LAÍS SOARES LAVRA

EQUAÇÃO DE ESTADO DA MATÉRIA DE QUARKS

ORIENTADOR: RODRIGO NEGREIROS

Laís Soares Lavra

Equação de Estado da Matéria de Quarks

Trabalho de monografia apresentado ao curso de graduação em Física - Bacharelado, da Universidade Federal Fluminense, como requisito parcial à conclusão do curso.

Aprovada em agosto de 2013.

BANCA EXAMINADORA:

Prof. Dr. Rodrigo Picanço Negreiros UFF

Prof. Dr. Roberto Linares UFF

Prof. Dr. Antônio Delfino UFF

1 Introdução

A matéria de quarks como um novo estado da matéria foi concebida logo após a constatação que os quarks, constituintes dos nucleons(protons e neutrons), estão sujeitos a chamada liberdade assintótica. Quando a matéria hadrônica se encontra em situações de densidade e/ou temperaturas extremas a interação entre os quarks se torna extremamente fraça.

Explorando a liberdade assintótica podemos tomar a matéria de quarks, em primeira aproximação, como um gás fracamente interagente. Tratando o gás a temperatura nula, utilizaremos propriedades de um gás de Fermi para obter a expressão analítica para pressão e densidade de energia da matéria de quarks.

A interação entre os quarks é descrita pela Cromodinâmica Quântica (Quantum Chromodynamics em inglês, ou QCD). Embora saibamos que ela seja a teoria fundamental que descreve a interação forte, a sua natureza não linear e as dificuldades que aparecem no tratamento da matéria com densidade finita tornam a QCD não muito adequada para obter resultados para equação de estado, o que nos leva a recorrer a modelos fenomenológicos.

Atualmente existem muitos modelos, que juntos têm sido bem sucedidos na explicação de um grande números de fenômenos em física de partículas. Um dos modelos mais usados é o chamado MIT bag model , que é um modelo baseado na liberdade assintótica, onde a 1bag (sacola em português) é uma entidade fenomenológica que fornece a pressão interna de magnitude B para manter os quarks confinados. Para esse modelo a pressão dos quarks e leptons é balanceada pela pressão externa total da 1bag".

$$P + B = \sum_{f} P_f \tag{1}$$

Onde f são as diferentes espécies de quarks e leptons consideradas.

Para haver estabilidade na matéria de quarks devemos incluir os efeitos da QCD. No Mit bag model a presença da Jbagj pode ser considerada como um efeito de ordem zero da QCD. Efeitos de primeira ordem seriam a troca de um gluon entre os quarks, que não serão considerados neste trabalho.

Objetivo deste trabalho é obter a equação de estado da matéria de quarks em equilíbrio químico e temperatura zero. Concentraremos nosso estudo da equação de estado para diferentes valores da constante B, separados em dois casos em que a massa do quark strange é 100MeV e 150MeV. Com isso esperamos obter conclusões simples sobre as propriedades da matéria de quarks, tendo em vista que a equação de estado é de grande importância para se determinar as propriedades micro e macroscópicas de sistemas como estrelas compactas.

No capítulo 2 iremos rever as propriedades de um gás de fermi, no capítulo 3 o conceito de matéria de quarks será introduzido e suas propriedades e a equação de estado serão calculados, no capítulo 4 iremos apresentar os resultados para os casos propostos e finalmente no capítulo 5 será apresentado uma conclusão sobre o trabalho realizado.

2 Gás Ideal de Fermi

Um gás de N férmions pode ser descrito por uma função de onda antissimétrica que dá origem a função de distribuição de Fermi-Dirac $f(\varepsilon)$, que fornece a probabilidade de que um estado de energia ε esteja ocupado para um gás de férmions em equilíbrio térmico temos

$$f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon - \mu)} + 1} \tag{2}$$

Onde $\beta = \frac{1}{\kappa_B}$, κ_B é a constante de Boltzman e μ o potencial químico.

Um gás quântico no estado fundamental, com temperatura nula, está completamente degenerado. Para férmions em T=0, a probabilidade de um estado de energia ε estar ocupado é dado por uma função degrau [7], ou seja, a ocupação de apenas um fermion, como mostra a Figura 1.

Para T=0 então

$$f(\varepsilon) = 1, \mu = \varepsilon_F \tag{3}$$

Figura 1: Distribuição de Fermi-Dirac.

Para análise das propriedades do estado fundamental de N férmions de spin 1/2 não interagentes confinado a um volume V, considere uma partícula de spin 1/2 que pode ser descrita por uma função de onda $\psi(\vec{r})$ e pela especificação de qual das duas orientações

possíveis seu spin possui [6]. A equação de Schrödinguer independente do tempo para a partícula sem interação associada a um nível de energia ε é dada por

$$-\frac{\hbar^2}{2m}(\partial_x^2 + \partial_y^2 + \partial_z^2)\psi(\vec{r}) = \varepsilon\psi(\vec{r})$$
(4)

Estando o gás confinado a um volume $V=L^3$ a função de onda deve atender as condições de contorno de Born-Von Karma, então é obtido o vetor de onda da forma

$$k_x = \frac{2\pi n_x}{L}, k_y = \frac{2\pi n_y}{L}, k_z = \frac{2\pi n_z}{L}$$
 (5)

Como a solução são ondas planas, obtemos que $\psi(\vec{r})$ é um autoestado do operador momento com autovalor

$$\vec{p} = \hbar \vec{k} \tag{6}$$

Cada nível de uma partícula é especificado pelo vetor de onda \vec{k} e pela projeção do seu spin. Portanto para cada valor de \vec{k} permitido existem dois níveis associados, um para cada direção de spin. De acordo com o princípio de exclusão de Pauli, só podemos colocar 2 partícula em cada nível, um para cada estado, partindo do nível de mais baixa energia e preenchendo até que se tenha distribuido todos as partículas. A região ocupada será indistinguível de uma esfera no espaço dos momentos; essa esfera é chamada de esfera de fermi, que representa a distribuição as partículas do gás quando este está no estado fundamental. O raio da esfera é k_F , que está associado a energia de fermi ε_F , esta é definida como a energia do nível mais alto ocupado no estado fundamental do gás.

A partir da energia de fermi é definida a temperatura de fermi

$$T_F = \frac{\varepsilon_F}{\kappa_F} \tag{7}$$

Um importante resultado, que é consequência do princípio de exclusão de Pauli, é que a pressão exercida pelo gás de férmions é diferente de zero no estado fundamental.

Quando a temperatura não é zero, na aproximação partícula independente a energia interna U é a soma dos níveis de uma partícula de energia $\varepsilon(\vec{k})$ vezes o número médio de partícula no nível

Figura 2: Esfera de Fermi.

$$U = 2\sum_{k} \varepsilon(\vec{k}) f(\varepsilon) \tag{8}$$

Onde o fator 2 denota os níveis de spin para os valores de \vec{k} permitidos.

Podemos escrever a densidade de energia $u=\frac{U}{V}$ como

$$u = \int \frac{d\vec{k}}{4\pi^3} \varepsilon(\vec{k}) f(\varepsilon) \tag{9}$$

A partir da densidade de energia, é obtido a densidade de entropia s

$$s = -\kappa_B \int \frac{d\vec{k}}{4\pi^3} [f \ln f + (1 - f) \ln(1 - f)]$$
 (10)

Uma vez que o número de total de N partícula é exatamente a soma de todos os níveis do número médio em cada nível

$$N = \sum_{i} f(\varepsilon_i) \tag{11}$$

Portanto a densidade de partículas

$$n = \int \frac{d\vec{k}}{4\pi^3} f(\varepsilon) \tag{12}$$

Dado o potencial químico $\mu = \frac{G}{N}$, onde G é a energia livre de Gibbs

$$G = U - TS + PV \tag{13}$$

Uma vez que pressão P satisfaça essa relação, obtemos

$$P = -\kappa_B T \int \frac{d\vec{k}}{4\pi^3} \ln(1 + \exp^{(\frac{-\varepsilon_k - \mu}{\kappa_B T})})$$
 (14)

3 Matéria de Quarks

Propriedades da matéria sob condições extremas de altas densidades é de grande importância para uma melhor compreenssão da chamada QCD(Quantum Chromodynamics), pois nesta condição há possibilidade de libertar quarks do seu estado confinado dentro de hádrons e tranformá-los em uma nova fase cujos muitos quarks e gluons estão presentes num estado de plasma, o quark-gluon plasma.

