1.Explain dimension reduction in machine learning.

In machine learning classification problems, there are often too many factors on the basis of which the final classification is done. These factors are basically variables called features. The higher the number of features, the harder it gets to visualize the training set and then work on it. Sometimes, most of these features are correlated, and hence redundant. This is where dimensionality reduction algorithms come into play. Dimensionality reduction is the process of reducing the number of random variables under consideration, by obtaining a set of principal variables. It can be divided into feature selection and feature extraction

Feature selection: In this, we try to find a subset of the original set of variables, or features, to get a smaller subset which can be used to model the problem. It usually involves three ways:

- 1. Filter
- 2. Wrapper
- 3. Embedded

Feature extraction: This reduces the data in a high dimensional space to a lower dimension space, i.e. a space with lesser no. of dimensions.

The various methods used for dimensionality reduction include:

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Generalized Discriminant Analysis (GDA)

Dimensionality reduction may be both linear or nonlinear, depending upon the method used. The prime linear method, called Principal Component Analysis, or PCA, is discussed below.

Principal Component Analysis

This method was introduced by Karl Pearson. It works on a condition that while the data in a higher dimensional space is mapped to data in a lower dimension space, the variance of the data in the lower dimensional space should be maximum.

It involves the following steps:

- Construct the covariance matrix of the data.
- Compute the eigenvectors of this matrix.
- Eigenvectors corresponding to the largest eigenvalues are used to reconstruct a large fraction of variance of the original data.

Hence, we are left with a lesser number of eigenvectors, and there might have been some data loss in the process. But, the most important variances should be retained by the remaining eigenvectors.

Advantages of Dimensionality Reduction

- It helps in data compression, and hence reduced storage space.
- It reduces computation time.
- It also helps remove redundant features, if any.

Disadvantages of Dimensionality Reduction

- It may lead to some amount of data loss.
- PCA tends to find linear correlations between variables, which is sometimes undesirable.
- PCA fails in cases where mean and covariance are not enough to define datasets.
- We may not know how many principal components to keep- in practice, some thumb rules are applied.

.