

Bases de photodétection

Opto-Electronique / Semestre 5
Institut d'Optique

Julien VILLEMEJANE

Photodétection

Exemples

Opto-Electronique / Semestre 5
Institut d'Optique

Julien VILLEMEJANE

Interféromètre à atomes froids piégés sur puce avec séparation spatiale

Groupe Gaz Quantiques / LCF

Représentation d'un interféromètre de **Mach-Zehnder** (a) en optique, et (b) en version atomique, aussi appelé Ramsey-Bordé.

Anti-coalescence of bosons on a lossy beamsplitter

Groupe Nanophotonique / LCF

Single-plasmon interferences

Magnetic field stabilisation for Bose-Einstein condensation experiments

Groupe Gaz Quantique / LCF

Schematic of the **stabilization system**. In essence, it is a **feedforward** technique in a separated coil. A key feature is that the mutual inductance between the two circuits is cancelled.

Camera / Array of small sensors

Columns 1 2 3 4 5 6 1 Rows 2 3 4 5 6 4

https://imaging.teledynee2v.com/products/2d-cmos-imagesensors/onyxmax/

Camera

Device that transforms a light flux into a measurable electrical signal

Exposure Time

Exposure Time

Duration for which the camera's sensor is exposed to light, when capturing an image.

Exposure Time

Exposure Time

Duration for which the camera's sensor is exposed to light, when capturing an image.

Exposure Time

Exposure Time

Duration for which the camera's sensor is exposed to light, when capturing an image.

Exposure Time

Exposure Time

Duration for which the camera's sensor is exposed to light, when capturing an image.

Exposure Time

Exposure Time

Duration for which the camera's sensor is exposed to light, when capturing an image.

LEDs

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

LEDs et circuits d'émission

Kingbright

High Efficiency Red

L-53ID

LEDs et circuits d'émission

Source de photons

Forward Voltage(V)
FORWARD CURRENT Vs.
FORWARD VOLTAGE

Kingbright

High Efficiency Red

L-53ID

MODÈLE COMPLET

 $e = -1,602 \times 10^{-19} \text{ C}$ $k = 1,38064852 \cdot 10^{-23} \text{ J/K}$ Si u > 0, diode **passante**

$$i = I_0 [exp(u / n.V_0) - 1]$$

loi exponentielle

 \mathbf{V}_0 : tension thermique

$$\mathbf{V}_0 = \mathbf{k.T} / \mathbf{e}$$

T: température (K)

k : Constante de Boltzmann

e : charge d'un électron

n: facteur de qualité

I₀: constante spécifique à un type

Forward Voltage(V)
FORWARD CURRENT Vs.
FORWARD VOLTAGE

Kingbright

High Efficiency Red

L-53ID

Idéalement : source de courant

Absolute Maximum Ratings at T_A=25°C

Parameter	High Efficiency Red	Units
Power dissipation	105	mW
DC Forward Current	30	mA
Peak Forward Current [1]	160	mA
Reverse Voltage	5	V
Operating/Storage Temperature	-40°C To +85°C	
Lead Solder Temperature [2]	260°C For 5 Seconds	

Notes:

- 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 2mm below package base.

L-53ID

Kingbright

High Efficiency Red

Idéalement : source de courant

Photodétection

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

Photodiode, une diode mais...

 $I_{photo} = S_{\lambda} \cdot \eta \cdot \Phi_{photo}$ Sensibilité spectrale

Rendement quantique

https://www.youtube.com/watch?v=KgKcbW77txY

https://www.youtube.com/watch?v=rNoHLOumplk

Photodiode, une diode mais...

Photocurrent/Open-Circuit Voltage

$$I_{P} (V_{R} = 5 V) / V_{O} = f (E_{v})$$

Photodiode, une diode mais...

