

概率与统计第15讲

主讲: 邱玉文 内容: 数学期望, 方差, 标准差等

本次内容概要

- 一、随机变量函数的数学期望(续);
- 二、数学期望的性质;
- 三、方差和标准差;

四、方差的性质;

五、常用随机变量的期望和方差;

一、数学期望(均值)

一、数学期望的定义

1. 离散随机变量情形

$$E(X) = \sum_{i} x_{i} p(x_{i})$$

2. 连续随机变量情形

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

4. 设随机变量X的概率密度为 $f(x) = \begin{cases} kx^{\alpha}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$,且

$$E(X) = 0.75$$
, $M = ____$; $\alpha = ____$.

Ų

例 4 已知随机变量
$$X$$
的分布函数 $F(x) = \begin{cases} 0, & x \le 0 \\ x/4, & 0 < x \le 4, 求 E(X). \end{cases}$
1, $x > 4$

【数学期望的例子】

Ψ

例 4 已知随机变量
$$X$$
的分布函数 $F(x) = \begin{cases} 0, & x \le 0 \\ x/4, & 0 < x \le 4, \text{ 求 } E(X). \end{cases}$

$$\begin{cases} 1, & x > 4 \end{cases}$$

解 随机变量 X 的分布密度为 $f(x)=F'(x)=\begin{cases} 1/4, & 0 < x \le 4 \\ 0, & \text{其它} \end{cases}$

故
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{4} x \cdot \frac{1}{4} dx = \frac{x^2}{8} \Big|_{0}^{4} = 2.4$$

例 5 设随机变量 X 服从指数分布 $e(\lambda)$,求数学期望 E(X).

解 由 § 2.5 知, X 的概率密度为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0; \\ 0, & x \leq 0. \end{cases}$$

所以,按公式(3.3)得

$$E(X) = \int_0^{+\infty} \lambda x e^{-\lambda x} dx$$
$$= \frac{1}{\lambda} \int_0^{+\infty} t e^{-t} dt = \frac{1}{\lambda}.$$

【数学期望不存在的例子】

设X服从柯西分布,密度函数是

$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < +\infty,$$

求数学期望E(X).

解:

$$\int_{-\infty}^{+\infty} x f(x) dx = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x}{1+x^2} dx$$

因为反常积分 $\int_{-\infty}^{+\infty} \frac{x}{1+x^2} dx$ 不绝对收敛,所以 E(X) 不存在.

二、随机变量函数的数学期望

二、随机变量函数的数学期望

二、随机变量函数的数学期望

1. 离散随机变量情形

设离散随机变量X的概率函数为 $p(x_i)$, i=1,2,...,则X的函数Y=g(X)的数学期望为

$$E(Y) = E(g(X)) = \sum_{i} g(x_i) p(x_i)$$

2. 连续随机变量情形

设连续随机变量X的密度函数为f(x),则X的函数Y = g(X)的数学期望为

$$E(Y) = E(g(X)) = \int_{-\infty}^{+\infty} g(x)f(x)dx$$

例 9 随机变量 X 在[0,π]上服从均匀分布, ↓

 \mathbf{X} E(X), $E(\sin X)$, $E(X^2)$ 及 $E[X - E(X)]^2$.

【随机变量函数的数学期望例子】

例 9 随机变量 X 在[0,π] 上服从均匀分布, ₽

求 $\mathbf{E}(\mathbf{X})$, $E(\sin X)$, $E(X^2)$ 及 $E[X-E(X)]^2$.

解 根据随机变量函数数学期望的计算公式, 有~

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{\pi} x \cdot \frac{1}{\pi} dx = \frac{\pi}{2},$$

$$E(\sin X) = \int_{-\infty}^{+\infty} \sin x f(x) dx = \int_{0}^{\pi} \sin \frac{1}{\pi} dx = \frac{1}{\pi} (-\cos x) |_{0}^{\pi} = \frac{2}{\pi}, \psi$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{0}^{\pi} x^{2} \cdot \frac{1}{\pi} dx = \frac{\pi^{2}}{3}, \, \nu$$

$$E[X - E(X)]^2 = E\left(X - \frac{\pi}{2}\right)^2 = \int_0^{\pi} \left(x - \frac{\pi}{2}\right)^2 \cdot \frac{1}{\pi} dx = \frac{\pi^2}{12} \cdot \nu$$

