Matemáticas II

Marcos Bujosa

Universidad Complutense de Madrid

16/01/2025

1 / 24

L-5

L-4

1 Esquema de la Lección 4

Esquema de la Lección 4

- Transformaciones elementales
- Identificación de matrices singulares por eliminación
- Producto de *matrices elementales*

L-4

Puede encontrar la última versión de este material en

https://github.com/mbujosab/MatematicasII/tree/main/Esp

_ Marcos Bujosa. Copyright © 2008–2025
Algunos derechos reservados. Esta obra está bajo una licencia de Creative Commons Reconocimiento-CompartirIgual 4.0
Internacional. Para ver una copia de esta licencia, visite
http://creativecommons.org/licenses/by-sa/4.0/ o envie una carta a Creative Commons, 559 Nathan Abbott Way,
Stanford, California 94305, USA.

1/24

L-4

2 Transformaciones elementales de una matriz

Tipo *I*:
$$\mathbf{A}_{\substack{\tau \ [(\lambda)i+j]}}$$
 $(\operatorname{con} i \neq j)$

suma λ veces la columna i-ésima a la columna j-ésima

$$\begin{bmatrix} 1 & -3 & 0 \\ 1 & -6 & 3 \end{bmatrix}_{\substack{\mathbf{7} \\ [(-2)\mathbf{1}+3]}} = \begin{bmatrix} 1 & -3 & -2 \\ 1 & -6 & 1 \end{bmatrix}$$

Tipo *II*:
$$\mathbf{A}_{\substack{\tau \ [(\alpha)i]}}$$
 (con $\alpha \neq 0$)

multiplica por α la i-ésima columna

$$\begin{bmatrix} 1 & -3 & 0 \\ 1 & -6 & 3 \end{bmatrix}_{\substack{\tau \\ [(10)\mathbf{2}]}} = \begin{bmatrix} 1 & -30 & 0 \\ 1 & -60 & 3 \end{bmatrix}$$

2 / 24

L-5

- Pivote: es el primer componente no nulo de cada columna.
- *Eliminación*: modifica una matriz hasta que los componentes a la derecha de cada pivote son cero

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 8 & 4 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{[(-3)^{1}+2]} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 4 \\ 1 & -2 & 1 \end{bmatrix} \xrightarrow{[(-2)^{2}+3]} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & -2 & 5 \end{bmatrix} = \mathbf{L}$$

4 / 24

L-5

L-4

5 Eliminación: ¿Cuando no hay suficientes pivotes?

matrices $n \times n$: **singulares** si no logramos n pivotes tras la eliminación

$$\begin{bmatrix} 0 & 1 & 3 \\ 4 & 2 & 8 \\ 1 & 1 & 1 \end{bmatrix}$$

¿Y si la matriz fuera?
$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ 1 & 1 & 1 \end{bmatrix}$$
¿Y si la matriz fuera?
$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 4 \\ 1 & 1 & 1 \end{bmatrix}$$
¿Y si la matriz fuera?
$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 6 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
¿Y si la matriz fuera?
$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & -4 \end{bmatrix}$$

L-4

4 Eliminación

Algoritmo de Eliminación sobre A

modifica A con una secuencia de transformaciones elementales

Objetivo

obtener una forma (pre)escalonada de la matriz

- pre-escalonada: a la derecha de cada pivote solo hay ceros.
- escalonada: además sus pivotes en disposición descendente y columnas nulas a la derecha.

Toda matriz se puede (pre)escalonar por eliminación

Rango (rg): n^{Q} de pivotes de sus formas pre-escalonadas

A singular: sus formas pre-escalonadas tienen columnas nulas (rg < n)

5 / 24

L-5

L-4

6 Producto de matrices: matrices elementales

$$\underbrace{\begin{bmatrix} 1 & 3 & 0 \\ 2 & 8 & 4 \\ 1 & 1 & 1 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 4 \\ 1 & -2 & 1 \end{bmatrix}}_{\mathbf{A}_{\mathbf{C}}}$$

