Math 217 Worksheet 16: Orthogonal Projections and Orthonormal Bases (§5.1)

Definitions:

Two vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$ are said to be **orthogonal** (or perpendicular) if $\vec{v} \cdot \vec{w} = 0$.

The **length** of a vector \vec{v} in \mathbb{R}^n is $||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}}$.

Given any set $S \subseteq \mathbb{R}^n$, the **orthogonal complement** S^{\perp} of S is the set

$$S^{\perp} = \{ \vec{w} \in \mathbb{R}^n : \vec{w} \cdot \vec{v} = 0 \text{ for all } \vec{v} \in S \}.$$

Problem 1. Examples of Orthogonal Complements.

- (a) What is the orthogonal complement of the line $\operatorname{Span}(\vec{e_2})$ in \mathbb{R}^3 ?
- (b) What is the orthogonal complement of the plane 2x 3y + z = 0 in \mathbb{R}^3 ?

Solution: (a) The
$$xz$$
-plane in \mathbb{R}^3 . (b) The line spanned by $\begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$.

Problem 2. Orthogonal complements are subspaces.

(a) Prove that for any $S \subseteq \mathbb{R}^n$, S^{\perp} is a subspace of \mathbb{R}^n .

Solution: There are three things to check:

- (a) $\vec{0} \in S^{\perp}$.
- (b) If $\vec{x}, \vec{y} \in S^{\perp}$, then $\vec{x} + \vec{y} \in S^{\perp}$.
- (c) If $\vec{x} \in S^{\perp}$ and $c \in \mathbb{R}$, then $c\vec{x} \in S^{\perp}$.

For this, we take arbitrary $\vec{v} \in S$.

- (a) $\vec{0} \cdot v = 0$. This is clear since dotting with 0 always gives 0.
- (b) If $\vec{x}, \vec{y} \in S^{\perp}$, we need $(\vec{x} + \vec{y}) \cdot \vec{v} = 0$. But $(\vec{x} + \vec{y}) \cdot \vec{v} = \vec{x} \cdot \vec{v} + \vec{y} \cdot \vec{v} = 0 + 0 = 0$, since both \vec{x} and \vec{y} are in S^{\perp} .
- (c) Take $\vec{x} \in S^{\perp}$ and scalar c. Check $(c\vec{x}) \cdot \vec{v} = c(\vec{x} \cdot \vec{v}) = c0 = 0$ since $\vec{x} \in S^{\perp}$.
- (b) Let $\vec{v} \in \mathbb{R}^n$, let W be any subspace of \mathbb{R}^n , and suppose the subset $\{\vec{w}_1, \dots, \vec{w}_r\} \subseteq W$ is a spanning set for W. Prove that $\vec{v} \in W^{\perp}$ if and only if $\vec{v} \cdot \vec{w}_i = 0$ for each $1 \leq i \leq r$.

Solution: If $\vec{v} \in W^{\perp}$, then of course $\vec{v} \cdot \vec{w_i}$ for each i since each $\vec{w_i}$ belongs to W. Conversely, suppose $\vec{v} \cdot \vec{w_i} = 0$ for each i, and let $\vec{w} \in W$. Then since $\{\vec{w_1}, \ldots, \vec{w_r}\}$ spans W, we can choose scalars c_1, \ldots, c_r such that $\vec{w} = c_1 \vec{w_1} + \cdots + c_r \vec{w_r}$. Then

$$\vec{v} \cdot \vec{w} = \vec{v} \cdot (c_1 \vec{w}_1 + \dots + c_r \vec{w}_r) = c_1 (\vec{v} \cdot \vec{w}_1) + \dots + c_r (\vec{v} \cdot \vec{w}_r) = 0 + \dots + 0 = 0,$$

which shows $\vec{v} \in W^{\perp}$.

Definition A: A set of vectors $\{\vec{v}_1, \dots, \vec{v}_r\}$ in \mathbb{R}^n is **orthonormal** if

$$\vec{v}_i \cdot \vec{v}_j = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

In particular, each \vec{v}_i is a *unit vector* and is orthogonal (perpendicular) to the other vectors in the set.

Proposition: Any orthonormal set of vectors is linearly independent. More generally, any set of non-zero vectors $\{\vec{v}_1, \dots, \vec{v}_r\}$ such $\vec{v}_i \cdot \vec{v}_j = 0$ for $i \neq j$ is linearly independent.

Problem 3: Orthonormal Coordinates.

- (a) Is the standard basis for \mathbb{R}^n orthonormal?
- (b) Suppose that $\{\vec{v}_1,\ldots,\vec{v}_n\}$ is an orthonormal set. Let $\vec{x}=c_1\vec{v}_1+\cdots+c_n\vec{v}_n$. Compute $\vec{x}\cdot\vec{v}_i$.
- (c) Prove the Proposition above. [First Line: Suppose $c_1\vec{v}_1 + \cdots + c_r\vec{v}_r = 0$ is a relation on $\{\vec{v}_1, \dots, \vec{v}_r\}$.]
- (d) Let $\mathcal{B} = (\vec{v}_1, \dots, \vec{v}_n)$ be an orthonormal ordered basis for \mathbb{R}^n . For arbitrary $\vec{x} \in \mathbb{R}^n$, prove

$$[ec{x}]_{\mathcal{B}} = egin{bmatrix} ec{x} \cdot ec{v}_1 \ ec{x} \cdot ec{v}_2 \ dots \ ec{x} \cdot ec{v}_n \end{bmatrix}.$$

Discuss one advantage and one disadvantage of working with orthonormal coordinates.

Solution:

- (a) Yes.
- (b) Write $\vec{x} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n$. Dot with \vec{v}_i and use the distributive property of dot product: $\vec{x} \vec{v}_i = c_1 \vec{v}_1 \cdot \vec{v}_i + \dots + c_n \vec{v}_n \cdot \vec{v}_i$. Now use the orthonormality: most of the $\vec{v}_j \cdot \vec{v}_i = 0$ so this reduces to $\vec{x} \cdot \vec{v}_i = c_i$.
- (c) Consider an arbitrary relation

$$c_1\vec{v}_1 + \dots + c_r\vec{v}_r = \vec{0}$$

on the set $\{\vec{v}_1, \ldots, \vec{v}_r\}$. Fix one index i in the range $1 \le i \le r$. Dotting both sides of the above equation by \vec{v}_i , we have

$$0 = \vec{v_i} \cdot \vec{0} = \vec{v_i} \cdot (c_1 \vec{v_1} + \dots + c_r \vec{v_r}) = c_1 (\vec{v_i} \cdot \vec{v_1}) + \dots + c_r (\vec{v_i} \cdot \vec{v_r}) = c_i.$$

Since this works for each i, we see that each c_i is zero, which shows that $\{\vec{v}_1, \ldots, \vec{v}_r\}$ is linearly independent.

- (d) Write $\vec{x} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$ be an arbitrary \vec{x} expressed in the basis \mathcal{B} . We use the previous problem to compute the scalar c_i as $\vec{x} \cdot \vec{v}_i$. This means that the \mathcal{B} -coordinate
 - column is $\begin{bmatrix} x \cdot v_1 \\ \vec{x} \cdot \vec{v_2} \\ \vdots \\ \vec{x} \cdot \vec{v_n} \end{bmatrix}$. It is advantageous because it is easy to compute coordinates in an

orthonormal basis by just using dot product by (b). For an arbitrary basis, we would need to solve a large system of equations to find the coordinates. On the other hand, in a numerical example, sometimes finding an orthonormal basis is a pain; we may have fractions and square roots after applying the Gram-Schmidt process..

Definition B: Let W be a subspace of \mathbb{R}^n . The **orthogonal projection onto** W is the linear transformation

$$\mathbb{R}^n \xrightarrow{\operatorname{proj}_W} \mathbb{R}^n \qquad \vec{v} \mapsto (\vec{v} \cdot \vec{u}_1) \ \vec{u}_1 + \dots + (\vec{v} \cdot \vec{u}_d) \ \vec{u}_d$$

where $\vec{u}_1, \dots, \vec{u}_d$ is an orthonormal basis for W.

(The definition is independent of the choice of orthonormal basis; see Problem 7.)

Problem 4. Dimension of Orthogonal Complement. Fix a line L through the origin in \mathbb{R}^2 . Consider the map $\operatorname{proj}_L : \mathbb{R}^2 \to \mathbb{R}^2$ projecting orthogonally onto L.

