1. MATLAB 基本繪圖 (MATLAB Graphics)

```
x=[xi:dx:xf] % xi 初値 (starting value);
% dx 增量値 (increment);
% xf 終値 (final value)
```

Table A.4 Plot Formats

plot(x,y)	Plots the vector \mathbf{x} versus the vector \mathbf{y} .
semilogx(x,y)	Plots the vector \mathbf{x} versus the vector \mathbf{y} .
	The x -axis is log_{10} ; the y -axis is linear.
semilogy(x,y)	Plots the vector x versus the vector y .
	The x-axis is linear; the y-axis is log_{10} .
loglog(x,y)	Plots the vector x versus the vector y .
	Creates a plot with log_{10} scales on both axes.

Table A.5 Functions for Customized Plots

title('text')	Puts 'text' at the top of the plot
legend (string1, string2,)	Puts a legend on current plot using specified strings as labels
xlabel('text')	Labels the x-axis with 'text'
ylabel('text')	Labels the y-axis with 'text'
text(p1,p2, 'text')	Adds 'text' to location (p1,p2), where (p1,p2) is in units from the current plot
subplot	Subdivides the graphics window
grid on	Adds grid lines to the current figure
grid off	Removes grid lines from the current figure
grid	Toggles the grid state

Table A.6 Commands for Line Types for Customized Plots

Solid line
Dashed line
Dotted line
Dashdot line

```
>> x=[0:0.1:1]';
>> y1=x.*sin(x); y2=sin(x);
>> plot(x,y1,'--',x,y2,'-.')
>> text(0.1,0.85,'y_1 = x sin(x) ---')
>> text(0.1,0.80,'y_2 = sin(x) . \ _')
>> xlabel('x'), ylabel('y_1 and y_2'), grid on
                            0.9
                                     y_1 = x \sin(x) --
                            0.8
                                     y_2 = \sin(x)
                            0.7
                            0.6
                                 Text indicating lines
                            0.5
                            0.4
                            0.3
                            0.2
                            0.1
                                 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
```



```
t=0:0.1:5;
plot(t,sin(3*t))
xlabel('t')
ylabel('y(t)')
title('y(t) = sin\omegat, omega=3')
text(1,0.8,'這是正弦波!')
%axis([0 5 -2 2])
               Figure 1
               File Edit View Insert Tools Desktop Window Help
                y(t) = \sin \omega t, \omega = 3
                     0.8
                                這是正弦波
                     0.6
                     0.4
                     0.2
                    -0.2
                    -0.4
```

-0.6 -0.8

Table A.7 TeX Symbols and Mathematics Characters

Character Sequence	Symbol	Character Sequence	Symbol	Character Sequence	Symbol
\alpha	α	\upsilon	υ	\sim	~
\beta	β	\phi	φ	\leq	€
\gamma	γ	\chi	χ	\infty	∞
\delta	δ	\psi	ψ	\clubsuit	*
\epsilon	€	\omega	ω	\diamondsuit	•
\zeta	ζ	\Gamma	Γ	\heartsuit	•
\eta	η	\Delta	Δ	\spadesuit	^
\theta	θ	\Theta	θ	\leftrightarrow	\leftrightarrow
\vartheta	θ	\Lambda	Λ	\leftarrow	←
\iota	l	\Xi	Θ	\uparrow	↑
\kappa	К	\Pi	П	\rightarrow	\rightarrow
\lambda	λ	\Sigma	Σ	\downarrow	\downarrow
\mu	μ	\Upsilon	Y	\circ	0
\		\Phi	Φ	\	_
\nu	ν			\pm	±
\xi	ξ	\Psi	Ψ	\geq	≥
\pi	π	\Omega	Ω	\propto	oc
\rho	ρ	\forall	A	\partial	д
\sigma	σ	\exist	3	\bullet	•
\varsigma	ζ	\ni	Э	\div	÷
\tau	τ	\cong	≅	\neq	≠
\equiv	≡	\approx	*	\aleph	8
\Im	S	\Re	R	\wp	Ø
\otimes	\otimes	\oplus	0	\oslash	Ø
\cap	\cap	\cup	U	\supseteq	⊇
\supset	\supset	\subseteq	⊆	\subset	\subset
\int	<u></u>	\in	∋	\0	0

倒單擺(Inverted Pendulum)平衡實驗

光學編碼器 驅動器

IP Modeling

For pendulum,

where

here $F_x = m\frac{d^2}{dt^2}(x + l\sin\theta)$

and

 $F_y - mg = m \frac{d^2}{dt^2} (l\cos\theta) \label{eq:Fy}$ For cart,

 $J\ddot{\theta} = F_y l \sin \theta - F_x l \cos \theta$

 $F - F_x = M \frac{d^2x}{dt^2}$

$$(J+ml^2)\ddot{\theta} + ml\cos\theta \cdot \ddot{x} = mlg\sin\theta$$

$$(M+m)\ddot{x}+ml(\cos\theta\cdot\ddot{\theta}-\sin\theta\cdot\dot{\theta}^2)=F$$

Exercise: (Draw an IP moving platform)


```
畫一倒單擺移動平台
>> xp=[0 5*sin(pi/6)];
                                   % 桿子
>> yp=[0 5*cos(pi/6)];
>> plot(xp,yp)
>> axis([-6 6 -4 8])
>> hold on
                                   % 桿子頂端球
>> the=0:0.01:2*pi;
>> x=5*sin(pi/6)+0.5*cos(the);
>> y=5*cos(pi/6)+0.5*sin(the);
>> plot(x,y)
>> xb=[-3 3 3 -3 -3];
                                   % 車身方塊
>> yb=[-3 -3 0 0 -3];
>> plot(xb,yb)
>> plot(2+0.5*cos(the),-3.5+0.5*sin(the))
                                        % 右輪
>> plot(-2+0.5*cos(the),-3.5+0.5*sin(the)) % 左輪
                                        % 兩軸單位等長
>> axis('square')
```

