Esercizio 1: Impianti idroelettrici

Un sistema di produzione di energia è basato su un dato insieme impianti idroelettrici. Ciascuno ha un bacino di data capacità massima e può generare energia entro un dato limite massimo per ogni giorno. La conversione dal volume di acqua consumata all'energia prodotta è data da un coefficiente costante e noto. L'acqua che alimenta il bacino proviene da torrenti di montagna, di cui è stata stimata la portata, cioè la quantità di acqua riversata nel bacino in ogni giorno. Se il bacino è pieno, l'acqua in eccesso viene smaltita attraverso un canale di sfioro che la disperde. L'energia generata viene immessa nella rete elettrica. E' noto il fabbisogno energetico giornaliero e sono note le condizioni iniziali dei bacini. Quando la produzione idroelettrica non basta a coprire il fabbisogno, è necessario acquistare energia da altre fonti, ad un dato costo che è variabile di giorno in giorno. Esiste un limite noto e variabile nel tempo sulla quantità di energia acquistabile ogni giorno. Si vuole pianificare l'attività dei bacini idroelettrici in un dato periodo di tempo, conoscendo lo stato iniziale di ciascuno e la minima quantità di acqua che deve restare disponibile in ciascuno al termine del periodo di pianificazione.

Qual è il modo ottimale di gestire gli impianti che consenta di soddisfare il fabbisogno energetico di ciascun giorno minimizzando i costi di acquisto dell'energia?

Formulare il problema, classificarlo e risolverlo con i dati del file IDRO.TXT.

Dovendo provvedere a lavori di manutenzione si rende necessario ridurre il più possibile la produzione di un dato impianto per un giorno. In quale giorno è meglio eseguire la manutenzione?

Gli impianti idroelettrici sono tre, con le caratteristiche di Tab.1. I giorni sono 20 ed il fabbisogno è in Tab.2

Impianto	Capacità [mc]	Alimentazione [mc/g]	Produz.max [MWh/g]	Vol.iniz. [mc]	Vol.fin. [mc]
1	1000000	25000	24	500000	250000
2	1200000	55000	30	600000	300000
3	1800000	40000	3.0	900000	450000

Giorno	_	Costo
1	[MWh] 90	[Euro/MWh] 3000
2	84	3000
3	82	3000
4	74	3000
5	66	3000
6	62	3500
7	52	3500
8	40	3500
9	40	3500
10	40	3500
11	70	4000
12	90	4000
13	70	4000
14	66	4000
15	68	4000
16	68	5000
17	74	5000
18	76	5000
19	80	5000
20	82	5000

Massima quantità di energia acquistabile in ogni giorno: 30 MWh. Per produrre 1 Mwh di energia servono 3600 mc di acqua (per tutti gli impianti). Studiare la necessità di manutenzione dell'impianto n.3.