0.1 集合之间的运算

定理 0.1

设有集合 A, B 与 C, 则

(i) 交换律:

 $A \cup B = B \cup A$, $A \cap B = B \cap A$:

(ii) 结合律:

 $A \cup (B \cup C) = (A \cup B) \cup C$

 $A \cap (B \cap C) = (A \cap B) \cap C$;

(iii) 分配律:

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

定义 0.1 (集族的并和交)

设有集合族 $\{A_{\alpha}\}_{\alpha \in I}$, 我们定义其并集与交集如下:

 $\bigcup_{\alpha \in I} A_{\alpha} = \{x : \not A \not A \alpha \in I, x \in A_{\alpha}\} = \{x : \exists \alpha \in I \ s.t \ x \in A_{\alpha}\},$

 $\bigcap_{\alpha \in I} A_{\alpha} = \{x : \Re - \Re \alpha \in I, x \in A_{\alpha}\} = \{x : \forall \alpha \in I, x \in A_{\alpha}\}.$

定理 0.2

(1) 广义交换律和结合律: 当一个集合族被分解 (以任何方式) 为许多子集合族时, 那么先作子集合族中 各集合的并集, 然后再作各并集的并集, 仍然得到原集合族的并, 而且作并集时与原有的顺序无关. 当 然,对于交的运算也是如此.

(2) 分配律:

(i)
$$A \cap \left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} (A \cap B_{\alpha})$$

(ii)
$$A \cup \left(\bigcap_{\alpha} B_{\alpha}\right) = \bigcap_{\alpha} (A \cup B_{\alpha}).$$

$$(3) \bigcup_{A_{\alpha}} A_{\alpha} \setminus \bigcup_{A_{\alpha}} B_{\alpha} \subset \bigcup_{A_{\alpha}} (A_{\alpha} \setminus B_{\alpha}).$$

(i)
$$A \cap \left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} (A \cap B_{\alpha});$$

(ii) $A \cup \left(\bigcap_{\alpha \in I} B_{\alpha}\right) = \bigcap_{\alpha \in I} (A \cup B_{\alpha}).$
(3) $\bigcup_{\alpha \in I} A_{\alpha} \setminus \bigcup_{\alpha \in I} B_{\alpha} \subset \bigcup_{\alpha \in I} (A_{\alpha} \setminus B_{\alpha}).$
(4) $\bigcup_{\alpha \in I} (A_{\alpha} \cap B_{\alpha}) \subset \bigcup_{\alpha \in I} A_{\alpha} \cap \bigcup_{\alpha \in I} B_{\alpha}.$

(1)

(3) 对 $\forall x \in \bigcup_{\alpha \in I} A_{\alpha} \setminus \bigcup_{\alpha \in I} B_{\alpha}$, 存在 $\alpha_{x} \in I$, 使 $x \in A_{\alpha_{x}}$, 并且 $x \notin B_{\alpha}$, $\forall \alpha \in I$. 从而 $x \in A_{\alpha_{x}} \setminus B_{\alpha_{x}} \subset \bigcup_{\alpha \in I} (A_{\alpha} \setminus B_{\alpha})$. 故

 $\bigcup_{\alpha \in I} A_{\alpha} \setminus \bigcup_{\alpha \in I} B_{\alpha} \subset \bigcup_{\alpha \in I} (A_{\alpha} \setminus B_{\alpha}).$ (4) 对 $\forall x \in \bigcup_{\alpha \in I} (A_{\alpha} \cap B_{\alpha})$, 都存在 $\alpha_{x} \in I$, 使得 $x \in A_{\alpha_{x}} \cap B_{\alpha_{x}}$. 于是 $x \in \bigcup_{\alpha \in I} A_{\alpha} \perp x \in \bigcup_{\alpha \in I} B_{\alpha}$, 即 $x \in I$ $\bigcup_{\alpha} A_{\alpha} \cap \bigcup_{\alpha} B_{\alpha}.$

定义 0.2

设 A, B 是两个集合, 称 $\{x : x \in A, x \notin B\}$ 为 $A \subseteq B$ 的**差集**, 记作 A = B 或 $A \setminus B$.

在上述定义中, 当 $B \subset A$ 时, 称 A - B 为集合 B 相对于集合 A 的**补集**或**余集**.

通常,在我们讨论问题的范围内,所涉及的集合总是某个给定的"大"集合 X 的子集,我们称 X 为全集.此时,集合 B 相对于全集 X 的补集就简称为 B 的补集或余集,并记为 B^c 或 CB,即

$$B^c = X - B$$
.

