R. Matthysen, D. Nuyens

Introduction

Construction

Numerical

Conclusion

Korobovs algorithms for Lattice rules MCQMC 2014

R. Matthysen, D. Nuyens

Department of Computer Sciences, KU Leuven

R. Matthysen, D. Nuyens

Introduction

Construction

Proof

Numerical experiment

Conclusion

Introduction

N. M. Korobov (1917-2004)

- 1982 paper "On the Computation of Optimal Coefficients"
- 3 Constructions of rank-1 lattice rules with optimal convergence in a Korobov space
- Fast algorithms, complexity $O(sN \log(N))$

R. Matthysen, D. Nuyens

Introduction

Construction

Proofs

Numerical experiment

Conclusion

Overview

- 1 Introduction
- 2 Constructions
- 3 Proofs
- 4 Numerical experiments
- **6** Conclusions

R. Matthysen, D. Nuyens

Introduction

Constructions

Proof

Numerical experiment

Conclusion

Introduction

Rank-1 Lattice rules

• Generator $\mathbf{a} \in \mathbb{Z}_N^s$

$$P_N = \left\{ \left\{ rac{k\mathbf{a}}{N}
ight\} : k = 0, 1, \dots, N - 1
ight\}$$
 $Q_N(f) = rac{1}{N} \sum_{x_k \in P_N} f(x_k)$

- Desirable properties
 - Optimal error convergence $O(N^{-1} \log^{\beta(s)}(N))$
 - Fast construction
 - Extensibility in N and s

R. Matthysen, D. Nuyens

Introduction

Constructions

Proof

Numerical experiment

Conclusion

Constructions

Representation

• Base 2 representation, $a_1 = (a_{1\nu} \cdots a_{12} a_{11})_2$

• Indices $1 \le r \le s$ and $1 \le v \le n, N = 2^n$

R. Matthysen, D. Nuyens

Introduction

Constructions

Proofs

Numerical experiment

Conclusion

Recent Constructions

CBC

Generator a constructed component by component

- Korobov 1959, Sloan en Reztsov 2002
- Extensible in dimension s
- Fast CBC (Nuyens) $O(sN \log(N))$

R. Matthysen, D. Nuyens

Introduction

Constructions

Proofs

Numerical experiment

Conclusion

Recent Constructions

Neiderreiter and Pillichshammer (2009)

Generator a constructed digit by digit

	v=2,,n			
	a_{1v}		a ₁₂	a ₁₁
	a_{2v}		a ₂₂	a ₂₁
···	:		:	:
	a _{rv}		a_{r2}	a_{r1}
	:		:	:
	a_{sv}		a ₅₂	a _{s1}

- Extensible in $N = 2^n$
- No optimal convergence proven for base 2
- $O(s2^sN)$

R. Matthysen, D. Nuyens

introduction

Constructions

Numerical

experiment

Conclusion

Korobov Constructions

DBD

Generator a constructed digit by digit

- Niederreiter and Pillichshammer principle, but no extensibility in N
- $O(s2^sN)$

R. Matthysen, D. Nuyens

Introduction

Constructions

Proofs

Numerical experiment

Conclusion

Korobov Constructions

DBD+CBC

 Generator a constructed digit by digit, digits are added component by component

- Faster version of DBD
- O(sN) complexity, with O(sN) memory requirement

R. Matthysen, D. Nuyens

Introduction

Constructions

Droofe

Numerical

Conclusion

Korobov Constructions

CBC+DBD

 Generator a constructed component by component, components are added digit by digit

- Extensible in dimension s
- $O(sN \log(N))$

Proofs

Numerical experiment

Conclusion

Quality criterion

RKHS

worst-case error

$$e(Q_N, \mathcal{F}) := \sup_{\substack{f \in \mathcal{F} \\ ||f||_{\mathcal{F}} \leq 1}} |I(f) - Q_N(f)|$$

• Algorithms are tailored to function space

Classical theory - Korobov space

• E_{α}^{s} , the space of $[0,1)^{s}$ -periodic functions f for which

$$|\hat{f}(\mathbf{h})| \leq cr(\mathbf{h})^{-lpha} \qquad r(\mathbf{h}) = \prod_{i=1}^{3} \max(1,|h_i|)$$

$$P_{\alpha}(\mathbf{a}, n) = \sum_{\mathbf{h} \in \mathbb{Z}^{s} \setminus \{\mathbf{0}\} \atop \mathbf{n} = \mathbf{0}} \frac{1}{r(\mathbf{h})^{\alpha}}.$$

R. Matthysen, D. Nuyens

Introduction

Constructio

Proofs

Numerical

Conclusion

Quality criterion

Classical theory - ctd.

