Linear Algebra Problem Solving Strategies

• Gauss-Jordan Elimination

- 1. Given: a matrix A, find its kernel, or given a system $A\vec{x} = \vec{b}$, find all possible \vec{x} 's, or given some vectors $v_1...v_n$ determine whether a vector \vec{b} can be represented as a linear combination of the vectors
- 2. Either start row-reducing, or augment A with \vec{b} .
- 3. Find the reduced row echelon form of the matrix, by following these three steps:
 - Add or subtract scalar multiples of rows to one another.
 - Divide rows by any scalar $k \in R$.
 - Switch the position of any row with another.
- 4. Usually, the solutions given are either the kernel of the matrix A, or the ker(A) + 1 unique solution to the given system $A\vec{x} = \vec{b}$.

• Sets as Subspaces

- 1. Given: a set or a set relation, determine whether the set of vectors is a subspace of \mathbb{R}^n
- 2. Failsafe: make sure that the $\vec{0}$ is within the set; if not, the set is not a subspace.
- 3. Confirm set preserves vector addition: using two arbitrary vectors \vec{v}_1, \vec{v}_2 in the set, confirm that $\vec{v}_1 + \vec{v}_2$ is also in the set.
- 4. Confirm set preserves scalar multiplication: using arbitrary set element \vec{v} and scalar $k \in R$, confirm that $K\vec{v}$ the given set.

• Matrix Functions

- 1. Given: given a matrix A with dimensions $m \times n$, determine what it does to it's image
- 2. One by one, multiply A by $\vec{e}_1...\vec{e}_m$ to see what the matrix does to a basis of its domain.
- 3. Usually, a given matrix can be any combination of the following, with each property holding a particular characteristic:
 - Rotation, where dimensions remain the same but the basis of the domain is rotated by an angle θ counterclockwise.
 - Scaling, where vectors are scaled up or down by a particular scalar.
 - Projection, where all vectors are projected onto a particular subspace of the domain.
 - Reflection, which can be undone by multiplying the reflected domain-basis vectors by A once again $(A^2 = I_n)$.
 - A vertical or horizontal shear, which do the following:

Shear

• Orthogonal Projection onto Line L

- 1. Given: a vector/line with n components, find the matrix of its projection
- 2. Find the vector on the line L, which is oftentimes given.
- 3. Find the vectors perpendicular to the line L by multiplying by a general vector \vec{x} , and re-wiriting the result as a linear combination of n-1 vectors.
- 4. Use all of the found vectors as columns for a matrix S.
- 5. Find the \mathfrak{B} -matrix of the projection, which is just what the projection does to the columns of S. Let this matrix be called C.
- 6. The matrix of the projection is the matrix $A = SCS^{-1}$.

• Matrix Inverse

- 1. Given: a matrix A with dimensions $n \times n$, find its inverse
- 2. If easy to do so, find the determinant of A to make sure it is in fact invertible (if $\det(A) \neq 0$).
- 3. Augment A with the identity matrix I_n
- 4. Use Gauss Jordan Elimination until you achieve the rref(A) on the right side of the augmentation, which should just be the identity matrix I_n . The matrix on the left side is A^{-1}

• Matrix Image

- 1. Given: a matrix A, find a basis of its image
- 2. Find rref(A).
- 3. The columns of rref(A) with leading 1's correspond to the columns of A that form a basis of im(A).
- 4. If given the size of the kernel, confirm that the size of the image upholds the Rank-Nullity Theorem.

• 3 Matrices

- 1. Given: a basis of vectors $\vec{v}_1...\vec{v}_n$, and an $n \times n$ matrix A, find the \mathfrak{B} matrix of A
- 2. Multiply A by each of the basis vectors $\vec{v}_1...\vec{v}_n$. Label the resultant vectors $\vec{g}_1...\vec{g}_n$.
- 3. Express $\vec{g}_1...\vec{g}_n$ as a linear combination of the vectors $\vec{v}_1...\vec{v}_n$. Those linear combination coefficients become the \mathfrak{B} -matrix of A.

