Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2014/15

Folha 2 - parte 1: Equações Diferenciais Ordinárias (EDOs)

1. Verifique se as seguintes funções são solução (em \mathbb{R}) das equações diferenciais dadas:

(a)
$$y = \sin x - 1 + e^{-\sin x}$$

$$\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin(2x);$$
(b) $z = \cos x$
$$z'' + z = 0;$$
(c) $y = \cos^2 x$
$$y'' + y = 0;$$
(d) $y = Cx - C^2$ $(C \in \mathbb{R})$
$$(y')^2 - xy' + y = 0.$$

- 2. Indique uma equação diferencial para a qual a família de curvas indicada é um integral geral:
 - (a) y = Cx, $C \in \mathbb{R}$ (retas do plano não verticais que passam pela origem);
 - (b) y = Ax + B, $A, B \in \mathbb{R}$ (retas do plano não verticais);
 - (c) $y = e^{Cx}$. $C \in \mathbb{R}$.
- 3. Considere a família de curvas sinusoidais definidas por

$$y = A \operatorname{sen}(x + B)$$
 com $A, B \in \mathbb{R}$.

Indique uma EDO de terceira ordem para a qual estas funções constituam uma família de soluções.

- 4. (a) Determine a solução geral da equação diferencial $y'' \sin x = 0$.
 - (b) Mostre que a função definida por $\varphi(x) = 2x \operatorname{sen} x$ é uma solução particular da EDO da alínea anterior, que satisfaz as condições $\varphi(0) = 0$ e $\varphi'(0) = 1$.
- 5. Determine a solução geral das seguintes EDOs:

(a)
$$y' - \frac{1}{(1+x^2)\operatorname{arctg} x} = 0$$
; $y' = \frac{u'}{u} \iff y = \ln(u) + c$ $u = \operatorname{artg}(x)$

(b)
$$y' - \sqrt{1 - x^2} = 0$$
; **y = arcsen(x)+c**

(c)
$$y' - \frac{x^4 + x^2 + 1}{x^2 + 1} = 0$$
. Y' = 1+ x^2 + $\frac{1}{1+x^2}$ y=x+ $\frac{x^3}{3}$ +artg(x)+c

- 6. Determine um integral geral para cada uma das seguintes EDOs de variáveis separáveis:
 - (a) x + yy' = 0;
 - (b) xy' y = 0;
 - (c) $(t^2 xt^2)\frac{dx}{dt} + x^2 = -tx^2$;
 - (d) $(x^2 1)y' + 2xy^2 = 0$.
- 7. Resolva os seguintes problemas de Cauchy:

- (a) $xy' + y = y^2$, y(1) = 1/2;
- (b) $xy + x + y'\sqrt{4 + x^2} = 0$, y(0) = 1;
- (c) $(1+x^3)y' = x^2y$, y(1) = 2.
- 8. Verifique que as seguintes equações diferenciais são homogéneas e determine um seu integral geral.
 - (a) $(x^2 + y^2)y' = xy$;
 - (b) $y'\left(1-\ln\frac{y}{x}\right)=\frac{y}{x}$, x>0 (EDO da Obs. 2.2 do Texto de Apoio);
- 9. Considere a equação diferencial $y' = \frac{y}{x} (1 + \ln y \ln x), \quad x > 0.$
 - (a) Verifique que se trata de uma equação diferencial homogénea.
 - (b) Determine um integral geral para esta EDO.
- 10. Resolva as seguintes equações diferenciais:
 - (a) $\frac{dy}{dx} = \frac{x+y-3}{x-y-1};$

(b) $y' = \frac{y-x}{y-x+2}$. (Sugestão: Efetue a mudança de variável dada por z=y-x.)

- 11. Resolva cada uma das seguintes equações diferenciais usando fatores integrantes:
 - (a) $y' + 2y = \cos x$;
 - (b) $x^3y' y 1 = 0$;
 - (c) $\frac{1}{x}y' \frac{1}{x^2 + 1}y = \frac{\sqrt{x^2 + 1}}{x}, \quad x \neq 0.$
- 12. Resolva as seguintes equações diferenciais de Bernoulli:
 - (a) $xy' + y = y^2 \ln x$, x > 0;
 - (b) $y' \frac{y}{2x} = 5x^2y^5$, $x \neq 0$.