UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 1. stopnja

Manca Murn

METRIČNA DIMENZIJA LEKSIKOGRAFSKEGA PRODUKTA GRAFOV

Delo diplomskega seminarja

Mentor: Sandi Klavžar

Kazalo

Metrična dimenzija leksikografskega produkta grafov ${\tt Povzetek}$

...

The metric dimension of the lexicographic product of graphs $$\operatorname{Abstract}$$

...

Math. Subj. Class. (2020): ..., ... Ključne besede: ..., ... Keywords: ..., ...

1 Uvod

V decembru leta 2010 sta v razmaku 17 dni nastala dva različna članka z enakim naslovom - "The metric dimension of the lexicographic product of graphs". Avtorji obeh člankov bojda niso vedeli za delo drugega in so se teme lotili na dva posvem različna načina. V tem diplomskem seminarju si bomo ogledali pojem metrične dimenzije grafa in njene osnovne lastnosti, definirali leksikografski produkt grafov ter povzeli glavne rezultate o metrični dimenziji leksikografskega produkta iz obeh člankov. Na koncu bomo skušali najti tudi povezavo med enim in drugim pristopom obravnave le te.

1.1 Osnovni pojmi

Za začetek ponovimo nekaj osnovnih definicij in oznak iz teorije grafov, ki jih bomo potrebovali za razumevanje tega diplomskega seminarja.

Definicija 1.1. Graf G je urejen par (V(G), E(G)), kjer je V(G) množica vozlišč in E(G) podmnožica v $\binom{V(G)}{2}$, ki vsebuje povezave grafa.

Če je V(G) končna množica, je G končen graf. Število |V(G)| imenujemo red grafa. Če je med dvema različnima vozliščema največ ena povezava in nobeno vozlišče ni povezano samo s seboj, pravimo, da je graf enostaven. Vozlišči $v, u \in G$ sta sosedni, če $uv \in E(G)$. Sosednost je ekvivalenčna relacija, zato sosedni vozlišči označimo $u \sim v$. Če $w, x \in V(G)$ nista sosedni pa pišemo $w \not\sim x$.

Definicija 1.2. Komplement grafa G, je graf \overline{G} , za katerega velja $V(G)=V(\overline{G})$ in

$$\forall u, v \in V(\overline{G}) : uvE(\overline{G}) \Leftrightarrow uv \notin E(G).$$

Sprehod v grafu G je zaporedje vozlišč $v_1, v_2, ... v_k$ iz V(G), tako da je $\forall i: v_i, v_{i+1} \in E(G)$. Sprehod je enostaven, če vsebuje sama različna vozlišča. Graf je povezan, če med vsakima dvema različnima vozliščema obstaja sprehod. Na povezanem grafu lahko definiramo razdaljo med vozliščema.

Definicija 1.3. Razdalja med dvema vozliščema $u, v \in V(G)$ je dolžina najkrajšega sprehoda in jo označujemo z d(u, v).

Naslednja trditev o razdaji med vozlišči je očitna.

Trditev 1.4. Za povezan graf G in poljubni vozlišči $v, w \in V(G)$ velja:

$$d(v, w) = 0 \Leftrightarrow v = w.$$

Definicija 1.5. Graf H je podgraf grafa G natanko tedaj, ko velja $V(H) \subseteq V(G)$ in $E(H) \subseteq E(H)$.

Definicija 1.6. Graf H je induciran podgraf grafa G natanko tedaj, ko velja $\forall u, v \in V(H) : uv \in E(G) \Rightarrow E(H)$.

Definicija 1.7. Komponenta grafa je povezan podgraf, ki ni del nobenega večjega povezanega podgrafa.

Povezan graf ima seveda samo eno komponento. Definirajmo še operacijo združitve grafov.

