MLB Salary

B02705013 蕭友量 B02705027 陳信豪 B02705028 冷俊瑩

Outline

- Introduction
- Related Research
- Data
- Regression
- Classification
- Ensemble
- Summary

Introduction

 Players with better performance deserve better salary.

 A player's salary should be decided by his performance last year.

Related Research

Using Regression to Predict Baseball Salaries.

By Nate Reed.

http://natereed.com/using-regression-to-predictbaseball-salaries/

Related Research - Modeling

- Clean useless data.
- Feature Engineering.
 - Normalizing input variables.
 - Rescale salary
- Creating Linear Regression Model.
 - $R^2 = 0.68$
 - 5-fold Cross Validation -> Accuracy = 0.65±0.08

Related Research - Regularization

- Ridge : Performs L2 Regularization.
 - Did not eliminate any variable.
- LASSO : Performs L1 Regularization.
 - 38 variables eliminated.
- ElasticNet : Combines L1 and L2 Regularization.
 - 35 variables eliminated.

Related Research - Simplified Model

- Eliminating statistically insignificant variables.
- OLS Regression.

```
Adjusted Salary = 0.15 + 3.29 * Batting_Career_TB - 0.32 * Pitching_Career_IP + 6.3 * Pitching_Career_SO + 3.22 * Num_All_Star_Appearances - 0.34 * NO_POSITION + 0.2 * FIRST_BASE + 0.4 * SECOND_BASE
```

 $R^2 = 0.64$

Data - Source

MLB Official Website – Player Statistics

Spotrac – Player Salary

2011 ~ 2016

3834 observations, 85 features

Data - Source

Data - Source

Data – Salary Distribution

Data – Salary Distribution

Data - Feature

Basic

• Player Name, Team, Position, Salary

Hitting

• G, AB, H, 2B, 3B, HR, RBI, BB, SO, SB, CS, AVG, OBP, SLG, OPS

Fielding

• G, GS, INN, TC, PO, A, E, DP, SB, CS, SBPCT, PB, C_WP, FPCT, RF ...

Pitching

• W, L, ERA, G, GS, SV, SVO, IP, H, R, ER, HR, BB, SO, AVG, WHIP ...

Feature Selection – Correlation Heatmap

Feature Selection - Correlation

Pitcher	Catcher	Fielder
Salary	Salary	Salary
Pitching SO	Hitting BB	Hitting RBI
Pitching IP	Hitting NP	Hitting TB
Fielding INN	Hitting H	Hitting XBH
Pitching IBF	Hitting R	Hitting R
Pitching NP	Hitting RBI	Hitting BB
Pitching W	Hitting GO	Hitting HR
Pitching GO	Hitting PA	Hitting H
Pitching H	Hitting AB	Hitting NP
Pitching AO	Hitting AO	Hitting PA
Pitching GS	Fielding G	Hitting AB
Fielding GS	Fielding PO	Hitting 2B
Fielding TC	Fielding GS	Hitting AO
Fielding A	Fielding TC	Hitting GDP

Feature Selection — Chi2

	Pitcher	Catcher	Fielder
Original Feature	86	86	86
Selected Feature	61	38	39
Selection Ratio	69.77%	44.19%	45.34%

Feature Normalization

Performance is relative in each year

Scale each feature in each year

Regression

RMSE: 2054935

Relative Mean Abs Error: 70%

Regression – Cause of Failure

- Contract Based Salary
- Average salary tends to get higher every year
- Disabled List

Regression – Cause of Failure

Classification

• Determine whether the player's performance deserves raise on salary.

Classification

Classifier

- Logistic Regression
- RandomForest
- Libsym
- Xgboost

Classifier –Logistic Regression

"improved" = 1

"umimproved "= 0

Classifier - RandomForest

Parameter

mtry

ntree

Classifier - Libsym

library e1071

Parameter

kernel (linear, rbf, poly, sigmoid)

Classifier - Xgboost

- Gradient Boosting Machine
- Powerful and fast

$$Obj(\Theta) = L(\theta) + \Omega(\Theta)$$

- Parameter
 - max_depth

K fold Cross-Validation

```
(before train-test-spliting)
K = 10
1/10 \text{ tuning}
9/10 \text{ training}
```

Classifier – Pitcher Comparison

	LogisticRegr	RandomForest	Libsvm	Xgboost
Mean Train Acc	0.6859502173	0.7045790198	0.7049024569	0.7923430145
Mean Valid Acc	0.6422589628	0.706045945	0.6522902889	0.7113087365
Mean Test Acc	0.6239361702	0.6739361702	0.620212766	0.6734042553

Classifier – Catcher Comparison

	LogisticRegr	RandomForest	Libsvm	Xgboost
Mean Train Acc	0.6744898897	0.6263602941	0.6373912377	0.8719852941
Mean Valid Acc	0.5280788177	0.6052955665	0.6349753695	0.7009852217
Mean Test Acc	0.7085714286	0.6657142857	0.6514285714	0.6471428571

Classifier – Fielder Comparison

	LogisticRegr	RandomForest	Libsvm	Xgboost
Mean Train Acc	0.6989419181	0.6808750417	0.7048879832	0.8125888984
Mean Valid Acc	0.6740821678	0.678962704	0.6768502331	0.7081390831
Mean Test Acc	0.6937106918	0.6993710692	0.6849056604	0.6597484277

	1	2	3	4
RandomForest	1	0	0	1
Libsvm	0	1	0	1
Xgboost	1	0	0	0
Voting Sum	2	1	0	2
Voting Mean	0.67	0.33	0	0.67
Voting Result	1	0	0	1
	improved	unimproved	unimproved	improved

	1	2	3	4
RandomForest	1 * 1.5	0 * 1.5	0 * 1.5	1 * 1.5
Libsvm	0 * 1	1 * 1	0 * 1	1 * 1
Xgboost	1 * 2	0 * 2	0 * 2	0 * 2
Voting Sum	3.5	1	0	2.5
Voting Mean	0.78	0.22	0	0.56
Voting Result	1	0	0	1
	improved	unimproved	unimproved	improved

 Taking various types of models to make it better.

 It may not be the best, but it is assumed to be good.

	Pitcher	Catcher	Fielder
Best Mean Test Acc	0.6739361702	0.7085714286	0.6993710692
Blending Test Acc	0.670212766	0.7285714286	0.7044025157

Summary

- Take the position into consideration.
- Using RandomForest and Xgboost gives us good result in this MLB Salary Case.

Try Model Blending to get the best result.

Summary – To be improved

- Our dataset is too small
- Lack of some features
 e.g. age, years of experience, team record, times
 appear in all star game
- Consider the correlation between different features.
 - OPS = OBP + SLG

Reference

- Ensemble method of machine learning 機器學習中的組合方法 https://read01.com/3zJOK.html
- Introduction to Boosted Trees
 http://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
- MLB Sortable Player Stats http://mlb.mlb.com/stats/sortable.jsp
- MLB Salary Rankings http://www.spotrac.com/mlb/rankings/
- Pay for Play: Are Baseball Salaries Based on Performance?
 https://ww2.amstat.org/publications/jse/v6n2/datasets.watnik.html#denby
- A Critical Look at Some Analyses of Major League Baseball Salaries https://www.jstor.org/stable/2684201?seq=1#page_scan_tab_contents

ANY QUESTIONS?