(9) BUNDESREPUBLIK

10 Ottenlegungsschrift

₍₁₎ DE 3513168 A1

(51) Int. Cl. 4; H 01 L 29/28

> H 01 L 29/76 G 01 N 27/26

DEUTSCHLAND

DEUTSCHES PATENTAMT (21) Aktenzeichen: P 35 13 168.3 Anmeldetag: 12. 4.85

Offenlegungstag: 16. 10. 86

(71) Anmelder:

Dandekar, Thomas, 8000 München, DE

(72) Erfinder:

gleich Anmelder

(56) Recherchenergebnisse nach § 43 Abs. 1 PatG:

DE-OS 26 10 530 US 40 20 830

Prūfungsantrag gem. § 44 PatG ist gestellt

😉 Biosensor bestehend aus einem Halbleiter auf Silizium oder Kohlenstoffbasis (elektronischer Teil) und Nukleinbasen (od. anderen biol. Monomeren)

Dieses Patent stellt eine neue Klasse von Biosensoren vor. Statt der Kombination Makromolekül/Zwischenschicht/elektronisches Bauteil wird das Bauprinzip vorgestellt, kleine Grundbausteine dieser Makromoleküle direkt

in die dem Meßmedium zugewandte oberflächennahe Schicht über z. B. dem Gate-Bereich eines Feldeffekttransistors (oder einem ähnlich geeigneten elektronischen Bauteil, auch auf Kohlenstoffbasis) einzufügen (z. 8. durch Do-

tierung).

Es gibt nur wenige kleine biologische Monomere, die trotzdem spezifisch messen können, aber genau diese will das Patent anwenden, insbesondere

Nukleinbasen.

Wesentliche technische Verbesserungen sind durch das Patent zu erwarten:

Besseres Signal/Rausch-Verhältnis

Optionen auf:

Ablesen von Nukleotidsequenzen

Bessere Prozeßkontrolle

Neue Synthesemöglichkeiten (modifizierte Merryfieldsyn-

these, z. B.)

Das Patent ermöglicht potentiell die Konstruktion von kybernetischen Systemen und

echten Biochips.

Patentansprüche:

Oberbegriff:

(1. Biosensor

bestehend aus einem Halbleiter auf Silizium oder Kohlenstoffbasis (elektronischer Teil)

und

Nukleinbasen (oder Aminosäuren oder kleinen organischen Molekülen, die Bausteine zu Makromolekülen sind, das heißt, selbst biologische Monomere sind).

Kennzeichnender Teil:

la. Dadurch gekennzeichnet, daß

die Verbindung zwischen elektronischem Teil und biologischem Teil

durch direktes Einbringen

(insbesondere durch <u>Dotierung</u>, oder aber auch durch kovalente Bindung direkt in/an der Oberfläche)

der Nukleinbasen

(oder Aminosäuren oder kleinen organischen Molekülen, die Bausteine zu Makromolekülen sind)

in die elektronische Schicht

(Oberfläche und obere Teile, insbesondere über/im Gatebereich eines Feldeffekttransistors oder ähnlich geeigneten elektronischen Bauteilen)

zu Stande kommt.

(An diese kleinen Moleküle können u.U. große organische Moleküle, insbesondere die Makromoleküle, die physiologisch aus diesen biologischen Monomeren gebildet werden, gekoppelt werden, z.B. kovalent)

lb. insbesondere dadurch gekennzeichnet, daß
ein Biosensortyp vorgestellt wird, der Nukleinbasen und
(s.u.) Nukleotidsequenzen mißt.

Oberbegriff des 1. Unteranspruches:

2.

Biosensor nach Anspruch 1

Kennzeichnender Teil des Unteranspruches Nr. 1:

Dadurch gekennzeichnet, daß

der Biosensor nach Anspruch 1 als Grundbaustein für die Ablesung von Informationen in biologischen Molekülen (z.B. Nukleinsäuren oder Proteinen) benutzt wird.

Alle auf der Grundlage des Biosensors laut Anspruch l gebauten Informationsverarbeitenden Systeme fallen unter den Patentanspruch.

Oberbegriff des 2. Unteranspruches:

3.

Biosensor nach Anspruch 1

Kennzeichnender Teil des Unteranspruches Nr. 2:

Dadurch gekennzeichnet, daß

der Biosensor nach Anspruch 1 als Grundbaustein verwendet wird, um

Nukleinsäuresequenzen

(oder Aminosäuresequenzen oder Sequenzen kleiner organischer Verbindungen für ein großes biologisches Makromolekül) zu synthetisieren.

Die Verwendung des Biosensors laut Anspruch l zur Durchführung von Synthesen fällt unter den Patentanspruch. Oberbegriff des 3. Unteranspruches:

4.

