TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA CÔNG NGHỆ THÔNG TIN

BÁO CÁO ĐÔ ÁN 1

Bộ môn: Kiến trúc máy tính và Hợp ngữ

Giảng viên bộ môn: Lê Quốc Hòa

Thành viên nhóm:

18120356: Phan Anh Hào

18120372: Lê Minh Hiếu

18120376: Phạm Trung Hiếu

Hồ Chí Minh, ngày 13 tháng 06 năm 2020

NỘI DUNG

A. Phân chia công việc và đánh giá mức độ hoàn thành3				
B. Tổng quan đồ án	4			
I. Môi trường lập trình và ý tưởng thiết kế	4			
II. Phân tích các chức năng	9			
1. Chuyển đổi giữa các hệ số	9			
2. Các phép toán trên QInt	10			
a. Toán tử AND(&), OR(), XOR(^), NOT(~), SHIL(<<),SHIR(>>)	10			
b. Toán tử CỘNG(+), TRÙ(-), NHÂN(*), CHIA(/), BẰNG(=)	11			
c. Phép XOAY TRÁI(rol), XOAY PHẢI(ror)	12			
III. Đánh giá mức độ hoàn thành của đồ án	13			
IV. Tài liệu tham khảo	14			

A. PHÂN CHIA CÔNG VIỆC VÀ MỨC ĐỘ HOÀN THÀNH

STT	Họ và tên	MSSV	Phân công	Mức độ hoàn thành
1	Phan Anh Hào	18120356	_Chuyển đổi số QInt	
			từ hệ 2 sang 16 và	
			ngược lại.	
			_Chuyển đổi số QInt	_
			từ hệ 16 sang 10 và	Hoàn thành tốt
			ngược lại.	
			_Các opertor =,+,-,*,/	
			trên các hệ số.	
2	Lê Minh Hiếu	18120372	_Viết báo cáo đồ án.	
			_Chuyển đổi số QInt	
			từ hệ 2 sang 10 và	,
			ngược lại.	Hoàn thành tốt
			_Hàm main để đọc dữ	
			liệu và thực hiện các	
	,		phép tính.	
3	Phạm Trung Hiếu	18120376	_Các toán tử & ^ ~	
			<< >>.	,
			_Các phép xoay rol,	Hoàn thành tốt
			ror.	
			Optimize code.	

B. TỔNG QUAN ĐỒ ÁN

I. MÔI TRƯỜNG LẬP TRÌNH VÀ Ý TƯỞNG THIẾT KẾ:

1. Môi trường lập trình:

Microsoft Visual C++ 2015-2019 Redistributable.

2. Ý tưởng thiết kế:

- Sử dụng 2 biến kiểu long long là _low và _high để biểu diễn số QInt, trong đó biến _low chứa 64 bit đầu tiên (0 63) còn biết _high chứa 64 bit còn lại (64 127).
- Pham vi biểu diễn: $-2^{127} -> 2^{127} -1$
 - Chuyển từ hệ 2 sang QInt:
 - _ Gọi hàm QInt(string str, int radix) với str là dãy bit hệ 2 truyền vào, radix là cơ số 2.
 - _ Chuẩn hóa dãy bit str vừa đưa vào bằng việc thêm vào các bit 0 sao cho đủ 128 bit. Các bit từ i=0-63 của dãy bit string thuộc phần _high nên ta lấy lần lượt 2^{63-i} rồi cộng vào _high. Các bit từ i=64-127 thuộc phần _low nên ta lấy lần lượt 2^{127-i} rồi cộng vào low.
 - Chuyển từ hệ 10 sang QInt:
 - _ Gọi hàm QInt(string str, int radix) với str là dãy string hệ 10 truyền vào, radix là cơ số 10.
 - _ Đầu tiên ta chuyển về hệ 2 trước: Lần lượt lấy phần dư khi chia dãy str ở hệ 10 cho 2 bằng hàm getDevinedBy2(string str), sau đó cộng vào dãy string bit của hệ 2. Nếu số ở hệ 10 là số âm thì ta chuyển dãy bit về dạng bù 2.
 - _ Tiếp theo, thực hiện chuyển từ hệ 2 sang QInt.
 - Chuyển từ hệ 16 sang QInt:
 - _ Gọi hàm QInt(string str, int radix) với str là dãy bit hệ 16 truyền vào, radix là cơ số 16.
 - _ Đầu tiên ta chuyển về hệ 2 trước: Lần lượt so các bit của dãy bit str hệ 16 và chuyển thành 4 bit hệ 2 dựa vào bảng map quy định các giá trị chuyển đổi từ hệ 16 sang hệ 2, sau đó cộng lần lượt vào dãy bit hệ 2.
 - _ Tiếp theo, thực hiện chuyển từ hệ 2 sang QInt.
 - Chuyển đổi QInt sang hệ 2:
 - _ Gọi hàm string toBinary()
 - Tạo 2 mảng str1, str2. Lần lượt chia lấy dư các phần _high và _low của QInt, sau đó lưu lần lượt vào str1 và str2.

