CS144 An Introduction to Computer Networks

Routing

Distance Vector Protocol: Bellman Ford algorithm

Problem: How can routers work together to find minimum cost spanning tree?

Equivalent to finding minimum cost spanning tree among routers only

The Distributed Bellman-Ford Algorithm

Example: Find min-cost spanning tree to R₈

Assume routers know cost of link to each neighbor.

Router R_i maintains value cost C_i to reach R_{8.}

Vector $\underline{C}=(C_1, C_2,...C_7)$ is the *distance vector* to R_8 .

Initially, set $\underline{C} = (\infty, \infty, ... \infty)$.

- 1. After T seconds, R_i sends C_i to its neighbors.
- 2. If R_i learns lower cost path, update C_i.
- 3. Repeat.

Natural extension to calculate tree for $R_1 - R_7$.

An example

R_1	∞	R_1	∞	R_1	8, R ₃
R ₂	∞	R ₂	∞	R ₂	7 , R ₅
R_3	∞	R_3	4	R_3	4
R_4	∞	R_4	∞	R ₄	2, R ₇
R ₅	∞	R ₅	6	R_5	6
R_6	∞	R ₆	2	R_6	2
R ₇	∞	R ₇	1	R ₇	1

R_1	8, R ₃	
R ₂	6, R ₄	
R_3	4	
R_4	2, R ₇	
R_5	4, R ₄	
R_6	2	
R ₇	1	

R_1	7, R ₂
R_2	5, R ₅
R_3	4
R_4	2, R ₇
R ₅	4, R ₄
R_6	2
R ₇	1

R_1	6, R ₄
R_2	5, R ₅
R_3	4
R_4	2, R ₇
R_5	4, R ₄
R_6	2
R ₇	1

Distributed Bellman-Ford Algorithm

Questions:

- 1. What is the maximum run time of the algorithm?
- 2. Will the algorithm always converge?
- 3. What happens when link costs change, or when routers/links fail?

A Problem with Bellman-Ford

"Bad news travels slowly"

Consider the calculation of distances to R₄:

Time	R ₁	R ₂	R ₃	
0	3,R ₂	2,R ₃	1, R ₄	Link $R_3 \longrightarrow R_4$ fails
1	3,R ₂	2,R ₃	3,R ₂	$\lim_{N_3 \to N_4 \text{ rans}}$
2	3,R ₂	4,R ₃	3,R ₂	
3	5,R ₂	4,R ₃	5,R ₂	
	"Counting to infinity"			

Counting to Infinity Problem

Solutions

- Set infinity = "some small integer" (e.g. 16).
 Stop when count = 16.
- Split Horizon: Because R₂ received lowest cost path from R₃, it does not advertise cost to R₃.
- 3. Split-horizon with poison reverse: R_2 advertises infinity to R_3 .
- 4. There are many problems with (and fixes for) the Bellman-Ford algorithm.

Bellman Ford in practice

Bellman-Ford algorithm is an example of a Distance Vector algorithm.

It was used in the first Internet routing protocol, called Routing Information Protocol (RIP).

It requires very little computation on the routers, is distributed, and will eventually converged.

Over time it was replaced by algorithms that calculate the entire spanning tree at each router.