Welcome to Data Bootcamp

Joseph Adler, Drew Conway, Jake Hofman, Hilary Mason

February 1, 2011

Getting the code

All of the slides, code and images from today's tutorial are available on Github:

https://github.com/drewconway/strata_bootcamp

The play the home game

\$ git clone https://github.com/drewconway/strata_bootcamp

The data science "black box"

The data science "black box"

Fwd: Yahoo! supercomputing cluster RFP - i have no idea. i have no idea. O non urgent - whoops! yes that's what i meant, thanks for decoding my questi-SourceForge.net: variational bayes for network modularity - can i get admin Byline - iPhone Apps, iPhone 3G apps and iPod touch Applications Gallery a Laurence J. Peter: Facts are stubborn things, but statistics are more pliable. Re: JAFOS 2008, Applied Math Session - yes. the listening post dude. On N Access to over 5,000 Health Plan Choices! - Affordable health insurance. Ins More effective - If you are having trouble viewing this email click here. Thurs Special Offer! Cialis, Viagra, VicodinES! - Order all your Favorite Rx~Medica Financial Aid Available: Find Funding for Your Education - Get the financial a Find The Perfect School and Financal Aid for your College Degree - HI! It has **PHARMA viagra PHARMA cialis** - Wanted: web store with remedies. N

Fwd: Yahoo! supercomputing cluster RFP - i have no idea. i have no idea. O non urgent - whoops! yes that's what i meant, thanks for decoding my questi-SourceForge.net: variational bayes for network modularity - can i get admin Byline - iPhone Apps, iPhone 3G apps and iPod touch Applications Gallery a Laurence J. Peter: Facts are stubborn things, but statistics are more pliable. Re: JAFOS 2008, Applied Math Session - yes. the listening post dude. On N Access to over 5,000 Health Plan Choices! - Affordable health insurance. In: More effective - If you are having trouble viewing this email click here. Thurs Special Offer! Cialis, Viagra, VicodinES! - Order all your Favorite Rx~Medica Financial Aid Available: Find Funding for Your Education - Get the financial a Find The Perfect School and Financal Aid for your College Degree - HI! It has **PHARMA viagra PHARMA cialis** - Wanted: web store with remedies. N

- ► How did you solve this problem?
- Can you make this process explicit (e.g. write code to do so)?

- We learn quickly from few, relatively unstructured examples ... but we don't understand how we accomplish this
- Can we develop algorithms that enable machines to learn by example from large data sets?

Common applications

- ▶ Effective/practical algorithms exist, and impact our daily lives
- ▶ Entire industries built around these techniques, e.g.:
 - Spam detection (Email)
 - ► Information retrieval (Search)
 - ▶ Recommendation Systems ("You might also like ...")
 - Fraud detection (Identity theft)
 - Face recognition (Camera auto-focus)
 - Optical character recognition (Mail routing via ZIP codes)

Netflix prize

- ▶ \$1M for a 10% improvement in predicted rating
- More than 1000 submissions over 2.5 years
- ▶ Top two teams within 0.01% of each other (winners announced soon)

- Many fields ...
 - Statistics
 - ▶ Pattern recognition
 - Data mining
 - Machine learning
- ... similar goals
 - Extract and recognize patterns in data
 - Interpret or explain observations
 - Test validity of hypotheses
 - Efficiently search the space of hypotheses
 - Design efficient algorithms enabling machines to learn from data

Philosophy

- ▶ We would like models that:
 - Provide predictive and explanatory power
 - Are complex enough to describe observed phenomena
 - ▶ Are simple enough to generalize to future observations

Philosophy

- We would like models that:
 - Provide predictive and explanatory power
 - Are complex enough to describe observed phenomena
 - ▶ Are simple enough to generalize to future observations

- ► How can we quantify an "optimal" model
 - ► What to optimize?
 - ► How to optimize it?

