«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: Информатика и системы управления

КАФЕДРА: Теоретическая информатика и компьютерные технологии

Информационная система контроля доступа

Костриця М. ИУ9-81Б

Руководитель: Посевин Д.П.

Цель

Целью работы является исследование возможности создания бюджетной автоматизированной системы мониторинга помещения с использованием машинного зрения.

Задачи

- Анализ существующих решений
- Проектирование архитектуры
- Выбор стека технологий
- Обзор архитектур нейронных сетей
- Разработка серверных приложений
- Выбор протокола передачи сообщений
- Выбор базы данных
- Разработка Android приложения
- Разработка iOS приложения
- Тестирование

Анализ существующих решений

- 1) Hikvision Ids-7716nxi-i4/8s 144 990 рублей за систему
 - 20 камер с детектором людей
- 2) Trassir neurostation 199 900 рублей за систему
 - 16 камер с детектором людей
- Cubic CV
 - 7700 рублей за камеру в месяц

Обзор нейронных сетей

Model	Достоверность (%)	Время обнаружения (sec)	Точность (%)	Частота ошибок (%)
VGGNet	68.51	0.329	60.17	31.49
FaceNet	67.48	0.416	59.48	32.52
DeepFace	63.78	0.341	52.55	36.22
OpenFace	63.18	0.360	55.42	36.82
Face Recognitiion (Dlib)	64.81	0.357	58.71	35.19

Схема информационной системы

Стек технологий

```
– языки программирования:
   – Python (серверное ПО и нейронная сеть);
   Kotlin (android приложение);
   – Swift (iOS приложение);
   – JavaScript (сервер вывода изображений);
MQTT Broker;
– Dlib;
Clickhouse;
– anaconda;
Docker.
```

Реализация мобильного приложения

Android:

- Android Studio
- Gradle
- Kotlin
- MqttClient

iOS:

- Xcode
- Swift
- MQTTClient

Протоколы передачи сообщений сетевых служб

Sockets MQTT

Оборудование

- іР камеры:
 - iPhone 13 Pro Max
 - iPhone Xs Max
- Локальный компьютер:
 - Apple MacBook Air 13 Mid 2017
- VDS:
 - 1 CPU, 2 Гб RAM, 30 Гб SSD.

Тестирование

Click here to see cam: [cam/213.87.148.213:60775] people: ['unknown', 'maksim'] time: [2023-05-27_12:35:34.238480]

<u>Click here</u> to see cam: [cam/213.87.148.213:60775] people: ['unknown', 'maksim'] time: [2023-05-27_12:35:33.754069]

<u>Click here</u> to see cam: [cam/213.87.148.213:51537] people: ['maksim'] time: [2023-05-27_12:46:08.474062]

<u>Click here</u> to see cam: [cam/213.87.148.213:31018] people: ['unknown'] time: [2023-05-27_12:46:08.148329]

Заключение

Были выполнены задачи:

- Анализ существующих решений
- Анализ архитектур нейронных сетей
- Проектирование и разработка архитектуры
- Выбор стека технологий для разработки программного обеспечения
- Разработка информационной системы
- Тестирование информационной системы

Развитие

При дальнейшей разработке планируется следующее:

- Добавление push-уведомлений в мобильные приложения при обнаружении незнакомый лиц
- Подключение к видеопотоку камеры с мобильного устройства
- Разработка протокола для приема сообщений в одном потоке