Modern CNN Architectures

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

> Ali Sharifi-Zarchi Behrooz Azarkhalili Koorosh Moslemi

Components of CNNs

Figure: Convolution Layers

Figure: Pooling Layers

Figure: Dense Layers

Figure: Activation Functions

Figure: Batch Normalization

Components of CNNs

Figure: Convolution Layers

Figure: Pooling Layers

Figure: Dense Layers

Figure: Activation Functions

Figure: Batch Normalization

How should we put them together?

LeNet

Figure: [1]

- Conv filters were 5x5, applied at stride 1
- Subsampling (Pooling) layers were 2x2 applied at stride 2

Figure: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Figure: [1]

(CONV1): 96 11x11 filters applied at stride 4

Figure: [1]

- (CONV1): 96 11x11 filters applied at stride 4
- Why is the output volume size 55?

Figure: [1]

- (CONV1): 96 11x11 filters applied at stride 4
- Why is the output volume size 55?
- (227-11)/4+1=55

Figure: [1]

- (CONV1): 96 11x11 filters applied at stride 4
- What is the total number of parameters in the first layer?

Figure: [1]

- (CONV1): 96 11x11 filters applied at stride 4
- What is the total number of parameters in the first layer?
- (11*11*3 + 1)*96 = 35K

Figure: [1]

(POOL1): 3×3 filters applied at stride 2

Figure: [1]

- (POOL1): 3×3 filters applied at stride 2
- Why is the output volume size 27?

Figure: [1]

- (POOL1): 3×3 filters applied at stride 2
- Why is the output volume size 27?
- (55-3)/2+1=27

Figure: [1]

- (POOL1): 3×3 filters applied at stride 2
- What is the number of parameters?

Figure: [1]

- (POOL1): 3×3 filters applied at stride 2
- What is the number of parameters?
- Zero!

How is AlexNet Different from LeNet?

- 62M parameters vs 61K parameters
- ReLU vs Sigmoid (why?)
- Use of Regularization Techniques (Dropout, Weight Decay) (why?)
- Use of Normalization (why?)

Figure: [3]

Figure: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Do you see any difference?

AlexNet

VGG16

VGG19

Do you see any difference?

- Smaller filters
- Deeper networks
- Only 3×3 CONV with stride 1, pad 1 and 2×2 MAX POOL with stride 2.

Why use smaller filters? $(3 \times 3 \text{ conv})$

Figure: [2]

Why use smaller filters? $(3 \times 3 \text{ conv})$

Stack of three 3×3 conv (stride 1) layers has same effective receptive field as one 7×7 conv layer

Figure: [2]

What is the effective receptive field of three 3×3 conv (stride 1) layers?

Figure: [2]

What is the effective receptive field of three 3×3 conv (stride 1) layers?

What is the effective receptive field of three 3×3 conv (stride 1) layers?

What is the effective receptive field of three 3×3 conv (stride 1) layers?

Figure: [2]

What is the effective receptive field of three 3×3 conv (stride 1) layers?

Figure: [2]

Why use smaller filters? $(3 \times 3 \text{ conv})$

Stack of three 3×3 conv (stride 1) layers has same effective receptive field as one 7×7 conv layer

Figure: [2]

Why use smaller filters? $(3 \times 3 \text{ conv})$

- Stack of three 3×3 conv (stride 1) layers has same effective receptive field as one 7×7 conv layer
- Deeper network means more non-linearities which leads to more capacity

Figure: [2]

Why use smaller filters? $(3 \times 3 \text{ conv})$

- Stack of three 3×3 conv (stride 1) layers has same effective receptive field as one 7×7 conv layer
- Deeper network means more non-linearities which leads to more capacity
- Fewer parameters: $3 \times (3^2C^2)$ vs. 7^2C^2 for C channels per layer

Figure: [2]

Network in Network

Do you see any difference?

Figure: [3]

Global AvgPool

Network in Network

Do you see any difference?

- 1×1 Convolution
- Global Average Pooling(GAP) layer instead of FC layers

Figure: [3]

1×1 Convolution

Figure: 1×1 Convolution

1×1 Conv Use Case

Assume we want to transform a $32 \times 32 \times 200$ tensor to a $32 \times 32 \times 32$ one using $32 \times 5 \times 5$ filters. Thus, we need $(32 \times 32 \times 200) \times (5 \times 5 \times 32) \approx 163M$ operations!

1×1 Conv Use Case

- Assume we want to transform a $32 \times 32 \times 200$ tensor to a $32 \times 32 \times 32$ one using $32 \times 5 \times 5$ filters. Thus, we need $(32 \times 32 \times 200) \times (5 \times 5 \times 32) \approx 163M$ operations!
- Instead we can use 1 × 1 convolution:

Global Average Pooling

Similar to max pooling layers, GAP layers are used to reduce the spatial dimensions of a three-dimensional tensor. However, GAP layers perform a more extreme type of dimensionality reduction, where a tensor with dimensions $h \times w \times d$ is reduced in size to have dimensions $1 \times 1 \times d$. GAP layers reduce each $h \times w$ feature map to a single number by simply taking the average of all hw values.

