Analiza numeryczna

2. Równania nieliniowe

Rafał Nowak

- Wprowadzenie
- 2 Metoda bisekcji
- Metoda Newtona
 - Analiza zbieżności
 - Modyfikacje
- Obliczanie pierwiastków wielomianów
 - Metoda Laguerre'a

Równania nieliniowe

Zajmiemy się numerycznym rozwiązaniem równania

$$f(x) = 0, (1)$$

gdzie f jest znaną funkcją rzeczywistą.

$$x - \operatorname{tg} x = 0 \qquad \text{(r\'ownanie dyfrakcji \'swiat\'a)},$$

$$x - a \sin x = b \qquad \text{(r\'ownanie Keplera)},$$

$$x - e^{-\frac{1}{2}x} = 0,$$

$$2^{x^2} - 10x + 1 = 0,$$

$$\cosh\left(\sqrt{x^2 + 1} - e^x\right) + \log|\sin x| = 0,$$

$$3.24x^8 - 2.42x^7 + 10.34x^6 + 11.01x^2 + 47.98 = 0.$$

Niemal nigdy nie ma mowy o podaniu wzoru na rozwiązanie dokładne. Dotyczy to również ostatniego przykładu, w którym chodzi o wyznaczenie **zer wielomianu**.

Definicja (Zero wielokrotne)

Jeśli f można w otoczeniu punktu α przedstawić w postaci

$$f(x) = (x - \alpha)^m g(x),$$

gdzie g jest funkcją ciągłą i taką, że $g(\alpha) \neq 0$, to α nazywamy zerem krotności m. Jeśli m=1, to α jest zerem pojedynczym.

Twierdzenie

Jeśli funkcja f jest m-krotnie różniczkowalna w otoczeniu punktu α oraz jeśli

$$f(\alpha) = f'(\alpha) = \dots = f^{(m-1)}(\alpha) = 0, \quad f^{(m)}(\alpha) \neq 0,$$

to α jest m-krotnym zerem funkcji f.

Jeśli funkcja f jest m-krotnie różniczkowalna w otoczeniu punktu α oraz jeśli

$$f(\alpha) = f'(\alpha) = \dots = f^{(m-1)}(\alpha) = 0, \quad f^{(m)}(\alpha) \neq 0,$$

to α jest m-krotnym zerem funkcji f.

W szczególności, $\alpha \in (a, b)$ jest **pojedynczym zerem** funkcji $f \in C^1[a, b]$, jeśli

$$f(\alpha) = 0$$
 oraz $f'(\alpha) \neq 0$.

Krzywa y=f(x) przecina oś x-ów pod niezerowym kątem. Ogólniej, w wypadku zera o **nieparzystej krotności** funkcja zmienia znak w punkcie α ; jeśli m jest **parzyste**, to f nie zmienia znaku w pewnym otoczeniu punktu α – oś x-ów jest styczna do wykresu funkcji f, ponieważ $f'(\alpha)=0$.

Metoda bisekcji

Twierdzenie (Darboux)

Jeśli $f \in C[a,b]$, a K jest dowolną liczbą leżącą pomiędzy f(a) i f(b), to istnieje taki punkt $c \in [a,b]$, że f(c) = K.

Algorytm

Wychodząc od $[a_0,b_0]:=[a,b]$ budujemy zstępujący ciąg przedziałów

$$[a_0, b_0] \supset [a_1, b_1] \supset [a_2, b_2] \supset \dots,$$

taki że $\alpha \in [a_k,b_k]$ dla $k=0,1,\ldots$

- obliczamy $m_k := \frac{1}{2}(a_k + b_k);$
- jeśli $f(a_k)f(m_k) \le 0$, to $[a_{k+1}, b_{k+1}] := [m_k, b_k]$, w przeciwnym razie $[a_{k+1}, b_{k+1}] := [a_k, m_k]$.

