

SEQUENCE LISTING

<110> Tian, Hui
Schultz, Joshua
Shan, Bei
Tularik Inc.

<120> Sitosterolemia Susceptibility Gene (SSG) : Compositions
and Methods of Use

<130> 018781-006020US

<140> US 09/837,992
<141> 2001-04-18

<150> US 60/198,465
<151> 2000-04-18

<150> US 60/204,234
<151> 2000-05-15

<160> 45

<170> PatentIn Ver. 2.1

<210> 1
<211> 652
<212> PRT
<213> Mus musculus

<220>
<223> mouse sitosterolemia susceptibility gene (SSG)
amino acid sequence

<400> 1
Met Gly Glu Leu Pro Phe Leu Ser Pro Glu Gly Ala Arg Gly Pro His
1 5 10 15
Ile Asn Arg Gly Ser Leu Ser Ser Leu Glu Gln Gly Ser Val Thr Gly
20 25 30
Thr Glu Ala Arg His Ser Leu Gly Val Leu His Val Ser Tyr Ser Val
35 40 45
Ser Asn Arg Val Gly Pro Trp Trp Asn Ile Lys Ser Cys Gln Gln Lys
50 55 60
Trp Asp Arg Gln Ile Leu Lys Asp Val Ser Leu Tyr Ile Glu Ser Gly
65 70 75 80
Gln Ile Met Cys Ile Leu Gly Ser Ser Gly Ser Gly Lys Thr Thr Leu
85 90 95
Leu Asp Ala Ile Ser Gly Arg Leu Arg Arg Thr Gly Thr Leu Glu Gly
100 105 110
Glu Val Phe Val Asn Gly Cys Glu Leu Arg Arg Asp Gln Phe Gln Asp
115 120 125
Cys Phe Ser Tyr Val Leu Gln Ser Asp Val Phe Leu Ser Ser Leu Thr
130 135 140

