Kernelization

Serge Gaspers

Contents

1	Vertex Cover 1.1 Simplification rules	
2	Kernelization algorithms	3
3	Kernel for Hamiltonian Cycle	4
4	Kernel for Edge Clique Cover	4
5	Kernels and Fixed-parameter tractability	5
6	Further Reading	6

1 Vertex Cover

A vertex cover of a graph G=(V,E) is a subset of vertices $S\subseteq V$ such that for each edge $\{u,v\}\in E$, we have $u\in S$ or $v\in S$.

Vertex Cover

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have a vertex cover of size at most k?

Exercise 1

Is this a YES-instance for VERTEX COVER? (Is there $S \subseteq V$ with $|S| \le 4$, such that $\forall \ uv \in E, \ u \in S$ or $v \in S$?)

Exercise 2

1.1 Simplification rules

(Degree-0)

If $\exists v \in V$ such that $d_G(v) = 0$, then set $G \leftarrow G - v$.

Proving correctness. A simplification rule is *sound* if for every instance, it produces an equivalent instance. Two instances I, I' are *equivalent* if they are both YES-instances or they are both No-instances.

Lemma 1. (Degree-0) is sound.

Proof. First, suppose (G - v, k) is a YES-instance. Let S be a vertex cover for G - v of size at most k. Then, S is also a vertex cover for G since no edge of G is incident to v. Thus, (G, k) is a YES-instance.

Now, suppose (G - v, k) is a No-instance. For the sake of contradiction, assume (G, k) is a YES-instance. Let S be a vertex cover for G of size at most k. But then, $S \setminus \{v\}$ is a vertex cover of size at most k for G - v; a contradiction.

(Degree-1)

If $\exists v \in V$ such that $d_G(v) = 1$, then set $G \leftarrow G - N_G[v]$ and $k \leftarrow k - 1$.

Lemma 2. (Degree-1) is sound.

Proof. Let u be the neighbor of v in G. Thus, $N_G[v] = \{u, v\}$.

If S is a vertex cover of G of size at most k, then $S \setminus \{u,v\}$ is a vertex cover of $G - N_G[v]$ of size at most k-1, because $u \in S$ or $v \in S$. If S' is a vertex cover of $G - N_G[v]$ of size at most k-1, then $S' \cup \{u\}$ is a vertex cover of G of size at most k, since all edges that are in G but not in $G - N_G[v]$ are incident to u.

(Large Degree)

If $\exists v \in V$ such that $d_G(v) > k$, then set $G \leftarrow G - v$ and $k \leftarrow k - 1$.

Lemma 3. (Large Degree) is sound.

Proof. Let S be a vertex cover of G of size at most k. If $v \notin S$, then $N_G(v) \subseteq S$, contradicting that $|S| \le k$.

(Number of Edges)

If $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$ then return No

Lemma 4. (Number of Edges) is sound.

Proof. Assume $d_G(v) \leq k$ for each $v \in V$ and $|E| > k^2$. Suppose $S \subseteq V$, $|S| \leq k$, is a vertex cover of G. We have that S covers at most k^2 edges. However, $|E| \geq k^2 + 1$. Thus, S is not a vertex cover of G.

1.2 Preprocessing algorithm

VC-preprocess

Input: A graph G and an integer k.

Output: A graph G' and an integer k' such that G has a vertex cover of size at most k if and only if G' has a vertex cover of size at most k'.

 $G' \leftarrow G \\ k' \leftarrow k$

repeat

Execute simplification rules (Degree-0), (Degree-1), (Large Degree), and (Number of Edges) for (G', k')

until no simplification rule applies

return (G', k')

Effectiveness of preprocessing algorithms

- How effective is VC-preprocess?
- We would like to study preprocessing algorithms mathematically and quantify their effectiveness.

First try

- Say that a preprocessing algorithm for a problem Π is *nice* if it runs in polynomial time and for each instance for Π , it returns an instance for Π that is strictly smaller.
- \bullet \rightarrow executing it a linear number of times reduces the instance to a single bit
- ullet such an algorithm would solve Π in polynomial time
- \bullet For NP-hard problems this is not possible unless P=NP
- We need a different measure of effectiveness

Measuring the effectiveness of preprocessing algorithms

- We will measure the effectiveness in terms of the parameter
- How large is the resulting instance in terms of the parameter?