Zbieżność metody bisekcji

Zauważmy, że

- tylko przy założeniu ciągłości funkcji f (różniczkowalność nie jest wymagana) ciąg $\{m_k\}$ jest zbieżny do α ;
- przedział $[a_k, b_k]$ ma długość $b_k a_k = (b_0 a_0)/2^k$;
- zbieżność metody jest bardzo wolna (jedna cyfra dwójkowa na jeden krok) i nie zależy od f (!):

$$|m_k - \alpha| = (b_0 - a_0)/2^{k+1} \quad (k \geqslant 1);$$

zatem $|m_k - \alpha| < \varepsilon$ z pewnością zachodzi w następujących warunkach:

k+1	10	20	40	80
$\frac{\varepsilon}{b_0-a_0}$	10^{-3}	10^{-6}	10^{-12}	10^{-24}

Tak więc liczba kroków musi zostać podwojona, jeśli chcemy podwojenia liczby dokładnych cyfr dziesiętnych.

Przykład

Dla $f(x)=x^2/4-\sin x$ i $I_0=[1.8,\,2]$ otrzymujemy wyniki podane w tabelce.

k	a_k	b_k	m_k	$f(m_k)$
0	1.8	2	1.9	< 0
1	1.9	2	1.9 5	> 0
2	1.9	1.95	1.9 25	< 0
3	1.925	1.95	1.93 75	> 0
4	1.925	1.9375	1.93 125	< 0
5	1.93125	1.9375	1.93 4375	> 0

Dla porównania: $\alpha = 1.933753762827...$, więc $|\alpha - m_5| = 6 \cdot 10^{-4}$.

$$x_{n+1} = x_n + h_n, \qquad h_n := -\frac{f(x_n)}{f'(x_n)} \qquad (n = 0, 1, \ldots).$$
 (2)

$$x_{n+1} = x_n + h_n, h_n := -\frac{f(x_n)}{f'(x_n)} (n = 0, 1, ...).$$
 (2)

Przykład

Dla $f(x) = \sin x - x^2/4$, $x_0 = 1.8$ i $\epsilon = 5 \cdot 10^{-9}$ otrzymujemy:

n	x_n	$f(x_n)$	$f'(x_n)$	h_n
0	1.8	-0.163847630878	1.127202 094693	+0.145357
1	1.9 45357 812631	0.015436106659	1.338543359427	-0.011532
2	1.933825 794225	0.000095223283	1.322020778469	-0.000072
3	1.933753 765643	0.000000003722	1.321917429113	-0.0000000002816
4	1.933753762827021257			

Zauważmy, że liczba cyfr dokładnych (wytłuszczone w drugiej kolumnie) podwaja się w każdym kroku iteracyjnym. Pomimo kiepskiego przybliżenia początkowego już x_4 ma 18 cyfr dokładnych!

$$x_{n+1} = x_n + h_n, h_n := -\frac{f(x_n)}{f'(x_n)} (n = 0, 1, ...).$$
 (3)

$$x_{n+1} = x_n + h_n,$$
 $h_n := -\frac{f(x_n)}{f'(x_n)}$ $(n = 0, 1, \ldots).$ (3)
$$e_n := x_n - \alpha$$

$$\begin{split} x_{n+1} &= x_n + h_n, \qquad h_n := -\frac{f(x_n)}{f'(x_n)} \qquad (n=0,1,\ldots). \\ e_n &\coloneqq x_n - \alpha \\ \\ e_{n+1} &= \frac{1}{2} F''(\eta_n) \, e_n^2, \quad F(x) := x - \frac{f(x)}{f'(x)}, \quad \eta_n \in \mathsf{interv}(x_n,\alpha) \end{split}$$

$$x_{n+1} = x_n + h_n, \qquad h_n := -\frac{f(x_n)}{f'(x_n)} \qquad (n = 0, 1, \ldots).$$

$$e_n := x_n - \alpha$$

$$(3)$$

$$e_{n+1} = \frac{1}{2}F''(\eta_n)\,e_n^2, \quad F(x) := x - \frac{f(x)}{f'(x)}, \quad \eta_n \in \mathsf{interv}(x_n,\alpha)$$

Twierdzenie

Jeśli przybliżenie x_0 jest dostatecznie bliskie pojedynczego zera α równania f(x)=0 to metoda Newtona jest zbieżna kwadratowo do α .

