

PERCEPCIÓN COMPUTACIONAL

Tema 5: PERCEPCIÓN VISUAL III DESCRIPCIÓN BORDES Y REGIONES

Gonzalo Pajares Martinsanz

Dpt. Ingeniería del Software e Inteligencia Artificial

Facultad de Informática.- Universidad Complutense de Madrid

- Descripción de segmentos rectos
- Ajuste de líneas por mínimos cuadrados
- La transformada de Hough
- Contornos deformables

Segmentos rectos: códigos de cadena

Ejemplo de código: 666666766666666575666665

Segmentos rectos: códigos de cadena

Algoritmo de Tanaka y Kak

- 1. Si el histograma tiene más de 4 barras (N > 4), la línea no es recta, ya que tiene al menos
- 4 orientaciones diferentes.
- 2. Si el histograma tiene una única barra (N = 1), la línea es puramente recta con alguna de las 8 direcciones cuantizadas.

Segmentos rectos: códigos de cadena

Algoritmo de Tanaka y Kak (cont.)

- 3. Si el histograma tiene 2 barras (N = 2), dos casos han de ser considerados.
 - (a) Si las 2 barras son adyacentes, de nuevo hay que considerar dos casos:
 - (i) Si la máxima longitud del código de menor frecuencia es menor que un umbral prefijado T, la línea se declara recta.
 - (ii) Si la máxima longitud del código de menor frecuencia es mayor que un umbral prefijado T, la línea se declara no recta.
 - (b) Si las 2 barras no son adyacentes, esta línea se declara no recta. La línea contiene al menos dos orientaciones diferentes, y los ángulos de esas orientaciones difieren al menos 90°.

VISIÓN

Segmentos rectos: códigos de cadena

Algoritmo de Tanaka y Kak (cont.)

- 4. Si el histograma tiene 3 barras (N = 3), dos casos han de ser considerados:
 - (a) Si las 3 barras son adyacentes entre sí, la barra central es la más larga, y la altura de la barra vecina más próxima es menor que un umbral T fijado por el usuario, entonces la línea es declarada como recta.
 - (b) Si de las 3 barras 2 no son adyacentes, esta línea se declara no recta. La línea tiene al menos dos orientaciones diferentes cuyos ángulos difieren al menos 90°.

Gonzalo Pajares VISIÓN

Segmentos rectos: códigos de cadena

Algoritmo de Tanaka y Kak (cont.)

Ajuste de líneas por mínimos cuadrados

$$\sum_{i=1}^{n} \left[\left(c_0 + c_1 x_i \right) - y_i \right]^2$$

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix}$$

$$Y \quad \boldsymbol{a} \quad \boldsymbol{b}$$

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ y_n \end{bmatrix}$$

$$\|Ya - b\|^2 = \begin{bmatrix} c_0 + c_1 x_1 \\ c_0 + c_1 x_2 \\ \cdot \\ \cdot \\ c_0 + c_1 x_n \end{bmatrix} - \begin{bmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ \cdot \\ y_n \end{bmatrix}^2 = \sum_{i=1}^n [(c_0 + c_1 x_i) - y_i]^2$$

$$\boldsymbol{a} = \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = Y\boldsymbol{b}$$

Ajuste de líneas por mínimos cuadrados

$$\sum_{i=1}^{n} \left[\left(c_o + c_1 x_i + c_2 x_i^2 + \dots + c_d x_i^d \right) - y_i \right]^2$$

$$Y = \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^d \\ & \ddots & & & \\ & & \ddots & & \\ & & \ddots & & \\ & & \ddots & & \\ 1 & x_n & x_n^2 & \dots & x_n^d \end{bmatrix} \qquad \mathbf{a} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ \vdots \\ c_d \end{bmatrix}$$

$$m{a} = egin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_d \end{bmatrix}$$

VISIÓN

Descripción de bordes

La transformada de Hough

$$y = ax + b$$
 $y_i = ax_i + b$

y = ax + b $y_i = ax_i + b$ Espacio de parámetros: $b = -x_i a + y_i$

X	y	espacio <i>xy</i>	espacio <i>ab</i>
1	0	0 = a + b	b = -a
3	2	2 = 3a + b	b = -3a + 2
4	3	3 = 4a + b	b = -4a + 3
3	4	4 = 3a + b	b = -3a + 4

