### **Programmer's Reference**



Rev B4, Page 1/49

| CON    | ITENTS            |                   |          |            |              |                  |                                                                                                                                                         |      |
|--------|-------------------|-------------------|----------|------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| REGI   | STER MAP          |                   |          |            |              | 1 REVIS          | ION HISTORY                                                                                                                                             | 9    |
|        |                   |                   |          |            |              | ΔΤΤΔΩ            | CHMENTS                                                                                                                                                 | 11   |
| CONI   | FIGURATION P      | ROCE              | URE      |            |              |                  | Programmer's Reference                                                                                                                                  |      |
| REG    | SISTER MAP        |                   |          |            |              |                  |                                                                                                                                                         |      |
| Block  | Register/Variable | Addres            | s Bit    | Туре       | Value Range  | e Pin. Cfg. Val. | Name, Description, Comments                                                                                                                             | Ref. |
|        |                   |                   |          |            |              |                  |                                                                                                                                                         |      |
| LUT    | LUT Block         | 0x8000            | - 0x8041 |            |              |                  | Look-Up Table Data                                                                                                                                      | PR7  |
|        | LUT0LUT63         | 0x8000<br>- 0803F |          | b          | -127+127     |                  | LUT Data                                                                                                                                                | PR7  |
|        | LUT_CKSUM         | 0x8040            |          | w (16 bit) | )            |                  | LUT Checksum                                                                                                                                            | PR7  |
| CFG    | CFG Block         | 0x8042            | - 0x8067 |            |              |                  | Configuration Data                                                                                                                                      | PR7  |
| Genera | I CFG_CKSUM       | 0x8042<br>0x8043  |          | w (16 bit) | )            |                  | CFG Block Checksum  NB: automatically calculated when writing to the EEPROM.                                                                            | PR13 |
|        | MAIN_CFG.wp       | 0x8044            | 0        |            | 0, 1         | wp = 1           | Pin WP - EEPROM Write Lock 0: pin WP high after startup, 1: pin WP low after startup                                                                    | PR14 |
|        | MAIN_CFG.pull     | 0x8044            | 2        |            | 0, 1         | pull = 0         | Input Pull-Up/Pull-Down Resistors 0: disabled, 1: enabled                                                                                               | PR14 |
|        | MAIN_CFG.clkout   | 0x8044            | 3        |            | 0, 1         |                  | Signal Output to Pin CLOCK and Pin FRAME 0: disabled, 1: enabled Pin CLOCK: internal Delta-Sigma Modulator Clock Pin FRAME: internal ADC Sampling Clock | PR14 |
|        | MAIN_DSM.freq     | 0x8045            | 20       |            | 0 - 6        |                  | PWM Output Frequency 0: fdsm = fcore / 4, 1: fdsm = fcore / 8 6: fdsm = fcore / 256 7: reserved, do not use.                                            | PR14 |
|        | fdsm              |                   |          |            | kHz          |                  | Delta-Sigma Modulator Clock Frequency<br>fdsm = fcore / 2e(MAIN_DSM.freq + 2)                                                                           | PR14 |
|        | MAIN_DSM.clamp    | 0x8045            | 3        |            | 0, 1         |                  | PWM Generator Clamping 0: unclamped (PWM wraps around), 1: clamped                                                                                      | PR14 |
|        | fadc              |                   |          |            | kHz          |                  | ADC Sampling Clock Frequency fadc = fcore / 128                                                                                                         | PR14 |
| Ipo    | MAIN_INTER        | 0x8046<br>0x8047  | 70<br>70 | w (16 bit  | 0, 4 - 65535 | set by C0, C1    | AB Output Resolution in Edges 0: 65536 (interpolation factor x16384) 1 - 3: reserved, do not use. 4 - 65535 (inter: x1 - x16383.75)                     | PR15 |
|        | inter             |                   |          |            |              |                  | Interpolation Factor inter = MAIN_INTER / 4                                                                                                             | PR15 |
|        | MAIN_HYST         | 0x8048<br>0x8049  |          | w (9 bit)  | 0 - 511      | set by C2        | Signal Path Output Hysteresis 0: min, 511: max (+/- 22°) Eval.board: 1 LSB, 2 LSB, 4 LSB, 8 LSB (C2 heavy/normal/off)                                   | PR15 |
|        | hyst              |                   |          |            |              |                  | Input Referred Angle Hysteresis hyst = MAIN_HYST x 360 / 8192                                                                                           | PR15 |



Rev B4, Page 2/49

| Block  | Register/Variable     | Address          | Bit | Туре | Value Range                  | Pin. Cfg. Val. | Name, Description, Comments                                                                                                                                                                                                                                                                   | Ref.           |
|--------|-----------------------|------------------|-----|------|------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|        |                       |                  |     |      |                              |                |                                                                                                                                                                                                                                                                                               |                |
| Filter | MAIN_FLTR.fb          | 0x804A           | 0   | b    | 0, 1                         | set by C3      | Output Filter Feedback Path Delay 0: no delay in feedback path (lag recovery disabled) 1: delay in feedback path (lag recovery enabled) Eval.board: C3 disabled = 0, enabled = 1                                                                                                              | PR15           |
|        | delay                 |                  |     |      |                              |                | Output Filter Feedback Path Delay<br>delay = 640 / fcore                                                                                                                                                                                                                                      | PR15           |
|        | MAIN_FLTR.p           | 0x804A           | 31  | b    | 0 - 6                        | set by C2      | Output Filter Proportional Gain 0: pgain= 1, 1: pgain= 0.5, 6: pgain= 0.015625 7: reserved, do not use. Eval.board: Latency recovery disabled (by C3), pgain= 0.25 (C2 heavy), 0.5 (normal), 1.0 (off) Latency recovery enabled (by C3), pgain= 0.031 (C2 heavy), 0.063 (normal), 0.125 (off) | PR15           |
|        | pgain                 |                  |     |      |                              |                | Output Filter Proportional Gain pgain = 1 / 2e MAIN FLTR.p                                                                                                                                                                                                                                    | PR15           |
|        | MAIN_FLTR.i           | 0x804A           | 64  | b    | 0 - 7                        | set by C2      | Output Filter Integral Gain 0: igain= 1, 1: igain= 0.5, 6: igain= 0.015625 7: igain= 0 Eval.board: Latency recovery disabled (by C3), igain= 0 (C2 heavy/normal/off) Latency recovery enabled (by C3), igain= 0.016 (C2 heavy), 0.031 (normal), 0.063 (off)                                   | PR16           |
|        | igain                 |                  |     |      |                              |                | Output Filter Integral Gain igain = 1 / 2e MAIN FLTR.i                                                                                                                                                                                                                                        | PR16           |
|        | MAIN_OUT.start        | 0x804B           | 30  |      | 0 - 15                       | start = 10     | Power-Up Wait Time for Analog Circuitry Settling<br>10: twait[ms] = 1048 / fcore[MHz]: 33 ms @ 32 MHz                                                                                                                                                                                         | PC7,14<br>PR16 |
|        | twait                 |                  |     |      |                              |                | Actual Startup Delay<br>twait = 128 / fcore x (2e(MAIN_OUT.start + 3) - 1)                                                                                                                                                                                                                    | PR16           |
|        | MAIN_OUT.mode         | 0x804B           | 54  |      | 0 - 2                        | mode = 0       | Operating Mode 0: AB output mode, 1: serial-only output mode 2: PWM output mode, 3: reserved, do not use.                                                                                                                                                                                     | PR16           |
| Clock  | MAIN_CLOCK.xtal       | 0x804C           | 0   |      | 0, 1                         | xtal = 1       | Clock Source                                                                                                                                                                                                                                                                                  | PR17           |
|        | MAIN_CLOCK.div        | 0x804C           | 21  |      | 0, 2, 3                      | div = 3        | 0: internal osc, 1: ext. crystal or ext. oscillator Internal Oscillator Clock Divider 0: internal oscillator /4, 1: reserved (do not use) 2: internal oscillator /2, 3: internal oscillator                                                                                                   | PR17           |
|        | MAIN_CLOCK.freq       | 0x804C           | 63  |      | 0 - 15                       |                | Internal Oscillator Frequency Tuning 0: min, 15: max                                                                                                                                                                                                                                          | PR17           |
|        | fxtl<br>fosc<br>fcore |                  |     |      | El.Char. 401<br>El.Char. 402 |                | Crystal Frequency Internal Oscillator Frequency Clock Frequency of Main Signal Path (i.e. tuned internal freq or ext. crystal freq.)                                                                                                                                                          |                |
|        | MAIN_CLOCK.xforce     | 0x804C           | 7   |      | 0, 1                         | xforce = 1     | Clock Source on Low Power 0: internal osc, 1: use always ext. crystal or oscillator Must be 1 for proper operation of chip release D3.                                                                                                                                                        | PR17           |
|        | Reserved              | 0x804D           | 70  | byte | 0x00                         |                | Must be 0x00 for proper operation.                                                                                                                                                                                                                                                            | PR13           |
|        | Internal Clock Reg.   |                  |     |      |                              |                | Same function as MAIN_CLOCK, but immediate                                                                                                                                                                                                                                                    |                |
|        | RB_CLOCK.xtal         | 0xA004           | 0   |      | 0, 1                         |                | impact. An update command is not required.  Clock Source                                                                                                                                                                                                                                      |                |
|        | RB_CLOCK.div          | 0xA004           | 21  |      | 0, 2, 3                      |                | 0: internal osc, 1: ext. crystal or ext. oscillator Internal Oscillator Clock Divider 0: internal oscillator /4, 1: reserved (do not use) 2: internal oscillator /2, 3: internal oscillator                                                                                                   |                |
|        | RB_CLOCK.freq         | 0xA004           | 63  |      | 0 - 15                       |                | Internal Oscillator Frequency Tuning 0: min, 15: max                                                                                                                                                                                                                                          |                |
|        | Reserved<br>Reserved  | 0xA004<br>0xA005 |     | byte | 0, 1<br>0x00                 |                | Must be 1 for proper operation.  Must be 0x00 for proper operation.                                                                                                                                                                                                                           |                |
|        |                       |                  |     | •    |                              |                |                                                                                                                                                                                                                                                                                               |                |



Rev B4, Page 3/49

| Block | Register/Variable | Address          | Bit      | Туре       | Value Range | Pin. Cfg. Val. | Name, Description, Comments                                                                                                                                                                                                    | Ref.          |
|-------|-------------------|------------------|----------|------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|       |                   |                  |          |            |             |                |                                                                                                                                                                                                                                |               |
| Index | MAIN_ZPOS         | 0x804E<br>0x804F | 70<br>50 | w (14 bit) | 0 - 16383   |                | Z Output Index Position 0: 0°,, 8192: 180°,, 16384: 359.98° NB: when gated by the zero inputs.                                                                                                                                 | SC27,<br>PR17 |
|       | zpos              |                  |          |            |             |                | Actual Z Index Position<br>zpos = MAIN_ZPOS x 360 / 16384                                                                                                                                                                      | SC27,<br>PR17 |
|       | MAIN_Z.th         | 0x8050           | 40       | 4-bit 2K   | +/- 15      |                | Zero Input Switching Threshold<br>-15: -450 mV, 0: 0 mV, +15: +450 mV                                                                                                                                                          | PR18          |
|       | zth               |                  |          |            |             |                | Zero Input Switching Threshold<br>zth = MAIN_Z.th x 30 mV                                                                                                                                                                      | PR18          |
|       | MAIN_Z.reset      | 0x8050           | 5        | b          | 0, 1        | reset = 0      | 32-bit Position Counter Reset Configuration 0: counter reset at zpos, 1: no counter reset                                                                                                                                      | PR18          |
|       | Reserved          | 0x8050           | 76       | b          | 0, 1        |                | Bits must be 0 for proper operation.                                                                                                                                                                                           | PR13          |
|       | Reserved          | 0x8051           | 70       | byte       | 0x00        |                | Must be 0x00 for proper operation.                                                                                                                                                                                             | PR13          |
|       |                   |                  |          |            |             |                |                                                                                                                                                                                                                                |               |
| AB    | AB_CFG0.dir       | 0x8052           | 0        | b          | 0, 1        | dir=0          | AB Counting Direction 0: Normal counting direction 1: Reversed counting direction                                                                                                                                              | PR18          |
|       | AB_CFG0.apol      | 0x8052           | 1        | b          | 0, 1        | apol = 0       | A Output Polarity / State at Z Position* 0: Normal A polarity and A output low at ZPOS 1: Inverted A polarity and A output high at ZPOS NB: *) for AB_CFG0.startmode = 1 or 3, AB_CFG1.div = 0, and an integer value for inter | PR18          |
|       | AB_CFG0.bpol      | 0x8052           | 2        | b          | 0, 1        | bpol = 0       | B Output Polarity / State at Z Position* 0: Normal B polarity and A output low at ZPOS 1: Inverted B polarity and A output high at ZPOS NB: *) for AB_CFG0.startmode = 1 or 3, AB_CFG1.div = 0, and an integer value for inter | PR18          |
|       | AB_CFG0.zpol      | 0x8052           | 3        | b          | 0, 1        | zpol = 0       | <b>Z Output Polarity</b> 0: Z is active high, 1: Z is active low                                                                                                                                                               | PR18          |
|       | AB_CFG0.startmode | 0x8052           | 65       | b          | 0, 1, 3     | startmode = 1  | ABZ Output Startup Behavior 0: relative, 1: same phase, 3: burst 2: reserved, do not use.                                                                                                                                      | PC14,<br>PR19 |
|       | AB_CFG1.div       | 0x8053           | 40       | b          | 0 - 31      |                | Post-AB Divider 0: post-AB division disabled 1 - 31: post-AB division                                                                                                                                                          | PR19          |
|       | div               |                  |          |            |             |                | Actual Post-AB Division div = AB_CFG1.div + 1 NB: inter > div required                                                                                                                                                         | PR19          |
|       | intereff          |                  |          |            |             |                | Effective Interpolation Factor intereff = inter / div                                                                                                                                                                          | PR19          |
|       | AB_ZWIDTH         | 0x8054           | 70       | byte       | 0 - 255     |                | Z Output Pulse Width 0: min, 255: max NB: AB_ZWIDTH must be less than MAIN_INTER.                                                                                                                                              | PR19          |
|       | zwidth            |                  |          |            |             |                | Actual Z Output Pulse Width zwidth = (AB ZWIDTH + 1) / div                                                                                                                                                                     | PR19          |
|       | AB_VTOP           | 0x8055           | 60       |            | 0 - 127     | set by C3      | AB Output Frequency Limit 0: max, 127: min                                                                                                                                                                                     | PR20          |
|       | fab               |                  |          |            |             |                | Actual AB Output Frequency Limit fab = fcore / (4 x (AB_VTOP + 1) x div)                                                                                                                                                       | PR20          |
|       | Reserved          | 0x8056           | 70       | byte       | 0x00        |                | Must be 0x00 for proper operation.                                                                                                                                                                                             | PR13          |
|       | Reserved          | 0x8057           | 70       | byte       | 0x00        |                | Must be 0x00 for proper operation.                                                                                                                                                                                             | PR13          |



Rev B4, Page 4/49

| Adapt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Block | Register/Variable  | Address | Bit | Type | Value Range | Pin. Cfg. Val. | Name, Description, Comments                                                                                     | Ref. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|---------|-----|------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------|------|
| ADPT_CFG.doff   0x8058   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Adapt | ADPT_CFG           |         |     |      |             | set by C1      |                                                                                                                 |      |
| ADPT_CFG.dgnian   0x8058   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ADPT_CFG.doff      | 0x8058  | 0   |      | 0. 1        |                | •                                                                                                               | PR20 |
| ADPT_CFG.dphase   0x8058   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | _                  |         |     |      |             |                | 8                                                                                                               | PR20 |
| ADPT_CFG.again                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                    | 0x8058  | 2   |      | *           |                | •                                                                                                               | PR20 |
| ADPT_CFG.lut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                    | 0x8058  | 3   |      |             |                | 8                                                                                                               | PR20 |
| ADPT_CFG.store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | ADPT CFG.again     | 0x8058  | 4   |      | 0, 1        |                | Analog Gain                                                                                                     | PR20 |
| ADPT_DETAIL.flimit   0x8059   20   0 - 7   flimit = 6   Auto-Adaption Frequency Limit   0: min, 7: max   Actual Auto-Adaption Frequency Limit   PR21   6: min, 7: max   Actual Auto-Adaption Frequency Limit   PR21   fadapt = fcore / 83886.08 x 2eADPT_DETAIL.flimit   PR21   fadapt = fcore / 83886.08 x 2eADPT_DETAIL.flimit   PR21   Fadapt = fcore / 83886.08 x 2eADPT_DETAIL.flimit   PR21   PR22   PR21   PR22   PR21   PR22   PR22   PR22   PR23   PR23   PR24   PR24   PR24   PR24   PR25   P   |       | ADPT CFG.lut       | 0x8058  | 5   |      | 0, 1        |                | Look-Up Table                                                                                                   | PR20 |
| Commin   Time   Time |       | ADPT CFG.store     | 0x8058  | 6   |      | 0, 1        |                | Auto-Storage to EEPROM                                                                                          | PR20 |
| ## ADPT_DETAIL.tbase 0x8059 53 0 - 7 tbase = 4 ## Auto-Adaption Correction Time Base 0: min, 7: max    ## ADPT_DETAIL.tbase 0x8059 53 0 - 7 tbase = 4    ## Auto-Adaption Correction Time Base 0: min, 7: max    ## Actual Auto-Adaption Time Base 1/base = 2e(ADPT_DETAIL.tbase+7) / fcore    ## Auto-Adaption During ADC Fault 0: continued, 1: disabled    ## ADPT_STORE.offth 0x805A 30 0 - 15    ## ADPT_STORE.gainth 0x805A 74 0 - 15    ## ADPT_STORE.gainth 0x805A 74 0 - 15    ## ADPT_CORR.prop 0x805B 10 0 - 3    ## ADPT_CORR.prop 0x805B 10 0 - 3    ## ADPT_CORR.offtol 0x805B 42 0 - 7    ## ADPT_CORR.offtol 0x805B 42 0 - 7    ## ADPT_CORR.gaintol 0x805B 75 0 - 7    ## Gadapt = fcore / 83886.08 x 2eADPT_DETAIL.flimit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | ADPT_DETAIL.flimit | 0x8059  | 20  |      | 0 - 7       | flimit = 6     |                                                                                                                 | PR21 |
| D: min, 7: max   Actual Auto-Adaption Time Base   PR21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | fadapt             |         |     |      |             |                |                                                                                                                 | PR21 |
| ### ADPT_DETAIL.fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | ADPT_DETAIL.tbase  | 0x8059  | 53  |      | 0 - 7       | tbase = 4      |                                                                                                                 | PR21 |
| O: continued, 1: disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | fbase              |         |     |      |             |                |                                                                                                                 | PR21 |
| O: min, 15: max  ADPT_STORE.gainth 0x805A 74 0 - 15  ADPT_CORR.prop 0x805B 10 0 - 3 prop = 2 Auto-Adaption Control 0: linear correction (1 increment / tbase) 1: slow exponential (prop = 0.25) 2: medium exponential (prop = 0.5) 3: fast exponential (prop = 0.75)  ADPT_CORR.offtol 0x805B 42 0 - 7 offtol = 2 Auto-Adaption Dig. Offset Tolerance 0: min, 7: max  ADPT_CORR.gaintol 0x805B 75 0 - 7 gaintol = 2 Auto-Adaption Dig. Gain Tolerance PR22 0: min, 7: max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | ADPT_DETAIL.fault  | 0x8059  | 6   |      | 0, 1        |                |                                                                                                                 | PR21 |
| O: min, 15: max  ADPT_CORR.prop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | ADPT_STORE.offth   | 0x805A  | 30  |      | 0 - 15      |                |                                                                                                                 | PR22 |
| 0: linear correction (1 increment / tbase) 1: slow exponential (prop = 0.25) 2: medium exponential (prop = 0.5) 3: fast exponential (prop = 0.75)  ADPT_CORR.offtol 0x805B 42 0 - 7 offtol = 2 Auto-Adaption Dig. Offset Tolerance 0: min, 7: max  ADPT_CORR.gaintol 0x805B 75 0 - 7 gaintol = 2 Auto-Adaption Dig. Gain Tolerance 0: min, 7: max  PR22 0: min, 7: max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | ADPT_STORE.gainth  | 0x805A  | 74  |      | 0 - 15      |                |                                                                                                                 | PR22 |
| ADPT_CORR.offtol         0x805B         42         0 - 7         offtol = 2         Auto-Adaption Dig. Offset Tolerance 0: min, 7: max         PR22           ADPT_CORR.gaintol         0x805B         75         0 - 7         gaintol = 2         Auto-Adaption Dig. Gain Tolerance 0: min, 7: max         PR22           0: min, 7: max         0: min, 7: max         PR22         0: min, 7: max         PR22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | ADPT_CORR.prop     | 0x805B  | 10  |      | 0 - 3       | prop = 2       | 0: linear correction (1 increment / tbase) 1: slow exponential (prop = 0.25) 2: medium exponential (prop = 0.5) | PR22 |
| 0: min, 7: max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | ADPT_CORR.offtol   | 0x805B  | 42  |      | 0 - 7       | offtol = 2     | Auto-Adaption Dig. Offset Tolerance                                                                             | PR22 |
| Reserved 0x805C 70 byte 0x00 Must be 0x00 for proper operation. PR13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | ADPT_CORR.gaintol  | 0x805B  | 75  |      | 0 - 7       | gaintol = 2    |                                                                                                                 | PR22 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Reserved           | 0x805C  | 70  | byte | 0x00        |                | Must be 0x00 for proper operation.                                                                              | PR13 |



