Date: 2011-09-12

ISO/TC41/SC4/N 445

NWP 13050

Curvilinear toothed synchronous belt drive systems

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Copyright Notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requester:

American National Standards Institute (ANSI), 1819 L Street, N.W., 6th Floor, Washington D.C. 20036; tel: 1.202.293.8020; fax: 1.202.293.9287; www.rma.org

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

Con	tents	Page
Forew	vord	iv
1	Scope	
2	Normative reference	
3	Belt types	
4	Belt nomenclature	
5	Pulley types	
6	Pulley nomenclature	3
7	Type H system	
, 7.1	H-type belt dimensions and tolerances	
7.1.1		
7.1.1 7.1.2	Belt tooth dimensions	
	Belt widths and tolerances	
7.1.3	Pitch length measurement	
7.2 7.2.1	H-type pulleys	
7.2.1	General	
7.2.2	Generating tool rack	
7.2.3 7.2.4	Pulley groove profile dimensions and tolerances	
7.2.4 7.2.5	Pulley outside diameters	
7.2.5	Pulley width	10
8	Type R system	17
8.1	R-type belt dimensions and tolerances	
8.1.1	Belt tooth dimensions	
8.1.2	Belt widths and tolerances	
8.1.3	Pitch length measurement	
8.2	R-type pulleys	
8.2.1	General	
8.2.2	Generating tool rack	
8.2.3	Pulley groove profile dimensions and tolerances	
8.2.4	Pulley outside diameters	
8.2.5	Pulley width	27
9	Type S system	29
9.1	S-type belt dimensions and tolerances	
9.1.1	Belt tooth dimensions	
9.1.2	Belt widths and tolerances	
9.1.3	Pitch length measurement	30
9.2	S-type pulleys	32
9.2.1	General	32
9.2.2	Generating tool rack	32
9.2.3	Pulley groove profile dimensions and tolerances	33
9.2.4	Pulley outside diameters	34
9.2.5	Pulley width	36
Anne	x A	38
	oitch lengths and tolerances	
Annes	x B	Ar
	ionshin hetween centre distance and helt nitch length	ΔC

ISO/NWP 13050

Anne	ex C	41
C.1	Pitch to pitch tolerances	41
C.2	Diameter tolerances	
C.3	Axial circular runout	42
C.4	Radial circular runout	42
C.5	Parallelism	
C.6	Cylindricity	43
C.7	Taper	43
C.8	Quality specifications	43
Anne	ex D	44

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 13050 was prepared by Technical Committee ISO/TC 41, *Pulleys and belts*, Subcommittee SC 4, *Synchronous belt drives*.

This third edition cancels and replaces the second edition (2004), which has been technically revised.

Curvilinear toothed synchronous belt drive systems

1 Scope

This International Standard specifies the principal characteristics of synchronous endless belts and pulleys for use in synchronous belt drives¹⁾ for mechanical power transmission and where positive indexing or synchronization may be required.

The principal belt and pulley characteristics include:

- a) nominal belt tooth dimensions;
- b) belt tooth pitch spacing;
- c) belt length and width dimensions; and tolerances;
- d) belt length measurement specifications;
- e) pulley groove dimensions and tolerances;
- f) pulley diameter and width dimensions and tolerances;
- g) pulley quality specification.

- 1 -

¹⁾ Synchronous belt drives have been known by various titles in the past: for example, timing belt drives, positive belt drives, gear belt drives.

Normative reference

The following normative document contains provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent edition of the normative document indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 254:1998, Belt drives -- Pulleys -- Quality, finish and balance.

ISO 1101:1983, Technical drawings -- Geometrical tolerancing -- Tolerancing of form, orientation, location and run-out -- Generalities, definitions, symbols, indications on drawings.

2 Belt types

Twelve belt types for synchronous drives are standardized:

- Type H3M (H Type Tooth Profile)
- Type R3M (R Type Tooth Profile)
- Type H5M (H Type Tooth Profile)
- Type R5M (R Type Tooth Profile)
- Type H8M (H Type Tooth Profile)
- Type R8M (R Type Tooth Profile)
- Type S8M (S Type Tooth Profile)
- Type H14M (H Type Tooth Profile)
- Type R14M (R Type Tooth Profile)
- Type S14M (S Type Tooth Profile)
- Type H20M (H Type Tooth Profile)
- Type R20M (R Type Tooth Profile)

3 Belt nomenclature

A belt is identified by a combination of numbers and letters as follows:

- a) the belt pitch length in millimetres;
- b) the type of tooth profile;
- c) the tooth pitch in millimetres;
- d) the width in millimetres or 10 times the width in millimetres for the S-type belt;
 © ISO 2005 All Rights Reserved

ISO/NWP 13050

e) double-sided belts are designated by adding the letter "D" before the tooth profile letter.

EXAMPLE - A curvilinear tooth synchronous belt of 14 mm pitch, 40 mm wide, 1 400 mm pitch length is identified as follows:

1400-H14M-40 for H-type single-sided belt, 1400-DH14M-40 for H-type double-sided belt;

400-S14M-1400 for S-type single-sided belt, 400-DS14M-1400 for S-type double-sided belt;

1400-R14M-40 for R-type single-sided belt, 1400-DR14M-40 for R-type double-sided belt.

4 Pulley types

Twelve pulley types for synchronous drives are standardized:

- Type H3M (H Type Groove Profile)
- Type R3M (R Type Groove Profile)
- Type H5M (H Type Groove Profile)
- Type R5M (R Type Groove Profile)
- Type H8M (H Type Groove Profile)
- Type R8M (R Type Groove Profile)
- Type S8M (S Type Groove Profile)
- Type H14M (H Type Groove Profile)
- Type R14M (R Type Groove Profile)
- Type S14M (S Type Groove Profile)
- Type H20M (H Type Groove Profile)
- Type R20M (R Type Groove Profile)

5 Pulley nomenclature

A pulley for a synchronous drive is identified by the number of grooves, the groove pitch and profile, and the width. It is identified, as is the belt, by a combination of numbers and letters as follows:

- a) the letter "P" indicates a pulley;
- b) the number of grooves;
- c) the type of groove profile;
- d) the groove pitch in millimetres;
- e) the width in millimetres or ten times the width in millimetres for S-type pulleys.

EXAMPLE - A pulley for a curvilinear toothed belt which has 14 mm pitch and 30 grooves with a nominal width of 40 mm is identified as follows:

P30-H14M-40 for H-type pulleys;

P30-S14M-0400 for S-type pulleys;

P30-R14M-40 for R-type pulleys.

8 Type H system

8.1 H-type belt dimensions and tolerances

8.1.1 Belt tooth dimensions

The nominal belt tooth dimensions are the same for single-sided and double-sided belts; they are given in Table 1 and shown in Figure 1.

