University of Copenhagen

Applied High Performance Computing

Author: William Henrich Due

1 Definitions

Definition 1.1 (Union-Find). The union-find data structure U represents a partition of a set S if:

- 1. $a \neq \emptyset$ for all $a \in \mathcal{C}(U)$
- 2. $a \cap b = \emptyset$ for all $a, b \in \mathcal{C}(U)$ where $a \neq b$
- 3. $\bigcup_{a \in \mathcal{C}(U)} a = S$

where $\mathcal{C}: \mathbb{P}(U) \to \mathbb{P}(\mathbb{P}(S))$ converts the data structure U into a partition of S.

Definition 1.2 (Union-Find Set). The set $\mathbb{U}_n := \mathbb{P}(\mathbb{N}_{\leq n} \times (\mathbb{N}_{\leq n} \cup \{0\}))$ is the set of all union-find data structures of size n. Each element $U \in \mathbb{U}_n$ is a set containing tuples (i, p) where:

- 1. $i \in \mathbb{N}_{\leq n}$ is a unique index identifying the element i.e. $|\{\pi_1(u) : u \in U\}| = n$.
- 2. $p \in \mathbb{N}_{\leq n} \cup \{0\}$ is the index of the parent element. If p = 0 then the element is a root.

Definition 1.3 (Cycle). A cycle exists in a set $U \in \mathbb{U}_n$ if:

- 1. i = p for some $(i, p) \in U$ or
- 2. $p_1 = i_2, p_2 = i_3, \dots, p_m = i_1$ for some $(i_1, p_1), (i_2, p_2), \dots, (i_m, p_m) \in U$ where m > 1.

Definition 1.4 (Find Root). The root of an element i in a cycleless union-find data structure $U \in \mathbb{U}_n$ is defined as:

$$\mathcal{P}_{U}(i) = \begin{cases} i & \text{if } p = 0 \\ \mathcal{P}_{U}(p) & \text{if } p \neq 0 \end{cases} \text{ where } (j, p) \in U \land i = j.$$

Proposition 1.1 (Termination of Find Root). The function $\mathcal{P}_U(i)$ defined in definition 1.3 terminates for all i where $1 \leq i \leq n$ if $U \in \mathbb{U}_n$ has no cycles.

Proof. The proof is trivially true.

Proposition 1.2 (Representation of Union-Find). A cycleless union-find structure $U \in \mathbb{U}_n$ fulfills definition 1.1 for the following conversion function:

$$\mathcal{C}(U) := \{ \{ f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p \} : p \in \mathbb{N}_{\leq n} \} \setminus \{\emptyset\}$$

where $f: \mathbb{N}_{\leq n} \to S$ is a bijective function mapping indices to elements in the set S.

Proof. Let $U \in \mathbb{U}_n$ be a union-find data structure fulfilling the three criteria in proposition 1.2. We will show that U fulfills the three criteria in definition 1.1.

- 1. By definition of \mathcal{C} it is clear that $a \neq \emptyset$ for all $a \in \mathcal{C}(D)$ since \mathcal{C} only includes non-empty sets.
- 2. Let $a, b \in \mathcal{C}(D)$ where $a \neq b$ then by definition $a = \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p_a\}$ and $b = \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = p_b\}$ for some $p_a, p_b \in \mathbb{N}_{\leq n}$ where $p_a \neq p_b$. Since if $p_a = p_b$ then a = b it follows that $a \cap b = \emptyset$.
- 3. Let $s \in S$ then since U is a union-find data structure of size n there exists $(i, p, s) \in U$ for some i and p. Let $r = \mathcal{P}_U(i)$ then by definition of \mathcal{C} it follows that $s \in \{f(\pi_1(u)) : u \in U \land \mathcal{P}_U(\pi_1(u)) = r\} \in \mathcal{C}(U)$. Since s was arbitrary it follows that $\bigcup_{a \in \mathcal{C}(U)} a = S$.

Definition 1.5 (Equivalence Set). The set of equivalent indices of an element i in a cycleless union-find data structure $U \in \mathbb{U}_n$ is defined as:

$$\mathcal{E}_U(i) := \{j : j \in \mathbb{N}_{\leq n} \land \mathcal{P}_U(j) = \mathcal{P}_U(i)\}$$

Definition 1.6 (Equivalent Union-Find Structures). Two cycleless union-find data structures $U, U' \in \mathbb{U}_n$ are equivalent if:

$$\mathcal{E}_{U'}(i) = \mathcal{E}_{U}(i)$$
 for all $i \in \mathbb{N}_{\leq n}$

Definition 1.7 (Well-formed Union). For a cycleless union-find data structure $U \in \mathbb{U}_n$ the union of two elements $i \sim j$ where $i, j \in \mathbb{N}_{\leq n}$ is well-formed if it results in a cycleless union-find data structure $U' \in \mathbb{U}_n$ such that:

- 1. $\mathcal{E}_{U'}(i) = \mathcal{E}_{U}(i) \cup \mathcal{E}_{U}(j)$ and
- 2. $\mathcal{E}_{U'}(k) = \mathcal{E}_{U}(k)$ for all $k \in \mathbb{N}_{\leq n} \setminus \{i, j\}$.

Definition 1.8 (Sequential Union).