Last Lecture

- In two-person zero-sum game, maxmin iff equilibrium
 - Interchangeability
 - Unique equilibrium payoff
- Iff condition for a strategy profile being a mixed equilibrium
 - $\forall i, \sigma_{-i}$, Indifference between actions assigned positive prob.
 - Prefer positive supports over zero supports
- A procedure to find all mixed Nash: enumerate support!
- Correlated equilibrium: players randomize according to correlated event(s)
 - mixed Nash: players randomize according to independent events (i.e., mixed strategy), a special case of CE
 - equivalently: a mediator samples according to a distribution over action profiles, tells each player what action to play (nothing about others) ⇒ each player wants to follow her advise
 - calculate this distribution is easy

Introduction

- The normal form game representation does not incorporate "order of plays"
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
 - perfect information extensive-form games
 - imperfect-information extensive-form games

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N,A,H,Z,\chi,\rho,\sigma,u)$, where:

ullet Players: N is a set of n players

- Players: N
- Actions: A is a (single) set of actions

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H is a set of non-terminal choice nodes

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: *H*
 - Action function: $\chi: H \to 2^A$ assigns to each choice node a set of possible actions

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$ assigns to each non-terminal node h a player $i \in N$ who chooses an action at h

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- ullet Terminal nodes: Z is a set of terminal nodes, disjoint from H

- ullet Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \to H \cup Z$ maps a choice node and an action to a new choice node or terminal node such that for all $h_1, h_2 \in H$ and $a_1, a_2 \in A$, if $\sigma(h_1, a_1) = \sigma(h_2, a_2)$ then $h_1 = h_2$ and $a_1 = a_2$
 - The choice nodes form a tree, so we can identify a node with its history.

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
 - Choice nodes: H
 - Action function: $\chi: H \to 2^A$
 - Player function: $\rho: H \to N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \to H \cup Z$
- Utility function: $u = (u_1, \dots, u_n)$; $u_i : Z \to \mathbb{R}$ is a utility function for player i on the terminal nodes Z

Example: the sharing game

Example: the sharing game

Pure Strategies

• In the sharing game (splitting 2 coins) how many pure strategies does each player have?

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
 - player 1: 3; player 2: 8
- Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

Definition (pure strategies)

Let $G=(N,A,H,Z,\chi,\rho,\sigma,u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$\underset{h \in H, \rho(h)=i}{\times} \chi(h)$$

What are the pure strategies for player 2?

What are the pure strategies for player 2?

•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 2?

•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 1?

What are the pure strategies for player 2?

•
$$S_2 = \{(C, E); (C, F); (D, E); (D, F)\}$$

What are the pure strategies for player 1?

- $S_1 = \{(B,G); (B,H), (A,G), (A,H)\}$
- This is true even though, conditional on taking A, the choice between G and H will never have to be made G

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

$\mathsf{Theorem}$

Every perfect information game in extensive form has a PSNE

Prove later for a stronger result.

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3, 8	3,8	8,3	8,3
AH	3,8	3,8	8, 3	8,3
BG	5, 5	2,10	5,5	2, 10
BH	5, 5	1,0	5, 5	1,0

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3,8	8, 3	8,3
BG	5, 5	2, 10	5, 5	2, 10
BH	5, 5	1,0	5, 5	1,0

- this illustrates the lack of compactness of the normal form
 - games aren't always this small
 - even here we write down 16 payoff pairs instead of 5

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

CE	CF	DE	DF
3,8	3,8	8,3	8,3
3,8	3,8	8,3	8,3
5, 5	2, 10	5, 5	2, 10
5, 5	1,0	5, 5	1,0
	3,8 3,8 5,5	3,8 3,8 3,8 3,8 5,5 2,10	3,8 3,8 8,3 3,8 3,8 8,3 5,5 2,10 5,5

- while we can write any extensive-form game as a NF, we can't do the reverse.
 - e.g., matching pennies cannot be written as a perfect-information extensive form game
 - imperfect information is needed!

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3,8	3,8	8,3	8,3
AH	3,8	3, 8	8, 3	8,3
BG	5, 5	2, 10	5, 5	2,10
BH	5, 5	1,0	5, 5	1,0

• What are the (three) pure-strategy equilibria?

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3, 8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5, 5	2, 10	5,5	2,10
BH	5, 5	1,0	5, 5	1,0

- What are the (three) pure-strategy equilibria?
 - (A, G), (C, F)
 - (A, H), (C, F)
 - (B, H), (C, E)

- In fact, the connection to the normal form is even tighter
 - we can "convert" an extensive-form game into normal form

	CE	CF	DE	DF
AG	3, 8	3,8	8,3	8,3
AH	3,8	3,8	8,3	8,3
BG	5, 5	2, 10	5,5	2,10
BH	5, 5	1,0	5, 5	1,0

- What are the (three) pure-strategy equilibria?
 - (A, G), (C, F)
 - (A, H), (C, F)
 - (B, H), (C, E)