

Zero-order, First-order, and Second-order Optimization Methods

Assoc. Prof. Karl Ezra Pilario, Ph.D.

Process Systems Engineering Laboratory
Department of Chemical Engineering
University of the Philippines Diliman

Outline

- Introduction to NLP
- Necessary and Sufficient Conditions for Optimality
- Convex Programming
- Methods for Solving NLP
 - One-Dimensional, Unconstrained NLP
 - Multivariable, Unconstrained NLP
 - Zero-order, First-order, Second-order Methods
 - Constrained NLP

• The general form of a nonlinear program (NLP) is:

Minimize: f(x)

Subject to: $h_i(x) = 0$ i = 1, 2, ..., l

 $g_j(x) \le 0$ j = 1, 2, ..., m

and $x_k^L \le x_k \le x_k^U \quad k = 1, 2, ..., n$

- At least one of f(x), $g_i(x)$, or $h_i(x)$ is nonlinear.
- x_k^L and x_k^U are lower and upper bounds on x_k .

Example:

Minimize: $f(x_1, x_2) = (x_1 - 3)^2 + (x_2 - 4)^2$

Subject to: $x_1, x_2 \ge 0$

$$5 - x_1 - x_2 \ge 0$$

$$-2.5 + x_1 - x_2 \ge 0$$

Global maximum (and local maximum)

Local minimum

A point x^* such that no other point in the *vicinity* of x^* yields a value of f(x) less than $f(x^*)$:

$$f(\mathbf{x}) \ge f(\mathbf{x}^*)$$

Global minimum

A point x^* such that $f(x) \ge f(x^*)$ holds for any x in the n-dimensional space of x.

Conditions for Optimality in Unconstrained NLPs

A point x^* is an **optimal solution** to an unconstrained NLP:

- ONLY IF f(x) is twice differentiable at x^* .
- **NECESSARY**
- ONLY IF $\nabla f(x^*) = 0$ or x^* is a stationary point.

NECESSARY

• IF $H(x^*)$ is positive-definite for a minimum to exist, and negative-definite for a maximum to exist.

SUFFICIENT

H(x) is the Hessian matrix.

$$\mathbf{H}_f = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \, \partial x_n} \ & & & & rac{\partial^2 f}{\partial x_2 \, \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \, \partial x_n} \ & & & & & & & \ rac{\partial^2 f}{\partial x_2 \, \partial x_n} & & & & rac{\partial^2 f}{\partial x_2 \, \partial x_n} \ & & & & & & & \ rac{\partial^2 f}{\partial x_n \, \partial x_1} & rac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{pmatrix}$$

If all the eigenvalues of H(x) is... H(x) are...

Positive-definite > 0Positive-semidefinite ≥ 0 Negative-definite < 0Negative-semidefinite ≤ 0

Example:

$$f(x_1, x_2) = 4 + 4.5x_1 - 4x_2 + x_1^2 + 2x_2^2 - 2x_1x_2 + x_1^4 - 2x_1^2x_2$$

This function has three stationary points (1.941, 3.854), (-1.053, 1.028), and (0.6117, 1.4929). Evaluate the optimality at these points.

$$\mathbf{H}(x_1, x_2) = \begin{bmatrix} 2 + 12x_1^2 - 4x_2 & -2 - 4x_1 \\ -2 - 4x_1 & 4 \end{bmatrix}$$

Stationary point	f(x)	f'(x)	H(x)	Eigenvalues		Evaluation
(1.941, 3.854)	0.9856	0.00	$\begin{bmatrix} 31.79 & -9.76 \\ -9.76 & 4.00 \end{bmatrix}$	0.9128	34.8810	Local minimum
(-1.053, 1.028)	-0.5134	0.00	$\begin{bmatrix} 11.19 & 2.21 \\ 2.21 & 4.00 \end{bmatrix}$	3.3743	11.8194	Local minimum
(0.6117, 1.4929)	2.8091	0.00	$\begin{bmatrix} 0.52 & -4.45 \\ -4.45 & 4.00 \end{bmatrix}$	-2.5161	7.0346	Saddle point

Unlike an LP, solving an NLP is hard because a minimum is **not guaranteed** to be the global minimum.

