q-DEFORMED D-MODULES

Contents

1.	Introduction	1
2.	Quantum analogues	4
Ref	References	

1. Introduction

1.1. **Vector fields.** Recall that a tangent vector is a map

$$\xi: \mathbf{D}_2 \to X$$

from the second order infinitesimal neighbourhood of the origin in the formal disk **D**. Likewise we get the notion of n-jet for any $n=1,2,\cdots,\infty$, and stronger still we could ask for a map

$$\xi: \mathbf{G}_a \to X.$$

A vector field induces a map on functions

$$\mathcal{O}(X) \to \mathbf{C}[\epsilon]/\epsilon^2$$
,

and the ϵ coefficient is the *derivative* of the function in the direction of the vector field.

1.1.1. *Multiplicative and elliptic jets.* We make the following redundant definition. If G is a one-dimensional algebraic group, a G-jet is a map

$$\xi: \mathbf{D}^G \to X$$

from the formal neighbourhood of the identity in G. Of course, all of these are non-canonically isomorphic and so this is the same thing as an ordinary jet. Let χ_G be a left-invariant vector field on G, then

$$\mathbf{D}_2^G = \mathbf{D}_2 \cdot \chi_G.$$

However, when we pass to the quantum versions of the above definitions, the definitions for different G will seperate.

1.1.2. Vector fields. A vector field is a map over X

$$\xi: X \times \mathbf{D}_2 \to X$$
.

Proposition 1.1.3. The sheaf \mathfrak{T}_X of vector fields is the Lie algebra of the group $\operatorname{Aut}(X)$ over X.

Proof. A tangent vector inside Aut(X) is a map

$$\psi: \mathbf{D}_2 \to \operatorname{Aut}(X)$$

which by adjunction is the same as a map

$$\mathbf{D}_2 \times X \to X$$
.

The condition that ψ needs to be a tangent vector at the unit $id \in Aut(X)$ is equivalent to this map being over X.

In exactly the same way, an n-jet field on X is the same as an n-jet at the identity of Aut(X).

1.2. **Ordinary** \mathcal{D} **modules.** Consider the category Sh_X of sheaves of abelian groups on smooth scheme X. We have a functor

$$\mathcal{O}_X$$
-Mod \to Sh_X

which is lax monoidal, i.e. we have a map $\mathcal{M} \otimes \mathcal{M}' \to \mathcal{M} \otimes_{\mathcal{O}} \mathcal{M}'$ for any \mathcal{O} -modules $\mathcal{M}, \mathcal{M}'$. If in addition \mathcal{O}_X forms a bialgebra in Sh_X , then we may ask that $\otimes, \otimes_{\mathcal{O}}$ form a lax braided monoidal structure on \mathcal{O} -Mod,

$$(\mathcal{M}_1 \otimes_{\mathcal{O}} \mathcal{M}_2) \otimes (\mathcal{M}_3 \otimes_{\mathcal{O}} \mathcal{M}_4) \xrightarrow{\beta} (\mathcal{M}_1 \otimes \mathcal{M}_3) \otimes_{\mathcal{O}} (\mathcal{M}_2 \otimes \mathcal{M}_4)$$

for all \mathbb{O} -modules \mathbb{M}_i .

- 1.2.1. Example: $X = \mathbf{A}^n$. The sheaf $\mathcal{O}_{\mathbf{A}^n}$ has a natural coalgebra structure in which the coordinates x_i are primitive. Moreover, this bialgebra structure is graded with respect to (any) linear action of \mathbf{G}_m on \mathbf{A}^n .
- 1.2.2. In particular, we can define $\otimes \otimes_{\mathcal{O}}$ bilalgebras \mathcal{A} , which are \mathcal{O} -modules equipped with maps

$$\mathcal{A} \otimes \mathcal{A} \to \mathcal{A}, \qquad \qquad \mathcal{A} \to \mathcal{A} \otimes_{\mathcal{O}} \mathcal{A}$$

which are compatible as such:

commute as a diagram in Sh_X , and finally A has a unit and counit which are compatible with each other and the above data.

We have then, assuming throughout that \mathcal{O}_X is a bialgebra,

Proposition 1.2.3. For any Lie algebroid \mathcal{L} , its universal enveloping algebra $U(\mathcal{L})$ is a bialgebra.

