

536, 880

(12)特許協力条約に基づいて公開された国際出願

Rec'd PCT/PTO 27 MAY 2005

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2004年6月10日 (10.06.2004)

PCT

(10)国際公開番号
WO 2004/048401 A1

(51)国際特許分類7: C07K 14/00, A61K 38/16, A61P 1/12, 7/02, 9/00, 9/10, 11/08, 13/12, 15/10, 17/14, 25/00, 25/28, 27/02 谷市 久保ヶ丘1丁目2番1号 伊藤ハム株式会社 中央研究所内 Ibaraki (JP).

(21)国際出願番号: PCT/JP2003/014924

(74)代理人: 平木 祐輔, 外(HIRAKI,Yusuke et al.); 〒105-0001 東京都 港区 虎ノ門一丁目17番1号 虎ノ門ヒルズビル 3階 Tokyo (JP).

(22)国際出願日: 2003年11月21日 (21.11.2003)

(81)指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(25)国際出願の言語: 日本語

(84)指定国(広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26)国際公開の言語: 日本語

添付公開書類:
— 國際調査報告書

(30)優先権データ: 特願 2002-344523

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

2002年11月27日 (27.11.2002) JP

(71)出願人(米国を除く全ての指定国について): 伊藤ハム株式会社 (ITOHAM FOODS INC.) [JP/JP]; 〒657-0037 兵庫県 神戸市 滾石区備後町3丁目2番1号 Hyogo (JP).

(72)発明者; および

(75)発明者/出願人(米国についてのみ): 尾上 誠良 (ONOUYE,Satomi) [JP/JP]; 〒302-0104 茨城県 守谷市 久保ヶ丘1丁目2番1号 伊藤ハム株式会社 中央研究所内 Ibaraki (JP). 遠藤 広介 (ENDO,Kousuke) [JP/JP]; 〒302-0104 茨城県 守谷市 久保ヶ丘1丁目2番1号 伊藤ハム株式会社 中央研究所内 Ibaraki (JP). 松本 麻美 (MATSUMOTO,Asami) [JP/JP]; 〒302-0104 茨城県 守谷市 久保ヶ丘1丁目2番1号 伊藤ハム株式会社 中央研究所内 Ibaraki (JP).

A1

(54) Title: PEPTIDES AND MEDICINAL COMPOSITIONS CONTAINING THE SAME

WO 2004/048401

(54)発明の名称: ペプチド及びこれを含む医薬組成物

(57)Abstract: A medicinal composition containing, as the active ingredient, a peptide derived from a PACAP peptide or a VIP peptide or a pharmaceutically acceptable salt thereof. Thus, a PACAP/VIP derivative the tautomerization of which in the state of a solution is inhibited and thus which can be clinically employed over a long period of time is provided. These peptides are efficacious in ameliorating symptoms of diseases such as regressive neurodegenerative diseases, erectile dysfunction and bronchial asthma.

(57)要約: PACAPペプチドまたはVIPペプチドより誘導したペプチドまたはその薬学的に許容される塩を有効成分として含有する、医薬組成物。本発明によれば、溶液状態における互変異性化を抑制し、臨床上長期間にわたって使用できるPACAP/VIP誘導体が提供される。本ペプチド類は、退行性神経変性疾患、勃起不全、気管支喘息などの疾患の症状改善に有効である。

明 細 書

ペプチド及びこれを含む医薬組成物

技術分野

本発明は、PACAP/VIP 誘導体の製造過程、保存時、そして生体内において異性化反応が抑制され安定性の高いペプチド誘導体に関する。

背景技術

VIP（血管作動性腸管ペプチド；Vasoactive Intestinal Peptide）は、脳一腸管ペプチドと呼ばれ、血流促進、血圧低下作用をもつ生理活性ペプチドの一類である。このVIPは、ブタ腸管から抽出されており、28個のアミノ酸残基からなる（例えば非特許文献1参照）。一方、PACAP（下垂体アデニレートシクラーゼ活性化ペプチド；Pituitary Adenylate Cyclase Activating Polypeptide）は、羊の視床下部から下垂体培養細胞のアデニル酸シクラーゼを活性化させるバイオアッセイ系を指標にして単離され構造決定された38個のアミノ酸残基よりなるペプチドであり、PACAP38と、PACAP27の2種類がある（例えば非特許文献2参照）。このPACAPのN末端側から27個のアミノ酸配列はVIPと極めて類似した構造を有している。また、VIPとPACAPのアミノ酸配列は、セクレチン、グルカゴン等に類似していることから、グルカゴン-セクレチンスーパーファミリーに属するペプチドとされている。これらPACAPおよびVIPはPACAP/VIPレセプターを介してその生理作用を示すが、このPACAP/VIPレセプターは生体内において広い分布を示し、それ故PACAP/VIPは多くの生理活性を有することが報告されている。例えば、抗喘息作用（特許文献1）、血圧低下作用（特許文献2）、増毛作用（特許文献3）、インポテンツ改善作用（特許文献4）、膣潤滑誘発作用（特許文献5）、胃腸管蠕動運動抑制作用（特許文献6）、神経変性疾患・低酸素症・記憶能力低下改善作用（特許文献7）、皮膚潰瘍治療作用（特許文献8）、ニューロンネットワーク形成促進（特許文献9）、コンフォメーション病改善薬（非特許文献3）などである。これ

らの生理作用を考慮すれば医薬応用の可能性は非常に大きいものと考えられるが、PACAPやVIP等の生理活性ペプチドは概して不安定であり、特に生体内においては速やかな代謝を受けるためにその作用継続時間は非常に短いものである。そこで本発明者らは先に、酵素耐性を新規機能として保持させたPACAP/VIP誘導体を創製し(特許文献10)、実際にこれらがトリプシン等生体内ペプチダーゼによる代謝に対して優れていること(非特許文献4参照)、さらには気管支拡張作用を指標としてこれらの誘導体が著しい薬効持続作用を有することを明らかにした(非特許文献5及び6を参照)。従って、この長時間作動型PACAP/VIP誘導体は医薬応用において極めて有用なものと考えられ、特に先述の各種生理・薬理作用を目的とした薬剤の有力な候補として考えられた。しかしながら、生物化学的には安定であることを確認したPACAP/VIP誘導体は、製剤学的な安定性、特に溶液状態における長期安定性において大きな問題が起りうることが今回初めて明らかとなり、これら著しい減成はPACAP/VIP類の活性減退、もしくは生成する不純物による予期せぬ副作用等が強く懸念されるところである。PACAP/VIP類の生理・薬理作用を考慮すれば、これらの薬剤は単回投与に終わることはまずあり得ず、臨床使用において長期にわたって投与し続ける必要性をもった薬剤となることは推測するに容易である。それ故、この安定性の諸問題から生じる副反応物の生成は殊更に重大な問題と考えられる。

特許文献 1

特開平 8-333276 号公報

特許文献 2

特開昭 63-179894 号公報

特許文献 3

特開平 01-83012 号公報

特許文献 4

特開平 01-19097 号公報

特許文献 5

特表平 01-501937 号公報

特許文献 6

特表平 06-507415 号公報

特許文献 7

特開平 07-69919 号公報

特許文献 8

特開平 08-40926 号公報

特許文献 9

特開 2001-226284 号公報

特許文献 10

特開平 8-333276 号公報

非特許文献 1

サイド (S. I. Said) ら、「サイエンス (Science)」 (米国) 1970 年 169 卷 p. 1217

非特許文献 2

宮田 (A. Miyata) ら、「バイオケミカル アンド バイオフィジカル リサーチ コミュニケーションズ (Biochemical and biophysical research communications)」 (米国) 1989 年 164 卷 p. 567

非特許文献 3

尾上 (Onoue, S.) ら、「フェブス レターズ (FEBS Letters)」 (オランダ) 2002 年 522 卷 p. 65-p. 70

非特許文献 4

橋本 (Kashimoto, K.) ら、「ペプチド ケミストリー (Peptide Chemistry)」 1996 年 1997 卷 p. 249-p. 252

非特許文献 5

吉原 (Yoshihara, S.) ら、「ペプチド (Peptides)」 (米国) 1998 年 19 卷 p. 593-p. 597

非特許文献 6

吉原 (Yoshihara, S.) ら、「ブリティッシュ ジャーナル オブ ファーマコロジー (British Journal of Pharmacology)」 1997 年 121 卷 p. 1730-p. 1734

発明の開示

従って、本発明は、安定性に富み、臨床上安全に使用できるPACAP／VIP誘導体からなる医薬組成物を提供することを目的とする。

本発明者らは、PACAP／VIPおよびその誘導体ペプチドの溶液中における不安定に寄与する要因について鋭意研究を重ねた結果、幾つかの配列において異性化反応が起こり、臨床的に医薬組成物の有効成分として使用するには好適でないを見出した。この異性化反応はアスパラギン酸やグルタミン酸等の酸性アミノ酸やそのアミド体であるアスパラギンおよびグルタミンに特徴的なものであり、これらアミノ酸を含むペプチド・蛋白質は隣接するアミノ酸構成によって、酸性や塩基性条件でスクシンイミドやグルタル酸イミドを副生しやすいことが報告されている (Bodanszky, M. et al., Int. J. Pept. Protein. Res., 1978, 12, 69; 泉屋 信夫ら、「ペプチド合成の基礎と実験」丸善, 71-72)。この反応はアミノ酸側鎖をベンジルエステルなどで保護している場合に、側鎖が遊離している場合よりも副反応の起こる傾向が大きい。特にアスパルチルペプチドは不安定で、中性でもイミドを形成することがある。また、ペプチド中においてアスパラギン酸およびアスパラギンの次にグリシン、セリン、スレオニンあるいはヒスチジンが存在すると特に不安定である。VIPの場合は24, 25位のAsn-Ser配列が特に異性化が起こりやすく、酵素耐性VIP誘導体であるペプチド4は、24, 25位のAsn-Ser配列に加えて、28, 29位のAsn-Gly配列においても同様の異性化が起こると考えられる。また、Kitadaらの報告 (Peptide Chemistry 1990, 1991, 239-244)によれば、VIPおよびその関連誘導体の8, 9位のAsp-Asn配列も容易にスクシンイミドを形成することが報告されている。さらに、PACAPの場合においても、その3, 4位のAsp-Gly配列はスクシンイミドを形成する可能性を有しており、溶液中における安定性が非常に問題となるところである。

そこで、本発明者らは、これらの配列に注目してより安定なアミノ酸配列に置換することによって、PACAP／VIPペプチドとしての生理活性を有し、かつより安定な化合物群を創製することを試みた。

まず、本発明者らの先の報告 (Onoue, S. et al., Biomed. Res., 1999, 20, 219-231; Onoue, S. et al., Peptides, 2001, 22, 867-872; Onoue, S. et al.,

Pharmacol. Rev. Commun., 2002, 12, 1-9) によれば、PACAP/VIPが作用を発現するために必須なPACAP/VIPレセプターとの結合に関して、この受容体特異認識性に大きく寄与するのはそのN末端構造である。この概念に従つて、

(i) VIPの不安定要因配列24, 25位をPACAPの安定配列24, 25位に置換した。

加えて、本発明者が先に見出した(Nagano, Y. et al., Peptide Science 2001, 2002, 147-150)、VIPの28位Asn残基は活性に寄与しないという事実から、

(ii) ペプチド4(天然型VIPに対してArg残基含量を増すよう改変したペプチド)の28位を削除し、Asn-Gly配列による異性化の危険性を排除した。

VIPの17位Metは生体内あるいはその製造工程中において速やかな代謝を受けてメチオニンスルホキシドとなり、活性に大きな影響を与えるので、

(iii) 17位MetはLeuまたはNleに置換する。

また、VIPにおける8位のAspを、異性化の危険性がAspよりも少ないGlu、またはAlaに置換した化合物も作製した。VIPの8位をAlaに置換した場合、そのレセプター結合活性が向上することが報告されており(Igarashi, H. et al., J. Pharmacol. Exp. Ther., 2002, 37-50)、誘導体の安定化と高活性の両者が期待できる。

尚、VIPの活性最小単位は23残基であることが本発明者らによって報告されており(Nagano, Y. et al., Peptide Science 2001, 2002, 147-150)、上記アミノ酸置換を施したVIP誘導体についてN末端より少なくとも23残基以上保持していればVIPの生理活性が期待できる。

また、PACAPの3, 4位によるスクシニルペプチド形成を阻害するために

(iv) 4位のGly残基をVIPの同位置アミノ酸に相当するAla残基に置換することにより、安定化を図ることができる。この置換はPACAP27(ペプチド2)のみならず、PACAP38(ペプチド3)、ペプチド5(PACAP30)、そしてペプチド6(PACAP38に対してArg残基含量を増すよう改変したペプチド)のようなPACAP関連ペプチドの安定化に対しても有効である。

PACAPの最小活性単位はVIPと同様N末端より23残基であることが公知

の事実となっており(Kitada, C. et al., Peptide Chemistry 1990, 1991, 239-244)、上記PACAP誘導体群についてもN末端より23残基以上あればPACAPの生理・薬理効果が期待できる。

上記観点から本発明者らは多数のペプチドを合成し、天然型VIP及びPACAPと同様、またはそれ以上の高い生理活性を有すると共に、高い安定性を有するペプチドを見出すに到った。

すなわち、本発明は以下の(1)～(12)の発明を提供する。

(1) 下記式(I)：

His-Ser-Asp-Ala-A-Phe-Thr-B-C-Tyr-D-Arg-E-Arg-F-Gln-G-Ala-Val-H-I-Tyr-Leu-Ala-Ala-J-K-L (配列番号1) (I)

(式中、Aは、ValまたはIle;Bは、Asp, GluまたはAla;Cは、AsnまたはSer;Dは、ThrまたはSer;Eは、LeuまたはTyr;F, H, IはLysまたはArg;Gは、LeuまたはnLeu;Jは、Ile, Val;Kは、Leu, Leu-Asn, Leu-Gly, Leu-Gly-Lys, Leu-Gly-Arg, Leu-Gly-Lys-Lys, Leu-Gly-Lys-Arg, Leu-Gly-Arg-Arg, Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys-Asn-Lys, Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-Asn-Arg;LはC末端アミノ酸の α 位カルボキシル基修飾を表し、-NH₂あるいは-OHを示す。)

で示されるペプチドのうち、N末端より少なくとも23残基からなるペプチド、または薬学的に許容されるその塩。

(2) 一般式(I)において、AがVal、BがAsp、CがAsn、DがThr、EがLeu、F, H, IがArg、GがLeu、Lが-NH₂であり、N末端より23残基のアミノ酸から構成される上記(1)に記載のペプチド、または薬学的に許容されるその塩。該ペプチドは、具体的には、後記のペプチド10(配列番号11)に相当する。

(3) 一般式(I)において、AがVal、BがAsp、CがAsn、DがThr、EがLeu、F, H, IがArg、GがLeu、JがIle、KがLeu-Gly-Arg-Arg、Lが-NH₂である上記(1)に記載のペプチド、または薬学的に許容されるその塩。該ペプチドは、具体的には、後記のペプチド12(配列番号13)に相当する。

(4) 一般式(I)において、AがVal、BがGlu、CがAsn、DがThr、Eが

Leu、F、H、I が Arg、G が Leu、J が Ile、K が Leu-Gly-Arg-Arg、L が -NH₂ である上記(1)に記載のペプチド、または薬学的に許容されるその塩。該ペプチドは、具体的には、後記のペプチド 21(配列番号 22)に相当する。

(5) 一般式(I)において、A が Val、B が Ala、C が Asn、D が Thr、E が Leu、F、H、I が Arg、G が Leu、J が Ile、K が Leu-Gly-Arg-Arg、L が -NH₂ である上記(1)に記載のペプチド、または薬学的に許容されるその塩。該ペプチドは、具体的には、後記のペプチド 23(配列番号 24)に相当する。

(6) 一般式(I)において、A が Val、B が Asp、C が Asn、D が Thr、E が Leu、F、H、I が Arg、G が Leu、J が Val、K が Leu-Gly-Arg-Arg、L が -NH₂ である上記(1)に記載のペプチド、または薬学的に許容されるその塩。該ペプチドは、具体的には、後記のペプチド 25(配列番号 26)に相当する。

(7) 一般式(I)において、A が Ile、B が Asp、C が Ser、D が Ser、E が Tyr、F、H、I が Arg、G が Leu、J が Val、K が Leu-Gly-Arg-Arg、L が -NH₂ である上記(1)に記載のペプチド、または薬学的に許容されるその塩。該ペプチドは、具体的には、後記のペプチド 26(配列番号 27)に相当する。

(8) 一般式(I)において、A が Ile、B が Asp、C が Ser、D が Ser、E が Tyr、F、H、I が Arg、G が Leu、J が Val、K が Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-Asn-Arg、L が -NH₂ である上記(1)に記載のペプチド、または薬学的に許容されるその塩。該ペプチドは、具体的には、後記のペプチド 29(配列番号 30)に相当する。

(9) 一般式(I)において、A が Ile、B が Asp、C が Ser、D が Ser、E が Tyr、F、H、I が Arg、G が Leu、L が -NH₂ であり、N 末端より 23 残基のアミノ酸から構成される上記(1)に記載のペプチド、または薬学的に許容されるその塩。該ペプチドは、具体的には、後記のペプチド 31(配列番号 32)に相当する。

上記ペプチド 10、12、21、23、25、26、29、31 は、いずれも上記の(i)～(iv)の改変を行ったペプチドであり、ペプチド 21 及び 23 は更に 8 位のアミノ酸が Glu、または Ala となっている。

(10) 上記(1)～(9)のペプチドまたは薬学的に許容されるその塩を含む、

医薬組成物。

(11) 上記(1)～(9)のペプチドまたは薬学的に許容されるその塩の含有量が有効成分としての生理活性ペプチド全体の50重量%以上である、上記(10)に記載の医薬組成物。

ここで、「有効成分」とは、医薬組成物において被験者の疾患、症状または状態を治療、予防、変化または緩和させることを目的として被験者に対する作用を有するものとして含有させるものである。また、「生理活性ペプチド」とは、上記被験者に対して生理活性を有するペプチドのことであり、本明細書では特にPACAP／VIPペプチド、その塩、及び誘導体を包含する。また、PACAP／VIPペプチドとは、ヒト及び動物の天然型PACAPまたはVIP、及びこれらと類似のアミノ酸配列を有するペプチドであって、PACAPまたはVIPと同様の生理活性を有するペプチドのことをいい、グルカゴンーセクレチンファミリーに属するペプチドが包含される。

(12) 脳塞栓症および脳血栓症を含む虚血性脳血管障害、中枢あるいは末梢神経に毒性をもたらす疾患、脳血管虚血、血栓症、コンフォメーション病、神経変性疾患、脱毛、男性不能症、痴呆症、腎不全、視神経萎縮、虚血性視神経症を含む視神経変性疾患および網膜変性疾患からなる群から構成される1種以上の疾患または症状の治療または予防のための、または血流改善、気管支平滑筋弛緩若しくは胃腸管運動抑制のための、上記(10)または(11)に記載の医薬組成物。

以下、本発明を具体的に説明する。

本発明の高安定性ペプチド誘導体は、具体的には一般式(I)に記載のアミノ酸配列からなるペプチドであり、それに含まれるペプチドの代表例を表1に示した。ここに示したペプチド10～32は、後記配列表の配列番号11～33に対応するペプチドである。ただし、ペプチド10, 22, 24, 31, 32はN末端より23残基に相当するペプチドであり、ペプチド13, 28, 32はN末端アミノ基にアセチル基が、そしてペプチド14のN末端アミノ基にはステアリル基が結合している。ペプチド33(配列番号34)は4番目のアミノ酸がグリシンである以外はペプチド31(配列番号32)と同じアミノ酸配列を有する23残基のペプチドである。

