CS223A - Introduction to Robotics - Homework #2

Yunsen Xing Autonomous Systems and Intelligent Robots yunsen@kth.se

KTH Royal Institute of Technology && Aalto University — August 25, 2025

Question 1

$$T_2' = T_1 T_2 T_1^{-1}$$

$$T_3' = T_1 T_2 T_3 (T_1 T_2)^{-1}$$

$$T_4' = T_1 T_2 T_3 T_4 (T_1 T_2 T_3)^{-1}$$

Total displacement =

$$T_4'T_3'T_2'T_1 = T_1T_2T_3T_4(T_1T_2T_3)^{-1}T_1T_2T_3(T_1T_2)^{-1}T_1T_2T_1^{-1}T_1$$

= $T_1T_2T_3T_4$

Question 2

DH parameters:

$$\begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & a_{i-1} \\ \sin\theta_i\cos\alpha_{i-1} & \cos\theta_i\cos\alpha_{i-1} & -\sin\alpha_{i-1} & -\sin\alpha_{i-1}d_i \\ \sin\theta_i\sin\alpha_{i-1} & \cos\theta_i\sin\alpha_{i-1} & \cos\alpha_{i-1} & \cos\alpha_{i-1}d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Figure 1: Question 2

i	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	0	θ_1
2	90°	0	0	θ_2
3	90°	a_2	d_3	0

Table 1: the answer to question 2

$${}_{1}^{0}T = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & 0\\ \sin\theta_{1} & \cos\theta_{1} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 & 0\\ 0 & 0 & -1 & 0\\ \sin\theta_{2} & \cos\theta_{2} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} 1 & 0 & 0 & a_{2}\\ 0 & 0 & -1 & -d_{3}\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} & : : : \frac{3}{0}T = \frac{1}{0}T_{2}^{1}T_{3}^{2}T \\ & = \begin{bmatrix} \cos\theta_{1} & -\sin\theta_{1} & 0 & 0 \\ \sin\theta_{1} & \cos\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta_{2} & -\sin\theta_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ \sin\theta_{2} & \cos\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{2} \\ 0 & 0 & -1 & -d_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} \cos\theta_{1}\cos\theta_{2} & -\cos\theta_{1}\sin\theta_{2} & \sin\theta_{1} & 0 \\ \sin\theta_{1}\cos\theta_{2} & -\sin\theta_{1}\sin\theta_{2} & -\cos\theta_{1} & 0 \\ \sin\theta_{2} & \cos\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{2} \\ 0 & 0 & -1 & -d_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ & = \begin{bmatrix} \cos\theta_{1}\cos\theta_{2} & \sin\theta_{1} & \cos\theta_{2} & \sin\theta_{1}\sin\theta_{2} & a_{2}\cos\theta_{1}\cos\theta_{2} + d_{3}\cos\theta_{1}\sin\theta_{2} \\ \sin\theta_{1}\cos\theta_{2} & -\cos\theta_{1} & \sin\theta_{1}\sin\theta_{2} & a_{2}\sin\theta_{1}\cos\theta_{2} + d_{3}\sin\theta_{1}\sin\theta_{2} \\ \sin\theta_{1}\cos\theta_{2} & -\cos\theta_{1} & \sin\theta_{1}\sin\theta_{2} & a_{2}\sin\theta_{1}\cos\theta_{2} + d_{3}\cos\theta_{1}\sin\theta_{2} \\ \sin\theta_{2} & 0 & -\cos\theta_{2} & a_{2}\sin\theta_{1}2 \end{bmatrix} - d_{3}\cos\cos\theta_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

Another Example

Figure 2: Question 3

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	0	0	0	θ_1
2	-90°	0	d_2	θ_2
3	90°	0	d_3	0
4	0	0	0	0
5	-90°	0	0	θ_5
6	90°	0	0	θ_6

Table 2: the answer to the example

Question 3

Figure 3: Question 3

i	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	0	θ_1
2	α_1	a_1	d_2	θ_2
3	α_2	0	d_3	θ_3
4	α_3	0	d_4	θ_4
5	0	a_4	0	θ_5

Table 3: the answer to question 3