Proof. (write, should be abstract nonsense)

Examples of Lie algebroids include tangent bundles and relative tangent bundles. Thus,

Corollary 1.2.4. The sheaf \mathcal{D}_X forms a bialgebra.

As a consequence,

Corollary 1.2.5. The symmetric monoidal structure $\otimes_{\mathbb{O}}$ has a canonical lift along \mathfrak{D}_X - $\mathrm{Mod}^{\otimes} \to \mathfrak{O}_X$ - Mod .

1.2.6. Example: $X = \mathbf{A}^1$. In this case, the coalgebra structure on $\mathcal{D}_{\mathbf{A}^1}$, which we identify with $k\langle x, \partial_x \rangle$, is

$$\Delta(\partial_x) = \partial_x \otimes 1 + 1 \otimes \partial_x.$$

Note that by the coalgebra axioms and 0-linearity, $\Delta(1)=1\otimes 1$ and

$$\Delta(x^n \partial_x^m) = x^n (\partial_x \otimes 1 + 1 \otimes \partial_x)^m$$

are forced, likewise if we are to ask that it be a bialgebra (how to define bialgebra?) this forces

$$\Delta(x^{n_1}\partial_x^{m_1}\cdots x^{n_k}\partial_x^{m_k}) = x^{n_1}(\partial_x\otimes 1 + 1\otimes \partial_x)^{m_1}\cdots x^{n_k}(\partial_x\otimes 1 + 1\otimes \partial_x)^{m_k}.$$

Note that

$$\Delta([x,\partial_x]) = x(\partial_x \otimes 1 + 1 \otimes \partial_x) - (\partial_x \otimes 1 + 1 \otimes \partial_x)x = 1 \otimes 1 = \Delta(1).$$

In particular, we have $Prim(\mathcal{D}_{\mathbf{A}^1}) = \mathcal{T}_{\mathbf{A}^1}$.

- 1.3. The tangent bundle as a Lie bialgebroid. The tangent sheaf \mathcal{T} is naturally a Lie algebroid.
- 1.3.1. Lie bialgebroids. We can now define Lie bialgebroids over X as a sheaf $\mathcal{L} \in \mathcal{O}$ -Mod with a Lie algebra structure in Sh_X

$$[,]: \mathcal{L} \otimes \mathcal{L} \to \mathcal{L}$$

which is O-linear, in the sense that there is a map $\rho: \mathcal{L} \to \mathcal{T}_X$ with $[\ell, f\ell'] = (\rho(\ell)f)\ell' + f[\ell, \ell']$, and a Lie coalgebra structure in \mathcal{O}_X -Mod

$$\delta: \mathcal{L} \to \mathcal{L} \otimes_{\mathcal{O}} \mathcal{L}$$

such that the usual axiom of a Lie bialgebra holds:

$$\delta([\ell,\ell']) \; = \; (\operatorname{ad}_{\ell} \otimes_{\mathbb{O}} \operatorname{id} \; + \; \operatorname{id} \otimes_{\mathbb{O}} \operatorname{ad}_{\ell'}) \delta(\ell) \; - \; (\operatorname{ad}_{\ell'} \otimes_{\mathbb{O}} \operatorname{id} \; + \; \operatorname{id} \otimes_{\mathbb{O}} \operatorname{ad}_{\ell}) \delta(\ell'),$$

the relation viewed as a map $\mathcal{L} \otimes \mathcal{L} \to \mathcal{L} \otimes_{\mathcal{O}} \mathcal{L}$.

1.3.2. Example: $X = \mathbf{A}^1$. In this case, we identify $\mathfrak{T}_{\mathbf{A}^1}$ with the free $\mathfrak{O}(\mathbf{A}^1)$ -module $k[x]\partial_x$. Then as for any Lie algebroid, $\delta = 0$ defines a Lie bialgebroid structure on $\mathfrak{T}_{\mathbf{A}^1}$.

2. Quantum analogues

2.1. q-vector fields. Now let \mathbf{G}_m act on our smooth scheme X. This makes \mathfrak{O}_X into a \mathbf{Z} -graded sheaf, so we can define the sheaf $\mathfrak{T}_X^q \subseteq \operatorname{End}(\mathfrak{O}_X)$ of q-vector fields consisting of endomorphisms ∂ with

$$\partial(fg) = \partial(f)g + q^{|f|}f\partial(g)$$

for all pairs of homogenous functions $f, g \in \Gamma(\mathcal{O}_X)$.

2.1.1. One way to axiomatise this is the following. Extend $\mathcal{O}(X)$ by adding the variable \mathbf{q} with commutation relations

$$\mathbf{q}f = q^{|f|}f\mathbf{q}$$

for homogeneous elements, where $q \in k$ is central. Then

$$\mathbf{q}\partial(fg) = \mathbf{q}\partial(f)g + f\mathbf{q}\partial(g)$$

and so $\mathbf{q} \partial$ defines an honest vector field on $\langle \mathcal{O}(X), \mathbf{q} \rangle$. Thus a q-vector field induces an algebra map

$$\langle \mathfrak{O}(X), \mathbf{q} \rangle \to \langle \mathbf{C}[\epsilon]/\epsilon^2, \mathbf{q} \rangle, \qquad f \mapsto f + \mathbf{q} \partial(f)\epsilon,$$

where **q** and ϵ commute. We now turn to the question of what this algebra $\langle \mathfrak{O}(X), \mathbf{q} \rangle$ is.

Proposition 2.1.2. $\langle \mathfrak{O}(X), \mathbf{q} \rangle [q, q^{-1}]$ is a $\mathbf{Z}[q, q^{-1}]$ -quantisation of $\mathfrak{O}(X \times \mathbf{G}_{m,\mathbf{q}})[q, q^{-1}]$ with the grading given by a \mathbf{G}_m -action on $X \times \mathbf{G}_{m,\mathbf{q}}$.

For instance, if every function on X has degree zero, then $\langle \mathfrak{O}(X), \mathbf{q} \rangle = \mathfrak{O}(X \times \mathbf{G}_{m,\mathbf{q}})$.

2.1.3. We are now in place to define q-vector field. To begin, we need to *choose* a quantisation $X \times \mathbf{G}_{m,\mathbf{q}} \to G$ of $X \times \mathbf{G}_{m,\mathbf{q}}$ over G. Then,

Definition 2.1.4. A *q*-vector field on X is a vector field

$$\xi : \mathbf{D}_2 \times (X \times \mathbf{G}_{m,\mathbf{q}}) \to (X \times \mathbf{G}_{m,\mathbf{q}})$$

on the noncommutative space $X \times \mathbf{G}_{m,\mathbf{q}}$, i.e. a map as above, over $X \times \mathbf{G}_{m,\mathbf{q}}$.

Notice that we can take the pullback squares

$$\mathbf{D}_{2} \times X \xrightarrow{\xi_{1}} X \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{D}_{2} \times (X \times \mathbf{G}_{m,\mathbf{q}}) \xrightarrow{\xi} (X \times \mathbf{G}_{m,\mathbf{q}}) \longrightarrow \mathbf{G}_{m}$$

which gives an ordinary vector field on X. Thus loosely speaking, a q-vector field is a quantised vector field on X.

2.1.5. Example: $X = \mathbf{A}^1$. The operator $\partial(x^n) = n_q x^{n-1}$, where n_q is the nth q-integer,

$$n_q = 1 + q + \dots + q^{n-1},$$
 $(-n)_q = q^{-1} + q^{-2} + \dots + q^{-n}$

which satisfies $(n+m)_q=n_q+q^nm_q$. In particular, $\partial(x^{n+m})=n_qx^n\cdot x^m+q^nx^n\cdot m_qx^m$, and so this defines a q vector field.

2.1.6. Remark. We could also just as well replace $G_{m,q}$ by $E_{q,\tau}$ or G_q any one-dimensional algebraic group.

Thus, let X and $G_{\mathbf{q}}$ be viewed as constant schemes over G. Then we *choose* a quantisation $X \times G_{\mathbf{q}} \to G$ over G. In this case, a G-jet is a map

$$\xi: \mathbf{D}_n^G \times (X \times G_{\mathbf{q}}) \to (X \times G_{\mathbf{q}})$$

over $X \times G_{\mathbf{q}}$. Over a point $x \in X$ we get

$$\xi_x: \mathbf{D}_n^G \times (G_{\mathbf{q}} \times G) \to (X \times G_{\mathbf{q}})$$

and so we get a map

$$\xi_x : \mathcal{O}(X \times G_{\mathbf{q}}) \to \mathcal{O}(\mathbf{D}_n^G \times G_{\mathbf{q}}) \otimes \mathcal{O}(G).$$

For instance, our ordinary notion of q-vector field corresponds to $G = \mathbf{G}_m$. We can define an \hbar -adic version by taking $G = \mathbf{G}_a$.

