Stat4DS Homework 02

Old Topics

- **3.16** Define the following events:
 - $S = \{\text{You are sick}\},\$ $S^c = \{\text{You are healthy}\},\$
 - + = {A diagnostic test is positive, i.e. it says your are sick},
 = +^c = {A diagnostic test is negative, i.e. it says your are healthy}.

The test is not perfect and it is known that:

- P(+|S) = 0.98,
- $P(-|S^c) = 0.95$.

In addition the disease we are after is quite rare so that Pr(S) = 0.01, that is, if we pick a random person in out population he/she will we sick only 1% of the times.

a. Here we are asked to find Pr(S|+). From the Bayes' Rule (see page 32) we get

$$\mathsf{P}(S|+) = \frac{\mathsf{P}(S\cap +)}{\mathsf{P}(+)} = \frac{\mathsf{P}(+|S)\cdot\mathsf{P}(S)}{\mathsf{P}(+|S)\cdot\mathsf{P}(S)+\mathsf{P}(+|S^c)\cdot\mathsf{P}(S^c)} = \frac{0.98\cdot0.01}{0.98\cdot0.01+(1-0.95)(1-0.01)} = 0.165.$$

b. The Bayes' Rule is quite useful because it allows for sequential updates of some initial (probabilistic) belief. In the previous point we started from the *prior* probability Pr(S) = 0.01 to get the *posterior* (i.e. after we have seen a positive test) probability P(S|+). Here, since we have already gathered this information, we can substitute P(S|+) to P(S) in the Bayes' formula to get the probability of the event of interest. In other words:

$$P(S| +_2 \cap +_1) = \frac{P(+_2|S) \cdot P(S|+_1)}{P(+_2|S) \cdot P(S|+_1) + P(+_2|S^c) \cdot (1 - P(S|+_1))} = \frac{0.98 \cdot 0.165}{0.98 \cdot 0.165 + (1 - 0.95) \cdot (1 - 0.165)} = \frac{0.1617}{0.1617 + 0.0417} = 0.7948 \text{ (very high!)}$$

To convince you, let's work out the math! Define the following events:

S = {You are sick},
 S^c = {You are healthy},

• $+_1 = \{A \text{ diagnostic test is positive the first time you use it}\},$ $-_1 = +_1^c = \{A \text{ diagnostic test is negative the first time you use it}\},$ $+_2 = \{A \text{ diagnostic test is positive the second time you use it}\},$ $-_2 = +_2^c = \{A \text{ diagnostic test is negative the second time you use it}\}.$

So we want to find:

$$\mathsf{P}(S|+_2\cap+_1)=\frac{\mathsf{P}(S\cap+_2\cap+_1)}{\mathsf{P}(+_2\cap+_1)}=\frac{\mathsf{P}(+_2|S\cap+_1)\mathsf{P}(+_1|S)\mathsf{P}(S)}{\mathsf{P}(+_2\cap+_1)}.$$

Now, remember that the results of sequential tests are independent by assumption, so we can pull the event $+_1$ out of the conditioning in the numerator, obtainig: $P(+_2|S \cap +_1) = P(+_2|S)$. Consequently, expanding the denominator by the LAW OF TOTAL PROBABILITY, we have

$$P(S| +_2 \cap +_1) = \frac{P(+_2|S) \cdot \left[P(+_1|S)P(S)\right]}{P(+_2 \cap +_1)} = \frac{P(+_2|S) \cdot \left[P(+_1|S)P(S)\right]}{P(+_2|S) \cdot \left[P(+_1|S)P(S)\right] + P(+_2|S^c) \cdot \left[P(+_1|S^c)P(S^c)\right]}.$$

Finally, if we multiply and divide the last quantity by $\frac{1}{P(+1)}$, we get

$$P(S|+_2\cap +_1) = \frac{P(+_2|S) \cdot \left[\frac{P(+_1|S)P(S)}{P(+_1)}\right]}{P(+_2|S) \cdot \left[\frac{P(+_1|S)P(S)}{P(+_1)}\right] + P(+_2|S^c) \cdot \left[\frac{P(+_1|S^c)P(S^c)}{P(+_1)}\right]} = \frac{P(+_2|S) \cdot P(S|+_1)}{P(+_2|S) \cdot P(S|+_1) + P(+_2|S^c) \cdot (1 - P(S|+_1))}'$$

as expected.