Embora a QCD seja uma teoria fundamental para escala nuclear e subnuclear, o conhecimento atual da QCD ainda não é muito adequado para obter resultados práticos no estudo da matéria de quarks, portanto será utilizado um modelo fenomenológico baseado na liberdade assintótica conhecido como MIT bag model.

3.1 Propriedades da Matéria de Quarks

Como consequência da liberdade assintótica a interação entre os quarks a pequenas distâncias se torna fraca, a distâncias grandes, comparada a distâncias entre as partículas, a interação entre quarks é desprezada, análogo ao o que acontece com a interação coulombiana num plasma em equilíbrio.

Para altas densidades a interação resultante entre quarks deve ser sufientemente fraca e a matéria de quarks pode ser tomada como primeira aproximação como um gás de Fermi não interagente.

Figura 3: Diagrama de fase da QCD.

Considerando a matéria de quarks composta de quark up(u), quark down(d) e quark strange(s), temos que o equilíbrio β sob interação fraca implica

$$d \leftrightarrow u + e + \overline{\nu} \tag{15}$$

$$s \leftrightarrow u + e + \overline{\nu} \tag{16}$$

$$u + e \leftrightarrow d + \nu \tag{17}$$

$$u + e \leftrightarrow s + \overline{\nu} \tag{18}$$

$$s + u \leftrightarrow u + d \tag{19}$$

Onde e denota o elétron, ν neutrino e $\overline{\nu}$ antineutrino.

O equilíbrio implica que os potencias químicos das espécies presentes na matéria obedecem as seguintes equações

$$\mu_d = \mu_u + \mu_e \tag{20}$$

$$\mu_s = \mu_d \tag{21}$$

Assumindo que o neutrino não deve ser retido na matéria, $\mu_{\nu} = 0$.

Além disso a neutralidade de carga requer

$$\frac{2}{3}n_u = \frac{1}{3}(n_d + n_s) + n_e \tag{22}$$

Onde n_u é densidade de quark up, n_d densidade de quark down, n_s densidade de quark strange e n_e densidade de elétrons.

Para que haja estabilidade na matéria é essencial incluir os efeitos da interação da QCD. O primeiro efeito da interação é a transferência de energia do 'vácuo'na fase de desconfinamento, comparado com o vácuo hadrônico normal. Essa transferência de energia por unidade de volume é descrita pela constante "bag" B do MIT bag model [2].

No MIT bag model, assume-se que as partículas existem no interior da "bag" [4]. É adequado considerar a "bag" como uma entidade fenomenológica que fornece a pressão interna de magnitude B para manter os quarks confinados [1]. Portanto para este modelo a pressão individual P_i de quarks e leptons no interior da "bag" é contrabalanceada por B:

$$P = -B + \sum_{i} P_i \tag{23}$$

A constante B é adicionada a densidade de energia do sistema da mesma maneira que a pressão no interior da "baq" é contrabalanceada por B:

$$\varepsilon = B + \sum_{i} \varepsilon_{i} \tag{24}$$

3.2 Equação de Estado da Matéria de Quarks

Para um simples modelo de quarks livres na "bag", uma boa aproximação é considerar a matéria de quarks como um gás de Fermi de quarks não interagentes.

As expressões analíticas para pressão P, densidade de energia ε , densidade bariônica ρ e densidade de entropia s obtidas são

$$P = \sum_{f} \frac{1}{3} \frac{\gamma_f}{2\pi^2} \int \kappa \partial_{\kappa} \varepsilon_f(\kappa) [n(\kappa, \mu_f) + n(\kappa, -\mu_f)] \kappa^2 d\kappa - B$$
 (25)

$$\varepsilon = \sum_{f} \frac{\gamma_f}{2\pi^2} \int \varepsilon_f(\kappa) [n(\kappa, \mu_f) + n(\kappa, -\mu_f)] \kappa^2 d\kappa + B$$
 (26)

$$\rho = \sum_{f} \frac{1}{3} \frac{\gamma_f}{2\pi^2} \int [n(\kappa, \mu_f) + n(\kappa, -\mu_f)] \kappa^2 d\kappa$$
 (27)

$$s = (\partial_T p)_{V,\mu_f} \tag{28}$$

Onde ε_f é a energia de fermi por sabor

$$\varepsilon_f(\kappa) = (m_f^2 + \kappa_f^2)^{\frac{1}{2}} \tag{29}$$

E $n(\kappa, \mu_f)$ é a distribuição de Fermi-Dirac dada pela equação (2). Os estados de potencial químico negativo representam as anti-partículas que para o caso estudado, T=0, não estão presentes ($n(\kappa, -\mu_f) = 0$).

A degenerescência para quarks é dada por:

$$g_q = N_{color}.N_{spin}.N_{flavor} (30)$$

Como hadróns são singletos de cor, todas as três cores estarão presentes na matéria de quarks igualmente. Portanto a degenerescência dos quarks por sabor:

$$\gamma_f = 2_{spin}.3_{color} \tag{31}$$

O fator $\frac{1}{3}$ é devido a densidade bariônica. Bárions são estados ligados de quarks compostos pela combinação de 3 quarks, portanto temos 3 quarks por bárion.

3.3 Temperatura Zero

Neste trabalho será analisado uma situação extrema na qual a temperatura é nula, T=0, permitindo uma estimativa simples, em dois casos.

As equações (24),(25) e (26) para T=0 tornam-se

$$P = -B + \sum_{f} \frac{1}{4\pi^2} \left[\mu_f \kappa_f (\mu_f^2 - \frac{5}{2}m_f^2) + \frac{3}{2}m_f^4 \ln(\frac{\mu_f + \kappa_f}{m_f}) \right]$$
 (32)

$$\varepsilon = B + \sum_{f} \frac{3}{4\pi^2} \left[\mu_f \kappa_f (\mu_f^2 - \frac{1}{2} m_f^2) - \frac{1}{2} m_f^4 \ln(\frac{\mu_f + \kappa_f}{m_f}) \right]$$
 (33)

$$\rho = \frac{1}{3} \sum_{f} \frac{\kappa_f^3}{\pi^2} \tag{34}$$

De acordo com a Equação (2) e utilizando a Equação (28) temos

$$\mu_f = (m_f^2 + \kappa_f^2)^{\frac{1}{2}}. (35)$$

Onde κ_f é o momento de fermi por sabor e f pode representar um dos seguintes u,d,s e e.

A partir da Equação (35) podemos escrever

$$\kappa_e = (\mu_e^2 - m_e^2)^{\frac{1}{2}}. (36)$$

$$\kappa_u = (\mu_u^2 - m_u^2)^{\frac{1}{2}}. (37)$$

$$\kappa_d = (\mu_d^2 - m_d^2)^{\frac{1}{2}}. (38)$$

$$\kappa_s = (\mu_s^2 - m_s^2)^{\frac{1}{2}}. (39)$$

$$\rho = \frac{\kappa_u^3}{3\pi^2} + \frac{\kappa_d^3}{3\pi^2} + \frac{\kappa_s^3}{3\pi^2} \tag{40}$$

Utilizando a condição de equilíbrio químico, equações (20) e (21), neutralidade de carga, equação (22), e as equaçções (36), (37), (38), (39) podemos calcular a pressão e a densidade de energia, em dois casos.