_ Nối mảng str2 vào str1, ta được dãy bit hệ 2. Nếu _high < 0, tức là số âm thì thêm 1 bước chuyển dãy bit hệ 2 qua dạng bù 2.

Cắt bỏ hết các bit 0 thừa ở đầu, ta được dãy bit hệ 2 hoàn chỉnh.

• Chuyển đổi QInt từ hệ sang hệ 10:

_ Gọi hàm string toDecimal()

_Hàm chuyển Qint > 0 sang hệ 2 rồi chuyển hệ 2 sang hệ 10 bằng phương pháp nhân. Nếu Qint < 0 thì lấy đối số rồi thực hiện như Qint > 0, cuối cùng thêm "-" vào trước chuỗi.

• Chuyển đổi QInt từ hệ sang hệ 16:

Gọi hàm string toHexa()

_Hàm chuyển Qint sang hệ 2, sao đó chuyển từng substring có chiều dài bằng 4 thành hệ 10, sau đó ánh xa sang hệ 16.

• Phép gán =:

_ Gọi hàm operator=(const QInt& q)

_ Gán 1 số QInt q cho 1 số QInt a gọi hàm operator=, tức là gán _high và low của q cho high và low của a.

• Phép cộng(+):

_ Goi hàm operator+(const QInt& q1, const QInt& q2)

_ Đầu tiên, chuyển số QInt q1 và q2 về dãy bit hệ 2 str1 và str2. Tạo dãy bit sum để tính tổng str1 và str2.

_ Sau đó cộng lần lượt từng bit của dãy bit str1 và str2 với nhau, tuân thủ quy luật: 1 + 0 = 1 hoặc 0 + 1 = 1, 1 + 1 = 0 nhớ 1, tạo 1 biến nhớ để ghi lại trường hợp 1 + 1.

Cuối cùng, chuyển dãy bit sum vào 1 số QInt và xuất ra kết quả.

• Phép trừ(-):

_ Gọi hàm operator-(const QInt& q1, const QInt& q2)

_ Đầu tiên, gọi hàm operator-(const QInt& q) q2 để chuyển số q2 thành bù 2 của nó.

_ Sau đó, gọi hàm operator+(const QInt& q1, const QInt& q2) cho q1 và bù 2 của q2.

• Phép nhân(*):

_ Goi hàm operator*(const QInt& q1, const QInt& q2)

_ Tạo ra 1 số QInt result để lưu kết quả, lưu số QInt q2 dưới dạng dãy bit nhị phân str bằng cách gọi hàm toBinary().

_ Với mỗi bit trong tất cả 128 bit của str, nếu là bit 1 thì cộng kết quả result với q1, sau đó dịch trái q1 1 bit, nếu là bit 0 thì chỉ dịch trái q1 1 bit.

_ Cuối cùng trả về QInt result là kết quả của phép nhân.

- Phép chia(/):
 - _ Gọi hàm operator/(const QInt& q1, const QInt& q2)
 - _ Lần lượt lấy dãy bit nhị phân của q1 và q2 lưu vào string1 và string2 bằng cách gọi hàm toBinary().

Phép chia

• Giả sử ta muốn thực hiện Q / M với

_ Thực hiện thuật toán chia như trên với Q = string1, M = string2 và k = 128.

• Toán tử AND &:

- _ Gọi hàm operator&(const QInt& q1, const QInt& q2)
- _ Lần lượt lấy dãy bit nhị phân của q1 và q2 lưu vào string1 và string2 bằng cách gọi hàm toBinary().
- _ Khởi tạo dãy bit str toàn bit 0 để lưu kết quả. Với mỗi bit của bit kết quả, nếu bit của string1 và string2 đều bằng 1 thì gán 1 vào bit của biến kết quả đó, ngược lại gán 0.
- _ Cuối cùng ta lưu dãy bit nhị phân str vào số QInt và return kết quả.

• Toán tử OR |:

- _ Gọi hàm operator|(const QInt& q1, const QInt& q2)
- _ Lần lượt lấy dãy bit nhị phân của q1 và q2 lưu vào string1 và string2 bằng cách gọi hàm toBinary().

_ Khởi tạo dãy bit str toàn bit 0 để lưu kết quả. Với mỗi bit của bit kết quả, nếu bit của string1 và string2 đều bằng 0 thì gán 0 vào bit của biến kết quả đó, ngược lại gán 1.

_ Cuối cùng ta lưu dãy bit nhị phân str vào số QInt và return kết quả.

• Toán tử XOR ^:

- _ Gọi hàm operator^(const QInt& q1, const QInt& q2)
- _ Lần lượt lấy dãy bit nhị phân của q1 và q2 lưu vào string1 và string2 bằng cách gọi hàm toBinary().
- _ Khởi tạo dãy bit str toàn bit 0 để lưu kết quả. Với mỗi bit của bit kết quả, nếu bit của string1 bằng 1 và string2 bằng 0 hoặc bit của string1 bằng 0 và string2 bằng 1 thì gán 1 vào bit của biến kết quả đó, ngược lại gán 0. Cuối cùng ta lưu dãy bit nhị phân str vào số QInt và return kết quả.

• Toán tử NOT~:

Goi hàm operator~()

- _ Khởi tạo dãy bit nhị phân str bằng cách gọi hàm toBinary() chuyển số QInt đang gọi hàm này về dạng dãy bit nhị phân.
- _ Với mỗi bit trong dãy bit nhị phân str đó, nếu là bit 1 thì gán lại bằng bit 0 và ngược lại.
- _ Cuối cùng ta lưu dãy bit nhị phân vào số QInt và gán số QInt này vào số QInt thực hiện gọi hàm này.

• Toán tử dịch trái <<:

Gọi hàm operator << (const int& q)

- _ Khởi tạo dãy bit nhị phân str bằng cách gọi hàm toBinary() chuyển số QInt đang gọi hàm này về dạng dãy bit nhị phân.
- _ Với q lần dịch bit, mỗi lần dịch ta dịch chuyển chuỗi str sang trái 1 đơn vị và thêm bit 0 vào bên phải cùng.
- _ Cuối cùng ta lưu dãy bit nhị phân str vào số QInt và return kết quả.

• Toán tử dịch phải >>:

Gọi hàm operator>>(const int& q)

- _ Khởi tạo dãy bit nhị phân str bằng cách gọi hàm toBinary() chuyển số QInt đang gọi hàm này về dạng dãy bit nhị phân, tạo 1 biến sign để lưu bit dấu.
- _ Với q lần dịch bit, mỗi lần dịch ta dịch chuyển chuỗi str sang phải 1 đơn vị và thêm bit dấu sign vào bên trái cùng.
- _ Cuối cùng ta lưu dãy bit nhị phân str vào số QInt và return kết quả.

• Phép xoay trái ROL:

- _ Khởi tạo dãy bit nhị phân binary bằng cách gọi hàm toBinary() chuyển số QInt đang gọi hàm này về dạng dãy bit nhị phân, tạo 1 biến temp để lưu giá trị của bit trái cùng.
- _ Dịch trái dãy bit nhị phân binary 1 đơn vị, sau đó gán bit phải cùng của binary bằng bit temp.

_ Cuối cùng ta lưu dãy bit nhị phân binary vào số QInt và return kết quả.

• Phép xoay phải ROR:

_ Khởi tạo dãy bit nhị phân binary bằng cách gọi hàm toBinary() chuyển số QInt đang gọi hàm này về dạng dãy bit nhị phân, tạo 1 biến temp để lưu giá trị của bit phải cùng.

_ Dịch phải dãy bit nhị phân binary 1 đơn vị, sau đó gán bit trái cùng của binary bằng bit temp.

_ Cuối cùng ta lưu đãy bit nhị phân binary vào số QInt và return kết quả.

