# Absorpcija žarkov $\gamma$ in $\beta$

#### Bor Kokovnik

#### Januar 2024

#### 1 Uvod

Pri radioaktivnem razpadu atomskih jeder prihaja primarno do  $\alpha$  (helijeva jedra),  $\beta$  (elektroni + antinevtrini, pozitroni + nevtrini) in  $\gamma$  (fotoni) sevanja. Sevanja imajo različne energijske porazdelitve in se pri prehodu skozi snov različno obnašajo. V sklopu pričujoče vaje se bomo zanimali za sevanji  $\beta$  in  $\gamma$ .



Slika 1: Tipična energijska porazdelitev žarkov  $\gamma$  pri radioaktivnem razpadu.

Žarki  $\gamma$ , ki izhajajo iz radioaktivnega izvora, so približno monoenergijski. Tipična energijska porazdelitev  $\mathrm{d}n/\mathrm{d}W_{\gamma}$  je prikazana na sliki 1. V snovi se absorbirajo in sipljejo. Tok sevanja  $\Phi_{\gamma}$  se pri prehodu skozi rezino debeline dx zmanjša za  $\mathrm{d}\Phi\gamma = -\mu\Phi_{\gamma}\mathrm{d}x$ , kjer je  $\mu$  ekstinkcijski (absorpcijski) koeficient. Celotni prepuščeni tok pojema z večanjem debeline eksponentno kot

$$\Phi_{\gamma}(x) = \Phi_0 \exp\{-\mu x\} = \Phi_0 2^{-\frac{x}{l_{1/2}}} \tag{1}$$

pri čemer  $l_{1/2} = \ln 2/\mu$  označuje razpolovno debelino. Razpolovna debelina nam pove, kako debela mora biti snov, da izstopajoči tok sevanja pade na polovico vstopajočega toka  $\Phi_0$ .

Tudi pri elektronih začnimo razmišljanje najprej z monoenergijskimi elektroni z vstopno energijo  $W\beta$ . Elektroni se pri prehodu skozi snov sipljejo ter postopoma izgubljajo

energijo z ioniziranjem in vzbujanjem atomov. Verjetnost za te procese je odvisna od hitrosti elektrona. Z zmanjševanjem hitrosti se verjetnost za sipanje v splošnem povečuje. Upočasnjevanje elektronov je zato na začetku, ko je hitrost še velika, relativno šibko, nato pa postaja vedno močnejše, dokler se elektroni na koncu povsem ne ustavijo. Debelina  $R_o(W_\beta)$ , pri kateri snov popolnoma zadrži elektrone z določeno vstopno energijo  $W_\beta$ , se imenuje doseg. Odvisnost toka elektronov od debeline snovi  $\Phi_\beta(W_\beta, x)$  je dokaj zapletena. Debelina x je pri tem podana v enotah tako imenovane površinske gostote  $s = \rho x$ , pri čemer  $\rho$  označuje gostoto materiala. V taki predstavitvi je odvisnost  $\Phi_\beta(W_\beta, x)$  praktično enaka za vse vrste materialov. Doseg  $R_o(W_\beta)$  je torej obratno sorazmeren z gostoto materiala  $\rho$ .

Elektroni v sevanju  $\beta$ , ki nastane pri radioaktivnem razpadu, nimajo vsi enakih vstopnih energij  $W\beta$ , saj si energijsko razliko med končnim in začetnim jedrom  $W_{\beta,max}$  razdelijo z nevtrini (tipična energijska porazdelitev žarkov  $\beta$  je prikazana na sliki (2). Prepuščeni tok sevanja v odvisnosti od debeline snovi  $\Phi\beta(x)$  je zato podan kot integral energijske porazdelitve vstopnih elektronov  $\mathrm{d}n/\mathrm{d}W_{\beta}$  in odvisnosti  $\Phi\beta(W_{\beta},x)$  za monoenergijske elektrone, se pravi

$$\Phi_{\beta}^{tot} = \int_{0}^{W_{\beta,max}} \frac{\mathrm{d}n}{\mathrm{d}W_{\beta}} \Phi(W_{\beta}, x) \,\mathrm{d}W_{\beta}$$
 (2)

Pri debelinah, ki so majhne v primerjavi z maksimalnim dosegom  $R_0(W_{\beta,max})$ , je odvisnost  $\Phi_{\beta}^{tot}(x)$  približno eksponentna in jo lahko obravnavamo z enačbo (1).



Slika 2: Tipična energijska porazdelitev žarkov  $\beta$  pri radioaktivnem razpadu.

#### 2 Potrebščine

- $\bullet\,$ radioaktiven izvor $^{137}_{55}\mathrm{Cs}$ v svinčenem ohišju
- Geiger-Müllerjeva (GM) cev na stojalu in števec ST360 (Spectrum Technology)

- škatla s ploščicami različnih površinskih gostot od 4,5 mg cm<sup>-2</sup> do 7435 mg cm<sup>-2</sup>
- dodatne aluminijaste in svinčene ploščice različnih debelin

| Material      | A    | В    | С    | D    | Ε    | F   | G    | Н    | I   | J   | K   | L   | Μ   | N   | О   | Р   | Q    | R    | S    | T    |
|---------------|------|------|------|------|------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| $s [mg/cm^2]$ | 4,5  | 6,5  | 14,1 | 28,1 | 59,1 | 102 | 129  | 161  | 206 | 258 | 328 | 419 | 516 | 590 | 645 | 849 | 1230 | 1890 | 3632 | 7435 |
| d [mil]       | 0,7  | 1    | 5    | 10   | 30   | 40  | 20   | 25   | 32  | 40  | 50  | 63  | 80  | 90  | 100 | 125 | 32   | 64   | 125  | 250  |
| d [mm]        | 0,02 | 0,03 | 0,13 | 0,25 | 0,76 | 1,0 | 0,51 | 0,64 | 0,8 | 1,0 | 1,3 | 1,6 | 2,0 | 2,3 | 2,5 | 3,2 | 0,8  | 1,6  | 3,2  | 6,4  |

## 3 Naloga

- 1. Preveri, da izmerjena aktivnost sevanja pada s kvadratom razdalje od izvora.
- 2. Izmeri sevanje ozadja.
- 3. Izmeri odvisnost $\Phi_{\beta}^{tot}(x)$ za sevanje  $\beta$ iz  $^{137}_{55}\mathrm{Cs}$ in določi doseg  $\beta$ za aluminij.
- 4. Izmeri razpolovno debelino aluminija in svinca za žarke  $\gamma$  iz  $^{137}_{55}\mathrm{Cs}.$

#### 4 Meritve

Datum izvedbe eksperimenta: 15. 1. 2024

Za vse negotovosti aktivnosti je bilo upoštevanje, da je standardni odklon enak korenu razpadov

Aktivnost ozadja izmerimo brez radioaktivnega vira skozi 15 minut:

$$A_b = (21 \pm 1) \text{ min}^{-1}$$

To vrednost upoštevamo pri nadaljnjih meritvah.

## 4.1 Odvisnost aktivnosti od razdalje

Pri merjenju odvisnosti aktivnosti od razdalje merimo število razpadov v času 20 s na različnih razdaljah med izvorom in merilnikom. Da dobimo linearno odvisnost, uporabimo  $1/\sqrt{A}(r)$ , in nato iz enačbe  $A=K/(r+r_{GM})^2$  ocenimo efektivno razdaljo  $r_{GM}$  med izvorom v najvišjem predalčku in detektorjem, kjer je  $K=1/k^2$ , kjer je k naklon linearnega fita na sliki 3. V prejšnjo enačbo za A vstavimo vrednosti za zgornji predalček in dobimo:

$$r_{GM} = (3.22 \pm 0.05) \text{ cm}$$



Slika 3:  $1/\sqrt{A}$  v odvisnosti od razdalje r, skupaj z linearnim fitom.

#### 4.2 Merjenje dosega sevanja $\beta$

Pri merjenju dosega sevanja  $\beta$  polagamo med izvor in merilnik aluminijaste ploščice znanih debelin in merimo aktivnost. Sunke sem meril v času 50 s. Ko blokiramo celotno sevanje  $\beta$  nam ostane še sevanje  $\gamma$ , zato se aktivnost na sliki 4 ne ustavi na vrednosti 0. Na podlagi višine izravnanih meritev (v tem primeru zadnjih sedem meritev) lahko ocenimo, do katere debeline  $R_0$  aluminija je nekaj sevanja  $\beta$  še prepuščenega:

$$R_0 = (180 \pm 20) \frac{\text{mg}}{\text{cm}^2}$$

Vrednost sevanja  $\gamma$  po tem, ko smo ustavili celotno sevanje  $\beta$ :

$$\overline{A_{\gamma}} = (48 \pm 4) \, \mathrm{min}^{-1}$$

#### 4.3 Razpolovna debelina svinca za žarke $\gamma$

Nad vir postavimo aluminijasto ploščico zadostne debeline, da zaustavi vso sevanje  $\beta$ , jaz sem uporabil ploščico J, in nato postopoma dodajamo svinec in pri vsaki debelini izmerimo aktivnost v času 400 s. Da podatke lineariziramo, vzamemo naravni logaritem aktivnosti v odvisnosti od debeline svinca. Iz enačbe (1) lahko izrazimo  $l_{1/2}$  kot  $l_{1/2} = -\ln(2)/k$ , kjer je k naklon fitane premice na sliki 5. Tako pridemo do vrednosti:

$$l_{1/2} = (6.3 \pm 0.8) \text{ mm}$$

# Aktivnost v odvisnosti od debeline plasti aluminija



Slika 4: Doseg sevanja  $\beta$ . Debelina je predstavljena v enotah mg/cm<sup>2</sup>.

Naravni logaritem aktivnosti v odvisnosti od debeline plasti svinca



Slika 5: Naravni logaritem aktivnosti v odvisnosti od debeline plasti svinca.

#### 5 Analiza rezultatov

Pri vaji nisem imel večjih problemov in noben rezultat me ni presenetil. Debelina materiala, ki blokira celotno sevanje  $\beta$  je precej grobo ocenjena, ker je prava zveza precej kompleksna in je nisem fital, pač pa sem ocenil, pri kateri vrednosti se krivulja izravna.

Pri meritvi razpolovne debeline za žarke  $\gamma$  opazimo veliko negotovost posameznih meritev in njihovo razmetanost okoli fitane premice. Razlog za to je nizki delež sevanja  $\gamma$  v primerjavi s sevanjem  $\beta$ , ki ga proizvaja uporabljeni vir, le okoli 5%. Vsako meritev bi morali izvajati veliko dlje, da bi znižali negotovost, ki narašča s korenom števila naštetih sunkov. Zaradi omejitev s časom za izvedbo vaje, sem posamezno meritev moral omejiti na 400s. Kljub temu je izmerjena vrednost blizu pričakovani, ki znaša med 0,6 in 0,65 mm (vir: https://www.nrc.gov/docs/ML1122/ML11229A721.pdf).