Wstęp teoretyczny

Zjawisko Halla – w 1879 r. Edwin Herbert Hall przeprowadził eksperyment pozwalający ustalić znak ładunków przeważających nośników w danym materiale. Z doświadczenia wynikało, że przez materiał o jakiejś szerokości L, zwrócony prostopadle do wektora indukcji magnetycznej, elektrony poruszające się wzdłuż materiału dociskane są do dolnej krawędzi materiału przez co powstaje pole elektryczne zwrócone w dół. Jeśli pola B i E wytwarzają siły działające na cząstkę, które są wzajemnie prostopadłe i równe to cząstki poruszają się wzdłuż linii prostej przez materiał – czyli bez zakrzywień.

Pomiary:

1. Dla dwóch ustalonych wartości prądu próbki I_S zmierzono napięcie poprzeczne U_X i napięcie podłużne U_Y dla ustalonych wartości prądu elektromagnesu. Przed pomiarami różnych wartości prądu próbki I_S wyzerowano napięcie poprzeczne - czyli indukcja pola magnetycznego musi być równa zero dla poprawności pomiarów. Zmierzone wartości znajdują się w tabeli poniżej:

		Uy [mV]	Ux [V]	UY [mV]	Ux [V]
L. p.	I ₀ [A]	Is = 12 [mA]		Is = 24 [mA]	
1	0,2	15	1,8	2,7	3,3
2	0,4	16,2	1,8	4,4	3,29
3	0,6	17,6	1,81	6,4	3,29
4	0,8	18,7	1,81	8,6	3,29
5	1	19,9	1,81	10,8	3,29
6	1,2	21,1	1,81	12,9	3,29
7	1,4	22,3	1,81	14,8	3,29
8	1,6	23,4	1,81	16,8	3,29
9	1,8	24,4	1,81	18,8	3,29
10	2	25,5	1,81	20,7	3,29
11	2,2	26,5	1,81	22,6	3,29
12	2,4	27,2	1,8	24,1	3,29

2. Nastepnie przeprowadzono pomiary napięcia poprzecznego U_Y dla dwóch wartości prądu I₀ odpowiadającym podanym wartościom indukcji magetycznej, dla podanych wartości prądów próbki I_s. Tutaj również wyzerowano napięcie U_Y i U_X przed wykonaniem pomiarów. Zmierzone wartości znajdują się w tabeli poniżej:

	<u></u>	-
	Uy [mV]	U _Y [mV]
Is [mA]	B = 150 [mT]	B = 300 [mT]
	I = 1A	I = 2,2A
2	2,1	3,3
4	4,2	6,4
6	6,2	9,5
8	7,9	12,3
10	9,5	14,9
12	10,7	17,1
14	11,6	19,2
16	12,1	21
18	12,5	22,4
20	12,8	23,4
22	13	24,1
24	13,1	24,6

3. Pomiar napięcia poprzecznego dla wszystkich kombinacji kierunków obu prądów dla $I_S = 24mA$ i B=300mT

Kierunek przepływu prądu Is	Zwrot indukcji B	U _Y [mV]
+I _S	+B	22,9
+I _S	-B	-21,9
-I _S	+B	-21,6
-I _S	-B	22,5

Przyrządy pomiarowe:

- Prąd próbki I_s miernik analogowy LM-1
- Zerowanie napięcia poprzecznego U_Y miernik analogowy MeraTronik P317
- Pomiar napięcia poprzecznego próbki U_Y miernik cyfrowy AteX DT890G
- Pomiar napięcia podłużnego próbki U_x miernik cyfrowy AteX DT890G
- Prąd elektromagnesu I₀ miernik cyfrowy NDN DF1731SB5A

Niepewności przyrządów pomiarowych:

- Prąd próbki $\Delta I_S=\frac{klasa\cdot zakres}{100}=\frac{0.5\cdot 30}{100}=0.15~mA$ $u_b(I_S)=\frac{\Delta x}{\sqrt{3}}=87\cdot (10^{-3})mA$
- Pomiar napięcia poprzecznego $\Delta U_Y = a\% \cdot wynik + b \cdot rozdzielczość = 0,5\% \cdot 200mV + 2 \cdot 0,1 = 1,2mV$

$$u_b(U_Y) = \frac{\Delta x}{\sqrt{3}} = 69 \cdot (10^{-2}) mV$$

• Pomiar napięcia podłużnego - $\Delta U_x=a\%\cdot wynik+b\cdot rozdzielczość=0,5\%\cdot 20V+2\cdot 0,01=0,12V$

$$u_b(U_x) = \frac{\Delta x}{\sqrt{3}} = 69 \cdot (10^{-3})V$$

• Prąd elektromagnesu - $\Delta I_0 = a\% \cdot wynik + 0.02 = 2\% \cdot 5A + 0.02 = 0.12A$

$$u_b(U_x) = \frac{\Delta x}{\sqrt{3}} = 69 \cdot (10^{-3})A$$

Schemat układu pomiarowego:

Obliczenia

1. Przeliczenie wartości prądu elektromagnesu I₀ na wartości indukcji pola magnetycznego B według tabeli podanej w instrukcji ćwiczenia.

I ₀ [A]	0,2	0,4	0,6	0,8	1	1,2	1,4	1,6	1,8	2	2,2	2,4	2,6
B [mT]	26	58	88	120	150	175	200	230	255	280	300	320	335

2. Zależność napięcia Halla U_H , w funkcji indukcji pola magnetycznego B, dla różnych natężeń prądu próbki I_S .

3. Dopasowanie prostej za pomocą regresji liniowej.

4. Wyznaczenie współczynników prostej Do wyznaczenia współczynników użyto wzorów:

$$S_x = \sum_{i=1}^n x_i$$
, $S_y = \sum_{i=1}^n y_i$, $S_{xx} = \sum_{i=1}^n x_i^2$, $S_{xy} = \sum_{i=1}^n x_i \cdot y_i$.

Nachylenie prostej	$a = \frac{nS_{xy} - S_x S_y}{nS_{xx} - S_x^2}$	$u(a) = \sqrt{\frac{n}{n-2} \cdot \frac{S_{\varepsilon\varepsilon}}{nS_{xx} - S_x^2}}$
Przecięcie prostej	$b = \frac{S_{xx} \cdot S_y - S_x S_{xy}}{nS_{xx} - S_x^2}$	$u(b) = \sqrt{\frac{1}{n-2} \cdot \frac{S_{xx}S_{\varepsilon\varepsilon}}{nS_{xx} - S_x^2}}$

gdzie
$$S_{\varepsilon\varepsilon} = \sum_{i=1}^{n} \varepsilon_i^2 \text{ oraz } \varepsilon_i = y_i - ax_i - b$$

	I _S = 12mA	I _S = 12mA
Współczynnik kierunkowy prostej a $[rac{V}{T}]$	0,0419	0,074
Niepewność u(a) $[\frac{V}{T}]$	$0.337 \cdot (10^{-3})$	1,05· (10 ⁻³)
Współczynnik b $[\frac{V}{T}]$	13,8	0,072
Niepewność u(b) $[\frac{V}{T}]$	0,069	0,21

Obliczenie wartości stałej Halla R_H Do obliczeń użyto równanie prostej z p. 3 oraz wzoru:

$$U_H = R_H \cdot \frac{I_S}{d} \cdot B$$

Gdzie:

•
$$d = 8 \cdot 10^{-5} [m]$$

Do obliczeń należy przekształcić wzór do postaci:

Gdzie: $R_H = \frac{U_H \cdot d}{B \cdot I_S}$ $\alpha = \frac{U_H}{B}$ $R_H = a \, \frac{d}{I_S}$

	I _S = 12mA	I _S = 12mA
$R_H \left[\frac{mV}{TA}\right]$	28·(10 ⁻⁶)	$25 \cdot (10^{-6})$

