

Onp:
$$\vec{P} = \sum_{i=1}^{n} \vec{p}_{i} = \vec{p}_{1} + ... + \vec{p}_{n} - unnynbc$$
 cucremo n -now-torex $\vec{P}_{i} = \vec{p}_{1} + ... + \vec{p}_{n} + \Delta \vec{p}_{n}$ $\Delta \vec{p}_{i} = \Delta \vec{p}_{i} + ... + \Delta \vec{p}_{n}$ $\Delta \vec{p}_{i} = \Delta \vec{p}_{i} + ... + \Delta \vec{p}_{n}$ $\Delta \vec{p}_{i} = \Delta \vec{p}_{i} + ... + \Delta \vec{p}_{n}$ $\Delta \vec{p}_{i} = \Delta \vec{p}_{i} + ... + \Delta \vec{p}_{n}$ $\Delta \vec{p}_{i} = \Delta \vec{p}_{i} + ... + \Delta \vec{p}_{n}$ $\Delta \vec{p}_{i} = \Delta \vec{p}_{i} + ... + \Delta \vec{p}_{n}$ $\Delta \vec{p}_{i} = \Delta \vec{p}_{i} + ... + \Delta \vec{p}_{n}$ $\Delta \vec{p}_{i} = \Delta \vec{p}_{i} + ... + \Delta \vec{p}_{n}$

$$\frac{\Delta \vec{P}}{\Delta t} = \frac{\Delta \vec{P}}{\Delta t} + \frac{\Delta \vec{P}_2}{\Delta t} = \vec{F}_{0,\text{cens}} + \vec{f}_{12} + \vec{F}_{0,\text{cens}} + \vec{f}_{21}$$

$$\frac{Cynna}{Cun, \text{genesh no 1}} = \vec{f}_{12} = -\vec{f}_{21}$$

$$\frac{1}{10} = \frac{\Delta \vec{P}_1}{\Delta t} + \frac{\Delta \vec{P}_2}{\Delta t} = \frac{1}{10} + \frac{1}{10}$$

Cymna brew. Cuna co croponsi

cun, general i 2-20 Tena

Jo 3-rey J-rey Hererona:
$$\vec{J}_{12} = -\vec{J}_{2}$$
,

 $\vec{J}_{12} = -\vec{J}_{2}$,

Пример 10. Снаряд летит по вертикали и разрывается в высшей точке траектории на множество осколков одинаковой массы, летящих во всевозможных направлениях с равными по модулю скоростями. Через $t_1 = 0,4$ с после разрыва все осколки находятся в полете, один из осколков движется горизонтально, его импульс $P_1 = 30 \text{ кг} \cdot \text{м/c}$. Масса снаряда M = 10 кг. Найдите модуль P_2 суммарного импульса \vec{P}_2 всех остальных осколков в этот момент времени. Ускорение свободного падения $g = 10 \,\text{м/c}^2$. 1) B baculeur to the $\vec{D}=0 \Rightarrow \vec{P}(0)=\vec{O}$ 2) Due cucremes ocnornol: 1 DP = Mg Const => UMNYA6C UZM. C ROCTOBREOù "EXOPOCTERO" / P(0) = 0 => P(t) = Mgt 3) Tepez brens ropuzontaneno nanpabnen $P(t_i) = M_{\overline{q}} t_i$ $P_{2} = \sqrt{p_{+}^{2} + p_{1}^{2'}} = 50 \text{ KZ } \frac{M}{c}$

Sind= P1 = 0,6 =) d = 37°

$$\Delta \vec{P} = \vec{P}(t+\Delta t) - \vec{P}(t) = (\vec{\Sigma} \vec{F}_t) \Delta t$$

$$\Rightarrow \Delta P_c \approx \vec{O} \iff \vec{P}(t+\Delta t) = \vec{P}(t)$$

Пример 11. На пути шайбы, скользящей по гладкому горизонтальному столу (рис. 11), находится гладкая незакреплённая горка. Шайба, движущаяся по горизонтальной поверхности в положительном направлении оси OX со скоростью $v_0 = 6$ м/с, въезжает на горку, безотрывно движется по ней и соскальзывает с горки по той же траектории.

Найдите конечные проекции на ось ОХ скорости шайбы и скорости горки. Масса горки в n = 5 раз больше массы шайбы.

m v_0 H^M

Рис. 11

Найдите конечные проекции v_{1x} скорости шайбы и v_2 горки в случае $v_0 = 4.8 \,\mathrm{m/c}$.

1) Расснотрим систему: шайбо + горка: $\frac{\Delta \overline{P}}{\Delta t} = (m+\mu) \overline{q} + \overline{N}$ Спроецируен на горизонтальную ось: $\frac{\Delta P_{x}}{AL} = 0 \Rightarrow P_{x} = const (1)$ 2) Запишем (1) и д-и сохранения полной энерши: $\int m \mathcal{D}_0 = m \mathcal{D}_{l_x} + M \mathcal{D}_2$ $\frac{mv_0^2}{2} = \frac{mv_1}{2} + \frac{Mv_2^2}{2}$

$$\begin{cases}
 m(\overline{V_0} - \overline{V_{1x}}) = M\overline{V_2} \\
 M\overline{V_2}(\overline{V_0} + \overline{V_{1x}} - \overline{V_2}) = O(=)
\end{cases}
\begin{cases}
 \overline{V_1} = 0
\end{cases}$$

$$\begin{cases}
 \overline{V_2} = 0
\end{cases}$$

$$\begin{cases}
 \overline{V_1} = 0
\end{cases}$$

Пример 12. Движущийся автомобиль сталкивается с неподвижным автомобилем. Масса движущегося автомобиля m, масса неподвижного автомобиля M.

Какая доля кинетической энергии движущегося автомобиля идет в результате абсолютно неупругого столкновения на разрушение «участников столкновения» (автомобилей, водителей, пассажиров)? Считайте, что в месте столкновения поверхность дороги покрыта тонким слоем льда: действие сил трения в процессе столкновения пренебрежимо мало.

1) Pace not pum cucrenz uz gbyx namum u zonamen
$$3C.U.$$
 u $3.C.$ $\ni:$

$$\int m\mathcal{V}_{\circ} = (m+M)\mathcal{V}_{\circ}$$

$$\int m\mathcal{V}_{\circ} = (m+M)\mathcal{V}_{\circ}$$

$$\int \mathcal{V}_{\circ} - \mathcal{V}_{\circ} = \frac{M}{m}\mathcal{V}_{\circ} = \mathcal{V}_{\circ} = \frac{m}{m+M}\mathcal{V}_{\circ}$$

$$\int \mathcal{M}\mathcal{V}_{\circ} - \mathcal{V}_{\circ} | (\mathcal{V}_{\circ} + \mathcal{V}_{\circ}) - \frac{M\mathcal{V}_{\circ}}{2} = \mathcal{Q}$$

$$\int \mathcal{M}\mathcal{V}_{\circ} | (\mathcal{V}_{\circ} + \mathcal{V}_{\circ}) - \frac{M\mathcal{V}_{\circ}}{2} = \mathcal{Q}$$

$$\int \mathcal{M}\mathcal{V}_{\circ} | (\mathcal{V}_{\circ} + \mathcal{V}_{\circ}) - \frac{M\mathcal{V}_{\circ}}{2} = \mathcal{Q}$$

$$\int \mathcal{M}\mathcal{V}_{\circ} | (\mathcal{V}_{\circ} + \mathcal{V}_{\circ}) - \frac{M\mathcal{V}_{\circ}}{2} = \mathcal{Q}$$

$$\int \mathcal{M}\mathcal{V}_{\circ} | (\mathcal{V}_{\circ} + \mathcal{V}_{\circ}) - \frac{M\mathcal{V}_{\circ}}{2} = \mathcal{Q}$$

$$\int \mathcal{M}\mathcal{V}_{\circ} | (\mathcal{V}_{\circ} + \mathcal{V}_{\circ}) - \frac{M\mathcal{V}_{\circ}}{2} = \mathcal{Q}$$

$$\int \mathcal{M}\mathcal{V}_{\circ} | (\mathcal{V}_{\circ} + \mathcal{V}_{\circ}) - \frac{M\mathcal{V}_{\circ}}{2} = \mathcal{Q}$$

$$\int \mathcal{M}\mathcal{V}_{\circ} | (\mathcal{V}_{\circ} + \mathcal{V}_{\circ}) - \frac{M\mathcal{V}_{\circ}}{2} = \mathcal{Q}$$

Пример 13. На гладкой горизонтальной поверхности лежит шайба массой
$$M$$
, На нее налетает шайба массой M , движущаяся поступательно со скоростью \overline{v} . Происходит абсолотно упругий центральный удар Найдите скорости \overline{v} , и \overline{v} , шайб после соударения. При каком условии налегающая шайба будет двигаться после соударения в прежнем направлении? Шайбы - гладкие диски.

1) M = M $\sqrt{1}$ + M $\sqrt{2}$ + M $\sqrt{2}$ - M $\sqrt{2$

Водометный двигатель патрульного катера это насос, который разгоняет каждую порцию воды от состояния покоя в лабораторной системе отсчета до скорости u=18 м/с относительно катера. Площадь поперечного сечения канала, по которому движется вода, $S=0,01\,\mathrm{m}^2$ Найдите установившуюся скорость v прямолинейного движения катера. Силу сопротивления считайте пропорциональной квадрату скорости v катера $F=kv^2$, здесь k=8 $\frac{{ ext{H}\cdot ext{c}}^2}{{ ext{v}}^2}$. Плотность воды $\rho = 1000 \text{ kg/m}^3$. 1) Кайден изменение импульса воды которую разгоняет увелатель 20 1t: Риаг = О (двиготель разгоняет воду из сост покия) Proneznoe = DM · Vade абсолютная спорость ДМ J = Trep => Vase = U-D => AP = AM (U-V) 2) Найдем ДМ: ЭТО поконцаяся вода, которую котер "забирает" по мере своего движения, то есть: am=pal=pSTat расст. простеплае катерон

3) Thorga cana:
$$F = \frac{\Delta F}{\Delta t} = 90(U-D).S$$
4) B yet. PREXIME:
$$\frac{\Delta F}{D} = U \frac{K}{1 + \rho S}$$
He antrodom Maccol $m = 2000$ kr, plansymbles co croporta by = $\frac{25}{10}$ M/C, palectrynt, however considerations as producing considerations of the production of the

Лодку массой m=100 кг тянут за веревку по поверхности озера с постоянной скоростью $v_0=1$ м/с. В некоторый момент веревка обрывается. Какой путь L пройдет после этого лодка к тому моменту, когда ее скорость уменьшится в два раза? Считайте, что сила сопротивления зависит не только от скорости $v^{'}$, но $\,$ и ускорения \overrightarrow{a} лодки по закону $\overrightarrow{F} = -\left(lpha \cdot \overrightarrow{v} + eta \cdot \overrightarrow{a} \right)$, где $lpha = 10 \; rac{ ext{H} \cdot ext{c}}{ ext{M}}, eta = 50 \; rac{ ext{H} \cdot ext{c}^2}{ ext{M}}.$ 1) Geropenue 11 5 2) 2-й д-и Некотома, $\frac{\Delta p}{\Delta t} = \vec{F}_{Apx} + m\vec{q} - (\Delta \vec{D} + \beta \vec{a})$ Troeyupyen no Ox: moenyus (Moxer 66,176 <0) APX = - αv_{x} - $\beta \alpha_{x}$ = $\frac{\beta \alpha_{x} + \beta u i}{\beta \alpha_{x} + \beta u}$ | $\frac{\beta \alpha_{x} + \beta u i}{\beta u}$ | $\frac{\beta \alpha_{x} + \beta u}{\beta u}$ 1/2= Pron-Proz = m 2 -m vo = - L - B (Vron-Vroz) L= mo $\angle = \frac{mv_0}{\prec}$

	— д	ве од	инакс	овые.	льдин	∣ нки ле	етят в	доль	одной	пряп	мой на	австр	ечу д	IDVF I	VIVQI	с рав	ЗНЫМИ	1 ПО В	еличи	ине сы	KODOG	і СТЯМИ	_	
									ударе														_	
									таки					соуда	арени	ем.	Темп	ерату	ра	пьдин	IOK I	перед	_	
									анные															
	0					7	, ,	_																
7	3	an	uu	Ce 11	,	3	. C	・フ	:															
					_	7		_	~ 2															
				m	V.		n	nν)。				. 1		1									
				9	Ť	+	<u> </u>	1		: (M	1	て	+	Λ	m								
					-		•):)°===================================															
						_	—		$\int_{\mathcal{C}}$			-	7											
-						1)	=	1.	/c	Λ	t +	ر ,	7	<u>-</u> -										
_						VΟ		V		u	<i>U</i> '	/												
_																								
-																								
-																								
-																								
-																								
_																								