Support Vector Machines

Fernando Lozano

Universidad de los Andes

10 de octubre de 2022

El perceptrón

Teorema		
Suponga:		

Teorema

Suponga:

•
$$\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$$

Teorema

Suponga:

- $\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$
- $\exists \hat{\mathbf{w}} \in \mathbb{R}^{d+1}, \delta > 0$ tal que $\hat{\mathbf{w}}^T \mathbf{x}_i \geq \delta$ $i = 1, \dots, n$.

Teorema

Suponga:

- $\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$
- $\exists \hat{\mathbf{w}} \in \mathbb{R}^{d+1}, \delta > 0$ tal que $\hat{\mathbf{w}}^T \mathbf{x}_i \ge \delta$ $i = 1, \dots, n$.

Entonces el algoritmo del perceptrón ejecuta el paso de actualización a lo sumo $\left(\frac{K||\hat{\mathbf{w}}||}{\delta}\right)^2$ veces.

Teorema

Suponga:

- $\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$
- $\exists \hat{\mathbf{w}} \in \mathbb{R}^{d+1}, \delta > 0$ tal que $\hat{\mathbf{w}}^T \mathbf{x}_i \geq \delta$ $i = 1, \dots, n$.

Entonces el algoritmo del perceptrón ejecuta el paso de actualización a lo sumo $\left(\frac{K||\hat{\mathbf{w}}||}{\delta}\right)^2$ veces.

• Deseable tener márgen δ grande.

Teorema

Suponga:

- $\|\mathbf{x}_i\| \le K \in \mathbb{R}, \quad i = 1 \dots, n.$
- $\exists \hat{\mathbf{w}} \in \mathbb{R}^{d+1}, \delta > 0$ tal que $\hat{\mathbf{w}}^T \mathbf{x}_i \geq \delta$ $i = 1, \dots, n$.

Entonces el algoritmo del perceptrón ejecuta el paso de actualización a lo sumo $\left(\frac{K||\hat{\mathbf{w}}||}{\delta}\right)^2$ veces.

- Deseable tener mårgen δ grande.
- Algoritmo del perceptrón no tiene en cuenta el márgen.

Motivación desde teoría de aprendizaje

• Structural Risk Minimization:

Motivación desde teoría de aprendizaje

• Structural Risk Minimization:

• Algoritmo de aprendizaje determina la complejidad apropiada de la clase de hipótesis.

Motivación desde teoría de aprendizaje

• Structural Risk Minimization:

- Algoritmo de aprendizaje determina la complejidad apropiada de la clase de hipótesis.
- Cómo variar suavemente la complejidad?

• Márgen: Distancia de un punto a la superficie de separación.

- Márgen: Distancia de un punto a la superficie de separación.
- Es deseable tener márgenes grandes.

Margen grande vs. Complejidad

• Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$

- Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$
- Separación:

- Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$
- Separación:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1$ Si $y_i = -1$

- Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$
- Separación:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1$ Si $y_i = -1$ $\} y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0 \quad \forall i$

- Hipótesis $h(\mathbf{x}) = \text{sign}(\langle \mathbf{w}, \mathbf{x} \rangle + b)$
- Separación:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1$ Si $y_i = -1$ $\} y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 \ge 0 \quad \forall i$

• Márgen?

10 / 28

$$\min \quad \frac{1}{2} \|\mathbf{w}\|^2$$
 sujeto a $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \ge 0 \quad i = 1, \dots, n$

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i\left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b\right) - 1 \ge 0$ $i=1,\ldots,n$

• Problema de programación cuadrática.

$$\min \quad \frac{1}{2} \|\mathbf{w}\|^2$$
 sujeto a $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \ge 0 \quad i = 1, \dots, n$

- Problema de programación cuadrática.
- Problema convexo:

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i\left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b\right) - 1 \ge 0$ $i=1,\dots,n$

- Problema de programación cuadrática.
- Problema convexo:
 - Unico mínimo global.

11/28

• Problema de optimización:

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i\left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b\right) - 1 \ge 0$ $i=1,\dots,n$

- Problema de programación cuadrática.
- Problema convexo:
 - Unico mínimo global.
 - ► Condiciones de Karush-Kuhn-Tucker (KKT) son suficientes y necesarias para mínimo global y máximo global del problema dual.

