Topología: Tarea #4

Jonathan Andrés Niño Cortés

16 de febrero de 2015

1. Suponga que para cada $n \in \mathbb{N}$ tenemos un espacio topológico (X_n, τ_n) metrizable (i.e. existe una métrica en X_n que genera la topología τ_n). Muestre que $\prod_{n \in \mathbb{N}} X_n$ con la topología producto es metrizable.

Demostración. Vamos a utilizar una estrategia similar a la utilizada para demostrar que \mathbb{R}^{ω} es metrizable. Denotemos por d_n la métrica asociada al espacio X_n . Entonces tomamos $\overline{d_n}(x,y) = \min(d(x,y),1)$ la métrica estándar acotada derivada de d_n . Entonces definimos la métrica de $\prod_{n\in\mathbb{N}} X_n$ como

$$D(x,y) = \sup_{i \in \mathbb{N}} \left(\left\{ \frac{\overline{d_i}(x_i, y_i)}{i} \right\} \right)$$

En primer lugar demostremos que es una métrica. Por una parte,

$$D(x,x) = \sup\left(\left\{\frac{\overline{d_i}(x_i, x_i)}{i}\right\}\right)$$
$$= \sup\left(\left\{\frac{0}{i}\right\}\right)$$
$$= 0$$

Por otra parte si D(x,y)=0 entonces tenemos que para todo $i \in \mathbb{N}$ se cumple que $\overline{d}_i\{x_i,y_i\}$ por lo que $x_i=y_i$. Concluimos que x=y.

También tenemos que D(x, y) = D(y, x)

$$D(x,y) = \sup\left(\left\{\frac{\overline{d_i}(x_i, y_i)}{i}\right\}\right) = \sup\left(\left\{\frac{\overline{d_i}(y_i, x_i)}{i}\right\}\right) = D(y, x)$$

Finalmente para probar la desigualdad triangular tomemos $x, y, z \in \prod_{n \in \mathbb{N}} X_n$. Tenemos que para todo $i \in \mathbb{N}$

$$\frac{\overline{d}_i(x_i, z_i)}{i} \le \frac{\overline{d}_i(x_i, y_i)}{i} + \frac{\overline{d}_i(y_i, z_i)}{i}$$

pues $\overline{d_i}$ es una métrica.

Pero además,

$$\frac{\overline{d}_i(x_i, z_i)}{i} \le \frac{\overline{d}_i(x_i, y_i)}{i} + \frac{\overline{d}_i(y_i, z_i)}{i} \le D(x, y) + D(y, z)$$

pues D(x,y) y D(y,z) son por definición los supremos de los conjuntos que contienen a $\frac{\bar{d}_i(x_i,y_i)}{i}$ y $\frac{\bar{d}_i(y_i,z_i)}{i}$ respectivamente.

Por lo tanto tenemos que D(x,y)+D(y,z) es una cota superior para $\left\{\frac{\overline{d_i}(y_i,x_i)}{i}\right\}$ y por lo tanto el supremo debe ser menor, es decir, $D(x,z) \leq D(x,y) + D(y,z)$.

Ahora necesitamos probar que la topología de la métrica es igual a la topología del producto.

En primer lugar tomese cualquier abierto de la topología producto.

Este es de la forma

$$B = \prod_{i \in \mathbb{N}} U_i$$

donde U_i es abierto en la topología de X_i para $i = \alpha_1, \dots, \alpha_n$ y $U_i = X_n$ para los demás índices.

Ahora tomemos un elemento $x \in B$. La coordenada de x en el espacio X_i la vamos a denotar por x_i .

Para cada X_i con $i = \alpha_1 \cdots \alpha_n$ podemos hacer una bola de radio ϵ_i alrededor de x_i que este contenida en U_{α_i} .

Entonces tomamos $\epsilon = \min(\{\frac{\epsilon_i}{i}\})$ donde $i = \alpha_1 \cdots \alpha_n$ y la bola en $\prod_{n \in \mathbb{N}} X_n$ con centro en x y radio ϵ es tal que esta contenida en B.

Para probar esto tomese cualquier elemento $y \in B_{\epsilon}(x)$. Tenemos que para todo $i = \alpha_1, \dots, \alpha_n, \overline{d_i(x_i, y_i)}/i < \epsilon \le \epsilon_i/i$ por lo que $\overline{d_i(x_i, y_i)} < \epsilon_i$ y como la bola de radio ϵ_i alrededor de x_i esta contenida en U_i se sigue que $y_i \in U_i$. Para los demás i es trivial que $y_i \in U_i = X_i$. Esto implica que $y \in B$.