表1

ペプチド番号	A	B	C	D	E	F	G	H	I	J	K	L
10	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg			NH ₂
11	Val	Asp	Asn	Thr	Leu	Lys	Leu	Lys	Lys	Ile	Leu-Asn	NH ₂
12	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg-Arg	NH ₂
13	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg-Arg	NH ₂
14	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg-Arg	NH ₂
15	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg-Arg	OH
16	Val	Asp	Asn	Thr	Leu	Arg	Nle	Arg	Arg	Ile	Leu-Gly-Arg-Arg	NH ₂
17	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly	NH ₂
18	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Lys	NH ₂
19	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg	NH ₂
20	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Lys-Arg	NH ₂
21	Val	Glu	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg-Arg	NH ₂
22	Val	Glu	Asn	Thr	Leu	Arg	Leu	Arg	Arg			NH ₂
23	Val	Ala	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg-Arg	NH ₂
24	Val	Ala	Asn	Thr	Leu	Arg	Leu	Arg	Arg			NH ₂
25	Val	Asp	Asn	Thr	Leu	Arg	Leu	Arg	Arg	Val	Leu-Gly-Arg-Arg	NH ₂
26	Ile	Asp	Ser	Ser	Tyr	Arg	Leu	Arg	Arg	Val	Leu-Gly-Arg-Arg	NH ₂
27	Ile	Asp	Ser	Ser	Tyr	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg-Arg	NH ₂
28	Ile	Asp	Ser	Ser	Tyr	Arg	Leu	Arg	Arg	Val	Leu-Gly-Arg-Arg	NH ₂

29	Ile	Asp	Ser	Ser	Tyr	Arg	Leu	Arg	Arg	Val	Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-Asn-Arg	NH ₂
30	Ile	Asp	Ser	Ser	Tyr	Arg	Leu	Arg	Arg	Ile	Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-Asn-Arg	NH ₂
31	Ile	Asp	Ser	Ser	Tyr	Arg	Leu	Arg	Arg			NH ₂
32	Ile	Asp	Ser	Ser	Tyr	Arg	Leu	Arg	Arg			NH ₂
33	Ile	Asp	Ser	Ser	Tyr	Arg	Leu	Arg	Arg			NH ₂

上記ペプチドは、使用の際にはその N 末端に極性物質または非極性物質（脂肪酸、アシル基等）を結合させて分子の極性を変化させたり、ポリエチレングリコール、グルコサミノグリカン（ヒアルロン酸等）の高分子を結合させて酵素耐性を増強したり、リポソーム基質に結合させてリポソームに封入したり、あるいは脂質膜表面に固定することもできる。アシル基の導入は、その活性の向上のみならず、自己凝集を抑制することが当業者間で知られている。

本発明のペプチドは、蒸留水や緩衝液等の水性溶液中における安定性が非常に高いことが確認された。例えば本発明のペプチドは、pH6.0 及び 7.0 に調製した溶液中で 40℃で 1 週間保存した場合、70%以上、好ましくは 80%以上、より好ましくは 85%以上の残存率で存在し得る。また、pH6.0 及び 7.0 に調製した溶液中で 55℃で 3 日間保存した場合は、85%以上、好ましくは 90%以上の残存率で存在し得る。本発明において、特に好ましいペプチドは、ペプチド 10, 12, 21, 23, 25, 26, 29, 及び 31 である。

本発明の神経突起誘発剤に使用するペプチドは、特に限定するものではないが、公知のペプチド合成の常法に従って合成できる。例えば「ザ. ペプチド (The Peptides)」第 1 卷 (1966 年) [Schreder and Luhke 著、Academic Press, New York, U. S. A.]、あるいは「ペプチド合成」[泉屋ら著、丸善株式会社 (1975 年)] の記

載に従い、具体的には、アジド法、酸クロライド法、酸無水物法、混合酸無水物法、DCC法、活性エステル法 (P-ニトロフェニルエステル法、N-ヒドロキシコハク酸イミドエステル法、シアノメチルエステル法など)、ウッドワード試薬Kを用いる方法、カルボイミダゾール法、酸化還元法、DCC-アディティブ (HONB、HOBt、HOSt) 法など、各種の方法により合成することができる。これらの方法は、固相合成及び液相合成のいずれにも適用できる。

本発明においてペプチド合成は、上記のような一般的なポリペプチドの合成法に従って、例えば末端アミノ酸に順次1個ずつアミノ酸を縮合させるいわゆるステップワイズ法によって、または数個のフラグメントに分けてカップリングさせていく方法により行われる。

例えばステップワイズ法による固相合成は、具体的には、メリフィールド (Merrifield. R. B.) の方法 [Solid phase peptide synthesis, J. Amer. Chem. Soc., 85, 2149-2159 (1963)] に従い、以下のようにして行うことができる。まず、C末端アミノ酸（アミノ基を保護したもの）をそのカルボキシリ基によって不溶性樹脂に結合させ、その後、該C末端アミノ酸のアミノ基の保護基を除去する。次いで、得られたこの遊離の反応性アミノ基に、目的とするペプチドのアミノ酸配列に従って、アミノ基を保護したアミノ酸の反応性カルボキシリ基を縮合反応により順次結合させる。このようにして一段階ずつ全配列を合成した後、ペプチドを不溶性樹脂からはずす。

上記の固相合成において用いられる不溶性樹脂は、反応性カルボキシリ基との結合性を有するものであればいずれをも使用でき、例えばベンズヒドリルアミン樹脂 (BHA樹脂)、クロルメチル樹脂、オキシメチル樹脂、アミノメチル樹脂、メチルベンズヒドリル樹脂 (MBHA樹脂)、4-アミノメチルフェノキシメチル樹脂、4-ヒドロキシメチルフェノキシメチル樹脂、4-オキシメチルフェニルアセタミドメチル樹脂などが挙げられる。

また、 α -アミノ基の保護基として9-フルオレニルメチルオキシカルボニル基 (Fmoc) を使用する場合は4-ヒドロキシメチルフェノキシメチル樹脂など、トリフルオロ酢酸 (TFA) によって樹脂から脱離できるものがよく、t-ブロトキシカルボニル基 (Boc) を使用する場合は4-オキシメチルフェニルアセタミドメチル樹

脂（PAM樹脂）など、フッ化水素などによって樹脂から脱離できるものがよい。樹脂1g当りペプチド濃度は0.5mmole以下とすることが好ましい。

上記の方法においては、アミノ酸のペプチド結合に関するアミノ基への保護基の結合及び該保護基の脱離、ならびにアミノ酸のペプチド結合に関するカルボキシル基の活性化が必要である。

アミノ基の保護基として、例えば、ベンジルオキシカルボニル（Z）、t-ブトキシカルボニル（Boc）、t-アミノオキシカルボニル（Aoc）、イソボニルオキシカルボニル、p-メトキシベンジルオキシカルボニル、2-クロルーベンジルオキシカルボニル、アダマンチルオキシカルボニル、トリフルオロアセチル、フタロイル、ホルミル、o-ニトロフェニルスルフェニル、ジフェニルホスファノチオイールなどの基が挙げられる。

また、アミノ酸の中で、側鎖に官能基を有するもの、例えばHis、Tyr、Thr、Lys、Asp、Arg及びSerは、その側鎖の官能基を保護しておくのが好ましい。官能基の保護は、通常用いられている方法で、下記のような通常の保護基を結合させることにより行われ、反応終了後、該保護基は脱離される。

Hisのイミノ基の保護基としては、例えばベンジルオキシメチル（Bom）、p-トルエンスルホニル（Tos）、ベンジル（Bzl）、ベンジルオキシカルボニル（Z）、トリチル基などが挙げられる。

Ser及びThrの水酸基は、例えばエステル化またはエーテル化によって保護することができるが、この保護は必須ではない。エステル化に適する基としては、アセチルなどの低級アルカノイル基、ベンゾイルなどのアロイル基、ベンゾイルオキシカルボニル、エチルオキシカルボニルなどの炭酸から誘導される基などが挙げられる。またエーテル化に適する基としては、ベンジル（Bzl）、テトラヒドロピラニル、tert-ブチル基などが挙げられる。

Tyrの水酸基の保護基としては、例えばベンジル（Bzl）、プロモベンジルオキシカルボニル（Br-Z）、ジクロロベンジル（Cl₂-Bzl）、ベンジルオキシカルボニル（Z）、アセチル、p-トルエンスルホニル（Tos）基などが挙げられる。

Lysのアミノ基の保護基としては、例えばベンジルオキシカルボニル（Z）、クロロベンジルオキシカルボニル（Cl-Z）、ジクロロベンジル（Cl₂-Bzl）、t-ブ

トキシカルボニル基 (Boc)、p-トルエンスルホニル (Tos) 基などが挙げられる。

Arg のグアニジノ基の保護基としては、例えば p-トルエンスルホニル (Tos)、ニトロ、ベンジルオキシカルボニル (Z)、t-アミルオキシカルボニル (Aoc) 基などが挙げられる。

Asp のカルボキシル基の保護は、例えばベンジルアルコール、メタノール、エタノール、tert-ブタノール、シクロヘキシリ (cHex) などによるエステル化により行われる。

その他のアミノ酸の保護基として、Trp のインドリル基の保護基としては、例えばホルミル、カルボベンゾキシル、4-メトキシ-2, 3, 6-トリメチルベンゼンスルホニル、2, 2, 2-トリクロロエチルオキシカルボニルなどが挙げられるが、この保護は必須ではない。

Met のチオメチル基の保護基としては予めメチルスルホキシドにしておき、後に還元する方法があるが、この保護は必須ではない。

一方、カルボキシル基の活性化は、従来公知の方法にて行うことができ、用いられる試薬なども公知のものから適宜選択し得る。例えば、カルボキル基の活性化は、該カルボキシル基と種々の試薬とを反応させ、対応する酸クロライド、酸無水物または混合酸無水物、アジド、活性エステル（ペンタクロロフェノール、p-ニトロフェノール、N-ヒドロキシコハク酸イミド、N-ヒドロキシベンズトリアゾール、N-ヒドロキシ-5-ノルポルネン-2, 3-ジカルボキシイミド等とのエステル）などを形成させることにより行う。

上記の固相における反応性アミノ基と反応性カルボキシル基との縮合反応（ペプチド結合形成反応）に用いる溶媒としては、ペプチド結合形成に使用できるものであればいずれでもよい。例えば無水または含水のジメチルホルムアミド (DMF)、ジメチルスルホキシド (DMSO)、ピリジン、クロロホルム、ジオキサン、ジクロロメタン (DCM)、テトラヒドロフラン (THF)、酢酸エチル、N-メチルピロリドン、ヘキサメチルリン酸トリアミド (HMPA) などを単独で、あるいは2種以上の混合溶媒として使用することができる。

また、上記縮合反応は、縮合剤、例えばジシクロヘキシリカルボキシイミド (DCC)、カルボジイミダゾールなどのカルボジイミド試薬やテトラエチルピロホスフェイ

ト、ベンゾトリアゾールーN-ヒドロキシトリスジメチルアミノホスホニウムヘキサフルオロリン化物塩 (Bop 試薬) などの存在下に行うこともできる。

合成されたペプチドは、通常の方法に従い脱塩、精製することができる。例えば、DEAE-セルロースなどのイオン交換クロマトグラフィー、セファデックス LH-20、セファデックス G-25などの分配クロマトグラフィー、シリカゲルなどの順相クロマトグラフィー、ODS-シリカゲルなどの逆相クロマトグラフィー、高速液体クロマトグラフィーなどが挙げられる。

上記のようにして精製したペプチドは、各種の酸を用いて、所望により薬学的に許容される塩、例えば、酢酸塩、塩酸塩、リン酸塩等にすることができる。

上記ペプチドまたはその塩は、医薬的に許容できる溶剤、賦形剤、担体、補助剤などを使用し、製剤製造の常法に従って液剤、注射剤、錠剤、散剤、顆粒剤、坐剤、腸溶剤、点鼻剤、吸入経肺剤、口腔吸収剤、カプセル剤、点眼剤、軟膏、経皮吸収剤、徐放製剤、およびその他のドラッグデリバリーシステムなどの医薬組成物として調製する。

本発明のペプチドまたはその塩は、従来公知の P A C A P / V I P と同様の生理作用を有するものであり、同様にして使用することができる。また、上記ペプチドおよびその塩は、神経突起誘発作用を有するので神経突起誘発剤として有用であり、当該製剤は、各種疾病、具体的には、アルツハイマー型痴呆症、パーキンソン病、神経細胞死、神経芽腫、健忘症などの、神経細胞の変性を伴う疾患の予防・治療、ならびに神経系に障害を与える薬物に対する防御に有効である。さらに、該ペプチドの気管支拡張作用により抗喘息作用として、また内視鏡検査時に用いる胃蠕動運動抑制剤としても有用である。また、本発明のペプチドまたはその塩を含有する医薬組成物は、例えば、P A C A P / V I P と同様、脳塞栓症や脳血栓症を含む虚血性脳血管障害、これに伴う/またはその他の原因による脳あるいは末梢の神経脱落、コンフォメーション病、神経変性疾患、脱毛、男性不能症、痴呆症、腎不全、視神経萎縮、虚血性視神経症を含む視神経変性疾患および網膜変性疾患からなる群から構成される 1 種以上の疾患または症状の治療または予防のために使用することができ、また、血流改善、気管支平滑筋弛緩若しくは胃腸管運動抑制のために使用することもできるが、用途は特に限定されるもので

はない。尚、PACAP/VIPペプチドがコンフォメーション病を発症し得る特定のタンパク質に対して神経保護作用を有することは、本発明者らが先に見出している（特願 2001-386699 号）。

本発明の医薬組成物は、例えばヒト、マウス、ラット、ウサギ、イヌ、ネコ等の哺乳動物に対して非経口的にまたは経口的に、さらには点鼻剤、吸入剤、徐放製剤、点眼剤、軟膏、経皮吸収剤、徐放製剤、口腔吸収剤等ドラッグデリバリーシステムを必要に応じて用いて、安全に投与することができる。実際には、患者の疾患の種類、期待する効果、および患者の全身状態等に応じて、適切な投与方法、投与する剤形、投与頻度等は、担当医師等の専門家により決定され得る。ここで使用する投与デバイスとして、点鼻剤では、ジェットライザー、パプライザーやネーザルインサフレーター、吸入剤では、スピナーラー、イーヘラー、FlowCaps、ジェットヘラー、デスクヘラー、ローターへラー、タープヘラー、イージーへラー、アキュへラー、クリックへラー、インスピイヤーイース、インハレーションエイト等があげられるが、これらに限定される物ではない。当該医薬組成物の投与量は、剤形、投与ルート、症状等により適宜変更しうるが、例えばヒトを含む哺乳動物に投与する場合、ペプチド量として1人1日当たり約1pg～1mg/kg程度を適用することが例示される。その際、有効成分として、本発明のペプチドまたはその塩を、組成物中の生理活性ペプチドの50重量%以上、好ましくは80重量%以上、更に好ましくは95重量%以上含有させる。このことは、生理活性ペプチドのうち、一般式(I)に含まれないペプチドを、組成物中に50重量%未満、好ましくは20重量%未満、特に好ましくは5重量%未満しか含有しないことを意味する。

本明細書は本願の優先権の基礎である日本国特許出願 2002-344523 号の明細書および/または図面に記載される内容を包含する。

図面の簡単な説明

図1は、ペプチド4(I)及びペプチド4をpH7.0のリン酸緩衝液に溶解し(濃度:300μg/mL)、55℃の恒温槽に24時間静置したサンプル(II)のクロマトグラムチャートを示す。

図2は、高次構造解析計算方法に基づいて算出されたペプチド1, 7及び8の高次構造におけるヘリックス構造の比率を示す。

図3は、ペプチド1(天然型VIP)に対するペプチド7及び8のマウス胃平滑筋の相対収縮抑制率を示す。

図4は、ペプチド12, 21, 23の気管支弛緩作用を示す。(A)はペプチド12、(B)はペプチド21、(C)はペプチド23についての結果である。

図5は、コントロール(ペプチド無添加検体)、ペプチド1(天然型VIP)、ペプチド4, 12, 21, 及び23の神経突起誘発作用を示す。

図6は、異常プリオൺ(PrP106-126)に対するペプチド4, 12, 21, 23の神経保護作用を示す。

##: ペプチド非存在下の検体と比して有意 ($P<0.01$)

**: ペプチド1と比して有意 ($P<0.01$)

発明を実施するための最良の形態

以下に本発明を参考例、実施例を挙げてより具体的に説明するが、本発明はこれらに限定されるものではない。

[実施例1] ペプチドの合成

配列番号13に示すアミノ酸配列を有するペプチド12をペプチド固相合成の常法に従い製造した。

MBHA樹脂HCl塩(polystyrene-1% divinylbenzene共重合体, 100~200 mesh)をマニュアル合成用反応槽(ガラス製, $\phi 6.0 \times 29.5$ cm)に加え、樹脂容量の2~3倍量のメタノールで攪拌洗浄し、次いでジクロロメタン(樹脂容量の2~3倍量)で攪拌洗浄して樹脂を膨潤させた。10%トリエチルアミン/ジクロロメタンにて中和反応を行い、C末端アミノ酸に相当する Boc-Arg(Tos)-OHを樹脂の約2倍当量用い、ジシクロヘキシリカルボジイミドおよびN-ハイドロキシベンゾトリアゾールを加えて縮合反応を行った。約2時間の反応(攪拌下)後、メタノールおよびジクロロメタンにて洗浄し、カイザー試験にて α -アミノ基の消失を確認後、50%トリフルオロ酢酸/ジクロロメタンにて30分間処理して脱保護を行った。次いで、10%トリエチルアミン/ジクロロメタンにて中和し、メタノールおよびジク

ロロメタンにて再洗浄後、再びカイザー試験を実施して脱保護反応の確認を行った。確認後は C 末より 2 番目の Boc-Arg (Tos)-OH のカップリングを行うため、同様の工程を繰り返した。その後、Boc-Gly-OH, Boc-Leu-OH, Boc-Ile-OH, Boc-Ala-OH, Boc-Ala-OH, Boc-Leu-OH, Boc-Tyr (Cl₂-Bzl)-OH, Boc-Arg (Tos)-OH, Boc-Arg (Tos)-OH, Boc-Val-OH, Boc-Ala-OH, Boc-Leu-OH, Boc-Gln (Xan)-OH, Boc-Arg (Tos)-OH, Boc-Arg (Tos)-OH, Boc-Leu-OH, Boc-Arg (Tos)-OH, Boc-Thr (Bzl)-OH, Boc-Tyr (Cl₂-Bzl)-OH, Boc-Asn (Xan)-OH, Boc-Asp (OcHex)-OH, Boc-Thr (Bzl)-OH, Boc-Phe-OH, Boc-Val-OH, Boc-Ala-OH, Boc-Asp (OcHex)-OH, Boc-Ser (Bzl)-OH, Boc-His (Bom)-OH の順に順次カップリング/脱保護を行い、ペプチド 12 に相当する保護ペプチド； His (Bom)-Ser (Bzl)-Asp (OcHex)-Ala-Val-Phe-Thr (Bzl)-Asp (OcHex)-Asn-Tyr (Cl₂-Bzl)-Thr (Bzl)-Arg (Tos)-Leu-Arg (Tos)-Arg (Tos)-Gln-Leu-Ala-Val-Arg (Tos)-Arg (Tos)-Tyr (Cl₂-Bzl)-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-MBHA を得た。ここで得られた保護ペプチド-MBHA 樹脂にエタンジオールおよびアニソール存在下無水フッ化水素を加えて反応させた。反応後、無水フッ化水素を減圧下留去後、残渣をエーテルで洗浄し、これに 10% 酢酸を加えてペプチドを抽出した。抽出液を逆相カラムクロマトグラフィーにより精製し、凍結乾燥を行いペプチド 12 を得た。

上記方法と同様にして、下記のペプチド 1~33 を化学合成した。

ペプチド 1 (配列番号 2) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-NH₂

ペプチド 2 (配列番号 3) :

His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-Ala-Val-Leu-NH₂

ペプチド 3 (配列番号 4) :

His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys-Asn-Lys-NH₂

ペプチド 4 (配列番号 5) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-Gly-Arg-Arg-NH₂

ペプチド 5 (配列番号 6) :

His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Arg-Arg-NH₂

ペプチド 6 (配列番号 7) :

His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-
Asn-Arg-NH₂

ペプチド 7 (配列番号 8) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala-
Val-Lys-Lys-Tyr-Leu-Asn-Ser-NH₂

ペプチド 8 (配列番号 9) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met (O)-Ala-
Val-Lys-Lys-Tyr-Leu-Asn-Ser-NH₂

ペプチド 9 (配列番号 10) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Leu-Ala-
Val-Lys-Lys-Tyr-Leu-NH₂

ペプチド 10 (配列番号 11) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-NH₂

ペプチド 11 (配列番号 12) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Leu-Ala-
Val-Lys-Lys-Tyr-Leu-Ala-Ala-Ile-Leu-Asn-NH₂

ペプチド 12 (配列番号 13) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-NH₂

ペプチド 13 (配列番号 14) :

Acetyl-His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-L-

eu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-NH₂

ペプチド 14 (配列番号 15) :

Stearyl-His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-NH₂

ペプチド 15 (配列番号 16) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-OH

ペプチド 16 (配列番号 17) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Nle-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-NH₂

ペプチド 17 (配列番号 18) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-NH₂

ペプチド 18 (配列番号 19) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Lys-NH₂

ペプチド 19 (配列番号 20) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-NH₂

ペプチド 20 (配列番号 21) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Lys-Arg-NH₂

ペプチド 21 (配列番号 22) :

His-Ser-Asp-Ala-Val-Phe-Thr-Glu-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-NH₂

ペプチド 22 (配列番号 23) :

His-Ser-Asp-Ala-Val-Phe-Thr-Glu-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-NH₂

ペプチド 23 (配列番号 24) :

His-Ser-Asp-Ala-Val-Phe-Thr-Ala-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-NH₂

ペプチド 24 (配列番号 25) :

His-Ser-Asp-Ala-Val-Phe-Thr-Ala-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-NH₂

ペプチド 25 (配列番号 26) :

His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Arg-Arg-NH₂

ペプチド 26 (配列番号 27) :

His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Arg-Arg-NH₂

ペプチド 27 (配列番号 28) :

His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-NH₂

ペプチド 28 (配列番号 29) :

Acetyl-His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-L
eu-Ala-Val-Arg-Arg-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Arg-Arg-NH₂

ペプチド 29 (配列番号 30) :

His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Val-Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-
Asn-Arg-NH₂

ペプチド 30 (配列番号 31) :

His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-Ala-Ala-Ile-Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-
Asn-Arg-NH₂

ペプチド 31 (配列番号 32) :

His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-
Val-Arg-Arg-Tyr-Leu-NH₂

ペプチド 32 (配列番号 33) :

Acetyl-His-Ser-Asp-Ala-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-NH₂

ペプチド 33 (配列番号 34) :

His-Ser-Asp-Gly-Ile-Phe-Thr-Asp-Ser-Tyr-Ser-Arg-Tyr-Arg-Arg-Gln-Leu-Ala-Val-Arg-Arg-Tyr-Leu-NH₂

[実施例 2] (ペプチド 4 の安定性)

天然型 VIP に対して Arg 残基含量を増すように改変したペプチドであるペプチド 4 を約 1 mg 秤量し、pH 4.0, 5.0, 6.0, 7.0 に調製した蒸留水（大塚蒸留水）に溶解して終濃度を 10 μg/mL とした。40℃に設定した恒温槽 (LH20-11M, ナガノ科学機械製作所) に 24 時間静置した後、逆相 HPLC (検出波長: 220 nm, 移動相: 28% アセトニトリル/0.1% トリフルオロ酢酸, カラム: ODS-120T (トーソー), カラム温度: 25℃) にて分析を行い、ペプチド 4 の残存量を検討した。表 2 に示すように pH が中性付近では顕著な減成を認めた。

表 2

pH	残存量
4.0	91%
5.0	90%
6.0	93%
7.0	84%

[実施例 3] (ペプチド 4 変異体のアミノ酸分析および LC-MS 解析)

ペプチド 4 を pH 7.0 のリン酸緩衝液に溶解し (濃度: 300 μg/mL)、55℃の恒温槽に 24 時間静置し、図 1 (II) に示すようなクロマトグラムチャートを得た。図 1 (I) はペプチド 4 (対照) のチャートである。これら変異体 A-B について、HPLC にて分取し、アミノ酸分析を行った。その結果、表 3 に示すように、各変異体のアミノ酸分析結果はペプチド 4 の理論値とほぼ同じであった。

表 3

アミノ酸	ペプチド 4 理論値	変異体 A	変異体 B	変異体 C
Asx	5	5.04	5.06	5.00
Thr	2	2.02	2.02	2.02
Ser	2	1.92	1.84	2.01
Glx	1	1.20	1.11	1.24
Gly	1	1.13	1.04	1.15
Ala	2	2.00	2.00	2.00
Val	2	2.01	1.94	2.07
Ile	1	0.97	0.97	0.96
Leu	4	4.14	4.17	4.09
Tyr	2	2.00	2.09	1.97
Phe	1	1.02	1.00	1.01
His	1	1.35	1.11	1.40
Arg	7	6.98	6.94	6.91

この結果から、変異体のアミノ酸配列はペプチド 4 と酷似しており、異なる可能性があるのは酸性アミノ酸 Asx と Glx のみであることが示唆された。

さらに、これら変異体の分子量を LC-MS によって測定したところ、表 4 に示すような結果になった。

表 4

検体	推定分子量
ペプチド 4	3761
変異体 A	3762
変異体 B	3762
変異体 C	3762

表4の結果から、全ての変異体はペプチド4との比較において分子量が1増えていることが明らかとなった。アミノ酸分析の結果と併せて考慮すれば、AsnがAspへと、あるいはGlnがGluへと変化していることが示唆された。ペプチド4のアミノ酸配列から判断するとAsn含有領域においてスクシンイミドを形成し、それに伴ってアミノ基が脱離し、分子量が1増加しているものと推定した。従つて、ペプチド4では、24, 25位のAsn-Ser配列、あるいは28, 29位Asn-Gly配列において α - ω ペプチド転移反応が起こっていることを確認した。

[実施例4] (ペプチド7とペプチド8の構造)

VIP(ペプチド1、配列番号2)、VIPのN末端25残基に相当するペプチド7、(配列番号8)そしてその17位メチオニンが酸化されたペプチド8(配列番号9)について、20 mM Tris-HCl緩衝液(pH 7.4)に溶解し、Jasco J-720(日本分光)により円二色性スペクトルを検討した。Greenfieldらによって提唱された高次構造解析計算方法に従うと、ペプチド1は約50%ヘリックス構造を有することが明らかとなった(図2)。ペプチド7もその高次構造を高い比率で保持していることが示唆されるが、一方、メチオニンが酸化されたペプチド8のヘリックス構造は約半分にまで減少し、著しく構造が変化していることが示唆された。

[実施例5] (ペプチド7とペプチド8の薬理活性)

雄のICRマウス(9週齢)を1週間予備飼育した後、10~18週齢にわたって使用した。頸椎脱臼処理後、直ちに開腹し胃を全摘出、生理食塩水にて胃内部を十分に洗浄し、標本とした。出来上がった標本を内容量20mLのマグヌス槽(容量20mL、温度37°C、荷重2.0g、95%CO₂+5%CO₂通気下:理研開発)内に懸垂した。生理的溶液としてKrebs-Henseleit Buffer Modified(SIGMA)溶液を使用した。反応はアンプRMP-6004(日本光電)を介してレコーダーR-64M(理化電機)上に描記した。実験は標本をマグヌス装置にセットして、ベースラインが安定した後、カルバコール溶液(添加濃度6 x 10⁻³M)を100 μL添加した。10分後に精製ペプチドの試料溶液を添加し、標本の弛緩作用を観察した。カルバコール収縮に対するペプチド1(天然型VIP)の作用を100%として、ペプチド7またはペプチド8を添加したときの平滑筋の最大収縮抑制率を求めた。図3に、ペプチド1、7、そして8の最終濃度10⁻⁶Mにおけるマウス胃平滑筋の最大収縮抑制率を相対

的に示す。ペプチド 8 は、ペプチド 7 と比べて著しい活性の減退を示し、メチオニン残基酸化による影響を強く示唆した。なおかつ実施例 4 を考慮すれば、この活性減退は、これら化合物のヘリックス含量と高い相関を示していることが分かった。すなわち、VIP／PACAP類のメチオニン酸化によって分子レベルでの高次構造上の変化が誘起され、活性に大きく影響していることが示された。

[実施例 6] (ペプチド 12 の安定性)

ペプチド 12 を適量秤量し、蒸留水（大塚蒸留水）に溶解し (1 mg/mL)、0.1 N NaOH にて pH 6.0, 7.0 に調製した。さらに 10 μg/mL の濃度に希釈し、40℃ に設定した恒温槽にて 24 時間静置した。指示時間後、逆相 HPLC (検出波長: 220 nm, 移動相: 29% アセトニトリル/0.1% トリフルオロ酢酸, カラム: ODS-120T (トーソー), カラム温度: 25℃) にて分析を行い、ペプチド 12 の残存量を検討した。その結果、pH 6.0, 7.0 の両検体において特に顕著な未同定ピークの生成を認めなかった。従って、本ペプチドは安定性があることが示唆された。

[実施例 7] (ペプチド 4, 12, 21, 23 の安定性)

ペプチド 4, 12, 21, 23 を適量秤量し、pH 6.0, 7.0 に調製した蒸留水（大塚蒸留水）に溶解して終濃度を 10 μg/mL とした。55℃に設定した恒温槽 (FC-610, ADVANTEC) に 3 日間静置した後、逆相 HPLC (検出波長: 220 nm, 移動相: 29.5% アセトニトリル/0.1% トリフルオロ酢酸, カラム: ODS-120T (トーソー), カラム温度: 25℃) にて分析を行い、ペプチド 4, 12, 21, 23 の残存率を検討した。表 5 に示すように、ペプチド 12, 21, 23 はペプチド 4 に比べ、著しく安定性が増していることが見られ、特に pH 7.0 ではその傾向が顕著であった。

