Министерство науки и высшего образования Российской Федерации

Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования

Национальный ядерный университет «МИФИ»

Кафедра: «Финансовый мониторинг»

Отчет по Лабораторной работе №3:

Студент Монастырский М. О.

Группа С21-703

Проверила: Домашова Д. В.

Оглавление

3
4
5
_
7
8
. 13
. 15

Введение

Предположение классической линейной модели множественной регрессии, касающееся некоррелированности регрессионных остатков может нарушаться в случаях неверной спецификации (параметризации) модели и, как правило, нарушается при анализе данных, имеющих характер временных рядов.

Линейные модели множественной регрессии с коррелированными остатками классифицируются, как обобщенные линейные модели множественной регрессии (ОЛММР). МНК-оценки такой модели несмещены, состоятельны, но неэффективны.

ОМНК-оценки параметров ОЛММР эффективны, но для их построения требуется оценка ковариационной матрицы вектора регрессионных остатков. В лабораторной работе рассмотрены примеры построения параметров ОЛММР в случае автокорреляционной зависимости первого порядка между регрессионными остатками.

Цель работы заключается в формировании навыков исследования регрессионных моделей с коррелированными остатками.

Постановка задачи

По показателям субъектов РФ:

X_2	Смертность населения старше трудоспособного возраста, на 100 000 человек
	населения соответствующего возраста
X_4	Средняя Стоимость минимального (условного) набора потребительских товаров
	и услуг
<i>X</i> ₆	Доходы консолидированных бюджетов субъектов Российской Федерации / на
	тыс населения
<i>X</i> ₇	Предварительно расследовано преступлений, совершенных в состоянии алкогольного опьянения/ на тыс населения
<i>X</i> ₈	Среднедушевые доходы населения (в месяц), руб.

По данным Приложения А:

- 1) построить МНК-оценки коэффициентов линейной модели множественной регрессии;
 - 2) исследовать регрессионные остатки на наличие автокорреляции;
- 3) используя процедуру Кохрейна-Оркатта, построить ОМНК-оценки параметров ОЛММР с автокоррелированными остатками.

МНК-оценки коэффициентов

Для оценки параметров регрессионной модели воспользуемся методом пошаговой регрессии (методом исключения переменных). Процедура построения уравнения множественной регрессии более подробно рассмотрена в лабораторной работе №1.

Результаты представлены ниже:

	Regression Summary for Dependent Variable: Ожидаемая продолжительность жизни граждан (у) (Лист1 in Сгруппированные данные.stw) R= ,91869466 R?= ,84399988 Adjusted R?= ,83412646 F(5,79)=85,482 p										
N=8 5	b* Std.Err. of b*		h^ I I h I		t(79)	p-value					
Inte rcep t			94,72383	7,621322	12,4288	0,000000					
X2	-0,658366	0,056911	-0,01217	0,001052	-11,5683	0,000000					
X4	-0,092263	0,045297	-0,14151	0,069478	-2,0368	0,045017					
X6	-0,173732	0,081097	-0,00620	0,002894	-2,1423	0,035251					
X7	-0,291172	0,066531	-0,56217	0,128453	-4,3765	0,000037					
X8	0,181160	0,071882	0,00003	0,000010	2,5203	0,013742					

Так как для значения F=85,482 и p-value <0.05, то отклоняется гипотеза H0 о незначимости модели, следовательно, модель значима. Перейдем к исследованию регрессионных остатков. Проверим нормальность характера распределения регрессионных остатков:

Результаты формальной проверки гипотезы о нормальном характере распределения регрессионных остатков позволяют её принять, и есть смыл проводить дальнейший анализ построенного уравнения множественной регрессии. Оценка уравнения регрессии выглядит следующим образом:

$$y = 94,7238_{(7,6213)} - 0,0122_{(0,0011)}x_2 - 0,1415_{(0,0695)}x_4 - 0,0062_{(0,0029)}x_6 - 0,5622_{(0,1285)}x_7 + 0,00003_{(0,00001)}x_8$$

Определение наличия автокорреляции

Для визуального анализа регрессионных остатков построим график с использованием MS Excel.

По графикам нельзя предположить наличие автокорреляции. Проведем тест Дарбина-Уотсона.

