

Information Visualization and Visual Analytics (M1522.000500)

Marks and Channels

Jinwook Seo, Ph. D.

Professor, Dept. of Computer Science and Engineering Seoul National University

Why Marks and Channels?

Why Marks and Channels?

• Every complex visual encoding **idiom** can be broken down **into** two orthogonal **components** : Marks and Channels

Idiom

Marks & Channels

Defining Marks and Channels

Marks

- Basic graphical element
- Classified with their spatial dimension
 - Point (0D), Line (1D), Area (2D), Volume (3D)
 - Points
- Lines

Areas

Information Visualization and Visual Analytics – Marks & Channels

Defining Marks and Channels

Marks and Their Types

• Geometric primitives

Marks as Items/Nodes

- Points
- Lines

Areas

Marks as Links

- **→** Containment
- Connection

Defining Marks and Channels

Previous work by Jacques Bertin

Information Visualization and Visual Analytics – Marks & Channels

Defining Marks and Channels

Previous work by Jacques Bertin

Defining Marks and Channels

Channels

- A way to control the **appearance** of marks
- Independent of the spatial dimensionality

Information Visualization and Visual Analytics – Marks & Channels

Defining Marks and Channels

Marks and Channels

- Marks
 - geometric primitives
- Channels
 - control appearance of marks
 - can redundantly code with multiple channels
- Interactions
 - point marks only convey position; no area constraints
 - can be size and shape coded
 - line marks convey position and length
 - $\bullet \ can \ only \ be \ size \ coded \ in \ 1D \ (width) \\$
 - area marks fully constrained
 - cannot be size or shape coded

Visual Encoding

Analyze Idiom Structure

Information Visualization and Visual Analytics – Marks & Channels

Visual Encoding

Analyze Idiom Structure

• as combination of marks and channels

vertical position

2: vertical position horizontal position

mark: point

4: vertical position horizontal position color hue size (area)

mark: point

mark: line mark: point

1D, 2D, and 3D

1D, 2D, and 3D

• size ratio for each pair → 1:4

INTERACTIVE DATA VISUALIZATION: FOUNDATIONS, TECHNIQUES, AND APPLICATIONS, Matthew O. Ward: Georges Grinstein: Daniel Keim, A K Peters Ltd (July 1, 2010)

Information Visualization and Visual Analytics – Marks & Channel

Using Marks and Channels

Expressiveness and Effectiveness

- Expressiveness
 - Vis idiom should express all of, and only, the information in the dataset attributes
- Effectiveness
 - Most important attributes should be encoded with the most effective channels → ranking of channels

Expressiveness and Effectiveness

Expressiveness and Effectiveness

- expressiveness principle
 - match channel and data characteristics
- effectiveness principle
 - encode most important attributes with highest ranked channels
- rankings: where do they come from?
 - accuracy
 - discriminability
 - separability
 - popout

[Automating the Design of Graphical Presentations of Relational Information. Mackinlay. ACM Trans. on Graphics (TOG) 5:2 (1986), 110-141.]

