Аналіз ефективних для активації архітектур нейронних мереж для задач машинного навчання

16 квітня 2025

Виконав: Захаров Дмитро Олегович¹ Науковий керівник: Ігнатович Світлана Юріївна²

 $^{^{1}}$ Студент групи МП41 IV курсу (перший бакалаврський рівень), спеціальності 113 "Прикладна математика" освітньої програми "Прикладна математика".

 $^{^{2}}$ Доктор фіз.-мат. наук, професор кафедри прикладної математики.

План

1 Вступ

- 2 Інструменти
 - Гомоморфне шифрування
 - Доведення нульового знання

3 Активаційно-ефективні архітектури нейронних мереж

Причини

Зараз, використання нейронних мереж ϵ стандартом у багатьох задачах машинного навчання.

Рис.: Нейронна мережа є певною параметризованою функцією $f(\cdot; \theta)$, що перетворює вхідні дані x у вихідні y.

Найбільш поширена архітектура — це MLP (Multi-Layer Perceptron), що записується як:

$$\mathbf{x}^{(\ell+1)} = \sigma(\mathbf{W}^{(\ell)}\mathbf{x}^{(\ell)} + \mathbf{b}^{(\ell)}), \quad \ell \in [L].$$

В такому разі, $f(x) = x^{(L)}$ для $x^{(0)} = x$.

Про силу нейронних мереж

Theorem (Universal Approximation Theorem)

Якщо σ не ϵ поліномом та $L \geq 2$, то f ϵ щільною в $L^{\infty}(K)$ для будь-якої компактної множини $K \subseteq \mathbb{R}^m$.

Безпека нейронних мереж

Рис.: Приклади використання нейронних мереж у сферах безпеки.

Безпека нейронних мереж

- Як ми можемо надіслати вхід x нейронній мережі f без розкриття x? Наприклад, чи може людина з зображенням рентгенівського знімка x надіслати його алгоритму f для діагностики, не показуючи знімок x (див. [5])?
- Чи можемо ми дійсно довіряти виходу нейронної мережі y? Інакшими словами, маючи вхід x, як ми можемо переконатись, що дійсно y = f(x) (див. [2])?
- Як ми можемо довести, що f дійсно була натренована на неконфідеційних даних (див. [3])? Чи можемо ми тренувати нейронну мережу на зашифрованому наборі даних (див. [1])?

Зауваження

Першою та третьою задачами займається гомоморфне шифрування (FHE), а другою — доведення нульового знання для алгоритмів машинного навчання (ZKML).

Інструменти

Гомоморфне шифрування

Інструменти

- Гомоморфне шифрування це шифрування, що дозволяє виконувати обчислення над зашифрованими даними без їх розшифрування.
- Це означає, що ми можемо виконувати обчислення на зашифрованих даних, не знаючи самих даних.

Рис.: Ілюстрація гомоморфного шифрування. Взято з https://chain.link/education-hub/homomorphic-encryption.

Гомоморфне шифрування: Означення

Definition (Схема повністю гомоморфного шифрування)

Схема повністю гомоморфного шифрування (FHE) — це алгоритми (KeyGen, Enc, Dec, Eval):

- $\operatorname{KeyGen}(1^{\lambda}) \to (\operatorname{sk}, \operatorname{ek})$: З огляду на параметр безпеки $\lambda \in \mathbb{N}$, видає секретний ключ sk, який зберігається в таємниці користувачем, та публічний ключ для обчислень ek.
- $\operatorname{Enc}(\operatorname{sk},\mu) \to c$: З огляду на секретний ключ sk та повідомлення μ , видає шифротекст c.
- $\mathrm{Dec}(\mathsf{sk},c) \to \mu$: З огляду на секретний ключ sk та шифротекст c, видає повідомлення μ .
- Eval(ek, f, c_1 , ..., c_ℓ) $\to \widetilde{c}$: З огляду на ключ для обчислень ek, функцію $f \in \mathcal{F}$ з підтримуваного класу функцій \mathcal{F} , та шифротексти c_1 , ..., c_ℓ , видає шифротекст результату застосування функції f до відповідних відкритих значень.

