Апериодическое звено

Дифференциальное уравнение $T\dot{y}+y=ku$ Передаточная функция $W(s)=\frac{k}{Ts+1}$ Переходная функция

K=1, T=0.4

K=1, T=0.8

K=2, T=0.4

K=2, T=0.8

K=4, T=0.8

K=8, T=1.6

Между k и переходной функцией прямая пропорциональность, при увеличении T переходная функция сходится медленнее Переходная функция $L^{-1}(\frac{W(s)}{s})=\frac{k}{T}L^{-1}(\frac{1}{s(s+\frac{1}{T})})=k(1(t)-e^{-\frac{t}{T}})$ Импульсная функция

K=1, T=0.8

K=2, T=0.4

K=2, T=0.8

K=4, T=0.2

K=4, T=0.4

K=4, T=0.8

K=8, T=0.8

K=8, T=1.6

При увеличении k увеличивается максимум импульсной функции При увеличении T уменьшается максимум, сходится медленнее Импульсная функция $L^{-1}(W(s)) = \frac{k}{T}L^{-1}(\frac{1}{s-(-\frac{1}{T})}) = \frac{k}{T}e^{-\frac{t}{T}}\mathbf{1}(t)$ Построение АЧХ И ФЧХ

$$W(jw) = \frac{k}{Tjw+1} = \frac{k(1-Tjw)}{T^2w^2+1}$$

$$AYX = \frac{|k|}{\sqrt{(1+T^2w^2)}}$$

$$\Phi YX = -\arctan Tw$$

Колебательное звено

Дифференциальное уравнение $T^2\ddot{y}+2dT\dot{y}+y=ku$, где 0< d< 1 Передаточная функция $W(s)=\frac{k}{T^2s^2+2dTs+1}$ Переходная функция

 $K{=}1,\,T{=}0.2,\,d{=}0.25$

 $K{=}1,\,T{=}0.2,\,d{=}0.5$

 $K{=}1,\,T{=}0.2,\,d{=}0.75$

 $K{=}1,\,T{=}0.4,\,d{=}0.25$

 $K{=}1,\,T{=}0.4,\,d{=}0.5$

 $K{=}1,\,T{=}0.4,\,d{=}0.75$

 $K{=}1,\,T{=}0.8,\,d{=}0.25$

 $K{=}1,\,T{=}0.8,\,d{=}0.5$

 $K{=}1,\,T{=}0.8,\,d{=}0.75$

 $K{=}1,\,T{=}1.6,\,d{=}0.25$

 $K{=}1,\,T{=}1.6,\,d{=}0.5$

 $K{=}1,\,T{=}1.6,\,d{=}0.75$

 $K{=}2,\,T{=}0.2,\,d{=}0.25$

 $K{=}2,\,T{=}0.2,\,d{=}0.5$

 $K{=}2,\,T{=}0.2,\,d{=}0.75$

 $K{=}2,\,T{=}0.4,\,d{=}0.25$

 $K{=}2,\,T{=}0.4,\,d{=}0.5$

 $K{=}2,\,T{=}0.4,\,d{=}0.75$

 $K{=}2,\,T{=}0.8,\,d{=}0.25$

 $K{=}2,\,T{=}0.8,\,d{=}0.5$

 $K{=}2,\,T{=}0.8,\,d{=}0.75$

 $K{=}2,\,T{=}1.6,\,d{=}0.25$

 $K{=}2,\,T{=}1.6,\,d{=}0.5$

 $K{=}2,\,T{=}1.6,\,d{=}0.75$

 $K{=}4,\,T{=}0.2,\,d{=}0.25$

K=4, T=0.2, d=0.5

 $K{=}4,\,T{=}0.2,\,d{=}0.75$

 $K{=}4,\,T{=}0.4,\,d{=}0.25$

 $K{=}4,\,T{=}0.4,\,d{=}0.5$

 $K{=}4,\,T{=}0.4,\,d{=}0.75$

 $K{=}4,\,T{=}0.8,\,d{=}0.25$

K=4, T=0.8, d=0.5

 $K{=}4,\,T{=}0.8,\,d{=}0.75$

 $K{=}4,\,T{=}1.6,\,d{=}0.25$

K=4, T=1.6, d=0.5

 $K{=}4,\,T{=}1.6,\,d{=}0.75$

 $K{=}8,\,T{=}0.2,\,d{=}0.25$

 $K{=}8,\,T{=}0.2,\,d{=}0.5$

 $K{=}8,\,T{=}0.2,\,d{=}0.75$

 $K{=}8,\,T{=}0.4,\,d{=}0.25$

 $K{=}8,\,T{=}0.4,\,d{=}0.5$

 $K{=}8,\,T{=}0.4,\,d{=}0.75$

 $K{=}8,\,T{=}0.8,\,d{=}0.25$

 $K{=}8,\,T{=}0.8,\,d{=}0.5$

 $K{=}8,\,T{=}0.8,\,d{=}0.75$

 $K{=}8,\,T{=}1.6,\,d{=}0.25$

 $K{=}8,\,T{=}1.6,\,d{=}0.5$

K=8, T=1.6, d=0.75

Чем меньше d, тем меньше колебаний. при увеличении k увеличивается максимум переходной функции, при увеличении T функция сходится медленнее

Импульсная функция

K=1, T=0.2, d=0.25

 $K{=}1,\,T{=}0.2,\,d{=}0.5$

 $K{=}1,\,T{=}0.2,\,d{=}0.75$

 $K{=}1,\,T{=}0.4,\,d{=}0.25$

 $K{=}1,\,T{=}0.4,\,d{=}0.5$

 $K{=}1,\,T{=}0.4,\,d{=}0.75$

 $K{=}1,\,T{=}0.8,\,d{=}0.25$

 $K{=}1,\,T{=}0.8,\,d{=}0.5$

 $K{=}1,\,T{=}0.8,\,d{=}0.75$

 $K{=}1,\,T{=}1.6,\,d{=}0.25$

 $K{=}1,\,T{=}1.6,\,d{=}0.5$

 $K{=}1,\,T{=}1.6,\,d{=}0.75$

 $K{=}2,\,T{=}0.2,\,d{=}0.25$

 $K{=}2,\,T{=}0.2,\,d{=}0.5$

 $K{=}2,\,T{=}0.2,\,d{=}0.75$

 $K{=}2,\,T{=}0.4,\,d{=}0.25$

 $K{=}2,\,T{=}0.4,\,d{=}0.5$

 $K{=}2,\,T{=}0.4,\,d{=}0.75$

 $K{=}2,\,T{=}0.8,\,d{=}0.25$

 $K{=}2,\,T{=}0.8,\,d{=}0.5$

 $K{=}2,\,T{=}0.8,\,d{=}0.75$

 $K{=}2,\,T{=}1.6,\,d{=}0.25$

 $K{=}2,\,T{=}1.6,\,d{=}0.5$

 $K{=}2,\,T{=}1.6,\,d{=}0.75$

 $K{=}4,\,T{=}0.2,\,d{=}0.25$

K=4, T=0.2, d=0.5

 $K{=}4,\,T{=}0.2,\,d{=}0.75$

 $K{=}4,\,T{=}0.4,\,d{=}0.25$

 $K{=}4,\,T{=}0.4,\,d{=}0.5$

 $K{=}4,\,T{=}0.4,\,d{=}0.75$

 $K{=}4,\,T{=}0.8,\,d{=}0.25$

K=4, T=0.8, d=0.5

 $K{=}4,\,T{=}0.8,\,d{=}0.75$

 $K{=}4,\,T{=}1.6,\,d{=}0.25$

 $K{=}4,\,T{=}1.6,\,d{=}0.5$

 $K{=}4,\,T{=}1.6,\,d{=}0.75$

 $K{=}8,\,T{=}0.2,\,d{=}0.25$

 $K{=}8,\,T{=}0.2,\,d{=}0.5$

 $K{=}8,\,T{=}0.2,\,d{=}0.75$

 $K{=}8,\,T{=}0.4,\,d{=}0.25$

 $K{=}8,\,T{=}0.4,\,d{=}0.5$

 $K{=}8,\,T{=}0.4,\,d{=}0.75$

 $K{=}8,\,T{=}0.8,\,d{=}0.25$

 $K{=}8,\,T{=}0.8,\,d{=}0.5$

 $K{=}8,\,T{=}0.8,\,d{=}0.75$

 $K{=}8,\,T{=}1.6,\,d{=}0.25$

 $K{=}8,\,T{=}1.6,\,d{=}0.5$

K=8, T=1.6, d=0.75

Чем меньше d, тем меньше колебаний. при увеличении k увеличивается максимум переходной функции, при увеличении T функция сходится медленнее

Реальное дифференирующее звено

Реальное дифференцирующее звено можно рассматривать как последовательное соединение идеального дифференцирующего и апериодического звена первого порядка

Переходная функция

 $K{=}1, M{=}0.05$

K=1, M=0.1

K=1, M=0.2

K=1, M=0.4

K=2, M=0.05

K=2, M=0.1

K=2, M=0.2

K=2, M=0.4

 $K{=}4, M{=}0.05$

K=4, M=0.1

K=4, M=0.2

K=4, M=0.4

K=8, M=0.05

K=8, M=0.1

K=8, M=0.2

K=8, M=0.4

от k и M зависит максимум Импульсная функция

 $K{=}1, M{=}0.05$

K=1, M=0.1

 $K{=}1, M{=}0.2$

K=1, M=0.4

K=2, M=0.05

K=2, M=0.1

K=2, M=0.2

K=2, M=0.4

 $K{=}4, M{=}0.05$

K=4, M=0.1

K=4, M=0.2

K=4, M=0.4

 $K{=}8,\ M{=}0.05$

K=8, M=0.1

K=8, M=0.2

K=8, M=0.4 ot k зависит максимум, ot M минимум Последняя штука

чем M меньше, тем точнее