- (a) Discuss how we described this map in Chapter 2 and compare to the Definition above.
- (b) Use a geometric argument to find the kernel and image of proj_L in terms of L and L^{\perp} .
- (c) Now let W be any d-dimensional subspace of \mathbb{R}^n , and let $\operatorname{proj}_W : \mathbb{R}^n \to \mathbb{R}^n$ be the orthogonal projection onto W. Explain why the kernel of proj_W is W^{\perp} and the image of proj_W is W.
- (d) Prove Theorem C below. [Hint: Rank-Nullity.]

Theorem C: For any subspace $W \subseteq \mathbb{R}^n$, dim $W + \dim W^{\perp} = n$.

Solution:

- (a) The map is given by sending \vec{v} to the $(\vec{v} \cdot \vec{u})$ \vec{u} where \vec{u} is a unit vector in the direction of L. This is exactly what is given by the Definition above, since \vec{u} is an orthonormal basis for L.
- (b) Thinking about the projection geometrically, we see every point is mapped to something in L and the points on L are mapped to themselves. So the image is L. The vectors in the kernel are those that project to the origin: this is exactly L^{\perp} . The lines L and L^{\perp} are perpendicular, crossing at the origin.
- (c) To see the image is W, observe first that im $\operatorname{proj}_W \subseteq W$, since by definition, for each $\vec{x} \in \mathbb{R}^n$, $\operatorname{proj}_W(\vec{x})$ is a linear combination of vectors in W, namely $\sum_i (\vec{w} \cdot \vec{u}_i) \vec{u}_i$, where $\{\vec{u}_1, \ldots, \vec{u}_d\}$ is an orthonormal basis for W. But also $W \subseteq \operatorname{im} \operatorname{proj}_W$, since given $w \in W$, we have $\operatorname{proj}_W(w) = w$. The kernel is W^{\perp} since by definition, an element $\vec{v} \in W^{\perp}$ if and only if $\vec{v} \cdot \vec{u}_i$ for a spanning set (eg, basis) of W.

(d) By rank nullity, since the source of proj_W has dimension n and the image W has dimension d, we know that the kernel W^{\perp} is dimension n-d.

Problem 5. Orthogonal Decomposition with respect to W**.** Let $W \subseteq \mathbb{R}^n$ be any subspace.

- (a) Prove that $W \cap W^{\perp} = {\vec{0}}$. [Hint: Recall $\vec{v} \cdot \vec{v} \ge 0$. When is it zero?]
- (b) Prove that each \vec{v} in \mathbb{R}^n decomposes uniquely as $\vec{v} = \vec{v}^{||} + \vec{v}^{\perp}$ where $\vec{v}^{||} \in W$ and $\vec{v}^{\perp} \in W^{\perp}$. [Hint: For existence: let $\vec{v}^{||}$ be the projection onto W and let \vec{v}^{\perp} be $\vec{v} \vec{v}^{||}$. For uniqueness: Use (a).]

Solution:

- (a) Say $\vec{w} \in W \cap W^{\perp}$. Then $\vec{w} \cdot \vec{w} = 0$, so $\vec{w} = 0$ (by properties of dot product).
- (b) Let $\vec{v}^{||} = \operatorname{proj}_W(\vec{v})$ and let $\vec{v}^{\perp} = \vec{v} \vec{v}^{||}$. Applying proj_W , we have $\operatorname{proj}_W(\vec{v} \vec{v}^{||}) = \operatorname{proj}_W(\vec{v}) \operatorname{proj}_W(\vec{v}^{||}) = \vec{v}^{||} \vec{v}^{||} = 0$. This says that $\vec{v}^{\perp} \in \ker \operatorname{proj}_W = W^{\perp}$. Note that $\vec{v} = \vec{v}^{||} + \vec{v}^{\perp}$ where $\vec{v}^{||} \in W$ and $\vec{v}^{\perp} \in W^{\perp}$, so we have establishhed that such a decomposition exists. To check its uniqueness, say we can also write $\vec{v} = \vec{w}_1 + \vec{w}_2$ where $\vec{w}_1 \in W$ and $\vec{w}_2 \in W^{\perp}$. Then we have $\vec{w}_1 \vec{v}^{||} = \vec{v}^{\perp} \vec{w}_2 \in W \cap W^{\perp}$. By (a), this is zero, which means $\vec{w}_1 = \vec{v}^{||}$ and $\vec{w}_2 = \vec{v}^{\perp}$.

