VE270 Lecture 12 Arithmetic Components

Carry Look-ahead Adder

Check the Carry-Ripple Adder, it is created with full adders.

For 4-bit adder, we add two 4-bit numbers and generate a 5-bit number (4-bit sum and 1-bit carry).

Faster Adder

Use two-level combinational logic design process.

- pro: fast
 - 2 gate level delays
- con: large
 - o 9 inputs and 5 outputs.
 - Truth table would have $2^{4+4+1} = 512$ rows

Full Adder

sum is $\sum m(1,2,4,7)=A\oplus B\oplus C$, carry is $\sum m(3,5,6,7)=AB+AC+BC=(A\oplus B)C+AB$

Faster Adder - Intuitive Attempt at "Look ahead"

Notice - no rippling of carry

Then we produce carries directly and recursively: $c_{n+1} = a_n b_n + a_n c_n + b_n c_n$

Two layer SOP logic.

Better Form of Look Ahead

Since we get the $\operatorname{Carry} = ab + (a \oplus b)c$ then we define $\operatorname{Propagate} P = a \oplus b$ and $\operatorname{Generate} G = ab$.

Then $\operatorname{Cout} = G + Pc$, $c_{n+1} = G_n + P_n c_n$

