NASA-CR-171838 19850008985

A Reproduced Copy of

NASA CR-171,838

Reproduced for NASA by the

NASA Scientific and Technical Information Facility

LIBRARY COPY

MAY 14 1935

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

CR-171838 C.

(NASA-CR-171838) DESIGN AND TEST OF A FOUR CHANNEL MOTOL FOR ELECTROMICHANICAL FLIGHT CONTROL ACTUATION Final Report (Sunstrand

N85-17254

Energy Systems) 245 p hC All/MF A01

200

1

Unclas 14081

CSCL 09A G3/33 1

DESIGN AND TEST OF
A FOUR CHANNEL MOTOR
FOR ELECTROMECHANICAL
FLIGHT CONTROL ACTUATION

Sundstrand Energy Systems

ROCKFORD, ILLINOIS unit of Sundstrand Corporation

N85-17294

FINAL REPORT S8308-R1

DESIGN AND TEST OF A FOUR CHANNEL PERMANENT MAGNET BRUSHLESS D.C. MOTOR FOR

ELECTROMECHANICAL FLIGHT CONTROL ACTUATION

FOR

NASA CONTRACT: NAS 9-16535

DATA ITEM: MA-640T

TO

NASA-LYNDON B. JOHNSON SPACE CENTER

HOUSTON, TEXAS 77058

Ву

SUNDSTRAND ENERGY SYSTEMS

Unit of Sundstrand Corporation 4747 Harrison Avenue, P.O. Box 7002 Rockford, IL 61125

TABLE OF CONTENTS

- 1.0 Introduction
- 2.0 Summary
- 3.0 Approach
- 4.0 Motor Design Studies
- 5.0 Motor Fabrication
- 6.0 Design Verification Test
- 7.0 Conclusion
- Appendix A Test Data
- Appendix B Control Strategy

1.9 INTRODUCTION

1.0 INTRODUCTION

Advances in power electronics and electric motor design have made possible Electromechanical Actuation Systems (EMA), Figure 1-1, with performance and weight characteristics comparable to conventional hydraulic and hydromechanical systems. Present trends in aircraft and spacecraft toward use of electric power for more accessories and services make EMA an attractive candidate for primary flight control actuators.

Figure 1-1 Electromechanical Servoactuator System Block Diagram (Simplified)

The reliability requirements for primary flight control actuators, however, dictate a level of redundancy. Conventional approaches have included multi-actuator, Figure 1-2, or multi-motor systems, Figure 1-3.

Figure 1-2 Typical Lateral Flight Control System

Figure 1-3 Space Shuttle Rudder/Speedbrake Schematic

To achieve the full potential of EMA technology, it is desirable to obtain the required redundancy with a multi-channel motor which could electromagnetically sum the torque of the individual channels on a single rotor, Figure 1-4. Complex mechanical gearing arrangements could then be eliminated.

To reduce this concept to practical application requires knowledge of the failure modes and effects and innovative approaches to control and redundancy management.

As the first step in this effort, NASA-JSC and Sundstrand Advanced Technology Group undertook a joint program to design, develop and test a highly reliable, lightweight, multi-channel motor. This program was conducted under contract NAS-9-16535.

This project concentrated on establishing a suitable electromagnetic torque summing approach to flight control system redundancy. The objective was to design, fabricate, and test a brushless do motor with four-channel/two fault tolerant redundancy. This motor provided the means for validation of the analytical models and permits future development of a compatible four-channel control technique.

Figure 1-4 Typical Electromagnetic Torque Summing Concepts

Within this context, several specific objectives were defined:

- Establish a Preferred Motor Concept With emphasis on failure modes and effects, different mechanical arrangements were evaluated and a preferred concept selected.
- 2. Minimize Weight of Preferred Concept The weight of the preferred concept was evaluated with respect to performance, reliability, and efficiency. Electromagnetic design parameters were traded to achieve a suitable balance of these characteristics.
- 3. Validate Electrical Performance Model Single-channel tests of the motor characterized its performance and were used to validate the design models.

In achieving these objectives, the intent of this project was to demonstrate the feasibility of electromagnetic torque summing and establish the credibility of weight and performance

predictions. In conjunction with this work, NASA-JSC separately funded the development of finite element electromagnetic performance models. The combination of these analytical techniques, the characterization data obtained from motor tests, and the availability of a four-channel motor provide the foundation for the future development of a compatible control strategy.

2.0 SUMMARY A four-channel motor, capable of sustaining full performance after any two credible failures was successfully designed, fabricated, and tested. Configured as illustrated in Figure 2-1, the design consisted of a single samarium cobalt permanent magnet rotor with four separate three phase windings arrayed in individual stator quadrants around the periphery.

Figure 2-1 Electromagnetic Torque Summing Candidate

Trade studies which culminated in this design established the sensitivities of weight and performance to such parameters as design speed, winding pattern, number of poles, magnet configuration and strength. With this information, individual design details were selected to provide a reasonable balance between weight and performance. The resulting motor, at 33.31 pounds, achieved a project goal, bettering a 34 pound maximum established by comparison to comparable hydraulic systems. With a demonstrated efficiency of 92.9% at a design point of 4333 rpm, 17.2 hp, the motor also achieved the goal of 90% minimum efficiency. The prototype motor is shown in Figure 2-2.

Manufacturing techniques refined in the construction of this unit demonstrated that electromagnetic torque summing is a practical concept. Methods of coil winding and insertion plus rotor fabrication techniques provided a light, compact assembly without exotic and expensive processes.

Equally significant, testing demonstrated excellent electromagnetic separation among the individual channels. Performance was virtually unaffected as channels were added or subtracted from the circuit. Extensive static and dynamic data were developed. Included in the Appendix to this report, these data provide the essential information necessary to design a compatible four-channel controller and ultimately bring an electromechanical flight control system to fruition.

ORIGINAL PAGE ELACK AND WHITE PHOTOGRAPH

Figure 2-2 Prototype 4 Channel Motor

3.0 APPROACH Li

3.0 APPROACH

The approach used in this project is summarized as follows:

- i) ESTABLISH REQUIREMENTS Sundstrand and NASA-JSC jointly reviewed the functional requirements of an EMA system, assessed their influence on motor design and selected a working set of design criteria.
- ii) ESTABLISH PREFERRED GEOMETRY A variety of configurations were conceived and compared, establishing a preferred mechanical arrangement.
- iii) DEFINE POINT OF DEPARTURE DESIGN A detailed design of the preierred geometry was executed using historical information to select individual part configurations.
- iv) ESTABLISH POINT OF DEPARTURE PERFORMANCE In-depth analyses were conducted for the preferred geometry to fully define its predicted performance.
- v) ITERATE ON POINT OF DEPARTURE Individual design parameters were varied to develop sensitivity information enabling a refined final design to be established.
- vi) FABRICATE FINAL DESIGN One motor was built. Design changes necessary for manufacturing reasons were factored into the analyses.
- vii) TEST FINAL DESIGN MOTOR Motor and single channel motor/controller tests were conducted to confirm and correct the analytical techniques and provide a data base for controller development by NASA.
- viii) NASA-JSC TESTING The motor was provided to NASA-JSC for planned performance and failure mode evaluation testing.

4.0 MOTOR DESIGN STUDIES

4.0 MOTOR DESIGN STUDIES

The objective of the design studies was to establish a design which offered a reasonable balance of the desired criteria. Trades were conducted to define a preferred geometry which was then optimized. Variables such as magnet material, lamination material, number of poles, rotor construction, design speed and winding pattern were considered.

The method employed entailed establishing the preferred arrangement using reliability criteria. The details of this configuration were then selected, based on prior experience, to establish a point of departure design. This baseline was analyzed in depth to fully characterize its performance and physical properties.

Next, each parameter was varied individually by carrying out complete alternate motor designs, calculating the resulting performance and comparing to the baseline. After all the variables had been evaluated in this manner, a final motor design was performed using the optimum value for each parameter. This version was later fabricated to assess the accuracy of the predictions, to validate the models and to provide a tool for further system development.

A flow diagram of the trade studies is found in Figure 4-1.

4.1 REQUIREMENTS

The design for the motor is based on the Space Shuttle inboard elevon performance requirements, Figure 4-2. The Space Shuttle requirements were chosen because, at the time, interest in an electric Orbiter offered a likely opportunity for a near-term demonstration of this technology.

Fault Tolerance and Torque vs. Speed

The two-fault tolerant requirement dictates that the actuator's motor provide full performance even after two credible failures. A further stipulation for safe operation at reduced performance with any three credible failures was also imposed, in essence dictating a four-channel motor. Quadruple redundancy is compatible with the Shuttle flight control system of four general purpose computers with four reconfigurable data strings.

The resulting actuator, therefore, requires the torque vs. speed characteristics illustrated in Figure 4-3. Note that to provide this full performance with only two healthy motor channels requires that each channel be capable of supplying one-half full actuator output power plus one-half of any losses engendered by the failed channels. Theoretically then a fully healthy motor would be capable of supplying, at least instantaneously, the torque shown in Figure 4-4.

The four channel concept thus carries the potential for overdriving the actuation system and perhaps damaging structure. Control of this situation must be considered in ensuing system definition activities.

Duty Cycle

The duty cycle defined in the contract statement of work is shown in Figure 4-5. Representing original Orbiter design criteria, this cycle comprises approximately 2000 watt-hours.

Figure 4-1 Trade Study Flow Diagram

INPUT VOLTAGE
STROKE
NO LOAD VELOCITY
STALL LOAD
DYNAMIC PERFORMANCE
RELIABILITY

270 VDC ± 12.5° ± 30°/SEC 500,000 IN-LB -3DB @ 3.3 HZ + 2% COMMAND TWO FAULT TOLERANT

Figure 4-2 Space Shuttle Inboard Glevon Requirements

MINGE MATE (DEGMESS/SES)

Figure 4-3 Motor Speed-Torque Requirements

At the time of this project, data from initial flights were revealing a large degree of conservatism in that value. Sufficient capability was anticipated to require no more than 500 watt-hours.

In order not to penalize this design study by using overly conservative criteria, NASA-JSC and Sundstrand jointly redefined the duty cycle. The resulting cycle, summarized in Table 4-1 on a per channel basis, was predicated on the following:

- 1. Elevon hinge moment and rate using STS-1 data and three sigma winds.
- 2. Approximately 500 watt-hours total energy.
- 3. At least one maximum power point in each flight regime.
- 4. Output horsepower less than 1.5 horsepower 98% of the time.
- 5. Nine minutes of surface holding against inertia loads, assumed to be equal to 5% of the maximum load, during the initial phase of de-orbit prior to entering the atmosphere.

rabio 41 berived diligio branilei baty byolo								
Cycle Number	Duration, Minutes	Motor Power, Horsepower	Surface Rate, Degrees/Sec.	Motor Speed' RPM	Remarks			
1	9	Holding	0	0	Holding 12,500 in-lb/GR**			
2	17.5	0.3	5	1666				
3	0.5	2.3	5	1666				
4	7.5	0.3	13	4333				
5	0.5	10.0	13	4333	Max. Hinge Moment			
6	3.5	0.3	20	6666				
7	0.5	10.0	20	6666				
8	1.5	0.3	30	10,000				
9	0.5	10.0	30	10,000	Max. Surface Rate			

Table 4-1 Derived Single Channel Duty Cycle

4.2 EVALUATION CRITERIA

A principal emphasis of this project was to ascertain the realistic weight savings which could be anticipated with electromechanical technology. For that reason, all design options were compared primarily on the basis of their effect on motor weight.

However, from an overall vehicle perspective, the lightest actuator may not yield the lightest system. If a heavy battery was the power source, for example, the motor would be only a small percentage of system weight. It would thus be advantageous to emphasize efficiency in the motor design to lower battery weight. For this reason, motor efficiency was the second criteria used for evaluating design options.

The theme which pervaded the trades then was to strive for the lightest design which would satisfy a minimum efficiency. Having selected candidates on this basis, a final evaluation of weight vs. efficiency was made to ascertain if efficiency gains would warrant some weight growth. The project goal was to produce a motor no heavier than 34 pounds with a 90% minimum efficiency at the design operating point.

\$8308-R1

^{*} Based on 10,000 RPM Motor

^{**} Gear Ratio (GR) = 2,000:1 for 10,000 RPM Motor

4.3 CONTROL CONSIDERATIONS

Although the primary emphasis of this project was development of a four channel motor, the interrelationship of the motor and its controller required that some control method be assumed. The following paragraphs describe the control strategy that was envisioned. Note that these assumptions relate to providing compact and efficient control of the actuation functions and do not address redundancy management. How faults are detected and controlled is the subject of futuer NASA-JSC activity.

Figure 4-6 is a block diagram of the actuation system. The controller converts the 270 volts dc to three-phase power suitable for driving the motor. It consists of an inverter and associated control electronics that process the commanded position, the rotor position, and the actuator position information to suitably switch the inverter.

Figure 4-6 Actuation System Block Diagram (Single Channel)

A voltage source, six-step inverter was selected because it is smaller and lighter than a current source inverter and is more suitable for pulse width modulation (PWM) control.

As shown in Figure 4-3, the motor must produce constant horsepower from the maximum speed down to 43% of the maximum speed. This can be accomplished by holding the commutation angle constant. However, the motor power factor and current will vary as the speed varies.

To minimize controller current, it is desirable to have the same motor current at the extreme speeds. This can be achieved by designing the motor such as to have a leading power factor at the maximum speed and a lagging power factor of the same magnitude at the lowest speed. The power factor depends on the ratio of the speeds, the higher the speed range, the lower the power factor. At the intermediate speeds, the power factor is always greater than the value at the extreme speeds as is the motor current. The motor design was based on this concept and optimized for operation at the extreme speeds.

For output powers less that full output power at speeds down to 43% of the maximum speed, reducing the commutation angle will reduce the output power since the output power is proportional to the sine of the commutation angle. Below 43% of the maximum speed, the output power can be controlled by simultaneously varying the commutation angle and the input voltage. PWM is used to control the input voltage.

More detail on the assumed control scheme is found in Appendix B.

4.4 DESIGN PROCEDURE

Two Sundstrand developed computer programs were used to design the brushless dc motor options and calculate performance.

The first program calculates the motor flux densities, back EMF, winding resistance, winding inductance, and other basic motor parameters from the motor dimensions, number of turns, wire size, permanent magnet characteristics, etc.

The second program calculates the motor losses, torque, power factor, efficiency, current and the transistor currents. The inverter and motor are represented by an electrical network model and the motor performance is calculated by solving the network nonlinear differential equations.

4.5 SELECTION OF THE PREFERRED GEOMETRY

A variety of mechanical arrangements can be envisioned to provide a motor with four channel capability. For the purpose of this study, the six configurations shown in Figures 4-7 through 4-12 were selected as representative of the most likely approaches.

Single rotor concepts (Figure 4-7) are generally lighter and do not suffer from critical speed problems. Multirotor designs (Figure 4-8) offer better fault isolation and greater torque to inertia ratio but have more parts plus critical speed limitations. The concept in Figure 4-9 represents a combination of the single and multirotor approaches.

Figure 4-7 Four Channel Concept A

Figure 4-8 Four Channel Concept B

Figure 4-9 Four Channel Concept C

Multishaft approaches, shown in Figures 4-10 through 4-12, have the drawback of needing clutch mechanisms, but afford more straightforward methods of redundancy management.

In choosing among these options, mechanical and reliability criteria were applied. Mechanical considerations included qualitative assessment of complexity, volume, weight, and performance capability. Reliability considerations addressed the ability to provide two fault tolerant performance. This included an evaluation of the ability of each configuration to isolate faults and prevent subsequent propagation to secondary failures. The nature of likely failure modes and their implications to overall system architecture were also considered.

The above considerations indicated the single rotor configuration, Figure 4-7, offered the best design solution. As a further refinement, several stator options for this configuration were conceived. These included intertwining the windings of the individual channels, completely separating them, or partially overlapping them. The four quadrant geometry shown in Figure 4-13 was selected as offering the best isolation without affecting performance. Thus, the preferred concept is a single rotor geometry with a four quadrant stator.

As noted, dual fault tolerance requires two healthy channels to carry half the output load plus half any losses accruing to faults. Having selected a preferred geometry, it was then necessary to assess the probable failure modes, estimate the resulting additional losses, and thus establish the sizing criteria for the individual channels.

Mechanical failure modes are straightforwardly controlled with multipe rotating surfaces, dual retaining devices, generous structural margins of safety, etc. All probable modes entail very small additional losses.

Electrical failures can be generally grouped as open circuits or short circuits. As the scope of this project was directed to permanent magnet brushless dc motors, the presence of permanent magnets enables the motor to also perform as a generator. This fact causes short circuit failures, which present fault current paths, to produce considerable retarding torque. Compensating for two faults of this nature could result in an excessively large motor.

In evaluating this scenario, any failure or failure combination with a probability of 10⁻⁹/flight or greater was deemed credible and, therefore, a design consideration. Any failure modes with smaller probabilities were judged noncredible.

Figure 4-10 Four Channel Concept D

. Figure 4-11 Four Channel Concept E

Figure 4-12 Four Channel Concept F

Figure 4-13 Selected Four Channel Geometry

Using MIL-HDBK-217D data plus historical information from similar Sundstrand products, a combination of one short circuit and one open circuit failure per flight was judged credible, but two short circuits were not. Allocating losses in fault down modes, therefore, sized the individual channels at approximately 10 hp apiece to insure 17.18 hp was always delivered.

4.6 POINT OF DEPARTURE DESIGN CONCEPT

As noted, the design concept selected was a single stator-single rotor design with the 4 stator windings wound in quadrants around the stator. Evaluation of different winding schemes showed that isolation of the 4 windings could be achieved with a consequent pole, full-pitch winding if the number of stator slots is an integral multiple of the number of poles times the number of phases. The total number of poles is 4 times the number of poles per quadrant. Therefore, the possibilities for the motor design are 8, 16, 24, etc. poles. Previous brushless dc motor design experience led to choosing 16 poles for the baseline motor. The minimum number of stator slots is 48 which was selected for the baseline motor. A wye connected winding was selected for the design. The winding design is shown in Figure 4-14.

Hiperco 50 was selected for the stator laminations because the high magnetic saturation results in minimum weight. The stator iron areas were sized to obtain flux densities of 130,000 and 140,000 lines/in² for the stator core and stator teeth, respectively.

The rotor configuration is shown in Figure 4-15. Samarium-cobalt with an energy product of 21 x 10⁶ gauss-oersteds was chosen for the permanent magnets. The rotor design is based on tangentially oriented permanent magnets as shown.

The stator slot area was sized for a winding current density of 8,000 amperes/in2.

. 3

Figure 4-15 Baseline Motor Rotor Configuration

For the motor performance calculations, the stator copper was assumed to be at a temperature of 150°C and the rotor magnets at 160°C.

The calculated motor performance at the duty cycle load points is shown in Table 4-2. The total electromagnetic weight is 15.3 pounds, 10.2 pounds for the stator, and 5.1 pounds for the rotor.

Table 4-2 Baseline Motor Performance (Per Channel)

	1					Inverter		Ir.ve.	Motor		
Load Point	Speed, RPM	Output, HP	Period, Minutes	Motor Losses, Watts	Duty Cycle, Per Unit	Commutation Angle, Degrees	PWM Frequency, Hertz	Inpl. Current, DC Amps	Phase Current, RMS Amps	Power Factor, Per Unit	Efficiency, Percent
1	0	0	9	15							0
2	1666	0.3	17.5	106	0.3	9.3	5330	8.5	4.1	0.22	64.1
3	1666	2.3	0.5	237	0.3	36.0	5330	10.2	21.6	0.45	88.6
4	4333	0.3	'. 5	357	0.65	10.0	6930	5.2	6.7	0.33	46.3
5	4333	10.0	0.5	574	1.0	36.0	_	33.1	28.1	0.77	92.8
6	6666	0.3	3.5	627	1.0	3.9	_	5.9	6.4	0.35	26.5
7	6666	10.0	0.5	771	1.0	38.5	_	33.9	23.2	0.95	90.6
8	10000	0.3	1.5	1158	1.0	6.5	_	7.9	16.5	0.22	16.2
9	10000	10.0	0.5	1270	1.0	41.5	_	35.7	25.7	0.91	85.4

4.7 THERMAL ANALYSIS

A thermal analysis of the baseline motor design was performed for the duty cycle shown in Table 4-1. Two motors were assumed to be operating in a 200°F ambient and all of the dissipated energy was considered to be absorbed by the iron and copper.

The results of the thermal analysis are shown in Table 4-3. The maximum safe operating temperatures are 200°C for the magnets and 250°C for the stator copper. Since both the copper and the magnet temperatures exceeded these limits at the end of the fourth cycle, the thermal analysis was not carried any further.

Table 4-3 Baseline Motor Thermal Analysis

		Max	dimum Te	mperature	, ºC
Load	Duration,	Cop	Magnet		
Point	Minutes	Initial	Final	Initial	Final
1	9.0	93.3	100.2	93.3	96.1
2	17.5	100.2	173.8	96.1	154.2
3	0.5	173.8	179.5	154.2	155.8
4	7.5	179.5	262.3	155.8	218.9

The thermal analysis assumed that all of the losses were absorbed by the motor mass. In reality, there will be heat transfer due to convection, conducction, and radiation. Also, the duty cycle needs validation. Since the primary objective of this study was to demonstrate a concept,

NASA-JSC and Sundstrand decided that thermal capability would not be a design criterion. The objective would be to design the lightest motor satisfying the performance requirements and to then define its thermal capability.

4.8 MOTOR SPEED TRADE STUDY

The speed trade study was performed for speeds of 6,000, 10,000, and 15,000 rpm. Six thousand and 15,000 rpm motors were designed and compared to the baseline 10,000 rpm motor. The 6,000 and 15,000 rpm motors were based on the same design constraints that were used for the baseline motor.

The motor performance at the rated load is shown in Tables 4-4 and 4-5 for the 6,000 and 15,000 rpm designs, respectively. Table 4-6 is a tabulation of the motor characteristics for all three motors.

The system inertia at the motor shaft for the three speeds was calculated and compared to the motor inertia to determine the influence on the dynamic response. The actuation system is shown in Figure 4-16. A ballscrew was chosen over a geared rotary actuator because it is more efficient and results in more efficient packaging for a flight control surface. The following assumptions were made for the analysis:

1. Actuator stroke: ± 1.85 in.

2. Efficiencies

a. Ballscrew: 92%b. Thrust bearing: 97%

c. Gear: 99%

d. Gearbox: 99% (98% for 15,000 rpm motor)

The motor and system inertias are tabulated in Table 4-7. Since the system inertia is small compared to the motor inertia, it can be neglected in a dynamic analysis.

The frequency response requirement for a command with an amplitude of $\pm 2\%$ of full stroke is shown in Figure 4-17. The system model that was used for the analysis is shown in Figure 4-18. The dynamic response for the three speeds is shown in Figure 4-19. The 6,000 and 10,000 rpm motors meet the frequency response requirements with a slower motor having the better frequency response. However, the system is a second order system and as such has a 40 db/decade fall-off whereas the specified response has a 20 db/decade fall-off. If the corner frequency were changed from 1.5 to 3 Hertz and the fall-off from 20 to 40 db/decade as shown in Figure 4-19, the 15,000 rpm motor would meet this requirement.

The trade study shows that the 15,000 rpm motor is the smallest and lightest. Being the smallest means it would have the highest temperature rise. The 6,000 rpm motor has the best frequency response and, since it is the heaviest, would have the lowest temperature rise. The 10,000 rpm motor was selected as the best compromise between size, thermal capability, and frequency response.

