

TMSCA HIGH SCHOOL MATHEMATICS

TEST # 4 ©
NOVEMBER 11,2017

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 1. Evaluate: $0.08333... \div 0.75 + 1.125 - 0.8333... \times 3.2$.

(A) 27

(B) 28

	(A)	$-\frac{11}{72}$	(B)	$\frac{89}{72}$	(C)	$\frac{7}{5}$	(D)	$-\frac{103}{72}$	(E)	$-\frac{283}{180}$
2.	Points	s A and B have	coor	dinates (5,-5)	and ((–9,17) respec	tively	. What is the <i>x</i>	-coor	dinate of the x-
	intercept of the perpendicular bisector of the segment $\overline{\mathbf{A}}\mathbf{B}$?									
	(A)	$-\frac{80}{7}$	(B)	<u>64</u>	(C)	$-\frac{20}{}$	(D)	$-\frac{20}{}$	(E)	<u>84</u>
•		,		,		,		11	(2)	11
3.	. 66 yards per second is the same speed asmiles per hour.									
	(A)	132	(B)	135	(C)	138	(D)	114	(E)	116
4.	If -1	1 = 3x - y, x -	4y =	-22 and $x + a$	ay=0,	then $a = ?$				
	(A)	2.5	(B)	-2.5	(C)	1.5	(D)	0.4	(E)	5
5.	Chris	ti at 68 mph. A	An ho	ur later, Elisa	left Co	orpus Christi a	ınd dr	Dallas and dro ove toward Da each other? (n	llas at	72 mph. What
	(A)	66.5 mi	(B)	60.1 mi	(C)	66.2 mi	(D)	13.9 mi	(E)	58.1 mi
6.	Which	h of the followi	ng is	not a one-to-o	ne fun	ction?				
	(A)	$y = 8x^3$	(B)	$y = \frac{2}{x^2 + 4}$	(C)	$y = \sqrt[5]{5x}$	(D)	$y = 2^{2x} (E)$	all a	re one to one
7.	Simpl	ify: $\frac{n!(n+3)}{(n-2)!}$	$\frac{!}{\div}$ $\frac{(n)}{(n)}$	$\frac{(n+1)!(n+2)!}{(n-1)!}$.						
	(A)	$\frac{n^2-2n-3}{n-1}$		(B)	$\frac{n^2+n^2}{n}$	$\frac{2n-3}{n+1}$		$(C) \frac{n^2 - n - n}{n+1}$.2	
	(D)	$\frac{n^2+2n-3}{n-1}$			(\mathbf{E}) $\frac{n}{2}$	$\frac{n^2-n-2}{n-1}$				
8.								l 9.5 hours resp wide together?		•
	(A)	11 hr 27 min	(B)	11 hr (C)	13 h	r 22 min (D)	11	hr 45 min (1	E) 5	hr 43 min
9.	If p ar	\mathbf{q} are the zer	ros of	the function	f(x) =	$= 18x^2 + 4x + 4$	l then	$pq^2 + p^2q =$		
	(A)	<u>41</u>	(R)	_41	(C)	41	(D)	$-\frac{82}{81}$	(E)	<u>-41</u>
		-						<u> </u>		-
10.		many ordered j ive integers?	pairs	are solutions	to the e	equation $9x + 8$	8y = 2	017 , where <i>x</i> a	nd y a	re both non-

