CS1231S: Discrete Structures

Tutorial #6: Functions

(Week 8: 3 – 7 October 2022)

I. Discussion Questions

These are meant for you to discuss on Canvas. No answers will be provided.

D1. Which of the following is a function? If it is not a function, explain.

(a) Define
$$f: \mathbb{Z} \to \mathbb{Z}$$
 by $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} 1, & \text{if } 2 \mid z, \\ 2, & \text{if } 3 \mid z. \end{cases}$

(b) Define
$$f: \mathbb{Z} \to \mathbb{Z}$$
 by $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} 1, & \text{if } 2 \mid z, \\ 2, & \text{if } 2 \nmid z. \end{cases}$

(c) Define
$$f: \mathbb{R} \to \mathbb{Z}$$
 by $\forall x \in \mathbb{R}$, $f(x) = 2x$.

(d) Define
$$f: \mathbb{Z} \to \mathbb{R}$$
 by $\forall x \in \mathbb{Z}$, $f(x) = 2x$.

D2. Let function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$ be defined by setting, $\forall x. y \in \mathbb{Z}$, $f(x, y) = \frac{x+y}{3}$. Find three distinct pre-images of 2.

D3. Definitions: Given any real number x,

- (1) the **floor** of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \leq x < n+1$;
- (2) the **ceiling** of x, denoted $\lceil x \rceil$, is the unique integer n such that $n-1 < x \le n$.

Let f , $g \colon \mathbb{Q} \to \mathbb{Q}$ be defined by setting, for each $x \in \mathbb{Q}$,

$$f(x) = [x] + 1$$
 and $g(x) = [x]$.

What is the range of f? What is the range of g? Is f = g? Why?

D4. To prove that a composition of two surjections is a surjection, Aiken wrote:

- 1. Suppose $f: X \to Y$ and $g: Y \to Z$ are surjections.
- 2. Then $\forall y \in Y \ \exists x \in X \ \text{such that} \ f(x) = y \ \text{as f is surjective,}$
- 3. and $\forall z \in Z \ \exists y \in Y \ \text{such that} \ g(y) = z \ \text{as g is surjective}.$
- 4. So $(g \circ f)(x) = g(f(x)) = g(y) = z$.
- 5. Hence $g \circ f$ is a surjection.

Explain the mistakes in this "proof".

II. Tutorial Questions

Define the following relations on N:

$$\forall x, y \in \mathbb{N} \ (x R_1 \ y \iff x^2 = y^2);$$

$$\forall x, y \in \mathbb{N} \ (x R_2 \ y \iff y \mid x);$$

$$\forall x, y \in \mathbb{N} \ (x R_3 \ y \iff y = x + 1).$$

Are the relations R_1 , R_2 and R_3 functions? Prove or disprove.

2. Define $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = x + 3$$
, and $g(x) = -x$, for all $x \in \mathbb{R}$.

Prove that (a) f is a bijection, (b) g is a bijection, and (c) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

- 3. Let $A = \{a, b\}$ and S be the set of all strings over A. (See Lecture 7 for the definition of string.) Define a concatenate-by-a-on-the-left function $C: S \to S$ by C(s) = as for all $s \in S$.
 - (a) Is C an injection? Prove or give a counterexample.
 - (b) Is C a surjection? Prove or give a counterexample.
- 4. Let $A = \{s, u\}$. Define a function $len: A^* \to \mathbb{Z}_{\geq 0}$ by setting $len(\sigma)$ to be the length of σ for each $\sigma \in A^*$.
 - (a) What is len(suu)?
 - (b) What is $len(\{\varepsilon, ss, uu, ssss\})$?
 - (c) What is $len^{-1}(\{3\})$?
 - (d) Does len^{-1} exist? Explain your answer.
- 5. Which of the functions defined in the following are injective? Which are surjective? Prove that your answers are correct. If a function defined below is both injective and surjective, then find a formula for the inverse of the function. Here we denote by *Bool* the set {**true**, **false**}.
 - (a) $f: \mathbb{Q} \to \mathbb{Q}$; $x \mapsto 12x + 31$.
 - (b) $g:Bool^2 \to Bool;$ $(p,q) \mapsto p \land \sim q.$
 - (c) $h: Bool^2 \rightarrow Bool^2$; $(p,q) \mapsto (p \land q, p \lor q)$.
 - (d) $k: \mathbb{Z} \to \mathbb{Z}$; $x \mapsto \begin{cases} x, & \text{if } x \text{ is even;} \\ 2x - 1, & \text{if } x \text{ is odd.} \end{cases}$

6. We have shown in Theorem 7.3.3 that if $f: X \to Y$ and $g: Y \to Z$ are both injective, then $g \circ f$ is injective.

Now, let $f: B \to C$. Suppose we have a function g with domain C such that $g \circ f$ is injective. Show that f is injective.

7. We have shown in Theorem 7.3.4 that if $f: X \to Y$ and $g: Y \to Z$ are both surjective, then $g \circ f$ is surjective.

Now, let $f: B \to C$. Suppose we have a function e with codomain B such that $f \circ e$ is surjective. Show that f is surjective.

8. Let $A = \{1,2,3\}$. The **order** of a bijection $f: A \to A$ is defined to be the smallest $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \cdots \circ f}_{n\text{-many } f'\mathsf{s}} = id_A.$$

Define functions $g, h: A \rightarrow A$ by setting, for all $x \in A$,

$$g(x) = \begin{cases} 1, & \text{if } x = 2; \\ 2, & \text{if } x = 1; \\ x, & \text{otherwise,} \end{cases} \qquad h(x) = \begin{cases} 2, & \text{if } x = 3; \\ 3, & \text{if } x = 2; \\ x, & \text{otherwise.} \end{cases}$$

Find the orders of g, h, $g \circ h$, and $h \circ g$.

- 9. Let $f: A \to B$ be a function. Let $X \subseteq A$ and $Y \subseteq B$. Justify your answers for the following:
 - (a) Is it always the case that $X \subseteq f^{-1}(f(X))$? Is it always the case that $f^{-1}(f(X)) \subseteq X$?
 - (b) Is it always the case that $Y \subseteq f(f^{-1}(Y))$? Is it always the case that $f(f^{-1}(Y)) \subseteq Y$?
- 10. [Optional question]

Consider the equivalence relation \sim on \mathbb{Q} defined by setting, for all $x, y \in \mathbb{Q}$,

$$x \sim y \Leftrightarrow x - y \in \mathbb{Z}$$
.

Define addition and multiplication on \mathbb{Q}/\sim as follows: whenever $[x],[y]\in\mathbb{Q}/\sim$,

$$[x] + [y] = [x + y]$$
 and $[x] \cdot [y] = [x \cdot y]$.

- (a) Is + well defined on \mathbb{Q}/\sim ?
- (b) Is · well defined on \mathbb{Q}/\sim ?

Prove that your answers are correct.