Implementing SAT Algorithms in Software

Callum Donovan 1915769 September 28, 2020 Swansea University

Abstract

The Boolean Satisfiability Problem is a fundamental part of Computer Science. First proven to be an NP-Complete problem by both Stephen Cook in 1971[1], and Leonid Levin in 1973[2]. Since then, many more NP-Complete problems have been identified, along with their respective uses in the real world outside of pure computer science. Due to this, there has been a growing need for solvers that can effectively and efficiently process these problems. In the last two decades alone, huge progress has been made to coincide with the advancements in technology. And more SAT solvers have appeared that can be deployed in industries where they are most needed.

This paper explores the basic concept behind SAT solvers, and how they can be implemented in software using modern programming languages and tools. The algorithm that will be implemented is one proposed by Donald Knuth in his book "The Art of Computer Programming". Knuth proposes many algorithms, ranging from the most basic backtracking based algorithm, to an advanced implementation of Walk-SAT[!]. We will explore the fundamentals of how to implement these algorithms, implement one of them, then test its performance against a suite of SAT problems.

The result of this paper will be a SAT solver implemented in C++, using the data structures and steps provided by Donald Knuth in his book "The Art of Computer Programming".

Contents

1	Introduction	4
	1.1 Motivation	4
	1.2 Aims and Objectives	5
	1.2.1 FREQ1	5
	1.2.2 FREQ2	5
	1.2.3 Non-Functional Requirements	6
	1.2.4 NFREQ1	6
	1.3 Methodology	6
		_
2	Background	6
	2.1 P vs NP	6
	2.2 Boolean Satisfiability Problem	7
	2.3 Converting to SAT	8
	2.4 Complete vs Incomplete SAT Methods	8
	2.5 DPLL Algorithm	8
	2.6 3SAT	9
	2.7 Modern SAT	9
		-
3	Related Work	9
	3.1 Minisat	9
	3.2 CryptoMiniSat	10
		40
4	Design	10
	4.1 Base Algorithm	10
5	Implementation	11
	5.1 Input	11
	5.2 Processing	12
	5.3 Output	12
	5.4 Data Structures	13
	5.5 Tool-chain	13
	5.5.1 Compiler & Libraries	13
	5.5.2 Editor & Environment	13
	5.6 Pseudocode & Code	14
6	Testing	15
	6.1 Software Testing	15
	6.2 Checking For Correct Solutions	15
	6.3 Monitoring Initial Performance Metrics	16
	6.3.1 UNIX Time Command	16
	6.3.2 Memory Usage	16
7	Results	16
8	Evaluation	16

Implementing	SAT	`Algorith	ıms in	Software
--------------	-----	-----------	--------	----------

Cal	lum	Dono	van

9	Futu	re Work
	9.1	Algorithm Performance
	9.2	Pre-processing
		Parallel Solving
	9.4	SIMD
10	Cha	llenges
	10.1	Late Start
	10.2	Coronavirus
	10.3	Maths Heavy Topic
	10.4	C++ Learning Curve
11	Con	clusion

1 Introduction

Satisfiability has presented itself a huge area of research throughout the history of computer science. Being the first proved to be NP-Complete in 1971[1], it has been the go-to for complex computation. And using reduction techniques pioneered in the mid-twentieth century, many other types of complex problems can be converted into SAT and solved using the plethora of solvers freely available. In more recent years, SAT competitions have added an incentive to the development of more advanced solvers, such as Minisat, zChaff, and CaDiCaL. On top of these, parallel solvers have gained popularity and one such solver, called Plingaling, ranked very highly in the SAT Competition 2020. Showing how parallel solvers can be just as good as their counterparts, if not better.

Donald Knuth has taken particular interest in this topic with his recent chapter of "The Art of Computer Programming". He discusses how important SAT solvers are to both industry and research, as well as providing algorithms and sample problems to test them against.

