

Theory Notes

QUALITATIVE ANALYSIS

Introduction:

You know that the qualitative analysis involves the detection of the anions and the cations present in an inorganic mixture. Sometimes the knowledge of anions present in a mixture provides important clues about the cations which may be present in a mixture and the scheme of analysis to be followed. Therefore, it is desirable to first detect the presence of anions and after that the cations. In this unit, we will discuss the scheme of detection of anions which will be followed by the scheme of analysis of cations.

Classification of the Anions:

For the systematic identification of the anions present in any mixture, the anions are divided into following three classes:

Anions of Class I:

The anions of Class I evolve gases or vapours on treatment with dil. HCl or dil. H₂SO₄. These anions are carbonate, sulphite, sulphide, thiosulphate, nitrite.

Anions of Class II:

The anions of Class II evolve gases or vapours on treatment with conc. HCl or conc. H₂SO₄. These anions are fluoride, chloride, bromide, iodide, nitrate and oxalate.

Anions of Class III:

The anions of this class do not evolve any gas on treatment with acids. These are identified by formation of precipitate on treatment with certain reagents. Sulphate, borate and phosphate ions are the anions of Class III.

Here we would like to emphasise the unlike scheme of classification of cations, the scheme of classification of anions is not a rigid one since some of the anions belong to more than one of the classes, e.g., acetate. Also, it is not always necessary to test for the presence of anions of Class I before testing for the presence of anions of Class II or Class III in any mixture.

Preliminary Tests for the Anions

In this unit the tests for all these anions will be systematically discussed. We shall first discuss the preliminary tests for detecting the presence of anions of Class I and Class II, which will be followed by their confirmatory tests. As there are no preliminary tests for the anions of Class III only their confirmatory tests will be discussed.

Preliminary Tests for the Anions of Class I:

Take about 0.2g of dry mixture in a test tube. Add 2 cm³ of dilute hydrochloric or sulphuric acid. If a gas is evolved, note its colour and odour and draw inference with the help of Table 1. Heat the test tube if necessary. If no gas is evolved, anions of this class are absent in the

mixture.

	Table 1: Preliminary	<u> </u>	s of Class I
S. No.	Observation	Inference	Explanation / Reaction
1.	Colourlress, suffocating gas with smell	SO_3^{2-} may be present	SO_3^{2-} + $2H^+_{(aq)} \rightarrow H_2O_{(l)} + SO_{2(g)}$
	of burning sulphur; the gas turns		$Cr_2O_{7(aq)}^{2-} + 2H_{(aq)}^+ + 3SO_{2(g)}$
	acidified K ₂ Cr ₂ O ₇ paper green.		$\rightarrow 2Cr_{(aq)}^{3+} + 3SO_{4(aq)}^{2} + H_2O_{(1)}$ green
2.	Colourless gas which turns KI starch paper blue.	S ²⁻ may be present	$\begin{array}{c} S^{2-}_{(aq)} + 2H^{+}_{(aq)} \longrightarrow H_{2}S_{(g)} \\ Pb^{2+}_{(aq)} + H_{2}S_{(g)} \end{array}$
			$ ightarrow PbS_{(s)} + 2H^{+}_{(aq)}$ Black
3.	Light brown gas which turns KI starch	NO_2^- may be present	$2NO_{2(aq)}^{-} + 2H_{(aq)}^{+}$
	paper blue.		$\rightarrow H_2O_{(l)} + NO_{(g)} + NO_{2(g)}$
4	Colourless vapours with smell of vinegar on warming the test tube	CH ₃ COO may be present	$CH_{3}COO^{-}_{(aq)} + H^{+}_{(aq)}$ $\rightarrow CH_{3}COOH_{(g)}$

When salts of the anions of Class I are treated with strong, non-oxidising acids, corresponding acids are generated in the solution.

$$SO_{3(aq)}^{2-} + 2H_{(aq)}^{+} \longrightarrow H_{2}SO_{3(aq)}$$

$$NO_{2(aq)}^{-} + H_{(aq)}^{+} \longrightarrow HNO_{2(aq)}$$

$$S_{(aq)}^{2-} + 2H_{(aq)}^{+} \longrightarrow H_{2}S_{(aq)}$$

Out of these H_2CO_3 , H_2SO_3 and HNO_2 are thermally unstable and decompose into gaseous products, whereas H_2S and CH_3COOH are evolved as vapours on warming:

$$H_2SO_{3(aq)} \longrightarrow SO_{2(g)} + H_2O_{(l)}$$

$$2HNO_{2(aq)} \longrightarrow NO_{(g)} + NO_{2(g)} + H_2O_{(l)}$$

Preliminary Tests for the Anions of Class II:

Take 0.2 to 0.3g of the mixture in a dry test tube and add 2-3 cm³ of conc. sulphuric acid drop-wise. Observe the reaction at room temperature and then warm the test tube gently. If no gas or vapours are evolved, the anions of this class are absent. Draw interference inference

	with the help of Table 2.	its of tills class are abs	sent. Draw interference interence
	Table 2: Preliminary	Tests for the Anio	ns of Class I
S. No.	Observation	Inference	Explanation / Reaction
1	Colourless, pungent smelling gas is evolved, which gives white dense fumes of NH ₄ Cl when a glass rod		
	dipped in aqueous ammonia is placed in the evolved gas.	Cl- may be present	$\begin{array}{c} \operatorname{Cl^-}_{(aq)} + \operatorname{H^+}_{(aq)} \to \operatorname{HCl}_{(g)} \\ \operatorname{HCl}_{(g)} + \operatorname{NH}_{3(g)} \to \operatorname{NH}_4 \operatorname{Cl}_{(g)} \end{array}$
2	Reddish brown gas is evolved and		
	the solution in the test tube acquires a yellow-red colour.	Br ⁻ may be present	$\begin{array}{c} Br^{-}_{(aq)} + 6H^{+}_{(aq)} + 3SO_{4}^{\ 2-}_{(aq)} \\ \rightarrow \ 2HSO_{4}^{-}_{(aq)} + Br_{2(g)} + 2H_{2}O_{(l)} \end{array}$
3.	Violet vapours of I ₂ are evolved, which		
	turn the moist starch paper tubeblue.	I-may be present	$\begin{array}{c} 2I_{(aq)}^{-} + 6H_{(aq)}^{+} + 3SO_{4}^{2-} \rightarrow \\ 2HSO_{4}^{2-}(aq) + SO_{2(g)} + I_{2(g)} + 2H_{2}O_{(l)} \end{array}$
4.	Pungent smelling, brown fumes of NO ₂ are evolved. The evolution of NO ₂	NO ₃ may be present	$\begin{array}{c} \text{NO-}_{3(\text{aq})} + \text{H}_{(\text{aq})} \rightarrow \text{HNO}_{3(\text{aq})} \\ 4\text{HNO}_{3(\text{aq})} \rightarrow 4\text{NO}_{2(\text{g})} + O_{2(\text{g})} + 2\text{H}_{2}O_{(\text{l})} \end{array}$
	increases on heating the reaction mixture with copper turnings.		$\begin{array}{c} \text{Cu}_{(s)} + 4\text{HNO}_{3(\text{aq})} \rightarrow \\ \text{Cu(NO}_{3})_{2(\text{aq})} + 2\text{NO}_{2(\text{g})} + 2\text{HO}_{(\text{l})} \end{array}$

Preparation of Solution for Identification of the Anions

The preliminary tests described in the preceding section do not always offer very conclusive evidence for the presence of anions in a mixture. Therefore, further tests have to be performed for confirmation of those anions which are indicated by the preliminary tests and for the detection and confirmation of the anions of Class III which have no preliminary tests. These tests are called confirmatory tests and are performed on the solution of anions which is prepared as described below.

Preparation of Water Extract (W.E.):

All common acetates, nitrites, nitrates and thiosulphates are soluble in water. Confirmatory tests for these anions can be performed with the water extract of the mixture. Water extract can be prepared by boiling 1-2g of the mixture with 10-15 cm³ distilled water in a boiling tube for a minute or two. Residue, if any, is filtered. The filtrate is called water extract (W.E.).

Preparation of Sodium Carbonate Extract (S.E.):

If the mixture is found to be partially or wholly insoluble in water, it is boiled with saturated sodium carbonate solution. This treatment converts the anions present in mixture into soluble sodium salts as a result of double decomposition e.g.,

$$\begin{split} &BaSO_{4(s)} + Na_2CO_{3(aq)} \xrightarrow{\quad H_2O\quad} BaCO_{3(s)} + Na_2SO_{4(aq)} \\ &PbCl_{2(s)} + Na_2CO_{3(aq)} \xrightarrow{\quad H_2O\quad} PbCO_{3(s)} + 2NaCl_{(aq)} \end{split}$$

For preparing sodium carbonate extract, take 0.5-1.0g of powdered mixture, 1.0-2.0g of sodium carbonate and 5-10 cm³ of distilled water in a boiling tube or a 50 ml beaker. Heat with stirring for 5-10 minutes. Cool the contents and filter. The filtrate is called sodium carbonate

extract (S.E.). This extract is used for confirming the presence of most anions except for carbonate since sodium carbonate has been added during its preparation.

Confirmatory Tests for the Anions

After preparation of the water extract or the sodium carbonate extract, the following tests are performed to confirm the presence of various anions in the mixture.

Tests for the Sulphide Ions

1. Take 1 ml of sodium carbonate extract in a test tube and add 1-2 ml of sodium nitroprusside solution. A purple or violet colour confirms sulphide ions:

$$S_{(aq)}^{2-} + [Fe(CN)_5 \, NO]_{(aq)}^{2-} \longrightarrow [Fe(CN)_5 \, NOS]_{aq}^{4-}$$
 purple or violet colour

Take 1-2 ml of S.E. in a test tube, acidify it with acetic acid and boil to remove CO_2 . Then add 1-2 ml of lead acetate solution. Formation of black precipitate confirms sulphide ions:

$$S_{(aq)}^{2-} + Pb^{2+} \longrightarrow PbS_{(s)}$$

Tests for Sulphite Ions:

Take 2-3 ml of S.E. and add 2-3 cm³ of BaCl₂ solution to it. A white precipitate may appear due to the presence of SO_3^{2-} , SO_4^{2-} or excess of CO_3^{2-} ions present in the solution. Filter the precipitate and divide into three parts.

1. To the first part, add dil. HCl. Evolution of SO_2 gas which turns acidified dichromate paper green confirms the presence of SO_3^{2-} ions

$$BaSO_{3(s)} + 2H_{(aq)}^{+} + 5e \longrightarrow Ba_{(aa)}^{2+} + SO_{2(g)} + H_{2}O_{(1)}$$

2. To the second part, and add a few drops of $KMnO_4$ solution and acidify with dil. H_2SO_4 . If the pink colour of $KMnO_4$ is discharged, the presence of SO_3^{2-} ions is confirmed.

$$BaSO_{3(s)} + H_2O_{(l)} \longrightarrow BaSO_{4(s)} + 2H_{(aq)}^+ + 2e] \times 5$$

$$MnO_{4(aq)}^- + 8H_{(aq)}^+ + 5e \longrightarrow Mn_{(aq)}^{2+} + 4H_2O_{(l)}] \times 2$$

$$5BaSO_{3(s)} + 2MnO_{4(aq)}^- + 6H_{(aq)}^+ \longrightarrow 5BaSO_{4(s)} + 2Mn_{(aq)}^{2+} + 3H_2O_{(l)}$$

3. To the third part, add I_2 solution. If colour of iodine is discharged, SO_3^{2-} is confirmed.

$$BaSO_{3(s)} + I_{2(aq)} + H_2O_{(1)} \longrightarrow BaSO_{4(s)} + 2HI_{(aq)}$$

Tests for the Nitrite Ions

1. Take 5 drops of W.E. in a test tube. Dilute with 5 drops of distilled water. Add 5M acetic acid until the solution is just a acidic. Cool the test tube in a cold water bath. Add 2-3 drops of freshly prepared 0.2M FeSO₄ solution to the cooled solution. Appearance of a brown colour throughout the solution confirms the presence of nitrite ions.

