DSC630-T301 Predictive Analytics (2243-1) week4 Samanta Rajib

January 8, 2024

0.1 Class: DSC630-T301 Predictive Analytics (2243-1)

0.2 Name: Rajib Samanta

0.2.1 Assignment 4.2: Week 4

You will be using the dataset als_data.csv to apply clustering methods for this assignment. This data gives anonymized data on ALS patients. With this data, complete the following steps: 1. Remove any data that is not relevant to the patient's ALS condition. 2. Apply a standard scalar to the data. 3. Create a plot of the cluster silhouette score versus the number of clusters in a K-means cluster. 4. Use the plot created in (3) to choose on optimal number of clusters for K-means. Justify your choice. 5. Fit a K-means model to the data with the optimal number of clusters chosen in part (4). 6. Fit a PCA transformation with two features to the scaled data. 7. Make a scatterplot the PCA transformed data coloring each point by its cluster value. 8. Summarize your results and make a conclusion. You can use R or Python to complete this assignment. Submit your code and output to the submission link. Make sure to add comments to all of your code and to document your steps, process, and analysis.

```
[36]: # Load the Libraries
import os
import pandas as pd
import matplotlib.pyplot as plt
#%matplotlib inline
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.decomposition import PCA
```

```
[37]: # 1. Load the dataset as a Pandas data frame.

# 2. Display the first ten rows of data.

# Read anonymized data on ALS patients data file ('als_data.csv') from local:

directory = '/Users/rajibsamanta/Documents/Rajib/College/Sem 7 Winter 2023/

→Week4'

# Set the working directory
```

```
os.chdir(directory)
print(os.getcwd())
dataset1_csv = pd.read_csv("als_data.csv")
dataset1_csv.head(5)
# Display the DataFrame 10 rows
```

/Users/rajibsamanta/Documents/Rajib/College/Sem 7 Winter 2023/Week4

[37]:		ID	Age_mear	n Albumin_max	Albu	min_m	edian	Albu	min_m:	in Albu	min_range	Э	\
	0	1	65	57.0			40.5		38	.0	0.06620	2	
	1	2	48	45.0			41.0		39	. 0	0.01045	3	
	2	3	38	50.0			47.0		45	.0	0.00892	9	
	3	4	63	47.0			44.0		41	.0	0.01211	L	
	4	5	63	47.0			45.5		42	.0	0.00829	2	
		ALS	FRS_slope	e ALSFRS_Tota	l_max	ALSF	RS_Tota	al_me	dian	ALSFRS_	Total_min	1	\
	0		-0.965608	3	30				28.0		2:	2	•••
	1		-0.921717	7	37			;	33.0		2	L	•••
	2		-0.914787	7	24				14.0		10)	•••
	3		-0.598361		30			:	29.0		24	1	•••
	4		-0.444039)	32				27.5		20)	
		Sod	ium_min	Sodium_range	Subie	ctID	trunk	max	trunl	k median	trunk i	nin	\
	0	200	143.0	0.017422	24250	533	0 = u	8	0 = 0.11	7.0		7	
	1		136.0	0.010453		649		8		7.0		5	
	2		140.0	0.008929		1234		5		0.0		0	
	3		138.0	0.012469		2492		5		5.0)	3	
	4		138.0	0.008292		2956		6		4.0)	1	
	_		nk_range	_	Urin	e.Ph_		Uri	ne.Ph	_			
	0		0.002646	6.0			6.0			6.0			
	1		0.005386	7.0			5.0			5.0			
	2		0.008929	6.0			5.0			5.0			
	3		0.004988	7.0			6.0			5.0			
	4		0.008489	6.0			5.0			5.0			

[5 rows x 101 columns]

1. Remove any data that is not relevant to the patient's ALS condition.

```
[38]: # 1. Remove any data that is not relevant to the patient's ALS condition.

# Identify and remove irrelevant columns

columns_to_remove = ['ID', 'SubjectID'] # Replace with the actual column names___

to be removed

dataset1_csv = dataset1_csv.drop(columns=columns_to_remove, errors='ignore')

# Display the DataFrame after removing irrelevant data

print("\nDataFrame after removing irrelevant data:")
```

