Analysis 2 (Vorlesungen)

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 24, 2023)

Definition 1. f is differentiable at $x_0 \in x$ if and only if

$$\lim_{x \to 0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

(This definition means that the limit exists and is finite.) We define the limit as the derivative.

Definition 2. Let X be a set and $f: x \to \mathbb{R}$ a function. A point $x_0 \in X$ is called a global maximum if and only if

$$f(x) \leq f(x_0)$$

holds for all $x \in X$

Definition 3. If it is also true that $f(x) < f(x_0)$ for all $x \in X$, then we call x_0 a strict global maximum "striktes globales Maximum".

Definition 4. $x \in X$ heißt lokales (striktes) Maximum, wenn es eine Umgebung $U \subseteq X$ gibt, sodass x_0 eine Maximum von $f|_U : U \to \mathbb{R}$ ist.

Theorem 5. (Mittelwertsatz) Sei $I = [a, b] \subseteq \mathbb{R}$ mit a < b, und $f, g : [a, b] \to \mathbb{R}$ stetig und differenzierbar.

Dann gibt es $x_0 \in (a, b)$ mit

$$(f(b) - f(a)) g'(x_0) = (g(b) - g(a)) f'(x_0).$$

Proof. Sei

$$\varphi(x) = (f(b) - f(a)) g(x) - (g(b) - g(a)) f(x).$$

 $\varphi(x)$ ist stetig und differenzierbar auf [a,b] bzw. (a,b). Wir haben

$$\varphi(a) = \dots = \varphi(b).$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Dann können wir den Satz Rolles verwenden: $\exists x_0 \in (a,b)$ mit $\varphi'(x_0) = 0$, d.h.

$$\varphi'(x_0) = (f(b) - f(a)) g'(x_0) - (g(b) - g(a)) f'(x_0).$$

Corollary 6. Sei $f:[a,b] \to \mathbb{R}$ stetig und differenzierbar in (a,b) mit f'(x)=0 für alle $x \in (a,b)$. Dann ist f konstant.

Corollary 7. Sei $f:[a,b] \to \mathbb{R}$ stetig und in (a,b) differenzierbar. Dann

- (i) Gilt f'(x) > 0 für alle $x \in (a,b)$, so ist f strikt monoton wachsend.
- (ii) Gilt f' < 0, so ist f monoton fallend.

Corollary 8. Sei $f:[a,b] \to \mathbb{R}$ stetig und auf (a,b) differenzierbar mit beschränkter Ableitung, dann sie die Differenzquotienten auch beschränkt. Wenn

$$m \le f'(x) \le M$$
,

dann ist

$$m \le \frac{f(b) - f(a)}{b - a} \le M.$$

Corollary 9.

$$\left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} \right| < ||f'||.$$

 $Wobei ||f'|| = \sup_{x \in [a,b]} f'(x)$

Theorem 10. Sei $X \subseteq \mathbb{C}$ offene Teilmenge und $f: X \to \mathbb{C}$ differenzierbar mit lokal beschränkter Ableitung $f': X \to \mathbb{C}$. Dann sei für alle kompakten Teilmengen $K \subseteq X$ und alle $z_1, z_0 \in K$

$$|f(z_1) - f(z_0)| < ||f'||_K |z_1 - z_0|.$$

Proof. Wir bezeichnet

$$z(t) = z_1 t + z_0 (1 - t),$$

und wahlen ein komplexe Zahl c, womit $c(z_1 - x_0) = |z_1 - z_0|$. Dann ist

$$g(t) = Re\left[cf(z(t))\right]$$

differenzierbar und reelle. Dann ist

$$g'(t) = Re \left[cf'(z(t))(z_1 - z_0) \right]$$

Daher gilt auch

$$|g'(t)| < |cf'(z(t))(z_1 - z_0)$$

$$= |c||f'(z(t))||z_1 - z_0|$$

$$= |f'(z(t))||z_1 - z_0|$$

$$< ||f'|||z_1 - z_0|$$

Theorem 11. (Zwischenwertsatz für Ableitung) Sei $f:[a,b] \to \mathbb{R}$ diffbar mit

$$f'(a) \neq f'(b)$$
.

Dann nimmt f' jeder Wert zwischen f'(a) und f'(b) in (a,b) an.

