Al in Mathematics Lecture 12 Reinforcement Learning

Bar-Ilan University
Nebius Academy | Stevens Institute of
Technology
June 17, 2025

About This Course

1 week: Intro

2 weeks: Classic ML

2 weeks: Deep Learning in Mathematics

4 weeks: Math as an NLP problem (LLMs etc.)

4 weeks: Reinforcement Learning (RL) in Math

RL Algorithms

RL Algorithms

Policy Gradient

$$\mathcal{J}(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) \right]$$

$$Q(s_t, a_t) = \sum_{t' \ge t} \gamma^{t'-t} R(s_{t'}, a_{t'})$$

$$\nabla_{\theta} \mathcal{J}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta_k} \ln \pi_{\theta_k}(a|s) \, Q(s,a) \right]$$

Variance problem

$$\nabla_{\theta} \mathcal{J}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \ln \pi_{\theta}(a|s) \left(Q(s, a) - b(s) \right)]$$

b(s) is some function of the state that allows us to reduce variance.

One good solution is to use $b(s) = V^{\pi_{\theta}}(s) = \mathbb{E}_a Q(s, a)$. It is exactly what A2C will do.

So $V^{\pi_{\theta}}(s)$ represents how good or promising this state is on average, under the future path defined by π .

A₂C

$$\nabla_{\theta} \mathcal{J}(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \ln \pi_{\theta}(a|s) A(s,a)]$$

where the advantage function is defined as

$$A(s,a) = Q(s,a) - V^{\pi_{\theta}}(s), V^{\pi_{\theta}}(s) = \mathbb{E}_a Q(s,a).$$

To approximate A, we will use

$$A_t(s, a) = r_t + \gamma V(s_{t+1}) - V(s_t)$$

This is a **one-step temporal difference (TD) estimate** of the advantage — efficient and requires minimal storage.

- The value function V(s) is learned using a neural network.
- 2. The advantage estimate A_t uses only the immediate reward and next state value no need to store full trajectories.

A₂C

Collect Trajectories

- 1. Interact with the environment using the current policy π_{θ} .
- 2. Collect (s_t, a_t, r_t, s_{t+1}) for multiple time steps (usually in parallel environments).

Use a neural network (critic) to predict $V_{\phi}(s) \approx V^{\pi}(s)$.

Use 1-step TD estimate:

$$A_t = r_t + \gamma V(s_{t+1}) - V(s_t)$$

Update Policy (Actor):

$$\theta \leftarrow \theta + \alpha \cdot \nabla_{\theta} \ln \pi_{\theta}(a_t \mid s_t) \cdot A_t$$

Update Critic using the loss function:

$$L_{critic} = \left(r_t + \gamma V_{\phi}(s_{t+1}) - V_{\phi}(s_t)\right)^2$$

A2C (Detailed)

Collect Trajectories (Shared Step)

- Interact with the environment using the current policy π_{θ} .
- Collect transitions (s_t, a_t, r_t, s_{t+1}) over multiple steps (e.g., from parallel environments)
- Use a neural network (Critic) to predict $V_{\phi}(s) \approx V^{\pi}(s)$.
- Compute 1-step TD Advantage estimate:

$$A_t = r_t + \gamma V_{\phi}(s_{t+1}) - V_{\phi}(s_t)$$

What Actually Happens:

We **collect a batch** of transitions (s_t, a_t, r_t, s_{t+1}) from multiple environments or steps.

Then compute:

- Batch of value predictions $V(s_t)$, $V(s_{t+1})$
- Batch of advantages

$$A_t = r_t + \gamma V(s_{t+1}) - V(s_t)$$

These batches are then used to perform gradient updates

A2C (Detailed)

Actor Update

Policy Improvement

The actor updates the policy parameters θ to maximize expected return.

Gradient ascent step:

$$\theta \leftarrow \theta + \alpha \cdot \nabla_{\theta} \ln \pi_{\theta} (a_t \mid s_t) \cdot A_t$$

Critic Update

The critic learns to estimate the state value $V^{\pi}(s) \approx V_{\phi}(s)$

Loss function:

$$L_{critic} = \left(r_t + \gamma V \phi(s_{t+1}) - V_{\phi}(s_t)\right)^2$$

Gradient descent step:

$$\phi \leftarrow \phi - \eta \cdot \nabla_{\phi} L_{critic}$$

In both cases we can use stochastic gradient descent to update parameters.

