

Consider ways to lay matchesticks (of unit length) on the $n \times m$ grid in such a way that no end is "orphaned".

Figure 1: Two examples of a valid configurations on a 5×4 grid; the second has an "island" in the lower right corner.

Figure 2: All(?) examples of valid configurations of 3×3 grids with border, up to dihedral action.

Question. Let $a_{\ell}(n)$ be the number of configurations on the $\ell \times n$ grid. What is a general formula for $a_{\ell}(n)$? Related.

- 1. What if the matchsticks are of length k?
- 2. How does this generalize to a triangular/hexagonal lattice or to multiple dimensions?
- 3. What is the number of these configurations with rotational symmetry? Horizontal/vertical symmetry?
- 4. If such a configuration is chosen uniformly at random, what is the number of expected regions? (e.g. the first example has 4 interior regions.)
- 5. What if no gridpoint can have degree 0? Degree 2? 3? 4?
- 6. What if the entire border must be drawn?
- 7. What if the graph must be connected (i.e. cannot have an "island".)
- 8. What if instead of horizontal/vertical lines, diagonals are allowed? All edges have integer slope? Edges don't intersect except at vertices?
- 9. How many k-ominoes fit in a "tube" of height m? Snuggly?

References.

The number of $2 \times n$ grids appears to be given by A093129.

The number of $3 \times n$ grids is given by A301976.