

Convolutional Neural Networks for Computer Vision Applications

林彥宇 副研究員 Yen-Yu Lin, Associate Research Fellow

中央研究院 資訊科技創新研究中心 Research Center for IT Innovation, Academia Sinica

About Yen-Yu Lin

Yen-Yu Lin, Associate research fellow, CITI, Academia Sinica

- Research interests:
 - Computer Vision (CV):

 Let computers see, recognize, and interpret the world like humans
 - ➤ Machine Learning (ML):

 A statistical way to learn how human visual system works
 - ➤ Goal: Design ML methods to facilitate CV applications

Research Topics 1/4

CV: object recognition
ML: multiple kernel learning
TPAMI'11, ICCV'09, NIPS'08

CV: image segmentation
ML: graphical model
CVPR'14, TIP'14, ACCV'12

CV: face detection ML: multi-task boosting US Patent'07, CVPR'05, ECCV'04

Research Topics 2/4

CV: action recognition

ML: low-rank reconstruction

TIP'15, CVPR'14

CV: multi-view people counting

ML: transfer learning

TIP'15, ACM MM'12

CV: image matching **ML**: energy minimization

CVPR'16, TPAMI'15, TIP'15, CVPR'15, CVPR'13

Research Topics 3/4

CV: fine-grained object recognition

ML: CNNs with co-occurrence layer

CVPR'17

CV: patch descriptor learning

ML: CNNs with adaptive learning rate

ICCV'17

CV: gesture recognition

ML: DNNs with adaptive hidden layer

AAAI'18

Research Topics 4/4

CV: face age estimation

ML: CNNs for hierarchical regression

IJCAI'18

CV: image co-segmentation

ML: Unsupervised CNNs

IJCAI'18

Outline

- Convolutional neural networks (CNNs)
- Representative CNN models
- CNN-based computer vision applications

Outline

- Convolutional neural networks (CNNs)
 - Conventional approaches vs. deep learning
 - Neural networks
 - Convolutional neural networks
- Representative CNN models
- CNN-based computer vision applications

Conventional approach to object recognition

Training phase

Conventional approach to object recognition

Features are the keys

Off-the-shelf visual features

SIFT [Lowe, IJCV'04] Citations: 43465

Constellation model [Fergus et al., CVPR'03]
Citations: 2551

HoG [Dalal & Triggs, CVPR'05] Citations: 20174

DPM [Felzenszwalb et al., PAMI'10]
Citations: 5093

Features are the keys

- Features are the keys to recent progress in classification
- Are handcrafted features optimal?
- The optimal features for classification in general vary from task to task, even from category to category

Conventional approaches vs. Deep learning

- Conventional approaches
 - > Fixed/engineered features + trainable classifier

- Deep learning / End-to-end learning / Feature learning
 - Trainable features + trainable classifier

slide: Y LeCun & MA Ranzato

Deep learning = Learning hierarchical representations

slide: Y LeCun & MA Ranzato

Outline

- Convolutional neural networks (CNN)
 - Conventional approaches vs. deep learning
 - Neural networks
 - Convolutional neural networks
- Representative CNN models
- CNN-based computer vision applications

Neural networks and neurons

- Neural networks are presented as layers of interconnected neurons
 - Each layer of neurons takes messages from output of previous layer

A single neuron

A function $f: R^K \mapsto R$

weights

- \blacktriangleright Map K inputs to 1 output
- Compute the biased weighted sum

bias

Apply a non-linear mapping function (activation function)

$$f((a)) = \sigma(\sum_{i=1}^{K} a_i w_i + b), \text{ where } \sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$a_1 \qquad w_1 \qquad z = \sum_{i=1}^{K} a_i w_i + b$$

$$a_2 \qquad w_2 \qquad \sum_{i=1}^{W} z \qquad \sigma(z) \qquad y$$
activation
$$a_K \qquad \text{weights} \qquad b \qquad \text{function}$$

Training neural networks

- Collect a set of labeled training data $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$
- Training neural networks: Finding network parameters $\theta = \{ \mathbf{w}, \mathbf{b} \}$ to minimize the loss between true training label \mathbf{y}_i and the estimated label, e.g.,

$$L(\theta) = \sum_{i=1}^{N} \|\mathbf{y}_i - g_{\mathbf{w}}(\mathbf{x}_i)\|^2$$

- Minimization can be done by gradient descent if $L(\cdot)$ is differentiable with respect to θ
- Back-propagation: a widely used method for optimizing multilayer neural networks

What is deep neural networks (DNN)

DNN is neural networks with many hidden layers

Outline

- Convolutional neural networks (CNN)
 - Conventional approaches vs. deep learning
 - Neural networks
 - > Convolutional neural networks
- Representative CNN models
- CNN-based computer vision applications

of parameters in fully connected NN

slide: MA Ranzato

Convolutional neural networks (CNN)

- CNN: a multi-layer neural network with
 - 1. Local connectivity
 - 2. Weight sharing
- Why local connectivity?
 - Spatial correlation is local (locality of spatial dependencies)
 - Reduce # of parameters
- Why weight sharing?
 - Statistics is at different locations (stationarity of statistics)
 - Reduce # of parameters

of parameters in fully connected NN

CNN: Local connectivity

Hidden layer

Input layer

Global connectivity

Local connectivity

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Global connectivity: $3 \times 7 = 21$
 - Local connectivity: $3 \times 3 = 9$

slide: J.-B. Huang

CNN: Weight sharing

Hidden layer

Input layer

Without weight sharing

With weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing: 3 x 3 = 9
 - With weight sharing: $3 \times 1 = 3$

slide: J.-B. Huang

CNN with multiple input channels

Input layer Channel 1
Channel 2

Single input channel

Multiple input channels

slide: J.-B. Huang

CNN with multiple output channels

Single output map

Multiple output maps

slide: J.-B. Huang

Putting them together

- Local connectivity
- Weight sharing
- Handling multiple input channels
- Handling multiple output maps

slide: J.-B. Huang

What is a Convolution?

Weighted moving sum

Feature Activation Map

Rectified Linear Unit (ReLU)

Feature Maps

Feature Maps After Contrast Normalization

Modern CNN: AlexNet

Input: 224*224*3=**150K**

Neurons: 290400+186624+64896+64896+43264+4096+4096+1000=650K

Weights: 11*11*3*48*2(35K)+5*5*48*128*2(307K)+128*3*3*192*4(884K)+

192*3*3*192*2(663K)+192*3*3*128*2(442K)+6*6*128*2048*4(38M)+4096*4096(

17M)+4096*1000(4M)=60M

- More data (1.2M)
- Trained on two GPUs for a week
- Dropout

slide: M. Sun

ImageNet ISLVRC 2012-2014: Object Recognition

Best non-convnet in 2012: 26.2%

Team	Year	Place	Error (top-5)	External data
SuperVision – Toronto (7 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k
Clarifai – NYU (7 layers)	2013	-	11.7%	no
Clarifai	2013	1st	11.2%	ImageNet 22k
VGG – Oxford (16 layers)	2014	2nd	7.32%	no
GoogLeNet (19 layers)	2014	1st	6.67%	no
Human expert*			5.1%	

Team	Method	Error (top-5)
DeepImage - Baidu	Data augmentation + multi GPU	5.33%
PReLU-nets - MSRA	Parametric ReLU + smart initialization	4.94%
BN-Inception ensemble - Google	Reducing internal covariate shift	4.82%

Outline

- Convolutional neural networks (CNNs)
 - > Conventional approaches vs. deep learning
 - Neural networks
 - Convolutional neural networks
- Representative CNN models
- CNN-based computer vision applications

