

Channel Bandwidth: 10 MHz

Channel Bandwidth: 15 MHz

(Channel Bandwidth:15 MHz)_HCH_16QAM_37RB#38 Agilent 13:29:50 Jul 22, 2015 Freq/Channel Center Freq 1.91000000 GHz 30 dBm #Atten 36 dB Start Freq 1.90900000 GHz Stop Freq 1.91100000 GHz CF Step 200.0000000 kHz 200.0000000 kHz Freq Offset 0.00000000 Hz Signal Track Center 1.910 000 GHz #Res BW 160 kHz #VBW 470 kHz Copyright 2000-2006 Agilent Technologies (Channel Bandwidth:15 MHz)_HCH_16QAM_75RB#0 Freq/Channel Center Freq 1.91000000 GHz Ref 30 dBm #Atten 36 dB Start Freq 1.90900000 GHz Stop Freq 1.91100000 GHz Freq Offset 0.00000000 Hz Signal Track

Channel Bandwidth: 20 MHz

1.910 000 GHz

Copyright 2000-2006 Agilent Technologies

#VBW 910 kHz

Span 2 MHz #Sweep 200 ms (601 nts)

Appendix E: Conducted Spurious Emission

Test Graphs

Channel Bandwidth: 1.4 MHz

Channel Bandwidth: 3 MHz

Channel Bandwidth: 5 MHz

Channel Bandwidth: 10 MHz

Channel Bandwidth: 15 MHz

Report No.: EED32l00251305 Channel Bandwidth: 20 MHz

Appendix F: Frequency Stability

Test Result

VL is 3.5V, VN is 3.6V, VH is 3.7V.

Channel Bandwidth: 1.4 MHz

Channel Ba			Channel Band	width: 1.4 MHz			
				tage			
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VL	TN	-0.84	-0.000456	± 2.5	PASS
	LCH	VN	TN	-2.42	-0.001306	± 2.5	PASS
		VH	TN	-2.79	-0.001507	± 2.5	PASS
	200	VL	TN	-4.75	-0.002526	± 2.5	PASS
QPSK	MCH	VN	TN	-2.73	-0.001453	± 2.5	PASS
		VH	TN	-5.16	-0.002747	± 2.5	PASS
		VL	TN	-1.26	-0.000659	± 2.5	PASS
	HCH	VN	TN	-1.49	-0.000779	± 2.5	PASS
		VH	TN	0.26	0.000135	± 2.5	PASS
)	i	VL	TN	-2.49	-0.001345	± 2.5	PASS
	LCH	VN	TN	-2.37	-0.001283	± 2.5	PASS
		VH	TN	-2.37	-0.001283	± 2.5	PASS
		VL	TN	-3.08	-0.001636	± 2.5	PASS
16QAM	MCH	VN	TN	-3.95	-0.002100	± 2.5	PASS
	(3)	VH	TN	-3.22	-0.001712	± 2.5	PASS
		VL	TN	-2.07	-0.001086	± 2.5	PASS
	HCH	VN	TN	-0.14	-0.000075	± 2.5	PASS
		VH	TN	-0.40	-0.000210	± 2.5	PASS
	•	-07	Temp	erature		-11-	
Modulation	Channe I	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdi
		VN	-30	-1.17	-0.000634	± 2.5	PASS
		VN	-20	-1.02	-0.000549	± 2.5	PASS
		VN	-10	-2.00	-0.001082	± 2.5	PASS
	10	VN	0	-2.10	-0.001136	± 2.5	PASS
	LCH	VN	10	-1.69	-0.000912	± 2.5	PASS
		VN	20	-2.36	-0.001275	± 2.5	PASS
		VN	30	-1.26	-0.000680	± 2.5	PASS
		VN	40	-2.23	-0.001206	± 2.5	PASS
		VN	50	-1.70	-0.000920	± 2.5	PASS
		VN	-30	-4.12	-0.002191	± 2.5	PASS
QPSK		VN	-20	-4.21	-0.002237	± 2.5	PASS
		VN	-10	-3.50	-0.001864	± 2.5	PASS
		VN	0	-3.38	-0.001796	± 2.5	PAS
	MCH	VN	10	-3.40	-0.001811	± 2.5	PASS
	N)	VN	20	-3.66	-0.001948	± 2.5	PASS
		VN	30	-3.96	-0.002108	± 2.5	PASS
		VN	40	-3.62	-0.001925	± 2.5	PASS
		VN	50	-3.08	-0.001636	± 2.5	PASS
		VN	-30	-0.99	-0.000517	± 2.5	PASS
)							
	нсн	VN	-20	-0.66	-0.000345	± 2.5	PASS