表 5

検体	pH 6.0	pH 7.0
ペプチド 4	81%	67%
ペプチド 12	94%	100%
ペプチド 21	93%	100%
ペプチド 23	100%	100%

[実施例 8] (ペプチド 4, 12, 21, 23 の安定性)

ペプチド 4, 12, 21, 23 を適量秤量し、pH 7.0 に調製した蒸留水（大塚蒸留水）に溶解して終濃度を 100 $\mu\text{g/mL}$ とした。55℃に設定した恒温槽（FC-610, ADVANTEC）にそれぞれ 0, 10, 20, 30 日間静置した後、逆相 HPLC（検出波長：220 nm, 移動相：29.5% アセトニトリル/0.1% トリフルオロ酢酸、カラム：ODS-120T（トーソー）、カラム温度：25℃）にて分析を行い、ペプチド 4, 12, 21, 23 の残存率を検討した。表 6 に示すように、ペプチド 4 は 10 日間の保存で完全に消失しているにも関わらず、ペプチド 12, 21, 23 は 30 日後でも残存し、著しく安定性が増していることが見られた。

表 6

検体	0 日間	10 日間	20 日間	30 日間
ペプチド 4	100%	0%	0%	0%
ペプチド 12	100%	49%	34%	18%
ペプチド 21	100%	29%	45%	10%
ペプチド 23	100%	62%	42%	30%

[実施例 9] (ペプチド 4, 12, 21, 23 の安定性)

ペプチド 4, 12, 21, 23 を適量秤量し、pH 6.0, 7.0 に調製したリン酸緩衝液（0.001% リン酸二水素ナトリウム水溶液）に溶解して終濃度を 100 $\mu\text{g/mL}$ とした。40℃、75% RH に設定した恒温恒湿器（LH-20-11, ナガノ化学（株））に 1 週間静置した後、逆相 HPLC（検出波長：220 nm, 移動相：29.5% アセトニトリル/0.1% トリフルオロ酢酸、カラム：ODS-120T（トーソー）、カラム温度：25℃）にて分析を行い、ペプチド 4, 12, 21, 23 の残存率を測定した。表 7 に示すようにペプチド 12, 21, 23 はペプチド 4 に比べ、安定性が顕著に増していることが見られた。

表 7

検体	pH 6.0	pH 7.0
ペプチド 4	53%	35%
ペプチド 12	100%	90%
ペプチド 21	100%	87%
ペプチド 23	100%	100%

[実施例 10] (ペプチド 4, 12, 21, 23 の安定性)

ペプチド 4, 12, 21, 23 を適量秤量し、pH 7.0 に調製したリン酸緩衝液 (0.001% リン酸二水素ナトリウム水溶液) に溶解して終濃度を 100 $\mu\text{g/mL}$ とした。40°C、75% RH に設定した恒温恒湿器 (LH-20-11, ナガノ化学(株)) にそれぞれ 0, 10, 20, 30 日間静置した後、逆相 HPLC (検出波長: 220 nm, 移動相: 29.5% アセトニトリル/0.1% トリフルオロ酢酸, カラム: ODS-120T (トーソー), カラム温度: 25°C) にて分析を行い、ペプチド 4, 12, 21, 23 の残存率を測定した。表 8 に示すようにペプチド 12, 21, 23 はペプチド 4 に比べ、安定性が顕著に増し、30 日経過後ではペプチド 4 は消失したが、ペプチド 12, 21, 23 は残存していた。

表 8

検体	0 日間	10 日間	20 日間	30 日間
ペプチド 4	100%	28%	13%	0%
ペプチド 12	100%	84%	86%	73%
ペプチド 21	100%	100%	76%	59%
ペプチド 23	100%	98%	89%	73%

[実施例 11] (胃蠕動運動抑制作用)

ペプチド 9, 10, 33 の胃蠕動運動抑制作用を実施例 5 と同様にして検討した。マウスは雄の ICR マウス 9 週齢を使用した。頸椎脱臼処理後、直ちに開腹し胃

を全摘出、生理食塩水にて胃内部を十分に洗浄し、標本とした。出来上がった標本を内容量 20mL のマグヌス槽（容量 20mL、温度 37°C、荷重 2.0g、95% O₂+5% CO₂ 通気下：理研開発）内に懸垂した。生理的溶液として Krebs-Henseleit Buffer Modified (SIGMA) 溶液を使用した。反応はアンプ RMP-6004 (日本光電) を介してレコーダー R-64M (理化電機) 上に描記した。実験は標本をマグヌス装置にセットして、ベースラインが安定した後、カルバコール溶液 (3×10^{-6} M) を添加し、収縮安定後に各被験ペプチド (10^{-6} M) を添加し、標本の弛緩作用を観察した。カルバコール添加前の収縮度合いを 0%、カルバコール添加安定化後の収縮の度合いを 100% として、各試料溶液を添加したときの胃の収縮抑制率を算出した。表 9 に薬剤投与 15 分後の各物質の収縮抑制率を示す（対照薬：ペプチド 9 を 100 としたときの各物質（ペプチド 10, 33）の収縮抑制率を示す）。

表 9

物 質	収縮抑制率
ペプチド 9	100
ペプチド 10	227
ペプチド 33	160

〔実施例 12〕 （気管支平滑筋弛緩作用）

ペプチド 12, 21, 23 について、以下の方法に従い、気管支平滑筋拡張時の一時的な収縮作用の有無を試験した。

Hartley 系雄性モルモット (440 g)、7 週齢 (日本 SLC) を麻酔下、大腿動脈より放血致死させた後、開胸し気管を摘出した。気管に付着している脂肪組織等を可及的に除去し、軟骨に沿って軟骨 4~5 本を含む幅に切断した後、食道と反対側の軟骨部分を縦に切断し、切片とした。気道上部、中央付近及び下部のそれぞれ 1 切片を標本として用いた。標本はマグヌス槽 (容量 20 mL, 温度 37°C, 荷重 0.5 g, 95% O₂+5% CO₂ 通気下) 内に懸引した。生理的溶液には Krebs-Henseleit Buffer Modified (SIGMA) 溶液を用いた。反応は isometric transducer

(TB-611T：日本光電) を用いてアンプ RMP-6004 (日本光電) を介してレコーダー R-64M (理化電気) 上に描写した。カルバコール 3×10^{-7} M による収縮が安定後、ペプチド 12 を累積的 (10^{-9} M ~ 3×10^{-6} M) に投与し、一方ペプチド 21 及びペプチド 23 は単回投与 (3×10^{-6} M) した。測定後イソプロテレノール 10^{-6} M を投与し、その値を 100% 弛緩として各被験物質の弛緩率を求めた。その結果ペプチド 12, 21, 23 は全て図 4 に示すとおり、ペプチド添加に依存した明瞭な気管支弛緩作用を持つことが明らかとなった。

[実施例 13] (神経突起誘発作用)

ペプチド 1, 4, 12, 21, 23 について以下の方法に従って、神経突起誘発作用を試験した。PC-12 細胞は 5 % 馬血清および 5 % 新生仔ウシ血清含有 Dulbecco's modified minimum essential medium (DMEM) にて 5 % CO₂/95 % air の環境で 37℃ に保って培養した。トリプシンにて細胞を培養フラスコからはがした後、細胞を血球計算器にてカウントし、 1.0×10^4 cells/ml になるよう調製した。24 well のコラーゲンタイプ IV バイオコートディッシュに、上記細胞含有液体培地を 1 ml ずつ加え、24 時間 5 % CO₂/95 % air の環境で 37℃ に保って培養した。24 時間後培地を交換し、その際に各ペプチド (100 nM) を添加した。これを 3 日間継続培養し、写真撮影を行った。その写真を 図 5 に示す。各写真のスケールバーは全て 100 μm を示す。写真に示すようにペプチド 4, 12, 21, 23 は、コントロール (ペプチド無添加検体) およびペプチド 1 (天然型 VIP) と比較して著しい神経突起誘発を認めた。

[実施例 14] (神経保護作用)

正常プリオンは既に構造変換により異常体のプリオンに変換されることが確認されているので (J. Neurochem, (2000) vol. 75, 2536-2545)、脳・神経系研究におけるモデル系として用いられているラットの副腎髓質褐色細胞腫由来細胞、PC12 細胞を使用してフォールディング異常タンパク質のプリオン (106-126) による細胞死を検討した。5 % ウマ血清及び 5 % 新生仔ウシ血清含有 Dulbecco's modified minimum essential medium (DMEM) にて、PC12 細胞を 5 % CO₂/95 % air の環境下で 37℃ に保って培養した。トリプシンにて PC12 細胞を培養フラスコからはがした後、96 well 培養プレートにて前記細胞を培養した (10^4 cells/well)。

この PC12 培養細胞にプリオン (106-126) (アメリカンペプタイドカンパニー社製) を $50 \mu\text{M}$ と 10^{-7} M の神経ペプチド (ペプチド 1, 4, 12, 21, 23) を添加し、WST-8 法によって生存細胞数を算出し、異常プリオン (PrP¹⁰⁶⁻¹²⁶) に対する神経保護作用の程度を数値化した。その結果を図 6 に示す。ペプチド 1 (天然型 VIP) はペプチド非存在下の検体と比して有意 ($\#\#, P < 0.01$) に生存細胞数が多く、有意な神経保護作用を示した。一方、ペプチド 4, 12, 21, 23 は、ペプチド 1 と比して有意 ($\#\#, P < 0.01$) に神経保護作用が強いことを確認した。

[実施例 15] (吸入経肺および点鼻用製剤の作製)

吸入経肺および点鼻用製剤の作製は、原則として、特開 2003-34652 に記載の粉末製剤作製方法に従って行った。

粉碎条件

使用機器： A-0-Jet Mill (セイシン企業)

