Skyliny: DS (datová struktura)

16. března 2013

1 Původní algoritmus

Parametry:

- prostor a konstrukční čas $\mathcal{O}(n\log^{d-2}n)$,
- dotaz v čase $\mathcal{O}(\log^{d-1} n)$.

2 vEB stromy

Neperzistentní vEB stromy jsou klasický výsledek, jinak můžete kouknout do mé diplomky. Randomizovaná verze se asi lépe nahlédne v *y-fast* triích.

- **Předpokládáme:** word-RAM se slovy délky w, naše univerzum má velikost N kde prvek se vejde do konstantního počtu slov (tedy $w \in \Omega(\log N)$).
- Všimněte si: v našem případě N je pouze počet bodů na vstupu, což jsme značili n. Předpokládám že v preprocesingu si složky vstupních vektorů porovnáváním setřídíme a očíslujeme.
- Čas: na každou operaci je $\log \log N$ kroků. Podporované operace jsou vkládání a mazání, nejbližší prvek menší/větší než dané číslo. Také lze dělat průchod v $\mathcal{O}(1)$ na krok.
- **Prostor**: deterministicky je $\mathcal{O}(N \log \log N)$ a myslím že se neumí výrazně lépe. Randomizovaně se umí lineární ve velikosti *reprezentované* množiny (pomocí univerzálního hashování).
- Konstrukce: ze setříděné množiny jde (skoro určitě) v čase $\mathcal{O}(n)$. Navíc pro naši úlohu umíme v $\mathcal{O}(n)$ i třídit.
- Závěr: pro náš případ tedy není jen $\mathcal{O}(\sqrt{\log n})$ na prvek, ale tedy dokonce $\mathcal{O}(\log\log n)$. Husté univerzum v problému předchůdce hrozně pomáhá.

3 Perzistentní vEB stromy

V perzistenci jde o to jak efektivně reprezentovat celou historii vývoje datové struktury. Nám bude stačit varianta s lineární historií. Následující článek by to měl dělat, bez zhoršení asymptotických vlastností (prostor je tedy lineární v celkovém počtu jednotkových modifikujících operací). Článek jsem myslím četl a byla to pouze relativně přímočará úprava vEB stromů pomocí perzistentních technik.

Timothy M. Chan: Persistent Predecessor Search and Orthogonal Point Location on the Word RAM. odkaz

4 SemiDynamizace

- **Problém**: odpovídat dotaz zda zadaný bod je dominován některým z reprezentované množiny, budu značit predikátem dom(S, x) (tedy platí když "množina dominuje bod").
- **Předpoklady**: máme statickou strukturu s konstrukčním časem P(d, n), časem dotazu Q(d, n) a prostorem třeba M(d, n).
- Rozložitelnost: pokud množinu bodů S rozložíme tak že $\bigcup_i S_i = S$ (ne nutně disjunktně), pak $dom(S, x) \leftrightarrow \exists i \ dom(S_i, x)$.
- Cíl: získat semidynamickou strukturu, tedy stačí přidat vkládání. Na to je klasická metoda, nejspíš Saxe a Bentley okolo 1978 (myslím si že Overmars a Leeuwen až okolo 1980 přidávali silné a slabé mazání a deamortizaci, odkaz).
- **Výsledek**: pokud se nepletu, pak prostor $\mathcal{O}(M(d,n))$, dotaz $\mathcal{O}(Q(d,n) \cdot \log n)$ a vložení $\mathcal{O}(P(d,n) \cdot \log n/n)$.

5 Dohromady

5.1 Zatím velmi nahrubo (a možná nepravdivě)

Dle mého odhadu bychom měli dostat strukturu s následujícími vlastnostmi:

- lineární prostor (ve velikosti dat, tedy $\mathcal{O}(nd)$ slov),
- konstrukce v čase $\mathcal{O}(nd \log \log n)$,
- dotaz v čase $\mathcal{O}(d \log \log n)$ staticky nebo $\mathcal{O}(d \log n \log \log n)$ dynamicky.

Navíc si myslím že vyextrahovat z té datové struktury skylinu také půjde, nebo minimálně by mělo jít se po konstrukci zeptat na každý vstupní bod...

:-)

5.2 Induktivní konstrukce podrobněji

Zdá se že to zdaleka nepůjde tak jednoduše (mně to od začátku přišlo podezřelé).

- **Předpoklad**: potřebujeme dynamickou a perzistentní (lineární historie) DS(d) pro dotazy. Perzistence je potřeba kvůli prostoru, na perzistenci je potřeba dynamičnost DS(d-1).
- **Základ**: DS(2) je samotný perzistentní vEB strom. Dynamičnost a perzistence je potřeba pouze kvůli indukci. Prostor je $\mathcal{O}(n)$, čas $\mathcal{O}(\log \log n)$ na operaci.
- obecný indukční krok bude potřeba udělat bez asympotické notace, s pojmenovanými konstantami
- DS(3) je sekvence upravovaných DS(2), indexovaných dalším vEB stromem dle přidané souřadnice.
 - Statickou DS(3) tedy máme v prostoru $\mathcal{O}(n)$ a čase $\mathcal{O}(\log \log n)$ na dotaz.
 - Po dynamizaci se dostaneme na časy pro dotaz $\mathcal{O}(\log n \log \log n)$ a pro vložení $\mathcal{O}(\log n)$. Prostor by měl být $\mathcal{O}(n)$ plus $\mathcal{O}(\log n)$ za každou perzistentní modifikaci. (Bohužel. Možná že to půjde vylepšit nějakou jinou perzistentně-dynamizační konstrukcí, ty koncepty k sobě mají blízko.)
- \bullet DS(4) je sekvence upravovaných DS(3), indexovaných dalším vEB stromem dle přidané souřadnice.
 - Statická DS(4) má dotaz v čase $\mathcal{O}(\log n \log \log n)$, čas konstrukce a prostor je $\mathcal{O}(n \log n)$. Srovnání: původně byl prostor $\mathcal{O}(n \log^2 n)$ a čas dotazu $\mathcal{O}(\log^3 n)$, tedy už máme slušné zlepšení (pokud někde není chyba).
 - Po dynamizaci se dostaneme na časy pro dotaz $\mathcal{O}(\log^2 n \log \log n)$ a pro vložení $\mathcal{O}(\log^2 n)$. Prostor by měl být $\mathcal{O}(n \log n)$ plus odhaduju $\mathcal{O}(\log^2 n)$ za každou perzistentní modifikaci.
- \bullet Zdá se že náš přímočarý postup neškáluje v dtak dobře jak jsme předpokládali...