DS 2 : Référentiels non galiléens & Electronique numérique Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-14	Mécanique en référentiel non galiléen		
1	Si R est en rotation uniforme d'axe fixe par rapport à R_G alors M est soumis aux forces d'inertie de Coriolis et d'entraînement. Si R est en translation par rapport à R_G alors M est soumis uniquement à la force d'inertie d'entraînement.	1	
2	La force d'inertie d'entraînement (ou centrifuge) est $\vec{F_i}e = -m\vec{\omega} \wedge \left(\vec{\omega} \wedge \overrightarrow{OM}\right) = m\omega^2 \overrightarrow{HM}$ avec O origine et H projeté orthogonal de M sur (Δ) . La force d'inertie de Coriolis est $\vec{F_i}c = -2m\vec{\omega} \wedge \vec{v}_R(M)$.	1	
3	Le référentiel du laboratoire peut être considéré comme galiléen si la durée du phénomène étudié Δt est telle que $\Delta t \ll 1$ jour et si la taille typique l occupée par le phénomène étudié est telle que $l \ll R_T$ le rayon de la Terre	1	
4	$ec{e}_r = ec{e}_T$	1	
5	poids $\vec{p} = -mg\vec{e}_z$, force d'inertie d'entrainement $\vec{F}_{ie} = m\omega^2r\vec{e}_r$, force d'inertie de Coriolis $\vec{F}_{ic} = -2m\omega\dot{r}\vec{e}_\theta$, Le contact anneau-tige étant sans frottement, la réaction est normale à la tige, elle a donc des composantes selon \vec{e}_θ et \vec{e}_z	1	
6	On écrit le PFD et on le projette selon \vec{e}_r , et on obtient $\ddot{r} = \omega^2 r$	1	
7	on obtient $r = r_0 \cosh(\omega t)$	1	
8	l'anneau quitte la tige pour $r(\tau) = l$ donc $\tau = \frac{1}{\omega} \arg \cosh \left(\frac{l}{r_0} \right)$	1	
9	dans le référentiel de la tige la vitesse de l'anneau est $v=\dot{r}=\omega r_0 \sinh(\omega t)$ à l'instant τ on a $v=\omega r_0 \sinh(\omega \tau)=\omega r_0 \sinh\left(\arg\cosh\left(\frac{l}{r_0}\right)\right)=\omega r_0 \sqrt{\left(\frac{l}{r_0}\right)^2-1}=\omega \sqrt{l^2-r_0^2}$ approche énergétique $E_m(t=0)=E_m(t=\tau)$ donc $-\frac{1}{2}m\omega^2 r_0^2=\frac{1}{2}mv^2-\frac{1}{2}m\omega^2 l^2$ donc $v=\omega\sqrt{l^2-r_0^2}$ donc $\vec{v}_f=\omega\sqrt{l^2-r_0^2}\vec{e}_r$ dans le référentiel du laboratoire, on utilise la loi de composition des vitesses $\vec{v}_f'=\omega\sqrt{l^2-r_0^2}\vec{e}_r+l\omega\vec{e}_\theta$ $\vec{p}=-mg\vec{e}_z$, $\vec{F}_{ie}=m\omega^2HM=m\omega^2r\sin(\alpha)\vec{e}_r$, $\vec{F}_{ic}=-2m\omega\vec{e}_z$	1	
10	$\dot{r}\vec{e}_T = -2m\omega\dot{r}\sin(\alpha)\vec{e}_\theta$	1	
11	on projette sur \vec{e}_T et on obtient $\ddot{r} = -g\cos(\alpha) + \omega^2\sin^2(\alpha)r$	1	
12	$r = \left(r_0 - \frac{g\cos(\alpha)}{\omega^2 \sin^2(\alpha)}\right) \cosh(\omega \sin(\alpha)t) + \frac{g\cos(\alpha)}{\omega^2 \sin^2(\alpha)}$	1	
13	à l'équilibre $\ddot{r} = 0$ pour tout t donc $r_0 = r_{eq} = \frac{g \cos(\alpha)}{\omega^2 \sin^2(\alpha)}$ il existe une position d'équilibre si $r_{eq} < l$ donc si $\omega > \omega_0 = \sqrt{\frac{g \cos \alpha}{l \sin^2(\alpha)}}$	1	
l	γ υμπ (α)		

14	si on écarte légèrement l'anneau de sa position d'équilibre :	1	
	si $r > r_{eq}$, $\vec{F}_{ie}.\vec{e}_T$ augmente, l'anneau s'éloigne de l'équilibre vers		
	les r croissant.		
	si $r < r_{eq}$, $\vec{F}_{ie} \cdot \vec{e}_T$ diminue, l'anneau s'éloigne de l'équilibre vers		
	les r décroissant.		
	L'équilibre est donc instable		

15-23	Traitement d'un électrocardiogramme		
15	La période d'échantillonnage T_e est la durée qui sépare deux	1	
	échantillons successifs. La fréquence d'échantillonnage $f_e = \frac{1}{T_e}$.		
	Soit un signal de bande finie comportant une harmonique de rang le plus élevé à une fréquence f_{max} . Le signal est correctement f_{max} .		
	échantillonné si $f_{max} \leq \frac{f_e}{2}$		
16	La période du signal $u_{card}(t)$ étant $T_{card} = 1$ s, sa fréquence est $f_{card} = 1$ Hz, ce qui correspond à 60 battements par minute.	1	
17	Cette fréquence est identique à celle de la première raie du spectre : 1 Hz. Celle ci correspond au fondamental du signal.	1	
18	La condition de Shannon impose une fréquence d'échantillonnage minimale $F_{e,min}=2F_{max}$, ce qui donne : $F_{e,min}=200$ Hz.	1	
19	Pour respecter la condition de Shannon, les fréquences doivent être inférieures à $\frac{F_e}{2} = 224$ Hz. C'est le cas pour la première fréquence, $f_1 = 150$ Hz, mais pas pour la seconde, $f_2 = 400$ Hz.	1	
20	Le phénomène de repliement du spectre fait apparaître une composante de fréquence $f' = F_e - f$ pour chaque fréquence f. Pour les deux composantes parasites de fréquence $f_1 = 150$ Hz et $f_2 = 400$ Hz, cela donne $f'_1 = 448^{\circ}150 = 298$ Hz et $f'_2 = 448^{\circ}400 = 48$ Hz.	1	
21	mettre à zéro l'amplitude des harmoniques ne vérifiant pas le critère de Shannon.	1	
22	La fréquence minimale f_m susceptible de se replier dans le spectre utile est telle que $F_e - f_m = F_{max}$, ce qui conduit à : $f_m = F_e - F_{max}$, soit : $f_m = 448 - 100 = 348$ Hz.	1	
23	La fréquence de coupure du filtre anti-repliement est $f_c = \frac{F_e}{2}$, soit : $f_c = \frac{448}{2} = 224$ Hz. La bande passante du filtre anti-repliement est compatible avec l'occupation spectrale du signal ECG puisque $f_c > F_{max}$.	1	

24-27	Banc de test pour lunettes		
24	La tension U_{AMP2} est appliquée à l'entrée du convertisseur	1	
	analogique-numérique. Sa valeur doit donc être comprise entre		
	0 et $V_{DD} = 5$ V.		
25	La plus petite tension détectable par le convertisseur analogique-	1	
	numérique est le pas de quantification qui s'exprime par : $r = \frac{V_r}{2p}$.		
	Le circuit intégré AD7896 étant un convertisseur 12 bits, nous		
	obtenons : $r = \frac{E}{212} = 1,221 \text{ mV}.$		
26	La valeur décimálé N de la grandeur de sortie correspondant à une	1	
	tension d'entrée U_{AMP2} est : $N = \frac{U_{AMP2}}{r}$, soit : $N = \frac{200}{1,221} = \frac{1}{1,221}$		
	164. La conversion en binaire donne : 10100100.		
27	Les chronogrammes fournis montrent que $16T_{CLK} = 100 - 8 -$	1	
	$0, 4 = 91, 6\mu s \text{ donc}: T_{CLK} = 5, 1\mu s \text{ et } f_{CLK} = 1175k \text{Hz}.$		

28-28	Numérisation d'un signal de marche		
28	La fréquence maximale de tous les spectres est la moitié de la fré-	1	
	quence d'échantillonnage. En utilisant $\frac{N}{t_{max}-t_{min}}=f_e$ on obtient		
	en effet successivement : 1,68 Hz 11,5 Hz 3,37 Hz et 33,3 Hz. Or		
	le signal proposé est de période 0,5 s environ et donc de fréquence		
	voisine de 2 Hz. Le critère de Nyquist-Shanon n'est donc pas res-		
	pecté pour les trois permiers graphes : le premier et le troisième ne		
	restituent aucune fréquence correctement, le deuxième ne donne		
	que les deux premières harmoniques. Sur ces trois graphes, on as-		
	siste à un repliement de spectre. Seul le graphe 4 permet d'obtenir		
	un spectre convaincant : fondamentale vers 2 Hz et 6 harmoniques		
	bien observables. La fréquence de la marche est de l'ordre de 1 Hz,		
	Les deux pieds jouant un rôle symétrique, la fréquence de la force		
	est le double.		

29-31	Extraction d'un signal faible par effet de moyenne	
29	Pour $n = 2500$ acquisitions, la moyenne sera $b_n = nb = 25000$ et	1
	l'écart-type $\sigma_n = \sqrt{n}\sigma = 250.95\%$ des mesures doivent de trouver	
	dans l'intervalle $b_n \pm 2\sigma_n$, donc entre 24 500 et 25 500	
30	Pour une seule acquisition : un signal d'amplitude unité dans un	1
	bruit gaussien de dispersion cinq fois plus grande est indétectable.	
	Pour 2500 acquisitions les canaux centraux voient leur somme	
	s'accroître de 2500 ce qui permet de les dégager du bruit.	
31	Le bruit introduit une fluctuation des mesures égale à $2\sigma_n = 2\sqrt{n}\sigma$	1
	de part et d'autre du bruit moyen égal à nb. Si la somme des	
	signaux utiles est inférieure à cette fluctuation, ils seront noyés	
	dans le bruit. Il faut donc $ns_p > 2\sqrt{n}\sigma$ soit $n > \frac{4\sigma^2}{s^2}$.	