Val Arg Glu Thr Leu Arg Tyr Thr Ala Met Leu Ala Leu Cys Arg Ser
145 150 155 160

Ser Ala Asp Phe Tyr Asn Lys Lys Val Glu Ala Val Met Thr Glu Leu
165 170 175

Ser Leu Ser His Val Ala Asp Gln Met Ile Gly Ser Tyr Asn Phe Gly
180 185 190

Gly Ile Ser Ser Gly Glu Arg Arg Val Ser Ile Ala Ala Gln Leu
195 200 205

Leu Gln Asp Pro Lys Val Met Met Leu Asp Glu Pro Thr Thr Gly Leu
210 215 220

Asp Cys Met Thr Ala Asn Gln Ile Val Leu Leu Ala Glu Leu Ala
225 230 235 240

Arg Arg Asp Arg Ile Val Ile Val Thr Ile His Gln Pro Arg Ser Glu
245 250 255

Leu Phe Gln His Phe Asp Lys Ile Ala Ile Leu Thr Tyr Gly Glu Leu
260 265 270

Val Phe Cys Gly Thr Pro Glu Glu Met Leu Gly Phe Phe Asn Asn Cys
275 280 285

Gly Tyr Pro Cys Pro Glu His Ser Asn Pro Phe Asp Phe Tyr Met Asp
290 295 300

Leu Thr Ser Val Asp Thr Gln Ser Arg Glu Arg Glu Ile Glu Thr Tyr
305 310 315 320

Lys Arg Val Gln Met Leu Glu Cys Ala Phe Lys Glu Ser Asp Ile Tyr
325 330 335

His Lys Ile Leu Glu Asn Ile Glu Arg Ala Arg Tyr Leu Lys Thr Leu
340 345 350

Pro Met Val Pro Phe Lys Thr Lys Asp Pro Pro Gly Met Phe Gly Lys
355 360 365

Leu Gly Val Leu Leu Arg Arg Val Thr Arg Asn Leu Met Arg Asn Lys
370 375 380

Gln Ala Val Ile Met Arg Leu Val Gln Asn Leu Ile Met Gly Leu Phe
385 390 395 400

Leu Ile Phe Tyr Leu Leu Arg Val Gln Asn Asn Thr Leu Lys Gly Ala
405 410 415

Val Gln Asp Arg Val Gly Leu Leu Tyr Gln Leu Val Gly Ala Thr Pro
420 425 430

Tyr Thr Gly Met Leu Asn Ala Val Asn Leu Phe Pro Met Leu Arg Ala
435 440 445

Val Ser Asp Gln Glu Ser Gln Asp Gly Leu Tyr His Lys Trp Gln Met
450 455 460

Leu Leu Ala Tyr Val Leu His Val Leu Pro Phe Ser Val Ile Ala Thr
 480
 465 470
 Val Ile Phe Ser Ser Val Cys Tyr Trp Thr Leu Gly Leu Tyr Pro Glu
 495
 485 490
 Val Ala Arg Phe Gly Tyr Phe Ser Ala Ala Leu Leu Ala Pro His Leu
 510
 500 505
 Ile Gly Glu Phe Leu Thr Leu Val Leu Gly Ile Val Gln Asn Pro
 525
 515 520
 Asn Ile Val Asn Ser Ile Val Ala Leu Leu Ser Ile Ser Gly Leu Leu
 540
 530 535
 Ile Gly Ser Gly Phe Ile Arg Asn Ile Gln Glu Met Pro Ile Pro Leu
 560
 545 550 555
 Lys Ile Leu Gly Tyr Phe Thr Phe Gln Lys Tyr Cys Cys Glu Ile Leu
 575
 565 570
 Val Val Asn Glu Phe Tyr Gly Leu Asn Phe Thr Cys Gly Ser Asn
 590
 580 585
 Thr Ser Met Leu Asn His Pro Met Cys Ala Ile Thr Gln Gly Val Gln
 605
 595 600
 Phe Ile Glu Lys Thr Cys Pro Gly Ala Thr Ser Arg Phe Thr Ala Asn
 620
 610 615
 Phe Leu Ile Leu Tyr Gly Phe Ile Pro Ala Leu Val Ile Leu Gly Ile
 640
 625 630 635
 Val Ile Phe Lys Val Arg Asp Tyr Leu Ile Ser Arg
 650
 645

<210> 2
 <211> 2258
 <212> DNA
 <213> Mus musculus

<220>
 <223> mouse sitosterolemia susceptibility gene (SSG)

<220>
 <221> CDS
 <222> (47)..(2005)
 <223> mouse sitosterolemia susceptibility gene (SSG)
 protein

<400> 2
 gggacaggcc actagaaaat tcacttgcatttgcttcctg ctggccatgg gtgaggtgcc 60
 ctttctgagt ccagaggggag ccagaggccc tcacatcaac agagggtctc tgagctccct 120
 ggagcaaggt tcgggtcacgg gcacagaggc tcggcacagc ttaggtgtcc tgcacatgtgc 180
 ctacagcgta agcaaccgtg tcgggcctt gtggaacatc aaatcatgcc agcagaagtg 240
 ggacaggcaa atcctcaaag atgttccctt gtacatcgag agtggccaga ttatgtgcatt 300
 cttaggcagc tcaggctcaag ggaagaccac gctgctggac gccatctccg ggaggctgcg 360
 gcgcaactggg acccttggaaag gggaggtgtt tgtgaatggc tgcagactgc gcagggacca 420
 gttccaagac tgcttccct acgtcctgca gagcgcacgtt tttctgagca gcctcactgt 480
 gcgcgagacg ttgcgataaca cagcgatgtc ggcctctgc cgcaactccg cggacttcta 540

