PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-296841

(43)Date of publication of application: 26.10.2001

(51)Int.Cl.

G096 3/36 G₀₂F 1/133 G09G 3/20

(21)Application number: 2000-127103

(71)Applicant:

MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

27.04.2000

(72)Inventor:

KAMIMURA TSUYOSHI

NAKAO KENJI NISHIYAMA SEIJI

NAKAMURA MIKA HATTORI KATSUJI

(30)Priority

Priority number: 11122572

Priority date: 28.04.1999

Priority country: JP

28.04.1999

JP

11122113 11156126 11204152

03.06.1999

JP

19.07.1999

JP

2000031406

09.02.2000

JP

(54) DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an excellent display both in moving and still pictures.

SOLUTION: In the case of displaying a moving picture, a driving method or a lighting system or a combination thereof suitable for them is adopted. In the case of displaying mainly still pictures (for example, OA picture), a normal liquid crystal driving method is adopted. When the display device receives a video signal, it detects whether it is a moving picture or a still picture, and performs driving corresponding thereto. Moreover, the display device stores precedent pictures, and perceives it from the difference whether or not the video signal is animation.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-296841 (P2001-296841A)

(43)公開日 平成13年10月26日(2001.10.26)

(51) Int.Cl.7		識別記号		FΙ			Ī	-7.3~}*(参考)
G 0 9 G	3/36			G 0 9	G 3/36			2H093
G02F	1/133	5 5 0		G 0 2	F 1/133		550	5 C O O 6
G 0 9 G	3/20	6 2 1		G09	G 3/20		621F	5 C 0 8 0
							621K	
		660					660U	
			審查請求	未請求	請求項の数98	OL	(全 28 頁)	最終頁に続く

(21)出願番号	特顧2000-127103(P2000-127103)	(71)出顧人	000005821 松下電器産業株式会社
(22)出顧日	平成12年4月27日(2000.4.27)		大阪府門真市大字門真1006番地
		(72)発明者	上村強
(31)優先権主張番号	特顧平11-122572		大阪府門真市大字門真1006番地 松下電器
(32)優先日	平成11年4月28日(1999.4.28)		産業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	中尾 健次
(31)優先権主張番号	特願平11-122113		大阪府門真市大字門真1006番地 松下電器
(32) 優先日	平成11年4月28日(1999.4.28)		産業株式会社内
(33)優先權主張国	日本 (JP)	(74)代理人	100101823
(31)優先権主張番号	特顧平11-156126		弁理士 大前 要
(32)優先日	平成11年6月3日(1999.6.3)		
(33)優先権主張国	日本 (JP)		
			最終頁に続く

(54) 【発明の名称】 表示装置

(57)【要約】

【課題】 動画、静止画いずれにおいても優れた表示を行なう。

【解決手段】 動画表示を行う場合には、それに適した 駆動方法または照明方式あるいはその組み合わせを行 う。静止画主体の表示の場合(例えばOA画面など)に は通常の液晶駆動方法を行う。映像信号を受信すると、 動画か静止画かを検知して、それに対応した駆動を行 う。また、前画面をメモリーしておき、差分により動画 か否かを察知する。

【特許請求の範囲】

【請求項1】 表示手段に動画主体の表示を行わさせる 動画用駆動手段と、

同じく静止画主体の表示を行わさせる静止画用駆動手段 と、

所定の方法で前記両手段を切り替える切換え手段とを有 していることを特徴とする表示装置。

【請求項2】 上記表示手段は、

液晶を使用した表示手段であり、

前記動画用駆動手段は、

画像を表示する時には、前記液晶を使用した表示手段に 動画対応の液晶の駆動を行なわす動画用液晶駆動部若し くは同じく動画対応の照明を行わす動画用照明駆動部を 有していることを特徴とする請求項1記載の表示装置。

【請求項3】 前記動画用駆動手段は、

相連続する2つの画像データ等を素に中間画像を作成する中間画像作成小手段と、

動画の表示に際して、上記相連続する2つの画像間に上 記作成した中間画像を挿入して表示させる中間画像挿入 小手段と、

1 画像の表示間隔を少なくすることにより上記中間画像を挿入したにもかかわらず動画の表示時間を不変とするフィールド周波数短縮調整小手段を有していることを特徴とする請求項1若しくは請求項2記載の表示装置。

【請求項4】 前記動画用駆動手段は、

間欠駆動にて画面を表示させる間欠駆動表示駆動手段であることを特徴とする請求項1若しくは請求項2記載の表示装置。

【請求項5】 前記動画用駆動手段は、

フィールド周波数を静止画の場合より高めて動画を表示 30 する高フィールド周波数表示手段であることを特徴とする請求項1若しくは請求項2記載の表示装置。

【請求項6】 前記動画用駆動手段は、

シャッター方式又は時分割階調表示方式の少くも一方を 使用するシャッター時分割使用動画用駆動手段であるこ とを特徴とする請求項1若しくは請求項2記載の表示装 置。

【請求項7】 前記動画用照明駆動部は、

各画像の表示に際して、フィールド周波数に対応する期間より短く表示光を点灯する短期点灯小部を有している 40 ことを特徴とする請求項1若しくは請求項2記載の表示装置。

【請求項8】 前記動画用照明駆動部は、

動画の表示に際して、1画面毎にパルス状に点灯するパルス点灯部を有していることを特徴とする請求項1若しくは請求項2記載の表示装置。

【請求項9】 前記切換え手段は、

映像信号受信時には、所定の手順でこれを検知して自動的に前記動画用駆動手段に切り替える自動切換え手段であることを特徴とする請求項1から請求項8のいずれか 50

に記載の表示装置。

【請求項10】 前記自動切換え手段は、

少くも前画面との差分により動きの速い画面を表示に先立って察知し、これを基にして動画対応駆動を行う差分 検出型自動切換え手段であることを特徴とする請求項9 記載の表示装置。

【請求項11】 前記静止画用駆動手段は、

静止画を表示する際には、フィールド周波数に対応する 期間中、表示光等の光源を点灯している通常点灯部を有 10 していることを特徴とする請求項1から請求項10のい ずれかに記載の表示装置。

【請求項12】 上記表示手段は、

液晶を使用するものであり、かつその液晶表示素子はその応答時間が少なくとも1フィールドの期間よりも速い 高速応答画素子であることを特徴とする請求項1から請 求項11のいずれかに記載の表示装置。

【請求項13】 上記表示手段は、

表示面の一部からなる動画対応可能表示部分と、

残りの表示面からなる静止画表示部分とからなり、

20 前記動画用駆動手段は、

動画の場合には前記動画対応可能表示部分に動画主体の表示を行わさせる表示面部分動画用駆動手段であり、前記切換え手段は、

表示すべき画像データが動画か静止画かを判定する判定 小手段と、

前記判定小手段が動画と判断したならば、前記表示部分 動画駆動手段に、表示面の動画対応可能表示部分に適切 な動画主体の表示を行なわさせる表示面部分動画用駆動 制御小手段とを有していることを特徴とする請求項1か ら請求項12のいずれかに記載の表示装置。

【請求項14】 前記動画対応可能表示部分は、

画面中央部を含むものであることを特徴とする請求項1 3記載の表示装置。

【請求項15】 ホールド型の表示手段に動画主体の表示を行わさせる動画用駆動手段と、

同じく静止画主体の表示を行わさせる静止画用駆動手段と

所定の方法で前記両手段を切り替える切換え手段とを有 していることを特徴とする表示装置。

【請求項16】 前記動画用駆動手段は、

相連続する2つの画像データ等を素に中間画像を作成する中間画像作成小手段と、

動画の表示に際して、上記相連続する2つの画像間に上 記作成した中間画像を挿入して表示させる中間画像挿入 小手段と、

1画像の表示間隔を少なくすることにより上記中間画像を挿入したにもかかわらず動画の表示時間を不変とするフィールド周波数短縮調整小手段を有していることを特徴とする請求項15記載の表示装置。

0 【請求項17】 前記動画用駆動手段は、

間欠駆動にて画面を表示させる間欠駆動表示駆動手段で あることを特徴とする請求項15記載の表示装置。

【請求項18】 前記動画用駆動手段は、

フィールド周波数を静止画の場合より高めて動画を表示 する高フィールド周波数表示部であることを特徴とする 請求項15記載の表示装置。

【請求項19】 前記動画用駆動手段は、

シャッター方式又は時分割階調表示方式の少くも一方を 使用するシャッター時分割使用動画用駆動手段であるこ とを特徴とする請求項15記載の表示装置。

【請求項20】 前記動画用照明駆動部は、

各画像の表示に際して、フィールド周波数に対応する期 間より短く表示光を点灯する短期点灯小部を有している ことを特徴とする請求項15記載の表示装置。

【請求項21】 前記切換え手段は、

画像を表示する時には、所定の手順でこれを検知して自 動的に前記動画用駆動手段に切り替える自動切換え手段 であることを特徴とする請求項15から請求項20のい ずれかに記載の表示装置。

【請求項22】 前記自動切換え手段は、

少くも前画面との差分により動きの速い画面を表示に先 立って察知し、これを基にして動画対応駆動を行う差分 検出型自動切換え手段であることを特徴とする請求項2 1記載の表示装置。

【請求項23】 前記静止画用駆動手段は、

静止画を表示する際には、フィールド周波数に対応する 期間中、表示光等の光源を点灯している通常点灯部を有 していることを特徴とする請求項15から請求項22の いずれかに記載の表示装置。

【請求項24】 上記表示手段は、

その応答時間が少なくとも1フィールドの期間よりも速 い高速応答画素子を使用するものであることを特徴とす る請求項15から請求項23のいずれかに記載の表示装 置。

【請求項25】 上記表示手段は、

表示面の一部からなる動画対応可能表示部分と、 残りの表示面からなる静止画表示部分とからなり、 前記動画用駆動手段は、

動画の場合には前記動画対応可能表示部分に動画主体の 表示を行わさせる表示面部分動画用駆動手段であり、 前記切換え手段は、

表示すべき画像データが動画か静止画かを判定する判定 小手段と、

前記判定小手段が動画と判断したならば、前記表示部分 動画駆動手段に、表示面の動画対応可能表示部分に適切 な動画主体の表示を行なわさせる表示面部分動画用駆動 制御小手段とを有していることを特徴とする請求項15 から請求項24のいずれかに記載の表示装置。

【請求項26】 前記動画対応可能表示部分は、

画面中央部を含むものであることを特徴とする請求項2 50

5記載の表示装置。

【請求項27】 表示装置の階調表示方法において、 電圧調整手法と、時分割階調表示手法とを併用している ことを特徴とする表示装置の階調表示方法。

【請求項28】 表示装置の階調表示方法において、 表示装置が表示する映像信号の周期を1フィールドとす るとき、該1フィールドを複数のサブフィールドに分 け、該サブフィールドの少くも1を電圧調整法で行な い、他のサブフィールドを時分割階調表示方法で行うこ とを特徴とする請求項27記載の表示装置の階調表示方

前記複数のサブフィールド数が、2で 【請求項29】 あることを特徴とする請求項28記載の表示装置の階調 表示方法。

【請求項30】 表示すべき画像の階調度の如何に応じ て、印加する電圧パルスの印加時間を調整することを特 徴とする請求項27から請求項29のいずれかに記載の 表示装置の階調表示方法。

【請求項31】 表示されるべき動画の画像の階調度が 20 最大値の半分以下の場合には、1フィールドの半分の期 間の休止期間をその前半若しくは後半に挿入することを 特徴とする請求項27から請求項30のいずれかに記載 の表示装置の階調表示方法。

