Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

Факультет программной инженерии и компьютерной техники

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ 2 СИНТЕЗ ПОМЕХОУСТОЙЧИВОГО КОДА ВАРИАНТ 92

Студент: Пышкин Никита Сергеевич, Р3113

Преподаватель: Авксентьева Е.Ю., к.п.н., доцент факультета ПИиКТ

Санкт Петербург 2023

Содержание

Задание	. 3
Основные этапы вычисления	. 4
Заключение	. 7
Список использованных источников	Q

Задание

- 1. Определить свой вариант задания с помощью номера в ISU (он же номер студенческого билета). Вариантом является комбинация 3-й и 5-й цифр. Т.е. если номер в ISU = 123456, то вариант = 35.
- 2. На основании номера варианта задания выбрать набор из 4 полученных сообщений в виде последовательности 7-символьного кода.
- 3. Построить схему декодирования классического кода Хэмминга (7;4), которую представить в отчёте в виде изображения.
- 4. Показать, исходя из выбранных вариантов сообщений (по 4 у каждого часть №1 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 5. На основании номера варианта задания выбрать 1 полученное сообщение в виде последовательности 11-символьного кода.
- 6. Построить схему декодирования классического кода Хэмминга (15;11), которую представить в отчёте в виде изображения.
- 7. Показать, исходя из выбранного варианта сообщений (по 1 у каждого часть №2 в варианте), имеются ли в принятом сообщении ошибки, и если имеются, то какие. Подробно прокомментировать и записать правильное сообщение.
- 8. Сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности.
- 9. Дополнительное задание №1 (позволяет набрать от 86 до 100 процентов от максимального числа баллов БаРС за данную лабораторную). Написать программу на любом языке программирования, которая на вход получает набор из 7 цифр «0» и «1», записанных подряд, анализирует это сообщение на основе классического кода Хэмминга (7,4), а затем выдает правильное сообщение (только информационные биты) и указывает бит с ошибкой при его наличии.

Основные этапы вычисления

1) Задание 76

\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i 4
0	1	1	0	1	0	1

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 1 \bigoplus 1 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 1 = 0$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i 4	S
1	X		X		X		X	S ₁
2		X	X			X	X	S ₂
4				X	X	X	X	S3

Имеем синдром S(1, 1, 0). Проверям за какой бит отвечают только r_1 и r_2 - это бит i_1 . Ответ: 0101

2) Задание 6

\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i ₄
0	1	1	0	0	0	0

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 1 \bigoplus 0 \bigoplus 0 = 0$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 0$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i 4	S
1	X		X		X		X	s_1
2		X	X			X	X	S2
4				X	X	X	X	S 3

Имеем синдром S(1, 0, 0). Ошибка в символе r_1 .

Ответ: 1000

3) Задание 48

\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i ₂	i ₃	i ₄
0	1	0	1	0	1	1

$$s_1 = r_1 \bigoplus i_1 \bigoplus i_2 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 1 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 1 \bigoplus 0 \bigoplus 1 \bigoplus 1 = 1$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i_2	i ₃	i 4	S
1	X		X		X		X	S ₁
2		X	X			X	X	S ₂

4		X	X	X	X	S3
---	--	---	---	---	---	----

Имеем синдром S(1, 1, 1). Проверяем за какой бит отвечают r_1 , r_2 и r_3 . Это бит i_4 . Ответ: 0010

4) Задание 36

Ī	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i ₂	i ₃	i ₄
	1	0	0	0	0	1	0

$$s_1 = r_1 \oplus i_1 \oplus i_2 \oplus i_4 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

$$s_2 = r_2 \bigoplus i_1 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 1$$

$$s_3 = r_3 \bigoplus i_2 \bigoplus i_3 \bigoplus i_4 = 0 \bigoplus 0 \bigoplus 1 \bigoplus 0 = 1$$

	1	2	3	4	5	6	7	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i_2	i ₃	i 4	S
1	X		X		X		X	S ₁
2		X	X			X	X	S ₂
4				X	X	X	X	S 3

Имеем синдром S(1, 1, 1). Проверяем за какой бит отвечают r_1 , r_2 и r_3 . Это бит i_4 . Ответ: 001

