

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE					
Physique	B, C	Durée de l'épreuve : 3 heures					
Filysique	В, С	Date de l'épreuve : 8 novembre 2018					

I. Satellite de Neptune (16 points)

La planète Neptune possède plusieurs satellites, dont Triton est un des plus gros. L'orbite de Triton est circulaire autour du centre de Neptune. Dans la suite, on suppose que ces deux corps sont à symétrie sphérique.

- Indiquez sur une figure soignée la force gravitationnelle exercée par Neptune sur Triton.
 Donnez l'expression vectorielle de cette force.

 (2 pts)
- 2) Indiquez sur la figure précédente aussi le vecteur accélération du centre d'inertie de Triton, ainsi que son vecteur vitesse. Montrez que le mouvement de Triton autour de Neptune est uniforme, et établissez l'expression littérale de cette vitesse orbitale. (4 pts)
- 3) A partir du résultat précédent, établissez la troisième loi de Kepler. (2 pts)
- 4) La période de révolution de Triton autour de Neptune est de 5,887 jours, et son rayon orbital vaut 3,548 · 10⁵km. Calculez la masse de Neptune! (2 pts)
- 5) Sachant que la période propre de Neptune vaut 0,671 jours et que son rayon vaut 24754 km, calculez à quelle altitude on devrait placer un satellite synchrone, c.à.d « neptunostationnaire », autour de Neptune ? (4 pts)
- 6) Commentez l'affirmation suivante, et redressez-la s'il y a lieu :
 Une planète deux fois plus éloignée du Soleil que Neptune aura une période de révolution trois fois plus grande que celle-ci. (2 pts)

II. Onde mécanique (16 points)

- 1) Etablissez l'équation d'une onde progressive, créée par un mouvement vibratoire sinusoïdal d'une source S, se propageant sans amortissement le long d'une corde. (4 pts)
- 2) Expliquez à l'aide de figures ce que l'on entend par double périodicité d'une onde progressive. (4 pts)

Un vibreur S, relié à une corde de longueur de 10 m et de masse de 400 g, est animé d'un mouvement oscillatoire sinusoïdal vertical de fréquence 50 Hz et d'amplitude 1,5 cm. Cette corde est tendue par une tension de 64 N et on suppose qu'il n'y a pas de réflexion à l'autre extrémité de la corde.

A la date t = 0, le vibreur passe par sa position d'équilibre et se déplace vers le bas.

- 3) Donnez l'équation du mouvement du vibreur S avec les valeurs numériques. (2 pts)
- 4) Donnez l'équation du mouvement d'un point M situé à une distance de 2,00 m de la source avec les valeurs numériques. (4 pts)
- 5) Le point M vibre-t-il en phase ou en opposition de phase avec la source ? Motivez votre réponse ? (2 pts)

III. Effet photoélectrique (14 points)

- 1) Définissez ce qu'on entend par effet photoélectrique (1 pt)
- Expliquez les raisons pour lesquelles le modèle ondulatoire n'a pu être retenu pour expliquer l'effet photoélectrique.
 (2 pts)
- 3) Énoncez l'hypothèse qui a été émise par Einstein pour interpréter l'effet photoélectrique ? (2 pts
- 4) On éclaire une cathode qui est recouverte de l'un des métaux figurant dans le tableau cidessous avec une lumière monochromatique de longueur d'onde $\lambda = 400$ nm.

Métal	Travail d'extraction en eV
Cs	1,94
Na	2,28
Zn	4,34
Ni	5,00

- a) Déterminez le métal pour lequel la valeur de l'énergie cinétique des électrons émis est maximale. Motivez votre choix. (2 pts)
- b) Calculez la vitesse des électrons émis pour ce métal, ainsi que la longueur d'onde associée à ces électrons. (5 pts)
- c) Peut-on augmenter l'énergie cinétique des électrons émis en augmentant l'intensité de la source lumineuse monochromatique utilisée ? Motivez votre réponse ! (2 pts)

IV. Physique nucléaire (14 points)

- 1) Établissez la loi de la décroissance radioactive. (5 pts)
- 2) Définissez l'activité d'une source radioactive et montrez que cette activité A(t) évolue selon la même loi exponentielle que la loi de décroissance radioactive.(3 pts)

Des ossements humains ont été mis à jours lors de fouilles archéologiques et des chercheurs veulent déterminer l'âge de ces ossements par la méthode de datation par le carbone 14.

