Temperature Multi-stability

From non-linear radiation terms

Oisin Hamilton

Jonathan Demaeyer
Stéphane Vannitsem
Michel Cruicifix

Key Points

Key Points

Stefan Boltzmann Law

Radiation

Radiation

Temperature Equation

$$\gamma_o(\frac{\partial T_o}{\partial t} + J(\psi_o, T_o)) = -\lambda(T_o - T_a) - \sigma_B T_o^4 + \varepsilon \sigma_B T_a^4 + R_o$$

Temperature Equation

$$\gamma_o(\frac{\partial \mathcal{T}_o}{\partial t} + J(\psi_o, \mathcal{T}_o)) = -\lambda(\mathcal{T}_o - \mathcal{T}_a) - \sigma_B \mathcal{T}_o^4 + \varepsilon \sigma_B \mathcal{T}_a^4 + R_o$$

Temperature Equation

$$\gamma_o(\frac{\partial T_o}{\partial t} + J(\psi_o, T_o)) = -\lambda(T_o - T_a) - \sigma_B T_o^4 + \varepsilon \sigma_B T_a^4 + R_o$$

Linearisation

$$-\sigma_B T_o^4 + \varepsilon \sigma_B T_a^4$$

Linearisation

$$T_o = T_{o,0} + \delta T_o(t, x, y)$$

$$-\sigma_B T_o^4 + \varepsilon \sigma_B T_a^4$$

Linearisation

$$T_{o} = T_{o,0} + \delta T_{o}(t, x, y) - \sigma_{B} T_{o}^{4} + \varepsilon \sigma_{B} T_{a}^{4}$$

$$-\sigma_{B} T_{o,0}^{3} \delta T_{o} + 4\varepsilon \sigma_{B} T_{a,0}^{3} \delta T_{a}$$

$$-4\sigma_{B} T_{o,0}^{3} \delta T_{o} + 4\varepsilon \sigma_{B} T_{a,0}^{3} \delta T_{a}$$

Key Points

New Modes

Dynamic Equilibrium

$$T_o = T_{o,0}(t) + \delta T_o(t, x, y)$$

$$-\sigma_B T_o^4 + \varepsilon \sigma_B T_a^4$$

Dynamic Equilibrium

$$T_{o} = T_{o,0}(t) + \delta T_{o}(t, x, y) - \frac{1}{\sigma_{B} T_{o}^{4} + \varepsilon \sigma_{B} T_{a}^{4}}$$

$$O(\delta T_{o})$$

Dynamic Equilibrium

$$T_{o} = T_{o,0}(t) + \delta T_{o}(t, x, y) - \sigma_{B} T_{o}^{4} + \varepsilon \sigma_{B} T_{a}^{4} - \sigma_{B} T_{o,0}^{4} + \varepsilon \sigma_{B} T_{a,0}^{4} + f(\delta T_{o}) + g(\delta T_{a})$$

Non-Linear Equation

$$\mathbf{T}_{o}(t, x, y)$$

$$-\sigma_{B}\mathbf{T}_{o}^{4} + \varepsilon\sigma_{B}\mathbf{T}_{a}^{4}$$

Non-Linear Equation

$$\mathbf{T}_{o}(t, x, y)$$

$$-\sigma_{B}\mathbf{T}_{o}^{4} + \varepsilon\sigma_{B}\mathbf{T}_{a}^{4}$$

Problem:

5-6x run time

Model Summary

	Model	T ⁴ Radiation Terms	T ₀ Equilibrium Temperature
	Linearised	Linearised	Constant
(Dynamic Temperature	Linearised	Dynamic
	Non-Linear	Non-Linearised	Dynamic

Key Points

Emissivity ε

Emissivity ε

Emissivity ϵ

Emissivity ε

Model's variables (in nondim units)

-350

-340

330

320

-310

-300

290

-280

Emissivity ε

Emissivity ε

Model's variables (in nondim units)

-360

-340

320

-300

-280

260

Emissivity ε

Model Outputs

Lyapunov Exponents

Model Outputs

Lyapunov Exponents

Conclusion

Non linear radiation terms produce temperature multi-stabilities

Conclusion

Non linear radiation terms produce temperature multi-stabilities

Multi-stabilities produce distinct behaviour

Conclusion

Non linear radiation terms produce temperature multi-stabilities

Multi-stabilities produce distinct behaviour

Multi-stabilities in majority of cases produced by dynamic equilibria

Thank you

oisin.hamilton@meteo.be

De Cruz et al. (2016) The Modular Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0