实验 5 统计试验法求解最佳判决问题

完成者姓名: 冯绍庭 学号: 520021911362

1. 实验目的

- (1) 熟练掌握统计试验法在通信理论和工程问题求解中的应用。
- (2) 通过实验加深对最佳判决理论的认识和理解。
- (3) 通过实验探究数字信号检测中单次观测、多次观测等技术的特点和适用场景。

2. 实验主要器材和设备

电脑, LabVIEW 程序开发和应用环境。

3. 实验系统构成

- (1) 信号和噪声生成部分:信号生成中,判断一个随机数与 $P(H_0)$ 的大小,若大于 $P(H_0)$ 则发送码元"1",否则发送码元"0",通过 for 循环结构产生足够的统计试验次数;噪声生成中,利用 labview 控件"高斯白噪声波形",设置好噪声方差和采样信息即可,而任务 5_4 所用的信道噪声生成将在本报告 4.4 部分详细说明。将信号与噪声相加即得到 r(t)。
- (2)接受判决部分:判断取样观测值 $y=r(t_0)$ 与判决门限 y_T 的大小,得到判决结果 \hat{y} 。若 $y>y_T$ 则判决为 1,否则判决为 0。当取样判决模式为多次观测模式时,取样观测值 $y_i=r(t_i)$, $i=1,2,\ldots,m$,m 是观测次数,则判断观测平均值 \bar{y} 与 y_T 的大小。
- (3)误码率统计分析部分:实验中,每个信号码元的差错可以表示为 $|s(t_0)-\hat{y}|$ 。在蒙特卡洛模拟下,统计实验的误码率可以表示为 $P_{e,analog}=\frac{1}{n}\sum_{i=1}^{n}|s_i(t_0)-\hat{y}_i|$,n 是统计实验次数。而理论误码率则采用公式 $P_{e,theory}=P(H_0)P(D_1|H_0)+P(H_1)P(D_0|H_1)$ 。

4. 实验任务的完成情况

4.1. 实验任务 5 1

先验概率 $P(H_0) = 0.46$ 和 $P(H_1) = 0.54$,高斯白噪声方差 σ^2 取值在[0.02,0.20]范围,取样判决模式为单次观测,要求通过统计试验求出系统的最佳判决门限和对应的误码率,并记录噪声方差在 [0.02,0.20]范围内以步长 0.02 变化时,最佳判决门限时误码率随噪声方差的变化曲线。

采用蒙特卡洛法进行模拟仿真。采用随机数生成码元数组 s(t),通过高斯白噪声发生器生成噪声数组 n(t)。通过 for 循环遍历最佳判决门限的可能取值为 $y_{T_i}=0.2+0.001i$, $i=0,1,\ldots,600$ 。

对于每个判决门限,先由公式(1)对每个信号样本点逐一进行判决,再由公式(2)计算出相应的误码率。

$$\widehat{y}_{i} = \begin{cases} 1, & \text{if } y_{i} \geq y_{T} \\ 0, & \text{if } y_{i} < y_{T} \end{cases}, \quad i = 1, 2, \dots, 10^{6} \text{ or } 10^{7}$$

$$(1)$$

$$P_{e,analog} = \frac{1}{n} \sum_{i=1}^{n} |s_i(t_0) - \widehat{y}_i|$$
 (2)

将所有判决门限对应的误码率组成一个数组,取出数组的最小元素,其对应的判决门限即最佳 判决门限。

理论值部分的计算中,最佳判决门限的理论值采用公式(3)计算,对应的误码率理论值采用公式(4)计算。

$$y_T = \frac{1}{2} + \sigma^2 \ln\left[\frac{P(H_0)}{P(H_1)}\right] \tag{3}$$

$$P_{e,theory} = P(H_0)P(D_1|H_0) + P(H_1)P(D_0|H_1)$$
(4)

$$P(D_1|H_0) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{y_T}^{\infty} exp\{-\frac{y^2}{2\sigma^2}\} \, dy \tag{5}$$

$$P(D_0|H_1) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{y_T} exp\{-\frac{(y-1)^2}{2\sigma^2}\} dy$$
 (6)