Definicija 1.8. Združitev grafov G in H, je graf G+H, za katerega velja $V(G+H) = V(G) \cup V(H)$ in $E(G+H) = E(G) \cup E(H) \cup \{uv \mid u \in V(G) \land v \in V(H)\}.$

Poglejmo še nekaj primerov osnovnih razredov grafov:

- Prazen graf na n vozliščih, ki ga označujemo z N_n , nima nobenih povezav.
- Polni graf na n vozliščih, ki ga označujemo z K_n , ima vse možne povezave.
- Polni dvodelni graf, ki ga označujemo z $K_{n,m}$ ima množico vozlišč $V(K_{n,m}) = \{v_1, v_2, ..., v_n, u_1, u_2, ..., u_m\}$ in povezave $E(K_{n,m}) = \{v_i u_j \mid 1 \le i \le n \land 1 \le j \le m\}$.
- Zvezda na n vozliščih je poseben primer polnega dvodelnega grafa in jo označujemo z $S_{(n-1)}=K_{1,(n-1)}$
- Pot na n vozliščih, ki jo označujemo z P_n , ima množico povezav $E(P_n) = \{v_1v_2, v_2v_3, ..., v_{n-1}v_n\}.$
- Cikel na n vozliščih, dobimo tako, da grafu P_n dodamo povezavo n1.
- IME?? na k+l vozliščih je enak združitvi poti in praznega grafa in ga označujemo s $F_{k,l}=N_k+P_l$.
- Drevo je povezan graf, ki ne vsebuje nobenega cikla.

Opomba 1.9. Očitno velja $P_1 = K_1 = N_1 = C_1$. To je graf s samo enim vozliščem. Običajno ga bomo označevali s K_1 .

2 Metrična dimenzija grafa

TODO - motivacija

2.1 Definicija

Metrična dimenzija grafa je najmanjše število vozlišč grafa, ki jih potrebujemo, da vsa vozlišča v grafu razlikujemo med sabo zgolj s pomočjo razdalj do izbranih vozlišč. V matematičnem jeziku to povemo takole:

Definicija 2.1. Naj bo G povezan graf in $W = \{w_1, ..., w_k\} \subseteq V(G)$ neprazna podmnožica vozlišč. Vektor $r_W(v) = (d(v, w_1), ..., d(v, w_k))$ imenujemo metrična predstavitev vozlišča $v \in V(G)$ s podmnožico W.

Definicija 2.2. Neprazna podmnožica $R \subset V(G)$ je rešljiva, če $\forall u, v \in V(G) : u \neq v \implies r_R(v) \neq r_R(u)$.

Definicija 2.3. Najmanjša rešljiva množica grafa G se imenuje rešljiva baza. Njeno velikost imenujemo metrična dimenzija in jo označimo z $\beta(G)$.

Poglejmo si nekaj lahkih osnovnih primerov.

Primer 2.4. Označimo vozlišča poti z $v_1, v_2, ..., v_n$, kot je prikazano na spodnji sliki ??. Izberimo podmnožico $W = v_1 \subseteq V(G)$. Metrične predstavitve vozlišč grafa P_n , glede na izbrano podmnožico vozlišč, so potem sledeče:

$$r_W(v_1) = d(v_1, v_1) = 0$$

 $r_W(v_2) = d(v_2, v_1) = 1$
 \dots
 $r_W(v_n) = d(v_n, v_1) = n - 1.$

Vidimo, da so metrične predstavitve vseh vozlišč med seboj različne. Sledi, da je W rešljiva množica. Ker je njena velikost enaka 1 in je to najmanjša možna neprazna podmnožica vozlišč, je torej metrična dimenzija grafa poti poljubne dolžine enaka $\beta(P_n) = 1$.

Slika 1: Graf P_5

 \Diamond

Primer 2.5. Označimo vozlišča cikla z $v_1, v_2, ..., v_n$, kot je prikazano na sliki ??. Izberimo podmnožico $W = v_1, v_2 \subseteq V(G)$. Metrične predstavitve vozlišč grafa C_n , glede na izbrano podmnožico vozlišč, so potem sledeče:

$$r_{W}(v_{1}) = (d(v_{1}, v_{1}), d(v_{1}, v_{2})) = (0, 1)$$

$$r_{W}(v_{2}) = (d(v_{2}, v_{1}), d(v_{2}, v_{2})) = (1, 0)$$

$$r_{W}(v_{3}) = (d(v_{3}, v_{1}), d(v_{3}, v_{2})) = (2, 1)$$

$$r_{W}(v_{4}) = (d(v_{4}, v_{1}), d(v_{4}, v_{2})) = (3, 2)$$

$$\cdots$$

$$r_{W}(v_{n-1}) = (d(v_{n-1}, v_{1}), d(v_{n-1}, v_{2})) = (2, 3)$$

$$r_{W}(v_{n}) = (d(v_{n}, v_{1}), d(v_{n}, v_{2})) = (1, 2)$$

Zopet vidimo, da so metrične predstavitve vseh vozlišč med seboj različne. Če bi vzeli množico $W \setminus \{v_i\}$, bi imeli po dve vozlišči enako metrično prestavitev. W je torej najmanjša rešljiva množica, njena velikost pa je enaka 2. Metrična dimenzija poljubno velikega cikla je enaka $\beta(C_n) = 2$.

Slika 2: Graf C_5 .

Primer 2.6. Označimo vozlišča polnega grafa z $v_1, v_2, ..., v_n$, kot je prikazano na sliki ??. Izberimo podmnožico $W = v_1, v_2, ..., v_{n-1} \subseteq V(G)$. Metrične predstavitve vozlišč grafa K_n , glede na izbrano podmnožico vozlišč, so potem sledeče:

$$\begin{split} r_W(v_1) &= (d(v_1,v_1),d(v_1,v_2),...,d(v_1,v_{n-1})) = (0,1,...,1) \\ r_W(v_2) &= (d(v_2,v_1),d(v_2,v_2),...,d(v_2,v_{n-1})) = (1,0,...,1) \\ & ... \\ r_W(v_{n-1}) &= (d(v_{n-1},v_1),d(v_{n-1},v_2),...,d(v_{n-1},v_{n-1})) = (1,1,...,0) \\ r_W(v_n) &= (d(v_n,v_1),d(v_n,v_2),...,d(v_n,v_{n-1})) = (1,1,...,1) \end{split}$$

Zopet vidimo, da so metrične predstavitve vseh vozlišč med seboj različne. Vsako vozlišče ima na i - ti komponenti 0 in povsod drugje 1, z izjemo vozlišča v_n , ki ima povsod 1. Če bi vzeli poljubno $W\setminus\{v_i\}$, bi imeli vozlišči v_i in v_n enaki metrični predstavitvi. W je torej najmanjša rešljiva množica, njena velikost pa je enaka n-1. Metrična dimenzija poljubno velikega cikla je enaka $\beta(K_n)=n-1$.

Slika 3: Graf K_5 .

2.2 Lastnosti

Nekaj osnovnih ugotovitev o rešljivih množicah grafa lahko razberemo iz zgornjih primerov.

Trditev 2.7. Za povezan graf G, je V(G) rešljiva množica.

Dokaz. Predpostavimo |V(G)|=n. Označimo vozlišča z $v_1,...,v_n$. Za posamezno vozlišče bo metrična predstavitev sledeča:

$$r_{V(G)}(v_k) = (d(v_k, v_1), ..., d(v_k, v_k), ..., d(v_k, v_n)) = (d(v_k, v_1), ..., 0, ..., d(v_k, v_n)).$$

Torej za vsako vozlišče v_k bo k-ta komponenta metrične predstavitve enaka 0. Zaradi ?? je to tudi edina komponenta v vektorju, ki bo enaka 0. Sledi $\forall u, v \in V(G) : u \neq v \Rightarrow r_{V(G)}(v) \neq r_{V(G)}(u)$, torej je V(G) rešljiva množica.

