

QCM DE MATHÉMATIQUES - LILLE

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement celles-ci).

Ces questions ont été écrites par Arnaud Bodin, Barnabé Croizat et Christine Sacré de l'université de Lille. Relecture de Guillemette Chapuisat, Abdelkader Necer et Pascal Romon.

Ce travail a été effectué en 2021-2022 dans le cadre d'un projet Hilisit porté par Unisciel.

Ce document est diffusé sous la licence *Creative Commons – BY-NC-SA – 4.0 FR*. Sur le site Exo7 vous pouvez récupérer les fichiers sources.

Logique

Arnaud Bodin, Barnabé Croizat, Christine Sacré

1 Logique, ensembles et raisonnements

1.1 Logique | Facile

Ouestion	1
Uniesman	•

Ouelles sont les assertions vraies?

- ☐ Il existe des triangles rectangles.
- $\hfill\Box$ Tout triangle est un triangle rectangle.
- ☐ Tout triangle équilatéral est isocèle.
- ☐ Il existe un triangle équilatéral qui est rectangle.

Question 2

Quelles sont les assertions vraies?

- \Box Si cos $\theta = 0$ alors $\theta = \frac{\pi}{2}$.
- \square Si $\theta \in [0, \pi]$ alors $0 \le \cos \theta \le 1$.
- \Box Si $\theta = 0$ alors $\sin \theta = 0$.
- \square Si $\theta \in [0, \pi]$ et sin $\theta = 0$ alors ($\theta = 0$ ou $\theta = \pi$).

Question 3

Quelles sont les assertions vraies?

- ☐ Le chiffre des unités de tout entier pair est 0, 2, 4, 6 ou 8.
- ☐ Le chiffre des unités de tout entier multiple de 3 est 3, 6 ou 9.
- ☐ Le chiffre des unités de tout entier multiple de 4 est 4 ou 8.
- ☐ Le chiffre des unités de tout entier multiple de 5 est 0 ou 5.

Question 4

Soient x, y des nombres réels. Quelles sont les assertions vraies?

- \square Si x = -5 alors $x^2 = 25$.
- \square Si $x^2 = 25$ alors x = 5.
- \square Si xy = 0 alors x = 0 ou y = 0.
- \square Si xy = 0 alors x = 0 et y = 0.

1.2 Logique | Moyen

\sim	. •	_
<i>(</i>)1	uestion	4

Soit $\mathcal P$ une assertion vraie et $\mathcal Q$ une assertion fausse. Quelles sont les assertions vraies?

- □ *P* ou *2*
- □ 2 et 9
- $\square \mathscr{P}$ ou non(\mathscr{Q})
- $\square \ \mathcal{Q} \text{ ou non}(\mathcal{P})$

Question 6

On considère l'assertion "non(\mathscr{P}) et \mathscr{Q} ". Quand est-ce que cette assertion est vraie?

- \square Si \mathscr{P} vraie et \mathscr{Q} vraie.
- \square Si \mathscr{P} vraie et \mathscr{Q} fausse.
- \square Si \mathscr{P} fausse et \mathscr{Q} vraie.
- \square Si \mathscr{P} fausse et \mathscr{Q} fausse.

Question 7

Soit $n \ge 3$ un entier. On considère l'implication :

"n nombre premier $\implies n$ est impair".

Quelles sont les affirmations vraies?

- \square L'implication réciproque est "n est pair \implies n est un nombre premier".
- \square La contraposée est "n est pair \implies n n'est pas nombre premier".
- ☐ Si l'implication est vraie alors l'implication réciproque l'est aussi.
- ☐ Si l'implication est vraie alors sa contraposée l'est aussi.

Question 8

Soit *x* un réel. On considère l'implication :

$$|x^2| > 0 \implies x > 0$$
.

Quelles sont les affirmations vraies?

- \square L'implication réciproque est " $x > 0 \implies x^2 > 0$ ".
- \square La contraposée est " $x > 0 \implies x^2 > 0$ ".
- ☐ Si l'implication est fausse alors l'implication réciproque l'est aussi.
- ☐ Si l'implication est fausse alors sa contraposée l'est aussi.

Question 9

On considère l'implication:

"tu prépares un repas \implies je viens chez toi".

Quelles sont les affirmations vraies?

 \square L'implication réciproque est "je viens chez toi \implies tu ne prépares pas de repas".

☐ La contraposée est "je ne viens pas chez toi ⇒ tu ne prépares pas de repas".

☐ Si l'implication est vraie alors l'implication réciproque l'est aussi.

☐ Si l'implication est vraie alors sa contraposée l'est aussi.

Question 10

Quelles sont les assertions vraies, quel que soit x > 0, un réel strictement positif?

 $\Box \exists y > 0 \quad \ln(x) = y$

 $\Box \exists y > 0 \quad e^x = y$

 $\exists y > 0 \quad \ln(y) = x$

 $\Box \exists y > 0 \quad e^y = x$

1.3 Logique | Difficile

Question 11

Pour quelles phrases, l'assertion est vraie si on remplace "??" par " \exists ", mais est fausse si on remplace "??" par " \forall "?

 \square ?? $n \in \mathbb{N}^*$ n est pair

 \square ?? $n \in \mathbb{N}^*$ n(n+1) est pair

 \square ?? $n \in \mathbb{N}^*$ n et n + 2 sont des nombres premiers

 \square ?? $n \in \mathbb{N}^*$ si n n'est pas premier alors n admet au moins deux facteurs premiers distincts

Question 12

Soit $x \in \mathbb{R}$. Quelles sont les assertions vraies si on remplace "....." par " \iff "?

 $\square x^2 = 0 \qquad \dots \qquad x = 0$

 $\square x^2 = 1 \qquad \dots \qquad x = 1$

 $\Box 0 < x < 1 \qquad \dots \qquad \frac{1}{r} > 1$

Question 13

 $f: \mathbb{R} \to \mathbb{R}$ désigne une fonction. Pour les phrases suivantes dire si la négation proposée est correcte.

 \square La négation de "Il existe $x \in \mathbb{R}$ tel que f(x) = 0" est "Pour tout $x \in \mathbb{R}$ on a $f(x) \neq 0$ ".

 \square La négation de "Pour tout $x \in \mathbb{R}$ on a f(x) = 0" est "Il existe $x \in \mathbb{R}$ tel que $f(x) \neq 0$ ".

 \square La négation de "Il existe $x \in \mathbb{R}$ tel que $f(x) \ge 0$ " est "Pour tout $x \in \mathbb{R}$ on a f(x) < 0".

□ La négation de "Pour tout $x \in \mathbb{R}$ on a f(x) > 0" est "Pour tout $x \in \mathbb{R}$ on a $f(x) \le 0$ ".

Question 14

Soit $x \in \mathbb{R}$. Pour quelles phrases, l'assertion est vraie si on remplace "??" par " \exists ", mais est fausse si on remplace "??" par " \forall "?

 \square ?? $x \in \mathbb{R}$ $x^2 > 0$

 $\square ?? x \in \mathbb{R} \quad x^2 - 2x + 1 \ge 0$

 $\square ?? x \in \mathbb{R} \quad x^2 - 2x + 1 = 0$

 \square ?? $x \in \mathbb{R}$ $x^2 \leq 0$

Question 15

Soit \mathscr{P} et \mathscr{Q} deux assertions telles que " $\mathscr{P} \implies \mathscr{Q}$ " soit vraie, et " $\operatorname{non}(\mathscr{P}) \implies \operatorname{non}(\mathscr{Q})$ " soit aussi vraie. On a alors :

 \square " $\mathscr{Q} \Longrightarrow \mathscr{P}$ " est vraie.

 \square " $\mathscr{P} \iff \mathscr{Q}$ " est vraie.

 \square " $\mathscr{Q} \Longrightarrow \text{non}(\mathscr{P})$ " est vraie.

 \square " $\mathscr{P} \Longrightarrow \text{non}(\mathscr{Q})$ " est vraie.

Question 16

En 1761, le mathématicien suisse Lambert, ami d'Euler, démontre l'implication $\mathscr{I}: "x \in \mathbb{Q} \implies \tan(x) \notin \mathbb{Q}"$. Il remarque ensuite que $1 = \tan(\frac{\pi}{4})$. Qu'en conclut-il?

 \square D'après \mathscr{I} , $\tan(\frac{\pi}{4}) \notin \mathbb{Q}$.

 \square D'après la contraposée de \mathscr{I} , $\tan(\frac{\pi}{4}) \notin \mathbb{Q}$.

 \square D'après la contraposée de \mathscr{I} , $\frac{\pi}{4} \in \mathbb{Q}$.

 \square D'après la contraposée de \mathscr{I} , $\frac{\pi}{4} \notin \mathbb{Q}$.

Question 17

Quelles sont les assertions vraies?

 $\square \ \forall x \in \mathbb{R} \ \exists \ y \in \mathbb{R} \ \ y = e^x$

 $\square \ \forall y \in \mathbb{R} \ \exists x \in \mathbb{R} \ y = e^x$

 $\square \ \forall y \in \mathbb{R} \ \exists \, x > 0 \quad y = e^x$

 $\square \ \forall y > 0 \ \exists x \in \mathbb{R} \ y = e^x$

1.4 Ensembles | Facile

Question 18

Quels sont les ensembles ayant au moins 4 éléments?

 \square \varnothing

 \Box [0,2] \cap [1,3]

 \Box {0,3} \cap {1,3}

 \square $\mathbb{N} \setminus \{0, 1, 2, 3\}$

Question 19

Quels sont les ensembles qui contiennent l'intervalle [0,2]?

 \Box [-3,3] \cap]-1,5]

 \square $\mathbb{R} \setminus]1,3[$

 $\Box \]0,1[\ \cup\]1,2]$

 $\Box \{0,1,2\}$

Question 20

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 + 2$. Quelles sont les affirmations vraies?

 \square L'image de -2 est 6.

□ Un antécédent de 18 est −5.

☐ La valeur 2 admet plusieurs images.

☐ La valeur 18 admet plusieurs antécédents.

Question 21

Soient $A = \{1, 2, 3, 4\}$ et $B = \{0, 1, 2\}$. Quelles sont les affirmations vraies?

 \square $A \cup B$ a 7 éléments.

 \square $A \cap B = \{1, 2\}$

 $\square A \setminus B = \{0, 3, 4\}$

 $\Box B \setminus A = \{0\}$

Question 22

Quels sont les ensembles qui contiennent l'intervalle [-1,1]?

 $\Box [-3,1] \cap]-2,5]$

 \square $\mathbb{R} \setminus]1,3[$

 \Box [-1,0[\cup]0,2]

 $\Box \{-1,0,1\}$

Question 23

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2 - 2$. Quelles sont les affirmations vraies?

 \square L'image de -2 est -6.

□ Un antécédent de 7 est −3.

 \square La valeur -2 admet plusieurs images.

☐ La valeur 7 admet plusieurs antécédents.

Question 24

Soit la fonction réelle définie par f(x) = 2x. Soit $x \in \mathbb{R}$. On a :

 \Box $(f \circ f)(x) = 4x^2$

 \Box $(f \circ f)(x) = 4x$

 \Box $(f \circ f) \circ f(x) = 6x$

 \Box $(f \circ f \circ f)(x) = 8x^3$

Soient les ensembles A = [1,3] et $B = \{0,1,2,3\}$. Quelles sont les assertions vraies?

- \square $B \subset A$
- \square $A \subset B$
- \square $A \setminus B =]1,3[$
- $\Box A \cap B = \{1, 2, 3\}$

Ensembles | Moyen

Question 26

Soient A, B deux parties d'un ensemble E. Quelles sont les affirmations vraies (quel que soit le choix de A et B)?

- $\square A \cup B \subset A \cap B$
- $\square A \cap B \subset A \cup B$
- $\square A \setminus B \subset A$
- $\square A \setminus B \subset B$

Question 27

Les fonctions suivantes sont-elles définies sur l'ensemble associé?

- $\square x \mapsto \ln(|x-3|) \operatorname{sur} \mathbb{R}$
- $\square x \mapsto \sqrt{1-x^2} \operatorname{sur} [-1,1]$
- $\Box x \mapsto \frac{1}{x^2-4} \operatorname{sur} \mathbb{R} \setminus \{2\}$
- $\Box x \mapsto \frac{1}{\sin(\pi x)} \operatorname{sur} \mathbb{R}^*$

Question 28

Soient f, g, h des fonctions définies par

$$f(x) = x^2 - 3x$$

$$g(x) = 2x + 1$$

$$f(x) = x^2 - 3x$$
 $g(x) = 2x + 1$ $h(x) = \frac{x}{x - 1}$.

Quelles sont les affirmations vraies?

- $\Box (f \circ g)(x) = 4x^2 2x + 4$
- $\Box (g \circ f)(x) = 2x^2 + 5$
- $\Box (h \circ f)(x) = \left(\frac{x}{x-1}\right)^2 \frac{3x}{x-1}$
- $\Box (g \circ h)(x) = \frac{3x-1}{x-1}$

Question 29

Les fonctions suivantes sont-elles définies sur l'ensemble associé?

- $\square x \mapsto \ln(|x+1|) \operatorname{sur} \mathbb{R}$
- $\Box x \mapsto \sqrt{1+x^2} \operatorname{sur} \mathbb{R}$
- $\Box x \mapsto \frac{x}{1-x^2} \operatorname{sur} \mathbb{R} \setminus \{0\}$
- $\Box x \mapsto \tan(x) \operatorname{sur} \left[\frac{\pi}{2}, \pi\right[$

Soient f, g, h des fonctions définies par

$$f(x) = x^2 + x$$
 $g(x) = 2x - 1$ $h(x) = \frac{1}{x+1}$.

Ouelles sont les affirmations vraies?

- $\Box (f \circ g)(x) = 4x^2 2x$
- $\Box (g \circ f)(x) = 2x^2 + 2x$
- $\Box (h \circ f)(x) = \frac{1}{x^2 + x + 1}$
- $\Box (g \circ h)(x) = \frac{1}{2x}$

Question 31

Parmi ces ensembles, quels sont ceux qui sont inclus dans $\{0, 1, 2\}$?

- $\square \{x \in \mathbb{R} \mid x(x-2) = 0\}$
- $\square \{x \in \mathbb{R} \mid e^x = 1\}$
- $\Box \{x > 0 \mid \ln(x) = 1\}$
- $\Box [0,3] \cap \{x \in \mathbb{R} \mid (x+2)^2 = 4\}$

Question 32

Soit l'ensemble $A = \{-1,0,1\}$ et la fonction réelle donnée par $f(x) = x^2 - 1$. Quelles sont les assertions vraies?

- $\Box \forall x \in A \quad f(x) = 0$
- $\square \exists x \in A \ f(x) = 0$
- \Box f est bijective de A dans son image f(A).
- $\square \ \forall x \in A \ f(x) \in A$

Question 33

Soient les fonctions réelle définies par f(x) = 3x + 2 et g(x) = ax + b. Pour quelle(s) valeur(s) des réels a et b a-t-on $g \circ f(x) = 6x + 7$?

- \Box a = 1 et b = 3
- \Box a = 1 et b = 5
- \Box a=2 et b=3
- \Box a=2 et b=5

1.6 Ensembles | Difficile

Question 34

Soit *E* un ensemble. Pour *A* et *B* deux parties de *E*, on définit l'ensemble

$$\Delta(A,B) = (A \cup B) \setminus (A \cap B).$$

Quelles sont les affirmations vraies?

- $\square \ \Delta(A,B) = \Delta(B,A)$
- \square Si $B = \emptyset$ alors $\Delta(A, B) = \emptyset$.
- \square Si *A* et *B* sont disjoints alors $\Delta(A, B) = A \cup B$.
- \square Si $B \subset A$ alors $\Delta(A, B) = A \setminus B$.

Les fonctions f et g définies par les expressions suivantes sont-elles bijections réciproques l'une de l'autre? (On ne se préoccupera pas des ensembles de départ et d'arrivée.)

- $\Box f(x) = \exp(2x) \text{ et } g(x) = \ln(\frac{1}{2}x)$
- $\Box f(x) = \cos(x-1) \text{ et } g(x) = \sin(x+1)$
- $\Box f(x) = \frac{1}{1+x} \text{ et } g(x) = \frac{1-x}{x}$
- $\Box f(x) = \sqrt{2x+1} \text{ et } g(x) = \frac{1}{2}x^2 1$

Question 36

Soient A et B deux parties d'un ensemble E. Quelles sont les affirmations vraies (quel que soit le choix de A et B)?