• Orthogonal Projection of \vec{x} onto V

- 1. Given: a vector \vec{x} and a vector space V
- 2. Find an orthonormal basis for V
- 3. Use formula to calculate projection:

$$\operatorname{proj}_{V}(\vec{x}) = (\vec{x} \cdot \vec{u}_{1})\vec{u}_{1} + (\vec{x} \cdot \vec{u}_{2})\vec{u}_{2} + \dots + (\vec{x} \cdot \vec{u}_{n})\vec{u}_{n}$$

• The Gram-Schmidt Process

- 1. Given: orthogonal vectors $v_1...v_n$
- 2. Find u_1 : Scale v_1 by multiplying it by $\frac{1}{\|v_1\|}$
- 3. Find v_2^* : $v_2 (u_1 \cdot v_2)u_1$. Pay attention to the fact that we are using u_1 in caluclations, NOT v_1 .
- 4. Find u_2 : Scale v_2^* by multiplying it by $\frac{1}{\|v_2^*\|}$
- 5. Generalization: Find v_n^* using the following formula:

$$v_n^* = v_n - (u_1 \cdot v_n)u_1 - \dots - (u_{n-1} \cdot v_n)u_{n-1}$$

6. Generalization: Find u_n : Scale v_n^* by multiplying it by $\frac{1}{||v_n^*||}$

• Least Square Solutions

- 1. Given: system of equations
- 2. Rewrite system of equations as matrices in the form $A\vec{x} = \vec{b}$
- 3. Since the system is inconsistent, find the least squares solution by using the formula $A^TA\vec{x}^* = A^T\vec{b}$
- 4. Find the residual sum of squares by using the equation $||b A\vec{x}^*||^2$

• Determinant, Trace, and Triangularity

- 1. Given: $n \times n$ matrix A
- 2. If A is a 2×2 matrix, use formula to find determinant: ad bc
- 3. If A is larger, expand along any row or column of A alternating sign between minors.
- 4. For any A, tr(A) is just the sum of the values on the diagonal.
- 5. If the values in A are all zeros above the diagonal it's called lower triangular. If the values in A are all zeros below the diagonal, it's called upper triangular. The determinant of these matrices is the product of the diagonal entries.

• Eigenvalue Search

- 1. Given: $n \times n$ matrix A and a relationship A observes, tasked with finding the eigenvalues/characteristic polynomial of A
- 2. Pick arbitrary eigenvalue λ ; we know that $A\vec{v} = \lambda \vec{v}$.
- 3. Substitute this fact into the behavior A, observes.
- 4. Solve the equation, factoring out \vec{v} to find the characteristic polynomial or possible eigenvalues.

• Diagonalization

- 1. Given: 2×2 matrix A
- 2. Find the eigenvalues of A by finding $ker(A \lambda I_2)$
- 3. If A has one eigenvalue λ_1 , check the eigenspace of λ_1 . If $\ker(A-\lambda_1I_2)$ IS NOT dimension 2, the matrix is not diagonalizable. Otherwise, you are left with two eigenvectors: \vec{v}_1 and \vec{v}_2
- 4. If A has two eigenvalues λ_1 and λ_2 , it's assumed that A is diagonalizable. For each eigenvalue, find its eigenspace by finding a basis for $\ker(A \lambda_n I_2)$.
- 5. Overview of possible scenarios: 1 eigenvalue with eigenspace dimension 2; 2 real eigenvalues, each with eigenspace dimension 1; 2 complex conjugate eigenvalues with complex conjugate eigenspaces, each with dimension 1.
- 6. Rewrite A as SDS^{-1} , where S is an invertible matrix with columns $v_1...v_2$, and where D is a matrix with the eigenvalues, in order, across the diagonal.
- 7. Additionally, you might have to find S^{-1} . For non-orthogonally diagonalizable matrices, switch the a and d entries in the matrix, negate the b and c entries, and the multiply the resultant matrix by $\frac{1}{\det(S)}$.
- 8. If the matrix is **orthogonally diagonalizable**, then a few extra steps/pieces of information are important:
 - S should be an orthogonal matrix. To check if a matrix is orthogonally diagonalizable, dot A's eigenspaces together. If the dot product is zero, you can normalize the eigenspaces to get an orthogonal S.
 - $-S^{-1}$ is just S^T .
 - In problems involving a 3×3 matrix, there will be two eigenspaces which must be orthogonal to orthogonally diagonalize them. This is usually done by carrying out the Gram-Schmidt process on the 3 vectors: 2 from a plane and 1 from the eigenspace perpendicular to it.

