Introduction to Computer Vision

Jean Ponce

Class notes by Antoine Groudiev

Last modified 20th October 2024

Contents

1	Introduction to Computer Vision	2
2	Camera Geometry	2
3	Camera Calibration 3.1 Affine models: weak perspective projection	2
4	Image processing using filters and convolutions 4.1 Filters and convolution	2 2 2 2 3 3 3 3
5	Edge detection	3
6	Radiometry and Color	3
7	Color perception and Two-view geometry	3
8	Epipolar Geometry and Binocular Stereopsis	3
9	Markov random fields	3
10	Recovering structure from motion	3
11	Mean-shift algorithm for segmentation	3
12	Multi-view object models	3
13	Neural Networks for Visual recognition	3
14	Learning methods	3

Abstract

This document is Antoine Groudiev's class notes while following the class *Introduction to Computer Vision* (Introduction à la vision artificielle) at the Computer Science Department of ENS Ulm. It is freely inspired by the class notes written by Jean Ponce.

1 Introduction to Computer Vision

- 2 Camera Geometry
- 3 Camera Calibration
- 3.1 Affine models: weak perspective projection

4 Image processing using filters and convolutions

An image can be interpreted either as a continuous function f(x,y) or as a discrete array $F_{u,v}$.

4.1 Filters and convolution

4.1.1 Basic filters

An image can be blurred using a filter, by replacing a point by the average of its neighbors. Blurring an image gives a smoother image, making it easier to compute derivatives.

4.1.2 Convolutions

Given two integrable functions $f, g : \mathbb{R} \to \mathbb{R}$, we can define their convolution as:

$$f * g : \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \int_{-\infty}^{+\infty} f(x - t)g(t)dt$

Note that f * g = g * f using a change of variable.

This is the definition of the convolution from a continuous perspective. When dealing with images, we want to apply the convolution to a discrete array.

$$R_{i,j} = (F * G)_{i,j} = \sum_{u,v} F_{i-u,j-v} G_{u,v}$$

Convolution follow basic properties:

Commutativity f * q = q * f

Associativity (f * g) * h = f * (g * h)

Linearity (af + bg) * h = af * h + bg * h

Shift invariance $f_t * h = (f * h)_t$

where $f_t(x) = f(x-t)$. Note that is the only operator that is both linear and shift-invariant.

The convolution can be differentiated:

$$\frac{\partial}{\partial x}(f*g) = \frac{\partial f}{\partial x}*g$$

2

Gaussian filters are used to blur images.

- 4.2 Computing derivatives
- 4.3 Edge detection
- 4.4 The Canny edge detector
- 4.5 Denoising, sparsity and dictionary learning
- 5 Edge detection
- 6 Radiometry and Color
- 7 Color perception and Two-view geometry
- 8 Epipolar Geometry and Binocular Stereopsis
- 9 Markov random fields
- 10 Recovering structure from motion
- 11 Mean-shift algorithm for segmentation
- 12 Multi-view object models
- 13 Neural Networks for Visual recognition
- 14 Learning methods