Table 4-4 6,000 RPM Motor Performance (Per Channel)

						Inverter		Inverter	Motor		1
Load Point	Speed, RPM	Output, HP	Period, Minutes	Motor Losses, Watts	Duty Cycle, Per Unit	Commutation Angle, Degrees	PWM Frequency, Hertz	Input Current, DC Amps	Phase Current, RMS Amps	Power . Factor, Per Unit	Efficiency, Porcent
1	0	0	9	15							0
2	1000	0.3	17.5	91	0.33	8.0	3200	3.7	6.3	0.23	71.8
3	1000	2.3	0.5	240	0.33	34.0	3200	11.2	20.3	0.52	89.9
4	2600	0.3	7.5	278	0.69	8.0	4160	4.64	4.95	0.33	47.4
5	2600	10.0	0.5	578	1.0	35.3	-	33.3	27.8	0.77	97.9
6	4000	0.3	3.5	482	1.0	3.4	-	5.3	6.1	0.30	31.6
7	4000	10.0	0.5	676	1.0	38.0	-	33.4	22.8	0.95	91.7
8	6000	0.3	1.5	906	1.0	5.6	-	7.0	16.6	0.18	20.1
9	6000	10.0	0.5	1051	1.0	40.0	-	34.9	25.4	0.90	27.6

Table 4-5 15,000 RPM Motor Performance (Per Channel)

						Inverter		Inverter	Motor			
Load Point	Speed, RPM	Output, HP	Period, Minutes	Motor Losses, Watts	Duty Cycle, Per Unit	Commutation Angle, Degrees	PWM Frequency, Hertz	Input Current, DC Amps	Phase Current, RMS Amps	Power Factor, Per Unit	Efficiency, Percent	
1	0	0	9	15							0	
2	2500	0.3	17.5	94	0.3	9.4	8000	3.87	4.5	0.34	70.4	
3	2500	2.3	0.5	165	0.3	31.8	8000	9.8	17.8	0.51	91.2	
4	6500	0.3	7.5	359	0.65	8.9	10400	4.7	6.7	0.26	33.0	
5	6500	10.0	0.5	557	1.0	34.5		33.6	28.7	0.76	93.2	
6	10,000	0.3	3.5	657	1.0	3.75	_	5.9	6.6	0.35	24.3	
7	10,000	10.0	0.5	774	1.0	36.1	_	33.7	23.0	0.95	90.6	
8	15,000	0.3	1.5	1234	1.0	6.5	_	8.22	17.4	0.22	16.5	
9	15,000	10.0	0.5	1333	1.0	39.0	_	37.0	26.7	0.90	85.3	

Table 4-6 Motor Speed Trade Study Summary

	6000 RPM Motor	10,000 RPM Motor	15,000 RPM Motor
Overall Diameter, Inches	5.83	5.42	5.26
Overall Length, Inches	5.08	4.44	4.21
Electromagnetic Weight, Pounds	23.3	15.3	13.4
Inductance, Microhenries	1176	694	441
Maximum Phase Current, RMS Amperes	27.8	28.1	28.7
Energy Loss Over Duty Cycle, Watt-Hours	135.5	167.1	167.3

Table 4-7 Actuation System Parameters

Motor Speed, RPM	Gearbox Ratio	Overall Ratio	Motor Inertia, Lb. In. Sec.²	System Inertia at Motor, Lb. In. Sec. ²	Percentage of Motor Inertia
6,000	2.11:1	1200:1	4 x 10 ⁻²	7.5 x 10 ⁻⁴	1.9
10,000	3.52:1	2000:1	2.31 x 10 ⁻²	2.6 x 10 ⁻⁴	1.1
15,000	5.28:1	3000:1	2.01 x 10 ⁻²	3.41 x 10 ⁻⁴	1.7

FREQUENCY (HZ)
Figure 4-17 Frequency Response Requirements

K_X = POSITION FEEDBACK GAIN
K_N = VELOCITY FEEDBACK GAIN

XBL = BACKLASH REFLECTED TO BALL SCREW

 γ_{LIM} - ACTUATOR TORQUE LIMIT REFLECTED TO MOTOR

$$K_S(V_M) = \frac{\Delta T_M}{\Delta N_M}$$
 FOR GIVEN V_M

 ${\bf J}_M$ = moment of inertia of rotor and gears reflected to motor ${\bf K}_{{\cal T}}({\bf V}_M)$ = ${\pmb \gamma}_M({\bf N}_M^{=0})$ for given ${\bf V}_M$

$$\left(\frac{x}{\theta_{\rm M}}\right)$$
 actuator radius/overall gear ratio

Figure 4-18 Model for Dynamic Analysis

Figure 4-19 Frequency Response

4.9 ROTOR CONFIGURATION TRADE STUDY

The baseline motor design had a rotor with tangentially oriented permanent magnets as shown in Figure 4-15. This design was compared to one employing a rotor with radially oriented permanents as shown in Figure 4-20. This alternate version was executed using the same design constraints that were employed for the baseline motor design. The stator iron densities were kept at the same values and the same wire size was used so as to achieve the same current density. The permanent magnet material (21 x 10^6 gauss-oersteds energy product) was the same as was used for the baseline motor design.

The comparative performance of the two designs is shown in Table 4-8.

Since the tangential design is smaller, lighter, and more efficient, it was chosen over the radial design.

Table 4-8 Radial vs. Tangential Performance

	Radial Design	Tangential Design
Motor Speed, RPM	10,000	10,000
Output HP (Per Channel)	10	10
Efficiency, %	83.9	85.4
Overall Diameter, Inches	5.70	5.42
Overall Length, Inches	6.70	4.44
Electromagnetic Weight, Pounds	20.8	15.3

Figure 4-20 Rotor Design With Radially Oriented Permanent Magnets

4.10 WYE VS. DELTA WINDING TRADE STUDY

A motor with a delta connected winding was designed using the same design constraints and assumptions that were used for the baseline motor design.

The motor performance and electromagnetic weights for the two windings are compared in Table 4-9. The motor performance at the duty cycle load points for the delta winding is tabulated in Table 4-10.

Table 4-9 Wye vs. Delta Winding

	Wye Winding	Delta Winding
Motor Speed, RPM	10,000	10,000
Output HP	10	10
Efficiency, %	85.4	85.0
Energy Loss During Duty Cycle, Watt-Hours	167.1	175.4
Electromagnetic Weight, Pounds	15.3	15.6

Table 4-10 Performance of 10,000 RPM Delta Wound Motor (Per Channel)

						Inverter		Inverter	Motor		
Load Point	Speed, RPM	Output, HP	Period, Minutes	Motor Losses, Watts	Duty Cycle, Per Unit	Commutation Angle, Degrees	PWM Frequency, Hertz	Input Current, DC Amps	Phase Current, RMS Amps	Power Factor, Per Unit	Efficiency, Percent
1	0		9	15							·0
2	1666	0.3	17.5	113	0.3	6.5	5330	7.8	4.3	0.3	53.6
3	1666	2.3	0.5	223	0.3	3.6	5330	10.9	12.0	0.51	89.7
4	4333	0.3	7.5	385 ·	0.65	12.9	6930	5.9	· 7.54	0.17	34,4
5	4333	10.0	0.5	582	1.0	30.5	_	33.4	16.5	0.76	92.8
6	6666	0.3	3.5	648	1.0	3.9	-	6.0	3.8	0.36	28.2
7	6668	10.0	0.5	802	1.0	37.1	_	34.1	14.1	0.90	89.9
8	10,000	0.3	1,5	1201	1.0	6.5	-	8.1	10.1	0.21	16.1
9	10.000	10.0	0.5	1306	1.0	39.5		35.9	15.1	0.90	85.0

Size and weight of the two motors are almost identical with the delta winding motor being slightly heavier and larger.

For the delta winding, there are circulating currents for the 3rd harmonic and multiples of the 3rd harmonic. The wye winding doesn't have these circulating currents which add to the copper losses without producing torque.

With the delta winding, if one of the phases opens, the motor will continue to operate and provide approximately two-thirds torque. With the wye winding, an open circuit will result in the motor single-phasing with greatly reduced output. In either case, however, if a failure occurs the input power will most likely be disconnected.

In the event of a short circuit fault in one of the windings, it is hard to say which winding pattern would have the greatest effect on the controller. Further study would be required to answer this question.

The wye winding was selected as the optimum winding because it is smaller, more efficient, and winding faults are more readily detectable.

4.11 NUMBER OF POLES TRADE STUDY

The total number of poles is four times the number of poles for each motor winding or quadrant and since each winding must have an even number of poles, the possibilities are 8, 16, 24, etc. poles. Eight, sixteen, and twenty-four poles were chosen for the trade study.

The baseline motor design is sixteen poles. Eight and twenty-four pole motor designs were completed for comparison to the baseline motor design. The same design criteria and assumptions were used for all the motor designs. Current density and the stator flux densities were maintained at the same levels. The number of stator slots was kept at one per pole per phase.

The motor performance at 4,333 and 10,000 rpm is shown in Table 4-11 along with the weights.

8 Pole 16 Pole 24 Pole Motor Motor Motor Efficiency at 10 HP and 4333 RPM 93.6 92.8 91.5 Efficiency at 10 HP and 10,000 RPM 90.0 85.4 82.0 Total Electromagnetic Weight, Pounds 22.2 15.3 18.0

Table 4-11 Motor Performance vs. Number of Poles

The 16-pole motor is the lightest. It is 7 pounds lighter than the 8-pole motor and 2.8 pounds lighter than the 24-pole motor. The 8-pole motor is the most efficient.

Since the 16-pole motor was the smallest and the lightest, it was selected as the best choice because it also had good efficiency.

4.12 PERMANENT MAGNET MATERIAL TRADE STUDY

Samarium-cobalt permanent magnets are available with energy products up to 30×10^6 gauss-oersteds. The desirable characteristics for the permanent magnet material are: high energy product, high coercive force, capable of 200° C operation, good temperature stability, ability to withstand physical shock, and availability. Since these requirements are best met by samarium-cobalt permanent magnets, other materials were not considered.

Table 4-12 lists the characteristics for samarium-cobalt premanent magnets with energy products ranging from 21 to 30 x 10^6 gauss-oersteds. The 21 and 24 x 10^6 gauss-oresteds permanent magnets have straight line demagnetization curves as illustrated in Figure 4-21. The 26 and 30 x 10^6 gauss-oersteds materials do not have straight line demagnetization curves and can demagnetize due to armature reaction depending on the operating point.

Table 4-12 Samarium-Cobalt Permanent Magnet Characteristics

	0000			
Energy Product, Gauss-Oersteds	21 x 10 ⁶	24 x 10 ⁶	26 x 10 ⁶	30 x 10 ⁶
Density, Pounds/In.3	0.295	0.295	0.295	0.295
Br, Residual Flux Density, Gauss	9300	9500	9500	11,200
Coercive Force, Oersteds	8860	9200	10,000	6300
Reversible Temperature Coefficient, %/°C	0.04	0.04	0.05	0.05
Relative Cost	1.0	1.5	2.0	_
Maximum Useable Temperature, °C	220	220	200	150

Figure 4-21 Samarium-Cobalt Demagnetization Curves

Because of the straight line demagnetization curve, operating temperature range, and availability, the 21 and 24×10^6 gauss-oresteds materials were chosen to be evaluated for the trade study.

The baseline motor design has 21×10^6 gauss-oresteds permanent magnets. A motor using 24×10^6 gauss-oresteds permanent magnets was designed using the same design criteria and assumptions. The 24×10^6 gauss-oresteds motor performance at the duty cycle load points is shown in Table 4-13. Table 4-14 compares the motor performance for two magnet materials. The 24×10^6 gauss-oresteds permanent magnet material was chosen for the final motor design because it results in a motor that is 0.8 pounds lighter and reduces the energy consumption over the duty cycle by 15.7 watt-hours.

Table 4-13 Motor Performance 24 x 106 Gauss-Oersteds Permanent Magnets (Per Channel)

				-		Inverter			Motor		
Load Point	Speed. RPM	Output, HP	Period, Minutes	Motor Losses, Watts	Duty Cycle, Per Unit	Commutation Angle, Degrees	PWM Frequency, Hertz	Inverter Input Current, DC Amps	Phase Current, RMS Amps	Power Factor, Per Unit	Efficiency, Percent
1	0	0	9	15							0
2	1666	0.3	17.5	99	0.3	9.7	5330	3.9	4.3	0.38	69.7
3	1666	2.3	0.5	191	0.3	33.0	5330	11.3	18.0	0.51	89.9
4	4333	0.3	7.5	324	0.65	9.2	6930	4.7	6.4	0.27	40.3
5	4333	10.0	0.5	546	1.0	35.9		32.9	27.9	0.76	93.2
6	6666	0.3	3.5	559	1.0	3.7		5.6	6.2	0.33	28.7
7	6665	10.0	0.5	704	1.0	38.0		33.5	22.9	0.95	91.9
8	10,000	0.3	1.5	1027	1.0	5.9		7.4	16.5	0.20	17.9
9	10,000	10.0	0.5	1139	1.0	40.8	_	35.3	25.4	0.91	86.8

Table 4-14 Permanent Magnet Trade Study Performance Summary

Permanent Magnet Energy Product, Gauss-Oersteds	21 x 10 ⁶	24 x 10 ⁶
Motor Speed, RPM	10,000	10,000
Output Horsepower Per Channel	10	10
Efficiency, %	85.4	86.8
Energy Loss During Duty Cycle, Watt-Hours	167.1	151.4
Overall Diameter, Inches	5.42	5.335
Overall Length, Inches	4.4	4.555
Electromagnetic Weight, Pounds	15.3	14.5

4.13 MOTOR EFFICIENCY VS. WEIGHT

As a final evaluation, the effect of motor weight on efficiency was examined. This was essentially a comparison of the merits of alternate stator lamination materials.

Three materials were considered for the stator laminations:

- 1. Hiperco 50
- 2. Magnesil
- 3. Metallic glass

Typical mechanical and magnetic properties for these materials are tabulated in Table 4-15.

Thermal Electrical Saturation Core Loss Tensile Modules Conductivity, Resistivity, of Elasticity, at 400 Hertz. Density. cal/cm3/ Induction. Strength. PSI PS1 Material Gausses watts/pound pounds/in.3 sec/°C ohm-cm. 34.7 x 108 Hiperco 50 0.131 45.7 x 10⁻⁶ 24,000 7.5 43,300 0.296 Metallic 130 x 10⁻⁶ 17.500 3.1 250,000 0.27 Glass 0.043 20,000 3.5 51,900 0.276 16.3 x 10⁵ Magnesil

Table 4-15 Properties of Lamination Materials

Hiperco 50 is an iron-cobalt-vanadium alloy with 20% higher magnetic saturation than silicon-iron alloys. It is expensive and difficult to work, but the demand for minimum weight systems has resulted in its use for stators and rotors of high energy density machines.

Magnesil is a silicon-iron alloy designed for applications of 400 Hertz or higher. It is available in thicknesses of 0.005 and 0.007 inches. It has good permeability in all directions of the rolling plane and is designed for laminations with random flux direction. It has a thin, uniform inorganic coating that provides a high degree of electrical insulation and the ability to withstand stress-relief annealing temperatures.

Metallic glass is produced by very rapid quenching in which a molten metal alloy is rapidly cooled through temperatures at which crystallization usually occurs. The result is an alloy that is very hard but very soft magnetically, It has a high resistivity which results in a low eddy current loss. Because of its hardness, it is extremely difficult to punch. Thickness is 0.001 to 0.0025 inches and width is up to 4 inches. Greater widths are expected to be available in the future.

Metallic glass was discarded because of fabrication difficulties and lack of availability in the desired width. Since Hiperco 50 results in the lightest weight design, the baseline motor design used Hiperco 50. Hiperco 50 and Magnesil were compared by carrying out a motor design with Magnesil stator laminations. The same design criteria and assumptions were used as for the Hiperco 50 motor except that permanent magnets with an energy product of 24×10^6 gauss-oersteds were used. Therefore, the Magnesil motor design was compared to the Hiperco 50 motor design with 24×10^6 gauss-oersteds magnets. The electromagnetic weights and efficiencies at 4,333 and 10,000 rpm are compared for the two designs in Table 4-16.

Although Magnesil results in a more efficient motor due to the decreased core loss, the Hiperco 50 motor was selected because it is 5.7 pounds lighter.

Table 4-16 Stator Lamination Trade Study Results

	Hiperco 50 Stator Laminations	Magnesil Stator Laminations
Efficiency at 10 HP and 4333 RPM	93.2	94.1
Efficiency at 10 HP and 10,000 RPM	86.8	90.6
Stator Electromagnetic Weight, Pounds	10.0	14.3
Rotor Electromagnetic Weight, Pounds	4.5	5 9
Total Electromagnetic Weight, Pounds	14.5	20.2

4.14 FINAL MOTOR DESIGN CONCEPT

The trade study resulted in the following motor design configuration:

- 1. 10,000 rpm speed
- 2. 16 poles
- 3. Rotor with tangentially oriented permanent magnets
- 4. Wye connected winding
- 5. 24 x 10⁶ gauss-oresteds permanent magnets
- 6. Hiperco 50 stator laminations

However, it was decided to reduce the flux density in the stator iron to allow for the increase in flux density due to armature reaction. The motor was redesigned to reduce the flux density to 127,000 lines/in² from 140,000 lines/in² in the teeth and 130,000 lines/in² in the core.

The performance at the duty cycle load points is shown in Table 4-17. The dimensions and weights are shown in Table 4-18. Performance is essentially the same as the higher flux density motor except for a 1.7 pound weight increase.

The final step in the motor design was to select the electrical insulation materials. The insulating materials in the motor are:

- 1. Magnet wire insulation
- 2. Phase and ground insulation
- 3. Varnish

In all cases, the goal was to use materials with as high a temperature rating as possible.

Table 4-17 Final Motor Design Performance (Per Channel)

	i		1	[·	Inverter		Inverter	Motor		
Load Point	Speed. RPM	Output, HP	Period, Minutes	Motor Losses, Watts	Duty Cycle, Per Unit	Commutation Angle, Dogrees	PWM Frequency, Hortz	Input Current, DC Amps	Phase Current, RMS Amps	Power Factor, Per Unit	Efficiency Percent
1	0	0	9	15							0
2	1666	0.3	17.5	100	0.3	9.7	5330	3.9	4.3	0.36	69.4
3	1666	2.3	0.5	204	0.3	33.5	5330	10.0	18.4	0.51	89.5
4	4333	0.3	7.5	328	0.65	9.3	6930	4.7	6.6	0.27	40.2
5	4333	10.0	0.5	567	1.0	35.7		33.0	27.9	0.77	92.9
6	6666	0.3	3.5	565	1.0	3.7	-	5.6	6.3	0.33	28.3
7	6666	10.0	0.5	723	1.0	37.9	-	33.6	23.0	0.95	91.2
8	10,000	0.3	1.5	1042	1.0	6.0	_	7.4	16.6	0.20	17.6
9	10,000	10.0	0.5	1163	1.0	49.6	_	35.3	25.5	0.90	86.5

Table 4-18 Dimensions and Weights — Final Motor Design

Overall Diameter, Inches	5.025
Overall Length, Inches	5.58
Stator Electromagnetic Weight, Pounds	11.2
Rotor Electromagetic Weight, Pounds	. 5.0
Total Electromagnetic Weight, Pounds	16.2

Magnet wire with polyimide insulation was chosen because it yields 10,000 hours life at 260°C and it is used almost exclusively at Sundstrand for motors and generators.

A nomex-kapton laminate was chosen for the slot insulators and kapton for the phase insulation. Both materials are Class H as is the magnet wire insulation and are compatible with the varnish.

A polyimide varnish was chosen to impregnate the stator based on material compatibility and manufacturing experience at Sundstrand.

5.0 MOTOR FABRICATION

5.0 MOTOR FABRICATION

With the final concept established as described in Section 4.0, a detailed design was executed. A cross section is shown in Figure 5-1. Modifications that were made as the result of manufacturing or testing information are described in this section.

Figure 5-1 Four Channel Motor

5.1 STATOR INSEPARABLE ASSEMBLY (EP 2758-94)

A consequent-pole winding pattern was chosen to provide total winding isolation between adjacent channels, Figure 5-2. Implementation of this scheme caused modifications to the initial motor housing design and slot cell insulation system as described below.

. ARROW SHOWS REQUIRED PATH OF ADJACENT COIL

Figure 5-2 Winding Patterns

The initial design approach was to supply a stator core that could be wound, impregnated, and inserted into a one-piece housing. This technique results in a lighter housing than one which utilizes end bells, Figure 5-3.

Figure 5-3 Housing Configurations

Several factors, however, prevented implementation of this approach when using the consequent-pole winding. A feature of this pattern is that beginning and ending ceil sides do not share slots with adjacent windings. This yields bulky end turn extensions. These extensions must be long enough to allow all coils located within a span to be inserted into their respective slots and enter their return path slots in the outside of the span. In addition, room must be provided for nesting of cross-over coils from adjacent spans.

This end turn bulk is discernible in Figure 5-4. The consequent pole end turn bulk places 50% more copper area in the phase cross-over point than would be found in a lap style winding. As a result of this bulk, the windings flair out over the stator core O.D. Though the bulk can be minimized by adjusting coil lengths, it can't be eliminated.

Figure 5-4 End Yurn Bulk

ORIGINAL PAGE ELACK AND WHITE PHOTOGRAPH

Attempts were made to form the coils by hand as they were inserted into the slots. This provided clearance for the inner coils allowing them to be more easily inserted. However, the pressure produced by this technique created cracks in the slot insulation. Some cracks propagated towards the nomex stator end lamination. This can be seen in Figure 5-5.

Figure 5-5 Slot Insulation Cracks

An additional result of this coil forming and insertion process was the distortion of the stator core slots. As coils were inserted, stator teeth would deflect, closing down adjacent vacant slots. This made insertion of subsequent coils increasingly difficult.

After reviewing these problems, steps were taken to eliminate their cause or minimize their effect. First, the housing was redesigned to allow the stator core to be wound and impregnated while installed in the housing. This constraint eliminated stator distortion during coil insertion thus allowing the stator slots to maintain their punched dimensions.

Redesign of the housing also entailed implementing an end bell configuration, allowing ample room for the end turns. This minimized the need to hand form the coils during insertion. In turn, minimum pressure was then transmitted to the bottom of the slot insulation.

In conjunction with this, the single layer slot insulation was replaced with two layers of thinner nomex-kapton sandwich. Though the resultant thickness was the same, a greater anti-tear quality was obtained.

Wire gauge was also reduced by paralleling two smaller wires of an area equivalent to the original design. This change facilitated winding insertion without damage to the wire insulation.

The new housing design resulted in a 3.9 pound increase in unit weight over the original design.

Views of the final stator inseparable assembly and its housing are shown in Figures 5-6 and 5-7.

BLACK AND WHITE PHOTOGRAPH

Figure 5-6 Stator/Housing Assy.

Figure 5-7 Stator/Housing Assy.

5.2 ROTOR BALANCE ASSEMBLY (EP 2758-210)

In the original design approach, a rotor construction containing tangential magnets and utilizing soft iron magnetic pole pieces, electron beam welded to a non-magnetic inner hub, was envisioned. Poles and magnets were contained by a non-magnetic sleeve shrunk over the outer rotor diameter, Figure 5-8.

Figure 5-8 Original Rotor Construction

This core construction was patterned after similar Sundstrand products. Subsequent stress analysis, however, revealed that the necessary depth of weld penetration exceeded acceptable manufacturing limits. Not only was this depth difficult to reliably obtain, but it also resulted in an exceeding thick weld zone at the point of entry, Figure 5-9. Material in the weld zone constituted a metallurgical mixing of the magnetic and non-magnetic parent materials, yielding unacceptable mechanical and electromagnetic properties when present in such thickness.

