Рекомендательные системы

По материалам Евгения Соколова

Занятие 2

Векторы интересов

- Для пользователя насколько он интересуется каждым жанром
- Для фильма насколько он относится к каждому жанру

Рейтинг

• Предположение: заинтересованность определяется как скалярное произведение векторов пользователя и фильма

$$(0.1, 0.5, 0.01, 0.92) \times (0, 0, 0.1, 0.95) = 0.875$$

$$(0.1, 0.5, 0.01, 0.92) \times (0.9, 0, 0, 0.1) = 0.182$$

Пользователь

Фильм

- Обучим вектор p_u для каждого пользователя u
- Обучим вектор q_i для каждого товара i
- Оценка приближается их скалярным произведением:

$$r_{ui} \approx \langle p_u, q_i \rangle$$

- Находим векторы только по известным оценкам
- После этого можем предсказать оценку для любой пары «пользователь-товар»

• Оптимизационная задача:

$$\sum_{(u,i)\in R} (r_{ui} - \bar{r}_u - \bar{r}_i - \langle p_u, q_i \rangle)^2 \to \min_{P,Q}$$

• Решение: градиентный спуск, Alternating Least Squares (ALS) и другие методы

2	5	
5		4
	1	
	2	5

	(0.9, 0.05)	(0.02, 1.1)	(1.05, 0.01)
(2.1, 5)	2	5	
(4.6, 0)	5		4
(0, 1)		1	
(4.9, 0.9)		1	5

Контентные методы

Контентные рекомендации

- Сведём задачу к обычному обучению с учителем
- Объект: пара «пользователь-товар» (u,i)
- Ответ: отклик пользователя
- Факторы: информация про пользователя и про товар
- Обучаем любую модель на этих данных
- Среди факторов могут быть и прогнозы коллаборативных моделей

Нейросетевые методы

Neural Collaborative Filtering

Model #1

Model #2

Deep Structured Semantic Model

Word-hashing

- К тексту добавляются маркеры начала и конца
- После чего он разбивается на буквенные триграммы
- Пример: [палех] -> [па, але, лех, ех]

Метрики качества рекомендаций

Качество предсказаний

В зависимости от целевой переменной:

- MSE, MAE, R^2
- Accuracy, HitRate, precision/recall, AUC-ROC
- Метрики качества ранжирования (дальше в курсе)

Качество предсказаний

- Насколько хорошо мы предсказываем оценки r_{ui} ?
- Разделяем сессии пользователей на две части: обучаемся на первой, измеряем качество предсказания второй
- Оцениваем, насколько хорошо предсказываем поведение пользователя но не факт, что нужно именно это
- Зачем рекомендовать то, что он и так купил бы?

Другие метрики

- Покрытие
 - Какая доля товаров рекомендовалась хотя бы раз?
 - Какой доле пользователей хотя бы раз показаны рекомендации?
- Новизна
 - Как много рекомендованных товаров пользователь встречал раньше?
- Прозорливость (serendipity)
 - Способность предлагать товары, которые отличаются от купленных ранее
- Разнообразие

Резюме

- Рекомендации широкая задача с большим количеством коммерческих применений
- Модели: коллаборативная фильтрация, контентный подход
- Рекомендации товаров на основе сходства пользователей
- Модели со скрытыми переменными
- Активное развитие нейронных сетей для рекомендаций
- Обилие метрик качества

Почитать

- https://www.benfrederickson.com/approximate-nearest-neighbours-for-recommender-systems/
- https://habr.com/ru/company/yandex/blog/314222/
- https://www.jefkine.com/recsys/2017/03/27/factorization-machines/
- https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf
- https://arxiv.org/abs/1708.05031