【請求項32】 上記表示装置は、

ホールド型であることを特徴とする請求項27から請求 項31のいずれかに記載の表示装置の階調表示方法。

【請求項33】 表示すべき動画の各画像の階調度に応 じての表示を行うため、1フィールドを複数のサブフィ ールドに分割するフィールド分割手段と、

前記フィールド分割手段の分割した少くも1のサブフィ ールドにつき、階調度から定まる電圧の調整を行って表 示手段に表示を行わす電圧調整表示作用手段と、

他のサブフィールドにつき階調度から定まる時分割階調 表示を行って表示手段に表示を行わせる時分割階調表示 手段とを有していることを特徴とする表示装置。

【請求項34】 前記複数のサブフィールドは等時間間 隔の2であり、

前記時分割階調表示手段は、

階調度が50%以上の場合のみ1のサブフィールドを1 00%の階調度で表示する50%以上対応時分割階調表 示手段であることを特徴とする請求項33記載の表示装

【請求項35】 表示すべき動画の各画像の階調度を1 フィールド毎に検知する階調度検知手段と、

該検知された階調度を基に、1フィールド毎に電圧を印 加する時間間隔を決める印加時間間隔決定手段と、

前記印加時間間隔決定手段の決めた時間間隔だけ1フィ ールドの最初若しくは最後に所定の電圧を印加する階調 度対応電圧印加手段とを有していることを特徴とする表 示装置。

【請求項36】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用したものであることを特徴とする請求項33から請求項35のいずれかに記載の表示装置。

【請求項37】 上記表示装置は、

その表示部の素子の応答時間が16ms以下である高速 応答型表示手段を有していることを特徴とする請求項3 3から請求項36のいずれかに記載の表示装置。

【請求項38】 上記高速応答型表示手段は、

液晶を使用した表示手段であることを特徴とする請求項 10 3 7記載の表示装置。

【請求項39】 上記液晶を使用した表示手段は、

OCBモードの液晶を使用した表示手段であることを特徴とする請求項38記載の表示装置。

【請求項4.0】 上記液晶を使用した表示手段は、 強誘電極の液晶を使用した表示手段であることを特徴と する請求項38記載の表示装置。

【請求項41】 上記液晶を使用した表示手段は、

反強誘電極の液晶を使用した表示手段であることを特徴 とする請求項38記載の表示装置。

【請求項42】 光源と、シャッター手段と、動画を表示する表示手段とを有する表示装置であって、

上記シャッター手段は、

画像の表示に際して、光源を発した光がシャッター手段 を経て、表示手段に入射する際に、上記光源からの光を 透過する状態と遮蔽する状態と各画像を表示するのに対 応した状態とが所定の手順で切り替わる透過遮蔽切換え 手段であることを特徴とした表示装置。

【請求項43】 前記透過遮蔽切換え手段たるシャッタ 一手段の切換えは、その周期が上記表示手段の画面更新 30 時間と同期していることを特徴とする請求項42記載の 表示装置。

【請求項44】 前記シャッター手段は、

その走査方向が上記表示手段の走査方向と等しい走査方向対応型シャッター手段であることを特徴とする請求項42若しくは請求項43記載の表示装置。

【請求項45】 前記シャッター手段は、

液晶シャッターであることを特徴とする請求項42から 請求項44のいずれかに記載の表示装置。

【請求項46】 前記液晶シャッターは、

強誘電性液晶を使用した液晶シャッターであることを特 徴とする請求項45記載の表示装置。

【請求項47】 前記液晶シャッターは、

OCB型液晶を使用した液晶シャッターであることを特 徴とする請求項45記載の表示装置。

【請求項48】 前記液晶シャッターは、

散乱型液晶を使用した液晶シャッターであることを特徴 とする請求項45記載の表示装置。

【請求項49】 前記シャッターは、

機械的シャッターであることを特徴とする請求項42か 50 項60に記載の表示装置。

ら請求項44のいずれかに記載の表示装置。

【請求項50】 前記機械的シャッターは、

上記表示手段の表示面の寸法、形状に対応した所定の寸法、形状の開口を有し、回所定角速度で回転するホイールであることを特徴とする請求項49記載の表示装置。

6

【請求項51】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用したものであることを特徴とする請求項42から請求項5 0のいずれかに記載の表示装置。

【請求項52】 光源と、光束走査手段と、動画を表示する表示手段とを有する表示装置であって、

上記光束走査手段は、

光源を発した光が上記光束走査手段を経て表示手段に入 射する際に、上記光源光の進行方向を各画像の表示に対 応して周期的に切り替える周期切り替え型光束走査手段 であることを特徴とした表示装置。

【請求項53】 前記光束走査手段は、

上記表示手段に、反射した光源光を画像の切り替わりに 対応して向ける回転角柱ミラーであることを特徴とする 請求項52記載の表示装置。

【請求項54】 上記回転角柱ミラーは、

小型の回転角柱ミラーであることを特徴とする請求項5 3記載の表示装置。

【請求項55】 前記表示手段は、

液晶を使用した表示手段であることを特徴とする請求項 53から請求項54のいずれかに記載の表示装置。

【請求項56】 前記表示手段は、

その素子の応答速度が30ms以下の高速応答表示素子を有していることを特徴とする請求項52から請求項5 5のいずれかに記載の表示装置。

【請求項57】 前記高速応答表示素子は、

OCBモードの液晶を使用した表示素子であることを特徴とする請求項56記載の表示装置。

【請求項58】 前記高速応答表示素子は、

強誘電モードの液晶を使用した表示素子であることを特 徴とする請求項56記載の表示装置。

【請求項59】 前記高速応答表示素子は、

反強誘電モードの液晶を使用した表示素子であることを 特徴とする請求項56記載の表示装置。

40 【請求項60】 上記表示装置は、

投射型の表示装置であることを特徴とする請求項52から請求項59のいずれかに記載の表示装置。

【請求項61】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用したものであることを特徴とする請求項52から請求項54のいずれかに記載の表示装置。

【請求項62】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用したものであることを特徴とする請求項56若しくは請求項60に記載の表示装置。

【請求項63】 上記表示装置は更に、

相連続する2つの画像の中間に挿入すべき少くも1の中 間画像を、少くも当該2つの相連続する画像データを基 に作成する中間挿入画像作成手段と、

上記相連続する2つの画像の間に上記作成された上記少 くも1の中間画像を上記相連続する画像間に挿入し、こ れにより表示する画像群を作成すつ表示用画像群作成手 段と、

上記作成された表示用画像群を、1画像当りの表示時間 を短縮することにより上記中間画像を挿入しなかった場 合と同じ動画の進行速度で順に表示していく表示速度制 御手段を有していることを特徴とする請求項52から請 求項62のいずれかに記載の表示装置。

【請求項64】 動画を表示する表示装置において、 相連続する2つの画像の中間に挿入すべき少くも1の中 間画像を、少くも当該2つの相連続する画像データを基 に作成する中間挿入画像作成手段と、

上記相連続する2つの画像の間に上記作成された上記少 くも1の中間画像を上記相連続する画像間に挿入し、こ れにより表示する画像群を作成する表示用画像群作成手 段と、

上記作成された表示用画像群を、1画像当りの表示時間 を短縮することにより上記中間画像を挿入しなかった場 合と同じ動画の進行速度で順に表示していく表示速度制 御手段を有していることを特徴とする表示装置。

【請求項65】 前記中間挿入画像作成手段は、

少くも2画面以上の映像データを格納するデータ格納小

該データ格納小手段の映像データを演算する演算小手段

該演算小手段の演算結果を中間挿入画像の作成に使用す る演算結果利用作成小手段とを有していることを特徴と する請求項64記載の表示装置。

【請求項66】 前記中間挿入画像作成手段は、 前後の動画の平均値や内挿値等を基に中間画像を生成す る平均値等採用中間画像作成手段であることを特徴とす る請求項64若しくは請求項65記載の表示装置。

【請求項67】 前記中間挿入画像作成手段は、

少くも当該連続した前後のデータを基に動きを検出する ことによって、中間挿入画像を作成する動き利用中間画 40 像作成手段であることを特徴とする請求項64若しくは 請求項65記載の表示装置。

【請求項68】 前記中間挿入画像作成手段は、 少くも当該連続した前後の画像データを基に検出した各 画像間での動きベクトルに着目して中間画像を生成する 動きベクトル着目中間画像作成手段であることを特徴と する請求項64若しくは請求項65記載の表示装置。

【請求項69】 前記表示装置は、

表示手段として液晶を使用した液晶表示手段を有してい ることを特徴とする請求項64から請求項68のいずれ 50

かに記載の表示装置。

【請求項70】 前記液晶表示手段は、

OCBモードの液晶を使用した表示手段であることを特 徴とする請求項69記載の表示装置。

【請求項71】 前記液晶表示手段は、

強誘電性の液晶を使用した表示手段であることを特徴と する請求項69記載の表示装置。

前記液晶表示手段は、 【請求項72】

反強誘電性の液晶を使用した表示手段であることを特徴 とする請求項69記載の表示装置。

【請求項73】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用し たものであることを特徴とする請求項64から請求項6 8のいずれかに記載の表示装置。

【請求項74】 画素が縦、横方向に並んで数多く配列 され、これにより動画が表示可能な動画対応表示手段を 有し、該動画対応手段の各画素は、

電界を印加する電界印加手段と、

上記印加された電界を保持する電界保持手段と、

電界印加によって表示を行う表示素子と、

前記電界保持手段が保持する電界を所定の時間内で放電 する放電手段とを有することを特徴とする表示装置。

【請求項75】 前記電界保持手段は、

印加された電界を1フィールド保持する筈の1フィール ド電界保持手段であり、

前記放電手段は、

20

前記1フィールド電界印加手段の保持する電界を1フィ ールド内で放電させる1フィールド放電手段であること を特徴とする請求項74記載の表示装置。

【請求項76】 前記表示装置は、

前記電界印加手段、前記電界保持手段及び表示素子を駆 動する若しくはそれらの一部を構成するTFTが形成さ れたアクティブマトリクス基板を有していることを特徴 とする請求項74若しくは請求項75記載の表示装置。

【請求項77】 前記放電手段が前記アクティブマトリ クス基板上に形成されていることを特徴とする請求項7 4から請求項76のいずれかに記載の表示装置。

【請求項78】 前記表示素子は、

液晶を使用した表示素子であることを特徴とする請求項 74から請求項77のいずれかに記載の表示装置。

【請求項79】 前記表示素子は、

EL表示素子であることを特徴とする請求項74から請 求項77のいずれかに記載の表示装置。

【請求項80】 前記放電手段は、

前記電界印加手段の高低の電界を加える部分に存在する 表示素子を構成する物質そのものがその適切な抵抗によ り放電をなして機能を発揮する表示素子兼用放電手段で あることを特徴とする請求項74から請求項79のいず れかに記載の表示装置。

【請求項81】 前記放電手段は、

前記電界印加手段の高低の電界を加える部分に存在する 表示素子を構成する物質そのものがその適切な抵抗によ り放電をなして機能を発揮する表示素子兼用放電手段で あることを特徴とする請求項74から請求項79のいず れかに記載の表示装置。

【請求項82】 前記表示素子兼用放電手段の抵抗の導電率は10⁻¹⁰ ジーメンス以上であることを特徴とする請求項81記載の表示装置。

【請求項83】 前記アクティブマトリクス基板は、 画素電極と、

前記画素電極よりも容量の小さい補助容量を有している ことを特徴とする請求項76若しくは請求項77記載の 表示装置。

【請求項84】 前記アクティブマトリクス基板は、 補助容量を有さないものであることを特徴とする請求項 76若しくは請求項77記載の表示装置。

【請求項85】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用したものであることを特徴とする請求項74から請求項7 7のいずれかに記載の表示装置。

【請求項86】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用したものであることを特徴とする請求項80から請求項84のいずれかに記載の表示装置。

【請求項87】 画素が縦、横方向に並んで数多く配列 され、これにより動画が表示可能な動画対応表示手段を 有し、該動画対応手段の各画素は、

電界を印加する電界印加手段と、

上記印加された電界を保持する電界保持手段と、

電界の印加によって表示を行い、電界が低いと黒表示と 30 なる表示素子と、

前記電界保持手段の保持する電界を所定の時間内で放電 する放電手段とを有することを特徴とする表示装置。

【請求項88】 前記電界保持手段は、

印加された電界を1フィールド保持する筈の1フィール ド電界保持手段であり、

前記放電手段は、

前記1フィールド電界印加手段の保持する電界を1フィールド内で放電させる1フィールド放電手段であることを特徴とする請求項87記載の表示装置。

【請求項89】 黒表示電圧を供給する黒表示電圧供給 手段を有していることを特徴とする請求項88記載の表示装置。

【請求項90】 画素が縦、横方向に並んで数多く配列 され、これにより動画が表示可能な動画対応表示手段を 有し、該動画対応手段の各画素は、

電界を印加する電界印加手段と、

上記印加された電界を保持する電界保持手段と、

電界印加によって表示を行い、電界が低いと白表示となる表示素子と、

前記電界保持手段の保持する電界を所定の時間内で放電する放電手段とを有することを特徴とする表示装置。

10

【請求項91】 前記電界保持手段は、

印加された電界を1フィールド保持する筈の1フィールド電界保持手段であり、

前記放電手段は、

前記1フィールド電界印加手段の保持する電界を1フィールド内で放電させる1フィールド放電手段であることを特徴とする請求項90記載の表示装置。

0 【請求項92】 黒表示電圧を供給する黒表示電圧供給 手段を有していることを特徴とする請求項91記載の表示装置。

【請求項93】 前記表示素子は、

OCBモードの液晶を使用するものであることを特徴とする請求項87から請求項92のいずれかに記載の表示装置。

【請求項94】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用したものであることを特徴とする請求項87から請求項92のいずれかに記載の表示装置。

