Liczby zespolone

Zadania przygotowawcze

1. Przedstawić w postaci a + bi nastepujące liczby zespolone:

(a)
$$(2+i)(3-i) + (2+3i)(3+4i)$$
 odp. $1+18i$

(b)
$$\frac{(5+i)(7-6i)}{3+i}$$
 odp. $10-11i$

(c)
$$(2+i)^3 + (2-i)^3$$
) odp. 4.

(d)
$$\frac{1+i^5}{1-i^3}$$
 odp. 2.

- **2.** Obliczyć i^{77} , i^{98} , i^{-57} . Odp. i, -1, -i.
- **3.**Dowieść równości:

(a)
$$(1+i)^{8n} = 2^{4n}$$
, $n \in \mathbb{Z}$; (b) $(1+i)^{4n} = (-1)^n 2^{2n}$, $n \in \mathbb{Z}$

4. Rozwiązać układy równań:

(a)
$$(1+i)z_1 + (1-i)z_2 = 1+i$$
 (b) $iz_1 + (1+i)z_2 = 2+2i$

$$(1-i)z_1 + (1+i)z_2 = 1+3i$$
 $2iz_1 + (3+2i)z_2 = 5+3i$

Odp. (a)
$$z_1 = i, z_2 = 1 + i$$
, (b) $z_1 = 2, z_2 = 1 - i$

5. Wyznaczyć liczby rzeczywiste x i y spełniające równanie

$$(2+i)x + (1+2i)y = 1-4i$$

Odp.
$$x = 2, y = -3$$

6. Rozwiązać równania

(a)
$$z^2 = 5 - 12i$$

(b)
$$z^2 - 5z + 4 + 10i = 0$$

(c)
$$z^2 + (2i - 7)z + 13 - i = 0$$

Odp. (a) =
$$\pm (3-2i)$$
, (b) $z_1 = 5-2i$, $z_2 = 2i$, (c) $z_1 = 5-3i$, $z_2 = 2+i$

7. Udowodnić, że:

- (a) liczba zespolona z jest liczbą rzeczywistą wtedy i tylko wtedy gdy $\bar{z}=z$
- (b) liczba zespolona z jest liczbą czysto urojoną (tzn. taką, ze jej część rzeczywista jest równa 0) wtedy i tylko wtedy gdy $\bar{z}=-z$

8. Wyznaczyć wszystkie liczby:

- (a) sprzężone do swojego sześcianu
- (b) które są sprzężone do minus swojego kwadratu

9 Przedstawić w postaci trygonometrycznej liczby:

(a) 5; (b) i; (c) -2; (d) -3i; (e) 1-i; (f)
$$1-i\sqrt{3}$$
; (g) $-\sqrt{3}-i$; (h) $\cos\alpha-i\sin\alpha$

Odp. (a)
$$5(\cos 0 + i \sin 0)$$
; (b) $\cos \frac{1}{2}\pi + i \sin \frac{1}{2}\pi$; (c) $2(\cos \pi + i \sin \pi)$;

(d)
$$3(\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2}));$$
 (e) $\sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}));$ (f) $2(\cos(-\frac{\pi}{3}) + i\sin(-\frac{\pi}{3}))$

(g)
$$2(\cos(-\frac{5}{6}\pi) + i\sin(-\frac{5}{6}\pi))$$
 (h) $\cos(-\alpha) + i\sin(-\alpha)$

10. Obliczyć:

(a)
$$(1+i)^{1000}$$
; (b) $(1+i\sqrt{3})^{150}$; (c) $(\frac{\sqrt{3}+i}{1-i})^{30}$

Odp. (a)
$$2^{50}$$
; (b) 2^{150} ; (c) $2^{15}i$

11. Wyrazić w postaci wielomianów od $\sin x$ i $\cos x$ funkcje : (a) $\sin 4x$; (b) $\cos 4x$; (c) $\sin 5x$; (d) $\cos 5x$

Odp. (a) $4\cos^3x\sin x - 4\cos x\sin^3x$; obliczyć $(\cos x + i\sin x)^4$ stosując wzór de Moivre'a i wzór Newtona. (b) $\cos^4x - 6\cos^2x\sin x + \sin 4x$; (c) $5\cos^4x\sin x - 10\cos^x\sin^3x + \sin^5x$; (d) $\cos^5x - 10\cos^3x\sin^2x + 5\cos x\sin^4x$.

12. Obliczyć:

(a)
$$\sqrt[6]{1}$$
; (b) $\sqrt[4]{-4}$; (c) $\sqrt[4]{8\sqrt{3}i - 8}$; (d) $\sqrt[3]{\frac{8 + 24i}{3 - i}}$

Odp. (a)
$$\{\pm 1, \pm \frac{1}{2}(1+i\sqrt{3}), \pm \frac{1}{2}(1-i\sqrt{3})\}$$
, (b) $\{1\pm i, -1\pm i\}$, (c) $\{\sqrt{3}+i, -1+\sqrt{3}i, -\sqrt{3}-i, 1-\sqrt{3}i\}$, (d) $\{\pm\sqrt{3}+i, -2i\}$

13. Zobrazować na płaszczyźnie zbiór punktów odpowiadającym liczbom zespolonym z spełniającym warunki:

(a)
$$|z| = 1$$
, (b) arg $z = \frac{\pi}{3}$, (c) $|z| \le 3$, (d) $|z + 3 + 4i| \le 5$, (e) $1 \le |z - 2i| < 2$, (f) $|\text{Re}z| \le 1$, (g) $\text{Im}z = 1$, (h) $-1 < \text{Re } iz < 0$ (i) $|z - 2| = \text{Re } z + 2$

Odp.(a) Okrąg o promieniu 1 i środku w punkcie (0,0), (b) półprosta wychodząca z początku układu współrzednych i tworząca kąt $\frac{\pi}{3}$ z dodatnią półosią rzeczywistą, (c) koło o promieniu 3 i środku w punkcie (0,0) włącznie z brzegiem, (d) koło o środku w punkcie (-3,-4) i promieniu 5 razem z brzegiem (e) pierścień zawarty między dwoma okręgami o środku w punkcie (0,2) i promieniach 1 oraz 2 z włączeniem okręgu o promieniu 1 i wyłączeniem okręgu o promieniu 2, (f) pas zawarty między prostymi pionowymi x=-1 oraz x=1, (g) prosta pozioma y=1, (h) pas między prostymi poziomymu y=0 oraz y=1, (i) parabola $y^2=8x$