Features

• Wide Vin 5 to 60VDC

• High power density (LxWxH = 12.19x12.19x3.75)

 Wide operating temperature -40°C to 100°C at full load

- Efficiency up to 97%, no need for heat-sinks
- 6-sided shielding
- Thermally and EMI enhanced 25 pad LGA package
- Low profile

RPMH-1.5

1.5 Amp Single Output

Description

Power

Module

The RPMH-1.5 series is a wide input voltage, 1.5A non-isolated switching regulator power module. The module accepts up to 60VDC input and provides a trimmable output from 2.6 up to 28VDC and comes complete with a full set of features including adjustable output, on/off control, and power good signals. The ultra-compact module has a profile of only 3.75mm, but with an efficiency of up to 97%, the device can operate at full load in ambient temperatures as high as +100°C and with power derating up to 105°C without forced air cooling. The package is complete with 6-sided shielding for optimal EMC performance and excellent heat management.

Selection (Guide					
Part Number	Input Voltage Range ⁽¹⁾ [VDC]	Output Voltage [VDC]	Vout Adjust Range [VDC]	Output Current max. ⁽²⁾ [A]	Efficiency typ. full load [%]	Max Capacitive typ. Load ⁽³⁾ [mF]
RPMH3.3-1.5	5 - 60	3.3	2.64 - 3.63	1.5	73	31.2
RPMH5.0-1.5	7 - 60	5	4 - 5.5	1.5	80	21.2
RPMH12-1.5	14 - 60	12	7.2 - 13.2	1.5	88	8.1
RPMH15-1.5	17 - 60	15	9 - 16.5	1.5	90	5.9
RPMH24-1.5	26 - 60	24	15 - 28	1.5	92	3.4

Notes:

Note1: Input voltage must be higher than desired output voltage. Refer to "Buck mode" and "100% duty cycle mode (5)"

Note2: Refer to "Derating Graph"

Note3: Max. Capacitive typ. Load is tested at nominal input and full resistive load. Max. rated output current within 1s

Model Numbering

Notes:

Note4: Add suffix "-CT" for tube packaging. For more details refer to "PACKAGING INFORMATION" without suffix, standard tape and reel packaging

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

Parameter	Cor	Condition			Тур.	Max.
Internal Input Filter					•	capacitor
	Buck mode	5Vout 12Vout	12Vout 15Vout		48VDC	60VDC
Input Voltage Range	100% duty cycle mode (5)	Vout= Vin - Vdrop	3.3Vout 5Vout 12Vout 15Vout 24Vout	3VDC		5VDC 7VDC 14VDC 17VDC 26VDC
Absolute Maximum Input Voltage						66VDC
Input Current	nom. Vin= 48VDC	5Vout 12Vout	3.3Vout 5Vout 12Vout 15Vout 24Vout (1.33A)		140mA 194mA 420mA 512mA 750mA	
Quiescent Current (Vin nominal)	nom. Vin= 48VDC	· ·	3.3Vout, 5Vout 12Vout, 15Vout		35µА 85µА 190µА	
Quiescent Current (max. Duty Cycle)	nom. Vin= 48VDC	5Vout 12Vout	3.3Vout 5Vout 12Vout 15Vout		750µА 60µА 130µА 160µА 262µА	
Internal Power Dissipation	nom. Vin= 48VDC	5Vout 12Vout	3.3Vout 5Vout 12Vout 15Vout		1.75W 1.81W 2.14W 2.27W 2.16W	2.12W 2.22W 2.62W 2.72W 2.66W
Output Voltage Trimming	refer to "OUTPUT \	OLTAGE TRIMMING	"	2.64VDC		28VDC
Minimum Dropout Voltage (Vdrop)	Vin min. = Vdrop + Vout	3.3Vout, 5Vothers	V out		1.5V/A 2V/A	
Minimum Load				0%		
Start-up Time	power up by us	sing CTRL function		7.2ms	12ms	20.5ms
Rise-time					8ms	
ON/OFF CTRL		DC-DC ON DC-DC OFF				1.22V <v<sub>CTRL<vin< td=""></vin<></v<sub>
Standby Current	Vin=12VDC nom. Vin=48VDC	DC-DC O		16µА	19µА 56µА	70μΑ
Internal Operating Frequency					1MHz	
Output Ripple and Noise (6)	20MHz BW	3.3Vou	t		70mVp-p	

