ABSTRACT OF THE DISCLOSURE

An objective of the present invention is to obtain a mutual authentication method in which mutual authentication is carried out securely and conveniently. In order to achieve the above objective, in the mutual authentication process, a private key K_{o} , being an initial value, is stored in a client and a server (Pc0, Ps0). The client generates a random number R, calculates secret data C and authentication data A, and transmits the data items to the server (Pc1). The server receives the authentication data A and the secret data C from the client, and generates a random number Q, calculates secret data S, and authentication data B and returns the data items, as well as updating the private key K_{0} with a private key K_{1} (Ps1). The client receives from the server the authentication data B and the secret data S, generates the random number R, calculates secret data C_2 , authentication data A_2 , and returns the data items to the server, and updates the private key K_0 with the private key $K_1(Pc2)$. The client and the server check whether or not validity is established (Ps_{m+1} , Pc_{m+1}). Further in the authentication method above, there is a method for generating a onetime ID, assuming that the onetime ID is identification information usable just one time in the authentication between a plurality of devices or application. In each of the devices or applications which carries out the authentication, a variable shared key which changes per predefined communication unit requiring the authentication is generated, a function value of one-way function is obtained in which the variable

shared key is used as an argument, a onetime ID hard to tap and superior in security is generated based on the function value, and the onetime ID is utilized.