Babeş-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2019-2020

Mathematical Analysis Seminar 7

1. Compute the following integrals:

a)
$$\iint_A (\sin x + \sin y) \, dx \, dy$$
, where $A = [0, \pi/2] \times [0, \pi/4]$.

b)
$$\iint_A \frac{1}{(x+y)^2} dx dy$$
, where $A = [3,4] \times [1,2]$.

c)
$$\iint_A \frac{x}{x^2 + y^2} dx dy$$
, where $A = [1, 2] \times [0, 1]$.

d)
$$\iint_A \frac{xy^2}{x^2+1} dx dy$$
, where $A = [1, 2] \times [-3, 3]$.

e)
$$\iint_A \frac{1}{x^2 + y^2} dx dy$$
, where $A = [1/a, a] \times [0, 1]$ with $a > 1$.

f)
$$\iint_A \min\{x, y\} dx dy$$
, where $A = [0, 1] \times [0, 1]$.

g)
$$\iiint_A \frac{x^2 z^3}{1 + y^2} dx dy dz, \text{ where } A = [-1, 0] \times [-1, 1] \times [0, 1].$$

h)
$$\iiint_A \frac{1}{(x+y+z)^3} dx dy dz$$
, where $A = [1, a] \times [1, a] \times [1, a]$ with $a > 1$.

j)
$$\int \cdots \int_A e^{x_1 + \cdots + x_n} dx_1 \dots dx_n$$
, where $A = [0, 1] \times \cdots \times [0, 1]$

- **2.** Let M be the subset of \mathbb{R}^2 bounded by the parabola $y=x^2$ and the lines x=2 and y=0.
- a) Express M as a simple set first w.r.t. the y-axis and then w.r.t. the x-axis. b) Compute $\iint_M xy \, dx \, dy$ in two ways.
- **3.** Let M be the subset of \mathbb{R}^2 bounded by the parabolas $y = 2x^2$ and $y = x^2 + 1$. a) Express M as a simple set w.r.t. the y-axis. b) Study whether M is simple w.r.t. the x-axis. c) Compute $\iint_M (x+2y) \, dx \, dy.$

4. Compute
$$\iiint_M z \, dx \, dy \, dz$$
 where $M = \left\{ (x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le 2, \ 0 \le y \le 2\sqrt{x}, \ 0 \le z \le \sqrt{4x - y^2} \right\}$.

5. Compute the integral $\iiint_M \frac{1}{(1+x+y+z)^3} dx dy dz$ where $M \subseteq \mathbb{R}^3$ is the set bounded by the coordinate planes and the plane x+y+z=1.

1