La matriz I_{τ} se denomina matriz elemental:

$$\mathbf{A}(\mathbf{I}_{m{ au}})=\mathbf{A}_{m{ au}}$$

Esta matriz elemental $\mathbf{I}_{ au}$ en particular se denota como $\mathbf{I}_{ au}$ [(-3)1+2]

$$\mathbf{A}\left(\mathbf{I}_{\stackrel{oldsymbol{ au}}{[(-3)\mathbf{1}+\mathbf{2}]}}
ight)=\mathbf{A}_{\stackrel{oldsymbol{ au}}{[(-3)\mathbf{1}+\mathbf{2}]}}$$

7 Producto de matrices: matrices elementales

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 4 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & -2 & 5 \end{bmatrix}$$

Esta matriz elemental $\mathbf{I}_{ au}$ en particular se denota como $\mathbf{I}_{ au}$ $_{[(-2)2+3]}$

$$\mathsf{A}\Big(\mathsf{I}_{\stackrel{oldsymbol{ au}}{[(-2)\mathbf{2}+\mathbf{3}]}}\Big) = \mathsf{A}_{\stackrel{oldsymbol{ au}}{[(-2)\mathbf{2}+\mathbf{3}]}}$$

8 / 24

L-5

2 ¿Cómo volver de L a A? Inversas

¿Cómo deshacer el primer paso? (fue restar 3 veces $\mathbf{A}_{|1}$ de $\mathbf{A}_{|2}$)

$$\begin{bmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$egin{aligned} lackbox{\psi}_{oldsymbol{\tau}} & au & ag{deshace} & lackbox{\psi}_{oldsymbol{\tau}} \ [(\lambda)i+j] & & \end{aligned}$$

¿Qué deshace $\begin{bmatrix} \mathbf{I} & ? \\ [(\alpha)i] \end{cases}$? $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1 & \\ & & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

8 Eliminación mediante matrices elementales

 $\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 8 & 4 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{[(-3)1+2]} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 4 \\ 1 & -2 & 1 \end{bmatrix} \xrightarrow{[(-2)2+3]} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & -2 & 5 \end{bmatrix} = \mathbf{L}$ $\mathbf{A} \xrightarrow{\mathbf{r}} = \mathbf{A} \xrightarrow{[(-3)1+2](-2)2+3]} = \left(\mathbf{A} \left(\mathbf{I} \xrightarrow{\mathbf{r}} \right) \right) \left(\mathbf{I} \xrightarrow{\mathbf{r}} \right) = \mathbf{L}$

hay una matriz que realiza todas las operaciones "de golpe"

$$\mathbf{A}_{\substack{\tau \\ [(-3)\mathbf{1}+2] \\ [(-2)\mathbf{2}+3]}} = \mathbf{A} \left(\left(\mathbf{I}_{\substack{\tau \\ [(-3)\mathbf{1}+2]}} \right) \left(\mathbf{I}_{\substack{\tau \\ [(-2)\mathbf{2}+3]}} \right) \right) = \mathbf{A} \mathbf{I}_{\substack{\tau \\ [(-3)\mathbf{1}+2] \\ [(-2)\mathbf{2}+3]}} = \mathbf{L}$$

$$\left| \left. \mathbf{A}_{\tau_1 \cdots \tau_k} = \mathbf{A} \big(\mathbf{I}_{\tau_1 \cdots \tau_k} \big) \, \right| \right.$$

L-4 L-5

10 Matrices de intercambio

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} & & \\ & b \end{bmatrix} = \begin{bmatrix} c & a \\ d & b \end{bmatrix}$$

¿Y si queremos intercambiar las filas?

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} b & d \\ a & c \end{bmatrix}$$

¡El producto de matrices no es conmutativo!

L-5

9 / 24

Intercambio de columnas:

 $oldsymbol{\mathsf{A}}_{\stackrel{oldsymbol{ au}}{[i
ightharpoonup j]}}
ightarrow ext{intercambia las columnas } oldsymbol{i}$ y j de $oldsymbol{\mathsf{A}}$

$$\begin{bmatrix} 1 & -3 & 0 \\ 1 & -6 & 3 \end{bmatrix}_{\substack{\boldsymbol{\tau} \\ [\mathbf{2} \rightleftharpoons \mathbf{3}]}} = \begin{bmatrix} 1 & 0 & -3 \\ 1 & 3 & -6 \end{bmatrix}$$

Podemos intercambiar dos columnas con una sucesión de transformaciones elementales

La matriz $\mathbf{I}_{\substack{\tau \ [i = j]}}$ se denomina matriz intercambio

12 / 24

L-5

L-4

Problemas de la Lección 4

(L-4) Problema 1.

