Fluid Simulation with Smoothed Particle Hydrodynamics(SPH) method accelerated with Compute Shaders

Final project for the practical course in Computergrafik 2016

Fabian Klemp FH Aachen

30 June, 2016

Table of Contents

Introduction

Formula

Fluids

- Liquids, e.g. water
- ► Gasses, e.g. air
- Plasmas

Introduction/Motivation

 $source: \ https://youtu.be/iHACAlfYeiQ$

Navier-Stokes-Equations

Equations which describe the motion of viscous fluids.

We use the Navier-Stokes-Equations for incompressible fluids with constant density:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = \mathbf{g} - \nabla \frac{\mathbf{p}}{\rho} + \frac{\mu}{\rho} \nabla^2 \mathbf{v}$$

where ${\bf v}$ is the velocity, ${\bf g}$ is the gravity, ${\bf p}$ is the pressure and ρ and μ are the material properties density and dynamic viscosity.

Smoothed Particle Hydrodynamics

Physical property Φ_i at position r_i is computed in a sphere with radius h:

$$\Phi_i = \sum_j m_j W(h, \mathbf{r_i} - \mathbf{r_j})$$

W is the weighting function which sums to 1 over radius h and drops to 0 outside of h.

Smoothed Particle Hydrodynamics

$$\rho_{i} \approx \sum_{j} m_{j} \frac{315}{64\pi h^{9}} (h^{2} - \|\mathbf{r_{i}} - \mathbf{r_{j}}\|^{2})^{3}$$

$$p_{i} = \rho_{i} - \rho_{0}$$

$$\frac{dv_{i}}{dt} = \mathbf{g} - \frac{\nabla \mathbf{p_{i}}}{\rho_{i}} + \frac{\mu}{\rho_{i}} \nabla^{2} \mathbf{v_{i}}$$

$$\frac{\nabla \mathbf{p_{i}}}{\rho_{i}} \approx \sum_{j} m_{j} \left(\frac{\mathbf{p_{i}}}{\rho_{i}^{2}} + \frac{\mathbf{p_{j}}}{\rho_{j}^{2}} \right) \frac{-45}{\pi h^{6}} (h - \|\mathbf{r_{i}} - \mathbf{r_{j}}\|) \frac{\mathbf{r_{i}} - \mathbf{r_{j}}}{\|\mathbf{r_{i}} - \mathbf{r_{j}}\|}$$

$$\frac{\mu}{\rho_{i}} \nabla^{2} \mathbf{v_{i}} \approx \frac{\mu}{\rho_{i}} \sum_{j} m_{j} \left(\frac{\mathbf{v_{j}} - \mathbf{v_{i}}}{\rho_{j}} \right) \frac{45}{\pi h^{6}} (h - \|\mathbf{r_{i}} - \mathbf{r_{j}}\|)$$

$$\frac{dv_{i}}{dt} = \mathbf{g} - \frac{\nabla \mathbf{p_{i}}}{\rho_{i}} + \frac{\mu}{\rho_{i}} \nabla^{2} \mathbf{v_{i}}$$

Evaluation

Content:

- very few Parameters
- no assumptions about the data, but still meaningfull results
- comparable performance to established methods
- Parameter choices still existent:
 - motif_length
 - background_noise
 - conversion from audio data to spectogram
 - MPEG encoding

Evaluation

Presentation:

- good Visualization with spectograms and graphs
- Pseudo Code is a bit confusing
- Code not directly accessible, unlike stated in the paper
- Enclosed code is in a bad state, bad documented

Thank you for your attention

Any Questions? Feedback?

Sources