- GAP is used to replace the traditional fully connected layers in CNN.
- There is no parameter to optimize in the GAP thus overfitting is avoided at this layer
- GAP sums out the spatial information, thus it is more robust to spatial translations of the input.

Figure: FC Layer vs GAP Layer

GoogLeNet

Figure: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

GoogLeNet

- Only 5 million parameters! (12x less than AlexNet and 27x less than VGG-16)
- Efficient "Inception" module
- No longer multiple expensive FC layers

GoogLeNet

Inception modules instead of classical CNNs for feature extraction

Figure: [1]

- Apply parallel filter operations on the input from previous layer
- Multiple receptive field sizes for convolution $(1 \times 1, 3 \times 3, 5 \times 5)$
- Pooling operation (3×3)
- Concatenate all filter outputs together channel-wise

What are the output sizes of all different filter operations?

Figure: [2]

What are the output sizes of all different filter operations?

What is output size after filter concatenation?

What is output size after filter concatenation?

What is the problem with this?

- What is the problem with this?
- Computational complexity!
 - ► Conv Ops:
 - $[1 \times 1 \text{ conv}, 128] 28 \times 28 \times 128 \times 1 \times 1 \times 256$
 - $[3 \times 3 \text{ conv}, 192] 28 \times 28 \times 192 \times 3 \times 3 \times 256$
 - \triangleright [5 × 5 conv, 96] $28 \times 28 \times 96 \times 5 \times 5 \times 256$
 - ► Total: 854M ops
- Pooling layer preserves feature depth, which means total depth after concatenation can only grow at every layer!

Any Solution?

Inception Module

- Any Solution?
- "bottleneck" layers that use 1×1 convolutions to reduce feature channel size

Figure: [1]

Dimension Reduction in Inception Module

- Using same parallel layers as naive example, and adding "1 × 1 conv, 64 filter" hottlenecks
 - $[1 \times 1 \text{ conv}, 64] 28 \times 28 \times 64 \times 1 \times 1 \times 256$
 - $[1 \times 1 \text{ conv}, 64] 28 \times 28 \times 64 \times 1 \times 1 \times 256$
 - $[1 \times 1 \text{ conv}, 128] 28 \times 28 \times 128 \times 1 \times 1 \times 256$
 - ▶ $[3 \times 3 \text{ conv}, 192] 28 \times 28 \times 192 \times 3 \times 3 \times 64$
 - $\blacktriangleright \ [5 \times 5 \text{ conv}, 96] \ 28 \times 28 \times 96 \times 5 \times 5 \times 64$
 - $[1 \times 1 \text{ conv}, 64] \ 28 \times 28 \times 64 \times 1 \times 1 \times 256$
 - ► Total: 358M ops
- Compared to 854M ops for naive version Bottleneck can also reduce depth after pooling layer

Figure: ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- A very deep network using residual connections
- What happens when we continue stacking deeper layers on a "plain" convolutional

- A very deep network using residual connections
- What happens when we continue stacking deeper layers on a "plain" convolutional

- A very deep network using residual connections
- What happens when we continue stacking deeper layers on a "plain" convolutional

The deeper model performs worse, but it's not caused by overfitting!

- Fact: Deep models have more representation power (more parameters) than shallower models.
- Hypothesis: the problem is an optimization problem, deeper models are harder to optimize

- Fact: Deep models have more representation power (more parameters) than shallower models.
- Hypothesis: the problem is an optimization problem, deeper models are harder to optimize
- What should the deeper model learn to be at least as good as the shallower model?

Skip Connection

Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

Figure: [1]

Full ResNet Architecture

- Stack residual blocks
- Every residual block has two 3 × 3 conv layers
- Periodically, double size of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning (stem)
- No FC layers besides FC 1000 to output classes
- Global average pooling layer after last conv layer
- Batch Normalization after every CONV layer
- No dropout used

Figure: [2]

- Increases width of residual block through multiple parallel pathways (similar to Inception module)
- Using g pathways for computational efficiency (why?)
- What is the purpose of the last 1×1 CONV layer?

Final Notes

Thank You!

Any Question?

Refrences

Mohamed Elgendy.

Deep learning for vision systems. *Manning Publications*, 2020.

Ruohan Gao Fei-Fei Li, Jiajun Wu.

Cnn architectures.

CS231n: Deep Learning for Computer Vision, 2022.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola.

Dive into deep learning.

arXiv preprint arXiv:2106.11342, 2021.