今后, 凡没有明显标出全集 X 时, 都表示取补集运算的全集 X 预先已知, 而所讨论的一切集合皆为其子集. 于是 B^c 也记为

$$B^c = \{x \in X : x \notin B\}.$$

命题 0.1 (集合的差与补的基本性质)

- (1) $A \cup A^c = X, A \cap A^c = \emptyset, (A^c)^c = A, X^c = \emptyset, \emptyset^c = X.$
- (2) $A B = A \cap B^c$.
- (3) $\exists A \supset B$, $\bigcup A^c \subset B^c$; $\exists A \cap B = \emptyset$, $\bigcup A \subset B^c$.
- (4) $A B^c = B A^c$.

证明

- (1)
- (2)
- (3)
- $(4) \ x \in A B^c \Longleftrightarrow x \in A \, \exists \, x \notin B^c \Longleftrightarrow x \in A \, \exists \, x \in B \Longleftrightarrow x \in B \, \exists \, x \notin A^c \Longleftrightarrow x \in B A^c.$

定理 0.3 (De Morgan 法则)

$$\text{(i)} \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcap_{\alpha \in I} A_{\alpha}^{c}; \qquad \text{(ii)} \left(\bigcap_{\alpha \in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c}.$$

证明 以 (i) 为例. 若 $x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}$,则 $x \notin \bigcup_{\alpha \in I} A_{\alpha}$,即对一切 $\alpha \in I$,有 $x \notin A_{\alpha}$. 这就是说,对一切 $\alpha \in I$,有 $x \in A_{\alpha}^{c}$. 故得 $x \in \bigcap A_{\alpha}^{c}$.

反之, 若 $x \in \bigcap_{\alpha \in I} A_{\alpha}^{c}$, 则对一切 $\alpha \in I$, 有 $x \in A_{\alpha}^{c}$, 即对一切 $\alpha \in I$, 有 $x \notin A_{\alpha}$. 这就是说,

$$x \notin \bigcup_{\alpha \in I} A_{\alpha}, \quad x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}.$$

定义 0.3 (集合的对称差)

设 A, B 为两个集合, 称集合 $(A \setminus B) \cup (B \setminus A)$ 为 $A \in B$ 的**对称差集**, 记为 $A \triangle B$.

命题 0.2 (集合的对称差的基本性质)

- (i) $A \triangle \emptyset = A, A \triangle A = \emptyset, A \triangle A^c = X, A \triangle X = A^c$.
- (ii) 交換律: $A \triangle B = B \triangle A$.
- (iii) 结合律: $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.

(iv) 交与对称差满足分配律:

$$A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C).$$

- (v) $A^c \triangle B^c = A \triangle B$; $A = A \triangle B$ 当且仅当 $B = \emptyset$.
- (vi) 对任意的集合 A 与 B, 存在唯一的集合 E, 使得 $E \triangle A = B$ (实际上 $E = B \triangle A$).

定义 0.4 (递增、递减集合列)

设 $\{A_k\}$ 是一个集合列. 若

$$A_1 \supset A_2 \supset \cdots \supset A_k \supset \cdots$$

则称此集合列为**递减集合列**, 此时称其交集 $\bigcap_{k=1}^{\infty} A_k$ 为集合列 $\{A_k\}$ 的极限集, 记为 $\lim_{k\to\infty} A_k$; 若 $\{A_k\}$ 满足

$$A_1 \subset A_2 \subset \cdots \subset A_k \subset \cdots$$

则称 $\{A_k\}$ 为**递增集合列**, 此时称其并集 $\bigcup_{k=1}^{\infty} A_k$ 为 $\{A_k\}$ 的极限集, 记为 $\lim_{k\to\infty} A_k$.

命题 0.3

1. 当 $\{A_k\}$ 为递减集合列时, $\lim_{k\to\infty}A_k=\bigcap_{k=1}^\infty A_k = \bigcap_{k=N}^\infty A_k (\forall N\in\mathbb{N})$.

2. 当 $\{A_k\}$ 为递增集合列时, $\lim_{k\to\infty}A_k=\bigcup_{k=1}^\infty A_k=\bigcup_{k=N}^\infty A_k (\forall N\in\mathbb{N})$.

证明

1. 对 $\forall N \in \mathbb{N}$, 一方面, 由 $\bigcap_{k=1}^{\infty} A_k = \bigcap_{k=1}^{N-1} A_k \cap \bigcap_{k=N}^{\infty} A_k$ 可知 $\bigcap_{k=1}^{\infty} A_k \subset \bigcap_{k=N}^{\infty} A_k$. 另一方面, 由 $\{A_k\}$ 为递减集合列可得

$$A_1 \supset A_2 \supset \cdots \supset A_{N-1} \supset A_k, \forall k = N, N+1, \cdots$$

因此
$$\bigcap_{k=1}^{N-1} A_k \supset \bigcap_{k=N}^{\infty} A_k$$
, 故再根据 $\bigcap_{k=1}^{\infty} A_k = \bigcap_{k=1}^{N-1} A_k \cap \bigcap_{k=N}^{\infty} A_k$ 可知 $\bigcap_{k=1}^{\infty} A_k \supset \bigcap_{k=N}^{\infty} A_k$.

