Rappel de cours

•

Exo 1

Preuve par récurrence.

Proposition est vraie pour $u_0 = 0 = 2^0 - 1$.

Supposons que $u_n = 2^n - 1$ pour n > 0, vérifions si $u_{n+1} = 2^{n+1} - 1$.

$$u_{n+1} = 2u_n + 1$$

$$u_{n+1} = 2(2^n - 1) + 1$$

$$u_{n+1} = 2 \cdot 2^n - 1$$

$$u_{n+1} = 2^{n+1} - 1$$

La proposition est Vraie.

Exo 2

Preuve par récurrence.

Proposition est vraie pour $u_0 = 3 = 3^{2*0}$.

Supposons que $u_n = 3^{2n}$ pour n > 0, vérifions si $u_{n+1} = 3^{2(n+1)}$.

$$u_{n+1} = u_n^2$$
$$u_{n+1} = (3^{2n})^2$$
$$u_{n+1} = 3^{4n}$$

La proposition est Fausse.

Exo 3

Prenons $f(x) = x^2 + 1$, et déterminons le signe de f(x) - x selon x.

$$f(x) - x = x^2 + 1 - x = x(x - 1) + 1$$

$$f(x) - x, \begin{cases} > 0 & x \in]-\infty, 0[\\ > 0 & x = 0\\ > 0 & x \in]0, 1[\\ > 0 & x = 1\\ > 0 & x \in]1, +\infty \end{cases}$$

- La fonction f est continue sur \mathbb{R} car c'est un assemblage de fonctions continues sur \mathbb{R} ,
- La fonction f est stable sur \mathbb{R} car $f(\mathbb{R}) \subset \mathbb{R}^+ \subset \mathbb{R}$.
- \bullet La fonction f est strictement croissante
- La fonction f admet un point fixe , donc la suite $u_n = u_n^2 + 1$ est strictement croissante donc tend vers $l \in \mathbb{R} \cup \{+\infty\}$

En passant à la limite dans l'inégalité $u_n > u_0$, on obtient $l > u_0$, et la suite u_n n'est pas constante, on en déduit que $l = +\infty$ donc, la suite $\lim_{n \to +\infty} u_n = \{+\infty\}$.

La proposition est Vraie.

Exo 4

Prenons $f(x) = 1 + \arctan(\frac{x}{2})$, et déterminon le signe de f(x) - x selon x.

$$g(x) = f(x) - x = 1 + \arctan(\frac{x}{2}) - x$$

La fonction g(x) = f(x) - x est strictement décroissante, positive $\forall x \in]-\infty, x_{pf}[$, négative $\forall]x_{pf}, +\infty[$, donc elle s'annule pour un point $x_{pf}in]1 - \frac{\pi}{2}, 1 + \frac{\pi}{2}[$.

$$\begin{cases} f(x) > x & x \in]-\infty, x_{pf}[\\ = 0 & x_{pf}in]1 - \frac{\pi}{2}, 1 + \frac{\pi}{2}[\\ f(x) < x & x \in]x_{pf}, +\infty[\end{cases}$$

- La fonction f est continue sur \mathbb{R} car c'est un assemblage de fonctions continues sur \mathbb{R} ,
- La fonction f est stable sur \mathbb{R} car $f(\mathbb{R}) \subset]1 \frac{\pi}{2}, 1 + \frac{\pi}{2}[\subset \mathbb{R}]$.
- \bullet La fonction f est strictement croissante
- La fonction f admet un point fixe x_{nf}

Cas $u_0 = x_{pf}$, la suite est constante.

cas $u_0 \neq x_{pf}$. Comme la fonction f est strictement croissante sur \mathbb{R} , on $f'(x_{pf}) > 1$, donc le point x_{pf} est répulsif et la suite u_n n'est pas convergente.

La proposition est Fausse.

Exo 5

La proposition est Fausse.

Exo 6

La proposition est Fausse.

Exo 7

La proposition est Fausse.

Exo 8

La proposition est Fausse.

Exo 9

La proposition est Fausse.

Exo 10

La proposition est Fausse.

Exo 11

La proposition est Fausse.

Exo 12

La proposition est Fausse.

Exo 13

La proposition est Fausse.

Exo 14

La proposition est Fausse.

Exo 15

La proposition est Fausse.

Exo 16

La proposition est Fausse.