

Schlussbericht

Gruppe 1

Emily Wangler, Yacine Mekesser, Christoph Mathis, Remo Höppli

08.12.2014

Schlussbericht Docker

Inhalt

Anhang	
Projektmanagement	2
Projektstrukturplan	3
Softwareentwicklungsplan	4
Arbeitspakete	4
Stundenerfassung	8
Risiken	9
Besonderes	9
Risikodiagramm	10
Klassendiagramm	11
Testbericht	13
Zusammenfassung der erreichten Ziele	14
Funktionalität	14
Fehler / Einschränkungen	14
Nicht Umgesetzt	14
Rückblick (Erfahrungen)	15
Glossar	16
Projektdomäne	16
Primärbegriffe	16
Sekundärbegriffe	17
Projektmanagement	17
Sonstiges	

Anhang

Bedienungsanleitung Sourcecode auf USB-Stick

Projektmanagement

Das Projektmanagement wurde ein weiteres Mal auf den Stand des Projektabschluss aktualisiert. Das Team konnte das Projekt erfolgreich zu Ende bringen und hat dabei den grössten Teil der definierten Anwendungsfälle umgesetzt. Einige eher nebensächliche Anwendungsfälle, welche wir während des Projekts als unwichtig eingestuft haben, wurden aus dem aktuellen Projekt gestrichen. Diese können jedoch bei einer späteren Fortsetzung der Arbeiten an Docker, dank des modularen Aufbaus, einfach integriert werden. Bei den durch das Team als wichtig erachteten Anwendungsfällen wurde etwas mehr Zeit investiert um die Arbeit nicht nur fertigzustellen, sondern auch qualitativ hochwertig abzuschliessen. Durch das gute Teamwork und die effiziente Arbeitsweise der Mitglieder konnte innert kurzer Zeit ein solides Smartphone-Game entwickelt werden, welches durch eine intuitive Bedienung und charmante Grafik zu begeistern vermag. Ich möchte mich hiermit als Teamleiter auch ganz herzlich bei allen Teammitgliedern für ihren Einsatz und die gute Zusammenarbeit bedanken.

Projektstrukturplan

A Management

AA Ideensuche

AB Spielbeschrieb

AC Anforderungen

AD Ressourcen

AE Projektplanung

AEA Risiken und Grobplanung

AEB Projektmanagement

AF Kundennutzung und Wirtschaftlichkeit

B Entwicklungsumgebung

BA Engineering und Evaluation

C Anforderungen

CA Anwendungsfälle

CAA Anwendungsfalldiagramm

CAB System-Sequenzdiagramm

CB Zusätzliche Spezifikationen

D Design

DA Domänenmodell

DAA Domänenmodell visualisieren

DB Architektur

DBA Architektur visualisieren

DBB Klassenverantwortlichkeit

DBC Zusammenarbeitsdiagramme

E Implementation

EA Repository

EAA Klassendiagramm

EB Domain

EBA GameObjects

EBAA Ship

EBAB Train

EBAC Crane

EBB Gamebewertung

EBC Gamelogik

EBCA InfiniteGame

EBCB CareerGame

EBCC QuickGame

EC User Interface

ECA Rendering

ECAA Grafiken

ECB Menu

ECC User Config & Stats

ECD Level

ED Tech. Services

EDA Persistence

F Evaluation und Test

G Auslieferung

Software entwicklung splan

	23.	30.	07.	14.	21.	28.	04.	11.	18.				
	Sep	Sep	Okt	Okt	Okt	Okt	Nov	Nov	Nov	25. Nov	02. Dez	09. Dez	
	Ince	otion	El	aboratio	n	Construction		ction		Transition			
	l:	1		E1		C1		C1 C2 C3		T1			
RH	P	4		A, C, D			Ε	D,	. E	E, EBB, I	ECC, ECD	E, F	
YM	A	A		A, C, D			E	D,	. E	E, EBC, ECA	, ECAA, ECB	E, EBAA, EBC, F	=
CM	P	4		A, C, D			Ε	D,	. E	E, EBC, EBCA		E, EBB, EBC, EBCA, F	
EW	A	4		A, C, D		E		D,	. E	E, EBCB, ECA, ECC		E, ECB, ECC, F	
		M1			M2						M3		M4
		P1			P2				Р3				P4

Meilenstein	e: Projektschiene		Meilenstein	e: Projekt Docker	
30.09.2014	Präsentation Projektskizze	P1	30.09.2014	Inception Abschluss	M1
21.10.2014	Präsentation Anforderungen	P2	21.10.2014	Elaboration Abschluss	M2
18.11.2014	Präsentationen Design	Р3	02.12.2014	Construction Abschluss	M3
09.12.2014	Schlusspräsentationen	Р4	09.12.2014	Transition Abschluss	M4

Legende	
Kürzel	Name
RH	Remo Höppli
YM	Yacine Mekesser
CM	Christoph Mathis
EW	Emily Wangler

Arbeitspakete

Phase	Auftrag	Arbeitspaket	Kennung	Wer	Prognostiziert	Aufwand	Differenz
I1	Projekt	Ideensuche	Α	Alle (*4)	8.0	8.0	0.0
l1	Projektskizze	Idee	AA	EW	2.0	2.0	0.0
I1	Projektskizze	Hauptanwendungsfall	AB	EW	2.0	2.0	0.0
l1	Projektskizze	Kundennutzung	AF	CM	2.0	2.0	0.0
I1	Projektskizze	Wirtschaftlichkeit	AF	CM	2.0	2.0	0.0
l1	Projektskizze	Risiken	AEA	RH	2.0	2.0	0.0
I1	Projektskizze	Projektplanung	AEB	RH	2.0	2.0	0.0

I1	Projektskizze	Ressourcen	AD	RH	2.0	2.0	0.0
l1	Projektskizze	Weitere Anforderungen	AC	YM	1.0	1.0	0.0
l1	Projektskizze	Abgrenzungen	AC	YM	1.0	1.0	0.0
l1	Projekt	Evaluation ASDK	ВА	YM	6.0	6.0	0.0
l1	Projekt	Besprechungen	C &DB	Alle (*4)	16.0	16.0	0.0
E1	Analyse	Projektmanagement	AEB	RH	4.0	4.0	0.0
E1	Analyse	Anwendungsfälle	CA	Alle (*4)	8.0	8.0	0.0
E1	Analyse	Anwendungsfalldiagramm	CAA	CM	1.0	1.0	0.0
E1	Analyse	Domänenmodell	DA	RH	2.0	2.0	0.0
E1	Analyse	Erste Architektur	DB	YM	4.0	4.0	0.0
E1	Analyse	Zusätzliche Spezifikationen	СВ	EW	4.0	4.0	0.0
E1	Analyse	System-Sequenzdiagramm	CAB	CM	1.0	1.0	0.0
E1	Analyse	Systemoperationen	CA	CM	2.0	2.0	0.0
E1	Analyse	Glossar	D	YM	2.0	2.0	0.0
E1	Projekt	Besprechungen	D	Alle (*4)	16.0	16.0	0.0
C1	Projekt	Besprechungen	E	Alle (*4)	16.0	16.0	0.0
C1	Projekt	Repository	EA	YM	1.0	1.0	0.0
C1	Projekt	Klassendiagramm	EAA	YM	1.0	1.0	0.0
C1	Projekt	Rendering	ECA	YM	2.0	5.0	3.0
C1	Projekt	Grafiken	ECAA	YM	4.0	4.0	0.0
C1	Projekt	Gamebewertung	EBB	RH	3.0	4.0	1.0
C1	Projekt	Ship Logik	EBAA	CM	3.0	3.0	0.0
C1	Projekt	Game Logik	EBC	CM	5.0	5.0	0.0
C1	Projekt	Train Logik	EBAB	EW	3.0	1.0	2.0
C1	Projekt	Menu	ECB	EW	3.0	1.0	2.0
C1	Design	Projektmanagement	Е	RH	4.0	5.0	1.0
C2	Design	Architektur	DB	YM	2.0	1.0	1.0
C2	Design	Projektmanagement	Е	RH	4.0	4.0	0.0
C2	Design	Klassendiagramm	EAA	YM	1.0	1.0	0.0
C2	Design	Klassenverantwortlichkeit	DBB	EW	2.0	2.0	0.0

