Section 7.7

Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions

The Graph of the Tangent Function

Х	y = tan x	(x, y)
$-\frac{\pi}{3}$	$-\sqrt{3} \approx -1.73$	$\left(-\frac{\pi}{3},-\sqrt{3}\right)$
$-\frac{\pi}{4}$	-1	$\left(-\frac{\pi}{4},-1\right)$
$-\frac{\pi}{6}$	$-\frac{\sqrt{3}}{3}\approx -0.58$	$\left(-\frac{\pi}{6}, -\frac{\sqrt{3}}{3}\right)$
0	0	(0, 0)
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{3} \approx 0.58$	$\left(\frac{\pi}{6}, \frac{\sqrt{3}}{3}\right)$
$\frac{\pi}{4}$	1	$\left(\frac{\pi}{4},1\right)$
$\frac{\pi}{3}$	$\sqrt{3} \approx 1.73$	$\left(\frac{\pi}{3},\sqrt{3}\right)$

$$\tan x = \frac{\sin x}{\cos x}$$

х	sin <i>x</i>	cos x	$y = \tan x$
$\frac{\pi}{3} \approx 1.05$	$\frac{\sqrt{3}}{2}$	<u>1</u> 2	$\sqrt{3} \approx 1.73$
1.5	0.9975	0.0707	14.1
1.57	0.9999	7.96×10^{-4}	1255.8
1.5707	0.9999	9.6×10^{-5}	10,381
$\frac{\pi}{2} \approx 1.5708$	1	0	Undefined

 $y = \tan x$, $-\infty < x < \infty$, x not equal to odd multiples of $\frac{\pi}{2}$

Properties of the Tangent Function

- **1.** The domain is the set of all real numbers, except odd multiples of $\frac{\pi}{2}$.
- 2. The range is the set of all real numbers.
- **3.** The tangent function is an odd function, as the symmetry of the graph with respect to the origin indicates.
- **4.** The tangent function is periodic, with period π .
- 5. The x-intercepts are ..., -2π , $-\pi$, 0, π , 2π , 3π ,...; the y-intercept is 0.
- **6.** Vertical asymptotes occur at $x = \dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$

1 Graph Functions of the Form $y = A \tan(\omega x) + B$ and $y = A \cot(\omega x) + B$

EXAMPLE

Graphing Functions of the Form $y = A \tan(\omega x) + B$

Graph: $y = 2 \tan x - 1$

EXAMPLE

Graphing Functions of the Form $y = A \tan(\omega x) + B$

Graph: $y = 3 \tan(2x)$

The Graph of the Cotangent Function

х	$y = \cot x$	(x, y)
$\frac{\pi}{6}$	$\sqrt{3}$	$\left(\frac{\pi}{6},\sqrt{3}\right)$
$\frac{\pi}{4}$	1	$\left(\frac{\pi}{4},1\right)$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{3}$	$\left(\frac{\pi}{3}, \frac{\sqrt{3}}{3}\right)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2},0\right)$
$\frac{2\pi}{3}$	$-\frac{\sqrt{3}}{3}$	$\left(\frac{2\pi}{3}, -\frac{\sqrt{3}}{3}\right)$
$\frac{3\pi}{4}$	-1	$\left(\frac{3\pi}{4},-1\right)$
$\frac{5\pi}{6}$	$-\sqrt{3}$	$\left(\frac{5\pi}{6}, -\sqrt{3}\right)$

$$y = \cot x$$
, $-\infty < x < \infty$, x not equal to integer multiples of π , $-\infty < y < \infty$

The Graph of the Cosecant Function

 $y = \csc x, -\infty < x < \infty, x \text{ not equal to integer}$ multiples of π , $|y| \ge 1$

The Graph of the Secant Function

$$y = \sec x, -\infty < x < \infty, x \text{ not equal}$$
 to odd multiples of $\frac{\pi}{2}$, $|y| \ge 1$

2 Graph Functions of the Form $y = A \csc(\omega x) + B$ and $y = A \sec(\omega x) + B$

EXAMPLE

Graphing Functions of the Form $y = A \csc(\omega x) + B$