Załóżmy, że f'(x)>0 i f''(x)>0 dla $x\in\mathbb{R}$. Niech α będzie pierwiastkiem równania f(x)=0. Wówczas jest to jedyny pierwiastek, a metoda Newtona daje ciąg do niego zbieżny dla dowolnego przybliżenia początkowego x_0 .

Załóżmy, że f'(x)>0 i f''(x)>0 dla $x\in\mathbb{R}$. Niech α będzie pierwiastkiem równania f(x)=0. Wówczas jest to jedyny pierwiastek, a metoda Newtona daje ciąg do niego zbieżny dla dowolnego przybliżenia początkowego x_0 .

Twierdzenie

Załóżmy, że $f\in C^2[a,\,b]$, $f'(x)f''(x)\neq 0$ dla dowolnego $x\in [a,\,b]$ i że f(a)f(b)<0. Jeśli

$$\left| \frac{f(a)}{f'(a)} \right| < b - a, \qquad \left| \frac{f(b)}{f'(b)} \right| < b - a,$$

to metoda Newtona jest zbieżna dla dowolnego $x_0 \in [a, b]$.

Załóżmy, że $f \in C^2[a,b]$, $f'(x)f''(x) \neq 0$ dla dowolnego $x \in [a,b]$ i że f(a)f(b) < 0. Jeśli $f(x_0)f''(x_0) > 0$ dla $x_0 \in [a,b]$, to ciąg $\{x_0,x_1,\ldots\}$, otrzymany metodą Newtona, jest zbieżny monotonicznie do pierwiastka $\alpha \in (a,b)$.

Definicja

Niech ciąg a_k będzie zbieżny do g. Jeśli istnieją takie liczby rzeczywiste p i C (C>0), że

$$\lim_{n \to \infty} \frac{|a_{n+1} - g|}{|a_n - g|^p} = C,$$

to p nazywamy wykładnikiem zbieżności ciągu, a C – stałą asymptotyczną błędu.

Definicja

Niech ciąg a_k będzie zbieżny do g. Jeśli istnieją takie liczby rzeczywiste p i C (C>0), że

$$\lim_{n \to \infty} \frac{|a_{n+1} - g|}{|a_n - g|^p} = C,$$

to p nazywamy wykładnikiem zbieżności ciągu, a C – stałą asymptotyczną błędu. Dla p=1 oraz 0 < C < 1 zbieżność jest liniowa, dla p=2 – kwadratowa, dla p=3 – sześcienna.

Definicja

Niech ciąg a_k będzie zbieżny do g. Jeśli istnieją takie liczby rzeczywiste p i C (C>0), że

$$\lim_{n \to \infty} \frac{|a_{n+1} - g|}{|a_n - g|^p} = C,$$

to p nazywamy wykładnikiem zbieżności ciągu, a C – stałą asymptotyczną błędu. Dla p=1 oraz 0 < C < 1 zbieżność jest liniowa, dla p=2 – kwadratowa, dla p=3 – sześcienna.

Ta definicja nie obejmuje pewnych typów zbieżności. Ciąg może być zbieżny wolniej niż liniowo, co odpowiada warościom p=1 i C=1; mówimy wówczas o zbieżności **podliniowej**. Jeśli p=1, a C=0, to zbieżność nazywamy **nadliniową**. Np. ciągi $a_n=1/n,\ a_n=2^{-n},\ a_n=n^{-n}$ są zbieżne odpowiednio podliniowo, liniowo i nadliniowo.

Metoda Newtona — modyfikacje

 $\textbf{ Metoda Newtona z nadzorem } \alpha \in [a,b] \\ \textbf{ Idea: pilnujemy, aby } x_{n+1} \in [a,b]$

Metoda Newtona — modyfikacje

- Metoda Newtona z nadzorem $\alpha \in [a, b]$ Idea: pilnujemy, aby $x_{n+1} \in [a, b]$
- ② Wypadek r-krotnego pierwiastka (r > 1)

$$x_{n+1} = x_n + rh_n, \qquad h_n := -\frac{f(x_n)}{f'(x_n)} \qquad (n = 0, 1, \ldots).$$
 (4)

Metoda Newtona — modyfikacje

- Metoda Newtona z nadzorem $\alpha \in [a, b]$ Idea: pilnujemy, aby $x_{n+1} \in [a, b]$
- ② Wypadek r-krotnego pierwiastka (r > 1)

$$x_{n+1} = x_n + rh_n, \qquad h_n := -\frac{f(x_n)}{f'(x_n)} \qquad (n = 0, 1, \ldots).$$
 (4)

Algorytm adaptacyjny

$$x_{n+1} = x_n - r_n \frac{f(x_n)}{f'(x_n)} \qquad (n \geqslant 2).$$

gdzie

$$r_n := \frac{x_{n-1} - x_{n-2}}{2x_{n-1} - x_n - x_{n-2}}.$$

Metoda Newtona W dziedzinie liczb zespolonych

Niech $f\colon \mathbb{C} \to \mathbb{C}$ będzie funkcją holomorficzną

$$z = x + iy,$$
 $f(z) = u(x, y) + iv(x, y)$

W dziedzinie liczb zespolonych

Niech $f\colon \mathbb{C} \to \mathbb{C}$ będzie funkcją holomorficzną

$$z = x + \mathfrak{i} y, \qquad f(z) = u(x,y) + \mathfrak{i} v(x,y)$$

Niech

$$\phi(x,y)\coloneqq |f(x+\mathfrak{i}y)|=\sqrt{u^2(x,y)+v^2(x,y)}$$

Wówczas

$$\operatorname{grad}(\phi) := (\phi_x, \phi_y) = \frac{uu_x + vv_x + \mathfrak{i}(uu_y + vv_y)}{\phi},$$

Ze wzorów Cauchy'ego-Riemanna wiemy, że

$$u_x = v_y, u_y = -v_x.$$

W metodzie Newtona mamy zatem

$$\frac{f(z)}{f'(z)} = \frac{u+\mathfrak{i}v}{u_x+\mathfrak{i}v_x} = \frac{uu_x+vv_x+\mathfrak{i}(uu_y+vv_y)}{u_x^2+v_x^2}.$$

Metoda Newtona W dziedzinie liczb zespolonych

Niech $f\colon \mathbb{C} \to \mathbb{C}$ będzie funkcją holomorficzną

$$z = x + iy,$$
 $f(z) = u(x, y) + iv(x, y)$

W metodzie Newtona mamy zatem

$$\frac{f(z)}{f'(z)} = \frac{u + iv}{u_x + iv_x} = \frac{uu_x + vv_x + i(uu_y + vv_y)}{u_x^2 + v_x^2}.$$

$$z_{n+1} = x_{n+1} + iy_{n+1} = x_n - \frac{u(x_n, y_n)u_x(x_n, y_n) + v(x_n, y_n)v_x(x_n, y_n)}{u_x^2(x_n, y_n) + v_x^2(x_n, y_n)}$$

$$i\left(y_n - \frac{u(x_n, y_n)u_y(x_n, y_n) + v(x_n, y_n)v_y(x_n, y_n)}{u_x^2(x_n, y_n) + v_x^2(x_n, y_n)}\right)$$
(5)

Metoda siecznych

Zastępując we wzorze (2) pochodną $f'(x_n)$ ilorazem różnicowym

$$f[x_{n-1}, x_n] := \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

otrzymujemy *metodę siecznych*:

$$x_{n+1} := x_n + h_n, \quad h_n := -f_n \frac{x_n - x_{n-1}}{f_n - f_{n-1}}$$

$$(f_n \neq f_{n-1}; \ n = 1, 2, \dots; \ x_0, \ x_1 - \mathsf{dane}),$$

 $\mathsf{gdzie}\ f_n := f(x_n).$

Metoda regula falsi

Regula falsi jest wariantem metody siecznych, w którym – inaczej niż w tamtej metodzie – prowadzi się sieczną przez punkty $(x_n,\,f_n)$ i $(x_{n'},\,f_{n'})$, gdzie n' jest takim największym wskaźnikiem mniejszym od n, że $f_{n'}f_n < 0$. Początkowe przybliżenia x_0 i x_1 trzeba oczywiście wybrać tak, żeby $f_0f_1 < 0$.

