Лабораторная работа 4. Линейные операторы

Примеры и указания

Линейное преобразование в пространстве \mathbb{R}^3 Матрица оператора в разных базисах Собственные векторы и собственные значения Характеристический многочлен Приведение матрицы к диагональному виду

Линейное преобразование A трехмерного пространства \mathbf{R}^3 переводит треугольник с вершинами в точках $U_1(1,1,1)$, $U_2(1,2,0)$, $U_3(1,0,-1)$ соответственно в треугольник с вершинами $V_1(3,5,0)$, $V_2(3,6,-1)$, $V_3(-3,-8,1)$.

Запишем радиус-векторы указанных точек

$$u_1 = (1,1,1)^T, u_2 = (1,2,0)^T, u_3 = (1,0,-1)^T$$

 $v_1 = (3,5,0)^T, v_2 = (3,6,-1)^T, v_3 = (-3,-8,1)^T.$

Искомое преобразование V = AU существует и единственно, так как векторы u_1, u_2, u_3 — линейно независимы (проверьте!) и, следовательно, составляют базис пространства ${\bf R}^3$.

<u>1. Найдем матрицу</u> A_{ijk} преобразования A в ортонормированном базисе i, j, k.

Имеют место соотношения $v_i = Au_i$, i = 1,2,3, которые могут быть записаны в виде матричного уравнения $V = A_{ijk}U$ или

$$\begin{pmatrix} 3 & 3 & -3 \\ 5 & 6 & -8 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

Предложите несколько способов решения матричного уравнения.

Один из способов (не самый рациональный). Умножая каждую строку матрицы A на столбцы матрицы U, запишем и решим три системы линейных уравнений

$$\begin{cases} a_{11} + a_{12} + a_{13} = 3, & a_{21} + a_{22} + a_{23} = 5, \\ a_{11} + 2a_{12} = 3, & a_{21} + 2a_{22} = 6, \\ a_{11} - a_{13} = -3, & a_{21} - a_{23} = -8, \end{cases} \begin{cases} a_{31} + a_{32} + a_{33} = 1, \\ a_{31} + 2a_{32} = -1, \\ a_{31} - a_{33} = 1. \end{cases}$$

Искомая матрица линейного оператора в ортонормированном базисе i, j, k имеет вид

$$A_{ijk} = \begin{pmatrix} -1 & 2 & 2 \\ -4 & 5 & 4 \\ 1 & -1 & 0 \end{pmatrix}.$$

Решение в Excel матричного уравнения $V = A_{ijk}U$:

		**	· · · _ 1
A_{iik}	=	V .	U^{-1}

	G6	-	(<i>f</i> _∞ {=MУI	инож(в6:	D8;G2:I4)}				
4	Α	В	С	D	Е	F	G	Н	I	
1										
2	U=	1	1	1 1		U^-1=	0,666667	0,666667 -0,33333		
3		1	2	0			-0,33333	0,666667	-0,33333	
4		1	0	-1			0,666667	-0,33333	-0,33333	
5										
6	V=	3	3	-3		Aijk=VU^-1	-1	2	2	
7		5	6	-8			-4	5	4	
8		0	-1	1			1	-1	0	
9										
10										

2. Найдем матрицу A_{μ} преобразования A в базисе u_1, u_2, u_3 .

Матрицу A_u ищем по формуле $A_u = U^{-1}A_{ijk}U$, где

$$U = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$

— матрица перехода от базиса i, j, k к базису u_1, u_2, u_3 .

Вычислив обратную матрицу U^{-1} , перемножив матрицы, получим

$$A_{u} = \frac{1}{3} \begin{pmatrix} 1 & -2 & 4 \\ 7 & 10 & -14 \\ 1 & 1 & 1 \end{pmatrix}.$$

		_	_		_										
	L6	•	()	f _{sc} {=Myl	множ(L2:	N4;B2:D4)}									
	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	С
1															
2	U=	1	1	1		U^-1=	0,666667	-0,33333	0,666667		U^-1 Aijk=	1,333333	-1	2,22E-16	
3		1	2	0			-0,33333	0,666667	-0,33333			-2,66667	3	2	
4		1	0	-1			0,666667	-0,33333	-0,33333			0,333333	-1,7E-16	2,22E-16	
5															
6	V=	3	3	-3		Aijk=VU^-1	-1	2	2		Au=	0,333333	-0,66667	1,333333	
7		5	6	-8			-4	5	4			2,333333	3,333333	-4,66667	
8		0	-1	1			1	-1	0			0,333333	0,333333	0,333333	Į.
9															

!!!!!Матрица линейного оператора зависит от выбора базиса.

Утверждение. Матрица линейного оператора позволяет найти образ любого вектора по единому алгоритму в выбранном базисе.

