Example 16

In $\triangle ABC$, point E is the midpoint of AB. Extend AB to D such that AB=BD. Show that CD=2CE.

Solution: Draw BF//AC to meet CD at F. Since point B is the midpoint of AD, F is the midpoint of CD and

 $BF=\frac{1}{2}AC.$ Since point E is the midpoint of AB,BE=AE $\frac{1}{2}AB=\frac{1}{2}AC=BF.$

Since BF//AC, $\angle FBC = \angle BCA = \angle CBA.BC = BC$. Thus $\triangle FBC \cong \triangle EBC$. Thus $CE = FC = \frac{1}{2}CD \implies CD = 2CE$.