Figure 5-9 Required Weld Penetration

To circumvent this problem, the design was altered to individual core segments stacked together, Figure 5-10. Each segment is composed of an inner non-magnetic core over which an electromagnetic ring is shrunk. The joint between the two pieces is welded axially, forming a completed core segment. These core segments are illustrated in Figure 5-11.

ORIGINAL PAGE ELACK AND WHITE PHOTOGRAPH

Figure 5-10 Stacked Rotor Construction

Figure 5-11 Rotor Element Construction

Each segment is machined so that its faces are flat, removing weld bulges, and exposing a minimum thickness weld zone. In this manner, the weld zone thickness is held to an acceptable value, which in turn facilitates ultrasonic inspection of the weld.

At the point of assembly, weight reduction holes are drilled in the inner core non-magnetic material of each segment. The segments are then stacked and inserted on a shaft to form the rotor core and shaft inseparable assembly. Magnet slots are then machined at predetermined locations. This assembly can be seen in Figure 5-12.

Selection of the non-magnetic material for the inner core was critical in yielding an acceptable weld joint. Weld samples utilizing 347 stainless steel inner cores were determined to contain cold cracks. These resulted from a combination of residual weld stress and a lack of weld ductility. The weld zone was martensitic, Rc 35.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 5-12 Rotor Core Construction

To eliminate cracking problems, the inner core material was changed to Inconel 625, creating an austenite weld zone. Residual stresses were reduced by preheating the core segments and reducing the welding speed.

As noted, the original method envisioned for magnet retention was to utilize a non-magnetic (inconel) sleeve shrunk on the rotor O.D. Concurrent Sundstrand projects, however, were indicating that improved efficiencies could be obtained if a carbon fiber wrap of the same thickness was substituted. The improvement was generally attributed to the elimination of losses associated with eddy currents in the sleeve.

However, to use an equivalent thickness of carbon fiber required that some of the centrifugal forces imparted by the magnets be borne by the pole piece weld and not the fiber wrap. This was achieved by using wedged shaped magnets and dove-tailed slots, Figures 5-12 and 5-13.

Figure 5-13 Magnet Retention Configuration

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

As this scheme fully transfers the centrifugal loads to the pole piece welds, it is possible to essentially eliminate the wrapping altogether. Only a thin cosmetic layer needs to be retained to minimize windage losses. However, for this project, it was elected to maintain a wrap thickness equal to that of the originally designed inconel sleeve, providing a secondary retention feature in the event of weld failure.

Two trial rotors of this technique were manufactured. The wrap on these first two pieces, however, did not adhere totally to the rotor pole and magnet surfaces. In addition, the outer epoxy layer used to seal the strand ends was thin, exposing carbon fibers.

Though the wrap exhibited these discontinuities, it was securely bonded to itself. One rotor was tested at speeds up to 10,000 rpm with no failure or change in outer surface appearance.

The second rotor was stripped and rewrapped. Figure 5-14 shows the rotor prior to stripping. The silver colored area on the right side of the rotor is a resin lean region of the fiber system.

Figure 5-14 Carbon Wrap Distress

After stripping, the rotor was degreased and bead blasted to roughen the O.D. surface. This rougher surface allowed the epoxy to better adhere to the rotor pole and magnet surfaces. The rotor was rewrapped and cured.

Figures 5-15 and 5-16 are views showing a properly wrapped rotor. This rotor was used in the motor assembly tested for this report.

5.3 POSITION SENSOR VANE (EP 2758-41)

The rotor position sensing network was designed to contain 12 hall effect sensors, 1 per motor phase, and 8 sensor vanes, 1 per pole pair. The rotating vanes pass through all 12 sensors which are located on a single plate, Figure 5-17. The vanes are adjustable for either 180° or 120° conduction control schemes. This approach is similar to a Sundstrand design successfully tested for a U.S. Air Force remotely piloted vehicle.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 5-15 Rotor Assy.

Figure 5-16 Rotor Assy.

Figure 5-17 Rotor Position Sensing Configuration

In testing, however, the motor exhibited an audible tone at intervals of approximately 900 rpm. Review of the rotor position sensing geometry determined that four vanes would simultaneously pass a sensor every 15 degrees of revolution, creating a 24/rev. excitation of the vane assembly. Multiples of this value were found to correspond to the resonant frequencies of the vane teeth as well as the vane hub.

The immediate solution was to bond a damping material to the central vane hub. The material used was a ployvinylchloride (PVC) filled energy absorbing solid. This configuration was tested to over 10,000 rpm with no bonding failure.

6.0 DESIGN VERIFICATION TEST

6.0 DESIGN VERIFICATION TEST

Extensive tests were conducted on the motor, as a component, to adequately characterize its electromagnetic properties. These tests comprised both a static series where dc voltages were applied and a dynamic series where the motor, performing as a generator, was driven by an external prime mover.

In addition, limited single channel demonstration runs were made using a modified controller from another project. As development of a four channel controller was the objective of subsequent NASA activity, no suitable controller existed at the time of this project to conduct multichannel controller/motor tests.

6.1 TEST PROCEDURE

The test procedure used to determine the performance of the motor is found in Appendix A. Seven test series were conducted:

- 1) Winding Resistance
- 2) Winding Inductance
- 3) Dielectric Strength
- 4) Permanent Magnet Generator (PMG) Speed vs. Voltage Output
- 5) Permanent Magnet Generator (PMG) Loading
- 6) Static Torque vs. Rotor Position
- 7) Static Torque Summing

6.2 DATA SUMMARY

Complete test data are found in Appendix A. A brief summary of the results follows.

Motor Inductance

The predicted and measured phase inductance values are shown in Table 6-1. The difference is attributed to the consequent pole winding, and the end turn bulk resulting from it.

Table 6-1 Measured Inductance Valves

Test Number	Rotor Number	Predicted Inductance	Average Test Inductance
1	3	352.6 uh	447.4 uh
2	2	352.6 uh	450 uh
3	2	352.6 uh	448.3 uh

PMG Speed vs. Voltage Output

Test data matches predictions within 3% over the range of operating speeds.

PMG Loading

Data show that there is channel independency within the range of loading and speeds tested, Table 6-2.

Table 6-2 Measured Output Voltage — Loaded PMG Operation

	P.M.G. Volt	age Output	Motors B, C & D Unloaded
Speed	Predicted	Test	Motor A Loaded
1666	38	37	Unloaded Quadrant Motors
	38	37-31.4	Loaded Quad @ 0 to 15.4 amperes
4333	98	96-107	Unloaded Quadrant Motors
ĺ	98	96-56	Loaded Quad @ 0 to 27.3 amperes
10,000	225	222	Unloaded Quadrant Motors
1	225	218-157	Loaded Quad @ 0 to 23.3 amperes

Static Torque vs. Rotor Position

The predicted torque output of 12.6 in-lb compares to the average measured torque output of 13.14 in-lb within 4.1%.

Static Torque Summing

The current-torque curves show a linear relationship for the single channel configuration and a nonlinearity for multiple channel operation. This was traced to deflection of the test fixturing at the higher torque values achieved with multiple channels and not from interaction among the channels. Linear summing of torque is expected.

Waveforms and Harmonic Analysis

Motor voltage waveforms were recorded and their harmonic content analyzed. Tests were performed for both loaded and unloaded situations for several combinations of speeds, loads, channels and phases. Because of the extensive nature of these data, the following index of representative data is provided.

- Voltage Waveforms at No Load
 - a) A comparison of line to neutral and line-to-line voltage waveforms as a function of speed can be obtained by reviewing the photographs listed in Table 6-3. These data were obtained from Channel "A".
 - b) A comparison of the line to neutral voltage waveform for all four channels concurrently can be obtained as a function of speed by reviewing the photographs indicated in Table 6-4. A uniformity is noted among the individual channels.

Table 6-3 Voltage Waveforms at No Load Motor Channel "A" Phases A, B, C

LOAD (Amps)	L-N	L-N PHOTO NUMBER	<u>L-L</u>	L-L PHOTO NUMBER
1) 1666 RPM D	DATA POINT			
0	A B C	5.4-A-1 -2 -3	A-B B-C C-A	5.4-D-1 -2 -3
2) 4333 RPM D	DATA POINT		·	
0	A B C	5.4-B-1 -2 -3	A-B B-C C-A	5.4-E-1 -2 -3
3) <u>10,000 RPM</u>	DATA POIN	<u>IT</u>		
0	A B· C	5.4-C-1 -2 -3	A-B B-C C-A	5.4-F-1 -2 -3
Motor Connection	ns: Line to N	leutral (L-N) & Li	ne to Line (L	L)

Table 6-4 Voltage Waveforms at No Load Motor Channels A. B. C. D

			Motor Channe	els A, B, C, D								
	QUADRANTS											
·	LOAD	(L-N) MOTOR	MOTOR A	MOTOR B	MOTOR C	MOTOR D						
	(Amps)	CONNECTION	PHOTO	РНОТО	PHOTO	PHOTO						
1)	1666 RPM	DATA POINT										
	0	A-N B-N C-N	5.4-A-1 -2 -3	5.4-A-4 -5 -6	5.4-A-7	5.4-A-8						
2)	4333 RPM	DATA POINT				٠.						
	0	A-N B-N C-N	5.4-B-1 -2 -3	5.4-B-4 -5 -6	5.4-B-7	5.4-B-8						
3)	10,000 RP	M DATA POINT				•						
	0	A-N B-N C-N	5.4-C-1 -2 -3	5.4-C-4 -5 -6	5.4-C-7	5.4-C-8						

Voltage Waveforms at Load

- a) An indication of the effect of load on waveform can be obtained by examining the photos listed in Tables 6-5 and 6-6. Data in Table 6-5 are grouped as a function of speed. Data in Table 6-6 are grouped as a function of load current. All data were obtained from a loaded channel "A" with the remaining channels open circuited (unloaded).
- b) The effect on the waveform of a loaded channel on an unloaded channel can be obtained by reviewing the data listed in Table 6-7.

Harmonic Analysis at No Load

a) The harmonic content of the line to neutral and line-to-line waveforms of an unloaded channel can be obtained by reviewing the graphs listed in Table 6-8.

Harmonic Analysis at Load

a) The harmonic content of line to neutral and line-to-line waveforms for loaded channels can be obtained by reviewing the graphs listed in Tables 6-9 and 6-10. Table 6-9 presents the data as a function of speed. Table 6-10 presents the data by motor connection.

Table 6-5 Voltage Waveforms at Load Motor Channel A

L-N	L-N PHOTO NUMBER	<u>L-L</u>	L-L PHOTO NUMBER	LOAD (Amps)	
1) 1666 RPM DATA POINT					
Α	5.5-A-20	A-B	5.5-A-21	6.1	
2) 4333 RPM	A DATA POINT			• •	
A	5.5-B-6 -2	A-B	5.5-B-7 -3	14.6 17.8	
3) 10,000 RPM DATA POINT					
A	5.5-C-2 -4	A-B	5.5-C-3 -5	10.2 18.1	
MOTOR CO	NNECTIONS: LIN	E TO NEUT	RAL (L-N) & LIN	E TO LINE (L-L)	

Table 6-6 Voltage Waveforms at Load Motor Channel A

LOAD	SPEED	MOTOR	PHOTO	
(Amps)	(R.P.M.)	CONNECTIONS	NUMBER	
6.0	1666	A-N	5.5-A-7	
5.7	10K	A-N	5.5-C-1	
10.1	1666	A-N	5.5-A-11	
10.2	10K	A-N	5.5-C-2	
10.2	10K	A-B	-3	
14.8	1666	A-N	5.5-A-18	
14.6	4333	A-N	5.5-B-6	
14.6	4333	A-B	-7	
17.8	4333	A-N	5.5-B-2	
17.8	4333	A-B	-3	
18.1	10K	A-N	5.5-C-4	
18.1	10K	A-B	-5	

Table 6-7 Voltage Waveforms Unloaded vs. Loaded Motor Channels A & B

1) 4333 RPM E	ATA POINT				
QUADRANT MOTOR	LOAD (Amps)	L-N	PHOTO NUMBER	L-L	PHOTO NUMBER
A	17.8	Α	5.5 - B-2	A-B	5.5-B-3
B MOTOR CONN	0 IECTIONS: LI	NE TO NEU	-4 TRAL (L-N) & LIN	E TO LINE	-5 (L-L)

Table 6-8 Harmonic Analysis at No Load

A) 1666 RPM	DATA POINT			
LOAD (Amps)	CONSTANT	VARIABLE	H.A. GRAPH NUMBER	
0	A-N	Y N	5.4-A-1 -9	
0	N	A-N A-B	5.4-A-9 -10	
MOTOR CONNECTIONS: LINE TO NEUTRAL (A-N) & LINE TO LINE (A-B)				
Y = HARMONIC ANALYZER GROUNDED				
N = HARMO	NIC ANALYZER	UNGROUND	ED	

Table 6-9 Harmonic Analysis at Load

CONSTANT	VARIABLE	LOAD (Amps)	H.A. GRAPH NUMBER	
1) 1666 RPM	DATA POINT			
A-N	N Y Y	6.13 9.3 14.1	5.5-A-1 -3 -5	
A-B	N Y Y	6.13 9.3 14.1	5.5-A-2 -4 -6	
2) 4333 RPM	DATA POINT			•
A-N	N Y	14.6 14.4	5.5-B-1 -3	
A-B	N Y	14.6 14.4	5.5-B-2 -4	
N	A-N A-B	14.6 14.6	5.5-B-1 -2	
Y	A-N A-B	14.4 14.4	5.5-B-3 -4	
3) 10,000 RPN	M DATA POINT			
N	A-N A-B	10.2 10.2	5.5-C-1 -2	

MOTOR CONNECTIONS: LINE TO NEUTRAL (A-N) & LINE TO LINE (A-B)

Y = HARMONIC ANALYZER GROUNDED

N = HARMONIC ANALYZER UNGROUNDED

Table 6-10 Harmonic Analysis at Load

CONSTANT	(R.P.M.) VARIABLE	LOAD (Amps)	H.A. GRAPH NUMBER	
1) LINE TO NE	EUTRAL (A-N)			
N ·	1666 4333 10K	6.1 14.6 10.2	5.5-A-1 5.5-B-1 5.5-C-1	
2) LINE TO LI	VE (A-B)			
N	1666 4333 10K	6.1 14.6 10.2	5.5-A-2 5.5-B-2 5.5-C-2	
3) LINE TO NE	UTRAL (A-N)			
Y	1666 1666 4333	9.3 14.1 14.4	5.5-A-3 5.5-A-5 5.5-B-3	
4) LINE TO LI	NE (A-B)			
Y	1666 1666 4333	9.3 14.1 14.4	5.5-A-4 5.5-A-6 5.5-B-4	
Y = HARMONIC ANALYZER GROUNDED				
N = HARMON	C ANALYZER	UNGROUN	DED	

6.3 MOTOR/CONTROLLER OPERATION

Modifications were made to a Sundstrand controller to allow it to drive a single channel. With the controller driving quadrant "A", no-load speeds up to 5,000 rpm were obtained with smooth acceleration and deceleration. Inability to drive the motor at speeds greater than 5,000 rpm was due to the controller. At this point testing was concluded.

6.4 WEIGHT SUMMARY AND DISTRIBUTION

MICIOLIT	01	15.45		
WEIGHT	51	AL JE	ΛA	HY

MC	OTOR ASSEMBLY (EP2758-10)	ACTUAL WEIGHT
a)	Stator Inseparable Assembly (EP2758-94)	12.425 Lbs.
b)	Rotor Balance Assembly (EP2758-210)	9.329 Lbs.
	Other Motor Parts Motor Assembly	11.56 Lbs.
u,	(EP2758-10)	TOTAL 33.31 Lbs.

WEIGHT DISTRIBUTION

			NOTE	LBS PREDICTED	LBS ACTUAL	LBS DIFFERENTIAL
A)	STATOR INSEPARABL	E ASSEMBL	Y (EP27	58-94)		
1)	Iron			6.853	7.020	+.167
2)	Copper		(1)	4.337	5.230	+.893
3)	Insulation, Tape Leadwire, Sleeving		(2) (2)		.175	+.175
		TOTAL		11.190	12.425	+1.235

NOTES:

- (1) Stator coil form size had to be enlarged to allow for nesting and overlap clearance of coil end turns.
- (2) These parts were not weight predicted.

	NOTE	LBS PREDICTED	LBS ACTUAL	LBS DIFFERENTIAL
B) ROTOR BALANCE ASSEMBLY (EP2758-211	<u>)</u>		and the second s
1) SEPARABLE WEIGHTS				
a) Magnetsb) Containment featurec) End plates	(3) (4)	1.968 .182 .165	2.301 .099 .335	+.333 083 +.170
SUB-TOTAL		2.315	2.735	+.420

2) INSEPARABLE WEIGHTS

a) Poles b) Hub	(5) (5)	1.855 .781	- :	
SUB-TOTAL		2.636	_	
3) NON-ELECTROMAGNETIC WEIG	SHTS			
a) Shaft (EP2758-213)	(6)	_	1.406	
b) Rotor & Shaft Inseparable	(6)		5.188	

(7)

4.951

9.329

NOTES:

- (3) The containment feature was changed from a metallic sleeve to a graphite fiber-epoxy wrap.
- (4) End plate material was changed from aluminum to stainless steel to allow for material removal during balancing.
- (5) Rotor construction does not allow for individual weighing of rotor poles or the hub of the electromagnetic circuit prior to rotor assembly.

TOTAL LBS.

(6) These parts were not weight predicted.

Assembly (EP2758-211), minus shaft (EP2758-213)

(7) Weight difference due to notes (5) & (6).

7.0 CONCLUSION

7.0 CONCLUSION

It has been noted throughout this report that motor development is only one step in implementin a successful, electromagnetic summing, flight actuation system. Indeed, some of the more difficu work, the development of a viable redundancy management scheme, remains. Nevertheless, th completion of this project is considered an essential step toward an operational system.

The work accomplished demonstrates that competitive weight and performance are achievable without difficult manufacturing methods. In addition, a data base has been developed providing validation of modeling techniques and the necessary background for preliminary controlle design.

The test simulation of failure effects and the development of the associated predictive models is viewed as the next logical step toward a functioning four channel controller and, ultimately, to a fully redundant demonstration system. The test motor is the tool available for this effort.

APPENDIX A
TEST DATA

APPENDIX A - TEST DATA

I	INDEX:	Data Sheets	Title
-		· •	Test Procedure
		-	Electromechanical Timing Schematics
		5.1	Winding Resistance Data
		5.2	Winding Inductance Data
		5.3	Dielectric Strength Data
a '		5.4	P.M.G. Speed vs. Voltage Output Data
		5.5	P.M.G. Loading Data
The state of the s		5.6	Static Torque vs. Rotor Position Data
3		5.7	Static Torque Summing Data

TEST PROCEDURE

TEST PROCEDURE

QUAD REDUNDANT MOTOR EP 2758-10

CONTRACT NAS-9-16535

1.0 MOTOR TESTS

Motor assembly part number EP 2758-10

1.1 WINDING RESISTANCE

Record room ambient temperature. After allowing the motor to reach room ambient temperature, measure and record the individual phase resistances of each quadrant motor.

1.2 WINDING INDUCTANCE

- a) Measure the winding phase inductance of each quadrant motor. Rotate the shaft in incremental steps measuring associated inductance. Locate rotor position with the centerline of the "sensor end shaft keyway" as the timing feature. Zero mechanical degrees rotor position occurs when the keyway centerline is aligned with the stator locking screw centerline.
- b) Repeat readings for line to line winding connections.

1.3 DIELECTRIC STRENGTH

a) Motor Winding Test

1) Insulation Resistance Test

Apply 500 ± 50 VAC, 60 hertz for one minute between the neutral lead of quadrant motor "A" and ground. Record the insulation resistance value.

Repeat the test for the remaining quadrant motors.

Repeat the test between the neutral leads of quadrant motors "A" and "B". Record the insulation resistance value.

Repeat the test for the remaining quadrant motor combinations.

2) High Potential Test

Apply 1275 ± 25 VAC, 60 hertz for one minute or 1530 ± 25 VAC 60 hertz for one second between the netral lead of quadrant motor "A" and ground. Do not exceed a rate of 500 volts per second when applying this power. Record the leakage current value.

Repeat the test for the remaining quadrant motors.

Repeat the test between the neutral leads of quadrant motors "A" and "B". Record the leakage current value.

Repeat the test for the remaining quadrant motor combinations.

Insulation Resistance Retest

Repeat step 1.3-a-1

1.4 PERMANENT MAGNET GENERATOR (P.M.G.) SPEED VS. VOLTAGE OUTPUT

Drive the motor as a P.M.G. at indicated speeds. Measure the phase voltage output of all quadrants, and if possible, the torque input at each speed point. Obtain an oscilloscope voltage trace of all phases of quadrant motors "A" and "B" and phase "A" of the remaining quadrants at each of the motor speeds 1666, 4333 and 10,000 R.P.M.

If time permits, repeat above test on quadrant motor "A" measuring line to line voltage and obtaining waveforms. If instrumentation is available, perform harmonic analysis on each quadrant during above test.

1.5 P.M.G. LOADING

Drive the motor as a P.M.G. at indicated speeds while loading quadrant motor "A" to desired values of phase current. Measure quadrant motor "A" watts, the phase voltage of all quadrants, and if possible, the torque input at each speed point. Maintain as near constant motor temperatures as possible for each reading. Obtain oscilloscope voltage traces of the loaded and unloaded quadrant motors at speeds of 1666, 4333 and 10,000 R.P.M.

If instrumentation is available, perform harmonic analysis on each quadrant during above test.

1.6 STATIC TORQUE VS. ROTOR POSITION

Apply D.C. power between phases "A" and "B" of quadrant motor "A" at one value of D.C. current. Record shaft torque output as a function of incremental rotor position.

Increase current in incremental steps at one rotor position. Record shaft torque, input current and voltage. Maintain as near constant motor temperatures as possible for each reading. Repeat for quadrant motors B, C & D.

1.7 STATIC TORQUE SUMMING

Apply D.C. power between phases "A" and "B" of quadrant motors "A" and "B" connected in series. Increase current in incremental steps at one rotor position. Record shaft torque, input current and voltage. Maintain as near constant motor temperatures as possible for each reading.

Repeat the test for phases "A" and "B" connected in series for quadrant motors A, B and C.

Repeat the test for phases "A" and "B" connected in series for quadrant motors A, B, C and D.

90 Mechanical degrees contains input/output for one ZONING: quadrant motor STATOR LOCKING SCREW MOTOR "D" MOTOR "A" MOTOR "B" MOTOR "C" TEMPERATURE CONNECTOR _____ (TYP 4) POWER CONNECTOR (TYP 4) POSITION SENSOR CONNECTOR (TYP 4) MOTOR ELECTRICAL CONNECTOR LOCATION LEGEND FIGURE 2

P.M.G. SPEED VS. VOLTAGE OUTPUT FIGURE 3

STATE OF

The state of

1

S8308-R1 Page A-8

ELECTROMECHANICAL TIMING SCHEMATICS

STATOR TIMING FEATURE DESCRIPTION

STATOR LOCKING SCREW SLOT TO QUADRANT MOTOR LOCATION

- 1) 8 timing positions = 90 mechanical degrees.
- 2) Timing position sequence viewed from motor connector end.

FIGURE 1

ROTOR TIMING FEATURE DESCRIPTION

ROTOR SHAFT KEYWAY TO MAGNET LOCATION

- 1) Viewed from motor connector end.
- 2) ZERO REFERENCE POINT: Zero mechanical degrees rotor position equals magnet centerline (shaft keyway centerline) aligned with stator locking screw centerline.