例 10 设随机变量(X,Y)的概率密度→

$$f(x,y) = \begin{cases} \frac{3}{2x^3y^2}, & \frac{1}{x} < y < x, x > 1, \\ 0, & \text{ 其它.} \end{cases}$$

求数学期望
$$E(Y), E\left(\frac{1}{XY}\right)$$

VI

随机变量函数的数学期望例子

例 10 设随机变量 (X,Y) 的概率密度 \rightarrow

$$f(x,y) = \begin{cases} \frac{3}{2x^3y^2}, & \frac{1}{x} < y < x, x > 1, \\ 0, & \text{其它.} \end{cases}$$

$$\frac{1}{x} < y < x, x > 1$$
,
其它.

求数学期望
$$E(Y), E\left(\frac{1}{XY}\right)$$
.

$$\begin{aligned}
& E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x, y) dy dx \\
&= \int_{1}^{+\infty} dx \int_{1/x}^{x} \frac{3}{2x^{3}y} dy \\
&= \frac{3}{2} \int_{1}^{+\infty} \frac{1}{x^{3}} [\ln y] \Big|_{1/x}^{x} dy = 3 \int_{1}^{+\infty} \frac{\ln x}{x^{3}} dx \\
&= \left(-\frac{3}{2} \frac{\ln x}{x^{2}} \right) \Big|_{1}^{+\infty} + \frac{3}{2} \int_{1}^{+\infty} \frac{1}{x^{3}} dx = \frac{3}{4} . \end{aligned}$$

三、数学期望的性质

三、数学期望的性质

 \triangleright 常数的期望为该常数: E(c) = c

$$E(aX+b) = aE(X)+b$$

$$\triangleright E(aX+bY) = aE(X)+bE(Y)$$

$$E\left(\sum_{i=1}^{n} c_i X_i\right) = \sum_{i=1}^{n} c_i E(X_i)$$

 \rightarrow 若随机变量X与Y相互独立,且E(X)和E(Y)存在,则

$$E(XY) = E(X)E(Y)$$

四、方差和标准差

一、方差的定义

1. 定义

$$D(X) = E\left\{ \left[X - E(X) \right]^2 \right\}$$

方差用来描述随机变量取值的波动(集中与分散)程度

2. 离散和连续情形

$$D(X) = \begin{cases} \sum_{i=1}^{\infty} (x_i - E(X))^2 p(x_i), & \text{\mathbb{R} if \mathbb{R}} \\ \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx, & \text{\mathbb{E} if \mathbb{R}} \end{cases}$$

3. 计算D(X)的简便公式

$$D(X) = E(X^2) - \left[E(X)\right]^2$$

【例】在M电子公司生产的简易二极管中,按质量等级可分为5级,其中1级最差,5级最好。现统计了今年1月份生产的二极管质量各等级所占比率,如下表所列。求平均质量等级和质量等级的方差

X	1	2	3	4	5
P	0.1	0.2	0.3	0.3	0.1

解: 平均质量等级

$$E(X) = 1 \times 0.1 + 2 \times 0.2 + 3 \times 0.3 + 4 \times 0.3 + 5 \times 0.1 = 3.1$$

质量等级的方差

$$D(X) = 1 \times 0.1 + 4 \times 0.2 + 9 \times 0.3 + 16 \times 0.3 + 25 \times 0.1 - 3.1^2 = 1.29$$

【求方差的例子】

例 4 设 $X \sim U(a,b)$, 求 E(X), D(X).

解 X的概率密度为
$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, &$$
其它

而
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx = \frac{a+b}{2}$$
,故所求方差为~

$$D(X) = E(X^{2}) - [E(X)]^{2} = \int_{a}^{b} x^{2} \frac{1}{b-a} dx - \left(\frac{c+b}{2}\right)^{2} = \frac{(b-a)^{2}}{12} \cdot a$$

【求方差的例子】

例 5 设随机变量 X 服从指数分布, 其概率密度为→

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

其中 $\theta > 0$,求E(X),D(X).

$$\mathbf{ff} \qquad E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x \frac{1}{\theta} e^{-x/\theta} dx = -x e^{-x/\theta} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-x/\theta} dx = \theta, \, \theta$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{0}^{+\infty} x^{2} \frac{1}{\theta} e^{-x/\theta} dx = -x^{2} e^{-x/\theta} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} 2x e^{-x/\theta} dx = 2\theta^{2}$$

于是
$$D(X) = E(X^2) - [E(X)]^2 = 2\theta^2 - \theta^2 = \theta^2$$
.

