

Workshop 8

COMP20008

Elements of Data Processing Zijie Xu

Agenda

- A2 group contract
- Machine learning
 - Supervised machine learning
- Feature selection with mutual information
- k-Nearest Neighbours (kNN)
- Linear regression

A2 group contract

- Everyone should have a team by now
- Group contract due in one week
 - Check your group name A2-Project $X X \in \{54,55,56,57,58,59\}$
 - Check if everyone in your team is allocated correctly
 - Canvas -> People -> Project groups

Machine learning

- Machines learn from data to make predictions/decisions
- For our subject, ML has two paradigms
 - Unsupervised: Learns pattern from unlabelled data
 - Supervised: Learns to classify/predict from labelled data
- We look at two types of supervised ML tasks
 - Classification: Predicts a discrete variable
 - Regression: Predicts a continuous variable

Supervised machine learning

- Objective: approximate f such that y = f(X) from data
 - X: features, independent variables, input variables
 - y: label, response, dependent variable, target variable, output variables
 - f: model/ML algorithm
- Pipeline
 - Gather and pre-process data
 - Split data into training/validation/testing set
 - Select a ML algorithm
 - Train algorithm with training set
 - Optimise hyperparameters using validation set
 - Evaluate performance by predicting with testing set

Feature selection with mutual information

- Sometimes not all features are useful/relevant for models
- Feature selection: choosing a subset of features is enough
- One possible way is to use mutual information/information gain
 - Mutual information < threshold -> excluded from analysis

$$MI(X,Y) = H(Y) - H(Y|X)$$

$$= H(Y) - \sum_{x_i \in X} Pr(X = x_i) H(Y|X = x_i)$$

k-Nearest Neighbours (kNN)

- Predict label of new data by looking at the labels of nearest neighbours
 - Supervised classification algorithm
- Assumption: Similar things are near to each other
- Hyper-parameters: k, distance metric

Linear regression

- Predict value of target variable by using a weighted sum of features
 - Supervised regression algorithm

•
$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m$$

- The model learns the coefficients that minimises errors/loss function
 - E.g. Linear regression minimises RSS = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- Assumptions:
 - Linear relationship between X and y
 - Features are independent with each other

Thank you

More Resources: Canvas

