

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS14100087602

FCC REPORT (BLE)

Applicant: Shenzhen Fortuneship Technology CO., LTD

7th floor, Kingson Building, New Energy Innovation Industrial

Address of Applicant: Park, No.1 ChuangSheng Road, Xili, Nanshan District,

Shenzhen, P.R.China

Equipment Under Test (EUT)

Product Name: SMART PHONE

Model No.: FSM3500G, LS001(A-Z)

FCC ID: 2ABXI-LS001

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 24 Oct., 2014

Date of Test: 24 Oct., to 13 Nov., 2014

Date of report issued: 13 Nov., 2014

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	13 Nov., 2014	Original

Prepared by: 13 Nov., 2014

Report Clerk

Reviewed by: Date: 13 Nov., 2014

Project Engineer

Contents

			Page				
1	COV	/ER PAGE	1				
2	VERSION						
3		ITENTS					
4		T SUMMARY					
5	GEN	IERAL INFORMATION	5				
	5.1	CLIENT INFORMATION	5				
	5.2	GENERAL DESCRIPTION OF E.U.T.					
	5.3	TEST ENVIRONMENT AND MODE					
	5.4	DESCRIPTION OF SUPPORT UNITS					
	5.5	LABORATORY FACILITY	7				
	5.6	LABORATORY LOCATION	7				
	5.7	TEST INSTRUMENTS LIST	8				
6	TES	T RESULTS AND MEASUREMENT DATA	9				
	6.1	ANTENNA REQUIREMENT:	9				
	6.2	CONDUCTED EMISSION	10				
	6.3	CONDUCTED OUTPUT POWER	13				
	6.4	OCCUPY BANDWIDTH					
	6.5	Power Spectral Density	18				
	6.6	BAND EDGE					
	6.6.1						
	6.6.2						
	6.7	SPURIOUS EMISSION					
	6.7.1						
	6.7.2						
7	TES	T SETUP PHOTO	33				
		CONSTRUCTIONAL DETAILS					

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Fortuneship Technology CO., LTD
Address of Applicant:	7th floor, Kingson Building, New Energy Innovation Industrial Park, No.1 ChuangSheng Road, Xili, Nanshan District, Shenzhen, P.R.China
Manufacturer:	Shenzhen Fortuneship Technology CO., LTD
Address of Manufacturer:	7th floor, Kingson Building, New Energy Innovation Industrial Park, No.1 ChuangSheng Road, Xili, Nanshan District, Shenzhen, P.R.China
Factory:	Huizhou Fortuneship Technology CO., LTD
Address of Factory:	He Chang East 4 Road No.1, ZhongKai ZIP, Hui Zhou City, Guang Dong Province, China

5.2 General Description of E.U.T.

<u>-</u>	1
Product Name:	SMART PHONE
Model No.:	FSM3500G, LS001(A-Z)
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.36 dBi
AC adapter:	Model: A31-501000 Input:100-240V AC, 50/60Hz 0.2A Output:5.0V DC, 1A
Power supply:	Rechargeable Li-ion Battery DC3.8V,2300mAh
Remark:	Model No.: FSM3500G, LS001(A-Z) were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name. The model LS001(A-Z), "A-Z" means Different Customer Icon. The models are same except models name. It not affect the test result. The EUT has two versions, double SIM and single SIM. Both of them can meet different customer's demand in various markets. The electrical circuit design, layout, components used and internal wiring was identical .We selected double SIM Version for full test.

