Astr 1010 Problem Set #2 (Turn in!-9/10/02)

- 1. Write in scientific notation:
 - a) 9,169,540,000
 - **b**) 0.00007376
- 2. Do the following calculations on your (scientific) pocket calculator.

a)
$$\frac{(3.36 \times 10^6)(6.85 \times 10^{-14})}{(4.60 \times 10^{-8})}$$

b)
$$(8.99 \times 10^9) \frac{(1.609 \times 10^{-19})^2}{(4.66 \times 10^{-10})^2}$$

- 3. Unit conversion. Express:
 - a) 7.17×10^{13} seconds in years
 - b) 4.2 light-years in miles
- **4.** The radius of the earth's orbit around the sun is 1.50×10^{11} m.
- a) Find the length of the earth's path around the sun (the circumference of its orbit); remember that the circumference is given by $2\pi r$).
- **b)** The earth travels this distance in one year. (What is one year, in seconds?) Find the speed of the earth in its orbit in units of $\frac{m}{s}$. (Use the formula d = vt.)
- **5.** The planet Jupiter has a large moon called Europa which has a mass of 4.80×10^{22} kg and a radius of 1569 km. Find the (average) density of Titan in units of $\frac{g}{cm^3}$. (Recall that for a sphere $V = \frac{4}{3}\pi R^3$ and Density= $\frac{M}{V}$.) How does the answer compare with the density of the earth and of Saturn?

On all problem sets you need to show the steps that gave your answer.

$$1 \text{ kg} = 1000 \text{ g}$$
 $1 \text{ m} = 100 \text{ cm}$ $1 \text{ mile} = 1.609 \text{ km} = 5280 \text{ ft}$ $1 \text{ km} = 1000 \text{ m}$ $1 \text{ ly} = 9.46 \times 10^{12} \text{ km}$ $1 \text{ yr} = 3.156 \times 10^7 \text{ s}$