• Discrete Dynamical System

- 1. Given: system of 2 equations; tasked with finding $\vec{x}(t+1)$
- 2. Find A, a 2×2 matrix whose entries are the coefficients of the system of equations. Each coefficient is equal to how a variable changes from t to t+1.
- 3. Express $\vec{x}(t) = A^t \vec{x}(0)$. There are two ways to continue beyond this point:
 - Method A: Find the eigenvalues and eigenvectors of A. Express $\vec{x}(0)$ as a linear combination of the eigenvectors. The resultant form should look like:

$$\vec{x}(t) = c_1 \lambda_1^t \vec{v}_1 + \dots + c_n \lambda_n^t \vec{v}_n$$

– Method B: Diagonalize A. The resultant form should look like:

$$\vec{x}(t) = SD^t S^{-1} \vec{x}(0)$$

4. If the eigenvalues of A are complex, rewrite them using polar form.

• Continuous Dynamical System

- 1. Given: system of 2 differential equations; tasked with finding $\vec{x}(t)$
- 2. Find A, a 2×2 matrix whose entries are the coefficients of the system of equations. Each coefficient reflects a rate of change.
- 3. Express $\vec{x}(t) = e^{At}\vec{x}(0)$. There are two ways to go beyond this point:
 - Method A: Find the eigenvalues and eigenvectors of A. Express $\vec{x}(0)$ as a linear combination of the eigenvectors. The resultant form should look like:

$$\vec{x}(t) = b_1 e^{\lambda_1 t} \vec{v}_1 + \dots + b_n e^{\lambda_n t} \vec{v}_n$$

– Method B: Diagonalize A. The resultant form should look like:

$$\vec{x}(t) = Se^{Dt}S^{-1}\vec{x}(0)$$

4. If the eigenvalues of A are complex, use Euler's formula: $e^{ix} = \cos(x) + i\sin(x)$.

• Converting Complex Numbers to Polar Form

- 1. Given: complex numbers $a \pm bi$
- 2. We need to rewrite these numbers in the form $re^{i\theta}$.
- 3. To do so, we first find r, which is just $\sqrt{a^2 + b^2}$
- 4. Then, find θ by looking at the first two quadrants for a + bi and using knowledge of trigonometric functions. We now have all the necessary components.
- 5. Knowing how to rewrite a + bi, we can rewrite its complex conjugate too!

• Phase Portraits

- 1. Given: general solution to a system of differential equations
- 2. Plot the eigenvectors of the general solution.
- 3. For each eigenspace, orient it inward if its corresponding eigenvalue is negative, and outward if its corresponding eigenvalue is positive.
- 4. Look at the behavior of the system when $t \to \infty$ and when $t \to -\infty$:
 - If both eigenvalues are positive, $-\infty$ should be movement towards the origin, and ∞ would be movement away from the origin.
 - If both eigenvalues are negative, $-\infty$ should be movement away from the origin, and ∞ would be movement towards the origin.
 - If eigenvalues have different signs, the phase portrait's trajectories will look like the trajectories of a rational function, with eigenspaces serving as "asymptotes".
- 5. If dealing with complex roots, trajectories will be cyclical. They will shrink inward if the real component of the eigenvalues is negative; spiral outward if the real component of the eigenvalues is positive; and cycle periodically if the real component of the eigenvalues is equal to 1.
- 6. If dealing with a zero eigenvalue, then regardless of the other eigenvalue, the equilibrium **points** will fall along the zero eigenspace.

