■ 情報処理学会第 81回全国大会 (IPSJ2019) at 福岡大学 七隈キャンパス 2019/3/15

# 頑健な皮膚腫瘍診断支援のための body hair augmentation

北田俊輔, 彌冨仁

法政大学 理工学研究科 応用情報工学専攻



#### 悪性黒色腫 (メラノーマ):悪性度の高い皮膚がんの1つ

アメリカ がん統計 [U.S. Cancer Statistics Working Group '14]

- アメリカ国内では毎年 9,000 人近くが死亡
- 2015年には世界中で35万件以上の発症が推定 6万人以上が死亡している

#### 診断方法

- 医師の目視検査がメイン
- 皮膚科医専用の偏光レンズつき拡大鏡である ダーモスコピー による診断
- → 診断精度は**75~84**%程度に留まる [Vestergaard+ '08]



### Convolutional Neural Network (CNN) を用いた 皮膚画像解析を利用した自動診断支援手法

皮膚画像をCNNに入力することで高精度な診断を可能に



### Convolutional Neural Network (CNN) を用いた 皮膚画像解析を利用した自動診断支援手法

皮膚画像をCNNに入力することで高精度な診断を可能に

#### 問題点

- 学習時に**大量**の訓練データが必要
  - 医療データの大規模データセット構築はコストがかかる
     ImageNetで事前学習した深層学習モデルのfine-tuning 診断精度の向上が報告 [Menegola+ '16]
- ダーモスコピー画像は多様な外観を持つ→ 依然として過学習を引き起こしやすい

### Convolutional Neural Network (CNN) を用いた 皮膚画像解析を利用した自動診断支援手法

皮膚画像をCNNに入力することで高精度な診断を可能に

#### 問題点

- 画像中の体毛や陰影、コントラスト不良等が存在
  - 様々な悪条件画像に対して診断精度の**大幅な低下**//elanoma: 0.98
  - 頑健な識別器の構築は**容易ではない**







### Convolutional Neural Network (CNN) を用いた 皮膚画像解析を利用した自動診断支援手法

皮膚画像をCNNに入力することで高精度な診断を可能に

#### 問題点

- 画像中の体毛や陰影、コントラスト不良等が存在
  - 様々な悪条件画像に対して診断精度の**大幅な低下**
  - 頑健な識別器の構築は**容易ではない**
  - ダーモスコピー上の体毛等は前処理で除去 [Lee+ '97]
  - → 体毛が存在していた皮膚部分や腫瘍領域は 補完されてしまい**擬似的**なものに

#### ■ 本研究における貢献

#### 撮影状況に頑健な深層学習に基づく識別システムの構築

- ベースラインとして 最先端の画像認識モデル・半教師あり学習を使用
  - SE-ResNet [Hu+,18] ベースの識別モデル
  - Mean teachers [Tarvainen+ '17] による半教師あり学習
- Body hair augmentationの提案
  - あえて疑似体毛を付与することで 頑健となるよう学習を行う
  - Data augmentationと同様の 作用がありデータの多様性向上





### ■ 関連研究 | 最先端の画像認識モデルと半教師あり学習

#### Squeeze-and-excitation block を持つ SE-ResNet [Hu+,18]

- ILSVRC優勝モデルであり、一般物体認識高い識別精度を誇る
  - → 皮膚腫瘍画像に対しても高い診断精度が出ることを期待
- Squeezeとexcitationによりチャンネルごとにattentionを適用 結合加重の総数を減らすことで過学習を抑制
  - → 小規模な医療画像データに対して頑健性の向上



### ■ 関連研究 | 最先端の画像認識モデルと半教師あり学習

半教師あり学習の枠組み Mean teachers [Tarvainen+ '17]

- 複数の識別器を組み合わせるnetwork ensemble
- 診断ラベルが付与されていない画像も使用できる



### ■ 関連研究 | 最先端の画像認識モデルと半教師あり学習

半教師あり学習の枠組み Mean teachers [Tarvainen+ '17]

- 複数の識別器を組み合わせるnetwork ensemble
- 診断ラベルが付与されていない画像も使用できる



### ■ 提案手法

#### **Body hair augmentation**

- **あえて疑似体毛**を付与することで頑健となるよう学習
  - → 患部付近の体毛がシステムの診断の妨げとなる点に着目
- 皮膚腫瘍診断にフォーカスしたdata augmentation
  - □ 規模の小さい医療データセットに対して多様性を向上
  - 自然な形で擬似体毛を付与することが可能





適用前 (左)と 適用後 (右)

### ■ 提案手法

#### Body hair augmentation アルゴリズム

- 1. Buffonの針 [Buffon 1777] に基づいて 擬似的に体毛を模倣する線を描画 確率的に描画を行い、描画される線は ベジェ曲線に従ってランダムに曲線とする
- 2. 描画した疑似体毛に ガウシアンフィルタを適用しぼかす
- 3. 差分合成を用いて ダーモスコピー画像に合成

曲線の曲率や適用確率は 識別精度を基に決定



### ■ 実験 | Body hair augmentationの効果確認

#### 使用データセット

健全を含む7種類の皮膚腫瘍画像 HAM10000 [Tschandl+ '18] をベースとしたISIC2018 Challenge<sup>1</sup>のtask 3データセット

