Chapitre 4

Probabilités conditionnelles

1 Exemple d'introduction

Un laboratoire pharmaceutique a réalisé des tests sur 800 patients atteints d'une maladie. Certains sont traités avec le médicament A, d'autres avec le médicament B.

Le tableau suivant présente les résultats de l'étude :

	Médicament A	Médicament B	Total
Guéri	383	291	674
Non guéri	72	54	126
Total 455		345	800

- 1. On choisit au hasard un patient et on considère les évènements suivants :
 - A: «Le patient a pris le médicament A»
 - G: «Le patient est guéri».

On a alors:

· La probabilité qu'un patient soit traité avec le médicament A est :

· La probabilité qu'un patient soit guéri est :

• La probabilité qu'un patient soit guéri et qu'il soit traité avec le médicament A est :

· La probabilité qu'un patient ne soit pas guéri et qu'il soit traité avec le médicament A est :

2. On choisi maintenant au hasard un patient guéri.

	Médicament A	Médicament B	Total
Guéri	383	291	674
Non guéri	72	54	126
Total 455		345	800

· La probabilité que le patient ait pris le médicament A sachant qu'il est guéri se note $P_G(A)$. Elle est égale à :

• La probabilité que le soit guéri sachant qu'il a pris le médicament B se note $P_B(G)$. Elle est égale à :

Dans tout le cours, on considère une expérience aléatoire d'univers fini Ω et P une probabilité sur Ω . A,B et C sont des évènements de Ω tels que $P(A) \neq 0$.

2 Notion de probabilité conditionnelle

2.1 Probabilité de l'évènement B sachant que A est réalisé

Définition

La **probabilité conditionnelle** que l'évènement B se réalise sachant que l'évènement A est réalisé est le nombre

 $P_A(B) = \frac{P(A \cap B)}{P(A)}$

 $P_A(B)$ se lit « probabilité de B sachant A ».

Propriété

La fonction P_A , définie sur Ω est une loi de probabilité appelée loi de probabilité conditionnelle sachant A.

Preuve

Pour que P_A soit une loi de probabilité sur Ω , elle doit vérifier :

- $P_A(\Omega) = 1$ et $P_A(\emptyset) = 0$;
- $0 \leqslant P_A(B) \leqslant 1$;
- Si B et C sont disjoints, $P_A(B \cup C) = P_A(B) + P_A(C)$.

Vérifions chacun des ces points :

1.
$$P_A(\Omega) = \frac{P(A \cap \Omega)}{P(A)}$$

$$= \frac{P(A)}{P(A)} \quad \text{car A est inclus dans Ω} \qquad P_A(\varnothing) = \frac{P(A \cap \varnothing)}{P(A)}$$

$$= \frac{P(\varnothing)}{P(A)} \qquad = 0$$

2. $A \cap B$ est inclus dans A donc $0 \le P(A \cap B) \le P(A)$.

$$\text{Ainsi} \quad 0 \leqslant \frac{P(A \cap B)}{P(A)} \leqslant \frac{P(A)}{P(A)} \quad \text{c'est-\`a-dire} \quad 0 \leqslant P_A(B) \leqslant 1.$$

3. Soient B et C deux évènements disjoints.

$$P_A(B \cup C) = \frac{P(A \cap (B \cup C))}{P(A)}$$

$$= \frac{P((A \cap B) \cup (A \cap C))}{P(A)}$$

$$= \frac{P(A \cap B) + P(A \cap C)}{P(A)} \quad \text{car } A \cap B \text{ et } A \cap C \text{ sont disjoints}$$

$$= \frac{P(A \cap B)}{P(A)} + \frac{P(A \cap C)}{P(A)}$$

$$= P_A(B) + P_A(C)$$

Propriété

Si A et B sont deux évènements de probabilité non nulle, alors

$$P(A \cap B) = P(A) \times P_A(B) = P(B) \times P_B(A)$$

Exercice 1

Dans un classe de première, 55 % des élèves sont des filles et 40 % des élèves sont des filles demi-pensionnaires.

On choisit au hasard un élève au hasard dans cette classe. Quelle est la probabilité que cet élève soit demi-pensionnaire sachant que c'est une fille?

2.2 Utilisation de tableaux

Les tableaux à double entrée permettent un présentation claire de certaines expériences aléatoires et facilitent le calcul des probabilités conditionnelles.

	В	\overline{B}	Total
A	$P(A \cap B)$	$P(A \cap \overline{B})$	P(A)
\overline{A}	$P(\overline{A} \cap B)$	$P(\overline{A} \cap \overline{B})$	$P(\overline{A})$
Total	P(B)	$P(\overline{B})$	1

Exercice 2

Un club sportif rassemble 180 membres répartis en junior et seniors. On compte 135 seniors dont 81 hommes. Il y a 27 garçons parmi les juniors.

En choisissant une femme au hasard, calculer la probabilité d'avoir une juniore.

Méthode

- 1. On définit les évènements :
 - H: La personne choisie au hasard est un homme;
 - J : La personne choisie au hasard appartient à la catégorie junior.
- 2. On construit un tableau à double entrée que l'on complète à l'aide des informations de l'énoncé.

	J	\overline{J}	Total
Н			
\overline{H}			
Total			

3. On détermine $P_{\overline{H}}(J)$ en calculant $\frac{P(\overline{H}\cap J)}{P(\overline{H})}$.

3 Formule des probabilités totales

3.1 Arbre pondéré

Propriétés (admises)

- 1. La somme des probabilités des branches issues d'un nœud est égale à 1.
- 2. La probabilité de l'évènement à l'extrémité d'un chemin est égale au produit des probabilités des branches composant ce chemin.
- **3.** La probabilité d'un évènement est égale à la somme des probabilités des chemins conduisant à cet évènement.