Rev B4, Page 5/49

| Block | Register/Variable | Address | Bit | Туре | Value Range | Pin. Cfg. Val. | Name, Description, Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref.          |
|-------|-------------------|---------|-----|------|-------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Moni  | MON_CFG           |         |     |      |             |                | ADC and Adaption Quality Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|       | MON_CFG.adc       | 0x805D  | 0   |      | 0, 1        |                | ADC Quality Monitoring Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PR23          |
|       | MON_CFG.adapt     | 0x805D  | 1   |      | 0, 1        |                | 0: disabled, 1: enabled  Adaption Quality Monitoring Enable 0: disabled, 1: enabled  NB: Must be enabled if excessive adaption should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PR23          |
|       | MON_CFG.pwm       | 0x805D  | 32  |      | 0 - 3       |                | recorded by STAT_SP.adapt.  STATUS Output PWM Control 0: dutycycle pwm /255 1, 2, 3: refer to datasheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PR23          |
|       | pwm               |         |     |      |             |                | PWM Signal  pwm = QM_ADC x MON_CFG.adc + QM_ADAPT x  MON_CFG.adapt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PR23          |
|       | MON_CFG.adcth     | 0x805D  | 6   |      | 0, 1        |                | ADC Quality Threshold (MSB of MON_ADC.th) 0: 0 \le adcth < 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PR23          |
|       | MON_ADC.limit     | 0x805E  | 30  |      | 0 - 15      |                | 1: 120 ≤ adcth < 184  ADC Underflow Fault Limit 0: highest, 15: lowest limit adclim = 2e(0.5x MON_ADC.limit + 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PR24          |
|       | MON_ADC.th        | 0x805E  | 74  |      | 0 - 15      |                | ADC Quality Threshold 0: lowest, 15: highest threshold adcth = 4x (MON_ADC.th + 16x MON_CFG.adcth) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PR24          |
|       | adcflt            |         |     |      |             |                | 60 Actual ADC Underflow Fault adcflt = adcth - adclim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PR24          |
|       | MON_OFF.limit     | 0x805F  | 30  |      | 0 - 12      | limit = 10     | Dig. Offset Adaption Limit 0: lowest, 12: highest limit (deviation limit allowed from base configuration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PR24,<br>PR35 |
|       |                   |         |     |      | 0 - 7       |                | 0: lowest, 7: highest limit if monitoring function is enabled (only for chip releases before D4) 13-15: reserved, do not use. offlim = 2e(MON_OFF.limit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
|       | MON_OFF.th        | 0x805F  | 74  |      | 0 - 12      |                | Dig. Offset Adaption Quality Threshold 0: lowest, 12: highest threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PR24,<br>PR35 |
|       |                   |         |     |      | 0 - 7       |                | 0: lowest, 7: highest limit if monitoring function is enabled (only for chip releases before D4) 13-15: reserved, do not use.  offqth = 2e(MON_OFF:th)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1100          |
|       | offflt            |         |     |      | 0 - 8192    |                | Max. Digital Offset Adaption and Fault Level offflt = offqth + offlim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PR24,<br>PR35 |
|       | MON_GAIN.limit    | 0x8060  | 30  |      | 0 - 12      | limit = 10     | Dig. Gain Match Adaption Limit 0: lowest, 12: highest limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR24,<br>PR35 |
|       |                   |         |     |      | 0 - 7       |                | (deviation limit allowed from base configuration) 0: lowest, 7: highest limit if monitoring function is enabled (only for chip releases before D4) 13-15: reserved, do not use. gainlim = 2e(MON_GAIN.limit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
|       | MON_GAIN.th       | 0x8060  | 74  |      | 0 - 12      |                | Dig. Gain Match Adaption Quality Threshold 0: lowest, 12: highest threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PR24,<br>PR35 |
|       |                   |         |     |      | 0 - 7       |                | 0: lowest, 7: highest limit if monitoring function is enabled (only for chip releases before D4)  13-15: reserved, do not use.  gainqth = 2e(MON_GAIN.th)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|       | gainflt           |         |     |      | 0 - 8192    |                | Max. Digital Gain Match Adaption and Fault Level gainfit = gainqth + gainlim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PR24,<br>PR35 |
|       | MON_PHASE.limit   | 0x8061  | 30  |      | 0 - 12      | limit = 10     | Dig. Phase Adaption Limit  0: lowest, 12: highest limit (deviation limit allowed from base configuration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PR24,<br>PR35 |
|       |                   |         |     |      | 0 - 7       |                | it is in the control of the con |               |
|       | MON_PHASE.th      | 0x8061  | 74  |      | 0 - 12      |                | phlim = 2e(MON_PHASE.limit) Dig. Phase Adaption Quality Threshold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PR24,         |
|       |                   |         |     |      | 0 - 7       |                | 0: lowest, 12: highest threshold 0: lowest, 7: highest limit if monitoring function is enabled (only for chip releases before D4) 13-15: reserved, do not use. phqth = 2e(MON_PHASE.th)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PR35          |
|       | phflt             |         |     |      | 0 - 8192    |                | Max. Phase Adaption and Fault Level phflt = phqth + phlim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PR24,<br>PR35 |



Rev B4, Page 6/49

| Block | Register/Variable | Address | Bit  | Туре | Value Range | Pin. Cfg. Val. | Name, Description, Comments                                                                                                                                                           | Ref.          |
|-------|-------------------|---------|------|------|-------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|       |                   |         |      |      |             |                |                                                                                                                                                                                       |               |
| Fault | FLT_CFG           |         |      |      |             |                | Fault Configuration                                                                                                                                                                   | PR26          |
|       | FLT_CFG.vwarn     | 0x8062  | 0    | b    | 0, 1        | vwarn = 1      | Pin FAULT Indication of Operational Warnings 0= ignored, 1= activates FAULT output NB: 1 indicates overspeed and flickering index signal.                                             | PR26          |
|       | FLT_CFG.hold      | 0x8062  | 1, 2 | b    | 0 - 3       |                | AB Output Hold  0: AB outputs operational during a fault  1, 2: reserved (do not use)  3: AB outputs disabled during a fault                                                          | PR26          |
|       | FLT_CFG.pol       | 0x8062  | 3    | b    | 0, 1        |                | Pin FAULT Polarity 0: active low, 1: active high                                                                                                                                      | PR26          |
|       | FLT_CFG.long      | 0x8062  | 4    | b    | 0, 1        | long = 1       | Pin FAULT Indication Time 0: active while fault is active, 1: activation prolonged                                                                                                    | PR27          |
|       | long              |         |      |      |             |                | Actual Pin FAULT Indication Time long[ms] = 20 x 32/fcore[MHz]                                                                                                                        | PR27          |
|       | Reserved          | 0x8063  | 70   | byte | 0x00        |                | Must be 0x00 for proper operation.                                                                                                                                                    | PR13          |
|       | FLT_STAT          |         |      |      |             |                | Fault Status Register 0: no fault, 1: fault (sticky, cleared by writing 0x00) NB: this register is not stored in the EEPROM.                                                          | PR27          |
|       | FLT_STAT.ee       | 0x8064  | 0    | b    | 0, 1        |                | EEPROM Fault (by STAT_EE)                                                                                                                                                             | PR27          |
|       | FLT_STAT.adc      | 0x8064  | 1    | b    | 0, 1        |                | ADC Fault (by STAT_SP: .adcof, .adcuf)                                                                                                                                                | PR27          |
|       | FLT_STAT.adapt    | 0x8064  | 2    | b    | 0, 1        |                | Adaption Fault (by STAT_SP.adapt)                                                                                                                                                     | PR27          |
|       | FLT_STAT.vwarn    | 0x8064  | 3    | b    | 0, 1        |                | Overspeed Warning (by STAT_SP.vtop)  NB: warning comes at half the fatal overspeed fault.                                                                                             | SC18,<br>PR28 |
|       | FLT_STAT.vfatal   | 0x8064  | 4    | b    | 0, 1        |                | Fatal Overspeed Fault (by STAT_SP.fatal)                                                                                                                                              | PR28          |
|       | FLT_STAT.intern   | 0x8064  | 6    | b    | 0, 1        |                | Internal Fault (by STAT_SP.1wire and .xtal)                                                                                                                                           | PR28          |
|       | Reserved          | 0x8065  | 70   | byte | 0x00        |                | Must be 0x00 for proper operation.                                                                                                                                                    | PR13          |
|       | FLT_EN            |         |      |      |             |                | Fault Latching Enable                                                                                                                                                                 | PR28          |
|       | FLT_EN.ee         | 0x8066  | 0    | b    | 0, 1        | ee = 1         | EEPROM Fault 0: disabled, 1: latches FAULT output                                                                                                                                     | PR28          |
|       | FLT_EN.adc        | 0x8066  | 1    | b    | 0, 1        |                | ADC Fault  0: activates FAULT output, 1: latches FAULT output  NB: defines STAT_SP.adcof and .adcuf as sticky; can freeze auto-adaption upon pwr-on.                                  | PR28          |
|       | FLT_EN.adapt      | 0x8066  | 2    | b    | 0, 1        |                | Adaption Fault 0: disabled (recommended) 1: latches FAULT output, freezes auto-adaption                                                                                               | PR28,<br>SC23 |
|       | FLT_EN.vwarn      | 0x8066  | 3    | b    | 0, 1        |                | Overspeed Warning (Operational Warning) 0: activates FAULT outp. (only if FLT_CFG.vwarn = 1) 1: latches FAULT output NB: defines STAT_SP.vtop and .ospeed as sticky (not recommended) | PR28          |
|       | FLT_EN.vfatal     | 0x8066  | 4    | b    | 0, 1        | vfatal = 1     | Fatal Overspeed Fault 0: disabled, 1: latches FAULT output NB: defines STAT_SP.fatal, .lag and .ab as sticky (recommended)                                                            | PR29          |
|       | FLT_EN.intern     | 0x8066  | 6    | b    | 0, 1        |                | Internal Fault 0: activates FAULT output, 1: latches FAULT output                                                                                                                     | PR29          |
|       | Reserved          | 0x8067  | 70   | byte | 0x00        |                | Must be 0x00 for proper operation.                                                                                                                                                    | PR13          |
|       |                   |         |      |      |             |                |                                                                                                                                                                                       |               |



Rev B4, Page 7/49

| Block  | Register/Variable           | Address          | Bit      | Туре       | Value Range Pin. Cfg. Val. | Name, Description, Comments                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ref.          |
|--------|-----------------------------|------------------|----------|------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| VAR    | VAR Block                   | 0x8094 -         | - 0x9FFF |            |                            | Working Variables (internal RAM)                                                                                                                                                                                                                                                                                                                                                                                                                             | PR7           |
| Status | STAT_SP                     | 0x809A           |          | w (16 bit) |                            | Signal Path Status Register 0: no fault, 1: fault (sticky, cleared by writing 0x00) (For some variables: FLT. EN determines if sticky or                                                                                                                                                                                                                                                                                                                     | PR32          |
|        | STAT_SP.adcof               | 0x809A           | 0        |            | 0, 1                       | (For some variables: FLT_EN determines if sticky or not) ADC Overflow                                                                                                                                                                                                                                                                                                                                                                                        | PR33          |
|        | STAT_SP.adcuf               | 0x809A           | 1        |            | 0, 1                       | NB: ADC input > $\approx$ 106 % nom. signal level ( $\pm$ 1.5 V).<br><b>ADC Underflow</b><br>NB: ADC input < $\approx$ 10 % nominal signal level.<br>Threshold changes with ADC quality monitoring enabled.                                                                                                                                                                                                                                                  | PR33          |
|        | STAT_SP.adapt               | 0x809A           | 2        |            | 0, 1                       | Excessive Adaption (operational if enabled by MON_CFG.adapt=1) NB: always sticky; can only be cleared by restarting the chip to read new parameter values from the EEPROM                                                                                                                                                                                                                                                                                    | PR33,<br>SC23 |
|        | STAT_SP.vtop                | 0x809A           |          |            | 0, 1                       | Speed Limit Exceeded (max. AB frequency reached)                                                                                                                                                                                                                                                                                                                                                                                                             | PR33          |
|        | STAT_SP.ospeed              | 0x809A           |          |            | 0, 1                       | Overspeed Warning (operation continues correctly)                                                                                                                                                                                                                                                                                                                                                                                                            | PR33          |
|        | STAT_SP.fatal               | 0x809A           | 5        |            | 0, 1                       | Fatal Overspeed Fault (faulty AB output signals) NB: pin FAULT latching is highly recommended (faulty interpolator output)                                                                                                                                                                                                                                                                                                                                   | SC23,<br>PR33 |
|        | STAT_SP.lag                 | 0x809A           | 6        |            | 0, 1                       | Excessive Filter Lag (faulty AB output signals)                                                                                                                                                                                                                                                                                                                                                                                                              | PR33          |
|        | STAT_SP.ab                  | 0x809A           |          |            | 0, 1                       | Excessive AB Output Lag (faulty AB output signals)                                                                                                                                                                                                                                                                                                                                                                                                           | PR33          |
|        | Reserved<br>STAT_SP.1wire   | 0x809A<br>0x809A |          |            | 0, 1<br>0, 1               | reserved  1-Wire Interface Timeout (access/cmd. not performed)  NB: always sticky                                                                                                                                                                                                                                                                                                                                                                            | PR33<br>PR33  |
|        | Reserved                    | 0x809A           | 10       |            | 0, 1                       | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PR32          |
|        | STAT_SP.xtal                | 0x809A           | 11       |            | 0, 1                       | External Crystal Fault (internal oscillator in use) NB: cleared when frequency/crystal is applied.                                                                                                                                                                                                                                                                                                                                                           | PR33          |
|        | Reserved                    | 0x809A           | 1215     |            | 0, 1                       | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PR33          |
|        | STAT_EE                     | 0x809C           |          | w (16 bit) |                            | EEPROM Status Register 0: no fault, 1: fault (sticky, cleared by writing 0x00)                                                                                                                                                                                                                                                                                                                                                                               | PR35          |
|        | STAT_EE.timeout             | 0x809C           |          |            | 0, 1                       | EEPROM Communication Timeout                                                                                                                                                                                                                                                                                                                                                                                                                                 | PR35          |
|        | STAT_EE.stuck               | 0x809C           |          |            | 0, 1                       | EEPROM Hardware Fault                                                                                                                                                                                                                                                                                                                                                                                                                                        | PR35          |
|        | STAT_EE.id                  | 0x809C<br>0x809C |          |            | 0, 1<br>0, 1               | Wrong EEPROM ID CFG Block Checksum Error                                                                                                                                                                                                                                                                                                                                                                                                                     | PR35<br>PR35  |
|        | STAT_EE.cfg<br>STAT_EE.par0 | 0x809C           |          |            | 0, 1                       | PAR Block 0 Checksum Error                                                                                                                                                                                                                                                                                                                                                                                                                                   | PR35          |
|        | STAT_EE.par1                | 0x809C           |          |            | 0, 1                       | PAR Block 1 Checksum Error                                                                                                                                                                                                                                                                                                                                                                                                                                   | PR35          |
|        | STAT_EE.base                | 0x809C           |          |            | 0, 1                       | PAR BASE Block Checksum Error                                                                                                                                                                                                                                                                                                                                                                                                                                | PR35          |
|        | STAT_EE.lut                 | 0x809C           |          |            | 0, 1                       | LUT Block Checksum Error                                                                                                                                                                                                                                                                                                                                                                                                                                     | PR35          |
|        | STAT EE.mode                | 0x809C           |          |            | 0, 1                       | Wrong Configuration Mode                                                                                                                                                                                                                                                                                                                                                                                                                                     | PR35          |
|        | Reserved                    | 0x809C           |          |            | 0, 1                       | reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PR35          |
| QM     | ADC_SIN                     | 0x80A4           | 150      | w (16 bit) | -8192<br>+8192             | Sine ADC Value  NB: recommended maximum ±5800 (for nominal signal level of ±1.4 V).                                                                                                                                                                                                                                                                                                                                                                          | PR35          |
|        | ADC_COS                     | 0x80A6           | 150      | w (16 bit) | -8192<br>+8192             | Cosine ADC Value NB: recommended maximum ±5800 (for nominal                                                                                                                                                                                                                                                                                                                                                                                                  | PR35          |
|        | ADC AMP                     | 0x80A8           | 7 0      | byte       | 0 - 255                    | signal level of ±1.4 V.  Vector Signal Amplitude                                                                                                                                                                                                                                                                                                                                                                                                             | PR36          |
|        | QM_ADC                      | 0x80AE           |          | byte       | 0 - 255                    | ADC Quality Monitor Level                                                                                                                                                                                                                                                                                                                                                                                                                                    | PR36          |
|        | QM_ADAPT                    | 0x80AF           |          | byte       | 0 - 255                    | Adaption Quality Monitor Level                                                                                                                                                                                                                                                                                                                                                                                                                               | PR36          |
| CMD    | CMD                         | 0x80B0           | 70       | byte       | selected                   | Command Register 0x00: executed - command register ready (read only)                                                                                                                                                                                                                                                                                                                                                                                         | PR33          |
|        |                             |                  |          |            |                            | 0x01: reserved (do not use) 0x02: update signal path configuration NB: Update clears test register RB_TEST1. 0x04: write all (to EEPROM) 0x08: write param (block PAR_NOW to EEPROM) 0x10: reserved (do not use) 0x20: reserved (do not use) 0x40: restart (as if power had been cycled) 0x80: reserved (do not use) NB: Check for 0x00 before writing new command. If using the 1-wire interface, wait for 500 ms upon restart instead of polling for 0x00. |               |



