

Aula 13 GPS e Google Maps

Prof. Gabriele Dani

Roteiro

- Location-based Services
- Geolocalização
- Localização no Android
 - -LocationManager
 - -Location
- Exemplos :
 - -Localização Atual Coordenadas
 - -Localização Atual Google Maps

Location-Based Services

 Location-Based Services ou LBS permitem ao software obter a sua localização corrente.

 Isto inclui localização obtida pelo GPS (Global Positioning System), e também pela rede de telefonia e WI-FI.

Geolocalização

- Geolocalização: Identificação da posição real no globo de um usuário final.
 - -Suportado por várias aplicações Android
 - -Uma das razões da popularidade dos smartphones atuais.
 - -Possível através da combinação de receptores de ondas de rádio e algoritmos de localização programados.

Exemplos de aplicações

- São exemplos de aplicações que podem utilizar serviços de localização:
 - -Compartilhamento de caronas
 - -Encontrar pessoas
 - -Redes sociais
 - -Propaganda direcionada pela posição
 - -Guias de turismo
 - -Navegação
 - -Gerenciamento de tráfego
 - -Jogos móveis
 - -Serviços de emergência

Geolocalização nos Smartphones

 Nos dispositivos móveis, a geolocalização pode ser realizada através de:

-GPS

-WI-FI

-Rede Celular (EDGE, 3G, HSPDA, 4G,...)

Básico de Geolocalização

GPS significa Global Positioning System

- -Frota de satélites orbitando a terra a uma altura de 20000Km
- -Frota composta de 24 à 32 satélites operacionais
- -Períodos de órbitas de 12 horas, velocidade de 3.9 Km/s (14040Km/h).

Sistemas de Navegação Disponíveis:

- -Navstar: Operado pelo departamento de defesa americano para fins civis e militares
- -Glonass: Operado pelas forças de defesa russas
- -Galileo: Operado pelos EUA (em desenvolvimento)

Básico de Geolocalização

Cada satelite transmite periodicamente:

- -Sua posição corrente
- A hora atual através de um relógio atômico

Operações do receptor GPS:

- -Receber os dados passivamente (não transmite nada)
- -Calcular o atraso (delay) do sinal
- –Através do delay calcular a distância até o satélite (distancia = delay * c)
- -Através de múltiplas distâncias (pelo menos 3), determina a posição corrente

Satélites?

- Cada satélite transmite em duas frequências da banda UHF:
 - -Canal L1: dados civis
 - -Sinais codificados usando Code Division Multiple Access (CDMA)
 - -Junto com dados/localização, cada satélite transmite dados chamados almanaque, que são dados das rotas orbitais dos satélites.
 - -Através do almanaque, o receptor de GPS sabe quais são os satélites visíveis em sua posição.
- Problema: Quando o GPS inicia, há uma demora para localizar as posições iniciais dos satélites e receber o almanaque completo
- Solução: Uso de tecnologia Assisted-GPS (A-GPS)

Assisted GPS (A-GPS)

- Dispositivos móveis usam, além do GPS, outras técnicas para melhorar a precisão da posição calculada:
 - -Descobrem a qual antena de celular o aparelho está vinculado
 - -Descobrem em qual rede WI-FI o celular está
 - Nesse caso, usa-se a localização WI-FI

Localização WI-FI

- A localização por WI-FI é realizada através de triangulação ou através da identificação da estação de rádio (técnica usada pelo Android)
 - –O Smartphone liga a interface WI-FI, e detecta o endereço MAC e a SSID dos roteadores WI-FI em seu alcance
 - -Com esses dados, faz uma consulta ao serviço de localização do Google
 - –Este, baseado em informações gravadas sobre redes WI-FI conhecidas, fornece ajuda para determinar a posição corrente do aparelho
- Quem popula o banco de dados do Google? Os usuários, quando habilitam o serviço de localização.

Localização WI-FI

Como obter a localização do dispositivo:

LBS API

 A API LBS contém dois pacotes android.location e com.google.android.gms.maps que fornecem uma visão inicial do suporte contido na plataforma Android para a construção de serviços baseados em localização

LocationManager

- A classe LocationManager fornece uma API para determinar a localização e orientação, se o dispositivo suportar.
- Essa classe dá acesso aos serviços do sistema de localização que permitem às aplicações obter atualizações periódicas da posição geográfica do aparelho, ou disparar uma aplicação específica quando o dispositivo entrar nas redondezas de uma dada posição.
- A classe LocationManager não deve ser instanciada diretamente, devendo o programador solicitar uma referência a ela para manipulá-la.