Table 1 — Nominal tooth dimensions

Dimensions in millimetres

Belt					P ₁	P ₅	r ₁	P ₂	P ₆	P ₃	P ₇	r ₂	P ₄	P ₈	
Section	Pitch	h _s	h _d	h _t	(X,Y)	(X,Y)		(X,Y)	(X,Y)	(X,Y)	(X,Y)		(X,Y)	(X,Y)	а
НЗМ	3	2,4		1,21	-1,14 0,00		0,30	-0,83 -0,30		-0,83 -0,35		0,86	0,00 -1,21		0,381
DH3M	3		3,2			-1,14 0,76	0,30		-0,83 1.06		-0,83 1,11	0,86		0,00 1,97	0,381
H5M	5	3,8		2,08	-1,85 0,00		0,41	-1,44 -0,42		-1,44 -0,53		1,50	0,00 -2,08		0,572
DH5M	5		5,3			-1,85 1,14	0,41		-1,44 1,56		-1,44 1,67	1,50		0,00 3,22	0,572
Н8М	8	6,0		3,38	-3,30 0,00		0,76	-2,55 -0,65		-2,47 -1,17		2,59	0,00 -3,38		0,686
DH8M	8		8,1			-3,30 1,37	0,76		-2,55 2,02		-2,47 2,54	2,59		0,00 4,75	0,686
H14M	14	10,0		6,02	-5,78 0,00		1,42	-4,36 -1,29		-4,30 -1,97		4,46	0,00 -6,02		1,397
DH14M	14		14,8			-5,78 2,79	1,42		-4,36 4,08		-4,30 4,76	4,46		0,00 8,81	1,397
H20M	20	13.2		8,68	-8,34 0,00		2,03	-6,32 -1,84		-6,22 -2,90		6,40	0,00 -8,68		2,159

Single-Sided Belts

Double-Sided Belts

Figure 1 – Tooth Dimensions – "H" Type Profile

7.1.2 Belt widths and tolerances

Belt widths and tolerances are given in Table 2.

Table 2 — Widths and width tolerances

Dimensions in millimetres

		Toleran	ce on width for belt pitch le	engths
Belt type	Nominal belt width	Up to and including 840 mm	Over 840 mm and up to and including 1 680 mm	Over 1 680 mm
НЗМ	6	+ 0,4	+ 0,4	
110111	9	- 0,8	- 0,8	
DH3M	15	+ 0,8 - 0,8	+ 0,8 - 1,2	+ 0,8 - 1,2
H5M	9	+ 0,4 - 0,8	+ 0,4 - 0,8	
DH5M	15	+ 0,8	+ 0,8	+ 0,8
DIIONI	25	- 0,8	- 1.2	– 1.2
	20	+ 0,8	+ 0,8	+ 0,8
H8M	30	- 0,8	- 1,2	- 1,2
DH8M	50	+ 0,8 - 1,2	+ 1,2 - 1,2	+ 1,2 - 1,6
	85	+ 1,6 - 1,6	+ 1,6 - 2,0	+ 2,0 - 2,0
	40	+ 0,8 - 1,2	+ 1.2 - 1,2	+ 1,2 - 1,6
H14M	55	+ 1,2 - 1,2	+ 1,2 - 1,6	+ 1,6 - 1,6
DUMANA	85	+ 1,6 - 1,6	+ 1,6 - 2,0	+ 2,0 - 2,0
DH14M	115	+ 2,4	+ 2,4	+ 2,4
	170	- 2,4	- 2,8	- 3,2
	115	+ 2,4	+ 2,4	+ 2,4
	170	- 2,4	- 2,8	- 3,2
H20M	230			
	290			+ 4,8 - 6,4
	340			·

7.1.3 Pitch length measurement

See annex A for tolerances and annex B for the relationship between the centre distance and the belt pitch length.

7.1.3.1 Measuring fixture (see Figure 11)

The pitch length of a synchronous belt shall be determined by placing the belt on a measuring fixture composed of the following elements.

- **7.1.3.1. Two pulleys of equal diameter,** as specified in Table 3, of the proper belt type and having standard tooth space dimensions. These pulleys should be made to the tolerances shown in Table 3. One pulley shall be free to rotate on a fixed-position shaft, while the other shall be free to rotate on a moveable shaft to permit the centre distance to change.
- **7.1.3.1. Means of applying a total measuring force** to the moveable pulley.
- **7.1.3.1.3 Means of measuring the centre distance** between the two pulleys with the necessary degree of accuracy for centre distance measurement.

7.1.3.2 Total measuring force

The total measuring force to be applied for measuring belts is given in Table 4.

7.1.3.3 Procedure

In measuring the pitch length of a synchronous belt, the belt should be rotated at least two revolutions to seat it properly and to divide the total force equally between the two spans of the belt. The pitch length shall be calculated by adding the pitch circumference of one of the pulleys to twice the measured centre distance.

Check double-sided belts on both tooth faces.

Figure 2 — Diagram of fixture for measuring pitch length

Table 3 — Belt length measuring pulleys

Belt type	Number of grooves	Pitch circumference	Outside diameter ^a	Radial runout	Axial runout
	grootes	on our more mos	diameter	F.I.M. ^b	F.I.M. ^b
H3M, DH3M	30	90	27,886	0,013	0,025
TIOIVI, DITIOIVI	30	30	± 0,013	0,010	0,023
H5M, DH5M	20	100	30,687	0,013	0,025
TIOW, DITIOW	20	100	± 0,013	0,010	0,023
H8M, DH8M	34	272	85,208	0,013	0,025
TIOW, DITOW	0 4	212	± 0,013	0,010	0,023
H14M, DH14M	40	560	175,46	0,013	0,051
TTT4W, DTTT4W	40	300	± 0,025	0,013	0,031
H20M	40	800	250,33	0,013	0.076
I IZUIVI	70	000	± 0,036	0,013	0,070

^a Pulleys outside of the diameter tolerance range specified may be used if the resulting belt length measurements are corrected for the actual pulley diameters.

NOTE The number of pulley teeth specified in Table 3 determine the recommended sizes for measuring the belt pitch length. Practically, other sizes of pulleys could be used provided they have the same number of teeth, and meet the dimensional requirements of Table 3.

Table 4 — Total measuring force

Forces in newtons

Belt Pitch		Belt width (mm)														
	6	9	15	20	25	30	40	50	55	85	115	170	230	290	340	
H3M, DH3M	45	76	138													
H5M, DH5M		111	214		376											
H8M, DH8M				470		750		1 320		2 310						
H14M, DH14M							1 350		2 130	3 660	5 180	7 960				
H20M											6 961	10 729	14 839	18 949	22 374	

^b Full indicator movement.

ISO/NWP 13050

7.2 H-type pulleys

7.2.1 General

See Annex C for tolerances.

The pulley is characterized by a curvilinear groove profile. This groove profile is defined as the profile formed by the generating tool rack form required to machine-finish the curvilinear profile. The profile is different for each pulley diameter, but can be closely approximated by a nominal groove profile over specified ranges of number of grooves.

7.2.2 Generating tool rack

Dimensions and tolerances for the generating tool rack for H-type pulleys are given in Table 5 and shown in Figure 3.

Table 5 – Pulley generating tool rack dimensions

Belt	Number of	Pb	h _r	Ро	r ₁	P ₁	r ₂	P ₂	r ₃	P ₃	r ₄	P ₄	r ₅	P ₅	Х
Section	Grooves		-	(X,Y)	·	(X,Y)		(X,Y)		(X,Y)	7	(X,Y)		(X,Y)	
		±0,012	±0,015		±0,012		±0,012		±0,012		±0,012		±0,012		
нзм	9 thru 13	3,000	1,196	1,423 0	0,414	1,061 -0,213			8	0,712 -0,840	0,559	0,574 -1,004	0,869	0,029 -1,196	0,029
	14 thru 25	3,000	1,173	1,324 0	0,254	1,139 -0,080	0,792	0,992 -0,300	∞	0,747 -0,860	0,254	0,687 -0,944	0,844	0,114 -1,168	0,114
	26 thru 80	3,000	1,227	1,223 0	0,262	0,982 -0,159	2,616	0,820 -0,679			0,493	0,733 -0,877	0,869	0,036 -1,227	0,036
	81 thru 200	3,000	1,232	1,333 0	0,358	0,981 -0,290			∞	0,923 -0,554			0,866	0,077 -1,232	0,077
Н5М	12 thru 16	5,000	1,986	2,344 0	0,659	1,739 -0,316	4,475	1,522 -0,720	8	1,124 -1,560	0,691	0,773 -1,895	1,133	0,328 -1,986	0,328
	17 thru 31	5,000	2,024	2,242 0	0,610	1,871 -0,126	1,431	1,540 -0,593	∞	1,163 -1,566	0,612	1,013 -1,789	1,219	0,295 -2,024	0,295
	32 thru 79	5,000	2,032	2,073 0	0,493	1,675 -0,203	1,359	1,501 -0,566	∞	1,370 -1,035	1,402	1,088 -1,617	1,300	0,135 -2,032	0,135
	80 thru 200	5,000	2,065	2,160 0	0,610	1,564 -0,483			∞	1,443 -1,050			1,471	0,043 -2,065	0,043