Утверждение. Матрица линейного оператора имеет диагональный вид тогда и только тогда, когда каждый базисный вектор является собственным вектором этого линейного оператора. В этом случае на главной диагонали матрицы стоят собственные числа.

Собственные значения и собственные векторы оператора А.

Опр. *Ненулевой* элемент $x \in L$ $(x \neq 0)$ называется *собственным вектором* линейного оператора $A: L \to L$, если существует такое число λ , что

$$A\overline{x} = \lambda \overline{x}$$
.

Число λ называется *собственным значением* (*собственным числом*) – линейного оператора A, соответствующим собственному вектору X.

Характеристический многочлен матрицы линейного оператора

Для нахождения собственных чисел матрицы A следует решить уравнение $\det(A - \lambda E) = 0$, т. е.

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$
 (1)

Уравнение (1) называется **характеристическим уравнением** матрицы A, а его корни называются **характеристическими числами**, или **собственными значениями** матрицы A. Многочлен n-й степени в левой части характеристического уравнения (1), называется **характеристическим многочленом** матрицы A.

Характеристический многочлен имеет n корней, вообще говоря, комплексных, с учетом их кратности.

<u>Замечание</u>. Собственными значениями линейного оператора в *действительном* линейном пространстве являются только *действительные* корни характеристического уравнения.

<u>!!!!!!Утверждение.</u> Характеристический многочлен матрицы линейного оператора не зависит от выбора базиса.

3. Найдем характеристический многочлен и собственные значения матрицы

$$A = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix}.$$

 $Peшение. \ \underline{1\ cnocof}.\ Coбственные значения определим из условия <math>\overline{\det(A-\lambda E)}=0,$

$$\begin{vmatrix} -1 - \lambda & 3 & -1 \\ -3 & 5 - \lambda & -1 \\ -3 & 3 & 1 - \lambda \end{vmatrix} = 0;$$

$$(-1 - \lambda)((5 - \lambda)(1 - \lambda) + 3) - 3(-3 + 3\lambda - 3) - (-9 + 15 - 3\lambda) = 0;$$

$$-\lambda^3 + 5\lambda^2 - 8\lambda + 4 = 0;$$

$$\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0.$$

2 способ. Характеристический многочлен матрицы A может быть вычислен по формуле

$$\det(A - \lambda E) = (-\lambda)^n + s_1(-\lambda)^{n-1} + \dots + s_{n-1}(-\lambda) + s_n,$$

где коэффициент s_k этого многочлена равен сумме диагональных миноров порядка k.

Найдем главные миноры матрицы
$$A = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix}$$
.
$$s_1 = -1 + 5 + 1 = 5, \qquad \qquad s_2 = \begin{vmatrix} -1 & 3 \\ -3 & 5 \end{vmatrix} + \begin{vmatrix} -1 & -1 \\ -3 & 1 \end{vmatrix} + \begin{vmatrix} 5 & -1 \\ 3 & 1 \end{vmatrix} = 8,$$

$$s_3 = \begin{vmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{vmatrix} = 4$$

Характеристический многочлен имеет вид $\det(A - \lambda E) = f(\lambda) = -\lambda^3 + 5\lambda^2 - 8\lambda + 4$.

4. Построив (он-лайн) график функции $f(\lambda) = 0$, можно оценить корни характеристического уравнения с учетом их кратности.

5. Найдем характеристические числа. Ищем корни среди делителей свободного члена, т.е. среди чисел ± 1 , ± 2 , ± 4 . Заметим, что $\lambda_1 = 1$ является корнем этого уравнения. Разделим характеристический многочлен на $\lambda - 1$:

Таким образом, $(\lambda-1)(\lambda^2-4\lambda+4)=0$, откуда получим **собственные значения** матрицы: $\lambda_1=1; \lambda_2=\lambda_3=2.$

6. Найдем собственные векторы оператора.

Собственные векторы удовлетворяют условию $(A - \lambda E)X = O$,

подставляя $\lambda = 1$, для собственного вектора $X_1 = (x_1, x_2, x_3)^T$ получим систему

$$\begin{pmatrix} -1-1 & 3 & -1 \\ -3 & 5-1 & -1 \\ -3 & 3 & 1-1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} -2x_1 + 3x_2 - x_3 = 0, \\ -3x_1 + 4x_2 - x_3 = 0, \\ -3x_1 + 3x_2 = 0. \end{cases}$$

Равносильная система имеет вид

$$\begin{cases} x_1 - x_2 = 0, \\ x_2 - x_3 = 0, \\ 0 = 0, \end{cases}$$
 T. e. $x_1 = x_2 = x_3$.