	Durbin-Watson d (Лист1 in Сгруппированные данные.stw) and serial correlation of residuals								
	Durbin-	Serial							
	Watson d	Corr.							
Estimate	2,198834	-0,099725							

Для расчета критического значения воспользуемся таблицей значений статистики Дарбина-Уотсона. В нашем случае для n=85, k=5 получаем $d_H=1,52$ $d_B=1,77$

Так как dв < DW< 4 - dв, то нулевую гипотезу об отсутствии автокорреляции первого порядка ($H0: \rho=0$) принимаем

Построение обобщенной линейной модели множественной регрессии

Как известно, ОМНК-оценки параметров уравнения регрессии: $b = \left(X^T \hat{\varSigma}_0^{-1} X\right)^{-1} X^T \hat{\varSigma}_0^{-1} \overline{Y} \ . \text{При наличии автокорреляции первого порядка матрица} \ \Sigma_0^{-1}$ будет иметь вид:

$$\Sigma_0^{-1} = \frac{1}{1 - \rho^2} \begin{bmatrix} 1 & -\rho & \dots & 0 \\ -\rho & 1 + \rho^2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Таким образом, задача сводится к оцениванию параметра $^{\rho}$. Для решения этой задачи воспользуемся процедурой Кохрейна—Оркатта.

На первой итерации находятся оценки коэффициентов уравнения регрессии и рассчитываются значения регрессионных остатков $e_i^{(1)}$, которые нами уже были найдены при построении модели. Оценим неизвестный параметр ρ модели регрессии $e_i^{(1)} = \rho e_{i-1}^{(1)} + \delta_i^{(1)}$, $i = \overline{1,88}$.

Построим регрессионную модель зависимости переменной e_i от e_{i-1} без включения свободного члена и найдем первое приближение значения ρ . Аналогичного результата можно добиться с помощью формулы

$$\hat{\rho}^{(1)} = \begin{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_{n-1} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_{n-1} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} e_1 \\ e_2 \\ \dots \\ e_{n-1} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} e_2 \\ e_3 \\ \dots \\ e_n \end{pmatrix} = \frac{\sum_{i=2}^n e_i e_{i-1}}{\sum_{i=1}^{n-1} e_i^2}.$$

	Regression Summary for Dependent Variable: ei (у) (Лист1 in остатки) R= ,10110120 R?= ,01022145 Adjusted R?= F(1,83)=,85714 p									
N=84	84 b* Std.Err. b Std.Err. of b* of b t(83) p-value									
ei-1 (x)	-0,101101	0,109202	-0,101150	0,109255	-0,925820	0,357224				

Построим матрицу \sum_0^{-1} в MS Excel.

Найдем b-ОМНК оценки по формуле $b = (X^T \sum_{0}^{-1} X)^{-1} X^T \sum_{0}^{-1} Y$.

омнк		
b0	93,90015	
b1	-0,01229	
b6	-0,1334	
b7	-0,00581	
b8	-0,55118	
b9	2,48E-05	

Вычислим новые значения зависимых переменных и регрессионные остатки для второй итерации процедуры Кохрейна-Оркатта.

y +	e+
70,19088	-0,23088
68,35815	-0,18815
70,53197	0,398026
72,78306	-0,98306
73,3466	-0,3166
70,40743	0,812566
70,33611	0,463894
72,52994	0,710065
71,24549	0,314509
72,95462	-0,50462
76,82723	1,342773
68,77434	-1,07434
68,34949	-0,59949
71,29275	-0,72275
69,71404	-0,40404
75,64172	-0,13172
73,96124	-0,89124
71,73372	0,746285
70,5495	-1,7795
75,15796	0,162041
69,21825	0,421751
71,64823	-0,33823
71,80454	-1,90454
73,57206	-0,65206
71,76952	-1,18952
70,1721	-0,2921
71,71641	-0,17641
72,70593	0,624071
71,68305	0,436954
70,19963	-1,74963
73,93374	-0,15374
71,18159	-1,02159
69,55781	1,182192
71,68416	-0,19416
69,88981	0,560191
72 12751	-0.63751

Оценим неизвестный параметр ρ модели регрессии второй итерации $e_i^{(2)} = \rho e_{i-1}^{(2)} + \delta_i^{(2)}$, $i=\overline{1,n}$, при этом в модель не включаем свободный член.