原料供給方法：オートフィーダー

供給エアー圧力: 6.0 kg/cm²G

粉碎エア一压力： 6.5 kg/cm²G

集塵方法： アウトレットバグ

上記方法にて、ペプチド 4, 12, 21, 23 の乳糖希釈物あるいはエリスリトール希釈物を作製し、エリスリトール担体（平均粒径 70 μm ）または乳糖担体（平均粒径 50 μm ）を微粉碎物 / 担体 = 0.4 / 1 にて非帶電袋を用いて混合した。

[実施例 16] (点眼剤の作製)

神経ペプチド	10 mg
ホウ酸	700 mg
ホウ砂	適量
塩化ナトリウム	500 mg
ヒドロキシメチルセルロース	0.5 g
エデト酸ナトリウム	0.005 mg
pH 7.0	
滅菌精製水	全量 100 mL

滅菌精製水 80 mL を約 80°Cまで加温し、ヒドロキシメチルセルロースを加え

て攪拌し、液温を室温まで戻す。この液に神経ペプチド、塩化ナトリウム、ホウ酸、エデト酸ナトリウムおよび塩化ベンザルコニウムを加えて溶解する。ホウ砂を適量加えて pH を 7.0 に調整する。滅菌精製水を加えて 100 mL までメスアップする。

神経ペプチドとして、ペプチド 4, 12, 21, 23 を用いた。

〔実施例 17〕 (注射剤の製造)

神経ペプチド	10 mg
塩化ナトリウム	900 mg
1 N 水酸化ナトリウム	適量
注射用蒸留水	全量 100 mL

以上の成分を常法により無菌的に混和して注射剤を調製する。神経ペプチドとして、ペプチド 4, 12, 21, 23 を用いた。

本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。

産業上の利用の可能性

本発明によれば、長期保存が可能で、副生成物による予期せぬ副作用を回避することが可能な PACAP/VIP 誘導体を提供することが出来る。

配列表フリーテキスト

配列番号 1 : 合成ペプチド

配列番号 2 : 合成ペプチド

配列番号 3 : 合成ペプチド

配列番号 4 : 合成ペプチド

配列番号 5 : 合成ペプチド

配列番号 6 : 合成ペプチド

配列番号 7 : 合成ペプチド

配列番号 8 : 合成ペプチド

配列番号 9 : 合成ペプチド

配列番号 10 : 合成ペプチド

配列番号 11 : 合成ペプチド

配列番号 12 : 合成ペプチド

配列番号 13 : 合成ペプチド

配列番号 14 : 合成ペプチド

配列番号 15 : 合成ペプチド

配列番号 16 : 合成ペプチド

配列番号 17 : 合成ペプチド

配列番号 18 : 合成ペプチド

配列番号 19 : 合成ペプチド

配列番号 20 : 合成ペプチド

配列番号 21 : 合成ペプチド

配列番号 22 : 合成ペプチド

配列番号 23 : 合成ペプチド

配列番号 24 : 合成ペプチド

配列番号 25 : 合成ペプチド

配列番号 26 : 合成ペプチド

配列番号 27 : 合成ペプチド

配列番号 28 : 合成ペプチド

配列番号 29 : 合成ペプチド

配列番号 30 : 合成ペプチド

配列番号 31 : 合成ペプチド

配列番号 32 : 合成ペプチド

配列番号 33 : 合成ペプチド

配列番号 34 : 合成ペプチド

請求の範囲

1. 下記式 (I) :

His-Ser-Asp-Ala-A-Phe-Thr-B-C-Tyr-
D-Arg-E-Arg-F-Gln-G-Ala-Val-H- (I)

I-Tyr-Leu-Ala-Ala-J-K-L (配列番号 1)

(式中、A は、Val または Ile; B は、Asp、Glu または Ala; C は、Asn または Ser; D は、Thr または Ser; E は、Leu または Tyr; F, H, I は Lys または Arg; G は、Leu または nLeu; J は、Ile, Val; K は、Leu, Leu-Asn, Leu-Gly, Leu-Gly-Lys, Leu-Gly-Arg, Leu-Gly-Lys-Lys, Leu-Gly-Lys-Arg, Leu-Gly-Arg-Arg, Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys-Asn-Lys, Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-Asn-Arg; L は C 末端アミノ酸の α 位カルボキシリ修飾を表し、-NH₂ あるいは -OH を示す。)

で示されるペプチドのうち、N 末端より少なくとも 23 残基からなるペプチド、または薬学的に許容されるその塩。

2. 一般式 (I) において、A が Val、B が Asp、C が Asn、D が Thr、E が Leu、F, H, I が Arg、G が Leu、L が -NH₂ であり、N 末端より 23 残基のアミノ酸から構成される請求項 1 に記載のペプチド、または薬学的に許容されるその塩。

3. 一般式 (I) において、A が Val、B が Asp、C が Asn、D が Thr、E が Leu、F, H, I が Arg、G が Leu、J が Ile、K が Leu-Gly-Arg-Arg、L が -NH₂ である請求項 1 に記載のペプチド、または薬学的に許容されるその塩。

4. 一般式 (I) において、A が Val、B が Glu、C が Asn、D が Thr、E が Leu、F, H, I が Arg、G が Leu、J が Ile、K が Leu-Gly-Arg-Arg、L が -NH₂ である請求項 1 に記載のペプチド、または薬学的に許容されるその塩。

5. 一般式 (I) において、A が Val、B が Ala、C が Asn、D が Thr、E が Leu、F, H, I が Arg、G が Leu、J が Ile、K が Leu-Gly-Arg-Arg、L が -NH₂ である請求項 1 に記載のペプチド、または薬学的に許容されるその塩。

6. 一般式 (I) において、A が Val、B が Asp、C が Asn、D が Thr、E が

Leu、F、H、I が Arg、G が Leu、J が Val、K が Leu-Gly-Arg-Arg、L が -NH₂ である請求項 1 に記載のペプチド、または薬学的に許容されるその塩。

7. 一般式 (I) において、A が Ile、B が Asp、C が Ser、D が Ser、E が Tyr、F、H、I が Arg、G が Leu、J が Val、K が Leu-Gly-Arg-Arg、L が -NH₂ である請求項 1 に記載のペプチド、または薬学的に許容されるその塩。

8. 一般式 (I) において、A が Ile、B が Asp、C が Ser、D が Ser、E が Tyr、F、H、I が Arg、G が Leu、J が Val、K が Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-Asn-Arg、L が -NH₂ である請求項 1 に記載のペプチド、または薬学的に許容されるその塩。

9. 一般式 (I) において、A が Ile、B が Asp、C が Ser、D が Ser、E が Tyr、F、H、I が Arg、G が Leu、L が -NH₂ であり、N 末端より 23 残基のアミノ酸から構成される請求項 1 に記載のペプチド、または薬学的に許容されるその塩。

10. 請求項 1～9 のペプチドまたは薬学的に許容されるその塩を含む、医薬組成物。

11. 請求項 1～9 のペプチドまたは薬学的に許容されるその塩の含有量が有効成分としての生理活性ペプチド全体の 50 重量%以上である、請求項 10 に記載の医薬組成物。

12. 脳塞栓症および脳血栓症を含む虚血性脳血管障害、中枢あるいは末梢神経に毒性をもたらす疾患、コンフォメーション病、神経変性疾患、脱毛、男性不能症、痴呆症、腎不全、視神経萎縮、虚血性視神経症を含む視神経変性疾患および網膜変性疾患からなる群から構成される 1 種以上の疾患または症状の治療または予防のための、または血流改善、気管支平滑筋弛緩若しくは胃腸管運動抑制のための、請求項 10 または 11 に記載の医薬組成物。

図 1

図 2

図 3

図 4

(A)

(B)

(C)

図 5

コントロール

ペプチド 1

ペプチド 4

ペプチド 12

ペプチド 21

ペプチド 23

図 6

SEQUENCE LISTING

<110> ITOHAM FOODS INC.

<120> A peptide and a pharmaceutical composition containing the peptide

<130> PH-1938-PCT

<150> JP2002/344523

<151> 2002-11-27

<160> 34

<170> PatentIn Ver. 2.0

<210> 1

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> VARIANT

<222> (5)

<223> Xaa = Val or Ile

<220>

<221> VARIANT

<222> (8)

<223> Xaa = Asp, Glu or Ala

<220>

<221> VARIANT

<222> (9)

<223> Xaa = Asn or Ser

<220>

<221> VARIANT

<222> (11)

<223> Xaa = Thr or Ser

<220>

<221> VARIANT

<222> (13)

<223> Xaa = Leu or Tyr

<220>

<221> VARIANT

<222> (15)

<223> Xaa = Lys or Arg

<220>

<221> VARIANT

<222> (17)

<223> Xaa = Leu or nLeu

<220>

<221> VARIANT

<222> (20)

<223> Xaa = Lys or Arg

<220>

<221> VARIANT

<222> (21)

<223> Xaa = Lys or Arg

<220>

<221> VARIANT

<222> (26)

<223> Xaa = Ile or Val

<220>

<221> VARIANT

<222> (27)

<223> Xaa = Leu, Leu-Asn, Leu-Gly, Leu-Gly-Lys, Leu-Gly-Arg,
Leu-Gly-Lys-Lys , Leu-Gly-Lys-Arg , Leu-Gly-Arg-Arg ,
Leu-Gly-Lys-Arg-Tyr-Lys-Gln-Arg-Val-Lys-Asn-Lys or
Leu-Gly-Arg-Arg-Tyr-Arg-Gln-Arg-Val-Arg-Asn-Arg

<400> 1

His Ser Asp Ala Xaa Phe Thr Xaa Xaa Tyr Xaa Arg Xaa Arg Xaa Gln

1

5

10

15

Xaa Ala Val Xaa Xaa Tyr Leu Ala Ala Xaa Xaa

20

25

<210> 2

<211> 28

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (28)

<223> AMIDATION

<400> 2

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

1

5

10

15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn

20

25

<210> 3

<211> 27

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (27)

<223> AMIDATION

<400> 3

His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln

1

5

10

15

Met Ala Val Lys Lys Tyr Leu Ala Ala Val Leu

20

25

<210> 4

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (38)

