KOSHA GUIDE

P - 88 - 2023

사고피해영향 평가에 관한 기술지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임

안전보건기술지침의 개요

○ 작성자 : 권 혁 면 ○ 개정자 : 이 정 석

한국산업안전보건공단 전문기술실 오상규

- 제·개정 경과
 - 1999년 11월 화학안전분야 기준제정위원회 심의
 - 1999년 12월 총괄기준제정위원회 심의
 - 2005년 11월 KOSHA Code 화학안전분야 제정위원회 심의
 - 2005년 12월 KOSHA Code 총괄제정위원회 심의
 - 2012년 7월 총괄 제정위원회 심의(개정,법규개정조항 반영)
 - 2023년 7월 화학안전분야 표준제정위원회 심의(개정, 법규개정조항 반영)
- 관련규격 및 자료
 - CCPS, "Guideline for Chemical Process Quantitative Risk Analysis"
 - 캠브리지대학교, "Probit Analysis"
- 관련법규·규칙·고시 등
 - 산업안전보건법 시행규칙 제50조(공정안전보고서의 세부내용 등)
- 안전보건기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고 하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

<u>목 차</u>

1. 목적	· 1
2. 적용범위	· 1
3. 용어의 정의	· 1
4. 사고영향 평가절차	· 1
5. 화재시 피해영향 산정	.3
6. 폭발시 영향 산정	• 4
7. 독성물질 누출시 영향 산정	.6
<부록 1> 복사열 영향평가 예시	8 ·
<부록 2> 폭발의 영향평가 예시	. 9
<부록 3> 독성물질 영향누출의 예시	11

사고피해영향 평가에 관한 기술지침

1. 목적

이 지침은 중대산업사고 예방을 위하여 사업장에서 사고피해영향을 평가하는데 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

산업안전보건기준에 관한 규칙 별표 1의 위험물질에 의한 화재, 폭발 또는 누출시의 사고피해영향 평가시 적용한다.

3. 용어의 정의

- (1) "프로빗 (Probit)분석법"이란 가상사고의 피해크기와 피해영향 가능성의 연 관관계를 실험식을 이용하여 분석하는 방법을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업 안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 사고영향 평가절차

사고영향 평가절차는 다음과 같다.

4.1 피해예측

화재, 폭발 또는 독성물질 누출 등과 같은 중대산업사고 발생시 사업장내의 근로자, 인근주민 또는 주변 시설물 등에 미칠 수 있는 사고의 크기를 KOSHA GUIDE "사고피해예측기법"에 따라 계산한다.

4.2 영향평가

(1) 프로빗 변수와 백분율 값과의 관계를 나타낸 것이며 다음과 같이 표현된다.

$$P = 50 \left[1 + \frac{Pr - 5}{|Pr - 5|} \operatorname{erf} \left(\frac{|Pr - 5|}{\sqrt{2}} \right) \right]$$
 (1)

여기서, P = 백분율(Percentage)

Pr = 프로빗 값(Probit variable)

erf = 에러함수(Error function)

또한, 식(1)을 도식화하면 <그림 1>과 같다.

<그림 1> 프로빗값과 백분율의 상관관계도

- (2) 프로빗 값을 백분율로 확산하기위해서는 <표 1>의 확산표를 활용한다.
- (3) 영향평가 결과를 얻기 위해서는 화재, 폭발 또는 독성물질 누출 등 사고형 태에 맞는 프로빗 계산식을 5항, 6항 그리고 7항에서 선정한 후 4.1항에서 산정된 피해의 크기 및 노출시간 등을 반영하여 프로빗 값을 계산한다.
- (4) 계산된 프로빗 값을 <표 1>에 대입하면 백분율로 환산한 값을 얻게 되며 이는 화재, 폭발 또는 누출로 인해 인체나 구조물이 부상, 사망 또는 손상에 이르는 확률을 백분율로 쉽게 표현한 것이다.

