Une méthode de résolution des problèmes elliptiques symétriques en grande dimension

Ahmed Taha Alouane Ayoub Foussoul

Question 1

On a

(1)
$$\Leftrightarrow$$
 Trouver $u \in V \cap C^2(\bar{\Omega})$ tel que : $-\Delta u = f$

 Et

$$-\Delta u = f \Rightarrow \forall v \in V, \quad -v\Delta u = fv$$

$$\Rightarrow \forall v \in V, \quad -\int_{\Omega} v\Delta u = \int_{\Omega} fv$$

$$\Rightarrow \forall v \in V, \quad \int_{\Omega} \nabla u \nabla v - \int_{\partial \Omega} \frac{\partial u}{\partial n} v = \int_{\Omega} fv$$

$$\Rightarrow \forall v \in V, \quad \int_{\Omega} \nabla u \nabla v = \int_{\Omega} fv$$

(car v est nulle sur le bord de Ω)

La formule variationnelle choisie :

Trouver
$$u \in V \cap C^2(\bar{\Omega})$$
 tel que : $\forall v \in V, \int_{\Omega} \nabla u \nabla v = \int_{\Omega} fv$

Question 2

Soit u_h un vecteur de $V_h \otimes V_h$. On peut écrire

$$u_h = \sum_{i,j=1}^{I} U_{i,j} \phi_i \bigotimes \phi_j$$

 u_h est une solution discrétisée du problème si pour tout $v \in V_h \otimes V_h$

$$\int_{\Omega} \nabla u_h \nabla v = \int_{\Omega} f v$$

Il suffit que la condition soit vérifiée pour les éléments de la base $(\phi_i \otimes \phi_j)_{1 \leqslant i,j \leqslant I}$ de $V_h \otimes V_h$.

$$\forall 1 \leq k \leq I, \forall 1 \leq l \leq I, \int_{\Omega} \nabla u_h \nabla (\phi_k \bigotimes \phi_l) = \int_{\Omega} f \phi_k \bigotimes \phi_l$$

Ceci est équivalent à :

$$\forall 1 \leqslant k \leqslant I, \forall 1 \leqslant l \leqslant I, \ \int_{\Omega} \sum_{i,j=1}^{I} \nabla(\phi_i \bigotimes \phi_j) \nabla(\phi_k \bigotimes \phi_l) = \int_{\Omega} f \phi_k \bigotimes \phi_l$$

On a

$$\nabla(\phi_{l} \bigotimes \phi_{j}) \nabla(\phi_{k} \bigotimes \phi_{l})(x, y) = (\phi_{i}' \phi_{k}')(x)(\phi_{j} \phi_{l})(y) + (\phi_{i} \phi_{k})(x)(\phi_{j}' \phi_{l}')(y)$$

En posant $D_{i,k} = \int_{(0,1)} \phi_i' \phi_k'$ et $M_{i,k} = \int_{(0,1)} \phi_i \phi_k$ (et par Fubini), on trouve

$$\int_{\Omega} \nabla(\phi_i \bigotimes \phi_j) \nabla(\phi_k \bigotimes \phi_l) = D_{i,k} M_{j,l} + M_{i,k} D_{j,l}$$

On pose aussi $F_{k,l} = \int_{\Omega} f \phi_k \bigotimes \phi_l$.

Le problème discrétisé devient alors :

$$\begin{cases} \text{trouver } U \in \mathbb{R}^{I \times I} \text{ tel que :} \\ \forall 1 \leqslant k \leqslant I, 1 \leqslant l \leqslant I, \sum_{i,j=1}^{I} U_{i,j} (D_{i,k} M_{j,l} + M_{i,k} D_{j,l}) = F_{k,l} \end{cases}$$

Montrons que le problème est bien posé. Soient,

$$U = (U_{1,1}, \dots, U_{1,I}, \dots, U_{I,1}, \dots, U_{I,I})^{\mathrm{T}}$$
$$F = (F_{1,1}, \dots, F_{1,I}, \dots, F_{I,1}, \dots, F_{I,I})^{\mathrm{T}}$$

et K la matrice de taille $I \times I$ (en fonction des $M_{a,b}$ et $D_{a,b}$) qui vérifie (pour le problème discret)

$$KU = F$$

On peut l'écrire comme matrice par blocs

$$K = (K_{a,b})_{1 \leqslant a,b \leqslant I} \in \mathcal{M}_{I \times I}(\mathbb{R})$$

οù

$$K_{a,b} = (D_{b,a}M_{j,i} + M_{b,a}D_{j,i})_{1 \le i,j \le I} \in M_I(\mathbb{R})$$