This paper will be an exploration into the world of SAT solvers and how they can provide crucial services to both industry and research. As well as methods in which proposed SAT solver algorithms can be implemented into a robust piece of software. Due to the sheer size of literature and research in this field, it would be unrealistic to think it is possible to cover everything in a comprehensive way. Therefore, this paper focuses on the fundamentals of SAT and the significant research through the years since Cooks paper in 1971[1]. As well as the ideas presented by Donald Knuth for implementation in modern programming languages.

1.1 Motivation

The motivation behind this project stems from the ever growing need for more efficient and faster SAT solvers. But in order to begin researching in this field, one must know the basics and tried methods present today. This project will do just that, in both studying literature that has formed the basis of most of the field, and implementing a basic SAT solver.

One of the most common arguments for the research into SAT solving is its viability for both science and industry. This presents a convenient compatibility between the two. As industry requirements grow, so too does the need for research into better algorithms to satisfy those requirements. An example in which SAT solvers are a key part of industry include Electronic Design Automation (or EDA). We will explore these usages further as we progress and highlight the advantages of fast SAT solvers when applied to these industries.

Another common viability for SAT solvers includes their usage for most complex problems that can be reduced to SAT. Most problems in the real world can be cast as optimisation problems. This allows us to create a mathematical description of these problems, which in turn can present themselves for solving. The use of a solver in this instance would produce results which would allow for cost-saving or general efficiency improvements.

1.2 Aims and Objectives

To preface this project we must present the aims and objectives that we wish to aim for. As explained above, we do not wish to push the boundaries of SAT solvers in this particular project. But instead want to explore the basics and expand on current research. Aiding us in this goal will be the series by Donald Knuth, "The Art of Computer Programming". Knuth has recently taken interest in the concept of satisfiability for "Fascicle 6: Satisfiability", and presents a large amount of content for us to analyse. In this book, Knuth outlines multiple algorithms that could be used to implement multiple common SAT solvers[3]. These include:

- Algorithm B Backtracking with watched literals.
- Algorithm D DPLL.
- Algorithm C CDCL.
- Algorithm L DPLL with lookahead.
- Algorithm W WalkSAT.

We shall be analysing one of these algorithms and presenting the data structures needed and methods of implementation using C++. Once our implementation is complete, and testing has proved the solver to be working as intended, we will record the performance metrics in a scientific manner to ensure accuracy. These metrics will then be compared to other FOSS solvers that are well tested and commonly used. This will give us a benchmark as to how increasing complexity of the algorithm and program can achieve greater performance. As well as how the programming language chosen can effect the overall performance.

We can easily turn these actions into functional and non-functional requirements. Doing so will allow us to test against the requirements stated and compare the expected result to the actual result. This format matches a more "software engineering" approach, which is desired for this project.

1.2.1 FREQ1

The resulting software should be able to process an input CNF formula in the semistandard DIMACS format.

1.2.2 FREQ2

The resulting software should be able to evaluate the satisfiability of a simple formula from FREQ1, and return the result when found. Simple refers to a formula which most SAT solvers would be able to process in a short amount of time. Result refers to the decision returned from the solver that concludes as "SATISFIABLE" or "UNSATISFIABLE".

1.2.3 Non-Functional Requirements

These requirements differ from functional requirements as they are not crucial to the project's success. These are simply goals that, if time allows, can be implemented for further data.

1.2.4 NFREQ1

The resulting software should be able to process a complex formula within a reasonable amount of time. Reasonable refers to the length of time it takes to return a result when compared to other SAT solvers, i.e. 300 seconds to return "SATISFIABLE".

1.3 Methodology

This project is not being shared amongst a large team of engineers. This allows us to choose from a plethora of software methodologies that would typically not be considered. The usual norm is to commit to the AGILE methodology no matter the project. But for us we do not need the potentially cumbersome nature that can come from AGILE. We also need to consider the idea of rapid prototyping and development. For this reason, we have chosen to use the traditional Waterfall methodology. It gives us the general structure for the project, and fits well with our rigid requirements.

2 Background

Before we get into the implementation and software, it is always good to have a solid understanding of the topic at hand. SAT in particular is quite a deep topic, it is easy to spend a long time researching into all the intricacies[!]. For this paper, we will just be concentrating on the general concepts and ideas behind the most common instances of SAT.

