Sampling methods for counting temporal motifs

Paul Liu · Stanford University

Slides. tinyurl.com/wsdm19

Paper. arXiv:1810.00980

Joint work with Austin Benson (Cornell) & Moses Charikar (Stanford)

Temporal network data is extremely common.

Private communication

e-mail, phone calls, text messages, instant messages

Payment systems credit card transactions, cryptocurrencies, Venmo

Public communication

Q&A forums, Facebook walls, Wikipedia edits

Technical infrastructure

packets over the Internet, messages over supercomputer

Motifs, or small subgraph patterns, are commonly used to analyze static (non-temporal) networks.

1. Common feature for anomaly detection, role discovery, and other network machine learning problems.

[Noble-Cook 03; Sun+ 07; Henderson+ 12; Rohe-Qin 13; Rossi-Ahmed 15; Benson-Gleich-Leskovec 16]

- 2. Finding fundamental components of complex systems. [Milo+ 02]
 - Triangles in social networks. [Rapoport 53; Granovetter 73; Watts-Strogatz 98]
 - Bi-directed length-2 paths in brain networks.
 [Sporns-Kötter 04; Sporns+ 07; Honey+ 07]

Temporality adds important context to motifs.

Red edges occur before blue edges.

What is the difference between the following temporal motifs?

How does context change if $\delta = 1$ day? 1 month? 1 year?

[Paranjape-Benson-Leskovec 17] precisely defines the temporal motif counting problem.

Temporal network motif.

- 1. Directed multigraph with *k* edges
- 2. Edge ordering
- 3. Max. time span δ = 25.

Motif instance.

k temporal edges that match the pattern that all occur within δ time.

There is a need to have scalable algorithms for real-time temporal motif analysis.

- Prior algorithms focused on enumeration [Mackey+ 18] or exact counts for small motifs [Paranjape-Benson-Leskovec 17].
- Algorithms were extremely memory extensive.
- Compute times on the order of days for our largest datasets, and could not be done in a streaming manner.

How do we enable real-time motif analysis for high-throughput temporal network data?

Majority of applications only require *approximate* counts.

From exact to approximate: random sampling.

Idea. Use importance sampling to accelerate existing motif algorithms.

Our contributions.

- Theoretical foundation for temporal motif counting, showing that it is NP-hard.
- A sampling framework to accelerate existing temporal motif counting algorithms.
- New sampling algorithms are memory-efficient, and can be done in a streaming fashion.

Parallel sampling yields about two orders of magnitude speedup and enables otherwise infeasible computations.

Time scale $\delta = 1$ day. 16 threads.

			running time (seconds)		
dataset	# temporal edges	exact	sampling	parallel sampling	error
StackOverflow	47.9M	221.7	93.10	5.208	4.9%
EquinixChicago	345M	481.2	45.50	5.666	1.3%
RedditComments	636M	X	6739	2262	_

Using backtracking algorithm from [Mackey+ 18] as a sub-routine.

From exact to approximate: random sampling.

"Easy" solution: sample subset of edges from graph and run exact algorithm on it.

How do we sample? (Two simple ideas)

- 1. Sample uniformly random subset of edges? **x** edges sampled often are too far apart in time.
- 2. Sample uniformly random windows of duration δ ? \times contribution from windows are uneven. May miss temporally dense regions of edges.

Sampling window length $w > \delta$ ($\delta = 25, w = 50$). Choose random shift s uniformly from [0, 1, ..., w - 1] (s = 20).

Sampling window length $w > \delta$ ($\delta = 25, w = 50$). Choose random shift s uniformly from [0, 1, ..., w - 1] (s = 20).

- 1. How do we re-scale exact counts?
- 2. Motifs can cross sampling intervals. How do we mitigate this?
- **3.** How do we choose sampling probabilities q?

Sampling window length $w > \delta$ ($\delta = 25, w = 50$). Choose random shift s uniformly from [0, 1, ..., w - 1] (s = 20).

motif instance Mduration d(M) = 32 - 16 = 16

Theorem. If we sample window j with prob. q_j , then upscaling each found motif instance by $(1 - d(M) / w) / q_j$ is an unbiased estimator, where d(M) is the duration of the motif instance M.

Sampling window length $w > \delta$ ($\delta = 25$, w = 50). Choose random shift s uniformly from [0, 1, ..., w - 1] (s = 20).

- Using multiple random shifts and averaging the estimates reduces variance by capturing motifs that cross sampling intervals.
- s = 20, s = 32, s = 37
- Computation over each shift is parallelizable.

Sampling window length $w > \delta$ ($\delta = 25$, w = 50). Choose random shift s uniformly from [0, 1, ..., w-1] (s = 20).

- Set q_j for each shift. Larger $q_j \rightarrow$ more computation but less variance. **Importance sampling.** Only want to sample where motifs occur.
- **Heuristic.** Make q_i larger if more edges in sampling window.

Computation over windows is naturally *streaming*.

- Computations of different windows are independent.
- Old data from longer than one window ago can be thrown away.
- Multiple estimators can be run in parallel to ensure accuracy.

Our algorithm in a nutshell.

Input. Temporal motif and maximum time scale δ . Output. Estimate of number of instances of the motif.

Partition data into windows	Parallel Importance Sampling	Count and upscale
Choose a random shift s, and partition the data into windows aligned to	For <i>j</i> th window, sample with probability <i>qj</i> .	Upscale counts of motif instances depending on their duration <i>d(M)</i> .

Our algorithm in a nutshell.

Input. Temporal motif and maximum time scale δ . Output. Estimate of number of instances of the motif.

Partition data into windows

Parallel Importance Sampling

Count and upscale

Key advantages.

- Works in streaming setting. Faster & less memory intensive.
- Can use (almost) any "exact counting" method for step 3. [Paranjape-Benson-Leskovec 17; Mackey+ 18; Liu-Benson-Charikar 18]
- Can parallelize over shifts and sampling windows
 - → exposes parallelism to otherwise sequential algorithms.

THANKS!

Slides. tinyurl.com/wsdm19

Paper. arXiv:1810.00980

□ paul.liu@stanford.edu

Existing methods for temporal analysis are insufficient.

1. Models for network growth

Growth of academic collaborations, Internet infrastructure, etc. [Leskovec+ 07]

2. Sequence of snapshot aggregates

Daily phone call graph [Araujo+ 14], weekly email snapshots [Xu-Hero 14]

Modern temporal network datasets

- fine-scale time resolution
- high-frequency
- many repeated edges