(a) ¿Cuáles son las matrices I , I , I , y I , que transforman [(x)1+2] , [(y)1+3] y I , que transforman

$$\mathbf{A} = \left[\begin{array}{ccc} 1 & 4 & -2 \\ 1 & 6 & 2 \\ 0 & 1 & 0 \end{array} \right] \text{ en una forma escalonada?}$$

(b) Multiplique dichas matrices elementales \mathbf{I}_{τ_i} para obtener una matriz \mathbf{E} que realice la eliminación: $\mathbf{A}\mathbf{E}=\mathbf{K}$.

Basado en (Strang, 2007, ejercicio 24 del conjunto de problemas 1.4.)

(L-4) PROBLEMA 2. Considere la matriz

$$\left[\begin{array}{ccc} 1 & 2 & 4 \\ -1 & -3 & -2 \\ 0 & 1 & c \end{array}\right]$$

L-4

12 Permutaciones

Producto de matrices intercambio $\mathbf{I}_{\underbrace{\tau}_{[\stackrel{.}{\cong}.]}}$ es una matriz permutación $\mathbf{I}_{\underbrace{\tau}}_{[\stackrel{.}{\text{\tiny G}}]}$

 $\mathbf{I}_{\substack{\pmb{\tau} \ [\mathfrak{S}]}} = \mathsf{Matriz}$ identidad \mathbf{I} con columnas reordenadas

Veamos el caso 3×3

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 \end{bmatrix}, \quad \mathbf{I}_{\stackrel{\boldsymbol{\tau}}{[1=2]}} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

¿Cuantos posibles reordenamientos o permutaciones hay?

¿Qué obtenemos con el producto de dos matrices permutación?

13 / 24

L-4 L-5

- (L-4) PROBLEMA 3. Suponga las siguientes matrices de orden 3 por 3.
- (a) $\binom{\mathbf{I}}{\tau}$ resta la columna 1 de la columna 2, y luego $\binom{\mathbf{I}}{[2\rightleftharpoons 3]}$ intercambia las columnas 2 y 3. ¿Qué matriz **E** realiza ambos cambios a la vez?
- (b) $(\mathbf{I}_{[2=3]}^{\boldsymbol{\tau}})$ intercambia las columnas 2 y 3 y luego $\mathbf{I}_{[(-1)1+3]}^{\boldsymbol{\tau}}$ resta la columna 1 de la columna 3. ¿Qué matriz $\mathbf{N} = (\mathbf{I}_{[2=3]}^{\boldsymbol{\tau}})(\mathbf{I}_{[(-1)1+3]}^{\boldsymbol{\tau}})$ realiza ambos cambios a la vez? Explique por qué las matrices \mathbf{E} y \mathbf{N} son iguales en ambos casos, pero las matrices elementales $\mathbf{I}_{\boldsymbol{\tau}}$ son distintas.

Basado en (Strang, 2007, ejercicio 28 del conjunto de problemas 1.4.)

(L-4) Problema 4. Las matrices elementales $\mathbf{I}_{[(?)\mathbf{1}+\mathbf{2}]}$ y $\mathbf{I}_{[(?)\mathbf{2}+\mathbf{3}]}$ reducen la matriz \mathbf{A} a su forma escalonada por columnas. Encuentre la matriz \mathbf{E} tal que $\mathbf{A}\mathbf{E}=\mathbf{L}$ es dicha forma escalonada (triangular inferior), si \mathbf{A} es

$$\left[\begin{array}{ccc} 2 & 2 & 0 \\ 1 & 4 & 9 \\ 1 & 3 & 9 \end{array}\right]$$

(L-4) PROBLEMA 5. Aunque aquí sólo contemplamos como transformaciones elementales las de *Tipo I y II*, en la mayoría de manuales de Álgebra Lineal aparece como tercera operación elemental el *intercambio*:

$$\mathbf{A}_{\stackrel{\boldsymbol{\tau}}{[\boldsymbol{p}\rightleftharpoons s]}}\rightarrow \text{intercambia las columnas }p$$
 y s de $\mathbf{A}.$

Demuestre que un intercambio de columnas es en realidad una sucesión transformaciones elementales de $\it Tipo\ I\ y\ II$. Hágalo transformando la matriz identidad $\bf I$ en $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ mediante transformaciones elementales por columnas.

