CS330 Homework 8*

- 1. Points = 10. Let $V = \{S, A, B, a, b\}$ and $T = \{a, b\}$. Find the language generated by the grammar (V, T, S, P) when the set P of productions consists of
 - 1a. $S \rightarrow AB$. $A \rightarrow ab$. $B \rightarrow bb$.
 - 1b. $S \rightarrow AB$, $S \rightarrow aA$, $A \rightarrow a$, $B \rightarrow ba$
 - 1c. $S \rightarrow AB$, $S \rightarrow AA$, $A \rightarrow aB$, $A \rightarrow ab$, $B \rightarrow b$.
 - 1d. $S \rightarrow AA$, $S \rightarrow B$, $A \rightarrow aaA$, $A \rightarrow aa$, $B \rightarrow bB$, $B \rightarrow b$
 - 1e. $S \rightarrow AB$, $A \rightarrow aAb$, $B \rightarrow bBa$, $A \rightarrow \lambda$, $B \rightarrow \lambda$
- 2. Points = 4.
 - 2a. Show that grammar G_1 { $V = \{S, 0, 1\}$; terminals $T = \{0, 1\}$; and productions $S \to 0$ S, $S \to S$ S 1, and $S \to \lambda$ } generates the set $\{0^m 1^n \mid m, n = 0, 1, 2, \dots\}$.
 - 2b. Show that grammar G_2 { $V = \{S, A, 0, 1\}$; terminals $T = \{0, 1\}$; and productions $S \to 0$ S, $S \to 1$ A, $S \to 1$, $A \to 1$ A, $A \to 1$, and $S \to \lambda$ } generates the same set.
- 3. Points = 8. Find a phrase-structure grammar for each of these languages (multiple solutions exist).
 - 3a. The set consisting of the bit strings 10, 01, and 101
 - 3b. The set of bit strings that start with 00 and end with one or more 1s
 - 3c. The set of bit strings consisting of an even number of 1s followed by a final 0.
 - 3d. The set of bit strings that have neither two consecutive 0s nor two consecutive 1s.
- 4. Points = 6. Find the output generated from the input string 10001 for each finite-state machine shown.

5. Points = 6. Construct a finite-state machine for a combination lock that contains numbers 1 through 40 and that opens only when the correct combination, 10 right, 8 second left, 37 right, is entered. Each input is a triple consisting of a number, the direction of the turn, and the number of times the lock is turned in that direction.

CS 330: Discrete Structures -1- J.Sasaki, Spring 2017

^{*} Some material from MATH230 Dr. Robert Ellis IIT-AMAT, zyBooks Disc. Math., and Disc. Math. and its Appl., Rosen (7th Ed.) is included under the academic/nonprofit Fair Use exception of US Copyright Law. This document must NOT be distributed beyond participants in IIT's CS330.