Dynamic Programming

Soontharee Koompairojn

Optimization Problem

- การเรียนรู้เพื่อกำหนดวิธีการที่ดีที่สุดให้กับปัญหา (การหาค่าที่เหมาะสมที่สุด)
- การหาค่าสูงสุดหรือค่าต่ำสุดของปัญหา
- แสดงปัญหาอยู่ในรูปของฟังก์ชันทางคณิตศาสตร์

Algorithmic Paradigms

Greedy. (Not optimal) ■ Build up a solution incrementally, விலவங்க்கு myopically optimizing some local criterion. Divide-and-conquer. (Optimal) ☐ Break up a problem into sub-problems, □ solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem. Dynamic programming. (Optimal) ☐ Break up a problem into a series of overlapping sub-problems, ☐ And build up solutions to larger and larger sub-problems.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,
- •Some famous dynamic programming algorithms.
 - Unix diff for comparing two files.
 - Viterbi for hidden Markov models.
 - Smith-Waterman for genetic sequence alignment.
 - Bellman-Ford for shortest path routing in networks.
 - Cocke-Kasami-Younger for parsing context free grammars.

Compler

Fibonacci Numbers

- ให้เขียน algorithm คำนวณ nth Fibonacci number F_n
- $F_0 = 0$, $F_1 = 1$
- For all $i \ge 2$, $F_i = F_{i-1} + F_{i-2}$

```
recursive Algo

Ablic int filo (int n) {

if cn:0)

return 0;

else if cn:1)

return 1;

else

return filo (n-1) + filo(n-2);

3
```

Fibonacci Numbers

- Finding the nth Fibonacci number F_n, where,
- $F_0 = 0$, $F_1 = 1$
- For all $i \ge 2$, $F_i = F_{i-1} + F_{i-2}$
- Recursive Algorithm

Fibonacci Numbers

Finding the n^{th} Fibonacci number F_n , where, $F_0 = 0$, $F_1 = 1$ For all $i \ge 2$, $F_i = F_{i-1} + F_{i-2}$

Dynamic Programming Algorithm with an interior

```
int[] arr: new int[n]

arr[0]: 0

arr [1]: 1

for Ci:2; i < n; itt) {

    arr[i-1] + arr[i-2]

}

return arr[n]
```

Run time

Dynamic Programming

แนวทางการแก้ปัญหา

- กำหนดโครงสร้างการแก้ปัญหา optimal solution (ปัญหาที่ หาค่ามากที่สุด หรือ หาค่าที่น้อยที่สุด)
- คิดแก้ปัญหา optimal solution แบบ recursive
- คิดแก้ปัญหา optimal solution แบบ bottom-up
- คำนวณค่า optimal solution จากคำตอบที่ได้คำนวณ มาก่อนหน้านี้

ปัญหา Maximum Subsequence Sum

กำหนดให้ S เป็นลำดับ (sequence) ตัวเลข n ตัว <x₁, x₂, ..., x_n>,

โดยอาจจะมีจำนวนลบอยู่ด้วย

บัญหา คำนวณหาผลบวกของลำดับย่อย subsequencesของ S ที่มีค่ามากที่สุด

กำหนดให้ s' = subsequence ที่ต่อเนื่องของ S

ตัวอย่างของ S' ได้แก่

01/04/62

MSS ของ sequence S เป็นเท่าไร?

Subsequence ≠ Subset

Maximum subsequence sum problem(2)

Developing a dynamic programming algorithm

• กำหนดโครงสร้างของ optimal solution แบ่งปัญหาออกเป็นปัญหาย่อย

<u>แนวคิด</u>: เก็บผลรวม(Sum)ที่มากที่สุดของsubsequenceใดๆ สิ้นสุดที่ตัวเลข x_i, โดยที่ 1 ≤ i ≤ n

กำหนดให้ B เป็น array 1 มิติขนาด n ตัว

B[i] เก็บค่า ผลบวกที่มากที่สุดของ subsequence ที่สิ้นสุดที่ตัวเลข x_i เมื่อคำนวณค่าในตาราง B จะได้ค่าผลบวกที่มากที่สุดเอง

$$S = \langle 1, -5, 2, -1, 3 \rangle$$
But 2 3 4 5
$$1 -4 2 1 4$$

<u>Pseudocode</u>

$$B[1] = x_1$$

For i = 1 to n do

$$B[i+1] = \begin{cases} B[i] + x_{i+1} & \text{if } B[i] > 0 \\ x_{i+1} & \text{if } B[i] \le 0 \end{cases}$$

Subset sum problem

กำหนดให้ เซต S = {a₁, a₂, ..., a_n} เป็นเซตของเลขจำนวนเต็มบวก และค่าผลรวมเป็นเลขจำนวนเต็ม B

คำถาม: มีเซตย่อย (subset) S' ของ S ที่ผลบวกของสมาชิกใน S' มีค่าเท่ากับ B หรือไม่

ตัวอย่างเช่น กำหนดให้ เซต $S = \{3, 34, 4, 12, 5, 2\}$, และค่าผลรวมเท่ากับ 11

คำถาม: มีเซตย่อย (subset) S' ของ S ที่ผลบวกของสมาชิกใน S' มีค่าเท่ากับ 11 หรือไม่

มี หรือ ไม่มี , True or False ?

Is there a subset (มี Subsetหรือไม่)? True or False?