Table 5 Continued – Pulley generating tool rack dimensions

Belt	Number of	Pb	h _r	Po	r ₁	P ₁	r ₂	P ₂	r ₃	P ₃	r ₄	P ₄	r ₅	P ₅	Х
Section	Grooves	±0,012	±0,015	(X,Y)	±0,012	(X,Y)	±0,012	(X,Y)	±0,012	(X,Y)	±0,012	(X,Y)	±0,012	(X,Y)	
H8M	22 thru 27	8,000	3,289	3,805 0	1,143	2,738 -0,648			8	2,322 -1,801			2,553	0 -3,289	
	28 thru 89	8,000	3,612	3,754 0	1,067	2,748 -0,711	12,903	2,360 -2,024			0,726	2,283 -2,215	2,744	0 -3,612	
	90 thru 200	8,000	3,632	3,617 0	0,940	2,697 -0,757			8	2,459 -1,948			2,637	0 -3,632	
H14M	28 thru 36	14,000	6,320	6,761 0	1,880	5,037 -1,133	20,828	4,064 -3,904			1,143	3,909 -4,242	4,717	0 -6,320	
	37 thru 89	14,000	6,223	6,599 0	1,829	4,890 -1,176	15,748	4,204 -3,493			1,143	4,089 -3,802	4,663	0 -6,223	
	90 thru 216	14,000	6,350	6,546 0	1,905	4,704 -1,425	20,117	4,288 -3,439			0,254	4,270 -3,498	4,623	0 -6,350	
H20M	34 thru 45	20,000	8,644	9,786 0	2,814	7,105 -1,852			8	5,972 -4,947			5,625	0,753 -8,644	0,753
	46 thru 100	20,000	8,591	9,529 0	2,667	7,041 -1,662	20,329	6,015 -5,121					5,842	0,711 -8,591	0,711
	101 thru 220	20,000	8,690	9,787 0	2,676	7,305 -1,760			∞	6,165 -4,855			5,833	0,739 -8,690	0,739

Figure 3 — Pulley generating tool rack form

7.2.3 Pulley groove profile dimensions and tolerances

Dimensions and tolerances for the pulley groove profile for H3M, H5M, H8M, H14M and H20M pulleys are given in Table 6 and shown in Figure 4.

Table 6- Pulley groove profile dimensions

Belt	Number of						Profile
Section	Grooves	Hg	X	R₁	θ°	R ₂	Band ^a
	10 thru 13	1,190	0,029	0,991	15	0,181	
H3M	14 thru 25	1,179	0,112	0,889	9	0,229	10.051
	26 thru 80	1,219	0,028	0,927	8	0,191	±0,051
	81 thru 200	1,234	0,074	0,925	4	0,301	
	12 thru 16	1,989	0,307	1,265	10	0,432	
H5M	17 thru 25	2,009	0,320	1,270	6	0,508	±0,051
	26 thru 80	2,052	0,081	1,438	2	0,488	±0,051
	81 thru 200	2,056	0,028	1,552	5	0,569	
	22 thru 27	3,295	0,000	2,675	11,3	0,874	
H8M	28 thru 89	3,604	0,000	2,629	7	1,024	+0,090
	90 thru 200	3,630	0,000	2,639	6,6	1,008	-0,080
	28 thru 32	6,327	0,000	4,859	7,1	1,544	
	33 thru 36	6,328	0,000	4,834	5,2	1,613	
	37 thru 57	6,198	0,000	4,737	9,3	1,654	+0,090
H14M	58 thru 89	6,198	0,000	4,669	8,9	1,902	-0,080
	90 thru 153	6,328	0,000	4,636	6,9	1,704	
	154 thru 216	6,327	0,000	4,597	8,6	1,770	
	32 thru 45	8,649	0,544	6,185	15	2,184	
H20M	46 thru 100	8,661	0,544	6,185	10	2,540	±0,089
	101 thru 220	8,700	0,544	6,185	18	2,540	

^a the profile band tolerance thru R2 blends into the pulley OD tolerance so that the pulley OD and profile band tolerances do not conflict.

Figure 4 —Pulley groove profile and tolerance bands

7.2.4 Pulley outside diameters

Pulley outside diameters for the standard pulleys are given in Table 7. The relationship of the pulley outside and pitch diameters is illustrated in Figure 5 and the following formula. Table 8 provides the N' values to be used in the outside diameter formula.

pitch diameter =
$$\frac{\text{No. of grooves x pulley pitch}}{\pi}$$

outside diameter = pitch diameter - 2a + N'

where a is the value given in Table 1.

Key

- 1 Pitch (circular pitch)
- 2 Belt pitch line
- 3 Belt tooth
- 4 Pitch diameter
- 5 Outside diameter
- 6 Pulley groove

Figure 5 — Pulley dimensions

Table 7 — Standard pulley sizes

	Dimensions in millimetres									
Number	1.10	284	1.15	-N.4	Pulley		114	414	110	014
of	H3	Outside	Pitch	Outside	H8 Pitch		Pitch	4M Outoido	H2 Pitch	Outside
grooves	Pitch Diameter	Diameter	Diameter	Outside Diameter	Diameter	Outside Diameter	Diameter	Outside Diameter	Diameter	Diameter
14	13,37	12,61	22,28	21,14						
15	14,32	13,56	23,87	22,73						
16	15,28	14,52	25,46	24,32						
17	16,23	15,47	27,06	25,91						
18	17,19	16,43	28,65	27,50						
19	18,14	17,38	30,24	29,10						
20	19,10	18,34	31,83	30,69						
21	20,05	19,29	33,42	32,28						
22	21,01	20,25	35,01	33,87	56,02 ^a	54,65				
24	22,92	22,16	38,20	37,05	61,12 ^a	59,74				
25					63.66	62.29				
26	24,83	24,07	41,38	40,24	66,21 ^a	64,84				
28	26,74	25,98	44,56	43,42	71,30 ^a	70,08	124,78 ^a	122,12		
29						 75 40	129,23 ^a	126,57		
30	28,65	27,89	47,75	46,60	76,39 ^a	75,13	133,69 ^a	130,99		
32	30,56	29,80	50,93	49,79	81,49	80,16	142,60 ^a	139,88	040.45	
34	32,47	31,71	54,11	52,97	86,58	85,21	151,52 ^a	148,79	216,45	212,13
36	34,38	33,62	57,30	56,15	91,67	90,30	160,43	157,68	229,18	224,87
38 40	36,29	35,53	60,48	59,34	96,77	95,39	169,34	166,60	241,92	237,60
40	38,20 41,06	37,44 40,30	63,66 68,44	62,52 67,29	101,86	100,49	178,25	175,49 	254,65 	250,33
43	42,02	40,30	70,03	68,89	112,05	110,67	196,08	193,28	280,11	275,79
46	43,93	43,16	73,21	72,07						
48	45,48	45,07	76,39	75,25	122,23	120,86	213,90	211,11	305,58	301,26
49	46,79	46,03	77,99	76,84						
50	47,75	46,98	79,58	78,43						
52	49,66	48,89	82,76	81,62			231,73	228,94	331,04	326,72
55	52,52	51,76	87,54	86,39						
56			89,13	87,98	142,60	141,23	249,55	246,76	356,51	325,19
60	57,30	56,53	95,49	94,35			267,38	264,59	381,97	377,65
62			98,68	97,53						
64					162,97	161,60	285,21	282,41	407,44	403,12
65	62,07	61,31	103,45	102,31						
68							303,03	300,24	432,90	428,58
70	66,85	66,08	111,41	110,27						
72	68,75	67,99			183,35	181,97	320,86	318,06	452,00	447,68
75	71.62	70.86	119.37	118.22						
78	74,48	73,72	124,14	123,00						
80	76,39	75,63	127,32	126,18	203,72	202,35	356,51	353,71	509,30	504,98
90	85,94	85,18	143,24	142,10	229,18	227,81	401,07	398,28	572,96	568,64
100	95,49	94,73	159,15	158,01						
110	105,04	104,28	175,07	173,93			400.44	400.00	740.04	700.70
112	114.50	112 02	100.00	100.04	285,21 ^a	283,83	499,11	496,32	713,01	708,70
120 130	114,59 124 14	113,83	190,99	189,84						
130 140	124,14 133,69	123,38 132,92	206,90 222,82	205,76 221,67						
144		132,92			366,69 a	365,32	641,71	638,92	916,73	912,41
150	143,24	142,48	238,73	237,59					910,73	912,41
160	152,79	152,03	254,65	235,50						
168					427.81	426.44	748,66 ^a	745,87	1 069,52	1 065,20
192					488,92 a	487,55	855,62 ^a	852,82	1 222,31	1 217,99
216							962,57 ^a	959,78	1375.10	1370.78
		hle in all wic	ths consu				. ,-	. , -		

