

无人系统中的视觉SLAM

-融合环境与载体信息的方法

2019年03月31日浙江大学第二届视觉SLAM研讨会

邹丹平副教授,感知与导航所

面向无人系统的视觉SLAM系统

- 近年来,基于视觉的位姿估算技术发展极快,在众多领域取得应用
- 无人系统 无人车、无人机、移动机器人

面向无人系统的视觉SLAM 数据集

无人车 – Kitti (2012)

Fig. 1. Recording Platform. Our VW Passat station wagon is equipped with four video cameras (two color and two grayscale cameras), a rotating 3D laser scanner and a combined GPS/IMU inertial navigation system.

移动机器人 – Rawseeds (2014)

无人机 - Euroc (2016)

视觉SLAM发展历程

视觉SLAM发展现状

• 理论方法趋向成熟, 走向实际应用场景

通用视觉SLAM方法

面向实际应用场景的高度订制的视觉SLAM方法

视觉SLAM应用场景

- 应用场景要素
 - 环境
 - 高速道路、城市峡谷、商场、居家环境、野外、森林、山洞
 - 载体
 - 二维 无人车、服务机器人
 - 三维 无人机

融合环境+载体特性的视觉SLAM

■ 充分挖掘应用场景中的环境与载体特性,高度订制视觉SLAM系统

环境特性

- 曼哈顿世界
- 亚特兰大世界 (多曼哈顿世界)

典型视觉SLAM方法

绝大部分方案都基于点特征或者像素特征 - 图像中抽取特征点作为观测值,送入滤波器或者优化框架进行状态估计

人造环境中的几何结构特性

■ 不同于自然环境,人造环境中结构化特性明显

自然场景

街道场景

地下车库场景

室内场景

曼哈顿世界假设

- 1. 线条特征丰富
- 2. 具有方向性, 三个主方向: x, y, z

基于曼哈顿世界假设的视觉SLAM

- StructSLAM 结构线条视觉SLAM
 - 在一些纹理不够丰富的室内场景,线条特征比点特征更加可靠
 - 线条特征的方向性提升了位姿状态的可观测性(observability)

StructSLAM: Visual SLAM with Building Structure Lines

Zhou, Huizhong, Danping, Zou, et al. "StructSLAM: Visual SLAM with building structure lines." *Vehicular Technology, IEEE Transactions on* 64.4 (2015): 1364-1375. - Special session for indoor localization

曼哈顿世界假设

• 建筑存在多样性

亚特兰大世界-多曼哈顿世界假设

■ 将一个复杂的人造环境用多个局部曼哈顿世界逼近 每个局部曼哈顿世界由一个水平方向(ф)确定

一个曼哈顿世界

两个曼哈顿世界

三个曼哈顿世界

基于亚特兰大世界假设的视觉SLAM

- 基于亚特兰大世界假设的视觉惯性SLAM: StructVIO
- 主要贡献:
 - 1. 提出使用**多个曼哈顿世界**叠加的模型, 处理更加不规则的场景
 - 2. 采用**多状态滤波的视觉+惯性**紧耦合数学框架,并对特征处理进行进一步改进
 - 3. 一个室内外视觉惯性SLAM公开数据集

Zou, Danping, et al. "StructVIO: Visual-inertial Odometry with Structural Regularity of Manmade Environments." *arXiv preprint arXiv:1810.06796* (2018). (Accepted by IEEE Trans. on Robotics)

项目网址: http://drone.sjtu.edu.cn/dpzou/project/structvio.html

StructVIO - 技术细节

- 亚特兰大世界中结构线条表示
 - 线条参数表示法
 - 结构线条的投影方程
- 多状态紧耦合滤波框架设计
 - 状态定义
 - 多状态观测方程

- 滤波器前端
 - 结构线条初始化与三角化更新
 - 特征先验累积
 - 局部曼哈顿世界管理
 - 结构线条检测与跟踪
 - 结构线条分类
 - Outlier去除