Transformada de Hough

Acumulador: A(p,q) = A(p,q) + 1

coordenadas polares: $x \cos \theta + y sen \theta = \rho$

Transformada de Hough

Detectar_lineas.m

acumulador

Transformada de Hough

Detectar_lineas.m

acumulador

M

Descripción de bordes

Transformada de Hough

Contornos deformables: un algoritmo

$$E = \sum_{i=1}^{N} (\alpha_i E_{cont} + \beta_i E_{curv} + \gamma_i E_{imag}) \qquad \alpha_i, \beta_i, \gamma_i \ge 0$$

$$\alpha_i, \beta_i, \gamma_i \ge 0$$

$$E_{cont} = \left\| \boldsymbol{p}_i - \boldsymbol{p}_{i-1} \right\|^2$$

$$con \, \boldsymbol{p}_i = (x_i, \, y_i)$$

$$E_{curv} = \| \boldsymbol{p}_{i-1} - 2\boldsymbol{p}_i + \boldsymbol{p}_{i+1} \|^2$$

$$E_{imag} = -\|\nabla I\|^2$$

Contornos deformables: un algoritmo

Definir el contorno inicial con un número de puntos N e inicializar α_i , β_i y γ_i .

- 2.- Mientras el número de puntos que se mueven a una nueva localización sea mayor que un determinado umbral T_1 realizar el paso 3.
- 3.- Desde i = 0 hasta N (el punto N es el primero y el último procesado).
 - 3.1 Fijar E_{min} a un valor elevado.
 - 3.2 Para todos los puntos j en un entorno de vecindad del punto p_i de dimensión mxm obtener

$$E_{j} = \alpha_{i} E_{cont, j} + \beta_{i} E_{curv, j} + \gamma_{i} E_{imag, j}$$

- 3.3 Si $E_j < E_{\min}$ entonces $E_{\min} = E_j$ y $j\min = j$.
- 3.4 Mover el punto p_i a la localización *jmin* y contabilizar este movimiento de posición.

Contornos deformables: un algoritmo

Determinar las curvaturas para la siguiente iteración:

4.1 Desde i = 0 hasta N-1 obtener c_i

4.2 Si $c_i > c_{i-1}$ y $c_i > c_{i+1}$ (si la curvatura es mayor que la de los vecinos) y $c_i > T_2$ (y la curvatura es mayor que un determinado umbral) y la magnitud del gradiente en $p_i > T_3$ (la fuerza del borde supera un umbral) entonces fijar β_i a 0 (eliminar la contribución de la curvatura en el cómputo de la energía para la siguiente iteración).

$$c_{i} = \left\| \frac{u_{i}}{|u_{i}|} - \frac{u_{i+1}}{|u_{i+1}|} \right\| \qquad \text{donde} \quad u_{i} = (x_{i} - x_{i-1}, y_{i} - y_{i-1}) \\ u_{i+1} = (x_{i+1} - x_{i}, y_{i+1} - y_{i})$$

VISIÓN

Pajares

Contornos deformables

Demo1.m

Chunming Li http://www.engr.uconn.edu/~cmli/code/

Contornos deformables

Demo2.m

Chunming Li http://www.engr.uconn.edu/~cmli/code/

Pajares

VISIÓN

Pajares
VICIÓN
COMPUTADOR

- Propiedades de las regiones
- Estadísticas: primer y segundo orden
- Descripción de texturas: Fourier
- Momentos invariantes de Hu
- Superficies 3D

Propiedades topológicas

Componentes conexas

$$E = C - H$$

C = número de componentes conexas

H = número de huecos

$$E = 1 - 1 = 0$$

$$E = 1-2 = -1$$

VISIÓN

Propiedades topológicas

La envoltura convexa o en terminología anglosajona el "convex hull" H de un conjunto arbitrario S es el conjunto convexo más pequeño conteniendo S. Si S es convexo se cumple que H = S. Si S tiene solamente una componente conexa, entonces H puede verse como el conjunto encerrado por una goma elástica alrededor del perímetro de S. El conjunto diferencia H-S se denomina deficiencia convexa D del conjunto S.

