曖昧な周期をもつ作業の 発生パターン検出手法

北垣 千拡 岡山大学 工学部 情報工学科 平成26年2月14日

研究背景

く作業>

同様の作業が繰返し発生 (例:研究ミーティング,講義)

<曖昧な周期性>

作業の発生にはさまざまな要因が影響

- 例:定例会議 (1) 約2週間に1度
 - (2) 参加者の都合に左右
 - (3) 長期休暇の存在

作業の発生は単純な一定間隔の周期ではない

作業の発生パターン

曖昧な周期を表現するために作業の発生パターンを定義

作業の発生パターン1:約2週間周期での発生を表現

作業の発生パターン2:長期休暇を表現

実験

作業の発生を波とみなす 自己相関関数を用いて波を解析することで周期ファクタを検出

<目的>

実際の作業の周期ファクタを検出

<実際の作業>

対象:定例会議

期間:2011年度4月から2013年度9月まで

特徴:(1)約30日に1度発生

(2) 土日祝日には発生しない

(3) 年末年始には発生しない

<手順>

- (1) 作業の発生の波のデータを用意
- (2) 自己相関関数を用いて周期ファクタを検出

データ形式

データ形式として次の3つの形式を提案

<形式1>

横軸: 日付

縦軸: 発生の有無

<形式2>

横軸: 日付

縦軸: 経過日数

<形式3>

横軸: 日付

縦軸: 発生確率

各データ形式は以下の3つの観点を考慮

- (1) 曖昧さに対する寛容さ
- (2) ノイズの影響の受けにくさ
- (3) 長期休暇を重ね合わせる精度

観点

- (1) 曖昧さに対する寛容さ 自己相関関数による重ね合わせのずれを容認するかどうか (例) 約14日周期なら13,15日間隔も約14日周期として容認
- (2) ノイズの影響の受けにくさ 例外的な発生間隔の影響を受けにくいかどうか (例) ある年にだけ存在する長期休暇の影響を無視
- (3) 長期休暇を重ね合わせる精度 長期休暇を重視するかどうか (例) 14日間隔と30日間隔があれば, 30日間隔を優先

実験結果

すべての形式で約365日周期が算出

- (1) 約30日周期で発生
- (2) 1年に1度の長期休暇の存在

形式1の波の解析結果

曖昧さに対する寛容さの考察

		形式1		形式2		形式3
順位	au	$R(\tau)$	au	$R(\tau)$	au	$R(\tau)$
1	366	0.0076	365	360	365	0.071
2	28	0.0058	364	360	30	0.070
3	149	0.0054	366	359	31	0.070
4	304	0.0051	363	356	366	0.069
5	35	0.0047	149	355	364	0.069
6	31	0.0046	367	353	29	0.069
7	435	0.0043	150	352	32	0.069
8	428	0.0043	399	352	149	0.068
9	423	0.0042	400	352	33	0.067
10	186	0.0042	398	350	150	0.067

365日周期付近の周期が、形式1は1つ、形式2は5つ、形式3は3つ算出

一 形式1と比べて形式2,3は曖昧さに対する寛容さが高い

ノイズの影響の受けにくさの考察

各形式の自己相関の上位10位以内に149日という周期が算出

- → 各形式でノイズの影響を受けている
- → 各形式で「ノイズの影響の受けにくさ」に差はない

長期休暇を重ね合わせる精度の考察

長期休暇を重ね合わせる精度

ノイズの影響の受けにくさ

各形式で「ノイズの影響の受けにくさ」に差はない

まとめ

く実績>

- (1) 曖昧な周期を表現するモデルの定義
- (2) 周期ファクタの検出手法の提案
- (3) 周期ファクタの検出に用いる3つのデータ形式の提案

く残された課題>

- (1) 周期ファクタの検出に用いるデータ形式の選択
- (2) 周期ファクタ以外のファクタの検出

予備スライド

作業の発生パターン

作業の発生パターン1:約2週間周期での発生を表現

作業の発生パターン2:長期休暇を表現

周期ファクタの検出

作業の発生を波とみなして解析

<作業発生の波>

- (1) 小さな波
 - (A) ある発生から次の発生までの間の波を1周期とした波
 - (B) 繰返しだけでは作業発生の波を表現できない波
- (2) 大きな波
 - (A) 繰返しだけで作業発生の波を表現できる波
 - (B) (A)を満たす波のうち最小の周期をもつ波

作業発生の波は大きな波の繰返しのみで表現可能

大きな波の周期の算出 = 周期ファクタの検出

小さな波:a日周期の波,b日周期の波

大きな波:c日周期の波

No.14

各データ形式の特徴

データ形式	曖昧さに 対する寛容さ	ノイズの影響の 受けにくさ	長期休暇を 重ね合わせる精度
形式1	形式1 ×		×
形式2	0	×	0
形式3	0	0	×

- (1)曖昧さに対する寛容さ 自己相関関数による重ね合わせのずれを容認するかどうか (例)約14日周期なら13,15日間隔も約14周期として容認
- (2) ノイズの影響の受けにくさ 例外的な発生間隔の影響を受けにくいかどうか (例) ある年にだけ存在する長期休暇の影響を無視
- (3) 長期休暇を重ね合わせる精度 長期休暇を重視するかどうか (例) 14日間隔と30日間隔があれば, 30日を優先

自己相関関数

波に含まれる繰返しパターンの検出に有用

地点 t における作業発生の波を f(t) としたとき 自己相関関数 $R(\tau)$ は次のように表される

$$R(\tau) = \sum f(t)f(t-\tau)$$

このとき、最大の $R(\tau)$ を与える τ が大きな波の周期となる

形式2で小さな波が含まれない理由

形式1,3において区間Bの差分は小さい 形式2において区間Bの差分は大きい

発生間隔ごとの発生確率の分布

形式3による自己相関R(T)

大きな波の繰返し

地点 t における作業発生の波を f(t), 大きな波の周期をNとする

作業発生の波は大きな波の繰返しのみで表現可能

→ ある地点 t₁の作業発生の波は f(t₁) = f(t₁ - N) となる

仮定:大きな波の周期が既知

結論:小さな波の周期を知ることなく発生の予測が可能

曖昧さに対する寛容さの例(1/2)

少しのずれで全く一致していないとみなされてしまう

曖昧さに対する寛容さの例(2/2)

波1と波2の重ね合わせ

あらゆる地点での波がほぼ一致

ノイズの影響の受けにくさの例