Rev B4, Page 8/49

| Block | Register/Variable | Address Bit        | Туре       | Value Range Pin. Cfg. Val. | Name, Description, Comments                                                                                                                                                                                                                                            | Ref. |
|-------|-------------------|--------------------|------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| RB    | RB Block          | 0xA000 - 0xA0FF    |            |                            | Register Banks (internal RAM)                                                                                                                                                                                                                                          | PR9  |
| Test  | RB_TEST1          | 0xA008             | w (16 bit) |                            | Test Register 0x0000: Cleared 0x0008 (bit 3 = 1): Output of osc. frequency fcore/2 at FRAME. 0x0020 (bit 5 = 1): Output of internal Z Gating Signal at OUTA. 0x0200 (bit 9 = 1): EEPROM unlock. NB: Clear register or use update command before writing to the EEPROM. | PR37 |
| WM    | WM Block          | 0xA100 - 0xFFFF    | :          |                            | Working Memory Block (internal RAM, ROM)                                                                                                                                                                                                                               | PR7  |
|       | CHIP_ID           | 0xC002             | w (16 bit) | 0x0408                     | iC-TW8 Device ID (read only)                                                                                                                                                                                                                                           | PR9  |
|       | CHIP_REV          | 0xC004             | w (16 bit) | ≥ 0x0001                   | iC-TW8 Chip Release (read only) NB: chip release D3 = 0x0003, D4 = 0x0004.                                                                                                                                                                                             | PR9  |
|       | POS_LSW           | 0xA18E             | , ,        | 0 - 0xFFFF                 | Current Angle Position (32-bit)                                                                                                                                                                                                                                        | PR9  |
|       | POS_MSW           | 0xA190             | , ,        | 0 - 0xFFFF                 | Current Angle Position (32-bit)                                                                                                                                                                                                                                        | PR9  |
|       | VEL               | 0xA192             | w (13 bit) | +/- 0x1FFF                 | Current Velocity (Input Frequency) and Sense of<br>Direction                                                                                                                                                                                                           | PR9  |
|       | finput            |                    |            | kHz                        | Actual Input Frequency                                                                                                                                                                                                                                                 | PR9  |
|       | finput_max        |                    |            | kHz                        | finput[kHz] = fcore[MHz] x VEL/2097.152  Max. Input Frequency (calc. as ffront by REDT)                                                                                                                                                                                | _    |
|       |                   |                    |            |                            | finput_max [kHz] = fab / intereff                                                                                                                                                                                                                                      |      |
| PAR   | PAR Block         | 0x806A - 0x8093    |            |                            | Signal Path Parameters                                                                                                                                                                                                                                                 | PR7  |
|       | PAR_NOW Block     | 0x806A -<br>0x8077 |            |                            | Current Parameter Values                                                                                                                                                                                                                                               | PR8  |
|       | PAR_CKSUM         | 0x806A             | w (16 bit) |                            | Checksum PAR_NOW Sub-Block                                                                                                                                                                                                                                             |      |
|       | PAR_DGAIN         | 0x806C             | w (16 bit) | -1023+1023                 | Digital Gain Match Correction -1023+1023: digital gain correction -102432767, +1024+32767: reserved, do not use.                                                                                                                                                       | PR31 |
|       | dgains            |                    |            |                            | Actual Digital Gain Match Correction Sin  DGAIN < 0: dgains = 1 - DGAIN/4096, dgainc = 1;                                                                                                                                                                              | PR31 |
|       | dgainc            |                    |            |                            | Actual Digital Gain Match Correction Cos DGAIN > 0: dgainc = 1 + DGAIN/4096, dgains = 1;                                                                                                                                                                               | PR31 |
|       | PAR_DOFFS         | 0x806E             | w (16 bit) | -511+511                   | Digital Sin Offset Correction -511+511: digital offset correction -51232767, +512+32767: reserved, do not use.                                                                                                                                                         | PR31 |
|       | doffs             |                    |            |                            | Actual Digital Sin Offset Correction doffs[mV] = DOFFS/4096                                                                                                                                                                                                            | PR31 |
|       | PAR_DOFFC         | 0x8070             | w (16 bit) | -511+511                   | Digital Cos Offset Correction -511+511: digital offset correction -51232767, +512+32767: reserved, do not use.                                                                                                                                                         | PR31 |
|       | doffc             |                    |            |                            | Actual Digital Cos Offset Correction doffc[mV] = DOFFC/4096                                                                                                                                                                                                            | PR31 |
|       | PAR_DPH           | 0x8072             | w (16 bit) | -1023+1023                 | Digital Phase Correction -1023+1023: digital phase correction -102432767, +1024+32767: reserved, do not use.                                                                                                                                                           | PR32 |
|       | dphase            |                    |            | -53°+53°                   | Actual Digital Phase Correction dphase[°] = 2x arctan (DPH/2048)                                                                                                                                                                                                       | PR31 |
|       | PAR_AGAIN         | 0x8074             | byte       | 2 - 15                     | Analog Gain 0 - 1: reserved, do not use. 2: minimum, 15: maximum 16 - 255: reserved, do not use.                                                                                                                                                                       | PR30 |
|       | again             |                    |            | 2 - 178<br>6 dB - 45 dB    | Actual Analog Gain (for Sin and Cos)  again = 10e (3x AGAIN / 20)  again[dB] = 3x AGAIN                                                                                                                                                                                | PR30 |
|       | PAR_AOFFS         | 0x8075             | byte       | -31+31                     | Analog Sin Offset Correction -31+31: analog offset correction -32127, +32+127: reserved, do not use.                                                                                                                                                                   | PR30 |
|       | aoffs             |                    |            |                            | Actual Analog Sin Offset Correction aoffs[mV] = AOFFS * 100                                                                                                                                                                                                            | PR30 |
|       | aoffins           |                    |            |                            | Effective Analog Sin Input Offset Correction aoffins[mV] = aoffs / again                                                                                                                                                                                               | PR30 |
|       | PAR_AOFFC         | 0x8076             | byte       | -31+31                     | Analog Cos Offset Correction -31+31: analog offset correction -32127, +32+127: reserved, do not use.                                                                                                                                                                   |      |
|       | aoffc             |                    |            |                            | Actual Analog Cos Offset Correction aoffc[mV] = AOFFC * 100                                                                                                                                                                                                            | PR30 |
|       | aoffinc           |                    |            |                            | Effective Analog Cos Input Offset Correction aoffinc[mV] = aoffc / again                                                                                                                                                                                               | PR30 |

#### **Programmer's Reference**



Rev B4, Page 9/49

| Block | Register/Variable | Address Bit        | Type       | Value Range Pin. Cfg. Val. | Name, Description, Comments | Ref |
|-------|-------------------|--------------------|------------|----------------------------|-----------------------------|-----|
|       |                   |                    |            |                            |                             |     |
|       | PAR_BAK Block     | 0x8078 -<br>0x8085 |            |                            | Backup Parameter Values     | PR8 |
|       | PAR_BAK_CKSUM     | 0x8078             | w (16 bit) |                            | Checksum PAR_BAK_Sub-Block  |     |
|       | PAR_BAK_DGAIN     | 0x807A             | w (16 bit) |                            | Digital Gain                |     |
|       | PAR_BAK_DOFFS     | 0x807C             | w (16 bit) |                            | Sin Digital Offset          |     |
|       | PAR_BAK_DOFFC     | 0x807E             | w (16 bit) |                            | Cos Digital Offset          |     |
|       | PAR_BAK_DPH       | 0x8080             | w (16 bit) |                            | Digital Phase               |     |
|       | PAR_BAK_AGAIN     | 0x8082             | byte       |                            | Analog Gain                 |     |
|       | PAR_BAK_AOFFS     | 0x8083             | byte       |                            | Sin Analog Offset           |     |
|       | PAR_BAK_AOFFC     | 0x8084             | byte       |                            | Cos Analog Offset           |     |
|       | PAR_BASE Block    | 0x8086 -<br>0x8093 |            |                            | Base Parameter Values       | PR8 |
|       | PAR BASE CKSUM    |                    | w (16 bit) |                            | Checksum PAR BASE Sub-Block |     |
|       | PAR BASE DGAIN    | 0x8088             | w (16 bit) |                            | Digital Gain                |     |
|       | PAR BASE DOFFS    | 0x808A             | w (16 bit) |                            | Sin Digital Offset          |     |
|       | PAR BASE DOFFC    | 0x808C             | w (16 bit) |                            | Cos Digital Offset          |     |
|       | PAR_BASE_DPH      | 0x808E             | w (16 bit) |                            | Digital Phase               |     |
|       | PAR_BASE_AGAIN    | 0x8090             | byte       |                            | Analog Gain                 |     |
|       | PAR_BASE_AOFFS    | 0x8091             | byte       |                            | Sin Analog Offset           |     |
|       | PAR BASE AOFFC    | 0x8092             | byte       |                            | Cos Analog Offset           |     |

#### **CONFIGURATION PROCEDURE**

#### Serial Configuration Procedure for SPI and 1-Wire Interface

- 1. The complete CFG block should be written first. All addresses starting at **0x8042 through 0x8067**. Undescribed bits completing a byte or word must be programmed zero.
- 2. Then the PAR NOW sub-block starting at 0x806C through 0x8076.
- 3. Then a Write All Command (0x04 to 0x80B0) to load the other PAR sub-blocks and calculate and store the checksums.
- 4. Finally, a Restart command (0x40 to 0x80B0) to read the EEPROM back into internal memory and update the signal path parameters.

#### **REVISION HISTORY**

| Rel. | Rel. Date* | Chapter          | Modification                                                                                                                                                                                                            | Page  |
|------|------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| В3   | 2017-08-09 | REGISTER MAP     | LUT block moved from page 7 to 1 MAIN_Z.th: fullscale values and zth formula corrected finput_max: description corrected (ffront by REDT) STAT_SP.adcof, STAT_SP.adcuf: notes added ADC_SIN, ADC_COS: note text updated | 1ff   |
|      |            | REVISION HISTORY | Chapter added                                                                                                                                                                                                           | 9     |
|      |            | ATTACHMENTS      | Programmer's Reference updated (Aug 09, 2017)                                                                                                                                                                           | PR139 |

| Rel. | Rel. Date* | Chapter      | Modification                                                    | Page  |
|------|------------|--------------|-----------------------------------------------------------------|-------|
| B4   | 2017-10-25 | REGISTER MAP | Description updated for AB_CFG0.dir, AB_CFG0.apol, AB_CFG0.bpol | 3     |
|      |            | ATTACHMENTS  | Programmer's Reference updated (Oct 19, 2017)                   | PR139 |

<sup>\*</sup> Release Date format: YYYY-MM-DD



Rev B4, Page 10/49

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).



October 19, 2017 Page PR1/39

#### **Table of Contents**

| About This Document        | 2  |
|----------------------------|----|
| Documentation Conventions  | 2  |
| Serial Communication Ports | 3  |
| SPI Port                   |    |
| 1-Wire Port                |    |
| Memory Structure           | 7  |
| Internal Memory            | 7  |
| NU Block                   | 7  |
| LUT Block                  | 7  |
| CFG Block                  | 7  |
| PAR Block                  | 8  |
| VAR Block                  | 9  |
| RB Block                   | 9  |
| WM Block                   | 9  |
| External Memory (EEPROM)   | 10 |
| Reading the EEPROM         | 10 |
| Writing to the EEPROM      | 11 |
| EEPROM Write Protection    | 12 |
| CFG Block Registers        | 13 |
| CFG_CHECK                  |    |
| MAIN_CFG                   | 14 |
| MAIN_DSM                   | 14 |
| MAIN_INTER                 |    |
| MAIN_HYST                  | 15 |
| MAIN_FLTR                  |    |
| MAIN_OUT                   |    |
| MAIN_CLOCK                 |    |
| MAIN_ZPOS                  | 17 |
| MAIN_Z                     | 18 |
| AB_CFG0                    | 18 |
| AB_CFG1                    | 19 |

| AB ZWIDTH19                             | ) |
|-----------------------------------------|---|
| AB VTOP                                 |   |
| ADPT_CFG20                              |   |
| ADPT DETAIL21                           |   |
| ADPT STORE22                            |   |
| ADPT CORR22                             | 2 |
| MON_CFG23                               |   |
| MON ADC24                               |   |
| MON OFF                                 | 5 |
| MON GAIN25                              | 5 |
| MON PHASE26                             |   |
| FLT CFG26                               | ó |
| FLT STAT27                              | 7 |
| FLT EN                                  | 3 |
| PAR Block Registers30                   | ) |
| AGAIN (Analog Gain)                     |   |
| AOFFS, AOFFC (Analog Offset)            |   |
| DOFFS, DOFFC (Digital Offset)           |   |
| DGAIN (Digital Gain Match)31            |   |
| DPH (Digital Phase)                     |   |
| ,                                       |   |
| VAR Block Registers33                   |   |
| CMD (Command Register)33                |   |
| STAT_SP (Signal Path Status Register)33 | 3 |
| STAT_EE (EEPROM Status Register) 35     | 5 |
| ADC_SIN, ADC_COS35                      | 5 |
| ADC_AMP (Signal Amplitude)35            | 5 |
| QM ADC (ADC Quality Monitor)36          | ó |
| QM_ADAPT (Adaption Quality Monitor)36   | ó |
| RB Block Registers37                    | 7 |
| RB_TEST1                                |   |
| Revision History                        | 3 |



October 19, 2017 Page PR2/39

#### **About This Document**

This document describes the memory configuration, internal registers, and variables of the iC-TW8 Interpolator. It is meant to be used as a reference for interpreting values read back from internal registers during troubleshooting or for writing diagnostic or configuration software for a microcontroller or computer connected to the iC-TW8 via the SPI or 1-wire communication interfaces. This document should not be used to configure the iC-TW8; separate documents describing both pin configuration mode and serial configuration mode using the iC-TW8 encoder design tool are available for this purpose.

#### **Documentation Conventions**

Throughout this document, hexadecimal values are written in C-style where the hex value is preceded by "0x". For example,  $80CA_{16}$  is written as 0x80CA.

Internal iC-TW8 registers are named using all CAPITAL letters. Individual bits or bit groups within the register use lower case Roman lettering. For example, MAIN\_CFG.wp refers to the wp bit (bit 0) in the MAIN\_CFG register at address 0x8044. Likewise, MAIN\_OUT.mode refers to the 2-bit group mode (bits 4-5) of register MAIN\_OUT at address 0x804B.

Derived variables not explicitly available as register values are shown in all lower-case *italics*. For example, the formula

$$inter = \frac{MAIN\_INTER}{4}$$

shows that internal variable *inter* is derived from the value in the MAIN INTER register.

Internal variable units are shown in brackets following the variable name. For instance *adcs*[V] is the sin channel ADC input level in volts.





October 19, 2017 Page PR3/39

#### **Serial Communication Ports**

The iC-TW8 contains two serial ports that may be used to access internal registers. These are a standard SPI (Serial Peripheral Interface) slave port and a 1-wire port, both of which utilize a similar communication protocol. Both ports may be used simultaneously.

The SPI slave port uses a 3-wire or 4-wire full-duplex interface which operates in CPOL = 0 and CPHA = 0 mode only. This means that the base (resting) value of SPI\_SCLK (pin 27) is low, SPI\_SI is sampled on the rising edge of SPI\_SCLK, and SPI\_SO is changed on the falling edge of SPI\_CLCK.

The SPI port does not have a time-out circuit to check for valid transactions. If a transaction is aborted, the internal state of the port registers is maintained. To reset the port, the SPI\_xSS input (pin 14) may be pulled high or sufficient clock cycles provided to flush the port registers back to their initial state.

The 1-wire port uses a single bi-directional data line connected to IR (pin 7) for communication. The bit stream is pulse-width modulated: a 1-bit is encoded as a long high level followed by a short low level, a 0-bit is encoded as a short high level followed by a long low level. A timeout circuit activates a status bit in the STAT\_SP register (page 33) in the event of an illegal transaction.

#### **SPI Port**

The SPI interface allows three types of transactions (read, write, and 32-bit position read) as shown in

Figure 1 below. All SPI commands, addresses, data, and position values are read and written most significant bit first.



Figure 1: SPI Transactions

An SPI write consists of a command byte followed by a 16-bit register address and then 16 bits of data. For a word write, the data word is written to the register address, which must be even. For a byte write, the least significant byte of the data word is written to the register address; the most significant byte of the data word is ignored but must be provided.

An SPI read consists of a command byte followed by a 16-bit address and an 8-bit "dummy" waiting time during which the iC-TW8 retrieves the requested data from internal memory. Subsequently, the 16-bit data is provided on SPI\_SO. For a word

read, 16 bits are read from the register address, which must be even. For a byte read, 8 bits are read from the register address and returned in the least significant byte of the data word; the most significant byte of the data word is undefined.

An SPI position read is similar to an SPI read except that an address is not required and 32 bits of data are returned in two words. The resolution of the returned position is determined by the interpolation factor, *inter*. See MAIN\_INTER on page 15 for more information.



October 19, 2017 Page PR4/39

The position is latched on SPI clock 6 and updated at the ADC sampling clock frequency, fadc.

$$fadc = \frac{fcore}{128}$$

This position update rate is asynchronous to any SPI accesses, so care must be taken when making continuous position reads to avoid jitter and aliasing. See Using Serial-Only Output Mode in the iC-TW8 Serial Configuration Mode documentation for more information.

The Command Byte determines whether the transaction is a read or a write, a word or a byte, or a position read. Five command byte values are legal; other values cause undefined operation.

| SPI Command Byte |                      |  |
|------------------|----------------------|--|
| Value            | e Description        |  |
| 0x80             | Word Write           |  |
| 0x90             | Byte Write           |  |
| 0xC0             | xC0 Word Read        |  |
| 0xD0             | Byte Read            |  |
| 0xE0             | 32-Bit Position Read |  |

An SPI Write is detailed in Figure 2 below.



Figure 2: SPI Write

An SPI Read is detailed in Figure 3 below.



Figure 3: SPI Read



October 19, 2017 Page PR5/39

An SPI 32-Bit Position Read is detailed in Figure 4 below.



Figure 4: SPI 32-Bit Position Read

Note that the 32-bit position value is simply an accumulated count of the number of AB increments since the iC-TW8 was started or restarted. Thus, it is not a true multicycle counter except with binary interpolation factors (where MAIN\_INTER is a power of two).

For example, if MAIN\_INTER = 4096, the lowest 12 bits of the 32-bit position value represent the position or angle within one input cycle while the 20 MSBs represent the cycle count. However, if MAIN\_INTER = 4000, no such straightforward representation is possible.

With non-binary resolutions, the angle within one input cycle and the cycle count must be calculated in a host processor using the 32-bit position value. In this case, it is recommended that the host processor maintain angle and multicycle count registers that are updated periodically using the difference between the current and the last 32-bit position values. This allows the rollover of the 32-bit position counter in the iC-TW8 to be handled properly.



October 19, 2017 Page PR6/39

#### 1-Wire Port

The 1-wire port is intended for use as an alternative configuration interface and not for general communication with the iC-TW8. It allows two types of transactions (read and write) and uses a communication protocol similar to that used by the SPI port.

A 1-wire write consists of a start condition followed by the command byte followed by a 16-bit register address and then 16 bits of data. For a word write, the data word is written to the register address, which must be even. For a byte write, the least significant byte of the data word is written to the register address; the most significant byte of the data word is ignored but must be provided.

A 1-wire read consists of a start condition followed by the command byte followed by a 16-bit address, after which the master must release the data line. The iC-TW8 then pulls the data line low while retrieving the requested data from internal memory. Subsequently, the 16-bit data is provided on the data line. For a word read, 16 bits are read from the register address, which must be even. For a byte read, 8 bits are read from the register address and returned in the least significant byte of the data word; the most significant byte of the data word is undefined.