即有
$$E(X) = \theta$$
, $D(X) = \theta^2$.

五、方差的性质

- \triangleright 常数的方差为 $\mathbf{0}$,即 D(c)=0
- $D(aX+b) = a^2 D(X)$
- ➤ 若随机变量X与Y相互独立,且方差都存在,则

$$D(X \pm Y) = D(X) + D(Y)$$
$$D(aX \pm bY) = a^2D(X) + b^2D(Y)$$

 \triangleright 对任意随机变量X与Y,若它们的方差都存在,则

$$D(aX \pm bY) = a^2D(X) + b^2D(Y) \pm 2ab\operatorname{cov}(X, Y)$$

其中cov(X,Y)称为X与Y的协方差

$$cov(X,Y) = E\left[\left(X - E(X)\right)\left(Y - E(Y)\right)\right]$$

二、标准差的定义

方差的量纲是随机变量量纲的平方,这使得对方差的理解不够直观,为此引入标准差的概念,把它定义为方差的平方根,即

$$\sigma(X) = \sqrt{D(X)}$$

标准差在6西格玛管理中有非常重要的作用。

3、随机变量的标准化

1. 标准化变换公式

$$X^* = \frac{X - E(X)}{\sigma(X)}$$

X* 称为X的标准化随机变量。

2. 标准化随机变量的均值和方差

$$E(X^*) = 0, \quad D(X^*) = 1$$

正态分布的数学期望和方差

$$X \sim N(\mu, \sigma^2) \quad f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad -\infty < x < +\infty$$

证法-

$$E(X) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} x e^{-(x-\mu)^2/(2\sigma^2)} dx.$$

设
$$\frac{x - \mu}{\sigma} = t$$
,得

$$E(X) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{+\pi} (\mu + \sigma t) e^{-t^2/2} dt$$
$$= \frac{\mu}{\sqrt{2\pi}} \int_{-\pi}^{+\pi} e^{-t^2/2} dt + \frac{\sigma}{\sqrt{2\pi}} \int_{-\pi}^{+\pi} t e^{-t^2/2} dt.$$

因为

$$\int_{-\pi}^{+\infty} e^{-t^2/2} dt = \sqrt{2\pi} , \int_{-\pi}^{+\pi} t e^{-t^2/2} dt = 0 ,$$

所以得到

$$E(X) = \mu_{\tau}$$

1、标准正态分布的数学期望

若
$$Y \sim N(0,1)$$
,

$$E(Y) = \int_{-\infty}^{+\infty} x \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} d\frac{x^2}{2} = -\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Big|_{-\infty}^{+\infty} = -\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Big|_{-\infty}^{+\infty}$$

2、一般正态分布的数学期望

$$X \sim N(\mu, \sigma^2)$$

$$E(X) = \sigma E(Y) + \mu = \mu.$$

1、标准正态分布方差

$$Y \sim N(0,1), D(Y) = E(Y^2) - [E(Y)]^2, C \not = E(Y) = 0$$

$$E(Y^{2}) = \int_{-\infty}^{+\infty} x^{2} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \cdot e^{-\frac{x^{2}}{2}} d\frac{x^{2}}{2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \cdot d\left(-e^{-\frac{x^{2}}{2}}\right)$$

$$= -\frac{1}{\sqrt{2\pi}} x e^{-\frac{x^{2}}{2}} \Big|_{-\infty}^{+\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2}} dx$$

$$= 0 + \frac{1}{\sqrt{2\pi}} \cdot \sqrt{2\pi}$$

$$= 1.$$

所以
$$D(Y) = E(Y^2) - [E(Y)]^2 = 1$$
 o

2、一般正态分布方差

对于
$$X \sim N(\mu, \sigma^2), D(X) = \sigma^2 D(Y) = \sigma^2$$
。

总结:正态分布 $N(\mu,\sigma^2)$ 的期望值是 μ ,方差是 σ^2 。

定理 1 表明: 正态随机变量的线性函数Y = a + bX 仍然是正态随

机变量.

推论: 设随机变量X 服从正态分布,则标准化的随机变量

$$X^* = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

在定理 1 中,设 $a=-\frac{\mu}{\sigma}$, $b=\frac{1}{\sigma}$,即得结论.