Odwrotna interpolacja kwadratowa

$$x_{n+1} = \frac{f_{n-1}f_n}{(f_{n-2} - f_{n-1})(f_{n-2} - f_n)} x_{n-2} + \frac{f_{n-2}f_n}{(f_{n-1} - f_{n-2})(f_{n-1} - f_n)} x_{n-1} + \frac{f_{n-2}f_{n-1}}{(f_n - f_{n-2})(f_n - f_{n-1})} x_n$$

Metoda Brenta

```
http:
```

//gams.nist.gov/cgi-bin/serve.cgi/Module/C/BRENT/11665

Układ równań nieliniowych

Twierdzenie (Wzór Taylora)

$$f(\boldsymbol{a} + \boldsymbol{h}) = \sum_{j=0}^{\infty} \frac{\left(\boldsymbol{h}^T \nabla_x\right)^j f(\boldsymbol{x})}{j!} \bigg|_{\boldsymbol{x} = \boldsymbol{a}}$$

$$\nabla_x = \begin{bmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{bmatrix}$$

Układ równań nieliniowych

Twierdzenie (Wzór Taylora)

$$f(\boldsymbol{a} + \boldsymbol{h}) = \sum_{j=0}^{\infty} \frac{\left(\boldsymbol{h}^T \nabla_x\right)^j f(\boldsymbol{x})}{j!} \bigg|_{\boldsymbol{x} = \boldsymbol{a}}$$

$$\nabla_x = \begin{bmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{bmatrix}$$

Na przykład dla funkcji dwu zmiennych $f(x_1,x_2)$ mamy

$$f(x_1 + h1, x_2 + h2) = f(x_1, x_2) + h_1 \frac{\partial}{\partial x_1} (x_1, x_2) + h_2 \frac{\partial}{\partial x_2} f(x_1, x_2) + \dots$$

- \bullet punkt początkowy: $[x_1^{(0)},x_2^{(0)}]^T$
- krok metody:

$$\begin{bmatrix} x_1^{(n+1)} \\ x_2^{(n+1)} \end{bmatrix} = \begin{bmatrix} x_1^{(n)} \\ x_2^{(n)} \end{bmatrix} + \begin{bmatrix} h_1^{(n)} \\ h_2^{(n)} \end{bmatrix},$$

gdzie

$$J^{(n)} \cdot \begin{bmatrix} h_1^{(n)} \\ h_2^{(n)} \end{bmatrix} = - \begin{bmatrix} f_1(x_1^{(n)}, x_2^{(n)}) \\ f_2(x_1^{(n)}, x_2^{(n)}) \end{bmatrix},$$

przy czym $J^{(n)}$ jest macierzą Jacobiego

$$J^{(n)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x_1^{(n)}, x_2^{(n)}) & \frac{\partial f_1}{\partial x_2}(x_1^{(n)}, x_2^{(n)}) \\ \frac{\partial f_2}{\partial x_1}(x_1^{(n)}, x_2^{(n)}) & \frac{\partial f_2}{\partial x_2}(x_1^{(n)}, x_2^{(n)}) \end{bmatrix}$$

Zadanie

Rozważamy wielomian

$$w_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$
(7)

gdzie wszystkie $a_i \in \mathbb{R}$ albo nawet $a_i \in \mathbb{C}$.

Zadanie

Rozważamy wielomian

$$w_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0,$$
(7)

gdzie wszystkie $a_j \in \mathbb{R}$ albo nawet $a_j \in \mathbb{C}$.

Twierdzenie

Wielomian stopnia n ma dokładnie n pierwiastków na płaszczyźnie zespolonej, gdy każdy z nich liczony tyle razy, ile wynosi jego krotność.