实验结果如表 4.1 所示。

表 4.1 实验 5 1 结果记录表

	样本数 10 ⁶			样本数 10 ⁷				理论值		
噪声	第1	次试验	第 2	次试验	验 第1次试验		第2次试验		生化阻	
方差	最佳 门限	误码率	最佳 门限	误码率	最佳 门限	误码率	最佳 门限	误码率	最佳 门限	误码率
0.02	0.501	0.000195	0.494	0.000178	0.494	0.0001982	0.494	0.0002033	0.497	0.0002028
0.06	0.491	0.020313	0.490	0.020570	0.489	0.0205085	0.491	0. 0205529	0.490	0.0205356
0.10	0.479	0.056456	0.485	0.056444	0.484	0.0566884	0.486	0.0567659	0.484	0.0566915
0.14	0.471	0.090230	0.480	0.090279	0.478	0.0902437	0.479	0.0903040	0.478	0.0903331
0.18	0.474	0.118831	0.467	0.118717	0.472	0.1188010	0.470	0.1188320	0.471	0. 1187548

通过表 4.1 初步判断,当高斯噪声的方差 σ^2 不断增加的时候,实验所得最佳门限值不断减小,而且误码率也不断增加,这与理论计算的公式结果是向一致的。同时实验得到的最佳门限和误码率与理论值较为接近,实验结果良好。而且样本数为 10^7 时,两次试验得到的结果明显差距更小,更加稳定。无论是最佳判决门限还是误码率,样本数为 10^7 时的误差明显小于样本数为 10^6 时的误差。说明在统计实验法中,样本数越大,随机性越小,得到的近似解越稳定,且越接近理论解。所以,应用蒙特卡洛法模拟开展随机试验时,想要让近似解逼近理论值,一方面可以增加独立重复试验的次数求平均值,另一方面可以增加一次试验中的样本个数。不过增加样本数同时会使程序的运行时间增加,因此实际应用中需要在解的优良性和程序运行速度之间权衡。

令方差 σ^2 取值在[0.02,0.20]范围内以步长 0.02 进行变化,误码率计算方式与上述思路一致,绘制出误码率与噪声方差之间的关系曲线图,如图 4.1 所示。

图 4.1 最佳判决门限时误码率随噪声方差的变化曲线

从图 4.1 中,我们可以更加直观地看到,随着高斯白噪声方差 σ^2 的不断增加,误码率也不断地 增加,并且两者之间近似呈现一种线性的关系。这是因为随着高斯白噪声方差的增加,噪声波动加 剧,信号码元的受扰乱程度增加,判决时更容易出现错误,因此误码率随之增大。

4.2. 实验任务 5 2

先验概率 $P(H_0) = P(H_1) = 0.5$, 高斯白噪声方差 σ^2 取值 0.5,0.1,0.01, 取样判决模式为单次观测。 要求通过统计试验,求判决门限处于理论最佳值0.5时,系统的统计误码率。

实验设计思路与任务 5 1 类似,即按照"信号与噪声生成→接收判决→误码率统计分析"的流 程设计,误码率理论值同样计算。取统计试验次数为107,实验结果如表4.2所示。

噪声方差	第1次统计	第2次统计	第3次统计	误码率理论值
	试验误码率	试验误码率	试验误码率	
0.5	0. 2395020	0. 2396451	0. 2400080	0. 2397501
0.1	0. 0569984	0.0570087	0.0568627	0.0569231
0.01	0.0000003	0.0000003	0.00000003	0.0000003

表 4.2 实验 5 2 结果记录表

从表 4.2 可以看出, 随着噪声方差的不断减小, 统计试验的误码率也随之不断减小, 而且减小的 幅度很大。说明数字信号检测中,减小判决误码率的核心之一是减小噪声方差。另外,从表中我们 可以看出当模拟统计实验的次数足够大的时候,实验所得的误码率与误码率的理论值非常接近。

4.3. 实验任务 5 3

先验概率 $P(H_0) = P(H_1) = 0.5$,高斯白噪声方差 σ^2 取值为 0.5,取样判决模式为多次观测,检测 次数 m 分别取 5 和 50。要求通过统计试验,求判决门限处于理论最佳值 0.5 时,系统的统计误码率。

在多次观测模式下,通过 for 循环产生 m 个取样观测值 $v_i = r(t_i)$, i = 1,2,...m, m 是观测次数, 判决时则判断观测平均值 $\bar{y} = \sum_{i=1}^m y_i$ 与判决门限 $y_T = 0.5$ 的大小。在实验设计上,噪声生成部分和判 决接收部分按照上述分析进行修改,噪声数组长度扩大为 m 倍,信道噪声对 m 个噪声取平均,其余 部分则与实验任务52相同。