Reducing Variance: Generalized Advantage Estimation (GAE)

TD residual:
$$\delta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$$

GAE:
$$\hat{A}_t = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+l}$$

 $\lambda = 1$ close to REINFORCE approach

 $\lambda = 0$ correspond to TD(0) approach

Importance Sampling

It is an idea coming from off-policy algorithms.

If we collect data with policy $\pi_{\theta_{old}}$ how do we train a new policy π_{θ} ?

$$\mathbb{E}_{a \sim \pi_{\theta}(a|s)}[f(a)] = \sum_{a} \pi_{\theta}(a|s) f(a)$$

$$= \sum_{a} \pi_{\theta}(a|s) \frac{\pi_{\theta_{old}}(a|s)}{\pi_{\theta_{old}}(a|s)} f(a)$$

$$= \mathbb{E}_{a \sim \pi_{\theta_{old}}(a|s)} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)} f(a) \right]$$

Importance Ratio

$$r(\theta) = \frac{\pi_{\theta}(a|s)}{\pi_{\theta_{old}}(a|s)}$$

This idea allows us to sample trajectories less often and reuse them with a correct approximation under the new policy.

This cheating only works if $r(\theta)$ is close to 1.

PPO (Proximal Policy Optimization)

PPO implements the idea of importance sampling and carefully applies it by clipping the loss function with respect to the importance ratio.

$$L_t^{clip}(\theta) = \min(r_t(\theta)\hat{A}_t, clip(r_t(\theta), 1 - \varepsilon, 1 + \varepsilon)\hat{A}_t)$$

Where
$$r_t(\theta) = \frac{\pi_{\theta}(a|S)}{\pi_{\theta_{old}}(a|S)}$$
,

$$\hat{A}_t = \sum_{l=0}^{\infty} (\gamma \lambda)^l \, \delta_{t+l} - \text{GAE}.$$

Value function update

We minimize the squared error between the predicted value and a fixed target:

$$L_t^V = \left(V_{\phi}(s_t) - R_t \right)^2$$

Where the target return is:

$$R_t = \hat{A}_t + V_{\phi}^{old} (s_t)$$

Reminder: $V_{\phi}(s_t)$ approximates $V^{\pi}(s_t) \approx \mathbb{E}_{\pi}[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]$.

 $V_{\phi}^{old}\left(s_{t}\right)$ has frozen parameters and we do not propagate a gradient through it.

Entropy bonus (Optional)

$$S_{\pi_{\theta}} = -\sum_{a} \pi_{\theta}(a|s_{t}) \log \pi_{\theta}(a|s_{t})$$

• When $S(\pi_{\theta})$ is **close to 0** \rightarrow the policy is nearly **deterministic** (one action dominates).

• When $S(\pi_{\theta})$ is **high** \rightarrow the policy is more **stochastic**, promoting exploration.

Total Loss

$$L = -L^{clip} + c_1 L^V - c_2 S_{\pi_\theta}$$

This loss is composed of three parts:

- L^{clip} : Clipped surrogate objective for the **actor** (policy update)
- L^V : Value function loss for the **critic**
- $S(\pi_{\theta})$: Policy entropy to encourage **exploration**

Algorithm

Collect Trajectories

Run the current policy π_{θ} to gather (s_t, a_t, r_t, s_{t+1}) across multiple steps and trajectories.

Estimate Advantages

Use **Generalized Advantage Estimation (GAE)** to compute \hat{A}_t from collected rollouts.

Compute Loss

Update Parameters

Use backpropagation to update both **actor** and **critic** networks.

Application

Gukov et al. (2025) – "What Makes Math Problems Hard for Reinforcement Learning: A Case Study"

A paper that advances and deepens the application of reinforcement learning to mathematics, while also delivering concrete results.

Andrews-Curtis Conjecture

Conjecture [J.Andrews and M.Curtis '65]:

Every balanced presentation of the trivial group

$$\langle x_1, \dots, x_n \mid r_1, \dots, r_n \rangle$$
 $(r_i = e \text{ is a relation})$

can be reduced to the trivial presentation

$$\langle x_1, \dots, x_n | x_1, \dots, x_n \rangle$$

by a sequence of Andrews-Curtis moves.

