Aritmética da Computação

Trabalho para Casa: TPC2

Alberto José Proença

.....

Metodologia

Leia as folhas do enunciado, e responda obrigatoriamente às questões colocadas na folha fornecida para o efeito, as restantes de acordo com as suas expetativas de graus de exigência.

Relembra-se que o objetivo dos TPC's é fomentar o estudo individual e contínuo, complementado por trabalho em grupo, sendo <u>contabilizado o esforço de se tentar chegar ao resultado</u> (que deverá ser fundamentado na aula) em detrimento da correção do mesmo. A resolução dos trabalhos far-se-á na aula da semana em que o trabalho é entregue.

A **ocorrência de fraude** tem como primeira consequência uma avaliação negativa.

Prazos

Entrega **impreterível** até à hora de início da sessão PL seguinte, <u>com a presença do estudante durante a</u> sessão PL. Não serão aceites trabalhos entregues fora da hora da aula.

Introdução

A lista de exercícios que se apresenta aplica os conceitos introduzidos na aula teórico-prática sobre representação binária de inteiros (ver sumário e sugestões de leituras).

Enunciado dos exercícios

Representação de inteiros

- 1. ^(A)Converta o número –233 para uma representação binária usando 10-bits, com as seguintes representações:
 - a) Sinal e amplitude
 - b) Complemento para 1
 - c) Complemento para 2
 - d) Excesso 2ⁿ⁻¹
- 2. ^(A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂, considerando as seguintes representações:
 - a) Inteiro sem sinal
 - b) Sinal e amplitude
 - c) Complemento para 1
 - d) Complemento para 2
 - e) Excesso 2ⁿ⁻¹
- **3.** (R)Considere que está a executar código num computador de **6-bits**, o qual usa complemento para 2 para representar valores do tipo inteiro. Um inteiro "short" é codificado usando 3-bits. Complete a tabela, considerando as seguintes definições:

```
short sy = -3;
int y = sy;
int x = -17;
unsigned ux = x;
```

Nota: T_{min} e T_{Max} representam, respectivamente, o menor e o maior valor representável

Expressão	Decimal	Binário
Zero	0	
	-6	
		01 0010
ux		
У		
x>>1		
$ extsf{T}_{ extsf{Max}}$		
-T _{min}		
T _{min} +T _{min}		

- **4.** ^(R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:
 - **a)** 6
 - **b)** 12

Aritmética de inteiros

- 5. ^(A)Efetue os seguintes cálculos **usando aritmética binária** de 8-bits em complemento para 2:
 - a) 4 + 120
 - **b)** 70 + 80
 - **c)** 100 + (-60)
 - **d)** (-100) (27)

Nº Nome: Turma:

Resolução dos exercícios

Nota: Apresente sempre os cálculos que efectuar no verso da folha; <u>o não cumprimento desta regra</u> equivale à não entrega do trabalho.

1. ^(A)Converta –233 para uma representação binária usando 10-bits, com as seguintes representações:

Bit#	9	8	7	6	5	4	3	2	1	0
Valor	512	256	128	64	32	16	8	4	2	1
a) sinal e amplitude										
b) complemento p/ 1										
c) complemento p/ 2										
d) excesso 2 ⁿ⁻¹										

2. ^(A)Converta para decimal o valor em binário (usando apenas 10-bits) 10 0111 0101₂, considerando as seguintes representações:

Bit#	9	8	7	6	5	4	3	2	1	0	Resultado
Valor	512	256	128	64	32	16	8	4	2	1	
Codificação em binário	1	0	0	1	1	1	0	1	0	1	
a) inteiro sem sinal	512+	0+	0+	64+	32+	16+	0+	4+	0+	1=	629
b) sinal e amplitude											
c) complemento p/ 1											
d) complemento p/2											
e) excesso 2 ⁿ⁻¹											

4. ^(R)Qual a gama de valores inteiros nas representações binárias de (i) sinal e amplitude, (ii) complemento para 2, e (iii) excesso 2ⁿ⁻¹, para o seguinte número de bits:

	(i)	(ii)	(iii)
a) 6 bits			
b) 12 bits			

5. ^(A)Efetue os seguintes cálculos **usando aritmética binária** de 8-bits em complemento para 2:

a.
$$4 + 120$$
 0000 0100₂ + 0111 1000₂ =

d.
$$(-100) - (27)$$