Math 40 Vectors and Vector Spaces Fri. 1/20, 2016

1.2{ 5, 9, 15, 17, 18, 30}

5 Find $\mathbf{u} \cdot \mathbf{v}$ when $\mathbf{u} = \begin{bmatrix} 1 \\ \sqrt{2} \\ \sqrt{3} \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ \sqrt{2} \\ \sqrt{3} \\ 0 \end{bmatrix}$	$\begin{bmatrix} 4 \\ -\sqrt{2} \\ 0 \\ -5 \end{bmatrix}.$
---	--

9 Find $\|\mathbf{u}\|$ for $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, and give a unit vector in the direction of \mathbf{u} .

.

15 Find the distance $d(\mathbf{u}, \mathbf{v})$ between \mathbf{u} and \mathbf{v} when $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$.

_

17 If **u**,**v**,and **w** are vectors in , \mathbb{R}^n , $n \ge 2$ and c is a scalar, explain why the following expressions make no sense:

- (a) $\|\mathbf{u} \cdot \mathbf{v}\|$
- (b) $\mathbf{u} \cdot \mathbf{v} + \mathbf{w}$
- (c) $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$
- (d) $c \cdot (\mathbf{u} + \mathbf{v})$

_

18 Determine whether the angle between $\mathbf{u} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is acute, obtuse, or a right angle.

Let A = (-3,2), B = (1,0), and C = (4,6). Prove that $\triangle ABC$ is a right-angled triangle.