Database Normalization

Prof. K ADISESHA (Ph. D)

Database Normalization

Introduction

Normalization

Database Anomaly

Functional Dependency

Normal Forms

Prof. K. Adisesha

Database Design Strategies:

Database design can be defined as a collection of tasks or processes that enhance the designing, development, implementation, and maintenance of enterprise data management system.

- Designing a proper database reduces the maintenance cost thereby improving data consistency and the cost-effective measures are greatly influenced in terms of disk storage space.
- ➤ There are two approaches for developing any database:
 - ❖ The top-down method
 - ❖ The bottom-up method

Top – down design method:

The top-down design method starts from the general and moves to the specific.

- It start with a general idea of what is needed for the system and then work your way down to the more specific details of how the system will interact.
- This process involves the identification of different entity types and the definition of each entity's attributes.

Bottom – up design method:

The bottom-up approach begins with the specific details and moves up to the general.

This is done by first identifying the data elements (items) and then grouping them together in data sets.

➤ In other words, this method first identifies the attributes, and then groups them to form

entities.

Normalization is the process of organizing the data and the attributes of a database.

- It is performed to reduce the data redundancy in a database and to ensure that data is stored logically.
- > Data redundancy means having the same data but at multiple places.
- It is necessary to remove data redundancy because it causes anomalies in a database which makes it very hard for a database administrator to maintain it.

Normalization:

Normalization is a step by step process of removing the different kinds of redundancy and anomaly one step at a time from the database.

- > E.F Codd developed for the relation data model in 1970.
- > Normalization rules are divided into following normal form:

Normalization is the process of organizing the data and the attributes of a database. The main reason for normalizing the relations is removing these anomalies.

- ➤ Normalization is the process of organizing the data in the database.
- Normalization is used to minimize the redundancy from a relation or set of relations. It is also used to eliminate undesirable characteristics like Insertion, Update, and Deletion Anomalies.
- > Normalization divides the larger table into smaller and links them using relationships.
- The normal form is used to reduce redundancy from the database table.

The main reason for normalizing the relations is removing these anomalies.

- > Advantages of Normalization
 - ❖ Normalization helps to minimize data redundancy.
 - ❖ Greater overall database organization.
 - ❖ Data consistency within the database.
 - ❖ Much more flexible database design.
 - **!** *Enforces the concept of relational integrity.*
- ➤ Disadvantages of Normalization
 - ❖ It is very time-consuming and difficult to normalize relations of a higher degree.
 - **A** Careless decomposition may lead to a bad database design, leading to serious problems.

Need for Normalization:

Normalization is used to reduce data redundancy. It provides a method to remove the following anomalies from the database and bring it to a more consistent state:

- A database anomaly is a flaw in the database that occurs because of poor planning and redundancy.
 - **Insertion anomalies:** This occurs when we are not able to insert data into a database because some attributes may be missing at the time of insertion.
 - **Updation anomalies:** This occurs when the same data items are repeated with the same values and are not linked to each other.
 - **Deletion anomalies:** This occurs when deleting one part of the data deletes the other necessary information from the database.

Database Normal Forms.

The Theory of Data Normalization in MySQL server is still being developed further, there are discussions even on 6th Normal Form.

- ➤ However, in most practical applications, normalization achieves its best in 3rd Normal Form. The evolution of Normalization in SQL theories is illustrated below-
 - ❖ 1NF (First Normal Form)
 - ❖ 2NF (Second Normal Form)
 - ❖ 3NF (Third Normal Form)
 - ❖ BCNF (Boyce-Codd Normal Form)
 - ❖ 4NF (Fourth Normal Form)
 - ❖ 5NF (Fifth Normal Form)
 - ❖ 6NF (Sixth Normal Form)

1NF	2NF	3NF	BCNF
Atomic	Functional	Not	$X \rightarrow Y$
	Dependency	Transitive	X is Super Key
	not Partial	Dependency	0% redundancy (due to
	Dependency		Functional Dependency)

Database Normal Forms.

To understand the above-mentioned normal forms, we first need to have an understanding of the functional dependencies.

- > There are four types of normal forms that are usually used in relational databases
 - **NF:** A relation is in 1NF if all its attributes have an atomic value.
 - **2NF:** A relation is in 2NF if it is in 1NF and all non-key attributes are fully functional dependent on the candidate key.
 - **3NF:** A relation is in 3NF if it is in 2NF and there is no transitive dependency.
 - **BCNF:** A relation is in BCNF if it is in 3NF and for every Functional Dependency, LHS is the super key.

Functional dependency

Functional dependency.

The functional dependency is a relationship that exists between two attributes. It typically exists between the primary key and non-key attribute within a table.

- The left side of FD is known as a determinant, the right side of the production is known as a dependent.
- \triangleright It is denoted by $X \rightarrow Y$, where X is called a determinant and Y is called dependent.
- > Example:
 - ❖ Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.
 - ❖ Functional dependency can be written as: Emp_Id → Emp_Name
 - ❖ We can say that Emp_Name is functionally dependent on Emp_Id.
- * Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because if we know the Emp_Id, we can tell that employee name associated with it.

Functional dependency

Functional dependency.

The functional dependency is a relationship that exists between two attributes. It typically exists between the primary key and non-key attribute within a table.

- > Types of Functional dependency
- * Trivial functional dependency
- ❖ Non-Trivial functional dependency
- Multivalued functional dependency
- * Transitive functional dependency.

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

- → Here, {roll_no, name} → name is a trivial functional dependency, since the dependent name is a subset of determinant set {roll_no, name}
- \triangleright roll_no \rightarrow name is a non-trivial functional dependency, since the dependent name is not a subset of determinant roll_no.
- > If a → {b, c} and there exists no functional dependency between b and c, then it is called a multivalued functional dependency.
- From If $A_{\text{disesh}}b$ (A) $b \to c$, then according to axiom of transitivity, $a \to c$. This is a transitive

Non-trivial

Functional

Dependency

Functional

Dependency

Trivial

Functional

Functional dependency

Functional dependency.

The functional dependency is a relationship that exists between two attributes. It typically exists between the primary key and non-key attribute within a table.

- > Types of Functional dependency
- * Trivial functional dependency
 - $A \rightarrow B$ has trivial functional dependency if B is a subset of A.
 - ***** The following dependencies are also trivial like: $A \rightarrow A$, $B \rightarrow B$
- Non-trivial functional dependency
 - $A \rightarrow B$ has a non-trivial functional dependency if B is not a subset $C_{A-A-B}^{\text{Dependency}}$
 - **�** When A intersection B is NULL, then $A \rightarrow B$ is called as complete non-trivial.
- **In Multivalued functional dependency:** entities of the dependent set are not dependent on each other. i.e. If $a \to \{b, c\}$ and there exists no functional dependency between b and c, then it is called a multivalued functional dependency.

Inference Rule (IR):

Inference Rule (IR):.

The Functional dependency has 6 types of inference rule:.

 \triangleright Reflexive Rule (IR1):In the reflexive rule, if Y is a subset of X, then X determines Y.

If $X \supseteq Y$ then $X \rightarrow Y$

- Augmentation Rule (IR2): The augmentation is also called as a partial dependency. In augmentation, if X determines Y, then XZ determines YZ for any Z. If $X \to Y$ then $XZ \to YZ$
- Transitive Rule (IR3):In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z.

If
$$X \rightarrow Y$$
 and $Y \rightarrow Z$ then $X \rightarrow Z$

Union Rule (IR4): Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z.

If
$$X \rightarrow Y$$
 and $X \rightarrow Z$ then $X \rightarrow YZ$

Decomposition Rule (IR5): Decomposition rule is also known as project rule. This Rule says, if X determines Y and Z, then X determines Y and X determines Z separately.

If
$$X \rightarrow YZ$$
 then $X \rightarrow Y$ and $X \rightarrow Z$

Pseudo transitive Rule (IR6): In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ determines W.

If $X \to Y$ and $YZ \to W$ then $XZ \to W$

First Normal Form (1NF):

1NF: A relation is in 1NF if all its attributes have an atomic value.

- ➤ A relation will be 1NF if it contains an atomic value.
- > It states that an attribute of a table cannot hold multiple values. It must hold only single-valued attribute.
- First normal form disallows the multi-valued attribute, composite attribute, and their combinations.

S_ID	S_NAME	S_PHONE	S_COURSE
101	SUNNY	72XXXX9064 738XXXX238	BCA
102	PRAJWAL	857XXXX832	BBA

S_ID	S_NAME	S_PHONE	S_COURSE
101	SUNNY	72XXXX9064	ВСА
101	SUNNY	738XXXX238	ВСА
102	PRAJWAL	857XXXX832	BBA

Second Normal Form (2NF):

2NF: The first condition for the table to be in Second Normal Form is that the table has to be in First Normal Form. The table should not possess partial dependency.

- ➤ In the 2NF, relational must be in 1NF.
- ➤ In the second normal form, all non-key attributes are fully functional dependent on the primary key

 Second Normal Form (2NF)

S_ID	S_NAME	S_COURSE
101	SUNNY	BCA
102	SHAILU	BCA
103	PRAJWAL	BBA

S_ID	S_NAME	C_ID
101	SUNNY	C01
102	SHAILU	C01
103	PRAJWAL	CO2

C_ID	S_COURSE
C01	ВСА
C01	BCA
CO2	BBA

Third Normal Form (3NF):

3NF: The third Normal Form ensures the reduction of data duplication. It is also used to achieve data integrity.

- The third Normal Form ensures the reduction of data duplication. It is also used to achieve data integrity.
- ➤ A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.
- > 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.

Third Normal Form (3NF):

3NF: A relation is in 3NF if it is in 2NF and there is no transitive dependency.

- The third Normal Form ensures the reduction of data duplication. It is also used to achieve data integrity.
- In the student table, stu_id determines subid, and subid determines sub. Therefore, stu_id determines sub via subid. This implies that the table possesses a transitive functional dependency, and it does not fulfill the third normal form criteria..

stu_id	name	subid	sub	address
1	Arun	11	SQL	Delhi
2	Varun	12	Java	Bangalore
3	Harsh	13	C++	Delhi
4	Keshav	12	Java	Kochi

stu_id	name	subid	address
1	Arun	11	Delhi
2	Varun	12	Bangalore
3	Harsh	13	Delhi
4	Keshav	12	Kochi

subid	subject
11	SQL
12	java
13	C++
12	Java

Prof. K. Adisesha (Ph. D)

Boyce Codd normal form (BCNF):

BCNF: A relation is in BCNF if it is in 3NF and for every Functional Dependency, LHS is the super key.

- > BCNF is the advance version of 3NF. It is stricter than 3NF.
- \triangleright A table is in BCNF if every functional dependency $X \rightarrow Y$, X is the super key of the table.
- For BCNF, the table should be in 3NF, and for every FD, LHS is super key.
- To transform the table into the BCNF, you will divide the table into two parts. One table will hold stuid which already exists and the second table will hold a newly created column profid.

	stuid	subject	professor
	1	SQL	Prof. Mishra
	2	Java	Prof. Anand
	2	C++	Prof. Kanth
	3	Java	Prof. James
Prof. K. Adisesha (Ph. D)	4	DBMS	Prof. Lokesh

	stuid	profid
)	1	101
	2	102
	2	103
	3	102
	4	104

	profid	subject	professor
Þ	1	SQL	Prof. Mishra
	2	Java	Prof. Anand
	2	C++	Prof. Kanth
	3	Java	Prof. James
	4	DBMS	Prof. Lokesh

Fourth normal form (4NF):

4NF: A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued dependency.

- For a dependency $A \rightarrow B$, if for a single value of A, multiple values of B exists, then the relation will be a multi-valued dependency.
- The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent entity. Hence, there is no relationship between COURSE and HOBBY.
- > So to make the Student table into 4NF, we can decompose it into two tables Course & Hobby tables:

	STU_ID	COURSE	НОВВҮ	
	21	Computer	Dancing	
	21	Math	Singing	
	34	Chemistry	Dancing	
Prof. K. Adi	sesha (Ph. D)	Biology	Cricket	

STU_ID	COURSE
21	Computer
21	Math
34	Chemistry
74	Biology

STU_ID	НОВВҮ
21	Dancing
21	Singing
34	Dancing
74	Cricket

Fifth normal form (5NF):

4NF: A relation is in 5NF if it is in 4NF and not contains any join dependency and joining should be lossless.

> 5NF is satisfied when all the tables are broken into as many tables as possible in order to avoid redundancy.

Table: OD

- > 5NF is also known as Project-join normal form (PJ/NF).
- > So to make the SPC table into 4NF, we can decompose it into three tables SP, SC & PC tables:

Idolo. Of O		
Suplier	Product	Customer
Ali	ABC	Nauman
Ahmad	KLM	Qasim
Haider	XYZ	Saim

lable: SP	
Suplier	Product
Ali	ABC
Ahmad	KLM
Haider	XYZ

	<u> </u>
Suplier	Customer
Ali	Nauman
Ahmad	Qasim
Haider	Saim

Table: SC

Product	Customer
ABC	Nauman
KLM	Qasim
XYZ	Saim

Table: PC

Table: SPC

Normalization:

Normalization is a step by step process of removing the different kinds of redundancy and anomaly one step at a time from the database.

- 1st normal form
 - All attributes depend on the key
- 2nd normal form
 - All attributes depend on the whole key
- 3rd normal form
 - All attributes depend on nothing but the key

Discussion

Queries? Prof. K. Adisesha

9449031542 Thank you

