Part I

Groups and Coding

communication

Coding theory

- ♪ In today's modern world of communication, data items are constantly being transmitted from point to point.
- ♪ The basic problem in transmission of data is that of receiving the data as sent and not receiving a distorted piece of data.

communication

Unit of Information

- ↑ Message is a finite sequence of characters from a finite alphabet $B = \{0, 1\}$
- ♪ Word is a sequence of m 0's and 1's.

Groups

- ↑ The set B is a group under the binary operation + (mod 2 addition)
- ♪ It follows that $B^m = B \times B \times \dots \times B$ (n factors) is a group under the operator \oplus defined by $(x_1, x_2, \dots, x_m) \oplus (y_1, y_2, \dots, y_m) = (x_1 + y_1, x_2 + y_2, \dots, x_m + y_m)$
- ♪ An element in B^m will be written as (b_1, b_2, \dots, b_m) or more simply as $b_1 b_2 \dots b_m$

Transmission channel and Noise

↑ An element $x \in B^m$ is sent through the transmission channel and is received as an element $x_t \in B^m$.

Transmission Channel and Noise

Noise in the transmission channel may cause a 0 to be received as a 1, or vice versa, lead $x \neq x_t$.

Transmission Channel and Noise

ightharpoonup Noise in the transmission channel may cause a 0 to be received as a 1, or vice versa, lead $x \neq x_t$.

Transmission Channel and Noise

♪ Noise in the transmission channel may cause a 0 to be received as a 1, or vice versa, lead $x \neq x_t$.

Coding Theory

↑ Coding theory has developed techniques for introducing redundant information in transmitted data that help in detecting, and sometimes in correcting, errors.

Definition (Encoding Function)

- ↑ Choose: an integer $n \ge m$ and a one-to-one function $e: B^m \to B^n$
 - \bullet e is called an (m,n) encoding function, representing every word in B^m as a word in B^n .
 - If $b \in B^m$, then e(b) is called the code word representing b.

Encoding Function

- ♪ If the transmission channel is noiseless, then $x_t = x$ for all x in B^n .
- ♪ In this case x = e(b) is received for each $b \in B^m$, and since e is a known function, b may be identified.
- ♪ In general, errors in transmission do occur.
- Ne will say that the code word x = e(b) has been transmitted with k or fewer errors if x and x_t differ in at least 1 but no more than k positions.

Definition (Error Detection)

- \blacktriangleright Let $e:B^m\to B^n$ be an (m,n) encoding function.
- lacksquare e detects k or fewer errors if whenever x=e(b) is transmitted with k or fewer errors, then x_t is not a code word (thus xt could not be x and therefore could not have been correctly transmitted).

Error Detection

Definition (Weight)

- ▶ For $b \in B^n$, the number of 1's in x is called the weight of x and is denoted by |x|
- ▶ Find the weight of each of the following words in B^5 .

$$x = 01000 \quad |x| = 1$$

$$x = 11100 |x| = 3$$

$$x = 00000 \quad |x| = 0$$

$$x = 11111 \quad |x| = 5$$

Example (Parity Check Code)

- ♪ The following encoding function $e: B^m \to B^{m+1}$ is called the parity (m, m+1) check code:
- ♪ If $b = b_1 b_2 \dots b_m \in B^m$, define

$$e(b) = b_1 b_2 \dots b_m b_{m+1}$$

where

$$b_{m+1} = \begin{cases} 0 & \text{if } |b| \text{ is even} \\ 1 & \text{if } |b| \text{ is odd} \end{cases}$$

Example (Parity Check Code)

- ♪ Let m=3. Then
 - \bullet e(000) = 0000
 - \bullet e(001) = 0011
 - \bullet e(010) = 0101
 - \bullet e(011) = 0110
 - \bullet e(100) = 1001
 - e(101) = 1010
 - e(110) = 1100
 - \bullet e(111) = 1111
- ♪ Suppose now that b = 111. Then x = e(b) = 1111.

Example (3m Encoding Function)

- ♪ Consider the (m,3m) encoding function $e:B^m \to B^{3m}$.
- $\text{If } b = b_1 b_2 \dots b_m \in B^m, \text{ define}$ $e(b) = b_1 b_2 \dots b_m b_1 b_2 \dots b_m b_1 b_2 \dots b_m$
 - $\bullet e(000) = 0000000000$
 - $\bullet e(001) = 001001001$
 - $\bullet \ e(010) = 010010010$
 - $\bullet e(011) = 011011011$
 - $\bullet e(100) = 100100100$
 - \bullet e(101) = 101101101
 - \bullet e(110) = 110110110
 - \bullet e(111) = 1111111111

Error Detection

Example (3m Encoding Function)

- ♪ Suppose now that b = 011, then e(011) = 011011011.
- ♪ Assume now we receive the word 011111011. This is not a code word, so we have detected the error.

Definition (Hamming Distance)

- Let x and y be words in B^m . The Hamming distance $\delta(x,y)$ between x and y is the weight, $|x \oplus y|$, of $x \oplus y$.
- ↑ The distance between $x = x_1 x_2 \dots x_m$ and $y = y_1 y_2 \dots y_m$ is the number of various of i such that $x_i \neq y_i$, that is, the number of positions in which x and y differ.
- ▶ Using the weight of $x \oplus y$ is a convenient way to count the number of different positions.

Hamming Distance

Example

- ightharpoonup Find the distance between x and y:
 - $\Rightarrow x = 110110, y = 000101$
 - x = 001100, y = 010110.

Solution

- *↑* $x \oplus y = 110011$, so $|x \oplus y| = 4$

Theorem (Properties of Distance Function)

- ▶ Let x, y, and z be elements of B^m . Then
 - $\bullet \quad \textbf{(a)} \ \delta(x,y) = \delta(y,x)$
 - $\bullet \quad \textbf{(b)} \ \delta(x,y) \ge 0$
 - (c) $\delta(x,y) = 0$ if and only if x = y

Proof. of (d).

$$\delta(x,y) = |x \oplus y| = |x \oplus \mathbf{0} \oplus y|$$

$$= |x \oplus z \oplus z \oplus y|$$

$$\leq |x \oplus z| + |z \oplus y|$$

Definition (Minimum Distance)

↑ The minimum distance of an encoding function $e:B^m\to B^n$ is the minimum of the distances between all distinct pairs of code words; that is,

$$\min\{\delta(e(x), e(y)) | x, y \in B^m\}$$

Example

- ↑ Consider the following (2,5) encoding function e:
 - \bullet e(00) = 00000
 - \bullet e(01) = 00111
 - \bullet e(10) = 01110
 - \bullet e(11) = 111111
- ♪ Minimum distance?

Hamming Distance

Theorem (2)

- ▶ An (m,n) encoding function $e:B^m\to B^n$ can detect k or fewer errors
 - → if and only if
- ▶ its minimum distance is at least k + 1.

Proof: \Leftarrow the minimum distance is at least k+1.

- ▶ Let $b \in B^m$, and let $x = e(b) \in B^n$ be the code word representing b.
 - x is transmitted and is received as x_t . If x_t were a code word different from x, then $\delta(x, x_t) \geq k + 1$, so x would be transmitted with k + 1 or more errors.
 - Thus, if x is transmitted with k or fewer errors, then x_t cannot be a code word.
 - ightharpoonup This means that e can detect k or fewer errors.

Proof: e can detect k or fewer errors \Rightarrow .

- ${\bf L}$ Suppose that the minimum distance between code words is $r \leq k$
- Let x and y be code words with $\delta(x,y)=r$.
 - If $x_t = y$, that is, if x is transmitted and is mistakenly received as y, then $r \le k$ errors have been committed and have not been detected.
- ▶ Thus it contradict with *e* can detect *k* or fewer errors.

Hamming Distance

Example (6)

- ♪ How many errors will e detect?
 - \bullet e(000) = 00000000
 - \bullet e(001) = 10011100
 - \bullet e(010) = 00101101
 - \bullet e(011) = 10010101
 - 5e(100) = 10100100
 - $\bullet e(101) = 10001001$
 - $\bullet e(110) = 00011100$
 - e(111) = 00110001

Definition (Group Codes)

- ▶ An (m,n) encoding function $e:B^m\to B^n$ is called a group code if
- ightharpoonup is a subgroup of B^n

Subgroups

- - $\ \ \square$ (a) the identity of B^n is in N,
 - (b) if x and y belong to N, then $x \oplus y \in N$, and

Example (is e a group code?)

