NETWORK MODELING, VISUALITZATION AND ANALYSIS II

The igraph library for R and Python

Master en Bioinformática

Universitat de València (UV) October 10th, 2013

Marta Bleda Latorre

PhD at the Computational Genomics Institute Centro de Investigación Príncipe Felipe (CIPF) Valencia, Spain

Overview

- The igraph library
- Installation in R
- igraph basics
 - Exercise
- Network models and robustness
 - Exercise
- igraph for Python
- Homework :)

The igraph library

- For complex network analysis
- Lots of graph algorithms implemented
- Core functionality is implemented as a C library
- High level interfaces for R and Python
- Open source
- http://igraph.sourceforge.net/

What do we need?

R & RStudio

If you don't have R installed just type (in Ubuntu shell):

```
$ sudo apt-get update
$ sudo apt-get install r-base
```

And now Rstudio...

http://www.rstudio.com/

igraph installation in R

- Very easy!
- Enter the R shell and type:
 - > install.packages("igraph")
- Load it!
 - > library(igraph)

The igraph library

Basic concepts

Network (informal concept)
Graph (formal mathematical object)

The igraph library in R

Creating a graph

- Vertices and edges have numerical vertex ids in igraph. Vertex ids are always consecutive and they are **numbered from 1** (from igraph 0.6.5 onwards)
- To create a graph whose nodes are letters we have to translate vertex names to ids:

```
V = {A, B, C, D, E}
E = ((A, B), (A, C), (B, C), (C, E))
A = 1, B = 2, C = 3, D = 4, E = 5
```

```
> g <- graph( c(1,2, 1,3, 2,3, 3,5), n=5 )
```

By default, igraph creates a directed graph, but we can change it:

```
> g <- graph( c(1,2, 1,3, 2,3, 3,5), n=5, directed=FALSE )
```

Let's play a little bit around...

Open the R script igraph_basic_concepts.R

The igraph library in R

Accessing graph information

Description	Function
Vertex and edge counts	vcount(g)
	ecount(g)
Vertex and edge lists	V(g)
	E(g)
Vertex and edge attributes	V(g)\$name
	E(g)\$weight
Vertex and edge attribute lists	<pre>list.vertex.attributes(g)</pre>
	<pre>list.edge.attributes(g)</pre>

The igraph library in R

Accessing topological information

Description	Function
Node degree	degree(g)
Degree distribution	<pre>degree.distribution(g)</pre>
Betweenness	betweenness(g)
Closeness	closeness(g)
Clustering coefficient	transitivity(g)
Shortest paths	shortest.paths(g)
	<pre>get.shortest.paths(g)</pre>
Diameter	diameter(g)
	<pre>get.diameter(g)</pre>

Error and attack tolerance of complex networks

- Components regularly malfunction
- However, this failure rarely perturbs the ability of the network → Many complex systems display a surprising degree of tolerance
- Stability attributed to the redundant wiring of the functional web
- **Robustness**: There must be at least two alternative paths between any two points on the network, so that removal of any one component leaves the network fully operational.
- But... what happens with metabolic networks?
- However, extremely **vulnerable** to the attack of a few nodes

Network models

Types of networks

Complex networks can be divided into **two major classes** depending on the degree distribution

- 130 nodes and 215 links
- RED: 5 nodes with the highest number of links
- GREEN: The first neighbours
- Exponential, only 27% of the nodes are reached
- Scale-free, > 60% of the nodes are reached

- Mechanism:
 - Growth
 - Preferential attachment

Network models

Types of networks

Random Networks (Erdös-Rényi (ER))

Every node is connected to a randomly selected number of other nodes with **equal probability**. Two parameters needed: the number of nodes and the probability that a link should be formed between any two nodes.

Small-World Networks (Watts-Strogatz (WS)):

Produces graphs with small-world properties, including short average path lengths and high clustering.

Scale-free Networks (Barabási-Albert (BA))

A scale free network is a network that its degree distribution obeys a power law: $P(k) \sim k^{\gamma}$. Model used to demonstrate a preferential attachment or a "rich-get-richer" effect.

- A perturbation in a network can be defined as a set of elementary changes:
 - Failure of a node
 - Failure of a link
 - Instability of a network due to removal of a stabilizing link
- 2 types of attacks
 - Random attack: Removal of nodes randomly (% of network)
 - Targeted attack: Removal of nodes with particular attributes values (highest degree nodes)
- Article:

Error and attack tolerance of complex networks. Albert R, Jeong H, Barabasi AL. *Nature*. 2000 Jul 27;406(6794):378-82.

Network diameter

Diameter of the Zachary Karate Club network

- 2 networks: a random network (ER) and a scale-free network (BA)
 - 10,000 nodes and 20,000 links
- d = diameter, f = % nodes removed randomly
- Attack over the most connected nodes

	Random network	Scale-free network
Failure	Diameter increases monotonically with f . All nodes have \sim same number of links \rightarrow contribute equally.	Diameter remains unchanged. Lots of nodes with low connectivity → Removal of "small nodes" does not alter the path structure.
Attack	Due to the homogeneity of the network there is no substantial difference with failure attack.	Drastically different behavior → diameter increases rapidly. Vulnerability due to inhomogeneity → connectivity maintained by a few highly connected nodes.

Network fragmentation

- When nodes are removed, clusters of nodes whose links to the system disappear may be cut off (fragmented) from the main cluster
- S = size (number of nodes) of the largest component (cluster)
- \(\sists\) = average size of the isolated components, except the largest one

	Random network	Scale-free network
		S decreases slowly without observed thershold.
Failure	No difference between failure and attack.	⟨s⟩ ~ 1, network deflated by nodes breaking off one by one.
	S decreases rapidly until the main cluster is completely fragmented \rightarrow S \sim 0.	Largest component stays together for very high $f \rightarrow$ stability
Attack	⟨s⟩ increases rapidly until ⟨s⟩ = 2, after which it decreases to ⟨s⟩ = 1.	Similar to a random network but falling apart at a smaller value of f .

Conclusions

- Random graphs are more sensitive than scale-free when nodes are removed randomly.
- Scale-free networks display a surprising high degree of tolerance against random failure when compared to random networks.
- Under a targeted attack, scale-free networks increase their diameter rapidly and break into many isolated fragments.

Homework

Simulate and attack

- 1. Simulate 3 networks
 - 1. Erdös-Rényi (n=10,000 and p=1/1,000)
 - 2. Watts-Strogatz (dim=1, size=1000, nei=4, p=0.05)
 - 3. Barabási-Albert (n=10,000 and power=1.5)
- 2. For these 3 networks, perform a random and a targeted attack damaging progressively the 1%, 2%, 3%, 4%, 5% of the nodes.
- 3. Study the variability of the following parameters:
 - 1. Average degree
 - 2 Diameter
 - 3. Size of the giant component
 - 4. Betweenness
- 4. Comment your results briefly.

THANK YOU.