a Caralaluthan in Ramballana lang lang
Donvolution in Borel-Moore homo logy
Toy example of convolution product.
for a finite set M, let CLU) be the G-valued
functions on (4.

Given finite sets M., Mz, Mz, define a Consolution

$$\mathbb{C}(M, \times M_2) \times \mathbb{C}(M_2 \times M_3) \longrightarrow \mathbb{C}(M, \times M_3)$$

* = matrix product.

General Case.

M., Mr., Mr. Counceted oriented manifolds

Z12 S M, xM2, 223 S M2xM3 Closed.

Z120223:= { (M., M3) E M, xM3 | 3 m2 e i M2, st. (M2, m3) E Z23}

Ex : f: M, mr., 9: M2 my Smooth maps,

Graph (f) o Graph (9) = Graph (1 o f)

ASSume P3: P12 (212) 1 P22 (223) -> M(x M3 is proper.

Let Pi; MixMixMis > MixMis be the projections

By definition, 2,2°223 = Image of the above map.

d=dungell, we define a convolution in Borel-Moore

Hitchmens Hitchmen. diagonal Ex 1) M_=M2=M3=M, 212, 213 C MA C MxM Z120225 = 2121 223 * = intersection product. 2) M, =pt, f: M2 > M2 proper. 2120223 = Imf < ptxMz Z12 = ptx142, 223 = Graph(f),

Hi(212) × Hj(223) -> Hitjrd (Z12° Z23) (C12, C23) 1-> C12 * C23 (12+(23) = P13* (P12 Cn 1) P23 (25)

homology as follows:

 $= P_{i3*} \left(\left(C_{12} \underline{M} [M_3] \right) \cap \left(CM J_1 \underline{X} C_{23} \right) \right)$

Let
$$c \in H_*(M_1) = H_*(Z_1)$$
.
 $\Rightarrow c \in Graph(f) = f_*(c)$.

3). Mz=pt, f: M, -> Mz Smooth.

2,2 = Graph(f), 223 = M2xpt.

Z12.223 = M, xpt = M,

Associativity of Couvolution-

M., Mr, Mz, M4 as before.

Cije H* (Zij)

Zz4 = Mz XM4

Lehner: (C12*(23) * (34 = (12* (C23* (34))

Assume: (1) 2" -> 5 * is a locally trivial fibration. (2) $P_{12}^{-1}(2_{12}^{*}) \cap P_{23}^{-1}(2_{23}^{*}) \xrightarrow{P_{13}} Z_{13}^{*}$ the horizontal map is (real trivial fibrations Pwp: $H_{*}(2_{12}^{*}) \times H_{*}(2_{23}^{*}) \xrightarrow{\text{lim}} H_{*}(2_{12}^{*}) \times H_{*}(2_{23}^{*})$ | convolution (5) | $H_{*}(2_{13}^{*}) \xrightarrow{\text{t-9.2}} H_{*}(2_{13}^{*})$ I dea of pf: Guudution = proper pushforwals + intersection 1) Specialization commutes with intersection. intersection parriy dragoner restriction with supports restriction with supports: W2 M closed, d=dmpm-dmpn

Z S M i*: H*(2) -> H*-d (2 an)

i*: H*(M, M/2) -> H*(N, N\ Wn2))

diagonal reduction

2, 2' & M, 20: Mo C) MxM c & Hx(2), c' & Hx(2')

Cnc'= it Lc(8)c')

relative version of restriction with supports:

 $N \stackrel{1}{\longrightarrow} M \stackrel{\sim}{\sim} Z$ $\pi \searrow_{n} \downarrow^{\pi} \swarrow_{n} Z$ S

1: (ZNN, Z.NN) (2, Z.)

induces a morphism of the long-exact seguences
=) jx commutes with the connecting morphism in
the Specialization wap.
2) proper pushforward commutes with specialization.

by the same reason as above.

The comblution algebra.

M smooth manifold / C. $\pi:M \rightarrow N$ proper.

M,= $M_2 = M_3 = M$, $Z = Z_{12} = Z_{23} = M_{\chi}M$. $\Rightarrow Z_2 = Z$. $\Rightarrow H_{\chi}(Z) \times H_{\chi}(Z) \xrightarrow{\chi} H(Z)$

Gr: $H_{\star}(2)$ has a natural structure of an associative algorithm. The unit = $\Delta(M) \leq Z$.

 $M_1 = M_2 = M$, $M_3 = Pt$, $Z = 2_{12} = M \times M$.

 $2_{23} = M_{x} < M_{x} < M_{x}$

Gr H* (Mx) has a natural structure of a left

H*(2)-wedule under Govalution.

The dimension property.

dump $U_i = di$. $P = \frac{m_1 t m_2}{Z}$, $q = \frac{m_2 t t m_3}{Z}$, $V = \frac{m_1 t m_3}{Z}$ Hp(Z_{12}) × Hq(Z_{13}) \rightarrow Hr(Z_{12} ° Z_{23}).

"the middle dimension part is always preserved".

MI=M=M=M, dangeM=M. Z=MXNM.

Gr: H(2) is a Subaly of Hx(2)

H(2):=Hm(Z).

Lam: If Iv. camps of Z are {Z:(i \in I), I finite.

and del 2: = dem 2.

then FCZi]) is a basis for the Convolution aly H(Z)

(or: The Couldetter action of H(2) SH*(2) on H*(Mx) is deque preserving, i.e. for any jo, o, $H(2)*H_{j}(M_{x}) \leq H_{j}(M_{x})$

2) Lagrangian Construction of the Werl group.

Recall

N = g

N = g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s g

N = s

 $\overline{\text{thm}}: \text{ } H_{\text{top}}(Z) \simeq \text{QCW}$ as ass alge.

Example:
$$G = SL(2, \mathbb{C})$$
, $Z = T^*P' \times_{\mathcal{C}} T^*P'$
 W , comps of Z are $T_{(i;d)}(P' \times P') = \Delta(T^*P') = T^*$,

 $T^*_{(i;l)}(P' \times P') = P' \times P' = T^*$

Thus
$$H(z) \simeq (DCw]$$

representations?

a)
$$x=0$$
, $\mu^{-1}(0)=1P^{1} \leq T^{*}(P^{1})$, $[Hop(1P^{1})=Span of inp^{1}]$
 $T^{*}(P^{1} \times T^{*}(P^{1} \times P^{1}))$
 $P^{1} \times P^{1}$
 P^{1}

=) S_{λ} $\alpha(t)$ by id on $H_{top}(\pi^{d}(x))$. $H_{top}(\pi^{-d}(0)) = Sign ref.$

[(p'x|p'] * Cpt] = 0

Htop (T-1((°5))) = trivial rep.