3.3.4 Эффект Холла в проводниках

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Измерение подвижности и конуентрации носителей заряда в проводниках.

1.2 В работе используются

Электромагнит с регулируемым источником питания; вольтетр; амперметр; миллиамперметр; милливебберметр; источник питания $(1.5~{
m V})$; Образец легированного германия.

2 Работа

2.1 Подготовка приборов

Проверим, что ток через образец не превышает 1 mA.

Измерим калибровочную кривую электромагнита (Учитывая параметр милливебберметра $S\cdot N=72cm^2$):

I, A	В, Т
0.27	0.21
0.54	0.42
0.81	0.625
1.08	0.79
1.35	0.94
1.62	1.04
1.89	1.125
2.13	1.16

Получим зависимость:

$$B = k \cdot I + b$$

$$k = (0.52 \pm 0.04)T/A$$

$$b = (0.16 \pm 0.02)T$$

Вставим образец в зазор выключенного электромагнита и определим напряжение ($U_0=-0.017~{
m V}$) между Холловскими кантактами при минимальном точке через образец ($I=0.3~{
m mA}$). Примем это значение за начало отсчёта напряжения.

2.2 Измерения ЭДС Холла

Снимем зависимость холловского напряжения U_{34} от тока электромагнита I_M для разных токов I через образец:

I, mA	U0, mV	Ім, А	U34, mV	I, mA	U0, mV	Ім, А	U34, mV
0.3	-0.017	0.27	-0.04	0.7	-0.037	0.27	0.017
		0.54	-0.065			0.54	0.074
		0.81	-0.089			0.81	0.128
		1.08	-0.111			1.08	0.175
		1.35	-0.130			1.35	0.214
		1.62	-0.140			1.62	0.240
		1.89	-0.150			1.89	0.257
		2.11	-0.155			2.04	0.265
	-0.017	0.27	0.013		-0.042	0.27	0.019
0.4		0.54	0.044			0.54	0.086
		0.81	0.074	0.8		0.81	0.145
		1.08	0.102			1.08	0.203
		1.35	0.123			1.35	0.240
		1.62	0.138			1.62	0.270
		1.89	0.148			1.89	0.292
		2.08	0.153			2.04	0.3
	-0.025	0.27	0.013	0.9	-0.05	0.27	0.022
		0.54	0.052			0.54	0.096
		0.81	0.094			0.81	0.165
0.5		1.08	0.127			1.08	0.222
		1.35	0.152			1.35	0.275
		1.62	0.170			1.62	0.306
		1.89	0.183			1.89	0.328
		2.07	0.190			2.03	0.339
0.6	-0.03	0.27	0.016	1	-0.055	0.27	0.027
		0.54	0.064			0.54	0.103
		0.81	0.110			0.81	0.180
		1.08	0.151			1.08	0.250
		1.35	0.184			1.35	0.302
		1.62	0.205			1.62	0.340
		1.89	0.220			1.89	0.365
		2.06	0.228			2.03	0.375

Изобразим все графики на отдом чертеже:

Угловые коэффициенты полученных прямых $U=k\cdot I+b$:

I, mA	k, mV/mA
0.3	0.069 ± 0.006
0.4	0.074 ± 0.005
0.5	0.089 ± 0.006
0.6	0.109 ± 0.007
0.7	0.131 ± 0.008
0.8	0.142 ± 0.008
0.9	0.163 ± 0.01
1.0	0.184 ± 0.01