坐标系定义

- 世界坐标系 {W}
 - Z轴与重力反方向一致
 - 坐标原点在起始点

- 局部曼哈顿世界 $\phi_i \in [0, \pi/2), i = 1, ..., N$
- 相机坐标系 {C}
 - Z轴方向与相机观察方向一致
 - X、Y轴方向与图像x, y轴保持一致
- 起始坐标系 $\{S\}$ 滑动曼哈顿世界坐标系
 - 原点与相机坐标系一致
 - 坐标轴与局部曼哈顿世界一致

亚特兰大世界中结构线条表示

■ 采用以相机为中心(Camera-centric)的特征表达方式

• 结构线条参数空间 - $\{L\}$ - 以相机光学中心为原点的坐标系,Z轴方向与线条方向保持一致

亚特兰大世界中结构线条表示

$$^{L}l_{p} = (a, b, 0)^{\mathrm{T}}$$

• 为了达到更好的线性化效果,我们采用反深度表示 Ll_p

$$^{L}l_{p} = (\theta, \rho, 0)^{\mathrm{T}}$$

$$\theta = \operatorname{atan2}(b, a)$$
$$\rho = 1/\sqrt{a^2 + b^2}$$

亚特兰大世界中结构线条表示

• 通过旋转矩阵 $_{L}^{S}R$ 将参数空间的直线映射到局部曼哈顿世界的三个主方向:

亚特兰大世界下结构线条表示

• 通过水平旋转,将结构线条旋转从局部曼哈顿世界(ϕ_i)映射到全局世界 坐标系

$${}_{S}^{W}R(\phi_{i}) = \begin{bmatrix} \cos(\phi_{i}) & \sin(\phi_{i}) & 0\\ -\sin(\phi_{i}) & \cos(\phi_{i}) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

■ 再通过世界坐标系 $\{W\}$ 到相机坐标系 $\{C\}$ 的变换,

$$_{W}^{C}\tau = (_{W}^{C}R, {}^{C}p_{W})$$

转到当前相机坐标系。

结构线条的投影

■ 将参数空间中的Z轴方向与交点分别进行坐标转换

线条参数空间

$$^{im}l = (K^{-T})(^{C}l_{p} \times ^{C}v)$$
 $^{C}l_{p}, ^{C}v$

结构线条的投影

• 结构线条投影方程:

$$i^{m}l = \Pi(l, \phi_i, {}_{L}^{S}R, {}_{C}^{W}\tau)$$
$$i^{m}l = \Pi(l, \phi_i, {}_{L}^{S}R, {}_{C}^{I}\tau, {}_{I}^{W}\tau)$$

- 其中 $^{S}_{L}R$ 为常量(在识别线条方向之后)
- 根据投影方程设计滤波器,同时更新 $l, \phi_i, {}^W_I au$

视觉+惯性的紧耦合方法

关键帧优化方法

多状态约束滤波方法

多状态约束紧耦合方法

• 相比经典滤波方法:

特征点三维坐标解耦,将特征点状态估算排除在滤波器之外,降低了状态 维度,提升了处理大量特征点的能力。

• 相比关键帧优化方法:

- 逐帧更新和边缘化, 充分利用了持续时间较短的特征点轨迹(机会轨迹)
- 可单条轨迹更新,增强了灵活性,方便控制计算峰值
- 达到相近精度情况下,多状态约束方法计算成本较低。

采用多状态约束滤波框架,状态量定义如下

- 解耦 将观测模型从重投影误差变为位姿约束,消除滤波器对结构线条 参数的依赖
- 重投影误差观测模型:
 - k 时刻下结构线条 l 在图像中的投影:

$$l_k^{im} = \Pi(l, \phi, {}_L^S R, {}_C^W \tau)$$

- 图像上所观测的对应线段为 $s_a \leftrightarrow s_b$
- 重投影误差为两个短点到线条投影的直线距离(带符号)

$$r_k = D(s_a, s_b, l_k^{im})$$
$$= D(s_a, s_b, \Pi(l, \phi, L^S, R, C^W, \tau))$$

▪ EKF滤波的局部线性近似的观测模型

$$r_k = h_0 + J_l \delta l + J_\phi \delta \phi + J_{IC} \delta_C^I \tau + J_{WI_k} \delta_{I_k}^W \tau$$

