# Technology Overview

- Variety of technologies that make Cloud computing possible
- Virtualization
  - Key technology enabling Cloud Computing
  - Abstraction of an execution environment
  - Partitions physical resources into virtual resources
- Load Balancing
  - Help distribute workload across multiple machines to meet
- SDN
  - Separates control plane from the data plane
  - Creates agile network that are easier and cheaper to maintain.



- Scalability
  - Difficult to scale traditional IT infrastructure
    - Scale Up Upgrade existing hardware (CPU, Memory, etc.)
    - Scale Out Add more hardware
    - Not elastic
  - Cloud provide elasticity to accommodate for variability in workload.
    - Add or shrink resources based upon demand.



#### Replication

- Replication of data is important for business continuity
- Cloud provides cheaper option to replicate data and application
  - Minimize capital expenditure
- Array-based replication
  - Automatically replicate data at the disk subsystem level
  - Independent of host and type of data being accessed.
  - Requires similar arrays at local and remote locations.



- Host-based replication
  - Runs on commodity servers
  - Agents installed on hosts communicate with each other
  - Replication can be block or file based.
  - Entire Virtual machine can be replicated in real-time.
- Network-based replication
  - An appliance sits on the network to transfer data (local to remote hosts)
  - Supports heterogeneous environment
  - Requires capital expenditure (hardware and software)



### **Rise of Virtualization**

#### Virtualization is not new

- Mainframe virtualization in the 1960s
- Codified in 1970s by Popek and Goldberg's three properties
- Fidelity virtual environment should be identical to physical
- Isolation or Safety VMM must have control of system resources
- Performance little or no difference in performance
- An efficient VMM has all three properties



#### Rise of Windows

- Companies began using technology to achieve competitive advantages and save money (1970s)
- Proprietary solutions were expensive and inflexible
- Windows provided commodity platforms that drove down costs and defeated platform lock-in (1980s)
- Windows limitations often forced a 'one server, one application' policy.



#### Moore's Law

- Processing power doubles roughly every eighteen months.
- Originally, was coined around processing power.
- Today applies to many technologies





### Rapid Data Center Growth

- Windows server growth drove datacenter growth
- Datacenter growth drove resource utilization
- Power, cooling, cables, square footage, staff, security
- Moore's Law made servers more powerful, but less efficient due to application deployment practices



#### Trends that accelerated virtualization

- Consolidation
- Running multiple workloads on a single host
- Containment
- Faster server provisioning
- Dynamic Load Balancing
- Faster development and test environment.
- OS Independence (Reduce vendor lock-in)



### OS and Application Virtualization

#### **OS** Virtualization

- Virtual Workspaces An abstraction of an execution environment
- Virtualization decouples the application and operating system from HW
  - Allows consolidation
  - Enhances utilization
  - Replicated, moved, suspended quickly



#### **OS** Virtualization

- Allows same physical host to serve different workload and isolate each workload.
- Host OS runs on the host, with VMs (workloads) running on top
- These workload can run different OS
- Process isolation is provided by Kernel Host
- Each process have their own file system, processes memory, devices, etc.



#### **Dedicated Server**





#### Virtualized Server





#### Virtualization



- Hypervisor (VMM) abstracts all hardware resources
- Guest OS runs in user mode
- VMM runs in kernel mode
- VMM responsible for controlling physical platform resources and I/O mapping
- Advantage: Run multiple OSs on the same physical platform
- VMM allocate resources based upon the request.



### Application Virtualization

#### Virtualized Servers



#### Containers (Docker)



#### Container

- Container abstracts OS Kernel
  - Hypervisor on abstracts the entire device.
- Container makes it easier to package and move program into different cloud environment
- Container uses shared operating system
  - VM provides more isolation with guaranteed resources



### Load Balancer

### Load Balancing

- Important characteristics of cloud is scalability
- Cloud computing resources can scale on demand
- Load Balancer distributes workload across multiple servers
- Helps achieve optimum utilization of resources
  - Achieve high availability and reliability.
  - In the even of a resource failure, the LB can reroute traffic

# Deployment



### Algorithms

- Load balancer can be programmed to distribute traffic in a variety of ways.
- Following are some of the algorithms (not exhaustive)
- Round Robin
  - Servers are selected one by one to serve the incoming requests
  - Each server gets a request in a circular fashion
  - All servers have same priority.
- Weighted Round Robin
  - Servers are assigned some weight
  - Incoming requested are directed proportion to the weight.
  - Each server will not receive same number of requests.



### Algorithms

- Low Latency
  - Load balancer monitors the latency of each server
  - Incoming requests are routed to server with the lowest latency
- Priority
  - Each server is assigned a priority
  - Incoming request is routed to the highest priority server that is available
  - Lower priority server gets traffic when high priority servers are busy

### Implementation

- Can be implemented in hardware or software
- Software based LB runs on OS
  - Easily run virtualized
- Hardware based solutions use specialized hardware to distribute traffic.



