Contents

1	Cou	ntable sets 5						
	1.1	Notation						
	1.2	Def 5						
	1.3	Cantor Theorem						
2	Nun	nber Series 7						
	2.1	Def						
	2.2	Riemann Theorem						
3	Kurzneil-Henstock integral 9							
	3.1	Def						
	3.2	Nested cell theorem						
	3.3	Exercises						
	3.4	Def						
	3.5	Exercises						
	3.6	Lemma						
	3.7	Def						
	3.8	Lemma						
	3.9	Def						
	3.10	Def						
	3.11	Def						
	3.12	Lemmas						
	3.13	Def						
	3.14	Def						
	3.15	Def						
	3.16	Prop						
	3.17	Cousin Theorem						
	3.18	Notation						
	3.19	Prop of Riemann Sum						
	3.20	Prop of KH-integral						
	3.21	Prop: Constant functions						
	3.22	Theorem						
	3.23	Cauchy criterion						
	3 24	Evample: Dirichlet function 15						

2 CONTENTS

	3.25	Theorem	15					
	3.26	Theorem: subordinate P-division	15					
	3.27	Finite-additivity	16					
			17					
	3.29	Def: step function	17					
	3.30	Theorem	17					
	3.31	Theorem	17					
	3.32	Def:regulated function	17					
	3.33	Corollary	17					
			17					
4	Fundamental theorem of calculus 19							
	4.1	Theorem	19					
		4.1.1 Lemma	19					
5	Cha	nge of variables	21					
•	5.1	_	21					
	0.1	Theorem. change of variable						
6	Inte		23					
	6.1		23					
	6.2		24					
	6.3	v	25					
	6.4	Prop	25					
	6.5	Def: KH-integral	25					
7	Monotone Converges & Lebesgue's Measure 27							
	7.1	Def: AKH-integrable	27					
	7.2	Prop	27					
	7.3	Prop	28					
	7.4	Theorem	28					
	7.5	Prop(comparison test)	29					
	7.6	Prop	30					
	7.7	Def	30					
	7.8	Monotone convergence theorem	30					
8	Lebesgue's measure 33							
	8.1		33					
	8.2	Prop	33					
	8.3	Prop	34					
	8.4	Def:measurable	34					
	8.5	Prop	35					
	8.6		35					
	8.7		35					

9	9 Vitali sets					
	9.1	Def	37			
	9.2	Prop	37			
	9.3	Def: Vitali set	37			
	9.4	Prop	37			
	9.5	Theorem	37			
	9.6	Lemma	38			
	9.7	Theorem	38			
	9.8	Theorem	39			
10 Measurable sharp						
	10.1	Def:refinement	41			
	10.2	Prop	41			
	10.3	Def: dyodic cell	41			
		Prop	42			

4 CONTENTS

Countable sets

1.1 Notation

$$\mathbb{N} = \mathbb{N} \setminus \{0\}$$

1.2 Def

S is infinitely countable if $\exists S \to \mathbb{N}$ bijection, countable if S is finite or inf-countable

Remark

• for sequence $\langle S_n \rangle_{n \in \mathbb{N}}$

$$\mathbb{N} \to S$$

$$n \mapsto S_n$$

- if $S \neq \emptyset$ then TFAE:
 - S is countable
 - \exists surjection $\mathbb{N} \to S$
 - \exists injection $S \to \mathbb{N}$
- \mathbb{Q} is inf-countable
- if $m \in \mathbb{N}_0 S_1, \dots, S_m$ are countable. Then $\prod_{j=1}^m S_j$ is countable.

1.3 Cantor Theorem

 \mathbb{N} is not equinumberous with $\wp(\mathbb{N})$

Proof

$$\wp(\mathbb{N}) \cong \{0,1\}^{\mathbb{N}} \text{ if } A \in \wp(\mathbb{N}) \text{ then}$$

$$\begin{array}{ccc} \mathbb{1}_A : \mathbb{N} & \rightarrow \{0,1\} \\ \\ n & \mapsto \begin{cases} 1 \text{ if } n \in A \\ 0 \text{ if } n \not \in A \end{cases} \end{array}$$

the identify of A:

$$\wp(\mathbb{N}) \to \{0,1\}^{\mathbb{N}}$$

$$A \mapsto \mathbb{1}_A$$

is a bijection

$$\{0,1\}^{\mathbb{N}} = \mathcal{F}(\mathbb{N};\{0,1\})$$

Remark

A,B be sets. $\mathcal{F}(A;B)$ is the set of all functions from A to B.

Proof

Assume that \exists bijection

$$\mathbb{N} \to \wp(\mathbb{N})$$
$$n \mapsto f_n$$

Define

$$f: \mathbb{N} \longrightarrow \{0, 1\}$$

$$n \mapsto \begin{cases} 0 \text{ if } f_n(n) = 1\\ 1 \text{ if } f_n(n) = 0 \end{cases}$$

 $f \in \mathcal{F}(\mathbb{N}; \{0,1\})$ thus $\exists m \in \mathbb{N} \text{ s.t. } f = f_m$. Then $f_m(m)$ broken.

Number Series

2.1 Def

 $\sum_{n=0}^{+\infty} a_n \text{ is commutatively convergent (CC) if for each permutation } \phi \text{ of } \mathbb{N}$ the series $\sum_{n=0}^{+\infty} a_{\phi(n)} \text{ converges.}$

Remark

A.C. is absolutely convergent.

C. is **convergent**. Let $\varphi : \mathbb{N} \to \mathbb{N}$ be a bijection.

• if
$$\sum_{n=0}^{+\infty} a_n$$
 is A.C. then $\sum_{n=0}^{+\infty} a_n$ C.

•
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n}$$
 C. but not A.C. or C.C.

2.2 Riemann Theorem

Let $\sum_{n=0}^{+\infty} a_n$ be a convergent series in \mathbb{R} TFAE:

•
$$\sum_{n=0}^{+\infty} a_n$$
 is not A.C.