Table 8 — Values of N'

	Pulley	y type		
Number of grooves	H8M	H14M		
	Value of N'	Value of N		
28	0,15	0,15		
29	0,15	0,13		
30	0,10	0,09		
31	0,08	0,09		
32	0,05	0,08		
33	0,03	0,08		
34		0,08		
35		0,05		
36		0,05		
37		0,05		
38		0,05		
39		0,03		
40		0,03		

Note: N' values for H3M, H5M, and H20M are zero.

7.2.5 Pulley width

The standard nominal pulley width, and the minimum actual pulley width required, b_f for flanged pulleys, b_f for unflanged pulleys are given in Table 9 and shown in Figure 6. Users are advised that the values given for b_f apply also to pulleys with only one flange (see Annex D).

Table 9 — Standard pulley widths

Dimensions in millimetres

Pulley type	Standard nominal	Minimum	pulley width
Fulley type	pulley width	Flanged b _f	Unflanged b'f
	6	8	11
H3M	9	11	14
	15	17	20
	9	11	15
H5M	15	17	21
	25	27	31
	20	22	30
H8M	30	32	40
I IOIVI	50	53	60
	85	89	96
	40	42	55
	55	58	70
H14M	85	89	101
	115	120	131
	170	175	186
	115	120	134
	170	175	189
H20M	230	235	251
	290	300	311
The american control	340	350	361

The minimum unflanged pulley width may be reduced when the alignment of the drive can be controlled but shall not be less than the minimum flanged pulley width.

- 1 Flanged pulley
- 2 Unflanged pulley

Figure 6 — Minimum pulley width

8 Type R system

8.1 R-type belt dimensions and tolerances

8,1.1 Belt tooth dimensions

The nominal belt tooth dimensions are the same for single-sided and double-sided belts; they are given in Table 10 and shown in Figure 7.

Table 10 — Nominal tooth dimensions

Dimensions in millimetres S **Pitch** Belt type hs h_{d} h₊ 1,27 R₃M 1,95 2,40 0,380 0,381 3,0567 32° ----3 DR3M 3 32° 1,95 3,30 1,27 0,380 0,381 3,0567 R5M 5 3,30 3,80 2,15 0,630 0,570 32° 1,7950 DR5M 5 32° 3,30 5,44 2,15 0,630 0,570 1,7950 R8M 8 32° 5,49 5,40 3,25 1,00 0,686 1,0954 DR8M 8 0,686 32° 5,49 8,37 3,25 1,00 1,0954 R14M 14 9,70 1,75 1,397 32° 9,61 6,13 0,6250 DR14M 14 32° 9,61 15,05 6,13 1,75 1,397 0,6250 R20M 20 32° 13,75 14,50 8,75 2,50 2,160 0,0438 a is the belt design pitch differential.

Figure 7 — Belt tooth dimensions

8.1.2 Belt widths and tolerances

Belt widths and tolerances are given in Table 11.

Table 11 — Widths and width tolerances

Dimensions in millimetres

		Tolera	ance on width for belt pitch leng	ıths
Belt type	Nominal belt width	Up to and including 840 mm	Over 840 mm and up to and including 1 680 mm	Over 1 680 mm
R3M	6	+ 0,4	+ 0,4	
	9	- 0,8	- 0,8	
	15	+ 0,8	+ 0,8	+ 0,8
DR3M	15	- 0,8	-1,2	- 1,2
R5M	9	+ 0,4	+ 0,4	
1 (0)	9	-0,8	- 0,8	
	15	+ 0,8	+ 0,8	+ 0,8
DR5M	25	- 0,8	- 1,2	- 1,2
	20	+ 0,8	+ 0,8	+ 0,8
R8M	30	- 0,8	- 1,2	- 1,2
	50	+ ,8	+ 1,2	+ 1,2
D.D.014	50	- 1,2	- 1,2	– 1,6
DR8M	85	+ 1,6	+ 1,6	+ 2,0
	85	- 1,6	- 2,0	- 2,0
	40	+ 0,8	+ 1.2	+ 1,2
R14M	40	- 1,2	- 1,2	– 1,6
	55	+ 1,2	+ 1,2	+ 1,6
	33	- 1,2	- 1,6	- 1,6
	85	+ 1,6	+ 1,6	+ 2,0
		- 1,6	- 2,0	- 2,0
DR14M	115	+ 2,4	+ 2,4	+ 2,4
	170	<i>−</i> 2,4	- 2,8	- 3,2
	115	- 2,4 + 2,4	+ 2,4	+ 2,4
	170	− 2,4	- 2,8	- 3,2
R20M	230			+ 4,8
	290			+ 4,0 - 6,4
	340			- 0,4

8.1.3 Pitch length measurement

See Annex A for tolerances and annex B for the relationship between the centre distance and the belt pitch length.

8.1.3.1 Measuring fixture (see Figure 24)

The pitch length of a synchronous belt shall be determined by placing the belt on a measuring fixture composed of the following elements.

8.1.3.1.1 Two pulleys of equal diameter, as specified in Table 12 of the proper belt type and having standard tooth space dimensions. These pulleys should be made to the tolerances shown in Table 12. One pulley shall be free to rotate on a fixed-position shaft, while the other shall be free to rotate on a moveable shaft to permit the centre distance to change.

8.1.3.1.2 Means of applying a total measuring force to the moveable pulley.

8.1.3.1.3 Means of measuring the centre distance between the two pulleys with the necessary degree of accuracy for centre distance measurement.

8.1.3.2 Total measuring force

The total measuring force to be applied for measuring belts is given in Table 13.

8.1.3.3 Procedure

In measuring the pitch length of a synchronous belt, the belt should be rotated at least two revolutions to seat it properly and to divide the total force equally between the two lengths of the belt.

