LC15: Solvants

Solvatation des espèces chargées

Classification des solvants selon leur polarité

« Polarité » 🖊

Solvant	μ / D	\mathcal{E}_r
cyclohexane	0	2,0
éther diéthylique	1,15	4,2
acétate d'éthyle	1,78	6,0
cyclohexanone	2,90	18,3
acétone	2,88	20,7
éthanol	1,69	24,8
méthanol	1,70	32,7
eau	1,85	78,5

Classification des solvants

Solvants polaires protiques

Solvants polaires aprotiques

Solvants apolaires aprotiques

Coefficient de partage

Quantité de I_2 introduite connue

$$n_{I_2,tot} = 9,84.10^{-4} \text{mol}$$

 $V_1 = 200 \text{ mL}$ I_2 dans eau

Réaction support de dosage :

$$I_{2(aq)} + 2S_2O_{3(aq)}^{2-} = 2I_{(aq)}^{-} + S_4O_{6(aq)}^{2-}$$

$$\Rightarrow n_{I_2,aq} = \frac{n_{S_2O_3^{2-}}}{2}$$

$$P = \frac{\frac{m_{I_2,tot}}{M_{I_2,tot}} - 4\frac{V_{eq}C_{dos}}{2}}{4\frac{V_{eq}C_{dos}}{2V}}$$

Extraction liquide-liquide

A.-S. Bernard, Techniques expérimentales en Chimie, Dunod

M. Blanchard-Desce, Chimie organique expérimentale, Hermann

Protocole:

On verse le brut réactionnel aqueux ainsi que de l'éther dans l'ampoule à décanter

 On procède comme sur le schéma et on récupère la phase organique et la phase aqueuse

Choix du solvant pour l'alcool benzylique

Éther diététique	Dichlorométhane	Toluène
0	CI H—C—CI H	C I
T _{fus} = 35 °C	T _{fus} = 40 °C	T _{fus} = 110 °C
Nocif en cas d'ingestion	CMR	CMR