- $\Box (A \cap B) \cup (A \setminus B) = A$
- $\Box (A \cap B) \cup (A \setminus B) = B$
- $\Box (A \cap B) \cup (A \setminus B) = A \cup B$
- $\Box (A \cap B) \cup (A \setminus B) \cup (B \setminus A) = A \cup B$

Question 37

Soit *E* un ensemble. Pour deux parties *A* et *B* de *E*, on définit $\Delta(A, B) = (A \cup B) \setminus (A \cap B)$. Quelles sont les affirmations vraies (quel que soit le choix de *A* et *B*)?

- \square Si A = B, $\Delta(A, B) = \emptyset$.
- $\Box A \cup B \subset \Delta(A, B)$
- \square $A \cap B \subset \Delta(A, B)$
- $\Box \Delta(A,B) = (A \setminus B) \cup (B \setminus A)$

Question 38

Les fonctions f et g définies par les expressions suivantes sont-elles bijections réciproques l'une de l'autre? (On ne se préoccupera pas des ensembles de départ et d'arrivée.)

- $\Box f(x) = \exp(-3x) \text{ et } g(x) = -\frac{1}{3}\ln(x)$
- $f(x) = \cos(x+1)$ et $g(x) = \frac{1}{\cos(x)} 1$
- $\Box f(x) = \frac{x}{1+x}$ et $g(x) = \frac{x}{1-x}$
- $\Box f(x) = \sqrt{x+1} \text{ et } g(x) = x^2 + 1$

Question 39

Soit la fonction réelle définie par $f(x) = x^2 - x - 2$. Pour quelle fonction u a-t-on $f \circ u(x) = 9(x^2 + x)$?

$$\Box u(x) = 9x$$

$\Box u(x) = 3x + 2$ $\Box u(x) = -3x$ $\Box u(x) = 9x + 2$
1.7 Raisonnements Facile
Question 40 Pour montrer que √2 est un nombre irrationnel une preuve classique utilise : □ Un raisonnement par contraposition. □ Un raisonnement par disjonction. □ Un raisonnement par l'absurde. □ Un raisonnement par récurrence.
<i>Question 41</i> Pour montrer que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$ on a $(1+x)^n \ge 1+nx$, quelle est la démarche la plus adaptée? ☐ On fixe x , on fait une récurrence sur n . ☐ On fixe n , on fait une récurrence sur x . ☐ Par l'absurde on suppose $(1+x)^n < 1+nx$.
□ Par disjonction des cas n pair/ n impair. Question 42
On voudrait montrer que pour tout $n \in \mathbb{N}^*$ on a $2^{n-1} \le n^n$. Quel type de raisonnement vous parait adapté?
☐ Un raisonnement par contraposition.
□ Un raisonnement par disjonction : n pair/ n impair.
☐ Un raisonnement par l'absurde. ☐ Un raisonnement par récurrence.
Question 43 Soit x un réel. On définit une suite par $u_0 = x$ et, pour tout entier $n \in \mathbb{N}$, $u_{n+1} = xu_n$. □ On montre par récurrence sur n que $u_n = x^n$ pour tout entier n . □ On montre par récurrence sur x que $u_n = x^{n+1}$ pour tout entier n . □ On montre par récurrence sur x que $u_n = x^{n+1}$ pour tout entier n . □ On montre par récurrence sur x que $u_n = x^{n+1}$ pour tout entier n .
Question 44 On commence une démonstration par l'absurde avec la rédaction suivante : "Supposons que $\log_{10}(3) \in \mathbb{Q}$. Alors on peut écrire $\log_{10}(3) = \frac{p}{q}$ avec". Que cherche-t-on à démontrer?

 $\square \ \log_{10}(3) \in \mathbb{Q}$

$ \Box \log_{10}(3) \notin \mathbb{Q} $ $ \Box \log_{10}(3) \in \mathbb{R} $ $ \Box \log_{10}(3) \notin \mathbb{R} $
1.8 Raisonnements Moyen
Question 45 On souhaite prouver par récurrence, pour tout $n \ge 0$, une proposition \mathscr{P}_n . Après avoir prouvé \mathscr{P}_0 , quelle rédaction du démarrage de l'étape d'hérédité convient? □ Soit $n \ge 0$. Je prouve \mathscr{P}_1 . □ Soit $n \ge 0$. Je suppose \mathscr{P}_n vraie et je montre \mathscr{P}_{n+1} . □ Soit $n \ge 0$. Je suppose \mathscr{P}_n vraie pour tout n et je montre \mathscr{P}_{n+1} . □ Soit $n \ge 0$. Je suppose \mathscr{P}_{n+1} vraie et je montre \mathscr{P}_n .
Question 46 Pour montrer que $\sqrt{3}$ est un nombre irrationnel, je commence une démonstration par l'absurde en écrivant :
□ Je suppose $\sqrt{3} \in \mathbb{Q}$ et je cherche une contradiction.
□ Je suppose $\sqrt{3} \notin \mathbb{Q}$ et je cherche une contradiction.
□ Je suppose $\sqrt{3} \notin \mathbb{R}$ et je cherche une contradiction.
\square Je suppose que $\sqrt{3}$ n'existe pas et je cherche une contradiction.
Question 47 Quel type de raisonnement est adapté pour montrer qu'il existe une infinité de nombres premiers?
\square Au cas par cas : on étudie $n=2, n=3, n=5,$
\square Par récurrence sur n parcourant l'ensemble des nombres premiers.
☐ Par l'absurde en supposant qu'il n'existe qu'un nombre fini de nombres premiers.
☐ C'est une propriété que l'on ne sait pas démontrer.
 Question 48 Pour montrer que les solutions réelles de l'équation x + 1 = 2 sont 1 et −3, on peut utiliser : □ Un raisonnement par contraposition. □ Un raisonnement par disjonction des cas. □ Un raisonnement par l'absurde. □ Un raisonnement par récurrence.
Question 49 Soient a et b deux nombres réels. On considère la proposition suivante : "si $a+b$ est irrationnel, alors a est irrationnel ou b est irrationnel". Comment puis-je montrer cette affirmation par contraposée?

 $\ \square$ Je prends deux rationnels a et b et je montre que a+b est rationnel.

\Box Je prends deux irrationnels a et b et je montre que $a+b$ est irrationnel.	
\Box Je prends un irrationnel et j'essaie de l'écrire sous la forme $a+b$ avec a et b irrationnels.	
\square Je prends deux rationnels a et b et je montre que $a+b$ est irrationnel.	
Question 50 Téo et Théa jouent à un jeu de société. Téo est proche de la victoire; il doit lancer un dé et Tl remarque avec raison que : "si Téo fait 4, alors il gagne le jeu". Quelles sont les affirmations certaine	
☐ Si Téo fait 3, alors il n'aura pas gagné.	
☐ Si Téo gagne, c'est qu'il a fait 4.	
☐ Si Téo ne gagne pas, c'est qu'il n'a pas fait 4.	
☐ Si Téo gagne fait 5, il perd.	
1.9 Raisonnements Difficile	
Question 51 Pour montrer que $3^n > 3n$ pour des entiers n naturels suffisamment grands, je fais une preuve récurrence. Je peux commencer l'initialisation avec :	par
$\Box n = 0$	
$ \Box n = 2 $ $ \Box n = 3 $	
$\square \ n-3$	
Question 52 Pour montrer une implication $\mathscr{P} \implies \mathscr{Q}$ par contraposition :	
\square Je suppose \mathscr{P} et je montre \mathscr{Q} .	
\square Je suppose $\mathscr Q$ et je montre $\mathscr P$.	
\square Je suppose non(\mathscr{P}) et je montre non(\mathscr{Q}).	
\square Je suppose $non(\mathcal{Q})$ et je montre $non(\mathcal{P})$.	
Question 53	
Pour démontrer que, pour tout $x \in \mathbb{R}$, on a $ x-2 \le x^2 - x + 2$.	
☐ Je distingue les cas $x \ge 0$ et $x < 0$.	
☐ Je distingue les cas $x \ge 2$ et $x < 2$. ☐ Je suis amené à vérifier $x^2 - x + 2 \ge 0$.	
☐ Je suis amené à vérifier $x^2 - 2x + 4 \ge 0$.	
Question 54 Pour montrer que $4^n > 20n$ pour des entiers n naturles suffisamment grands je fais une preuve	par

récurrence. Je peux commencer l'initialisation avec :