Trditev 2.8. Rešljiva baza povezanega grafa G ni enolično določena.

Dokaz. To hitro vidimo na primeru ??. Za W bi lahko vezli tudi vozlišče v_n in prišli do enakega rezultata.

V defnicijah ?? in ?? smo prepostavili, da imamo neprazno podmnožico vozlišč. Če bi vzeli prazno množico, bi bila definicija metrične dimenzije nesmiselna. Iz trditve ?? lahko potem sklepamo, da metrična dimenzija za graf vselej obstaja in lahko zapišemo naslednjo posledico:

Posledica 2.9. Za povezan graf G velja

$$1 \le \beta(G) \le |V(G)| - 1.$$

Dokaz. Iz definicije ?? sledi $1 \leq \beta(G)$. Iz trditve ?? pa sledi $\beta(G) \leq |V(G)|$. Predpostavimo |V(G)| = n in $V(G) = \{v_1, ..., v_n\}$. Vzemimo sedaj podmnožico $W = \{v_1, ..., v_{n-1}\}$. Metrične predstavitve vozlišč glede na W so sledeče:

$$\begin{split} r_W(v_1) &= (0, d(v_1, v_2), ..., d(v_1, v_k), ..., d(v_1, v_{n-1})) \\ r_W(v_2) &= (d(v_2, v_1), 0, ..., d(v_2, v_k), ..., d(v_2, v_{n-1})) \\ & ... \\ r_W(v_k) &= (d(v_k, v_1), d(v_k, v_2), ..., 0, ..., d(v_k, v_{n-1})) \\ & ... \\ r_W(v_{n-1}) &= (d(v_{n-1}, v_1), d(v_{n-1}, v_2), ..., d(v_{n-1}, v_k), ..., 0) \\ r_W(v_n) &= (d(v_n, v_1), d(v_n, v_2), ..., d(v_n, v_k), ..., d(v_n, v_{n-1})) \end{split}$$

Vidimo, da so vse metrične predstavitve med seboj različne, torej je W rešljiva in $\beta(G) \leq n-1$.

Trditev 2.10. Naj bo G povezan graf in $|V(G)| = n \ge 2$. Potem velja:

1.
$$G = K_n \Leftrightarrow \beta(G) = n - 1$$
.

2.
$$G = P_n \Leftrightarrow \beta(G) = 1$$
.

Dokaz. Implikacijo v desno stran za obe točki smo že pokazali v primerih ?? in ??.

- $1. \Leftarrow TODO$
- 2. \Leftarrow Recimo, da imamo povezan graf G na n vozliščih z $\beta(G) = 1$. Sledi, da obstaja neka rešljiva baza $W = \{w\}$. Označimo $V(G) = \{v_1, v_2, ..., v_{n-1}, w\}$. Sedaj mora veljati, da so števila

$$d(v_1, w), d(v_2, v_1), ..., d(v_{n-1}, w), d(w, w)$$

paroma različna. Vemo d(w,w)=0. Ker je G povezan, mora obstajati vsaj eno vozlišče, ki je sosednje z w. BSŠ naj bo $v_{n-1}\sim w$. Torej je $d(v_{n-1},w)=1$ in sledi, da nobeno drugo vozlišče ni sosednje z w. Zopet zaradi povezanosti grafa obstaja vozlišče sosednje z v_{n-1} , ki je različno od w. Recimo, da je to v_{n-2} , za katerega sedaj velja $d(v_{n-2},w)=2$. Spet je to edino takšno vozlišče. Nadaljujemo podobno, dokler ne pridemo do v_1 . Dobimo graf P_n .

Opomba 2.11. Če za neko množico $S \subseteq V(G)$ preverjamo, če je rešljiva je dovolj preveriti metrične predstavitve vozlišč $v \in V(G) \setminus S$. Vozlišča iz S bodo imela po eno komponento vektorja enako nič.