When dealing with elliptic curves, we may also require a compatible family of G_m - and E_{τ} -jets which glue over $\overline{\mathbb{M}}_{1,1}$.

- 2.2. q-cotangent bundles. The cotangent bundle over X is given by taking the relative spectrum of the sheaf of vector fields.
- 2.2.1. Having chosen a quantisation $\tilde{X} = X \times G_{\mathbf{q}}$, the quantum cotangent bundle is

$$\tilde{\mathbf{T}}_{\tilde{X}}^* = \mathbf{T}_{\tilde{X}/G_{\mathfrak{g}} \times G}^*.$$

(define this, i.e. show that we get a quantisation)

Lemma 2.2.2. This is a quantisation of the cotangent bundle of X times $G_{\mathbf{q}} \times G$, i.e.

$$\mathbf{T}^*_{\tilde{X}/G_{\mathbf{q}}\times G} = \mathbf{T}^*_X \tilde{\times} G_{\mathbf{q}}.$$

For instance, if $X = \mathbf{A}^1$ and $G = \mathbf{G}_m$, then we can take

$$\tilde{X} = \operatorname{Spec} \mathbf{C}\langle x, \mathbf{q}^{\pm}, q^{\pm} \rangle$$

where q is central, and

$$\mathbf{T}_{\tilde{\mathbf{X}}}^q = \operatorname{Spec} \mathbf{C}\langle x, p, \mathbf{q}^{\pm}, q^{\pm} \rangle$$

is a twisted product of $T^*\mathbf{A}^1$ and $\mathbf{G}_{m,\mathbf{q}} \times \mathbf{G}_m$, where $p = \partial_x$, and so we have that $\mathbf{q}p = q^{-1}p\mathbf{q}$. Notice that we get a closed subscheme

$$\mathbf{A}_q^2 = \operatorname{Spec} \mathbf{C}\langle x, \mathbf{q}p \rangle$$

which is the quantum affine plane, since writing $y = \mathbf{q}p$, we get the defining relations xy = qyx.

2.3. q-differential operators. The q-differential operators \mathcal{D}_q will be a filtered quantisation of

$$\operatorname{Spec} \operatorname{Sym}_{\tilde{X}} \tilde{\mathbf{T}}_{\tilde{X}}^*$$
.

Notice that the role of q and the q-quantisation is orthogonal to the role of the filtration and the filtered quantisation. We define it as usual: it is the sheaf of differential operators on \tilde{X} , i.e. it is the sheaf of subalgebras

$$\tilde{\mathfrak{D}}_{\tilde{X}} \subseteq \operatorname{End}_{\tilde{X}}(\mathfrak{O}_{\tilde{X}})$$

generated by the q-vector fields and $\mathcal{O}_{\tilde{X}}$.

Notice that by the definition,

Lemma 2.3.1. $\tilde{T}_{\tilde{X}}$ forms a sheaf of Lie algebras over \tilde{X} .

This allows us to give a Grothendieck definition of the sheaf of quantum differential operators:

Lemma 2.3.2. $\tilde{\mathbb{D}}_{\tilde{X}} = \bigcup_{n \geq 0} \tilde{\mathbb{D}}_{\tilde{X},n}$, where the zeroeth term is $\tilde{\mathbb{O}}_{\tilde{X}}$, and above that

$$\tilde{\mathfrak{D}}_{\tilde{X},n}=$$
 (recursive definition).

To summarise, we have the following

$$\operatorname{gr} \mathfrak{D}_X \qquad \operatorname{gr} \tilde{\mathfrak{D}}_{\tilde{X}}$$

$$\mathfrak{D}_X$$
 $\tilde{\mathfrak{D}}_{\tilde{X}}$

and the sheaves on the left are given by pulling back the sheaves on the right along $1 \to G$.

2.4. **Relation to automorphisms of** X**.** Recall that one may define a D-module on X to be a quasicoherent sheaf which is equivariant for the action of the formal group $\exp(\mathfrak{T}_X)$; this is the parallel transport map. Likewise, if Φ is an automorphism of X, one possible definition of quantum D-module is a Φ -equivariant quasicoherent sheaf.

How does this relate to the above definition?

To begin with, what has this to do with the quantisation $X \times \mathbf{G}_{m,\mathbf{q}}$? Let us consider the case when the quantisation and the automorphism both come from the same source: a single \mathbf{G}_m action:

$$\mathbf{G}_m \text{ action on } X$$
 automorphism Φ_g for any $g \in \mathbf{G}_m$ quantisation $X \times \mathbf{G}_{m,\mathbf{q}}$

A quasicoherent sheaf on $X \times \mathbf{G}_{m,\mathbf{q}}$ is the same as a quasicoherent sheaf $\mathfrak{M} \in \mathrm{QCoh}(X)$ with a compatible action of $\mathbf{C}[\mathbf{q}^{\pm}]$, i.e. we have

$$\mathbf{q}_x: \mathcal{M}_x \xrightarrow{\sim} \mathcal{M}_x$$

for every point $x \in X$, and we have

$$\mathbf{q}_x f(x) = q^{|f|} f(x) \mathbf{q}_x$$

as automorphisms of \mathcal{M}_x . In particular, this has nothing to do with comparing \mathcal{M}_x and $\mathcal{M}_{\Phi_g \cdot x}$, so it is unlikely the definitions are related.

The automorphism definition of quantum D-module is related to

$$\mathbf{Z} \stackrel{\Phi}{\to} \operatorname{Aut}(X) \leftarrow \exp(\mathfrak{T}_X)$$

whereas the q-deformed D-module changes the underlying space,

$$\exp(\tilde{\mathfrak{T}}_{\tilde{X}}) \to \exp(\mathfrak{T}_X).$$

One expects that it might be possible to quantise both ways simultaneously.

2.5. **Relation to Beilinsorn-Bernstein.** Let $\lambda : \mathbf{G}_m \to G$ be a character with $\lambda B \lambda^{-1} = B$. Then we get an induced \mathbf{G}_m action on the flag variety G/B, and can form the quantisation.

Conjecture 2.5.1. We have a surjection $\tilde{\mathcal{D}}_{\tilde{G/B}} \twoheadrightarrow U_q(\mathfrak{g})$.

2.6. **Relation to quantum groups.** We are going to give a *different* relation to quantum groups, where

$$X = \operatorname{Spec} U_q(\mathfrak{g}), \qquad G = T.$$

Note that here we may be using a group of dimension greater than one. If \mathbf{q}_{λ} corresponds to $\lambda \in \mathfrak{O}(T) \subseteq \mathfrak{t}^*$, then we set

$$x\mathbf{q}_{\lambda} = q^{\lambda(x)}\mathbf{q}_{\lambda}x$$

for all $x \in \mathfrak{g} \subseteq U_q(\mathfrak{g})$.

Conjecture 2.6.1. We have

$$\tilde{\mathfrak{D}}_{\tilde{X}} = U_q(\mathfrak{g} \oplus_{\mathfrak{t}} \mathfrak{g}^*)$$

is the Takiff algebra.

2.6.2. We now consider the analogue of the Lie algebra structure on \mathfrak{T}_X^q . Let \mathbf{q} be the operator acting as $f\mapsto q^{|f|}f$ on homogenous elements.

Lemma 2.6.3. The sheaf $\mathbf{q}^{-1}\mathfrak{I}_X^q$ is closed under the bracket

$$[\partial_1, \partial_2]_q = \partial_1 \partial_2 - q^{|\partial_2| - |\partial_1|} \partial_2 \partial_1.$$

(check the q factor, note that $|\mathbf{q}| = 0$)