- NV (健全) が多く、悪性の症例画像が少ない
- 半教師あり学習で診断ラベルのない画像も学習に利用

| labeled |       |     |       | unlabeled |     | Total |            |       |        |
|---------|-------|-----|-------|-----------|-----|-------|------------|-------|--------|
| MEL     | NV    | BCC | AKIEC | BKL       | DF  | VASC  | validation | test  | 10001  |
| 1,113   | 6,705 | 514 | 327   | 1,099     | 115 | 142   | 193        | 1,512 | 11,720 |















### ■ 実験 | Body hair augmentationの効果確認

#### 学習と予測

- Group 5-fold cross validation
  - 同一患者の皮膚画像が学習セットと評価セットに 含まれないように分割する
  - Cross validationで得られた5つの予測結果のaveraging

#### 評価方法

- ISIC2018公式評価セットに対する クラスごとの平均識別率 (balanced accuracy)
  - → 症例の少ないクラスに対して正確に予測する必要がある

### ■ 実験設定 | 実験で用いたモデルアーキテクチャ

使用モデル: ImageNet事前学習済み ResNet101, SE-ResNet101 **Data augmentation:** random crop, flip, rotation, color jitter を使用**半教師あり学習** mean teachers を導入

このアーキテクチャに対して body hair augmentation を適用



| ľ            | Balanced Accuracy [%]                       |      |
|--------------|---------------------------------------------|------|
| SENet        | SENet [Zhuang+, '18] SoTA                   |      |
|              | Baseline                                    | 85.7 |
|              | + Mean teachers                             | 86.9 |
| ResNet101    | + Body hair augmentation                    | 87.5 |
|              | + Mean teachers + Body hair augmentation    | 88.5 |
|              | Baseline                                    | 86.4 |
|              | + Mean teachers                             | 87.3 |
| SE-ResNet101 | + Body hair augmentation                    | 88.4 |
|              | + Mean teachers<br>+ Body hair augmentation | 90.6 |

|              | Model                                                              | Balanced Accuracy [%] |
|--------------|--------------------------------------------------------------------|-----------------------|
| SENet        | [Zhuang+, '18] SoTA                                                | 89.8                  |
|              | Baseline                                                           | 85.7                  |
|              | + Mean teachers                                                    | 86.9 + 1.2 %          |
| ResNet101    | + Body hair augmentation                                           | 87.5                  |
|              | <ul><li>+ Mean teachers</li><li>+ Body hair augmentation</li></ul> | 88.5                  |
|              | Baseline                                                           | 86.4                  |
|              | + Mean teachers                                                    | 87.3 <b>+</b> 0.9 %   |
| SE-ResNet101 | + Body hair augmentation                                           | 88.4                  |
|              | <ul><li>+ Mean teachers</li><li>+ Body hair augmentation</li></ul> | 90.6                  |

|              | Model                                                              | Balanced Accuracy [%] |       |
|--------------|--------------------------------------------------------------------|-----------------------|-------|
| SENet        | [Zhuang+, '18] SoTA                                                | 89.8                  |       |
|              | Baseline                                                           | 85.7                  |       |
|              | + Mean teachers                                                    | 86.9                  | 1.8 % |
| ResNet101    | + Body hair augmentation                                           | 87.5                  |       |
|              | <ul><li>+ Mean teachers</li><li>+ Body hair augmentation</li></ul> | 88.5                  |       |
|              | Baseline                                                           | 86.4                  |       |
|              | + Mean teachers                                                    | 87.3                  | 2.0 % |
| SE-ResNet101 | + Body hair augmentation                                           | 88.4                  |       |
|              | <ul><li>+ Mean teachers</li><li>+ Body hair augmentation</li></ul> | 90.6                  |       |

|              | Model                                                              | Balanced Accuracy [%] |
|--------------|--------------------------------------------------------------------|-----------------------|
| SENet        | [Zhuang+, '18] SoTA                                                | 89.8                  |
|              | Baseline                                                           | 85.7                  |
|              | + Mean teachers                                                    | 86.9                  |
| ResNet101    | + Body hair augmentation                                           | 87.5 + <b>2.8</b> %   |
|              | <ul><li>+ Mean teachers</li><li>+ Body hair augmentation</li></ul> | 88.5                  |
|              | Baseline                                                           | 86.4                  |
|              | + Mean teachers                                                    | 87.3                  |
| SE-ResNet101 | + Body hair augmentation                                           | 88.4 + <u>4.2</u> %   |
|              | <ul><li>+ Mean teachers</li><li>+ Body hair augmentation</li></ul> | 90.6                  |

### ■ 考察 | Body hair augmentationの効果

#### 体毛が目立つサンプルに対する予測精度が向上



なし:AKIEC ×

あり: NV ○



なし:BCC× あり:NV○



なし:NV × あり:VASC ○



なし:NV × あり: AKIEC ○



なし:MEL × あり: AKIEC ○



なし:NV × **あり: DF** ○

### ■ 結論

#### 撮影状況に頑健な深層学習に基づく識別システムの構築

- ベースラインとして 最先端の画像認識モデル・半教師あり学習を使用
  - SE-ResNet ベースの識別モデル
  - Mean teachers による半教師あり学習
- Body hair augmentationの提案
  - あえて疑似体毛を付与することで 頑健となるよう学習が行われた
  - Data augmentationと同様の 作用がありデータの多様性向上



