Cálculo Elementar - Lista de Exercícios 7

Profa: Adriana Tostes

1. Calcule as seguintes somas:

a)
$$(7 + 8i) + (2 + 6i)$$

b)
$$(3 + 2i) + (1 + 4i)$$

c)
$$(16 + 25i) + (34 + 15i)$$

2. Calcule as diferenças:

b)
$$(3 + 2i) - (1 + 4i)$$

c)
$$(16 + 25i) - (34 + 15i)$$

3. Calcule os seguintes produtos:

a)
$$(4 - i) \cdot (-2 + 6i)$$

4. Calcule os quocientes:

a)
$$(5 + 3i) / (2 - 7i)$$

5. (UFU-MG) Sejam os complexos z = 2x - 3i e t = 2 + yi, onde x e y são números reais. Se z = t, então o produto x.y é

- a) 6
- b) 4
- c) 3
- d) -3
- e) –6

6. (PUC-MG) Qual o é o quociente de (8 + i)/(2 - i) é igual a

$$a) 1 + 2$$

7. Resolver
$$x^2 - 4x + 5 = 0$$

8. Sendo i a unidade imaginária o valor de i¹⁰ + i⁻¹⁰⁰ é:

- a) -1
- b) i
- c) -i
- d) 1
- e) zero

- A) 5
- B) 6
- C) 7
- D) 8
- E) 10

10. (UEFS) Simplificando-se a expressão
$$E = i^7 + i^5 + (i^3 + 2i^4)^2$$
, obtêm-se:

- b) 1 + 2i

- c) 1 2i d) 3 4i e) 3 + 4i

11. (UFBA) Sendo
$$a = -4 + 3i$$
, $b = 5 - 6i$ e $c = 4 - 3i$, o valor de $ac + b$ é:

12. A potência (1 - i) ¹⁶	equivale a:					
a) 8 b) 16 - 4i c) 16 - 16i d) 256 - 16i e) 256						
13. Se $z = \cos 9^{\circ} + i.se$	en 9°, então z ¹⁰ é	igual a:				
a) 9 +9i b) 9i c) i d) 1 + i e) -1 + i						
14. Sejam os números	complexos z ₁ =3	+ 9i e z ₂ = -5 –	7i. O argumento	principal do número com	ıplexo z ₁ + z ₂ é:	
a) 90°						
b) 120°						
c) 135°						
d) 145° e) 180°						
15. Escreva cada um	dos seguintes núr	meros complex	os na forma trigo	onométrica.		
a) $z = 1 + i$ b) $z = -1 + i\sqrt{3}$						
16. Obtenha a forma a	lgébrica do núme	ro complexo z	$= 6(\cos 270^{\circ} + i \cdot s)$	en 270°)		
17. Represente os seguintes números no plano de Argand-Gauss:						
a) $P_1 = 2+3i$ b) P_2	₂ = 4- <i>i</i> c) P	$a_3 = -3-4i$	d) $P_4 = -1 + 2i$	e) $P_5 = -2i$		
18. Determine o módu a) 4+3 <i>i</i>	ılo e o argumento b) 2-2 <i>i</i>	dos seguintes c) 3+i	complexos: d) 3	e)2 <i>i</i>		
19. Obtenha o produto	$ow = z_1.z_2.z_3 \text{ on}$	de:				
$z_1 = 16(\cos 160^\circ + i \sin 160^\circ)$			$z_1 = 3(\cos 1)$	$z_1 = 3(\cos 14^\circ + i \sin 14^\circ)$		
a) $z_2 = 5(\cos 325^\circ + i \sin 325^\circ)$			b) $z_2 = 4(\cos x)$	b) $z_2 = 4(\cos 31^\circ + i \sin 31^\circ)$		
$z_3 = \cos 308^\circ + i \operatorname{sen} 308^\circ$			$z_3 = 6(\cos \theta)$	$z_3 = 6(\cos 43^\circ + i \sin 43^\circ)$		
20) Sendo z= $\sqrt{2}(\cos^2\theta)$	$\frac{\pi}{4} + i \operatorname{sen} \frac{\pi}{4}$), det	ermine z², z³ e	z^4 .			
21) Calcule as potência	as, dando a respos	sta na forma a	lgébrica ou trigor	nométrica.		
a) $(1 - i\sqrt{3})^8$			b) $(\sqrt{3} + i)^6$			

22) Determine as raízes quadradas de 2i.

23) Obtenha as raízes cúbicas de z = $1 \cdot (\cos \pi + i \cdot \sin \pi)$

Respostas

```
1.a) 9 +14i
b) 4 + 6i
           c) 50 + 40i
```

7)
$$S=\{2-i, 2+i\}$$

15) a)
$$z = \sqrt{2} (\cos 45^{\circ} + i \cdot \text{sen } 45^{\circ})$$

b)
$$z = 2(\cos 120^{\circ} + i \cdot \text{sen } 120^{\circ})$$

16)
$$z = -6i$$

18) a)
$$\rho$$
 =5, θ =36,9°

b)
$$\rho = 2\sqrt{2}$$
, $\theta = 315^{\circ}$

c)
$$\rho = \sqrt{10}$$
, $\theta = 18.4^{\circ}$

d)
$$\rho = 3$$
. $\theta = 0^{\circ}$

d)
$$\rho = 3$$
, $\theta = 0^{\circ}$ e) $\rho = 2$, $\theta = 90^{\circ}$

20) a)
$$z^2 = 2(\cos{\frac{\pi}{2}} + isen{\frac{\pi}{2}})$$

20) a)
$$z^2 = 2(\cos{\frac{\pi}{2}} + isen{\frac{\pi}{2}})$$
 b) $2\sqrt{2}(\cos{\frac{3\pi}{4}} + isen{\frac{3\pi}{4}})$ c) $4(\cos{\pi} + isen{\pi})$

21)a) 256(cos 240° + i sen 240°) ou z=-128
$$-$$
 128 $\sqrt{3}$ i

22)
$$Z_0 = 1 + i$$
 $Z_1 = -1 - i$

$$z_0 = \sqrt[3]{1} \left[\cos \left(\frac{\pi}{3} + \frac{2 \cdot 0 \cdot \pi}{3} \right) + i \cdot sen \left(\frac{\pi}{3} + \frac{2 \cdot 0 \cdot \pi}{3} \right) \right] = 1 \cdot \left[\cos \frac{\pi}{3} + i \cdot sen \left(\frac{\pi}{3} + \frac{2 \cdot 0 \cdot \pi}{3} \right) \right]$$

$$z_1 = \sqrt[5]{1} \left[\cos \left(\frac{\pi}{3} + \frac{2 \cdot 1 \cdot \pi}{3} \right) + i \cdot sen \left(\frac{\pi}{3} + \frac{2 \cdot 1 \cdot \pi}{3} \right) \right] = 1 \left[\cos \frac{3\pi}{3} + i \cdot sen \left(\frac{3$$

$$z_2 = \sqrt[5]{1} \left[\cos \left(\frac{\pi}{3} + \frac{2 \cdot 2 \cdot \pi}{3} \right) + i \cdot sen \left(\frac{\pi}{3} + \frac{2 \cdot 2 \cdot \pi}{3} \right) \right] = 1 \cdot \left[\cos \frac{5\pi}{3} + i \cdot sen \left(\frac{5\pi}{3} + i \cdot sen \left(\frac{\pi}{3} + \frac{\pi}{3} \right) \right) \right]$$