CS202 Homework 4

Hilal Coşgun

22201571

Question 1:

I used Kruskal's Algorithm to find minimum spanning tree. To use Kruskal's Algorithm, first, I grouped edges by their weights in ascending order. To find weights of edges, I applied the given formulas; $i^2 + j^2$ formula for edges (1,2) and (1,4), and i+j for remaining edges. Then I selected edges with smaller weights as long as they do not create a cycle. For example, after choosing (1,2), (1,4), (2,3) and (1,5), adding the edge (2,4) would create a cycle because both vertices 2 and 4 are already connected through other edges in the MST. Therefore, we do not select this edge. When all 9 edges are selected, which is number of vertices-1, I stopped and sum the weights. The total weight of the edges is 66.

	weights							
5	6	7	8	9	10	11		
1-2	(1-5)	1-6	1-7	1-8	1-3	1-10		
1-4	2-4	2-5	2-6	2-7	1-9	2-9		
2-3		3-4	3–5	3-6	2-8	3-8		
				4-5	3-7	4-7		
					4-6	5-6		
4	5+5+5	+6+7	+8+9	9+10+	-11 = 6	6		

Final look of the MST:

Question 2:

For this question, I again used Kruskal's Algorithm, as it is a widely preferred algorithm for constructing MSTs in weighted graphs. There are 10 vertices; therefore, 9 edges are needed for constructing a MST.

- 1- I started by selecting edges with the smallest weight of 2.
- 2- Then, I started to select the edges with weight of 3. However, I excluded one of the edges of weight of 3 to avoid creating a cycle.
- 3- Next, I selected edges with weight of 5. Again, I avoided making a cycle by adding only one of the edges with weight 5. Here, choice of which edge to select was arbitrary.
- 4- Finally, I selected an edge with weight 6, completing the MST with all 9 edges.

The final look of the MST here:

Total cost of wiring = 2.5+3.2+5+6 = 27

As I mentioned, to avoid cycles, I made some arbitrary decisions between edges. I also drew an alternative MST that includes different edge choices, and it can be seen that the total cost remains the same.

Alternative MST:

FINAL

Total weight= 2.5 + 3.2 + 5 + 6 = 27