4CCS1ELA-ELEMENTARY LOGIC WITH APPLICATIONS

5-Proving with Natural Deduction

5.2-Examples Using the Basic Rules

Dr. Odinaldo Rodrigues

odinaldo.rodrigues@kcl.ac.uk
Room BH(S) TBC, +44 (0)20 7848 2087
Department of Informatics
King's College London

© Dr. Odinaldo Rodrigues

4CCS1ELA 5.2 - Examples Using the Basic Rules

5.2.0 (7)

WORKED EXAMPLES

Sample proof 1

Show that $(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$

- 1. $(A \lor B) \rightarrow C$ Data
- 2. $A \rightarrow C$ From subcomputation box below

2.1 A	Assume	<u>C</u>
2.2 A ∨ B	From 2.1 and $(\lor I)$	
2.3 <i>C</i>	From 2.2, 1. and $(\rightarrow E)$	

From 3.2, 1. and $(\rightarrow E)$

4. $(A \rightarrow C) \land (B \rightarrow C)$ From 2. and 3. and $(\land I)$

© Dr. Odinaldo Rodrigues

4CCS1ELA 5.2 - Examples Using the Basic Rules

5.2.2 (7)

Worked Examples

Sample proof 2

Show that $A \vee B$, $\neg B \vdash A$

- 1. $A \vee B$ data
- 2. $\neg B$ data
- 3. $A \rightarrow A$ From subcomputation box below

 3.1 A Assume

 3.2 A From 3.1
- 4. $B \rightarrow A$ From subcomputation box below

				•			
		4.1	В	Assume	<u>A</u>		
		4.2	$\neg A { ightarrow} B$	From subcomputation bel	ow		
			4.2.1 ¬ <i>A</i>	Assume <u>B</u>			
			4.2.2 B	From 4.1			
		4.3	$\neg A \rightarrow \neg B$	From subcomputation bel	WC		
			4.3.1 <i>¬A</i>	Assume $\frac{\neg B}{}$			
			4.3.2 <i>¬B</i>	From 2			
		4.4	A	From 4.2, 4.3, and (¬E)			
5.	Ā	\overline{A} From 1., 3., 4., and $(\vee E)$					

$$\frac{A \rightarrow C, B \rightarrow C, A \vee B}{C} \quad (\vee E)$$

$$\frac{A \vee B, \neg B}{A} \quad (\vee E2)$$

will be introduced as a variant rule!

Sample proof 3

Show that $\vdash \neg (A \land \neg A)$ (This shows that $\neg (A \land \neg A)$ is a tautology)

1. $A \land \neg A \rightarrow A$ From subcomputation box below $\underline{\underline{A}}$

1.1
$$A \land \neg A$$
 Assume
1.2 A From 1.1 and $(\land E)$

2. $A \land \neg A \rightarrow \neg A$ From subcomputation box below

2.1
$$A \land \neg A$$
 Assume
2.2 $\neg A$ From 2.1 and (\land E)

3.
$$\neg (A \land \neg A)$$
 From 1. and 2. and $(\neg I)$

© Dr. Odinaldo Rodrigues

4CCS1ELA 5.2 - Examples Using the Basic Rules

5.2.4 (7)

Worked Examples

Sample proof 4

Show that $A \land \neg A \vdash B$

(This shows you how to derive any conclusion from an inconsistent set)

- 1. $A \wedge \neg A$ Data
- 2. $\neg B \rightarrow A$ From subcomputation box below 2.1 $\neg B$ Assume 2.2 A From 1. and (\land E)
- 3. $\neg B \rightarrow \neg A$ From subcomputation box below 3.1 $\neg B$ Assume 3.2 $\neg A$ From 1. and (\land E)
- 4. B From 2. and 3. and $(\neg E)$

How to practice natural deduction proofs

Now you have everything you need to provide a natural deduction proof for every valid argument in propositional logic.

These are some exercises you can do:

- Prove the validity of all arguments already shown to be valid via the truth-tables
- Show both directions of every logical equivalence we have seen That is, if $A \equiv B$, then you can show that $A \vdash B$ and $B \vdash A$
- That all tautologies are valid
- That all variant rules can be derived from the basic ones alone (variant rules are presented in the next part)

Practice makes perfect!

© Dr. Odinaldo Rodrigues

4CCS1ELA 5.2 - Examples Using the Basic Rules

5.2.6 (7)

Worked Examples

To know more...

- Natural deduction is explained in detail in Chapter 3 of Gabbay and Rodrigues' "Elementary Logic with Applications", 1st edition.
- Tutorial list 5 contains several natural deduction examples.
- Proofs of all variant rules from the basic ones will be available as a supplemental material.