François Husson

Laboratoire de mathématiques appliquées - Agrocampus Rennes

husson@agrocampus-ouest.fr

- Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- **6** Compléments
- 6 Caractérisation des classes d'individus

- Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Les K-means : un algorithme de partitionnement
- 6 Compléments
 - Consolidation de partition
 - Classification sur des données de grandes dimensions
 - Variables qualitatives et classification
 - Enchaînement analyse factorielle classification
- 6 Caractérisation de classes d'individus

1 Introduction

Introduction

- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- **5** Compléments
- 6 Caractérisation des classes d'individus

Introduction

- Définitions :
 - Classification : action de constituer ou construire des classes
 - Classe : ensemble d'individus (ou d'objets) possédant des traits de caractères communs (groupe, catégorie)
- Exemples
 - de classification : règne animal, disque dur d'un ordinateur, division géographique de la France, etc.
 - de classe : classe sociale, classe politique, etc.
- Deux types de classification :
 - hiérarchique : arbre, CAH
 - méthode de partitionnement : partition

Introduction

000

Exemple de hiérarchie : le règne animal

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- **5** Compléments
- 6 Caractérisation des classes d'individus

Quelles données pour quels objectifs?

La classification s'intéresse à des tableaux de données individus × variables quantitatives

Objectifs : production d'une structure (arborescence) permettant :

- la mise en évidence de liens hiérarchiques entre individus ou groupes d'individus
- la détection d'un nb de classes
 « naturel » au sein de la population

Critères

Ressemblance entre individus :

- distance euclidienne
- indice de similarité
- . . .

Ressemblance entre individus:

- distance euclidienne
- indice de similarité

Ressemblance entre groupes d'individus :

- saut minimum ou lien simple (plus petite distance)
- lien complet (plus grande distance)
- critère de Ward

Algorithme

Arbres et partitions

Les arbres finissent tous ... par être coupés!!!

Arbres et partitions

Les arbres finissent tous ... par être coupés!!!

Remarque : vu le mode de construction, la partition n'est pas optimale mais est intéressante

Quand une partition est-elle bonne?

- Si les individus d'une même classe sont proches
- Si les individus de 2 classes différentes sont éloignés

Quand une partition est-elle bonne?

- Si les individus d'une même classe sont proches
- Si les individus de 2 classes différentes sont éloignés

Et mathématiquement ça se traduit par?

- Variabilité intra-classe petite
- Variabilité inter-classe grande

Quand une partition est-elle bonne?

- Si les individus d'une même classe sont proches
- Si les individus de 2 classes différentes sont éloignés

Et mathématiquement ça se traduit par?

- Variabilité intra-classe petite
- Variabilité inter-classe grande
- ⇒ Deux critères, lequel choisir?

 \bar{x}_k moyenne de x_k , \bar{x}_{qk} moyenne de x_k dans la classe q

 \bar{x}_k moyenne de x_k , \bar{x}_{qk} moyenne de x_k dans la classe q

$$\sum_{q=1}^{Q} \sum_{i=1}^{I} (x_{iqk} - \bar{x}_k)^2 = \sum_{q=1}^{Q} \sum_{i=1}^{I} (x_{iqk} - \bar{x}_{qk})^2 + \sum_{q=1}^{Q} \sum_{i=1}^{I} (\bar{x}_{qk} - \bar{x}_k)^2$$
Inertie totale
Inertie intra
Inertie inter

 \implies 1 seul critère!

La qualité d'une partition est mesurée par :

$$0 \leq \frac{\text{Inertie inter}}{\text{Inertie totale}} \leq 1$$

La qualité d'une partition est mesurée par :

$$0 \leq \frac{\mathsf{Inertie\ inter}}{\mathsf{Inertie\ totale}} \leq 1$$

$$\frac{\mathsf{Inertie}_{\,\mathrm{inter}}}{\mathsf{Inertie}_{\,\mathrm{totale}}} = 0 \Longrightarrow \quad \forall q, \bar{x}_{qk} = \bar{x}_k \; : \; \mathsf{les} \; \mathsf{classes} \; \mathsf{ont} \; \mathsf{m\^{e}me} \; \mathsf{moyennes} \; \mathsf{Ne} \; \mathsf{permet} \; \mathsf{pas} \; \mathsf{de} \; \mathsf{classifier}$$

