Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Initial
Pb- 26.479
89.98°C

Final

23.17℃

Table 6.2

The Specific Heats of Some Common Substances

	Specific Heat
Substance	$(J/g \cdot {}^{\circ}C)$
Al	0.900
Au	0.129
C (graphite)	0.720
C (diamond)	0.502
Cu	0.385
Fe	0.444
Hg	0.139
H_2O	4.184
C ₂ H ₅ OH (ethanol)	2.46

Table 6.4 Standard Enthalpies of Formation of Some Inorganic Substances at 25°C

Substance	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)	Substance	$\Delta H_{\rm f}^{\circ}$ (kJ/mol)
Ag(s)	0	$H_2O_2(l)$	-187.6
AgCl(s)	-127.04	Hg(l)	0
Al(s)	0	$I_2(s)$	0
$Al_2O_3(s)$	-1669.8	HI(g)	25.94
$\mathrm{Br}_2(l)$	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	$MgCO_3(s)$	-1112.9
C(diamond)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O_4(g)$	9.66
$CaCO_3(s)$	-1206.9	$N_2O(g)$	81.56
$\operatorname{Cl}_2(g)$	0	O(g)	249.4
HCl(g)	-92.3	$O_2(g)$	0
Cu(s)	0	$O_3(g)$	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-268.61	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
$H_2(g)$	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	ZnO(s)	-347.98
$H_2O(l)$	-285.8	ZnS(s)	-202.9

[†]In thermodynamics, the standard pressure is defined as 1 bar, where 1 bar = 10^5 Pa = 0.987 atm. Because 1 bar differs from 1 atm by only 1.3 percent, we will continue to use 1 atm as the standard pressure. Note that the normal melting point and boiling point of a substance are defined in terms of 1 atm.