Pour tout $U \in \mathbb{R}^{I \times I}$

$$KU \cdot U = \sum_{i,j=1}^{I} \sum_{k,l=1}^{I} U_{i,j} U_{k,l} (D_{i,k} M_{j,l} + M_{i,k} D_{j,l})$$

$$= \sum_{i,j=1}^{I} \sum_{k,l=1}^{I} U_{i,j} U_{k,l} \int_{\Omega} \nabla (\phi_i \bigotimes \phi_j) \nabla (\phi_k \bigotimes \phi_l)$$

$$= \int_{\Omega} \left(\sum_{i,j=1}^{I} U_{i,j} \nabla (\phi_i \bigotimes \phi_j) \right)^2$$

$$= \int_{\Omega} (\nabla u)^2 \ge 0$$

où
$$u = \sum_{i,j=1}^{I} U_{i,j} \phi_i \bigotimes \phi_j$$

De plus, si $KU \cdot U = 0$ alors $\nabla u = 0$, donc u est constante sur Ω (car étoilé). Or u = 0 sur $\partial \Omega$, donc u sera identiquement nulle et U = 0.

Donc, $KU \cdot U > 0$.

En dimension quelconque d @TODO:

Il faut au moins stocker les valeurs les intégrales $\int_{\Omega} f(\phi_{j_1} \bigotimes \ldots \bigotimes \phi_{j_d})$ pour $1 \leqslant j_1, \ldots, j_d \leqslant I$.

Généralement, on ne peut pas séparer les variables spatiales dans la fonction f.

Ce qui nous donne au moins I^d valeurs à stocker.

Question 3

Supposons que $U \in \mathbb{R}^{I \times I}$ vérifie (4)

Soit $v = (v_{i,j}) \in \mathbb{R}^{I \times I}$ et on pose

$$\begin{split} \tilde{\mathcal{E}}(v) &= \mathcal{E}\Big(\sum_{i,j=1}^{I} v_{i,j}\phi_{i} \bigotimes \phi_{j}\Big) \\ &= -\sum_{i,j=1}^{I} u_{i,j} \int_{\Omega} f\phi_{i} \bigotimes \phi_{j} + \frac{1}{2} \sum_{i,j=1}^{I} \sum_{k,l=1}^{I} v_{i,j}v_{k,l} \int_{\Omega} \nabla(\phi_{i} \bigotimes \phi_{j}) \nabla(\phi_{k} \bigotimes \phi_{l}) \end{split}$$

La fonction $\tilde{\mathcal{E}}$ est de classe C^1 et atteint son minimum en U. Donc, pour tout $1 \leq k \leq I$ et $1 \leq l \leq I$:

$$0 = \frac{\partial \tilde{\mathcal{E}}}{\partial v_{k,l}}(U)$$

$$= -\int_{\Omega} f \phi_k \bigotimes \phi_l + \frac{1}{2} \left(2 \sum_{\substack{(i,j) \in I \times I \\ (i,j) \neq (k,l)}} U_{i,j} \int_{\Omega} \nabla (\phi_i \bigotimes \phi_j) \nabla (\phi_k \bigotimes \phi_l) + 2U_{k,l} \int_{\Omega} \nabla (\phi_k \bigotimes \phi_l)^2 \right)$$

$$= -\int_{\Omega} f \phi_k \bigotimes \phi_l + \sum_{\substack{(i,j) \in I \times I \\ (i,j) \neq (k,l)}} U_{i,j} \int_{\Omega} \nabla (\phi_i \bigotimes \phi_j) \nabla (\phi_k \bigotimes \phi_l) + U_{k,l} \int_{\Omega} \nabla (\phi_k \bigotimes \phi_l)^2$$

$$= -\int_{\Omega} f \phi_k \bigotimes \phi_l + \sum_{\substack{(i,j) \in I \times I \\ (i,j) \in I \times I}} U_{i,j} \int_{\Omega} \nabla (\phi_i \bigotimes \phi_j) \nabla (\phi_k \bigotimes \phi_l)$$

$$= -\int_{\Omega} f \phi_k \bigotimes \phi_l + \sum_{\substack{(i,j) \in I \times I \\ (i,j) \in I \times I}} U_{i,j} (D_{i,k} M_{j,l} + D_{j,l} M_{i,k})$$

Donc, U vérifie (3).

Supposons que $U \in \mathbb{R}^{I \times I}$ vérifie (3)

Il suffit de montrer que $\tilde{\mathcal{E}}$ atteint son minimum en U.

En remontant le calcul de la partie précédente, on conclut que le gradient de $\tilde{\mathcal{E}}$ en U. Et sur $V_h \otimes V_h$, $\nabla \mathcal{E}(u_h) = 0$.

