CHEMISTRY TRIAL 2001 MARKING GUIDELINES

The Core
Multiple choice (1 mark each)
1D 2A 3B 4A 5B 6C 7B 8A 9B 10D 11A 12C 13D 14C 15D

Extended answers

1	EXICEDED RISPETS	
2	Answer	Mark
9	$\frac{29}{2} \boxed{U} + {}^{12} \boxed{C} \Rightarrow \boxed{1} \boxed{M} \boxed{C} \boxed{M} + 4 \boxed{D} \boxed{D}$	~
-	1	
<u> </u>	Huckine-18 – used in position emission tomography to study brain function, to diagnose epitepsy, heart disease and certain types of cancer phosphorus-32 – treating excess red blood cells	
	cobalt-60 – source of external radiation for cancer treatment technetium-99 – detection of blood vessel constrictions, blood clots, brain	7
	turnous iodine-121 – destroying (some of the overactive) thyroid gland iodine-135 – diagnosis of thyroid diseases indium-192 – internal source of radiotherapy	
	correct element but incorrect isotope	~
3	one of protein, cellulose, starch	_
2 8	 biopolymers are biodegradable, polymers from petroleum products are not petroleum reserves are diminishing 	
<u>&</u>	C ₆ H ₁₂ O ₆₍₄₀₎ → 2CO ₁₄₀ + 2C ₂ H ₅ OH ₆₄₀ catalyst: yeast % for combyst	_
19a ∷	CH ₃ CH ₂ OH ₍₀₎ → CH ₃ =CH ₂ c ₀ + H ₂ O ₍₀₎ catalyst: concentrated H ₂ SO ₄	_
196	Water dissolves ionic and polar compounds by forming dipole-ion, dipole- dinole or H bonds with the solute particles	
	The OH end of ethanol can form the same type of bonds.	
<u>ક</u>	Energy from ethano! = n x AH = 785/46.1 x 1367 = 23278 kJ Fineray from critine = n y AH = 608/114.2 y 5470 = 23432.1	
	Since more energy from octane, can travel further on octane.	
20a	any copper solution, eg copper (II) sulfate	_
20b	Cu* + 2e → Cu _{ts}	-
20c	oxidation	
21a	To minimise the decrease in pressure caused by the opening of the bottle, the equilibrium shifts towards the side with the greater number of gas molecules in towards the formation of C.C. man builthus.	
	HOUSENES, is to me to the following to the pass outpies.	_

_	1	ſ	1															
	-	_	-	-		- -	_	_	_			_	_				-	
Solubility of gases is greater at lower temperature, ie dissolving is exothermic. So lowering the temperature favours the reaction which produces heat so equilibrium shifts towards CO _{Rop} , away from the formation of gas bubbles.	· · · · ·	Reduction. An electron is gained (or e is a reactant) or there is a decrease in the oxidation number of vanadium (from +5 to +4). If there is no reason or the reason is wrone, no mark at all.	+5	CuS _(s) + O _{2(g)} → Cu _(s) + SO _{2(c)}	n _{cus} 1000000095.6 = 10460 mol n _{SO2} = n _{Cus} = 10460 mol V _{SO3} = n _X V _{SO3} = 10460 x 24.45 = 55575.1 (= 2.55 × 10 ² 1.)	\vdash	H ₂ SO _{4(mg)} + CaCO _{3(m)} → H ₂ O _(t) + CO _{2(g} + CaSO _{3(mg)}	CH ₃ CH ₂ COOCH ₂ CH _{3ce0} + H ₂ O ₍₁₎				HCl provide	HCI + H ₂ O → H ₃ O* + CI	The ammonium ion of NH,OH is a proton donor NH, + OH NH, + H ₂ O	H::	H:N:8:1:	-+	At higher pressure equilibrium favours side with fewer gas molecules, i.e. an increase in NH3 formation At high temperature equilibrium is reached quickly but with low yield (equilibrium position is towards the reactants).
218	210	22	72P	23a	236	23c	234	24a	248	24p	24b ii	25a		25a ii	256			26a

2

2	At low termesone and their wind in him had a selection	ļ
(com)	or months to reach equilibrium.	
	(At moderate temperature get reasonable yield in reasonable time.)	_
26b i	_	-
76b	The alternative pathway offered by the catalyst has a lower activation	
=	energy. Therefore the number of molecules at the low temperature which have	_
	sufficient energy to overcome this lowered energy barrier can be the same	
	as the number of molecules at the high temperature with sufficient energy	
27a	The OH reaced = The OH originally The OH remaining to be neutralised by HCI	_
45	$= 0.15 \times 0.1(imark) - (imark) 0.23 \times 0.0231(imark) = 0.0097 \text{ mol}$	m).
0/7	ny = ninis = namon readed = 0.009 / mol	
27c	percent of N = n x MM(//mark) x 100/m (/ mark) = 0.0097 x 14 x 1000/0.95 = 14.3%	~
28a	porous polypropylene, polysulfone or teflon	-
28b	cross section of a microscopic membrane filter	
	direction of water flow for the folded porous membrane	
	dity water solid porous core	
	Clean water	-
		-
2 8 C	Dirty water under pressure is pushed against the membrane. The pores in	İ
	the includes at the size of the control of the cont	_
29a	The ozone layer in the stratosphere is needed to shield living organisms in the lower atmosphere from harmful ultraviolet radiation.	-
23 0	Ozone, being a powerful oxidising agent, can cause harmful chemical	
Š	concentration = absorbance of sample x concentration of standard = 0.078 x 5.85	
	of sample absorbance of standard 1.087	_
306	n _{BaSOs} = m/MM 0.27/233.34 = 1.157x 10 ⁻³	_
30b	The number of moles of $H_2SO_4 = 2.05 \times 0.01 = 0.0205$ mol, which would	
=	be enough to precipitate outdoor moves of backs. The feathert support before this, so all the Bat* must have been used up, i.e. suffuric acid was in excess.	
30b	лвы» = пыком 0.001157 mol	
≡	mba2+ = n x MM = 0.001157 x 137.34 = 0.16 g L ⁻¹	_

