

Projet_04:

Anticipez les besoins en consommation de bâtiments.

Jérôme LE GAL Etudiant OpenClassRooms – parcours Data Scientist

Le 12/08/2024

- Mission pour la ville de Seattle
- Prédire les **émissions de CO2** et la **consommation totale d'énergie** de bâtiments non destinés à l'habitation.

Objectifs de l'analyse :

- 1. Nettoyage des données et analyse exploratoire
- 2. Tester différents modèles de prédiction et évaluer leurs performances
- 3. Feature Engineering
- 4. Optimisation de modèles et Feature Importance
- 5. Energy Star Score

Description du jeu de données

Contenu:

- Données géographiques
- Superficies
- Usages
- Energies (type, consommations,...)
- Source: 2016 Building Energy Benchmarking
 https://www.seattle.gov/tech/reports-and-data/open-data

Max

- Sélection des features pertinentes (12)
- Traitement des manquants et doublons
- Traitement des outliers

873 923 700

Target 1:

• SiteEnergyUse (kBtu):

Mean	8 860 058
Std	31 305 680
Min	57 133
max	873 923 700

Feature Engineering

2 - Encodage des variables qualitatives :

OneHotEncoder

4 – StandardScaler():

• Centrer / Réduire

1 - Créations de nouvelles variables :

- Âge des bâtiments
- Ratio électricité consommée
- Ratio gaz naturel consommé
- Ratio Vapeur consommée
- Nombre d'usage

3 - Transformation logarithmique:

Modélisations et validation

- Choix de algorithmes: LinearRegression, Bagging Regressor, Random Forest Regressor, AdaBoost Regressor, Stacking Regressor, Gradient Boosting Regressor
- Validation croisée : Utilisation de la validation croisée pour évaluer les performances
- Optimisation des hyperparamètres : GridSearchCV et RandomSearchCV (comparaison des 2 méthodes)
- Evaluation des performances : Mesures (R², RMSE, MAE)

Résultats et Comparaisons

• Performances des modèles :

	Target 1 - SiteEnergyUse	
Mesure: R ² ajusté	Train / Test	CV - Test set
Linear Regression	0,679 / 0,615	0,358 0,555 0,092 0,282 0,581
Bagging Regressor	0,947 / 0,671	0,362 0,598 0,454 0,415 0,657
Random Forest Regressor	0,854 / 0,669	0,372 0,593 0,404 0,394 0,668
Adaboost Regressor	0,570 / 0,566	0,261 0,471 0,240 0,238 0,589
Stacking Regressor	0,641 / 0,642	0,251 0,557 0,186 0,385 0,476
Gradient Boosting Regressor	0,866 / 0,692	0,403 0,620 0,475 0,452 0,682

Optimisation des hyperparamètres :

- Interprétations des résultats
- Avantages et inconvénients

Choix et Justifications

	Target 1 - SiteEnergyUse		
Mesure: R ² ajusté	Train / Test	CV - Test set	
Linear Regression	0,679 / 0,615	0,358 0,555 0,092 0,282 0,581	
Bagging Regressor	0,947 / 0,671	0,362 0,598 0,454 0,415 0,657	
Random Forest Regressor	0,854 / 0,669	0,372 0,593 0,404 0,394 0,668	
Adaboost Regressor	0,570 / 0,566	0,261 0,471 0,240 0,238 0,589	
Stacking Regressor	0,641 / 0,642	0,251 0,557 0,186 0,385 0,476	
Gradient Boosting Regressor	0,866 / 0,692	0,403 0,620 0,475 0,452 0,682	

StackingRegressor

<u>Hyperparamètres</u>:

- LinearRegression
- LinearSVR : C=1
- Ridge : alpha=1
- RandomForestRegressor : n_estimators=100

SiteEnergyUse

Analyse Globale :

Les 20 features les plus influentes, « Permutation Importance » et méthode SHAP.

SiteEnergyUse

Latitude	47.68752
Longitude	-122.29852
YearBuilt	2000.0
NumberofBuildings	1.0
Number of Floors	2.0
BuildingAge	16.0
ElectricityRate	0.629756
GasRate	0.370244
SteamRate	0.0
UseTypesQty	1.0
PropertyGFABuilding(s)	31386.0
${\sf SecondLargestPropertyUseTypeGFA}$	0.0
ThirdLargestPropertyUseTypeGFA	0.0
BuildingType	NonResidential
Neighborhood	northeast
PrimaryPropertyType	Worship Facility
LargestPropertyUseType	Worship Facility
${\sf SecondLargestPropertyUseType}$	Not concerned
Third Largest Property Use Type	Not concerned

Exemple avec SHAP

Influence de l'EnergyStarScore

Feature « ENERGYSTARScore » :

• 35% de manquants traités par imputation KNN (calcul biais)

Metric	Avant	Après
R²_train	0.6423	0.7324
R²_train ajusté	0.6360	0.7274
R²_test	0.6483	0.7216
R²_test ajusté	0.6421	0.7166
Cross_Validation (moyenne)	0.3315	0.4302
Cross_Validation (détail)	[0.2002 0.4901 0.2753 0.2779 0.4142]	[0.2366 0.6068 0.3200 0.3945 0.5931]

Target 2:

 TotalGHGEmissions : kgCO₂e/ft²

Mean	193,61
Std	779,11
Min	-0,80
Max	16 870,98

- Sélection des features pertinentes
- Traitement des manquants et doublons
- Traitement des outliers

• TotalGHGEmissions : kgCO₂/ft²

Mean	193,61
Std	779,11
Min	-0,80
max	16 870,98

Feature Engineering

Target 2:

- 1 Créations de nouvelles variables :
- Âge des bâtiments
- Utilisation de l'électricité (variable binaire)
- Utilisation du gaz naturel (variable binaire)
- Utilisation de la vapeur (variable binaire)
- Ratio surface bâtiments
- Ratio surface des parkings

2 - Encodage des variables qualitatives :

OneHotEncoder

4 – StandardScaler():

• Centrer / Réduire

3 - Transformation logarithmique:

Modélisations et résultats

	Target 2 - TotalGHGEmissions		
Mesure : R ² ajusté	Train / Test	CV - Test set	
Linear Regression	0,601 / 0,512	0,368 0,413 0,340 0,353 0,313	
Bagging Regressor	0,926 / 0,590	0,321 0,432 0,415 0,432 0,376	
Random Forest Regressor	0,808 / 0,581	0,320 0,428 0,436 0,448 0,400	
Adaboost Regressor	0,415 / 0,443	0,210 0,287 0,307 0,243 0,310	
Stacking Regressor	0,534 / 0,519	0,322 0,339 0,274 0,384 0,336	
Gradient Boosting Regressor	0,730 / 0,599	0,417 0,432 0,453 0,472 0,404	

Gradient Boosting Regressor

<u>Hyperparamètres</u>:

- •n_estimators=200
- •learning_rate=0.05
- •max_depth=3
- •subsample=0.9

TotalGHGEmissions

Les 20 features les plus influentes.

TotalGHGEmissions

• Analyse Locale:

Exemple avec SHAP

YearBuilt	2006.0
NumberofBuildings	1.0
NumberofFloors	6.0
BuildingAge	10.0
PropertyGFABuildingRatio	0.851969
PropertyGFAParkingRatio	0.148031
PropertyGFATotal	48179.0
PropertyGFABuilding(s)	41047.0
PropertyGFAParking	7132.0
BuildingType	NonResidential
LargestPropertyUseType	Self-Storage Facility
PrimaryPropertyType	Self-Storage Facility
${\sf SecondLargestPropertyUseType}$	Not concerned
ThirdLargestPropertyUseType	Not concerned
ElectricityUse	1.0
GasUse	1.0
SteamUse	0.0

Influence de l'EnergyStarScore

- Feature « ENERGYSTARScore » :
 - 35% de manquants traités par imputation KNN (calcul biais)

Metric	Avant	Après
R²_train	0.7339	0.7529
R²_train ajusté	0.7297	0.7488
R²_test	0.6049	0.6500
R²_test ajusté	0.5987	0.6445
Cross_Validation (moyenne)	0.4356	0.4568
Cross_Validation (détail)	[0.4177, 0.4320, 0.4527, 0.4718, 0.4037]	[0.4366, 0.4743, 0.4995, 0.4842, 0.3875]

- En fonction des besoins de précision :
 - Réalisation de prédictions par tranches (ex: conso entre 1000 et 1500 kBtu)
- Modèles encore perfectibles :
 - Ajout de données d'entrée
 - Amélioration du Feature Engineering (suite ajout Energy Star Score)

