

Chhatrapati Shahu Maharaj Shikshan Sanstha's

CHH. SHAHU COLLEGE OF ENGINEERING

Kanchanwadi, Paithan Road, Aurangabad.

Date :

Practical No. 5

Implementing SQL commands for triggers

Theory:

* SQL Triggers ..

In SQL Server, tryggers are database objects, actually, a special kind of stored procedure, which "reacts" to certain actions we make in the database. The main idea behind toggers is that they always perform an actions in case some event bappens.

+ Types of SQL Triggers

In SQL Server, we have 3 groups of triggers:

· DMI (data manipulation language) triggers

We use DML SQL Triggers in the case when we want to ass. were that a ceretain control shall be persformed before or after the defined statement on the defined table. This could be the case when your code is all over the place.

eg Database is used by different applications, code is written directly in applications and you don't have well do cumented

They react to DML commands. These are - INSERT, UPDATE

and DELETE.

· DOL (data definition language) triggers As expected, triggers of this type shall react to DDI comm ands like - CREATE, ALTER and DROP.

Kanchanwadi, Paithan Road, Aurangabad.

Date

Practical No. 6.

Aim: Normalization (INF, 2NF, 3NF, BCNF) in database

Theory ..

+ Hormalization :

Normalization is the process of organizing data in the database It is used to minimize redundancy from a relation Normalization divides the larger table into smaller table and link them using relations. It is used to climinate, insert update, delete anomalies

* 1NF :

dega

mm

en

Relation will be in INF if it contains an atomic values. An attain bute of a table can not hold multiple values. It must hold single value attribute

INF doesn't allow multivalued attributes, composite attribute and their combinations

en Tahl	e 1			
STUD - NO	STUD - NAME	STUD - PHONE	STUD-STATE	STUD COUNTRY
1	RAM	9716271721	HARYANA	AIDNI
1	1313131	9874117778	an orall to	
	200	989829 7281	PUNJAB	INDIA
2	RAM	-	PUNIAB	AIGHI
3	SURESH	Convers	sion to INF	
		STUD MONE	STUD- STATE	STUD COUNTRY
STUD - NO	STUD NAME	9716271721	HARYANA	_
1	RAM	411021117478	HARYANA	INDIA
4	RAM		PUNJAB	AIONI
-	RAM	9398297281	BALHUP	AIONI
2	SURESH			

Table 2

Kanchanwadi, Paithan Road, Aurangabad.

Date

INF does not eliminate redundancy but eliminating repeating values 2NF is based on the concept of full functional dependancies The relation is in 2NF.

@ If it is in INF

11 should not contain partial dependancy. If the proper subset of condidate key determine the non-prime attributes then it is called as partial dependancy. The normalization of INF to 2NF involve removal of partial dependancy. If partial dependancy exist we remove partial dependant attribute from the relation by placing them in a new relation

Stud-no	Course-no	Fee	
1	C,	1000	
2	Ca	1500	It is not in 2NF
1	C4	2000	22 13 100 10 211
4	C ₃	1000	
4	Cı	1000	
2	Cs	2000	

f.d = { {stud.no, course_no} -> fee, courseno -> fee}}

Cardidate key : { course no, studno} Prime attributes : { coursero, studroj NPA = } fee}

as course no -> fee it is not in 2NF

To convert this relation into 2NF we need to split this table into 2 tables

Kanchanwadi, Paithan Road, Aurangabad.

Table 1 = { studno, courseno} Table 2 = { courseno, fee}

Date

12NF

tud no	courseno	Table 2		
1	Cı	Courseno	fee	
2	Cz	Cı	1000	
1	C4	Cz	1500	
4	C3	C4	2.000	
4	Cı	Cs	1000	
		(1	1000	
2	CS	Cs	2000	

* 3NF :

A relation is in 3NF if it is in 2NF and doesn't contain any trans. itive partial dependancy. If there is no transitive dependancy for non-prime attributes then relation must be in 3NF. A relation is in 3NF if it holds one of the following conditions for every non-trivial functional dependency

1 x is a super key

(3) y is prome attributes (each elements of y is part of

The normalization of 2NF to 3NF involve removal of transitive some condidate key) depandancies if transitive dependency exist we remove the transitively dependent attributes from the relation by placing the attribute in a new.

relation		a ka	country	age.	
Studno	rame	state	India	20	
1	000	Punjah	India	19	
1	bbb	Maharashtra	TIPA	20	
2	ccc	Maharashtra	Titesia		
2	CCC				

			1	age 3 state -> { country }}
Cd = { st	idno -> S	name state.	country	age state → {countary}}
ck = ck = st	udoo.			
		us explotion	into 3N	I we will decompose the
To	convext	This selation		
relation in	two lab	162		
Table 1				
Studino	Dome	state	oge_	+
1	000	Punjab	20	
2	ddd	Maharashtra	19	
3	ccc	Maharashtra	20	
Table 2				
state	count	204		
Runjah	India	-		
Maharashtro	1101			Application of the same
Maharashty	a Indi	2		
* Boyce (ode Norr	nal Form (BCN)	1	
				the relation is in BCNF
IN SNF	and non-	travial function	DE 3ME	the relation is in BCNE indoncy x - y , x must be
fd : { A -> !	BROCO	. 2	and debe	indoncy x - y , x must be
3 A X0 -	30000			
5k = A' =	A a ct	= CK 0 = {1	3-B-CJ	11 1
4 4	(L) (P) (/3/7/3		ABCS	UA B -]
36 : 0 :	B.C.A.	il I		3) B - C - BCN

Kanchanwadi, Paithan Road, Aurangabad.

Practical No 7

Date:

Aim: Implementing Transactions in SQL

Theory:

· Transaction :-

Transaction is a single logical unit of work which access and possibaly modifies the content of database. Transaction are accessed using

for eg: Account A Read (x)

X = X -500

write (x)

Account B Read (y)

4=4+1000 write (y)

· Properties of Transaction:

a) Automicity:

This property states that either the entire transaction takes place at once or doesn't happen at all Each transaction is considered as one unit and either run to completion or it is not executed at all It involve

- 1) Abort: If the transaction about changes made to database are not vi-
- 2) Commit: If transaction commit changes made by transaction are visible in database.
- Database must be in consistent state before and often the transeding b) Consistency:

Chhatrapati Shahu Maharaj Shikshan Sanstha's CHH. SHAHU COLLEGE OF ENGINEERING Date Kanchanwadi, Paithan Road, Aurangabad. 8 A 4 = 3000 x = 2000 read (y) read(x) y = y + 1000 x = x - 1000 write (4) write (x) x+y=1000+4000 =5000 4) Isolation: Isolation property ensures that multiple transaction executed is say congurantly without leading to inconsistency of database state changes the occurring in perticular transaction will not be visible to any other transaction until that particular changes in that transaction is writte i Set to memory or has been committed. Ta read (x) read (x) x = 500 x = x + 100 read (y) 4=500 write (x) 2= 14 read (4) Loxite (2) 4=4-50 write (4) Transaction must take place in isolation and changes show be visible only after they have been made to the main memory d) Durability: This property ensures that once the transaction has completed execution. The update and modification to the database are and written to the disk and persist even if system failure occurs