En segundo lugar tómese un bola de radio ϵ alrededor de x. Y tomese cualquier $y \in B_{\epsilon}(x)$. Entonces vamos a demostrar que existe un abierto de la topología producto contenido en esta bola.

Por la propiedad arquimedeana siempre se puede encontrar un $N \in \mathbb{N}$ tal que $\epsilon * N > 1$, es decir tal que $1/N < \epsilon$. Para todos los $i \geq N$ y para todo $y_i \in X_i$ se cumple que $\overline{d}_i(x_i, y_i)/i \leq 1/i < \epsilon$.

Para los i < N tomemos la bola de radio ϵ_i alrededor de y_i , donde $\epsilon_i < \epsilon - \overline{d_i}(x_i, y_i)$).

Sea $B = \prod_{i \in \mathbb{N}} V_i$ donde $V_i = B_{\epsilon_i}(y_i)$ para los i < N y $V_i = X_n$ para $i \ge N$.

Claramente $y \in B$, ahora vamos a demostrar que $B \subseteq B_{\epsilon}(x)$.

Tomemos cualquier elemento $b \in B$. Probemos que $D(b, x) < \epsilon$.

Obsérvese que para todo $i \in \mathbb{N}$ tenemos que $\overline{d}_i(x_i, b_i)/i < \epsilon$. Si $i \geq N$ esto es trivial porque $\overline{d}_i(x, y)/i \leq 1/i \geq 1/N$. Si i < N entonces $\overline{d}_i(b_i, y_i) < \epsilon - d_i(x_i, y_i), d_i(x_i, y_i)$.

Entonces por designaldad triangular tenemos que $\overline{d_i}(x_i,b_i)/i \leq \overline{d_i}(x_i,y_i)/i + \overline{d_i}(y_i,b_i)/i < \overline{d_i}(x_i,y_i)/i + \epsilon - \overline{d_i}(x_i,y_i)i = \epsilon.$

Como solamente se consideran finitos de estos (hasta la coordenada n-1) puedo tomar

$$M = \max\left(\left\{\frac{\overline{d_1}(b_1, y_1)}{1}, \cdots, \frac{\overline{d_{n-1}}(b_1, y_{n-1})}{n-1}, \frac{1}{n}\right\}\right)$$

Entonces $D(b, x) \leq M < \epsilon$. Concluimos que $b \in B_{\epsilon}(x)$.

2. Sea (X, d) un espacio métrico separable (i.e. existe $A \subseteq X$ enumerable tal que $\overline{A} = X$). Muestre que X es homeomorfo a un subespacio de \mathbb{R}^{ω} .

Demostración. Sea la función $f: X \to \mathbb{R}^{\omega}$ definida como $f(x) = (d(x, a_n))_{n \in \mathbb{N}}$.

Primero demostramos que esta función es continua. Sea $x,y\in X$ tales que $x\neq y$. Como el espacio es metrizable tenemos que es de Hausdorf. Entonces existe una bola que contiene a x y otra que contiene a y tal que son disyuntas. Es más, existe una bola centrada en x y algun radio $\delta>0$ y otra centrada en y con radio $\gamma>0$ tal que son disyuntas entre sí. Y más aún podemos tomar las bolas centradas en los puntos con radio $\epsilon=\min(\delta,\gamma)$ y siguen siendo disyuntas.

Pero además tenemos que A es denso en X. Luego existe $a_n \in A$ tal que $a_n \in B_{\epsilon}(x)$ y $a_n \notin B_{\epsilon}(y)$. Luego $d(x, a_n) < \epsilon$ y $d(y, a_n) > \epsilon$ por lo que $f(x) \neq f(y)$.

Sea $Y = \operatorname{Rang}(f)$ Ahora consideramos la imagen de una bola de radio ϵ centrada en un elemento a_n de A. Por definición, estos serán los elementos $x \in Y$ tales que $0 \le (x)_n < \epsilon$. Como esta función es inyectiva podemos decir que la preimagen de los elementos en Y tales que $0 \le (x)_n < \epsilon$ sería la bola de radio ϵ alrededor de a_n . Este conjunto es abierto en Y pues puede verse como los $x \in \mathbb{R}^{\omega}$ tales que $(x)_n \in (-\epsilon, \epsilon) \cap \operatorname{Rang}(f)$, pues por definición la distancia siempre es mayor o igual a 0.

