Mathematical Foundation of Computer Sciences I

Regular Languages and Finite Automata

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Instructor and Textbook

Instructors

Guoqiang Li, 1-8, Automata Theory

Xiaodong Gu, 9-16, Optimization Theory

Xubo Yang, 17-24, Scientific Computing

Instructor

• Guoqiang LI

Instructor

• Guoqiang LI

• Homepage: https://basics.sjtu.edu.cn/%7Eliguoqiang

• Course page:

https://basics.sjtu.edu.cn/%7Eliguoqiang/teaching/SE2324/

• Email: li.g@outlook.com

• Office: Rm. 1212, Building of Software

• Phone: 3420-4167

Instructor

- Guoqiang LI
 - Homepage: https://basics.sjtu.edu.cn/%7Eliguoqiang
 - Course page:

https://basics.sjtu.edu.cn/%7Eliguoqiang/teaching/SE2324/

- Email: li.g@outlook.com
- Office: Rm. 1212, Building of Software
- Phone: 3420-4167
- TA:
 - Jingyang LI: 94598772 (AT) qq (DOT) com

Textbook

[Sip12] Introduction to the Theory of Computation, Michael Sipser, 2012

Scoring Policy

30% Homework.

25% Mid-term Exam.

20% Report.

25% Final Exam.

Scoring Policy

30% Homework.

- Each part 10 pt.
- Automata part: 3 homework.

25% Mid-term Exam.

• This is for Automata part.

20% Report.

• This is for Optimization part.

25% Final Exam.

• This is for Scientific computing part.

Regular Languages and DFA

Deterministic Finite Automata

Definition (DFA)

A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the alphabet,
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

Formal Definition of Computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \dots w_n$ be a string with $w_i \in \Sigma$ for all $i \in [n]$. Then M accepts w if a sequence of states r_0, r_1, \dots, r_n in Q exists with:

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n-1, and
- 3. $r_n \in F$.

Formal Definition of Computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \dots w_n$ be a string with $w_i \in \Sigma$ for all $i \in [n]$. Then M accepts w if a sequence of states r_0, r_1, \dots, r_n in Q exists with:

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n-1, and
- 3. $r_n \in F$.

We say that M recognizes A if

$$A = \{w \mid M \text{ accepts } w\}$$

Regular Languages

Definition (Regular languages)

A language is called regular if some finite automaton recognizes it.

Examples of Regular Languages

$$\{(ab)^n\mid \forall n\geq 0\}$$

Examples of Regular Languages

$$\{(ab)^n\mid \forall n\geq 0\}$$

$$\{a^nb^n\mid \forall n\geq 0\}$$

Examples of Regular Languages

$$\{(ab)^n \mid \forall n \ge 0\}$$

$$\{a^nb^n \mid \forall n \ge 0\}$$

$$\{ab, a^2b^2, \dots a^nb^n\}$$

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

• Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}.$

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}.$
- Kleene star: $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in A\}.$

Closure under Union

Theorem

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Pre-Proof

For $i \in [2]$ let $M_i = (Q_i, \Sigma_i, \delta_i, q_{0_i}, F_i)$ recognize A_i . We can assume without loss of generality $\Sigma_1 = \Sigma_2$:

Pre-Proof

For $i \in [2]$ let $M_i = (Q_i, \Sigma_i, \delta_i, q_{0_i}, F_i)$ recognize A_i . We can assume without loss of generality $\Sigma_1 = \Sigma_2$:

• Let $a \in \Sigma_2 - \Sigma_1$.

Pre-Proof

For $i \in [2]$ let $M_i = (Q_i, \Sigma_i, \delta_i, q_{0_i}, F_i)$ recognize A_i . We can assume without loss of generality $\Sigma_1 = \Sigma_2$:

- Let $a \in \Sigma_2 \Sigma_1$.
- We add $\delta_1(r, a) = r_{trap}$, where r_{trap} is a new state with $\delta_1(r_{trap}, w) = r_{trap}$ for every w.

We construct $M = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$:

1.
$$Q = Q_1 \times Q_2 = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}.$$

- 2. $\Sigma = \Sigma_1 = \Sigma_2$.
- 3. For each $(r_1, r_2) \in Q$ and $a \in \Sigma$ we let

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

- 4. $q_0 = (q_1, q_2)$.
- 5. $F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

A Sample

Closure under Concatenation

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.

Closure under Concatenation

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.

We prove the above theorem by nondeterministic finite automata.