2.2.1 Metrična dimenzija in premer grafa

Ni presenetljivo, da lahko najdemo povezavo med metrično dimenzijo in premerom grafa. Spomnimo se matematične definicije premera.

Definicija 2.12. Premer grafa G označujemo z diam(G) in je enak dolžini najdaljše najkrajše poti v grafu. Torej

$$diam(G) = \max_{v,u \in V(G)} d(u,v).$$

Trditev 2.13. Naj bo G povezan graf in |V(G)| = n. Potem velja naslednja povezava:

$$n \le (\operatorname{diam}(G))^{\beta(G)} + \beta(G).$$

Dokaz. Naj bo R rešljiva baza grafa G, torej $|R| = \beta(G)$. Zanima nas, največ koliko vozlišč ima lahko tak graf G. Vozlišča iz množice R bodo imela natanko eno komponento metrične predstavitve enako nič, tako se bodo te razlikovale med sabo in vseh ostalih. Če pa vzamemo vozlišče $v \notin R$, pa velja sledeče:

$$\forall r_i \in R : 1 < d(v, r_i) < \operatorname{diam}(G).$$

Vseh možnih različnih metričnih predstavitev za vozlišča izven rešljive množice R je tako $(\text{diam}(G))^{\beta(G)}$ in lahko zapišemo:

$$n < (\operatorname{diam}(G))^{\beta(G)} + \beta(G).$$

V resnici lahko red grafa z dano metrično dimenzijo in premerom še bolj omejimo.

Trditev 2.14. Naj bo G povezan graf in |V(G)| = n. Označimo $\delta = \text{diam}(G)$ in $\beta = \beta(G)$. Potem velja

$$n \le \left(\left\lfloor \frac{2\delta}{3} \right\rfloor + 1 \right)^{\beta} + \beta \sum_{i=1}^{\lceil \delta/3 \rceil} (2i - 1)^{\beta - 1}.$$

Dokaz. TODO

Ta zgornja meja postane še bolj natančna za posamezne družine grafov, vendar v tem delu tega ne bomo obravnavali tako podrobno.

2.2.2 Dvojčki in metrična dimenzija

Spomnimo se pojma soseščine vozlišča.

Definicija 2.15. Naj bo G povezan graf in $v \in V(G)$ vozlišče na grafu. Množico

$$N(v) = \{ u \in V(G) \mid vu \in E(G) \}$$

imenujemo soseščina vozlišča v.

Sedaj vpeljimo ekvivalenčno relacijo na vozliščih

$$v \equiv u \Leftrightarrow N(v) \setminus \{u\} = N(u) \setminus \{v\}$$

Če sta vozlišči v tej ekvivalenčni relaciji, pravimo, da sta dvojčka. Ekvivalenčni razred vozlišča v označimo z v^* , množico vseh ekvivalenčnih razredov z $\tau(G)$, število vseh razredov pa naj bo označeno z $|\tau(G)| = \iota(G)$.

Lema 2.16. Naj bosta $u, v \in v(G)$ dvojčka. Potem je

$$\forall w \in V(G) \setminus \{u, v\} : d(u, w) = d(v, w).$$

Dokaz. Naj bosta u in v dvojčka v grafu G. Označimo $V(G) = \{u, v, w_1, ..., w_k\}$ in $S = N(v) \setminus \{u\} = N(u) \setminus \{v\}$. Izberimo vozlišče $w_i \in V(G) \setminus \{u, v\}$.

- 1. $w_i \in S \implies d(u, w_i) = d(v, w_i) = 1$.
- 2. $w_i \notin S \implies d(u, w_i) = m \ge 2$.

Denimo m=2. Potem obstaja $w_i \in S$, da je $w_i \sim w_i$ in sledi $d(v,w_i)=2$.