C2	Design	Zusammenarbeitsdiagramme	DBC	Alle (*4)	8.0	6.0	2.0
C2	Design	Dokumentfinish	D	Alle (*4)	4.0	4.0	0.0
C2	Projekt	Gamebewertung	EBB	RH	4.0	2.0	2.0
C2	Projekt	Ship Logik	EBAA	CM	4.0	3.0	1.0
C2	Projekt	Train Logik	EBAB	EW	2.0	0.0	2.0
C2	Projekt	Rendering	ECA	YM	2.0	2.0	0.0
C2	Projekt	Game Logik	EBC	CM	4.0	4.0	0.0
C2	Projekt	Crane Logik	EBAC	YM	4.0	2.0	2.0
C2	Projekt	Quick Game	EBCC	EW	4.0	4.0	0.0
C2	Projekt	Persistence	ECA	EW	4.0	3.0	1.0
C2	Projekt	Level	ECD	RH	2.0	3.0	1.0
C2	Projekt	Statistik	ECC	RH	1.0	1.0	0.0
C2	Design	Präsentation Demo	D	CM	2.0	2.0	0.0
C2	Design	Bewertung und Level-Generator	D	RH	3.0	2.0	1.0
C2	Design	Präsentation Grafik	D	YM	2.0	2.0	0.0
C2	Projekt	Score Bildschirm	ECC	CM	3.0	4.0	1.0
C3	Projekt	Statistik Bildschirm	ECC	EW	4.0	4.0	0.0
C 3	Projekt	Career Game	EBCB	EW	6.0	5.0	1.0
C3	Projekt	Settings	ECC	EW	3.0	3.0	0.0
C 3	Projekt	Level erstellen	ECD	RH	2.0	1.0	1.0
C3	Projekt	Score-Verteilung verfeinern	EBB	RH	3.0	3.0	0.0
C 3	Schlusspräsentation	Projektmanagement	Е	RH	4.0	2.0	2.0
C3	Projekt	Besprechungen	E	Alle (*4)	12.0	12.0	0.0
C 3	Projekt	Game abbrechen mit zurück	EBC	CM	2.0	2.0	0.0
C3	Projekt	Schluss Bildschirm	EBC	CM	2.0	2.0	0.0
C3	Projekt	Infinite Game	EBCA	CM	8.0	6.0	2.0
C3	Projekt	Anzeigen Bruchgefahr	ECAA	YM	3.0	1.0	2.0
C3	Projekt	Anzeigen Kentergefahr	ECAA	YM	3.0	2.0	1.0
C3	Projekt	Abstract Game	EBC	YM	3.0	3.0	0.0
C3	Schlusspräsentation	Anleitung	E	RH	3.0	2.0	1.0