\square $n=1$
\square $n=2$
\square $n=3$
Question 55
Pour démontrer que, pour tout $x \in \mathbb{R}$, on a $ x+1 \le x^2 + 2$.
\Box Je distingue les cas $x \ge 0$ et $x < 0$.
\square Je distingue les cas $x \ge -1$ et $x < -1$.
\square Je suis amené à vérifier $x^2 - x + 1 \ge 0$.
\square Je suis amené à vérifier $x^2 + x + 3 \ge 0$.
<i>Question 56</i> Soit $n \ge 2$ un entier. Que pensez-vous du raisonnement par récurrence suivant : on note \mathcal{P}_n la
propriété "n points distincts quelconques dans le plan sont toujours alignés".
Initialisation : pour $n = 2$, la propriété est vraie. En effet, deux points distincts du plan sont toujours
alignés.
Hérédité : soit n un entier naturel quelconque supérieur ou égal à deux. Supposons la propriété \mathcal{P}_n vraie. Soient $n+1$ points quelconques du plan, $A_1, A_2, \ldots, A_n, A_{n+1}$, tous distincts. D'après l'hypothèse
de récurrence, les n points A_1, A_2, \ldots, A_n sont alignés. Ils le sont donc sur la droite (A_2A_n) . De même
les n points $A_2, \ldots, A_n, A_{n+1}$ sont alignés. Ils le sont donc également sur la droite (A_2A_n) . On en
déduit donc que les $n+1$ points sont tous sur la droite (A_2A_n) , donc ils sont alignés. La propriété
\mathscr{P}_{n+1} est donc vraie, d'où la propriété est héréditaire. En conclusion, on a montré par récurrence que \mathscr{P}_n est vraie pour tout entier $n \ge 2$: n points distincts
du plan sont toujours alignés.
☐ Le raisonnement par récurrence est juste donc le résultat est juste.
☐ Le raisonnement par récurrence est juste mais le résultat est faux.
□ Il y a une erreur dans l'étape d'hérédité.
☐ Il y a une erreur dans l'étape d'initialisation.
Arithmétique
Arnaud Bodin, Barnabé Croizat, Christine Sacré
2 Arithmétique
2.1 pgcd Facile
Question 57
On considère $a=28$ et $b=42$. Quelles sont les affirmations vraies?
\square Les diviseurs communs à a et à b sont : 1, 2, 7.
\square 14 est un diviseur de a mais pas de b .

\Box 6 est un diviseur de b mais pas de a .
\square 84 est un multiple de a et de b .
Question 58
Quelles sont les valeurs qui correspondent à la division euclidienne $a=bq+r$ de a par b
$\Box a = 48, b = 7, q = 6, r = 6$
$\Box a = 101, b = 11, q = 9, r = 2$
$\Box a = 56, b = 9, q = 5, r = 11$
$\Box \ a = 123, \ b = 10, \ q = 13, \ r = -7$
Question 59
Quelles sont les affirmations vraies?
☐ 456 est divisible par 3.
☐ 754 est divisible par 4.
□ 5552 est divisible par 5.
□ 987 est divisible par 9.
Question 60
Quel est le reste r dans la division euclidienne de 145 par 13?
$\Box r = 0$
$\Box r = 2$
$\Box r = 7$
$\Box r = -11$
2.2 pgcd Moyen
Question 61
Soit $a = bq + r$ la division euclidienne de a par b . Quelle condition définit le reste r ?
$\square \ 0 \leqslant r < a$
$\Box 0 \leq r < b$
$\square \ 0 \leqslant r \leqslant q$
$\square \ 0 \leqslant r < q$
Question 62
Pour $a = 220$ et $b = 60$, quelles sont les affirmations vraies?
ppcm(a, b) = 440.
\square 440 est un multiple commun à a et b .
\Box 10 est un diviseur commun à a et b.

 \square pgcd(a,b) = 20.

Question 63 Grâce à l'application de l'algorithme d'Euclide, on obtient pour $a = 630$ et $b = 165$: □ $pgcd(a, b) = pgcd(165, 135)$ □ $pgcd(a, b) = pgcd(135, 30)$ □ $pgcd(a, b) = pgcd(30, 0)$ □ $pgcd(a, b) = 15$
Overtion 64
Question 64 Soit $a > 0$ un entier strictement positif dont le reste dans la division euclidienne par 8 est $r = 5$. Quelles sont les affirmations vraies?
\Box a est pair.
\Box a est impair.
\Box a est nécessairement divisible par 13.
\Box (a – 5) est un multiple de 8.
Question 65 Pour $a = 24$ et $b = 8$, on a: $\Box \text{ ppcm}(a, b) = 8$. $\Box \text{ ppcm}(a, b) = 24$. $\Box a \text{ est un multiple de } b$. $\Box a \text{ est dans la liste des diviseurs de } b$.
2.3 pgcd Difficile
Question 66
On considère a , b et d des entiers tels que $d a$ et $d b$. Quelles sont les affirmations vraies?
$\Box d a+b$
$\Box d a-b$
$\Box d a \times b$
$\Box d \frac{a}{b}$
Question 67 On considère a, b et n des entiers tels que $a n$ et $b n$. Quelles sont les affirmations vraies?

 $\Box \ a + b|n$ $\Box \ a \times b|n$ $\Box \ a + b|n^2$ $\Box \ a \times b|n^2$ $\Box \ a \times b|n^2$

Soit a_1 un entier dont le reste dans la division euclidienne par 5 est $r_1 = 2$. Soit a_2 un entier dont le reste dans la division euclidienne par 5 est $r_2 = 3$. Quelles sont alors les affirmations vraies?

\square Le reste de la division euclidienne de $a_1 + a_2$ par 5 est 0.
\square Le reste de la division euclidienne de $a_1 + a_2$ par 5 est 5.
\Box Le reste de la division euclidienne de $2a_1 + 2a_2$ par 5 est 0.
\square L'écriture décimale de $2a_1 + 2a_2$ finit par le chiffre 0.
Question 69
Soit $a > 0$ un entier impair qui est un multiple de 3. Quelles sont alors les affirmations vraies?
\square a est un multiple de 6.
\square L'écriture décimale de a finit nécessairement soit par 7 soit par 9.
Question 70
Soient a et b deux entiers positifs tels que $pgcd(a, b) = 10$ et $ppcm(a, b) = 140$. Quelles sont les affirmations vraies?
$\square \ \operatorname{pgcd}(2a, 2b) = 10$
2.4 Théorème de Bézout Facile
Question 71
Soient deux entiers a , b tels que $pgcd(a, b) = 1$. Quelles sont les affirmations vraies?
\Box a et b sont des nombres premiers.
\Box a et b sont des nombres premiers entre eux.
\square Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 1$.
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 1$. □ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$.
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$.
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$. Question 72 Soient a, b, c des entiers tels que $a bc$. Dans le lemme de Gauss, quelle est la condition pour pouvoir
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$. Question 72 Soient a, b, c des entiers tels que $a bc$. Dans le lemme de Gauss, quelle est la condition pour pouvoir conclure que $a c$?
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$. Question 72 Soient a, b, c des entiers tels que $a bc$. Dans le lemme de Gauss, quelle est la condition pour pouvoir conclure que $a c$? □ $pgcd(a, b) = 1$
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$. Question 72 Soient a, b, c des entiers tels que $a bc$. Dans le lemme de Gauss, quelle est la condition pour pouvoir conclure que $a c$? □ $pgcd(a, b) = 1$ □ $pgcd(a, c) = 1$
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$. Question 72 Soient a, b, c des entiers tels que $a bc$. Dans le lemme de Gauss, quelle est la condition pour pouvoir conclure que $a c$? □ $pgcd(a, b) = 1$ □ $pgcd(a, c) = 1$ □ $pgcd(b, c) = 1$
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$. Question 72 Soient a, b, c des entiers tels que $a bc$. Dans le lemme de Gauss, quelle est la condition pour pouvoir conclure que $a c$? □ $pgcd(a, b) = 1$ □ $pgcd(a, c) = 1$
□ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$. Question 72 Soient a, b, c des entiers tels que $a bc$. Dans le lemme de Gauss, quelle est la condition pour pouvoir conclure que $a c$? □ $pgcd(a, b) = 1$ □ $pgcd(a, c) = 1$ □ $pgcd(b, c) = 1$

 $\Box au - bv = 2$

- $\Box au + bv = 2$
- $\Box au bv = 4$
- \Box au + bv = 12

2.5 Théorème de Bézout | Moyen

Question 74

Soient deux entiers positifs a, b, on calcule le pgcd de a et b par l'algorithme d'Euclide. La première étape est d'écrire la division euclidienne de a par b : a = bq + r. Quelle est la second étape?

