CSC 339 – Theory of Computation Fall 2023

9.2 Pushdown Automata (PDAs) – Part 2

Outline

- Pushing and popping strings
- Formal definition
- Instantaneous description
- Language of PDA
- PDAs accept Context-Free Languages

Another PDA example

$$L(M) = \{w \in \{a,b\}^* : n_a(w) = n_b(w)\}$$

PDAM

$$a, \$ \rightarrow 0\$$$
 $b, \$ \rightarrow 1\$$
 $a, 0 \rightarrow 00$ $b, 1 \rightarrow 11$
 $a, 1 \rightarrow \varepsilon$ $b, 0 \rightarrow \varepsilon$

$$\underbrace{q_1} \xrightarrow{a, w_1 \to w_2} \underbrace{q_2}$$

Transition function: $\delta(q_1, a, w_1) = \{(q_2, w_2)\}$

Transition function: $\delta(q_1, a, w_1) = \{(q_2, w_2), (q_3, w_3)\}$

We write:

$$(q_1,bbb,aaa\$) \succ (q_2,bb,aa\$)$$

Time 4

Time 5

A computation:

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

23

$$(q_{0}, aaabbb,\$) \succ (q_{1}, aaabbb,\$) \succ$$

 $(q_{1}, aabbb, a\$) \succ (q_{1}, abbb, aa\$) \succ (q_{1}, bbb, aaa\$) \succ$
 $(q_{2}, bb, aa\$) \succ (q_{2}, b, a\$) \succ (q_{2}, \lambda,\$) \succ (q_{3}, \lambda,\$)$

For convenience we write:

$$(q_0,aaabbb,\$) \stackrel{*}{\succ} (q_3,\lambda,\$)$$

Language of PDA

Language L(M) accepted by PDAM:

$$L(M) = \{w : (q_0, w, z) \succeq (q_f, \lambda, s)\}$$
Initial state

Accept state

Therefore: $L(M) = \{a^n b^n : n \ge 0\}$

PDAM:

PDAs Accept Context-Free Languages

Theorem:

Proof - Step 1:

Convert any context-free grammar G to a PDA M with: L(G) = L(M)

Proof - Step 2:

Convert any PDA M to a context-free grammar G with: L(G) = L(M)

Proof - step 1

Convert Context-Free Grammars to PDAs

Take an arbitrary context-free grammar G

We will convert G to a PDA M such that:

$$L(G) = L(M)$$

PDA simulates leftmost derivations PDA Computation Grammar Leftmost Derivation $(q_0, \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n, \$)$ S $\succ (q_1, \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n, S\$)$ $\succ (q_1, \sigma_{k+1} \cdots \sigma_n, X_1 \cdots X_m \$)$ $m{\sigma}_{\!\scriptscriptstyle 1} \! \cdots \! m{\sigma}_{\!\scriptscriptstyle k} X_{\scriptscriptstyle 1} \! \cdots \! X_{\scriptscriptstyle m}$ $\Rightarrow \sigma_1 \cdots \sigma_k \sigma_{k+1} \cdots \sigma_n$ $\succ (q_2, \varepsilon, \$)$ Scanned Stack symbols contents 36

Grammar

Leftmost Derivation

PDA Computation

$$\Rightarrow \cdots$$

$$\Rightarrow xAy$$

$$\Rightarrow x\sigma_i \cdots \sigma_i Bzy$$

≻ · ·

$$\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

Production applied

$$A \rightarrow \sigma_i \cdots \sigma_j Bz$$

Transition applied

Grammar

Leftmost Derivation

PDA Computation

$$\Rightarrow \cdots \qquad \qquad \succ \cdots$$

$$\Rightarrow xAy \qquad \qquad \succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$$

$$\Rightarrow x\sigma_i \cdots \sigma_j Bzy \qquad \qquad \succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$$

$$\succ (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy\$)$$

Transition applied

Read σ_i from input and remove it from stack

Grammar

Leftmost Derivation

 $\Rightarrow \cdots$

 $\Rightarrow xAy$

 $\Rightarrow x\sigma_i \cdots \sigma_j Bzy$

PDA Computation

 $\succ \cdots$

 $\succ (q_1, \sigma_i \cdots \sigma_n, Ay\$)$

 $\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy\$)$

 $\succ (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy\$)$

 $\succ \cdots$

 $\succ (q_1, \sigma_{j+1} \cdots \sigma_n, Bzy\$)$

Last transition applied

All symbols $\sigma_i \cdots \sigma_j$ have been removed from top of stack

The process repeats with the next leftmost variable

 $\Rightarrow \cdots$

 $\Rightarrow xAy$

≻•

 $\Rightarrow x\sigma_i \cdots \sigma_j Bzy$

 $\succ (q_1, \sigma_{i+1} \cdots \sigma_n, Bzy\$)$

 $\Rightarrow x\sigma_i\cdots\sigma_j\sigma_{j+1}\cdots\sigma_kCpzy$

 $\succ (q_1, \sigma_{j+1} \cdots \sigma_n, \sigma_{j+1} \cdots \sigma_k Cpzy\$)$

 $\succ \cdots$

 $\succ (q_1, \sigma_{k+1} \cdots \sigma_n, Cpzy\$)$

Production applied

$$B \to \sigma_{j+1} \cdots \sigma_k Cp$$

And so on.....

In general, it can be shown that:

Therefore
$$L(G) = L(M)$$