Report No. : EED32I00251305 Page 292 of 306

Troport No) LLDO	21002010	,00				i ag
		VN	0	-1.79	-0.000937	± 2.5	PASS
		VN	10	-0.90	-0.000472	± 2.5	PASS
		VN	20	-0.74	-0.000390	± 2.5	PASS
	10	VN	30	-1.73	-0.000907	± 2.5	PASS
(6	N.")	VN	40	-0.07	-0.000037	± 2.5	PASS
10	/	VN	50	0.14	0.000075	± 2.5	PASS
		VN	-30	-2.53	-0.001368	± 2.5	PASS
		VN	-20	-1.99	-0.001074	± 2.5	PASS
		VN	-10	-2.23	-0.001206	± 2.5	PASS
		VN	0	-1.43	-0.000773	± 2.5	PASS
	LCH	VN	10	-1.93	-0.001043	± 2.5	PASS
		VN	20	-2.50	-0.001353	± 2.5	PASS
		VN	30	-2.22	-0.001198	± 2.5	PASS
		VN	40	-1.60	-0.000866	± 2.5	PASS
	(2)	VN	50	-1.19	-0.000642	± 2.5	PASS
		VN	-30	-4.71	-0.002503	± 2.5	PASS
		VN	-20	-5.35	-0.002846	± 2.5	PASS
		VN	-10	-5.41	-0.002876	± 2.5	PASS
		VN	0	-4.41	-0.002344	± 2.5	PASS
16QAM	MCH	VN	10	-4.96	-0.002640	± 2.5	PASS
/		VN	20	-3.49	-0.001857	± 2.5	PASS
		VN	30	-4.73	-0.002519	± 2.5	PASS
		VN	40	-2.98	-0.001583	± 2.5	PASS
	5	VN	50	-2.90	-0.001545	± 2.5	PASS
	(2)	VN	-30	-0.93	-0.000487	± 2.5	PASS
		VN	-20	-0.63	-0.000330	± 2.5	PASS
		VN	-10	-0.64	-0.000337	± 2.5	PASS
		VN	0	-0.92	-0.000480	± 2.5	PASS
	нсн	VN	10	-0.60	-0.000315	± 2.5	PASS
10		VN	20	-2.15	-0.001124	± 2.5	PASS
		VN	30	-0.33	-0.000172	± 2.5	PASS
		VN	40	0.44	0.000232	± 2.5	PASS
		VN	50	-1.52	-0.000794	± 2.5	PASS

Channel Bandwidth: 3 MHz

			Channel Ban	dwidth: 3 MHz			
			Vol	tage		- 0.50	
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\!$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
		VL	TN	-3.03	-0.001638	± 2.5	PASS
	LCH	VN	TN	-2.92	-0.001576	± 2.5	PASS
		VH	TN	-1.89	-0.001020	± 2.5	PASS
	MCH	VL	TN	-4.51	-0.002397	± 2.5	PASS
QPSK		VN	TN	-3.46	-0.001841	± 2.5	PASS
		VH	TN	-4.06	-0.002161	± 2.5	PASS
		VL	TN	-0.30	-0.000157	± 2.5	PASS
	HCH	VN	TN	-0.20	-0.000105	± 2.5	PASS
		VH	TN	0.92	0.000480	± 2.5	PASS
160AM	1.011	VL	TN	-2.66	-0.001437	± 2.5	PASS
16QAM	LCH	VN	TN	-2.60	-0.001406	± 2.5	PASS

Report No. : EED32I00251305 Page 293 of 306

Report in	o. : EED3:	21002513	05	100		0 /	Pa
		VH	TN	-2.42	-0.001306	± 2.5	PASS
		VL	TN	-3.42	-0.001819	± 2.5	PASS
	MCH	VN	TN	-3.42	-0.001819	± 2.5	PASS
	10.	VH	TN	-2.96	-0.001575	± 2.5	PASS
		VL	TN	1.85	0.000967	± 2.5	PASS
	HCH	VN	TN	2.00	0.001049	± 2.5	PASS
		VH	TN	0.11	0.000060	± 2.5	PASS
			Temp	erature			
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
		VN	-30	-1.60	-0.000865	± 2.5	PASS
		VN	-20	-2.02	-0.001089	± 2.5	PASS
		VN	-10	-2.19	-0.001182	± 2.5	PASS
		VN	0	-1.75	-0.000943	± 2.5	PASS
	LCH	VN	10	-2.56	-0.001383	± 2.5	PASS
	3	VN	20	-2.59	-0.001398	± 2.5	PASS
		VN	30	-1.54	-0.000834	± 2.5	PASS
		VN	40	-2.33	-0.001259	± 2.5	PASS
		VN	50	-2.30	-0.001244	± 2.5	PASS
		VN	-30	-5.22	-0.002777	± 2.5	PASS
		VN	-20	-2.83	-0.001507	± 2.5	PASS
		VN	-10	-3.52	-0.001872	± 2.5	PASS
		VN	0	-4.01	-0.001072	± 2.5	PASS
QPSK	МСН	VN	10	-4.26	-0.002131	± 2.5	PASS
QFSK	IVICH				7 7 7 7		
		VN	20	-4.21	-0.002237	± 2.5	PASS
		VN	30	-3.56	-0.001895	± 2.5	PASS
		VN	40	-4.63	-0.002465	± 2.5	PASS
		VN	50	-2.85	-0.001514	± 2.5	PASS
		VN	-30	-0.53	-0.000277	± 2.5	PASS
		VN	-20	0.43	0.000225	± 2.5	PASS
		VN	-10	0.39	0.000202	± 2.5	PASS
		VN	0	-0.27	-0.000142	± 2.5	PASS
	HCH	VN	10	0.17	0.000090	± 2.5	PASS
		VN	20	-0.14	-0.000075	± 2.5	PASS
	40)	VN	30	-0.56	-0.000292	± 2.5	PASS
	3	VN	40	-0.36	-0.000187	± 2.5	PASS
		VN	50	-0.99	-0.000517	± 2.5	PASS
		VN	-30	-3.63	-0.001962	± 2.5	PASS
		VN	-20	-2.35	-0.001267	± 2.5	PASS
		VN	-10	-2.27	-0.001228	± 2.5	PASS
		VN	0	-2.63	-0.001422	± 2.5	PASS
	LCH	VN	10	-2.78	-0.001499	± 2.5	PASS
		VN	20	-2.79	-0.001507	± 2.5	PASS
		VN	30	-0.53	-0.000286	± 2.5	PASS
QPSK		VN	40	-2.02	-0.001089	± 2.5	PASS
	(10)	VN	50	-2.03	-0.001097	± 2.5	PASS
		VN	-30	-3.55	-0.001887	± 2.5	PASS
		VN	-20	-2.88	-0.001529	± 2.5	PASS
		VN	-10	-2.63	-0.001400	± 2.5	PASS
	MCH	VN	0	-3.50	-0.001864	± 2.5	PASS
		VN	10	-2.02	-0.001073	± 2.5	PASS
		VN	20	-4.25	-0.002260	± 2.5	PASS

