## Enunciados

May 3, 2021

## 1 Ejercicio 1: Transformador



El siguiente circuito corresponde a un adaptador de impedancias realizado con un trasformador, cuyo  $Q_{oL}=\infty$ , y un capacitor de \$ C\_1\$ conectado en paralelo con el primario, cuyas pérdidas se suponen despreciables.

La impedancia interna de la fuente es de

$$z_q = (200 - j10)\Omega$$

a 200MHz y su potencia disponible es de  $P_{disp}=10nW$ .

La resistencia de carga es de  $R_L = 1000\Omega$ .

Nota: en SPICE la sentencia "k<br/>1 L1 L2 1" indica que el transformador tiene K=1 (acople máximo).

Para  $Q_c = 20$  a 200MHz

- 1. C
- 2. Lp
- 3. *Ls*
- 4. Relación de vueltas del transformador.
- 5. Tensión en el primario
- 6. Tensión del secundario

- 7. Potencia sobre  $R_L$ .
- 8. Verificar utilizando simuladores.

## 2 Ejercicio 2: Auto-transformador

El siguiente circuito corresponde a un adaptador de impedancias realizado con un autotrasformador, cuyo  $Q_{oL}=\infty$  a la frecuencia de trabajo, y un capacitor de  $C_1$  conectado en paralelo con el primario, cuyas pérdidas  $Q_{oC}=100$ .



La impedancia interna de la fuente es de  $z_g(100MHz)=(74-j7)\Omega$  a y la corriente que entrega es  $i_g(100MHz)=1\mu A$ .

La resistencia de carga es de  $R_L = 1500\Omega$ .

Nota: en SPICE la sentencia "k<br/>1 L1 L2 1" indica que el transformador tiene K=1 (acople máximo).

Para máxima transferencia de energía a un  $Q_c=20$ , se busca que  $R_L'=r_g$ .

Para  $Q_c = 20$  a 100MHz:

- 1. C
- 2.  $L_1$
- 3.  $L_{1a}$
- 4. *Ls*
- 5. La relación de vueltas del transformador.

- 6. Tensión en el primario
- 7. Tnesión en el secundario
- 8.  $P(R_L)$



## 3 Ejercicio 3: Divisor Capacitivo

Se desea conectar una carga de  $R=100\Omega$  a un transistor. La resistencia de salida del transistor es  $r_o=8100\Omega$  y  $c_o=10pF$  a  $f_o=4MHz$ . Suponga que la fuente de corriente es de \$i\_o=10uA\$. Se desea un ancho de banda de BW=200KHz a  $f_o=4MHz$ .



Asumir que todas las perdías corresponden a el inductor con un  $Q_o=100.$ 

Rara máxima transferencia de energía a Q<br/>cte a  $F_o=4MHz. \label{eq:Fourier}$ 

- 1.  $Q_c$
- 2. *L*
- 3.  $C_1$
- 4.  $C_2$
- 5. Potencia disponible del transistor.
- 6. Potencia en la carga.

[]: