Mark-recapture methods for estimating survival and recruitment

OUTLINE

- Introduction
- 2 Tag recovery models
- 3 CJS MODEL
- 4 JS MODEL
- **6** Robust design

Suppose we mark and $% \left(n\right) =\left(n\right) =\left(n\right)$ release R individuals, and then recapture m of them on the second occasion.

Suppose we mark and $\ \$ release R individuals, and then recapture m of them on the second occasion.

How do we estimate survival probability?

Suppose we mark and $\ \$ release R individuals, and then recapture m of them on the second occasion.

How do we estimate survival probability?

If capture probability (p) was 1, we could use:

$$\hat{S} = \frac{m}{R}$$

Suppose we mark and $\ \$ release R individuals, and then recapture m of them on the second occasion.

How do we estimate survival probability?

If capture probability (p) was 1, we could use:

$$\hat{S} = \frac{m}{R}$$

But when p < 1, m is some fraction of the number actually alive (M), so we have to estimate p and M to estimate S:

Suppose we mark and $\ \$ release R individuals, and then recapture m of them on the second occasion.

How do we estimate survival probability?

If capture probability (p) was 1, we could use:

$$\hat{S} = \frac{m}{R}$$

But when p < 1, m is some fraction of the number actually alive (M), so we have to estimate p and M to estimate S:

$$\hat{S} = \frac{\hat{M}}{R}$$

Suppose we mark and $\ \$ release R individuals, and then recapture m of them on the second occasion.

How do we estimate survival probability?

If capture probability (p) was 1, we could use:

$$\hat{S} = \frac{m}{R}$$

But when p < 1, m is some fraction of the number actually alive (M), so we have to estimate p and M to estimate S:

$$\hat{S} = \frac{\hat{M}}{R}$$
 where

Suppose we mark and release R individuals, and then recapture m of them on the second occasion.

How do we estimate survival probability?

If capture probability (p) was 1, we could use:

$$\hat{S} = \frac{m}{R}$$

But when p < 1, m is some fraction of the number actually alive (M), so we have to estimate p and M to estimate S:

$$\hat{S} = \frac{\hat{M}}{R}$$

where

$$\hat{M} = \frac{m}{\hat{p}}$$

Purpose

Estimate survival from recovered tags

Purpose

Estimate survival from recovered tags

Benefit

Because hunters are just about everywhere, we don't have to worry about animals leaving 'the study area' and we can estimate actual survival.

Tag recovery models

Design

- Animals are marked and released
- Hunters or anglers report tags from harvested individuals
- Desirable to have at least 5 releases

Design

- Animals are marked and released
- Hunters or anglers report tags from harvested individuals
- Desirable to have at least 5 releases

Data

Three release years followed by 3 years of recoveries:

Number released	Period recovered		
	1	2	3
R_1	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$
R_2		$m_{2,2}$	$m_{2,3}$
R_3			$m_{3,3}$

Design

- Animals are marked and released
- Hunters or anglers report tags from harvested individuals
- Desirable to have at least 5 releases

Data

Three release years followed by 3 years of recoveries:

Number released	Period recovered		
	1	2	3
R_1	$m_{1,1}$	$m_{1,2}$	$m_{1,3}$
R_2		$m_{2,2}$	$m_{2,3}$
R_3			$m_{3,3}$

Parameters

- Survival (S)
- Recovery rate (f)

Expected values

Period released	Number released	Period recovered		
		1	2	3
1	R_1	R_1f_1	$R_1S_1f_2$	$R_1S_1S_2f_3$
2	R_2		R_2f_2	$R_2S_2f_3$
3	R_3			R_3f_3

Expected values

Period released	Number released	Period recovered		
		1	2	3
1	R_1	R_1f_1	$R_1S_1f_2$	$R_1S_1S_2f_3$
2	R_2		R_2f_2	$R_2S_2f_3$
3	R_3			R_3f_3

Software programs like MARK find the most likely values of ${\cal S}$ and f, given the data.

Assumptions

- Sample is representative of population
- No tag loss, mis-identification, etc. . .
- All animals have common survival and recovery rates
- Fates are independent

Assumptions

- Sample is representative of population
- No tag loss, mis-identification, etc. . .
- All animals have common survival and recovery rates
- Fates are independent

Extensions

- Age-specific models
- Grouping variables
- Time variables
- Habitat variables

Purpose

Estimate survival and capture probability from capture-recapture data

Purpose

Estimate survival and capture probability from capture-recapture data

Design

A random sample of animals is marked and followed over many periods (usually years)

Purpose

Estimate survival and capture probability from capture-recapture data

Design

A random sample of animals is marked and followed over many periods (usually years)

Notes

 When permanent emigration is possible, we can't be sure if an animal died or left study area

Purpose

Estimate survival and capture probability from capture-recapture data

Design

A random sample of animals is marked and followed over many periods (usually years)

Notes

- When permanent emigration is possible, we can't be sure if an animal died or left study area
- So, we often have to estimate "apparent survival" (Φ) instead of actual survival (S)

Purpose

Estimate survival and capture probability from capture-recapture data

Design

A random sample of animals is marked and followed over many periods (usually years)

Notes

- When permanent emigration is possible, we can't be sure if an animal died or left study area
- So, we often have to estimate "apparent survival" (Φ) instead of actual survival (S)
- Apparent survival is the probability that an individual survives and does not permanently emigrate out of the study area

CJS CAPTURE HISTORIES

In CJS studies, we ignore the leading zeros in the capture histories because we aren't interested in how animals enter the sample

	Year 1	Year 2	Year 3
Animal 1	1	0	0
Animal 2		1	0
Animal 3			1
Animal 4	1	1	1
Animal 5		1	1

CJS CAPTURE HISTORIES

In CJS studies, we ignore the leading zeros in the capture histories because we aren't interested in how animals enter the sample

All we care about is survival, so we "condition" on first encounter

	Year 1	Year 2	Year 3
Animal 1	1	0	0
Animal 2		1	0
Animal 3			1
Animal 4	1	1	1
Animal 5		1	1

CJS CAPTURE HISTORIES

Estimation is accomplished by finding the values of p and Φ that best align the expected values with the observed capture histories

Capture history	Expected values
111	$\Phi_1 p_2 \Phi_2 p_3$
110	$\Phi_1 p_2 (1 - \Phi_2 p_3)$
101	$\Phi_1(1-p_2)\Phi_2p_3$
100	$(1 - \Phi_1) + \Phi_1(1 - p_2)(1 - \Phi_2 p_3)$

CJS MODEL

Assumptions

- Same as tag-recovery, plus. . .
- Instantaneous recapture and release of animals
- Homogeneity of capture and survival probabilities for marked animals
- All emigration is permanent

CJS MODEL

Assumptions

- Same as tag-recovery, plus...
- Instantaneous recapture and release of animals
- Homogeneity of capture and survival probabilities for marked animals
- All emigration is permanent

Model can be extended to accommodate variation due to...

- Age
- Sex
- Habitat
- Geographical regions

JOLLY-SEBER (JS) MODEL

Purpose

Estimate survival, recruitment, abundance, and capture probability from capture-recapture data

JOLLY-SEBER (JS) MODEL

Purpose

Estimate survival, recruitment, abundance, and capture probability from capture-recapture data

Design

Randomly sample the population during every period and mark all newly captured unmarked animals

JOLLY-SEBER (JS) MODEL

Purpose

Estimate survival, recruitment, abundance, and capture probability from capture-recapture data

Design

Randomly sample the population during every period and mark all newly captured unmarked animals

Examples

- Constant-effort mist-netting
- Long-term small mammal trapping

JS CAPTURE HISTORIES

We no longer "condition" on first encounter – Instead, we use all the data.

The leading zeros provide information about when individuals are recruited into the population

	Year 1	Year 2	Year 3
Animal 1	1	0	0
Animal 2	0	1	0
Animal 3	0	1	1
Animal 4	1	1	1
Animal 5	0	1	1

JOLLY-SEBER MODEL

Assumptions

- All the assumptions of CJS model, plus. . .
- Every animal marked or unmarked has the same probability of capture

JOLLY-SEBER MODEL

Assumptions

- All the assumptions of CJS model, plus. . .
- Every animal marked or unmarked has the same probability of capture

The standard JS model doesn't work very well, but it is extremely powerful when combined with *the robust design*.

ROBUST DESIGN

Purpose

Relax assumptions and increase precision by collecting more data

Robust design

Purpose

Relax assumptions and increase precision by collecting more data

Key concept

We now have two types of sampling periods:

(1) Primary sampling periods between which the population is assumed to be demographically open

Robust design

Purpose

Relax assumptions and increase precision by collecting more data

Key concept

We now have two types of sampling periods:

- (1) Primary sampling periods between which the population is assumed to be demographically open
- (2) Secondary sampling periods over which the population is assumed closed

Robust design

Purpose

Relax assumptions and increase precision by collecting more data

Key concept

We now have two types of sampling periods:

- (1) Primary sampling periods between which the population is assumed to be demographically open
- (2) Secondary sampling periods over which the population is assumed closed

The replicate surveys with each primary period give us direct information about capture probability, which makes it easier to estimate the other parameters.

ROBUST DESIGN CAPTURE HISTORIES

ROBUST DESIGN CAPTURE HISTORIES

Example with 2 primary periods and 3 secondary periods

	Primary period 1		Prin	nary perio	od 2		
	Day 1	Day 2	Day 3	•	Day 1	Day 2	Day 3
Animal 1	0	0	1		1	0	0
Animal 2	0	0	0		0	0	0
Animal 3	0	0	0		1	0	0
Animal 4	1	1	1		0	0	0
Animal 5	0	0	0		1	1	0

SUMMARY

Method	Data	Survival	Recruitment	Abundance
Tag recovery	Recoveries	Yes	No	No
CJS	Mark-recap	Yes^1	No	No
JS	Mark-recap	Yes^1	Yes	Yes

Each of these three methods is widely used in practice. The best option depends on the objectives

¹Apparent survival

...

AG RECOV