(D) 29

(C) 30

(E) 31

TMS	CA	17-18 HSM	A Test 4	,								Page 2
		rst term of ole value for							hird tern	n is 12. V	Vhat	is the larger
(A)	48	(B)	96		(C)	72	(D	32	((E)	36
12. L	et x	vary invers	ely with	y^2+2 .	If <i>x</i> =	= 8 wh	en $y=5$,	find x wh	nen $y = 4$	١.		
(A)	12	(B)	18		(C)	$\frac{2}{3}$	(D	$\frac{4}{9}$	((E)	24
13. H	ow 1	many distin	ct arran	gements	can b	e mad	e with the	letters ir	the wor	d "ORIC	GAM	II"?
(A)	720	(B)	5040		(C)	2520	(D	1440	((E)	3240
14. T	he to	otal surface	area of	the cone	show	n is 90a	π cm². Th	e volume	of the co	one is	c	m ³ .
(A)	90π	(B) 10)8π	(C)	96π	(D)	144π	(E)	100π		
15. L	et f	$(x) = x^2 + 1$	1 and g	$(x) = x^4$. Cal	culate	f(g(-2))).			E	5 cm
(A)	226	(B)	290		(C)	145	(D	257	((E)	170
16. 6 ³	³ + 5	³ + + 17 ³ =	=									
				23,435		(C)	18,496	(D	23,248	8 ((E)	23,184
17. G	iven	that the bi	nomial .	x+2 is a	a facto	r of A.	$x^3 - x^2 - 1$	Ax + 22	calculate	the value	of A	١.
		$\frac{13}{3}$								(
18. T	he n	nathematica	al statem	ent (2x	-3)(4	(x-7)	$=8x^2-1$	4x-12x	+ 21 is ar	n example	of_	property.
(A)	Associativ	e		(B)	Comi	mutative		(C)	Identity		
(D)	Transitive			(E)	Distr	ibutive					
tr	ansl	P(-3,2) li ated -6 un S. The coo	its horiz	ontally t	o poir	t R. P	oint R is	rotated 9		_		Q. Point Q is ne origin to
(A)	-1	(B)	11		(C)	1	(D) 4	((E)	-3
		\overline{AC} , \overline{BD} and $APB = 3$		are chord	ls of th	ne circl	le shown.	Find ml	BED if m	n∠ADC =	55°	A B E
((A)	174°	(B) 1	72°	(C)	190°) (D) 168°	(E)) 182°	(D
21. W	hicl	n of the foll	owing a	re the sid	le leng	ths of	a scalene,	obtuse t	riangle?			C

(A) 11, 11, 15 (B) 11, 13,16 (C) 9, 11, 14 (D) 11, 15, 18 (E) 11, 15, 21

- 22. A hexagonal dipyramid has 18 edges and the number of faces is four more than the number of vertices. How many vertices does it have?
 - A) 6
- **(B)** 18
- (C) 16
- (\mathbf{D}) 8
- 12 **(E)**
- 23. The regular hexagon in the illustration is inscribed in the circle. If a dart thrown strikes randomly inside the circle, what is the probability that it will land in the shaded region? (nearest hundredth)

- (A) 0.54
- **(B)** 0.17
- (C) 0.18
- (D) 0.46
- (E) 0.19

- 24. If $\frac{A}{x+5} + \frac{B}{2x+3} = \frac{10x+8}{2x^2+13x+15}$, then A+B=?
 - (A) -6
- **(B)** 7
- (C) -2
- (\mathbf{D}) 4
- -5 **(E)**
- 25. Using the following array, determine the value of the last number in the 25th row.

1					(row 1)
3	5				(row 2)
7	9	11			(row 3)
13	15	17	19		(row 4)
21	23	25	27	29	(row 5)
•••					()

- (A) 599
- (B) 701
- (C) 651
- **(D)** 675
- (E) 649
- 26. The bearing from town A to town B is 191°, and the bearing from town B to town C is 72°. It takes 1 hour and 40 minutes at 75 mph to go from town A to town B and 1 hour and 15 minutes to go from town B to town C travelling at 64 mph. How far is town A from town C? (nearest mile)
 - (A) 111 mi
- (B) 155 mi
- (C) 119 mi
- (D) 100 mi
- **(E)** 185 mi
- 27. If an integral factor of 252, not including 1 or 252 is chosen at random, what are the odds that it is a multiple of 7?
 - (A) 1:2
- (B) 5:7
- (C) 1:1
- (D) 10:13
- $(E) \quad 3:1$
- 28. If 2+3i is one of the zeros the polynomial $f(x) = 2x^3 13x^2 + 46x 65$, then another of its zeros is:

 - (A) $\frac{2}{3}$ (B) $-\frac{3}{2}$ (C) $\frac{5}{2}$ (D) -1 (E) $\frac{2}{5}$

- 29. Find $\lim_{x\to\infty} \frac{-4x^2+9x+7}{3x^3-9}$
 - (A) $-\frac{4}{3}$ (B) -1 (C) $\frac{3}{4}$
- $(\mathbf{D}) \quad \mathbf{0}$
- (E) does not exist

- 30. $330220_4 220330_4 + 2323_4 =$ ________8
 - (A) 2637
- **(B)** 2647
- (C) 2535
- (D) 2651
- (E) 2531

31. If $f''(x) = 54x - 10$ and $f(1) = -3$ and $f(-1) = -25$, then $f(2) = $										
(A)	90	(B)	65	(C)	47	(D)	53	(E)	13	
32. If a_0 =	32. If $a_0 = -2$, $a_1 = 3$, $a_2 = 5$ and $a_n = (a_{n-3})(a_{n-1}) + a_{n-2}$ for $n \ge 3$, then $a_6 = ?$									
(A)	-625	(B)	593	(C)	625	(D)	-87	(E)	-9575	
33. If $\begin{bmatrix} 2 \\ a \end{bmatrix}$	$\begin{bmatrix} -8 \\ -11 \end{bmatrix} - \begin{bmatrix} 3 & b \\ -6 & 5 \end{bmatrix}$	$\begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 & 12 \\ 10 & -16 \end{bmatrix}$ then	<i>a</i> + <i>b</i> =	= ?					
(A)	24	(B)	-4	(C)	36	(D)	-7	(E)	-16	
_			Paul, and Quer old is Quentin		five years your	nger t	han Ron. In fo	our ye	ars the sum of	
(A)	8	(B)	6	(C)	16	(D)	12	(E)	20	
35. Find t	the total area o	f the t	wo regions end	losed	by the curves	$y = x^{3}$	$3 - 3x^2 - 9x + 2$	27 and	1 y = x + 3.	
(A)	127.50	(B)	101.75	(C)	85.75	(D)	92.75	(E)	106.75	
secon	36. A baseball diamond has the shape of a square with sides 90 ft. long. A player runs from first base to second base at a rate of 22 ft/sec. How fast is the player's distance from home plate changing when the player is 15 ft. from second base? (nearest tenth)									
(A)	3.6 ft/sec	(B)	13.9 ft/sec	(C)	9.3 ft/sec	(D)	14.1 ft/sec	(E)	12.9 ft/sec	
37. Let <i>A</i>	and B be the r	oots o	$f\left(x\right) = 2x^2 +$	-9 <i>x</i> +	7. Find the va	lue of	$A + 4A^3B + 6A$	A^2B^2	$+4AB^3+B^4$.	
(A)	$\frac{6561}{16}$	(B)	$\frac{2401}{10000}$	(C)	$\frac{81}{256}$	(D)	$\frac{625}{16}$	(E)	$\frac{2401}{16}$	
38. (-2-	$3\sqrt{-10}\Big)\Big(6\sqrt{-8}\Big)$)								
` ,	$-72\sqrt{5}-24\sqrt{2}$		(B)				(C) $72\sqrt{5}$ –	- 24√2	i	
			(E)	$72\sqrt{10}$	<u> </u>					
39. Simplify: $\left(a^2 \div b^3\right)^{-4} \div a^7 \times b^5$.										
	u		u		$\frac{b^{17}}{a^{15}}$		u		u	
40. The function $f(x) = \frac{6x^2 + 5x - 25}{9x^2 + 6x - 35}$ has a vertical asymptote at $x = V$ and a horizontal asymptote at										
y = H	y = H and a removable discontinuity when $x = R$. Find $V + H + R$.									
(A)	$-\frac{7}{3}$	(B)	0	(C)	$\frac{2}{3}$	(D)	-1	(E)	$-\frac{1}{6}$	