Biosensor laut Anspruch l

Kennzeichnender Teil des 3. Unteranspruches:

Dadurch gekennzeichnet, daß

mit dem Grundbaustein laut Anspruch 1 sowohl Ablesen (1. Unteranspruch) als auch Einspeichern (2. Unteranspruch) von Informationen von/auf biologische Moleküle, insbesondere Nukleinsäuren, möglich ist und mit diesem Grundbaustein ein kybernetisches System aufgebaut wird.

Alle mit dem Grundbaustein laut Anspruch l gebauten kybernetischen Systeme fallen unter das Patent.

Oberbegriff des 4. Unteranspruches:

5.

Biosensor laut Anspruch l

Kennzeichnender Teil des 4. Unteranspruches:

Dadurch gekennzeichnet, daß

der Biosensor laut Anspruch 1 als Halbleiterbasis eine Kohlenstoffverbindung (z.B. ein Protein) benutzt (das z.B. durch genetic engineering hergestellt wird).

Solche sogenannten "Biochips" fallen dann unter den Patentanspruch, wenn wie im Anspruch l beschrieben, wieder kleine organische Moleküle, die die Grundlage für gröere Makromoleküle darstellen,

insbesondere Nukleinbasen,

benutzt werden,

um aus biochemischen Signalen (z.B. Konzentrationshöhe einer Nukleinbase) in dem Kohlenstoffhalbleiter ein elektronisches Signal zu erzeugen

und sie insbesondere in den Kohlenstoffhalbleiter bzw. direkt auf seine Oberfläche eingebracht werden.

(Das Patent gemäß Anspruch 1 stellt also bei voller Ausschöpfung eine Konstruktionsanleitung für einen Biochip gemäß der Definition der Proceedings of the Workshop on "molecular" electronic Devices, USA 1981, dar).

Beschreibung

1. Titel

Biosensor bestehend aus einem Halbleiter auf Silizium oder Kohlenstoffbasis (elektronischer Teil) und (direkt eingebrachten) Nukleinbasen (oder Aminosäuren oder anderen kleinen organischen Molekülen, die biologische Monomere sind).

2. Gattung des Anmeldungsgegenstandes:

Die Erfindung betrifft Biosensoren,

d.h. Meßgeräte, in denen biologische Moleküle (z.B. Enzyme) andere biologische Substanzen dadurch messen, daß sie ein Signal erzeugen (in Abhängigkeit von der zu messenden Substanz), das die elektrischen Eigenschaften in einer elektronischen Schicht (z.B. einem Halbleiter, etwa einem Feldeffekttransistor) verändert.

Das Patent selbst meint speziell die Anordnung Halbleiter auf Silizium oder Kohlenstoffbasis (elektronischer Teil) und Nukleinbasen (oder Aminosäuren oder kleinen biologische Monomere) (biologischer Teil).

Angaben zur Gattung:

Ein Biosensor versucht ein biologisch-chemisches Signal (insbesondere Konzentrationen biochemischer Substanzen) in ein elektronisches umzuwandeln (und sie damit zu messen).

Dafür ist es notwendig, ein möglichst kleines Signal/Rausch-Verhältnis zu erhalten, was in der Praxis große Probleme verursacht (begrenzt natürlich auch die Empfindlichkeit). Wichtige weitere praktische Probleme sind eine möglichst lange Nutzungsdauer und einfache Herstellung sowie die Kostenminimierung.

Die angesprochenen Probleme sollen durch das Patent besser gelöst werden.

3. Stand der Technik mit Fundstellen:

Das Konzept des Biosensors ist länger bekannt.

Eine erste Anwendung war der Malathion-(Nervengas)-Sensor, (Guilbaut, 1961), immobilisierte Cholinesterase wurde zwischen zwei Platindrahtgewebe plaziert, die Hydrolyse von beigegebenem Substrat (Acetylcholin) wird in der Anwesenheit von Nervengas gehemmt und erzeugt ein elektronisches Signal.

Die Technik kennt inzwischen:

Sensoren mit der Kombination Mikrobe-Transistor

(z.B. Karube Isao, Suzuki Shinchi;

Biosensor for Fermentation and environmental control .
Biotech 83, U.K. 83, Seite 625-632)

Enzym-Piezoelektrischer Kristall

(z.B. Cooper Jeffrey B. et al.,

Piezoelectric Sorption Anesthetic Sensor

in: IEEE Transactions on Biomedical Engineering
USA 1981, Vol. BME-28, No.6, Seite 459-466)

Ioneneselektiver Feldeffekttransistor

(z.B. Mc Kinley, B.A. et al.,

in vivo continous monitoring of K^{\dagger} in animals using ISFET probes

Med. Instruments (Baltimore), 14 (2) (1980)).

Insbesondere über die Kombination

Feldeffekttransistor (FET) und Enzym wird zur Zeit intensiv geforscht (d.h. Messung funktioniert im allgemeinen nur im Labor, noch keine großtechnische Produktion solcher Sensoren)

(z.B. Caras, S. und Janata, Jiri

Field effect Transistor sensitive to Penicillin Analytical Chem. USA 1980, 52, Seite 1935-1937) und auch patentiert

(z.B. Schenk, John F.

FET for detection of biological reactions
US patent No. 4,238,757 9.12.1980).

Wichtig ist in diesem Zusammenhang auch die Anordnung Antikörper-Feldeffektttransistor

(z.B. J.Giaever

1

US patent No. 3,853,469 10.12.74

P.Cox

US patent No. 3,831,432 27.08.74)

wobei in neurer Zeit weitere Fortschritte erzielt wurden (z.B. Umezawa Yoshi

Liposome immuno electrode ((Antikörpersignal verstärkt über Komplement-Marker species))

Proc. of the Int. Meeting on Chem. Sensors Fukuoka, Japan, Sept. 19-22, 1983)

diese Aufzählung ist nicht vollständig, man vergleiche z.B. Clermann, Robert J.

State of the art survey: Biochips Technology 82 W00034; The MITRE Corp., USA 1982)

und

New Biosensor Devices
Biotech 83, U.K. 1983

4. Kritik des Standes der Technik

(

Ī

Bei der Konstruktion eines Biosensors wird versucht, ein möglichst starkes und vor allem spezifisches Signal des zu messenden Stoffes zu erhalten. Das führte (s.o., Stand der Technik) nach den ersten Anfängen zur Benutzung von Makromolekülen, etwa Enzymen oder Antikörpern oder sogar Bakterien, um aus dem biochemischen Signal (etwa eine Zuckerkonzentration) ein elektronisches zu erhalten:

Diese Makromoleküle haben meist hochspezifische Erkennungseigenschaften (Antikörper erkennt nur seine antigen Determinante) und ermöglichen damit eine spezifische Signalzuordnung (theoretisch).

Es zeigt sich aber in der technischen Anwendungspraxis, daß z.B. Ionen und fremde Proteine die Erkennung von Substanzen durch diese Makromoleküle stören:

Durch die Größe und komplexe Faltung der Makromoleküle sind viel Möglichkeiten zu solchen Störungen gegeben.

die Größe der verwendeten Moleküle Außerdem macht Schicht in die organischen direktes Einbringen der elektronische Halbleiterschicht unmöglich. Es muß im Gegenteil durch Finden einer Zwischenschicht (oder sogenanntes entrapment, z.B. bei Bakterien) versucht werden, überhaupt noch eine Verbindung zwischen biologischer elektronisches Schicht herzustellen. Die dadurch erzwungene Vergrößerung des Abstandes zwischen biologischer Schicht und elektronischer Schicht erhöht die Störanfälligkeit für unspezfische Reize wesentlich und bedingt zudem ständig die Gefahr des Verlustes der organischen Schicht (limitiert auch in der Praxis die Nutzungsdauer).

5.1. Aufgabe

Der Erfindung liegt die Aufgabe zu Grunde, die oben dadurch lösen, daß der angesprochenen Frobleme zu biologische Teil des Sensors fest so nah und wie irgendmöglich an den elektronischen Teil herangebracht wird.

5.2. Lösung

Diese Aufgabe wird erfindungsgemäß dadurch gelöst,daß
bei dem beschriebenen Sensor der biologische Teil in die
elktronische Halbleiterschicht eingebracht wird,z.B. durch
Dotierung der oberen Schichten eines Halbleiters,
insbesondere der Oberfläche selbst.

Das ist aber nur möglich, wenn man sehr kleine Moleküle benutzt. Diese Moleküle haben aber in der Praxis meist ungenügende Sensoreigenschaften, d.h., sie sind nicht in der Lage, spezifisch einen bestimmten angebotenen Stoff zu erkennen.

Die wichtigste wesentliche Ausnahme stellen Nukleinbasen dar, die eine relativ hohe Paarungsspezifität mit kleiner Ausdehung vereinen (durch evolutionären Selektionsdruck bedingt).