FIGURE 2

WINDING RESISTANCE DATA

CHEST

Service (a)

FILE

5.1) WINDING RESISTANCE

ROOM AMBIENT TEMPERATURE: 72°F

REF: PHASE RESISTANCE = $.0872 \text{ TO } .0936 \text{ ohms a } 77^{\circ}\text{F}$

RESISTANCE	PHASE A TO NEUTRAL	PHASE B TO NEUTRAL	PHASE C TO NEUTRAL
UNITS	онмѕ	OHMS	OHMS
MOTOR A	.091	.092	.092
MOTOR B	,091	.090	.089
MOTOR C	.093	.092	.092
MOTOR D	,091	.092	, D89

MEASUREMENTS TAKEN INCLUDE . OOZ SZ OF MATING CONNECTOR AND LEADWIRE TIM MAYER

WINDING INDUCTANCE DATA

5.2) WINDING INDUCTANCE

TEST SUMMARY

1) ROTOR #3 (10-26-83)

Inductance values were obtained using the first available rotor. Rotor #3 had some containment epoxy-wrap deficiencies, however it allowed obtaining preliminary inductance mapping values.

2) ROTOR #2 (11-17-83)

Inductance values were obtained using the final configuration rotor balance assembly. Additional stator winding combination tests were established to provide further data comparisons. These are series connected line to neutral and line to line lead combinations for all quadrant motors.

3) ROTOR #2 (12-9-83 to 12-13-83)

A runout of approximately .003 inches was observed on the lead end of the stator core I.D. The core was then ground to 3.180 inches concentric to the stator housing pilot diameter. Upon completion, the inductance test was rerun in portion for comparison purposes.

.2)	WINDING IND				· .
	QUADRANT MOTOR	MOTOR CONNECTION	TEST #1 ROTOR #3 (uh)	TEST #2 ROTOR #2 (uh)	TEST #3 ROTOR #2 (uh)
	Α	A-N B-N C-N	457 437 431	465 447 438	464 443 438
	В	A-N u-N C-N	454 445 451		
	С	A-N B-N C-N	450 439 449		
	D	A-N B-N C-N	459 447 450		
	А	A-B B-C C-A	1119 1216 1227	1146 1261 1248	
	В	A-B B-C C-A	1111 1228 1228		· · · · · · · · · · · · · · · · · · ·
	С	A-B B-C C-A	1113 1232 1240		•
	D	A-B B-C C-A	1117 1240 1239		
	A,B,C & D	A-N SERIES		2018	2012
	A,B,C & D	B-N SERIES		2000	2013
	A,B,C & D	A-B SERIES		4611	4613

Sec.

the same

5.20) QUADRANT MOTOR #A READING ROTATION: C CH SEISOR END PHASE A TO NEUTRAL

	OTOR SITION_	UNITS	11	ROTOR UNITS		• •	ROTOR SITION	UNITS		ROTOR SITION	UNITS
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh
0	0_	452	8	90	464	16	180	461.5	24	270	417
بز		483	Ļ		410.2	14		4' 2.,	15		472
1	11.25	452	9	101.25	474	17	191,25	10	25	281,25	473
Ł		420	Ł		42.	15		45.	lş.		418
2	22.5	452	10	112,5	47/	18	202,25	~ :"/	26	292.5	446
15		483	15		511	Ŀ		وفري	5		475
3	33,75	451	11	123,75	467	19	213,75	474	2Z	303,75	472
3		422	Ł		432	Ļ		420	ķ		420
4	45	423	12	135	471.5	20	225	444.5	28	315	448
15		487	Ļ		507.5	lş.		475	lş.		478
5	56,25	456	13	146,25	468	21	236,25	4.0	29	326,25	472
١ <u>ځ</u>		425	Ļ		431	Ļ		417	1/2		422
6	67.5	454	14	157,5	466	22	247.5	412	30	337.5	451
13		428.5	Ļ		504	Ļ		471	15		482
7	78.75	452.5	15	168.75	469	23	258.75	472	31	348,75	482
13		424	lş.		431.5	1 ₅		417	lş.		423

AVERAGE VALUE:

456.98

L KINTZ /B. ZELINSKI 10/26/83

MAXIMUM VALUE:

511

MINIMUM VALUE:

ROTUR #3

5.20)

	<u> </u>											_ 9
	OTOR SITION	UNITS	11	ROTOR DSITION	UNITS	"	ROTOR SITION	UNITS		OTOR SITION	UNITS	WINDING QUADRAN READING
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	
0	0	464	8	90	457	16	180	483	24	270	454	HINDING QUADRANT READING
ķ		431	15		408	l ₅		415	15		423	2 -
1	11.25	406	9	101,25	411	17	191,25	414	25	281,25	402	INDUC MOTOR ROTATI
4		433	Ł		4/6/2	15		459	14		420	
2	22.5	464	10	112,5	477	18	202,25	472	26	292.5	455	M: #ACE
4		433	Ł		4.3	l ₅		407	15		427	10
3	33,75	40-	11	123,75	4/7	19	213.75	404	27	303,75	404	1
Ł		435	15		450	l,		452	l;		428	ASE B SENSOR
4	45	462	12	135	433	20	225	45	28	315	457	တ္ကြော
15		405	Ļ		4,7	l,		404	1 5		447	TO N
5	56.25	407	13	146,25	446	21	236,25	466	29	326,25	403	E E
ķ		446	Ł		420	l ż		440	1		429	NEUTRAL D
6	67.5	465	14	157,5	ي يورد	22	247.5	45%	30	337.5	45.9] ≱
Ļ		402	Ł		415	Ŀ		426	15		453]
7	78.75	409	15	168.75	جذنه ر	23	258,75	402	31	348,75	405	
15		464	Ł		472	1		427	1		433	j

AVERAGE VALUE:

437.33

L.KINTZ / B. ZELINSKI

MAXIMUM VALUE:

489

10/26/83

MINIMUM VALUE:

402

ROTOR ROTOR ROTOR ROTOR UNITS UNITS UNITS UNITS POSITION **POSITION POSITION POSITION** # DEGREES uh # DEGREES uh # DEGREES # DEGREES uh uh 90 402 8 24 395 400 16 180 407 270 ķ 405 15 396 400 427 11,25 445 9 101.25 17 191.25 468 25 281,25 449 457 457 474 433 444 10 112.5 22.5 348 18 202,25 26 292.5 410 400 426 423 413 422 33.75 11 123,75 19 213,75 27 458 455 303,75 4.02 452 453 425 479 452 12 135 28 315 45 348 410 20 225 =97 398 423 429 444 396 13 146.25 21 236, 25 29 | 326,25 455 56.25 461 483 436 449 457 443 449 401 14 157,5 408 247.5 396 337.5 399 67.5 395 400 440 402 31 15 168.75 23 258,75 78.75 479 431 348,75 458 451

WINDING INDUCTANCE
QUADRANT FOTOR #A - PHASE C TO NEUTRAL
READING ROTATION: CN SENSOR END

AVERAGE VALUE:

431.42

L. KINTZ / B. ZELINSTI

MAXIMUM VALUE:

1/83

10/26/83

MINIMUM VALUE:

395

ROTOR ROTOR ROTOR ROTOR UNITS UNITS UNITS UNITS READING ROTATION: POSITION POSITION -POSITION **POSITION** DEGREES # DEGREES # DEGREES # DEGREES uh uh uh uh 8 90 447 456 16 180 462 0 444 24 270 ķ 478 497 488 472 14 11.25 468 9 101,25 17 191.25 460 25 281,25 453 472 415 417 430 418 ķ 22.5 10 112.5 446 18 202,25 466 26 | 292.5 416 446 480 474 ķ 475 507 \mathfrak{L} 33,75 11 123.75 19 213,75 469 417 303,75 475 444 SENSOR 430 416 416 419 45 12 135 451 20 225 28 315 446 4 417 430 486 473 476 501 13 146.25 480 21 236, 25 443 29 326.25 415 56.25 472 427 415 417 422 453 22 247.5 460 30 337.5 67.5 449 14 157.5 440 487 469 480 444 484 23 258,75 348.75 440 78.75 448 15 168,75 450 453

QUADRANT MOTOR #B . TO NEUTRAL

AVERAGE VALUE:

453.5

L. KINTZ/B. ZELINSKI

MAXIMUM VALUE:

507

10/27/83

KOTOR # 3

MINIMUM VALUE:

414

S8308-R Page A-1

ROTOR ROTOR ROTOR ROTOR UNITS UNITS UNITS UNITS POSITION POSITION POSITION READING ROTATION: **POSITION** # I DEGREES # DEGREES uh # DEGREES # DEGREES uh uh uh 493 0 8 90 473 479 0 424 16 180 24 442 Ļ 445 434 15 454 11.25 402 9 101,25 411 17 191,25 25 414 281,25 419 452 ķ 443 453 14 451 22,5 466 10 112,5 18 202,25 482 472 442 26 292.5 434 440 460 15 ķ 445 33.75 409 11 123,75 19 213,75 423 303,75 410 411 451 15 448 455 462 4 45 469 12 135 471 20 225 501 315 464 412 456 403 ķ 410 410 56.25 21 236,25 423 29 326.25 410 13 146.25 414 471 4-6 ķ 455 Ł 460 14 157,5 476 247.5 337.5 6 67.5 467 470 475 Ł 450 40.0 437 440 15 168.75 258,75 348.75 78,75 415 23 419 401 410 4.57 459 443 400

AVERAGE VALUE: 445.39

L.KINTZ / B. ZELINSKI

MINDING

MOTOR #B -

PHASE B

TO NEUTRAL

MAXIMUM VALUE: 501

10/27/83

MINIMUM VALUE: 408

ROTOR #3

S8308-H1
Page A-2

	OTOR SITION	UNITS	POSITION		UNITS	11	ROTOR SITION	UNITS	PC	OTOR SITION	UNITS
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh'
0	0	410	8	90	415	16	180	418	2-	270	423
بإ		438	Ł	·	416	ŀ		421	15		423
1	11.25	468	9	101.25	4.52	17	191,25	477	25	281,25	485
15		463	ķ		4:0	Ł		475	15		480
2	22,5	413	10	112,5	413	18	202,25	420	26	292.5	415
ķ		440	4		415	Ļ		460	3		440
3	33,75	471	11	123,75	461	19	213.75	505	27	303.75	473
13		466	1		470	15		472	lş.		470
4	45	412	12	135	415	20	225	426	28	315	413
15		441	Ł		447	15		458	15		438
5	56,25	472	13	146,25	482	21	236,25	441	29	326,25	470
Ł		468	15		4.22	Ļ		497	15		466
6	67.5	413	14	157,5	418	22	247.5	4.24	30	337.5	411
lş .		415	Ł		420	15		424	3		412
7	78.75	462	15	168,75	423	23	258,75	445	31	348,75	452
lş		474	ł,		482	ķ		444	l _s		465

AVERAGE VALUE:

450,53

1. KINTZ | B. ZELINSKI 10 | 27 | R3 ROTUR # 3

MAXIMUM VALUE:

503

MINIMUM VALUE:

411

	OTOR SITION	UNITS	ROTOR POSITION		UNITS		ROTOR SITION	UNITS		OTOR SITION	UNITS
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh
0	0	453	8	90	4//	16	180	443	24	270	458
بز		487	15		460	Ł		476	13		495
1	11.25	451	9	101,25	464	17	191,25	475	25	281,25	489
Ł		413	Ŀ		412	ķ		413	l,		426
2	22.5	441	10	112,5	457	18	202,25	414	26	292.5	462
4		477	15		47.3	Ł		4:	1 ₅		505
3	33,75	470	11	123,75	467	19	213.75	קר ש	27	303,75	462
Ł		414	Ł		413	Ŀ		444	4		425
4	45	441	12	135	414	20	225	417	28	315	461
Ł		474	15		472	1 ₅		482	3		500
5	56,25	470	13	146,25	440	21	236,25	454	29	326,25	461
l ₂		413	35		413	1 ₂		417	ķ		422
6	67.5	439	14	157,5	414	22	247.5	45g	30	337.5	455
3		472	ķ		475	15		486	15		448
7	78.75	441	15	168.75	467	23	258.75	476	31	348,75	460
4		412	Ł		414	Ł		417	k		423

WINDING INDUCTANCE
QUADRANT MOTOR #C -READING ROTATION: - PHASE A TO NEUTRAL

AVERAGE VALUE:

450.33

1. KINTZ / B. ZELINSKI 10/2-/85

MAXIMUM VALUE:

505

MINIMUM VALUE:

411

ROTUR # 3

ROTOR UNITS WINDING READING uh 478 INDUCTANCE
I MOTOR #C -ROTATION: 440 411 451 420 411 475 TO NEUTRAL 412 417 467 449 414

UNITS UNITS POSITION POSITION **POSITION** POSITION # IDEGREES # | DEGREES # DEGREES # | DEGREES uh uh uh 463 8 90 484 16 180 465 24 270 416 431 406 9 101,25 17 191,25 25 11.25 403 407 415 281.25 432 439 462 10 112.5 464 18 202.25 4 27 292.5 22.5 479 405 4,24 409 407 11 123.75 19 213,75 407 303.75 33,75 404 467 440 456 315 45 469 12 135 463 20 225 47/ 436 407 406 13 146.25 21 236,25 29 326,25 56,25 408 406 405 465 444 441 14 157,5 22 247.5 337.5 67,5 41.8 466 437 406 406 31 348,75 23 258.75 78.75 15 168.75 405 406 411 443 468 446

UNITS

ROTOR

AVERAGE VALUE:

ROTOR

437.41

ROTOR

1. KINTZ/B. ZELINSKI

MAXIMUM VALUE:

495

10/27/83

MINIMUM VALUE:

403

ROTOR POSITION ROTOR POSITION UNITS UNITS WINDING INDUCTAN QUADRANT MOTOR #C READING ROTATION: # DEGREES # DEGREES uh uh 16 180 413 417 24 270 414 452 17 191,25 475 493 281,25 475 486 425 18 202,25 292.5 4/2 414 461 CH SENSOR END PHASE 27. 19 213,75 464 501 303,75 427 497 28 20 225 C 415 315 TO KEUTRAL 416 456 29 497 481 21 236,25 326,25 492 481 Ļ 247.5 30 337.5 423 419 422 419 4 23 258:75 348.75 474 484 495 478

AVERAGE VALUE:

ROTOR

0

3;

6

POSITION

| DEGREES

11.25

22.5

33.75

56,25

67.5

78.75

45

449.2

ROTOR

POSITION

DEGREES

90

9 101.25

10 112,5

11 123,75

13 146,25

14 157,5

15 168.75

8

ķ

٠

Ł

Ł

12 135

UNITS

uh

421

449

485

423

415

412

475

473

413

413

450

472

411

411

458

468

UNITS

uh

437

411

116=

469

437

411

456

441

411

439

113

471.

412

412

476

475

MAXIMUM VALUE:

501

MINIMUM VALUE:

411

1. KINTZ /B. ZELINSKI

10/27/83

			٠.									5.2b)
	OTOR SITION	UNITS		OTOR SITION	UNITS		ROTOR SITION	UNITS		OTOR SITION	UNITS	HINDING QUADRANT READING
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	
0	0	1145	8	90	1150	16	180	1105	24	270	1125	중 골등
15		/235	ŀ		1230	Ļ		1170	l _s		1215	
1	11,25	1410	9	101,25	1345	17	191,25	1360	25	281,25	1390	INDUCTA FOTOR # ROTATION
ķ		1240	1		1195	35		11-75	l ₃		1195	
2	22,5	1175	10	112,5	1115	18	202,25	1105	26	292.5	1125	INDUCTANCE COTOR # D COTATION:
5		1260	3		12.00	3		/200	15		1360	오 ' m
3	33,75	1430	11	123,75	1365	19	213.75	134C	27	303.75	1360	
ķ		1240	15		1200	L _s		1180	15		1130	PHASE
4	45	1165	12	135	1120	20	225	1105	28	315	1150	HASE C
ķ		1390	13		1200	1,		1195	Ŀ		1370	띩딩
5	56,25	1380	13	146.25	1355	21	236,25	1340	29	326,25	1370	e A
lş		1200	15		1155	15		1185	15		1195	
6	67.5	1160	14	157.5	1100	22	247.5	1120	30	337.5	11.35	
١ ₅		1235	4		1183	L		1215	1		1230	
7	78,75	1410	15	168,75	1370	23	258,75	1400	31	348,75	13.10	
Ļ		1230	ls		1180	3	<u> </u>	1190	1		1215	

AVERAGE VALUE:

1238,75

L. KINSIZ/B. ZELINSKI 11/7/83 ROTOR #3

MAXIMUM VALUE:

1430

MINIMUM VALUE:

1100

												5.20)
	OTOR SITION	UNITS	PC	ROTOR DSITION	ION CHITS		ROTOR SITION	UNITS		OTOR SITION	UNITS	
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	
0	0	434	8	90	430	16	180	435	24	270	442	HINDING QUADRANT READING
ķ		490	lş		488	ł		465	15		510	
1	11.25	492	9	101,25	489	17	191,25	502	25	281,25	470	INDUCTAN MOTOR #/ ROTATION:
Ł		430	15		433	1		466	1		440	
2	22.5	449	10	112,5	455	18	202,25	43%	26	292.5	442	ANCE
k		485	1		460	k		465	15		508	₹ . m
3	33,75	452	11	123,75	495	19	213.75	504	2Z	303.75	468	י ד
1		426	15		457	k		439	1 5		440	PHASE A
4	45	427	12	135	434	20	225	465	28	315	441	S A
15		480	k		463	15		509	15		507	밀리
5	56.25	481	13	146,25	497	21	236,25	509	29	326.25	507	
ķ		426	łs		434	1		439	1 5		439	
6	67.5	428	14	157,5	436	22	247.5	441	30	337.5	464	NEUTRAL
4		481	Ł		464	Ł		510	15		501	}
7	78.75	483	15	168.75	501	23	258,75	510	31	348,75	501	.
15		430	Ł		460	15	<u> </u>	440	15		434	<u> </u>

AVERAGE VALUE: MAXIMUM VALUE:

MINIMUM VALUE:

464.67

510

426

L. KINTZ 11/17/83 ROTUR #2

	OTOR SITION	UNITS		ROTOR DSITION	ON POSITION		UNITS		OTOR SITION	UNITS	
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh
0	0	478	8	90	447	16	180	477	24	270	487
ķ		443	Ł		461	_ k		478	lş.		447
1	11.25	415	9	101,25	429	17	191,25	439	25	281,25	423
15		436	1		412	14		416	15		454
2	22.5	470	10	112,5	438	18	202,25	478	26	292.5	488
15		438	l ₅		466	k		478	ķ		447
3	33,75	412	11	123,75	<i>43</i> 3	19	213,75	417	27	303,75	422
l ₂		434	1 ₅		414	k		443	15		452
4	45	464	12	135	472	20	225	481	28	315	487
15		463	Ł		472	15		446	15		446
5	56.25	431	13	146,25	415	21	236,25	421	29	326,25	421
15		411	Ŀ		416	Ļ		485	15		450
6	67,5	452	14	157,5	475	22	247.5	486	30	337.5	484
3		458	1,		474	Ŀ		446	1.5		447
7	78.75	428	15	168,75	416	23	258,75	422	31	348,75	420
Ł		409	lş.		440	Ł		475	3		446

AVERAGE VALUE: MAXIMUM VALUE:

MINIMUM VALUE:

447.36

488

409

L. KINTZ 11/17/83

ROTOR# 2

S8308-R1 Page A-41

		5.2a)	
	UNITS	HINDING QUADRAN READING	
	uh		
	439 417 444 482 416 482 480 414 438 480 479 414 414 414 414	HINDING INDUCTAN QUADRANT FOTOR #A READING ROTATICN:	
	417	8 2 =	
	444	NDUCTANCE 20TOR #A OTATION:	
į	482		
	416	F 3 F	
	416	י פ	
_	482	- PHASE C	
	480		
اِ	414	ဒ္ဓိဂ	
	438	E 2	
	480	₩ ₹	
	479	🖺	
	414	PHASE C TO NEUTRAL H SENSOR EXD	
	414]	
	441	}	
-	11711	1	

	OTOR SITION_	UNITS	11 '	ROTOR DSITION	UNITS		ROTOR SITION	UNITS		NOTOR KOITIC	UNITS
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh
0	0	433	8	90	<i>42</i> 2	16	180	431	24	270	439
ķ_		409	15		405	1,		411	15		417
1	11,25	434	9	101,25	429	17	191,25	439	25	281,25	444
ķ		465	15		462	l,		474	1,		482
2	22,5	428	10	112,5	426	18	202,25	433	26	292.5	416
<u> </u>		406	lş.		407	15		410	15		416
3	33,75	429	11	123,75	434	19	213,75	440	127	303 .7 5	482
<u> </u>		461	15		468	15		476	15		480
4_	45	425	12	135	430	20	225	413	128	315	414
5		403	lş.		409	1		415	1 4		438
5	56,25	426	13	146.25	409	21	236,25	482	29	326,25	480
5		455	lş.		472	1,		481	15		479
5	6/.5	402	14	157,5	470	22	247.5	438	30	337.5	414
2		403	Ļ		409	Ļ		416	1/2		414
7	78.75	426	15	168.75	439	23	258,75	446	31	348,75	441
5		456	15		474	l ₂		481	15		474

AVERAGE VALUE:

438,16

MAXIMUM VALUE:

MINIMUM VALUE:

482

402

L.KINTZ 11/17/83

ROTOR ROTOR ROTOR ROTOR UNITS UNITS UNITS UNITS POSITION **POSITION** POSITION POSITION # | DEGREES uh # DEGREES uh # DEGREES uh # DEGREES uh 1085 1135 8 90 16 180 1260 1110 1210 1255 1245 1235 11.25 9 101,25 17 191,25 1130 1150 25 | 281.25 1035 1040 1055 1120 22.5 10 112.5 1120 18 202.25 1160 26 | 292.5 1230 1240 1280 19 213, 75 33.75 1245 303.75 1040 1060 1030 12 135 11.35 20 225 1150 45 1120 1145 1235 1250 1270 1220 1065 56, 25 1100 13 146.25 1240 21 236.25 1150 29 | 325,25 1100 1020 1040 1070 14 157.5 1095 1160 67.5 1205 1150 1280 1250 1215 1245 23 258.75 1075 31 348.75 15 168.75 1235 1140 78.75 1105 1050 1080 1025

AVERAGE VALUE: MAXIMUM VALUE:

MINIMUM VALUE:

1146.48

1280

1020

L.KINTZ

11/17/83

	5.2b)	
,	(III	

	OTOR SITION	UNITS		ROTOR DSITION	UNITS ROTOR POSITION		UNITS ·	ROTOR POSITION		UNITS	HINDING QUADRANT READING	
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	HINDING DUADRAN READING
0	0	/365	8	90	1340	16	180	1440	24	270	1380	
14		1140	15		1115	k		1240	Ŀ		1170	(~~~
1	11,25	1145	9	101,25	1120	17	191,25	1160	25	281,25	1170	HOTOR HOTOR
4		1370	Ł		1355	12		1290	1,5		1400	ION #
2	22,5	1350	10	112.5	1360	18	202,25	1445	26	292.5	1260	TANCE # A
14		1125	Ł		1135	Ŀ		1245	15		1175	5 . W
3	33,75	1125	11	123,75	1140	19	213.75	1150	27	303.75	1170	PR
3		1365	k		1375	15		1395	1		1395	PHASE SEIS
4	45	1350	12	135	1245	20	225	1275	28	315	1370	SOR B
Ł		1115	15		1140	1.5		1165	15		1170	밀딩
5	56,25	1110	13	146,25	1140	21	236,25	1255	29	326,25	1270	
Ł		1370	15		1370	1		1395	Ŀ		1400	}
6	67,5	1340	14	157,5	1345	22	247.5	1380	30	337.5	1265	Į
3		1100	15		1245	1;		1170	15		1155	1
7	78.75	1210	15	168.75	1145	23	258,75	1170	31	348,75	1155	l
14		1365	15		1260	1		1405	15		1375	ļ

AVERAGE VALUE:

1260.7

MAXIMUM VALUE:

1445

MINIMUM VALUE:

1100

L. KINTZ 11/17/83

12070R#2

S8308-R1 Page A-44

												. 8
,	OTOR SITION	UNITS		ROTOR ISITION	UNITS	ROTOR POSITION		UNITS	ROTOR POSITION		UNITS	HINDING QUADRANT READING
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	HINDING QUADRAN READING
0	0	1135	8	90	1115	16	180	1140	24	270	1170	[종 종 중
ķ		1230	ķ		1230	i,		1155	15		1270	
1	11.25	1360	9	101.25	1375	17	191,25	1420	25	281,25	1400	INDUC FOTOR ROTATIO
支		1220	Ļ		1220	Ł		1385	15		1260	
2	22.5	1125	10	112,5	1120	18	202,25	1140	26	292.5	1170	ANCE ANCE
1		1210	15		1235	15		1150	1		1270	2 · m
3	33,75	1360	11	123,75	1380	19	213,75	1415	127	303.75	1380	1
1		1205	1		1230	k		1260	1		1240	PHASE SENSOR
4	45	1105	12	135	1135	20	225	1160	38	315	1160	ig '''
15		1210	15		1235	15		1270	1/2		1250	B 급
5	56.25	1390	13	146,25	1380	21	236,25	1385	29	326,25	1380	_
4		1195	15		1245	1 ₂		1250	15		1245	₽
6	67.5	1095	14	157,5	1150	22	247.5	1160	30	337.5	1155	
15		1210	15		1150	15		1265	1		1250	
7	78.75	1355	15	168.75	1405	23	258,75	1390	31	348,75	1390	
15		1200	13	l l	1250	1 3	 	1260	14		1230	

AVERAGE VALUE: 1248.2

MAXIMUM VALUE: 1420

MINIMUM VALUE: 1095

L. KINTZ

11/17/83

ROTOR#2

S8308-R1 Page A-45

SERIES CONNECTED.	5.2)	QUADRANT MOTORS A, B, C & D	. PHASE "A" WINDINGS
SERIES CONNECTED.		QUADRANT MOTORS A, B, C & D. PHASE "A" WINDINGS	. PHASE "A" WINDING
		SERIES CONNECTED.	