Notes:

Note5: As input approaches output voltage set point, device enters maximum duty cycle mode. In 100% duty cycle mode, Vout equals Vin minus dropout voltage. Please refer to "Dropout Voltage vs. Load". Output capacitor required. Please refer to "Output Capacitor"

Note6: Measurements for Ripple and Noise are made with input EMC filter and output capacitors 22uF/50V MLCC for 12V, 15V, and 24V output voltage across output (low ESR)

continued on next page

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

RPMH3.3-1.5, and RPMH5.0-1.5 1.75 1.5 1.0 0.75 0.25 0.25

Output Capacitor

10 20 30 40 50 60 70 80 90 100

The RPMH requires MLCC output capacitor for normal operation (see below table)

Output Load [%]

Output Capacitance						
Vout _{nom}	C _{out}					
12VDC						
15VDC	22µF 50V X7R					
24VDC						

OUTPUT VOLTAGE TRIMMING

The RPMH-Series offers the feature of trimming the output voltage over a range between -20% to +10% for lower output voltages and from -40% to +10% for higher output voltages. This can be done by using external trim resistors. The values for the trim resistors in trim tables are according to standard E96 values; therefore, the specified voltage may slightly vary. Refer to "Selection Guide"

 $R_{\rm HI}$, $R_{\rm LO}$

Vout _{nom}	= nominal output voltage	[VDC]
Vout _{set}	= trimmed output voltage	[VDC]
R_{up}	= trim up resistor	$[\Omega]$
R _{down}	= trim down resistor	$[\Omega]$

= internal resistors

3.3VDC	100kΩ	
5VDC	100kΩ	
12VDC	100kΩ	
15VDC	100kΩ	
24VDC	100kO	

 R_{HI}

 R_{L0}

43.2kΩ

24.9kΩ 9.09kΩ

7.15kΩ

4.32kΩ

Vout_{nom}

Calculation:

$$\mathbf{R}_{up} = \frac{R_{HI} \times R_{LO} \times Vout_{nom}}{(Vout_{set} - Vout_{nom}) \times (R_{HI} + R_{LO})}$$

Practical Example RPMH3.3-1.5, trim up

$$\mathbf{R}_{up} = \frac{100 \text{k} \times 43.2 \text{k} \times 3.3}{(3.63 - 3.3) \text{x} (100 \text{k} + 43.2 \text{k})} = 301.676 \text{k}\Omega$$

$$\mathbf{R}_{up}$$
 according to E96 $\approx 301 \mathrm{k}\Omega$

$$\mathbf{R_{down}} = R_{HI} x \left[\frac{\text{(Vout_{set} - Vout_{nom}) x R_{LO} + Vout_{set} x R_{HI}}}{\text{(Vout_{nom} - Vout_{set}) x (R_{HI} + R_{LO})}} \right]$$

 $[\Omega]$

Practical Example RPMH3.3-1.5, trim down

$$\mathbf{R}_{\text{down}} = 100 \text{k x} \left[\frac{(2.64 - 3.3) \times 43.2 \text{k} + 2.64 \times 100 \text{k}}{(3.3 - 2.64) \times (100 \text{k} + 43.2 \text{k})} \right] = 249.162 \Omega$$

 R_{down} according to E96 $\approx 249k\Omega$

continued on next page

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

RPMH3.3-1.5

Trim up

Vout _{set} =	3.4	3.45	3.5	3.63	[VDC]
R_{up} (E96) \approx	1M	665k	499k	301k	[Ω]

Trim down

Vout _{set} =	3.1	3	2.8	2.64	[VDC]
R_{down} (E96) \approx	1M05	665k	365k	249k	[Ω]

RPMH5.0-1.5

Trim up

Vout _{set} =	5.1	5.3	5.5	[VDC]
R_{up} (E96) \approx	1M	332k	200k	[Ω]

Trim down

Vout _{set} =	4.7	4.5	4.3	4	[VDC]
R _{down} (E96) ≈	1M24	698k	475k	301k	[Ω]