But if the NLP is **convex**, we have the following result.

Theorem

For an NLP whose objective function f(x) is a **convex function** and each inequality constraint g(x) is a convex function so that they form a **convex set**:

The local minimum of f(x) is also a global minimum.

Analogously, if f(x) is a **concave function** and the constraints g(x) still form a **convex set**, then:

The local maximum of f(x) is also a global maximum.

Definition: Convex Set

For every pair of points x_1 and x_2 in a convex set, the point x given by a linear combination of the two points:

$$x = \gamma x_1 + (1 - \gamma) x_2, \qquad 0 \le \gamma \le 1$$

must also be in the set. Also, the intersection of any number of convex sets is a convex set.

Examples of a Convex Set

Example of a Nonconvex Set

Definition: Convex Function

A function f(x) defined on a convex set F is said to be a **convex function** if the following relation holds:

$$f(\gamma x_1 + (1 - \gamma)x_2) \le \gamma f(x_1) + (1 - \gamma)f(x_2)$$

Where $0 \le \gamma \le 1$.

- If f(x) is convex, then -f(x) is concave.
- If only the inequality sign holds (<), the function is said to be *strictly convex*.
- If f(x) is strictly convex, then -f(x) is strictly concave.

A **convex** objective with **convex** constraints.

A **nonconvex** objective with **nonconvex** constraints.

Source: https://rumn.medium.com/convex-vs-non-convex-functions-why-it-matters-in-optimization-for-machine-learning-39cd9427dfcc

One-Dimensional, Unconstrained NLP

 $x_{k+1} = x_k - \frac{1}{f'(x_k)}$

Minimize: f(x)

Recall: Newton's Method for Root-Finding

Given: $f(x) = g_1(x) - g_2(x) = 0$

Initialization: One initial guess (x_0) and a Tolerance, Tol

- **1:** Set x_{old} ← Inf.
- **2:** Set $x_{new} \leftarrow x_0$.
- **3:** WHILE $|x_{new} x_{old}| > Tol$:

4: Assign: $x_{old} \leftarrow x_{new}$.

5: Assign:
$$x_{new} \leftarrow x_{old} - \frac{f(x_{old})}{f'(x_{old})}$$
.

- 6: END WHILE
- 7: OUTPUT x_{new}

Newton's Method for Optimization

One-Dimensional, Unconstrained NLP

Example:

Minimize: $f(x) = x^4 - x + 1$

- Use Newton's Method starting with $x_0 = 3$.
- Use Quasi-newton method starting with $x_0 = 3$ and $x_1 = 2$.
- For both methods, iterate until the change in x is less than 10^{-7} .

Outline

- Introduction to NLP
- Necessary and Sufficient Conditions for Optimality
- Convex Programming
- Methods for Solving NLP
 - One-Dimensional, Unconstrained NLP
 - Multivariable, Unconstrained NLP
 - Zero-order, First-order, Second-order Methods
 - Constrained NLP

A Taxonomy of NLP Solvers

Zero-order Methods

Derivative-free, black-box

- Grid Search / Exhaustive
 Search
- Random Search
- Nelder-Mead Simplex
- Metaheuristic Search
 - Genetic Algorithms
 - Particle Swarm
 - Simulated Annealing
 - Differential Evolution
 - CMAES
- Bayesian Optimization / Surrogate-based

First-order Methods

Uses 1st derivative information

- Steepest Descent or Gradient Descent
- Stochastic Gradient Descent (SGD)
 - RMSProp, Adam, etc.
- Conjugate Gradient methods (e.g. Fletcher-Reeves)
- Coordinate Descent

Second-order Methods

Uses 1st and 2nd derivative information

- Newton's method
- Quasi-newton method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)
- IPOPT

- **Steepest Descent or Gradient Descent**
- Stochastic Gradient Descent (SGD)
 - RMSProp, Adam, etc.

f(x)

 $g_k(\alpha)$

- Conjugate Gradient methods (e.g. Fletcher-Reeves)
- Coordinate Descent

Line Search

Steepest Descent / Gradient Descent

At each iteration, descend at the direction of the greatest rate of decrease in f(x).

