Neural Networks

Declan Grove

What is a Neural Network?

Training: Gradient Descent

Activation

Neural Networks

Neural Networks

Declan Groves

June 30 2016

Outline

Neural Networks

Declan Groves

What is a Veural Vetwork?

Training: Gradient Descent

Activation

Convolutiona Veural Vetworks 1 What is a Neural Network?

2 Training: Gradient Descent

3 Activations

Overview

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activatior

- Hypest ML
- Good at unstructured problems
- Suboptimal at structured problems

History

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activatior

- Around since the 1950s
- Resurgence in 1970s
- Resurgence in late 2000s

Neural Networks

Declan Grove

What is a Neural Network?

Gradient Descent

Activation

Neural Networks

Declan Groves

What is a Neural Network?

Training Gradient Descent

Activation

Convolution Neural

Neural Networks

Declan Groves

What is a Neural Network?

Training Gradient Descent

Activation

Convolution Neural

Neural Networks

Declan Groves

What is a Neural Network?

Training Gradient Descent

Activation

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activation

Neural Networks

Declan Groves

What is a Neural Network?

Training Gradient Descent

Activation

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activation

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activation

A multilayer multinomial classifier

Neural Networks

Declan Groves

What is a Neural Network?

Training Gradient

Activation

Forward pass

Neural Networks

Declan Groves

What is Neural

Training: Gradient Descent

Activatio

Forward pass

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Activation

Convolution: Neural

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activation

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Activation

$$\begin{array}{c|c} X_1 & W_1 \\ \hline X_2 & A_{11} & Z_{11} \\ \hline X_3 & A_{12} & Z_{12} \\ \hline \end{array}$$

$$\begin{array}{c|c} A_1 & Z_{12} & A_2 & Z_2 \\ \hline \end{array}$$

$$\begin{array}{c|c} J = \text{err}(y, \hat{y})_1 & J \leftarrow \frac{1}{2}(y - \hat{y})^2 \\ \partial J/\partial U_2 & = \end{array}$$

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Activation

$$\begin{array}{c|c} X_1 & W_1 \\ \hline X_2 & A_1, & Z_{1_1} \\ \hline X_3 & A_{1_2} & Z_{1_2} \\ \hline X_3 & A_{1_2} & Z_{1_2} \\ \hline X_3 & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_{1_2} & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_{1_1} & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_{1_1} & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_{1_1} & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_{1_1} & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_{1_2} & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_1 & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_2 & A_2 & Z_2 \\ \hline X_3 & A_2 & Z_2 \\ \hline X_3 & A_1, & Z_2 & Z_2 \\ \hline X_3 & A_2 & Z_2 & Z_2 \\ \hline X_3 & A_1, & Z_2 & Z_2 \\ \hline X_3 & A_2 & Z_2 \\ \hline X_4 & A_1, & Z_2 & Z_2 \\ \hline X_3 & A_2 & Z_2 \\ \hline X_4 & A_1, & Z_2 & Z_2 \\ \hline X_4 & A_2 & Z_2 \\ \hline X_5 & A_1, & Z_2 & Z_2 \\ \hline X_5 & A_2 & Z_2 \\ \hline X_5$$

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Activation

$$\begin{array}{c|c} X_1 & W_1 \\ \hline X_2 & A_1, & Z_{1_1} \\ \hline A_{1_2} & Z_{1_2} \\ \hline \end{array}$$

$$\begin{array}{c|c} A_1 & Z_{1_2} \\ \hline A_2 & Z_2 \\ \hline \end{array}$$

$$\begin{array}{c|c} A_2 & Z_2 \\ \hline \end{array}$$

$$\begin{array}{c|c} J = err(y, \hat{y})_1 & J \leftarrow \frac{1}{2}(y - \hat{y})^2 \\ \hline \partial J/\partial U_2 &= \frac{\partial J}{\partial \hat{y}} & \frac{\partial \hat{y}}{\partial A_2} & \frac{\partial A_2}{\partial W_2} \\ \hline \end{array}$$

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Activation

$$\begin{array}{c|c}
X_1 & W_1 \\
\hline
X_2 & A_{12} & Z_{12} \\
\hline
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
X_2 & A_{12} & Z_{12} \\
\hline
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
Z_{12} & A_{2} & Z_{2} \\
\hline
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
Z_{12} & A_{2} & Z_{2} \\
\hline
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

$$\begin{array}{c|c}
A_{12} & Z_{12} & A_{2} & Z_{2}
\end{array}$$

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

A -4:..-4:-.

