Parallel Programming

Course Introduction

Professor Yi-Ping You (游逸平)
Department of Computer Science
http://www.cs.nctu.edu.tw/~ypyou/

Parallel Programming

Parallel Processing/Computing

Page 2

Parallel Programming

Creating a Parallel Program

- In theory, can be done by programmer, compiler, run-time system, or OS
- In practice, parallel programs are created with
 - Explicitly parallel language (e.g., High Performance Fortran)
 - Library for implementing a programming model
 - Shared-memory library (Pthreads, OpenMP)
 - Distributed-memory library (Message Passing Interface)
 - Heterogeneous-programming library (CUDA, OpenCL)
 - Cluster-based library (MapReduce)

Steps for Creating a Parallel Program

- Decomposition into tasks
- Assignment of tasks to processes/threads
- Orchestration of data access, communication, etc.
- Mapping processes to processors

Shared-Memory Systems

 Multiple processors can operate independently but share the same memory resources

Distributed-Memory Systems

- Processors have their own local memory
- Memory addresses in one processor do not map to another processor
 - So there is no concept of global address space across all processors

Parallel Programming

Hybrid Distributed-Shared Systems

The distributed memory component is the networking of multiple shared memory machines, which know only about their own memory - not the memory on another machine

Parallel Programming

Page 7

Administrative Stuff

- Course information
 - Parallel Programing
 - Credit: 3
 - Time: Tuesdays 15:30-16:20 and Fridays 10:10-12:00
 - Place: EDB27

- Course website
 - http://www.cs.nctu.edu.tw/~ypyou/courses/PP-f18/
 - The URL is also provided on my Web page
 - Authorization required to access course materials

Prerequisites

 You are assumed to have knowledge of the fundamentals of computer science

You are assumed to have experience with programming, especially in C/C++ language

Aims of This Course

 The skills and knowledge needed to develop applications using parallel programing models

Lecture Topics

- Background
 - Parallel and distributed programming
 - Introduction to parallel hardware and software
- Shared-memory programming
 - Pthreads and OpenMP

MPICH

- Distributed-memory programming
 - MPI
- GPGPU programming
 - CUDA and OpenCL
- Cloud programming
 - + Hadoop (MapReduce)

Open MPI

Textbook

 Peter Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann; 1 edition (January 21, 2011)

Grading

- Grades will be assigned based on
 - Homework assignments (60%)
 - 5 assignments related to parallel programming
 - Slackers beware!
 - The penalty for late homework is 15% per day (weekends count as 1 day).
 - NO PLAGIARISM!
 - Homework assignments must be individual work
 - Course project (40%)
 - At most 3 students form a group to work on development of parallel applications
 - Proposal (5%)
 - Final oral presentation (15%)
 - Final report (20%)
- These weights are subject to minor variation

Project Schedule

- Group registration due on October 5, 2018
 - Registration link will be announced later
- Project proposal due on October 30, 2018
- Presentation slides due by 23:59 the day prior to your presentation
- Final report and source codes due on January 11, 2019