오염 데이터와 그 대책

Chanseok Park (박찬석)

Applied Statistics Laboratory Department of Industrial Engineering Pusan National University

Auguxt 5, 2020

Hosted by SEC

Overview

- Introduction
 - Example
 - View from distance
 - Cocktail of mean and median
- 2 How to measure the performance of estimators?
 - Performance
 - Breakdown point
 - Efficiency
 - Unbiasedness (Fisher-consistency and Finite-sample)
- Robustness in what sense

Overview

- Introduction
 - Example
 - View from distance
 - Cocktail of mean and median
- 2 How to measure the performance of estimators?
 - Performance
 - Breakdown point
 - Efficiency
 - Unbiasedness (Fisher-consistency and Finite-sample)
- Robustness in what sense

Overview

- Introduction
 - Example
 - View from distance
 - Cocktail of mean and median
- 2 How to measure the performance of estimators?
 - Performance
 - Breakdown point
 - Efficiency
 - Unbiasedness (Fisher-consistency and Finite-sample)
- Robustness in what sense

1. Intro: Example

Sample mean and variance

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ (mean)} \text{ and } S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 \text{ with } S = \sqrt{S^2} \text{ (SD)}.$$

Example

	Original data $(-2, -1, 0, 1, 2)$	Contaminated data $(-2, -1, 0, 1, 102)$
Mean	0	20
Median	0	0
SD	1.58	45.9
IQR	2	2

1. Intro: View from distance (mean vs. median)

View from distance (mean and median)

	Mean (minimizer of L_2)	Median (minimizer of L_1)
Objective	$\underset{\mu}{\operatorname{argmin}} \sum_{i=1}^{n} (x_i - \mu)^2$	$\underset{\mu}{\operatorname{argmin}} \sum_{i=1}^{n} x_i - \mu $
EE	$\sum_{i=1}^{n} (x_i - \mu)(-1) = 0$	$\sum_{i=1}^{n} (x_i - \mu)(-1) = 0$
EE	$g_{L_2}(\mu) = \mu - \bar{x} = 0$	$g_{L_1}(\mu) = \frac{1}{n} \sum_{i=1}^{n} (\mu - x_i) = 0$
Problem(?)	Too sensitive	Too dull

Solution to Problem:

Hybrid (L_1 and L_2): Winsorization or Huber estimation (filtering).

1. Intro: View from distance (mean vs. median)

1. Intro: Cocktail of mean and median

median of pairwise averages

Mean Median
$$\bar{x} = \frac{1}{n} (x_1 + x_2 + \dots + x_n) \quad \tilde{x} = \underset{1 \le i \le n}{\operatorname{median}} x_i$$
Hodges-Lehmann (HL)
$$\operatorname{HL} = \operatorname{median} \left(\frac{x_i + x_j}{2} \right)$$

For more details (HL and other estimators), see Talk-2 at Seminar/2018

What is the benefit of cocktail? How to measure their performance?

	Mean	Median	HL*	Huber*
Breakdown	0%	50%	29%	50%
ARE	100%	64%	96%	95

Huber is **not** in closed form and its ARE **depends** on a threshold.

2. Performance

Asymtptotic property

- Breakdown point: the proportion of incorrect observations (e.g. arbitrarily large observations) an estimator can handle as the sample size n goes to infinity.
- ARE (asymptotic relative efficiency): the ratio of variance of MLE to variance of the corresponding estimator as the sample size n goes to infinity.
- **Fisher-consistency**: roughly unbiasedness as the sample size *n* goes to infinity. (Most of location estimators are Fisher-consistent, but scale estimators are not).

Finite-sample property (Park et al., 2020)

- Finite-sample Breakdown point
- ullet Fintie relative efficiency \Longrightarrow Relative Efficiency.
- Fintie Fisher-consistency \Longrightarrow Unbiasedness with finite sample.

