Sheet 4

(1) Use Euclid's algorithm to calculate both gcd(357, 133), and integers r and s such that

$$r * 357 + s * 133 = \gcd(357, 133).$$

- (2)(i) In the lectures it has been or will be proved that for all nonzero integers a, b, c we have gcd(a, b) = 1 and a|bc implies a|c. Deduce that for a prime p we have p|ab implies p|a or p|b.
 - (ii) Show that every positive integer n can be writen as $n = p_1^{k_1} \cdots p_r^{k_r}$, where the p_i are distinct primes and the k_i are ≥ 1 , and that this factorisation is unique up to order. Hint. The existence is an easy induction argument and for the uniqueness you need part (i).
 - (iii) For nonzero integers a an b define lcm(a,b) (the least common multiple of a and b) as the unique positive generator of the subgroup $\mathbb{Z}a \cap \mathbb{Z}b$ of \mathbb{Z} . Show that for all nonzero integers m we have a,b|m if and only if lcm(a,b)|m (*). Note that there can only be one positive integer with this property.
 - (iv) Let a and b be nonzero integers. Show that $\operatorname{lcm}(a,b) \gcd(a,b) = ab$. Hint. Write $a = p_1^{k_1} \cdots p_r^{k_r}$ and $b = p_1^{l_1} \cdots p_r^{l_r}$, where the p_i are distinct primes and the k_i and l_i are integers ≥ 0 . Note that we allow zero exponents in order to have the same set of primes in both factorisations. Now write $\operatorname{lcm}(a,b)$ and $\gcd(a,b)$ in the same way and deduce the result.