• Phase Plane Analysis

- 1. Given: system of nonlinear differential equations
- 2. Find the $\frac{dx}{dt}$ nullclines (vertical dashes).
- 3. Find the $\frac{dy}{dt}$ nullclines (horizontal dashes).
- 4. Mark equilibrium points.
- 5. Orient the regions of the diagram.
- 6. Orient the nullclines based on the regions' orientations.
- 7. Determine whether the equilibrium points are asymptotically stable. For some points, observation isn't enough to make a decision, so we construct a Jacobian for the point at (a,b):
 - The Jacobian J has the form $\begin{bmatrix} f_x(a,b) & f_y(a,b) \\ g_x(a,b) & g_y(a,b) \end{bmatrix}$.
 - Find the eigenvalues of J.
 - If the real components of both eigenvalues are negative, the point is asymptotically stable.
 - If at least one real component of the eigenvalues is positive, the point is asymptotically unstable.
 - Otherwise, the Jacobian is inconclusive.

• Linear Homogeneous Second Order Differential Equations

- 1. Given: a linear second order differential equation of the form f'' + bf' + cf
- 2. Replace the f in the equation with λ and you get the characteristic polynomial.
- 3. Find the roots of the characteristic polynomial, we'll name them α and β .
- 4. If α and β are real, the general solution to this differential equation is:

$$f(t) = c_1 e^{\alpha t} + c_2 e^{\beta t}$$

5. If the roots have non-real components, $p \pm iq$, the general solution to this differential equation is:

$$f(t) = a_1 e^{pt} \cos(qt) + a_2 e^{pt} \sin(qt)$$

• Find Values for Diagonalizable Matrix

- 1. Given: $n \times n$ matrix A, with a variable 'a' as one of the entries
- 2. Find the characteristic polynomial of the matrix.
- 3. Find the eigenvalues of the matrix, (oftentimes) using the quadratic formula.
- 4. Find possible values a such that the algebraic multiplicity of an eigenvalue is ≥ 2 . All values a besides these produce diagonalizable A's.
- 5. Plug in the remaining values, find the $\ker(A \lambda I_n)$ for the repeated eigenvalues λ , to see whether they produce diagonalizable matrices.

• Linear Spaces

- 1. Given: a set S, task is to determine whether it is a linear space
- 2. Check failsafe: Does the zero element fit the description of the set of functions?
- 3. Check if S is closed under addition: Using 2 "things" $x, y \in S$, is $x + y \in S$?
- 4. Check if S is closed under scalar multiplication: Using 1 "thing" $x \in S$ and scalar k, is $kx \in S$?

• Linear Transformations

- 1. Given: transformation T, decide whether it's a linear transformation
- 2. Failsafe: Check if plugging in the zero element produces a zero element.
- 3. Is T closed under addition? Is T(f+g) = T(f) + T(g) for all $f, g \in V$?
- 4. Is T closed under scalar multiplication? Is T(kf) = kT(f) for all $f \in V$ and all real k?

• Linear Transformation Kernel & Image

- 1. Given: linear transformation T, find its kernel and its image
- 2. Find a basis of the kernel by testing what is necessary for the entries of the output to equal zero. This sometimes involves constructing an augmented matrix using information that would produce a zero element as output.
- 3. The image of T is the set of all possible outputs of T. Find a spanning set of the possible outputs (this includes redundancies).
- 4. Use the dimension of the domain and Rank-Nullity Theorem to determine the proper size of the image.
- 5. Either by inspection or by looking at the kernel, find a minimal basis for the image.

• Linear Differential Equations of Order n

- 1. Given: linear differential equation of order n
- 2. There are n linearly independent solutions to this equation.
- 3. Create the characteristic polynomial of the equation by replacing the f^n 's with λ^n 's. Find the eigenvalues of the characteristic polynomial.
- 4. If the eigenvalues are:
 - If (λm) is part of the characteristic polynomial, then $c_1 e^{mt}$ is part of the solution.
 - If $(\lambda^2 m)$ is part of the characteristic polynomial with solutions $\alpha + \beta i$, then $c_1 e^{\alpha t} \cos \beta t + c_1 e^{\alpha t} \cos \beta t$ is part of the solution.
 - If $(\lambda m)^p$ is part of the characteristic polynomial, then $c_1 e^{mt} + c_2 t e^{mt} + ... + c_{p-1} t^{p-1} e^{mt}$ is part of the solution.
- 5. If the linear differential equation is **not** set equal to zero, then another solution needs to be found. To do that, you will be provided with a general solution, usually of the form $A\cos qt + B\sin qt$.
- 6. Plug in the general solution you have been given into the linear differential equation. Collect terms and solve the system of differential equations to find A and B.

