Segment Anything

Alexander Kirillov^{1,2,4} Eric Mintun² Nikhila Ravi^{1,2} Hanzi Mao² Chloe Rolland³ Laura Gustafson³ Tete Xiao³ Spencer Whitehead Alexander C. Berg Wan-Yen Lo Piotr Dollár⁴ Ross Girshick⁴

¹project lead ²joint first author ³equal contribution ⁴directional lead

Meta AI Research, FAIR

2023 arXiv Facebook research

> 2023.05.17 공학 딥러닝 이소영

Contents

- 1. Abstract
- 2. Introduction
- 3. Segment Anything
 - Task
 - Model
 - Data Engine
 - Dataset
- 4. Zero-Shot Transfer Experiments
- 5. Discussion

Abstract

• Segment Anything (SA) project: a new task, model, and dataset for image segmentation

- The largest segmentation dataset: over 1 billion masks on 11M images.
- The model is designed and trained to be **promptable**.
- Its capabilities on numerous tasks and find that its zero-shot performance is impressive.

Introduction

- Revolutionizing NLP
 - Large language models pre-trained on web-scale datasets = foundation models
 - Implemented with prompt engineering
 - Abundant text corpora from the web → zero & few-shot performance compare surprisingly well to fine-tuned models

- Empirical trends: improving with model scale, dataset size, and total training compute
- Foundation models in computer vision
 - Paired text and images align from the web (ex. CLIP)
 - Abundant training data does not exist

Introduction

- Our goal: build a foundation model for image segmentation
- The success of this plan hinges on three components: task, model, and data.
- To develop them, we address the following questions about image segmentation:
 - What **task** will enable zero-shot generalization? → Promptable segmentation task
 - What is the corresponding model architecture? → Supports flexible prompting
 - What data can power this task and model? → Diverse, large-scale source of data

Segment Anything - Task

- Promptable segmentation task
 - Return a valid segmentation mask given any segmentation prompt

(a) **Task**: promptable segmentation

When a prompt is ambiguous and could refer to multiple objects, the output should be a reasonable mask for at least one of those objects.

Simply specifies what to segment in an image (e.g., point, bbox, mask, or text information identifying an object)

- Constraints on the model architecture
 - Must support flexible prompts
 - Needs to compute masks in amortized real-time to allow interactive use
 - Must be ambiguity-aware
- → Segment Anything Model (SAM)

(b) **Model**: Segment Anything Model (**SAM**)

Image encoder

- Masked Autoencoder (MAE) pre-trained Vision Transformer (ViT): ViT-H/16
- Computed only once per image, not per prompt
- → the prompt encoder and mask decoder predict a mask from a prompt in ~50ms in a web browser

- Image encoder
 - Masked Autoencoder(MAE) pre-trained Vision Transformer (ViT): ViT-H/16
 - Computed only once per image, not per prompt
 - → the prompt encoder and mask decoder predict a mask from a prompt in ~50ms in a web browser

Prompt encoder

- Sparse prompts (points, boxes, text): mapped to 256- dimensional vectorial embeddings
 - Points: positional encoding of the point's location + foreground/background embedding (learned)
 - Boxes: pair of two components
 - (1) the positional encoding of its top-left corner + learned embedding representing "top-left corner"
 - (2) the same structure but using a learned embedding indicating "bottom-right corner"
 - Free-from text: text encoder from CLIP
- Dense prompts (masks): convolutions and summed element-wise with the image embedding

• (Lightweight) Mask decoder

Resolving ambiguity

- Predict **3 masks**: whole, part, and subpart
- Compute the loss between the ground truth and each of the predicted masks
- but only backpropagate from the lowest loss
- Add a small head: that **estimates the IoU (score)** between each predicted mask and the object it covers

- Loss and training
 - Mask prediction: Focal loss + dice loss (20:1)
 - **IoU** prediction: mean-square-error (MSE) loss

- 1.1B mask dataset, SA-1B
- The data engine has three stages:
 - 1. Model-assisted manual annotation stage
 - 2. Semi-automatic stage with a mix of automatically predicted masks and model-assisted annotation
 - 3. Fully automatic stage in which our model generates masks without annotator input.

(c) **Data**: data engine (top) & dataset (bottom)

1. Assisted-manual stage

- Human
 - Clicking foreground / background object points → refine
 - Proceed to the next image once a mask took over 30 seconds to annotate
- SAM
 - Start: trained using common public segmentation datasets
 - retrained using only newly annotated masks (retraining 6 times)
 - SAM scaled from ViT-B to ViT-H

• Overall, we collected **4.3M masks from 120k images** in this stage.

2. Semi-automatic stage

- Aim: **increase the diversity** of masks
- First automatically (SAM) detected confident masks -> annotate (human) any additional unannotated objects
- Detect confident masks
 - Trained a bounding box detector(Faster R-CNN) on all first stage masks using a generic "object" category.

Collected an additional 5.9M masks in 180k images (for a total of 10.2M masks).

3. Fully automatic stage

- Developed the ambiguity-aware model
- Prompt: the model with a 32×32 regular grid of points
- Select confident masks
 - A mask stable if thresholding the probability map at 0.5δ and $0.5 + \delta$ results in similar masks
- Filter duplicates: using non-maximal suppression (NMS)

• Fully automatic mask generation to all 11M images, producing a total of 1.1B high-quality masks

Segment Anything - Dataset

- Dataset: SA-1B
- Images
 - 11M diverse, licensed
 - High-resolution: 3300×4950 pixels on average
- Masks
 - Data engine produced 1.1B masks, 99.1% of which were generated fully automatically.
 - Quality analysis → SA-1B only includes automatically generated masks

Segment Anything - Dataset

Mask quality

- Randomly sampled 500 images (~50k masks)
 - → professional annotators to improve the quality of all masks in these images.
- Pairs of automatically predicted and professionally corrected masks
 - 94% of pairs have greater than 90% IoU (97% of pairs have greater than 75% IoU)
 - Prior work estimates inter-annotator consistency at 85-91% IoU

Segment Anything - Dataset

Mask properties

Greater coverage of image corners

Figure 5: Image-size normalized mask center distributions.

