In the Claims

- **1.** (currently amended) A method for the preparation of a comb or star copolymer, said method comprising
- a) polymerizing in a first step, twoene or more epoxy group containing monomers to obtain a polyether, wherein at least one monomer is of formula (II)(I)

$$\frac{R_{q}}{R_{p}} \xrightarrow{N \longrightarrow L} 0$$

--wherein L is a linking-group selected from the group consisting of C_1 - C_{18} alkylene, phenylene, C_4 - C_{18} alkylene, C_4 - C_{18} alkylene-phenylene, C_4 - C_{18} alkylene-phenylene-oxy and C_5 - C_{12} cycloalkylene;

R_p and R_q are independently tertiary bound C₄-C₂₈alkyl groups which are unsubstituted or substituted by one or more electron withdrawing groups or by phenyl; or

—— R_p and R_q together form a 5 or 6 membered heterocyclic ring which is substituted at least by 4-G₄-G₄alkyl groups and which may be interrupted by a further nitrogen or oxygen atom;

wherein

 R_1 , R_2 , R_3 and R_4 are independently of each other C_1 - C_4 alkyl; R_5 is hydrogen or C_1 - C_4 alkyl;

 R_{6} is hydrogen and R_{6} is H, OR_{10} , $NR_{10}R_{11}$, $-O-C(O)-R_{10}$ or $NR_{11}-C(O)-R_{10}$;

 R_{10} and R_{11} independently are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkinyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, if R_6 is $NR_{10}R_{11}$, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O atom; or

R₆ and R'₆ together are both hydrogen, a group =O or =N-O-R₂₀ wherein

 R_{20} is H, straight or branched C_1 - C_{18} alkyl, C_3 - C_{18} alkenyl or C_3 - C_{18} alkinyl, which may be unsubstituted or substitued, by one or more OH, C_1 - C_8 alkoxy, carboxy, C_1 - C_8 alkoxycarbonyl;

C₅-C₁₂cycloalkyl or C₅-C₁₂cycloalkenyl;

<u>phenyl, C₇-C₉phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C₁-C₈alkyl, halogen, OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl;</u>

-C(O)-C₁-C₃₆alkyl, or an acyl moiety of a α ,β-unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

 $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2^-R_2$, $-CO^-NH^-R_2$, $-CONH_2$, $COOR_2$, or $Si(Me)_3$, wherein Q^+ is H^+ , ammnonium or an alkali metal cation; or

R₆ and R₆' are independently –O-C₁-C₁₂alkyl, -O-C₃-C₁₂alkenyl, -O-C₃-C₁₂alkinyl, -O-C₅-C₆cycloalkyl, -O-phenyl, -O-naphthyl, -O-C₇-C₉phenylalkyl; or

 R_6 and R'_6 together form one of the bivalent groups -O-C(R_{21})(R_{22})-CH(R_{23})-O-,

-O-CH(R₂₁)-CH₂₂-C(R₂₂)(R₂₃)-O-, -O-CH(R₂₂)-CH₂-C(R₂₁)(R₂₃)-O-, -O-CH₂-C(R₂₁)(R₂₂)-CH(R₂₃)-O-, -O-o-phenylene-O-, -O-1,2-cyclohexyliden-O-,

R₂₁ is hydrogen, C₁-C₁₂alkyl, COOH, COO-(C₁-C₁₂)alkyl or CH₂OR₂₄;

R₂₂ and R₂₃ are independently hydrogen, methyl, ethyl, COOH or COO-(C₁-C₁₂)alkyl;

R₂₄ is hydrogen, C₁-C₁₂alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic, cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms; and

 R_7 and R_8 are independently hydrogen or C_1 - C_{18} alkyl;

and at least one monomer is an epoxy group containing monomer different from formula (II);

where the weight ratio of the monomer of formula (II) to the sum of the other monomers is from 99:1 to 1:99;

and in a second step

b) adding to the polymer obtained in step a) at least one ethylenically unsaturated monomer or oligomer, heating the resulting mixture to a temperature where cleavage of the nitroxylether bond occurs and radical polymerization starts; and polymerizing to the desired degree.

