SEL0417 - Fundamentos de Controle

Análise da Resposta em Frequência

- São adequadas para aplicações em telecomunicações e projetos de filtro, por exemplo.
- Nas aplicações de controle, essa análise é importante, pois relaciona especificações no domínio da frequência e do tempo.

$$r(t) = R \cdot sen(\omega_0 t)$$

$$y(t) = Y \cdot sen(\omega_0 t + \varphi)$$

Soluções de estado estacionário (são funções)

No domínio de Laplace (da frequência):

$$Y(s) = M(s)R(s)$$

Para sinais senoidais de amplitude constante:

$$Y(j\omega) = M(j\omega)R(j\omega)$$

Pode-se usar, então, a notação fasorial:

$$Y(j\omega) = |Y(j\omega)| \angle [Y(j\omega)]$$

assim:

$$|Y(j\omega)| = |M(j\omega)| \cdot |R(j\omega)|$$

$$\angle[Y(j\omega)] = \angle[M(j\omega)] + \angle[R(j\omega)]$$

No caso apresentado, os sinais r(t) e y(t) no domínio da frequência são:

$$R(s) = R \angle 0 e Y(s) = Y \angle \varphi$$

Tem-se:

$$Y = R|M(j\omega_0)|$$

e

$$\varphi = \angle [M(j\omega_0)] + 0 \Rightarrow \angle [M(j\omega_0)] = \varphi$$

- $|M(j\omega_0)|$ e $\phi_m(j\omega_0)$ são funções da frequência ω .
- Diagramas de Bode:

- $|M(j\omega_0)|$ e $\phi_m(j\omega_0)$ são funções da frequência ω .
- Diagramas de Bode:

- Características de um filtro ideal (Passa-baixas):
 - Comportamento de magnitude:

- Características de um filtro ideal (Passa-baixas):
 - Comportamento da fase:

- Características de um sistema real:
 - Comportamento da magnitude:

- Pico de ressonância (M_r): Máximo valor de $|M(j\omega)|$.
- Frequência de ressonância (ω_r): Frequência na qual ocorre o pico M_r .
- Largura de banda (ou de faixa) (BW ou ω_c frequência de corte): Frequência na qual o ganho cai para 70,7% do valor de regime permanente.
- Taxa de atenuação: inclinação (derivada) do diagrama de Bode de magnitude em uma dada frequência.

- Características de um sistema real:
 - Comportamento da fase:

Interpretações:

- M_r indica a estabilidade relativa de um sistema estável em malha fechada:
 - Alto $M_r \Rightarrow$ alto overshoot $M_0 \Rightarrow$ baixo amortecimento
 - Baixo $M_r \Rightarrow$ baixo *overshoot* $M_0 \Rightarrow$ alto amortecimento
- BW fornece indicações sobre a resposta transitória do sistema:
 - Alta BW \Rightarrow pequeno tempo de subida t_r
 - Baixa BW \Rightarrow Grande tempo de subida t_r

Obs: a BW também indica a capacidade de rejeição de ruído e a insensibilidade a variação de parâmetros (robustez) do sistema.

- Interpretações:
 - A taxa de atenuação fornece um indicativo da capacidade do sistema para distinguir sinais e ruídos.
 - Maior taxa de atenuação ⇒ melhor distinção sinal/ruído.
 - Menor taxa de atenuação ⇒ pior distinção sinal/ruído.