

Human Perception & VR Technology

Adjunct Prof. Tiago Araújo

tiagodavi70@ua.pt

Human Action Cycle

Perception

Percentage of neurons in brain devoted to each sense

- Sight 30%
- Touch 8%
- Hearing 2%
- Smell < 1%

Over 60% of brain involved with vision in some way

Other senses

Proprioception = sense of body position
• what is your body doing right now

Equilibrium = balance

Acceleration

Nociception = sense of pain

Temperature

Satiety

Thirst

Micturition

Amount of CO2 and Na in blood

Human Visual System

Human Visual System

Human Visual System

Color Perception

photoreceptors: 3 types of cones (color vision), rods (luminance only, night vision)

Color Perception

Field of View

Field of View of Right Eye

Vergence/Accommodation Demo

Visual Acuity

Gestalt principles

Optical Illusions

Optical Illusions

Summary - Human Visual System

visual acuity: 20/20 is ~1 arc min

field of view: ~200° monocular, ~120° binocular, ~135° vertical

resolution of eye: ~576 megapixels

temporal resolution: ~60 Hz (depends on contrast, luminance)

dynamic range: instantaneous 6.5 f-stops, adapt to 46.5 f-stops

colour: everything in CIE xy diagram

depth cues in 3D displays: vergence, focus, (dis)comfort

accommodation range: ~8cm to ∞, degrades with age

The perfect Retina Display

FOV: 200-220° x 135° needed (both eyes)

120° stereo overlap

Acuity: ~0.4 arc min (1 pixel/0.4 arc min)

Pixel Resolution: ~30,000 x 20,000 pixels

200*60°/0.4 = 30,000, 135*60°/0.4 = 20,250

Pixels/inch: > 2190 PPI @ 100mm (depends on distance to screen)

Update rate: 60 Hz

The biggest challenge:

• bandwidth compress and transmit huge amount of data drive and operate display pixels

Comparison

Aspect	Human Eyes	HTC Vive
FOV	200° x 135°	110° x 110°
Stereo Overlap	120°	110°
Resolution	30,000 x 20,000	2,160 x 1,200
Pixels/inch	>2190 (100mm to screen)	456
Update	60 Hz	90 Hz

Depth Perception

Motion Parallax

Stereo Pair

Depth Cues

Depth Cues

Audio

Spatial Audio

https://www.youtube.com/watch?v=yUlnMbxTuY0

Audio

Demo

Key Technologies for VR Systems

Visual Display

Stimulate visual sense

Audio/Tactile Display

Stimulate hearing/touch

Tracking

- Changing viewpoint
- User input

Input Devices

Supporting user interaction

HMD Key Features

Lens

- Focal length, Field of View
- Occularity, Interpupillary distance
- Eye relief, Eye box

Display

- Resolution, contrast
- Power, brightness
- Refresh rate

Ergonomics

- Size, weight
- Wearability

Distortion

HTC Vive

Distortion

Large Displays

Room Scale Projection

• CAVE, multi-wall environment

Dome projection

- Hemisphere/spherical display
- Head/body inside

Vehicle Simulator

Simulated visual display in windows

CAVE Demo

Tactile

Tracking

Tracking: measuring the position and orientation of an object relative to a known frame of reference

VR Tracker: technology used in VR to measure the real time change in a 3D object position and orientation

Trackers

Mechanical

Physical Linkage

Electromagnetic

Magnetic sensing

Inertial

Accelerometer, MEMs

Acoustic

Ultrasonic

Optical

Computer Vision

Hybrid

Xsens

Physilog 5

Low-cost Inertial sensors

Sparkfun

WitMotion

Zstar3

Custom-made Inertial sensors

Lee et. al. [44]

Trackers

Vive Lighthouse