5) Задание 60

\mathbf{r}_1	\mathbf{r}_2	iı	r ₃	i ₂	i ₃	i 4	r ₄	i ₅	i ₆	i ₇	i ₈	i 9	i ₁₀	i ₁₁
0	1	0	0	0	1	1	1	1	0	0	0	0	1	1

$$s_1 = r_1 \, \oplus \, i_1 \, \oplus \, i_2 \, \oplus \, i_4 \, \oplus \, i_5 \, \oplus \, i_7 \, \oplus \, i_9 \, \oplus \, i_{11} = 0 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 1 \, \oplus \, 1 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 1 = 1$$

$$s_2 = r_2 \, \bigoplus \, i_1 \, \bigoplus \, i_3 \, \bigoplus \, i_4 \, \bigoplus \, i_6 \, \bigoplus \, i_7 \, \bigoplus \, i_{10} \, \bigoplus \, i_{11} = 1 \, \bigoplus \, 0 \, \bigoplus \, 1 \, \bigoplus \, 1 \, \bigoplus \, 0 \, \bigoplus \, 0 \, \bigoplus \, 1 \, \bigoplus \, 1 \, \bigoplus \, 1 = 1$$

$$s_3 = r_3 \, \oplus \, i_2 \, \oplus \, i_3 \, \oplus \, i_4 \, \oplus \, i_8 \, \oplus \, i_9 \, \oplus \, i_{10} \, \oplus \, i_{11} = 0 \, \oplus \, 0 \, \oplus \, 1 \, \oplus \, 1 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 1 \, \oplus \, 1 \, \oplus \, 0$$

$$s_4 = r_4 \, \oplus \, i_5 \, \oplus \, i_6 \, \oplus \, i_7 \, \oplus \, i_8 \, \oplus \, i_9 \, \oplus \, i_{10} \, \oplus \, i_{11} = 1 \, \oplus \, 1 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 0 \, \oplus \, 1 \, \oplus \, 1 = 0$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	r ₃	i_2	i ₃	i 4	r ₄	i ₅	i_6	i 7	i_8	i 9	i ₁₀	i ₁₁	S
1	X		X		X		X		X		X		X		X	S ₁
2		X	X			X	X			X	X			X	X	S ₂
4				X	X	X	X					X	X	X	X	S 3
8								X	X	X	X	X	X	X	X	S4

Имеем синдром S(1, 1, 0, 0). Проверяем за какой бит отвечают только r_1 и r_2 . Это бит i_1 . Ответ: $00\frac{1}{1}1000011$

6)
$$(76 + 6 + 48 + 36) * 4 = 664$$

Количество информационных разрядов: 664.

Минимальное количество контрольных разрядов: $2^r \ge r + i + 1$.

Подставим r + i: $2^r > 665 => r = 10$.

Коэффциент избыточности: $r / (r + i) = 10 / 664 \approx 0,0150602$

Ответ: r = 10, коэффициент избыточности ≈ 0.0150602

7) Дополнительное задание

```
def decode(message):
    translate = ["r1", "r2", "i1", "r3", "i2", "i3", "i4"]
   bits = tuple(map(int, message))
    s1 = sum(bits[i] for i in range(0, len(bits), 2)) % 2
    s2 = sum(bits[i] + bits[i + 1] for i in range(1, len(bits),
4)) % 2
    s3 = sum(bits[i] for i in range(3, len(bits))) % 2
    s = s1 * 1 + s2 * 2 + s3 * 4
   print("Результат:", end=" ")
    if s:
       message = message[:s - 1] + str(int(message[s - 1]) ^ 1)
+ message[s:]
        print(message[2] + message[4:7], f"(ошибка в бите
{translate[s - 1]})")
    else:
        print(message[2] + message[4:7], "(ошибок нет)")
message = input("Сообщение: ")
decode (message)
```

Заключение

Я изучил принцип работы кода Хэмминга и научился работать с ним.

Список использованных источников

- 1. 1. Основы цифровой радиосвязи. Помехоустойчивое кодирование: метод. указания / сост. Д. В.Пьянзин. Саранск : Изд-во Мордов. ун-та, 2009. с. 16
- 2. 2. Коды и устройства помехоустойчивого кодирования информации / сост. Королев А.И. Мн.: , 2002. с. 286