La qualité d'une partition est mesurée par :

$$0 \le \frac{\mathsf{Inertie\ inter}}{\mathsf{Inertie\ totale}} \le 1$$

$$\frac{\mathsf{Inertie}_{\mathsf{inter}}}{\mathsf{Inertie}_{\mathsf{totale}}} = 0 \Longrightarrow \quad \forall q, \bar{x}_{qk} = \bar{x}_k \; \mathsf{: les \; classes \; ont \; même \; moyennes} \\ \mathsf{Ne \; permet \; pas \; de \; classifier}$$

$$rac{ ext{Inertie}_{ ext{inter}}}{ ext{Inertie}_{ ext{totale}}} = 1 \Longrightarrow \quad orall q, orall i, x_{iqk} = ar{x}_{qk} : ext{individus d'} 1 ext{ classe identiques}$$
 $ext{Idéal pour classifier}$

La qualité d'une partition est mesurée par :

$$0 \le \frac{\mathsf{Inertie\ inter}}{\mathsf{Inertie\ totale}} \le 1$$

$$\frac{\text{Inertie}_{\text{inter}}}{\text{Inertie}_{\text{totale}}} = 0 \Longrightarrow \quad \forall q, \bar{x}_{qk} = \bar{x}_k \text{ : les classes ont même moyennes}$$

$$\text{Ne permet pas de classifier}$$

$$\frac{\mathsf{Inertie}_{\, \mathrm{inter}}}{\mathsf{Inertie}_{\, \mathrm{totale}}} = 1 \Longrightarrow \quad \forall q, \forall i, x_{iqk} = \bar{x}_{qk} : \mathsf{individus} \,\, \mathsf{d'1} \,\, \mathsf{classe} \,\, \mathsf{identiques} \,\, \mathsf{Id\'eal} \,\, \mathsf{pour} \,\, \mathsf{classifier}$$

Attention : ce critère ne peut être jugé en absolu car il dépend du nb d'individus et du nb de classes

- Initialisation : 1 classe = 1 individu \Longrightarrow In. inter = In. totale
- A chaque étape : agréger les classes a et b qui minimisent la diminution de l'inertie inter

- Initialisation : 1 classe = 1 individu \Longrightarrow In. inter = In. totale
- A chaque étape : agréger les classes a et b qui minimisent la diminution de l'inertie inter

$$Inertie(a) + Inertie(b) = Inertie(a \cup b) - \frac{m_a m_b}{m_a + m_b} d^2(a, b)$$

- Initialisation : 1 classe = 1 individu \Longrightarrow In. inter = In. totale
- A chaque étape : agréger les classes a et b qui minimisent la diminution de l'inertie inter

Inertie(a) + Inertie(b) = Inertie(a
$$\cup$$
 b) - $\underbrace{\frac{m_a m_b}{m_a + m_b}}_{\text{à minimiser}} d^2(a, b)$

- Initialisation : 1 classe = 1 individu \Longrightarrow In. inter = In. totale
- A chaque étape : agréger les classes a et b qui minimisent la diminution de l'inertie inter

Inertie(a) + Inertie(b) = Inertie(a
$$\cup$$
 b) - $\underbrace{\frac{m_a m_b}{m_a + m_b}}_{\text{à minimiser}} d^2(a, b)$

Regroupe les objets de faible poids et évite l'effet de chaîne

- Initialisation : 1 classe = 1 individu \Longrightarrow In. inter = In. totale
- A chaque étape : agréger les classes a et b qui minimisent la diminution de l'inertie inter

Inertie(a) + Inertie(b) = Inertie(a
$$\cup$$
 b) - $\underbrace{\frac{m_a m_b}{m_a + m_b}}_{\text{à minimiser}} d^2(a, b)$

Regroupe les objets de faible poids et évite l'effet de chaîne

Regroupe des classes ayant des centres de gravité proches

Intérêt immédiat pour la classification

- Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- **6** Compléments
- 6 Caractérisation des classes d'individus

Les données température

- 15 individus : villes de France
- 12 variables : températures mensuelles moyennes (sur 30 ans)

	Janv	Févr	Mars	Avri	Mai	Juin	juil	Août	Sept	Octo	Nove	Déce	Lati	Long
Bordeaux	5.6	6.6	10.3	12.8	15.8	19.3	20.9	21	18.6	13.8	9.1	6.2	44.5	-0.34
Brest	6.1	5.8	7.8	9.2	11.6	14.4	15.6	16	14.7	12	9	7	48.24	-4.29
Clermont	2.6	3.7	7.5	10.3	13.8	17.3	19.4	19.1	16.2	11.2	6.6	3.6	45.47	3.05
Grenoble	1.5	3.2	7.7	10.6	14.5	17.8	20.1	19.5	16.7	11.4	6.5	2.3	45.1	5.43
Lille	2.4	2.9	6	8.9	12.4	15.3	17.1	17.1	14.7	10.4	6.1	3.5	50.38	3.04
Lyon	2.1	3.3	7.7	10.9	14.9	18.5	20.7	20.1	16.9	11.4	6.7	3.1	45.45	4.51
Marseille	5.5	6.6	10	13	16.8	20.8	23.3	22.8	19.9	15	10.2	6.9	43.18	5.24
Montpellier	5.6	6.7	9.9	12.8	16.2	20.1	22.7	22.3	19.3	14.6	10	6.5	43.36	3.53
Nantes	5	5.3	8.4	10.8	13.9	17.2	18.8	18.6	16.4	12.2	8.2	5.5	47.13	-1.33
Nice	7.5	8.5	10.8	13.3	16.7	20.1	22.7	22.5	20.3	16	11.5	8.2	43.42	7.15
Paris	3.4	4.1	7.6	10.7	14.3	17.5	19.1	18.7	16	11.4	7.1	4.3	48.52	2.2
Rennes	4.8	5.3	7.9	10.1	13.1	16.2	17.9	17.8	15.7	11.6	7.8	5.4	48.05	-1.41
Strasbourg	0.4	1.5	5.6	9.8	14	17.2	19	18.3	15.1	9.5	4.9	1.3	48.35	7.45
Toulouse	4.7	5.6	9.2	11.6	14.9	18.7	20.9	20.9	18.3	13.3	8.6	5.5	43.36	1.26
Vichy	2.4	3.4	7.1	9.9	13.6	17.1	19.3	18.8	16	11	6.6	3.4	46.08	3.26

Quelles villes ont des profils météo similaires? Comment caractériser les groupes de villes?

Les données température : l'arbre hiérarchique

Les données température

Pertes d'inertie inter lors du passage de

Les données température

Pertes d'inertie inter lors du passage de

Somme des pertes d'inertie = 12

Doit-on faire 2 groupes? 3 groupes? 4?

Doit-on faire 2 groupes? 3 groupes? 4?

Doit-on faire 2 groupes? 3 groupes? 4?

Découpage en 2 groupes :

$$\frac{\text{Inertie inter}}{\text{Inertie totale}} = \frac{7.88}{12} = 66\%$$

Doit-on faire 2 groupes? 3 groupes? 4?

Découpage en 2 groupes :

$$\frac{\text{Inertie inter}}{\text{Inertie totale}} = \frac{7.88}{12} = 66\%$$

A quoi comparer ce pourcentage?

66 % de l'information résumée avec ce découpage en 2 classes A quoi comparer ce pourcentage?

Séparer villes froides en 2 groupes :

Séparer villes froides en 2 groupes :

$$\frac{\text{Inertie inter}}{\text{Inertie totale}} = \frac{1.56}{12} = 13\%$$

Passage de 15 villes à 3 classes : 66 % + 13 % = 79 % de la variabilité des données

Détermination d'un nombre de classes

- A partir de l'arbre
- Dépend de l'usage (enquête, . . .)

- A partir du diagramme des indices de niveau
- Critère ultime : interprétabilité des classes

Classification ascendante hiérarchique (CAH)

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- **5** Compléments
- 6 Caractérisation des classes d'individus

Algorithme de partitionnement : les K-means

Algorithme d'agrégation autour des centres mobiles (K-means)

- Choisir *Q* centres de classes au hasard
- Affecter les points au centre le plus proche
- Calculer les Q centres de gravité

Classification ascendante hiérarchique (CAH)

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- **6** Compléments
- 6 Caractérisation des classes d'individus

Consolidation d'une partition obtenue par CAH

La partition obtenue par CAH n'est pas optimale et peut être améliorée, consolidée, par les K-means

Algorithme de consolidation :

- la partition obtenue par CAH est utilisée comme initialisation de l'algorithme de partitionnement
- quelques étapes de K-means sont itérées

