# DISTRIBUTED SYSTEMS PROJECTDOCUMENTION



MARIA MIRNIC, NAZIA NAZARI, MICHAEL REITER

DATE: 18.06.2023

# Documentation

| Name               | Feature                    | Date        | Time Investment | Description                            |
|--------------------|----------------------------|-------------|-----------------|----------------------------------------|
| Nazia              | Data Collection            | 11.05.2023  | 2 hours         | Worked on                              |
|                    | Dispatcher                 |             |                 | Database                               |
|                    |                            |             | - •             | Connection                             |
| Michael            | FrontEnd                   | 11.05.2023  | 2 hours         | Started Frontend (JavaFX)              |
| Maria              | Station Data<br>Collector  | 11.05.2023  | 2 hours         | Started Queue for StationDataCollector |
| Nazia              | Data Collection Dispatcher | 19.05.2023  | 2 hours         | Worked on Queue<br>(Sender & Receiver) |
| Michael            | Springboot                 | 19.05.2023  | 2 hours         | Worked on                              |
|                    | Application                |             |                 | Springboot                             |
|                    |                            |             |                 | Application                            |
| Maria              | Data Collection            | 19.05.2023  | 2 hours         | Worked on Data                         |
|                    | Receiver                   |             |                 | Collection Receiver                    |
| Maria              | Station Data<br>Collector  | 05.06.2023  | 5 hours         | StationDataCollector Done              |
| Nazia              | Station Data               | 12.06.2023  | 2 hours         | Finished Station                       |
| INAZIA             | Collector -                | 12.00.2023  | 2 110013        | Data Collector.                        |
|                    | Testing                    |             |                 | Started writing unit                   |
|                    | resting                    |             |                 | tests.                                 |
| Nazia              | Documentation              | 15.06.2023  | 3 hours         | Created                                |
| 110210             | & UML                      | 13.00.12023 | 3 110 413       | Documentation &                        |
|                    | Diagram                    |             |                 | UML Diagram                            |
| Maria              | Data Collection            | 15.06.2023  | 5 hours         | Finished Data                          |
|                    | Receiver                   |             |                 | Collection Receiver                    |
| Nazia              | Testing & UML              | 17.06.2023  | 3 hours         | Corrected UML &                        |
|                    |                            |             |                 | Testing                                |
| Nazia              | Testing                    | 18.06.2023  | 1 hour          | Finished testing                       |
| Maria &<br>Michael | Hotfixes                   | 18.06.2023  | 4 hours         | Worked on some hotfixes                |

# Divison of Responsibilty

| Name           | Responsibility             |
|----------------|----------------------------|
| Michael Reiter | Spring Boot App            |
| Michael Reiter | Java FX App                |
| Michael Reiter | PDF-Generator              |
| Michael Reiter | Unit Tests                 |
|                |                            |
| Maria Mirnic   | Station Data Collector     |
| Maria Mirnic   | Data Collection Receiver   |
|                |                            |
| Nazia Nazari   | Data Collection Dispatcher |
| Nazia Nazari   | Unit Tests                 |
| Nazia Nazari   | UML Diagram                |

# Database



# **UML** Diagram



## Set Up, Installation & User Guide

Welcome to the User Guide for the Fuel Data Station Collector. This guide provides detailed instructions on how to use it.

#### Set up and installation:

First step: Install docker and run the database with docker.

Second step: Open the project.zip in IntelliJ and run following classes:

Main (pdfgen), HelloApplication(Client), Main(Station DataCollector), RestAPIApplication (Rest API), Main (DataCollectionDispatcher), Main (DataCollectionReceiver)

Third step: Enter a customerid in the FrontEnd

Fourth step: Click on "Gather Data" in the FrontEnd

Fifth step: Click on "Show Invoice" in the FrontEnd

Now an invoice pdf should open.

#### **Key Features:**

As a user you have to enter your customerid in the Frontend. This way you can print your invoice. First you have to click on "Gather Data", then on "Show Invoice".

## Lessons Learned

## Cleary defined requirements:

It is essential to have clearly defined requirements. A thorough requirement analysis helps understand the project's scope. Furthermore, it helps understand the structure and the functionality of the project. Additionally, it is important to not only know the functionality and structure of the own service but the whole project in order to see the bigger picture.

#### Division of responsibility:

It is important to divide the project into smaller steps and split them up among the group. This also includes defining what each group member is responsible for, not only including the implementation, but also the documentation. One should also not forget to clarify the dependencies among the steps. This way, a group member is aware how the other members depend on him and essentially does not take too long to do his part.

## Architecture and design:

Before the implementation of the project, one should establish a solid architecture and a suitable design. In this case, frameworks such as Spring Boot, JavaFX, Docker were already predetermined, but for future projects it is important to define these factors beforehand.

## Continuous tests:

During the implementation, the code should be tested continuously. This can be done by running the code and comparing the results to the desired outcome. One can also write unit tests to test certain functions independently.

## <u>Time-management:</u>

Before the group starts implementing the program, it is important to plan the project. The plan should not only include the time for the implementation but also time for the documentation and a time buffer. One needs to consider that installing and configuring the frameworks can take a lot of time. Sometimes the frameworks do not work and need to be reinstalled. These are some issues that should be considered in the timetable.

# Unit test descisions

| Unit test                            | Description                                                                                                             | Reason                                                                                 |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| DataCollectionReceiver - checkKWHSum | This test checks whether the sum of the KWH is formed correctly                                                         | This is an essential part of our project. Without this, the invoice is not correct.    |
| StationDataCollector – checkMessage  | This message checks whether the message is correctly formed. It should consist of kwhSum;customerid                     | This test is important, because it creates the message for the DataCollectionReceiver. |
| APIController –<br>testPost          | Mocks the Send class, then compare the expected and actual results to ensure that the API controller behaves correctly. | To ensures that the post() method behaves correctly.                                   |

# Link to Github

https://github.com/michi-1/ProjectDisys