Qiskit v2.x Certification — Practice Exam

Instructions:

- Choose the best answer for each multiple-choice question.
- Some questions require knowledge of Qiskit primitives (Sampler, Estimator), Open-QASM 3, circuit building, measurement, and quantum state probabilities.
- Try to solve without external help; check explanations afterwards.
- 1. In Qiskit v2.x, what is the primary function of the **Sampler** primitive?
 - A. Compute expectation values of observables
 - B. Return a probability distribution over measurement outcomes
 - C. Optimize circuits before execution
 - D. Compile to OpenQASM 3
- 2. Which primitive is most appropriate to compute expectation values of Pauli operators given parameterized circuits?
 - A. Sampler
 - B. Estimator
 - C. Session
 - D. CircuitSampler
- 3. Suppose you have a single qubit in state $|0\rangle$. You apply $R_Y(\frac{\pi}{2})$. What is the probability of measuring $|0\rangle$?
 - A. 1.0
 - B. 0.5
 - C. $\frac{\sqrt{2}}{2}$
 - D. 0
- 4. You apply an H gate to $|0\rangle$. What is the resulting state (up to global phase)?
 - A. $|0\rangle$
 - B. $|1\rangle$
 - C. $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
 - D. $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
- 5. You apply an H gate to $|1\rangle$. What is the resulting state (up to global phase)?

- A. $|0\rangle$
- B. $|1\rangle$
- C. $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- D. $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
- 6. In Qiskit, which instruction prevents the compiler from reordering gates (i.e. serves as a barrier)?
 - A. barrier()
 - B. delay()
 - C. snapshot()
 - D. noop()
- 7. To merge two circuits qc1 and qc2 sequentially so that operations in qc2 execute after qc1, which method is correct?
 - A. qc1.compose(qc2)
 - B. qc1.combine(qc2)
 - C. qc1 + qc2
 - D. qc1.merge(qc2)
- 8. What is the effect of applying an X-gate to $|1\rangle$?
 - A. Produces $|0\rangle$
 - B. Produces $|1\rangle$
 - C. Creates a superposition
 - D. Adds a phase
- 9. In OpenQASM 3, which of these is a valid classical data type?
 - $A. \ \mathsf{qubit}$
 - $\boldsymbol{B}.$ operator
 - C. int
 - D. quantum
- 10. Which Qiskit method would you use to export a circuit into a QASM 3 file?
 - A. qc.to_qasm()
 - B. qiskit.qasm3.dump(qc, file)
 - C. qc.export()
 - D. qasm3.save(qc, file)

- 11. Which of the following is a valid Qiskit command to define a circuit with 3 qubits and 3 classical bits?
 - A. QuantumCircuit(3, 3)
 - B. QuantumCircuit(3)
 - C. QuantumCircuit(QuantumRegister(3), ClassicalRegister(3))
 - D. Both A and C
- 12. What is the probability of measuring $|1\rangle$ after applying $R_X(\frac{\pi}{4})$ to $|0\rangle$?
 - A. 0.1464
 - B. 0.5
 - C. 0.8536
 - D. 1.0
- 13. Which of the following execution modes is **not** a Qiskit Runtime job mode?
 - A. batch
 - B. session
 - C. classical
 - D. parallel
- 14. What does the ParameterVector class in Qiskit help you do?
 - A. Simulate circuits more efficiently
 - B. Create many parameterized gates in a vectorized fashion
 - C. Perform measurements
 - D. Optimize circuits
- 15. If you have a qubit in an equal superposition $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and you reset() it, what is its state before measurement?
 - A. $|0\rangle$
 - B. $|1\rangle$
 - C. $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
 - D. Indeterminate
- 16. Which Qiskit object is used to keep a backend warm (i.e. reuse the same compilation/connection) over multiple jobs?
 - A. Session
 - B. Sampler
 - C. Estimator

	D.	Circuit
17.	In Qiskit	v2.x, how do you set the number of shots (repetitions) for a Sampler
	A.	<pre>sampler.options.shots =</pre>
	В.	<pre>sampler.options.repetitions =</pre>
	С.	<pre>sampler.options.default_shots =</pre>
	D.	sampler.set_shots()
18.	When run	nning multiple circuits via a Sampler, which method is used?
	A.	<pre>sampler.run([qc1, qc2,])</pre>
	В.	Session.run([qc1, qc2,])
	С.	execute([qc1, qc2,])
	D.	Estimator.run([qc1, qc2,])
19.	In a 2-qu	bit circuit, which gate entangles qubits 0 and 1?
	A.	H(0)
	В.	X(1)
	С.	CX(0,1)
	D.	$RZ(\pi)$
20.	Which of	these is an error-mitigation technique (not full error correction)?
	A.	Zero Noise Extrapolation
	В.	Surface code
	С.	Steane code
	D.	Shor code
21.	What is t	the minimum number of qubits needed to represent 16 basis states?
	A.	3
	В.	4
	С.	8
	D.	16
22.) What is	s the output after executing the following circuit?
	A.	11 and 00
	В.	01 and 10
	С.	11 and 01
	D.	10 and 11
23.	What is t	the depth of the given circuit?

- A. 4
- B. 5
- C. 6
- D. 7
- 24. Assuming the fragment below, which code fragments would produce the circuit illustrated?


```
A. qc = QuantumCircuit(3,3)
            for i in range(2):
              qc.x(i)
            for j in range(3):
              qc.cx(j, j-1)
            qc.ccx(0,2,1)
            qc.draw(output='mpl')
         B. qc = QuantumCircuit(3,3)
            qc.x([0,1])
            qc.cx(0,1)
            qc.cx(0,2)
            qc.cx(2,1)
            qc.ccx(0,2,1)
            qc.draw(output='mpl')
         C. qc = QuantumCircuit(3,3)
            for i in range(3):
              qc.x(i)
            for j in range(3):
               qc.cx(j-1,j)
            qc.ccx(0,1,2)
            qc.draw(output='mpl')
         D. qc = QuantumCircuit(3,3)
            qc.x([0,1])
            qc.cx(1,0)
            qc.cx(0,2)
            qc.cx(2,1)
            qc.ccx(0,1,2)
            qc.draw(output='mpl')
25. Which of the following gates can be used to build any single qubit gate?
         A. U gate
         B. Z gate
         C. P gate
         D. I gate
         E. All of the above
26. Select the correct output bloch sphere when the given code is executed
   qc = QuantumCircuit(1)
   qc.h(0)
   qc.x(0)
   qc5.ry(pi/2, 0)
   qc5.rx(-pi/2, 0)
   qc5.x(0)
```


Α. .

В. .

С. .

D. .

- 27. S-gate is a Qiskit phase gate with what value of the phase parameter?
 - A. $\pi/4$
 - B. $\pi/2$
 - C. $\pi/8$
 - D. π
- 28. Which one of the following code fragments will generate the given output?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

- A. p = Pauli('IZ')
 print(p.to_matrix())
- B. p = Pauli('-II')
 print(p.to_matrix())
- C. p = Pauli('-ZI')
 print(p.to_matrix())
- D. p = Pauli('ZZ')
 print(p.to_matrix())

Answer Key:

- 1. B
- 2. B
- 3. B
- 4. D
- 5. C
- 6. A
- 7. A
- 8. A
- 9. C
- 10. B
- 11. D
- 12. A
- 13. C
- 14. B
- 15. A
- 16. A
- 17. A
- 18. A
- 19. C
- 20. A
- 21. B
- 22. C
- 23. C
- 24. A
- 25. C.D
- 26. B
- 27. D
- 28. A