

Bloque IV: El nivel de red

Tema 12: ICMP

Índice

- Bloque IV: El nivel de red
 - Tema 12: ICMP
 - Introducción
 - Ping
 - Mensajes ICMP de error
 - Traceroute

Lecturas recomendadas:

- Capítulo 4, sección 4.4.3, de "Redes de Computadores: Un enfoque descendente". James F. Kurose, Keith W. Ross. Addison Wesley.
- Capítulo 8 de "TCP/IP Illustrated, Volume 1: The Protocols",
 W. Richard Stevens, Addison Wesley.

Introducción

- Internet Control Message Protocol
- IP no tiene mecanismos para obtener información de diagnóstico → Para eso está ICMP.
- ICMP comunica mensajes de error y otras condiciones que requieren atención.
- Los mensajes ICMP se transmiten dentro de datagramas IP (RFC 792)
- Dos tipos de mensajes: error y consulta.
- Mensajes ICMP más empleados:
 - Petición y respuesta de eco → ping
 - Destino inalcanzable
 - Puerto inalcanzable
 - Máquina o red inalcanzable
 - Redirect
 - Fragmentación requerida
 - Time excedido

Introducción

- Formato de mensaje ICMP:
 - Tipo: identifica el tipo de mensaje ICMP (hay 15 distintos)
 - Código: utilizado en algunos códigos para especificaciones más detalladas.
 - Checksum: cubre al mensaje ICMP completo (mismo algoritmo que para el checksum de IP)

ICMP Ping

- Packet InterNet Grouper: herramienta de diagnóstico que comprueba si un nodo de la red es alcanzable.
- Cliente: Envía ICMP echo request
- Servidor: Responde con ICMP echo reply
- Formato mensajes ICMP echo request y reply:
 - Identificador: en UNIX es el identificador del proceso.
 - Número de secuencia: inicialmente 0, y se incrementa con cada echo request.
- Existen variedad de implementaciones (presentación de resultados, opciones del programa...).

0	8	16	31
	Tipo (0 ó 8)	Código	Checksum
	Identificador		Número de secuencia
		iño variable)	

ICMP Ping: Opciones

- Opción IP de registro de ruta: se van registrando en la cabecera IP los routers por los que pasa el mensaje.
 - Los routers deben implementar esta opción (almacenan IP de salida)
 - Problema: espacio limitado en cabecera IP (40 bytes → máximo 9 direcciones IP)
- Opción IP de timestamp: registra el instante de tiempo (milisegundos desde medianoche) por el que pasa en cada router.
 - Modos de operación: registra únicamente timestamps, registra direcciones IP y timestamps (máximo 4), el emisor inicializa la lista con 4 direcciones IP, y si el router es una de ellas registra su timestamp.

ICMP: Puerto inalcanzable

- Mensaje de error utilizado por UDP, cuando el destino no dispone de un proceso en el puerto de destino:
 - Se incluye la cabecera del mensaje que provocó el error.
 - IP de destino y origen
 - Protocolo incluido en el campo de datos
 - Y los primeros 8 bytes del datagrama IP = Cabecera UDP (incluye puerto destino y origen)

ICMP: Puerto inalcanzable

ICMP: Fragmentación requerida

- Mensaje de error utilizado por un router cuando tiene que fragmentar un datagrama IP pero tiene el flag DF activado.
 - Incluye el MTU de la red que provocó el error y la cabecera del mensaje que provocó el error.

0	8	16	31	
	Tipo (3)	Código (4)	Checksum	
	Sin usa	(ceros)	MTU de la red del siguiente salto	
Cabecera IP (con opciones) + Primeros 8 bytes del datagrama IP				

ICMP: Fragmentación requerida

- Este mensaje de error es utilizado en un mecanismo denominado Path MTU discovery que permite averiguar el MTU mínimo durante una comunicación y reducir la fragmentación IP (sólo se hace en origen).
 - Path MTU: MTU mínimo en cualquier red en el camino entre dos hosts.
- Funcionamiento del Path MTU discovery:
 - Se habilita el bit DF (Don't Fragment) en los datagramas enviados.
 - Si algún router en el camino necesita fragmentar → Generará el mensaje ICMP Fragmentación requerida
 - Si se recibe un mensaje ICMP Fragmentación requerida con el nuevo MTU:
 - Si eran datos TCP → TCP debe reducir el tamaño del segmento (en base al nuevo MTU) y retransmitir.
 - Sino (p.e. UDP) → IP fragmenta los datagrama en base al nuevo MTU.
 - Como las rutas cambian dinámicamente → Se puede probar un MTU mayor pasado un cierto intervalo (RFC 1191 recomienda 10 minutos).

