

# **GENERAL ONTOLOGIES**

# Course in Ontologies and the Semantic Web in the Master in Artificial Intelligence at UPM

Invited teacher: Mariano Fernández López

Presentation based on Mariano Fernández-López, Asunción Gómez-Pérez & Mari Carmen Suárez-Figueroa's work

# PRESENTATION OF GENERAL ONTOLOGIES. OUTLINE

- 1. Bibliography
- 2. The notion of general ontology
- 3. Some important types of general ontologies
- 4. The reuse of general ontologies

# **BIBLIOGRAPHY (I)**

- 1. <u>Bibliography</u>
- 2. The notion of general ontology
- 3. Some important types of general ontologies
- 4. The reuse of general ontologies

## **BIBLIOGRAPHY (II)**

#### **OVERVIEW ON GENERAL ONTOLOGIES**



Gómez-Pérez A, Fernández-López M, Corcho O (2003) Ontological Engineering. Springer Verlag, London (section 2.2)

#### TIME ONTOLOGIES



Hayes PJ (1995) A Catalog of Temporal Theories. Technical Report UIUC-BI-AI-96-01 at the Beckman Institute and Departments of Philosophy and Computer Science University of Illinois. http://www.ihmc.us/users/phayes/docs/timeCatalog.pdf



Hobbs JR, Feng P (eds) (2006) Time Ontologies in OWL. W3C Working Draft 2. http://www.w3.org/TR/owl-time/

#### **MEREOLOGY AND TOPOLOGY**



Varzi A (2007) Spatial Reasoning and Ontology: Parts, Wholes, and Locations. In Aiello M, Pratt-Hartmann I, van Benthem J (eds) Springer-Verlag, pp 945-1038 (It also includes space modeling)



Varzi A (2003) Mereology. In Zalta EN, Nodelman U, Allen C (eds) Stanford Encyclopedia of Philosophy, Stanford: CSLI (on line publication) (http://plato.stanford.edu/entries/mereology/) (last access: 19th January 2010)



Rector A, Welty C (eds), Noy N, Wallace E (contributors) (2005) Simple part-whole relations in OWL Ontologies. W3C Editors Draft (http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/)

# **BIBLIOGRAPHY (III)**

#### **HOW TO REUSE GENERAL ONTOLOGIES**



•Fernández-López M, Gómez-Pérez A, Suárez-Figueroa MC (2013) *Methodological guidelines* for reusing general ontologies. Data & Knowledge Engineering 86:242-275

## THE NOTION OF GENERAL ONTOLOGY

- 1. Bibliography
- 2. The notion of general ontology
- 3. Some important types of general ontologies
- 4. The reuse of general ontologies

### WHAT IS A GENERAL ONTOLOGY?

A common or general ontology specifies the conceptualization of a generic topic such as time, space, and mereology, and represents knowledge reusable in different domains.



Mizoguchi R, Vanwelkenhuysen J, Ikeda M (1995) *Task Ontology for reuse of problem solving knowledge*. In: Mars N (ed) Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing (KBKS'95). University of Twente, Enschede, The Netherlands. IOS Press, Amsterdam, The Netherlands, pp 46–57



van Heijst G, Schreiber ATh, Wielinga BJ (1997) *Using explicit ontologies in KBS development*. International Journal of Human-Computer Studies 45:183–292

### A CASE OF GENERAL ONTOLOGIES: MEREOLOGIES

A mereology is a formal theory that axiomatizes the relation is PartOf.



Borst WN (1997) *Construction of Engineering Ontologies*. Centre for Telematica and Information Technology, University of Tweenty. Enschede, The Netherlands



Varzi A (2003) Mereology. In Zalta EN, Schneider L (2004) How to Build a Foundational Ontology. The Object-Centered High-level Reference Ontology OCHRE. Saarland University forthcoming publication.

(http://www.ifomis.unisaarland.de/Research/Publications/forthcoming/ki2003epaper.pdf)



http://i.ytimg.com/vi/6o7dmM3YNN8/hqdefault.jpg

Lets note that the part of relation links objects in the mechanical domain (the spark plug is part of the motor), and also in the domain of cultural activities (the interpretation of Radetzsky March is part of the New Year Concert).

# SOME IMPORTANT TYPES OF GENERAL ONTOLOGIES

- 1. Bibliography
- 2. The notion of general ontology
- 3. Some important types of general ontologies
  - a. Mereologies
  - b. Time ontologies
- 4. The reuse of general ontologies

### **MEREOLOGIES**



## **MINIMAL MEREOLOGY**

#### **EXAMPLE**

Minimal Mereology (MM) Weak supplementation principle

Theory M

Part of is:

- Reflexive
- Antisymmetric
- Transitive



http://europa.eu/abc/maps/images/europe.gif

## MINIMAL MEREOLOGY. REFLEXIVITY

**Reflexivity**. Every object of the universe of discourse is a part of itself.





http://www.map-of-europe.us/europe-relief-map.jpg

## MINIMAL MEREOLOGY. ANTISYMMETRY

**Antisymmetry**. If an object *x* is a part of *y*, and *y* is a part of *x*, then *x* and *y* are the same object.



## MINIMAL MEREOLOGY. TRANSITIVITY



## MINIMAL MEREOLOGY. PROPER PART

A **proper part** is a part that is other than the individual itself.