백 분 율 프로빗 (% 값)	0	1	2	3	4	5	6	7	8	9
0	_	2.67	2.95	3.12	3.25	3.36	3.45	3.52	3.59	3.66
10	3.72	3.77	3.82	3.87	3.92	3.96	4.01	4.05	4.08	4.12
20	4.16	4.19	4.23	4.26	4.29	4.33	4.36	4.39	4.42	4.45
30	4.48	4.50	4.53	4.56	4.59	4.61	4.64	4.67	4.69	4.72
40	4.75	4.77	4.80	4.82	4.85	4.87	4.90	4.92	4.95	4.97
50	5.00	5.03	5.05	5.08	5.10	5.13	5.15	5.18	5.20	5.23
60	5.25	5.28	5.31	5.33	5.36	5.39	5.41	5.44	5.47	5.50
70	5.52	5.55	5.58	5.61	5.64	5.67	5.71	5.74	5.77	5.81
80	5.84	5.88	5.92	5.95	5.99	6.04	6.08	6.13	6.18	6.23
90	6.28	6.34	6.41	6.48	6.55	6.64	6.75	6.88	7.05	7.33
%	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
99	7.33	7.37	7.41	7.46	7.51	7.58	7.65	7.65	7.88	8.09

<표 1> 프로빗값과 백분율의 상관관계표

5. 화재시 피해영향 산정

열복사로 인한 사람의 상해정도는 화재로 인한 화염에 노출된 시간과 복사열 강도값의 함수인 프로빗 분석 계산식을 이용하여 산정 한다.

5.1 인체의 영향

(1) 1도 화상의 경우

$$Pr = -39.83 + 3.0186 \ln(tQ^{4/3})$$
 (2)

(2) 2도 화상의 경우

$$Pr = -43.14 + 3.0186 \ln(tQ^{4/3}) \tag{3}$$

(3) 화재 사망의 경우

$$P_{r} = -36.38 + 2.56 \ln(t Q^{4/3})$$
 (4)

여기서, P_r = 프로빗(Probit) 값

t = 노출 시간 [s]

Q = 복사열강도[W/m²]

6. 폭발시 영향 산정

폭발사고는 비산물 등에 의한 직접적인 피해와 폭풍 과압의 영향에 의한 간접적인 피해를 야기하며 과압 또는 임펄스(Impulse)의 함수인 프로빗 계산식을 이용하여 산정한다.

- 6.1 인체 영향평가
- 6.1.1 아이젠버그(Eisenberg) 계산식
 - (1) 폐출혈로 인한 사망의 경우 Pr = -77.1 + 6.91 lnPs
 - (2) 고막파열의 경우 P_r = -15.6 + 1.93 lnP_s (6)

(5)

- (3) 충격으로 인한 사망의 경우 P_r = -46.1 + 4.82 lnI_s (7)
- (4) 충격으로 인한 부상의 경우 P_r = -39.1 + 4.45 lnI_s (8)
- (5) 작은 파편의 비산으로 인한 부상의 경우 Pr = -27.1 + 4.26 lnI_s (9)

여기서 $P_s = 피크과압(N/m^2)$ $I_s = 임펄스(N \cdot s/m^2)$

- 6.1.2 티엔오(TNO) 계산식
 - (1) 폐출혈로 인한 사망의 경우

$$P_{\rm r} = 5.0 - 5.74 \ln\left(\frac{4.2}{P_{\rm h}} + \frac{1.3}{I_{\rm g}}\right)$$
 (10)

(2) 고막파열의 경우

$$P_{\rm r} = -12.6 + 1.524 \ln P_{\rm s}$$
 (11)

(3) 머리 충격의 경우

$$P_{r} = 5.0 - 8.49 \ln \left(\frac{2.43 \times 10^{3}}{P_{s}} + \frac{4 \times 10^{8}}{P_{s} I_{s}} \right)$$
 (12)

(4) 몸 전체 충격인 경우

$$P_{r} = 5.0 - 2.44 \ln \left(\frac{7.38 \times 10^{3}}{P_{s}} + \frac{1.3 \times 10^{9}}{P_{s}I_{s}} \right)$$
 (13)

여기서
$$P_h = \frac{P}{P_a}$$

$$I_{q} = \frac{I_{s}}{P_{a}^{1/2}m_{b}^{1/3}}$$

$$P = P_s + P_d (N/m^2)$$

P_d = 동압(Dynamic load) (N/m²)

 $P_a = 대기암, 1.013 \times 10^5 (N/m^2)$

Is = 양압부의 사고 충격량 (N·s/m²)

m_b = 인체의 질량 (kg)

- 6.2 구조물 영향평가
- 6.2.1 아이젠버그(Eisenberg) 계산식
 - (1) 구조물 손상의 경우

$$P_{r} = -23.8 + 2.92 \ln P_{s} \tag{14}$$

(2) 유리파손의 경우

$$P_{r} = -18.1 + 2.79 \ln P_{s} \tag{15}$$

6.2.2 티엔오(TNO) 계산식

(1) 약간의 손상

$$P_{r} = 5.0 - 0.26 \ln \left[\left(\frac{4,600}{P_{s}} \right)^{3.9} + \left(\frac{110}{I_{s}} \right)^{5.0} \right]$$
 (16)

