SOLUTIONS SHEET 7

YANNIS BÄHNI

Exercise 1. We will abreviate $\mathbb{C}^- := \mathbb{C} \setminus \mathbb{R}_{\leq 0}$.

(a) The set \mathbb{C}^- is clearly a star shaped domain with possible centers on the ray $\mathbb{R}_{>0}$. Furtheremore, the function 1/z is holomorphic in \mathbb{C}^- since it is a well-defined rational function there. By the Cauchy integral theorem for star shaped domains f has a primitive $F:\mathbb{C}^-\to\mathbb{C}$ which is explicitly given by

$$F(z) := \int_{[z_0, z]} \frac{\mathrm{d}\zeta}{\zeta} \tag{1}$$

for any $z_0 \in \mathbb{R}_{>0}$. The choice $z_0 = 1$ yields

$$F(1) = \int_{[1,1]} \frac{d\zeta}{\zeta} = 0 \tag{2}$$

since the path [1,1](t)=1, $t\in[0,1]$, is clearly closed (we have that [1,1](0)=1=[1,1](1)) and thus again the Cauchy integral theorem implies that the integral over any closed path vanishes. Hence the primitive F of 1/z on \mathbb{C}^- fulfilling F(1)=0 is given by

$$F(z) = \int_{[1,z]} \frac{\mathrm{d}\zeta}{\zeta} \qquad z \in \mathbb{C}^-.$$
 (3)

(b) Let $z_0 \in \mathbb{C}^-$. Let $B_r(z_0)$ denote the largest ball around z_0 contained in \mathbb{C}^- . By the Cauchy-Taylor expansion theorem we have that

$$F = \sum_{\nu=0}^{\infty} a_{\nu} (z - z_0)^{\nu} \qquad a_{\nu} = \frac{F^{(\nu)}(z_0)}{\nu!}$$
 (4)

in $B_r(z_0)$ since F is clearly holomorphic in \mathbb{C}^- as a primitive. In order to calculate $F^{(\nu)}$, we have to compute $f^{(\nu)}$ since F' = f.

Lemma 0.1. Consider the function $f: \mathbb{C}^{\times} \to \mathbb{C}$ defined by f(z) := 1/z. Then

$$f^{(\nu)}(z_0) = (-1)^{\nu} \frac{\nu!}{z_0^{\nu+1}} \qquad \nu \in \mathbb{N}_0, z_0 \in \mathbb{C}^-.$$
 (5)

(Yannis Bähni) UNIVERSITY OF ZURICH, RÄMISTRASSE 71, 8006 ZURICH *E-mail address*: yannis.baehni@uzh.ch.

Proof. Proof by induction over $\nu \in \mathbb{N}_0$. For $\nu = 0$ the equation clearly holds. Assume it is true for some $\nu \in \mathbb{N}_0$. Then

$$f^{(\nu+1)}(z_0) = (f^{(\nu)})'(z_0) = (-1)^{\nu} \nu! (-(\nu+1)) \frac{1}{z_0^{\nu+2}} = (-1)^{\nu+1} \frac{(\nu+1)!}{z_0^{\nu+2}}.$$
 (6)

Since $F^{(\nu)}(z_0)/\nu! = f^{(\nu-1)}(z_0)/\nu!$ for all $\nu \in \mathbb{N}$, lemma 0.1 implies that

$$F = F(z_0) + \sum_{\nu=1}^{\infty} \frac{(-1)^{\nu-1}}{\nu} \frac{1}{z_0^{\nu}} (z - z_0)^{\nu} \qquad z \in B_r(z_0).$$
 (7)

By

$$\limsup_{\nu \to \infty} \left| \frac{(-1)^{\nu - 1}}{\nu} \frac{1}{z_0^{\nu}} \right|^{1/\nu} = \frac{1}{|z_0|} \limsup_{\nu \to \infty} \frac{1}{\nu^{1/\nu}} = \frac{1}{|z_0|} \lim_{\nu \to \infty} \frac{1}{\nu^{1/\nu}} = \frac{1}{|z_0|}$$
(8)

we see that $R = |z_0|$ using the Cauchy-Hadamard formula.

Exercise 2. For all $z \in B_{2\pi}^{\times}(0)$ we have that

$$\frac{e^z - 1}{z} = \sum_{\nu=1}^{\infty} \frac{z^{\nu-1}}{\nu!} = \sum_{\mu=0}^{\infty} \frac{z^{\mu}}{(\mu+1)!}.$$
 (9)

From (9) it is immediate that

$$\lim_{z \to 0} \frac{e^z - 1}{z} = \lim_{z \to 0} \sum_{\mu = 0}^{\infty} \frac{z^{\mu}}{(\mu + 1)!} = 1$$
 (10)

since the radius of convergence of the right side in (9) is ∞ and thus $\sum_{\mu=0}^{\infty} \frac{z^{\mu}}{(\mu+1)!}$ is clearly continuous at 0. Hence $f \in \mathcal{C}(B_{2\pi}(0))$ and $f \in \mathcal{O}(B_{2\pi}^{\times}(0))$. Since by continuity f is bounded on any compactum $\overline{B_{\varepsilon}}(0)$, $0 < \varepsilon < 2\pi$, Riemann's theorem on removable singularities implies that $f \in \mathcal{O}(B_{2\pi}(0))$. Now the largest disc $B_r(0)$ contained in $B_{2\pi}(0)$ is $B_{2\pi}(0)$ itself, and thus by the Cauchy-Taylor expansion theorem f can be Taylor expanded around 0. The expansion is of the form

$$f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu} = \sum_{\nu=0}^{\infty} \frac{f^{(\nu)}(0)}{\nu!} z^{\nu} = \sum_{\nu=0}^{\infty} \frac{B_{\nu}}{\nu!} z^{\nu}$$
(11)

where $B_{\nu} := f^{(\nu)}(0)$ for all $\nu \in \mathbb{N}_0$.

(i) Clearly we have $B_0 = f^{(0)}(0) = f(0) = 1$. Furthermore, applying the complex version of de l'Hopital rule (justification needed) twice we get

$$B_1 = f'(0) = \lim_{z \to 0} \frac{\mathrm{d}}{\mathrm{d}z} \frac{z}{e^z - 1} = \lim_{z \to 0} \frac{e^z - 1 - ze^z}{(e^z - 1)^2} = \lim_{z \to 0} \frac{-ze^z}{2e^z - 2} = \lim_{z \to 0} \frac{-e^z - ze^z}{2e^z} = -\frac{1}{2}.$$

Next we consider the function f(z) + z/2. We claim that this function is even. Indeed, if $z \neq 0$ we have

$$f(-z) - \frac{z}{2} = \frac{-z}{e^{-z} - 1} - \frac{z}{2} = -\frac{z(1 + e^{-z})}{2(e^{-z} - 1)} = -\frac{z(e^z + 1)}{2(1 - e^z)} = \frac{z(e^z + 1)}{2(e^z - 1)}$$
$$= \frac{z(e^z - 1 + 2)}{2(e^z - 1)} = \frac{z}{e^z - 1} + \frac{z}{2} = f(z) + \frac{z}{2}.$$

Now we have

$$f(z) + \frac{z}{2} = 1 + \sum_{\nu=2}^{\infty} \frac{B_{\nu}}{\nu!} z^{\nu} \qquad z \in B_{z\pi}(0).$$
 (12)

Since f(z) + z/2 is even, we get

$$0 = \sum_{\nu=2}^{\infty} \frac{B_{\nu}}{\nu!} z^{\nu} - \sum_{\nu=2}^{\infty} \frac{B_{\nu}}{\nu!} (-1)^{\nu} z^{\nu} = \sum_{\nu=2}^{\infty} \frac{B_{\nu}}{\nu!} (1 + (-1)^{\nu+1}) z^{\nu} = 2 \sum_{\nu=1}^{\infty} \frac{B_{2\nu+1}}{(2\nu+1)!} z^{2\nu+1}$$
 (13)

The uniqueness of Taylor coefficients therefore implies that $B_{2\nu+1}=0$ for all $\nu\in\mathbb{N}$.