Problem 6. The standard Matrix of Orthogonal Projection. Fix a subspace W of \mathbb{R}^n , with orthonormal basis $(\vec{u}_1, \dots, \vec{u}_d)$. Let A be the $n \times d$ matrix whose columns are $\vec{u}_1, \dots, \vec{u}_d$. Prove that the standard matrix for the orthogonal projection onto W is AA^{\top} .

[Hint: Compute and compare the *i*-th column of each. Observe that the *i*-th column of A^{\top} is $\begin{bmatrix} \vec{e_i} \cdot \vec{u_1} \\ \vdots \\ \vec{e_i} \cdot \vec{u_d} \end{bmatrix}$.]

Solution: To find the standard matrix of proj_W , use the Key Theorem to find each column. The *i*-th column, for each $1 \leq i \leq n$, is

$$\operatorname{proj}_{W}(\vec{e_i}) = \sum_{j=1}^{d} (\vec{e_i} \cdot \vec{u_j}) \vec{u_j}.$$

We compare this to the *i*-th column of AA^{\top} . By definition of matrix multiplication, the *i*-th column of AA^{\top} is A times the *i*-th column of A^{\top} , or equivalently, A times the transpose of the *i*-th row of A. That is, the *i*-th column of AA^{\top} is

$$A \begin{bmatrix} \vec{e}_i \cdot \vec{u}_1 \\ \vdots \\ \vec{e}_i \cdot \vec{u}_d \end{bmatrix} = \begin{bmatrix} \vec{u}_1 & \dots & \vec{u}_d \end{bmatrix} \begin{bmatrix} \vec{e}_i \cdot \vec{u}_1 \\ \vdots \\ \vec{e}_i \cdot \vec{u}_d \end{bmatrix} = \sum_{j=1}^d (\vec{e}_i \cdot \vec{u}_j) \vec{u}_j.$$

Thus AA^{\top} and the standard matrix of proj_W are the same, column by column, and AA^{\top} must be the standard matrix of proj_W .

Problem 7. Well-defined-ness of orthogonal projection. Let $W \subseteq \mathbb{R}^n$ be any subspace.

^{*}This will be easier after you have more practice with dot products. Try again after Worksheet 18.

- (a) Fix an orthonormal basis $(\vec{u}_1, \dots, \vec{u}_d)$ for W. Verify that the mapping proj_W as defined in Definition B is linear transformation.
- (b) In Problem 5, you showed that $\mathbf{proj}_W(\vec{x}) = x^{||}$. Explain why this implies that the formula for proj_W in Definition B does not depend on the choice of orthonormal basis. That is, we get the same value for proj_W using another orthonormal basis $(\vec{w}_1, \ldots, \vec{w}_d)$ instead of $(\vec{u}_1, \ldots, \vec{u}_d)$. [HINT: Look carefully at what you proved in Problem 5(b).]

Solution:

(a) First, take arbitrary $\vec{x}, \vec{y} \in \mathbb{R}^n$. We need to show that $\text{proj}_W(\vec{x} + \vec{y}) = \text{proj}_W(\vec{x}) + \text{proj}(\vec{y})$. This follows from properties of dot product:

$$\operatorname{proj}_{W}(\vec{x} + \vec{y}) = \sum_{i=1}^{d} ((\vec{x} + \vec{y}) \cdot \vec{u}_{i}) \vec{u}_{i} = \sum_{i=1}^{d} ((\vec{x} \cdot \vec{u}_{i}) u_{i} + (\vec{y} \cdot \vec{u}_{i}) u_{i}) = \sum_{i=1}^{d} \vec{x} \cdot \vec{u}_{i} + \sum_{i=1}^{d} \vec{y} \cdot \vec{u}_{i},$$

which is $\operatorname{proj}_W(\vec{x}) + \operatorname{proj}(\vec{y})$. Next we show that for arbitrary $\vec{x} \in \mathbb{R}^n$ and scalar $c \in \mathbb{R}$, $\operatorname{proj}_W(c\vec{x}) = c \operatorname{proj}_W(\vec{x})$. This again follows from properties of dot product:

$$\operatorname{proj}_{W}(c\vec{x}) = \sum_{i=1}^{d} c\vec{x} \cdot \vec{u}_{i} = c \sum_{i=1}^{d} \vec{x} \cdot \vec{u}_{i} = c \operatorname{proj}_{W}(\vec{x}).$$

Since proj_W respects addition and scalar multiplication, it is a linear transformation.