Report No. : EED32I00251305 Page 294 of 306

		VN	30	-3.45	-0.001834	± 2.5	PASS
		VN	40	-3.56	-0.001895	± 2.5	PASS
		VN	50	-2.69	-0.001431	± 2.5	PASS
1		VN	-30	-0.43	-0.000225	± 2.5	PASS
1	(c) (c)	VN	-20	0.37	0.000195	± 2.5	PASS
		VN	-10	1.14	0.000600	± 2.5	PASS
		VN	0	1.80	0.000944	± 2.5	PASS
	HCH	VN	10	0.20	0.000105	± 2.5	PASS
		VN	20	0.66	0.000345	± 2.5	PASS
F")		VN	30	0.72	0.000375	± 2.5	PASS
		VN	40	0.14	0.000075	± 2.5	PASS
		VN	50	0.69	0.000360	± 2.5	PASS

Channel Bandwidth: 5 MHz

			Channel Ban	dwidth: 5 MHz			
			Vol	tage			
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\mathbb{C})$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
/		VL	TN	-2.13	-0.001151	± 2.5	PASS
	LCH	VN	TN	-1.80	-0.000973	± 2.5	PASS
		VH	TN	-1.04	-0.000564	± 2.5	PASS
	7	VL	TN	-2.98	-0.001583	± 2.5	PASS
QPSK	MCH	VN	TN	-2.23	-0.001187	± 2.5	PASS
		VH	TN	-3.35	-0.001781	± 2.5	PASS
		VL	TN	1.16	0.000607	± 2.5	PASS
	нсн	VN	TN	-0.10	-0.000052	± 2.5	PASS
		VH	TN	-0.56	-0.000292	± 2.5	PASS
4		VL	TN	-1.66	-0.000896	± 2.5	PASS
	LCH	VN	TN	-2.13	-0.001151	± 2.5	PASS
		VH	TN	-1.20	-0.000649	± 2.5	PASS
		VL	TN	-3.22	-0.001712	± 2.5	PASS
16QAM	MCH	VN	TN	-3.43	-0.001826	± 2.5	PASS
		VH	TN	-4.65	-0.002473	± 2.5	PASS
	1	VL	TN	0.89	0.000465	± 2.5	PASS
	нсн	VN	TN	0.27	0.000142	± 2.5	PASS
		VH	TN	-0.46	-0.000240	± 2.5	PASS
			Tempe	erature			
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\!$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VN	-30	-2.19	-0.001181	± 2.5	PASS
		VN	-20	-1.97	-0.001066	± 2.5	PASS
		VN	-10	-2.52	-0.001359	± 2.5	PASS
	9	VN	0	-1.52	-0.000819	± 2.5	PASS
	LCH	VN	10	-1.77	-0.000958	± 2.5	PASS
QPSK		VN	20	-0.99	-0.000533	± 2.5	PASS
		VN	30	-1.73	-0.000934	± 2.5	PASS
		VN	40	-2.10	-0.001135	± 2.5	PASS
		VN	50	-2.26	-0.001220	± 2.5	PASS
	MCH	VN	-30	-2.59	-0.001377	± 2.5	PASS
	IVICH	VN	-20	-2.98	-0.001583	± 2.5	PASS

Report No. : EED32I00251305 Page 295 of 306

кероп по).:EED3	21002513	05	(63	1	W /	Page
		VN	-10	-4.45	-0.002366	± 2.5	PASS
		VN	0	-4.06	-0.002161	± 2.5	PASS
		VN	10	-5.52	-0.002937	± 2.5	PASS
	10	VN	20	-3.33	-0.001773	± 2.5	PASS
(6)	(m)	VN	30	-3.32	-0.001765	± 2.5	PASS
6		VN	40	-2.12	-0.001126	± 2.5	PASS
		VN	50	-3.08	-0.001636	± 2.5	PASS
		VN	-30	0.72	0.000375	± 2.5	PASS
		VN	-20	1.12	0.000585	± 2.5	PASS
(*)		VN	-10	0.57	0.000300	± 2.5	PASS
		VN	0	0.33	0.000172	± 2.5	PASS
	нсн	VN	10	0.19	0.000097	± 2.5	PASS
		VN	20	0.04	0.000022	± 2.5	PASS
	200	VN	30	-0.26	-0.000135	± 2.5	PASS
(2	(2)	VN	40	1.59	0.000832	± 2.5	PASS
100		VN	50	-0.96	-0.000502	± 2.5	PASS
		VN	-30	-3.10	-0.001676	± 2.5	PASS
		VN	-20	-3.65	-0.001969	± 2.5	PASS
		VN	-10	-3.30	-0.001784	± 2.5	PASS
(6)		VN	0	-3.82	-0.002062	± 2.5	PASS
\cup	LCH	VN	10	-3.39	-0.001830	± 2.5	PASS
		VN	20	-2.50	-0.001351	± 2.5	PASS
		VN	30	-1.92	-0.001035	± 2.5	PASS
		VN	40	-1.32	-0.000710	± 2.5	PASS
(4	(8)	VN	50	-1.95	-0.001050	± 2.5	PASS
(0	7	VN	-30	-4.18	-0.002222	± 2.5	PASS
		VN	-20	-3.66	-0.001948	± 2.5	PASS
		VN	-10	-2.96	-0.001575	± 2.5	PASS
		VN	0	-3.40	-0.001811	± 2.5	PASS
16QAM	MCH	VN	10	-3.19	-0.001697	± 2.5	PASS
17		VN	20	-3.08	-0.001636	± 2.5	PASS
		VN	30	-3.75	-0.001994	± 2.5	PASS
		VN	40	-4.79	-0.002549	± 2.5	PASS
		VN	50	-3.16	-0.001682	± 2.5	PASS
	10	VN	-30	0.56	0.000292	± 2.5	PASS
(6)	N')	VN	-20	0.20	0.000105	± 2.5	PASS
		VN	-10	0.46	0.000240	± 2.5	PASS
		VN	0	0.10	0.000052	± 2.5	PASS
	нсн	VN	10	-0.84	-0.000442	± 2.5	PASS
		VN	20	0.43	0.000225	± 2.5	PASS
1)		VN	30	-0.10	-0.000052	± 2.5	PASS
-		VN	40	0.62	0.000322	± 2.5	PASS
		VN	50	-0.50	-0.000262	± 2.5	PASS
	·				·		

Channel Bandwidth: 10 MHz

				width: 10 MHz			
(8	(3)		Vol	age	(22)		(65
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\!$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VL	TN	-2.40	-0.001296	± 2.5	PASS
	LCH	VN	TN	-3.38	-0.001820	± 2.5	PASS
		VH	TN	-4.32	-0.002329	± 2.5	PASS
		VL	TN	-3.20	-0.001704	± 2.5	PASS
QPSK	MCH	VN	TN	-3.48	-0.001849	± 2.5	PASS
		VH	TN	-3.15	-0.001674	± 2.5	PASS
	and the second	VL	TN	1.66	0.000871	± 2.5	PASS
	HCH	VN	TN	1.43	0.000751	± 2.5	PASS
		VH	TN	0.93	0.000488	± 2.5	PASS
		VL	TN	-2.76	-0.001488	± 2.5	PASS
	LCH	VN	TN	-1.65	-0.000887	± 2.5	PASS
		VH	TN	-2.98	-0.001604	± 2.5	PASS
		VL	TN	-3.81	-0.002024	± 2.5	PASS
16QAM	MCH	VN	TN	-2.59	-0.001377	± 2.5	PASS
		VH	TN	-2.30	-0.001225	± 2.5	PASS
		VL	TN	0.27	0.000143	± 2.5	PASS
	НСН	VN	TN	-0.10	-0.000053	± 2.5	PASS
	10	VH	TN	0.83	0.000436	± 2.5	PASS
(6	(*)		Tempe	erature	(6)	1	163
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdic
		VN	-30	-1.63	-0.000879	± 2.5	PASS
		VN	-20	-2.35	-0.001265	± 2.5	PASS
		VN	-10	-2.63	-0.001419	± 2.5	PASS
		VN	0	-3.19	-0.001720	± 2.5	PASS
	LCH	VN	10	-1.96	-0.001056	± 2.5	PASS
		VN	20	-4.29	-0.002313	± 2.5	PASS
	7	VN	30	-2.46	-0.001326	± 2.5	PASS
	(2)	VN	40	-2.88	-0.001550	± 2.5	PASS
		VN	50	-2.12	-0.001141	± 2.5	PASS
		VN	-30	-2.76	-0.001469	± 2.5	PASS
		VN	-20	-2.93	-0.001560	± 2.5	PASS
		VN	-10	-3.42	-0.001819	± 2.5	PASS
			_	/ 4 %	- 1	± 2.5	PASS
16QAM		VN	0	-3.55	1 -0.001887		
16QAM	MCH	VN VN	0 10	-3.55 -3.62	-0.001887 -0.001925	-	PASS
16QAM	MCH	VN	10	-3.62	-0.001925	± 2.5	
16QAM	МСН	VN VN	10 20	-3.62 -4.89	-0.001925 -0.002602	± 2.5 ± 2.5	PASS
16QAM	MCH	VN VN VN	10 20 30	-3.62 -4.89 -4.58	-0.001925 -0.002602 -0.002435	± 2.5 ± 2.5 ± 2.5	PASS PASS PASS
16QAM	мсн	VN VN VN VN	10 20 30 40	-3.62 -4.89 -4.58 -3.82	-0.001925 -0.002602 -0.002435 -0.002032	± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS
16QAM	мсн	VN VN VN VN VN VN	10 20 30 40 50	-3.62 -4.89 -4.58 -3.82 -3.96	-0.001925 -0.002602 -0.002435 -0.002032 -0.002108	± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS PASS
16QAM	MCH	VN VN VN VN VN VN VN	10 20 30 40 50 -30	-3.62 -4.89 -4.58 -3.82 -3.96 1.40	-0.001925 -0.002602 -0.002435 -0.002032 -0.002108 0.000736	± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS PASS PASS
16QAM	мсн	VN	10 20 30 40 50 -30	-3.62 -4.89 -4.58 -3.82 -3.96 1.40 1.92	-0.001925 -0.002602 -0.002435 -0.002032 -0.002108 0.000736 0.001006	± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS PASS PASS PASS
16QAM	мсн	VN	10 20 30 40 50 -30 -20	-3.62 -4.89 -4.58 -3.82 -3.96 1.40 1.92 0.11	-0.001925 -0.002602 -0.002435 -0.002032 -0.002108 0.000736 0.001006 0.000060	± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS PASS PASS PASS PASS
16QAM	<u></u>	VN	10 20 30 40 50 -30	-3.62 -4.89 -4.58 -3.82 -3.96 1.40 1.92	-0.001925 -0.002602 -0.002435 -0.002032 -0.002108 0.000736 0.001006	± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5 ± 2.5	PASS PASS PASS PASS PASS