The Command Byte determines whether the transaction is a read or a write, or a word or a byte. Four command byte values are legal; other values cause undefined operation.

|                   | 1-Wire Command Byte |  |  |
|-------------------|---------------------|--|--|
| Value Description |                     |  |  |
| 0x80              | Word Write          |  |  |
| 0xA0              | Byte Write          |  |  |
| 0xC0              | Word Read           |  |  |
| 0xE0              | Byte Read           |  |  |

A 1-wire write is detailed in Figure 5 below.



Figure 5: 1-Wire Write

A 1-wire read is detailed in Figure 6 below.



Figure 6: 1-Wire Read

#### **Programmer's Reference**



October 19, 2017 Page PR7/39

#### **Memory Structure**

The iC-TW8 contains two distinct memory spaces, the internal memory and the external EEPROM. Internal memory can be fully accessed through the serial SPI or 1-wire interfaces.

The external EEPROM is used to permanently store configuration and calibration data. All interactions with the external EEPROM are handled by the iC-TW8. At startup the iC-TW8 accesses the EEPROM and loads the configuration data into its internal memory. Several data integrity checks are performed to ensure proper configuration.

#### **Internal Memory**

The internal memory of the iC-TW8 consists of 32K bytes that can be accessed by the user via the SPI/1-wire interface. Memory is usually accessed as words (2 bytes = 16 bits) at an even byte address, although some locations also allow access as bytes (8 bits).

The internal memory of the iC-TW8 is divided into functional blocks, as shown in the memory map below.

| Address Range   | Block<br>Name | Description            |
|-----------------|---------------|------------------------|
| 0x0000 - 07FFF  | NU            | Not Used               |
| 0x8000 - 0x8041 | LUT           | Lookup Table Data      |
| 0x8042 - 0x8067 | CFG           | Configuration Data     |
| 0x8068 - 0x8093 | PAR           | Signal Path Parameters |
| 0x8094 – 0x9FFF | VAR           | Working Variables      |
| 0xA000 - 0xA0FF | RB            | Register Banks         |
| 0xA100 - 0xFFFF | WM            | Working Memory         |

#### **NU Block**

The NU block of memory is not used by the iC-TW8. Accesses to this block have no effect.

#### **LUT Block**

The LUT block holds the values of the lookup table used to correct for sensor distortion. The LUT consists of 64 bytes of data plus a checksum word as shown below.

| Address Range   | Name         | Description |
|-----------------|--------------|-------------|
| 0x8000 - 0x803F | LUT0 – LUT63 | LUT Data    |
| 0x8040          | LUT_CKSUM    | Checksum    |

If the lookup table is disabled, values in this memory block are not used. LUT data should be accessed as bytes, but the LUT checksum must be accessed as a word.

#### **CFG Block**

The CFG block contains configuration data that controls the operational state of the iC-TW8. The CFG block can be accessed as bytes or words as required by the specific data. Word accesses must use an even byte address. See CFG Block Registers on page 13 for details.

#### **Programmer's Reference**



October 19, 2017 Page PR8/39

#### **PAR Block**

The PAR block contains the signal path parameters for gain, offset correction, and phase correction used during operation of the interpolator. The PAR block can be accessed as bytes or words as required by the specific data. Word accesses must use an even byte address. See PAR Block Registers on page 30 for details.

The PAR block also contains a pointer variable PAR\_ACTIVE at address 0x8068 that determines which of two EEPROM parameter blocks is used at power-up. See External Memory (EEPROM) on page 10 for more information on how PAR ACTIVE is used.

Because the signal path parameter values can be updated during operation using the auto-adaption feature of the iC-TW8, the PAR block keeps three copies of all parameter values in three identically-structured sub-blocks as shown below.

| Address Range   | Sub-Block<br>Name | Description     |
|-----------------|-------------------|-----------------|
| 0x806A - 0x8077 | PAR_NOW           | Current Values  |
| 0x8078 - 0x8085 | PAR_BAK           | Backup Values   |
| 0x8086 - 0x8093 | PAR_BASE          | Baseline Values |

The PAR\_NOW sub-block contains the current parameter values used by the signal path. These values are adapted during operation to compensate for changes in operating conditions if the iC-TW8 is configured to use auto-adaption.

The PAR\_NOW sub-block is structured as shown below.

| Address | Parameter | Description        | Access |
|---------|-----------|--------------------|--------|
| 0x806A  | CKSUM     | PAR_NOW            | Word   |
|         |           | Sub-Block          |        |
|         |           | Checksum           |        |
| 0x806C  | DGAIN     | Digital Gain       | Word   |
| 0x806E  | DOFFS     | Sin Digital Offset | Word   |
| 0x8070  | DOFFC     | Cos Digital Offset | Word   |
| 0x8072  | DPH       | Digital Phase      | Word   |
| 0x8074  | AGAIN     | Analog Gain        | Byte   |
| 0x8075  | AOFFS     | Sin Analog Offset  | Byte   |
| 0x8076  | AOFFC     | Cos Analog Offset  | Byte   |

The PAR\_BAK sub-block contains the parameter values at the time of the last power-on. Immediately after power-on, the values in PAR\_BAK are equal to the corresponding values in PAR\_NOW. If the

iC-TW8 is configured *not* to use auto-adaption, the parameter values in PAR\_BAK are *always* the same as the corresponding values in PAR\_NOW.

The PAR\_BAK sub-block is structured identically to the PAR\_NOW sub-block as shown below.

| Address | Parameter | Description        | Access |
|---------|-----------|--------------------|--------|
| 0x8078  | CKSUM     | Checksum of        | Word   |
|         |           | PAR_BAK            |        |
|         |           | Sub-Block          |        |
| 0x807A  | DGAIN     | Digital Gain       | Word   |
| 0x807C  | DOFFS     | Sin Digital Offset | Word   |
| 0x807E  | DOFFC     | Cos Digital Offset | Word   |
| 0x8080  | DPH       | Digital Phase      | Word   |
| 0x8082  | AGAIN     | Analog Gain        | Byte   |
| 0x8083  | AOFFS     | Sin Analog Offset  | Byte   |
| 0x8084  | AOFFC     | Cos Analog Offset  | Byte   |

The PAR\_BASE sub-block contains the baseline parameter values determined during product configuration. PAR\_BASE always provides a known factory default set of operating parameter values that do not change even when using auto-adaption.

The PAR\_BASE sub-block is structured identically to the PAR\_NOW sub-block as shown below.

| Address | Parameter | Description        | Access |
|---------|-----------|--------------------|--------|
| 0x8086  | CKSUM     | PAR_BASE           | Word   |
|         |           | Sub-Block          |        |
|         |           | Checksum           |        |
| 0x8088  | DGAIN     | Digital Gain       | Word   |
| 0x808A  | DOFFS     | Sin Digital Offset | Word   |
| 0x808C  | DOFFC     | Cos Digital Offset | Word   |
| 0x808E  | DPH       | Digital Phase      | Word   |
| 0x8090  | AGAIN     | Analog Gain        | Byte   |
| 0x8091  | AOFFS     | Sin Analog Offset  | Byte   |
| 0x8092  | AOFFC     | Cos Analog Offset  | Byte   |

#### **Programmer's Reference**



October 19, 2017 Page PR9/39

#### **VAR Block**

The VAR block contains the CMD (command) register, the signal path status register, the EEPROM status register, and the iC-TW8's working variable values as shown below.

| Address | Variable | Description     | Access |
|---------|----------|-----------------|--------|
| 0x809A  | STAT_SP  | Signal Path     | Word   |
|         |          | Status          |        |
| 0x809C  | STAT_EE  | EEPROM          | Word   |
|         |          | Status          |        |
| 0x80A4  | ADC_SIN  | Sin ADC Value   | Word   |
| 0x80A6  | ADC_COS  | Cos ADC Value   | Word   |
| 0x80A8  | ADC_AMP  | Signal          | Byte   |
|         |          | Amplitude       |        |
| 0x80AE  | QM_ADC   | ADC Quality     | Byte   |
|         |          | Monitor         |        |
| 0x80AF  | QM_ADAPT | Adaption        | Byte   |
|         |          | Quality Monitor |        |
| 0x80B0  | CMD      | Command         | Byte   |
|         |          | Register        |        |

The variables shown above may be read from the VAR block for troubleshooting or test purposes, but writing to these locations may cause unpredictable results. See VAR Block Registers on page 33 for details.

#### **RB Block**

The RB block provides access to internal register banks of the iC-TW8. These register banks are used to invoke special test modes. The RB block must be accessed as words at an even byte address.

| Address | Register | Description   |
|---------|----------|---------------|
| 0xA008  | RB_TEST1 | Test Register |

The RB\_TEST1 Register is used to unlock the EEPROM (see EEPROM Write Protection on page 12), measure the internal oscillator frequency, and test the index gating.

#### WM Block

The WM block is the working memory of the iC-TW8. Writing to any of these locations may cause unpredictable results.

There are two variables in the WM Block that may be read to identify the iC-TW8 and its revision level as shown below.

| Address | Variable | Value                | Access |
|---------|----------|----------------------|--------|
| 0xC002  | CHIP_ID  | 0x0408               | Word   |
| 0xC004  | CHIP_REV | $\geq 0 \times 0001$ | Word   |

The LSB of the CHIP\_ID is always 08 to identify the iC-TW8, while the MSB is incremented if major functional changes are made. CHIP\_REV is incremented for minor improvements that do not impact functionality.

Also available in the WM block are the current sensor position (angle) and velocity as shown below.

| Address | Variable | Value      | Access |
|---------|----------|------------|--------|
| 0xA18E  | POS_LSW  | 0 - 0xFFFF | Word   |
| 0xA190  | POS_MSW  | 0 - 0xFFFF | Word   |
| 0xA192  | VEL      | ±0x1FFF    | Word   |

Sensor position is accumulated in an internal 32-bit counter that can be read as two 16-bit words. It is important to read POS\_LSW first to latch the complete 32-bit counter value. After reading POS\_LSB, POS\_MSB can be read and the complete 32-bit position value assembled. The resolution of the 32-bit position is determined by the interpolation factor, *inter*. See MAIN\_INTER on page 15 for more information.

The 32-bit position is updated at the ADC sampling clock frequency, *fadc*.

$$fadc = \frac{fcore}{128}$$

This position update rate is asynchronous to any SPI accesses, so care must be taken when making continuous position reads to avoid jitter and aliasing. See Using Serial-Only Output Mode in the iC-TW8 Serial Configuration Mode documentation for more information.

#### **Programmer's Reference**



October 19, 2017 Page PR10/39

Instantaneous sensor input velocity (frequency) is also available as a signed 13-bit value in the variable VEL. The actual sensor input frequency, *finput*, is calculated as

$$finput[kHz] = \frac{VEL}{2097.152} \cdot fcore[MHz]$$

Note that the resolution of VEL is not affected by the interpolation factor.

#### **External Memory (EEPROM)**

All access to the external EEPROM is controlled by the iC-TW8. The EEPROM is only read at startup. Parameter values and configuration can be written to the EEPROM using commands sent to the iC-TW8 using the SPI/1-wire interface.

The EEPROM stores startup values for the PAR\_NOW sub-block, the CFG block, and the LUT block. The EEPROM memory space is defined as shown below.

| Name           | Description                |
|----------------|----------------------------|
| PAR_ACTIVE     | Pointer to Active Startup  |
|                | Parameter Block            |
| PAR_0 Block    | Startup Parameters Block 0 |
| PAR_1 Block    | Startup Parameters Block 1 |
| PAR_BASE block | Default Parameters Block   |
| CFG Block      | Startup CFG Block          |
| LUT Block      | Startup LUT Block          |

Because the signal path parameters in the PAR\_NOW sub-block can be changed by auto-adaption and optionally stored back to the EEPROM during operation, a double buffer is implemented to ensure data integrity in case an EEPROM write cycle is interrupted. As shown above, the EEPROM stores two complete sets of startup parameters as the PAR\_0 block and the PAR\_1 block. Which of these two blocks will be used at startup is determined by the PAR\_ACTIVE variable stored in the EEPROM.

#### Reading the EEPROM

The data stored in the EEPROM is read into the corresponding blocks of internal memory only at startup. The normal startup sequence for reading the EEPROM is shown below.



Figure 7: EEPROM Read

In a normal startup, the iC-TW8 reads the PAR\_ACTIVE variable from the EEPROM to determine the active parameter set. If PAR\_ACTIVE = 0, the PAR\_0 block is copied from the EEPROM to the PAR\_NOW sub-block in internal memory. If PAR\_ACTIVE = 1, the PAR\_1 block is copied from the EEPROM to the PAR\_NOW sub-block in internal memory. Then the PAR\_BASE, CFG, and LUT blocks are copied from the EEPROM to the corresponding blocks in internal memory. Finally, the iC-TW8 copies the PAR\_NOW sub-block to the PAR\_BAK sub-block.

An abnormal startup occurs if the iC-TW8 detects a checksum error in one of the EEPROM blocks. In this case, the appropriate error bit or bits in the STAT\_EE register is set (See VAR Block Registers on page 33). If the active PAR block in the EEPROM has a checksum error, the other PAR block is selected. If it does not have a checksum error, that block is loaded into PAR\_NOW and startup continues. If that block also has a checksum error, the PAR\_BASE block is selected. If the PAR\_BASE block does not have a checksum error, it is loaded into PAR\_NOW and startup continues.

#### **Programmer's Reference**



October 19, 2017 Page PR11/39

If the PAR\_BASE block also has a checksum error, startup in aborted and the signal path is not enabled. This double-buffered EEPROM read assures that the iC-TW8 always starts up with a valid set of signal path parameters unless all three startup parameter blocks have checksum errors.

If the startup CFG block or the startup LUT block in the EEPROM has a checksum error, startup is also aborted and the signal path is not enabled.

#### Writing to the EEPROM

Two commands are available to write to the EEPROM. See CMD (Command Register) on page 33 for more information.

The Write All command copies complete configuration data from internal memory to the EEPROM as shown below.



Figure 8: EEPROM Write All

When a Write All commend is executed, PAR\_ACTIVE is reset to 0, the PAR\_NOW subblock is copied to the PAR\_BAK and PAR\_BASE sub-blocks, and then checksums for all three subblocks are calculated and stored. Checksums for the CFG and LUT blocks are also calculated and stored. Finally, PAR\_ACTIVE and the complete PAR, CFG, and LUT blocks are copied from internal memory to the EEPROM.

The Write Parameters command copies the PAR\_NOW sub-block from internal memory to the non-active parameter block in EEPROM as shown below.



Figure 9: EEPROM Write Parameters

When a Write Parameters commend is executed, the checksum for the PAR\_NOW sub-block is calculated and stored in internal memory. PAR\_ACTIVE is inverted (PAR\_ACTIVE = /PAR\_ACTIVE) to point to the inactive startup PAR block in EEPROM. The PAR\_NOW sub-block is then copied from internal memory to the currently inactive PAR block in the EEPROM. Finally, the new PAR\_ACTIVE value is copied to the EEPROM, making the newly written parameter set active for the next startup. In this way the Write Parameters command always preserves the previous set of signal path parameters as a backup should there be an error writing the new set.



October 19, 2017 Page PR12/39

#### **EEPROM Write Protection**

The iC-TW8 can only successfully write data to an un-protected (unlocked) EEPROM. If the external EEPROM is write protected, the Write All and Write Parameters commands will fail with no indication (i.e. no fault or status bit is set). Thus it is imperative that the EEPROM be unlocked before attempting to write to it.

EEPROM write protection can be controlled by the iC-TW8 or by user-defined circuitry. If the iC-TW8 WP output (pin 29) is *not* connected to the EEPROM WP input, then the EEPROM must be manually unlocked using whatever means are provided by the external circuitry connected to the EEPROM.

If the iC-TW8 WP output (pin 29) is connected to the EEPROM WP input, then write protection of the EEPROM is controlled by the iC-TW8 and the EEPROM must be unlocked via the iC-TW8. To unlock the external EEPROM, write 0x0200 to RB\_TEST1 at address 0xA008. To lock the external EEPROM, write 0x0000 to RB\_TEST1. These actions over-ride the default EEPROM write protection stored in the CFG block (see MAIN\_CFG on page 14).



October 19, 2017 Page PR13/39

#### **CFG Block Registers**

The CFG block contains configuration data that controls the operational state of the iC-TW8. During operation, the CFG block register values do not change, with the exception of the FLT\_STAT register, which is updated with status information.

At startup, startup CFG block values are copied from the external EEPROM to the CFG block in internal memory (except FLT\_STAT, which is not saved in the external EEPROM). The values in internal memory may be changed by the user during operation by writing to the appropriate register in

the CFG block, but the startup values are restored from the EEPROM at the next startup.

The CFG block can be accessed as words or bytes depending on the specific register as shown below. Reserved registers must be set to 0x00 and unnamed bits must be set to 0 as shown below for proper operation. Any changes to CFG Block register values must be followed by an Update Command to take effect. See CMD (Command Register) on page 33.

| A 11    | Register or |                                   | ]                                 | Register D     | escriptio  | n or Vari   | able Nam    | e          |       | <b>A</b> |
|---------|-------------|-----------------------------------|-----------------------------------|----------------|------------|-------------|-------------|------------|-------|----------|
| Address | Variable    | Bit 7                             | Bit 6                             | Bit 5          | Bit 4      | Bit 3       | Bit 2       | Bit 1      | Bit 0 | Access   |
| 0x8042  | CFG_CKSUM   |                                   | CFG Block Checksum                |                | m          |             |             | Word       |       |          |
| 0x8044  | MAIN_CFG    | 0                                 | 0                                 | 0              | 0          | clkout      | pull        | 0          | wp    | Byte     |
| 0x8045  | MAIN_DSM    |                                   |                                   |                |            | clamp       |             | freq       |       | Byte     |
| 0x8046  | MAIN_INTER  | I                                 | nterpolati                        | on Factor      | (AB edges  | s or incren | nents per i | nput cycle | e)    | Word     |
| 0x8048  | MAIN_HYST   |                                   |                                   |                | Hyst       | eresis      |             |            |       | Word     |
| 0x804A  | MAIN_FLTR   | 0                                 |                                   | i              |            |             | p           |            | fb    | Byte     |
| 0x804B  | MAIN_OUT    | 0                                 | 0                                 | mo             | de         |             | sta         | art        |       | Byte     |
| 0x804C  | MAIN_CLOCK  | xforce                            |                                   | fr             | eq         |             | d           | iv         | xtal  | Byte     |
| 0x804D  | Reserved    |                                   |                                   | Must b         | e 0x00 for | proper op   | eration     |            |       | Byte     |
| 0x804E  | MAIN_ZPOS   |                                   |                                   |                | Z Output   | t Position  |             |            |       | Word     |
| 0x8050  | MAIN_Z      | 0                                 | 0                                 | reset          |            |             | th          |            |       | Byte     |
| 0x8051  | Reserved    |                                   |                                   | Must b         | e 0x00 for | proper op   | peration    |            |       | Byte     |
| 0x8052  | AB_CFG0     | 0                                 | startı                            | mode           | 0          | zpol        | bpol        | apol       | dir   | Byte     |
| 0x8053  | AB_CFG1     | 0                                 | 0                                 | 0              |            |             | div         |            |       | Byte     |
| 0x8054  | AB_ZWIDTH   |                                   |                                   | 7              | Z Output P | ulse Widt   | h           |            |       | Byte     |
| 0x8055  | AB_VTOP     | 0                                 | 0 AB Output Frequency Limit       |                |            | Byte        |             |            |       |          |
| 0x8056  | Reserved    |                                   |                                   | Must b         | e 0x00 for | proper op   | peration    |            |       | Byte     |
| 0x8057  | Reserved    |                                   |                                   | Must b         | e 0x00 for | proper op   | peration    |            |       | Byte     |
| 0x8058  | ADPT_CFG    | 0                                 | store                             | lut            | again      | aoff        | dphase      | dgain      | doff  | Byte     |
| 0x8059  | ADPT_DETAIL | 0                                 | fault                             |                | tbase      |             |             | flimit     |       | Byte     |
| 0x805A  | ADPT_STORE  |                                   | gai                               | inth           |            |             | of          | fth        |       | Byte     |
| 0x805B  | ADPT_CORR   |                                   | gaintol                           |                |            | offtol      |             | pr         | op    | Byte     |
| 0x805C  | Reserved    |                                   | Must be 0x00 for proper operation |                |            | Byte        |             |            |       |          |
| 0x805D  | MON_CFG     | 0                                 | adeth                             | 0              | 0          | pv          | vm          | adapt      | adc   | Byte     |
| 0x805E  | MON_ADC     |                                   | th limit                          |                |            | Byte        |             |            |       |          |
| 0x805F  | MON_OFF     |                                   | th limit                          |                |            | Byte        |             |            |       |          |
| 0x8060  | MON_GAIN    |                                   | th limit                          |                |            | Byte        |             |            |       |          |
| 0x8061  | MON_PHASE   | th limit                          |                                   | Byte           |            |             |             |            |       |          |
| 0x8062  | FLT_CFG     | 0 0 0 long                        |                                   | pol hold vwarn |            | Byte        |             |            |       |          |
| 0x8063  | Reserved    | Must be 0x00 for proper operation |                                   | Byte           |            |             |             |            |       |          |
| 0x8064  | FLT_STAT    | 0                                 | intern                            | 0              | vfatal     | vwarn       | adapt       | adc        | ee    | Byte     |
| 0x8065  | Reserved    |                                   |                                   | Must b         | e 0x00 for | proper op   | peration    |            |       | Byte     |
| 0x8066  | FLT_EN      | 0                                 | intern                            | 0              | vfatal     | vwarn       | adapt       | adc        | ee    | Byte     |
| 0x8067  | Reserved    |                                   |                                   |                |            | Byte        |             |            |       |          |

#### **Programmer's Reference**



October 19, 2017 Page PR14/39

#### CFG\_CHECK

The CFG\_CKSUM register holds the checksum for the CFG block. CFG\_CKSUM is automatically calculated when the CFG block is written to EEPROM (see Writing to the EEPROM on page 2).

