

WAC OF Statistical Accounting & Management

ROLL NO. 22010042 Shaharyar

SAM WAC

What we want to know?

We want to estimate the future demand for company's products in UK by forecasting overall

sales of household goods in UK since we know that both are closely related. The estimation

of demand is important so that the company can decide if it is worth entering new market or

not.

Statistical tool to be used: Time series will be used because there is no other independent

variable related to overall sales is available to run the regression analysis, except time. Time

will act as proxy to cover other unknown variables.

Since seasonal patterns exist on initial look at data (Figure 1, Page 9), using multiplicative or

additive time series decomposition models would be suitable to first remove the effect of

seasonality from data. Then regression analysis can be run on the trend estimate.

Experiment for getting average household sales

What

Average household Sales

Who

Basic EOI: 1 month

How

Pick a month in database and check household sales

Once the data has been obtained, models can be developed.

I. Multiplicative model

Seasonal effects are removed first. Time series is deseasonalized by dividing each

observation by its corresponding seasonal index. If appropriate allowance can be made for

seasonal, trend and cyclic effects, then probabilistic forecast might be made. Then the

seasonal allowance is made in the end. The multiplicative model is

Y = T*C*S*I

Where

1

T = Trend estimate

C = Cyclical index

S = Seasonality index (Cyclical effect but for shorter period, less than a year)

I = Irregular effect

Since we are interested in estimating the forecast for only next year, cyclical effect will be ignored since it is long term.

Updated multiplicative model

Y = T*S*I equation 1

1. Moving average

A simple plot of sales against time showed that data has recurring pattern in sales within each year, patten of sales visible in each month.

So, a **12-month moving average** will be calculated. Moving average cancels out the effect of irregularity and seasonality. Since the average would contain 12 months, the differences in monthly sales pattern would tend to cancel out and not reflect in our sales. Unexplained variations in each month would tend to balance out over 12 months.

The first average would lie between 6 and 7 months, because 12 is an even number. The calculation of moving average illustrated in Exhibit 2 (PAGE 10).

2. Central Moving Average

Since the moving average corresponds to midway between 6 and 7 months, and so on. Central moving average is calculated for our average to correspond to the exact month.

For instance: since the first moving average corresponds to the point between 6 and 7 months, and second moving average corresponds to point between 7 and 8 months, the average of these two moving averages is located at exact 7th month observation.

The CMA calculations have been illustrated in exhibit 3 (Page 11).

As explained earlier how the central moving average smoothen out the effect of seasonal and irregular effects, CMA now represents only trend estimate and random variation.

3. Finding seasonal-irregular value

Since CMA = T in our equation 1, the effect of only seasonal-irregular factor can be calculated by dividing Y (that in this case is sales), by T. We are left with only seasonal-irregular effect.

$$\frac{\Upsilon}{T} = S * I$$

The reason for this exercise is by knowing the effect of seasonal-irregular effect, a permanent seasonal index can be derived. The calculation can be observed in exhibit 4 (Page 12).

4. Calculating Seasonal Index

To remove the irregular effect, the seasonal-irregular effect of each month is averaged out to obtain a value that shows only seasonal effect.

For instance, seasonal index of January would be calculated by averaging the seasonal-irregular effect values. Have a look at the exhibit 5 (PAGE 13) for calculations.

Month	Si	Interpretation
s		
Jan	0.96	The average retail sales of household goods in Jan will be 4% lower than
		trend estimate due to seasonality and irregular effects
Feb	0.87	The average household sales in Feb will be 13% lower than trend estimate
		due to seasonality and irregular effects
Mar	1.10	The average household sales in March will be 10% higher than trend
		estimate due to seasonality and irregular effects
Apr	0.91	The average household sales in April will be 9% lower than trend
		estimate due to seasonality and irregular effects
May	0.89	The average household sales in May will be 11% lower than trend
		estimate due to seasonality and irregular effects