理论推导上,两类差错概率的计算公式如下

$$P(D_1|H_0) = \frac{1}{\sqrt{2\pi\frac{\sigma^2}{m}}} \int_{y_T}^{\infty} exp\{-\frac{y^2}{2\frac{\sigma^2}{m}}\} dy$$
 (7)

$$P(D_1|H_0) = \frac{1}{\sqrt{2\pi\frac{\sigma^2}{m}}} \int_{y_T}^{\infty} exp\{-\frac{y^2}{2\frac{\sigma^2}{m}}\} dy$$

$$P(D_0|H_1) = \frac{1}{\sqrt{2\pi\frac{\sigma^2}{m}}} \int_{-\infty}^{y_T} exp\{-\frac{(y-1)^2}{2\frac{\sigma^2}{m}}\} dy$$
(8)

将公式(7)和公式(8)带入公式(4),即可计算出多次观测模式下的理论误码率。 取统计试验次数为 107, 实验结果如表 4.3 所示。

检测次数	第1次统计 试验误码率	第2次统计 试验误码率	第3次统计 试验误码率	误码率理论值
5	0.0567602	0.0570124	0.0569247	0.0569231
50	0.0000004	0.0000003	0.0000004	0.0000003

表 4.3 实验 5 3 结果记录表

从表 4.3 中我们可以看出, 判决模式为多次观测的时候, 随着检测次数 m 的增加, 统计实验的 误码率大幅减小。说明数字信号检测中,减小判决误码率的另一核心是增大观测次数。

更进一步,从定量的角度进行分析,多次观测模式下,有判决变量

$$\overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_i = \frac{1}{m} \sum_{i=1}^{m} (s + n_i) = s + \frac{1}{m} \sum_{i=1}^{m} n_i$$
(9)

其中s为发送的信号码元, n_i 为高斯白噪声。对于每个 n_i ,其都服从均值为 0,方差为 σ^2 的高斯分布,即 n_i 之间是独立同分布的。则由辛钦中心定理可知, $\frac{1}{m}\sum_{i=1}^m n_i$ 服从于均值为 0,方差为 $\frac{\sigma^2}{m}$ 的高斯分布,也就是说 $\frac{1}{m}\sum_{i=1}^m n_i$ 是方差为 $\frac{\sigma^2}{m}$ 的高斯白噪声。

由于噪声方差 $\sigma^2=0.5$,当检测次数 m 为 5 的时候,理论上等效于方差为 0.1 的高斯白噪声,当检测次数 m 为 50 的时候,理论上等效于方差为 0.01 的高斯白噪声。我们可以与实验任务 5_2 的实验结果进行比较,可以发现当检测次数m=5的时候,统计实验所得的误码率与实验任务 5_2 中方差为 $\sigma^2=0.1$ 时所得的误码率基本一致;同样当检测次数m=50的时候,统计实验所得的误码率与实验任务 5 2 中方差 $\sigma^2=0.01$ 时所得的误码率基本一致。

4.4. 实验任务 5 4

先验概率 $P(H_0) = P(H_1) = 0.5$,信道噪声的表达式如图 4.2,相关噪声波形举例如图 4.3。取样判决模式为多次观测,检测 5 次。要求通过统计试验,求判决门限处于理论最佳值 0.5 时,系统的统计误码率。

$$n(t) = \begin{cases} n_i & when \ t = \frac{i}{11}T, \ i = 0,...,11 \\ \left[(j+1) - \frac{11t}{T} \right] \cdot n_j + \left[\frac{11t}{T} - j \right] \cdot n_{j+1} & when \ \frac{j}{11}T < t < \frac{j+1}{11}T, \ j = 0,...,10 \end{cases}$$
图 4.2 信道噪声数学表达式

其中 n_i 是彼此统计独立的高斯随机变量,均值为零,方差为 $\sigma^2 = 0.5$ 。

图 4.3 相关噪声波形举例示意图

其中多次取样判决有两种模式,第一种取样观测方式如图 4.4 所示,第二种取样观测方式如图 4.5 所示。

图 4.4 第 1 种 5 次取样观测时点分布示意图

图 4.5 第 2 种 5 次取样观测时点分布示意图

(1) 第1种取样观测方式

由图 4.4 可知,5 次取样观测的时刻可以表示为 $t_i=\frac{5+0.25i}{11}T$, i=0,1,2,3,4。带入图 4.2 所示的数学表达式,可得

$$n(t_i) = \begin{cases} n_i, & i = 0, 4\\ (1 - 0.25i)n_5 + 0.25in_6, & i = 1, 2, 3 \end{cases}$$
 (10)