Dans la nature le carbone existe entre autre sous forme de deux noyaux isotopes ; le carbone 12 qui est stable et le carbone 14 qui est radioactif. Dans la haute atmosphère, un neutron formé par l'action de rayons cosmiques bombarde un noyau d'azote 14 qui se transforme en carbone 14 radioactif. La désintégration du carbone 14 donne ensuite de l'azote 14. On sait en outre que la période du carbone 14 est de 5730 ans. Les mesures effectuées ont montré que l'activité initiale du carbone 14 (c.à.d. depuis la mort de l'homme préhistorique) a diminué de 98,5 %.

- 3) Écrivez d'abord l'équation de la réaction correspondant à la formation de carbone 14 dans la haute atmosphère et ensuite l'équation de la désintégration du carbone 14. Donnez les noms des particules émises lors des deux réactions.
 (3 pts)
- 4) Déterminez l'âge des ossements humains découverts. (3 pts)

Relevé des principales constantes physiques

Grandeur physique	Symbole	Valeur	Unité		
	usuel	numérique			
Constante d'Avogadro	N _A (ou L)	$6,022 \cdot 10^{23}$	mol ⁻¹		
Constante molaire des gaz parfaits	R	8,314	J K ⁻¹ mol ⁻¹		
Constante de gravitation	K (ou G)	6,673·10 ⁻¹¹	N m ² kg ⁻²		
Constante électrique pour le vide	$k = \frac{1}{4\pi\epsilon_0}$	8,988·10 ⁹	N m ² C ⁻²		
Célérité de la lumière dans le vide	С	2,998·10 ⁸	m s ⁻¹		
Perméabilité du vide	μ ₀	$4\pi \cdot 10^{-7}$	H m ⁻¹		
Permittivité du vide	$\epsilon_0 = \frac{1}{\mu_0 c^2}$	8,854·10 ⁻¹²	F m ⁻¹		
Charge élémentaire	e	1,602·10 ⁻¹⁹	C		
Masse au repos de l'électron	m _e	9,1094·10 ⁻³¹ 5,4858·10 ⁻⁴ 0,5110	kg u MeV/c ²		
Masse au repos du proton	m_p	1,6726·10 ⁻²⁷ 1,0073 938,27	kg u MeV/c ²		
Masse au repos du neutron	m_n	1,6749·10 ⁻²⁷ 1,0087 939,57	kg u MeV/c ²		
Masse au repos d'une particule α	m_{α}	6,6447·10 ⁻²⁷ 4,0015 3727,4	kg u MeV/c ²		
Constante de Planck	h	6,626·10 ⁻³⁴	Js		
Constante de Rydberg de l'atome d'hydrogène	R _H	$1,097 \cdot 10^7$	m ⁻¹		
Rayon de Bohr	r ₁ (ou a ₀)	5,292·10 ⁻¹¹	m		
Energie de l'atome d'hydrogène dans l'état fondamental	E ₁	-13,59	eV		

Grandeurs liées à la Terre et au Soleil		Valeur utilisée sauf indication contraire					
(elles peuvent dépendre du lieu ou du temps)							
Composante horizontale du champ magnétique terrestre	Bh	2.10-5	T				
Accélération de la pesanteur à la surface terrestre	g	9,81	m s ⁻²				
Rayon moyen de la Terre	R	6370	km				
Jour sidéral	T	86164	s				
Masse de la Terre	M_T	5,98·10 ²⁴	kg				
Masse du Soleil	M_S	1,99·10 ³⁰	kg				

Conversion d'unités en usage avec le SI

1 angström = 1 $\overset{\circ}{A}$ = 10⁻¹⁰ m 1 électronvolt = 1 eV = 1,602·10⁻¹⁹ J

1 unité de masse atomique = $1 \text{ u} = 1,6605 \cdot 10^{-27} \text{ kg} = 931,49 \text{ MeV/c}^2$

Formules trigonométriques

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x = \frac{1}{1 + t\sigma^2 x}$$

$$\sin^2 x = \frac{tg^2 x}{1 + tg^2 x}$$

$$1 + tg^2x = \frac{1}{\cos^2x}$$

$$\sin (\pi - x) = \sin x$$

$$\cos (\pi - x) = -\cos x$$

$$\sin (\pi - x) = \sin x$$

 $\cos (\pi - x) = -\cos x$
 $tg (\pi - x) = -tg x$

$$\sin (\pi + x) = - \sin x$$

$$\cos (\pi + x) = - \cos x$$

$$tg (\pi + x) = tg x$$

$$\sin (-x) = - \sin x$$

 $\cos (-x) = \cos x$
 $tg (-x) = - tg x$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$tg(\frac{\pi}{2} - x) = cotg x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$tg\left(\frac{\pi}{2} + x\right) = -\cot g x$$

$$\sin (x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$cos(x + y) = cos x cos y - sin x sin y$$

