Introduction of Reinforcement Learning

Machine Learning ≈Looking for a Func

Properties of Reinforcement Learning

Reward delay

- In space invader, only "fire" obtains reward
 - Although the moving before "fire" is important
- In Go playing, it may be better to sacrifice immediate reward to gain more long-term reward
- Agent's actions affect the subsequent data it receives
 - E.g. Exploration

Outline

Alpha Go: policy-based + value-based + model-based

Model-based Approach

Policy-based Approach Learning an Actor

Neural network as Actor

 Input of neural network: the observation of machine represented as a vector or a matrix

 Output neural network : each action corresponds to a neuron in output layer

What is the benefit of using network instead of lookup table?

generalization

Goodness of Actor

- Given an actor $\pi_{\theta}(s)$ with network parameter θ
- Use the actor $\pi_{\theta}(s)$ to play the video game

We define \bar{R}_{θ} as the <u>expected value</u> of R_{θ} \bar{R}_{θ} evaluates the goodness of an actor $\pi_{\theta}(s)$

- An episode is considered as a trajectory τ
 - $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T\}$
 - $R(\tau) = \sum_{t=1}^{T} r_t$
 - If you use an actor to play the game, each τ has a probability to be sampled
 - The probability depends on actor parameter θ : $P(\tau|\theta)$

Total reward: $R_{\theta} = \sum_{t=1}^{T} r_{t,t}$ Even with the same actor R_{θ} is different each time

$$\bar{R}_{\theta} = \sum_{\tau} R(\tau) P(\tau | \theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n)$$

Sum over all possible trajectory

Use π_{θ} to play the game N times, obtain $\tau^1, \tau^2, \cdots, \tau^N$ Sampling τ from P $\tau | \theta$ N times

Gradient Ascent

Problem statement

$$\theta^* = \arg\max_{\theta} \overline{R}_{\theta}$$

- Gradient ascent
 - Start with θ^0

•
$$\theta^1 \leftarrow \theta^0 + \eta \nabla \bar{R}_{\theta^0}$$

•
$$\theta^2 \leftarrow \theta^1 + \eta \nabla \bar{R}_{\theta^1}$$

•

$$\theta = \{w_1, w_2, \cdots, b_1, \cdots\}$$

$$\nabla \bar{R}_{\theta} = \begin{bmatrix} \partial \bar{R}_{\theta} / \partial w_{1} \\ \partial \bar{R}_{\theta} / \partial w_{2} \\ \vdots \\ \partial \bar{R}_{\theta} / \partial b_{1} \\ \vdots \end{bmatrix}$$

Policy Gradient

Given actor parameter θ

$$\tau^{1}: (s_{1}^{1}, a_{1}^{1}) \quad R(\tau^{1})$$
 $(s_{2}^{1}, a_{2}^{1}) \quad R(\tau^{1})$
 \vdots
 $\tau^{2}: (s_{1}^{2}, a_{1}^{2}) \quad R(\tau^{2})$
 $(s_{2}^{2}, a_{2}^{2}) \quad R(\tau^{2})$
 \vdots
 \vdots

Update Model

$$\theta \leftarrow \theta + \eta \nabla \bar{R}_{\theta}$$

$$\nabla \bar{R}_{\theta} = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla logp(a_t^n | s_t^n, \theta)$$

Data Collection

Add a Baseline

It is possible that $R(\tau^n)$ is always positive.

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} (R(\tau^n) - b) \nabla log p(a_t^n | s_t^n, \theta)$$

Value-based Approach Learning a Critic

Critic

- State value function $V^{\pi}(s)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation (state) s

 $V^{\pi}(s)$ is large

 $V^{\pi}(s)$ is smaller

How to estimate $V^{\pi}(s)$

- Monte-Carlo based approach
 - The critic watches π playing the game

After seeing s_a ,

Until the end of the episode, the cumulated reward is G_a

After seeing s_b ,

Until the end of the episode, the cumulated reward is G_h

$$S_b \longrightarrow V^{\pi} \longrightarrow V^{\pi}(s_b) \longrightarrow G_b$$

How to estimate $V^{\pi}(s)$

Temporal-difference approach

Some applications have very long episodes, so that delaying all learning until an episode's end is too slow.

Another Critic

- State-action value function $Q^{\pi}(s, a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a

for discrete action only

Q-Learning

 π interacts with the environment

$$\pi = \pi'$$

TD or MC

Find a new actor π' "better" than π

Learning $Q^{\pi}(s, a)$

Q-Learning

- Given $Q^{\pi}(s, a)$, find a new actor π' "better" than π
 - "Better": $V^{\pi'}(s) \ge V^{\pi}(s)$, for all state s

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

- $\succ \pi'$ does not have extra parameters. It depends on Q
- > Not suitable for continuous action a

Deep Reinforcement Learning Actor-Critic

Actor-Critic

 π interacts with the environment

$$\pi = \pi'$$

TD or MC

Update actor from $\pi \to \pi'$ based on $Q^{\pi}(s,a), V^{\pi}(s)$

Learning $Q^{\pi}(s,a), V^{\pi}(s)$

Actor-Critic

- Tips
 - The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$ can be shared

Asynchronous

Source of image:

https://medium.com/emergentfuture/simple-reinforcement-learning-withtensorflow-part-8-asynchronous-actor-criticagents-a3c-c88f72a5e9f2#.68x6na7o9

 $\Delta \theta$

Worker 1

Environment 1

 $\Delta heta$

1. Copy global parameters

2. Sampling some data

3. Compute gradients

4. Update global models

