- ¹ Biometry of the invasive lionfish (Pterois volitans) in Playa del Carmen, Mexico and a review
- of length weight parameters across the invasion range
- 3 Juan Carlos Villaseñor-Derbez¹
- $_{\scriptscriptstyle{5}}$ $^{-1}$ Bren School of Environmental Sciences and Management, University of California Santa
- 6 Barbara

9

11

- 8 Full postal address: 4312 Bren Hall, Santa Barbara, CA, 93106
- 10 Running title: Length weight parameters for Pterois volitans
- 12 Corresponding author information:
- Juan Carlos Villaseñor-Derbez
- 4312 Bren Hall
- 15 Santa Barbara, CA
- 16 93106
- 17 jvillasenor@bren.ucsb.edu
- $_{18}$ +1 (207) 205 8435

- 19 Title of the contribution: Biometry of the invasive lionfish (Pterois volitans) in Playa del
- ²⁰ Carmen, Mexico and a review of length weight parameters across the invasion range

22 Abstract

300 words

24

21

25 Key words

26 lionfish, biometry, length-weight relationship, Mexico

27

28 Resumen

29 300 palabras

30

31 Palabras clave

pez león, biometría, relación lopngitud-peso, México

33

34 Introduction

- 35 Lionfish
- Lionfish (Pterois volitans miles complex) are an invasive species in the North-Western
- 37 Atlantic and the Caribbean. They are the first marine vertebrates to establish in North
- 38 Atlantic (Schofield 2009: Schofield (2010)) and Caribbean coasts. Their presence in these
- waters has been labeled as a major marine invasion due to its threat to local biodiversity, the
- veolocity of its invasion, and the difficulty of management (Hixon et al. 2016).
- Liofnish have been prooven to reduce recruitment of local reef fish species (Albins and Hixon
- 2008). Their diet focuses on small demersal reef-associated fish and crustaceans (Morris and
- Akins 2009; Villaseñor-Derbez and Herrera-Pérez 2014).
- Lionfish were first recorded in Mexican waters in 2010 (Aguilar-Perera and Tuz-Sulub 2010).
- Studies quantifying biomass from visual surveys / Ecosim simulations / stock assessments
- 46 Significant efforts have been made to understand the possible impacts of the invasion
- by X (cita de X), y (cita de Y) y z (cita de Z). An important pair of parameters often
- 48 used in these studies are those which allow researchers to convert observed lengths into
- weights (i.e. weight-at-length parameters) to estimate biomass. Having presission of these
- parameters is important, because small changes in any of them can result in important over-
- or unnderestimation of biomass levels. This becomes particularly important when research
- 52 involves, for example, identifying the total biomass available for harvest by fishers (as invasion
- management programs).
- 54 Objectives
- The objectives of this study include providing site-specific weight-at-length parameters for
- the invasive lionfish in the Mexican Caribbean region. At the same time, we highlight the
- 57 importance of using site-specific parameters by using those from other studies and comparing

- 58 predicted weights to those found in this study. Finaly, we provide a review of and summarize
- other weight-at-length studies presented, making them readily accessible for future research.

$_{\scriptscriptstyle 60}$ Materials and Methods

Area of study

- The present study took place off the coasts of Playa del Carmen, in the coasts of the Mexican
- 63 Caribbean. The region represents the northernmost section of the Mesoamerican reef, which
- extends from coast of Cancun south to Honduras (reference). Coral reefs and mangroves
- are important habitats distributed along the cost, and represent important sources of income
- 66 in terms of extractive (e.g. recreational fishing) and non-extractive (e.g. SCUBA diving)
- activities related to tourism (reference), the main source of income to the local economy.
- 68 Coral reefs in the region are characterized by X, Y, Z. Descripcion general de los arrecifes.

69 Fish sampling

- 70 The present study uses samples obtained by Villaseñor-Derbez & Herrera-Pérez (2014) for
- 71 stomach content analysis between May and August of 2010. A total of 33 SCUBA immersions
- were performed in 10 sampling sites along 14 Km of coast between Puerto Aventuras and
- Akumal (Fig. 1, Table 1). All observed organisms (n = 109) were collected using hand
- 74 nets -to avoid weight loss due to bleeding- and numbered collection bottles. Information on
- Depth and other comments were recorded in an underwater slide. Depth was recorded by
- dive gauges held by divers as safety procedures during the collections. Samples were frozen
- vithin 30 mins of completing the dive and stored for posterior analysis in the lab. Sampling
- locations included wall and carpet reefs at depths between 5.7 m and 38.1 m. For every
- organism Total Length (TL; mm) and Total Weight (TW; gr) were recorded in the lab.

