

Engineering

Advanced diffraction techniques for Residual Stresses determination

Dr Michael Preuss University of Manchester

10th Oxford School on Neutron Scattering

Introduction

- Residual stresses in materials
- Principles of measuring residual stresses by diffraction
- Neutron and Synchrotron X-ray diffraction
 - Properties
 - Facilities
- Case Studies / Questions
- Conclusions

10th Oxford School on Neutron Scattering

What are residual stresses

Deformation mismatch

Example: Welding

10th Oxford School on Neutron Scattering

3

MANCHESTER 1824

Residual Stresses

- Internal stresses
- Caused by misfit
 - Type I

Bent bar:

- Type III

10th Oxford School on Neutron Scattering

MANCHESTER 1824 January 1824

General Overview: Diffraction methods available

10th Oxford School on Neutron Scattering

5

General Overview: Basic Principles: diffraction

10th Oxford School on Neutron Scattering

General Overview: Basic Principles: diffraction

 $\lambda = 2d \sin \theta$

- Diffraction measures <u>elastic lattice</u> <u>strain</u> as peak shifts
- Uses the poly-crystalline lattice planes as internal <u>strain</u> gauges

10th Oxford School on Neutron Scattering

-

Basic Principle

10th Oxford School on Neutron Scattering

Bragg scattering angle

10th Oxford School on Neutron Scattering

General Overview: Basic Principles

- Measured strains have to be converted into stresses! (Hooke's law) $\varepsilon = \frac{a a_0}{a_0} = \frac{d d_0}{d_0}$
- Often requires the unstrained lattice parameter a₀

$$\varepsilon_{11} = \frac{1}{E} \left[\sigma_{11} - \upsilon (\sigma_{22} + \sigma_{33}) \right]$$

e.g. isotropic triaxial along principal directions:

$$\varepsilon_{22} = \frac{1}{E} \left[\sigma_{22} - \upsilon (\sigma_{33} + \sigma_{11}) \right]$$

$$\varepsilon_{33} = \frac{1}{E} \left[\sigma_{33} - \upsilon (\sigma_{11} + \sigma_{22}) \right]$$

(Attention: not always this simple!)

10th Oxford School on Neutron Scattering

Why do we like neutrons?

- Part of the nucleus
- Same mass as protons
- Interesting wavelength/mass relationship:

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$
 Mass * Velocity

- "Thermal" neutrons: wavelength similar to those of X-rays 0.5-5Å similar to atomic spacing in solids
- Allows cubic gauge volumes!
- Relatively divergent beam !!

10th Oxford School on Neutron Scattering

11

MANCHESTER 1824

Neutron and Synchrotron Sources

Neutron:

- Reactor Sources (Fission)
 - Constant wavelength/Single Peak
- Accelerator Sources (Spallation)
 - Time-of-flight / Full Spectra / Rietveld

Synchrotron: • Monochromatic λ and white beam

10th Oxford School on Neutron Scattering

General Overview: Strain Scanning

Diffracting Gauge Volume: The volume element defined by the incident slits and diffraction slits

Neutron Diffraction

10th Oxford School on Neutron Scattering

13

nester nester

In comparison: Synchrotrons

- Synchrotron X-rays are energy X-rays (10-300keV) produced using "synchrotron" accelerators
- Main difference is the wavelength/energy
- Penetration depends on wavelength
- Very high intensity: •X-ra
 - •X-ray tube ~10E8
 - •Synchrotron ~10E15

10th Oxford School on Neutron Scattering

In comparison: Synchrotrons

Brilliance of the X-ray beams (photons/s/mm²/mrad²/0.1% BW)

- Synchrotron sources provide very intense (million times more flux than a lab source) high energy beams
- beam is highly parallel (10¹² times more brilliance than a lab source)
- at energies of 40-80keV penetrations of many mm possible
- small micron sized beams

10th Oxford School on Neutron Scattering

15

How does a Synchrotron work?