	OTOR SITION	UNITS	POSITION_		UNITS	ROTOR POSITION		UNITS	PC	OTOR SITION	UNITS
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh
0	0	1880	8	90	1955	16	180	1890	24	270	1885
l _j		2180	ł		2180	Į,		2280	15		2/80
1	11,25	2100	9	101,25	2175	17	191,25	2150	25	281,25	1980
15		1870	Ł		1875	Ŀ		1880	4		1880
2	22,5	1890	10	112,5	1950	18	202,25	2050	26	292.5	1960
1,		2/65	Ł		2170	k		2255	Ł		2180
3	33,75	1955	11	123,75	2170	19	213,75	1955	27	303,75	1950
15		1880	Ł		1880	Ŀ		1890	15		1880
4	45	1950	12	135	1885	20	225	2035	23	315	1965
14		2165	15		2175	15		2290	ŀį		2180
5	56,25	1975	13	146,25	2165	21	236,25	2075	29	326,25	1960
k		1885	Ł		1875	ķ		1880	3		1880
6	67.5	1885	14	157,5	1890	22	247.5	1955	30	337.5	1945
lş		2175	15		1950	1,		2180	15		2175
7	78.75	1950	15	168.75	2275	23	258,75	2185	31	348,75	2175
lş.		1875	1 ₂		1885	15		1880	15		1880

AVERAGE VALUE:

2017.5

MAXIMUM VALUE:

2290

1. KINTZ 11/18/83

MINIMUM VALUE:

1870

					,							, 2
	OTOR SITION	ION POST		POSITION		UNITS ROTOR POSITION		UNITS	ROTOR POSITION		UNITS	HINDING QUADRAN SERIES
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	ប់រា	#	DEGREES	uh	
0	0	2180	8	90	2170	16	180	2250	24	270	2170	HINDING DUADRANT SERIES (
1,		1990	15		1950	l _y		2045	15		1950	18 .1
1	11.25	1875	9	101,25	1870	17	191,25	1875	25	281,25	1880	MOTORS MINECTE
15		1965	12		1960	15		1880	1,		1960	
2	22.5	2175	10	112,5.	2165	18	202,25	2255	26	292.5	2170	ANCE D.
15		1975	1	<u> </u>	1945	15		2035	15		19.55], ⇔ kiri
3	33,75	1880	11	123,75	1880	19	213.75	1870	27	303,75	1880	
3		1065	1/2		1955	Ŀ		2050	lş.		1980	80
4	45	2175	12	135	2175	20	225	2170	28	315	2175	U
ķ		1950	1	<u> </u>	1960	15		2040	15		1950	
5	56.25	1880	13	146,25	1880	21	235,25	1880	29	326,25	1875	PHASE
4		1970	Ł		1950	1,		1975	15		1980	SE
6	67.5	2180	14	157.5	2230	22	247.5	2/75	30	337,5	2175	B
Ł		1955	15		1970	l ₂		1950	15		1960	
7	78.75	1880	15	168.75	1880	23	258,75	1875	31	348,75	1880	PHIGHIA
lş		1965	ķ		1890	15		1980	15		1950	l 🖺
												ត

5.2)

PHASE "B" WINDINGS

AVERAGE VALUE:

1999.77

MAXIMUM VALUE:

2255

L. KINT 2 11/18/83 ROTOR#2

MINIMUM VALUE:

1870

S8308-R1 Page A-47

7			5.2)
	SERIES CONNECTED.	QUADRANT	MINDING
	DRINECTED.	QUADRANT MOTORS A, B, C & D. PHASE "A" & "B" WINDINGS	INDUCTANCE
┨		C	
1		D.	
		PHASE	
\mathbf{I}		A	
1		೯೦	
1		B	
		NINDINGS	

ROTOR POSITION		UNITS	ROTOR POSITION		UNITS	ROTOR POSITION		UNITS	ROTOR POSITION		UNITS
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh
0	0	4540	8	90	4550	16	180	4720	24	270	4920
1,		4920	Ł		4920	15		5450	Ł		4940
1	11.25	4525	9	101.25	4395	17	191,25	4695	25	281,25	4255
4		4265	ķ		4255	k		4280	ķ		4355
2	22.5	4530	10	112,5	4550	18	202,25	4720	26	292.5	4930
15		4920	Ł		4930	15		5260	15		4580
3	33,75	4520	11	123,75	4530	19	213.75	4260	27	303.75	4270
15		4250	15		4260	l;		4290	15		4320
4	45	4910	12	135	4550	20	225	5260	28	315	4935
15		4925	Ł		4970	1,		5315	k	<u> </u>	4970
5	56.25	4260	13	146,25	4550	21	236,25	4345	29	326.25	4275
15		4255	ķ		4260	k		4260	Ŋ		4275
6	67.5	4545	14	157,5	4545	22	247.5	4925	30	337.5	4920
lş		4935	ķ		4930	1,		4940	15		4955
7	78.75	4520	15	168,75	4625	23	258,75	4260	31	348,75	4535
l _z		4255	Ļ	.]	4285	1,		4260	15		4270

AVERAGE VALUE: 4611.33 L. KINTZ MAXIMUM VALUE: 5450 11/18/83 MINIMUM VALUE: 4250 ROTOR # 2

S8308-R1 Page A-48

	7		20)
11S h 06 98 40 89 04 39 03 40 39 09 00 34	READING ROTATION: CM SENSOR END	QUADRANT KOTOR #A - PHASE A TO NEUTRAL	HINDING INDUCTANCE

7	78.75	456	115	168.75	467	23	258.75_	440	[3]	348,75	44
5		429	l 5		436	ls		440	1 5		4
A۱	VERAGE VA	ALUE:	٠.	464.25	5		KINT	z/B.	7=	IINSK	, ,
		_									• •
n	AXIMUM VA	ALUE: _		507			/2	19/83			
M	INIMUM VA	ALUE: _		428				•			
							ROT	TOR #	مار		

ROTOR

DEGREES

17 191,25

18 202.25

19 213.75

21 236,25

22 247.5

20 225

POSITION

16 180

UNITS

uh

464

500

460

437

463

507

439

506

UNITS

uh

454

434

435

486

494 435

436

496

ROTOR

POSITION

DEGREES

90

9 101.25

10 112,5

11 123.75

13 146,25

14 157.5

12 135

UNITS

uh

488

455

430

483

450

ROTOR

POSITION

DEGREES

11,25

22.5

33,75

56.25

67.5

45

NOTE: STATOR BORED TO 3.180

ROTOR POSITION

DEGREES

270

281.25

292.5

303.75

28 315

29 326.25

30 | 337.5

S8308-R1 Page A-49

	OTOR SITION	UNITS	PC	ROTOR	UNITS	1	ROTOR SITION	UNITS	PC	ROTOR OSITION	UNITS	READING
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	Ę
0	0	477	8	90	462	16	180	475	24	270	476	3
k		417	15		437	l ₂		450	k		420	18
1	11,25	417	9	101.25	411	17	191,25	416	25	281,25	421	PAT
3		470	l _z		433	1 ₅		440	l _s		484	
2	22,5	471	10	112,5	468	18	202,25	477	26	292,5	476	7.=
3		414	15		437	15		440	1,		419]2
3	33,75	412	11	123,75	413	19	213.75	417	27	303,75	443] =
15	,	451	k		436	Ŀ		459	35		483	
4	45	466	12	135	472	20	225	479	28	315	469	ENSOR
lş		430	lş		436	k		418	1 ₅		419	1
5	56,25	410	13	146,25	414	21	236, 25	419	29	326.25	421	뿧
15		429	ķ		439	1,		465	k		469]
6_	67,5	462	14	157,5	474	22	247.5	482	30	337.5	480]
15		431	lş		464	15		420	Ļ		420	
7	78,75	409	15	168.75	416	23	258.75	420	31	348,75	418	
4		431	15		439	Ł		484	Ł		447]

AVERAGE VALUE:

L.KINTZ/B. ZELINSKI 12/13/83 ROTOR #2

WINDING INDUCTANCE

QUADRANT MOTOR #A - PHASE B TO NEUTRAL

MAXIMUM VALUE:

MINIMUM VALUE: 409

NOTE: STATOR BORED TO 3.180

	OTOR SITION	UNITS	ROTOR UNITS			ROTOR SITION	UNITS		OTOR SITION	UNITS]ह	
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	- 6
0	0	409	8	90	425	16	180	434	24	270	413]ā
14		431	l ₅		405	lş.		409	15		445	∏ ₹
1	11.25	467	9	101.25	431	17	191,25	437	25	281,25	478] [
1 ₂		432	٠١ş		464	Ļ		:/72	15		440	- 3
2	22.5	407	10	112,5	427	18	202,25	410	26	292.5	414]:
15		428	lş.		407	1 ₅		411	15		443	_]ç
3	33,75	461	11	123,75	434	19	213,75	474	27	303.75	479	
lş_		460	15		468	14		435	Ŀ		440	<u> </u>
4	45	406	12	135	436	20	225	412	28	315	413	
15		422	l ₂		409	1,		444	lş.		436	- 2
5	56,25	457	13	146,25	433	21	236.25	479	29	326,25	476	_ €
Ł		457	노		469	15		436	15		440	_
6	67.5	423	14	157,5	438	22	247.5	4/3	30	337.5	413	╝
Ļ		404	15		409	Ł		442	15		436	_
7	78.75	428	15	168,75	437	23	258,75	479	31	348,75	473	
lş		458	15		472	15		441	1		465	

AVERAGE VALUE: 439,22
MAXIMUM VALUE: 479

MINIMUM VALUE: 404

L. KINTZ / B. BELINSKI
12/13/83
ROTOR #2

NOTE: STATOR BOKED TO 3.180

S8308-R1 Page A-51

	OTOR SITION	UNITS	ROTOR POSITION		UNITS	ı.	ROTOR SITION	UNITS	P0	OTOR SITION	UNITS	SER
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	นท	#	DEGREES	uh]Ã
0	0	1965	8	90	1880	16	180	1975	24	270	2180	S
1,		2/90	15		1970	l ₅		2200	15		2180	COMME
1	11,25	1950	9	101.25	2170	17	191,25	2090	25	281,25	1880	
Ł		1880	Ł		1960	Ļ		1885	Ŀ		1890	립
2	22,5	1960	10	112,5	1885	18	202,25	1880	26	292,5	2075] :=
Ł		2180	Ŀ		2080	Ļ		2175	3		2185]
3	33,75	1960	11	123,75	2180	19	213.75	1995	27	303.75	1970]
Ł		1880	15		1880	<u> </u>		1890	15	-	1890	
4	45		12	135	1880	20	225	1980	28	315	1980	
ķ		2175	노		2180	_5		2190	15		2185]
5	56,25	2090	13	146,25	2115	21	236,25	1970	29	326.25	1960	1
と		1885	25		1895	Ļ		1890	Ļ		1880	
6	67.5	1895	14	157,5	1890	22	247.5	1960	30	337,5	1970	
ķ		2180	1 ₅		2115	Ļ		2185	1		2190	
7	78.75	2160	15	168,75	2180	23	255,75	1960	31	348,75	1970	
15		1950	Ł		1890	3		1880	15		1880	}

Ö PHASE "A" WINDINGS

þ

2012.27 AVERAGE VALUE: 2200 MAXIMUM VALUE:

1880 MINIMUM VALUE:

L. KINTZ / B. ZELINSKI
12/13/83
ROTOR #2

NOTE: STATOR BORED TO 3.180

	OTOR SITION	UNITS		ROTOR SITION	UNITS		ROTOR SITION	UNITS	PC	OTOR SITION	UillTS
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh
0	0	2180	8	90	1880	16	180	1960	24	270	2170
3		1980	l ₅		2170	14		2190	l ₅		1880
1	11.25	1880	9	101.25	2180	17	191,25	1970	25	281,25	1870
3		1945	15		1870	15		1890	Ł		2180
2	22.5	2185	10	112,5	1890	18	202,25	2170	26	292.5	2200
13		2090	1 ₂		2170	14		2160	15		1880
3	33,75	1880	11	123,75	2105	19	213.75	1870	27	303.75	1895
Ł		1875	15		1275	ķ		1960	1 _i		2200
4	45	2080	12	135	1880	20	225	2180	28	315	2185
L ₂		2125	Ļ		2100	1,		1960	15		1950
5	56.25	1360	13	146,25	2180	21	236,25	1880	29	325.25	1880
15		1880	1 ₅		1870	Ł		1960	15		1960
6	67,5	1960	14	157,5	1880	22	247.5	2190	30	337,5	2170
15		2155	4		2160	k		1960	1		1995
7	78.75	2065	15	168.75	2105	23	258,75	1885	31	348,75	1870
4		1885	k		1820	15		1990	4		1980

2012.81 AVERAGE VALUE:

2200 MAXIMUM VALUE:

MINIMUM VALUE: 1870 L.KINTZ / B. ZELINSKI 12/13/83 ROTOR #2

QUADRANT POTORS A, B SERIES CONNECTED.

PHASE "B" WINDINGS

NOTE: STATOR RORED TO 3.180

\$8308-R1

,		,										. 2
,	OTOR SITION	UNITS	1	ROTOR DSITION	UNITS		ROTOR SITION	UNITS		OTOR SITION	UNITS	SE EE
#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	uh	#	DEGREES	սի	HINDING QUADRAN SERIES
0	0	4555	8	90	4290	16	180	4290	24	270	4985	
1,		5060	Ļ		4585	l ₂		4850	Ł		4600	
1	11,25	4565	9	101,25	5075	17	191,25	4590	25	281,25	4280	INDUCTANCE POTORS A. NNECTED.
15		4270	Ł		4540	15		4280	15		4600	N C C
2	22.5	4575	10	112,5	4280	18	202,25	4580	26	292.5	5080	S & S
1		4975	15		4570	1 ₅		4980	15		4595	ρ im
3	33,75	4555	11	123,75	4970	19	213.75	4585	27	303.75	4280	,
Ł		4275	1		4600	1		4285	15		4290	₿0
4	45	4575	12	135	4270	20	225	4950	28	315	4960	E
ķ		4990	15		4545	lş		4960	1		4965	
5	56.25	4570	13	146.25	5090	21	236,25	4290	29	326,25	4400	PHASE
lş		4285	15		4585	날		4290	145		4285	E E
6	67,5	4575	14	157,5	4280	22	247.5	4950	30	337.5	4580	A,
lş.		4965	Ł		4575	15		4965	15		4965	6 0
7	78.75	4965	15	1£8.75	4990	23	258.75	4300	31	343,75	4600	
Ļ		4415	Ŀ		4370	Į,		4550	1		4280	₩.

AVERAGE VALUE:

4612.89

5090

MAXIMUM VALUE: MINIMUM VALUE:

4270

L. KINTZ/B.ZELINSKI
12/13/83
ROTOR #2

5.2)

PHASE "A" & "B" WINDINGS

NOTE: STATOR BORED TO 3.180

DIELECTRIC STRENGTH DATA

5.3) DIELECTRIC STRENGTH

a) Motor Winding Test
 Quadrant motors A.B.C & D neutral leads are designated below as A.B.C & D.

1) INSULATION RESISTANCE TEST

TEST POINTS	MEG CENES	TEST POINTS	123G Ceres	TEST FOINTS	NEEC OHMS	TEST PODVTS	123G CEPES
A-GND	30K	A - B	68 K	в - с	30 K	C - D	33 K
B-GND	23.81	A - C	35K	B - D	65K		
C-GND	24 K	A - D	35K				
D-GND	75K						

2) HIGH POTENTIAL TEST

TEST POINTS	ma	TEST POINTS	ma	TEST POINTS	ma	TEST POINTS	m a
A-GND	1,25	A - B	0.78	B - C	0.72	C - D	רהס
B-GND	1.2	A - C	0.78	B - D	0.75		
C-GND	1.25	A - D	0.79				
D-GND	1.25						

3) INSULATION RESISTANCE RETEST

TEST POINTS	MEG ORMS	TEST POINTS	Meg Ohms	TEST POINTS	Meg Clims	TEST POINTS	MEG OHMS
A-GND	70K	A - B	125K	в - с	35K	C - D	aok
B-GND	25K	A - C	10014	B - D	19K		
C-GND	25K	A - D	90K				
D-GND	100K		7,				

P.M.G. SPEED VS. VOLTAG OUTPUT DATA

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

TEST SUMMARY

1) <u>ROTOR #3 (11-14-83)</u>

P.M.G. voltage values were obtained using the first available rotor. Rotor #3 had some containment epoxy-wrap deficiencies, however it allowed obtaining preliminary speed vs. voltage values.

2) ROTOR #2 (12-7-83)

A runout of approximately .003 inches was observed on the lead end of the stator core I.D. The core was then ground to 3.180 inches concentric to the stator housing pilot diameter. Upon completion, the generated voltage test was run using the final configuration rotor balance assembly.

All photographs and harmonic analysis data pertain to this rotor configuration only.

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

PHOTOGRAPH VS. HARMONIC ANALYSIS CROSS REFERENCE TABLE

PHOTO NUMBER	SPEED (R.P.M.)	LOAD (AMPS)	QUADRANT MOTOR	MOTOR CONNECTION	HARMONIC ANALYSIS GRAPH NUMBER
5.4-A-1 -2 -3 -4 -5 -6 -7 -8	1667 1640 1661 1667 1655 1645 1668 1671	0	А — ЭВ — ЭС О	A-N B-N C-N A-N B-N C-N A-N	5.4-A-1, -9 -2 -3 -4 -5 -6 -7 -8
5.4-B-1 -2 -3 5.4-B-4 -5 -6 -7	4333 4337 4336 4336 4347 4329 4346 4338	0	А — ЭВ — ЭС О	A-N B-N C-N A-N B-N C-N A-N	5.4-B-1 5.4-B-2 5.4-B-3 5.4-B-4
5.4-C-1 -2 -3 5.4-C-4 -5 -6 -7 -8	10008 10001 9998 9930 9938 9960 10080 10024	0	А — у в — у с р	A-N B-N C-N A-N B-N C-N A-N	5.4-C-1 5.4-C-2 5.4-C-3 5.4-C-4
5.4-D-1 -2 -3	1665 1664 1674	0	A V	A-B B-C C-A	5.4-A-10
5.4-E-1 -2 -3	4342 4352 4365	Ů	Î.	A-B B-C C-A	
5.4-F-1 -2 -3	9210 9178 9170	0	Å	A-B B-C C-A	

5.4)	<u>P.M.G. S</u>	PEED VS. VOL	TAGE OUTPL	<u>IT</u>					
	HARMONIC	ANALYSIS M	MAGNITUDE	SUMMARY			•		
		-		•					
	CDADU	. CDEEN	1.040	OUADDANT	мотор		(11)	ARMON TO	2)
	NUMBER	(R.P.M.)	(AMPS)	MOTOR	CONNECTION	GND	<u>3rd</u>	<u>5th</u>	<u>7th</u>
A)	1666 RPM	DATA POINT							
	5.4-A-1 -2 -3	1645 1650 1660	0	A ↓	A-N B-N C-N	Y	8.4 8.2 8.0	10.5 10	.8 .78 .78
	-5 -6	1650 1650		\	B-N C-N		8.2 8.4		.76 .73 .74
	-8 -9 -10	1660 1663 1674		D A A	A-B	N N	8.2 8.2 .076		.76 .72 .78
B)	4333 RPM	DATA POINT							•
	5.4-B-1 -2 -3	4335 4333 4325	0	A B C	A-N	Y	8.6 8.8 8.2	10 10 9.8	.90 .88 .73
	- 4	4372	•			V	8.4	IU	.78
c)	10,000 RPI	M DATA POINT							
	5.4-C-1 -2 -3 -4	10020 9930 10087 10024	Ů,	A B C D	A-N	ľ	7.8 8.8 8.8 8.0	10 9.8 9.9 10	.89 .97 .85
	A)	HARMONIC N = Y = GRAPH NUMBER A) 1666 RPM 5.4-A-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 B) 4333 RPM 5.4-B-1 -2 -3 -4 C) 10,000 RP 5.4-C-1 -2 -3	HARMONIC ANALYSIS N N = ungrounded ham Y = grounded ham GRAPH SPEED (R.P.M.) A) 1666 RPM DATA POINT 5.4-A-1 1645 -2 1650 -3 1660 -4 1660 -5 1650 -6 1650 -7 1665 -8 1660 -9 1663 -10 1674 B) 4333 RPM DATA POINT 5.4-B-1 4335 -2 4333 -3 4325 -4 4372 C) 10,000 RPM DATA POINT 5.4-C-1 10020 -2 9930 -3 10087	HARMONIC ANALYSIS MAGNITUDE N = ungrounded harmonic analy GRAPH SPEED LOAD (AMPS) A) 1666 RPM DATA POINT 5.4-A-1 1645 0 -2 1650 -3 1660 -4 1660 -5 1650 -6 1650 -7 1665 -8 1660 -9 1663 -10 1674 B) 4333 RPM DATA POINT 5.4-B-1 4335 0 -2 4333 -3 4325 -4 4372 C) 10,000 RPM DATA POINT 5.4-C-1 10020 0 -2 9930 -3 10087	HARMONIC ANALYSIS MAGNITUDE SUMMARY	HARMONIC ANALYSIS MAGNITUDE SUMMARY N	HARMONIC ANALYSIS MAGNITUDE SUMMARY	HARMONIC ANALYSIS MAGNITUDE SUMMARY N = ungrounded harmonic analyzer Y = grounded harmonic analyzer	HARMONIC ANALYSIS MAGNITUDE SUMMARY

	GPEED TEMP TORQUE MOTOR		MOTOR A		MOTOR A		MOTOR A		MOTOR A		MOTOR A		MOTOR A		SPEED r.p.m.	TEMP	TORQUE	MOTOR B		В	В	
DESIRE	ACTUAL	op	in-ids	Van	Vbn	Ven	Vavo	VCLUYT	op	III-IBS	Van	Vbn	Vcn	Vave								
1665	1666	_	5.425	38	38	38	38	1666	77	4.625	38	38	38	38								
2000	аĸ		5.7	46	46	46	46	211	78	5.	46	46	46	46								
4000	41	-	7.2	91	92	92	92	4K	86	6.8	91	91	91	91								
4333	4333	_	7.45	98	99	99	99	4333	90	7.	99	99	99	99								
6000	6K	119	8.525	137	138	138	138	6K	107	8.15	136	136	137	136								
8000	8K	125	10.3	184	185	185	185	8K	126	9.5	183	184	184	184								
10,000	10K	151	11.4	232	233	233	233	IOK	153	10.7	231	23/	232	231								
IK	IK	_	4.7	23	23	23	23	IK	74	4.	23	23	23	23								
3K	3 <i>K</i>	^	6.55	69	69	69	69	3K	81	5.95	68	68	69	68								
5K	514	-	7.85	115	115	116	115	5K	99	7.35	114	114	114	114								
7 K	7K	113	9.8	160	161	161	161	7 K	113	8.8	159	157	159	159								
9K	911	137	10.675	207	208	بند	208	94	138	10.1	207	208	208	208								

a) Phase Voltage Output

TEMP. BY WINDING T.C.