- \square La division de *a* par *r*.
- \square La division de *b* par *r*.
- \square La division de q par r.
- \square Cela dépend des valeurs de a et b.

Question 75

Soient deux entiers positifs a, b et d = pgcd(a, b). Quelles sont les affirmations vraies?

- \square Il existe $u, v \in \mathbb{Z}$ uniques tels que au + bv = d.
- \square Il existe $u, v \in \mathbb{Z}$ tels que au + bv = d.
- \square Il existe $u, v \in \mathbb{N}$ uniques tels que au + bv = d.
- \square Il existe $u, v \in \mathbb{N}$ tels que au + bv = d.

Question 76

Pour a=453 et b=201, l'algorithme d'Euclide (étendu) fournit des coefficients de Bézout u et v tels que $au+bv=\operatorname{pgcd}(a,b)$ avec :

- $\Box u = 4, v = -9, pgcd(a, b) = 1.$
- u = -12, v = 27, pgcd(a, b) = 51.
- $\Box u = 1, v = -2, pgcd(a, b) = 51$
- u = 4, v = -9, pgcd(a, b) = 3.

Ouestion 77

Pour les entiers a, b suivants, les u, v donnés sont-ils des coefficients de Bézout, c'est-à-dire tels que au + bv = pgcd(a, b)?

- \Box a = 7, b = 11, u = 2, v = -3
- \Box a = 20, b = 55, u = 6, v = -2
- \Box a = 28, b = 12, u = 1, v = -2
- \Box *a* = 36, *b* = 15, *u* = -2, *v* = 5

Question 78

Pour a = 41 et b = 7, on a notamment l'égalité $a \times (-3) + b \times 18 = 3$. Que peut-on en conclure?

 \square pgcd(a, b) = 3.

 □ pgcd(a, b) est un diviseur de 3. □ Comme 3 ne divise pas 7 alors a et b sont premiers entre eux. □ -3 et 18 sont premiers entre eux.
Question 79 Soit deux nombres entiers a et b tels que $5a^2 - 4b^2 = 1$. Quelles sont les affirmations vraies? □ $pgcd(a^2, b^2) = 1$. □ $pgcd(5a, 4b) = 1$. □ 5 divise $4b^2$. □ 4 divise $5a^2 - 1$.
2.6 Théorème de Bézout Difficile
 Question 80 Quelles sont les affirmations vraies concernant l'algorithme d'Euclide? ☐ Il se peut que le processus n'aboutisse pas à cause d'un nombre infini de divisions à effectuer. ☐ Il se peut que le processus ne fournisse pas le pgcd correct. ☐ Le pgcd est le dernier reste non nul. ☐ L'algorithme étendu permet en plus de calculer des coefficients de Bézout.
 Question 81 Soit n un entier tel que 5n soit un multiple de 7. Quelles sont alors les affirmations vraies? □ n est un multiple de 7. □ 5 divise 7n. □ 7 divise n. □ 35 divise n.
<i>Question 82</i> Soient 5 entiers relatifs a, b, c, u, v tels que $au + bv = 1$ et $a bc$. Quelles sont alors les affirmations vraies? □ $pgcd(a,c) = 1$. □ $pgcd(a,b) = 1$. □ $a c$. □ $pgcd(a,c) = a $.
2.7 Nombres premiers Facile
Question 83 Les entiers suivants sont-ils des nombres premiers? □ 107 □ 113

	145
	153
Ques	tion 84
Quell	es sont les affirmations vraies?
	Tout nombre impair supérieur à 3 est premier.
	Tout nombre premier supérieur à 3 est impair.
	Il existe une infinité de nombres premiers impairs.
	Il existe une infinité de nombres premiers pairs.
Ques	tion 85
Les e	ntiers suivants sont-ils des nombres premiers?
	161
	169
	171
	179
2.8	Nombres premiers Moyen
-	tion 86 es sont les affirmations vraies?
	La somme de deux nombres premiers ≥ 3 n'est jamais un nombre premier.
	Le produit de deux nombres premiers ≥ 3 n'est jamais un nombre premier.
	Il existe un nombre premier $p \ge 3$ tel que $p + 1$ soit aussi premier.
	Il existe un nombre premier $p \ge 3$ tel que $p+2$ soit aussi premier.
Ques	tion 87
	It p un nombre premier et a,b des entiers avec $p ab$. Par application du lemme d'Euclide, quelles les affirmations vraies ?
	p divise a et p divise b .
	p divise a ou p divise b.
	p divise a ou p divise b , mais pas les deux en même temps.
	p ne divise ni a, ni b.
-	tion 88 1 un entier tel que $n^2 - 1$ est un multiple de 11. Quelles sont les affirmations vraies?
	11 divise $n-1$.
	11 divise $n+1$.
	(11 divise $n-1$) ou (11 divise $n+1$).
	(11 divise n-1) et (11 divise n+1).

À l'aide d'une calculatrice, quelle est l'écriture de la décomposition en produit de facteurs premiers de N=111111?

- \square *N* = 11 × 10 101.
- \square $N = 3 \times 11 \times 3367$.
- \square *N* = 7 × 33 × 481.
- \square $N = 3 \times 7 \times 11 \times 13 \times 3713$.

Question 90

Soit $p \ge 3$ un nombre premier et p = 4q + r le résultat de sa division euclidienne par 4. On peut alors avoir :

- $\Box r = 0$
- \square r=1
- $\Box r = 2$
- \Box r=3

Question 91

Soit p un nombre premier tel que 10 . On note <math>A le chiffre des dizaines et B le chiffre des unités de l'écriture décimale de p. Quelles sont les affirmations vraies?

- \square *A* peut être pair.
- \square *B* peut être pair.
- \square On peut avoir A = B.
- \square On peut avoir B = 9 A.

2.9 Nombres premiers | Difficile

Question 92

Les entiers suivants ont été factorisés correctement. Quelles sont les écritures qui sont des décompositions en facteurs premiers ?

- $\square 3025 = 1^3 \times 5^2 \times 11^2$
- $\Box 1836 = 2^2 \times 3 \times 3^2 \times 17$
- \Box 1444716 = $2^2 \times 7^3 \times 9^2 \times 13$
- \Box 13 915 = 5 × 11² × 23

Question 93

Soient $a = 5^3 \times 11^2 \times 13^5 \times 19$ et $b = 5^5 \times 7^4 \times 11 \times 19$ Quelles sont les affirmations vraies?

- \Box pgcd(*a*, *b*) = $5^3 \times 7^4 \times 11 \times 13^5 \times 19$
- \square pgcd(a, b) = $5 \times 11 \times 19$
- \Box ppcm $(a, b) = 5^5 \times 7^4 \times 11^2 \times 13^5 \times 19$

 $ppcm(a, b) = 5^5 \times 11^2 \times 19$

Question 94

Soit $a = 79475 = 5^2 \times 11 \times 17^2$. Quelles sont les affirmations vraies?

- \square pgcd(a, 75) = 3×5^2
- \square pgcd(a, 75) = 5²
- \Box ppcm(*a*, 75) = 3 × 11 × 17²
- □ 75|*a*

Question 95

Soit $p \ge 5$ un nombre premier et $N = (p+3)^2 - p^2$. Quelles sont les affirmations vraies?

- \square 2|N
- \square 3|N.
- \Box 6|N.
- \square p ne divise pas N.

2.10 Congruences | Facile

Question 96

Quelles sont les affirmations vraies?

- \square 31 \equiv 6 [12]
- \Box 42 \equiv 16 [13]
- \Box 25 \equiv -11 [14]
- \Box 158 \equiv 8 [15]

Question 97

Quelles sont les affirmations vraies?

- \Box 456789 \equiv 0 [2]
- \Box 43 210 \equiv 0 [5]
- \square 23769 \equiv 3 [9]
- \Box 10326 \equiv 8 [10]

Question 98

Si $x \equiv 2$ [5], alors on a:

- $\Box x^2 \equiv 2x [5]$
- \square $3x \equiv -1[5]$
- $\square x+1\equiv 3[5]$
- \Box 10 $x \equiv 2[5]$

Parmi les nombres n ci-dessous, lequel vérifie à la fois $n \equiv 5$ [14] et $n \equiv 1$ [8]?

