

### Gain Ratio: A Refined Measure for Attribute Selection

- □ Information gain measure is biased toward attributes with a large number of values
- ☐ Gain ratio: Overcomes the problem (as a normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{\nu} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$
GainRatio(A) = Gain(A)/SplitInfo(A)

- ☐ The attribute with the maximum gain ratio is selected as the splitting attribute
- ☐ Gain ratio is used in a popular algorithm C4.5 (a successor of ID3) by R. Quinlan
- Example
  - □ SplitInfo<sub>income</sub>(D) =  $-\frac{4}{14}\log_2\frac{4}{14} \frac{6}{14}\log_2\frac{6}{14} \frac{4}{14}\log_2\frac{4}{14} = 1.557$
  - $\Box$  GainRatio(income) = 0.029/1.557 = 0.019

## **Another Measure: Gini Index**

- ☐ Gini index: Used in CART, and also in IBM IntelligentMiner
- $\square$  If a data set D contains examples from n classes, gini index, gini(D) is defined as

$$\square gini(D) = 1 - \sum_{j=1}^{n} p_j^2$$

- $\square$   $p_i$  is the relative frequency of class j in D
- $lue{}$  If a data set D is split on A into two subsets  $D_1$  and  $D_2$ , the gini index gini(D) is defined as

- Reduction in Impurity:
- □ The attribute which provides the smallest  $gini_{split}(D)$  (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

# **Computation of Gini Index**

- Example: D has 9 tuples in buys\_computer = "yes" and 5 in "no"  $gini(D) = 1 \left(\frac{9}{14}\right)^2 \left(\frac{5}{14}\right)^2 = 0.459$
- □ Suppose the attribute income partitions D into 10 in D<sub>1</sub>: {low, medium} and 4 in D<sub>2</sub>

  - $\Box$  Gini<sub>{low, high}</sub> is 0.458; Gini<sub>{medium, high}</sub> is 0.450
  - □ Thus, split on  $income \in \{low, medium\}$  (i.e., also  $\{high\}$ ) has the lowest Gini index
- ☐ The attributes discussed above assume categorical attributes
- ☐ The algorithm can also be adapted to continuous-valued attributes
  - One may need other tools, e.g., clustering, to get the possible split values

## **Comparing Three Attribute Selection Measures**

- ☐ The three measures, in general, return good results but
  - **■** Information gain:
    - Is biased toward multivalued attributes
  - **□** Gain ratio:
    - □ Tends to prefer unbalanced splits in which one partition is much smaller than the others
  - Gini index:
    - ☐ Is biased to multivalued attributes
    - Has difficulty when # of classes is large
    - □ Tends to favor tests that result in equal-sized partitions and purity in both partitions

#### Other Attribute Selection Measures

- Minimal Description Length (MDL) principle
  - Philosophy: The simplest solution is preferred
  - □ The best tree is the one that requires the fewest # of bits to (1) encode the tree, and (2) encode the exceptions to the tree
- $\square$  <u>CHAID</u>: a popular decision tree algorithm, measure based on  $\chi^2$  test for independence
- Multivariate splits (partition based on multiple variable combinations)
  - □ CART: Finds multivariate splits based on a linear combination of attributes
- ☐ There are many other measures proposed in research and applications
  - E.g., G-statistics, C-SEP
- Which attribute selection measure is the best?
  - Most give good results, none is significantly superior than others