LocationManager

- Uma aplicação com LocationManager pode fazer três coisas:
 - –Consultar a lista de *LocationProviders* conhecidos pelo *LocationManager* para obter a última posição conhecida do dispositivo
 - -Registrar *listeners* para observar alterações periódicas de posição
 - –Registrar um determinado *Intent* para ser disparado se o dispositivo aproximar-se de uma determinada posição (Latitude e Longitude), com o raio de distância calculado em metros

Location

 A classe Location representa uma posição geográfica percebida em um dado momento. Um objeto location possui uma latitude, uma longitude, um momento UTC (quando a posição foi obtida), e opcionalmente a altitude e velocidade.

Exemplos de uso

Localização atual por Coordenadas (OndeEstou)

 Localização atual mostrada no Google Maps (MapasSimples)

Projeto OndeEstou

 O projeto OndeEstou mostra um exemplo de obtenção de Coordenadas usando o LocationManager, sem exibir mapas

 Esse tipo de aplicação pode ser útil para registrar pontos visitados, por exemplo

Projeto OndeEstou

 Criaremos um pequeno aplicativo como mostrado ao lado.

 Após o botão "Onde Estou?" ser pressionado, as coordenadas são exibidas e atualizadas à cada alteração de posição

AndroidManifest.xml

 Para que o aplicativo possa utilizar o GPS, é necessário editar o arquivo AndroidManifest.xml e adicionar as seguintes linhas:

```
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission-sdk-23 android:name="android.permission.ACCESS_FINE_LOCATION" />
```

MainActivity.java

```
public class MainActivity extends AppCompatActivity {
  private Button btnGps;
  private TextView txtLatitude, txtLongitude;
  public void onCreate(Bundle savedInstanceState) {
     super.onCreate(savedInstanceState);
     setContentView(R.layout.activity_main);
     txtLatitude = (TextView) findViewById(R.id.txtLatitude);
     txtLongitude = (TextView) findViewById(R.id.txtLongitude);
     btnGps = (Button) findViewById(R.id.btnGps);
     btnGps.setOnClickListener(new Button.OnClickListener() {
       public void onClick(View v) {
          pedirPermissoes();
     });
```

pedirPermissoes(...)

```
if (ActivityCompat.checkSelfPermission(
this, Manifest.permission.ACCESS_FINE_LOCATION) !=
PackageManager.PERMISSION_GRANTED
          && ActivityCompat.checkSelfPermission(
this, Manifest.permission.ACCESS_COARSE_LOCATION)
!= PackageManager.PERMISSION_GRANTED) {
          ActivityCompat.requestPermissions(this, new String[]
          {Manifest.permission.ACCESS_FINE_LOCATION}, 1);
        }
        else
          configurarServico();
}
```

• É necessário pedir autorização para usar o GPS. Caso o aplicativo não tenha a permissão necessária (o que somente pode acontecer na versão 6+ do Android), chamamos um método padrão do Android para requisitar a permissão que queremos, o *ActivityCompat.requestPermissions*

Permissões

 O aplicativo solicitará permissão de uso do GPS em seu primeiro uso

onRequestPermissionsResult(...)

 Do Android 6 em diante é possível alterar as permissões após concedê-las. Só que se a aplicação não puder usar o GPS, nada funcionará. Nesse caso, mostramos um *Toast* para o usuário.

configurarServico(...)

```
public void configurarServico(){
    try {
        LocationManager locationManager = (LocationManager) getSystemService(Context.LOCATION_SERVICE);

        LocationListener locationListener = new LocationListener() {
            public void onLocationChanged(Location location) {
                 atualizar(location);
        }

        public void onStatusChanged(String provider, int status, Bundle extras) { }

        public void onProviderEnabled(String provider) { }

        public void onProviderDisabled(String provider) { }

        };
        locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 0, 0, locationListener);
    }catch(SecurityException ex){
        Toast.makeText(this, ex.getMessage(), Toast.LENGTH_LONG).show();
    }
}
```

 Nesse método instanciamos o LocationManager e registramos o Listener que irá atualizar a tela a cada mudança de localização do aparelho.

atualizar(...)

```
public void atualizar(Location location)
{
    Double latPoint = location.getLatitude();
    Double lngPoint = location.getLongitude();

    txtLatitude.setText(latPoint.toString());
    txtLongitude.setText(lngPoint.toString());
}
```

• Por último, define-se o método atualizar(...), que apresenta nos campos da tela as novas coordenadas geográficas obtidas após a atualização da posição do aparelho.

Layout da aplicação

 O aplicativo OndeEstou utiliza um layout simples, linear que é demonstrado nos próximos slides.