(L-4) Problema 6. Escriba las matrices de 3 por 3 que producen los siguientes pasos de eliminación:

- (a) I resta 5 veces la columna 1 de la columna 2. [(-5)1+2]
- (b) I resta 7 veces la columna 2 de la columna 3. $[(-7)^2+3]$
- (c) la matriz permutación \mathbf{I}_{τ} que intercambia las columna 1 y 2, y después las columnas 2 y 3.

(Strang, 2007, ejercicio 22 del conjunto de problemas 1.4.)

13 / 24

L-4

(L-4) PROBLEMA 10. Si cada columna de $\bf A$ es un múltiplo de (1, 1, 1,), entonces $\bf Ax$ siempre es un múltiplo de (1, 1, 1,). Escriba un ejemplo de 3 por 3. ¿Cuántos pivotes se producen por eliminación? (Strang, 2007, ejercicio 26 del conjunto de problemas 1.4.)

L-4

(L-4) PROBLEMA 7. En referencia a las matrices del PROBLEMA 6:

- (a) Al aplicar $\frac{\tau}{[(-5)1+2]}$ y luego $\frac{\tau}{[(-7)2+3]}$ a las columnas de la matriz $\mathbf{A}=\begin{bmatrix}1&0&0\end{bmatrix}$ se obtiene $\mathbf{A} \underbrace{\tau}_{\begin{bmatrix}(-5)1+2\\[(-7)2+3\end{bmatrix}}=\begin{bmatrix}\vdots&\vdots&\end{bmatrix}$.
- (b) Pero aplicando $\begin{matrix} \pmb{\tau} \\ [(-7)\mathbf{2} + \mathbf{3}] \end{matrix} \text{ antes de } \begin{matrix} \pmb{\tau} \\ [(-5)\mathbf{1} + \mathbf{2}] \end{matrix} \text{ se obtiene }$ $\pmb{\mathsf{A}} \begin{matrix} \pmb{\tau} \\ [(-7)\mathbf{2} + \mathbf{3}] \\ [(-5)\mathbf{1} + \mathbf{2}] \end{matrix}].$
- (c) Cuando se aplica τ primero, la columna ____ no se ve afectada por la columna ____. ¡Este hecho es central para que la factorización LU funcione como lo hace!

(Strang, 2007, ejercicio 23 del conjunto de problemas 1.4.)

(L-4) PROBLEMA 8. ¿Qué matriz ${\bf M}$ transforma el vector ${\bf v}=\begin{pmatrix} 1, & 0, \end{pmatrix}$ en $\begin{pmatrix} 0, & 1, \end{pmatrix}$, es decir ${\bf v}{\bf M}=\begin{pmatrix} 0, & 1, \end{pmatrix}$; y también el vector ${\bf w}=\begin{pmatrix} 0, & 1, \end{pmatrix}$ en $\begin{pmatrix} 1, & 0, \end{pmatrix}$, es decir ${\bf w}{\bf M}=\begin{pmatrix} 1, & 0, \end{pmatrix}$?

(L-4) PROBLEMA 9. Hemos visto que para una matriz de intercambio, I $_{\tau}$, el producto $\mathbf{A}(\mathbf{I}_{[i = j]})$ tiene las mismas componentes que \mathbf{A} , pero las columnas están intercambiadas. ¿Qué pasaría si alteramos el orden del producto, es decir, si multiplicamos (\mathbf{I}_{τ}) \mathbf{A} ? Verifique su respuesta para el caso 2 por 2.

13 / 24

L-4

1 Esquema de la Lección 5

Esquema de la Lección 5

- Inversa de A
- eliminación Gauss-Jordan / encontrando **A**⁻¹
- Inversa de AB, A^T

2 Inversa de una matriz (matrices cuadradas)

 ${\bf A}$ cuadrada de orden n tiene inversa (es *invertible*) si existe ${\bf B}$ tal que

$$AB = BA = I$$
.