- \square n = 47
- \square n = 57
- $\Box n = 89$
- $\Box n = 103$

2.11 Congruences | Moyen

Question 100

Soient $a \equiv 2$ [13] et $b \equiv 7$ [13]. Quelles sont les affirmations vraies?

- $\Box \ a+b \equiv 9 [13]$
- \Box $ab \equiv 1 [13]$
- $\Box \ a^2 \equiv -9 [13]$
- \Box $b^3 \equiv 5 \lceil 13 \rceil$

Question 101

Soient $a \equiv b$ [n] et $c \equiv d$ [n]. Quelles sont les affirmations vraies?

- $\Box a + b \equiv c + d[n]$
- $\Box \ a + c \equiv b + d [n]$
- $\Box a^2 \equiv b^2 \lceil n \rceil$
- \Box $c^2 \equiv d^2 \lceil n \rceil$

Question 102

Soit *n* un entier premier avec 3. On peut alors affirmer :

- \square $2n \equiv 1[3]$
- \square $2n \equiv -1 \lceil 3 \rceil$
- \square $n^2 \equiv 1 [3]$
- \square $n^2 \equiv -1 \lceil 3 \rceil$

Question 103

Soit *k* un entier et $N = 5k^2 - 10k + 4$. On peut affirmer :

- \square $N \equiv 4 [5]$
- \square $N \equiv 5 [5]$
- \square $N \equiv 5k^2 [2]$
- \square $N \equiv 1[2]$

2.12 Congruences | Difficile

Question 104

Soit p un nombre premier et x un entier. Quel(s) énoncé(s) du petit théorème de Fermat sont corrects?

- $\Box x^p \equiv p[x]$
- $\Box x^p \equiv x[p]$
- \square Si p ne divise pas x, alors $x^{p-1} \equiv 0$ [x]
- \square Si p ne divise pas x, alors $x^{p-1} \equiv 0$ [p]

Question 105

Quelles sont les affirmations vraies?

- $\square \ 2^8 \equiv 2 [8]$
- $\Box 3^{12} \equiv 3[13]$
- $\Box 18^7 \equiv 1 [19]$
- $\Box 4^{16} \equiv 1 \lceil 17 \rceil$

Question 106

Soit un entier k tel que $k \equiv 2 \lceil 7 \rceil$. Quelles sont les affirmations vraies?

- $\square \ 2k^2 + k \equiv k^3 [7]$
- $\Box 3(k^4-k) \equiv 0 [7]$
- $\Box 14k 2 \equiv 5 [7]$

Question 107

Pour quel(s) entier(s) n a-t-on $10^{10} \equiv 7^{18} \lceil n \rceil$?

- \square n=3
- \square n=5
- \square n=7
- \square n=9

Question 108

Quel est le chiffre des unités de 7¹⁰⁰?

- \Box 1
- □ 3
- □ 5
- □ 9

Equations différentielles

Arnaud Bodin, Barnabé Croizat, Christine Sacré

3 Equations différentielles

3.1 Primitive | Facile

Question 109

Quelles sont les affirmations vraies?

- $\Box x^3$ est une primitive de $3x^2 + 3$.
- $\Box x^3 + 3$ est une primitive de $3x^2$.
- \Box $\ln(x^2+1)$ est une primitive de $\frac{1}{x^2+1}$.
- $\Box \sqrt{x}$ est une primitive de $\frac{1}{2\sqrt{x}}$ (sur $]0,+\infty[$).

Question 110

Quelles sont les affirmations vraies?

- \Box cos(x) est une primitive de sin(x).
- \square exp(x) est une primitive de exp(x).
- $\Box x^4 3x^3 + 2x^2 8$ est une primitive de $4x^3 9x^2 + 4x$.
- $\Box 4x^3 + x^2 3x + 6$ est une primitive de $x^4 + 2x 3$.

Question 111

Parmi les phrases suivantes, quelles sont les affirmations correctes?

- ☐ L'opération du calcul de primitives est le contraire de l'opération du calcul de dérivées.
- ☐ L'opération du calcul de dérivées est le contraire de l'opération du calcul de primitives.
- ☐ Deux primitives d'une même fonction sur un intervalle sont égales à une constante près.
- ☐ Si on connaît une primitive d'une fonction, alors on les connaît toutes.

Question 112

Pour chacune des équations différentielles suivantes, la fonction donnée est-elle solution?

- \square Pour $y' = \sin(x)$ la fonction $f(x) = \cos(x)$ est solution.
- \square Pour $y' = e^{2x}$ la fonction $f(x) = e^{2x} + 1$ est solution.
- \square Pour $y' = \ln(x)$ la fonction $f(x) = \frac{1}{x}$ est solution.
- \square Pour $y' = \frac{1}{e^x}$ la fonction $f(x) = 1 e^{-x}$ est solution.

3.2 Primitive | Moyen

Question 113

On considère la fonction $f: x \mapsto 2e^{-2x} - 3$. Quelles sont les affirmations exactes?

- \Box *f* est une primitive de $-e^{-2x} 3x$ sur \mathbb{R} .
- \Box *f* est une primitive de $-4e^{-2x}$ sur \mathbb{R} .
- \Box f est la primitive de $-4e^{-2x}$ sur \mathbb{R} valant -1 en x = 0.
- \Box f est la dérivée de $x \mapsto -e^{-2x}$

Question 114

Quelles sont les affirmations vraies?

- $\Box x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur \mathbb{R} .
- $\Box x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur $]-\infty,0[$.
- $\Box x \mapsto \ln(x)$ est une primitive de $x \mapsto 1/x$ sur $]0, +\infty[$.
- $\Box x \mapsto \ln(-x)$ est une primitive de $x \mapsto 1/x$ sur $]-\infty, 0[$.

Question 115

Soit F une primitive d'une fonction f et G une primitive d'une fonction g sur un intervalle I. Quelles sont les affirmations vraies?

- \square Si f = g alors F = G.
- \square Si F = G alors f = g.
- \square Si $f = g^2$ alors $F = G^2$.
- \square Si F = G + C (où C est une constante) alors f = g.

Question 116

Quelles sont les affirmations vraies?

- \square Une primitive de x^k est $\frac{x^k}{k}$.
- \Box Une primitive de $\ln(x)$ est $\frac{1}{x}$.
- \Box Une primitive de $\frac{1}{\sqrt{x}}$ est $2\sqrt{x}$.
- \Box Une primitive de e^{ax} est e^{ax} (où a > 0 est une constante).

3.3 Primitive | Difficile

Question 117

Parmi les fonctions suivantes, laquelle est une primitive de \sqrt{x} sur l'intervalle $]0, +\infty[$?

- $\square 2x\sqrt{x}$
- $\Box \frac{1}{2\sqrt{x}}$
- $\Box x^2 \sqrt{x}$
- $\Box \frac{2}{3}x\sqrt{x}$

Quelles sont les affirmations vraies?

- $\Box x^2 e^{1/x}$ est une primitive de $(2x-1)e^{1/x}$ sur $]-\infty,0[$.
- $\Box \ln(|x|)$ est une primitive de 1/x sur \mathbb{R} .
- \Box $\ln(x^2 + x + 1)$ est une primitive de $\frac{2x}{x^2 + x + 1}$ sur \mathbb{R} .
- \Box $e^x \ln(x)$ est une primitive de $e^x \ln(x) + e^x/x$ sur $]0, +\infty[$.

Question 119

Quelles sont les affirmations vraies?

- \Box Une primitive de $\sin(x)e^{\cos(x)}$ est $-e^{\cos(x)}$.
- \Box Une primitive de $\cos(x^3 + x)$ est $\sin(x^3 + x)$.
- \square Une primitive de $\ln(x)$ est $x \ln(x) x$ (sur $]0, +\infty[$).
- \Box Une primitive de $4x^3 + 4x$ est $(x^2 + 1)^2$.

Question 120

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle. Soit F une primitive de f. C désigne une constante. Quelles sont les affirmations vraies?

- \square Si f(x) = 0 sur I alors F(x) = C.
- \square Si f(x) = x alors $F(x) = x^2 + C$.
- \square Si $f(x) \times \cos(x) = 1$ alors $F(x) = \frac{1}{\sin(x)} + C$.
- \square Si $f(\ln(x)) = 0$ alors $F(x) = e^x + C$.

3.4 Notion d'équation différentielle | Facile

Question 121

On considère la fonction $f: x \mapsto 2e^{-x} + 3$. Parmi les équations différentielles suivantes, quelles sont celles dont f est solution?