RPMH12-1.5

Trim up

Vout _{set} =	12.4	12.6	12.8	13	13.2	[VDC]
R _{un} (E96) ≈	249k	165k	124k	100k	82.5k	[Ω]

Trim down

Vout _{set} =	10	9.6	9	8.5	8	7.7	7.2	[VDC]
R_{down} (E96) \approx	453k	357k	267k	215k	174k	154k	130k	[Ω]

RPMH15-1.5

Trim up

$Vout_{set} =$	15.5	15.7	15.9	16.1	16.3	16.5	[VDC]
R_{up} (E96) \approx	200k	143k	110k	90k9	76k8	66k5	[Ω]

Trim down

Vout _{set} =	14.5	14	13.5	13	[VDC]
R_{down} (E96) \approx	2M67	1M30	825k	604k	[Ω]

RPMH24-1.5

Trim up

Vout _{set} =	24.5	25	25.5	26	26.5	27	28	[VDC]
R_{up} (E96) \approx	200k	100k	66k5	49k9	40k2	33k2	24k9	[Ω]

Trim down

Vout _{set} =	20.1	19.6	18	17.6	17	16.5	[VDC]
R_{down} (E96) \approx	487k	422k	280k	261k	226k	205k	[Ω]

REMOTE SENSE

RW₁ ... wire losses +

 \mathbf{R}_{up} ... trim up resistor

R_{down} ... trim down resistor

The output voltage can be adjusted via the trim and sense functions. The maximum output voltage from trim and sense function combined is listed in the table below. Derating may be required when using trim and/or sense functions.

Vout _{nom}	Vout max.
3.3VDC	3.63VDC
5VDC	5.5VDC
12VDC	13.2VDC
15VDC	16.5VDC
24VDC	28VDC

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

REGULATIONS		
Parameter	Condition	Value
Output Accuracy		$\pm 2.0\%$ typ. / $\pm 4\%$ max.
Line Regulation	low line to high line, full load	±3.0% typ.
Load Regulation	10% to 100% load	0.8% typ.
Transient Response	25% load step change	100mVp-p
	recovery time	2ms

Sequencing Multiple Modules

To sequence multiple power module, the power good (PGOOD) pad and the CTRL pad may be used. In below schematic, the U2 starts after U1 (RPMHxx-1.5) reaches its set output voltage and the power good signal is set to high which then enables U2. After U2 reaches its set output voltage, it enables next module - until U(n).

Note that by default PGOOD pad is pulled high to internal Vcc (5 VDC) and CTRL of enabled modules are pulled up to Input Voltage. Accordingly, external pull-up and pull-down resistors (R1-R(n+2)) must be used to secure proper sequencing.

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

PROTECTIONS			
Parameter	Cond	dition	Value
Short Circuit Protection (SCP)	V _{FB} <	0.4V	hiccup mode, automatic recovery, 95-99ms
Short Circuit Input Current	without soft	t-start mode	15μΑ
		3.3Vout	135%
		5Vout	130%
Over Current Protection (OCP)	nom. Vin	12Vout	120%
		15Vout	110%
		24Vout	110%
Over Temperature Protection (OTD)	case temperature	DC-DC OFF	105°C min., auto restart after cool down
Over Temperature Protection (OTP)	(measured on tc point)	DC-DC ON	100°C typ.

ENVIRONMENTAL				
Parameter	Condition		Value	
Operating Temperature Range (7)	@ natural convection 0.1m/s (refer to "Derat	ing Graph")	-40°C to +100°C	
Maximum Case Temperature	measured on tc point (refer to "Dimension	Drawing")	+105°C	
Temperature Coefficient	@ +60°C T _{AMB}		0.63%/K	
Thermal Impedance (7)	natural convection 0.1m/s, horizontal (T _{cas}	e to T _{AMB})	12.8K/W typ.	
Operating Altitude	@ natural convection 0.1m/s		5000m	
Shock	MIL-STD-810G, Method 516.6, Procedure I		40g, 11ms, saw-tooth, 3 shocks ± per axis 3 axis; unit is operating	
SHOCK	MIL-STD-810G, Method 516.6, Procedure IV		drop on 50mm plywood or concrete 26 times from 1 meter	
Random Vibration	MIL-STD-810G, Method 514.6, Procedure I, Category 24		Category 24 - Figure 514.6E-1 - power spectral density = 0.04g²/Hz at 20Hz -1000Hz; -6dB/octave at 1000Hz - 2000Hz; 60 minutes x 3 axis; unit is operating during tests	
Moisture Sensitivity Level	non-condensing		MLS 1	
MTBF	according to MIL-HDBK-217F, G.B. @ full load +25°C +85°C		2696 x 10 ³ hours 995 x 10 ³ hours	