Propiedades métricas

 \boldsymbol{A}

Área: número de píxeles de una región

Perímetro: número de píxeles del borde $P = \sum_{i} \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}$

Compatibilidad: P²/A

Centroide: centro de gravedad $\overline{x} = \frac{1}{A} \sum_{i} x_{i}, \quad \overline{y} = \frac{1}{A} \sum_{i} y_{i}$

Elongación o razón de aspecto: razón longitud ancho; cuadrado = 1

Ejes mayor y menor: de la elipse envolvente, determinan la orientación

Redondez: razón entre el área y el eje mayor al cuadrado

Compacidad: cociente entre la raíz cuadrad del área y el eje mayor

Gonzalo

Propiedades métricas

Orientación

$$S_x = \sum x_i, \ S_y = \sum y_i, \ S_{xx} = \sum x_i^2, \ S_{yy} = \sum y_i^2, \ S_{xy} = \sum x_i y_i$$

$$M_{xx} = S_{xx} - \frac{S_x^2}{A}, \quad M_{yy} = S_{yy} - \frac{S_y^2}{A}, \quad M_{xy} = S_{xy} - \frac{S_x S_y}{A}$$

$$\phi = \tan^{-1} \left\{ \frac{M_{xx} - M_{yy} + \sqrt{(M_{xx} - M_{yy})^2 + 4M_{xy}^2}}{2M_{xy}} \right\}$$

Propiedades métricas

Tema5a.m

etiquetas

regionprops

Propiedades métricas

🌃 Array Editor - Prop	(298,1)					
	▼ t⊞ Stack: B					
Field 📤	Value					
Area	1230					
Centroid .	[401.55 403.41]					
BoundingBox	[367.5 378.5 67 48]					
Subarrayldx	<1x2 cell>					
MajorAxisLength	73.49					
MinorAxisLength	30.882					
Eccentricity	0.90742					
Orientation	40.591					
ConvexHull	<20x2 double>					
Conveximage	<48x67 logical>					
ConvexArea	1889					
Image	<48x67 logical>					
FilledImage	<48x67 logical>					
FilledArea	1243					
EulerNumber	-10					
Extrema	<8x2 double>					
EquivDiameter	39.574					
Solidity .	0.65114					
Extent	0.38246					
PixelldxList	<1230x1 double>					
PixelList	<1230x2 double>					
Perimeter	239.52					

Texturas: Fourier

Tema5c.m

Pajares

VISIÓN

Texturas: Fourier

Tema5c.m

Pajares

VISIÓN

Momentos invariantes: Hu

Momentos de orden **p+q**

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

Momentos centrales de orden **p+q**

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \overline{x})^{p} (y - \overline{y})^{q} f(x, y)$$

$$\bar{x} = \frac{m_{10}}{m_{00}}$$
 $\bar{y} = \frac{m_{01}}{m_{00}}$

Momentos centrales normalizados de orden p+q

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}$$
 donde $\gamma = \frac{p+q}{2} + 1$ para $(p+q) = 2,3,...$

Momentos invariantes: Hu

$$\phi_1 = \eta_{20} + \eta_{02}$$

$$\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2$$

$$\phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2$$

$$\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2$$

$$\phi_5 = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$$

$$\phi_6 = (\eta_{20} - \eta_{02}) [(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11} (\eta_{30} + \eta_{12}) (\eta_{21} + \eta_{03})$$

$$\phi_7 = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2] + (3\eta_{12} - \eta_{03})(\eta_{21} + \eta_{03})[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$$

$$\phi_n' = abs \ln(abs(\phi_n))$$

Momentos invariantes: Hu

Determinar los momentos de orden p+q = 0, 1, 2, 3 de la región de unos

m_{00}	m_{10}	m_{01}	m_{11}	m_{20}	m_{02}	m_{30}	m_{03}	m_{12}	m_{21}
9	36	27	108	150	87	648	297	348	450

Momentos invariantes: Hu

Determinar los momentos centrales normalizados de orden p+q=2,3

$$\overline{x} = \frac{m_{10}}{m_{00}} = 4$$
 $\overline{y} = \frac{m_{01}}{m_{00}} = 3$

	η_{11}	η_{20}	η_{02}	η_{30}	η_{03}	η_{21}	η_{12}
γ	2	2	2	2.5	2.5	2.5	2.5
f_1	0.0100	0.1210	0.0600	0.0121	0.000	0.0076	-0.0025
f_2	0.0100	0.1210	0.0600	0.0121	0.000	0.0076	-0.0025

Momentos invariantes: Hu

Main_momentos.m

phi primer dos =	0.3014	0.9162	2.4024	3.1043	5.8879	3.5626	6.3002
phi segundo dos =	0.3050	0.9238	2.4330	3.1098	5.9624	3.5770	6.1340
phi primer cuatro =	0.5269	1.6283	2.0184	3.0798	5.7549	3.8980	5.8071
phi segundo cuatro :	= 0.5269	1.6283	2.0184	3.0798	5.7549	3.8980	5.8071