

TP N°2: Curvas características del transistor TBJ BC548C

Accifonte, Franco - 93799 franco.accifonte@gmail.com

Iturria, Germán - 86270 german.iturria@gmail.com

Vázquez, Matías - 91523 mfvazquez@gmail.com

30 de octubre de 2014

En el siguiente trabajo se analizan las principales características de polarización y frecuencias medias de transistores TBJ tipo NPN. Estudiando las curvas de transferencia y de salida, obtenidas en mediciones, se consiguen los parámetros característicos y se calculan los parámetros de pequeña señal. Finalmente se realiza un modelo básico de Spice con los parámetros calculados y se presentan simulaciones para contrastar con las mediciones.

1. Desarrollo

A continuación se detalla el desarrollo del trabajo realizado, tanto la realización de las simulaciones mediantes *Spice*, como las mediciones realizadas.

1.1. Simulación de transistores BC548C

En primera instancia se obtuvieron con LTSPICE las curvas de transferencia, la ganancia de corriente entre base y colector y las curvas de salida propias al transistor. Usando las bibliotecas PHIL_BJT y SIEMENS proporcionadas por la cátedra.

1.1.1. Curva de transferencia

Se simuló I_C vs. V_{BE} para $V_{CE} = 1,25\mathrm{V}$ para ambas bibliotecas. Se varió la tensión V_{BE} entre 0V y 0,9V con pasos de 0,01V, utilizando el circuito simulado en la figura 1.

Figura 1: Circuito utilizado para la obtención de las curvas de transferencia.

1.1.2. Ganancia de corriente entre base y colector

Para ambas bibliotecas se simuló el circuito de la figura 2 bajo las condiciones de medición del multímetro que se utilizará en las mediciones. Estas son $I_B=10\mu\mathrm{A}$ y $V_{CE}=2,8\mathrm{V}$. Se obtuvo el parámetro BETADC del Simulation Output File.

Figura 2: Circuito utilizado para la obtención de las curvas de salida y de la ganancia de corriente.

Se obtuvieron los siguientes valores:

■ PHIL_BJT: $h_{FE} = 460$

■ SIEMENS: $h_{FE} = 432$

1.1.3. Curva de salida

Se simuló I_C vs. V_{CE} para $I_B=cte$ para ambas bibliotecas. Se varió la tensión V_{CE} entre 0V y 5V con pasos de 0,01V, utilizando el circuito simulado en la figura 2.

La corriente I_B se determinó mediante la ecuación 2 para cada valor de I_C deseado, utilizando el parámetro h_{FE} correspondiente al transistor de cada biblioteca.

$$I_B = \frac{I_C}{h_{FE}} \tag{1}$$

A continuación se listan los valores de I_B utlizados.

■ PHIL_BJT con $h_{FE} = 460$

• $I_C = 5$ mA: $I_B = 10,9 \mu$ A

• $I_C = 25 \text{mA}$: $I_B = 54, 3 \mu \text{A}$

■ SIEMENS con $h_{FE} = 432$

• $I_C = 5$ mA: $I_B = 11, 6\mu$ A

• $I_C = 25 \text{mA}$: $I_B = 57,9 \mu \text{A}$

1.2. Obtención de parámetros de las hojas de datos

1.3. Obtención de las curvas de forma experimental

Se obtuvieron las curvas de tres transistores **TBJ BC548C** distintos utilizando una placa experimental, un regulador de tensión **LM317** y un **LM7805**, un potenciómetro lineal de $20k\Omega$ y resistencias de valores apropiados para cada medición. También se midió para cada transistor el valor de h_{FE} utilizando un muletillero con esta función.

1.3.1. Curva de transferencia

Para obtener la curva i_C vs v_{BE} se utilizó el banco de mediciones presentado en la figura 3. El regulador de tensión **LM317** fija la tensión $V_{CE} = 1,25$ V y el regulador de tensión **LM7805** provee una alimentación constante de 5V. El potenciómetro utilizado es de 20k Ω .

Figura 3: Circuito para la medición de la curva de transferencia I_C vs. V_{BE}

Para la obtención de las resistencias R_{B1} y R_{B2} se partió planteando el rango de la corriente I_C deseado y suponiendo $h_{FE} = 200$ se obtuvo el rango de I_B .

$$0 \text{mA} \le I_C \le 50 \text{mA} \implies 0 \mu \text{A} \le I_B \le 250 \mu \text{A}$$

Luego se obtuvo el equivalente de Thévenin entre los terminales a y b. Para simplificar las ecuaciones se utilizó $R_1=R_{B1}+R_{B1_{var}}$ y $R_2=R_{B2}+R_{B2_{var}}$ con $R_{B_{var}}=R_{B1_{var}}+R_{B2_{var}}=20\mathrm{k}\Omega$. Siendo $R_{B_{var}}$ el potenciometro de $20\mathrm{k}\Omega$.

$$V_{TH} = V_{DD} \frac{R_1}{R_1 + R_2} \qquad R_{TH} = \frac{R_1 \ R_2}{R_1 + R_2}$$

Siendo V_{DD} la salida del regulador de tensión **LM7805**.