Jun	1.07	The average household sales in June will be 7% higher than trend
		estimate due to seasonality and irregular effects
Jul	0.88	The average household sales in July will be 12% lower than trend
		estimate due to seasonality and irregular effects
Aug	0.87	The average household sales in Aug will be 13% lower than trend
		estimate due to seasonality and irregular effects
Sep	1.10	The average household sales in Sep will be 10% higher than trend
		estimate due to seasonality and irregular effects
Oct	0.93	The average household sales in Oct will be 7% lower than trend estimate
		due to seasonality and irregular effects
Nov	1.00	The average household sales in Nov will be equal to trend estimate
Dec	1.44	The average household sales in Dec will be 44% higher than trend
		estimate due to seasonality and irregular effects

5. De-seasonalizing the Time Series

Seasonal effect is removed so that linear regression model is not affected by seasonal effects too. Time series is deseasonalized by dividing each observation by its corresponding seasonal index.

$$\frac{Y}{s}$$
 = Desaonalized sales

Exhibit 6 (Page 14) shows the calculations for deseasonalized sales.

6. Identifying the trend

Regression analysis is run on this deseasonalized data to estimate the trend (which we had observed in earlier figure 1 in the start too).

The estimated regression equation for trend will be

$$T_t = b_0 + b_1 t$$

Where T = linear trend forecast, b_0 is intercept, b_1 is slope of trend line and t is time period. Time is independent variable. Its future data is available (we know the next month) and past data is available too. The regression run can be observed in exhibit 7 (Page 15). The equation comes out to be

T = 2437.184 + 2.32t

As we can see that F value of model is less than 0.05. So, model is significant. Furthermore, p value of independent variable t is less than 0.05, so it is significant too.

Interpretation: Every month, sales will be 2.32 times higher than past month sales, due to trend.

Since we are assuming that past is reasonably good indicator of future, trend projections for next year is developed, by simply putting the values for next periods starting from 181...

7. Developing a forecast

If assumed that past patterns will continue in the future, future values can be predicted by projecting individual parts and then combining the projections.

Trend component calculated in previous step is multiplied by seasonal index to get the final forecast. This is done by simply putting values in equation 1. **Exhibit 8 (PAGE 16) for reference.**

For instance, For Jan sale. The Trend estimate 2857 is multiplied by seasonal index 0.96 to get forecasted value of 2739.

Jan	2739.489
Feb	2477.492
Mar	3141.313
Apr	2605.621
May	2538.182
Jun	3055.695
Jul	2527.364
Aug	2510.396
Sep	3152.513
Oct	2688.323
Nov	2874.774
Dec	4139.07

II. Additive model

An additive model can also be used to handle both seasonality and trend. Like in multiplicative model, time series is decomposed in three components: trend T, seasonal S and irregular effects I.

An additive decomposition takes the following form

$$Y = T + S + I$$

The seasonality factor is catered by dummy variables for categories, which in our case are months in a year. So, we make N-1 dummy variables, which come out to be 11. Jan has been taken as base year.

The equation takes the following form

$$Y = b_0 + b_1 t + b_2$$
 FEB + b_3 MARCH + b_4 APRIL + b_5 MAY + b_6 JUNE + b_7 JULY + b_8 AUG + b_9 SEP + b_{10} OCT + b_{11} NOV + b_{12} DEC

Y= forecast of sales

Feb = 1 if time period corresponds to first month of year: 0 otherwise.

Similarly, for other dummy variables of other months.

t = time period, a month.

On running the regression, results can be observed in Exhibit 9 (Page 17). R square comes out to be 0.8 showing strong relationship between our independent variables and dependent variable. F value is less than 0.05, so model is significant.

B1 = 2.261, showing trend effect.