#### MAIN\_CFG

The MAIN\_CFG register contains bits that are used to activate various hardware features of the iC-TW8.

If the iC-TW8 WP (Write Protect) output (pin 29) is connected to the EEPROM WP input, then MAIN\_CFG.wp determines whether the EEPROM is locked or unlocked during operation as shown below.

| MAIN_CFG.wp (Byte 0x8044 Bit 0) |                                            |  |
|---------------------------------|--------------------------------------------|--|
| Value                           | Description                                |  |
| 0                               | EEPROM locked after startup (pin 29 high)  |  |
| 1                               | EEPROM unlocked after startup (pin 29 low) |  |

The iC-TW8 can be configured to use pull-up and pull-down resistors on the sensor Sin/Cos inputs to enhance fault detection in the event of a floating sensor input.

| MAIN_CFG.pull (Byte 0x8044 Bit 2) |                              |  |
|-----------------------------------|------------------------------|--|
| Value                             | Description                  |  |
| 0                                 | No pull-ups on sensor inputs |  |
| 1                                 | Pull-ups on sensor inputs    |  |



Figure 10: Input Pull-up Resistors

With MAIN\_CFG.pull = 1, if a sensor input becomes disconnected, that input is immediately pulled to a level which will cause an ADC fault (see FLT STAT on page 27).

MAIN\_CFG.clkout determines whether the iC-TW8 CLOCK (pin 6) and FRAME (pin 8) outputs are active.

| MAIN_CFG.clkout (Byte 0x8044 Bit 3) |                                      |  |
|-------------------------------------|--------------------------------------|--|
| Value                               | Description                          |  |
| 0                                   | CLOCK and FRAME outputs are inactive |  |
| 1                                   | CLOCK and FRAME outputs are active   |  |

With MAIN\_CFG.clkout = 1, the internal DSM (Delta-Sigma Modulator) clock is available on the CLOCK output (pin 6) and the ADC (Analog to Digital Converter) sampling clock is available on the FRAME output (pin 8). The internal DSM (Delta-Sigma Modulator) clock frequency, *fdsm*, is determined by MAIN\_DSM.freq (see page 14). The ADC sampling clock frequency, *fadc*, is

$$fadc = \frac{fcore}{128}$$

#### MAIN DSM

The MAIN\_DSM register contains variables that configure the differential pulse-width modulated output in PWM output mode. If PWM output mode is *not* used, MAIN DSM should be set to 0x00.

In PWM output mode, the PWM frequency, *fdsm*, is determined by MAIN\_DSM.freq.

| M     | MAIN_DSM.freq (Byte 0x8045 Bits 0 – 2) |  |  |
|-------|----------------------------------------|--|--|
| Value | Description                            |  |  |
| 0     | fdsm = fcore / 4                       |  |  |
| 1     | fdsm = fcore / 8                       |  |  |
| 2     | fdsm = fcore / 16                      |  |  |
| 3     | fdsm = fcore / 32                      |  |  |
| 4     | fdsm = fcore / 64                      |  |  |
| 5     | fdsm = fcore / 128                     |  |  |
| 6     | fdsm = fcore / 256                     |  |  |
| 7     | Reserved (do not use).                 |  |  |

In PWM output mode, MAIN\_DSM.clamp determines whether the PWM generator is clamped or unclamped.

| MAIN_DSM.clamp (Byte 0x8045 Bit 3) |                                      |  |
|------------------------------------|--------------------------------------|--|
| Value                              | Description                          |  |
| 0                                  | Clamp disabled; PWM wraps around     |  |
| 1                                  | Clamp enabled; PWM output is clamped |  |

#### **Programmer's Reference**



October 19, 2017 Page PR15/39

#### MAIN\_INTER

MAIN\_INTER determines the interpolation factor or output resolution of the iC-TW8. MAIN\_INTER is a 16-bit value equal to the number of output increments (pre-AB divider output edges) per Sin/Cos input cycle.

| MAIN_INTER (Word 0x8046) |                                      |  |
|--------------------------|--------------------------------------|--|
| Value                    | Description                          |  |
| 0                        | MAIN_INTER = $65536$ (x16384).       |  |
| 1 – 3                    | Reserved (do not use)                |  |
| 4 – 65535                | Interpolation factors x1 – x16383.75 |  |

In AB output mode, the interpolation factor in predivider AB output cycles per input cycle, *inter*, is calculated as

$$inter = \frac{MAIN\_INTER}{4}$$

Thus if MAIN INTER = 12000, inter = x3000.

In PWM output mode (MAIN\_OUT.mode = 2), the interpolation factor, *inter*, must be less than or equal to 1024.

#### MAIN HYST

MAIN\_HYST determines the output hysteresis of the signal path.

| MAIN_HYST (Word 0x8048 Bits 0 – 8) |                                    |  |
|------------------------------------|------------------------------------|--|
| Value                              | Description                        |  |
| 0 – 511                            | Minimum – maximum input hysteresis |  |

The hysteresis in sensor input (Sin/Cos) degrees, *hyst*, is calculated as

$$hyst = MAIN_HYST \cdot \frac{360}{8192}$$

The equivalent hysteresis in output AB edges is a function of the interpolation factor and the AB divider.

#### **MAIN FLTR**

The MAIN\_FLTR register contains variables that determine the response of the output filter, which is implemented as a servo loop.

MAIN\_FLTR.fb selects whether or not delay is used in the feedback path of the servo loop.

|       | MAIN_FLTR.fb (Byte 0x804A Bit 0) |  |  |  |
|-------|----------------------------------|--|--|--|
| Value | Description                      |  |  |  |
| 0     | No delay in the feedback path    |  |  |  |
| 1     | Delay in the feedback path       |  |  |  |

Delay in the filter feedback path is used to compensate for the lag at constant speed caused by the latency of the iC-TW8 (lag recovery). The amount of delay, *delay*, is calculated as

$$delay = \frac{640}{fcore}$$

For example, if fcore = 32 MHz,  $delay = 20 \mu s$ .

MAIN\_FLTR.p determines the proportional gain in the forward path of the filter loop.

| MAIN_FLTR.p (Byte 0x804A Bits 1 – 3) |                        |  |
|--------------------------------------|------------------------|--|
| Value                                | Description            |  |
| 0                                    | pgain = 1              |  |
| 1                                    | pgain = 0.5            |  |
| 2                                    | pgain = 0.25           |  |
| 3                                    | pgain = 0.125          |  |
| 4                                    | pgain = 0.0625         |  |
| 5                                    | pgain = 0.03125        |  |
| 6                                    | pgain = 0.015625       |  |
| 7                                    | pgain = 0 (do not use) |  |

For  $0 \le MAIN\_FLTR.p \le 6$ , the proportional gain *pgain*, is calculated as

$$pgain = \frac{1}{2^{\text{MAIN\_FLTR.p}}}$$

#### **Programmer's Reference**



October 19, 2017 Page PR16/39

MAIN\_FLTR.i determines the integral gain in the forward path of the filter loop.

| MAIN_FLTR.i (Byte 0x804A Bits 4 – 6) |                  |  |
|--------------------------------------|------------------|--|
| Value                                | Description      |  |
| 0                                    | igain = 1        |  |
| 1                                    | igain = 0.5      |  |
| 2                                    | igain = 0.25     |  |
| 3                                    | igain = 0.125    |  |
| 4                                    | igain = 0.0625   |  |
| 5                                    | igain = 0.03125  |  |
| 6                                    | igain = 0.015625 |  |
| 7                                    | igain = 0        |  |

For  $0 \le MAIN\_FLTR.i \le 6$ , the integral gain *igain*, is calculated as

$$igain = \frac{1}{2^{\text{MAIN\_FLTR.i}}}$$

The MAIN\_FLTR register value necessary to realize a given filter configuration is called its instance. The following instances are recommended.

| Recommended Filter Instances |              |    |    |     |
|------------------------------|--------------|----|----|-----|
| Instance                     | Mode         | .p | .i | .fb |
| 52                           | PI           | 2  | 3  | 0   |
| 70                           | PI           | 3  | 4  | 0   |
| 71                           | Lag Recovery | 3  | 4  | 1   |
| 88                           | PI           | 4  | 5  | 0   |
| 89                           | Lag Recovery | 4  | 5  | 1   |
| 106                          | PI           | 5  | 6  | 0   |
| 107                          | Lag Recovery | 5  | 6  | 1   |
| 112                          | P            | 0  | 7  | 0   |
| 114                          | P            | 1  | 7  | 0   |
| 116                          | P            | 2  | 7  | 0   |
| 118                          | P            | 3  | 7  | 0   |
| 120                          | P            | 4  | 7  | 0   |
| 122                          | Р            | 5  | 7  | 0   |
| 124                          | Р            | 6  | 7  | 0   |

Filter instances other than those shown in the table above are possible, but may result in unstable filter response.

#### **MAIN OUT**

The MAIN\_OUT register contains variables that determine the operating output mode and startup delay of the iC-TW8.

MAIN\_OUT.start determines the amount of time the iC-TW8 waits during startup for its analog circuitry to settle.

| MAIN_OUT.start (Byte 0x804B Bits 0 – 3) |                                 |  |
|-----------------------------------------|---------------------------------|--|
| Value                                   | Description                     |  |
| 0 - 15                                  | Minimum – Maximum Startup Delay |  |

The actual startup delay twait is calculated as

$$twait = \frac{128}{fcore} \cdot \left(2^{\text{MAIN\_OUT.start+3}} - 1\right)$$

For example, if *fcore* = 32 MHz, a MAIN\_OUT.start value of 7 produces a startup delay of *twait* = 4.096 milliseconds.

MAIN\_OUT.mode determines the output mode of the iC-TW8.

| MAIN_OUT.mode (Byte 0x804B Bits 4 – 5) |                         |  |
|----------------------------------------|-------------------------|--|
| Value                                  | Value Description       |  |
| 0                                      | AB output mode          |  |
| 1                                      | Serial-only output mode |  |
| 2                                      | PWM output mode         |  |
| 3                                      | Reserved (do not use)   |  |

In AB output mode, the iC-TW8 outputs industry-standard AB quadrature encoder signals. This is the most common operating mode for using the iC-TW8 in an encoder.

In serial-only output mode, the A, B, and Z outputs are disabled and sensor position (angle) must be read via the SPI or 1-wire serial interfaces.

In PWM output mode, the iC-TW8 outputs a differential pulse-width modulated signal proportional to the sensor position (angle). In this mode, the interpolation factor, *inter*, must be less than or equal to 1024.

#### Programmer's Reference



October 19, 2017 Page PR17/39

#### MAIN\_CLOCK

The MAIN\_CLOCK register contains variables that determine the core clock frequency, *fcore*, of the iC-TW8.

The iC-TW8 has an internal oscillator but can also be used with an external crystal or other clock source.

| MAIN_CLOCK.xtal (Byte 0x804C Bit 0) |                                    |
|-------------------------------------|------------------------------------|
| Value                               | Description                        |
| 0                                   | Use internal oscillator            |
| 1                                   | Use external crystal or oscillator |

If MAIN\_CLOCK.xtal = 1 and no external clock signal is present the iC-TW8 reverts to using its internal oscillator and sets a fault bit (see FLT\_STAT on page 27). Once an external clock signal becomes available, the iC-TW8 switches back to using the external oscillator and clears the fault. When using an external oscillator, *fcore* is the frequency of the external oscillator.

If the internal oscillator is used, MAIN\_CLOCK.div can be used to divide its frequency to achieve a lower  $f_{CORE}$ .

| MAIN_CLOCK.div (Byte 0x804C Bits 1 – 2) |                               |  |
|-----------------------------------------|-------------------------------|--|
| Value                                   | Description                   |  |
| 0                                       | fcore = internal oscillator/4 |  |
| 1                                       | Reserved (do not use)         |  |
| 2                                       | fcore = internal oscillator/2 |  |
| 3                                       | fcore = internal oscillator   |  |

MAIN\_CLOCK.freq is used to tune the frequency of the internal oscillator.

| MAIN_CLOCK.freq (Byte 0x804C Bits 3 – 6) |                                        |  |
|------------------------------------------|----------------------------------------|--|
| Value                                    | Description                            |  |
| 0 - 15                                   | Minimum – Maximum oscillator frequency |  |



Figure 11: Internal Oscillator Configuration

MAIN\_CLOCK.xforce is used to force the iC-TW8 to use the external crystal (if selected) regardless of VDD.

| MAIN_CLOCK.xforce (Byte 0x804C Bit 7) |                                           |  |
|---------------------------------------|-------------------------------------------|--|
| Value                                 | Description                               |  |
| 0                                     | Switch to internal oscillator at low VDD  |  |
| 1                                     | Always use external crystal or oscillator |  |

MAIN\_CLOCK.xforce should always be set to 1.

#### MAIN\_ZPOS

MAIN\_ZPOS determines the position of the Z output pulse within a sensor (Sin/Cos) input cycle when the index sensor connected to the ZERO inputs is active. MAIN\_ZPOS is a 14-bit value stored in a word variable.

| MAIN_ZPOS (Word 0x804E) |                                      |  |
|-------------------------|--------------------------------------|--|
| Value                   | Description                          |  |
| 0 – 16383               | Z output pulse at 0° – 359.98° input |  |

The actual position of the Z output pulse within a sensor (Sin/Cos) input cycle, zpos, is calculated as

$$zpos = MAIN\_ZPOS \cdot \frac{360}{16384}$$

Thus if MAIN ZPOS = 8192,  $zpos = 180^{\circ}$ .

#### **Programmer's Reference**



October 19, 2017 Page PR18/39

#### MAIN\_Z

The MAIN\_Z register contains variables that determine the ZERO input comparator's switching threshold and whether or not the iC-TW8's internal 32-bit position counter is reset by the Z output or not at all.

MAIN\_Z.th determines the switching threshold of the ZERO input comparator. MAIN\_Z.th is a signed 4-bit number stored as a 2's complement value.

| MAIN_Z.th (Byte 0x8050 Bits 0 – 4) |                                           |  |
|------------------------------------|-------------------------------------------|--|
| Value                              | Description                               |  |
| ±15                                | ZERO input comparator switching threshold |  |

The actual switching threshold of the ZERO input comparator, *zth*, is calculated as

$$zth = MAIN Z.th \cdot 30mV$$

For example, if MAIN\_Z.th = 9, zth = +0.27V.

MAIN\_Z.reset determines if and when the iC-TW8's internal 32-bit position counter is reset.

| MAIN_Z.reset (Byte 0x8050 Bit 5) |                                       |
|----------------------------------|---------------------------------------|
| Value                            | Description                           |
| 0                                | Reset position counter at <i>zpos</i> |
| 1                                | Do not reset position counter on Z    |

If MAIN\_Z.reset = 0, the internal 32-bit position counter is reset at sensor input position (angle) *zpos* whenever the ZERO input is active.

If MAIN\_Z.reset = 1, the internal 32-bit position counter is not reset during operation.

#### **AB CFG0**

The AB\_CFG0 register contains variables that determine the startup mode and polarity of the AB and Z outputs.

AB\_CFG0.dir determines the counting direction of the AB outputs.

| AB_CFG0.dir (Byte 0x8052 Bit 0) |                             |
|---------------------------------|-----------------------------|
| Value                           | Description                 |
| 0                               | Normal counting direction   |
| 1                               | Reversed counting direction |

AB\_CFG0.apol determines whether the polarity of the A output is normal or inverted.

| AB_CFG0.apol (Byte 0x8052 Bit 1) |                                                        |
|----------------------------------|--------------------------------------------------------|
| Value                            | Description                                            |
| 0                                | Normal A polarity and A output low at zpos.            |
| 1                                | Inverted A polarity and A output high at <i>zpos</i> . |

If AB\_CFG0.startmode = 0, AB\_CFG0.apol determines the state of the A output after startup. If AB\_CFG0.startmode = 1 or 3, AB\_CFG1 = 0 (post-AB divider disabled), and *inter* (the interpolation factor) is an integer, AB\_CFG0.apol also determines the polarity (state) of the A output at sensor position (angle) *zpos*.

Note that setting apol also reverses the counting direction of the AB outputs. In this case, use AB\_CFG0.dir to restore the original AB output counting direction. Setting both apol and bpol does not change the AB output counting direction.

AB\_CFG0.bpol determines whether the polarity of the B output is normal or inverted.

|   | AB_CFG0.bpol (Byte 0x8052 Bit 2) |                                                     |
|---|----------------------------------|-----------------------------------------------------|
|   | Value                            | Description                                         |
|   | 0                                | Normal B polarity and B output low at <i>zpos</i> . |
| Γ | 1                                | Inverted B polarity and B output high at zpos.      |

If AB\_CFG0.startmode = 0, AB\_CFG0.bpol determines the state of the B output after startup. If AB\_CFG0.startmode = 1 or 3, AB\_CFG1 = 0 (post-AB divider disabled), and *inter* (the interpolation factor) is an integer, AB\_CFG0.bpol also determines the polarity (state) of the B output at sensor position (angle) *zpos*.

#### **Programmer's Reference**



October 19, 2017 Page PR19/39

Note that setting bpol also reverses the counting direction of the AB outputs. In this case, use AB\_CFG0.dir to restore the original AB output counting direction. Setting both apol and bpol does not change the AB output counting direction.