caacaagaag gtagaggcag tcatgacaga gctgaggcctg agccacgtgg cggaccaaat 600
 gattggcagc tataattttg ggggaatttc cagtggcagc cggcgccgag tttccatcgc 660
 agcccaactc cttcaggacc ccaaggtcat gatgctagat gagccaacca caggactgga 720
 ctgcattact gcaaataaaa ttgtccttct cttggctgag ctggctcgca gggaccgaat 780
 tgtgattgtc accatccacc agcctcgctc ttagcttctc caacacttcg aaaaaattgc 840
 catcctgact tacggagat tggtgttctg tggcacccca gaggagatgc ttggcttctt 900
 caataactgt ggttaccct gtcctgaaca ttccaatccc tttgattttt acatggactt 960
 gacatcagt gacacccaaa gcagagagcg ggaaatagaa acgtacaagc gagtacagat 1020
 gctggaatgt gcctcaagg aatctgacat ctatcacaaa attctggaga acattgaaag 1080
 agcacgatac ctgaaaacct tacccatggt tccttcaaa aaaaaagatc ctcctggat 1140
 gttcggcaag cttggtgtcc tgctgaggcg agtaacaaga aacttaatga ggaataagca 1200
 ggcagtgatt atgcgtctcg ttcagaatct gatcatgggc ctcttcctca ttttctacat 1260
 tctccgcgtc cagaacaaca cgctaaaggg cgctgtgcag gaccgcgtgg ggctgctcta 1320
 tcagcttgc ggtgccaccc catacaccccg catgctcaat gctgtgaatc tgtttccat 1380
 gctgagagcc gtcagcgacc aggagagtcg ggtggcctg tatcataagt ggcagatgct 1440
 gctcgctac gtgctacacg tcctccctt cagcgtcatc gccacggcata ttttcagcag 1500
 tgtgtttagt tggactctgg gcttgatcc tgaagttgcc agattttggat atttctctgc 1560
 tgctcttttgc gcccctact taattggaga atttctaaca cttgtgctgc tggttatagt 1620
 caaaaacccct aatattgtca acagttatgtt ggctctgctc agcatctgc ggctgcttat 1680
 tggatcttgc tttatcagaa acatacaaga aatgcccatt cctttaaaaaa tcctgggta 1740
 ttttacattc caaaaatact gttgtgagat tctcgtggc aatgagttt acggcctgaa 1800
 cttcaacttgc ggtggatcca acacctctat gctaaatca cccatgtgcg ccatcacc 1860
 aggggtccag ttcatcgaga aaacctgccc aggtgctaca tccagattca cggcaaaactt 1920
 cctcatctta tatgggtaa tcccagctct ggtcatccta ggaataagtga tttttaaagt 1980
 cagggactac ctgattagca gatagttaaatg acagaggca ggaaagggtt aatgggcagg 2040
 cacgcccact gtggagcaca gagaagtact gtctcaacc atcaggattc catctgcgac 2100
 cttgtgtct gacccttgc tctatccgga gccccaaaggc caacgagaac tcacagccct 2160
 ctgctattcc agcttgtgg gcaatgtgtt gcttggacat tgtgactgaa ctggtccaaat 2220
 aatgtaaata ataataattc ataaacctac aggacatt 2258

<210> 3

<211> 651

<212> PRT

<213> Homo sapiens

<220>

<223> human sitosterolemia susceptibility gene (SSG)
amino acid sequence

<400> 3

Met	Gly	Asp	Leu	Ser	Ser	Leu	Thr	Pro	Gly	Gly	Ser	Met	Gly	Leu	Gln
1														10	15

Val	Asn	Arg	Gly	Ser	Gln	Ser	Ser	Leu	Glu	Gly	Ala	Pro	Ala	Thr	Ala
														20	30

Pro	Glu	Pro	His	Ser	Leu	Gly	Ile	Leu	His	Ala	Ser	Tyr	Ser	Val	Ser
														35	45

His	Arg	Val	Arg	Pro	Trp	Trp	Asp	Ile	Thr	Ser	Cys	Arg	Gln	Gln	Trp
														50	60

Thr	Arg	Gln	Ile	Leu	Lys	Asp	Val	Ser	Leu	Tyr	Val	Glu	Ser	Gly	Gln
														65	80

Ile	Met	Cys	Ile	Leu	Gly	Ser	Ser	Gly	Ser	Gly	Lys	Thr	Thr	Leu	Leu
														85	95

Asp	Ala	Met	Ser	Gly	Arg	Leu	Gly	Arg	Ala	Gly	Thr	Phe	Leu	Gly	Glu
														100	110

Val Tyr Val Asn Gly Arg Ala Leu Arg Arg Glu Gln Phe Gln Asp Cys
115 120 125
Phe Ser Tyr Val Leu Gln Ser Asp Thr Leu Leu Ser Ser Leu Thr Val
130 135 140
Arg Glu Thr Leu His Tyr Thr Ala Leu Leu Ala Ile Arg Arg Gly Asn
145 150 155 160
Pro Gly Ser Phe Gln Lys Lys Val Glu Ala Val Met Ala Glu Leu Ser
165 170 175
Leu Ser His Val Ala Asp Arg Leu Ile Gly Asn Tyr Ser Leu Gly Gly
180 185 190
Ile Ser Thr Gly Glu Arg Arg Val Ser Ile Ala Ala Gln Leu Leu
195 200 205
Gln Asp Pro Lys Val Met Leu Phe Asp Glu Pro Thr Thr Gly Leu Asp
210 215 220
Cys Met Thr Ala Asn Gln Ile Val Val Leu Leu Val Glu Leu Ala Arg
225 230 235 240
Arg Asn Arg Ile Val Val Leu Thr Ile His Gln Pro Arg Ser Glu Leu
245 250 255
Phe Gln Leu Phe Asp Lys Ile Ala Ile Leu Ser Phe Gly Glu Leu Ile
260 265 270
Phe Cys Gly Thr Pro Ala Glu Met Leu Asp Phe Phe Asn Asp Cys Gly
275 280 285
Tyr Pro Cys Pro Glu His Ser Asn Pro Phe Asp Phe Tyr Met Asp Leu
290 295 300
Thr Ser Val Asp Thr Gln Ser Lys Glu Arg Glu Ile Glu Thr Ser Lys
305 310 315 320
Arg Val Gln Met Ile Glu Ser Ala Tyr Lys Lys Ser Ala Ile Cys His
325 330 335
Lys Thr Leu Lys Asn Ile Glu Arg Met Lys His Leu Lys Thr Leu Pro
340 345 350
Met Val Pro Phe Lys Thr Lys Asp Ser Pro Gly Val Phe Ser Lys Leu
355 360 365
Gly Val Leu Leu Arg Arg Val Thr Arg Asn Leu Val Arg Asn Lys Leu
370 375 380
Ala Val Ile Thr Arg Leu Leu Gln Asn Leu Ile Met Gly Leu Phe Leu
385 390 395 400
Leu Phe Phe Val Leu Arg Val Arg Ser Asn Val Leu Lys Gly Ala Ile
405 410 415
Gln Asp Arg Val Gly Leu Leu Tyr Gln Phe Val Gly Ala Thr Pro Tyr
420 425 430

Thr Gly Met Leu Asn Ala Val Asn Leu Phe Pro Val Leu Arg Ala Val
 435 440 445

 Ser Asp Gln Glu Ser Gln Asp Gly Leu Tyr Gln Lys Trp Gln Met Met
 450 455 460

 Leu Ala Tyr Ala Leu His Val Leu Pro Phe Ser Val Val Ala Thr Met
 465 470 475 480

 Ile Phe Ser Ser Val Cys Tyr Trp Thr Leu Gly Leu His Pro Glu Val
 485 490 495

 Ala Arg Phe Gly Tyr Phe Ser Ala Ala Leu Leu Ala Pro His Leu Ile
 500 505 510

 Gly Glu Phe Leu Thr Leu Val Leu Leu Gly Ile Val Gln Asn Pro Asn
 515 520 525

 Ile Val Asn Ser Val Val Ala Leu Leu Ser Ile Ala Gly Val Leu Val
 530 535 540

 Gly Ser Gly Phe Leu Arg Asn Ile Gln Glu Met Pro Ile Pro Phe Lys
 545 550 555 560

 Ile Ile Ser Tyr Phe Thr Phe Gln Lys Tyr Cys Ser Glu Ile Leu Val
 565 570 575

 Val Asn Glu Phe Tyr Gly Leu Asn Phe Thr Cys Gly Ser Ser Asn Val
 580 585 590

 Ser Val Thr Thr Asn Pro Met Cys Ala Phe Thr Gln Gly Ile Gln Phe
 595 600 605

 Ile Glu Lys Thr Cys Pro Gly Ala Thr Ser Arg Phe Thr Met Asn Phe
 610 615 620

 Leu Ile Leu Tyr Ser Phe Ile Pro Ala Leu Val Ile Leu Gly Ile Val
 625 630 635 640

 Val Phe Lys Ile Arg Asp His Leu Ile Ser Arg
 645 650

<210> 4
 <211> 2340
 <212> DNA
 <213> Homo sapiens

<220>
 <223> human sitosterolemia gene (SSG)

<220>
 <221> CDS
 <222> (107)..(2062)
 <223> human sitosterolemia susceptibility gene (SSG)
 protein

