Course: ENCM 369 Lab Section: B03

Lab 1

**Student Name**: Mitchell Sawatzky **Date Submitted**: Jan 22, 2016

## Exercise 5.2



| instant in time        | dest     | src      | guard    |
|------------------------|----------|----------|----------|
| point two, first time  | 0x10003C | 0x7FFE60 | 0x10004C |
| point two, second time | 0x100040 | 0x7FFE60 | 0x10004C |
| point two, third time  | 0x100044 | 0x7FFE60 | 0x10004C |
| point two, fourth time | 0x100048 | 0x7FFE60 | 0x10004C |

# Exercise 12.1

#### exG.c

```
// exG.c
```

// ENCM 369 Winter 2016 Lab 1 Exercise G

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_ERROR (0.5e-9)
#define POLY_DEGREE 4
double polyval(const double *a, int n, double x);
/* Return a[0] + a[1] * x + ... + a[n] * pow(x, n). */
int main(void)
{
    double f[] = { 1.45, 0.78, -3.03, -1.15, 1.00 };
    double dfdx[POLY_DEGREE];
    double guess;
    int update_max;
    int update_count;
    int n_scanned;
    int i;
    double current_x, current_f, current_dfdx;
    printf("This program demonstrates use of Newton's Method to find\n"
           "approximate roots of the polynomial\nf(x) = ");
    printf("%.2f", f[0]);
    i = 1;
    start_for_b:
        if (i > POLY_DEGREE)
            goto end_for_b;
        if (f[i] >= 0)
            goto if_a;
        goto el_a;
        if_a:
            printf(" + %.2f*pow(x,%d)", f[i], i);
            goto fi_a;
            printf(" - %.2f*pow(x,%d)", -f[i], i);
            goto fi_a;
        fi_a:
            i++;
```

```
goto start_for_b;
end_for_b:
   ;
printf("\nPlease enter a guess at a root, and a maximum number of\n"
       "updates to do, separated by a space.\n");
n_scanned = scanf("%lf%d", &guess, &update_max);
if (n_scanned != 2)
   goto if_b;
goto el_b;
if_b:
   printf("Sorry, I couldn't understand the input.\n");
   exit(0);
el_b:
if (update_max < 1)</pre>
   goto if_c;
goto el_c;
if_c:
   printf("Sorry, I must be allowed do at least one update.\n");
   exit(0);
el_c:
printf("Running with initial guess %f.\n", guess);
i = 0;
start_for_c:
   if (i >= POLY_DEGREE)
        goto end_for_c;
   dfdx[i] = (i + 1) * f[i + 1]; // Calculus!
   i++;
   goto start_for_c;
end_for_c:
current_x = guess;
update_count = 0;
start_while_a:
    current_f = polyval(f, POLY_DEGREE, current_x);
   printf("%d update(s) done; x is %.15f; f(x) is %.15e\n",
           update_count, current_x, current_f);
   if (update_count == update_max)
        goto end_while_a;
   if (fabs(current_f) < MAX_ERROR)</pre>
        goto end_while_a;
```

```
current_dfdx = polyval(dfdx, POLY_DEGREE - 1, current_x);
        current_x -= current_f / current_dfdx;
        update_count++;
        goto start_while_a;
    end_while_a:
    if (fabs(current_f) <= MAX_ERROR)</pre>
        goto if_d;
    goto el_d;
    if_d:
        printf("Stopped with approximate solution of %.10f.\n",
               current_x);
        goto fi_d;
    el_d:
        printf("%d updates performed, solution still not good enough.\n",
               update_count);
        goto fi_d;
    fi_d:
    return 0;
}
double polyval(const double *a, int n, double x)
    double result = 0.0;
    int i = n;
    start_for_a:
        if (i < 1)
            goto end_for_a;
        result += a[i];
        result *= x;
        i--;
        goto start_for_a;
    end_for_a:
    result += a[0];
    return result;
```

```
Before Modification
                                                                              After Modification
Mitchell@ttys003 21:23 {0} [exG]$ ./test.out
                                                             Mitchell@ttys001 22:18 {130} [exG]$ ./test.out
This program demonstrates use of Newton's Method to find
                                                             This program demonstrates use of Newton's Method to find
approximate roots of the polynomial
                                                             approximate roots of the polynomial
f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
1.15*pow(x,3) + 1.00*pow(x,4)
                                                             1.15*pow(x,3) + 1.00*pow(x,4)
Please enter a guess at a root, and a maximum number of
                                                             Please enter a guess at a root, and a maximum number of
updates to do, separated by a space.
                                                            updates to do, separated by a space.
1.0 x
                                                            1.0 x
Sorry, I couldn't understand the input.
                                                             Sorry, I couldn't understand the input.
Mitchell@ttys003 21:23 {0} [exG]$ ./test.out
                                                             Mitchell@ttys001 22:18 {0} [exG]$ ./test.out
This program demonstrates use of Newton's Method to find
                                                             This program demonstrates use of Newton's Method to find
approximate roots of the polynomial
                                                             approximate roots of the polynomial
f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
1.15*pow(x,3) + 1.00*pow(x,4)
                                                             1.15*pow(x,3) + 1.00*pow(x,4)
                                                            Please enter a guess at a root, and a maximum number of
Please enter a guess at a root, and a maximum number of
updates to do, separated by a space.
                                                            updates to do, separated by a space.
1.00
                                                             1.00
Sorry, I must be allowed do at least one update.
                                                             Sorry, I must be allowed do at least one update.
Mitchell@ttys003 21:23 {0} [exG]$ ./test.out
                                                             Mitchell@ttys001 22:18 {0} [exG]$ ./test.out
This program demonstrates use of Newton's Method to find
                                                             This program demonstrates use of Newton's Method to find
approximate roots of the polynomial
                                                             approximate roots of the polynomial
f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
1.15*pow(x,3) + 1.00*pow(x,4)
                                                             1.15*pow(x,3) + 1.00*pow(x,4)
Please enter a guess at a root, and a maximum number of
                                                             Please enter a guess at a root, and a maximum number of
updates to do, separated by a space.
                                                            updates to do, separated by a space.
1.0 3
                                                             1.0 3
Running with initial guess 1.000000.
                                                             Running with initial guess 1.000000.
0 update(s) done; x is 1.0000000000000; f(x) is -
                                                             0 update(s) done; x is 1.000000000000000; f(x) is -
9.4999999999995e-01
                                                            9.4999999999995e-01
1 update(s) done; x is 0.799154334038055; f(x) is -
                                                             1 update(s) done; x is 0.799154334038055; f(x) is -
4.082592009647401e-02
                                                             4.082592009647401e-02
2 update(s) done; x is 0.789490702493091; f(x) is -
                                                             2 update(s) done; x is 0.789490702493091; f(x) is -
1.844257849812347e-04
                                                             1.844257849812347e-04
3 update(s) done; x is 0.789446648301911; f(x) is -
                                                             3 update(s) done; x is 0.789446648301911; f(x) is -
3.908826595733217e-09
                                                             3.908826595733217e-09
3 updates performed, solution still not good enough.
                                                             3 updates performed, solution still not good enough.
Mitchell@ttys003 21:23 {0} [exG]$ ./test.out
                                                             Mitchell@ttys001 22:18 {0} [exG]$ ./test.out
This program demonstrates use of Newton's Method to find
                                                             This program demonstrates use of Newton's Method to find
approximate roots of the polynomial
                                                             approximate roots of the polynomial
f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
1.15*pow(x,3) + 1.00*pow(x,4)
                                                             1.15*pow(x,3) + 1.00*pow(x,4)
Please enter a guess at a root, and a maximum number of
                                                             Please enter a guess at a root, and a maximum number of
                                                            updates to do, separated by a space.
updates to do, separated by a space.
1.0 4
                                                             1.0 4
Running with initial guess 1.000000.
                                                             Running with initial guess 1.000000.
0 update(s) done; x is 1.0000000000000; f(x) is -
                                                             0 update(s) done; x i\bar{s} 1.0000000000000; f(x) is -
9.49999999999995e-01
                                                             9.4999999999995e-01
1 update(s) done; x is 0.799154334038055; f(x) is -
                                                             1 update(s) done; x is 0.799154334038055; f(x) is -
4.082592009647401e-02
                                                             4.082592009647401e-02
2 update(s) done; x is 0.789490702493091; f(x) is -
                                                             2 update(s) done; x is 0.789490702493091; f(x) is -
1.844257849812347e-04
                                                             1.844257849812347e-04
3 update(s) done; x is 0.789446648301911; f(x) is -
                                                             3 update(s) done; x is 0.789446648301911; f(x) is -
3.908826595733217e-09
                                                             3.908826595733217e-09
4 update(s) done; x is 0.789446647368162; f(x) is -
                                                             4 update(s) done; x is 0.789446647368162; f(x) is -
4.440892098500626e-16
                                                             4.440892098500626e-16
Stopped with approximate solution of 0.7894466474.
                                                             Stopped with approximate solution of 0.7894466474.
Mitchell@ttys003 21:23 {0} [exG]$ ./test.out
                                                             Mitchell@ttys001 22:19 {0} [exG]$ ./test.out
This program demonstrates use of Newton's Method to find
                                                             This program demonstrates use of Newton's Method to find
approximate roots of the polynomial
                                                             approximate roots of the polynomial
f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
1.15*pow(x,3) + 1.00*pow(x,4)
                                                             1.15*pow(x,3) + 1.00*pow(x,4)
Please enter a guess at a root, and a maximum number of
                                                             Please enter a guess at a root, and a maximum number of
                                                             updates to do, separated by a space.
updates to do, separated by a space.
1.6 10
                                                             1.6 10
Running with initial guess 1.600000.
                                                             Running with initial guess 1.600000.
0 update(s) done; x is 1.60000000000000; f(x) is -
                                                             0 update(s) done; x is 1.60000000000000; f(x) is -
3.21559999999999e+00
                                                             3.21559999999999e+00
1 update(s) done; x is -0.757478005865107; f(x) is -
                                                             1 update(s) done; x is -0.757478005865107; f(x) is -
5.033601557507139e-02
                                                            5.033601557507139e-02
2 update(s) done; x is -0.727014138172744; f(x) is
                                                            2 update(s) done; x is -0.727014138172744; f(x) is
2.690899366527333e-03
                                                             2.690899366527333e-03
3 update(s) done; x is -0.728488476178189; f(x) is
                                                             3 update(s) done; x is -0.728488476178189; f(x) is
5.772146689952962e-06
                                                             5.772146689952962e-06
4 update(s) done; x is -0.728491652366615; f(x) is
                                                             4 update(s) done; x is -0.728491652366615; f(x) is
2.690980771546947e-11
                                                             2.690980771546947e-11
Stopped with approximate solution of -0.7284916524.
                                                             Stopped with approximate solution of -0.7284916524.
                                                             Mitchell@ttys001 22:19 {0} [exG]$ ./test.out
Mitchell@ttys003 21:23 {0} [exG]$ ./test.out
```

```
This program demonstrates use of Newton's Method to find
                                                             This program demonstrates use of Newton's Method to find
approximate roots of the polynomial
                                                             approximate roots of the polynomial
f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
1.15*pow(x,3) + 1.00*pow(x,4)
                                                             1.15*pow(x,3) + 1.00*pow(x,4)
Please enter a guess at a root, and a maximum number of
                                                             Please enter a guess at a root, and a maximum number of
updates to do, separated by a space.
                                                             updates to do, separated by a space.
1.8 10
                                                             1.8 10
Running with initial guess 1.800000.
                                                             Running with initial guess 1.800000.
0 update(s) done; x is 1.8000000000000; f(x) is -
                                                             0 update(s) done; x is 1.8000000000000; f(x) is -
3.172399999999998e+00
                                                            3.17239999999998e+00
1 update(s) done; x is 3.368941641938672; f(x) is
                                                             1 update(s) done; x is 3.368941641938672; f(x) is
5.453299577903110e+01
                                                             5.453299577903110e+01
2 update(s) done; x is 2.789754341062644; f(x) is
                                                            2 update(s) done; x is 2.789754341062644; f(x) is
1.564652553251245e+01
                                                            1.564652553251245e+01
3 update(s) done; x is 2.433108167336762; f(x) is
                                                             3 update(s) done; x is 2.433108167336762; f(x) is
3.892116274400187e+00
                                                            3.892116274400187e+00
4 update(s) done; x is 2.265542885662034; f(x) is
                                                             4 update(s) done; x is 2.265542885662034; f(x) is
6.369755201980263e-01
                                                             6.369755201980263e-01
5 update(s) done; x is 2.225371164494491; f(x) is
                                                             5 update(s) done; x is 2.225371164494491; f(x) is
3.168430569887160e-02
                                                             3.168430569887160e-02
6 update(s) done; x is 2.223154162819966; f(x) is
                                                             6 update(s) done; x is 2.223154162819966; f(x) is
9.333252154331007e-05
                                                             9.333252154331007e-05
                                                            7 update(s) done; x is 2.223147593508815; f(x) is
7 update(s) done; x is 2.223147593508815; f(x) is
8.180014443581740e-10
                                                             8.180014443581740e-10
8 update(s) done; x is 2.223147593451238; f(x) is -
                                                             8 update(s) done; x is 2.223147593451238; f(x) is -
3.108624468950438e-15
                                                             3.108624468950438e-15
                                                             Stopped with approximate solution of 2.2231475935.
Stopped with approximate solution of 2.2231475935.
Mitchell@ttys003 21:23 {0} [exG]$ ./test.out
                                                             Mitchell@ttys001 22:19 {0} [exG]$ ./test.out
This program demonstrates use of Newton's Method to find
                                                             This program demonstrates use of Newton's Method to find
approximate roots of the polynomial
                                                             approximate roots of the polynomial
f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             1.15*pow(x,3) + 1.00*pow(x,4)
1.15*pow(x,3) + 1.00*pow(x,4)
Please enter a guess at a root, and a maximum number of
                                                             Please enter a guess at a root, and a maximum number of
updates to do, separated by a space.
                                                             updates to do, separated by a space.
                                                             -4.9 10
Running with initial guess -4.900000.
                                                             Running with initial guess -4.900000.
0 update(s) done; x is -4.9000000000000; f(x) is
                                                             0 update(s) done; x is -4.90000000000000; f(x) is
6.366541500000002e+02
                                                             6.366541500000002e+02
1 update(s) done; x is -3.682586792591736; f(x) is
                                                             1 update(s) done; x is -3.682586792591736; f(x) is
1.988315861602772e+02
                                                             1.988315861602772e+02
2 update(s) done; x is -2.792782092071352; f(x) is
                                                             2 update(s) done; x is -2.792782092071352; f(x) is
6.152307486560385e+01
                                                             6.152307486560385e+01
3 update(s) done; x is -2.154146355902563; f(x) is
                                                             3 update(s) done; x is -2.154146355902563; f(x) is
1.873771511369693e+01
                                                             1.873771511369693e+01
4 update(s) done; x is -1.709692969524729; f(x) is
                                                             4 update(s) done; x is -1.709692969524729; f(x) is
5.550965265339927e+00
                                                             5.550965265339927e+00
5 update(s) done; x is -1.416516273962120; f(x) is
                                                             5 update(s) done; x is -1.416516273962120; f(x) is
1.560088387483382e+00
                                                             1.560088387483382e+00
6 update(s) done; x is -1.241764686358543; f(x) is
                                                             6 update(s) done; x is -1.241764686358543; f(x) is
                                                             3.889185355548186e-01
3.889185355548186e-01
7 update(s) done; x is -1.158552879036898; f(x) is
                                                             7 update(s) done; x is -1.158552879036898; f(x) is
6.926890137589847e-02
                                                             6.926890137589847e-02
8 update(s) done; x is -1.135842956725481; f(x) is
                                                            8 update(s) done; x is -1.135842956725481; f(x) is
4.584744310158761e-03
                                                            4.584744310158761e-03
9 update(s) done; x is -1.134112442806661; f(x) is
                                                             9 update(s) done; x is -1.134112442806661; f(x) is
2.581306211357770e-05
                                                             2.581306211357770e-05
10 update(s) done; x is -1.134102588756783; f(x) is
                                                             10 update(s) done; x is -1.134102588756783; f(x) is
8.350702351833661e-10
                                                             8.350702351833661e-10
10 updates performed, solution still not good enough.
                                                            10 updates performed, solution still not good enough.
Mitchell@ttys003 21:24 {0} [exG]$ ./test.out
                                                             Mitchell@ttys001 22:19 {0} [exG]$ ./test.out
                                                             This program demonstrates use of Newton's Method to find
This program demonstrates use of Newton's Method to find
approximate roots of the polynomial
                                                             approximate roots of the polynomial
f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
                                                             f(x) = 1.45 + 0.78*pow(x,1) - 3.03*pow(x,2) -
1.15*pow(x,3) + 1.00*pow(x,4)
                                                             1.15*pow(x,3) + 1.00*pow(x,4)
Please enter a guess at a root, and a maximum number of
                                                             Please enter a guess at a root, and a maximum number of
updates to do, separated by a space.
                                                             updates to do, separated by a space.
-4.8 10
                                                             -4.8 10
Running with initial guess -4.800000.
                                                             Running with initial guess -4.800000.
                                                             0 update(s) done; x is -4.8000000000000; f(x) is
0 update(s) done: x is -4.800000000000000; f(x) is
5.859171999999999e+02
                                                             5.859171999999999e+02
1 update(s) done; x is -3.609082335341513; f(x) is
                                                            1 update(s) done; x is -3.609082335341513; f(x) is
1.828922472361626e+02
                                                            1.828922472361626e+02
2 update(s) done; x is -2.739520499139934; f(x) is
                                                             2 update(s) done; x is -2.739520499139934; f(x) is
5.654175045866470e+01
                                                             5.654175045866470e+01
3 update(s) done; x is -2.116476165436881; f(x) is
                                                             3 update(s) done; x is -2.116476165436881; f(x) is
                                                             1.719481254798258e+01
1.719481254798258e+01
4 update(s) done; x is -1.684131848769382; f(x) is
                                                             4 update(s) done; x is -1.684131848769382; f(x) is
5.080194869870039e+00
                                                             5.080194869870039e+00
```

```
5 update(s) done; x is -1.400420498862172; f(x) is
                                                             5 update(s) done; x is -1.400420498862172; f(x) is
1.419965705529570e+00
                                                             1.419965705529570e+00
6 update(s) done; x is -1.233078423204510; f(x) is
                                                             6 update(s) done; x is -1.233078423204510; f(x) is
3.491090297747030e-01
                                                             3.491090297747030e-01
7 update(s) done; x is -1.155372672226102; f(x) is
                                                             7 update(s) done; x is -1.155372672226102; f(x) is
5.965980569434337e-02
                                                             5.965980569434337e-02
8 update(s) done; x is -1.135439304126264; f(x) is
                                                             8 update(s) done; x is -1.135439304126264; f(x) is
3.516731278879748e-03
                                                             3.516731278879748e-03
9 update(s) done; x is -1.134108413976470; f(x) is
                                                             9 update(s) done; x is -1.134108413976470; f(x) is
1.525952628567140e-05
                                                             1.525952628567140e-05
10 update(s) done; x is -1.134102588549394; f(x) is
                                                             10 update(s) done; x is -1.134102588549394; f(x) is
2.918416619479558e-10
                                                             2.918416619479558e-10
Stopped with approximate solution of -1.1341025885.
                                                             Stopped with approximate solution of -1.1341025885.
```

### Exercise 13.1

#### exH.c