Photocurrent/Open-Circuit Voltage

$$I_{P} (V_{R} = 5 V) / V_{O} = f (E_{v})$$

Photodétection

Montage simple

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

Montage de photodétection

Montage de photodétection

Etude expérimentale

Modélisation

Bande passante réduite (à cause du système de mesure)

Modélisation

Bande passante réduite (à cause du système de mesure)

Amélioration / Montage Suiveur

Transistor

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

Transistor (bipolaire)

Adaptation de puissance

$$I_C = \beta \cdot I_B$$
 et $I_E = I_C + I_B$

$$I_C = \beta \cdot I_{BS} \cdot \exp(V_{BE}/U_T)$$

Transistor (bipolaire)

Adaptation de puissance

$$I_C = \beta \cdot I_B$$
 et $I_E = I_C + I_B$

$$I_C = \beta \cdot I_{BS} \cdot \exp(V_{BE}/U_T)$$

ALI / Amplificateur Linéaire Intégré

Opto-Electronique / Semestre 5
Institut d'Optique

Julien VILLEMEJANE

Amplificateur linéaire intégré / ALI

FONCTION DE TRANSFERT

$$V_S = A \cdot (V + - V -)$$

avec $10^5 < A < 10^7$ Saturation à Vs = V_{cc} +

Amplificateur linéaire intégré / ALI

Fonctionnement boucle ouverte: comparateur

FONCTION DE TRANSFERT

$$V_S = A \cdot (V + - V -)$$

avec $10^5 < A < 10^7$ Saturation à Vs = V_{cc} +

Fonctionnement boucle ouverte : comparateur / Collecteur ouvert

FONCTION DE TRANSFERT

$$V_S = A \cdot (V + - V -)$$

avec $10^5 < A < 10^7$ Saturation à Vs = V_{cc} +

COMPARATEUR SIMPLE $V_{S} = V_{CC} + Si V_{E2} > V_{E1}$ $V_{S} = V_{CC} - Si V_{E1} > V_{E2}$ Caractéristique $V_{S} = V_{CC} + V_{CC} - V_{CC} + V_{CC} + V_{CC} - V_{CC} - V_{CC} + V_{CC} + V_{CC} - V_{CC$

COLLECTEUR OUVERT / ÉMETTEUR OUVERT

Comparateur associé à un transitor

T:

I, : courant entrant dans la base

I : courant entrant dans le collecteur

 \rightarrow si $I_B > 0$ alors $I_C > 0$, T = interrupteur fermé

 \rightarrow sinon I_c = 0, T = interrupteur ouvert

Si
$$V_{E2} > V_{E1}$$

 $\rightarrow I_{B} > 0$
 $V_{S} = E_{M}$

Si
$$V_{E1} > V_{E2}$$

$$\rightarrow I_{B} = 0$$

$$V_{S} = E_{0}$$

Fonctionnement boucle fermée: mode linéaire

FONCTION DE TRANSFERT

$$V_S = A \cdot (V + - V -)$$

avec $10^5 < A < 10^7$ Saturation à Vs = V_{cc} +

Si contre-réaction négative (via un dipôle)

Hypothèse à vérifier...

Fonctionnement boucle fermée: mode linéaire

FONCTION DE TRANSFERT

$$V_S = A \cdot (V + - V -)$$

avec $10^5 < A < 10^7$ Saturation à Vs = V_{cc} +

FONCTION DE TRANSFERT EN SUIVEUR

On obtient la fonction de transfert suivante :

$$T(j\omega) = \frac{V_s(j\omega)}{V_E(j\omega)} = \frac{A(j\omega)}{1 + A(j\omega)}$$

Fonctionnement boucle fermée: mode linéaire

RÉPONSE EN FRÉQUENCE

Exemple d'un ALI ayant un produit gain – bande-passante GBW = 1 MHz et une amplification différentielle de 10⁵ (identique ci-contre) et le rebouclage en mode suiveur.

FONCTION DE TRANSFERT EN SUIVEUR

On obtient la fonction de transfert suivante :

$$\mathbf{T}(j\omega) = \frac{\mathbf{V}_{S}(j\omega)}{\mathbf{V}_{E}(j\omega)} = \frac{\mathbf{A}(j\omega)}{1 + \mathbf{A}(j\omega)}$$

Fonctionnement boucle fermée: mode linéaire

RÉPONSE EN FRÉQUENCE

Exemple d'un ALI ayant un produit gain – bande-passante GBW = 1 MHz et une amplification différentielle de 10⁵ (identique ci-contre) et le rebouclage en mode suiveur.