Гомоморфне шифрування: Властивості

Коректність: для будь-якої допустимої функції $f \in \mathcal{F}$ та вхідних повідомлень μ_1, \dots, μ_ℓ , маємо

$$\Pr\left[\mathsf{Dec}(\mathsf{sk},\widetilde{c}) = f(\mu_1,\dots,\mu_\ell) \, \middle| \, \begin{array}{l} (\mathsf{sk},\mathsf{ek}) \leftarrow \mathsf{KeyGen}(1^\lambda) \\ c_j \leftarrow \mathsf{Enc}(\mathsf{sk},\mu_j), j \in [\ell], \\ \widetilde{c} \leftarrow \mathsf{Eval}(\mathsf{ek},f,c_1,\dots,c_\ell) \end{array} \right] \geq 1 - \mu(\lambda),$$

де $\mu(\lambda)$ є нехтовною функцією: $\lim_{\lambda\to\infty}\mu(\lambda)\lambda^{\gamma}=0$ для всіх γ .

Семантична безпека: для всіх повідомлень μ_0, μ_1 виконується

$$\left\{ (\mathsf{ek}, c_0) : \frac{(\mathsf{sk}, \mathsf{ek}) \leftarrow \mathsf{KeyGen}(1^\lambda)}{c_0 \leftarrow \mathsf{Enc}(\mathsf{sk}, \mu_0)} \right\} \approx_C \left\{ (\mathsf{ek}, c_1) : \frac{(\mathsf{sk}, \mathsf{ek}) \leftarrow \mathsf{KeyGen}(1^\lambda)}{c_1 \leftarrow \mathsf{Enc}(\mathsf{sk}, \mu_1)} \right\}$$

Тут \approx_C означає обчислювальну еквівалентність.

Доведення нульового знання

- Доведення нульового знання це протокол, що дозволяє одній стороні (доказнику) довести іншій стороні (перевіряючому), що вона знає певну інформацію, не розкриваючи цю інформацію.
- Це означає, що доказник може довести перевіряючому, що він знає секрет, не розкриваючи сам секрет.

Рис.: Ілюстрація доведення нульового знання.

Доведення нульового знання: означення

Definition

zk-SNARK — це протокол доведення з нульовим розголошенням (zero-knowledge proof system), який дозволяє доводити знання свідка w для твердження x у відношенні $\mathcal R$ без розголошення самого свідка. zk-SNARK складається з таких алгоритмів:

- $\operatorname{KeyGen}(1^{\lambda}) \to (\mathsf{pp}, \mathsf{vp})$: алгоритм генерації ключів, що створює параметри для доведення рр та параметри для верифікації vp на основі параметра безпеки $\lambda \in \mathbb{N}.$
- $\operatorname{Prove}(\mathsf{pp}, \mathbf{x}, \mathbf{w}) \to \pi$: алгоритм доведення, що генерує доказ π для твердження x зі свідком w на основі параметрів доведення рр.
- Verify(vp, π , x) \rightarrow {0, 1}: алгоритм перевірки, що перевіряє, чи доказ π є дійсним для твердження x, і повертає біт 1, якщо доказ дійсний, і 0 — інакше.

Доведення нульового знання: властивості

- Коректність: для всіх x та w для яких $(x, w) \in \mathcal{R}$ та $(\mathsf{pp}, \mathsf{vp}) \leftarrow \mathrm{KeyGen}(1^\lambda)$, $\Pr[\mathrm{Verify}(\mathsf{vp}, \pi, x) = 1] = 1 \mu(\lambda)$, де доведення генерується як $\pi \leftarrow \mathrm{Prove}(\mathsf{pp}, x, w)$.
- Непідробність: для параметрів (pp, vp) $\leftarrow \text{KeyGen}(1^{\lambda})$ та $(x, w) \leftarrow \mathcal{A}(\text{pp}, \text{vp})$ за умови $(x, w) \not\in \mathcal{R}$, маємо $\Pr[\text{Verify}(\text{vp}, \pi, x) = 1] = \mu(\lambda)$ для будь-якого поліноміально-випадкового алгоритму \mathcal{A} , що генерує π .
- **Нульове знання:** якщо $\operatorname{Verify}(\mathsf{vp},\pi,\mathbb{x})=1$, то не існує алгоритму, який може дістати інформацію про \mathbb{w} з π та \mathbb{x} зі значною перевагою.
- Ефективність: зазвичай, розмір доведення $|\pi| = \mathcal{O}_{\lambda}(\log^{\alpha} n, |\mathbf{x}|)$ та час верифікації $T_{\mathcal{V}} = \mathcal{O}_{\lambda}(\log^{\beta} n, |\mathbf{x}|)$ (себто полілогарифмічна асимптотика) для деяких α, β .

