

GEOptical-SSA 3U CubeSat (GEOSSAC)

Design Concept for Optical GEO Object Image SSA

ECE597 SMALL SPACECRAFT DESIGN

ALEX HOSTICK

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

PI: DR. THOMAS ALAN LOVELL

A proof-of-concept 3U CubeSat to perform optical space situational awareness ("SSA") on objects in the geostationary ("GEO") belt

Technical Requirement

- Imagery of GEO objects 3000km from the object
- Camera with the ability to detect objects of 13th magnitude or brighter
- (Optional) On-board processing of imagery
- Attitude adjustment for GEO belt imagery
- On-board computer for SSA-tasks; TT&C
- Adherence to NASA General Environmental Verification Standards (GEVS) § 2.4 & 2.8

Mission Objective

- **\$250k** budget (USD) for parts, labor, and testing
 - \$150k for spacecraft
 - **\$100k** for labor & test
- 2-year mission timeline
- **3000 cm³** Volume (3U)
- 4.8kg Max Weight
- **3,000km** Camera Sensitivity for GEO SSA

Deliverables

- 3U CubeSat with optical SSA concept
 - 20 stars per image, up to 13th magnitude brightness
- Work Breakdown Structure (WBS)
- Concept of Operations (ConOPs)
- Schedule for mission implementation and spacecraft operations

Coplaner Geostationary Orbit (GEO)

or

Orbit	Altitude (km)	PM200 Specific Impulse (Isp)	Propellant Mass (g) mass _{wet}	Mass (g)	Hohmann Delta-V Energy (km/s)	Mass Propellant Required (g)
LEO	200				3.93453	13767
MEO	20,000	285	300	4542.2	0.80191	1480
Sub-GEO	32,700				0.11908	192

Note: $\Delta v = I_{sp} * g_0 * \ln\left(\frac{m_{wet}}{m_{dry}}\right) = 0.119 km/s$ minimum for the 285s Propulsion Module I_{sp}

Volume Budget: 2.816U

Component	Volume
Power System	0.616
Pumpkin Space 3U SolarPanel (3) 8.4W/ea	N/A
Pumpkin Space 1U SolarPanel (2) 2.4W/ea	N/A
Pumpkin Space Lithium Battery Module (72Wh/8 cells)	0.484
Pumpkin Space EPSM 1	0.132
Propulsion/Structure	0.889
PM200 Propulsion Module	0.889
Propulsion Mass (Nitrous Oxide/Propene)	0.009
Pumpkin Spacet 3U CubeSat	N/A
Communication Systems	0.2013
Endurosat S-Band Transceiver	0.201
EXA SSA02 (High Gain) 34dB S-Band Antenna	0.0003
Navigation and Control Systems	0.1153
Endurosat GNSS Patch Antenna	0.0003
GPSRM1 GNSS NovAtel Receiver (GPS/GLONASS)	0.059
STIM318 IMU	0.035
CubeSpace Reaction Wheel (4)	0.021
Payload and Miscellaneous	0.994
Endurosat Onboard Computer with RTC	0.232
Dragonfly Aerospace Gecko Imager (Camera/Lense)	0.614
MISC	0.148
Total	2.816
Volume Margin	6.15 %

Mass Budget: 4542.2 grams

Component	Total Mass (g)
Power System	1074
Pumpkin Space 3U SolarPanel (3) 8.4W/ea	234
Pumpkin Space 1U SolarPanel (2) 2.4W/ea	70
Pumpkin Space Lithium Battery Module (72Wh/8 cells)	560
Pumpkin Space EPSM 1	210
Propulsion/Structure	1676.2
PM200 Propulsion Module	1100
Propulsion Mass (Nitrous Oxide/Propene)	300
Pumpkin Space 3U CubeSat (Skeleton, Rod/Spacer Kit)	276.2
Communication Systems	310
Endurosat S-Band Transceiver	250
EXA SSA02 (High Gain) 34dB S-Band Antenna	60
Navigation and Control Systems	874
Endurosat GNSS Patch Antenna (GPS L1, Active)	79
GPSRM1 GNSS NovAtel Receiver (GPS L1)	500
STIM318 IMU	55
CubeSpace Reaction Wheel (4)	240
Payload and Miscellaneous	608
Endurosat Onboard Computer with RTC	58
Dragonfly Aerospace Gecko Imager (Camera/Lense)	500
MISC	50
Total	4542.2

Cost Budget: <u>\$145,373.00</u>

Component	Cost
Power System	\$38,250.00
Pumpkin Space 3U SolarPanel (3) 8.4W/ea	\$16,950.00
Pumpkin Space 1U SolarPanel (2) 2.4W/ea	\$5,000.00
Pumpkin Space Lithium Battery Module (72Wh/8 cells)	\$10,500.00
Pumpkin Space EPSM 1	\$5,800.00
Propulsion/Structure	\$27,955.00
PM200 Propulsion Module	¢25 000 00
Propulsion Mass (Nitrous Oxide/Propene)	\$25,000.00
Pumpkin Space 3U CubeSat	\$2,955.00
Communication Systems	\$17,173.00
Endurosat S-Band Transceiver	\$14,800.00
EXA SSA02 (High Gain) 34dB S-Band Antenna	\$2,373.00
Navigation and Control Systems	\$44,930.00
Endurosat GNSS Patch Antenna	\$4,700.00
GPSRM1 GNSS NovAtel Receiver (GPS/GLONASS)	\$12,194.00
STIM318 IMU	\$7,356.00
CubeSpace Reaction Wheel (4)	\$20,680.00
Payload and Miscellaneous	\$17,065.00
Endurosat Onboard Computer with RTC	\$11,700.00
Dragonfly Aerospace Gecko Imager (Camera/Lense)	\$3,865.00
MISC	\$1,500.00
Total	\$145,373.00

Power Budget: +4.14W

Component	Power (W)
Power System †	+30
Pumpkin Space 3U SolarPanel (3) 8.4W/ea	25.2
Pumpkin Space 1U SolarPanel (2) 2.4W/ea	4.8
Pumpkin Space Lithium Battery Module (72Wh/8 cells) ‡	N/A
Propulsion/Structure	-6
Pumpkin Space EPSM 1	-3
PM200 Propulsion Module	-6
Communication Systems	-4.5
Endurosat S-Band Transceiver	-2
EXA SSA02 (High Gain) 34dB S-Band Antenna	-2.5
Navigation and Control Systems	-5.46
Endurosat GNSS Patch Antenna	-2.5
GPSRM1 GNSS NovAtel Receiver (GPS/GLONASS)	-1.2
STIM318 IMU	-1.5
CubeSpace Reaction Wheel (4)	-0.26
Payload and Miscellaneous	-6.9
Endurosat Onboard Computer with RTC	-0.9
Dragonfly Aerospace Gecko Imager (Camera/Lense)	-6
Total	+4.14W
Joules/Second	25.86
BTU/h at 30W	102.36

Note†: Primary bus voltage: 16V

Note‡: Max of 31.03Wh through eclipse hour required.

Total Cost Budget (USD): \$245,472

Type of Cost	Total Budget in USD	
CubeSat Budget	\$145,373	
Wages	\$23,920	
Ground Station	\$36,400	
Testing	\$39,679	
Total Budget	\$245,472	

Labor Execution

• Recommend any differentials in funding spent towards equipment failures, ground station unknowns, extra propellant, or testing station overrun.

NASA General Environmental Verification Standard (GEVS)

The 3U GEOSSAC shall be tested to the following GEVS standards:

Structural Loads Qualification (§2.4.1)

- Coupled Load Analysis
- Modal Survey
- Design Strength Qualification
- Structural Reliability
- All acceptance requirements

Vibration and Acoustics (§2.4.2)

- Fatigue Life Analysis
- Payload Acoustic Test
- Payload Random Vibration Test
- Subsystem/Instrument Vibroacoustic Tests
- Component/Unit Vibroacoustic Tests
- All acceptance requirements
- Retest of Reflight Hardware
- Retest of Reworked Hardware

Containment Control (§2.8)

- Contamination
- Coatings Engineering
- Planetary Protection

End to End Testing (§2.9)

- Compatibility Tests
- Mission Simulation

Thank you!

PI: Dr. Thomas Alan Lovell

Professor, ME597 Small Spacecraft Design Dept. of Electrical and Computer Engineering University of New Mexico lovelta@unm.edu

Alex Hostick

Computer Engineering – Internet of Things Dept. of Electrical and Computer Engineering University of New Mexico ahostick@unm.edu

Design Specifications

- ✓ Spacecraft Design Specification, Rev. 14, The Spacecraft Program, Cal Poly SLO: https://www.spacecraft.org/spacecraftinfo
- ✓ NanoRacks Spacecraft Deployer (NRCSD) Interface Definition Document (IDD), Revision Basic: https://nanoracks.com/wp-content/uploads/Nanoracks-Spacecraft-Deployer-NRCSD-IDD.pdf
- ✓ NASA CubeSat Launch Initiative (CSLI): https://www.nasa.gov/content/cubesat-launch-initiative-introduction
- ✓ NASA Systems Engineering Handbook: https://ntrs.nasa.gov/citations/20170001761
- ✓ CubeSat 101: Basic Concepts and Processes for the First-time CubeSat Developers: https://www.nasa.gov/sites/default/files/atoms/files/nasa csli cubesat 101 508.pdf
- ✓ Rules for the Design, Development, Verification, and Operation of Flight Systems: https://standards.nasa.gov/standard/gsfc/gsfc-std-1000
- ✓ Spacecraft 101: Basic Concepts and Processes for the First-time Spacecraft Developers: https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_spacecraft_101_508.pdf
- ✓ Rules for the Design, Development, Verification, and Operation of Flight Systems, GSFC-STD-1000, Revision G: https://standards.nasa.gov/standard/gsfc/gsfc-std-1000
- ✓ NASA General Environmental Verification Standard (GEVS): https://standards.nasa.gov/standard/gsfc/gsfc-std-7000

References

[1] van 't Klooster, T. (2018). Development of a LaB6 cathode for Micro Electric Thrusters. Electric Micro Propulsion. https://doi.org/10.13140/RG.2.2.14373.32481

[2] Cakaj, S., Kamo, B., Lala, A., Agastra, E., & Shinko, I. (2015). The velocity increment for Hohmann coplanar transfer from different low Earth orbits. Frontiers in Aerospace Engineering, 4(1), 35–41. https://doi.org/10.12783/fae.2015.0401.04