Copyright © 2017 TMSCA

- 41. How many 3-digit numbers can be made with the digits 0, 0, 2, 4, and 6?
 - (A) 20
- **(B)** 18
- (D) 21
- **(E)** 15

- 42. If $f(x) = \tan^3(x)$, then $\lim_{h \to 0} \frac{f(\frac{\pi}{4} + h) f(\frac{\pi}{4})}{f}$ is
 - (A) 6
- (\mathbf{B}) -1

- $(\mathbf{E}) \quad \mathbf{0}$

- (A) 6 (B) -1 (C) 1 43. If $f(x) = 5^{2x}$, $g(x) = \log_5 x$ and $a \ge 3$, then g(f(a-3)) = ?
 - (A) 2a
- (B) 5^{a-3}
- (C) 2a-6
- (D) $\log_3(a+1)$
- (E) a-3

- 44. What is the perimeter of the quadrilateral shown? (nearest inch)
 - (A) 33 in
- (B) 31 in
- (C) 37 in (D) 33 in
- (E) 35 in

- 45. Which of the following functions expresses the perimeter, P, of an equilateral triangle in terms of the length of the height, h?

- (A) $P = h^2 \sqrt{3}$ (B) $P = 3\sqrt{3}h$ (C) $P = \frac{3h}{2}$ (D) $P = \frac{h^2 \sqrt{3}}{3}$ (E) $P = 2\sqrt{3}h$
- 46. A set of five integers arranged least to greatest has a mean of 11, mode of 15, median of 13, and range of 10. Find the second number.
 - (A) 9
- (C) 11
- **(D)**
- 47. Find the area of a convex quadrilateral with vertices at (-1,9), (3,11), (7,2) and (2,-5).
 - (A) 71.5
- **(B)** 69.5
- (C) 56.5
- (D) 67.5
- **(E) 73**
- 48. The repeating decimal 0.3111... in base 5 can be written as which of the following fractions in base 5 in simplified terms?
 - (A) $\frac{103}{3305}$ (B) $\frac{24}{1205}$ (C) $\frac{23}{405}$ (D) $\frac{2}{105}$

- 49. If $\frac{x+7}{x-7} + \frac{x-7}{x+7} = 2 + \frac{A}{(x-7)(x+7)}$ where $A \in \mathbb{Z}^+$ then A = ?
 - (A) 196
- **(B)** 49
- (C) 14
- (D) 28
- **(E)**
- 50. Find the range, or ranges of values k can take for $kx^2 8x + 10 k = 0$ to have two distinct rational solutions.
 - (A) (2,8)

- (B) $\left(-\infty, -12\right) \cup \left(4, \infty\right)$ (C) $\left(-\infty, -8\right) \cup \left(-2, \infty\right)$

(D) (-8,-2)

- (E) $(-\infty,2)\cup(8,\infty)$
- 51. Find the y-intercept of the tangent line to $7x^2 + 2y^2 = 25$ at the point (-1, -3).

- (A) $\left(0, \frac{25}{6}\right)$ (B) $\left(0, -\frac{25}{6}\right)$ (C) $\left(0, \frac{25}{7}\right)$ (D) $\left(0, \frac{11}{6}\right)$ (E) $\left(-\frac{11}{7}, 0\right)$

- 52. A lightbulb company produces bulbs that are faulty on average 2.8% of the time. If 6 bulbs are packaged together, what is the probability that at least one of the bulbs is faulty? (nearest tenth)
 - (A) 16.9%
- (B) 16.3%
- (C) 15.2%
- (D) 15.7%
- **(E)** 18.2%
- 53. Find the area of the shaded region on the illustration shown if the dots on the grid are 6 cm. apart both horizontally and vertically.
 - (A) 57 cm^2
- (B) 378 cm^2 (C) 360 cm^2 (D) 342 cm^2 (E) 63 cm^2

