

CLAIMS

1. Process for the preparation of an enantiomerically enriched β^2 -amino acid of
5 formula 1

wherein R², R³ and R⁴ each independently stand for H, an optionally substituted (hetero)aryl, an optionally substituted alkyl, OR⁵, CO₂R⁶, C(O)R⁷, SR⁸, NR⁹R¹⁰, OC(O)R¹¹ wherein R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ and R¹¹ each 10 independently stand for H, an optionally substituted alkyl or for an optionally substituted (hetero)aryl and wherein R² and R³, R² and R⁴ or R³ and R⁴ may form a ring together with the carbon atom to which they are attached, comprising the steps of reacting a stereoselective hydrolytic enzyme with a mixture of enantiomers of a β^2 -amino acid ester of formula 2

wherein R¹ stands for an optionally substituted alkyl and wherein R², R³ and R⁴ are as defined above and collecting the resulting enantiomerically enriched β^2 -amino acid of formula 1.

2. Process for the preparation of an enantiomerically enriched β^2 -amino acid
20 ester of formula 2

wherein R¹ stands for an optionally substituted alkyl and wherein R², R³ and R⁴ each independently stand for H, an optionally substituted (hetero)aryl, an optionally substituted alkyl, OR⁵, CO₂R⁶, C(O)R⁷, SR⁸, NR⁹R¹⁰, OC(O)R¹¹ 25 wherein R⁵, R⁶, R⁷, R⁸, R⁹ R¹⁰ and R¹¹ each independently stand for H, an optionally substituted alkyl or for an optionally substituted (hetero)aryl and

wherein R² and R³, R² and R⁴ or R³ and R⁴ may form a ring together with the carbon atom to which they are attached, comprising the steps of reacting a stereoselective hydrolytic enzyme with a mixture of enantiomers of a β²-amino acid ester of formula 2, wherein R¹, R², R³ and R⁴ are as defined above and collecting the remaining enantiomerically enriched β²-amino acid ester of formula 2.

- 5 3. Process according to claim 1 or claim 2, wherein the stereoselective hydrolytic enzyme is an enzyme from the enzyme classification group EC 3.1.1, 3.4.21, 3.4.22 or 3.4.23.
- 10 4. Process according to any one of claims 1-3, wherein the stereoselective hydrolytic enzyme has an E-ratio > 5.
5. Process according to any one of claims 2-4, wherein the collected remaining enantiomerically enriched β²-amino acid ester is further hydrolysed in a manner known per se.
- 15 6. Process according to any one of claims 1-5, wherein the β²-amino acid ester of formula 2 is prepared by reduction of the corresponding nitrile of formula 3

wherein R¹, R², R³ and R⁴ are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.

- 20 7. Process according to claim 6, wherein the nitrile of formula 3, wherein R¹, R² and R³ are as defined above and wherein R⁴ stands for H is prepared by reduction of the corresponding nitrile of formula 4,

25 wherein R¹, R² and R³ are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.

8. Process according to any one of claims 1-5, wherein the β²-amino acid ester of formula 2, wherein R⁴ stands for H and R¹, R² and R³ are as defined above

is prepared by reduction of the corresponding nitrile of formula 4, wherein R¹, R² and R³ are as defined above with a suitable reducing agent and optionally in the presence of a suitable catalyst.

9. Process according to claim 6, wherein the nitrile of formula 3, wherein R¹, R², R³ and R⁴ are as defined in claim 6 is prepared from the corresponding nitrile of formula 4, wherein R¹, R² and R³ are as defined above by introduction of R⁴ via nucleophilic 1,4-addition using a suitable nucleophile.
- 5 10. Process according to any one of claims 7-9, wherein the nitrile of formula 4, wherein R¹, R² and R³ are as defined above is prepared by condensation of a ketone or aldehyde of formula 6
- 10

wherein R² and R³ are as defined above and a nitrile of formula 7

wherein R¹ is as defined above, in the presence of a suitable base or a dehydrating reagent.

11. Process according to any one of claims 1-5, wherein the β²-amino acid ester of formula 2, wherein R¹, R², R³ and R⁴ are as defined in anyone of claims 1-5 is prepared by reacting NH₃ or an NH₃-analogue with the 2-substituted acrylic acid ester of formula 5
- 20

- 25 26. wherein R¹, R², R³ and R⁴ are as defined above.
12. Process according to any one of claims 1-11, wherein the enantiomerically enriched β²-amino acid (ester) prepared according to a process of any one of claims 1-11 is further converted into a pharmaceutically active ingredient.

13. Process according to claim 12, wherein the pharmaceutically active ingredient is formulated into a pharmaceutical composition comprising the pharmaceutically active ingredient and an excipient.