### Hypervisor & Virtual Resources

### Role of Hypervisor

- Arbitrator of resources
- Sits between the physical and virtual resources
- Allocates resources
- Provides virtual environment for workloads
- Without hypervisor OS communicates directly with hardware resources
- Without hypervisor multiple OS would like to access hardware resources simultaneously.



### Traffic Cop

- Gives illusion to the Guest OS that it has direct access to hardware resources
  - Use disk drives, Memory, Network, etc.
- Balance the workload
  - Each guest makes constant demands
  - Hypervisor provides timely response to each request
    - Ensuring adequate resources for all virtual machines



# Hardware Abstraction





## Types

- Two classes of hypervisors:
  - Type 1
  - Type 2



### Type 1

- Runs directly on the hardware
- More secure and more available
- Offers better performance to the guests
- Generates less overhead
  - No intermediate layer of OS
  - More Virtual machines can run on the box





### Type 2

- Runs like an application on OS
- Can support large range of hardware OS dependent
- Not as efficient as Type 1
  - Extra layer between itself and the hardware
  - Every operation from guest OS travels from Hypervisor to OS to Hardware
- Less reliable Underlying OS can impact the hypervisor and VMs
- Good for desktop development environment
  - Single developer working on multiple VMs.





### VMWare ESX (Type 1)

- First commercially available hypervisor (1998) for the x86 platform
- Currently market leader in user share and maturity of offerings
- Architecture not tied to an operating system
- Initial deployment included:
  - Hypervisor
  - Service Console
    - Linux-based console sits alongside the Hypervisor
    - Acted as management interface to Hypervisor
- Subsequently removed Service console Security & Size
  - ESXi



### Xen (Type 1)

- Began as a Cambridge University research project
- First released in 2002 as an open source project
- Currently exists as an open source project
- The core has been used by a number of vendors including Citrix and Oracle
- Implementation different from VMWare architecture
- Special guest Domain 0 (Dom0)
  - Guest is booted when hypervisor is booted
  - Has special admin privileges



## Microsoft Hyper-V (Type 1)

- First release in 2008, but virtualization was available through Virtual Server in 2005
- Different nomenclature
  - Virtualized workloads are called partitions
- Similar architecture to Xen
  - Device drivers part of the parent partition (similar to Dom0)
  - Like Dom0 parent partition runs an OS
- Parent partition is based on Microsoft Windows
  - Creates and manage child partitions and handle management functions



#### Other Solutions

- Red Hat KVM
- Initially XEN, now kernel based (KVM)
- Oracle VM is XEN based
- Many other commercial and free solutions available but the space is still evolving



## Virtual Machines (VM)

- Has many characteristics of a physical server
  - Supports OS
  - Configured with a set of resources
- VM is nothing more than a set of files
  - Configuration File
    - describes resources that the VM can utilize.
  - Virtual disk files



### Virtual Resources

- Virtual CPUs (vCPUs) are scheduled slices on Physical CPUs (pCPUs)
- A processor core is equivalent to a vCPU
- A VM's memory is mapped to physical memory but managed by the hypervisor
- A VM can only see and utilize the amount of memory it has been allocated.
- Like vCPUs, you can only adjust the amount of allocated memory
- There are many memory optimization features available.
- The resource most systems run out of first



## Virtual Networking





## Virtual Storage

- VM talks to virtual SCSI driver
- Hypervisor passes data blocks to/from physical storage
- VM don't have to worry about how they are connected to the storage device
  - Fibre channel, iSCSI, NFS, etc.



# Storage

### Background

- Data storage is an ever-expanding resource.
- Making data store very pervasive
- Everything from refrigerators to automobiles now contains some amount of data storage.
- Appliances like GPS, DVR part of daily routine
- PCs, smart phones, music players, and tablets have experienced storage growth as each new generation of the devices
- Also true in traditional DCs data far greater now (types of data)

### Background

- 2008 8 Exabyte (8 quintillion bytes) data generated
- UC Berkeley concluded Data would double every 6 months
- 2010 Passed 1 zettabytes
- 2011 According to IDC generated 2 zettabytes
- 2020 Forecast to have 40 zettabytes annually



### Traditional environment?

- Most computing devices request information in a similar fashion
- OS controls the access to various I/O devices
- Application program request OS for information to process
- OS passes request to the storage subsystem
- Subsystem passes information (data blocks)
- OS transfers data blocks to the applications



## Storage in Virtual Environment



### SAN/NAS

- Key portion of virtualization storage architecture is clustering and shared storage
- SAN or NAS allows server to access disk storage that is not part of its hardware configuration
- Can be used both by virtual or physical servers
  - Making migration to virtual environment smoother



### Summary

- Storage virtualization is a technical means to what are essentially business ends.
- Reducing the cost of data storage administration,
- Maximizing utilization of storage assets,
- Dynamically aligning data storage capacity to changing application requirements,
- Ensuring high availability access to data, and
- Safeguarding an organization's information