⇒ amélioration de la partition (souvent non décisive)

Avantage : consolidation de la partition Inconvénient : perte de l'info de hiérarchie

CAH en grandes dimensions

 Si beaucoup de variables : faire une ACP et ne conserver que les premières dimensions ⇒ on se ramène au cas classique

CAH en grandes dimensions

- Si beaucoup de variables : faire une ACP et ne conserver que les premières dimensions ⇒ on se ramène au cas classique
- Si beaucoup d'individus : algorithme de CAH trop long
 - Faire une partition (par K-means) en une centaine de classes
 - Construire la CAH à partir des classes (utiliser l'effectif des classes dans le calcul)
 - Obtention du « haut » de l'arbre de la CAH

CAH en grandes dimensions

- Si beaucoup de variables : faire une ACP et ne conserver que les premières dimensions ⇒ on se ramène au cas classique
- Si beaucoup d'individus : algorithme de CAH trop long
 - Faire une partition (par K-means) en une centaine de classes
 - Construire la CAH à partir des classes (utiliser l'effectif des classes dans le calcul)
 - Obtention du « haut » de l'arbre de la CAH

Arbre sur données brutes

Arbre à partir de classes

CAH sur données qualitatives

Deux stratégies pour faire une classification sur données qualitatives :

- Se ramener à des variables quantitatives
 - Faire une ACM et ne conserver que les premières dimensions
 - Faire la CAH à partir des composantes principales de l'ACM

CAH sur données qualitatives

Deux stratégies pour faire une classification sur données qualitatives :

- Se ramener à des variables quantitatives
 - Faire une ACM et ne conserver que les premières dimensions
 - Faire la CAH à partir des composantes principales de l'ACM
- Utiliser des mesures adaptées aux données qualitatives : indice de similarité, indice de Jaccard, etc.

Enchaînement analyse factorielle - classification

 Données qualitatives : ACM renvoie des composantes principales qui sont quantitatives

Enchaînement analyse factorielle - classification

- Données qualitatives : ACM renvoie des composantes principales qui sont quantitatives
- L'analyse factorielle élimine les dernières composantes qui ne contiennent que du bruit ⇒ classification plus stable

Enchaînement analyse factorielle - classification

- Données qualitatives : ACM renvoie des composantes principales qui sont quantitatives
- L'analyse factorielle élimine les dernières composantes qui ne contiennent que du bruit ⇒ classification plus stable

Hierarchical clustering on the factor map

 Représentation de l'arbre et des classes sur un plan factoriel ⇒ vision continue avec AF, discontinue avec CAH; vision de tinformation sur d'autres axes avec CAH

Classification ascendante hiérarchique (CAH)

- 1 Introduction
- 2 Principes de la Classification Ascendante Hiérarchique
- 3 Exemple
- 4 Algorithme de partitionnement : les K-means
- **6** Compléments
- 6 Caractérisation des classes d'individus

Constitution des classes - Édition des parangons

Parangon : individu le plus proche du centre d'une classe

classe 1 :	Montpellier	Bordeaux	Marseille	Nice	Toulouse
	0.419	1.141	1.193	2.242	2.256
classe 2 :	Rennes	Nantes	Brest		
	0.641	1.586	2.045		
classe 3 :	Vichy	Clermont	Grenoble	Paris	Lyon
	0.428	0.669	1.184	1.339	1.680

Constitution des classes - Édition des parangons

Parangon : individu le plus proche du centre d'une classe

```
classe 1 : Montpellier
                          Bordeaux
                                     Marseille
                                                   Nice
                                                         Toulouse
                  0.419
                             1.141
                                         1.193
                                                  2.242
                                                            2.256
classe 2 :
                 Rennes
                            Nantes
                                         Brest
                  0.641
                             1.586
                                         2.045
classe 3 :
                  Vichv
                                     Grenoble
                          Clermont
                                                  Paris
                                                              Lyon
                  0.428
                             0.669
                                         1.184
                                                  1.339
                                                             1.680
```


Caractérisation des classes

Objectifs :

- Trouver les variables les plus caractérisantes pour la partition
- Caractériser une classe (ou un groupe d'individus) par des variables quantitatives
- Trier les variables qui caractérisent les classes

Questions :

- Quelles variables caractérisent le mieux la partition?
- Comment caractériser les individus de la classe 1?
- Quelles variables les caractérisent le mieux?

