## Лабораторная работа 1.3.3

# Определение вязкости воздуха по скорости течения через тонкие трубки

Рашковецкий М.М., группа 526т

26 апреля 2016 г.

**Цель работы:** экспериментально выявить участок сформированного течения, определить режимы ламинарного и турбулентного течения; определить число Рейнольдса.

**Оборудование и материалы:** металлические трубки, укреплённые на горизонтальной подставке; газовый счётчик; микроманометр типа ММН; стеклянная U-образная трубка; секундомер.

### Краткая теория

При малых скоростях течение жидкости является ламинарным (слоистым; скорости частиц направлены по оси трубки), при больших — турбулентным (слои перемешиваются, скорости частиц в каждой точке быстро меняются и сохраняется только средняя). Критерием, позволяющим определить тип течения, является число Рейнольдса:

$$Re = \frac{vr\rho}{\eta},\tag{1}$$

где v — скорость потока, r — радиус трубки,  $\rho$  — плотность движущейся среды,  $\eta$  — её вязкость. В гладких трубах круглого сечения переход от ламинарного течения к турбулентному происходит при  $\mathrm{Re} \approx 1000$ .

При ламинарном течении расход определяется формулой Пуазейля:

$$Q = \frac{\pi r^4 \left( P_1 - P_2 \right)}{8l\eta},\tag{2}$$

где  $P_{1,2}$  — давления в двух выбранных сечениях, l — расстояние между ними. Условия применимости формулы (2):

- 1. с запасом выполняется Re < 1000;
- 2. не происходит заметного изменения плотности газа;
- 3. закон распределения скоростей по течению на участке не меняется при движении вдоль потока.

Рис. 1: Формирование потока газа в трубке круглого сечения



При втекании газа в трубку из большого резервуара скорости слоёв вначале постоянны по всему сечению (рис. 1), но затем крайние слои тормозятся за счёт стенок трубы и характерное для ламинарного течения параболическое распределение скоростей формируется на расстоянии

$$a \approx 0.2r \cdot \text{Re}$$
 (3)

от начала трубки.

#### Экспериментальная установка

Рис. 2: Схема установки



Схема установки приведена на рис. 2, где:

К кран для подачи воздуха и регулирования давления;

ММН микрометрический манометр;

ГС газовый счётчик;

А резервуар, к которому припаяны металлические трубки;

U U-образная трубка для измерения давления и предохранения газового счётчика (при слишком большом давлении начинает бурлить, привлекая внимание).

Б защитный баллон, куда выплёскивается вода при слишком больших перепадах давления.

Для измерения давления в трубках просверлены миллиметровые отверстия, к двум прикрепляется микроманометр, а другие закрываются пробками.

Рис. 3: Микрометрический манометр типа ММН



Микроманометр типа ММН (рис. 3) может измерять перепад давления до  $200\,$  мм рт.ст. Он состоит из:

- 1. цилиндра со спиртом;
- 2. трубки со шкалой;
- 3. подставки;
- 4. стойки с указанными множителями;
- 5. рычажка для перевода из режима «0» (установка на ноль) в режим «+» (измерения);
- 6. цилиндр для регулировки нуля;
- 7. винта для регулировки глубины погружения цилиндра;
- 8. трёхходового крана;
- 9. уровни;
- 10. регулировочные ножки для установки в горизонтальное положение;

Рис. 4: Внешний вид газового счётчика



11. мениска, по которому снимаются показания;

Внешний вид газового счётчика показан на рис. 4, где цифрами отмечены:

- 1. водомерное устройство;
- 2. трубка для входа газа;
- 3. трубка для выхода газа;
- 4. патрубки для присоединения U-образного манометра;
- 5. патрубок для установки термометра;
- 6. кран для слива воды;

Рис. 5: Устройство газового счётчика



Принцип работы счётчика пояснён на рис. 5. На оси вдоль осевой линии цилиндра прикреплены лёгкие чаши. В чашу, находящуюся над трубкой 2, поступает воздух. Когда чаша наполняется воздухом, она всплывает и её место занимает следующая. Обороты оси считаются специальным устройством.

#### Ход работы

- 1. Подготовили установку к работе: установили приборы по уровням, проверили наличие воды в газовом счётчике, установили на нуль мениск микроманометра.
- 2. Подсоединили микроманометр к последним выводам трубки  $(d = (3.90 \pm 0.05) \text{ мм})$  на участке со сформировавшимся потоком (к последним двум отверстиям, т.к. согласно (3)  $a \approx 40$  см, расстояние между ними l = 50 см), открыли эту трубку.
- 3. Медленно открывая кран К и впуская воздух в установку, внимательно следили за показаниями манометра.
- 4. Сняли зависимость  $\Delta P$  от  $Q = \Delta V/\Delta t$ , где  $\Delta V$  измеряли газовым счётчиком, а  $\Delta t$  секундомером, во всём доступном диапазоне перепадов давлений.
- 5. При расходе, обеспечивающем ламинарность течения, измерили распределение давления вдоль трубки, измерив перепад давлений по всем парам отверстий.

#### Обработка результатов

В таблице 1 приведены результаты измерений зависимости  $\Delta P$  от Q. Давление посчитано по формуле

$$\Delta P = K \rho q \Delta h.$$

Погрешности оценены из таких соображений:  $\sigma_{\Delta h}=0.05~{\rm cm} \Rightarrow \sigma_{\Delta P}=K\rho\sigma_{\Delta h}$ ; объём фиксировался по делениям, поэтому его измерение считаем точным, а вот  $\sigma_{\Delta t}=0.5~{\rm c}$ , поэтому  $\sigma_Q=Q\frac{\sigma_{\Delta t}}{\Delta t}$ .

По этим данным был построен график (рис. 6). Видно, что первые 6 точек хорошо ложатся на прямую, а дальше график начинает заметно отклоняться от прямолинейного. Эти 6 точек были аппроксимированы прямой по МНК с учётом весов точек по формуле

$$Q=k\Delta P.$$

Эта прямая также нанесена на график.

Согласно (2), вязкость через угловой коэффициент выражается как

$$\eta = \frac{\pi r^4}{8lk}.\tag{4}$$

Соответственно, погрешность равна

$$\sigma_{\eta} = \eta \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(4\frac{\sigma_r}{r}\right)^2}$$

Таблица 1: Результаты измерений  $\Delta P$  от Q

| $\Delta h$ , cm | K   | $\Delta V$ , л | $\Delta t$ , c | $\Delta P$ , $\Pi a$ | Q, cm <sup>3</sup> /c |
|-----------------|-----|----------------|----------------|----------------------|-----------------------|
| 1,85            | 0,2 | 1,5            | 66             | $29,4 \pm 0,8$       | $22,7 \pm 0,2$        |
| 0,85            | 0,2 | 0,5            | 50             | $13,5 \pm 0,8$       | $10,0 \pm 0,1$        |
| 3,4             | 0,2 | 1,5            | 37             | $54.0 \pm 0.8$       | $40,5 \pm 0,5$        |
| 4,6             | 0,2 | 2,5            | 44             | $73,0 \pm 0,8$       | $56.8 \pm 0.6$        |
| 5,7             | 0,2 | 3              | 43             | $90.5 \pm 0.8$       | $69.8 \pm 0.8$        |
| 7,3             | 0,2 | 3              | 34             | $115,9 \pm 0,8$      | $88,2 \pm 1,3$        |
| 9,1             | 0,2 | 4              | 42             | $144,5 \pm 0,8$      | $95,2 \pm 1,1$        |
| 12,1            | 0,2 | 4              | 39             | $192,1 \pm 0,8$      | $102,6 \pm 1,3$       |
| 17,7            | 0,2 | 5              | 41             | $281,0 \pm 0,8$      | $122,0 \pm 1,5$       |
| 24,7            | 0,2 | 5,5            | 38             | $392,2 \pm 0,8$      | $144,7 \pm 1,9$       |
| 27,3            | 0,2 | 7              | 45             | $433,4 \pm 0,8$      | $155,6 \pm 1,7$       |
| 20,6            | 0,2 | 5,5            | 41             | $327,1 \pm 0,8$      | $134,1 \pm 1,6$       |
| 15,2            | 0,2 | 5              | 43             | $241,3 \pm 0,8$      | $116,3 \pm 1,4$       |
| 15,2            | 0,4 | 7,5            | 45             | $482,7 \pm 1,6$      | $166,7 \pm 1,9$       |
| 18,2            | 0,4 | 7,5            | 41             | $577.9 \pm 1.6$      | $183 \pm 2$           |
| 21,0            | 0,4 | 10             | 51             | $666,8 \pm 1,6$      | $196,1 \pm 1,9$       |
| 24,1            | 0,4 | 12             | 57             | $765,3 \pm 1,6$      | $210,5 \pm 1,8$       |

Рис. 6: График зависимости перепада давлений от расхода



Получены результаты:

$$k = (7,64 \pm 0,06) \cdot 10^{-7} \frac{\Pi a \cdot c}{M^3},$$
  
 $\eta = (14,9 \pm 0,8) \text{ MK}\Pi a \cdot c.$ 

В справочнике (Енохович А.С. Краткий справочник по физике. М., «Высш. школа», 1976) приведена вязкость воздуха при температуре  $t_1 = 20^{\circ}$ С  $\eta_1 = 18,1$  мк $\Pi a \cdot c$ , а при  $t_2 = 100^{\circ}$ С —  $\eta_2 = 21,2$  мк $\Pi a \cdot c$ . Наш результат получился заниженным значительно больше погрешности, возможно, это объясняется некоторыми отличиями в составе воздухе, например, большей влажностью (водяной пар имеет меньшую вязкость в этом диапазоне температур).

Переходной областью от ламинарного к турбулентному течению условно можно считать 7–11 точки, для них числа Рейнольдса

$$Re_7 \approx 1350$$
,

$$Re_{11} \approx 1900$$
,

принимая  $\rho \approx 1, 3\frac{\text{кr}}{\text{м}^3}$ . Переход наблюдается даже несколько позже, чем предсказывала теория. Затем около третьей точки (по расходу,  $\text{Re}_3 \approx 500$ ) приведены разности давлений между всеми парами доступных отверстий (таблица 2). Они аддитивны в пределах погрешности ( $\sigma_{\Delta h} = 0.05 \text{ см}$ ). Расстояния между соседними отверстиями:  $l_{01} = 11.5 \text{ см}$ ,  $l_{12} = 30 \text{ см}$ ,  $l_{23} = 40 \text{ см}$ ,  $l_{34} = 50 \text{ см}$ .

Таблица 2: Разность давлений для пар отверстий

| $\Delta h_{ij}$ , cm | 0    | 1    | 2    | 3    | 4    |
|----------------------|------|------|------|------|------|
| 0                    | _    | 3,7  | 10,2 | 14,7 | 20,1 |
| 1                    | 3,7  | _    | 6,5  | 11,0 | 16,5 |
| 2                    | 10,2 | 6,5  | _    | 4,5  | 10,0 |
| 3                    | 14,7 | 11,0 | 4,5  | _    | 5,5  |
| 4                    | 20,1 | 16,5 | 10,0 | 5,5  | _    |

По этим данным был построен график  $\Delta h_{i4}(l_{i4})$  (рис. 7).

Поскольку точек мало, судить о линейности и соответственно ламинарности достаточно сложно, но первые (от нуля) три точки почти ложатся на прямую, т.е. формирование потока завершается около второго отверстия и экспериментальное значение  $a*\approx 40$  см, как и предсказано по (3).

Рис. 7: График зависимости перепада давлений от расстояния