80 Data analysis

- The weight at length relationship between the observed variables was calculated with the
- 82 allometric growth function:

$$TW = aTL^b (1)$$

- Where TW is the Total Weight (gr), TL is the observed Total Length (mm), a is the scaling
- parameter and b is the exponent (**revisar**). The dependent and independent variables were
- transformed via base-10 logarithms so that the equation is then:

$$log_{10}(TW) = blog_{10}TL + log_{10}(a)$$

$$\tag{2}$$

To simplify this equation, we can re-write it as:

$$Y = mX + c \tag{3}$$

- Where $Y = log_{10}(TW)$, $X = log_{10}(TL)$, m = b, and $c = log_{10}(a)$. This equation was used
- to estimate the coefficients (a and b), which were estimated via an Ordinary Least Square
- 89 Regression and heteroskedastic-robust; Standard Errors were calculated to account for lo
- 90 que sea que Olivier dijo que era importante.
- Conversions to biomass
- 92 -Lit review
- When reviewing other length-weight relationships, it was noticed that some papers indistinctly
- use a to report either the multiplying coefficient in eq. 1 or the y-intercept (c) in eq. 2,
- which might sometimes be overlooked. Furthermore, some studies report their parameters as

- mm-to-gr conversions, but a rapid evaluation of such parameters indicates that they were
- estimated as cm-to-gr conversions (Fig. A1). Here, both parameters (a and c) are reported
- for the present findings and, when ever required, coefficients from other studies are converted.
- All coefficients are reported as mm to gr conversions.

100 Results

101 Length-weight relationship

102 Comparison of allometric parameters

Discussion and Conclusions

- Not using spear poles allows us to have a full sample of fish with a wider range of sizes and
- weights, ideal for visual census. Also, there is no loss in body mass due to bleeding.

Aknowledgements

107 Tables

Location table

Table 1: Coordinates, minimum, maximum and mean depth (m), and number of samples for each location. n= sample size.

Location	Latitude	Longitude	Minimum Depth (m)	Maximum Depth (m)	Mean Depth (m)	r
Canones	20.477	-87.233	15.0	31.2	21.6	11
Castillo	20.496	-87.220	12.5	30.5	27.5	18
Cuevitas	20.478	-87.244	7.4	12.8	11.2	4
Islas	20.490	-87.228	14.0	19.4	16.7	10
Paamul	20.513	-87.192	9.9	22.7	15.5	31
Paraiso	20.484	-87.226	9.4	38.1	17.7	16
Pared	20.502	-87.212	12.1	21.0	16.3	12
Pedregal	20.507	-87.204	14.4	14.9	14.7	ç
Santos	20.493	-87.222	5.7	26.6	16.2	2
Tzimin-Ha	20.393	-87.307	21.2	24.6	22.9	2
Total			5.7	38.1	18.6	109

Summary table

Table 2: Summary statistics of Length and Weight of sampled organisms.

Statistic	N	Mean	St. Dev.	Min	Max
Length	109	140.22	62.41	34	310
Weight	109	52.56	76.58	0.30	397.70

110 Regression table

Table 3:

	Dependent variable:				
	$\log 10(\text{Weight})$				
Constant	$-5.494 (-5.657, -5.331)^{***}$				
$\log 10(\text{Length})$	$3.235 (3.159, 3.311)^{***}$				
F Statistic	6928.67*** (df = 1; 107)				
Observations	109				
Adjusted R^2	0.976				
Residual Std. Error	0.096 (df = 107)				
Note:	*p<0.1; **p<0.05; ***p<0.01				

Review table

Table 4: Allometric growth parameters for eight published papers, Fishbase (Froese and Pauly 2016), and this study. All parameters have been adjusted to convert from millimiters to grams. n = Sample size, a = scaling parameter for eq. 1, c = y-intercept for eq. 3, b = exponent or slope for eq. 1 or eq. 2, respectively.