Die technisch einfachste Ausführung der Erfindung besteht in einer Dotierung direkt über dem Gate-Bereich eines Feldeffekttransistors mit z.B. Adenin (Nukleinbase):

Bei der Paarung des Adenin mit dem Thymin entsteht gegenüber dem ungepaarten (oder unspezifisch angeregtem Adenin (an der Halbleiterooberfläch befindlich) ein deutlicher Unterschied

des elektrostatischen Feldes. Damit kann ein Adenindotierter Feldeffekttransistor (diese Zusatzdotierung
wohlgemerkt im Oberflächenbereich über dem Gate) die Konzentration des Thymins in einer Lösung messen (unterschiedlich
starkes Feld über dem Gate moduliert über das Gate den
Hauptstrom durch den FET).

5.3. Weitere Ausgestaltung der Erfindung

Es muß nicht unbedingt zu den üblicherweise mit Dotierung bezeichneten Verfahren (vgl. Dziewior,J., Transport und Rekombinationsprozesse in hochdotiertem Silizium, Dissertation 1980, Stuttgart) gegriffen werden, sofern auch andere Wege ein Einbringen des z.B. Adenins in die obersten Schichten des zugehörigen Halbleiters ermöglichen, ohne seine Paarungsspezifität zu beeinträchtigen.

Bei der großtechnischen Verwertung des Patentes wird es sogar zunächst darum gehen, den optimalen Prozess für die Implementierung des Adenins zu finden (bzw. für die Nukleinbase bzw. der Aminosäure oder dem kleinen organischem Monomer).

6. Erzielbare Vorteile und Erläuterung zur Ausgestaltung der Erfindung

6.1.

Wie im Patentanspruch 1 schon enthalten, kann die Anordnung nach dem selben Prinzip auch benutzt werden, indem man eine Aminosäure in die oberste Schicht des Halbleiters implementiert. Das dadurch entstehende Signal, das bei der Interaktion der Aminosäure z.B. mit anderen Aminosäuren entsteht, hat aber nicht die selbe Spezifität wie die Paarung einer Nukleinsäure.

Deswegen macht die Anwendung dieses Signals Zusatzbedingungen nötig (z.B. eine Vorinformation über die vorkommenden Stoffe in der Meßlösung; Austestung der Spezigfität/Unspezifität der jeweiligen Dotierung bzw. Implementierung).

Mögliche technische Weiterungen sind auch andere kleine biologische Monomere.

6.2.

Besonderen Wert hat das vorgeschlagene Verfahren, da es mit relativ geringem Aufwand eine großtechnische Lösung ermöglicht. Die Technik der Dotierung ist schon gut untersucht. Verschiedene erprobte Verfahren stehen zur Verfügung. Außerdem ist es aber möglich, den beschriebenen Grundbaustein zu miniaturisieren, zumindest in dem selbem Maße wie bei der VLSI, da ja auf ähnliche Methodik zurückgegriffen werden kann.

Diese Miniaturisierung erhöht übrigens auch die Spezifität der Messung, da Lösungsinhomogenitäten in der zu messenden Lösung immer weniger die Messung verfälschen, tatsächlich die Konzentration an einem bestimmten Punkt in der Lösung bestimmt wird.

6.3.1.

Die Spezifität kann um einen wesentlichen Schritt weiter erhöht werden:

1

organischen implementierten, oberflächennahen An die Polymere zugehörige kovalent) Monomere können (z.B. angekoppelt werden. Diese Erweiterung ist der wesentliche Der Patentes. zweite Schritt in der Anwendung des beschriebene adenindotierte Sensor kann z.B. mit Poly--Uracil-mRNA gekoppelt werden, etwa indem kovalent eine mRNA an seine Oberfläche befestigt wird (das setzt natürlich die Klonierung der betreffenden mRNA voraus, um eine große Menge dieser reinen mRNA Spezies zu erhalten).

Es wird dann zur Messung der Gesamtfeldeffekt mRNA-Adenin und sein Einfluß auf den Gatestrom im Feldeffekttransistor benutzt: Dadurch ist es möglich, spezifisch längere mRNA oder einsträngige DNA-Sequenzen mit dem Grundbaustein gemäß Patentanspruch lzu erkennen und z.B. ihre Konzentration zu messen.

6.3.2.

Für den mit der Technik vertrauten sei der entscheidenede Vorteil des Patentvorschlages gemäß Anspruch 1 noch genauer erläutert:

Es gibt natürlich sehr viel andere Möglichkeiten mit einer mRNA Spezies das Vorhandensein komplementärer Nukleinsäurestränge zu erkennen (z.B. Hybridisierung radioaktiv markierter mRNA mit der zu messenden RNA, northern blotting usf.), ebenso sind nach dem Stand der Technik (s.o.) viele andere technische Möglichkeiten von Biosensoren denkbar, um mRNA zu messen, am einfachsten etwa, indem in einem Entrapment versucht wird, einen Unterschied im elektrischen Feld zwischen gepaarter und ungepaarter mRNA zu messen (mit

FET-Grundlage). Jeder der so technisch realisierten Biosensoren hat aber mit den Schwierigkeiten der Feldstörung durch unspezifische Effekte und durch den großen Abstand zu der elektronischen Schicht, etwa bei einem Entrapment der mRNA (wobei dort außerdem die optimale Paarungsfähigkeit der mRNA in Frage gestellt ist) zu kämpfen, dadurch wird eine effektive technische Durchführung wesentlich erschwert.