• Problema de optimización:

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i\left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b\right) - 1 \ge 0$ $i=1,\dots,n$

- Problema de programación cuadrática.
- Problema convexo:
 - Unico mínimo global.
 - Condiciones de Karush-Kuhn-Tucker (KKT) son suficientes y necesarias para mínimo global y máximo global del problema dual.
 - Solución eficiente.

11 / 28

• Problema de optimización:

mín
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 sujeto a $y_i\left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b\right) - 1 \ge 0$ $i=1,\dots,n$

- Problema de programación cuadrática.
- Problema convexo:
 - Unico mínimo global.
 - Condiciones de Karush-Kuhn-Tucker (KKT) son suficientes y necesarias para mínimo global y máximo global del problema dual.
 - ► Solución eficiente.
 - ► Tamaño puede ser grande.

11 / 28

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0.$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \ge 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

• Minimizamos $L(\mathbf{w}, b, \boldsymbol{\alpha})$ con respecto a \mathbf{w}, b para obtener la función dual:

$$\frac{\partial L}{\partial b} = 0$$

12 / 28

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \mathbf{w}} = 0$$

• Introducimos multiplicadores de Lagrange $\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n] \geq 0$. El Lagrangiano:

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \right)$$
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) + \sum_{i=1}^n \alpha_i \right)$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$$

13 / 28

$$L = \frac{1}{2} \left\langle \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i, \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j \right\rangle$$
$$- \sum_{i=1}^{n} \alpha_i y_i \left(\left\langle \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j, \mathbf{x}_i \right\rangle + b \right) + \sum_{i=1}^{n} \alpha_i$$

$$L = \frac{1}{2} \left\langle \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i, \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j \right\rangle$$
$$- \sum_{i=1}^{n} \alpha_i y_i \left(\left\langle \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j, \mathbf{x}_i \right\rangle + b \right) + \sum_{i=1}^{n} \alpha_i$$

• Obtenemos la función dual:

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

$$L = \frac{1}{2} \left\langle \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i, \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j \right\rangle$$
$$- \sum_{i=1}^{n} \alpha_i y_i \left(\left\langle \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j, \mathbf{x}_i \right\rangle + b \right) + \sum_{i=1}^{n} \alpha_i$$

• Obtenemos la función dual:

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle = \mathbf{1}^T \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^T \bar{\mathbf{K}} \boldsymbol{\alpha}$$

donde $[\bar{\mathbf{K}}]_{ij} = y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\boldsymbol{\alpha} \geq 0$$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\boldsymbol{\alpha} \geq 0$$

• Problema de programación cuadrática cóncavo.

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\alpha \ge 0$$

- Problema de programación cuadrática cóncavo.
- ullet Los datos ${f x}_i$ sólo aparecen en productos punto.

$$y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 \ge 0 \quad i = 1, \dots, n$$

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$
- $\alpha_i \geq 0 \quad i = 1, \dots, n$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$
- $\alpha_i \geq 0 \quad i = 1, \dots, n$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$
- $\alpha_i \geq 0 \quad i = 1, ..., n$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$
- $\alpha_i \geq 0 \quad i = 1, ..., n$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- Las condiciones 3 y 5 implican que la suma $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$ sólo involucra vectores \mathbf{x}_i para los cuales la restricción es activa.

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$
- $\alpha_i \geq 0 \quad i = 1, ..., n$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$
- - Las condiciones 3 y 5 implican que la suma $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$ sólo involucra vectores \mathbf{x}_i para los cuales la restricción es activa.
 - Estos vectores se llaman vectores de soporte.

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 \ge 0 \quad i = 1, \dots, n$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- Las condiciones 3 y 5 implican que la suma $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$ sólo involucra vectores \mathbf{x}_i para los cuales la restricción es activa.
- Estos vectores se llaman vectores de soporte.
- ullet Si S es el conjunto de vectores de soporte tenemos:

$$\mathbf{w} = \sum_{i: \mathbf{x}_i \in S} (\alpha_i y_i) \mathbf{x}_i$$

• En general, puede no existir una solución con error cero en los datos.

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i$ Si $y_i = -1$

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i$ Si $y_i = -1$ $\} y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad \forall i$

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i$ Si $y_i = -1$ $\} y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad \forall i$

 \triangleright Si hay error en \mathbf{x}_i

Caso no separable

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i \quad \text{Si } y_i = 1 \\ \langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i \quad \text{Si } y_i = -1$$

$$y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \ge 0 \quad \forall i$$

• Si hay error en $\mathbf{x}_i \Rightarrow \zeta_i > 1$.

