PolarFire Family Power-Up and Resets User Guide

Introduction (Ask a Question)

PolarFire® family of FPGAs use advanced power-up circuitry to ensure reliable power-up. When the device is powered on, the Power-on Reset (POR) circuitry and the System Controller ensure a systematic POR. System Controller is responsible for device boot and design initialization.

This document describes the entire process of device power-up and resets in the PolarFire family. The FPGA fabric is common to the PolarFire family, which consists of the following FPGA devices.

PolarFire FPGAs	Microchip's PolarFire FPGAs are the fifth-generation family of non-volatile FPGA devices, built on state-of-the-art 28 nm non-volatile process technology. PolarFire FPGAs deliver the lowest power at mid-range densities. PolarFire FPGAs lower the cost of mid-range FPGAs by integrating the industry's lowest power FPGA fabric, lowest power 12.7 Gbps transceiver lane, built-in low power dual PCI Express Gen2 (EP/RP), and, on select data security (S) devices, an integrated low-power crypto co-processor.
PolarFire SoC FPGAs	Microchip's PolarFire SoC FPGAs are the fifth-generation family of non-volatile SoC FPGA devices, built on state-of-the-art 28 nm non-volatile process technology. The PolarFire SoC family offers industry's first RISC-V based SoC FPGAs capable of running Linux*. It combines a powerful 64-bit 5x core RISC-V Microprocessor Subsystem (MSS), based on SiFive's U54-MC family, with the PolarFire FPGA fabric in a single device.
RT PolarFire FPGAs	Microchip's RT PolarFire FPGAs combine our 60 years of space flight heritage with the industry's lowest-power PolarFire FPGA family to enable new capabilities for space and mission-critical applications. RT PolarFire FPGA family includes

RTPF500T, RTPF500TL, RTPF500TLS, RTPF500ZT, RTPF500ZTL, RTPF500ZTL, RTPF500ZTLS devices.

The following table summarizes the power-up and reset states in the PolarFire family.

Table 1. Power-Up and Reset States

Component	PolarFire FPGA (MPF)	RT PolarFire (RTPF)	PolarFire SoC FPGA (MPFS)
Power-On	✓	✓	1
Device Boot	✓	✓	✓
Design and Memory Initialization	✓	✓	1
• uPROM	✓	✓	✓
• sNVM	✓	✓	✓
SPI Flash	✓	1	✓
• eNVM	_	_	✓
MSS Pre-Boot	_	_	✓
MSS User Boot	_	_	✓
Device Reset	✓	✓	✓
MSS Reset	_	_	✓

References (Ask a Question)

- For more information about embedded memory blocks, see PolarFire Family FPGA Fabric User Guide.
- For more information about MSS booting, see PolarFire SoC Software Development and Tool Flow User Guide.
- For more information about PCIe® initialization process, see PolarFire Family PCI Express User Guide.
- For more information about Power-Up to Functional Timing, see PolarFire FPGA Datasheet or PolarFire SoC FPGA Advance Datasheet.
- For more information about MSS, see PolarFire SoC FPGA MSS Technical Reference Manual.
- For more information on power supply sequencing requirements and recommendations, see UG0726: PolarFire FPGA Board Design User Guide or UG0901: PolarFire SoC Board Design Guidelines User Guide.

Table of Contents

Int	roducti	ion	1
	Refer	rences	2
1.	Acror	nyms	4
2.	Powe	er-Up	5
	2.1.	Power-On	5
	2.2.	Device Boot	5
	2.3.	Design and Memory Initialization	6
	2.4.	MSS Pre-Boot (For PolarFire SoC FPGA Only)	25
	2.5.	MSS User Boot (For PolarFire SoC FPGA Only)	31
	2.6.	HSIO/GPIO Bank Initialization	31
	2.7.	I/O Recalibration	34
	2.8.	Transceiver Initialization	35
	2.9.	User PLLs and DLLs Initialization	36
		PCIe Initialization	
	2.11.	State of Blocks During Power-Up	37
3.	Polar	Fire FPGA Resets	38
	3.1.	Hard Resets	38
	3.2.	User Reset Generation Schemes	39
4.	Polar	Fire SoC FPGA Resets	43
	4.1.	Hard Resets	43
	4.2.	MSS Resets	43
	4.3.	User Reset Generation Scheme	45
5.	Syste	m Controller Suspend Mode	48
	5.1.	Device Programming and System Services	48
	5.2.	PolarFire SoC Reboot	48
6.	Appe	ndix: Power Supplies	50
7.	Revis	ion History	51
Mid	rochip	o FPGA Support	54
Mid	rochip	o Information	54
	The N	Microchip Website	54
		uct Change Notification Service	
	Customer Support		
	Microchip Devices Code Protection Feature		
	Legal Notice		
	_	emarks	
	Quali	ity Management System	56
		dwide Sales and Service	

1. Acronyms (Ask a Question)

The following table lists the acronyms used in this document.

Table 1-1. List of Acronyms

a last of Action yms	
Acronym	Expanded
AMBA	Arm® Advanced Microcontroller Bus Architecture
eNVM	embedded Non-Volatile Memory
MSS	Microprocessor Subsystem
POR	Power on Reset
SCB	System Controller Bus
sNVM	Secure Non-Volatile Memory
HSIO	High-Speed I/O
GPIO	General Purpose I/O
PLL	Phase-Locked loop
DLL	Delay-Locked loop
FIC	Fabric Interface Controller
PCIe*	Peripheral Component Interconnect Express
SCSM	System Controller Suspend Mode
PUFT	Power-Up to Function Time

2. Power-Up (Ask a Question)

The device power-up process includes the following sequential steps:

- 2.1. Power-On
- 2.2. Device Boot
- 2.3. Design and Memory Initialization
- 2.4. MSS Pre-Boot (For PolarFire SoC FPGA Only)
- 2.5. MSS User Boot (For PolarFire SoC FPGA Only)
- 2.6. HSIO/GPIO Bank Initialization
- 2.7. I/O Recalibration
- 2.8. Transceiver Initialization
- 2.9. User PLLs and DLLs Initialization
- 2.10. PCle Initialization
- 2.11. State of Blocks During Power-Up

2.1 Power-On (Ask a Question)

When the device is powered on, the POR circuitry detects voltage ramp-up on the VDD, VDD18, and VDD25 power supply rails using voltage detectors. For a list of power supplies, see 6. Appendix: Power Supplies. The System Controller remains in the reset state until the required voltage threshold levels are reached. The System Controller is responsible for enabling, or turning on the FPGA fabric and related I/Os.

The voltage detectors in the devices are calibrated with a high-level of accuracy to ensure reliable monitoring of minimum threshold levels. For power-supply threshold voltage levels to release POR, see the "Power-on Reset Voltages" section in respective PolarFire FPGA Datasheet or PolarFire SoC FPGA Advance Datasheet. The device boot starts after a fixed delay of 10 µs once the voltage supply rails reach their respective threshold levels.

In the PolarFire family of devices, there are separate voltage detectors to monitor I/O bank supplies. During POR, the dedicated I/O bank is powered-up, the serial transceivers and the fabric are powered down, and HSIO/GPIO banks are tri-stated. Separate detectors in the associated I/O bank controller (for Bank 3) detect when the VDDI3 is at the level required to allow enabling the inputs and subsequently (after a delay of 200 ns) the outputs of the dedicated I/O bank (including SPI configuration and JTAG I/O).

For more information on power supply sequencing requirements and recommendations, see the "Core Power Supply Operations" section, in respective UG0726: PolarFire FPGA Board Design User Guide or PolarFire SoC Board Design Guidelines User Guide.

2.2 Device Boot (Ask a Question)

After POR circuitry releases the System Controller from reset, the device boot-up procedure is executed by the System Controller to bring-up the FPGA fabric and related I/Os. The System Controller always executes the same device boot-up sequence irrespective of the user design.

The following events occur during device boot-up:

- sNVM is powered up and enabled for normal operation.
- Transceiver I/Os are enabled.
- User voltage detectors are enabled.
- FPGA fabric is powered-up and enabled.
- HSIO and GPIO banks are configured based on the user configuration in the Libero SoC

- Only GPIO can be used before calibration.
- MSS is powered down and MSSIOs are tri-stated (for PolarFire SoC FPGA only).

The following illustration shows the boot-up sequence for a programmed PolarFire FPGA device.

Figure 2-1. Device Boot-Up for PolarFire FPGA

2.3 Design and Memory Initialization (Ask a Question)

After the device boot process completes, the fabric RAM blocks (LSRAMs and μ SRAMs) are initialized to zero by default. In the PolarFire family of devices, the fabric RAM blocks can be initialized with known values, if desired. PCle and XCVR blocks used in the design are initialized with the user configuration data at power-up. The System Controller performs the design and memory initialization during the power-up sequence. The memory initialization data can be stored in μ PROM, sNVM, or an external SPI Flash. The storage location of the initialization data is selected during the Libero design flow. The initialization data can be encrypted for storing in external SPI Flash.

The following figure shows the sequence in which the fabric, PCIe, Transceiver, LSRAMs, and μ SRAMs are automatically initialized. The sequence is customized depending on the resources instantiated in the user design. For example, the PCIE_INIT_DONE will not assert if the user design does not contain PCIe. As a result, the sequence skips the PCIe initialization and moves to the next step. At this stage in PolarFire SoC FPGA device, the MSS remains in reset.

In Libero SoC, memory initialization can be done using any of the following methods:

- Importing the content file using the fabric RAMs tab of the Configure Design Initialization
 Data and Memories option after Place and Route is performed. For more information, see
 2.3.7. How To Set Up Design and Memory Initialization.
- Importing the content file using the **LSRAM and μSRAM Configurator** before Place and Route. For more information, see 2.3.9. RAM Initialization Before Place and Route.

The user can monitor the design initialization status using the Initialization Monitor.

VDD/VDD18/VDD25 VDDIVDDAUX FPGA fabric State Operational FPGA_POR_N FPGA IOs (Bank[i]) State Operational (low speed) BANK_i_VDDI_STATUS BANK_i_CALIB_STATUS PCIe Controller State Auto-init X Operational PCIe IOs State Operational (user config) PCIE_INIT_DONE SERDES XCVRs State Operational Operational (user config) XCVRs IOs State z or enable Rx terminate XCVR_INIT_DONE Fabric LSRAMs State Operational SRAM_INIT_DONE Fabric uSRAMs State USRAM_INIT_DONE DEVICE_INIT_DONE AUTOCALIB_DONE SUSPEND_EN

Figure 2-2. Power-up To Functional Time (PUFT)

The total power-up to functional time is as shown in the following equation:

tPUFT = tFAB_READY(cold/warm) + max((tPCIE + tXCVR + tLSRAM + tUSRAM), tCALIB)

PUFT is variable depending on the design configuration.

