A Lego-Brick Approach to Lossy Source Coding

Nadim Ghaddar University of California San Diego

Collaborators: Shouvik Ganguly & Lele Wang & Young-Han Kim

Graduation-Day Talk
Information Theory and Applications (ITA) Workshop

May 2022

Lossy Source Coding Problem

Setup:

- Compression of a source with some less-than-perfect fidelity
- Encoder g, decoder ψ , rate R, distortion level D
- Problem: Given (n, R, θ, D) , design (g, ψ) s.t. $\frac{1}{n} E[d_H(X^n, \widehat{X}^n)] \leq D$

Lossy Source Coding Problem

- Setup:
 - Compression of a source with some less-than-perfect fidelity
 - Encoder g, decoder ψ , rate R, distortion level D
 - Problem: Given (n, R, θ, D) , design (g, ψ) s.t. $\frac{1}{n} E[d_H(X^n, \widehat{X}^n)] \leq D$

$$X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$$
 $g M \in [2^{nR}]$ $\psi \widehat{X}^n$

• Rate-distortion bound: $R \ge R(D) \triangleq \max\{H(\theta) - H(D), 0\}$

Lossy Source Coding Problem

- Setup:
 - Compression of a source with some less-than-perfect fidelity
 - Encoder g, decoder ψ , rate R, distortion level D
 - Problem: Given (n, R, θ, D) , design (g, ψ) s.t. $\frac{1}{n} E[d_H(X^n, \widehat{X}^n)] \leq D$

$$X^n \stackrel{\text{iid}}{\sim} \operatorname{Bern}(\theta)$$
 $g M \in [2^{nR}]$ ψ \widehat{X}^n

- Rate-distortion bound: $R \ge R(D) \triangleq \max\{H(\theta) H(D), 0\}$
- Coding schemes based on point-to-point channel codes:
 - Trellis-based quantizers [Viterbi-Omura'74]
 - LDPC codes with large CN degrees and optimal encoding [Matsunaga-Yamamoto'03]
 - LDGM codes with message-passing encoding [Wainwright-Maneva'05]
 - Polar codes [Korada-Urbanke'10]
 - <u>. . . .</u>

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

"Lego-brick" approach to coding:

Assemble codes in one communication setting \implies A code in a different setting

Lego-Brick Approach to Coding

Question: What properties should P2P codes satisfy to be used for lossy source coding?

"Lego-brick" approach to coding:

Assemble codes in one communication setting \implies A code in a different setting

For a given coding problem,

- What "Lego bricks" to assemble, and what properties should they satisfy?
- How to assemble Lego bricks?
- How do performance guarantees translate?

Lego Bricks

Basic Lego Bricks:

- P2P code (H, ϕ) for symmetric DMC
- Parity-check matrix H, decoder ϕ
- Dimension k, blocklength n
- Probability of error ϵ
- . . .

- Shared random dither
- Interleaver

Lego Bricks

• Basic Lego Bricks:

- P2P code (H, ϕ) for symmetric DMC
- Parity-check matrix H, decoder ϕ
- Dimension k, blocklength n
- Probability of error ϵ
- · · ·

- Shared random dither
- Interleaver

• Notation: WLOG, let $H = \begin{bmatrix} A & B \end{bmatrix}$ where B is nonsingular, and denote

$$\widetilde{H} = \begin{bmatrix} \mathbf{0} \\ B^{-1}H \end{bmatrix}.$$

- Lossy source coding problem:
 - Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
 - Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- Approach: Target a conditional distribution $p(x|\hat{x}) \sim BSC(D)$.

- Lossy source coding problem:
 - Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
 - Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- Approach: Target a conditional distribution $p(x|\hat{x}) \sim \mathrm{BSC}(D)$.
- Lego bricks:
 - 1. A (k_1, n, ϵ) P2P code (H_1, ϕ_1) for BSC (α) , where $\alpha = \frac{\theta D}{1 2D}$

- Lossy source coding problem:
 - Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
 - Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- Approach: Target a conditional distribution $p(x|\hat{x}) \sim \mathrm{BSC}(D)$.
- Lego bricks:
 - **1.** A (k_1, n, ϵ) P2P code (H_1, ϕ_1) for BSC (α) , where $\alpha = \frac{\theta D}{1 2D}$
 - 2. A (k_2, n, δ) P2P code (H_2, ϕ_2) for

$$q(x, v | \hat{x}) \triangleq p_{X, \hat{X}}(\hat{x} \oplus v, x)$$

s.t. for $X^n \stackrel{\text{iid}}{\sim} \operatorname{Bern}(\theta)$, $V^n \stackrel{\text{iid}}{\sim} \operatorname{Bern}(1/2)$ and $U^n = \phi_2(X^n, V^n) \oplus V^n$, we have

$$d_{TV}(p_{X^n,U^n},\prod p_{X,\widehat{X}}) \leq \delta$$
 (*)

- Lossy source coding problem:
 - Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
 - Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- Approach: Target a conditional distribution $p(x|\hat{x}) \sim \mathrm{BSC}(D)$.
- Lego bricks:
 - 1. A (k_1, n, ϵ) P2P code (H_1, ϕ_1) for BSC (α) , where $\alpha = \frac{\theta D}{1 2D}$
 - 2. A (k_2, n, δ) P2P code (H_2, ϕ_2) for

$$q(x, v | \hat{x}) \triangleq p_{X, \hat{X}}(\hat{x} \oplus v, x)$$

s.t. for $X^n \stackrel{\text{iid}}{\sim} \operatorname{Bern}(\theta)$, $V^n \stackrel{\text{iid}}{\sim} \operatorname{Bern}(1/2)$ and $U^n = \phi_2(X^n, V^n) \oplus V^n$, we have

$$d_{TV}(p_{X^n,U^n},\prod p_{X,\widehat{X}}) \leq \delta$$
 (*)

- 3. The two codes are nested s.t. $H_1 = \begin{bmatrix} H_2 \\ Q \end{bmatrix}$.
- 4. A random dither shared between encoder and decoder

- Lossy source coding problem:
 - Let $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$.
 - Goal: Compression of X^n with expected distortion $D \in [0, \theta]$.
- Approach: Target a conditional distribution $p(x|\hat{x}) \sim \mathrm{BSC}(D)$.
- Lego bricks:
 - 1. A (k_1, n, ϵ) P2P code (H_1, ϕ_1) for BSC (α) , where $\alpha = \frac{\theta D}{1 2D}$
 - 2. A (k_2, n, δ) P2P code (H_2, ϕ_2) for

$$q(x, v | \hat{x}) \triangleq p_{X, \widehat{X}}(\hat{x} \oplus v, x)$$

s.t. for $X^n \stackrel{\text{iid}}{\sim} \text{Bern}(\theta)$, $V^n \stackrel{\text{iid}}{\sim} \text{Bern}(1/2)$ and $U^n = \phi_2(X^n, V^n) \oplus V^n$, we have

$$d_{TV}(p_{X^n,U^n},\prod p_{X,\widehat{X}}) \le \delta \tag{*}$$

- 3. The two codes are nested s.t. $H_1 = \begin{bmatrix} H_2 \\ Q \end{bmatrix}$.
- 4. A random dither shared between encoder and decoder
- Note:
- Channel q is symmetric with $\pi(x, v) = (x, v \oplus 1)$.

• Coding scheme:

6/9

Coding scheme:

6/9

Comments:

- V_2^n is a random dither shared between encoder and decoder.
- Sequence Uⁿ satisfies

$$d_{TV}(p_{X^n,U^n},\prod p_{X,\widehat{X}})\leq \delta$$

- $H_1 = \begin{bmatrix} A_1 & B_1 \end{bmatrix}$, where B_1 is nonsingular.
- Rate of coding scheme is $R = \frac{k_2 k_1}{n}$.
- Expected distortion is

$$\frac{1}{n} E[d_H(X^n, \widehat{X}^n)] \le D + \epsilon + 2\delta.$$

Coding scheme:

Comments:

- V_2^n is a random dither shared between encoder and decoder.
- Sequence Uⁿ satisfies

$$d_{TV}(p_{X^n,U^n},\prod p_{X,\widehat{X}})\leq \delta$$

- $H_1 = \begin{bmatrix} A_1 & B_1 \end{bmatrix}$, where B_1 is nonsingular.
- Rate of coding scheme is $R = \frac{k_2 k_1}{n}$.
- Expected distortion is

$$\frac{1}{n} E[d_H(X^n, \widehat{X}^n)] \le D + \epsilon + 2\delta.$$

Simulation Results

- Bern(0.3) source
- Use polar codes

Simulation Results

- Bern(0.3) source
- Use polar codes

1. Rate achievability:

• \exists a sequence of P2P codes for BSC(α) s.t. $\epsilon \to 0$ if and only if

$$\frac{k_1}{n} < 1 - H(\alpha) = 1 - H(\widehat{X})$$

1. Rate achievability:

• \exists a sequence of P2P codes for $BSC(\alpha)$ s.t. $\epsilon \to 0$ if and only if

$$\frac{k_1}{n} < 1 - H(\alpha) = 1 - H(\widehat{X})$$

• \exists a sequence of P2P codes for channel q satisfying (*) s.t. $\delta \to 0$ if and only if

$$\frac{k_2}{n} > 1 - H(\widehat{X} \mid X)$$

[Cuff'13, Yassaee-Aref-Gohari'14]

1. Rate achievability:

• \exists a sequence of P2P codes for BSC(α) s.t. $\epsilon \to 0$ if and only if

$$\frac{k_1}{n} < 1 - H(\alpha) = 1 - H(\widehat{X})$$

• \exists a sequence of P2P codes for channel q satisfying (*) s.t. $\delta \to 0$ if and only if

$$\frac{k_2}{n} > 1 - H(\widehat{X} \mid X)$$

[Cuff'13, Yassaee-Aref-Gohari'14]

• Rate $R = \frac{k_2 - k_1}{n}$ can be made arbitrarily close to $I(X; \widehat{X}) = H(\theta) - H(D)$.

1. Rate achievability:

• \exists a sequence of P2P codes for BSC(α) s.t. $\epsilon \to 0$ if and only if

$$\frac{k_1}{n} < 1 - H(\alpha) = 1 - H(\widehat{X})$$

• \exists a sequence of P2P codes for channel q satisfying (*) s.t. $\delta \to 0$ if and only if

$$\frac{k_2}{n} > 1 - H(\widehat{X} \mid X)$$

[Cuff'13, Yassaee-Aref-Gohari'14]

• Rate $R = \frac{k_2 - k_1}{n}$ can be made arbitrarily close to $I(X; \widehat{X}) = H(\theta) - H(D)$.

2. Avoiding nestedness:

- An alternative construction allows to avoid the nestedness condition
- Less implementation-friendly
- Has a block-Markov structure (inputs to one coding block depend on previous blocks)

nghaddar@eng.ucsd.edu Lossy Source Coding May 2022 8/9

Beyond Lossy Source Coding: Coding over Networks

9/9

Beyond Lossy Source Coding: Coding over Networks

- All coding schemes can be constructed starting from P2P symmetric channel codes.
- All constructions are rate-optimal if the constituent Lego bricks are rate-optimal.