II. PHÂN TÍCH CÁC CHỨC NĂNG:

1. Chuyển đổi giữa các cơ số:

- 1. Chuyển số dương hệ 10 sang hệ 2.
- 2. Chuyển số âm hệ 10 sang hệ 2.
- 3. Chuyển số dương hệ 2 sang hệ 10.
- 4. Chuyển số âm hệ 2 sang hệ 10.
- 5. Chuyển số dương hệ 2 sang hệ 16.
- 6. Chuyển số âm hệ 2 sang hệ 16.
- 7. Chuyển số từ hệ 16 sang hệ 2.
- 8. Chuyển số dương hệ 10 sang hệ 16.
- 9. Chuyển số âm hệ 10 sang hệ 16.
- 10. Chuyển số tự hệ 16 sang hệ 10.
- 11. Chuyển từ số dương hệ 10 sang hệ 10.
- 12. Chuyển từ số âm hệ 10 sang hệ 10.
- 13. Chuyển từ số dương hệ 2 sang hệ 2.
- 14. Chuyển từ số âm hệ 2 sang hệ 2.
- 15. Chuyển từ số hệ 16 sang hệ 16.

2. Các phép toán trên QInt:

a. Toán tử AND(&), OR(|), XOR(^), NOT(~), SHIL(<<), SHIR(>>):

- 1. Phép AND(&) trên hệ 2.
- 2. Phép AND(&) trên hệ 10.
- 3. Phép AND(&) trên hệ 16.
- 4. Phép OR(|) trên hệ 2.
- 5. Phép OR(|) trên hệ 10.
- 6. Phép OR(|) trên hệ 16.
- 7. Phép XOR(^) trên hệ 2.
- 8. Phép XOR(^) trên hệ 10.
- 9. Phép XOR(^) trên hệ 16.
- 10.Phép NOT(∼) trên hệ 2.
- 11. Phép NOT(∼) trên hệ 10.
- 12. Phép NOT(∼) trên hệ 16.
- 13.Phép SHIL(<<) 9 bit trên hệ 2.
- 14.Phép SHIL(<<) 23 bit trên hệ 10.
- 15.Phép SHIL(<<) 41 bit trên hệ 16.
- 16.Phép SHIR(>>) 16 bit trên hệ 2.
- 17. Phép SHIR(>>) 67 bit trên hệ 10.
- 18.Phép SHIR(>>) 73 bit trên hệ 16.

b. Toán tử CỘNG(+), TRÙ(-), NHÂN(*), CHIA(/):

- 1. Cộng 2 dãy bit nhị phân.
- 2. Cộng 2 số thập phân.
- 3. Cộng 2 dãy bit thập lục phân.
- 4. Trừ 2 dãy bit nhị phân.
- 5. Trừ 2 số thập phân.
- 6. Trừ 2 dãy bit thập lục phân.
- 7. Nhân 2 dãy bit nhị phân.
- 8. Nhân 2 số thập phân.
- 9. Nhân 2 dãy bit thập lục phân.
- 10. Chia 1 dãy bit nhị phân cho 1 dãy bit nhị phân.
- 11. Chia 1 số thập phân cho 1 số thập phân.
- 12. Chia 1 dãy bit thập lục phân cho 1 dãy bit thập lục phân.

c. Phép XOAY TRÁI(rol), XOAY PHẢI(ror):

- 1. Xoay trái dãy bit nhị phân.
- 2. Xoay trái số thập phân.
- 3. Xoay trái dãy bit thập lục phân
- 4. Xoay phải dãy bit nhị phân.
- 5. Xoay phải số thập phân.
- 6. Xoay phải dãy bit thập lục phân.

III. Mức đồ hoàn thành đồ án:

Hoàn thành	Chưa hoàn thành
1. Chuyển đổi số QInt từ hệ 10 sang 2	
và ngược lại.	
2. Chuyển đổi số QInt từ hệ 2 sang 16	
và ngược lại.	
3. Chuyển đổi số QInt từ hệ 16 sang	Không có.
10 và ngược lại.	-
4. Các toán tử + - * /.	
5. Các toán tử & ^ ~ << >>.	
6. Các phép rol và ror.	

 $[\]Rightarrow$ Hoàn thành 100% đồ án.

IV. Tài liệu tham khảo:

https://stackoverflow.com/questions/13166785/how-to-convert-binary-string-to-integer-string?fbclid=lwAR2O01posFWKJ_D5Q2czwemwciN_3xwzlhPhjF-qsPDjyhMUQtbcaUeR86c

Slide bài giảng "Biểu diễn số nguyên" của thầy Lê Quốc Hòa.