• $\forall s \in \mathbb{R} \exists \text{ permutation of } \mathbb{N} \text{ s.t.}$

$$\sum_{n=0}^{+\infty} a_{\phi(n)} = s$$

• $\forall s \in \mathbb{R} \cup \{-\infty, +\infty\}$ $\exists permutation of <math>\mathbb{N}$ s.t.

$$\sum_{n=0}^{+\infty} a_{\phi(n)} = s$$

Kurzneil-Henstock integral

3.1 Def

Cell is a non-degenerated interval

3.2 Nested cell theorem

If $\langle I_n \rangle_{n \in \mathbb{N}}$ is a decreasing sequence $(I_{n+1} \subseteq I_n)$ of compact cells s.t.

$$\lim_{N \to +\infty} diam I_n = 0$$

then $\exists x \in \mathbb{R}$

$$\bigcap_{n\in\mathbb{N}}I_n=\{x\}$$

3.3 Exercises

Every cell is uncountable.

3.4 Def

Two cells are ${f non-overlapping}$ if their intersection either empty or a singleton.

3.5 Exercises

If I_1, I_2, I_3 are pairwise non-overlapping, then

$$I_1 \cap I_2 \cup I_3 = \emptyset$$

3.6 Lemma

If I is a compact cell and $N \in \mathbb{N}_0$ are pairwise non-overlapping cells s.t. $\bigcup_{n=1}^{N} I_n = I$ then renumbering them if necessary, we may get:

$$\min I = \min I_1$$

$$\max I_n = \min I_{n+1}$$

$$\max I_N = \max I$$

3.7 Def

A partial division Δ of I is a finite set consisting of non-overlapping compact sub-cells of I. If

$$\bigcup \Delta = I$$

it's called a **division** of I

3.8 Lemma

If Δ is a partial division of I, then there exists a partial Δ' of I s.t. $\Delta \cap \Delta'$ is a division of I

3.9 Def

A gauge on I is a function

$$\delta:I\to\mathbb{R}$$

such that $\forall x \in I \ \delta(x) > 0$

Remark

If $\delta_1, \dots, \delta_N$ are gauges on I then

$$\delta(x) = \min\{\delta_1(x), \cdots, \delta_N(x)\}\$$

is also a gauge.

3.10 Def

A partial P-division of a compact cell I, is a finite Π of pairs (J, x) s.t.

- $J \subseteq I$
- J is a compact cell

3.11. DEF 11

- $x \in J$
- $\forall (J_1, x), (J_2, x_2) \in \Pi$ if $J_1 \neq J_2$ then J_1, J_2 are non-overlapping x is calltag of the pair.

3.11 Def

Given a partial P-division Π of I define

$$body(\Pi) = \bigcup \{J : (J, x) \in \Pi\}$$

A **P-division** Π of I is a partial P-division s.t. $body(\Pi) = I$

3.12 Lemmas

- If Π_1, \dots, Π_N are partial P-divisions of I s.t. for each $n, m \in \{1, \dots, N\}, n \neq m \ body \Pi_n$ and $body \Pi_m$ are either disjoint or their intersection is a singleton, then $\bigcup_{n=1}^N \Pi_n$ is a partial P-division of I.
- If Π is a partial P-division of I and $\xi \in I$ then there're at most 2 $(J,x) \in \Pi$ s.t. $x = \xi$

3.13 Def

Let δ be a gauge on I and II a (partial) P-division of I, we say that II is δ -finite if

$$\forall (J, x) \in \Pi \quad J \subseteq [x - \delta(x), x + \delta(x)]$$

3.14 Def

If $f:I\to\mathbb{R}$ and Π is a (partial) P-division then the **Riemann sum** is defined as

$$S(\Pi, f) := \sum_{(J,x) \in \Pi} f(x) |J|$$

3.15 Def

Let $f:I\to\mathbb{R}$ f is **KH-integrable** on I if $\exists r\in\mathbb{R}, \forall \epsilon>0\exists$ gauge δ on I $\forall \delta$ -finite P-division Π of I

$$|S(\Pi, f) - r| < \epsilon$$

3.16 Prop

r is unique

Proof

Assume that r_1 and r_2 . Fix $\epsilon > 0$. For i = 1, 2, there's a gauge δ_i on I s.t. if Π is a δ_i -finite P-division of I then

$$|S(\Pi, f) - r_i| < \epsilon$$

$$|r_1 - r_2| = |r_1 - S(\Pi, f) + S(\Pi, f) - r_2|$$

 $\leq |r_1 - S(\Pi, f)| + |S(\Pi, f) - r_2|$
 $< 2\epsilon$

Let $\delta(x) = \min\{\delta_1(x), \delta_2(x)\}$ then δ is a gauge on I. If Π is δ -finite then it's δ_1 -finite and δ_2 -finite.

3.17 Cousin Theorem

I be a compact cell and δ a gauge on I. Then there exists a δ -finite then P-division of I.

Proof

assume there's no. Then divide I into I_l, I_r by middle. Then either I_l, I_r has no δ -finite division. Then we get a decreasing sequence $(I_n)_{n \in \mathbb{N}}$ by keeping dividing. According to nested theorem, get their intersection a singleton x. Notice that x is a point of I, for $N \in \mathbb{N}$ big enough

$$diam I_N = 2^{-N} \cdot diam I < \delta(x)$$

then $\Pi = \{(I_N, x)\}$ is a δ -finite P-division of I_N .

3.18 Notation

$$r=\int_I f=\int_I f(x)\mathrm{d}x$$
 if $I=[a,b]$
$$r=\int_a^b f=\int_a^b f(x)\mathrm{d}x$$

3.19 Prop of Riemann Sum

linearity $\forall \Pi(\text{partial}) \text{P-division}, \forall f_1, f_2 : I \to \mathbb{R}, \ \forall \alpha \in \mathbb{R}$

$$S(\Pi, \alpha f_1 + f_2) = \alpha S(\Pi, f_1) + S(\Pi, f_2)$$

monotonicity

$$f_1 \leq f_2 \Rightarrow S(\Pi, f_1) \leq S(\Pi, f_2)$$

additivity if Π_1, Π_2 are partial P-division of I and $(body\Pi_1) \cap (body\Pi_2)$ is either empty or a finite set, then $\forall f$

$$S(\Pi_1 \cup \Pi_2) = S(\Pi_1, f) + S(\Pi_2, f)$$

3.20 Prop of KH-integral

I a compact cell

3.21 Prop: Constant functions

If $f: I \to \mathbb{R}$ is constant then $f \in KH(I)$ and $\int_I f = y \cdot |I|$. (y is the constant value of f)

Proof

 $\forall \Pi$ P-division of I

$$S(\Pi, f) = \sum_{(J,x) \in \Pi} f(x) |J| = y \sum_{(J,x) \in \Pi} |J| = y |I|$$

3.22 Theorem

KH(I) is a vector space and $KH(I) \to \mathbb{R}, f \mapsto \int_I f$ is linear and monotone.