O primeiro caso estudado será o gás a temperatura nula com a massa do quark strange igual a 100MeV. O segundo será a massa do quark strange igual a 150MeV. Em ambos os casos a massa do quark up e down é considerada aproximadamente nula. Isso pode ser justificado pelo fato de as massas dos quarks e up e down poderem ser consideradas desprezíveis frente ao potencial químico do sistema. Na tabela 1 sumarizamos os valores usados para as massas dos quarks.

Quark	${ m Massa}({ m MeV})$
up	1.5 - 4
down	4.1 - 5.8
strange	100 - 150

Tabela 1: Valores usados para a massa dos quarks.

4 Resultados

Os resultados foram obtidos numericamente para diferentes valores da constante "bag" $B^{\frac{1}{4}}$, listados na tabela abaixo. Tais valores foram escolhidos pois levam a matéria de quarks absolutamente "estável" (isto é, mais estável que a matéria hadrônica).

$B^{\frac{1}{4}}$	$= 160 \mathrm{MeV}$	
$B^{\frac{1}{4}}$	$= 170 \mathrm{MeV}$	
$B^{\frac{1}{4}}$	$= 180 \mathrm{MeV}$	
$B^{\frac{1}{4}}$	$= 190 \mathrm{MeV}$	
$B^{\frac{1}{4}}$	$=200 \mathrm{MeV}$	

Tabela 2: Valores da constante "bag" B.

4.1 A relevância da massa do quark strange

A densidade de quarks up, down, strange e densidade de elétrons como função da densidade bariônica para $m_s = 100 \text{MeV}$ obtida pode ser vista na Figura 4 e para $m_s = 150 \text{MeV}$ na Figura 5.

Foi observado que para os diferentes valores da constante B a densidade de quarks não sofre mudanças, ou seja, independe da constante B. Esse resultado já era esperado, pois B é um parâmetro global, logo não interfere na população(propriedade microscópica), mas apenas na equação de estado(propriedade macroscópica).

Podemos observar que a massa do quark strange tem grande influência nas propriedades microscópicas do sistema. O fato do quark strange ter uma massa finita leva uma diminuição dos mesmos em baixas densidades(baixo potencial químico), pois a energia de fermi é proporcional a densidade de partículas, e como estamos tratando o gás no estado fundamental, em baixas densidades temos um potencial químico menor. A neutralidade de carga, requer que haja um o aumento da densidade dos elétron devido a diminuição da densidade do strange, como pode ser observado comparando as Figuras 4 e 5. Tal efeito é mais natural quanto maior for a massa do quark strange.

Figura 4: Densidade de quarks $n_{u,d,s}$ e densidade de elétrons n_e como função da densidade bariônica ρ para $m_s = 100 \, \mathrm{MeV}$.

4.2 A relevância da constante "bag"

A equação de estado para a matéria quark com valores diferentes da constante "bag" B e $m_s = 100 \,\mathrm{MeV}$, como mostra a Figura 6 e para $m_s = 150 \,\mathrm{MeV}$ como mostra a Figura 7, tem um caracter quase linear que permanece praticamente inalterada para diferentes valores desta constante.

É interessante notar que quando a massa do quark strange é tomada como zero a equação de estado se torna

$$P = \frac{(\varepsilon - 4B)}{3} \tag{41}$$

que é exatamente uma relação linear entre a pressão e a densidade de energia. Esse fato em conjunto com o resultado obtido, mostra que a massa do quark do strange não tem um papel muito relevante na equação de estado. Observamos que a constante B entretanto tem grande influência nas propriedades macroscópicas do sistema.

Podemos entender a relevância da constante B observando que para uma dada energia temos valores diferentes da pressão para diferentes valores de B, quanto menor o valor de B maior a pressão e portanto maior a dureza da equação de estado. Isso mostra que a constante "bag" tem um papel importante na estabilidade da matéria de quarks. Para um valor pequeno a matéria estranha não se forma, obtendo apenas matéria nuclear.

