Criptografía Moderna II: Cripto Asimétrica

CC5325 - Taller de Hacking Competitivo

Iconos de https://flaticon.com (Freepik)

Iconos de https://flaticon.com (Freepik)

Cifrado RSA "de libro"

 $c = x^e \mod n$

 $x=c^{d} \mod n$

```
Mensaje (x) = Lo que queremos cifrar, codificado a un número.

Módulo (n) = pq (p y q primos grandes, aleatorios y secretos)

Exp. público e: Número menor a (p-1)(q-1). Gralmente 65537 o 3

Exp. Secreto d = 1/e mod (p-1)(q-1) (calculable si conoces p y q)

Llave pública: (n, e) Llave privada: d
```

Ejemplo muy básico

Problemas típicos en cifrado RSA de libro

- Si x y e son chicos, puedo sacar raíz e-ésima de c y obtener x
 - o Ej: Mismos parámetros que antes, pero mensaje m es 2
 - $=> c=2^5=32$
 - => puedo obtener x calculando raíz quinta de 32
 - (Aplica igual para **n** mayores si **x** y **e** son chicos)
- Maleabilidad: Si recibo 2 mensajes x1 y x2 cifrados con pk=(n, e), puedo calcular la versión cifrada del mensaje x1*x2 sin conocer x1 ni x2
 - \circ c1=x1^e mod n, c2=x2^e mod n => c1c2=x1^e*x2^e mod n=(x1*x2)^e mod n.
- Valor de c es determinista para un x particular.

Padding RSA

Arregla algunos problemas del RSA de libro:

- Agrega aleatoriedad.
- Ahora números siempre son grandes.

Ejemplo de Padding: OAEP

- H: Constante estándar de tamaño h
- K: X
- M: H||00..00||K
- R: Número aleatorio de tamaño h
- H||00..00||K de tamaño igual al de n
- **H1, H2:** Funciones de hash
- **P:** valor paddeado y cifrable

Problemas típicos en cifrado RSA (en general)

- Si **n** es muy chico (menor a 1024 bits), puedo factorizarlo con un computador potente.
 - El número más largo factorizado es RSA-250 (250 dígitos, 829 bits)
 - Requirió 2700 CPU Core-years para ser factorizado
 - 1 CPU-Segundo = 1 GigaFLOPS (Floating Point Operations per Second)
 - RSA Numbers
- Si mi generador de números aleatorios es malo y p y q dependen entre sí, puedo usar esta info para factorizar
 n. (Lo veremos en la clase en vivo)

Firmas en RSA

Podemos usar el mismo esquema criptográfico para generar firmas con la llave pública, validables con la llave privada:

- Calculas el hash H de un mensaje M si es muy largo
- La firma S será S=H^d mod n
- Se valida la firma calculando
 H a partir del mensaje M, y
 verificando que S^e mod n=H

Ataques a firmas RSA (si no se usa hash)

- Firmas "triviales": Si se firma el mensaje M y no el hash:
 - Si M es 0, S=0^d mod n=0
 - Si M es 1, S=1^d mod n=1
 - Si M es (n-1), $S=(n-1)^d \mod n=(n-1)$

Cualquiera puede crear una firma para estos mensajes

- Blinding Attack: Hacer que una persona firme un mensaje que no quiere firmar M
 - o Encontrar R tal que R^eM sea un mensaje que la persona sí firmaría.
 - S=(R^eM)^d mod n = R^(ed)M^d = RM^d, por lo que dividiendo por R
 obtenemos la firma de M^d.

Acuerdo de llaves Diffie-Hellman

¿Y con números?

p=primo grande tal que (p-1)/2 también es primo

g=Generador En el grupo
multiplicativo Z*_p
(Generalmente se usa 2)

Libro "Serious Cryptography" / Jean-Philippe Amuasson

Cosas que pueden salir mal en DH de libro:

- Mala aleatoriedad para g^(ab)
 - Hashear el secreto sirve para evitar sesgos del grupo.
- Parámetros de grupo inseguros
 - Si el grupo contiene subgrupos chicos facilita encontrar los valores secretos vía ensayo y error.
- Person in the middle
 - Autentificar con una llave precompartida.

Conclusiones

- CTFs de Criptografía Moderna: Campo MUY amplio
 - Desafíos serios requieren demasiado conocimiento criptográfico de fondo.
- En CTFs chicos y variados los problemas suelen tratar de cosas más simples
 - Protocolos obsoletos y con ataques conocidos, mal implementados, etc.
- Para adentrarse más, recomendamos nuevamente tomar un curso de criptografía introductorio.