S8308-R1 Page A-60

5.4)	
P.M.G.	
SPEED	
V.S.	
VOLTAGE	
COTTO	

a) Phace Voltage Cutput

[6]

1. KINTZ, K. GAREE 11/14/83 ROTOR # 3 (6'10')

	SPEED (r.p.m.)		TORQUE	MOTOR C					SPEED r.p.m.	TEN	TORQUE	MOTOR D				
DESIRE:	ACTUAL	op	m-les	Van	Vbn	Vcn	Vavo		NCTUAL	o _F	in-ies	Van	Vbn	Ven	Vave	
1666	1666	93	4.475	38	38	39	38		1666	73	4.25	38	38	38	38	
2000	ak	93	4.75	45	45	45	45		2K	95	4.5	45	45	45	45	
4000	AK	9.7	6.55	91	91	91	91		4 K	101	6.2	91	91	91	91	
4333	4333	101	6.75	99	99	99	99		4333	107	6.45	98	98	98	98	
6000	6K	///	8.	136	136	137	136		6K	118	7.55	135	136	136	136	
8000	8K	126	9.35	183	183	183	183		8 K	136	8.9	182	183	183	183	
10,000	10K	147	10.575	230	230	230	230		IOK	155	10.2	230	230	230	230	
IK	IK	92	3.8	23	23.	23	23		IK	92	3.6	22	ъa	٦٦	22	
3K	3 <i>K</i>	96	5.7	68	68	48	68		3K	96	<i>5</i> :35	68	68	68	68	
5K	5K	105	7.275	114	114	114	114		5 K	///	6.8	113	114	114	114	
7K	7 <i>K</i>	117	8.75	158	159	159	159	\prod	7K	128	8.2	158	159	159	159	
9 K	94	/37	9.85	206	207	207	207		9K	147	9.45	206	207	207	207	

TEMP. BY WINDING T.C.

\$8308-R1 Page A-60 **A**

SPE (r.p		TEMP	торог		MOTOR	A			SPEED r.p.m.	TENP	TORQUE		KOTOR	В		
DESIRE	ACTUAL	op	in -i es	Van	Vbn	Ven	Vava		ACTUAL	o _F	in-ibs	Van	Vbn	Vcn	Vava	
1666	1660	89.1	5.15	37	37	37	37		1670	90.1	4.7	37	37	37	37	5.4)
2000	2004	89.8	5,5	45	45	45	45		2005	91.	5.35	45	45	45	45	P. H.
4000	4K	94.3	7.15	87	88	28	88		4K	96.1	7.	87	88	88	88	I.G. Si
4333	4335	97.3	7.5	95	95	95	95		4333	99.3	7.35	95	95	95	95	Volt.
6000	6005	106.2	8.85	132	132	132	132		6K	106.9	8,65	132	132	132	132	v.s.
8000	7998	119.7	10.25	176	176	177	176		1990	119.1	10.	175	176	176	176	VOLTAGE
10,000	10 K	135.5	11.65	221	222	೩೩೩	<i>2</i> 22		10K	136.8	11.4	35	-21	221	221	
IK	1009	88.3	4.35	22	22	22	az		1010	88.9	4.13	ત્રેટ	22	22	aa	Indiano 7
3 <i>K</i>	3004	91.4	6.35	66	66	66	66		2995	92.8	6.2	66	66	66	66	Kin
5K	5K	102.4	7.95	109	110	110	110		5010	103.8	7.9	110	110	115	110	72/B
7K	6995	112.5	9.6	154	154	154	154		6984	112.1	9.35	153	154	154	154	17/8 3. EE
9K	91.	127.2	10.7	198	199	199	199		8990	128.5	10.6	198	198	198	198	SN CNS
TEMP BY WINDING T.C.																

TEMP BY WINDING T.C. STATOR BORED TO 3.180

\$8308-R1 Page A-62

n Vavo 7 37 5 45	5. 4)
-	5. 4)
5 45	7 .
	р.н.с a) Ры
98	G. E
5 95	Volt:
ع /32	V.S.
1 177	[it
222	1 1
३ २२	CUIPUI
6 65	~
0 110	10/10/10/10/10/10/10/10/10/10/10/10/10/1
4 154	40 60
००००	1 2 1
6	65 110 154

TEMP BY WINDING T.C. STATOR BORED TO 3.180

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

A) 1666 RPM DATA POINT

VERTICAL SCALE: 2 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 500 USEC/DIVISION

1)	MOTOR	A. PHASE A
	VRMS _	34.1
	PERIOD	4.5 msec
	FREQ _	222 Hz
	SPEED	1665 RPM

73) MOTOR A. PHASE C

VRMS 34.1

PERIOD 4.5 msec

FREQ 222 Hz

SPEED 1665 RPM

BLACK AND WHITE PHOTOGRAPH

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

A) 1666 RPM DATA POINT

VERTICAL SCALE: 2 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 500 USEC/DIVISION

4) MOTOR B. PHASE A VRMS ___34.1

PERIOD 4.5 msec

FREQ ___222_Hz

SPEED 1665 RPM

5) MOTOR B. PHASE B

VRMS 34.1

PERIOD 4.5 msec

SPEED __1665_RPM

6) MOTOR B. PHASE C

VRMS __34.1

PERIOD 4.53 msec

SPEED 1658 RPM

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

5.4) P.M.G. SPEED VS. VOLTAGE CUTPUT

A) 1666 RPM DATA POINT

VERTICAL SCALE: 2 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 500 USEC/DIVISION

7) MOTOR C, PHASE A

VRMS 34.1

PERIOD 4.5 MSec

FREQ 222 Hz

SPEED 1665 RPM

8) MOTOR D. PHASE A

VRMS 34.1

PERIOD 4.48 msec

FREQ 223 Hz

SPEED 1673 RPM

Francis of the state of the sta

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

B) 4333 RPM DATA POINT

VERTICAL SCALE: 5 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 200 DSEC/DIVISION

1) MOTOR A. PHASE A VRMS __93,9____ PERIOD 1.69 msec

FREQ _____592 Hz SPEED 4438 RPM

2) MOTOR A, PHASE B VRMS _93.9_ PERIOD 1.69 msec FREQ 592 Hz SPEED 4438 RPM

3) MOTOR A, PHASE C VRMS 91.8 PERIOD 1.7 msec SPEED 4412 RPM

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

B) 4333 RPM DATA POINT

VERTICAL SCALE: 5 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 200 USEC/DIVISION

4) MOTOR B, PHASE A

VRMS 91.8

PERIOD 1.7 MSec

FREQ 588 Hz

SPEED 4412 RPM

5) MOTOR B. PHASE B

VRMS 91.8

PERIOD 1.7 msec

FREQ 588 Hz

SPEED 4412 RPM

6) MOTOR B. PHASE C
VRMS 91.8
PERIOD 1.7 msec
FREQ 588 Hz
SPEED 4412 RPM

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

B) 4333 RPM DATA POINT

VERTICAL SCALE: 5 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 200 USEC/DIVISION

7) MOTOR C, PHASE A
VRMS 92.5
PERIOD 1.7 msec

FREQ 588 Hz SPEED 4412 RPM

8) MOTOR D. PHASE A

VRMS 91.8

PERIOD 1.7 msec

FREQ 588 Hz

SPEED 4412 RPM

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

S8308-R1 Page A-79

 A_{i}/A_{i}

. ---

S8308-R Page A-E

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT C) 10,000 RPM DATA POINT

VERTICAL SCALE: 20 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 100 USEC/DIVISION

1) MOTOR A, PHASE A

VRMS ___ 216_

PERIOD 720 usec

FREQ 1389 Hz

SPEED 10417 RPM

2) MOTOR A. PHASE B

VRMS __216_

PERIOD 720 usec

FREQ ___1389_Hz

SPEED __10417_RPM___

3) MOTOR A. PHASE C

VRMS _____216

PERIOD 720 usec

FREQ 1389 Hz

SPEED 10417 RPM

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT C) 10,000 RPM DATA POINT

VERTICAL SCALE: 20 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 100 USEC/DIVISION

4) MOTOR B, PHASE A

VRMS - 216

PERIOD 725 USEC

FREQ 1379 Hz

SPEED 10343 RPM

6) MOTOR R. PHASE C VRMS 216 PERIOD 720 usec FREQ 1389 Hz SPEED 10417 RPM

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

C) 10,000 RPM DATA POINT

VERTICAL SCALE: 20 VOLTS/DIVISION

TRANSFORMER RATIO: 8.05/1

HORIZONTAL SCALE: 100 µSEC/DIVISION

7) MOTOR C, PHASE A

VRMS 216

PERIOD 715 usec

FREQ 1399 Hz

SPEED 10490 RPM

8) MOTOR D, PHASE A

VRMS 216

PERIOD 715 USEC

FREQ 1399 Hz

SPEED 10490 RPM

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

D) 1666 RPM DATA POINT

2) MOTOR A, LINE B TO C

VRMS 70.7

PERIOD 4.4 msec

FREQ 227 Hz

SPEED 1703 RPM

3) MOTOR A, LINE C TO A

VRMS 70.3

PERIOD 4.4 DISEC

FREQ 227 Hz

SPEED 1703 SFM

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

E) 4333 RPM DATA POINT

VERTICAL SCALE: 2 VOLTS/DIVISION
PROBE RATIO: X 100
HORIZONTAL SCALE: 200 µSEC/DIVISION

3) MOTOR A. LINE C TO A

VRMS 184

PEPIOD 1.68 MSec

FREO 595 Hz

SPEED 4462 RPM

5.4) P.M.G. SPEED VS. VOLTAGE OUTPUT

F) 10,000 RPM DATA POINT

VERTICAL SCALE: 2 VOLTS/DIVISION PROBE RATIO: X 100 HCRIZONTAL SCALE: 100 µSEC/DIVISION

1) MOTORA, LINE A TO B VRMS ___382 PERIOD ___8_msec FREQ 1250 Hz SPEED 9375 RPM

2) MOTOR A, LINE B TO C VRMS 382 PERIOD _8 msec FRE0 1250 Hz SPEED 9375 RPM

3) MOTOR A. LINE C TO A VRMS 382 PERIOD _8 msec FREQ 1250 Hz SPEED 9375 RPM

P.M.G. LOADING DATA

y

5.5) P.M.G. LOADING

PHOTOGRAPH VS. HARMONIC ANALYSIS CROSS REFERENCE TABLE

PHOTO NUMBER	SPEED (R.P.M.)	LOAD (AMPS)	QUADRANT MOTORS	MOTOR CONNECTION	HARMONIC ANALYSIS GRAPH NUMBER
5.5-A-1 -2 -3 -4 -5 -6 -7 -8 -9 5.5-A -10 -11 -12 -13 -14 -15 -16 5.5-A -17 -18 -19 -20 -21	1690 1685 1686 1676 1660 1648 1665 1672 1671 1697 1675 1684 1678 1670 1671 1660 1663 1671 1668 1656 1647	.93 .93 .93 1.74 3.5 5.2 6 7 7.9 9.3 10.1 10.7 11.5 12.3 13.4 14.1 14.8 15.4 6.1 6.1	A	A-N B-N C-N A-N	5.5-A-3 5.5-A-5 5.5-A-1 5.5-A-2
5.5-B-1 -2 -3 -4 -5 -6	4362 4323 4325 4312 4315 4325 4333	2.4 17.8 17.8 0 0 14.6	A	A-N A-B A-N A-B A-N A-B	5.5 3-1, -3 5.5-8-2, -4
5.5-C-1 -2 -3 -4 -5	10081 10014 9968 10034 9990	5.7 10.2 10.2 18.1 18.1	Â	A-N V A-B A-N A-B	5.5-C-1 5.5-C-2

B					•					
	5.5)	P.M.G. L	OADING						·	
		HARMONIC	ANALYSIS M	AGNITUDE SI	JMMARY					
		N = Y =	ungrounded grounded ha		_					
								·		
		GRAPH NUMBER	SPEED (R.P.M.)	LOAD (AMPS)	QUADRANT MOTOR	MOTOR CONNECTION	GND	(H <i>i</i> <u>3rd</u>	ARMONI <u>5th</u>	7 <u>7th</u>
7	A)	1666 RPM	DATA POINT						•	
Action (Section)		5.5-A-1 -2 -3 -4 -5 -6	1660 1647 1671 1684 1639 1647	6.1 6.1 9.3 9.3 14.1	A	A-N A-B A-N A-B A-N A-B	N N Y Y Y	7.9 .6 6.9 8.3 6.5 7.8	7.3 7.2 5.6 5.6 3.9 3.9	.72 .74 .53 .53 .45
	B)		DATA POINT						•	
		5.5-B-1 -2 -3	4325 4333 4316	14.6 14.6 14.4	A	A-N A-B A-N	N N Y	6.3 1.0 6.2	3.4 3.4 3.5 3.5	.44 .42 .46
	,	-4	4310	14.4	V	A-B	Y	7.6	3.5	.48
	, c)	10,000 RF	PM DATA POIN	<u>T</u>						
		5.5-C-1 -2	10K 10K	10.2 10.2	A ¥	A-N A-B	N N	5.9 1.1	3.0 3.0	.46
•				 						

LOAD	SPEED 1666 r.p.m.	ТЕМР	TORQUE		MOTOR	A			MOTOR	A ·		MOTOR A					
ACTUAL	ACTUAL	°F	in-lbs	Ia	Ib	Ic	Iave	Van	Vbn	Vcn	Vave	Wa	Wb	Wc	iitot		
350	1616	95	11.4	.92	.93	.94	.93	37./	36.9	37.1	37	34.9	35.6	35.7	106		
700	1662	96	15.9	1.67	1.82	1.73	1.74	36.2	345	365	36.4	60.5	66.5	62	189		
1400	1652	97	25.7	346	<i>3.55</i>	3.55	3.52	35.6	36.2	36	35.9	123	129	128	380		
2100	1647	98	34.5	5.01	5.29	5.15	5.15	34.9	35.7	35.4	35.3	176	190	183	549		
2450	1662	99	39.3	5.87	6.21	6.04	6.04	3 5	35.9	35.4	35.4	206	224	215	645		
2800	1664	100	44.5	6.87	7.07	7.06	7.0	34.5	35.7	35./	35,7	238	253	249	740		
3150	1670	105	48.9	7.69	7.95	7.91	7.85	34.4	35.6	35.	35.	265	284	277	326		
3500	1676	83	56.1	9.08	9.44	9.36	9.29	33.7	35.1	34.4	34.4	310	336	326	972		
3850	1670	95	60	9.82	10.25	10.11	10.1	33.4	34.9	34.1	34.1	329	360	347	1036		
4200	1670	98	63.2	10.4	11.	10.7	10.7	33./	34.7	33.8	33.9	347	386	366	1099		
4550	1669	107	66.7	11.1	11.8	11.5	11.5	32.8	34.4	33.5	33.6	364	408	384	1156		
4900	1668	113	70.3	12.	12.5	12.3	12.3	32.3	34.1	53.	33.1	385	430	406	1221		

8.2ELINSKI /L. KINTZ

5,5)

P.M.G.

LOADING

A) 1666 RPM DATA POINT

\$8308-R1 · Page A-95

LOAD	SPEED 1666 r.p.m.	TEMP	TORQUE		MOTOR	A			MOTOR	l A		ı	HOTOR	A			
ACTUAL	VCLUYF	op	in-lbs	Ia	Ib	Ic	Iave	Van	Vbn	Vcn	Vavo	lia	Wb	Vic	Wtot),),	5 5 7
5250	1670	117	73.6	12.6	13.3	13.	13,	31.9	33.8	32.7	32.8	402	451	425	1278	A) 10	P. #. G.
5600	1662	122	75.6	13.	13.9	13.4	13.4	31.5	33.5	32.3	32.4	409	465	432	1306		
5950	1664	126	78.6	13.6	14.6	14.1	14.1	31.2	<i>3</i> 3.2	32.	32.1	425	486	450	1351	RPH DATA POINT	LOADING
6300	1665	123	81.6	14.3	15.3	14.9	14.8	30.8	32.9	31.6	31.8	441	505	472	1418	A P01	ភ
6650	1662	132	84.	14.9	15.9	15.5	15.4	30.4	32.6	31,2	31.4	455	525	482	1462	=	
				·													B. 26
																1/11/	B.ZELINSKI/L.
																18/	1/2.
										<u> </u>							3

B.ZELINSKI/L.KINTZ

		 ,												
LOVD	SPEED 1666 R.P.M.			MOTOR	В			MOTOF	С		1	MOTOR	D	
ACTUAL	ACTUAL		Van	Vbn	Vcn	Vave	Van	Vbn	Vcn	Vave	Van	Vbn	Vcn	Vave
350	1687		36.6	36.6	36.7	36.6	36.6	36.6	36.7	36.6	36.5	36.5	36.5	36.5
700	1669		36.1	36.0	36./	36.1	36.0	36.0	36.1	36.0	36.0	36.1	36.1	36.1
1400	1658		36.0	35.9.	36.0	36.0	35.8	35.7	35.7	35.8	35.7	35.5	35.6	35.6
2100	1651		36.1	35.8	35.9	35.9	35.7	<i>35</i> .7	357	<i>35</i> . 7	35.5	35,2	35.5	35.4
2450	1676		367	36.3	36.3	36.4	36.3	36.3	36.3	<i>36</i> .3	36.1	35.8	36.1	36.0
2800	1669		37./	36.7	36.9	36.9	36.8	36.8	36.8	36.8	36.7	36.2	36.6	36.5
3150	1670		37.3	36.8	37.1	37./	36.9	36.9	37.0	36.9	36.8	36.2	36.8	36.6
3500	1685		37.4	36.9	37.2	37.2	37.1	37.6	37./	37./	37.0	36.4	37.0	36.8
3850	1674		37.3	36.8	37./	37.1	36.9	36.8	36.9	36.9	36.8	36.1	36.7	36.5
4200	1681		37.5	36.9	37.2	37.2	37.0	37.0	37.1	37.0	37.0	<i>36.</i> 3	37.0	36.8
4550	1675		37.4	36.8	37.2	37./	37.0	36.9	37.0	37.0	36.9	36,1	36.8	36.6
4900	1669		37.4	36.7	37.1	37.1	36.9	36.8	36.9	36.9	36.9	36.0	36.8	36.6

B. ZELINSKI /L. KINTZ I/II/84

5.5)

P. M. G.

LOADING

A) 1666 RPM DATA POINT

LOAD	SPEED 1666 R.P.M.			MOTOR	В			MOTOR	С		1				
ACTUAL	ACTUAL		Van	Vbn	Vcn	Vave	Van	Vbn	Vcn	Vave	Van	Vbn	Vcn	Vave	ن
5250	1669		37.4	36.7	37, 1	37.1	36.9	36.9	36.9	36.9	36.9	36.0	36.8	36.6	5,5) <u>P</u>
5600	1660		37.3	36.6	37.0	37.0	367	36,7	36.8	36.7	36.7	35.7	36.6	343	 -
5950	1664		37.4	36.7	37.1	37.1	36.9	37.8	36.9	37.2	36.8	35.8	36.7	36.4	RPM
6300	1670		37.6	36.7	37.2	37.2	37./	36.9	37.0	37.0	37.1	35.9	36.9	36.6	LOADING PM DATA
6650	1671		37.7	36.8	37.2	37.2	37.0	36.9	37./	37.0	37.1	35,9	36.9	36.6	P01NT
															_
															9. 7.6
												,			1/11/2
															184 18
									l						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	AL	•	 												ZELINSKI/L.KINTZ

S8308-R1 Page A-98

5.5) P.M.G. LOADING A) 1656 RPM DATA POINT QUADRANT MOTOR A: FESISTIVE LOADED VERTICAL SCALE: .2 VOLTS/DIVISION PROBE PATIO: X 100 HORIZONTAL SCALE: 500 USEC/DIVISION D FOTOR A. PRISE A DS TEST STAND VRMS 35.4 PERIOD 4.3 msec FREQ __ 233 Hz SPEED _1748 RPM TEP (F) 95 350 W 2) MOTOR A. PLASE B D-5 TEST STAND VRMS 35.4 PERIOD 4.4 msec FREQ __227 Hz SPEED _1703_RPM ഥയ ____93 ആ TEP (F) 95 HOTOLA, OB 1685 Efm زن ويي 3) MOTOR A. PHASE C VRAS __35,4 PERIOD 4.4 msec FRED ____227 Hz SPEED __1703_RPM LOAD ____93 cross TEP (F) 95 350W ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

