Q-Learning

John Stachurski

Jan 2023

Overview

- Q-factors
- Fixed point iteration
- Stochastic approximation
- Q-learning as stochastic approximation

Q-factors

Consider an MDP with Bellman equation

$$v^*(x) = \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x'} v^*(x') P(x, a, x') \right\}$$

The corresponding **Q-factor** is the right-hand side

$$q^*(x, a) = r(x, a) + \beta \sum_{x'} v^*(x') P(x, a, x')$$

Hence

$$v^*(x) = \max_{a \in \Gamma(x)} q^*(x, a)$$

Combining the last two equations gives

$$q^{*}(x, a) = r(x, a) + \beta \sum_{x'} \max_{a' \in \Gamma(x')} q^{*}(x', a') P(x, a, x')$$

We can use this to solve for q^* and the obtain v^* via

$$v^*(x) = \max_{a \in \Gamma(x)} q^*(x, a)$$

To repeat,

$$q^*(x, a) = r(x, a) + \beta \sum_{x'} \max_{a' \in \Gamma(x')} q^*(x', a') P(x, a, x')$$

Hence q^* is the fixed point of

$$(Sq)(x,a) = r(x,a) + \beta \sum_{x'} \max_{a' \in \Gamma(x')} q(x',a') P(x,a,x')$$

Remarks

- unlike the Bellman equation for v^* , the expectation is $\underline{\text{outside}}$ the max
- this helps with stochastic approximation

Note that

$$\begin{split} |(Sf)(x,a) - (Sg)(x,a)| \\ &\leqslant \beta \left| \sum_{x'} \max_{a' \in \Gamma(x')} f(x',a') - \sum_{x'} \max_{a' \in \Gamma(x')} g(x',a') \right| P(x,a,x') \\ &= \beta \sum_{x'} \max_{a' \in \Gamma(x')} \left| f(x',a') - g(x',a') \right| P(x,a,x') \end{split}$$

$$\therefore |(Sf)(x,a) - (Sg)(x,a)| \le \beta ||f - g||_{\infty}$$

$$||Sf - Sg|| \le \beta ||f - g||_{\infty}$$

Fixed point iteration

Let

- $T: \Theta \to \Theta$ be a contraction map of modulus β
- Θ be a closed subset of \mathbb{R}^n

We know that $T^k\theta \to \bar{\theta}$ as $k \to \infty$ where $\bar{\theta}$ is the unique fixed point

Alternatively, we can iterate on the damped sequence

$$\theta_{k+1} = (1 - \alpha)\theta_k + \alpha T\theta_k$$

$$= \theta_k + \alpha (T\theta_k - \theta_k)$$

• $\alpha \in (0, 1)$

To see that the damped sequence converges, let

$$F\theta = \theta + \alpha(T\theta - \theta)$$

Then

$$F\bar{\theta}=\bar{\theta}+\alpha(T\bar{\theta}-\bar{\theta})=\bar{\theta}$$

and

$$\|F\theta - F\theta'\| \le (1 - \alpha)\|\theta - \theta'\| + \alpha\|T\theta - T\theta'\| \le (1 - \alpha + \alpha\beta)\|\theta - \theta'\|$$

Note

$$1 - \alpha + \alpha \beta < 1 \iff \beta < 1$$

Stochastic Approximation

Suppose T is a map with fixed point $\bar{\theta} = T\bar{\theta}$

We can only evaluate T with noise:

input
$$\theta$$
 and receive $T\theta + W$

- (W_k) is a random (vector-valued) sequence
- We cannot observe W_k , only $T\theta+W_k$

Robbins–Monro algorithm to compute the fixed point $\bar{\theta}$:

$$\theta_{k+1} = \theta_k + \alpha_k [T\theta_k + W_k - \theta_k]$$

• (α_k) is a sequence in (0,1)

Side-by-side comparison:

Here's damped iteration:

$$\theta_{k+1} = (1-\alpha)\theta_k + \alpha T\theta_k$$

This is Robbins-Monro

$$\theta_{k+1} = \theta_k + \alpha_k [T\theta_k + W_k - \theta_k]$$

By our earlier analysis, $\theta_k \to \bar{\theta}$ if $W_k \equiv 0$ and $\alpha_k \equiv \alpha$

More generally, [Tsi94] proves that if:

- ullet T is an order-preserving contraction map with fixed point $ar{ heta}$
- $\mathbb{E}[W_{k+1} \mid \mathcal{F}_k] = 0$ for all $k \geqslant 0$
- $\sum_{k\geqslant 0} \alpha_k = \infty$ and $\sum_{k\geqslant 0} \alpha_k^2 < \infty$
- some other technical assumptions,

then

 $\theta_k \to \bar{\theta}$ with probability one

Q-Learning

The Q-learning algorithm [Wat89] proposes to learn the Q-factor of an MDP via

$$q_{k+1}(x, a) = q_k(x, a) + \alpha_k \left[r(x, a) + \beta \max_{a' \in \Gamma(X')} q_k(X', a') - q_k(x, a) \right]$$

where $X' \sim P(x, a, \cdot)$

Thm. Under some assumptions,

$$\mathbb{P}\left\{\lim_{k\to\infty}q_k=q^*\right\}=1$$

Proved by [Tsi94], [WD92]

We sketch the proof of [Tsi94]

Let

$$W_k := \beta \max_{a' \in \Gamma(X')} q_k(X', a') - \beta \operatorname{\mathbb{E}} \max_{a' \in \Gamma(X')} q_k(X', a')$$

and recall that

$$(Sq)(x,a) = r(x,a) + \beta \mathbb{E} \max_{a' \in \Gamma(X')} q(X',a')$$

Alternatively,

$$(Sq)(x,a) = r(x,a) + \beta \max_{a' \in \Gamma(X')} q(X',a') - W_k$$

In summary,

$$q_{k+1} = q_k + \alpha_k \left[r + \beta \max_{a' \in \Gamma(X')} q_k(X', a') - q_k \right]$$

and

$$Sq_k + W_k = r + \beta \max_{a' \in \Gamma(X')} q_k(X', a')$$

$$\therefore q_{k+1} = q_k + \alpha_k \left[Sq_k + W_k - q_k \right]$$

To repeat,

$$q_{k+1} = q_k + \alpha_k \left[Sq_k + W_k - q_k \right]$$

with

$$\mathbb{E}W_k = \mathbb{E}\left[\beta \max_{a' \in \Gamma(X')} q_k(X', a') - \beta \mathbb{E} \max_{a' \in \Gamma(X')} q_k(X', a')\right] = 0$$

This is the Robbins–Monro algorithm applied to computing the fixed point of \boldsymbol{S}

• The fixed point of S is the Q-factor q^*

Hence, under certain assumptions, $q_k \rightarrow q^*$ with probability one

Online Q-Learning

We analyzed the Q-learning routine

$$q_{k+1}(x, a) = q_k(x, a) + \alpha_k \left[r(x, a) + \beta \max_{a' \in \Gamma(X')} q_k(X', a') - q_k(x, a) \right]$$

where $X' \sim P(x, a, \cdot)$

This is an example of offline learning

• update q_{k+1} at every (x, a)

An alternative is online learning

• update along a sequence

Let (X_t, A_t) be a state-action sequence

•
$$X_{t+1} \sim P(X_t, A_t, \cdot)$$
 for all $t \ge 0$

•
$$R_t := r(X_t, A_t)$$
 for all $t \ge 0$

Update via

$$\begin{split} q_{t+1}(X_t, A_t) &= \\ q_t(X_t, A_t) + \alpha_t \left[R_t + \beta \max_{a' \in \Gamma(X_{t+1})} q_t(X_{t+1}, a') - q_t(X_t, A_t) \right] \end{split}$$

Can learn online without knowing r or P

Q-Learning for Optimal Stopping

Consider an optimal stopping problem with Bellman equation

$$v^*(x) = \max_{a} \left\{ ae(x) + (1 - a) \left[c(x) + \beta \sum_{x'} v^*(x') P(x, x') \right] \right\}$$

• $a \in \{0, 1\}$ stands for "reject", "accept"

Let

$$q^*(x, a) = ae(x) + (1 - a) \left[c(x) + \beta \sum_{x'} v^*(x') P(x, x') \right]$$

Now rearrange the Bellman equation and elminate v^* to get

$$q^*(x, a) = ae(x) + (1 - a) \left[c(x) + \beta \sum_{x'} \max_{a'} q^*(x', a') P(x, x') \right]$$

Alternatively, $q^* = Sq^*$ where

$$(Sq)(x, a) = ae(x) + (1 - a) \left[c(x) + \beta \sum_{x'} \max_{a'} q(x', a') P(x, x') \right]$$

Finally, apply Q-learning with this version of S

References I

- John N Tsitsiklis, *Asynchronous stochastic approximation and q-learning*, Machine learning **16** (1994), no. 3, 185–202.
- Christopher John Watkins, *Learning from delayed rewards*, Tech. report, King's College, Cambridge United Kingdom, 1989.
- Christopher JCH Watkins and Peter Dayan, *Q-learning*, Machine learning **8** (1992), no. 3, 279–292.