Del circuito mostrado en la figura 3 obtenemos la ecuación $2\,$

$$I_B = \frac{V_{TH} - V_{BE_{ON}}}{R_{TH}} \tag{2}$$

Reemplazando la ecuación 2 en el rango de valores deseado.

Para el mínimo valor de I_B :

$$\frac{V_{TH} - V_{BE_{ON}}}{R_{TH}} \ge 0 \mu \mathrm{A}$$

Entonces:

$$V_{TH} \ge V_{BE_{ON}} \tag{3}$$

Para el máximo valor de I_B :

$$\frac{V_{TH} - V_{BE_{ON}}}{R_{TH}} \le 250\mu\text{A} \tag{4}$$

Con las inecuaciones 3 y 4 se buscaron valores de R_{B1} y R_{B2} que las cumplam. Teniendo en cuenta que para cada inecuacion los valores de V_{TH} y R_{TH} son distintos ya que dependen de R_1 y R_2 que varían por estar conectados a un potenciómentro y $0.5V \le V_{BE_{ON}} \le 0.7V$.

Se propusieron los siguientes valores $R_{B1} = 5k\Omega$ y $R_{B2} = 25k\Omega$:

■ Para $I_B \ge 0\mu$ A: $V_{BE_{ON}} = 0,5$ V, $R_1 = R_{B1} = 5$ k Ω y $R_2 = R_{B2} + 20$ k $\Omega = 45$ k Ω Obteniendo los siguientes valores para el equivalente de Thévenin:

$$V_{TH} = 0.5 \text{V} \ge 0.5 \text{V} = V_{BE_{ON}}$$

 \bullet Para $I_B \leq 250 \mu \text{A} \colon V_{BE_{ON}} = 0,7 \text{V}, \, R_1 = R_{B1} + 20 \text{k}\Omega = 25 \text{k}\Omega$ y $R_2 = R_{B2} = 25 \text{k}\Omega$

$$V_{TH} = 2.5 \text{V}$$
 $R_{TH} = 12.5 \text{k}\Omega$

$$\frac{V_{TH} - V_{BE_{ON}}}{R_{TH}} = \frac{2,5 \mathrm{V} - 0,7 \mathrm{V}}{12,5 \mathrm{k}\Omega} = 144 \mu \mathrm{A} \leq 250 \mu \mathrm{A}$$

Entonces el valor maximo medido de I_C será: $I_{C_{MAX}}=I_B$ $h_{FE}=144\mu\mathrm{A}$ $200=28,8\mathrm{mA}$

Como se ve los valores R_{B1} y R_{B2} elegidos cumplen las condiciones esperadas.

1.3.2. Ganancia de corriente entre base y colector

Para obtener h_{FE} se utilizó un multímetro que realiza la medición bajo las condiciones $I_B=10\mu {\rm A~y}$ $V_{CE}=2,8{\rm V}$

Se obtuvieron los siguientes valores para cada transistor:

- Transistor 1: $h_{FE} = 361$
- Transistor 2: $h_{FE} = 326$
- Transistor 3: $h_{FE} = 253$

1.3.3. Curva de salida

Para obtener la curva i_C vs v_{CE} se utilizó el banco de mediciones presentado en la figura 4.El regulador de tensión **LM7805** provee una alimentación constante de 5V. El potenciómetro utilizado es de $20k\Omega$.

Figura 4: Circuito para la medición de la curva de salida I_C vs. V_{CE}

Para la obtención de la resistencia R_{B1} planteamos la ecuación obtenida del circuito mostrado en la figura 4:

$$R_{B1} = \frac{V_{DD} - V_{BE_{ON}}}{I_B}$$

Y teniendo en cuenta que $I_B = \frac{I_C}{h_{fe}}$ se llegó a la ecuación 5

$$R_{B1} = \frac{(V_{DD} - V_{BE_{ON}})h_{FE}}{I_C} \tag{5}$$

Siendo $V_{DD}=5{\rm V}$ la salida del regulador de tensión **LM7805** y $V_{BE_{ON}}=0,7{\rm V}$ A continuación listamos los valores de R_{B1} para cada transistor y para cada I_C :