On écrit

$$\mathcal{E}(u) = \frac{1}{2}q(u, u) - \mathcal{L}(u)$$

οù

$$q(u,v) = \int_{\Omega} \nabla u \nabla v$$
$$\mathcal{L}(u) = \int_{\Omega} fu$$

 Et

$$\mathcal{E}(u+v) - \mathcal{E}(u) = q(u,v) - \mathcal{L}(v) + \frac{1}{2}q(v,v)$$
$$= \langle \nabla \mathcal{E}(u), v \rangle + \frac{1}{2}q(v,v)$$

Donc,

$$\mathcal{E}(u_h + v) - \mathcal{E}(u_h) = \frac{1}{2}q(v, v)$$
$$= \frac{1}{2} \int_{\Omega} |\nabla v|^2 \ge 0$$

Ceci étant vrai pour tout $v \in V_h \otimes V_h$. Le minimum de \mathcal{E} sur $V_h \otimes V_h$ existe et est atteint uniquement en u_h (car le point d'annulation du gradient est unique).

Donc, U vérifie (4).

Question 4

— Cet algorithme est appelé algorithme **glouton** car on construit la solution en optimisant le résultat à chaque étape.

C'est une suite successive d'optimisations locales. Au début, on cherche la solution optimale sur $V_h \times V_h$, après on cherche une solution optimale à deux termes (tout en gardant la première itération comme premier terme) et ainsi de suite. On espère par la fin avoir une solution qui s'approche assez de la solution trouvée à l'aide d'une optimisation globale sur $V_h \otimes V_h$.

- La taille des données à stocker est en : @TODO
- Si la fonction f est séparée, on peut utiliser le théorème de Fubini pour calculer l'intégrale $\int_{\Omega} f\phi_{i1} \bigotimes \ldots \bigotimes \phi_{i_d}$. Le calcul se ramène à un calcul à un produit d'intégrales unidimensionnelles

du type $\left(\int_0^1 f\phi_k\right)_{1\leqslant k\leqslant I}$

On peut donc stocker I intégrales unidimensionnelles (qui sont en l'occurrence plus facile à calculer) au lieu de stocker et calculer I^d intégrales à plusieurs variables.

Question 5

Posons $T_h = \{r \bigotimes s | r, s \in V_h\}$

— Montrons d'abord que T_h est un fermé dans $V_h \otimes V_h$.

Soit $r_n \otimes s_n \in T_h$ une suite de fonctions qui tend vers $\phi \in V_h \otimes V_h$.

Pour tout $x, y \in V_h$, $r_n \bigotimes s_n(x, y) = r_n(x) s_n(y)$ tend vers $\phi(x, y)$.

Montrons que $\phi \in T_h$.

- Si $\phi \equiv 0$, le résultat est trivial.
- Sinon:

On peut trouver \tilde{x}, \tilde{y} tel que $r_n(\tilde{x})s_n(\tilde{y})$ tend vers 0.

Donc, pour n assez grand $s_n(\tilde{y})$ est non nul.

Soit $x \in \Omega$ tel qu'il existe $y \in \Omega$, $\phi(x, y) \neq 0$.

Pour n assez grand, $r_n(x) \neq 0$ (sinon $r_n(x)s_n(y)$ tend vers 0 et $\phi(x,y) = 0$ pour tout $y \in \Omega$)

Donc pour n assez grand

$$\frac{r_n(x)s_n(\tilde{y})}{r_n(x)s_n(\tilde{y})} = \frac{s_n(y)}{s_n(\tilde{y})}$$

tend vers

$$\frac{\phi(x,y)}{\phi(x,\tilde{y})}$$

Cette quantité est donc indépendante de x, et donc pour tout $y \in \Omega$ il existe un unique $\psi(y)$ tel que

$$\phi(x,y) = \phi(x,\tilde{y})\psi(y)$$

Soit $x \in \Omega$ tel que pour tout $y \in \Omega$, $\phi(x,y) = 0$

On a $\phi(x, \tilde{y}) = 0$.

La formule $\phi(x,y) = \phi(x,\tilde{y})\psi(y)$ est donc vérifiée ici.

On pose $\Gamma(x) = \phi(x, \tilde{y})$.

La fonction qui à $x \in \Omega$ associe $\phi(x, \tilde{y})$ appartient à V_h car ϕ appartient à $V_h \otimes V_h$ (on écrit ϕ dans la base et on substitue $y = \tilde{y}$).

Donc, $\Gamma \in V_h$.

On peut remplacer ψ par

$$\tilde{\psi} = \sum_{i=1}^{I} \frac{\phi(\tilde{x}, x_i)}{\phi(\tilde{x}, y_0)} \phi_i \in V_h$$

 ϕ est entièrement déterminée par ses valeurs aux points (x_i, x_j) (on décompose sur la base de $V_h \otimes V_h$. Or ϕ et $\Gamma \otimes \tilde{\psi}$ sont égales sur ces points. Donc, $\phi = \Gamma \otimes \tilde{\psi} \in T_h$

— Montrons que le problème (5) admet une solution.