For more information about typical PUFT, see respective PolarFire FPGA Datasheet or PolarFire SoC FPGA Advance Datasheet.

Important:

- Power-up To Functional Time is based on the case where VDDI/VDDAUX of I/O banks are powered either before or after VDD/VDD18/VDD25. The I/O bank enable time is measured from the assertion time of VDD/VDD18/VDD25. If VDDI/VDDAUX of IO banks are powered sufficiently after VDD/VDD18/VDD25, then the I/O bank enable time is measured from the assertion of VDDI/VDDAUX. In this case, I/O operation is indicated by the assertion of BANK_#_VDDI_STATUS, rather than being measured relative to FABRIC_POR_N negation.
- The assertion of AUTOCALIB_DONE can occur before or after the assertion of DEVICE_INIT_DONE. The time taken for the assertion of AUTOCALIB_DONE depends on:
 - The time when VDDI/VDDAUX is up after VDD/VDD18/VDD25 is powered on.
 - The ramp times of VDDI of each I/O bank designated for auto-calibration.
 - How much auto-initialization is to be performed for the PCIe, SerDes transceivers and fabric LSRAMs.
 - If any of the I/O banks specified for auto-calibration do not have their VDDI/VDDAUX powered on within the auto-calibration timeout window, then it auto-calibrates whenever VDDI/VDDAUX is subsequently powered on. To obtain an accurate calibration on such I/O banks, it is necessary to initiate a re-calibration (using CALIB_START from fabric).
 - Whenever the VDDI of one of these specified I/O banks reaches its minimum operational level, the firmware times the subsequent VDDI ramp time and then starts the corresponding I/O calibration state machine.
 - User logic in the FPGA fabric can determine if a given I/O bank has completed its auto-calibration or not by means of looking at the corresponding calib_status signal to the fabric known as BANK#_CALIB_STATUS in SmartDesign.
- SUSPEND_EN asserts (if the suspend mode is enabled) about 100 system controller clock cycles after assertion of DEVICE INIT DONE or AUTOCALIB DONE.
- PolarFire family of devices have built-in tamper detection features to monitor voltage supplies and flags to detect minimum or maximum threshold values. These flags are valid only after design initialization, and not during POR.

The following signals are asserted during the design initialization:

- DEVICE_INIT_DONE: asserted once the execution of design initialization is complete.
- FABRIC POR N: de-asserted when the fabric is operational.
- PCIE_INIT_DONE: used by fabric logic to hold PCIe-related fabric logic in reset until the PCIe
 controller is initialized. PCIE_INIT_DONE is asserted after initializing the PCIe lane instances
 placed in the PCIe quad. If XCVR lanes are placed in the PCIe capable quad, then XCVR_INIT_DONE
 is asserted.
- XCVR_INIT_DONE: asserted when the XCVR block is initialized.
- SRAM_INIT_DONE: asserted when the LSRAM blocks are initialized.
- USRAM_INIT_DONE: asserted when the μSRAM blocks are initialized.
- BANK_#_CALIB_STATUS: This signal can be used by user logic to determine if the calibration completes for each IO banks. # denotes the bank number (0, 1, 7, 8, and 9).
- BANK_#_VDDI_STATUS: This signal can be used to monitor status of VDDI supply on specific I/O banks. This signal is the output signal from the INIT_MONITOR IP if any of the corresponding bank is selected. # denotes the bank number (0, 1, 7, 8, and 9).
- SRAM_INIT_FROM_SNVM_DONE: asserted when SRAM is initialized from sNVM.

- USRAM INIT FROM SNVM DONE: asserted when USRAM is initialized from sNVM.
- SRAM INIT FROM UPROM DONE: asserted when SRAM is initialized from µPROM.
- USRAM_INIT_FROM_UPROM_DONE: asserted when USRAM is initialized from µPROM.
- SRAM_INIT_FROM_SPI_DONE: asserted when SRAM is initialized from SPI.
- USRAM_INIT_FROM_SPI_DONE: asserted when USRAM is initialized from SPI.

2.3.1 PolarFire Initialization Monitor (Ask a Question)

PolarFire Initialization Monitor (PF_INIT_MONITOR) is an available IP that exposes the device configuration status to the FPGA fabric. This IP must be instantiated in the FPGA fabric in all designs and is used to gate the operation of user fabric logic until the device initialization is complete. The assertion of DEVICE_INIT_DONE signifies the completion of device configuration. PolarFire family of devices have a System Controller Suspend mode (SCSM) feature that can be used to force the system controller into reset after device initialization is complete. This mode is desirable for safety critical applications to protect the device from unintended device programming or zeroization of the device due to Single Event Upset (SEU) events. When using the device System Controller Suspend mode feature, the Latch System Controller outputs option must be enabled. The exposed CLK_160_MHZ port must be connected to the internal 160 MHz RCOSC. The PF_INIT_MONITOR IP is available in the IP Catalog under Clock and Management as shown in the following figure.

Important: For PolarFire and RT PolarFire devices, when using the System Controller Suspend mode feature of the device and the JTAG_TRST_B pin is asserted to a logic high, all outputs of the PF_INIT_MONITOR macro are forced = 0. This scenario occurs when the user intends to reprogram the device or debug the device using SmartDebug. Since the PF_INIT_MONITOR macro outputs are often used for resetting the user logic design, so appropriate user design considerations must be made for this operational case. For more information about System Controller Suspend mode feature, see PolarFire Family System Services User Guide.

Figure 2-3. PolarFire Initialization Monitor Configurator

The following figure shows the **Dynamic Recalibration** tab.

Figure 2-4. PolarFire Initialization Monitor Configurator - Dynamic Recalibration

PolarFire Initialization Monitor provides simulation support. Use the **Simulation Options** tab to specify the time of releasing the output signals from the zero time instance. The following figure shows the **Simulation Options** tab.

Bank Monitor Simulation Options Dynamic Recalibration ☐ Simulation Options 0 FABRIC_POR_N assertion delay (ns) PCIE_INIT_DONE assertion delay (ns) SRAM_INIT_DONE assertion delay (ns) 6 USRAM INIT DONE assertion delay (ns) 9 DEVICE_INIT_DONE assertion delay (ns) | 12 □ Calibration monitor BANK_0_CALIB_STATUS assertion delay (ns) 1 BANK_1_CALIB_STATUS assertion delay (ns) 1 BANK_2_CALIB_STATUS assertion delay (ns) 1 BANK_4_CALIB_STATUS assertion delay (ns) 1 □ VDDI monitor BANK_0_VDDI_STATUS assertion delay (ns) 1 BANK_1_VDDI_STATUS assertion delay (ns) 1 BANK_2_VDDI_STATUS assertion delay (ns) 1 BANK_4_VDDI_STATUS assertion delay (ns) 1

Figure 2-5. PolarFire Initialization Monitor Configurator - Simulation Options

Important: I/Os must be calibrated before initiating the training logic of the DDR controller. This requires generating a reset signal by ANDing the DEVICE_INIT_DONE and BANK_#_CALIB_STATUS signals of the PF_INIT_MONITOR IP. BANK_# refers to the BANK where the DDR subsystem is placed.

2.3.2 PolarFire SoC Initialization Monitor (Ask a Question)

Help

PolarFire SoC Initialization Monitor (PFSOC_INIT_MONITOR) is an IP that exposes the device configuration status to the FPGA fabric. This IP must be instantiated in the FPGA fabric in all designs and can be used to gate the operation of user fabric logic until the device initialization is complete. The assertion of DEVICE_INIT_DONE signifies the completion of the device configuration. PolarFire family of devices have a System Controller Suspend mode feature that can be used to force the system controller into reset after device initialization is complete. This mode is essential for safety critical applications to protect the device from unintended device programming or zeroization of the device due to Single Event Upset (SEU) events. When using the device System Controller

Suspend mode feature, the Latch System Controller outputs option must be enabled. The exposed CLK_160_MHZ port must be connected to the internal 160 MHz RCOSC. The PFSOC_INIT_MONITOR IP is available in the IP Catalog under Clock and Management as shown in the following figure.

Figure 2-6. PolarFire SoC Initialization Monitor Configurator

The following figure shows the **Dynamic Recalibration** tab.

Figure 2-7. PolarFire SoC Initialization Monitor Configurator - Dynamic Recalibration

PolarFire SoC Initialization Monitor provides simulation support. Use the **Simulation Options** tab to specify the time of releasing the output signals from the zero time instance. The following figure shows the **Simulation Options** tab.

Figure 2-8. PolarFire SoC Initialization Monitor Configurator - Simulation Options

Important: I/Os must be calibrated before initiating the training logic of the DDR controller. This requires generating a reset signal by ANDing the DEVICE_INIT_DONE and BANK_#_CALIB_STATUS signals of the PFSOC_INIT_MONITOR IP. BANK_# refers to the BANK where the DDR subsystem is placed.

2.3.3 Secured Non-Volatile Memory (sNVM) (Ask a Question)

Each device has 56 Kbytes of sNVM, organized into 221 pages of 236 or 252 bytes depending on whether the data is stored as plain text or encrypted/authenticated data. It can be accessed through system service calls to the System Controller. Pages within the sNVM can be marked as ROM during bitstream programming. The sNVM content can be used to initialize LSRAMs and μ SRAMs with secure data.

The following formulas applies where there is at least one LSRAM or USRAM to be auto-initialized in the user design, giving a duration in milliseconds, for the initialization of the RAM blocks from sNVM.

 $tLSRAM_pt_SNVM = ((14.0875+(541.4125\times L))/1000)\pm6\%$

 $tUSRAM_pt_SNVM = ((14.0875+(29.325\times L))/1000)\pm6\%$

Where,

L = Number of LSRAMs to be auto-initialized

Important: pt in "tLSRAM_pt_SNVM" and "tUSRAM_pt_SNVM" refers to "plaintext" .

2.3.4 Embedded Non-Volatile Memory (eNVM) (For PolarFire SoC FPGA Only) (Ask a Question)

PolarFire SoC FPGA devices include one embedded non-volatile memory (eNVM) block size of 128 KB. eNVM supports Single error correction and dual error detection (SECDED) protected, High Data Retention Time. For more information, see PolarFire Family Security User Guide.

