Aprendizaje automático 2

PDI - Operaciones Puntuales

La visión en las máquinas

La **visión en los humanos** nos permite percibir e interpretar el mundo que nos rodea.

La **visión en los humanos** nos permite percibir e interpretar el mundo que nos rodea.

La **visión en las máquinas** intenta duplicar la visión humana a través de dispositivos electrónicos que capturen las imágenes, y procesadores que analicen e interpreten las mismas.

Otorgar a las máquinas la capacidad de "ver" no es una tarea sencilla...

Etapas

Captura de datos visuales mediante sensores

Conversión de datos a forma discreta Almacenamiento/transmisión eficiente

Mejora de calidad de imagen

Partición en objetos o partes constituyentes

Extracción de descriptores útiles para diferenciar clases u objetos

Asignación de etiquetas a los objetos

Asignación de significado a los objetos reconocidos

Operaciones en el dominio espacial

Color

Modelo RGB

Color

Modelo HSI / HSV... : desacoplan la información de brillo y color

Conceptos básicos

- Las operaciones de **mejora de calidad (realce)** son las más sencillas y utilizadas en PDI.
- Objetivo general: destacar los detalles de interés, obteniendo una salida "visualmente mejor" que la entrada.

Ejemplo: aumento de contraste de una imagen para que tenga "mejor aspecto".

Conceptos básicos

Histograma de la imagen: conteo de pixeles por nivel

Clasificación

- Operaciones **puntuales**: el resultado depende únicamente del valor de intensidad en el pixel procesado.
- Operaciones locales: el resultado es función del nivel de gris del pixel analizado y de los de su entorno (vecindad).
- Operaciones globales: la imagen se transforma sin considerar los pixeles individualmente.
- Operaciones geométricas: cambio de posición de cada pixel dependiente de la posición en la imagen original.

Brillo

Definición: valor de gris promedio de la imagen

Bajo brillo

Alto brillo

Brillo

Manejo del brillo: para todo pixel se suma/resta un valor a

Contraste

Definición: diferencia entre gris mínimo y máximo de la imagen

Alto contraste

Contraste

Manejo: ecualización de histograma ("estiramiento")

Umbralización

Binariza la imagen en función de un parámetro \boldsymbol{u}

Imagen original de rayos X

Contraste mejorado

Detección de pulmones

Adición

Suma de imágenes: fusión de 2 imágenes (blending)

Adición

Suma de imágenes: fotografías panorámicas

Resta

Diferencia para segmentación

Multiplicación

Enmascarado de partes de la imagen

Normalización

Escalar los valores de los píxeles para que:

- las imágenes estén dentro del mismo rango,
- no haya diferencias en brillo y contraste entre imágenes,
- los outliers no impacten tanto,
- los modelos converjan más rápido: una imagen con rango [0, 255] se lleva a [0, 1], haciendo que los datos sean más consistentes y adecuados para los modelos.

Segmentación color

Identificar y separar regiones de una imagen basadas en la similitud de colores

Bibliografía

- R. González and R. Woods, "Digital image processing". Pearson, 2018 [link]
- D. Baggio et. al., "Mastering OpenCV with Practical Computer Vision Projects".
 Packt, 2012 [link] [códigos]
- D. Escrivá, R. Laganiere, "OpenCV 4 Computer Vision Application Programming Cookbook".
 Packt, 2019. [link] [códigos]

