$P_{\underline{rop}}(7.9)$ If μ is a Radon measure on X (LCH), $C_c(X)$ is derive in $L'(\mu)$.

Pf simple for an elember (Assume $f \ge 0$). Let E > 0If $d\mu = \sup \{ \int \varphi d\mu \mid 0 \le \varphi \le f \text{ is } Simple \}$.

 $\frac{\text{Defin}}{\text{Defin}} \phi = \sum_{i=1}^{n} c_i \gamma_{E_i} . \quad \exists \phi \text{ s.t. } ||f - \phi|| < \epsilon .$

Problem is reduced to approximating χ_E by firs in $C_c(x)$; (E mble, $\mu(E) < \infty$).

Lusin's Thm for Radon Measures

Given a Radon Measure μ on X LCH and mble $f: X \to \mathbb{C}$ S.t. $f \equiv 0$ on $X \setminus \mathbb{E}$ where $\mu(\mathbb{E}) < \infty$. Then $\forall \varepsilon > 0$, $\exists \varphi \in G(X)$ s.t. $\varphi = f$ except for an a set of measure $< \varepsilon$. (if $\|f\|_{\infty} < \infty$ then $\|\varphi\|_{\infty} = \|f\|_{\infty}$).

Pf Wlog $f \geqslant 0$. Assume f bdd (if not, $\mu(\{f > n\}) \rightarrow 0$). Then $f \in L'$, so \exists seq $fgn \exists$ in C(X) s.t. $||gn - f||_1 \rightarrow 0$. By some thm, \exists a subset that converges a.e. (call it $gn > t \mid II$).

Egooff's Thm: If $\{g_j\}$ mble & $g_j \rightarrow f$ a.e. then, given \$70, $\exists A \in E$ s.t. $u(E \mid A) \in \mathcal{E}$ & $g_j \rightarrow f$ unif. on A.

So $g_n \to f$ unif on A, so $f|_A$ is ds. $\exists \ k \in A \subset U \quad \text{wy} \quad \mu(U \setminus K) < \varepsilon, \text{ and } f|_K \text{ is } cts.$ Use Tietze extra turn to extend $f|_K$ to $\phi \in C_c(X)$.