# Predicting Bikeshare Demand

Robert Kraig

August 02, 2016

# Capital Bikeshare (CaBi)

#### Self-guided, self-powered public transit

- DC / Arlington / Alexandria / MoCo
- First station: Crystal City, Sep 2010
- 360 Stations (10-45 docks each) used in 2014 and 2015
  - Average = 3-4 blocks between stations
- Member Types: Regular and Casual









### Challenge: System Capacity

- Problem: "Dock-blocking"
  - No bikes or no docks available
- Mitigation Strategies
  - Rebalancing
  - Corrals
  - Infill stations
  - Alternative pricing schemes?



Visualization by Daniel Gohlke (CaBi Tracker)

- Predictive Modeling
  - Can demand be predicted? How well?
  - What data can be used for prediction? Which predictors are informative?
  - How should demand be binned or quantified?
  - Which method works best?

#### Data and Problem Formulation

#### **Available Data**

- Trip History (CaBi)
  - List of 12M rides 2010-2015
  - Begin/End Location/Time, Member Type
- Weather (DCA)
- Geographic info (multiple sources)
  - Station Lat/Long/Elevation
  - Jurisdiction / Neighborhood / etc.
- Dock Status History (webscraped, not used)

#### How to select predictors?

- Remove variables that don't seem relevant (e.g. Bike #)
- Remove highly correlated predictors (e.g. 6hPrecip, dewpoint)
- Add temporal predictors that seem relevant (e.g. Day of Week)
- Try adding observations of response in previous time bins

#### How to represent response (demand)?

- Poisson process: rapidly drifting arrival rate
- Choose 2014 and 2015 only
- Bin by hour: 2 years = 17520 obs for each:
  - Station (360)
  - Member type (2)
  - Demand type (2)

|       |        |          |        |     |        | _       |    |           |           |         |
|-------|--------|----------|--------|-----|--------|---------|----|-----------|-----------|---------|
|       |        |          |        | Bas | se Pre | dictors | 5  |           |           |         |
| > hea | ad (BI | 32 F F ' | "a11"] | 11) |        |         |    |           |           |         |
|       |        |          |        |     | year   | tempF   | RH | windSpeed | precip01h | respons |
| 2210  | 3      | 1        | 0      |     | 2014   | 34.0    |    | 0.0       | . 0       | . 6     |
| 2211  | 3      | 1        | 1      | 1   | 2014   | 30.0    | 60 | 8.1       | 0         | 10      |
| 2212  | 3      | 1        | 2      | 1   | 2014   | 30.9    | 56 | 3.5       | 0         | 12      |
| 2213  | 3      | 1        | 3      | 1   | 2014   | 33.1    | 49 | 0.0       | 0         | 6       |
| 2214  | 3      | 1        | 4      | 1   | 2014   | 30.9    | 63 | 0.0       | 0         | 1       |
| 2215  | 3      | 1        | 5      | 1   | 2014   | 32.0    | 63 | 3.5       | 0         | 1       |
|       |        |          |        |     |        |         |    |           |           |         |
|       |        |          |        |     |        |         |    |           |           |         |

|    | Auto-Correlation Predictors |             |             |  |  |  |
|----|-----------------------------|-------------|-------------|--|--|--|
|    |                             |             |             |  |  |  |
| se | T_minus_003                 | T_minus_024 | T_minus_168 |  |  |  |
| 67 | 99                          | 25          | 6           |  |  |  |
| 06 | 72                          | 14          | 12          |  |  |  |
| 22 | 61                          | 8           | 1           |  |  |  |
| 65 | 67                          | 1           | 2           |  |  |  |
| 10 | 106                         | 7           | 0           |  |  |  |
| 12 | 122                         | 18          | 4           |  |  |  |
|    |                             |             |             |  |  |  |
|    |                             |             |             |  |  |  |
|    |                             |             |             |  |  |  |
|    |                             |             |             |  |  |  |

Auto Correlation Dradictors

### Model Select: Random Forest w/o Auto-Corr

System-wide bicycle demand, No auto-correlation predictors:

|                      |                     | XVAL | XVAL | TRAIN | TEST |
|----------------------|---------------------|------|------|-------|------|
|                      | <b>Tuned Params</b> | RMSE | SD   | RMSE  | RMSE |
| KNN                  | k=5                 | 183  | 4    | 145   | 178  |
| MARS                 | nprune=18,degree=2  | 174  | 5    | 173   | 171  |
| Neural Net           | size=8,decay=0      | 225  | 13   | 230   | 229  |
| <b>Random Forest</b> | not tuned: mtry=3   | 91   | . 2  | 44    | 82   |
| SVM                  | sigma=1,C=2         | 162  | 6    | 121   | 158  |

|                      |                     | XVAL | XVAL | TRAIN     | TEST |
|----------------------|---------------------|------|------|-----------|------|
|                      | <b>Tuned Params</b> | R2   | SD   | <b>R2</b> | R2   |
| KNN                  | k=5                 | 0.71 | 0.01 | 0.82      | 0.72 |
| MARS                 | nprune=18,degree=2  | 0.74 | 0.01 | 0.74      | 0.75 |
| Neural Net           | size=8,decay=0      | 0.56 | 0.05 | 0.54      | 0.55 |
| <b>Random Forest</b> | not tuned: mtry=3   | 0.93 | 0.00 | 0.99      | 0.95 |
| SVM                  | sigma=1,C=2         | 0.78 | 0.01 | 0.88      | 0.79 |

System-wide bicycle demand, With auto-correlation predictors:

|                      |                     | XVÁL        | XVAL | TRAIN       | TEST        |
|----------------------|---------------------|-------------|------|-------------|-------------|
|                      | <b>Tuned Params</b> | <b>RMSE</b> | SD   | <b>RMSE</b> | <b>RMSE</b> |
| <b>Random Forest</b> | not tuned: mtry=4   | 89          | ) 1  | 2 37        | 81          |
| SVM                  | sigma=0.1,C=2       | 92          |      | 4 82        | 88          |
|                      |                     | R2          | SD   | <b>R2</b>   | <b>R2</b>   |
| <b>Random Forest</b> | not tuned: mtry=4   | 0.93        | 0.00 | 0.99        | 0.94        |
| SVM                  | sigma=0.1,C=2       | 0.93        | 0.03 | 1 0.94      | 0.93        |

Test Set Performance, Random Forest w/o auto-corr:



Test Set Performance, NN w/o auto-corr:



Train Set Overfit, Random Forest w/o auto-corr:



### Apply Random Forest to subset Predictions

System-wide bicycle demand, No auto-correlation predictors:

|                  | XVAL | XVAL  | TRAIN | TEST |
|------------------|------|-------|-------|------|
|                  | R2   | SD    | R2    | R2   |
| all              | 0.93 | 0.003 | 0.99  | 0.95 |
| casual           | 0.91 | 0.006 | 0.98  | 0.93 |
| member           | 0.93 | 0.004 | 0.99  | 0.95 |
| Arlington        | 0.89 | 0.004 | 0.98  | 0.91 |
| Lincoln Memorial | 0.76 | 0.007 | 0.94  | 0.78 |
| Dupont Circle    | 0.75 | 0.006 | 0.94  | 0.77 |



Hour is most informative predictor for member ridership; day of week is most informative for casual ridership.



### Investigate Worst Misses in Test Set



observed





Huge crowds trying to get on shuttle buses at Farragut Square. A lot of frustrated and confused Metro riders this a.m



|   | Date            | Time | Predicted Obser | ved  | Comment                                                                             |
|---|-----------------|------|-----------------|------|-------------------------------------------------------------------------------------|
| 1 | FRI Feb 14 2014 | 8 am | 555             | 0    | Day after 6" snow + ice, OPM 2-hour delay (snowDepth predictor removed!)            |
| 2 | TUE May 27 2014 | 6 pm | 1099            | 631  | right before major thunderstorm (time bins may be too large to capture this effect) |
| 3 | TUE Dec 16 2014 | 8 am | 660             | 1141 | water main break at 12th and F, WMATA suspended Silver/Orange/Blue service          |
| 4 | THU Oct 01 2015 | 5 pm | 247             | 620  | Hurricane Joaquin approaching, rain earlier much of day                             |

### Do regression tendencies make sense?

• I simulated data to isolate certain parameters one at a time

• Base: > fakeDF

DOW DOY hour isHol year tempF RH windSpeed precipO1h

3714 2 120 8 0 2014 60 55 2 0



### Summary

- Random Forest model predicts system-level bikeshare demand quite well
- Tougher to predict at micro-level: SNR is much lower
- Most important predictors came out as expected (hour, day of week)
- Poor predictions satisfactorily explained by information beyond model
- Potential improvements
  - Better demand metric: account for dockblocked times
  - More predictors (e.g. snow depth)
  - Geographic considerations
    - Treat station locations as numeric lat/long rather than categorical?
    - Elevation
  - Time Series techniques?

Backup Slides: Background info

### Backup: Data Sources Used

#### Capital Bikeshare Trip History

- https://www.capitalbikeshare.com/trip-history-data
- Click on "Download Links"
- Unzip to extract CSVs
- The file names and formats are inconsistent from file to file.
  - The Python code will standardize the data formats, but before running it, you must change all file names to the following naming convention: "2015-Q2-cabi-trip-history-data.csv". The Python code is expecting that name format so that it knows which files to open.

#### Weather

- http://mesowest.utah.edu/cgi-bin/droman/download ndb.cgi?stn=KDCA
- I downloaded annual files, and manually converted them to CSV
- Result: KDCA \_\_\_csv \_mesowest \_ 2010-2015.csv

#### Geographic Info

- Station TerminalName/Name/Lat/Long obtained from <a href="https://www.capitalbikeshare.com/data/stations/bikeStations.xml">https://www.capitalbikeshare.com/data/stations/bikeStations.xml</a>
- Station Elevations obtained from Google API at <a href="http://www.gpsvisualizer.com/geocoder/elevation.html">http://www.gpsvisualizer.com/geocoder/elevation.html</a>
- Jurisdiction and neighborhood added manually
- First use and last use obtained from trip history data
- Result: stationInfo\_v8.csv

#### Holiday dates

- https://gist.github.com/shivaas/4758439
- Added 2010 and 2011 manually
- Result: holidays2010on.csv

## Backup: Data Munging

- Python scripts convert data from original format into a SQL database
- R codes begin from SQL database
- Notes
  - Python 2.7
  - Must put all files into one directory
  - Must change CaBi trip history file names to the format indicated on slide 11
  - Line 17 of cabi\_Main.py: selects which trip history files to include
    - Current selection (134,154) selects files between 2013 Q4 and 2015 Q4
    - First two digits of argument = last two digits of year
    - Last digit of argument = quarter number

#### Predictive Modeling

- Selected data set only from years 2014-2015
- All models used preprocessing (BoxCox/center/scale) except for Random Forest
- Discarded many weather fields immediately
- Eventually also discarded snowDepth due to near-zero variance
- Also Discarded precip06h and dewpointF due to high correlations with other predictors