$$\begin{split} &NO_{2(aq)}^{-} + CH_{3}COOH_{(aq)} \longrightarrow HNO_{2(aq)} + CH_{3}COO_{(aq)}^{-} \\ &3HNO_{2(aq)} \longrightarrow HNO_{3(aq)} + H_{2}O_{(l)} + 2NO_{(g)} \\ &[Fe(H_{2}O)_{6}]_{(aq)}^{2-} + NO_{(g)} \longrightarrow [Fe(H_{2}O)_{5}NO]_{(aq)}^{2+} + H_{2}O_{(l)} \end{split}$$

2. To 1 cm³ of W.E. add 5 drops of KI solution, 1 cm³ of starch solution and 1 cm³ of dil. H₂SO₄. Appearance of a deep blue colour confirms the presence of nitrite ions.

$$2NO_{2(aq)}^{-} + 4H_{(aq)}^{+} + 2I_{(aq)}^{-} \longrightarrow 2NO_{(g)} + I_{2(aq)} + 2H_{2}O_{(l)}$$

 $I_{2(aq)} + Starch \longrightarrow Blue coloured complex$

3. Take 5 drops of W.E. in a test tube, acidify with 6 M acetic acid. Add a pinch of thiourea and stir stirr well. Add 2 drops of FeCl₃ solution. A blood red colur confirms nitrite ions.

$$\begin{split} NO_{2(aq)}^{-} + H_2 NSCNH_{2(s)} & \longrightarrow N_{2(g)} + CNS_{(aq)}^{-} + 2H_2O_{(l)} \\ Fe_{(aq)}^{3+} + 3CNS_{(aq)}^{-} & \longrightarrow Fe(SCN)_{3(aq)} \\ & \text{(Blood red colour)} \end{split}$$

You should note that the nitrite ion is a moderately strong oxidizing agent in acidic medium. It oxidizes S^{2-} , SO_3^{2-} , $S_2O_3^{2-}$ and I^- ions to S, SO_4^{2-} , S and I_2 respectively. Therefore, these anions cannot be present if NO_3^- ions are present in the mixture.

$$\begin{split} S_{(aq)}^{2-} + NO_{2(aq)}^{-} + 2H_{(aq)}^{+} & \longrightarrow S_{(s)} + NO_{(g)} + H_{2}O_{(l)} \\ SO_{3(aq)}^{2-} + 2NO_{2(aq)}^{-} + 2H_{(aq)}^{+} & \longrightarrow SO_{4(aq)}^{2-} + 2NO_{(g)} + H_{2}O_{(l)} \\ S_{2}O_{3(aq)}^{2-} + 2NO_{2(aq)}^{-} + 2H_{(aq)}^{+} & \longrightarrow SO_{4(aq)}^{2} + S_{(s)} + 2NO_{(g)} + H_{2}O_{(l)} \\ 2I_{(aq)}^{-} + 2NO_{2(aq)}^{-} + 4H_{(aq)}^{+} & \longrightarrow I_{2(s)} + 2NO_{(g)} + 2H_{2}O_{(l)} \end{split}$$

Test for the Nitrate Ions:

Take 2 cm³ W.E. in a test tube. Add 4 cm³ concentrated sulphuric acid, mix two liquids thoroughly and cool the mixture under a stream of cold water from the tap. Pour few cc of saturated solution of FeSO₄ slowly down the side of the test tube so that it forms a separate layer on top of the solution in the test tube. A brown ring will be formed at the zone of contact of the two liquids.

$$\begin{split} NO_{3(aq)}^{-} + 4H_{(aq)}^{+} + 3Fe_{(aq)}^{2+} & \longrightarrow 3Fe_{(aq)}^{3+} + NO_{(g)} + 2H_{2}O_{(1)} \\ [Fe(H_{2}O)_{6}]_{(aq)}^{2+} + NO_{(g)} & \longrightarrow [Fe(H_{2}O)_{5}NO]_{(aq)}^{2+} + H_{2}O_{(1)} \end{split}$$

This test for nitrate ion is based on its ability to oxidize Fe^{2+} to Fe^{3+} in acidic solution with the product of NO gas. Since NO is more soluble in water at low temperature, in well cooled solution it reacts with excess Fe^{2+} present in solution to form brown nitrosyliron (II) complex ion, $[Fe(H_2O)NO]^{2+}$. Nitrite, bromide and iodide ions interfere in this test.

Test for the Chloride Ions

1. Acidify 2 – 3 cm³ of S.E. with dil. HNO₃. Boil off CO₂. Then add AgNO₃ solution. Formation of a curdy white precipitate, which is soluble in aqueous ammonia, confirms the presence of chloride ions in the mixture.

$$\begin{array}{c} Cl^{\scriptscriptstyle -}_{(aq)} + Ag^{\scriptscriptstyle +}_{(aq)} \longrightarrow AgCl_{\scriptscriptstyle (s)} \\ AgCl_{(s)} + 2\,NH_{\scriptscriptstyle 3\,(aq)} \longrightarrow \left[Ag\,(NH_{\scriptscriptstyle 3})_{\scriptscriptstyle 2}\right]^{\scriptscriptstyle +}_{(aq)} + Cl^{\scriptscriptstyle -}_{(aq)} \end{array}$$

2. Heat 0.5g of dry mixture with 0.5g of K₂Cr₂O₇ and 2 ml of conc. H₂SO₄ in a dry test tube, red vapours of chromyl chloride will be evolved. Pass the vapours in dil. NaOH solution, a yellow solution will be obtained. Acidify the solution with acetic acid and then add lead acetate solution. Formation of a yellow precipitate of lead chromate, which is soluble in NaOH, confirms the presence of chloride ions.

$$4NaCl_{(s)} + K_2Cr_2O_{7(s)} + 3H_2SO_{4(l)} \longrightarrow K_2SO_{4(s)} + 2Na_2SO_{4(s)} + CrO_2Cl_{2(g)} + 3H_2O_{(l)}$$
 Chromyl chloride gas
$$CrO_2Cl_{2(g)} + 4NaOH_{(aq)} \longrightarrow Na_2CrO_{4(aq)} + 2NaCl_{(aq)} + 2H_2O_{(l)}$$

$$Na_{2}CrO_{_{4(aq)}} + Pb(CH_{_{3}}COO)_{_{2(aq)}} {\longrightarrow} PbCrO_{_{4(s)}} + 2CH_{_{3}}COONa_{_{(aq)}}$$

Due to the formation of chromyl chloride gas, this test is called chromyl chloride test. The test fails if the mixture contains chlorides of Hg^{2+} , Sn^{2+} , Pb^{2+} or Ag^{+} .

Test for the Bromide Ions

1. Acidify 2-3 ml of S.E. with dil. HNO₃ and boil off CO₂. Add AgNO₃ solution. Formation of a light yellow precipitate which is partially soluble in aqueous ammonia solution, confirms the presence of bromide ions.

$$Br_{(aq)}^{-} + Ag_{(aq)}^{+} \xrightarrow{} AgBr_{(s)}$$
 Light yellow ppt

2. Take 2 cm³ of S.E., acidify it with dil. HCl and boil off CO₂. Add 2 cm³ of carbon disulphide, dichloromethane or carbon tetrachloride. Then add chlorine water drop-wise and shake. Bromide ions are oxidized to bromine, which imparts an orange colour to the organic layer. This confirms the presence of bromide ions in the mixture.

$$2Br_{(aq)}^{^{-}}+Cl_{_{^{2(aq)}}}{\longrightarrow}2Cl_{(aq)}^{^{-}}+Br_{_{^{2(1)}}}$$

$$Br_{2(1)} + CS_{2(1)} \longrightarrow Orange colour$$

Tests for the Iodide Ions

1. Acidify 2 – 3 cm³ of S.E., with dil. HNO₃ and boil off CO₂. Add AgNO₃ solution. Formation of a pale yellow precipitate insoluble in aqueous ammonia confirms the presence of iodide ions in the mixture.

$$I_{(aq)}^- + Ag_{(aq)}^+ \xrightarrow{} AgI_{(s)}$$
Pale yellow ppt.

2. Take 2 cm³ of S.E. in a test tube. Acidify it with dil. HCl and boil off CO₂. Add 2 cm³ carbon disulphide, dichloromethane or carbon tetrachloride. Then add chlorine water drop-wise and shake. Iodide ions are oxidized to iodine, which imparts a violet colour to the organic layer.

$$2I_{(aq)}^{-} + Cl_{2(aq)} \longrightarrow I_{2(s)} + 2Cl_{(aq)}^{-}$$

$$CS_{2(1)} + I_{2(s)} \longrightarrow Violet colour$$

The violet colour disappears on addition of excess of chlorine water. This confirms the presence of iodide ions in the mixture.

$$I_{2(s)} + Cl_{2(aq)} \xrightarrow{\hspace*{1cm}} 2ICl_{(aq)}$$
 Iodine monochloride (colourless)

Test for the Sulphate Ions:

Take 1-2 cm³ of S.E., in a test tube. Acidify it with dil. HCl and boil off CO₂. Add BaCl₂ solution. Appearance of a white precipitate, which is insoluble in conc. HCl and conc. HNO₃, confirms the presence of sulphate ions.

$$SO_{4(aq)}^{2-} + Ba_{(aq)}^{2+} \longrightarrow BaSO_{4(s)}$$

Test for Nitrate Ions in Presence of Nitrite Ions:

In presence of nitrite, nitrate cannot be tested either by heating with conc. H₂SO₄ or by the ring test because both liberate NO₂. Therefore, nitrite must be destroyed completely before testing for the nitrate. Nitrite ions can be destroyed by any one of the following methods:

1. Add sulphamic acid, H_2NSO_3H , to the water extract containing NO_2^- and NO_3^- ions. Acidify the solution with dilute H_2SO_4 . Nitrite will be decomposed and nitrogen gas will be evolved.

$$\boldsymbol{H_{2}NSO_{3}H_{(aq)}+NO_{2(aq)}^{-}} \boldsymbol{\longrightarrow} \boldsymbol{HNO_{2(aq)}+H_{2}NSO_{3(aq)}^{-}}$$

$$H_2NSO_{3(aq)}^- + HNO_{2(aq)} \longrightarrow N_{2(g)} + H_{(aq)}^+ + SO_{4(aq)}^{2-} + H_2O_{(1)}$$

2. Take 2-3 ml of water extract, add 1g solid NH₄Cl and boil till effervescence ceases.

$$NO_{2(aq)}^{-} + NH_4Cl_{(aq)} \longrightarrow N_{2(g)} + 2H_2O_{(1)} + Cl_{(aq)}^{-}$$

3. Take 2-3 ml of water extract, add urea and acidify with dil. H_2SO_4 . Boil the solution till evolution of gases ceases.

$$NH_2CONH_{2(aq)} + 2NO_{2(aq)}^- + 2H_{(aq)}^+ \longrightarrow 2N_{2(g)} + CO_{2(g)} + 3H_2O_{(1)}$$

Now divide the nitrite free solution thus obtained in two parts.

- (a) Perform ring test with one part to confirm the presence of nitrate ions.
- (b) Acidify the other part with dil. H₂SO₄. Add a little KI and 1 cm³ starch solution. Absence of any blue colour indicates the complete removal of nitrite ions. Now add a piece of granulated zinc to the solution. Appearance of a blue colour confirms the presence of nitrate ions.

$$\begin{split} Zn_{(s)} + 2H_{(aq)}^+ & \longrightarrow Zn_{(aq)}^{+2} + 2H_{(g)} \\ NO_{3(aq)}^- + H_{2(g)} & \longrightarrow NO_{2(aq)}^- + H_2O_{(l)} \\ 2I_{(aq)}^- + 2NO_{2(aq)}^- + 4H_{(aq)}^+ & \longrightarrow 2NO_{(g)} + I_{2(s)} + 2H_2O_{(l)} \\ I_{2(s)}^- + Starch & \longrightarrow Blue \ coloured \ complex \end{split}$$

Tests for Nitrate Ions in Presence of Bromide and/or Iodide Ions

1. Bromide and iodide interfere in the ring test of nitrate because of the colour of liberated bromine and iodine. In order to identify nitrate in presence of iodide and/or bromide, the interfering halide should be expelled before performing the ring test. This can be done by boiling 2 – 3 cm³ of water extract or sodium carbonate extract with excess of chlorine water in a china dish, till no more vapours of Br₂ or I₂ evolve.

$$2Br_{(aq)}^{-} + Cl_{2(aq)} \longrightarrow 2Cl_{(aq)}^{-} + Br_{2(g)}$$

$$2I_{(aq)}^{-} + Cl_{2(aq)} \longrightarrow 2Cl_{(aq)}^{-} + I_{2(aq)}$$

Now perform the ring test on the halide free solution to identify the nitrate ion in the mixture.

