Breast Cancer Detection and Prevention using Machine Learning

By Akash Gitty

Contents

- 1. Introduction
- 2. Objective
- 3. Proposed Methodology
- 4. Model Summary:
 - 4.1 Exploratory Data Analysis
 - 4.2 Data Preprocessing
 - 4.3 Baseline Model Training and Evaluation
 - 4.4 Advanced Model Training and Evaluation
 - 4.5 Final Model and Results Comparison
- 5. Literature Review & Comparative Analysis
- 6. Future Scope
- 7. Conclusion
- 8. References

Introduction

- Breast cancer is one of the leading causes of death among women.
- Early detection and treatment significantly improves survival rates.
- Machine learning (ML) can aid in early diagnosis.

Objective

Problem Statement

- Develop a machine learning classification model that can accurately predict whether a breast tumor is benign or malignant using patient data.
- Dataset: Wisconsin Breast Cancer Dataset
- Goal: High accuracy, precision, and recall with a robust and interpretable model.

Stakeholders

- Healthcare professionals (doctors, radiologists, pathologists)
- Hospital administrators and IT departments
- Patients and their families
- Health tech startups and researchers

Business Use Case

- Integrate ML models into diagnostic tools for faster and more accurate screenings.
- Reduce diagnostic workload for physicians
- Support rural healthcare centers lacking specialist access
- Enable predictive healthcare systems and preventive treatment planning

Proposed Methodology

Data Preparation

- Exploratory Data Analysis
- Data Preprocessing

Train Baseline Model

- Build a baseline Logistic Regression and Decision Tree Model.
- Compare the performance of both models.

Advanced Models and Results Comparison

- Build Random Forest, Linear SVC, SVC (Nonlinear), KNN Classifier & Ensemble Models.
- Comparison of results and determine the best model.

Exploratory Data Analysis

Sample Dataset

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal . dimension	 worst texture	worst perimeter	worst area	worst smoothness	worst compactness	worst concavity	concave points	worst symmetry	worst fractal dimension	diagnosis
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	 17.33	184.60	2019.0	0.1622	0.6656	0.7119	0.2654	0.4601	0.11890	0
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	 23.41	158.80	1956.0	0.1238	0.1866	0.2416	0.1860	0.2750	0.08902	0
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	 25.53	152.50	1709.0	0.1444	0.4245	0.4504	0.2430	0.3613	0.08758	0
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	 26.50	98.87	567.7	0.2098	0.8663	0.6869	0.2575	0.6638	0.17300	0
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	 16.67	152.20	1575.0	0.1374	0.2050	0.4000	0.1625	0.2364	0.07678	0

5 rows × 31 columns

• Samples: 569

• Target: Diagnosis (0 = Malignant, 1 = Benign)

• Features: 30 numerical features

No Missing Values Found in the Dataset.

• All are numerical Features.

Correlation Heatmap

Key Inferences for Modelling:

- Multicollinearity: The strong positive correlations between certain groups of features (like radius, perimeter, area; and compactness, concavity, concave points).
- Importance of Size and Shape: Features related to the size (radius, perimeter, area) and shape/contour (compactness, concavity, concave points) of the cell nuclei appear to be highly interconnected.
- Potential for Feature Reduction: Due to the high correlations.
- Independent Information: Features like smoothness and symmetry (especially their mean and error versions) might provide more unique information due to weaker correlations with other features.

Data Preprocessing

- Step 1:Feature Scaling using Min Max Scaling.
- Step 2: Feature Selection into 12 important features
 - -> Method used: KBest Feature Selection

```
Top Selected Features by SelectKBest:
                Feature
                              Score
11 worst concave points 964.385393
        worst perimeter 897.944219
    mean concave points 861.676020
6
            worst radius 860.781707
         mean perimeter 697.235272
              worst area 661,600206
            mean radius 646.981021
0
               mean area 573,060747
         mean concavity 533.793126
        worst concavity 436.691939
10
       mean compactness 313.233079
      worst compactness 304.341063
```

Step 3: Feature Filtering based on Correlation matrix

```
['mean perimeter', 'worst perimeter']
Final Selected Features After Correlation Filtering:
['mean radius', 'mean area', 'mean compactness', 'mean concavity', 'mean concave points', 'worst radius', 'worst compactness', 'worst concavity', 'worst concave points']
```

Step 4: Data Splitting:

Features Removed Due to Correlation > 0.99:

- -> Stratified Sampling in the ratio 80:20.
- -> Random state=42 to ensure reproducibility of data.

Baseline Model Training

- Models used: Logistic Regression, Decision Tree.
- Metrics used: CV & Test Accuracy, Precision, Recall, F1 score, AUC.