【請求項95】 画素が縦、横方向に並んで数多く配列 され、これにより動画が表示可能な動画対応表示手段を 有し、電界印加によって表示を行う表示装置の駆動方法 であって、

表示のために、上記動画対応表示手段の表示素子に電界 を印加する電界印加ステップと、

上記印加された電界を保持する電界保持ステップと、

上記保持した電界を所定の時間内で放電する放電ステップと

30 前記電界印加ステップにて印加する電界の極性を所定の 規則で交番させる交番ステップと、

前記放電ステップにて放電される表示素子の放電経路と して、上記交番電界と同期した電圧を供給する表示素子 交番放電経路供給ステップとを有していることを特徴と する表示装置の駆動方法。

【請求項96】 上記表示手段は、

ホールド型の表示装置であることを特徴とする請求項9 5記載の表示装置の駆動方法。

【請求項97】 電界印加によって表示を行う表示装置であって、

電界を印加する電界印加手段と、

上記印加された電界を保持する電界保持手段と、

上記保持した電界を所定の時間内で放電する放電手段 と、

前記放電手段の作用発揮のため放電電位を供給する放電 電位供給手段と、

前記電界印加手段に電圧の極性を交番させて電界を印加 するよう制御する交番極性制御手段と、

前記放電電位供給手段に上記交番電界と同期した電圧を 50 印加する交番放電電位印加手段とを有していることを特 徴とする表示装置

【請求項98】 上記表示装置は、

表示手段として、画素にホールド型の表示素子を使用したものであることを特徴とする請求項97に記載の表示 装置。

【発明の詳細な説明】

本発明はホールド型液晶表示装置に関し、特に動画を表示したり、動画と静止画とを区分けして表示を行うホールド型の表示装置、例えば液晶表示装置に関する。

[0001]

【従来の技術】従来のアクティブマトリクス型のTN液晶等を使用する液晶表示装置は応答が遅いといわれてきたが、近年のOBCタイプの液晶の開発等液晶材料の進歩と共に表示応答時間は画期的に速くなってきている。

【0002】このため、大型のテレビジョン装置等への 液晶表示装置の利用が研究され、開発されて来だした が、この際の駆動方法がクローズアップされてきてい る。即ち、液晶表示装置での高速表示では、画素がホー ルド型の表示を行なう。なおここに、ホールド型表示素 子の問題は以下の参考文献1に詳しいため、本明細書で 20 は必要最小限の説明をする。

【0003】参考文献1 栗田泰市郎 「ホールド型ディスプレイの表示方式と動画表示置おける画質」液晶学会、第1回LCDフォーラム予稿(1998-08)まず、ホールド型表示について説明する。

【0004】図1の(a)に示す様にCRT(陰極線管、いわゆるブラウン管)等のパルス型表示では、各画素においては1フィールド期間(1画面を表示するに要する時間、通常のテレビジョン放送等では現在1/60秒)の極く一部の時間のみ表示のための強い光が発せら 30れる。一方、図1の(b)に示す様に、液晶表示装置では1フィールド期間中ほぼずっと表示に使用する光は保持(ホールド)されている。

【0005】なお、この(b)において実線は理想的な場合の光度の変化であり、破線は実際の光度の変化である。なおまた、記載スペースの都合で概念的にしか示していないが、実際には(a)に示すCRTの輝度は、

(b) に示す液晶のそれよりずっと高い。

【0006】ところで、このホールド型表示の場合には、画素が発光を開始してから定格の光度になるまでの 40 時間や逆に減光を開始してから完全に暗となるまでの時間たる応答時間が実線で示すようにたとえ0msと速くとも、動画を表示すると人間の目の積分効果によりボケあるいは画面の応答性の遅れが生じることが知られている(これについても、上記参考文献1に詳しい)。なおここに、人間の目の積分効果とは、幾つかの画素からなる動画あるいは映像を平均して認識してしまう生理(心理)作用であり、いわば残像効果の一種である。

【 0 0 0 7 】 その原因を、図 2 を参照しつつ極く簡単に 説明する。 【0008】図2の(1)において、表示面191の左上に表示されている黒丸61が次の場合で右下の黒丸62の位置に移動したとする。この場合、(2)に示すように、CRTであるならば上下の矢印で示す1フィールド期間の極く一部の期間のみ左上に黒丸61が表示され、他の期間はその右に示すように黒丸に表示されない。次いで、次のフィールド期間の極く一部の期間に右下の位置に黒丸62が表示される。この場合、人の目は図示しない映像の前後の流れより黒丸が右下の方へ移動しているという認識もあるため、黒丸の左上から右下への移動もスムーズに見える。

12

【0009】しかしながら、液晶表示装置では、1フィールド期間を通じて黒丸61が画面の左上に表示され続けているため、次の1フィールド期間に右下に黒丸62が表示されても、黒丸の移動を認識し難い。すなわち、頭の中では図示していない映像の流れより黒丸は右下へ移動しているという認識があるが、実際にはある期間静止して表示され続けているため、頭の中で混乱が生じる。その結果、映像のボケ、動きの応答性の遅れ等が生じる。

【0010】なお、この問題に関しては、参考文献2 「情報科学用有機材料第142委員会 A部会(液晶材料)第71回研究会 B部会(インテリジェント有機材料)第62回研究会 合同研究会資料 日本学術振興会 平成10年11月20日」で述べられている。このため、これ以上の説明は省略する。

【0011】さて、このようなホールド型表示における 画像のボケを改善するためには以下の方法が効果的であ ることが知られている。

【0012】 (1) 表示光のホールド時間を短くする (2) 表示光をできるだけ画像の動きに沿った画面位置 に配置する

(1)のホールド時間を短くするには、特開平9-325716号に記載されているように、表示装置のどこかに液晶シャッターを設け、表示のための垂直同期に同期して開口時間を制限すれば良い。また、他の手段として、参考文献2にも記載のあるように、バックライトを同期させてパルス状に点滅させる、いわゆるフラッシュをさせても良い。

0 【0013】しかしながらこれらの方法では、第1に光の利用効率が下がってしまう。第2に、バックライト系等が複雑高価となってしまう。第3に、現時点の液晶シャッターは高速化に難がある。

【0014】また、駆動方法で開口率を制限する方法としては、以下の参考文献3、同4に記載されている様に間欠駆動する方法もある。

【0015】参考文献3: 平等 「LCDの動画表示 置について」液晶学会、第1回LCDフォーラム予稿 (1998-08)

0 参考文献 4 : 中村等 「動画対応広視角新LCD」 1

998年第1回液晶フォーラム

しかしながら、この手法でも、1フィールド(1画面を 表示する時間)を複数のサブフィールドに分割し、黒画 面をサブフィールドとして挿入する。このため駆動ドラ イバを高速作動させる必要が有り、回路的に困難な場合 が多い。

【0016】また、(2)の方法としては、フィールド 周波数を高くする、例えば2倍にする、ことで大きな効. 果が得られることが知られている。

【0017】しかしながら、120H2のフィールド周 10 波数にするには画素駆動用のIC等に負担がかかる。ま た、表示画面数が倍になるため、増加した画面に本来の 画面と次の本来の画面の中間値を基に作製した補償用画 面を表示する等の場合には、そのための回路、いわゆる 動き補償が必要なため、信号処理回路の規模も増大し、 コスト増となる。

【0018】また、画面の応答から遅く見えることへの 対策としての階調表示手法もあるが、これは一般には電 圧調整手法が用いられている。これは階調データに対応 して、印加する電圧値を調整する手法である。

【0019】また、プラズマディスプレイのように、放 電状態と非放電状態の2値表示のみしかできない表示デ バイスでは、時分割階調表示法が用いられている。時分 割階調表示法とは、1フィールドを複数のサブフィール ドに分割し、このサブフィールドがオンする時間の総量 の違いで階調表示を行っている。ここで、階調表示を8 ビットで行う場合、長さの比が1:2:4:8:16: 32:64:128の8つのサブフィールドに分割して それぞれのオン、オフ、を行うことで全体として階調表 示を行う。

【0020】このとき、各サブフィールドのオン、オフ は、階調データを8ビットデジタル表示したときの各ビ ットデータによって行う。

【0021】液晶を使用した表示装置としては、他に投 射型デイスプレイがある。これは、略平行な光束を出力 する光源部と、表示する映像に合わせて透過する光束量 を制御する表示素子と、光束を投影するレンズ部より成 り立っている。表示素子には、一般に液晶表示素子が用 いられるが、微小なミラーの角度を変化させるDLP素 子が用いられる場合もある。ところで、この投写型ディ 40 スプレイでも同様の問題が生じる。

【0022】更に、一般にホールド型の表示を行う液晶 プラズマディスプレイやELディスプレイでも同様の問 題が生じる。

【0023】以上、主にホールド型表示装置における表 示が遅くなる問題について説明してきたが、例えばプラ ズマディスプレイのような時分割の階調表示方式を用い るディスプレイでは、動画表示において疑似輪郭と呼ば れる階調が均一に表示されないという問題がある。

[0024]

14

【発明が解決しようとする課題】このため、まず第1に 動画を表示するに際して、積分効果による不都合がな く、しかも画像、画面あるいは表面が明るく、その上簡 単で安価な液晶表示装置や投写型液晶表示装置(ディス プレイ) 等のホールド型表示装置の開発が望まれてい

【0025】また、基本的には、従来より提唱されてい る対策を施すにしても、簡易、安価になしうる技術の開 発が望まれていた。

【0026】第2に、これら従来の動画対応の技術によ る動画の表示は、解決すべき課題が多々あるものの、動 画あるいは映像を表示する場合にはともかく威力を発揮 し、スムースな表示が得られるが、逆にこのための液晶 表示装置等を静止画の表示に使用する場合、例えばOA 画面等に使用する場合や静止画が表示されている場合に は、ジッターによる目の疲れ等従来の液晶表示素子が有 していたCRTにない目にやさしい表示という点が失わ てしまっている。

【0027】ところで近年のOAの進展に伴い、ゲーム 機、パソコン、ワードプロセッサーテレビジョン等各種 機器の表示装置の共用化の要請が高い。しかも欧米と異 なり住宅事情の悪い我が国では、CRTと異なり薄く大 面積の表示面を形成するのが容易な液晶を使用した表示 装置に大きな期待がかけられている。

【0028】このため、CRTのごとくジッター、強い 光によるチラ付き等がない液晶表示装置本来のやさしさ を保持しつつ動画を表示することが可能、しかも従来と 同じく静止画も表示することが可能なホールド型表示装 置、特に液晶表示装置の出現が望まれていた。

【0029】また、ハイビジョン放送等でもかかる事が 可能しかも安価な装置の開発が望まれていた。

【0030】更に、フィールド周波数を倍にするような 動画対応表示の場合、特にハイビジョン放送等はそうで あるが、各種処理を行うための回路等が必要となり、ど うしても装置自体が高価となる。このため、ハイビジョ ン用の安価しかも静止画の表示にも適した液晶表示装置 の開発が望まれていた。

【0031】また、ホールド型でなくても、疑似輪郭が 生じない表示装置の開発が望まれていた。

[0032]

