

CT101 Computing Systems

Dr. Bharathi Raja Chakravarthi Lecturer-above-the-bar

Email: bharathi.raja@universityofgalway.ie

University of Galway.ie

Complements of Numbers

- Complements are used in digital computers to simplify the subtraction operation and for logical manipulation.
- Simplifying operations leads to simpler, less expensive circuits to implement the operations.
- Two types of complements for each base-r system:
 - the radix complements (r's complement)
 - the diminished radix complements ((r 1)'s complement)
- Value of base r is substituted in the name, then
 - o 2's complement and 1's complement
 - 10's complement and 9's complement

Diminished Radix Complement

• (r - 1)'s complement of N is (rⁿ - 1) - N

```
Where,
N - number
r - base
n - digits
```

For decimal numbers,
 r = 10 and r - 1 = 9, 9's complement of N is

$$(10^{n} - 1) - N$$

• In this case, 10ⁿ represents a number that consists of a single 1 followed by n 0's.

10ⁿ - 1 is a represented by n 9's

Decimal 9's Complement

• For example, • if n = 4, $10^4 = 10,000$ and $10^4 - 1 = 9999_{10}$.

Here are some numerical examples:

❖ 9's complement of **546700**₁₀ is

999999₁₀
- 546700₁₀

453299₁₀

❖ 9's complement of **012398**₁₀ is

999999₁₀

- 012398₁₀

987601₁₀

Diminished Radix Complement

For binary numbers,

 $\mathbf{r} = \mathbf{2}$ and $\mathbf{r} - \mathbf{1} = \mathbf{1}$, so the 1's complement of N is

$$(2^n - 1) - N$$

• Again, 2ⁿ is represented by a binary number that consists of a 1 followed by n 0's.

2ⁿ - 1 is a binary number represented by n 1's

Diminished Radix Complement

- For example, if n = 4, $2^4 = (10000)_2$ and $2^4 1 = 15_{10} = (1111)_2$
- Thus, the 1's complement of a binary number is obtained by subtracting each digit from 1.
- when subtracting binary digits from 1, causes the bit to change from 0 to 1 or from 1 to 0

$$1 - 0 = 1$$
 or $1 - 1 = 0$

• Therefore, the 1's complement of a binary number is formed by changing 1's to 0's and 0's to 1's.

Binary 1's Complement

```
• For r = 2, N = 01110011_2, n = 8 (8 digits), we have: (r^n - 1) = 256 - 1 = 255_{10} or 111111111<sub>2</sub>
```

• The 1's complement of **01110011**₂ is then:

```
1111 1111 <sub>2</sub>
- 0111 0011<sub>2</sub>
10001100<sub>2</sub>
```


Radix Complement

> r's complement of N is

 $\mathbf{r}^{\mathbf{n}} - \mathbf{N}$ for $\mathbf{N} \neq \mathbf{0}$ and $\mathbf{0}$ for $\mathbf{N} = \mathbf{0}$.

Where,

N - number

r - base

n - digits

Radix complement is obtained by adding 1 to the Diminished Radix Complement

$$r^n - N = [(r^n - 1) - N] + 1$$

Decimal 10's Complement

The 10's complement of decimal 2389 is

Decimal 10's Complement

For Example, 10's complement of 012398

Solve the problem

Find the 10's complement of 246700₁₀.

Solve the problem

Find the 10's complement of **246700**₁₀·

Binary 2's Complement

The 2's complement of binary 101100 is

Solve the problem

Find the 2's complement of 1101100₂·

Solve the problem

Find the 2's complement of 1101100₂·

Efficient 2's Complement

Given: an n-bit binary number:

$$a_{n-1} a_{n-2} ... a_{i+1} 10...00$$

Where for some digit position i, a_i is 1 and all digits to the right are 0, form the 2's complement value this way:

- ✓ Leave a_i equal to 1 (unchanged),
- ✓ Leave rightmost digits 0 (unchanged)
- ✓ Complement all other digits to the left of $a_i(0)$ replaces 1, 1 replaces 0)

The complement of the complement restores the number to its original value.

Note: the r's complement of N is $r^n - N$, so that the complement of the complement is $r^n - (r^n - N) = N$ and is equal to the original number.

Efficient 2's Complement

> First 1 from right

01101011100011100000

> Complement leftmost digits

10010100011100100000

Î-----Î

0110100111100 replaced 1001011000100 100000000000 unchanged 100000000000

Subtraction with Complements

Subtracting two n-digit unsigned numbers, M-N in base r:

1. Add the **M** to the **r's** complement of **N**.

$$M + (r^n - N) = (M - N) + r^n$$

- 2. If **M ≥ N**, the sum will produce an end carry, i.e., **r**ⁿ, which can be discarded to produce M N
- 3. If **M < N**, the sum does not produce an end carry. Apply r's complement on the sum & place a –ve sign in front.

$$r^n$$
 - (N - M) or r's complement of (N - M) -(r^n + (M-N))

2. Add the two: 543 + 877

3. Since $M \ge N$, we discard the carry. Ans. 420

Compute **1010100**₂ - **1000011**₂ M 1. 2's complement of 1000011₂: 1000011 0111101 2. Add the two: 1010100 10010001 3. Since $M \ge N$, we discard the carry. Ans. 0010001