Арифметичні ланцюги

Так чи інакше, щоб працювати над гомоморфно зашифрованими даними або протоколами доведення нульового знання, нам потрібно мати **арифметичні ланцюги** — це графи, що складаються з **вузлів** (операцій) та **проводів** (входів/виходів), які представляють обчислення над елементами (зазвичай скінченного) поля \mathbb{F}_p .

Рис.: Приклад арифметичного ланцюга для функції $x_1^3 + x_2^2$.

Нейронні мережі як арифметичні ланцюги

- Усі обчислення нейронної мережі (котрі проводяться над дійсним полем \mathbb{R}) можуть бути представлені арифметичними ланцюгами, що складаються з операцій додавання та множення над певним полем \mathbb{F}_p .
- Проте, кількість вузлів в такому графі дуже критично збільшує час на доведення та часто верифікації доведень для ZK та сильно збільшує час на обчислення для FHE (а іноді і накопичує помилки при обчисленнях).
- Тому, ми можемо спробувати зменшити кількість вузлів в графі, зберігаючи при цьому точність нейронної мережі.
- Це можна зробити за допомогою активаційно-ефективних архітектур нейронних мереж, які зберігають точність нейронної мережі, але зменшують кількість вузлів в графі за рахунок використання меншої кількості активаційних функцій.

Активаційно-ефективні архітектури нейронних мереж

Активаційні функції

Назва	Формула	Де використовується?
ReLU	$\max\{0,x\}$	Дешева нелінійність
$LeakyReLU_\alpha$	$\max\{\alpha x, x\}$	Дешева нелінійність
Sigmoid $\sigma(x)$	$\frac{1}{1+e^{-x}}$	Бінарна класифікація
Tanh	$\frac{1 + e^{-x}}{1 + e^{-2x}}$ $\frac{1 - e^{-2x}}{1 + e^{-2x}}$	Бінарна класифікація
Softmax	$\left\{e^{x_i}/\sum_{j\in[n]}e^{x_j}\right\}_{i\in[n]}$	Мультикласифікація
Swish	$x\sigma(x)$	Ефективна нелінійність

Табл.: Найбільш поширені активаційні функції.

Питання

Як реалізувати такі активаційні функції, як ReLU, LeakyReLU, Sigmoid, Tanh, Softmax та Swish, у вигляді арифметичних ланцюгів, маючи лише операції додавання та множення?

Метод #1: Апроксимація

Ідея

Використовувати **апроксимацію** активаційних функцій поліномами, які можуть бути реалізовані у вигляді арифметичних ланцюгів.

Назва	Апроксимація	
ReLU	$0.47 + 0.5x + 0.09x^2$	
Tanh	$0.51x - 0.04x^3 + 0.0011x^5$	
Swish	$0.24 + 0.5x + 0.1x^2$	

Табл.: Апроксимація поширених активаційних функцій поліномами.

Проблеми

Проблеми

- Зазвичай, гарна апроксимація лише на певному відрізку, отже погіршується точність обчислень.
- А якщо тренувати модель на активаціях, що задані цими поліномами? Тоді не виконується теорема універсальної апроксимації, а отже емпірично губиться точність.
- Отже, краще використовувати активації як є.

Будь-які експоненти не можуть бути реалізовані у вигляді арифметичних ланцюгів, тому що вони не є поліномами. Тому,

- Ми використовуємо тільки ReLU та LeakyReLU з параметром $\alpha=2^{-d}$, що є степінню двійки.
- Замість Softmax або Sigmoid (якщо це активація в кінці), використовуємо функції максимуму.

Вартість ReLU

Lemma

Обчислення ReLU вартує b+1 множень в арифметичному ланцюзі, де $b=\lceil \log_2 \mathbb{F} \rceil$ — кількість бітів в елементах поля \mathbb{F} .

Доведення. Треба розкласти x на двійкові компоненти $x = \sum_{i=0}^{b-1} x_i 2^i$ та переконатись, що $x_i \in \{0,1\}$. Щоб перевірити бінарність x_i , достатньо зробити b множень $x_i(1-x_i)=0$. Далі якщо x_j позначає знак числа, то достатньо обчислити $x_j x$, що вартує 1 множення. Отже, загальна вартість b+1 множень.

