TYPE YOUR NAME HERE HW 23: 4.18 - 4.23 M328K April 19th, 2012

4.18 Theorem. Let p be a prime and a be an integer. If (a, p) = 1, then $\operatorname{ord}_n(a)$ divides p-1, that is, $\operatorname{ord}_p(a)|p-1$. Proof. **4.19 Exercise.** Compute each of the following without the aid of a calculator or computer. 1. $512^{372} \pmod{13}$. 2. $3444^{3233} \pmod{17}$. 3. $123^{456} \pmod{23}$. Solution. **4.20 Exercise.** Find the remainder upon division of 314^{159} by 31. Solution. **4.21 Theorem.** Let n and m be natural numbers that are relatively prime, and let a be an integer. If $x \equiv a \pmod{n}$ and $x \equiv a \pmod{m}$, then $x \equiv a \pmod{nm}$. Proof. **4.22 Exercise.** Find the remainder when 4^{72} is divided by 91 (= $7 \cdot 13$). Solution. **4.23 Exercise.** Find the natural number k < 117 such that $2^{117} \equiv k \pmod{117}$. (Notice that 117 is not prime.)

Solution.