

Sommersemester 2020

Prof. Dr. Matthias Schütt

Dr. Claudia Schoemann

Algebra II Übungsblatt 2

Abgabe: 1.5.2020 bis 12:15 per email an algebra2@math.uni-hannover.de

Aufgabe 2.1 (3+4+3 Punkte)

Sei K ein Körper, und sei $m \in K$. Zeigen Sie:

- (a) Die Matrizen der Form $\begin{pmatrix} a & b \\ mb & a \end{pmatrix}$ bilden einen kommutativen Unterring L_m von $M(2 \times 2, K)$.
- (b) L_m ist genau dann ein Körper, wenn m kein Quadrat in K ist.
- (c) Ist L_m ein Körper und $K = \mathbb{F}_p$ mit einer ungeraden Primzahl p, so gilt $L_m \cong \mathbb{F}_{p^2}$.

Aufgabe 2.2 (3+3+4 Punkte) Sei $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

- (a) Zeigen Sie, dass L galoissch über \mathbb{Q} ist.
- (b) Bestimmen Sie die Galoisgruppe $G(L/\mathbb{Q})$.
- (c) Bestimmen Sie alle Zwischenkörper.

Aufgabe 2.3 (5+5 Punkte)

Bestimmen Sie den Zerfällungskörper L des Polynoms

$$f(x) = x^4 - 5x^2 + 6$$

und den Grad $[L:\mathbb{Q}]$.

Aufgabe 2.4 (7+3 Punkte)

Sei $n \geq 2 \in \mathbb{N}$, $a \in \mathbb{Q}$ und E der Zerfällungskörper von $f(x) = x^n - a$ über \mathbb{Q} .

(a) Betrachten Sie die folgende multiplikative Gruppe von Matrizen:

$$G_n := \left\{ \begin{pmatrix} r & s \\ 0 & 1 \end{pmatrix} \mid r \in \mathbb{Z}_n^*, \ s \in \mathbb{Z}_n \right\} \subset GL(2, \mathbb{Z}_n).$$

Beweisen Sie: Es gibt einen injektiven Gruppenhomomorphismus

$$\Psi: Aut(E; \mathbb{Q}) \hookrightarrow G_n$$
.

(b) Bestimmen Sie Im (Ψ) für n=10 und a=5, d.h. für das Polynom $x^{10}-5\in\mathbb{Q}[x]$.