The group G is isomorphic to the projective special linear group PSL(2,8). Ordinary character table of $G \cong PSL(2,8)$:

	1a	2a	3a	7a	7b	7c	9a	9b	9c
χ_1	1	1	1	1	1	1	1	1	1
χ_2	7	-1	-2	0	0	0	1	1	1
χ_3	7	-1	1	0	0	0	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$
χ_4	7	-1	1	0	0	0	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$
χ_5	7	-1	1	0	0	0	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$
χ_6	8	0	-1	1	1	1	-1	-1	-1
χ_7	9	1	0	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	0	0	0
χ_8	9	1	0	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	0	0	0
χ_9	9	1	0	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	0	0	0

Trivial source character table of $G \cong PSL(2.8)$ at n=2.

Trivial source character table of $G = \operatorname{PSL}(2,8)$ at $p = 2$:														
Normalisers N_i					N_1			$N_2 \mid N_3$	3		1	\bar{N}_4		
p-subgroups of G up to conjugacy in G					P_1			P_2 P_3	,		J	$\overline{P_4}$		
Representatives $n_j \in N_i$	1a $7a$	7c	7b	$\overline{}$ 3a	-9 a	9c	9b	1a 1a	$a \mid 1a$	7a 7	c 7 f	$\sqrt{-7b}$	7e	7d
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$		0	0	2	2	2	2	0 0	0	0	$\overline{)}$ 0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$					$-E(9)^2 - E(9)^3 - E(9)^6 - E(9)^7$	$E(9)^2 - E(9)^3 + E(9)^4 + E(9)^5 - E(9)^6 + E(9)^7$	$-E(9)^3 - E(9)^4 - E(9)^5 - E(9)^6$	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0	0) 0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	32 $E(7) + E(7)^3 + E(7)^4 + E(7)^6$	$E(7)^2 + E(7)^3 + E(7)^4 + E(7)^5$			$-E(9)^3 - E(9)^4 - E(9)^5 - E(9)^6$		$E(9)^2 - E(9)^3 + E(9)^4 + E(9)^5 - E(9)^6 + E(9)^7$	0 0	0	0) 0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	32 $E(7) + E(7)^2 + E(7)^5 + E(7)^6$	$E(7) + E(7)^3 + E(7)^4 + E(7)^6$		\int_{0}^{5} -1 $E($	$E(9)^2 - E(9)^3 + E(9)^4 + E(9)^5 - E(9)^6 + E(9)^7$	$-E(9)^3 - E(9)^4 - E(9)^5 - E(9)^6$	$-E(9)^2 - E(9)^3 - E(9)^6 - E(9)^7$	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0	0) 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	$16 E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	1	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^4 - E(9)^5$	$-E(9)^2 - E(9)^7$	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0	0) 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	1	$-E(9)^4 - E(9)^5$	$-E(9)^2 - E(9)^7$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	0 0	0	0	J 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	$16 E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	1	$-E(9)^2 - E(9)^7$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^4 - E(9)^5$	$\begin{vmatrix} 0 & 0 \end{vmatrix}$	0	0	J 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8 1	1	1	-1	-1	-1	-1	$0 \mid 0$	0	0	J 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	28 0	0	0	1	1	1	1	4 0	0	0	$\overline{)}$ 0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 2 \cdot \chi_8 + 2 \cdot \chi_9$	62 -1	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\overline{-1}$	$\overline{-1}$	2	2	2	6 2	0	0	$\overline{)}$ 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		1	1	1	1	1	1	1 1	1	1	1 1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$		$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	0	0	0	0	1 1		$E(7)^4$ $E($		$7)^5 E(7)^2$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	9 $E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	0	0	0	0	1 1				$E(7)^3$ $E(7)^4$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$		$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	0	0	0	0	1 1				/ / /		\ /
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	0	0	0	0	1 1				$(7)^4 E(7)^3$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	9 $E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	0	0	0	0	1 1 1				$E(7)^3$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	9 $E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	0	0	0	0	1 1	1	$E(7)^5$ $E(7)^5$	$(7)^3 E(7)$	$E(7)^6$	$E(7)^4$	$E(7)^2$

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(2,7)(3,5)(4,6)(8,9)]) \cong C2$

 $P_3 = Group([(2,3)(4,8)(5,7)(6,9),(2,9)(3,6)(4,5)(7,8)]) \cong C2 \times C2$

 $P_4 = Group([(2,7)(3,5)(4,6)(8,9),(2,3)(4,8)(5,7)(6,9),(2,9)(3,6)(4,5)(7,8)]) \cong C2 \times C2 \times C2$

$$\begin{split} N_1 &= Group([(1,2)(3,4)(6,7)(8,9),(1,3,2)(4,5,6)(7,8,9)]) \cong PSL(2,8) \\ N_2 &= Group([(2,7)(3,5)(4,6)(8,9),(2,3)(4,8)(5,7)(6,9),(2,4)(3,8)(5,9)(6,7)]) \cong C2 \times C2 \times C2 \\ N_3 &= Group([(2,9)(3,6)(4,5)(7,8),(2,3)(4,8)(5,7)(6,9),(2,4)(3,8)(5,9)(6,7)]) \cong C2 \times C2 \times C2 \\ N_4 &= Group([(2,9)(3,6)(4,5)(7,8),(2,3)(4,8)(5,7)(6,9),(2,7)(3,5)(4,6)(8,9),(3,4,6,9,5,8,7)]) \cong (C2 \times C2 \times C2) : C7 \end{split}$$