	ผลรวม j											
	0	1	2	3	4	5						
a ₁ =2			Ţ									
a ₂ =3				T								

If a_i มีค่าผลรวมเท่ากับ j then ให้เติม T ในช่อง Else เติม F ในช่อง

Is there a subset (มี Subsetหรือไม่)?

True or False?

				ผลรวม j					
	0	1	2	3	4	5			
a ₁ =2	T	F	Ţ	F	F	F			
a2=3	T	F	T	T	F	T			
¥.									

อำตัวก่อน เงิน T ตัวก่อ หาจะ พัน T ล้าย

If a_i มีค่าผลรวมเท่ากับ j then ให้เติม T ในช่อง Else เติม F ในช่อง

Is there a subset (มี Subsetหรือไม่)?

T(1,5)True or False? ผลรวม j 3 4 0 a₁=2 a₂=3 T(2,5)

Is there a subset (มี Subsetหรือไม่)?

True or False?

Is there a subset (มี Subsetหรือไม่)? True or False?

	ผลรวม j									
	0	1	2	3	4	5				
a ₁ =2										
a ₂ =3										
a ₃ =5										

if ตัวเลขตัวใดตัวหนึ่งในเซต S มีค่าเท่ากับ B → T(n,B) เป็นจริง

แนวคิดในการแก้ปัญหา

- ใช้แนวทางพิสูจน์ induction ช่วยแก้ปัญหา
- ให้ T(n,B) เป็นประพจน์ที่ใช้ในการพิสูจน์ว่า
 "มีเซตย่อย S' จำนวน n ตัวที่มีผลบวก= B หรือไม่"
- Base case:

if ตัวเลขตัวใดตัวหนึ่งในเซต S มีค่าเท่ากับ B → T(n,B) เป็นจริง --- ①

- Induction step:
 - if T(n-1, B) เป็นจริง, → ไม่ต้องใช้ a_n --- ②
 - if T(n-1, B) เป็น**เท็จ,** → อาจจะมี a_n
 - → ต้องดูว่า T(n-1, B-a_n) เป็นจริงหรือไม่--- ③

ดังนั้นปัญหา T(n,B) เราพิจารณาปัญหาย่อย T(n-1,B) และ T(n-1, B- a_n)

แนวคิดในการแก้ปัญหา

การจะแก้ปัญหา subset sum ที่มีผลรวม = B เราต้องแก้ปัญหา subset sum ที่มี ≤ B ด้วย

```
กำหนดให้ เซต S = \{a_1, a_2, ..., a_i ..., a_n\} และค่าผลรวม = B ให้ เซต S' เป็นเซตตัวเลข i ตัว = \{a_1, a_2, ..., a_i\} และค่าผลรวม = j โดยที่ 0 \le j \le B
```

- ถ้า j = 0 นั่นคือ ไม่มีตัวเลขตัวไหนอยู่ในเซตคำตอบ
- ถ้า $a_i = j$ นั่นคือ a_i อยู่ในเซตคำตอบ

---①(Base case)

- ถ้า เซตตัวเลข i-1 ตัว = $\{a_1, a_2, ..., a_{i-1}\}$ มีค่าผลรวม = j
 - \rightarrow เซตตัวเลข i ตัว = $\{a_1, a_2, ..., a_{i-1}, a_i\}$ มีค่าผลรวม = j ด้วย --- \bigcirc
- ถ้า เซตตัวเลข i-1 ตัว = $\{a_1, a_2, ..., a_{i-1}\}$ มีค่าผลรวม = j a_i
 - 🛨 เซตตัวเลข i ตัว = $\{a_1, a_2, ..., a_{i-1}, a_i\}$ จะมีค่าผลรวม = j --- 3

```
ดังนั้นปัญหา T(i,j) แบ่งออกเป็น
ปัญหาย่อย T(i-1, j) และ T(i-1, j- a₁)
<u>แนวคิด</u> : เก็บคำตอบของปัญหาย่อยไว้ใน 2D Boolean array T,
       ที่มีขนาด n แถว และ B+1 คอลัมน์.
       ถ้าเซตย่อย (subset) \{a_1, a_2, ..., a_i\} มีผลรวมเท่ากับ j
              ให้ค่า T[i,i] = true
```

Algorithm สำหรับ subset sum problem

```
สำหรับแถวแรก, (i=1)
        for 0 \le j \le B
           if (j=0) or (a_1 = j)
                  T[1,i] = true
           else T[1,i] = false
สำหรับแถวที่ i, โดยที่ 2 ≤ i ≤ n
        for 0 \le j \le B
           if ((T[i-1,j]==true) \text{ or } (T[i-1,j-a_i]==true))
                          T[i,j] = true
                          T[i,i] = false
           else
```

```
เซต S = <2,3,5,6>
ผลรวม B = 16
```

Is there a subset (มี Subsetหรือไม่)?

True or False?

for
$$0 \le j \le B$$

if $(T[i-1,j]==true)$ or $(T[i-1,j-a_i]==true)$)

 $T[i,j] = true$

else $T[i,j] = false$

	ผลรวม B																
thats	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
a ₁ =2	T	£ 10	3]	F	1	F	P	P	_			/					<u> </u>
a ₂ =3	T	KT 1391.	J	(T)	3.	t	sto	.vt her	e [ili	4 UKN	นสิน]	L					
a ₃ =5,) >	4	T		(T)-	<i>,</i>	Ţ	T		D						
a ₄ =6	T		1	T		T		The state of the s	4	- 7	F		7	T		士	