Mathematical Logic

Lecture 3, Thursday April 20, 2023 Ari Feiglin

3.1 Soundness and Completeness

We prove some corollaries of the deduction theorem:

Corollary 3.1.1:

For any well-formed formulas φ and ψ of \mathcal{L} :

(1) $\varphi \to \psi, \varphi \to \mu \vdash \varphi \to \mu$

(2) $\varphi \to (\psi \to \mu), \psi \vdash \varphi \to \mu$

Proof:

(1) By the deduction theorem, this is equivalent to proving

$$\varphi \to \psi, \varphi \to \mu, \varphi \vdash \mu$$

Since we have φ and $\varphi \to \psi$, by modus ponens we have ψ and since $\psi \to \mu$, we have μ as required.

Again, this is equivalent to proving

$$\varphi \to (\psi \to \mu), \psi, \varphi \vdash \mu$$

And by modus ponens we have $\psi \to \mu$ and again by modus ponens we have μ as required.

Lemma 3.1.2:

For any well-formed formulas φ and ψ of \mathcal{L} , the following are theorems:

(2) $\varphi \to \neg \neg \varphi$

(3) $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$

(4) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$

(5) $(\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$

(6) $\varphi \to (\neg \psi \to \neg (\varphi \to \psi))$

(7) $(\varphi \to \psi) \to ((\neg \varphi \to \psi) \to \psi)$

Proof:

(1) $\neg \neg \varphi \to \varphi$: (i) $(\neg \varphi \to \neg \neg \varphi) \to ((\neg \varphi \to \neg \varphi) \to \varphi; \text{ Axiom 3 (A3) for } \varphi \text{ and } \neg \varphi.$

- (ii) $\neg \varphi \rightarrow \neg \varphi$; Lemma 2.2.3.
- (iii) $(\neg \varphi \rightarrow \neg \neg \varphi) \rightarrow \varphi$; (i), (ii), Corollary 3.1.1 (2).
- (iv) $\neg\neg\varphi \rightarrow (\neg\varphi \rightarrow \neg\neg\varphi)$; **A1** for $\neg\varphi$ and $\neg\neg\varphi$.
- (v) $\neg \neg \varphi \rightarrow \varphi$; (iii), (iv), Corollary 3.1.1 (1).
- (2) $\varphi \to \neg \neg \varphi$
 - (i) $(\neg \neg \neg \varphi \rightarrow \neg \varphi) \rightarrow ((\neg \neg \neg \varphi \rightarrow \varphi) \rightarrow \neg \neg \varphi)$; **A3** for φ and $\neg \neg \varphi$.
 - (ii) $\neg \neg \neg \varphi \rightarrow \neg \varphi$; Part (1).
 - (iii) $(\neg \neg \neg \varphi \rightarrow \varphi) \rightarrow \neg \neg \varphi$; (i), (ii), modus ponens (MP).
 - (iv) $\varphi \to (\neg \neg \neg \varphi \to \varphi)$; **A3** for φ and $\neg \neg \varphi$.
 - (v) $\varphi \rightarrow \neg \neg \varphi$; (iii), (iv), Corollary 3.1.1 (1).
- (3) $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$
 - (i) $\neg \varphi$; hypothesis (meaning we are showing $\neg \varphi \vdash \varphi \rightarrow \psi$).
 - (ii) φ ; hypothesis.
 - (iii) $\varphi \to (\neg \psi \to \varphi)$; **A1**.
 - (iv) $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$; **A1**.
 - (v) $\neg \varphi \rightarrow \psi$; (ii), (iii), MP.
 - (vi) $\neg \psi \rightarrow \neg \varphi$; (i), (iv), MP.
 - (vii) $(\neg \psi \rightarrow \neg \varphi) \rightarrow ((\neg \psi \rightarrow \varphi) \rightarrow \psi)$; **A3**.
 - (viii) $(\neg \psi \rightarrow \varphi) \rightarrow \psi$; (vi), (vii), MP.
 - (ix) ψ ; (v), (viii), MP.
 - (x) $\varphi, \neg \varphi \vdash \psi$; (i)–(ix).
 - (xi) $\neg \varphi \vdash \varphi \rightarrow \psi$; (x), deduction theorem.
 - (xii) $\neg \varphi \rightarrow (\varphi \rightarrow \psi)$; (xi), dedcution theorem.
- $(4) \quad (\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$
 - (i) $\neg \psi \rightarrow \neg \varphi$; hypothesis.
 - (ii) $(\neg \psi \rightarrow \neg \varphi) \rightarrow ((\neg \psi \rightarrow \varphi) \rightarrow \psi); \mathbf{A3}.$
 - (iii) $\varphi \to (\neg \psi \to \varphi)$; **A1**.
 - (iv) $(\neg \psi \rightarrow \varphi) \rightarrow \psi$; (i), (ii), MP.
 - (v) $\varphi \rightarrow \psi$; (iii), (iv), Corollary 3.1.1 (1).
 - (vi) $\neg \psi \rightarrow \neg \varphi \vdash \varphi \rightarrow \psi$; (i)–(v).
 - (vii) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$; (vi), deduction theorem.
- $(5) \quad (\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$
 - (i) $\varphi \to \psi$; hypothesis.
 - (ii) $\neg \neg \varphi \rightarrow \varphi$; part (1).

(iii)
$$\neg \neg \varphi \rightarrow \psi$$
; (i), (ii), Corollary 3.1.1 (1).

(iv)
$$\psi \rightarrow \neg \neg \psi$$
; part (4).

(v)
$$\neg \neg \varphi \rightarrow \neg \neg \psi$$
; (iii), (iv), Corollary 3.1.1 (1).

(vi)
$$(\neg \neg \varphi \rightarrow \neg \neg \psi) \rightarrow (\neg \psi \rightarrow \neg \varphi)$$
; part (4).

(vii)
$$\neg \psi \rightarrow \neg \varphi$$
; (v), (vi), MP.

(viii)
$$\varphi \to \psi \vdash \neg \psi \to \neg \varphi$$
; (i)–(vii).

(ix)
$$(\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$$
; (viii), deduction theorem.

(6)
$$\varphi \to (\neg \psi \to \neg (\varphi \to \psi))$$

(i)
$$\varphi \to \psi, \varphi \vdash \psi$$
; this is clear by MP.

(ii)
$$\varphi \to ((\varphi \to \psi) \to \psi)$$
; (i), deduction theorem (twice).

(iii)
$$((\varphi \to \psi) \to \psi) \to (\neg \psi \to \neg(\varphi \to \psi))$$
; (ii), part (5).

(iv)
$$\varphi \to (\neg \psi \to \neg (\varphi \to \psi))$$
; (ii), (iii), Corollary 3.1.1 (1).

(7)
$$(\varphi \to \psi) \to ((\neg \varphi \to \psi) \to \psi)$$

(i)
$$\varphi \to \psi$$
; hypothesis.

(ii)
$$\neg \varphi \rightarrow \psi$$
; hypothesis.

(iii)
$$(\varphi \to \psi) \to (\neg \psi \to \neg \varphi)$$
; part (5).

(iv)
$$\neg \psi \rightarrow \neg \varphi$$
; (i), (iii), MP.

(v)
$$(\neg \varphi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \neg \varphi)$$
; part (5).

(vi)
$$\neg \psi \rightarrow \neg \neg \varphi$$
; (ii), (v), MP.

(vii)
$$(\neg \psi \rightarrow \neg \neg \varphi) \rightarrow ((\neg \psi \rightarrow \neg \varphi) \rightarrow \psi)$$
; **A3**.

(viii)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow \psi$$
; (vi), (vii), MP.

(ix)
$$\psi$$
; (iv), (viii), MP .

(x)
$$\varphi \to \psi, \neg \varphi \to \psi \vdash \psi$$
; (i)–(ix).

(xi)
$$(\varphi \to \psi) \to ((\neg \varphi \to \psi) \to \psi)$$
; (x), deduction theorem (twice).

Definition 3.1.3:

We define the following connectives as shorthands:

(1)
$$(\varphi \wedge \psi)$$
 for $\neg(\varphi \rightarrow \neg \psi)$.

(2)
$$(\varphi \lor \psi)$$
 for $(\neg \varphi) \to \psi$.

(3)
$$(\varphi \leftrightarrow \psi)$$
 for $(\varphi \to \psi) \land (\psi \to \varphi)$, meaning $\neg((\varphi \to \psi) \to \neg(\psi \to \varphi))$.

Exercise 3.1.4:

Show the following:

- $(1) \quad \varphi \to (\varphi \lor \psi)$

- $(2) \quad \varphi \to (\psi \lor \varphi)$ $(3) \quad (\varphi \lor \psi) \to (\psi \lor \varphi)$ $(4) \quad (\varphi \land \psi) \to \varphi$ $(5) \quad (\varphi \land \psi) \to \psi$ $(6) \quad (\varphi \to \mu) \to \left((\psi \to \mu) \to (\varphi \lor \psi) \to \mu \right) \right)$ $(7) \quad \left((\varphi \to \psi) \to \varphi \right) \to \varphi$
- (8) $\varphi \to (\psi \to (\varphi \land \psi))$

Our goal now is to show that a well-formed formula of \mathcal{L} is a theorem if and only if it is a tautology in the sense of statement forms. The first part of this is simple.

Theorem 3.1.5 (Soundness Theorem):

Every theorem of \mathcal{L} is a tautology.

Proof:

It can be shown with relative ease that every axiom of \mathcal{L} is a tautology. Given some theorem φ , we must have a proof of length n, which we induct on. For $n=1, \varphi$ is an axiom. Otherwise, either φ is an we must have that $\psi \to \varphi$ and ψ are well-formed formulas in the proof. Thus they can both be proven in fewer than n steps and by our inductive hypothesis are thus tautologies. Therefore since ψ is always true and $\psi \to \varphi$ is always true, we can infer that φ is always true (a tautology). This last step takes place entirely in the world of statement forms/boolean functions.

What this means is that propositional calculus is sound: everything that can be proven is true. We know continue with the other half.

Lemma 3.1.6:

Let φ be a well-formed formula and B_1, \ldots, B_k the statement letters which occur in φ . For some assignment of truth values to these statement letters, define B'_j to be B_j if it is true, and $\neg B_j$ if it is false. Then let φ' be φ if it is true under this assignment, and $\neg \varphi$ if φ is false. Then

$$B_1',\ldots,B_k'\vdash\varphi'$$

Proof:

We induct on n, the number of occurrences of \neg or \rightarrow in φ (we assume that φ is written without shorthands). If n=0, then φ is just a single statement letter $\varphi=B_1$ then this reduces to $B_1\vdash B_1$ and $\neg B_1\vdash \neg B_1$ which are both trivial.

Otherwise, we split into two cases:

For the first case, $\varphi = \neg \psi$. Then ψ has fewer than n occurrences of \neg and \rightarrow . Under the given truth value assignments, we again have two possibilities: if ψ is true then φ is false. Thus ψ' is ψ and $\varphi' = \neg \varphi = \neg \neg \psi$. By our inductive hypothesis

$$B'_1,\ldots,B'_n \vdash \psi' = \psi$$

By lemma 3.1.2 (2), $\psi \rightarrow \neg \neg \psi$ so

$$B_1', \dots, B_n' \vdash \neg \neg \psi = \varphi'$$

as required. And if ψ is true, then φ is true and ψ' is $\neg \psi$ and φ' is φ , so $\psi' = \varphi$. And by our inductive hypothesis:

$$B'_1,\ldots,B'_n\vdash\psi'=\varphi$$

as required.

For the second case, $\varphi = \psi \to \mu$. We have three possibilities here: if ψ is false then φ takes on the value true. So $\varphi' = \neg \varphi$ and $\varphi' = \varphi$, so by our inductive hypothesis:

$$B'_1,\ldots,B'_n \vdash \neg \psi$$

and by **lemma 3.1.2** (3), $\neg \psi \rightarrow (\psi \rightarrow \mu)$, so

$$B_1', \dots, B_n' \vdash \psi \rightarrow \mu = \varphi$$

as required. And if μ is true then again φ takes the value true. So $\mu' = \mu$ and $\varphi' = \varphi$ and so by our inductive hypothesis

$$B_1',\ldots,B_n'\vdash\mu$$

and by A1 $\mu \to (\psi \to \mu)$, so $\mu \to \varphi$ so by modus ponens

$$B_1',\ldots,B_n'\vdash\varphi$$

as required. The final possibility is that ψ is true and μ is false, then φ is false. So $\psi' = \psi$ and $\mu' = \neg \mu$ and $\varphi' = \neg \varphi = \neg (\psi \to \mu)$, thus by our inductive hypothesis

$$B_1',\ldots,B_n'\vdash\psi,\neg\mu$$

By **lemma 3.1.2** (6) $\psi \to (\neg \mu \to \neg (\psi \to \mu))$, thus by applying modus ponens twice we have $\neg (\psi \to \mu) = \neg \varphi = \psi'$ as required.

Theorem 3.1.7 (Completeness Theorem):

If a well-formed formula φ of \mathcal{L} is a tautology, then it is a theorem of \mathcal{L} .

Proof:

Let B_1, \ldots, B_n be the statement letters in φ . For any truth value assignment to these letters, we have $B'_1, \ldots, B'_n \vdash \varphi$ since $\varphi' = \varphi$ as φ is always true. So when $B_n = \text{true}$ we have $B'_1, \ldots, B_n, B_n \vdash \varphi$ and when $B_n = \text{false}$ we have $B'_1, \ldots, B'_{n-1}, \neg B_n \vdash \varphi$, so by the deduction theorem

$$B'_1, \ldots, B'_{n-1} \vdash (B_n \to \varphi), (\neg B_n \to \varphi)$$

for any truth value assignment to B_1, \ldots, B_{n-1} . Thus by **lemma 3.1.2** (7) we have $(B_n \to \varphi) \to ((\neg B_n \to \varphi) \to \varphi)$ and so applying modus ponens twice gives

$$B_1',\ldots,B_n'\vdash\varphi$$

We can continue inductively and after n steps we have

$$\vdash \omega$$

as required.

Corollary 3.1.8:

If ψ is an expression involving the signs \neg , \rightarrow , \vee , \wedge , and \leftrightarrow which is a shorthand for a well-formed formula φ of \mathcal{L} , then ψ is a tautology if and only if φ is a theorem of \mathcal{L} .

Proof:

Since ψ is a tautology if and only if φ is (it remains an exercise to show that the definitions of the shorthands are logically equivalent to the connectives) by the **Soundness Theorem**, if φ is a theorem then it is a tautology and therefore so is ψ . And if ψ is a tautology then so is φ and therefore φ is a theorem by the **Completeness Theorem**.

6