2、正态分布的可加性

1. 两个正态分布情形

设随机变量 $X \sim N(\mu_x, \sigma_x^2), Y \sim N(\mu_y, \sigma_y^2)$, 并且X = Y独立,则

$$X + Y \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

2. 多个正态分布情形

设随机变量 X_1, X_2, \dots, X_n 相互独立,且 $X_i \sim N(\mu_i, \sigma_i^2)$,

$$\sum_{i=1}^{n} c_{i} X_{i} \sim N \left(\sum_{i=1}^{n} c_{i} \mu_{i}, \sum_{i=1}^{n} c_{i}^{2} \sigma_{i}^{2} \right)$$

其中 c_1, c_2, \dots, c_n 为常数。

【例4.1-7】已知 $X \sim N(-3, 1)$, $Y \sim N(2, 1)$, 并且 $X \hookrightarrow Y$ 独立 , 试 确定 Z = X-2Y+7的分布 , 求E(Z) , D(Z) , 写出 Z 的密度函数。

$$E(Z) = E(X) - 2E(Y) + 7 = 0$$

$$D(Z) = D(X) + 4D(Y) = 5$$

$$Z = X - 2Y + 7 \sim N(0,5)$$

$$f_Z(z) = \frac{1}{\sqrt{10\pi}} e^{-\frac{z^2}{10}}, \ z \in R$$

六、常用随机变量的期望和方差

常用分布的期望和方差

1、二项分布的期望和方差

设随机变量 $X \sim B(n, p)$, 其概率函数为

$$p(x) = C_n^x p^x (1-p)^{n-x}, x = 0,1,\dots,n$$

$$E(X) = np$$
, $D(X) = np(1-p)$

2、泊松分布的期望和方差

设随机变量 $X \sim P(\lambda)$,其概率函数为

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots$$

$$E(X) = \lambda$$
, $D(X) = \lambda$

3、均匀分布的期望和方差

设随机变量 $X \sim U(a,b)$, 其密度函数为

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \sharp \text{ the } \end{cases}$$

$$E(X) = \frac{a+b}{2}, \quad D(X) = \frac{(b-a)^2}{12}.$$

4、指数分布的期望和方差

设随机变量 $X \sim e(\lambda)$, 其密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$E(X) = \frac{1}{\lambda}, \quad D(X) = \frac{1}{\lambda^2}$$

5、正态分布的期望和方差

设随机变量 $X \sim N(\mu, \sigma^2)$, 其密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty$$

可求得X的期望和方差如下:

$$E(X) = \mu$$
, $D(X) = \sigma^2$

6、常用分布的期望和方差

6、常用分布的期望和方差

分布名称 及记号	概率函数或概率密度	数学 期望	方差
"0—1"分布	$p(x) = p^{x}q^{1-x}, x = 0, 1.$ (0 < p < 1, p + q = 1)	p	pq 0.2
二项分布 B(n,p)	$p(x) = C_n^x p^x q^{n-x}, x = 0, 1, \dots, n.$ $(0$	np	пра
超几何分布 H(n,M,N)	$p(x) = \frac{C_M^x C_{N-M}^{n-x}}{C_N^n},$ $x = 0, 1, \dots, \min(n, M).$ $(0 \le n \le N, 0 \le M \le N)$	<u>nM</u> N	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$
泊松分布 P(λ)	$p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, x = 0, 1, 2, \dots$ $(\lambda > 0)$	λ	λ

6、常用分布的期望和方差(续)

		1	
泊松分布 P(λ)	$p(x) = \frac{\lambda^{x} e^{-\lambda}}{x!}, x = 0, 1, 2, \dots,$ $(\lambda > 0)$	λ	λ
几何分布 G(p)	$p(x) = pq^{x-1}, x = 1, 2, 3, \cdots$ (0 < p < 1, p + q = 1)	$\frac{1}{p}$	$\frac{q}{p^2}$
均匀分布 U(a,b)	$f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b; \\ 0, & x < a \ \vec{\boxtimes} \ x > b. \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布 e(λ)	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0; \\ 0, & x \leq 0. \end{cases}$ $(\lambda > 0)$	1 \(\lambda\)	$\frac{1}{\lambda^2}$
正态分布 N(μ,σ²)	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^{2/(2\sigma^2)}},$ $-\infty < x < +\infty.$ $(\sigma > 0)$	μ	σ^2