 As distâncias das margens foram externalizadas para um arquivo de dimensões (dimen.xml), também demonstrado.

activity_main.xml (1/2)

```
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"</pre>
 xmlns:tools="http://schemas.android.com/tools"
  android:id="@+id/activity_main"
  android:layout_width="match_parent"
  android:layout height="match parent"
  android:paddingBottom="@dimen/activity vertical margin"
  android:paddingLeft="@dimen/activity_horizontal_margin"
  android:paddingRight="@dimen/activity_horizontal_margin"
  android:paddingTop="@dimen/activity vertical margin"
  android:orientation="vertical"
  tools:context=".MainActivity">
  <Button
    android:id="@+id/btnGps"
    android:layout width="fill parent"
    android:layout height="wrap content"
    android:text="Onde estou?"/>
  <LinearLayout
    xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout width="wrap content"
    android:layout height="wrap content">
```

activity_main.xml (2/2)

```
<TextView
      android:layout_width="wrap_content"
      android:layout height="wrap content"
      android:textAppearance="@android:style/TextAppearance.DeviceDefault.Large"
      android:text="Latitude: "/>
    <TextView
      android:id="@+id/txtLatitude"
      android:textAppearance="@android:style/TextAppearance.DeviceDefault.Large"
      android:layout width="wrap content"
      android:layout height="wrap content"/>
  </LinearLayout>
  <LinearLayout
    xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout width="wrap content"
    android:layout_height="wrap_content">
    <TextView
      android:layout width="wrap content"
      android:layout_height="wrap_content"
      android:textAppearance="@android:style/TextAppearance.DeviceDefault.Large"
      android:text="Longitude: "/>
    <TextView
      android:id="@+id/txtLongitude"
      android:textAppearance="@android:style/TextAppearance.DeviceDefault.Large"
      android:layout width="wrap content"
      android:layout height="wrap content"/>
  </LinearLayout>
                                   Programação de Dispositivos Móveis
</LinearLayout>
```

values/dimen.xml

API do Google Maps

 O próximo exemplo usa a API do Google Maps para exibir o mapa com a posição atual do dispositivo

 Para usar essa API, é necessário solicitar uma chave de API no site da Google

Projeto MapasSimples

 Esse exemplo mostra a posição atual do dispositivo em uma visão de satélite, numa View Google Maps

Criação do Projeto

 Crie um projeto chamado MapasSimples, com uma Activity do tipo Google Maps Activity

 Nesse caso, o projeto criado usará não uma view, mas um SupportMapFragment, que é um componente Android mais abrangente do que uma view.

Chave da API

• Encontre o arquivo values/google_maps_api.xml

 Dentro dele, você encontrará a url para obter a chave. Siga os passos indicados na página, obtenha a chave e a substitua onde estiver indicado com YOUR_KEY_HERE

Criação da chave da API

Criação da chave da API

Criação da chave da API

AndroidManifest.xml

 Novamente, para que o aplicativo possa utilizar o GPS, é necessário editar o arquivo AndroidManifest.xml e adicionar as seguintes linhas:

```
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission-sdk-23 android:name="android.permission.ACCESS_FINE_LOCATION" />
```

MapsActivity.java

 Note que esse projeto usa uma activity com nome diferente. Porém a implementação inicial é semelhante:

MapsActivity.java

 Alguns métodos são iguais ao projeto OndeEstou e podem ser copiados de lá:

```
-pedirPermissoes()
```

-onPermissionsRequestResult(...)

-configurarServico()

Outros devem ser implementados:

Método atualizar(...)

• O método atualizar marca sua posição no mapa, posicionando a "câmera" sobre a posição:

```
public void atualizar(Location location)
{
    LatLng posicaoLocal = new LatLng(location.getLatitude(),location.getLongitude());
    mMap.animateCamera(CameraUpdateFactory.newLatLngZoom(posicaoLocal, 20.0f));
    mMap.addMarker(new MarkerOptions().position(posicaoLocal).title("Você está aqui"));
}
```

Método on Map Ready (...)

 Por fim o método onMapReady(...) faz o posicionamento inicial do mapa sobre a cidade de Caxias do Sul, assim que o mapa é aberto:

```
@Override
public void onMapReady(GoogleMap googleMap) {
    mMap = googleMap;
    mMap.setMapType(GoogleMap.MAP_TYPE_HYBRID);

LatLng caxias = new LatLng(-29.167, -51.179);
    mMap.addMarker(new MarkerOptions().position(caxias).title("Caxias do Sul"));
    mMap.moveCamera(CameraUpdateFactory.newLatLng(caxias));
}
```

Referências

- Reto Meier, Ian Lake Professional Android (2018, Wrox)
- https://www.luiztools.com.br/post/como-criar-um-aplicativo-android-com-gps/
- https://blog.caelum.com.br/usando-o-google-maps-e-gps-no-android/
- Luca Bedogni, Marco Di Felice Programming with Android Google Maps Library