Lightweight Contextual Logical Structure Recovery

Po-Wei Huang, Abhinav Ramesh Kashyap, Yanxia Qin, Yajing Yang, Min-Yen Kan

Problem Statement

- Task: Categorize each line into 23 predefined categories that indicate the hierarchy of the document structure.
- Previous work have done this by utilizing rich text features, layout, and visional features.
- Aim: Obtain similar performances with a contextual model on text only.

Data

- Dataset split by document instead of by line.
- Additional labeled test dataset and unlabeled training dataset used in addition to main SectLabel dataset.

Contextual Model Construction

	Dasenne	Shaing window 5
Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt	author	reference
Gardner, Christopher Clark, Kenton Lee, and Luke	reference	reference
Zettlemoyer. Deep contextualized word representa-	bodyText	reference
tions. arXiv preprint arXiv:1802.05365, 2018.	reference	reference

- Context of neighboring lines considered to account for the continous nature of scientific documents.
- Sliding window attention added as an extra layer in between sentence embedding generation and linear classification to prevent computation time increasing quadratically by document length.

Pooling for Sentence Embeddings

• Methods to generate sentence embeddings: [CLS] token, mean pooling, and attention pooling.

Semi-Supervised Learning

Original	Once upon a midnight dreary, while I pondered, weak and weary,
Synonym Replacement (EDA) Random Insertion (EDA)	Erstwhile upon a midnight dreary, while I pondered, weak and weary, Once upon a midnight dreary, while I pondered, weak and once weary,
Random Insertion (EDA) Random Swap (EDA)	Once upon I midnight dreary, while a pondered, weak and weary,
Random Delete (EDA)	Once upon a _ dreary, while I pondered, _ and weary,
Back Translation	Once at midnight it was bleak while I was thinking, weak and tired,

- Semi-supervised learning frameworks: Unsupervised Data Augmentation (UDA) and FixMatch.
- Data Augmentation: Back translation for strong augmentation, Easy Data Augmentation (EDA) for weak augmentation.

Loss Engineering

Training Signal Annealing

Supervised Data Augmentation

- Semi-supervised learning: Improves overall performance but does not improve inference on minority classes.
- Alternative: Engineer the loss term under a supervised setting to emphasizes training on minority classes.
- *Training Signal Annealing* applies a moving ceiling on the confidence of the model prediction such that only the unconfident samples are trained.
- Supervised Data Augmentation adds a consistency loss term to compute the divergence of the model prediction between the labelled text and its augmented version.

Results

	SectLabel		Extended	
Model	Macro F1	Micro F1	Macro F1	Micro F1
SciWING (Ramesh Kashyap and Kan, 2020)	0.732	0.900	_	-
RoBERTa-Attn Model (OURS)	0.806	0.904	0.596	0.870
RoBERTa-Attn Model + UDA _{log} [†]	0.784	0.906	0.669	0.887
RoBERTa-Attn Model + SDA _{log} [†]	0.832	0.929	0.623	0.886
SectLabel (Luong et al., 2010) [‡]	0.847	0.934	_	-

Connect with the first author!

huangpowei@comp.nus.edu.sq

Scholarly Document COL NG
Processing 2022

Scan to read the full paper!