hapter 4	Inner Product Spaces	
ssume F	is either Ror C	
ef 4.1 rel	itive to the standard basis {e,,,en] on IR", the Euclidean norm of a vector x=(x,xn)) is
	$ \chi = \sqrt{\chi_{1}^{2} + \ldots + \chi_{N}^{2}}$	
tv	is now is noulinear	
def 4.2 Ri	lative to the standard basis of \mathbb{R}^n , the dot product of two vectors $x = (x_1,, x_n)$ and $y = (y_1,, y_n)$) is
	$\chi \bullet y = \chi_1 y_1 + + \chi_n y_n$	
t	ois is linear	
ef 4.3 tv	2 dot product on C ⁿ relative to the standard basis (e ₁ ,, e _n) is defined as	
ef 4.41 an	inner product is a map <,>: V × V > IF with the following properties	
	itive definite) $\langle v,v\rangle \geq 0$, with equality if & only if $v=0$	
	with in the 1st argument) for all $x,y,z\in V$, and all $\lambda\in F$, $\langle (x+\lambda y,z)\rangle = \langle x,z\rangle + \lambda\langle x,y\rangle$	
	njugate symmetry for all $x,y,z\in V$, $\langle x,y\rangle = \langle y,\overline{x}\rangle$	
	Judic 2 3 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
(II 10+ 1	be the vector space of continuous real-valued functions on E1, 13. Then	
<u> </u>	$\langle f, q \rangle = \int_{-1}^{1} f(x) g(x) dx$	
ic		
13	an inner product on V	
	thogonal-two vectors u, v in an inner product space (V, <, >) are said to be orthogon	1aJ
if	<u, v="">=0</u,>	
0101	Pythagorean Thm - let u,v&V where V has an inner product <,> with respect to which u,v	,

							1 <u< th=""><th>(<v)< th=""><th>511</th><th>u11 11</th><th>v۱۱</th><th></th><th></th><th></th><th></th><th></th><th colspan="2"></th></v)<></th></u<>	(<v)< th=""><th>511</th><th>u11 11</th><th>v۱۱</th><th></th><th></th><th></th><th></th><th></th><th colspan="2"></th></v)<>	511	u11 11	v۱۱							
			wit	h ea	quali							ne u,	ν is	a sca	lar v	nultiple	of th	e other
NW	4.9	Triang	gle 1	nequ	vality	y - S				wher		is an	inne	r pi	oduct	Space	, ти	en,