## MINIMAL MEREOLOGY. DIRECT PART

X is **direct part** of y if and only if x is proper part of y and there is no part between x and y.

isDirectPartOf isDirectPartOf

Canary Islands

Spain

EU

isPartOf (not direct part)



http://europa.eu/abc/maps/images/europe.gif

## MINIMAL MEREOLOGY. OVERLAPS

The relation **overlaps** is defined as a sharing part. That is, *x* and *y* overlap if and only if there is a *z* such us *z* is part of *x* and part of *y*.

#### isDirectPartOf isDirectPartOf





http://europa.eu/abc/maps/images/europe.gif

## MINIMAL MEREOLOGY. IS DISJOINT WITH

The **disjoint** relation is the logical negation of overlaps.





# **MINIMAL MEREOLOGY (VII)**

**Weak supplementation principle**. Every object *x* with a proper part *y* has another part *z* that is disjoint from *y*.





## **KACTUS MEREOLOGY**



## **TIME ONTOLOGIES**

- 1. Bibliography
- 2. The notion of general ontology
- 3. Some important types of general ontologies
  - a. Mereologies
  - b. Time ontologies
- 4. The reuse of general ontologies

# COMMON NOTIONS: TIME POINTS AND TIME INTERVALS

**Time point**. As a first intuitive approximation, we can see time points as points in the line time.

Example of representations of time points



**Granularity** of days: the Valdemoro Music Band concert at Palacio Real was celebrated the 22<sup>nd</sup> of June of 2013

**Granularity** of minutes: the Valdemoro Music Band concert was celebrated the 22<sup>nd</sup> of June of 2013 at 19:30

**Time interval**. Also as a first intuitive approximation, we can see a time interval as the time between two time points.



## **TIME INTERVAL ALGEBRA**



## **COMMON NOTIONS: TIME ZONES**

**Time zones**. The time in different places of the world.

http://www.tagoror.com/enciclopedia/es/media/4/4b/timezones.png



The axiomatization of time zones is complex. Thus, for example, the Northern and Southern hemispheres perform Daylight/Summer Time adjustments during opposing times during the year (corresponding to seasonal differences in the two hemispheres)



Phillips A, Sasaki F, Davis M, Dürst M (2005) *Working with Time Zones*. W3C Working Group Note (http://www.w3.org/TR/2005/NOTE-timezone-20051013/)

## TIME MODELING. OPTIONAL EXTENSIONS (I)

**Non convex intervals**. This notion is borrowed from geometry:



http://upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Non Convex set.svg/329px-Non Convex set.svg.png

**Non convex intervals**. There are points between the left and the right points that do not belong to the interval:



Non convex intervals allow representing periodic intervals with gaps between them (e.g. "every Wednesday").

Wednesday the 29<sup>th</sup> of September

Wednesday the 6<sup>th</sup> of October

Wednesday the 13<sup>rd</sup> of October

Wednesday the 20<sup>th</sup> of October

# TIME MODELING. OPTIONAL EXTENSIONS (II)

**Open intervals**. Sometimes, the interval end points might be or not included in the interval. For example, [1985, 1986) is an interval left closed and right open.



**Distinction of proper intervals**. A proper interval is that whose extremes are different is called proper. Thus, for example, [1985, 1986] is a proper interval, however, [1985, 1985] is not. Sometimes, the interval end points might be or not included in the interval. For example, [1985, 1986) is an interval left closed and right open.

Examples of proper intervals



Examples of **non** proper interval



# TIME MODELING NOTIONS. OPTIONAL EXTENSIONS (III)

**Total ordering** means that, for every pair of temporal points  $t_1$  and  $t_2$ , necessarily  $t_1 < t_2$  or  $t_2 < t_1$ .

This feature eliminates models of time with branching futures and other conflations of time and possibility or limited knowledge.



Modelling of infinite. An infinite interval is that which is not limited in the past or in the future.



# TIME MODELING. OPTIONAL EXTENSIONS (IV)

**Density**. which is used to represent that between any two distinct points there is a third distinct point.



If we assume that between the second s and the second s + 1 there is no another second, and the time is viewed as an ordered set of seconds, then density cannot be assumed.

**Isomorphism to the real numbers**. The set of real numbers is very often the model of the time theory.



http://dic.academic.ru/pictures/wiki/files/54/689px-real\_number\_line.svg.png

## TIME OWL: EXAMPLE OF GENERAL ONTOLOGY



## THE REUSE OF GENERAL ONTOLOGIES

- 1. Bibliography
- 2. The notion of general ontology
- 3. The reuse of general ontologies
  - a. Why to reuse them?
  - b. How to reuse them?

## WHY TO REUSE GENERAL ONTOLOGIES?

- 1. Bibliography
- 2. The notion of general ontology
- 3. The reuse of general ontologies
  - a. Why to reuse them?
  - b. How to reuse them?

## WHY TO REUSE GENERAL ONTOLOGIES?

Let's suppose now that we have to develop an ontology about pharmaceutical products in which we directly define an object property as 'isPartOf'.