6. Wyznaczanie niepewności u(R_H) korzystając z prawa przenoszenia niepewności

$$u(\mathbf{R}_{H}) = \sqrt{\left(\left(\frac{\partial \mathbf{R}_{H}}{\partial U_{H}}\right) \cdot u(U_{H})\right)^{2} + \left(\left(\frac{\partial \mathbf{R}_{H}}{\partial \mathbf{B}}\right) \cdot u(\mathbf{B})\right)^{2} + \left(\left(\frac{\partial \mathbf{R}_{H}}{\partial \mathbf{I}_{S}}\right) \cdot u(I_{S})\right)^{2}}$$

$$u(\mathbf{R}_H) = \sqrt{\left(\left(\frac{d}{B \cdot I_S}\right) \cdot u(U_H)\right)^2 + \left(\left(-\frac{\mathbf{U}_H \cdot B}{I_S \cdot \mathbf{B}^2}\right) \cdot u(\mathbf{B})\right)^2 + \left(\left(-\frac{\mathbf{U}_H \cdot d}{{I_S}^2 \cdot B}\right) \cdot u(I_S)\right)^2}$$

Niepewność u(R_H) $\left[\frac{mV}{TA}\right]$ 39 · (10⁻⁶)

7. Przedstawienie na wykresie zależności napięcia Halla U_H w funkcji natężenia prądu próbki I_S, zmierzone dla różnych wartości indukcji pola magnetycznego B.

8. Dopasowanie prostej do zależności U_H w funkcji natężenia prądu próbki I_S metodą regresji liniowej.

9. Obliczenie wartości R_H korzystając z równania prostej i wzoru na napięcie Halla

$$R_H = a \frac{d}{I_S}$$

Obliczono R_H dla pola magnetycznego o indukcji B = 150 i 300mT, uwzględniając nowe współczynniki kierunkowe z wykresu (p. 7)

(p. /)						
B [mT]	150	300				
Współczynnik kierunkowy a $\left[\frac{mV}{mA}\right]$	0,4862	0,9822				
$R_H \left[\frac{mV}{TA} \right]$	39· (10 ⁻⁶)	$36 \cdot (10^{-6})$				

10. Wyznaczenie koncentracji n₀ nośników ładunku korzystając ze wzoru:

$$n_0 = \frac{1}{eR_H}$$

Gdzie:

e – ładunek elektronu

B [mT]	150	300
Nośnik ładunku $n_0 \ [\frac{CmV}{TA}]$	1,60488 · (10 ²³)	1,74777 · (10 ²³)

11. Wyznaczenie niepewności u(n₀) korzystając z prawa przenoszenia niepewności

$$u(\mathbf{n}_0) = \sqrt{\left(\left(\frac{\partial \mathbf{n}_0}{\partial R_H}\right) \cdot u(R_H)\right)^2}$$

Niepewność u (n_0)	1,95· (10 ¹⁹)

12. Przedstawienie zależności oporu podłużnego próbki R, w funkcji indukcji pola magnetycznego dla różnych natężeń prądu próbki Is

Wzór na opór próbki:

$$R = \frac{U_X}{I_S}$$

13. Analiza wyników pomiarów

$U_{Y1}(+I_S, +B)$	$U_{Y2}(-I_S, +B)$	U _{Y3} (-I _S , -B)	U _{Y4} (+I _S , -B)
22,9mV	-21,6mV	22,5mV	-21,9mV

Tabela przedstawia napięcia dla czterech kombinacji kierunku przepływu prądu I_S względem linii pola magnetycznego. Napięcie poprzeczne U_Y to suma różnych spadków napięć wywoływanych przez różne efekty towarzyszące zjawisku Halla.

Wzór pozwalający obliczyć napięcie Halla to:

$$U_E + U_H = \frac{1}{4}(U_{Y1} + U_{Y2} + U_{Y3} + U_{Y4})$$

Wzór można przekształcić otrzymując:

$$U_{H} = \frac{1}{4}(U_{Y1}-U_{Y2}+U_{Y3}-U_{Y4}) - U_{E}$$

$$U_{H} = 22,225\text{mV} - U_{E}$$

Wnioski

Celem eksperymentu było wyznaczenie stałej Halla oraz koncentracji nośników ładunków. Obliczone wartości mogą odbiegać od rzeczywistych wartości przez błędy pomiarowe. Pomiary z p. 3 pokazały że zmiana kierunków prądu i zwrotu indukcji magnetycznej wpływają na napięcie Halla, gdyż mierzone wartości różniły się od siebie