CircuiTikZ - pakiet umozliwiający wizualizację obwodów elektrycznych i układów elektronicznych Metody składu i druku dokumentów

18 kwietnia 2016

O pakiecie słów kilka:

- Autorem pakietu jest Massimo A. Redaelli
- pakiet CircuiTikZ został stworzony na bazie pakkietu TikZ
- pakiet zawiera zestaw poleceń do tworzenia wizualizacji obwodów elektrycznych
- można nim również tworzyć wizualizacje układów elektronicznych
- do poprawnego działania wymagane są pakiety:
 - Tikz
 - Siunitx

Podstawowa składnia

```
\begin{circuitikz} \draw
(0,0) to[ nazwa_komponentu ] (2,0)
; \end{circuitikz}
```

```
\begin{circuitikz} \draw
(0,0) node[ nazwa_komponentu ] {}
; \end{circuitikz}
```

przykładowy element - Rezystor

```
\begin{circuitikz} \draw
(0,0) to[Resistor] (2,0)
; \end{circuitikz}
```


przykładowy element - bramka nand

```
\begin{circuitikz}\draw
(0,0) node[nand port] {}
;\end{circuitikz}
```


podstawowe elementy

amperomierz(ammeter)

voltomierz(voltmeter)

• żarówka(lamp)

rezystor(resistor)A A A

zródło napięcia(voltage source)

źródło prądu(current source)

masa(ground)

bateria(battery)

podstawowe elementy

kondensator(capacitor)

• cewka(inductor)

- źródło prądu zmiennego(isourcesin)
- przełącznik(opening switch)
- przełącznik(closing switch)
- źródło napięcia zmiennego(vsourcesin)

bramki logiczne

or port

not port

nor port

xor port

xnor port

nand port

różne sposoby zapisu

Pakiet circuiTikZ umożliwia stosowanie zapisu europejskiego lub amerykańskiego poszczególnych elementów obwodów elektrycznych. Opcję tą włącza odpowiednio słowo kluczowe american(symbole amerykańskie) oraz european(symbole europejskie)

```
składnia

\begin { circuitikz } [ european ]
\draw (0,0) to [R] (2,0);
\end { circuitikz }
```

różne sposoby zapisu

Pakiet nie posiada domyślnego stylu zapisu. Np. Dla rezystora domyślnym stylem jest american, a dla źródła prądu domyślnym jest styl europejski.

Poniżej przykład zapisu w różnych stylach.

Źródło prądu - symbol europejski:

Źródło prądu - symbol amerykański:

opisywanie elementów

Pakiet circuitTikZ pozwala na opisywanie elementów, zaznaczanie spadków napięć, kierunków płynięcia prądu itd.

```
\label{lem:condition} $$ \left(0,0\right) $ to [R=\$R\$, i=\$i\$, v=\$v\$] $$ (2,0);\end{circuitikz} $$
```


Można również zaznaczyć na schemacie wartości elementów, napięć i prądów, trzeba jednak dodać pakiet **siunitx**.

```
\label{lem:local_begin} $$ \left\{ \begin{array}{l} \operatorname{circuitikz} \right\} \left[ \operatorname{european} \right] \ draw \\ \left( \begin{array}{l} 0,0 \right) \ to \ \left[ R, \ I_= \right\} \left\{ 1 \right\} \left\{ \left\{ \operatorname{kilo} \left( \operatorname{ohm} \right) \right\}, \\ i= \left\{ 1 \right\} \left\{ \left\{ \operatorname{milli} \left\{ \operatorname{mipere} \right\} \right\} \right\} \\ \left( \begin{array}{l} 3,0 \right); \\ \end{array} \right. $$
```


opisywanie elementów

Możliwe jest również dowolnie zakańczać elementy obwodu:

```
\begin{circuitikz}[european, scale=1.5] \\ draw (0,0) to [R=$R$, i=$i$, v=$v$, o-*] (3,0); \\ end{circuitikz} \end{circuitikz}
```


oraz ustawiać kierunki strzałek np. kierunku płynięcia prądu prądu:

```
\begin{circuitikz}[european] \\ draw (0,0) to [R=$R$, i<=$i$, v>=$v$, o-*] (3,0); \\ end{circuitikz} \end{circuitikz}
```


przykłady...

```
\begin{circuitikz}[european] \draw
(6.0) to [R=\$R_1\$, i=\$J3\$](3.0)
(6.2) to [R=\$R_2\$, i=\$J2\$, *-](3.2)
(0,2) to [battery,*-](3,2)
(0,4) to [battery, i=$J1$](3,4)
\{(0,0) - (0,2)\} to (0,4)
(0,0) - (3,0)
\{(6,0)--(6,4)\} to (3,4)
(-0.2,2) node \{A\}
(6.2,2) node \{B\};
\end{circuitikz}
```


przykłady...

```
\label{lem:continuous} $$ \left\{ \begin{array}{ll} \left\{ \text{circuitikz} \right\} & \left\{ \text{curopean} \right\} \\ \left\{ \begin{array}{ll} \left\{ \text{continuous} \right\} \\ \left\{ \text{continuous} \right\} \\ \left\{ \text{continuous} \right\} \\ \left\{ \text{continuous} \right\} \\ \left\{ \text{circuitikz} \right\} \\ \end{array} $$ 10 \, \text{V}$ $$ 10 \, \text{km} = 10 \, \text{km
```

przykłady...

```
\begin{circuitikz} \draw
(0,2) node[and port] (1_bramka_and) {}
(0,0) node[and port] (2_bramka_and) {}
(2,1) node[xnor port] (bramka_xnor) {}
(1_bramka_and.out) -| (bramka_xnor.in 1)
(2_bramka_and.out) -| (bramka_xnor.in 2)
;\end{circuitikz}
```


kolorowe schematy...

Można również 'pokolorować' elementy:

```
\begin{circuitikz} \draw
(0,2) node[and port, color=yellow] (1_bramka_and) {}
(0,0) node[and port, color=red] (2_bramka_and) {}
(2,1) node[xnor port, color=blue] (bramka_xnor) {}
(1_bramka_and.out) -| (bramka_xnor.in 1)
(2_bramka_and.out) -| (bramka_xnor.in 2)
;\end{circuitikz}
```


kolorowe schematy...

Pakiet pozwala na "kolorowanie" poszczególnych elementów(przykład poprzedni) oraz całego obwodu. Aby dla całego obwodu nadać konkretny kolor...

```
\begin { circuitikz } \draw [ color=magenta ] (0,2) node [ and port ] (1_bramka_and) { } (0,0) node [ and port ] (2_bramka_and) { } (2,1) node [ xnor port ] (bramka_xnor) { } (1_bramka_and.out) - | (bramka_xnor.in 1) (2_bramka_and.out) - | (bramka_xnor.in 2) ; \end { circuitikz }
```


Dziękuję za uwagę.

Prezentacja została przygotowana na podstawie manual'a pakietu circuiTik7.