Report No. : EED32I00251305 Page 297 of 306

Roportito			• • • • • • • • • • • • • • • • • • • •				. ∽;
		VN	30	-0.31	-0.000165	± 2.5	PASS
		VN	40	-1.00	-0.000526	± 2.5	PASS
		VN	50	1.37	0.000721	± 2.5	PASS
	10	VN	-30	-1.85	-0.000995	± 2.5	PASS
	N*)	VN	-20	-2.72	-0.001465	± 2.5	PASS
		VN	-10	-2.55	-0.001373	± 2.5	PASS
		VN	0	-4.11	-0.002213	± 2.5	PASS
	LCH	VN	10	-5.16	-0.002784	± 2.5	PASS
		VN	20	-3.46	-0.001866	± 2.5	PASS
		VN	30	-2.33	-0.001257	± 2.5	PASS
		VN	40	-1.23	-0.000663	± 2.5	PASS
		VN	50	-1.30	-0.000702	± 2.5	PASS
		VN	-30	-3.42	-0.001819	± 2.5	PASS
		VN	-20	-2.25	-0.001195	± 2.5	PASS
	(2)	VN	-10	-3.65	-0.001940	± 2.5	PASS
		VN	0	-4.22	-0.002245	± 2.5	PASS
QPSK	MCH	VN	10	-4.18	-0.002222	± 2.5	PASS
		VN	20	-3.43	-0.001826	± 2.5	PASS
		VN	30	-3.38	-0.001796	± 2.5	PASS
		VN	40	-2.89	-0.001537	± 2.5	PASS
		VN	50	-3.46	-0.001841	± 2.5	PASS
		VN	-30	2.25	0.001179	± 2.5	PASS
		VN	-20	1.40	0.000736	± 2.5	PASS
	-	VN	-10	2.72	0.001427	± 2.5	PASS
		VN	0	0.53	0.000278	± 2.5	PASS
	HCH	VN	10	1.49	0.000781	± 2.5	PASS
		VN	20	1.32	0.000691	± 2.5	PASS
		VN	30	0.84	0.000443	± 2.5	PASS
		VN	40	1.27	0.000668	± 2.5	PASS
		VN	50	0.63	0.000330	± 2.5	PASS

Channel Bandwidth: 15 MHz

	The state of the s		Carl Mill Man.		and All Train.		and the last
			Channel Band	width: 15 MHz			
10	7		Volt	age	(0.)		10.
Modulation	Channel	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
		VL	TN	-3.19	-0.001717	± 2.5	PASS
	LCH	VN	TN	-2.62	-0.001409	± 2.5	PASS
		VH	TN	-2.40	-0.001294	± 2.5	PASS
	MCH	VL	TN	-3.00	-0.001598	± 2.5	PASS
QPSK		VN	TN	-3.23	-0.001720	± 2.5	PASS
		VH	TN	-2.90	-0.001545	± 2.5	PASS
	10	VL	TN	-3.48	-0.001827	± 2.5	PASS
	нсн	VN	TN	-3.83	-0.002015	± 2.5	PASS
		VH	TN	-2.46	-0.001293	± 2.5	PASS
		VL	TN	-4.02	-0.002164	± 2.5	PASS
	LCH	VN	TN	-3.13	-0.001687	± 2.5	PASS
16QAM		VH	TN	-3.81	-0.002049	± 2.5	PASS
	MCH	VL	TN	-3.73	-0.001986	± 2.5	PASS
	MCH	VN	TN	-2.93	-0.001560	± 2.5	PASS

