

Основные понятия теории графов и линейной алгебры

Рустам Азимов

Ориентированный граф

Определение

Ориентированный граф $\mathcal{G}=\langle V,E\rangle$, где V — конечное множество вершин, E — конечное множество рёбер, т.ч. $E\subseteq V\times V$.

Пример (Ориентированный граф и его графическое представление) Пусть дан ориентированный граф

$$\mathcal{G}_1 = \langle \{0,1,2,3\}, \{(0,1),(1,2),(2,0),(2,3),(3,2)\} \rangle.$$

Графическое представление графа \mathcal{G}_1 :

Помеченный ориентированный граф

Определение

Помеченный ориентированный граф $\mathcal{G} = \langle V, E, L \rangle$, где V — конечное множество вершин, E — конечное множество рёбер, т.ч. $E \subseteq V \times L \times V$, L — конечное множество меток на рёбрах.

Пример (Помеченный ориентированный граф и его графическое представление)

$$\mathcal{G}_2 = \langle \{0,1,2,3\}, \{(0,a,1), (1,a,2), (2,a,0), (2,b,3), (3,b,2)\} \rangle.$$

Основные понятия теории графов

- ▶ Путь последовательность рёбер, в которой конечная вершина ребра совпадает с начальной вершиной следующего ребра
- Вершина v_j достижима из вершины v_i , только если существует путь из вершины v_i в вершину v_j
- Достижима ли вершина сама из себя обговаривается отдельно для каждой конкретной задачи
- Один из способов задать граф это задать его матрицу смежности

Матрица смежности

Определение

Матрица смежности графа $\mathcal{G}=\langle V,E,L\rangle$ — это квадратная матрица M размера $n\times n$, где |V|=n и ячейки которой содержат множества. При этом $l\in M[i,j]\iff \exists e=(i,l,j)\in E$.

- ▶ Если необходимо отметить лишь наличие рёбер, то строят Булевую матрицу смежности, т.е. состоящую только из 0 и 1
- ▶ Матрица смежности неориентированного графа будет симметричной, т.е. её элементы будут симметричны относительно главной диагонали
- ▶ Если запрещены кратные рёбра, то элементы матрицы смежности могут быть не множества меток, а именно метками

Пример (Матрица смежности неориентированного графа)

Неориентированный граф:

И его матрица смежности:

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Пример (Матрица смежности ориентированного графа)

Ориентированный граф:

И его матрица смежности:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Пример (Матрица смежности помеченного графа)

Помеченный граф:

И его матрица смежности:

$$\begin{pmatrix} \varnothing & \{a\} & \varnothing & \varnothing \\ \varnothing & \varnothing & \{a\} & \varnothing \\ \{a\} & \varnothing & \varnothing & \{a,b\} \\ \varnothing & \varnothing & \{b\} & \varnothing \end{pmatrix}$$

Пример (Матрица смежности взвешенного графа)

Взвешенный граф для задачи о кратчайших путях:

И его матрица смежности (для задачи о кратчайших путях):

$$\begin{pmatrix} 0 & -1.4 & \infty & \infty \\ \infty & 0 & 2.2 & \infty \\ 0.5 & \infty & 0 & 1.85 \\ \infty & \infty & -0.76 & 0 \end{pmatrix}$$

Свойства операций линейной алгебры

- ▶ Коммутативная операция бинарная операция, обладающая коммутативностью $x \odot y = y \odot x$
- ▶ Ассоциативная операция бинарная операция, обладающая ассоциативностью $(x \odot y) \odot z = x \odot (y \odot z)$
- ▶ Бинарная операция \times дистрибутивна относительно бинарной операции + на множестве D, если для любых трех элементов $x, y, z \in D$:
 - 1. Дистрибутивность слева $x \times (y+z) = x \times y + x \times z$
 - 2. Дистрибутивность справа $(y+z) \times x = y \times x + z \times x$

Некоторые алгебраические струткуры

- ightharpoonup Полугруппа $\langle D,\cdot
 angle$ в общей алгебре множество с заданной на нём ассоциативной бинарной операцией
- lackbox Моноид $\langle D,\cdot,e
 angle$ полугруппа с нейтральным элементом e, где $e\cdot x=x=x\cdot e$
- ightharpoonup Полукольцо $\langle D, \oplus, \otimes, 0 \rangle$ структура, для которой
 - 1. $\langle D, \oplus, 0 \rangle$ коммутативный моноид
 - 2. $\langle D, \otimes \rangle$ полугруппа
 - 3. Операция ⊗ дистрибутивна относительно ⊕
 - 4. Мультипликативное свойство нуля $0=0\otimes a=a\otimes 0$