Time Deep Gradient Flow Method for Option Pricing in rough Diffusion Models

SIAM Conference on Financial Mathematics and Engineering

Jasper Rou joint work with Antonis Papapantoleon

July 17, 2025

Pricing

Price of a derivative with pay-off $\Phi(S_T)$

$$u(t, \mathbf{x}) = \mathbb{E}\left[e^{-r(T-t)}\Phi(S_T)|S_t\right]$$

Motivation Splitting method TDGF Neural network Results 2/19

Pricing

Price of a derivative with pay-off $\Phi(S_T)$

$$u(t, \mathbf{x}) = \mathbb{E}\left[e^{-r(T-t)}\Phi(S_T)|S_t\right]$$

Feynman-Kac formula:

$$\frac{\partial u}{\partial t} - \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} - \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} + ru = 0$$
$$u(0, \mathbf{x}) = \Phi(\mathbf{x})$$

Rough Heston

Not Markovian ⇒ no PDE

MotivationSplitting methodTDGFNeural networkResults3 / 19

Rough Heston

- Not Markovian ⇒ no PDE
- Lifted Heston: Markovian, but multiple dimensions

$$\begin{split} \mathrm{d}S_t &= rS_t \mathrm{d}t + \sqrt{V_t^n} S_t \mathrm{d}W_t & S_0 > 0 \\ V_t^n &= g^n(t) + \sum_{i=1}^n c_i^n V_t^{n,i} \\ \mathrm{d}V_t^{n,i} &= -\left(\gamma_i^n V_t^{n,i} + \lambda V_t^n\right) \mathrm{d}t + \eta \sqrt{V_t^n} \mathrm{d}B_t & V_0^{n,i} = 0 \\ g^n(t) &= V_0 + \lambda \theta \sum_{i=1}^n c_i^n \int_0^t e^{-\gamma_i^n(t-s)} \mathrm{d}s \end{split}$$

Deep Galerkin Method

$$\frac{\partial u}{\partial t} - \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} - \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} + ru = 0$$
$$u(0, \mathbf{x}) = \Phi(\mathbf{x})$$

Deep Galerkin Method

$$\frac{\partial u}{\partial t} - \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} - \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} + ru = 0$$
$$u(0, \mathbf{x}) = \Phi(\mathbf{x})$$

Minimize

$$\left\| \frac{\partial u}{\partial t} - \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} - \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} + ru \right\|_{[0,T] \times \Omega}^{2} + \|u(0,\mathbf{x}) - \Phi(\mathbf{x})\|_{\Omega}^{2}$$

Deep Galerkin Method

$$\frac{\partial u}{\partial t} - \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} - \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} + ru = 0$$
$$u(0, \mathbf{x}) = \Phi(\mathbf{x})$$

Minimize

$$\left\| \frac{\partial u}{\partial t} - \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} - \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} + ru \right\|_{[0,T] \times \Omega}^{2} + \left\| u(0,\mathbf{x}) - \Phi(\mathbf{x}) \right\|_{\Omega}^{2}$$

Issue: Taking second derivative makes training in high dimensions slow

Motivation

Idea

Rewrite PDE as energy minimization problem

Idea

Rewrite PDE as energy minimization problem

- Only first order derivative
- No norm

Idea

Rewrite PDE as energy minimization problem

- Only first order derivative
- No norm

Split in symmetric and non-symmetric part

$$\frac{\partial u}{\partial t} = \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} - ru$$

Motivation Splitting method TDGF Neural network Results 6 / 19

$$\frac{\partial u}{\partial t} = \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} - ru$$

$$= \sum_{i,j=0}^{n} \frac{\partial}{\partial x_{j}} \left(a^{ij} \frac{\partial u}{\partial x_{i}} \right) - \sum_{i,j=0}^{n} \frac{\partial a^{ij}}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} + \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} - ru$$

$$\frac{\partial u}{\partial t} = \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} - ru$$

$$= \sum_{i,j=0}^{n} \frac{\partial}{\partial x_{j}} \left(a^{ij} \frac{\partial u}{\partial x_{i}} \right) - \sum_{i,j=0}^{n} \frac{\partial a^{ij}}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} + \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} - ru$$

$$= \sum_{i,j=0}^{n} \frac{\partial}{\partial x_{j}} \left(a^{ij} \frac{\partial u}{\partial x_{i}} \right) - \sum_{i=0}^{n} \left(\sum_{j=0}^{n} \frac{\partial a^{ij}}{\partial x_{j}} - b^{i} \right) \frac{\partial u}{\partial x_{i}} - ru$$

$$\frac{\partial u}{\partial t} = \sum_{i,j=0}^{n} a^{ij} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} - ru$$