Report No. : EED32I00251305 Page 298 of 306

кероп ис	J EEDS.	21002513	05	100		W /	Pa
		VH	TN	-3.19	-0.001697	± 2.5	PASS
		VL	TN	-3.56	-0.001872	± 2.5	PASS
	HCH	VN	TN	-3.13	-0.001647	± 2.5	PASS
	10	VH	TN	-3.68	-0.001932	± 2.5	PASS
le.	37)		Temp	erature	(6,5)		(6)
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\!$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
		VN	-30	-4.11	-0.002210	± 2.5	PASS
		VN	-20	-2.68	-0.001440	± 2.5	PASS
		VN	-10	-4.53	-0.002441	± 2.5	PASS
		VN	0	-3.78	-0.002033	± 2.5	PASS
	LCH	VN	10	-3.59	-0.001933	± 2.5	PASS
		VN	20	-2.75	-0.001479	± 2.5	PASS
		VN	30	-3.00	-0.001617	± 2.5	PASS
	(2)	VN	40	-3.68	-0.001979	± 2.5	PASS
		VN	50	-3.52	-0.001895	± 2.5	PASS
		VN	-30	-2.56	-0.001362	± 2.5	PASS
		VN	-20	-4.01	-0.002131	± 2.5	PASS
		VN	-10	-3.23	-0.001720	± 2.5	PASS
		VN	0	-2.80	-0.001491	± 2.5	PASS
QPSK	MCH	VN	10	-4.01	-0.002131	± 2.5	PASS
		VN	20	-3.39	-0.001803	± 2.5	PASS
		VN	30	-2.49	-0.001324	± 2.5	PASS
		VN	40	-3.39	-0.001803	± 2.5	PASS
		VN	50	-3.26	-0.001735	± 2.5	PASS
		VN	-30	-3.55	-0.001865	± 2.5	PASS
		VN	-20	-3.30	-0.001737	± 2.5	PASS
		VN	-10	-4.03	-0.002120	± 2.5	PASS
		VN	0	-3.68	-0.001932	± 2.5	PASS
	нсн	VN	10	-2.50	-0.001316	± 2.5	PASS
		VN	20	-3.85	-0.002023	± 2.5	PASS
		VN	30	-3.03	-0.001594	± 2.5	PASS
		VN	40	-3.50	-0.001842	± 2.5	PASS
		VN	50	-3.35	-0.001759	± 2.5	PASS
	10	VN	-30	-3.78	-0.002033	± 2.5	PASS
	N)	VN	-20	-3.20	-0.001725	± 2.5	PASS
		VN	-10	-4.01	-0.002156	± 2.5	PASS
		VN	0	-5.21	-0.002803	± 2.5	PASS
	LCH	VN	10	-3.71	-0.001995	± 2.5	PASS
		VN	20	-3.38	-0.001818	± 2.5	PASS
		VN	30	-2.89	-0.001556	± 2.5	PASS
		VN	40	-3.85	-0.002072	± 2.5	PASS
		VN	50	-3.13	-0.001687	± 2.5	PASS
16QAM		VN	-30	-4.58	-0.002435	± 2.5	PASS
	200	VN	-20	-4.08	-0.002169	± 2.5	PASS
	(0)	VN	-10	-3.15	-0.001674	± 2.5	PASS
		VN	0	-4.09	-0.002176	± 2.5	PASS
	MCH	VN	10	-3.76	-0.002001	± 2.5	PASS
		VN	20	-4.73	-0.002519	± 2.5	PASS
		VN	30	-4.31	-0.002319	± 2.5	PASS
		VN	40	-4.46	-0.002290	± 2.5	PASS
		VN	50	-4.18	-0.002374	± 2.5	PASS

Report No.: EED32I00251305 Page 299 of 306

		VN	-30	-3.45	-0.001812	± 2.5	PASS
		VN	-20	-4.86	-0.002556	± 2.5	PASS
		VN	-10	-2.42	-0.001271	± 2.5	PASS
		VN	0	-2.85	-0.001496	± 2.5	PASS
(6)	HCH	VN	10	-2.80	-0.001474	± 2.5	PASS
100		VN	20	-3.71	-0.001947	± 2.5	PASS
		VN	30	-3.46	-0.001820	± 2.5	PASS
		VN	40	-3.35	-0.001759	± 2.5	PASS
		VN	50	-3.73	-0.001962	± 2.5	PASS

Channel Bandwidth: 20 MHz

			Channel Band	lwidth: 20 MHz			
(6	20		Volt	tage	(25)		(6)
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\circ}\!\mathbb{C})$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
		VL	TN	-0.09	-0.000046	± 2.5	PASS
	LCH	VN	TN	1.75	0.000938	± 2.5	PASS
		VH	TN	-0.36	-0.000192	± 2.5	PASS
		VL	TN	-4.01	-0.002131	± 2.5	PASS
QPSK	MCH	VN	TN	-3.76	-0.002001	± 2.5	PASS
		VH	TN	-2.83	-0.001507	± 2.5	PASS
		VL	TN	-2.99	-0.001574	± 2.5	PASS
	HCH	VN	TN	-3.09	-0.001626	± 2.5	PASS
		VH	TN	-2.72	-0.001431	± 2.5	PASS
		VL	TN	1.13	0.000608	± 2.5	PASS
	LCH	VN	TN	0.96	0.000515	± 2.5	PASS
		VH	TN	1.02	0.000546	± 2.5	PASS
10		VL	TN	-3.93	-0.002093	± 2.5	PASS
16QAM	MCH	VN	TN	-3.59	-0.001910	± 2.5	PASS
		VH	TN	-4.32	-0.002298	± 2.5	PASS
		VL	TN	-2.16	-0.001137	± 2.5	PASS
	НСН	VN	TN	-3.39	-0.001784	± 2.5	PASS
		VH	TN	-2.76	-0.001453	± 2.5	PASS
10	5")		Tempe	erature	(0)	•	10.
Modulation	Channel	Voltage [Vdc]	Temperature $(^{\mathbb{C}})$	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
-		VN	-30	1.42	0.000761	± 2.5	PASS
		VN	-20	0.64	0.000346	± 2.5	PASS
•)		VN	-10	0.21	0.000115	± 2.5	PASS
		VN	0	0.37	0.000200	± 2.5	PASS
	LCH	VN	10	1.30	0.000700	± 2.5	PASS
		VN	20	0.60	0.000323	± 2.5	PASS
0.0014	10	VN	30	0.26	0.000138	± 2.5	PASS
QPSK	N")	VN	40	0.67	0.000361	± 2.5	PASS
		VN	50	0.94	0.000508	± 2.5	PASS
		VN	-30	-2.02	-0.001073	± 2.5	PASS
		VN	-20	-4.75	-0.002526	± 2.5	PASS
	мсн	VN	-10	-2.72	-0.001446	± 2.5	PASS
(*)		VN	0	-3.46	-0.001841	± 2.5	PASS
/		VN	10	-4.51	-0.002397	± 2.5	PASS