- X-rays produced by sending high energy (9GeV) electrons round a ring
 - radial acceleration causes emission of electromagnetic radiation
 - low energy radiation
 - much greater radiation if you insert devices which bend beam sharply
- X-ray beam produced by bending magnets, undulators and wigglers

10th Oxford School on Neutron Scattering

How does a Synchrotron work?

- Bending magnets create a wide spectrum of X-ray radiation
- Wigglers are more intense because bend beam many times
- Undulators bend the beam such that radiation interferes to create very high fluxes of certain wavelengths (determined by spacing and number of magnets)
- Highly parallel beam is produced

10th Oxford School on Neutron Scattering

17

Synchrotron Diffraction: Penetration depth (monochromatic beam)

General Overview: Strain Scanning

Diffracting Gauge Volume: The volume element defined by the incident slits and diffraction slits

High Energy Synchrotron X-ray Diffraction

10th Oxford School on Neutron Scattering

General Overview: Diffracting Gauge Volume

Volume element of the material in which the recorded scattering takes place

- Results in averaged d-spacing (powder diffraction - many grains)
- Defines the minimum spatial resolution of the method (around 1mm³ minimum gauge volume when using neutron diffraction)
- and type of residual stress resolved (macrostress or type-I usually. Type-II for two phase materials).
- Use the largest possible gauge volume for your specific issue in order to minimise counting time
 10th Oxford School on Neutron Scattering

- -

Near surface measurements

Neither peak shift (strain) nor measurement location is correct near a surface!

- Partial filling of sampling gauge gives a peak shift need to correct peak shift
- Translator records centre of gauge which is rarely the centre of gravity of diffracting region
 - need to correct gauge position

10th Oxford School on Neutron Scattering

Neutron Properties

- Neutrons are scattered by atomic nuclei (electrons and X-rays which are scattered by the electron cloud).
- Since the scattering is nuclear process, scattering amplitude varies greatly for different isotopes of same element and in a unpredictable manner from element to element. X-ray and electron scattering increase monotonically with atomic number

10th Oxford School on Neutron Scattering

23

MANCHE:

Neutron Properties

- Random Scattering length
- Penetration depth independent of energy/wavelength
- Electrically neutral
- Great penetration
- Low flux/intensity

Economic Depth	Al	Steel	Cu	Ti	Ni	SiC
mm	250	37	40	27	24	200

10th Oxford School on Neutron Scattering

toth Oxford School on Neutron Scattering

Research Reactors

- Fission in Reactor Core
 - Moderated neutrons
 - Monochromators in guide
- "Constant Wavelength"
- Many Facilities in Europe:
 - ILL, Saclay (Fr), FRM-2 (G), Petten (NL),

•••

Generally low flux except ILL (and FRM-2)

10th Oxford School on Neutron Scattering

Reactor Sources: Measurement of Strain

• Intensity as Function of diffraction angle $\Theta/2\Theta$

10th Oxford School on Neutron Scattering

27

MANCHESTER 1824

Single Wavelength at Reactor

Single-wavelength instrument: D1A at the ILL New instrument at ILL: SALSA

10th Oxford School on Neutron Scattering

Which peak gives us the pure macrostress response?

In-situ Loading on a neutron diffraction beam line

10th Oxford School on Neutron Scattering

29

SALSA, ILL

10th Oxford School on Neutron Scattering

Typical Diffractometer at Synchrotron (here ID31 at the ESRF)

10th Oxford School on Neutron Scattering

31

MANCHESTER Washington Washington Washington Washington Washington Washington Washington Washington

Diamond gauge volume

Time of flight method

- Sharp pulse leaves source
- High energy neutrons (short λ) travel faster and arrive first, low energy (long λ) last $\lambda = ht/ml$

where I is the path length and t time of flight

- a single stationary detector records whole diffraction spectrum as a function of time of flight
- neutrons travel at ~100m/s (speed of sound) λ = 2d sin θ with θ fixed I.e. λ proportional to d

10th Oxford School on Neutron Scattering

33

10th Oxford School on Neutron Scattering

Spallation Sources

- Pulsed/Continuous Spallation Sources
- "Whole-Spectrum (TOF)
- Facilities in Europe:
 - Pulsed: ISIS (UK)
 - POLDI (CH)
- More information $\lambda = 2d \sin \theta$

10th Oxford School on Neutron Scattering

fixed

35

Spallation Sources: Measurement of Strain

Strain: $\varepsilon = \frac{a - a_0}{a_0} = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{t - t_0}{t_0}$

Cubic gauge volume!

ENGIN-X at ISIS

10th Oxford School on Neutron Scattering

ENGIN-X, ISIS

QuickTime™ and a Microsoft Video 1 decompressor are needed to see this picture.

ENGIN-X, ISIS

10th Oxford School on Neutron Scattering

39

Energy Dispersive Synchrotron Diffraction

- Larger range of wavelengths available
- Energy/StrainResolution up to 10E-
- Higher penetration depth
- More elongated GV

$$\lambda = \frac{hc}{E} = \frac{12.39}{[keV]}$$

Strain

10th Oxford School on Neutron Scattering

Solid state joining of compressor, turbine discs and shafts

10th Oxford School on Neutron Scattering

41

10th Oxford School on Neutron Scattering

MANCHESTER 1824

How would you measure such a sample ? 143mm diameter test inertia friction welds

10th Oxford School on Neutron Scattering

43

10th Oxford School on Neutron Scattering

Case Study: Strain Mapping of a TIG weld

2D Map of Residual Strain about the End of a TIG Weld at 100µm Resolution

This map include 20,00 measurements and took 8 hours to acquire

10th Oxford School on Neutron Scattering

From Engineering to Physical Metallurgy

Single Crystal Anisotropy

Al, fcc

Single Crystal deformation

10th Oxford School on Neutron Scattering

47

Deformation heterogeneity

- Polycrystalline deformation is heterogeneous
- Single crystal elastic and plastic anisotropy
- Grain incompatibility during deformation results in intergranular stresses

10th Oxford School on Neutron Scattering

In-situ loading experiments

10th Oxford School on Neutron Scattering

49

10th Oxford School on Neutron Scattering

In-situ straining

Elastic strain/elastic + plastic strain

Stress/elastic strain

10th Oxford School on Neutron Scattering

51

Modelling deformation Micromechanics

- Dislocations, particles, grain boundaries (grain size), interstitial atoms
- Continuum mechanics:
 - Stresses and strains
 - Intergranular stresses
- Polycrystal plasticity
 - Mean filed methods, i.e. every grain has the same matrix
 - Finite element methods
 - · Each grain has a characteristic neighbourhood
 - Predict maximum and minimum stresses? 10th Oxford School on Neutron Scattering

53

MANCHESTE Chester Viscosity Approximation

Attempted General Guidelines: Neutrons

Neutrons:

- Non-destructive, full stress analysis because of cubic Gauge Volume (think three directions)
- •Good penetration depth due to neutrality
- Big bulky sample with low stress gradients
- Reasonable spatial resolution independent of atomic number
- •Steels, aluminium, nickel, copper zinc or related
- •Sample in harsh environment: furnace, cryo. etc.
- Phase analysis with Rietveld analysis

Not-so good: near surface or thin materials, titanium, boron cadmium, fast, high-spatial resolution, high instrumental resolution, hydrogenous materials

10th Oxford School on Neutron Scattering

Attempted General Guidelines: Synchrotrons

Synchrotrons:

- •Non-destructive, fast strain mapping, mostly single peak
- Light alloys (small atomic number)
- •High spatial resolution aluminium-titanium (think microns)
- •High instrumental resolution (small peak width)
- Near surface measurement because of analyser crystal
- •Bulk materials / larger atomic number with energy-dispersive method
- Polymers

Not so good at: Steels and higher, big bulky samples, harsh environments, diamond shaped ${\sf GV}$

10th Oxford School on Neutron Scattering