Vamos a demostrar que la función f es continua. Para eso basta tomar un subbásico en la topología producto y demostrar que su preimagen es abierta en X. Un subbasico típico serían los $y \in Y$ tales que $(y)_n \in (a,b)$ con 0 < a < b. Denotemos a este conjunto por S. $f^{-1}(S)$ serían los elementos x de X tales que $a < d(x,a_n) < b$. Esto es abierto porque para cualquier $z \in f^{-1}(S)$ podemos tomar la bola de radio menor a $\min(d(z,a_n)-a,b-d(z,a_n))$. y esta bola estaría contenida en $f^{-1}(S)$.

Nótese que la topología de X la puedo generar solamente con las bolas centradas en los elementos de A. Tomemos cualquier $B_{\epsilon}(x)$ donde $x \in X$. Ahora tomemos cualquier

elemento $b \in B_{\epsilon}(x)$. Tenemos además que existe una bola de radio δ contenida y centro b contenida en $B_{\epsilon}(x)$. Entonces podemos tomar $B_{\delta/2}(b)$ y como A es denso tenemos que existe $a_n \in A$ tal que $a_n \in B_{\delta/2}(b)$.

Finalmente la bola de radio $\delta/2$ alrededor de a_n es tal que contiene a b y esta contenida $B_{\epsilon}(x)$. Pues por desigualdad triangular $d(c,b) \leq d(c,a_n) + d(a_n,b) < \delta/2 + \delta/2 = \delta$.

Ahora para demostrar que la inversa es continua también tomemos un básico típico de la topología de X, es decir, una bola de radio ϵ centrada en algun punto $a \in A$, que se denotara B. Queremos demostrar que la imagen de f(B) es abierta y efectivamente este el caso por lo discutido al principio de la demostración.

Ahora por otra parte si el centro no esta en A, entonces

3. Muestre que la función $D: \mathbb{R}^{\omega} \times \mathbb{R}^{\omega} \to \mathbb{R}$ definida por

$$d(x,y) = \sum_{i \in \omega} \frac{2^{-i}|x_i - y_i|}{1 + |x_i - y_i|}$$

es una métrica y que la topología inducida por esta métrica es la misma topología producto de $\mathbb{R}^{\omega}.$

Demostraci'on. Sea d una métrica. En primer lugar vamos a demostrar que la función $d^*: X, X \to \mathbb{R}$ definida como $d^*(x,y) \mapsto \frac{d(x,y)}{1+d(x,y)}$ es una métrica.

$$d^*(x,x) = \frac{d(x,x)}{1+d(x,x)} = \frac{0}{1} = 0.$$

Además, si $d^*(x, x) = 0$ entonces el numerador debe ser cero. Es decir, d(x, y) = 0 lo que implica que x = y.

$$d(x,y) = \frac{d(x,y)}{1 + d(x,y)} = \frac{d(y,x)}{1 + d(y,x)} = d(y,x)$$

Lo más díficil es la desigualdad triangular. Para esto considere la siguente cadena de equivalencias

$$\begin{array}{rcl} d^*(x,z) & \leq & d^*(x,y) + d^*(y,z) \\ \frac{d(x,z)}{1+d(x,z)} & \leq & \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)} \\ \\ \frac{d(x,z)}{1+d(x,z)} & \leq & \frac{d(x,y)+d(x,y)d(y,z)+d(y,z)+d(y,z)d(x,y)}{1+d(x,y)+d(y,z)+d(x,y)d(y,z)} \\ d(x,z) + d(x,y)d(x,z) + d(y,z) + & d(x,y)d(y,z)+d(y,z)+d(y,z)d(x,y) + \\ d(x,z) + d(x,y)d(y,z)d(x,z) & \leq & d(x,y)d(x,z)+2d(x,y)d(y,z)d(x,z)+d(y,z)d(x,z) \\ & d(x,y)+d(x,y)d(y,z) + \\ d(x,z) & \leq & d(y,z)+d(y,z)d(x,y)+d(x,y)d(y,z)d(x,z) \end{array}$$

Lo ultimo es cierto por la desigualdad triangular de d y porque los demás términos en la derecha son mayores o iguales a 0.

Ahora si tomamos D(x,y)=|x-y| (la métrica usual de \mathbb{R}), entonces podemos reescribir D como

$$D(x,y) = \sum_{i \in \omega} \frac{d^*(x_i, y_i)}{2^i}$$

Además obsérvese que d*(x,y) < 1 puesto que d(x,y) < 1 + d(x,y).

Por otra parte tenemos que la sumatoria $\sum (1/2)^i$ converge pues esta es la serie geométrica evaluada en 1/2 < 1. De hecho sabemos que

$$\sum_{i \in \omega} = \frac{1}{2^i} = \frac{1}{1 - \frac{1}{2}} = 2.$$

Entonces, podemos probar que cualquier sumatoria $\sum d^*(x_i, y_i)/2^i$) converge por test de la convergencia.

