

A sneak peek at **DeepPumas** for Machine-Learning empowered NLME modeling

Presenter: Mohamed Tarek

Authors: Niklas Korsbo, Vijay Ivaturi

Pumas-Al, Inc

Acknowledgements

Roche

Antoine Soubret

• Francesco Brizzi

Pumas-Al

Chris Elrod

• Julius Martenssen

- Chris Rackauckas
- Vijay Ivaturi
- Andreas Noack
- Mohammed Tarek
- Steven Chiu
- Patrick Kofod Mogensen
- Raj Dandekar

PUMASAI

Lyv

pumas

Augmenting healthcare intelligence with predictive analytics that turn data into life-saving decisions

DeepPumas – simple and effective utilization of both knowledge and data

Data

Models

Medical Images

Wearables

Known Cell Interactions

Interactions

Known Molecular

- Known Drug Properties
- Known Prognostic Factors

DEEPPUMAS FOR NLME

NLME

$\begin{array}{ll} \mbox{Typical values} & \mbox{Patient data} & \mbox{Random effects} \\ & \theta \in \mathbb{R}^3_+ & \mbox{Age} \\ & \Omega \in \mathbb{R}^3_+ & \mbox{Weight} & \eta \sim \mbox{MvNormal} \left(\Omega\right) \end{array}$

Individual parameters

$$Ka_{i} = \theta_{1} \cdot e^{\eta_{i,1}} + c_{1} \cdot Age_{i}$$

$$CL_{i} = \theta_{2} \cdot e^{\eta_{i,2}}$$

$$V_{i} = \theta_{3} \cdot e^{\eta_{i,3}} + c_{2} \cdot Weight_{1}^{c_{3}}$$

Dynamics

$$\begin{split} \frac{d[\text{Depot}]}{dt} &= -Ka[\text{Depot}],\\ \frac{d[\text{Central}]}{dt} &= Ka[\text{Depot}] - \frac{CL}{V}[\text{Central}]. \end{split}$$

Error model

 $Outcome \sim Normal \left(Central, \sqrt{Central} \cdot \sigma \right)$

WHAT IS A NEURAL NETWORK (NN)?

Information processing mechanism

Loosely based on neurons

$$y_{i,j+1} = act\left(\sum_{k} w_{k,j} \cdot y_{k,j} + b_{i,j}\right)$$

Mathematically: Just a function!

NNs are useable anywhere where you'd use a function!

Universal approximators!

- Approximate <u>any</u> function
- Functional form tuned by parameters
- Parameter tuning can be linked to observed patient outcomes

Use data to automatically discover relationships

NLIME WITH DEEPPUMAS

Typical values

Patient data

Random effects

$$\theta \in \mathbb{R}^3_+$$
$$\Omega \in \mathbb{R}^3_+$$

 $\eta \sim \text{MvNormal}(\Omega)$

Individual parameters

$$Ka_{i} = \theta_{1} \cdot e^{\eta_{i,1}} + c_{1} \cdot Age_{i} + CL_{i} = \theta_{2} \cdot e^{\eta_{i,2}}$$

$$V_{i} = \theta_{3} \cdot e^{\eta_{i,3}} + c_{2} \cdot Weight_{1}^{c_{3}} + CL_{i}$$

Dynamics

$$\frac{d[\text{Depot}]}{dt} = -Ka[\text{Depot}],$$

$$\frac{d[\text{Central}]}{dt} = Ka[\text{Depot}] -$$

Error model

 $Outcome \sim Normal \left(Central, \sqrt{Central} \cdot \sigma \right)$

INCORPORATING COMPLEX DATA

DEEPPUMAS — IN SHORT

Seamless mixing of ML and mechanistic/statistical modeling

Automatic model discovery for rapid scientific progress

Identify and utilize non-obvious relationships

De-mystify neural networks

Applicable widely across pharmacology

DeepPumas

- Bayesian DeepNLME
- Adaptive individual dosing
- Uncertainty quantification
- Prognostic factors from
 - Images
 - Genomics
 - Accelerometers
 - ..
- ...

TOOLING

- Core machinery
- Algorithms
- U
- Analysis tooling
- Benchmarking

- Individual predictions
- Individualize treatment
- Discover dynamical rules
- Generate biological hypotheses

CODE SNEAK PEAK