

Автоматизация сверки и устранения дубликатов в персональных данных

Введение в проблематику

- 1. Что такое дубликаты?
- 2. Почему они возникают?
- 3. Какие сферы деятельности это затрагивает?
- 4. Зачем нужно устранять дубликаты?
- 5. Почему нельзя положиться только на номер паспорта?

Постановка задачи

- 1. Повышение качества данных
- 2. Разработка алгоритм поиска дубликатов
- 3. Применение на реальных данных
- 4. Оценка результатов алгоритма
- Разработка прототипа библиотеки для интеграции решения в МИАЦ

Существующие решения

- 1. Сервис "Dadata.ru"
- 2. Сервис и библиотека "dedupe.io"
- 3. Сервис "Мастер адресов"
- 4. Решение "Индекс пациентов" от компании Нетрика

Обзор данных

	Фамилия	Имя	Отчество	Дата рождения
Всего значений	34406	34405	31995	34406
Уникальные значения	16304	1315	2006	16508
Пропущенные значения	0	1	2411	0

Табл.1. Статистика по данным.

Алгоритм поиска дубликатов

Рис.1. Схема алгоритма поиска дубликатов

Типы ошибок и методы их исправления

Типы ошибок

- 1. Ошибки на уровне поля
 - а. Опечатки
 - b. Различные стандарты написания
- 2. Ошибки на уровне записи
 - а. Пропущенные значения
 - b. Несоответствие поля и значения

Методы исправления

- 1. Регулярные выражения
- 2. Эвристические правила
- 3. Полуавтоматическое исправление

Алгоритм поиска дубликатов: индексирование

Задача: уменьшить количество рассматриваемых записей.

Решение: выделить группы потенциальных дубликатов.

Критерий: на основе подстроки или доли общих букв.

index — ассоциативный массив, в котором: ключ — номер записи,

значение — список потенциальных дубликатов.

Алгоритм поиска дубликатов: вычисление матрицы

Матрица расстояний:

$$x^{k}_{ij} = dist(row_{i}[k], row_{j}[k]),$$
 (2) $dist$ — редакционное расстояние, (3) $k \in [1, count_{fields}], i \in [1, count_{rows}], j \in index[i].$

9/14

Алгоритм поиска дубликатов

Рис. 2. Варианты алгоритма поиска дубликатов

Устранение дубликатов: подходы

- 1. Оставить наиболее полную запись
- 2. Оставить самую свежую запись
- 3. Объединить все записи в одну
- 4. Предоставить выбор эксперту

11/14

Полученные результаты

	Тестовая выборка	Реальные данные
Всего записей	1000	34406
Уникальные записи	990	33987
Кластеры по 1 записи	981	33575
Кластеры по 2 записи	8	405
Кластеры по 3 записи	1	7
Точность	0.998	Не известно

Табл.2. Полученные результаты. Алгоритм поиска: линейный. Пороговые значения: 0.8, 0.8, 0.9.

Выводы

- Решить задачу без участия человека нельзя.
- Идеи, на которых построен алгоритм, заслуживают дальнейшего развития.
- Разработан набор методов для очистки данных.
- Реализован алгоритм поиска дубликатов.
- Реализован прототип библиотеки для применения решения в сторонних проектах.

13/14

Спасибо за внимание

Исходный код: https://github.com/KirovVerst/record_linkage