Compare by size

more masks per image

greater percentage of small and medium relative-size masks

similar shape complexity

• The datasets may include **novel image distributions**, such as underwater or ego-centric images that, to our knowledge, do not appear in SA-1B.

Figure 8: Samples from the 23 diverse segmentation datasets used to evaluate SAM's zero-shot transfer capabilities.

1. Zero-Shot Single Point Valid Mask Evaluation Task

- Task: segmenting an object from a single foreground point
 - evaluate only the model's most confident mask by default

Result

SAM yields higher results on 16 of the 23 datasets "oracle" result: SAM outperforms RITM on all datasets

"oracle" result

- Most relevant of SAM's 3 masks is selected by comparing them to the ground truth
- Reveals the impact of ambiguity on automatic evaluation

(a) SAM vs. RITM [92] on 23 datasets

1. Zero-Shot Single Point Valid Mask Evaluation Task

Result

Annotators consistently rate the quality of SAM's masks substantially higher than RITM

the number of points increases from 1 to 9

→ the gap between methods decreases : task becomes easier

random point sampling

→ the gap between SAM and the baselines grows

2. Zero-Shot Edge Detection

- Approach: evaluate SAM on the classic low-level task of edge detection using BSDS500
 - Using a simplified version of our automatic mask generation pipeline
 - edge maps are computed
 - Sobel filtering of unthresholded mask probability maps
 - Standard lightweight postprocessing, including edge NMS

2. Zero-Shot Edge Detection

Results

Qualitatively: produces reasonable edge maps

SAM predicts more edges (bias), including sensible ones that are not annotated in BSDS500

4 standard metrics for edge detection

ODS: Optimal Dataset Scale
OIS: Optimal Image Scale
AP: Average Precision

R50: Recall at 50% precision

method	year	ODS	OIS	AP	R50		
HED [108]	2015	.788	.808	.840	.923		
EDETR [79]	2022	.840	.858	.896	.930		
zero-shot transfer methods:							
Sobel filter	1968	.539	-	-	-		
Canny [13]	1986	.600	.640	.580	-		
Felz-Hutt [35]	2004	.610	.640	.560	-		
SAM	2023	.768	.786	.794	.928		

Table 3: Zero-shot transfer to edge detection on BSDS500.

SAM's bias: high R50, but low AP

Better than zero-shot transfer methods

3. Zero-Shot **Object Proposals**

- Approach: evaluate SAM on the mid-level task of object proposal generation
 - Compute the standard average recall (AR) metric for masks at 1000 proposals on LVIS v1

Results

	mask AR@1000								
method	all	small	med.	large	freq.	com.	rare		
ViTDet-H [62]	63.0	51.7	80.8	87.0	63.1	63.3	58.3		
zero-shot transfer methods:									
SAM – single out.	54.9	42.8	76.7	74.4	54.7	59.8	62.0		
SAM	59.3	45.5	81.6	86.9	59.1	63.9	65.8		

Table 4: Object proposal generation on LVIS v1. SAM is applied zero-shot, *i.e.* it was not trained for object proposal generation nor did it access LVIS images or annotations.

ViTDet-H as object proposals performs the best overall

SAM does remarkably well on several metrics

4. Zero-Shot Instance Segmentation

- Approach: higher-level vision
 - Object detector (same as ViTDet) output boxes = prompt SAM
- Results

	COCO [66]			LVIS v1 [44]				
method	AP	AP^S	AP^{M}	AP^{L}	AP	AP^S	AP^{M}	AP^L
ViTDet-H [62]	51.0	32.0	54.3	68.9	46.6	35.0	58.0	66.3
zero-shot transfer methods (segmentation module only):								
SAM	46.5	30.8	51.0	61.7	44.7	32.5	57.6	65.5

AP metric: ViTDet-H > SAM on both datasets

4. Zero-Shot Instance Segmentation

- Results
 - SAM masks are often qualitatively better than those of ViTDet

5. Zero-Shot **Text-to-Mask**

- Approach: a proof-of-concept of SAM's ability to process text prompts
- Results
 - SAM can segment objects based on simple text prompts
 - SAM fails to make a correct prediction
 - → an additional point prompt can help

6. Ablations

- Data engine stages
 - Each stage increases mIoU
 - Tested a fourth setup that uses only the automatically generated masks
 - to simplify the training setup

6. Ablations

- Training data scaling
 - 1M images: results comparable to using the full dataset

- Image encoder scaling
 - Further image encoder scaling does not appear fruitful at this time

Discussion

Foundation models

- Pre-trained model → foundation model (rebranded)
- Trained on broad data at scale and are adaptable to a wide range of downstream tasks

Compositionality

- New capabilities: used as a component in larger systems
- Our goal is to make this kind of composition straightforward with SAM.
 - SAM to predict a valid mask for a wide range of segmentation prompts
 - → create a reliable interface between SAM and other components

Discussion

Limitations

- While SAM performs well in general, it is **not perfect**
- Dedicated interactive segmentation methods to outperform SAM when many points are provided
- Not real-time when using a heavy image encoder
- Text-to-mask task is exploratory and not entirely robust
- Unclear how to design simple prompts that implement semantic and panoptic segmentation

Conclusion

- The Segment Anything project is an attempt to lift image segmentation into the era of foundation models.
- Our principal contributions: a new task (promptable segmentation), model (SAM), and dataset (SA-1B)

END