Proof. If ∂_1 , ∂_2 are two q-derivations on \mathcal{O}_X , then

$$\begin{split} [\partial_1,\partial_2]_q(fg) &= \partial_1\partial_2(fg) - q^A\partial_2\partial_1(fg) \\ &= \partial_1(\partial_2(f)g + q^{|f|}f\partial_2(g)) - q^A\partial_2(\partial_1(f)g + q^{|f|}f\partial_1(g)) \\ &= (\partial_1(\partial_2(f))g + q^{|\partial_2(f)|}\partial_2(f)\partial_1(g) + q^{|f|}\partial_1(f)\partial_2(g) + q^{2|f|}f\partial_1(\partial_2(g))) \\ &- q^A(\partial_2(\partial_1(f))g + q^{|\partial_1(f)|}\partial_1(f)\partial_2(g) + q^{|f|}\partial_2(f)\partial_1(g) + q^{2|f|}f\partial_2(\partial_1(g))) \\ &= [\partial_1,\partial_2]_q(f)g + q^{2|f|}f \cdot [\partial_1,\partial_2]_q(g) + \text{(other stuff)} \end{split}$$

(look at the *q*-Virasoro note to fix this)

Note that the sheaf $\mathbf{q}^{-1}\mathcal{T}_X^q$ are the endomorphisms ∂ with

$$\partial(fg) = q^{-|\partial(f)|} \partial(f)g + q^{|f|-|\partial(g)|} f \partial(g).$$

Definition 2.6.4. A *q-Lie algebra is* (define)

Definition 2.6.5. A *q-Lie algebroid is* (define)

Definition 2.6.6. The universal enveloping algebra $U^q(\mathcal{L})$ of a q-Lie algebroid \mathcal{L} is (define)

In particular, we see that

Lemma 2.6.7. $U^q(\mathcal{L})$ is a bialgebra, and setting q=1 gives $U(\mathcal{L}_0)$.

The crucial difference here is that $U^q(\mathcal{L})$ is not cocommutative, even though $U(\mathcal{L}_0)$ is. Thus,

Corollary 2.6.8. $U^q(\mathcal{L})$ -Mod is a monoidal category, which when q=1 becomes symmeteric monoidal.

We can now ask that $U^q(\mathcal{L})$ be cocommutative, or more generally have an R-matrix.

Proposition 2.6.9. If \mathcal{L} has (properties), then $U^q(\mathcal{L})$ forms a quantum group. In particular, $U^q(\mathcal{L})$ -Mod is braided monoidal.

.1. q differential operators.

.1.1. Note that unless $q=\pm 1$, the operation $a\otimes b\mapsto q^{|a|-|b|}b\otimes a$ does not define a symmetric monoidal structure on the category of **Z**-graded vector spaces. Thus, to define "q-Lie algebra", we do not take a Lie algebra in a q-deformed symmetric monoidal structure, but instead manually define q-Lie algebra in the original symmetric monoidal category. (potentially just a certain quadratic operad)

Under the bracket

$$[a,b]_q = ab - q^{|a|-|b|}ba$$

the analogue of antisymmetry is

$$[a,b]_q = q^{2(|b|-|a|)}[b,a]_q.$$

Notice also that we have

$$[aa',b]_a = aa'b - q^{|a|+|a'|-|b|}baa' = a(a'b - q^{|a'|-|b|}ba') + q^{|a'|-|b|}(ab - q^{|a|}ba)a'$$

which is not quite $[a, b]_q a' + a[a', b]_q$. The analogue of Jacobi is

$$[a,[b,c]_q]_q - [c,[b,a]_q]_q + [b,[c,a]_q]_q \ = \ abc(1-q^{|b|-|a|}q^{|c|-|b|-|a|}) + acb(-q^{|b|-|c|}+q^{|c|-|a|}q^{|b|-|c|-|a|}) + \cdots$$

which does not vanish. We can instead try

$$[a,[b,c]_q]_q-q^{2|a|-|c|}[c,[b,a]_q]_q+q^{4|a|-2|c|}[b,[c,a]_q]_q \ = \ abc(0) + acb(0) + bca(-q^{|a|-|b|-|c|} + q^{4|a|-2|c|}) + \cdots$$

which is again not zero, so there is no salvage of Jacobi that just adjusts each summand by $q^{f(|a|,|b|,|c|)}$.

References

[GR] Gaitsgory, D. and Rozenblyum, N., 2017. A Study in Derived Algebraic Geometry: Volume II: Deformations, Lie Theory and Formal Geometry. Mathematical surveys and monographs, 221.