Vector Algebra

CHAPTER 10 - VECTOR ALGEBRA

Excercise 10.3

Solution:

1. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, find the value of \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{b} . \overrightarrow{c} + \overrightarrow{c} . \overrightarrow{a} .

1 Solution

The given vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are unit vectors. Since the given vectors \mathbf{a} , \mathbf{b} , \mathbf{c} are unit vector hence $\mathbf{a} = \mathbf{b} = \mathbf{c}$ which is equal to 1.

$$\|\mathbf{a}\| = \sqrt{1^2} = 1\tag{1}$$

$$\|\mathbf{b}\| = \sqrt{1^2} = 1$$
 (2)

$$\|\mathbf{c}\| = \sqrt{1^2} = 1\tag{3}$$

The Given equation is

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0 \tag{4}$$

Squaring on both sides,

$$\|\mathbf{a} + \mathbf{b} + \mathbf{c}\|^2 = 0^2 \tag{5}$$

$$\implies \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 + \|\mathbf{c}\|^2 + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) = 0$$
 (6)

$$\implies \mathbf{a}^{\mathsf{T}}\mathbf{a} + \mathbf{b}^{\mathsf{T}}\mathbf{b} + \mathbf{c}^{\mathsf{T}}\mathbf{c} + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) = 0$$
 (7)

$$\implies 1^2 + 1^2 + 1^2 + 2(\mathbf{a}^\top \mathbf{b} + \mathbf{b}^\top \mathbf{c} + \mathbf{c}^\top \mathbf{a}) = 0$$
 (8)

$$\implies 3 + 2(\mathbf{a}^{\mathsf{T}}\mathbf{b} + \mathbf{b}^{\mathsf{T}}\mathbf{c} + \mathbf{c}^{\mathsf{T}}\mathbf{a}) = 0 \tag{9}$$

$$\implies$$
 ab + **bc** + **ca** = $\frac{-3}{2}$ (10)

Hence the value of \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{b} . \overrightarrow{c} + \overrightarrow{c} . \overrightarrow{a} is -1.5 or -3/2