Lecture-18

Sushrut Tadwalkar; 55554711

October 19, 2023

Testing for convergence 1

Theorem: Monotone convergence

If $a_n \geq 0$ for all n, then $\sum_{n \in \mathbb{N}}$ converges iff $S_N = \sum_{n=1}^N a_n$ is bounded.

Proof. Note that $S_{N+1} - S_N = a_{N+1} \ge 0$ shows that S_N is a non-decreasing sequence; rest follows from monotone convergence property. In this case " $\sum_{n\in\mathbb{N}}a_n$ converges."

Theorem: Cauchy's Criterion

The series $S=\sum_{n\in\mathbb{N}}a_n$ converges iff for all $\varepsilon>0$ there exists $N\in\mathbb{N}$ such that for all $m\geq N$, and for all $p \in \mathbb{N} \cup \{0\}$, we have

$$|a_m + a_{m+1} + \dots + a_{m+p}| < \varepsilon.$$

Proof. Notice that $a_m + \cdots + a_{m+p} = S_{m+p} - S_{m-1}$; this states condition is just a reformulation of Cauchy's criterion for seq of partial sums, where we have already shown that the sequence of partial sums is Cauchy.

Theorem: Test for divergence

If $\lim_{n\to\infty}a_n\neq 0$, then $\sum_{n\in\mathbb{N}}a_n$ diverges.

Note. This does not say that the sequence converges, and is merely a relatively quick test to check whether a sequence diverges or not; equivalently, we are saying that the converse of this statement is not generally true.

Proof. We prove this by contrapositive. If $\sum_{n\in\mathbb{N}}a_n$ converges, pick any $\varepsilon>0$ and use Cauchy's criterion to get a $N\in\mathbb{N}$ such that $|a_m+\cdots+a_{m+p}|<\varepsilon$ for all $m\geq N$, and for all $p\in\mathbb{N}\cup\{0\}$. Use p=0: for all $m\geq N$,

 $|a_m| < \varepsilon \implies a_n \to 0.$

1

Theorem: Comparison test

$$\text{(a) If } 0 \leq |a_n| \leq b_n \text{ for all } n \in \mathbb{N} \text{ and } \sum_{n \in \mathbb{N}} b_n < +\infty, \text{ then } \sum_{n \in \mathbb{N}} a_n \text{ converges.}$$

(b) If
$$\sum_{n\in\mathbb{N}}|a_n|=+\infty$$
, then $\sum_{n\in\mathbb{N}}|b_n|=+\infty$ as well.

Proof. For part (a), we use Cauchy's criterion and the triangle inequality to get

$$|a_m + \dots + a_{m+p}| \le |a_m| + |a_{m+1}| + \dots + |a_{m+p}|$$

 $\le b_m + b_{m+1} + \dots + b_{m+n}.$

We now use Cauchy's criterion for (b_n) to provide requirements for $\sum_{n\in\mathbb{N}}a_n$ to converge.

The proof for (b) is left as an exercise.

Corollary 1. Absolute convergence implies convergence; if $\sum_{n\in\mathbb{N}}|a_n|<+\infty$, then $\sum_{n\in\mathbb{N}}a_n<+\infty$.

Proof for this is the same as for the theorem where we set $b_n = |a_n|$.

Note. Convergence for sequence $S_N = \sum_{n=1}^N a_n$ holds iff we have convergence fo each $S_N^m = \sum_{n=m}^N a_i$; writing

$$\sum_{n \in \mathbb{N}} a_n = \sum_n^{\infty} a_n$$
$$= \sum_n a_n$$

is abuse of notation.

Example 1. Harmonic series $\sum_{n} \frac{1}{n}$ diverges.

Proof. Show Cauchy's criterion fails: there exists $\varepsilon > 0$ such that for all $N \in \mathbb{N}$, there exists $m \geq N$ and $p \in \mathbb{N} \cup \{0\}$ such that

$$|a_m + \dots + a_{m+p}| \ge \varepsilon.$$

Pick $\varepsilon=\frac{1}{2},$ for any $N\in\mathbb{N},$ choose n=N, p=N which gives us

$$\frac{1}{N} + \frac{1}{N+1} + \dots + \frac{1}{N+N} \ge \frac{N+1}{2N} > \frac{1}{2} = \varepsilon.$$