MA3209 Metric and Topological Spaces AY24/25 Semester 1

by Isaac Lai

Chapter 1

Topological Spaces

Definition. A **topology** on a set X is a collection $\mathcal T$ of subsets of X such that

- $1.\emptyset, X \in \mathcal{T}$
- 2. (Closure under arbitrary union) $\{U_{\alpha}\}_{{\alpha}\in I}\in \mathcal{T} \implies \bigcup_{{\alpha}\in I}U_{\alpha}\in \mathcal{T}$
- 3. (Closure under finite intersection) $\{U_1, \ldots, U_n\} \in \mathcal{T} \implies \bigcap_{i=1}^n U_i \in \mathcal{T}$

 (X,\mathcal{T}) is a topological space, and $U\subset X$ is open if $U\in\mathcal{T}$

Examples

Let *X* be any set.

- $\mathcal{T} = {\emptyset, X}$ is the **trivial topology**
- $\mathcal{T} = \{\text{subsets of } X\}$ is the **discrete topology**
- $\mathcal{T} = \{X U : U \subset X \text{ is finite}\} \cup \{\emptyset\}$ is the **cofinite** topology

Definition. A **basis** for a topology of a set X is a collection \mathcal{B} of X's subsets such that

- 1. \mathcal{B} covers X
- 2. $\forall x \in X$ and $B_1, B_2 \in \mathcal{B}$ such that $x \in B_1 \cap B_2$, $\exists B \in \mathcal{B}$ such that $x \in B \subset B_1 \cap B_2$

The topology generated by \mathcal{B} is

 $\mathcal{T} = \{U \subset X : \forall x \in U, \exists B \in \mathcal{B} \text{ such that } x \in B \subset U\}$

Remarks

- If B is a basis of topology T, then T is the collection of all unions of elements in B
- The topology on \mathbb{R}^n generated by the open balls is the **standard topology**

Definition. Let X be a set and $\mathcal{T}, \mathcal{T}'$ be topologies on X. \mathcal{T} is **finer** than \mathcal{T}' (equivalently, \mathcal{T}' is **coarser** than \mathcal{T}) if $\mathcal{T}' \subset \mathcal{T}$. The topology generated by a basis \mathcal{B} is the coarsest topology containing \mathcal{B} .

Proposition. Let $\mathcal{B}, \mathcal{B}'$ be bases of topologies $\mathcal{T}, \mathcal{T}'$ respectively on X. TFAE:

- 1. \mathcal{T}' is finer than \mathcal{T}
- $2. \forall B \in \mathcal{B}, \forall x \in B, \exists B' \in \mathcal{B}' \text{ such that } x \in B' \subset B$

Definition. A **subbasis** S of a set X is a collection of subsets of X whose union equals X. The **topology generated by** S is a collection T of all unions of finite intersection of sets in S

Metric spaces

Definition. A **metric** on a set X is a function $d: X \times X \to \mathbb{R}$ such that

- 1. (Nonnegativity) $d(x,y) \ge 0 \ \forall x,y \in X$
- 2. (Positive definiteness) $d(x,y) = 0 \iff x = y$
- 3. (Symmetry) d(x, y) = d(y, x)
- 4. (Triangle inequality) $d(x,y) + d(y,z) \ge d(x,z) \ \forall x,y,z \in X$

(X,d) is a **metric space**. If only 1, 3, and 4 hold, then d is a **pseudo-metric**. If only 1, 2, and 4 hold, d is a **quasi-metric**.

Definition. A norm on a \mathbb{K} -vector space V is a function $\|\cdot\|:V\to\mathbb{R}$ that satisfies

- 1. (Nonnegativity) $||x|| \ge 0 \ \forall x \in V$
- 2. (Positive definiteness) $||x|| = 0 \iff x = 0$
- 3. (Absolute homogeneity) $\|\lambda x\|=|\lambda|\,\|x\|\;\forall\lambda\in\mathbb{K}$ and $\forall x\in V$
- 4. (Triangle inequality) $||x + y|| \le ||x|| + ||y||$

Examples

• The discrete metric is

$$d(x,y) = \begin{cases} 1, & \text{if } x \neq y \\ 0, & \text{if } x = y \end{cases}$$

- The l_p -norm is $V = \mathbb{K}^n, p \ge 1, ||x||_p = (|x_1|^p + \cdots + |x_n|^p)^{1/p}, x \in \mathbb{K}^n$
- The l_{∞} -norm is $V = \mathbb{K}^n, ||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}, x \in \mathbb{K}^n$

Definition. Let A, B be nonempty subsets of a metric space (X, d).