2. Alternatively, take 2-3 cm³ of water extract in a test tube. Acidify with dil.H₂SO₄. Now add 1 cm³ of KI solution, 1 cm³ of starch solution and a few granules of zinc. Appearance of a blue colour confirms the presence of nitrate ions in the mixture.

$$\begin{split} Zn_{(s)} + 2H_{(aq)}^+ & \longrightarrow Zn_{(aq)}^{2+} + H_{2(g)} \\ NO_{3(aq)}^- + H_{2(g)} & \longrightarrow NO_{2(aq)}^- + H_2O_{(l)} \\ 2I_{(aq)}^- + 2NO_{2(aq)}^- + 4H_{(aq)}^+ & \longrightarrow 2NO_{(g)} + I_{2(g)} + 2H_2O_{(l)} \\ I_2^- + Starch & \longrightarrow Blue coloured complex \end{split}$$

Test for Chloride, Bromide and Iodide Ions in Presence of Each Other:

As you know that chloride, and iodide ions react with AgNO₃ solution to form a precipitate, special tests are required to identify if more than one of them are present in the mixture. These anions can be detected in presence of one another by any one of the following methods.

1. Acidify 2-3 cm³ of S.E., with excess dil. H_2SO_4 in a china dish. Add 0.5g of potassium persulphate and heat gently. Add distilled water if necessary of to prevent dryness. Evolution of violet vapours of I_2 will confirm the presence of I_2 ions.

$$2I_{(aq)}^{-} + S_2O_{8(aq)}^{2-} {\longrightarrow} 2SO_{4(aq)}^{2-} + I_{2(g)}$$

Boil till evolution of I_2 ceases. If the solution after elimination of I_2 is brown, it indicates the presence of Br^- ions. Continue boiling, brown vapours of Br_2 will be evolved.

$$2Br_{(aq)}^{-} + S_2O_{8(aq)}^{2-} {\longrightarrow} 2SO_{4(aq)}^{2-} + Br_{2(g)}$$

Add more $K_2S_2O_8$ if required. Continue boiling till the residual solution becomes colourless. Cool the solution, add dil. HNO_3 and $AgNO_3$ solution. A curdy white precipitate soluble in ammonia confirms the presence of Cl^- ions in the mixture.

$$Cl_{(aq)}^{-} + Ag_{(aq)}^{+} \longrightarrow AgCl_{(s)}$$

$$AgCl_{(s)} + 2NH_{3(aq)} \longrightarrow [Ag(NH_{3})_{2}]_{(aq)}^{+} + Cl_{(aq)}^{-}$$

2. Acidify 2-3 cm³ of S.E. with dil. H_2SO_4 in a china dish. Boil off CO_2 . Add solid sodium nitrite and boil. Evolution of violet vapours of I_2 confirms the presence of iodide ions.

$$2NO_{2(aq)}^{-} + 2I_{(aq)}^{-} + 4H_{(aq)}^{+} \longrightarrow 2NO_{(g)} + I_{2(g)} + 2H_{2}O_{(l)}$$

Add distilled water if necessary to prevent dryness. Continue boiling till all iodine is expelled. Cool the solution and divide into 2 parts.

To 1st part add 1 cm³ CS₂ (or CH₂Cl₂ or CCl₄), 2 cm³ chlorine water and shake. Appearance of an orange colour in organic layer confirms the presence of bromide ions.

$$2Br_{(aq)}^{\scriptscriptstyle{-}} + Cl_{2(aq)} {\longrightarrow} 2Cl_{(aq)}^{\scriptscriptstyle{-}} + Br_{2(l)}$$

$$CS_{2(1)} + Br_{2(1)} \longrightarrow Orange colour$$
t hold the 2nd part with 1 am³ of core LINO, to av

If Br^- is present, boil the 2^{nd} part with 1 cm^3 of conc. HNO_3 to expel Br_2 gas. This treatment can be avoided if Br^- ion is absent. Then add $AgNO_3$ solution. Formation of a curdy white precipitate confirms the presence of Cl^- ions.

$$\begin{split} 2Br_{(aq)}^{-} + 2NO_{3(aq)}^{-} + 4H_{(aq)}^{+} & \longrightarrow 2NO_{2(g)} + Br_{2g)} + 2H_{2}O_{(1)} \\ Cl_{(aq)}^{-} + Ag_{(aq)}^{+} & \longrightarrow AgCl_{(s)} \end{split}$$

TEST OF CATIONS

Flame Test on Dry Samples Bunsen Flame:

A Luminous Bunsen flame (air holes completely closed)m, about 5 cm long, is employed for conducting *blowpipe test*. A reducing flame is produced by placing the nozzle of a mouth pipe just outside the flame, and blowing gently, so as to cause the inner cone to play on the substance under examination. An oxidizing flame is obtained by hold holding the nozzle of the blowpipe about one third within the flame and blowing somewhat more vigorously in a direction parallel with the burner top, the extreme, tip of the flame is allowed to play upon the substance.

Charcoal Cavity Test:

The test are carried out upon a clean charcoal block in which a small cavity has been made. aA little of the substance is placed in the cavity and heated in the oxidizing flame, crystalline salts break into smaller pieces: burning indicates the presence of an oxidizing agent (nitrate, chlorate etc.). More frequently the powdered substance is mixed with twice its bulk of anhydrous Na₂CO₃ or preferably with fusion mixture (an equimolar mixture of together Na₂CO₃ and K₂CO₃; this has a lower mp than Na₂CO₃) in a reducing flame. The initial reaction consists of the formation of the carbonates of the cations present and the alkali salts of anions. The alkali salts are largely adsorbed by the porous charcoal, and the carbonates are, for the most part, decomposed into oxides and CO₂. The oxides of the metal may further decompose, or be reduced to the metals, or they may remain unchanged. The final products of the reaction are, therefore, either the metals alone, metals and their oxides, or oxides. The oxides of the noble

metals (Ag and Au) are decomposed without the aid of the charcoal, to the metal, which is often obtained as a globule and oxygen. tThe oxides of Pb, Cu, Bi, Sb, Sn, Fe, Ni and Co are reduced either to a fused metallic globule (lead, bismuth, tin and antimony) or to a sintered mass (copper) or to a glistening metallic fragments (iron, nickel and cobalt). The oxides of cadmium, arsenic and zinc are readily reduced to the metal but these are so volatile that they vapourise and are carried from the reducing to the oxidizing flame zone, where they are converted into sparingly volatile oxides. The oxides thus formed are deposited as an incrustation round the cavity of the charcoal block, zinc yields an incrustation which is yellow while not hot and white when cold.

Incrustation of cadmium is brown and is moderately volatile, that of arsenic is white and is accompanied by a garlic odour due to the volatilization of the arsenic. A characteristic incrustation accompanies the globules of lead, bismuth and antimony.

The oxides of Al, Ca, Sr, Ba and Mg are not reduced by charcoal; they are infusible and glow brightly when strongly heated. If the white residue or white incrustation left on a charcoal block is treated with cobalt nitrate solution and again heated, a bright blue colour, which probably consists of either a compound or a solid solution of cobalt (II) and aluminium oxide (Thenard's blue) indicates the presence of aluminium; a pale green colour, probably of similar composition (Rinmann's green), is indicative of zinc oxide; and pale zinc mass is formed when magnesium oxide is present.

Principle of Charcoal Cavity Test

$$ZnSO_4 + Na_2CO_3 \longrightarrow ZnCO_3 + Na_2SO_4$$
 $ZnCO_3 \longrightarrow ZnO + CO_2$
 $ZnO + C \longrightarrow Zn + CO$

Colour of bead, residue or incrustation will be used to diagnose the metal.

Colour of Bead White bright bead which does not impart mark on paper on rubbing	Colour of Residue or Incrustation Incrustation does not form	Inference Ag ⁺
White brittle bead	White Incrustation	Sb^{3+}
Red bead	Reddish brown incrustation	Cu^{2+}
Brittle bead	Violet Red when hot and yellow incrustation when cold	Bi^{3+}
White soft ball which mark on paper	Brown incrustation when hot and yellow when cold	Pb ²⁺
Bead does not from	Yellow incrustation when hot while white when cold	Zn^{2+}
_	Garlic smell like fumes	As^{3+}
_	Yellow incrustation on hot while on cold dirty white incrustation	Sn
_	Reddish brown incrustation	Cd^{2+}

Incrustation does not form but black residue is left in the cavity

Fe, CO, Ni, Mn

Cobalt Nitrate Bead Test:

This is also like charcoal cavity test. This test is performed in oxidizing flame rather than in reducing flame.

The oxides of Al, Ca, Sr, Ba and Mg are not reduceding by charcoal; they are infusible and glow brightly when strongly heated. If the white residue or white incrustation left on a charcoal block is treated with a drop of cobalt nitrate solution and again heated, a bright blue colour, which probably consists of either a compound or a solid solution of cobalt II and aluminium oxide indicates the presence of aluminium. Other colours are listed in Table.

Principle

$ZnSO_4 + Na_2CO_3 \longrightarrow ZnCO_3 + Na_2SO_4$	Colour of Residue	Inference
$ZnCO_3 \longrightarrow ZnO + CO_2$	Green	Zn^{2+}
$2\text{Co(NO}_3)_2 \longrightarrow 2\text{CoO} + 4\text{NO}_2 + \text{O}_2$	Blue	Al^{3+}
	Light Pink	Mg^{2+}
	Bluish Pink	$PO_4^-, AsO_4^{3-},$
		silicates borates

$$CoO + ZnO \longrightarrow CoZnO_2$$
Cobalt zincate (green residue)

- 1. Inner blue cone ADB continuing consisting largely of unburnt gas.
- 2. A luminous tip at D (this is only visible when the air holes are slightly closed).
- 3. An outer mantle ACBD in which complete combustion of gas occurs.

(Luminous flame is obtained when air holes are completely closed)

(Non luminous flame is obtained when air holes are completely opened)

Borax Bead Test:

A point wire is used for borax bead test. tThe free end of the point wire is coiled into small loop through which ordinary match will barely pass. The loop is heated in Bunsen flame until it is red hot and then quickly dipped into powdered borax $Na_2B_4O_7\cdot 10H_2O$. The adhering solid is held in the hottest part of the flame, the salt swells up as it loses its water of crystallization and shrinks upon the loop forming a colourless, transparent, glass like bead consisting of a mixture of sodium metaborate and boric anhydride.

$$Na_2B_4O_7 \longrightarrow 2NaBO_2 + B_2O_3$$

the head is moistened and dipped into the finely powdered substance so that a minute amount of it adheres to the bead. It is important to employ a minute amount of substance as otherwise the bead will become dark and opaque in the subsequent heating. The head and adhering substance are first heated in the lower reducing flame, allowed to cool and the colour is observed

again.

Characteristic coloured beads are produced with salts of Cu, Fe, Cr, Mn, Co and Ni. Carry out borax bead test with salts of these metals and compare results with those given below:

The coloured borax beads are due to the formation of colour borates; in those cases when different coloured beads are obtained in the oxidizing and the reducing flames, borates corresponding to varying stages of oxidation of the metal are produced. Thus, with the copper salts in the oxidizing flame, one has.

$$Na_2B_4O_7 \longrightarrow 2NaBO_2 + B_2O_3$$

 $CuO + B_2O_3 \longrightarrow Cu(BO)_2$
 $Copper(II)metaborate$

The reaction,
$$CuO + NaBO_2 \longrightarrow NaCuBO_3$$

probably also occurs. In the reducing flame (i.e. in the presence of carbon), two reactions may take place.

