- **532.** The [H₃O⁺] of a solution of acetoacetic acid, CH₃COCH₂COOH, is 4.38×10^{-3} M at 25°C. The concentration of nonionized acid is 0.0731 M at equilibrium. Calculate K_a for acetoacetic acid at 25°C.
- **533.** The K_a of 2-chloropropanoic acid, CH₃CHClCOOH, is 1.48×10^{-3} . Calculate the [H₃O⁺] and the pH of a 0.116 M solution of 2-chloropropionic acid. Let $x = [\text{H}_3\text{O}^+]$. The degree of ionization of the acid is too large to ignore. If your set up is correct, you will have a quadratic equation to solve.
- **534.** Sulfuric acid ionizes in two steps in water solution. For the first ionization shown in the following equation, the K_a is so large that in moderately dilute solution the ionization can be considered 100%.

$$H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4^-$$

The second ionization is fairly strong, and $K_a = 1.3 \times 10^{-2}$:

$$HSO_4^- + H_2O \rightleftharpoons H_3O^+ + SO_4^{2-}$$

Calculate the total $[H_3O^+]$ and pH of a 0.0788 M H_2SO_4 solution. Hint: If the first ionization is 100%, what will $[HSO_4^-]$ and $[H_3O^+]$ be? Remember to account for the already existing concentration of H_3O^+ in the second ionization. Let $x = [SO_4^{2-}]$.

- **535.** The hydronium ion concentration of a 0.100 M solution of cyanic acid, HOCN, is found to be 5.74×10^{-3} M at 25°C. Calculate the ionization constant of cyanic acid. What is the pH of this solution?
- **536.** A solution of hydrogen cyanide, HCN, has a 0.025 M concentration. The cyanide ion concentration is found to be 3.16×10^{-6} M.
 - **a.** What is the hydronium ion concentration of this solution?
 - **b.** What is the pH of this solution?
 - c. What is the concentration of nonionized HCN in the solution? Be sure to use the correct number of significant figures.
 - **d.** Calculate the ionization constant of HCN.
 - e. How would you characterize the strength of HCN as an acid?
 - **f.** Determine the [H₃O⁺] for a 0.085 M solution of HCN.
- **537.** A 1.20 M solution of dichloroacetic acid, CCl₂HCOOH, at 25°C has a hydronium ion concentration of 0.182 M.
 - **a.** What is the pH of this solution?
 - **b.** What is the K_a of dichloroacetic acid at 25°C?
 - **c.** What is the concentration of nonionized dichloroacetic acid in this solution?
 - **d.** What can you say about the strength of dichloroacetic acid?
- **538.** Phenol, C_6H_5OH , is a very weak acid. The pH of a 0.215 M solution of phenol at 25°C is found to be 5.61. Calculate the K_a for phenol.
- **539.** A solution of the simplest amino acid, glycine (NH₂CH₂COOH), is prepared by dissolving 3.75 g in 250.0 mL of water at 25°C. The pH of this solution is found to be 0.890.
 - **a.** Calculate the molarity of the glycine solution.
 - **b.** Calculate the K_a for glycine.

- **540.** Trimethylamine, $(CH_3)_3N$, dissociates in water the same way that NH_3 does—by accepting a proton from a water molecule. The $[OH^-]$ of a 0.0750 M solution of trimethylamine at 25°C is 2.32×10^{-3} M. Calculate the pH of this solution and the K_b of trimethylamine.
- **541.** Dimethylamine, $(CH_3)_2NH$, is a weak base similar to the trimethylamine in item 540. A 5.00×10^{-3} M solution of dimethylamine has a pH of 11.20 at 25° C. Calculate the K_b of dimethylamine. Compare this K_b with the K_b for trimethylamine that you calculated in item 540. Which substance is the stronger base?
- **542.** Hydrazine dissociates in water solution according to the following equations:

$$H_2NNH_2 + H_2O(l) \rightleftharpoons H_2NNH_3^+(aq) + OH^-(aq)$$

 $H_2NNH_3^+(aq) + H_2O(l) \rightleftharpoons H_3NNH_3^{2+}(aq) + OH^-(aq)$

The K_b of this second dissociation is 8.9×10^{-16} , so it contributes almost no hydroxide ions in solution and can be ignored here.

- a. The pH of a 0.120 M solution of hydrazine at 25°C is 10.50. Calculate K_b for the first ionization of hydrazine. Assume that the original concentration of H_2NNH_2 does not change.
- **b.** Make the same assumption as you did in (a) and calculate the $[OH^-]$ of a 0.020 M solution.
- c. Calculate the pH of the solution in (b).

Equilibrium of Salts, K_{sp} : Chap. 18, Sec. 4

- **543.** Silver bromate, AgBrO₃, is slightly soluble in water. A saturated solution is found to contain 0.276 g AgBrO₃ dissolved in 150.0 mL of water. Calculate K_{sp} for silver bromate.
- **544.** 2.50 L of a saturated solution of calcium fluoride leaves a residue of 0.0427 g of CaF_2 when evaporated to dryness. Calculate the K_{sp} of CaF_2 .
- **545.** The K_{sp} of calcium sulfate, CaSO₄, is 9.1×10^{-6} . What is the molar concentration of CaSO₄ in a saturated solution?
- **546.** A salt has the formula X_2Y , and its K_{sp} is 4.25×10^{-7} .
 - **a.** What is the molarity of a saturated solution of the salt?
 - **b.** What is the molarity of a solution of AZ if its K_{sp} is the same value?

In each of the following problems, include the calculated ion product with your answer.

- **547.** Will a precipitate of Ca(OH)₂ form when 320. mL of a 0.046 M solution of NaOH mixes with 400. mL of a 0.085 M CaCl₂ solution? K_{sp} of Ca(OH)₂ is 5.5×10^{-6} .
- **548.** 20.00 mL of a 0.077 M solution of silver nitrate, AgNO₃, is mixed with 30.00 mL of a 0.043 M solution of sodium acetate, NaC₂H₃O₂. Does a precipitate form? The K_{sp} of AgC₂H₃O₂ is 2.5×10^{-3} .
- **549.** If you mix 100. mL of 0.036 M Pb($C_2H_3O_2$)₂ with 50. mL of 0.074 M NaCl, will a precipitate of PbCl₂ form? The K_{sp} of PbCl₂ is 1.9×10^{-4} .