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

Report No: CCIS14100087602

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	liated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	Aug. 23 2014	Aug. 22 2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	Apr. 19 2014	Apr. 19 2015
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	Apr. 19 2014	Apr. 19 2015
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Coaxial Cable	CCIS	N/A	CCIS0016	Apr. 01 2014	Mar. 31 2015
6	Coaxial Cable	CCIS	N/A	CCIS0017	Apr. 01 2014	Mar. 31 2015
7	Coaxial cable	CCIS	N/A	CCIS0018	Apr. 01 2014	Mar. 31 2015
8	Coaxial Cable	CCIS	N/A	CCIS0019	Apr. 01 2014	Mar. 31 2015
9	Coaxial Cable	CCIS	N/A	CCIS0087	Apr. 01 2014	Mar. 31 2015
10	Amplifier(10kHz- 1.3GHz)	HP	8447D	CCIS0003	Apr. 01 2014	Mar. 31 2015
11	Amplifier(1GHz- 18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	June 09 2014	June 08 2015
12	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2014	Mar. 31 2015
13	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2014	Mar. 29 2015
14	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
15	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
16	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	Apr. 19 2014	Apr. 19 2015
17	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	Apr. 01 2014	Mar. 31 2015
18	Loop antenna	Laplace instrument	RF300	EMC0701	Apr. 01 2014	Mar. 31 2015
19	Universal radio communication tester		CMU200	CCIS0069	May. 29 2014	May. 28 2015
20	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	Apr. 19 2014	Apr. 19 2015

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	Oct. 10 2012	Oct. 09 2015				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	Apr. 10 2014	Apr. 10 2015				
3	LISN	CHASE	MN2050D	CCIS0074	Apr. 10 2014	Apr. 10 2015				
4	Coaxial Cable	CCIS	N/A	CCIS0086	Apr. 01 2014	Mar. 31 2015				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Report No: CCIS14100087602

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.36 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.4: 2003						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:		Limit (c	dBuV)				
	Frequency range (MHz) Quasi-peak Average						
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30 * Decreases with the logarithm	60	50				
Test procedure Test setup:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 						
rost sotup.	LISN 40cm		er — AC power				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Neutral:

Trace: 21

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: 876RF Job. no : SMART PHONE EUT Model : FSM3500G model : PSM35000G
Test Mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: MT

Remark

CEMAIK	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
===	MHz	dBu∜	dB	₫B	dBu∜	dBu∜	dB	
1	0.162	33.43	0.25	10.77	44.45	65.34	-20.89	QP
1 2 3	0.162	20.41	0.25	10.77	31.43	55.34	-23.91	Average
3	0.373	36.71	0.25	10.73	47.69	58.43	-10.74	QP
4	0.377	25.01	0.25	10.72	35.98	48.34	-12.36	Average
5	0.751	40.76	0.19	10.79	51.74	56.00	-4.26	QP
4 5 6 7	0.755	26.68	0.19	10.79	37.66	46.00	-8.34	Average
7	0.804	26.56	0.20	10.81	37.57	46.00	-8.43	Average
8	0.914	39.53	0.21	10.84	50.58	56.00	-5.42	QP
9	1.577	37.74	0.27	10.93	48.94	56.00	-7.06	QP
10	1.790	22.82	0.28	10.95	34.05	46.00	-11.95	Average
11	2.608	18.22	0.29	10.93	29.44	46.00	-16.56	Average
12	2.622	32.68	0.29	10.93	43.90	56.00	-12.10	QP

Trace: 23

: CCIS Shielding Room

Site Condition : FCC PART15 B QP LISN LINE

: 876RF Job. no EUT : SMART PHONE : FSM3500G Model Test Mode : BLE mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
5.0	MHz	dBu∜	dB	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.158	34.67	0.27	10.78	45.72	65.56	-19.84	QP
2	0.162	21.92	0.27	10.77	32.96	55.34	-22.38	Average
3	0.373	37.13	0.28	10.73	48.14	58.43	-10.29	QP
2 3 4 5 6 7	0.373	25.03	0.28	10.73	36.04	48.43	-12.39	Average
5	0.751	25.91	0.23	10.79	36.93	46.00	-9.07	Average
6	0.866	25.48	0.24	10.83	36.55	46.00	-9.45	Average
7	0.899	38.35	0.24	10.84	49.43	56.00	-6.57	QP
8	1.593	35.33	0.26	10.93	46.52	56.00	-9.48	QP
9	1.628	17.55	0.26	10.93	28.74	46.00	-17.26	Average
10	2.513	29.73	0.27	10.94	40.94	56.00	-15.06	QP
11	2.636	14.57	0.27	10.93	25.77	46.00	-20.23	Average
12	5.112	28.14	0.30	10.85	39.29	60.00	-20.71	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.7 for details Refer to section 5.3 for details					
Test results:	Passed					
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-5.08		
Middle	-4.65	30.00	Pass
Highest	-4.75		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.76		
Middle	0.76	>500	Pass
Highest	0.76		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.04		
Middle	1.04	N/A	N/A
Highest	1.04		

