

Topic: Dimension Reduction (PCA)

Perform Principal component analysis and perform clustering using first 3 principal component scores (both Hierarchical & K-Mean clustering). Use Scree plot or elbow curve and obtain optimum number of clusters and check whether we have obtained same number of clusters with the original data

•	Type [‡]	Alcohol	Malic [‡]	Ash [‡]	Alcalinity	Magnesium [‡]	Phenols	Flavanoids	Nonflavanoids	Proanthocyanins	Color [‡]	Hue [‡]	Dilution [‡]	Proline
1	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.640000	1.040	3.92	1065
2	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.380000	1.050	3.40	1050
3	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.680000	1.030	3.17	1185
4	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.800000	0.860	3.45	1480
5	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.320000	1.040	2.93	735
6	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.750000	1.050	2.85	1450
7	1	14.39	1.87	2.45	14.6	96	2.50	2.52	0.30	1.98	5.250000	1.020	3.58	1290
8	1	14.06	2.15	2.61	17.6	121	2.60	2.51	0.31	1.25	5.050000	1.060	3.58	1295
9	1	14.83	1.64	2.17	14.0	97	2.80	2.98	0.29	1.98	5.200000	1.080	2.85	1045
10	1	13.86	1.35	2.27	16.0	98	2.98	3.15	0.22	1.85	7.220000	1.010	3.55	1045
11	1	14.10	2.16	2.30	18.0	105	2.95	3.32	0.22	2.38	5.750000	1.250	3.17	1510
12	1	14.12	1.48	2.32	16.8	95	2.20	2.43	0.26	1.57	5.000000	1.170	2.82	1280
13	1	13.75	1.73	2.41	16.0	89	2.60	2.76	0.29	1.81	5.600000	1.150	2.90	1320
14	1	14.75	1.73	2.39	11.4	91	3.10	3.69	0.43	2.81	5.400000	1.250	2.73	1150
15	1	14.38	1.87	2.38	12.0	102	3.30	3.64	0.29	2.96	7.500000	1.200	3.00	1547
16	1	13.63	1.81	2.70	17.2	112	2.85	2.91	0.30	1.46	7.300000	1.280	2.88	1310
17	1	14.30	1.92	2.72	20.0	120	2.80	3.14	0.33	1.97	6.200000	1.070	2.65	1280
18	1	13.83	1.57	2.62	20.0	115	2.95	3.40	0.40	1.72	6.600000	1.130	2.57	1130
19	1	14.19	1.59	2.48	16.5	108	3.30	3.93	0.32	1.86	8.700000	1.230	2.82	1680
20	1	13.64	3.10	2.56	15.2	116	2.70	3.03	0.17	1.66	5.100000	0.960	3.36	845

Hints:

- 1. Business Problem
 - 1.1. Objective
 - 1.2. Constraints (if any)
- 2. Data Pre-processing
 - 2.1 Data cleaning, Feature Engineering, EDA etc.
- 3. Model Building
 - 3.1 Partition the dataset
 - 3.2 Model(s) Reasons to choose any algorithm
 - 3.3 Model(s) Improvement steps
 - 3.4 Model Evaluation
 - 3.5 Python and R codes
- 4. Deployment
 - 4.1 Deploy solutions using R shiny and Python Flask.
- 5. Result Share the benefits/impact of the solution how or in what way the business (client) gets benefit from the solution provided.

Note:

- 1. For each assignment the solution should be submitted in the format
- 2. Research and Perform all possible steps for improving the model(s) accuracy
 - Ex: Feature Engineering, Hyper Parameter tuning etc.
- 3. All the codes (executable programs) are running without errors
- 4. Documentation of the module should be submitted along with R & Python codes, elaborating on every step mentioned here