[Aula 10] Pipeline do MIPS 1: Introdução

Prof. João F. Mari joaof.mari@ufv.br

Bibliografia

- 1. PATTERSON, D.A; HENNESSY, J.L. Organização e Projeto de Computadores: A Interface Hardware/Software. 3a. Ed. Elsevier, 2005.
 - Capítulo 5.
- 2. Notas de aula do prof. Luciano J. Senger:
 - http://www.ljsenger.net/classroom.html
- 3. Notas de aula da Profa. Mary Jane Irwin
 - CSE 331 Computer Organization and Design
 - http://www.cse.psu.edu/research/mdl/mji/mjicourses

Roteiro

- Desempenho: Monociclo vs. Multiciclo
- Pipelining Definição
- Desempenho: Monociclo vs Multiciclo vs. Pipelining
- Pipelining Hazards
 - Hazards Estruturais (Restrições físicas do hardware)
 - Hazards de Dados (Dados incompletos)
 - Hazards de Controle (Saltos e desvios)

Monociclo Vs. Multiciclo

Pipelining (analogia)

[EX] Pipelining

Classe de instrução	Busca de instrução	Leitura do registrador	Operação ALU	Acesso de dados	Escrita do registrador	Tempo total
Load word (lw)	200 ps	100 ps	200 ps	200 ps	100 ps	800 ps
Store word (sw)	200 ps	100 ps	200 ps	200 ps		700 ps
Formato-R (add, sub, AND, OR, slt)	200 ps	100 ps	200 ps		100 ps	600 ps
Brach (beq)	200 ps	100 ps	200 ps			500 ps

Monociclo Vs. Multiciclo vs. Pipeline

[EX] Pipelining

Hazard estrutural – Memória única

Resolvido com memórias separadas para dados e instruções (I\$ e D\$)

Hazard estrutural – Acesso ao banco de registradores

Hazard estrutural – Acesso ao banco de registradores

Hazards de dados – read before write

Ler antes de escrever

Hazards de dados – load-use hazard

Usar antes de carregar!

Hazards de dados – uma solução simples

Hazards de dados – solução por encaminhamento

Hazards de dados – solução por encaminhamento

Load-use data hazards (ainda é necessário um stall!!!)

Hazards de controle

Hazards de controle

Hazards de controle – solução simples

Bibliografia

- 1. PATTERSON, D.A; HENNESSY, J.L. Organização e Projeto de Computadores: A Interface Hardware/Software. 3a. Ed. Elsevier, 2005.
 - Capítulo 5.
- 2. Notas de aula do prof. Luciano J. Senger:
 - http://www.ljsenger.net/classroom.html
- 3. Notas de aula da Profa. Mary Jane Irwin
 - CSE 331 Computer Organization and Design
 - http://www.cse.psu.edu/research/mdl/mji/mjicourses

FIM

- FIM:
 - [Aula 10] Pipeline do MIPS 1 Introdução
- Próxima aula:
 - [Aula 11] Pipeline do MIPS 2 Caminho de dados e controle