The pitch length shall be calculated by adding the pitch circumference of one of the pulleys to twice the measured centre distance.

Check double-sided belts on both tooth faces.

Figure 8 — Diagram of fixture for measuring pitch length

Table 12 — Belt length measuring pulleys

Dimensions in millimetres

Belt type	Number of grooves	Pitch circumference	Outside diameter ^a	Radial runout F.I.M. ^b	Axial runout F.I.M. ^b
R3M, DR3M	30	90	27,886 ±0,013	0,013	0,025
R5M, DR5M	20	100	30,687 ±0,013	0,013	0,025
R8M, DR8M	34	272	85,208 ±0,013	0,013	0,025
R14M, DR14M	40	560	175,46 ±0,025	0,013	0,051
R20M	40	800	250,33 ±0,036	0,013	0,076

For pulleys outside of the diameter tolerance range specified consult the belt manufacturer

NOTE: The number of pulley teeth specified in Table 12 determine the recommended sizes for measuring the belt pitch length. Practically, other sizes of pulleys could be used provided they have the same number of teeth, and meet the dimensional requirements of Table 12.

b Full Indicator Movement

Table 13 — Total measuring force

Forces in Newtons

Belt		Belt width (mm)													
pitch	6	9	15	20	25	30	40	50	55	85	115	170	230	290	340
R3M, DR3M	45	76	138												
R5M, DR5M		111	214	-	376	-	-	I	I						
R8M, DR8M		1	-	470	-	750	1	1 320	l	2 310					
R14M, DR14M		I	-	-	1	-	1 350	I	2 130	3 660	5 180	7 960			
R20M											6 961	10 729	14 839	18 949	22 374

8.2 R-type pulleys

8.2.1 General

See Annex C for tolerances.

The pulley is characterized by a curvilinear groove profile. This groove profile is defined as the profile formed by the generating tool rack form required to machine-finish the curvilinear profile. The profile is different for each pulley diameter, but can be closely approximated by a nominal groove profile over specified ranges of number of grooves.

8.2.2 Generating tool rack

Dimensions and tolerances for the generating tool rack for R8M and R14M pulleys are given in Table 14 and Figure 26.

Table 14 — Pulley generating tool rack dimensions

.		_			1.		147			OHS III IIIII	
Pulley type	Number of grooves	<i>P</i> _b ±0,012	<i>A</i> ±0,50°	b_{t}	h _p ref.	<i>h</i> _r	W_{p} ref.	$W_{\rm r}$ ref.	W_{t}	r ₂ ±0,025	С
R3M	8 - 15	2,761	16,00	2,06 +0,05 -0,00	0,925	1,15 ±0,025	0,966 0	0,234	0,870 +0,05 -0,00	0,31	3,285 0
R3M	16 - 30	2,867	16,00	2,06 +0,05 -0,00	0,925	1,15 ±0,025	0,966 0	0,340	0,870 +0,05 -0,00	0,31	3,285 0
R3M	31 and over	3,000	16,00	2,00 +0,05 -0,00	0,896	1,20 ±0,025	0,913 0	0,367	0,798 +0,05 -0,00	0,41	3,394 0
R5M	10 - 21	4,761	16,00	3,48 ±0,025	1,604	2,06 +0,05 -0,00	1,609 0	0,332	1,379 ±0,025	0,63	1,896 0
R5M	22 and over	5,000	16,00	3,48 ±0,025	1,604	2,06 +0,05 -0,00	1,609 0	0,571	1,379 ±0,025	0,63	1,896 0
R8M	22 - 27	7,780	18,00	5,900 ±0,025	2,828	3,45 +0 -0,05	2,75	0,577	1,820 ±0,025	0,90	0,837 3
R8M	28 and over	7,890	18,00	5,900 ±0,025	2,794	3,45 +0 -0,05	2,74	0,612	1,840 ±0,025	0,95	0,847 7
R14M	28 and over	13,800	18,00	10,45 +0,05 -0,00	4,930	6,04 +0,05 -0	4,87	1,020	3,320 ±0,025	1,60	0,479 9
R20M	30 and over	19,692	18,00	14,85 +0,05 -0,00	6,703	8,50 +0,05 -0	6,841	1,604	4,970 ±0,025	2,60	0,353 2

Figure 9 — Pulley generating tool rack form

8.2.3 Pulley groove profile dimensions and tolerances

Dimensions and tolerances for the pulley groove profile for R-type pulleys are given in Table 15 and Table 16 and shown in Figures 10 and 11.

Table 15 — Pulley groove profile dimensions

D :			
I limanciane	ın	millim	IDtrac
Dimensions	111	1111111111	にいてる

Belt section	Number of teeth	GH	X _A	X _B	Y _B	X'₀	Ϋ́c	К	r _t	R_{D}
	8 - 15	1,15	0,39	4,00	0,08	0,54	0,94	3,2100	0,28	4,00
R3M	16 - 30	1,15	0,40	4,00	0,00	0,53	0,93	3,285 <mark>0</mark>	0,30	13,00
	31 and over	1,20	0,40	4,00	0,00	0,53	0,93	3,3940	0,40	18,00
R5M	10 - 21	2,06	0,63	4,00	0,06	0,97	1,70	1,7900	0,63	9,00
INOIVI	22 and over	2,06	0,70	4,00	0,00	0,95	1,66	1,8290	0,50	18,00
R8M	22 - <mark>27</mark>	3,47	0,92	4,00	0,11	1,75	2,61	0,8477	0,90	22,00
IXOIVI	28 and over	3,47	0,92	4,00	0,00	1,75	2,61	0,8477	0,95	22,00
R14M	28 and over	6,04	1,64	4,00	0,00	3,21	4,93	0,4799	1,60	32,00
R20M	30 and over	8,50	2,50	4,00	0,00	4,40	6,80	0,3490	2,42	150,00

1 Pulley outside diameter

Figure 10 — Pulley groove profile

The true profile of the R-type pulley groove can only be produced by plotting the parabolic function associated with the cross section and the number of grooves. Table 16 provides the tip radii dimensions to be used with these generations. Figure 11 illustrates the pulley groove tolerance bands.

Table 16 — Pulley tip radii
Dimensions in millimetres

Pulley type	Number of grooves	$r_{\mathrm{t}}^{\mathrm{a}}$						
	8 - 15	0,28						
R3M	16 - 30	0,30						
	31 and over	0,40						
R5M	10 - 21	0,63						
KOW	22 and over	0,50						
R8M	22 - 27	0,90						
KOIVI	28 and over	0,95						
R14M	28 and over	1,60						
R20M	30 and over	2,42						

^a the profile band tolerance thru R2 blends into the pulley OD tolerance so that the pulley OD and profile band tolerances do not conflict.

1 Pulley outside diameter

Figure 11 — Pulley groove tolerance band

8.2.4 Pulley outside diameters

Pulleys outside diameters for the standard pulleys are given in Table 17. The relationship of the pulley outside and pitch diameters is illustrated in Figure 12 and the following formula.

$$pitch diameter = \frac{No. of grooves x pulley pitch}{\pi}$$

outside diameter = pitch diameter - 2a

where a is the value given in Table 10.

- 1 Pitch (circular pitch)
- 2 Belt pitch line
- 3 Belt tooth
- 4 Pitch diameter
- 5 Outside diameter
- 6 Pulley groove

Figure 12 — Pulley dimensions

Table 17 — Standard pulley sizes

					Pulle	y type	Dimensions in millime			minioti Co
Number	R?	3M	R ⁱ	5M		s BM	R1	4M	R2	0M
of	Pitch	Outside	Pitch	Outside	Pitch	Outside	Pitch	Outside	Pitch	Outside
grooves	Diameter	Diameter	Diameter	Diameter	Diameter	Diameter	Diameter	Diameter	Diameter	Diameter
14	13,37	12,61	22,28	21,14						
15	14,32	13,56	23,87	22,73						
16	15,28	14,52	25,46	24,32						
17	16,23	15,47	27,06	25,91						
18	17,19	16,43	28,65	27,50						
19	18,14	17,38	30,24	29,10						
20	19,10	18,34	31,83	30,69						
21	20,05	19,29	33,42	32,28						
22	21,01	20,25	35,01	33,87	56,02	54,65				
24	22,92	22,16	38,20	37,05	61,12	59,74				
25					63.66	62.29				
26	24,83	24,07	41,38	40,24	66,21	64,84				
28	26,74	25,98	44,56	43,42	71,30	70,08	124,78	122,12		
29							129,23	126,57		
30	28,65	27,89	47,75	46,60	76,39	75,13	133,69	130,99		
32	30,56	29,80	50,93	49,79	81,49	80,16	142,60	139,88		
34	32,47	31,71	54,11	52,97	86,58	85,21	151,52	148,79	216,45	212,13
36	34,38	33,62	57,30	56,15	91,67	90,30	160,43	157,68	229,18	224,87
38	36,29	35,53	60,48	59,34	96,77	95,39	169,34	166,60	241,92	237,60
40	38,20	37,44	63,66	62,52	101,86	100,49	178,25	175,49	254,65	250,33
43	41,06	40,30	68,44	67,29						
44	42,02	41,25	70,03	68,89	112,05	110,67	196,08	193,28	280,11	275,79
46	43,93	43,16	73,21	72,07						
48	45,48	45,07	76,39	75,25	122,23	120,86	213,90	211,11	305,58	301,26
49	46,79	46,03	77,99	76,84						
50	47,75	46,98	79,58	78,43						
52	49,66	48,89	82,76	81,62			231,73	228,94	331,04	326,72
55	52,52	51,76	87,54	86,39						
56			89,13	87,98	142,60	141,23	249,55	246,76	356,51	325,19
60	57,30	56,53	95,49	94,35			267,38	264,59	381,97	377,65
62			98,68	97,53						
64					162,97	161,60	285,21	282,41	407,44	403,12
65	62,07	61,31	103,45	102,31						
68							303,03	300,24	432,90	428,58
70	66,85	66,08	111,41	110,27						
72	68,75	67,99	440.07	440.00	183,35	181,97	320,86	318,06	452,00	447,68
75 70	71.62	70.86	119.37	118.22						
78	74,48	73,72	124,14	123,00	200 70		250.54	252.74		
80	76,39	75,63	127,32	126,18	203,72	202,35	356,51	353,71	509,30	504,98
90	85,94	85,18	143,24	142,10	229,18	227,81	401,07	398,28	572,96	568,64
100	95,49	94,73	159,15	158,01						
110	105,04	104,28	175,07	173,93	 20E 24	202.02	400.11	406.22	712.01	700.70
112 120	114 50	112.02	100.00	190.94	285,21	283,83	499,11	496,32	713,01	708,70
120 130	114,59 124 14	113,83	190,99	189,84 205.76						
140	124,14 133,60	123,38	206,90	205,76						
144	133,69 	132,92	222,82	221,67	366,69	365,32	641,71	638,92	916,73	912,41
150	143,24	142,48	238,73	237,59	300,08	303,32	U-1,/ I	000,82	310,73	912,41
160	152,79	152,03	254,65	237,59						
168	152,79		254,05	235,50	427.81	426.44	748,66	745,87	1 069,52	1 065,20
192					488,92	487,55	855,62	852,82	1 222,31	1 217,99
216					400,92	467,33	962,57	959,78	1375.10	1370.78
210							302,31	JJJ,10	1070.10	1010.10

8.2.5 Pulley width

The standard nominal pulley width, and the minimum actual pulley width required, b_f for flanged pulleys, b'_f for unflanged pulleys (see Figure 13), are given in Table 18. Users are advised that the values given for b'_f apply also to pulleys with only one flange (see Annex D).

Table 18 — Standard pulley widths

Dimensions in millimetres

Differences							
Pulley type	Standard nominal		pulley width				
i uney type	pulley width	Flanged b _f	Unflanged b'f				
	6	8	11				
R3M	9	11	14				
	15	17	20				
	9	11	15				
R5M	15	17	21				
	25	27	31				
	20	22	30				
R8M	30	32	40				
KOWI	50	53	60				
	85	89	96				
	40	42	55				
	55	58	70				
R14M	85	89	101				
	115	120	131				
	170	175	186				
	115	120	134				
	170	175	189				
R20M	230	235	251				
	290	300	311				
	340	350	361				

The minimum unflanged pulley width may be reduced when the alignment of the drive can be controlled, but shall not be less than the minimum flanged pulley width.

Key

- 1 Flanged pulley
- 2 Unflanged pulley

Figure 13 — Minimum pulley width

9 Type S system

9.1- Type belt dimensions and tolerances

9.1.1 Belt tooth dimensions

The nominal belt tooth dimensions are the same for single-sided and double-sided belts; they are given in Table 19 and shown in Figure 14.

Table 19 — Nominal tooth dimensions

Belt type	Pitch	h_{S}	h_{d}	h_{t}	S	^r bb	^r a	$r_{\rm r}$	Y	$\alpha^{\mathbf{a}}$
S8M	8	5,3		3,05	5,20	5,20	0,80	0,80	0,686	0,686
DS8M	8		7,47	3,05	5,20	5,20	0,80	0,80	0,686	0,686
S14M	14	10,2		5,30	9,10	9,10	1,40	1,40	1,397	1,397
DS14M	14		13,39	5,30	9,10	9,10	1,40	1,40	1,397	1,397

 $^{^{\}rm a}$ $_{\rm lpha}$ is the belt design pitch differential.

Figure 14 — Tooth dimensions

9.1.2 Belt widths and tolerances

Belt widths and tolerances are given in Table 20.

Table 20 — Widths and width tolerances

Dimensions in millimetres

		Tolera	nce on width for be	It pitch lengths	
Belt Type	Nominal belt width	Up to and including 840 mm	Over 840 mm up to and including 1680 mm	Over 1680 mm	
	15	±0,8	+0,8	+0,8	
	25	10,0	-1,2	-1,2	
S8M DS8M	40	+0,8 -1,2	±1,2	+1,2 -1,6	
	60	±1,2	+1,2 -1,6	±1,6	
	40	+0,8 -1,2	±1,2	+1,2 -1,6	
	60	±1,2	+1,2 -1,6	±1,6	
S14M DS14M	80	±1,6	+1,6 -2,0	±2,0	
	100	±1,6	+1,6 -2,0	±2,0	
	120	±2,4	+2,4 -2,8	+2,4 -3,2	

9.1.3 Pitch length measurement

See Annex A for tolerances and annex B for the relationship between the centre distance and the belt pitch length.

9.1.3.1 Measuring fixture (see Figure 15)

The pitch length of a synchronous belt shall be determined by placing the belt on a measuring fixture composed of the following elements.

Two pulleys of equal diameter, as specified in Table 21 of the proper belt type and having standard tooth space dimensions. These pulleys should be made to the tolerances shown in Table 21. One pulley shall be free to rotate on a fixed-position shaft, while the other shall be free to rotate on a moveable shaft to permit the centre distance to change.

9.1.3.1.1 Means of applying a total measuring force to the moveable pulley.

9.1.3.1.2 Means of measuring the centre distance between the two pulleys with the necessary degree of accuracy for centre distance measurement.