■ 同一根结构线条从1到M时刻所有的观测模型

界方向

$$r_{1} = h_{0} + J_{l}\delta l + J_{\phi}\delta \phi + J_{IC}\delta_{C}^{I}\tau + J_{WI_{1}}\delta_{I_{1}}^{W}\tau$$

$$\vdots$$

$$r_{k} = h_{0} + J_{l}\delta l + J_{\phi}\delta \phi + J_{IC}\delta_{C}^{I}\tau + J_{WI_{k}}\delta_{I_{k}}^{W}\tau$$

$$\vdots$$

$$r_{M} = h_{0} + J_{l}\delta l + J_{\phi}\delta \phi + J_{IC}\delta_{C}^{I}\tau + J_{WI_{M}}\delta_{I_{M}}^{W}\tau$$

$$z = H\delta l + H_{\phi}\delta \phi + H_{CI}\delta_{C}^{I}\tau + H_{WI}[\delta_{I_{1}}^{W}\tau \cdots \delta_{I_{M}}^{W}\tau]$$
线条 局部曼 相机IMU 1~M时刻的IMU 参数 哈顿世 相对变换 位姿

$$z = H_l \delta l + H_{\phi} \delta \phi + H_{CI} \delta_C^I \tau + H_{WI} [\delta_{I_1}^W \tau \cdots \delta_{I_M}^W \tau]$$

$$z^{(0)} = H_{\phi}^{(0)} \delta \phi + H_{CI}^{(0)} \delta^C x_I + H_{WI}^{(0)} [\delta_{I_1}^W \tau \cdots \delta_{I_M}^W \tau],$$

- 观测方程与
 - ▶ 1. 局部曼哈顿世界朝向
 - 2. IMU与摄像头的相对位姿
 - 3. IMU的历史位姿(该结构线条可见时间范围)

■ 公开数据集测试 (Euroc)

(a) Machine hall

V2_03_difficult

■ 公开数据集测试 (Euroc)

Dataset	OKVIS[5]		VINS[6](v	w/o loop)	StructVIO		
Dataset	RMSE	Max.	RMSE	Max.	RMSE	Max.	
MH_01_easy	0.308	0.597	0.157 ²	0.349	0.079^{1}	0.251	
MH_02_easy	0.407	0.811	0.181^{2}	0.533	0.145^{1}	0.267	
MH_03_medium	0.241	0.411	0.196^{2}	0.450	0.103^{1}	0.271	
MH_04_difficult	0.363	0.641	0.345^{2}	0.475	0.130^{1}	0.286	
MH_05_difficult	0.439	0.751	0.303^{2}	0.434	0.182^{1}	0.358	
V1_01_easy	0.076^{2}	0.224	0.090	0.201	0.060^{1}	0.180	
V1_02_medium	0.141	0.254	0.098^{1}	0.334	0.130^{2}	0.260	
V1_03_difficult	0.240	0.492	0.183^{2}	0.376	0.090^{1}	0.263	
V2_01_easy	0.134	0.308	0.080^{2}	0.232	0.045^{1}	0.140	
V2_02_medium	0.187	0.407	0.149^{2}	0.379	0.066^{1}	0.157	
V2_03_difficult	0.255^{2}	0.606	0.268	0.627	0.110^{1}	0.231	

RMSE-Rooted Mean Squared Error

- 公开数据集测试 (Euroc)
 - Machine hall有更强的结构性,StructVIO性能提升明显

(a) Machine hall

(b) Vicon room

• 使用Google Tango平板自采数据集(16组),微电子楼、软件学院、机动学院、每组行走5~10分钟,覆盖室内外,光照变化剧烈。

■ 真值部分采用vicon动作捕获系统,部分采用二维码

起始时间段: s

对齐起始段: $T^* = \arg\min_{T} \sum (\|T(p^t) - g_s^t\|^2)$

结束时间段: e

计算结束段RMSE与Max误差:

$$RMSE = \sqrt{\frac{1}{|e|} \sum_{t \in e} ||(T(p^t) - g_e^t)|^2} \qquad Max. = \max |T(p^t) - g_e^t|^2}$$

