

Redes Neuronales Artificiales.

Ma Carmen Pegalajar Jiménez

mcarmen@decsai.ugr.es

Dpto de Ciencias de la Computación e IA Universidad de Granada

CONTENIDOS

- 1. Introducción a las Redes Neuronales
- 2. Redes FeedForward
 - Perceptron
 - Adaline
 - Redes Multicapa
 - Tecnicas de Validación
 - Mapas Autoorganizativos (SOM)
 - Redes de Función Base Radial (RBF)
 - Aplicaciones
- 3. Redes Recurrentes Dinámicas
 - Redes Elman
 - Red Recurrente Completa
 - Red Recurrente de Segundo Orden
 - Aplicaciones II
- > 4. Redes Neuronales Evolutivas

CONTENIDOS PRACTICOS

Redes FeedForward

- > GUION I:
 - CLASIFICACION DE VINOS
- > GUION II:
 - PREDICCIÓN DE CALIDAD DE VINOS
 - > CLASIFICACION DEL RIESGO DE ABANDONO DE LOS CLIENTES DE UN BANCO
- GUION III: MAPAS AUTOORGANIZATIVOS(SOM) Y REDES DE FUNCION BASE RADIAL (RBF)
 - > SOM: DETECCION DE CLIENTES FRAUDULENTOS DE UN BANCO
 - > RBF: AJUSTE DE DE UNA FUNCION MATEMATICA

Redes Recurrentes Dinámicas

- > GUION IV:
 - LSTM: PREDICCION DE BOLSA DE LAS ACCIONES DE GOOGLE
- > GUION V:
 - ANALISIS DE SENTIMIENTOS, COMPARACION DE VARIOS MODELOS: FEEDFORWARD, ELMAN Y LSTM

Bibliografía

- Christopher Bishop, Neural networks for pattern recognition, Oxford press, 1995
- Haikyn S. Neural Networks, Macmillan. 1994
- Kohonen T. Clustering, Taxonomi and Topological Features Maps of Patterns. IEEE Proc. 6th international conference on pattern recognition. 1982.
- Kohonen T. Self-Organizing Maps. Springer Series in Information Sciences. V30. 1995.
- Kohonen T. The Self-Organizing Map. IEEE, V7, N9. 1990.
- Masson E, Wang Y. Introduction to Computation and Learning in Artificial Neural Networks. European Journal of Operational Research. No. 47. 1990.
- Deep Learning (Adaptive Computation and Machine Learning Series), Ian Goodfellow, Yoshua Bengio, Aaron Courville, Cambridge, MA, MIT Press, 2017.
- Neural Networks and Deep Learning (A Textbook), C. Aggarwal, Springer Cham, 2018.
- Redes Neuronales: Guia Sencilla de Redes Neuronales Artificiales, Rudolph Russell, Createspace Independent Publishing Platform, 2018.
- **□** The Collection of Computer Science Bibliographies

http://liinwww.ira.uka.de/bibliography/Neural/

Haga clic para agregar texto

1. Introducción a las Redes Neuronales Artificiales

Ma Carmen Pegalajar Jiménez

mcarmen@decsai.ugr.es

Dpto. de Ciencias de la Computación e IA Universidad de Granada

Contenidos

- 1. Conceptos Básicos
- 2. La Estructura Neuronal Biológica
- 3. La Neurona Artificial
- 4. Arquitecturas o Topologías
- 5. Fases de Procesamiento
- 6. Construcción de Modelos
- Aplicaciones
- 8. Resumen

1. Conceptos Básicos sobre Redes Neuronales Artificiales

OBJETIVOS:

Tener una idea de que es una Red Neuronal

- Sus componentes,
- Su funcionamiento, y
- Cómo y para qué se usa.
- Ejemplos de aplicaciones

Redes Neuronales Artificiales y Cerebro

Las RNA intentan imitar las capacidades y comportamiento del cerebro

Paul MacLean (1990). Tres niveles interconectados, su funcionamiento en red forman el cerebro humano en sí:

El cerebro triuno

Neocortex

Cerebro de la razón

Nos permite analizar la información, resolver los problemas, planificar, desarrollar ideas, teorias...