Chapter 5

5.1 Let X be a continuous r.v. with density function

$$f(x) = \begin{cases} \frac{3}{4} & 0 \le x \le 1\\ \frac{1}{4} & 2 \le x \le 3\\ 0 & elsewhere \end{cases}$$

a. Here is a graphical representation.

Density function


```
 \begin{array}{l} x = seq(-1,4,.01) \\ f.x = 3/4*((x>=0)\&(x<=1)) + 1/4*((x>=2)\&(x<=3)) \\ plot(x,f.x,lwd=2,col=4,cex=.5,main="Density function") \\ segments(0,0,0,3/4,lty=2) \\ segments(1,0,1,3/4,lty=2) \\ segments(2,0,2,1/4,lty=2) \\ segments(3,0,3,1/4,lty=2) \\ points(0,3/4,col=2,pch=19,cex=1.5) \\ points(1,3/4,col=2,pch=19,cex=1.5) \\ points(2,1/4,col=2,pch=19,cex=1.5) \\ points(3,1/4,col=2,pch=19,cex=1.5) \\ \end{array}
```

- **b.** Deriving the c.d.f. is straightforward just looking at the previous figure. We can proceed in this way:
 - If x < 0 then F(x) = 0
 - If $0 \le x \le 1$ then F(x) will be the area of a rectangle of height $\frac{3}{4}$ and base x, for $0 \le x \le 1$, i.e. $F(x) = \frac{3}{4}x$.

More formally
$$F(x) = \int_0^x \frac{3}{4}u du = \left[\frac{3}{4}u\right]_0^x = \frac{3}{4}x$$

- If 1 < x < 2 then F(x) = 3/4.
- If $2 \le x \le 3$ then F(x) will be the sum of the areas of two rectangles: the former has dimensions $\frac{3}{4}$ and 1, the latter has height $\frac{1}{4}$ and base x-2, for $2 \le x \le 3$, i.e. $F(x) = \frac{3}{4} + \frac{1}{4}(x-2) = \frac{x+1}{4}$ More formally $F(x) = \int_0^1 \frac{3}{4}u du + \int_2^x \frac{1}{4}u du = \frac{3}{4} + \left[\frac{1}{4}u\right]_2^x = \frac{3}{4} + \frac{x}{4} \frac{2}{4} = \frac{x+1}{4}$
- Finally for x > 1, F(x) = 1 that is the sum of the areas of two rectangles: the former has dimensions $\frac{3}{4}$ and 1, the latter has dimensions $\frac{1}{4}$ and 1.

In summary, this is the c.d.f.

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{3}{4}x & 0 \le x \le 1 \\ \frac{3}{4} & 1 < x < 2 \\ \frac{x+1}{4} & 2 \le x \le 3 \\ 1 & x > 3 \end{cases}$$

and this is how it looks like:

Distribution function


```
 \begin{array}{l} x = \text{seq}(-1,4,.01) \\ F.x = 3/4*x*((x>=0)\&(x<=1)) + 3/4*((x>1)\&(x<2)) + (1/4+ 1/4*x)*((x>=2)\&(x<=3)) + (x>3) \\ \text{plot}(x,F.x,\text{lwd}=4,\text{col}=4,\text{cex}=.5,\text{ylim}=\text{c}(0,1),\text{xlim}=\text{c}(-1,4),\text{type}="l",\text{main}="Distribution function"} \\ \text{segments}(1,0,1,3/4,\text{lty}=2) \\ \text{segments}(2,0,2,3/4,\text{lty}=2) \\ \text{segments}(3,0,3,1,\text{lty}=2) \\ \text{segments}(4,0,4,1,\text{lty}=2) \\ \end{array}
```

