Здравствуйте!

Лекция №3

Двойные интегралы

Пусть на плоскости ХОУ заданы (см. рис.):

- 1. Некоторая область D;
- 2. Фукция двух переменных f(x, y) определенная, ______, в области D.

3. Сделаем	λ→0. Если	$\lim_{\lambda \to 0} \sigma$ и
этот предел	области D на	а кусочки
И ОТ	средней точки,	то он
называется	интегралом от	функции
f(x,y) по области D и обозначас	ется так:	
$\lim_{\lambda \to 0} \sigma = \iint_{(D)}$	f(x,y)dxdy.	
Cама функция $f(x,y)$	называется в этом	случае
в области D .		

Основные свойства двойных интегралов

- 1. $\iint_{(D)} k \cdot f(x, y) dxdy = k \cdot \iint_{(D)} f(x, y) dxdy.$
- 2. $\iint_{(D)} (f(x,y) \pm g(x,y)) dxdy = \iint_{(D)} f(x,y) dxdy \pm \iint_{(D)} g(x,y) dxdy.$
- 3. Если $D = \bigcup_{i=1}^n D_i$ и $D_i \cap D_j = \emptyset$ при $i \neq j$, то

$$\iint_{(D)} f(x,y) dxdy = \sum_{i=1}^{n} \iint_{(D_i)} f(x,y) dxdy.$$

4. Если $f(x,y) \le g(x,y)$, то $\iint_{(D)} f(x,y) dx dy \le \iint_{(D)} g(x,y) dx dy$

- $5. \left| \iint\limits_{(D)} f(x,y) dx dy \right| \le \iint\limits_{(D)} |f(x,y)| dx dy.$
- 6. Если $m \le f(x,y) \le M$, то $mP_D \le \iint\limits_{(D)} f(x,y) dx dy \le MP_D$, где P_D –

площадь области D.

7. Если $m \le f(x,y) \le M$, то существует μ , такое, что $m \le \mu \le M$ и $\iint_{(D)} f(x,y) dx dy = \mu P_D.$

В частности, если f(x,y) непрерывна в области D, то существует точка $(x_0,y_0)\in D$, такая, что $\iint\limits_{(D)}f(x,y)dxdy=f(x_0,y_0)P_D$.

Вычисление двойных интегралов

Рассмотрим область D в виде прямоугольника [a, b; c, d].

Теорема 1. Если для функции f(x, y) в области D = [a, b; c, d]

_____ $\iint_{(D)} f(x,y) dx dy$ и для любого $x \in [a, b]$

 $\int_{c}^{d} f(x,y)dy$, то _____ и

 $\int_{a}^{b} dx \left(\int_{c}^{d} f(x, y) dy \right)$ и имеет место равенство

 $\iint_{(D)} f(x,y) dxdy = \int_{a}^{b} dx \left(\int_{c}^{d} f(x,y) dy \right).$

Доказательство.

Разобьем отрезок [a,b] на части точками $a=x_0 < x_1 < ... < x_{n-1} < x_n = b$, а отрезок [c,d] на части точками $c=y_0 < y_1 < ... < y_{m-1} < y_m = d$

Тогда весь прямоугольник D = [a, b; c, d] разобьется на ____ прямоугольников

$$(P_{ij}) = [x_i, x_{i+1}; y_j, y_{j+1}]$$

площадью $P_{ij} = \Delta x_i \Delta y_j$, где $\Delta x_i = x_{i+1} - x_i$, $\Delta y_j = y_{j+1} - y_j$.

Пусть
$$m_{ij} = \inf_{(x,y) \in (P_{ij})} f(x,y), M_{ij} = \sup_{(x,y) \in (P_{ij})} f(x,y).$$
 Тогда имеем

следующую цепочку неравенств:

$$\forall (\xi_i, y) \in (P_{ij}) \quad m_{ij} \leq f(\xi_i, y) \leq M_{ij}.$$

По свойствам определенных интегралов от функции одной переменной, имеем:

$$m_{ij}\Delta y_j \leq \int_{y_j}^{y_{j+1}} f(\xi_i, y) dy \leq M_{ij}\Delta y_j.$$

Суммируя по j и учитывая, что $\bigcup_{j=0}^{m-1} [y_j, y_{j+1}] = [c, d]$, получим

$$\sum_{j=0}^{m-1} m_{ij} \Delta y_{j} \leq \int_{c}^{d} f(\xi_{i}, y) dy \leq \sum_{j=0}^{m-1} M_{ij} \Delta y_{j}.$$