Cerebro mamífero

Cerebro de las emociones

Nos dice lo que nos gusta y lo que no, hacia quien generamos afecto, hacia qué cosas nos sentimos atraídos, y qué recuerdos nos hacen sentimos más tristes o más alegres.

Cerebro reptiliano

Cerebro de los instintos

Se encarga de nuestras funciones corporales básicas, como la respiración, la digestión, el latido cardiaco, y la regulación de la temperatura. Se encarga de responder de forma refleja e instintiva ante las situaciones estresantes y traumáticas.

La teoría del cerebro triuno de MacLean

La teoría del cerebro triuno de MacLean

La teoría del cerebro triuno de MacLean

Un Cerebro en la Cabeza, el corazón y el estómago

Hay células nerviosas con las mismas características que las cerebrales especialmente en el corazón y aparato digestivo

El cerebro en el intestino

- Cuenta con cien millones de neuronas
- Sus neuronas actúan también en la regulación de funciones cognitivas emocionales e intelectuales
- Mas de tres cuartas partes de la serotonina (hormona de la felicidad) las produce el "cerebro intestinal"

El corazón

- Investigaciones recientes han demostrado que el corazón cuenta con también con estas células (40.000 neuronas).
- Posee una compleja red de neurotransmisores.
- El corazón es el único órgano que envía más información al cerebro de la que recibe.

El corazón

- Es capaz de **influir** en nuestras percepciones y reacciones y de equilibrar nuestro estado emocional
- Su campo electromagnético es 5000 veces más intenso que el del cerebro, puede extender esta energía entre dos y cuatro metros en torno al cuerpo.

La consciencia...¿Máquinas conscientes?

- http://theconversation.com/will-artificial-intelligence-becomeconscious-87231
- https://en.wikipedia.org/wiki/Artificial_consciousness

LaMDA (Modelo de Lenguaje para Aplicaciones de Diálogo)

- Sistema de Inteligencia Artificial de Google (modelo de lenguaje experimental)(2017)
- Blake Lemoine (Junio 2022) ingeniero de Google, afirmó que tenia consciencia. Fue despedido en Julio
- LaMDA es un cerebro artificial, está alojado en la nube, su alimentación son billones de textos, se autoentrena.
- Su tecnología se basa en Transformers (Deep Learning), es decir, un entramado de redes neuronales artificiales profundas.
- El aprendizaje es por objetivo (supervisado) y se plantea como un juego.
- Se autoentrena quitando palabras. Identifica el significado de cada palabra y pone atención a las palabras que la rodean
- Así se vuelve especialista en predecir patrones y palabras (parecido pero mucho más compleja que la aplicación de los móviles)

LaMDA

- https://codigoespagueti.com/noticias/tecnologia/comofunciona-lamda-la-inteligencia-artificial-de-google-quesupuestamente-cobro-consciencia/
- https://maldita.es/malditatecnologia/20220804/inteligencia -artificial-lamda-google-conciencia/
- https://cajundiscordian.medium.com/what-is-lamda-and-what-does-it-want-688632134489
- https://tecreview.tec.mx/2022/06/15/tecnologia/que-eslamda/

1.1 Cerebro vs Máquinas

> El Cerebro

- Reconocimiento de patrones
- Asociación(Engramas)
- Complejidad
- Tolerancia al ruido

> La Máquina

- Velocidad de cálculo
- Precisión
- Lógica

1.2 Diferencias en la Arquitectura

Cerebro:

- 10 billones unidades(neuronas)
- Varios miles de interconexiones
- Cientos de operaciones por segundo
- Precisión

Máquina de Von Neumann:

- Única unidad de proceso
- Millones de operaciones por segundo
- Precisión aritmética
- Las operaciones se realizan en serie

2. La estructura neuronal biológica

- Cuerpo celular: núcleo de la neurona
- Dendritas: estructura ramificada (recepción información)
- Axón: estructura lineal(transmisión de la información)
- Neuritas: estructura ramificada (emisión de la información)

