Calcul Numeric – Tema #2

- **Ex.1** Folosind metoda bisecției pentru k = 2 să se aproximeze manual soluția ecuației $8x^3 + 4x 1 = 0$ din intervalul [0, 1]. Să se evalueze eroarea de aproximare.
- **Ex.2** Fie ecuația $x^3 7x^2 + 14x 6 = 0$
 - a. Să se construiască în Matlab o procedură cu sintaxa $[x_{aprox}] = \mathbf{MetBisectie}(f, a, b, \varepsilon)$.
 - b. Într-un fișier script să se construiască în Matlab graficul funcției $f(x) = x^3 7x^2 + 14x 6$ pe intervalul [0, 4]. Să se calculeze soluția aproximativă x_{aprox} cu eroarea $\varepsilon = 10^{-5}$, apelând procedura **MetBisectie** pentru fiecare interval în parte: 1. [0, 1]; 2. [1; 3, 2]; 3. [3, 2; 4].
 - c. Să se construiască punctele $(x_{aprox}, f(x_{aprox}))$ calculate la b. în același grafic cu graficul funcției.

Ex.3

- a. Să se construiască în Matlab graficele funcțiilor $y = e^x 2$ și $y = cos(e^x 2)$;
- b. Să se implementeze în Matlab metoda bisecției pentru a calcula o aproximare a soluției ecuației $e^x 2 = \cos(e^x 2)$ cu eroarea $\varepsilon = 10^{-5}$ pe intervalul $x \in [0, 5; 1, 5]$.
- **Ex.4** Să se găsească o aproximare a valorii $\sqrt{3}$, folosind metoda besecției, cu eroarea $\varepsilon = 10^{-5}$.
- **Ex.5** Fie ecuația $x^3 7x^2 + 14x 6 = 0$. Se știe că ecuația are soluție unică pe intervalul [0; 2, 5]. Justificați de ce șirul generat de metoda Newton Raphson nu converge către soluția din intervalul dat, dacă valoarea de pornire este $x_0 = 2$. Alegeți o valoare pentru $x_0 \in [0; 2, 5]$, astfel încât șirul construit de metoda N-R să conveargă la soluția din intervalul dat.
- **Ex.6** Fie ecuația $x^3 7x^2 + 14x 6 = 0$.
 - a. Să se construiască în Matlab o procedură cu sintaxa $[x_{aprox}] = \mathbf{MetNR}(f, df, x_0, \varepsilon)$ conform algoritmului metodei Newton-Raphson.
 - b. Într-un fișier script să se construiască graficul funcției $f(x) = x^3 7x^2 + 14x 6$ pe intervalul [0,4]. Alegeți din grafic trei subintervale și valorile inițiale x_0 corespunzătoare fiecărui subinterval, astfel încât metoda Newton-Raphson să fie convergentă. Aflați cele trei soluții apelând procedura **MetNR** cu eroarea de aproximare $\varepsilon = 10^{-3}$. Se va folosi criteriul de oprire $\frac{|x_k x_{k-1}|}{|x_{k-1}|} < \varepsilon.$
- **Ex.7** Fie ecuația $8x^3 + 4x 1 = 0, x \in [0, 1].$
 - a. Să se demonstreze că ecuația dată admite soluție unică.
 - b. Să se calculeze x_2 prin metodele Newton-Raphson, secantei și poziției false.
- **Ex.8** Fie ecuația $x^3 18x 10 = 0$.
 - a. Într-un fișier script să se construiască graficul funcției $f(x) = x^3 18x 10$ pe intervalul [-5, 5].

1

- b. Să se construiască în Matlab o procedură cu sintaxa $[x_{aprox}] = \mathbf{MetSecantei}(f, a, b, x_0, x_1, \varepsilon)$ conform algoritmului metodei secantei.
- c. Să se construiască în Matlab o procedură cu sintaxa $[x_{aprox}] = \mathbf{MetPozFalse}(f, a, b, \varepsilon)$ conform algoritmului metodei poziției false.
- d. Alegeți din grafic trei subintervale, astfel încât pe fiecare subinterval să existe solție unică. Aflați cele trei soluții apelând procedura **MetSecantei** cu eroarea de aproximare $\varepsilon = 10^{-5}$. Construiți punctele $(x_{aprox}, f(x_{aprox}))$ pe graficul funcției.
- e. Aflați cele trei soluții apelând procedura **MetPozFalse** cu eroarea de aproximare $\varepsilon = 10^{-5}$. Construiți punctele $(x_{aprox}, f(x_{aprox}))$ pe graficul funcției. Să se compare numărul de iterații necesare pentru obținerea soluțiilor cu eroarea dată prin cele două metode.
- Ex. 9 Să se rezolve manual conform algoritmilor: metoda Gauss fără pivotare, metoda Gauss cu pivotare parțială și metoda Gauss cu pivotare totală următoarele sisteme:

$$\begin{cases} x_2 + x_3 = 3 \\ 2x_1 + x_2 + 5x_3 = 5 \\ 4x_1 + 2x_2 + x_3 = 1 \end{cases} \begin{cases} x_2 - 2x_3 = 4 \\ x_1 - x_2 + x_3 = 6 \\ x_1 - x_3 = 2 \end{cases}$$
(1)

- **Ex. 10** Să se construiască în Matlab procedura **SubsDesc** conform sintaxei x=**SubsDesc**(A, b) care rezolvă numeric sisteme liniare superior triunghiulare conform algoritmului (metoda substituției descendente).
- Ex. 11 a. Să se construiască în Matlab trei proceduri GaussFaraPiv, GaussPivPart şi GaussPiv-Tot conform sintaxelor:
 - $[x] = \mathbf{GaussFaraPiv}(A, b)$
 - $[x] = \mathbf{GaussPivPart}(A, b)$
 - $[x] = \mathbf{GaussPivTot}(A, b)$

care returneaza soluţia sistemului Ax = b conform metodelor de eliminare Gauss fără pivotare, Gauss cu pivotare parţială şi respectiv, Gauss cu pivotare totală;

- b. Să se apeleze procedurile pentru sistemele de la Ex. 9, apelând cele trei fişiere create la subpunctul a.;
- c. Să se aplice:
 - Metodele Gauss fără pivotare și cu pivotare parțială pentru sistemul

$$\begin{cases} \varepsilon x_1 + x_2 = 1\\ x_1 + x_2 = 2 \end{cases}$$

$$\text{de } \varepsilon = \mathsf{O}(10^{-20}) \ll 1.$$

- Metodele Gauss cu pivotare parțială și cu pivotare totală pentru sistemul

$$\begin{cases} x_1 + C x_2 = C \\ x_1 + x_2 = 2 \end{cases}$$
 unde $C = O(10^{20}) \gg 1$. (3)

- Verificați în Matlab soluțiile și comparați metodele.