

THE COPPERBELT UNIVERSITY SCHOOL OF NATURAL RESOURCES

2010 DEFFERED EXAMINATIONS CH110/FO 130 - CHEMISTRY 1 3 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. This paper has **SEVEN** questions.
- 2. Answer any **five** questions.
- 4. All answers must be written in **ink**. **Do not** use **red** or **green** ink. Pencil can only be used for diagrams.
- 5. All questions carry equal marks. Marks allocated for each sub-question are indicated in the brackets, [].

QUESTION ONE

- A. Define and explain the difference between a law and a theory (2 marks)
- B. Many atomic dimensions are expressed in angstroms. What is the angstrom equal to in terms of the SI units' nanometer (nm) and picometer (pm)? (2 marks)
- C. What is the difference between homogeneous and heterogeneous matter (2 marks)
- D. The element magnesium has three stable isotopes with the following masses and abundances:

Isotope	Mass	Abundance
	(amu)	
^{24}Mg	23.9850	78.99%
^{25}Mg	24.9858	10.00%
^{26}Mg	25.9826	11.01%

Calculate the relative atomic mass of magnesium (2 marks)

- E. Calculate the energy required to excite the Na electron from level n = 1 to n = 2. Calculate the frequency of light absorbed by Na atom in its ground state to reach this excited state. $H = 6.626 \times 10^{-34} J.S.$ (4 marks)
- F. A compound contains only Nitrogen and Oxygen and is 69.6% O by mass, the molar mass of the compound is 92 g/mol. Determine the empirical formula and molecular formula of the compound (4 marks)
- G. State the postulates of Dalton's atomic theory (4 marks)

QUESTION TWO

- A. State the uncertainty principle and name the prominent scientist associated with it (2 marks)
- B. A solution of NaOH is analyzed by titration using a standard HCl solution of 0.5M concentration and phenolphthalein indicator. A 10 ml sample of the alkali required an average of 8 mls of the standard acid. Calculate the molarity of the NaOH. (2 marks)
- C. Ascorbic Acid or vitamin C has the formula $C_6H_8O_6$. What is the molar mass of Ascorbic Acid? If a tablet contains 200 mg of vitamin C how many moles and how many molecules of vitamin C does it contain? (4 marks)
- D. The reusable booster rocket of the US space shuttle employs a mixture of aluminium and ammonium per chlorate for fuel. A possible equation for the reaction is as follows:

$$3Al_s + 3NH_4ClO_{4(s)} \rightarrow Al_2O_{3(s)} + AlCl_{3(s)} + 3NO_{(g)} + 6H_2O_{(g)}$$

- What mass of NH_4ClO_4 should be used in the fuel mixture for 1.0Kg of Al (2 marks).
- E. List the four quantum numbers and explain what each identifies and what values each may assume (10 marks)

QUESTION THREE

- A. A mixture of 0.770 g of $N_2O_{(g)}$ and 0.770 g of $N_{2(g)}$ exerts a pressure of 0.500 atm. What is the partial pressure of each gas? (2 marks)
- B. List the postulates of the kinetic theory of gases (4 marks)
- C. Assign the oxidation state for chlorine in the following anions $OCl^{-}andClO_{4}^{-}$ (2 marks)
- D. Balance the following equation occurring in acidic media (4 marks)

$$S_2O_3^{2-} + IO_3^{-} + Cl^{-} \rightarrow SO_4^{2-} + ICl_2^{-}$$

- E. Balance the following equation occurring in alkaline solution (4 marks) $SbH_3 + H_2O \rightarrow Sb(OH)_4^- + H_2$
- F. Define the terms oxidation and reduction by the electronic concept (2 marks)
- G. Write the balanced ionic equation for the reaction that occur between *ZnS* and *HCl* (2 marks)

QUESTION FOUR

- A. Distinguish between crystalline and amorphous solids (2 marks)
- B. Distinguish between the four main classes of crystalline solids (4 marks)
- C. List the four main types of unit cells found in solids (2 marks)
- D. Atmospheric pressure at the top of Nkombwa hill is approximately 480 mmHg. Convert this value to atmospheres and to Pascal's (2 marks)
- E. Oxygen gas is commonly sold in 49.0 L steel containers at a pressure of 150 atm. What volume in liters would the gas occupy at a pressure of 1.02 atm if the temperature remained unchanged? If the temperature was raised from 20.0 °C to 35.0 °C at constant P = 130 atm (5 marks)
- F. What are the basic assumptions of the kinetic molecular theory (5 marks)