The seasonality for each month comes out to be:

Month	Seasonalit	Interpretation
S	У	
Jan	0	
Feb	-239.68	Sales in Feb will be 239.68 million pounds lower than sales in Jan, keeping other variables constant
Mar	369.873	Sales in March will be 369.873 million pounds higher than sales in Jan, keeping other variables constant
Apr	-131.155	Cannot be interpreted since its p value 0.08 is greater than significance level
May	-192.434	Sales in May will be 192.434 million pound lower than sales in Jan, keeping other variables constant
Jun	293.348	Sales in June will be 293.34 million pounds higher than sales in Jan, keeping other variables constant
Jul	-201.7	Sales in July will be 201.7 million pounds lower than sales in Jan, keeping other variables constant

Aug	-222.608	Sales in Aug will be 239.68 million pounds lower than sales in Jan, keeping
		other variables constant
Sep	371.178	Sales in September will be 371.178 million pounds higher than sales in Jan,
		keeping other variables constant
Oct	-58.443	Cannot be interpreted since its p value 0.445 is greater than 0.05
		significance level
Nov	103.016	Cannot be interpreted since its p value 0.179 is greater than 0.05
		significance level
Dec	1256.346	Sales in Feb will be 1256.34 million pounds higher than sales in Jan, keeping
		other variables constant

Putting the seasonality in the equation earlier, the equation becomes

Putting in 1 for the month we want the forecast, the next year forecast follows, as observed in exhibit 10 (Page 18).

Months	Sales forecast	Months	Sales
			forecast
Jan	2740.192	Jul	2552.058
Feb	2502.773	Aug	2533.411
Mar	3114.587	Sep	3129.458
Apr	2615.82	Oct	2702.098
May	2556.802	Nov	2865.818
Jun	3044.845	Dec	4021.409

III. Which method is better?

Additive model is better because. To compare we used Mean squared error. It is calculated by calculating the forecast error. Then squaring the forecast error by summing and dividing it by number of values. MSE for multiplicative model is 41688.28. (exhibit 11, Page 19) MSE for multiplicative model comes out to be 40970.93. (exhibit 12, Page 20)

The possible reason for additive model giving better result is that seasonal fluctuations in earlier periods are about the same as the fluctuations in later periods.

IV. Develop a logistic regression model to predict chances of the month to be December

What: Predict probability of month to be December based on amount of monthly household sales

Dependent variable is YES if month is December and No if some other month. So, we convert into binary 1 for December and 0 for other months.

Modeling

Logit
$$g = b0 + b1*x$$

Where logit g is natural log of odds in favor of y = 1

Where x is sales

Solving equation, probability comes to be

$$P(y=1) = \frac{e^g}{1 + e^g}$$

Running the logistic regression, exhibit 13 (Page 21), the chi-squared p value is less than 0.05, showing model is significant. The p value for sales is not significant at 0.05 significance level, but significant at 0.85 level.

$$P(y=1) = \frac{e^{-105.46 + 0.031x}}{1 + e^{-105.46 + 0.031x}}$$

Odd ratio

The odd ratio comes out to be 1.032. For a million-pound increase in overall household sales, the estimated odds of the month being Friday is 1.032 times higher.

Amount of retail sale for fixed probability of month being December

- By hit and trial, the amount of sales on 50% p comes out to be 3402. **Interpretation:** For a month having 3402 million pounds of sales, the probability of it being December is 50%
- By hit and trial, the amount of sales on 90% p comes out to be 3473. Interpretation:
 For a month having 3473 million pounds of sales, the probability of it being
 December is 90%