Proof

 $0, \mathbb{1}_I \in KH(I)$

If $f_1, f_2 \in KH(I)$ and $\alpha \in \mathbb{R}$, we want to show that $\alpha f_1 + f_2 \in KH(I)$ and

$$\int_{I} (\alpha f_1 + f_2) = \alpha \int_{I} f_1 + \int_{I} f_2$$

Let $\epsilon > 0$, δ_1 be a gauge on I, $\frac{\epsilon}{2(|\alpha|+1)}$ -adapted to f_1 and $\delta_2 \frac{\epsilon}{2}$ -adapted. Def

$$\delta = \min\{\delta_1, \delta_2\}$$

Let Π be a δ -finite P-division of I

$$\left| S(\Pi, \alpha S(\Pi, f_1) + S(\Pi, f_2)) - (\alpha \int_I f_1 + \int_I f_2) \right| = \left| \alpha S(\Pi, f_1) + S(\Pi, f_2) - (\alpha \int_I f_1 + \int_I f_2) \right|$$

$$\leq |\alpha| \left| S(\Pi, f_1) - \int_I f_1 \right| + \left| S(\Pi, f_2) - \int_I f_2 \right|$$

$$\leq |\alpha| \frac{\epsilon}{2(|\alpha| + 1)} + \frac{\epsilon}{2} \leq \epsilon$$

3.23 Cauchy criterion

Let $f: I \to \mathbb{R}$, TFAE:

- $f \in KH(I)$
- $\forall \epsilon > 0$ $\exists \text{gauge } \delta$ on I s.t. $\forall \Pi, \Pi$ is δ -finite P-division of I

$$\left| S(\Pi, f) - \int_I f \right| < \epsilon$$

Proof

 $1 \Rightarrow 2$

trivial

 $2 \Rightarrow 1$

For each $n \in \mathbb{N}_0$, we apply hypothesis (2) with $\epsilon = \frac{1}{n}$ and we obtain a gauge δ_n , define

$$\hat{\delta_n} = \min_{i=1}^n \delta_i$$

choose Π_n a $\hat{\delta_n}$ -finite

Let $r_n := S(\Pi_n, f)$. We show that $\langle r_n \rangle_{n \in \mathbb{N}_0}$ is a Cauchy sequence. Let 0

$$|r_p - r_q| = |S(\Pi_p, f) - S(\Pi_q, f)| < \frac{1}{p}$$

Name $r:=\lim_{n\to +\infty} r_n$, now we show that f is KH-integrable with $\int_I f=r$. Let $\epsilon>0$, choose $n_0\in\mathbb{N}_0$ large enough for $\frac{1}{n_0}<\epsilon$. We claim that $\hat{\delta_n}$ is a gauge with integrability of f. $\forall\Pi\hat{\delta_n}$ -finite, for each $n\geq n_0$, we have:

$$|S(\Pi, f) - r| \le |S(\Pi, f) - S(\Pi_n, f)| + |S(\Pi_n, f) - r|$$

$$\le \frac{1}{n_0} + |r_n - r|$$

$$\le \epsilon + \epsilon$$

3.24 Example: Dirichlet function

$$f: \mathbb{R} \to \mathbb{R} : \mathbb{1}_{\mathbb{O}}$$

Let I be a compact cell, we want to show

$$f \mid_{I} \in KH(I)$$
 $\int_{I} f \mid_{i} = 0$

We deal with $S(\Pi, \mathbb{1}_{\mathbb{Q}}) = \sum_{(J,x) \in \Pi, x \in \mathbb{Q}} |J|$. For \mathbb{Q} countable:

$$\exists q: \mathbb{N} \stackrel{q}{\cong} I \cap \mathbb{Q}$$

Let $\epsilon > 0$, we define δ on $I \cap \mathbb{Q}$ as follows:

- If $x \in I \cap \mathbb{Q}$, then x = q(n) for some n and let $\delta(x) = \frac{\epsilon}{2^n}$
- If $x \in I \setminus \mathbb{Q}$, then define $\delta(x) = 1$

Let Π be δ -finite,

$$\begin{split} S(\Pi, \mathbb{1}_{\mathbb{Q}}) &= \sum_{(J, x) \in \Pi, x \in \mathbb{Q}} |J| \\ &\leq \sum_{n=0}^{\infty} \sum_{(J, x) \in \Pi, x \in \mathbb{Q}} |J| \\ &\leq \sum_{n=0}^{\infty} 2 \cdot 2 \cdot \frac{\epsilon}{2^n} = 8\epsilon \end{split}$$

Exercises

If $\mathbb{1}_{\mathbb{Q}\cap I}$ Riemann integrable?

3.25 Theorem

Let $f\in KH(I), g:I\to \mathbb{R}$ s.t. $\{f\neq g\}$ is countable. Then $g\in KH(I)$ and $\int_I g=\int_I f$

3.26 Theorem: subordinate P-division

Let I be a compact cell and Δ be a division of I. There exists a gauge δ on I satisfying the following properties:

 $\forall \delta$ -finite P-division Π of I,

• $\forall K \in \Delta$, $\exists P$ -division Π_K of K

• There exists a P-division $\tilde{\Pi}$ of I s.t.