2.3.5 μPROM (Ask a Question)

The PolarFire family of devices has a micro-programmable read-only memory (μ PROM) row located at the bottom of the fabric. It supports up to 513 Kbytes of non-volatile, read-only memory for the PolarFire FPGA. It supports up to 553 Kbytes of non-volatile, read-only memory for the PolarFire SoC FPGA. The address bus is 16-bit wide and the read data bus is 9-bit wide. Fabric logic has access to the entire μ PROM data.

The following formulas apply where there is at least one LSRAM or USRAM to be auto-initialized in the user design, giving a duration in milliseconds.

 $tLSRAM_pt_UPROM = ((30.1325+(663.7125\times L))/1000)\pm6\%$

 $tUSRAM_pt_UPROM = ((30.1325+(28.75\times U))/1000)\pm6\%$

Where.

L = Number of LSRAMs to be auto-initialized

U = Number of small SRAMs to be auto-initialized

Important: pt in "tLSRAM_pt_UPROM" and "tUSRAM_pt_UPROM" refers to "plaintext" .

2.3.6 External SPI Flash (Ask a Question)

The SPI Flash memory interfaces with the System Controller's SPI interface and can store the programming images. The System Controller supports devices from vendors like Micron, Winbond, and Spansion.

Fabric SRAM (tLSRAM and tUSRAM) in SPI Flash can be initialized using Plaintext Initialization Data, Authenticated Plaintext Initialization Data, and Authenticated Encrypted Initialization Data.

If user design does not require the auto-initialization of any large FPGA fabric SRAMs, the tLSRAM parameter is zero. If user design does not require the auto-initialization of any small FPGA fabric SRAMs (USRAMs), the tUSRAM parameter is zero.

2.3.6.1 Plaintext Initialization Data Without Authentication (Ask a Question)

The following formulas apply where there is at least one LSRAM or USRAM to be auto-initialized in the user design from SPI Flash, giving a duration in milliseconds.

 $tLSRAM_pt = [[{(ROUNDUP(4.034 \times L)+1) \times 8192/f} + (130 \times L)]/1000] + 1 \pm 6\%$

tUSRAM pt = $[[{(ROUNDUP(0.144\times U)+1)\times 8192/f} + (25\times U)]/1000]+1 \pm 6\%$

Where,

L = Number of LSRAMs to be auto-initialized

U = Number of small SRAMs to be auto-initialized

f = Frequency of the SPI clock in MHz

Important: pt in "tLSRAM_pt" and "tUSRAM_pt" refers to "plaintext".

2.3.6.2 Authenticated Plaintext Initialization Data (Ask a Question)

If authentication of the plaintext initialization data is selected, an additional 103 ms \pm 6% must be added to the tLSRAM_pt and tUSRAM_pt timing parameters.

Important: pt in "tLSRAM_pt" and "tUSRAM_pt" refers to "plaintext".

2.3.6.3 Authenticated Encrypted Initialization Data (Ask a Question)

The following formula calculates the additional time required for LSRAM to perform the encryption. $tLSRAM_enc = tLSRAM_pt+tLSRAM_auth+((ROUNDUP((L\times2560)/1024,1)+1)\times1024\times8/Dlsram)/1000$ Where, pt in "tLSRAM_pt" refers to "plaintext".

Important: Disram depends on the SPI SCK frequency.

The following table lists the LSRAM encrypted data divisor settings.

Table 2-1. LSRAM Encrypted Data Divisor Settings

SPI_SCK Frequency (MHz)	Dlsram
13.33	180
20	30
40	15

The following formula calculates the additional time required for USRAM to perform the encryption. $tUSRAM_enc = tUSRAM_pt + tUSRAM_auth + ((ROUNDUP((U \times 2560)/1024,1) + 1) \times 1024 \times 8/Dusram)/1000$ Where,

- tLSRAM_pt = tLSRAM
- tUSRAM pt = tUSRAM
- auth in "tLSRAM auth" and "tUSRAM auth" refers to "Authenticated Plaintext".
- pt in "tUSRAM_pt" refers to "plaintext".
- $tLSRAM_auth = tUSRAM_auth = 103ms \pm 6\%$.

Important: Dusram depends on the SPI SCK frequency.

The following table lists the USRAM encrypted data divisor settings.

Table 2-2. USRAM Encrypted Data Divisor Settings

SPI_SCK Frequency (MHz)	Disram
20	45
40	20

For SPI_SCK frequency of 13.3 MHz, the formula is as follows:

tUSRAM_enc = tUSRAM_pt + tUSRAM_auth + 0.01

2.3.7 How To Set Up Design and Memory Initialization (Ask a Question)

This section describes how to initialize PCIe, transceivers, and fabric RAM blocks using the **Configure Design Initialization Data and Memories** option in Libero SoC. Design and Memory Initialization is divided into three stages of initialization as shown in the following figure.

Figure 2-9. Design and Memory Initialization

- 1. The first stage client is responsible for bring-up of FPGA fabric and related IOs, and then deasserts the FABRIC_POR_N signal. This client is stored in the sNVM at the top of the address space.
- 2. The second stage client initializes the PCIe and XCVR blocks present in the design. The client is stored in the sNVM and the starting address of the client is configurable.
- 3. The third stage client initializes the fabric RAMs present in the design. Each logical RAM in the design can be initialized from a different Storage Type—sNVM, μ PROM, or SPI Flash. The starting address of these storage types is configurable.

Important:

- **Broadcast instructions to initialize RAMs to zeros** option initializes all RAM blocks to zeros before FABRIC_POR_N signal is asserted. On enabling this option, the physical instances with zero data in stage 2_3 or stage_3 assembly files are filtered out.
- The second stage client initializes the PCIe and XCVR blocks present in the design.
 Import a text file to change the default PCIe/XCVR register values (custom configuration).
 This modifies the Stage 2 generated assembly file (from default flow). The format in the text file to change the register content is as follows: Instance_Name,
 Register:Field_Name, and Hex value separated by spaces. For example: PF_PCIE_0/
 PCIESS_LANEO_Pipe_AXIO_SER_DRV_CTRL:TXDRVTRIM_0xFFFFFF
- When initializing RAM from SPI Flash, ensure that the System Controller SPI interface is in the Master mode by setting the IO_CFG_INTF pin to 1.
- The SPI Clock divider value specifies the required SPI SCK frequency to read the initialization data from SPI Flash. The SPI Clock divider value must be selected based on the external SPI Flash operating frequency range.
- SPI part for the PolarFire FPGA is MT25QU01GBBB and for the PolarFire SoC FPGA is MT25QL01GBBB. Flash is connected to Bank 6 (1.8V) on the PolarFire FPGA and Bank 3 (3.3V) on the PolarFire SoC FPGA.

Table 2-3. SPI Clock Divider Value

SPI Clock Divider Value	SCK Frequency
2	40 MHz
4	20 MHz
6	13.3 MHz

Follow these steps to initialize fabric RAMs at power-up:

- 1. Select the required logical RAM from the **Fabric RAMs** tab and click **Edit**. The Edit Fabric RAM Initialization Client window provides the following options to:
 - Initialize the client from an Intel-Hex (*.hex), Simple-Hex(*.shx), Motorola-S (*.s), or Microchip Binary (*.mem)
 - Initialize the client with Zeros
 - Create the client as a placeholder with no content
 - Select **Storage Type** for the client

Figure 2-10. Fabric RAMs

- 2. After configuring the RAM initialization client, click Apply on the Fabric RAMs tab.
- 3. Select **Generate Design Initialization Data** under **Design Flow** tab. It automatically generates the first, second, and third stage initialization clients, which are automatically added to the non-volatile memory that the user chooses.

The **Generate Design Initialization Data** is highlighted as shown in the following figure.

Figure 2-11. Generate Design Initialization Data

The initialization clients are added to the respective tab; µPROM, SNVM, SPI Flash, or eNVM (for PolarFire SoC FPGA only). When plaintext or ciphertext authenticated clients are added, **Initialize sNVM Master Key** option is enabled and grayed out, as shown in the following figure.

Figure 2-12. Initialization Clients Generated in sNVM

Important: The second stage client is added to sNVM if the user design includes the PCIe or XCVR block.

The following figure shows the **Configure Bitstream** dialog, which is updated as per the sNVM configurations.

Figure 2-13. Configure Bitstream

If SPI Flash is selected as the storage type, the initialization client is added to the **SPI Flash** tab as shown in the following figure.

Figure 2-14. Third Initialization Client on SPI Flash

4. If an external SPI Flash is chosen for stage 3, before completing the **Run PROGRAM Action**, you should generate **Generate SPI Flash Image** and **Run PROGRAM_SPI_IMAGE Action** from the **Design Flow** tab, as shown in the following figure.

Figure 2-15. Program SPI Flash Image

These steps ensure that PCIe, XCVR, and Fabric RAMs present in the design are initialized during power-up using initialization clients placed in the non-volatile memory based on the user selection.

2.3.7.1 SPI Flash Client Configuration (Ask a Question)

Memory initialization data stored in SPI Flash can be encrypted and binded with the device. The Design Initialization tab provides the following encryption/binding options:

- SPI Flash Binding Encrypted with Default Key In this case, KLK is used as the root key for authentication and encryption/decryption
- SPI Flash Binding Encrypted with User Encryption Key 1 (UEK1)
 In this case, UEK1 is used as the root key for authentication and encryption/decryption

SPI Flash – Binding Encrypted with User Encryption Key 2 (UEK2)
 In this case, UEK2 is used as the root key for authentication and encryption/decryption

2.3.7.2 eNVM Client Configuration (For PolarFire SoC FPGA Only) (Ask a Question)

If eNVM is selected as the storage type, the initialization client is added to the eNVM tab as shown in the following figure. Once the initialization client is added to the eNVM, double-click **Generate Bitstream** from the **Design Flow** tab.

Figure 2-16. Fourth Stage Initialization Client in eNVM

Double-click **Design Initialization Data and Memory Report** to generate the report. See the following figure.

Figure 2-17. Design Initialization Data and Memory Report

Right-click **BOOT_MODE_1_ENVM_CLIENT** and select **Edit** to edit the Plaintext Boot Mode 1 client as shown in the following figure.

Figure 2-18. Edit PlainText Boot Mode 1 Client

Important: Select **Include this client in eNVM digest calculation** option if the client is updated through bitstream; JTAG, SPI Slave, and SPI Master Programming.

The following figure shows the **Configure Bitstream** dialog, which is updated as per the eNVM configurations.

Figure 2-19. Configure Bitstream

2.3.8 Power-Up To Functional (PUFT) Timing Data Report (Ask a Question)

The information about PUFT timing data is available in the Design Initialization Data and Memories report of the Libero SoC. To indicate the completion of initialization of each block, such as PCIE, XCVR, RAMs, a signal is asserted as part of device initialization after power-up. For example, PCIE_INIT_DONE signal is asserted after all the PCIE related registers are configured. The last signal that is asserted is DEVICE_INIT_DONE. The PUFT timing parameters such as TPCIE, TXCVR, TLSRAM,

and TUSRAM are included in the PUFT timing data report. For information, see respective PolarFire FPGA Datasheet or PolarFire SoC FPGA Advance Datasheet.

In cases of PCIE and XCVR blocks, the number of instructions used to initialize the registers of that block are counted after FABRIC_POR is asserted in each case. Software implementation of PUF timing for any signal is a product of 'number of instructions' and a constant. This number is added to the report for every signal.

PUFT_{signal} = (Number_Of_Instructions × Constant) ns

In case of SRAM and μ SRAM blocks, the amount of time taken to initialize vary from number of blocks measured on a device. This average time to initialize one block is used to compute the PUF timing of that signal. There is a constant time taken by system controller to copy the data to initialize the first block (Constant_Copy_Time). When the first block is being initialized, the data for initializing the second block is copied in background.

PUFT_{signal} = Constant_Copy_Time + (Number_Of_Blocks × Average_Time_to_Init_One_Block) ns

These signals are asserted in a sequence so the PUFT timing for each signal depends on:

- The previous block(s) in the sequence being instantiated in the user design (or not)
- The configuration of the block (Some configurations may need a few additional registers.)

SRAMs and μ SRAMs can be initialized from different storage locations (sNVM, UPROM, and SPI). In the case of SPI, additional data needs to be collected depending on the SPI clock divider value and the encryption type selected.

2.3.9 RAM Initialization Before Place and Route (Ask a Question)

During Fabric RAM IP core creation, the content file can be imported for simulation. The path of the content file is stored and passed to the Design and Memory Initialization stage.

Follow these steps to initialize Fabric RAM using LSRAM and µSRAM configurator:

 In the PF Two-Port Large SRAM Configurator window, select the Memory Initialization Settings tab. Then, select the Initialize RAM at Power-up check box as shown in the following figure.

Configurator PF Two-Port Large SRAM Microsemi:SgCore:Pf_TPSRAM:1.1.108 Parameter settings | Port settings Memory Initialization Settings ✓ Initialize RAM at Power Up RAM Configuration 1024 1024 Depth: Width: 20 PF TPSRAM 0 Content from file Reset All Values W_DATA[19:0] RAM Content Editor W_ADDR[9:0] Write Port View Read Port View -R_ADDR[9:0] R_DATA[19:0] Go To Address: 0 -W_EN CLK Default Data Value: 0 PF TPSRAM Address: DEC ■ Messages ② Errors 🔔 Warnings 🜒 Info Help +

Figure 2-20. PF Two-Port Large SRAM Configurator Window

2. Select the **Import File** option and import memory content file (Intel-Hex) from the **Import Memory Content** dialog box, as shown in the following figure. File extensions are set to *.hex for Intel-Hex files during import. The imported memory content is displayed in the RAM **Content Editor** pane.

OK

Cancel

Figure 2-21. Import Memory Content

3. After Place and Route, select the storage type for the content file and generate the initialization client using the procedure mentioned in 2.3.7. How To Set Up Design and Memory Initialization.

For more information about LSRAM and μ SRAM Configurators and user options, see the "**Embedded Memory Blocks**" section in PolarFire Family Fabric User Guide.

2.4 MSS Pre-Boot (For PolarFire SoC FPGA Only) (Ask a Question)

Upon successful completion of Design Initialization (assertion of DEVICE_INIT_DONE), MSS Pre-boot starts its execution. The MSS is released from a reset after completion of all normal startup procedures. The System Controller manages the programming, initialization, and configuration of the devices. For ES devices, MSS Pre-boot does not occur if the programmed device is configured for System Controller suspend mode.

The MSS pre-boot phase of initialization is coordinated by System Controller firmware, although it may make use of the E51 in the MSS Core Complex to perform certain parts of the pre-boot sequence.

The following events occur during the MSS pre-boot stage:

- Power-up of the MSS embedded Non-Volatile Memory (eNVM)
- Initialization of the redundancy repair associated with the MSS Core Complex L2 cache
- Authentication of User boot code (if User Secure boot option is enabled)
- Handover operational MSS to User Boot code

The MSS Core Complex can be booted in one of four modes. The following table lists the MSS pre-boot options, which can be configured and programmed into the sNVM. The boot mode is

defined by the user parameter U_MSS_BOOTMODE[1:0]. Additional boot configuration data is mode-dependent and is defined by the user parameter U_MSS_BOOTCFG (see Table 2-6 and Table 2-8).

Table 2-4. MSS Core Complex Boot Modes

U_MSS_BOOTMODE[1:0]	Mode	Description
0	Idle boot	MSS Core Complex boots from boot ROM if MSS is not configured
1	Non-secure boot	MSS Core Complex boots directly from address defined by the U_MSS_BOOTADDR
2	User secure boot	MSS Core Complex boots from sNVM
3	Factory secure boot	MSS Core Complex boots using the factory secure boot protocol

The boot option is selected as part of the Libero design flow. Changing the mode can only be achieved through the generation of a new FPGA programming file.

Figure 2-22. MSS Pre-boot Flow

2.4.1 Idle Boot (Ask a Question)

If the MSS is not configured (For example, blank device), then the MSS Core Complex executes a boot ROM program which holds all the processors in an infinite loop until a debugger connects to the target. The boot vector registers maintain their value until the device is reset or a new boot mode configuration is programmed. For configured devices, this mode can be implemented using the U_MSS_BOOTMODE=0 boot option in the Libero configurator.

Important: In this mode, U_MSS_BOOTCFG is not used.

The following figure shows the Idle boot flow.

Figure 2-23. Idle Boot Flow

2.4.2 Non-Secure Boot (Ask a Question)

In this mode, the MSS Core Complex executes from a specified eNVM address without authentication. It provides the fastest boot option, but there is no authentication of the code image. The address can be specified by setting U_MSS_BOOTADDR in the Libero Configurator. This mode can also be used to boot from any FPGA fabric memory resource through FIC. This mode is implemented using the U_MSS_BOOTMODE=1 boot option.

The MSS Core Complex is released from reset with boot vectors defined by U_MSS_BOOTCFG (as listed in the following table).

Table 2-5. U_MSS_BOOTCFG Usage in Non-Secure Boot Mode 1

Offset (bytes)	Size (bytes)	Name	Description
0	4	BOOTVEC0	Boot vector for E51
4	4	BOOTVEC1	Boot vector for U540
8	4	BOOTVEC2	Boot vector for U541
16	4	BOOTVEC3	Boot vector for U542
20	4	BOOTVEC4	Boot vector for U543

The following figure shows the Non-Secure boot flow.

Figure 2-24. Non-Secure Boot Flow

2.4.3 User Secure Boot (Ask a Question)

This mode allows user to implement their own custom secure boot and the user secure boot code is placed in the sNVM. The sNVM is a 56 Kbytes non-volatile memory that can be protected by the built-in physically unclonable function (PUF). This boot method is considered secured because sNVM pages marked as ROM are immutable. On power up, the System Controller copies the user secure boot code from sNVM to Data Tightly Integrated Memory (DTIM) of the E51 Monitor core. E51 starts executing the user secure boot code.

If the size of the user secure boot code is more than the size of the DTIM then user needs to split the boot code into two stages. The sNVM may contain the next stage of the user boot sequence, which may perform authentication of the next boot stage using the user authentication/decryption algorithm.

If authenticated or encrypted pages are used, then the same USK key (that is, U_MSS_BOOT_SNVM_USK) must be used for all authenticated/encrypted pages.

If authentication fails, the MSS Core Complex can be placed in reset and the BOOT_FAIL tamper flag can be raised. This mode is implemented using the U_MSS_BOOTMODE=2 boot option.

Table 2-6. U_MSS_BOOTCFG Usage in User Secure Boot

Offset (bytes)	Size (bytes)	Name	Description
0	1	U_MSS_BOOT_SNVM_PAGE	Start page in SNVM
1	3	RESERVED	For alignment
4	12	U_MSS_BOOT_SNVM_USK	For authenticated/encrypted pages

The following figure shows the user secure boot flow.

Figure 2-25. Factory Secure Boot

2.4.4 Factory Secure Boot (Ask a Question)

In this mode, the System Controller reads the Secure Boot Image Certificate (SBIC) from eNVM and validates the SBIC. On successful validation, System Controller copies the factory secure boot code from its private, secure memory area and loads it into the DTIM of the E51 Monitor core. The default secure boot performs a signature check on the eNVM image using SBIC which is stored in eNVM. If no errors are reported, reset is released to the MSS Core Complex. If errors are reported, the MSS Core Complex is placed in reset and the BOOT_FAIL tamper flag is raised. Then, the System Controller activates a tamper flag which asserts a signal to the FPGA fabric for user action. This mode is implemented using the U_MSS_BOOTMODE=3 boot option.

The SBIC contains the address, size, hash, and Elliptic Curve Digital Signature Algorithm (ECDSA) signature of the protected binary blob. ECDSA offers a variant of the DSA, which uses elliptic curve cryptography. It also contains the reset vector for each Hardware thread/core/processor core (Hart) in the system.

Table 2-7. Secure Boot Image Certificate (SBIC)

Offset	Size (bytes)	Value	Description
0	4	IMAGEADDR	Address of UBL in MSS memory map
4	4	IMAGELEN	Size of UBL in bytes
8	4	BOOTVEC0	Boot vector in UBL for E51
12	4	BOOTVEC1	Boot vector in UBL for U540
16	4	BOOTVEC2	Boot vector in UBL for U541
20	4	BOOTVEC3	Boot vector in UBL for U542
24	4	BOOTVEC4	Boot vector in UBL for U543
28	1	OPTIONS[7:0]	SBIC options
28	3	RESERVED	_
32	8	VERSION	SBIC/Image version
40	16	DSN	Optional DSN binding
56	48	Н	UBL image SHA-384 hash
104	104	CODESIG	DER-encoded ECDSA signature
Total	208	Bytes	_

DSN If the DSN field is non-zero, it is compared against the device's own serial number. If the comparison fails,

then the boot_fail tamper flag is set and authentication is aborted.

VERSION If SBIC revocation is enabled by U_MSS_REVOCATION_ENABLE, the SBIC is rejected unless the value of

VERSION is greater than or equal to the revocation threshold.