Appendix

Figure 1 Plot of average household sales over the years

Figure 2 Moving average

r#	Year	Month	Sales	MA	CMA
1	2004	Jan	1931.3	Ī	
2	2004	Feb	1884.0		
3	2004	Mar	2351.0		
4	2004	Apr	1881.6		
5	2004	May	1862.0		
6	2004	Jun	2466.1	=AVERAG	E(D2:D13)
7	2004	Jul	1972.2	AVERA	GE(number1
8	2004	Aug	1934.3	2232.4	2227.1
9	2004	Sep	2408.2	2245.	7 2239.0
10	2004	Oct	2117.9	2263.0	2254.3
11	2004	Nov	2281.2	2271.	2267.2
12	2004	Dec	3360.9	2270.	2271.0
13	2005	Jan	2141.1	2277.4	2273.9
14	2005	Feb	2013.0	2281.8	2279.6
15	2005	Mar	2509.5	2295.3	2288.5
16	2005	Apr	2089.1	2297.	2296.4
17	2005	May	1964.1	2299.2	2 2298.4
18	2005	Jun	2453.9	2306.5	2302.9
19	2005	Jul	2055.8	2314.0	2310.2
20	2005	Aug	1987.1	2321.0	2317.8
21	2005	Sep	2569.4	2328.0	2324.8
22	2005	Oct	2144.6	2328.8	3 2328.4
23	2005	Nov	2302.1	2337.:	2332.9
24	2005	Dec	3448.4	2346.0	2341.6
25	2006	Jan	2230.3	2350.0	2348.3
26	2006	Feb	2104.3	2364.0	2357.3
27	2006	Mar	2586.7	2370.5	2367.2
20	2000	A	2000 6	2202	2276 4

Figure 3 Central Moving Average

Sr#	Year	Month	Sales	MA	CMA
1	2004	Jan	1931.3		
2	2004	Feb	1884.0		
3	2004	Mar	2351.0		
4	2004	Apr	1881.6		
5	2004	May	1862.0	L	
6	2004	Jun	2466.1	2204.2	
7	2004	Jul	1972.2	2221.7	=AVERAGE(E7:E8)
8	2004	Aug	1934.3	2232.4	AVERAGE(number
9	2004	Sep	2408.2	2245.7	2239.0
10	2004	Oct	2117.9	2263.0	2254.3
11	2004	Nov	2281.2	2271.5	2267.2
12	2004	Dec	3360.9	2270.5	2271.0
13	2005	Jan	2141.1	2277.4	2273.9
14	2005	Feb	2013.0	2281.8	2279.6
15	2005	Mar	2509.5	2295.3	2288.5
16	2005	Apr	2089.1	2297.5	2296.4
17	2005	May	1964.1	2299.2	2298.4
18	2005	Jun	2453.9	2306.5	2302.9
19	2005	Jul	2055.8	2314.0	2310.2
20	2005	Aug	1987.1	2321.6	2317.8
21	2005	Sep	2569.4	2328.0	2324.8
22	2005	Oct	2144.6	2328.8	2328.4
23	2005	Nov	2302.1	2337.1	2332.9
24	2005	Dec	3448.4	2346.0	2341.6
25	2006	Jan	2230.3	2350.6	2348.3
26	2006	Feb	2104.3	2364.0	2357.3
27	2006	Mar	2586.7	2370.5	2367.2
28	2006	Apr	2098.6	2382.3	2376.4