On a

$$\min_{(r,s)\in V_h\times V_h} \mathcal{E}(u_{n-1}+r\bigotimes s) = \min_{h\in T_h} \mathcal{E}(u_{n-1}+h)$$

Par les questions précédentes, la fonction \mathcal{E} admet un minimum sur $V_h \otimes V_h$.

Donc, $h \in T_h \to \mathcal{E}(u_{n-1} + h)$ admet une borne inférieure.

Cette borne est atteinte en $r_n \otimes s_n$ (où $r_n, s_n \in V_h$) car T_h est un fermé.

— Les équations d'Euler.

On définit deux fonction
$$\hat{\mathcal{E}}$$
 et $\tilde{\mathcal{E}}$ sur V_h
$$\begin{cases} \hat{\mathcal{E}}(r) = \mathcal{E}(u_{n-1} + r \bigotimes s_n) \\ \tilde{\mathcal{E}}(r) = \mathcal{E}(u_{n-1} + r_n \bigotimes s) \end{cases}$$

Les deux fonctions $\hat{\mathcal{E}}$, $\tilde{\mathcal{E}}$ sont définies sur un espace vectoriel V_h (ouvert) et admettent des minimums en r_n , s_n respectivement.

Donc

$$\begin{cases} \forall \delta s \in V_h, \ \hat{\mathcal{E}}'(r_n)(\delta s) = 0 \\ \forall \delta r \in V_h, \ \hat{\mathcal{E}}'(s_n)(\delta r) = 0 \end{cases}$$

$$\begin{cases} \forall \delta s \in V_h, \ q(u_{n-1} + r_n \bigotimes s_n, r_n \bigotimes \delta s) - \mathcal{L}(r_n \bigotimes \delta s) = 0 \\ \forall \delta r \in V_h, \ q(u_{n-1} + r_n \bigotimes s_n, \delta r \bigotimes s_n) - \mathcal{L}(\delta r \bigotimes s_n) = 0 \end{cases}$$

$$\begin{cases} \forall \delta s \in V_h, & \int_{\Omega} \nabla(r_n \bigotimes s_n + u_{n-1}) \nabla(r_n \bigotimes \delta s) = \int_{\Omega} f(r_n \bigotimes \delta s) \\ \forall \delta r \in V_h, & \int_{\Omega} \nabla(r_n \bigotimes s_n + u_{n-1}) \nabla(\delta r \bigotimes s_n) = \int_{\Omega} f(\delta r \bigotimes s_n) \end{cases}$$
(0.1)

On somme les deux termes pour trouver

$$\forall \delta r, \delta s \in V_h, \ \int_{\Omega} \nabla(r_n \bigotimes s_n + u_{n-1}) \nabla(r_n \bigotimes \delta s + \delta r \bigotimes s_n) = \int_{\Omega} f(r_n \bigotimes \delta s + \delta r \bigotimes s_n)$$

Cette dernière formulation (équation d'Euler) est équivalente à 0.1 en prenant à chaque fois δs ou δr nul.

— Le système couplé :

Trouver s_n, r_n tels que

$$\begin{cases} \Delta(r_n \bigotimes s_n)r_n = -\Delta u_{n-1}r_n + fr_n \\ \Delta(r_n \bigotimes s_n)s_n = -\Delta u_{n-1}s_n + fs_n \end{cases}$$

En multipliant la première (resp. deuxième) équation par δs (resp. δr) et en intégrant par parties, on retombe sur le dernier système 0.1 qui est équivalent à l'équation d'Euler.

Question 6

— Montrons que pour tout $\delta s, \delta s \in V_h$,

$$\int_{\Omega} \nabla g_n \nabla (\delta r \bigotimes s_n + r_n \bigotimes \delta s) = 0$$
 (0.2)