- ↑ Consider the (3,6) encoding function $e:B^3 \to B^6$ defined by
 - \bullet e(000) = 000000
 - \bullet e(001) = 001100
 - \bullet e(010) = 010011
 - \bullet e(011) = 0111111
 - ρ e(100) = 100101
 - \bullet e(101) = 101001
 - \bullet e(110) = 110110
 - \bullet e(111) = 111001

Example (is e a group code?)

- ▶ We must show that the set of all code words
 - $N = \{000000, 001100, 010011, 011111, 100101, 101001, 110110, 111010\}$
- ↑ is a subgroup of B^6 .

Group Codes

Theorem

• Let $e:B^m\to B^n$ be a group code. The minimum distance of e is the minimum weight of a nonzero code word.

Proof.

- Let δ be the minimum distance of the group code, and suppose that $\delta = \delta(x,y)$, where x and y are distinct code words.
- Also, let η be the minimum weight of a nonzero code word and suppose that $\eta = |z|$ for a code word z.
- ♪ Since e is a group code, $x \oplus y$ is a nonzero code word. Thus $\delta = \delta(x,y) = |x \oplus y| \ge \eta$.
- **♪** On the other hand, since **0** and z are distinct code words, $\eta = |z| = |z \oplus \mathbf{0}| = \delta(z, \mathbf{0}) > \delta$
- ♪ Hence η = δ.

Example

- ♪ The minimum distance of the following group code is 2
 - \bullet e(000) = 000000
 - \bullet e(001) = 001100
 - \bullet e(010) = 010011
 - \bullet e(011) = 0111111
 - \bullet e(100) = 100101
 - \bullet e(101) = 101001
 - e(110) = 110110
 - \bullet e(111) = 111001
- ♪ To check this directly would require 28 different calculations.

A review on Boolean matrices

Example (A review on Boolean matrices)

- ♪ $\operatorname{\mathsf{mod-}2}$ $\operatorname{\mathsf{sum}}\ D \oplus E$
- ♪ mod-2 Boolean product D*E

Theorem

- ♪ Let D and E be $m \times p$ Boolean matrices, and let F be a $p \times n$ Boolean matrix. Then
- ▶ That is, a distributive property holds for \oplus and *.

Convention

Now we shall now consider the element $x=x_1x_2\dots x_n\in B^n$ as the $1\times n$ matrix $[x_1x_2\dots x_n]$

Theorem (5)

- Let m and n be nonnegative integers with m < n, r = n m, and let \mathbf{H} be an $n \times r$ Boolean matrix.
- ▶ Then the function $f_H: B^n \to B^r$ defined by

$$f_H(x) = x * \mathbf{H}, x \in B^n$$

ightharpoonup is a homomorphism from the group B^n to the group B^r .

Proof.

ightharpoonup If x and y are elements in B^n , then

$$f_H(x \oplus y) = (x \oplus y) * \mathbf{H}$$
$$= (x * \mathbf{H}) \oplus (y * \mathbf{H})$$
$$= f_H(x) \oplus f_H(y)$$

▶ Hence f_H is a homomorphism from B^n to B^r

Corollary (1)

- ▶ Let m, n, r, H, and f_H be as in Theorem 5. Then
 - $N = \{x \in B^n | x * \mathbf{H} = \mathbf{0}\}$
 - \bullet is a normal subgroup of B^n .

Proof.

♪ N is the kernel of the homomorphism f_H , so it is a normal subgroup of B^n .

Groups and Code

Example (Parity check matrix)

▶ Let m < n and r = n - m, the following $n \times r$ Boolean matrix is called a parity check matrix.

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{m \times r} \\ \mathbf{I}_r \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1r} \\ h_{21} & h_{22} & \dots & h_{2r} \\ \dots & \dots & & \dots \\ h_{m1} & h_{m2} & \dots & h_{mr} \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Example (Encoding function)

- ♪ Define an encoding function $e_H: B^m \to B^n$. For $b = b_1 b_2 \dots b_m$,
- ightharpoonup Let $x = e_H(b) = b_1 b_2 \dots b_m x_1 x_2 \dots x_r$, where

$$x_1 = b_1 \cdot h_{11} + b_2 \cdot h_{21} + \dots + b_m \cdot h_{m1}$$

$$x_2 = b_1 \cdot h_{12} + b_2 \cdot h_{22} + \dots + b_m \cdot h_{m2}$$

$$x_r = b_1 \cdot h_{1r} + b_2 \cdot h_{2r} + \dots + b_m \cdot h_{mr}$$

$$\begin{bmatrix} x_1 & x_2 & \dots & x_r \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & \dots & b_m \end{bmatrix} * \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1r} \\ h_{21} & h_{22} & \dots & h_{2r} \\ \dots & \dots & \dots \\ h_{m1} & h_{m2} & \dots & h_{mr} \end{bmatrix}$$

