

Data Pre-Processing

Prepared by: Ted Lee

Prepared on: 2025-04-09

1. Data Cleaning [MUST]

- Handling missing values (imputation, removal)
 - from sklearn.impute import SimpleImputer
 - imputer = SimpleImputer(strategy='mean')
- Removing duplicates
- Correcting inconsistencies (e.g., typos in categorical variables)

Name	Gender	Age
Ted	Male	18
Ted	M	18
Mandy	F	-

2. Data Formatting [MUST]

Converting data into a suitable format for analysis (e.g., converting date formats).

3. Data Transformation [MUST]

- Normalization
 - Scaling numerical data to a specific range [0;1] using X' = (X Xmin) / (Xmax Xmin)
 - from sklearn.preprocessing import MinMaxScaler
 - o scaler = MinMaxScaler()
 - o normalized_data = scaler.fit_transform(data)
- Standardization
 - Scaling data to have a mean of 0 and a standard deviation of 1 \rightarrow [-3;+3] X' = (X μ) / σ \leftarrow Use this in all situations

strategy='most frequent'

- from sklearn.preprocessing import StandardScaler
- scaler = StandardScaler()
- standardized_data = scaler.fit_transform(data)
- Log Transformation (for skewed numerical data).
 - Log_data = np.log(data)

4. Encoding Categorical Variables [MUST]

- One-Hot Encoding
 - Converting independent categorical variables into binary vectors
 - Creating dummy variables
 - from sklearn.preprocessing import OneHotEncoder
 - onehot encoder = OneHotEncoder(sparse=False)
 - onehot_encoded = onehot_encoder.fit_transform(categories)
- Label Encoding
 - Converting dependent categories into numerical values
 - from sklearn.preprocessing import LabelEncoder
 - tabel_encoder = LabelEncoder()
 - encoded_labels = label_encoder.fit_transform(categories)

One-Hot Encoding

City	Class		City	Macau	PH	Class
НК	Α		1	0	0	0
Macau	В	\rightarrow	0	1	0	1
PH	С		0	0	1	2

Label Encoding

- 5. Text Pre-processing (for text data) [MUST]
 - from nltk.corpus import stopwords
 - from nltk.stem import PorterStemmer
 - from nltk.tokenize import word_tokenize
 - text_data = ["Hello, world! This is an example text.", "Text pre-processing is essential for NLP tasks."]
 - # Initialize the stemmer and stopwords
 - stemmer = PorterStemmer()
 - stop_words = set(stopwords.words('english'))
 - # Function for text pre-processing
 - def preprocess(text):
 - \star text = text.lower()
 - text = text.translate(str.maketrans("", "", string.punctuation))
 - tokens = word_tokenize(text)
 - tokens = [word for word in tokens if word not in stop_words]
 - tokens = [stemmer.stem(word) for word in tokens]
 - return ' '.join(tokens)
 - cleaned_data = [preprocess(text) for text in text_data]
 - for original, cleaned in zip(text_data, cleaned_data):
 - print(f"Original: {original}\nCleaned: {cleaned}\n")

- # 1. Lowercasing
- #2. Removing punctuation
- # 3. Tokenization → Split the sentence into words
- # 4. Removing stop words → E.g. 'the', 'is'
- # 5. Stemming → Change "Running" to "Run"
- # Rejoining tokens
- # Apply pre-processing to the text data
- # Display the cleaned text

Feature Engineering [ACCURACY]

Creating new features based on existing data to improve model performance.

New features

order_id	order_date	customer_id	order_amount	total_orders	order_day_of_week	is_weekend	order_amount_log
1	2023-01-01	101	250	2	Sunday	1	5.52
2	2023-01-03	102	150	2	Tuesday	0	5.01
3	2023-01-01	101	200	2	Sunday	1	5.28
4	2023-01-05	103	450	1	Thursday	0	6.11
5	2023-01-06	102	300	2	Saturday	1	5.7

- * # 1. Create a new feature: Total Orders per Customer
- total_orders_per_customer = df.groupby('customer_id')['order_id'].count().reset_index()
- total_orders_per_customer.columns = ['customer_id', 'total_orders']
- df = df.merge(total_orders_per_customer, on='customer_id', how='left')
- * #2. Create a new feature: Day of the Week from the Order Date
- df['order_day_of_week'] = df['order_date'].dt.day_name()
- * #3. Create a new feature: Is Weekend
- df['is_weekend'] = np.where(df['order_day_of_week'].isin(['Saturday', 'Sunday']), 1, 0)
- * # 4. Create a new feature: Log Transformation of Order Amount
- df['order_amount_log'] = np.log1p(df['order_amount'])

7. Outlier Detection and Treatment [ACCURACY]

Identifying outliers and deciding whether to remove, replace, or keep them.

Statistical Tests

- i. Z-Score Method: Identifies outliers based on standard deviations from the mean. A common threshold is a z-score of ±3.
 - from scipy import stats
 - z_scores = np.abs(stats.zscore(df['Values']))
 - outliers z = df[z scores > 3]
- ii. IQR Method: Uses the interquartile range (IQR). Data points that fall below Q1 1.5 * IQR or above Q3 + 1.5 * IQR are considered outliers.
 - Q1 = df['Values'].quantile(0.25)
 - \$ Q3 = df['Values'].quantile(0.75)
 - \Leftrightarrow IQR = Q3 Q1
 - ♣ Lower bound = Q1 1.5 * IQR
 - upper bound = Q3 + 1.5 * IQR
 - outliers_iqr = df[(df['Values'] < lower_bound) | (df['Values'] > upper_bound)]

8. Data Discretization [ACCURACY]

- Converting continuous variables into categorical ones.
- data = { 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank', 'Grace', 'Hannah'], 'Age': [4,
 15, 23, 45, 64, 12, 34, 89] }
- df = pd.DataFrame(data)
- # Define the age bins and corresponding labels
- ❖ bins = [0, 12, 19, 64, 100]
- labels = ['Child', 'Teenager', 'Adult', 'Senior']
- # Use pd.cut to discretize the 'Age' column
- df['AgeGroup'] = pd.cut(df['Age'], bins=bins, labels=labels, right=True)

8. Data Discretization [ACCURACY]

- i. **Simplification**: Discretizing continuous variables simplifies the modeling process by reducing the number of distinct values. This can make subsequent analysis or modeling tasks easier to manage.
- **ii. Improved Interpretability**: Discrete categories can be more interpretable than continuous values. For example, transforming age into categories like "child," "teen," "adult," and "senior" can make the data more understandable for stakeholders.
- **iii. Noise Reduction**: Discretization can help in reducing the noise in the data by grouping similar values, which can lead to better model performance, especially in datasets with outliers.
- **iv. Handling Non-Linearity**: Some algorithms work better with categorical data. Discretization allows for capturing nonlinear relationships within the data by categorizing continuous variables into bins.
- v. Facilitating Certain Algorithms: Many machine learning algorithms, such as decision trees and naive Bayes, may perform better with discrete data. Discretization can make the data more suitable for these algorithms.
- vi. Aggregation: Discretization enables aggregation of data points into meaningful categories, which can be useful for reporting and visualization.
- vii. Statistical Analysis: Certain statistical methods require categorical data, and discretization allows these techniques to be applied to continuous variables.

- Data Integration [PREFFORMANCE]
 - Combining data from different sources to create a unified dataset.
 - online_sales = pd.read_csv('online_sales.csv')
 - physical_sales = pd.read_csv('physical_sales.csv')
 - integrated_sales = pd.concat([online_sales, physical_sales], ignore_index=True)
- **10.** Data Reduction (A) Sampling (reducing the size of the dataset) [PREFFORMANCE]
- 11. Data Reduction (B) Feature selection [PREFFORMANCE]
 Selecting a subset of relevant features to reduce overfitting, decrease training time, and improve model interpretability.
 - Filter Methods
 - Calculate the correlation coefficient between each feature and the target variable
 - E.g. Pearson correlation to predict house prices
 - correlation = diff[['Location', 'Size', 'Age', 'House_Price']].corr()

11. Data Reduction – (B) Feature selection

- II. Wrapper Methods
 - Example **Recursive Feature Elimination** (RFE):
 - Use Case: Using a linear regression model, you start with all features, remove the one with the lowest absolute coefficient, re-fit the model, and repeat the process.
 - from sklearn.feature_selection import RFE
 - rfe = RFE(estimator=LinearRegression(), n_features_to_select=3)
 - rfe.fit(X_train, y_train)
 - ❖ selected_features = X.columns[rfe.support_]
 → It returns 'Location', 'Size' and 'Age'.

III. Embedded Methods

- Example Lasso Regression:
 - Use Case: In a dataset with many features, applying Lasso regression could reveal which features are most significant by setting less important feature coefficients to zero.
- from sklearn.linear_model import Lasso
- from sklearn.metrics import mean_squared_error, r2_score
- \star Lasso = Lasso(alpha=0.1)
- lasso.fit(X_train, y_train)
- y_pred = lasso.predict(X_test)
- mse = mean_squared_error(y_test, y_pred)
- r2 = r2_score(y_test, y_pred)
- coefficients = pd.Series(lasso.coef_, index=X.columns)

11. Data Reduction – (B) Feature selection

- IV. Tree-Based Methods
 - Example **Feature Importance** from Decision Trees:
 - Use Case: Fit a Random Forest to a dataset and examine the **feature importance scores**, then select the top features based on those scores.
 - from sklearn.ensemble import RandomForestRegressor
 - rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
 - rf_model.fit(X_train, y_train)
 - importances = rf_model.feature_importances_
 - importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': importances})
 - importance_df = importance_df.sort_values(by='Importance', ascending=False)

V. Univariate Selection

- Example Chi-Squared Test:
 - Use Case: In a dataset with several categorical features, you could apply the Chi-squared test to determine which features are significantly associated with the target class.
- from scipy import stats
- df = pd.DataFrame(data)
- contingency_table = pd.crosstab(df['Gender'], df['Preference'])
- chi2_stats, p_val, deg_of_freedom, expected_freq = stats.chi2_contingency(contingency_table)
- if p_val < alpha:</pre>
- print("Reject the null hypothesis: Significant association between Gender and Preference.")

- **12.** Data Reduction (C) Dimensionality reduction techniques [PREFFORMANCE]
 - i. Principal Component Analysis (PCA)
 - Overview: PCA is a linear dimensionality reduction technique that transforms the original features into a new set of uncorrelated features called principal components. These components capture the maximum variance in the data.
 - How it Works:
 - PCA computes the eigenvectors and eigenvalues of the covariance matrix of the data.
 - The eigenvectors (principal components) are ordered by their corresponding eigenvalues (variance captured).
 - The top k eigenvectors are selected to form a new feature space, where k is less than the original number of features.
 - Applications: PCA is widely used in data preprocessing, for noise reduction, and to visualize high-dimensional data in two
 or three dimensions.
 - from sklearn.decomposition import PCA
 - from sklearn.preprocessing import StandardScaler
 - # Standardize the datascaler = StandardScaler()
 - X_scaled = scaler.fit_transform(X)
 - * # Apply PCA and reduce to 2 dimensions
 - pca = PCA(n_components=2)
 - * X_pca = pca.fit_transform(X_scaled)
 - # Create a DataFrame for easy plotting
 - ❖ df_pca = pd.DataFrame(data=X_pca, columns=['Principal Component 1', 'Principal Component 2'])
 - df_pca['Target'] = y

- **12. Data Reduction** (C) Dimensionality reduction techniques
 - i. Principal Component Analysis (PCA)

