- Q1. There is a conference hall in an institute, multiple events has been requested to be held in the same hall on a day, the starting (si) and finishing (fi) time of the events have been given in the table:
 - S 1 3 0 5 3 5 6 8 8 2 12 f₁ 4 5 6 7 9 9 10 11, 12 14 16

Devise an algorithm to solve this problem and 7 and out the events that can be

organized.	
	- 4 fachs-
(T, Tz, T8/	T ₁₁)
3/1/	

Q2. Use an algorithm for greedy strategies for the knapsack to find an optimal solution to the knapsack instance n=7, m=15, (p1,p2....,p7)=(10,5,15,7,6,18,3), and (w1,w2,...w7)=(2,3,5,7,1,4,1).

Object	Price	wight	Primajet
1	7 0	2	5_/
2	5	(3)	1.66-
3	15	5	3/
4	7	7	1
5	6	1 \	6/
6	18	4	4.5
7	3	1	3 1

Objev	Price	wyr	Remaining aprilip of knapsnih (brg)
5	6	1	15-1=14.
١	01	2	14-2=12.
6	18	4	12-4= 8
3	15	5	8-5=3.
7	3	1	3-1=2
2	2×166	2	2-2=0.
	ZPrice		
		1	

Q2. Formulate Fractional Knapsack Problem. Write Greedy Algorithm for fractional Knapsack Problem. Find the optimal solution for the following fractional Knapsack problem.

 \hat{n} =4, m = 60, W={40, 10, 20, 24} and P={280, 100, 120, 120}

Object	wt	Profit	P/W.
1	40	280	280/40 = 7:/
2	10	100	- 10
ا ع	20	120	6
4	24	T120. 1	5.
- 1			

} Objut	Wr.	Pool t	Remaining capacity of by	
2	10	100	60-10=50.	
ال	40	280	60-10=50.	
3	10	6×10=60	10-10=0-	
2 profit = 440				

Node from	Node To	wight
12	4	51
9	3	5
3	5	6/
O	1	7/
I.	4	7/
9	5	8×(00p)
i.	2	8 > (Youp)
	٦	a DLOOP-

9 1 4 5 3 MST WY (=39)	5 2 3 6 6 4	8 × (200 F), 9 × (200 F), 9 / (200 F), 11
31)	-	