- The **distance** between A and B is $d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}$
- The **diameter** of a set $A \subset X$ is $\operatorname{diam}(A) = \sup\{d(x,y): x,y \in A\}$
- A set $A \subset X$ is bounded if $\operatorname{diam}(A) < +\infty$

Definition. • The topology on X **induced** by a metric d is the topology generated by \mathcal{B}_d .

• A topology $\mathcal T$ on X is metrizable if there is a metric on X that induces $\mathcal T$

Remarks

- The discrete metric generates the discrete topology
- Every l_p -metric on \mathbb{R}^n generates the standard topology

Subspaces of topological spaces

Definition. Let (Y, \mathcal{T}_Y) be a topological space and $X \subset Y$. Then $\mathcal{T}_X = \{U \cap X : U \in \mathcal{T}_Y\}$ is the **subspace topology** on X.

Definition. Let (Y, \mathcal{T}_Y) be a topological space, $X \subset Y$ be a subset, and \mathcal{T}_X be the subspace topology. Then X is the **subspace** of Y with respect to \mathcal{T}_X .

Definition. Given a subset A of a metric space (X,d), the **restriction** of d to A is the metric $d_A(x,y) = d(x,y) \ \forall x,y \in A$. The topology induced by this metric is the subspace topology.

Results

- If \mathcal{T}_X is a topology and \mathcal{B} is a basis for \mathcal{T}_Y , then $\{B \cap X : B \in \mathcal{B}\}$ is a basis for \mathcal{T}_X
- If $X \subset Y$ is open and $U \subset X$ is open, then $U \subset Y$ is open

Closed sets, closure, and limit points

Definition. Let (X, \mathcal{T}) be a topological space. A subset $A \subset X$ is closed if $X \setminus A \in \mathcal{T}$.

Proposition. Let X be a topological space.

- If $\{G_{\alpha}\}_{\alpha\in I}$ is an arbitrary collection of closed sets in X, then $\bigcap_{\alpha\in I}G_{\alpha}\subset X$ is closed.
- If G_1, \ldots, G_n are closed sets in X, then $\bigcup_{i=1}^n G_i \subset X$ is closed.
- If $Y \subset X$, then $A \subset Y$ is closed is equivalent to $A = G \cap Y$ for some closed $G \subset X$.
- If $Y \subset X$ is closed and $A \subset Y$ is closed, then $A \subset X$ is closed.

Definition. Let (X, \mathcal{T}) be a topological space and $A \subset X$.

- 1. The **interior** of *A* is $\mathring{A} = \bigcup_{U \in \mathcal{T}, U \subset A} U$.
- 2. The closure of A is $\overline{A} = \bigcap_{X \setminus G \in \mathcal{T}, G \supset A} G$.
- 3. The **boundary** of *A* is $\partial A = \overline{A} \mathring{A}$.

Remark. If $\mathring{A} \subset A \subset \overline{A}$, then

- $\mathring{A} = A \iff A$ is open.
- $\overline{A} = A \iff A \text{ is closed.}$

Definition. Let X be a topological space and $A \subset X$. A point $x \in X$ is a **limit point** of A if every open $U \subset X$ containing x intersects $A \setminus \{x\}$.

Proposition. Let X be a topological space, $A \subset X$. $1.x \in \overline{A} \iff \forall$ open U containing $x, U \cap A \neq \emptyset$.

2. If A' is the set of limit points of A, then $\overline{A} = A \cup A'$.

Definition. A sequence $(x_1, x_2, x_3, \dots) = \{x_i\}_{i=1}^{\infty}$ of points in a topological space X converges to $x \in X$ if for any neighbourhood U containing $x, \exists N > 0$ such that $x_k \in U$ for all k > N. This is written as $x_i \to x$. x being a limit point of the sequence does not imply that $x_i \to x$, and $x_i \to x$ does not imply that x is a limit point of the sequence either.

Continuity

Definition. Let X and Y be topological spaces. A map $f:X\to Y$ is **continuous** if for any open set $U\subset Y, f^{-1}(U)\subset X$ is open.