Compute **1000011₂ - 1010100₂** 1. 2's complement of 1010100_2 : 1010100 0101100 2. Add the two: 1000011 + 0101100 1101111 No carry 3. Since M < N, Perform r's complement 0010001

Place –ve sign in front → Ans. - 0010001

Signed Binary Numbers

- Positive numbers and zero can be represented by unsigned n-digit, radix r numbers.
- We need a representation for negative numbers.
- To represent a sign (+ or -) we need exactly one more bit of information $(1 \text{ binary digit gives } 2^1 = 2 \text{ elements which is exactly what is needed}).$
- The most significant bit (MSB) is interpreted as a sign bit as shown below:

$$sa_{n-2} ... a_2 a_1 a_0$$

Where:

s = 0 for Positive numberss = 1 for Negative numbers

ai are 0 or 1

Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

Interpreting the Other Digits

Given n binary digits,

- the digit with weight 2(n-1) is the sign and
- the digits with weights 2(n-2) down to 2(0) represents 2(n-1) distinct elements.

There two popular ways to interpret the other digits:

- 1. Signed-Magnitude
- 2. Signed-Complement
 - a) Signed One's Complement
 - b) Signed Two's Complement

Signed-magnitude representation

Signed complement representation

Signed 1's complement representation of -9: 111 11 01001 1's complement of +9 denotes -ve

Signed 2's complement representation of -9:

Binary Codes

- A binary code represents text, computer processor instructions, or any other data using a two-symbol system.
- The two-symbol system used is often "0" and "1" from the binary number system.
- The binary code assigns a pattern of binary digits, also known as bits, to each character, instruction, etc.
- For example, a binary string of eight bits (which is also called a byte) can represent any of 256 possible values and can, therefore, represent a wide variety of different items.

Binary-Coded Decimal Code

- It is commonly known as BCD.
- BCD code is a weighted code, so in this code each digit is assigned a specific Weight according to its position.
- BCD code is also known as 8421 code.
- This is because 8,4,2, and 1 are the weights of the four bits of the BCD code.
- The weight of the LSB is 2^o or 1, next higher order 2¹ or 2 and next 2² or 4 and MSB is 2³ or 8.

Binary-Coded Decimal Code

- To represent 10 decimal digits, it is necessary to use atleast 4 binary bits.
- For each decimal digits (0 to 9) is represented by unique combination of bits
- So, there will be six unused or invalid combination (10 to 15) in BCD code.

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Decimal to BCD Number

$$(12)_{10} = (?)_2$$

$$(12)_{10} = (00010010)_{BCD}$$

BCD to Decimal number

$$(1100111)_{BCD} = (?)_{10}$$

$$(0110010110)_{BCD} = (67)_{10}$$

Solve the problem

Convert BCD to Decimal number $(0110010110)_{BCD} = (?)_{10}$

Solve the problem

Convert BCD to Decimal number $(0110010110)_{BCD} = (?)_{10}$

 $(0110010110)_{BCD} = (196)_{10}$

BCD Addition

$$(8)_{10} + (4)_{10} = (?)_{BCD}$$

$$(8)_{10} + (4)_{10} = (0001 \ 0010)_{BCD} = (12)_{10}$$

Gray Code

- Gray code is a non- weighted code and is a special case of unit- distance code.
- In unit distance code, bit patterns for two consecutive numbers differ in only one bit position. These codes are also called as cyclic codes
- The gray code is also called reflected code.

Gray Code

Gray Code	Decimal Equivalent	
0000	0	
0001	1 ←	_
0011	2 ←	
0010	3 ←	
0110	4	
0111	5 ←	
0101	6 ←	
0100	7	
1100	8 🗸	
1101	9	
1111	10 ←	
1110	11	
1010	12	
1011	13 ←	ノ
1001	14 ←	
1000	15 ←	

Other Decimal codes

Four difference binary codes for the Decimal digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

ASCII Character Code

- ASCII stands for American Standard Code for Information Interchange.
- ASCII code is the numerical representation of a characters.
- The table right shows the code for each character.

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	66	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	\mathbf{F}	\mathbf{V}	\mathbf{f}	V
0111	BEL	ETB	4	7	G	\mathbf{W}	g	\mathbf{W}
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	I	\mathbf{Y}	i	y
1010	LF	SUB	*	:	J	\mathbf{Z}	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	О	DEL

Error-Detecting Code

- When the digital information is transmitted from one circuit to another circuit an error may occur.
- This means the signal corresponding to 0 may change to 1 or vice-versa due to presence of noise.
- To maintain data integrity between transmitter and receiver, extra bit or more than one bit are added in the data.

Error-Detecting Code

- These extra bits allow the detection and sometimes the correction of error in the data.
- The data along with the extra bit/ bits form the code.
- Codes which allow only error detection are called error detecting codes and codes which allow error detection and correction are called error detecting and correcting codes.

Error-Detecting Code

Parity bit:

- It is an extra bit included with a message to make the total no. of 1s either odd or even.
- The message including the parity bit is transmitted and then checked at the receiving end for errors.
- An error is detected if the checked party does not correspond with the one transmitted.

References

- Computer Organization and Architecture Designing for Performance Tenth Edition by William Stallings
- Digital Design With an Introduction to the Verilog HDL FIFTH EDITION by M Morris, M. and Michael, D., 2013.

Thank you