# Math136 - January 15'th, 2016 Angles and Cross Product

#### Angle

Let  $\vec{x}, \vec{y} \in \mathbb{R}^n$ . The **angle** between  $\vec{x}$  and  $\vec{y}$  is any angle  $\theta$  such that  $\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos \theta$ 

E.g. In  $\mathbb{R}^2$ , if  $\vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ ,  $\vec{y} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ,  $\theta$  is the angle between the two vectors below:



Clearly, the angle subtended between the two vectors should be  $\frac{\pi}{4}$ . Filling in the angle formula would also return  $\frac{\pi}{4}$ .

1

 $\theta = \frac{7\pi}{4}$  is also a correct answer.

## Constructing Orthogonal Vectors

Given  $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$ , how can we construct an orthogonal vector?

 $\vec{0}$  works, but that's stupid.

We could also take 
$$\begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$$
 since  $\begin{bmatrix} -x_2 \\ x_1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (-x_2)(x_1) + (x_1)(x_2) = 0$ 

What about a vector that's orthogonal to TWO vectors SIMULTANEOUSLY in  $\mathbb{R}^3$ ?

#### **Cross Product**

Let 
$$\vec{v} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \vec{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \in \mathbb{R}^3.$$

The cross product of  $\vec{v}$  and  $\vec{w}$  is:

$$\vec{v} \times \vec{w} = \begin{bmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{bmatrix}$$

Important property:  $\vec{v} \times \vec{w}$  is orthogonal to both  $\vec{v}$  and  $\vec{w}$ .

## <u>Theorem 1.3.5</u>

Suppose  $\vec{v}, \vec{w}, \vec{y} \in \mathbb{R}^3, c \in \mathbb{R}$ 

- 1) If  $\vec{n} = \vec{v} \times \vec{w}$ , then for any  $\vec{y} \in \text{span}\{\vec{v}, \vec{w}\}$ , we have  $\vec{y} \cdot \vec{n} = 0$ .
- $2) \ \vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$
- 3)  $\vec{v} \times \vec{v} = \vec{0}$
- 4)  $\vec{v} \times \vec{w} = \vec{0}$  iff either  $\vec{v} = \vec{0}$  or  $\vec{w} = \vec{0}$  or  $\vec{w}$  is a scalar multiple of  $\vec{v}$ .
- 5)  $\vec{v} \times (\vec{w} + \vec{y}) = \vec{v} \times \vec{w} + \vec{v} \times \vec{y}$
- 6)  $(c\vec{v}) \times \vec{w} = c(\vec{v} \times \vec{w})$
- 7)  $\mid\mid \vec{v} \times \vec{w} \mid\mid = \mid\mid \vec{v} \mid\mid \mid\mid \vec{w} \mid\mid \mid \sin \theta \mid$  where  $\theta$  is the angle between  $\vec{v}$  and  $\vec{w}$ .