

Capstone Project-

BOOK RECOMMENDATION SYSTEM

Presented By :Aniket Satpute
Kaiwalya Zankar
(AlmaBetter
Trainee)

Content

- Introduction
- Scope of project
- Problem Statement
- Data Summary
- Process flow
- Library used
- Data preprocessing
- EDA
- Different Recommendation Model
- Challenges
- Conclusion
- Q & A

Introduction

- ➤ Book recommendation is created and deployed in this approach of work, which helps in recommending books. Recommendation achieved by the users feedbacks and rating, this is the online which analyze the ratings, comments and reviews of user, negative positive nature of comments using opinion mining.
- ➤ Whenever we search a book and we get lots of book having same name at that time recommendation model helps a lot.
- > This is the trustworthy approach, which is used in this paper where selection is based on the services of cloud using collaborative filtering.

SCOPE of project

- •The main objective is to create a machine learning model to recommend relevant books to users based on popularity and user interests.
- •In addition to the ML Model prediction, we also have taken into account the book recommendation for a totally new user.

Problem Statement

During the last few decades, with the rise of Youtube, Amazon, Netflix, and many other such web services, recommender systems have become much more important in our lives in terms of providing highly personalized and relevant content.

The main objective is to create a recommendation system to recommend relevant books to users based on popularity and user interests.

Data Summary

The dataset is comprised of three csv files:: User_df, Books_df, Ratings_df

Users_dataset.

- User-ID (unique for each user)
- Location (contains city, state and country separated by commas)
- Age

Shape of Dataset - (278858, 3)

Books_dataset.

- ISBN (unique for each book)
- Book-Title
- Book-Author
- Year-Of-Publication
- Publisher

- Image-URL-S
- Image-URL-M
- Image-URL-L
- Shape of Dataset (271360, 8)

Ratings_dataset.

- User-ID
- ISBN

- Book-Rating
- Shape of Dataset (1149780, 3)

Process Flow-

Libraries used-

- 1. numpy
- 2. Pandas
- 3. scipy
- 4. matplotlib.pyplot
- 5. seaborn
- 6. imblearn
- 7. Sklearn
- 8. statsmodel
- 9. Math
- 10.Xgboost
- 11.warnings

Data Preprocessing

1.Users Dataset

	index	Missing Values	% of Total Values	Data_type	
0	Age	110762	39.72	float64	
1	User-ID	0	0.00	int64	
2	Location	0	0.00	object	

Age have around 39% missing values

250

Age Distribution

- The Age range distribution is right skewed
- Most active readers lie in age group 20-40

- Outliers in Age column
- Age has positive Skewness (right tail) so we can use median to fill Nan values,

Users as per location

Most number of users are from USA.

2. Books Data

Top 10 authors with most books written

Agatha Christie wrote highest number of books in our given dataset

Top 10 publisher with most books

Harlequin published highest number of books in our given dataset

3. Rating Dataset Rating Distribution

The ratings are very unevenly distributed, and the vast majority of ratings

Book Rating

- Higher ratings are more common amongst users
- Rating 8 has been rated the highest number of times

Models used

Different Models

1.) Popularity Based Recommendation

Book weighted average formula:

Weighted Rating(WR)=[vR/(v+m)]+[mC/(v+m)]

Where,

v is the number of votes for the books; m is the minimum votes required to be listed in the chart; R is the average rating of the book; and C is the mean vote across the whole report.

	Book-Title	Total_No_Of_Users_Rated	Avg_Rating	Score
0	Harry Potter and the Goblet of Fire (Book 4)	137	9.262774	8.741835
1	Harry Potter and the Sorcerer's Stone (Harry Potter (Paperback))	313	8.939297	8.716469
2	Harry Potter and the Order of the Phoenix (Book 5)	206	9.033981	8.700403
3	To Kill a Mockingbird	214	8.943925	8.640679
4	Harry Potter and the Prisoner of Azkaban (Book 3)	133	9.082707	8.609690
5	The Return of the King (The Lord of the Rings, Part 3)	77	9.402597	8.596517
6	Harry Potter and the Prisoner of Azkaban (Book 3)	141	9.035461	8.595653
7	Harry Potter and the Sorcerer's Stone (Book 1)	119	8.983193	8.508791
8	Harry Potter and the Chamber of Secrets (Book 2)	189	8.783069	8.490549
9	Harry Potter and the Chamber of Secrets (Book 2)	126	8.920635	8.484783
10	The Two Towers (The Lord of the Rings, Part 2)	83	9.120482	8.470128
11	Harry Potter and the Goblet of Fire (Book 4)	110	8.954545	8.466143
12	The Fellowship of the Ring (The Lord of the Rings, Part 1)	131	8.839695	8.441584
13	The Hobbit : The Enchanting Prelude to The Lord of the Rings	161	8.739130	8.422706
14	Ender's Game (Ender Wiggins Saga (Paperback))	117	8.837607	8.409441
15	Tuesdays with Morrie: An Old Man, a Young Man, and Life's Greatest Lesson	200	8.615000	8.375412
16	Charlotte's Web (Trophy Newbery)	68	9.073529	8.372037
17	Dune (Remembering Tomorrow)	75	8.973333	8.353301
18	A Prayer for Owen Meany	181	8.607735	8.351465
19	Fahrenheit 451	164	8.628049	8.346969

2.) Model based collaborative filtering

SVD

test_rmse	1.601489
test_mae	1.239510
fit_time	12.735846
test_time	0.979896
dtype: float64	

NMF

test_rmse	2.618516
test_mae	2.236896
fit_time	17.139331
test_time	0.736626
dtype: float64	

SVD Model Results

The distribution of absolute errors is right skewed, showing that the majority of errors is small.

The long tail indicates the several observation for which the absolute error was close to 10.

User-ID - 193458

Test set: predicted top rated books

Test set: actual top rated books

Collaborative Filtering-(Item-Item based)

3.) Collaborative Filtering-(Item-Item based)

	User_id	Isbn	Book_rating	Avg_rating	Total_No_Of_User s_Rated
16	276747	0060517794	9	8	30
19	276747	0671537458	9	7.176471	17
20	276747	0679776818	8	7.476190	21
59	276772	0553572369	7	6.625000	8
61	276772	3499230933	10	7.166667	6

Different Models

SVD and Correlation

Recommendations for Harry Potter and the Sorcerer's Stone (Book 1)

Input

Output

4.) Collaborative Filtering-(User-Item based)

	User-ID	Isbn	Book_rating	Avg_rating	Total_No_Of_User s_Rated
1	276726	0155061224	5	5.000	1
3	276729	052165615X	3	3.000	1
4	276729	0521795028	6	6.000	1
8	276744	038550120X	7	7.580	81
16	276747	0060517794	9	8.000	30

Model Results

0.162

0.061

0.220

0.114

0.142

0.123

0.114

0.307

0.112

0.214

0.076

0.282

0.153

0.230

0.148

0.192

0.370

0.160

ID

	hits@5_count	hits@10_count	interacted_ count	recall@5	recall@10	User-I
10	256	331	1389	0.184	0.238	11676

Conclusion

- •In EDA, the Top-10 most rated books were essentially **novels**. Books like **The Lovely Bone** and **The Secret Life of Bees** were very well perceived.
- •Majority of the readers were of the **age bracket 20-35** and most of them came from North American and European countries namely **USA**, **Canada**, **UK**, **Germany and Spain**.
- •If we look at the ratings distribution, most of the books have high ratings with maximum books being rated 8. Ratings below 5 are few in number.
- •Author with the most books was **Agatha Christie**, **William Shakespeare and Stephen King**.
- •For modelling, it was observed that for **model based** collaborative filtering SVD technique worked way better than NMF with lower Mean Absolute Error (MAE)

•

•Amongst the memory based approach, item-item CF performed better than user-user CF because of lower computation

Challenges

- Handling of sparsity was a major challenge as well since the user interactions were not present for the majority of the books.
- Understanding the metric for evaluation was a challenge as well.
- Since the data consisted of text data, data cleaning was a major challenge in features like Location etc..
- Decision making on missing value imputations and outlier treatment was quite challenging as well.

Q&A