SBIC REVOCATION OPTION If SBIC revocation is enabled by U_MSS_REVOCATION_ENABLE and OPTIONS[0] is '1', all the SBIC versions less than VERSION are revoked upon complete authentication of the SBIC. The revocation threshold remains at the new value until it increments again by a future SBIC with OPTIONS[0] = '1' and a higher VERSION field. The revocation threshold may only be incremented using this mechanism and can only be reset by a bitstream.

When the revocation threshold is updated dynamically, the threshold is stored using the redundant storage scheme used for passcodes such that a power failure during device boot does not cause a subsequent device boot to fail. If the update of revocation threshold fails, it is guaranteed that the threshold value is either the new value or the previous one.

Table 2-8. U_MSS_BOOTCFG Usage in Factory Boot Loader Mode

Offset (bytes)	Size (bytes)	Name	Description
0	4	U_MSS_SBIC_ADDR	Address of SBIC in MSS address space
4	4	U_MSS_REVOCATION_ENABLE	Enable SBIC revocation if non-zero

The following figure shows the factory secure boot flow.

Figure 2-26. Factory Secure Boot Flow

2.5 MSS User Boot (For PolarFire SoC FPGA Only) (Ask a Question)

MSS user boot takes place when the control is given from System Controller to MSS Core Complex. Upon successful MSS pre-boot, System Controller releases the reset to the MSS Core Complex. MSS can be booted up in one of the following ways:

- Bare Metal Application
- Linux Application
- AMP Application

For more information about MSS booting, see PolarFire SoC Software Development and Tool Flow User Guide.

2.6 HSIO/GPIO Bank Initialization (Ask a Question)

Unused GPIO and HSIO banks can be left powered down or powered up. During the device power-up, the used GPIO and HSIO banks are simultaneously powered up along with all the other power supplies. All of the banks are initialized automatically with Flash configuration bits when fabric is powered up. All of the powered-up user I/Os (HSIO/GPIO) go through an initial PVT calibration on power-up.

The time at which I/Os are functional depends on a combination of the following:

- Device boot
- Ramp-up time of the power applied to the I/O banks
- Calibration time of I/Os (For example, DDR interfaces)

For low-speed operations below 100 MHz, I/Os are functional after the power applied to I/O banks exceeds the threshold levels. When GPIO is mapped to the OUTPUT PAD signals, the drive strength is weakened when initial calibration is complete. This occurs because the initial pre-calibrated drive strength is at maximum calibration code until I/O calibration status/AUTOCALIB_DONE signal is asserted. It is recommended to monitor the I/O calibration status/AUTOCALIB_DONE signal for both high-speed and low-speed signals because of the drive strength change.

If the user requires the I/Os to be usable immediately upon completion of device boot, the I/O power ramp time must be sufficiently short. The user can also apply slow or delayed I/O power ramp times on I/O banks to delay the time until which the IOs are usable. If the user is applying slow ramp rates to I/O banks power supplies, the user logic in the fabric must monitor the state of the I/O banks to know when they are usable as low-speed I/Os.

Figure 2-27. Ramp-up Time

The high-speed I/O calibration process occurs automatically. The user's design in the FPGA fabric must monitor the completion of I/O calibration or AUTOCALIB_DONE to use the I/Os for high-speed applications. The status of the I/O calibration and bank power supply can be monitored using the status signals of the PolarFire/PolarFire SoC Initialization Monitor IP. The following figure shows Auto calibration timeout settings. Configure the Timeout option based on selected GPIO or HSIO in the user design.

Figure 2-28. Auto Calibration Timeout

The PolarFire/PolarFire SoC Initialization Monitor asserts BANK_#_CALIB_STATUS and BANK_#_VDDI_STATUS signals to the fabric. BANK_#_CALIB_STATUS can be used by the user logic to determine if the calibration completes for each IO bank. BANK_#_VDDI_STATUS signal can be used to monitor VDDI supply on specific I/O banks.

The DRI clock (DRI_CLK) must be gated off until the assertion of DEVICE_INIT_DONE, which asserts at the end of the complete device initialization.

2.7 I/O Recalibration (Ask a Question)

The PF_INIT_MONITOR IP and PFSOC_INIT_MONITOR IP are used to control the I/O recalibration or to monitor the initial I/O calibration. User can use I/O Recalibration feature either to delay or sequence calibration to account for VT impact on I/O performance. The following figure shows the recalibration operation.

When I/O recalibration is enabled, the following ports are exposed in PFSOC_INIT_MONITOR IP:

- BANK_#_CALIB_STATUS: The user logic uses CALIB_STATUS to determine if the calibration is completed for each I/O bank. CALIB_STATUS is 1 when the codes are locked. For the first run after reset, this is asserted by one cycle after IOCALIB_INTRPT.
- BANK_#_CALIB_INTERRUPT: The interrupt is generated when the calibration is completed. For the calibration after reset, this typically is followed by locking the codes directly.
- BANK_#_CALIB_LOCK: This is used as an over-ride to lock the codes during intermediate runs.
- BANK_#_CALIB_LOAD: This reloads the initial values from MUX.
- BANK_#_CALIB_START: This indicates that the calibration of state machine must be re-run.

The following figure shows the recalibration operation.

Figure 2-29. Recalibration Operation

The following steps describe the recalibration operation:

- 1. Start a new calibration.
 - user activation of "bank#_calib_start"=1.
 - This initiates the calibration sequence.
- 2. The calibration engine indicates it has a new code.
 - Calibration engine activates the signal "bank#_calib_interrupt"=1.
 - At this point the new calibration code is ready, but has not been released to the I/Os. It is being held ready for when the user requires it.
- 3. The user indicated that the engine should send out the new code to the I/Os.
 - User activates the "bank#_calib_lock"=1.
 - This latches the new codes and distributes to the I/Os.
- 4. The calibration engine indicates the latching of the new codes is complete.
 - Calibration engine activates the "bank#_calib_status"=1.
 - This indicates the calibration is complete to the user and I/Os.

Important: bank#_calib_load must be tied high.

2.7.1 I/O Editor (Ask a Question)

There is a way to configure the I/O to use code from the LANECTRL instead of the bank-level code. Code are loaded in the LANECTRL after the initial calibration. They are not affected by subsequent recalibration. This allow to configure I/O to opt-out of recalibration. Since output can glitch when loading new codes, it is important to be able to opt-out for I/O that cannot be tristated or must not glitch during operation (like output reset or clock). **Use IO calibration from the lane** in the I/O editor selects code from the LANECTRL only if initial calibration is enabled for that bank. If an I/O opt-out of recalibration and use LANECTRL code, the following IOA PCBIT must be set to 1'b1: USE_LANE_CALIB_CODE, else, it must remain at current default 1'b0.

2.8 Transceiver Initialization (Ask a Question)

Transceiver power-up depends on VDDA, VDDA25, and VDD_XCVR_CLK.

VDD_XCVR_CLK is applicable if an external reference clock is used for transceivers. For a list of power supplies, see 6. Appendix: Power Supplies. During power-up, glitches can occur in the reference clocks and the data bits. The transceiver is initialized by the Flash configuration bits and the design initialization client, which is executed from the sNVM.

When XCVR_INIT_DONE/DEVICE_INIT_DONE signal from PFSOC_INIT_MONITOR goes high, the transceiver is completely configured. The user logic using the XCVR clock must be held in reset until the XCVR_INIT_DONE signal is asserted.

The transceiver data pins are in hot-plug mode at power-up. Programming bits can be used to detect TX and/or RX termination early to enable fast Receiver Detection in standards such as PCI Express.

The time taken to complete initialization of the transceiver subsystem depends on the number of lanes to be configured and the number of different high-speed serial protocols to be configured. When QUADO with 1 Lane is initialized with Libero default values, the XCVR initialization time is 282 µs as listed in the following table. The worst case delay is calculated with all PCS and PMA register writes in stage 2 assembly file. For information about stage 2, see Design and Memory Initialization.

Table 2-9. XCVR Initialization Time

Flow Type	No. of Register Writes in Stage 2 Assembly File	XCVR Initialization Time
Default Flow (No modification to generate files)	61	282 μs
Assembly File Modified Flow	136	594 μs

2.9 User PLLs and DLLs Initialization (Ask a Question)

Both PLLs and DLLs are initialized automatically with Flash configuration bits when fabric is powered up.

2.10 PCIe Initialization (Ask a Question)

To achieve the PCIe initialization requirement, the physical layer is configured using Flash configuration bits. The remaining configuration is done during design initialization with the user data stored in the non-volatile memory.

For resetting the PCIESS, use the PCIe_x_PERST_N sideband reset input.

For resetting PCIESS using drivers, use hot reset (in-band reset). A hot reset is propagated in-band from one link neighbor to another by sending several TS1 (training sequence 1 packets) with bit0 of symbol 5 asserted. These TS1 are sent on all lanes. Once sent, the Tx and Rx of hot reset end up in detect link training state machine (LTSSM) state. Hot reset is initiated by setting the secondary bus reset bit in the root ports bridge control configuration register.

The time taken to complete initialization depends on the number of lanes to be configured and the number of PCI controllers to be configured. When PCIE0 controller is initialized with Libero default values, the PCIE initialization time is 440 μ s. When PCIE0 and PCIE1 are both enabled, the PCIE initialization time is 782 μ s.

The worst case PCIE initialization time is calculated with all PCIe Controller and Bridge register writes in stage 2 assembly file as listed in the following table.

Table 2-10. PCIe Initialization Time

	Default Flow (No Modification to Generated Files)		Assembly File Modified Flow	
PCIE Controller Selection	No. of Register Writes in Stage 2 Assembly File	PCIe Initialization Time	No. of Register Writes in Stage 2 Assembly File	PCIe Initialization Time
PCIE0-Enabled PCIE1-Disabled	99	440 µs	388	937.5 µs
PCIE0-Enabled PCIE1-Enabled	185	782 µs	745	1759 µs

For more information about PCIe initialization process, see PolarFire Family PCI Express User Guide.

2.11 State of Blocks During Power-Up (Ask a Question)

The following table shows the state of different blocks during device power-up.

Table 2-11. Default State During Device Power-Up

	dring bevice rower-op		
Block	POR	Device Boot	Design and Memory Initialization State
System Controller	Held in reset	Executing boot-up sequence	Performs design and memory initialization
sNVM	Held in reset	Power up sequence, then functional	Functional
FPGA fabric array	Powered down	Power up sequence, then functional	Functional
LSRAM	Powered down	Powered up, uninitialized	Initialized with user data if configured.
μSRAM	Powered down	Powered up, uninitialized	Initialized with user data if configured
μPROM	Powered down	Powered up	Functional
Math block	Powered down	Powered up	Functional
Transceiver and TX PLLs	Powered down	Powered up but not functional Termination Optionally Enabled	Initialized with user data and functional
GPIO/HSIO - Low Speed (if power is applied)	Input buffers are disabled and output buffers are tri-stated. GPIO buffers are in hotplug mode.	Powered up but not usable GPIO buffers are in hot-plug mode. HSIO buffers do not support hot-plug capability	Functional if IO and IO Auxiliary Supplies supply exceeds threshold
GPIO/HSIO - High-speed (if power is applied)	Input buffers are disabled and output buffers are tri-stated. GPIO buffers are in hotplug mode.	Powered up but not usable GPIO buffers are in hot-plug mode. HSIO buffers do not support hot-plug capability.	Functional at high-speed after the completion of IO calibration if IO and IO Auxiliary Supplies are applied
PCIe*	Powered down	Powered up but not functional.	Initialized with user data and functional
Transceiver I/O	Tri-stated and hot-plug mode	Tri-stated in hot-plug mode Termination optionally enabled.	Termination Enabled, operational
MSSIOs (for PolarFire® SoC FPGA only)	Tri-stated	Tri-stated	Tri-stated
MSS (for PolarFire SoC FPGA only	Powered down	Powered down	Powered down

Important: For more information about cold boot and warm boot power-up to functional time, see the "Power-Up to Functional Timing" section in respective PolarFire FPGA Datasheet or PolarFire SoC FPGA Advance Datasheet.

3. PolarFire FPGA Resets (Ask a Question)

After a device power-up, the PolarFire FPGA system controller manages the device initialization. The fabric flip-flops power-up in an unknown state. The reset logic should be included in the design for proper functioning. A reset pulse is required to force the initial state of flip-flops to a known value. The following sections describe the PolarFire hard resets and user reset generation mechanism.

3.1 Hard Resets (Ask a Question)

PolarFire FPGA devices can be reset by any of the following sources:

- DEVRST_N pin
- Reset from POR circuitry
- Device Reset from Fabric

Figure 3-1. Simplified Block Diagram of Resets

3.1.1 Device Reset Pad (DEVRST N) (Ask a Question)

DEVRST_N or device reset, is powered through the dedicated I/O bank. The DEVRST_N assertion results in full re-initialization of the device, including the loading of user configuration data to PCIe, transceivers, and the re-initialization of MSS, fabric LSRAMs, and µSRAMs.

The DEVRST_N may be pulled low by an external source in order to schedule a full device reset and re-boot. This is not an asynchronous reset, but asserts a Non-Maskable Interrupt (NMI) to the processor in the system controller, which then starts the watchdog timer to schedule an unstoppable device reset, to be asserted after the firmware has disabled I/Os and fully executed a safe power-down of the fabric.

For designing a robust system, users may use the dedicated DEVRST_N pin or a general purpose reset signal using any GPIO/HSIO as a global system reset. For the following cases, the users can use the DEVRST_N as a warm reset for the device:

- User design modifies auto-initialized fabric RAMs or PCle configuration during operation.
- User design is using transceivers or UserCrypto.

In case of PCIe, for resetting the PCIESS, use the PCIe_x_PERST_N input. The PCIe_x_PERST_N is a sideband reset input. For resetting PCIESS using drivers, use hot reset (in-band reset).

A hot reset is propagated in-band from one link neighbor to another by sending several TS1 (training sequence 1 packets) with bit0 of symbol 5 asserted. These TS1 are sent on all the lanes. When sent, the Tx and Rx of hot reset end up in detect LTSSM (link training state machine) state. Hot

reset is initiated by software by setting the secondary bus reset bit in the Root Port's Bridge control configuration register.

For all other use cases, it is recommended to use a general purpose reset signal using any GPIO, HSIO, or I/O because they take much shorter time for design to come out of reset.

If the dedicated DEVRST_N is not used for warm resets, the DEVRST_N pin must be configured using one of the following methods:

- Drive the signal with a POR chip or an external device and keep the DEVRST_N asserted till the system/clocks are stable and the chip is properly powered up.
- Connect DEVRST_N to VDDI3 through a 1 $k\Omega$ ohm resistor per pin without sharing with any other pins.
 - In this case, the user needs to ensure that all clocks going to the device are stable before
 the user design is released from power-on reset. The details of the minimum time taken for
 the fabric design to be activated after power-on is specified in the Power-Up To Functional
 Timing section of PolarFire FPGA Datasheet.

3.1.2 Resets Initiated from POR Circuitry (Ask a Question)

POR circuitry releases the System Controller from the Reset state when all voltage supplies (VDD, VDD18, and VDD25) reach their stable minimum threshold levels. If any of the supplies fall below the minimum requirement, the device reset is issued.

3.1.3 Device Reset from Fabric (Ask a Question)

The RESET_DEVICE signal from the Fabric might be pulsed high by user logic to initiate a full device reset and re-boot. It is one of the tamper response control signals. It can be used as a tamper response to a detected tamper event in the Fabric. Assertion of RESET_DEVICE reset initiated from the Fabric triggers the System Controller to power down the device in the following sequence:

- 1. The reset signal propagates as a non-maskable interrupt to the System Controller, which first disables all the I/Os.
- 2. Starts the Watchdog timer to schedule an device reset.
- 3. Powers down the Fabric.

Resets are issued to all peripherals, such as MSS (PolarFire SoC), Fabric, transceivers, PCle, PLLs, and DLLs.

3.2 User Reset Generation Schemes (Ask a Question)

The User Reset Generation Schemes are as follows:

- If the design uses an external reset input, the reset input must be ignored until the input buffer of the RESET signal is known to be operational. This is applicable for the following conditions:
 - FABRIC POR N negates
 - BANK_x_VDDI_STATUS asserts (where, x is the number of the I/O bank containing the input buffer)
- If the design uses a PLL with an external reference clock input, the PLL must be held in power-down state from the FPGA fabric until the external reference clock is stable and the input buffer of the external reference clock is known to be operational. The input buffer is operational when the later of the following two conditions occur:
 - FABRIC POR N negates
 - BANK_y_VDDI_STATUS asserts (where, y is the number of the I/O bank containing the input buffer)
- If the DRI_CLK is generated by a flip-flop in the FPGA fabric (for example, a clock divider), this flip-flop must be asynchronously reset (for example, with FABRIC_POR_N).

- The flip-flop in the FPGA fabric that drives DRI_PSEL must be asynchronously reset (for example, with FABRIC_POR_N).
- A PLL lock signal must not be used directly as a reset signal if the PLL is configured not to
 emit clock pulses until after lock assertion because no clock edges occur during reset and any
 synchronous reset logic in the FGPA fabric is not correctly reset.

It is recommended to use CORERESET_PF to incorporate these requirements as shown in Figure 3-3.

The CORERESET_PF IP core is included in the Libero IP catalog as shown in Figure 3-2. This IP core synchronously de-asserts the reset to the downstream logic in user-specified clock domain. As a result, the reset assertion is asynchronous but the negation is synchronous to the clock. This IP core ensures that the recovery time is met and that all of the flip-flops come out of reset in the same clock pulse.

The CORERESET_PF IP combines the resets from multiple sources like external GPIO, PLL lock, and PF_INIT_MONITOR blocks. The CORERESET_PF IP generates system-level synchronous reset (FABRIC_RESET_N) for the fabric logic. The fabric flip-flops power-up in an indeterminate state. A reset pulse is required to force the initial state of flip-flops to a known value. The use of FABRIC_RESET_N for this reset is recommended.

Figure 3-2. CORERESET_PF IP

Important: For more information about the CORERESET_PF IP, see the CORERESET_PF handbook available in the Libero catalog.

PolarFire Initialization Monitor (PF_INIT_MONITOR component) must be instantiated in all designs and can be used to reset the user logic. The following figure shows an example use case of PF_INIT_MONITOR. In this example, the DEVICE_INIT_DONE signal is connected to the INIT_DONE signal of the RESET_GEN_0 block (CORERESET_PF IP) to give a synchronous reset signal to the user logic. The DEVICE_INIT_DONE signal gets asserted after the completion of device initialization.

In this example, EXT_RST_N and REF_CLK are connected to Bank 6. BANK_x_VDDI_STATUS and BANK_y_VDDI_STATUS are connected to Bank_6_VDDI_STATUS by enabling the Bank_6_VDDI_STATUS in PF_INIT MONITOR IP. Bank6_CALIB_STATUS can be used for monitoring the GPIO calibration status, if any of the GPIO is connected to Bank6.

Figure 3-3. Example of PolarFire Initialization

When using the PF_CCC internal post-divider or the external feedback mode, the PLL_POWERDOWN_N input must be controlled and de-asserted synchronously. The following modification is recommended:

- Gate the PLL_POWERDOWN_B signal of the CORERESET_PF IP core by the DEVICE_INIT_DONE signal of the PF_INIT_MONITOR IP core
- Synchronize using two flip-flops to the clock (REF_CLK_0) before connecting to the PLL_POWERDOWN_N_0 signal

The following figure shows a sample use case of PF_INIT_MONITOR and CORERESET_PF connected to PF_CCC configured in the internal post-divider or the external feedback mode.

Figure 3-4. Example of PolarFire Initialization with PF_CCC Configured in Internal Post-Divider or External Feedback Mode

4. PolarFire SoC FPGA Resets (Ask a Question)

After a device power-up, the PolarFire SoC FPGA System Controller manages the device initialization. The following sections describe PolarFire SoC resets.

4.1 Hard Resets (Ask a Question)

PolarFire SoC FPGA hard reset architecture is the same as PolarFire FPGA devices. For more information about Hard Resets, see PolarFire FPGA 3.1. Hard Resets.

4.2 MSS Resets (Ask a Question)

After device power-up, the PolarFire SoC System Controller manages the device initialization. After the MSS warm reset, the firmware sequences the MSS out of reset. The following are the PolarFire SoC resets:

- MSS Cold Reset
- MSS Warm Reset
- MSS Peripheral Soft Resets
- User Reset

For information about the MSS, see PolarFire SoC FPGA MSS Technical Reference Manual.

Figure 4-1. Block Diagram of MSS Resets

4.2.1 MSS Cold Reset (Ask a Question)

MSS cold reset is initiated by the Power on Reset (POR) circuitry when the device is powered on. MSS cold reset results in resetting of all the functionality within the MSS except the eNVM. eNVM can be reset using SOFT_RESET_CR register.