【課題を解決するための手段】本発明は、以上の課題を 解決することを目的としてなされたものであり、テレビ ジョン受像機の表示面であれ、投射ディスプレイであれ ともかく表示装置、特にホールド型の表示装置、更には 液晶を使用した表示装置において、動画、映像を積分効 果によるボケ、応答遅れをなくすため、従来よりも簡 単、容易に中間画像を作成したり、黒画面を作成したり するものである。また、同じく上述のボケ、応答遅れの 発生し易い画像の性質を見出し、その上で解決を図るも 50 のである。

【0033】次に、動画と静止画とを表示する(ホールド型の)表示装置において、動画を表示する場合には動画対応の駆動や照明を用い、静止画を表示する場合には、静止画対応の駆動、照明に切り替えるものである。 【0034】また、表示すべき画像データが動画か静止画かを判別し、このもとで適切に表示するように工夫を疑らしたものである。具体的には、以下の様な構成としている。

ている。 【0035】1の発明においては、液晶等を使用した表示 示装置、特にホールド型の表示素子を使用した表示面に 動画主体の、即ち動画に適した表示を行わせる動画用駆 動手段と、同じく静止画主体の表示を行わせる静止画用 駆動手段と、ユーザの操作、あらかじめの通信規約と内 蔵プログラムによる自動検出等で表示する画像が動画

(映像) か静止がかを判断して、所定の方法で前記両手 段を適切に切り替える切換え手段とを有していることを 特徴としている。これにより、以下の作用がなされる。

【0036】動画用駆動手段は、表示すべき画像が動画の場合には、表示手段に動画主体の(動画に適した)表示を行わせる(場面の都合で静止画を表示することも有りうる)。静止画用駆動手段は、同じく静止画主体の表示を行う。切換え手段は、製造時記録されたデータやプログラムにもとずく等の所定の方法で、表示すべき画像に応じて両手段を切り替える。

【0037】他の発明においては、ホールド型の表示手段は、透過型であれ反射型であれ、ともかく液晶を使用したものである。そして、動画用駆動手段は、表示用に映像信号を受信等した時には、動画対応の液晶の駆動を行なう動画用液晶駆動部若しくは動画対応の照明を行う動画用照明駆動部を有している。なお、両方を有している良いのは、勿論である。これにより、以下の作用がなされる。

【0038】動画用駆動手段の動画用液晶駆動部は、通常のテレビジョン放送等の映像信号を受信した(あるいは、映像信号を表示すべき指示を受けた時等)時には動画対応の液晶の駆動を行なう。同じく動画用照明駆動部は、動画対応の照明を行う。

【0039】他の発明においては、動画用液晶駆動部は、1/60秒等のフィールド周波数を静止画表示の場合よりも2倍等所定倍高めて映像を表示する高フィール 40ド周波数表示駆動部であることを特徴としている。これにより、以下の作用がなされる。

【0040】動画用液晶駆動部は高フィールド周波数表示駆動部であり、このためフィールド周波数を静止画表示の場合よりも高めて映像を表示する。またこのため、必要に応じて中間画像を作成したり、1フィールドの後半は黒や残像効果の悪影響の無い灰色の表示としたりする

る。 【0041】他の発明においては、動画用液晶駆動部 は、間欠駆動にて画面を表示する間欠駆動表示駆動部で 50

ある。これにより、動画用液晶駆動部は偶数番目の映像 は左半分、奇数番目は右半分、また更に適度に左右を入 れ換える等の間欠駆動にて動画を表示する。勿論、必要 に応じてのバックライトの増光等もなす。

【0042】他の発明においては、動画用照明駆動部は、フィールド周波数に対応する期間より短く発光ダイオード、電灯等の表示光を点灯する短期点灯部を有している。これにより、動画用照明駆動部は、1/60秒等のフィールド周波数に対応する期間より短く、例えば最初の1/90秒のみ等表示光を点灯する。なおこれは、最初の1/120秒等のみの表示が原則であるが、最後の1/90秒や1/120秒の表示でも良い。

【0043】他の発明においては、動画用照明駆動部は、動画の表示に際して、1画面毎にパルス状に点灯するパルス点灯部を有している。これにより、動画用照明駆動部のパルス点灯部は、動画の表示に際して、残像効果の悪影響がでないよう映像ならば多数の画像からなるが、その各画像の1画面毎にバックライトとしてのパルス状の光を、例えば1フィールド周波数の最後の1/120秒は消灯する等、所定の手順で点灯する。

【0044】他の発明においては、切換え手段は、映像信号受信時等画像を表示する時には、これを検知して自動的に動画用駆動手段に切り替える自動切換え手段である。これにより、以下の作用がなされる。

【0045】切換え手段は、メモリ、CPU、パソコン等と一体となった自動切換え手段であり、映像信号を受信した時には、これを所定のプログラムで検知して自動的に動画用駆動手段に切り替える。またこのため、表示手段、バックライト等各部に適切な指示を行う。

【0046】他の発明においては、自動切換え手段は、 少くも前画面との差分(含む、特定の位置や性質の部分 画像)により動きの速い画面を表示に先立って察知して 動画対応駆動を行う差分検出型自動切換え手段である。 これにより、以下の作用がなされる。

【0047】自動切換え手段は差分検出型自動切換え手段であり、少くも前画面との差分により、その他ケースによりコマーシャル放送、シーンの切換え等をも検知して動きの速い画面を表示に先立って察知して、見易いように動画対応駆動を行う。従って、時報の表示等の例外はあるが、実際の表示は少くも1フィールド分遅れるのが原則である。

【0048】他の発明においては、静止画用駆動手段は、静止画を表示する際には、フィールド周波数に対応する期間中、と言うよりもずっと表示光を点灯し続けている通常点灯部を有している。

【0049】これにより、静止画用駆動手段は、静止画 (その他、ケースにより動きの遅い動画の場合等)を表 示する際には、見やすい様に、フィールド周波数に対応 する期間中、表示光を点灯している。

【0050】他の発明においては、動画の早い動きに充

分追従しえる様に、液晶表示装置等の素子は、その応答 時間が少なくとも1フィールドの期間(原則として1/ 60秒、ケースにより1/120秒)よりも速い高速応 答素子を有している。

【0051】具体的には、OCBモード等の高速応答素 子を有しており、これにより応答時間が10ms等少な くとも1フィールドの期間よりも速い。

【0052】他の発明においては、表示すべき画像デー タが動画か静止画かを判定する判定手段と、判定手段が 動画と判断したならば、表示面の一部、特に動きの多い 10 中央部をも含む部分をその周辺部と切り離して、動画主 体の表示や、ハイビジョンモードでの動画主体の表示等 の適切な動画主体の表示を行なう中央部動画駆動手段を 有している。

【0053】これにより、以下の作用がなされる。

【0054】判定手段は、表示すべき画像データが動画 か静止画かを判定する。判定手段が動画と判断したなら ば、中央部動画駆動手段は、表示面の中央部をも含む部 分をその周辺部と切り離して適切な動画主体の表示を行 なう。従って、表示面の周辺部では、静止画主体での動 20 画の表示や、ハイビジョン映像がハイビジョンモードで なくて通常のモードでの動画主体の表示等がなされる。 なお、たとえ動画であっても動きや動きベクトルが少な い場合には、静止画対応の表示をなす機能を有していて も良いのは勿論である。

【0055】他の発明においては、ホールド型に限定さ れず表示装置一般の階調表示方式において、電圧調整手 法と時分割階調表示手法を併用している。特に、表示装 置に入力される映像信号の周期を1フィールドとする と、この1フィールドを複数のサブフィールドに分け て、「複数のサブフィールド数-1」ビットの時分割階 調表示手法を用いる。

【0056】他の発明においては、簡易性やコストと効 果の兼ね合いの面から、サブフィールド数を(原則とし て等間隔の) 2としている。勿論、CM番組等放送の内 容に応じて不当間隔とする機能を有していても良い他の 発明においては、階調表示において、サブフィールド数 が例えば2の場合で階調が50%以下のときには、1フ ィールドの後半が表示されなくなっている。これによ り、応答の遅れ、積分効果の解決を図っている。

【0057】他の発明においては、1のサブフィールド はON(通常の液晶表示装置ならば通常のONであり、 100%の輝度)、OFF (0%)の階調表示であり、 他のサブフィールドは担当する階調に応じてON(10 0%)の時間を調整している。なお、バックライトの絶 対光度そのもの(100%の値の如何)は、携帯型等に おける電源の余裕、室内照明の程度等の都合で適度に増 減されても良い。

【0058】他の発明においては、1秒60コマの動画

が16ms以下としている。

【0059】他の発明においては、高速応答手段として OCBモードの液晶を使用している。

18

【0060】他の発明においては、積分効果による応答 遅れ解決の手段として、光学的あるいは機械的なシャッ ターを利用し、(映画の場合と異なり、原則として)1 フィールドの最後の期間は表示されない様にしている。

【0061】他の発明においては、表示される動画、映 像の各画像の更新(表示面での更新、投射面での更新 等)とシャッターによる光の遮断とを同期させている。 具体的には、液晶等の表示面では(現時点では左、右、 下からでなく)上方の画素列から順に更新されて行く が、この更新とシャッターの(あるいはシャッター手段 の開口部の) 通過とを同期させている。このため、例え ば更新直後、新しい画素が始まってから1フィールドの 前半分等のみ光が通過するようになっている。

【0062】他の発明においては、シャッターは、通過 光が (光の拡散、並行等によるも)表示面の半分の高さ を有することとなる開口(孔)を有するチョッパーであ る。

【0063】他の発明においては、強誘電性モード、O CBモード、散乱モード等の高速応答可能な液晶でシャ ッターを形成している。

【0064】他の発明においては、シャッターに換えて 光束走査手段、具体的には例えば回転ミラーを使用して いる。

【0065】他の発明においては、回転ミラーとして半 導体上のミラーの角度を電気的に動かす小型の回転角柱 ミラー、いわゆるマイクロミラーデバイスを使用してい 30 る。

【0066】他の発明においては、シャッターは液晶表 示部(含む、投射型のフィルム部)と同じ程度の小さい 寸法である。

【0067】他の発明においては、表示部に30mg以 下等での高速応答が可能なモードの液晶、具体的にはO CBモード等を使用している。

【0068】他の発明においては、ホールド型表示装置 において、1秒に特に1/30~1/60程度の画像が 順に更新される動画、映像の表示に際して、動き応答性 40 の改善のため、本来の(生の)画像データより中間画像 を作成して、これを本来の画像間に挿入している。

【0069】このため、本来の画像は各1/60秒づつ 表示される筈であるが、1/120秒表示され、かつ本 来の画像間に前後の生の画像等より作成した中間画像が 1/120秒表示される。従って、全体の表示時間は不 変である。

【0070】他の発明においては、中間画像の作成は、 挿入されるべき前後の2つの生の画像データやこれら2 つの生の画像の他にそれらの前後の画像データを使用し を表示する必要上、表示装置の各画素の素子の応答時間 50 ている。更には、高速かつ時間的に正確な応答の面か

ら、前2つの画像から(後の画像は使用せず)外挿して 中間画像を作成しても良い。

【0071】他の発明においては、中間画像の作成に、 画像が表示されたときに人の目につき易い動きベクトル に着目している。具体的には、画像内の最輝点、最暗 点、画像の各部の平均的な明るさ部分や動いた部分等の 移動等である。またこのため、必要に応じて画像の圧縮 技術(MPEG等)も採用されている。

【0072】また、あらかじめ定められた位置の幾つか の画素と、該各画素から所定位置に離れた画素とを採り 10 出して距離に重み付けを行ったレベルの和を算出し、前 後の画面でのレベルの和の合計の絶対値の相違から動き ベクトルを算出したりもする。

【0073】他の発明においては、ホールド型表示装置 での動画の好ましい表示のため、各画素は本来は1フィ ールド内所定の状態、例えば明、暗等を保持するのが原 則である(あるいは従来のものはそのようになっていた が)が、これを各フィールドの最後には表示状態を喪失 するようにしている。このため、以下の様な構造とな り、作用がなされる。

【0074】表示面の規格に従って、縦横幾列、幾段に も、そして平面的あるいは多層的(例えばG、H、セ ル)に配列されている各画素の表示素子は、電界の印加 によって光を透過、遮断等して担当する表示機能を発揮 する。ところで、電界印加手段が表示のため電界を印加 すると、この電界に従来は(実際には、多少の減少はあ るであろうが、事実上) 1フィールド時間間隔内で一定 に保持されていた。

【0075】しかし、本発明では、放電手段がこの電界 を少しづつの放電により無くしていく。このため、少く も各フィールドにおいて、1フィールドの最終には電界 は0、場合によっては積分効果が生じない小さい値等と 少なくなっている。

【0076】そしてこれにより、動画の応答遅れの改善 がなされる。

【0077】他の発明においては、表示手段は、素子を 駆動するTFT等を備えたアクティブマトリクス基板上 に形成されている。

【0078】他の発明においては、表示素子は液晶を使 用した液晶表示装置、EL表示装置、液晶プラズマディ スプレイ等である。

【0079】他の発明においては、液晶層がある程度の 通電性あるいは抵抗を有し、このため液晶層の上下等の 電極に加えられた電界が液晶層自身を流れる電流により 1フィールド間隔内に消滅等する。

【0080】他の発明においては、液晶の導電率は10 ジーメンス以上としている。

【0081】他の発明においては、液晶層の上下等いず れかの電極、あるいは横電極に加えられた電界が基板や 基板に形成されたアース的な線に電器が流れることによ 50 VTRに録画している映画の表示、ワードプロセッサー

り消滅等されるようになっている。

【0082】他の発明においては、補助容量に注意を払 って(工夫を凝らして)動画の応答遅れ防止を図ってい

20

【0083】他の発明においては、表示面の液晶がノー マリーホワイト、ノーマリーブラックのいずれであるか に注目している。

【0084】他の発明においては、電界印加における極 性を1画面毎や1水平画素列毎に交互に変化させてい る。これにより、ある程度の時間間隔毎の直流成分が0 になり、チャージアップが避けられる。また、柔らかい 表示となる。

[0085]

【発明の実施の形態】以下、本発明をその実施の形態に 基づいて説明する。

【0086】 (第1の実施の形態) 本実施の形態の表示 装置では、いわゆるOCBと呼ばれるモードの液晶をT FTで駆動する表示装置を用いた。なお、その応答時間 は8msであった。

【0087】なお、OCBモードについては、例えば特 開平7-84254号に詳しく記載されている。また、 OCBモードの液晶を使用したパネル構成(構造)は、 例えば参考文献5に詳しい。そして、本実施の形態のO CBモードの液晶を使用してのパネルも同様に作製し

【0088】参考文献5:内田等 「IDRC'97」 (1997) p37

このため、OCBモードそのものやパネルの構造につい ての説明は省略する。

【0089】また、動画対応の照明方法としてフラッシ ュランプを用いる方法を採用したが、これは参考文献6 に詳しく記載されている。

【0090】参考文献6:平等 「AMLCD'98」 (1998)

このため、このフラッシュランプの原理や駆動方法その ものについても、詳しい説明は省略する。

【0091】さて、画素の駆動にTFT(薄膜トランジ スタ)を使用したこのOCBモードの液晶表示装置は、 図3に示すように、通常の映像信号あるいはゲーム等の 動きの速い動画対応の画面表示ではフラッシュランプ法 を用い、OA画面(インターネット画面、OAソフト画 面あるいは映像信号でも風景等の静止画を表示している 場合)、すなわち静止画対応の表示では通常の点灯しっ ぱなしの照明を用いた。

【0092】なお、本図において、1は0CBモードの 液晶表示装置の本体部である。21と22は、バックラ イト用ランプ部である。3は、導光部である。4は、高 速スイッチである。5は、切換え部である。

【0093】なおまた、以上の他、表示面をゲーム機、

等のOA機器等他の機器の一部(表示部)として使用するための切換え手段や、キーボード等を有しているが、これらは本発明の趣旨に直接の関係がないため、図示していない。

【0094】そして、静止画対応表示の場合には、左側のランプ21のみ点灯される。一方、動画対応表示の場合には、左右両側のランプ部21、22が点灯されるが、高速スイッチのもと、動画の各画面では垂直同期に同期しての高速でのオン、オフ点灯がなされる。

【0095】そして、観察者自身が表示内容に応じて表 10 示方法を切り替えたところ、動画時にはボケが少なく、 静止画時には目が疲れない表示が得られた。

【0096】なおこの際、動画対応と静止画対応で表示面の明るさが相違しないようにフラッシュランプの光量を図示しないランプ部の電圧の制御でなされるようにしてもよいのは勿論である。

【0097】(第2の実施の形態)本実施の形態は、中間画像を作成して挿入するものである。

【0098】本実施の形態では、フラッシュランプに換えてフィールド周波数を2倍(120HZ)にして動画 20対応の表示をし、これにより先の実施の形態同様にボケのない表示が得られた。

【0099】この様子を図4に示す。本図の左側 (1)は、順に送信されてくる画像データの内容である。

(2)は、この送信されてきた画像データを基に順に作成される中間画像の内容である。(1)に示すように、表示面191上で黒い四角61~63が画面の左上より右下へ移動している。このため、(2)に示すように、途中での黒い四角の動きを示す中間画像612、623が作成される。そして、本図に太い矢印で示す順に画像30が表示される。

【0100】以下、図5を参照しつつこの信号処理を説明する。図4に、この場合に表示される画像データの様子を示す。

【0101】本図において、縦方向の白丸「〇」の間隔は1/60秒であり、小数点「.」と〇の間隔は1/120秒である。さて、図の上部横方向に示す番号1、2、…の画面のデータが1/60秒間隔で送信されてくる。そして、一番最初の画面等を除き、定常状態では各画のデータは最初2つに分岐される。そして、分岐した1つは1/60秒前に既に到達している1つ先の画面の1/40秒(1/60秒+1/90秒)遅延したデータとの平均値がとられて中間画像が作成される。そして、この作成された中間画像が作成される。そして、この作成された中間画像の到着後1/40秒後)に表示に使用される。分岐した他の1つは、1/60秒記憶され、次いで更に2つに分岐される。そして、分岐した1は到着後1/60秒遅延してそのまま表示に使用される。

【0102】次に、再度分岐したデータは更に1/12 50

○秒記憶され、次いで1/6○秒後に到着する1つ次の画面のデータとの平均値が到着後1/4○秒後に(1つ後の画像到着後1/12○秒後に)表示に使用される。(なおこの場合、実際には平均化処理に多少の時間が必要であり、また2つの前後する画面の多少のタイムラグもあるがこれらは適切に補償されるようにしているのは勿論である。)図6に、この装置の要部の構成を示す。本図において、11は、受像部である。12は、画像分部である。13は、奇数番画像記憶部である。14は、偶数番画像記憶部である。15は、FIFOを有する1/6○秒遅延回路である。16は、同じく1/12○秒遅延回路である。17は、平均化回路であり、図示しない遅延回路やメモリを有している。19は、表示部である。

【0103】そして、表示制御部は、動画対応表示に際しては表示部の表示サイクルを1/60秒から1/120秒に切換えると共に、そのために表示する画像を選択する。すなわち、2つの1/60秒遅延回路と平均化回路から送られてくる画面データを適切に選択して表示に使用する。

【0104】なお、本実施の形態では、中間映像を1枚生成したが、中間映像の枚数はこれに限るものではない。中間映像の枚数を増やすとよりスムーズな映像となる。なおこのとき、中間映像の枚数を増やすとそれに応じて映像表示を行う周波数を高くする必要がある。

【0105】なおまた、この場合の画像の作成であるが、最初の画像をA、次の画像をBとし、中間に挿入して表示する画像数を2とすれば、最初の中間画像は(2A+B)/3、次の中間画像は(A+2B) /3となる。同様に画像数が3の場合は、表示する中間画像は順に(3A+B) /4、(A+3B) /4となる。更には、前後2枚づつの画像から作成しても良い。また、シーンチェンジやユーザのチャンネル切換えへの対応がなされていても良い。ただし、これらについては内容的にも技術的にもそう困難でないので、これ以上の説明は省略する。

【0106】これにより、明るさを損なうことなく高速 表示を実現することができた。

【0107】(第3の実施の形態)本実施の形態は、動画対応の駆動方法として、間欠駆動するものである。

【0108】すなわち、1フィールド内に黒画面を半分入れるのであるが、これでもボケの少ない結果が得られた。なおこの場合にも、照明(バックライト)の明るさがそのままであると静止画に比較して明るさが半分になるので、照明の光度を2倍に調整したのは勿論である。

【0109】図7に本実施の形態の要部の構成を示す。

【0110】本図において、11は、奇数番画像左側切捨部である。12は、偶数番画像右側切捨部である。2 2は、間欠表示制御部である。

【0111】以上のもとで間欠表示制御部が、左若しく

は右半分が黒の画像を交互に1/60秒の周期で表示部 に送り、併せてバックライトの光度を2倍に制御するこ とにより動画対応表示がなされる。

【0112】この様子を図8に示す。本図において、上 から下へ、すなわち(1)から(4)に示す画像が順に 表示される。この際、奇数番目の画像は左半分1911 が、偶数番目の画像は右半分1912が消去されて表示 されている。

【0113】 (比較例1) 先の3つの実施例と同様のハ ード(液晶表示装置)を用いるが、動画の場合に静止画 10 対応の表示駆動を行うとボケが目立った。また逆に、静 止画の場合に動画対応の表示駆動を行うとジッター等が 目立ち、長時間の使用では目が疲れた。

【0114】 (第4の実施の形態) 本実施の形態は、動 画と静止画を区分けして表示する液晶表示装置に関す る。

【0115】本実施の形態の液晶表示装置は、映像信号 の場合には自動的に動画対応の表示を行うよう、信号回 路に映像検出手段を設けているものである。そして、こ れにより、映像信号の場合には先の第1の実施の形態の 20 ように動画対応の駆動になり、静止画の場合は静止画対 応の駆動になる。

【0116】なお、動画か否かの検出の具体的内容であ るが、NTSC方式のカラーテレビジョン放送ならば、 本実施の形態では、クロック信号、輝度信号、搬送波色 信号の有無を検出することにより行なう。この場合の装 置の要部の構成を図9の(a)に示す。

【0117】本図において、25は、通信規約等記憶部 である。26は、信号検出判定部である。27は、動画 対応表示制御切換え部である。

【0118】信号検出判定部は、各種の通信規約を基に 受像部が表示部に送っている画像信号が動画か否かを判 定し、動画と判定したならば、動画対応表示切換え部に 必要な表示の切換えを行なわせる。

【0119】その切換えの内容は、具体的には上述のご とく、表示周期を2倍にする、間欠表示にする、これら に併せてバックライトの光量を2倍にする等である。

【0120】ただし、動画か否かの判断は、なにも画像 の信号から判定するのではなく、本装置の使用者による スイッチやボタン操作で検出するようにしてもよいのは 40 勿論である。この場合の構成を(b)に示す。

【0121】判断部30は、具体的にはテレビジョン受 像機のチャンネルが選定されているならば動画と判定 し、キーボードが操作されているならば静止画と判定す る。

【0122】本実施の形態においても、画面によって多 少の差はあるものの、ほぼ先の3つの実施の形態と同様 の結果が得られた。

【0123】(第5の実施の形態)本実施の形態は、前

号レベルの差異に着目して動画か否かを判断する液晶表 示装置に関する。

【0124】このため、メモリーと差分回路を用いる。 以上の他は、先の第4の実施の形態と同じである。

【0125】本実施の形態の要部の構成を図10に示 す。

【0126】本図において、30は判断部である。31 は標本点採取部である。32は、標本点データ記憶部で ある。33は、比較部である。34は、動画対応表示制 御部である。35は、各種の動画表示用処理部である。

【0127】標本点採取部は、受像部の受信等した各画 面のデータ毎にあらかじめ定められた画素のデータを採 取して、比較部へ通知する。

【0128】比較部は、標本点データ記憶部の記憶して いる1画面前の標本点のデータと標本点採取部から通知 されてきてデータを比較し、所定の演算を行ってその差 分を得、これを判断部へ送り、併せて通知されてきたデ ータをFIFOからなる標本点データ記憶部へ送り、そ の記憶内容を更新させる。

【0129】判断部は、送られてきた差分を基に画像が 動画か静止画かを判断し、その判断結果を動画対応表示 制御部へ通知する。

【0130】動画対応表示制御部は、動画である旨の通 知があった場合には、各種の動画表示用処理部や表示部 に動画対応の表示をなさせる。

【0131】従って、本実施の形態の液晶表示装置で は、テープに録画されている映像、放送されている映像 であっても、静止画が表示される場合には、自動的にそ れに対応した表示を行なうこととなる。このためより一 層見やすくなる。

【0132】 (第6の実施の形態) 本実施の形態は、動 画であっても、表示されている図形で動いているのが表 示面中央部のみの場合には、その中央部のみ動画対応表 示とさせるものである。

【0133】すなわち、動画であっても表示面で実際に 動いているのは表示面中央部のみである場合が少なから ずあるというよりもほとんどである。

【0134】具体的には、例えばニュース番組ならば秒 や分という単位ならば別であるが、1秒に60回更新さ れる各画面をとると、図形として動いているのは事実上 アナウンサーの顔それも口のあたりだけであり、野球の 実況放送ならば事実上ピッチャーやバッターだけであ り、ドラマならば主人公やその近辺のみであり、背景の 室内、野球場はほとんど静止している。しかも、多くの 場合動いているのは表示されている画面の中央部のみに 存在する。

【0135】更に、大画面表示の場合特にそうである が、視聴者は表示面の端部、周辺部等はほとんど見てい ない。具体的には、例えば野球の実況ならば画面中央の 画面の信号と目下受信した信号との差異、特に前述の信 50 ピッチャーやボールだけを見ており、背景の球状の壁や

下部の芝生等見ていない。

【0136】また、表示される映像も重要部は表示面中央付近にあるのがほとんどである。西部劇で睨み合う保安官と悪人が画面の左右両端に映し出される様な場合もあるが、このような場合は緊迫感が主であり、表示されている映像の良否はあまり意味を持たない。従って、画面の中央部分のみ動画対応表示とするものである。

【0137】本実施の形態の表示装置は、以上のことに注目したものであり、その構成を図11の(a)に示す。

【0138】本図において、40は区分け部である。41は表示装置であり、42はその内部の周辺駆動部であり、43は同じく中央駆動部であり、44は中央駆動部を動画対応表示に際してそのように制御する動画対応制御部である。45は、スイッチである。

【0139】区分け部は、受像部からの画像データを周辺部のものと中央部のものに区分けして各々周辺駆動部と中央駆動部へ送る。判断部は、動画と判断したならば、区分け部からの中央駆動部への画像データの送信をスイッチを切り換えて動画対応制御部へ送るようにする。

【0140】動画対応制御部は、送られてきた画像データを動画対応で表示面の中央に表示させる。またこのため、当該部のみの専用バックライトの点灯等必要な処理も行う。

【0141】図11の(b)は、裏側から見たこの装置の表示面の概略構成を示すものである。

【0142】46は、中央部の表示素子部であり、視聴者側にある。47は、その背面にある周辺の表示素子部である。

【0143】本実施の形態においては、動画の質を損なうことなくジッター等がないやさしい表示となり、価格も全て動画対応にするのに比較して易しくなる。

【0144】そして、本実施の形態の表示装置においても各種の画像データを使用しての観察実験の結果、先の第1の実施の形態と同様に非常に良好な画面が得られた。

【0145】なお、本実施の形態の場合、機器の製造メーカだけでなく、放送局等との調整等も必要であるが、通信規約、MPEG等の圧縮、その他の通信規格そのも 40のを各画面の周辺部は粗いデータで送るようにすれば、チャネル数の増加、録画装置の小型化、更にはCRT等他のタイプの表示装置に於ける低コスト化等に大きな効果が生じる。

【0146】(第7の実施の形態)本実施の形態は、動画を見易くするために黒画面を挿入せず階調表示を行うものである。

【0147】さて、上述のごとく高速作動する液晶を使用するにもかかわらず、体感的にはさほど早く見えないのは、表示を1フィールド期間保持するため生じる。

【0148】従って、表示の保持時間を短くすれば高速 応答が得られる。その手段として、1フィールド時間内 に映像を表示しない時間を設け、その時間は黒画面を挿 入するのは、確かに高速化できるが明るさが低下する。

【0149】しかしながら、本願発明者は、応答が遅く 残像が見える現象は、中間調映像で顕著であることを発 見した。すなわち明るい映像が動く場合には、残像は目 立たない。

【0150】より詳しく説明するならば、、中間調応 答、特に輝度が半分以下の映像が動く場合に、応答性の 遅れが顕著である。その中でも更に最も残像が顕著に見 える場合は、黒バックに濃いグレーのパターンが動く場 合である。なおこれは、CRT表示のTV映像でも同様 に確認され、暗いシーンでは残像が見えやすかった。

【0151】そこで、本実施の形態では、階調表示方式 に、電圧調整手法と時分割階調表示法を併用するもので ある。

【0152】このため本実施の形態の液晶表示装置は、滑らかな動きが重要視されるテレビジョン受像機等の表示部に使用した場合に特に有効である。ただし、近年パソコン等のOA端末もAV用途のソフトが多用されるようになっており、このためこれらに対しても効果が大きい。

【0153】なお、表示装置は、TFTを用いたアクティブマトリクス基板を採用し、液晶は3msという高速応答のOCBモードの液晶を用いた。

【0154】表示方法であるが、1つのフレーム(の表示間隔)を前後の第1サブフレーム(前半の表示間隔で表示する画像)と第2サブフレーム(後半の表示間隔で表示する画像)に分割して表示するものとし、この際の電圧調整手法と1ビットの時分割階調表示法を併用する駆動法を用いた。図12に、本実施の形態の表示装置の表示方法を概念的に示す。

【0155】本図の(a)、(b)、(c)、(d)、(e)にそれぞれ階調レベルが、0%、30%、50%、70%、100%の場合の駆動波形を示す。階調レベルが50%以上のときには、後半の第2サブフレームを最大電圧で固定して印加する。階調レベルが50%以下ならば、後半の第2サブフレームの印加電圧は最小とする。

【0156】その手段であるが、第1サブフレームは電圧値を電圧調整手法で可変にして印加する。このときの第1サブフレームの印加電圧は、階調レベルが50%以下のときには、50%で最大電圧になるように調整する。階調レベルが50%以上のときには、階調レベルか550%を引いた値(すなわち差が0~50%)とする。このため、50%で最大値になる。なお、本実施の形態では、最小値電圧は輝度が最も低くなる電圧としたため、多少のバイアス電圧を印加し、その間は補間したため、多少のバイアス電圧を印加し、その間は補間したため、

50 た。

【0157】すなわち、階調データをデジタル標記した場合の最大ビットに対応するのが第2サブフレームであり、残りをアナログ出力したのが第1サブフレームである。このときに1ビットの時分割階調表示を行うと標記する。

【0158】この場合、階調レベルが50%以下では、 電圧を印加しない休止期間を1サブフレーム分挿入され ることになる。特に応答が問題になるのは、輝度が低い 場合なので、これが極めて効果的となる。

【0159】ここで、1つのフレームを2つに分けて書 10 き込みを行うため、液晶パネルを書き込む周波数は2倍で、高速に走査をさせた。このため、比較的高速に応答する液晶素子が必要である。この素子の応答速度は、1フレーム内で応答完了する必要があるため、16ms

(=1秒÷60)以下である必要があった。全ての階調間の応答でこの応答速度以下であることが望ましい。

【0160】図13は、階調間の応答における印加される波形を示したものである。本図の(a)、(b)、(c)にそれぞれ、30% \rightarrow 0%、30% \rightarrow 100%、60% \rightarrow 0%の階調間応答を示す。本実施の形態では、1ビットの時分割階調表示法を併用したため、50%以下の表示ではサブフレームごとに点滅する。これは、擬似的に黒画面を挿入したものと同じである。0%に変化した場合、100%に変化した場合には、変化する直前に黒画面を挿入することになり、応答が高速化される特徴がある。

【0161】50%以上の場合では完全な黒画面を挿入するわけではないが、輝度変化を伴なうため応答が速く見える効果が生じる。100%の輝度を表示する場合には、従来の電圧調整法と同じである。

【0162】さて、本実施の形態の方式では、確かに理論上は黒画面を挿入する方式に比較すると、50%以上の階調では応答速度向上の効果が低下する欠点はある。しかしながら、この階調領域は前述の説明で判るように応答が遅くともさほど問題とならない。この一方で、本実施の形態の液晶表示装置は、何等明るさが低下しないという大きな利点が生じる。

【0163】なお、図12、図13では駆動波形で示したが、本実施の形態で用いた液晶表示素子はOCBモードの液晶を使用しているため、十分に応答速度が速く、このためその透過光量変化もほぼ駆動波形と同じものが得られた。なおまた、本実施の形態のOCBモードの液晶を用いた表示素子は電圧が低い状態では黒表示となるノーマリーブラックを用いたが、これは逆であってもよく、高速応答が得られるならば液晶そのものも、OCBモードのものに限定されないのは勿論である。

【0164】すなわち、例えば一般に多く用いられている応答速度が80ms程度のTN型液晶素子であっても駆動電圧を高めて高速応答をなさすと、本実施の形態の効果が得られる。

【0165】ただし、本実施の形態の液晶表示装置が十分にその効果、性能を発揮するのは、現時点ではOCB型液晶表示素子、強誘電性液晶表示素子、反強誘電性液晶表示素子であり、これらが好ましいのは勿論である。また液晶以外でも、DMD型表示素子等でも良好である。なお、液晶表示装置そのものは直視型、投射型を問わない。

【0166】なお、本実施の形態では、2つのサブフレームに分割して行ったが、さらに多くのサブフレームを用いても良いのも勿論である。その場合、より高速な書き込みが必要になるが、高速化の効果は高い。なおまたこの際に、サブフレームの長さを変化させると、階調表示が良好に実現できる。

【0167】具体的には、例えば3つのサブフレームに分割するときに、第1、第2、第3サブフレームをそれぞれ、1:2:4の長さになるように分割する。

【0168】その表示内容であるが、表示データが50%を超えるならば第3サブフレームをONとする。第2サブフィールドは、表示データから第3サブフレームで表示した分を引いた値が25%を超えるならばONさせる。第1サブフレームは、表示データから第2、第3サブフレームで表示した分を引いた値を電圧調整法で表示する。すなわち、最初の第1サブフレームを電圧調整法で行い、残りのサブフレームは、「サブフレーム数ー1」ビットの時分割階調表示手法を用いる。

【0169】この関係は、サブフレーム数が増えても同様である。

【0170】本実施の形態では、電圧調整法を行うサブフレームを最初のサブフレームとしたが、これに限るものではないのも勿論である。電圧調整法を適応するサブフレームをどこに配置しようとも、休止期間を挿入することは可能であるためである。

【0171】 (第8の実施の形態) 本実施の形態は、チョッパーを使用する投写型ディスプレイに関する。

【0172】図14は、本実施の形態の表示装置の構成を概念的に示した図である。本図において、311は、 光源である。312は、反射鏡である。313は、チョッパーである。314は、液晶表示素子(あるいは表示 装置液晶パネル)である。315は、投写レンズである。316は、スクリーンである。また、矢印と太い矢型の囲みは各光線と光束及びそれらの方向を示す。

【0173】本図にて判るように、反射鏡12を備えた 光源光311はほぼ平行な光束となり、それが液晶パネ ル314に入射される。液晶パネル314で映像を形成 し、投写レンズ315でこれを拡大し、スクリーン31 6に投影する。ここで、前述のごとく、光源311と液 晶パネル314の間にチョッパー313が入っている。

【0174】さて、このチョッパー313は、図15に 示すように、十分大きな円盤に方形の穴3131が開い 50 ており、この円盤が高速で回転することにより、その開 口3131を介して光源光311が間欠的に液晶パネル 314に入射される。そして、方形の穴3131の縦の 長さは液晶パネル314の縦の長さよりも小さく、ある 瞬間に光源を発した光は、液晶パネルの一部分を照らす ことになる。そして、本実施の形態では図15、図16 に示すように、この穴の縦方向サイズ (H) は液晶パネ ルのそれ(2H)の半分とした。更に、このチョッパー 313をその開口3131が液晶の走査方向と同じ向き に動くように回転させた。

