

AMITY EDUCATIONAL RESOURCE CENTRE YRONS 2019, Amsterdam, Netherland

PROJECT DETAILS FORM

School Name: Gimnazija Jurija Vege, Idrija

S.No	Team Members	Team Leader	Project Title	Abstract (Max 200 words)	Teacher Advisor
1	Patricija Tušar	Patricija Tušar	UV Protection	The Staghorn Sumac is a plant species originating in the	doc. dr. Marija
			Properties of	Eastern US. It is widely cultivated as an ornamental	Gorjanc,
			Cotton and	throughout the temperate world. However, in Europe, it	Magdalena
			Polyamide Dyed	is considered an invasive species.	Klasinc
			with Dye	The purpose of our project is to use the dye extract of an	
			Extracted from	invasive plant species to increase the protective	
			Staghorn Sumac	properties of textiles against ultraviolet (UV) radiation.	
			Drupes	Suntan and sunburn are familiar effects of	
				over-exposure of the skin to UV radiation, along with	
				higher risk of skin cancer. The UV-protective ability of	
				textiles can be better than sunscreens but not all textiles	
				provide significant UV protection. Some dyes absorb	
				light also in UV region and when applied onto textiles,	
				they increase the UV-protective ability of textiles. During	
				the project we collaborated with Marija Gorjanc from	
				the Faculty of Natural Sciences and Engineering in	
				Ljubljana.	
				In our experimental work we extracted dye from Sumac	
				drupes under different pH values and dyed cotton and	

polyamide. The UV protection and light-durability of samples will then be measured. After we conclude the measurements we expect the results to give us at least one viable option that we could potentially offer to consumers. With this we would make use of an invasive plant species, remove it from the environment and offer the public a harmless, natural dye that can protect our skin against UV radiation.

AMITY EDUCATIONAL RESOURCE CENTRE

YRoNS 2019, Amsterdam, Netherland

PROJECT DETAILS FORM

School Name: Gimnazija Jurija Vege, Idrija

S.No	Team Members	Team	Project Title	Abstract (Max 200 words)	Teacher Advisor	
3.140	ream wembers		Troject Hile	Abstract (Max 200 Words)	reaction havison	
1 2	Katarina Krisper Taja Bizjak	Leader Taja Bizjak	Determining the amount of Anthocyans in the juices from different manufacturers	Anthocyans are water-soluble pigments that, depending on their pH, may appear red, purple, or blue. We can find them in plant cell's vacuoles. In addition to acting as antioxidants and fighting free radicals, anthocyans offer anti-inflammatory, anti-viral, and anti-cancer benefits. Having that in mind, we became very interested in this topic and so we wanted to gather the most basic information on Anthocyans including their structure and influence of different pH on them. We were also curious if manufacturers list the real amount of Anthocyans in juices and if there are differences in amount of Anthocyans in juices from our local stores and organic ones. In our research paper we will test juices from six different fruits and vegetables (blackcurrant, apple, cherry, grapes, beetroot, aronia). We will be using anthocyans pH differential spectroscopic method to determine the amount of Anthocyans.	prof. dr. Branka Mozetič Vodopivec, Irena Česnik Vončina	
				apple, cherry, grapes, beetroot, aronia). We will be using anthocyans pH differential spectroscopic method to determine the amount		

AMITY EDUCATIONAL RESOURCE CENTRE YRONS 2019,

Amsterdam, Netherland

PROJECT DETAILS FORM

School Name: Gimnazija Jurija Vege, Idrija

S.No	Team Members	Team Leader	Project Title	Abstract (Max 200 words)	Teache	er Advisor
S.No 1 2	Team Members Deja Prelovec Špela Paglavec	Team Leader Deja Prelovec	Project Title Durability to light, washing and rubbing of polyamide dyed with Japanese knotweed dye	The Japanese knotweed is a plant species from Japan. It is widely cultivated around the world. However, in Slovenia it is considered an invasive species. The purpose of our project is to use the invasive plant species as a textile dye, dye the polyamide and test its durability to light, washing and rubbing. Polyamide is a synthetic textile material used for many products, i.e. socks, swimwear, sportswear, tents, umbrellas, etc. Due to its chemical structure it can be dyed with natural dyes. In our experimental work we extracted dye from Japanese knotweed roots (under neutral and acid conditions). Prior to dyeing, different treatments of polyamide fabric		er Advisor Ir. Marija Magdalena
				In our experimental work we extracted dye from Japanese knotweed roots (under neutral and acid conditions). Prior to dyeing, different treatments of polyamide fabric samples were performed in order to change the colour of the final textile and to increase the colour durability to light, washing and rubbing. The colour of samples was measured before and after durability test.		
				When we calculate all the measurements, we expect the results to be positive and useful. We would like to make use of the invasive plant species, remove it from the environment and offer people a natural dye with good colour durability.		