1. The coloured copper (II) is reducing to colourless copper (I) metaborate.

$$2Cu(BO_2)_2 + 2NaBO_2 + C \longrightarrow 2CuBO_2 + Na_2B_4O_7 + CO \uparrow$$

2. The copper (II) borate is reduced to metallic copper, that the bead appears red and opaque.

$$2Cu(BO_2)_2 + 4NaBO_2 + 2C \longrightarrow 2Cu + 2Na_2B_4O_7 + 2CO \uparrow$$

ırs of Borax Beads				
Oxidizing Flame		Reducing Flame		Metal
Hot	Cold	Hot	Cold	
Green	Blue	Colourless	Opaque Red brown	Copper
Yellowish	Yellow	Green	Green	Iron
green				
Yellow	Green	Green	Green	Chromium
Violet	Amethyst	Coloulrless	Colourless	Manganes
Blue	Blue	Blue	Blue	Cobalt
Violet	Reddish	Green	Grey	Nickel
	Brown			
Yellow	Colourless	Brown	Brown	Molybeder
Rose Violet	Rose Violet	Red	Violet	Gold
Yellow	Colourless	Yellow	Yellowish brown	Tungeston
Yellow	Pale Yellow	Green	Bottle green	Uranium
Yellow	Greenish	Brownish	Green	Vanadium

Yellow Colourless Grey Pale violet Titanium

Orange Red Colourless Colourless Cerium

Group I: Radicals

$$Pb^{2+},\ Hg_2^{2+},Ag^+$$

Group Reagent - dil. HCl

Precipitates as – Chlorides

Since PbCl₂ is not completely precipitated in group I as chloride because of its solubility in hot water is 33.4g/litre of solvent. So Pb²⁺ has been placed in both the groups.

Reactions of Pb2+ ion

1. **Dilute HCl:** A white ppt. in cold solution of the acid is not too dilute.

$$Pb^{2+} + 2 Cl^{-} \longrightarrow PbCl_{2} \downarrow$$
White

Soluble in hot water (33.4g/L at 100°C, 9.9 g/L at 20°C)

It is also soluble in conc. HCl or conc. KCl when the tetrachloroplumbate (II) ion is formed.

$$PbCl_{2} \downarrow +2Cl^{-} \longrightarrow [PbCl_{4}]^{2-}$$

If the ppt is washed and dil. NH_3 is added, no visible change occurs (difference from Hg_2^{2+} or Ag^+ ions), through a ppt. exchange reaction takes place and lead hydroxide is formed.

2. H₂S (gas or saturated aqueous solution) in neutral or dilute acid medium, black ppt. of lead sulphide is obtained

$$Pb^{2+} + H_2S \longrightarrow PbS \downarrow +2H^+$$

When H₂S gas is introduced into a mixture which contains a ppt. of white lead chloride, the latter is converted into lead sulphide (black) in a precipitate exchange reaction.

$$PbCl_2 \downarrow +H_2S \longrightarrow PbS \downarrow +2H^+ +2Cl^-$$

If the test is carried out in the presence of larger amounts of $Cl^-(KCl \text{ saturated})$, initially a red ppt. of lead sulphochloride is formed when introducing H_2S^{\uparrow} .

$$2Pb^{2+} + H_2S + 2Cl^- \longrightarrow Pb_2SCl_2 \downarrow +2H^+$$

This, however, decomposes on dilution or on further addition of H₂S and a black ppt. of PbS is formed.

$$Pb_{2}SCl_{2} \downarrow \longrightarrow PbS \downarrow + PbCl_{2} \downarrow$$

$$PbSCl_{2} + H_{2}S \longrightarrow 2PbS + 2Cl^{-} + 2H^{+}$$

3. NH_3 solution: White ppt of Pb(OH)₂ is obtained

$$Pb^{2+} + 2NH_3 + 2H_2O \longrightarrow Pb(OH)_2 \downarrow +2H^+$$

Pb(OH), is insoluble in NH, solution excess.

4. NaOH: White ppt. of $Pb(OH)_2$

$$Pb^{2+} + 2OH^{-} \longrightarrow Pb(OH)_{2} \downarrow$$

The ppt. is dissolved in excess of NaOH, when tetrahydroxoplumbate (II) ions are formed.

$$Pb(OH)_2 \downarrow +2OH^- \longrightarrow [Pb(OH)_4]^{2-}$$

thus, lead hydroxide has an amphoteric character.

H₂SO₄ (or soluble sulphate) white ppt. of PbSO₄ is obtained 5.

$$Pb^{2+} + SO_4^{2-} \longrightarrow PbSO_4 \downarrow$$
(white)

K₂CrO₄: Potassium chromate in neutral, acetic acid or ammonium solution yellow ppt of lead 6. chromate is obtained.

$$Pb^{2+} + CrO_4^{2-} \longrightarrow PbCrO_4 \downarrow (yellow)$$

7. KI: yellow ppt of lead iodide is formed.

$$Pb^{2+} + 2I^{-} \xrightarrow{} PbI_{2} \downarrow_{\text{yellow ppt.}}$$

The ppt. is moderately soluble in boiling water to yield a colourless solution, from which it separates as golden yellow plates on cooling.

An excess of a more conc.(6M) solution of the reagent dissolves the ppt. and tetraiodoplumbate (II) ions are formed

$$PbI_2 \downarrow + 2I^- \rightleftharpoons [PbI_4]^2$$

 $PbI_{2} \downarrow + 2 \, I^{-} = PbI_{4}]^{2-}$ The reaction is reversible, on cooling ppt. reappears.

Reactions of Hg₂²⁺ ions

Dilute Hydrochloric acid or Soluble Chlorides: White precipitate of Hg_2Cl_2 (calomel) is obtained.

$$Hg_2^{2+} + 2Cl^- \longrightarrow Hg_2Cl_2 \downarrow$$
(white)
Insoluble in dilute acids

Ammonia solution converts the ppt. into a mixture of mercury (II) amidochloride and mercury metal, which are both insoluble.

$$\begin{array}{ccc} \operatorname{Hg}_2\operatorname{Cl}_2 + 2\operatorname{NH}_3 & \longrightarrow \operatorname{Hg} \downarrow + \operatorname{Hg}(\operatorname{NH}_2)\operatorname{Cl} \downarrow + \operatorname{NH}_4^+ + \operatorname{Cl}^- \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & &$$

Mercury (II) chloride dissolves in aqua-regia, forming undissociated but soluble mercury (II) chloride.

Hydrogen Sulphide (Gas or Saturated Aqueous Solution): In neutral or dilute 2. acid medium black precipitate, is obtained which is a mixture of Hg(II) sulphide and mercury metal.

$$Hg_2^{2+} + H_2S \longrightarrow Hg \downarrow + HgS \downarrow + 2H^+$$

Sodium sulphide (colourless) dissolves the mercury (II) sulphide (but leaves mercury metal) and a disulphomercurate (II) complex is formed.

$$HgS \downarrow +S^{2-} \longrightarrow [HgS_2]^{2-}$$

After removing the mercury metal by filtration black HgS can again be precipitated by acidification with dilute mineral acid.

$$[HgS_2]^{2-} + 2H^+ \longrightarrow HgS \downarrow + H_2S \uparrow$$

Sodium disulphate (yellow) dissolves both mercury and mercury (II) sulphide.

$$HgS \downarrow + Hg \downarrow + 3SO_4^{2-} \longrightarrow 2[HgS_2]^{2-} + S_3^{2-}$$

Aqua-regia dissolves the precipitate, yielding undissociated mercury (II) chloride and sulphur.

$$12\text{HCl} + 4\text{HNO}_3 + 3\text{Hg} \downarrow \longrightarrow 6\text{HgCl}_2 + 3\text{S} \downarrow + 4\text{NO} \uparrow + 8\text{H}_2\text{O}$$

When heated with aqua-regia, sulphur is oxidized to H_2SO_4 and the solution becomes clear.

$$S \downarrow +6HCl + 2HNO_3 \longrightarrow SO_4^{2-} + 8H^+ + 6Cl^- + 2NO \uparrow$$

3. Ammonia Solution:

Black ppt. which is a mixture of Hg metal and basic mercury (I) amidonitrate (white ppt.)

$$2Hg_2^{2+} + NO_3^- + 4NH_3 + H_2O \longrightarrow HgO.Hg \downarrow + 2Hg \downarrow + 3NH_4^+$$
NO₃
white

This reaction can be used to differentiate between Hg_2^{2+} and Hg^{2+} ions.

4. Sodium Hydroxide: Black ppt. of mercury (I) oxide.

$$Hg^{2+} + 2OH^{-} \longrightarrow Hg_{2}O + H_{2}O$$

Black
Insoluble in excess NaOH.But soluble in dil. HNO₃

When boiling, the colour of the ppt. turns to grey, owing to disproportionation, when HgO and Hg are formed.

$$Hg_2O \downarrow \xrightarrow{Boil} HgO \downarrow +Hg$$
 $grey$

5. Potassium Chromate: In hot solution a red crystalline ppt. of Hg₂CrO₄ is obtained...

$$Hg_2^{2+} + CrO_4^{2-} \longrightarrow Hg_2CrO_4 \downarrow$$
Red Crystalline (in put)

If the test is carried out in cold, a brown amorphous ppt. with an undefined composition is obtained, when heated the ppt. turns to red crystalline HgCrO₄. Sodium hydroxide turns into black mercury (I) oxide.

$$Hg_2CrO_4 \downarrow + 2OH^- \longrightarrow Hg_2O + CrO_4^{2-} + H_2O$$

6. KI Solution: Added slowly in cold solution, green ppt. of mercury (I) iodide.

$$Hg_2^+ + 2I^- \longrightarrow Hg_2I_2 \downarrow$$
Green

If excess of reagent is added disproportionation takes place, soluble tetraiodomercurate (II))ions and a black ppt. of finely divided mercury being formed.

$$Hg_2I_2 \downarrow + 2I^- \longrightarrow [HgI_4]^{2-} + Hg \downarrow$$
Green

Produces a mercury (II) cyanide solution and black ppt. of Hg metal. Is obtained.

$$Hg_2^{2+} + 2CN^- \longrightarrow Hg \downarrow + [Hg(CN)_2]$$

Hg(I) ions to mercury metal (grayish black ppt)

$$Hg_2^{2+} + Sn^{2+} \longrightarrow 2Hg \downarrow + Sn^{4+}$$
Grevish-Black

Hg (II) ions react in a similar way.

Reactions of Silver (I) Ions

1. **Dilute Hydrochloric Acid (or Soluble Chlorides):** White ppt. of AgCl is obtained.

$$Ag^+ + Cl^- \longrightarrow AgCl \downarrow_{White}$$

With conc. HCl precipitation does not occur. After decanting from over the ppt., it can be dissolved in conc. HCl, when dichloroargentate complex is formed.

$$AgCl \downarrow + Cl^- \rightleftharpoons [AgCl_2]^-$$

On dilution with H₂O, the equilibrium shifts back to the left and the ppt. reappears.

Dilute NH₃ solution dissolves the ppt., to form the diammine silver ion.

$$AgCl \downarrow + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^- + Cl^-$$

Dilute HNO₃ or HCl neutralizes the excess of NH₃, and the ppt. reappears because the equilibrium is shifted back towards the left.

KCN dissolves the ppt. with formation of the dicyanoargentate complex.

$$AgCl + 2CN^{-} \longrightarrow [Ag(CN)_{2}]^{-} + Cl^{-}$$

Na₂S₂O₃ dissolved the ppt. with the formation of a dithiosulphatoargentate complex.

$$AgCl + 2S_2O_3^{2-} \longrightarrow [Ag(S_2O_3)_2]^{3-} + Cl^{-}$$

Sunlight or ultraviolet light decomposes the AgCl precipitates, which turns to grayish or black owing to the formation of the metal.

$$2AgCl \downarrow \xrightarrow{hv} 2Ag \downarrow +Cl_2 \uparrow$$

2. H₂S (Gas or Saturated aqueous Solution): Black ppt. of Ag₂S is formed.

$$2Ag^{+} + H_{2}S \longrightarrow Ag_{2}S \downarrow + 2H^{+}$$

Hot conc.HNO₃ decomposes the Ag₂S, and sulphur remains in the form of a white ppt.

$$3Ag_2S \downarrow +8HNO_3 \longrightarrow 3S \downarrow +2NO \uparrow +6Ag^+ +6NO_3^- +4H_2O$$

If the mixture is heated with conc. HNO_3 for a considerable time, sulphur is oxidized to SO_4^{2-} and the precipitate disappears.