- **12.** Data Reduction (C) Dimensionality reduction techniques
 - ii. t-Distributed Stochastic Neighbor Embedding (t-SNE)
 - **Overview**: t-SNE is a non-linear dimensionality reduction technique particularly well-suited for visualization of high-dimensional data in low-dimensional spaces (usually 2D or 3D).
 - How it Works:
 - t-SNE converts similarities (distances) between points in a high-dimensional space into probabilities, creating a
 probability distribution for pairwise similarities.
 - o It then finds a lower-dimensional representation that reflects these probabilities as closely as possible.
 - The technique emphasizes preserving local structures, meaning that points that are close in high-dimensional space remain close in low-dimensional representation.
 - Applications: t-SNE is commonly used for visualizing complex datasets, such as word embeddings, image data, or clustering results.
 - from sklearn.manifold import TSNE
 - from sklearn.preprocessing import StandardScaler
 - scaler = StandardScaler()
 - * X_scaled = scaler.fit_transform(X)
 - ❖ # Apply t-SNE
 - tsne = TSNE(n_components=2, random_state=42)
 - * X_tsne = tsne.fit_transform(X_scaled)
 - ❖ tsne df = pd.DataFrame(data=X tsne, columns=['t-SNE Component 1', 't-SNE Component 2'])
 - tsne_df['Target'] = y

- **12. Data Reduction** (C) Dimensionality reduction techniques
 - ii. t-Distributed Stochastic Neighbor Embedding (t-SNE)

- **12.** Data Reduction (C) Dimensionality reduction techniques
 - iii. Linear Discriminant Analysis (LDA)
 - Overview: LDA is a supervised dimensionality reduction technique used mainly for classification. It aims to maximize the separation between multiple classes.
 - How it Works:
 - o LDA computes the mean vectors of each class and the overall mean.
 - The within-class and between-class scatter matrices are calculated to find the linear combinations of features that best separate the classes.
 - o The resulting linear discriminants can be used for both dimensionality reduction and as classifiers.
 - **Applications**: LDA is mainly used in scenarios where class labels are available and is effective in reducing the dimensionality of data for classification purposes.
 - from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
 - from sklearn.preprocessing import StandardScaler
 - scaler = StandardScaler()
 - * X_scaled = scaler.fit_transform(X)
 - * # Apply LDA
 - tda = LinearDiscriminantAnalysis(n_components=2)
 - * X_lda = lda.fit_transform(X_scaled, y)
 - the lda_df = pd.DataFrame(data=X_lda, columns=['LDA Component 1', 'LDA Component 2'])
 - Lda_df['Target'] = y

- **12.** Data Reduction (C) Dimensionality reduction techniques
 - iii. Linear Discriminant Analysis (LDA)

12. Data Reduction – (C) Dimensionality reduction techniques

iv. Isomap

- Overview: Isomap is a non-linear dimensionality reduction technique that preserves the global geometric structure of the data.
- How it Works:
 - Isomap computes the geodesic distances between data points on a manifold (using nearest neighbors).
 - It then applies classical multidimensional scaling (MDS) to embed this distance matrix into a lower-dimensional space.
- **Applications**: Isomap is effective when the data lies on a lower-dimensional manifold and is useful in various fields, including pattern recognition and image processing.
- from sklearn.manifold import Isomap
- from sklearn.datasets import make s curve

```
$ X, color = make_s_curve(n_samples=1000, noise=0.1) # Generate an S-curve dataset
$ isomap = Isomap(n_neighbors=10, n_components=2) # Apply Isomap

$ X_transformed = isomap.fit_transform(X)

$ fig = plt.figure(figsize=(12, 6)) # Plot the original S-curve

$ ax1 = fig.add_subplot(121, projection='3d')

$ ax1.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)

$ ax1.set_title("Original S-Curve")

$ ax2 = fig.add_subplot(122) # Plot the Isomap result

$ ax2.scatter(X_transformed[:, 0], X_transformed[:, 1], c=color, cmap=plt.cm.Spectral)

$ ax2.set title("Isomap Projection")
```


12. Data Reduction – (C) Dimensionality reduction techniquesiv. Isomap

12. Data Reduction – (C) Dimensionality reduction techniques

v. Autoencoders

- **Overview**: Autoencoders are a type of neural network used for unsupervised learning. They learn a compressed representation (encoding) of the input data.
- How it Works:
 - An autoencoder consists of two parts: an encoder that compresses the input into a lower-dimensional representation, and a decoder that reconstructs the input from this representation.
 - The network is trained to minimize the reconstruction error (the difference between the input and output).
- **Applications**: Autoencoders are used in various tasks, including noise reduction, anomaly detection, and extracting meaningful features from data.