Lokalizacja pierwiastków

Twierdzenie (I)

Wszystkie pierwiastki wielomianu (7) leżą w kole otwartym o środku w punkcie 0 płaszczyzny zespolonej i promieniu

$$R := 1 + |a_0|^{-1} \max_{1 \le k \le n} |a_k|.$$

Lokalizacja pierwiastków

Twierdzenie (I)

Wszystkie pierwiastki wielomianu (7) leżą w kole otwartym o środku w punkcie 0 płaszczyzny zespolonej i promieniu

$$R := 1 + |a_0|^{-1} \max_{1 \le k \le n} |a_k|.$$

Twierdzenie (II)

Niech będzie

$$u(x) := x^n w(1/x) = a_n + a_{n-1}x + \dots + a_0 x^0$$
(8)

Jeśli wszystkie pierwiastki wielomianu u leżą w kole |x| < r, to wszystkie niezerowe pierwiastki wielomianu w leżą poza kołem |x| < 1/r.

Przykład

Na przykład na mocy tw. I zera wielomianu

$$w(x) = x^4 - 4x^3 + 7x^2 - 5x - 2$$

leżą w kole o promieniu $R=1+|a_0|^{-1}\max_{1\leqslant k\leqslant 4}|a_k|=8$. Pierwiastki wielomianu

$$u(x) = -2x^4 - 5x^3 + 7x^2 - 4x + 1$$

leżą w kole o promieniu $r=1+|a_0|^{-1}\max_{1\leqslant k\leqslant 4}|a_k|=\frac{9}{2}$. Na podstawie tw. II pierwiastki wielomianu w leżą poza kołem o promieniu $\frac{2}{9}$. Ostatecznie wszystkie pierwiastki wielomianu w leżą w pierścieniu

$$\frac{2}{9} < |x| < 8$$

na płaszczyźnie zespolonej.

Schemat Hornera

Algorytm (Schemat Hornera)

Obliczanie wartości $w_n(z)$:

- 1: $b \leftarrow a_n$
- 2: **for** k = n 1 **to** 0 **do**
- 3: $b \leftarrow a_k + zb$
- 4: end for
- 5: **return** b

Niech będzie

$$w_n(x) = (x-z)q_{n-1}(x;z) + b_{-1}$$

oraz

$$q_{n-1}(k;z) = b_0 + b_1 x + \ldots + b_{n-1} x^{n-1}.$$

Niech będzie

$$w_n(x) = (x-z)q_{n-1}(x;z) + b_{-1}$$

oraz

$$q_{n-1}(k;z) = b_0 + b_1 x + \ldots + b_{n-1} x^{n-1}.$$

Łatwo zauważyć, że

$$b_{k-1} = a_k + zb_k \qquad 0 \leqslant k \leqslant n - 1.$$

Niech będzie

$$w_n(x) = (x-z)q_{n-1}(x;z) + b_{-1}$$

oraz

$$q_{n-1}(k;z) = b_0 + b_1 x + \ldots + b_{n-1} x^{n-1}.$$

Łatwo zauważyć, że

$$b_{k-1} = a_k + zb_k \qquad 0 \leqslant k \leqslant n - 1.$$

Ponadto, mamy

$$w_n'(z) = q_{n-1}(z; z).$$

Niech będzie

$$w_n(x) = (x - z)q_{n-1}(x; z) + b_{-1}$$

oraz

$$q_{n-1}(k;z) = b_0 + b_1 x + \ldots + b_{n-1} x^{n-1}.$$

Ponadto, mamy

$$w_n'(z) = q_{n-1}(z;z).$$

Algorytm (Schemat Hornera, raz jeszcze)

Obliczanie wartości $w_n(z)$ i $w'_n(z)$:

- 1: $b \leftarrow a_n$
- 2: $c \leftarrow 0$
- 3: **for** k = n 1 **to** 0 **do**
- 4: $c \leftarrow b + zc$
- 5: $b \leftarrow a_k + zb$
- 6: end for
- 7: **return** b, c