- $54. \frac{1-\cos(2\theta)}{\sin(2\theta)} =$
 - (A) $\tan(2\theta)$
- (B) $\tan \theta$
- (C) $\cot(2\theta)$
- (D) $1 + \tan \theta$
- $tan(2\theta)$
- 55. A game is played wherein two fair dice are rolled and the sum of the two top faces is calculated. If the sum is 6 or 8, the player wins \$3.50. If the sum is 7, then the player loses \$4.00. What is the mathematical expectation of a single roll? (nearest cent)
 - (A) \$0.58 loss
- (B) \$0.25 loss
- (C) \$0.31 gain
- (D) \$0.56 loss
- **(E)** \$0.25 gain
- 56. Find the digit in the millionths place of the sum of the series $0.7 \frac{(0.7)^3}{3!} + \frac{(0.7)^5}{5!} \frac{(0.7)^7}{7!} + \frac{(0.7)^9}{9!} \dots$
 - (A) 4
- (B) 6
- (C) 9
- **(D)** 5
- (\mathbf{E}) 7

- 57. If $PQR_5 + RPQ_4 QPR_3$ has a numeric value in base 10 of:
 - (A) 26P 3Q + 20R
- (B) 30P 3Q + 14R
- (C) 26P 3Q + 16R

- (D) 28P 3Q + 16R
- (E) 30P + 15Q + 16R
- 58. The lengths of the sides of triangle PQR are the roots of $f(x) = 2x^3 29x^2 + 134x 198$. The perimeter of triangle PQR is 14.5. Find the area of triangle PQR. (nearest tenth)
 - (A) 9.1
- **(B)** 6.4
- (C) 7.3
- (D) 6.2
- $(\mathbf{E}) \quad \mathbf{7.8}$

- 59. $\det\begin{bmatrix} \sin A & \cos A \\ -\sin A & \cos A \end{bmatrix} =$
 - (A) $\cos 2A$
- (B) $\cos^2 A \sin^2 A$
- (C) 0
- **(D)** $\sin 2A$
- **(E)** 1

- 60. Which of the following statements about f(x) = 7 |5x|?
 - f'(x) exists for all x in the domain of f(x)I.
 - $f^{-1}(x)$ is a function II.
 - $\lim_{x\to a} f(x)$ exists for all a in the domain of f(x)III.
 - (A) II only
- (B) I & II
- (C) III only
- (D) II & III (E) none of these

2017-2018 TMSCA Mathematics Test Four Answers

1. D	21. E	41. D
2. A	22. D	42. A
3. B	23. B	43. C
4. D	24. D	44. B
5. E	25. E	45. E
6. B	26. A	46. E
7. B	27. C	47. D
8. A	28. C	48. C
9. E	29. D	49. A
10. B	30. B	50. E
11. B	31. C	51. B
12. A	32. B	52. D
13. C	33. E	53. D
14. E	34. C	54. B
15. D	35. B	55. C
16. E	36. D	56. E
17. E	37. A	57. C
18. E	38. C	58. B
19. B	39. C	59. D
20. A	40. B	60. C