2.1 P vs NP

Before we progress into the basics of SAT, we can quickly explore the reason behind it being such an important topic within computer science. The P vs NP question is one of the most prevalent in the field of complexity theory. It is one of the seven millenium prize problems put forward by the Clay Mathematics Institute and, if solved, fetches a \$1 million prize for the first correct solution. The concept of P vs NP asks whether every problem whose solution can be verified quickly, can also be solved quickly. On the surface sounding simple, but in the details an incredibly hard question that has plauged computer scientists since the 1950s.

A further interest within this field of study concerns the notion of NP-Complete. The Boolean Satisfiability Problem was the first to be proved NP-Complete, by both Steven Cook and Leonid Levin in 1971 and 1973 respectively[1][2]. It was later included in a well-known paper, *Reducibility Among Combinatorial Problems* by Richard Karp[4], which generated a renewed interest amongst researchers. In this paper, Karp

proved how a large set of problems could be reduced to an instance of SAT. Thus meaning each one would be solvable if there was a suitable algorithm. The faster algorithm that we can create for the SAT problem, the better we can solve other problems via reducibility.

2.2 Boolean Satisfiability Problem

As stated by Donald Knuth, the Boolean Satisfiability Problem is defined as such:

"Given a Boolean Formula $F(x_1, ..., x_n)$, expressed in so called "conjunctive normal form" as an AND of ORs, can we "satisfy" F by assigning values to its variables in such a way that $F(x_1, ..., x_n) = 1$?"

Given this definition, we can present a formula as detailed above:

$$F(x_1, x_2, x_3) = (x_1 \ \bar{x_2}) (x_2 \ x_3) (\bar{x_1} \ \bar{x_3}) (\bar{x_1} \ \bar{x_2} \ x_3)$$

And given this formula, we can satisfy it by setting $x_1x_2x_3 = 001$.

To ensure consistent understanding of these concepts before proceeding, we can simplify the notation for each element within SAT. To begin, we have *variables*. These are elements of any convenient set. Variables can be denoted in a few ways, but for this we shall be using Knuth's own notation as stated in his book. Thus, variables will be denoted using numerals 1, 2, 3, ... to save having to repeat characters. We can also omit the brackets and operators to make the writing of formulas much faster:

$$R = \{12\overline{3}, 23\overline{4}, 341, 4\overline{12}, \overline{123}, \overline{234}, \overline{341}, \overline{412}\}$$

Literals are our next notation. They correspond to either a variable or the compliment of that variable. Using our previous example for variables, if 1 is a variable, both 1 and $\bar{1}$ are literals. From this we can easily deduce that if there are n number of variables, there can be 2n possible literals. A literal may be considered *pure* if its negation does not appear anywhere in the formula. And thus can be safely set to true or false respectively.

There are multiple instances of the satisfiability problem, so we shorten satisfiability to just SAT. In turn, each instance is typically abbreviated and prefixed to SAT. Examples of this would be 2SAT, 3SAT, and *k*SAT. 3SAT is of particular interest, and will be detailed later in its own section.

There are more definitions which represent alternative types of clauses that we could encounter. For instance, a clause of length 1 is called a *unit clause*. Clauses of length 2 would be called *binary clause* and length 3, *ternary clauses*. We can also encounter clauses in which there are no literals, which would be called *empty clauses*. *Empty clauses* are denoted using and are always unsatisfiable. As you might think, shorter clauses would be easier to satisfy as they contain less literals, but this is not necessarily the case. As we progress further into the design and implementation of this solver, we will learn the importance of covering all bases and making no assumptions of difficulty.

2.3 Converting to SAT

There are a plethora of problems that can be formulated into the previously stated problem. It is for this reason that we find the field of SAT solvers so important.

2.4 Complete vs Incomplete SAT Methods

Before we progress onto the details of SAT algorithms, we must understand the two distinct types of solvers; complete and incomplete. Currently we are most interested in the former of the two, as it presents the best usage out of all the problems that are faced within SAT. A complete SAT algorithm is one that finds both satisfiable and unsatisfiable solutions, and returns the corresponding model if satisfiable.