(2) 중대한 손상

$$P_{\rm r} = 5.0 - 0.26 \ln \left[\left(\frac{17,500}{P_{\rm s}} \right)^{8.4} + \left(\frac{290}{I_{\rm s}} \right)^{9.3} \right]$$
 (17)

(3) 건물붕괴

$$P_{r} = 5.0 - 0.22 \ln \left[\left(\frac{40,000}{P_{s}} \right)^{7.4} + \left(\frac{460}{I_{s}} \right)^{11.3} \right]$$
 (18)

7. 독성물질 누출시 영향 산정

독성물질누출에 의한 사람의 상해정도는 누출물질에 노출된 시간과 독성치에 비례하여 다음과 같이 계산한다.

- 7.1 독성부하(Toxic load, T_L) 계산
 - (1) 시간에 관계없이 일정한 농도의 경우

시간에 관계없이 일정한 농도인 경우 독성부하는 다음식으로 계산한다.

$$T_{L} = C^{n} t_{e}$$
 (19)

여기서, $T_L = 독성부하(ppm \cdot 분)$ $C = 폭로시간(t_e)$ 동안 독성물질 농도(ppm) n = 특정 독성물질의 상수, <표 3> 참조 $t_e = 폭로시간(분)$

(2) 농도가 시간에 따라 변하는 경우

시간에 따라 농도가 변하는 경우 독성부하는 다음 식으로 계산한다.

$$T_L \simeq \sum_{i=1}^{m} C_i^n t_{ei}$$
 (20)
여기서, $T_L = 독성부하(ppm \cdot 분)$ $C = 폭로시간(t_e)동안 독성물질 농도(ppm)$ $n = 특정 독성물질의 상수, <표 3> 참조 $t_{ei} = 폭로시간(분)$$

7.2 프로빗 모델을 이용한 피해영향평가

독성물질 누출로 인한 피해영향을 계산하기 위해 사용되는 프로빗 분석식은 다음과 같다.

<표 3> 독성 물질에 대한 프로빗 계산식의 상수

물 질 명	미국 ह	대안경비다	(1980)	월드뱅크(1988)			
골 설 명	A _t (ppm)	B _t (ppm)	n	A _t (ppm)	B _t (ppm)	n	
아크롤레인	-9.931	2.49	1	-9.93	2.05	1.0	
아클릴로니트릴	-29.42	3.008	1.43				
암모니아	-35.9	1.85	2	-9.82	0.71	2.00	
벤젠	-109.78	5.3	2				
브롬	-9.04	0.92	2				
일산화탄소	-37.98	3.7	1				
사염화탄소	-6.29	0.408	2.50	0.54	1.01	0.5	
염소	-8.29	0.92	2	-5.3	0.5	2.75	
포름알데하히드	-12.24	1.3	2				
염화수소	-16.85	2.00	1.00	-21.76	2.65	1.00	
시안화수소	-29.42	3.008	1.43				
불화수소	-25.87	3.354	1.00	-26.3	3.35	1.0	
황화수소	-31.42	3.008	1.43				
메틸브로민화물	-56.81	5.27	1.00	-19.92	5.16	1.0	
메틸이소시아네이트	-5.642	1.637	0.653				
이산화질소	-13.79	1.4	2				
포스겐	-19.27	3.686	1	-19.27	3.69	1.0	
산화프로필렌	-7.415	0.509	2.00				
아황산가스	-15.67	2.10	1.00				
톨루엔	-6.764	0.408	2.50				

<부록 1>

복사열 영향평가예시

화재로 인한 복사열이 1500 W/m^2 인 경우 5분 동안 노출된 인체의 피해 영향범위를 추정

1. 1도 화상의 경우 : 식(2) 사용

 $P_r = -39.83 + 3.0186 \ln(t Q^{4/3})$

t = 5 min = 300s

 $Q = 1.500W/m^2$

 $P_r = -39.83 + (3.0186) \ln[(300)(1500)^{4/3}]$

P_r = 6.82 ⇒ 96~97 %(1도 화상의 가능성)

2. 2도 화상의 경우 : 식(3) 사용

 $P_r = -43.14 + 3.0186 \ln(t Q^{4/3})$

 $P_r = -41.14 + (3.0186) \ln[(300)(1500)^{4/3}]$

 P_r = $3.51 \Rightarrow 7 \% (2도 화상의 가능성)$

3. 화상 사망의 경우 : 식(4) 사용

 $P_r = -36.38 + 2.56 \ln(t Q^{4/3})$

 $P_r = -36.38 + (2.56) \ln[(300)(1500)^{4/3}]$

P_r = 3.18 ⇒ 3~4 %(화상 사망의 가능성)