5.3 Let X be a r.v. with c.d.f. $F(x) = 2x^2 - x^4$.

R code:

$$\begin{array}{l} x = seq(0,1,.01) \\ F.x = 2*x^2 - x^4 \\ plot(x,F.x,ylim=c(0,1),type="l",main="Distribution function",col=4,lwd=4) \end{array}$$

Distribution function

a. We are interested in $P\left(\frac{1}{4} \le X \le \frac{3}{4}\right)$, that can be expressed in terms of the c.d.f.:

$$P\left(\frac{1}{4} \le X \le \frac{3}{4}\right) = F\left(\frac{3}{4}\right) - F\left(\frac{1}{4}\right) = 2\left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^4 - 2\left(\frac{1}{4}\right)^2 + \left(\frac{1}{4}\right)^4 = \frac{176}{256} = \frac{11}{16}$$

b. In order to obtain the p.d.f. we only need to derive the c.d.f., that is:

$$f(x) = F'(x) = 2 \cdot 2x - 4x^3 = 4x(1 - x^2)$$

And here it is:

R code:

$$x = seq(0,1,.01)$$

 $f.x = 4*x*(1-x^2)$
 $plot(x,f.x,type="l",main="Density function",col=4,lwd=4)$

5.7 Let us consider the following r.v.:

S = "score of a student"

X = "the student pass the exam"

The probability density function associated to S is

$$f_S(x) = \begin{cases} 4x & 0 \le x \le 1/2 \\ 4 - 4x & 1/2 \le x \le 1 \\ 0 & elsewhere \end{cases}$$

We also know that the probability that a student passes the exam is $P(X = 1) = P(S \ge 0.55)$.

a. Conversely, the probability that the student fails the exam is

$$P(X = 0) = P(S < 0.55) = F_S(0.55) = \int_0^{0.55} f_S(x)dx =$$

$$= \int_0^{0.5} f_S(x)dx + \int_{0.5}^{0.55} f_S(x)dx =$$

$$= \left[4\frac{x^2}{2}\right]_0^{0.5} + \left[4x - 4\frac{x^2}{2}\right]_{0.5}^{0.55} =$$

$$= 2 \cdot (0.5)^2 + 4 \cdot 0.55 - 2(0.55)^2 - 4 \cdot 0.5 + 2(0.5)^2 = 0.595$$

Density function


```
\begin{array}{l} par(cex=1.5) \\ x = seq(-.5,1.5,.01) \\ f.x = 4*x*((x>=0)&(x<=1/2)) + (4-4*x)*((x>1/2)&(x<=1)) \\ plot(x,f.x,type="l",main="Density function",col=4,lwd=4) \\ polygon(c(x[x<=0.55],rev(x[x<=0.55])),c(f.x[x<=0.55],rep(0,length(x[x<=.55]))), \\ col=2,density=c(10,20),angle=c(-45,45),lwd=2) \end{array}
```

b. The 50th percentile of the distribution of S can be easily derived noting that the area under the density curve can be splitted in two triangles of area 1/2 (as shown in the following picture).

Formally we need to find

$$q_{50}$$
: $P(S < q_{50}) = 0.50$

and we can check that for $0 \le y \le 1/2$

$$P(S < y) = \int_0^y 4x dx = \left[4\frac{x^2}{2}\right]_0^y = 2y^2 = 0.50 \iff y^2 = \frac{1}{4} \iff y = \frac{1}{2}$$

Hence we can conclude that $q_{50} = 0.5$

5.11 Recalling the definition the **median** $q_{0.5}$ is the value such that

$$F(q_{0.5}) = P(X \le q_{0.5}) = 0.5$$

and, if the c.d.f is invertible we can directly compute:

$$q_{0.5} = F^{INV}(0.5)$$

When we consider $X \sim Exp(\lambda)$ we have

$$0.5 = 1 - e^{-\lambda q_{0.5}} \Rightarrow q_{0.5} = \frac{\ln(0.5)}{-\lambda}$$

5.14 In order to compute the 10th percentile of a standard normal distribution we could use the table (Table B.1 in the book), but...we don't want to!!