• The Gram-Schmidt Process & Inner Product Spaces

- 1. Given: Space W spanned by functions $f_1, f_2, ...$ and inner product rule for some functions $f, g \in V$
- 2. To find g_1 , normalize f_1 by dividing by its norm, or simply, find $\frac{f_1}{||f_1||}$.
- 3. To find g_2 , find f_2^{\perp} , or $f_2 \langle g_1, f_2 \rangle$, and then divide that by its norm.
- 4. Repeat until you get an orthonormal basis!
- 5. To find a projection of some function h onto the subspace W, use the projection formula:

$$\operatorname{proj}_W h = \langle f, g_1 \rangle g_1 + \langle f, g_2 \rangle g_2 + \dots$$

• Fourier Analysis

- 1. Given: some function f, find the Fourier coefficient of f, used to find the $\operatorname{proj}_{T_n} f$
- 2. $\operatorname{proj}_{T_n} f$ has the form $a_0 \cdot \frac{1}{\sqrt{2}} + b_1 \sin x + c_1 \cos x + \dots + b_n \sin nx + c_n \cos nx$
- 3. To find a_0 , find the inner product $\langle \frac{1}{\sqrt{2}}, f(x) \rangle$.
- 4. To find b_k , find the inner product $\langle \sin kx, f(x) \rangle$.
- 5. To find c_k , find the inner product $\langle \cos kx, f(x) \rangle$.
- 6. Generally, keep these things in mind for arbitrary functions $f, g \in V$:
 - If the two functions are even, their product is an even function.
 - If the two functions are odd, their product is an even function.
 - If one of the functions is even and the other odd, their product is an odd function.
 - The inner product of an odd function equals 0.
 - The inner product of functions whose product is even can be rewritten as:

$$\frac{2}{\pi} \int_0^{\pi} f(x) \cdot g(x) dx$$

- Integration by substitution is oftentimes necessary, here's a reminder:

$$\int f(g(x))g'(x) dx = \int f(u) du = F(u) + c$$

where
$$u = g(x)$$
 and $du = g'(x)dx$

- Integration by parts is oftentimes necessary, here's a reminder:

$$\int u \, dv = uv - \int v \, du$$

7. To find the Fourier Sine Series of a function f, you only need to find the b_k coefficients, which equal $\frac{2}{\pi} \int_0^{\pi} f(x) \cdot \sin kx dx$

9

• Verify Solutions to the Heat Equation

- 1. Given: some function f(t,x), determine whether f is a solution to the heat equation
- 2. Check that the f meets the boundary conditions, which are usually given.
- 3. Check that $\frac{\partial f}{\partial t} = \mu \frac{\partial^2 f}{\partial x^2}$ for some constant μ .

• Solving the Heat Equation

- 1. Given: a heat equation f with some boundary conditions and initial condition f(0,x)
- 2. The general solution to the Heat Equation is $f(t,x) = \sum_{k=1}^{\infty} P_k e^{-\mu k^2 t} \sin kx$
- 3. We plug in 0 for t in this general solution, and then set that equal to our initial condition f(0,x).
- 4. To find the P_k terms, we will often only need to find the Fourier Sine Series of the initial condition, if not given the initial condition in terms of the sine function already.
- 5. After finding the P_k terms, we just plug them back into the general solution to find our solution.

• Solving the Wave Equation

- 1. Given: a wave equation f with some boundary conditions and initial conditions f(0,x) and $\frac{\partial f}{\partial t}(0,x)$
- 2. The general solution to the Wave Equation is $f(t,x) = \sum_{k=1}^{\infty} (P_k \cos kct + Q_k \sin kct) \sin kx$
- 3. We plug in 0 for t in this general solution, and then set that equal to our initial condition f(0,x).
- 4. To find the P_k terms, we will often only need to find the Fourier Sine Series of the initial condition if the initial condition wasn't in terms of the sine function already.
- 5. After finding the P_k terms, we find the partial derivative of our general solution and equate that to $\frac{\partial f}{\partial t}(0,x)$ to find the Q_k terms.
- 6. After finding the P_k and Q_k terms, we just plug them back into the general solution to find our solution.