A Time Delay Interferometry Rosetta Stone

Michele Vallisneri

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109*

This table compares and interfaces all the notations used for TDI observables in the literature.

reference	geometry	inter-spacecraft measurement	intra-spacecraft measurement (on same bench of y with same indexes)	link vectors	armlengths
Vallisneri 2005		y _{slr} (frequency)	z_{slr}	$n_l(l > 0 \text{ ccw}, l < 0 \text{ cw})$	$L_l (l > 0 \text{ ccw}, l < 0 \text{ cw})$
AET 1999			n/a		
TAE 2000, ETA 2000, AET 2001 Hogan & Bender 2001, Prince et al. 2002, TDI whitepaper 2002, AET 2003	$1 \to 2 \to 3 \text{ cw}$	$y_{ \vec{l} r}$ (frequency)	z _{lII} r	$n_{ I }$ (along ccw)	$L_{ I }$ (no distinction between ccw and cw)
TEA 2002, Tinto et al. 2003		$s_{ \mathcal{I} r}$ (phase)	$\tau_{ l r}$ (phase)		
Dhurandhar et al 2002		$U_1 = y_{3-21}, U_2 = y_{1-23}$ $U_3 = y_{2-13}, V_1 = -y_{231}$ $V_2 = -y_{312}, V_3 = -y_{123}$	n/a	$n_{ I }$ (along ccw)	$L_{ I }$ (no distinction between ccw and cw)
Cornish & Rubbo 2003, Rubbo, Cornish, & Poujade 2004		Φ_{sr} (phase)		$r_{Sr} = n_{Sr}$	
Hellings 2001	$1 \rightarrow 2 \rightarrow 3 \text{ ccw}$	y _{sr} (phase)		n/a	L_{sr} (oriented)
Cornish & Hellings 2003		y _{sr} (frequency)		11/a	
Królak et al. 2004				$n_{ l }$ (along ccw)	L (equal arms)
Shaddock et al. 2003 ^a , TEA 2004 ^b Shaddock 2004	$1 \rightarrow 2 \rightarrow 3 \text{ cw}$	s _{sr} (phase)	$ au_{sr}$ (phase)	n/a	$L_{l l} = L_{-l}, L_{l l} = L_{l}$ (unprimed cw, primed ccw) $L_{sr} \text{ (oriented)}$

The TDI Rosetta Table. A comparison of the phase-measurement and LISA geometry conventions used in the literature on TDI. In the cited references, A, E, and T refer to J. W. Armstrong, F. B. Estabrook, and M. Tinto. Notations are described with respect to the usage of this paper, with $s \equiv$ sending spacecraft, $l \equiv$ armlink, $r \equiv$ receiving spacecraft; "cw" and "ccw" refer to the progression of spacecraft or link indexes, as seen when looking at the LISA constellation from above (from ecliptic latitude 90° N); when indexes are shown in absolute values, only positive values are used. Tinto and Armstrong 1999 (not included in this table) has $y_1 \equiv$ two-way ccw $(a \rightarrow b \rightarrow a)$, $y_2 \equiv$ two-way cw $(a \rightarrow c \rightarrow a)$.

^a The semicolon ordered-delay notation was introduced in Shaddock et al. 2003 and TEA 2004.

^b TEA 2004 uses $n_{|I|}$ to denote link vectors; it is ambiguous from the context whether these are ccw or cw.

 $^{{\}rm *Electronic~address:~Michele.Vallisneri@jpl.nasa.gov}$

- [1] J. W. Armstrong, F. B. Estabrook, and M. Tinto, Astrophys. J. 527, 814 (1999).
- [2] J. W. Armstrong, F. B. Estabrook, and M. Tinto, Class. Quant. Grav. 18, 4059 (2001).
- [3] J. W. Armstrong, F. B. Estabrook, and M. Tinto, Class. Quant. Grav. 20, S283 (2003).
- [4] N. Cornish and R. W. Hellings, Class. Quant. Grav. 20, 4851 (2003).
- N. J. Cornish and L. J. Rubbo, Phys. Rev. D 67, 022001 (2003); erratum, ibid., 029905 (2003).
- [6] S. V. Dhurandhar, K. R. Nayak, and J.-Y. Vinet, Phys. Rev. D 65, 102002 (2002).
- [7] F. B. Estabrook, M. Tinto, and J. W. Armstrong, Phys. Rev. D 62, 042002 (2000).
- [8] R. W. Hellings, Phys. Rev. D 64, 022002 (2001).
- [9] C. J. Hogan and P. L. Bender, Phys. Rev. D 64, 062002 (2001).
- [10] A. Królak, M. Tinto, and M. Vallisneri, Phys. Rev. D 70, 022003 (2004).
- [11] T. A. Prince, M. Tinto, S. L. Larson, and J. W. Armstrong, Phys. Rev. D 66, 122002 (2002).
- [12] L. J. Rubbo, N. J. Cornish, and O. Poujade, Phys. Rev. D 69, 082003 (2004). See also LISA Simulator v. 2.0, www.physics. montana.edu/lisa.
- [13] D. A. Shaddock, Phys. Rev. D 69, 022001 (2004).
- [14] D. A. Shaddock, M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 68, 061303(R) (2003).
- [15] M. Tinto and J. W. Armstrong, Phys. Rev. D 59, 102003 (1999).
- [16] M. Tinto, J. W. Armstrong, and F. B. Estabrook, Phys Rev. D 63, 021101(R) (2000).
- [17] M. Tinto, F. B. Estabrook, and J. Armstrong, "Time Delay Interferometry White Paper", whitepaper for the LISA Mission Science Office (May 2002), www.srl.caltech.edu/lisa.
- [18] M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 65, 082003 (2002).
- [19] M. Tinto, F. B. Estabrook, and J. W. Armstrong, Phys. Rev. D 69, 082001 (2004).
- [20] M. Tinto, D. A. Shaddock, J. Sylvestre, and J. W. Armstrong, Phys Rev. D 67, 122003 (2003).
- [21] M. Vallisneri, Phys. Rev. D, in print (2005); gr-qc/0407102.