

Description

The VSM9P06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =-60V,I_D =-9A

 $R_{DS(ON)}$ <35m Ω @ V_{GS} =-10V

 $R_{DS(ON)}$ <50m Ω @ V_{GS} =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

SOP-8

Schematic Diagram

Package Marking and Ordering Information

	0				
Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM9P06-S8	VSM9P06	SOP-8	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-60	V	
Gate-Source Voltage	V _G s	±20	V A A A W	
Drain Current-Continuous	I _D	-9		
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	-6.4		
Pulsed Drain Current	I _{DM}	36		
Maximum Power Dissipation	P _D	3.0		
Single pulse avalanche energy (Note 5)	E _{AS}	156	mJ	
Operating Junction and Storage Temperature Range	T_J, T_{STG}	-55 To 150	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient ^(Note 2)	R _{θJA}	41.7	°C/W
--	------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	<u> </u>					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.0	-1.75	-2.5	V
Orain-Source On-State Resistance	Б	V _{GS} =-10V, I _D =-9A	-	30.5	35	mΩ
	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-9A	-	37	50	mΩ
Forward Transconductance	g _{FS}	V _{DS} =-5V,I _D =-9A	-	20	-	S
Dynamic Characteristics (Note4)	<u> </u>			•		
Input Capacitance	C _{lss}	V _{DS} =-30V,V _{GS} =0V,	-	1919.7	-	PF
Output Capacitance	Coss		-	124.3	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	96.9	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =-30 V , I_{D} =-9 A	-	12	-	nS
Turn-on Rise Time	t _r		-	14	-	nS
Turn-Off Delay Time	$t_{d(off)}$ V_{GS} =-10V, R_{GEN} =3 Ω		-	38	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Qg	V _{DS} =-30V,I _D =-9A, V _{GS} =-10V	-	36.5	-	nC
Gate-Source Charge	Q _{gs}		-	6.9	-	nC
Gate-Drain Charge	Q _{gd}	VGS10V	-	8.2	-	nC
Drain-Source Diode Characteristics			•	•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-9A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	-9	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = -9A	-	-	40	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	-	70	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition: Tj=25 $^{\circ}\text{C}$,V_{DD}=-30V,V_G=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

-Vds Drain-Source Voltage (V)

-Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

 T_J -Junction Temperature($^{\circ}$ C)

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

-Vsd Source-Drain Voltage (V)

Figure 6 Source- Drain Diode Forward

-I_D- Drain Current (A)

Figure 7 Capacitance vs Vds

T_J-Junction Temperature (°C)

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

 $\label{eq:TJ-Junction} T_{J}-Junction Temperature($^{\circ}$C)$$ $Figure 10 V_{GS(th)} vs Junction Temperature$

Figure 11 Normalized Maximum Transient Thermal Impedance