3. Ammonia Solution: Brown ppt. of Ag₂O is obtained..

$$2Ag^{+} + 2NH_{3} + H_{2}O \longrightarrow Ag_{2}O \downarrow + 2NH_{4}^{+}$$
Brown

The reaction reaches an equilibrium and therefore precipitation is incomplete at any stage (if the NH_4NO_3 is present in the original solution or the solution is strongly acidic, no precipitation occurs). The ppt dissolves in excess of NH_3 solution, and diammine silver (I) complex is formed.

$$Ag_2O \downarrow +4NH_3 + H_2O \longrightarrow 2[Ag(NH_3)_2]^+ + 2OH^-$$

4. Sodium Hydroxide: Brown ppt. of AgO is obtained.

$$2Ag^{+} + 2OH^{-} \longrightarrow Ag_{2}O \downarrow + H_{2}O$$
Brown

A well washed suspension of the ppt. shows a slight alkaline reaction owing to the hydrolysis reaction.

$$Ag_2O + H_2O \rightleftharpoons 2Ag(OH)_2 \downarrow \rightleftharpoons 2Ag^+ + 2OH^-$$

The ppt. is insoluble in excess of NaOH. The ppt. dissolves in NH₃ solution and in HNO₃.

$$Ag_2O \downarrow + H_2O \rightleftharpoons 2Ag(OH)_2 \downarrow \rightleftharpoons 2Ag^+ + 2OH^-$$

The ppt. is insoluble in excess of NaOH. The ppt. dissolves in NH₃ solution and in HNO₃.

$$Ag_2O \downarrow +4NH_3 + H_2O \longrightarrow 2[Ag(NH_3)_2]^+ + 2OH^-$$

$$Ag_2O \downarrow +2H^+ \longrightarrow 2Ag^+ + H_2O$$

5. Potassium Iodide: Yellow ppt.. of AgI is obtained.

$$Ag^+ + I^- \longrightarrow AgI \downarrow$$

The ppt. is insoluble in dil. or conc. NH₃ solution, but dissolves readily in KCN and in Na₂S₂O₃.

$$AgI \downarrow +2CN^{-} \longrightarrow [Ag(CN)_{2}]^{-} + I^{-}$$

$$AgI \downarrow +2S_2O_3^{2-} \longrightarrow [Ag(S_2O_3)_2]^{3-} + I^{-}$$

6. Potassium Chromate: Red ppt. of Ag₂CrO₄ is obtained..

$$2Ag^{+} + CrO_{4}^{2-} \longrightarrow Ag_{2}CrO_{4} \downarrow$$

The ppt. is soluble in diluted HNO₃ acid and NH₃ solution.

$$Ag_2CrO_4 \downarrow + 2H^+ \rightleftharpoons 2Ag^+ + Cr_2O_7^{2-} + H_2O$$
Orange

$$Ag_2CrO_4 \downarrow +4NH_3 \longrightarrow 2[Ag(NH_3)_2]^+ + CrO_4^{2-}$$

7. Potassium Cyanide: When added drop wise to a neutral solution of AgNO₃; white ppt. of AgCN is obtained.

$$Ag^+ + CN^- \longrightarrow AgCN \downarrow_{White}$$

When KCN is added in excess, ppt. dissolves owing to formation of dicyanoargentate (I) ion.

$$AgCN \downarrow +CN^{-} \longrightarrow [Ag(CN)_{2}]^{-}$$

Second Group of Cations

Group Reagent H₂S in presence of dil. HCl

IIA Cu^{2+} , Pb^{2+} , Bi^{3+} , Cd^{2+} , Hg^{-2+}

IIB $As^{3+}, As^{5+}, Sb^{3+}, Sb^{5+}, Sn^{2+}, Sn^{4+}$

Precipitates as Sulphides

Black PbS, CuS, HgS

Yellow $CdS, As_2S_3, As_2S_5, SnS_2$

Orange Sb_2S_3 , Sb_2S_5 Brown Bi_2S_2 , SnS

Cations of IInd group are traditionally divided into two sub-groups the copper sub group and are arsenic group. The basis of this division is the solubility of the precipitates in ammonium polysulphide. White sulphides of the copper sub-groups are insoluble in this reagent, those of the arsenic sub-group are soluble in this reagent with the formation of thiosalts.

II A Group:

The copper sub-group consists of Hg(II), Pb(II), Bi(III), Cu(II) and Cd(II). Although the bulk of the lead ions are precipitated with dil. HCl together with other ions of the group –I, this precipitation is rather incomplete owing to relatively high solubility of PbCl₂. In the course of systematic analysis therefore, leads ions will still be present when the precipitation of the second

group of the cations is the task.

The chlorides, nitrates and sulphates of the cations of the copper sub-group are quite soluble in water. The sulphides,. Hydroxides and carbonates are insoluble. Some of the ions of copper sub-group (Hg²⁺, Cu²⁺ and Cd²⁺) tend to form complexes (NH₃, RCOO⁻, etc.)

II B Group:

The arsenic sub-group consists of As³⁺, As⁵⁺, Sb³⁺, Sb⁵⁺ and Sn⁴⁺ ions. These ions both acids and bases. Thus As(III) oxide can be dissolved in HCl (6M) and As(III) cations are formed.

$$As_2O_3 + 6HCl \longrightarrow 2As^{3+} + 6Cl^- + 3H_2O$$

The same time As₂O₃ dissolves in NaOH (2M) forming arsenite anions.

$$As_2O_3 + 6OH^- \longrightarrow 2AsO_3^{3-} + 3H_2O$$

The dissolution of sulphides in ammonium polysulphide can be regarded as the formation of thiosalts from anhydrous thioacids. Thus the dissolution of $\mathrm{As}_2\mathrm{S}_3$ (anhydrous thioacid) in ammonium sulphide (anhydrous thiobase) yield the formation of ammonium and thioaresenite ions (a thiosalt)

$$As_2S_3 \downarrow + 3S^{2-} \longrightarrow 2As_3^{3-}$$

All the sulphides of the arsenic sub-group dissolve in ammonia sulphide except tin (II) sulphide (SnS); to dissolve latter, ammonium polysulphide is needed, which acts partly as an oxidizing agent, thiostannate ions being formed:

$$\operatorname{SnS} \downarrow + \operatorname{S}_{2}^{2-} \longrightarrow \operatorname{SnS}_{3}^{2-}$$

Note that while tin is bivalent in the tin (II) sulphide ppt., it is tetravalent in the thiostannate ion. As^{3+} , Sb^{3+} and Sn^{2+} ions can be oxidized to As^{5+} , Sb^{5+} and Sn^{4+} ions respectively. On the other hand, the latter three can be reduced by proper reducing agents. The oxidation reduction potentials of the arsenic (V), arsenic (III) and Sb(V) - Sb(III) systems vary with pH, therefore the oxidation or reduction of the relevant ions can be assisted by choosing an appropriate pH of the reaction.

Reactions of Mercury (II) Ions: (HgNO₃)

1. Hydrogen Sulphide (Gas or Saturated Aqueous Solutions): In the presence of dilute (1M) HCl, initially a white ppt of mercury (II) chlorosulphide forms, which reacts with further amounts of H₂S and finally a black ppt. of HgS is formed.

$$3Hg^{2+} + 2Cl^{-} \longrightarrow Hg_{3}S_{2}Cl_{2} \downarrow + 4H^{+}$$
White

$$Hg_3S_2Cl \downarrow +H_2S \longrightarrow HgS \downarrow + 2H^+ + 2Cl^-$$

HgS is one of the least soluble precipitates known ($K_{sp} = 4 \times 10^{-54}$).

HgS is insoluble in water, hot dilute HNO₃, alkali hydroxides or coloulress ammonium sulphide. Sodium sulphides (2M) dissolves the precipitate when the disulphomercurate (II) complex ion is formed:

$$\underset{\text{Black}}{\text{HgS}} \downarrow + S^{-2} \longrightarrow [\text{HgS}_2]^{2-}$$

Adding NH₄Cl to the solution, HgS precipitates again aqua-regia dissolves the precipitate.

$$3\text{HgS} \downarrow +6\text{HCl} + 2\text{HNO}_3 \longrightarrow 3\text{HgCl}_2 + 3\text{S} \downarrow +2\text{NO} \uparrow +4\text{H}_2\text{O}$$

 $HgCl_2$ is practically undissociated under these circumstances. Sulphur remains as a white ppt., which however dissolves readily if the solution is heated, to form H_2SO_4 .

$$2HNO_3 + S \downarrow \longrightarrow SO_4^{2-} + 2H^+ + 2NO \uparrow$$

2. Ammonia Solution: White precipitate with a mixed composition is obtained, essentially it consists of HgO and mercuryoamidonitrate.

$$2Hg^{2+} + NO_3^- + 4NH_3 + H_2O \longrightarrow HgO \cdot Hg(NH_2)NO_3 \downarrow + 3NH_4^+$$

The salt like most of the mercury compounds, sublimes at atmospheric pressure.

3. Sodium Hydroxide: When added in small amounts, brownish-red precipitate with varying composition is obtained; if added in stoichiometric amounts, the precipitate turns to yellow when HgO is formed.

$$Hg^{2+} + 2OH^{-} \longrightarrow HgO \downarrow + H_2O$$

Insoluble in excess NaOH soluble in acids.

4. Potassium Iodide: When added slowly to the solution, red precipitate of HgI₂ is obtained..

$$Hg^{2+} + 2I^{-} \longrightarrow HgI_{2}(Red)$$

The precipitate dissolves in excess reagent, when colourless tetraiodomercurate (II) ions are formed

$$HgI_{2} \downarrow + 2I^{-} \longrightarrow [HgI_{4}]^{2-}$$

An alkaline solution of $K_2[HgI_4]$ serves as a selective and sensitive reagent for NH_4^+ ion (Nessler's Reagent).

- **5. Potassium Cyanide:** Does not cause any change in dilute solutions (difference from other ions of the copper sub-group).
- **6. Tin (II) Chloride:** When added I in moderate amounts, white, silky precipitate of Hg_2Cl_2 (calomel)

$$2Hg^{2+} + Sn^{2+} + 2Cl^{-} \longrightarrow Hg_2Cl_2 \downarrow + Sn^{4+}$$

This reaction is widely used to remove the excess of Sn (II) ions, used for prior reduction, in oxidation-reduction titrations.

If more reagent is added, mercury (I) chloride is further reduced and black precipitate of mercury is formed.

$$HgCl_2 \downarrow +Sn^{2+} \longrightarrow 2Hg \downarrow +Sn^{4+} + 2Cl^{-}$$

7. **Cobalt (II) Thiocyanate Test:** To the test solution add an equal volume of Co(SCN)₂ (about 10% freshly prepared), and stirr the wall of the vessel with a glass rod. A deep blue crystalline precipitate of cobalt tetrathiocyanatomercurate (II) is formed.

$$Hg^{2+} + Co^{2+} + 4SCN^{-} \longrightarrow Co[Hg(SCN)_{4}] \downarrow$$
Deep blue crystalline

Reactions of Copper (II) Ions

1. **Hydrogen Sulphide (Gas or Saturated aqueous solution):** Black precipitate of CuS is formed.

$$Cu^{2+} + H_2S \longrightarrow CuS \downarrow +2H^+$$

$$K_{SD} (CuS) = 10^{-44}$$

The solution must be acidic (1M in HCl) in order to obtain a crystalline, easily filterable precipitate. iIn the absence of acid, or in very slightly acid solutions a colloidal, brownish black precipitate or colouration is obtained. By adding some acid and boiling, coagulation can be achieved.

The precipitate is insoluble in boiling dilute (1M) H_2SO_4 (distinction from Cd), in sodium hyodrixide, Na_2S and $(NH_4)_2S$. It is only very slightly soluble in polysulphides.

Hot conc. HNO₂ dissolves the CuS, leaving behind sulphur as a white precipitate.

$$3\text{CuS} \downarrow +8\text{HNO}_3 \longrightarrow 3\text{Cu}^{2+} +6\text{NO}_3^- +3\text{S} \downarrow +2\text{NO} \uparrow +4\text{H}_2\text{O}$$

When boiled for longer, sulphur is oxidized to H_2SO_4 and a clear solution is obtained.

$$S + 2HNO_3 \longrightarrow SO_4^{2-} + 2NO \uparrow +2H^+$$

KCN dissolves the ppt., when colourless tetra cyano cuprate (I) ions and disulphide ions are formed.

$$2\text{CuS} \downarrow +8\text{CN}^- \longrightarrow 2[\text{Cu(CN)}_4]^{3-} + \text{S}_2^{2-}$$

This is an oxidation and reduction reaction (cooper is reduced and sulphur is oxidized) coupled with a formation of a complex.

When exposed to air, in the moist state, CuS tends to oxidize to CuSO₄.

$$CuS + 2O_2 \longrightarrow CuSO_4$$

and therefore becomes water soluble. A considerable amount of heat is liberated during this process. A filter paper with CuS precipitate on it should never be thrown into a waste container, with paper or other inflammable substances in it. Instead the precipitate should be washed a way first with running water.

2. Ammonia Solution: When added slowly blue precipitate of basic copper sulphate is formed.

$$2Cu^{2+} + SO_4^{2-} + 2NH_3 + 2H_2O \longrightarrow Cu(OH)_2CuSO_4 \downarrow + 2NH_4^+$$

Which is soluble in excess reagent, when a deep blue colouration is obtained owing to the formation of tetrammine copper (II) complex ion.

$$Cu(OH)_2 \cdot CuSO_4 \downarrow +8NH_3 \longrightarrow 2[Cu(NH_3)_4]^{2+} + SO_4^{2-} + 2OH^{-}$$

If the solution contains NH_4^+ salt (or it was highly acidic larger amounts of NH_3 were used up for its neutralization) precipitation does not occur at all, but the blue colour appears right away. The reaction is characteristic for Cu^{2+} ions in the absence of Nickel.

3. NaOH: In cold solution blue precipitate of Cu(OH)₂ is formed...

$$Cu^{2+} + 2OH^{-} \longrightarrow Cu(OH)_{2} \downarrow$$

The precipitate is insoluble in excess reagent. When heated, the precipitate is converted to black CuO by dehydration.

$$Cu(OH)_2 \downarrow \longrightarrow CuO_{Black} \downarrow + H_2O$$

In the presence of a solution of tartaric acid or of nitric acid, copper (II) hydroxide is not precipitated by solutions of caustic alkalis but the solution is coloured, an intense blue. If the alkaline solution is treated with certain reducing agents, such as hydroxyl amine, hydrazine, glucose and acetaldehyde, yellow copper (I) hydroxide precipitated from the warm solution. It is converted into red copper (I) oxide (Cu_2O) on boiling. The alkaline solution of Cu(II) salt containing tartaric solution of Cu(II) salt containing tartaric acid is usually known as Fehling solution; it contains the complex ion $[Cu(C_1H_2O_6)_2]^{2-}$.

4. Potassium Iodide: Precipitates copper (I) iodide, which is white, but the solution is intensely brown because of formation of triiodide ions.

$$2Cu^{2+} + 5I^{-} \longrightarrow 2CuI \downarrow +I_{3}^{-}$$

Adding an excess of $Na_2S_2O_3$ to the solution triioide ions are reduced to colourless iodide ions and the white colour of ppt. becomes visible. These reactions are used in quantitative analysis for the iodometric determination of copper.

5. KCN: When added sparingly forms first a yellow precipitate of copper (II) cyanide.

$$Cu^{2+} + 2CN^{-} \longrightarrow Cu(CN)_{2} \downarrow$$

The precipitate quickly decomposes into copper (II) cyanide and cyanogens (highly poisonous gas) is liberated.

$$2Cu(CN)_2 \downarrow \longrightarrow 2CuCN \downarrow +(CN)_2 \uparrow$$

Excess of KCN dissolves the precipitate and the colourless tetracyanocuprate (I) complex is formed.

$$CuCN + 3CN^{-} \longrightarrow [Cu(CN)_{4}]^{3-}$$
Colourless

tThe complex is so stable that H₂S cannot precipitate copper I sulphide from this solution (distinction from Cd).

6. Potassium Thiocyanate (KSCN): Black precipitate of copper (II) thiocyanate is obtained.

$$Cu^{^{2+}} + 2SCN^{-} \longrightarrow Cu(SCN)_{_{\substack{Colourless}}} \downarrow$$

The precipitate decomposes slowly to form white copper (I) thiocyanate and thocyanogen is formedobtained.

$$2Cu(SCN)_2 \downarrow \longrightarrow 2CuSCN \downarrow + (SCN)_2 \uparrow$$

Thiocyanogen rapidly decomposes in aqueous solution.

7. Potassium Ferrocyanide $(K_4[Fe(CN)_6])$: Chocolate brown colour precipitate of $Cu_2[Fe(CN)_6]$ is obtained.

$$Cu^{+2} + K_4[Fe(CN)_6] \longrightarrow Cu_2[Fe(CN)_6]$$
Chocolate brown colour ppt.

Reactions of Bi3+ Ions

1. With H_2S (Gas or saturated aqueous solution): Blackish brown precipitate of Bi_2S_3 is obtained.

$$2Bi^{3+} + 3H_2S \longrightarrow Bi_2S_3 \downarrow + 6H^+$$
Black

Insoluble in cold. Dilute acid in (NH₄)₂S

Boiling conc. HCl dissolves the precipitate when H₂S gas is evolved.

$$Bi_2S_3 \downarrow +6HC1 \longrightarrow 2Bi^{3+} +6Cl^- +3H_2S \uparrow$$

Hot dil. HNO₃ dissolves Bi₂S₃, leaving behind sulphur in the form of a white precipitate.

$$Bi_2S_3 \downarrow +8H^+ + 2NO_3^- \longrightarrow 2Bi^{3+} +3S \downarrow +2NO \uparrow +4H_2O$$

2. With NH₃ **Solution:** White basic salt of variable composition. The approximate chemical reaction is

$$Bi_2S_3 \downarrow +NO_3^- + 2NH_3 + 2H_2O \longrightarrow Bi(OH)_2NO_3 \downarrow + 2NH_4^+$$
white

Bi(OH)₂NO₃ does not dissolve in excess NH₃ (distinction from Cu and Cd)

3. With NaOH: White precipitate of Bi(OH), is obtained.

$$\mathrm{Bi}^{3+} + \mathrm{3OH}^{-} \longrightarrow \mathrm{Bi}(\mathrm{OH})_{3} \downarrow$$
White

Slightly soluble in excess NaOH

Soluble in conc. HCl and insoluble in dilute HCl

$$Bi(OH)_3 \downarrow + 3HCl \longrightarrow BiCl_3 + H_2O$$

$$BiCl_3 + H_2O \longrightarrow BiOCl \downarrow$$

white turbidity

When boiled precipitate loses water and turns yellowish white

$$Bi(OH)_3 \downarrow \longrightarrow BiO \cdot OH \downarrow + H_2O$$

Both the hydrated and the dehydrated precipitate can be oxidised by 4-6 drops of conc. H₂O₂ when yellowish brown bismuth ate ions are formed.

$$BiO \cdot OH \downarrow +H_2O_2 \longrightarrow BiO_3^- +H^+ +H_2O$$

4. **Potassium Iodide:** When added drop-wise black precipitate of BiI₂ is obtained.

$$\mathrm{Bi}^{3+} + 3\mathrm{I}^{-} \longrightarrow \mathrm{BiI}_{3} \downarrow$$

Black

The precipitate dissolves readily in excess reagent when orange coloured tetraiodobismuthate ions are formed.

$$I_3 + I_4 = I_4$$

 $I^{-} = I^{-} = I^{-} = I^{-}$ When diluted with H_2O , the above reaction is reversed and black precipitates of BiI_3 reappear.

5. **KI:** KI forms no precipitate (distinction from copper). Heating the precipitate with H₂O, Bi₁ turns orange owing to the formation of bismuthyl iodide.

$$BiI_{3} \downarrow +H_{2}O \longrightarrow \underset{Orange \\ Bismuthyl \ iodide}{BioI} \downarrow +2H^{+} +2I^{-}$$

6. Sodium Tetrahydroxostannate (II) (0.125M freshly prepared): In cold solution, Bi³⁺ ions are reduced to Bismuth metal which separates in the form of a black precipitate. First the sodium hydroxide present in the reagent reacts with Bi³⁺ ions, Bi(OH)₃ is then reduced by tetrahydroxostannate (II) ions to form Bi metal and hexahydroxostannate is formed.

$$Bi^{3+} + 3OH^{-} \longrightarrow Bi(OH)_{3} \downarrow$$

$$2Bi(OH)_{3} \downarrow + 3[Sn(OH)_{4}]^{2-} \longrightarrow 2Bi \downarrow + 3[Sn(OH)_{6}]^{2-}$$

Reactions of Cadmium (II) Ions [Cd2+]

Reaction with H₂S (Gas or saturated aqueous solution): Yellow precipitate of CdS is 1. obtained.

$$Cd^{2+} + H_2S \rightleftharpoons CdS \downarrow + 2 H^+$$
Yellow

The reaction is reversible, if the conc. of strong acid in the solution is above 0.5M, precipitation is incomplete. Conc. acids dissolve the precipitate for the same reason. The ppt is insoluble in KCN: this distinguishes Cd^{2+} ions from Cu^{2+} .

2. Ammonia Solution: When added drop wise white precipitate of Cd(OH)₂ is formed.

$$Cd^{2+} + 2 NH_3 + 2 H_2O = Cd(OH)_2 \downarrow + 2 NH_4^+$$
White

The precipitate dissolves in acid when the equilibrium shifts towards the left.

An excess of NH₂ dissolves the precipitate, when tetraammine cadmiate (II) ions are formed.

$$Cd(OH)_2 \downarrow + 4NH_3 \longrightarrow [Cd(NH_3)_4]^{2+} + 2OH^{-}$$
White

3. NaOH: White precipitate of Cd(OH)₂

$$Cd^{2+} + 2OH^{-} \longrightarrow Cd(OH)_{2} \downarrow$$
White insoluble in excess NaOH

White precipitate dissolves in dilute acids when equilibrium shifts in the backward direction.

4. KCN: White precipitate of $Cd(CN)_2$ is obtained when KCN is added slowly to Cd^{2+} ions.

$$Cd^{2+} + 2CN^{-} \longrightarrow Cd(CN)_{2} \downarrow$$

An excess of reagent (KCN) dissolves the precipitate with the formation of tetracyanocadmiate ions.

$$Cd(CN)_2 \downarrow +2CN^- \longrightarrow [Cd(CN)_4]^{2-}$$

The colourless complex is not very stable; when H₂S gas is introduced, CdS is precipitated

$$[Cd(CN)_4]^{2-} + H_2S \longrightarrow CdS_{yellow} \downarrow + 2H^+ + 4CN^-$$

(Difference from copper)

Reactions of Sn2+ Ions

1. H_2S (Gas or Saturated Solution): Brown precipitate of SnS, from mildy acidic solutions. The precipitate is soluble in conc. HCl. It is also soluble in yellow $(NH_4)_2Sn$ (but not in colourless $(NH_4)_2S$) to form a thiostannate treatment of the solution of ammonium thiostannate with an acid yields a yellow precipitate of SnS₂.

$$Sn^{2+} + H_2S \longrightarrow SnS \downarrow +2H^+$$

$$SnS + S_2^{2-} \longrightarrow SnS_3^{2-}$$

$$SnS_3^{2-} + 2H^+ \longrightarrow SnS_2 \downarrow +H_2S \uparrow$$

2. **NaOH Solution:** White precipitate of Sn(OH)₂, soluble in excess alkali.

$$\operatorname{Sn}^{2+} + 2 \operatorname{OH}^{-} \Longrightarrow \operatorname{Sn}(\operatorname{OH})_{2} \downarrow$$
White
$$\operatorname{Sn}(\operatorname{OH})_{2} + 2 \operatorname{OH}^{-} \Longrightarrow [\operatorname{Sn}(\operatorname{OH})_{4}]^{2-}$$

With NH₃ solution, white Sn(OH)₂ is precipitated which cannot be dissolved in excess NH₃.

3. HgCl₂ Solution: White precipitate of Hg₂Cl₂ and finally Hg metal (black)

$$\begin{aligned} & HgCl_2 + Sn^{2+} \longrightarrow Sn^{4+} + Hg_2Cl_2 \downarrow \\ & Hg_2Cl_2 + Sn^{2+} \longrightarrow Sn^{4+} + 2Hg \downarrow + 2Cl^- \end{aligned}$$

Reactions of Sn⁴⁺ Ions

1. Hydrogen Sulphide: Yellow precipitate of Sn(IV) sulphide SnS₂ from dil. Acid solution. The precipitate is soluble in conc. HCl in solution of alkali hydroxide and also in (NH₄)S and (NH₄)₂Sn. Yellow SnS₂ is precipitate upon acidification.

$$Sn^{4+} + 2H_2S \longrightarrow SnS_2 \downarrow +4H^+$$

$$SnS_2 \downarrow +S^{2-} \longrightarrow SnS_3^{2-}$$

$$SnS_2 \downarrow +2S_2^{2-} \longrightarrow SnS_3^{2-} +S_3^{2-}$$

$$SnS_3^{2-} +2H^+ \longrightarrow SnS_2 \downarrow +H_2S \uparrow$$

NaOH: NaOH solution \rightarrow gelatinous precipitation precipitate (white) of Sn(OH)₄ soluble in excess of the precipitant forming hexahydroxostannate (VI).

$$Sn^{4+} + 4OH^{-} \longrightarrow Sn(OH)_{4} \downarrow$$

$$Sn(OH)_{4} \downarrow + 2OH^{-} \Longrightarrow [Sn(OH)_{6}]^{2-} \downarrow$$

- 3. **With HgCl₂:** No precipitate (difference from Sn(II))
- 4. **Metallic Iron:** Reduces Sn^{4+} ions to Sn^{2+}

$$Sn^{4+} + Fe \longrightarrow Fe^{2+} + Sn^{2+}$$

Third Group of Cations: Fe²⁺, Fe³⁺, Al³⁺, Cr³⁺, Cr⁶⁺

Group Reagent NH₄OH in presence of NH₄Cl

Fe(OH)₃ Red Brown

Al(OH)₃ Gelatinous white

Cr(OH)₃ Green (cotton like)

Reactions of Fe³⁺ ions

1. NH₃ **Solution:** Reddish brown, gelatinous precipitate of Fe(OH)₃ insoluble in excess of the reagent, but soluble in acids.

$$Fe^{3+} + 2NH_3 + 3H_2O \longrightarrow Fe(OH)_3 \downarrow + 3NH_4^+$$

Iron (III) hydroxide is converted during strong heating into Fe₂O₃ the ignited oxide is soluble with difficulty in dilute acids, but dissolves in vigorous boiling with conc. HCl.

$$2Fe(OH)_3 \downarrow \longrightarrow Fe_2O_3 + 3H_2O$$

$$Fe_2O_3 + 6H^+ \longrightarrow 2Fe^{3+} + 3H_2O$$

2. **NaOH Solution:** Reddish brown precipitate of Fe(OH)₃ in solute in excess of NaOH.

$$Fe^{3+} + 3OH^{-} \longrightarrow Fe(OH)_{3} \downarrow$$
Reddish brown

3. Hydrogen Sulphide: In acidic solution reduces Fe³⁺ to Fe²⁺ and sulphur is formed as a milky white precipitate.

$$2 \operatorname{Fe}^{3+} + \operatorname{H}_{2} S \longrightarrow 2 \operatorname{Fe}^{+2} + 2 \operatorname{H}^{+} + S \downarrow$$

White

If a neutral solution of FeCl₃ is adds to a freshly prepared, saturated solution of H₂S, a bluish colouration appear first, followed by the precipitation of sulphur. The blue colour is due to a colloidal solution of sulphur of extremely small particle size.

4. Ammonium Sulphide: A black precipitate, consisting of Fe and sulphur is formed.

$$2Fe^{3+} + 2S^{2-} \longrightarrow 2FeS \downarrow +S \downarrow$$

In HCl and black FeS precipitate dissolves and white colour of sulphur becomes visible.

$$FeS \downarrow +2H^+ \longrightarrow H_2S \uparrow +Fe^{2+}$$

From alkaline solution black iron (II) sulphide is obtained.

$$2Fe^{3+} + 3S^{-} \longrightarrow Fe_{2}S_{3} \downarrow$$

On acidification with HCl, Fe³⁺ ions are reduced to Fe²⁺ and sulphur is formed.

$$Fe_2S_3 \downarrow +4H^+ \longrightarrow 2Fe^{3+} + 2H_2S \uparrow +S \downarrow$$

The damp iron (II) sulphide precipitate, when exposed to air, is slowly oxidized to brown Fe(OH)₃.

$$4\text{FeS} \downarrow +6\text{H}_2\text{O} + 3\text{O}_2 \longrightarrow 4\text{Fe(OH)}_3 \downarrow + 4\text{S}$$
Reddish brown

KCN: When added slowly, produces a reddish brown precipitate of Fe(CN)₃.

$$Fe^{3+} + 3CN^{-} \longrightarrow Fe(CN)_{3} \downarrow$$
Reddish brown

In excess, reagent dissolves giving a yellow solution, when hexacyanoferrate (III) ions are formed.

$$Fe(CN)_3 + 3CN^- \longrightarrow [Fe(CN)_6]^{3-}$$

6. K_**[Fe(CN)**_]: Solution intense blue precipitate of Fe(III) hexaycnoferrate (Prussian blue)

$$4Fe^{3+} + 3[Fe(CN)_{6}]^{4-} \longrightarrow Fe_{4}[Fe(CN)_{6}]_{3} \downarrow$$

$$Iron(III)hexcyanoferrate(II)$$
(Prussian blue)

The precipitate is insoluble in dilute acids, but decomposes in conc. HCl. A large excess of the reagent dissolves it partly or entirely, when an intense blue solution is obtained. NaOH turns the precipitate red as Fe_2O_3 and $[Fe(CN)_6]^{4-}$ ions are formed.

$$Fe_{4}[Fe(CN)_{6}]_{3} + 12OH^{-} \longrightarrow 4Fe(OH)_{3} \downarrow + 3[Fe(CN)_{6}]^{4-}$$

7. **K**₃[Fe(CN)₆]: A brown colouration is produced due to the formation of an undissociated complex, Iron (III) hexacyanoferrate (III).

$$Fe^{3+} + [Fe(CN)_6]^{3-} \longrightarrow Fe[Fe(CN)_6]_{Brown}$$

Reactions of Al3+ Ions

1. **Ammonia Solution:** White gelatinous precipitate of Al(OH)₃, slightly soluble in excess of reagent. The solubility is decreased in presence of NH₄⁺ ions. A small proportion of the precipitate passes into the solution as colloidal Al(OH)₃ (Al(OH)₃ solution), the solution is coagulated on boiling the solution or upon the addition of soluble salts (e.g. NH₄Cl) yielding a precipitate of Al(OH)₃, known as Al(OH)₃ gel. The To ensure complete precipitation of NH₃ solution is added in slight excess and the mixture is boiled until the liquid has a slight odour of NH₃. When

freshly precipitated, it dissolves readily in strong acids and bases, but after boiling it becomes sparingly soluble.

$$Al^{3+} + 3NH_3 + 3H_2O \longrightarrow Al(OH)_3 \downarrow +3NH_4^+$$

2. **Sodium Hydroxide:** White precipitate of Al(OH)₃ is obtained.

$$Al^{3+} + 3OH^{-} \longrightarrow Al(OH)_{3} \downarrow$$
White

The precipitate dissolves in excess NaOH forming tetrahydroxoaluminate (III) iron.

$$Al(OH)_3 \downarrow + OH^- \rightleftharpoons [Al(OH)_4]^-$$

The reaction is a reversible one, and any reagent which will reduce the OH^- concentration sufficiently should cause the reaction to proceed from sight to left with the consequently precipitation of $Al(OH)_3 \downarrow$. This may be effected by $AlCl_3$ or by adding the acid; in the latter cause, a large excess of acid, in the latter case, a large excess of acid causes the precipitated hydroxide to redissolve.

$$[Al(OH)_4]^- + NH_4^+ \longrightarrow Al(OH)_3 \downarrow + NH_3 \uparrow + H_2O$$

$$[Al(OH)_4]^- + H^+ \longrightarrow Al(OH)_3 \downarrow + H_2O$$

$$Al(OH)_3 \downarrow + 3H^+ \longrightarrow Al^{3+} + 3H_2O$$

The precipitation of Al(OH)₃ by solutions of NaOH and NH₃ does not take place in the presence of tartaric acid, citric acid because of the formation of soluble complex salt.

3. Ammonium Sulphide Solution: A white precipitate Al(OH), is obtained.

$$2Al^{3+} + 3S^{2-} + 6H_2O \longrightarrow 2Al(OH)_3 \downarrow +3H_2S \uparrow$$

Sodium Acetate Solution: No precipitate is obtained in cold, neutral solution, but on boiling with excess reagent, a voluminous precipitate of basic aluminium acetate Al(OH)₂(CH₃COO) is formed

$$Al^{3+} + 3CH_3COO^- + 2H_2O \longrightarrow Al(OH)_2(CH_3COO) \downarrow + 2CH_3COOH$$
White

Reactions of Cr3+ Ions

Ammonia Solution: Green-grey or grey-blue gelatinous precipitate of Cr(OH)₃, slightly soluble in excess of reagent in cold forming a violet or pink solution containing complex hexamine chromium (III) ion; upon boiling the solution, Cr(OH)₃ is precipitated. Hence for complete precipitation of chromium as the hydroxide, it is essential that the solution be boiling and excess aqueous ammonia solution be avoided.

$$\operatorname{Cr}^{3+} + 3\operatorname{NH}_3 + 3\operatorname{H}_2\operatorname{O} \longrightarrow \operatorname{Cr}(\operatorname{OH})_3 \downarrow + 3\operatorname{NH}_4^+$$

 $\operatorname{Cr}(\operatorname{OH})_3 \downarrow + 6\operatorname{NH}_3 \longrightarrow [\operatorname{Cr}(\operatorname{NH}_3)_6]^{3+} + 3\operatorname{OH}^-$

In the presence of acetate ions and the absence of other trivalent metal ions, $Cr(OH)_3$ is not precipitated. The precipitation of $Cr(OH)_3$ is also prevented by tartarates and citrates.

2. **Sodium Hydroxide Solution:** The green-grey ior grey blue precipitates of Cr(OH)₃ is obtained..

$$Cr^{3+} + 3OH^{-} \longrightarrow Cr(OH)_{3} \downarrow$$

The reaction is reversible; the addition of the acids, the precipitates readily, tetrahydroxochromate (III) ions are formed

$$Cr(OH)_3 \downarrow + OH^- \Longrightarrow [Cr(OH)_4]^-$$

The solution is green. The reaction is reversible on (slight) acidification and also on boiling $Cr(OH)_3$ precipitates again.