<400> 4
 gtcaggtgga gcagggcaggg cagtctgccca cgggctcccc aactgaagcc actctgggga 60
 gggtccggcc accagaaaaat ttgcccagct ttgctgcctg ttggccatgg gtgacacctc 120
 atctttgacc cccggagggt ccatgggtct ccaagtaaac agaggctccc agagctccct 180

ggagggggct cctgccaccg ccccgagcc tcacagcctg ggcattccctcc atgcctcccta 240
cagcgctcgc caccgcgtga ggccttggtg ggacatcaca tcttgcggc agcagtggac 300
caggcagatc ctcaaaatgt ttccttgcgt cttggagagc gggcagatca tttgcattcc 360
aggaagctca ggctccggaa aaaccacgct gctggacgccc atgtccgggaa ggctgggggg 420
cgccccggacc ttcttggggg aggttatgt gaaacggccgg ggcgtgcgc gggagcgtt 480
ccaggactgc ttcttcttgcgt cttcttgcgt cttggagagc gggcagatca tttgcattcc 540
cgagacgctg cactacaccg cgctgtggc catccggccgc ggcaatcccg gtccttccca 600
gaagaaggtg gaggccgtca tggcagagct gaggctgtggc catgtggcag accgactgt 660
tggcaactac agcttggggg gcattttccac ggggtggccgg cgccgggtct ccatcgcc 720
ccagctgtc caggatcata aggtcatgt gtttggatggg ccaaccacag ggctggactg 780
catgactgt aatcagattt tgcgttccctt ggtggactg gtcgcaggaa accgaatttg 840
ggttctcacc attcaccagg cccgttcttgc gcttttcag ctcttgcaca aaatttgcatt 900
cctgagcttc ggagagctga ttttctgtgg cagccagcg gaaatgttgc atttcttccaa 960
tgactgcgtt tacccttgcgt ctgaacattt aaaccctttt gacttctata tggactgtac 1020
gtcagtggat accccaaagca aggaacgggg aatagaaaacc tccaagagag tccagatgt 1080
agaatctgc tacaagaaaat cagcaattttc tcataaaaact ttgaagaata ttgaaagaata 1140
gaaacacctg aaaacgttac caatgttcc tttcaaaaacc aaagatttctc ctggagttt 1200
ctctaaactg ggttcttcc tgaggagagt gacaagaaac ttggtgagaa ataagctggc 1260
agtgattacg cgttcccttca agaatctgtat catgggttttgc ttccttgcattt tttctgtt 1320
gcgggtccga agcaatgtgc taaagggtgc tatccaggac cgcgttaggtc tcccttacca 1380
gtttgtggc gccaccctgt acacaggcat gctgaacgct gtgaatctgtt ttccctgtgt 1440
gcgagctgtc agcgaccagg agagtcagga cggcccttac cagaagtggc agatgtatgt 1500
ggcctatgca ctgcacgtcc tcccttgcgtt ctttttttttgc accatgattt tcagcgtgt 1560
gtgctactgg acgctgggt tacatccttgc ggttgcggaa tttggatatt tttctgtgtc 1620
tctcttggcc ccccaacttta ttggtaatt tctaacttgc ttttttttttgc tttctgtgtc 1680
aaatccaaat atagtcacaa gtgtatgttgc ttttttttttgc ttttttttttgc ttttttttttgc 1740
atctggattt ctcagaaaaca tacaagaaaat gcccatttttgc ttttttttttgc ttttttttttgc 1800
tacattccaa aaatatttgcgtt gtttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1860
caacttgcgtt acgctcaatgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1920
aattcaattt attgagaaaa ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 1980
gattttgtat tcatttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2040
ggatcatctc attagcgatgtt agtggaaagcc atggctgggaa aatggaaatgtt gaaatgtggcc 2100
actgtgcgtt acgttgcgttca acgttgcgttca ttttttttttgc ttttttttttgc ttttttttttgc 2160
gacatctcaa gtcttttaac ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2220
ttgaatgcaat ttggaaatgttgcgtt ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 2280
tattttggaaa ttgtgactgtt gcccggccaa gaatgtaaaat aatatttcata aacctatggg 2340

<210> 5
<211> 18
<212> PRT
<213> *Homo sapiens*

<220>
<223> SSG signature sequence 1

<400> 5 Ala Ala Leu Leu Ala Pro His Leu Ile Gly Glu Phe Leu Thr Leu Val
1 5 10 15

Leu Leu

<210> 6
<211> 11
<212> PRT
<213> *Homo sapiens*

<220>
<223> SSG signature sequence 2

<400> 6
Phe Ile Pro Ala Leu Val Ile Leu Gly Ile Val
1 5 10

<210> 7
<211> 249
<212> DNA
<213> Homo sapiens

<220>
<223> exon 1 of hSSG

<400> 7
gtcagggtgga gcaggcaggg cagtctgcca cgggctcccc aactgaagcc actctgggga 60
gggtccggcc accagaaaat ttgcccagct ttgctgcctg ttggccatgg gtgacctctc 120
atctttgacc cccggagggt ccatgggtct ccaagtaaac agaggctccc agagctccct 180
ggagggggct cctgccaccg ccccgagcc tcacagcctg ggcattcctcc atgcctccta 240
cagcgtcag 249

<210> 8
<211> 122
<212> DNA
<213> Homo sapiens

<220>
<223> exon 2 of hSSG

<400> 8
ccaccgcgtg aggccttgtt gggacatcac atcttgccgg cagcagtggga ccaggcagat 60
cctcaaagat gtctccttgt acgtggagag cggcagatc atgtgcattcc taggaagctc 120
ag 122

<210> 9
<211> 137
<212> DNA
<213> Homo sapiens

<220>
<223> exon 3 of hSSG

<400> 9
gctccggaa aaccacgctg ctggacgcca tgtccggag gctggggcgc gcggggacct 60
tcctggggaa ggttatgtg aacggccggg cgctgcgcgc ggagcagtcc caggactgct 120
tctctacgt cctgcag 137

<210> 10
<211> 103
<212> DNA
<213> Homo sapiens

<220>
<223> exon 4 of hSSG

<400> 10
agcgacaccc tgctgagcag cctcaccgtg cgcgagacgc tgcactacac cgcgctgctg 60
gccatccgccc gcggcaatcc cggctccttc cagaagaagg tgg 103

<210> 11
<211> 129
<212> DNA
<213> Homo sapiens

<220>
<223> exon 5 of hSSG

<400> 11
agccgtcat ggcagagctg agtctgagcc atgtggcaga ccgactgatt ggcaactaca 60
gcttgggggg cattccacg ggtgagcggc gccgggtctc catcgagcc cagctgctcc 120
aggatccta 129

<210> 12
<211> 140
<212> DNA
<213> Homo sapiens

<220>
<223> exon 6 of hSSG

<400> 12
aggtcatgtctttgatgag ccaaccacag gcctggactg catgactgct aatcagattg 60
tcgtccctccttggtaactg gctcgagga accgaattgt ggttctcacc attcaccagc 120
cccgttctga gcttttcag 140

<210> 13
<211> 130
<212> DNA
<213> Homo sapiens

<220>
<223> exon 7 of hSSG

<400> 13
ctcttgaca aaattgccat cctgagcttc ggagagctga ttttctgtgg cacgccagcg 60
gaaatgcttg atttctcaa tgactgcggt tacccttgtc ctgaacatTC aaacccttt 120
gacttctata 130

<210> 14
<211> 214
<212> DNA
<213> Homo sapiens

<220>
<223> exon 8 of hSSG

<400> 14
tggacctgac gtcagtggat acccaaagca aggaacggga aatagaaaacc tccaagagag 60
tccagatgat agaatctgcc tacaagaat cagaatttg tcataaaaact ttgaagaata 120
ttgaaagaat gaaacacctg aaaacgttac caatggttcc tttcaaaacc aaagattctc 180
ctggagtttt ctctaaactg ggtgttctcc tgag 214

<210> 15
<211> 206
<212> DNA
<213> Homo sapiens

<220>
<223> exon 9 of hSSG

<400> 15
gagagtgaca agaaaacttgg tgagaaataa gctggcagtg attacgcgtc tccttcagaa 60
tgtatcatg gttttttcc tccttttctt cgttctgcgg gtccgaagca atgtgctaaa 120
gggtgctatc caggaccgcg taggtctctt ttaccagttt gtgggcgcac ccccgtaac 180
aggcatgctg aacgctgtga atctgt 206

