概率论及其应用

2023 秋 概率论与数理统计 A

Author

AUGPath China Univ. of Geosciences November 7, 2023

Contents

1	基本事件空间	3
2	某些经典的模型分布	6

1 基本事件空间

1. 基本事件空间 考虑某项试验, 其结果在某一组条件下由有限种不同的结局 (现象) $\omega_1, \dots, \omega_N$ 描绘. 关于这些结局的实际本性并不重要, 重要的是不同结局的个数 N 是有限的. 我们把这些结局 $\omega_1, \dots, \omega_N$ 称做基本事件, 而把一切结局的全体

$$\Omega = \{\omega_1, \cdots, \omega_N\}$$

称做 (有限) 基本事件空间, 或样本空间.

例子 1.1. 对于"掷一枚硬币", 基本事件空间由两个点组成:

$$\Omega = \{Z, F\},$$

其中 Z 表示出现"正面",而 F 表示出现"反面". (这时假设, 诸如"硬币在棱上立着", "硬币丢失"...... 的情况不会出现.) 也就是假设不出现"正面"就出现"反面".

将一枚硬币重复梆 n 次,基本事件空间为

$$\Omega = \{\omega : \omega = (a_1, \dots, a_n)\}, a_i = Z \not \exists F,$$

且基本事件的总数 $N(\Omega) = 2^n$.

2. 事件及其关系和运算 除基本事件空间的概念外,现在引进重要概念事件. 事件的概念,是建立所考察试验的各种概率模型("理论")的基础. 在试验的结果中,试验者一般并不关心究竟出现了哪种具体的结局,而关心出现的结局属于一切结局集合的哪个子集. 满足试验条件的一切子集 $A \subseteq \Omega$,分为两种类型: "结局 $\omega \in A$ "或"结局 $\omega \notin A$ ". 我们称这样的子集 A 为事件.

例子 1.2. 将一枚硬币重复掷三次, 一切可能结局的空间 Ω , 由 8 个点构成:

$$\Omega = \{000, 001, 010, 011, 100, 101, 110, 111\}$$

其中 0 和 1 分别表示郑出"正面"和"反面". 如果由"一组条件"可以记录 (确定、测量等) 所有 3 次郑硬币的结果,则例如

$$A = \{000, 001, 010, 100\}$$

就是事件: "将一枚硬币重复掷三次"正面至少出现两次. 假如由"一组条件"只能确定第一次郑出的结果,则 A 已经不能称为事件,因为关于"试验的具体结局 ω 是否属于A",既不能肯定也不能否定.

事件的运算

• 并. 对于两个集合 A 与 B, 称

$$A \cup B = \{ \omega \in \Omega : \omega \in A \ \vec{\boxtimes} \omega \in B \}$$

为集合 A 与 B 的并,表示由属于集合 A 或 B 的点形成的集合. 用概率论的语言, $A \cup B$ 表示事件 { 事件 A 与 B 至少出现一个}.

• 交. 称 AB 或

$$A \cap B = \{ \omega \in \Omega : \omega \in A \perp \exists \omega \in B \}$$

为两个集合 A 与 B 的交, 表示由既属于集合 A 同时又属于集合 B 的点形成的集合. 用概率论的语言, $A \cap B$ 表示事件 {事件 A 与 B 同时出现 }.

- 补. 如果 $A \in \Omega$ 的子集, 则称 $\bar{A} = \{\omega \in \Omega : \omega \notin A\}$ 为集合 A 补, 表示 Ω 中不属于 A 的点的集合.
- 差. 属于 B 但不属于 A 的点的集合称做 B 与 A 的差,记作 $B \setminus A$. 那么, $\bar{A} = \Omega \setminus A$. 用概率的语言, \bar{A} 表示事件"A 不出现".例如,事件 $A = \{00,01,10\}$,则事件 $\bar{A} = \{11\}$ 表示接连两次掷出反面.

不可能事件和必然事件 一般用 Ø 表示空集. 概率论中空集 Ø 称做不可能事件, 集合 Ω 自然称做必然事件. 对于事件 A 和 B, 若 $A \cap B = \emptyset$, 则称 A 和 B 不相容, 否则称 A 和 B 相容.

• 和. 当 A 与 B 不相交时 ($AB = \emptyset$), 集合 A 与 B 的并称做集合 A 与 B 的和, 记作 A + B.

事件代数 考虑集合 $A \subseteq \Omega$ 的某个集系 \mathcal{B}_0 ,则利用集合运算 \cup , \cap 与\可以由 \mathcal{C}_0 构造新集系,其中元素也是事件. 给这些事件补充上必然事件 Ω 和不可能事件 \emptyset ,得集系 \mathcal{A} ,则 \mathcal{A} 是代数. 所谓"代数"即 Ω 的这样的集系,满足

- 1) $\Omega \in \mathcal{A}$,
- 2) 若 $A \in \mathcal{A}$, $B \in \mathcal{A}$, 则集合 $A \cup B$, $A \cap B$, $A \setminus B$ 也都属于 \mathscr{C} .