Caractérisation des classes

Quelles variables caractérisent le mieux la partition?

- Pour chaque variable quantitative :
 - construire le modèle d'analyse de variance entre la variable quantitative expliquée par la variable de classe
 - faire le test de Fisher de l'effet de la classe
- Trier les variables par probabilité critique croissante

```
Eta2 P-value

Octo 0.8362 1.930e-05

Sept 0.8301 2.407e-05

Févr 0.8227 3.103e-05

Mars 0.8126 4.326e-05

Janv 0.8118 4.444e-05

Nove 0.8083 4.963e-05

Avri 0.7929 7.890e-05

Déce 0.7871 9.316e-05

Août 0.7864 9.503e-05

Juin 0.7241 4.409e-04

Mai 0.7164 5.205e-04

juil 0.7156 5.287e-04
```


Idée 1: si les valeurs de X pour la classe q semblent tirées au hasard parmi les valeurs de X, alors X ne caractérise pas la classe q

Idée : référence du tirage au hasard de n_q valeurs parmi N

Quelles valeurs peut prendre \bar{x}_q ? (i.e. quelle est la loi de \bar{X}_q ?)

Idée : référence du tirage au hasard de n_a valeurs parmi N

Quelles valeurs peut prendre \bar{x}_q ? (i.e. quelle est la loi de \bar{X}_a ?)

$$\mathbb{E}(ar{X}_q) = ar{x}$$
 $\mathbb{V}(ar{X}_q) = rac{s^2}{n_q} \; \left(rac{N-n_q}{N-1}
ight)$ $\mathcal{L}(ar{X}_q) = \mathcal{N}$ car $ar{X}_q$ est une moyenne

Idée : référence du tirage au hasard de n_a valeurs parmi N

Quelles valeurs peut prendre \bar{x}_a ? (i.e. quelle est la loi de \bar{X}_a ?)

$$\mathbb{E}(ar{X}_q) = ar{x}$$
 $\mathbb{V}(ar{X}_q) = rac{s^2}{n_q} \; \left(rac{N-n_q}{N-1}
ight)$ $\mathcal{L}(ar{X}_q) = \mathcal{N}$ car $ar{X}_q$ est une moyenne

$$\implies \ \, \mathsf{Valeur\text{-}test} = \frac{\bar{x}_q - \bar{x}}{\sqrt{\frac{\underline{s}^2}{n_q} \ \left(\frac{N - n_q}{N - 1}\right)}} \sim \mathcal{N}(0, 1)$$

Idée : référence du tirage au hasard de n_a valeurs parmi N

Quelles valeurs peut prendre \bar{x}_q ? (i.e. quelle est la loi de \bar{X}_q ?)

$$\mathbb{E}(ar{X}_q) = ar{x}$$
 $\mathbb{V}(ar{X}_q) = rac{s^2}{n_q} \; \left(rac{N-n_q}{N-1}
ight)$ $\mathcal{L}(ar{X}_q) = \mathcal{N}$ car $ar{X}_q$ est une moyenne

$$\implies$$
 Valeur-test $=rac{ar{x}_q-ar{x}}{\sqrt{rac{s^2}{n_q}\,\left(rac{N-n_q}{N-1}
ight)}}\sim \mathcal{N}(0,1)$

- Si |Valeur-test| > 1.96 alors X caractérise la classe q
- X caractérise d'autant mieux la classe q que V-test grande

Idée : référence du tirage au hasard de n_a valeurs parmi N

Quelles valeurs peut prendre \bar{x}_a ? (*i.e.* quelle est la loi de \bar{X}_a ?)

$$\mathbb{E}(ar{X}_q) = ar{x}$$
 $\mathbb{V}(ar{X}_q) = rac{s^2}{n_q} \; \left(rac{N-n_q}{N-1}
ight)$ $\mathcal{L}(ar{X}_q) = \mathcal{N}$ car $ar{X}_q$ est une moyenne

$$\implies \ \, \mathsf{Valeur\text{-}test} = \frac{\bar{x}_q - \bar{x}}{\sqrt{\frac{\underline{s}^2}{n_q} \ \left(\frac{N - n_q}{N - 1}\right)}} \sim \mathcal{N}(0, 1)$$