Caso no separable

- En general, puede no existir una solución con error cero en los datos.
- Se introducen variables de holgura $\zeta_1, \zeta_2, \dots, \zeta_n \geq 0$:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b \ge 1 - \zeta_i$$
 Si $y_i = 1$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b \le -1 + \zeta_i$ Si $y_i = -1$ $\} y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad \forall i$

- Si hay error en $\mathbf{x}_i \Rightarrow \zeta_i > 1$.
- Luego $\sum_{i=1}^{n} \zeta_i$ es una cota superior del número de errores.

Problema de optimización

mín
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \zeta_i$$
 sujeto a $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0$ $i = 1, \dots, n$ $\zeta_i \ge 0$

Problema de optimización

mín
$$\frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
sujeto a
$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$
$$\zeta_i \ge 0$$

• C es un párametro que indica el balance deseado entre márgen y error.

Problema de optimización

mín
$$\frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
sujeto a
$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$
$$\zeta_i \ge 0$$

• C es un párametro que indica el balance deseado entre márgen y error.

$$L(\mathbf{w}, b, \zeta, \alpha, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$L(\mathbf{w}, b, \zeta, \alpha, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{\sum_{i=1}^n \zeta_i}$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$L(\mathbf{w}, b, \zeta, \alpha, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$\frac{\partial L}{\partial b} = 0$$

$$L(\mathbf{w}, b, \zeta, \alpha, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$L(\mathbf{w}, b, \boldsymbol{\zeta}, \boldsymbol{\alpha}, \boldsymbol{\mu}) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \mathbf{w}} = 0$$

$$L(\mathbf{w}, b, \zeta, \alpha, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$$

$$L(\mathbf{w}, b, \zeta, \alpha, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$$

$$\frac{\partial L}{\partial \zeta_i} = 0$$

$$L(\mathbf{w}, b, \zeta, \alpha, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$$

$$\frac{\partial L}{\partial C} = 0 \Rightarrow \alpha_i + \mu_i = C$$

$$L(\mathbf{w}, b, \zeta, \alpha, \mu) = \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{C} \sum_{i=1}^n \zeta_i$$
$$- \sum_{i=1}^n \alpha_i \left(y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^n \mu_i \zeta_i$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$$

$$\frac{\partial L}{\partial C} = 0 \Rightarrow \alpha_i + \mu_i = C \Rightarrow \alpha_i \leq C$$

$$L = \frac{1}{2} \left\langle \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i, \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j \right\rangle + \frac{C}{C} \sum_{i=1}^{n} \zeta_i$$
$$- \sum_{i=1}^{n} \alpha_i \left(y_i \left(\left\langle \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j, \mathbf{x}_i \right\rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^{n} \mu_i \zeta_i$$

$$L = \frac{1}{2} \left\langle \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i, \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j \right\rangle + \frac{C}{C} \sum_{i=1}^{n} \zeta_i$$
$$- \sum_{i=1}^{n} \alpha_i \left(y_i \left(\left\langle \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j, \mathbf{x}_i \right\rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^{n} \mu_i \zeta_i$$

Obtenemos la misma función dual:

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$

$$L = \frac{1}{2} \left\langle \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i, \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j \right\rangle + C \sum_{i=1}^{n} \zeta_i$$
$$- \sum_{i=1}^{n} \alpha_i \left(y_i \left(\left\langle \sum_{j=1}^{n} (\alpha_j y_j) \mathbf{x}_j, \mathbf{x}_i \right\rangle + b \right) - 1 + \zeta_i \right) - \sum_{i=1}^{n} \mu_i \zeta_i$$

Obtenemos la misma función dual:

$$g(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle = \mathbf{1}^T \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}^T \bar{\mathbf{K}} \boldsymbol{\alpha}$$

donde $[\bar{\mathbf{K}}]_{ij} = y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$

20 / 28

$$\begin{aligned} & \text{m\'ax} & & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j \left< \mathbf{x}_i, \mathbf{x}_j \right> \\ & \text{sujeto a} & & \sum_{i=1}^n \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 \leq \alpha_i \leq C$$

• Unico cambio en el dual es cota superior en los multiplicadores α_i .