Dual lattice

$$L^{\perp} := \{ \mathbf{m} \in \mathbb{R}^s : \mathbf{m} \cdot \mathbf{x} \in \mathbb{Z} \text{ for all } \mathbf{x} \in L \}.$$

• Quality criteria

$$P_{\alpha}(\mathbf{a}, n) = \sum_{\mathbf{0} \neq \mathbf{h} \in L^{\perp}} \frac{1}{r(\mathbf{h})^{\alpha}}$$

$$R(\mathbf{a}, n) = \sum_{\mathbf{0} \neq \mathbf{h} \in L^{\perp} \cap (-N/2, N/2]^{s}} \frac{1}{r(\mathbf{h})}$$

$$q(L) = \min_{\mathbf{0} \neq \mathbf{h} \in L^{\perp}} r(\mathbf{h})$$

Proofs

Numerical experiment

Conclusions

Proofs

Gel'fond Lemma

The inequalities $Q \ge C_1 q^s$ and $q \ge C_1 \frac{Q^s}{N^{s^2-1}}$ hold, with a positive constant $C_1 = C_1(s)$.

Proofs

Numerical experiment

Conclusion

Proofs

Korobov Theorem

 $1, a_1, \ldots, a_s$ are optimal coefficients for N points iff for $k \neq 0$ and $-|(N-1)/2| \leq k \leq |N/2|$

$$|k| \left\| \frac{a_1 k}{N} \right\| \cdots \left\| \frac{a_s k}{N} \right\| \ge \frac{Q}{N^s} \ge \frac{1}{(B_1 \ln^{\beta(s)} N)}$$

Objective function

$$h_{\nu}(\mathbf{a}) = \frac{1}{2^{\nu}} \sum_{\substack{m=1 \ m \equiv 1 \pmod{2}}}^{2^{\nu}} \prod_{j=1}^{s} \left(2n - 2\nu + \frac{1}{||ma_{j}/2^{\nu}||} \right)$$

Theorem bound is proven through an averaging argument.

R. Matthysen, D. Nuyens

Introduction

Proofs

Numerical experiments

Conclusion

Complexity

Complexity as a function of N, s = 100

• Fast CBC configured to minimise $R(\mathbf{a}, N)$, like the Korobov algorithms.

R. Matthysen, D. Nuyens

Introduction

Construction

Proof

Numerical experiments

Conclusion

Quality

R-criterion

- Korobov proves $O(N^{-1} \log^{\beta(s)}(N))$ convergence, with dimension-dependent constant
- Korobov algorithms perform only marginally worse than FastCBC for $R(\mathbf{a}, N)$.

R. Matthysen, D. Nuyens

IIIIIOGUCLIOII

Construction

Proof

Numerical experiments

Conclusions

Introducing weights

Avoiding dimension-dependent constant in a weighted function space.

• Product weight kernel leads to weighted R(a, N) criterion

$$K(\mathbf{x}) = \prod_{j=1}^{s} (1 + \gamma_j \omega(x_j)),$$

Altered weight function

$$h_{v}(\mathbf{a}) = \frac{1}{2^{v}} \sum_{\substack{m=1 \\ m \equiv 1 \pmod{2}}}^{2^{v}} \prod_{j=1}^{s} \left(2n - 2v + \gamma_{j} \frac{1}{||ma_{j}/2^{v}||} \right)$$

R. Matthysen, D. Nuyens

Introduction

C

Numerical experiments

Conclusion

Introducing weights

• Theoretical justification is work in progress

R. Matthysen, D. Nuyens

Introduction

Construction

Proofs

Numerical experiments

Conclusion

Embeddedness

- Generator is good for range of points p^{m_1}, \ldots, p^{m_2}
- First i digits are optimal generator for 2^i points
- Test by comparing with Fast CBC generator calculated for 2^i points

R. Matthysen, D. Nuyens

Introduction

Camatanatia

Proofs

Numerical experiments

Conclusion

Embeddedness

R. Matthysen, D. Nuyens

Introduction

Construction

Proof:

Numerical

Conclusions

Conclusions

- Algorithms show interesting combinations of component-by-component and digit-by-digit approaches
- Proofs are based on the Gel'fond lemma relating q and Q.
- Usability is limited to $R(\mathbf{a}, N)$ criterion, but extensions to weighted function spaces are subject of further work.

R. Matthysen, D. Nuyens

Introduction

Constructions

Proof

Numerical experiment

Conclusions

References

N. M. Korobov.

The approximate computation of multiple integrals.

Dokl, Akad. Nauk. SSSR, 1959

N. M. Korobov.

Number-theoretic methods in approximate analysis.

Fitzmatgiz, 1963

N. M. Korobov.

Some problems in the theory of diophantine approximation. Uspekhi Mat. Nauk., 1967

N. M. Korobov.

On the computation of optimal coefficients.

Soviet Math. Dokl., 1982