

PACKAGE DIMENSIONS .551 (14.00) -.236 (6.00) .020 (.50) .197 Ę (5.00) Œ OPTICAL .394 (10.00) .100 (2.50) .295 (7.50) ^(2X) .197 (5.00) MIN .027 (.70) (4X) (2X).260 .092 (2.35) (6.60).160 (4.064) .320 (8.128) PINS .020 (.51) (4x) KNOB SQ. (TYP) Ø.026 (.66) (2X) 12 OPTICAL .100 (2.54) (2X) (TYP) PIN #1 (ANODE) PIN #3 (VCC) PIN #2 (CATHODE) PIN #4 (VOUT) PIN #5 (GND) NOTES:

- 1. Dimensions for all drawings are in inches (millimeters).
- 2. Tolerance of ± .010 (.25) on all non-nominal dimensions unless otherwise specified.

FEATURES

- · No contact switching
- 5.0 mm wide slot
- 0.5 mm aperture width
- · Opaque black plastic housing
- Output configuration: Buffer open-collector
- TTL/CMOS compatible output
- · Locating knobs on housing base for accurate mounting

NOTES (Applies to Max Ratings and Characteristics Tables.)

- 1. Derate power dissipation linearly 1.67 mW/°C above 25°C.
- 2. Derate power dissipation linearly 2.50 mW/°C above 25°C.
- 3. RMA flux is recommended.
- 4. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 5. Soldering iron 1/16" (1.6mm) from housing.
- 6. As long as leads are not under any stress or spring tension.

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)							
Parameter	Symbol	Rating	Units				
Operating Temperature	T _{OPR}	-40 to +85	°C				
Storage Temperature	T _{STG}	-40 to +85	°C				
Lead Temperature (Solder Iron)(3,4,5,6)	T _{SOL-I}	240 for 5 sec	°C				
Lead Temperature (Solder Flow)(3,4,5,6)	T _{SOL-F}	260 for 10 sec	°C				
EMITTER							
Continuous Forward Current	I _F	50	mA				
Reverse Voltage	V _R	5	V				
Power Dissipation ⁽¹⁾	P _D	100	mW				
SENSOR							
Output Current	Io	50	mA				
Supply Voltage	V _{CC}	16	V				
Output Voltage	Vo	30	V				
Power Dissipation ⁽²⁾	P _D	150	mW				

ELECTRICAL / OPTICAL CHARACTERISTICS (TA =25°C)								
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNITS		
Operating Supply Voltage		V_{CC}	4.5		16	V		
INPUT DIODE								
Forward Voltage	$I_F = 20 \text{ mA}$	V_{F}	_		1.7	V		
Reverse Leakage Current	V _R = 5 V	I _R	_		10	μΑ		
COUPLED								
Operating Supply Current	$I_F = 15 \text{ mA} \text{ or } 0 \text{ mA}, V_{CC} = 16 \text{ V}$	I_{CC}	_		5	mA		
Low Level Output Voltage	I_F = 15 mA, V_{CC} = 5 V, R_L = 360 Ω	V _{OL}	_		0.4	V		
High Level Output Current	$I_F = 0 \text{ mA}, V_{CC} = 5 \text{ V}, V_{OH} = 30 \text{ V}$	I _{OH}	_		100	μΑ		
Turn on Threshold Current	V_{CC} = 5 V, R_L = 360 Ω	I _F (+)	_		15	mA		
Turn off Threshold Current	V_{CC} = 5 V, R_L = 360 Ω	I _F (-)	0.50		_	mA		
Hysteresis Ratio		l _F (+) / l _F (-)		1.2				
Propagation Delay	V_{CC} = 5 V, R_L = 360 Ω	t _{PLH,} t _{PHL}		5		μs		
Output Rise and Fall Time	V_{CC} = 5 V, R_L = 360 Ω	$t_{r,}t_{f}$		70		ns		

TYPICAL PERFORMANCE CURVES

Fig. 1 Output Voltage vs. Input Current

Fig. 2 Normalized Threshold Current vs. Shield Distance

Fig. 3 Normalized Threshold Current vs. Supply Voltage

Fig. 4 Normalized Threshold Current vs. Ambient Temperature

Fig. 5 Forward Current vs. Forward Voltage

Fig. 6 Low Output Voltage vs. Output Current

Fig. 7 Response Time vs. Forward Current

Fig. 8 Switching Speed Test Circuit

Fig. 9 Typical Operating Circuit

 $R_1 = 270 \Omega$ $R_2 = 360 \Omega$ $C_1 = 15 \text{ pf}$ $C_2 = 20 \text{ pf}$ C₁ and C₂ include probe and stray wire capacitance

Fig. 10 Switching Test Curve for Buffers

Fig. 11 Switching Test Curve for Inverters

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation