Tutorato Fisica, CdL Informatica Foglio 1

 $Giulia\ Mercuri:\ giulia.mercuri@edu.unito.it$

 $8~\rm aprile~2021$

1 Formule utili

- vettore: $\vec{v} \equiv \mathbf{v} \equiv \bar{v}$.
- vettore in coordinate cartesiane (nello spazio): $\vec{v} = (x, y, z)$.
- vettore come somma di versori (nello spazio): $\vec{v} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$.
- modulo, norma o lunghezza: $|\vec{v}| \equiv ||\vec{v}|| = \sqrt{x^2 + y^2 + z^2}$.
- cambio da coordinate polari a cartesiane (nel piano): $x = \rho \cos \theta$; $y = \rho \sin \theta$.
- cambio da coordinate cartesiane a polari (nel piano): $\rho = \sqrt{x^2 + y^2}$; $\theta = \arctan(\frac{y}{x})$
- somma vettoriale: $\vec{u} + \vec{v} = (u_x + v_x, u_y + v_y, u_z + v_z)$.
- prodotto di uno scalare per un vettore: $a\vec{v} = (av_x, av_y, av_z), \quad a \in \mathbb{R}$.
- prodotto scalare (o interno): $\vec{u} \cdot \vec{v} = u_x v_x + u_y v_y + u_z v_z$.
- prodotto vettoriale (o esterno) $\vec{u} \times \vec{v} \equiv \vec{u} \wedge \vec{v} = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{pmatrix} \neq \vec{v} \times \vec{u}$.
- prodotto scalare in modulo, (α angolo compreso tra $\vec{u} \in \vec{v}$) : $\vec{u} \cdot \vec{v} = ||\vec{u}||||\vec{v}|| \cos \alpha$.
- prodotto vettoriale in modulo, (α angolo compreso tra \vec{u} e \vec{v}): $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \alpha$.

2 Esercizi

2.1 Esercizio 1

Dati due vettori in coordinate cartesiane nel piano: $\vec{u}=(6,-1)$ e $\vec{v}=(1,2)$, calcolarne i moduli e i prodotti $\vec{u}\cdot\vec{v},\,\vec{v}\cdot\vec{u}$ e $\vec{u}\cdot\vec{u}$.

2.2 Esercizio 2

Dati i vettori nel piano: $\vec{u} = -\hat{i} + 4\hat{k}$, $\vec{v} = 2\hat{i} - 3\hat{j}$, convertirli in coordinate polari (ρ, θ) . Calcolare $\vec{w} = \vec{u} + \vec{v}$ in coordinate cartesiane e successivamente convertire \vec{w} in coordinate polari.

2.3 Esercizio 3

Siano $\vec{u} = \hat{i} - \hat{j} + 2\hat{k}$ e $\vec{v} = 2\hat{i} + \hat{j} - 4\hat{k}$ vettori nello spazio: calcolare le norme dei due vettori, il vettore somma \vec{w} , la sua lunghezza e infine $|\vec{u}| + |\vec{v}|$.

2.4 Esercizio 4

Si considerino i seguenti vettori nello spazio: $\vec{u}=(0,1)$ e $\vec{v}=(1,1)$: calcolare il prodotto interno e i prodotti esterni $\vec{u}\times\vec{v}$ e $\vec{v}\times\vec{u}$.

2.5 Esercizio 5

Determinare se i vettori $\vec{u} = (1, 1, 2)$ e $\vec{v} = (3, 1, 0)$ sono paralleli o perpendicolari.

2.6 Esercizio 6

Dati nello spazio i due vettori $\vec{u} = (1,1)$ e $\vec{v} = (3,0)$: calcolare $||\vec{u} \times \vec{v}||$ e il prodotto interno $\vec{u} \cdot \vec{v}$ e riflettere sul risultato.

2.7 Esercizio 7

Dati i vettori nel piano $\vec{u}=(3,2)$ e $\vec{v}=7\hat{i}+\hat{j}$: trovare in coordinate cartesiane e polari il vettore $\vec{v}-\vec{u}$. Calcolare inoltre l'angolo compreso tra i due vettori \vec{u} e \vec{v} .

2.8 Esercizio 8

In un sistema di assi cartesiani (x,y) sono dati i punti: $A=(2,4),\,B=(6,1)$ e C=(6,4). Scrivere i vettori \vec{r}_{AB} che va dal punto A al punto B e \vec{r}_{AC} che va dal punto A al punto C. Calcolare inoltre il prodotto scalare $\vec{r}_{AB} \cdot \vec{r}_{AC}$.

2.9 Esercizio 9

In un sistema cartesiano siano dati i vettori: $\vec{a}=2\hat{i}+\hat{j}$ e $\vec{b}=\hat{i}+2\hat{j}$. Scrivere i vettori somma $\vec{s}=\vec{a}+\vec{b}$ e differenza $\vec{d}=\vec{a}-\vec{b}$. Dire se i vettori \vec{s} e \vec{d} sono perpendicolari giustificando la risposta.

2.10 Esercizio 10

Considerando il vettore $\vec{u}=\sqrt{3}~\hat{i}+\hat{j}$ ed il vettore \vec{v} che va dal punto $P=(2,-2\sqrt{3})$ all'origine O=(0,0), si calcoli \vec{u}^2 e $\vec{u}\cdot\vec{v}$: cosa si evince?