Faculdade de Ciências Universidade de Lisboa

EXAME DE GEODESIA E APLICAÇÕES

1ª Época 4 de Janeiro de 2018

(Duração de 3:00H)

Leia atentamente as perguntas. Complete as suas respostas com toda a informação que achar pertinente, sem divagar e o mais explícito possível. Escreva com <u>LETRA LEGÍVEL</u>.

1 – Responda de forma sucinta às seguintes questões:

- a) Defina o conceito de "constrangimento mínimo" no ajustamento de uma rede geodésica. Justifique as suas vantagens face às restantes alternativas no âmbito de redes de monitorização.
- b) Em relação ao nivelamento geodésico de alta precisão, diga justificando porque é que os desníveis geométricos não correspondem aos respectivos desníveis ortométricos. Indique a respectiva correcção a ser aplicada.
- c) Descreva os passos a seguir na concepção de uma rede geodésia a partir da análise de qualidade *à priori*.
- d) Explique e justifique a técnica de remoção-reposição aplicada à determinação dos modelos regionais do geóide.
- e) Defina os vários problemas de optimização de redes geodésicas, referindo a sua importância na geodesia moderna.

2 – Desenvolva o seguinte tema:

Após um violento sismo que destruiu grande parte das ilhas do Faial e do Pico, você foi contratado pela Secretaria Regional do Planeamento dos Açores como consultor para a construção de uma rede de monitorização geodésica para avaliar a instabilidade da vertente sul da estrutura vulcânica do Pico. Desenvolva um plano de implantação de uma rede com uma precisão média global de 2 cm.

- 3 De forma a compatibilizar a escala das observações GPS com os comprimentos de um Geodímetro electro-óptico, a fim de efectuar um ajustamento combinado, é necessário determinar o respectivo factor de escala. Para tal, resolva sequencialmente os seguintes problemas numéricos (apresente todos os cálculos efectuados e indique as fórmulas utilizadas):
 - a) Determine o azimute geodésico da direcção AB (1ª ordem);
 - b) Corrija a distância medida com o Geodímetro do efeito de curvatura atmosférica, supondo que a razão entre o raio de curvatura do elipsóide e o raio de curvatura atmosférica é k = 1/3;
 - b) Converta as coordenadas geodésicas de A e B em coordenadas cartesianas;
 - c) Determine o factor de escala (em ppm) entre os dois sistemas de medição, Geodímetro e GPS.

DADOS do Problema:

Bibos de l'icelena.			
	φ _{GPS}	$\lambda_{ ext{GPS}}$	h_{GPS}
Vértice A	37° 51'12.26913''	-8° 4' 50.43784''	372.165
Vértice B	37° 53' 59.60639''	-8° 12' 47.91061''	641.673
Dist ABGeodim	12762.431		

(Elipsóide GRS80: a = 6378137 m; $e^2 = 0.00669438$)

Cotações: 1 - 5x(2V); 2 - 4V; 3 - 2x(1V) + 2x(2V)