• 比较方法: OKVIS, VINS, Project Tango, Point-only, Point-line, StructVIO

Seq. Name	Traveling Dist. [m]	OKVIS[5]		VINS (6) (w/o loop)		Project Tango		Point-only		Point+Line		StructVIO	
		RMSE	Max.	RMSE	Max.	RMSE	Max.	RMSE	Max.	RMSE	Max.	RMSE	Max
Soft-01	315.167	6.702	9.619	4.861	6.688	5.715	8.181	2.153 ²	2.728	2.262	2.842	1.931 ¹	2.437
Soft-02	438.198	4.623	6.713	2.713	4.086	4.238	6.226	3.905	5.243	1.468^{2}	2.026	1.429^{1}	1.984
Soft-03	347.966	4.505^{2}	6.223	7.270	9.832	167.825	228.630	6.515	8.119	8.618	10.790	0.325^{1}	1.020
Soft-04	400.356	3.993	5.784	28.667	75.479	2.453	3.544	1.550^{1}	2.028	4.051	5.262	1.722 ²	2.241
Mech-01	340.578	3.627	4.745	2.452	3.260	1.948 ²	2.726	3.298	3.961	4.323	5.181	0.909 ¹	1.165
Mech-02	388.548	3.079	4.195	3.570	4.754	1.596^{2}	2.217	1.663	2.108	2.317	2.927	0.779^{1}	1.022
Mech-03	317.974	3.875	5.324	4.682	9.113	4.220	5.781	2.384^{2}	3.020	4.193	5.272	1.161^{1}	1.532
Mech-04	650.430	-	-	3.002	8.592	1.915	5.808	1.785	4.663	1.425^{2}	3.729	0.742 ¹	1.940
MicroA-01	257.586	2.485	3.382	0.654 ²	1.148	45.599	61.058	2.849	3.505	2.189	2.721	0.6421	1.225
MicroA-02	190.203	3.428	5.186	14.222	57.172	1.145^{1}	1.692	1.964	2.514	1.723^{2}	2.207	2.089	2.661
MicroA-03	388.730	0.078	0.779	1.800^{1}	2.578	4.400	6.253	3.824	5.169	3.072	4.232	1.884^{2}	2.892
MicroA-04	237.856	6.136	8.532	0.994^{2}	1.765	55.200	75.318	2.056	2.897	2.406	2.879	0.350 ¹	0.448
MicroB-01	338.962	2.898	4.025	1.856 ²	2.944	38.197	50.572	7.084	8.576	7.337	8.913	1.477 ¹	1.902
MicroB-02	306.316	2.240	3.490	1.030^{2}	2.431	5.660	8.652	2.521	3.714	3.197	4.610	0.470^{1}	0.799
MicroB-03	485.291	-	-	2.132	3.368	2.009^{2}	2.960	6.490	8.978	4.507	6.301	0.445^{1}	0.675
MicroB-04	357.251	4.064	6.481	1.332^{2}	2.068	13.962	22.028	5.078	7.713	1.977	3.074	0.473 ¹	0.777
Mean Drift Err.(%) Median Drift Err.(%)		1.078% 0.781%		1.410% 0.538% ²		6.180% 0.900%		0.957% 0.559%		0.956% ² 0.570%		0.292% ¹ 0.176% ¹	

• 软件学院场景(Soft-02)

■ 微电子楼场景(MicroA-04)

20

10 0

-20

-30

■ 机动学院场景 (Mech-04)

-60 -50 -40 -30 -20

okvis

Х

> 20

-20

• 其它测试

Seq. Name	Atlata world		Manhattan world	
	RMSE	Max.	RMSE	Max.
Mech-01	0.909	1.165	1.144	1.524
Mech-02	0.779	1.022	1.286	1.061
Mech-03	1.161	1.532	2.029	1.211
Mech-04	0.742	1.940	1.822	2.193
Soft-01	1.931	2.437	2.896	2.397
Soft-02	1.429	1.984	3.092	4.149
Soft-03	0.325	1.020	3.352	4.236
Soft-04	1.722	2.241	3.178	4.120