Proposition. Let X and Y be topological spaces and $f: X \to Y$. TFAE:

- 1. f is continuous
- $2. \forall A \subset X, f(\overline{A}) \subset \overline{f(A)}$
- 3. For any closed set $B \subset Y$, $f^{-1}(B) \subset X$ is closed
- 4. For any $x\in X$ and any open set $V\subset Y$ containing f(x), there exists open $U\subset X$ containing x such that $f(U)\subset V$

Proposition (Pasting Lemma). Let $X=A\cup B$ where $A,B\subset X$ are both closed (or both open). Let $f:A\to Y$ and $g:B\to Y$ be continuous. If f(x)=g(x) for all $x\in A\cap B$, then $h:X\to Y$ defined by

$$h(x) = \begin{cases} f(x), & \text{if } x \in A \\ g(x), & \text{if } x \in B \end{cases}$$

is continuous.

Remark. Given a topology \mathcal{T}_Y on Y and a map $f: X \to Y$, the **pull back** topology on X is defined as $\mathcal{T}_X = \{f^{-1}(U): U \in \mathcal{T}_Y\}$. This is the coarsest topology on X such that f is continuous.

Definition. Let (X,d_X) and (Y,d_Y) be two metric spaces. A map $f:X\to Y$ is **uniformly continuous** on X if for any $\epsilon>0$, there exists $\delta>0$ such that if $x,y\in X$ satisfy $d_X(x,y)<\delta$, then $d_Y(f(x),f(y))<\epsilon$.

Proposition. Let (X,d_X) and (Y,d_Y) be metric spaces. A map $f:X\to Y$ is uniformly continuous iff for any two sequences $\{x_i\}_{i=1}^\infty$ and $\{y_i\}_{i=1}^\infty$ in X such that $d_X(x_i,y_i)\to 0$, we have $d_Y(f(x_i),f(y_i))\to 0$.

Definition. Let $f_i: X \to Y$ be a sequence of maps from a set X to a metric space (Y, d):

- $\{f_i\}_{i=1}^{\infty}$ converges pointwise to $f: X \to Y$ if $f_i(x) \to f(x)$ for any $x \in X$.
- $\{f_i\}_{i=1}^{\infty}$ converges uniformly to $f: X \to Y$ if for any $\epsilon > 0$, there exists N > 0 such that for all $i \ge N$ and any $x \in X$, $d(f_i(x), f(x)) < \epsilon$.

Standard constructions

Product of topological spaces

Definition. Let $\{X_{\alpha}\}_{{\alpha}\in\Lambda}$ be nonempty sets.

- The **product** is defined as $\prod_{\alpha\in\Lambda}X_\alpha=\{(x_\alpha)_{\alpha\in\Lambda}:x_\alpha\in X_\alpha,\forall\alpha\in\Lambda)\}$
- For all $\alpha \in \Lambda$, the map $\pi_{X_{\alpha}}: \prod_{\alpha \in \Lambda} X_{\alpha} \to X_{\alpha}$ defined by $(x_{\alpha})_{\alpha \in \Lambda} \mapsto x_{\alpha}$ is the **projection** to the α -th factor.
- **Definition.** If $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in \Lambda}$ are topological spaces, the **product topology** on $\prod_{\alpha \in \Lambda} X_{\alpha}$ is the topology generated by the subbasis $\mathcal{S} = \{\pi_{X_{\alpha}}^{-1}(U_{\alpha}) : \alpha \in \Lambda, U_{\alpha} \in \mathcal{T}_{\alpha}\}.$
- If $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in \Lambda}$ are topological spaces, the **box topology** on $(X_{\alpha}, \mathcal{T}_{\alpha})_{\alpha \in \Lambda}$ is the topology generated by the basis $\mathcal{B} = \{\prod_{\alpha \in \Lambda} U_{\alpha} : U_{\alpha} \subset X_{\alpha} \text{ is open}\}$. The product and box topologies are the **same for finite** product but **different for infinite** product.

Proposition. Let $\{X_{\alpha}\}_{{\alpha}\in\Lambda}$ be topological spaces. For any ${\alpha}\in\Lambda$, let $\pi_{X_{\alpha}}:\prod_{{\alpha}\in\Lambda}X_{{\alpha}}\to X_{{\alpha}}$ be the projection to the ${\alpha}$ -th factor:

- 1. The product topology on $\prod_{\alpha\in\Lambda}X_{\alpha}$ is the coarsest topology such that $\pi_{X_{\alpha}}$ is continuous for any $\alpha\in\Lambda$.
- 2. Let Y be a topological space, and for any $\alpha \in \Lambda$, let $f_{\alpha}: Y \to X_{\alpha}$. The map $f = \prod_{\alpha \in \Lambda} f_{\alpha}: Y \to \prod_{\alpha \in \Lambda} X_{\alpha}$ defined by $y \mapsto (f_{\alpha}(y))_{\alpha \in \Lambda}$ is continuous iff f_{α} is continuous for every $\alpha \in \Lambda$.

Proposition. Let X be a topological space and $f,g:X\to\mathbb{R}$ be continuous. Then f+g,f-g, and $f\cdot g$ are continuous. Also, if $0\notin g(X)$, then $\frac{f}{g}$ is continuous.

Products of metric spaces

Definition. If $(X_1, d_{X_1}), \dots, (X_n, d_{X_n})$ are metric spaces, there are two common metrics on $X_1 \times \dots \times X_n$:

$$d_1((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sum_{i=1}^n d_{X_i}(x_i, y_i)$$
$$d_{\infty}((x_1, \dots, x_n), (y_1, \dots, y_n)) = \max_{i=1,\dots,n} (d_{X_i}(x_i, y_i))$$

- **Remark.** If $\mathcal{B}_1, \ldots, \mathcal{B}_n$ are bases for the topological spaces $(X_1, \mathcal{T}_1), \ldots, (X_n, \mathcal{T}_n)$ respectively, then $\mathcal{B}_1 \times \cdots \times \mathcal{B}_n$ is a basis for $X_1 \times \cdots \times X_n$ that generates the product topology.
- If $(X_1, d_{X_1}), \ldots, (X_n, d_{X_n})$ are metric spaces that induce topologies $\mathcal{T}_1, \ldots, \mathcal{T}_n$ on X_1, \ldots, X_n respectively, then the metrics d_1 and d_{∞} on $X_1 \times \cdots \times X_n$ both induce the product topology.

• In the infinite product case, let $(X_i,d_{X_i})_{i=1}^{\infty}$ be metric spaces. Given the metric d_{∞} above, we define $d_{\infty}:\prod_{i=1}^{\infty}X_i\times\prod_{i=1}^{\infty}X_i\to\mathbb{R}$ by $d_{\infty}(x,y)=\sup\{d_{X_i}(x_i,y_i):i\in\mathbb{Z}^+\}$. But this is not well-defined as $d_{X_i}(x_i,y_i)$ might be unbounded as $i\to\infty$.

Proposition. Let (X,d) be a metric space. Then $\rho: X \times X \to \mathbb{R}$ given by $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$ is a metric and its diameter is less than 1. Furthermore ρ and d induce the same topology on X.

Quotient of topological spaces

Definition. Let X and Y be topological spaces.

- A surjective map $p:X\to Y$ is a **quotient map** if $V\subset Y$ is open $\iff p^{-1}(V)\subset X$ is open.
- A continuous map $f:X\to Y$ is **open (closed)** if f(U) is open (closed) for any open (closed) $U\subset X$.

If a surjective continuous map is open or closed, then it is a quotient map. The composition of quotient maps is also a quotient map.

Definition. Let $f: X \to Y$ be a surjective continuous map and $A \subset X$. Then A is a **saturated set** wrt f if $A = f^{-1}(S)$ for some $S \subset Y$. Equivalently $A = f^{-1}(f(A))$.

Definition. Let $f: X \to Y$ be a surjective continuous map.

- 1. f is a quotient map \iff f sends every saturated (wrt f) open (closed) set to an open (closed) set.
- 2. If f is a quotient map and $A\subset X$ is saturated and open (closed), then $f|_A:A\to f(A)$ is also a quotient map.

Proposition. If X is a topological space, $A \subset X$ and $p: X \to A$ is surjective, then $\exists !$ topology on A (called the **quotient topology**) such that p is a quotient map.

Definition. Let X be a topological space and let X^* be the cells of a partition of X. Let $p: X \to X^*$ be the surjective map that sends each point in X to the subset that contains it. X^* equipped with the quotient topology induced by p is a **quotient space** of X.

Chapter 2

 T_1 and T_2 spaces

Definition. Let X be a topological space.

- X is T_1 if for any distinct $x, y \in X$, there exists an open set $U \subset X$ such that $x \in U$ but $y \notin U$.
- X is T₂ or Hausdorff if for any distinct x, y ∈ X, there exist open neighbourhoods U, V of x, y respectively such that they are disjoint.

Examples

- Any Hausdorff space is T_1
- · Any metric space is Hausdorff
- If $|X| \ge 2$, then the trivial topology is not T_1
- The discrete topology is Hausdorff
- The cofinite topology is T_1 . The cofinite topology is Hausdorff iff X is finite
- If X is infinite, then the cofinite topology on X is not metrizable

Proposition. X is $T_1 \iff \forall x \in X, \{x\}$ is closed. It follows that finite sets in metric spaces are closed.

First countable space

Definition. Let X be a topological space.

- ∀x ∈ X, a countable basis of X at x is a countable collection B of open sets in X that contain x such that every open set in X that contains x also contains some B ∈ B.
- X is first countable if there is a countable basis of X at x for every x ∈ X.

Proposition. Let X be a topological space.

- 1. Let $A \subset X$. If there exists a sequence $(x_i)_{i=1}^{\infty} \subset A$ such that $x_i \to x$ as $i \to \infty$, then $x \in \overline{A}$. The converse is true if X is first countable.
- 2. Let $f: X \to Y$. If f is continuous, then for any sequence $(x_i)_{i=1}^{\infty} \subset X$ such that $x_i \to x$ as $n \to \infty$, we have $f(x_i) \to f(x)$ as $i \to \infty$. The converse holds if X is first countable.

Compactness

Definition. Let X be a topological space.

- An **open cover** of X is a collection of open sets $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ in X such that $\bigcup_{{\alpha}\in\Lambda}U_{\alpha}=X$.
- X is compact if every open cover of X admits a finite subcover.

Remark. $Y \subset X$ is a compact subspace \iff every collection $\mathcal U$ of open sets in Y such that $Y \subset \bigcup_{U \in \mathcal U}$ admits a finite sub-collection $\mathcal U' \subset \mathcal U$ such that $Y \subset \bigcup_{U \in \mathcal U'} U$.

Proposition. Every closed subspace of a compact space is compact.

Proposition. Every compact subspace of a Hausdorff space is closed.

Proposition (Tube lemma). Let X be a topological space and Y be a compact topological space. If $N \subset X \times Y$ is an open set that contains $\{(x_0,y):y\in Y\}$, then N contains $W\times Y$ for some $W\subset X$ that contains x_0 .

Corollary. If X and Y are compact topological spaces, then $X \times Y$ is compact.

Definition. A collection $\mathcal G$ of subsets of X has the **finite intersection property** if every finite sub-collection $\{G_1,\ldots,G_n\}\subset\mathcal G$ satisfies $\bigcap_{i=1}^n G_i\neq\emptyset$.

Proposition. A topological space X being compact is equivalent to X having the following property: Let \mathcal{G} be a collection of closed sets in X. If \mathcal{G} has the finite intersection property, then $\bigcap_{G \in \mathcal{G}} G \neq \emptyset$.

Corollary. If X is compact and $\{G_i\}_{i=1}^{\infty}$ is a nested (i.e. $G_{i+1} \subset G_i$ for all $i \in \mathbb{Z}^+$) sequence of closed subsets in X, then $\bigcap_{i=1}^{\infty} G_i \neq \emptyset$.

Definition. A point x in a topological space is **isolated** if $\{x\}$ is open in X.

Theorem. Let X be a non-empty, compact, Hausdorff space. If X has no isolated points, then X is uncountable.

Limit points, sequential compactness, and the Lebesgue number

Definition. A topological space X is **limit point compact** if every infinite subset of X has a limit point in X.

Proposition. If X is compact, then it is limit point compact.

Definition. Let X be a topological space. X is **sequentially compact** if every sequence in X has a convergent subsequence.

Definition. Let X be a metric space, and let \mathcal{U} be an open cover of X. A number $\delta > 0$ is a **Lebesgue number** for \mathcal{U} if for all subsets $S \subset X$ such that $\operatorname{diam}(S) < \delta$, there exists $U \in \mathcal{U}$ such that $S \subset U$.

Lemma. If *X* is a sequentially compact metric space, then every open cover of *X* has a Lebesgue number.

Definition. A metric space X is **totally bounded** if for all $\epsilon > 0$, there exists a finite cover of X by balls of radius ϵ .

Lemma. If X is sequentially compact and metrizable, then X is totally bounded.

Theorem. If X is metrizable, then TFAE:

- 1. X is compact.
- 2. *X* is limit point compact.
- 3. *X* is sequentially compact.

Corollary. Let $f:(X,d_X) \to (Y,d_Y)$ be continuous. If X is compact, then f is uniformly continuous.