Week 6 Video Lecture Notes

A. Correlation Coefficients and its Limitations

Motivations

- how to determine the strength of a relationship? Strong or Weak?
 - how do we measure the relationship quantitatively

The Correlation Coefficient

def. Correlation Coefficient, denoted by r, is a measure of linear association between them

summarizes the direction and strength of the association (ranging from -1 to 1)

Interpreting the r-value

- the sign tells us the direction of the linear association, + for positive, for negative and 0 for no linear association.
- the **magnitude of** r determines the **strength** of the linear association btwn two numerical variables
- perfect linear association occurs when all the data points line on the line of best fit
- $r > 0 \implies$ positive linear association
- $r < 0 \implies$ negative linear association
- ullet $r=1 \Longrightarrow$ perfect positive linear association
- ullet $r=-1 \Longrightarrow$ perfect negative linear association
- ullet $r=0 \Longrightarrow$ no linear association

Magnitude of r tells us about the strength of the linear association

- closer the r -value to either -1 or 1, then the stronger the linear association
- closer the r -value to 0, then the weaker the linear association

Computation of Correlation Coefficient

Formulae:

$$Standard\,Unit_x = rac{x - ar{x}}{\sigma_x}$$

$$Standard\,Unit_y = rac{y - ar{y}}{\sigma_y}$$

Steps:

1. Compute mean and S.D. of x (\bar{x} and σ_x) as well as mean and S.D. of y (\bar{y} and σ_y)

1	9				l	l .		l .		1
y	41	17	28	50	39	26	30	6	4	10

$$\bar{x} = \frac{9+4+5+10+6+3+7+2+8+1}{10}$$

= 5.5

$$\sigma_x = \sqrt{rac{(9-5.5)^2 + (4-5.5)^2 + \ldots + (1-5.5)^2}{10}}$$

= 2.87

$$\bar{y} = \frac{41 + 17 + \ldots + 10}{10}$$

-25.1

$$\sigma_y = \sqrt{rac{(41-25.1)^2 + (17-25.1)^2 + \ldots + (10-25.1)^2}{10}}$$

= 14.84

2. Compute x and y in their standard units for each data point, i.e.

$$SU_{x1} = rac{9-5.5}{2.87} = 1.22 (2 \; d. \, p. \,)$$

- 3. Compute SU_{x+y} based on Step 2.
- 4. Compute r (sum the products obtained by SU_x and SU_y)

$$r = rac{1}{N} \cdot \left(SU_{x1\;y1} + SU_{x2\;y2} + \ldots SU_{xN\;yN}
ight)$$

Important Properties of the Correlation Coefficient r

- r is not affected by interchanging the x and y variables
- if we <u>add</u> (or conversely subtract) a constant k to $\underline{all\ data\ points}$ (supposing input error), it **does not affect** the value of \mathbf{r}
- if we <u>multiply</u> a constant m to $\underline{all\ data\ points}$ (supposing conversion or "shifting" by a certain factor m), the value of r remains unaffected.

Disadvantages of using Correlation Coefficient

- 1. Association is not causation.
 - there is often a strong association btwn variables (i.e. $r \to 1$ or $r \to -1$) which is misinterpreted as a cause-effect r/s
 - ullet remember that statistical relationship eq causal relationship
- 2. The correlation coefficient cannot tell us anything about non-linear relationships
 - r does not apply for non-linear r/s since it does not give indications if variables are related non-linearly.
- 3. outliers may increase the strength ("closeness" to best fit) of the correlation coefficients
 - removal of outliers from the data set can have different effects on r!

Ecological Correlations

correlation based on aggregated "groups" at different points of the graph

Disadvantage

• may overstate the strength of associations individuals despite being in the same direction as aggregates

def: **Ecological fallacy** occurs when one draws a false conclusion about correlation at the individual level (the big picture) based on what was observed at the aggregate level

def: **Atomistic fallacy** occurs when one mistakenly concludes that the same correlation observed at the individual level would also exist at the aggregate level.

Fallacy	Using	To conclude
Ecological	Ecological correlation (aggregate level)	Individual level correlation
Atomistic	Individual level correlation	Ecological correlation (aggregate level)

B. Linear Regression

- used to "guess" some variable some time down the road through extrapolation
- should not use regression line to predict values outside of the range of *x*.

Linear Association Formula:

$$Y = mX + b$$

 $ullet \ b
ightarrow {\sf y}$ intercept; $m
ightarrow {\sf gradient}$

Residuals

- "error" of the i_{th} observation
 - formula: $e_i = y_i \hat{y_i}$

Assessing Best Fit Lines

Method of Least Squares regression line- makes use of residuals

$$e_k = {e_1}^2 + {e_2}^2 + \ldots + {e_n}^2 = \sum_{i=1}^k (e_i)^2$$

- Notes:
 - will always pass through point of averages (i.e. \bar{x}, \bar{y})
 - allows us to predict average resale price for a given age of a resale flat (but NOT vice versa)

 two regression lines (price / age and age / price are not interchangeable!)

Gradient of the regression line

Gradient is closely related to correlation coefficient r.

$$m = rac{\sigma_y}{\sigma_x} \cdot r$$

- Gradient is the quotient of S.D. of y divided by S.D. of x multiply by r.
- ullet m may not equate to r
- ullet when r is positive, then m is also positive $o r_+ \implies m_+$ and $r_- \implies m_-$ (vice versa)

C. Studying non-linear relationships

• use a combination of correlation coefficient + scatter plot (for bivariate data) to test for non-linear relationships

 show a clear visual of exponentiation or a quadratic / cubic function to disprove linearity and hence linear relationship between variables
relationship between variables