Intrinsic Channel Properties, Scattering Mechanisms, Quantum Transport Properties in Transition Metal Dichalcogenides

by

Kraig Andrews

DISSERTATION

Submitted to the Graduate School of Wayne State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

2008

MAJOR: Physics		
Approved by:		
Advisor		

Table of Contents

	Copyright	vi
	Dedication	vi
	Quotation	vi
	Abstract	vi
	Acknowledgments	vi
	List of Figures	vii
	List of Tables	viii
	List of Symbols	ix
	List of Physical Constants	xi
	Acronyms	xii
	Conversion Factors	xiii
1	Chapter Title	1
	1.1 Section Title	1
R	eferences	2

List of Figures

List of Tables

List of Symbols

Symbol	Description	Unit
A	vector potential	$V \mathrm{s} \mathrm{m}^{-1}$
A	area	${\rm cm}^2$
A^{\star}	Richardson's constant	$\mathrm{As^{-1}K^2}$
B	magnetic field	T
C	capacitance	F
E	electric field	${ m Vm^{-1}}$
E	energy	eV (J)
$E_{ m F}$	Fermi energy	eV
E_g	bandgap energy	eV
$\hat{\mathbf{H}}$	Hamiltonian	eV (joule)
I	current	A
$I_{ m ds}$	drain current	A
L	length	μm
L	channel length	μm
m	mass	kg
m^{\star}	effective mass	kg
n	carrier density	${\rm cm}^{-2}$
n	charge carrier density	${ m Ccm^{-2}}$
$\hat{\mathbf{p}}$	momentum operator	$ m kgms^{-1}$
R	resistance	$k\Omega \mu m (\Omega)$
R_c	contact resistance	$k\Omega\mu m$
R_H	Hall coefficient	$\mathrm{m^3C^{-1}}$
$\hat{\mathbf{s}}$	spin operator	$\hbar \; (\mathrm{J} \mathrm{s})$

T	temperature	K
V	voltage	V
$V_{ m bg}$	backgate voltage	V
$V_{ m ds}$	drain voltage	V
$V_{ m H}$	Hall voltage	V
w	channel width	μm
μ	mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
$\mu_{ m B}$	magnetic moment	${ m eV}{ m T}^{-1}$
μ_e	electron mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
$\mu_{ ext{FE}}$	field-effect mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
$\mu_{ m H}$	Hall mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
μ_p	hole mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
ho	resistivity	$\Omega\mathrm{cm}$
$ ho_{xx}$	longitudinal resistivity	Ω
$ ho_{xy}$	transverse resistivity	Ω
σ	conductivity	μS
σ_{xx}	longitudinal conductivity	μS
σ_{xy}	transverse conductivity	μS
au	scattering time	S
$ au_{ m q}$	quantum scattering time	S
$\Phi_{ m B}$	barrier height	eV
$\Phi_{\mathrm{B}n}$	electron barrier height	eV
$\Phi_{\mathrm{B}p}$	hole barrier height	eV
Φ_M	metal work function	eV
Φ_S	semiconductor work function	eV
χ	electron affinity	eV
χ_S	semiconductor electron affinity	eV
ω_c	cyclotron frequency	Hz

List of Physical Constants

Symbol	Quantity	Value
$k_{ m B}$	Boltzmann's constant	$1.38066 \times 10^{-23}\mathrm{JK^{-1}}$
		$8.61734 \times 10^{-5}\mathrm{eV}\mathrm{K}^{-1}$
ϵ_0	dielectric constant	$8.85418 \times 10^{-12}\mathrm{A}^2\mathrm{s}^4\mathrm{kg}^{-1}\mathrm{m}^{-3}$
e	elementary charge	$1.60218 \times 10^{-19}\mathrm{C}$
${ m eV}$	electron volt	$1.60218 \times 10^{-19}\mathrm{J}$
c	speed of light	$2.99792\times10^8\mathrm{ms^{-1}}$
h	Planck's constant	$6.62607 \times 10^{-34}\mathrm{Js}$
\hbar	reduced Planck's constant	$1.05457 \times 10^{-34}\mathrm{Js}\;(h/2\pi)$
$R_{\mathrm{K-90}}$	von Klitzing constant	25812.80745555Ω
m_e	electron mass	$9.109383 \times 10^{-31} \mathrm{kg}$
$k_{ m B}T$	Thermal energy	$0.02586\mathrm{eV}\ (T=27^{\circ}\mathrm{C})$
		$0.02526\mathrm{eV}\ (T=20^{\circ}\mathrm{C})$
μ_B	Bohr magneton	$9.274009\times 10^{-24}\mathrm{JT^{-1}}$
		$5.788381 \times 10^{-5}\mathrm{eV}\mathrm{T}^{-1}$
		$e\hbar/2m_e$ (atomic units)

Source: CODATA Recommende Values of the Fundamental Physics Constants: 2014, Mohr $et\ al.^1$

Acronyms

SB Schottky barrier

Conversion Factors

Conversion Factors	
1 Å	$=0.1\mathrm{nm}$
	$= 10^{-4} \mu \mathrm{m}$
	$=10^{-8} \mathrm{cm}$
	$= 10^{-10} \mathrm{m}$
$1\mu\mathrm{m}$	$=10\times10^4\mathrm{\AA}$
	$=10^3\mathrm{nm}$
	$= 10^{-4} \text{cm}$
	$= 10^{-6} \mathrm{m}$
1 eV	$= 1.60218 \times 10^{-19} \mathrm{J}$

	Powers of Ten	
10^{24}	yotta	Y
10^{21}	zetta	\mathbf{Z}
10^{18}	exa	\mathbf{E}
10^{15}	peta	Ρ
10^{12}	tera	Τ
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	K
10^{2}	hecto	h
10^{1}	deka	da
10^{-1}	deci	d
10^{-2}	centi	\mathbf{c}
10^{-3}	milli	\mathbf{m}
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a
10^{-21}	zepto	\mathbf{z}
10^{-24}	yocto	у

References

[1] PJ Mohr, DB Newell, and BN Taylor. Codata recommended values of the fundamental constants 2014,(2015). arXiv preprint arXiv:1507.07956, 2015.