Esto porque para todo término tenemos que $d^*(x_i, y_i)/2^i < 1/2^i$, luego como $\sum 1/2^i$ converge, $\sum d^*(x_i, y_i)/2^i$ también.

Ahora vamos a demostrar que D es una métrica.

$$D(x,x) = \sum_{i \in \omega} \frac{d^*(x,x)}{2^i} = \sum_{i \in \omega} \frac{0}{2^i} = 0$$

También vemos que si D(x,y)=0 entonces $\forall i\in\omega\ d^*(x_i,y_i)=0$ por lo que $x_i=y_i$. Concluimos que x=y.

$$D(x,y) = \sum_{i \in \omega} \frac{d^*(x_i, y_i)}{2^i} = \sum_{i \in \omega} \frac{d^*(y_i, x_i)}{2^i} = D(y, x)$$

Resta por demostrar la desigualdad triangular. Para series de términos no negativos tenemos lo siguiente:

$$D(x,y) + D(y,z) = \sum_{i \in \omega} \frac{d^*(x_i, y_i)}{2^i} + \sum_{i \in \omega} \frac{d^*(y_i, z_i)}{2^i} = \sum_{i \in \omega} \left(\frac{d^*(x_i, y_i)}{2^i} + \frac{d^*(y_i, z_i)}{2^i} \right)$$

Por la desigualdad triangular de d^* tenemos que $d^*(x_i, z_i)/2^i \le d^*(x_i, y_i)/2^i + d^*(y_i, z_i)/2^i$. Por lo tanto concluimos que

$$D(x,z) = \sum_{i \in \mathcal{U}} \frac{d^*(x_i, z_i)}{2^i} \le \sum_{i \in \mathcal{U}} \left(\frac{d^*(x_i, y_i)}{2^i} + \frac{d^*(y_i, z_i)}{2^i} \right)$$

Por lo que la desigualdad triangular se cumple.

Ahora debemos demostrar que la topología que genera esta métrica es igual a la topología producto de \mathbb{R}^{ω} .

Primero nótese que

$$\sum_{i=n}^{\infty} \frac{1}{2^i} = \frac{1}{1 - \frac{1}{2}} - \frac{1 - \frac{1}{2}^n}{1 - \frac{1}{2}} = 2 - 2 * (1 - (1/2)^n) = 2(1/2)^n = (1/2)^{n-1}$$

Como una consecuencia de la propiedad arquimedeana para cualquer $\epsilon>0$ se puede encontrar un $N\in\omega$ tal que $1/2^{N-1}<\epsilon$.

Entonces sea B una bola de radio ϵ alrededor de un punto x y tomemos un punto $y \in B$. Sabemos que $D(x,y) < \epsilon$ luego sea $\delta = \epsilon - D(x,y) > 0$ y podemos tomar un $N \in \omega$ tal que $(1/2)^{N-1} < \delta/2$. Entonces puedo tomar como V_i el abierto $B_{\epsilon_i}(y_i)$ con la métrica d^* donde $\epsilon_i/2^i < \delta/2N$), si $i \leq N$. De lo contrario podemos tomar a V_i como \mathbb{R} . Luego el conjunto $S = \prod_{i \in \omega} V_i$ es tal que $b \in S \subseteq B$.

Tome un elemento $s \in S$. Tenemos que $D(s,y) = \sum_{i \in \omega} d^*(s_i,y_i)/2^i$. Ahora podemos separar esta suma como

$$D(s,y) = \sum_{i=0}^{N-1} d^*(s_i, y_i)/2^i + \sum_{i=N}^{\infty} d^*(s_i, y_i)/2^i$$

Por una parte tenemos que $d^*(s_i, y_i)/2^i < \epsilon_i/2^i < \delta/2N$. Luego,

$$\sum_{i=0}^{N-1} \frac{d^*(s_i, y_i)}{2^i} < \sum_{i=0}^{N-1} \frac{\delta}{2N} = \frac{N * \delta}{2N} = \frac{\delta}{2}.$$

Por la otra tenemos que

$$\sum_{i=N}^{\infty} d^*(s_i, y_i)/2^i < \sum_{i=N}^{\infty} \frac{1}{2^i} = \frac{1}{2}^{N-1} < \delta/2.$$

Por lo tanto, tenemos que D(s,y) < delta.

Finalmente por desigualdad triangular concluimos que

$$D(s,x) \le D(s,y) + D(x,y) < \delta + D(x,y) = \epsilon - D(x,y) + D(x,y) = \epsilon$$