Homework 14 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

May 28, 2024

- 1. Let $A_M = \{x \in E \mid f_M \text{ is discontinuous at } x\}$ and $A = \{x \in E \mid f \text{ is discontinuous at } x\}$. For any $M \in \mathbb{N}$, if x is a point that f_M is discontinuous at x, That means $f(x) \leq M$ and f is discontinuous at x. That is, $A_M \subseteq A$ for all M implies that $\bigcup A_m \subseteq A$. And for any $x \in A$, there exists a $N \in \mathbb{N}$ s.t. f(x) < N. Then, $x \in A_N$. Therefore, $A = \bigcup A_M$.
- 2. Since f is integrable, there exists a partition P s.t. $\int_0^1 f(x) \, dx L(f, P) \le \frac{\alpha}{4}$. Then, $\int_0^1 f(x) \, dx \le L(f, P) + \frac{\alpha}{4}$. And
- 3. Let $A = \{x \in E \mid f(x) \neq 0\}$. If A is empty, then A is measure zero.

Suppose A is non-empty. Then, for a large enough $N \in \mathbb{N}$, $A_N = \{x \in E \mid f(x) > \frac{1}{N}\}$. Using the same argument of 1., we can have $A_N \to A$ as $N \to \infty$. Since $\int_E f(x) \, dx = 0$, $\int_{A_N} f(x) \, dx = 0$. Thus, for any $\varepsilon > 0$, there exists rectangles such that $\frac{1}{N} \sum |R_i| \le (L) \int_{A_N} f(x) \, dx \le \frac{\varepsilon}{N}$. Therefore, $\sum |R_i| < N \cdot \frac{\varepsilon}{N} = \varepsilon$ and A_N is measure zero.

By the theorem that countable set of measure zero is also measure zero, we can have A is measure zero.