Modern SAT solvers are almost all complete and incorporate the original DPLL algorithm. They are extended using modern techniques to significantly speed up the solving process, and in most cases are capable of solving problems with millions of variables. Examples of some modern complete SAT solvers are Minisat and Crypto-MiniSat. As we will detail below, these are two interesting solvers that are designed for particular purposes.

Incomplete solvers are much more rare compared to their complete counterparts. The obvious reason being that they do not return a result that we would be satisfied with, as they do not report if an instance of SAT is unsatisfiable. Aside from this, they do have their uses for specific types of SAT problems, hence why they are still being developed today. An example of an incomplete SAT solver is *WalkSAT*. WalkSAT is based on a local search algorithm which tries to find a satisfying assignment by iteratively improving on them until all constraints are satisfied.

2.5 DPLL Algorithm

The DPLL algorithm is one of the most important milestones in the history of SAT. Itself being a further development of work by Martin Davis and Hilary Putnam in their 1960 paper *A Computing Procedure for Quantification Theory*[5], the DPLL algorithm attempted to take this initial work and refine it.

The DPLL algorithm still forms the basis of most efficient SAT solvers today. Each instance of a SAT solver that utilises the original DPLL algorithm typically adds their own optimisations and improvements to achieve a greater efficiency, something we will expand on in further sections. In simplified terms, the backtracking section works by choosing a literal, assigning a truth value to it, simplifying the formula then checking if the new simplified formula is satisfiable. If this is the case the solver will return that the original formula is satisfiable and return the model. If this is not the case, the solver will backtrack and assign the opposite truth value and run the above checks again. The improvements made to this basic backtracking approach include adding rules to each step for enhanced performance. These rules are:

- · Unit Propagation.
- Pure Literal Elimination.

The former capitalises on *unit clauses* to avoid a large section of the search space. By finding a unit clause, the solver will then assign the appropriate truth value to the literal to make it true, making these clauses trivial.

The latter capitalises on variables which only appear in one form throughout the forumula, a *pure literal*. If this is the case, clauses in which this pure literal appear can be safely assigned in a way that makes all clauses they are contained in true. Doing this means the solver can safely delete the clauses where this is the case and further reduce the search space.

2.6 3SAT

- · Define 3SAT.
- Show a problem that would be considered 3SAT.
- · Explain why 3SAT is of particular interest.

2.7 Modern SAT

- Talk about how SAT has evolved since the original DPLL.
- Modern SAT competitions.
- · Parallel SAT solvers.
- · General future SAT solver stuff.

3 Related Work

Moving on from the background of SAT, we can look into existing solutions that are freely available. As of 2020, there are plenty of FOSS programs that can be used to solve large sets of problems. This is in part due to the regularity of the SAT competitions that encourage people to build groundbreaking solvers.

3.1 Minisat

A popular and early solver that has won many competitions[!] is Minisat. Written in C++ and boasting just a mere few hundred lines of code, Minisat has been proven to be an effective tool for medium sized problem sets. First written in 2003 by Niklas Een[!] and Niklas Sorensson[!], its primary goal was to help developers and researchers get into the field of SAT solving by providing a simple interface and minimal codebase.

- · Talk about Minisat.
- · Go into detail about offshoots from Minisat, such as CryptoMiniSat.
- · Newer CDCL algorithms.
- Look into SAT 2020 to find some interesting new solvers.
- Basically talk about applications then the research currently happening.

3.2 CryptoMiniSat

As the name suggests, this solver builds upon the foundations laid by Minisat to create an all in one solution to multiple problems. CryptoMiniSat implements most of the useful features from Minisat 2.0 core, along with PrecoSat and Glucose to try to make a one-stop solution. CryptoMiniSat is still in active development, hosting their code on GitHub for open collaboration.

4 Design

- · Summary of what we would want from a design.
- Include the algorithm from Donald Knuth (algorithm D).
- Discuss the data structures that we will need to implement based off of DK's ideas.

4.1 Base Algorithm

The key to all the most successful SAT solvers is the algorithms. The first SAT solver to be implemented for a computer used the DPLL algorithm. As we previously established, the DPLL algorithm is considered one of the firsts and produced good results for the time. As of 2020, there have been a plethora of improvements to the original DPLL algorithm that has allowed it to keep up with the increasing complexity of problems available. The general pseudocode for the original DPLL algorithm can be written as such:

```
Algorithm DPLL
Input: A set of clauses C
Output: A truth value

Function DPLL(C)

if C is a consistent set of literals then
return true;
if C contains an empty clause then
return false;
for every unit clause {L} in C do
C ← unit-propagate(L, C);
for every literal L that occurs pure in C do
C ← pure-literal-assign(L, C);
L ← choose-literal(C);
return DPLL(C AND {L}) or DPLL(C AND {not(L)});
```

For our project, the algorithm that we will be interested in is a general DPLL algorithm. As previously discussed, this is just one of a few algorithms given from Donald Knuth. Although it is relatively simple, it is a good way to explore the basic idea of software SAT solvers. Forming a foundation for possible further improvements, much like those explained in algorithm L. Donald Knuth describes the algorithm in a series

of steps, also outlining the data structures that we need to implement it as he has described. The following is the algorithm steps that are detailed by Knuth in his book:

- 1. Set m_0 d h t 0, and do the following for k = n, n 1, ..., 1: Set x_k -1 (denoting an unset value); if $W_{2k} \neq 0$ or $W_{2k+1} \neq 0$, set NEXT(k) h, h k, and if t = 0 also set t k. Finally, if $t \neq 0$, complete the active ring by setting NEXT(t) h.
- 2. Terminate if t = 0 (all clauses are satisfied). Otherwise set $k \cdot t$.

Knuth names this algorithm "Algorithm D - Satisfiability by Cyclic DPLL. It is based on the original algorithm presented by Martin Davis, George Logemann, and Donald Loveland[6], extending previous work Davis did with Hilary Putnam[!]. At the time of it's inception, this algorithm was seen as fantastic. But due to limitations of the hardware, their methods of storing and processing data were quite verbose. It involved having to record all the data of the current node onto a magnetic tape before branching. When they wished to backtrack to the previous node, they would restore the data from the tape they had created. But now we have huge stocks of memory available to use whenever necessary, allowing us to write more complex and faster solvers using equally more complex data structures.

5 Implementation

The following will be an in-depth look at the steps we need to consider when implementing our project. Following the design, this section details the general input and output of the program. As well as the processing that forms the core of the solver. We will also outline the data structures that are to be implemented and how they will be integrated with the algorithm to culminate in a working SAT solver.

We will also be glazing over the tool-chain and related items that are to be used to create the solver. This includes the language and the compiler that will be used. As well as the editor and reasoning behind these choices.

5.1 Input

The input of the program will be a CNF formula presented in the DIMACS file format. This file format is the standard for the SAT competitions and allows for simple parsing of the problem. The format consists of few elements to ensure the problem is presented cleanly, the first of which being comments. Comments can be marked using the character 'c' followed by a single whitespace character:

c This is a comment line

Lines prefixed with this will be treated as a comment and thus will not be parsed as part of the problem. After the comments is a line telling the SAT solver about the problem it is about to ingest, denoted using the character 'p' followed by a single whitespace character.

p cnf 255 829

This line will include the type of problem, followed by the number of clauses then variables. Following the problem description line is the actual formula. This is presented by either a positive or negative integer, terminated with a '0'.

```
15 16 17 18 19 20 21 0
```

Each line corresponds to a clause formatted in the defined problem type. And each integer represents a unique variable. Using this format we can create consistent problem files which our solver will be able to ingest and process easily. An example of a problem formatted in this format is presented below:

```
c pigeonhole 2 1
c label:unsatisfiable
c label:easy
p cnf 2 3
1 0
2 0
-1 -2 0
```

This input will be read line by line by the solvers parser, recording the key information that it needs. After successful parsing we can move on to the processing of this problem.

5.2 Processing

The processing section of the program pipeline is the most important here. This is where our algorithm will iterate through each variable and set them to either true or false. The way in which our program will go about this depends on the algorithm that we have chosen. In this instance we will explain how the DPLL algorithm presented by Donald Knuth will do this.

5.3 Output

The output of our program is just as important as the input. After all, we want to know how the solver has gotten to the solution it has ended at. Much like the input, we will be following a semi-standard format that is outlined at each SAT competition. Using this format will allow us to be consistent with how most SAT solvers output their solutions.

The format of the output is somewhat similar to the DIMACS format. In that each line is prefixed with a single character denoting its purpose, followed by a single whitespace character. The main difference here being that there is no particular order in which the lines must appear. There are three distinct types of lines in this format:

- 'c ': Denotes a comment line in which the program can output any auxilliary information.
- 's ': Denotes the line where the solution is presented. This must be either 'sat-isfiable', 'unsatisfiable', or 'unknown'. Only one instance of this line is allowed.

• 'v ': Denotes the values of the solution if one is found.

The resulting output should combine all three of these types to create a comprehensive result to the user. This includes the model that the solver has settled on if the solution is satisfiable. This will allow for the checking of the answer to ensure its correctness.

5.4 Data Structures

- · Discuss why we're going to have to implement specific data types.
- Provide examples on the types of structures to be used.

5.5 Tool-chain

The following is a quick overview of the tool-chain that will be used for this project. As these aren't the meat of what the project is about, we shall only spend a short time glazing over the available solutions and those we picked.

5.5.1 Compiler & Libraries

There are multiple compilers available for C++ dependant on the platform. Generally for each of the three most common platforms (Windows, Linux, and MacOS) there are reliable and well tested compiler suites available. The GNU Compiler Collection, or GCC, is considered one of the standard compiler suites for C and C++. GCC has implementations for each of the aforementioned platforms via ports. The Windows implementation in particular is included in a few software development environments that are freely available; MinGW, MSYS2, and Cygwin.

As for Linux, the GCC suite can be installed natively typically using the preferred distro's package manager. For this project the code will be compiled on a Debian based system using the GCC suite. Linux provides a simpler method of developing using C / C++ and streamlines the time from development to testing. Alongside this, the included GDB debugger allows for a simple and lightweight debugging solution. We will also be making use of bash scripts to invoke the software and provide flags to control options, something that can be a little more challenging on a Windows machine.

No development will be carried out on a Macintosh as we simply do not have access to one. Typically these types of software are compiled and run using a Linux system, and thus it would make the most sense to follow the given norm.

5.5.2 Editor & Environment

There are a huge swathe of IDE's and editors available for use and as for which one to use, there isn't a definitive answer. We thought that it would be best to just stick with what we know best, and for this instance that would be Visual Studio Code. Although other IDE's are available that can take a lot of the work out of managing a project. It is not really necessary to use one here. This project will not contain a huge

amount of code or files, and general debugging and profiling does not need to be done using bloated IDE's. Visual Studio Code contains a massive inventory of extensions available to give an experience just as rich as an IDE, but without the cumbersome nature of one. As for this project we only need a single extension to get the required development environment:

• C / C++

It is also important to mention any other environment software aside from the previously mentioned. We are going to be using the 'time' command to accurately measure the time metrics of the software from start to completion. This command is available through bash and is invoked at the same time as the program itself. An example of the method in which it can be invoked is as follows:

\$ TIMEFMT=\$'\nreal\t%E\nuser\t%U\nsys\t%S'

Figure 1: Command to achieve desired output format

We need to run this command first in order to achieve the desired format. This is only necessary as we are using the Z-Shell, but the command itself still works the same as traditional Bash. Using the time command we can effectively measure the time that it takes from invocation to completion in a consistent format. This is a simple alternative to implementing a time measuring system into the SAT solver, which could potentially make it less performant. An example of the usage of the time command is shown below:

\$ time make bin/dpll

This command will invoke the 'make' binary to compile our program, called dpll. The output of this command will include both the output of the make command, as well as the time it took formatted to our previous rules:

real: 4.70s user: 2.42s sys: 0.45s

5.6 Pseudocode & Code

- Investigate general pseudocode of generic DPLL algorithm (Wiki).
- Create some pseudocode from algorithm.
- Create some actual code to show?