Using R we easily get

```
> qnorm(0.1)
[1] -1.281552
```

Note that we do not need to specify the parameters because the default values already correspond to the standard normal (mean=0, sd=1).

Standard Normal density


```
par(cex=1.5)
x = seq(-4,4,.01)
f.x = dnorm(x)
plot(x,f.x,type="l",main="Standard Normal density",col=4,lwd=4)
polygon(c(x[x<=qnorm(0.1)],rev(x[x<=qnorm(0.1)])),
c(f.x[x<=qnorm(0.1)],rep(0,length(x[x<=qnorm(0.1)]))),
col=3,density=c(10,20),angle=c(-45,45),lwd=2)
points(qnorm(.1),0,col=4,lwd=3,pch=6,cex=2)</pre>
```

7.3 From the ALTERNATIVE EXPRESSION FOR THE VARIANCE (see page 97) we know that:

$$\mathbb{E}\left(X^2\right) = \mathbb{V}ar(X) + [\mathbb{E}(X)]^2$$

so, since $\mathbb{E}(X) = 2$ and $\mathbb{V}ar(X) = 3$, we get

$$\mathbb{E}(X^2) = 3 + 2^2 = 7.$$

- 7.4 Let X be a random variable with $\mathbb{E}(X) = 2$ and $\mathbb{V}ar(X) = 4$ and let Y = -2X + 3 = g(X) where $g(\cdot)$ is just a linear transformation/change of units. By using the basic properties of expectation and variance (see page 98), we get:
 - $\mathbb{E}(Y) = \mathbb{E}(-2X + 3) = -2 \cdot \mathbb{E}(X) + 3 = -2 \cdot 2 + 3 = -1;$
 - $Var(Y) = Var(-2X + 3) = (-2)^2 \cdot Var(X) = 4 \cdot 4 = 16.$
- 7.7 Let X be a continuous random variable having the following density

$$f_X(x) = \begin{cases} 4x - 4x^3 & x \in [0, 1]; \\ 0 & \text{otherwise;} \end{cases}$$

and let $Y = 2 \cdot X + 3 = g(X)$ where $g(\cdot)$ is, once again, a linear transformation. By using the basic properties of expectation and variance (see page 98) we know that:

- $\mathbb{E}(Y) = \mathbb{E}(2X + 3) = 2 \cdot \mathbb{E}(X) + 3$;
- $Var(Y) = Var(2X + 3) = (2)^2 \cdot Var(X);$

so, to complete the job, we need to calculate $\mathbb{E}(X)$ and $\mathbb{V}ar(X)$.

• By definition of expectation for continuous r.v. (see page 91), and noticing that $f_X(\cdot)$ is 0 outside the interval [0, 1], we get:

$$\mathbb{E}(X) = \int x f_X(x) dx = \int_0^1 x (4x - 4x^3) dx = 4 \cdot \left[\frac{x^3}{3} \Big|_0^1 \right] - 4 \cdot \left[\frac{x^5}{5} \Big|_0^1 \right] = 4 \cdot \frac{1}{3} - 4 \cdot \frac{1}{5} = \frac{4}{3} - \frac{4}{5} = \frac{8}{15}.$$

• From the alternative expression for the variance (see page 97) we know that:

$$\mathbb{V}ar(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$$

so we need to find $\mathbb{E}(X^2)$. By applying what we called the Law of the Lazy Statistician (a.k.a. the Chance of Variable Formula, see page 96), we get that:

$$\mathbb{E}(X^2) = \int x^2 f_X(x) dx = \int_0^1 x^2 (4x - 4x^3) dx = \left[\frac{x^4}{4}\Big|_0^1\right] - 4 \cdot \left[\frac{x^6}{6}\Big|_0^1\right] = 4 \cdot \frac{1}{4} - 4 \cdot \frac{1}{6} = 1 - \frac{2}{3} = \frac{1}{3}.$$