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2003 and KDB558074
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-5.42		
Middle	-4.83	8.00	Pass
Highest	-5.00		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plots as follow:

Lowest channel Highest channel

6.6.2 Radiated Emission Method

Above 1GHz Peak 1MHz 3MHz Peak	Remark ak Value						
Test Frequency Range: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW R Above 1GHz Peak 1MHz 3MHz Pea	ak Value						
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW R Above 1GHz Peak 1MHz 3MHz Pei	ak Value						
Receiver setup: Frequency Detector RBW VBW R Above 1GHz Peak 1MHz 3MHz Peak	ak Value						
Frequency Detector RBW VBW R Above 1GHz Peak 1MHz 3MHz Pea	ak Value						
	rage Value						
54 00 Aver	Remark rage Value						
Above 1GHZ 74.00 Per	ak Value						
 Test Procedure: The EUT was placed on the top of a rotating table 0.8 methe ground at a 3 meter camber. The table was rotated 3t to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-reantenna, which was mounted on the top of a variable-heitower. The antenna height is varied from one meter to four meter the ground to determine the maximum value of the field set Both horizontal and vertical polarizations of the antenna amake the measurement. For each suspected emission, the EUT was arranged to it case and then the antenna was turned to heights from 1 meters and the rota table was turned from 0 degrees to 3 to find the maximum reading. The test-receiver system was set to Peak Detect Function Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB the limit specified, then testing could be stopped and the of the EUT would be reported. Otherwise the emissions thave 10 dB margin would be re-tested one by one using peak or average method as specified and then reported is sheet. 	eceiving ight antenna ers above strength. are set to its worst meter to 4 a60 degrees en and s lower than peak values that did not peak, quasi-						
Test setup: Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier							
Test Instruments: Refer to section 5.7 for details							
Test mode: Refer to section 5.3 for details							
Test results: Passed							

Test channel: Lowest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

Job No. : 876RF

EUT : SMART PHONE
Model : FSM3500G
Test mode : BLE-L-(TX) Mode
Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	ė.	Read	Ant enna	Cable	Preamp		Limit	Over		
	Freq		Factor				Company of the Compan			
	MHz	dBuV	dB/m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB		
1	2390.000	23.08	27.58	5.67	0.00	56.33	74.00	-17.67	Peak	
2	2390.000	11.66	27.58	5.67	0.00	44.91	54.00	-9.09	Average	

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job No. : 876RF EUT SMART PHONE : FSM3500G Model Test mode : BLE-L-(TX) Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	9 R.		Antenna Factor						
-	MHz	dBu∜	—dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Job No. : 876RF

EUT SMART PHONE : FSM3500G Model Test mode : BLE-H-(TX) Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

			Antenna Factor				Limit Line		Remark
7	MHz	dBu₹		dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
	2483.500 2483.500								

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 876RF Job No.

: SMART PHONE EUT : FSM3500G Model : BLE-H-(TX) Mode Test mode Power Rating: AC 120V/60Hz Environment: Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	•	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor						
-	MHz	dBu∜	—dB/m	<u>dB</u>	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	2483.500	24.08	27.52	5.70	0.00	57.30	74.00	-16.70	Peak
2	2483, 500	12.41	27, 52	5, 70	0.00	45, 63	54,00	-8.37	Average

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2003 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 29.0CT.2014 14:09:06 30MHz~25GHz

