1. all inst			
2. polymon (3. optimal		Coose this	
Bin pack f	Problem (NP-,	hard)	
	items with s		
Output:	packing the items u	(ing fewest	bins with unit capacity
0.2	0.5 0.4 0.7 0		
	08 0.7	f	
Next Fit	53 55	open a bin-	fill when one more close bin item (on't be added
	51 54		
	B, Bs	BK	
	$S(B_1) + S(B_2)$	> /	
	S(Bx) + S(Bx) S(Bx-1) + S(Bx)	> \ > <i>I</i>	
	$\frac{\langle (B_1) + 2 \rangle \langle B_2 \rangle - \langle (B_1) \rangle}{\sum_{i=1}^{K} \langle (B_i) \rangle} > 0$	·+ > S(BK-1) + S(/K-1)/2	(BK) > K-1

=> opt > (k-1)/2. ((ause every bin include enably 1) $NF = K \qquad \begin{cases} K = 2m \quad opt > m \\ K = 2m+1 \quad opt > m+1 \end{cases}$ \Rightarrow $NF/Opt \leq 2$ 2. approximation algorithm

it has an approximation ratio of (at most) 2. Given an algorithm A. if for any instance I of a problem, $max \left\{ A(I) / OPT(I), OPT(I) / A(I) \right\} \in P(|I|)$ we say A is a P(n) approximation algorithm Thus be 2 $= 2n \text{ items.} \text{$ NF: n. $OP 7: \frac{n}{2} + 1$ First: we get < 2:

Then, we get (lose to 2, Ither)Ither, that the '2' we get is tight-

7 I, Bp (Ex 1>100	(I)	OPT(I)-1) => thus tight
first fit decreasing best fit decreasing		+ first fit $+ best fit$
ř,	mstance I , $FD(I) \leq f$	asymptotic approximation ration $\frac{1}{9}$ 01 7 (I) $+\frac{6}{9}$ $+\frac{1}{9}$ $+\frac{1}{9}$
U	p7(z)	11 UVI(I) + 8 J UP I (I)
2	1.7	TDIBFD has been proved the best
On (in	4	need all input data at uno time
Theorem: For any	binpacking poly-time	problem, an achieve an approximation

ration here than 3/2 unless P = NP.

	n 6	online a	lgorith.	m is	better	than	<u>J</u> .		
L									
Knowsalk Input:		lem, items	(V,, ι	ν _ι) ,	-, (Un,	, Wn)			
Output:	Capa	city C. the Knay	p s ack	í co as	70 1	nax;mi	ze the	total U	value.
	0(n()		(hV)		(V= \(\sum_{\text{.}}				
		ion:			1/2				
Integral		ion: greadu	j on	$\frac{V'}{W_i}$					
	C=/0	1		2	weigh	ł	A, (I)= OPT(I)		
		2		9	10				
	Δ2:	greedy iten		Vi` Jalne	weight	-	A2(I) =	10	
	(=10	1 ~ 10		9 10	, 10.		UPT (Z)=		

A* 12	(i)			
		d Az on I		
2,	return the	d Az on I better of A112) and As(I)	
Theorem				
44	has an appro	oxirna-liun rotio	of 2.	
P/-00f;				
			Because these t	wa olsors
1+171	A,(Z) > 01	$D_{7} = 1/v$	nax => has a differen	u smaller
19 (2) >	Az (I) > 1	max	max => has a differen than one item,	and the
			item's lorgest vo	
2A*(2)	> OPT FRA	n(LZ) > 01771	vī (Z)	
	$A^*(Z) > 3$	5 0PI INT(2)		
	V = \(\frac{1}{2}\)	i = N. Vmax		
	$O(n^2V)$ max T_1			
		(till exponent		
Instante:	$V_1, \dots V_n$ $W_1, \dots W_n$		· Vn) Vild, ···, Wi, , ·-·,	
-> 46.	e some colut			
	1,010			
Cargar d: d =	Vmax > (040)	, co annego		
	T VI 7	CIOlina		

