Hidden Markov Models

Practice Problems

1. When to Use HMMs

For each of the following scenarios, is it appropriate to use a hidden markov model to model the dataset? Why or why not.

- (a) Stock market price data
- (b) Recommendations on a database of movie reviews (like the book reviews from the first practical)
- (c) Daily precipitation data in Boston
- (d) Optical character recognition

2. d-separation

Use the d-separation criterion to verify that the conditional independence properties (13.24)-(13.31) are satisfied by the joint distribution for the hidden Markov model defined by (13.6). (Bishop 13.9)

3. Alpha Message

Use the definition (8.64) of the messages passed from a factor node to a variable node in a factor graph, together with the expression (13.6) for the joint distribution in a hidden Markov model, to show that the definition (13.50) of the alpha message is the same as the definition (13.34). (Bishop 13.13)

4. Factor Graph

Show that the directed graph for the input-output hidden Markov model, given in Figure 13.18, can be expressed as a tree-structured factor graph of the form shown in Figure 13.15 and write down expressions for the initial factor $h(z_1)$ and for the general factor $f_n(z_{n-1}, z_n)$ where $2 \le n \le N$. (Bishop 13.17)

5. E-M For HMM's, Bishop 13.6

Show that if any elements of the parameters π (start probability) or A (transition probability) for a hidden Markov model are initialized to 0, then those elements will remain 0 in all subsequent updates of the EM algorithm.

6. E-M For HMM's, Bishop 13.5

Verify the M-step equation 13.18 (the update rule for π_k) for the initial state probabilities of the hidden Markov model by maximization of the expected complete-data log likelihood function (given in eq. 13.17), using Lagrange multipliers to enforce the summation constraint on the components of π .