Dagegen wird hier vorgeschlagen, zunächst kleine Nukleinbasen in der elektronischen Schicht selbst zu verankern und erst dann zu versuchen, die größeren, spezifischer erkennenden Makromoleküle daran zu koppeln.

Der Grundbaustein gemäß Anspruch l stollt also bei diesem so erweitertem Biosensor nur die elektronische Schicht nebst koppelungsfähiger Zwischenschicht dar, eben mit dem wesentlichen technischen Vorteil, daß Zwischenschicht auf die Dotierbreite (Nanometer minimiert worden ist, gleichzeitig aber selektiv für das Bindungszugehörige Makromolekül kovalente (und andere) stellen liefert (weil ich an die Nukleinbasen längere Ketten Basensequenzen anbinde). Dadurch wird auch eine wesentlich bessere Übertragung des elektrischen Feldsignales, was bei einer etwaigen Bindung des mRNA-Stranges mit der zu messenden komplementären RNA/DNA Spezies entsteht, (falls man nicht übergroßen technischen erreicht, bzw. Aufwand treiben will) überhaupt ermöglicht.

Wieder ist eine Miniaturisierung (s.o.) möglich.

6.4.

Der Unteranspruch Nr. l

meint die maximale technische Ausgestaltung der in Ziffer 6.1.-6.3.2. genannten weiteren Ausgestaltung der Erfindung, die dazu führt, daß biologisch gespeicherte Information schnell in elektronische Signale umgesetzt werden kann (z.B. Genbestand einer Genbank, indem für die zugehörigen Gene Plasmidklone angelegt werden und nach dem in Ziffer 6.3.1. und 6.3.2. beschriebenem Verfahren entsprechende Sensoren hergestellt werden.),

also ein informationsverarbeitendes System etabliert wird.

6.5.

Eine weitere Anwendungsmöglichkeit deutet Unteranspruch Nr. 2 an:

Die Benutzung des Grundbausteines gemäß Anspruch l für Synthesen.

Auch diese entscheidende technische Anwendung wird durch das direkte Einbringen einfacher Monomere in die oberste Halbleiterschicht eines Biosensors ermöglicht (gemäß Anspruch 1, damit hier also ein Unteranspruch):

Für den mit der Technik vertrauten sind bereits verschiedene Verfahren für Protein- und Nukleinsäuresynthese bekannt. Einen entscheidenden Fortschritt brachte die Merryfieldsynthese (Nobelpreis 1984):

Hierbei wird z.B. eine Nukleinbase auf einen festen Träger fixiert, der sich in einem Reaktionsraum befindet, beispielsweise wird also Adenin an einen fixen Träger befestigt. Anschließend wird in einem zweiten Schritt dafür gesorgt, daß nur noch an den Träger fixiertes Adenin sich im

Reaktionsraum befindet, "freies" Adenin wird aus dem Reaktionsraum entfernt. Damit ist die erste Base der zu synthetisierenden Nukleotidsequenz festgelegt. Im nächsten Schritt wird dannn die zweite gewünschte Nukleotidbase in den Reaktionsraum gebracht, nachdem dafür (wieder durch chemische Reaktionen) gesorgt wurde, daß diese nur an der bereits fixierten Nukleinsäure und nicht an den Träger binden kann. Anschließend wird wieder "freies" Nukleotid entfernt. Mit den folgenden Nukleotidbasen geht es analog weiter.

Diese Verfahren wird bereits großtechnisch angewandt. Mit dem Grundbaustein gemäß Anspruch 1 ist nun eine weitere Verbesserung des Verfahrens möglich:

Der Träger, der die gewünschte erste Nukleotidbase trägt, wird durch einen solchen Grundbaustein ersetzt.

6.5.2.

Damit sind jetzt verschiedene Optionen gegeben, in den oben beschriebenen Syntheseprozess einzugreifen.

Die einfachste Anwendung wäre die fortlaufende Prozesskontrolle durch die vorhandenen Biosensoren (einer der entscheidenden Fragen für die Prozessgüte der Merryfieldsynthese ist die zuverlässige Entfernung von "freiem" Nukleotid und die sichere Bindung des fixierten Nukleotids an die wachsende Kette).

