

Ayudantía 9 - Repaso I2

24 de mayo de 2024 Martín Atria, Paula Grune, Caetano Borges

1. Teoría de Conjuntos

Sean A y B conjuntos y una función $f:A\to B$. Para todo $X\subseteq A$ definimos el siguiente conjunto:

$$F(X) = \{ b \in B \mid \exists a \in X \text{ tal que } f(a) = b \}$$

Dada $S \subseteq \mathcal{P}(A)$ una colección de subconjuntos de A, demuestre que:

1.
$$F\left(\bigcup_{D\in S}D\right) = \bigcup_{D\in S}F(D)$$

2.
$$F\left(\bigcap_{D \in S} D\right) = \bigcap_{D \in S} F(D)$$

2. Relaciones

2.1. Relaciones de orden

Dados un conjunto A y una relación \lesssim sobre A, diremos que el par (A, \lesssim) es un preorden si \lesssim es una relación refleja y transitiva.

Denotramos por $\mathcal{P}(\mathbb{N})^{\not \infty}$ el conjunto de todos los subconjuntos finitos de \mathbb{N} . Definimos la relación $\leadsto \subseteq \mathcal{P}(\mathbb{N})^{\not \infty} \times \mathcal{P}(\mathbb{N})^{\not \infty}$ como

$$A \leadsto B \Leftrightarrow inf(A) \le inf(B) \land sup(A) \le sup(B)$$

donde $inf(\cdot)$ y $sup(\cdot)$ son el ínfimo y el supremo de un conjunto respectivamente.

- 1. Demuestre que $(\mathcal{P}(\mathbb{N})^{\infty}, \leadsto)$ es un preorden.
- 2. Demuestre que $(\mathcal{P}(\mathbb{N})^{\not\infty}, \leadsto)$ no es un orden parcial.
- 3. Encuentre un conjunto $S \subseteq \mathcal{P}(\mathbb{N})^{\not \infty}$ tal que (S,\leadsto) es un orden parcial. Debe demostrar su resultado.

2.2. Relaciones de equivalencia

Sea A un conjunto, y $S,T\subseteq A\times A$ ambas relaciones de equivalencia sobre A. Demuestre que:

 $S \circ T = T \circ S \Leftrightarrow S \circ T$ es una relación de equivalencia

3. Cardinalidad

3.1. Numerabilidad

Demuestre que el conjunto de todos los strings ASCII (finitos) que sólo tienen caracteres a y b, y tales que no contienen el substring abb es un conjunto numerable.

3.2. No numerabilidad

Sea $\mathcal{F} = \{f : \mathbb{N} \to \mathbb{N} \mid f \text{ es inyectiva}\}$. Demuestre que el conjunto \mathcal{F} es no numerable.