Лекция 4

Ilya Yaroshevskiy

15 января 2021 г.

Содержание

1	Дис	ффеоморфизмы
	1.1	Теорема о неявном отображении(продолжение)
	1.2	Определение
	1.3	Определение
	1.4	Теорема
		1.4.1 Следские о двух параметризациях

1 Диффеоморфизмы

1.1 Теорема о неявном отображении (продолжение)

$$F' = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_m} & \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_n} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1} & \cdots & \frac{\partial F_n}{\partial x_m} & \frac{\partial F_n}{\partial y_1} & \cdots & \frac{\partial F_n}{\partial y_n} \end{pmatrix}$$

Доказательство.

Если 1) выполняется, то 2) очевидно: $F(x,\Phi(x))=0 \Rightarrow F_x'(x,\Phi(x))+F_y'(x,\Phi(x))\cdot\Phi'(x)=0$

1.
$$\tilde{F}: O \to \mathbb{R}^{m+n}$$
 $(x,y) \mapsto (x,F(x,y))$ $\tilde{F}(a,b) = (a,0)$ $\tilde{F}' = \begin{pmatrix} E & 0 \\ F'x & F'y \end{pmatrix}$, очевидно $\det \tilde{F} = 0$ в (a,b) , значит $\exists U((a,b))$ $\tilde{F}|_{U((a,b))}$ - диффеоморфизм

- (a) $U = P_1 \times Q$ можно так считать
- (b) $V = \tilde{F}(U)$
- (c) \tilde{F} диффеоморфизм на $U\Rightarrow \exists \Psi=\tilde{F}^{-1}:V\to U$
- (d) \tilde{F} не меняет первые m координат $\Psi(u,v)=(u,H(u,v)),\,H:V\to\mathbb{R}^m$
- (e) Ось x и ось u идентичны p= ось $u=\mathbb{R}^m\times\{0\}^n\cap\underbrace{V}_{\text{открыто в }\mathbb{R}^{m+n}}\Rightarrow p$ открыто в R^m

(f)
$$\Phi(x)=H(x,0)$$
 $F(x,\Phi(x))=0,$ при $x\in P$ $F\in C^r\Rightarrow \tilde{F}\in C^r\Rightarrow \Psi\in C^r\Rightarrow H\in C^r\Rightarrow \Phi\in C^r$

Единственность
$$x\in p\ y\in u$$
 $F(x,y)=0$ $(x,y)=\Psi(\tilde{F}(x,y))=\Psi(x,0)=(x,H(x,0))=(x,\Phi(x))$

1.2Определение

"поверхность- многообразие $M \subset \mathbb{R}^m \quad k \in \{1, \dots, m\}$

Определение. M - **простое** k-**мерное многообразие в** \mathbb{R}^m если оно гомеоморфно некоторому открытому $O \subset \mathbb{R}^k$

т.е. $\exists \Phi : O \subset \mathbb{R}^k \to M$ - непрерывное, обратимое, Φ^{-1} - непрерывное, Φ - параметризация многообразия M

1.3 Определение

Определение. $M \subset \mathbb{R}^m$ - простое k-мерное C^r -гладкое многообразие в \mathbb{R}^m $\exists \Phi: O \subset \mathbb{R}^l o \mathbb{R}^m \quad \Phi(O) = M \quad \Phi: O o M$ - гомеоморфизм $\Phi \in C^r \quad \forall x \in O \quad \text{rank } \Phi'(x) = k - \text{максимально возможное значение}$

Пример.

1. Полусфера в
$$\mathbb{R}^3 = \underbrace{\{(x,y,z) \in \mathbb{R}^3 | z=0, \ x^2+y^2+z^2=R^2\}}$$

$$\Phi: (x,y) \mapsto (x,y,\sqrt{R^2-x^2-y^2})$$

$$\Phi: B(0,R) \subset \mathbb{R}^2 \to \mathbb{R}^3$$

$$\Phi \in C^{\infty}(B(0,R),\mathbb{R}^3)$$

$$\Phi' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{-x}{\sqrt{R^2 - x^2 - y^2}} & \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \end{pmatrix}, \text{ rank } \Phi' = 2$$

Аналогично график гладкой функции (${
m R}^2 o {
m R}$) - простое двумерное многообразие

2. Цилиндр
$$\{(x,y,z)\in\mathbb{R}^3|x^2+y^2=R^2,\ z\in(0,h)\}$$
 $\Phi:[0,2\pi]\times(0,h)\to\mathbb{R}^3$ $(\varphi,z)\mapsto(R\cos\varphi,R\sin\varphi,z)$ - параметризация цилиндра без отрезка(боковой перпендикуляр) При $\varphi=0,\ \varphi=2\pi$ проблема

$$y)\mapsto \left(\frac{Rx}{\sqrt{x^2+y^2-1}}, \frac{Ry}{\sqrt{x^2+y^2-1}}\right)$$

$$(x,y) \in$$
 открытое кольцо $1 < x^2 + y^2 < (1+h)^2$

3. Сфера в \mathbb{R}^3 без . . .

$$\Phi: (0,2\pi) \times [-\frac{\pi}{2},\frac{\pi}{2}] \to R^3$$
 R - радиус

$$\Phi: (0,2\pi) \times [-\frac{\pi}{2},\frac{\pi}{2}] \to R^3 \quad R$$
 - радиус
$$(\varphi,\psi) \mapsto \begin{pmatrix} R\cos\varphi\cos\psi \\ R\sin\varphi\cos\psi \end{pmatrix} \text{- сферические координаты в } \mathbb{R}^3$$

1.4 Теорема

Теорема 1.1. $M \subset \mathbb{R}^m$ $1 \le k < m$ $1 \le r \le \infty$ $p \in M$ Тогда эквивалентны:

- 1. $\exists U \subset \mathbb{R}^m$ окрестность точки p в \mathbb{R}^m : $M \cap U$ простое k-мерное многообразие класса C^r
- 2. $\exists \tilde{U} \subset \mathbb{R}^m$ окрестность точки p $f_1, f_2, \dots, f_{m-k} : \tilde{U} \to \mathbb{R}$, BCE $f \in C^r$ $x \in M \cap \tilde{U} \Leftrightarrow f_1(x) = f_2(x) = \dots = 0$, при этом $\operatorname{grad}(f_1(p)), \dots, \operatorname{grad}(f_{m-k}(p))$ - ЛНЗ

Доказательство.

$$1\Rightarrow 2$$
 Φ - параметризация : $\underbrace{O}_{(t_1,\dots,t_k)}\subset \mathbb{R}^k,\ \in C^r,\ p=\Phi(t^0)$ Φ' - матрица $m\times k$ rank $\Phi'(t^0)=k$

Пусть
$$\det(\frac{\partial \Phi_i}{\partial t_k})_{i,j=1...k} \neq 0$$

$$\mathbb{R}^m = \mathbb{R}^k \times \mathbb{R}^{m-k}$$

 $L: \mathbb{R}^m \to \mathbb{R}^k$ - проекция на первые k координат $((x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_k))$

```
Тогда ( \ \underline{L \circ \Phi} \ )'(t^0) - невырожденный оператор
```

 $W(t^0)$ - окрестность точки t^0 , $L \circ \Phi : \mathbb{R}^k \to \mathbb{R}^k$

 $L \circ \Phi : W o V \subset \mathbb{R}^k$ - диффеоморфизм

Множество $\Phi(W)$ - это график отображения $H:V\to\mathbb{R}^{m-k}$

Пусть $\Psi = (L \circ \Phi)^{-1} : V \to W$

Берем $x' \in V$, тогда $(x', H(x')) = \Phi(\Psi(x'))$, т.е. $H \in C^r$

Множество $\Phi(W)$ - открытое в $M \Rightarrow \Phi(W) = M \cap \tilde{U}$, где \tilde{U} - открытое множество в \mathbb{R}^m