Information Visualization and Visual Analytics – Marks & Channels

Expressiveness and Effectiveness

Channels: Expressiveness types and effectiveness rankings

Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

Accuracy: Fundamental Theory

Stevens' Power Law

• p: perceived magnitude

• a: actual magnitude

• $p = ka^{\alpha}$

• $p_1/p_2 = (a_1/a_2)^{\alpha}$

• length judgment: $\alpha \approx 1$

• area judgment: $\alpha < 1$

• volume judgment: $\alpha \ll 1$

Continuum 💠	Exponent (a) \$	Stimulus condition \$	Continuum +	Exponent (a) \$	Stimulus condition +
Loudness	0.67	Sound pressure of 3000 Hz tone	Warmth	1.6	Metal contact on arm
Vibration	0.95	Amplitude of 60 Hz on finger	Warmth	1.3	Irradiation of skin, small area
Vibration	0.6	Amplitude of 250 Hz on finger	Warmth	0.7	Irradiation of skin, large area
Brightness	0.33	5° target in dark	Discomfort, cold	1.7	Whole body irradiation
Brightness	0.5	Point source	Discomfort, warm	0.7	Whole body irradiation
Brightness	0.5	Brief flash	Thermal pain	1	Radiant heat on skin
Brightness	1	Point source briefly flashed	Tactual roughness	1.5	Rubbing emery cloths
Lightness	1.2	Reflectance of gray papers	Tactual hardness	0.8	Squeezing rubber
Visual length	1	Projected line	Finger span	1.3	Thickness of blocks
Visual area	0.7	Projected square	Pressure on palm	1.1	Static force on skin
Redness (saturation)	1.7	Red-gray mixture	Muscle force	1.7	Static contractions
Taste	1.3	Sucrose	Heaviness	1.45	Lifted weights
Taste	1.4	Salt	Viscosity	0.42	Stirring silicone fluids
Taste	0.8	Saccharin	Electric shock	3.5	Current through fingers
Smell	0.6	Heptane	Vocal effort	1.1	Vocal sound pressure
Cold	1	Metal contact on arm	Angular acceleration	1.4	5 s rotation
			Duration	1.1	White noise stimuli

Information Visualization and Visual Analytics – Marks & Channels

Accuracy: Fundamental Theory

Stevens' Power Law

$$S = I^N$$

S: perceived magnitude

 $\it I$: actual magnitude

Expressiveness and Effectiveness

Any Better Encoding?

nformation Visualization and Visual Analytics – Marks & Channels

Using Marks and Channels

Channel Rankings

- Magnitude Channels for Ordered Attributes
 - Position (aligned scale > unaligned) > Length (1D size) > Tilt/angle > Area (2D size) > Depth > Color (luminance = saturation) > Curvature = Volume (3D size)
- Identity Channels for Categorical Attributes
 - Spatial region > Color Hue > Motion > Shape
- Position dominates the user's mental model

Accuracy: Fundamental Theory

Visual Encoding Principles according to accuracy

• Channel Ranking Varies by Data Type

Information Visualization and Visual Analytics – Marks & Channels

Accuracy: VIS Experiments

Crowdsourced Results

- T1~T3
 - position along a common scale
- T4~T5
 - · length encoding
- T6: angle
- T7: circular area
- T8~T9
 - rectangular area

Discriminability of a Channel

How many usable steps?

• linewidth: only a few

Separability vs. Integrality

Separable channels vs. Integral channels

2 groups each

Size

Some interference

2 groups each

Some/significant interference

3 groups total: integral area

Red + Green

Major interference

4 groups total: integral hue

Separability

Information Visualization and Visual Analytics – Marks & Channels

Channel Effectiveness

Preattentive Processing

- Cognitive operations done preattentively, without the need for focused attention
 - less than 200-250 ms
 - eye movements take 200 ms
 - minimum time to initiate eye movement
 - involves only information available in a single glance
- Popout effects
- Segmentation effects

Preattentive Perception

- find the red dot
 - how long does it take?
- parallel processing on many individual channels
 - speed independent of # of distractors
 - speed *depends* on channel and amount of difference from distractors
- serial search for (almost all) combinations
 - speed depends on number of distractors

Information Visualization and Visual Analytics – Marks & Channels

Channel Effectiveness

Popout

- many channels: tilt, size, shape, proximity, shadow direction, ...
- but not all! parallel line pairs do not pop out from tilted pairs

Popout

Information Visualization and Visual Analytics – Marks & Channels

Grouping

Gestalt Psychology

- Principles of perceptual organization
 - the whole is different from the sum of its parts
 - how smaller objects are grouped to form larger ones
 - "gestalt": German for "pattern/form/shape"
 - "leaving us with a set of descriptive principles, but without a model of perceptual processing"
 - rules themselves still very useful
- Law of Prägnanz
 - law of simplicity, law of good figure
 - fundamental principle of gestalt perception
 - tend to order our experience in a manner that is regular, orderly, symmetric, and simple
 - simplest possibility wins