Hence

$$Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2 = \frac{1}{3} - (\frac{8}{15})^2 = \frac{11}{225}.$$

So, finally

- $\mathbb{E}(Y) = \mathbb{E}(2X + 3) = 2 \cdot \mathbb{E}(X) + 3 = 2 \cdot \frac{8}{15} + 3 = \frac{61}{15}$;
- $\mathbb{V}ar(Y) = \mathbb{V}ar(2X + 3) = (2)^2 \cdot \mathbb{V}ar(X) = 4 \cdot \frac{11}{225} = \frac{44}{225}.$

- # Define the PDF of the r.v. X $x.pdf = function(x)\{(4*x 4*(x^3))*(x>=0)*(x<=1)\}$
- # Define the PDF of the r.v. Y = 2*X + 3 = g(X)

```
# by using the usual formula with g^-1(y) = (y - 3)/2
y.pdf = function(y){ x.pdf((y - 3)/2)*abs(1/2)}

# Plot the pdf of X
curve(x.pdf(x), from = -1, to = 7, n = 200, lwd = 2, col = "navy", xlab = "x", ylab = "pdf")

# Add the pdf of Y
curve(y.pdf(x), n = 200, lwd = 2, col = "darkred", add = TRUE)

# Add a legend (you have to click on the plot to place it!)
legend(locator(1), c("PDF of X", "PDF of Y"), col = c("navy", "darkred"), lwd = 2)

# Add a dot for E(X) and some text
points(8/15,0, pch = 24, col = "navy", bg = "blue")
text(8/15,0, "E(X)", pos = 3)

# Add a dot for E(Y) and some text
points(61/15,0, pch = 24, col = "darkred", bg = "red")
text(61/15,0, "E(Y)", pos = 3)
```

9.1 From the table of the joint probabilities P(X = a, Y = b) we have to determine the marginal probability distribution of X and Y, i.e. P(X = a) and P(Y = b).

		а				
		1	2	3	4	P(Y = b)
	1	16/136	3/136	2/136	13/136	34/136
b	2	5/136	10/136	11/136	8/136	34/136
	3	9/136	6/136	7/136	12/136	34/136
	4	4/136	15/136	14/136	1/136	34/136
	P(X = a)	34/136	34/136	34/136	34/136	1

9.3 Given the above distribution for *X* and *Y* we can compute some probabilities of interest.

a.
$$P(X = Y)$$

		а				
		1	2	3	4	P(Y = b)
	1	16/136	3/136	2/136	13/136	34/136
b	2	5/136	10/136	11/136	8/136	34/136
	3	9/136	6/136	7/136	12/136	34/136
	4	4/136	15/136	14/136	1/136	34/136
	P(X = a)	34/136	34/136	34/136	34/136	1

$$P(X = Y) = P(X = 1, Y = 1) + P(X = 2, Y = 2) + P(X = 3, Y = 3) + P(X = 4, Y = 4) =$$

= $\frac{16}{136} + \frac{10}{136} + \frac{7}{136} + \frac{1}{136} = \frac{34}{136}$

b.
$$P(X + Y = 5)$$

		а				
		1	2	3	4	P(Y=b)
	1	16/136	3/136	2/136	13/136	34/136
b	2	5/136	10/136	11/136	8/136	34/136
	3	9/136	6/136	7/136	12/136	34/136
	4	4/136	15/136	14/136	1/136	34/136
	P(X = a)	34/136	34/136	34/136	34/136	1

$$P(X + Y = 5) = P(X = 1, Y = 4) + P(X = 2, Y = 3) + P(X = 3, Y = 2) + P(X = 4, Y = 1) =$$

$$= \frac{4}{136} + \frac{6}{136} + \frac{11}{136} + \frac{13}{136} = \frac{34}{136}$$