QUESTION FIVE

A. For the equilibrium

$$C\!H_3O\!H_{(g)} \Leftrightarrow CO_{(g)} + 2H_{2(g)}$$

- at 275° C, K_p is 1.14×10^3 atm² calculate the value of K and determine the values of K and Kp for the reverse reaction at 275° C (6 marks)
- B. A mixture of 0.0080 mol $SO_{2(g)}$ and 0.0056 mol of $O_{2(g)}$ is placed in a one-liter container at 1000 K. When equilibrium is established, 0.0040 mol $SO_{3(g)}$ is present:

$$2SO_{2(g)} + O_{2(g)} \Leftrightarrow 2SO_3$$

What are the equilibrium concentrations of $SO_{2(g)}$ and $O_{2(g)}$ and determine the value of K for the equilibrium at 1000 K (6 marks)

C. In a 0.25 M solution of benzyl amine, $C_7H_7NH_2$ the concentration of OH^- is 2.4 X 10^{-3} M. What is the ionization constant for this weak base, the reaction is (3 marks) :

$$C_7H_7NH_2 + H_2O \Leftrightarrow C_7H_7NH_3^+ + OH^-$$

- D. What are the limitations of the Bronstead-Lowry concept (2 marks)
- E. Calculate the pH of a buffered solution containing 0.25 M acetic acid and 0.10 M sodium acetate (3 marks)

QUESTION SIX

- A. Draw and name the structural isomers of Heptane (9 marks)
- B. Draw and name the products of the following reaction (4 marks) $CH_3CH_2C \equiv CCH_2CH_3 + H_2 \xrightarrow{catalyst}$
- C. Name the following compound (2 marks) $CH_3CH_2C \equiv CCH_2CH_2CH = CHCH(CH_3)CH_3$
- D. Draw and name the products of the following reaction (3 marks) $Benzene + HNO_3 \xrightarrow{H_2SO_4} \rightarrow$
- E. Draw the structure of cis-2,3-Dichloro-2-pentene (2 marks)

QUESTION SEVEN

- A. A common laboratory reagent is 1.0 M NaOH. Calculate the [H+], [OH⁻], pH and the pOH of this solution (8 marks)
- B. Calculate the [H⁺] and the pH of these solutions (8 marks)
 - (i) $[OH^{-}] = 4.5 \times 10^{-6}$
 - (ii) $[OH^{-}] = 7.3 \times 10^{-4}$
- C. Calculate the pH and the pOH of these solutions (4 marks)
 - (i) 0.0025 M NaOH
 - (ii) 0.10 M HCIO ($Ka = 3.5 \times 10^{-8}$)

END OF EXAMINATION

The Periodic Table

							ono ne	20.0
Group								
I	II							
							1 H	
							Hydrogen	
⁷ ₃ Li	9 4 Be							•
Lithium	Beryllium							
²³ ₁₁ Na	²⁴ ₁₂ Mg							
Sodium	Magnesium							
³⁹ ₁₉ K	⁴⁰ ₂₀ Ca	⁴⁵ ₂₁ Sc	⁴⁸ ₂₂ Ti	⁵¹ ₂₃ V	⁵² ₂₄ Cr	⁵⁵ ₂₅ Mn	$_{26}^{56}$ Fe	⁵⁹ ₂₇ Co
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt
⁸⁵ ₃₇ Rb	⁸⁸ ₃₈ Sr	89 39 Y	$^{91}_{40}{ m Zr}$	93 41 Nb	$^{96}_{42}{ m Mo}$	⁹⁹ ₄₃ Tc	¹⁰¹ Ru	¹⁰³ ₄₅ Rh
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium
¹³³ ₅₅ Cs	¹³⁷ ₅₆ Ba	¹³⁹ ₅₇ La	¹⁷⁸ ₇₂ Hf	¹⁸¹ ₇₃ Ta	$^{184}_{74}{\sf W}$	¹⁸⁶ ₇₅ Re	¹⁹⁰ ₇₆ Os	¹⁹² lr
Caesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium
²²³ ₈₇ Fr	²²⁶ ₈₈ Ra	²²⁷ ₈₉ Ac						
Francium	Radium	Actinium						