AB\_CFG0.zpol determines the polarity (active state) of the Z output.

| AB_CFG0.zpol (Byte 0x8052 Bit 3) |                          |
|----------------------------------|--------------------------|
| Value                            | Description              |
| 0                                | Z output is active high. |
| 1                                | Z output is active low.  |

AB\_CFG0.startmode determines how the AB and Z outputs behave at startup.

| AB_CFG0.startmode (Byte 0x8052 Bits 5 - 6) |                             |
|--------------------------------------------|-----------------------------|
| Value                                      | Description                 |
| 0                                          | Relative startup mode       |
| 1                                          | Same Phase startup mode     |
| 2                                          | Reserved (do not use)       |
| 3                                          | Absolute Burst startup mode |

In Relative startup mode, on startup the A and B outputs are in the states determined by AB\_CFG0 apol and bpol (respectively) regardless of the sensor position (angle).

In Same Phase startup mode, if AB\_CFG1 = 0 (post-AB divider disabled), and *inter* (the interpolation factor) is an integer, then the phase relationship of the AB and Z outputs is the same after every startup as determined by AB\_CFG0.apol, bpol, and zpol. This mode is the most similar to the operation of a non-interpolated encoder. In Same Phase startup mode, if AB\_CFG1  $\neq$  0 (post-AB divider enabled), or *inter* (the interpolation factor) is not an integer, then the phase relationship of the AB and Z outputs may not be the same after every startup.

Absolute Burst startup mode is like Same Phase, except that the sensor position (angle) within one input cycle is counted out on the A and B outputs at startup. A maximum of  $2 \cdot inter$  AB edges ( $\pm 180^{\circ}$ ) may be generated at a rate determined by AB VTOP at startup.

#### AB CFG1

The AB\_CFG1 register contains the post-AB divider variable. The post-AB divider allows the iC-TW8 to produce fractional interpolation factors.

| AB_CFG1.div (Byte 0x8053 Bits 0 – 4) |                                         |
|--------------------------------------|-----------------------------------------|
| Value                                | Description                             |
| 0                                    | Post-AB Divider disabled                |
| 1 – 31                               | Minimum – maximum Post-AB Divider value |

The actual value used by the post-AB divider, *div*, is calculated as

$$div = AB CFG1.div+1$$

When using the post-AB divider, the effective interpolation factor, *intereff*, is

$$intereff = \frac{inter}{div}$$

For example, if inter = 4096 and div = 20, the effective interpolation factor is 204.8.

#### **AB ZWIDTH**

The AB\_ZWIDTH register determines the width of the Z output pulse.

| AB_ZWIDTH (Byte 0x8054) |                                        |
|-------------------------|----------------------------------------|
| Value                   | Description                            |
| 0 - 255                 | Minimum – maximum Z output pulse width |

AB ZWIDTH must be less than MAIN INTER.

The actual width of the Z output pulse, *zwidth*, is *zwidth* = AB\_ZWIDTH+1 pre-divider AB output edges. If the post-AB divider is used,

$$zwidth = \frac{AB\_ZWIDTH+1}{div}$$

#### **Programmer's Reference**



October 19, 2017 Page PR20/39

#### AB\_VTOP

The AB\_VTOP register is used to limit the maximum AB output frequency.

| <b>AB_VTOP</b> (Byte 0x8055 Bits 0 – 6) |                                       |
|-----------------------------------------|---------------------------------------|
| Value                                   | Description                           |
| 0 - 127                                 | Maximum – minimum AB output frequency |

The actual AB output frequency limit fab, is calculated as

$$fab = \frac{fcore}{4 \cdot (AB_VTOP + 1) \cdot div}$$

For example, if fcore = 32 MHz, the post-AB divider is not used (div = 1), and AB\_VTOP = 39, fab is limited to 200 kHz. If the sensor input speed increases beyond this point, the AB output frequency is clamped to fab and a fault status bit is set. See FLT STAT on page 27 for more information.

Because edge separation (the time between two consecutive AB edges) is the reciprocal of the AB output frequency, AB\_VTOP can also be used to set the minimum edge separation of the AB outputs. The minimum edge separation time *tedgemin*, is calculated as

$$tedgemin = \frac{\left(AB\_VTOP + 1\right) \cdot div}{fcore}$$

For example, if fcore = 32 MHz, the post-AB divider is not used (div = 1), and AB\_VTOP = 39, tedgemin is 1.25  $\mu$ s. If the sensor input speed increases beyond this point, the AB output edges remain spaced at tedgemin and a fault status bit is set. See FLT STAT on page 27 for more information.

If there is noise on the input signals, it is possible that the AB outputs can dither at standstill, especially if the hysteresis is not set correctly. The time between dithering edges *tdither*, is calculated as

$$tdither = \frac{\left(AB\_VTOP + 1\right)}{fcore} = \frac{tedgemin}{div}$$

If div = 1, tdither = tedgemin. However, if  $div \neq 1$ , tdither < tedgemin,

#### ADPT\_CFG

The ADPT\_CFG register contains bits that determine which signal path parameters are adapted during operation, whether the LUT is used, and whether adapted parameter values are stored to EEPROM during operation.

ADPT\_CFG.doff enables auto adaption of digital offset.

| ADPT_CFG.doff (Byte 0x8058 Bit 0) |                                 |
|-----------------------------------|---------------------------------|
| Value                             | Description                     |
| 0                                 | Disable digital offset adaption |
| 1                                 | Enable digital offset adaption  |

ADPT\_CFG.dgain enables auto adaption of digital gain match.

| ADPT_CFG.dgain (Byte 0x8058 Bit 1) |                                     |
|------------------------------------|-------------------------------------|
| Value                              | Description                         |
| 0                                  | Disable digital gain match adaption |
| 1                                  | Enable digital gain match adaption  |

ADPT\_CFG.dphase enables auto adaption of digital phase.

| A     | ADPT_CFG.dphase (Byte 0x8058 Bit 2) |  |
|-------|-------------------------------------|--|
| Value | Description                         |  |
| 0     | Disable digital phase adaption      |  |
| 1     | Enable digital phase adaption       |  |

ADPT\_CFG.aoff enables auto adaption of analog offset.

| ADPT_CFG.aoff (Byte 0x8058 Bit 3) |                                |
|-----------------------------------|--------------------------------|
| Value                             | Description                    |
| 0                                 | Disable analog offset adaption |
| 1                                 | Enable analog offset adaption  |

If analog offset adaption is enabled, digital offset adaption must also be enabled.

#### **Programmer's Reference**



October 19, 2017 Page PR21/39

ADPT\_CFG.again enables auto adaption of analog gain.

| ADPT_CFG.again (Byte 0x8058 Bit 4) |                              |
|------------------------------------|------------------------------|
| Value                              | Description                  |
| 0                                  | Disable analog gain adaption |
| 1                                  | Enable analog gain adaption  |

If analog gain adaption is enabled, digital gain match adaption and digital offset adaption must also be enabled.

ADPT\_CFG.lut determines whether or not the sensor distortion correction look-up table (LUT) is used.

| ADPT_CFG.lut (Byte 0x8058 Bit 5) |             |
|----------------------------------|-------------|
| Value                            | Description |
| 0                                | Disable LUT |
| 1                                | Enable LUT  |

ADPT\_CFG.store determines whether or not adapted parameter values are automatically stored to the EEPROM during operation (auto store).

| ADPT_CFG.store (Byte 0x8058 Bit 6) |                    |
|------------------------------------|--------------------|
| Value                              | Description        |
| 0                                  | Disable auto store |
| 1                                  | Enable auto store  |

#### **ADPT DETAIL**

The ADPT\_DETAIL register contains variables and bits that determine the auto-adaption speed limit, the auto-adaption correction rate, and whether or not auto-adaption is disabled in the event of an ADC fault.

ADPT\_DETAIL.flimit determines the highest sensor input frequency at which auto-adaption occurs.

| ADPT_DETAIL.flimit (Byte 0x8059 Bits 0 – 2) |                                                              |
|---------------------------------------------|--------------------------------------------------------------|
| Value                                       | Description                                                  |
| 0 – 7                                       | Minimum – maximum auto-adaption sensor input frequency limit |

The actual sensor input auto-adaption frequency limit, *fadapt*, is calculated as

$$fadapt = \frac{fcore}{83886.08} \cdot 2^{\text{ADPT\_DETAIL.flimit}}$$

During operation, auto-adaption occurs at sensor input frequencies, *finput*, of

$$0 < finput \leq fadapt$$

For example, if ADPT\_DETAIL.flimit = 5 and fcore = 32 MHz, fadapt = 12.2 kHz and auto-adaption ceases at sensor input frequencies above 12.2 kHz.

ADPT\_DETAIL.tbase determines the time-base used to apply auto-adaption corrections.

| ADPT_DETAIL.tbase (Byte 0x8059 Bits 3 – 5) |                                        |
|--------------------------------------------|----------------------------------------|
| Value                                      | Description                            |
| 0 - 7                                      | Minimum – maximum correction time-base |

The actual time-base used to apply auto-adaption corrections, *tbase*, is calculated as

$$tbase = \frac{2^{\text{ADPT\_DETAIL.tbase+7}}}{fcore}$$

For example, if ADPT\_DETAIL.tbase = 4 and *fcore* = 32 MHz,  $tbase = 64 \mu s$ .

ADPT\_DETAIL.fault determines whether or not auto-adaption continues if an ADC fault occurs.

| ADPT_DETAIL.fault (Byte 0x8059 Bit 6) |                                         |
|---------------------------------------|-----------------------------------------|
| Value                                 | Description                             |
| 0                                     | Continue auto-adaption during ADC fault |
| 1                                     | Disable auto-adaption during ADC fault  |

#### **Programmer's Reference**



October 19, 2017 Page PR22/39

#### **ADPT STORE**

The ADPT\_STORE register contains variables that determine the thresholds for storing adapted parameter values to EEPROM during operation. If auto store is not used (ADPT\_CFG.store = 0), these values have no effect.

ADPT\_store.offth determines the threshold for storing adapted digital offset values to EEPROM during operation.

| ADPT_STORE.offth (Byte 0x805A Bits 0 – 3) |                                    |
|-------------------------------------------|------------------------------------|
| Value                                     | Description                        |
| 0 - 15                                    | Minimum – maximum offset threshold |

The actual threshold value in ADC increments, offth, is calculated as

$$offth = 2^{\frac{ADPT\_STORE.offth}{2} + 1}$$

An auto store EEPROM write occurs if either

$$|PAR\_DOFS - PAR\_BAK\_DOFS| > offth$$
  
 $|PAR\_DOFC - PAR\_BAK\_DOFC| > offth$ 

For example, if ADPT STORE.offth = 9, offth = 45.

ADPT\_store.gainth determines the threshold for storing adapted digital gain values to EEPROM during operation.

| ADPT_STORE.gainth (Byte 0x805A Bits 4 – 7) |                                  |
|--------------------------------------------|----------------------------------|
| Value                                      | Description                      |
| 0 - 15                                     | Minimum – maximum gain threshold |

The actual threshold value, gainth, is calculated as

$$gainth = 2^{\frac{ADPT\_STORE.gainth}{2} + 1}$$

An auto store EEPROM write occurs if

$$|PAR\_DGAIN - PAR\_BAK\_DGAIN| > gainth$$

For example, if ADPT\_STORE.gainth = 7, *gainth* = 22 which is equivalent to a change in gain of 0.005.

#### **ADPT CORR**

The ADPT\_CORR register contains variables that control auto-adaption correction.

ADPT\_CORR.prop determines the response of the auto-adaption correction loop

| ADPT_CORR.prop (Byte 0x805B Bits 0 - 1) |                                               |
|-----------------------------------------|-----------------------------------------------|
| Value                                   | Description                                   |
| 0                                       | Linear correction (1 increment/tbase)         |
| 1                                       | Slow exponential correction ( $prop = 0.25$ ) |
| 2                                       | Medium exponential correction $(prop = 0.5)$  |
| 3                                       | Fast exponential correction $(prop = 0.75)$   |

Smaller ADPT\_CORR.prop values apply the autoadaption corrections more smoothly, resulting in less disturbance to the AB outputs.

ADPT\_CORR.offtol determines the maximum uncorrected (residual) digital offset that is tolerated before correction is applied.

| ADPT_CORR.offtol (Byte 0x805B Bits 2 – 4) |                                            |
|-------------------------------------------|--------------------------------------------|
| Value                                     | Description                                |
| 0 - 7                                     | Minimum – maximum digital offset tolerance |

The actual tolerance value in ADC increments, *offtol*, is calculated as

$$offtol = 2^{\frac{ADPT\_CORR.offtol}{2} + 1}$$

If the residual (uncorrected) digital offset of both sensor channels is  $\leq offtol$ , no correction is applied. If the residual (uncorrected) digital offset of either sensor channel is > offtol, correction is applied to that channel. Thus, during operation the residual (uncorrected) digital offset of both sensor channels is always  $\leq offtol$ .

For example, if ADPT\_STORE.offtol = 2, offtol = 4. In this case, changes in digital offsets over 4 ADC increments will be corrected and the residual (uncorrected) digital offset of both sensor channels during operation will always be  $\leq 4$  (977 $\mu$ V at the ADC inputs).

#### **Programmer's Reference**



October 19, 2017 Page PR23/39

ADPT\_CORR.gaintol determines the maximum uncorrected (residual) digital gain mismatch that is tolerated before correction is applied.

| ADPT_CORR.gaintol (Byte 0x805B Bits 5 - 7) |                                          |
|--------------------------------------------|------------------------------------------|
| Value                                      | Description                              |
| 0 - 7                                      | Minimum – maximum digital gain tolerance |

The actual tolerance value, gaintol, is calculated as

$$gaintol = 2^{\frac{\text{ADPT\_CORR.gaintol}}{2} + 1}$$

If the residual (uncorrected) digital gain mismatch is  $\leq gaintol$ , no correction is applied; if the residual (uncorrected) digital gain mismatch is  $\geq gaintol$ , correction is applied. Thus, during operation the residual (uncorrected) digital gain mismatch is always  $\leq gaintol$ .

For example, if ADPT\_CORR.gaintol = 7, gainth = 22. In this case, changes in digital gain mismatch over 22 ADC increments will be corrected and the residual (uncorrected) digital gain mismatch during operation will always be  $\leq 22 \ (0.005)$ .

#### MON CFG

The MON\_CFG register contains bits that control the ADC and adaption quality monitors and the configuration of the STATUS output (pin 19). See VAR Block Registers on page 33 for more information on using the quality monitors.

MON\_CFG.adc determines whether or not the ADC quality monitor is used.

| MON_CFG.adc (Byte 0x805D Bit 0) |                             |
|---------------------------------|-----------------------------|
| Value                           | Description                 |
| 0                               | Disable ADC quality monitor |
| 1                               | Enable ADC quality monitor  |

If MON\_CFG.adc = 0 the ADC quality monitor is disabled and the ADC underflow fault level (see page 33) is set to

$$\begin{vmatrix} Sin \text{ or Cos} \\ Input \text{ Voltage} \end{vmatrix} \le \frac{148\text{mV}}{again}$$

If MON\_CFG.adc = 1 the ADC quality monitor is enabled and the ADC underflow fault level (see page 33) is set to

$$\begin{vmatrix} Sin \text{ or Cos} \\ Input \text{ Voltage} \end{vmatrix} \le \frac{adcflt}{128 \cdot again}$$

*adcflt* is determined by variables in the MON\_ADC register (see page 24).

MON\_CFG.adapt determines whether or not the adaption quality monitor is used.

| MON_CFG.adapt (Byte 0x805D Bit 1) |                                  |
|-----------------------------------|----------------------------------|
| Value                             | Description                      |
| 0                                 | Disable adaption quality monitor |
| 1                                 | Enable adaption quality monitor  |

If MON\_CFG.adapt = 0, the adaption quality monitor is disabled, but maximum adaption is still limited by *offflt*, *gainflt*, and *phflt*. If MON\_CFG.adapt = 1, the adaption quality monitor is enabled and adaption fault levels and maximum adaption are set by *offflt*, *gainflt*, and *phflt*. *offflt* is determined by variables in the MON\_OFF register (page 25), *gainflt* is determined by variables in the MON\_GAIN register (page 25), and *phflt* is determined by variables in the MON\_PHASE register (page 26).

#### Programmer's Reference



October 19, 2017 Page PR24/39

MON\_CFG.pwm determines the characteristics of the PWM signal used to drive the STATUS output.

| MON_CFG.pwm (Byte 0x805D Bits 2 – 3) |                                                    |
|--------------------------------------|----------------------------------------------------|
| Value                                | Description                                        |
| 0                                    | STATUS dutycycle is <i>pwm</i> /255                |
| 1                                    | STATUS dutycycle is 1 – pwm/255                    |
| 2                                    | STATUS dutycycle is $2^{\frac{pwn}{32}}/255$       |
| 3                                    | STATUS dutycycle is $1 - 2^{\frac{pwm}{32}} / 255$ |

MON\_CFG.pwm = 0 or 1 provide a linear PWM output on the status pin indicating ADC and/or adaption quality. MON\_CFG.pwm = 2 or 3 provide a logarithmic PWM output which is useful for driving an LED. The PWM signal, *pwm*, is calculated from the quality monitors as

$$pwm = QM\_ADC \cdot MON\_CFG.adc +$$
 $QM\_ADAPT \cdot MON\_CFG.adapt$ 

MON\_CFG.adcth is the most significant bit of MON ADC.th.

| MON_CFG.adcth (Byte 0x805D Bit 6) |                       |
|-----------------------------------|-----------------------|
| Value                             | Description           |
| 0                                 | $0 \le adcth < 120$   |
| 1                                 | $120 \le adcth < 184$ |

#### MON ADC

The MON\_ADC register contains variables that determine the ADC (Analog to Digital Converter) quality threshold and ADC underflow fault level. If ADC quality monitoring is disabled (MON\_CFG.adc = 0), these values are ignored. See VAR Block Registers on page 33 for more information on using the quality monitors.

MON\_ADC.limit and MON\_ADC.th together determine the ADC level that causes an ADC underflow fault.

| MON_ADC.limit (Byte 0x805E Bits 0 – 3) |                                      |
|----------------------------------------|--------------------------------------|
| Value                                  | Description                          |
| 0 - 15                                 | Highest – lowest ADC underflow limit |

The actual ADC underflow limit, *adclim*, is calculated as

$$adclim = 2^{\frac{\text{MON\_ADC.limit}}{2} + 1}$$

MON\_ADC.th determines the threshold between acceptable and marginal ADC level for the ADC quality monitor.

| <b>MON_ADC.th</b> (Byte 0x805E Bits 4 – 7) |                                        |
|--------------------------------------------|----------------------------------------|
| Value                                      | Description                            |
| 0 - 15                                     | Lowest – highest ADC quality threshold |

The actual ADC quality threshold level, adcth, is calculated as

$$adcth = 4 \cdot \begin{pmatrix} MON\_ADC.th + \\ 16 \cdot MON\_CFG.adcth \end{pmatrix} + 60$$

Note that MON\_ADC.th is actually a 5-bit variable with its most significant bit stored in MON\_CFG.adcth.

The actual ADC underflow fault level, adcflt, is

$$adcflt = adcth - adclim$$

#### **Programmer's Reference**



October 19, 2017 Page PR25/39

#### MON\_OFF

The MON\_OFF register contains variables that determine the maximum adaption and quality threshold levels for digital offset adaption.