Naj bo sedaj m > 2. Obstaja vozlišče w_j , sosednje od w_i , za katerega velja $d(u, w_j) = m - 1$. Potem je po indukcijski predpostavki tudi $d(v, w_j) = m - 1$ in sledi $d(v, w_i) = m - 1 + 1 = m$.

Iz tega sledi, da mora vsaka rešljiva množica vsebovati vsaj enega od dvojčkov. Zapišemo lahko naslednjo trditev:

Trditev 2.17. Za povezan graf G velja

$$\beta(G) \ge \sum_{v^* \in \tau(G)} (|v^*| - 1).$$

Dokaz. TODO

2.3 NP - poln problem

TODO

3 Leksikografski produkt grafov

Definicija 3.1. Leksikografski produkt G[H] grafov G in H je definiran na množici vozlišči $V(G[H]) = V(G) \times V(H)$. Dve različni vozlišči (u, v) in (x, y) sta sosedni, kadar velja

- $ux \in E(G)$ ali
- u = x in $vy \in E(H)$.

3.1 primer

Za lažjo predstavo si lahko ogledamo sliko ??, ki prikazuje leksikografski produkt dveh naključnih povzeanih grafov.

Slika 4: Leksikografski produkt poljubnih povezanih grafov G in H.

3.2 lastnosti

Nekaj osnovnih lastnosti leksikografskega produkta grafov:

- RED: |V(G)| = n in $|V(H)| = m \implies |V(G[H])| = n \cdot m$.
- POVEZANOST: Če je G povezan graf, potem je G[H] povezan.
- NEKOMUTATIVNOST: v splošnem velja $G[H] \neq H[G]$.
- DISTRIBUTIVNOST: $(G_1 + G_2)[H] = G_1[H] + G_2[H]$,
- ENAKOST KOMPLEMENTOV: $\overline{G[H]} = \overline{G}[\overline{H}]$.

Poglejmo si kako izgleda razdalja med vozliščema v leksikografskem prodkutu grafov. Označimo preslikavo $a:V(G)\times V(G)\to \mathbb{N};$

$$a(v,w) = \begin{cases} 0; & v = w \\ 1; & v \sim w \\ 2; & v \not\sim w \end{cases}$$

Opazujemo Leksikografski produkt povezanega grafa G reda n, z množico vozlišč $V(G) = \{v_1, v_2, ..., v_n\}$ in grafa H reda m, z množico vozlišč $V(H) = \{u_1, u_2, ..., u_m\}$. Zaradi boljše preglednosti vpeljimo oznako $v_{ij} := (v_i, u_j) \in V(G[H])$. Sedaj lahko zapišemo

$$d_{G[H]}(v_{ij}, v_{rs}) = \begin{cases} d_G(v_i, v_r); & v_i \neq v_r \\ a_H(u_j, u_s); & \text{sicer} \end{cases}$$

(3.1)

4 Metrična dimenzija leksikografskega produkta grafov

4.1 Metrična dimenzija in komponente

Obravnavamo leksikografski produkt G[H], kjer je G povezan graf in H pojuben graf. Naj bosta $a \in V(G)$ in $b \in H$ poljubni vozlišči. Za potrebe tega podpoglavlja vpeljimo naslednje oznake:

- $H(a) = \{(a, v) \mid v \in V(H)\}.$
- $G(b) = \{(v, b) \mid v \in V(G)\}.$
- Če so $H_1, H_2, ..., H_k$ komponente grafa H, označimo $H_i(a) = \{(a, v) \mid v \in V(H_i)\}$

Vzemimo sosednji vozlišči $a, b \in V(G)$. Vemo, da je vsako vozlišče iz H(b) sosednje vsakemu iz $H_i(a)$. Hitro lahko preverimo, da je inducirani podgraf grafa G[H], kjer vzamemo eno vozlišče iz množice H(b) in vsa vozlišča iz $H_i(a)$, izomorfen grafu $H_i + K_1$. V nadaljevanju bomo pokazali, da lahko z rešljivo bazo tega združenega grafa omejimo rešljivo bazo G[H].

