CONDICIONES INICIALES | SERIE DE FOURIER

Los ejercicios con (*) son opcionales.

Condiciones iniciales en cuerdas

- 1. Los extremos fijos de una cuerda de longitud L y densidad lineal μ_0 la someten a una tensión T_0 .
 - a) Escriba la expresión más general posible para un modo normal en dicha cuerda y diga cuál es la velocidad de propagación de las ondas en ella.
 - b) Determine con las condiciones de contorno los números de onda k_p , frecuencias y fases. Con esto, escriba la expresión general para una perturbación arbitraria $\psi(x,t)$.
 - c) Obtenga $\psi(x,t)$ para el caso que parte del reposo con $\psi(x,0) = \operatorname{sen}\left(\frac{3\pi x}{2L}\right) \cos\left(\frac{\pi x}{2L}\right)$.
- 2. Una cuerda de longitud L, densidad de masa uniforme μ_0 está sujeta en ambos extremos lo que la somete a una tensión T_0 . A t=0 la cuerda se suelta de modo que su forma está dada por la siguiente función

$$\psi(x,0) = \operatorname{sen}\left(\frac{\pi x}{L}\right) + \frac{1}{3}\operatorname{sen}\left(\frac{3\pi x}{L}\right) + \frac{1}{5}\operatorname{sen}\left(\frac{5\pi x}{L}\right),$$

si se toma un sistema de coordenadas tiene x=0 en un extremo de la soga y x=L en el otro. Si notamos la frecuencia fundamental como ω_1 , grafique $\psi(x,t)$ en $\omega_1 t=0, \pi/5, \pi/3$ y $\pi/2$. ¿Qué simetría tiene $\psi(x,t)$ en torno a $\omega_1 t=\pi/2$? ¿Y de π ?. ¿Cómo sería $\psi(x,t)$ para $\omega_1 t=2\pi$?

- 3. Para una cuerda de longitud L, densidad lineal μ_0 sometida a una tensión T_0 notamos su elongación transversal como $\psi(x,t)$.
 - a) Escriba la expresión más general que representa un modo normal en dicha cuerda, es decir, la expresión más general de una onda estacionaria.
 - b) Sabiendo que la cuerda tiene un extremo libre y otro fijo, y que el sistema de coordenadas con el que trabaja es tal que el extremo libre está en x = 0 y el extremo fijo está en x = L, imponga las condiciones de contorno y determine las constantes pertinentes.
 - c) Usando la relación de dispersión, obtenga las posibles frecuencias temporales ν_n .
 - d) Si $\psi(x,0) = 0$ y $\dot{\psi}(x,0) = V_0 \cos\left(\frac{3\pi}{2L}x\right)$, obtenga amplitud y fase de cada modo y luego $\psi(x,t)$.
- 4. Una cuerda de densidad lineal de masa μ_0 está sujeta en un extremo mientras el otro oscila libre manteniendo una tensión T_0 . En t=0 se le impone la deformación dibujada (obvié el hecho de que eso es físicamente imposible sin modificar la homogeneidad de μ). La velocidad de propagación es $v=80\,\frac{\mathrm{m}}{\mathrm{s}}$.

- a) Halle $\psi(x,t)$ y grafíquelo para $\omega_1 t = 0, \pi$ y 2π .
- b) Si tomara un sistema de coordenadas con el origen en el extremo libre de la cuerda, diga qué es lo que cambiaría. ¿Es conveniente tal sistema?
- 5. ¿Cuál L_1 se maximiza la excitación del segundo modo? ¿Qué cambia ψ_0 musicalmente al cambiar L_1 ?

- 6. (*) Dada una cuerda de longitud L y densidad de masa uniforme μ , sometida a una tensión T_0 con ambos extremos fijos, demostrar que si $\psi(x,0)$ y $\dot{\psi}(x,0)$ son simétricas con respecto al centro de la cuerda, los modos con números de onda $k_p = 2p\pi/L$ no se excitan.
- 7. Un extremo de una cuerda de densidad lineal μ está fijo en tanto que está libre el que está a una distancia L. Siempre se manteniendo una tensión T_0 , en t=0 se la golpea sin deformarla pero imprimiéndole $\dot{\psi}_0$ una velocidad $\dot{\psi}(x,0)$. Halle $\psi(x,t>0)$.

- 8. (*) Una cuerda de longitud L sujeta en ambos extremos y sometida a una tensión T_0 consta de dos tramos de longitudes L_1 y L_2 y densidades de masa uniformes μ_1 y μ_2 .
 - a) Halle la expresión más general para un modo normal en dicha cuerda. Plantee las condiciones de contorno y halle las condiciones que deben cumplir los distintos parámetros.
 - b) Halle los modos normales en este caso que $L_1 = 3L_2$ y $\mu_2 = 9\mu_1$.
- 9. (*) Una cuerda de densidad de masa uniforme μ y longitud L está tensada T_0 entre extremos fijos. Actúa una fuerza de amortiguamiento proporcional a su velocidad de oscilación. Hallar la forma más general de $\psi(x,t)$.

Condiciones iniciales de un gas en un tubo unidimensional

10. (*) Un tubo contiene dos secciones de gas en reposo separadas por un tabique. Antes de que se lo quite en t=0 de un lado la densidad era $\rho_0 - \Delta$ y del otro $\rho_0 + \Delta$ (considere $\Delta \ll \rho_0$). Datos: ρ_0 , Δ , L, $v_{\rm sonido}$.

- a) Imponga condiciones de contorno al desplazamiento de moléculas ψ . A partir de estas obtenga la expresión para un modo normal $\psi_n(x,t)$. ¿Cuáles son las longitudes de onda permitidas?
- b) Halle $\psi(x,0)$ a partir de los datos sobre $\rho(x,0)$.
- c) Calcule $\psi(x,t)$ y $\rho(x,t)$.
- 11. (*) Un tabique divide un tubo dividido en dos regiones. En la izquierda hay una presión constante $p=p_0+\Delta p$ en tanto que en la derecha está a p_0 pues está abierta a la atmósfera. A t=0 se remueve el tabique. Halle $\delta p(x,t)$, $\psi(x,t)$ y $\delta \rho(x,t)$ conociendo p_0 , $\Delta p \ll p_0$, L, $v_{\rm sonido}$ y que $\gamma=\frac{7}{5}$ para un gas diatómico.