Figure 4 Seasonal Irregular effect

Sr#	Year	Month	Sales	MA	CMA	Seasonal-irregula
1	2004	Jan	1931.3			
2	2004	Feb	1884.0			
3	2004	Mar	2351.0			
4	2004	Apr	1881.6			
5	2004	May	1862.0			
6	2004	Jun	2466.1	2204.2		
7	2004	Jul	1972.2	2221.7	2212.9	=D8 /F8
8	2004	Aug	1934.3	2232.4	2227.1	0.868523
9	2004	Sep	2408.2	2245.7	2239.0	1.075539
10	2004	Oct	2117.9	2263.0	2254.3	0.939504
11	2004	Nov	2281.2	2271.5	2267.2	1.006159
12	2004	Dec	3360.9	2270.5	2271.0	1.479941
13	2005	Jan	2141.1	2277.4	2273.9	0.941573
14	2005	Feb	2013.0	2281.8	2279.6	0.883051
15	2005	Mar	2509.5	2295.3	2288.5	1.096567
16	2005	Apr	2089.1	2297.5	2296.4	0.909759
17	2005	May	1964.1	2299.2	2298.4	0.854578
18	2005	Jun	2453.9	2306.5	2302.9	1.065588
19	2005	Jul	2055.8	2314.0	2310.2	0.889886
20	2005	Aug	1987.1	2321.6	2317.8	0.857329
21	2005	Sep	2569.4	2328.0	2324.8	1.105212
22	2005	Oct	2144.6	2328.8	2328.4	0.921082
23	2005	Nov	2302.1	2337.1	2332.9	0.986788
24	2005	Dec	3448.4	2346.0	2341.6	1.472664
25	2006	Jan	2230.3	2350.6	2348.3	0.949726
26	2006	Feb	2104.3	2364.0	2357.3	0.89267
27	2006	Mar	2586.7	2370.5	2367.2	1.092728
28	2006	Apr	2098.6	2382.3	2376.4	0.883111

Figure 5 Seasonal indexes

	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	Si	
Jan		0.941573	0.949726	0.988871	0.943643	1.122689	0.891915	0.928421	0.94206	0.939599	0.941782	1.156176	0.924251	0.822941	0.930033	=AVERAGE(E218:R218	3)
Feb		0.883051	0.89267	0.876412	0.899209	0.871126	0.874937	0.887856	0.874366	0.856621	0.870042	0.840487	0.819046	0.83943	0.844772	AVERAGE(number1,	[number2],
Mar		1.096567	1.092728	1.108585	1.105949	1.133672	1.08717	1.089566	1.112604	1.068805	1.110107	1.101192	1.059467	1.113622	1.087652	1.097692	
Apr		0.909759	0.883111	0.898339	0.926083	0.887724	0.926528	0.930003	0.895174	0.935093	0.914377	0.882678	0.901437	0.905787	0.940598	0.909764	
May		0.854578	0.863924	0.861353	0.882524	0.877218	0.898353	0.885203	0.878912	0.884031	0.891469	0.917904	0.891277	0.910222	0.900028	0.8855	
Jun		1.065588	1.0679	1.059102	1.061218	1.017383	1.049952	1.06567	1.062335	1.085697	1.095274	1.063243	1.045758	1.089115	1.084326	1.065183	
Jul	0.891188	0.889886	0.876691	0.873027	0.858078	0.858096	0.872912	0.893417	0.872796	0.856395	0.894129	0.880272	0.89551	0.91181		0.880301	
Aug	0.868523	0.857329	0.888062	0.871499	0.851523	0.861341	0.860888	0.873384	0.857191	0.883505	0.860551	0.894571	0.904461	0.898752		0.873684	
Sep	1.075539	1.105212	1.091067	1.075298	1.069185	1.112878	1.095374	1.126573	1.096739	1.09207	1.069141	1.098488	1.125162	1.115097		1.096273	
Oct	0.939504	0.921082	0.938232	0.916123	0.936985	0.953662	0.940792	0.942705	0.938239	0.915278	0.904349	0.924487	0.971134	0.934816		0.934099	
Nov	1.006159	0.986788	1.010885	1.002986	0.967151	1.029809	0.998093	1.031081	0.990407	0.990571	0.965492	0.991027	1.025771	0.976899		0.99808	
Dec	1.479941	1.472664	1.425156	1.431162	1.433657	1.446573	1.434574	1.397179	1.461223	1.450119	1.389765	1.447977	1.474568	1.357603		1.435869	

Figure 6 Deseasonalizing sales

Sr#	Year	Month	Sales	MA	CMA	Seasonal-ir	Desonalized sales
1	2004	Jan	1931.3				=D2/S218
2	2004	Feb	1884.0				2174.417
3	2004	Mar	2351.0				2141.73
4	2004	Apr	1881.6				2068.194
5	2004	May	1862.0				2102.803
6	2004	Jun	2466.1	2204.2			2315.146
7	2004	Jul	1972.2	2221.7	2212.9	0.891188	2240.317
8	2004	Aug	1934.3	2232.4	2227.1	0.868523	2213.907
9	2004	Sep	2408.2	2245.7	2239.0	1.075539	2196.702
10	2004	Oct	2117.9	2263.0	2254.3	0.939504	2267.348
11	2004	Nov	2281.2	2271.5	2267.2	1.006159	2285.56
12	2004	Dec	3360.9	2270.5	2271.0	1.479941	2340.66
13	2005	Jan	2141.1	2277.4	2273.9	0.941573	2233.002
14	2005	Feb	2013.0	2281.8	2279.6	0.883051	2323.355
15	2005	Mar	2509.5	2295.3	2288.5	1.096567	2286.197
16	2005	Apr	2089.1	2297.5	2296.4	0.909759	2296.359
17	2005	May	1964.1	2299.2	2298.4	0.854578	2218.1
18	2005	Jun	2453.9	2306.5	2302.9	1.065588	2303.751
19	2005	Jul	2055.8	2314.0	2310.2	0.889886	2335.393
20	2005	Aug	1987.1	2321.6	2317.8	0.857329	2274.368
21	2005	Sep	2569.4	2328.0	2324.8	1.105212	2343.732
22	2005	Oct	2144.6	2328.8	2328.4	0.921082	2295.94
23	2005	Nov	2302.1	2337.1	2332.9	0.986788	2306.554
24	2005	Dec	3448.4	2346.0	2341.6	1.472664	2401.577
25	2006	Jan	2230.3	2350.6	2348.3	0.949726	2326.022
26	2006	Feb	2104.3	2364.0	2357.3	0.89267	2428.704
27	2006	Mar	2586.7	2370.5	2367.2	1.092728	2356.53
28	2006	Apr	2098.6	2382.3	2376.4	0.883111	2306.75

Figure 7 Regression analysis

SUMMARY OUTPUT								
Regression Stat	tistics							
Multiple R	0.514529							
R Square	0.26474							
Adjusted R Square	0.260609							
Standard Error	202.1088							
Observations	180							
ANOVA								
8	df	SS	MS	F	ignificance	F		
Regression	1	2617992	2617992	64.09113	1.48E-13			
Residual	178	7270937	40847.96					
Total	179	9888929			1			
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.09
Intercept	2437.184	30.25457	80.55588	5.5E-142	2377.48	2496.888	2377.48	2496.888
Sr#	2.320987	0.289917	8.005694	1.48E-13	1.74887	2.893104	1.74887	2.893104

Figure 8 Developing final forecast

2000		21000		
180	2018	Dec	3437.2	
181	2019	Jan	=(2437.184+2.32*Sheet1!A182)*	S218
182	2019	Feb	2477.492	
183	2019	Mar	3141.313	
184	2019	Apr	2605.621	
185	2019	May	2538.182	
186	2019	Jun	3055.695	
187	2019	Jul	2527.364	
188	2019	Aug	2510.396	
189	2019	Sep	3152.513	
190	2019	Oct	2688.323	
191	2019	Nov	2874.774	
192	2019	Dec	4139.07	

