

US005974869A

United States Patent [19]

Danyluk et al.

[11] Patent Number:

5,974,869

[45] Date of Patent:

Nov. 2, 1999

[54]	NON-VIBRATING CAPACITANCE PROBE		
	FOR WEAR MONITORING		

[75] Inventors: Steven Danyluk, Atlanta, Ga.; Anatoly

Zharin, Minsk, Belarus; Elmer Zanoria, Oak Ridge, Tenn.; Lennox Reid, Houston, Tex.; Kenneth M. Hamall, Peachtree City, Ga.

[73] Assignee: Georgia Tech Research Corp., Atlanta,

[21] Appl. No.: 08/971,101

[22] Filed: Nov. 14, 1997

Related U.S. Application Data

[60] Provisional application No. 60/030,814, Nov. 14, 1996.

[51] Int. Cl.⁶ G01R 27/26

[56] References Cited

U.S. PATENT DOCUMENTS

4,295,092 10/1981 Okamura.

4,973,910	11/1990	Wilson 324/457		
5,270,664	12/1993	McMurtry et al		
5,272,443	12/1993	Winchip et al		
5,293,131	3/1994	Semones et al		
5,315,259	5/1994	Jostlein .		
5,369,370	11/1994	Stratmann et al 324/663		
5,517,123	5/1996	Zhao et al 324/458		
5,583,443	12/1996	McMurtry et al 324/690 X		
FOREIGNI DAMENUL DO GUIA FENTEG				

FOREIGN PATENT DOCUMENTS

Primary Examiner—Daniel S. Larkin Attorney, Agent, or Firm—Deveau, Colton & Marquis

[57] ABSTRACT

A non-vibrating capacitance probe for use as a non-contact sensor for tribological wear on a component. The device detects surface charge through temporal variation in the work function of a material. A reference electrode senses changing contact potential difference over the component surface, owing to compositional variation on the surface. Temporal variation in the contact potential difference induces a current through an electrical connection. This current is amplified and converted to a voltage signal by an electronic circuit with an operational amplifier.

10 Claims, 13 Drawing Sheets