(b) Let $(\vec{w}_1, \dots, \vec{w}_d)$ be another orthonormal basis for W. We need to check that for each fixed $\vec{x} \in \mathbb{R}^n$,

$$\sum_{i=1}^{d} (\vec{x} \cdot \vec{u}_i) \vec{u}_i = \sum_{i=1}^{d} (\vec{x} \cdot \vec{w}_i) \vec{w}_i.$$

Let $\vec{y} = \sum_{i=1}^d (\vec{x} \cdot \vec{u}_i) \vec{u}_i$, and let $\vec{z} = \sum_{i=1}^d (\vec{x} \cdot \vec{w}_i) \vec{w}_i$. We want to show $\vec{y} = \vec{z}$. Both are vectors in W, so can be written as linear combinations of $\{\vec{w}_1, \dots, \vec{w}_d\}$. We already know that $\vec{z} = \sum_{i=1}^d (\vec{x} \cdot \vec{w}_i) \vec{w}_i$, and by Problem 3b, since $(\vec{w}_1, \dots, \vec{w}_d)$ is orthonormal, we find that

$$\vec{y} = \sum_{i=1}^{d} (\vec{y} \cdot \vec{w}_i) \vec{w}_i.$$

To show that $\vec{y} = \vec{z}$, we can show that their difference

$$\vec{z} - \vec{y} = \sum_{i=1}^{d} (\vec{x} \cdot \vec{w}_i - \vec{y} \cdot \vec{w}_i) \vec{w}_i \tag{1}$$

is zero. The difference $\vec{z} - \vec{y}$ is clearly in W, so it suffices, by Problem 5(a), to show $\vec{z} - \vec{x} \in W^{\perp}$. For this, we need that for each $i = 1, \ldots, d$,

$$(\vec{z} - \vec{y}) \cdot \vec{w_i} = 0.$$

From (1), it suffices if $(\vec{x} \cdot \vec{w_i} - \vec{y} \cdot \vec{w_i}) = 0$, or equivalently, if $(\vec{x} - \vec{y}) \cdot \vec{w_i} = 0$ for i = 1, ...d. This is true by Problem 5b: computing the projection using the basis $(\vec{w_1}, ..., \vec{w_d})$, we have $\vec{x}^{||} = \vec{y}$, so $\vec{x} - \vec{y} = \vec{x} - \vec{x}^{||} = \vec{x}^{\perp} \in W^{\perp}$. So $\vec{z} - \vec{y} \in W^{\perp} \cap W = \{\vec{0}\}$. QED.

*Problem 8.† Show that every subspace of \mathbb{R}^n has an orthonormal basis. [Hint: Induce on dim V. For the inductive step: if V is a (k+1)-dimensional subspace of \mathbb{R}^n , let \vec{v} be some fixed nonzero vector in V and consider the kernel of the linear transformation $T: V \to \mathbb{R}$ defined by $T(\vec{x}) = \vec{v} \cdot \vec{x}$.

Solution: Let V be an arbitrary subspace of \mathbb{R}^n .

Base case: If V has dimension one, take any non-zero vector $\vec{v} \in V$. Normalize \vec{v} to get $\vec{u} = \frac{\vec{v}}{||\vec{v}||}$. Then \vec{u} is a non-zero vector in V, so must span V, and $\{\vec{u}\}$ is a basis.

Inductive assumption: Every subspace of \mathbb{R}^n of dimension $k \geq 1$ has an orthonormal

For the inductive step, suppose V has dimension k+1>1. Fix any nonzero vector \vec{v} in V, and define the linear transformation $T: V \to \mathbb{R}$ by $T(\vec{x}) = \vec{v} \cdot \vec{x}$. Then $\dim(\operatorname{im}(T)) = 1$, so by Rank-Nullity $\ker(T)$ is an k dimensional subspace of V. Using the inductive hypothesis, we can choose $(\vec{u}_1, \dots, \vec{u}_k)$ an orthonormal basis of $\ker(T)$. Then

$$\left(ec{u}_1, \ldots, ec{u}_k, rac{ec{v}}{\|ec{v}\|}
ight)$$

is an orthonormal basis of V, completing the induction.

[†]We will give a different proof on the next worksheet.