Problem psi

$$R_0, X \vdash_{\mathrm{ipl}} \tilde{g}$$
?

Not Proved

Clauses in R_0 : 24

Clauses in X: 9

Atoms: 22

Calls to the SAT-solver: 31

Added clauses (= YES answers): 7

Generated worlds (= NO answers): 24

Worlds in the countermodel: 6

Problem description

Flat clauses R_0 (24):

- 1. $\tilde{p}_1 \wedge \tilde{p}_2 \rightarrow \tilde{p}_0$
- 2. $\tilde{p}_3 \rightarrow p_3$
- 3. $\tilde{p}_3 \rightarrow p_4$
- 4. $\tilde{p}_4 \rightarrow p_2$
- 5. $\tilde{p}_4 \rightarrow \tilde{p}_3$
- 6. $\tilde{p}_5 \rightarrow p_1$
- 7. $\tilde{p}_5 \rightarrow \tilde{p}_4$
- 8. $\tilde{p}_0 \rightarrow \tilde{p}_5$
- 9. $\tilde{p}_7 \wedge \tilde{p}_8 \rightarrow \tilde{p}_6$
- 10. $\tilde{p}_6 \rightarrow \tilde{p}_5$
- 11. $\tilde{p}_{10} \wedge \tilde{p}_{11} \rightarrow \tilde{p}_9$
- 12. $\tilde{p}_9 \rightarrow \tilde{p}_5$
- 13. $\tilde{p}_{13} \wedge \tilde{p}_{14} \to \tilde{p}_{12}$
- 14. $\tilde{p}_{12} \rightarrow \tilde{p}_5$
- 15. $p_0 \rightarrow \tilde{g}$

- 16. $p_1 \wedge p_2 \wedge p_3 \wedge p_4 \rightarrow \tilde{g}$
- 17. $p_3 \rightarrow \tilde{p}_{11}$
- 18. $p_1 \rightarrow \tilde{p}_{13}$
- 19. $p_4 \to \tilde{p}_{10}$
- 20. $p_2 \rightarrow \tilde{p}_8$
- 21. $p_3 \rightarrow \tilde{p}_7$
- 22. $p_1 \rightarrow \tilde{p}_2$
- 23. $p_4 \rightarrow \tilde{p}_{14}$
- 24. $p_2 \rightarrow \tilde{p}_1$

Implication clauses X (9):

- $\lambda_0 = (p_4 \to p_3) \to \tilde{p}_{11}$
- $\lambda_1 = (p_4 \to p_1) \to \tilde{p}_{13}$
- $\lambda_2 = (p_3 \to p_4) \to \tilde{p}_{10}$
- $\lambda_3 \,=\, (p_3 \to p_2) \to \tilde{p}_8$
- $\lambda_4 = (p_2 \to p_3) \to \tilde{p}_7$
- $\lambda_5 = (p_2 \to p_1) \to \tilde{p}_2$
- $\lambda_6 = (p_1 \to p_4) \to \tilde{p}_{14}$
- $\lambda_7 = (p_1 \to p_2) \to \tilde{p}_1$
- $\lambda_8 = (p_0 \to \bot) \to \tilde{g}$

Added clauses (7):

- $\varphi_0 = \tilde{p}_{10} \to \tilde{p}_8$
- $\varphi_1 = \tilde{p}_{14} \to \tilde{p}_1$
- $\varphi_2 = \tilde{p}_{11} \to \tilde{p}_{13}$
- $\varphi_3 \, = \, \tilde{p}_7 \to \tilde{p}_2$
- $\varphi_4 = \tilde{p}_1 \to \tilde{p}_{10}$
- $\varphi_5 = \tilde{p}_{13} \to \tilde{p}_{11}$
- $\varphi_6 = \tilde{p}_8 \rightarrow \tilde{p}_{10}$