Vi = Tui7 -> scaling

	man =	7 Vmax 7	= [$\frac{n}{S}$) =	$O(\frac{8}{5})$				
0	(n) Uma	() = O	$\left(\frac{n^3}{2}\right)$						
Si	'nce w	e have	1-ounding	for vi	, 50	it ha	s differ	rence, the	Solution
		, differ			,		,		
	(() =	= V; .							
	(5) =	ies 5 Vi.		$\geq \frac{1}{c} \frac{v}{d}$,, _ _) >.	Σ -	V1' =	V(s)	
	\' /		<i>'</i>		\sim			0(,)
6	rifer s	caling		$\leq \frac{2}{its}$	$\left(\frac{1}{\alpha} + 1\right)$		d +	$ S = \frac{V(S)}{O}$	- 4 N.
		$V(s) \leq a$	(, () (s)	< V(s)	+ n	1			
						•			
		S) + & Vmax		s) + nd	> d			Λ	
		under Vi				1 017	7 unde	,	
		(: S* V(s*)					set: S		
=> try	to PIVI	e V(5*)	is	use to	VCS)				
	V(S)	1 + 8 V max	>	dV (S)					
		$\int (\zeta^*) >$				<u></u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	a Hight	,
						1/(E) + 8 (/nc	2x > do(3)	
	{ V	$(\hat{s}) + s$	V max	> v(> V(54)	
	V	(S^*)	Vmax						
	->	V(3) +	8 V(5)	×) >,	V(5*)				

-)	V(3) >	(1-8)V(5	×)		
	<u>V(s*)</u> V(ŝ)	1-8 <1	48 (8=25	2)	
	0 (n ³ / s) = 0				
	S: (hangeable advantage:	atio can	be adjust	(DTAC)	
0/0/9	nomial - time sorithms { {	A { } { } { }	uch that fo	r any E>0	, AE 15
	Jen & is a	constant/			
	0 (n ^{\frac{1}{2}})				
	$0 \left(f\left(\frac{t}{s}\right) \cdot po \right)$ $0 \left(poly\left(\frac{t}{s}\right) \right)$		fully PTA)τη <i>ι</i>
			July PTR	S = > P7	(A)

K-center problem. Input: n site S1, Sn and an integer K, Dutput: a set of K centers so as to minimize the maximum distance from a site to its nearest center. dist (xy) = distance between x and y. drst (x, c) = min dsst (x, y) r(c) = max drst (x, c)find a set C of K center to minimizes (c) given an algor; select one site as the center r* > r/2. Assume we know OPT rx (0, clmax) while there exists some sites uncovered Log, dman remove all the sites within 2rt from the lenter

hisection

	as sun	1-6	10	2		0) Bu	(Ci,	(CI)	1 GOLA 7 2 EXTGIA	rX	in	th	e o	ptmo	od 58	blution	1,
		10	< .	K		r* _	> 0	d.st	(Ci,	(j) /2 the t	>	۲ ×		_>	X			
1. 2. 3. 4	Ci =	S1, S1 S1 S1 S1 S1 S1 S1	(;) 2 - = (the Ci-1	k. Sit			Nith	maxin	m uM	dist	(5	.j., C	1'-1)				
	bserv 0 1	Ck) Notion CK dis Z di	> r(= (st ((2) { ai, (ai, (ai,	(F 2) 02, (;-1		 -, a _K =	?	r (Cr)	Vith	the (C_k)	jh c	reasing				
Assu	ıme	r(CK	:) > Clnt.		<i>\\</i>	V	0		0									

dist (ai, aj) > r((K)

There exist one site X, dist(x, C) = $r((\kappa)$

																	' /				
			rt	>	r((K)	/>	>	r*	,		×									
						4 /															
	.`	•	r(C	(L)	< 2 #	_X															
Bi	npa	iking	g :		f,u,	n 0	Bust	hm		<u>-1</u> / ^	+ -	6	3/2								
			B T 3	<u>}</u> ∠]																	
	0	ļ	313	g k]	(0	ntain	S	an	item	Wi7	h	rize	> 1/2								
	Ø·	ev	ery	item	n ji	n /š	3131	4]	has	8726		1 2									
	F	F) C	(z)	2	<u>_</u>	<u> 11</u>	υμγ	(Z) ·	<u>6</u> + 9	-]	- <i>E</i>	. 3									
	J	P7	(2)				U	Pī/	(2)			2									
			-	1 -	>ms	, <u>=</u>])	Dm-	11 (.	,,	4	C		7 7	ς .	t / \	1	, -	f+ n	C	
										,					o) .	1+) ——	b .	2	, + n	7	,
									2 m						n	7					
							oP	7.		m	$\frac{1}{2}$	m									
							\	-1)			m										