2017-2018 TMSCA Mathematics Test Four Select Solutions

- 2. M = (-2,6) and the slope of the perpendicular is $m = \frac{7}{11}$, then to find the *x*-coordinate of the *x*-intercept: $\frac{7}{11} = \frac{0-6}{x+2}$ for 7x+14=-66 and $x=-\frac{80}{7}$.
- 8. $t = \frac{2(2)}{\frac{1}{8} + \frac{1}{8.4} + \frac{1}{9.5}} \approx 11.45$ or 11 hr. and 27 min
- 9. This is the product of the sum of the roots and product of the roots, or $-\frac{4}{18}\left(\frac{41}{18}\right) = -\frac{41}{81}$
- 11. $r = \pm \frac{1}{2}$ for a larger sum of $\frac{48}{1 0.5} = 96$
- 12. Only the 2-I's repeat, so $\frac{7!}{2!} = 2520$
- 16. $\left(\frac{17\cdot18}{2}\right)^2 \left(1+8+27+64+125\right) = 23,184$
- 17. Solve $A(-2)^3 (-2)^2 A(-2) + 22 = 0$ for A = 3
- 19. Q(-2,3), R(-8,3) and S(3,8) for a sum of 11.
- 20. $mAC = 110^{\circ}$ and $mAB + mCD = 76^{\circ}$, so $360^{\circ} 110^{\circ} 76^{\circ} = mBED = 174^{\circ}$
- 21. For an obtuse triangle, $a^2 + b^2 < c^2$, which is only true for $11^2 + 15^2 < 21^2$
- 22. V + F E = 2 for V + V + 4 18 = 2 and V = 8
- 24. A(2x+3)+B(x+5)=10x+8, so A=6, B=-2 and A+B=4 for A=6, B=-2
- 28. If 2+3i is a zero, then 2-3i is also a zero and the sum of the roots is $-\frac{b}{a} = 6.5$ then $6.5 (2+3i) (2-3i) = 2.5 = \frac{5}{2}$

- Let x be the player's distance from 1st base and d be the player's distance from home plate. Then $\frac{dx}{dt} = 22 ft / s$ and
- $x^2 + 90^2 = d^2$ for $x \frac{dx}{dt} = d \frac{dd}{dt}$ and at the given time.
- $75(22) = (117.15) \frac{dd}{dt}$ and $\frac{dd}{dt} \approx 14.1 \, \text{ft/s}$
- 41. The 3-digit numbers with repeat digits are 200, 400 and 600 for the rest, there are 3 possible 1^{st} digits, then 3 choices for the 2^{nd} digit and two for the 3^{rd} , for 3+3(3)(2)=21
- 42. This is the definition of derivative of $f(x) = \tan^3 x$ when $x = \frac{\pi}{4}$
- 47. Find the area of any polygon using coordinates of vertices

by
$$A = \left| \frac{(x_1 y_2 - y_1 x_2) + (x_2 y_3 - y_2 x_3) ... + (x_n y_1 - y_n x_1)}{2} \right|$$
 where the

points are arranged in either clockwise or counter-clockwise order. So here

$$\left| \frac{\left(-1 \cdot 11 - 9 \cdot 3 \right) + \left(3 \cdot 2 - 11 \cdot 7 \right) + \left(-5 \cdot 7 - 2 \cdot 2 \right) + \left(2 \cdot 9 - \left(-5 \right) \left(-1 \right) \right)}{2} \right| = 67.5$$

- 50. 64-4k(10-k)>0 for $(-\infty,2)\cup(8,\infty)$
- 51. $14x + 4y \frac{dy}{dx} = 0$ for $14(-1) + 4(-3) \frac{dy}{dx} = 0$ for $\frac{dy}{dx} = -\frac{7}{6}$, $-\frac{7}{6} = \frac{y+3}{0+1}$ and $y = -\frac{25}{6}$
- 52. $1 p(no faulty bulbs) = 1 (0.972)^6 \approx 15.7\%$

54.
$$\frac{\left(\cos^2\theta + \sin^2\theta\right) - \left(\cos^2\theta - \sin^2\theta\right)}{2\sin\theta\cos\theta} = \frac{2\sin^2\theta}{2\sin\theta\cos\theta} = \tan\theta$$

- 56. This is the McClaurin series for $f(x) = \sin x$ and the millionths place digit of f(0.7) is 7.
- 58. The semi-perimeter of the triangle is 7.25 and the area of the triangle is $\sqrt{7.25 \times \frac{f(7.25)}{2}} \approx 6.41$