Figure 9 Additive Time series Regression

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.905ª	.819	.806	208,9728

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	33074043.00	12	2756170.250	63.114	.000 ^b
	Residual	7292825.974	167	43669.617		
	Total	40366868.97	179			

a. Dependent Variable: Sales

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	2330.951	59.694		39.048	.000	
	Sr#	2.261	.300	.248	7.525	.000	
	Feb	-239.608	76.307	140	-3.140	.002	
Mar Apr	Mar	369.873	76.308	.216	4.847	.000	
	Apr	-131.155	76.311	077	-1.719	.088	
	May	-192.434	76.316	112	-2.522	.013	
	Jun	293.348	76.321	.171	3.844	.000	
July Aug Sep	July	-201.699	76.327	118	-2.643	.009	
	-222.608	76.335	130	-2.916	.004		
	Sep	371.178	76.344	.217	4.862	.000	
	Oct	-58.443	76.354	034	765	.445	
	Nov	103.016	76.365	.060	1.349	.179	
	Dec	1256.346	76.378	.733	16.449	.000	

a. Dependent Variable: Sales

b. Predictors: (Constant), Dec, Sr #, Jun, July, May, Aug, Apr, Sep, Mar, Oct, Feb, Nov

Figure 10 Sales forecast additive model

S#	Coeffecients		Sales forecast	
181	0	Jan	=2330.951 +2.261*	*J2+K2
182	-239.68	Feb	2502.773	
183	369.873	Mar	3114.587	
184	-131.155	Apr	2615.82	
185	-192.434	May	2556.802	
186	293.348	Jun	3044.845	
187	-201.7	Jul	2552.058	
188	-222.608	Aug	2533.411	
189	371.178	Sep	3129.458	
190	-58.443	Oct	2702.098	
191	103.016	Nov	2865.818	
192	1256.346	Dec	4021.409	

Figure 11 MSE multiplicative

,	AA	Z	Υ	X
	13205.87401727	-114.9	2478.349	2815.344
	16846.48104646	-129.8	2461.749	2817.664
	45304.09679002	-212.8	3091.473	2819.984
	53964.74118164	-232.3	2636.312	2822.304
	97792.34598415	-312.7	2819.201	2824.624
	345698.91987541	-588.0	4059.121	2826.944
	116763.89439256	-341.7	2712.795	2829.264
	94058.40452484	-306.7	2453.37	2831.584
	125737.37706313	-354.6	3110.754	2833.904
	39077.56346367	-197.7	2580.293	2836.224
	54776.17529572	-234.0	2513.53	2838.544
	80130.36803230	-283.1	3026.04	2840.864
	49078.36775351	-221.5	2502.856	2843.184
	73966.79291384	-272.0	2486.072	2845.504
	87433.06902418	-295.7	3121.993	2847.824
	52478.30951299	-229.1	2662.317	2850.144
	143861.83300215	-379.3	2846.987	2852.464
	438163.57396099	-661.9	4099.095	2854.784
	7420514.16435395			
	=AA182/178			

Figure 12 MSE additive

AG	AH	Al
2497.745	-134.3	18039.979282740
2479.097	-147.1	21650.665164723
3075.144	-196.5	38619.685917966
2647.783	-243.8	59425.626562639
2811.503	-305.0	93037.316307636
3967.093	-495.9	245950.978696802
2713.008	-341.9	116909.464198468
2475.661	-329.0	108227.748285620
3087.403	-331.2	109722.541161845
2588.636	-206.0	42445.389999384
2529.617	-250.1	62564.846811716
3017.66	-274.7	75455.986037801
2524.873	-243.6	59318.224554089
2506.225	-292.1	85334.672798580
3102.272	-276.0	76159.584404468
2674.911	-241.7	58406.834626004
2838.632	-370.9	137593.167416381
3994.222	-557.1	310322.294388324
		7292825.989230190
		=AI182/178

Figure 13 Logistic regression

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	98.514	1	.000
	Block	98.514	1	.000
	Model	98.514	1	.000

Model Summary

-2 Log		Cox & Snell R	Nagelkerke R	
Step likelihood		Square	Square	
1	4.747 ^a	.421	.966	

Estimation terminated at iteration number 13
 because parameter estimates changed by less than .001.

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 a	Sales	.031	.020	2.490	1	.115	1.032
	Constant	-105.467	67.292	2.456	1	.117	.000

a. Variable(s) entered on step 1: Sales.