Soit $\delta s, \delta r \in V_h \otimes V_h$. On combine $u_n = u_{n-1} + r_n \otimes s_n$ et l'équation d'Euler pour trouver

$$\int_{\Omega} \nabla u_n \nabla (\delta r \bigotimes s_n + r_n \bigotimes \delta s) = \int_{\Omega} f(\delta r \bigotimes s_n + r_n \bigotimes \delta s)$$
 (0.3)

 u_h vérifie la formule variationnelle initiale sur $V_h \otimes V_h$ et $(\delta r \otimes s_n + r_n \otimes \delta s) \in V_h \otimes V_h$

$$\begin{split} \int_{\Omega} \nabla u_n \nabla (\delta r \bigotimes s_n + r_n \bigotimes \delta s) &= \int_{\Omega} \nabla (u_h - g_n) \nabla (\delta r \bigotimes s_n + r_n \bigotimes \delta s) \\ &= \int_{\Omega} \nabla u_h \nabla (\delta r \bigotimes s_n + r_n \bigotimes \delta s) - \int_{\Omega} \nabla g_n \nabla (\delta r \bigotimes s_n + r_n \bigotimes \delta s) \\ &= \int_{\Omega} f(\delta r \bigotimes s_n + r_n \bigotimes \delta s) - \int_{\Omega} \nabla g_n \nabla (\delta r \bigotimes s_n + r_n \bigotimes \delta s) \end{split}$$

Donc en remplaçant dans (0.3), on trouve

$$\int_{\Omega} \nabla g_n \nabla (\delta r \bigotimes s_n + r_n \bigotimes \delta s) = 0$$

— Montrons que

$$\int_{\Omega} |\nabla g_{n-1}|^2 = \int_{\Omega} |\nabla g_n|^2 + \int_{\Omega} |\nabla (r_n \bigotimes s_n)|^2$$
(0.4)

Dans (0.2), on remplace $\delta s = s_n$ et $\delta r = r_n$ pour trouver

$$2\int_{\Omega} \nabla g_n \nabla (r_n \bigotimes s_n) = 0$$

On a

$$g_{n-1} = g_n + r_n \bigotimes s_n$$

Donc,

$$\int_{\Omega} |\nabla g_{n-1}|^2 = \int_{\Omega} |\nabla g_n|^2 + 2 \int_{\Omega} \nabla g_n \nabla (r_n \bigotimes s_n) + \int_{\Omega} |\nabla (r_n \bigotimes s_n)|^2$$
$$= \int_{\Omega} |\nabla g_n|^2 + \int_{\Omega} |\nabla (r_n \bigotimes s_n)|^2$$

— Montrons que

$$E_n = -\frac{1}{2} \int_{\Omega} |\nabla(r_n \bigotimes s_n)|^2 \tag{0.5}$$

On a,

$$E_{n} = \mathcal{E}(u_{n}) - \mathcal{E}(u_{n-1})$$

$$= \frac{1}{2} \int_{\Omega} |\nabla u_{n}|^{2} - \int_{\Omega} f u_{n} - \frac{1}{2} \int_{\Omega} |\nabla u_{n-1}|^{2} + \int_{\Omega} f u_{n-1}$$

$$= \frac{1}{2} \int_{\Omega} \nabla (u_{n} - u_{n-1}) \nabla (u_{n} + u_{n-1}) - \int_{\Omega} f (u_{n} - u_{n-1})$$

$$= \frac{1}{2} \int_{\Omega} \nabla (r_{n} \bigotimes s_{n}) \nabla (2u_{n-1} + r_{n} \bigotimes s_{n}) - \int_{\Omega} f (r_{n} \bigotimes s_{n})$$

$$= \frac{1}{2} \int_{\Omega} |\nabla (r_{n} \bigotimes s_{n})|^{2} - \int_{\Omega} f (r_{n} \bigotimes s_{n}) + \int_{\Omega} \nabla u_{n-1} \nabla (r_{n} \bigotimes s_{n})$$

En remplaçant dans l'équation d'Euler par $\delta s=s_n$ et $\delta r=r_n$ et en divisant partout par 2, on obtient

$$\int_{\Omega} |\nabla (r_n \bigotimes s_n)|^2 = \int_{\Omega} f(r_n \bigotimes s_n) - \int_{\Omega} \nabla u_{n-1} \nabla (r_n \bigotimes s_n)$$

Donc,

$$E_n = -\frac{1}{2} \int_{\Omega} |\nabla (r_n \bigotimes s_n)|^2$$

- Montrons que la séries de terme général E_n est convergente.
 - On a $E_n = \mathcal{E}(u_n) \mathcal{E}(u_{n-1})$. Tout revient à montrer que la suite de terme général $\mathcal{E}(u_n)$ est convergente.
 - La suite est minorée par le minimum global de \mathcal{E} sur $V_h \otimes V_h$.
 - Montrons que la suite est décroissante. Pour tout $r, s \in V_h$

$$\mathcal{E}(u_n) = \mathcal{E}(u_{n-1} + r_n \bigotimes s_n)$$

$$\leqslant \mathcal{E}(u_{n-1} + r \bigotimes s)$$

On trouve le résultat en remplaçant r, s = 0.

— La suite est décroissante minorée et donc convergente. Et la série converge. De plus,

$$-2\sum_{n\geqslant 1} E_n = -2\sum_{n\geqslant 1} \left(-\frac{1}{2} \int_{\Omega} |\nabla(r_n \bigotimes s_n)|^2 \right)$$
$$= \sum_{n\geqslant 1} \int_{\Omega} |\nabla(r_n \bigotimes s_n)|^2$$

Question 7

— Convergence de g_n à sous-suite-près.

Notons ||.|| la norme utilisée. On peut écrire l'équation (0.4) comme

$$||g_{n-1}||^2 - ||g_n||^2 = -2E_n$$

Or la série de terme générale E_n converge. Donc, la suite de terme général $||g_n||^2$ converge et est par conséquent bornée. On conclut que la suite g_n est bornée pour la norme choisie sur l'espace vectoriel de dimension finie $V_h \otimes V_h$. Par le théorème de Bolzano-Weirestrass on peut extraire de g_n une sous-suite convergente dans $V_h \otimes V_h$.

— Soit $\delta r, \delta s \in V_h$. Montrons que

$$\frac{1}{2} \int_{\Omega} |\nabla(\delta r \bigotimes \delta s)|^2 - \int_{\Omega} \nabla g_{n-1} \nabla(\delta r \bigotimes \delta s) \geqslant E_n$$
 (0.6)

Par la définition (5),

$$\mathcal{E}(u_{n-1} + \delta r \bigotimes \delta s) \geqslant \mathcal{E}(u_n)$$

$$\mathcal{E}(u_{n-1} + \delta r \bigotimes \delta s) - \mathcal{E}(u_{n-1}) \geqslant E_n$$

Or,

$$\mathcal{E}(u_{n-1} + \delta r \bigotimes \delta s) - \mathcal{E}(u_{n-1}) = \frac{1}{2} \int_{\Omega} \nabla(\delta r \bigotimes \delta s) \nabla(2u_{n-1} + \delta r \bigotimes \delta s) - \int_{\Omega} f(\delta r \bigotimes \delta s)$$
$$= \frac{1}{2} \int_{\Omega} |\nabla(\delta r \bigotimes \delta s)|^{2} - \int_{\Omega} f(\delta r \bigotimes \delta s) + \int_{\Omega} \nabla u_{n-1} \nabla(\delta r \bigotimes \delta s)$$

Et.

$$-\int_{\Omega} f(\delta r \bigotimes \delta s) + \int_{\Omega} \nabla u_{n-1} \nabla (\delta r \bigotimes \delta s) = -\int_{\Omega} f(\delta r \bigotimes \delta s) + \int_{\Omega} \nabla u_{h} \nabla (\delta r \bigotimes \delta s) - \int_{\Omega} \nabla g_{n-1} \nabla (\delta r \bigotimes \delta s)$$
$$= -\int_{\Omega} \nabla g_{n-1} \nabla (\delta r \bigotimes \delta s)$$

Donc,

$$\frac{1}{2} \int_{\Omega} |\nabla(\delta r \bigotimes \delta s)|^2 - \int_{\Omega} \nabla g_{n-1} \nabla(\delta r \bigotimes \delta s) = \mathcal{E}(u_{n-1} + \delta r \bigotimes \delta s) - \mathcal{E}(u_{n-1})$$

$$\geqslant E_n$$

— Montrons que

$$\int_{\Omega} \nabla g_{\infty} \nabla (\delta r \bigotimes \delta s) = 0 \tag{0.7}$$

L'application qui à $u, v \in V_h \otimes V_h$ associe

$$\int_{\Omega} \nabla u \nabla v$$

est un produit scalaire.

La norme utilisée est la norme associée à ce produit scalaire. Donc, l'application est continue (Cauchy-Schwarz).

Donc

$$\int_{\Omega} \nabla g_{n-1} \nabla (\delta r \bigotimes \delta s)$$

converge vers

$$\int_{\Omega} \nabla g_{\infty} \nabla (\delta r \bigotimes \delta s)$$

L'inégalité précédente devient, pour tout $\delta r, \delta s \in V_h$

$$\frac{1}{2} \int_{\Omega} |\nabla(\delta r \bigotimes \delta s)|^2 - \int_{\Omega} \nabla g_{\infty} \nabla(\delta r \bigotimes \delta s) \geqslant 0$$

Car E_n tend vers 0 (la série de terme général E_n est convergente). Pour $r, s \in V_h$ et $t \in \mathbb{R}$, on prend $\delta r = tr$ et $\delta s = s$.

$$\left(\frac{1}{2}\int_{\Omega} |\nabla(\delta r \bigotimes \delta s)|^2\right) t^2 - \left(\int_{\Omega} \nabla g_{\infty} \nabla(\delta r \bigotimes \delta s)\right) t \geqslant 0$$

C'est une fonction polynomiale de degré 2 qui est positive partout sur \mathbb{R} . Nécessairement, le coefficient de degré 1 est nul. Donc,

$$\int_{\Omega} \nabla g_{\infty} \nabla (\delta r \bigotimes \delta s) = 0$$

— Commentaire sur la convergence. Par simple combinaison linéaire de 0.7, pour tout $g \in V_h \otimes V_h$

$$\int_{\Omega} \nabla g_{\infty} \nabla g = 0$$

En prenant $g = g_{\infty}$, on trouve $||g_{\infty}||^2 = 0$. Donc, $g_{\infty} = 0$. On conclut: sous la norme considérée, u_n converge vers u_h .