$$= \sum_{i,j=0}^{n} \frac{\partial}{\partial x_{j}} \left(a^{ij} \frac{\partial u}{\partial x_{i}} \right) - \sum_{i,j=0}^{n} \frac{\partial a^{ij}}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} + \sum_{i=0}^{n} b^{i} \frac{\partial u}{\partial x_{i}} - ru$$

$$= \sum_{i,j=0}^{n} \frac{\partial}{\partial x_{j}} \left(a^{ij} \frac{\partial u}{\partial x_{i}} \right) - \sum_{i=0}^{n} \left(\sum_{j=0}^{n} \frac{\partial a^{ij}}{\partial x_{j}} - b^{i} \right) \frac{\partial u}{\partial x_{i}} - ru$$

$$= \nabla \cdot (A \nabla u) - ru - F(u)$$

$$F(u) = \mathbf{b} \cdot \nabla u$$

$$dS_t = rS_t dt + \sqrt{V_t} S_t dW_t$$
$$dV_t = -\lambda V_t dt + \eta \sqrt{V_t} dB_t$$

$$\begin{split} \mathrm{d}S_t &= rS_t\mathrm{d}t + \sqrt{V_t}S_t\mathrm{d}W_t\\ \mathrm{d}V_t &= -\lambda V_t\mathrm{d}t + \eta\sqrt{V_t}\mathrm{d}B_t\\ \frac{\partial u}{\partial t} &= rS\frac{\partial u}{\partial S} - \lambda V\frac{\partial u}{\partial V} + \frac{1}{2}S^2V\frac{\partial^2 u}{\partial S^2} + \frac{1}{2}\eta^2V\frac{\partial^2 u}{\partial V^2} + \rho\eta SV\frac{\partial^2 u}{\partial S\partial V} - ru \end{split}$$

$$\frac{\partial u}{\partial t} = rS\frac{\partial u}{\partial S} - \lambda V \frac{\partial u}{\partial V} + \frac{1}{2}S^2 V \frac{\partial^2 u}{\partial S^2} + \frac{1}{2}\eta^2 V \frac{\partial^2 u}{\partial V^2} + \rho \eta S V \frac{\partial^2 u}{\partial S \partial V} - ru$$

Motivation Splitting method TDGF Neural network Results 8 / 19

$$\frac{\partial u}{\partial t} = rS\frac{\partial u}{\partial S} - \lambda V\frac{\partial u}{\partial V} + \frac{1}{2}S^{2}V\frac{\partial^{2}u}{\partial S^{2}} + \frac{1}{2}\eta^{2}V\frac{\partial^{2}u}{\partial V^{2}} + \rho\eta SV\frac{\partial^{2}u}{\partial S\partial V} - ru$$
$$= rS\frac{\partial u}{\partial S} - \lambda V\frac{\partial u}{\partial V} + \frac{\partial}{\partial S}\left(\frac{1}{2}S^{2}V\frac{\partial u}{\partial S}\right) - SV\frac{\partial u}{\partial S}$$

$$\begin{split} \frac{\partial u}{\partial t} &= rS\frac{\partial u}{\partial S} - \lambda V\frac{\partial u}{\partial V} + \frac{1}{2}S^2V\frac{\partial^2 u}{\partial S^2} + \frac{1}{2}\eta^2V\frac{\partial^2 u}{\partial V^2} + \rho\eta SV\frac{\partial^2 u}{\partial S\partial V} - ru \\ &= rS\frac{\partial u}{\partial S} - \lambda V\frac{\partial u}{\partial V} + \frac{\partial}{\partial S}\left(\frac{1}{2}S^2V\frac{\partial u}{\partial S}\right) - SV\frac{\partial u}{\partial S} \\ &+ \frac{\partial}{\partial V}\left(\frac{1}{2}\eta^2V\frac{\partial u}{\partial V}\right) - \frac{1}{2}\eta^2\frac{\partial u}{\partial V} \end{split}$$

$$\begin{split} \frac{\partial u}{\partial t} &= rS \frac{\partial u}{\partial S} - \lambda V \frac{\partial u}{\partial V} + \frac{1}{2} S^2 V \frac{\partial^2 u}{\partial S^2} + \frac{1}{2} \eta^2 V \frac{\partial^2 u}{\partial V^2} + \rho \eta S V \frac{\partial^2 u}{\partial S \partial V} - ru \\ &= rS \frac{\partial u}{\partial S} - \lambda V \frac{\partial u}{\partial V} + \frac{\partial}{\partial S} \left(\frac{1}{2} S^2 V \frac{\partial u}{\partial S} \right) - S V \frac{\partial u}{\partial S} \\ &+ \frac{\partial}{\partial V} \left(\frac{1}{2} \eta^2 V \frac{\partial u}{\partial V} \right) - \frac{1}{2} \eta^2 \frac{\partial u}{\partial V} + \frac{\partial}{\partial S} \left(\frac{1}{2} \rho \eta S V \frac{\partial u}{\partial V} \right) - \frac{1}{2} \rho \eta V \frac{\partial u}{\partial V} \\ &+ \frac{\partial}{\partial V} \left(\frac{1}{2} \rho \eta S V \frac{\partial u}{\partial S} \right) - \frac{1}{2} \rho \eta S \frac{\partial u}{\partial S} - ru \end{split}$$

