⊲ Ejercicio 1 ⊳ Preguntas tipo test

- 1. Todo subconjunto de un lenguaje
- 2. Si L_1 y L_2 son lenguajes tales que
- 3. La gramática $S \rightarrow aS|aSbS|c$ es ambigua.
- 4. El conjunto de todos los lenguajes sobre un
- 5. Si un lenguaje L tiene una expresión regular, también
- 6. Si L es un lenguaje independiente del contexto, entonces
- 7. Si $\mathbf{r_1}$, $\mathbf{r_2}$ son expresiones regulares, entonces $(\mathbf{r_1r_1} + \mathbf{r_1r_2} +$
- 8 Todo lenguaje independiente del contexto determinista puede ser criterio de estados finales.
- 9. En el algoritmo de Early, siempre que $(i, j, A, \alpha, c\beta)$ esté en en REGISTROS[j+1].
- 10 Existe un algoritmo que dados un autómata finito que acepta un lenguaje R autómata finito para el lenguaje R/L.

st Ejercicio 2 🕾

Construir un AFD minimal que acepte el lenguaje L sobre el alfabeto $\{a,b\}$:

 $I=\{u\in\{a|b\}^*\mid N_a(u)=3n, n\in\mathbb{N}\},$ y u no contiene la subcadena aba, donde a de la cadena u

- Ejercicio 3 🕒

Encuentra una gramatica independiente del contexto sobre el alfabeto $\{a,b\}$ que genere de a's es mayor o igual que el numero de b's en cualquier prefijo de la cadena.

Comprueba con el algoritmo CYK si la cadena aubabbb pertenece al lenguaje generado por

¬ Ejercicio 4 ₱

Determinar si los siguientes lenguajes sobre el alfabeto {0,1} son regulares y/o independientes las respuestas.

- 1. $L_1 = \{u \in \{0,1\}^* : 01u = u10\}.$
- 2. $L_2 = \{0^i 1^i 0^j 1^i : i, j > 0\}.$
- 3. $L_3 = \overline{L^+}$, donde $L = \{(0^n 1^n) : n > 0\}$.

⊲ Ejercicio 5 ▷ Opcional

Para dos palabras u,v, escribimos $u \stackrel{*}{=} v$ cuando v es igual a una permutación de sea $PERMUTA(L) = \{v: \exists u \in L, \text{ con } u \stackrel{*}{=} v\}.$

- ullet Demostrar que si L es un lenguaje regular sobre el alfabeto $\{0,1\}$, del contexto.
- ullet ¿Que puede pasar si el alfabeto de L tiene 3 o más símbolos