1. Get data

Ped: Yahod supercomputing cluster IFFP - I have no idea. I have no idea. I have no idea. On our uput-+ whospi yes than's which inswert private to decoding up grassed Society from it was considerable years for relationable years for selection of the property of the prope

- 1. Get data
- 2. Visualize/perform sanity checks
- 3. Clean/filter observations
- 4. Choose features to represent data

Peut Yahod Supercomputing dualer RFP - How the Mass Television of Sec. 20 and agent - Annione yes that what I make it described you can be obtained by a seal of the sec. 20 and 20 and

- 1. Get data
- 2. Visualize/perform sanity checks
- 3. Clean/filter observations
- 4. Choose features to represent data
- 5. Specify model
- 6. Specify loss function

First Yelloof approximating duster RPP - How no lists. How no lists is no lists to consigned - window yet that what it must be thought you ask country great - window yet to relative handles, and yet all resistantly plane. How no region of some 100 per and Port board Applications Gelley - higher - How no region - 100 per and Port board Applications Gelley - window of the RPP - 100 per and Port board Applications Gelley - window - 100 per and Port board Applications Gelley - window - 100 per and Port board - 100 per and Port board - 100 per and Port board - 100 per and 100 per

- 1. Get data
- 2. Visualize/perform sanity checks
- 3. Clean/filter observations
- 4. Choose features to represent data
- 5. Specify model
- 6. Specify loss function
- 7. Develop algorithm to minimize loss

Pact Yakod approximating dualer RPF - There in clies I have in olies. On our opport- viscolery by their what I have in the State Strategies and the control programs of the control programs of the control programs of the State St

- 1. Get data
- 2. Visualize/perform sanity checks
- 3. Clean/filter observations
- 4. Choose features to represent data
- 5. Specify model
- 6. Specify loss function
- 7. Develop algorithm to minimize loss
- 8. Choose performance measure
- 9. "Train" to minimize loss
- 10. "Test" to evaluate generalization

Field Yallood supercomputing dualet RFP. I have no data. I have no data. On our urgant-whospity as that what I marks thanks for decoding my assistance of the supercomputing of

- Supervised
 - Linear regression
 - Classification / regression trees
 - ► Logistic regression
 - Naive Bayes
 - k-nearest neighbors
 - Support vector machines
 - Boosting

- Unsupervised
 - K-means
 - Mixture models
 - Principal components analysis
 - ► Factor analysis
 - Topic models
 - Collaborative filtering

- Supervised
 - Linear regression
 - Classification / regression trees
 - ► Logistic regression
 - Naive Bayes
 - k-nearest neighbors
 - Support vector machines
 - Boosting
 - Data representation: feature space, selection, normalization
 - ► Model assessment: complexity control, cross-validation, ROC curve, Bayesian Occam's razor, information-theoretic measures

- Unsupervised
 - K-means
 - Mixture models
 - Principal components analysis
 - Factor analysis
 - Topic models
 - Collaborative filtering

- Supervised
 - Linear regression
 - Classification / regression trees
 - ► Logistic regression
 - Naive Bayes
 - k-nearest neighbors
 - Support vector machines
 - Boosting
 - Data representation: feature space, selection, normalization
 - Model assessment: complexity control, cross-validation, ROC curve, Bayesian Occam's razor, information-theoretic measures
 - Probabilistic inference: graphical models, variational methods, sampling
 - ► Large-scale learning (?)

- Unsupervised
 - K-means
 - ► Mixture models
 - Principal components analysis
 - Factor analysis
 - ► Topic models
 - Collaborative filtering

► Simple approaches often do surprisingly well for large problems

Web service APIs expose vast amounts of data

Many free, public data sets available online

- Scripting: Python, Ruby, Perl, bash, ...
- Computing: R, SciPy/NumPy, MATLAB, ...
- Wrangling: sed, awk, grep, tr, wc, cut, sort, uniq,

- Scripting: Python, Ruby, Perl, bash, ...
- Computing: R, SciPy/NumPy, MATLAB, ...
- Wrangling: sed, awk, grep, tr, wc, cut, sort, uniq,
 - \$ tr , '\t' < data.csv > data.tsv

- Scripting: Python, Ruby, Perl, bash, ...
- Computing: R, SciPy/NumPy, MATLAB, ...
- Wrangling: sed, awk, grep, tr, wc, cut, sort, uniq,
 - \$ tr , '\t' < data.csv > data.tsv
 - \$ bzcat data.tsv.bz2 | awk -F'\t' 'NF != 16 {print}'

- Scripting: Python, Ruby, Perl, bash, ...
- Computing: R, SciPy/NumPy, MATLAB, ...
- Wrangling: sed, awk, grep, tr, wc, cut, sort, uniq,
 - \$ tr , '\t' < data.csv > data.tsv
 - \$ bzcat data.tsv.bz2 | awk -F'\t' 'NF != 16 {print}'