Question 8

On reprend le système d'Euler

$$\begin{cases} \forall \delta s \in V_h, & \int_{\Omega} \nabla(r_n \bigotimes s_n + u_{n-1}) \nabla(r_n \bigotimes \delta s) = \int_{\Omega} f(r_n \bigotimes \delta s) \\ \forall \delta r \in V_h, & \int_{\Omega} \nabla(r_n \bigotimes s_n + u_{n-1}) \nabla(\delta r \bigotimes s_n) = \int_{\Omega} f(\delta r \bigotimes s_n) \end{cases}$$

Pour la première équation, soit $T \in \mathbb{R}^I$ la décomposition de δs sur la base (ϕ_1, \dots, ϕ_I) . Les sommes portent sur le domaine $1, \dots, I$) et par souci de simplicité, on note ici le vecteur R_n (resp. S_n) par R (resp. S)

$$\int_{\Omega} \nabla(r_n \bigotimes s_n) \nabla(r_n \bigotimes \delta s) = \sum_{i,j,k,l} R_i S_j R_k T_l \int_{\Omega} \nabla(\phi_i \bigotimes \phi_j) \nabla(\phi_k \bigotimes \phi_l)
= \sum_{i,j,k,l} R_i S_j R_k T_l (D_{i,k} M_{j,l} + M_{i,k} D_{j,l})
= \sum_{i,j,k,l} R_i S_j R_k T_l D_{i,k} M_{j,l} + \sum_{i,j,k,l} R_i S_j R_k T_l M_{i,k} D_{j,l}
= \sum_{i,j,l} R_i S_j T_l M_{j,l} (DR)_i + \sum_{i,j,l} R_i S_j T_l D_{j,l} (MR)_i
= \sum_{i,j} R_i S_j (MT)_j (DR)_i + \sum_{i,j} R_i S_j (DT)_j (MR)_i
= R^{\mathsf{T}} DR \quad S^{\mathsf{T}} MT + R^{\mathsf{T}} MR \quad S^{\mathsf{T}} DT
= S^{\mathsf{T}} (R^{\mathsf{T}} DRM) T + S^{\mathsf{T}} (R^{\mathsf{T}} MRD) T
= S^{\mathsf{T}} (R^{\mathsf{T}} DRM + R^{\mathsf{T}} MRD) T
= S^{\mathsf{T}} (R) T$$

Or, pour $V \in \mathbb{R}^I$, $V^{\intercal}DV$ et $V^{\intercal}MV$ sont des scalaires. Les matrices D et M sont symétriques, donc $\mathcal{M}(V)$ est symétrique.

$$\int_{\Omega} \nabla(r_n \bigotimes s_n) \nabla(r_n \bigotimes \delta s) = S^{\mathsf{T}} \mathcal{M}(R) T
= S^{\mathsf{T}} \mathcal{M}(R)^{\mathsf{T}} T
= (\mathcal{M}(R)S)^{\mathsf{T}} T
= (\mathcal{M}(R_n)S_n)^{\mathsf{T}} T
= T^{\mathsf{T}} \mathcal{M}(R_n)S_n$$
(0.8)