4.2.2 MSS Warm Reset (Ask a Question)

Any of the four MSS warm reset provides a method to reset the entire MSS and all the peripherals. This results in the asynchronous resetting of all functionality within the MSS (except the MSSIO configuration, IOMUXes and potentially MSS GPIO peripherals, if configured to be reset by fabric).

The MSS internally remains in reset until the warm reset source is removed. When the warm reset signal is removed, an interrupt is generated to the System Controller, to indicate the MSS warm reset release event. After this, the System Controller firmware sequences the MSS out of reset.

Following are the sources for initiating warm resets of the MSS.

4.2.2.1 MSS Soft Reset (Ask a Question)

An MSS_RESET_CR soft reset register can be written with a specific value via the application code in order to fully reset the MSS. The following table lists the MSS Soft Reset register names and their description.

Table 4-1. MSS_RESET_CR

		_		
	Register Name	Туре	Default Value	Field Description
31:16	Reserved	RO	0x0000	Reserved
15:0	RESET_VALUE	RW	0x0000	When written, 16'hDEAD causes a full MSS reset. The reset clears this register. The register may be written to any value but only a value of 16'hDEAD causes the reset to happen.

4.2.2.2 MSS Reset from Fabric (Ask a Question)

User logic in the fabric asserts a reset signal, MSS_RESET_N_F2M, to asynchronously reset the MSS.

4.2.2.3 MSS E51 Processor Watchdog Timeout Reset (Ask a Question)

The MSS can be configured such that the E51 processor's watchdog timer causes a reset of the MSS when the timer runs out.

MSS Reset Reasons

MSS can be reset in various ways as explained in the preceding sections. The user can access the 32-bit register RESET_SR to know which reset caused the MSS to be reset. The following table lists the reason for resetting the MSS.

Table 4-2. MSS Reset Reasons

Reason	Reset Reason Bit	Asserted By	Notes
SCB_PERIPH_RESET			This is the power on reset. This fully resets the MSS including eNVM trim values. Additional bits in the SOFT-RESET register also allow the SCB registers to be reset.
SCB_MSS_RESET	1	SCB, CPU, MSS	This resets the MSS including the Core Complex, Peripherals and all AXI infrastructure. It does not reset the eNVM trim values and SCB registers.
SCB_CPU_RESET	2	SCB, CPU, MSS	This resets the Core Complex only. This reset must not be used in most cases as the MSS will require resetting at the same time to clear outstanding AXI transactions and so on.
DEBUGER_RESET	3	Debugger	This is asserted by the Core Complex debugger and has the same effect as the SCB_MSS_RESET.
FABRIC_RESET	4	Fabric	This is asserted by the fabric and has the same effect as the SCB_MSS_RESET. This reset is disabled by a system register bit at reset and does not function until enabled.
WDOG_RESET	5	Watchdog	This indicates that the watchdog reset has been activated.
GPIO_RESET	6	Fabric	This indicates that the fabric GPIO reset was asserted. It resets the GPIO blocks if the GPIOs are configured to be reset by this signal. It does not reset the MSS.
SCB_BUS_RESET	7	Fabric	Indicates that SCB bus reset has occurred.
CPU_SOFT_RESET	8	CPU	Indicates that the CPU resets the MSS using the soft reset register.
Reserved	31:9	_	Reserved

4.2.2.4 MSS Peripheral Soft Resets (Ask a Question)

Each MSS peripheral has a soft reset register (SOFT_RESET_CR) bit associated with it in the MSS system registers and this bit must be written to "1" and then "0" to allow the peripheral to be used. When the MSS is reset, all these resets are asserted.

Table 4-3. MSS Peripheral Soft Resets

ADDR	Register	Field	Bit	Туре	Reset value
x88	SOFT_RESET_CR	ENVM	0	RW	0x0

Following is the exception for MSS peripheral soft resets:

MSS GPIO Soft Reset: Each of the three MSS GPIO blocks can be configured to be reset by MSS warm reset or by the MSS GPIO reset signal from the fabric (if the device is programmed).

If configured to use the MSS warm reset (the default configuration), then they are also reset by MSS GPIO soft reset registers in the MSS system registers.

If configured to use the GPIO fabric reset, the MSS GPIO registers state are unaffected by writes to the MSS GPIO soft reset registers. However, these MSS GPIO registers are reset during the handling of the MSS warm reset event by the System Controller firmware.

4.2.3 MSS eNVM Reset (Ask a Question)

Reset of the eNVM is handled by the System Controller.

4.2.4 Resets from MSS to Fabric (Ask a Question)

There is a status signal, MSS_RESET_N_M2F, from the MSS to the fabric, which indicates the reset status of MSS. This signal can be used by the fabric logic to hold the data transfers between MSS and fabric. MSS_RESET_N_M2F is asserted when MSS_RESET_N_F2M is asserted and is deasserted by MSS user software.

4.3 User Reset Generation Scheme (Ask a Question)

The User Reset Generation Scheme are as follows:

- If the design uses an external reset input, the reset input must be ignored until the input buffer of the reset signal is known to be operational. This is applicable for the following conditions:
 - FABRIC_POR_N negates
 - BANK_x_VDDI_STATUS asserts (where x is the number of the I/O bank containing the input buffer)
- If the design uses a PLL with an external reference clock input, the PLL must be held in power-down state from the FPGA fabric until the input buffer of the external reference clock is known to be operational. This is when the later of the following two conditions occur:
 - FABRIC POR N negates
 - BANK_y_VDDI_STATUS asserts (where y is the number of the I/O bank containing the input buffer)
- If the DRI_CLK is generated by a flip-flop in the FPGA fabric (for example, a clock divider), this flip-flop must be asynchronously reset (for example, with FABRIC_POR_N).
- The flip-flop in the FPGA fabric that drives DRI_PSEL must be asynchronously reset (for example, with FABRIC_POR_N).
- A PLL lock signal should not be used directly as a reset signal if the PLL is configured not to
 emit clock pulses until after lock assertion because no clock edges occur during reset and any
 synchronous reset logic in the FGPA fabric is not correctly reset.

It is recommended to use CORERESET_PF as shown in Figure 4-3 to incorporate these requirements.

The CORERESET_PF IP core is included in the Libero IP catalog as shown in Figure 4-2. This IP core synchronously de-asserts the reset to the downstream logic in user-specified clock domain. As a result, the reset assertion is asynchronous but the negation is synchronous to the clock. This IP core ensures that the recovery time is met and that all of the flip-flops come out of reset in the same clock pulse.

The CORERESET_PF IP combines the resets from multiple sources like external GPIO, PLL lock, and PF_INIT_MONITOR blocks. The CORERESET_PF IP generates system-level synchronous reset (FABRIC_RESET_N) for MSS and fabric logic.

The Fabric flip-flops power-up in an indeterminate state. A reset pulse is required to force the initial state of flip-flops to a known value. The use of FABRIC_RESET_N for this reset is recommended.

Figure 4-2. CORERESET PF IP

Important: For more information about the CORERESET_PF IP, see the *CORERESET_PF handbook* available in Libero catalog.

PolarFire SoC Initialization Monitor (PFSOC_INIT_MONITOR component) must be instantiated in all designs and can be used to reset the user logic. The following figure shows an example use case of PFSOC_INIT_MONITOR and PFSOC_MSS_CO_0. In this example, the DEVICE_INIT_DONE signal is connected to the INIT_DONE signal of the RESET_GEN_0 block (CORERESET_PF IP) to give a synchronous reset signal to the user logic.

In this example, EXT_RST_N and REF_CLK are connected to Bank 0. BANK_x_VDDI_STATUS and BANK_y_VDDI_STATUS are connected to Bank_0_VDDI_STATUS by enabling the Bank_0_VDDI_STATUS in PFSOC_INIT MONITOR IP. Bank0_CALIB_STATUS can be used for monitoring the GPIO calibration status, if any of the GPIO is connected to Bank0. The FABRIC_RESET_N signal of the CORERESET_PF_CO IP is connected to MSS_RESET_N_F2M of PFSOC_MSS_CO_0. The MSS_RESET_N_M2F output is connected to the fabric logic subsystems that are related to the MSS, such as fabric peripherals connected through an MSS FIC, to ensure reset synchronization occurs between the MSS and the fabric subsystem. The DEVICE_INIT_DONE signal gets asserted after the completion of design initialization.

Figure 4-3. Example of PolarFire SoC Initialization

When using the PF_CCC internal post-divider or the external feedback mode, the PLL_POWERDOWN_N input must be controlled and de-asserted synchronously. See Figure 3-4 for an example circuit.

5. System Controller Suspend Mode (Ask a Question)

The PolarFire family of devices have a System Controller Suspend mode feature that can be used to force the System Controller into reset after device initialization is complete. This mode is essential for safety critical applications to protect the device from unintended device programming or zeroization of the device due to Single Event Upset (SEU) events. When using the System Controller Suspend mode feature, ensure to instantiate and configure the required PF_INIT_MONITOR or PFSoC_INIT_MONITOR IP with the feature Latch System Controller outputs option enabled. The exposed CLK_160_MHZ port must be connected to the internal 160 MHz RCOSC.

Enabling the System Controller Suspend mode feature has some impact on a device behavior as described in the following sections.

5.1 Device Programming and System Services (Ask a Question)

When the device is programmed with the System Controller Suspend mode enabled, some device programming options are disabled and others are enabled or disabled by controlling the JTAG_TRST_B pin. For a full listing of device feature availability in SCSM, and SCSM operation, see PolarFire Family System Services User Guide.

Important: For PolarFire and RT PolarFire devices, when using the System Controller Suspend mode feature of the device and the JTAG_TRST_B pin is asserted to a logic high, all outputs of the PF_INIT_MONITOR macro are forced = 0. This scenario occurs when the user intends to reprogram the device or debug the device using SmartDebug. Since the PF_INIT_MONITOR macro outputs are often used to reset user logic design, so appropriate user design considerations should be made for this operational case. This scenario does not apply to PolarFire SoC devices.

5.2 PolarFire SoC Reboot (Ask a Question)

The system controller plays an integral part in booting of the MSS. When System Controller Suspend mode is enabled, the System Controller boots the MSS at power-up or device reset and then enters System Controller Suspend mode. During System Controller Suspend mode, the System Controller is in reset and is unable to support services as it normally supports, including MSS boot. If the MSS is running and determines it requires a reboot, it must force the System Controller to exist System Controller Suspend mode. To do this, it is required to instantiate the PFSOC_SCSM macro and connect the input to the MSS REBOOT_REQUESTED_M2F output as shown in the following figure. The MSS REBOOT_REQUESTED_M2F port is exposed by checking the 'Expose Feedback ports to Fabric' box in the MSS Configurator. Other connections to this port are not supported. With this connection added to the user's FPGA fabric design, whenever the MSS REBOOT_REQUESTED_M2F output is asserted, the System Controller exits System Controller Suspend mode and process the pending MSS reboot request. Once the MSS boots, the REBOOT_REQUESTED_M2F output de-asserts and the System Controller returns to Suspend mode. The System Controller status can be monitored through the SC_STATUS macro.

Important:

- This PFSOC_SCSM macro only supports the PolarFire SoC device family.
- Only production devices are supported. PolarFire SoC Engineering Silicon (ES) devices are not supported.

Figure 5-1. PolarFire SoC Reboot

6. Appendix: Power Supplies (Ask a Question)

The following table lists the power supplies.

Table 6-1. Power Supplies in PolarFire SoC Devices

Power Supply	Description			
VDD	For fabric core and transceiver/PCle® blocks			
VDD18	For fabric programming and RC oscillators			
VDD25	For corner Phase-Locked Loop (PLLs) and On-Chip Non-Volatile Memory (sNVM)			
VDDIx	For I/O banks			
VDDAUXx	For GPIO and HSIO banks			
VDDA	For transceiver			
VDDA25	For transceiver PLLs			
VDD_XCVR_CLK	For transceiver reference clock input buffers			

7. Revision History (Ask a Question)

The revision history table describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Davidalan	Data	
Revision		Description
F	10/2023	The following is a summary of the changes in the revision F of the document:
		Changed the document title to "PolarFire Family Power-Up and Resets User Guide".
		Removed information about UIC.
		 Updated PF_INIT_MONITOR and PFSoC_INIT_MONITOR configurator GUI screenshots to match with the latest core. See 2.3.1. PolarFire Initialization Monitor and 2.3.2. PolarFire SoC Initialization Monitor.
		 Updated information about PLL_POWERDOWN_B control of CCC when using feedback modes. See 3.2. User Reset Generation Schemes.
Е	11/2022	The following is a summary of the changes in the revision E of the document:
		 Added information about Broadcast instructions to initialize RAMs to zeros and updated information about SPI Clock Divider. See 2.3.7. How To Set Up Design and Memory Initialization
		 Added information about how to generate Design Initialization Data and Memory report. See Figure 2-17
		Updated information about recalibration operation. See 2.7. I/O Recalibration
D	08/2022	The following is a summary of the changes in the revision D of the document:
		 The tamper voltage monitors do not require latching when system controller suspend mode is enabled. Removed the information about latching of Tamper flags when System Controller Suspend Mode is enabled. See 2.3. Design and Memory Initialization
		• Information about SPI part for PolarFire FPGA and for PolarFire SoC FPGA was added. See 2.3.7. How To Set Up Design and Memory Initialization
		• Information about fixed delay when device boot starts was updated. See 2.1. Power-On
		 Information about PUFT timing data report was updated. See 2.3.8. Power-Up To Functional (PUFT) Timing Data Report
		 Information about sNVM was updated to include the Initialize sNVM Master Key feature. See Figure 2-12
		• Information about eNVM was updated to include the digest calculation feature. See Figure 2-18
С	04/2022	The following is a summary of the changes in the revision C of the document:
		 Added information about latching of tamper flag outputs when system controller suspend mode is enabled. See 2.3. Design and Memory Initialization
		 Updated information about PF_INIT_MONITOR operation and use model when system controller suspend mode is enabled. See 2.3.1. PolarFire Initialization Monitor and 2.3.2. PolarFire SoC Initialization Monitor
		 Added information about CORERESET_PF IP. See 3. PolarFire FPGA Resets and 4. PolarFire SoC FPGA Resets. No change in functionality
		Added information about System Controller Suspend Mode. See 5. System Controller Suspend Mode
		Updated the reset block diagrams for the RESET_DEVICE signal. See Figure 3-1 and Figure 4-1
		Updated information about programmable delay. See 2.1. Power-On
В	08/2021	The following is a summary of the changes in the revision B of the document:
		UG0725: PolarFire FPGA Device Power-up and Reset User Guide
		PolarFire SoC FPGA Power-up and Reset User Guide
		The revision history tables of both the user guides are retained here for future reference. For information, see Table 7-1 and Table 7-2.

c	continued				
Revision	Date	Description			
Α	03/2021	The following is a summary of the changes in the revision A of the document:			
		• Information about the transceiver initialization time was added. See Transceiver Initialization.			
		• Information about the PCIe initialization time was added. See PCIe Initialization.			
		Information about IO re-calibration was added. See IO Recalibration.			
		 Document formatted to Microchip template. Document number is changed from 50200890 to DS60001676. 			

The following revision history table describes the changes that were implemented in the *UG0725: PolarFire FPGA Device Power-up and Reset User Guide* document. The changes are listed by revision.

Note: UG0725: PolarFire FPGA Device Power-up and Reset User Guide document is now obsolete and the information in the document has been migrated to *PolarFire® FPGA and PolarFire SoC FPGA Device Power-up and Reset User Guide.*

Table 7-1. Revision History of UG0725: PolarFire FPGA Device Power-up and Reset User Guide

idale / zinteris	ion history of Ogo725. Polarrile FPGA Device Power-up and Reset Oser Guide
Revision Da	te Description
Revision 8.0 7/2	 The following is a summary of the changes made in this revision. Information about Power-up Function Timing (PUFT) timing parameter for SUSPEND_EN was added. See Design and Memory Initialization. Information about How To Set Up Design and Memory Initialization was updated.
Revision 7.0 2/2	 The following is a summary of the changes made in this revision. Information about re-calibration was added. See IO Recalibration. Information about the transceiver initialization time was added. See PCle Initialization. Information about the PCle initialization time was added. See PCle Initialization.
Revision 6.0 10	 The following is a summary of the changes made in this revision. Information about Design and Memory Initialization was updated. Information about ramp-up time was added. See HSIO/GPIO Bank Initialization. Information about low-speed IO calibration was added. See HSIO/GPIO Bank Initialization.
Revision 5.0 3/	 The following is a summary of the changes made in this revision. Updated the document for Libero SoC v12.0. Updated the steps to initialize the fabric RAMs, see How To Set Up Design and Memory Initialization.
Revision 4.0 4/	 The following is a summary of the changes made in this revision. Updated the document for Libero SoC PolarFire v2.1. Updated Device Boot. Updated Design and Memory Initialization. Updated How To Set Up Design and Memory Initialization. Updated HSIO/GPIO Bank Initialization. Updated Transceiver Initialization. Updated State of Blocks During Power-Up.

con	tinue	ed
Revision	Date	Description
Revision 3.0	4/18	The following is a summary of changes made in this revision.
		• Updated the screen shots as per the Libero SoC PolarFire v2.0 release through out the document.
		• A note about SPI Slave Programming mode is deleted from the Design and Memory Initialization and the section is edited to add the usage of PolarFire Initialization Monitor.
		• Added $\mu PROM$ and External SPI Flash sections (see $\mu PROM$ and External SPI Flash, Edited HSIO/GPIO Bank Initialization to describe BANK_#_CALIB_STATUS and BANK_#_VDDI_STATUS signals.
		A note is added in Power-Up to Functional Time to give a reference to PolarFire FPGA Datasheet.
		Deleted the Top-Level Device Power-Up figure from the Power-Up.
		 Deleted GPIO_ACTIVE and HSIO_ACTIVE pins and added BANK_#_CALIB_STATUS and BANK_#_VDDI_STATUS pins in Simplified Block Diagram of Resets figure.
		Recommendation on device reset usage was added in DEVRST_N.
		Power-up To Functional Time figure was updated.
Revision 2.0	11/17	The following is a summary of the changes made in this revision.
		 The document was updated to include features and enhancements introduced in the Libero SoC PolarFire v1.1 SP1 release.
		• Information about the use case of PolarFire Initialization Monitor was added. For more information, see User Reset Generation Scheme.
Revision 1.0	2/17	The first publication of UG0725: PolarFire FPGA Device Power-up and Reset User Guide.

The following revision history table describes the changes that were implemented in the *PolarFire SoC FPGA Device Power-up and Reset User Guide* document. The changes are listed by revision.

Note: PolarFire SoC FPGA Device Power-up and Reset User Guide document is now obsolete and the information in the document has been migrated to PolarFire® FPGA and PolarFire SoC FPGA Device Power-up and Reset User Guide.

Table 7-2. Revision History of PolarFire SoC FPGA Device Power-up and Reset User Guide

Revision	Date	Description
3.0	10/2020	 The following is a summary of the changes made in this revision. Information about ramp-up time was added. See 2.6. HSIO/GPIO Bank Initialization. Information about low-speed IO calibration was added. See 2.6. HSIO/GPIO Bank Initialization. Information about 2.4. MSS Pre-Boot (For PolarFire SoC FPGA Only) and 2.5. MSS User Boot (For PolarFire SoC FPGA Only) was added. Information about 4.3. User Reset Generation Scheme was updated.
2.0	04/2020	 The following is a summary of the changes made in this revision. Information about 2.3. Design and Memory Initialization was updated. Information about 2.3.7. How To Set Up Design and Memory Initialization was added. Information about 4.3. User Reset Generation Scheme was added.
1.0	_	The first publication of this document.

Microchip FPGA Support

Microchip FPGA products group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit Microchip online resources prior to contacting support as it is very likely that their queries have been already answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

- From North America, call 800.262.1060
- From the rest of the world, call 650.318.4460
- Fax, from anywhere in the world, 650.318.8044

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable".
 Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic

Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3303-7

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

MERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
orporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
handler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
el: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
echnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
eb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
tlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
el: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
el: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
hicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
el: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
idianapolis	China - Xiamen	101. 04 20 3440 2100	Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
el: 317-773-8323	China - Zhuhai		Norway - Trondheim
ax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
el: 317-536-2380	Tel. 80-730-3210040		Poland - Warsaw
os Angeles			Tel: 48-22-3325737
lission Viejo, CA			Romania - Bucharest
el: 949-462-9523			Tel: 40-21-407-87-50
ax: 949-462-9608			Spain - Madrid
el: 951-273-7800			Tel: 34-91-708-08-90
			Fax: 34-91-708-08-91
aleigh, NC			
el: 919-844-7510			Sweden - Gothenberg Tel: 46-31-704-60-40
ew York, NY			
el: 631-435-6000			Sweden - Stockholm
an Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
anada - Toronto			Fax: 44-118-921-5820
el: 905-695-1980			