High-Order Optimality Conditions

Yinyu Ye

Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Optimality Conditions: How to recognize an optimizer

The duality theorem establishes an optimality condition for convex optimization and is called the zero-order condition. Could one explore more structures of the functions in the objective and constraints to construct more concrete and executable conditions?

High-order derivative information: The objective and constraint are often specified by functions that are continuously differentiable or in \mathbb{C}^1 over certain regions.

Sometimes the functions are twice continuously differentiable or in ${\cal C}^2$ over certain regions.

The theory distinguishes these two cases and develops first-order optimality conditions and second-order optimality conditions.

Observation from One-Variable Problem

Consider a differentiable function f of one variable defined on an interval F. If an interior-point \bar{x} is a local/global minimizer, then $f'(\bar{x})=0$. If the left-end-point \bar{x} is a local minimizer, then $f'(\bar{x})\geq 0$. This is called the first-order necessary condition.

If $f'(\bar x)=0$, then it is necessary that f(x) is a locally convex function at $\bar x$, so that $f''(\bar x)\geq 0$ is also necessary. This is called the second-order necessary condition.

These conditions are not, in general, sufficient. It does not distinguish between local minimizers, local maximizers, or points of inflection. However, if in addition to the first-order condition, the second-order condition $f''(\bar x)>0$ is satisfied, then $\bar x$ is a local minimizer. This is a second-order sufficient condition.

If the function is convex, the first order necessary condition is also sufficient.

Figure 1: Global and local minimizers of one-variable function

Conditions for Unconstrained Optimization

Theorem 1 (First-Order Optimality Condition) Let $f(\mathbf{x})$ be a C^1 function where $\mathbf{x} \in R^n$. Then, if \mathbf{x}^* is a (local) minimizer, it is necessarily $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

The first-order condition will be sufficient if $f(\mathbf{x})$ is a convex function.

Theorem 2 (Second-Order Optimality Condition) Let $f(\mathbf{x})$ be a C^2 function where $\mathbf{x} \in R^n$. Then, if \mathbf{x}^* is a minimizer, it is necessarily

$$abla f(\mathbf{x}^*) = \mathbf{0}$$
 and $abla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

Furthermore, if $\nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$, then the condition becomes sufficient.

The proofs would be based on Taylor's theorem such that if these conditions are not satisfied, then one would be find a descent-direction vector \mathbf{d} and a small constant $\bar{\alpha} > 0$ such that $f(\mathbf{x}^* + \alpha \mathbf{d}) < f(\mathbf{x}^*), \ \forall 0 < \alpha \leq \bar{\alpha}$.

First-Order Condition for Convex Optimization I

Consider the constrained problem again: find $\mathbf{x} \in \mathbb{R}^n$ to

$$(COP)$$
 min $f(\mathbf{x})$ s.t. $\mathbf{h}(\mathbf{x}) = \mathbf{0} \in R^m,$ $\mathbf{c}(\mathbf{x}) \leq \mathbf{0} \in R^p.$

Recall Lagrangian Function

$$L(\mathbf{x}, \mathbf{y}, \mathbf{s}) = f(\mathbf{x}) + \mathbf{y}^T \mathbf{h}(\mathbf{x}) + \mathbf{s}^T \mathbf{c}(\mathbf{x}),$$

and Lagrangian Relaxation Problem for given Lagrange multipliers $(\mathbf{y},\mathbf{s}\geq\mathbf{0})$:

$$(LRP)$$
 $\min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}, \mathbf{s}).$

Under convexity and certain regularity conditions, there are multipliers $(\mathbf{y}, \mathbf{s} \geq \mathbf{0})$ such that the optimizers of (COP) and (LRP) coincide and $s_i c_i(\mathbf{x}) = 0$ for all i.

First-Order Condition for Convex Optimization II

Theorem 3 (First-Order or KKT Optimality Condition) Let (COP) be a convex minimization problem and let (COP) have an interior-point feasible solution, that is, there is $\hat{\mathbf{x}}$ such that $\mathbf{c}(\hat{\mathbf{x}}) < \mathbf{0}$. Then, if \mathbf{x}^* is a minimizer of (LRP), it is necessarily

$$\nabla_x L(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*) = \mathbf{0}$$

and

$$s_i^* c_i(\mathbf{x}^*) = 0, \ \forall i$$

for some multipliers $(y^*, s^* \ge 0)$.

Note that (we treat the gradients as row vectors):

$$\nabla_x L(\mathbf{x}, \mathbf{y}, \mathbf{s}) = \nabla f(\mathbf{x}) + \mathbf{y}^T \nabla \mathbf{h}(\mathbf{x}) + \mathbf{s}^T \nabla \mathbf{c}(\mathbf{x}).$$

There gradient vectors of all functions involved in (COP) are linearly dependent at \mathbf{x}^* .

