MTH 300: Intro to Higher Mathematics - Fall Due Monday, August 29
2022 Problem Set 2
Last Name, First Name

Problem 1. Find the mathematical error in the "proof" shown below as you can and explain														
why the error is a problem. Rewrite the proof correcting the error and using good proof-writing														
technique.														
Theorem 1. If a and b are odd integers, then a – b is even.														
<i>Proof.</i> Let $a = 2k + 1$ and $b = 2k + 1$. Then $a - b = (2k + 1) - (2k + 1) = 0$. Since 0 is an even														
nteger, the theorem holds. This proof implies that a=b. This is not part of the hypothesis, so he conclusion is not valid. This would be a proof to the claim If a and b are odd integers and a=b, then a-b is even.														
The proof should state Let a=2k+1 and b=2m+1. Then a-b=(2k+1)-(2m+1)=2k-2m=2(k-m).														
2(k-m) is an even integer and the theorem is proven. The conclusion is still true but the nethod and process and logical and communication and chain of steps of the proof is wrong.														
Proof. Here is where your proof/explanation goes!														

MTH 300: Intro to Higher Mathema	atice - Fall
_	
2022 Problem Set 2	Problem 2. Let $a,b \in Z$. Last Name, First Name
Due Monday, August 29	<u> </u>
1. Complete the following condition	onal statement so that if the hypothesis is true, so is the
conclusion:	
IE 45	
If then $a^2 + b^2$ is odd.	
	ot both a and b (exclusive or of a and b), then a^2+b^2 is

Let us prove the first case holds. If a is odd it can be obtained as 2k+1 where k is a integer.

If b is even then then it can be obtained as 2m where m is an integer. If we symbolically manipulate a^2+b^2 we get (2k+1)^2+(2m)^2 and expanding we get 1+4k+4k^2+4m^2. We can prove this can be obtained as 2n+1 where n is an integer by subtracting 1 to get 4k+4k^2+4m^2. We have now isolated 2n. We factor out to get 2(2k+2k^2+2m^2). We add the one we subtracted earlier and now we have expressed a^2+b^2 in the form 2n+1 where n represents 2k + 2k^2+2m^2. Therefore the sum a^2+b^2 is an odd integer.

The same proof holds in the alternative case where a is even and b is odd because we can label b as a and a as a b. Swapping the values and the parity of the variables and b still results in an odd number because the operation of addition is commutative so if the sum of two expressions x+y becomes y+x, the sum is invariant. In this case a^2+b^2 becomes b^2+a^2 the sum is invariant. If the sum is invariant, the parity of the sum is invariant. The theorem is proven.

Proof. Here is where your proof/explanation goes!

MTH 300: Intro to Higher Mathematics - Fall Due Monday, August 29 2022 Problem Set 2 Last Name, First Name
Problem 3 . Given the following proof, identify the theorem being proved. Write the theorem as
a conditional statement.
<i>Proof.</i> Let n be an odd integer. Then $n = 2k + 1$ for some $k \in \mathbb{Z}$. Thus
3n - 8 = 3(2k + 1) - 8
= 6k + 3 - 8
= 6 <i>k</i> - 5
= 2(3k - 3) + 1.
Therefore 3 <i>n</i> – 8 is an odd integer.
<i>Proof.</i> Here is where your proof/explanation goes! The theorem is that an odd integer n obtainable with an integer k as 2k+1 will always produce an odd integer by computing 3n-8. The hypothesis is that n is an odd integer obtainable as 2k+1. The conclusion is 3n-8 is an odd integer. If n is an odd integer, then 3n-8 is an integer.

MTH 300: Intro to Higher Mathemat	tics - Fall Due Monday, August 29

2022 Problem Set 2 Last Name, First Name

Problem 4. Practice with conjecture: Suppose $f(x) = e^{3x}$ for $x \in \mathbb{R}$. Find the first 5 derivatives of f. Identify the pattern and formulate a conjecture that appears to be true. Write your conjecture in the form: If f is a natural number, then

Proof. Here is where your proof/explanation goes!

If n is an a natural number the nth derivative of the mapping $f(x)|->e^3x$ over the field of reals is $3^n e^3$.

I used Table[D[E $^(3 x)$, {x, n}], {n, 10}] to compute the first 10 derivatives in Mathematica as

{3E^(3 x), 9 E^(3 x), 27 E^(3 x), 81 E^(3 x), 243 E^(3 x),													
729 E^(3 x), 2187 E^(3 x), 6561 E^(3 x), 19683 E^(3 x),													
59049 E^(3 x)}. I then used FindSequenceFunction to find the pattern 3 n E^(3 x).													
<u>L</u>													

MTH 200, before to Higher Methometics - Fall Bound - 1	
MTH 300: Intro to Higher Mathematics - Fall Due Monday, August 29 Last Name, First Name	
2022 Problem Set 2	
Problem 5 . Your proof may only use the definitions of even and odd and basic facts about	
integers.	
integers.	
The amount O of the internal internal them 2.2.1 Oct. 12 in an add internal	
Theorem 2. If x is an even integer, then $3x^2 + 2x + 3$ is an odd integer.	
Proof. Here is where your proof/explanation goes!	
We can use the mapping x ->2k to transform the polynomial expression $3x^2 + 2x + 3$ into 3+6k+12k^2. We need to show that this meets the form of an odd integer. We can partition the	
expression into a smaller expression with a factor of 2 and 1: 2(1+3k+6k^2)+1. This is the	
form of an odd integer, and the theorem is proven.	_

٠.	٠	 •	 •	 	-	 -								 			•					 	-	•	 •	•		-			-	 •	 •
٠.		 •	 •	 			•	 •	•				•	 			•			•		 		•							-		 •
٠.		 •	 •	 			•	 •	•				•	 			•			•		 		•							-		 •
٠.		 •	 •	 			•	 •	•				•	 			•			•		 		•							-		 •
٠.		 •	 •	 			•	 •	•				•	 			•			•		 		•							-		 •
٠.		 •	 •	 			•	 •	•				•	 			•			•		 		•							-		 •
٠.				 	-	 -								 								 	-		 -	-					-		
				 										 								 									-		
				 										 								 									-		
				 				 -						 								 									-		
				 	-	 -								 								 	-		 -	-					-		
				 	-									 																	-		
				 										 								 									-		
				 	-	 -		 						 								 	-								-		
				 	-									 								 									-		
				 	-									 								 									-		
				 										 								 									-		
				 										 								 									-		
				 										 								 									-		
				 	-									 								 	-								-		
				 										 								 									-		
				 										 								 									-		