In this case, to answer the CQ 'which medicament contains iron?', a Java program similar to this would be necessary

```
// Java program JP1
  public static List<Individual> SearchForFeature(OntModel m, Individual initial,
ObjectProperty property, OntClass concept)
          List<Individual> openL = new ArrayList();
          List<Individual> wholesL = new ArrayList();
          List<Individual> lIndividuals = new ArrayList();
          Iterator itc = concept.listInstances();
          while(itc.hasNext()) lIndividuals.add((Individual) itc.next());
          openL.add(initial);
          while (!openL.isEmpty())
              Individual q = (Individual) openL.get(0);
              openL.remove(0);
              if (|Individuals.contains(g)) wholesL.add(g);
              Iterator it = q.listPropertyValues( property );
              while(it.hasNext())
  openL.add(((OntResource) it.next()).asIndividual());
          return wholesL;
```

### WHY TO REUSE GENERAL ONTOLOGIES?

However, if we are aware of the formal properties (e.g., transitivity, antisymmetry, etc.) of the relationship isPartOf and we include such formal notions in the ontology (e.g., transitivity), then the aforementioned CQ could be solved with this SPARQL query:

# W3C MEREOLOGY USE CASES: INVENTORY OF PIECES IN A FACTORY

A parts inventory for the devices made in a factory in which we want to be able to find the "explosion" of parts required (i.e. for each part we can see the sub-parts).





Rector A, Welty C (eds), Noy N, Wallace E (contributors) (2005) *Simple part-whole relations in OWL Ontologies* . W3C Editors Draft (http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/)

# W3C MEREOLOGY USE CASES: FAULT FINDING SYSTEM

A fault finding system for a device in which we want to progressively narrow down the functional region of the fault.





Rector A, Welty C (eds), Noy N, Wallace E (contributors) (2005) *Simple part-whole relations in OWL Ontologies*. W3C Editors Draft (http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/)

### W3C MEREOLOGY USE CASES: ANATOMY MODEL

An anatomy representation such as the Digital Anatomist Foundational Model of Anatomy (http://www.bioontology.org/)





Rector A, Welty C (eds), Noy N, Wallace E (contributors) (2005) *Simple part-whole relations in OWL Ontologies*. W3C Editors Draft (http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/)

# W3C MEREOLOGY USE CASES: DOCUMENT RETRIEVAL SYSTEM

A document retrieval system, in which documents are divided into chapters, sections, paragraphs etc.





Rector A, Welty C (eds), Noy N, Wallace E (contributors) (2005) *Simple part-whole relations in OWL Ontologies*. W3C Editors Draft (http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/)

#### **W3C TIME USE CASES: WEB SERVICES**

Web services (e.g. air ticketing): a time ontology allow representing concepts like **CreditCardExpirationDate** and making inferences with them.



http://www.memory-srl.com.ar/img/como/3.jpg



Hobbs JR, Feng P (eds) (2006) *Time Ontologies in OWL*. W3C Working Draft 2. http://www.w3.org/TR/owl-time/

#### **W3C TIME USE CASES: SCHEDULING**

Suppose someone has a telecon scheduled for 6:00pm **EST** (Eastern Standard Time) on November 5, 2006. You would like to make an appointment with him for 2:00pm **PST** (Pacific Standard Time) on the same day, and expect the meeting to last 45 minutes. Will there be an overlap?





Hobbs JR, Feng P (eds) (2006) *Time Ontologies in OWL*. W3C Working Draft 2. http://www.w3.org/TR/owl-time/

### **HOW TO REUSE GENERAL ONTOLOGIES**

- 1. Bibliography
- 2. The notion of general ontology
- 3. The reuse of general ontologies
  - a. Why to reuse them?
  - b. How to reuse them?
  - c. Conclusions
- 4. The work to be done by the student?





Choosen a general ontology



# CONDUCT A COMPARATIVE STUDY OF REUSABLE GENERAL ONTOLOGIES



ArgoUML has been used to draw the UML diagrams of this presentation

# IDENTIFY THE TYPE OF GENERAL ONTOLOGY TO BE REUSED



ArgoUML has been used to draw the UML diagrams of this presentation

### **HEURISTIC 1. MEREOLOGY REUSE I**

**Heuristic 1 (mereology reuse I)**. We should *reuse an implemented mereology* if the conjunction of the following conditions is satisfied:  $(CM_1)$  the CQ refers to a relation R that establishes an order; and  $(CM_2)$  R fulfils the weak supplementation principle.



Ontology 3 (2008) 91–110.

# **HEURISTIC 2. MEREOLOGY REUSE II**

**Heuristic 2 (mereology reuse II)**. If the CQ refers to a relation S that is a subrelation of an R that meets conditions  $CM_1$  and  $CM_2$ , then an implemented mereology should be reused.



#### **HEURISTIC 3. TIME MODELING REUSE**

**Heuristic 3 (time modelling reuse)**. We should *reuse a time ontology* if some of the following words appear in the CO:

- Nouns: 'day', 'minute', 'weekend', 'midnight', 'millennium', 'era', 'semester', 'summer', [the] 'future', [the] 'past', 'month'.
- Proper names: 'Monday', 'January', 'New Year's Eve', 'Washington's Birthday'.
- Specialized time patterns: 8.00, 12/2/00, 1994, 1960s.
- Adverb: 'currently', 'hourly', 'daily', 'monthly'.
- Noun/adverb of time: 'today', 'yesterday', 'now'.
- Prepositions of time: 'on', 'in', 'at', 'from', 'to', 'before', 'after', 'during'.
- Conjunctions of time: 'before', 'after', 'while', 'when'.



L. Ferro, Instruction manual for the annotation of temporal expressions, Tech. rep., The MITRE Corporation (2001). ftp://jaguar.ncsl.nist.gov/ace/phase2/docs/mtrinstructionmanual v1 32.pdf

# **HEURISTIC 4. MEREOLOGY III**

**Heuristic 4 (mereology reuse III)**. If the CQ refers to a time relation (using the words 'in', 'during', etc.), then an implemented mereology should be reused.



# **IDENTIFY THE COMPARATIVE ATTRIBUTES**



ArgoUML has been used to draw the UML diagrams of this presentation

## **SEARCH FOR GENERAL ONTOLOGIES**



ArgoUML has been used to draw the UML diagrams of this presentation

### **SEARCHING FOR ONTOLOGIES**

#### We can use:



•search engines for ontologies (e.g. Swoogle and Watson);



- •repositories (e.g. Protégé ontology library and the Open Biological and Biomedical Ontologies );
- •known ontologies (for instance, mereology terms can be reused from Dolce-Lite, SUMO-OWL, etc.).

| Identified ontologies | Project or institution                     | General theory    |
|-----------------------|--------------------------------------------|-------------------|
| Single part whole     | W3C                                        | Mereology         |
| SUMO-OWL              | IEEE Standard Upper Ontology working group | Mereology<br>Time |
| DOLCE-Lite            | Italian Research Council (CNR)             | Mereology<br>Time |
| Oswebsite             | OS Open data                               | Mereology         |
| ОВО                   | Open Biological and Biomedical Ontologies  | Mereology         |
| OWL-Time              | W3C                                        | Time              |
| AKT-Time              | Advanced Knowledge Technologies (AKT)      | Time              |

## **BUILD A COMPARATIVE TABLE**



ArgoUML has been used to draw the UML diagrams of this presentation

# **BUILD A COMPARATIVE TABLE**

| Functional features | A.1) Reflexivity | A.2) Antisymmetry | A.3) Transitivity | D.1) Proper part | A.4) Weak supplementation |
|---------------------|------------------|-------------------|-------------------|------------------|---------------------------|
| Single part whole   | 0                | 0                 | Χ                 | 0                | 0                         |
| SUMO-OWL            | 0                | 0                 | 0                 | X                | 0                         |
| Dolce-Lite          | 0                | 0                 | Χ                 | Χ                | 0                         |
| Oswebsite           | 0                | 0                 | Χ                 | 0                | 0                         |
| ОВО                 | 0                | 0                 | Χ                 | X                | 0                         |

| Functional features | Time points | Time intervals | Absolute time | Relations between temporal entities | Modeling of conv | Modeling of |
|---------------------|-------------|----------------|---------------|-------------------------------------|------------------|-------------|
| OWL-Time            | Х           | Χ              | Χ             | X                                   | Х                | 0           |
| SUMO-OWL            | Х           | Х              | 0             | X                                   | 0                | 0           |
| AKT-Time            | Х           | X              | Х             | 0                                   | Х                | 0           |





# MAKE A DECISION ON WHICH GENERAL ONTOLOGY TO REUSE



## REFORMULATE THE CQs AND ADD LINKING AXIOMS



#### REFORMULATE THE CQs AND ADD LINKING AXIOMS

**Heuristic 5 (overlap)**. If we want to know if two objects have common parts, then we should reformulate the CQ to include the term *overlap*.

**Heuristic 6 (underlap)**. If we want to know if two objects have common wholes, then we should reformulate the CQ to include the term *underlap*.

**Heuristic 7 (proper part)**. If we want to know the parts of an object not including the object itself, then we should reformulate the CQ to include the term *proper part of*.

**Heuristic 8 (direct part)**. If we want to know the first level of decomposition of an object, then we should reformulate the CQ to include the term *is direct part of* 

**Heuristic 9 (part of)**. If we want to know the parts of an object, including the object itself, then we should reformulate the CQ to include the term *is part of*. A typical case is that in which the mereological relation appears in a composition of relations.

**Heuristic 10 (disjoint)**. If we want to know which parts of object  $o_1$  are not in object  $o_2$ , then we should reformulate the CQ to include the term *are disjoint*.

**Heuristic 11 (subrelations of** *part\_of***)**. If we applied Heuristic 2, then we should introduce a linking axiom establishing that *S* is a subrelation of *part\_of*.

#### **EXAMPLES**



#### **EXAMPLE OF UNDERLAP**



## **EXAMPLE OF UNDERLAP**

http://www.genome.jp/kegg/pathway/map/map00340.html

#### HISTIDINE METABOLISM



#### REFORMULATE THE CQs AND ADD LINKING AXIOMS

**Heuristic 12 (time points)**. If we are not interested in the endpoints of the temporal entity returned by the CQ, then we should introduce a linking axiom in the general ontology to relate a domain ontology concept to time points.

When was Regulaten ® (a particular drug) registered?

was registered

TimePoint

**Heuristic 13 (time intervals)**. If we are interested in the endpoints of the temporal entity returned by the CQ, then we should introduce a linking axiom in the general ontology to relate a domain ontology concept to time intervals.

When did Regulaten ® go on sale?

Drug

on sale during
TimeInterval

# IDENTIFY THE ATTRIBUTES OF THE GENERAL ONTOLOGY TO BE REUSED



# IDENTIFY THE ATTRIBUTES OF THE GENERAL ONTOLOGY TO BE REUSED

**Heuristic 14 (axioms always to be reused)**. If they can be implemented, we recommend reusing both the reflexivity and the antisymmetry of *part\_of*, and the weak supplementation principle.