Entonces

L-4

$$B = A^{-1}$$
 y $A = B^{-1}$.

No todas las matrices tienen inversa

Las matrices cuadradas sin inversa se denominan singulares

15 / 24

L-5

4 Caso singular (no inversa)

¿Se puede encontrar $x \neq 0$ tal que $\mathbf{A}x = 0$?

$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{pmatrix} & \\ & \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Si $\mathbf{A}x=0$ para $x
eq 0 \implies$ no puede haber \mathbf{A}^{-1}

Suponer A⁻¹ nos lleva a una contradicción

Si
$$\mathbf{A}x = \mathbf{0}$$
 y $\mathbf{x} \neq \mathbf{0}$ \Rightarrow $\mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}\mathbf{0}$ \Rightarrow $\mathbf{x} = \mathbf{0}$.

Cuando existe A⁻¹

la única solución a $\mathbf{A}x = \mathbf{0}$ es $x = \mathbf{0}$.

3 Caso singular (no inversa)

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 4 \\ 1 & 2 \end{array} \right]$$

¿Es posible encontrar una matriz B tal que AB = I? ... columnas de I deben ser combinaciones lineales de columnas de I0... pero las columnas están alineadas.

Así pues

L-4

A es singular

16 / 24

L-5

L-5

L-4

5 Calculando la matriz inversa

$$\mathbf{A}(\mathbf{A}^{-1}) = \mathbf{I}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Esto es resolver m sistemas (de m ecuaciones cada uno)

$$\begin{bmatrix} 1 & 3 \\ 2 & \end{bmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & \end{bmatrix} \begin{pmatrix} \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

L-4

L-4

L-5

20 / 24

Gauss-Jordan: resolviendo dos sistemas lineales de golpe

Eliminación Gauss-Jordan (obtención forma escalonada reducida R)

aplicar transformaciones elementales hasta lograr una matriz escalonada con únicamente ceros a la izda. de cada pivote (y pivotes iguales a 1)

Vamos a resolver los sistemas lineales

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

aplicando eliminación Gauss-Jordan sobre A apilada con I

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 7 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \to$$

$$\rightarrow$$

Si $\mathbf{R} = \mathbf{I}$, hemos encontrado \mathbf{A}^{-1}

19 / 24

L-5

Inversa de un producto

Si A y B son invertibles y del mismo orden, (AB) es invertible.

¿Cómo es $(\mathbf{AB})^{-1}$? Probemos con $(\mathbf{B}^{-1}\mathbf{A}^{-1})$:

$$AB(B^{-1}A^{-1}) =$$

$$\left(\mathbf{B}^{\text{-}1}\mathbf{A}^{\text{-}1}\right)\mathbf{A}\mathbf{B} =$$

Gauss-Jordan: ¿Por qué funciona?

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 7 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{[(-3)\mathbf{1}+\mathbf{2}]} \xrightarrow{[(-3)\mathbf{1}+\mathbf{2}]}$$

es decir, puesto que $\mathbf{A}_{\tau_1\cdots\tau_k} = \mathbf{A}(\mathbf{I}_{\tau_1\cdots\tau_k})$:

$$\begin{bmatrix} \mathbf{A} \\ \mathbf{I} \end{bmatrix}_{\tau_1 \cdots \tau_k} = \begin{bmatrix} \mathbf{A}_{\tau_1 \cdots \tau_k} \\ \mathbf{I}_{\tau_1 \cdots \tau_k} \end{bmatrix} = \begin{bmatrix} \mathbf{A}(\mathbf{I}_{\tau_1 \cdots \tau_k}) \\ \mathbf{I}_{\tau_1 \cdots \tau_k} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \\ \mathbf{I}_{\tau_1 \cdots \tau_k} \end{bmatrix},$$

¿quien es
$$\mathbf{I}_{ au_1 \cdots au_k}$$
?

por tanto $\mathbf{A}^{-1} =$

L-5

Inversa de la matriz transpuesta

$$\mathbf{A}\mathbf{A}^{\text{-}1}=\mathbf{I}$$

Hagamos la transpuesta en ambos lados

$$\left(\left(\mathbf{A}^{-1} \right)^{\mathsf{T}} \right) \mathbf{A}^{\mathsf{T}} = \mathbf{I}$$

por tanto

la inversa de \mathbf{A}^{T} es

10 Matrices intercambio y matrices permutación

¿Son invertibles las matrices intercambio, I $_{\stackrel{\tau}{[i \rightleftharpoons j]}}$?

