Анализ данных с использованием языка программирования R

Тема 5 Подготовка данных для моделирования. Модели классификации данных

Минюкович Екатерина Александровна к.э.н., доцент

miniukovich@bsu.by

Reference

An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, <a href="http://www-

bcf.usc.edu/~gareth/ISL/
(available online for free)

Introduction to Machine Learning with R by Dr. Dimitrios Gouliermis

http://www.mpia.de/homes/dgoulier/MLClasses/Course%20-%20Introduction%20to%20Machine%20Learning%20for%20Scientists% 20with%20R.html

Hands-On Machine Learning with R Bradley Boehmke & Brandon Greenwell

https://bradleyboehmke.github.io/HOML/index.html

Reference

H2O documentation

http://docs.h2o.ai/h2o/latest-stable/h2odocs/index.html

Supervised vs. Unsupervised Learning

Supervised

Data:

- 1) n observations;
- 2) p variables X1, X2, . . .,Xp, measured on each observation;
- 3) response Y measured on same n observations

Unsupervised

Data:

- 1) n observations;
- 2) p variables X1, X2, . . .,Xp, measured on each observation

Clustering...

Continuous Regression

Discrete Classification

Classification

Binary

2 classes

Multiclass or multinomial

more than 2 classes

Ordinal classification (regression) or ranking learning

Ordinal classification (regression) or ranking learning

https://en.wikipedia.org/wiki/Ordinal_regression

H2O GLM (family = ordinal)

Steps to solve

Working with data

Modeling

- Tidy data
- Types of variables and actions
- Missing data and imputation
- Feature engineering

Working with data Tidy Data

- Tidy data is a standard way of mapping the meaning of a dataset to its structure. This is Codd's 3rd normal form and the focus put on a single dataset rather than the many connected datasets common in relational databases.
- In tidy data:
 - 1. Each variable forms a column.
 - 2. Each observation forms a row.
 - 3. Each type of observational unit forms a table.

Which table below is tidy?

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

person	treatment	result	
John Smith	a		
Jane Doe	a	16	
Mary Johnson	a	3	
John Smith	b	2	
Jane Doe	b	11	
Mary Johnson	b	1	

More about tidy data:

ftp://cran.r-project.org/pub/R/web/packages/tidyr/vignettes/tidy-data.html

Types of variables and actions

Types of variables	Actions	
Categorical	Convert to factor (automatically will be converted to n binary vars (n - number of labels) when building a model)	
Text	 Options: Scrap a pattern and convert it to factor Convert text to numbers (Word2Vec) Drop text variable 	
Numerical	Read if algorithm require standardization of numerical variables (often such algorithms do it by default).	

Standardization = mean removal + variance scaling

Working with data

Missing data and imputation

- Missing data: NaN
- Imputation
 - Mean, median or mode
 - Prediction

Examples:

https://www.kaggle.com/kernels search on "Missing data imputation"

Working with data

Feature Engineering

- Based on variables meaning
- Technical approaches

Examples:

https://www.kaggle.com/kernels search on
"Feature engineering"

Working with data

Example

dataset: Titanic
 https://www.kaggle.com/c/titanic

- classification_titanic_part1.R
- classification_titanic_part2.R

Modeling

- Choose a class of model
- Fit the model to data
- Validate the model and optimize hyperparameters
- Predict for unknown data

Some models for Classification in h2o

Generalized Linear Model (GLM)

(family is binomial or multinomial)

- Ensemble methods
 - Distributed Random Forest (DRF)
 - Gradient Boosting Machine (GBM)
 - Stacked Ensembles

Classification

Logistic Regression

To model p(X) = Pr(Y = 1 | X) we need function that gives outputs between 0 and 1 for all values of X

$$\hat{y} = p(X) = \frac{e^{\theta_0 + \theta_1 x_1 + \dots + \theta_m x_m}}{1 + e^{\theta_0 + \theta_1 x_1 + \dots + \theta_m x_m}} = \frac{e^{X\theta}}{1 + e^{X\theta}}$$

Decision trees
Bagging or Bootstrap aggregation
Random Forest
Gradient Boosting (XGBoost, Light GBM, Catboost)

Useful links

GBM http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html (demo) https://habr.com/ru/company/ods/blog/327250/

XGBoost https://xgboost.readthedocs.io/en/latest/tutorials/model.html, https://mlexplained.com/2018/01/05/lightgbm-and-xgboost-explained/

LGBM https://lightgbm.readthedocs.io/en/latest/Features.html, https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/

Catboost https://catboost.ai/docs/concepts/educational-materials-videos.html (videos by Yandex), https://www.youtube.com/watch?v=V5158Oug4W8&list=PLVlY_7IJCMJeRfZ68eVfEcu-UcN9BbwiX&index=20&t=1290s (video from mlcourse.ai, Catboost starts from 9th minute), https://github.com/catboost/tutorials/blob/master/python_tutorial.ipynb (Catboost tutorial on Titanic)

