Week 2 Video Lecture Notes

A. Lesson Objectives and Key Terms

- understand the concept and usage of the remainder of the summary statistics (S.S.):
 - standard deviation
 - variance
 - Inter-Quartile Range (IQR)
- differentiate between design of studies (experiments and observational studies)
 - · understand merits, feasibility and ethical concerns of each

B. Standard Deviations, Medians and IQRs

Sample Variance & Standard Deviation

· are measures of dispersion

I. Sample Variance

$$s^2 = rac{(x_1 - ar{x})^2 + (x_2 - ar{x})^2 + \ldots + (x_n - ar{x})^2}{n - 1}$$

• In is the number of data points; x_1 to x_n is the values contained within the set of inputs (values of numerical x in the data set).

II. Standard Deviation

- provides a way to quantify the "spread" of data about the mean.
- formula of S.D. is derived via the *variance* (σ^2), particularly using the square root operation.
- S.D. value of zero -> there is no spread; S.D. value > 0 -> there is some sort of spread in the sample.
- formulae: $\frac{1}{n-1}$...

Properties

• formula for Sample S.D. = $\sqrt{variance}$

$$s_x = \sqrt{rac{(x_1 - ar{x})^2 + (x_2 - ar{x})^2 + \ldots + (x_n - ar{x})^2}{n - 1}}$$

- Intuition on the S.D. formula -> might make sense to:
 - take difference between each value and mean
 - add up the differences to get the "total spread"
 - divide by total number of points to get "average spread"
 - can't do this as average spread will be 0 X, ∴ +ve and -ve values might cancel each other out

Population S.D. formula

$$\sigma_x = \sqrt{rac{\sum_{i=1}^N (x_i - ar{x})^2}{N}}$$

- standard deviation is:
 - non-negative (i.e. ≥ 0).
 - adding a constant k to a dataset changes the mean \bar{x} , but doesn't change the standard deviation s_x .
 - will only "shift" everything by constant k

• multiplying all data points by constant c results in the S.D. being multiplied by the absolute value of c (i.e. $s_{xNew} = s_{xOld} \cdot |c|$).

Example of S.D. calculation (explicit calculation)

Qn. Consider a simple sample data set x of just 3 points. Given that $x = \{1, 4, 7\}$, find the S.D. value of this dataset.

- 1. Using the formula, $s_x=\sqrt{\frac{(x_1-\bar x)^2+(x_2-\bar x)^2+...+(x_n-\bar x)^2}{n-1}}$ we need to first obtain the mean of the dataset.
- 2. Also given $\bar{x} = \frac{1}{n} \sum x_n$ and n = 3

$$ar{x} = rac{1+4+7}{3} = 4$$
 $s_x = \sqrt{rac{(1-4)^2 + (4-4)^2 + (7-4)^2}{3-1}}$ $\iff s_x = \sqrt{rac{(1-4)^2 + (4-4)^2 + (7-4)^2}{3-1}}$ $\therefore s_x = 3$

Understanding EDA, mean and S.D. through Palmer Penguins dataset

Palmer Penguins Intro

- · consists of 3 species Chinstrap, Gentoo and Adelie
- data from 342 penguins with various data points (i.e. species, bill length, bill depth, flipper length, mass, gender etc.)

Question to answer from the dataset

How similar are these penguins? -- compare:

- 1. characteristics like behaviours, habitats and living environments
- 2. r/s between two or more variables
- 3. feeding habits across species?
- 4. mass of the penguins are males heavier than females within each species?
- 5. flipper length across species?

species	variable	mean 🔷	sd ♦
All	All	All	All
Adelie	body_mass_g	3,700.7	458.6
Chinstrap	body_mass_g	3,733.1	384.3
Gentoo	body_mass_g	5,076.0	504.1

Why is it that the Adelie and Chinstrap (species) have almost the same mean mass but yet the S.D. for the Adelie species is higher?

- due to what?
 - gender
 - age, or other factors not inside the dataset?
 - location

Comparing spread btwn variables

when considering to factor in the spread btwn variables, we also need to consider spread relative to the mean (a.k.a. coefficient of variation)

$$coefficient\ of\ \sigma^2 = rac{s_x}{ar{x}} = rac{\sigma}{\mu}\ \mid ar{x}
eq 0$$

• larger coefficient of variance (i.e. = $\frac{s_y}{\bar{y}} > \frac{s_z}{\bar{z}} \implies$ spread of y > spread of z).

Median

- definition: median of set of values in a dataset is the middle value after arranging the values of the dataset in ascending or descending order.
 - sort column -> find middle value
- 50th percentile of the data
- formula
 - note: n is the number of element in the set and so $\frac{n+1}{2}$ gives the middle element for odd cases.

$$Med(X) = \left\{egin{array}{ll} X\left[rac{n+1}{2}
ight] & if \ n \ is \ odd. \ rac{X\left[rac{n}{2}
ight] + X\left[rac{n+1}{2}
ight]}{2} & if \ n \ is \ even. \end{array}
ight.$$

Overall vs Subgroup Medians

• subgroup mean would *NOT* lie closer to the group with the larger proportion \implies knowing the median of the subgroup does not tell one about overall median

R/s btwn Mean and Median

• For roughly symmetric distributions, $\bar{x} \approx Med(X)$.

Quartiles and Interquartile Range (IQR)

- Quartiles allow use to defined another notion/type of dispersion measurement via IQR.
 - generally use software(s) for this computation

	in terms of percentile	# element
Q_1 (first quartile)	25th	$\frac{n+1}{4}$ th
Q_2 (second quartile / median)	50th	$\frac{n+1}{2}$ th or $\frac{2n+1}{4}$ th*
Q_3 (third quartile)	75th	$\frac{3(n+1)}{4}$ th

Formula:

- 1. Median: $Med(X) = Q_2$ (see above for full formula)
- 2. Interquartile Range: $IQR(X) = Q_3 Q_1$
- 3. Quartile Deviation = $\frac{Q_3 Q_1}{2}$

Similarities btwn IRQ and S.D. (in terms of properties)

- 1. IQR(X) must $be \geq 0$, $\therefore Q_3 \geq Q_1$
- 2. $\forall x$, given c is a constant, x + c does not result in $\triangle IQR(X)$, for $\pm c$
- 3. Multiplying all data points by constant k results in IQR(X) being multiplied by |k|.

1. i.e.
$$IQR(X)_{new} = IQR(X)_{old} \cdot k$$

Deciding which pairs of S.S. to use

• \bar{x} & s_x or Median & IQR -> depends on the distribution of data points.

· symmetrical vs non-symmetrical data

Mode

- value that appears the most frequent for a particular feature/variable in a dataset
 - "peak" of the distribution

C. Study Designs

• in study design, we focus on Research Questions that examine a r/s btwn two variables

Exemplar Question: Does drinking coffee help students to pass the maths exam?

· Dependent: passing the maths exam

· Independent: drinking coffee

Steps:

1. Take a census or sample of the target population (i.e. students who drink coffee and students who don't drink coffee)

- 2. Conduct the study
 - 1. Experimental
 - 2. Observational

1. Experimental Studies

def: intentionally manipulates one variable in an attempt to cause an effect on another variable

• can be also termed "controlled experiment"

goal: provide a cause-effect relationship btwn the two variables

researcher may hypothesize the relationship using the independent and dependent variables

Groups within the experiment

- (a) Treatment Group
 - Coffee group

 drinks exactly one cup of coffee every day, for a month (should also make sure that it is around the same time)
 - the "treatment" in this case is coffee

(b) Control Group

- No Coffee group

 not drink any coffee (at all) for a month
- Control is needed because it provides a baseline for comparison w the Treatment group
 - · control group might be the same or even outperform the treatment group (in the exam) in this case
- in some cases, might receive some "baseline" treatment elements (placebo) to reduce bias
 - since bias is an effect of "leaving the control group alone"
 - provided with a substitute to what the treatment group has been provided
- both groups will then take the maths exam (provide experimental results for benchmarking)

Random Assignment

- makes group assignment is completely unrelated to participant's background characteristics (ensures that treatment
 and control groups are similar in every way other them receipt of the treatment)
- required because there may be other dependent variables affecting the results of the independent variable