Умножая на Δx_i и суммируя по i, получаем

$$s = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} m_{ij} \Delta x_i \Delta y_j \le \sum_{i=0}^{n-1} \Delta x_i \int_{c}^{d} f(\xi_i, y) dy \le \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} M_{ij} \Delta x_i \Delta y_j = S$$

Но слева и справа в этой цепочке стоят _____ и ___ суммы ____ для двойного интеграла. Поэтому, устремляя $\max_{i,j} (\Delta x_i, \Delta y_j)$ к нулю, получим

$$\iint_{(D)} f(x,y) dx dy \le \int_{a}^{b} dx \left(\int_{c}^{d} f(x,y) dy \right) \le \iint_{(D)} f(x,y) dx dy,$$

что и говорит о том, что _____ интеграл существует и имеет место равенство

$$\iint\limits_{(D)} f(x,y) dx dy = \int\limits_{a}^{b} dx \int\limits_{c}^{d} f(x,y) dy.$$

Теорема доказана.

Замечание. Если $\forall x \in [a,b] \ \exists \int_a^b f(x,y) dx$, то с таким же успехом

можно записать

$$\iint\limits_{(D)} f(x,y) dx dy = \int\limits_{c}^{d} dy \int\limits_{a}^{b} f(x,y) dx.$$

Вычисление двойного интеграла по области в виде криволинейной трапеции

Криволинейной т	грапецией называ	ется область		
а) ограниченная	И	прямыми	x = a	и $x = k$
соответственно;				
б) ограниченная	И	кривыми $y = y_1$	(x) и y	$y = y_2(x)$
соответственно.	Считается, что	при $a \le x \le b$ фу	ункции	$y_1(x)$
$y_2(x)$ непрерывн	ны и $y_1(x) < y_2(x)$).		
Теорема 2. Если	$= \iint_{(D)} f($	$(x,y)dxdy$ и $\forall x \in [$	<i>a</i> , <i>b</i>]	
$\int_{y_1(x)}^{y_2(x)} f(x,y) dy, \text{ TO } $	$\int_{a}^{b} dx^{y_2}$	$\int_{(x)}^{(x)} f(x,y) dy$ и		
	$\iint\limits_{(D)} f(x,y) dx dy =$	$\int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy.$		

Простановка пределов в двойном интеграле

- 1. Нарисовать область D;
- 2. Спроектировать область D на ось OX и найти граничные точки проекции. Это и будут a и b;
- 3. Для каждого $x \in [a,b]$ провести прямую, параллельную оси OY и найти координаты ее пересечения с границами области D. Это и будут $y_1(x)$ и $y_2(x)$.

Заметим, что отрезок $[y_1(x), y_2(x)]$ называется **сечением** области D.

4. Вычислить $\int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy$.

Перестановка местами интегралов в повторном интеграле

$$\int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy = \int_{?}^{?} dy \int_{?}^{?} f(x,y) dx$$

- 1. В интервале [a, b] построить кривые $y_1(x)$ и $y_2(x)$.
- 2. Получившуюся область спроектировать на ось OY. Границы проекции будут давать значения c и d.
- 3. Для любого $y \in [c,d]$ провести прямую, параллельную оси OX (сделать сечение области D), и найти абсциссы ее пересечения с границей области. Это будут $x_1(y)$ (абсцисса точки входа в область) и $x_2(y)$ (абсцисса точки выхода из области).

Тогда

$$\int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy = \int_{c}^{d} dy \int_{x_{1}(y)}^{x_{2}(y)} f(x,y) dx$$

Формула Грина

Пусть P(x,y) — непрерывная функция с непрерывной производной $\partial P(x,y)/\partial y$. Тогда мы имеем

$$\iint_{G} \frac{\partial P(x,y)}{\partial y} dxdy = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} \frac{\partial P(x,y)}{\partial y} dy = \int_{a}^{b} P(x,y_{2}(x)) dx - \int_{a}^{b} P(x,y_{1}(x)) dx.$$

С другой стороны

$$\oint_{L} P(x,y)dx = \int_{AB} P(x,y)dx + \int_{BC} P(x,y)dx + \int_{CD} P(x,y)dx + \int_{DA} P(x,y)dx =
= \int_{a}^{b} P(x,y_{1}(x))dx + 0 + \int_{b}^{a} P(x,y_{2}(x))dx + 0 =
= \int_{a}^{b} P(x,y_{1}(x))dx - \int_{a}^{b} P(x,y_{2}(x))dx,$$

так как интегралы по *CB* и *DA* равны нулю и

$$\int_{b}^{a} P(x, y_{2}(x))dx = -\int_{a}^{b} P(x, y_{2}(x))dx.$$

Сравнивая эти два результата, получаем

$$\iint_{G} \frac{\partial P(x,y)}{\partial y} dx dy = -\oint_{L} P(x,y) dx. \tag{6}$$

Пусть Q(x,y) – непрерывная функция с непрерывной производной $\partial Q(x,y)/\partial x$.

$$\iint_{G} \frac{\partial Q(x,y)}{\partial x} dx dy = \int_{c}^{d} dy \int_{x_{1}(y)}^{x_{2}(y)} \frac{\partial Q(x,y)}{\partial x} dx = \int_{c}^{d} Q(x_{2}(y),y) dy - \int_{c}^{d} Q(x_{1}(y),y) dy.$$

С другой стороны

$$\oint_{L} Q(x,y) dy = \int_{AB} Q(x,y) dy + \int_{BC} Q(x,y) dy + \int_{CD} Q(x,y) dy + \int_{DA} Q(x,y) dy = 0$$

$$= 0 + \int_{c}^{d} Q(x_{2}(y), y) dy + 0 + \int_{d}^{c} Q(x_{1}(y), y) dy = 0$$

$$= \int_{C}^{d} Q(x_{2}(y), y) dy - \int_{C}^{d} Q(x_{1}(y), y) dy,$$

так как интегралы по AB и CD равны нулю и

$$\int_{d}^{c} Q(x_{1}(y), y) dy = -\int_{c}^{d} Q(x_{1}(y), y) dy$$

Сравнивая эти выражения, получаем

$$\iint_{G} \frac{\partial Q(x, y)}{\partial x} dx dy = \oint_{L} Q(x, y) dy.$$
 (7)

Наконец, вычитая (6) из (7) получаем знаменитую формулу Грина

$$\oint_{L} P(x,y)dx + Q(x,y)dy = \iint_{G} \left(\frac{\partial Q(x,y)}{\partial x} - \frac{\partial P(x,y)}{\partial y} \right) dxdy, \tag{8}$$

связывающую криволинейный и двойной интегралы.

Замена переменных в двойных интегралах Общие замечания.

Пусть нам необходимо вычислить двойной интеграл $\iint\limits_D f(x,y) dx dy$ по некоторой области D. Для возможного упрощения

вычислений, сделаем замену переменных

$$x = x(\xi, \eta), \quad y = y(\xi, \eta), \tag{9}$$

переходя от «старых» переменных x, y к «новым» переменным ξ , η .

В дальнейшем будем предполагать, что $x = x(\xi, \eta)$ и $y = y(\xi, \eta)$ непрерывны и имеют непрерывные частные производные по ξ и η . Кроме того, будем предполагать, что система (9) может быть однозначно разрешена относительно ξ и η

$$\xi = \xi(x, y), \quad \eta = \eta(x, y),$$

то есть что соответствие $(x, y) \Leftrightarrow (\xi, \eta)$ взаимно однозначное.

Коэффициент деформации площади

Площади областей D и Δ различны. Найдем соотношение между ними.

Используя формулу Грина можно получить, что площадь P_D области D

$$P_D = \iint_D dx dy = \oint_L x dy.$$

Пусть контур Л описывается параметрически

$$\xi = \xi(t), \quad \eta = \eta(t), \quad \alpha \le t < \beta.$$

Тогда контур L имеет уравнение

$$x = x(\xi(t), \eta(t)), \quad y = y(\xi(t), \eta(t)),$$

и поэтому

$$P_{D} = \oint_{L} x dy = \int_{\alpha}^{\beta} x(\xi(t), \eta(t)) \left[\frac{\partial y}{\partial \xi} \xi'(t) + \frac{\partial y}{\partial \eta} \eta'(t) \right] dt.$$

Возвращаясь обратно к криволинейному интегралу, но уже по контуру Λ , можно записать

$$P_{D} = \pm \oint_{\Lambda} \left[x \frac{\partial y}{\partial \xi} d\xi + x \frac{\partial y}{\partial \eta} d\eta \right]. \tag{10}$$

Знак \pm появился потому, что мы не знаем, какому направлению обхода контура Λ — положительному или отрицательному — соответствует положительное направление контура L.