9.1.3.2 Total measuring force

The total measuring force to be applied for measuring belts is given in Table 22.

9.1.3.3 Procedure

In measuring the pitch length of a synchronous belt, the belt should be rotated at least two revolutions to seat it properly and to divide the total force equally between the two lengths of the belt.

The pitch length shall be calculated by adding the pitch circumference of one of the pulleys to twice the measured centre distance.

Check double-sided belts on both tooth faces.

Figure 15 — Diagram of fixture for measuring pitch length

Table 21 — Belt length measuring pulleys

Dimensions in millimetres

Belt type	Number of grooves	Pitch circumference	Outside diameter ^a	Radial runout F.I.M. ^b	Axial runout F.I.M. ^b
S8M, DS8M	34	272	85,208 ±0,013	0,013	0,025
S14M, DS14M	40	560	175,460 ±0,025	0,013	0,051

^a Pulleys outside of the diameter tolerance range specified may be used if the resulting belt length measurements are corrected for the actual pulley diameters.

NOTE: The number of pulley teeth specified in Table 21 determine the recommended sizes for measuring the belt pitch length. Practically, other sizes of pulleys could be used provided they each have the same number of teeth, and meet the dimensional requirements of Table 21.

b Full indicator movement.

Table 22 — Total measuring force

Forces in Newtons

	Total measuring force						
Belt type		Belt width, mm					
	15	25	40	60	80	100	120
S8M, DS8M	570	1 020	1 740	2 770			
S14M, DS14M			2 420	3 840	5 340	6 880	8 470

9.2 S-type pulleys

9.2.1 General

See annex C for tolerances.

The pulley is characterized by a curvilinear groove profile. This groove profile is defined as the profile formed by the generating tool rack form required to machine-finish the curvilinear profile. The profile is different for each pulley diameter, but can be closely approximated by a nominal groove profile over specified ranges of number of grooves.

9.2.2 Generating tool rack

Dimensions and tolerances for the generating tool rack for pulleys S8M and S14M are given in Table 23 and Figure 16.

Table 23 — Pulley generating tool rack dimensions

Pulley Type	Number of grooves	P _b ±0,012	h _r +0,05 -0,00	<i>b</i> _t +0,05 -0,00	<i>r</i> ₁ +0,05 -0,00	r ₂ ±0,03	r ₃ ±0,03	r ₄ ±0,03	r ₅ ±0,10	Х	W	a	Y
S8M	22 and over	8,000	2,830	5,200	5,300	0,750	2,710	0,400	4,040	5,040	1,130	0,686	0,686
	22 - 26	7,611	2,830	4,220	4,740	0,800		0,270	5,680				0,256
Ontional	27 - 33	7,689	2,830	4,220	4,740	0,800		0,290	5,280				0,279
Optional S8M	34 - 46	7,767	2,830	4,220	4,740	0,800		0,320	4,920				0,299
Solvi	47 - 74	7,844	2,830	4,220	4,740	0,800		0,350	4,590				0,321
	75 - 216	7,928	2,830	4,220	4,740	0,800		0,380	4,280				0,342
S14M	28 and over	14,000	4,950	9,100	9,28	1,310	4,800	0,700	7,070	8,840	1,980	1,397	1,397
	28 - 34	13,441	4,950	7,500	8,380	1,360		0,520	9,170				0,784
Optional	35 - 47	13,577	4,950	7,500	8,380	1,360		0,560	8,570				0,819
S14M	48 - 75	13,716	4,950	7,500	8,380	1,360		0,610	8,030				0,856
	76 - 216	13,876	4,950	7,500	8,380	1,360		0,660	7,460				0,896

NOTE 1: Optional tool rack dimensions represent a refinement of the original patent holder's design. Selection of standard or optional to be agreed between manufacturer and user.

Figure 16 — Pulley generating tool rack form

9.2.3 Pulley groove profile dimensions and tolerances

Dimensions and tolerances for the pulley groove profile for S-type pulleys are given in Table 24 and shown in Figure 17.

Table 24 — Pulley groove profile dimensions

Dimensions in millimetres

Pulley type	Number of grooves	B _g ¹ +0,10 -0,00	H _g ±0.03	R ₅ ±0.01	R ₄ ±0.01	R ₂ +0,10 -0,00	R ₁ +0,10 -0,00	а	Υ
S8M	22 and over	5,20	2,83	4,04	0,40	0,75	5,30	0,686	0,686
S14M	28 and over	9,10	4,95	7,07	0,70	1,31	9,28	1,397	1,397

NOTE: The B_q dimension is an arc length, not a cord length.

Figure 17 — Pulley groove profile

9.2.4 Pulley outside diameters

Pulley outside diameters for the standard pulleys are given in Table 25. The relationship of the pulley outside and pitch diameters is illustrated in Figure 18 and the following formula.

$$\text{pitch diameter = } \frac{\textit{No. of grooves x pulley pitch}}{\pi}$$

outside diameter = pitch diameter - 2a

where a is the value given in Table 19

Table 25 — Standard pulley sizes

	Ī	וחens	sions in m	illimetres		
Number		Belt	type			
of	S8	<u>BM</u>	S1	4M		
grooves	Pitch	Outside	Pitch	Outside		
grooves	diameter	diameter	diameter	diameter		
22	56,02 ^a	54,65				
24	61,12 ^a	59,74				
26	66,21 ^a	64,84				
28	71,30 ^a	69,93	124,78 ^a	121,98 ^a		
29			129,23 ^a	126,44 ^a		
30	76,39 ^a	75,02	133,69 ^a	130,90		
32	81,49	80,12	142,60 ^a	139,81		
34	86,58	85,21	151,52°	148,72		
36	91,67	90,30	160,43	157,63		
38	96,77	95,39	169,34	166,55		
40	101,86	100,49	178,25	175,46		
44	112,05	110,67	196,08	193,28		
48	122,23	120,86	213,90	211,11		
52			231,73	228,94		
56	142,60	141,23	249,55	246,76		
60			267,38	264,59		
64	162,97	161,60	285,21	282,41		
68			303,03	300,24		
72	183,35	181,97	320,86	318,06		
80	203,72	202,35	356,51	353,71		
90	229,18	227,81	401,07	398,28		
112	285,21 ^a	283,83	499,11	496,32		
144	366,69 ^a	365,32	641,71	638,92		
168			748,66 ^a	745,87		
192	488,92 ^a	487,55	855,62 ^a	852,82		
216			962,57 ^a	959,78		
a _{Usual}						

Key

- 1 Pitch (circular pitch)
- 2 Belt pitch line
- 3 Belt tooth
- 4 Pitch diameter
- 5 Outside diameter
- 6 Pulley groove

Figure 18 — Pulley dimensions

9.2.5 Pulley width

The standard nominal pulley width, and the actual pulley width required, b_f for flanged pulleys, b'_f for unflanged pulleys (see Figure 19), are given in Table 26. Users are advised that the values given for b'_f apply also to pulleys with only one flange (see annex D).

Table 26 — Standard pulley widths

Dimensions in millimetres

Pulley type	Standard nominal	Minimum	pulley width	
Fulley type	pulley width	Flanged b _f	Unflanged b' _f	
	15	18	25	
S8M	25	28	35	
Solvi	40	43	50	
	60	63	70	
	40	43	55	
	60	63	76	
S14M	80	84	96	
	100	104	116	
	120	125	136	

The minimum unflanged pulley width may be reduced when the alignment of the drive can be controlled, but shall not be less than the minimum flanged pulley width.

Key

- 1 Flanged pulley
- 2 Unflanged pulley

Figure 19 — Minimum pulley width

Annex A (normative)

Belt pitch lengths and tolerances

The belt pitch lengths and tolerances are given in Table A.1.