c. $P(1 < X \le 3, 1 < Y \le 3)$

		а				
		1	2	3	4	P(Y = b)
	1	16/136	3/136	2/136	13/136	34/136
b	2	5/136	10/136	11/136	8/136	34/136
	3	9/136	6/136	7/136	12/136	34/136
	4	4/136	15/136	14/136	1/136	34/136
	P(X = a)	34/136	34/136	34/136	34/136	1

$$P(1 < X \le 3, 1 < Y \le 3) = P(X = 2, Y = 2) + P(X = 2, Y = 3) + P(X = 3, Y = 2) + P(X = 3, Y = 3) =$$

$$= \frac{10}{136} + \frac{6}{136} + \frac{11}{136} + \frac{7}{136} = \frac{34}{136}$$

d. $P((X, Y) \in \{1, 4\} \times \{1, 4\})$

		а				
		1	2	3	4	P(Y=b)
	1	16/136	3/136	2/136	13/136	34/136
b	2	5/136	10/136	11/136	8/136	34/136
	3	9/136	6/136	7/136	12/136	34/136
	4	4/136	15/136	14/136	1/136	34/136
	P(X = a)	34/136	34/136	34/136	34/136	1

$$P((X,Y) \in \{1,4\} \times \{1,4\}) = P(X = 1, Y = 1) + P(X = 1, Y = 4) + P(X = 4, Y = 1) + P(X = 4, Y = 4) = \frac{16}{136} + \frac{4}{136} + \frac{13}{136} + \frac{1}{136} = \frac{34}{136}$$

9.7 Data on hair color and eye color are summarized in the following table:

	hair color			
eye color	fair	medium	dark	
light	1168	825	305	
dark	573	1312	1200	

Dividing each number by the total 5383 the table is turned in the joint probability distribution of X and Y.

a. Determine the joint and marginal probability distributions of X and Y.

eye color	fair	medium	dark	P(Y = b)
light	0.22	0.15	0.06	0.43
dark	0.11	0.24	0.22	0.57
P(X = a)	0.33	0.39	0.28	1

a. In order to check whether X and Y are independent we should verify that P(X = a, Y = b) = P(X = a)P(Y = b) is satisfied for all a and b. In this case, for instance:

$$P(X = 1, Y = 1) = 0.22 \neq P(X = 1) \cdot P(Y = 1) = 0.33 \cdot 0.45 = 0.14$$

then we can conclude that X and Y are not independent.

9.12 The joint probability density function of (X,Y) is

$$f(x,y) = K(3x^2 + 8xy)$$
 for $0 \le x \le 1$ and $0 \le y \le 2$

and 0 otherwise.

a. To find *K* we have to ensure that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$.

$$1 = \int_0^1 \int_0^2 K(3x^2 + 8xy) dx dy =$$

$$= \int_0^1 3Kx^2 \left(\int_0^2 dy \right) dx + \int_0^1 8Kx \left(\int_0^2 y dy \right) dx =$$

$$= \int_0^1 3Kx^2 \left[y \right]_0^2 dx + \int_0^1 8Kx \left[\frac{y^2}{2} \right]_0^2 dx =$$

$$= 6K \left[\frac{x^3}{3} \right]_0^1 + 16K \left[\frac{x^2}{2} \right]_0^1 = 2K + 8K = 10K \Longrightarrow K = 1/10$$

b. In order to determine the probability $P(2X \le Y)$ we need to integrate over all possible values of y, i.e. $0 \le y \le 2$, and with respect to those value of x such that 2x < y, i.e. $0 \le x \le y/2$.

