ML Summer School 2019

Wrap up – Day I

Janis Keuper

Introduction to ML

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

- Labeled data
- Direct and quantitative evaluation
- Learn model from "ground truth" examples
- Predict unseen examples

Introduction to ML

Basic Types of Machine Learning Algorithms

Supervised Learning

Unsupervised Learning

Reinforcement Learning

- NO Labeled data
- NO Direct and quantitative evaluation
- Explore structure of data

Clustering Algorithms

Introduction

Cluster analysis or **clustering** is the task of **grouping a set of objects** in such a way that objects in the same group (called a cluster) are **more similar** (in some sense) to each other than to those in other groups (clusters). [Wikipedia]

Example 2d data set

Clustering Algorithms: K-Means

Intuition:

$$\arg \min[S] \sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||$$

Clustering Algorithms: K-Means

Evaluation:

More practical examples in the Lab session.... Now!

Clustering Algorithms: DBSCAN

Core – Reachable - Outlier:

Clustering Algorithms: DBSCAN

Evaluation:

More practical examples in the Lab session.... Now!

Clustering Algorithms: Evaluation

INSTITUTE FOR MACHINE LEARNING AND ANALYTICS

How to evaluate clustering:

Visually → use dimension reduction techniques to visualize 2d or 3d

Clustering Algorithms: Evaluation

How to evaluate clustering:

- Visually → use dimension reduction techniques to visualize 2d or 3d
- Quantitative quality measures (what is a good cluster?)
 - Low intra cluster variance

$$a(i) = rac{1}{|C_i|-1} \sum_{j \in C_i, i
eq j} d(i,j)$$

High extra cluster variance

$$b(i) = \min_{i
eq j} rac{1}{|C_j|} \sum_{j \in C_j} d(i,j)$$

For each data point $i \in C_i$ (data point i in the cluster C_i)

Clustering Algorithms: Evaluation

Silhouette Diagrams: finding the best number of clusters

Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

The silhouette plot for the various clustersThe visualization of the clustered data.

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

The silhouette plot for the various clustersThe visualization of the clustered data.

[plots: https://plot.ly/scikit-learn/plot-kmeans-silhouette-analysis/]

https://xkcd.com/1838/

Literature

"Hands on" books:

"complete" theory

Literature

Learning by doing:

www.kaggle.com

