

Методи чисельної оптимізації

Лекція 1: Вступ до оптимізації

Кочура Юрій Петрович iuriy.kochura@gmail.com @y_kochura

Сьогодні

- 🦣 Математична постановка задачі оптимізації
- 🦣 Неперервна та дискретна оптимізація
- Обмежена та необмежена оптимізація
- 🏺 Глобальна та локальна оптимізація
- Стохастична та детермінована оптимізація
- Вимоги до оптимізаційних алгоритмів

Математична постановка задачі оптимізації

Де використовується?

Оптимізація присутня всюди

машинне навчання, великі дані, статистика, фінанси, логістика, планування, теорія керування, математика, пошукові системи, симуляції та багато інших застосувань ...

- Математичне моделювання
 - визначення та побудова моделі задачі оптимізації
- Обчислювальна оптимізація
 - запуск відповідного алгоритму оптимізації

Оптимізація

Постановка задачі оптимізації (без обмежень)

• мінімізація $f(\mathbf{x})$:

$$\mathbf{x}^* = rg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

$$P:f(\mathbf{x}^*) = \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

 $\mathbf{x}=(x_1,x_2,...,x_n)-n$ -вимірний вектор (оптимізаційна змінна задачі), $f:\mathbb{R}^n o\mathbb{R}$ — цільова функція, \mathbf{x}^* — розв'язок задачі P.

• максимізація $f(\mathbf{x})$:

$$\mathbf{x}^* = rg \max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

$$P:f(\mathbf{x}^*)=\max_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$$

Навіщо потрібна оптимізація?

- 1. Різні алгоритми можуть працювати краще або гірше для різних задач P (іноді дуже суттєво).
- 2. Розглядаючи задачу P в контексті оптимізації, можна отримати більш повне розуміння статистичного процесу.
- 3. Знання методів оптимізації сприяє розробці нових задач P, які можуть мати більшу користь.

Оптимізація швидко розвивається як наукова галузь. Проте ще залишається багато можливостей для прогресу, особливо на перетині з машинним навчанням та статистикою.

Приклади

Оптимізація портфеля

- змінні: обсяги інвестицій у різні активи
- обмеження: бюджет, максимальний/мінімальний розмір інвестиції на актив, мінімальний прибуток
- цільова функція: загальний ризик або прибуток

Навчання нейронних мереж

- змінні: параметри моделі
- обмеження: розмір датасету, апріорна інформація
- цільова функція: міра невідповідності або похибка прогнозу

Неперервна та дискретна оптимізація

Дискретна оптимізація (без обмежень)

• мінімізація $f(\mathbf{x})$:

$$egin{aligned} \mathbf{x}^* &= rg\min_{\mathbf{x} \in \mathbb{Z}^n} f(\mathbf{x}) \ P : f(\mathbf{x}^*) &= \min_{\mathbf{x} \in \mathbb{Z}^n} f(\mathbf{x}) \ f : \mathbb{Z}^n
ightarrow \mathbb{R} \end{aligned}$$

Неперервна оптимізація (без обмежень)

• мінімізація $f(\mathbf{x})$:

$$egin{aligned} \mathbf{x}^* &= rg\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \ P : f(\mathbf{x}^*) &= \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \ f : \mathbb{R}^n & o \mathbb{R} \end{aligned}$$

Обмежена та необмежена оптимізація

Оптимізація

Обмежена

$$P: \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 за умови $egin{cases} c_i(\mathbf{x}) = 0, & i \in E, \ c_i(\mathbf{x}) \geq 0, & i \in I. \end{cases}$

Тут I та E — це множини індексів для нерівностей та рівнянь відповідно.

Необмежена

$$E = I = \emptyset$$

Задачі оптимізації можна систематизувати за різними критеріями: за типом цільової функції та обмежень (наприклад, лінійні, нелінійні, випуклі), за числом змінних, а також за властивостями функцій (диференційовані чи недиференційовані).

Глобальна та локальна оптимізація

Стохастична та детермінована оптимізація

Процес визначення цільової функції, змінних та обмежень для заданої задачі називається моделюванням. Побудова адекватної моделі є першим і часто найважливішим кроком у процесі оптимізації.

Стохастична оптимізація

- модель містить невідомі величини (майбутні ціни, попит, ставки тощо);
- використовує сценарії з ймовірностями;
- рішення оптимізує очікувану ефективність.

Підходи до роботи з невизначеністю

- Ймовірнісні обмеження: виконання обмежень з певною ймовірністю;
- Робастна оптимізація: обмеження виконуються для всіх можливих сценаріїв.

Детермінована оптимізація

• модель відома повністю;

Вимоги до оптимізаційних алгоритмів

Оптимізаційні алгоритми

- Ітеративні: починають з початкового наближення та генерують послідовність покращень
- Використовують інформацію:

```
\circ значення цільової функції f(x)
```

- \circ обмеження $c_i(x)$
- ∘ похідні (1-го, 2-го порядку)
- Стратегії:
 - локальні (лише поточна точка)
 - з накопиченням попередньої інформації

Вимоги до оптимізаційних алгоритмів

- Надійність стабільна робота на широкому класі задач та для різних стартових точок.
- Ефективність не потребують надмірного часу чи пам'яті.
- Точність знаходять розв'язок з необхідною точністю, не надто чутливі до похибок даних і обчислень.

Оптимізація у природі

