FINM 34000, Autumn 2023

Lecture 6

Reading: Notes, Section 5.2, 5.3.

Exercise 1 Suppose $S_n = X_1 + \cdots + X_n$ is simple symmetric random walk in one dimension. Let \mathcal{F}_n denote the information in X_1, X_2, \ldots, X_n . State which of the following are stopping times for the random walk. Give reasons.

- 1. T is the first time n such that $S_n < 0$.
- 2. T is the first time n that

$$\frac{S_n}{n} > S_1.$$

3. T is the first time n that

$$S_{n+1} > S_n$$
.

4. Let τ be the first time m that $S_m \geq 4$ and let T be the first time n after τ that $S_n \leq -5$.

Exercise 2 In this exercise, we consider simple, asymmetric independent random variables with

$$\mathbb{P}\{X_j = 1\} = 1 - \mathbb{P}\{X_j = -1\} = q, \qquad 0 < q < \frac{1}{2}.$$

Let $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$. Let \mathcal{F}_n denote the information contained in X_1, \dots, X_n .

- 1. Which of these is S_n : martingale, submartingale, supermartingale (more than one answer is possible)?
- 2. For which values of r is $M_n = S_n + rn$ a martingale?
- 3. Let $\theta = (1 q)/q$ and let

$$M_n = \theta^{S_n}$$
.

Show that M_n is a martingale.

4. Let a, b be positive integers, and

$$T_{a,b} = \min\{j : S_j = b \text{ or } S_j = -a\}.$$

Use the optional sampling theorem to determine

$$\mathbb{P}\left\{S_{T_{a,b}}=b\right\}.$$

5. Let
$$T_b = T_{-\infty,b}$$
. Find

$$\mathbb{P}\{T_b<\infty\}.$$

Exercise 3 Let X_1, X_2, \ldots be independent, identically distributed random variables with

$$\mathbb{P}{X_j = 1} = q, \quad \mathbb{P}{X_j = -1} = 1 - q.$$

Let $S_0 = 0$ and for $n \ge 1$, $S_n = X_1 + X_2 + \dots + X_n$. Let $Y_n = e^{S_n}$.

- 1. For which value of q is Y_n a martingale?
- 2. For the remaining parts of this exercise assume q takes the value from part 1. Use the optional sampling theorem to determine the probability that Y_n ever attains a value greater than 100.
- 3. Does there exist a $C < \infty$ such that $\mathbb{E}[Y_n^2] \le C$ for all n?