Effectiveness of VC-preprocess

Lemma 5. For any instance (G, k) for VERTEX COVER, VC-preprocess produces an equivalent instance (G', k') of size $O(k^2)$.

Proof. Since all simplification rules are sound, (G = (V, E), k) and (G' = (V', E'), k') are equivalent. By (Number of Edges), $|E'| \le (k')^2 \le k^2$. By (Degree-0) and (Degree-1), each vertex in V' has degree at least 2 in G'. Since $\sum_{v \in V'} d_{G'}(v) = 2|E'| \le 2k^2$, this implies that $|V'| \le k^2$. Thus, $|V'| + |E'| \subseteq O(k^2)$.

2 Kernelization algorithms

Kernelization: definition

Definition 6. A kernelization for a parameterized problem Π is a **polynomial time** algorithm, which, for any instance I of Π with parameter k, produces an **equivalent** instance I' of Π with parameter k' such that $|I'| \leq f(k)$ and $k' \leq f(k)$ for a computable function f. We refer to the function f as the size of the kernel.

Note: We do not formally require that $k' \leq k$, but this will be the case for many kernelizations.

VC-preprocess is a quadratic kernelization

Theorem 7. VC-preprocess is a $O(k^2)$ kernelization for VERTEX COVER.

3 Kernel for Hamiltonian Cycle

A Hamiltonian cycle of G is a subgraph of G that is a cycle on |V(G)| vertices.

vc-Hamiltonian Cycle

Input: A graph G = (V, E).

Parameter: k = vc(G), the size of a smallest vertex cover of G.

Question: Does G have a Hamiltonian cycle?

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

Issue: We do not actually know a vertex cover of size k. We do not even know the value of k (it is not part of the input).

- Obtain a vertex cover using an approximation algorithm. We will use a 2-approximation algorithm, producing a vertex cover of size $\leq 2k$ in polynomial time.
- If C is a vertex cover of size $\leq 2k$, then $I = V \setminus C$ is an independent set of size $\geq |V| 2k$.
- \bullet No two consecutive vertices in the Hamiltonian Cycle can be in I.
- A kernel with $\leq 4k$ vertices can now be obtained with the following simplification rule.

(Too-large)

Compute a vertex cover C of size $\leq 2k$ in polynomial time. If 2|C| < |V|, then return No

4 Kernel for Edge Clique Cover

Definition 8. An edge clique cover of a graph G = (V, E) is a set of cliques in G covering all its edges. In other words, if $C \subseteq 2^V$ is an edge clique cover then each $S \in C$ is a clique in G and for each $\{u, v\} \in E$ there exists an $S \in C$ such that $u, v \in S$.

Example: $\{\{a, b, c\}, \{b, c, d, e\}\}\$ is an edge clique cover for this graph.

Edge Clique Cover

Input: A graph G = (V, E) and an integer k

Parameter: k

Question: Does G have an edge clique cover of size at most k?

The *size* of an edge clique cover \mathcal{C} is the number of cliques contained in \mathcal{C} and is denoted $|\mathcal{C}|$.

Helpful properties

Definition 9. A clique S in a graph G is a maximal clique if there is no other clique S' in G with $S \subset S'$.

Lemma 10. A graph G has an edge clique cover C of size at most k if and only if G has an edge clique cover C' of size at most k such that each $S \in C'$ is a maximal clique.

Proof sketch. (\Rightarrow): Replace each clique $S \in \mathcal{C}$ by a maximal clique S' with $S \subseteq S'$.

 (\Leftarrow) : Trivial, since \mathcal{C}' is an edge clique cover of size at most k.

Simplification rules for Edge Clique Cover

Thought experiment: Imagine a very large instance where the parameter is tiny. How can you simplify such an instance?

The instance could have many degree-0 vertices.

(Isolated)

If there exists a vertex $v \in V$ with $d_G(v) = 0$, then set $G \leftarrow G - v$.

Lemma 11. (Isolated) is sound.

Proof sketch. Since no edge is incident to v, a smallest edge clique cover for G - v is a smallest edge clique cover for G, and vice-versa.

(Isolated-Edge)

If $\exists uv \in E$ such that $d_G(u) = d_G(v) = 1$, then set $G \leftarrow G - \{u, v\}$ and $k \leftarrow k - 1$.