<부록 2>

폭발의 영향평가예시

인화성물질의 폭발에 의한 영향을 조사하기 위해 폭발압을 계산하였더니 피크과압이 7 psi, 동압이 1 psi, 양압부의 사고 임펄스가 50 psi-msec을 일으킨 폭발에 관련된 인체의 손상과 구조물 피해의 영향범위를 추정(단, 개인 목표물의 질량이 150 파운드이고 서있는 자세이다. 그리고 가까운 주변에 어떠한 수직표면도 없다.)

- 1. 인체의 손상
- 1.1 아이젠버그 프로빗 모델 적용
 - (1) 폐출혈로 인한 사망의 경우 : 식(5) 사용

$$P_r = -77.1 + 6.91 \ln P_s$$

$$P_s = 7psi = 4.8 \times 10^4 \text{ (N/m}^2\text{)}$$

$$P_r = -77.1 + (6.91) \ln(4.8 \times 10^4)$$

$$P_r = -2.67 \Rightarrow$$
 폐출혈로 인한 가능성은 거의 없음

(2) 고막 파열의 경우 : 식(6) 사용

$$P_r = -15.6 + 1.93 \ln P_s$$

$$P_r = -15.6 + (1.93) \ln(4.8 \times 10^4)$$

(3) 충격으로 인한 사망의 경우 : 식(7) 사용

$$P_r = -46.1 + 4.82 \ln I_s$$

$$I_s = 345(N-sec/m^2)$$

$$P_r = -46.1 + (4.82) \ln(345)$$

$$P_r = -17.9 \Rightarrow 충격으로 인한 사망 가능성은 거의 없음$$

(4) 충격으로 인한 부상의 경우 : 식(8) 사용

$$P_r = -39.1 + 4.45 \ln I_s$$

$$P_r = -39.1 + (4.45) \ln(345)$$

$$P_r = -13.1 \Rightarrow 충격으로 인한 부상 가능성은 거의 희박함$$

- 1.2 티엔오 프로빗 모델 적용
 - (1) 폐출혈로 인한 사망의 경우 : 식(10) 사용

$$P_{r} = 5.0 - 5.74 \ln \left[\frac{4.2}{P_{h}} + \frac{1.3}{I_{q}} \right]$$

$$P_h = \frac{P}{P_a} \text{ } \text{ } \text{ } I_q = \frac{I_s}{P_a^{\frac{1}{2}} m_h^{\frac{1}{2}}}$$

$$P = P_s + P_d = 8 \text{ psi} = 5.5 \times 10^4 (\text{N/m}^2)$$

$$P_a = 14.7psi = 1.013 \times 10^5 (N/m^2)$$

$$I_s = 50psi \cdot msec = 345 (N \cdot sec/m^2)$$

$$m_b = 150lb = 68(kg)$$

$$P_s = 7psi = 4.8 \times 10^4 (N/m^2)$$

$$P_{h} = \frac{(5.5 \times 10^{4})}{(1.013 \times 10^{5})} = 0.54$$

$$I_{q} = \frac{(345)}{(1.013 \times 10^{5})^{\frac{1}{3}} (68)^{\frac{1}{3}}} = 0.27$$

$$P_r = 5.0 - (5.74) \ln \left[\frac{(4.2)}{(0.54)} + \frac{(1.3)}{(0.27)} \right]$$

$$P_r = -9.54 \Rightarrow$$
 폐출혈로 인한 사망 가능성이 없음

(2) 고막 파열의 경우 : 식(11) 사용

$$P_r = -12.6 + 1.524 \ln P_s$$

$$P_r = -12.6 + (1.524) \ln(4.8 \times 10^4)$$

(3) 머리충격의 경우 : 식(12) 사용

$$P_{r} = 5.0-8.49 \ln \left[\frac{2.43 \times 10^{3}}{P_{s}} + \frac{4 \times 10^{8}}{P_{s}I_{s}} \right]$$