 $cos(x - y) = cos x cos y + sin x sin y$

$$tg (x + y) = \frac{tg x + tg y}{1 - tg x tg y}$$

$$tg (x - y) = \frac{tg x - tg y}{1 + tg x tg y}$$

$$\sin 2x = 2 \sin x \cos x$$

 $\cos 2x = \cos^2 x - \sin^2 x$

$$2 \cos^2 x = 1 + \cos 2x$$
$$2 \sin^2 x = 1 - \cos 2x$$

$$\sin 2x = \frac{2 \operatorname{tg} x}{1 + \operatorname{tg}^2 x}$$

$$\cos 2x = \frac{1 - tg^2x}{1 + tg^2x}$$

$$tg 2x = \frac{2 tg x}{1 - tg^2x}$$

$$\sin 3 x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = -3\cos x + 4\cos^3 x$$

$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2 \sin \frac{p-q}{2} \cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}$$

$$tg p + tg q = \frac{\sin (p+q)}{\cos p \cos q}$$
$$tg p - tg q = \frac{\sin (p-q)}{\cos p \cos q}$$

$$\sin x \cos y = \frac{1}{2} \left[\sin(x+y) + \sin(x-y) \right]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

 $\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$

18 VIIIA	2 4.0026	He	HÉLIUM	18.998 10 20.180	Ne	NÉON	18 39.948	Ar	ARGON	36 83.798	Kr	KRYPTON	54 131.29	Xe	XÉNON	86 (222)	Rn	RADON	118 ()		UNUNOCTIUM
			17 VIIA	6	Ξ,	FLUOR	17 35.453	C	CHLORE	35 79.904	Br	BROME	53 126.90	Ι	IODE	85 (210)	At	ASTATE	()	Ums	FLEROVIUM UNUNPENTIUM LIVERMORIUM UNUNSEPTIUM UNUNOCTIUM
	http://www.periodni.com/fr		VA 16 VIA 17	12.011 7 14.007 8 15.999	0	OXYGÈNE	13 26.982 14 28.086 15 30.974 16 32.065	S	SOUFRE	33 74.922 34 78.96	Se	SÉLÉNIUM	49 114.82 50 118.71 51 121.76 52 127.60	Te	TELLURE	84 (209)	Po	POLONIUM	116 (291)	$\mathbb{L}_{\mathbb{V}}$	LIVERMORIUM
<u>ÉMENTS</u>	w.period			7 14.007	Z	AZOTE	15 30.974	Ь	PHOSPHORE	33 74.922	As	ARSENIC	51 121.76	Sp	ANTIMOINE	83 208.98	Bi	BISMUTH	()		UNUNPENTIUM
É	http://ww		14 IVA 15		Ö	CARBONE	14 28.086	Si	SILICIUM	32 72.64	Ge	GERMANIUM	50 118.71	Sn	ETAIN	82 207.2	Pb	PLOMB	114 (287)	E	FLEROVIUM
Ϋ́			13 IIIA 14	5 10.811 6	B	BORE	13 26.982	Al	ALUMINIUM	31 69.723 32	Ga	GALLIUM		In	MDIQNI	81 204.38	I	THALLIUM	$109 \ (276) \boxed{110 \ (281)} \boxed{111 \ (280)} \boxed{112 \ (285)} \boxed{113 \ ()} \boxed{114 \ (287)} \boxed{115 \ ()} \boxed{116 \ (291)} \boxed{117 \ ()}$	Uut	UNUNTRIUM
DES									12 IIB	30 65.38	Zn	ZINC	48 112.41	Cd	CADMIUM	80 200.59	Hg	MERCURE	112 (285)		HASSIUM METTNERIUM DARMSTADTIUM ROENTGENIUM COPERNICIUM UNUNTRIUM
									11 IB 12	29 63.546	Cn	CUIVRE	47 107.87	Ag		79 196.97	Au	OR	111 (280)		ROENTGENIUM
ÉRIODIQUE	,	m	EVICE		LATIVE (1)				10	28 58.693	Z	NICKEL	45 102.91 46 106.42	Pd	PALLADIUM	75 186.21 76 190.23 77 192.22 78 195.08	Pt	PLATINE	110 (281)		DARMSTADTIUM
3		NUMÉRO DU GROUPE	CHEMICAL ABSTRACT SERVICE (1986)		– MASSE ATOMIQUE RELATIVE (1)		NOM DE L'ÉLÉMENT		6 0	27 58.933	Co	COBALT	45 102.91	Rh	тесниетим китнемим кнорим	77 192.22	Ir	IRIDIUM		MI	MEITNERIUM
0		NUMÉRO	HEMICAL AF	,	— MASSEA		— NOM DE I		 ~	26 55.845	Fe	FER	44 101.07	Ru	RUTHÉNIUM	76 190.23	Os	OSMIUM	107 (272) 108 (277)	HIS	HASSIUM
ÉR				13 IIIA	5 10.811	_ B	BORE		7 VIIIB	25 54.938	Mn	MANGANÈSE	43 (98)	Ile	TECHNÉTIUM	75 186.21	Re	RHÉNIUM	107 (272)	Bh	BOHRIUM
J		ROUPE	RECOMMANDATIONS DE L'IUPAC (1985)		оміопе—	SYMBOLE —			9 VIB	24 51.996	Cr	CHROME	42 95.96	Mo	MOLYBDÈNE	74 183.84	*	TUNGSTÈNE	106 (271)	50 102	Actinides RUTHERFORDIUM DUBNIUM SEABORGIUM
TABLEAU P		NUMÉRO DU GROUPE	MANDATION (1985)		NOMBREATOMIQUE	S			5 VB 6	23 50.942	>	VANADIUM	41 92.906	Np	NIOBIUM	73 180.95 74 183.84	\mathbf{La}	TANTALE	104 (267) 105 (268) 106 (271)		DUBNIUM
3 E		Z	RECOM						IIIB 4 IVB 5	22 47.867	Τi	TITANE	40 91.224	\mathbf{Zr}	ZIRCONIUM	72 178.49	Hf	HAFNIUM	104 (267)	RA	RUTHERFORDIUM
A										21 44.956	Sc	SCANDIUM	39 88.906	Y	YTTRIUM	57-71	La-Lu	Lanthanides	89-103	Ac-Lr	Actinides
			2	4 9.0122	Be	BÉRYLLIUM	12 24.305	$M_{\mathbf{g}}$	MAGNÉSIUM 3	19 39.098 20 40.078 21 44.956 22 47.867 23 50.942 24 51.996	Ca	CALCIUM	37 85.468 38 87.62 39 88.906 40 91.224 41 92.906 42	Sr	STRONTIUM	56 137.33	Ba	BARYUM	88 (226)	Ra	RADIUM
GROUPE 1	1 1.0079	Н	HYDROGÈNE	3 6.941 4	ï	LITHIUM	11 22.990	Na	SODIUM	19 39.098	Y	POTASSIUM	37 85.468	Rb	RUBIDIUM	55 132.91 56 137.33	S	CÉSIUM	87 (223) 88	Fr	FRANCIUM
·	DE	OIAS			2			က			4			w			9			7	_

LAWRENCIUM 69 168.93 70 173.05 (228) YTTERBIUM MENDELÉVIUM NOBÉLIUM () () 102 101 (258) THULIUM 67 164.93 68 167.26 100 (257) FERMIUM Fin ERBIUM \mathbf{Er} (252) BERKÉLIUM CALIFORNIUM EINSTEINIUM HOLMIUM Ho E S 66 65 158.93 66 162.50 (251) DYSPROSIUM Dy 86 97 (247) TERBIUM 63 151.96 64 157.25 (247) GADOLINIUM CURIUM gg 96 (243) EUROPIUM NEPTUNIUM PLUTONIUM AMÉRICIUM Amm Eu 95 61 (145) 62 150.36 (244) SAMARIUM Sm Pa 94 PROMÉTHIUM (237) Pm 93 60 144.24 92 238.03 NÉODYME URANIUM Nd PROTACTINIUM 57 138.91 58 140.12 59 140.91 91 231.04 PRASÉODYME Pr 90 232.04 THORIUM CÉRIUM LANTHANIDES ACTINIDES 89 (227) LANTHANE ACTINIUM La Ac

Copyright @ 2012 Eni Generalić

71 174.97

103 (262)

LUTÉTIUM

La masse atomique relative est donnée avec cinq chiffres significatifs. Pour les éléments qui n'ont pas de nucléides stables, la valeur entre parenthèses indique le nombre de masse de l'ésotope de l'élément ayant la durée de vie la plus grande. Toutefois, pour les vios éléments (Th, Pa et U) qui ont une composition isotopique terrestre connue, une masse atomique est indiquée. (1) Pure Appl. Chem., 81, No. 11, 2131-2156 (2009)