Predicting Housing Sale Prices

Understanding features associated with higher sale price Ben Poh, DSI24

Problem Statement

 You work for the local housing authority. Using the Ames housing dataset, your manager is keen to know how features of a property can determine its sale price. Your manager would also like to know if a better basement (size, quality, exposure etc.) will lead to a higher sale price.

Methodology

Part I:

- Data cleaning
- Feature engineering

Part II

- Modelling
 - Linear Regression, Lasso, Ridge
- Train and predict on test set for Kaggle competition

Data Cleaning

- 81 features segregated into continuous, categorical, ordinal and discrete features for data cleaning/EDA
- Null values:
 - Imputed mean 'Lot Frontage' based on 'Lot Shape' and 'Lot Config' categorization
 - Replaced incorrect fields in basement and garage features
 - Update 'None' when the property does not have that feature
- Ordinal features mapped to numeric formats
- Nominal features binarise with OneHotEncoder

Discrete	Ordinal	Categorical	Continuous
Bsmt_Full_Bath	Overall_Cond	MS_Zoning	Lot_Frontage
Full_Bath	Overall_Qual	Street	BsmtFin_SF_1
Year_Remod/Add	Lot_Shape	Alley	BsmtFin_SF_2
Kitchen_AbvGr	Utilities	Land_Contour	Bsmt_Unf_SF
TotRms_AbvGrd	Land_Slope	Lot_Config	Total_Bsmt_SF
Half_Bath	Exter_Qual	Neighborhood	Garage_Area
Bsmt_Half_Bath	Exter_Cond	Condition_1	Lot_Area
Bedroom_AbvGr	Bsmt_Qual	Condition_2	Gr_Liv_Area
Garage_Yr_Blt	Bsmt_Cond	Bldg_Type	Low_Qual_Fin_SF
Fireplaces	Bsmt_Exposure	House_Style	1st_Flr_SF
Mo_Sold	BsmtFin_Type_1	Roof_Style	2nd_Flr_SF
Yr_Sold	BsmtFin_Type_2	Roof_Matl	Wood_Deck_SF
Year_Built	Heating_QC	Exterior_1st	Open_Porch_SF
Garage_Cars	Electrical	Exterior_2nd	Enclosed_Porch
	Kitchen_Qual	Mas_Vnr_Type	3Ssn_Porch
	Functional	Foundation	Screen_Porch
	Fireplace_Qu	Heating	Pool_Area
	Garage_Finish	Central_Air	Mas_Vnr_Area
	Garage_Qual	Garage_Type	Misc_Val
	Garage_Cond	Misc_Feature	
	Paved_Drive	Sale_Type	
	Pool_QC	MS_SubClass	
	Fence		

Feature Engineering

- Polynomial Features:
 - Added 4 interaction terms due to their high correlation with 'SalePrice'
- Unified size representation for basement and gross liveable area

Modelling

- Baseline
 - X variables: Overall Quality and Gross Liveable Area (two highest +ve correlated with Sale Price)
 - Based on OLS, test RMSE = 39,513 / R2 = 0.75
- 3 sklearn models used:
 - Linear Regression
 - Ridge
 - Lasso

Modelling

Feature Selection	No. of Features	Model Description	Hyperparameters	Train RMSE	Test (Holdout) RMSE
Baseline	2	Linear Regression	-	39,779	39,513
Highest Correlation	49	Linear Regression	-	23,107	23,100
Highest Correlation	49	Ridge	$\alpha = 3.23$	23,128	23,186
Highest Correlation	49	Lasso	$\alpha = 46.42$	23,131	23,159
Highest Correlation + Reduced Collinearity	40	Linear Regression	-	23,269	23,225
Highest Correlation + Reduced Collinearity	40	Ridge	$\alpha = 3.24$	23,288	23,297
Highest Correlation + Reduced Collinearity	40	Lasso	$\alpha = 36.784$	23,280	23,238

- Model to deploy: Lasso with high correlation features (49 features)
- RMSE on test set = 23,238. Not the best, but close to results from Linear Regression Lasso zeroise the 'useless' coefficients

Results: Predicted vs True

- Predicts pretty well for sale price < \$300k
- Few properties with large sale prices in the train set

Results and Conclusion

- Overall quality better quality always lead to higher prices
- Size (Lot Area, Gross Liveable Area) bigger the better
- Age of property younger the better
- Basement Features:
 - Quality, Size, Exposure, Type, # of Bathrooms all help increase sale price

Variable	Coefficient
Overall_Qual Gr_Liv_Area	48993.420682
Overall_Qual Garage_Area	22643.680871
Gr_Liv_Area	-17429.576591
Bsmt_Qual Gr_Liv_Area	16231.075533
Overall_Qual	-14835.665990
Garage_Area	-14014.872945
Bsmt_Qual	-8486.417885
Total_Bsmt_SF	7173.390682
Lot_Area	6800.263609
New	5151.427642
Bsmt_Exposure	4826.862267
Kitchen_Qual	4682.224378
Hip	4479.534916
Year_Built	4228.190032
BsmtFin_Type_1	4046.909321
Garage_Cond	3951.908237
Garage_Yr_Blt	-3906.650386
StoneBr	3849.534714
Exter_Qual	3707.697259
Bsmt_Full_Bath	3608.763063