Figura 5: Densidade de quarks $n_{u,d,s}$ e densidade de elétrons n_e como função da densidade bariônica ρ para $m_s = 150 \,\mathrm{MeV}$.

5 Conclusões

Neste trabalho foram estudados diversos conceitos e propriedades da matéria de quarks, que é um estado da matéria bariônica em equilíbrio químico e altas densidades. E que o conceito de matéria de quarks surgiu do fato de os quarks estarem sujeitos a liberdade assintótica, ou seja, que a interação entre eles é suficientemente fraca em regiões de altas densidades.

Vimos que devido as complicações que aparecem na teoria que descreve a interação entre os quarks (QCD) faz se necessário recorrer a modelos fenomenológicos. Neste estudo utilizamos o modelo do MIT bag model em que assumimos que as partículas estão no interior da "bag", e a pressão dos quarks é contrabalanceada pela pressão da bag.

No MIT bag model consideramos os quarks e leptons do sistema como um gás de fermi fracamente interagente composto por quarks up, down e strange e também por elétrons (necessários para neutralidade de carga e equilíbrio químico). Incluindo os efeitos de ordem zero da QCD, representados pela pressão e densidade de energia da "bag", e tratando o gás a temperatura nula obtemos a equação de estado (pressão como função da energia) e a composição da matéria (população de partículas).

Fizemos uma aproximação em que as massas dos quarks up e down eram desprezíveis comparados aos potenciais químicos do sistema, de maneira que massa desses quarks tem efeito muito pequeno na equação de estado e composição. A massa do quark estranho por outro lado é significantemente maior e tem um papel importante na composição, seus efeitos são particularmente visíveis em regiões de baixa densidade (baixo potencial químico), onde ocorre uma redução significativa desses quarks e, como consequência, o aparecimento de elétrons, necessários para manter a neutralidade de carga.

Figura 6: Equação de estado da matéria de quarks, baseado no MIT bag Model, para diferentes valores da constante "bag" $B^{\frac{1}{4}}$ e $m_s = 100 \,\mathrm{MeV}$.

Estudamos o papel da constante B para as propriedades do sistema. Observamos sua relevância, exercendo um papel fundamental determinação da dureza de equação de estado. No entanto notamos que a constante B tem efeito nulo na composição do sistema, sendo irrelevante nas propriedades microscópicas, o que faz sentido já que esta é uma propriedade global. Foi visto também que a equação de estado é independe da massa do quark strange, se mostrando praticamente linear nos casos considerados.

Estudos mais avançados requereriam a inclusão de efeitos mais complexos, como por exemplo a troca de um glúon entre os quarks e possivelmente o estudo de modelos mais complexos como o de Nambu-Jona-Lasinio.

Referências

- [1] Samuel S. M. Wong, "Introductory Nuclear Physics", Prentice-Hall, 1990.
- [2] Gordon Baym, "Quark matter", in Statistical Mechanics of Quarks and Hadrons. H. Satz, ed. NorthHolland, Amsterdam, 1981, p. 17.
- [3] Norman K. Glendenning, "Compact Stars: Nuclear Physics, Particle Physics and General Relativity", Springer-Verlag, New York, 2000.
- [4] Rodrigo Negreiros, Numerical Study of the Properties of Compact Stars, Dissertation, The Claremont Graduate University and San Diego State University, 2009.
- [5] F. Weber, Progress in Particle and Nuclear Physics 54 (2005) 193.

Figura 7: Equação de estado da matéria de quarks, baseado no MIT bag Model, para diferentes valores da constante "bag" $B^{\frac{1}{4}}$ e $m_s = 150 \,\mathrm{MeV}$.

- [6] Neil W. Ashcroft and N. David Mermin, "Solid State Physics", Cengage Learning, 1976.
- [7] Sílvio Roberto Azevedo Salinas, "Introdução à Física Estatística", EdUSP, São Paulo, 1997.
- [8] Charles Kittel, "Introduction to Solid State Physics", LTC, 2004.
- [9] http://www.ifsc.usp.br/strontium/Teaching/Material2012-2