2. (canceled)

- 3. (currently amended) A method according to claim [[2]] wherein R_1 , R_2 , R_3 , R_4 are methyl, or R_1 and R_3 are ethyl and R_2 and R_4 are methyl, or R_1 and R_2 are ethyl and R_3 and R_4 are methyl.
- 4. (currently amended) A method according to claim [[2]]1 wherein R₅ is hydrogen or methyl.
- **5.** (currently amended) A method according to claim [[2]]1 wherein R'_{6} is hydrogen and R_{6} is H, OR_{10} , $NR_{10}R_{11}$, $-O-C(O)-R_{10}$ or $NR_{11}-C(O)-R_{10}$; R_{10} and R_{11} independently are hydrogen, $C_{1}-C_{18}$ alkyl, $C_{2}-C_{18}$ alkenyl, $C_{2}-C_{18}$ alkinyl or $C_{2}-C_{18}$ alkyl which is substituted by at least one hydroxy group or, if R_{6} is $NR_{10}R_{11}$, taken together, form a $C_{2}-C_{12}$ alkylene bridge or a $C_{2}-C_{12}$ -alkylene bridge interrupted by at least one O atom; or R_{6} and R'_{6} together are both hydrogen, a group =O or =N-O- R_{20} wherein R_{20} is H or straight or branched $C_{1}-C_{18}$ alkyl.
- 6. (currently amended) A method according to claim [[2]]1 wherein R_6 and R'_6 together form one of the bivalent groups -O-C(R_{21})(R_{22})-CH(R_{23})-O-, -O-CH(R_{21})-CH₂₂-C(R_{22})(R_{23})-O-, -O-CH(R_{22})-CH₂-C(R_{21})(R_{23})-O- or -O-CH₂-C(R_{21})(R_{22})-CH(R_{23})-O-[[,]]where R_{21} , R_{22} -and R_{23} have the meaning as defined in claim 2.

7. (currently amended) A method according to claim 1 where step a) comprises polymerizing anthe epoxy group containing monomer different from formula (II)[[(I),]]which monomer is selected from the group consisting of ethylene oxide, propylene oxide, 2,3-epoxypropyl-4-ethyl-phenylether, 2,3-epoxypropyl-phenylether, 2,3-epoxypropyl-4-nonyl-phenylether, epichlorohydrine and 2,3-epoxypropyl-2,2,3,3,4,4,5,5-octafluoropentylether.

8. (canceled)

- **9.** (previously presented) A method according to claim 1 wherein in step b) the ethylenically unsaturated monomer or oligomer is selected from the group consisting of styrene, substituted styrene, conjugated dienes, vinyl acetate, vinylpyrrolidone, vinylimidazole, maleic anhydride, (alkyl)acrylic acid anhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (meth)acrylonitriles, (alkyl)acrylamides, vinyl halides and vinylidene halides.
- 10. (previously presented) A method according to claim 9 wherein in step b) the ethylenically unsaturated monomers are styrene, methylacrylate, ethylacrylate, butylacrylate, isobutylacrylate, tert butylacrylate, hydroxyethylacrylate, hydroxypropylacrylate, dimethylaminoethylacrylate, methyl(meth)acrylate, ethyl(meth)acrylate, butyl(meth)acrylate, hydroxyethyl(meth)acrylate, hydroxypropyl(meth)acrylate, dimethylaminoethyl(meth)acrylate, acrylonitrile, acrylamide, methacrylamide or dimethylaminopropyl-methacrylamide.
- 11. (original) A method according to claim 1 wherein in step b) the weight ratio between the polyether prepared in step a) and the ethylenically unsaturated monomer is from 90:10 to 10:90.
- **12.** (original) A method according to claim 1 wherein in step b) the polymerization temperature is from 80° C to 160° C.

