& (a)

let (e1) be a basis of IR

imT ER, then (e1) is a basis of imT

(imT) dim(imT) = 1

Since dim(kerT) + dim(imT) = dimV and dimV=n

then dim(kerT) = n-1

(b) let $\times GV$, not in kerT s.t. $Tx \neq 0$. Show $V = \ker T \oplus Span\{x\}$ Let $(x_1, x_2, ... \times x_n)$ be a hasis for V

i) Show $V \subseteq \text{ker} T \oplus \text{spandx}$ let $y \in V$, $(x_1, x_2, -x_{n-1})$ be a basis of ker T wlog, $(ase \mid y \in \text{ker} T)$ $(ase \mid y \in \text{ker} T) \oplus y \in \text{spandxn}$ $(ase \mid y \notin \text{ker} T) \oplus y \in \text{spandxn}$ $(ase \mid y \notin \text{ker} T) \oplus y \in \text{spandxn}$ $(ase \mid y \notin \text{ker} T) \oplus y \in \text{spandxn}$ $(ase \mid y \notin \text{ker} T) \oplus y \in \text{spandxn}$ $(ase \mid y \notin \text{ker} T) \oplus y \in \text{spandxn}$

we also know kerT \(\text{ spandx} = \{0\} \) (Since \(\pm \) kerT \(\text{ spandx} \) \(\text{tineov} \)

then \(\text{y} \in \text{kerT} \operat \text{spandx} \)

\(\text{Spandx} \)

ii) Show ker [+ span {x} = V

We know ker [= V and span {x} = V

let Z ∈ ker [+ span {x}

Then Z = Cigit (292 Ci, (2 ∈ IR, Gr ∈ ker [

as e span {x}

Z ∈ V (V is vector space)

Thus V= kerT (Span (x))