Nondeterministic Finite Automata

Nondeterminism

Definition (NFA)

A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the states,
- 2. Σ is a finite set called the alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q)$ is the transition function, where $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

Formal Definition of Computation

Let $N=(Q,\Sigma,\delta,q_0,F)$ be a nondeterministic finite automaton and let $w=w_1w_2\ldots w_m$ be a string with $w_i\in\Sigma_\varepsilon$ for all $i\in[m]$. Then N accepts w if a sequence of states r_0,r_1,\ldots,r_m in Q exists with:

- 1. $r_0 = q_0$,
- 2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., m-1, and
- 3. $r_m \in F$.

Formal Definition of Computation

Let $N = (Q, \Sigma, \delta, q_0, F)$ be a nondeterministic finite automaton and let $w = w_1 w_2 \dots w_m$ be a string with $w_i \in \Sigma_{\varepsilon}$ for all $i \in [m]$. Then N accepts w if a sequence of states r_0, r_1, \dots, r_m in Q exists with:

- 1. $r_0 = q_0$,
- 2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., m-1, and
- 3. $r_m \in F$.

We say that N recognizes A if

$$A = \{w \mid M \text{ accepts } w\}$$

Examples of NFA

Examples of NFA

Accepts $\{0^*1^*2^*\}$

Examples of NFA

Accepts {0*1*2*}

Examples of NFA

Accepts {0*1*2*}

Accepts $\{ab^+, ac^+\}$

Equivalence of NFAs and DFAs

Theorem

Every NFA has an equivalent DFA, i.e., they recognize the same language.

Proof.

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ recognizing the same A.

Proof.

Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing some language A. We construct a DFA $M=(Q',\Sigma,\delta',q_0',F')$ recognizing the same A.

First assume N has no " ϵ " arrows.

Proof.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ recognizing the same A.

First assume N has no " ϵ " arrows.

1.
$$Q' = \mathcal{P}(Q)$$
.

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ recognizing the same A.

First assume N has no " ε " arrows.

- 1. $Q' = \mathscr{P}(Q)$.
- 2. Let $R \in Q'$ and $a \in \Sigma$. Then we define

$$\delta'(R, a) = \{ q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R \}$$

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ recognizing the same A.

First assume N has no " ϵ " arrows.

- 1. $Q' = \mathcal{P}(Q)$.
- 2. Let $R \in Q'$ and $a \in \Sigma$. Then we define

$$\delta'(R, a) = \{ q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R \}$$

3. $q'_0 = \{q_0\}.$

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ recognizing the same A.

First assume N has no " ϵ " arrows.

- 1. $Q' = \mathscr{P}(Q)$.
- 2. Let $R \in Q'$ and $a \in \Sigma$. Then we define

$$\delta'(R, a) = \{ q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R \}$$

- 3. $q'_0 = \{q_0\}.$
- 4. $F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}.$

Determinization

Proof (cont'd)

Proof.

Now we allow " ϵ " arrows.

For every $R \in Q'$, i.e., $R \subseteq Q$, let

$$E(R) = \{ q \in Q \mid q \text{ can be reached from } R$$

by traveling along 0 and more ε arrows $\}$

- 1. $Q' = \mathscr{P}(Q)$.
- 2. Let $R \in Q'$ and $a \in \Sigma$. Then we define

$$\delta'(R, a) = \{ q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R \}$$

- 3. $q_0' = E(\{q_0\}).$
- 4. $F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}.$

Example of ε -Transition Removal

Put a new transition \xrightarrow{a} where $\xrightarrow{\varepsilon^* a \varepsilon^*}$

If $q_0 \xrightarrow{\varepsilon^*} q_f$ for $q_f \in F$, add q_0 to F

Example of ε -Transition Removal

Put a new transition \xrightarrow{a} where $\xrightarrow{\varepsilon^* a \varepsilon^*}$

If $q_0 \xrightarrow{\varepsilon^*} q_f$ for $q_f \in F$, add q_0 to F

Corollary

Corollary

A language is regular if and on if some nondeterministic finite automaton recognizes it.

Second Proof of the Closure under Union

For $i \in [2]$ let $N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i . We construct an $N = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$:

- 1. $Q = \{q_0\} \cup Q_1 \cup Q_2$.
- 2. q_0 is the start state.
- 3. $F = F_1 \cup F_2$.
- 4. For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

Closure under Concatenation

Theorem

The class of regular languages is closed under the concatenation operation.

For $i \in [2]$ let $N_i = (Q_i, \Sigma_i, \delta_i, q_i, F_i)$ recognize A_i . We construct an $N = (Q, \Sigma, \delta, q_1, F_2)$ to recognize $A_1 \circ A_2$:

- 1. $Q = Q_1 \cup Q_2$.
- 2. The start state q_1 is the same as the start state of N_1 .
- 3. The accept states F_2 are the same as the accept states of N_2 .
- 4. For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 - F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

Closure under Kleene Star

Theorem

The class of regular languages is closed under the star operation.

Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . We construct an $N = (Q, \Sigma, \delta, q_0, F)$ to recognize A_1^* :

- 1. $Q = \{q_0\} \cup Q_1$.
- 2. The start state q_0 is the new start state.
- 3. $F = \{q_0\} \cup F_1$.
- 4. For any $q \in Q$ and any $a \in \Sigma_{\varepsilon}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 - F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

Regular Expression

Regular Expression

Definition

We say that R is a regular expression if R is

- 1. a for some $a \in \Sigma$,
- 2. **ε**,
- 3. ∅,
- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,
- 6. R_1^* , where R_1 is a regular expression.

Regular Expression

Definition

We say that R is a regular expression if R is

- 1. a for some $a \in \Sigma$,
- 2. **ε**,
- 3. **Ø**,
- 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- 5. $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions,
- 6. R_1^* , where R_1 is a regular expression.

We often write R_1R_2 instead of $(R_1 \circ R_2)$ if no confusion arises.

Language Defined by Regular Expressions

regular expression R	language <i>L(R)</i>
а	{a}
arepsilon	$\{arepsilon\}$
Ø	Ø
$R_1 \cup R_2$	$L(R_1) \cup L(R_2)$
$R_1 \circ R_2$	$L(R_1) \circ L(R_2)$
R_1^*	$L(R_1)^*$

Equivalence with Finite Automata

Theorem

A language is regular if and only if some regular expression describes it.

The Languages Defined by Regular Expressions Are Regular

1.
$$R = a$$
: Let $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$, where $\delta(q_1, a) = \{q_2\}$ and $\delta(r, b) = \emptyset$, for all $r \neq q_1$ or $b \neq a$.

The Languages Defined by Regular Expressions Are Regular

- 1. R = a: Let $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$, where $\delta(q_1, a) = \{q_2\}$ and $\delta(r, b) = \emptyset$, for all $r \neq q_1$ or $b \neq a$.
- 2. $R = \varepsilon$: Let $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$, where $\delta(r, b) = \emptyset$, for all r and b.
- 3. $R = \emptyset$: Let $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$, where $\delta(r, b) = \emptyset$, for all r and b.
- 4. $R = R_1 \cup R_2$: $L(R) = L(R_1) \cup L(R_2)$.
- 5. $R = R_1 \circ R_2$: $L(R) = L(R_1) \circ L(R_2)$.
- 6. $R = R_1^*$: $L(R) = L(R_1)^*$.

Regular languages can be defined by regular expressions

We need generalized nondeterministic finite automata (GNFA)nondeterministic finite automata where in the transition arrows may have any regular expressions as labels.

- 1. The start state has transition arrows going to every other state but no arrows coming in from any other state.
- 2. There is only a single accept state, and it has arrows coming in from every other state but no arrows going to any other state. Furthermore, the accept state is not the same as the start state.
- 3. Except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself.

Generalized nondeterministic finite automata

Definition

A GNFA is a 5-tuple $(Q, \Sigma, \delta, q_{start}, q_{accept})$, where

- Q is a finite set of states,
- Σ is a finite alphabet,
- $\delta: (Q \{q_{accept}\}) \times (Q \{q_{start}\}) \to R$ is the transition function, where R is the set of regular expressions,
- q_{start} is the start state, and
- q_{accept} is the accept state.

Formal definition of computation

A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \dots w_k$, where each $w_i \in \Sigma^*$ and a sequence of states q_0, q_1, \dots, q_k exists such that

- $q_0 = q_{start}$ is the start state,
- $q_k = q_{accept}$ is the accept state, and
- for each $i \in [k]$, we have $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$.

Regular languages can be defined by regular expressions

Let M be the DFA for language A.

- We convert M to a GNFA G by adding a new start state and a new accept state and additional transition arrows as necessary.
 - The start state has transition arrows going to every other state but no arrows coming in from any other state.
 - There is only a single accept state, and it has arrows coming in from every other state but no arrows going to any other state. Furthermore, the accept state is not the same as the start state.
 - 3. Except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself.
- Then we use a procedure convert on G to return an equivalent regular expression.

convert(G)

- 1. Let k be the number of states of G.
- 2. If k = 2, then return the regular expression R labelling the arrow from q_{start} to q_{accept} .
- 3. If k > 2, we select any state $q_{rip} \in Q \{q_{start}, q_{accept}\}$ and let $G' = (Q', \Sigma, \delta', q_{start}, q_{accept})$ be the GNFA, where

$$Q' = Q - \{q_{rip}\}$$

and for any $q_i \in Q' - \{q_{accept}\}\$ and $q_j \in Q' - \{q_{start}\}\$, let

$$\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$$

for
$$R_1 = \delta(q_i, q_{rip})$$
, $R_2 = \delta(q_{rip}, q_{rip})$, $R_3 = \delta(q_{rip}, q_j)$, and $R_4 = \delta(q_i, q_j)$.

4. compute convert(G') and return this value.

An Example

Non-Regular Languages

Languages need counting

$$C = \{w \in \{0, 1\} \mid w \text{ has an equal number of 0s and 1s}\}$$

$$D = \left\{ w \in \{0, 1\} \middle| \begin{array}{c} w \text{ has an equal number of occurrences} \\ \text{of 01 and 10 as substrings} \end{array} \right\}$$

Quiz: D is regular.

Languages need counting

$$C = \{w \in \{0, 1\} \mid w \text{ has an equal number of 0s and 1s}\}\$$

$$D = \left\{ w \in \{0, 1\} \middle| \begin{array}{c} w \text{ has an equal number of occurrences} \\ \text{of 01 and 10 as substrings} \end{array} \right\}$$

Quiz: D is regular.

$$D = 0^{+}(1^{+}0^{+})^{+} \cup 1^{+}(0^{+}1^{+})^{+}$$

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p (i.e., the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 1. for each $i \ge 0$, we have $xy^iz \in A$,
- 2. |y| > 0, and
- 3. $|xy| \le p$.

Any string xyz in A can be pumped along y.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A, and p := |Q|.

Let $s = s_1 s_2 \dots s_n$ be a string in A with $n \ge p$. Let r_1, \dots, r_{n+1} be the sequence of states that A enters while processing s, i.e.,

$$r_{i+1} = \delta(r_i, s_i)$$

for $i \in [n]$.

Among the first p+1 states in the sequence, two must be the same, say r_j and r_ℓ with $j<\ell\leq p+1$. We define

$$x = s_1 \dots s_{j-1}, y = s_j \dots s_{\ell-1}, \text{ and } z = s_{\ell} \dots s_n$$

The language $L = |\{0^n 1^n \mid n \ge 0\}$ is not regular.

The language $L = |\{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

The language $L = |\{0^n 1^n \mid n \ge 0\}$ is not regular.

Proof.

If it is regular, consider $s=0^k1^k$ and $|s|\geq p$, where p is pumping length. By the Pumping lemma, s=xyz with $xy^iz\in L$ for all $i\geq 0$.

The language $L = |\{0^n 1^n \mid n \ge 0\}|$ is not regular.

Proof.

If it is regular, consider $s = 0^k 1^k$ and $|s| \ge p$, where p is pumping length. By the Pumping lemma, s = xyz with $xy^iz \in L$ for all $i \ge 0$.

• $y \in 0^+$, then xyyz has more 0s than 1s, a contradiction.

The language $L = |\{0^n 1^n \mid n \ge 0\}|$ is not regular.

Proof.

If it is regular, consider $s = 0^k 1^k$ and $|s| \ge p$, where p is pumping length. By the Pumping lemma, s = xyz with $xy^iz \in L$ for all $i \ge 0$.

- $y \in 0^+$, then xyyz has more 0s than 1s, a contradiction.
- $y \in 1^+$, then xyyz has more 1s than 0s, again a contradiction.

The language $L = |\{0^n 1^n \mid n \ge 0\}|$ is not regular.

Proof.

If it is regular, consider $s = 0^k 1^k$ and $|s| \ge p$, where p is pumping length. By the Pumping lemma, s = xyz with $xy^iz \in L$ for all $i \ge 0$.

- $y \in 0^+$, then xyyz has more 0s than 1s, a contradiction.
- $y \in 1^+$, then xyyz has more 1s than 0s, again a contradiction.
- y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

The language $L = |\{0^n 1^n \mid n \ge 0\}|$ is not regular.

Proof.

If it is regular, consider $s = 0^k 1^k$ and $|s| \ge p$, where p is pumping length. By the Pumping lemma, s = xyz with $xy^iz \in L$ for all $i \ge 0$.

- $y \in 0^+$, then xyyz has more 0s than 1s, a contradiction.
- $y \in 1^+$, then xyyz has more 1s than 0s, again a contradiction.
- y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering $s = 0^p 1^p$.

The language $L = \{ w \mid w \text{ has an equal number of 0s and 1s } \}$ is not regular.

The language $L = \{ w \mid w \text{ has an equal number of 0s and 1s } \}$ is not regular.

Proof.

The language $L = \{ w \mid w \text{ has an equal number of 0s and 1s } \}$ is not regular.

Proof.

Choose p be the pumping length and consider $s=0^p1^p$. By the Pumping Lemma, s=xyz with |xy|< p and $xy^iz\in L$.

The language $L = \{w \mid w \text{ has an equal number of 0s and 1s }\}$ is not regular.

Proof.

Choose p be the pumping length and consider $s=0^p1^p$. By the Pumping Lemma, s=xyz with |xy|< p and $xy^iz\in L$.

for all $i \ge 0$. Thus $xy \in 0^+$ and the contradiction follows easily.

Quiz

The language $L = \{ww \mid w \in \{0, 1\}^*\}$ is not regular.

Quiz

The language $L = \{ww \mid w \in \{0, 1\}^*\}$ is not regular.

The language $L = \{0^m 1^n \mid m \neq n\}$ is not regular.

The language $L = \{0^m 1^n \mid m \neq n\}$ is not regular.

Proof.

Choose p be the pumping length and consider $s = 0^p 1^{p!+p}$. By the Pumping Lemma, s = xyz with |xy| < p and $xy^iz \in L$.

Assume $y = 0^k$ where k < p, then

Then $0^{p+(i-1)k}1^{p!+p} \in L$. Contradiction when $i = \frac{p!}{k} + 1$.

(p! is needed since $\frac{p!}{k}$ is a natural number.)

Other Computations

Models and Specifications

A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program. Thus regarded it as a model \mathcal{M} .

Models and Specifications

A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program. Thus regarded it as a model \mathcal{M} .

A finite automaton can also be used to describe regulations of a system or an (intra-procedure) program. Thus regarded it as a specification φ .

Usually, we should guarantee

$$\mathcal{M} \models \varphi$$

Models and Specifications

A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program. Thus regarded it as a model \mathcal{M} .

A finite automaton can also be used to describe regulations of a system or an (intra-procedure) program. Thus regarded it as a specification φ .

Usually, we should guarantee

$$\mathcal{M} \models \varphi$$

In the automata terminology, we should guarantee

$$L(\mathcal{M})\subseteq L(\varphi)$$

An Algorithmic Problem of FA

Given two automata M and N,

$$L(M) \subseteq L(N)$$

An Algorithmic Problem of FA

Given two automata M and N,

$$L(M) \subseteq L(N)$$

Two approaches:

$$L(M) \cap L(N^c) = \emptyset$$

An Algorithmic Problem of FA

Given two automata M and N,

$$L(M) \subseteq L(N)$$

Two approaches:

$$L(M) \cap L(N^c) = \emptyset$$

and,

$$L(M^c) \cup L(N) = \Sigma^*$$

New Operations

intersection

complement

emptiness

universality

Intersection of Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$$

An Automaton that accepts $L(A) \cap L(B)$

$$(S \times S', \Sigma, \delta \times \delta', (q_0, q'_0), F \times F')$$

Intersection of Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$$

An Automaton that accepts $L(A) \cap L(B)$

$$(S \times S', \Sigma, \delta \times \delta', (q_0, q'_0), F \times F')$$

$$A = (S, \Sigma, \delta, q_0, F)$$

$$A = (S, \Sigma, \delta, q_0, F)$$

• if A is deterministic, $A^c = (S, \Sigma, \delta, q_0, S - F)$.

$$A = (S, \Sigma, \delta, q_0, F)$$

- if A is deterministic, $A^c = (S, \Sigma, \delta, q_0, S F)$.
- if A is non-deterministic,

$$A = (S, \Sigma, \delta, q_0, F)$$

- if A is deterministic, $A^c = (S, \Sigma, \delta, q_0, S F)$.
- if A is non-deterministic, make A deterministic first

Assume that A is without ε -transition. Then

$$(P(S), \Sigma, \{(X, a, \{y \mid x \xrightarrow{a} y \text{ for } x \in X\})\}, \{q_0\}, \{X \mid X \cap F = \emptyset\})$$

Example of Complement

Quiz

Emptiness?