Table A.1 — Standard pitch lengths and tolerances

Belt Pitch Length		Permissible Deviat	ion From Standard Length
Over	То	Single Sided Belts	Double Sided Belts
127	254	± 0,40	+0,80
.21		± 0,40	-0,60
254	381	± 0,46	+0,92 -0,69
			+1,00
381	508	± 0,50	-0,75
508	762	± 0,60	+1,20 -0,90
762	1016	± 0,66	+1,32
702	1010	± 0,00	- 0,99
1016	1270	± 0,72	+1,44 -1,08
1270	1524	± 0,82	+1,64
1210	1024	± 0,02	-1,23
1524	1778	± 0,86	+1,74 -1.29
1778	2032	± 0,92	+1,84
1776	2032	± 0,92	-1,38
2032	2286	± 0,98	+1,96 -1,47
			+2,08
2286	2540	± 1,04	-1,56
2540	2794	± 1,08	+2,16
			-1,62 +2,24
2794	3048	± 1,12	-1,68
3048	3302	± 1,16	+2,32
		,	-1,74 +2.40
3302	3556	± 1,20	+2,40 -1,80
3556	3810	± 1,26	+2,52
	0010	1,20	-1,89
3810	4064	± 1,32	+2,64 -1,98
4004	4240	1.4.00	+2,76
4064	4318	± 1,38	-2,07
4318	4572	± 1,44	+2,88 -2,16
4550	4000		-2,10 +3,00
4572	4826	± 1,50	-2,25
4826	5080	± 1,56	+3,12
		•	-2,34 +3,24
5080	5334	± 1,62	-2,43
5334	5588	± 1,68	+3,36
		•	-2,52 +3,48
5588	5842	± 1,74	- 2,61

Table A.1 (cont.) — Standard pitch lengths and tolerances

5842	6096	± 1,80	+3,60 -2,70
6096	6350	± 1,86	+3,72 -2,79
6350	6604	± 1,92	+3,84 -2,88
6604	6860	± 1,98	+3,96 -2,97

NOTE: The permissible deviation from the standard length for double-sided belts is 2 x the plus tolerance and one and 1 1/2 x the minus tolerance of the single-sided belt.

Annex B

(normative)

Relationship between centre distance and belt pitch length

The relationship between centre distance and belt pitch length is given by the following formula:

$$L_p = 2C\cos\phi + \frac{\pi(D+d)}{2} + \frac{\pi\theta(D-d)}{180}$$

where

 L_p is the pitch length of belt, in millimetres;

C is the centre distance, in millimetres;

D is the pitch diameter of large pulley, in millimetres;

d is the pitch diameter of small pulley, in millimetres.

$$\theta = \sin^{-1}\left(\frac{D-d}{2C}\right) \text{degrees}$$

The approximate centre distance "C" can be found by the following formula:

$$C = \frac{K + \sqrt{K^2 - 32(D - d)^2}}{16}$$

where

$$K = 4 L_p - 6,28 (D + d)$$

The exact centre distance can then be determined by trial, using the belt pitch length formula, or by using the centre distance tables available from the belt manufacturers.

Key

1 Pitch line

Annex C

(normative)

Pulley tolerances

C.1 Pitch to pitch tolerances

Tolerances on the amount of deviation of pulley pitch between adjacent teeth, and on the cumulative deviation within 90° arc of a pulley, are given in Table C.1. This tolerance applies to the distance between the same point on either the right or left corresponding flanks of adjacent teeth.

Table C.1 — Pitch to pitch tolerance

Dimensions in millimetres

Outside diameter	Allowable deviation of pitch				
	Between any two	Summation within			
d _o	adjacent teeth	a 90°arca			
<i>d</i> _o ≤ 25,4	0,03	0,05			
$25.4 < d_0 \le 50.8$	0,03	0,08			
$50.8 < d_0 \le 101.6$	0,03	0,11			
$101,6 < d_0 \le 177,8$	0,03	0,13			
$177.8 < d_0 \le 304.8$	0,03	0,15			
$304.8 < d_0 \le 508.0$	0,03	0,18			
$508.0 < d_0 \le 762.00$	0,03	0,20			
$762.00 < d_0 \le 1016.00$	0,03	0,23			
<i>d</i> _o > 1016.00	0,03	0,25			
a The allowable deviation of pitch is to include the next full tooth past a 90° arc					

C.2 Diameter tolerances

Table C.2 — Tolerances on outside diameter

Outside diameter d _o	Tolerance
<i>d</i> _o ≤ 25,4	+0,05/0
$25.4 < d_0 \le 50.8$	+0,08/0
$50.8 < d_0 \le 101.6$	+0,10/0
$101,6 < d_0 \le 177,8$	+0,13/0
$177.8 < d_0 \le 304.8$	+0,15/0
$304.8 < d_0 \le 508.0$	+0,18/0
$508,0 < d_0 \le 762,0$	+0,20/0
$762,0 < d_0 \le 1016,0$	+0,23/0
<i>d</i> _o > 1 016,0	+0,25/0

C.3 Axial circular runout

See Table C.3.

Table C.3 — Axial circular runout

Dimensions in millimetres

Out	side diameter range d _o	F.I.M. ^a max.
	mm	mm
	$d_{0} \le 25,4$	0,05
	$25,4 < d_0 \le 50,8$	0,08
	$50.8 < d_0 \le 101.6$	0,10
	$101,6 < d_0 \le 254,0$	0,001 mm per millimetre of outside diameter
	254,0 < d _o	0,25 mm + 0,000 5 mm per millimetre of outside diameter $d_0 > 254,0$
а	Full indicator movement	

C.4 Radial circular runout

See Table C.4.

Table C.4 — Radial circular runout

Dimensions in millimetres

Outside diameter range d_0	F.I.M. ^a max.
mm	mm
$d_{\rm o} \le 25,4$	0,05
$25.4 < d_0 \le 50.8$	0,07
$50.8 < d_0 \le 101.6$	0,10
$101,6 < d_0 \le 203,2$	0,13
203,2 < d _o	0,13 mm + 0,000 5 mm per millimetre of outside diameter $d_0 > 203,2$
a Full indicator movement	

C.5 Parallelism

Tolerances on pulley parallelism are given in Table C.5.

Table C.5 — Parallelism

Nominal Pulley Width	Tolerances
b _f ≤ 40	0,03
$40 < b_f \le 100$	0,04
$100 < b_f \le 160$	0,05
160 < b _f ≤ 220	0,06
$220 < b_f \le 280$	0,07
$280 < b_f \le 340$	0,08

C.6 Cylindricity

Tolerances on pulley cylindricity are given in Table C.6.

Table C.6 — Cylindricity

Dimensions in millimetres

Nominal Pulley Width	Tolerances
b _f ≤ 20	0,02
$20 < b_f \le 40$	0,04
$40 < b_f \le 80$	0,08
$80 < b_f \le 120$	0,12
$120 < b_f \le 160$	0,16
160 < b _f ≤ 340	0,16mm +0,001mm per millimetre
	Of nominal pulley width b _f >160

C.7 Taper

The maximum taper will be 0,001 mm per millimetre of face width provided that the outside diameter remains within the tolerance given in Table C.2.

C.8 Quality specifications

The quality, finish and balance of pulleys shall comply with the requirements specified in ISO 254.

Annex D (normative)

Flange dimensions

The minimum flange height (h) equals the belt tooth height (h) plus the pitch line differential (a) for the respective H, R, or S system. The flange dimensions are illustrated in Figure D.1.

Figure D.1 — Flange dimensions