print(dataset1_csv.head())

```
DataFrame after removing irrelevant data:
                  Albumin_max Albumin_median Albumin_min Albumin_range
         Age_mean
                                                                     0.066202
     0
               65
                          57.0
                                           40.5
                                                         38.0
                          45.0
                                           41.0
                                                         39.0
     1
               48
                                                                     0.010453
     2
               38
                          50.0
                                           47.0
                                                         45.0
                                                                     0.008929
     3
                          47.0
                                           44.0
                                                         41.0
                                                                     0.012111
               63
     4
               63
                          47.0
                                           45.5
                                                         42.0
                                                                     0.008292
                      ALSFRS_Total_max
         ALSFRS_slope
                                          ALSFRS_Total_median
                                                                ALSFRS_Total_min
     0
            -0.965608
                                                          28.0
                                      37
                                                          33.0
     1
            -0.921717
                                                                               21
     2
            -0.914787
                                      24
                                                          14.0
                                                                               10
     3
            -0.598361
                                      30
                                                          29.0
                                                                               24
     4
            -0.444039
                                      32
                                                          27.5
                                                                               20
        ALSFRS_Total_range ... Sodium_median Sodium_min Sodium_range
     0
                   0.021164 ...
                                         145.5
                                                      143.0
                                                                 0.017422
                   0.028725
                                         138.0
                                                      136.0
                                                                 0.010453
     1
     2
                   0.025000 ...
                                         143.0
                                                      140.0
                                                                 0.008929
     3
                   0.014963
                                         139.0
                                                      138.0
                                                                 0.012469
     4
                   0.020374
                                         140.0
                                                      138.0
                                                                 0.008292
         trunk_max
                   trunk_median
                                  trunk_min trunk_range Urine.Ph_max \
     0
                 8
                             7.0
                                           7
                                                  0.002646
     1
                 8
                             7.0
                                           5
                                                  0.005386
                                                                      7.0
     2
                 5
                             0.0
                                           0
                                                  0.008929
                                                                      6.0
     3
                 5
                             5.0
                                           3
                                                  0.004988
                                                                      7.0
     4
                 6
                             4.0
                                                                      6.0
                                           1
                                                  0.008489
        Urine.Ph_median Urine.Ph_min
     0
                     6.0
                                    6.0
     1
                     5.0
                                    5.0
     2
                     5.0
                                    5.0
     3
                     6.0
                                    5.0
     4
                     5.0
                                    5.0
     [5 rows x 99 columns]
[39]: dataset1_csv.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 2223 entries, 0 to 2222
     Data columns (total 99 columns):
          Column
                                              Non-Null Count Dtype
          ____
```

0	Age_mean		non-null	int64
1	Albumin_max		non-null	float64
2	Albumin_median		non-null	float64
3	Albumin_min		non-null	float64
4	Albumin_range		non-null	float64
5	ALSFRS_slope		non-null	float64
6	ALSFRS_Total_max		non-null	int64
7	ALSFRS_Total_median	2223	non-null	float64
8	ALSFRS_Total_min		non-null	int64
9	ALSFRS_Total_range	2223	non-null	float64
10	ALT.SGPTmax		non-null	float64
11	ALT.SGPTmedian	2223	non-null	float64
12	ALT.SGPTmin	2223	non-null	float64
13	ALT.SGPTrange	2223	non-null	float64
14	AST.SGOTmax	2223	non-null	int64
15	AST.SGOTmedian	2223	non-null	float64
16	AST.SGOTmin	2223	non-null	${\tt float64}$
17	AST.SGOTrange	2223	non-null	${\tt float64}$
18	Bicarbonate_max	2223	non-null	${\tt float64}$
19	Bicarbonate_median	2223	non-null	float64
20	Bicarbonate_min	2223	non-null	float64
21	Bicarbonate_range	2223	non-null	float64
22	Blood.Urea.NitrogenBUNmax	2223	non-null	float64
23	Blood.Urea.NitrogenBUNmedian	2223	non-null	float64
24	Blood.Urea.NitrogenBUNmin	2223	non-null	float64
25	Blood.Urea.NitrogenBUNrange	2223	non-null	float64
26	<pre>bp_diastolic_max</pre>	2223	non-null	int64
27	<pre>bp_diastolic_median</pre>	2223	non-null	float64
28	<pre>bp_diastolic_min</pre>	2223	non-null	int64
29	<pre>bp_diastolic_range</pre>	2223	non-null	float64
30	<pre>bp_systolic_max</pre>	2223	non-null	int64
31	<pre>bp_systolic_median</pre>	2223	non-null	float64
32	<pre>bp_systolic_min</pre>	2223	non-null	int64
33	<pre>bp_systolic_range</pre>	2223	non-null	float64
34	Calcium_max	2223	non-null	float64
35	Calcium_median	2223	non-null	float64
36	Calcium_min	2223	non-null	float64
37	Calcium_range	2223	non-null	float64
38	Chloride_max	2223	non-null	float64
39	Chloride_median	2223	non-null	float64
40	Chloride_min	2223	non-null	float64
41	Chloride_range	2223	non-null	float64
42	Creatinine_max		non-null	float64
43	Creatinine_median	2223	non-null	float64
44	Creatinine_min		non-null	float64
45	Creatinine_range		non-null	float64
46	Gender_mean		non-null	int64
47	Glucose_max		non-null	float64
	-			

