CIR₂ 2018-2019

QUIZZ 3 Intégrales multiples

Durée 30 minutes

Pas de document, ni calculatrice, ni téléphone portable

Inscrire les réponses sur la feuille-réponse jointe

(il peut y avoir plusieurs réponses correctes, ou aucune)

2. Soient D et Δ deux domaines de \mathbb{R}^2 , f une fonction de \mathbb{R}^2 dans \mathbb{R} et φ une fonction de \mathbb{R}^2 dans \mathbb{R}^2 telle que φ soit de classe C^1 sur Δ et que φ soit une bijection de Δ sur D.

 $\iint_{D} f(x, y) \, dx \, dy = \iint_{\Delta} f(u, v) \, du \, dv$ 4 $\iint_{\Delta} f(x, y) \, dx \, dy = \iint_{D} f \circ \varphi(u, v) \, \frac{Duv}{Dxy} \, du \, dv$

 $\iint_{D} f(x, y) \, dx \, dy = \iint_{A} f \circ \varphi(u, v) \, \frac{D \, x \, y}{D u \, v} \, du \, dv$ $\iint_{D} f(x, y) \, dx \, dy = \iint_{A} f(u, v) \, \frac{D \, x \, y}{D u \, v} \, du \, dv$

 $\iint_{\Delta} f(x, y) \, dx \, dy = \iint_{D} f \circ \varphi(u, v) \, \frac{D \, x \, y}{D \, u \, v} \, du \, dv$

3. Coordonnées sphériques $x = r \sin \theta \cos \varphi$ $z = r \cos \varphi$

4. Coordonnées sphériques : le jacobien de changement de

 $\theta = \operatorname{angle}(Ox, OH)$

 $\theta = \text{angle}(Oz, OM)$

5. Coordonnées polaires dans \mathbb{R}^2 : le jacobien de changement de variables est $r \cos \theta$ $r \sin \theta$ $r^2 \cos \theta$ $r^2 \sin \theta$ $r^2 \sin \theta$ autre chose

6. $D = \{(x, y) \in \mathbb{R}^2 / y \ge 0 \text{ et } x^2 + y^2 \le 1\}$. $f(x, y) = \frac{1}{(1 + x^2 + y^2)^2}$. $\iint_D f = \dots$ $\frac{2\pi}{3}$ $\frac{2\pi}{3}$ $\frac{\pi}{2}$ $\frac{\pi}{4}$ $\frac{4\pi}{5}$ $\frac{1}{6}$

7. $D = \left[0, \frac{\pi}{2}\right] \times \left[0, \frac{\pi}{2}\right] f(x, y) = \cos^2 x \sin y . \iint_D f = \dots$ $\frac{1}{2\pi} \frac{2\pi}{3} \frac{\pi}{2} \frac{\pi}{4} \frac{4\pi}{5} \frac{1}{6}$

8. $D = \left\{ (x, y) \in \left[0, \frac{\pi}{2} \right] \times [0, 1] / 0 \leqslant y \leqslant \cos x \right\} \cdot f(x, y) = y \sin x \cdot \iint_{D} f = \dots$ $\frac{1}{2\pi} \qquad \frac{\pi}{2} \qquad \frac{\pi}{4} \qquad \frac{4\pi}{5} \qquad \frac{1}{6}$