Full adder

$$\frac{0}{0} \frac{1}{11}$$

$$min^{m} max m$$

Touth table

A	β	C		Sam	Carry	Sum
0	0	0			0	0
0	0	J			0	1
0	1	O			0	i
\mathcal{O}	l	1			1	0
l	0	O			\bigcirc	1
. L	0	1			ı	^
in the second	l	٥				٥
1	1 .	ĵ 1	. 10			Ĭ
$l = \sum m$	(1,2,	4,7)				

Sum =
$$\sum m (1,2,4,7)$$

Camy =
$$\sum m(3, 5, 6, 7)$$

= $\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$
= $BC(A+\overline{A}) + A\overline{B}C + AB\overline{C}$
= $BC + A(B\oplus C) = AB + C(A\oplus B) + CA + B(A\oplus C)$

imization = AB + BC + CA

Full adder using NAND;

Carry =
$$AB + (A \oplus B)C = \overline{AB + (A \oplus B)C}$$

= $\overline{AB \cdot (A \oplus B)C}$

try full adder using NOR! de it yourself.

Touthtable:

Α	В	د ۱	Diff	Bomow	Diff,
0	0	0		0	0
0	0	1		1	1
0	1	O		1	1
0	1		+1	1	0
1	D	0		0	1
1	O	1		0	O
1	1	٥		0	0
1	L	1		1	1

Diff: =
$$\sum m(1,2,4,7) = A \oplus B \oplus C$$
 [Same as sum of full adder]

$$\chi_{-map} = \overline{A} c (B+\overline{B}) + \overline{A} B (C+\overline{C}) + B c (A+\overline{A})$$
 $\chi_{-map} = \overline{A} c + \overline{A} B + B C$

Logical circuit:

Borrow can also be written as = AB+ (AOB).c

-ull subtractor using half subtractor:

toy Full subtractor using NAND only & NOR only:

* Calculate no. of gates required.

Itall adder as a counter!

touth table!

*\	B	9	Cy	Sum		
(3)	(2)	0	0	Ó	see iju	0
	0	8	Ò	1	ne programme	4
	of the second	0,	0	1	socie	1
0	4	. 4	, 4	0	District of the London	2
1	0	Ö	\mathcal{O}	1	markly.	1
1	0	ď	1	Ó	earrende	2
1	1	ð	1	0	~	2
4	1	1	(1	->	3
		J			65	

it counts no. of i/p which are to