Вновь воспользуемся формулой Грина, но уже в приложении к выражению (10). В данном случае

$$P = x \frac{\partial y}{\partial \xi}, \ Q = x \frac{\partial y}{\partial \eta}$$

$$\frac{\partial Q}{\partial \xi} - \frac{\partial P}{\partial \eta} = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} + x \frac{\partial^2 y}{\partial \xi \partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi} - x \frac{\partial^2 y}{\partial \xi \partial \eta} =$$

$$= \begin{vmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{vmatrix} = J(\xi, \eta). \tag{11}$$

Выражение (11) для $J(\xi,\eta)$ называется **якобианом перехода** от переменных x,y к переменным ξ,η . Тогда

$$P_D = \pm \iint_{\Delta} J(\xi, \eta) d\xi d\eta. \tag{12}$$

Так как площадь не может быть отрицательной, то P_D надо записать так

$$P_D = \iint_{\Delta} |J(\xi, \eta)| d\xi d\eta.$$

Выражение $|J(\xi,\eta)|$ называется коэффициентом искажения (деформации) площади.

Замена переменных в двойном интеграле

Разобьем область (D) на части (D_i) ; тогда область (Δ) также разобьется на части (Δ_i) . Пусть D_i есть площадь (D_i) , а Δ_i – площадь (Δ_i) . Тогда

$$D_{i} = \iint_{(\Delta_{i})} |J(\xi, \eta)| d\xi d\eta = |J(\overline{\xi}_{i}, \overline{\eta}_{i})| \Delta_{i},$$

где мы воспользовались теоремой о среднем

Выбирая в области (D_i) среднюю точку в виде

$$\overline{x}_i = x(\overline{\xi}_i, \overline{\eta}_i), \ \overline{y}_i = y(\overline{\xi}_i, \overline{\eta}_i),$$

получим следующее выражение для интегральной суммы

$$\sigma = \sum_{i} f(\overline{x}_{i}, \overline{y}_{i}) D_{i} = \sum_{i} f(x(\overline{\xi}_{i}, \overline{\eta}_{i}), y(\overline{\xi}_{i}, \overline{\eta}_{i})) |J(\overline{\xi}_{i}, \overline{\eta}_{i})| \Delta_{i}.$$

Переходя к пределу $\lambda \rightarrow 0$, получим соотношение

$$\iint_{(D)} f(x,y) dx dy = \iint_{(\Delta)} f(x(\xi,\eta), y(\xi,\eta)) |J(\xi,\eta)| d\xi d\eta,$$

что и дает формулу для замены переменных в двойном интеграле.

1.1.3. Двойной интеграл в полярных координатах

Напомним, что полярная система координат включает в себя полюс (точка O) и полярную ось (выходящий из точки O горизонтальный луч OA). Положение любой точки M на плоскости в полярной системе координат задается двумя числами:

ho = |OM| — полярный радиус, равный расстоянию от полюса до точки ${
m M}$

 $\varphi = \angle AOM$ — полярный угол, измеряемый в радианах в направлении против движения часовой стрелки.

Полярные и декартовы координаты одной и той же точки M на плоскости при совмещении соответствующих систем, как показано на рисунке, связаны равенствами:

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi. \end{cases} \begin{cases} \rho = \sqrt{x^2 + y^2}, \\ \operatorname{tg} \varphi = \frac{y}{x}. \end{cases}$$

При вычислении двойного интеграла в полярной системе координат следует придерживаться следующей схемы.

- 1) Построить область интегрирования.
- 2) В подынтегральной функции f(x,y) заменить согласно формулам замены переменных при переходе к полярным координатам

$$x = \rho \cos \varphi, \ y = \rho \sin \varphi.$$
 Тогда $f(x; \ y) = f(\rho \cos \varphi, \ \rho \sin \varphi).$

3) Записать элемент площади $ds = dx dy = |J| d\rho d\varphi$, в полярной системе координат.

Найдем J-якобиан перехода от декартовой системы координат к полярной

$$J = \begin{vmatrix} x'_{\rho} & x'_{\varphi} \\ y'_{\rho} & y'_{\varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} =$$
$$= \rho \cos^{2} \varphi - (-\rho \sin^{2} \varphi) = \rho(\cos^{2} \varphi + \sin^{2} \varphi) = \rho.$$

Таким образом, элемент площади $ds = dx \, dy$ в полярной системе координат примет вид

$$ds = \rho \, d\rho \, d\varphi$$

4) Уравнения линий, ограничивающих область D^* , записываются в полярных координатах (перевод декартовых уравнений в полярные рассматривается ниже).

Таким образом, получим двойной интеграл, записанный в полярной системе координат

$$\iint\limits_{(D)} f(x,y) \ dx \ dy = \iint\limits_{(D^*)} f(\rho \cos \varphi, \ \rho \sin \varphi) \ \rho \ d\rho \ d\varphi.$$

Этот интеграл необходимо свести к повторному. Для этого

5) Определяются пределы изменения переменных ρ и φ и строится соответствующий повторный интеграл.

При этом следует иметь ввиду, что уравнения линий в полярных координатах, как правило, имеют вид $\rho = \rho(\varphi)$ (а не $\varphi = \varphi(\rho)$), поэтому внутренний интеграл практически всегда вычисляется по переменной ρ , а внешний – по φ .

Как и в декартовой системе координат при расстановке пределов интегрирования удобно использовать стрелку, пересекающую область. В полярной системе координат стрелка — это луч, выходящий из полюса и пересекающий границы области на линии входа и выхода.

Подавляющее большинство областей интерирования в полярной системе координат можно соотнести с одной из 4-х приведенных на следующей странице схем, где для каждого случая записаны соответствующие повторные интегралы.

6) Полученный повторный интеграл вычисляется по уже известной схеме: сначала вычисляется внутренний интеграл по переменной ρ , а затем внешний интеграл по переменной φ .

Полюс внутри или на границе области интегрирования

Полюс вне области интегрирования

Рис. 4.

$$\int_{0}^{2\pi} d\varphi \int_{\rho_{1}(\varphi)}^{\rho_{2}(\varphi)} f(\rho\cos\varphi, \ \rho\sin\varphi) \rho \ d\rho$$

$$\int_{0}^{2\pi} d\varphi \int_{\rho_{1}(\varphi)}^{\rho_{2}(\varphi)} f(\rho\cos\varphi, \ \rho\sin\varphi) \rho \ d\rho \qquad \int_{\varphi_{1}}^{\varphi_{2}} d\varphi \int_{\rho_{1}(\varphi)}^{\rho_{2}(\varphi)} f(\rho\cos\varphi, \ \rho\sin\varphi) \rho \ d\rho$$

 Γ еометрический смысл каждого слагаемого интегральной суммы: если $f(x,y) \geq 0$, то

 $f(P_i)\cdot s(D_i)$ - объём прямого цилиндра с основанием D_i высоты $f(P_i)$; вся интегральная сумма $\sum_{i=1}^n f(P_i)\cdot s(D_i)$ -

сумма объёмов таких цилиндров, т.е. объём некоторого ступенчатого тела (высота ступеньки, расположенной над подобластью D_i , равна $f(P_i)$).

Когда d =
$$\max_{i=1,2,\dots,n} \operatorname{diam}(\boldsymbol{\textit{D}}_i) \to 0$$
 ,

это ступенчатое тело становится всё ближе к изображенному на рисунке телу, ограниченному снизу областью $m{D}$, сверху - поверхностью $m{z} = m{f}(m{x}, m{y})$, с цилиндрической боковой

поверхностью, направляющей которой является граница области D, а образующие параллельны оси Oz. Двойной интеграл $\iint\limits_{\Gamma} f(P)ds$ равен объёму этого тела.

Приложения двойного интеграла

Прикладные задачи, при решении которых используется двойной интеграл, определены его геометрическим и физическим смыслом. К ним можно отнести задачи на вычисление площади плоской фигуры, объема цилиндрического тела, массы, центра тяжести, момента инерции и т.п. плоской пластины и ряд других задач. Приведем основные формулы.

1. Объем цилиндрического тела
$$V = \iint\limits_{(D)} f(x,y) \, ds.$$

Подынтегральная функция $f(x,y) \ge 0$ в области (D).

2. Площадь плоской области (D) $S = \iint\limits_{(D)} ds.$

(Подынтегральная функция $f(x,y) \equiv 1$ в области (D).) При этом в декартовой и полярной системах координат будем иметь соответственно

$$S = \iint_{(D)} dx \, dy, \qquad S = \iint_{(D)} \rho \, d\rho \, d\varphi.$$

3. Масса плоской пластинки $M = \iint\limits_{(D)} \delta(x,y) \ ds$.

Подынтегральная функция $\delta(x,y)$ есть поверхностная плотность пластинки.

4. Статические моменты плоской пластинки

$$M_x = \iint\limits_{(D)} y \cdot \delta(x, y) \ ds, \qquad M_y = \iint\limits_{(D)} x \cdot \delta(x, y) \ ds.$$

5. Моменты инерции пластинки относительно осей координат

$$I_x = \iint\limits_{(D)} y^2 \cdot \delta(x, y) \ ds, \qquad \qquad I_y = \iint\limits_{(D)} x^2 \cdot \delta(x, y) \ ds.$$

6. Момент инерции пластинки относительно начала координат

$$I_0 = \iint_{(D)} (x^2 + y^2) \cdot \delta(x, y) \ ds = I_x + I_y.$$