$$\begin{split} \frac{\partial u}{\partial t} &= rS \frac{\partial u}{\partial S} - \lambda V \frac{\partial u}{\partial V} + \frac{1}{2} S^2 V \frac{\partial^2 u}{\partial S^2} + \frac{1}{2} \eta^2 V \frac{\partial^2 u}{\partial V^2} + \rho \eta S V \frac{\partial^2 u}{\partial S \partial V} - ru \\ &= rS \frac{\partial u}{\partial S} - \lambda V \frac{\partial u}{\partial V} + \frac{\partial}{\partial S} \left(\frac{1}{2} S^2 V \frac{\partial u}{\partial S} \right) - S V \frac{\partial u}{\partial S} \\ &+ \frac{\partial}{\partial V} \left(\frac{1}{2} \eta^2 V \frac{\partial u}{\partial V} \right) - \frac{1}{2} \eta^2 \frac{\partial u}{\partial V} + \frac{\partial}{\partial S} \left(\frac{1}{2} \rho \eta S V \frac{\partial u}{\partial V} \right) - \frac{1}{2} \rho \eta V \frac{\partial u}{\partial V} \\ &+ \frac{\partial}{\partial V} \left(\frac{1}{2} \rho \eta S V \frac{\partial u}{\partial S} \right) - \frac{1}{2} \rho \eta S \frac{\partial u}{\partial S} - ru \\ &= \nabla \cdot \left(\frac{1}{2} \begin{bmatrix} S^2 V & \rho \eta S V \\ \rho \eta S V & \eta^2 V \end{bmatrix} \nabla u \right) - \begin{bmatrix} S V + \frac{1}{2} \rho \eta S - rS \\ \frac{1}{2} \eta^2 + \frac{1}{2} \rho \eta V + \lambda V \end{bmatrix} \cdot \nabla u - ru \end{split}$$

tivation Splitting method

$$\begin{cases} u_t - \nabla \cdot (A\nabla u) + ru + F(u) = 0 & (t, \mathbf{x}) \in [0, T] \times \Omega \\ u(0, \mathbf{x}) = \Phi(\mathbf{x}) & \mathbf{x} \in \Omega \end{cases}$$

$$\begin{cases} u_t - \nabla \cdot (A\nabla u) + ru + F(u) = 0 & (t, \mathbf{x}) \in [0, T] \times \Omega \\ u(0, \mathbf{x}) = \Phi(\mathbf{x}) & \mathbf{x} \in \Omega \end{cases}$$

Divide [0, T] in intervals $(t_{k-1}, t_k]$ with $h = t_k - t_{k-1}$

$$\frac{U^{k} - U^{k-1}}{h} - \nabla \cdot \left(A\nabla U^{k}\right) + rU^{k} + F\left(U^{k-1}\right) = 0$$

$$\frac{U^k - U^{k-1}}{h} - \nabla \cdot \left(A\nabla U^k\right) + rU^k + F(U^{k-1}) = 0$$

$$\frac{U^k - U^{k-1}}{h} - \nabla \cdot \left(A\nabla U^k\right) + rU^k + F(U^{k-1}) = 0$$

$$0 = \int_{\Omega} \left(\left(U^{k} - U^{k-1} \right) + h \left(-\nabla \cdot \left(A \nabla U^{k} \right) + r U^{k} + F \left(U^{k-1} \right) \right) \right) v d\mathbf{x}$$

$$\frac{U^k - U^{k-1}}{h} - \nabla \cdot \left(A\nabla U^k\right) + rU^k + F(U^{k-1}) = 0$$

$$0 = \int_{\Omega} \left(\left(U^{k} - U^{k-1} \right) + h \left(-\nabla \cdot \left(A \nabla U^{k} \right) + r U^{k} + F \left(U^{k-1} \right) \right) \right) v d\mathbf{x}$$
$$= \left(i^{k} \right)'(0)$$

$$i^k(\tau) = I^k(U^k + \tau v)$$

$$\frac{U^k - U^{k-1}}{h} - \nabla \cdot \left(A\nabla U^k\right) + rU^k + F(U^{k-1}) = 0$$

$$\begin{aligned} 0 &= \int_{\Omega} \left(\left(U^k - U^{k-1} \right) + h \left(-\nabla \cdot \left(A \nabla U^k \right) + r U^k + F \left(U^{k-1} \right) \right) \right) v d\mathbf{x} \\ &= \left(i^k \right)'(0) \end{aligned}$$