Lanthanides

Actinides

	¹⁴⁰ ₅₈ Ce	¹⁴¹ ₅₉ Pr	$^{144}_{60}{ m Nd}$	$^{147}_{61}{\sf Pm}$	$^{150}_{62}{\rm Sm}$
	Cerium	Praseodymium	Neodymium	Promethium	Samarium
	$^{232}_{90}$ Th	²³¹ ₉₁ Pa	²³⁸ ₉₂ U	²³⁷ ₉₃ Np	²⁴⁴ ₉₄ Pu
L	Thorium	Protactinium	Uranium	Neptunium	Plutonium

Planck's constant, $h = 6.62 \times 10^{-34} \text{ J.s.}$

Speed of light, $c = 2.97 \times 10^8 \text{ms}^{-1}$.

Avogadro's constant, $N_A = 6.02 \times 10^{23}$. Raydberg constant, $R = 1.096776 \times 10^7 \text{m}^{-1}$.

Electron charge, $e = (-) 1.602192 \times 10^{-19} C$. Faraday constant, $F = 9.64867 \times 10^4 C$. Universal gas constant, $\mathbf{R} = 8.314 \text{JK}^{-1} \text{ mole}^{-1}$. 1 atm. = $760 \text{mmHg} = 1.0132 \times 10^5 \text{Nm}^{-2} = 1.0132 \times 10^5 \text{Pa}$ Mass of an electron = $m_e = 9.10955 \times 10^{-28} \text{g}$

Of the Elements.

Group.								
			III	IV	V	VI	VII	0
								4_2 He Helium
			¹¹ ₅ B	¹² ₆ C	¹⁴ ₇ N	¹⁶ ₈ O	¹⁹ ₉ F	²⁰ ₁₀ Ne
			Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
			²⁷ ₁₃ Al	²⁸ ₁₄ Si	³¹ ₁₅ P	³² ₁₆ S	^{35.5} ₁₇ CI	⁴⁰ ₁₈ Ar
			Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon
⁵⁹ ₂₈ Ni	⁶⁴ ₂₉ Cu	$_{30}^{65}$ Zn	$^{70}_{31}$ Ga	$_{32}^{73}$ Ge	⁷⁵ ₃₃ As	⁷⁹ ₃₄ Se	⁸⁰ ₃₅ Br	⁸⁴ ₃₆ Kr
Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
$^{106}_{46} Pd$	$^{108}_{47}{\sf Ag}$	¹¹² ₄₈ Cd	¹¹⁵ ₄₉ In	¹¹⁹ ₅₀ Sn	¹²² ₅₁ Sb	¹²⁸ ₅₂ Te	¹²⁷ ₅₃ I	¹³¹ ₅₄ Xe
Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
¹⁹⁵ ₇₈ Pt	¹⁹⁷ ₇₉ A u	²⁰¹ ₈₀ Hg	²⁰⁴ ₈₁ TI	$^{207}_{82}{ m Pb}$	²⁰⁹ ₈₃ Bi	²¹⁰ ₈₄ Po	²¹⁰ ₈₅ At	²²² ₈₆ Rn
Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
	$Key \rightarrow$			$_{\mathrm{Y}}^{\mathrm{X}}A$				
								Name
¹⁵² ₆₃ Eu	$^{157}_{64}$ Gd	¹⁵⁹ ₆₅ Tb	¹⁶²⁵ ₆₅ Dy	¹⁶⁵ ₆₇ Ho	¹⁶⁷ ₆₈ Er	$^{169}_{69}{\sf Tm}$	¹⁷³ ₇₀ Yb	¹⁷⁵ ₇₁ Lu
Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
²⁴³ ₉₅ Am	$^{247}_{96}{\rm Cm}$	²⁴⁷ ₉₇ Bk	$^{251}_{98}$ Cf	²⁵⁴ ₉₉ Es	$^{257}_{100}$ Fm	$^{256}_{101}{ m Md}$	²⁵⁴ ₁₀₂ No	²⁵⁷ ₁₀₃ Lr
Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Key:

X = Relative Atomic Mass.

Y = Proton (Atomic) number.

A = Atomic Symbol.

= Shaded box shows none metal
= Unshaded box shows metal.

1 mole of any gas at room temperature and pressure (r.t.p.) occupies 24 000cm³.

1 mole of any gas at standard temperature and pressure (s.t.p.) occupies 22 400cm³.