- $\Box y' = -y + 3$
- $y' = y 4e^{-x} 3$
- $\Box y' = 2y + 3$
- \square $y' = -2e^{-x}$

Question 122

Parmi les fonctions suivantes, quelles sont celles qui sont solutions de l'équation différentielle y' = 2y - 10.

- $\Box f: x \mapsto 4e^{2x} + 5$
- $\Box f: x \mapsto e^{2x} + 5$
- $\Box f: x \mapsto 2e^x + 5$
- $\Box f: x \mapsto 2x + 5$

Parmi les fonctions suivantes quelles sont celles qui sont des solutions de l'équation différentielle y' = xy?

 $\Box f(x) = \exp(x^2)$

 $\Box f(x) = 2\exp(x^2/2)$

 $\Box f(x) = 0$

 $\Box f(x) = 1$

Question 124

Soit la fonction $f(x) = \cos(x)$. De quelle(s) équation(s) différentielle(s) f est-elle solution?

 $\Box y' = y$

 $\Box y'' = -y$

 $\square y'' = -y'$

3.5 Notion d'équation différentielle | Moyen

Ouestion 125

Soit l'équation différentielle y' = 2x(y + x) - 1. Quelles sont les affirmations vraies?

☐ Cette équation différentielle n'a pas de solution constante.

 $\Box y = -x$ est une solution.

Question 126

Soit l'équation différentielle xy' - 3y = 0. Quelles sont les affirmations vraies?

 $\Box x^3 + 1$ est une solution.

 $\Box x^3$ est une solution.

 \Box e^{3x} est une solution.

 $\hfill \square$ La fonction nulle est la seule solution constante.

Question 127

Soit f une solution de l'équation différentielle $y'=y^2+1$. Quelles sont les affirmations vraies sur la fonction f?

 \Box *f* est une fonction croissante.

 \Box *f* est une fonction décroissante.

 \Box f' est une fonction positive.

 \Box *f* peut être une fonction constante.

Soit l'équation différentielle y'-2xy=4x. Quelles sont les affirmations vraies concernant les solutions de cette équation?

 \Box y = -2 est une solution.

 \Box y = +2 est une solution.

 \Box $y = e^{x^2} + 2$ est une solution.

3.6 Notion d'équation différentielle | Difficile

Question 129

Soit f une solution de l'équation différentielle $y' = 2y - x^3$. On sait que la courbe représentative de f passe par le point A(1,2). Quelle est la pente de sa tangente au point A?

 \Box -1

 \Box 1

 \square 2

 \square 3

Question 130

Soit f une solution de l'équation différentielle y' = y + 3x. On sait de plus que la courbe représentative de f passe par le point A(-1,2). Quelles sont les affirmations exactes?

 \square La pente de la tangente à la courbe de f au point A est -1.

 \square La pente de la tangente à la courbe de f au point A est 4.

 \square La tangente à la courbe de f au point A admet pour équation : y = -x + 1.

 \square La tangente à la courbe de f au point A admet pour équation : y = 4x + 6.

Question 131

Soit l'équation différentielle xy' = y - x définie pour $x \in]0, +\infty[$. Quelles sont les fonctions solutions de cette équation, quelle que soit la constante C?

 $\Box f(x) = x - C \ln(x)$

 $\Box f(x) = x - \ln(x) + C$

 $\Box f(x) = Cx - x \ln(x)$

 $\Box f(x) = x - C$

Question 132

Soit f une solution de l'équation différentielle $y' = \cos(x)y$, vérifiant $f(\frac{\pi}{3}) = 3$. On considère la courbe représentative de f. Quelles sont les affirmations vraies?

 \Box La tangente en $x = \frac{\pi}{3}$ a pour équation $y = \frac{3}{2}x + 3$.

 \square La tangente en $x = \frac{\pi}{3}$ a pour équation $y = \frac{3}{2}(x - \frac{\pi}{3}) + 3$.

 \square La tangente en $x = \frac{\pi}{2}$ est horizontale.

 \square La tangente en $x = \frac{\pi}{3}$ est horizontale.

3.7 y' = ay | Facile

Question 133

Les solutions de l'équation différentielle y' = -y sont :

- $\Box e^{-x} + C$ avec *C* constante réelle.
- $\Box e^x + C$ avec *C* constante réelle.
- \Box Ce^{-x} avec C constante réelle.
- \Box Ce^x avec C constante réelle.

Question 134

Les solutions de l'équation différentielle y' + 2y = 0 sont :

- $\Box e^{-2x} + C$ avec C constante réelle.
- \Box $e^{2x} + C$ avec C constante réelle.
- \Box Ce^{2x} avec C constante réelle.
- \Box Ce^{-2x} avec C constante réelle.

Question 135

De quelle(s) équation(s) différentielle(s) $4e^{3x}$ est-elle une solution?

- $\Box y' = 3y$
- $\square 3y' = y$
- $\Box y' = 4y$
- $\Box 4y' = y$

Question 136

Parmi les fonctions suivantes, quelles sont celles solutions de l'équation différentielle y' = 3y?

- $\Box f(x) = 3e^{2x}$
- $\Box f(x) = 2e^{3x}$
- $\Box f(x) = e^{-3x}$
- $\Box f(x) = e^{-2x}$

Question 137

Parmi les fonctions suivantes, quelles sont celles solutions de l'équation différentielle $y' = \frac{1}{e}y$?

- $\Box f(x) = C \exp(x/e)$
- $\Box f(x) = C \exp(ex)$
- $\Box f(x) = Ce \exp(x)$
- $\Box f(x) = C \frac{\exp(x)}{e}$

3.8 y' = ay | Moyen

\sim	. •	-	_	_
<i>(</i>)11	estion	1	.7	v
Vи	ESLLUIL	1	J	o

Que peut-on dire des solutions de l'équation différentielle y' = ay?

- \square Ce sont toutes des fonctions croissantes sur \mathbb{R} .
- \square Ce sont toutes des fonctions décroissantes sur \mathbb{R} .
- \square Si $a \ge 0$, ce sont des fonctions croissantes sur \mathbb{R} .
- \square Ce sont toutes des fonctions monotones sur \mathbb{R} .

Question 139

Soit $f: x \mapsto -2e^{3x}$. Quelles sont les affirmations vraies?

- \Box *f* est la seule solution de l'équation différentielle y' = 3y dont la courbe représentative passe par le point A(0,3).
- □ f est la seule solution de l'équation différentielle y' = 3y qui tend vers $-\infty$ lorsque x tend vers $+\infty$.
- \Box *f* est la seule solution de l'équation différentielle y' = 3y valant -2 en x = 0.
- \Box f est la seule solution de l'équation différentielle y'=3y dont la dérivée en x=0 est -6.

Question 140

Soit l'équation différentielle y' + 5y = 0. Quelles sont les affirmations vraies?

- \square Les solutions générales sont $y(x) = Ce^{-5x}$.
- \square Les solutions générales sont $y(x) = Ce^{5x}$.
- \square La solution vérifiant y(1) = 0 est $y(x) = e^{-5x}$.
- \square La solution vérifiant y(1) = 0 est $y(x) = e^{5x}$.

Question 141

Pour quelles valeurs de a et b la fonction $y(x) = 7e^{-5x}$ est-elle solution de y' = ay avec y(0) = b?

- □ a = -5 et b = 7
- \Box a = 5 et b = 7
- \Box a = 5 et b = 0
- \Box a = 0 et b = 7

3.9 y' = ay | Difficile

Question 142

Soit f la solution de l'équation différentielle y' + 3y = 0 telle que f'(0) = -6. Quelles sont les affirmations vraies?

- \square La courbe représentative de f passe par A(0,2).
- \square La courbe représentative de f passe par A(0,-6).
- \Box f est toujours négative.
- \square *f* est une fonction décroissante sur \mathbb{R} .

