# Контролируемая генерация графов

## Бишук Антон Юрьевич

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

*Москва* 2023 г

## Цели и задачи

#### Цель

Научиться генерировать графы с заданными статистиками.

## Задачи

- Предложить модификацию метода генерации графа, которая позволит задавать некоторые стандартные числовые характеристики в явном виде.
- Теоретически обосновать работу предложенного метода.
- Провести сравнение предложенной модификации с существующими методами.

## Определения

#### Простые признаки

**Простые признаки (или же простые статистики)** в нашем методе - это числовые характеристики используемые в теории графов, которые могут быть вычислены не более, чем за квадратичное время.

#### Смешанными признаки

Смешанными признаками назовем любой способ численно описать граф.

В нашей работе мы будем рассматривать не все возможные численные представления графа, а только те, которые можно получить в модели VAE в скрытом представлении.

#### Сложными признаки

**Сложными статистиками** назовем вектор  $\vec{d}$ , такой что каждая компонента вектора  $\vec{d}$  независима от компонент вектора простых статистик  $\vec{s}$  и при этом вектор смешанных статистик m выражается через  $\vec{d}$  и  $\vec{s}$  линейно.

## Простые статистики

- ullet Размерные показатели [O(1)]:
  - Число ребер
  - Число вершин
- Вершины специального вида [O(V)]:
  - Изолированные вершины вершины без единого ребра
  - Висячие вершины вершины с одним ребром
  - Промежуточные вершины вершины с двумя ребрами
  - Вершины, связанные с каждой вершиной графа
- Статистики на степенях вершин [O(V)]:
  - Максимальная степень вершины
  - Средняя степень вершины
  - Медианная степень вершины
  - Модальная степень вершины
  - Стандартное отклонение степеней вершин в графе
- Гистограмма степеней вершин графа [O(V)] (здесь  $\mu$  средняя степень вершин в графе,  $\sigma$  среднеквадратичное отклонение степеней вершин в графе): Доля вершин со степенью на интервалах:  $(\mu \sigma, \mu)$ ,  $(\mu, \mu + \sigma)$ ,  $(\mu 2\sigma, \mu \sigma)$ ,  $(\mu + \sigma, \mu + 2\sigma)$ ,  $(\mu 3\sigma, \mu 2\sigma)$ ,  $(\mu + 2\sigma, \mu + 3\sigma)$
- ullet Коэффициент кластеризации  $[O(V^2)]$  [1]

# Построения распределения графа

Пусть у нас есть граф  ${\it G}$  и соответствующая ему матрица смежности  ${\it A}$ .

Проведем над ним следующую операцию: n раз удалим либо добавим случайное число ребер в граф, получив тем самым набор из n графов, близких к исходному.



Для каждого полученного графа рассчитаем простые статистики и скрытые представления, пропуская его через энкодер. Дополнительно преобразуем простые статистики при помощи линейной свертки, приближая их к скрытым представлениям графа.

Стандартизируем скрытые представления. Имеем n векторов представления графа, полученных при помощи *графовых сверток* и n векторов представления графа, полученных при помощи *простых статистик*.

## Постановка задачи реконструкции

### Дано:

- Граф G с n вершинами и матрицей смежности A размера (n,n), где  $A_{ij}=1$ , если ребро (i,j) существует в графе, и 0 в противном случае.
- Набор маркированных ребер E = (i, j) существующих в графе.

#### Задача:

Предсказать вероятность существования ребер между всеми парами вершин в графе, включая немаркированные ребра. Однако особый интерес представляет именно предсказание наличия маркированных ребер.



## Предложенный метод



Рис.: Схема предложенного метода. Здесь MF — матрица смешанных статистик графа, EF — вектор простых статистик, hEF — скрытое представление вектора простых статистик, DF — матрица сложных статистик, — случайная величина  $\in N(0,1)$ , а Z — матрица из распределения  $N(\mu,\sigma)$ 

Обучение происходит путем уменьшения следующей функции потерь:

LOSS $_{method} = BCELoss$  (реконструкция графа) +KL-div (нормальность скрытого представления) +MSELoss (приближение смешанных статистик простыми)

## Теоретическое обоснование

## Hypothesis

Существует линейное отображение вектора смешанных статистик в вектор простых статистик.

### Theorem (Бишук 2023)

Отображение из смешанных статистик в простые можно дополнить до невырожденного преобразования путем добавления строк, ортогональных исходным. Получившееся преобразование будет разбивать пространство статистик на простые и сложные.



Рис.: Построенное линейное преобразование смешанных статистик

## Идея доказательства

#### Remark

Независимость элементов вектора простых статистик мы можем гарантировать по построению.

#### Lemma

Пусть дан набор независимых, одинаково распределенных случайных величин  $p_1, p_2, \dots p_n$ . Случайная величина  $\xi = a_1 p_1 + a_2 p_2 + \dots + a_n p_n$  статистически зависима от каждой из случайных величин  $p_i$ , коэффициент перед которой  $a_i \neq 0$ .

#### Lemma

Матрица  $A_{\hat{\Lambda}}$  имеет полный ранг.

Добавим дополнительное условие на независимость компонент вектора  $\vec{d}$  от компонент вектора  $\vec{s}$  и между собой.

Для нормальных векторов условие независимости эквивалентна нескоррелированности, которая в свою очередь дает нам условие, что элементы вектора простых и сложных статистик независимы статистически, если независимы линейно строки матрицы преобразования.

### Результаты

#### Датасеты:

- Cora (2708 статей и 10556 ссылки между ними)
- Citeseer (3327 статьи и 9228 ссылки между ними)

### Метрики:

|            | Dataset  | ROC-AUC | AP      | MAE (GT statistics) |
|------------|----------|---------|---------|---------------------|
| VAE        | Cora     | 75.18 % | 75.81%  | 0.066               |
| Our method |          | 76.68 % | 75.18 % | 0.046 (-30%)        |
| VAE        | Citeseer | 82.09 % | 79.94 % | 0.072               |
| Our method |          | 76.28 % | 76.44 % | 0.060 (-17%)        |

Таблица: Результаты вычислительного эксперимента в задаче предсказания существования маркированных рёбер.

Предложенный метод восстановил граф хуже, чем стандартное VAE, однако точность простых статистик была увеличена.

#### Итоги

### Итоги работы:

Предложен и теоретически обоснован метод к генерации графов, который позволяет получать графы с заранее заданными структурными свойствами. Методы был имплементирован и протестирован на данных из известных наборов. Были проведены исследования и показаны преимущества предложенного метода в задаче генерации графов с фиксированными свойствами.

#### Планы на будущие работы:

- Расширить множество простых статистик;
- Исследовать влияние фиксировании различных статистик графа на их разнообразие;
- Исследовать различные методы агрегации графов в векторе латентного пространства;
- Исследовать различные подходы к выделению сложных признаков и подмешивания простых;
- Рассмотреть другие функционалы качества.

## Список литературы

[1] Jari Saramäki и др. «Generalizations of the clustering coefficient to weighted complex networks». В: *Physical Review E* 75.2 (2007), с. 027105.