Background and Motivation

Over 16 Million Cats and Dogs in Canada

Over 1 Million Pets Go Missing Each Year

Over 80% Of Lost Pets Are Never Found

Canadian Animal Health Institute

BC SPCA

Ontario SPCA

Existing products to track pets can be costly and have limited ranges

Goal - To create an improved product that is:

- ✓ Long range
- ✓ Low cost
- ✓ Low power

Cellular Wi-Fi BLE Mission critical outdoor use case Video / Voice Higher power Customer IoT **Bandwidth** LoRa Sensors, actuators and tags Lowest power and lowest cost Low Short Long Range

High Noise Immunity

Low frequency means low signal attenuation

Can detect signals with noise up to 19dB larger than the original signal

Low Power

Narrower bandwidth means less power needed for same transmission quality

Low Cost

Operates on unlicensed, free frequency band of 915 MHz

How LoRa Works

Frequency Modulation Technique based on Chirps:

→ Compressed High Intensity Radar Pulses

 au_{chirp}

SF vs Chirp Rate **Low SF High SF**

Bandwidth

Spread factor controls chirp rate and bits per symbol

Increasing SF increases range, energy & time and decreases data rate

System Overview

Modes of Operation

Battery life is optimized through different **modes** of operation.

GPS Update Period IMU Activity TX Power Spread

Factor

Search
1 min
OFF
High
High

The system switches between **Normal** and **Sleep** modes depending on IMU input.

If no motion is detected, the last acquired position is still accurate such that a new position is redundant.

User-initiated **Search** mode increases GPS update frequency, transmitting (TX) power, and spread factor to maximize the probability of the message being received when actively searching for the pet.

Collar Firmware Logic

Communication

Sending GPS

Received message. Sending ACK.

Received ACK

Messages are acknowledged with an ACK message

If no ACK is received in time, each system attempts to resend messages after some randomized time interval (Random Backoff)

Sending GPS

3

Sending "Change Mode" command

(ACK not received within timeout interval)

(ACK not received within timeout interval)

Waiting X seconds before retrying GPS send

Resending GPS

Sending ACK

Received ACK

Resending "Change Mode" command

Waiting Y seconds before retrying "Change Mode" send...

Antenna

Design Requirements

Frequency

915 MHz

Wavelength

0.3276 m

Radiation Pattern

Isotropic

Impedance

~50 Ω

Sources: Collar: Candy Design - Noun Project, Home wifi: Fazrian Zahrawani - Noun Project, Power: NAPISAH - Noun Project, Antenna: https://freesvg.org/radio-transmitter-antenna-with-round-base-vector-illustration

Cloud Server & App

Cloud Server

Supabase Backend

Opensource BaaS with PostgreSQL database, real-time syncing, authentication, and storage

Sends User Commands to **Supabase**

Queries **Collar Data** in **Real Time**

Visualizes Data in a **User Friendly Way**

Sends Collar Data to **Supabase**

Queries **App Commands** and sends them to device

Marks **Commands** as **Parsed** once read

Latest Pet GPS

Realtime PhoneGPS

User **GPS Request**

Battery Level

Realtime Battery
Request

Speaker

App

User Interface

History Page
Realtime Phone GPS
Realtime Pet Path
History Slider

Next Steps

Expand to a **star network** to track **multiple pets** within one app

Condense the collar size to be comfortable for **smaller pets**

Weatherproof the system to work in any environment the pet explores