2. Performance (Breakdown point)

Mean with a sample of size n = 10

It breaks down even with a single extreme value (say, $Y_{10} = \infty$).

$$\mathrm{Mean} = \frac{1}{10} Y_1 + \frac{1}{10} Y_2 + \dots + \frac{1}{10} \textcolor{red}{Y_{10}} \quad \text{(0\% finite-sample breakdown)}$$

Median with a sample of size n = 10

OK up to **4** extremes out of n = 10: Median = $(Y_{(5)} + Y_{(6)})/2$. That is, 40% finite-sample breakdown and 50% breakdown points.

2. Performance (Breakdown point)

Other estimators (Breakdown point)

- For more details (HL and other estimators), see Talk-2 at ►Seminar/2018
- Refer to rQCC R Package (Park and Wang, 2020) at https://cran.r-project.org/web/packages/rQCC/

Location: mean, median, Hodges-Lehmann(HL1, HL2, HL3) Scale: variance, Std. dev., range, MAD, Shamos

- > install.packages("rQCC")
- > library("rQCC")
- > help(package="rQCC")
- > finite.breakdown (n=10, method="median")
- 0.4
- > RE (n=10, method="median")
- 0.7229247

Note: rQCC R Package is developed for robust quality control chart.

2. Performance (Finite-sample Breakdown point)

Table 1: Finite-sample breakdown points (%).

n	median/MAD	HL1/Shamos	HL2	HL3
2	00.000	00.000	00.000	00.000
3	33.333	00.000	00.000	00.000
4	25.000	00.000	25.000	25.000
5	40.000	20.000	20.000	20.000
6	33.333	16.667	16.667	16.667
7	42.857	14.286	28.571	28.571
8	37.500	25.000	25.000	25.000
9	44.444	22.222	22.222	22.222
10	40.000	20.000	30.000	20.000
50	48.000	28.000	28.000	28.000
∞	50	$100(1-\sqrt{1/2})$	$100(1-\sqrt{1/2})$	$100(1-\sqrt{1/2})$

2. Performance (RE and ARE)

The RE (relative efficiency) and ARE (asymptotic relative efficiency)

$$\begin{aligned} & \operatorname{RE}(\hat{\theta}_1|\hat{\boldsymbol{\theta}}_0) = \frac{\operatorname{Var}(\hat{\boldsymbol{\theta}}_0)}{\operatorname{Var}(\hat{\theta}_1)} \times 100\% \\ & \operatorname{ARE}(\hat{\theta}_1|\hat{\boldsymbol{\theta}}_0) = \frac{\operatorname{AVar}(\hat{\boldsymbol{\theta}}_0)}{\operatorname{AVar}(\hat{\boldsymbol{\theta}}_1)} \times 100\%, \ \text{as } n \to \infty \end{aligned}$$

where $\hat{\theta}_0$ is a reference or baseline estimator (say, MLE without contamination).

- The larger RE or ARE, the better its performance.
- It is quite difficult to obtain the RE and ARE theoretically.
- See Park et al. (2020) for RE and Serfling (2011) for ARE.

2. Performance (Asymptotic Relative Efficiency)

ARE of Locat	tion and Scal	e Estima	itors		
L	ocation	Mean	Mediar	n HL	Huber
В	reakdown	0%	50%	29%	50%
	ARE	100%	64%	96%	95%
_					
	Scale	SD	IQR	MAD	Shamos
Е	Breakdown	0%	25%	50 %	29%
	ARE	100%	38%	37%	86%

Note: the above results are based on $n \to \infty$.

2. Performance (Relative Efficiency)

Table 2: RE (%) of the median and Hodges-Lehmann estimators to the sample mean and those of the Fisher-consistent MAD and Shamos estimators to the sample standard deviation under the normal distribution.

n	median	HL1	HL2	HL3	MAD	Shamos
2	100.0	100.0	100.0	100.0	90.91	45.45
3	74.27	91.99	97.84	91.99	69.58	41.99
4	83.82	00.00	91.33	91.33	85.62	58.84
5	69.74	94.19	92.99	92.99	50.48	53.84
6	77.63	94.17	92.95	94.32	59.32	55.92
7	67.86	94.07	92.48	92.97	45.20	61.80
8	74.30	94.09	93.22	93.42	51.32	63.20
9	66.86	94.45	92.97	93.65	42.87	66.18
10	72.29	94.26	93.08	93.98	47.46	67.32
50	65.50	95.25	94.95	95.11	38.44	82.08

Note: for n = 2, breakdown points of median, HL1, HL2, HL3 have zero.

