

ENGR 213

Applied Ordinary Differential Equations First Mid Term Exam February 5th 2017

Student Name:	
Student ID Number:	
ENGR 213 Section:	
Course Given RV	

- Exam is closed book close notes.
- No use of any electronic devices.
- Use only the approved calculator.
- · Write your answers in the provided space.

Q1	
Q2	
Q3	
Q4	
Q5	
Total	

Classify the following differential equation by order and linearity.

$$\mathbf{a)} \quad \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^4$$

b)
$$y'' = \sqrt{5x^6 + (\sin x)y^{(8)}}$$

c)
$$e^{-x}y' + (4\sin x)y = (\tan x)y'' - 4e^{-x^2}$$

d)
$$\frac{dy}{dt} = 1 - t^2$$

d)
$$\frac{dy}{dt} = 1 - t^2$$

e) $x^2 y'' + x y' + (x^2 - v^2)y = 0$

	Order	Linearity
a)		
b)		
c)		
d)		
e)		

Problem#2:

Show that $y = \frac{1}{4}e^{3x} + ce^{-x}$ is a solution to the DE $\frac{dy}{dx} + y = e^{3x}$. What is the largest interval of existence for a solution to the IVP y(-3) = 15?

Solve the differential equation $y'=y^2-4y+3$ given initial condition y(0)=3.

Solve the initial value problem
$$\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1-x^2)}$$
, $y(0) = 2$

Solve the differential equation $\frac{dx}{dy} = x(yx^3 - 1)$