n	a	c	b	r2	Gender	minD	maxD
472	0	-5.5400	3.3000	0.9500	Both	5.0	20.0
67	0	-5.9300	3.4700	0.9500	F	5.0	20.0
59	0	-5.3800	3.2300	0.9500	M	5.0	20.0
458	0	-4.4400	2.8100	NA	Both	NA	NA
419	0	-4.5600	2.8500	0.8715	Both	18.3	18.3
774	0	-4.5391	2.8900	NA	Both	27.0	45.0
1450	0	-4.6411	2.8900	0.9600	Both	NA	NA
582	0	-5.8600	3.4349	0.9900	Both	NA	NA
119	0	-5.5700	3.3100	0.9700	M	NA	NA
115	0	-5.1700	3.1437	0.9400	F	NA	NA
1887	0	-5.5229	3.2400	0.9700	Both	15.0	30.0
2143	0	-5.2828	3.1832	0.9907	Both	0.5	57.0
NA	0	-5.0293	3.0900	NA	Both	NA	NA
109	0	-5.4941	3.2347	0.9766	Both	5.7	38.1
-	472 67 59 458 419 774 1450 582 119 115 1887 2143 NA	472 0 67 0 59 0 458 0 419 0 774 0 1450 0 582 0 119 0 115 0 1887 0 2143 0 NA 0	472 0 -5.5400 67 0 -5.9300 59 0 -5.3800 458 0 -4.4400 419 0 -4.5600 774 0 -4.5391 1450 0 -4.6411 582 0 -5.8600 119 0 -5.5700 115 0 -5.1700 1887 0 -5.5229 2143 0 -5.2828 NA 0 -5.0293	472 0 -5.5400 3.3000 67 0 -5.9300 3.4700 59 0 -5.3800 3.2300 458 0 -4.4400 2.8100 419 0 -4.5600 2.8500 774 0 -4.5391 2.8900 1450 0 -4.6411 2.8900 582 0 -5.8600 3.4349 119 0 -5.5700 3.3100 115 0 -5.1700 3.1437 1887 0 -5.5229 3.2400 2143 0 -5.2828 3.1832 NA 0 -5.0293 3.0900	472 0 -5.5400 3.3000 0.9500 67 0 -5.9300 3.4700 0.9500 59 0 -5.3800 3.2300 0.9500 458 0 -4.4400 2.8100 NA 419 0 -4.5600 2.8500 0.8715 774 0 -4.5391 2.8900 NA 1450 0 -4.6411 2.8900 0.9600 582 0 -5.8600 3.4349 0.9900 119 0 -5.5700 3.3100 0.9700 115 0 -5.1700 3.1437 0.9400 1887 0 -5.5229 3.2400 0.9700 NA 0 -5.0293 3.0900 NA	472 0 -5.5400 3.3000 0.9500 Both 67 0 -5.9300 3.4700 0.9500 F 59 0 -5.3800 3.2300 0.9500 M 458 0 -4.4400 2.8100 NA Both 419 0 -4.5600 2.8500 0.8715 Both 774 0 -4.5391 2.8900 NA Both 1450 0 -4.6411 2.8900 0.9600 Both 582 0 -5.8600 3.4349 0.9900 Both 119 0 -5.5700 3.3100 0.9700 M 115 0 -5.1700 3.1437 0.9400 F 1887 0 -5.5229 3.2400 0.9700 Both NA 0 -5.0293 3.0900 NA Both	472 0 -5.5400 3.3000 0.9500 Both 5.0 67 0 -5.9300 3.4700 0.9500 F 5.0 59 0 -5.3800 3.2300 0.9500 M 5.0 458 0 -4.4400 2.8100 NA Both NA 419 0 -4.5600 2.8500 0.8715 Both 18.3 774 0 -4.5391 2.8900 NA Both 27.0 1450 0 -4.6411 2.8900 0.9600 Both NA 582 0 -5.8600 3.4349 0.9900 Both NA 119 0 -5.5700 3.3100 0.9700 M NA 1887 0 -5.5229 3.2400 0.9700 Both 15.0 2143 0 -5.0293 3.0900 NA Both NA

112 Figures

$_{113}$ Map

Histograms

Scatter plot

Review plots

$_{121}$ Predictions plot

123 References

- Aguilar-Perera, Alfonso, and Luis Quijano-Puerto. 2016. "Relations Between Fish Length
- to Weight, and Otolith Length and Weight, of the Lionfish Pterois Volitans in the Parque
- Nacional Arrecife Alacranes, Southern Gulf of Mexico." Rev. Biol. Mar. Oceanogr. 51 (2):
- ¹²⁷ 469–74. doi:10.4067/S0718-19572016000200025.
- Aguilar-Perera, Alfonso, and Armin Tuz-Sulub. 2010. "Non-Native, Invasive Red Lionfish
- (Pterois Volitans [Linnaeus, 1758]: Scorpaenidae), Is First Recorded in the Southern Gulf
- of Mexico, Off the Northern Yucatan Peninsula, Mexico." AI 5 (Supplement 1): S9–S12.
- doi:10.3391/ai.2010.5.S1.003.
- Albins, MA, and MA Hixon. 2008. "Invasive Indo-Pacific Lionfish Pterois Volitans Reduce
- Recruitment of Atlantic Coral-Reef Fishes." Mar. Ecol. Prog. Ser. 367 (September): 233–38.
- doi:10.3354/meps07620.
- Barbour, Andrew B, Micheal S Allen, Thomas K Frazer, and Krista D Sherman. 2011.
- "Evaluating the Potential Efficacy of Invasive Lionfish (Pterois Volitans) Removals." PLoS
- ONE 6 (5): e19666. doi:10.1371/journal.pone.0019666.
- 138 Chin, Denise A., Karl A. Aiken, and Dayne Buddo. 2016. "Lionfish Population Density in
- Discovery Bay, Jamaica." International Journal of Scientific & Engineering Research 7 (12):
- 140 1327-31.
- de Leon, Ramon, Kim Vane, Paulo Bertuol, Valerie C. Chamberland, Fernando Simal, Eseld
- 142 Imms, and Mark J. A. Vermeij. 2013. "Effectiveness of Lionfish Removal Efforts in the
- Southern Caribbean." Endanger Species Res 22 (2): 175–82. doi:10.3354/esr00542.
- Edwards, Morgan A, Thomas K Frazer, and Charles A Jacoby. 2014. "Age and Growth of
- 145 Invasive Lionfish (Pterois Spp.) in the Caribbean Sea, with Implications for Management."

