

QQPlots and Normality Testing

MA2003B Application of Multivariate Methods in Data Science

Team Members:

Raul Gomez Adriana Reyna

1 Normality Testing

Although QQ plots are a good way to visually assess the normality of a dataset, they can be subjective and imprecise. Therefore, it becomes necessary to develop more objective and precise statistical tests to determine whether a dataset follows a normal distribution. However, before introducing these tests, we will remind the reader the definition of the skewness and kurtosis of a sample.

Definition 1.1. Let x_1, x_2, \ldots, x_n be a sample of size n. The sample mean \bar{x} and sample variance s^2 are given by

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

The sample skewness g_1 given by

$$g_1 = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s}\right)^3.$$

If $g_1 > 0$ the sample is said to be *right-skewed*, if $g_1 < 0$ it is *left-skewed*, and values near zero indicate approximate symmetry. The *sample excess kurtosis* g_2 is given by

$$g_2 = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s}\right)^4 - \frac{3(n-1)^2}{(n-2)(n-3)}.$$

A value of $g_2 = 0$ corresponds to the kurtosis of the normal distribution (mesokurtic). Positive values ($g_2 > 0$) indicate heavy-tailed, sharply peaked distributions (leptokurtic), while negative values ($g_2 < 0$) indicate light-tailed, flat-topped distributions (platykurtic).

1.1 The Shapiro-Wilk Test

Definition 1.2 (Shapiro-Wilk Test). Let x_1, x_2, \ldots, x_n be a sample of size $n \geq 3$, and let

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$$

denote the order statistics of the sample. The *Shapiro-Wilk test* is a statistical test for the null hypothesis

 H_0 : The data are drawn from a normally distributed population.

against the alternative hypothesis

 H_1 : The data are not drawn from a normally distributed population.

Let \bar{x} be the sample mean, and let $m = (m_1, m_2, \dots, m_n)^{\top}$ denote the expected values of the order statistics of a sample of size n from the standard normal distribution. Let V be the covariance matrix of these order statistics. Define the weight vector

$$a = \frac{m^{\top}V^{-1}}{\sqrt{m^{\top}V^{-1}V^{-1}m}} = (a_1, a_2, \dots, a_n)^{\top}.$$

The Shapiro-Wilk test statistic is given by

$$W = \frac{\left(\sum_{i=1}^{n} a_i x_{(i)}\right)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

Values of W close to 1 indicate that the sample is close to normal, whereas small values of W indicate departures from normality. The p-value of the test is computed from the sampling distribution of W under H_0 . If this p-value is less than the chosen significance level α , H_0 is rejected, providing evidence that the data are not normally distributed.

- Remark 1.3. The Shapiro–Wilk test is particularly powerful for small sample sizes $(n \le 50)$, though it remains applicable for larger samples (up to about $n \approx 2000$ in many software implementations).
 - The test is sensitive to both skewness and kurtosis departures from normality.
 - For very large samples, the test may detect trivial deviations from normality as significant.

1.1.1 Test subsubsection

Just a test subsubsection to check the numbering of the section.