Árvores de Decisão: Bagging, Random Forest e Boosting

André Menezes & Daniel Oliveira

Organização

- Árvores de Decisão
- Bagging e Random Forest
- Boosting
- Aplicação
- Considerações

Árvore de Decisão

- Metodologia não paramétrica apropriada para descrever a relação entre uma variável resposta y_i e um conjunto de covariáveis $\mathbf{x}_i = (x_{i1}, \dots, x_{ip}).$
- Consiste em particionar recursivamente o espaço das covariáveis conforme algum critério ótimo.
- Os resultados são **compreensíveis**, porém **não robustos** e com **baixa acurácia** preditiva.
- Seja R_1, \ldots, R_M partições do espaço das covariáveis. O modelo é especificado por

$$f(\mathbf{x}) = \sum_{m=1}^M c_m \, I(\mathbf{x} \in R_m)$$

em que c_m é um "modelo local" para cada partição.

Árvore de Classificação

ullet Para uma variável resposta com K classes temos que

$$c_m = rgigg[\max_k {\hat p}_{mk}igg]$$

em que

$$\hat{p}_{mk} = rac{1}{N_m} \sum_{\mathbf{x}_i \in R_m} I(y_i = k)$$

para $k = 1, \dots, K$.

Bagging e Random Forest

 Gerar B amostras Bootstrap com reposição, ajustar as árvores de decisão e combinar o conjunto de predições, isto é,

$$\widehat{f}_{\mathrm{bag}}(\mathbf{x}) = rac{1}{B} \, \sum_{j=1}^{B} \widehat{f}_{(j)}(\mathbf{x})$$

em que $\widehat{f}_{(j)}(\mathbf{x})$ é modelo ajustado na j-ésima amostra Bootstrap.

- ullet No Random Forest para cada amostra Bootstrap escolhe-se aleatoriamente um subconjunto k < p dos preditores.
- Em problemas de classificação $k pprox \sqrt{p}.$
- ullet Os modelos $\widehat{f}_{(j)}$ são treinados de forma independente.

Boosting

- Seja $\mathbf{T}=\{(y_1,\mathbf{x}_1),\ldots,(y_N,\mathbf{x}_N)\}$ a amostra de treinamento, em que $y_i\in\{-1,1\}.$
- Algoritmo AdaBoost.M1:
 - 1. Atribuir os pesos $w_i=1/N, i=1,\ldots,N$.
 - 2. Para b = 1, ..., B:
 - ullet Ajuste um classificador $f_b(\mathbf{x})$ usando os pesos w_i na amostra \mathbf{T} .

$$ullet$$
 Calcule $\operatorname{err}_b = rac{\sum\limits_{i=1}^N w_i I(y_i
eq f_b(\mathbf{x}_i))}{\sum\limits_{i=1}^N w_i} ext{ e } lpha_b = \log((1-\operatorname{err}_b)/\operatorname{err}_b).$

- ullet Atualize $w_i \leftarrow w_i \cdot \exp[lpha_b I(y_i
 eq f_b(\mathbf{x}_i))], i = 1, \ldots, N.$
- 3. Retorne o modelo $f(\mathbf{x}) = \mathrm{sinal}\left[\sum\limits_{b=1}^{B} lpha_b \, f_b(\mathbf{x})
 ight].$
- Os modelos são treinados sequencialmente focando onde o classificador anterior performou mal.

Conjunto de Dados

- Fonte: kaggle
- Contexto: informações hospitalares e características pessoais de 303 pacientes.
- Objetivo: classificar se determinar indivíduo tem doença no coração.
- 14 preditores: 6 contínuos e 8 categóricos.

Recursos Computacionais

- Toda análise foi conduzida no software R, versão 3.6.1.
- randomForest: métodos Bagging e Random Forest.
- gbm: algoritmo AdaBoost.M1.
- rsample: validação cruzada.
- ROCR: curva ROC.

Número de Árvores

Desempenho na Amostra Teste

Matrizes de Confusão

	Pred				
Observado	Não doente	Doente	Total		
Não doente	27 (36.00%)	7 (9.33%)	34 (45.33%)		
Doente	8 (10.67%)	33 (44.00%)	41 (54.67%)		
Total	35 (46.67%)	40 (53.33%)	75 (100.00%)		
Random Forest					
	Pred				
Observado	Não doente	Doente	Total		
Não doente	27 (36.00%)	7 (9.33%)	34 (45.33%)		
Não doente Doente	27 (36.00%) 7 (9.33%)	7 (9.33%) 34 (45.33%)	34 (45.33%) 41 (54.67%)		
		` ′	, ,		
Doente	7 (9.33%) 34 (45.33%)	34 (45.33%)	41 (54.67%)		
Doente	7 (9.33%) 34 (45.33%)	34 (45.33%) 41 (54.67%) sting	41 (54.67%)		

Não doente 27 (36.00%)

4 (5.33%)

31 (41.33%)

Doente

Total

37 (49.33%) 41 (54.67%)

44 (58.67%) 75 (100.00%)

34 (45.33%)

7 (9.33%)

Comparação dos Classificadores

Modelo	$\operatorname{`Err}_{\mathcal{T}}$ `	AUC	Sens.	Espec.
Logística	0.1333	0.9067	0.8529	0.8780
LDA	0.3200	0.7120	0.5294	0.8049
QDA	0.3333	0.7109	0.6176	0.7073
Bagging	0.2000	0.8702	0.7941	0.8049
Random Forest	0.1867	0.8784	0.7941	0.8293
Boosting	0.1467	0.9125	0.7941	0.9024

Considerações

- Regressão logística e Boosting apresentaram boa performance preditiva.
- Até que ponto vale a pena perder a interpretabilidade da regressão logística?
- O quão viável é utilizar Boosting ou Random Forest como métodos para tomada decisão?

Referências

- HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. **The Elements of Statistical Learning: Data Mining Inference and Prediction.** 2nd. ed. Springer, 2009.
- JAMES, G.; WITTEN, D.; HASTIE, T.; TIBSHIRANI, R. An Introduction to Statistical Learning. Springer, 2013.
- MURPHY, K. P. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.