曼哈顿世界vs多曼哈顿世界

未使用特征信息累积

- 论文地址 (https://arxiv.org/abs/1810.06796)
- 软件以及数据集已在网上公布

http://drone.sjtu.edu.cn/dpzou/project/structvio/structvio.html

载体特性

- 车辆运动特性
 - 轮速计
 - 速度与水平朝向信息
 - 非完整性运动约束
 - 体坐标系下侧向与垂直方向速度为零
- 旋翼无人机空气动力学特性

• 旋翼无人机动力学原理

$$F_i = \alpha \omega_i^2$$

▪ Blade flapping现象 – 螺旋桨平移时,在螺旋桨平面收到额外的阻力

Wang, Rongzhi, Danping Zou, etc. "An aerodynamic model-aided state estimator for multi-rotor uavs." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2164-2170. IEEE, 2017.

Sartori, Daniele, Danping Zou, etc. "A Revisited Approach to Lateral Acceleration Modeling for Quadrotor UAVs State Estimation." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5711-5718. IEEE, 2018.

 在体坐标系下(Body frame),每个螺旋桨在螺旋桨平面所受的额外阻力 与移动方向相反,可由如下式子进行近似计算

■ 因此单个螺旋桨在无人机移动情况下所产生的力:

$$F_i' = -\alpha \omega_i^2 \mathbf{k} - \lambda \omega_i \mathbf{v}^{\perp}$$

▶ 无人机整体受力

$$m\dot{\boldsymbol{v}} = \sum_{i} F_{i}' + mG$$

$$m\dot{\boldsymbol{v}} = \sum_{i} (-\alpha\omega_{i}^{2}\boldsymbol{k} - \lambda\omega_{i}\boldsymbol{v}^{\perp}) + mG$$
世界坐标系转机体坐标系
$$\boldsymbol{v} = R\boldsymbol{v}^{b}$$

$$\dot{\boldsymbol{v}} = RG^{b} \quad (R = [\boldsymbol{i}\,\boldsymbol{j}\,\boldsymbol{k}])$$

$$\dot{\boldsymbol{v}}^{b} = \begin{bmatrix} G_{x}^{b} - \mu v_{x} - (\omega_{y}v_{z}^{b} - \omega_{z}v_{y}^{b}) \\ G_{y}^{b} - \mu v_{y} - (\omega_{z}v_{x}^{b} - \omega_{z}v_{z}^{b}) \\ G_{z}^{b} - a_{z} - (\omega_{x}v_{y}^{b} - \omega_{y}v_{x}^{b}) \end{bmatrix}$$

$$(a_{z} = \sum_{i} \frac{\alpha\omega_{i}^{2}}{m}, \mu = \sum_{i} \frac{\lambda\omega_{i}}{m})$$

 加速计测量比力(Special force – 注:加速计实际测量的是非引力加速度, 理想状态自由落体加速计测量为零)

$$\dot{\boldsymbol{v}}^b = \begin{bmatrix} G_x^b - \mu v_x - (\omega_y v_z^b - \omega_z v_y^b) \\ G_y^b - \mu v_y - (\omega_z v_x^b - \omega_z v_z^b) \\ G_z^b - a_z - (\omega_x v_y^b - \omega_y v_x^b) \end{bmatrix}$$

$$\tilde{a}_x \approx -\mu v_x$$

$$\tilde{a}_y \approx -\mu v_y$$

$$\tilde{a}_z \approx -a_z$$

• 结合旋翼无人机空气动力学的状态估计方法

Wang, Rongzhi, Danping Zou, etc. "An aerodynamic model-aided state estimator for multi-rotor uavs." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2164-2170. IEEE, 2017.

Sartori, Daniele, Danping Zou, etc. "A Revisited Approach to Lateral Acceleration Modeling for Quadrotor UAVs State Estimation." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5711-5718. IEEE, 2018.

总结

- 根据应用场景深度订制是视觉SLAM未来研究方向之一
- 深入挖掘应用场景的环境与载体特性对提升视觉SLAM的性能有很大帮助
- 根据不同应用,仍需进一步研究:
 - 几何语义SLAM
 - 复杂运动模式回归预测