MON\_OFF.limit and MON\_OFF.th together determine the maximum amount of digital offset adaption. Reaching maximum adaption can be configured to cause an adaption fault (see page 28).

| MON_OFF.limit (Byte 0x805F Bits 0 – 3) |                                        |
|----------------------------------------|----------------------------------------|
| Value                                  | Description                            |
| 0 – 12                                 | Lowest – highest offset adaption limit |
| 13 – 15                                | Reserved (do not use)                  |

The actual digital offset adaption limit, offlim, is calculated as

$$off lim = 2^{MON\_OFF.limit}$$

MON\_OFF.th determines the threshold between acceptable and excessive adaption.

| MON_OFF.th (Byte 0x805F Bits 4 – 7) |                                  |
|-------------------------------------|----------------------------------|
| Value                               | Description                      |
| 0 – 12                              | Lowest – highest offset adaption |
|                                     | quality threshold                |
| 13 - 15                             | Reserved (do not use)            |

The actual digital offset adaption quality threshold level, *offqth*, is calculated as

$$offqth = 2^{MON\_OFF.th}$$

The actual maximum amount of digital offset adaption and the offset adaption fault level, *offflt*, is calculated as

$$offflt = offqth + offlim$$

Digital offset adaption ceases whenever

$$|DOFFS - PAR\_BASE\_DOFFS| \ge offflt$$
  
 $|DOFFC - PAR\_BASE\_DOFFC| \ge offflt$ 

#### **MON GAIN**

The MON\_GAIN register contains variables that determine the maximum adaption and quality threshold levels for digital gain match adaption.

MON\_GAIN.limit and MON\_GAIN.th together determine the maximum amount of digital gain match adaption. Reaching maximum adaption can be configured to cause an adaption fault (see page 28).

| MON_GAIN.limit (Byte 0x8060 Bits 0 – 3) |                                            |
|-----------------------------------------|--------------------------------------------|
| Value                                   | Description                                |
| 0 - 12                                  | Lowest – highest gain match adaption limit |
| 13 – 15                                 | Reserved (do not use)                      |

The actual digital gain match adaption limit, *gain-lim*, is calculated as

$$gainlim = 2^{MON\_GAIN.limit}$$

MON\_GAIN.th determines the threshold between acceptable and excessive adaption.

| <b>MON_GAIN.th</b> (Byte 0x8060 Bits 4 – 7) |                                                        |
|---------------------------------------------|--------------------------------------------------------|
| Value                                       | Description                                            |
| 0 – 12                                      | Lowest – highest gain match adaption quality threshold |
| 13 – 15                                     | Reserved (do not use)                                  |

The actual digital gain match adaption quality threshold level, *gainqth*, is calculated as

$$gaingth = 2^{MON\_GAIN.th}$$

The actual maximum amount of digital gain match adaption and the gain match adaption fault level, gainflt, is calculated as

$$gainflt = gainqth + gainlim$$

Digital gain match adaption ceases whenever

$$|DGAIN - PAR\_BASE\_DGAIN| \ge gainflt$$

#### **Programmer's Reference**



October 19, 2017 Page PR26/39

#### **MON PHASE**

The MON\_PHASE register contains variables that determine the maximum adaption, quality threshold, and fault level for digital phase adaption.

MON\_PHASE.limit and MON\_PHASE.th together determine the maximum amount of digital phase adaption. Reaching maximum adaption can be configured to cause an adaption fault (see page 28).

| MON_PHASE.limit (Byte 0x8061 Bits 0 – 3) |                                       |
|------------------------------------------|---------------------------------------|
| Value                                    | Description                           |
| 0 – 12                                   | Lowest – highest phase adaption limit |
| 13 – 15                                  | Reserved (do not use)                 |

The actual digital phase adaption limit, *phlim*, is calculated as

$$phlim = 2^{\text{MON\_PHASE.limit}}$$

MON\_PHASE.th determines the threshold between acceptable and excessive adaption.

| MON_PHASE.th (Byte 0x8061 Bits 4 – 7) |                                 |
|---------------------------------------|---------------------------------|
| Value                                 | Description                     |
| 0 – 12                                | Lowest – highest phase adaption |
|                                       | quality threshold               |
| 13 - 15                               | Reserved (do not use)           |

The actual digital phase adaption quality threshold level, *phqth*, is calculated as

$$phqth = 2^{MON\_PHASE.th}$$

The actual maximum amount of digital phase adaption and the phase adaption fault level, *phflt*, is calculated as

$$phflt = phqth + phlim$$

Digital phase adaption ceases whenever

$$|DPH - PAR_BASE_DPH| \ge phaseflt$$

#### **FLT CFG**

The FLT\_CFG register contains bits that control the behavior of the FAULT output (pin 20).

FLT\_CFG.vwarn determines whether or not operational warnings are treated as faults.

| FLT_CFG.vwarn (Byte 0x8062 Bit 0) |                                            |
|-----------------------------------|--------------------------------------------|
| Value                             | Description                                |
| 0                                 | Operational warnings ignored               |
| 1                                 | Operational warnings activate FAULT output |

FLT\_CFG.hold determines whether or not the AB outputs are disabled when a fault occurs.

| FLT_CFG.hold (Byte 0x8062 Bits 1 – 2) |                                       |
|---------------------------------------|---------------------------------------|
| Value                                 | Description                           |
| 0                                     | AB outputs operational during a fault |
| 1                                     | Reserved (do not use)                 |
| 2                                     | Reserved (do not use)                 |
| 3                                     | AB outputs disabled during a fault    |

FLT\_CFG.pol determines the polarity of the FAULT output (pin 20).

| FLT_CFG.pol (Byte 0x8062 Bit 3) |                             |
|---------------------------------|-----------------------------|
| Value                           | Description                 |
| 0                               | FAULT output is active low  |
| 1                               | FAULT output is active high |

By default, the FAULT output is active low at startup. After a successful EEPROM read, FLT\_CGF.pol is programmed to the polarity determined by FLT\_CFG.pol. Thus, if FLT\_CFG.pol = 1, faults which occur before a successful EEPROM read after startup are not indicated at the programmed polarity.





October 19, 2017 Page PR27/39

FLT\_CFG.long determines whether or not the FAULT output is prolonged to allow easier detection of transient faults.

| FLT_CFG.long (Byte 0x8062 Bit 4) |                                             |
|----------------------------------|---------------------------------------------|
| Value                            | Description                                 |
| 0                                | FAULT output active only while fault active |
| 1                                | FAULT output activation prolonged           |

If FLT\_CFG.long = 1, the actual time by which the FAULT output is prolonged is calculated as

$$long[ms] = \frac{32}{fcore[MHz]} \cdot 20$$

For example, if FLT\_CFG = 1 and *fcore* = 32 MHz, the FAULT output remains active for 20 ms longer that the fault condition persists.

#### **FLT STAT**

The FLT\_STAT register contains bits that are dynamically updated during operation to indicate fault status. FLT\_STAT register bits are "sticky" so that once activated, they stay activated even if the specific condition is subsequently resolved. Active FLT\_STAT bits may be cleared by writing 0x00 to the FLT\_STAT register.

FLT\_STAT.ee indicates whether or not an EEPROM fault has occurred.

| FLT_STAT.ee (Byte 0x8064 Bit 0) |                       |
|---------------------------------|-----------------------|
| Value                           | Description           |
| 0                               | No EEPROM fault       |
| 1                               | EEPROM fault occurred |

If FLT\_STAT.ee = 1, the specific EEPROM fault can be determined by reading the STAT\_EE register in the VAR block (page 35). Note that a checksum error must be indicated for *both* PAR block 0 (STAT\_EE.par0 = 1) and PAR block 1 (STAT\_EE .par1 = 1) to activate FLT STAT.ee.

FLT\_STAT.adc indicates whether or not an ADC fault has occurred.

| FLT_STAT.adc (Byte 0x8064 Bit 1) |                    |
|----------------------------------|--------------------|
| Value                            | Description        |
| 0                                | No ADC fault       |
| 1                                | ADC fault occurred |

If FLT\_STAT.adc = 1, the specific ADC fault can be determined by reading the STAT\_SP register in the VAR block (page 33).

FLT\_STAT.adapt indicates whether or not an adaption fault has occurred.

| FLT_STAT.adapt (Byte 0x8064 Bit 2) |                         |
|------------------------------------|-------------------------|
| Value                              | Description             |
| 0                                  | No adaption fault       |
| 1                                  | Adaption fault occurred |

FLT\_STAT.adapt is set by STAT\_SP.adapt; see STAT\_SP on page 33 for more information.



October 19, 2017 Page PR28/39

FLT\_STAT.vwarn indicates whether or not an overspeed warning has occurred.

| FLT_STAT.vwarn (Byte 0x8064 Bit 3) |                      |
|------------------------------------|----------------------|
| Value                              | Description          |
| 0                                  | No overspeed warning |
| 1                                  | Overspeed warning    |

If FLT\_STAT.vwarn = 1, instantaneous AB output frequency is above fab or  $\frac{fcore}{512}$ . See AB\_VTOP on page 20 for more information on fab.

FLT\_STAT.vfatal indicates whether or not a fatal overspeed fault has occurred. A fatal overspeed fault may cause undefined AB outputs and erroneous position.

| FLT_STAT.vfatal (Byte 0x8064 Bit 4) |                          |
|-------------------------------------|--------------------------|
| Value                               | Description              |
| 0                                   | No fatal overspeed fault |
| 1                                   | Fatal ovverspeed fault   |

If FLT\_STAT.vfatal = 1, instantaneous AB output frequency is above  $\frac{fcore}{256}$ , the filter lag is too large, or the AB output is more than half an input cycle behind the sensor input position due to prolonged operation above fab (see page 20).

FLT\_STAT.intern indicates whether or not an internal fault in the iC-TW8 has occurred.

|       | FLT_STAT.intern (Byte 0x8064 Bit 6) |  |
|-------|-------------------------------------|--|
| Value | Description                         |  |
| 0     | No internal iC-TW8 fault            |  |
| 1     | Internal iC-TW8 fault               |  |

If FLT\_STAT.intern = 1, the external crystal is selected but not working or there was a timeout fault on the serial communication interface. The specific fault can be determined by reading the STAT\_SP register in the VAR block (page 33).

### **FLT EN**

The FLT\_EN register contains bits that determine which faults activate or latch the FAULT output (pin 20).

FLT\_EN.ee determines whether or not an EEPROM fault latches the FAULT output.

| FLT_EN.ee (Byte 0x8066 Bit 0) |                                           |
|-------------------------------|-------------------------------------------|
| Value                         | Description                               |
| 0                             | EEPROM fault does not affect FAULT output |
| 1                             | EEPROM fault latches FAULT output.        |

FLT\_EN.adc determines whether an ADC fault latches the FAULT output.

| FLT_EN.adc (Byte 0x8066 Bit 1) |                                  |
|--------------------------------|----------------------------------|
| Value                          | Description                      |
| 0                              | ADC fault activates FAULT output |
| 1                              | ADC fault latches FAULT output   |

FLT\_EN.adapt determines whether or not an adaption fault latches the FAULT output.

| FLT_EN.adapt (Byte 0x8066 Bit 2) |                                             |
|----------------------------------|---------------------------------------------|
| Value                            | Description                                 |
| 0                                | Adaption fault does not affect FAULT output |
| 1                                | Adaption fault latches FAULT output         |

FLT\_EN.vwarn determines whether or not an overspeed warning latches the FAULT output.

| FLT_EN.vwarn (Byte 0x8066 Bit 3) |                                                                      |
|----------------------------------|----------------------------------------------------------------------|
| Value                            | Description                                                          |
| 0                                | Overspeed warning activates FAULT output (only if FLT_CFG.vwarn = 1) |
| 1                                | Overspeed warning latches FAULT output                               |

If FLT\_EN.vwarn = 1, overspeed warnings are treated as faults.



October 19, 2017 Page PR29/39

FLT\_STAT.vfatal determines whether or not a fatal overspeed fault latches the FAULT output. A fatal overspeed fault may cause undefined AB outputs and erroneous position.

| FLT_EN.vfatal (Byte 0x8066 Bit 4) |                                                    |
|-----------------------------------|----------------------------------------------------|
| Value                             | Description                                        |
| 0                                 | Fatal overspeed fault does not affect FAULT output |
| 1                                 | Fatal overspeed fault latches FAULT output         |

FLT\_EN.intern determines whether or not an internal fault in the iC-TW8 latches the FAULT output.

| FLT_EN.intern (Byte 0x8066 Bit 6) |                                            |  |
|-----------------------------------|--------------------------------------------|--|
| Value Description                 |                                            |  |
| 0                                 | Internal iC-TW8 fault activates            |  |
|                                   | FAULT output                               |  |
| 1                                 | Internal iC-TW8 fault latches FAULT output |  |

### **Programmer's Reference**



October 19, 2017 Page PR30/39

### **PAR Block Registers**

The PAR block contains the signal path parameters for gain, offset correction, and phase correction. The signal path parameters are automatically set during device calibration and can be automatically adjusted during operation to maintain optimum performance.

The PAR block keeps three copies of all parameter values in three identically-structured sub-blocks as explained on page 8. It is only necessary to directly read or write the PAR block registers in the PAR\_NOW sub-block. Access to the other sub-blocks is handled automatically by the iC-TW8.



Figure 12: Signal Path

### **AGAIN (Analog Gain)**

The AGAIN register determines the gain used by the differential input amplifiers for the sensor Sin and Cos inputs. The same gain is always applied to both channels.

| AGAIN (Byte 0x8074) |                               |  |
|---------------------|-------------------------------|--|
| Value Description   |                               |  |
| 0 - 1               | Reserved (do not use)         |  |
| 2 – 15              | Minimum – maximum analog gain |  |
| 16 – 255            | Reserved (do not use)         |  |

The actual analog gain, again, is calculated as

$$again[dB] = 3 \cdot AGAIN$$

$$again = 10^{\frac{3 \cdot AGAIN}{20}}$$

giving an input gain range of 6 - 45 dB (2 - 178) in 3dB steps.

### AOFFS, AOFFC (Analog Offset)

The AOFFS and AOFFC registers determine the gross offset correction applied to the output of the analog sin and cos amplifiers respectively. AOFFS and AOFFC are signed values in 2's complement format.

| AOFFS (Byte 0x8075) |                          |  |
|---------------------|--------------------------|--|
| AOFFC (Byte 0x8076) |                          |  |
| Value               | Description              |  |
| ±31                 | Analog offset correction |  |
| $\pm 32 - \pm 127$  | Reserved (do not use)    |  |

The actual analog offset corrections applied, *aoffs* and *aoffc*, are calculated as

$$aoffs[mV] = AOFFS \cdot 100$$
  
 $aoffc[mV] = AOFFC \cdot 100$ 

The effective analog offset correction referenced to the input Sin/Cos signals, *aoffins* and *aoffinc* can be calculated as

$$aoffins[mV] = \frac{AOFFS \cdot 100}{10^{\frac{3 \cdot AGAIN}{20}}}$$
$$aoffinc[mV] = \frac{AOFFC \cdot 100}{10^{\frac{3 \cdot AGAIN}{20}}}$$

### **Programmer's Reference**



October 19, 2017 Page PR31/39

### **DOFFS, DOFFC (Digital Offset)**

The DOFFS and DOFFC registers determine the fine offset correction applied to the output of the Sin and Cos ADCs (Analog to Digital Converters) respectively. DOFFS and DOFFC are signed values in 2's complement format.

| DOFFS (Word 0x806E)   |                           |
|-----------------------|---------------------------|
| DOFFC (Word 0x8070)   |                           |
| Value                 | Description               |
| ±511                  | Digital offset correction |
| $\pm 512 - \pm 32767$ | Reserved (do not use)     |

The actual digital offset corrections applied, *doffs* and *doffc*, are calculated as

$$doffs[mV] = \frac{\text{DOFFS}}{4.096}$$
$$doffc[mV] = \frac{\text{DOFFC}}{4.096}$$

giving an offset correction range of  $\pm 125 mV$ . The effective offset correction referenced to the input Sin/Cos signals can be calculated as

$$doffins[mV] = \frac{DOFFS}{4.096 \cdot 10^{\frac{3 \cdot AGAIN}{20}}}$$
$$doffinc[mV] = \frac{DOFFC}{4.096 \cdot 10^{\frac{3 \cdot AGAIN}{20}}}$$

### **DGAIN (Digital Gain Match)**

The DGAIN register determines the gain applied to either the digital sin or cos channel to equalize the signal amplitudes. DGAIN does not apply additional overall gain, it is used only to correct a gain mismatch between the two channels. DGAIN is a signed value in 2's complement format.

| DGAIN (Word 0x806C)    |                               |
|------------------------|-------------------------------|
| Value                  | Description                   |
| ±1023                  | Digital gain match correction |
| $\pm 1024 - \pm 32767$ | Reserved (do not use)         |

If DGAIN < 0, then the digital gain match correction is applied to the sin channel and the cos channel has a gain of 1. In this case, the actual digital gains applied, dgains and dgainc, are calculated as

$$dgains = 1 - \frac{\text{DGAIN}}{4096}$$
$$dgainc = 1$$

If DGAIN  $\geq 0$ , then the digital gain match correction is applied to the cos channel and the sin channel has a gain of 1. In this case, the actual digital gains applied, *dgains* and *dgainc*, are calculated as

$$dgains = 1$$
$$dgainc = 1 + \frac{DGAIN}{4096}$$

This gives a gain match correction range of  $\pm 1.25$ .



October 19, 2017 Page PR32/39

### **DPH (Digital Phase)**

The DPH register determines the phase correction applied to the digital sin and cos channels to achieve 90° phase shift. DPH is a signed value in 2's complement format.

| DPH (Word 0x8072)      |                          |
|------------------------|--------------------------|
| Value                  | Description              |
| ±1023                  | Digital phase correction |
| $\pm 1024 - \pm 32767$ | Reserved (do not use)    |

The actual digital phase correction applied, *dphase*, is calculated as

$$dphase[^{\circ}] = 2 \cdot \arctan\left(\frac{DPH}{2048}\right)$$

giving a phase correction range of  $\pm 53^{\circ}$  of an input cycle.

### **Programmer's Reference**



October 19, 2017 Page PR33/39

### **VAR Block Registers**

The VAR block contains the Command (CMD) register, the signal path status register, the EEPROM status register, and the iC-TW8's working variable values as explained on page 9. Except for the CMD, STAT\_SP, and STAT\_EE registers, VAR block registers should only be read, not written to.

### **CMD (Command Register)**

The CMD register is used to tell the iC-TW8 to update the device configuration, write the CFG and/or PAR blocks to the EEPROM, compensate internal amplifier offsets, or restart. To initiate a command, write the appropriate value to the CMD register. When the command has been executed, the iC-TW8 resets the CMD register to 0x00.

Always wait until the CMD register reads 0x00 before writing a new command. The CMD register may be polled at any time to determine the status of command execution. Do not write more than one command to the CMD register at a time.

| CMD (Byte 0x80B0) |                                    |  |
|-------------------|------------------------------------|--|
| Value             | Description                        |  |
| 0x00              | Command Register ready (read only) |  |
| 0x01              | Reserved (do not use)              |  |
| 0x02              | Update signal path configuration   |  |
| 0x04              | Write All                          |  |
| 0x08              | Write Parameters                   |  |
| 0x10              | Reserved (do not use)              |  |
| 0x20              | Reserved (do not use)              |  |
| 0x40              | Restart                            |  |
| 0x80              | Reserved (do not use)              |  |

The Update command (write 0x02 to 0x80B0) updates the iC-TW8 configuration per the current CFG block register values. Any changes to the CFG block registers (see page 13) must be followed by an Update command to take effect.

The Write All command (write 0x04 to 0x80B0) writes the complete CFG, LUT, and PAR blocks to EEPROM as explained on page 11.