Convolutional Neural

$$\begin{bmatrix} x \\ \rightarrow \\ A \\ Z \end{bmatrix} \xrightarrow{\bigvee_{2}} \begin{bmatrix} A \\ Z \\ \rightarrow \end{bmatrix} \xrightarrow{\bigvee_{3}} \begin{bmatrix} A \\ Z \\ \rightarrow \end{bmatrix} \xrightarrow{\bigvee_{4}} \cdots \xrightarrow{\bigvee_{K}} \begin{bmatrix} A \\ X \\ K \end{bmatrix} \xrightarrow{\bigvee_{K+1}} \underbrace{\begin{bmatrix} A \\ X \\ K \end{bmatrix}} \xrightarrow{\bigvee_{K+1}} \underbrace{\begin{bmatrix}$$

$$\partial J/\partial W_{i} =$$

$$(\partial J/\partial \hat{y}) \sigma'(A_{k}) W_{k} \sigma'(A_{k-1}) W_{k-1} ...$$

$$... W_{i+1} \sigma'(A_{\lambda}) Z_{\lambda-1}$$

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Convolutiona

$$\begin{array}{c} X \\ X \\ \end{array} \xrightarrow{A} \begin{array}{c} A \\ Z \\ \end{array} \xrightarrow{A} \begin{array}{c} X \\ X \\ \end{array} \xrightarrow{A} \begin{array}{c} X \\ X \\ X \end{array} \xrightarrow{A} \begin{array}{c} X \\ X$$

$$\partial J/\partial W_{i,} =$$

$$(\partial J/\partial \hat{y}) \underline{\sigma}^{*}(A_{k}) W_{k} \underline{\sigma}^{*}(A_{k-1}) W_{k-1} ...$$

$$... W_{i+1} \underline{\sigma}^{*}(A_{\lambda}) Z_{\lambda-1}$$

Neural Networks

Declan Groves

What is Neural

Training: Gradient Descent

Activation

Convolutional Neural

$$\begin{array}{c} \times \end{array} \xrightarrow{\vee_1} \begin{array}{c} A_1 \\ Z_1 \\ \longrightarrow \end{array} \begin{array}{c} A_2 \\ Z_2 \\ \longrightarrow \end{array} \begin{array}{c} W_3 \\ A_3 \\ Z_3 \\ \longrightarrow \end{array} \begin{array}{c} W_4 \\ \longrightarrow \end{array} \begin{array}{c} W_K \\ \longrightarrow \end{array} \begin{array}{c} W_{K+1} \\ \longrightarrow \end{array} \begin{array}{c} W_{K+$$

$$\frac{\partial J}{\partial \hat{y}} = \frac{\partial J}{\partial \hat{y}} \underline{\sigma}'(A_k) W_k \underline{\sigma}'(A_{k-1}) W_{k-1} ...$$
... $W_{i+1} \underline{\sigma}'(A_{\lambda}) Z_{\lambda-1}$

Resources

Neural Networks

Decian Groves

What is a Neural Network?

Training: Gradient Descent

Activations

Convolution: Neural

- Cool youtube series: https://www.youtube.com/watch?v=bxe2T-V8XRs
- Pain and toil: Elements of Statistical Learning ch11

Linear

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activations

Convolutiona Neural Networks Useless

Threshold

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activations

- Similar to biological neuron
- No gradient

Sigmoid

Neural Networks

Declan Groves

Neural Network?

Training: Gradient Descent

Activations

- *tanh* preferred
- Gradients can vanish

ReLU

Neural Networks

Declan Groves

What is a Neural Network?

Training: Gradient Descent

Activations

- No vanishing gradient
- Cheap to compute
- Can explode and die
- Popular with CNNs

Radial basis functions

Neural Networks

Declan Groves

What is Neural Network?

Training: Gradient Descent

Activations

- Gaussian + others
- Train very quickly
- Good at interpolation

Convolutional Neural Networks

Neural Networks

Declan Groves

What is Neural Network?

Gradient Descent

Activation

Convolutional Neural Networks ■ Image recognition killer

Conceptual structure

Neural Networks

Declan Grove

What is a Neural Network?

Training: Gradient Descent

Activations

$\mathsf{MLP} \to \mathsf{too}$ many weights!

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Activatio

Local connectivity

Neural Networks

Declan Grove

What is Neural Network

Training Gradien

Activation

${\sf Local\ connectivity}\ +\ {\sf convolution}$

Neural Networks

Declan Grove

What is Neural Network

Training Gradien

Activatio

${\sf Local\ connectivity}\ +\ {\sf convolution}$

Neural Networks

Declan Groves

Neural Network

Gradient Descent

Activation

${\sf Local\ connectivity}\ +\ {\sf convolution}$

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Activation

Local connectivity + convolution

Neural Networks

Declan Grove

What is Neural Network

Training: Gradient Descent

Activation

Local connectivity + convolution

Neural Networks

Declan Grove

Neural Network? Training:

Gradient Descent

Activation

Local connectivity + convolution

Neural Networks

Declan Groves

What is Neural Network

Training: Gradient Descent

Activation

One filter forms a surface

Neural Networks

Declan Groves

What is Neural Network

Gradient Descent

Activation

Many filters form a volume

Neural Networks

Declan Groves

What is Neural Network

Training Gradien

Activatio

Typical processing structure

Neural Networks

Declan Grove

What is Neural Network

Training Gradient

Activation

AlexNet's filters

Neural Networks

Declan Groves

What is Neural Network

Training Gradient

Activation

Pooling

Neural Networks

Declan Groves

What is Neural Network

Training Gradien

Activatio

Pooling

Neural Networks

Declan Grove

What is Neural Network

Training: Gradient Descent

Activations

Typical structure of a CNN

Neural Networks

Declan Groves

What is Neural Network

Training Gradient

Activatio

