7° Quiz – 5 - λεπτά

Οι 4 πυκνωτές του κυκλώματος έχουν την ίδια χωρητικότητα και είναι αρχικά αφόρτιστοι. Έστω Q_1 , Q_2 , Q_3 , Q_4 και V_1 , V_2 , V_3 και V_4 τα φορτία και δυναμικό στα άκρα τους σε μια τυχαία χρονική στιγμή. Αρχικά ο διακόπτης γυρνά στη θέση Α και παραμένει εκεί για πολύ μεγάλο διάστημα. Κατόπιν γυρνά στη θέση Β.

Ποια από τις ακόλουθες συνθήκες ισχύει για την περίπτωση που ο διακόπτης είναι στη θέση Β;

(A)
$$V_1 = V_2 = V_3 = V_4$$

$$(\Delta) Q_1 = 3Q_2$$

(B)
$$V_1 = V_0$$

$$(E) \quad Q_1 = Q_2$$

(
$$\Gamma$$
) $V_1 + V_2 + V_3 + V_4 = V_0$

Διακόπτης στη θέση Α: ο πυκνωτής C_1 φορτίζεται στο δυναμικό V_0 ενώ οι άλλοι 3 πυκνωτές παραμένουν αφόρτιστοι επειδή το άκρο B είναι ανοικτό.

Διακόπτης στη θέση Β: η μπαταρία αποσυνδέεται, και οι πυκνωτές C_2 , C_3 και C_4 είναι παράλληλα συνδεδεμένοι με τον πυκνωτή C_1 και αρχίζουν να φορτίζονται.

Στη θέση αυτή:
$$V_1=V_{234}$$
 και $Q_2=Q_3=Q_4=Q_{234}$ ενώ: $C_{234}=C_2/3=C_1/3$

Το φορτίο του ισοδύναμου πυκνωτή θα είναι: $Q_{234} = C_{234}V_{234} \Rightarrow Q_{234} = \frac{C_2}{3}V_{234} = \frac{C_1V_1}{3}$

Αλλά: $Q_1 = C_1 V_1$ και από την προηγούμενη σχέση: $Q_{234} = Q_2 = \frac{Q_1}{3} \Rightarrow Q_1 = 3Q_2$