Prova 2

Algoritmos e Estruturas de Dados I - turma TE

Professor: Pedro O.S. Vaz de Melo

9 de maio de 2014

Nome:	
	<u> </u>
	escrevendo o meu nome eu juro que seguirei o código de honra

Código de Honra para este exame:

- Não darei ajuda a outros colegas durante os exames, nem lhes pedirei ajuda;
- não copiarei nem deixarei que um colega copie de mim;
- não usarei no exame elementos de consulta não autorizados.

Informações importantes:

- Em questões que pede um **programa**, este deve ser completo, com bibliotecas (incluindo, quando necessário, a biblioteca **prova2.h**), função main, etc. Se deve ser feita uma **função**, somente a função é suficiente. Se deve ser feito um **procedimento**, somente o procedimento é suficiente.
- A interpretação das questões da prova faz parte do critério de avaliação. Caso tenha dúvida sobre a sua interpretação de uma determinada questão, escreva as suas suposições na resolução da mesma.

Referências:

Função/Operador	Descrição	Exemplo
rand()	gera um número aleatório inteiro entre 0 e RAND_MAX	rand() pode gerar 41
RAND_MAX	o maior número possível que pode ser gerado por rand()	RAND_MAX = 32767

- 1. (13 points) Uma empresa o contratou para desenvolver um sistema social baseado em localizações. Assim, faça os exercícios abaixo:
 - a. (3 pts) Implemente os seguintes novos tipos de dados:
 - Local, que tem os campos idLocal (um número inteiro maior ou igual a zero) e categoria (0 = restaurante, 1 = atração ao ar livre, 2 = casa de shows).
 - Data, que tem os campos dia, mes e ano.
 - Checkin, que tem os campos localCheckin (do tipo Local), dataCheckin (do tipo Data) e codigoUsuario (um número inteiro maior ou igual a zero).
- b. (4 pts) Implemente uma função de nome randCheckin que recebe um Checkin como parâmetro (**por referência**) e preenche todos os seus campos com valores aleatórios. Considere que o a data do Checkin pode ser de 01/01/2012 a 30/12/2013. Para simplificar, considere que todos os meses têm 30 dias.
- c. $(6 \ pts)$ Implemente uma função de nome num PessoasDistintas que recebe um vetor de Chekins e a quantidade n de elementos desse vetor. Essa função deve retornar o número de pessoas distintas que visitaram restaurantes no mês de maio de 2013. Considere que o número máximo de usuários suportado pelo sistema é 100000.
- 2. (3 points) Escreva um programa para ler as informações de 10000 Checkins aleatórios e imprimir o número de pessoas distintas que visitaram restaurantes no mês de maio de 2013.

3. (6 points) Uma rede social de amizades pode ser representada por uma matriz de adjacência $n \times n$ de n colunas e n linhas. Cada linha (ou coluna) i contém as relações da pessoa n_i . Considere a matriz de adjacência abaixo:

id	n_0	n_1	n_2	n_3	n_4
n_0	0	1	1	0	1
n_1	1	0	0	1	0
n_2	1	0	0	0	0
n_3	0	1	0	0	1
n_4	1	0	0	1	0

Esta matriz representa uma rede social entre 5 pessoas: n_0, n_1, n_2, n_3 e n_4 . Além disso, quando a posição (i,j) da matriz é 1, então as pessoas n_i e n_j são amigas entre si. Caso a posição (i,j) da matriz é 0, então n_i e n_j não são amigas. Observe que a pessoa n_0 é amiga das pessoas n_1, n_2 e n_4 , mas não é amiga da pessoa n_3 .

Assim, implemente uma **função** que recebe uma matriz de adjacência M (já preenchida) e o número de pessoas n contidas nela e que retorna 1 se há nessa rede social uma pessoa sem amigos e 0 caso contrário. Na matriz exemplo, a sua função deve retornar 0, pois todas as pessoas tem amigos. Além disso, considere que o número máximo de usuários suportado pelo sistema é 100000 (este número só é necessário para descrever a matriz como parâmetro). O protótipo dessa função deve ser:

int existeIsolados(int M[][100000], int n);

4. (6 points) Escreva uma função RECURSIVA de nome **somaNaturais** que retorna a soma de todos os números naturais de 1 até n. O procedimento não deve fazer uso de estruturas de repetição (while, for etc) nem de variáveis globais. O protótipo dessa função deve ser:

int somaNaturais(int n);