Análisis asintótico

Manuel Loaiza Vasquez

7 de julio de 2024

- 1. Exhiba tres parejas (c, n_0) tales que $100n^2 \le (c/100)n^3$ para $n \ge n_0$.
- **2.** Demuestre que $3n^2 + 7n 8$ está en $\mathcal{O}(n^2)$.
- **3.** Demuestre que n + 100 está en $\mathcal{O}(n)$.
- **4.** Demuestre que 100n está en $\mathcal{O}(2n)$.
- **5.** Demuestre que 100n está en $\mathcal{O}(2n^2 + n)$.
- **6.** Demuestre que $n^2 + 999n + 9999$ está en $\mathcal{O}(n^2)$.
- 7. Demuestre que $n^2/100 999n 9999$ no está en $\mathcal{O}(n)$.
- **8.** Demuestre que $10\sqrt{n} + 10$ está en $\mathcal{O}(n)$.
- **9.** Demuestre que n/10 100 no está en $\mathcal{O}(\sqrt{n})$.
- 10. Demuestre que $\log n^{10}$ está en $\mathcal{O}(\log n)$.
- 11. Demuestre que $\log_3 n$ está en $\mathcal{O}(\log_2 n)$.
- 12. Demuestre que n(n-1)/2 está en $\mathcal{O}(n^2)$.
- 13. Demuestre que n está en $\mathcal{O}(2^n)$.
- **14.** Demuestre que $\log n$ está en $\mathcal{O}(n)$.
- 15. Demuestre que 5 + 1/n está en $\mathcal{O}(1)$.
- 16. Demuestre que $n^2-999n-9999$ está en $\Omega(n^2)$.
- 17. Demuestre que $\log(n!)$ está en $\Omega(n \log n)$.
- **18.** Demuestre que n(n+1)/2 está en $\Omega(n^2)$.
- **19.** Demuestre que n está en $\Omega(\log n)$.
- **20.** Demuestre que \sqrt{n} está en $\Omega(\log n)$.
- **21.** Demuestre que $(n+10)^5$ está en $\mathcal{O}(n^5)$.
- **22.** Demuestre que $\sqrt{n+100}$ está en $\Theta(\sqrt{n})$.
- **23.** Demuestre que 2^{n+1} está en $\Theta(2^n)$.
- **24.** Sea f(n) una función que está en $\mathcal{O}(1)$. Demuestre que existe c>0 tal que $f(n)\leq c$ para todo $n\geq 1$.

- **25.** Sean f y g funciones tales que g(n) > 0 para $n \ge 1$ y $f(n) \in \mathcal{O}(g(n))$. Demuestre que existe c > 0 tal que $f(n) \le c g(n)$ para todo $n \ge 1$.
- **26.** Suponga que $f(n) \in \mathcal{O}(g(n))$. Demuestre que $g(n) \in \Omega(f(n))$.
- **27.** Demuestre que si $f(n) \in \mathcal{O}(g(n))$ y $g(n) \in \mathcal{O}(h(n))$, entonces $f(n) \in \mathcal{O}(h(n))$.
- **28.** Demuestre que $f(n) \in \Theta(g(n))$ si y solo si $f(n) \in \mathcal{O}(g(n))$ y $f(n) \in \Omega(g(n))$.
- **29.** Demuestre que si $f_1(n) \in \Omega(g_1(n))$ y $f_2(n) \in \Omega(g_2(n))$, entonces $f_1(n) + f_2(n) \in \Omega(g_1(n) + g_2(n))$.
- **30.** Demuestre que para cualquier par de reales a y b con b > 0 se cumple $(n+a)^b \in \Theta(n^b)$.
- 31. (Comportamiento asintótico de los polinomios) Sea

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

un polinomio de grado d en n con $a_d > 0$. Dada una constante k, demuestre lo siguiente:

- Si $k \geq d$, entonces $p(n) \in \mathcal{O}(n^k)$.
- Si $k \leq d$, entonces $p(n) \in \Omega(n^k)$.
- Si k = d, entonces $p(n) \in \Theta(n^k)$.
- **32.** Sea $f: \mathbb{N} \to \mathbb{N}$ definida como

$$f(n) = \begin{cases} 1 & \text{si } n = 1, \\ f(n-1) + 2n & \text{si } n > 1. \end{cases}$$

Demuestre que $f(n) \in \mathcal{O}(n^2)$.

33. (Sucesión de Fibonacci) Sea $f: \mathbb{N} \to \mathbb{N}$ definida como

$$f(n) = \begin{cases} 1 & \text{si } n \le 2, \\ f(n-1) + f(n-2) & \text{si } n > 2. \end{cases}$$

- Demuestre que $f(n) \in \mathcal{O}(2^n)$.
- Demuestre que $f(n) \in \Omega((3/2)^n)$.