- Si $|Valeur-test| \ge 1.96$ alors X caractérise la classe q
- X caractérise d'autant mieux la classe q que V-test grande

Idée : classer les variables par |Valeur-test| décroissante

\$quanti\$'1' v.test Mean in Overall sd in Overall p.value category mean category sd 19.30 0.755 1.79 0.000678 Sept 3.40 17.00 Move 3.39 13.80 11.80 0.742 1.55 0.000705 Avri 3.33 12.70 11.00 0.580 1.37 0.000871 3.32 1.77 Oct.o 14.50 12.30 0.941 0.000893 3.24 10.00 8.23 0.524 1.48 0.001210 Mars 3.18 0.792 1.94 Août 21.90 19.60 0.001490 3.00 19.80 17.80 0.727 1.73 0.002670 Juin Mai 3.00 16.10 14.40 0.691 1.45 0.002720 2.97 9.88 7.93 0.999 1.74 0.003020 Nove juil 2.92 22.10 19.80 1,000 2.06 0.003550 Févr 2.88 6.80 4.83 0.940 1.81 0.003940 Déce 2.54 6.66 4.85 0.896 1.89 0.011200 2.46 5.78 3.97 0.924 1.94 0.013700 Jany

\$'2' v.test Mean in Overall sd in Overall p.value category category sd mean -2.0212.90 14.40 0.953 1.45 0.04380 Mai Août. -2.0217.50 19.60 1.090 1.94 0.04330 Juin -2.0515.90 17.80 1.160 1.73 0.04020 17.40 2.06 juil -2.1819.80 1.350 0.02900 2.58 1.380 3.21 0.00404 Long -2.88-2.34-2.9512.40 15.90 1.560 2.25 0.00316 Ampl

\$'2'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Mai	-2.02	12.90	14.40	0.953	1.45	0.04380
Août	-2.02	17.50	19.60	1.090	1.94	0.04330
Juin	-2.05	15.90	17.80	1.160	1.73	0.04020
juil	-2.18	17.40	19.80	1.350	2.06	0.02900
Long	-2.88	-2.34	2.58	1.380	3.21	0.00404
Ampl	-2.95	12.40	15.90	1.560	2.25	0.00316
\$'3'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Sept	-2.05	15.90	17.00	0.738	1.79	0.040700
Avri	-2.11	10.20	11.00	0.637	1.37	0.035100
Moye	-2.60	10.70	11.80	0.620	1.55	0.009220
Octo	-2.81	10.90	12.30	0.661	1.77	0.004940
Mars	-2.85	7.03	8.23	0.807	1.48	0.004310
Nove	-3.15	6.36	7.93	0.654	1.74	0.001620
Févr	-3.25	0 40	4.83	0.763	1.81	0.001150
	-3.25	3.16	4.03	0.705	1.01	0.001100
Déce	-3.28	3.16	4.85	0.703	1.89	0.001100

Quelles variables caractérisent le mieux la partition?

- Pour chaque variable qualitative, construire un test du χ^2 entre la variable et la variable de classe
- Trier les variables par probabilité critique croissante

```
$test.chi2
p.value df
Région 0.001700272 6
```

La modalité Nord-Est caractérise-t-elle la classe 3?

	Classe 3	Autre classe	Total
Nord-Est	$n_{mc} = 3$	0	$n_m = 3$
Pas NE	4	8	12
Total	$n_c = 7$	8	n = 15

La modalité Nord-Est caractérise-t-elle la classe 3?

	Classe 3	Autre classe	Total
Nord-Est	$n_{mc} = 3$	0	$n_m = 3$
Pas NE	4	8	12
Total	$n_c = 7$	8	n = 15

Test : H_0 : $\frac{n_{mc}}{n_c} = \frac{n_m}{n}$ contre H_1 : m anormalement élevée dans c

La modalité Nord-Est caractérise-t-elle la classe 3?

	Classe 3	Autre classe	Total
Nord-Est	$n_{mc} = 3$	0	$n_m = 3$
Pas NE	4	8	12
Total	$n_c = 7$	8	n = 15

Test : H_0 : $\frac{n_{mc}}{n_c} = \frac{n_m}{n}$ contre H_1 : m anormalement élevée dans c

Sous $H_0: \mathcal{L}(N_{mc}) = \mathcal{H}(n_c, \frac{n_m}{n}, n)$

La modalité Nord-Est caractérise-t-elle la classe 3?

