## **IDEATION**

Agriculture is important for human survival because it serves the basic need. Due to variations in climatic conditions, there exist bottlenecks for increasing the crop production in India. Various factors are to be considered which have direct impact on the production, productivity of the crops. Crop yield prediction is one of the important factors in agriculture practices. The use of technology in agriculture has increased in recent year and data analytics is one such trend that has penetrated into the agriculture field. The present study gives insights on various data analytics methods applied to crop yield prediction.

In India crop yield is season dependent and majorly influenced by the biological and economic causes of an individual crop. Reporting of progressive agricultural yield in all the seasons is an ample task and an advantageous task for every nation with respect to assesses the overall crop yield prediction and estimation. A study was carried out to collect the data on world climatic changes and the available water resources which can be used to encourage advanced and novel approaches such as big data analytics to retrieve the information of the previous results to the crop yield prediction and estimation. Study imported that the selection and usage of the most desirable crop according to the existing conditions, support to achieve the higher and enhanced crop yield. The accurate prediction of crop yield certainly benefits the farmers in choosing the right method to reduce the crop damage and gets best prices for their crops.

Crop yield gaps, measured as difference between expected yields based on the potency and actual farm yield received. In order to achieve the higher crop yield, farmers must need to tackle the influencing factors such as influence of change in climate conditions on the prospects of crop yields, and change in the usage of agricultural land to assess and ultimately reduce the crop yield gaps. An explicit rationale model which can effectively applied at various levels of the availability of quality information for identifying data sources to analyze crop yield and measuring yield gaps at definite geographical locations and works based on the rise in titer approach. The model is highly helpful in retrieving the useful data from the available, poor quality, less rigorous data sources or if the data is not available. The definitive aspiration of the planned method is to afford transparent, easily accessible, reproducible and technically sound and strong guidelines for predicting the yield gaps. The proposed guidelines were also relevant for understanding and to simulate the influence of change in climate conditions and usage of cultivable land changes from national to global scales. As indicated, the better understanding of data importance

and usefulness for analyzing crop yield and estimating yield gaps as illustrated can help in identifying the data gaps in the crop yield and allow focusing on the various efforts taken at the global level to address the most critical issue.

Analyzing the yields of crop is necessary to update the policies to ensure food security. The yield maps developed shall provide an unique opportunity to overcome both spatial and temporal based scaling up challenges and thus improve the ideology of crop yield gaps prediction.

In coming decades, two most significant and important factors found to influence crop yield is, increase in the global population and economy, which greatly demands the higher and sustainable agricultural based crop yields. The capacities of food production at global level is going to be very limited due to the less availability of cultivable land, water resources, difficulties in maintaining the sustainable crop production levels, effects of changes in the global climatic conditions and also by various biophysical parameters which influence the crop yield. Crop production abilities and yield gaps can be assessed and measured by comparing the possible yields at normal conditions with respect to the crop production under, respectively, irrigated and rain fed conditions by keeping the crop yield levels limited by the less availability of the water as benchmarks. Yield gaps can be defined as the difference between the expected crop yields with respect to the actual crop yield and accurate, spatially unambiguous awareness and information about the yield gaps is necessary to achieve sustainable amplification of agricultural yields. Crop production abilities and yield gaps can be assessed and measured by comparing the possible yields at normal conditions with respect to the crop production under, respectively, irrigated and rain fed conditions by keeping the crop yield levels limited by the less availability of the water as benchmarks.