This heuristic has the purpose of ensuring the right meaning of part of and proper part of.

**Heuristic 15 (transitivity)**. Suppose that the ontology should model X that has parts  $X_1, X_2, ..., X_n$ , and some of these parts, e.g.,  $X_i$  has parts  $X_{i1}, X_{i2}, ..., X_{im}$ , that is, X has several levels of parts. Besides, we want to know all the levels when we ask, which are the parts of X? In such a case, the transitivity axiom should be reused.

**Heuristic 16 (reuse of definitions)**. The new terms appearing in the CQs after the reformulation proposed in Use Case 2.1 should be included in the general ontology.

**Heuristic 17**. Heuristic 16 is also valid for time.

**Heuristic 18 (absolute time)**. If the CQ can be expressed as *When does X happen?*, then the ontology should model absolute time (by means of time units).

**Heuristic 19 (relations between time entities)**. If the CQ can be expressed such as *Does X happen before Y?*, *Does X happen at the same time as Y?* among others, where *X* and *Y* are time entities or events, then the ontology should model relations between time entities.

**Heuristic 20 (relative time)**. If the CQ can be expressed according to the pattern of Heuristic 19, where, X and Y are events, then the ontology should model relative time.

#### THE INTEREST OF HEURISTIC 14

**Heuristic 14 (axioms always to be reused)**. If they can be implemented, we recommend reusing both the reflexivity and the antisymmetry of *part\_of*, and the weak supplementation principle.

This heuristic has the purpose of ensuring the right meaning of part of and proper part of.

**Heuristic 15 (transitivity)**. Suppose that the ontology should model X that has parts  $X_1, X_2, ..., X_n$ , and some of these parts, e.g.,  $X_i$  has parts  $X_{i1}, X_{i2}, ..., X_{im}$ , that is, X has several levels of parts. Besides, we want to know all the levels when we ask, which are the parts of X? In such a case, the transitivity axiom should be reused.

**Heuristic 16 (reuse of definitions)**. The new terms appearing in the CQs after the reformulation proposed in Use Case 2.1 should be included in the general ontology.

Heuristic 17. Heuristic 16 is also valid for time.

**Heuristic 18 (absolute time)**. If the CQ can be expressed as *When does X happen?*, then the ontology should model absolute time (by means of time units).

**Heuristic 19 (relations between time entities)**. If the CQ can be expressed such as *Does X happen before Y?*, *Does X happen at the same time as Y?* among others, where *X* and *Y* are time entities or events, then the ontology should model relations between time entities.

**Heuristic 20 (relative time)**. If the CQ can be expressed according to the pattern of Heuristic 19, where, *X* and *Y* are events, then the ontology should model relative time.

### THE INTEREST OF HEURISTIC 14

This transformation works because the relation part\_of is reflexive. If the data that we are is that PI headquarters are located in Spain, we need the reflexivity

Are Pharmacia Iberia ® headquarters located in Spain?



Are Pharmacia Iberia ® headquarters located in some part of Spain?

# THE INTEREST OF HEURISTIC 15 (TRANSITIVITY)

**Heuristic 14 (axioms always to be reused)**. If they can be implemented, we recommend reusing both the reflexivity and the antisymmetry of *part of*, and the weak supplementation principle.

This heuristic has the purpose of ensuring the right meaning of part of and proper part of.

**Heuristic 15 (transitivity)**. Suppose that the ontology should model X that has parts  $X_1, X_2, ..., X_n$ , and some of these parts, e.g.,  $X_i$  has parts  $X_{i1}, X_{i2}, ..., X_{im}$ , that is, X has several levels of parts. Besides, we want to know all the levels when we ask, which are the parts of X? In such a case, the transitivity axiom should be reused.

**Heuristic 16 (reuse of definitions)**. The new terms appearing in the CQs after the reformulation proposed in Use Case 2.1 should be included in the general ontology.

**Heuristic 17**. Heuristic 16 is also valid for time.

**Heuristic 18 (absolute time)**. If the CQ can be expressed as *When does X happen?*, then the ontology should model absolute time (by means of time units).

**Heuristic 19 (relations between time entities)**. If the CQ can be expressed such as *Does X happen before Y?*, *Does X happen at the same time as Y?* among others, where *X* and *Y* are time entities or events, then the ontology should model relations between time entities.

**Heuristic 20 (relative time)**. If the CQ can be expressed according to the pattern of Heuristic 19, where, *X* and *Y* are events, then the ontology should model relative time.

# THE INTEREST OF HEURISTIC 15 (TRANSITIVITY)

Does Mol Iron contain iron?



# DETERMINE THE MOST APPROPRIATE GENERAL ONTOLOGY



### FEATURES TO TAKE INTO ACCOUNT

#### Reuse Cost.

- Reuse Financial Cost.
- Required Reuse Time.

#### Understandability Effort.

- *Documentation quality.*
- External knowledge source availability.
- *Code clarity.*

#### Integration Effort.

- Knowledge extraction adequacy.
- Naming conventions adequacy.
- *Implementation language adequacy.*
- Knowledge clash.
- Adaptation to the reasoner.
- Need for bridge terms.

#### Reliability.

- Design criteria.
- Test availability.
- Former evaluation.
- Theoretical support.
- Development team reputation.
- Fitness for purpose.
- Practical support.

