Órgãos de Máquinas Tribologia – Aula TP 2

Carlos M. C. G. Fernandes

1 Exercício

Considere a chumaceira radial hidrodinâmica com as dimensões $D=0.04\,\mathrm{m}$, $L=0.01\,\mathrm{m}$, funcionando com a folga radial de $C=20\,\mathrm{\mu m}$ e a uma velocidade de rotação de $n=4000\,\mathrm{rpm}$. A carga aplicada, de direção constante, é de $W=5000\,\mathrm{N}$.

Figura 1: Chumaceira radial lisa.

O lubrificante usado é um ISO VG 46 (ρ = 875 kg m⁻³, cp = 2000 J/(kgK)), sendo injetado à temperatura de T_0 = 30 °C. Considere que o coeficiente de dissipação nos maciços é α = 0.8.

- 1. Determine a temperatura de funcionamento da chumaceira
- 2. Altura miníma de filme h_{min}

- 3. Ângulo de posicionamento ϕ
- 4. Caudal de alimentação Q
- 5. Binário de atrito no veio C_a
- 6. Potência dissipada devido ao atrito

Nota: a temperatura típica de funcionamento habitualmente encontra-se entre os $40\,^{\circ}\text{C}$ e os $100\,^{\circ}\text{C}$

1.1 Características geométricas da chumaceira

O rácio comprimento diâmetro da chumaceira é:

$$\frac{L}{D} = \frac{0.01}{0.04} = \frac{1}{4} \tag{1}$$

Assim podemos concluir que para $\frac{1}{6} < \frac{L}{D} < 4$ consideramos a chumaceira de comprimento finito e deveremos consultar a Tabela 1 com a solução numérica.

Tabela 1: $\frac{L}{D} = \frac{1}{4}$										
ϵ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.95
S	16.2	7.57	4.49	2.83	1.78	1.07	0.58	0.263	0.0728	0.0221
ϕ	82.5	75.5	68.5	61.5	54	47	39.5	31.5	21.5	15.5
$\frac{R}{c} \cdot f_a$	307	140	82.5	52.67	34.25	21.85	13.19	6.97	2.7	1.2
$\frac{Q}{L \cdot c \cdot V}$	0.0983	0.196	0.295	0.393	0.491	0.59	0.688	0.787	0.885	0.933
$\overline{C_a}$	18.95	18.49	18.37	18.61	19.24	20.42	22.74	26.50	37.09	54.30

A folga radial da chumaceira é $C = 20 \,\mu\text{m} = 20 \times 10^{-6} \,\text{m}$

1.2 Comportamento térmico da chumaceira

O comportamento térmico da chumaceira permite conhecer a temperatura em 3 pontos distintos: lubrificante que sai pelos bordos (T_e) , temperatura média do filme lubrificante responsável pela geração de pressão (T_i) e a temperatura após saída do contacto (T_2) - ver Figura 2.

A temperatura máxima do lubrificante é calculada pela equação (2).

Figura 2: Problema térmico da chumaceira radial.

$$T_2 = T_0 + \frac{\alpha \cdot P_a \cdot (Q + Q_c)}{\rho \cdot c_p \cdot Q \cdot \left(\frac{Q}{2} + Q_c\right)}$$
 (2)

A temperatura do lubrificante que sai pelos bordos é calculado como:

$$T_e = \frac{T_0 \cdot Q + T_2 \cdot Q_c}{Q + Q_c} \tag{3}$$

A temperatura média do filme lubrificante, a considerar para o cálculo das características de funcionamento da chumaceira radial é dada pela equação (4).

$$T_i = \frac{T_e + T_2}{2} \tag{4}$$

Para prever o comportamento térmico da chumaceira radial temos de conhecer o caudal axial Q que sai pelos bordos da chumaceira, e por isso deverá ser igual ao caudal de fornecimento à chumaceira.

Por outro lado apenas o lubrificante que passa pelo convergente com um caudal Q_c está sujeito à temperatura T_i . Neste caso o caudal é calculado como:

$$Q_c = h_{min} \cdot L \cdot \frac{V}{2} \tag{5}$$

1.3 Procedimento de cálculo

O procedimento de cálculo é iterativo, pelo que requer arbitrar uma temperatura inicial para o filme lubrificante T_i e um método recursivo para as iterações seguintes.

Principiamos por escolher a temperatura de alimentação T_0 , que neste caso é conhecida e igual a 30 °C.

Figura 3: Viscosidade dinâmica de lubrificantes ISO VG.

Para a primeira iteração vamos considerar que a temperatura média do filme é $T_i = T_0$ e assim podemos determinar as condições de funcionamento da chumaceira para esta temperatura.