Linear Programming again

Standard LP case: $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$, $\mathbf{h}(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$ and $\mathbf{c}(\mathbf{x}) = -\mathbf{x}$:

$$\nabla_x L(\mathbf{x}, \mathbf{y}, \mathbf{s}) = \mathbf{c}^T + \mathbf{y}^T A - \mathbf{s}^T.$$

$$x_j s_j = 0, \forall j = 1, \dots, n$$
 $A \mathbf{x} = \mathbf{b}$
 $\mathbf{c} + A^T \mathbf{y} - \mathbf{s} = \mathbf{0}$
 $\mathbf{x}, \mathbf{s} \geq \mathbf{0}$

These are identical conditions derived from conic duality.

The objective ball tangents the constraint hyperplane

Consider the problem

minimize
$$(x_1-1)^2+(x_2-1)^2$$

subject to
$$x_1 + x_2 = 1$$
.

$$\bar{\mathbf{x}} = \left(\frac{1}{2}; \frac{1}{2}\right).$$

Figure 2: The objective ball tangents the constraint hyperplane

The objective gradient in the normal cone of the constraint hyperplane

 $2x_1 + x_2 - 1 \le 0.$

Consider the problem

minimize
$$(x_1-1)^2+(x_2-1)^2$$
 subject to
$$x_1+2x_2-1\leq 0,$$

$$\bar{\mathbf{x}} = \left(\frac{1}{3}; \frac{1}{3}\right).$$

Figure 3: The objective gradient in the normal cone of the constraint hyperplane

The feasible region and objective level set are tangential

Consider the problem

minimize
$$(x_1-1)^2+(x_2-1)^2$$

subject to
$$x_1^2 + x_2^2 - 1 \le 0$$
.

$$\bar{\mathbf{x}} = \left(\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right)$$

or

$$\bar{\mathbf{x}} = \left(\frac{-1}{\sqrt{2}}; \frac{-1}{\sqrt{2}}\right).$$

Figure 4: The two spheres tangent to each other at two points, but one has a wrong sign of the multiplier

First-Order Condition is Sufficient for Convex Optimization

Let $(\bar{\mathbf{x}}, \bar{\mathbf{y}}, \bar{\mathbf{s}})$ be a KKT point for (COP) in which $\bar{\mathbf{x}}$ is a feasible vector. Consider the Lagrangian function $L(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + \mathbf{y}^T (A\mathbf{x} - \mathbf{b}) + \mathbf{s}^T \mathbf{c}(\mathbf{x})$ associated with (COP). Let \mathbf{x} be feasible and $\mathbf{s} \geq \mathbf{0}$. By our hypotheses, L is a convex and differentiable function of \mathbf{x} . Hence by the gradient inequality applied to L

$$L(\mathbf{x}, \bar{\mathbf{y}}, \bar{\mathbf{s}}) \geq L(\bar{\mathbf{x}}, \bar{\mathbf{y}}, \bar{\mathbf{s}}) + \nabla_{\mathbf{x}} L(\bar{\mathbf{x}}, \bar{\mathbf{y}}, \bar{\mathbf{s}})(\mathbf{x} - \bar{\mathbf{x}})$$
 for all feasible \mathbf{x} .

More explicitly,

$$f(\mathbf{x}) + \bar{\mathbf{y}}^T (A\mathbf{x} - \mathbf{b}) + \bar{\mathbf{s}}^T \mathbf{c}(\mathbf{x})$$

$$\geq f(\bar{\mathbf{x}}) + \bar{\mathbf{y}}^T (A\bar{\mathbf{x}} - \mathbf{b}) + \bar{\mathbf{s}}^T \mathbf{c}(\bar{\mathbf{x}}) + \nabla_x L(\bar{\mathbf{x}}, \bar{\mathbf{y}}, \bar{\mathbf{s}})(\mathbf{x} - \bar{\mathbf{x}}).$$

Hence, together with $A\mathbf{x} - \mathbf{b} = A\bar{\mathbf{x}} - \mathbf{b} = \mathbf{0}$, $\bar{\mathbf{s}}^T \mathbf{c}(\bar{\mathbf{x}}) = 0$, and $\nabla_x L(\bar{\mathbf{x}}, \bar{\mathbf{y}}, \bar{\mathbf{s}}) = \mathbf{0}$, we have $f(\mathbf{x}) \geq f(\bar{\mathbf{x}}) - \bar{\mathbf{s}}^T \mathbf{c}(\mathbf{x}) \geq f(\bar{\mathbf{x}})$.

First-Order Condition for Convex-Constrained Nonlinear Optimization I

In the following, we consider cases where the feasible region is convex but the objective is general, called Convex-Constrained Nonlinear Optimization (CCNO). Now, if \mathbf{x}^* is a (local) minimizer of (CCNO), then \mathbf{x}^* must be a minimizer of the following convex-constrained linear optimization problem:

$$\min \quad
abla f(\mathbf{x}^*)\mathbf{x}$$
 s.t. $\mathbf{h}(\mathbf{x}) = \mathbf{0} \in R^m,$ $\mathbf{c}(\mathbf{x}) \leq \mathbf{0} \in R^p.$

The proofs would be based on contradiction: if the statement is not true, one would find another feasible solution $\bar{\mathbf{x}}$ such that $\nabla f(\mathbf{x}^*)(\bar{\mathbf{x}}-\mathbf{x}^*)<0$. Let $\mathbf{d}=\bar{\mathbf{x}}-\mathbf{x}^*$. Then \mathbf{d} is a descent-direction vector. From Taylor's theorem there is a small constant $\bar{\alpha}>0$ such that $f(\mathbf{x}^*+\alpha\mathbf{d})< f(\mathbf{x}^*), \ \forall 0<\alpha\leq\bar{\alpha}$ and $\mathbf{x}^*+\alpha\mathbf{d}$ remains feasible for all $0\leq\alpha\leq\bar{\alpha}$.

17

The optimizer remains optimal for the linearized

Consider the problem

minimize
$$-(x_1-1)^2-(x_2-1)^2$$

subject to
$$x_1^2 + x_2^2 - 1 \le 0.$$

$$\bar{\mathbf{x}} = \left(\frac{-1}{\sqrt{2}}; \frac{-1}{\sqrt{2}}\right).$$

Figure 5: Possible Optimizers of CCNO

First-Order Condition for Convex-Constrained Nonlinear Optimization II

Therefore, the same First-Order first-order (necessary) condition applies:

Theorem 4 (First-Order or KKT Optimality Condition) Let the feasible region of (CCNO) be convex and have an interior-point feasible solution, that is, there is $\hat{\mathbf{x}}$ such that $\mathbf{c}(\hat{\mathbf{x}}) < \mathbf{0}$. Then, if \mathbf{x}^* is a (local) minimizer, it is necessarily

$$\nabla_x L(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*) = \mathbf{0}$$

and

$$s_i^* c_i(\mathbf{x}^*) = 0, \ \forall i$$

for some multipliers $(y^*, s^* \ge 0)$.

Second-Order Necessary Conditions for CCNO

Consider CCNO, and in addition assume function f is twice continuously differentiable. Let F denote the feasible region of (CCNO). For a given $\mathbf{x}^* \in F$, we define the active-constraint set $\mathcal{C}^* = \{i: c_i(\mathbf{x}^*) = 0\}$. Let

$$T^* := \{ \mathbf{z} : \nabla \mathbf{h}(\mathbf{x}^*) \mathbf{z} = \mathbf{0}, \ \nabla c_i(\mathbf{x}^*) \mathbf{z} = 0 \forall i \in \mathcal{C}^* \}.$$

 T^* is sometimes called the tangent linear space of the active constraints at \mathbf{x}^* .

Theorem 5 Let \mathbf{x}^* be a (local) minimizer of (CCNO) and let \mathbf{y}^* , \mathbf{s}^* denote Lagrange multipliers such that $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*)$ satisfies the (first-order) KKT conditions of (CCNO). Then, it is also necessary to have

$$\mathbf{z}^T \nabla_{\mathbf{x}}^2 L(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*) \mathbf{z} \ge 0 \qquad \forall \mathbf{z} \in T^*.$$

The proof is based on that fact that \mathbf{x}^* is a local minimizer of the Lagrangian Relaxation Problem on the tangent space so that the Hessian of the Lagrangian function need to be positive semidefinite on the tangent space.

Second-Order Sufficient Conditions for CCNO

Theorem 6 Let \mathbf{x}^* be a feasible solution of (CCNO) and let \mathbf{y}^* , \mathbf{s}^* be the Lagrange multipliers such that $(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*)$ satisfies the (first-order) KKT conditions of (CCNO). Then, if in addition

$$\mathbf{z}^T \nabla_{\mathbf{x}}^2 L(\mathbf{x}^*, \mathbf{y}^*, \mathbf{s}^*) \mathbf{z} > 0 \qquad \forall \mathbf{0} \neq \mathbf{z} \in T^*,$$

then x^* is a local minimizer of (CCNO).

The proof can be found in Chapter 11.8 of LY.