C3	Schlusspräsentation	Zusammenfassung	E	EW	2.0	1.0	1.0
C3	Schlusspräsentation	Test	E	CM	2.0	0.0	2.0
C3	Schlusspräsentation	Klassendiagramm	E	YM	1.0	0.0	1.0
C3	Projekt	Javadoc	E	Alle (*4)	12.0	12.0	0.0
C3	Projekt	Rendering	ECA	YM	4.0	4.0	0.0
C3	Projekt	Persistence	ECA	EW	2.0	2.0	0.0
C3	Projekt	Score Bildschirm	ECC	RH	2.0	2.0	0.0
C3	Projekt	Menu	ECB	YM	2.0	2.0	0.0
T1	Projekt	Refactoring Abstract Game	EBC	CM	1.0	1.0	0.0
T1	Projekt	Refactoring Load Rating	EBB	CM	1.0	1.0	0.0
T1	Projekt	Infinite Game	EBCA	CM	2.0	2.0	0.0
T1	Projekt	Refactoring Menu	ECB	EW	2.0	3.0	1.0
T1	Projekt	Refactoring Statistik	ECC	EW	1.0	1.0	0.0
T1	Schlusspräsentation	Anleitung	E	RH	1.0	1.0	0.0
T1	Schlusspräsentation	Zusammenfassung	E	EW	2.0	2.0	0.0
T1	Schlusspräsentation	Test	E	CM	2.0	2.0	0.0
T1	Schlusspräsentation	Klassendiagramm	E	YM	1.0	1.0	0.0
T1	Schlusspräsentation	Projektmanagement	E	RH	2.0	2.0	0.0
T1	Projekt	Besprechungen	F	Alle (*4)	12.0	10.0	2.0
T1	Projekt	Advertisements	E	EW	2.0	2.0	0.0
T1	Projekt	Credits	E	EW	2.0	2.0	0.0
T1	Schlusspräsentation	Einführung Präsentation	F	RH	3.0	3.0	0.0
T1	Schlusspräsentation	Erweiterungen Präsentation	F	CM	3.0	2.0	1.0
T1	Projekt	Abstract Game Animation	EBC	YM	2.0	2.0	0.0
T1	Projekt	Ship Logik Ladehöhenindex	EBAA	YM	2.0	2.0	0.0
T1	Projekt	Allgemeine Abschlussarbeiten	F	Alle (*4)	12.0	12.0	0.0

Stundenerfassung

	•	••			
Λι	ufv	va	n	М	Δ
$\overline{}$	uiv	٧a		u	_

Name	I1	E1	C1	C2	С3	T1	Total
Remo Höppli	12	12	13	14.5	16	11.5	79
Yacine Mekesser	14	12	15	10.5	18	10.5	80
Christoph Mathis	10	10	12	15.5	16	13.5	77
Emily Wangler	10	10	6	11.5	21	15.5	74
Total	46	44	46	52	71	51	310

Prognose

	1139							
Name	I1	E1	C1	C2	C3	T1	Total	
Remo Höppli	12	12	11	17	20	12	84	
Yacine Mekesser	14	12	12	14	22	11	85	
Christoph Mathis	10	10	12	16	20	15	83	
Emily Wangler	10	10	10	15	23	15	83	
Total	46	44	45	62	85	53	335	

Differenz (verfügbare Stunden)

Name	I1	E1	C1	C2	С3	T1	Total
Remo Höppli	0	0	-2	2.5	4	0.5	5
Yacine Mekesser	0	0	-3	3.5	4	0.5	5
Christoph Mathis	0	0	0	0.5	4	1.5	6
Emily Wangler	0	0	4	3.5	2	-0.5	9
Total	0	0	-1	10	14	2	25

Gesamtprognose 400 Bisher benötigt 310 Verbleibend 90

Risiken

Nr.	Risiko	Beschreibung	EW	AW	Massnahmen
1	ZHAW Netzwerk	ZHAW Server sind aufgrund eines Wartungsfensters oder Ausfalls nicht erreichbar.	Sehr wahr- scheinlich	Gering	Git benutzen.
2	Motivation	Motivation während des Semesters lässt nach.	Wahr- scheinlich	Mittel	Arbeiten gerecht verteilen. Teamgeist pflegen und klare gemeinsame Ziele definieren.
3	Probleme mit der Entwicklungsumgebung	Probleme mit Framework oder Android SDK.	Möglich	Hoch	Gemeinsames Einrichten der Entwicklungsumgebungen und gegenseitige Unterstützung bei Problemen
4	Hardwareausfall	Ein Handy oder Notebook fällt aus.	Möglich	Hoch	Material sorgfältig behandeln und bei einem Ausfall zeitig für Ersatz sorgen.
5	Sound & Grafik	Zeit für die Implementation wird knapp, Mittel für die Realisierung reichen nicht aus.	Möglich	Hoch	Sound weglassen und/oder Grafik vereinfachen.
6	Personaldefizit	Ausfälle durch Krankheit oder Unfall, viel zu tun bei der Arbeit. WK Yacine 24.11-12.12! Kurs Christoph 26.11-30.11	Sehr wahr- scheinlich	Mittel	Viel Wissenstransfer & flexible Planung. Verlängerung der Construction Phase, Verkürzung der Transition Phase
7	Schlechtes Zeitmanagement	Fehleinschätzung, Zeitmangel auf Grund von Teilzeit Pensum.	Unwahr- scheinlich	Hoch	Realistischen Zeitplan erstellen. Verzögerungen frühzeitig erkennen und aufholen.
8	Know-how Defizit	Das Know-how im Team oder bei einzelnen Mitgliedern führt zu Verzögerungen	Möglich	Gering	So viel Wissenstransfer betreiben wie möglich.

