

WHAT IS CLAIMED IS:

- 1 1. A method comprising the steps of:
2 identifying a first display content to be displayed at a first time;
3 identifying a second display content to be displayed at a second time, wherein the second
4 time is after the first time;
5 providing display data to a display port at a first frame rate, when the first display content is
6 different from the second display content; and
7 providing display data to the display port at a second frame rate, when the first display
8 content is substantially the same as the second display content, wherein the second
9 frame rate is less than the first frame rate.
- 1 2. The method as in Claim 1, further including the steps of:
2 enabling a first clock rate, when the first display content is different from the second display
3 content; and
4 enabling a second clock rate, when the first display content is substantially the same as the
5 second display content, wherein the second clock rate is less than the first clock rate.
- 1 3. The method as in Claim 2, wherein the step of enabling the first clock rate includes:
2 providing a clock signal associated with an oscillator to a phase locked loop; and
3 providing a locked clock signal generated by the phase locked loop to a clock bus.
- 1 4. The method as in Claim 3, further wherein the step of enabling the second clock rate includes:
2 disabling the phase locked loop; and
3 providing the clock signal associated with the oscillator to the clock bus.

1 5. The method as in Claim 1, further including the steps of:
2 representing the display data using a first number of bits, when the first display content is
3 different from the second display content; and
4 representing the display data using a second number of bits, when the first display content is
5 substantially the same as the second display content, wherein the second number of
6 bits is less than the first number of bits.

1 6. The method as in Claim 5, wherein the number of bits is associated with a color depth.

1 7. The method as in Claim 1, further including the steps of:
2 activating a first number of interface lines associated with the display port, when the first
3 display content is different from the second display content; and
4 activating a second number of interface lines associated with the display port, when the first
5 display content is substantially the same as the second display content, wherein the
6 second number of control lines is less than the first number of control lines associated
7 with the display port.

1 8. The method as in Claim 7, wherein the interface lines include one of digital to analog converter
2 input lines, transition minimized differential signaling input lines, or low voltage differential
3 signaling input lines.

1 9. The method as in Claim 1, further including the steps of:
2 identifying a third display content to be displayed at a third time, wherein the third time is
3 after the second time;
4 providing display data with a first color depth, when the third display content is different
5 from the first display content; and
6 providing display data with a second color depth, when the third display content is
7 substantially the same as the first display content, when the second color depth is less
8 than the first color depth.

- 1 10. The method as in Claim 1, wherein the steps are performed within a portable device.
1 11. The method as in Claim 10, wherein the portable device includes a personal digital assistant.
1 12. The method as in Claim 1, wherein the display content is associated with a personal digital
2 assistant.
1 13. The method as in Claim 1, wherein the display data is for output on a display device.
1 14. The method as in Claim 13, wherein the display device includes a screen associated with a
2 personal digital assistant.
1 15. The method as in Claim 14, wherein the display device includes a liquid crystal display.

- 1 16. The method as in Claim 1, further including the steps of:
- 2 supporting a first nominal power, when the first display content is different from the second
3 display content; and
- 4 supporting a second nominal power, when the first display content is substantially the same
5 as the second display content, wherein the second nominal power is less than the first
6 nominal power.
- 1 17. The method as in Claim 1, wherein a number of bits used to represent multimedia data is
2 changed to match a change in nominal power.
- 1 18. The method as in Claim 17, wherein the multimedia data includes video data.
- 1 19. The method as in Claim 17, wherein the multimedia data includes audio data.

1 20. A method comprising the steps of:
2 identifying a first display content to be displayed at a first time;
3 identifying a second display content to be displayed at a second time, wherein the second
4 time is after the first time;
5 using a first number of bits to represent display data, when the first display content is
6 different from the second display content; and
7 using a second number of bits to represent display data, when the first display content is
8 substantially the same as the second display content, wherein the second frame rate is
9 less than the first frame rate.

1 21. The method as in Claim 20, wherein the number of bits used to represent data includes a color
2 depth.

1 22. The method as in Claim 20, wherein the display data is for display on a display device.

1 23. The method as in Claim 22, wherein the display device includes a personal digital assistant
2 screen.

1 24. The method as in Claim 20, further including the steps of:
2 enabling a first clock rate, when the first display content is different form the second display
3 content; and
4 enabling a second clock rate, when the first display content is substantially the same as the
5 second display content, wherein the second clock rate is less than the first clock rate.