	Classe 3	Autre classe	Total
Nord-Est	$n_{mc}=3$	0	$n_m = 3$
Pas NE	4	8	12
Total	$n_c = 7$	8	n = 15

Test : H_0 : $\frac{n_{mc}}{n_c} = \frac{n_m}{n}$ contre H_1 : m anormalement élevée dans c

Sous $H_0: \mathcal{L}(N_{mc}) = \mathcal{H}(n_c, \frac{n_m}{n}, n)$ $P_{H_0}(N_{mc} \ge n_{mc})$

La modalité Nord-Est caractérise-t-elle la classe 3?

	Classe 3	Autre classe	Total
Nord-Est	$n_{mc} = 3$	0	$n_m = 3$
Pas NE	4	8	12
Total	$n_c = 7$	8	n = 15

Test : H_0 : $\frac{n_{mc}}{n_c} = \frac{n_m}{n}$ contre H_1 : m anormalement élevée dans c

Sous $H_0: \mathcal{L}(N_{mc}) = \mathcal{H}(n_c, \frac{n_m}{n}, n)$ $P_{H_0}(N_{mc} \ge n_{mc})$

Classe 3

Cla/Mod Mod/Cla Global p.value v.test Région=NE 100.00 42.86 20.00 0.077 1.769

 $\frac{3}{3} \times 100 = 100 \; ; \frac{3}{7} \times 100 = 42.86 \; ; \; \frac{3}{15} \times 100 = 20 \; ; \; P_{\mathcal{H}(7, \frac{3}{15}, 15)}[N_{mc} \ge 3] = 0.077$

 \implies H_0 acceptée, Nord-Est n'est pas sur-représenté dans la classe 3

La modalité Nord-Est caractérise-t-elle la classe 3?

	Classe 3	Autre classe	Total
Nord-Est	$n_{mc} = 3$	0	$n_m = 3$
Pas NE	4	8	12
Total	$n_c = 7$	8	n = 15

Test : H_0 : $\frac{n_{mc}}{n_c} = \frac{n_m}{n}$ contre H_1 : m anormalement élevée dans c

Sous
$$H_0: \mathcal{L}(N_{mc}) = \mathcal{H}(n_c, \frac{n_m}{n}, n)$$
 $P_{H_0}(N_{mc} \ge n_{mc})$

Classe 3

Cla/Mod Mod/Cla Global p.value v.test Région=NE 100.00 42.86 20.00 0.077 1.769

$$\frac{3}{3} \times 100 = 100 \; ; \\ \frac{3}{7} \times 100 = 42.86 \; ; \; \\ \frac{3}{15} \times 100 = 20 \; ; \; P_{\mathcal{H}(7,\frac{3}{15},15)}[N_{mc} \ge 3] = 0.077$$

 \implies H_0 acceptée, Nord-Est n'est pas sur-représenté dans la classe 3 Tri des modalités en fonction des probabilités critiques

Caractérisation d'une classe par les axes

Les axes factoriels sont aussi des variables quantitatives

\$'1'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	_
Dim.1	3.39	3.97	0	1.46	3.1	0.000693
\$'2'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
Dim.2	2.84	2.29	0	1.29	1.51	0.00447
\$'3'						
	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	-
Dim.2	-2.11	-0.911	0	0.927	1.51	0.0346
Dim.1	-2.56	-2.270	0	1.260	3.10	0.0104

- La classification s'applique à des tableaux individus × variables quantitatives
 - \Rightarrow L'ACM transforme des variables qualitatives en variables quantitatives

- La classification s'applique à des tableaux individus × variables quantitatives
 - \Rightarrow L'ACM transforme des variables qualitatives en variables quantitatives
- CAH donne un arbre hiérarchique ⇒ nombre de classes

- La classification s'applique à des tableaux individus × variables quantitatives
 - \Rightarrow L'ACM transforme des variables qualitatives en variables quantitatives
- CAH donne un arbre hiérarchique ⇒ nombre de classes
- K-means consolide les classes

- La classification s'applique à des tableaux individus × variables quantitatives
 - \Rightarrow L'ACM transforme des variables qualitatives en variables quantitatives
- CAH donne un arbre hiérarchique ⇒ nombre de classes
- K-means consolide les classes
- Caractérisation des classes par des variables actives et supplémentaires, quantitatives et qualitatives