AC moves

$$r_i, r_j \mapsto r_i r_j, r_j$$
 $r_i \mapsto r_i^{-1}$
 $r_i \mapsto x_j^{\pm 1} r_i x_j^{\mp 1}$

For example:

$$\langle x_1, x_2 | x_1 x_2, x_2 \rangle \rightarrow \langle x_1, x_2 | x_1, x_2 \rangle$$

Can be done in three moves.

A simple **invariant** of a presentation: **Total relator length** (sum of word lengths).

Result #1

$$AK(n) = \langle x, y | x^n = y^{n+1}, xyx = yxy \rangle$$

For every $n \geq 2$, AK(n) is AC-equivalent to the presentation

$$\langle x, y | x^{-1}yx = xyx^{-1}y, xy^{n-1}x = yxy \rangle$$
 of length $n+11$.

This gives a reduction in length of AK(n) for all $n \geq 5$.

Result #2

$$MS(n, w) = \langle x, y | x^{-1} y^n x = y^{n+1}, x = w \rangle$$

These presentations are AC-trivialisable:

- (i) MS(1, w) for all w,
- (ii) $MS(n, w^*)$ for all n > 0 and $w^* = y^{-1}xyx^{-1}$
- (iii) $MS(2, w_k)$ for $w_k = y^{-k}x^{-1}yxy$ where $k \in \mathbb{Z}$.

Furthermore, for each fixed n > 0, all members of the 1-parameter family, $MS(n, w_k)$, parameterized by $k \in \mathbb{Z}$, are AC-equivalent to each other and to AK(n).

THE COMPLEXITY OF BALANCED PRESENTATIONS AND THE ANDREWS-CURTIS CONJECTURE

MARTIN R. BRIDSON

Hard AC presentations

Theorem A. For $k \geq 4$ one can construct explicit sequences of k-generator balanced presentations \mathcal{P}_n of the trivial group so that

(1) the presentations \mathcal{P}_n are AC-trivialisable;

 $\langle a, t, \alpha, \tau \mid [tat^{-1}, a]a^{-1}, \quad [\tau \alpha \tau^{-1}, \alpha]\alpha^{-1},$

- (2) the sum of the lengths of the relators in \mathcal{P}_n is at most 24(n+1);
- (3) the number of (dihedral) AC moves required to trivialise \mathcal{P}_n is bounded below by the function $\Delta(\lfloor \log_2 n \rfloor)$ where $\Delta : \mathbb{N} \to \mathbb{N}$ is defined recursively by $\Delta(0) = 2$ and $\Delta(m+1) = 2^{\Delta(m)}$.
- 7.4. An Example. Let me close by writing down an explicit presentation to emphasize that the explosive growth in the length of AC-trivialisations begins with relatively small presentations. Here is a balanced presentation of the trivial group that requires more than 10^{10000} AC-moves to trivialise it. We use the commutator convention $[x, y] = xyx^{-1}y^{-1}$.

$$\alpha t^{-1} \alpha^{-1} [a, [t[t[ta^{20}t^{-1}, a]t^{-1}, a]t^{-1}, a]],$$

$$a\tau^{-1} a^{-1} [\alpha, [\tau[\tau[\tau\alpha^{20}\tau^{-1}, \alpha]\tau^{-1}, \alpha]\tau^{-1}, \alpha]]).$$

Challenge

Trivializing These Presentations

We cannot rely on naive search.

We need to develop clever strategies, structure-aware heuristics, or even machine learning to attack this problem.

Supermoves

To overcome this challenge, it is natural to introduce **supermoves**—compositions of multiple elementary moves—so that, in terms of supermoves, the distance between presentations becomes significantly shorter.

Adaptive / Dynamic Action Space

AC graph:

5-step neighborhood sizes:

\mathbf{Min}	Max	Mean	Median
72,964	89,872	89,532	89,859

AC graph:

5-step neighborhood sizes:

Min	Max	Mean	Median
72,964	89,872	$89,\!532$	89,859

[89,573 -- 89,575] [89,715 -- 89,731] [89,859 -- 89,872] contain **90%** of hard AC-presentations

complement of these three bands contains **77.2%** of easy presentations

54% of easy presentations have neighborhood sizes smaller than 89,573

FIGURE 17. Sizes of the 5-step neighborhood of all considered presentations in the Miller–Schupp series. We group neighborhood sizes whose representation is below 2.5%.