{pmatrix}$$

An Example Mean1=24.1 Mean2=53.8

X1	X2	X1'	X2'
19	63	-5.1	9.25
39	74	14.9	20.25
30	87	5.9	33.25
30	23	5.9	-30.75
15	35	-9.1	-18.75
15	43	-9.1	-10.75
15	32	-9.1	-21.75
30	73	5.9	19.25

Covariance Matrix

• Using MATLAB, we find out:

- Eigenvectors:
- $e1 = (-0.98, -0.21), \lambda 1 = 51.8$
- $e2 = (0.21, -0.98), \lambda 2 = 560.2$
- Thus the second eigenvector is more important!

If we only keep one dimension: e2

- We keep the dimension of e2=(0.21,-0.98)
- We can obtain the final data as

$$y_i = (0.21 - 0.98) \begin{pmatrix} x_{i1} \\ x_{i2} \end{pmatrix} = 0.21 * x_{i1} - 0.98 * x_{i2}$$

Mean adjusted data with eigenvectors overlayed

PCA -> Original Data

- Retrieving old data (e.g. in data compression)
 - RetrievedRowData=(RowFeature Vector^T x FinalData)+OriginalMean
 - Yields original data using the chosen components

Principal components

- General about principal components
 - summary variables
 - linear combinations of the original variables
 - uncorrelated with each other
 - capture as much of the original variance as possible

Applications – Gene expression analysis

- Reference: Raychaudhuri et al. (2000)
- **Purpose:** Determine core set of conditions for useful gene comparison
- Dimensions: conditions, observations: genes
- Yeast sporulation dataset (7 conditions, 6118 genes)
- **Result:** Two components capture most of variability (90%)
- Issues: uneven data intervals, data dependencies
- PCA is common prior to clustering
- Crisp clustering questioned: genes may correlate with multiple clusters
- Alternative: determination of gene's closest neighbours

Samples 10^{1} - 10^{2}

Two Way (Angle) Data Analysis

PCA - example

PCA on all Genes Leukemia data, precursor B and T

Plot of 34 patients, dimension of 8973 genes reduced to 2

PCA on 100 top significant genes Leukemia data, precursor B and T

Plot of 34 patients, dimension of 100 genes reduced to 2

PCA of genes (Leukemia data)

Plot of 8973 genes, dimension of 34 patients reduced to 2

