Thermodynamics and Statistical Physics

Maximilien Bohm

April 20, 2022

Contents

1	The		concepts in Thermodynamics	5
	1.1	Therm	and an any-body system	5
		1.1.1	Macroscopic picture	5
		1.1.2	Thermodynamic equilibrium	5
		1.1.3	Equation of state	5
	1.2	Therm	odynamic processes	5
		1.2.1	Reversibility versus irreversibility	5
		1.2.2	Some definitions	5
	1.3	The la	ws of thermodynamics at a glance	5
		1.3.1	Zeroth law	5
		1.3.2	First law	5
		1.3.3	Second law	5
		1.3.4	Third law	5
2			laws of thermodynamics	7
	2.1		rst law: Energy conservation	8
		2.1.1	Concept of energy in mechanics	8
		2.1.2	Formulation of the first law	8
		2.1.3	Internal energy as a state function	8
		2.1.4	The work: A noble form of energy exchange	8
		2.1.5	The heat: A degenerate form of energy exchange	8
	2.2	Interm	nezzo: Construction of a temperature scale	8
		2.2.1	General approach	8
		2.2.2	Celsius scale	8
		2.2.3	Fahrenheit scale	8
		2.2.4	Kelvin scale	8
		2.2.5	How to measure a temperature (old fashion)	8
	2.3	The se	econd law: Entropy	8
		2.3.1	Preliminary statements about the second law	8
		2.3.2	The Carnot theorem	8
		2.3.3	The Clausius theorem	8
		2.3.4	Formulation of the second law	8
		2.3.5	How to compute the production entropy	8
		2.3.6	Heat spontaneously flows from hot to cold	8
	2.4	Additi	onal laws: Zero and Three	8
		2.4.1	The zeroth law	8
		2 4 2	The third law	0

3	Uni	versal	thermodynamic identities	9
	3.1	Thern	nodynamic functions	10
		3.1.1	Ideal classical gas	10
		3.1.2	Energy picture of a generic thermodynamic system	10
		3.1.3	Maxwell relations	10
		3.1.4	Entropy picture	10
	3.2	Legen	dre transform and definition of new thermodynamic functions	10
		3.2.1	Legendre transform	10
		3.2.2	Thermodynamic potentials	10
		3.2.3	Helmhotz relations	10
		3.2.4	Euler formula and Gibbs-Duhem relation	10
	3.3	Calori	metric and thermoelastic coefficients	10
		3.3.1	Calorimetric coefficients	10
		3.3.2	Thermoelastic coefficients	10
		3.3.3	Relations between the calorimetric and thermoelastic co-	
			efficients	10
	3.4	Thern	nodynamics of the ideal classical gas	10
		3.4.1	Calorimetric coefficients	10
		3.4.2	Thermodynamic functions	10
		3.4.3	Thermoelastic coefficients	10
		_		
1			ynamic potentials and equilibrium	11
	4.1		ed systems	12
		4.1.1	Law of entropy increase	12
		4.1.2	Equilibrium conditions of two coupled systems	12
		4.1.3	About the zeroth law of thermodynamics	12
		4.1.4	Stability conditions of the thermodynamic equilibrium	12
	4.2		l systems	12
		4.2.1	Preliminary: Mechanical equilibrium	12
		4.2.2	Closed isochoric systems (or mechanically isolated)	12
		4.2.3	Closed isobaric systems	12
	4.3	Gener	alization and application to open systems	12
		4.3.1	Generic thermodynamic system	12
		4.3.2	Open systems	12
		133	Stability of thermodynamic equilibrium and consequences	19

The basic concepts in Thermodynamics

Lecture 1: Basic concepts in thermodynamics

Wed 20 Apr 2022 14:03

- 1.1 Thermodynamic description of a many-body system
- 1.1.1 Macroscopic picture
- 1.1.2 Thermodynamic equilibrium
- 1.1.3 Equation of state
- 1.2 Thermodynamic processes
- 1.2.1 Reversibility versus irreversibility
- 1.2.2 Some definitions
- 1.3 The laws of thermodynamics at a glance
- 1.3.1 Zeroth law
- 1.3.2 First law
- 1.3.3 Second law
- 1.3.4 Third law

The basic laws of thermodynamics

Lecture 2	2:	Basic	laws	of	thermo	dvna	amics
LCCCAIC 2		Dasic	14115	$\mathbf{o}_{\mathbf{I}}$	UIICI IIIC	, ca., iii	

Wed 20 Apr 2022 14:16

- 2.1 The first law: Energy conservation
- 2.1.1 Concept of energy in mechanics
- 2.1.2 Formulation of the first law
- 2.1.3 Internal energy as a state function
- 2.1.4 The work: A noble form of energy exchange
- 2.1.5 The heat: A degenerate form of energy exchange
- 2.2 Intermezzo: Construction of a temperature scale
- 2.2.1 General approach
- 2.2.2 Celsius scale
- 2.2.3 Fahrenheit scale
- 2.2.4 Kelvin scale
- 2.2.5 How to measure a temperature (old fashion)
- 2.3 The second law: Entropy
- 8 CHAPTER 2. THE BASIC LAWS OF THERMODYNAMICS
- 2.3.1 Preliminary statements about the second law
- 2.3.2 The Carnot theorem
- 2.3.3 The Clausius theorem
- 2.3.4 Formulation of the second law

Universal thermodynamic identities

Wed 20 Apr 2022 14:33

- ,	0.77
Lecture	3: Thermodynamic identities
3.1 T	hermodynamic functions
3.1.1 I	deal classical gas
3.1.2 E	Energy picture of a generic thermodynamic system
3.1.3 N	Maxwell relations
3.1.4 E	Entropy picture
	egendre transform and definition of new ther- odynamic functions
3.2.1 L	egendre transform
3.2.2 T	Thermodynamic potentials
3.2.3 H	Helmhotz relations
3.2.4 E	Culer formula and Gibbs-Duhem relation
3.3 C	alorimetric and thermoelastic coefficients
3.3.1	Calorimetric coefficients
10 CHA 3.3.3 F	Thermoelastic coefficients APTER 3. UNIVERSAL THERMODYNAMIC IDENTITIES Relations between the calorimetric and thermoelas- ic coefficients

Thermodynamics of the ideal classical gas

3.4.1 Calorimetric coefficients

Thermodynamic potentials and equilibrium

Lecture 4: Thermodynamic potentials

Wed 20 Apr 2022 15:18

- 4.1 Isolated systems
- 4.1.1 Law of entropy increase
- 4.1.2 Equilibrium conditions of two coupled systems
- 4.1.3 About the zeroth law of thermodynamics
- 4.1.4 Stability conditions of the thermodynamic equilibrium
- 4.2 Closed systems
- 4.2.1 Preliminary: Mechanical equilibrium
- 4.2.2 Closed isochoric systems (or mechanically isolated)
- 4.2.3 Closed isobaric systems
- 4.3 Generalization and application to open systems
- 4.3.1 Generic thermodynamic system
- 4.3.2 Open systems

42.3.9.7.5.8abilTtyE8MCDYNAOdGrEATENETALITIBHTDTECANDEDINSC quences