1.3.1 1^a iteração $T_i = T_0$

Altura mínima de filme - h_{min}

A altura de filme é dada por:

$$h = c \cdot (1 + \epsilon \cdot \cos \theta) \tag{6}$$

Pelo sistema de eixos da Figura 1, a espessura de filme mínima ocorre quando $\theta = \pi$, logo:

$$h_{min} = c \cdot (1 - \epsilon) \tag{7}$$

Para determinar a excentricidade relativa precisamos primeiro do número de Sommerfeld (equação (8)). A viscosidade média do lubrificante ISO VG 46 para esta temperatura é $\eta=58.242\,\mathrm{mPa\,s}=0.0582\,\mathrm{Pa\,s}$ retirado da Figura 3.

$$S = \left(\frac{R}{c}\right)^2 \cdot \left(\frac{\eta \cdot L \cdot V}{\pi \cdot W}\right) = \left(\frac{0.02}{20 \times 10^{-6}}\right)^2 \times \left(\frac{0.0582 \times 0.01 \times 8.378}{\pi \times 5000}\right) = 0.3106 (8)$$

Pela Tabela 1 sabemos que a excentricidade relativa para o número de Sommerfeld calculado está compreendida entre 0.7 e 0.8. Recorrendo a uma interpolação linear entre estas duas colunas, obtemos os seguintes resultados:

$$\begin{cases}
\epsilon &= 0.7845 \\
h_{min} &= 4.3005 \times 10^{-6} \text{ m} \\
\phi &= 32.7019^{\circ} \\
f_{a} &= 0.007904 \\
C_{a} &= 0.79044 \text{N m} \\
Q &= 1.2937 \times 10^{-6} \text{ m}^{3} \text{ s}^{-1} \\
Q_{c} &= 1.8014 \times 10^{-7} \text{ m}^{3} \text{ s}^{-1} \\
P_{a} &= 331.1 \text{ W}
\end{cases}$$
(9)

Agora podemos calcular a temperatura T_2 :

$$T_2 = 30 + \frac{0.8 \times 331.1 \times \left(1.2937 \times 10^{-6} + 1.8014 \times 10^{-7}\right)}{875 \times 2000 \times \left(\frac{1.2937 \times 10^{-6}}{2} + 1.8014 \times 10^{-7}\right) \times 1.2937 \times 10^{-6}} = 238.5 \,^{\circ}\text{C}$$
(10)

Determinar a temperatura que sai pelos bordos:

$$T_e = \frac{30 \times 1.2937 \times 10^{-6} + 238.5 \times 1.8014 \times 10^{-7}}{1.2937 \times 10^{-6} + 1.8014 \times 10^{-7}} = 55.5 \,^{\circ}\text{C}$$
 (11)

Calcular a temperatura média do filme lubrificante T_i :

$$T_i = \frac{T_e + T_2}{2} = \frac{55.5 + 238.5}{2} = 147.0$$
 °C (12)

E finalmente calculamos o erro relativo do valor obtido face ao valor arbitrado:

$$\delta = \left| \frac{T_{if} - T_{ii}}{T_{ii}} \right| \times 100 = \frac{147.0 - 30}{30} \times 100 = 390\%$$
 (13)

Agora usamos as bissecções sucessivas para determinar o valor seguinte de T_i :

$$T_i = \frac{T_{if} + T_{ii}}{2} = \frac{147.0 + 30.0}{2} = 88.5 \,^{\circ}\text{C}$$
 (14)

1.3.2 2ª iteração $T_i = 88.5$ °C

$$\begin{cases}
\eta &= 0.00625 \, \text{Pa s} \\
S &= 0.03335 \\
\epsilon &= 0.9389 \\
h_{min} &= 1.2219 \times 10^{-6} \, \text{m} \\
\phi &= 16.8314^{\circ} \\
f_{a} &= 0.001533 \\
C_{a} &= 0.1533 \, \text{Nm} \\
Q &= 1.5454 \times 10^{-6} \, \text{m}^{3} \, \text{s}^{-1} \\
Q_{c} &= 5.1183 \times 10^{-8} \, \text{m}^{3} \, \text{s}^{-1} \\
P_{a} &= 64.2 \, \text{W} \\
T_{2} &= 66.8 \, ^{\circ} \, \text{C} \\
T_{e} &= 31.2 \, ^{\circ} \, \text{C} \\
T_{i} &= 48.99 \, ^{\circ} \, \text{C}
\end{cases} (15)$$