```
// exH.c
// ENCM 369 Winter 2016 Lab 1 Exercise H
#include <stdio.h>
void print_array(const char *str, const int *a, int n);
/* Prints the string given by str on stdout, then
 * prints a[0], a[1], ..., a[n - 1] on stdout on a single line. */
void sort_array(int *x, int n);
/* Sorts x[0], x[1], ..., x[n-1] from smallest to largest. */
int main(void)
  int test_array[] = { 4000, 5000, 7000, 1000, 3000, 4000, 2000, 6000 };
  print_array("before sorting ...", test_array, 8);
  sort_array(test_array, 8);
  print_array("after sorting ...", test_array, 8);
  return 0;
}
void print_array(const char *str, const int *a, int n)
  int i = 0;
  puts(str);
  start_for_a:
   if (i >= n)
      goto end_for_a;
    printf("
               %d", a[i]);
    i++;
```

```
goto start_for_a;
  end_for_a:
    ;
 printf("\n");
void sort_array(int *x, int n)
 // This is an implementation of an algorithm called insertion sort.
 int outer = 1;
  int inner;
 int v;
 start_for_b:
   if (outer >= n)
      goto end_for_b;
   v = x[outer];
    inner = outer;
    start_while_a:
      if (inner <= 0)
        goto end_while_a;
      if (v >= x[inner-1])
        goto end_while_a;
      x[inner] = x[inner-1];
      inner--;
      goto start_while_a;
    end_while_a:
    x[inner] = v;
   outer++;
    goto start_for_b;
  end_for_b:
    ;
```