Design and Analysis of Algorithms

CSE 5311

Lecture 12 Skip Lists

Song Jiang, Ph.D.

Department of Computer Science and Engineering

Skip lists

- Simple randomized dynamic search structure
 - Invented by William Pugh in 1989
 - Easy to implement
- Maintains a dynamic set of *n* elements in
 O(lg *n*) time per operation in expectation and
 with high probability
 - Strong guarantee on tail of distribution of T(n)
 - $-O(\lg n)$ "almost always"

One linked list

Start from simplest data structure: (sorted) linked list

- Searches take $\Theta(n)$ time in worst case
- How can we speed up searches?

Two linked lists

Suppose we had *two* sorted linked lists (on subsets of the elements)

- Each element can appear in one or both lists
- How can we speed up searches?

Two linked lists as a subway

IDEA: Express and local subway lines (à la New York City 7th Avenue Line)

- Express line connects a few of the stations
- Local line connects all stations
- Links between lines at common stations

Searching in two linked lists

SEARCH(x):

- Walk right in top linked list (L_1) until going right would go too far
- Walk down to bottom linked list (L_2)
- Walk right in L_2 until element found (or not)

Searching in two linked lists

EXAMPLE: SEARCH(59)

Design of two linked lists

QUESTION: Which nodes should be in L_1 ?

- In a subway, the "popular stations"
- Here we care about worst-case performance
- Best approach: Evenly space the nodes in L_1
- But how many nodes should be in L_1 ?

Analysis of two linked lists

ANALYSIS:

- Search cost is roughly $|L_1| + \frac{|L_2|}{|L_1|}$
- Minimized (up to constant factors) when terms are equal

$$|L_1|^2 = |L_2| = n \Rightarrow |L_1| = \sqrt{n}$$

$$|A_1|^2 = |A_2| = n \Rightarrow |A_1| = \sqrt{n}$$

$$|A_2|^2 = |A_3|^2 + |A_2|^2 + |A_3|^2 + |A_3|$$

Analysis of two linked lists

ANALYSIS:

•
$$|L_1| = \sqrt{n}$$
, $|L_2| = n$

Search cost is roughly

More linked lists

What if we had more sorted linked lists?

- 2 sorted lists $\Rightarrow 2 \cdot \sqrt{n}$
- 3 sorted lists $\Rightarrow 3 \cdot \sqrt[3]{n}$
- k sorted lists $\Rightarrow k \cdot \sqrt[k]{n}$
- $\lg n \text{ sorted lists } \Rightarrow \lg n \cdot \sqrt[\lg n]{n} = 2 \lg n$

lg n linked lists

lg *n* sorted linked lists are like a binary tree (in fact, level-linked B⁺-tree; see Problem Set 5)

Searching in lg n linked lists

EXAMPLE: SEARCH(72)

Skip lists

Ideal skip list is this $\lg n$ linked list structure *Skip list data structure* maintains roughly this

To insert an element *x* into a skip list:

- SEARCH(x) to see where x fits in bottom list
- Always insert into bottom list

INVARIANT: Bottom list contains all elements

• Insert into some of the lists above...

QUESTION: To which other lists should we add x?

INSERT(x)

QUESTION: To which other lists should we add x?

IDEA: Flip a (fair) coin; if HEADS, *promote x* to next level up and flip again

- Probability of promotion to next level = 1/2
- On average:
 - -1/2 of the elements promoted 0 levels
 - 1/4 of the elements promoted 1 level
 - 1/8 of the elements promoted 2 levels
 - etc.

Approx. balanced

Example of skip list

Exercise: Try building a skip list from scratch by repeated insertion using a real coin

Small change:

Add special -∞
 value to every list
 ⇒ can search with
 the same algorithm

Skip lists

- A *skip list* is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)
- Insert(x) uses random coin flips to decide promotion level
- Delete(x) removes x from all lists containing it

Skip lists

- A *skip list* is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)
- Insert(x) uses random coin flips to decide promotion level
- Delete(x) removes x from all lists containing it
 How good are skip lists? (speed/balance)
- Intuitively: Pretty good on average
- CLAIM: Really, really good, almost always

With-high-probability theorem

THEOREM: With high probability, every search in an n-element skip list costs $O(\lg n)$

With-high-probability theorem

THEOREM: With high probability, every search in a skip list costs $O(\lg n)$

- Informally: Event E occurs with high probability (w.h.p.) if, for any $\alpha \ge 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 O(1/n^{\alpha})$
 - In fact, constant in $O(\lg n)$ depends on α
- FORMALLY: Parameterized event E_{α} occurs with high probability if, for any $\alpha \ge 1$, there is an appropriate choice of constants for which E_{α} occurs with probability at least $1 c_{\alpha}/n^{\alpha}$

