Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 5346 Avaliação III – 2014/2 (26/11/2014)

Questão 1: [4,0 pontos] Dado o circuito a seguir: (a) determine V_{GSQ} , I_{DSQ} e V_{DSQ} dos dois transistores, supondo operação na região de saturação; (b) verifique se o amplificador realmente opera na região de saturação. Dados: V_T =4V; K=23,64; V_A →∞; X_C (ω =0)→∞. Fonte: http://www.tubecad.com/2009/09/blog0172.htm.

Questão 2: [4,0 pontos] Dado o amplificador da questão anterior, no qual é incluído um capacitor entre a terra e o ponto de ligação entre os resistores de 1M-20k-25,2k: (a) apresente o modelo de pequenos sinais; (b) determine a impedância de entrada; (c) determine o ganho de tensão.

Questão 3: [2,0 pontos] Implemente a função lógica: $S = A(\overline{B} + C)$

FORMULÁRIO

• MOSFET reforço (enriquecimento, acumulação, intensificação):

NMOS	Equações	PMOS
$V_T > 0 V_{DS} > 0$	$K = k_n \left(\frac{W}{L}\right)$ $k_n = \mu_n C_{ox} , \lambda = 1/V_A$	$V_T < 0 V_{DS} \le 0$
$V_{GS} < V_T$	(a) Região de Corte I _D =0	$V_{GS} \ge V_T$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} < V_{GS} - V_T \\ V_{GD} \ge V_T \end{cases}$	(b) Região de Triodo $I_D = K \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} > V_{GS} - V_T \\ V_{GD} \leq V_T \end{cases}$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} \ge V_{GS} - V_T \\ V_{GD} \le V_T \end{cases}$	(c) Região de Saturação $I_D = \frac{K}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} \leq V_{GS} - V_T \\ V_{GD} \geq V_T \end{cases}$
(a) V _{0S}	4	V ₀₀₀ (c) (b) V ₀₅₁ (a)

• Modelo de pequenos sinais do MOSFET reforço: $r_d=|V_a|/I_D$; $g_m=K\cdot(V_{GS}-V_T)$