Beides kann mit dem Biosensor überprüft werden, womit die Reinheit und Schnelligkeit der Synthese erhöht wird, außerdem aber auch eine längere Synthesesequenz möglich wird (im Moment bei 30-50, maximal 100 Nukleotiden).

6.5.3.

elektrischen Ladungen auf der Oberfläche des Feldeffekttransistors interaktiv in den Prozess einzugreifen. Man kann die Ladungen an der Oberfläche des FET in Verbindung mit der Dotierung durch Nukleinbasen (und der je nach Bedarf weiter durchgeführten Verlängerung durch Nukleotidsequenzen) dazu benutzen, um die erkannten Nukleotidsequenzen an der Oberfläche anzukoppeln oder auch abzukoppeln.

Es ist also möglich, bei voller technischer Ausarbeitung dieser beiden Grundfunktionen, die oben beschriebenen Schritte der Entfernung von "freiem" Nukleotid und dem der Ankoppelung von Nukleotid an eine wachsende Sequenz von Nukleotiden durch die elektrische Ladungsverteilung in der Halbleiterschicht zu steuern.

(Für den mit der Technik vertrauten ist selbstverständlich, daß diese Perfektionierung des Grundbausteines nach Anspruch leine ausgefeilte Halbleiterarchitektur nötig macht, um neben dem Gatebereich auch Kankle zu haben, in denen ein stärkerer, nach Bedarf zu modulierender Strom fließt, um die ausreichenden Felder zur An- und Abkoppelung der bei dieser Anwendung meist nicht kovalent an den ((erweiterten)) Grundbaustein gekoppelten Nukleetidsequenzen zu erzeugen). Die damit ermöglichten neuen Syntheseverfahren sind der Hauptbestandteil des Unteranspruches Nr. 2.

6.6.

Die in Ziffer 6.4. und 6.5. darsestellten Anwendungsmöglich-

keiten der Erfindung skizzieren in ihrer Kombination den Unteranspruch Nr. 3.

Von den zahlreichen Anwendungen sei zur Illustration auf die Messung und Untersuchung der Proteinsynthese hingewiesen:

Der um eine mRNA erweiterte Grundbaustein wird benutzt, um die Feldeffektänderung zu messen, die bei der Proteinsynthese vor sich geht, nämlich dann, wenn sich Ribosomen an die mRNA anlegen.

Auf diese Weise ist es zumindest möglich, einen Feldeffekt nachzuweisen, der sich von unbeladener mRNA ohne Ribosomen unterscheidet (Prozesskontrolle), die entstehenden Signale enthalten aber noch weit mehr Informationen über den Prozess (für den Fachmann sei daran erinnert, daß es sich hierbei hauptsächlich um Dipoleffekte handelt, die entlang wachsenden Proteinkette und bei der zugehörigen mRNA nebst Biosensor auftreten. Durch die wechselseitige Induktion dieser Felder ((hauptsächlich durch geladene Gruppen, von Aminosäureresten)) entsteht ein komplexes Wohlgemerkt wird hier nicht eine einfache Proportionalität oder einfache andere Beziehung zwischen der wachsenden Proteinkette und dem Signal im allgemeinen bestehen, was Ende von dem Biosensor in dem elektronischen Halbleiter erzeugt wird.).

Wieder ist es günstig, nur eine mRNA Spezies im Reaktionsvolumen zu haben, damit das Signal eindeutig auswertbar wird (in der Praxis bei in vitro Translation von einem reinen Klon mRNA oder Plasmid RNA erfüllt, zur Zeit wird aber noch die in vivo Produktion, z.B. von Interferon in Bakterien,

bevorzugt),

eine Beeinflussung und kybernetische Rückkoppelung ist zum Felder, die elektrische einen wieder möglich durch zusätzlich im Feldeffekttransistor aufgebaut werden, zum anderen dadurch, daß die hergestellten Proteine modifizieseine einwirken können, etwa rend auf den Biosensor von Anbringen enzymatisches durch Empfindlichkeit Seitenketten an die biologische Schicht erhöhen oder die Spezifität verändern.

6.7.

Der vorgeschlagenen Biosensor ist ein praktikabler Vorschlag für einen biologischen Speicher.

