SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY, PRAYAGRAJ

Subject Code: BCS-402

Subject: Theory of Automata & Formal Languages

Course: B.Tech.

Semester: IV

SECOND SESSIONAL, EXAMINATION, EVEN SEMESTER, (2023-2024)

Branch: Computer Science & Engineering

Time -2 Hrs

Maximum Marks – 45

1. Attempt any <u>FIVE</u> questions in brief.

Q. N.	QUESTION	Marks	CO	BL	
a.	Define Grammar.	2	CO3	L1	
b.	Consider the CFG 'G' whose productions are S→ aAS /a , A→ SbA /SS /ba Show derivation of string aabbaa and construct derivation tree for same.	2	CO3	L3	
c.	Construct a Context Free Grammar for a language L over alphabet {a,b} such that L={a'b'c'k i=j or j=k}	2	CO3	L3	
d.	What is Unit & Null production?	2	CO ₃	L1	1
· е.	Show that the following context free grammar is ambiguous. S->SbS a.	2	CO3	L3	
f.	Write the difference between CNF and GNF	2.	CO3	L2	

2. Attempt any ONE of the following.

Q. N.	QUESTION	Marks	CO	BL
a.	Design a CFG for the language: (i) $L=\{a^nb^m \mid n \text{ is not equal to m}\}$ (ii) $L=\{w \mid n_a(w)=n_b(w)\}$	5	CO3	L5
b.	Explain Chomsky classification of grammars and languages along with their machines.	5	CO3	L3
c.	Prove that if L_1 and L_2 are two CFL then intersection of L_1 and L_2 may or may not be CFL	5	CO3	L4

3. Attempt any <u>FIVE</u> questions in brief.

Q. N.	QUESTION			
		Marks	CO	\mathbf{BL}
a.	Draw the model of the finite automata and push down automata?	2	CO4	L1
b.	Define the formal definition of Push Down Automata.	2	CO4	L1
c.	Define Deterministic PDA.	2	CO4	L1
d.	What is Two Stack Push Down Automata?	2	CO4	L1
e.	What is the acceptance of string by Pushdown automata?	2	CO4	L1
f.	What is Instantaneous Description in a PDA?	2	CO4	L1

4. Attempt any	ONE of the	following.
----------------	------------	------------

4 Atte	mpt any <u>ONE</u> of the following.	i ya		<
ON	OUESTION	Marks	co. I	TOY 1
a.	Find the PDA equivalent to the grammar $G = (\{S,A\}, \{a,b\}, P, S)$ where $P = \begin{cases} S \to aAA \\ A \to bS aS a \end{cases}$	5	CO4	BL L4
b.	What are useless symbols in CFG? Remove all useless symbols from following: S→aS A C A→ a B→aa C→aCb	5	CO4	L5
c.	Design a push down automata that accepts the language $L=\{a^nb^n\mid where\ n\ is\ natural\ number\}$.	5	CO4	L5

5. Attempt any FIVE questions in brief.

Q. N.	QUESTION	Marks	CO	BL
a.	Design a Turing machine for f(m)= m+1 where m is positive integer.	2	CO5	L3
b.	Write short note on Universal Turing Machine	2	CO5	L1
c.	Define the formal definition of Turing machine.	2	CO5	L1
d.	Write about The Halting problem.	2	CO5	L1
e.	What is Turing-recognizable language.	2	CO5	L1
f.	Write about Church-Turing thesis.	2	CO5	L1

t any ONE of the following.

o. Auch	the any ONE of the following.				
Q. N.	QUESTION ·	5	Marks	CO	BL
ą.	Design a Turing machine For the L={a ⁿ b ⁿ c ⁿ	n>=1}.	5	CO5	L5
b.	State PCP problem. Find at least 3 solution to 1 10 111	PCP defined by the dominoes: 10111	5	CO5	L5
c.	Convert the following CFG into its equivalent S→ a baAB BCD A→ BCad bb B→ b bad C→ a D→ dd	CNF form:	5	CO5	L3