【0175】更にまた、図16に示すようにこのチョッ 10 パーの回転速度を調整し、液晶パネルの走査速度と穴の 進行速度が一致するだけでなく、走査によって新しいデ ータが書き込まれたと同時に、穴がその書き込まれた領 域を照らすように位相を調整した。これにより、液晶パ ネルに新しいデータが書き込まれたと同時に映像が、そ の点の映像が投射されはじめ、1フィールドの半分の時 間(1/120秒)だけ投射する。その後は、チョッパ ーの遮蔽部によって遮蔽されるため光は通らない。図1 6において、600で示す水平線部の液晶素子が映像表 示のため輝き、これと同時にチョッパ313の開口31 20 31の先端がこの位置へくる。そして1/120秒経過 後、この水平線部に当該開口の後端がくる。

【0176】従って、図17の(c)に示すように、一 定期間で表示は停止するため、映像的にはCRTに近く なる。なお本図には、比較のためCRTの場合(a)と 通常の液晶の場合(b)の明るさ(キャンデラ・ルック ス等)と時間の関係を示してある。

【0177】この表示装置を用いることで、映像が高速 に切り替わる画面でも、映像がぼやけることなく良好な 髙速表示ができた。

【0178】さて、本実施の形態では、液晶表示素子と して応答速度が20ms程度のOCB型の液晶素子を用 いた。なお実験によると、液晶素子自体の応答速度が遅 い場合には効果は少なく、効果が現れるのは応答速度が 30ms以下の液晶素子であった。ここで、応答速度と は、透過光量が10%になる電圧と、透過光量が90% になる電圧を交互に印加した際に、暗から明になる応答 時間と明から暗になる応答時間の和である。また、それ ぞれの応答時間とは、透過光量変化の10%から90% に変化するまでの所用時間である。

【0179】なお、本実施の形態では液晶表示素子を用 いたが、これはDLP素子でも同様に効果がある。すな わち基本的には、表示状態を1フィールド期間保持する デバイスであれば同様の効果がある。

【0180】また、光源光の遮蔽のチョッパーを用いた が、他の機械的なシャッタでもよいのは勿論である。す なわち基本的には、液晶の走査方向に開口部が移動する 構造であればどのようなものでも良い。

【0181】チョッパーのような機械的シャッタを用い

のチョッパーの遮光部は、本実施の形態では光を吸収す る物体で製作したが、これは遮光さえすればよいため反 射体でも良い。更に、反射体を用いて光を光源側に反射 すると、光束の再利用につながり、明るさも向上する。

【0182】(比較例)本実施の形態の光源とチョッパ に換えて、フラッシュランプを用いた。この場合、本実 施の形態と同様に点滅するが、点滅は液晶の表示と同期 していない。この場合にも高速化の効果は見られたが、 本実施の形態ほどの効果は見られなかった。これは、点 灯した瞬間には、古い表示データを表示している領域が あるためである。

【0183】本実施の形態では、液晶表示装置の水平方 向走査線の表示開始と表示開始方向に同期して、1/2 周期(1周期=1/60秒)だけ開口部を介しての投光 がなされる。このため、映画の表示 (1 画面全体が同時 に表示される) 等に見られない良好な応答性が得られ

【0184】 (第9の実施の形態) 本実施の形態は、先 の実施の形態でのチョッパーに換えて、液晶シャッター を用いるものである。

【0185】図18に、本実施の形態の投写型液晶表示 装置の構成を概念的に示す。本図において、341は液 晶シャッターである。なおその他の構成については、先 の実施の形態と同一の物については同一の符号を付して

【0186】本図に示すように、この投写ディスプレイ は光源311と液晶表示パネル314の間に液晶シャッ ター341を挿入している。この液晶シャッターは、横 方向電極が複数本並んだ構造であり、これを図19に示 すように、液晶パネルのスキャン方向に合わせてスキャ ンさせた。

【0187】さて、この液晶シャッターは、高速に切り 替わる必要がある。このため、本実施の形態では高速応 答の可能な強誘電性液晶素子とOCB型液晶素子を用い た。

【0188】そして、いずれでも良好な特性が得られ た。なお、強誘電性液晶素子では応答速度が 2 O μ s と、OCB型液晶素子では応答速度が10msとするこ とができた。勿論、駆動電圧を高くすれば、さらに高速 化することが可能である。

【0189】また、液晶シャッターは高透過率であるの が望ましい。ところで、前記の強誘電性液晶素子やOC B型液晶素子では、偏光板を用いるために透過率が低 い。この一方、通常の高分子分散型液晶素子のような散 乱型液晶は、透過率が高いために光のロスが少ないが、 この一方で高速応答性に難がある。このため、本実施の 形態では、30vという高い駆動電圧を用いて、応答速 度10msを得た。

【0190】以上、本実施の形態では投射型の表示装置 ることは、最も簡単な構造でできるメリットがある。こ 50 を例にとって説明してきたが、これに限られるものでは ないのは勿論である。すなわち、直視型液晶表示素子の 背面に液晶シャッタを配置して本発明の効果を得ること も可能である。

【0191】本実施の形態においては、先の実施の形態と比較した場合に、液晶シャッターを用いるため、シャッター手段が液晶表示素子とほぼ同じ大きさとなり、このため全体が小型化し、ひいては直視型表示装置にも容易に応用できる。

【0192】(第10の実施の形態)本実施の形態は、 先の2つの実施の形態と同じく投写型ディスプレイに関 10 するが、シャッター手段に角柱ミラーを用いることで光 の走査を行うものである。

【0193】図20に、本実施の形態の投写型ディスプレイの構成を概念的に示す。本図において、361は角柱ミラーである。362は、インテグレータである。また、その他の構成は先の2つの実施の形態と同じなので同一の符号を付してある。

【0194】本図に示すように、ランプ311を発した 光は、インテグレータ362を経て矩形の光束に変換され、これが高速で回転する角柱ミラー361に照射され る。そして、この反射光は液晶パネル316に照射され る。ところで、この際、この角柱ミラー361の高速回 転に伴なって光束は反射方向を変化させる。そしてこの 角柱ミラー361から反射された光の走査方向と液晶パネル314の走査方向とを同じにすることで、先の2つ の実施の形態で説明したのと同様に良好な高速表示が可能になる。

【0195】なお、角柱ミラーを用いると、チョッパ方式や液晶シャッター方式と異なり、原理的に明るさの損失がない。このため、光の利用効率の面から好ましい。 【0196】以上の他、半導体結晶上に形成された微小なミラーの角度を電気的に動かすことで表示を行うマイクロミラーデバイス(テキサスインスツルメンツ等が製造、発表を行っている)でも良い。

【0197】 (第11の実施の形態) 本実施の形態は、連続する映像画面を分析してその動きを検出し、中間的な映像をベクトル演算で形成するものである。

【0198】本実施の形態の対象とする映像ベクトルの動きを図21に示す。本実施の形態では、本図21の左側に示すように、画面(1)、画面(2)、画面(3)…と順に動きのある連続した画像が入力されている。この場合、画像間の動きの少ないときと、動きの大きいときに分類する。そして動きの大きいときについてのみ、中間の画像を動きベクトルに着目して合成して表示する。

【0199】図21の左側(1)、(2)、(3)に示す入力画像の場合、入力されてきた3つの画像(1)、(2)、(3)は相互に動きが大きいため本図の右に示すように動きが中間の画像(1.5)、(2.5)を挿入した。

【0201】図22に本実施の形態の液晶表示装置の構成を示す。本図において、401は受信部である。402は先入力画像用バッファであり、1画面部のF1F0よりなる。403は、相前後するフレーム間の動きを検出して比較する動き比較部である。404は、中間画像の作成の必要性を動きを比較部の比較結果を別途保持するしきい値と比較して判断する判断部である。405は、判断部が中間画像の作成の必要があると判断した場合、中間画像を作成する中間画像作成部が中間画像を作成も大の画像の表示時間を半フィールド分とし、ついで中間画像を残りの半フィールド分表示させる表示制御部である。407は、液晶を使用した表示部である。

【0202】次に、動き比較部の処理内容、作用について少し詳しく説明する。本実施の形態の動き比較部は、相連続する画面の各画素毎の差分の和(絶対値)をとり、これを別途保持するしきい値と比較して差分を検出する。なお、以上の他通常見る者にとり最も目立つ各画素毎の最輝度の画素に着目し、その位置の変化の差分をとる。画面中央部の画素を重用視する等種々の手段がある。ただし、これらの一部は、例えば図21にも記すごとくMPEG等にも採用されている技術である。このため、これ以上の説明は省略する。

【0203】なお本実施の形態は、ある面では図4~図6に示す第2の実施の形態の応用でもある。このため、本実施の形態についてのこれ以上の説明は省略する。

【0204】 (第12の実施の形態) 本実施の形態は、 黒画面を表示するための機構、回路に関する。

【0205】図23に、本実施の形態の回路を従来の物と比較して示す。本図の(a)は、本実施の形態の回路であり、(b)は、従来技術の回路である。本図において、511は、TFTである。512は、画素電極である。513は、ゲートラインである。514は、ソースラインである。515は、放電手段である。516は、対向電極である。517は、基準電位(線、アース)である。

【0206】さて、従来のアクティブマトリクスを用いた表示素子では、本図の(b)に示すように、TFT5 11を介して画素電極512が接続されている。

【0207】画素電極に充電する際には、ゲートライン 513に高い電位を与えることでTFT511をonさせ、ソースライン514と画素電極512を導通させる。このとき、ソースラインに所定の電圧を与えることで画素電極に所定の電圧を与える。次に、ゲートラインに低い電位を与えることでTFTトランジスタをoff させる。このとき、ソースラインと画素電極は高抵抗になるため、画素電極はオープンになる。このとき対向電 50 極516は基準電位 (アース) 517に接続されてい

る。

【0208】この対向電極と画素電極間には電荷が蓄積 され、対向電極と画素電極間は高抵抗であるため、電荷 は次の充電がなされるまでの期間保持される。このため 画素電極と対向電極間には一定の電圧が印加されつづ け、透過率は一定である。このときの透過率は図24の (b) のようになった。なお図24の(a)は、CRT で同様の表示を行った場合を比較のため概念的に示した 図である。この図では徐々に明るさを増すパターンを印 加した場合を示している。

【0209】図24の(c)が、本実施の形態の表示素 子の回路を示した図である。本実施の形態では、画素電 極512と基準電位517の間に放電手段としての抵抗 515を挿入した点に特徴がある。この抵抗によって、 画素電極と対向電極間に蓄積された電荷がゆっくりと放 電され、次の書き込みが発生する前には電荷は放電され るようにしている。なお、この時の放電時間は、CR時 定数に従っている。これにより、図20の(c)に示す ような透過率を得た。その結果、CRTと同様な高速応 答性が得られた。

【0210】 (第13の実施の形態) 本実施の形態は、 先の実施の形態と目的は似るも、TFTアレイの画素電 極の電位をリークさせる抵抗を付加した点に特徴があ る。図25に、本実施の形態の構成を示す。本図に示す ように、このアレイ構成では、ゲートライン513に平 行に対向電極と同電位の基準電位配線531を引いてお き、この配線531と画素電極512間に抵抗532を 挿入した。そして、この抵抗は不純物を適量だけドープ したアモルファスシリコン層を用いた。なおこのとき、 電圧がかかっていない状態で、表示は暗状態である「ノ ーマリーブラックモード」を用いた。

【0211】これにより、先の実施の形態と同様に良好 な表示特性を得た。

【0212】 (第14の実施の形態) 本実施の形態は、 その目的は先の2つの実施の形態と同じであるが、液晶 層の有する抵抗値を下げることで画素電極の電荷を放電 させる点に特徴がある。

【0213】なお、液晶層の抵抗値を下げるには、液晶 にイオン性物質を添加すれば良い。このとき、液晶の有 する保持率は50%以下であれば効果的であった。また このときには、液晶素子に通常形成する補助容量を少な くし、画素容量よりと同等あるいは小さくすることで効 果が有った。また液晶層の導電率が10⁻¹⁰ Ωcm以上 で効果が有り、望ましくは $10^{3} \Omega c m$ 以上が望ましか った。

【0214】なおこのとき、電圧がかかっていない状態 で、表示は暗状態である「ノーマリーブラックモード」 を用いた。

【0215】本実施の形態の概念的な回路構成を、図2

ある。ただし、液晶層の抵抗値を下げること自体はそう 困難な技術ではないので、本実施の形態のこれ以上の説 明は省略する。

34

【0216】 (第15の実施の形態) 本実施の形態は、 先の2つの実施の形態とほぼ同じであるが、「ノーマリ ーホワイトモード」に関するものである。

【0217】すなわち、先の2つの実施の形態は「ノー マリーブラックモード」であったが、本実施の形態はこ れに限るものではないのは勿論である。すなわち、電圧 がかかっていない状態で表示が「明状態」である「ノー マリーホワイトモード」でも可能である。

【0218】ところで、ノーマリーホワイトモードで は、黒を表示するためには比較的高い電圧を印加する必 要がある。このため、画素電極が放電した後は、高い電 圧に収束する回路にする必要がある。

【0219】そこで、本実施の形態では、図27に示す ように、黒電圧を供給する電源線542を形成し、これ と画素電極512とを抵抗を介して接続した。なお、本 図において542は、黒電圧を供給する電源線である。 541は、電源供給線である。543は、電位保持のた めのTFTである。さて、この電源線542には高い電 圧が印加され、かつTFTトランジスタで保持されるよ うにしてある。

【0220】また、電源供給線541には、VHとVL が交互に印加され、この電圧はソースラインに印加され るときの黒表示電圧に相当する。そして、これを保持す る電極線542を形成し、TFTトランジスタ543に よってこの電位を保持するようにした。画素電極は抵抗 を介してこの電源供給線541に接続されているため、 黒電圧に向かって飽和する特性を実現し、ノーマリーホ ワイトモードでも高速化を実現した。

【0221】一般に、画素電極に供給される電界、すな わち信号線に供給される電界は、映像の一画面、1フィ ールドごとに極性を切り替える場合が多い。このときに は、黒の表示電圧も例えば+6Vと-6Vのように符号 が切り替わる。ここで、電源線542には1フィールド ごとに電源電圧値が切り替わる波形を印加した。例えば 前述した例では+6ッと-6ッの交番電界を印加した。

【0222】本実施の形態は、1フィールド反転駆動に 限るものではないのは勿論である。すなわち、1 (1水 平ライン) 毎に極性を切り換えるH反転駆動のように、 高速に電界反転させる方式でも良い。ここで必要なの は、ソース信号の黒表示に対応した電圧を電源線542 に印加することにある。

【0223】また、狭義の液晶表示素子に限らず、EL 型表示素子でも良い。更にまた、いかなる液晶モードで もよく、TN液晶、IPS液晶、OCB液晶、VA液晶 でも良い。

【0224】また、液晶モードの応答性は速いほど高速 5に示す。本図において、533は液晶層自体の抵抗で 50 化の効果は高い。このため高電圧を印加するTNモード

やIPSモード、モードが基本的に高速であるOCBモードが適している。また、EL素子は基本的に高速であり、本発明の効果は高かった。

【0225】素子が高速であれば、放電する電界に追従して応答できるため、高速化が実現できる。 白黒応答をさせたときの素子の応答速度が応答時間の立ち上がり時間と立ち下がり時間を足した応答速度が16ms以下で効果が有った。

【0226】(第16の実施の形態)本実施の形態は、 第7の実施の形態に似るも、画像の階調性の如何に応じ 10 て、1フィールド時間内に印加する電圧パルスの印加時間を調整する点が相違する。

【0227】図28に、本実施の形態のホールド型表示素子の作用を示す。本図の(a)は、第1、第2、第3、第4フィールド時間における画素の階調である。

- (b)は、(a)に対しての第1、第2、第3、第4フィールド時間内における印加電圧と時間の関係を示したものである。本図において、例えば第2フィールド時間では階調は(a)に示すごとく1/3であり、このため
- (b) に示すように第2フィールド時間間隔内では全体 20 (T) のうち最初の1/3の時間間隔のみ100%の電圧が印加されている。

【0228】これによっても、良好な動画の表示が得られた。ただし、この作用を発揮するための回路構成等は、階調に応じても電圧の調整に換えて表示間隔を変化させるだけであり、内容が簡単なため、わざわざの図示は省略する。

【0229】(第17の実施の形態)本実施の形態は、 以上の幾つかの実施の形態を組み合わせた製品に関する。

【0230】図29に、これを示す。本図に示す様に、この表示装置は単に動画と静止画に対応した表示を成すだけでなく、番組の内容に応じて適切な表示をなす。またこのため、MPEG等の画像圧縮も利用し、他にハイビジョン等も適切に表示可能である。

【0231】以上、本発明をいくつかの実施の形態に基づいて説明してきたが、本発明は何もこれらに限定されないのは勿論である。即ち、例えば、以下のようにしてもよい。

【0232】1)表示は、1秒60駒に限定されず、画 40 素密度も例えばハイビジョン対応としている。

【0233】2)液晶はOCBモード以外のものとしている。

【0234】3)第6の実施の形態で、表示面の区分けを更に多くしている。或いは、中央部のみOCBモードとしている。

【0235】4) 表示する動画は、テープやディスクに 録画されているものである。

【0236】5) 間欠駆動は、フィールド周波数を倍に 【図3 して行っている。従って、この場合、奇数番の画面の左 50 ある。

半分、右半分、偶数番の画面の左半分、右半分の順番で表示されることとなる。

【0237】6)動画か否かの判断対象としてサンプリングする画素位置も、放送番組の内容等に応じて適切なもの(位置)を選択するようにしている。

【0238】7) 動きベクトルとしては、最輝点が多数存在すれば、最大画素数のものに注目する等の機能を付されている。

【0239】8)極性反転は、単位区画毎に行うようにしている。

【0240】9) 動画か静止画かの判定は、あらかじめ 定められた幾つかの位置の画素の階調の変化の有無を基 に判断するようにしている。

【0241】10)上記階調の変化がしきい値よりも少なければ、たとえ動画であっても静止画と同様に表示するようにしている。

【0242】11)動きベクトルの検出は、ニュース番組、スポーツの実況放送等によって対象を変化させる機能を付加されている。なお、ニュース番組か否か等は、あらかじめ別途番組表を記憶しており、内蔵するカレンダーやタイマーと比較することによりなされる。

【0243】12)バックライトとしての発光体は、輝度変化の応答性に優れたLED、半導体レーザー、エレクトロルミネッセンス等としている。

【0244】13)ホールド型の表示素子として、ビスマスシリコンオキサイド等の電気光学的結晶を用いている。

【0245】14)表示装置そのものは、ホールド型でないものとしている。

30 [0246]

【発明の効果】以上、説明してきたように、本発明では、特に液晶表示装置等のホールド型の表示装置において、簡易、低コストで優れた動画、映像の表示をなすことが可能となる。

【0247】また、動画対応の表示方法と静止画対応の表示方法を切り替えることでどちらのタイプの表示にも対応でき、良好な表示を得ることができる。

【0248】また、広く薄い表示装置を無理なくテレビジョン、ワードプロセッサー等各種機器の共通の表示用部品(部分)となしうるため、用途も拡がる。

【0249】また、表示面を区分けして、画面の種類に 応じて適切に表示するので、動画の質を落とさず、装置 は安価となる。

【図面の簡単な説明】

【図1】 CRTとLCDの表示に際しての輝度の変化する様子を示す図である。

【図2】 ホールド型表示における動きの応答遅れの原因を説明するための図である。

【図3】 本発明の第1の実施の形態の要部の構成部で ある 【図4】 本発明の第2の実施の形態での表示に使用される中間画像の様子を示す図である。

【図5】 上記実施の形態での表示する画面のデータの流れ、到着時間と表示時間の関係を示す図である。

【図6】 上記実施の形態での液晶表示装置の要部の構成図である。

【図7】 本発明の第3の実施の形態の液晶表示装置の 要部の構成図である。

【図8】 上記実施の形態で順に間欠表示される画像の内容を示す図である。

【図9】 本発明の第4の実施の形態の液晶表示装置の 要部の構成図である。

【図10】 本発明の第5の実施の形態の液晶表示装置の要部の構成図である。

【図11】 本発明の第6の実施の形態の液晶表示装置の要部の構成図である。

【図12】 本発明の第7の実施の形態の表示方法を概念的に示す図である。

【図13】 上記実施の形態での階調間応答を概念的に示す図である。

【図14】 本発明の実施の形態の投写型液晶表示装置を概念的に示す図である。

【図15】 上記実施の形態の表示装置のシャッターの 構成と作用を概念的に示す図である。

【図16】 上記実施の形態での、表示部の水平方向走 査線の輝き開始部とチョッパーの開口先端の位置関係等 を示す図である。

【図17】 上記実施の形態の画素、表示面の発光動作を、CRT方式、通常の液晶表示素子と比較しつつ概念的に示した図である。

【図18】 本発明の第9の実施の形態の液晶表示装置を概念的に示す図である。

【図19】 上記実施の形態の表示装置のシャッターの 動作を概念的に示す図である。

【図20】 本発明の第10の実施の形態の表示装置を概念的に示す図である。

【図21】 本発明の第11の実施の形態が着目した連続映像の動きと中間画像の作成を概念的に示す図である。

【図 2.2 】 上記実施の形態の液晶表示装置の構成図で 40 ある。

【図23】 本発明の第12の実施の形態の表示のための回路を従来のものと比較しつつ概念的に示す図である。

【図24】 上記実施の形態の輝度、透過率の波形等を 他の方式のものと比較しつつ概念的に示す図である。

【図25】 本発明の第13の実施の形態の表示のための回路を概念的に示す図である。

【図26】 本発明の第14の実施の形態の表示のための回路を概念的に示す図である。

【図27】 本発明の第15の実施の形態の表示のための回路を概念的に示す図である。

【図28】 本発明の第16の実施の形態の作用を示す 図である。

【図29】 本発明の第17の実施の形態の構成を示す 図である。

【符号の説明】

1 液晶表示装置の本体部

21 バックライト用ランプ

10 22 バックライト用ランプ

3 導光部

4 高速スイッチ

5 切換え部

11 受像部

12 画像振分部

13 奇数画像記憶部

14 偶数画像記憶部 15 1/60秒遅延回路

16 1/120秒遅延回路

20 17 平均化回路

18 表示制御部

19 表示部

20 奇数番画像左側切捨部

21 偶数番画像右側切捨部

22 間欠表示制御部

25 通信規約等記憶部

26 信号検出判定部

27 動画対応表示制御切換え部

28 ボタン、スイッチ

29 ボタン、スイッチ

30 判断部

31 標本点採取部

32 標本点データ記憶部

33 比較部

3 4 動画対応表示制御部

35 各種の動画表示用処理部

40 区分け部

41 表示装置

42 周辺駆動部

43 中央駆動部

4.4 動画対応制御部

45 スイッチ

46 中央表示面

47 周辺表示面

311 ランプ

3 1 2 反射鏡

313 チョッパ

314 液晶表示素子

315 投射レンズ

50 316 スクリーン

表示部

フロントページの続き

(51) Int. Cl. ⁷

識別記号

G 0 9 G 3/20

660

(31)優先権主張番号 特願平11-204152

(32) 優先日 平成11年7月19日(1999. 7. 19)

(33)優先権主張国 日本(JP)

(31) 優先権主張番号 特願2000-31406 (P2000-31406)

(32) 優先日 平成12年2月9日(2000. 2. 9)

(33)優先権主張国 日本(JP)

(72) 発明者 西山 誠司

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72) 発明者 中村 美香

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

FΙ

G 0 9 G 3/20

テーマコード(参考)

6 6 0 W

(72)発明者 服部 勝治

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

Fターム(参考) 2H093 NA16 NA55 NC34 ND06 ND33

ND60 NF17 NF20

5C006 AA01 AA02 AA16 AA22 AC02

AC15 AF19 AF51 BA12 BB16

BC06 BF15 EA03 EC05 EC11

FA04 FA12 FA29 FA52

5C080 AA10 BB05 CC03 CC10 DD02

DD27 DD30 EE19 FF09 JJ01

JJ02 JJ03 JJ04 JJ05 JJ06

JJ07 KK02 KK04 KK43 KK50