### Network Overview

### What's the Internet: "nuts and bolts" view

- Internet: "network of networks"
  - Interconnected ISPs
- protocols control sending, receiving of msgs
  - e.g., TCP, IP, HTTP, Skype, 802.11
- Internet standards
  - RFC: Request for comments
  - IETF: Internet Engineering Task Force





### What's the Internet: a service view

- Infrastructure that provides services to applications:
  - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
  - hooks that allow sending and receiving app programs to "connect" to Internet
  - provides service options, analogous to postal service





### Two key network-core functions

routing: determines sourcedestination route taken by packets

routing algorithms

forwarding: move packets from router's input to appropriate router output



## Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:\_

is there any hope of *organizing* structure of network?

.... or at least our discussion of networks?



## Why layering?

#### dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
  - layered reference model for discussion
- modularization eases maintenance, updating of system
  - change of implementation of layer's service transparent to rest of system
  - e.g., change in gate procedure doesn't affect rest of system



### Internet protocol stack

- application: supporting network applications
  - FTP, SMTP, HTTP
- transport: process-process data transfer
  - TCP, UDP
- network: routing of datagrams from source to destination
  - IP, routing protocols
- link: data transfer between neighboring network elements
  - Ethernet, 802.111 (WiFi), PPP
- \* physical: bits "on the wire"







### Network Virtualization

# Traditional Data Centers



## Addressing

- The key to all of this is the addressing scheme.
- The Layer 3 or IP address is used to get the packet across the wide-area network to the right data center
- Layer 2 address tells all the switches in the data center which server the traffic should be sent to.
- In the preceding scenario, the following was true:
  - The application was associated with a single server,
  - and all the application-based addressing and programming of the network was based on where that physical server was located,
- Server were dependent on a layer 3 routing subnet (location dependent)
  - Server's IP address will route to the correct data center's access switch



### Addressing with Virtual Machines

- First is that VMs do not roll off a factory line.
  - They get created
- VM machines move a lot
  - As a result, we have some new problems to solve.
    - First, who or what creates MAC addresses, and
    - Second, how do we account for all this moving around because the rest of the network has to know where to send traffic



### Addressing with Virtual Machines

- VM software such as VMSphere or Citrix provides
  - Unique MAC address for each VM created.
  - These VM managers also assign a virtual NIC (vNIC) or multiple vNICs
    - NIC is a specific piece of equipment within a device that uses the MAC address.
- Most of these VM managers also enable you to manually configure the MAC
  - By assigning each individual VM its own MAC
    - You can address that VM individually on the network
    - VM MAC is independent of the physical server's network card
    - Capable and free to migrate to another server without any restrictions



### **Network Virtualization**

- Similar to server virtualization
- Abstraction of the network endpoints from the physical arrangement of the network.
- Network Virtualization refers to the creation of logical groupings of endpoints on a network.
- Endpoints are abstracted from their physical locations
  - VMs can look, behave, and be managed as if they are all on the same physical segment of the network.



### **Network Virtualization**

- Not new
  - VLAN, VPN, MPLS
    - Group physically separate endpoints into logical groups.
    - Enhances efficiencies in traffic control, security, and network management.
- Network is virtualized to get VM mobility
- What is new here:
  - Automation and management tools that have been purposely built for the scale and elasticity of virtualized data centers and clouds.



### **VLANs**

# Virtual Local Area Network

switch(es) supporting VLAN capabilities can be configured to define multiple <u>virtual</u> LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch ......



... operates as multiple virtual switches





## Network Functional Virtualization (NFV)

- NFV refers to the virtualization of Layer 4 through 7 services
- Basically, this is converting certain types of network appliances into VMs,
  - which can then be quickly and easily deployed where they are needed.
- NFV came about because of the inefficiencies that were created by virtualization.
- Virtualization causes a lot of problems, too.
  - One of them was the routing of traffic to and from network appliances
  - With VMs springing up and being moved all over, the traffic flows became highly varied
  - Cause problems for fixed appliances that had to serve the traffic.
- NFV allows to create a virtual instance of network function (Firewall, Load Bal)
  - Can be easily "spun up" and placed where it is needed, just as they would a VM.

application presentation session transport network link physical



## Virtualizing the network

- Network virtualization allows users to fully realize server virtualization features:
  - vMotion, snapshot backups, and push button disaster recovery (to name just a few).
  - The most common reason for virtualizing the network is precisely to get VM mobility



## Summary

- Good old technique that has been around for many years
  - Makes server virtualization, and connecting VMs, easier and efficient.
  - It's easy to see why when you imagine the VMs being spun up here, there, and everywhere in a virtualized data center or cloud and
  - then being paused, moved, started again, or even being moved while still being active.
- With all that spontaneous creation without any regard for the specific physical location in the data center
  - or even with regard to a specific data center
  - having the ability to create and manage logical groupings becomes critical.