Baseline Model Results and Inferences

 Overall, both Logistic Regression and Decision Tree models demonstrated high performance.

Key Observations:

- -> Logistic Regression slightly outperformed Decision Tree in CV Accuracy and AUC.
- -> Both models showed consistency across metrics (high accuracy, precision, recall, and F1 scores).
- -> Cross-Validation results indicate that both models are likely to generalize well.

Advanced Model Training and Evaluation

• **Purpose:** To investigate if alternative machine learning models could enhance the prediction of breast tumors.

Models Trained:

- -> Linear SVC
- -> SVC (Polynomial)
- -> Random Forest Classifier
- -> KNN Classifier
- -> Ensemble (SVC, Random Forest, Logistic Regression).
- Hyperparameter tuning: 5 Fold Cross Validation.
- Metrics Evaluated: Accuracy, Precision, Recall, F1 score, AUC.

Results

Model Comparison

Model	Accuracy	Precision	Recall	AUC	Interpretability	Robustness	
KNN	0.93	0.94	0.94	0.98	Black-Box	✓	
Linear SVC	Linear SVC 0.93		0.93	0.94	Limited Interpretability	✓	
SVC	0.96	0.95	0.99	1.00	Black-box	✓	
Ensemble Voting	0.96	0.95	0.99	0.99	Difficult to Interpret	✓	
Random Forest	<mark>0.96</mark>	<mark>0.96</mark>	0.97	<mark>0.99</mark>	Interpretable	<u>~</u>	
Logistic Regression	0.93	0.96	0.93	0.99	Very Interpretable	✓	
Decision Tree	0.94	0.96	0.94	0.94	Highly Interpretable	💢 (can overfit)	

The Random Forest model was chosen as the best model due to its high accuracy, precision, recall, and AUC, combined with its good interpretability and generalization ability.

Literature Review

Papers Compared:

- Paper 1:Khalid et al., 2024 "Breast Cancer Detection and Prevention Using Machine Learning, Diagnostics" (MDPI).
- **Paper 2:** Almarri et al., 2024 "The BCPM method: decoding breast cancer with machine learning".
- **Paper 3:** Naji et al., 2021 "Machine Learning Algorithms For Breast Cancer Prediction And Diagnosis", Procedia CS.

Results Comparison

ML Techniques Used	Reference	Accuracy of Existing Model	AUC score of Existing Model	Proposed Model Accuracy	Proposed Model AUC score	
Random Forest	Paper 1	0.96	-	0.96	0.99	
	Paper 2	0.92	-			
	Paper 3	0.96	0.96			
SVC	Paper 1	0.88	-	0.96	1	
	Paper 2	0.91	-			
	Paper 3	0.96	0.96			
Logistic	Paper 1	0.93	-	0.93	0.99	
Regression	Paper 2	0.9	-			
	Paper 3	0.95	0.94			
Decision Tree	Paper 1	0.94	-	0.94	0.94	
	Paper 2	0.9	-			
	Paper 3	0.95	0.94			
KNN	Paper 1	0.92	-	0.93	0.98	
	Paper 2	0.91	-			
	Paper 3	0.93	0.95			

Future Scope

Model Enhancement:

- -> Integrate deep learning models (e.g., CNNs) for image-based diagnostics.
 - -> Fine-tune models with larger and more diverse datasets.
- Real-time Detection and Clinical Integration: Develop mobile/web applications and integrate into clinical workflows for instant predictions.
- Data Expansion: Combine clinical, genetic, and imaging data for better accuracy.
- Explainability: Implement explainable AI to increase clinician trust.
- Continuous Learning: Enable models to learn from new patient data.

Conclusion

- Machine learning can be a valuable tool for the early and accurate diagnosis of breast cancer.
- The Random Forest model demonstrated strong performance in this study, achieving high accuracy, precision, and recall, while also offering interpretability and robustness.
- These findings support the potential integration of machine learning into clinical practice to improve patient outcomes.

References

Code & Dataset

- Code Link: https://github.com/AkashGitty97/Cloudxlab-Project-by-Akash
- Dataset: Dua, D. & Graff, C. (2019). UCI Machine Learning Repository.

Books

- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Springer.

Framework & Documentation

Scikit-learn Documentation.

Research Papers

- Naji et al., 2021 Machine Learning Algorithms For Breast Cancer Prediction And Diagnosis, Procedia CS, Vol. 191, pp. 487–492.
- Almarri et al., 2024 The BCPM method: decoding breast cancer with machine learning, BMC Med Imaging.
- Khalid et al., 2024 Breast Cancer Detection and Prevention Using Machine Learning, Diagnostics (MDPI).