TODO - leme

Izrek 4.1. Naj bo G povezan graf reda $n \geq 2$ in H poljuben graf reda $m \geq 2$, $s \geq 1$ komponentami $H_1, H_2, ..., H_k$. Potem velja:

$$n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p) \right) - 1 \right) \le \beta(G[H]) \le n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right) + (n - 2).$$

V dokazu naslednjega izreka bomo konstruirali grafe, katerih metrična dimenzija je enaka spodnji ali zgornji meji iz izreka ?? ter dvema vmesnima vrednostima.

Izrek 4.2. Obstajata taka grafa G in H, da je G povezan graf reda $n \geq 2$ in H poljuben graf reda $m \geq 2$, s $k \geq 1$ komponentami $H_1, H_2, ..., H_k$, da velja:

1.
$$\beta(G[H]) = n \cdot \left(\left(\sum_{p=1}^k \beta(H_p)\right) - 1\right)$$

2.
$$\beta(G[H]) = n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right) + (n-2)$$

3.
$$\beta(G[H]) = n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right)$$

4.
$$\beta(G[H]) = n \cdot \left(\sum_{p=1}^{k} \beta(H_p + K_1)\right)$$

Dokaz. 1. Naj bo $G = P_n$, $n \ge 4$ in H graf s $k \ge 2$ vozlišči, brez povezav. Zaradi izreka \ref{izreka} , je dovolj pokazati $\beta(G[H]) \le n \cdot \left(\left(\sum_{p=1}^k \beta(H_p)\right) - 1\right) = n \cdot (k-1)$. Označimo $V(G) = \{p_1, p_2, ..., p_n\}$, kjer so $\forall 1 \le i < n : p_i p_{i+1} \in E(G)$, in $V(H) = \{v_1, v_2, ..., v_k\}$. Definirajmo množico $W = V(G[H]) \setminus G(v_k)$. Velja $|W| = n \cdot (k-1)$. Pokažimo, da je W rešljiva množica. Opomba \ref{izreka} nam pove, da je dovolj preveriti vozlišča iz množice $G(v_k) = \{(p_1, v_k), (p_2, v_k), ..., (p_n, v_k)\}$. Če se spomnimo formule \ref{izreka} , vidimo, da velja:

- $2 \le d((p_i, v_k), (p_{j+1}, v_1)) \ne d((p_i, v_k), (p_{j+1}, v_1)) = 1$, za $1 \le i \le j < n$.
- $2 \le d((p_n, v_k), (p_{i-1}, v_1)) \ne d((p_i, v_k), (p_{i-1}, v_1)) = 1$, za $2 \le i < n$.
- $1 = d((p_1, v_k), (p_2, v_1)) \neq d((p_n, v_k), (p_2, v_1)) \geq 2.$

Sledi, da so metrične predstavitve vozlišč iz $G(v_k)$ paroma različne in je W rešljiva množica.

2. Naj bo $G=S_{n-1}$ zvezda na n vozliščih, $n\geq 4$, in H graf s $k\geq 2$ komponentami $H_1,H_2,...,H_k$, kjer je $H_i=P_8$. Velja $\beta(P_8+K_1)=\left\lfloor\frac{2\cdot 8+2}{5}\right\rfloor=3$. Zato je, podobno kot v prvi točki, pokazati

$$\beta(G[H]) \ge n \cdot \left(\left(\sum_{p=1}^{k} \beta(H_p + K_1) \right) + k - 1 \right) + (n-2) = 4kn - 2.$$

- 4.1.1 H je nepovezan graf
- 4.1.2 H je povezan graf
- 4.2 Metrična dimenzija, sosedska dimenzija in dvojčki
- 4.3 Povezave in skupni rezultati??

Slovar strokovnih izrazov