2. La estructura neuronal biológica

- Transmisión: Multitud de señales electroquímicas se propagan desde la entrada dendrítica, a través del cuerpo celular, y finalmente por el axón a otras neuronas.
- Cada pulso de luz en este video representan información transmitida desde una parte del cerebro a otro en una persona real y ha sido capturada en tiempo real.

https://www.youtube.com/watch?v=zMM4ywUutpg

2. La estructura neuronal biológica

> Sinapsis:

- > Son las conexiones desde el axón a otras dendritas
- Buenas conexiones permiten una buena transmisión
- Conexiones deficientes sólo permiten una transmisión débil.
- La sinapsis pueden ser excitatorias o inhibitorias

2. La estructura neuronal biológica: Resumen Funcionamiento

- El cerebro está constituido por muchos elementos (neuronas) más simples conectados entre sí.
- Las neuronas se comunican entre sí mediante conexiones de diferente fuerza
- Cada neurona recibe diferentes señales de entrada de fuentes externas o de otras neuronas, y las utiliza para calcular una salida que se propaga a otras unidades o hacia fuentes externas.
- Este proceso se realiza en paralelo

3. La neurona artificial

- Cada neurona recibe diferentes señales de entrada (x1, x2,...) de fuentes externas o de otras neuronas.
- Cada señal de entrada se multiplica por un valor, denominado peso, que da una idea de la fuerza de dicha conexión (w1, w2, ...)
- ▶ La neurona calcula una salida, usando ∑ y f

3. La neurona artificial:

3.1 La entrada neta

La señal total de entrada a una unidad se denomina entrada neta.

> Se suele calcular como:

$$neta = \sum_{i} w_{i} x_{i}$$

3.2 La función de activación Definición

La función de activación calcula la salida de la neurona en función de su entrada:

$$y = f(neta)$$

En algunos casos, la función de activación también depende de la activación anterior

$$y_t = f(neta, y_{t-1})$$

3.2 La función de activación:

3.2.1 La función umbral

Función Umbral: Se corresponde con el paradigma que dice que si la entrada a una neurona supera un cierto umbral, ésta se "dispara"(se activa):

3.2 La función de activación:

3.2.1 Funciones en forma de "S"

En las neuronas biológicas, la información no es todo-nada:

3.2 La función de activación:

3.2.1 Otras alternativas

En las neuronas biológicas, la información no es todo-nada:

Función rampa

Función lineal identidad

Func. semilineal

3.3 Conexiones entre las unidades

- Cada conexión entre dos neuronas tiene asignado un peso, que indica la fuerza de dicha conexión (positiva, negativa o nula).
- La información de la RNA reside habitualmente en los pesos de las conexiones.
- Los pesos positivos se consideran conexiones excitatorias, los pesos negativos inhibitorias y los pesos nulos se consideran conexiones inexistentes.

4 Arquitecturas o Topología

> ¿Cómo se conectan las neuronas entre sí?

¿Son simétricas las conexiones?

¿Existen grupos de neuronas con funcionalidad similar?

- ¿Cuál es la función de activación de cada neurona?
- ¿Son todas las neuronas iguales?

4.1 Actualización de la actividad neuronal

Síncrono: Todas las neuronas se actualizan a la vez

Asíncrono: Se actualizan una a una

- Aleatorio: de forma aleatoria
- Ordenado: siguiendo un orden
- > Síncrono por capas:
 - Síncrono pero capa a capa

4.2 Arquitecturas Arquitecturas más usuales

> Arquitecturas en capas

- Perceptron Simple y Multicapa
- Redes RBF
- Redes SOM

> Arquitecturas Recurrentes:

- Redes de Hopfield
- Redes de Elman, Jordan

> Arquitecturas mixtas:

Redes BAM

4.3 Arquitecturas Arquitectura en capas

- Capa de entrada: Permite introducir valores a la red. No realiza ningún procesamiento
- Capa(s) oculta(s): No son visibles desde el exterior
- Capa de Salida: Su salida es visible desde el exterior

5 Fases de procesamiento

□ Fase de aprendizaje:

- la red es entrenada para que responda de una manera determinada.
- Esta operación es fundamental ya que de ella depende que el rendimiento obtenido sea óptimo.