- 146 BMS 90 (4): 953-66. doi:10.5343/bms.2014.1022.
- Fogg, Alexander Q., Eric R. Hoffmayer, William B. Driggers, Matthew D. Campbell, Gilmore
- J. Pellegrin, and William Stein. 2013. "Distribution and Length Frequency of Invasive Lionfish
- (Pterois Sp.) in the Northern Gulf of Mexico." GCR 25 (January). doi:10.18785/gcr.2501.08.
- Froese, R, and D Pauly. 2016. "FishBase." WEBSITE. FishBase. http://www.fishbase.org/.
- Hixon, MA, SJ Green, MA Albins, JL Akins, and JA Morris. 2016. "Lionfish: A Major
- ¹⁵² Marine Invasion." Mar. Ecol. Prog. Ser. 558 (October): 161–65. doi:10.3354/meps11909.
- Morris, JA, and JL Akins. 2009. "Feeding Ecology of Invasive Lionfish (Pterois Volitans) in
- the Bahamian Archipelago." Environ. Biol. Fishes 86 (3): 389–98. doi:10.1007/s10641-009-
- 155 9538-8.
- Sabido-Itza, MM, A Medina-Quej, A De Jesus-Navarrete, JM Gomez-Poot, and MDC
- Garcia-Rivas. 2016. "Uso de La Estructura de Tallas Como Evidencia Del Establecimiento
- Poblacional Del Pez Le?n Pterois Volitans (Scorpaeniformes: Scorpaenidae) En El Sur Del
- ¹⁵⁹ Caribe Mexicano." RBT 64 (1): 353. doi:10.15517/rbt.v64i1.18943.
- Sandel, Vera, Damian Martinez-Fernández, Daniel Wangpraseurt, and Luis Sierra. 2015.
- ¹⁶¹ "Ecology and Management of the Invasive Lionfish Pterois Volitans/Miles Complex (Per-
- ciformes: Scorpaenidae) in Southern Costa Rica." Rev Biol Trop 63 (1): 213–21. http:
- 163 //www.ncbi.nlm.nih.gov/pubmed/26299126.
- Schofield, Pamela. 2009. "Geographic Extent and Chronology of the Invasion of Non-Native
- Lionfish (Pterois Volitans [Linnaeus 1758] and P. Miles [Bennett 1828]) in the Western North
- 166 Atlantic and Caribbean Sea." AI 4 (3): 473–79. doi:10.3391/ai.2009.4.3.5.
- 167 . 2010. "Update on Geographic Spread of Invasive Lionfishes (Pterois Volitans [Linnaeus,
- 168 1758] and P. Miles [Bennett, 1828]) in the Western North Atlantic Ocean, Caribbean Sea and

- Gulf of Mexico." AI 5 (Supplement 1): S117-S122. doi:10.3391/ai.2010.5.S1.024.
- Villaseñor-Derbez, Juan Carlos, and Rogelio Herrera-Pérez. 2014. "Brief Description of
- Prey Selectivity and Ontogenetic Changes in the Diet of the Invasive Lionfish Pterois
- Volitans (Actinopterygii, Scorpaenidae) in the Mexican Caribbean." PANAMJAS 9 (2):
- 131–35. https://www.researchgate.net/publication/265293117/_Brief/_description/_of/
- __prey/_selectivity/_and/_ontogenetic/_changes/_in/_the/_diet/_of/_the/_invasive/
- __lionfish/__Pterois/__volitans/__Actinopterygii/__Scorpaenidae/__in/__the/__Mexican/
- 176 Caribbean.