Classification tree


```
> str(iris)
'data.frame':
                           150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3
                                                                                                             petal length (cm) ≤ 2.45
gini = 0.6667
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4
                                                                                                                 samples = 150
                                                                                                               value = [50, 50, 50]
 $ Petal.Width : num    0.2    0.2    0.2    0.2    0.4    0.3    0.2    0.2
                                                                                                                 class = setosa
 $ Species
                          : Factor w/ 3 levels "setosa", "versicolor"
                                                                                                             True
                                                                                                                        petal width (cm) ≤ 1.75
                                                                                                         gini = 0.0
                                                                                                                              gini = 0.5
                                                                                                       samples = 50
                                                                                                                           samples = 100
                                                                                                      value = [50, 0, 0]
                                                                                                                          value = [0, 50, 50]
                                                                                                      class = setosa
                                                                                                                          class = versicolor
                      Iris Setosa
                                                                                                         petal length (cm) ≤ 4.95
                                                                                                                                        petal length (cm) ≤ 4.8
                                                                                                             gini = 0.168
                                                                                                                                            aini = 0.0425
                                                                                                            samples = 54
                                                                                                                                            samples = 46
                                                                                                           value = [0, 49, 5]
                                                                                                                                          value = [0, 1, 45]
                                                                                                           class = versicolor
                                                                                                                                           class = virginica
                                                                           petal width (cm) ≤ 1.65
                                                                                                         petal width (cm) ≤ 1.55
                                                                                                                                       sepal length (cm) ≤ 5.95
                                                                                                                                                                   gini = 0.0
                                                                              gini = 0.0408
                                                                                                             gini = 0.4444
                                                                                                                                            gini = 0.4444
                                                                                                                                                                 samples = 43
                     Iris Versicolor
                                                                             samples = 48
value = [0, 47, 1]
                                                                                                             samples = 6
                                                                                                                                            samples = 3
                                                                                                                                                                 value = [0, 0, 43]
                                                                                                            value = [0, 2, 4]
                                                                                                                                           value = [0, 1, 2]
                                                                                                                                                                 class = virginica
                                                                             class = versicolor
                                                                                                           class = virginica
                                                                                                                                          class = virginica
                                                                                                                 sepal length (cm) ≤ 6.95
                                                             gini = 0.0
                                                                                                                                             gini = 0.0
                                                                                                  gini = 0.0
                                                                                                                      gini = 0.4444
                                                           samples = 47
                                                                                                                                                               samples = 2
                                                                               samples = 1
                                                                                                 samples = 3
                                                                                                                                            samples = 1
                                                                                                                      samples = 3
                                                           value = [0, 47, 0]
                                                                              value = f0, 0, 1
                                                                                                value = [0, 0, 3
                                                                                                                                           value = [0, 1, 0]
                                                                                                                                                              value = [0, 0, 2]
                                                                                                                    value = [0, 2, 1]
                                                           class = versicolo
                                                                               lass = virginio
                                                                                                class = virginio
                                                                                                                                           class = versicolo
                                                                                                                                                              lass = virginica
                                                                                                                    class = versicolor
                      Iris Virginica
                                                                                                                                gini = 0.0
                                                                                                              gini = 0.0
                                                                                                             samples = 2
                                                                                                                               samples = 1
                                                                                                            value = [0, 2, 0]
                                                                                                                              value = [0, 0, 1
                                                                                                           class = versicolor
                                                                                                                               class = virginica
```

https://habr.com/ru/company/ods/blog/322534/

Regression tree

https://habr.com/ru/company/ods/blog/322534/

Classification metrics

Confusion matrix

Survived (S) -1; Not Survived (NS) - 0

Actual/Predicted	0	1	Error
0 (N)	TN (NS as NS)	FP (NS as S)	FPR=FP/N (False Positive Rate)
1 (P)	FN (S as NS)	TP (S as S)	FNR=FN/P(False Negative Rate)

Receiver operating characteristic curve

Accuracy = (TP+TN)/(P+N)

Precision = TP/(TP+FP) **Recall** = TPR = TP/P

F1 = 2*Precision*Recall/(Precision+Recall) - harmonic mean Precision and Recall

AUC - Area Under ROC Curve (the closer to 1, the better a model is)

More: https://en.wikipedia.org/wiki/Precision_and_recall

Classification metrics

Confusion matrix

Survived (S) -1; Not Survived (NS) - 0

Actual/Predicted	0	1	Error
0 (N=438)	TN=365	FP=?	FPR=FP/N = ?
1 (P=274)	FN=?	TP=212	FNR=FN/P = ?
Total			(FN+FP)/(N+P) = ?

FN - ошибка первого рода; FP - ошибка второго рода

Accuracy =
$$(TP+TN)/(P+N)$$
 - ?

Precision = TP/(TP+FP) -?

Recall = TPR = TP/P-?

http://scikit-

<u>learn.org/stable/modules/classes.html#classification-metrics</u>

Some classification algorithms naturally permit the use of more than two classes

- GLM
- Random Forest, Gradient Boosting

example in mclass.R

Techniques of transformation to binary

- One vs. All
- One vs. One

Read more:

https://en.wikipedia.org/wiki/Multiclass classification http://scikit-learn.org/stable/modules/multiclass.html

Classification: Unbalanced classes

Unbalanced classes - classes are not represented equally

Accuracy Paradox

Tactics to Combat Unbalanced Classes

- 1) Collect more data
- 2) Resample Your Dataset
- 3) Generate Synthetic Samples

Imbalanced-learn

https://imbalanced-learn.readthedocs.io/en/stable/user_guide.html

4) Change Your Performance Metric

(e.g. Absolute MCC (Matthews Correlation Coefficient), AUCPR (Area Under the Precision-Recall Curve in h2o)

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/performance-and-prediction.html#metric-best-practices-classification)

5) Use special hyperparameters

(e.g. balance classes in h2o)

Read more: http://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/

Modeling

Hyperparameters optimization

- Parameters to optimize
- Good range of values

More about parameters to optimize and good range of values https://www.linkedin.com/pulse/approaching-almost-any-machine-learning-problem-abhishek-thakur?trk=hp-feed-article-title-like

Practise

classification_titanic_part1.R classification_titanic_part2.R mclass.R

Managed Independent Work pr_classification.R