Université de Genève Autumn term 2022

Statistical Methods in Physics (14P058)

Prof. Federico Sánchez (federico.sancheznieto@unige.ch)
Dr. Hepeng Yao (hepeng.yao@unige.ch)
Dr. Knut Zoch (knut.zoch@unige.ch)

Final project II – The muon Michel Parameters

Submission due on: 3 February 2023

The study of the muon decay $(\mu^- \to e^- \nu_\mu \bar{\nu}_e)$ provided significant information about the weak interaction. Exploring the energy of the electron we can measure deviations of the vector-axial weak current Standard Model assumption. The cross-section can be parameterised as function of the potential scalar, pseudo-scalar, vector and axial currents. One possible quantity to measure is the electron energy divided by the muon mass in the muon rest-frame (x). The probability of finding an electron with fractional energy x per muon is given by the formula:

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d}x \mathrm{d}\cos\theta} \propto x^2 \left(\frac{1}{2} (3 - 3x) + \frac{2}{3} \rho (4x - 3) + 3\eta x_0 \frac{(1 - x)}{x} + P_\mu \xi \cos\theta [(1 - x) + \frac{2}{3} \delta (4x - 3)] \right)$$
(1)

where P_{μ} is the muon polarisation that carries information about the muon production phenomena, $\theta \in [0, \pi]$ is the angle between the electron and the muon polarisation vector in the muon rest frame and x is the fraction of the muon mass carried by the electron. x_0 is a constant equal to 9.67×10^{-3} . The parameters $(\rho, \xi, \delta, \eta)$ are equal to $(\frac{3}{4}, 1, \frac{3}{4}, 0)$ in the Standard Model.

To simplify the problem, let's think that the muon is not polarised or that we do integrate over the polar angle θ . In this case the cross-section is given by:

$$\frac{d\Gamma}{dx} \propto x^2 \left(\frac{1}{2} (3 - 3x) + \frac{2}{3} \rho (4x - 3) + 3\eta x_0 \frac{(1 - x)}{x} \right)$$
 (2)

In what follows, we will consider the Standard Model Michel parameters ($\rho = 3/4., \eta = 0$) for the generation of the event samples. We will use the full formula later to estimate the parameter δ and to explore a real experiment where we try to search for deviations from the model.

Task 1: Basic statistical properties

Equation (2) fulfils the properties of a probability distribution function. The first task is to assess basic statistical properties of the distribution with the help of Monte Carlo (MC) processes.

- a) Demonstrate that Eq. (2) is a probability density function. Compute the normalization and the range of possible values of ρ and η that allows the cross-section to be a p.d.f.
 - In both cases, use the Standard Model Michel parameters as inputs.
- b) The expectation value of x depends on the polarisation Michel parameters in a simple manner:

$$\mathbb{E}[x] = \frac{\frac{9}{5} + 2x_0\eta + \frac{4}{5}\rho}{3 + 4x_0\eta} \tag{3}$$

and fixing to the SM parameters values:

$$\mathbb{E}[x] = \frac{9+4\times 3/4}{15} = \frac{4}{5} \tag{4}$$

Compute the sample mean $\langle x \rangle$ and compare with the expectation value for the case of the Standard Model parameters.

c) Compute the variance, skewness and kurtosis of the Standard Model distribution and comment.

Task 2: Convergence

If the experiment is repeated N_{exp} times, it can be seen that the sample means $\langle x \rangle$ of the experiments are distributed according to a Gaussian distribution. In the following sub-tasks, we will look at the convergence behaviour of $\langle x \rangle$. Each of the N_{exp} experiments still contains $N \gg 1$ data points generated with the MC process.

- a) Take $N_{exp} = 1$ and show the law of large numbers based on the data points you generated.
- b) Take $N_{exp} \gg 1$ and show the validity of the central limit theorem for $\langle x \rangle$.
- c) Compute the variance of $\langle x \rangle$ and compare it with the value you expect.

Task 3: χ^2 distribution

By filling the numbers generated from the MC process into a histogram, we can study the χ^2 properties of the distribution. For now, we fix $N_{exp} = 1$ and $N \gg 1$, according to the probability density function in Eq. (2). Fill the obtained x values in a histogram.

- a) What is the expected p.d.f. for the number of entries per bin?
- b) Show that the χ^2 of the obtained entries per bin follows a χ^2 distribution. Instead of calculating the empirical mean value per bin from the experiments, use the nominal value from the p.d.f. formula per bin as the mean value per bin.
- c) How does the χ^2 distribution change with the number of bins?

Task 4: Parameter estimation

We will now use three different methods to perform parameter estimation and compare the results from the different methods. Let's again start with one single experiment $(N_{exp} = 1)$ with $N \gg 1$ data points according to the probability density function in Eq. (2).

- a) Compute the log likelihood $\ln L(x_1, x_2, ..., x_N | \rho, \eta)$ at a given (ρ, η) . Then, use the maximum likelihood method to estimate (ρ, η) and its covariance.
- b) Compute the goodness of fit at various (ρ, η) and use the least squares method to estimate ρ , η and its covariance.
- c) The parameter (ρ, η) cannot be estimated simultaneously by computing the sample mean $\langle x \rangle$ of Eq. (4) with the MC integral. Why? How would you do this using the method of the moments. Perform this estimation of ρ and its corresponding variance.

d) Compare the results from the three questions above and discuss them.

Task 5: Hypothesis testing

Generate $N_{exp} = 200$ experiments and combine them into pairs, that is, forming a total of 100 pairs of experiments. Now let's assume we obtained these datasets in actual experiments and we would like to – for each pair – test the hypothesis that the two sets of experimental data originate from the same distribution. Set a threshold for the hypothesis testing and perform Kolmogorov tests for all dataset pairs. Then, comment on your outcome with respect to the threshold you set.

Task 6: Bonus question

Generate N_{exp} number of experiments with N data in each. Compute the exact Fisher information with the equation

$$I_X(\rho) = \mathbb{E}\left[-\frac{\partial^2 \ln L(X|\rho)}{\partial^2 \rho} \Big|_{\rho = \rho_0} \right]$$
 (5)

Compare your results with the variance $V(\hat{\rho} - \rho)$ and discuss. (*)

N.B. This task is not required for your report, but if you hand in a solution, it can be accredited for bonus points.