Help smitha_kannur ▼

Course <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

☆ Course / Unit 1 Linear Classifiers and Generalizations (2 weeks) / Lecture 3 Hinge loss, Margin boundaries and Regularization

Previous		Z ~		Next >
· FIGVIOUS	₩ *	4		NEXL >
3. Margin Bo				
☐ Bookmark this page	ge			

Margin Boundary

The **decision boundary** is the set of points x which satisfy

$$\theta \cdot x + \theta_0 = 0.$$

The **Margin Boundary** is the set of points x which satisfy

$$\theta \cdot x + \theta_0 = \pm 1.$$

So, the distance from the decision boundary to the margin boundary is $\frac{1}{\mid\mid\theta\mid\mid}$.

Margin Boundary 1

1/1 point (graded)

As explained in the lecture video, margin boundary is the set of points (x,y) at which the distance from the decision boundary to (x,y) is $\frac{1}{||\theta||}$. Now, what is the value of $y^{(i)}$ $(\theta \cdot x^{(i)} + \theta_0)$ for a correctly classified point $(x^{(i)},y^{(i)})$ on the margin boundary?

Submit

You have used 1 of 2 attempts

Margin Boundary 2

What happens to the margin boundaries as we increase $||\theta||$?

The margin boundaries move closer to the decision boundary							
The margin boundaries move further away from the decision boundary							
The margin boundaries converge to a certain location no matter what							
✓							
Submit You have used 1 of 1 attempt							
Discussion Topic: Unit 1 Linear Classifiers and Generalizations (2 weeks):Lecture 3 Hinge loss, Margin	Hide Discussion						

boundaries and Regularization / 3. Margin Boundary

Add a Post

Sho	by recent activity	ity 🗸
?	Minute 4 says "as we move away from the decision boundary, the linear function increases at rate related to magnitud of vector theta" Probably I misunderstood what was meant because I don't see how the linear function increases in relation to the magnitud of theta. Th	2
∀	How is the distance between the decision and margin boundary is given by 1/(Norm of theta). How is the distance between the decision and margin boundary is given by 1/(Norm of theta), no explanation is given in this video.	5
?	Question about the intuitive explain "We know that the magnitude of the linear function itself, as we move away from the decision boundary, increases at a rate related to t	5
2	"sine distance" in transcript The "sine distance" in the transcript should be "signed distance." Definitely homonyms, and easy to see how a transcription error is mad	5
2	Is this topic same/related to 'support vector machine'? In some other course they talk about SVM but the content covered there seem to be similar to the ones we study in this chapter.	2
?	why the label is part of the regularization term If it's the distance then it should be (theta * x i + theta 0)/norm(theta). This would give the distance from a point to a plane along with it	2
?	Margin Boundaries	5
?	Margin Boundary 1 Can someone please explain to me what this question is asking?	2

✓ Previous
Next >