(ii) Since both $e^z - 1 = \sum_{\nu=1}^{\infty} \frac{z^{\nu}}{\nu!}$ and $\sum_{\nu=0}^{\infty} \frac{B_{\nu}}{\nu!} z^{\nu}$ have radius of convergence 2π around 0, the product theorem for power series [RS02, p. 195] implies that

$$z = (e^z - 1) \sum_{\nu=0}^{\infty} \frac{B_{\nu}}{\nu!} z^{\nu} = \left(\sum_{\nu=1}^{\infty} \frac{z^{\nu}}{\nu!}\right) \left(\sum_{\nu=0}^{\infty} \frac{B_{\nu}}{\nu!} z^{\nu}\right) = \sum_{\lambda=0}^{\infty} \left(\sum_{\mu+\nu=\lambda} a_{\mu} \frac{B_{\nu}}{\nu!}\right) z^{\lambda}$$
(14)

where $a_{\mu} := 1/\mu!$ for $\mu \in \mathbb{N}$ and $a_0 := 0$. By the uniqueness of the Taylor coefficients we get

$$0 = \sum_{\mu + \nu = \lambda} a_{\mu} \frac{B_{\nu}}{\nu!} = \sum_{\nu = 0}^{\lambda} a_{\lambda - \nu} \frac{B_{\nu}}{\nu!} = \sum_{\nu = 0}^{\lambda - 1} \frac{B_{\nu}}{\nu!(\lambda - \nu)!} = \frac{1}{\lambda!} \sum_{\nu = 0}^{\lambda - 1} {\lambda \choose \nu} B_{\nu}$$
 (15)

for all $\lambda \in \mathbb{N}_{>1}$ or equivalently

$$\sum_{\nu=0}^{\lambda-1} {\lambda \choose \nu} B_{\nu} = 0 \qquad \lambda \in \mathbb{N}_{>0}.$$
 (16)

(iii) Showing that $B_{\nu} \in \mathbb{Q}$ for all $\nu \in \mathbb{N}_0$ is a simple proof by induction using (ii) and the fact that the binomial coefficients are integers. The case $\nu = 0, 1$ is clear since $B_0 = 1 \in \mathbb{Q}$ and $B_1 = -1/2 \in \mathbb{Q}$. Hence assume that the statement holds for some $\lambda \in \mathbb{N}_{>1}$. Then (ii) yields

$$B_{\lambda+1} = -\frac{1}{\binom{\lambda+2}{\lambda+1}} \sum_{\nu=0}^{\lambda} \binom{\lambda+2}{\nu} B_{\nu}$$
 (17)

but this is a sum of integers and rational numbers, hence rational. Therefore we conclude by the principle of mathematical induction. Towards a contradiction, assume that the sequence $(B_{\nu})_{\nu \in \mathbb{N}_0}$ is bounded, i.e. $|B_{\nu}| \leq M$ for some M > 0. By

$$0 \le \limsup_{\nu \to \infty} \left| \frac{B_{\nu}}{\nu!} \right|^{1/\nu} = \limsup_{\nu \to \infty} \frac{|B_{\nu}|^{1/\nu}}{(\nu!)^{1/\nu}} \le \limsup_{\nu \to \infty} \frac{M^{1/\nu}}{(\nu!)^{1/\nu}} = 0$$
 (18)

we get $R = \infty$ by Cauchy-Hadamard. This contradicts the finite radius of convergence of 2π . Hence $(B_{\nu})_{\nu \in \mathbb{N}_0}$ is unbounded.

References

[RS02] R. Remmert and G. Schumacher. Funktionentheorie 1. Springer-Lehrbuch. Springer Berlin Heidelberg, 2002. ISBN: 9783540418559.