Можно считать, что $\tilde{U} \subset U \times \mathbb{R}^{m-k}$

Пусть $f_j: \tilde{U}\mathbb{R}$ $f_j(x) = H_j(L(x)) - x_{k+j}$

Тогда $x \in M \cap \tilde{U} = \Phi(W) \Leftrightarrow \forall j: \ f_j(x) = \Phi(W)$

Тогда
$$x \in M \cap U = \Phi(W) \Leftrightarrow \forall j : f_j(x) = 0$$

$$\begin{pmatrix} \operatorname{grad} f_1(p) \\ \vdots \\ \operatorname{grad} f_{m-k}(p) \end{pmatrix} = \begin{pmatrix} \frac{\partial H_1}{\partial x_1} & \cdots & \frac{\partial H_1}{\partial x_k} & -1 & 0 & \cdots & 0 \\ \frac{\partial H_2}{\partial x_1} & \cdots & \frac{\partial H_2}{\partial x_k} & 0 & -1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial H_{m-k}}{\partial x_1} & \cdots & \frac{\partial H_{m-k}}{\partial x_k} & 0 & 0 & \cdots & -1 \end{pmatrix}$$

$$2\Rightarrow 1 \ F=(f_1,\ldots,f_{m-k})$$

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m-k}}{\partial x_1} & \cdots & \frac{\partial f_{m-k}}{\partial x_m} \end{pmatrix}$$
 - матрица $m-k\times m$
 Градиенты ЛНЗ \Rightarrow ранг матрицы равен $m-k$, он достигается на последних $m-k$ столбцах $\det(\frac{\partial f_i}{\partial x_j})_{i,j=1...m-k}\neq 0$

 $\det(\frac{\partial f_i}{\partial x_i})_{i,j=1...m-k} \neq 0$

$$F(x_1, \dots, x_k, x_{k+1}, \dots, x_m) = 0, \quad x \in \tilde{U}$$

По теореме о неявном отображении $\exists P$ - окрестность (x_1,\ldots,x_k) в \mathbb{R}^m $\exists Q$ - окр (x_{k+1},\ldots,x_m) в $\mathbb{R}^{m-\bar{k}}$

$$\exists H: P \to Q \quad H \in C^r \quad F(x', H(x')) = 0, \quad x' \in P$$

Тогда $\Phi: P \to \mathbb{R}^m \quad (x_1, \dots, x_k) \mapsto (x_1, \dots, x_k, H_1(x_1', \dots, x_k'), H_2, \dots, H_{m-k})$ - параметризация мноогбразия

 Φ - гомеоморфизм P и $M \cap \tilde{U}$, Φ^{-1} - практически проекция

Следсвтие о двух параметризациях 1.4.1

Cледствие 1.1.1. $M \subset \mathbb{R}^m$ - k-мерное C^k -гладкое многообразие $p \in M$ \exists две парметризации $\Phi_1: O_1 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m \quad \Phi_1(t^0) = 0$ $\Phi_2: O_2 \subset \mathbb{R}^k \to U(p) \cap M \subset \mathbb{R}^m \quad \Phi_2(s^0) = 0$

Тогда \exists диффеоморфизм $\Theta: O_1 \to O_2$, что $\Phi_1 = \Phi_2 \circ \Theta$

Доказательство. Чатсный случай. Пусть для Φ_1 , Φ_2 , rank $\Phi_1'(t^0)$, rank $\Phi_2'(s^0)$ достигаются на первых k столбцах

Тогда
$$\Phi_1 = \Phi_2 \circ \underbrace{(L \circ \Phi_2)^{-1} \circ (L \circ \Phi_1)}$$

$$\begin{array}{c} \Theta - \text{искомый диффеоморфизм} \\ \Phi_1 = \Phi_2 \circ (\Phi_2 \circ L_2)^{-1} \circ (L_2 \circ L_1^{-1}) \circ (L_1 \circ \Phi_1) \\ L_2 \circ L_1^{-1} = L_2 \circ \Phi_1 \circ (L_1 \circ \Phi_1)^{-1} & \in C^r \end{array}$$

Невырожденность не доказана, поэтому то, что это диффеоморфизм не доказано