例子 1.3. a) = $\{\Omega, \emptyset\}$ 集系由 Ω 和空集 \emptyset 构成, 称做平凡代数;

- $b) = \{A, \overline{A}, \Omega, \emptyset\}$ 事件 A 产生的集系;
- c) $\mathscr{A} = \{A : A \subseteq \Omega\}$ Ω 全部子集的集系 (包括空集 \varnothing). 易见, 所有这些事件代数 是按下面的原则得到的.

分割 我们称集系

$$\mathscr{D} = \{D_1, \cdots, D_n\}$$

构成集合 Ω 的一个分割, 而 D_1, \dots, D_n 是该分割的原子, 如果 D_1, \dots, D_n 非空且 两两不相容, 而它们的和等于 Ω :

$$D_1 + \dots + D_n = \Omega.$$

例子 1.4. 例如, 假定集合 Ω 由 3 个点构成: $\Omega = \{1,2,3\}$, 则存在 5 个不同的分割:

如果考虑 \mathscr{D} 中一切集合的并连同空集 \varnothing , 则得到的集系是代数, 称做 \mathscr{D} 产生的代数, 记作 $\sigma(\mathscr{D})$. 于是, 代数 $\sigma(\mathscr{D})$ 的元素由空集 \varnothing 与分割 \mathscr{D} 之原子中集合的和组成. 这样, 如果 \mathscr{D} 是 Ω 的某一分割, 则它与代数 $\mathscr{B} = \sigma(\mathscr{D})$ ——对应.

逆命题也正确. 设 \mathcal{B} 是有限空间 Ω 的子集的代数,则存在唯一分割 \mathcal{D} ,其原子是代数 \mathcal{B} 的元素,并且 $\mathcal{B} = \sigma(\mathcal{D})$. 事实上,假设集合 $\mathcal{D} \in \mathcal{B}$ 并且具有性质:对于任意 $B \in \mathcal{B}$,集合 $D \cap B$ 要么与 D 重合,要么是空集. 那么,这样集合 D 的全体组成分割 \mathcal{D} 并且具有所要求的性质 $B = \sigma(\mathcal{D})$. 对于例 a),取只含一个集合的 $D_1 = \Omega$ 平凡分割;对于例 b), $\mathcal{D} = \{A, \bar{A}\}$. 对于例 c), \mathcal{D} 是只含一个点的集合 $\{\omega_i\}$, $\omega_i \in \Omega$ 的最细小分割,即 \mathcal{D} 产生的代数是 Ω 的一切子集的代数.

对两个分割 \mathcal{D}_1 和 \mathcal{D}_2 , 如果 $\sigma(\mathcal{D}_1) \subseteq \sigma(\mathcal{D}_2)$, 则称分割 \mathcal{D}_2 比分割 \mathcal{D}_1 "细小", 记作 $\mathcal{D}_1 \preceq \mathcal{D}_2$.

像前面一样,假设空间 Ω 有有限个点 $\omega_1, \dots, \omega_N$ 构成,记 $N(\mathscr{A})$ 为例 c) 中组成体系 \mathscr{C} 的集合的总数. 我们证明 $N(\mathscr{A}) = 2^N$. 事实上,每一个非空集合 $A \in \mathscr{A}$ 可以表示为 $A = \{\omega_{i_1}, \dots, \omega_{i_k}\}$ $(1 \leq k \leq N)$,其中 $\omega_{i_j} \in \Omega$. 将该集合与由 0 或 1 形成的序列

$$(0, \cdots, 0, 1, 0, \cdots, 0, 1, \cdots),$$

其中在编号为 i_1, \dots, i_k 的位置上为 1 ,而在其余位置上为 0 .那么,对于固定的 k,形如 $A = \{\omega_{i_1}, \dots, \omega_{i_k}\}$ 的不同集合 A 的总数等于 k 个 1 (k 个不可辨质点) 分配 N 个位置 (N 个箱子) 不同分法的总数.根据表 1-4 的情形 (4),这样分法的总数等于 \mathbf{C}_N^k . 由此可见

$$N() = 1 + C_N^1 + \dots + C_N^N = 2^N,$$

其中包括空集 Ø.