With-high-probability theorem

THEOREM: With high probability, every search in a skip list costs $O(\lg n)$

- **Informally:** Event E occurs with high probability (w.h.p.) if, for any $\alpha \ge 1$, there is an appropriate choice of constants for which E occurs with probability at least $1 O(1/n^{\alpha})$
- IDEA: Can make *error probability* $O(1/n^{\alpha})$ very small by setting α large, e.g., 100
- Almost certainly, bound remains true for entire execution of polynomial-time algorithm

Boole's inequality / union bound

Recall:

BOOLE'S INEQUALITY / UNION BOUND:

For any random events $E_1, E_2, ..., E_k$,

$$\Pr\{E_1 \cup E_2 \cup \ldots \cup E_k\}$$

$$\leq \Pr\{E_1\} + \Pr\{E_2\} + ... + \Pr\{E_k\}$$

Application to with-high-probability events:

If $k = n^{O(1)}$, and each E_i occurs with high probability, then so does $E_1 \cap E_2 \cap ... \cap E_k$

Analysis Warmup

LEMMA: With high probability, n-element skip list has $O(\lg n)$ levels

Proof:

```
• Error probability for having at most c \lg n levels

= \Pr\{\text{more than } c \lg n \text{ levels}\}\

\leq n \cdot \Pr\{\text{element } x \text{ promoted at least } c \lg n \text{ times}\}\

(by Boole's Inequality)

= n \cdot (1/2^{c \lg n})
```

$$= n \cdot (1/2^{c \lg n})$$

$$= n \cdot (1/n^c)$$

$$= 1/n^{c-1}$$

Analysis Warmup

Lemma: With high probability, n-element skip list has $O(\lg n)$ levels

Proof:

- Error probability for having at most $c \lg n$ levels $< 1/n^{c-1}$
- This probability is *polynomially small*, i.e., at most h^{α} for $\alpha = c 1$.
- We can make α arbitrarily large by choosing the constant c in the $O(\lg n)$ bound accordingly.

Proof of theorem

THEOREM: With high probability, every search in an n-element skip list costs $O(\lg n)$

COOL IDEA: Analyze search backwards—leaf to root

- Search starts [ends] at leaf (node in bottom level)
- At each node visited:
 - If node wasn't promoted higher (got TAILS here),
 then we go [came from] left
 - If node was promoted higher (got HEADS here),
 then we go [came from] up
- Search stops [starts] at the root (or $-\infty$)

Proof of theorem

THEOREM: With high probability, every search in an n-element skip list costs $O(\lg n)$

Cool Idea: Analyze search backwards—leaf to root Proof:

- Search makes "up" and "left" moves until it reaches the root (or -∞)
- Number of "up" moves \leq number of levels $\leq c \lg n$ w.h.p. (Lemma)
- \Rightarrow w.h.p., number of moves is at most the number of times we need to flip a coin to get $c \lg n$ HEADS

Coin flipping analysis

CLAIM: Number of coin flips until $c \lg n$ HEADS $= \Theta(\lg n)$ with high probability

Proof:

Obviously $\Omega(\lg n)$: at least $c \lg n$

Prove $O(\lg n)$ "by example":

- Say we make $10 c \lg n$ flips
- When are there at least $c \lg n$ HEADS?

(Later generalize to arbitrary values of 10)

Coin flipping analysis

CLAIM: Number of coin flips until $c \lg n$ HEADS $= \Theta(\lg n)$ with high probability

Proof:

•
$$\Pr\{\text{at most } c \text{ lg } n \text{ HEADS}\} \leq \binom{10c \lg n}{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n}$$
overestimate on orders

Coin flipping analysis (cont'd)

- Recall bounds on $\begin{pmatrix} y \\ x \end{pmatrix}$: $\left(\frac{y}{x}\right)^x \le \left(\frac{y}{x}\right) \le \left(e\frac{y}{x}\right)^x$
- $\Pr\{\text{at most } c \text{ lg } n \text{ HEADS}\} \le \binom{10c \lg n}{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n}$

$$\leq \left(e^{\frac{10c \lg n}{c \lg n}}\right)^{c \lg n} \cdot \left(\frac{1}{2}\right)^{9c \lg n}$$

$$= (10e)^{c \lg n} 2^{-9c \lg n}$$

$$= 2^{\lg(10e) \cdot c \lg n} 2^{-9c \lg n}$$

$$= 2^{[\lg(10e) - 9] \cdot c \lg n}$$

$$= 1/n^{\alpha} \text{ for } \alpha = [9 - \lg(10e)] \cdot c$$

Coin flipping analysis (cont'd)

- $\Pr\{\text{at most } c \text{ lg } n \text{ HEADS}\} \le 1/n^{\alpha} \text{ for } \alpha = [9-\lg(10e)]c$
- **KEY Property:** $\alpha \to \infty$ as $10 \to \infty$, for any *c*
- So set 10, i.e., constant in $O(\lg n)$ bound, large enough to meet desired α

This completes the proof of the coin-flipping claim and the proof of the theorem.