Proof. Nimm an, dass f'(a) < f'(b), und sei $y_0 \in (f'(a), f'(b))$. Dann behandelt

$$\varphi(x) = f(x) - y_0 x, x \in [a, b].$$

 φ ist diffbar mit $\varphi'(x) = f'(x) - y_0$. Dann ist

$$\varphi'(a) = f'(a) - y_0 < 0$$

$$\varphi'(b) = f'(b) - y_0 > 0$$

Dann existiert $\epsilon_1, \epsilon_2 > 0$ mit

$$\varphi(x) < \varphi(a),$$

I. 17/10/23

Wir befassen uns mit Grenze wie

$$\lim_{x \to x_0} \frac{f(x)}{g(x)}.$$

Es wäre gut, wenn wir das als

$$\frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$

schreiben könnten. Das ist nur richtig, wenn $\lim_{x\to x_0} g(x) \neq 0$. Was passiert, wenn

$$\lim_{x \to x_0} g(x) = 0 = \lim_{x \to x_0} f(x)?$$

Lemma 12. Sei $g(x_0) = 0$ und $g'(x_0) \neq 0$. Dann existiert eine Umgebung U, dafür gilt

$$g(x) \neq 0 \qquad x \in U\{0\}.$$

Proof. Angenommen, dass es falsch ist. Dann existiert in jeder offene Ball $B_{1/n}(x_0)$ ein punkt, der wie als x_n bezeichnen und dafür gilt, dass $g(x_n) = 0$.

Theorem 1. Seien $f, g: X \to \mathbb{K}$ bei $x_0 \in X$ differenzierbar und

$$f(x_0) = 0 = g(x_0)$$
 $g'(x_0) \neq 0$.

Dann gilt

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}.$$

Theorem 13. (L'Hopital) Seien $I = (a, b) \subseteq \mathbb{R}$ offen und $f, g : I \to \mathbb{R}$ differenzierbar auf I mit $g'(x) \neq 0$ für alle $x \in I$. Weitere gilt auch entweder

(i)
$$\lim_{x\to a^-} f(x) = 0 = \lim_{x\to a^-} f(x)$$

(ii)
$$\lim_{x\to a^-} g'(x) = \infty \ oder - \infty$$

In diesem Fall gilt

$$\lim_{x \to a^{-}} \frac{f(x)}{q(x)} = \lim_{x \to a^{-}} \frac{f'(x)}{q'(x)},$$

sofern der Grenzwert der Ableitung in $\mathbb{R} \cup \{\pm \infty\}$ existiert. Eine entsprechende Aussage gilt für b.

Definition 14. Sei X eine offene Teilmenge $\subseteq \mathbb{R}$ oder \mathbb{C} . Dann

- 1. Eine Funktion $f:X\to\mathbb{K}$ heißt k-mal stetig differenzierbar, wenn $f':X\to\mathbb{K}$ (k-1)-mal stetig differenzierbar ist.
- 2. Wenn das für alle $k \in \mathbb{N}$ passt, heißt f glatt.

- 3. Die Menge alle k-mal stetig differenzierbar Funktionen heißt \mathcal{C}^k
- 4. Wenn für a Funktion es für alle k passt, kann die Funktion als glatt gennant werden.
- 5. Die Menge alle glatte Funktionen heißt \mathcal{C}^{∞}

Proof. f, g sind unbedingt stetig bei x_0 , also

$$\lim_{x \to x_0} f(x) = 0 = \lim_{x \to x_0} g(x).$$

Da $g'(x_0) \neq 0$, gibt es eine Umgebung $U \subseteq X$ von x_0 mit $g(x) \neq 0$ für $x \in U$ $\{x_0\}$. Dann gilt dafür

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f(x) - f(x_0)}{x - x_0} \frac{x - x_0}{g(x) - g(x_0)}.$$

Weil die beiten Grenzwerte existieren und $g'(x_0) \neq 0$ gilt, folgt also

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}.$$

Example 15. 1. Polynome sind glatt, die Ableitung eines Polynoms ist immer einen anderen Polynom.

- 2. Rationale Abbildungen sind glatt, die Ableitung eine rationale Abbildung ist rational.
- 3. Die Ableitung die exponentiale Abbildung ist wieder die exponentiale Abbildung.

Definition 16. Eine Algebra \mathcal{A} von Funktionen ist eine Menge, wobei für alle $f, g \in \mathcal{A}$ gilt.

$$af + bg \in \mathcal{A},$$

$$fg \in \mathcal{A}$$
.

Theorem 2. Sei X offene Teilmenge der rellen oder komplexen Zahlen und $k \in \mathbb{N} \cup \{\infty\}$. Dann

- 1. C^k bietet eine Unteralgebra alle Funktionen
- 2. Ist $f \neq 0$ auf ganze X eine C^k Funktion, so ist $\frac{1}{f} \in C^k(X, \mathbb{K})$.
- 3. Ist Y ein weitere Teilmenge und $g \in \mathcal{C}(Y < \mathbb{K})$ mit $f(X) \subseteq Y$, dann ist $g \circ f \in C^k(X, \mathbb{K})$

II. REIHEN UND FOLGEN VON FUNKTIONEN

Theorem 17.