Коментар. Зазвичай додавання та множення на константу — дешева операція, тому не будемо її враховувати.

Повнозв'язаний шар

Інструменти

Нехай $\mathbf{x} \in \mathbb{F}^m$ — вхідний вектор, $W \in \mathbb{F}^{n \times m}$ — матриця ваг, $oldsymbol{b} \in \mathbb{F}^n$ — вектор зсувів, $oldsymbol{y} \in \mathbb{F}^n$ — вихідний вектор. Тоді

$$\mathbf{y} = \sigma(W\mathbf{x} + \mathbf{b}).$$

Вартість

Вступ

- mn множень для обчислення ${\it Wx} + {\it b}$.
- nb множень для обчислення $\sigma(\cdot)$.

Отже, загальна вартість — n(m+b) множень. Чи можна краще?

Encoder-Decoder Шар

Encoder-Decoder Шар

Шар Encoder—**Decoder** між n нейронами на вході та m нейронами на виході з h прихованими одиницями визначається наступним чином. Нехай $E \in \mathbb{F}^{n \times h}$ — матриця енкодера та $D \in \mathbb{F}^{h \times m}$ — матриця декодера. Тоді:

$$f(\mathbf{x}; D, E) := D\sigma(E\mathbf{x})$$

Переваги Encoder-Decoder Шару

Lemma

Інструменти

Складність forward-pass шару дорівнює $\mathcal{O}(h(n+m+b))$ (на відміну від O(n(m+b))).

Example

Припустимо, що n = 1000, m = 10000, а h = 10. Нехай розмірність поля дорівнює b = 254. Тоді складність прямого проходу через нейронну мережу з одним шаром становить: $10000(1000 + 254) \approx 10^7$. Натомість, складність прямого проходу через нейронну мережу з шаром Encoder-Decoder дорівнює: $10(1000 + 10000 + 254) \approx 10^5$. Це дає зменшення в **100** разів, що є суттєвим!

Реалізація

```
def ed model(hidden units: int) -> tf.keras.models.Model:
    return tf.keras.models.Sequential([
        tf.keras.layers.Input(shape=(28,28,1)),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(hidden_units, activation=None),
        tf.keras.layers.ReLU(),
        tf.keras.layers.Dense(100, activation=None),
        tf.keras.layers.BatchNormalization(),
        tf.keras.layers.Dense(10, activation='softmax')
    1)
```

Рис.: Реалізація Encoder-Decoder Моделі.

Датасет

Рис.: Ми використовували Fashion-MNIST датасет [4].

Графік точності від фактору стискання

Рис.: Графік точності від фактору стискання.

Графік точності від фактору стискання

Рис.: Графік точності від фактору стискання.

Література I

- Luca Colombo, Alessandro Falcetta Ta Manuel Roveri. "Training [1] Encrypted Neural Networks on Encrypted Data with Fully Homomorphic Encryption". B: Proceedings of the 12th Workshop on Encrypted Computing & Applied Homomorphic Cryptography. WAHC '24. Salt Lake City, UT, USA: Association for Computing Machinery, 2024, c. 64—75. ISBN: 9798400712418. DOI: 10.1145/3689945.3694802. URL: https://doi.org/10.1145/3689945.3694802.
- [2] Tobin South Ta in. Verifiable evaluations of machine learning models using zkSNARKs. 2024. arXiv: 2402.02675 [cs.LG]. URL: https://arxiv.org/abs/2402.02675.
- Haochen Sun та ін. zkDL: Efficient Zero-Knowledge Proofs of [3] Deep Learning Training. Cryptology ePrint Archive, Paper 2023/1174. 2023. URL: https://eprint.iacr.org/2023/1174.

Література II

- [4] Han Xiao, Kashif Rasul Ta Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. 2017. arXiv: 1708.07747 [cs.LG]. URL: https://arxiv.org/abs/1708.07747.
- [5] Pengtao Xie та ін. Crypto-Nets: Neural Networks over Encrypted Data. 2014. arXiv: 1412.6181 [cs.LG]. URL: https://arxiv.org/abs/1412.6181.

Дякую за Вашу Увагу!