Propriété des montages à ALI

Où A est l'amplification du montage BP la bande passante du montage

Photodétection

Montage transimpédance

Opto-Electronique / Semestre 5 Institut d'Optique

Julien VILLEMEJANE

Montage transimpédance

Flux

lumineux

Rendement quantique

Sensibilité

spectrale

$$V_S = -R_{PhD} \cdot I_{photo}$$

Etude expérimentale

$$V_{S} = -R_{PhD} \cdot I_{photo}$$

Modélisation

DC BW DC BW DC BW DC BW G 1.50Vpp Dmv

ALI / Passe-bas

Figure 6-41. Maximum Peak Output Voltage vs Frequency

Produit Gain-Bande-Passante constant

CITANCE					
Differential			100 2		MΩ pF
Common-mode			6 1		TΩ pF
OPEN-LOOP GAIN					
Open-loop voltage gain	V _S = 40 V, V _{CM} = V _S / 2, (V _{CC} -) + 0.3 V < V _O < (V _{CC} +) - 0.3 V	118	125		dB
Open-loop voltage gain	V_S = 40 V, V_{CM} = V_S / 2, R_L = 2 k Ω , (V_{CC-}) + 1.2 V < V_O < (V_{CC+}) - 1.2 V	115	120		dB
FREQUENCY RESPONSE					
Gain-bandwidth product			5.25		MHz
Slew rate	V _S = 40 V, G = +1, C _L = 20 pF		20		V/µs
	Differential Common-mode GAIN Open-loop voltage gain Open-loop voltage gain RESPONSE Gain-bandwidth product	Differential Common-mode GAIN $\begin{array}{c} V_S = 40 \text{ V, } V_{CM} = V_S \text{ / 2,} \\ (V_{CC-}) + 0.3 \text{ V} < V_O < (V_{CC+}) \\ - 0.3 \text{ V} \\ \end{array}$ $\begin{array}{c} V_S = 40 \text{ V, } V_{CM} = V_S \text{ / 2,} \\ (V_{CC-}) + 0.3 \text{ V} < V_O < (V_{CC+}) \\ - 0.3 \text{ V} \\ \end{array}$ $\begin{array}{c} V_S = 40 \text{ V, } V_{CM} = V_S \text{ / 2, } \\ V_{CC-} + 1.2 \text{ V} < V_O < (V_{CC-}) \\ (V_{CC-}) + 1.2 \text{ V} < V_O < (V_{CC-}) \\ \end{array}$ $\begin{array}{c} C_S = 40 \text{ V, } V_{CM} = V_S \text{ / 2,} \\ (V_{CC-}) + 1.2 \text{ V} < V_O < (V_{CC-}) \\ \end{array}$ $\begin{array}{c} C_S = 40 \text{ V, } V_{CM} = V_S \text{ / 2,} \\ V_{CC-} + 1.2 \text{ V} < V_O < (V_{CC-}) \\ \end{array}$ $\begin{array}{c} C_S = 40 \text{ V, } V_{CM} = V_S \text{ / 2,} \\ V_{CC-} + 1.2 \text{ V} < V_O < (V_{CC-}) \\ \end{array}$	Differential Common-mode GAIN	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

ALI asservi / Modélisation

Figure 6-41. Maximum Peak Output Voltage vs Frequency

$$A(j\omega) = \frac{A_{MAX}}{1 + j\frac{\omega}{\omega_c}}$$

$$V_S = \frac{A(j\omega)}{1 + A(j\omega) \cdot B(j\omega)} V_E$$

Transimpédance / Modélisation

$$\frac{\boldsymbol{V}_{S}}{\boldsymbol{I}_{Phd}} = \frac{\boldsymbol{R}_{T} \cdot \boldsymbol{A}_{0}}{(1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}_{0}}) \cdot (1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}_{c}}) + \boldsymbol{A}_{0}}$$

$$V_S = \frac{A(j\omega)}{1 + A(j\omega) \cdot B(j\omega)} V_E$$