基 礎 徹 底 演 習 基本問題プリント

式と証明 複素数と方程式

81 複素数

(2) a を実数とする。 $\frac{3+ai}{2+i}$ が実数になるときのa の値は $\frac{1}{2}$ であり、純虚数になるときのa の値は $\frac{1}{2}$ である。

82 複素数の相等

実数 x, y が等式 (1+2i)x+(3-i)y=3-8i を満たすとき、x= アイ 、y= ウ である。

83 2次方程式の解の判別

a は実数の定数とする。2 次方程式 $x^2+2(a-1)x+a+5=0$ が異なる 2 つの虚数解をもつとき、a の値の範囲は $\boxed{\begin{tabular}{c} \begin{tabular}{c} \begin{ta$

84 解と係数の関係

a は実数の定数とする。2 次方程式 $2x^2+5x+a=0$ の 2 つの解を α , β とするとき,

 $\alpha+\beta=\frac{\mathbb{P} \mathbf{1}}{2}$ である。また、 $\alpha^2+\beta^2=\frac{1}{4}$ のとき、 $\alpha=\mathbb{I}$ である。

年 組 番 名前

85 与えられた 2 数を解とする 2 次方程式

- (1) 2つの解が 2-3i と 2+3i であるような 2 次方程式の 1 つは x^2- ア x+ **イウ** =0 である。
- (2) $x^2-2x-5=0$ の 2 つの解を α , β とするとき, $\alpha+\beta$ と $\alpha\beta$ を解にもつ 2 次方程式の 1 つは x^2+ エ x- オカ =0 である。

86 剰余の定理

x の多項式 P(x) を x-1 で割った余りは 5, x+2 で割った余りは -4 である。このとき,P(x) を (x-1)(x+2) で割った余りは \boxed{P} x+ $\boxed{1}$ である。

87 3次方程式の解

3次方程式 $x^3-x^2-2x+8=0$ がある。この左辺を因数分解すると、

 $(x+| P)(x^2-| 1 x+| 0)=0$ となるから、この 3 次方程式の解は、

$$x =$$
 エオ $,$ カ $\pm \sqrt{$ キ i である。