Concepts

Variables

Pressure - Normal force per unit area exerted on a surface due to the time rate of change of momentum of the gas particles impacing said surface.

$$P = \lim_{dA \to 0} \frac{dF_n}{dA}$$

Density - Mass per unit volume.

$$\rho = \lim_{dV \to 0} \frac{dm}{dV}$$

Temperature - Change in kinetic energy due to random molec-

$$KE = \frac{3}{2}kT$$

Flow Velocity - Velocity due to organized motion.

$$\vec{v} = \frac{d}{dt}\vec{x}$$

Forces and Moments

Causes of forces and moments on an aerodynamic body: Pressure Distribution over the body surface.

Shear Stress Distribution over the surface.

Lift and Drag per Unit Span:

$$L' = N' \cos \alpha - A' \sin \alpha$$

$$D' = N' \sin \alpha + A' \cos \alpha$$

Normal Force per Unit Span:

$$N' = \int_{LE}^{TE} (P_u \cos \theta + \tau_u \sin \theta) ds_u + \int_{LE}^{TE} (P_l \cos \theta - \tau_u \sin t) ds_u$$

Axial Force per Unit Span:

$$A' = \int_{LE}^{TE} (-P_u \sin \theta + \tau_u \cos \theta) ds_u + \int_{LE}^{TE} (P_l \sin \theta + \tau_l \cos \theta) ds_l$$
Moment per Unit Span:

 $+ \int_{LE}^{TE} \left[(-P_l \cos \theta + \tau_u \sin \theta)(x - x^*) + (P_l \sin \theta + \tau_l \cos \theta)(y - y^*) \right] ds_l$ When $x^* = y^* = 0$ we obtain the moment about the leading

Center of Pressure:

$$x_{cp} = -\frac{M'_{LE}}{N'}$$

Force and Moment Coefficients

Dynamic Pressure: $q=\frac{1}{2}\rho_{\infty}\upsilon_{\infty}^2$ Reference Area: S Reference Length: L or c

Lift Coefficient: $c_L = \frac{L}{a_L}$ **Drag Coefficient**: $c_D = \frac{\nu}{q_{\infty}S}$

Moment Coefficient: $c_M = \frac{M}{a_{vv} SL}$

Buckingham Pi Theorem

If we have a physically meaningful equation such as: $f(P_1, P_2, ..., P_N) = 0$

where P_i are physical variables in terms of K independent physical units (mass, length, time, temperature) then it can be re-

 $F(\Pi_1, \Pi_2, ..., \Pi_{N-K}) = 0$ or

 $\Pi_{N-K} = G(\Pi_1, \Pi_2, ..., \Pi_{N-K-1})$

where Π_i are dimensionaless variables known as Pi Groups.

Calculus Review

Vector Calculus

Magnitude: $|\vec{A}| = \sqrt{A_1^2 + A_2^2 + a_3^2}$

Dot Product: $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z = |\vec{A}| |\vec{B}| \cos \theta$

Cross Product: $\vec{A} \times \vec{B} = (A_v B_z - A_z B_v) \hat{i} + (A + z B_x - a_x B_z) \hat{j} +$

 $(A_x B_y - A_y B_x)\hat{k}$

 $|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta$

Gradient of Scalar Field: $\vec{\nabla} p = \frac{\partial p}{\partial x} \hat{i} + \frac{\partial p}{\partial x} \hat{j} + \frac{\partial p}{\partial z} \hat{k}$ vector field

Directional Derivative: $\frac{dp}{ds} = \vec{\nabla} p \cdot \vec{s}$ -> unit vector in \vec{s} direction.

Divergence of a Vector Field: $\operatorname{div} \vec{V} = \vec{\nabla} \cdot \vec{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$ scalar field

Curl of a Vector Field: $\operatorname{curl} \vec{V} = \vec{\nabla} \times \vec{V} = (\frac{\partial V_z}{\partial v} - \frac{\partial V_y}{\partial z})\hat{i} + (\frac{\partial V_x}{\partial z} - \frac{\partial V_y}{\partial z})\hat{i} + (\frac{\partial V_y}{\partial z}$ $(\frac{\partial V_z}{\partial x})\hat{j} + (\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y})\hat{k}$

Integrals

Stokes' Theorem: $\oint_{C} \vec{A} \cdot \vec{ds} = \iint_{S} (\vec{\nabla} \times \vec{A}) \cdot \vec{dS}$

Divergence Theorem: $\oint_S \vec{A} \cdot d\vec{S} = \oiint_V (\vec{\nabla} \cdot \vec{A} dV)$

Basic Flow Equations

Fixed control volumes for basic flow equations.

Conservation of Mass

Net mass flow out of V = Time rate of decrease of mass inside

Integral Continuity Equation:

 $\frac{\partial}{\partial t} \iiint_{\mathcal{V}} \rho d\mathcal{V} + \oiint_{S} \rho \vec{V} \cdot \vec{dS} = 0$

Differential Continuity Equation:

 $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{V}) = 0$

Conservation of Momentum

Net force applied to V = Time rate of change of momentum of

$$\frac{\partial}{\partial t} \oiint_{\mathcal{V}} \rho \vec{V} d\mathcal{V} + \oiint_{S} (\rho \vec{V} \cdot \vec{dS}) \vec{V} = - \oiint_{S} p \vec{dS} + \oiint_{\mathcal{V}} \rho \vec{f} d\mathcal{V} + \vec{F} .$$

- 1. Body Forces (e.g. gravity) which act on the fluid inside $\#_{\mathcal{V}}, \rho \vec{f} d\mathcal{V}$
- 2. Pressure and shear surface forces acting on S
- $\oiint_S pdS + \vec{F}_{viscous}$ 3. Net flow of momentume out of volume across S $\oint_{S} (\rho \vec{V} \cdot \vec{dS}) \vec{V}$
- 4. Time rate of change of momentum due to unsteadiness in $\frac{\partial}{\partial t} \oiint_{\mathcal{V}} \rho \vec{V} d\mathcal{V}$

Navier-Stokes Equations:

$$\begin{split} \frac{\partial}{\partial t}(\rho u) + \vec{\nabla} \cdot (\rho u \vec{V}) &= -\frac{\partial p}{\partial x} + \rho f_x + (\mathcal{F}_x)_{viscous} \\ \frac{\partial}{\partial t}(\rho v) + \vec{\nabla} \cdot (\rho v \vec{V}) &= -\frac{\partial p}{\partial y} + \rho f_y + (\mathcal{F}_y)_{viscous} \end{split}$$

Conservation of Energy

Kinematics

 $\vec{\nabla} \cdot \vec{V}$: time rate of change of volume of a fluid element per unit volume → **Dilation**

Stream Line: Curve everywhere tangent to the velocity.

$$\frac{v}{u} = \frac{dy}{dx}$$

Path Line: Trajectory of a particle released from a point in

Streak Line: Line connecting all particles that have passed

through a given point.
For a steady flow the three lines coincide.

Substantial Derivative

Time rate of change of density of a given material fluid element as it moves through space and time.

$$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + \vec{V} \cdot \vec{\nabla}\rho$$

Continuity Equation: $\frac{D\rho}{Dt} = -\rho \vec{\nabla} \cdot \vec{V}$ Material Acceleration: $(\frac{Du}{Dt}; \frac{Dv}{Dt}; \frac{Dz}{Dt})$

Navier-Stokes:
$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \rho f_x + (\mathcal{F}_x)_{viscous} \rightarrow \text{applicable to y and z as well.}$$

Vorticity and Strain

 $\vec{\omega} = \frac{1}{2} \vec{\nabla} \times \vec{V} \rightarrow \text{angular velocity}$

$$\vec{\xi} = \vec{\nabla} \times \vec{V} \rightarrow \text{Vorticity}$$

 $\varepsilon_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \rightarrow \text{Rate of Strain in xy plane.}$

$$\Gamma = -\oint_C \vec{V} \cdot \vec{ds} \rightarrow \text{Circulation}$$

Relation between circulation and vorticity: $\vec{x}i \cdot \vec{n} = \frac{d\Gamma}{dS}$

Stream Functions and Velocity Potentials

Stream Function: For every incompressible, two-dimensional flow, there exists a scalar stream function such that: $u = \frac{\partial \psi}{\partial v}$,

$$v = -\frac{\partial \psi}{\partial x}$$
 DON'T FORGET +C

 $v = -\frac{\partial \psi}{\partial x}$ DON'T FORGET +C **Velocity Potential**: For every irrotational flow, there exists a scalar velocity potential such that: $\vec{V} = \vec{\nabla} \phi / rightarrow \frac{\partial \phi}{\partial x} =$

$$y, \, \frac{\partial \phi}{\partial y} = x$$

Euler's Equation: $\frac{1}{2}d(V^2) = -\frac{1}{\rho}dp$ If flow is barotropic, $\rho = \rho(p)$ is a function of pressue only and can integrate the equation. Occurs in incompressible flow, isothermal flow, or isentropic (frictionless) flow.

Bernoulli's Equation: $p + \frac{1}{2}\rho V^2 = \text{constant}$ - along a streamline for steady, inviscid, incompressible flow with no body forces.

Flow in a Duct

 $\rho_1A_1V_1=\rho_2A_2V_2\to \text{Steady, inviscid flow in a duct with no body forces. For incompressible flow remove rho.}$