(Q1) Interval thinness governs hyperbolicity in Helly graphs

- An interval I(x,y) is the set of all vertices from shortest (x,y)-paths.
- A <u>slice</u> of an interval at distance k is defined as:

$$S_k(x,y) = \{z \in I(x,y) : d(z,x) = k\}$$

- An interval is τ -thin if for any natural number k and any two u,v vertices of $S_k(x,y)$ are at most τ apart.
- A graph is τ-thin if all of its intervals are at most τ-thin.

For general graphs $\tau(G) \leq 2hb(G)$, but $\tau(G)$ and hb(G) can be far apart.

example: odd cycle with 4k+1 vertices

(Q1) Special subgraphs of a chess grid govern hyperbolicity in Helly graphs

Our Contribution

Theorem [4]: We show that for Helly graphs and any integer k,

• $hb(G) \le k$ if and only if G has neither isometric H_1^{k+1} nor H_2^k

hb(G) is an integer

• $hb(G) \le k+1/2$ if and only if G has neither isometric H_1^{k+1} nor H_3^k

hb(G) is a half-integer

Example: forbidden isometric subgraphs for 1-hyperbolic Helly graphs.

Example: forbidden isometric subgraphs for 1/2-hyperbolic Helly graphs.

