NATIONAL UNIVERSITY OF SINGAPORE

CS1231 DISCRETE STRUCTURES

(Semester 1: 2022/2023) [In the notation and the terminology for 2022/23 Semester 2]

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

- 1. Write your Student Number only. Do not write your name.
- 2. This assessment paper contains FOUR questions and comprises NINE printed pages.
- 3. Answer ALL questions. The marks for each question are indicated in brackets.
- 4. Write your solutions in the spaces provided.
- 5. This is an **OPEN** book examination.

STUDENT	NUMBER:	
	INCIVIDEIX.	

EXAMINER'S USE ONLY			
Question	Marks	Score	
Q1	20		
Q2	5		
Q3	19		
Q4	6		
Total	50		

1. Consider the relation f from \mathbb{Z} to \mathbb{Z} defined by

$$f = \{(m+12, 31m) : m \in \mathbb{Z}\}.$$

(i) Prove that f is a function $\mathbb{Z} \to \mathbb{Z}$.

[4 marks]

(ii) What is the codomain of f?

[1 mark]

(iii) What is the range of f?

[1 mark]

(iv) Is f surjective? Justify your answer.

[3 marks]

- 1. (continued from the previous page)
 - (v) Is f injective? Justify your answer.

[3 marks]

(vi) Define $f^1 = f$ and $f^{n+1} = f^n \circ f$ for each $n \in \mathbb{Z}^+$. Prove that f^n is injective for any $n \in \mathbb{Z}^+$. [3 marks]

PAGE 4 CS1231

- 1. (continued from the previous page)
 - (vii) Does the relation f, considered as a set, have the same cardinality as $\mathbb{Z} \times \mathbb{Z}$? Justify your answer. [5 marks]

PAGE 5 CS1231

- 2. Let A be an uncountable subset of \mathbb{R} .
 - (i) Define $A^- = A \cap \mathbb{R}^-$ and $A_{\geqslant 0} = A \cap \mathbb{R}_{\geqslant 0}$. Explain why A^- and $A_{\geqslant 0}$ cannot both be countable. [1 mark]

(ii) Define $B = \{x^2 : x \in A\}$. Using (i), or otherwise, prove that B is uncountable. [4 marks]

CS1231

[1 mark]

(vi) Identify an edge xy such that $(V, E \setminus \{xy\})$ is not connected.

- 3. (continued from the previous page) [3 marks] (vii) Draw all spanning trees of G. [3 marks] (viii) Which of the spanning trees from (vii) are isomorphic to each other?
 - (ix) Pick two non-isomorphic trees T and T' from (viii). Explain why T and T' are not isomorphic. [2 marks]

- 3. (continued from the previous page)
 - (x) Determine the number of graphs with vertex set $\{1, 2, 3, 4, 5\}$ that are isomorphic to G. Briefly explain your answer. [2 marks]

(xi) Suppose we add a vertex 6 to V and an edge 26 to E. Determine the number of graphs with vertex set $\{1,2,3,4,5,6\}$ that are isomorphic to $(V \cup \{6\}, E \cup \{26\})$. Briefly explain your answer. [3 marks]

PAGE 9 CS1231

4. Let H be a subgraph of a finite connected undirected graph G. Prove that H is a subgraph of a spanning tree of G if and only if H is acyclic. [6 marks]