On adding H_2O_2 to alkaline solution of $[Cr(OH)_4]^-$, a yellow solution is obtained, owing to the oxidation of Cr^{3+} to CrO_4^{2-} .

$$2[Cr(OH)_4]^- + 2H_2O_2 + 2OH^- \longrightarrow 2CrO_4^{2-} + 8H_2O$$

3. **Sodium Carbonate Solution:** Precipitate of Cr(OH)₃ is obtained.

$$2Cr^{3+} + 3CO_3^{2-} + 3H_2O \longrightarrow 2Cr(OH)_3 \downarrow +3CO_2 \uparrow$$

- **4. Chromate Test:** Cr^{3+} ions can be oxidized to CrO_4^{2-} in several ways
 - (a) Adding an excess of NaOH to a Cr^{3+} salt followed by a few ml of 10% H_2O_2 . The excess of H_2O_2 can be removed by boiling the solution for few minutes.

$$2[Cr(OH)_4]^- + 3H_2O_2 + 2OH^- \longrightarrow 2CrO_4^{2-} + 8H_2O_4^{2-}$$

(b) Oxidation can be carried out by Br₂/H₂O in alkaline solution (i.e. by OBr⁻).

$$2Cr^{3+} + 3OBr^{-} + 10OH^{-} \longrightarrow 2CrO_{4}^{2-} + 3Br^{-} + 5H_{2}O$$

(c) In acid solution Cr³⁺ ions can be oxidized by potassium (or ammonium) peroxodisulphate.

$$2Cr^{3+} + 3S_2O_8^{2-} + 8H_2O \longrightarrow 2CrO_4^{2-} + 16H^+ + 6SO_4^{2-}$$

Identification of CrO₄2-:

Having carried out the oxidation with one of the methods are described above, CrO_4^{2-} ions can be identified by anyone of the following methods.

(a) **BaCl₂ Test:** After acidifying the solution with CH₃COOH and adding BaCl₂, a yellow precipitate of BaCrO₄ is formed.

$$Ba^{2+} + CrO_4^{2-} \longrightarrow BaCrO_4 \downarrow$$
Yellow

(b) Chromium Pentoxide (or Peroxide) Test:

On acidifying the solution with dil. H_2SO_4 adding 2 to 3 ml of ether or amyl alcohol to the mixture and finally adding some H_2O_2 , a blue coloration is formed. During the reaction CrO_5 is formed.

$$CrO_4^{2-} + 2H^+ + 2H_2O_2 \longrightarrow CrO_5 + 3H_2O$$

In aqueous solution blue colour fades spidly speedily,, because ${\rm CrO}_5$ decomposes to ${\rm Cr}^{3+}$ and oxygen.

$$4CrO_5 + 12H^+ \longrightarrow 4Cr^{3+} + 7O_2 \uparrow +6H_2O$$

(c) **Pb** (**OAc**)₂ **Test**: On acidification with acetic acid, followed by addition of lead acetate gives PbCrO₄ (yellow ppt.)

$$Pb^{+2} + CrO_4^{-2} \longrightarrow PbCrO_4$$
 (yellow ppt.)

Radicals of Group IV

Radicals Co^{2+} , Ni^{2+} , Zn^{2+} , Mn^{2+}

Group Reagent H₂S in presence of NH₄OH and NH₄Cl

Black CoS, NiS
Pink MnS
White ZnS

Group V of Cations

QUALITATIVE ANALYSIS

Radicals Ba²⁺, Sr²⁺, Ca²⁺

Group Reagent $(NH_4)_2CO_3$ in presence of NH_4OH

Precipitates as Carbonates

White BaCO₃, SrCO₃, CaCO₃

Reactions of Ba2+ ions

- 1. **Reactions with NH₃ Solution:** No precipitate OF Ba(OH)₂ is obtained because of its relatively high solubility. If the alkaline solution is exposed to the atmosphere some CO₂ gas is absorbed and a turbidity due to BaCO₃ is produced.
- 2. (NH₄)₂CO₃ Solution: White precipitate of BaCO₃, soluble in acetic acid and dilute mineral acids

$$Ba^{2+} + CO_3^{2-} \longrightarrow BaCO_3 \downarrow$$
White

The precipitate is slightly soluble in ammonium salts of strong acids.

3. (NH₄)₂C₂O₄ Solution: A white precipitate of Ba(C₂O₄) is obtained slightly soluble in water (0.09 g L^{-1}) but readily dissolved by hot dilute acetic acid (distinction from Ca²⁺) and by mineral acid.

$$Ba^{2+} + C_2O_4^{2-} \Longrightarrow Ba(COO)_2 \downarrow$$

4. Dilute Sulphuric Acid: Heavy, white, finely divided precipitate of $BaSO_4$, practically insoluble in water $(2.5 \times 10^{-3} \text{ g/L})$, almost insoluble in dilute acids and in $(NH_4)_2SO_4$ solution, but appreciably soluble in boiling conc. H_2SO_4 . By precipitation in boiling solution, or preferably in the presence of NH_4OOCCH_3 , a more readily filterable form is obtained.

$$Ba^{2+} + SO_4^{2-} \longrightarrow BaSO_4 \downarrow$$

BaSO₄ + H₂SO₄
$$\longrightarrow$$
 Ba²⁺ + 2HSO₄⁻
If BaSO₄ is boiled with a conc. solution of Na CO

If BaSO₄ is boiled with a conc. solution of Na₂CO₃ partial transformation into the less soluble BaCO₃ occurs in accordance with the equation.

$$BaSO_4 \downarrow + CO_3^{2-} \Longrightarrow BaCO_3 \downarrow + SO_4^{2-}$$

Owing to the reversibly of the reaction, the transformation is incomplete. $BaSO_4$ precipitate may also be dissolved in a hot 5% solution disodium ethylene diammine tetracetae (Na_2EDTA] in the presence of NH_2 .

Saturated CaSO₄ Solution: Immediate white precipitate of BaSO₄. A similar phenomenon occurs if saturated SrSO₄ is used.

This is because of the three alkaline earth metal sulphates, $BaSO_4$ is the least soluble. In the solutions of saturated $CaSO_4$ or $SrSO_4$ the concentration of SO_4^{2-} ion is high enough to cause precipitation with larger amounts of Ba^{2+} , because the product of ionic concentrations exceeds the value of the solubility product.

$$SO_4^{2-} + Ba^{2+} \Longrightarrow BaSO_4 \downarrow$$

6. K_2CrO_4 Solution: A yellow precipitate of BaCrO₄, practically insoluble in water (3.2 mg L⁻¹)

$$Ba^{2+} + CrO_4^{2-} \longrightarrow BaCrO_4 \downarrow$$

The precipitate is insoluble in dilute CH_3COOH (distinction from Ca^{2+} and Sr^{2+} ions), but readily soluble in mineral acids.

The addition of acid to K_2CrO_4 solution causes the yellow colour of the solution to change to reddish orange, owing to the formation of dichromate.

$$2 \text{ CrO}_4^{2-} + 2 \text{ H}^+ \iff \text{Cr}_2\text{O}_7^{2-} + \text{H}_2\text{O}$$

The solubility products for SrCrO₄ and CaCrO₄ are much larger than for BaCrO₄ and hence

they require a larger $CrO_4^{\ 2-}$ ion concentration to precipitate them. The addition of acetic acid to the K_2CrO_4 solution lowers to the $CrO_4^{\ 2-}$ ion concentration sufficiently to prevent the precipitation of $SrCrO_4$ and $CaCrO_4$ but it is maintained high enough to precipitate $BaCrO_4$.

Reactions of Ca2+ Ions

- **1. Ammonia Solution:** No precipitate as Ca(OH)₂ is fairly soluble. With an aged precipitant a turbidity may occur owing to the formation of CaCO₃.
- 2. (NH₄)₂CO₃ Solution: White amorphours precipitate of CaCO₃ is obtained...

$$Ca^{2+} + CO_3^{2-} \longrightarrow CaCO_3 \downarrow$$

On boiling the precipitate becomes crystalline. The precipitate is soluble in water which contains excess carbonic acid (freshly prepared soda water) because of the formation of soluble $Ca(HCO_3)_2$.

$$CaCO_{3} \downarrow + H_{2}O + CO_{2} \rightleftharpoons Ca^{2+} + 2 HCO_{3}^{2-}$$

On boiling, precipitate appears again, because CO_2 is removed during the process and the reaction proceeds towards the left. Ba²⁺ and Sr²⁺ ions reacts in a similar way.

The precipitate is soluble in acids, even in CH₃COOH.

3. **Dilute Sulphuric Acid:** White precipitate of CaSO₄ is obtained.

$$Ca^{2+} + SO_4^{2-} \longrightarrow CaSO_4 \downarrow$$

The precipitate is appreciably soluble in water, i.e., more soluble than BaSO₄ and SrSO₄. In the presence of C₂H₅OH solubility is much less.

$$\mathrm{CaSO_4} + \mathrm{H_2SO_4} \implies 2\,\mathrm{H^+} + [\mathrm{Ca(SO_4)_2}]^{2-}$$

The same complex is formed if a precipitate is heated with a 10% of $(NH_4)_2SO_4$, leading to partial dissolution.

4. (NH₄)₂C₂O₄ Solution: White precipitate of CaC₂O₄, immediately from concentrated and slowly from dilute solution.

$$Ca^{2+} + C_2O_4^{2-} \longrightarrow Ca(C_2O_4) \downarrow$$

Precipitation is fascilitated by making the solution alkaline by NH₃. The precipitate is practically insoluble in H₂O and CH₃COH but readily soluble in mineral acids.

- **5. K**₂**CrO**₄ **Solution:** No precipitate from dilute solution nor from conc. solution in the presence of CH₃COOH.
- **6. K₄[Fe(CN)₆] Solution:** White precipitate of a mixed salt is obtained...

$$Ca^{2+} + 2K^{+} + [Fe(CN)_{6}]^{4-} \longrightarrow K_{2}Ca[Fe(CN)_{6}] \downarrow$$

In the presence of NH_4Cl the test is more sensitive. In this case potassium is replaced by ammonium ions in the precipitate. The tests can be used to distinguish calcium from strontium, barium and Mg^{2+} ions however interfere.

Reaction of Sr^{2+} (strontium): Strontium sulphate is insoluble and precipitated by the addition of

ammonium sulphate solution.

$$Sr (CH_3COO)_2 + (NH_4)_2 SO_4 \longrightarrow SrSO_4 + 2 CH_3COONH_4$$

White ppt.

Sixth Group of Cations: Mg2+, Na+, K+

Group Reagent No common group reagent

Reaction of Mg²⁺ ions

1. Ammonium Solution: Partial precipitation of white gelatinous Mg(OH)₂.

$$Mg^{2+} + 2NH_3 + 2H_2O \longrightarrow Mg(OH)_2 \downarrow +2NH_4^+$$

The precipitate is very sparingly soluble in water $(1.2 \times 10^{-2} \text{g/L})$ but readily soluble in ammonium salts.

2. NaOH Solution: White precipitate of $Mg(OH)_2$, insoluble in excess NaOH, but readily soluble in NH_4^+ salts.

$$Mg^{2+} + 2OH^{-} \longrightarrow Mg(OH)_{2} \downarrow$$

3. $(NH_4)_2CO_3$ Solution: In the absence of NH_4^+ salts, a white precipitate of basic magnesium carbonate is obtained..

$$5Mg^{2+} + 6CO_3^{2-} + 7H_2O \longrightarrow 4MgCO_3 \cdot Mg(OH)_2 \cdot 5H_2O \downarrow + 2HCO_3^{-}$$

In the presence of NH_4^+ salts, no precipitation occurs, because the equilibrium is shifted to left $NH_4^+ + CO_3^{2-} \rightleftharpoons NH_3^- + HCO_3^-$

- **4.** Na_2CO_3 Solution: White voluminous precipitate of basic carbonate as above is formed, insoluble in bases but readily soluble in acids and in solutions of NH_4^+ ions.
- **Na₂HPO₄ Solution:** White crystalline precipitate of Mg(OH)₄PO₄·6H₂O in the presence of NH₄Cl (to prevent precipitation of Mg(OH)₂) and NH₃ solution).

$$Mg^{2+} + NH_3 + HPO_4^{2-} \longrightarrow MgNH_4PO_4 \downarrow$$

The precipitate is sparingly soluble in water, soluble in CH₃COOH and in mineral acids. The precipitate separates slowly from dilute solutions because of its tendency, to form supersaturated solutions, this may usually be overcome by cooling and by rubbing the test tube or beaker beneath the surface of the liquid with a glass rod.

A white flocculants precipitate of MgHPO₄ is produced in neutral solutions.

$$Mg^{2+} + HPO_4^{2-} \longrightarrow MgHPO_4 \downarrow$$