(Twins)

If $\exists u, v \in V$, $u \neq v$, such that $N_G[u] = N_G[v]$, then set $G \leftarrow G - v$.

Lemma 12. (Twins) is sound.

Proof. We need to show that G has an edge clique cover of size at most k if and only if G - v has an edge clique cover of size at most k.

(⇒): If C is an edge clique cover of G of size at most k, then $\{S \setminus \{v\} : S \in C\}$ is an edge clique cover of G - v of size at most k.

(\Leftarrow): Let \mathcal{C}' be an edge clique cover of G-v of size at most k. Partition \mathcal{C}' into $\mathcal{C}'_u = \{S \in \mathcal{C}' : u \in S\}$ and $\mathcal{C}'_{\neg u} = \mathcal{C}' \setminus \mathcal{C}'_u$. Note that each set in $\mathcal{C}_u = \{S \cup \{v\} : S \in \mathcal{C}'_u\}$ is a clique in G since $N_G[u] = N_G[v]$ and that each edge incident to v is contained in at least one of these cliques. Now, $\mathcal{C}_u \cup \mathcal{C}'_{\neg u}$ is an edge clique cover of G of size at most k.

(Size-V)

If the previous simplification rules do not apply and $|V| > 2^k$, then return No.

Lemma 13. (Size-V) is sound.

Proof. For the sake of contradiction, assume neither (Isolated) nor (Twins) are applicable, $|V| > 2^k$, and G has an edge clique cover \mathcal{C} of size at most k. Since $2^{\mathcal{C}}$ (the set of all subsets of \mathcal{C}) has size at most 2^k , and every vertex belongs to at least one clique in \mathcal{C} by (Isolated), we have that there exists two vertices $u, v \in V$ such that $\{S \in \mathcal{C} : u \in S\} = \{S \in \mathcal{C} : v \in S\}$. But then, $N_G[u] = \bigcup_{S \in \mathcal{C}: u \in S} S = \bigcup_{S \in \mathcal{C}: v \in S} S = N_G[v]$, contradicting that (Twin) is not applicable.

Kernel for Edge Clique Cover

Theorem 14 ((Gramm et al., 2008)). Edge Clique Cover has a kernel with $O(2^k)$ vertices and $O(4^k)$ edges.

Corollary 15. Edge Clique Cover is FPT.

5 Kernels and Fixed-parameter tractability

Theorem 16. Let Π be a decidable parameterized problem. Π has a kernelization algorithm $\Leftrightarrow \Pi$ is FPT.

Proof. (\Rightarrow): An FPT algorithm is obtained by first running the kernelization, and then any brute-force algorithm on the resulting instance.

(\Leftarrow): Let A be an FPT algorithm for Π with running time $O(f(k)n^c)$. If f(k) < n, then A has running time $O(n^{c+1})$. In this case, the kernelization algorithm runs A and returns a trivial YES- or No-instance depending on the answer of A. Otherwise, $f(k) \ge n$. In this case, the kernelization algorithm outputs the input instance.

6 Further Reading

- Chapter 2, Kernelization in (Cygan et al., 2015)
- Chapter 4, Kernelization in (Downey and Fellows, 2013)
- Chapter 7, Data Reduction and Problem Kernels in (Niedermeier, 2006)
- Chapter 9, Kernelization and Linear Programming Techniques in (Flum and Grohe, 2006)
- the kernelization book (Fomin et al., 2019)

References

Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh (2015). *Parameterized Algorithms*. Springer. DOI: 10.1007/978-3-319-21275-3. Rodney G. Downey and Michael R. Fellows (2013). *Fundamentals of Parameterized Complexity*. Springer. DOI: 10.1007/978-1-4471-5559-1.

Jörg Flum and Martin Grohe (2006). Parameterized Complexity Theory. Springer. DOI: 10.1007/3-540-29953-X. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi (2019). Kernelization. Theory of Parameterized Preprocessing. Cambridge University Press.

Jens Gramm, Jiong Guo, Falk Huffner, and Rolf Niedermeier (2008). "Data reduction and exact algorithms for clique cover". In: ACM J. Exp. Algorithmics 13. DOI: 10.1145/1412228.1412236.

Rolf Niedermeier (2006). *Invitation to Fixed Parameter Algorithms*. Oxford University Press. DOI: 10.1093/ACPROF: 0S0/9780198566076.001.0001.