Report No. : EED32l00251305 Page 300 of 306

Report No).: EED3	21002513	305	163	- 19	3 /	Page
		VN	20	-3.63	-0.001933	± 2.5	PASS
		VN	30	-3.56	-0.001895	± 2.5	PASS
		VN	40	-3.82	-0.002032	± 2.5	PASS
	10	VN	50	-3.53	-0.001879	± 2.5	PASS
(6)	6.)	VN	-30	-2.30	-0.001212	± 2.5	PASS
100		VN	-20	-3.08	-0.001619	± 2.5	PASS
		VN	-10	-3.09	-0.001626	± 2.5	PASS
		VN	0	-2.90	-0.001528	± 2.5	PASS
	HCH	VN	10	-3.22	-0.001694	± 2.5	PASS
(5.7)		VN	20	-2.43	-0.001280	± 2.5	PASS
'		VN	30	-3.02	-0.001589	± 2.5	PASS
		VN	40	-2.78	-0.001461	± 2.5	PASS
		VN	50	-3.52	-0.001852	± 2.5	PASS
-	2/	VN	-30	0.13	0.000069	± 2.5	PASS
(2)	(2)	VN	-20	1.04	0.000561	± 2.5	PASS
100		VN	-10	-0.11	-0.000062	± 2.5	PASS
		VN	0	0.00	0.000000	± 2.5	PASS
	LCH	VN	10	0.26	0.000138	± 2.5	PASS
		VN	20	1.34	0.000723	± 2.5	PASS
(2)		VN	30	0.03	0.000015	± 2.5	PASS
		VN	40	0.70	0.000377	± 2.5	PASS
		VN	50	0.86	0.000461	± 2.5	PASS
		VN	-30	-3.89	-0.002070	± 2.5	PASS
-		VN	-20	-4.19	-0.002229	± 2.5	PASS
(3	20)	VN	-10	-4.33	-0.002306	± 2.5	PASS
10	7	VN	0	-3.32	-0.001765	± 2.5	PASS
16QAM	MCH	VN	10	-4.38	-0.002328	± 2.5	PASS
		VN	20	-3.56	-0.001895	± 2.5	PASS
		VN	30	-3.55	-0.001887	± 2.5	PASS
103		VN	40	-3.75	-0.001994	± 2.5	PASS
7)		VN	50	-3.59	-0.001910	± 2.5	PASS
		VN	-30	-3.62	-0.001905	± 2.5	PASS
		VN	-20	-2.82	-0.001483	± 2.5	PASS
		VN	-10	-2.80	-0.001476	± 2.5	PASS
	0	VN	0	-2.05	-0.001077	± 2.5	PASS
(6)	НСН	VN	10	-2.43	-0.001280	± 2.5	PASS
		VN	20	-3.00	-0.001581	± 2.5	PASS
		VN	30	-2.55	-0.001340	± 2.5	PASS
		VN	40	-3.28	-0.001724	± 2.5	PASS
		VN	50	-3.08	-0.001619	± 2.5	PASS

Appendix G): Field strength of spurious radiation

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak	
	30MHz-1GHz	Peak	120kHz	300kHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
Measurement Procedure:	 Scan up to 10th harmoned. The technique used to antenna substitution mactual ERP/EIRP emisted. Test procedure as below: The EUT was powered Anechoic Chamber. The length. modulation modified frequency of the transmodulation modified frequency of the transmodulation modified frequency of the transmodulation. The EUT was set 3 modified frequency of the transmodulation modified frequency of the transmodulation. The EUT was set 3 modified frequency of the transmodulation. The disturbance of the raising and lowering from 360° the turntable. After measurement was maded. Steps 1) to 3) were performed from the antenna was approximated. The transmitter was the the antenna was approximated. With being polarized, the received field strength. A signal at the disturbation radiating cable. With being polarized, the received field strength. The output power into the output power in dBrown and the test received field strength. Calculate power in dBrown and 7) were resulted. Calculate power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted. The output power in dBrown and 7) were resulted.	nic, find the mare find the Spurious tethod. Substitution levels of the antenna of the antenna of the antenna, which transmitter under testers (above 180 antenna, which transmitter was formed with the entert of the fundament of the fundament of the substitution. The level in step 3 the substitution antenna was rate in level in step 3 the substitution of the substi	ximum radia us Emission methodo ne EUT. d on a 1.5m ne transmitte asuring receit. GHz the distraction was mount as maximized and low of the signal antenna was the antenna was the antenna was the antenna was the antenna was (dB) + anten and the signal antenna was (dB) + anten and the signal antenna was the antenna w	hight table ar was extensiver shall be ance is 1 med on the test ance is 1 med on the test and an was maximal the receive ar wered to obal generator of for this seas then mean polarized.	at a 3 meter anded to its made to determine to determine to the more tuned to the more tuned to the more tuned to the more of a variable to receiver display rotating the mized, a field antenna in both and the more tennas horizon tain a maximum was adjusted at of conditions assured.	he nine the fully eximum m the e-height lay by rough strength h vertical e center of ansmitter f a non- ntally m until the s.
	11) The radiation measure operation mode, And for 12) Repeat above procedure.	ound the X axis	positioning	which it is	worse case.	.01

Test Data: **Above 1GHz QPSK**

13	_	Band 2	18607 channel/BV	V1.4(lowes	t channel)	-	2
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1188.980	151	33	-57.92	-13.00	-44.92	Pass	Н
3241.498	158	78	-51.04	-13.00	-38.04	Pass	H /
4748.673	149	284	-49.29	-13.00	-36.29	Pass	н (©
6561.030	151	161	-45.68	-13.00	-32.68	Pass	Н
8022.456	150	98	-45.69	-13.00	-32.69	Pass	Н
9298.801	150	57	-46.12	-13.00	-33.12	Pass	Н
1060.295	160	20	-57.34	-13.00	-44.34	Pass	V
1553.293	152	36	-57.86	-13.00	-44.86	Pass	V
2796.573	149	228	-51.54	-13.00	-38.54	Pass	V
3786.010	150	20	-49.68	-13.00	-36.68	Pass	V
5560.500	150	10	-45.93	-13.00	-32.93	Pass	V
8022.456	149	360	-47.30	-13.00	-34.30	Pass	V

		Band 2	18900 channel/BV	V1.4(middle	e channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1195.049	150	55	-58.03	-13.00	-45.03	Pass	Н
1510.402	148	208	-58.45	-13.00	-45.45	Pass	Н
3607.257	151	161	-49.94	-13.00	-36.94	Pass	н
5297.966	151	61	-49.41	-13.00	-36.41	Pass	н
6299.178	155	49	-46.90	-13.00	-33.90	Pass	Н
6799.064	150	75	-46.06	-13.00	-33.06	Pass	Н
1104.371	152	200	-57.99	-13.00	-44.99	Pass	V
1545.405	150	151	-58.35	-13.00	-45.35	Pass	V
3757.208	149	68	-48.87	-13.00	-35.87	Pass	V
5646.079	149	201	-46.40	-13.00	-33.40	Pass	V
6445.156	152	55	-46.21	-13.00	-33.21	Pass	V
8042.903	151	88	-47.08	-13.00	-34.08	Pass	V

		Band 2	19193 channel/BW	/1.4(highes	t channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1192.011	149	99	-57.78	-13.00	-44.78	Pass	Н
1336.682	150	100	-57.91	-13.00	-44.91	Pass	Н
3815.033	150	281	-49.27	-13.00	-36.27	Pass	H /
5297.966	152	36	-49.51	-13.00	-36.51	Pass	Н (с
6445.156	160	78	-45.05	-13.00	-32.05	Pass	н
9204.600	158	225	-45.87	-13.00	-32.87	Pass	Н
1057.599	150	20	-56.55	-13.00	-43.55	Pass	V
1367.659	150	161	-57.96	-13.00	-44.96	Pass	V
2803.700	149	10	-51.27	-13.00	-38.27	Pass	V
3815.033	150	79	-48.66	-13.00	-35.66	Pass	V
5732.974	152	208	-47.04	-13.00	-34.04	Pass	V
6561.030	149	152	-46.06	-13.00	-33.06	Pass	V

160 AM

		Band 2	18607 channel/BV	V1.4(lowest	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1093.183	151	51	-56.78	-13.00	-43.78	Pass	Н
1346.929	152	200	-58.07	-13.00	-45.07	Pass	Н
3160.026	148	56	-51.39	-13.00	-38.39	Pass	H/
4117.785	145	321	-48.90	-13.00	-35.90	Pass	н (С
5762.235	150	22	-47.27	-13.00	-34.27	Pass	Н
6396.125	149	78	-45.78	-13.00	-32.78	Pass	Н
1090.404	150	60	-56.51	-13.00	-43.51	Pass	V
1569.189	158	89	-57.85	-13.00	-44.85	Pass	V
3700.260	150	89	-49.59	-13.00	-36.59	Pass	V
5560.500	151	200	-45.93	-13.00	-32.93	Pass	V
6594.518	152	224	-45.94	-13.00	-32.94	Pass	V
9251.580	150	360	-46.26	-13.00	-33.26	Pass	V

Page 304 of 306

		Band 2	18900 channel/BV	V1.4(middle	channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1170.959	155	145	-57.33	-13.00	-44.33	Pass	Н
1577.198	158	91	-57.38	-13.00	-44.38	Pass	Н
3757.208	149	200	-48.94	-13.00	-35.94	Pass	Н
5297.966	149	36	-49.83	-13.00	-36.83	Pass	н (А
6577.752	150	78	-46.35	-13.00	-33.35	Pass	н
8637.084	150	205	-47.34	-13.00	-34.34	Pass	Н
1079.357	155	55	-56.33	-13.00	-43.33	Pass	V
1333.284	152	164	-58.03	-13.00	-45.03	Pass	V
3757.208	148	78	-48.07	-13.00	-35.07	Pass	V
5646.079	150	92	-46.14	-13.00	-33.14	Pass	V
8042.903	150	200	-47.39	-13.00	-34.39	Pass	V
10036.730	152	16	-46.34	-13.00	-33.34	Pass	V

		Band 2	19193 channel/BW	/1.4(highes	st channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1188.980	151	78	-57.29	-13.00	-44.29	Pass	Н
1565.200	158	215	-58.07	-13.00	-45.07	Pass	Н
3766.785	150	36	-48.92	-13.00	-35.92	Pass	Н
5762.235	150	49	-47.97	-13.00	-34.97	Pass	H /
6412.427	150	360	-45.86	-13.00	-32.86	Pass	H (G)
7941.185	148	88	-46.95	-13.00	-33.95	Pass	Н
1156.150	150	20	-57.46	-13.00	-44.46	Pass	V
1346.929	150	10	-57.98	-13.00	-44.98	Pass	V
3410.797	151	360	-50.43	-13.00	-37.43	Pass	V
3815.033	152	78	-48.41	-13.00	-35.41	Pass	V
5732.974	152	20	-47.46	-13.00	-34.46	Pass	V
6461.583	150	46	-45.90	-13.00	-32.90	Pass	V

Note:

- 1) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 1GHz are attenuated more than 20 dB below the applicable limit and not required to be reported, the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 2) Tested with all kind of bandwidth,RB Size and RB Offset, Found the 1.4MHz with full RB were the worst case; and then Only the worst case is recorded in the report.

PHOTOGRAPHS OF TEST SETUP

Page 305 of 306

Test model No.: BW-X07HD

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32I00251301 for EUT external and internal photos.

report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