□ Fase de presentación:

una vez que la red está entrenada, la red se utiliza en las tareas deseadas.

5.1 Fase de Aprendizaje

El aprendizaje consiste en modificar los pesos de la red neuronal para que realice la función deseada

- Fundamentalmente hay dos tipos de aprendizaje:
 - Supervisado
 - No supervisado

5.1.1. Aprendizaje Supervisado

- > Se le indica a la red cuando actúa bien.
- Utiliza un conjunto de pares de entrada/salida
- Una vez que la red está entrenada, es capaz de suministrar la salida correcta para una cierta entrada.
- Se suele utilizar para labores de clasificación y/o regresión

5.1.2. Aprendizaje No Supervisado

Solo se proporciona a la red un conjunto de datos de entrada. La red debe autoorganizarse con los datos de entrada.

Este tipo de aprendizaje es útil para las tareas de agrupamiento (clustering).

5.2 Fase de Presentación

La presentación consiste en modificar las activaciones de las neuronas de la red.

No existe modificación de pesos.

Hay Redes Neuronales donde la fases de entrenamiento y presentación coinciden.

5.3 Taxonomía del aprendizaje en Redes Neuronales

Aprendizaje Supervisado	Aprendizaje No Supervisado
Perceptron (Simple/Multicapa)	Mapas Autoorganizativos de Kohonen
Modelos Temporales Dinámicos (LSTM, ELMAN, GRU,etc)	Redes de Resonancia adaptativa (ART)
Funciones de Base Radial(RBF)	Otros
Otros	

6 Construcción de Modelos6.1 Pasos a Seguir

- Obtención de Bases de Datos
 - Reunir los Datos de Entrenamiento y Test
- Preprocesamiento de los datos
 - Datos aislados, datos incompletos, etc.
 - Extracción de características
- Diseño de la Red Neuronal
 - > Definir la arquitectura de la red
- Definición del Entrenamiento de la Red
- Validación del Modelo Neuronal
- Utilización Real del Sistema

6.2 Diseño de la Red Neuronal

- Elegir la Red más adecuada
- Definir número de capas, unidades por capa:
 - Número de unidades de entrada y de salida están definidas generalmente por el propio problema.
 - Número de unidades ocultas (unidades ocultas) definidas por el diseñador
- La Función Activación de la capa de salida definida por el rango de los datos de salida.

6.3 Definición del Entrenamiento de la Red

- > Depende de la arquitectura.
 - Elegir (supervisado/no supervisado)
- Decidir cuantos patrones de entrenamiento se van a utilizar de los totales
- Decidir Algoritmo de Entrenamiento
- Si es un algoritmo iterativo (número de iteraciones, error total, % aciertos, etc.)

7. Aplicaciones

Aeroespaciales:

- Simuladores de trayectoria de vuelos
- Sistemas de control de aviones
- > Piloto automático, etc

Automóviles:

- Sistema de guiado automático
- > Análisis de actividad de garantía
- Aparcamiento

7. Aplicaciones

Defensa

- Dirección de armas
- Seguimiento de objetivos
- Discriminación de objetos,
- Reconocimiento de caras,
- Procesamiento de señales de imagen que incluye la compresión de datos,
- Extracción de características y supresión de ruido e identificación de señales

7. Aplicaciones

Medicina:

- Análisis de células de cáncer,
- Análisis de señal ECG y EEG
- Diseño de prótesis,
- Reducción de gastos de hospitales y mejora de la calidad del hospital,

Resumen

- Las RNA se basan en un modelo simplificado del cerebro humano.
- La fase de entrenamiento modifica los pesos a partir de un conjunto de ejemplos, aprendiendo de ellos
- La fase de presentación modifica las activaciones de la red, respondiendo tal y como aprendió
- Las redes tienen una gran potencialidad de aplicación.