Middle channel

Date: 29.0CT.2014 14:10:23 30MHz~25GHz

Highest channel

Date: 29.0CT.2014 14:11:49 30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:2003							
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above Total	Peak	1MHz	10Hz	Average Value			
Limit:					T			
	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
	216MHz-960MH		46.0		Quasi-peak Value			
	960MHz-1GHz		54.0		Quasi-peak Value			
	Above 1GHz	H	54.0		Average Value			
Test Procedure:	1. The EUT w		74.0		Peak Value le 0.8 meters above			
	to determin 2. The EUT vantenna, watower. 3. The antenrathe ground Both horizon make the make the make the make the make the maters and to find the material materials. 5. The test-results are specified Based Bas	e the position was set 3 m hich was mount and verme and verme as well and verme as well the rota table maximum reas eceiver system and width with sion level of the would be regarded and would be regarded.	of the highes eters away funted on the taried from one the maximutical polarizations, the Enna was turned ding. In Maximum Hone EUT in peresting could be ore-tested.	st radiation. From the incop of a variance meter to the incomment of the i	rotated 360 degrees aterference-receiving lable-height antenna of four meters above of the field strength. In antenna are set to a stranged to its worst as from 1 meter to 4 rees to 360 degrees are tect. Function and as 10 dB lower than and the peak values missions that did not be using peak, quasing reported in a data			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

Job No. : 876RF EUT : SMART PHONE Model FSM3500G Test mode : BLE-Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT REMARK :

$x_1 con a x$									
	Freq		Antenna Factor		Preamp Factor		Limit Line	Over Limit	Remark
=	MHz	dBu∜	dB/m		<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	63.983	44.57	11.11	0.74	29.76	26.66	40.00	-13.34	QP
2	92.462	41.53	12.41	0.92	29.56	25.30	43.50	-18.20	QP
2	133.151	42.05	8.67	1.21	29.31	22.62	43.50	-20.88	QP
4	260.144	36.30	12.09	1.65	28.52	21.52	46.00	-24.48	QP
5	285.978	38.99	12.78	1.73	28.47	25.03	46.00	-20.97	QP
6	316.589	43.07	13.28	1.83	28.49	29.69	46.00	-16.31	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: 876RF Job No. : SMART PHONE EUT Model : FSM3500G Test mode : BLE-Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

nnnn									
	_		Antenna				Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
-	MHz	dBu∜	dB/m	₫B	₫B	dBu∜/m	dBuV/m	d₿	
1	32.179	52.08	12.32	0.45	29.97	34.88	40.00	-5.12	QP
2	37.416	47.85	12.92	0.50	29.92	31.35	40.00	-8.65	QP
2 3 4 5 6	62.651	45.71	11.63	0.72	29.76	28.30	40.00	-11.70	QP
4	129.923	44.91	8.93	1.19	29.33	25.70	43.50	-17.80	QP
5	260.144	37.41	12.09	1.65	28.52	22.63	46.00	-23.37	QP
6	394.855	35.23	14.97	2.10	28.76	23.54	46.00	-22.46	QP

Above 1GHz

Test channel:			Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	50.12	31.53	8.90	40.24	50.31	74.00	-23.69	Vertical
4804.00	49.65	31.53	8.90	40.24	49.84	74.00	-24.16	Horizontal
Te	st channel	:	Lowest		Le	vel:	Ave	erage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	40.23	31.53	8.90	40.24	40.42	54.00	-13.58	Vertical
4804.00	37.86	31.53	8.90	40.24	38.05	54.00	-15.95	Horizontal

Test channel:			Middle		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	48.47	31.58	8.98	40.15	48.88	74.00	-25.12	Vertical
4884.00	48.77	31.58	8.98	40.15	49.18	74.00	-24.82	Horizontal
Test channe	l:		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	38.64	31.58	8.98	40.15	39.05	54.00	-14.95	Vertical
4884.00	38.69	31.58	8.98	40.15	39.10	54.00	-14.90	Horizontal

Test channel:			Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.98	31.69	9.08	40.03	48.72	74.00	-25.28	Vertical
4960.00	48.76	31.69	9.08	40.03	49.50	74.00	-24.50	Horizontal
Test channe	l:		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	39.24	31.69	9.08	40.03	39.98	54.00	-14.02	Vertical
4960.00	39.78	31.69	9.08	40.03	40.52	54.00	-13.48	Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.