- the coffee-exam r/s case

 other factors like revision time (shorter vs longer), IQ of subjects, age of subjects etc.
 etc.
- if no random assignment done: effect of confounding of 3rd party variables may be apparent
- helps to remove the effects of other dependent variables to make the treatment and control group largely similar in terms of other factors/variables
- is an impartial procedure using chance and is highly effective
 - each piece of paper has an equal chance of being picked out (random draw without replacement)
 - Steps:
 - 1. randomly draw subjects until about half ($\approx 50\%$) of the subjects have been "removed" or grouped into the treatment group
 - 2. the other half of the main group form the control group
 - helps to create similar treatment & control groups in terms of other factors (i.e. revision time, IQ, age etc.)
 allows for similar distributions
- treatment and control groups can have different sizes but as long as groups are quite large

"Random" connotations

- · actual meaning: has a strict meaning related to an impartial chance mechanism
- connotation / association: often interchangeable with "haphazard" -> researcher must ensure other experimental variables are not the case

Placebo

Definitions

- 1. Placebo: Treatment with no active ingredients and no effects
- 2. Placebo effect: response observe when subject receive placebo treatment but **still show some positive effects.**, even if the treatment has no effect

Blinding

- somewhat like blindfolding the subjects
- blinded subjects don't know which group they belong to (treatment or control)
 - can add a placebo ("substitute for the treatment" taken by the control group) to help make the blinding more effective
 - helps to prevent subject's own beliefs and in turn behaviours from affecting the results of the experiment(al study)
- Returning to coffee-and-substitute example
 - Each subject won't know if they're in the treatment or control group -> are blind to how the test or control might look like (treatment and placebo should smell and taste the same)
 - Each subject is provided with a drink every morning
- assessors marking the test also need to be blinded to avoid biases (being more lenient to one group compared to the other)

def: Double-blinding experiment occurs when both the subjects and assessors (of the experiment) are blinded.

For controlled experiment w both double-blinding and random assignment -> can enable experimental results to show causality (ref generalisability).

2. Observational Studies

def: Observational study involves observing individuals and measures variables of interest.

- helps to eliminate ethical issues associated with the experiment (i.e. ethical to inject low doses of virus consent provided?)
 - just record data based on real-world cases (don't force or incentivize participation)
- researcher does NOT attempt to directly manipulate one variable to cause an effect on another variable.
- there may be logistical challenges when conducting the randomized experimental study

observe subjects (association versus causation)

Advantages

· Better external validity than experimental studies

Disadvantages

- ... observational studies do not provide convincing evidence supporting a cause-effect relationship.
- · have weaker internal validity than experimental studies

Groups within the experiment

 Will still use the terms treatment group (i.e. smokers) and control group (non-smokers) even though no actual "treatment" is applied from the researcher's end.

Treatment group ←⇒ exposure; Control Group ←⇒ non-exposure

3. Experimental vs Observational Studies

def Confounder: variable that influences both independent and dependent variable.

Experimental Studies	Observational Studies	
Assigned by researcher (should have only one independent variable -> random assignment + double-blinding)	Decided by subjects themselves (usually lifestyle choices)	
Can provide cause-and-effect relationship (CAUSATION)	Cannot provide cause-and-effect relationship (can only corroborate and expand on other studies)	
	Can still provide evidence on association; can show correlation/relationship	

 we wish that we as researchers can do an experiment all the time -> might not be ethical (people might not respond well, governing their lifestyle choices)

D. Generalisability of Studies

Even if an experiment is:

- well-designed
- · no ethical issues
- · has double-blinding and random assignment,

We still might not be able to generalize the results to the entire population / everyone (recall generalisability has $\frac{3 \text{ other criteria}}{3 \text{ other criteria}}$ and a total of 4 criterion) \implies still have to consider the other factors.

E. Additional Notes (may not be tested)

• Research conclusions / goals may be broadly categorized into three categories - descriptive, causal or predictive

def: An inference is using what is observed to learn more about what is not observed.

1. Descriptive Inference

- summarize and visualize data (to better understanding a phenomenon)
 - using observed facts
- · systematic description of a data set

Example Problem /Research Question: How well do students perform across countries?

2. Causal Inference

- quantifies the effect of one variable on another variable
 - goal: understand how one variable affects another (independent variable affecting depending variable)

Example: What is the effect of public schools on reading and math scores on the PISA test?

3. Predictive Inference

- forecast data points outside of the population sample
 - use of observe facts to create the forcase

Example: What will the distribution of education look like in India in 10 years?