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$

- $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 + \zeta_i \ge 0 i = 1, \dots, n$
- $\zeta_i \ge 0$

- $2 \zeta_i \geq 0$
- **3** $\mu_i \ge 0$

- $y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$
- $\zeta_i \ge 0$
- **3** $\mu_i \ge 0$

- $2 \zeta_i \geq 0$
- $\mu_i \ge 0$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- $2 \zeta_i \geq 0$
- **3** $\mu_i \ge 0$
- $\mathbf{0} \ \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$
- $2 \zeta_i \geq 0$
- **3** $\mu_i \ge 0$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$

- $\zeta_i \geq 0$
- $\mu_i \geq 0$
- $\bullet \quad \alpha_i + \mu_i = C$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$
- **6** $\sum_{i=1}^{n} \alpha_i y_i = 0$
- $\zeta_i \mu_i = 0$

$$y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) - 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$$

$$\zeta_i \geq 0$$

$$\mu_i \geq 0$$

$$\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$$

6
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\zeta_i \mu_i = 0$$

$$\alpha_i = C$$

- $\zeta_i \geq 0$
- **3** $\mu_i \ge 0$
- $\bullet \quad \alpha_i + \mu_i = C$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$
- **6** $\sum_{i=1}^{n} \alpha_i y_i = 0$
- $\zeta_i \mu_i = 0$

$$\alpha_i = C \Rightarrow \mu_i = 0$$

- $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$
- $2 \zeta_i \geq 0$
- **3** $\mu_i \ge 0$
- $\bullet \quad \alpha_i + \mu_i = C$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$
- **6** $\sum_{i=1}^{n} \alpha_i y_i = 0$
- $\zeta_i \mu_i = 0$

$$\alpha_i = C \Rightarrow \mu_i = 0 \Rightarrow \zeta_i \ge 0,$$

- $y_i (\langle \mathbf{w}, \mathbf{x}_i \rangle + b) 1 + \zeta_i \ge 0 \quad i = 1, \dots, n$
- $2 \zeta_i \geq 0$

- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$
- **6** $\sum_{i=1}^{n} \alpha_i y_i = 0$
- $\zeta_i \mu_i = 0$

$$\alpha_i = C \Rightarrow \mu_i = 0 \Rightarrow \zeta_i \ge 0, \quad y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) = 1 - \zeta_i$$

- $2 \zeta_i \geq 0$
- **3** $\mu_i \ge 0$
- $\bullet \mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \mathbf{x}_i$
- **6** $\sum_{i=1}^{n} \alpha_i y_i = 0$
- $\zeta_i \mu_i = 0$

$$\alpha_i = C \Rightarrow \mu_i = 0 \Rightarrow \zeta_i \ge 0, \quad y_i \left(\langle \mathbf{w}, \mathbf{x}_i \rangle + b \right) = 1 - \zeta_i$$

• Ahora los vectores de soporte incluyen vectores en los que hay error de márgen o hay error de clasificación.

23 / 28

Formulación equivalente

Formulación equivalente

• Sea $f(\mathbf{x}_i) = \langle \mathbf{w}, \mathbf{x}_i \rangle + b$,

24 / 28

Formulación equivalente

• Sea $f(\mathbf{x}_i) = \langle \mathbf{w}, \mathbf{x}_i \rangle + b$, $m_i = y_i f(\mathbf{x}_i)$ es el margen de clasificación.

Formulación equivalente

- Sea $f(\mathbf{x}_i) = \langle \mathbf{w}, \mathbf{x}_i \rangle + b$, $m_i = y_i f(\mathbf{x}_i)$ es el margen de clasificación.
- Función de costo del márgen:

$$l(m) = \begin{cases} 1 - m & m \le 1\\ 0 & m > 1 \end{cases}$$

Formulación equivalente

- Sea $f(\mathbf{x}_i) = \langle \mathbf{w}, \mathbf{x}_i \rangle + b$, $m_i = y_i f(\mathbf{x}_i)$ es el margen de clasificación.
- Función de costo del márgen:

$$l(m) = \begin{cases} 1 - m & m \le 1 \\ 0 & m > 1 \end{cases} = \max\{1 - m, 0\}$$

24 / 28

Formulación equivalente

- Sea $f(\mathbf{x}_i) = \langle \mathbf{w}, \mathbf{x}_i \rangle + b$, $m_i = y_i f(\mathbf{x}_i)$ es el margen de clasificación.
- Función de costo del márgen:

$$l(m) = \begin{cases} 1 - m & m \le 1 \\ 0 & m > 1 \end{cases} = \max\{1 - m, 0\}$$

$$\min_{\mathbf{w}} \quad l(\mathbf{w}) + \frac{1}{2C} \|\mathbf{w}\|^2$$

$$\min_{\mathbf{w}} \quad l(\mathbf{w}) + \frac{1}{2C} \|\mathbf{w}\|^2$$

• $l(\mathbf{w})$ función de error convexa.

$$\min_{\mathbf{w}} \quad l(\mathbf{w}) + \frac{1}{2C} \|\mathbf{w}\|^2$$

- $l(\mathbf{w})$ función de error convexa.
- $\|\mathbf{w}\|^2$: regularización.

$$\min_{\mathbf{w}} \quad l(\mathbf{w}) + \frac{1}{2C} ||\mathbf{w}||^2$$

- $l(\mathbf{w})$ función de error convexa.
- $\|\mathbf{w}\|^2$: regularización.
- $\frac{1}{2C}$: constante de regularización.

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$egin{aligned} \mathcal{X} &
ightarrow \mathcal{H} \ \mathbf{x} &
ightarrow oldsymbol{\phi}(\mathbf{x}) \end{aligned}$$

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$\begin{aligned} \mathcal{X} &\to \mathcal{H} \\ \mathbf{x} &\mapsto \phi(\mathbf{x}) \end{aligned}$$

Donde \mathcal{H} es un espacio de Hilbert:

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$\mathcal{X} \to \mathcal{H}$$

 $\mathbf{x} \mapsto \phi(\mathbf{x})$

Donde \mathcal{H} es un espacio de Hilbert:

Producto punto.

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$\mathcal{X} \to \mathcal{H}$$

 $\mathbf{x} \mapsto \phi(\mathbf{x})$

Donde \mathcal{H} es un espacio de Hilbert:

- Producto punto.
- ► Completo.

• Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$\mathcal{X} \to \mathcal{H}$$

 $\mathbf{x} \mapsto \phi(\mathbf{x})$

Donde \mathcal{H} es un espacio de Hilbert:

- Producto punto.
- ► Completo.
- Operamos en el espacio de características \mathcal{H} :

$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle \longrightarrow \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle_{\mathcal{H}}$$

 Idea: Proyectar datos a un espacio donde sean más fácilmente separables.

$$\mathcal{X} \to \mathcal{H}$$

 $\mathbf{x} \mapsto \phi(\mathbf{x})$

Donde \mathcal{H} es un espacio de Hilbert:

- Producto punto.
- ► Completo.
- Operamos en el espacio de características \mathcal{H} :

$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle \longrightarrow \langle \boldsymbol{\phi}(\mathbf{x}_i), \boldsymbol{\phi}(\mathbf{x}_j) \rangle_{\mathcal{H}}$$

• \mathcal{X} puede ser un conjunto arbitrario.

máx
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C$$

máx
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \boldsymbol{\phi}(\mathbf{x}_{i}), \boldsymbol{\phi}(\mathbf{x}_{j}) \rangle_{\mathcal{H}}$$
sujeto a
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C$$

$$\begin{aligned} & \text{m\'ax} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \left\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \right\rangle_{\mathcal{H}} \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

• Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$

$$\begin{aligned} & \text{m\'ax} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \left\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \right\rangle_{\mathcal{H}} \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\begin{split} & \text{m\'ax} & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{i=1}^n \alpha_i \alpha_j y_i y_j \left\langle \pmb{\phi}(\mathbf{x}_i), \pmb{\phi}(\mathbf{x}_j) \right\rangle_{\mathcal{H}} \\ & \text{sujeto a} & \sum_{i=1}^n \alpha_i y_i = 0 \\ & 0 \leq \alpha_i \leq C \end{split}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$sign(\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b)$$

$$\begin{aligned} & \text{máx} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \left\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \right\rangle_{\mathcal{H}} \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\operatorname{sign}\left(\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b\right) = \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) \langle \boldsymbol{\phi}(\mathbf{x}_{i}), \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b\right)$$

27 / 28

$$\begin{aligned} & \text{máx} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \left\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \right\rangle_{\mathcal{H}} \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\operatorname{sign}(\langle \mathbf{w}, \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b) = \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) \langle \boldsymbol{\phi}(\mathbf{x}_{i}), \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b\right)$$

• Datos sólo aparecen en términos de productos internos.

Ejemplo

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$

 $(x_1, x_2) \mapsto (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

Ejemplo

$$\phi : \mathbb{R}^2 \to \mathbb{R}^3$$

$$(x_1, x_2) \mapsto (z_1, z_2, z_3) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

