November 20, 2017

- 1. This exercise concerns TM M_2 , whose description and state diagram appear in Example 3.7. In each of the parts, give the sequence of configurations that M_2 enters when started on the indicated input string.
 - (a) 0. $q_10 q_2 q_{accept}$ (b) 000. $q_1000 q_200 q_30 q_40q_4 q_0q_{eject}$
- 2. This exercise concerns TM M_1 , whose description and state diagram appear in Example 3.9. In each of the parts, give the sequence of configurations that M_1 enters when started on the indicated input string.
 - (a) 1#1. $q_11\#1$. $xq_3\#1$. $x\#q_51$. $xq_6\#x$. $q_7x\#x$. $xq_1\#x$. $x\#q_8x$. $x\#xq_8$. $x\#x_2q_{accept}$ (b) 1##1. $q_11\#\#1$. $xq_3\#\#1$. $x\#q_5\#1$. $x\#\#q_{reject}1$.
- 3. Describe a Turing machine, sequence of steps, that recognizes $\{w \mid w \text{ is an element of } \{a,b,c\}*\text{ such that the number of } a$'s in w < the number of b's in w and the number of a's in w = the number of c's in w
- 4. Show the equivalent transitions for a 2-PDA for the Turing machine transitions $(q_i, X) \rightarrow (q_j, A, L)$ and $(q_i, X) \rightarrow (q_j, A, R)$ (in state q_i read X, write A, and move left or right and transition to state q_j). The transitions for a 2-PDA are of the form $(q_i, X, S_1, S_2) \rightarrow (q_j, T_1, T_2)$ (in state q_i , read X, pop S_1 from stack 1, pop S_2 from stack 2, transition to state q_j , push T_1 onto stack 1 and push T_2 onto stack 2). You don't have to prove the transitions are equivalent, just tell me what they are.
- 5. Give implementation-level descriptions of Turing machines that decide the following languages over the alphabet $\{0,1\}$. $\{w \mid w \text{ does not contain twice as many 0's as 1's}\}$
- 6. Prove the class of Turing recognizable languages is closed under the union operation (construction and proof)
- 7. Prove the class of decidable languages is closed under concatenation (construction and proof)
- 8. Prove the class of decidable languages is closed under intersection (construction and proof)
- 9. Prove the class of Turing recognizable languages is closed under the star operation (construction and proof)
- 10. Show that a language is decidable iff some enumerator enumerates the language in the standard string order.