A
$$\tilde{\Pi}=\bigcup_{K\in\Delta}\Pi_K$$

B $\forall f:I\to\mathbb{R}$
$$S(\Pi,f)=S(\tilde{\Pi},f)=\sum_{K\in\Delta}S(\Pi_K,f_K)$$

C For every gauge η on I, if Π is η -finite, then each Π_K is $\eta\mid_K$ -finite, $K\in\Delta$

Proof

$$\delta(x) = \begin{cases} dist(x, F) & \text{if } x \notin F \\ dist(x, F \setminus \{x\}) & \text{if } x \notin F \end{cases}$$

3.27 Finite-additivity

Let $\{I_1, \dots, I_N\}$ be a division of a compact cell I and $f: I \to \mathbb{R}$ TFAE

- $f \in KH(I)$
- $f \mid_{I_n} \in KH(I_n), \forall n \in \{1, \dots, N\}$, In this case,

$$\int_{I} f = \sum_{I_{-}} f \mid_{I_{n}}$$

Proof

 $1 \Rightarrow 2$

Let $J \subseteq I$ be a compact cell and assume

$$I = J_1 \sqcup J \sqcup J_2 \quad (J_1 < J < J_2)$$

We want to show that $f|_{J} \in KH(J)$. Apply Cauchy criterion for this. Let $\epsilon > 0$ We need to find a gauge δ_0 on J s.t. Π_0 is $delta_0$ -finite P-division, then

$$|S(\Pi_0, f \mid_J) - S(\Pi_0, f \mid_J)| < \epsilon$$

For $\epsilon > 0$, $\exists \delta$ gauge on I ϵ -adapted to f. We define:

- $\delta_1 = \delta \mid_{J_1}$ then Π_1 is δ_1 -finite
- $\delta_0 = \delta \mid_J$ then Π_0 is δ_0 -finite
- $\delta_2 = \delta \mid_{J_2}$ then Π_2 is δ_2 -finite

so

$$S(\Pi, f) = S(\Pi_1, f \mid_{J_1}) + S(\Pi_0, f \mid_{J}) + S(\Pi_2, f \mid_{J_2})$$

3.28. THEOREM 17

 $2 \Rightarrow 1$

trivial

3.28 Theorem

If $f \in KH(I)$ and $J \subseteq I$ is a compact cell, then $f \mid_{J} \in KH(I)$ and

$$\int_{J} f \mid_{J} = \int_{I} \mathbb{1}_{J} \cdot f$$

3.29 Def: step function

 $f:I\to\mathbb{R}$ is a **step function** if there exists a division Δ of I s.t. $\forall J\in\Delta,f\mid_{\mathring{J}}$ is constant.

3.30 Theorem

Every step function on I is JH-integrable.

3.31 Theorem

If (f_n) a sequence in KH(I) that converges uniformly on I to $f: I \to \mathbb{R}$, then $f \in KH(I)$

3.32 Def:regulated function

A **regulated function** $f:I\to\mathbb{R}$ is a function which is a limit of a sequence of step functions.

3.33 Corollary

Every regulated function on I is KH-integrable.

3.34 Prop

- Every continuous function $f:I\to\mathbb{R}$ is regulated
- Every monotone function $f:I\to\mathbb{R}$ is regulated.

Fundamental theorem of calculus

4.1 Theorem

If $F: I \to \mathbb{R}$ is diff. (differentiable) everywhere, then $F' \in KH(I)$ and

$$\int_{I} F' = F(\max I) - F(\min I)$$

4.1.1 Lemma

If f is diff. at $x \in I$ then $\forall \epsilon \, \exists \delta > 0$ s.t. $\forall y \leq x \leq z, \, y, z \in I, \, \max\{|y-x|\,, |x-z|\} < \delta$, then

$$|F(z) - F(y) - F'(x)(z - y)| < \epsilon |z - y|$$

Proof of lemma

$$\begin{aligned} &|F(z)-F(x)+F(x)-F(y)-F'(x)(z-x+x-y)|\\ \leq &\epsilon\,|z-x|+\epsilon\,|y-x|\\ =&\epsilon\,|y-z| \end{aligned}$$

Proof

Let $\epsilon > 0$, $\forall x \in I$, there exists $\delta(x) > 0$ s.t. \forall compact cell $J \subseteq I$, with $x \in J \subseteq [x - \delta(x), x + \delta(x)]$

$$|F(\max J) - F(\min J) - F'(x)|J|| < \epsilon |J|$$

If Π is a δ -finite P-division of I. We want to show

$$|S(\Pi, F') - F(\max I) + F(\min I)| < \epsilon |I|$$

Basically

$$S(\Pi, F') = \sum_{(J,x) \in \Pi} F'(x) |J|$$

$$F(\max I) - F(\min I) = \sum_{(J,x) \in \Pi} (F(\max J) - F(\min J))$$

$$|S(\Pi, F') - F(\max I) + F(\min I)|$$

$$\leq \sum_{(J,x) \in \Pi} |F'(x)|J| - F(\max J) + F(\min J)|$$

$$\leq \epsilon |I|$$

Change of variables

5.1 Theorem: change of variable

$$I \xrightarrow{\phi} \tilde{I} \xrightarrow{f} \mathbb{R}$$

I and \tilde{I} be compact cells, $\phi: I \leftrightarrow \tilde{I}$ be a (monotone) bijection which is diff. everywhere on I. If $f \in KH(\tilde{I})$ then $(f \circ \phi) |\phi'| \in KH(I)$ and

$$\int_{I} (f \circ \phi) |\phi'| = \int_{\tilde{I}} f |f'|$$

Proof

Let $\epsilon > 0$, exists a gauge $\tilde{\delta}$ on \tilde{I} s.t. if $\tilde{\Pi}$ is a $\tilde{\delta}$ -finite P-division, then

$$\left| S(\tilde{\Pi}, f) - \int_{\tilde{I}} f |f| \right| < \epsilon$$

If Π is any P-division, then we can associate with if $\tilde{\Pi} = \{(\phi(J), \phi(x)) \mid (J, x) \in \Pi\}$ which is a P-division of \tilde{I}

Since ϕ is uniformly continuous on I, there exists $\eta:]0, +\infty[\to]0, +\infty[$ s.t. $\forall \delta>0, \forall x,y\in I$ have

$$|x - y| \le \eta(\delta) \implies |\phi(x) - \phi(y)| \le \delta$$

Only a different interpretation of uniformly continuous. We define a gauge δ_1 on I:

$$\delta_1(x) = \eta \circ \tilde{\delta} \circ \phi(x)$$

Remark

If Π is a δ_1 -finite P-division of I then $\tilde{\Pi}$ is a $\tilde{\delta}$ -finite P-division of \tilde{I}

$$J = [y, z] \subseteq [x - \delta_1(x), x + \delta_1(x)]$$

$$\max\{|y-x|, |x-z|\} \le \delta_1(x) = \eta \circ \tilde{\delta} \circ \phi(x)$$
$$\max\{|\phi(y) - \phi(x)|, |\phi(x) - \phi(z)|\} \le \tilde{\delta} \circ \phi(x)$$

Given $x\in I$, we define $\epsilon(x)=\frac{\epsilon}{1+|f\circ\phi(x)|}$. By lemma 4.1.1, there exists a $\delta_2(x)>0$ s.t. if $J=[y,z]\subseteq [x-\delta_2(x),x+\delta_2(x)]\subseteq I$ contains x and then

$$||\phi(J)| - |\phi'(x)| \cdot |J|| = ||\phi(y) - \phi(z)| - |\phi'(x)| \cdot |z - y||$$

$$= |\phi(z) - \phi(y) - \phi'(x)(z - y)|$$

$$< \epsilon(x) |z - y| = \epsilon(x) |J|$$

Define a gauge δ on I by $\delta = \min\{\delta_1, \delta_2\}$. If Π is a δ -finite P-division of I then

$$\left| \int_{\tilde{I}} f - S(\Pi, (f \circ \phi) \cdot |\phi'|) \right| \leq \left| \int_{\tilde{I}} f - S(\tilde{\Pi}, f) \right| + \left| S(\tilde{\Pi}, f) - S(\Pi, (f \circ \phi) \cdot |\phi'|) \right|$$

$$\leq \sum_{(J, x) \in \Pi} |f \circ \phi(x)| \cdot ||\phi(J)| - |\phi'(x)| \cdot |J||$$

$$\leq \sum_{(J, x) \in \Pi} |f \circ \phi(x)| \cdot \epsilon(x) \cdot |J|$$

$$\leq \epsilon |I|$$

Integral on the real line

6.1 Saks-Henstock's theorem

Let I be a compact cell and $f \in KH(I)$ and $\epsilon > 0$ and δ a gauge on I which is ϵ -adapted to f. If Π is a partial δ -finite P-division of I then:

•

$$\left| \sum_{(J,x) \in \Pi} \left(\int_{J} f \mid_{J} - f(x) \mid J \mid \right) \right| \le \epsilon$$

•

$$\sum_{(J,x)\in\Pi} \left| \int_J f \mid_J -f(x) \mid J \mid \right|$$

Proof

 $1 \Rightarrow 2$

Given Π define

$$\Pi^{+} = \Pi \cap \left\{ (J, x) \mid \int_{J} f \mid_{J} -f(x) \mid J \mid \ge 0 \right\}$$

$$\Pi^{-} = \Pi \cap \left\{ (J, x) \mid \int_{J} f \mid_{J} -f(x) \mid J \mid < 0 \right\}$$

let $\pi = \Pi^+ \sqcup \Pi^-$, then

$$\sum_{(J,x)\in\Pi^{+}}\left|\int_{J}f\mid_{J}-f(x)\mid J\mid\right|+\left|\sum_{(J,x)\in\Pi^{+}}\int_{J}f\mid_{J}-f(x)\mid J\mid\right|\leq\epsilon$$

the same for Π^-

prove (1)

 $\Delta_{\Pi} = \{J \mid (J, x) \in \Pi\}$ is a partial division of I. There exists another partial division Δ' of I s.t. $\Delta \cup \Delta_{\Pi}$ is a division of I.

Let $\eta > 0$, $\forall K \in \Delta'$, there exists a gauge δ_K on K, η -adapted to $f \mid_K \in KH(K)$. Define $\tilde{\delta}_K(x) = \min\{\delta_K(x), \delta(x)\}, x \in K$, a gauge on K. Let Π_K be a $\delta \delta_K$ -finite P-division of K. Then

$$\left| \int_K -S(\Pi_K, f) \right| < \eta$$

Define $\tilde{\Pi} = \Pi \cup \left(\bigcup_{K \in \Delta'} \Pi_K\right)$ is a P-division of I and is δ -finite. Since δ is a ϵ -adpated to f and $\tilde{\Pi}$ is δ -finite on I, we have:

$$\left| \int_{I} f - S(\tilde{\Pi}, f) \right| < \epsilon$$

$$S(\tilde{\Pi}, f) = \sum_{(J, x) \in \Pi} f(x) |J| + \sum_{K \in \Delta'} S(\Pi_{K}, f)$$

$$\int_{I} f = \sum_{(J, x) \in \Pi} \int_{I} f |J| + \sum_{K} f |K|$$

then

$$\left| \sum_{(J,x)\in\Pi} \int_{J} f \mid_{J} - f(x) \mid J \mid \right| \leq \left| \int_{I} f - S(\tilde{\Pi}, f) \right| + \left| \sum_{K\in\Delta'} \left(\int_{K} f - S(\Pi_{K}, f) \right) \right|$$
$$< \epsilon + \sum_{K\in\Delta'} \left| \int_{K} f - S(\Pi_{K}, f) \right|$$
$$\leq \epsilon + \eta \cdot (card\Delta')$$

6.2 Hake Theorem

Let I be a compact cell, $f: I \to \mathbb{R}$ and for $0 < \eta < |I|$, put

$$I_{\eta} = [\eta + \min I, \max I]$$

TFAE

- $f \in KH(I)$
- $\forall \eta$,

$$f\mid_{I_{\eta}}\in KH(I_{\eta})$$
 and $\lim_{\eta\to 0}\int_{I_{\eta}}f\mid_{I_{\eta}}$ exists

In this case,

$$\int_I f = \lim_{eta \to 0} \int_{I_n} f \mid_{I_{\eta}}$$

6.3 Corollary

If $f \in KH(I)$, then the **indefinite integral** of f

$$\begin{split} F: &I &\to \mathbb{R} \\ &x &\mapsto \begin{cases} \int_{[\min I, x]} f & & \text{if } x > \min I \\ 0 & & \text{if } x = \min I \end{cases} \end{split}$$

is continuous by Hake Theorem6.2

$$\int f := F$$

6.4 Prop

TFAE

- $f \in KH(I)$
- \exists continuous function $F:I\to\mathbb{R}$ s.t. $\forall \epsilon>0$ \exists a gauge δ on I, \forall partial δ finite P-division Π of I:

$$\sum_{(J,x)\in\Pi} |f(x)|J| - F(\max J) + F(\min J)| < \epsilon$$

6.5 Def: KH-integral

A function $f: \mathbb{R} \to \mathbb{R}$ is KH-integrable if:

 $\exists F: \mathbb{R} \to \mathbb{R}$ and $\lim_{x \to -\infty} F(x)$ and $\lim_{x \to +\infty} F(x)$ exists. $\forall \epsilon > 0 \ \exists$ a gauge δ on \mathbb{R} s.t. $\forall \Pi$ partial δ -finite P-division :

$$\sum_{(J,x)\in\Pi} |f(x)|J| - F(\max J) + F(\min J)| < \epsilon$$

and define

$$\int_{\mathbb{R}} f := \lim_{x \to +\infty} F(x) - \lim_{x \to -\infty} F(x)$$

Monotone Converges & Lebesgue's Measure

I be a **closed** cell.

7.1 Def: AKH-integrable

$$AKH(I) = KH(I) \cap \{f \mid |f| \in KH(I)\}$$

7.2 Prop

TFAE

• $f \in AKH(I)$

 $f^+ := \max\{f, 0\} \in KH(I) \quad f^- \min\{f, 0\} \in KH(I)$

Proof

 $1 \Rightarrow 2$

$$f^+ = \frac{|f| + f}{2}$$
 $f^- = \frac{|f| - f}{2}$

 $2 \Rightarrow 1$

$$f = f^+ - f^- \quad |f| = f^+ + f^-$$

7.3 Prop

Let $f \in AKH(I)$, then

$$1 \left| \int_{I} f \right| \leq \int_{I} |f|$$

 $2 \ \forall J \subseteq I$, closed cell,

$$f \mid_{J} \in AKH(J)$$

7.4 Theorem

Let $f \in KH(I)$, then

$$f \in AKH(I)$$

iff

$$\sup \left\{ \left. \sum_{K \in \Delta} \left| \int_K f \mid_K \right| \right| \Delta \text{ is a partial division of } I \right\} < +\infty$$

Proof

 \Rightarrow

Trivial

 \Leftarrow

Let $\epsilon > 0$. There exists a partial division Δ of I s.t.

$$v(f) < \frac{\epsilon}{2} + \sum_{K \in \Delta} \left| \int_K f \mid_K \right|$$

WLOG(without loss of generality), we assume that Δ is a division of I.

Let δ_1 be the gauge associated with Δ in the subordinate P-division theorem 3.26, δ_2 be $\frac{\epsilon}{4}$ -adapted to f. Define

$$\delta = \min \{\delta_1, \delta_2\}$$

we claim that

$$|S(\Pi, |f|) - v(f)| < \epsilon$$

whenever Π is a δ -finite P-division of I.

29

Let $\Pi_K, K \in \Delta$, a P-division coming from the subordinate P-division theorem 3.26. Since Π is δ_1 -finite

$$\begin{split} \sum_{(J,x)\in\Pi} \left| \int_J f \right| &\leq v(f) \\ &\leq \frac{\epsilon}{2} + \sum_{K\in\Delta} \left| \int_K f \right| \\ &= \frac{\epsilon}{2} + \sum_{K\in\Delta} \left| \sum_{(J,x)\in\Pi_K} \int_J f \right| \\ &\leq \frac{\epsilon}{2} + \sum_{K\in\Delta} \sum_{(J,x)\in\Pi_K} \left| \int_J f \right| \\ &= \frac{\epsilon}{2} + \sum_{(J,x)\in\Pi} \left| \int_J f \right| \end{split}$$

 \Rightarrow

$$\left| v(f) - \sum_{(J,x) \in \Pi} \left| \int_J f \right| \right| < \frac{\epsilon}{2}$$

Since Π is δ_2 -finite

$$\begin{split} \left| S(\Pi, |f|) - \sum_{(J,x) \in \Pi} \left| \int_J f \right| \right| &= \left| \sum_{(J,x) \in \Pi} |f(x)| \, |J| - \left| \int_J f \right| \\ &\leq \sum_{(J,x) \in \Pi} \left| |f(x)| \, |J| - \left| \int_J f \right| \right| \\ &\leq \sum_{(J,x) \in \Pi} \left| f(x) \, |J| - \int_J f \right| \\ &\leq \frac{\epsilon}{2} \quad \text{by Saks-Henstock's theorem6.1} \end{split}$$

7.5 Prop(comparison test)

$$f, g \in KH(I)$$
. If $|f| \leq g$, then $|f| \in KH(I)$

Proof

If $K \subseteq I$ is a sub-cell, then $\left| \int_K f \right| \le \int_K g$

$$\sum_{K\in\Delta}\left|\int_K f\right|\leq \sum_{K\in\Delta}\int_K g\leq \int_I g<+\infty$$

Then finish by theorem 7.4

7.6 Prop

AKH(I) is a vector space

Proof

- $0 \cdot \mathbb{1}_I \in AKH(I)$
- Let $f, g \in AKH(I), \alpha \in \mathbb{R}$

$$|\alpha f + g| \le |\alpha| \cdot |f| + |g|$$

7.7 Def

•

$$\|\cdot\|: AKH(I) \to \mathbb{R}$$

is a semi norm

• A sequence $(F_N: i \to \mathbb{R})$ of functions is **increasing** if $(\forall x \in I)(\forall n \in \mathbb{N})$:

$$f_n(x) \le f_{n+1}(x)$$

• (f_n) converges pointwisely to $f: I \to \mathbb{R}$ if $\forall x \in I$

$$f(x) = \lim_{n \to +\infty} f_n(x)$$

7.8 Monotone convergence theorem

Let (f_n) be a sequence in KH(I) s.t.

A (f_n) is increasing

B (f_n) converges pointwisely to $f: I \to \mathbb{R}$

$$C \sup_{n \in \mathbb{N}} \int_I f_n \le +\infty$$

then $f \in KH(I)$ and

$$\int_{I} f = \lim_{n \to +\infty} \int_{I} f_n$$

Proof(R. Henstock)

Since $f_n \leq f_{n+1}$,

$$\int_{I} f_{n} \le \int_{I} f_{n+1} \quad \forall n \in \mathbb{N}$$

Then $(\int_I f_n)$ is a increasing sequence in $\mathbb R$ and is bounded by (C). Thus it's convergent

$$r := \lim_{n \to +\infty} \int_I f_n$$

We'll check that f is KH-integrable on I by showing that f satisfies the def of KH-integral with r.

Let $\epsilon > 0$

• $(\exists n_0 \in \mathbb{N})(\forall n \geq n_0 \in \mathbb{N})$

$$r - \frac{\epsilon}{3} < \int_I f_n \le r$$

• with (B): $(\forall x \in I)(\exists n(x) \ge n_0)(\forall n > n_0 \in \mathbb{N})$:

$$f(x) - \frac{\epsilon}{3|I|} < f_n(x) \le f(x)$$

• Let $\epsilon_n = \frac{\epsilon}{3 \cdot 2^{n+2}}$. $\forall n \in \mathbb{N}$ there's a gauge δ_n on I which ϵ_n -adapted to f_n . Let $\delta(x) = \delta_{n(x)}(x)$

Let Π be a P-division of I:

$$S(\Pi,f) = \sum_{(J,x)\in\Pi} f(x) \, |J|$$

$$= \sum_{(J,x)\in\Pi} \left(f(x) - f_{n(x)}(x) \right) |J| + \sum_{(J,x)\in\Pi} \left(f_{n(x)}(x) \, |J| - \int_J f_{n(x)} \right) + \sum_{(J,x)\in\Pi} \int_J f_{n(x)}$$

$$|S(\Pi,f) - r| \leq \sum_{(J,x)\in\Pi} \frac{\epsilon}{3 \, |I|} \, |J| + \underbrace{\sum_{(J,x)\in\Pi} \frac{\epsilon}{3 \cdot 2^{n(x)+2}}}_{\text{Saks-Henstock theorem}} + \underbrace{\left| r - \sum_{(J,x)\in\Pi} \int_J f_{n}(x) \right|}_{\text{monotonicity}}$$

$$\leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

Lebesgue's measure

8.1 Def: integrability

 $A\subseteq\mathbb{R}$ is $\mathbf{integrable}$ if $\mathbb{M}_A\in KH(\mathbb{R})$ and define

$$L^1(A) = \int_{\mathbb{R}} \mathbb{1}_A$$

the **measure** of A.

8.2 Prop

• If I is a bounded cell then I is integrable and

$$L^{1}(I) = L^{1}(\mathring{I}) = L^{1}(\overline{I}) = |\overline{I}|$$

• If A is integrable, then

$$L^1 \geq 0$$

• If A and $B \supseteq A$ are integrable, then $B \setminus A$ is integrable and

$$L^1(B \setminus A) = L^1(B) - L^1(A)$$

- If A and B are integrable, then $A \cup B$ can $A \cap B$ are integrable.
- $N \in \mathbb{N}$ and A_1, \dots, A_N are disjoint integrable sets, then $\coprod_{i=1}^N A_i$ is integrable and

$$L^{1}(\bigsqcup_{i=1}^{N} A_{i}) = \sum_{i=1}^{N} L^{1}(A_{i})$$

• $(A_n)_{n\in\mathbb{N}}$ an increasing sequence of integrable sets and

$$\sup_{n\in\mathbb{N}} A_n < +\infty$$

then $\bigcup_{n\in\mathbb{N}}A_n$ is integrable and

$$L^1(\bigcup_{n\in\mathbb{N}} A_n) = \lim_{n\to+\infty} L^1(A_n)$$

• if $(A_n)_{n\in\mathbb{N}}$ disjoint sequence of integrable sets and $\sum_{n\in\mathbb{N}} L^1(A_n) < +\infty$, then $\coprod_{n\in\mathbb{N}} A_n$ is integrable and

$$L^{1}(\bigsqcup_{n\in\mathbb{N}}A_{n})=\sum_{n\in\mathbb{N}}L^{1}(A_{n})$$

• If $(A_n)_{n\in\mathbb{N}}$ a sequence of integrable sets s.t. $\sum_{n\in\mathbb{N}}L^1(A_n)<+\infty$, then $\bigcup_{n\in\mathbb{N}}A_n$ is integrable and

$$L^{1}(\bigcup_{n\in\mathbb{N}}A_{n})=\sum_{n\in\mathbb{N}}L^{1}(A_{n})$$

• If $(A_n)_{n\in\mathbb{N}}$ a decreasing sequence of integrable sets, then $\bigcap_{n\in\mathbb{N}}A_n$ is integrable and

$$L^{1}(\bigcap_{n\in\mathbb{N}}A_{n})=\lim_{n\to+\infty}L^{1}(A_{n})=\inf_{n\in\mathbb{N}}A_{n}$$

8.3 Prop

- Each bounded open set if integrable
- Each bounded closed set is integrable

8.4 Def:measurable

Set $A \subseteq \mathbb{R}$ is **measurable** if $\forall I$ as compact cell $A \cap I$ is integrable.

$$\mathcal{M}(\mathbb{R}) = \wp(\mathbb{R}) \cap \{A \mid A \text{ measurable}\}\$$

 L^1 now is a mapping $L^1: \mathcal{M}(\mathbb{R}) \to [0, +\infty]$ sending $A \in \mathcal{M}(\mathbb{R})$ to $\int_{\mathbb{R}} \mathbbm{1}_A$ if A is integrable, otherwise $+\infty$

8.5. PROP 35

Remark

$$\begin{array}{ccc} L^1:\mathscr{M}(\mathbb{R}) & \to [0,+\infty] \\ & & & \\ A & & \mapsto \begin{cases} \int_{\mathbb{R}} \mathbbm{1}_A & & \text{if A integrable} \\ +\infty & & \text{otherwise} \end{cases}$$

8.5 Prop

- $\varnothing \in \mathscr{M}(\mathbb{R})$
- If $A \in \mathcal{M}(\mathbb{R})$, then $\mathbb{R} \setminus A\mathcal{M}(\mathbb{R})$
- If (A_n) is a sequence in $\mathcal{M}(\mathbb{R})$ then

$$\bigcup_{n\in\mathbb{N}} A_n \in \mathscr{M}(\mathbb{R})$$

$$\bigcap_{n\in\mathbb{N}} A_n \in \mathscr{M}(\mathbb{R})$$

8.6 Lemma

If $A\subseteq B$ A and B are measurable and B is integrable, then A is integrable.

8.7 Theorem

- If A and B are both measurable and $A\subseteq B$ then $L^1(A)\leq L^1(B)$
- If (A_n) is a disjoint sequence in $\mathcal{M}(\mathbb{R})$ then

$$L^1(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}L^1(A_n)$$

• (A_n) increasing sequence in $\mathcal{M}(\mathbb{R})$

$$L^{1}(\bigcup_{n\in\mathbb{N}}A_{n})=\sup_{n\in\mathbb{N}}L^{1}(A_{n})$$

• (A_n) sequence in $\mathcal{M}(\mathbb{R})$

$$L^1(\bigcup_{n\in\mathbb{N}}A_n)\leq \sum_{n\in\mathbb{N}}L^1(A_n)$$

• All open and closed sets are measurable.

Vitali sets

9.1 Def

Define a equivalence relation for any pair $x, y \in \mathbb{R}$

$$x \sim y \Leftrightarrow x - y \in \mathbb{Q}$$

9.2 Prop

Each equivalence class [x] is dense in \mathbb{R} .

9.3 Def: Vitali set

 $V \subseteq \mathbb{R}$ is a **Vitali set** if $\forall x \in \mathbb{R}$:

 $V \cap [x]$ is a singleton

9.4 Prop

If V is a Vitali set and $q \in \mathbb{Q}$ then q + V is a Vitali set.

9.5 Theorem

There exists a Vitali set.

Proof

Let $\wp := \wp(\mathbb{R}) \cap \{[x] \mid x \in \mathbb{R}\}$ be a partition of \mathbb{R} . Consider a selector (AC):

$$\Gamma:\wp\to\mathbb{R}$$

s.t $\forall C \in \wp$

$$\Gamma(C) \in C$$

Define

$$V := \mathbb{R} \cap \{ \Gamma(C) \mid C \in \wp \} = \Im \Gamma$$

To finish the proof, check that $\forall C \in \wp$

- $V \cap C \neq \emptyset$
- $y_1, y_2 \in C \cap V \Rightarrow y_1 = y = 2$

9.6 Lemma

Let V be Vitali set, $q \in \mathbb{Q}$ $(V_q := q + V)$

$$\mathbf{A} \ \mathbb{R} = \bigcup_{q \in \mathbb{Q}} V_q$$

B $\forall q, r \in \mathbb{Q}$:

$$q \neq r \Rightarrow V_q \cap V_r = \emptyset$$

9.7 Theorem

If V is a Vitali set, $A \subseteq V$ is measurable, then $L^1(A) = 0$

Proof

For $n \in N_0$ define $A_0 := A \cap [-n, n]$ which is integrable. Define

$$Q := \mathbb{Q} \cap \{q \mid |q| \le 1\}$$

and

$$B_{n,q} = q + A_n \subseteq q + A \subseteq q + V$$

By (B) in Lemma, the family $(B_{n,q})_{n,q\in Q}$ is disjoint. Moreover, $B_{n,q}\subseteq [-n-1,n+1]$ and $\forall q\in Q$

$$L^1(B_{n,q}) = L^1(A_n)$$

If $F \subseteq \mathbb{Q}$

$$(cardF)L^{1}(A_{n}) = \sum_{q \in F} L^{1}(B_{n,q}) = L^{1}\left(\bigcup_{q \in F} B_{n,q}\right)$$

Since F is infinite, cardF can be chosen as large as Filip wishes, thus $L^1(A) = 0$

$$A = \bigcup_{n \in \mathbb{N}_0} A_n$$

and $(A_n)_{n\in\mathbb{N}_0}$ is increasing

$$L^1(A) = \lim_n L^1(A_n) = 0$$

9.8. THEOREM 39

9.8 Theorem

If V is Vitali set, then V is not measurable

Proof

If V were measurable, then $L^1(V)=0$. By the previous theorem ad
n each V_q would be measurable with

$$L^{1}(V_{q}) = L^{1}(q + V) = L^{1}(V) = 0$$

By (A) of lemma 9.6

$$\mathbb{R} = \bigcup_{q \in \mathbb{Q}} V_q$$

$$L^1(\mathbb{R}) = \sum_{q \in \mathbb{Q}} L^1(V_q) = 0$$

Measurable sharp

10.1 Def:refinement

Let X be a set and P, Q be two partitions of X. We say that Q is a **refinement** of P if each member of Q is contained in a member of P.

That's $\forall q \in Q, \exists p \in P \text{ s.t. } q \subseteq p$

10.2 Prop

A If Q is a refinement of P and $p \in P$, then

$$Q_p := Q \cap \{q \mid q \subseteq p\}$$

is a partition of P

B If Q is a refinement of P, R is a refinement of Q, then R is a refinement of P.

10.3 Def: dyodic cell

 $I \subseteq \mathbb{R}$ is a **dyodic cell** there exists $k, j \in \mathbb{Z}$ s.t.

$$I(k,j) :=]\frac{j}{2^k}, \frac{j+1}{2^k}]$$

Remark

Notice j,k are uniquely determined by I. $L^1(I)=2^{-k}$

$$genI := k$$

is called the **generation** of I

 $\mathcal{D}_k^1 := \{ \text{dyodic cells of generation } k \}$

$$\mathscr{D}^1:=\bigcup_{k\in\mathbb{Z}}\mathscr{D}^1_k$$

10.4 Prop

A $\forall x \in \mathbb{R}, k, j \in \mathbb{Z}$

$$x \in I(k,j) \Leftrightarrow j = \lceil 2^k x \rceil - 1$$

B $\forall k \in \mathbb{Z}, \, \mathscr{D}^1_k$ is a partition of \mathbb{R}

 $\mathrm{C}\ \forall k,n\in\mathbb{Z}$

$$I(k,n) = I(k+1,2n) \cup I(k+1,2n+1)$$

Thus, \mathscr{D}^1_{k+1} is a refinement of \mathscr{D}^1_k and $\forall I\in\mathscr{D}^1_k$

$$card(\mathcal{D}_{k+1}^1)_I = 2$$

 \mathbf{D}

 \mathbf{E}