ICMP: Tiempo excedido

- Código 0: TTL = 0 durante el tránsito
- Código 1: tiempo máximo de reensamblado excedido
 - Se produce en la fragmentación IP al perderse uno de los fragmentos

ICMP máquina o red inalcanzable

- Lo envía un router cuando no puede entregar o reenviar un datagrama IP.
- Máquina inalcanzable (código 1): si el router conoce la red, pero el host no está alcanzable en ese momento (p.e. está apagado).
- Red inalcanzable (código 0): si el router no conoce la red → No es una de sus entradas y no tiene entrada por defecto.
- Máquina o red administrativamente inalcanzables (código 10 y 9): existe un mecanismo de filtrado de paquetes (p.e. un firewall) que impide alcanzar la máquina o la red.

0	8	16	31	
	Tipo (3)	Código (0 ó 1)	Checksum	
	Sin usar (ceros)			
Cabecera IP (con opciones) + Primeros 8 bytes del datagrama IP				

ICMP Redirect

- Mensaje de error ICMP que envía un router al remitente de un datagrama IP que debería haber sido enviado a otro router.
 - Sólo generados por routers, no por máquinas.
 - Sólo son utilizados por máquinas, no por routers.
- Esto sólo puede ocurrir cuando haya varias posibilidades de router intermedio para la máquina que hace el envío.
- Flags de la tabla de enrutamiento del redirect:
 - D: Ruta creada por un ICMP redirect
 - M: Ruta modificada por un ICMP redirect
- Se genera un mensaje ICMP redirect cuando:
 - La interfaz de salida = interfaz de entrada

0 8	16	31		
Tipo (5)	Código (0-3)	Checksum		
	Dirección IP del router a utilizar			
Cabecera IP (con opciones) + Primeros 8 bytes del datagrama IP				

ICMP Redirect

Red 194.27.89.0 (ping desde 210 a 222)

Traceroute

- Problemas del ping con registro de ruta:
 - Falta de espacio en la cabecera IP
 - Registro de ruta: máximo 9 routers
 - Timestamp: máximo 4 routers (o 9 timestamps sin direcciones IP)
 - No todos los routers soportan la opción de registro de ruta
 - No hay control sobre los relojes de los routers
- Solución: traceroute
 - Herramienta de diagnóstico que permite ver la ruta que sigue un datagrama, además de permitir encaminamiento en origen.
- Se basa en: datagramas UDP, el campo TTL de la cabecera IP y los mensajes de error ICMP Puerto inalcanzable y Tiempo excedido
 - Sólo requiere que el protocolo UDP esté operativo en el destinatario.
 - Cuando un router al decrementar el campo TTL obtiene 0 → Genera un mensaje de error ICMP Tiempo excedido
 - Cuando UDP recibe un datagrama para un puerto vacío → Genera un mensaje de error ICMP Puerto inalcanzable

Traceroute: Funcionamiento

Cab. IP Cab. Datos

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL = 1

ICMP Tiempo excedido

IP origen: **154.63.1.1** IP destino: 154.63.4.1

Traceroute: Funcionamiento

Cab. IP Cab. Datos

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL =2

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL =1

ICMP Tiempo excedido

IP origen: **172.25.1.2**

IP destino: 154.63.4.1

TTL = 64

Traceroute: Funcionamiento

Cab. IP Cab. Datos

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL = 3

Cab. IP Cab. Datos

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL =2

Cab. IP Cab. Datos

Puerto destino: 33348

IP origen: 154.63.4.1

IP destino: 173.197.15.4

TTL =1

ICMP Puerto inalcanzable

IP origen: **173.197.15.4**

IP destino: 154.63.4.1

TTL = 64

18

Traceroute: encaminamiento en origen

- Opción IP que permite especificar la ruta desde el origen:
 - Encaminamiento en origen estricto: lista de routers con el camino exacto desde origen al destino. Si falta algún router → ICMP "source route failed".
 - Encaminamiento en origen difuso: lista de routers por los que el paquete debe pasar, pero también puede pasar por otros routers.

Resumen

- Principales comandos de red:
 - ifconfig: ver configuración de red.
 - netstat: ver puertos ocupados y más cosas.
 - nslookup y dig: enviar peticiones DNS.
 - route: ver y modificar la tabla de enrutamiento.
 - ping
 - traceroute
 - Versión gráfica: http://www.yougetsignal.com/tools/visual-tracert/