Práctica N°7: Hidrostática e Hidrodinámica

Todos los resultados se obtuvieron usando $g=10\,\mathrm{m/s^2}$, la presión atmosférica como $P_0=101325\,Pa=1atm$, y la densidad del agua como $\rho_{agua}=1\frac{g}{cm^3}=1000\frac{kg}{m^3}$.

- 1) a)
 - b) $\Delta P_{A,C} = 2000 \frac{kg}{ms^2} = 2000 \frac{N}{m^2} = 2000 Pa$
- 2) a) $H = \frac{\rho_1}{\rho_2} h$
 - b) $P_A = P_0 + (\rho_1 \rho_2)hg$ $P_A = P_B + (\rho_1 - \rho_2)hg$
 - c) H = 13.6cm $P_A = 102585 Pa$
- 3) $\frac{\text{Mecánico:}}{P_{chico}} F_{chico} = F_{grande} = F;$ $P_{chico} = \frac{F}{S}$ $P_{grande} = \frac{F}{2S}$
 - Fluido: $P_{chico} = P_{grande} = \frac{F}{S}$ $F_{grande} = 2F$
- 4) Suponiendo que $\rho = \rho_{H_2O(l)}$
 - a) $P_S = P_{S'} = 2101325Pa$
 - b) $\mathbf{F}_2 = 20kN\hat{y}$, tomando al eje \hat{y} positivo hacia abajo.
 - c) $W_1 = W_2 = 200J$ Los trabajos tienen que ser iguales.
- 5) $a) \Delta P_{max} = 19398Pa$
 - b) h = 110m
- 6) a) $\rho(r=0)=12700\frac{kg}{m^3}$ $\rho(r=R)=3145\frac{kg}{m^3} \ \underline{\text{IMPORTANTE:}} \ \text{La densidad es } A-Br.$
 - b) -
 - c) $M \approx 5,991 \times 10^2 4 \text{ y } M_{exp} \approx 5,972 \times 10^2 4 \frac{M}{M_{exp}} \times 100 \% \approx 100,318 \%$
- 7) a) $\rho_2 = 1,4 \frac{g}{cm^3}$ T = 1 NDespejo ρ_2 y T en función de V_1 , V_2 . ρ_1 y ρ : $\rho_2 = \rho \left(1 + \frac{V_1}{2V_2}\right) - \frac{V_1}{V_2}\rho_1$ $T = \left(\frac{\rho}{2} - \rho_1\right) V_1 g$
 - $b) \rho_2 = \rho$ T = 0 N

- 8) $\rho = 0.84 \frac{g}{cm^3}$
- 9) $\rho_{madera} = \frac{2}{3} \frac{g}{cm^3}$ $\rho_{aceite} = 0.74 \frac{g}{cm^3}$
- 10) $A_{min} = 53m^2$
- 11) a) Tomando el eje \hat{z} positivo hacia abajo, el origen de coordenadas en la superficie del fluido cuando el sistema está en equilibrio, y un desplazamiento inicial de z_0 (partiendo del reposo):

$$z(t) = z_0 \cos\left(\sqrt{\frac{g}{h_0}}t\right) = z_0 \cos\left(\sqrt{\frac{g\rho_0}{h\rho}}t\right)$$

- b) -
- 12) a) v = 6m/s
 - b) $A = 1, 3, 10^{-4} m^2$
 - c) $Q = 8.10^{-4} m^3/s$
 - d) t = 12.5s
- 13) a) $v_2 = \sqrt{2gH}$ Caudal: $Q = \sqrt{2gH}A_2$
 - b) Distancia al tanque en la que el fluido toca el piso: $x=2\sqrt{Hh}$
 - c) El chorro sube hasta la altura de la superficie del fluido.
 - d) No.

14)
$$v_2 = \sqrt{\frac{2A_1^2gH}{A_1^2 - A_2^2}}$$

15)
$$R(h) = \sqrt{\frac{R_0^2 v_0}{\sqrt{v_0^2 + 2gh}}}$$

- 16) $v = 4.2 \frac{m}{s}$
- 17) a) Cantidad de capilares: $N \approx 994718394$ Caudal de un capilar: $Q = 5.03 \times 10^{-9} \frac{litros}{min}$
 - b) $v_{aorta} = 0.27 \frac{m}{s}$ $v_{capilar} = 4.2 \times 10^{-4} \frac{m}{s}$
- 18) a) $P_2 = 205000 Pa$ Caso hidrostático: $P_2 = 205000 Pa$
 - b) $P_2 = 135000Pa$
 - c) $A_1 = 1.87A_2$
- 19) a)
 - b) $v = 1.4 \frac{m}{s}$
- 20) a) $v_1 = 0.82 \frac{m}{s}$ $v_2 = 1.64 \frac{m}{s}$
 - b) No.
 - c) No.
- 21) a) $v_A = 1.5 \frac{m}{s}$ $v_B = 6 \frac{m}{s}$
 - b) $P_A P_B = 16875Pa$
 - c) h = 13.4cm

- 22) a) $Q = 0.014 \frac{m^3}{s}$ b) h = 8.5m

 - c) El caudal se modifica porque ${\cal H}$ va disminuyendo en el tiempo. Para mantener a Q constante se puede, por ejemplo, mantener a ${\cal H}$ constante usando una fuente externa de líquido.