EW: Eintrittswahrscheinlichkeit AW: Auswirkung

Besonderes

Obwohl das Risiko mit der Nummer 6 während des Projektes zwei Mal in Richtung höherer Gefahr angepasst werden musste, ist das Projekt sehr erfolgreich verlaufen. Nicht zuletzt ist dies den zu Beginn definierten Massnahmen zu verdanken, welche während des Projektes geholfen haben die Auswirkungen durch die definierten Risiken zu minimieren. Natürlich haben auch der Einsatz der einzelnen Teammitglieder und die flexible Planung seinen Teil zum erfolgreichen Verlauf des Projektes beigetragen.

Risikodiagramm

Persistence com.docker.technicalservices Persistence() SgetPreferenceMap():Map<String,?> SetAllPreferences(Map<String,?>):void setPreference(String,Object):void sisSoundOn():Boolean SetSoundOn(Boolean):void SetMusicOn(Boolean):void SisLevelLocked(String):Boolean SunlockLevel(String):void getLevelScore(String):Integer SetLevelScore(String,Integer):void SgetQuickHighscore():Integer SetQuickHighscore(Integer):void getInfiniteHighscore():Integer SetInfiniteHighscore(Integer):void §getAllLevels():List<JsonValue> SgetStatisticsMap():ObjectMap<String,Object> SwriteStatisticMap(ObjectMap<String,Object>):void saveStatisticValue(String,Object):void SqetVolume():float

SetVolume(float):void

<<Java Class>>

<<Java Class>> <<Java Class>> ⊕ World Stage Statistics com.docker.technicalservices com.docker.domain.user △ foreground: Actor Statistics() △ background: Actor Statistics(int,int,int,int,int,int) √WorldStage(Viewport) getTotalContainer():int WorldStage(Viewport, Batch) getTotalWeight():int o draw():void getTotalGames():int act(float):void getTotalShipsSuccessfullyLoaded():int getForeground():Actor getTotalShipsCapsized():int setForeground(Actor):void getTotalShipsBroken():int getBackground():Actor incrementTotalContainer(int):void setBackground(Actor):void incrementTotalWeight(int):void incrementTotalGames(int):void incrementTotalShipsSuccessfullyLoaded(int):void incrementTotalShipsCapsized(int):void incrementTotalShipsBroken(int):void persistTotalContainer(int):void persistTotalWeight(int):void persistTotalGames(int):void persistTotalShipsSuccessfullyLoaded(int):void persistTotalShipsCapsized(int):void <<Java Class>> persistTotalShipsBroken(int):void JsonStatistics persistStatistics(Statistics):void com.docker.technicalservices

⊗

data: ObjectMap<String,Object>

Testbericht

Beim Testen haben wir uns auf die Klasse LoadRating konzentriert, weil sie den Ausgang des Spieles entscheidet und dadurch eine sehr zentrale Klasse ist. Wir haben Junit Blackbox Tests geschrieben in welchen wir die verschiedenen Ausgänge eines Spieles simuliert haben. Der Klasse LoadRating wurde zu Beginn jedes Tests neu initialisiert, damit die vorhergehenden Tests den neusten nicht beeinflussen.

Bei der Eingabe wird immer ein Array mit Ladungswerten übergeben welche die Gewichtsverteilung auf dem Schiff darstellen.

Was getestet wird	Äquivalenzklassen	Bedeutung	Eingabe	Ausgabewert
Der Schlusscore soll richtig berechnet werden.	1. 0-2999 2. 3000	 Schiff wurde nicht perfekt beladen Schiff wurde perfekt beladen 	Es wird ein perfekt geladenes Schiff übergeben	Das Ergebnis war eine Score von 3000.
Es wird ermittelt ob das Schiff kentert.	1unendlich bis -1 20.99 bis 0.99 3. 1 bis unendlich	1. Das Schiff kippt nach rechts 2. Schiff kippt nicht 3. Schiffkippt nach links	Hier werden für alle 3 Fälle je einen Test durchgeführt.	Je nach Test haben wir alle verschiedenen Werte erhalten.
Es wird ermittelt ob das Schiff sinkt	11 2. 0 – unendlich	 Das Schiff bricht nicht Der Wert gibt an, an welcher Position das Schiff bricht. 	Hier wurden zwei verschiedene Schiffe eingegeben, eines das eine Bruchstelle hat und eines welches nicht bricht.	Das Schiff ohne Bruchstelle lieferte wie erwartet eine -1. Das Schiff mit der Bruchstelle lieferte eine 2.

Wir haben getestet, ob der Schlussscore richtig berechnet wird, anhand eines perfekt beladenen Schiffes. Wir haben mit verschiedenen Container Anordnungen getestet ob das Schiff sinken wird und falls es sinkt, auf welche Seite es kentert. Zudem haben wir geschaut ob die verschiedenen Bruchwerte eines Schiffes richtig berechnet werden und ob die Bruchposition richtig ermittelt wird.

Die Tests liefen alle Automatisch und erfolgreich ab, wie diesem Bild entnommen werden kann.

SEPS 13/17

Zusammenfassung der erreichten Ziele

Funktionalität

Im Spiel "Docker" muss man möglichst geschickt Container auf ein Frachtschiff laden und dabei sowohl deren Länge sowie auch Gewicht beachten, sodass der Frachter am Ende nicht untergeht oder gar zerbricht. Dazu wurden drei verschiedene Spielmodi umgesetzt:

- Quick Game: Das schnelle Spiel hat eine fixe Anzahl Container, welche auf das Schiff geladen werden müssen.
- Infinite Game: Hier werden immer neue Container generiert und die Schiffe können selber weitergeschickt werden wenn sie voll sind, so dass ein neues erscheint.
- Career Game: Im Karriere-Modus gilt es die vordefinierten Container erfolgreich auf die Schiffe zu verladen, um das nächste Level frei zu schalten.

Neben dem Hauptspiel bietet das Android-App folgende Funktionen:

- **Settings**: In den Einstellungen können die Soundeffekte und die Musik ein- und ausgeschalten sowie die Lautstärke gesteuert werden.
- Statistics: Neben dem Highscore werden hier viele interessante Statistiken angezeigt, zum Beispiel wie viele Container gesamthaft beladen wurden oder die Anzahl verlorener Schiffe.
- **Credits**: Hier werden alle, die am Projekt mitgewirkt hatten oder sonst dazu beigetragen haben, aufgelistet.

Fehler / Einschränkungen

Um das Projekt vollständig abzuschliessen müssen noch einige kleinere Fehler behoben werden. Im Moment sind noch folgende Tickets ausstehend:

- Errorhandling für Preview Container #29: Wenn ein Previewcontainer angezeigt wird, dann der Container wechselt und der neue kein Platz auf dem Schiff hat, wird eine Exception geworfen. Dies sollte man Erkennen und korrekt behandeln.
- Absturz im Infinite Game #39: Wenn im Infinite Game das Schiff am Untergehen ist, kann in einem kurzen Moment immer noch ein Container gesetzt werden. Dies führt zu einem Absturz des Spiels.

Nicht Umgesetzt

Folgende Punkte wurden im Verlaufe des Projektes trotz Planung nicht umgesetzt.

