Oesophagus

Prof. N. M. Devanarayana

Oesophagus

Muscular tube, approximately 25 cm long

 Wall similar to the rest of the GIT (mucosa, submucosa, muscle layer & serosa)

Upper (UOS) and lower oesophageal (LOS) sphincters at either end

Innervation-

 Striated muscles in the proximal oesophagus -Motor nerves in the vagus which originates in the brain stem

- Smooth muscles in the distal oesophagus -Autonomic innervation via the parasympathetic and sympathetic nervous systems
- All parasympathetic input to the oesophagus is provided via the vagus nerve

Main function of the oesophagus

Transport food to the stomach

Functions of the sphincters

- Keep oesophagus empty between swallows
- Prevent regurgitation of stomach contents to oesophagus

Objectives

- Describe the main motility pattern of the oesophagus
- Describe the anti-reflux mechanisms that operate at the lower oesophageal sphincter
- Outline the disorders caused by oesophageal dysfunction
 - Dysphagia
 - Gastro-oesophageal reflux disease
 - Achalasia

Oesophageal motility

- Food is transported by peristalsis and by gravity
- The LOS relaxes to allow food to pass into stomach
- LOS has a resting pressure which is approximately 15mmHg higher than the intragastric pressure

Time (s)

Lower oesophageal sphincter-

Factors maintaining the ant-reflux barrier

- Intrinsic muscles of the distal oesophagus (smooth)
- Sling fibres of the proximal stomach
- Crural diaphragm (striated)
- Intra-abdominal pressure compressing lowest part of oesophagus
- Angle between lower oesophagus and stomach
- Mucosal folds at gastro-oesophageal junction

All the above factors contribute to oesophagogastric junction pressure.

Lower oesophageal sphicter cont...

Lower oesophageal sphincter cont...

Lowe oesophageal spincter cont...

During inspiration

 Intragastric pressure increases & intraoesophageal pressure decreases

Tendency to reflux more

 Contraction of the crural diaphragm during inspiration increases oesophago-gastric junction pressure preventing reflux Muscle tone of the intrinsic muscles of the distal oesophagus is the result of neurogenic (mainly cholinergic) and myogenic mechanisms

Oesophageal motility-

- In order to transport food to the stomach there are two types of peristalsis.
- Primary peristalsis- co-ordinated by vagal fibres
 - Is initiated by swallowing
 - The circular muscle layer contracts around the top of the food bolus
 - The longitudinal muscle fibres below the bolus contract, shortening the oesophagus
 - As a result food moves towards the stomach
- Secondary perstalsis- co-ordinated by ENS
 - Is initiated by distension of the oesophagus
 - caused by retained materials (food, refluxed material)

Dysphagia- difficulty in swallowing

- Dysphagia can be due to oropharyngeal causes or oesophageal causes
 - structural abnormalities
 - e.g tumors, strictures in to esophagus
 - motor abnormalities
 - neurogenic or muscular disorders affecting normal oropharyngeal contractions / oesophageal peristalsis and sphincter functions (e.g. achalasia)

Achalasia

Damaged myenteric plexus in lower oesophagus

Lower oesophagal sphincter fail to relax

Achalasia

Gastroesophageal reflux

Retrograde movement of gastric contents through the LOS to the oesophagus.

Physiological reflux-

- occurs mainly after meals (infrequent during sleep)
- does not cause symptoms
- short duration of reflux episodes

Pathological reflux- cause GORD

- frequent reflux episodes of longer duration
- may produce symptoms and inflammation/mucosal injury of the oesophagus

Aetiology-

- Incompetent lower oesophageal sphincter
- 2. Transient lower oesophageal sphincter relaxations
- 3. Deficient oesophageal acid clearance (abnormalities in oesophageal motility)
- 4. Gastric abnormalities increasing intra-gastric pressure (e.g gastric outlet obstruction, delayed gastric emptying)

Efficacy of the LOS depends on many factors-

- 1. LOS basal pressure can be reduced by
 - Fat, caffeine, chocolate
 - Nicotine, Alcohol
 - Drugs such as anticholinergics, beta adrenoceptor agonists, calcium channel blockers
 - Hormones such as progesterone

2. Length of the intraabdominal segment of the LOS

3. Overall LOS length e.g. hiatus hernia

Investigations for GORD

pH impedance study

Upper GI endoscopy

Oesophageal manometry

pH impedance - Swallow

Antegrade bolus movement

pH impedance - Reflux

Endoscopy - oesophagitis

Oesopheal manometry – transient relaxation of lower oesophageal sphincter

Physiological basis of GORD management

- Reduce acidity of the gastric juice
 - Antacids
 - H₂ receptor blockers
 - Proton pump inhibitors
- Increase gastric emptying
 - Prokinetic drugs
 - Avoid high fat diet
- Decrease risk factors alcohol, smoking, stress etc.
- ?Increase LOS pressure
- ?Improve Oesophageal peristalsis

H2 receptor blockers

https://www.youtube.com/watch?v=KAfnI PYN0X0