S8308-R1

Page A-99

BLACK AND WHITE PHOTOGRAPH

5.5) P.M.G. LOADING

A) 1666 RPM DATA POINT

QUADRANT MOTOR A: RESISTIVE LOADED

VERTICAL SCALE: .2 VOLTS/DIVISION

PROBE RATIO: X 100

HORIZONTAL SCALE: 500 USEC/DIVISION

7) HOTOR A, FHASE A

VRMS 33.2

PERIOD 4.4 msec

FREQ 227 Hz

SPEED 1703 RPM

8) FOTOR A. FINE A

VRMS 32.5

PERIOD 4.4 msec

FREQ 227 Hz

SPEED 1703 RPM

LOAD 7 CTIOS

TEMP (F) 102

DETEST STAND /-//- 84

WILL SWIN

MOTORA DA 1672 RAM 2500 W

5.5) P.M.G. LOADING

A) 1655 RPM DATA POINT

QUADRANT MOTOR A: RESISTIVE LOADED

VERTICAL SCALE: .2 VOLTS/DIVISION

PROBE RATIO: X 100

HORIZONTAL SCALE: 500 USEC/DIVISION

10) MOTOR A, PRASE A

VRMS 31.8

PERIOD 4.3 MSec

FREQ 233 Hz

SPEED 1748 RFM

LOAD 9.3 GTDS

TEMP (F) 91

PERIOD 4.4 msec
FREQ 227 Hz
SPEED 1793 RPM
LOAD 10.1 GMPS
TEPP (F) 99

12) MOTOR A. PHASE A

VRMS __31.1

PERIOD __4.4 msec

FREQ __227 Hz

SPEED __1703 RPM
LOAD __10.7 cnps __

TEMP (F) __104

5.5) P.M.G. LOADING

A) 1666 RPH DATA POINT

QUADRANT MOTOR A: RESISTIVE LOADED

VERTICAL SCALE: .2 VOLTS/DIVISION

PROBE RATIO: X 100

HORIZONTAL SCALE: 500 | ISEC/DIVISION

POTOR A. PHASE A

VRMS 30.4

PERIOD 4.4 msec

FREQ 227 Hz

SPEED 1703 RPM

LOAD 12.3 cmps

T2P (F) 116

15) MOTOR A. PHASE A

VRMS 30.4

PERIOD 4.4 msec

FREG 227 Hz

SPEED 1703 RPM

LOAD 13 GPDS

TEP (F) 120

5.5) P.M.G. LOADING

A) 1666 RPM DATA POINT

QUADRANT HOTOR A: RESISTIVE LOADED

VERTICAL SCALE: .2 VOLTS/DIVISION

PROBE RATIO: X 100

HORIZONTAL SCALE: 500 USEC/DIVISION

16) MOTOR A, PHASE A VRMS _____ 29.7

PERIOD 4.4 msec

FREQ 227 Hz SPEED 1703 RPM

1040 13.4 cmos

TEP (F) __124_

17) MOTOR A, PHASE A

VRMS 29.7

PERIOD 4.4 msec

FREC 227 Hz

SPEED ____1703_RPM

LOAD 14.1 amps

TEMP (F) __128

18) MOTOR A, PHASE A

PERIOD 4.4 msec

FREO ______ 227_ Hz

SPEED 1703 RPM

LOAD ____14.8 amps

TEP (F) 130

6300 W

5.5) P.M.G. LOADING

A) 1666 RPH DATA POINT

QUADRANT MOTOR A: RESISTIVE LOADED

VERTICAL SCALE: .2 VOLTS/DIVISION

PROBE RATIO: X 100

HORIZONTAL SCALE: 500 USEC/DIVISION

19) MOTOR A, PHASE A

PERIOD 4.4 msec

SPEED __1703 RPM_

LOAD _____15.4 cmps

TEP (F) 135

MARCE A GA 1661 Rem 665

5.5) P.M.G. LOADING

A) 1666 RPM DATA POINT

COMPARISON OF 'PHASE' AND 'LINE TO LINE' VOLTAGE MAVEFORMS FOR RESISTANCE LOADED QUADRANT MOTOR 'A'

.2 VOLT/DIVISION:

VERTICAL SCALE: .5 VOLT/DIVISION

X100:

PROBE RATIO: X100

500 USEC/DIVISION: HORIZONTAL SCALE: 500 USEC/DIVISION

20) MOTOR A, PHASE A VRMS 31.1 PERIOD 4.5 msec FREQ 222 Hz SPEED 1665 RPIL மு _ 6.1 கூ TEP (F) 90

21) MOTOR A. LINE A TO B VEMS 61.9 PERIOD 4.5 msec FREO 222 Hz SPEED 1665 RPM 1030 6.1 GTDS TEP (F) 90

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

A) 1666 RPM DATA POINT
5) HANKNIC AVALYSIS
Percent Fundamental vs. Frequency
1639 RPM, Motor A, Phase A
1-13-84 COORDINATE WITH PHOTO 5.5-A-17 GROUPED HARPING ANALYZER P.N.G. LOADING 5.5) 8601 159 5 PERCENT FUNDAMENTAL

LOAD	SPEED 4333 r.p.m.	TEMP	TORQUE		MOTOR	A			мотог	A		MOTOR A					
ACT'UAI	ACTUAL	°F	in-lbs	Ia	Ib	Ic	Iave	Van	Vbn	Ven	Vava	Wa	Wb	We	atot		
350	4334	114	21.9	2.33	2.38	2.38	2.36	94.9	95.9	95.7	95.5	ааа	229	<i>a</i> 29	680		
700	4319	140	33.3	4.3	4.7	4.4	4.5	93.7	95.4	94.7	94.6	403	4449	415	1267		
1400	4322	147	45,4	6:5	7.0	6.6	6.7	92.	94.7	93.3	93.3	597	666	620	1883		
2100	4340	121	74.6	12.2	13.2	12.6	12.7	86.	90.7	88	88.2	1053	1206	1117	3376		
2450	4326	143	82.2	13.8	15.1	14.4	14.4	83.2	88.3	85.2	85.6	1151	1336	1225	37/2		
2800	4334	163	89.8	15.8	16.9	16.4	16.4	80.2	86.4	82.6	83.1	1268	1462	1354	4084		
3150	4313	152	94.7	17.1	18.4	17.8	17.8	77.5	83.7	79.7	80.3	1330	1549	1422	4301		
3850	4331	180	104.2	20.6	<i>33.4</i>	21.4	21.5	70.6	クク	72	73.2	1451	1729	1554	4733		
4550	4326	170	105.2	22.4	24.5	23.2	23.4	66.3	71.9	67.8	68.4	1463	1746	1559	4768		
5250	4329	205	105.3	23.9	26.2	a4.8	25.0	61.8	67.6	<i>63.</i> 3	64.2	1479	1779	1580	44938		
59.50	4310	238	103.5	25.2	27.4	26.1	26.2	57.0	62.8	58.4	59.4	1435	1726	1527	4688		
6650	4381	252	100.9	36.2	28.6	27.1	27.3	53.9	59.1	55.2	56.1	1420	1702	1505	4627		

5.5)

P.M.G. LOADING

B) 4333 RPM DATA POINT

B. ZELINSKI

1. KINTE

1/12/84

LOAD	3PEED 1666 3.P.M.	·	MOTOR	В			MOTOR	С			MOTOR	D			
ACTUAL	ACTUAL	Van	Vbn	Vcn	Vave	Van	Vbn	Vcn	Vave	Van	Vbn	Vcn	Vave		5.5)
350	4351	96.9	96.2	96.4	96.5	96.3	96.3	94.6	95.7	96.9	95.6	96.1	96.2	B) 4:	P.M.G.
700	4321	96.7	96.0	96.5	96.4	96.3	96.2	96.4	96.3	96.0	95.2	95.9	95.7	4333 R	j
1400	4320	97.2	96.1	96.7	96.7	96.5	96.3	96.5	96.4	96.2	94.9	96.1	95.7	RPM DATA	LOADING
2100	4350	97.6	95.9	97	96.8	96.4	96.3	96.6	96.4	96.5	94.1	96.2	95.6		ର୍ଚ୍ଚ
2450	4331	97.6	95.8	97	96.8	96.4	96.2	96.5	96.4	96.5	93.7	96.2	95.5	POINT	
2800	4338	98.2	96.1	97.5	97.3	96.9	96.6	97	96.8	97	93.1	96.7	95.6		
3150	4324	97.6	95.6	96.9	96.7	96.3	96	96.4	96.2	96.5	93.2	96.1	95.3		
3850	4279	98	95.7	97.4	97	96	95.3	95.4	95.6	95.6	91.9	95.2	94.2		
4550	4322	97.7	95.7	97.3	96.9	96.3	96.1	96.5	96.3	96.7	92.9	96.5	95.4		. K.
5250	4379	98.8	97.1	98.8	98.2	98	97	98.3	97.8	98.6	94.7	98.6	97.3	`	1/12/81 13/8/17=7
5950	4494	99.2	98	99.9	99	99.8	100.8	101.6	100.7	102.1	98.4	102.7	101.1	100	1/2/24/ 1/3/24/
6650	4662	103.8	103.1	105.4	104.1	105.9	105.7	106.9	106.2	107.9	104.5	109.7	107.4	}	?: X

8. ZELINSKI / 1..KINTZ

5.5) P.M.G. LOADING

B) 4333 RPM DATA POINT

VERTICAL SCALE: .5 VOLTS/DIVISION
PROBE RATIO: X 100
HORIZONTAL SCALE: 200 USEC/DIVISION

1) MOTOR A. PHASE A

VRMS 91.9

PERIOD 1.68 msec

FREQ 595 Hz

SPEED 4463 RPM

LOAD 2.4 gmos

TEMP (F) 124

URIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

5.5) P.M.G. LOADING

B) 4333 RPM DATA POINT

COMPARISON OF 'PHASE' AND 'LINE TO LINE' VOLTAGE KAVEFORMS FOR RESISTANCE LOADED QUAD 'A' & UNLOADED QUAD 'B' FOTORS AT CHE LOAD POINT.

.5 VOLT/DIVISION: VERTICAL SCALE:

1 VOLT/DIVISION

X100:

PROBE RATIO:

X100

200 USEC/DIVISION: HORIZONTAL SCALE: 200 USEC/DIVISION

2) MOTOR A. PHASE A

VRMS 81.3 SPEED 4462 RPM PERIOD 1.63 msec LOAD 17.8 cmps FREQ 595 Hz TEP (F) 152

LOADED

30 MOTOR A, LINE A TO B VRMS 134.3

SPEED WIEZ RPM

PERIOD 1.68 msec LOAD 17.8 amps

FREQ ___595_Hz TEP (F) __152 LCADCD

Morris A. GA 4303 RPM 4) MOTOR B. PHASE A

VRMS 91.9 SPEED 4410 PERIOD 1.7 msec LOAD _____0

FREQ 588 Hz TEPP (F) 152

Ł

5) MOTOR R. LINE A TO B

VRMS 184 SPEED 4462 RPM

PERIOD 1.68 msec LOAD

FRED 595 Hz TEP (F) 152 2150W ON MOTOR A

Moroc B. AA - 4B

S8308-F Page A. BLACK AND WHITE PHOTOGRAPH

5.5) P.H.G. LOADING

B) 4333 RPM DATA POINT

COMPARISON OF 'PHASE' AND 'LINE TO LINE' VOLTAGE HAVEFORMS FOR RESISTANCE LOADED CHADRANT MOTOR 'A'

.5 VOLT/DIVISION: VERTICAL SCALE: 1 VOLT/DIVISION

X100: PROSE RATIO: X100

200 HSEC/DIVISION: HORIZONTAL SCALE: 200 HSEC/DIVISION

6) MOTOR A, RHASE A

VRMS 81.3

PERIOD 1.69 MSec

FREO 595 Hz

SPEED 4463 RPM

LOAD 14.6 mmps

TETP (F) __170_

7) EDTOR A, LINE A TO B

VEMS 148.5

FERIOD 1.68 msec

FREQ 595 Hz

SPEED 4463 RPM

LOAD 14.6 cmps

TEPP (F) 174

100 5.5) P.M.G. LOADING B) 4333 RPH DATA POINT 3) HARHONIC ANALYSIS Percent Fundamental vs. Frequency 4316 RFM, Hotor A, Phase A 1-13-84 3rd. Barmonic 10 COORDINATE WITH PHOTO 5.5-B-6 - 5th. harmonic . n. . GROUNDED HARMONIC ANALYZER PERCENT FUNDAMENTAL 7th. himonic .01 730 88 FREQUENCY (KHZ)

9200.04

S8308-R1 Page A-12

st 53	5,5) <u>P.</u> C)	
151	P.M.G. LOADING C) 10,000 RPM DATA POINT	
93	RPM DA	
3 9 530	TA PC	
520		
(31	1/13 - 1/16	WINTS / B BELINCH

Lo	DAD	SPEED 10,000 r.p.m.	ТЕМР	TORQUE		MOTOR	A			мотоя	A		1	MOTOR	A	
AC	TUAL	ACTUAL	°F	in-lbs	Ia	Ib	Ic	Iave	Van	Vbn	Ven	Vave	Wa	Иb	Vic	iitot
1.	375	9983	136	42.6	6.6	5.2	5.4	5.7	214	220	219	218	1409	1160	1184	3753
a	750	9978	236	65.5	9.9	10.5	10.2	10.2	205	215	209	210	2035	2278	2/38	6451
4	125	10020	274	84.5	15	14.9	14.4	14.8	188	204	196	196	2819	3036	2838	8693
5	50d	10005	292	95.3	18.1	18.5	17.8	18,1	173	189	180	181	3021	3510	3198	9739
6	875	9992	195	106	20.2	21.8	20.8	20.9	166.7	180.4	170.6	173	3041	3935	3514	10520
8.	250	9990	258	107.6	22.8	24.1	22.9	23.3	149.2	165.8	155.3	157	2788	3988	3555	10431
Γ						-										
															-	
						·										

S8308-R1 Page A-122

		5.5) P.M.G. LOADING							L.K.	W72	/B.	ZELI	NSK
			C	10,0	000 R	PM DA	TA PO	INT	1/1	3-1	/16		
	уаув	223	223	333	223	न्त्र।	222						•
۵	Vcn	223	225	225	225	333	aax						
MOTOR	Vbn	معه	220	318	418	918	216						
	Van	233	225	336	336	224	<i>aa</i> 5						
	Vave	223	aay	224	वंत्रप्	233	say						
υ	Vcn	224	325	BEE	नेत्रध	188	334 335						
MOTOR	Vbn	223	224	33¢	786	223							
	Van	233	924	334	223	322	726	•					
	Vave	222	224	224	333	222	325						
В	Vcn	ನನನ	758	33¢	223	1 cc	326						
MOTOR	Vbn	222	222	अस्र	026	126	223						
	Van	223	336	336	726	320	336						
SPEED 10,000 R.P.M.	ACTUAL	4866	55001	E#001	9/00/	4466	1566						
LOAD	ACTUAL	1375	2750	561#	5500	5489	8250						

5.5) P.M.G. LOADING

C) 10.000 RPM DATA POINT

QUADRANT MOTOR A: RESISTIVE LOADED

VERTICAL SCALE: 1 VOLTS/DIVISION
PROBE RATIO: X 100
HORIZONTAL SCALE: 100 USEC/DIVISION

1) MOTOR A, PHASE A
VRMS 198
PERIOD .73 msec
FREQ 1370 Hz
SPEED 10275 RPM
LOAD 5.7 gmps
TEMP (F) 160

ORIGINAL PAGE

AND WHITE PHOTOGRAPH

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

5.5) P.M.G. LOADING

C) 10,000 RPM DATA POINT

COMPARISON OF 'PHASE' AND 'LINE TO LINE' VOLTAGE HAVEFORMS FOR RESISTANCE LOADED QUADRANT FOTOR 'A' AT TWO LOAD FOINTS.

1 YOLT/DIVISION:

VERTICAL SCALE: 2 VOLTS/DIVISION

X100:

PROBE RATIO: X100

100 USEC/DIVISION:

HORIZONTAL SCALE: 100 | | SEC/DIVISION

2) MOTOR A, PHASE A

VRMS 198 SPEED 10275 RPM PERIOD .73 msec LOAD 10.2 cmps

FREQ 1370 Hz TEP (F) 180

3) MOTOR A, LINE A TO B

VRMS __368___

SPEED 10275 RFM

PERIOD .73 msec

10.2 cmps

FREQ _1370 Hz

TEP (F) 184

MCTIKA, OH 10014 KPM

4) MOTOR A. PHASE A

VRMS 184 SPEED 10275 RPM

PERIOD __.73 msec LOAD _18.1 omps FREO 1370 Hz TEP (F) 220

5) MOTOR A. LINE A TO B

VRMS ______ SPEED _10275 RPM

PERIOD .73 msec LOAD 18.1 omps

FREO 1370 Hz TEP (F) 190

22

\$8308-R1 Page A-12

è

STATIC TORQUE VS. ROTOR POSITION DATA

TEST SUMMARY

- a) TORQUE VS. ROTOR POSITION
 - . 1) Quadrant Motor A
 - 2) 3' Lever
 - 3) 500 in-1b Torque Shaft (TS173)
 - 4) Jan 18, 1984
- b) TORQUE VS. CURRENT
 - 1) Quadrant Motor A
 - 2) Rotor Position: 30.94 Mechanical Degrees (#2.75)
 - 3) 3' Lever
 - 4) 500 in-1b Torque Shaft (TS173)
 - 5) Jan 18, 1984
- c) AVERAGE TORQUE VS. CURRENT
 - 1) Quadrant Motors A, B, C & D
 - 2) Rotor Position: 91.13 Mechanical Degrees (#8.1)
 - 3) Locked Shaft
 - 4) 200 in-1b Torque Shaft (TS179)
 - 5) Jan 19, 1984

REPEAT C

- c) AVERAGE TORQUE VS. CURRENT
 - 1) Quadrant Motors A, B, C & D
 - 2) Rotor Position: Indeterminate due to motor assembly level
 - 3) Locked Shaft
 - 4) 500 in-1b Torque Shaft (TS173)
 - 5) Feb 7, 1984

	<u>2</u>
Quadrant Motor A	a) TORQUE VS. ROTOR POSITION
	NOITISO
Clarkwise sensor end	

İ		OTOR SITION	UNITS	PO	OTOR SITION	UNITS	1	ROTOR SITION	STINU		OTOR SITION	UNITS
	#	DEGREES	IN-LBS	#	DEGREES	IN-LBS	#	DEGREES	IN-LBS	#	DEGREES	IN-LBS
	0	0	11.0	8	90	4.0	16	180	9.0	24	270	8.0
	ķ		17.0	lş		17.0	lş		18,0	4		16.0
	1	11.25	15.0	9	101,25	13.0	17	191,25	11.0	25	281,25	12.0
	ኔ		6.0	lş		1.0	15		3.0	4		0.0
	2	22.5	9.0	10	112.5	16.0	18	202,25	25.0	26	292.5	15.0
*	15		18.0	1		27.0	k		ವನ.0	15		24,0
"	3	33,75	23.0	11	123.75	15.0	19	213.75	10.0	27	303.75	17.0
	4		14.0	1		3.0	15		5.0	lş		9.0
1	4	45	5.0	12	135	9.0	20	225	16.0	28	315	6.0
	15		16.0	l _s		18,0	1		17.0	1		16.0
i	5	56.25	18.0	13	146,25	8,0	21	236.25	7.0	29	326.25	13.0
	15		4.0	Ļ		2.0	Ł		2.0	lş		1.0
	6	67.5	12.0	14	157.5	18.0	22	247.5	16.0	30	337.5	13.0
	١		19.0	ż		26.0	ķ		23.0	1		25.0
	7	78.75	23.0	15	168.75	17.0	23	258,75	16.0	31	348,75	23,0
	łs		12.0	4		9.0	1		9.0	l _s		9.0

AVERAGE VALUE:

13.14

INPUT CURRENT: 5 A.D.C.

MAXIMUM VALUE:

27.0

(i) * 2.75 (30.94 DEGREES)@ 25 IN-LBS

MINIMUM VALUE: 0.0

(2) READINGS TAKEN WITH 500 IN-LB TORQUE SHAFT (TS 173)

1-18-84

b) TORQUE VS. CURRENT

Quadrant Motor A Rotor position: 30.94° (#2.75)

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	QUAD A TORQUE
amperes	volts	°F	in-lbs
2	0.3	72	11.0
4	0.7	72	21.0
6	1.0	72	30,0
8	1.4	73	41.0
10	1.8	74	50.0
12	2.1	75	58.0
14	2.4	76	68.0
16	2.8	77	75.0
18	3.2	78	85.0
20	3,5	79	95.0
22	3,9	80	101.0
24	4.3	81	109.0
26	4.7	82	116.0
28	5.1	83	123.0
30	5.5	84	130.0
32	5.9	85	137.0
34	6.4	86	143.0
	<u> </u>		

E. ZELINSKI / L. KINTZ 1/18/84 (1) 500 IN-LE TORQUE SHAFT (TS 173)

(2) 3' LEVER

S8308-R1 Page A-131

c) AVERAGE TORQUE VS. CURRENT

Quadrant Motors A, B, C & D Rotor position: $9/.13^{\circ}$ (# 8.1)

INPUT CURRENT	INPUT VOLTAGE	QUAD A TORQUE	QUAD B TORQUE	QUAD C TORQUE	QUAD D TORQUE	AVERAGE TORQUE
amperes	volts	in-lbs	in-lbs	in-lbs	in-lbs	in-lbs
2	Ç. 3	7.9	9.4	8,9	9.6	9.0
4	5.7	16.2	16.1	16.1	17.5	16.5
6	1.0	23,8	24.2	23.6	25.4	24.3
8	1.4	31.6	32.5	31.8	<i>33.</i> 2	32.3
10	1.7	39.2	39.8	40.2	40.7	40.0
12	2.1	48.8	48.5	48.5	50.4	49.1
14	2.4	<i>56.</i> 3	55.6	<i>55.5</i>	521	56.4
16	3.8	65.2	64.0	63.2	65.3	4.4
18	3.1	72.8	71.9	71.4	73.5	72.4
20	3.5	82.1	80.2	79.1	82.0	80.9
22	3.9	90.9	87.6	87.5	89.6	82.9
24	4.2	92,2	96.7	95.8	98.2	97.4
26	4.6	107.5	105.0	104.0	157.5	106.0
28	5.1	115.9	113.0	1120	115.3	114.1
30	= 4	125.C	122.0	120.3	123.7	122.8
32	5.9	134.0	130.0	129.1	131.0	131.0
34	63	141.7	137.0	137.0	140.4	139.0
	i	1				

- E. ZELINSKI / L. KINTZ 1/19/84 (1) 200 IN-LB TORQUE SHAFT (TS 179)
- (2) LOCKED SHAFT

c) AVERAGE TORQUE VS. CURRENT

Quadrant Motors A, B, C & D
Rotor position: <u>INDETERMINATE</u>

INPUT CURRENT	INPUT VOLTAGE	QUAD A TORQUE	QUAD B TORQUE	QUAD C TORQUE	QUAD D TORQUE	AVERAGE TORQUE
amperes	volts	in-lbs	in-lbs	in-lbs	in-lbs	in-lbs
2	0.3	5	5	6	6	5.5
4	5.7	15	13	14	15	14.3
6	2	24	23	24	24	23.8
2	1.4	33	33	<i>3</i> ,3	34	33.3
10	1.7	45	43	45	45	44.5
12	2.1	<i>55</i>	53	54	55	54.5
14	2.4	65	62	63	64	63.5
16	28	74	7/	72	73	72.5
18	3.1	84	8/	81	83	82.5
20	3.5	94	89	91	92	91.5
వేవే	3.9	102	98	98	100	99.5
24	4.2	111	107	107	109_	108.5
26	4.6	119	114	115	117	116.3
28	5.1	127	123	123	125	124.5
30	E.4	135	131	131	133	132.5
32	5.9	143	137	137	140	139.3
34	6.3	150	145	144	147	146.5
			1			
•						

L.KINT2 2/7/84 (1) 500 IN-LB TORQUE SHAFT (TS173)

(2) LOCKED SHAFT

STATIC TORQUE SUMMING DATA

TEST SUMMARY

TORQUE VS. CURRENT

- a) Quadrant Motors A & B
- b) Quadrant Motors A, B & C
- c) Quadrant Motors A, B, C & D

SERIES 1

- 1) Jan 18, 1984
- 2) Rotor Position: 30.94 Mechanical Degrees (#2.75)
- 3) 3' Lever
- 4) 500 in-1b Torque Shaft (TS173)

SERIES 2

- 1) Jan 19, 1984
- 2) Rotor Position: 91.13 Mechanical Degrees (#8.1)
- 3) Locked Shaft
- 4) 200 in-1b Torque Shaft (TS179)

SERIES 3

- 1) Jan 19, 1984
- 2) Rotor Position: 93.38 Mechanical Degrees (#8.3)
- 3) Locked Shaft
- 4) 500 in-1b Torque Shaft (TS173)

SERIES 4

- 1) Feb 7, 1984
- 2) Rotor Position: Indeterminate due to motor assembly level
- 3) Locked Shaft
- 4) 500 in-1b Torque Shaft (TS173)

a) Quadrant Motors A & B SERIES _______

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION
am; eres	volts	°F	in-lbs	degrees
2	0.6	75	19.0	30.94
4	1,3	75	39.0	
6	2.0	75	56.0	
8	2.7	75	76.0	
10	3.3	75	92.0	
12	4.1	75	111.0	
14	4.8	75	130.0	
16	5.4	76	141.0	
18	6.3	77	163.0	
20	6.9	18	178.0	
22	7.6	79	193.0	
24	8.4	80	207,0	
26	9.2	81	227.0	
28	10.0	82	235,0	
30	10.8	83	248.0	
32	11.6	84	260.0	
34	12.7	85	2720	30.94

B. ZELINSKI / L. KINTZ 1/18/84 (1) 500 IN-LB TORQUE SHAFT (TS 173)

(2) 3' LEVER

b) Quadrant Motors A & B & C SERIES _______

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION
amperes.	volts	°F	in-lbs	degrees
ລ	0,9	83	26	30.94
4	2.0	<i>83</i>	58 84	
lo	3.0	83	84	
8	4.1	83	113	
10	5,1	83	/38	
/a	6.2	83 ?3 83	164	
14	7.2	23	187	
16	8,2	83	210	
18	9.5	83 84	233	
18 20	10.4	84	<i>252</i>	
22	11.5	. 85	274	
24	12.7	86	296	<u> </u>
26	1,3,9	87	312	<u> </u>
28	15.0	88	327	
30	16.2	89	342	
32	17.5	90	355	
34	18.8	91	364	30.94
	<u> </u>			
	<u> </u>		ļ	
				<u> </u>
			•	

B. ZELINSKI / L. KINTZ 1/18/84

- (1) 500 IN-LB TORQUE SHAFT (TS 173)
- (2) 3' LEVER

c) Quaurant Motors A & B & C & D SERIES ______

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION
amperes	volts	°F	in-lbs	degrees
2	, 1,2	87	33	30 94
4	2.8	87	75	
6	4,2	87	114	
88	5.4	87	147	
10	6.8	87	170	
12	8.4	87	231	
14	9.8	87	268	
16	11.0	87	300	
18	12.4	87	333	
20	13.9	27	364	
22	15.3	88	395	
24	17.0	89	422	
26	18.8	40	451	
28	20.0	91	474	
30	21.7	92	495	
32	23.4	93	508	
24	25.0	94	527	30.74
·				

B. ZELINSKI / L. KINTZ 1/18/84 (1) 500 IN-LB TORQUE SHAFT (TS 173) (2) 3' LEVEK

5.7) STATIC TORQUE SUMMING SERIES 2 Rotor Position: 91.13⁰
Locked Shaft
200 in-15 Torque Shaft 1-11-1 :: : 1-19-84 ··:: : .::: :::: : : :::: : • : : : • . :-200 3 QUADS buads 2 QUADS - 1:50-: Torque (in-1bs) 100 1 QUAD PLOTTED FOR REFERENCE 50 8 D.C. Current (Amperes)

a) Quadrant Motors A & B SERIES ______

INPUT CURRENT VOLTAGE STATOR TEMP. TORQUE POSITION					
2 0,64 76 16,2 91.13 4 1.4 76 31.4 6 2.1 76 -2.0 8 2.8 76 66.1 10 3.5 76 82.5 12 4.2 76 98.6 14 4.9 76 116.5 16 5.7 77 133 18 6.4 78 152.7 20 7.5 79 173.8 22 7.9 80 199 91.13					
4 1.4 76 31.4 6 2.1 76 -2.0 8 2.8 76 66.1 10 3.5 76 82.5 12 4.2 76 98.6 14 4.9 76 116.5 16 5.7 77 133 18 6.4 78 152.7 20 7.5 79 173.8 22 7.9 80 199 91.13	amperes	volts	°F	in-lbs	degrees
4 1.4 76 31.4 6 2.1 76 -2.0 8 2.8 76 66.1 10 3.5 76 82.5 12 4.2 76 98.6 14 4.9 76 116.5 16 5.7 77 133 18 6.4 78 152.7 20 7.5 79 173.8 22 7.9 80 199 91.13	2	0,64	76	16.2	91.13
8 2.8 76 66.1 10 3.5 76 82.5 12 4.2 76 98.6 14 4.9 76 116.5 16 5.7 77 133 18 6.4 78 152.7 20 7.5 79 173.8 22 7.9 80 199 91.13		1.4	76	31.4	
8	6	2./	76	0،جند	
10 3.5 76 82.5 12 4.2 76 98.6 14 4.9 76 116.5 16 5.7 77 133 18 6.4 78 152.7 20 7.5 79 173.8 22 7.9 80 199 91.13	8	2.8	76		
12 4.2 76 98.6 14 4.9 76 116.5 16 5.7 77 133 18 6.4 78 152.7 20 7.5 79 173.8 22 7.9 80 199 91.13	10	3.5	76	82.5	
16 5,7 77 133 18 6,4 78 1,52,7 20 7,5 79 173,8 22 7,9 80 199 91,13	12		76	98.6	
16 5,7 77 133 18 6,4 78 1,52,7 20 7,5 79 173,8 22 7,9 80 199 91,13	14	4,9	76	116.5	
22 7.9 80 199 91.13	16	5,7	77	/33	
22 7.9 80 199 91.13	18	6.4	78	152.7	
22 7.9 80 199 91.13	20	7.5			
	22	7.9	80	199	91.13
					<u> </u>
					<u> </u>
		<u> </u>			
				<u> </u>	
		: :			

B. ZELINSKI / L. KINTZ 1/19/84 (1) 200 IN-LB TORQUE SHAFT (TS 179)

⁽²⁾ LOCKED SHAFT

b) Quadrant Motors A & B & C
SERIES ______

	JERIES					
INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION		
amperes	volts	°F	in-lbs	degrees		
2	0.99	80	24.7	91.13		
4	2,0	80	50.6	i		
6	3,1	80	82.3			
8	4,1	80	109.6			
10	5./	20	137.7			
12	6.2	80	168			
14	7.1	80	196.1	91.13		
				<u> </u>		
		<u> </u>				
	·					

- B. ZELINSKI / L. KINT Z 1/19/84 (1) 200 IN-LB TORQUE SHAFT (TS 179)
- (2) LOCKED SHAFT

c) Quadrant Motors A & B & C & D
SERIES ______

SERIES					
INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION	
amperes	volts	°F	in-lòs	degrees	
2	1.3	81	31.7	91.13	
4	2.7	81	72.9		
6	3.9	81	112.4		
8	5.2	81	149.3	1	
10	6.7	81	197.8	91.13	
		<u></u>			
	<u> </u>				
L.	<u> </u>		<u> </u>		
			<u> </u>		
			<u></u>		

B. ZELINSKI / L. KINTZ 1/19/84 (1) 200 IN-LB TORQUE SHAFT (TS179) (2) LOCKED SHAFT

a) Quadrant Motors A & B SERIES 3

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION
amperes	volts	°F	in-lbs	degrees
2	0.64	76	9	93.32
4.	1.4		20	
6	2.1		_30	
8	2.8		40	
10	3.5		49	
12	4,2		60	
14	4.9			
16	5.7		70 80	
18	6.4		89	
20	7.5		98	
22_	7.9		106	
24	8.7	ļ 	115	
26 28	9.4		124	
28	10.2		/33	
30	11.1		140	·
32	11.9		148	
34	12.9		157	93.38

B. ZELINSKI / L. KINTZ 1/19/84 (1) 500 IN-LB TORQUE SHAFT (TS 173)

(2) LOCKED SHAFT

b) Quadrant Motors A & B & C
SERIES 3 **SERIES**

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION
amperes	volts	°F	in-lbs	degrees
2	0.99	80	14	93.38
4	2.0		29	
- 6 8	3.1 4.1		45	
8	4.1		59	
10	5.1		74	
12	6.2		89	
14	7.1		101	
16	8.3		116	
18	9.3		130	
20	10.4		142	
	11.4		155	
24	12.7		168	
26	13.8		180	
28	14.9		192	
30	16.2		203	
. <i>3</i> 2	17,5		214	
34	18.8		224	93.38
				·

B. ZELINSKI / L. KINTZ 1/19/84 (1) 500 IN-LB TORQUE SHAFT (TS 173)

(2) LOCKED SHAFT

c) Quadrant Motors A & B & C & D SERIES 3

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION
amperes	volts	°F	in-lbs	degrees
2	1.3	81	24	93.38
4	2.7		45	
6	3,9		62	
8	5,2		83	
10	6.7		102	
12	7.9		120	
14	9.3		137	
16	10.7		154	
18	12.1		172	
20	13.5		189	
22_	14.9	<u> </u>	204	
24_	16.5		22/	
26	17.9		236	
28	19.4		250	
30	21.3		266	
32	22.9		278	<u> </u>
34	24.5		290	93.38

B. ZELINSKI / L. KINTZ 1/19/84 (1) 500 IN-LB TORQUE SHAFT (TS 173)

(a) LOCKED SHAFT

5.7) STATIC TORQUE SUMMING

a) Quadrant Motors A & B SERIES _____

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION			
amperes	volts	°F	in-lbs	degrees			
2	NOT MEASURED	NOT MEASURED	14	RANDOM			
4			34				
6			54				
8			75				
10			95				
12			113				
14			131				
16			148				
18			166				
20			183				
22			197				
24			213				
26			221				
28			240				
30			254				
32			265				
34			275				
·							
		1					

L. KINTZ 2/7/84

(1) 500 IN-LB TORQUE SHAFT (TS173)

(2) LOCKED SHAFT

STATIC TORQUE SUMMING

b) Quadrant Motors A & B & C 4 **SERIES**

SERIES 7						
INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION		
amperes	volts	°F	in-lbs	degrees		
a	NOT MEASURED	NOT MERSURE D	24	RANDOM		
4			55			
6			85			
8			112			
10			.140			
12			166			
14			193			
16			216			
18			2,39			
20		<u> </u>	262			
22			283			
24			304			
26 2?			320			
2?		<u> </u>	339			
30		<u> </u>	355			
30 32			369			
Ξ4	<u> </u>		383			
•						
;						

L. KINTZ 2/7/84 (1) 500 IN-LB TORQUE SHAFT (TS 173)

(a) LOCKED SHAFT

STATIC TORQUE SUMMING 5.7)

c) Quadrant Motors A & B & C & D SERIES 4

INPUT CURRENT	INPUT VOLTAGE	STATOR TEMP.	MAX TORQUE	SHAFT POSITION
amperes	volts	°F	in-lbs	degrees
2	NOT	MEASURED	33	RANDOM
4			72	
1/2			112	
8			148	
10			187	
/2			220	
14			250	
16			281	
18			310	
ao			336	
22			359	
24			385	
26			407	
28			425	
30			443	
32			460	
34			476	
				1

L. KINTZ 2/7/84 (1) 500 IN-LB TORQUE SHAFT (TS173)

(2) LOCKED SHAFT

APPENDIX B

CONTROL STRATEGY

Optimization of Brushless DC Motor Design

By Jayant G. Vaidya, Sr. Research Engineer Sundstrand Corporation, Advanced Technology Operations Rockford, IL 61101

Introduction

Brushless dc motors are generally required to operate under widely varying conditions of load. These varying conditions include: changes in torque, changes in speed, and resulting changes in power output. On the other hand there are changes of input voltage and commutation angle that are optional and can be selected to suit the performance capabilities of the brushless dc motor. The back e.m.f. and the winding inductance per phase of a multiphase brushless dc motor are the two design parameters that must be selected to obtain an optimum design. It is the purpose of this article to present techniques for optimizing the performance of brushless dc motors by selecting the design parameters and the optional operating points for input voltage and commutation angle for specific load characteristics.

A simplified model representing one phase of a multi-phase, permanet magnet field brushless dc motor is employed. It is proposed that such a model is an extremely convenient tool for evaluating performance under a variety of operating conditions. It is indicated how this simplified model can be applied to optimization of the brushless dc motor design. It is then shown how the technique of optimization can be applied to different types of designs for specific load characteristics such as constant torque, constant speed, constant power, and combinations thereof.

The Simplified Model of Brushless DC Motor

Consider one phase of a permanent magnet field brushless dc motor having an n-phase winding. If the winding resistance is neglected, this phase can be represented schematically as shown in Figure 1. The applied voltage is V volts r.m.s. per phase and the back e.m.f. is E volts r.m.s. per phase.

Let us assume that both V and E are sinusoidal. The winding inductance is L henry. Let us assume that there is no magnetic saturation in the armature iron so that the value of L remains constant regardless of changes in current. Since most of the machines to which this analysis is applied are likely to use permanent magnets with the relative permeability close to one (such as ceramic or samarium cobalt magnets), it is safe to assume that the winding inductance L remains practically constant regardless of the angular position S8308-R1 Page B-1

Defining the r.m.s. value of the current in the phase under consideration as I amperes,

$$\bar{I} = \frac{\bar{V} - \bar{E}}{2\pi f L} , \qquad (1)$$

where \overline{I} , \overline{V} , \overline{E} are phasor quantities and f equal the frequency in Hertz. Defining the commutation angle as δ radians and the power factor angle as ϕ radians, the phasor diagrams with all the quantities can be drawn as shown in Figure 2. The power input to the motor is given by

$$P = n VI \cos \phi \tag{2}$$

This is also the power output if all the losses such as iron losses and windage and friction losses are neglected for our simplified model. By examination of the phasor diagram,

$$I = \frac{E \sin \delta}{2\pi f L (\cos \phi)} \tag{3}$$

Combining equations (2) and (3) above,

$$P = \frac{\text{nVEsin}\delta}{2\pi fL} \tag{4}$$

This is the well-known power equation for the cylindrical rotor synchronous machines.

Using the Simplified Model for Design Optimization

- a) The power is proportional to the back e.m.f. E. This can be increased at the cost of increased weight of the permanent magnet field as well as the armature.
- b) The power is inversely proportional to the inductance L. Thus if the number of turns in the armature is increased to increase the back E.M.F., the inductance increases in proportion to the square of the number of turns. This will in fact reduce the power.

c) To keep the motor current as low as possible, the power factor, $\cos\phi$ must be kept close to 1. However any attempt to increase $\cos\phi$ requires changes in the back e.m.f. E and the commutation angle δ .

To clarify these points, let us consider the case of a fixed power, constant speed brushless dc motor, operating from a fixed input voltage. Although such a simple requirement may not occur in practical situations, it will help illustrate the optimization procedure. In order to keep the armature current to a minimum, let us assume that the power factor is restricted to 1. Then applying equation (4), the power

$$P \propto \frac{E \sin \delta}{L}$$
 (5)

Once a certain configuration of the motor is determined the value of E can be increased by increasing the stack length of the motor. However, the inductance L also increases with the stack length. Then

$$P \propto \sin\delta$$
 (6)

However, from the phasor diagram of Figure 2,

E
$$\cos \delta = V$$
, for $\cos \phi = 1$

or
$$\sin \delta = \sqrt{1-V^2/E^2}$$

If we define a variable e = E/V,

$$\sin\delta = \sqrt{1 - 1/e^2}$$

then
$$P \propto \sqrt{1-1/e^2}$$

Now the weight of the motor is a function of the back e.m.f. and we can express,

where x is variable dependent on the total weight increase caused by the increase of back e.m.f. E. Then we can define the power per unit weight as

$$P/W = \sqrt{1 - !/e^2/e^X}$$
 (7)

This equation is plotted in Figure 3 for several values of x to illustrate how an optimum power to weight ratio can be obtained. From the curve for any specific value of x, the optimum value of e and the optimum value of the back e.m.f. E can be selected where the ratio P/W reaches its peak. Any further increase in the back e.m.f. E will in fact result in a less than optimum design. Similar curves can be plotted for power factors other than 1.

Let us consider another case where the value of E is fixed as a percentage of the applied voltage V, and the power factor must be otimized. Two independent situations arise in this case: One where E is less than V, and the other where E is greater than V. Figure 4 shows the phasor diagram for the situation where E is less than V. Here the maximum value of the power factor $\cos \phi$ is attained when the power factor angle ϕ is smallest. This occurs when the phasor $(\bar{V}-\bar{E})$ is tangential to the locus of E as shown in Figure 4. At this point the power factor angle and the commutation angle are equal and

$$\cos \phi = \cos \delta = E/V$$
 (8-a)

And the power equation (4) for the optimum power factor becomes,

$$P = \frac{nE\sqrt{V^2 - E^2}}{2\pi fL}$$
 (9-a)

In the second situation where E is greater than V, the maximum value of the power factor that can be attained is 1 as shown in the phasor diagram. The commutation angle δ is given by

$$cos\delta = V/E$$
 (8-b)

And the power equation (4) for the power factor of 1, becomes,

$$P = \frac{n\sqrt{E^2 - v^2}}{2\pi f!}$$
 (9-b)

Using equations (9-a) and (9-b), optimum values of the winding inductance per phase, L can be determined for given applied voltage V and back e.m.f. E. The optimum value of commutation angle δ can be determined using equations (8-a) and (8-b).

Constant Torque Operation

The procedure for optimization of the power factor as discussed above can be extended to the constant torque load characteristics shown in Figure 6. First the design parameters may be optimized at the highest operating speed of N₂ R.P.M. where maximum power occurs. At this point the input voltage should be held at its maximum value V. As the operating speed of the motor is reduced, the back e.m.f. E as well as the reactance $2\pi fL$ reduce in proportion to the speed. The power factor can be held constant at its optimum value if the applied voltage V is reduced in proportion to the speed. The commutation angle δ is also held at its original value throughout the operating range. The power as in equation (4) falls in proportion to the reduction of the applied voltage V as the speed is reduced.

Two cases, one with the back e.m.f. E less than the applied voltage V, and the other with the back e.m.f. greater than the applied voltage V are shown in Figures 7 and 8. Equations (8-a) and (9-a) and (8-b) and (9-b) apply to the two cases at the peak speed of $\rm N_2$ R.P.M. At any lower speed N, the power is reduced by the factor $\rm N/N_2$ as required by the load.

Constant Speed Operation

The constant speed characteristic is shown in Figure 10. One approach would be to optimize the power factor at the peak torque load keeping the back e.m.f. E below the value of the applied voltage V as shown in Figure 4. Then as the torque is reduced from its peak value, the applied voltage can be reduced, holding the commutation angle constant so that the power factor increases until it reaches the value of 1. This is shown by means of a phasor diagram in Figure 11. At the peak torque point, the relationships of equations (8-a) and (9-a) are valid for the optimum power factor. The minimum torque level that can be then reached for the power factor of 1 is then given the following equation,

$$T_1 = T_2 \frac{E\cos\delta}{V}$$

$$= T_2\left(\frac{E^2}{V^2}\right), \tag{10}$$

where,

 T_1 = Torque at power factor of 1

 T_2 = Peak torque.

Any further reduction in the torque can be obtained by reducing the commutation angle and simultaneously increasing the applied voltage to main-

tain the power facotr at 1. This procedure will allow unlimited reduction in the torque right down to zero.

Constant Power Operation

Consider the load characteristics shown in Figure 11, where the power requirement remains constant over the speed range from N₁ r.p.m. to N₂ r.p.m. In this case to get the optimum design, it is best to restrict the current at the maximum and minimum speeds to a certain value, consistent with highest possible power factor. Here once again the ratio of E to $2\pi fL$ remains constant over the speed range, and if we keep the applied voltage constant, then the power

$$P^{\alpha} \sin \delta$$
 (11)

Since the power is constant throughout the operating range, the commutation angle δ should remain constant. Now let us set the back e.m.f. E₁ at speed N₁ such that at the required power level, the optimum conditions of Figure 4 and equations (8-a) and (9-a) are attained. Then at the highest speed of N₂,

$$E_2 = \frac{N_2}{N_1} E_1$$
 (12)

This will result in a shift in the power factor angle from ϕ_1 lagging to ϕ_2 leading. In order to keep the currents for the two speeds equal, ϕ_1 and ϕ_2 must be equal as can be readily seen by applying equation (2). Phasor diagram for these two speed conditions is shown in Figure 12. Then from the phasor diagram, for the optimum condition of ϕ_1 = ϕ_2 = ϕ_3

$$E_2\cos 2\phi = E_1 \tag{13}$$

Combining equations (12) and (13)

$$\cos 2\phi = N_1/N_2 \tag{14}$$

From equation (14) it can be seen that the optimum power factor for constant power operation at the extreme speeds of N_1 R.P.M. and N_2 R.P.M. is given by

$$\cos \phi = \cos \left[\frac{1}{2} \cos^{-1} \frac{N_1}{N_2} \right] \tag{15}$$

As the speed range is widened, the power factor at the extreme speeds gets lower. The power factor at all intermediate speeds is always above the value reached at the extreme speed conditions.

If it is desired to improve the power factor beyond the value obtained using equation (15), it will be necessary to arrange switching of winding connections from star to delta or from parallel to series at a predetermined speed between the upper and lower speed limits.

<u>Combinations of Different Load Characteristics</u>

In practical design applications combinations of two or more types of speed torque characteristic curves may occur. Figure 13 illustrates one such case. Here the entire load characteristic can be split into two parts: one constant torque operation from the speed N_1 R.P.M. to the speed N_2 R.P.M. and another constant power operation from the speed N_2 R.P.M. to N_3 R.P.M. Each part can be treated individually as already discussed. Thus during the constant power operation, the power factor may be optimized at the extreme speeds of N_2 R.P.M. and N_3 R.P.M. The applied voltage V and the commutation angle δ are held constant throughout this speed range. On the other hand, during the constant torque operation, the applied voltage may be reduced as the speed is reduced and the commutation angle is held constant. Similar approach of dealing with the load characteristics in parts may be taken where other combinations of speed torque curves occur.

Conclusion

An approach to the optimization of the design parameters for permanent magnet field brushless dc motors is presented in this article. Certain assumptions have been made so that specific goals for the design parameters such as the back e.m.f., the winding inductance and the commutation angle can be established for any specific speed torque curve. Once this is done, the basic electromagnetic design of the brushless dc motor can be established. After this a detailed analysis of the design at specific load points of interest will require inclusion of other parameters such as winding resistance, saturation of iron, variation of inductance, harmonics in applied voltage and back e.m.f., and various losses which were neglected in the model employed in this article.

Figure 3: Power to Weight Ratio as a Function of Back E.M.F. to Applied Voltage Ratio, with Power Factor, $\cos\phi$ = 1.

Figure 1 : Schematic Showing One Phase

Figure 2 : Phasor Diagram

Figure 4 : Optimum Power Factor for E <V

Figure 5 : Optimum Power Factor for E >V

Figure 7 : Constant Torque Operation, E <V

S8308-R1 * Page B-11

Figure 9 : Constant Speed Operation

Figure 10 : Constant Speed Operation:Phasor Diagram

Figure 11 : Constant Power Operation

Figure 12 : Constant Power Operation : Phasor Diagram

Figure 13 : Combination of Two Speed Torque Characteristics

End of Document