### **EXAMPLE. INTEGRATION EFFORT LATTICE**

| Integration effort | knowledge extraction adequa | cy naming conventions adequacy | implementation language adequacy |
|--------------------|-----------------------------|--------------------------------|----------------------------------|
| Single part whole  | [high]                      | [low]                          | [high]                           |
| SUMO-OWL           | [high]                      | [high]                         | [high]                           |
| Dolce-Lite         | [high]                      | [low]                          | [high]                           |
| Oswebsite          | [high]                      | [high]                         | [high]                           |
| OBO                | [high]                      | [low]                          | [high]                           |
|                    |                             |                                |                                  |

- ¥I={naming convs. adq.>=low}
- ¥E={Dolce-Lite, OBO, Oswebsite, SUMO-OWL, Single part whole}

1

- ¥I={naming convs. adq.>=high, naming convs. adq.>=low}
- ¥E={Oswebsite, SUMO-OWL}





Choosen a general ontology

Assembled whole ontology

# **ASSEMBLE THE WHOLE ONTOLOGY**



## **CUSTOMIZE GENERAL ONTOLOGY**



### **CUSTOMIZE GENERAL ONTOLOGY**



## INTEGRATE THE GENERAL ONTOLOGY



## **EVALUATE THE GENERAL ONTOLOGY**



## **STUDY CASE**

| CQ id           | Informal CQ                                                     | Sample answer                                                                                                                    |
|-----------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| $CQ_1$          | Which drugs contain paracetamol?                                | Algidol ® Apiretal ® Bisolgrip ® Cortafriol ® Dolgesic ® Dolostop ® Efferalgan ® Frenadol ® Gelocatil ® Pharmagrip ® Termalgin ® |
| $CQ_2$          | What is the composition of Frenadol®?                           | Caffeine Chlorpheniramine citrate Dextromethorphan Paracetamol                                                                   |
| $CQ_3$          | What is the main active ingredient of Frenadol®?                | Paracetamol                                                                                                                      |
| CQ <sub>4</sub> | With which substances does Frenadol® interact?                  | Ethyl alcohol<br>Isoniazid<br>Propranolol<br>Rifampicin                                                                          |
| CQ <sub>5</sub> | Which Frenadol® manufacturing lot expires before 11 May 2012?   | C63<br>C125<br>C243                                                                                                              |
| $CQ_6$          | Which Frenadol® manufacturing lot expires before 30 April 2010? | C63                                                                                                                              |
| CQ <sub>7</sub> | Which Frenadol® manufacturing lot expires in 2010?              | C63<br>C125                                                                                                                      |
| $CQ_8$          | Which Frenadol® manufacturing lot expires after May 2012?       | C243                                                                                                                             |



## STUDY CASE. CONDUCT A COMPARATIVE STUDY OF REUSABLE GENERAL ONTOLOGIES



ArgoUML has been used to draw the UML diagrams of this presentation

# STUDY CASE. IDENTIFY THE TYPE OF GENERAL ONTOLOGY TO BE REUSED



ArgoUML has been used to draw the UML diagrams of this presentation

## **STUDY CASE**

| CQ identifier                                                                                             | Application of heuristics                                                                                                                                               | Type of general ontology for reuse |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| CQ <sub>1</sub> (Which drugs contain paracetamol?) and CQ <sub>2</sub> (Which drugs contain paracetamol?) | Heuristic 1. This competency question is asking for structural parts.                                                                                                   | Mereology                          |  |
| CQ <sub>3</sub> (What is the main active ingredient of Frenadol®?)                                        | Heuristic 2. Every active ingredient of a drug is a structural part of the drug. Therefore, main_active_ingredient_of is a sub-relation of part_of.                     | Mereology                          |  |
| CQ <sub>4</sub> (With which substances does Frenadol® interact?)                                          | Heuristic 1. To find out whether a drug interacts with other substances, it is necessary to know the interaction of each of its structural parts with other substances. | Mereology                          |  |
| CQ <sub>5</sub> , CQ <sub>6</sub> , CQ <sub>7</sub> and CQ <sub>8</sub>                                   | Heuristic 3.There are specialized time patterns: 11 May 2012, 30 April 2010  There is a preposition of time: before.                                                    | Time modelling                     |  |
|                                                                                                           |                                                                                                                                                                         |                                    |  |

# STUDY CASE. IDENTIFY THE COMPARATIVE ATTRIBUTES



ArgoUML has been used to draw the UML diagrams of this presentation

### STUDY CASE. SEARCH FOR GENERAL ONTOLOGIES



ArgoUML has been used to draw the UML diagrams of this presentation

### STUDY CASE. SEARCHING FOR ONTOLOGIES

#### We can use:

vve can use:
•general purpose search engines (e.g. Google );

GOOGLE



•search engines for ontologies (e.g. Swoogle and Watson);



- •repositories (e.g. Protégé ontology library and the Open Biological and Biomedical Ontologies );
- •known ontologies (for instance, mereology terms can be reused from Dolce-Lite, SUMO-OWL, etc.).

| Identified ontologies | Project or institution                     | General theory    |
|-----------------------|--------------------------------------------|-------------------|
| Single part whole     | W3C                                        | Mereology         |
| SUMO-OWL              | IEEE Standard Upper Ontology working group | Mereology<br>Time |
| DOLCE-Lite            | Italian Research Council (CNR)             | Mereology<br>Time |
| Oswebsite             | OS Open data                               | Mereology         |
| ОВО                   | Open Biological and Biomedical Ontologies  | Mereology         |
| OWL-Time              | W3C                                        | Time              |
| AKT-Time              | Advanced Knowledge Technologies (AKT)      | Time              |