<210> 16
<211> 139
<212> DNA
<213> Homo sapiens

<220>
<223> exon 10 of hSSG

<400> 16
ttcccgtct gcgagctgtc agcgaccagg agagtcagga cggcctctac cagaagtggc 60
agatgtatgtc ggcctatgca ctgcacgtcc tccccttcag cgttgttgcc accatgattt 120
tcagcagtgt gtgtactg 139

<210> 17
<211> 186
<212> DNA
<213> Homo sapiens

<220>
<223> exon 11 of hSSG

<400> 17
gacgctggc ttacatcctg aggttgcgg atttggatat ttttctgtc ctctcttggc 60
ccccccactta atttgtaat ttctaactct tgtgtactt ggtatcggtcc aaaatccaaa 120
tatagtcaac agtgttagtgg ctctgctgtc cattgcgggg gtgcttggatt gatctggatt 180
cctcag 186

<210> 18
<211> 113
<212> DNA
<213> Homo sapiens

<220>
<223> exon 12 of hSSG

<400> 18
aaacatacaa gaaatgccca ttcctttaa aatcatcagt tattttacat tccaaaaata 60
ttgcagttag attctttag tcaatgagtt ctacggactg aatttcactt gtg 113

<210> 19
<211> 472
<212> DNA
<213> Homo sapiens

<220>
<223> exon 13 of hSSG

<400> 19
gcagctcaa tgtttctgtg acaactaattt caatgtgtgc cttcactcaa ggaattcaat 60
tcattgagaa aacctgcccc ggtgcaacat ctagattcac aatgaacttt ctgattttgt 120
attcatttat tccagctttt gtcatcctag gaatagttgt tttcaaaaata agggatcatc 180
tcatttagcag gtagtggaaag ccatggctgg gaaaatggaa gtgaagctgc cgactgtgca 240
tgactgctctt gaacgtctga aatgagatgtt ccatgtattt ctttcttgac aggacatctc 300
aagtctttta accattaaga ctccatttgtt gcctcttggaa tccaaggcagg ccttgaatgc 360
aatggaaatgtt gtttatacgcc ccttgctttt acaacttgca gggacatgtt gtattttggaa 420
aattgtgact gagcggaccc aagaatgttta ataatattca taaacctatgg 472

<210> 20
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 1

<400> 20
gcgtcaggta aggcag

16

<210> 21
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 2

<400> 21
cctttaaagc caccgc

16

<210> 22
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 2

<400> 22
agctcaggta agcttg

16

<210> 23
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 3

<400> 23
gccccgcagg ctccgg

16

<210> 24
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 3

<400> 24 16
cctgcaggcg ggcgac

<210> 25
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 4

<400> 25 16
ctcctgcaga gcgaca

<210> 26
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 4

<400> 26 16
aaggtgggtg cagccc

<210> 27
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 5

<400> 27 16
tgcaggtggaa ggccgt

<210> 28
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 5

<400> 28 16
gatcctagta agtggc

<210> 29
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 6

<400> 29
tgctggcaga ggtcat

16

<210> 30
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 6

<400> 30
ttttcaggtt agagggt

16

<210> 31
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 7

<400> 31
tctggtcagc tctttg

16

<210> 32
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 7

<400> 32
ttctatagtt agtttt

16

<210> 33
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 8

<400> 33
aacttttagt ggacct

16

<210> 34
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 8

<400> 34
tcctgaggta agaggc 16

<210> 35
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 9

<400> 35
tggtttcagg agagtg 16

<210> 36
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 9

<400> 36
aatctgtgta agtgcc 16

<210> 37
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 10

<400> 37
catccccagt tccccgt 16

<210> 38
<211> 17
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 10

<400> 38
gctactggtg aggggtt 17

<210> 39
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 11

<400> 39
cttttctagg acgctg 16

<210> 40
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 11

<400> 40
tcctcaggtta agatata 16

<210> 41
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 12

<400> 41
tttcttaaga aacata 16

<210> 42
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 3' splicing site for exon 12

<400> 42
acttgtggta agtatt 16

<210> 43
<211> 16
<212> DNA
<213> Homo sapiens

<220>
<223> 5' splicing site for exon 13

<400> 43
ccttgacagg cagctc 16

<210> 44
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:6-His epitope tag

<400> 44
His His His His His His
1 5

<210> 45
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:anti-DYKDDDDK epitope tag

<400> 45
Asp Tyr Lys Asp Asp Asp Asp Lys
1 5