C4N2

November 8, 2017

1 Exercise Sheet 3: Multilayer Perceptrons and Backpropagation Algorithm

1.1 Exercise H3.2: MLP Regression

```
In [2]: #Necessary libraries
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib
    %matplotlib inline

In [3]: #Reading data
    regression_data = np.loadtxt('./RegressionData.txt')
    N = regression_data.shape[0]
    X = regression_data[:, 0].reshape(1, regression_data.shape[0])
    Y = regression_data[:, 1].reshape(1, regression_data.shape[0])

#Initialization
    def init_params():
        W1 = np.random.rand(1, 3) - 0.5
        bias1 = np.random.rand(3, 1) - 0.5
        W2 = np.random.rand(3, 1) - 0.5
```

```
bias2 = np.random.rand(1) - 0.5
    print (bias2)
    std_deviation = 0.25
    return W1, bias1, W2, bias2, std_deviation
#1. Forward propagation
def forward_propagation(W1, W2, bias1, bias2, X):
    hidden_input = W1.T.dot(X) - bias1
    hidden_output = np.tanh(hidden_input)
    output = W2.T.dot(hidden_output) - bias2
    return hidden_output, output
#2. Output error
def output_error(Y_estimate, Y):
    return 0.5*(np.sum((Y_estimate - Y)**2))
#3. Back propagation and 4. Weight Update
def bp():
    W1, bias1, W2, bias2, std_deviation = init_params()
    print (bias2)
    t = 0
    Errors = []
   Error_tmp = 0
    learning_rate = 0.5
    Y_{estimate} = 0
    while(t < 3000):
        hidden_output, Y_estimate = forward_propagation(W1, W2, bias1, bias2, X)
        if(len(Errors) == 0):
            Error_tmp = output_error(Y_estimate, Y)
        else:
            tmp_var = output_error(Y_estimate, Y)
            if(abs(Error_tmp - tmp_var) / tmp_var < 10e-5):</pre>
                break:
            else:
                Error_tmp = tmp_var
        Errors.append(Error_tmp)
        hidden_derivatives = - hidden_output**2 + 1
        error_output_layer = Y_estimate - Y
        error_hidden_layer = hidden_derivatives * W2.dot(error_output_layer)
        derivative_input_layer = - X.dot(error_hidden_layer.T) / (N * 1.0)
        derivative_hidden_layer = - hidden_output.dot(error_output_layer.T) / (N * 1.0)
        W1 = W1 + derivative_input_layer * learning_rate
        W2 = W2 + derivative_hidden_layer * learning_rate
        bias1 = bias1 + np.sum(error_hidden_layer, axis=1).reshape(3,1) * learning_rate/
        bias2 = bias2 + np.sum(error_output_layer)* learning_rate/(N*1.0)
    plt.plot(np.arange(0, len(Errors)), Errors)
    plt.show()
```

```
return W1, bias1, W2, bias2
```

```
#Plotting the output of hidden units for all inputs
        def plot_hidden_output():
            hidden_layer_output, y_pred = forward_propagation(W1, W2, bias1, bias2, X)
            plt.scatter(X.T, hidden_layer_output[0, :].T, color='r', label="w: " + str(W1[:, 0])
            plt.scatter(X.T, hidden_layer_output[1, :].T, color='g', label="w: " + str(W1[:, 1])
            plt.scatter(X.T, hidden_layer_output[2, :].T, color='b', label="w: " + str(W1[:, 2])
            plt.legend()
            plt.show()
        #Plotting the output values over the input space
        def plot_prediction():
            hidden_layer_output, y_pred = forward_propagation(W1, W2, bias1, bias2, X)
            plt.scatter(X.T, Y.T, color='r', marker="o", label="train")
            plt.scatter(X.T, y_pred.T, color='b', marker="x", alpha= 0.5, label="pred")
            plt.legend()
            plt.show()
1.1.1 a)
In [4]: W1, bias1, W2, bias2 = bp()
[-0.03715391]
[-0.03715391]
```


1.1.2 b)

In [5]: plot_hidden_output()

1.1.3 c)

In [6]: plot_prediction()

1.1.4 d)

```
In [7]: print ('First initial conditions')
    W1, bias1, W2, bias2 = bp()
    plot_hidden_output()
    plot_prediction()

    print ('Different random initial conditions')
    W1, bias1, W2, bias2 = bp()
    plot_hidden_output()
    plot_prediction()

First initial conditions
[ 0.3381478]
[ 0.3381478]
```


Different random initial conditions [-0.37201534]

Although the overall prediction of y is very similar in both MLPs, the output functions of the hidden neurons are completely different. This is caused by the random initialization of the weights: The weights are the starting point for gradient descent, which based on it finds different local optima.

1.1.5 e)

We know that the noise is Gaussian distributed, which makes big outliners very unlikely. Furthermore, the y T values vary in [1,1], thus quite strongly. Therefore, we want a cost functions that is strongly affected outliners.