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

= step size at the kth iteration α_k $\nabla f(x_k)$ = direction of steepest descent

Steps:

- Make an initial guess, x_0
- Calculate the search direction $\nabla f(x_k)$
- Calculate step size α by minimizing:

(e.g. using quasi-newton method)

Update x_k

Example:

Minimize f(x) from $x_0 = (-1.2, 1.0)$:

$$f(\mathbf{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- Steepest Descent or Gradient Descent
- Stochastic Gradient Descent (SGD)
 - RMSProp, Adam, etc.
- Conjugate Gradient methods (e.g. Fletcher-Reeves)
- Coordinate Descent

Batch vs. Stochastic Gradient Descent

Gradient descent (GD) is used to train neural nets.

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

 α_k = step size at the kth iteration $\nabla f(x_k)$ = direction of steepest descent

- Batch GD = all N data pts are used in C(W, b)
- Mini-batch GD = a batch of M < N data pts are used.
- **Stochastic GD** = only one random data pt is used.

Also, α_k is now called a <u>learning rate</u>. **RMSProp** and **Adam** are ways to decay α_k at every k.

To train **neural nets** (from machine learning), we need to minimize C(W, b):

$$\min_{\mathbf{W}, \mathbf{b}} C(\mathbf{W}, \mathbf{b}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i))^2$$

 $C(\boldsymbol{W}, \boldsymbol{b})$ = cost (mean squared error) $[\boldsymbol{W}; \boldsymbol{b}]$ = weights and biases y_i = true values to be predicted $f(\boldsymbol{x}_i)$ = neural net's prediction N = no. of data points

- Steepest Descent or Gradient Descent
- Stochastic Gradient Descent (SGD)
 - RMSProp, Adam, etc.
- Conjugate Gradient methods (e.g. Fletcher-Reeves)
- Coordinate Descent

Conjugate Gradient Descent

This is the steepest descent update:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

 α_k = step size at the kth iteration $\nabla f(x_k)$ = direction of steepest descent

This is the conjugate gradient update:

$$\mathbf{s}_0 = -\nabla f(\mathbf{x}_0)$$
 (search direction)

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{s}_k$$

$$s_{k+1} = -\nabla f(x_{k+1}) + s_k \frac{\nabla f(x_{k+1})^T \nabla f(x_{k+1})}{\nabla f(x_k)^T \nabla f(x_k)}$$

Example:

Minimize f(x) from $x_0 = (-1.2, 1.0)$: $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

Conjugate Gradient Descent

- New search directions are conjugate to previous ones.
- Prevents "zigzagging".
- Prevents undoing the progress made in previous steps.
- Allows convergence in at most N steps for an N-dimensional quadratic function.

- Steepest Descent or Gradient Descent
- Stochastic Gradient Descent (SGD)
 - RMSProp, Adam, etc.
- Conjugate Gradient methods (e.g. Fletcher-Reeves)
- Coordinate Descent

Coordinate Descent

This is the steepest descent update:

 $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$

 $\nabla f(\mathbf{x}_k)$ = direction of steepest descent

Like steepest descent, but the search direction is aligned to one coordinate at a time.

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \frac{\partial f(\mathbf{x}_k)}{\partial x_i}$$

What's the difference?

$$k = 1,$$
 2, 3, ...

$$\nabla f(\mathbf{x}_k)$$
 $\begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -2 \\ -5 \\ 1 \end{bmatrix}$...

$$\frac{\partial f(\mathbf{x}_k)}{\partial x_i} \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} \dots$$

Steps:

- Make an initial guess, x_0
- Calculate the search direction $\nabla f(x_k)$

= step size at the kth iteration

• Calculate step size α by minimizing:

$$g_k(\alpha) = f(\mathbf{x}_k + \alpha \nabla f(\mathbf{x}_k))$$

(e.g. using quasi-newton method)

• Update x_k

Steps:

- Make an initial guess, x_0
- Choose any coordinate among x_i .
- Calculate step size α by minimizing:

$$g_k(\alpha) = f\left(x_k + \alpha \frac{\partial f(x_k)}{\partial x_i}\right)$$

(e.g. using quasi-newton method)

• Update x_k

- Steepest Descent or Gradient Descent
- Stochastic Gradient Descent (SGD)
 - RMSProp, Adam, etc.
- Conjugate Gradient methods (e.g. Fletcher-Reeves)
- Coordinate Descent

Coordinate Descent

This is the steepest descent update:

Like steepest descent, but the search direction is aligned to one coordinate at a time.

