算法 1 速度扰动下干道最大带宽协调控制

Input: 绿信比 g, 交叉口间距 d, 速度分布期望 μ , 速度分布方差 σ , 足够大正数 M, 速度下限 e, 速度上限 f, 速度区间 Ω , 最小带宽 be, 左转清空时间 τ

Output: 交叉口偏移量 o

1:
$$r \Leftarrow 1 - g$$
, $obj \Leftarrow 0$

2: Compute
$$t_i$$
 for $1 \le i \le I$ according constraints Multiband

3:
$$A'_0 \Leftarrow o_0 + r_0, B'_0 \Leftarrow o_0 + r_0 + g_0$$

4: Iterative solution
$$(A'_0, B'_0, t)$$

5: **for**
$$j = 1 \rightarrow len(\Omega)$$
 do $//len()$ 为求列表长度

6:
$$A'_0 \Leftarrow o_0 + r_0, B'_0 \Leftarrow o_0 + r_0 + g_0, t \Leftarrow \frac{d}{dt}$$

7:
$$e_j \Leftarrow \text{Iterative solution}(A'_0, B'_0, t)$$

8:
$$obj+=e_j*getProp(\mu,\sigma,v)$$
 // $getProp()$ 为获取速度 v 下的车辆占比

10: **function** Iterative solution
$$(A'_0, B'_0, t)$$

11: **for**
$$i = 1 \rightarrow I$$
 do $//i$ 为迭代次数, I 为交叉口数量

12:
$$A'_0 \Leftarrow o_0 + r_0, B'_0 \Leftarrow o_0 + r_0 + g_0, v \Leftarrow \Omega[i],$$

13:
$$A'_{i} \leftarrow \max(A'_{i} + t_{i-1} - \tau_{i}, o_{i} + r_{i} + n_{i,i}) / n$$
 为整形变量

14:
$$B'_{i} \Leftarrow min(B'_{i} + t_{i-1}, o_{i} + r_{i} + g_{i} + n_{j,i})$$

15:
$$be - M(1 - y_i) \le B'_i - A'_i \le g_i + M(1 - y_i)$$

17: **return**
$$B'_n - A_n'$$

- 18: end function
- 19: Add Inbound Constraints
- 20: return o

	姓名	性别	年龄	身高/cm	体重/kg
1	张三	M	16	163	50
2	王红	F	15	159	47
3	李二	M	17	165	52

29: end function

算法 2 速度扰动下长干道分割与多路径绿波优化 **Input:** 绿信比 g, 周期范围 $C = \{C_1, C_2\}$, 流量 Q, 间距 d, 是否存在公交车站 σ , 速度空间 Ω Output: 交叉口偏移量 o, 带宽 b1: // Step 1. 求解长干道分割与混合车流路径绿波优化 2: $(z, p, y, t, \Delta a)$ =solvePartition (g, C, Q, d, σ) 3: // Step 2. 求解速度扰动下长干道分割与混合车流路径绿波优化 4: (o, b)=solveVariableSpeed $(z, p, y, t, \Delta a, g, C, Q, d, \sigma)$ 5: return o, b6: function SOLVEVARIABLESPEED $(z, p, y, t, \Delta a, g, C, Q, d, \sigma)$ $md \Leftarrow \text{cplex.Model()} \Leftarrow max \text{ Eqs. (3-54)-(3-55)}$ 7: Compute P(i, v) for $v \in \Omega$ for $0 \le i \le I$ 8: $md \Leftarrow \text{constraints Eqs. (3-56)}$ 9: 10: for $i = 0 \rightarrow I$ do I do I 为迭代次数,I 为交叉口数量 for $v \in \Omega$ do 11: if $p_i = 1$ then 12: 13: $md \Leftarrow \text{constraints Eqs. } (3-57)-(3-60) \text{ and } (3-65)-(3-68)$ else 14: $md \Leftarrow \text{constraints Eqs. } (3-61)-(3-64) \text{ and } (3-69)-(3-72)$ 15: 16: end if $b_{k,v} \Leftarrow p_k y_v (B'_{k,v} - A'_{k,v})$ 17: end for 18: end for 19: 20: return o, b21: end function 22: **function** SOLVEPARTITION (g, C, Q, d, σ) $md \Leftarrow \text{cplex.Model()} \Leftarrow max \text{ Eqs. (3-1)-(3-5)}$ 23: Compute Δa_{max} for $0 \le i \le I$, $0 \le j \le 2$ according to Eqs. (3-44)-(3-45) 24: for $i = 0 \rightarrow I$ do //i 为迭代次数,I 为交叉口数量 25: 26: $md \Leftarrow \text{constraints Eqs. } (3-6)-(3-52)$ end for 27: **return** $z, p, y, t, \Delta a$ 28: