On the existence of categorical connections

Nelson Batalha

Under supervision of Prof. Gustavo Granja Dep. Matemática, IST, Lisbon, Portugal

2010

Keywords: 2-bundle, 2-categories, categorical connection, categorification, internalization, higher gauge theory, holonomy.

1 Introduction

This is an extended abstract for [Bat10]. Recently there has been much interest in categorifying bundles and connections with a view to applications in Physics. In [BS04] a notion of 2-bundle and 2-connection was introduced. Faria Martins and Picken defined and studied a concrete special case which they called categorical connection on a principal bundle, where the structure group is put in the form of a crossed module.

We now describe this notion and present our result considering existence of categorical connections on a given principal bundle, which we achieve by essentially describing categorical connections as sections in an associated vector bundle.

2 Categorical connections

Definition 2.1. A crossed module is a quadruple $\mathcal{G} = (H, G, \partial : H \to G, \triangleright)$ where H, G are groups, $\triangleright : G \to Aut(H)$ is a left action of G on H and $\partial : H \to G$ is an equivariant group morphism, ie

$$\partial(g \rhd h) = g\partial(h)g^{-1}$$
 for all $g \in G, h \in H$

and we also require the Peiffer identity:

$$\partial(e) \rhd h = ehe^{-1}$$
 for all $e, h \in H$.

When H and G are Lie groups and $\partial \triangleright$ are smooth, \mathcal{G} is said to be a Lie crossed module.

A particular kind of 2-connection is the following.

Definition 2.2. Let $\mathcal{G} = (\partial : H \to G, \triangleright)$ be a crossed module, with associated differential crossed module $\mathfrak{G} = (\partial : \mathfrak{h} \to \mathfrak{g}, \triangleright)$. A \mathcal{G} -categorical connection on a principal G-bundle $p : E \to B$ is a pair (m, ω) where $\omega \in \Omega^1(E, \mathfrak{g})$ is a connection 1-form on E and m is an equivariant horizontal 2-form in $\Omega^2(E, \mathfrak{h})$, such that

$$\partial(m) = \Omega \tag{1}$$

For instance, let $\mathcal{G} = (\mathrm{id} : G \to G, \triangleright)$, where \triangleright is the adjoint action of G on G.

Let $p: E \to B$ be principal G-bundle with connection one-form ω . Then (ω, m) is a \mathcal{G} -categorical connection, where $m = \Omega$ is the curvature 2-form of ω .

2.1 Categorical connections as bundle sections

Definition 2.3. Let (E, p, B) be a principal G-bundle. Let (ρ, V) be a representation of G in a finite dimensional vector space V. A tensorial form of degree k on E of type (ρ, V) is a form $\varphi \in \Omega^k(E, V)$ such that

- φ is G-invariant for the induced action of G on V, i.e. $R_g^* = \rho(g^{-1})\varphi$,
- φ is horizontal, i.e. $\varphi(X_1, \ldots, X_k) = 0$ when one of the tangent vectors X_i is vertical.

A connection ω is a tensorial form of degree 1 in E of type (Ad, \mathfrak{g}). By definition, m is a tensorial form of degree 2 in E of type (\triangleright , \mathfrak{h}). From [KN63]:

Lemma 2.4. Let (E', q, B) be the bundle associated with the principal G-bundle (E, p, B) with fibre V, where G acts naturally by ρ . There is a one-to-one correspondence between the tensorial forms as in Definition 2.3 and sections of the bundle

2.2 Existence

A connection 1-form on any bundle can always be found by the means of partitions of unity, our problem lies with the form m. Our main result is the following:

Theorem 2.5. Let $\xi = (E, p, B)$ be a principal G-bundle, and let $\mathcal{G} = (\partial : H \to G)$ a Lie crossed module. The following are equivalent:

- 1. There is a \mathcal{G} -categorical connection on ξ .
- 2. ξ admits a connection with curvature 2-form Ω such that $Im(\Omega) \subset \mathfrak{a}$, where $\mathfrak{a} = Im \partial$.
- 3. ξ admits a reduction to a structure group $G' \subset G$, with Lie algebra \mathfrak{g}' contained in \mathfrak{a} .

Corollary 2.6. In the conditions of Theorem 2.5, if $\partial : \mathfrak{e} \to \mathfrak{g}$ is surjective there is always a categorical connection on a bundle with structure group G.

To prove the Theorem 2.5, note that $(1) \Rightarrow (2)$ follows by definition, whereas $(2) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ follow by the Ambrose-Singer theorem and $(2) \Rightarrow (1)$. For the latter, we described the categorical connection as sections of a particular bundle. Then our problem reduces to obtaining an equivariant right section of a surjective bundle morphism, which is always possible.

2.3 Example of non-existence

Let $(H,.) = (\mathbb{R}^n, +)$ and $(G,.) = (GL(n,\mathbb{R}), \circ)$. Take the trivial map $\partial: H \to G$ together with the action $f \rhd e = f(e)$ of $GL(n,\mathbb{R})$ in \mathbb{R}^n . Clearly $\mathcal{G} = (\partial: H \to G, \rhd)$ is a crossed module. Since $\partial: \mathfrak{h} \to \mathfrak{g}$ is the zero map, in order for there to be a categorical connection, the holonomy group would have to be a discrete subgroup of G. But in general that is not the case: take for instance the frame bundle over S^2 , with $G = GL(2, \mathbb{R})$ and $H = (\mathbb{R}^2, +)$. If the frame bundle could be reduced to a discrete group then it would be trivial as, for any topological group, principal G-bundles over S^2 are classified by conjugacy classes in $\pi_1(G)$. In particular there would be a section of the frame bundle and hence a nowhere vanishing tangent vector field to S^2 which is impossible by the hairy ball theorem.

References

[Bat10] Nelson Batalha. On the existence of categorical connections. Master's thesis, Departamento de Matemática, Instituto Superior Técnico, 2010.

- [BS04] John Baez and Urs Schreiber. Higher gauge theory: 2-connections on 2-bundles, 2004.
- [BS07] John C. Baez and Urs Schreiber. Higher gauge theory. In Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., pages 7–30. Amer. Math. Soc., Providence, RI, 2007.
- [CP94] A. Caetano and R. F. Picken. An axiomatic definition of holonomy. *Internat. J. Math.*, 5(6):835–848, 1994.
- [Hus94] Dale Husemoller. Fibre bundles, volume 20 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 1994.
- [KN63] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry. Vol I. Interscience Publishers, a division of John Wiley & Sons, New York-Lond on, 1963.
- [MP10] João Faria Martins and Roger Picken. On two-dimensional holonomy. *Trans. Amer. Math. Soc.*, 362(11):5657–5695, 2010.