Metoda Newtona

$$z_{k+1} \coloneqq z_k - \frac{w_n(z_k)}{w_n'(z_k)}$$

$$z_{k+1} = z_k - \frac{n w(z_k)}{w'(z_k) \pm \sqrt{H(z_k)}},$$
(9)

$$H(x) := (n-1)\left[(n-1)w'^{2}(x) - nw(x)w''(x) \right], \tag{10}$$

a n jest stopniem wielomianu. Znak w mianowniku wyrażenia (10) trzeba wybrać tak, aby $|z_{k+1}-z_k|$ było jak najmniejsze.

$$z_{k+1} = z_k - \frac{n w(z_k)}{w'(z_k) \pm \sqrt{H(z_k)}},$$
(9)

$$H(x) := (n-1)\left[(n-1)w'^{2}(x) - nw(x)w''(x) \right], \tag{10}$$

a n jest stopniem wielomianu. Znak w mianowniku wyrażenia (10) trzeba wybrać tak, aby $|z_{k+1}-z_k|$ było jak najmniejsze.

③ Metoda Laguerre'a wymaga obliczania $w(z_k)$, $w'(z_k)$ i $w''(z_k)$ w każdym kroku.

$$z_{k+1} = z_k - \frac{n w(z_k)}{w'(z_k) \pm \sqrt{H(z_k)}},$$
(9)

$$H(x) := (n-1) \left[(n-1)w'^{2}(x) - nw(x)w''(x) \right], \tag{10}$$

a n jest stopniem wielomianu. Znak w mianowniku wyrażenia (10) trzeba wybrać tak, aby $|z_{k+1} - z_k|$ było jak najmniejsze.

- **1** Metoda Laguerre'a wymaga obliczania $w(z_k)$, $w'(z_k)$ i $w''(z_k)$ w każdym kroku
- Można wykazać, że jest ona zbieżna sześciennie dla pierwiastków pojedynczych, rzeczywistych lub zespolonych.

$$z_{k+1} = z_k - \frac{n w(z_k)}{w'(z_k) \pm \sqrt{H(z_k)}},$$
(9)

$$H(x) := (n-1)\left[(n-1)w'^{2}(x) - nw(x)w''(x) \right], \tag{10}$$

a n jest stopniem wielomianu. Znak w mianowniku wyrażenia (10) trzeba wybrać tak, aby $|z_{k+1}-z_k|$ było jak najmniejsze.

- **1** Metoda Laguerre'a wymaga obliczania $w(z_k)$, $w'(z_k)$ i $w''(z_k)$ w każdym kroku.
- Można wykazać, że jest ona zbieżna sześciennie dla pierwiastków pojedynczych, rzeczywistych lub zespolonych.
- Ola równań algebraicznych mających tylko pierwiastki rzeczywiste metoda Laguerre'a jest zbieżna niezależnie od wyboru przybliżeń początkowych.

$$z_{k+1} = z_k - \frac{n w(z_k)}{w'(z_k) \pm \sqrt{H(z_k)}},$$
(9)

$$H(x) := (n-1)\left[(n-1)w'^{2}(x) - nw(x)w''(x) \right], \tag{10}$$

a n jest stopniem wielomianu. Znak w mianowniku wyrażenia (10) trzeba wybrać tak, aby $|z_{k+1}-z_k|$ było jak najmniejsze.

- **1** Metoda Laguerre'a wymaga obliczania $w(z_k)$, $w'(z_k)$ i $w''(z_k)$ w każdym kroku.
- Można wykazać, że jest ona zbieżna sześciennie dla pierwiastków pojedynczych, rzeczywistych lub zespolonych.
- Ola równań algebraicznych mających tylko pierwiastki rzeczywiste metoda Laguerre'a jest zbieżna niezależnie od wyboru przybliżeń początkowych.
- Jeśli równanie algebraiczne ma pierwiastki zespolone, to już nie jest prawdą, że metoda Laguerre'a jest zbieżna dla dowolnych przybliżeń początkowych. Doświadczenie uczy jednak, że i w tym wypadku zbieżność globalna jest dobra.