OPTION I. INDUSTRIAL CHEMISTRY

ᇛ	Wool - increasing population and increasing affluence → too much demand	
	 alternative cheaper Rubber increased number of vehicles → can't keep up with demand 	
	 limited supply Soap – increased population → increased demand 	_
	- starting material (fat) used elsewhere (for food).	
₽	Wool – acrylic, nylon Rubber – styrene-butadiene	_
	Soap - detergents	
2		_
g.	concentration (mol 1-1) [N ₂] [H ₂] [NH ₃] initial 0.19 0.34 0.23	}
	change +0.04 +0.12 -0.08	_
	at equilibrium 0.23 0.50 0.15	_
39		_
3c	$K = 0.15^{2} = 0.783$ 0.23×0.5^{3}	_
4	is not soluble in water has low melting point has low density	
5a	The energy used to remove an H* from an HySO, molecule is much less	_
-	than the energy released in forming a new bond between the H* and a water molecule.	
5 a :	The heat released when a small volume of acid and water react is	
=	insufficient to suddenly vaporise a large volume of (acidified) water, but is sufficient to vaporise a small volume of water. (The boiling point of	_
	suffuric acid is much higher, so it will not vaporise.)	
\$	Wear eye protection, apron and gloves. Have some solid Na ₂ CO ₃ handy to neutralise any spills. (and/or) Perform the dilution near a sink to quickly dilute any spill.	
	Place water and stirring rod into a beaker Slowly pour a small quantity of the acid along the rod to avoid splashing. Sir	
	If the mixture becomes too hot allow it to cool before adding more acid.	-
9	8	_
7	Only the magnesium-lead cell is galvanic. The reaction is spontaneous (exothermic). The released energy can be in the form of electrical energy. Chemical energy ownered to electrical energy \Rightarrow galvanic cell.) In the connectoric cell the reaction will not moceed unless there is a	_
	constant supply of electrical energy. (Electrical energy converted to electrical energy abeliance).	_
	100001000000000000000000000000000000000	ŀ

12

=

2CT t _{eqs} + 2H ₂ O ₁₀ → Cl _{21gs} + H _{2gs} + 2OH t _{eqs} 1. mercury contamination of the environment (water ii. NaOH produced is contaminated by some NaCl. (or) The asbestos from which the diaphragm is not to the sequence of the contaminated by some NaCl. (or) The asbestos from which the diaphragm is not to the sequence of the s	+ 2OH (sq)	i. mercury contamination of the environment (waterways, lakes, oceans)	NaOH produced is contaminated by some NaCl. (or) The asbestos from which the diaphragm is made is a health hazard. 1	— od — water		3.9 mol 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$2C\Gamma_{(eq)} + 2H_2O_{(1)} \rightarrow CI_{2(g)} + H_2$	i. mercury contamination of the	ii. NaOH produced is contamina (or) The asbestos from which	\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}	→ NaHCO ₃₍₈₎ + NH ₂ CI _(m)	$n_{CO2} = V/V_{motar} = 1000/24.45 = n_{Na2CO3} = nCO_2 = 40.9 \text{ mol}$ $m_{Na2CO3} = n \times MM = 40.9 \times 100$

OPTION 2. SHIPWRECKS AND SALVAGE

<u>e</u>	Galvani	-
9	Davy	_
<u>2</u>	Faraday	_
7	The aluminium quickly forms aluminium oxide with air. This oxide layer is strongly bonded to the underlying aluminium, forming a protective layer preventing further oxidation.	_
За	0.34 - (-0.13) = 0.47 V	_
æ	i. at anode: iodine at cathode: copper ii. at anode: oxygen at cathode: hydrogen	
4	Container II	_
es.	sea water *sat bridge* Mg or Zn Mg at zn Electrons are lost by both the steel and the sacrificial metal. As the electrons are removed from the steel, they are immediately replaced	1 2
	by electrons from the sacrificial metal.	
જ	On metal tanks buried in moist ground.	_

_		_		_			-		_
paint, grease, tin coating, enamelling, passivating the metal	A barrier strike between the inou/steel and the oxidising material. (OR) The electron lost from the steel hull is immediately replaced by electrons from the power source.	Bacteria that do not need oxygen	They are sulfur reducing organisms, converting sulfates to sulfides, which facilitates the oxidation of iron. As well, their wastes reduce the pH of the water, which speeds up corrosion.	solubility of salts water temperature	solubility of gases water temperature	solubiky of gases water depth	The removal of water causes salt to crystallise out. If the crystals form in the pores of porous objects the objects might crack, become distorted or react chemically with the object.	i. $Ag_{03} + H_5 S_{04} \rightarrow Ag_5 S_{03} + H_5 t_0$ ii. $AeS_{03} + 2e^- \rightarrow Ag_{04} + S^2$ on	iii. $CaCO_{300} + 2H^{+}_{(40)} \Rightarrow Ca^{2+} + CO_{2(40)} + H_2O(1)$
5.	= ا چ	ģ	99	78	4	22	æ	æ	

4