48	Glucose_median	2223	non-null	float64
49	Glucose_min	2223	non-null	float64
50	Glucose_range	2223	non-null	float64
51	hands_max	2223	non-null	int64
52	hands_median	2223	non-null	float64
53	hands_min	2223	non-null	int64
54	hands_range	2223	non-null	float64
55	Hematocrit_max	2223	non-null	float64
56	Hematocrit_median	2223	non-null	float64
57	Hematocrit_min	2223	non-null	float64
58	Hematocrit_range	2223	non-null	float64
59	Hemoglobin_max	2223	non-null	float64
60	Hemoglobin_median	2223	non-null	float64
61	Hemoglobin_min	2223	non-null	float64
62	Hemoglobin_range	2223	non-null	float64
63	leg_max	2223	non-null	int64
64	leg_median	2223	non-null	float64
65	leg_min	2223	non-null	int64
66	leg_range	2223	non-null	float64
67	mouth_max	2223	non-null	int64
68	mouth_median	2223	non-null	float64
69	mouth_min	2223	non-null	int64
70	mouth_range	2223	non-null	float64
71	onset_delta_mean	2223	non-null	int64
72	onset_site_mean	2223	non-null	int64
73	Platelets_max	2223	non-null	int64
74	Platelets_median	2223	non-null	float64
75	Platelets_min	2223	non-null	float64
76	Potassium_max	2223	non-null	float64
77	Potassium_median	2223	non-null	float64
78	Potassium min	2223	non-null	float64
79	Potassium_range	2223	non-null	float64
80	pulse_max	2223	non-null	int64
81	pulse_median	2223	non-null	float64
82	pulse_min	2223	non-null	int64
83	pulse_range	2223	non-null	float64
84	respiratory_max	2223	non-null	int64
85	respiratory_median	2223	non-null	float64
86	respiratory_min	2223	non-null	int64
87	respiratory_range	2223	non-null	float64
88	Sodium_max	2223	non-null	float64
89	Sodium_median	2223	non-null	float64
90	Sodium_min	2223	non-null	float64
91	Sodium_range	2223	non-null	float64
92	trunk_max	2223	non-null	int64
93	trunk_median		non-null	float64
94	trunk_min	2223	non-null	int64
95	trunk_range	2223	non-null	float64
	-			

```
      96
      Urine.Ph_max
      2223 non-null float64

      97
      Urine.Ph_median
      2223 non-null float64

      98
      Urine.Ph_min
      2223 non-null float64
```

dtypes: float64(75), int64(24)

memory usage: 1.7 MB

2. Apply a standard scalar to the data.

```
[40]: # 2. Apply a standard scalar to the data.
# Identify and extract all numeric columns
numeric_columns = dataset1_csv.select_dtypes(include=['number']).columns

# Extract data to be scaled
data_to_scale = dataset1_csv[numeric_columns]

# Apply Standard Scaling
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data_to_scale)

# Replace the original numeric columns with the scaled data
dataset1_csv[numeric_columns] = scaled_data

# Display the DataFrame after applying Standard Scaling
print("\nDataFrame after applying Standard Scaling to all numeric columns:")
print(dataset1_csv.head())
```

DataFrame after applying Standard Scaling to all numeric columns:

```
Age mean Albumin max Albumin median Albumin min Albumin range \
                              -1.300781
                                                           5.480929
0 0.917137
               3.089417
                                           -0.866550
1 -0.574879
                              -1.112401
              -0.622016
                                           -0.553303
                                                          -0.347725
2 -1.452535
              0.924415
                               1.148162
                                            1.326179
                                                          -0.507103
3 0.741606
              -0.003443
                               0.017880
                                            0.073191
                                                          -0.174361
4 0.741606
              -0.003443
                               0.583021
                                            0.386438
                                                          -0.573670
  ALSFRS_slope ALSFRS_Total_max ALSFRS_Total_median ALSFRS_Total_min \
0
     -0.381450
                       -0.318520
                                             0.134960
                                                               0.247368
1
     -0.310907
                        0.998995
                                             0.888863
                                                               0.130839
     -0.299769
                       -1.447819
                                            -1.975969
                                                              -1.150976
3
      0.208801
                       -0.318520
                                             0.285741
                                                               0.480425
      0.456831
                        0.057913
                                             0.059570
                                                               0.014311
  ALSFRS_Total_range ... Sodium_median Sodium_min
                                                    Sodium_range \
0
                                                        0.260968
           -0.301588 ...
                              2.992342
                                          2.300470
            0.166537 ...
                             -1.198812 -0.278144
1
                                                       -0.489913
2
           -0.064100 ...
                             1.595291
                                         1.195350
                                                       -0.654169
3
           -0.685524 ...
                             -0.639992
                                         0.458603
                                                       -0.272701
           -0.350529 ...
                             -0.081171 0.458603
                                                       -0.722774
```

```
trunk max trunk median trunk min trunk range Urine.Ph max \
  1.028018
                 0.981832
                           1.715365
                                       -0.997420
                                                     -0.880376
0
  1.028018
                 0.981832
                            0.867032
                                       -0.388669
                                                      0.192665
1
2 -0.688950
                -2.280669 -1.253800
                                        0.398249
                                                     -0.880376
3 -0.688950
                 0.049689
                            0.018699
                                       -0.477181
                                                      0.192665
4 -0.116627
                -0.416383 -0.829634
                                        0.300598
                                                     -0.880376
  Urine.Ph_median Urine.Ph_min
0
         0.463054
                       1.868532
        -1.137208
                      -0.419151
1
2
        -1.137208
                      -0.419151
3
         0.463054
                      -0.419151
4
        -1.137208
                      -0.419151
```

[5 rows x 99 columns]

3. Create a plot of the cluster silhouette score versus the number of clusters in a K-means cluster.

```
[41]: # 3. Create a plot of the cluster silhouette score versus the number of
       ⇔clusters in a K-means cluster.
      # Range of cluster numbers to try
      cluster_range = range(2, 11) # considering the range 2 to 11
      # List to store silhouette scores
      silhouette_scores = []
      # Perform K-means clustering for different numbers of clusters
      for num clusters in cluster range:
          kmeans = KMeans(n_clusters=num_clusters, random_state=42)
          cluster labels = kmeans.fit predict(scaled data)
          # Compute silhouette score and append to the list
          silhouette_avg = silhouette_score(scaled_data, cluster_labels)
          silhouette_scores.append(silhouette_avg)
      # Plotting the results
      plt.plot(cluster_range, silhouette_scores, marker='o')
      plt.title('Silhouette Score vs Number of Clusters')
      plt.xlabel('Number of Clusters')
      plt.ylabel('Silhouette Score')
      plt.show()
```


- 4. Use the plot created in (3) to choose on optimal number of clusters for K-means. Justify your choice. -> Using the elbow method for the "elbow" point, which is where the improvement in silhouette score starts to diminish. 7 is the optimal number of cluster.
- 5. Fit a K-means model to the data with the optimal number of clusters chosen in part (4).

```
[42]: # 5. Fit a K-means model to the data with the optimal number of clusters chosen
in part (4).

# Replace 'optimal_num_clusters' with the number we have identified from the
silhouette score plot
optimal_num_clusters = 7 # Replace with determined optimal number of clusters

# Fit K-means model with the optimal number of clusters
kmeans = KMeans(n_clusters=optimal_num_clusters, random_state=42)
dataset1_csv['cluster_labels'] = kmeans.fit_predict(scaled_data)

# Display the DataFrame with cluster labels
print("DataFrame with Cluster Labels:")
```

```
dataset1_csv.head()
```

DataFrame with Cluster Labels:

```
[42]:
         Age_mean
                  Albumin_max
                                Albumin_median Albumin_min
                                                                Albumin_range
      0 0.917137
                       3.089417
                                       -1.300781
                                                    -0.866550
                                                                     5.480929
      1 -0.574879
                      -0.622016
                                       -1.112401
                                                    -0.553303
                                                                    -0.347725
                                                     1.326179
                                                                    -0.507103
      2 -1.452535
                      0.924415
                                        1.148162
      3 0.741606
                      -0.003443
                                        0.017880
                                                     0.073191
                                                                    -0.174361
                                                                    -0.573670
      4 0.741606
                      -0.003443
                                        0.583021
                                                     0.386438
         ALSFRS_slope
                        ALSFRS_Total_max
                                           ALSFRS_Total_median
                                                                ALSFRS_Total_min
            -0.381450
      0
                               -0.318520
                                                      0.134960
                                                                         0.247368
      1
            -0.310907
                                0.998995
                                                      0.888863
                                                                         0.130839
      2
            -0.299769
                               -1.447819
                                                     -1.975969
                                                                        -1.150976
      3
                                                                         0.480425
             0.208801
                               -0.318520
                                                      0.285741
      4
             0.456831
                                0.057913
                                                      0.059570
                                                                         0.014311
         ALSFRS_Total_range
                                 Sodium_min
                                              Sodium_range
                                                            trunk_max
                                                                        trunk median
      0
                  -0.301588
                                   2.300470
                                                  0.260968
                                                              1.028018
                                                                             0.981832
      1
                   0.166537
                                  -0.278144
                                                 -0.489913
                                                              1.028018
                                                                             0.981832
      2
                   -0.064100
                                   1.195350
                                                 -0.654169 -0.688950
                                                                           -2.280669
      3
                  -0.685524
                                   0.458603
                                                 -0.272701 -0.688950
                                                                             0.049689
      4
                   -0.350529
                                   0.458603
                                                 -0.722774 -0.116627
                                                                           -0.416383
         trunk_min
                    trunk_range
                                  Urine.Ph_max
                                                 Urine.Ph_median
                                                                   Urine.Ph_min
      0
          1.715365
                       -0.997420
                                     -0.880376
                                                        0.463054
                                                                       1.868532
      1
          0.867032
                       -0.388669
                                      0.192665
                                                        -1.137208
                                                                      -0.419151
      2
        -1.253800
                        0.398249
                                     -0.880376
                                                       -1.137208
                                                                      -0.419151
          0.018699
                       -0.477181
                                      0.192665
                                                        0.463054
                                                                      -0.419151
      3
        -0.829634
                                                                      -0.419151
                        0.300598
                                     -0.880376
                                                       -1.137208
         cluster_labels
      0
      1
                       6
      2
                       5
                       2
      3
      4
                       6
```

[5 rows x 100 columns]

6. Fit a PCA transformation with two features to the scaled data.

```
[43]: # 6. Fit a PCA transformation with two features to the scaled data.

# Fit PCA transformation with two features

pca = PCA(n_components=2)

pca_result = pca.fit_transform(scaled_data)
```

```
# Create a new DataFrame with the PCA results
pca_df = pd.DataFrame(data=pca_result, columns=['PC1', 'PC2'])

# Display the DataFrame with PCA results
print("DataFrame with PCA Results:")
pca_df.head()
```

DataFrame with PCA Results:

```
[43]: PC1 PC2
0 -1.426768 -2.320223
1 -1.440195 -4.870052
2 1.617824 -0.430010
3 -1.919997 2.096063
4 0.297701 0.166783
```

7. Make a scatterplot the PCA transformed data coloring each point by its cluster value.


```
[45]: # Count of records in each cluster
cluster_counts = dataset1_csv['cluster_labels'].value_counts()

# Display the count of records in each cluster
print("Record Count in Each Cluster:")
print(cluster_counts)
```

Record Count in Each Cluster:

cluster_labels

- 4 472
- 2 466
- 6 419
- 0 338
- 5 331
- 3 171
- 1 26

Name: count, dtype: int64

8. Summarize your results and make a conclusion. **The analysis aimed to uncover patterns and relationships within ALS patient data by combining K-means clustering and PCA. The silhouette score plot was used to determine the optimal number of clusters, and a K-means model was applied to assign cluster labels to the data. PCA was then employed to reduce the dimensionality of the data for visualization. The scatterplot of the PCA-transformed data with cluster colors provides insights into the grouping of ALS patients based on the identified features.

The visual representation aids in understanding potential clusters or patterns that may exist in the data.

Cluster 2,4,5,6 —> Majority of the records are under these clusters, and they are well distributed. These clusters data provide the grouping of ALS patients based the diagnosis data. Which will help to do patterns analysis.

Cluster $0 \& 3 \rightarrow$ records are spread out across another zone. Looks like more data cleanup required or we are considering unwanted rows/columns which causing the overlapping clustering.

Cluster 1 -> There are only 26 records out of 2.2k records, These may the rare scenarios or outlier.

**Further domain-specific knowledge and additional statistical assessments may be needed to draw meaningful conclusions and insights from the clustering and dimensionality reduction results

[]: