

FM-SYNTHESIZER

mit einstellbaren Parametern via

Gesichtserkennung

Kurs: AV-Programmierung

Erstellt von: Kevin Detter, Robert Krockert, Arne Sibilis

28. Januar 2017

ANSATZ

Als Prüfungsleistung für den Kurs AV-Programmierung soll während des laufenden Semesters ein Facial Expression Audio Synthesizer entwickelt werden. Den Abschluss des Kurses bildet eine Messe-ähnliche Ausstellung am Ende der Vorlesungszeit, an der sowohl andere Studierende als auch Vertreter verschiedener IT-Firmen teilnehmen werden.

ZIELSETZUNG

Die Basis des von uns zu entwickelnden Programms soll ein traditioneller Synthesizer bilden, der mit Hilfe eines MIDI-Controllers bedient bzw. gespielt werden kann. Die Effekte und Filter, die den typischen Sound eines Synthesizer maßgeblich ausmachen, sollen aber nicht wie herkömmlicherweise durch so genannte Pitch- oder Mod-Wheels (Räder zur Variation der Tonhöhe bzw. zur Effekt/Filter- Modulation) sondern intuitiv über eine Kamera gesteuert werden können, die per Gesichtserkennungs-Algorithmus die Mimik des Benutzers auswertet.

ANFORDERUNGSANALYSE

MIDI-Keyboard

Unsere Anwendung soll ganz simpel über ein herkömmliches MIDI-Master-Keyboard bedient werden können. Mit Hilfe dieses Controllers wird sich der Synthesizer Klavier-ähnlich spielen lassen. Außerdem sollen die "Program Change" Buttons dafür genutzt werden können, zwischen verschiedenen Effekt und/oder Filter-Modi hin und her zu schalten. Außerdem soll die Lautstärke über den "Data Entry" Schieberegler steuerbar sein. Da das Keyboard lediglich 25 Tasten besitzt, der Synthesizer aber auf 88 Töne ausgelegt ist, soll es über die "Octave" Buttons möglich sein, den Bereich der Klaviatur zu verschieben.

Synthesizer

Das Herzstück unseres Programms bildet der Synthesizer. Hier sollen per FM- Synthese verschiedene Klänge erzeugt werden können. Über eine grafische Oberfläche soll die Möglichkeit bestehen, die zur Synthese verwendeten Oszillatoren, nach Wunsch einzustellen und zu verknüpfen. Insgesamt sollen wie bei einem Klavier üblich 7 1/3 Oktaven abgedeckt werden.

Gesichterkennung

Der Clou unserer Synthesizer-Anwendung soll die Möglichkeit sein, verschiedene Filter und Effekte über Mimik steuern zu können. Wie auch schon beim Synthesizer soll die Konfiguration dieser über die grafische Oberfläche möglich sein. Die Filter und Effekte sollen hier bestimmten Teilbereichen des

HAW HAMBURG • FAKULTÄT DESIGN, MEDIEN UND INFORMATION • DEPARTMENT MEDIENTECHNIK

Gesichts zugeordnet werden können - z.B. die Cut-Off Frequenz eines Tiefpass-Filters mit dem Mund oder ein Pitch-Bend mit den Augenbrauen usw..

Mögliche Mimik zur Steuerung:

- Kopfbewegung links/rechts/hoch/runter
- Augen/Augenbrauen/Stirn
- Mund

Effekte / Filter

Folgende Effekte und Filter sollen vom User ausgewählt werden können:

- Tiefpass / Hochpass / Bandpass Filter
- Wah-Wah / Phaser
- Pitch-Bend
- Panorama-Shifter

TECHNISCHE RAHMENBEDINGUNGEN

Da das Projekt Teil eines Hochschulkurses ist, sind wir hier an mehr oder weniger feste Vorgaben gebunden: Es muss C++ verwendet wird. Da alle am Projekt beteiligten keinerlei Vorkenntnisse dieser Programmiersprache besitzen, werden wir die in der Vorlesung vorgestellte Entwicklungsumgebung Qt benutzen. Als Basis für die Gesichtserkennung wird die, ebenfalls in der Vorlesung vorgestellte, Open Source Programmbibliothek OpenCV dienen.

TECHNISCHES KONZEPT

Blockschaltbild

BEDIENKONZEPT

Unser Ziel ist es, dem User die Bedienung unseres Synthesizer so einfach und intuitiv wie möglich zu gestalten. Alle für ihn wichtigen Informationen (Oszillatoren Status, Gesichterkennungs Status, Keyboard und die Einstellung der Parameter) sollen in einem überschaubaren und gut sortierten Fenster dargestellt werden. Sollte der Benutzer über kein MIDI-Keyboard verfügen, soll er über das GUI in der Lage sein, Noten spielen zu können. Auch die Bedienung über die Tastatur des Computers ist denkbar.

ZEITPLANUNG

Programmteil	Geschätzte Zeit / h
Grundfunktionen Synthesizer	30
Grundfunktionen Gesichterkennung	30
Grundfunktionen Audiofilter	30
Zusammenführung	20
Dokumentation / Ausstellung	20
Ge	esamt: 130

Der Aufwand wird wahrscheinlich bei ca. 130 Personenstunden liegen. Da unser Team aus drei Leuten besteht, wird sich der individuelle Arbeitsaufwand auf ca. 40 bis 45 Stunden belaufen.

Detter, Krockert, Sibilis Seite 5 von 6

Meilensteine

22.11.2016	Grundfunktionen der FM-Synthese (Oszillatoren etc.)
06.12.2016	Auswahl an fertigen Filtern & Grundfunktionen der Gesichtserkennung
20.12.2016	Verbindung der einzelnen Komponenten
10.01.2017	Ansteuerung aller Effekte, Oszillatoren etc. per Gesichtserkennung / MIDI- Keyboard
17.01.2017	Fehlerbehebung etc.
23.01.2017	Präsentation, Plakat etc.

TEAMPLANUNG

Projektleiter und Programmierung der FM-Synthese

Arne Sibilis, Matrikelnummer: 2203514

Programmierung Gesichtserkennung

Robert Krockert, Matrikelnummer: 2093487

Programmierung MIDI-Schnittstelle und Audiofilter

Kevin Detter, Matrikelnummer: 2148745