Ältere Ideen dazu sind etwa:

F.L. Carter, Further considerations on molecular electronic devices

NRL Progr. on Electroactive Polymers;

Scnd. ann. Rep., USA 1980

F.L. Carter, Conformational switching at the molecular level

Proc. of the workshop on "molecular" electronic devices USA 1981

A.Aviram, Molecular Components for electronic device function: An overview

Biotech 83, Northwood, UK 83

A.Aviram et al.,

organic memories, <u>US Patent 3,833,894</u>

Der von dem beantragtem Patent gemachte Vorschlag hat

gegenüber den zitierten Ideen einen entscheidenden Vorteil: Er zeigt klare Konstruktionsanweisungen, die neu sind, aber einen nachvollziehbaren Weg vom Bekanntem (Feldeffekttransistor; Dotierung) zum Neuen (Biosensor laut Anspruch 1). Wichtig scheint mir insbesondere der Hinweis, daß dieses Patent nicht wie die oben zitierter Vorschläge versucht, neue organische Moleküle zur Informationsspeicherung zu benutzen, sondern die bereits biologisch realisierten, wirklich für dies Aufgabe optimierten Nukleinbasen, technisch verwendbar macht

(aus diesem Blickwinkel verwundert es nicht, daß die oben zitierten Vorschläge natürlich auch versuchen, die Nukleinbasen nachzuahmen, wie an der chemischen Struktur der vorgeschlagenen Moleküle ersichtlich).

6.8.

Der 4. Unteranspruch erläutert sich selbst.

Ausführungsbeispiel

Die Abbildung eins zeigt ein einfaches Ausführungsbeispiel (gemäß Hauptanspruch bzw. Anspruch Nr. 1)

Abgebildet ist der Grundbaustein bestehend aus

Feldeffekttransistor, elektronischer Teil

(eingetragen sind Source S, Drain D und die Schichtfolge n p n sowie die mit I bezeichnete Isolatorschicht über dem Gate--Bereich),

und biologischer Schicht (mit O bezeichnet, die im Beispiel mit Adenin bestückt worden sein soll).

Das ist ein Beispiel. Zur Herstellung des Grundbausteines nach Patentanspruch l kann jedes elektronische Bauteil verwendet werden, das in der Lage ist, aus dem biochemischen dieses Signal, was die zusätzlich in die Oberfläche Bauteiles implementierten biologischen Moleküle erzeugen, ein elektronisches zu erzeugen (der im Beispiel verwendete Feldeffekttransistor erzeugt ein elektronisches Signal, weil das elektrostatische Feld von mit Thymin gepaartem Adenin diese gepaartem Adenin, nicht bei anders ist als Feldänderung verändert die Leitfähigkeit in dem Gatebereich. In der Abbildung eins ist die Adenin-Implementierung in der Schicht O, die durch eine dünne Isolatorschicht I ((sonst wird es fraglich, ob sich ein Feld aufbauen kann)) direkt darunter befindlichen Gate-Bereich der Beispiel angenommenen p-Schicht eines npn-Feldeffekttransistors getrennt ist. Diese Leitfähigkeitsänderungen im Gate steuern dann den Source- und Drainstrom durch den

effekttransistor).

Ebenso kann auch, wie schon ausführlich erläutert, jedes organische biologische Molekül zur Implementierung verwendet werden, was klein genug ist, um in die Oberflächenschicht des elektronischen Bauteiles eingefügt zu werden aber gleichzeitig noch spezifisch genug mit dem Substrat, dessen Anwesenheit es nachweisen soll, reversibel reagiert, und dabei eine ausreichende Feldänderung erzeugt.

Die Abbildung zwei hebt nochmals den wesentlichen Unterschied dieses Grundbausteines gegenüber einem gewöhnlichem Feldeffekttransistor hervor: Die Oberfläche der biologischen Schicht tragt Adeninmoleküle.

Abgebildet ist in Abb. 2 die biologische Schicht (Buchstabe Zeichen Das im Detail (geschweifte Klammer). Halbleiteroberfläche die symbolisiert jeweils ein in Siliziumoxid) mode)) oder ((best (Siliziumnitrit eingebrachtes Adenin mit zwei potentiellen Wasserstoffbrükkenvalenzen, das sich über diese Brücken mit Thymin (Thymin aus der Meßprobe) paaren kann.

Um das Prinzip deutlich zu machen, sind die Adeninmoleküle in idealer Ausrichtung gezeichnet worden (Das trifft in der Praxis nicht zu und ist auch nicht nötig.).

Die Abbildung drei deutet im Feindetail im Prinzip den Meßvorgang an:

Abgebildet ist in der Abbildung Nr. 3 die Messung von Thymin in einer Lösung durch den adenindotierten Biosensor gemäß Anspruch 1. Es bedeutet: H= Wasserstoff, C= Kohlenstoff, N= Stickstoff, O= Sauerstoff; durchgezogene Linien symbolisie-

ren die kovalenten Bindungen. Die waagerechte gestrichelte Linie symbolisiert die Grenze der Halbleiteroberfläche. Die beiden gestrichelten Pfeile symbolisieren die beiden Wasserstoffbrückenbindungen, die bei der Paarung von Adenin und Thymin (während der Messung) gebildet werden.

Das in die Oberfläche des Halbleiters eingebrachte Adenin kann sich über diese zwei Wasserstoffbrücken mit Thymin paaren, die damit verbundene leichte Konformationsänderung führt zu einem elektrostatischem Feldunterschied, der wie beschrieben letztlich den Source-Drain Strom durch den Feldeffekttransistor ändert.

Technische Hinweise für den Fachmann zum Ausführungsbeispiel

In der Praxis entsteht die höchste Empfindlichkeit, wenn die Schichten I bzw. O (in der Abbildung Nr. 1) möglichst klein gemacht werden. Als halbleitendes Material sind viele Stoffe denkbar, z.B. auch Kohlenstoff (Unteranspruch 4), für das Ausführungsbeispiel wurde Siliziumnitrit angegeben, dem für eine "best mode" Anweisung nach dem heutigen Stand der Technik der Vorzug gegenüber Siliziumoxid gegeben werden sollte, weil es in wässrigen Lösungen, wo dieser Sensor auch in der Praxis verwendet wird, widerstandsfähiger ist.

In der Praxis liegen die Adeninmoleküle nicht ideal ausgerichtet in der obersten Schicht des Halbleiters. Hier zeigt sich aber wieder der Vorteil der Verwendung eines kleinen Moleküles: Die "falsch" liegenden Adeninmoleküle

26

haben im Gegensatz zu unüberschaubaren Makromolekülen wie z.B. Antikörper kaum Möglichkeiten, unspezifische Falschbindungen einzugehen (entweder liegen die beiden Wasserstoffbrücken, die in der Praxis die einzigen beiden zusätzlich möglichen Bindungsstellen sind, so, daß sie sich mit Thymin paaren können, oder aber nicht, etwa nach dem

Gate zugewandt hin, dann können sie sich aber auch nicht mit

irgendeinem anderen Stoff paaren).

Eine weitere denkbare Ausführung des Grundbausteines ist eine kovalente Bindung von z.B. Adenin oder anderen Nukleinbasen direkt an die Oberfläche eines Halbleiters. Auch dann ist immer noch ein hochspezifisches Signal zu erwarten, da sich Adenin physiologisch nur mit Thymin paart (bzw. Nukleinbasen mit ihren Gegenbasen bzw. entsprechende paarungsspezifische Moleküle), für eine "best mode" Anweisung ist hier aber die Dotierung dargestellt.

Nach ausreichender Zeit und hinreichender Konzentration (in erster Näherung ist die Sättigung des Adenins mit Thymin zur Thyminkonzentration und zur Zeit proportional) ist das Adenin abgesättigt, diese für Biosensoren typischen Sättigungskennlinien (z.B. Abhängigkeit des Source-Drain-Stromes von der Zeit) verschieben sich proportional zur Konzentration und ermöglichen damit die Messung.

Für die nächste Messung müssen die Paarungsstellen am Adenin wieder frei gemacht werden. In der Praxis der Biosensoran-wendung wird dies meist durch Spülen bzw. Eintauchen in einen Puffer erreicht (z.B. beim EnzymFET). Dieses Verfahren ist uneffektiv.

Für den dargestellten Grundbaustein ergeben sich aber viele andere Möglichkeiten (vergleiche Unteranspruch Nr. 3, kybernetisches System): Am naheliegendsten ist diejenige, einfach eine hinreichend große elektrische Ladung auf die adenindotierte Schicht zu bringen und damit die Adeninmoleküle wieder frei zu machen (d.h., die Thyminmoleküle können sich nicht mehr binden, weil die nichtkovalente Bindung zum Adenin durch die große zusätzliche Ladung zerstört wird). Auch das wird wieder nur dadurch möglich, daß dieses Patent vorschlägt, biologische Moleküle in die elektronische Schicht selbst einzubauen.

Die Verwendung des Biosensors laut Anspruch 1 besteht für die modifizierte Merryfieldsynthese darin, daß wie schon beschrieben, der fixe Träger, an dem in der Merryfieldsynthese die wachsende Proteinkette gekoppelt ist, zu einem mehr (Rückkoppelung auf den Syntheseprozess selbst) oder weniger (Prozesskontrolle) großem Teil durch Biosensorem gemäß dem dargelegtem Patent ersetzt wird.

Allildung 2

;

İ

denir

1

Abbithums

Nummer:

Int. Cl.4: Anmeldetag:

Offenlegungstag:

35 13 168

H 01 L 29/28 12. April 1985

16. Oktober 1936

Abbildung 1

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ OTHER.	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.