$$\int_0^2 \left(\int_0^{y/2} \frac{1}{10} (3x^2 + 8xy) dx \right) dy =$$

$$= \int_0^2 \frac{1}{10} \left[3\frac{x^3}{3} + 8y\frac{x^2}{2} \right]_0^{y/2} dy =$$

$$= \frac{1}{10} \int_0^2 \left(\frac{y^3}{8} + 4y\frac{y^2}{4} \right) dy =$$

$$= \frac{1}{10} \int_0^2 \frac{9}{8} y^3 dy = \frac{1}{10} \frac{9}{8} \frac{16}{4} = \frac{9}{20}$$

Exercises from outer space

1. The CDF G(y) corresponding to the PDF g(y) is, for 0 < y < 2,

$$G(y) = \int_0^y g(t)dt = \int_0^y \frac{3}{8}t^2dt = \frac{1}{8}y^3.$$

By the *Quantile Trasform*, we know that the CDF of the random variable $Y = G^{-1}(X)$ will be $G(\cdot)$. We must therefore determine the inverse function $G^{-1}(\cdot)$. If

$$X=G(Y)=\frac{Y^3}{8},$$

then $Y = G^{-1}(X) = 2X^{1/3}$. It follows that $Y = 2X^{1/3}$.

- 2. To start with, lets define
 - N = {die score},
 - $X = \{\text{number of Heads in } N \text{ launches}\} = R_1 + R_2 + \dots + R_N = \sum_{i=1}^N R_i, \text{ where } i = 1,\dots,N$

$$R_i = \begin{cases} 1, & \text{if you see Head in the } i^{\text{th}} \text{ coin toss;} \\ 0, & \text{otherwise;} \end{cases}$$

are N independent Bernoulli random variables with parameter $p = \mathbb{P}(\text{Head}) = \frac{1}{2}$.

Clearly we have

- $\bullet \ \mathbb{E}(R_i) = p = \frac{1}{2}.$
- $Var(R_i) = p(1-p) = \frac{1}{2}(1-\frac{1}{2}) = \frac{1}{4}$.
- $\mathbb{E}(N) = \frac{1}{6}(1+2+3+4+5+6) = \frac{1}{6} \cdot (\frac{6(6+1)}{2}) = \frac{7}{2} = 3.5.$
- $\mathbb{V}ar(N) = \mathbb{E}(N^2) \left(\mathbb{E}(N)\right)^2 = \frac{1}{6}\left(1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2\right) \left(\frac{7}{2}\right)^2 = \frac{91}{6} \frac{49}{4} = \frac{35}{12} \approx 2.917.$

Then, for each fixed $n \in \{1, 2, 3, 4, 5, 6\}$, we have

- $\mathbb{E}(X|N=n) = \mathbb{E}(R_1 + R_2 + \cdots + R_n) = n \cdot \mathbb{E}(R) = n \cdot p = \frac{n}{2}$.
- $Var(X|N = n) = Var(R_1 + R_2 + \dots + R_n) = n \cdot Var(R) = n \cdot p(1 p) = \frac{n}{4}$.

So finally, applying the **law of iterated expectations** and the **law of total variance** we saw in class, we get

•
$$\mathbb{E}(X) = \mathbb{E}_N(\mathbb{E}(X|N)) = \mathbb{E}_N(\frac{N}{2}) = \frac{1}{2}\mathbb{E}(N) = \frac{7}{4} = 1.75.$$

- $\mathbb{V}ar(X) = \mathbb{E}_N\left(\mathbb{V}ar(X|N)\right) + \mathbb{V}ar_N\left(\mathbb{E}(X|N)\right) = \mathbb{E}_N\left(\frac{N}{4}\right) + \mathbb{V}ar_N\left(\frac{N}{2}\right) = \frac{1}{4}\mathbb{E}(N) + \frac{1}{4}\mathbb{V}ar(N) = \frac{1}{4}\left(\frac{7}{2} + \frac{35}{12}\right) = \frac{1}{4} \cdot \frac{77}{12} = \frac{77}{48} \approx 1.604.$
- $SD(X) = \sqrt{Var(X)} = \sqrt{\frac{77}{48}} \approx 1.266.$

THE END