<223> AMIDATION

<400> 4

His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Lys Gln

1

5

10

15

Met Ala Val Lys Lys Tyr Leu Ala Ala Val Leu Gly Lys Arg Tyr Lys

20

25

30

Gln Arg Val Lys Asn Lys

35

<210> 5

<211> 31

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (31)

<223> AMIDATION

<400> 5

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Asn Ser Ile Leu Asn Gly Arg Arg

20

25

30

<210> 6

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 6

His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Val Leu Gly Arg Arg

20

25

30

<210> 7

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (38)

<223> AMIDATION

<400> 7

His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Val Leu Gly Arg Arg Tyr Arg

20

25

30

Gln Arg Val Arg Asn Arg

35

<210> 8

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (25)

<223> AMIDATION

<400> 8

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

1

5

10

15

Met Ala Val Lys Lys Tyr Leu Asn Ser

20

25

<210> 9

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (17)

<223> OXIDATION

<220>

<221> MOD_RES

<222> (25)

<223> AMIDATION

<400> 9

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

1

5

10

15

Met Ala Val Lys Lys Tyr Leu Asn Ser

20

25

<210> 10

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (23)

<223> AMIDATION

<400> 10

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

1

5

10

15

Leu Ala Val Lys Lys Tyr Leu

20

<210> 11

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (23)

<223> AMIDATION

<400> 11

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu

20

<210> 12

<211> 28

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (28)

<223> AMIDATION

<400> 12

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

1

5

10

15

Leu Ala Val Lys Lys Tyr Leu Ala Ala Ile Leu Asn

20

25

<210> 13

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 13

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg

20

25

30

<210> 14

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (1)

<223> ACETYLATION

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 14

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg

20

25

30

<210> 15

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> LIPID

<222> (1)

<223> STEARATE

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 15

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg

20

25

30

<210> 16

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 16

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln
1 5 10 15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg

20 25 30

<210> 17

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> SITE

<222> (17)

<223> N1e

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 17

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln
1 5 10 15

Xaa Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg
20 25 30

<210> 18

<211> 28

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (28)

<223> AMIDATION

<400> 18

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln
1 5 10 15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly
20 25
16/29

<210> 19

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (29)

<223> AMIDATION

<400> 19

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Lys

20

25

<210> 20

<211> 29

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (29)

<223> AMIDATION

<400> 20

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg

20

25

<210> 21

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 21

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Lys Arg

20

25

30

<210> 22

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 22

His Ser Asp Ala Val Phe Thr Glu Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg

20

25

30

<210> 23

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (23)

<223> AMIDATION

<400> 23

His Ser Asp Ala Val Phe Thr Glu Asn Tyr Thr Arg Leu Arg Arg Gln
1 5 10 15

Leu Ala Val Arg Arg Tyr Leu

20

<210> 24

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 24

His Ser Asp Ala Val Phe Thr Ala Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg

20

25

30

<210> 25

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (23)

<223> AMIDATION

<400> 25

His Ser Asp Ala Val Phe Thr Ala Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu

20

<210> 26

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 26

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Val Leu Gly Arg Arg

20

25

30

<210> 27

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 27

His Ser Asp Ala Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln
1 5 10 15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Val Leu Gly Arg Arg
20 25 30

<210> 28

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 28

His Ser Asp Ala Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg

20

25

30

<210> 29

<211> 30

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (1)

<223> ACETYLATION

<220>

<221> MOD_RES

<222> (30)

<223> AMIDATION

<400> 29

His Ser Asp Ala Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Val Leu Gly Arg Arg

20

25

30

<210> 30

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (38)

<223> AMIDATION

<400> 30

His Ser Asp Ala Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Val Leu Gly Arg Arg Tyr Arg

20

25

30

Gln Arg Val Arg Asn Arg

35

<210> 31

<211> 38

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (38)

<223> AMIDATION

<400> 31

His Ser Asp Ala Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln
1 5 10 15

Leu Ala Val Arg Arg Tyr Leu Ala Ala Ile Leu Gly Arg Arg Tyr Arg
20 25 30

Gln Arg Val Arg Asn Arg

35

<210> 32

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (23)

<223> AMIDATION

<400> 32

His Ser Asp Ala Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln
1 5 10 15

Leu Ala Val Arg Arg Tyr Leu

20

<210> 33

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (1)

<223> ACETYLATION

<220>

<221> MOD_RES

<222> (23)

<223> AMIDATION

<400> 33

His Ser Asp Ala Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu

20

<210> 34

<211> 23

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Peptide

<220>

<221> MOD_RES

<222> (23)

<223> AMIDATION

<400> 34

His Ser Asp Gly Ile Phe Thr Asp Ser Tyr Ser Arg Tyr Arg Arg Gln

1

5

10

15

Leu Ala Val Arg Arg Tyr Leu

20

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/14924

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C07K14/00, A61K38/16, A61P1/12, 7/02, 9/00, 9/10, 11/08,
13/12, 15/10, 17/14, 25/00, 25/28, 27/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C07K14/00-14/825

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
MEDLINE (STN), WPI/BIOSIS (DIALOG), CA/REGISTRY (STN), JSTPlus (JOIS)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, X P, Y	WO 03/051387 A1 (ITOHAM FOODS INC.), 26 June, 2003 (26.06.03), (Family: none)	1-3, 6-12 1-12
P, X P, Y	JP 2003-73301 A (ITOHAM FOODS INC.), 12 March, 2003 (12.03.03), (Family: none)	1-3, 6-12 1-12
X Y	JP 2001-226284 A (ITOHAM FOODS INC.), 21 August, 2001 (21.08.01), (Family: none)	1-3, 6-12 1-12
X Y	EP 796867 A1 (ITOHAM FOODS INC.), 24 September, 1997 (24.09.97), & WO 96/41814 A1 & JP 8-333276 A & JP 9-100237 A & US 5856303 A	1-3, 6-7, 9-12 1-12

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
15 December, 2003 (15.12.03)Date of mailing of the international search report
13 January, 2004 (13.01.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

JP03/14924

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Masayoshi ONOE et al., "VIP/PACAP Yudotai no Kozo Kassei Sokan - N Tanbu no Rittai Kozo Kenkyu-", The Pharmaceutical Society of Japan, Dai 119 Nenkai Yoshishu 1999, Vol.119, No.3, page 69 (30[PV] 10-016)	1-12
Y	JP 11-100399 A (ITOHAM FOODS INC.), 13 April, 1999 (13.04.99), (Family: none)	1-12
Y	KASHIMOTO K. et al., Structure-Activity Relationship Studies of PACAP-27 and VIP Analogues., Peptide Chemistry 1995, 33rd, pages 361 to 364	1-12
Y	KASHIMOTO K. et al., Structure-Activity Relationship Studies of PACAP-27 and VIP Analogues., Ann.NY Acad.Sci. 1996, Vol.805, (VIP, PACAP and Related Peptides), pages 505 to 510	1-12
A	OKAZAWA A. et al., Effect of a novel PACAP-27 analogue on muscarinic airway responsiveness in guinea-pigs <i>in vivo</i> . Eur.Respir.J. 1998, Vol:12, No.5, pages 1062 to 1066	1-12
A	EP 529487 A2 (TAKEDA CHEMICAL INDUSTRIES, LTD.), 03 March, 1993 (03.03.93), & JP 5-194595 A & US 5623050 A & US 5801147 A	1-12
A	O'DONNELL M. et al., Structure-Activity Studies of Vasoactive Intestinal Polypeptide., J.Biol.Chem. 1991, Vol.266, No.10, pages 6389 to 6392	1-12

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl' C07K 14/00, A61K 38/16, A61P 1/12, 7/02, 9/00, 9/10, 11/08, 13/12, 15/10, 17/14, 25/00, 25/28, 27/02

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' C07K 14/00-14/825

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

MEDLINE(STN), WPI/BIOSIS(DIALOG), CA/REGISTRY(STN), JSTPlus(JOIS)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P, X P, Y	WO 03/051387 A1 (伊藤ハム株式会社) 2003. 06. 26 (ファミリーなし)	1-3, 6-12 1-12
P, X P, Y	JP 2003-73301 A (伊藤ハム株式会社) 2003. 03. 12 (ファミリーなし)	1-3, 6-12 1-12
X Y	JP 2001-226284 A (伊藤ハム株式会社) 2001. 08. 21 (ファミリーなし)	1-3, 6-12 1-12

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

15. 12. 03

国際調査報告の発送日

13.01.04

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

三原 健治

4 N 2937

電話番号 03-3581-1101 内線 3488

C(続き) 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	EP 796867 A1 (ITOHAM FOODS INC.) 1997.09.24 & WO 96/41814 A1 & JP 8-333276 A & JP 9-100237 A & US 5856303 A	1-3, 6-7, 9-12 1-12
Y	尾上 誠良 他, VIP/PACAP誘導体の構造活性相関 —N端部の立体構造研究—, 日本薬学会第119年会要旨集 1999, Vol. 119, No. 3, p. 69 (30【PV】10-016参照)	1-12
Y	JP 11-100399 A (伊藤ハム株式会社) 1999.04.13 (ファミリーなし)	1-12
Y	KASHIMOTO K. et al. Structure-Activity Relationship Studies of PACAP-27 and VIP Analogues. Peptide Chemistry 1995, 33rd, p. 361-364	1-12
Y	KASHIMOTO K. et al. Structure-Activity Relationship Studies of PACAP-27 and VIP Analogues. Ann. NY Acad. Sci. 1996, Vol. 805 (VIP, PACAP, and Related Peptides), p. 505-510	1-12
A	OKAZAWA A. et al. Effect of a novel PACAP-27 analogue on muscarinic airway responsiveness in guinea-pigs <i>in vivo</i> . Eur. Respir. J. 1998, Vol. 12, No. 5, p. 1062-1066	1-12
A	EP 529487 A2 (TAKEDA CHEMICAL INDUSTRIES, LTD.) 1993.03.03 & JP 5-194595 A & US 5623050 A & US 5801147 A	1-12
A	O'DONNELL M. et al. Structure-Activity Studies of Vasoactive Intestinal Polypeptide. J. Biol. Chem. 1991, Vol. 266, No. 10, p. 6389-6392	1-12