 $P_s = 4.8 \times 10^4 (N/m^2)$

 $I_s = 345(N-sec/m^2)$

$$P_{r} = 5.0 - (8.49) \ln \left[\frac{(2.43 \times 10^{3})}{(4.8 \times 10^{4})} + \frac{(4 \times 10^{8})}{(4.8 \times 10^{4})(345)} \right]$$

$$P_r = -22.1 \Rightarrow$$
 머리충격으로 인한 사망 가능성이 아주 희박함

(4) 몸전체 충격의 경우 : 식(13) 사용

$$P_{r} = 5.0-2.44 \ln \left[\frac{7.38\times10^{3}}{P_{s}} + \frac{1.3\times10^{9}}{P_{s}I_{s}} \right]$$

$$P_{r} = 5.0-(2.44) \ln \left[\frac{(7.38\times10^{3})}{(4.8\times10^{4})} + \frac{(1.3\times10^{9})}{(4.8\times10^{4})(345)} \right]$$

$$P_{r}$$
 = $-5.65 \Rightarrow$ 몸전체의 충격으로 치명상을 야기시킬 가능성이 매우 희박함

- 2. 구조물손상
- 2.1 아이젠버그 프로빗 모델적용
 - (1) 구조물 손상의 경우 : 식(14) 사용

 $P_r = -23.8 + 2.92 \ln P_s$

 $P_s = 4.8 \times 10^4 \text{N/m}^2$

P_r = 7.67 ⇒ 구조물 손상의 가능성이 99.6 %임.

(2) 유리파손의 경우 : 식(15) 사용

$$P_r = -18.1 + 2.79 \ln P_s$$

$$P_r = -23.8 + (2.92) \ln(4.8 \times 10^4)$$

$$P_r = -18.1 + (2.79) \ln(4.8 \times 10^4)$$

- 2.2 티엔오 프로빗 모델 적용
 - (1) 약간의 손상 : 식(16) 사용

$$P_{r} = 5.0-0.26 \ln \left[\left[\frac{4,600}{P_{s}} \right]^{3.9} + \left[\frac{110}{I_{s}} \right]^{5.0} \right]$$

$$P_s = 4.8 \times 10^4 \text{N/m}^2$$

$$I_s = 345N - sec/m^2$$

$$P_{\rm r} = 5.0 - (0.26) \ln \left[\left[\frac{4600}{4.8 \times 10^4} \right]^{3.9} + \left[\frac{110}{345} \right]^{5.0} \right]$$

$$P_r = 6.48 \Rightarrow$$
 경미한 파손의 가능성이 93 %임.

(2) 중대한 손상 : 식(17) 사용

$$P_{r} = 5.0-0.26 \ln \left[\left[\frac{17,500}{P_{s}} \right]^{8.4} + \left[\frac{290}{I_{s}} \right]^{9.3} \right]$$

$$P_r = 5.0 - (0.26) \ln \left[\left[\frac{17,500}{4.8 \times 10^4} \right]^{8.4} + \left[\frac{290}{345} \right]^{9.3} \right]$$

$$P_r$$
 = $5.42 \Rightarrow$ 심각한 구조물 파손의 가능성이 66 %임.

(3) 건물 붕괴 : 식(18) 사용

$$P_{r} = 5.0-0.22 \ln \left[\left[\frac{40,000}{P_{s}} \right]^{7.4} + \left[\frac{460}{I_{s}} \right]^{11.3} \right]$$

$$P_r = 5.0 - (0.22) \ln \left[\left[\frac{40,000}{4.8 \times 10^4} \right]^{7.4} + \left[\frac{460}{345} \right]^{11.3} \right]$$

<부록 3>

독성물질 영향누출의 예시

"○○"시에 소재하는 K 화학회사의 염소 저장탱크가 30분 동안 누출하여 염소가스 100 ppm에 노출될 경우 사망가능성 추정

1. 염소노출에 의한 사망가능성 : 식(21) 사용

$$P_r = A_t + B_t \ln[T_L]$$

Toxic load = $C^n t_e$

C = 100(ppm)

 $t_e = 30(min)$

n = 2

 $A_t = -8.29$

 $B_t = 0.92$

 $P_r = -8.29 + (0.92) \ln[(100)^2(30)]$

P_r = 3.31 ⇒ 사망 가능성이 4~5 % 임.

안전보건기술지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 안전보건공단 전문기술실 오상규

○ 개정사유 : 산업안전보건법 관련 법령조항 삭제

○ 주요 개정내용

- (1. 목적) 산업안전보건법 제 49조의2(공정안전보고서의 제출 등), 동법 시행령 제 33조의 7(공정안전보고서의 내용) 및 동법 시행규칙 제130조의 2 (공정안전보고서 세부내용 등)"법령 조항 삭제
- (2. 적용범위) 산업안전보건법 시행령 제33조의 6(공정안전보고서의 제출 대상)에서 규정한 사업장에서" 삭제