## STUDY CASE. BUILD A COMPARATIVE TABLE



ArgoUML has been used to draw the UML diagrams of this presentation

## STUDY CASE. BUILD A COMPARATIVE TABLE

| Functional features | A.1) Reflexivity | A.2) Antisymmetry | A.3) Transitivity | D.1) Proper part | A.4) Weak supplementation |
|---------------------|------------------|-------------------|-------------------|------------------|---------------------------|
| Single part whole   | 0                | 0                 | Χ                 | 0                | 0                         |
| SUMO-OWL            | 0                | 0                 | 0                 | Χ                | 0                         |
| Dolce-Lite          | 0                | 0                 | Χ                 | Х                | 0                         |
| Oswebsite           | 0                | 0                 | Χ                 | 0                | 0                         |
| OBO                 | 0                | 0                 | Χ                 | Х                | 0                         |

| Functional features | Time points | Time intervals | Absolute time | Relations between temporal entities | Modeling of conv | Modeling of |
|---------------------|-------------|----------------|---------------|-------------------------------------|------------------|-------------|
| OWL-Time            | X           | X              | X             | X                                   | Х                | 0           |
| SUMO-OWL            | X           | Х              | 0             | X                                   | 0                | 0           |
| AKT-Time            | Х           | Х              | Х             | 0                                   | Х                | 0           |





# STUDY CASE. MAKE A DECISION ON WHICH GENERAL ONTOLOGY TO REUSE



# STUDY CASE. REFORMULATE THE CQs AND ADD LINKING AXIOMS



## REFORMULATE THE CQs AND ADD LINKING AXIOMS

| Heuristic                                                                                                                               | Competency question                                                                                                                                                                 | Action                                                    | Result of the action                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Heuristic 7. We want to know the parts of an object not including the actual object.                                                    | ۷,                                                                                                                                                                                  | Reformulate the CQ to include the term is proper part of. | Which are the proper parts of Frenadol®?                                                       |
| Heuristic 9. We want to know the parts of an object, including the actual object.                                                       | CQ <sub>1</sub> ) Which drugs contain paracetamol?  (The actual substance is included because the user could ask for a drug directly)  CQ <sub>4</sub> ) With which substances does | Reformulate the CQ to include the term is part of.        | Which drugs is paracetamol part of?  With which substances do the parts of Frenadol® interact? |
| Heuristic 11. The CQ refers to a relation S that is a sub-relation of R that satisfies conditions CM <sub>1</sub> and CM <sub>2</sub> . | Frenadol® interact?  CQ <sub>3</sub> ) Which is the main active ingredient of Frenadol®?                                                                                            | that S is a                                               |                                                                                                |
| Heuristic 12. We want to know which are the endpoints of the temporal entity returned by the CQ                                         | CQ <sub>5</sub> ) Which drug manufacturing lot expires before 11 May 2012?                                                                                                          | Add a linking axiom to time points.                       | Add the following axiom: "The range of has expiration date in the concept drug is time point." |

# STUDY CASE. IDENTIFY THE ATTRIBUTES OF THE GENERAL ONTOLOGY TO BE REUSED



# STUDY CASE. IDENTIFY THE ATTRIBUTES OF THE GENERAL ONTOLOGY TO BE REUSED

| Axioms and definitions    | Conditions established by heuristics                                                                                                                                                                                                                    | Are conditions met? |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| A.1) Reflexivity          | Heuristic 14 condition: implementation is possible.                                                                                                                                                                                                     | Yes                 |
| A.2) Antisymmetry         | Heuristic 14 condition: implementation is possible.                                                                                                                                                                                                     | Yes                 |
| A.3) Transitivity         | Heuristic 15 condition: $X$ has parts $X_1$ , $X_2$ ,, $X_n$ , , and some $X_i$ has parts $X_{i1}$ , $X_{i2}$ ,, $X_{im}$ , that is, $X$ has several levels of parts. Besides, we want to know all the levels when we ask, Which are the parts of $X$ ? | Yes                 |
| D.1) Proper part          | Heuristic 16 condition for <i>proper_part</i> is met.                                                                                                                                                                                                   | Yes                 |
| D.2) Direct part          | Heuristic 16 condition for <i>direct_part</i> is met.                                                                                                                                                                                                   | No                  |
| D.3) Overlap              | Heuristic 16 condition for <i>overlap</i> is met.                                                                                                                                                                                                       | No                  |
| D.4) Underlap             | Heuristic 16 condition for <i>underlap</i> is met.                                                                                                                                                                                                      | No                  |
| D.5) Disjoint             | Heuristic 16 condition for disjoint is met.                                                                                                                                                                                                             | No                  |
| A.4) Weak supplementation | Heuristic 14 condition: implementation is possible.                                                                                                                                                                                                     | Yes                 |

# STUDY CASE. DETERMINE THE MOST APPROPRIATE GENERAL ONTOLOGY



### STUDY CASE. FEATURES TO TAKE INTO ACCOUNT

#### Reuse Cost.

- Reuse Financial Cost.
- Required Reuse Time.

#### Understandability Effort.

- Documentation quality.
- External knowledge source availability.
- *Code clarity.*

#### Integration Effort.

- Knowledge extraction adequacy.
- Naming conventions adequacy.
- *Implementation language adequacy.*
- Knowledge clash.
- Adaptation to the reasoner.
- Need for bridge terms.

#### Reliability.

- Design criteria.
- Test availability.
- Former evaluation.
- Theoretical support.
- Development team reputation.
- Fitness for purpose.
- Practical support.

### STUDY CASE. INTEGRATION EFFORT LATTICE

| Integration effort | knowledge extraction adequacy | naming conventions adequacy | implementation language adequacy |
|--------------------|-------------------------------|-----------------------------|----------------------------------|
| Single part whole  | [high]                        | [low]                       | [high]                           |
| SUMO-OWL           | [high]                        | [high]                      | [high]                           |
| Dolce-Lite         | [high]                        | [low]                       | [high]                           |
| Oswebsite          | [high]                        | [high]                      | [high]                           |
| OBO                | [high]                        | [low]                       | [high]                           |
|                    |                               |                             |                                  |

0)

¥I={naming convs. adq.>=low}

¥E={Dolce-Lite, OBO, Oswebsite, SUMO-OWL, Single part whole}

1

¥I={naming convs. adq.>=high, naming convs. adq.>=low}

¥E={Oswebsite, SUMO-OV/L}

### STUDY CASE. LATTICE OF AXIOMS AND DEFINITIONS



### STUDY CASE. UNDERSTANDABILITY EFFORT LATTICE

(0)

- ¥I={availability ext. knw.>=unknown, quality doc.>=unknown}.
- ¥E={Dolce-Lite, OBO, Oswebsite, SUMO-OWL, Single part whole} -

1

- ¥I={availability ext. knw.>=high, availability ext. knw.>=unknown, quality doc.>=high, quality doc.>=unknown}.
- ¥E={Dolce-Lite, SUMO-OWL, Single part whole}

### STUDY CASE. RELIABILITY LATTICE

```
¥ I={theoretical support >= unknown}
             ¥E={Dolce-Lite, OBO, Oswebsite, SUMO-OWL, Single part whole} -
                            ¥I={purpose reliability >= high, theoretical support >= unknown}
                            ¥E={OBO, Oswebsite}
¥ ={theoretical support >= high, theoretical support >= unknown}
¥E={Dolce-Lite, SUMO-OVVL, Single part whole}
             ¥I={purpose reliability >= high, theoretical support >= high, theoretical support >= unknown}.
            ¥ E={}
```

### MULTI-FCA WITH GALICIA. HOW TO CREATE A SET OF TABLES

To download the tool: <a href="http://www.iro.umontreal.ca/~galicia/">http://www.iro.umontreal.ca/~galicia/</a>



### MULTI-FCA WITH GALICIA. HOW TO GENERATE A LATTICE







Choosen a general ontology

Assembled whole ontology

## STUDY CASE. ASSEMBLE THE WHOLE ONTOLOGY



## STUDY CASE. CUSTOMIZE GENERAL ONTOLOGY



### STUDY CASE. CUSTOMIZE GENERAL ONTOLOGY



## STUDY CASE. INTEGRATE THE GENERAL ONTOLOGY



# STUDY CASE. INTEGRATING THE ONTOLOGY TO BE REUSED



## STUDY CASE. INTEGRATING THE ONTOLOGY TO BE REUSED

Links between terms of the reused ontology and the ontology to be developed should be established.

We have added the axioms identified in task 1.1 (e.g. isMainActiveIngredient is subrelation of isPartOf)



To answer CQ4 (with which substances does Frenadol® interact?) we have added this rule to the ontology:

```
interactsWith(?x, ?y), part(?x, ?z) -> interactsWith(?z, ?y)
```

## STUDY CASE. EVALUATE THE GENERAL ONTOLOGY



## STUDY CASE. CHECKING COMPETENCY QUESTIONS (I)

| Informal CQ                            | Formal CQ                                                                                                       | Example of answer                          |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| What drugs do have paracetamol?        | <pre># CQ1 SELECT ?X WHERE {    ?X rdf:type ub:DrugSubstance .    ub:Paracetamol ub:isProperPartOf ?X . }</pre> | X                                          |
| Which is the composition of Frenadol®? | <pre># CQ2 SELECT ?X WHERE {    ?X ub:isProperPartOf     ub:FrenadolSubstance . }</pre>                         | X  <br> ================================== |

## STUDY CASE. CHECKING COMPETENCY QUESTIONS (II)

| Informal CQ                                       | Formal CQ                                                                             | Example of answer |
|---------------------------------------------------|---------------------------------------------------------------------------------------|-------------------|
| Which is the main active ingredient of Frenadol®? | <pre># CQ3 SELECT ?X WHERE {     ?X ub:isMainActiveIngredientOf</pre>                 |                   |
| With which substances do Frenadol® interacts?     | <pre># CQ4 SELECT ?X WHERE {   ub:FrenadolSubstance ub:interactsWith     ?X . }</pre> |                   |



## **GENERAL ONTOLOGIES**

## Course in Ontologies and the Semantic Web in the Master in Artificial Intelligence at UPM

Invited teacher: Mariano Fernández López

Presentation based on Mariano Fernández-López, Asunción Gómez-Pérez & Mari Carmen Suárez-Figueroa's work