6

Exemple

On considère l'arbre pondéré ci-dessous :

· D'après la première propriété :

$$P(A) + P(B) + P(C) = 1$$
, $P_A(D) + P_A(\overline{D}) = 1$ et $P_B(E) + P_B(F) + P_B(G) = 1$

• D'après la deuxième propriété, $P(A \cap D) = P(A) \times P_A(D)$ d'où :

• D'après la troisième propriété, $P(D) = P(A \cap D) + P(C \cap D)$ d'où :

Exercice 3 : Calculer des probabilités conditionnelles à l'aide d'un arbre

Lors d'une épidémie chez des bovins, on s'est aperçu que si la maladie est diagnostiquée suffisamment tôt chez un animal, on peut le guérir; sinon la maladie est mortelle.

Un test est mis au point et essayé sur un échantillon d'animaux dont 2 % est porteur de la maladie. On obtient les résultats suivants :

- sachant qu'un animal est porteur de la maladie, le test est positif dans 85 % des cas;
- sachant qu'un animal est sain, le test est négatif dans 95 % des cas.

On note les événements :

- $\cdot M$: « Être porteur de la maladie »
- T: «Avoir un test positif».
- 1. Construire un arbre pondéré traduisant les données de l'énoncé.
- 2. Un animal est choisi au hasard. Quelle est la probabilité que son test soit positif?
- 3. Si le test du bovin est positif, quelle est la probabilité qu'il soit malade?

3.2 Probabilités totales

Définition

On considère un événement A ainsi que les n événements non vides $A_1, A_2, ..., A_n$ tels que :

- pour tous entiers distincts i et j compris entre 1 et n, A_i et A_j sont **incompatibles** : $A_i \cap A_j = \emptyset$;
- $A_1 \cup A_2 \cup ... \cup A_n = A$

On dit alors que la famille des événements $(A_k)_{1 \le k \le n}$ forme une **partition** de A.

Remarque

A et \overline{A} forment toujours une partition de Ω .

Propriété: formule des probabilités totales

On considère une expérience aléatoire d'univers Ω et un événement B. On note $A_1,A_2,...,A_n$, n événements non vides formant une partition de l'univers Ω .

On a alors:

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_n \cap B).$$

Ce que l'on peut également écrire :

$$P(B) = P(A_1) \times P_{A_1}(B) + P(A_2) \times P_{A_2}(B) + \dots + P(A_n) \times P_{A_n}(B).$$

Preuve

$$P(B) = P(B \cap \Omega)$$
= $P(B \cap (A_1 \cup A_2 \cup ... \cup A_n))$
= $P((B \cap A_1) \cup (B \cap A_2) \cup ... \cup (B \cap A_n))$
= $P(B \cap A_1) + P(B \cap A_2) + ... + P(B \cap A_n)$

En effet, les événements A_i et A_j sont incompatibles pour tous les entiers $i \neq j$ et donc les événements $B \cap A_i$ et $B \cap A_j$ le sont aussi.

Remarque

On a vu en seconde que : $P(B) = P(A \cap B) + P(\overline{A} \cap B)$ où A et \overline{A} forment une partition de Ω .

La formule des probabilités totale est une généralisation de cette propriété.

4. INDÉPENDANCE 9

Exemple

Ici, A, B et C forment une partition de l'univers Ω . On a donc :

$$P(D) = P(A \cap D) + P(B \cap D) + P(C \cap D)$$

$$= P(A) \times P_A(D) + P(B) \times P_B(D) + P(C) \times P_C(D)$$

$$= 0, 1 \times 0, 2 + 0, 5 \times 0, 7 + 0, 4 \times 0, 1$$

$$= 0.41$$

4 Indépendance

Définition

Soient A et B deux événements d'un univers Ω . On dit que A et B sont **indépendants** lorsque $P(A \cap B) = P(A) \times P(B)$.

Propriété

Soient A et B deux événements d'un univers Ω tels que $P(A) \neq 0$. A et B sont des événements indépendants si, et seulement si, $P_A(B) = P(B)$.

Preuve

$$P(A) \neq 0$$
 donc $P_A(B) = \frac{P(A \cap B)}{P(A)}$.

Sens direct:

Supposons que A et B sont des événements indépendants.

On a alors : $P(A \cap B) = P(A) \times P(B)$.

$$\mathrm{D'où} \quad P_A(B) = \frac{P(A) \times P(B)}{P(A)} = P(B).$$

Réciproque:

Supposons que $P_A(B) = P(B)$.

On a donc $P(A) \times P_A(B) = P(A) \times P(B)$.

D'où
$$P(A \cap B) = P(A) \times P(B)$$
.

Ainsi on a montré que A et B sont indépendants.

Exemple

Soient A et B deux événements indépendants tels que P(A)=0,8 et P(B)=0,35. Alors $P(A\cap B)=P(A)\times P(B)=0,8\times 0,35=0,28$.

Propriété

Si A et B sont deux événements indépendants, alors \overline{A} et B sont aussi deux événements indépendants.

Preuve

En exercice

Exemple d'application

Soient A et B deux événements tels que P(A)=0,8; P(B)=0,35 et $P(A\cap B)=0,28$.

- 1. Montrer que A et B sont indépendants.
- **2.** Déterminer $P(A \cup B)$ puis $P(\overline{A} \cap B)$.

Méthode

1. On compare $P(A) \times P(B)$ et $P(A \cap B)$:

2. On utilise $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ et l'indépendance de \overline{A} et B.

4. INDÉPENDANCE

À retenir