2. 对 $\forall N \in \mathbb{N}$, 一方面, 由 $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{N-1} A_k \cup \bigcup_{k=N}^{\infty} A_k$ 可知 $\bigcup_{k=1}^{\infty} A_k \supset \bigcup_{k=N}^{\infty} A_k$. 另一方面, 由 $\{A_k\}$ 为递增集合列可得

$$A_1 \subset A_2 \subset \cdots \subset A_{N-1} \subset A_N$$
.

因此 $\bigcup_{k=1}^{N-1} A_k \subset A_N \subset \bigcup_{k=N}^{\infty} A_k$, 故再根据 $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{N-1} A_k \cup \bigcup_{k=N}^{\infty} A_k$ 可知 $\bigcup_{k=1}^{\infty} A_k \subset \bigcup_{k=N}^{\infty} A_k$.

定义 0.5 (上、下极限集)

设 $\{A_k\}$ 是一集合列,令

$$B_j = \bigcup_{k=1}^{\infty} A_k \quad (j = 1, 2, \cdots),$$

显然有 $B_j \supset B_{j+1}(j = 1, 2, \cdots)$. 我们称

$$\lim_{k \to \infty} B_k = \bigcap_{j=1}^{\infty} B_j = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k$$

为集合列 $\{A_k\}$ 的上极限集, 简称为上限集, 记为

$$\overline{\lim}_{k\to\infty} A_k = \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k.$$

类似地, 称集合 $\bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k$ 为集合列 $\{A_k\}$ 的**下极限集**, 简称为**下限集**, 记为

$$\lim_{k\to\infty}A_k=\bigcup_{j=1}^{\infty}\bigcap_{k=j}^{\infty}A_k.$$

若上、下限集相等,则说 $\{A_k\}$ 的极限集存在并等于上限集或下限集,记为 $\lim_{k\to\infty}A_k$.

命题 0.4 (上、下极限集的性质)

设 $\{A_k\}$ 是一集合列,E是一个集合则

$$(i)E \setminus \overline{\lim}_{k \to \infty} A_k = \underline{\lim}_{k \to \infty} (E \setminus A_k); \quad (ii)E \setminus \underline{\lim}_{k \to \infty} A_k = \overline{\lim}_{k \to \infty} (E \setminus A_k).$$

定理 0.4

若 $\{A_k\}$ 为一集合列,则

$$(i)\overline{\lim}_{k\to\infty}A_k=\bigcap_{j=1}^\infty\bigcup_{k=j}^\infty A_k=\{x: 对任一自然数j, 存在k(k\geqslant j), x\in A_k\}=\{x: \forall j\in\mathbb{N}, \exists k\geqslant j \, \text{且} k\in\mathbb{N} \text{ s.t. } x\in A_k\}$$

(ii)
$$\lim_{k\to\infty}A_k=\bigcup_{j=1}^\infty\bigcap_{k=j}^\infty A_k=\{x:$$
 存在自然数 $j_0,$ 当 $k\geqslant j_0$ 时, $x\in A_k\}=\{x:\exists j_0\in\mathbb{N}, \forall k\geqslant j_0$ 且 $k\in\mathbb{N}, x\in A_k\}$

并且我们有

$$\overline{\lim}_{k\to\infty} A_k \supset \underline{\lim}_{k\to\infty} A_k.$$

证明 以 (ii) 为例. 若 $x \in \underline{\lim}_{k \to \infty} A_k$, 则存在自然数 j_0 , 使得

$$x\in\bigcap_{k=j_0}^\infty A_k,$$

从而当 $k \ge j_0$ 时,有 $x \in A_k$. 反之,若存在自然数 j_0 ,当 $k \ge j_0$ 时,有 $x \in A_k$,则得到

$$x \in \bigcap_{k=i_0}^{\infty} A_k$$
.

由此可知 $x \in \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} A_k = \lim_{k \to \infty} A_k$.

由 (i) (ii) 可知, $\{A_k\}$ 的上限集是由属于 $\{A_k\}$ 中无穷多个集合的元素所形成的; $\{A_k\}$ 的下限集是由只不属于 $\{A_k\}$ 中有限多个集合的元素所形成的. 从而立即可知

$$\overline{\lim}_{k\to\infty} A_k \supset \underline{\lim}_{k\to\infty} A_k.$$

定义 0.6 (直积集)

设 X,Y 是两个集合, 称一切有序"元素对"(x,y)(其中 $x \in X, y \in Y$) 形成的集合为 X 与 Y 的**直积集**, 记为 $X \times Y$, 即

$$X \times Y = \{(x, y) : x \in X, y \in Y\},\$$

4

其中 (x,y)=(x',y') 是指 $x=x',y=y'.X\times X$ 也记为 X^2 .