E finalmente calculamos o novo erro relativo do valor obtido face ao valor arbitrado:

$$\delta = \left| \frac{T_{if} - T_{ii}}{T_{ii}} \right| \times 100 = \frac{48.99 - 88.5}{88.5} \times 100 = 44.6\% \tag{16}$$

Agora usamos as bissecções sucessivas para determinar o valor seguinte de T_i :

$$T_i = \frac{T_{if} + T_{ii}}{2} = \frac{48.99 + 88.5}{2} = 68.7 \,^{\circ}\text{C}$$
 (17)

1.3.3 3^a iteração $T_i = 68.7$ °C

$$\begin{cases} \eta &= 0.011 \, \text{Pa s} \\ S &= 0.05869 \\ \epsilon &= 0.9139 \\ h_{min} &= 1.7218 \times 10^{-6} \, \text{m} \\ \phi &= 19.8309^{\circ} \\ f_{a} &= 0.002283 \\ C_{a} &= 0.22827 \, \text{N m} \\ Q &= 1.5052 \times 10^{-6} \, \text{m}^{3} \, \text{s}^{-1} \\ Q_{c} &= 7.2124 \times 10^{-8} \, \text{m}^{3} \, \text{s}^{-1} \\ P_{a} &= 95.6 \, \text{W} \\ T_{2} &= 85.5 \, ^{\circ} \, \text{C} \\ T_{e} &= 32.5 \, ^{\circ} \, \text{C} \\ T_{i} &= 59.0 \, ^{\circ} \, \text{C} \end{cases}$$

$$(18)$$

E finalmente calculamos o novo erro relativo do valor obtido face ao valor arbitrado:

$$\delta = \left| \frac{T_{if} - T_{ii}}{T_{ii}} \right| \times 100 = \frac{59.0 - 68.7}{68.7} \times 100 = 14.1\%$$
 (19)

Agora usamos as bissecções sucessivas para determinar o valor seguinte de T_i :

$$T_i = \frac{T_{if} + T_{ii}}{2} = \frac{59.0 + 68.7}{2} = 63.9$$
°C (20)

1.3.4 4^a iteração $T_i = 63.9$ °C

$$\begin{cases}
\eta &= 0.01294 \text{Pa s} \\
S &= 0.069 \\
\epsilon &= 0.9037 \\
h_{min} &= 1.9254 \times 10^{-6} \text{ m} \\
\phi &= 21.0526^{\circ} \\
f_{a} &= 0.002588 \\
C_{a} &= 0.2588 \text{ N m} \\
Q &= 1.4888 \times 10^{-6} \text{ m}^{3} \text{ s}^{-1} \\
Q_{c} &= 8.06528 \times 10^{-8} \text{ m}^{3} \text{ s}^{-1} \\
P_{a} &= 108.4 \text{ W} \\
T_{2} &= 93.3 ^{\circ} \text{C} \\
T_{e} &= 33.3 ^{\circ} \text{C} \\
T_{i} &= 63.3 ^{\circ} \text{C}
\end{cases}$$

E finalmente calculamos o novo erro relativo do valor obtido face ao valor arbitrado:

$$\delta = \left| \frac{T_{if} - T_{ii}}{T_{ii}} \right| \times 100 = \frac{63.3 - 63.9}{68.7} \times 100 = 0.94\%$$
 (22)

Agora usamos as bissecções sucessivas para determinar o valor seguinte de T_i :

$$T_i = \frac{T_{if} + T_{ii}}{2} = \frac{63.3 + 63.9}{2} = 63.6$$
 °C (23)

1.3.5 5^a iteração $T_i = 63.6$ °C

$$\begin{cases}
\eta &= 0.01308 \text{ Pa s} \\
S &= 0.06975 \\
\epsilon &= 0.9030 \\
h_{min} &= 1.9397 \times 10^{-6} \text{ m} \\
\phi &= 21.1385^{\circ} \\
f_{a} &= 0.002609 \\
C_{a} &= 0.26096 \text{ Nm} \\
Q &= 1.4877 \times 10^{-6} \text{ m}^{3} \text{ s}^{-1} \\
Q_{c} &= 8.1252 \times 10^{-8} \text{ m}^{3} \text{ s}^{-1} \\
P_{a} &= 109.3 \text{ W} \\
T_{2} &= 93.9 ^{\circ} \text{C} \\
T_{e} &= 33.3 ^{\circ} \text{C} \\
T_{i} &= 63.6 ^{\circ} \text{C}
\end{cases}$$
(24)

Erro relativo:

$$\delta = \left| \frac{T_{if} - T_{ii}}{T_{ii}} \right| \times 100 = \frac{63.6 - 63.6}{68.7} \times 100 = 0\%$$
 (25)