Presentation

Mohit EE24BTECH11041

9 JAN 2025

- Problem
- Solution
 - Solution
- Solution
 - Solution
- Solution
 - Solution
- 5 Finite difference Method
 - Finite difference Method
- 6 Plot by Finite Difference Method
 - Plot by Finite Difference Method
- Runga-kutta Method
 - Runga-kutta Method
- Plot by Runga-Kutta Method
 - Plot by Runga-Kutta Method

Problem Statement

Solve the differential equation given below with initial conditions x=2 and y=0 and plot a graph.

$$x(x^2 - 1)\frac{dy}{dx} = 1 (2.1)$$

Solution

Rearranging the Equation,

$$dy = \frac{dx}{x(x^2 - 1)}\tag{3.1}$$

Integration: Integrating on both sides.

$$\int dy = \int \frac{dx}{x(x^2 - 1)} \tag{3.2}$$

$$\int dy = \int \frac{dx}{x^3 (1 - \frac{1}{x^2})}$$
 (3.3)

Subsituting,

$$1 - \frac{1}{x^2} = t \tag{3.4}$$

Solution

Differentiating on both side,

$$\frac{dx}{x^3} = \frac{dt}{2} \tag{4.1}$$

Now integrating,

$$\int dy = \int \frac{dt}{2t} \tag{4.2}$$

$$y = \frac{1}{2} \ln t + c \tag{4.3}$$

substituting t,

$$y = \frac{1}{2} \left(\ln \left(1 - \frac{1}{x^2} \right) \right) + c \tag{4.4}$$

finding constant by putting x=2 and y=0

$$c = \frac{1}{2} ln \frac{4}{3} \tag{4.5}$$

Solution

This leads to:

$$y = \frac{1}{2} \left(\ln \frac{4}{3} \left(1 - \frac{1}{x^2} \right) \right) \tag{5.1}$$

Finite difference Method

Initial point of curve (1.0001, -4.10)

$$h = 0.001 \tag{6.1}$$

$$y_{n+1} = y_n + h \cdot \left(\frac{dy}{dx}\right) \tag{6.2}$$

$$x_{n+1} = x_n + h (6.3)$$

Substituting $\frac{dy}{dx}$,

$$y_{n+1} = y_n + h \cdot \left(\frac{1}{x(x^2 - 1)}\right)$$
 (6.4)

Plot by Finite Difference Method

Note:- Finite difference method fails here because $\frac{dy}{dx}$ is too large near x=1.Which creates a significant error in calculating y_{n+1}

Runga-kutta Method

Let .

$$h = 0.001 \tag{8.1}$$

$$dv$$

$$\frac{dy}{dx} = f(x_n) \tag{8.2}$$

Then,

$$k_1 = hf(x_n) \tag{8.4}$$

$$k_2 = hf\left(x_n + h/2\right)$$

$$k_3 = hf\left(x_n + h/2\right)$$

$$k_4 = hf\left(x_n + h\right)$$

$$k = \frac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right)$$

$$y_{n+1} = y_n + k$$

$$x_{n+1} = y_n + k$$
$$x_{n+1} = x_n + h$$

(8.9)(8.10)

(8.5)

(8.6)

(8.7)

(8.8)

Plot by Runga-Kutta Method

