CSE 373

Graphs 4: Topological Sort

reading: Weiss Ch. 9

slides created by Marty Stepp http://www.cs.washington.edu/373/

© University of Washington, all rights reserved.

Ordering a graph

- Suppose we have a directed acyclic graph (DAG) of courses, and we want to find an order in which the courses can be taken.
 - Must take all prereqs before you can take a given course. Example:
 - [142, 143, 140, 154, 341, 374, 331, 403, 311, 332, 344, 312, 351, 333, 352, 373, 414, 410, 417, 413, 415]
 - There might be more than one allowable ordering.
 - How can we find a valid ordering of the vertices?

Topological Sort

- **topological sort:** Given a digraph G = (V, E), a total ordering of G's vertices such that for every edge (v, w) in E, vertex v precedes w in the ordering. Examples:
 - determining the order to recalculate updated cells in a spreadsheet
 - finding an order to recompile files that have dependencies
 - (any problem of finding an order to perform tasks with dependencies)

- How many valid topological sort orderings can you find for the vertices in the graph below?
 - [A, B, C, D, E, F], [A, B, C, D, F, E],
 - [A, B, D, C, E, F], [A, B, D, C, F, E],
 - [B, A, C, D, E, F], [B, A, C, D, F, E],
 - [B, A, D, C, E, F], [B, A, D, C, F, E],
 - [B, C, A, D, E, F], [B, C, A, D, F, E],
 - ...

What if there were a new vertex G unconnected to the others?

Topo sort: Algorithm 1

- function topologicalSort():
 - **■** *ordering* := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - ordering += v.

- function topologicalSort():
 - **■** *ordering* := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - *ordering* += *v* .
 - ordering = { B }

- function topologicalSort():
 - **■** *ordering* := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - *ordering* += *v* .
 - ordering = { B, C }

- function topologicalSort():
 - **■** *ordering* := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - *ordering* += *v* .
 - ordering = { B, C, A }

- function topologicalSort():
 - **■** *ordering* := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - *ordering* += *v* .
 - ordering = { B, C, A, D }

- function topologicalSort():
 - **■** *ordering* := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - *ordering* += *v* .
 - ordering = { B, C, A, D, F }

- function topologicalSort():
 - **■** *ordering* := { }.
 - Repeat until graph is empty:
 - Find a vertex v with in-degree of 0 (no incoming edges).
 - (If there is no such vertex, the graph cannot be sorted; stop.)
 - Delete v and all of its outgoing edges from the graph.
 - *ordering* += *v* .
 - ordering = { B, C, A, D, F, E }

Revised algorithm

- We don't want to literally delete vertices and edges from the graph while trying to topological sort it; so let's revise the algorithm:
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - **■** *ordering* := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex *v* from the queue.
 - *ordering* += *v*.
 - Decrease the in-degree of all v's neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - If all vertices are processed, success.
 Otherwise, there is a cycle.

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - ordering := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue.
 - ordering += v.
 - Decrease the in-degree of all v's neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=1, D=2, E=2, F=2 }
 - queue := { B, A }
 - ordering := { }

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - ordering := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // B
 - ordering += v.
 - Decrease the in-degree of all v's // C, D neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, **C=0**, **D=1**, E=2, F=2 }
 - queue := { A, **C** }
 - ordering := { **B** }

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - *ordering* := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // A
 - ordering += v.
 - Decrease the in-degree of all v's // D
 neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=0, **D=0**, E=2, F=2 }
 - queue := { C, D }
 - ordering := { B, **A** }

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - ordering := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // C
 - ordering += v.
 - Decrease the in-degree of all v's // E, F neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=0, D=0, E=1, F=1 }
 - queue := { D }
 - ordering := { B, A, C }

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - ordering := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // D
 - ordering += v.
 - Decrease the in-degree of all v's // F, E neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=0, D=0, E=0, F=0 }
 - queue := { **F**, **E** }
 - ordering := { B, A, C, **D** }

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - *ordering* := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // F
 - ordering += v.
 - Decrease the in-degree of all v's // none neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=0, D=0, E=0, F=0 }
 - queue := { E }
 - ordering := { B, A, C, D, F }

- function topologicalSort():
 - $map := \{each \ vertex \rightarrow its \ in-degree\}.$
 - queue := {all vertices with in-degree = 0}.
 - *ordering* := { }.
 - Repeat until queue is empty:
 - Dequeue the first vertex v from the queue. // E
 - ordering += v.
 - Decrease the in-degree of all v's // none neighbors by 1 in the map.
 - queue += {any neighbors whose in-degree is now 0}.
 - map := { A=0, B=0, C=0, D=0, E=0, F=0 }
 - queue := { }
 - ordering := { B, A, C, D, F, E }

Topo sort runtime

- What is the runtime of our topological sort algorithm?
 - (with an "adjacency map" graph internal representation)
 - function topologicalSort():

```
    map := {each vertex → its in-degree}. // O(V)
    queue := {all vertices with in-degree = 0}.
    ordering := { }.
    Repeat until queue is empty: // O(V)
    Dequeue the first vertex v from the queue. // O(1)
    ordering += v. // O(1)
    Decrease the in-degree of all v's // O(E) for all passes neighbors by 1 in the map.
    queue += {any neighbors whose in-degree is now 0}.
```

• Overall: O(V + E); essentially O(V) time on a sparse graph (fast!)