1 25. The method as in Claim 24, wherein the step of enabling the first clock rate includes:
2 providing a clock signal associated with an oscillator to a phase locked loop; and
3 providing a locked clock signal generated by the phase locked loop to a clock bus.

- 1 26. The method as in Claim 25, further wherein the step of enabling the second clock rate includes:
2 disabling the phase locked loop; and
3 providing the clock signal associated with the oscillator to the clock bus.
- 1 27. The method as in Claim 20, further including the steps of:
2 supporting a first nominal power, when the first display content is different from the second
3 display content; and
4 supporting a second nominal power, when the first display content is substantially the same
5 as the second display content, wherein the second nominal power is less than the first
6 nominal power.

- 1 28. A system comprising:
- 2 a content analyzer to compare a first display content to be displayed at a first time with a
3 second display content to be displayed at a second time, wherein the second time is
4 after the first time;
- 5 a display module to alter a frame rate for providing display data to a display port, wherein
6 said frame rate is based on the comparison performed by said content analyzer; and
7 said display port to output said display data.
- 1 29. The system as in Claim 28, wherein said display module further used to:
- 2 apply a first frame rate for providing display data to said display port, when said content
3 analyzer determines the first display content is different from the second display
4 content; and
- 5 apply a second frame rate for providing display data to said display port, when said content
6 analyzer determines the first display content is substantially the same as the second
7 display content, wherein the second frame rate is less than the first frame rate.
- 1 30. The system as in Claim 28, wherein said first display content is stored in memory.
- 1 31. The system as in Claim 28, further including a power module, said power module to:
- 2 enable a first clock rate, when said content analyzer determines the first display content is
3 different from the second display content; and
- 4 enable a second clock rate, when said content analyzer determines the first display content is
5 substantially the same as the second display content, wherein said second clock rate
6 is less than said first clock rate.

1 32. The system as in Claim 28, further including a power module, said power module to:
2 support a first nominal power, when said content analyzer determines the first display
3 content is different from the second display content; and
4 support a second nominal power when said content analyzer determines the first display
5 content is substantially the same as the second display content, wherein said second
6 nominal power is less than said first nominal power.

1 33. The system as in Claim 28, wherein:
2 said content analyzer further used to compare a third display content to be displayed at a
3 third time with the first display content, wherein the third time is after the second
4 time; and
5 said display module further to:
6 provide display data with a first color depth, when the content analyzer
7 determines the third display content is different from the first display
8 content; and
9 provide display data with a second color depth, when the content analyzer
10 determines the third display content is substantially the same as the
11 first display content.

1 34. A system comprising:

2 a content analyzer to compare a first display content to be displayed at a first time with a
3 second display content to be displayed at a second time, wherein the second time is
4 after the first time;
5 a display module to alter a number of bits used to represent display data, wherein said
6 number of bits is based on the comparison performed by said content analyzer; and
7 said display port to output said display data.

1 35. The system as in Claim 34, wherein said display module further used to:

2 apply a first number of bits used to represent display data, when said content analyzer
3 determines said first display content is different from said second display content;
4 apply a second number of bits used to represent display data, when the first display content
5 is substantially the same as the second display content, wherein the second number of
6 bits used to represent display data is less than the first number of bits used to
7 represent display data.

1 36. The system as in Claim 34, wherein the number of bits used to represent data is associated with
2 a color depth of the display data.

1 37. The system as in Claim 34, wherein said display port is coupled to one of a digital to analog
2 converter, a transition minimized differential signaling transceiver, or a low voltage
3 differential signaling transceiver, for providing display data to a display device.

1 38. The system as in Claim 37, wherein said display device includes a screen of a personal digital
2 assistant.

1 39. The system as in Claim 38, wherein said display device includes a liquid crystal display.

1 40. The system as in Claim 34, further including a power module, said power module to:
2 enable a first clock rate, when said content analyzer determines the first display content is
3 different from the second display content; and
4 enable a second clock rate, when said content analyzer determines the first display content is
5 substantially the same as the second display content, wherein said second clock rate
6 is less than said first clock rate.

1 41. The system as in Claim 34, further including a power module, said power module to:
2 support a first nominal power, when said content analyzer determines the first display
3 content is different from the second display content; and
4 support a second nominal power when said content analyzer determines the first display
5 content is substantially the same as the second display content, wherein said second
6 nominal power is less than said first nominal power.