Tarea 3: Métodos Numéricos en Python

Alumno: Andrés Padrón Quintana

Curso: Data Science and Machine Learning Applied to Financial Markets - Módulo III

Fecha: 13 de octubre de 2025

BLOQUE 1 — BÁSICO

1. Integración de $e^{(-x^2)}$ en [0, 1]

Se calcula I con cuadratura adaptativa (scipy.integrate.quad) y se contrasta con la regla del trapecio compuesta (numpy.trapz).

- I quad ≈ 0.74682413 I trapz ≈ 0.74682407 (m=1000)
- $|I_quad I_trapz| \approx 6.13 \times 10^{-8}$ quad coincide con la referencia dentro del error numérico; trapecios converge al refinar mallas.

2. **Interpolación cúbica** (interp1d) y s(2.5)

Datos: $\{(0,1), (1,2.7), (2,5.8), (3,6.6), (4,7.5)\}.$

Resultado: $s(2.5) \approx 6.4328125$, coherente con 5.8 < s(2.5) < 6.6.

La interpolación cúbica es suave y pasa por todos los puntos.

3. Ajuste polinómico de grado 2 (usando puntos del problema 2)

Modelo: $p2(x) = a x^2 + b x + c$.

Coeficientes (LS): (a, b, c) = (-0.278571, 2.804286, 0.782857).

Evaluación: $p2(2.5) \approx 6.0525$.

El ajuste no interpola todos los puntos (minimiza error global), por eso $p2(2.5) \neq s(2.5)$.

4. Interpolación polinómica completa (grado 4)

Interpolador p4 de grado 4 con coeficientes aproximados (a, b, c, d, e) = (0.254167, -2.141667, 5.345833, -1.758333, 1.000000).

Comparación en x=2.5:

- $p4(2.5) \approx 6.4804688$
- $s(2.5) \approx 6.4328125$
- $|p4(2.5) s(2.5)| \approx 4.77 \times 10^{-2}$

p4 interpola exactamente los cinco puntos, pero puede oscilar más que la cúbica (fenómeno de Runge).

5. **Raíces** de $x^3 - 6x^2 + 11x - 6$

Usando numpy.roots y Newton-Raphson (scipy.optimize.newton).

Resultados: raíces reales = $\{1, 2, 3\}$.

Newton converge rápido cuando la semilla cae en la cuenca adecuada

BLOQUE 2 — INTERMEDIO

1) **Área** de sin(x) en $[0, \pi]$

Cálculamos la integral $I = \int 0^{\pi} \sin(x) dx$.

Coincidencia a precisión de máquina.

2) Interpolación de cos(x) + ruido (lineal vs. cúbica)

y $i = \cos(x \ i) + \varepsilon \ i$, con $\varepsilon \ i \sim N(0, 0.1^2)$, n=20, x i en [0, 10].

La interpolación lineal sigue más el ruido local (menos suave); la cúbica suaviza entre nodos y respeta la forma de cos(x), aunque puede ondular ligeramente.

3) Ajuste polinómico de grado 3

Modelo: $p3(x) = a x^3 + b x^2 + c x + d$.

Coeficientes: (a, b, c, d) = (-0.025823, 0.380188, -1.498508, 1.267758).

Evaluación: $p3(5) \approx 0.0521$.

Comentario: el cúbico capta la tendencia global de cos(x) pese al ruido; no interpola cada punto y puede desviarse en bordes. (Fig. B2-3)

4) Raíz de cos(x) - x (Newton propio vs. scipy.newton)

Ecuación: h(x) = cos(x) - x = 0.

Resultados (x0 = 1):

- Newton propio: $x^* \approx 0.739085133215$ (5 iteraciones).
- scipy.newton: x* ≈ 0.739085133215.
 Comentario: h'(x) = -sin(x) 1 ≠ 0 cerca de la raíz ⇒ convergencia rápida y estable. (Fig. B2-4)

5) Mínimo de $x^4 - 3x^3 + 2$

Óptimo (minimize scalar): $x^* \approx 2.25$; $\varphi(x^*) \approx -6.542969$.

El punto marcado coincide con el valle principal en [-1, 3].

6) Descenso de gradiente en $f(x) = (x-3)^2 + 4$

Gradiente: $\nabla f(x) = 2(x-3)$.

 $x_{k+1} = x_k - \alpha \cdot 2(x_k - 3) = (1 - 2\alpha) x_k + 6\alpha$. Con $x_0 = 0$ y 20 iteraciones:

- $\alpha = 0.1 \rightarrow x \ 20 \approx 2.965412$; $f(x \ 20) \approx 4.001196$ (convergencia estable y lenta).
- $\alpha = 0.5 \rightarrow x_20 = 3.000000$; $f(x_20) = 4.000000$ (llega en 1 paso)
- $\alpha = 0.9 \rightarrow x_20 \approx 2.965412$; $f(x_20) \approx 4.001196$ (convergencia oscilatoria) Mínimo teórico: $x^* = 3$; $f(x^*) = 4$.

Conclusiones

- 1. Cuadraturas adaptativas (quad) son muy precisas; reglas compuestas convergen al refinar.
- 2. En interpolación, la cúbica es más suave; el polinomio global de alto grado puede oscilar.
- 3. Los ajustes polinómicos modelan la tendencia y no interpolan cada punto.
- 4. Newton-Raphson es rápido si la derivada no se anula cerca de la raíz.
- 5. minimize scalar es fiable para mínimos univariados.
- 6. En descenso de gradiente, la tasa α gobierna estabilidad/velocidad; para cuadráticas, $\alpha = 0.5$ es ideal.