

Tölvunarfræði 1

Fyrirlestur 3: Gagnatög

Hjálmtýr Hafsteinsson Haust 2015

Í síðasta fyrirlestri

- Keyrsluumhverfi fyrir Java
- Fleiri einföld Java forrit
- Skipulag tölva
- Breytur í Java

Kaflar 1.1 - 1.2

Í þessum fyrirlestri

- Gagnatög í Java:
 - char
 - int
 - double
 - -boolean
- Segðir (expressions)
- Samanburður (comparisons)

Kafli 1.2

Algengustu gagnatögin í Java

Flest forritunarmál hafa a.m.k. fjórar gerðir gagnataga:

Bókstafir char í Java

Heiltölur int í Java

Kommutölur double í Java

Rökgildi boolean í Java

- Hvers vegna bæði heiltölur og kommutölur?
 - Hraðvirkara að vinna með heiltölur (einfaldari framsetning)
 - Oft rökrétt uppskipting á notkun heiltalna (fjöldi, teljarar, ...)
 og kommutalna (rauntöluútreikningur)

char gagnatagið

- Notað fyrir bókstafi og ýmiskonar tákn
 - Það eru 2¹⁶ (= 65536) möguleg gildi (2 bæti)
 - Notar Unicode til að kóða táknin
 - Getur táknað evrópsk, arabísk, asísk stafamengi
 - Einstök gildi eru táknuð með ' ' (einföld gæsalöpp) char ch = 'a';
 - Þurfum stundum að nota lausnarstafinn \ til þess að tákna sérstök tákn:

```
'\n' (ný lína), '\t' (tab), '\'' (einföld gæsalöpp)
```


Helstu einkenni char

Tegund gildis

bókstafir og tákn

Dæmigerð gildi

'a' 'H' '\$' '\n'

Aðgerðir

samanburður

String gagnatagið

- Runa af stöfum, afmarkað af " " (tvöföld gæsalöpp)
- Samanstendur af einstökum char táknum
- Gagnatagið er ekki grunngagnatag, en er innbyggt í Java
 - Notað fyrir allan texta í Java
- Helsta aðgerðin er samskeyting (+)

```
"Halló " + "heimur" hefur gildið "Halló heimur"
```


Helstu einkenni String

values
typical
literals
operation
operator

sequences of characters
"Hello," "1 " * "
concatenate
+

Merking tákna fer eftir staðsetningu þeirra

Ath.: Þetta er ekki samlagning heldur samskeyting strengja

Notkun á String

```
String a, b, c;
a = "Hello, ";
b = "Gunna";
c = a + b;
```

Breytan c inniheldur nú "Hello, Gunna"

```
int age = 22;
System.out.println("Age: " + age);
```

Prentar út strenginn "Age: 22"

String forritsdæmi

```
public class Ruler {
   public static void main(String[] args) {
      String ruler1 = "1";
      String ruler2 = ruler1 + " 2 " + ruler1;
      String ruler3 = ruler2 + " 3 " + ruler2;
      String ruler4 = ruler3 + " 4 " + ruler3;
      System.out.println(ruler4);
   }
}
```

```
% java Ruler
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
```


Sýnir hlutfallslega lengd strika á tommustokk

int gagnatagið

- Notað til að geyma og vinna með heiltölur
 - Geymt í 4 bætum (32 bitar)
 - Getum táknað tölur frá −2,147,483,648 (−2³¹) til
 2,147,483,647 (2³¹−1)
 - Af hverju færri jákvæðar tölur?
 - Núll (0) er talið með jákvæðu tölunum
- Táknað með tvíandhverfukóða (2's complement)
 - Þá er stærsta neikvæða talan "næst á eftir" stærstu jákvæðu tölunni!
 - Kóðinn myndar í raun hring

Helstu einkenni int

values	integers between -2^{31} and $+2^{31}-1$					
typical literals		1234	99 -99 0	1000000		
operations	add	subtract	multiply	divide	remainder	
operators	+	-	*	/	%	

- 5 / 3 er 1, heiltöludeiling
- 5 % 3 er 2, afgangur af deilingu
- Forgangur (precedence)
 aðgerða er eins og við erum
 vön

	·	NP	103.	3101	1 1		,	uiuc	comment
		5	+	3				8	
		5	-	3				2	
		5	*	3				15	
		5	/	3				1	no fractional part
		5	%	3				2	remainder
		1	/	0					run-time error
	3	*	5	-	2			13	* has precedence
	3	+	5	/	2			5	/ has precedence
	3	-	5	-	2			-4	left associative
(3	-	5)	-	2		-4	better style
3	-	(5	-	2)		0	unambiguous

value

comment

expression

Önnur heiltölutög

- Java hefur fjögur heiltölutög
 - Eini munurinn er stærðin (þ.e. táknanleg gildi)
 - **byte**, 8 bitar: -128 til 127
 - **short**, 16 bitar: -32,768 til 32,767
 - int, 32 bitar: -2,147,483,648 til 2,147,483,647
 - long, 64 bitar: -9,223,372,036,854,775,808 til
 - 9,223,372,036,854,775,807
 - Við munum nær eingöngu nota int breytur í þessu námskeiði
 - long einstaka sinnum notað, en byte og short aldrei

int forritsdæmi

```
public class IntOps {
   public static void main(String[] args) {
      int a = Integer.parseInt(args[0]);
      int b = Integer.parseInt(args[1]);
      int sum = a + b;
      int prod = a * b;
      int quot = a / b;
      int rem = a % b;
      System.out.println(a + " + " + b + " = " + sum);
      System.out.println(a + " * " + b + " = " + prod);
      System.out.println(a + " / " + b + " = " + quot);
      System.out.println(a + " % " + b + " = " + rem);
    }
}
```

Skipanalínuviðföng eru alltaf String gildi. Þurfum því að breyta þeim

```
% javac IntOps.java
% java IntOps 1234 99
1234 + 99 = 1333
1234 * 99 = 122166
1234 / 99 = 12
1234 % 99 = 46
```

Java breytir sjálfkrafa int gildum í String gildi hér

Fyrirlestraræfing

- Hvernig táknum við lausnarstafinn \ sjálfan sem char gildi?
- 2. Hver er munurinn á "4"+"2" og 4+2?
- 3. Hvað gerist þegar við leggjum 1 við töluna 2,147,483,647 á int formi?

double gagnatagið

- Kommutölur (floating point numbers) eru notaðar við útreikninga
 - Þær eru nálgun á rauntölum (real numbers)
 - Geta táknað mun stærri tölur (±1.798*10³⁰⁸) og mun minni tölur (±2.225*10⁻³⁰⁸) en heiltölutögin
- Kommutölur í tölvum eru kóðaðar samkvæmt staðlinum IEEE 754
 - Gagnatagið double er 8 bæti, en float er 4 bæti
- Talnagildi sem hafa kommu (t.d. xx.yyy) eru sjálfkrafa af double tagi í Java

Helstu einkenni double

valuesreal numbers (specified by IEEE 754 standard)typical literals3.14159 6.022e23 -3.0 2.0 1.4142135623730951operationsaddsubtractmultiplydivideoperators+-*/

Nákvæmni (*precision*) double talna er um 16 tölustafir

Kommutölur hafa nokkur aukagildi skilgreind

expression	value		
3.141 + .03	3.171		
3.14103	3.111		
6.02e23 / 2.0	3.01e23		
5.0 / 3.0	1.666666666666667		
10.0 % 3.141	0.577		
1.0 / 0.0	Infinity		
Math.sqrt(2.0)	1.4142135623730951		
Math.sqrt(-1.0)	NaN		

Uppbygging double talna

- double tölur eru 64 bitar (8 bæti)
 - 52 bitar mynda brothluta (fraction)
 - 11 bitar mynda veldishluta (exponent)
 - 1 biti er formerkisbiti (1 er mínus, 0 er plús)

- double tölur eru gróf nálgun á rauntölum
 - Höfum 0.0, síðan ±2.225*10⁻³⁰⁸, og svo er sívaxandi bil á milli táknaðra talna

Java föll sem vinna með kommutölur

public class Math

```
double abs(double a)

double max(double a, double b)

double min(double a, double b)

minimum of a and b

mote 1: abs(), max(), and min() are defined also for int, long, and float.

double sin(double theta)

double cos(double theta)

double tan(double theta)

double tan(double theta)

sine function

tangent function
```

Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert. Note 3: Use asin(), acos(), and atan() for inverse functions.

```
double exp(double a)
                                        exponential (e<sup>a</sup>)
double log(double a)
                                        natural log (log, a, or ln a)
double pow(double a, double b)
                                        raise a to the bth power (a^b)
  long round(double a)
                                        round to the nearest integer
double random()
                                        random number in [0, 1)
double sqrt(double a)
                                        square root of a
double E
                                        value of e (constant)
double PI
                                        value of \pi (constant)
```


double forritsdæmi

• Leysa 2. stigs jöfnuna $x^2 + bx + c = 0$

```
x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}
```

```
public class Quadratic {
   public static void main(String[] args) {
      // parse coefficients from command-line
      double b = Double.parseDouble(args[0]);
      double c = Double.parseDouble(args[1]);
      // calculate roots
      double discriminant = b*b - 4.0*c;
      double d = Math.sqrt(discriminant);
      double root1 = (-b + d) / 2.0;
      double root2 = (-b - d) / 2.0;
      // print them out
      System.out.println(root1);
      System.out.println(root2);
```


Keyrsla á forritsdæmi

% java Quadratic -3.0 2.0

2.0

1.0

% java Quadratic -1.0 -1.0

1.618033988749895

-0.6180339887498949

% java Quadratic 1.0 1.0

NaN

NaN

% java Quadratic 1.0 hello

java.lang.NumberFormatException: hello

% java Quadratic 1.0

java.lang.ArrayIndexOutOfBoundsException

 $x^2 - 3x + 2$

 $x^2 - x - 1$

 $x^2 + x + 1$

Engin rauntölulausn

Verða að vera tölur

Vantar viðfang

boolean gagnatagið

- Mikið notað til að stýra flæðinu í Java forritum
 - Aðallega notað sem gildi, en sjaldan í breytum
- Aðeins tvö gildi: true og false
 - Kallast sanngildi (logic values, boolean values)
- Kennt við stærðfræðinginn George Boole
 - Setti rökfræðina á formlegri grunn
 - 200 ára fæðingarafmæli 2. nóv. 2015
 - Hátíðarhöld: George Boole 200

Helstu einkenni boolean

values	true or false		
literals	tr	ue fa	lse
operations	and	or	not
operators	&&	$ \cdot $!

Sanntöflur (truth tables)

a	! a	a	b	a && b	a b
true	false	false	false	false	false
false	true	false	true	false	true
		true	false	false	true
		true	true	true	true

Samanburðir

Taka tvö viðföng af sama tagi og skila boolean útkomu

Bæði viðföng verða að vera af sama tagi, en útkoman er alltaf boolean

op	meaning	true	false
==	equal	2 == 2	2 == 3
!=	not equal	3 != 2	2 != 2
<	less than	2 < 13	2 < 2
<=	less than or equal	2 <= 2	3 <= 2
>	greater than	13 > 2	2 > 13
>=	greater than or equal	3 >= 2	2 >= 3

Formúlur fyrir nokkur gagnleg skilyrði

non-negative discriminant?

beginning of a century?

legal month?

$$(b*b - 4.0*a*c) >= 0.0$$

 $(year \% 100) == 0$
 $(month >= 1) && (month <= 12)$

boolean forritsdæmi

 Ár er hlaupár ef það er annaðhvort <u>deilanlegt með</u> 400, eða <u>deilanlegt með 4 en ekki 100</u>

```
public class LeapYear {
   public static void main(String[] args) {
      int year = Integer.parseInt(args[0]);
      boolean isLeapYear;
      // divisible by 4 but not 100
      isLeapYear = (year % 4 == 0) && (year % 100 != 0);
      // or divisible by 400
      isLeapYear = isLeapYear || (year % 400 == 0);
                                             % java LeapYear 2016
      System.out.println(isLeapYear);
                                             true
                                             % java LeapYear 1900
                                             false
                                             % java LeapYear 2000
                                             true
```


Fyrirlestraræfing

- 4. Skoðið segðirnar 3/2 og 3.0/2.0 Hver er munurinn á útkomu segðanna?
- 5. Skrifið stærðfræðiformúluna hér að neðan sem Java reiknisegð, þar sem u er gefin breyta $\sin^2 u + \cos^2 u$
- 6. Skrifið röksegðina hér að neðan á einfaldari hátt:((a > b) || (a == b))

Samantekt

- Í þessum tíma:
 - Gagnatög í Java
 - String, int, double, boolean
 - Segðir
 - Samanburður
- Í næsta tíma:
 - Ýmis kerfisföll
 - Breytingar á milli gagnataga

Kafli 1.2

Kafli 1.2