6 Testing

As with all software, one of the most important parts of the development lifecycle is testing. For this project we must ensure that it not only works without fault, but also returns the correct results that we are looking for. In order to test our software we shall generate a plethora of testing criteria to test against. Each of these criteria will have an expected outcome. We will then compare the expected outcome to the actual outcome and record whether they are identical. Although this is a simple technique, it is hard to apply automated testing to our program as it is so niche.

As for ensuring the program returns correct results, the best way that we will be able to check is to use well known and reputable solvers to generate results and compare the two. This can also be added to the testing criteria and formatted in a table if preferred. The following will be the details of the testing strategy alongside the results.

6.1 Software Testing

There are a vast array of testing tools freely available to use for most software projects. These have been created from the need for automated testing due to programs changing rapidly. In this case, we do not need to deploy any advanced testing techniques or tools. As we have quite rigid requirements and a small codebase, keeping track of changes is somewhat trivial. Much like discussed in the initial sections of this paper, this is similar to the reasoning behind our choice of methodology. Therefore, let us create a simple suite of manual testing criteria.

6.2 Checking For Correct Solutions

Progressing from the program testing, we must also ensure the solver is returning correct results. This can also lead us to any bugs that may be present within the program. Using common SAT problems presented in the DIMACS format we can compare the results from our program to results from another solver. For statistical reasons we should ensure that each problem set is ran at least 10 times on each solver. To further back up the testing results we could run the same problems against a third solver. This would allow for comparison between each solver as a fall-back.

The first solver we will be using to ensure correctness is *Minisat*. This solver is one of the most tried and tested solvers freely available to use. And comes with plenty of features to allow each test set to be completed quickly. *Minisat* comes with a well documented interface that we can use to easily build and run our test sets.

The fall-back solver we will be using is *CryptoMiniSat*. This solver is still in active development and encorporates some of the most advanced features for a FOSS solver. Compared to *Minisat*, this solver is significantly more complex. It should give us safe results that we can use to ensure no descrepencies between our solver and *Minisat*.

Using the two mentioned solvers we can compare their results against our own. This is worth doing to make sure there are as little bugs as possible. The results for our testing are displayed below.

6.3 Monitoring Initial Performance Metrics

6.3.1 UNIX Time Command

There are multiple ways in which we could measure the performance of the solver. One easy way is measuring the CPU time that the solver takes to give a solution to the problem it is given. This is the reason we will be testing using the standard UNIX 'time' command. This command outputs three metrics; real, user, and system. Real corresponds to the 'wall clock' time that the program took. This refers to the actual time it took from invocation to completion whilst the CPU handles other processes. The 'user' time corresponds to the time the CPU spent on the program in User mode. Calls made in Kernel mode will not be reflected in this time. The 'sys' time corresponds to the time the CPU spent in Kernel mode when executing the program. These three metrics give us a good idea as to what the CPU spends the most time on when executing our program.

6.3.2 Memory Usage

Another method in which we can measure the performance of our solver is by keeping track of the memory that is used. Although this may not seem like a performance related metric, it can tell us about potential memory leaks which can in turn effect the general performance of the system. Aside from this, it is important to keep track of the memory usage as a method of judging the solver itself. Higher memory usage can indicate how many branches the solver is heading into before coming to its solution. Typically more complex solvers that contain multiple algorithms, to solve individual parts of the problem, can take up much less memory than a simpler one. The reason we add more complexity is to ensure that the solver knows when it should stop trying to branch in a particular direction. Less branching means we save a bit more memory and can sift through the problem much quicker.

7 Results

· Discuss what we found from our testing

8 Evaluation

- · Discuss our findings statistically.
- Discuss how implemented code could be improved (summarise).
- Talk about the methodology we used.
- Talk about the risks encountered, and the time frame in which we carried this
 out.
- Discuss the things that could potentially be improved if we did the project again.
- Discuss the pandemic.

9 Future Work

- · Explore performance implications of algorithm.
- Talk about DK's performance predictions from TAOCP.
- Talk about how we could potentially improve the performance of our solver.
- · Maybe talk about things like parallelism?

9.1 Algorithm Performance

There are multiple improvements that are suggested by Donald Knuth to speed up the initial DPLL algorithm based solver. The first of which is already listed as one of his alternative algorithms. Algorithm L uses the lookahead concept to substantially speed up the standard DPLL algorithm. This concept

9.2 Pre-processing

One simple method that could greatly assist our solver is using a pre-processor. This will take the problem set and analyse it, and return a much simplified problem. This concept is applied accross modern solvers already, and is considered a vital part of the SAT solving system.

9.3 Parallel Solving

A more interesting concept is to capitalise on modern processor architectures, and the cheap availability of multi-core CPU's. It is commonplace to find consumer CPU's with at least 4 cores and hyper-threading. By taking advantage of this we can try to divide up the problem set and apply a solver to each smaller instance running on an individual thread. As usual with parallelism, this would not necessarily lead to a linear performance increase. It would require some research and engineering to determine the best way forward in order to achieve the desired results.

9.4 SIMD

Another interesting technique that could be applied to SAT solving is the use of SIMD instructions for data level parallelism. It has been shown in other applications that utilising SIMD instructions can quickly lead to almost linear performance improvements corresponding to each bit width of data processed. The most common SIMD instruction set is *SSE* (Streaming SIMD Extensions). Introduced in 1999 by Intel, it is now commonplace is all modern consumer x86 processors.

10 Challenges

As with any project there will always be some challenges faced that skew the planned timeline. The following details the problems that specifically effected this project and what could potentially be done to avoid facing these in the future.

10.1 Late Start

One of the first challenges that had effected this project was the late start. This was in part due to both personal obligations that could not be avoided. As well as in part due to the Coronavirus pandemic. Although this did not effect the overall project progressing, it did push the establised timeframe beyond what had been originally planned.

10.2 Coronavirus

The second major issues encountered was something completely out of our control. The Coronavirus pandemic of 2020 provided a massive slew of issues for all academia. Specifically for this project it meant the general plan for the project, as well as the time plan, were both interrupted. The general lockdown for the United Kingdom resulted in confinement to the home. The availability of face-to-face meetings proved to be unfavourable, and potential disruptions in the home delayed planned work.

10.3 Maths Heavy Topic

Another major issue encountered for this project was the lack of initial mathematical background. This topic is a rather maths heavy topic, with complex algorithms that can confuse most people who do not have strong mathematical skills. This lead to this project being delayed in certain phases where more time had to be spent to understand the maths involved.

10.4 C++ Learning Curve

The final major issue that was encountered in this project is the depth of knowledge required in the chosen programming language. Both C and C++ have a heavy learning curve associated with advanced usage. Like previously stated, this lead to some project phases being delayed due to the challenges of implementing theoretical concepts into program code.

11 Conclusion

- Just make a short summary of every single thing that was typed out above!
- Don't forget to basically copy and paste this to the abstract.

References

- [1] S. Cook, "The complexity of theorem proving procedures," *Proceedings of the third annual ACM symposium on Theory of Computing*, pp. 151–158, 1971.
- [2] L. Levin, "Universal search problems," *Problems of Information Transmission*, pp. 115–116, 1973.
- [3] D. Knuth, The Art of Computer Programming. 2015.
- [4] R. Karp, "Reducibility amond combinatorial problems," *Complexity of Computer Computations*, pp. 85–103, 1972.
- [5] M. Davis and H. Putnam, "A computing procedure for quantification theory," J. *ACM*, vol. 7, p. 201–215, July 1960.
- [6] M. Davis, G. Logemann, and D. Loveland, "A machine program for theorem-proving," *Communications of the ACM*, vol. 5, no. 7, pp. 394–397, 1962.