Notes:

Note7: tested with a RPMH-1.5-EVM-1 card 85.0x55.0mm 35µm copper, 4 layer

Derating Graph

(@ chamber and natural convection 0.1m/s)

continued on next page

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

SAFETY AND CERTIFICATIONS		
Certificate Type (Safety)	Report / File Number	Standard
Audio/video, information, and communication technology equipment. Safety requirements	designed to meet	EN62368-1
RoHS2		RoHS 2011/65/EU + AM2015/863
EMC Compliance	Condition	Standard / Criterion
Electromagnetic compatibility of multimedia equipment - emission requirements	with external components (refer to "EMC filtering sug-	EN55032, Class B

gestion" below)

EMC filtering suggestion according to EN55032

Component List Class B

U1	L1	C1	C2	C3
RPMH3.3-1.5	4.7μH 1.5A			-
RPMH5.0-1.5	180m Ω	3.3µF 100V X7R	2.2µF 100V X7R	-
RPMH12-1.5	5.6μΗ 1.7A 180mΩ	or X7S	2.2μι 1000 Χ/11	00
RPMH15-1.5	10μH 1.5A		3.3µF 100V X7R or	22μF 50V X7R
RPMH24-1.5	180m Ω	4.7μF 100V X7S	X7S	

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

DIMENSION AND PHYSICAL CHARACTERISTICS				
Parameter	Туре	Value		
	case	metal		
Material	PCB	FR4, (UL94 V-0)		
	solder pads	copper with electrolytic nickel-gold		
Dimension (LxWxH)		12.19 x 12.19 x 3.75mm		
Weight		1.0g typ.		

Dimension Drawing (mm)

tc	12.19 ±0.2	
12.19 ±0.5		

Pinning information

Pad #	Function	Description
A1, A2	Vin	Positive input voltage with respect to GND. Connect to a Vin plane for enhanced thermal performance
C1	CTRL	Active high: pull to GND to disable the device. Pull high or leave open to enable the device
A5, B5	Vout	Positive output voltage. Connect to a Vout plane for enhanced thermal performance
C5	Sense	Connect this pad to the load or directly to Vout. This pad must not be left floating
E5	Trim	Use this pad to set the output voltage (refer to "OUTPUT VOLTAGE TRIMMING" for different Vout)
E1, E2	NC	Not connected
D1	PGood	Output power good. High = VOUT at set level, Low = VOUT below nominal regulation. Sink current is about 0.1mA. It has a high impedance output ($100k\Omega$ connected to internal 5V Vcc). Leave floating if not used.
others	GND	Negative input voltage. Connect to GND plane(s) for enhanced thermal performance

tc = case temperature measuring point pad tolerance= ± 0.05 mm case tolerance= ±0.25mm

Recommended Footprint Details

Top View

Series

Specifications (@ Ta= 25°C, nom. Vin= 48VDC, full load, with output cap (5) after warm-up unless otherwise stated)

PACKAGING INFORMATION		
Parameter	Туре	Value
Packaging Dimension (LxWxH)	reel (diameter + width)	Ø177.8 x 30.4mm
	tape and reel (carton)	265.0 x 240.0 x 60.0mm
	tube ("-CT")	530.0 x 30.3 x 19.2mm
Packaging Quantity	tape and reel	200pcs
	tube ("-CT")	30pcs
Tape Width		24mm
Storage Temperature Range		-55°C to +125°C
Storage Humidity	non-condensing	95% RH max.

The product information and specifications may be subject to changes even without prior written notice. The product has been designed for various applications; its suitability lies in the responsibility of each customer. The products are not authorized for use in safety-critical applications without RECOM's explicit written consent. A safety-critical application is an application where a failure may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The applicant shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.