$$i^k(\tau) = I^k(U^k + \tau v)$$

$$I^{k}(u) = \frac{1}{2} \left\| u - U^{k-1} \right\|^{2} + h \int_{\Omega} \frac{1}{2} \left((\nabla u)^{T} A \nabla u + ru^{2} \right) + F \left(U^{k-1} \right) u dx$$

$$U^{k} = \underset{u \in H^{1}(\Omega)}{\operatorname{arg min}} I^{k}(u)$$

$$I^{k}(u) = \frac{1}{2} \left\| u - U^{k-1} \right\|^{2} + h \int_{\Omega} \frac{1}{2} \left((\nabla u)^{T} A \nabla u + ru^{2} \right) + F \left(U^{k-1} \right) u dx$$

$$U^{k} = \underset{u \in H^{1}(\Omega)}{\min} I^{k}(u)$$

$$\begin{split} I^k(u) &= \frac{1}{2} \left\| u - U^{k-1} \right\|^2 + h \int_{\Omega} \frac{1}{2} \left((\nabla u)^T A \nabla u + r u^2 \right) + F \left(U^{k-1} \right) u dx \\ U^k &= \underset{u \in H^1(\Omega)}{\text{arg min }} I^k(u) \\ f^k(\mathbf{x}; \theta) &= \underset{u \in \mathcal{C}(\theta)}{\text{arg min }} I^k(u) \\ \mathcal{C}(\theta) &= \text{space of neural networks with parameters } \theta \end{split}$$

- 1: **for** each time step k=1,...,K **do** 2: Initialize $\theta_0^k=\theta^{k-1}$

- **for** each time step k = 1, ..., K **do**
- Initialize $\theta_0^k = \theta^{k-1}$ 2:
- for each sampling stage n do 3:
- Generate random points \mathbf{x}^i for training 4:

- 1: **for** each time step k = 1, ..., K **do**
- 2: Initialize $\theta_0^k = \theta^{k-1}$
- 3: **for** each sampling stage n **do**
- 4: Generate random points \mathbf{x}^i for training
- 5: Calculate the cost functional $I^k(f(\mathbf{x}^i;\theta_n^k))$

```
1: for each time step k = 1, ..., K do
2: Initialize \theta_0^k = \theta^{k-1}
3: for each sampling stage n do
4: Generate random points \mathbf{x}^i for training
5: Calculate the cost functional I^k(f(\mathbf{x}^i; \theta_n^k))
6: Take a descent step \theta_{n+1}^k = \theta_n^k - \alpha_n \nabla_\theta I^k(f(\mathbf{x}^i; \theta_n^k))
7: end for
8: end for
```

Base

No-arbitrage bound: $u(t,S) \ge S - Ke^{-rt}$

Linearization

Architecture

$$S^{1} = \sigma_{1} \left(W^{1} \mathbf{x} + b^{1} \right)$$

$$Z^{I} = \sigma_{1} \left(U^{z,I} \mathbf{x} + W^{z,I} S^{I} + b^{z,I} \right) \qquad I = 1, ..., L$$

$$G^{I} = \sigma_{1} \left(U^{g,I} \mathbf{x} + W^{g,I} S^{I} + b^{g,I} \right) \qquad I = 1, ..., L$$

$$R^{I} = \sigma_{1} \left(U^{r,I} \mathbf{x} + W^{r,I} S^{I} + b^{r,I} \right) \qquad I = 1, ..., L$$

$$H^{I} = \sigma_{1} \left(U^{h,I} \mathbf{x} + W^{h,I} \left(S^{I} \odot R^{I} \right) + b^{h,I} \right) \qquad I = 1, ..., L$$

$$S^{I+1} = \left(1 - G^{I} \right) \odot H^{I} + Z^{I} \odot S^{I} \qquad I = 1, ..., L$$

$$f(\mathbf{x}; \theta) = \mathsf{base} + \sigma_{2} \left(WS^{L+1} + b \right) \qquad \sigma_{2} > 0$$

Lifted Heston, n = 1

Lifted Heston, n = 20

Running times

Model	LH, n=1	LH, n=20
DGM	12.5×10^{3}	54.3×10^{3}
TDGF	5.9×10^{3}	7.4×10^{3}

Table: Training time

Running times

Model	LH, n=1	LH, n=20
DGM	12.5×10^{3}	54.3×10^{3}
TDGF	5.9×10^{3}	7.4×10^{3}

Table: Training time

Model	LH, n=1	LH, n=20
COS	9.1	10.0
DGM	0.0043	0.0015
TDGF	0.0019	0.0018

Table: Computing time

Time Deep Gradient Flow Method for Option Pricing in rough Diffusion Models

SIAM Conference on Financial Mathematics and Engineering

Jasper Rou

July 17, 2025

j.g.rou@tudelft.nl

www.jasperrou.nl