3. 概率空间 为建立只有有限种可能结局的随机试验的概率模型 (理论), 我们暂时完成了最初的两步: 引进了基本事件空间 Ω , 并建立了 Ω 子集的某种体系 一代数, 其中的子集称做事件. 有时把 $\mathcal{E} = (\Omega, \mathscr{A})$ 等同于试验. 现在进行下一步: 赋予每一个基本事件 (每一种结局或现象) $\omega_i \in \Omega(i=1,\cdots,N)$ 某种"权", 记作 $p(\omega_i)$ 或 p_i , 称做基本事件 (结局) ω_i 的概率. 假设 $p(\omega_i)$ 满足条件: a) $0 \leq p(\omega_i) \leq 1$ (非负性), b) $p(\omega_1) + \cdots + p(\omega_N) = 1$ (规范性). 从给定的基本事件 ω_i 的概率 $p(\omega_i)$ 出发, 按公式

$$\mathbf{P}(A) = \sum_{\{i:\omega_i \in A\}} p(\omega_i)$$

定义任意事件 $A \in \mathcal{A}$ 的概率.

定义 1.1. 通常称

$$(\Omega, \mathscr{A}, \mathbf{P})$$

为"概率空间",其中 $\Omega = \{\omega_1, \dots, \omega_N\}$, \mathscr{A} 是 Ω 的子集的代数,而 $\mathbf{P} = \{\mathbf{P}(A): A \in \mathscr{B}\}$. 概率空间决定 (定义) 只有有限种可能结局 (基本事件) 的,随机试验的 概率模型 (理论).

显然,
$$\mathbf{P}(\{\omega_i\}) = p(\omega_i) (i = 1, \dots, N)$$
.

4. 古典概率 在一些具体的情形下建立概率模型时,给出基本事件空间 Ω 和代数 \mathcal{A} ,,一般并不复杂. 这时,在初等概率论里,一般用 Ω 的全部子集的代数当做代数 \mathcal{A} . 较困难的问题,是定义基本事件的概率.实际上,对这个问题的回答已经超出了概率论的范围,我们不在此过多地讨论这个问题. 我们的基本任务,并不是如何赋予某一个试验基本事件的概率,而是根据基本事件的概率,计算复合事件(\mathcal{C} 中的事件)的概率.

从数学观点来看十分清楚,对于有限基本事件空间,只要赋予基本事件 $\omega_1, \dots, \omega_N$ 以满足 $p_1 + \dots + p_N = 1$ 的非负实数 p_1, \dots, p_N ,就可以得到一切可以想象的 (有限的) 概率空间.

对于具体的情形, 所确定的数值的正确性, 可以一定程度地利用以后将要介绍的大数定律来验证. 在上述情形下, 根据大数定律, 对于给定的在相同条件下进行的较长"独立"试验系列, 基本事件出现的频率"十分接近"它们相应的概率.

鉴于赋予试验基本事件以概率值的困难, 我们指出, 存在许多实际情形, 在这些情形下由于对称性或均衡性的直观, 把一切可能出现的基本事件视为等可能的是合理的. 因此, 假如基本事件空间 Ω 由点 $\omega_1, \dots, \omega_N$ 构成, 其中 $N < \infty$, 则

$$p(\omega_1) = \cdots = p(\omega_N) = \frac{1}{N},$$

从而对于任何事件 $A \in \mathcal{A}$,

$$\mathbf{P}(A) = \frac{N(A)}{N},$$

其中 N(A) 是事件 A 所含基本事件的个数. 这样求概率的方法称做古典型方法. 显然, 这时求概率 $\mathbf{P}(A)$ 归结为计算导致事件 A 的基本事件的个数. 这一般用排列组合的方法来实现.

2 某些经典的模型分布

1. 二项分布 假设将一枚硬币接连郑 n 次,观测结果用有序数组 (a_1, \dots, a_n) 表示,其中,当第 i 次郑出现正面时 $a_i = 1$,当第 i 次掷出现反面时 $a_i = 0$. 基本事件空间具有

如下形式:

$$\Omega = \{\omega : \omega = (a_1, \cdots, a_n), a_i = 0 \not\exists 1\}.$$

$$\Omega = \{\omega : \omega = (a_1, \cdots, a_n), a_i = 0 \not \exists 1\}.$$

赋予每一个基本事件 $\omega = (a_1, \dots, a_n)$ 概率 (权重)

$$p(\omega) = p^{\sum a_i} q^{n - \sum a_i},$$

其中 p 和 q 非负且 p+q=1. 首先证明, 这样定义概率 (权重) $p(\omega)$ 是合理的. 为此, 只需验证

$$\sum_{\omega \in \Omega} p(\omega) = 1$$

考虑所有满足

$$\sum_{i} a_i = k, \quad (k = 0, 1, \cdots, n)$$

的基本事件 $\omega=(a_1,\cdots,a_n)$. 根据表 1-4 (k 个不可辨的"1"分配到 n 个位置上), 这样的基本事件个数等于 \mathbf{C}_n^k . 因此

$$\sum_{\omega \in \Omega} p(\omega) = \sum_{k=0}^{n} C_n^k p^k q^{n-k} = (p+q)^n = 1.$$

设 是空间 Ω 的一切子集的代数, 在 上定义了概率:

$$\mathbf{P}(A) = \sum_{\omega \in A} p(\omega), \quad A \in \mathscr{A}$$