整理合并得

$$n(t_i) = (1 - 0.25i)n_5 + 0.25in_6, i = 0, 1, 2, 3, 4$$
 (11)

实验设计上,噪声生成部分按照式(11)生成所要求的信道噪声,其中 n_5 和 n_6 为相互独立的高斯白噪声,其余部分与实验任务 5 3 相同。

(2) 第2种取样观测方式

由图 4.5 可知, 5 次取样观测的时刻可以表示为 $t_i = \frac{1.5+2i}{11}T$, i = 0, 1, 2, 3, 4。带入图 4.2 所示的数学表达式,可得

$$n(t_i) = 0.5n_{2i+1} + 0.5n_{2i+2}, \ i = 0, 1, 2, 3, 4 \tag{12}$$

实验设计上,噪声生成部分按照式(12)生成所要求的信道噪声,其中 $n_1 - n_{10}$ 为相互独立的高斯白噪声,其余部分与实验任务 5 3 相同。

取统计试验次数为107, 重复进行3次统计试验,实验结果如表4.4所示。

表 4.4 实验 5_4 结果记录表

取样观测方式	第1次统计试验误码率	第2次统计试验误码率	第 3 次统计试验误码率
第1种	0. 158866	0. 158753	0. 158671
第2种	0. 0126136	0. 0126665	0. 0126195

从表 5 可以看出,第 2 种取样观测方式的误码率明显小于第 1 种,接收机性能更优。对比式(11)和式(12),二者都是两个独立高斯白噪声的加权和。从理论上分析,第 1 种观测方式下,每个观测时点 p_{1i} 的噪声方差为 $\sigma_{1i}^2=[(1-0.25i)^2+(0.25i)^2]\sigma^2$;第 2 种观测方式下,每个观测时点 p_{2i} 的噪声方差为 $\sigma_{2i}^2=(0.5^2+0.5^2)\sigma^2=0.5\sigma^2$ 。

因此,对于每个观测点,根据均值不等式,有

$$\sigma_{1i}^{2} = \left[(1 - 0.25i)^{2} + (0.25i)^{2} \right] \sigma^{2} \ge \frac{(1 - 0.25i + 0.25i)^{2}}{2} \sigma^{2} = 0.5 \sigma^{2} = \sigma_{2i}^{2}$$
 (13)

由高斯白噪声相互独立,均值为 0 可得,第 1 种观测方式下的每个观测时点 p_{1i} 均值为 0,但不相互独立。因此有

$$D(p_{1i} + p_{1j}) = \sigma_{1i}^2 + \sigma_{1j}^2 + 2E(p_{1i}p_{1j}) - 2E(p_{1i})E(p_{1j}) = \sigma_{1i}^2 + \sigma_{1j}^2 + 2E(p_{1i}p_{1j})$$
 (14) 则第 1 种观测方式下总的噪声方差

$$\sigma_1^2 = D(\sum_{i=0}^4 p_{1i}) > \sum_{i=0}^4 \sigma_{1i}^2 \tag{15}$$

而第2种观测方式下每个观测时点 p_{2i} 相互独立,总的噪声方差

$$\sigma_2^2 = \sum_{i=0}^4 \sigma_{2i}^2 \tag{16}$$

结合式 (13) (15) (16) 可得 $\sigma_1^2 > \sigma_2^2$, 即第 1 种观测方式下总的噪声方差大于第 2 种观测

方式下总的噪声方差。所以第 1 种观测方式下信号的波动程度更大,更容易出现判决错误,误码率更高。

5. 系统前面板和主要程序框图

6. 拓展探究

根据实验 5_4 的结果,第一种方式得到的 5 个点噪声与 6,7 点生成的高斯信号都有关;而第二种方式得到的 5 个点之间不相关。可以推断,当观测点上的噪声信号之间的相关性越弱,最终误码率越低。猜想最佳方案为均匀分配在 11 个区间上。

以m = 10 为例,方案如图 6.1。

图 6.1 m=10 最佳方案

额外设计图 6.2 和图 6.3 两种方案。

实验结果如表 6.1 所示。

表 6.1 拓展实验记录表

观测点数	方案1误码率	方案2误码率	最佳方案误码率
10	0.158609	0.0454312	0.0206227

可见均匀取样的误码率确实是我们所设计的方案中最低的。

7. 实验心得

写这个实验的时候我已经阳了,天天发烧还在写代码,嗓子巨疼还在写报告。谢谢给我答疑解 惑的同学。助教老师也辛苦了。