Production d'ondes électromagnétiques et communication.

Exercice 1: Transmission des signaux sonores

Les ondes sonores audibles ont une faible fréquence, leur transmission à des longues distances nécessite qu'elles soient modulante à une onde électromagnétique de haute fréquence.

Cet exercice vise à étudier la modulation et la demodulation.

1 - Modulation

On considère le montage représenté dans la figure 4 :

• Le générateur (GBF_1) applique à l'entrée E_1 de la composante électronique X une tension sinusoïdale :

$$u_1(t) = P_m \cos\left(\frac{2\pi}{T_p}t\right)$$

• Le générateur (GBF_2) applique à l'entrée E_2 de la composante électronique X une tension sinusoïdale :

$$u_2(t) = U_0 + S(t)$$

avec U_0 la composante continue de la tension et

$$S(t) = S_m \cos\left(\frac{2\pi}{T_s}t\right)$$

la tension correspondante à l'onde qu'on désire transmettre.

 $u_s(t) = k \cdot u_1(t) \cdot u_2(t)$

avec k constante positive caractérisant la composante X, fig 5.

1. Montrer que l'expression de la tension $u_s(t)$ s'écrit sous la forme :

$$u_s(t) = A\left(1 + m\cos\left(\frac{2\pi}{T_s}t\right)\right)\cos\left(\frac{2\pi}{T_p}t\right)$$

et préciser l'expression de A et celle de m.

2. Calculer la valeur de m et déduire la qualité de la modulation.

2 - Démodulation

La figure 6 représente le montage utilisé dans un dispositif de réception constitué de trois parties.

- 1. Préciser le rôle de la partie 3 dans ce montage.
- 2. Déterminer la valeur du produit L·C pour que la sélection de l'onde soit bonne.
- 3. Montrer que l'intervalle auquel doit appartenir la valeur de la résistance R pour une bonne détection de l'enveloppe de la tension modulante dans ce montage est :

$$\frac{2\pi}{T_p} \ll \frac{1}{RC} \ll \frac{2\pi}{T_s}$$

4. Calculer les bornes de cet intervalle sachant que L = 1.5 mH.

Exercice 2: Modulation d'amplitude d'un signal sinusoïdal

Afin d'obtenir un signal modulé en amplitude, on utilise un circuit intégré multiplieur X (figure 6).

On applique à l'entrée :

- E_1 : la tension $u_1(t) = s(t) + U_0$ avec $s(t) = S_m \cos(2\pi f_s t)$ représentant le signal informatif et U_0 une composante continue de la tension.
- E_2 : une tension sinusoïdale représentant la porteuse $u_2(t) = U_m \cos(2\pi F_p t)$

La tension de sortie $u_s(t)$ obtenue est $u_s(t) = k \cdot u_1(t) \cdot u_2(t)$; k est une constante qui dépend du circuit intégré X.

Rappel: $\cos(a)\cos(b) = \frac{1}{2}[\cos(a-b) + \cos(a+b)]$

1. Montrer que $u_s(t)$ s'écrit sous la forme :

$$u_s(t) = \frac{A \cdot m}{2} \cos(2\pi f_s t) + A \cos(2\pi f_p t) + \frac{A \cdot m}{2} \cos(2\pi f_3 t)$$

où m est le taux de modulation et A une constante.

- 2. La figure 7 représente le spectre de fréquences formé de trois raies de la tension modulée $u_s(t)$. Déterminer m et la fréquence f_s . La modulation est-elle bonne ?
- 3. Pour une bonne réception du signal modulé, on utilise un circuit bouchon (circuit d'accord) formé d'une bobine d'inductance $L_0 = 60mH$ et de résistance négligeable et de deux condensateurs, montés en série, de capacité $C = 10\mu F$ et C_0 . Déterminer la valeur de C_0 .