Es fácil comprobar que

$$\left(\mathbf{I}_{\substack{\tau \ [\mathfrak{S}]}}\right)^{\mathsf{T}}\left(\mathbf{I}_{\substack{\tau \ [\mathfrak{S}]}}\right) = \mathbf{I} \qquad \Longrightarrow$$

23 / 24

L-5

L-4

Problemas de la Lección 5

(L-5) PROBLEMA 1. Aplique la eliminación Gauss-Jordan para invertir estas matrices

(a)
$$\mathbf{A}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
.
(b) $\mathbf{A}_2 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$.
(c) $\mathbf{A}_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

(Strang, 2007, ejercicio 6 del conjunto de problemas 1.6.)

(L-5) Problema 2.

(a) Si A es invertible y AB = AC, demuestre rápidamente que B = C

(b) Si $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, encuentre un ejemplo con AB = AC, pero $B \neq C$.

(Strang, 2007, ejercicio 4 del conjunto de problemas 1.6.)

(L-5) PROBLEMA 3. Calcule la inversa de la matriz genérica 2×2

$$\mathbf{M} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right].$$

¿Qué condiciones sobre a, b, c, y d aseguran que existe la inversa?

11 Caracterización de las matrices que tienen inversa

Dada **A** de orden n, las siguientes propiedades son equivalentes

- 1. $\mathbf{A}_{\tau_1 \cdots \tau_n} = \mathbf{K}$ (pre-escalonada) no tiene columnas nulas.
- 2. A tiene inversa.
- 3. A es producto de matrices elementales.

$$\mathbf{A}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} = \mathbf{A} \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big) = \mathbf{I} \qquad \Rightarrow \qquad \mathbf{A} = \big(\mathbf{I}_{\boldsymbol{\tau}_1 \cdots \boldsymbol{\tau}_k} \big)^{-1}$$

donde

$$\left(\mathbf{I}_{\tau_1\cdots\tau_k}\right)^{-1} \ = \ \left((\mathbf{I}_{\tau_1})\cdots(\mathbf{I}_{\tau_k})\right)^{-1} \ = \ \left(\mathbf{I}_{\tau_k^{-1}})\cdots(\mathbf{I}_{\tau_1^{-1}}\right) \ = \ \mathbf{I}_{\tau_k^{-1}\cdots\tau_1^{-1}}$$

24 / 24

L-5

L-5

L-4

(L-5) PROBLEMA 4. Calcule las inversas de las siguientes matrices, usando Gauss-Jordan.

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 2 \\ -1 & 0 & 1 \\ 0 & 1 & 6 \end{bmatrix}; \qquad \mathbf{B} = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 4 & -2 \\ 1 & 3 & 1 \end{bmatrix}$$

(L-5) PROBLEMA 5. Si la matriz 3 por 3 $\bf A$ es tal que $\bf A_{|1}+\bf A_{|2}=\bf A_{|3},$ demuestre que $\bf A$ no es invertible de estas dos formas alternativas:

- (a) Encuentre una solución x diferente de cero de $\mathbf{A}x=\mathbf{0}$.
- (b) La eliminación preserva la condición columna1 + columna2 = columna3. Explique por qué no hay un tercer pivote.

(Strang, 2007, ejercicio 26 del conjunto de problemas 1.6.)

(L-5) PROBLEMA 6. Encuentre las inversas de

(Strang, 2007, ejercicio 10 del conjunto de problemas 1.6.)

24 / 24

L-4

(L-5) PROBLEMA 10. La matriz **A** de orden 3 por 3 se reduce a la matriz identidad **I** mediante las siguientes operaciones elementales sobre las columnas (en este orden):

au: Resta 4 veces columna 1 de la columna 2. [(-4)1+2]

au: Resta 3 veces columna 1 de la columna 3.

au : Resta columna 3 de la columna 2. [(-1)3+2]

- (a) Escriba ${\bf A}^{-1}$ en términos de operaciones con matrices elementales ${\bf I}_{\tau}.$ Calcule la matriz ${\bf A}^{-1}.$
- (b) ¿Cuál es la matriz original A?