- Transistor 1: $h_{FE} = 361$
 - Para $I_C = 5 \text{mA}$: $R_{B1} \approx 310 \text{k}\Omega$
 - Para $I_C=25 \mathrm{mA}$: $R_{B1}\approx 62 \mathrm{k}\Omega$
- Transistor 2: $h_{FE} = 326$
 - Para $I_C = 5 \text{mA}$: $R_{B1} \approx 280 \text{k}\Omega$
 - Para $I_C = 25 \text{mA}$: $R_{B1} \approx 56 \text{k}\Omega$
- Transistor 3: $h_{FE} = 253$
 - Para $I_C = 5 \text{mA}$: $R_{B1} \approx 217 \text{k}\Omega$
 - Para $I_C=25 \text{mA}$: $R_{B1}\approx 43 \text{k}\Omega$

1.4. Obtención de parámetros a partir de las mediciones

1.4.1. Parámetros característicos

En las curvas de transferencia I_C vs. V_{BE} medidas y simuladas se obtuvieron los parámetros I_S y V_{th} mediante un ajuste. Se utilizaron dós métodos de ajuste distintos.

Ajuste exponencial: Se tomaron los resultados de la expresión

$$I_C = I_S \ e^{\frac{V_{BE}}{V_{th}}}$$

y se realizó un ajuste mediante una función exponencial

$$y = A e^{Bx}$$

Ajuste lineal: Se tomaron los resultados de la expresión

$$ln(I_C) = ln(I_S) + \frac{V_{BE}}{V_{th}}$$

y se realizó un ajuste mediante una recta.

$$y = Ax + B$$

En las curvas de salida I_C vs. V_{CE} medidas y simuladas se obtuvieron los parámetros $I_{C_{sat}}$ y r_o mediante un ajuste lineal, en la región de modo activo directo, a los resultados de la expresión

$$I_C = I_{C_{sat}} + \frac{V_{CE}}{r_o}$$

Luego pudo ser calculada la $Tensi\'{o}n$ de $Early V_A$ mediante la expresi\'{o}n

$$V_A = r_o I_{C_{sat}}$$

1.4.2. Cálculo de parámetros de pequeña señal

Se calculó y graficó g_m en función de la corriente I_C como

$$g_m(k) = \frac{I_C(k) - I_C(k-1)}{V_{BE}(k) - V_{BE}(k-1)}$$

Tanto para los transistores simulados como los utilizados en la medición experimental.

Mediante cálculos teóricos, utilizando los parámetros obtenidos en los ajustes, se obtuvo la siguiente ecuación

$$g_m = \frac{\partial i_C}{\partial v_{BE}} \Big|_Q = \frac{I_S}{V_{th}} e^{\frac{V_{BE}}{V_{th}}} = \frac{I_C}{V_{th}}$$

Para los 3 transistores utilizados en la medición experimental.

Finalmente se graficó r_{π} mediante la siguiente ecuación

$$r_{\pi} = \frac{h_{FE}}{g_m}$$

Utilizando los distintos todos los g_m obtenidos mediante los dos métodos antes mencionados.

1.5. Simulación del modelo modificado

Se diseñó un modelo modificado basado en el modelo de *Spice* del TBJ NPN genérico ajustado a los parámetros característicos del Transistor 1. Realizamos las mismas simulaciones que para las bibliotecas PHIL_BJT y SIEMENS incluyendo la siguiente directiva:

.MODEL MiModelo NPN (BF=361 IS=106.239f VAF=86.67009)

Para la simulación de la ganancia de corriente entre base y colector se obtuvo $h_{FE}=370$

2. Análisis y comparación de los resultados

2.1. Curvas obtenidas

```
 \begin{array}{|c|c|c|c|c|c|c|c|} \hline & \text{PHILIPS } r_o = 10,91814 \& \Omega \ V_A = 51,82703 \ V \ I_{C_{sat}} = 4,746873 \text{mA} \\ \hline & \text{SIEMENS } r_o = 18,26616 \& \Omega \ V_A = 88,60728 \ V \ I_{C_{sat}} = 4,850897 \text{mA} \\ \hline & \text{modelo modificado } r_o = 17,34281 \& \Omega \ V_A = 90,66048 \ V \ I_{C_{sat}} = 4,963302 \text{mA} \\ \hline & \text{o} & \text{transistor } 1 \ r_o = 19,97264 \& \Omega \ V_A = 86,67009 \ V \ I_{C_{sat}} = 4,339440 \text{mA} \\ \hline & \text{o} & \text{transistor } 2 \ r_o = 22,66700 \& \Omega \ V_A = 107,6684 \ V \ I_{C_{sat}} = 4,615188 \text{mA} \\ \hline & \text{o} & \text{transistor } 3 \ r_o = 23,13776 \& \Omega \ V_A = 104,6125 \ V \ I_{C_{sat}} = 4,653361 \text{mA} \\ \hline \end{array}
```


Figura 5: curva I_C vs V_{CE} $I_C=25~\mathrm{mA}$

2.2. Comparación de los resultados

3. Conclusiones