The Write Parameters command (write 0x08 to 0x80B0) writes the PAR\_NOW sub-block to EEPROM as explained on page 11.

The Restart command (write 0x40 to 0x80B0) restarts the iC-TW8 as if power had been cycled. The

1-Wire port is inoperative while the Restart command is active.

### **STAT SP (Signal Path Status Register)**

The STAT\_SP register contains bits that indicate the status of the signal path. It can be read to determine the cause of a fault or other condition. Some STAT\_SP register bits can be configured as "sticky" so that once activated, they stay activated even if the specific condition is subsequently resolved. Sticky STAT\_SP bits can be cleared by writing 0x00 to the STAT\_SP register, clearing *all* sticky bits. See FLT\_EN on page 28 for information on configuring sticky STAT\_SP bits.

| STAT_SP (Word 0x809A) |        |                           |
|-----------------------|--------|---------------------------|
| Bit                   | Name   | Description               |
| 0                     | adcof  | ADC overflow condition    |
| 1                     | adcuf  | ADC underflow condition   |
| 2                     | adapt  | Excessive adaption        |
| 3                     | vtop   | Speed limit exceeded      |
| 4                     | ospeed | Overspeed warning         |
| 5                     | fatal  | Fatal overspeed fault     |
| 6                     | lag    | Excessive filter lag      |
| 7                     | ab     | Excessive AB output lag   |
| 8                     |        | Reserved                  |
| 9                     | 1wire  | 1-wire interface time-out |
| 10                    |        | Reserved                  |
| 11                    | xtal   | External crystal fault    |
| 1.                    | 2 – 15 | Reserved                  |

STAT\_SP.adcof indicates that the signal input level is too high. Specifically, if STAT SP.adcof = 1,

$$\left| \begin{array}{c} \text{Sin or Cos} \\ \text{Input Voltage} \right| \ge \frac{1.5 \text{V}}{again}$$

This is not a fatal fault, but interpolation accuracy is reduced in this condition. See page 30 for the definition of *again*.

If FLT\_EN.adc = 1, STAT\_SP.adcof is "sticky" and stays activated even if the input signal amplitude is subsequently reduced. See FLT\_EN on page 28 for information on FLT EN.adc.

### **Programmer's Reference**



October 19, 2017 Page PR34/39

STAT\_SP.adcuf indicates that the signal input level is too low. Specifically, if STAT\_SP.adcuf = 1,

$$\begin{vmatrix} Sin \text{ or Cos} \\ Input \text{ Voltage} \end{vmatrix} \le \frac{148\text{mV}}{again}$$
or
$$\begin{vmatrix} Sin \text{ or Cos} \\ Input \text{ Voltage} \end{vmatrix} \le \frac{adcflt}{128 \cdot again}$$

This is not a fatal fault, but interpolation accuracy is reduced in this condition. See page 30 for the definition of *again* and page 24 for the definition of *adcflt*.

If FLT\_EN.adc = 1, STAT\_SP.adcuf is "sticky" and stays activated even if the input signal amplitude is subsequently increased. See FLT\_EN on page 28 for information on FLT EN.adc.

adaption monitoring enabled If quality is (MON CFG.adapt = 1), STAT SP.adapt indicates that one or more of the signal path parameters has been changed too much by auto-adaption. During operation, the iC-TW8 continually compares the current value of the signal path parameters in the PAR NOW sub-block to the corresponding values in the PAR BASE sub-block (see page 8). These differences are used to calculate STAT SP.adapt. If adaption quality monitoring is disabled (MON CFG.adapt = 0), STAT SP.adapt = 0.

Specifically, if STAT\_SP.adapt = 1, QM\_ADAPT = 255. See QM\_ADAPT on page 36 for more information.

STAT\_SP.vtop indicates that the instantaneous AB output frequency, *fab*, has exceeded the limit set in register AB\_VTOP (see page 20). This is not a fatal fault, but AB output frequency is limited in this condition and the position or angle indicated by the AB outputs no longer follows the sensor input. If FLT\_EN.vwarn = 1, STAT\_SP.vtop is "sticky" and stays activated even if the AB output frequency is subsequently reduced. See FLT\_EN on page 28 for information on FLT\_EN.vwarn.

STAT\_SP.ospeed indicates that the instantaneous input frequency has exceeded *fcore*/512. This is a warning condition, not a fatal fault and the iC-TW8 continues to operate correctly. If FLT EN.vwarn =

1, STAT\_SP.opeed is "sticky" and stays activated even if the input frequency is subsequently reduced. See FLT\_EN on page 28 for information on FLT\_EN.vwarn.

STAT\_SP.fatal indicates that the instantaneous input frequency has exceeded *fcore*/256. This is a fatal fault condition that results in erroneous AB outputs. If FLT\_EN.vfatal = 1, STAT\_SP.fatal is "sticky" and stays activated even if the input frequency is subsequently reduced. See FLT\_EN on page 28 for information on FLT EN.vfatal.

STAT\_SP.lag indicates that the AB output position lags more than 7.9 input cycles behind the sensor position due to excessive filtering (see MAIN\_FLTR on page 15). This is a fatal fault condition that results in erroneous AB outputs. If FLT\_EN.vfatal = 1, STAT\_SP.lag is "sticky" and stays activated even if the AB output frequency is subsequently reduced. See FLT\_EN on page 28 for information on FLT EN.vfatal.

STAT\_SP.ab indicates that the AB output position lags too far behind the sensor position due to continued operation above the AB output frequency limit set in register AB\_VTOP (see page 20). This is a fatal fault condition that results in erroneous AB outputs. If FLT\_EN.vfatal = 1, STAT\_SP.ab is "sticky" and stays activated even if the AB output frequency is subsequently reduced. See FLT\_EN on page 28 for information on FLT\_EN.vfatal.

STAT\_SP.1wire indicates that a timeout fault on the 1-wire serial port (see page 6) has occurred and that the previous command or memory access was not performed. STAT\_SP.1wire is "sticky" and stays activated until explicitly cleared by writing 0x00 to the STAT\_SP register or by a device restart.

STAT\_SP.xtal indicates that the iC-TW8 is configured to use an external crystal (see MAIN\_CLOCK on page 17) but no external frequency is present. In this condition, the iC-TW8 reverts to using its internal oscillator for clocking. When or if the external frequency is subsequently applied, STAT-SP.xtal is cleared and the iC-TW8 again uses the external frequency for clocking.

### **Programmer's Reference**



October 19, 2017 Page PR35/39

### **STAT\_EE (EEPROM Status Register)**

The STAT\_EE register contains bits that indicate the status of the external EEPROM (see page 10). It can be read to determine the cause of an EEPROM fault. STAT\_EE register bits are "sticky" so that once activated, they stay activated even if the specific condition is subsequently resolved. Active STAT\_EE bits can be cleared by writing 0x00 to the STAT\_EE register.

| STAT_EE (Word 0x809C) |         |                               |
|-----------------------|---------|-------------------------------|
| Bit                   | Name    | Description                   |
| 0                     | timeout | EEPROM communication timeout  |
| 1                     | stuck   | EEPROM hardware fault         |
| 2                     | id      | Wrong EEPROM ID               |
| 3                     | cfg     | CFG block checksum error      |
| 4                     | par0    | PAR Block 0 checksum error    |
| 5                     | par1    | PAR Block 1 checksum error    |
| 6                     | base    | PAR_BASE block checksum error |
| 7                     | lut     | LUT block checksum error      |
| 8                     | mode    | Wrong configuration mode      |
| 9 – 15                | 5       | Reserved                      |

STAT\_EE.timeout indicates that the external EEPROM did not respond to a read or write access from the iC-TW8. The most likely cause of this condition is a missing EEPROM.

STAT\_EE.stuck indicates that the iC-TW8's SCL output (pin 27) or SDA input/output (pin 28) is stuck low.

STAT\_EE.id indicates that the identification word read from the external EEPROM is not correct, most likely due to an uninitialized EEPROM. The Write All command (see page 33) can be used to initialize the EEPROM.

STAT\_EE.cfg indicates that the CFG block stored in the EEPROM has a checksum error.

STAT\_EE.par0 indicates that PAR block 0 stored in the EEPROM has a checksum error.

STAT\_EE.par1 indicates that PAR block 1 stored in the EEPROM has a checksum error.

STAT\_EE.base indicates that the PAR\_BASE block stored in the EEPROM has a checksum error.

STAT\_EE.lut indicates that LUT block stored in the EEPROM has a checksum error.

STAT\_EE.mode indicates that the external EEPROM has an invalid configuration.

### ADC\_SIN, ADC\_COS

ADC\_SIN and ADC\_COS are read-only registers containing recent ADC (Analog to Digital Converter) values for the Sin and Cos sensor input channels respectively (see page 30). They are signed 14-bit numbers in 2's complement format.

| ADC_SIN (Word 0x80A4) |             |
|-----------------------|-------------|
| ADC_COS (Word 0x80A6) |             |
| Value                 | Description |
|                       |             |

The actual ADC input voltages, *adcs* and *adcc*, are calculated as

$$adcs[V] = \frac{ADC\_SIN}{4096}$$
$$adcc[V] = \frac{ADC\_COS}{4096}$$

The effective Sin and Cos input signal levels, *sin* and *cos*, can be calculated as

$$sin[V] = \frac{\frac{ADC\_SIN}{4096} - \frac{AOFFS}{10}}{10^{\frac{3AGAIN}{20}}}$$
$$cos[V] = \frac{\frac{ADC\_COS}{4096} - \frac{AOFFC}{10}}{10^{\frac{3AGAIN}{20}}}$$

Note that ADC\_SIN and ADC\_COS are not updated in real time with every ADC sample, but only as other more important tasks permit. Thus they should be used only as a rough indication of proper ADC function during operation.

### **Programmer's Reference**



October 19, 2017 Page PR36/39

### ADC\_AMP (Signal Amplitude)

ADC\_AMP is a read-only register containing the vector amplitude of the current ADC (Analog to Digital Converter) values for the Sin and Cos sensor input channels respectively (see page 30).

| ADC_AMP (Byte 0x80A8) |                                             |
|-----------------------|---------------------------------------------|
| Value                 | Description                                 |
| 0 – 255               | $\frac{\sqrt{ADC\_SIN^2 + ADC\_COS^2}}{32}$ |

The actual ADC vector signal output value, *adcamp*, is calculated as

$$adcamp = 32 \cdot ADC AMP$$

The effective analog ADC input vector signal amplitude, *amp*, is calculated as

$$amp[V] = \frac{ADC\_AMP}{128 \cdot 10^{\frac{3 \cdot AGAIN}{20}}}$$

### **QM ADC (ADC Quality Monitor)**

QM\_ADC is a read-only register containing a value inversely proportional to the input signal amplitude between the ADC quality threshold and ADC fault level (see MON\_ADC on page 24). It is used to determine the quality level signal on the STATUS output (pin 19).

| QM_ADC (Byte 0x80AE) |                           |  |
|----------------------|---------------------------|--|
| Value                | Description               |  |
| 0 - 255              | ADC quality monitor level |  |

If  $MON\_CFG$ .adc = 0 (see page 23), ADC quality monitoring is disabled and QM ADC = 0.

If MON\_CFG.adc = 1 and ADC\_AMP  $\geq$  adcth (see page 24), QM ADC = 0.

If MON\_CFG.adc = 1 and adcflt < ADC\_AMP < adcth (see page 24), then

$$QM\_ADC = 256 \cdot \frac{adcth - ADC\_AMP}{adclim}$$

If MON\_CFG.adc = 1 and ADC\_AMP  $\leq$  adcflt (see page 24), QM ADC = 255.

### **QM\_ADAPT** (Adaption Quality Monitor)

QM\_ADAPT is a read-only register containing a value proportional to the change in parameter values due to auto-adaption between the adaption quality thresholds and adaption fault levels. It is used to determine the quality level signal on the STATUS output (pin 19) and the adaption fault status (STAT SP.adapt).

| QM_ADAPT (Byte 0x80AF) |                                |  |
|------------------------|--------------------------------|--|
| Value                  | Description                    |  |
| 0 - 255                | Adaption quality monitor level |  |

If MON\_CFG.adapt = 0 (see page 23), adaption quality monitoring is disabled and QM\_ADAPT = 0.

If MON\_CFG.adapt = 1, QM\_ADAPT is calculated as the sum of four adaption monitor values, one each for Sin channel digital offset (moffs), Cos channel digital offset (moffc), digital gain (mgain), and digital phase (mphase). Specifically,

QM ADAPT = 
$$moffs + moffc + mgain + mphase$$

If QM\_ADAPT reaches 255, STAT\_SP.adapt and FLT\_STAT.adapt are set.

The individual adaption monitor values are calculated as described below.

If  $|DOFFS - PAR\_BASE\_DOFFS| < offqth$  (see page 25), moffs = 0.

If  $offqth \le |DOFFS-PAR\_BASE\_DOFFS| < offflt$  (see page 25), then

$$moffs = 256 \cdot \frac{\left| DOFFS - PAR\_BASE\_DOFFS \right| - offqth}{offlim}$$

If  $|DOFFS - PAR\_BASE\_DOFFS| \ge offflt$  (see page 25), then moffs = 255.

### Programmer's Reference



October 19, 2017 Page PR37/39

If  $|DOFFC - PAR\_BASE\_DOFFC| < offqth$  (see page 25), moffc = 0.

If  $offqth \le |DOFFC - PAR\_BASE\_DOFFC| < offflt$  (see page 25), then

$$moffc = 256 \cdot \frac{\left| \text{DOFFC} - \text{PAR\_BASE\_DOFFC} \right| - offqth}{offlim}$$

If  $|DOFFC - PAR\_BASE\_DOFFC| \ge offflt$  (see page 25), then moffc = 255.

If  $|DGAIN - PAR\_BASE\_DGAIN| < gainqth$  (see page 25), mgain = 0.

If  $gainqth \le |DGAIN - PAR_BASE_DGAIN| < gainflt$  (see page 25), then

$$mgain = 256 \cdot \frac{\left| DGAIN - PAR\_BASE\_DGAIN \right| - gainqth}{gainlim}$$

If  $|DGAIN - PAR\_BASE\_DGAIN| \ge gainflt$  (see page 25), then mgain = 255.

If |DPH - PAR\_BASE\_DPH| < phqth (see page 26), mphase = 0.

If  $phqth \le |DPH - PAR\_BASE\_DPH| < phflt$  (see page 26), then

$$mphase = 256 \cdot \frac{|DPH - PAR\_BASE\_DPH| - phqth}{phlim}$$

If  $|DPH - PAR\_BASE\_DPH| \ge phflt$  (see page 26), then mphase = 255.

#### **RB Block Registers**

The RB block provides access to internal register banks of the iC-TW8. These register banks are used to invoke special test modes. The RB block must be accessed as words at an even byte address.

#### **RB TEST1**

The RB\_TEST1 Register is used to unlock the EEPROM and enable the clock test and Z test modes.

| RB_TEST1 (Word 0xA008) |          |                        |  |  |
|------------------------|----------|------------------------|--|--|
| Bit                    | Name     | Description            |  |  |
| 0 - 2                  |          | Reserved               |  |  |
| 3                      | adctest  | Enable clock test mode |  |  |
| 4                      |          | Reserved               |  |  |
| 5                      | ztest    | Enable Z test mode     |  |  |
| 6 – 8                  |          | Reserved               |  |  |
| 9                      | wpunlock | Unlock EEPROM          |  |  |
| 10 – 15                |          | Reserved               |  |  |

Setting RB\_TEST1.adctest enables clock test mode to allow tuning the frequency of the internal oscillator as explained in the Serial Configuration manual.

Setting RB\_TEST1.ztest enables z test mode to allow calibration of the Z signal path as explained in the Serial Configuration manual.

Setting RB\_TEST1.wpunlock unlocks an external EEPROM whose WP input is connected to the iC-TW8's WP output (pin 29) as explained on page 12.



October 19, 2017 Page PR38/39

### **Revision History**

| Date           | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pages affected                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Mar 20, 2012   | First edition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | All                                                                              |
| Apr 14, 2012   | adclim formula was wrong. Other changes for consistency and improvement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                                               |
| April 19, 2012 | Fixed MON_CFG, MON_ADC, MON_OFF, MON_GAIN, and MON_PHASE descriptions. Fixed FLT_EN details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 – 25<br>28                                                                    |
| Sept 10, 2012  | Correction of command byte re. 32-bit position read AB_CFG0.zpol descriptions were wrong.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 18                                                                             |
| Sept 21, 2012  | Corrected ADC_AMP formulas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                               |
| Oct 9, 2012    | Fixed formula font.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Many                                                                             |
| Nov 22, 2012   | Formal corrections of header layout; update of disclaimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All                                                                              |
| Jan 9, 2013    | Add RB Block registers descriptions. Clarified Z output synchronization when using post-AB divider or non-integer interpolation factor. Corrected adaption correction formulas. Clarified adaption quality monitor operation and corrected adaption monitor formulas to use PAR_BASE instead of BAR_BAK. Clarified adaption fault behavior. Removed digital gain dB formulas.                                                                                                                                                                                                                                               | 37<br>18 – 19<br>22 – 23<br>25 – 26, 36 – 37<br>27, 34, 36<br>31                 |
| Dec 18, 2013   | Added 1-Wire Command Byte table. Clarified operation of AB_VTOP and minimum edge separation when using the post-AB divider. Extended range of limit and threshold values when MON_CFG.adapt = 0. Corrected register addresses for AGAIN, AOFFS, and AOFFC. Command Register value of 0x01 is reserved. ADC_SIN and ADC_COS are not real-time.                                                                                                                                                                                                                                                                               | 7<br>20<br>25 – 26<br>30<br>33<br>35                                             |
| Jul 7, 2016    | SPI values msb first; position resolution determined by <i>inter</i> .  32-bit position updated at <i>fadc</i> .  1-Wire port not for general communication, Figs 5 and 6 updated.  FLT_STAT not stored in EEPROM.  Added MAIN_CLOCK.xforce bit and description. <i>inter</i> ≤ 1024 in PWM output mode.  MAIN_Z.th has 30mV steps.  Checksum errors in both PAR block 0 <i>and</i> 1 to activate FLT_STAT.ee.  1-Wire port inoperable during Restart command.  STAT_SP.ospeed and STAT_SP.fatal refer to input frequency.  0 − 12 range for adaption monitor limit and threshold values regardless of MON_CFG.adapt value. | 3, 5, 9<br>4, 9<br>6<br>13<br>13, 17<br>15, 16<br>18<br>27<br>33<br>34<br>25, 26 |
| Aug 3, 2016    | Removed "Preliminary".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All                                                                              |
| Aug 16, 2016   | MAIN_Z.reset limited to values of 0 or 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13, 18                                                                           |
| Aug 9, 2017    | Corrected formula for MON_CFG.adc. Corrected formulas for STAT_SP.adcof and STAT_SP.adcuf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23<br>33, 34                                                                     |



October 19, 2017 Page PR39/39

| Oct 19, 2017 | Removed reference to linear encoder design tool.                          | 2      |
|--------------|---------------------------------------------------------------------------|--------|
|              | Added information regarding using the 32-bit position read to implement a | 5      |
|              | multicycle counter.                                                       |        |
|              | Enhanced AB_CFG0 register description to clarify that apol and bpol also  | 18, 19 |
|              | reverse the AB counting direction and determine the AB startup states in  |        |
|              | relative startup mode (AB_CFG.startup = 0).                               |        |
|              | Changed AB_CFG0.dir descriptions from "A leads B" to "normal" and         | 18     |
|              | from "B leads A" to "inverted."                                           |        |

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website <a href="https://www.ichaus.com/infoletter">www.ichaus.com/infoletter</a> and is automatically generated and shall be sent to registered users by email. Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).