	1 0	Regression Summary for Dependent Variable: e2i (y) (Лист1 in остатки) R= ,10797180 R?= ,01165791 adjusted R?= F(1,83)=,97902 p									
	Std Frr Std Frr										
N=84	b*	of b*	b	of b	t(83)	p-value					
e2i-1 (x)	-0,107972	0,109123	-0,108011	0,109162	-0,989454	0,325317					

желаемая точность не достигнута delta >0.05

Проводя третью итерацию, мы не можем получить значения в STATISTICA в силу малости регрессионных остатков

Однако r3 при этом, согласно расчетам, MS EXCEL составляет: 0,590846

В силу величины дельта вынуждены проводить 4 и 5 итерации

C r4 = r5 = 0.949904

Итого получаем

-0,10105		-0,10793		R3	R3		R4		R5	
				0,59084	16	0,949904		0,949904		
р омнк	93,900	р	2	р	3	р	4	р	5	
b0	15	- Civilia	93,900		93,900		93,900		93,900	
b1	-0,01229	b0	15	b0	15	b0	15	b0	15	
b6	-0,1334		0,0122		0,0122		0,0122		0,0122	
	0,0058	b1	9	b1	9	b1	9	b1	9	
b7	1	b6	-0,1334	b6	-0,1334	b6	-0,1334	b6	-0,1334	
	0,5511		0,0058		0,0058		0,0058		0,0058	
b8	8	b7	1	b7	1	b7	1	b7	1	
b9	2,48E- 05		- 0,5511		0,5511		0,5511		- 0,5511	
		b8	8	b8	8	b8	8	b8	8	
			2,48E-		2,48E-		2,48E-		2,48E-	
		b9	05	b9	05	b9	05	b9	05	

	Regression Summary for Dependent Variable: Y (Лист1 in ИТОГ) R=1,00000000 R?=1,00000000 Adjusted R?=1,00000000 F(5,79)= p< Std.Error of estimate:										
N=85	b*	Std.Err. of b*	b	Std.Err. of b	t(79)	p-value					
Interc ept			93,90015								
X2	-0,725584		-0,01229								
X4	-0,094926		-0,13340								
X6	-0,177657		-0,00581								
X7	-0,311592		-0,55118								
X8	0,187524	_	0,00002								

Вывод

В ходе работы была построена модель линейной множественной регрессии. Затем было проведено исследование модели на наличие автокорреляции с помощью теста Дарбина-Уотсона, была устранена автокорреляция процедурой Кохрейна-Оркатта. В результате получена следующая модель:

$$\hat{y} = 93,90015 - 0,01229x_2 - 0,13340x_4 - 0,00581x_6 - 0,55118x_7 + 0,00002x_8$$

X_2	Смертность населения старше трудоспособного возраста, на 100 000 человек
	населения соответствующего возраста
X_4	Средняя Стоимость минимального (условного) набора потребительских товаров
	и услуг
X_6	Доходы консолидированных бюджетов субъектов Российской Федерации / на
	тыс населения
<i>X</i> ₇	Предварительно расследовано преступлений, совершенных в состоянии алкогольного опьянения/ на тыс населения
<i>X</i> ₈	
Λ8	Среднедушевые доходы населения (в месяц), руб.

При повышении Смертности населения старше трудоспособного возраста, на 100 000 человек населения соответствующего возраста на 1 у.е. падение ожидаемого срока жизни составит 0,01229 лет

При повышении средней стоимости минимального набора потребительских товаров и услуг на один рубль продолжительность жизни уменьшится на 0,13340 год

При повышении доходов субъекта на 1 миллион на тысячу населения продолжительность жизни уменьшится на 0,00581 лет

При повышении количества преступлений совершенных в состоянии алкогольного опьянения на 1 преступление на тысячу населения продолжительность жизни упадет на 0,55118 лет

При росте среднедушевых доходов населения на 1 рубль продолжительность жизни увеличится на 0,00002 года

Приложение А

Наименование	X1	X2	Х3	X4	X5	X6	X7	X8	X9	Ожидаемая
										продолжительность
										жизни граждан (у)
Алтайский край	107,2	610,1	0,549898	112	2,33651	10,43	3,361268	26010	243	69,96
Амурская область	150,2	769,2	1,013971	109,5	2,49117	99,643	3,414995	39626	194	68,17
Архангельская область без автономного округа	76,1	629,2	1,325179	108,4	1,94749	75,683	3,030572	37810	180	70,93
Астраханская область	97,9	489,8	0,543408	109	1,41171	41,659	1,775376	26833	294	71,8
Белгородская область	68,8	487,3	0,521666	108,6	2,85088	50,703	1,204854	35612	311	73,03
Брянская область	49,9	650,3	0,680926	111,7	1,8402	38,769	2,097413	31608	195	71,22
Владимирская область	132,7	667,4	0,979554	111,7	2,04217	38,554	1,828511	28489	182	70,8
-	89,3	509,3	0,470333	109,2	1,55555	32,897	1,828311	27677	233	73,24
Волгоградская область		-	<u> </u>							
Вологодская область	116	573,5	1,275402	110,2	1,42995	46,779	2,579386	31851	164	71,56
Воронежская область	109,6	501,6	0,601278	110	2,49177	39,887	1,349202	35100	380	72,45
г. Москва	59	304,2	0,58464	109,7	1,63174	113,81	0,434851	88831	622	78,17
Еврейская автономная область	130,6	686,1	1,093463	113,3	2,32967	94,174	3,23191	30297	132	67,7
Забайкальский край	93,5	643	0,690535	110,9	1,49728	154,39	4,889239	29827	192	67,75
Ивановская область	101,9	589,7	0,89687	109,2	1,78047	39,758	2,305801	28680	252	70,57
Иркутская область	100,1	689,8	0,759589	109,9	1,44016	22,261	3,027311	30346	273	69,31
Кабардино-Балкарская Республика	60,1	304,4	0,107103	110,2	1,69949	29,491	0,521132	25929	175	75,51
Калининградская область	84,2	392,1	0,81015	111,4	1,61099	46,187	1,421009	32010	206	73,07
Калужская область	102,9	589,1	0,863577	110,1	0,66788	47,724	1,502724	35028	182	72,48
Камчатский край	125,9	621,5	1,280225	107,6	1,73059	201,42	3,072403	60794	144	68,77
Карачаево-Черкесская Республика	97,7	325,6	0,191565	108,1	1,29914	44,14	1,034623	20473	225	75,32
Кемеровская область — Кузбасс	95,8	713,7	0,682603	108,8	2,08207	68,192	3,072719	28048	173	69,64
Кировская область	131,9	514,6	1,064055	109,1	1,61064	44,179	3,222157	26649	222	71,31
Костромская область	122,6	541,4	1,042703	109	2,03149	44,535	2,447178	28560	171	69,9
Краснодарский край	99,7	493,5	0,54857	109,5	1,45854	37,656	0,919032	43217	173	72,92
Красноярский край	95	547,3	0,71587	110,3	1,64227	30,712	2,548638	36090	230	70,58
Курганская область	106,3	620,6	0,56561	107,3	2,78503	43,825	3,845056	23747	185	69,88

Курская область	108,1	597,3	0,579529	107,6	1,71174	43,989	1,891674	32715	346	71,54
Ленинградская область	99,3	547,5	1,11187	107,8	1,45665	47,093	1,311732	36847	32	73,33
Липецкая область	94,9	602,3	0,6074	109,6	2,56933	40,77	1,498849	35124	162	72,12
Магаданская область	131	683,4	1,442518	108,7	2,19079	204,21	2,938325	80979	186	68,45
Московская область	46,5	475,7	1,052399	110,1	0,6999	52,995	0,828412	53793	86	73,78
Мурманская область	101,2	621,5	1,252627	110,9	1,28707	84,865	1,923051	51183	104	70,16
Ненецкий автономный округ	48,3	593,1	1,316266	108,8	3,30878	393,1	4,347301	86431	0	70,74
Нижегородская область	141,1	587,3	0,806237	110,2	1,62146	45,009	1,749389	37524	279	71,49
Новгородская область	123,2	706	0,963971	107,6	2,22202	48,25	2,579689	29229	154	70,45
Новосибирская область	78,1	561,3	0,563329	110,1	1,3291	43,03	1,468232	35261	352	71,49
Омская область	112,8	532,7	0,490716	108,2	2,1403	61,744	1,758063	29972	396	71,45
Оренбургская область	71,9	589,3	0,590345	110,5	2,12271	42,547	2,470005	26518	223	71,24
Орловская область	88,6	592,6	0,613912	109,5	1,72446	43,866	1,504644	29846	367	70,73
Пензенская область	119,6	756,4	0,641541	108,2	2,67016	39,334	2,106302	26415	244	72,07
Пермский край	73,9	670	0,82388	110,7	1,58895	47,589	2,45952	32747	214	70,9
Приморский край	129,7	609,1	0,992071	109,3	1,58983	52,789	2,145254	40843	235	69,71
Псковская область	108,6	741,3	0,88665	109,8	1,69497	46,871	2,191302	29332	187	68,95
Республика Адыгея (Адыгея)	85,1	441,7	0,422375	107,8	1,83886	33,045	1,005751	34901	285	73,6
Республика Алтай	174,6	600,4	0,729165	110,8	1,6035	74,755	5,982286	23798	124	68,47
Республика Башкортостан	84,9	687,5	0,760954	108	2,44356	37,709	2,287122	32621	243	72,98
Республика Бурятия	96,6	563,9	0,738408	108,7	1,7628	80,816	3,955792	28314	203	69,35
Республика Дагестан	45,2	198,7	0,146795	108,7	1,03178	26,878	0,211047	30260	166	78,22
Республика Ингушетия	42,5	153,1	0,05493	115,7	0,74923	39,499	0,277564	18139	148	78,34
Республика Калмыкия	148	436,7	0,511569	106,6	1,86847	38,457	2,399626	21319	333	73,49
Республика Карелия	103	753,6	1,607147	109,8	2,04855	57,678	3,963164	35173	204	69,03
Республика Коми	111,3	641,4	1,518211	110	1,81408	85,146	4,812438	38880	179	69,94
Республика Крым	79,1	583,1	0,670392	111,7	1,22509	0	1,224046	26357	174	71,97
Республика Марий Эл	98,3	554,9	0,892582	109,6	2,13543	37,004	1,878885	23185	255	71,9
Республика Мордовия	88,1	523,6	0,68392	109,7	2,17541	47,161	1,880457	22906	322	73,16
Республика Саха (Якутия)	73,7	509,4	0,800041	110,6	1,51849	53,808	3,549167	50369	226	72,67
Республика Северная Осетия — Алания	111	402,8	0,111701	108,9	1,7758	35,649	0,790547	25885	294	74,7
Республика Татарстан (Татарстан)	83,8	454,2	0,892709	108,5	1,50418	52,073	1,850605	39679	360	74,92
Республика Тыва	120,3	670	0,290117	109,4	2,04002	154,42	5,935961	20652	178	67,11
Республика Хакасия	89,4	587,3	0,529711	108,8	1,72306	39,454	3,434842	26068	143	70,57
Ростовская область	59,6	478,7	0,427576	109,5	2,01391	37,193	0,96663	35041	313	72
Рязанская область	125,6	581,4	0,662858	109,4	1,84046	42,318	1,390631	30495	261	72,14
Самарская область	90,3	563,1	0,593366	109,6	1,38353	48,935	1,396846	32663	318	72,14
Санкт-Петербург	74,6	394,9	0,734728	110,7	0,96092	74,143	0,453071	57745	577	75,77
Саратовская область	112,3	537,1	0,433379	110,1	1,39166	32,933	1,726236	26228	287	72,85
Сахалинская область	91,5	634,7	1,545312	112,2	1,85636	#ЗНАЧ!	3,706246	63854	104	70,37
Свердловская область	62,4	572,4	0,798462	109,2	1,69684	48,518	2,245599	40275	282	71,31
Севастополь	101,8	403,5	0,746659	108	0,64573	0	1,336678	33013	253	74,57
Смоленская область	94,7	673,2	0,924235	109,6	2,65463	41,907	2,085296	30731	256	70,35

Ставропольский край	82,7	381,6	0,367678	106,5	1,48473	31,741	0,735977	26190	224	74,29
Тамбовская область	100,9	525,4	0,515775	110,5	3,69688	45,266	2,273029	30241	301	72,01
Тверская область	111,1	672,7	1,030353	109,5	2,90741	47,197	1,907089	30528	183	69,94
Томская область	44,4	511,3	0,654709	108,8	1,43936	123,17	2,447476	30976	587	72,33
Тульская область	108,9	643,4	0,669608	107,6	1,37602	42,593	1,100008	32131	223	71,86
Тюменская область без автономных округов	152,3	483,1	0,673649	107,2	3,0668	79,419	2,370479	33983	292	73,59
Удмуртская Республика	89	538,9	1,071528	110,2	1,71002	42,191	3,304513	27650	283	72,13
Ульяновская область	83,6	582,1	0,589042	109,4	1,48862	34,985	1,955606	26849	295	71,34
Хабаровский край	107,7	621,8	1,153344	108,3	1,74554	82,822	2,097131	44108	300	69,96
Ханты-Мансийский автономный округ — Югра	75,5	387	0,800321	105,1	1,40936	112,57	1,7241	57012	114	75,41
Челябинская область	103,1	573,5	0,666159	108,9	1,59122	38,69	2,80639	29498	239	72,16
Чеченская Республика	12,9	181,4	0,011156	110,3	1,2212	43,137	0,102369	26397	231	74,61
Чувашская Республика — Чувашия	83,8	588,7	0,935477	110	2,81619	36,553	1,914228	23619	299	72,49
Чукотский автономный округ	35,5	820	1,30136	110,6	1,56665	382,83	5,07593	99905	20	66,2
Ямало-Ненецкий автономный округ	58	427,2	1,065815	106,6	1,72133	271,58	2,618134	96814	3	74,82
Ярославская область	106,9	621,5	1,048978	108	1,59401	52,302	1,531512	33124	261	71,55