$$\int_{\Omega} \nabla u_{n-1} \nabla (r_n \otimes \delta s) = \sum_{m=1}^{n-1} \sum_{i,j,k,l} (R_m)_i (S_m)_j (R_n)_k T_l \int_{\Omega} \nabla (\phi_i \otimes \phi_j) \nabla (\phi_k \otimes \phi_l) \\
= \sum_{m=1}^{n-1} \sum_{i,j,k,l} (R_m)_i (S_m)_j (R_n)_k T_l (D_{i,k} M_{j,l} + M_{i,k} D_{j,l}) \\
= \sum_{m=1}^{n-1} \sum_{i,j,k,l} (R_m)_i (S_m)_j (R_n)_k T_l D_{i,k} M_{j,l} \\
+ \sum_{m=1}^{n-1} \sum_{i,j,k,l} (R_m)_i (S_m)_j (R_n)_k T_l M_{i,k} D_{j,l} \\
= \sum_{m=1}^{n-1} \sum_{i,j,k} (R_m)_i (S_m)_j (MT)_j (R_n)_k D_{i,k} \\
+ \sum_{m=1}^{n-1} \sum_{i,j,k} (R_m)_i (S_m)_j (DT)_j (R_n)_k M_{i,k} \\
= \sum_{m=1}^{n-1} \sum_{i,j} (R_m)_i (S_m)_j (DT)_j (DR_n)_i \\
+ \sum_{m=1}^{n-1} \sum_{i,j} (R_m)_i (S_m)_j (DT)_j (MR_n)_i \\
= \sum_{m=1}^{n-1} (R_m^T DR_n) S_m^T MT + \sum_{m=1}^{n-1} (R_m^T MR_n) S_m^T DT \\
= \sum_{m=1}^{n-1} S_m^T (R_m^T DR_n) MT + \sum_{m=1}^{n-1} S_m^T (R_m^T MR_n) DT \\
= \sum_{m=1}^{n-1} S_m^T (R_m^T DR_n) M^T T + \sum_{m=1}^{n-1} S_m^T (R_m^T MR_n) D^T T \\
= \sum_{m=1}^{n-1} (R_m^T DR_n MS_m)^T T + \sum_{m=1}^{n-1} (R_m^T MR_n DS_m)^T T \\
= \left(\sum_{m=1}^{n-1} \left[R_m^T DR_n MS_m + R_m^T MR_n DS_m \right] \right)^T T \\
= T^T \sum_{m=1}^{n-1} \left(R_k^T DR_n MS_k + R_k^T MR_n DS_k \right) \\$$

$$\int_{\Omega} f(r_n \bigotimes \delta s) = \sum_{i,j} (R_n)_i T_j \int_{\Omega} f(\phi_i \bigotimes \phi_j)$$

$$= \sum_{i,j} (R_n)_i T_j \int_{\Omega} \left(\sum_{p=1}^P f_1^p \bigotimes f_2^p \right) (\phi_i \bigotimes \phi_j)$$

$$= \sum_{i,j} (R_n)_i T_j \sum_{p=1}^P \int_{\Omega} (f_1^p \phi_i) \bigotimes (f_2^p \phi_j)$$

$$= \sum_{i,j} (R_n)_i T_j \sum_{p=1}^P \left(\int_0^1 f_1^p (t) \phi_i(t) dt \right) \left(\int_0^1 f_2^p (t) \phi_j(t) dt \right)$$

$$= \sum_{i,j} (R_n)_i T_j \sum_{p=1}^P (F_1^p)_i (F_2^p)_j$$

$$= \sum_{i,j} (R_n)_i T_j \sum_{p=1}^P (F_1^p)_i (F_2^p)_j$$

$$= \sum_{p=1}^P \sum_{i,j} (R_n)_i T_j (F_1^p)_i (F_2^p)_j$$

$$= \sum_{p=1}^P \left((R_n)^\intercal F_1^p \right) T^\intercal F_2^p$$

$$= T^\intercal \sum_{p=1}^P \left((R_n)^\intercal F_1^p \right) F_2^p$$

En combinant le 0.8, 0.9 et 0.10, la première équation du système d'Euler peut s'écrire

$$T^{\mathsf{T}}\mathcal{M}(R_n)S_n + T^{\mathsf{T}}\sum_{k=1}^{n-1} \left(R_k^{\mathsf{T}}DR_n M S_k + R_k^{\mathsf{T}}MR_n D S_k \right) = T^{\mathsf{T}}\sum_{p=1}^{P} \left((R_n)^{\mathsf{T}} F_1^p \right) F_2^p$$

Ceci étant vrai pour tout vecteur T de dimension I:

$$\mathcal{M}(R_n)S_n + \sum_{k=1}^{n-1} \left(R_k^{\mathsf{T}} D R_n M S_k + R_k^{\mathsf{T}} M R_n D S_k \right) = \sum_{p=1}^{P} \left((R_n)^{\mathsf{T}} F_1^p \right) F_2^p$$

$$\mathcal{M}(R_n)S_n = \sum_{p=1}^{P} \left((R_n)^{\mathsf{T}} F_1^p \right) F_2^p - \sum_{k=1}^{n-1} \left(R_k^{\mathsf{T}} D R_n M S_k + R_k^{\mathsf{T}} M R_n D S_k \right)$$

Donc,

$$\mathcal{M}(R_n)S_n = \mathcal{G}_n(R_n)$$

De même, on trouve

$$\mathcal{M}(S_n)R_n = \mathcal{F}_n(S_n)$$

Question 9

Pour tester le code, on a documenté les fonctions principales (fin du fichier).