Example $(e_H: B^m \to B^n \text{ in matrix format})$

$$e_{H}(B^{m})$$

$$= B^{m} * [I_{m} H_{m \times r}]$$

$$= \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1r} \\ b_{21} & b_{22} & \dots & b_{2r} \\ \dots & \dots & \dots & \dots \\ b_{2^{m_{1}}} & b_{2^{m_{2}}} & \dots & b_{2^{m_{r}}} \end{bmatrix} \begin{bmatrix} 1 & \dots & 0 & h_{11} & h_{12} & \dots & h_{1r} \\ 0 & \dots & 0 & h_{21} & h_{22} & \dots & h_{2r} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & h_{m1} & h_{m2} & \dots & h_{mr} \end{bmatrix}$$

$$= \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1r} & x_{11} & x_{12} & \dots & x_{1r} \\ b_{21} & b_{22} & \dots & b_{2r} & x_{21} & x_{22} & \dots & x_{2r} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ b_{2^{m_{1}}} & b_{2^{m_{2}}} & \dots & b_{2^{m_{r}}} & x_{2^{m_{1}}} & x_{2^{m_{2}}} & \dots & x_{2^{m_{r}}} \end{bmatrix}$$

Theorem (6)

♪ Let

$$x = y_1 y_2 \dots y_m x_1 \dots x_r \in B^n$$

♪ Then

$$x * \mathbf{H} = \mathbf{0} \iff x = e_H(b) \text{ for some } b \in B^m$$

Group Code with a Parity Check Matrix

Proof: $x * \mathbf{H} = \mathbf{0} \Rightarrow x = e_H(b)$ for some $b \in B^m$.

♪ Suppose that $x * \mathbf{H} = \mathbf{0}$

$$x * \mathbf{H}$$

$$= \begin{bmatrix} y_1 & y_2 & \dots & y_m & x_1 & x_2 & \dots & x_r \end{bmatrix} * \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1r} \\ h_{21} & h_{22} & \dots & h_{2r} \\ \dots & \dots & \dots \\ h_{m1} & h_{m2} & \dots & h_{mr} \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

 $= [y_1 \cdot h_{11} + y_2 \cdot h_{21} + \dots + y_m \cdot h_{m1} + x_1 \quad y_1 \cdot h_{12} + y_2 \cdot h_{22} + \dots + y_m \cdot h_{m2} + x_2 \cdot h_{m2} + y_2 \cdot h_{m2} + y_$

$$= \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}$$

Proof: $x * \mathbf{H} = \mathbf{0} \Rightarrow x = e_H(b)$ for some $b \in B^m$.

Last equation

$$y_{1} \cdot h_{11} + y_{2} \cdot h_{21} + \dots + y_{m} \cdot h_{m1} + x_{1} = 0$$

$$y_{1} \cdot h_{12} + y_{2} \cdot h_{22} + \dots + y_{m} \cdot h_{m2} + x_{2} = 0$$

$$\dots$$

$$y_{1} \cdot h_{1r} + y_{2} \cdot h_{2r} + \dots + y_{m} \cdot h_{mr} + x_{r} = 0$$

Proof: $x * \mathbf{H} = \mathbf{0} \Rightarrow x = e_H(b)$ for some $b \in B^m$.

Note that $x_i + x_i = 0$. So add x_i to i^{th} row and get

$$y_{1} \cdot h_{11} + y_{2} \cdot h_{21} + \dots + y_{m} \cdot h_{m1} = x_{1}$$

$$y_{1} \cdot h_{12} + y_{2} \cdot h_{22} + \dots + y_{m} \cdot h_{m2} = x_{2}$$

$$\dots$$

$$y_{1} \cdot h_{1r} + y_{2} \cdot h_{2r} + \dots + y_{m} \cdot h_{mr} = x_{r}$$

Proof: $x * \mathbf{H} = \mathbf{0} \Rightarrow x = e_H(b)$ for some $b \in B^m$.