Gestalt Principles

How do we perceive groups

- Proximity: tendency of elements to be associated with nearby elements
- Similarity: tendency of elements to be associated with similar elements
- **Continuity**: preference for continuous, unbroken, smoothest contours with the *simplest possible physical explanation*
- Common Fate: things moving together

Information Visualization and Visual Analytics – Marks & Channels

Gestalt Principles

Gestalt Psychology

- containment
- connection
- proximity
 - same spatial region
- similarity
 - same values as other categorical channels

Marks as Links

Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Gestalt laws - Connectedness

Information Visualization and Visual Analytics – Marks & Channels

Channel Effectiveness

Gestalt laws - Continuity

Relative Perception

Which is Longer?

Graphical Perception: Theory, Experimentation and the Application to the Development of Graphical Models, William S. Cleveland, Robert McGill, J. Am. Stat. Assoc. 79:387, pp. 531-554, 1984.

nformation Visualization and Visual Analytics – Marks & Channels

Relative vs. Absolute Judgements

Weber's Law

- Perceptual system mostly operates with relative judgements, not absolute
 - that's why accuracy increases with common frame/scale and alignment
- Weber's Law: the perceived change in stimuli is proportional to the initial stimuli
 - ratio of increment to background is constant $\frac{(JND)dS}{S} = constant$
 - filled rectangles are long and differ in length by 15% \rightarrow difficult judgement
 - white rectangles are show and differ in length by 50% \rightarrow easy judgement

after [Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Cleveland and McGill. Journ. American Statistical Association 79:387 (1984), 531-554.]

Relative vs. Absolute Judgements

Weber-Fechner's Law

- $\frac{\delta I}{I} = K$, where I is a stimulus intensity and K is a fixed percentage
- perceived change in stimuli is proportional to initial stimuli
- ullet detectable difference in stimulus intensity I as a fixed percentage K of the object magnitude
- JND: just noticeable difference

Information Visualization and Visual Analytics – Marks & Channel

Relative vs. Absolute Judgements

JND and Visual Perception

- Contrast sensitivity function
 - Sensitivity of Visual Perception dependes on frequency

Relative vs. Absolute Judgements

Luminance contrast – Simultaneous Brightness Contrast

- Perception of color and luminance is contextual
- Luminance perception is based on relative judgements

nformation Visualization and Visual Analytics – Marks & Channels

Relative vs. Absolute Judgements

Luminance contrast – Simultaneous Brightness Contrast

• Luminance perception is based on relative judgements

Contrast for constancy

Contrast for constancy

• Does Mild gray paper reflect about the same amount of light as the white paper?

Information Visualization and Visual Analytics – Marks & Channels

Contrast for constancy

Contrast for constancy

• Does Mild gray paper reflect about the same amount of light as the white paper?

Lightness Constancy

Illumination Discounted

- In bright sunlight or moonlight, we can tell whether a surface is black, white, or gray
- Luminance is **completely** unrelated to perceived lightness (or brightness)
 - black paper in full sunlight 1000 candelas
 - white paper in an office 50 candelas
- Visual system extracts surface information
- Discounts illumination level
- Discounts color of illumination
- Mechanisms

Adaptation (photopigments in the receptors – bleach/regenerate)

Simultaneous brightness contrast (background considered)

Information Visualization and Visual Analytics – Marks & Channels

Design & Validation

Note

• Questions?

References

- Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. Heer and Bostock. Proc ACM Conf. Human Factors in Computing Systems (CHI) 2010, p. 203–212.
- Automating the Design of Graphical Presentations of Relational Information. Mackinlay. ACM Trans. on Graphics (TOG) 5:2 (1986), 110–141.
- Graphical Perception: Theory, Experimentation and the Application to the Development of Graphical Models. William S. Cleveland, Robert McGill, J. Am. Stat. Assoc. 79:387, pp. 531-554, 1984.
- Many slides from Tamara Munzner's slide deck
- Many figures from Main Textbook by Tamara Munzner