(Basado en MIT Course 18.06 Quiz 1, October 4, 2006)

L-4

(L-5) PROBLEMA 7. Calcule la inversa de

$$\mathbf{A} = \begin{bmatrix} a & b & b \\ a & a & b \\ a & a & a \end{bmatrix}$$

¿Para qué valores de a y b no hay inversa? (Strang, 2007, ejercicio 42 del conjunto de problemas 1.6.)

(L-5) PROBLEMA 8. Encuentre \mathbf{E}^2 , \mathbf{E}^8 y \mathbf{E}^{-1} si $\mathbf{E} = \begin{bmatrix} 1 & 0 \\ 6 & 1 \end{bmatrix}$ (Strang, 2007, ejercicio 6 del conjunto de problemas 1.5.)

(L-5) PROBLEMA 9. Dada la matriz de permutación

$$\mathbf{I}_{\tilde{\mathfrak{S}}} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

escriba la matriz $(I_{\tau})^{-1}$. ¿Que otra relación tiene con la matriz I_{τ} (aparte de ser su inversa)?

24 / 24

L-4

(L-5) PROBLEMA 11. La matriz **A** de orden 3 por 3 se reduce a la matriz identidad **I** mediante las siguientes tres operaciones elementales sobre las **filas** (en el siguiente orden):

au: Resta 4 veces fila 1 de la fila 2.

 $oldsymbol{ au}$: Resta 3 veces fila 1 de la fila 3.

 $\boldsymbol{\tau}$: Resta fila 3 de la fila 2.

- (a) Escriba A^{-1} en términos de las matrices elementales E. Calcule la matriz A^{-1} .
- (b) ¿Cuál es la matriz original A?

(MIT Course 18.06 Quiz 1, October 4, 2006)

(L-5) Problema 12.

(a) Encuentre la inversa de
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} y \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
(b) Encuentre la inversa de la circuiente matriz vando el métod

(b) Encuentre la inversa de la siguiente matriz usando el método de Gauss-Jordan

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ a & b & c & d \end{array}\right]$$

(Poole, 2004, ejercicio 36, 38 y 59 del conjunto de problemas 3.3.)

(L-5) PROBLEMA 13. Sean $\bf A$, $\bf B$ y $\bf C$ matrices cuadradas. Justifique si son verdaderas o falsas las siguientes afirmaciones.

(a) Si
$$AB = I$$
 y $CA = I$ entonces $B = C$.

(b)
$$(AB)^2 = A^2B^2$$
.

24 / 24

L-4

Poole, D. (2004). *Álgebra lineal. Una introducción moderna*. Thomson Learning, Mexico D.F. ISBN 970-686-272-2.

Strang, G. (2007). Álgebra Lineal y sus Aplicaciones. Thomsom Learning, Inc, Santa Fe, México, D. F., fourth ed. ISBN 970686609-4.

24 / 24

L-4 L-5

(L-5) PROBLEMA 14. Considere la matriz
$$\mathbf{A} = \left[\begin{array}{cccc} 0 & 1 & 0 & 2 \\ 1 & a & 0 & 2a \\ a & 0 & 1 & 0 \\ 1 & 0 & a & 1 \end{array} \right]$$

- (a) Demuestre que ${\bf A}$ es invertible para todo valor del parámetro a.
- (b) Calcule A^{-1} cuando a=0.

$$\text{(L-5) Problema 15. Considere la matriz } \ \mathbf{A} = \left[\begin{array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -2 \end{array} \right]. \ \ \mathsf{Calcule} \ \mathbf{A}^{-1}.$$

(L-5) PROBLEMA 16. Encuentre las inversas, si existen, de las siguientes matrices

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}; \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{bmatrix}.$$

(L-5) PROBLEMA 17. Tan solo hay un número finito (n!) de matrices de permutación de dimensión $n\times n$. Además, cualquier potencia de una matriz permutación es también una matriz permutación. Emplee este hecho para demostrar que $\left(\mathbf{I}_{\tau}\right)^{r}=\mathbf{I}$ para algún número entero r.

24 / 24