<i>Question 143</i> Soit f la solution de l'équation différentielle $y' = 4y$ telle que $f(1) = e^4$.
\Box La courbe représentative de f passe par le point $A(1, e^4)$.
□ La courbe représentative de f passe par le point $B(0,1)$.
☐ La pente de la tangente à la courbe de f en $x = 1$ est 4.
\Box On n'a pas assez de données pour déterminer la pente de la tangente à la courbe de f en $x=0$
Question 144
Soit l'équation différentielle $y' = ay$ avec $a > 0$. Quelles sont les affirmations vraies?
☐ Il n'y a pas de solutions constantes.
☐ Il y a une seule solution constante.
□ Toute solution vérifie $y(x) \ge 0$.
□ Toute solution $y(x)$ tend vers 0 lorsque x tend vers $-\infty$.
Question 145 Soit la solution de l'équation différentielle $y' = 2y$ vérifiant $y(0) = -1$. Quelles sont les affirmation vraies?
☐ La solution est toujours négative.
☐ La solution est une fonction décroissante.
\square La pente de la tangente en $x = 0$ vaut 1.
\Box La pente de la tangente en $x = 1$ vaut $-2e^2$.
3.10 $y' = ay + b$ et $y' = ay + f$ Facile
Question 146 Soit l'équation différentielle $2y' + 4y = 3$. Quelles sont les affirmations vraies?
\square La seule solution constante est $y = 3/2$.
\square La seule solution constante est $y = 3/4$.
\square Les solutions sont $Ce^{-4x} - 3$ avec C constante réelle.
□ Les solutions sont $Ce^{-2x} + 3/4$ avec C constante réelle.
<i>Question 147</i> Soit l'équation différentielle $3y' = y - 3$. Quelles sont les affirmations vraies?
La seule solution constante est $y = 1$.
□ La seule solution constante est $y = 1$. □ La seule solution constante est $y = 3$.
\Box Les solutions sont $Ce^{3x} + 1$ avec C constante réelle.

Soit $f(x) = e^x + 3$. De quelle(s) équations(s) différentielle(s) cette fonction est-elle solution?

□ Les solutions sont $Ce^{x/3} + 3$ avec C constante réelle.

- $\Box y' y = e^x$
- $\Box y' = y 3$
- $\Box 3y' y = 0$
- y' 3y = 0

Soit l'équation différentielle $y' = 2y + \cos(x)$. Quelles sont les affirmations vraies?

- \square Les solutions de l'équation homogène associée sont les $y(x) = C \sin(x)$.
- \square Les solutions de l'équation homogène associée sont les $y(x) = C \cos(x)$.
- \Box Une solution particulière est $y(x) = \frac{1}{5}\sin(x) \frac{2}{5}\cos(x)$.
- \Box Une solution particulière est $y(x) = e^{2x}$.

Question 150

Soit l'équation différentielle y' = 2y - 2x + 1. Quelles sont les affirmations vraies?

- \square La seule solution constante est $y(x) = x \frac{1}{2}$.
- $\Box y(x) = x$ est une solution particulière.
- $\Box y(x) = 3e^{2x} + x$ est une solution particulière.
- \Box $y(x) = x^2$ est une solution particulière.

3.11 y' = ay + b et y' = ay + f | Moyen

Question 151

Quelles sont les valeurs de a, b et c telles que $f: x \mapsto ax^2 + bx + c$ soit solution de l'équation différentielle $y' + 2y = 4x^2 + 2x - 1$?

- \Box *a* = 4, *b* = 2, *c* = -1
- $\Box a = 2, b = -1, c = 0$
- \Box a = 2, b = -1, c = -1
- \Box *a* = 4, *b* = -3, *c* = 1

Question 152

Parmi les fonctions suivantes, quelles sont celles qui sont solutions sur $\mathbb R$ de l'équation différentielle $y'=2y+e^{2x}$ et qui valent 2 en x=0:

- $\Box x \mapsto 2e^{2x}$
- $\Box x \mapsto xe^{2x}$
- $\Box x \mapsto xe^{2x} + 2$
- $\Box x \mapsto (x+2)e^{2x}$

Question 153

Le graphique ci-dessous représente plusieurs solutions de l'équation différentielle y' + 2y = b, où b est un réel. Quelle est la valeur de b?

- \Box b=-2
- \Box b=-1
- $\Box b = 1/2$
- \Box b=1

Soit l'équation différentielle $y' + y = e^x$. Quelles sont les affirmations vraies?

- \square Les solutions de l'équation homogène associée sont $y(x) = Ce^x$.
- \Box Une solution particulière est $y(x) = e^{-x}$.
- \Box La solution vérifiant y(0) = 1 est $y(x) = \frac{e^x + e^{-x}}{2}$.
- \square La solution vérifiant y(1) = 1 est $y(x) = e \cdot e^{-x}$.

Question 155

Soit l'équation différentielle $y' = y + x^2 - 1$. Quelles sont les affirmations vraies?

- \square Les solutions de l'équation homogène associée sont $y(x) = \frac{1}{3}x^3 x + C$.
- \square Les solutions de l'équation homogène associée sont $y(x) = Ce^{x^2-1}$.
- \square Une solution particulière est $y(x) = e^x$.
- \Box Une solution particulière est $y(x) = -x^2 2x 1$.

Question 156

On considère l'équation différentielle $y' + y = 2x^2(x + 3)$. Quelles sont les affirmations vraies?

- \square Il existe un nombre réel r tel que $y(x) = e^{rx}$ soit une solution particulière.
- \square Il existe deux nombres entiers k et n tels que $y(x) = kx^n$ soit une solution particulière.
- $\Box y(x) = e^{-x} + 2x^3$ est une solution particulière vérifiant y(0) = 0.
- $\Box y(x) = -2e^{-x} + 2x^3$ est une solution particulière vérifiant y(0) = 0.

Question 157

Soit (*E*) l'équation différentielle $y' + 5y = 5x^2 + 2x$. Alors :

- □ Si f est solution de (E), alors la fonction $x \mapsto f(x) 5x^2 2x$ est solution de l'équation différentielle (H): y' + 5y = 0.
- □ Si f est solution de (E), alors la fonction $x \mapsto f(x) x^2$ est solution de l'équation différentielle (H): y' + 5y = 0.
- □ Si f est solution de (E), alors la fonction $x \mapsto f(x) e^{-5x}$ est solution de l'équation différentielle (H): y' + 5y = 0.
- □ Si f est solution de (E), alors la fonction $x \mapsto f(x) 2x$ est solution de l'équation différentielle (H): y' + 5y = 0.

Soit l'équation différentielle $y' = y + 2e^{3x} + 4xe^{3x}$. On recherche une solution particulière sous la forme $f(x) = axe^{bx}$. Quelles doivent être les valeurs de a et b?

- $\Box a = 4, b = 3$
- $\Box \ a = 2, b = 3$
- $\Box \ a = 1, b = 3$
- $\Box \ a = 1, b = 4$

3.12
$$y' = ay + b$$
 et $y' = ay + f$ | Difficile

Question 159

Le graphique ci-dessous représente la courbe représentative d'une fonction f ainsi que sa tangente en un point A. Cette fonction f est solution d'une des équations différentielles suivantes ; laquelle ?

- $\Box y' = 2x$
- $\Box y' = y + 1$
- $\square \ y' = 2y + 2$
- y' = 2y 2

Soit f une fonction dont la courbe représentative admet pour tangente en x=-1 la droite d'équation y=2x-2. Parmi les équations différentielles suivantes, quelle est la seule dont f peut être une solution?

- $\Box y' = y + e^x$
- $\Box y' = -y + 2x$
- $\Box y' = 2y + 3x^3$
- $\square 2y'-y=2$

Question 161

Soit l'équation différentielle 2y' = 3y + 1. Quelles sont les affirmations vraies?

- \square Il y a au moins une solution dont la limite en $-\infty$ est 0.
- \Box La solution vérifiant y(0) = 0 est $y(x) = \frac{1}{3}(e^{\frac{3}{2}x} 1)$.
- \square La solution vérifiant y(0) = 0 est y(x) = 0.
- \square La solution vérifiant y(0) = 0 est $y(x) = e^{\frac{3}{2}x} 1$.

Question 162

Soit l'équation différentielle y' = y + 3x - 2. Quelles sont les affirmations vraies?

- \square Une solution particulière est y(x) = -3x 1.
- \square Une solution particulière est y(x) = 3x 2.
- \Box La solution vérifiant y(0) = 1 est $y(x) = 2e^x 3x 1$.
- \Box La solution vérifiant y(0) = 1 est $y(x) = 3e^x + 3x 2$.

Question 163

Soit f une solution de l'équation différentielle (H): y' = 4y. De quelle équation différentielle la fonction $g: x \mapsto f(x) + e^{2x}$ sera-t-elle solution?

- $\Box \ y' = 4y + e^{2x}$
- $\Box y' 4y = 4e^{2x}$
- $\Box y' = 4y 2e^{2x}$
- $\square \ y' = 2y$