Identifying Selection in Experimental Evolution

Arya Iranmehr airanmehr@ucsd.edu

Bafna Lab University of California, San Diego

March, 2017

Arya Iranmehr

 $March,\ 2017$

An experiment design for *D. melanogaster*

Arya Iranmehr Identifying Selection in Experimental March, 2017 2 / 25

Whole-Genome Whole-Population Sequencing

• Pooled-Sequencing

Whole-Genome Whole-Population Sequencing

• Pooled-Sequencing

Nature Reviews Genetics 15, 749-763 (2014)

• Implication: only population allele frequency can be computed.

D. melanogaster vs Bacteria

- (i) Population size: $N_{Drosophila} \ll N_{Bacteria}$ Among other consequences: Mechanism of adaptation is standing variation in D. melanogaster while it is $de\ novo$ mutation in Bacteria.
- (ii) Reproduction: *D. melanogaster* has sexual reproduction (with crossovers) that helps localizing selection.
- (iii) In both cases we are interested in detecting partial sweeps.

Arya Iranmehr Identifying Selection in Experimental March, 2017

Dynamic of population allele frequency

under different initial conditions and selection strengths frequency change differently

5 / 25

Binomial Sampling

- In a finite population, we can model change in frequency of an allele via Binomial sampling.
- Drift: rate of sampling remain constant $\Pr(i \to j) = B(j; N, i/N)$

Binomial Sampling with Selection

• In selection, we sample favored allele proportional to 1+s, and the alternate allele with weight 1. $\Pr(i \to j) = B(j; N, k/N)$

Arya Iranmehr Identifying Selection in Experimental March, 2017

Simplified Model (I)

• Suppose we have sequenced a whole (diploid, size=N) population every generation and exact allele frequency are given.

Simplified Model (I)

- Suppose we have sequenced a whole (diploid, size=N) population every generation and exact allele frequency are given.
- A Markov chain, can compute likelihood of a trajectory for a given N and s (a $N \times N$ transition matrix Q)

 $P(v_0, \ldots, v_5) = Q_{1,2} \ Q_{2,1} \ Q_{1,1} Q_{1,2} \ Q_{2,0}$

Likelihood ratio test

- find \hat{N} and \hat{s} that maximizes likelihood of data.
- \bullet compute likelihood ratio, M statistic for each SNP:

 $M = \frac{\text{likelihood of data as if being under selection with } \hat{s}, \hat{N}}{\text{likelihood of data as if being neutral with } \hat{N}}$

Arya Iranmehr

March, 2017

Model (complete)

• In reality, population is sequenced after some (τ) generations. solution: use Q^{τ} in computing likelihoods.

Model (complete)

- In reality, population is sequenced after some (τ) generations. solution: use Q^{τ} in computing likelihoods.
- Allele frequencies are unknown, and depth of each variant can be different, and finite sample is taken for sequencing.

Arya Iranmehr Identifying Selection in Experimental March, 2017

10 / 25

Composite Likelihood for a Region (I)

• So far we developed log-odds ratio statistics M (frequency data) and H (read count data) for each variant.

11 / 25

Arya Iranmehr Identifying Selection in Experimental March, 2017

Composite Likelihood for a Region (I)

- So far we developed log-odds ratio statistics M (frequency data) and H (read count data) for each variant.
- For a small region with L variants we can simply take the max score in the region, which is prone to false positives.

Arya Iranmehr Identifying Selection in Experimental March, 2017 11 / 25

Composite Likelihood for a Region (I)

- So far we developed log-odds ratio statistics M (frequency data) and H (read count data) for each variant.
- For a small region with L variants we can simply take the max score in the region, which is prone to false positives.
- We know that nearby variants can be correlated, esp. when selection is going on

Composite Likelihood for a Region (II)

• Computing joint likelihoods of SNPs is infeasible (haplotypes are required) and intractable (requires estimating covariance).

Arya Iranmehr

March, 2017

Composite Likelihood for a Region (II)

- Computing joint likelihoods of SNPs is infeasible (haplotypes are required) and intractable (requires estimating covariance).
- A heuristic is to compute composite (aka, pseudo) likelihood of the region L to reduce false-positives

$$\mathcal{H} = \frac{1}{|L|} \sum_{\ell \in L} H_{\ell}$$

Arya Iranmehr Identifying Selection in Experimental March, 2017 12 / 25

Performance in Detecting Regions under Selection

Each point represent power (TPR when FPR \leq 0.05) of detection in 1000 simulations (500 neutral, 500 selection) of a 50Kbp window, for different coverages.

Detecting regions under selection: Observations

(i) Provides better and much robust performances to change of coverage.

14 / 25

Arya Iranmehr Identifying Selection in Experimental March, 2017

Detecting regions under selection: Observations

- (i) Provides better and much robust performances to change of coverage.
- (ii) It can detect well even when coverage is low, i.e., favored allele frequency (1/200 in hard sweep) is below accuracy of sequencing (1/30).

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 ・釣९○

Arya Iranmehr Identifying Selection in Experimental March, 2017 14 / 25

Detecting regions under selection: Observations

- (i) Provides better and much robust performances to change of coverage.
- (ii) It can detect well even when coverage is low, i.e., favored allele frequency (1/200 in hard sweep) is below accuracy of sequencing (1/30).
- (iii) Run time is better or comparable with others.

Localizing favored allele

Each curve depicts cumulative distribution of the rank of favored allele among (≈ 1150) variants, in 500 simulations.

Estimating parameters (I)

Our model estimates strength of selection s and overdominance h parameter for each variant.

- h = 0: recessive adaptive allele
- h = 0.5: directional selection
- h = 1: dominant adaptive allele
- h > 1 :overdominance

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ 釣@@

16 / 25

Arya Iranmehr Identifying Selection in Experimental March, 2017

Estimating parameters (II)

Distribution of bias of parameters in 500 simulations.

Estimating parameters (III)

Assuming majority of the variants evolving neutrally, we can fit population size N on neutral model, i.e. Q(0,0,2N)

Hypothesis Testing

The statistical procedure involves:

- (i) Estimating population size, \hat{N} , over the whole genome.
- (ii) Estimating selection parameters for given \hat{N}
- (iii) Computing likelihood statistics.
- (iv) Hypothesis testing: The null distribution of likelihood ratio statistics are computed on a set of single locus drift simulations with population size of \widehat{N} . p-values and FDR is computed accordingly.

Analysis of real data

- A population of *D. melanogaster* is evolved for 59 generations, under alternative hot and cold temperatures.
- Coverage is different at generations and samples are not synchronized.
- Genome scan for sliding window size=50Kbp, steps=10Kbp
- $\hat{N} = 200$

Arya Iranmehr

March, 2017

$D.\ melanogaster$

Outcrossing Yeast populations

- 12 replicates of Yeast populations (census size $10^7 10^9$) are E&Red for 540 generations.
- $\hat{N} = 2000$
- two regions violating FDR cutoff are found.

Arya Iranmehr

March, 2017

22 / 25

Outcrossing Yeast populations

Discussion

• An efficient method for analyzing full time-series read-count data is proposed.

Discussion

- An efficient method for analyzing full time-series read-count data is proposed.
- By computing composite likelihood \mathcal{H} statistic is more robust to false positives.

Discussion

- An efficient method for analyzing full time-series read-count data is proposed.
- By computing composite likelihood \mathcal{H} statistic is more robust to false positives.
- We can infer demographic changes as well as selection for and experiment.

Thanks!