Softvérové inžinierstvo

Návrh

RUP – schéma (obsah x čas)

tok činností

biznis modelovanie

špecifikácia požiadaviek

analýza a návrh

implementácia

testovanie

nasadenie

fázy

iterácie

Ciele

- Analýza:
 - Logický model tvoreného systému
 - Analýza požiadaviek z pohľadu problémovej domény
- Návrh
 - Presná špecifikácia spôsobov ako to implementovať
 - Zlúčenie technických riešení
 - Perzistencia objektov
 - Ich distribúcia
 - Architektúra
 - GUI
 - Založený na analytickom modelu

Aspekty návrhu

- Kompatibilita
- Rozširovateľnosť
- Udržateľnosť
- Modulárnosť
- Odolnosť voči chybám
- Znovupoužiteľnosť
- Robustnosť
- Bezpečnosť
- Použiteľnosť

<u>Činnosti návrhu</u>

- Návrh architektúry systému
 - Rozdeľuje systém do podsystémov alebo komponentov
 - Podsystém je množina elementov, ktorá je sama systémom a komponentom väčšieho systému
- Podrobný návrh systému
 - Každá časť systému je popísaná podrobne, aby to bolo dostatočné pre následné kódovanie
 - Časť systému podsystém (subsystém)
- Dôraz na rozhrania

Návrhové modely

- Návrhových podsystémov
- Návrhových tried
- Rozhraní
- Návrhových realizácií prípadov použitia
- Diagramov nasadenia

Návrh architektúry systému

Vstupy

- Model požiadaviek
- Model prípadov použitia
- Model analýzy
- Popis architektúry

Výstupy

- Podsystém (načrtnutý)
- Rozhrania (načrtnuté)
- Návrhové triedy (načrtnuté)
- Model nasadenia (načrtnutý)
- Popis architektúry

Návrh podsystému

Vstupy

- Model požiadaviek
- Podsystém (načrtnutý)
- Rozhrania (načrtnuté)

Výstupy

- Podsystém (úplný)
- Rozhrania (úplný)

Návrh architektúry systému

- Architektúra SW systémov vysokoúrovňový dizajn
 SW
 - Rámec pre podrobnejší návrh rozsiahleho systému
 - Popisuje organizáciu systému do podsystémov a alokáciu podsystémov na HW a SW komponenty

Kroky:

- Rozdelenie systému do podsystémov
- Rozdelenie do vrstiev a oddielov
- Návrh topológie systému
- Identifikácia paralelizmu, alokácia na uzly a voľba komunikácie
- Voľba spôsobu riadenia, a pod.

Rozdelenie systému do podsystémov

- Podsystém obsahuje aspekty systému s podobnými vlastnosťami (max 20)
 - Príklad PC obsahuje podsystémy správa pamäte,
 systém súborov, plánovanie procesov, a pod.
- Podsystém identifikujeme podľa služieb, ktoré poskytuje
 - Služba množina funkcií, ktoré majú rovnaký základný účel
- Hranice podsystému sa zvolia tak aby väčšina komunikácie prebiehala vo vnútri podsystému

Rozdelenie systému do podsystémov

- Vzťah medzi dvoma podsystémami
 - Klient poskytovateľ
 - Peer to peer
- Dekompozíca systému do podsystému základné rozdelenie do:
 - horizontálnych vrstiev
 - alebo vertikálnych oddielov

Rozdelenie do vrstiev

- Vrstvené systémy usporiadaná množina virtuálnych svetov
- Každý svet je postavený z prvkov nižšieho sveta a poskytuje stavebné prvky vyššiemu svetu
- Medzi vrstvami je vzťah klient poskytovateľ
- Znalosť je jednosmerná
- Vrstvené architektúry
 - Uzavreté
 - Vrstva je implementovaná iba pomocou prostriedkov najbližšej nižšej vrstvy
 - Obmedzuje závislosť medzi vrstvami modularita
 - Ľahšie zmeny v rozhraní
 - Príklad sieťový model ISO/OSI model
 - Otvorené
 - Môže používať prostriedky ktorejkoľvek nižšej vrstvy
 - Ťažká údržba zmena podsystému môže ovplyvniť ľubovoľnú vyššiu vrstvu
 - Tvroba efektívneho a kompaktnejšieho kódu

Príklad

- Interaktívny grafický systém
 - Aplikácia pracuje s oknami
 - Okná sú implementované pomocou grafických operácií
 - Grafické operácie sú implementované pomocou operácií nad jednotlivými pixelmi

Application
Windows graphics
Screen Graphics
Pixel Graphics

7	Application layer
6	Presentation layer
5	Session layer
4	Transport layer
3	Network layer
2	Data link layer
1	Physical layer

ISO/OSI model

Rozdelenie do vrstiev

- Špecifikácia systému obvykle definuje iba vrchnú vrstvu
- Spodná vrstva je daná dostupnými zdrojmi (HW, OS, knižnice)
- Pre malé systémy cca 3 vrstvy
- Pre veľké systémy cca 5-7 vrstiev
- Aj najzložitejšie systémy max. 10 vrstiev
- Poznámka (odporúčanie RUP):

```
– 0 – 10 tried vrstvy nie sú potrebné
```

-10-50 tried 2 vrstvy

-25-150 tried 3 vrstvy

-100 - 1000 tried 4 vrstvy

Rozdelenie do oddielov

- Oddiely (partície)
 - rozdeľujú systém vertikálne na nezávislé alebo slabo zviazané podsystémy
 - Každý z nich poskytuje iný typ služieb
- Podsystémy môžu navzájom o sebe vedieť, ale táto znalosť nie je veľká, preto nevznikajú podstatné závislosti medzi oddielmi
- Systém môže byť postupne dekomponovaný do podsystémov pomocou vrstiev a oddielov
 - Väčšina veľkých systémov zmes vrstiev a oddielov

Printer CD ROM Network driver

Príklad hybridnej dekompozície

Rozdelenie systému do partícií

Topológia systému

- Po identifikácii základných podsystémov určenie tokov dát medzi nimi
 - Niekedy tečú dáta medzi všetkými podsystémami, v praxi len zriedka
 - Vo väčšine prípadov jednoduchá topológia
 - Jednoduchá sekvencia napr. prekladač
 - Hviezda napr. hlavný systém, ktorý riadi podriadené systémy

Identifikácia paralelizmu

- Úloha identifikácia podsystémov, ktoré musia a ktoré nesmú pracovať paralelne
- Paralelné podsystémy môžu byť implementované rôznymi HW jednotkami
- Podsystémy bez možnosti paralelného behu, môžu byť súčasťou rovnakého procesu
- Identifikovanie inherentného (prirodzeného) paralelizmu
 - Dva objekty sú inherentné ak dokážu prijímať udalosti v rovnakom čase bez vzájomnej komunikácie
 - Nemôžu existovať na jednom vlákne riadenia
 - Vlákno riadenia

Alokácia podsystémov

- Odhad požiadaviek na HW zdroje
 - Hrubý odhad výpočtovej sily na základe požadovaného počtu transakcií za sekundu a doby spracovania jednej transakcie a pod.
- Rozhodnutie o HW alebo SW implementácii
- Alokácia úloh na fyzické jednotky (PC alebo CPU)
 - Úloha vyžaduje vysoký výkon viac CPU
 - Podsystémy, ktoré často komunikujú umiestnené v jednej jednotke
- Určenie prepojenia fyzických jednotiek
 - Výber topológie
 - Určenie požiadaviek na mechanizmy a komunikačné protokoly

Dátové úložiská

- Interné a externé úložiská dát majú dobre definované rozhranie – slúžia ako hranice oddeľujúce jednotlivé podsystémy
- Typy úložísk:
 - Súbory
 - Lacné, jednoduché a permanentné, s nízkou úrovňou abstrakcie nutný ďalší kód na prácu s nimi
 - Vhodné pre objemné a ťažko štruktúrovateľné dáta a dáta s malou informačnou hustotou s krátkou dobou životnosti
 - Databázy
 - Spoločné rozhrania pre množinu aplikácií pomocou jazyka SQL
 - Vhodné pre dáta ku ktorým pristupujú viacerí užívatelia
 - Nevýhody
 - vyššia réžia,
 - nedostatočná podpora pre zložitejšie dátové štruktúry
 - nemožnosť čistej integrácie s jazykom SQL

Výber mechanizmu riadenia

- V súvislosti s externými udalosťami existujú tri mechanizmy riadenia:
 - Sekvenčný systém riadený procedurálne
 - Sekvenčný systém riadený udalosťami
 - Paralelný systém

Mechanizmy riadenia

- Systémy riadené procedurálne
 - Beh systému je riadený programovým kódom
 - Výhoda jednoduchá implementácia
 - Nevýhoda ťažké spracovanie asynchrónnych udalostí
- Systémy riadené udalosťami
 - Beh systému riadi dispečer, predstavovaný podsystémom, programovacím jazykom alebo OS
 - S jednotlivými udalosťami sú zviazané procedúry aplikácie
 - Procedúra po skončení činnosti vracia riadenie dispečerovi
 - Výhoda jednoduchá obsluha nových typov udalostí
 - Nevýhoda zložitá implementácia
- Paralelné systémy
 - Riadenie niekoľkých nezávisle bežiacich objektov
 - Udalosti prichádzajú k objektom ako správy
 - Objekt môže čakať na vstup, zatiaľ čo ostatné pokračujú v činnosti