- Handicap-Einstellungen: Um die Schwierigkeit zu steuern, kann der Spieler hier z.B. die Zugsgeschwindigkeit verstellen. Dieses Menu wurde tiefer priorisiert und wegen Zeitmangel nicht umgesetzt.
- In-App-Käufe: Der Spieler sollte die Möglichkeit haben, sein Spiel mit verschiedenen In-App-Käufen aufzuwerten oder die Werbung auszuschalten. Dieser Use-Case war von Anfang an ein Wunsch und wurde klar ans untere Ender der Prioritätenliste gesetzt.
- Tutorial: Obwohl das Spiel möglichst intuitiv gestaltet wurde, sollte es dennoch eine kleine, interaktive Anleitung für den Benutzer geben. Im Moment ist dies nur in Form der Bedienungsanleitung gegeben.

SEPS 14/17

Rückblick (Erfahrungen)

Die wertvollste Erfahrung, welche wir im Verlauf dieses Kurses gemacht haben, war dass wir eigenständig ein Projekt von Anfang bis Ende durchgeführt hatten. Dies ist im Arbeitsalltag eher selten möglich. Auch konnten wir unsere eigenen Ideen umsetzen und gestalten, was die Arbeit kreativer gestaltete, als dies in einem Unternehmen möglich ist.

Aus technischer Sicht haben wir viele neue Erfahrungen in der Android-Entwicklung gesammelt. Ausserdem lernten wir das Framework libGDX kennen und befassten uns auch etwas mit OpenGL. Auch war die Game-Entwicklung selber interessant, da dort viele Aspekte für uns neu waren und Patterns anders angewendet werden, als dies in üblichen Businessapplikationen der Fall ist. Auch in Bezug auf das Gamedesign selber konnten wir einiges lernen.

Im Team sind wir über anfängliche Spannungen hinweggekommen und konnten gemeinsam und effizient unser Ziel verfolgen und erreichen.

SEPS 15/17

Glossar

Dieses Glossar erklärt wesentliche Begriffe des Projekts "Docker". Folgende Elemente können einen Begriff beschreiben:

Begriff: Der zu erklärende Terminus

Definition: Kurze Definition des Begriffs

Weitere Erklärungen: Weitere Informationen zum Begriff (optional)

Format: Typ, Länge, Einheit (optional)

Validierungsregeln: Validierungsregeln für Parameter (optional)

Aliase: Synonyme (optional)

Beziehungen: Beziehungen dieses Begriffs zu anderen Elementen (optional)

Diese Auflistung soll nur als Richtlinie dienen. Die meisten Begriffe sollten in kurzer Prosa erklärt werden.

Projektdomäne

Primärbegriffe

Spieler Der Spieler ist der einzige menschliche Akteur in der Projektdomäne.

Synonyme: Benutzer, User, Anwender

Spiel Das Spiel beinhaltet sowohl die Spielregeln und –Logik, als auch den aktuellen Zustand des Spiels, etwa Timer oder die aktuelle Punktezahl. Verschiedene

Spielmodi führen zu verschiedenen Ausprägungen des Spiel-Objekts.

Synonyme: Game

Schiff Das Schiff ist ein zentrales Spielelement in Docker. Ziel des Spiels ist es, Container

möglichst effizient auf das Schiff zu beladen. Das Schiff enthält also eine Sammlung bereits platzierter Container. Verschiedene Schiffe unterscheiden sich in Attributen

wie Breite, Höhe und Tragfähigkeit.

Synonyme: Frachtschiff, Containerschiff

Zug Der Zug ist dafür zuständig, die zu verladenden Container in den Spielbereich zu

"liefern". Abhängig von seiner Geschwindigkeit wird das Spiel einfacher oder

schwieriger.

Synonyme: Güterzug, Containerzug

Container Ein Container muss durch den Spieler vom Zug auf das Schiff verladen werden.

Container erscheinen in verschiedenen Ausführungen, die sich in Gewicht, Grösse

und Farbe unterscheiden können.

Synonyme: Frachtcontainer

Kran Der Kran hat die Aufgabe, Container vom Zug auf das Schiff zu befördern. Dabei

bestimmt der Spieler welcher Container auf welche Position gesetzt werden soll. Der

Kran führt diese Anweisung dann selbstständig durch.

Synonyme: Hafenkran

Level Ein Level ist eine vordefinierte Spielkonfiguration, die für den Karrieremodus

benötigt wird. Es bestimmt, in welcher Reihenfolge welche Container vom Zug in den Spielbereich gebracht werden. Levels sind persistent und werden vom Spiel

geladen.

Handicap Das Handicap ist eine Sammlung von Parametern, die das Spiel für den Spieler

SEPS 16/17

schwieriger gestalten. Darunter fallen die Geschwindigkeit des Zuges, die Toleranz des Schiffes bezüglich ungleichmässiger Ladung und "blindes Versetzen". Das Handicap ist persistent und wird vom Spiel geladen.

Sekundärbegriffe

Spielbereich Der Spielbereich ist der "Viewport", also der Teil des Spiels, der für den Spieler

sichtbar auf dem Bildschirm erscheint. So können Objekte theoretisch im negativen Bereich des Spielkoordinatensystems und damit nicht im Spielbereich

befinden.

Synonyme: Spielfeld

Spielmodus Der Spielmodus ist eine Variante des Spiels. Während die Grundregeln und -

Aufgaben (Schiff beladen) identisch bleiben, beeinflussen sie das Spielerlebnis wesentlich. Im Moment gibt es drei mögliche Spielmodi: Das Schnelle Spiel, das

Unendliche Spiel und den Karrieremodus.

Synonyme: Spielvariante

Schnelles Spiel Das schnelle Spiel ist der simpelste Spielmodus. Er beinhaltet ausschliesslich die

Grundregeln.

Synonyme: Quick Game

Beziehungen: Use Case "Schnelles Spiel"

Unendliches Das unendliche Spiel baut auf dem schnellen Spiel auf, ist aber zeitlich nicht

Spiel begrenzt. Bloss die ansteigende Schwierigkeit limitiert die Spieldauer. Anders als

im schnellen Spiel können mehrere Schiffe in Progression beladen werden.

Synonyme: Endloses Spiel, Endless Game, Infinite Game

Beziehungen: Use Case "Unendliches Spiel"

Karrieremodus Der Karrieremodus teilt das Spielerlebnis in mehrere, vordefinierte Level auf. Ist

ein Level geschafft, wird der nächste freigeschaltet.

Synonyme: Career Game

Beziehungen: "Karriere-Modus mit Level-Freischaltung"

Kippwert Beschreibt, wie nahe das Schiff am Kentern ist.

Synonyme: Kenterwert, capsizeValue

Beziehungen: Systemoperation capsizeShip. Wird von der Klasse LoadRating

berechnet

Bruchwert Beschreibt, wie nahe das Schiff am Brechen ist.

Synonyme: breakValue

Beziehungen: Systemoperation breakShip. Wird von der Klasse LoadRating

berechnet.

Projektmanagement

Höllenquery Die von RH entworfene Query, die alle Plandaten und Aufwände aus dem

Projektmanagement verrechnet.

Sonstiges

Achievements Virtuelle Errungenschaften, die für den Spieler freigeschaltet werden, wenn er

bestimmte Ziele erreicht (z.B. 100 Schiffe beladen). Achievements können auch mit Belohnungen gepaart werden (z.B. neue Schiffe freigeschaltet werden).

Synonyme: Errungenschaften

Beziehungen: Use Case Achievements

In-App Käufe Die Möglichkeit, im Spiel gegen kleine Transaktionen (Microtransactions)

spezielle Inhalte freizuschalten. Beispielsweise spezielle Schiffstypen oder

Spielhilfen wie etwa die Möglichkeit, den Zug zu verlangsamen.

Beziehungen: Use Case In-App Käufe

SEPS 17/17