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k)$$

$$\alpha_k$$
 = step size at the k th iteration $\nabla f(x_k)$ = direction of steepest descent

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \frac{\partial f(\mathbf{x}_k)}{\partial x_i}$$

Example:

Minimize f(x) from $x_0 = (0.0, 0.0)$:

$$f(\mathbf{x}) = 0.06(x_1^2 - x_1 x_2) + 0.1x_2^2 - 0.3(x_1 - x_2)$$

- Newton's method
- Quasi-newton Method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)
- IPOPT

Multivariable Quasi-Newton Methods

This is the steepest descent update: [

This is the **Newton** update:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$$

 α_k = step size at the kth iteration $\nabla f(x_k)$ = direction of steepest descent

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

 α_k = step size at the kth iteration $\nabla f(x_k)$ = direction of steepest descent

 $H(x_k)$ = Hessian matrix

- Newton's method
- Quasi-newton Method (BFGS)
- Levenberg-Marquardt
- Trust Region Newton Methods
- Active Set and Interior-Point Methods
- Sequential Quadratic Programming (SQP)

Multivariable Quasi-Newton Methods

This is the **Newton** update:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k [\mathbf{H}(\mathbf{x}_k)]^{-1} \nabla f(\mathbf{x}_k)$$

 α_k = step size at the kth iteration $\nabla f(x_k)$ = direction of steepest descent $H(x_k)$ = Hessian matrix

Example:

Minimize f(x) from $x_0 = (-1.2, 1.0)$: $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

Steepest Descent

Conjugate Gradient Descent

BFGS

Quasi-Newton: BFGS Algorithm

(Broyden-Fletcher-Goldfarb-Shanno)

Steps:

- Make an initial guess, x_0 , and initial guess of inverse Hessian $\Gamma_0 = I$. [steepest descent]
- Calculate search direction, $\mathbf{s}_k = -\mathbf{\Gamma}_k \nabla f(\mathbf{x}_k)$
- Calculate step size, α , using line search:

$$g_k(\alpha) = f(\mathbf{x}_k + \alpha \mathbf{s}_k)$$

- Update $x_{k+1} = x_k + \alpha s_k$.
- Update Γ_k to Γ_{k+1} .

 $\Gamma_k = k$ th approximation of the inverse Hessian

$$\boldsymbol{\Gamma}_{k+1} = \left(\boldsymbol{I} - \frac{\boldsymbol{s}_k \boldsymbol{y}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}\right) \boldsymbol{\Gamma}_k \left(\boldsymbol{I} - \frac{\boldsymbol{y}_k \boldsymbol{s}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}\right) + \frac{\boldsymbol{s}_k \boldsymbol{s}_k^T}{\boldsymbol{y}_k^T \boldsymbol{s}_k}$$

where
$$\mathbf{y}_k = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)$$

Outline

- Introduction to NLP
- Necessary and Sufficient Conditions for Optimality
- Convex Programming
- Methods for Solving NLP
 - One-Dimensional, Unconstrained NLP
 - Multivariable, Unconstrained NLP
 - Zero-order, First-order, Second-order Methods
 - Constrained NLP

Class Exercises

1. Minimize the Beale function from $x_0 = (-2, -2)$:

$$f(\mathbf{x}) = (1.5 - x_1 + x_1 x_2)^2 + (2.25 - x_1 + x_1 x_2^2)^2 + (2.625 - x_1 + x_1 x_2^3)^2$$

2. Minimize the Booth function from $x_0 = (0, 0)$:

$$f(\mathbf{x}) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2$$

Answers:

1.
$$f(3, 0.5) = 0$$

2.
$$f(1,3) = 0$$