Letting $b_1 = y_1, b_2 = y_2, \dots, b_m = y_m$, we see that x_1, x_2, \dots, x_r satisfy the equations in (1).

$$\begin{bmatrix} x_1 & x_2 & \dots & x_r \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & \dots & y_m \end{bmatrix} * \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1r} \\ h_{21} & h_{22} & \dots & h_{2r} \\ \dots & \dots & \dots \\ h_{m1} & h_{m2} & \dots & h_{mr} \end{bmatrix}$$

ightharpoonup Thus $b=b_1b_2\dots b_m$ and $x=e_H(b)$

Proof: $x * \mathbf{H} = \mathbf{0} \Leftarrow x = e_H(b)$ for some $b \in B^m$.

ightharpoonup Conversely if $x = e_H(b)$

$$x = e_H(b_1 b_2 \dots b_m) = [b_1 \quad b_2 \quad \dots \quad b_m \quad x_1 \quad x_2 \quad \dots \quad x_r]$$

$$\begin{bmatrix} x_1 & x_2 & \dots & x_r \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & \dots & b_m \end{bmatrix} * \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1r} \\ h_{21} & h_{22} & \dots & h_{2r} \\ \dots & \dots & \dots \\ h_{m1} & h_{m2} & \dots & h_{mr} \end{bmatrix}$$

Groups and Code

Proof: $x * \mathbf{H} = \mathbf{0} \Leftarrow x = e_H(b)$ for some $b \in B^m$.

$$\begin{bmatrix} x_1 & x_2 & \dots & x_r \end{bmatrix} = \begin{bmatrix} b_1 & b_2 & \dots & b_m \end{bmatrix} * \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1r} \\ h_{21} & h_{22} & \dots & h_{2r} \\ \dots & \dots & \dots & \dots \\ h_{m1} & h_{m2} & \dots & h_{mr} \end{bmatrix}$$

$$x_{1} = b_{1} \cdot h_{11} + b_{2} \cdot h_{21} + \dots + b_{m} \cdot h_{m1}$$

$$x_{2} = b_{1} \cdot h_{12} + b_{2} \cdot h_{22} + \dots + b_{m} \cdot h_{m2}$$

$$(\Leftrightarrow b_{1} \cdot h_{12} + b_{2} \cdot h_{22} + \dots + b_{m} \cdot h_{m2} + x_{2} = 0)$$
...

 $x_r = b_1 \cdot h_{1r} + b_2 \cdot h_{2r} + \dots + b_m \cdot h_{mr}$

Group Code with a Parity Check Matrix

Proof:
$$x * \mathbf{H} = \mathbf{0} \Leftarrow x = e_H(b)$$
 for some $b \in B^m$.
$$x * \mathbf{H}$$

$$= \begin{bmatrix} b_1 & b_2 & \dots & b_m & x_1 & x_2 & \dots & x_r \end{bmatrix} * \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1r} \\ h_{21} & h_{22} & \dots & h_{2r} \\ \dots & \dots & \dots & \dots \\ h_{m1} & h_{m2} & \dots & h_{mr} \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 \cdot h_{11} + b_2 \cdot h_{21} + \dots + b_m \cdot h_{m1} + x_1 & b_1 \cdot h_{12} + b_2 \cdot h_{22} + \dots + b_m \cdot h_{m2} + x_2 \\ = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}$$
which shows $x * \mathbf{H} = \mathbf{0}$

Corollary (2)

$$ightharpoonup e_H(B^m) = \{e_H(b)|b \in B^m\}$$
 is a subgroup of B^n

Proof.

- ▶ The result follows from the observation that

 - \bullet and from Corollary 1.
- ↑ Thus e_H is a group code.

Example

ightharpoonup Let m=2, n=5, and

$$H = \begin{bmatrix} H_{2\times3} \\ I_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

↑ Determine the group code $e_H: B^2 \to B^5$.

An Example

Solution

$$e_{H}(B^{m}) = B^{m} * [I_{2} H_{2\times3}]$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

A Question

▶ What does H mean?

Homework

- ♪ 16, 18, 20, 26@page412
- ♪ 编程作业:给定H(读取文件方式,第一行两个整数m,n,第二行 $m \times (n-m)$ 个0或1,也就是矩阵H的上半部分,下半部单位矩阵自行生成),计算群码编码函数 e_H 。
 - ① 计算该编码函数能检测到多少位错误
 - ② 交互输出字的码字
- ♪ 编程作业: 针对(8,12)编码e,找出最小距离最大的群码编码函数,输出H及最小距离。