13. (withdrawn) A composition comprising a compound of formula (II), at least one epoxy functional monomer different from that of formula (II) and optionally water or an organic solvent or a mixture thereof.

where the compound of formula (II) is

wherein

R₁, R₂, R₃ and R₄ are independently of each other C₁-C₄alkyl;

R₅ is hydrogen or C₁-C₄alkyl;

 R'_{6} is hydrogen and R_{6} is H, OR_{10} , $NR_{10}R_{11}$, $-O-C(O)-R_{10}$ or $NR_{11}-C(O)-R_{10}$;

 R_{10} and R_{11} independently are hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkinyl or C_2 - C_{18} alkyl which is substituted by at least one hydroxy group or, if R_6 is $NR_{10}R_{11}$, taken together, form a C_2 - C_{12} alkylene bridge or a C_2 - C_{12} -alkylene bridge interrupted by at least one O atom;or

R₆ and R'₆ together are both hydrogen, a group =O or =N-O-R₂₀ wherein

R₂₀ is H, straight or branched C₁-C₁₈alkyl, C₃-C₁₈alkenyl or C₃-C₁₈alkinyl, which may be unsubstituted or substitued, by one or more OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl;

C₅-C₁₂cycloalkyl or C₅-C₁₂cycloalkenyl;

phenyl, C₇-C₈phenylalkyl or naphthyl which may be unsubstituted or substituted by one or more C₁-C₈alkyl, halogen, OH, C₁-C₈alkoxy, carboxy, C₁-C₈alkoxycarbonyl;

-C(O)-C₁-C₃₆alkyl, or an acyl moiety of a α , β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

 $-SO_3^-Q^+$, $-PO(O^-Q^+)_2$, $-P(O)(OR_2)_2$, $-SO_2^-R_2$, $-CO-NH-R_2$, $-CONH_2$, $COOR_2$, or $Si(Me)_3$, wherein Q^+ is H^+ , ammnonium or an alkali metal cation; or

R₆ and R₆' are independently -O-C₁-C₁₂alkyl, -O-C₃-C₁₂alkenyl, -O-C₃-C₁₂alkinyl, -O-C₅-C₈cycloalkyl,

-O-phenyl, -O-naphthyl, -O-C7-C9phenylalkyl; or

R₆ and R'₆ together form one of the bivalent groups -O-C(R₂₁)(R₂₂)-CH(R₂₃)-O-,

- $-O-CH(R_{21})-CH_{22}-C(R_{22})(R_{23})-O-$, $-O-CH(R_{22})-CH_{2}-C(R_{21})(R_{23})-O-$, $-O-CH_{2}-C(R_{21})(R_{22})-CH(R_{23})-O-$, $-O-CH_{2}-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{23})-O-$, $-O-CH_{2}-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{23})-O-$, $-O-CH_{2}-C(R_{21})(R_{22})-CH(R_{22})-CH(R_{23})-O-$, $-O-CH_{2}-C(R_{21})(R_{22})-CH(R$
- -O-o-phenylene-O-, -O-1,2-cyclohexyliden-O-,

R₂₁ is hydrogen, C₁-C₁₂alkyl, COOH, COO-(C₁-C₁₂)alkyl or CH₂OR₂₄;

R₂₂ and R₂₃ are independently hydrogen, methyl ethyl, COOH or COO-(C₁-C₁₂)alkyl;

R₂₄ is hydrogen, C₁-C₁₂alkyl, benzyl, or a monovalent acyl residue derived from an aliphatic,

cycloaliphatic or aromatic monocarboxylic acid having up to 18 carbon atoms; and

 R_7 and R_8 are independently hydrogen or C_1 - C_{18} alkyl.

- 14. (withdrawn) A polyether obtained according to step a) of the method of claim 1.
- **15.** (withdrawn) A polyether obtained according to step a) of claim **2**, having a repetitive strucural element of formula IIIa or IIIb

wherein m and n are number from 10 to 1000 and

X is H, CH₃, CH₂-O-C₆H₅, CH₂-O-C₆H₅-C₉H₁₉, -CH₂Cl or CH₂-O-CH₂-(CF₂)₃CHF₂.

- 16. (withdrawn) A comb or star copolymer obtained according to the method of claim 1.
- 17. (currently amended) A comb or star copolymer according to claim 16 wherein the ethylenically unsaturated monomer or oligomer is selected from the group consisting of styrene, substituted styrene, (alkyl)acrylic acidanhydrides, (alkyl)acrylic acid salts, (alkyl)acrylic esters, (meth)acrylonitriles and (alkyl)acrylamides.

18. (canceled)

19. (withdrawn) A composition comprising a comb or star copolymer obtained according to the method of claim **1** and a thermoplastic, elastic or thermosetting polymer.