KIT-Department of Informatics Prof. Dr.-Ing. Tamim Asfour

Answer sheets for the exam

Robotics II: Humanoid Robotics

on September 17, 2018, 11:00 - 12:00

Family name:	Given name:		Matriculation number:	
Exercise 1			out of	8 points
Exercise 2			out of	11 points
Exercise 3			out of	6 points
Exercise 4			out of	11 points
Exercise 5			out of	9 points
Total:				
		Grade:		

Exercise 1 Grasping

1. Difference between grasp analysis and grasp synthesis:

2. Benefits of grasp taxonomies for robotic grasping:

3. Shape completion:

4. Online phase vs. offline phase:

5. Grasp synthesis for known objects (online/offline):

Process	Online	Offline
Grasp selection	X	
Grasp generation		
Scene segmentation		
Object recognition		
Grasp simulation		

Exercise 2 Grasp Synergies

1. Postural synergies:

2. Soft synergy model:

3. Amplitude vector **a**:

4. Realization of \mathbf{p}_{new} :

5. Exact realization of \mathbf{p}_{new} :

Exercise 3 Active Perception

1. Active vision vs. active perception:

2. Purpose of ICP:

3. Purpose of pushing actions

4. Heuristics for initial object hypotheses:

5. ICP modification:

Exercise 4 Haptics

1. Purpose, attractive and repellent regions:

2. Potential field equation:

Family name:	Given name:	Mat. No.:	7
3. Motion generation:			
4. Changes of the potential field	l:		
5. Motion direction:			

Exercise 5 Imitation Learning

1. Parameters for the definition of an HMM:

2. Training algorithm for HMMs:

3. Principle of semantic segmentation:

4. Principle of motion segmentation:

5. DMP Transformation system:

$$\tau \dot{v} = K(g - x) - Dv + (g - x_0)f(u)u$$

$$\tau \dot{x} = v$$

DMP Canonical system:

$$\tau \dot{u} = -\alpha u$$

Explanation of terms:

Term	Explanation
τ	$Temporal\ factor$
x	
D	
K	
g	
x_0	
f	

6. Changeable properties of a DMP-represented motion: