

INTRO TO FDTD (5)

Flexcompute Inc.

Material dispersion is common

Gold dispersion with Drude model

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega^2 + i\omega\gamma}$$

$$\varepsilon_{\infty} = 9.84$$
, $\omega_p = 9.01$ eV, $\gamma = 0.072$ eV

Excite surface plasmonic polariton (SPP) on gold surface

Wavelength 450 nm

Wavelength 550 nm

Without dispersion:

- $D(t) = \varepsilon E(t)$
- The displacement field reacts instantaneously to the applied electric field.

With dispersion:

- In frequency domain: $\mathbf{D}(\omega) = \varepsilon(\omega) \mathbf{E}(\omega)$
- In time domain: $D(t) = \int dt' \epsilon(t t') E(t')$
- A dispersive material has a "memory". Its displacement field depends on the electric field in the past.

The method of complex-conjugate pole-residue pairs: fit $\epsilon(\omega)$ as:

$$\varepsilon(\omega) = \varepsilon_{\infty} - \sum_{m} \left[\frac{c_{m}}{i\omega + a_{m}} + \frac{c_{m}^{*}}{i\omega + a_{m}^{*}} \right]$$

M. Han, R. W. Dutton and S. Fan, IEEE Microwave and Wireless Component Letters, 16, 119 (2006).

EXAMPLE:

For the Drude model

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_p^2}{\omega^2 + i\omega\gamma}$$

Use two pairs

$$c_1=rac{\omega_p^2}{2\gamma}$$
 , $a_1=0$ and $c_2=-rac{\omega_p^2}{2\gamma}$, $a_2=-\gamma$

The method of complex-conjugate pole-residue pairs: fit $\epsilon(\omega)$ as:

$$\varepsilon(\omega) = \varepsilon_{\infty} - \sum_{m} \left[\frac{c_{m}}{i\omega + a_{m}} + \frac{c_{m}^{*}}{i\omega + a_{m}^{*}} \right]$$

Auxiliary differential equation

$$\frac{d}{dt}\boldsymbol{J}_{m}(t) - a_{m}\boldsymbol{J}_{m}(t) = \varepsilon_{0}c_{m}\frac{d}{dt}\boldsymbol{E}(t)$$

Computational cost increases with the number of poles.

Crystalline silicon slab transmission

Dispersion data [Green, 2008]

Fit dispersion data with CCPR model in wavelength range [0.4,1.2] μm

- 2 poles for RMS error ~2.6%
- Pole frequency: $0.26 \mu m$ and $0.35 \ \mu m$

Broadband transmission computation in a single simulation

Thickness: 1µm