2. Performance (Unbiasedness)

Finite-sample unbiasedness and Fisher-consistency

As an illustration, the sample variance $S_n^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2$ is unbiased for σ^2 under $N(\mu, \sigma^2)$, but the standard deviation S_n is **not** unbiased . However, as $n \to \infty$, $S_n \to \sigma$. That is,

Estimator	Unbiased?	Fisher-consistent? ^a
S_n^2 for σ^2	$E(S_n^2) = \sigma^2$ (Yes)	$S_n^2 o \sigma^2$ (Yes)
S_n for σ	$E(S_n) \neq \sigma$ (No)	$S_n o \sigma$ (Yes)

With
$$c_4 = \sqrt{2/(n-1)} \cdot \Gamma(n/2)/\Gamma(n/2-1/2)$$
, S_n/c_4 is unbiased.

Estimator	Unbiased?	Fisher-consistent?
S_n^2 for σ^2	$E(S_n^2) = \sigma^2$ (Yes)	$S_n^2 o \sigma^2$ (Yes)
S_n for σ	$E(S_n/c_4) = \sigma$ (Yes)	$S_n o \sigma$ (Yes)

^aFor rigorous definition of Fisher-consistency, refer to Fisher (1922)

2. Performance (Unbiasedness)

In general, location estimators are unbiased and Fisher-consistent as well. However, scale estimators are **neither** unbiased or Fisher-consistent.

Estimator	Original version	Fisher-consistent version
MAD	$\operatorname{median}\{ Y_i - \operatorname{median}(Y) \}$	$\frac{\operatorname{median}\left\{ Y_i - \operatorname{median}(Y) \right\}}{\Phi^{-1}(3/4)}$
IQR	$Y_{[3n/4]} - Y_{[n/4]}$	$\frac{Y_{[3n/4]} - Y_{[n/4]}}{\Phi^{-1}(3/4) - \Phi^{-1}(1/4)}$
Shamos	$\mathop{\mathrm{median}}_{i < j} \left(Y_i - Y_j \right)$	$\frac{\mathrm{median}_{i < j} \left(Y_i - Y_j \right)}{\sqrt{2} \Phi^{-1}(3/4)}$

For S_n , we can derive c_4 (finite-sample unbiasing factor) in closed form. But, for MAD and Shamos, it may be impossible to obtain finite-sample unbiasing factors in closed form.

Note: IQR is inferior to MAD or Shamos in a sense of both RE and breakdown.

Thus, we do not consider IQR.

ロト(御)(注)(注) 注 の

2. Performance (Unbiasedness)

Refer to Section 3 of Park et al. (2020).

Figure 1: Empirical biases of the MAD and Shamos estimators.

2. Performance (Unbiasedness) rQCC Package

3. Robustness: Contamination

3. Robustness: Model departure

3. Robustness: Surprising observation

3. Robustness: Robust design

References

- Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222:309–368.
- Hodges, J. L. and Lehmann, E. L. (1963). Estimates of location based on rank tests. Annals of Mathematical Statistics, 34:598–611.
- Huber, P. J. (1964). Robust estimation of a location parameter. <u>Annals of</u> Mathematical Statistics, 35:73–101.
- Huber, P. J. (1981). Robust Statistics. John Wiley & Sons, New York.
- Park, C., Kim, H., and Wang, M. (2020). Investigation of finite-sample properties of robust location and scale estimators. Communication in Statistics Simulation and Computation. doi:10.1080/03610918.2019.1699114.

References

- Park, C. and Wang, M. (2020). rQCC: Robust quality control chart. https://CRAN.R-project.org/package=rQCC. R package version 1.20.7 (published on July 5, 2020).
- Serfling, R. J. (2011). Asymptotic relative efficiency in estimation. In Lovric, M., editor, Encyclopedia of Statistical Science, Part I, pages 68–82. Springer-Verlag, Berlin.