EPFL - Fall 2021

M. Cossarini, B. Santos Correia

Exercise Series 12 - Orientations, manifolds w/boundary 2021–12–21

Exercise 12.1. Which of the following manifolds are orientable?

- (a) The torus $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$.
- (b) A product $M_0 \times \cdots \times M_{k-1}$ of several orientable manifolds.
- (c) The projective plane \mathbb{P}^2 .
- (d) The Möbius band.

Exercise 12.2. Let M be a differentiable n-manifold. Show that the sign $\operatorname{sgn} \omega$ of a nonvanishing n-form on M, defined by

$$(\operatorname{sgn}\omega)|_p(X^0,\ldots,X^{n-1}) := \operatorname{sgn}(\omega|_p(X^0,\ldots,X^{n-1}))$$

for $p \in M$ and $X^0, \ldots, X^{n-1} \in T_pM$, is an orientation on M.

Exercise 12.3. Prove Proposition 7.2.6. (properties of the integral: linearity, etc).

Exercise 12.4. Let M be a differentiable manifold with boundary. Show that its interior $\operatorname{Int} M$ and its boundary ∂M are complementary subsets (i.e. they are disjoint and their union is M). Also show that ∂M is closed and $\operatorname{Int} M$ is open.

Exercise 12.5. Prove that a continuous k-form is determined by the value of its integrals (Proposition 7.3.12). *Hint:* Use a chart to move the problem to \mathbb{R}^n , then integrate on small pieces of coordinate planes.

Exercise 12.6. Let $f: M \to N$ be a smooth map between smooth manifolds. Then for all $\omega \in \Omega^k(M)$ we have

$$f^*(\mathrm{d}\omega) = \mathrm{d}(f^*\omega).$$

Exercise 12.7. Let (x, y, z) be the standard coordinates on \mathbb{R}^3 and let (v, w) be the standard coordinates on \mathbb{R}^2 . Let $\phi : \mathbb{R}^3 \to \mathbb{R}^2$ be defined as $\phi(x, y, z) = (x + z, xy)$. Let $\alpha = e^w \, \mathrm{d}v + v \, \mathrm{d}w$ and $\beta = v \, \mathrm{d}v \wedge \mathrm{d}w$ be 2-forms on \mathbb{R}^2 . Compute the following differential forms:

$$\alpha \wedge \beta$$
, $\phi^*(\alpha)$, $\phi^*(\beta)$, $\phi^*(\alpha) \wedge \phi^*(\beta)$.

Exercise 12.8. Compute the exterior derivative of the following forms:

- (a) on $\mathbb{R}^2 \setminus \{0\}$ $\theta = \frac{x \, \mathrm{d}y y \, \mathrm{d}x}{x^2 + y^2}$.
- (b) on \mathbb{R}^3 , $\varphi = \cos(x) \, \mathrm{d}y \wedge \mathrm{d}z$.
- (c) on $\mathbb{R}^3 \omega = A dx + B dy + C dz$.

Exercise 12.9. Deduce the following classical theorems from Stokes' theorem.

(a) **Green's theorem.** Let $D \subseteq \mathbb{R}^2$ be a smooth 2-dimensional compact embedded submanifold with boundary in \mathbb{R}^2 . Then for any differentiable 1-form $\omega = P \, \mathrm{d} x + Q \, \mathrm{d} y$ defined on an open neighborhood of D we have

$$\int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial D} P dx + Q dy.$$

(b) **Divergence theorem.** Let $A \subset \mathbb{R}^3$ be a 3-dimensional compact embedded submanifold with boundary in \mathbb{R}^3 . Then for any smooth vector field $F: A \to \mathbb{R}^3$ we have

$$\int_A \operatorname{div} F \, \mathrm{d}V = \int_{\partial A} F \cdot \mathrm{d}$$

wher $dV := dx \wedge dy \wedge dz$ is the standard 3-form on \mathbb{R}^3 and on the right hand side we have the formal inner product with $dS = (dy \wedge dz, dz \wedge dx, dx \wedge dy)$.