Chapter 1

Multidimensional Scaling: More complete proof and some insights not mentioned in class

1.1 Motive of MDS

We are given the pair-wise (Euclidean/non-Euclidean) distance matrix \mathbf{D}^X of N points and we are asked to find a set of N points $\mathbf{Y} = \{\mathbf{y}_i \text{ for } i \in [1, N]\}$ in a k dimensional space so that the pair-wise Euclidean distance matrix \mathbf{D}^Y calculated using \mathbf{Y} is the closest possible approximation of \mathbf{D}^X .

1.2 Notation and convention

For ease of understanding and relatively simpler linear algebra manipulations for the author, we will follow these conventions throughout the document

- Vectors are boldface small: y
- \bullet Matrices are capital and boldface: ${\bf X}$
- Each column of the data matrix contains one data vector
- **e** is an $N \times 1$ column vector of all ones

1.3 The main steps of MDS

- 1. Input: $N \times N$ data matrix \mathbf{D}^X , dimension k
- 2. $\mathbf{B}^X = -\frac{1}{2}\mathbf{H}\mathbf{D}^X\mathbf{H}$, here, $\mathbf{H} = I_N \frac{1}{N}\mathbf{e}\mathbf{e}^T$ with \mathbf{e} being an $N \times 1$ column vector of all ones.
- 3. The k-rank SVD of centered matrix $\mathbf{B}^X = (\mathbf{U}\mathbf{D}^{1/2})(\mathbf{D}^{1/2}\mathbf{U}^T) = \mathbf{Y}^T\mathbf{Y}$, therefore, \mathbf{U} is an $N \times k$ matrix and \mathbf{D} is an $k \times k$ diagonal matrix with the k largest singular values on the diagonal and $\mathbf{Y} = \mathbf{D}^{1/2}\mathbf{U}^T$ is a $k \times N$ matrix.
- 4. The set of N k-dimensional embeddings/points are the N columns of \mathbf{Y} .

1.4 The insight of MDS

We start the proof of the algorithm with an assumption of a hypothetical set of N points $\mathbf{X} = \{\mathbf{x}_i \text{ for } i \in [1, N]\}$ (with each \mathbf{x}_i as one column of \mathbf{X}) in d dimensions. Note that we have neither \mathbf{X} nor do we know the value of d. We are only supplied with the pair-wise Euclidean distances for \mathbf{X} , given as the distance matrix \mathbf{D}^X . Therefore, each element of \mathbf{D}^X can be written as

$$(\mathbf{D}_{ij}^X)^2 = (\mathbf{x}_i - \mathbf{x}_j)^T (\mathbf{x}_i - \mathbf{x}_j) = \|\mathbf{x}_i\|^2 - 2\mathbf{x}_i^T \mathbf{x}_j + \|\mathbf{x}_j\|^2$$
(1.1)

We can easily see that

$$\mathbf{D}^X = \mathbf{Z} - 2\mathbf{X}^T \mathbf{X} + \mathbf{Z}^T \tag{1.2}$$

Here, $\mathbf{Z} = \mathbf{z}\mathbf{e}^T$ and $\mathbf{z} = [\|\mathbf{x}\|_1^2 \|\mathbf{x}\|_2^2 \dots \|\mathbf{x}\|_N^2]^T$ i.e. an $N \times 1$ vector with each element being the squared norm of *hypothetical* point set \mathbf{X} . Therefore, \mathbf{Z} takes the form

$$\mathbf{Z} = \begin{bmatrix} \|\mathbf{x}_1\|^2 & \|\mathbf{x}_1\|^2 & \cdots & \|\mathbf{x}_1\|^2 \\ \|\mathbf{x}_2\|^2 & \|\mathbf{x}_2\|^2 & \cdots & \|\mathbf{x}_2\|^2 \\ \vdots & \vdots & \ddots & \vdots \\ \|\mathbf{x}_N\|^2 & \|\mathbf{x}_N\|^2 & \cdots & \|\mathbf{x}_N\|^2 \end{bmatrix}$$
(1.3)

Question- Compute $\frac{1}{N}\mathbf{Z}\mathbf{e}\mathbf{e}^T$ and $\frac{1}{N}\mathbf{e}\mathbf{e}^T\mathbf{Z}^T$.

Now, let's translate the mean of the set of *hypothetical* point set (\mathbf{X}) to the origin. Note that this operation does not change the Euclidean distance between any pairs of points but does a wonderful thing, which we will see

shortly. To carry out this operation we simply compute the mean of all points contained in \mathbf{X}

$$\mathbf{m}^X = \frac{1}{N} \mathbf{X} \mathbf{e}$$
 (see it yourself) (1.4)

Let's define the centering operation as

$$\mathbf{H} = \mathbf{I}_N - \frac{1}{N} \mathbf{e} \mathbf{e}^T$$
 (see how $\mathbf{X} \mathbf{H}$ is mean centered?) (1.5)

Let's now apply a "double centering" operation to equation 1.2 to get (see it yourself)

$$\mathbf{A}^{X} = \mathbf{H}\mathbf{D}^{X}\mathbf{H} = -2\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}}$$

$$\mathbf{B}^{X} = -\frac{1}{2}\mathbf{A} = -\frac{1}{2}\mathbf{H}\mathbf{D}^{X}\mathbf{H} = \tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}}$$
(1.6)

Here, $\tilde{\mathbf{X}}$ is the matrix with i^{th} column as the "mean subtracted" hypothetical points $\tilde{\mathbf{x}}_i$. Now we are done and the rest is just simple linear algebra results. Remember, the task was to find a concrete set of N points (\mathbf{Y}) in k dimensions so that the pairwise Euclidean distances between all the pairs in the concrete set \mathbf{Y} is a close approximation to the pair-wise distances given to us in the matrix \mathbf{D}^X i.e. we want to find \mathbf{D}^Y such that

$$\mathbf{D}^{Y} = argmin_{rank(\mathbf{D}^{Y} \le k)} \|\mathbf{D}^{X} - \mathbf{D}^{Y}\|_{F}^{2}$$
(1.7)

Note that after applying the "double centering" operation to both \mathbf{X} and \mathbf{Y} , eqn 1.7 yields

$$\mathbf{B}^{Y} = argmin_{rank(\mathbf{B}^{Y} \leq k)} \|\mathbf{B}^{X} - \mathbf{B}^{Y}\|_{F}^{2} = \|\tilde{\mathbf{X}}^{T}\tilde{\mathbf{X}} - \tilde{\mathbf{Y}}^{T}\tilde{\mathbf{Y}}\|_{F}^{2}$$
(1.8)

The above equation is a well known optimization problem that can be solved via Singular Value Decomposition (SVD) of \mathbf{B}^X . The second equality is due to the "double centering" operation on the distance matrix \mathbf{D}^Y as well. Therefore, now we have eliminated the translational freedom from \mathbf{Y} and we can be sure that whatever embedding we get will have zero mean. This is important because otherwise the embedding points would have been arbitrary up to a translational degree of freedom (there is still a rotational degree of freedom in the points).

$$\mathbf{B}^{X} \approx \mathbf{U}\mathbf{D}\mathbf{U}^{T} = (\mathbf{U}\mathbf{D}^{1/2})(\mathbf{D}^{1/2}\mathbf{U}^{T}) = \tilde{\mathbf{Y}}^{T}\tilde{\mathbf{Y}}$$
(1.9)

Here, \mathbf{U} is $N \times k$ matrix and \mathbf{D} is $k \times k$ diagonal matrix with k largest singular values on the diagonal and $\tilde{\mathbf{Y}} = \mathbf{D}^{1/2}\mathbf{U}^T$ is $k \times N$ matrix. Finally, we get N embedding points in k dimension as the column vectors of $\tilde{\mathbf{Y}}$ with the property that it has a zero mean and is the embedding in dimension k or less that best preserves the pair-wise Euclidean distances given to us in the form of \mathbf{D}^X .