Таким образом, с точностью до числового множителя собственный вектор имеет вид $X_1 = \begin{pmatrix} 1,1,1 \end{pmatrix}^T.$

Найдем собственные векторы, соответствующие собственному числу $\lambda = 2$. Их координаты удовлетворяют условию

$$\begin{pmatrix} -1-2 & 3 & -1 \\ -3 & 5-2 & -1 \\ -3 & 3 & 1-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} -3x_1 + 3x_2 - x_3 = 0, \\ -3x_1 + 3x_2 - x_3 = 0, \\ -3x_1 + 3x_2 - x_3 = 0, \end{cases}$$

Полагая $x_1 = c_1$, $x_2 = c_2$, получим $x_3 = -3c_1 + 3c_2$.

Эти формулы при $c_1, c_2 \in \mathbf{R}$ задают все решения системы и, соответственно, все собственные векторы, отвечающие собственному числу $\lambda = 2$.

При $c_1 = 1$, $c_2 = 0$ получим собственный вектор $X_2 = (1,0,-3)^T$; при $c_1 = 0$, $c_2 = 1$ получим собственный вектор $X_3 = (0,1,3)^T$.

Собственные векторы X_1, X_2, X_3 линейно независимы. Проверьте!

Свойства собственных векторов

- 1. Каждому собственному вектору соответствует единственное собственное значение.
- **2.** Если x_1 и x_2 два собственных вектора линейного оператора A с одним и тем же собственным значением λ , то $\alpha x_1 + \beta x_2$ также является собственным вектором линейного оператора A с тем же собственным значением λ , α , β числа.
- **3.** Собственные векторы $\overline{x_1}, \overline{x_2}, ..., \overline{x_k}$ линейного оператора A, соответствующие попарно различным собственным значениям $\lambda_1, \lambda_2, ..., \lambda_k$, линейно независимы.

!!!!!!Утверждение. Число линейно независимых собственных векторов, отвечающих одному и тому же корню характеристического уравнения, не превышает кратности этого корня.

!!!!!!!Если ранг матрицы $A - \lambda_j E$ равен r (r < n), то существует k = n - r линейно независимых собственных векторов $x^{(1j)}, x^{(2j)}, \dots, x^{(kj)}$, отвечающих корню λ_j

Ранг матрицы – наивысший из порядков всевозможных ненулевых миноров этой матрицы.

В рассмотренном примере ранг матрицы A-2E равен 1, так как с помощью элементарных преобразований эту матрицу можно привести к виду

$$\begin{pmatrix} -3 & 3 & -1 \\ -3 & 3 & -1 \\ -3 & 3 & -1 \end{pmatrix} \sim \begin{pmatrix} -3 & 3 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Следовательно, существует k = 3-1=2 линейно независимых собственных вектора, соответствующих корню $\lambda = 2$. Они найдены.

7. Приведение матрицы линейного оператора к диагональному виду

Опр. Матрица A линейного оператора называется *приводимой к диагональному* виду, если существует такая невырожденная матрица T (такое преобразование базиса), что матрица $D = T^{-1}AT$ является диагональной.

3амечание. Не каждый линейный оператор n-мерного линейного пространства имеет n линейно независимых собственных векторов, а следовательно, не всегда матрицу линейного оператора можно привести к диагональному виду.

Утверждение. Если линейный оператор A, действующий в ∂ ействительном линейном пространстве L, $\dim L = n$, имеет n различных действительных собственных значений, то существует базис пространства L из собственных векторов этого оператора, а следовательно, матрица A приводима к диагональному виду.

Т.е. если корни характеристического уравнения различны, то каждому собственному значению соответствует с точностью до коэффициента пропорциональности один и только один собственный вектор.

При n=3 и корне характеристического уравнения кратности 2 в каком случае матрица линейного оператора приводима к диагональному виду?

В рассмотренном выше примере матрица
$$A = \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix}$$
 приводима к

диагональному виду, так как существуют три линейно независимых собственных вектора $X_1 = \begin{pmatrix} 1,1,1 \end{pmatrix}^T$, $X_2 = \begin{pmatrix} 1,0,-3 \end{pmatrix}^T$, $X_3 = \begin{pmatrix} 0,1,3 \end{pmatrix}^T$, образующих базис пространства \mathbb{R}^3 . Более того, эти векторы являются столбцами матрицы T, такой что $D = T^{-1}AT$, т.е.

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Матрица
$$A_{ijk} = \begin{pmatrix} -1 & 2 & 2 \\ -4 & 5 & 4 \\ 1 & -1 & 0 \end{pmatrix}$$
 также приводима к диагональному виду и

справедливо равенство

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ -1/2 & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 2 & 2 \\ -4 & 5 & 4 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ -1/2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Kонтроль. $A_{ijk}X = \lambda X$, где X собственный вектор, соответствующий собственному значению λ .

Собственные векторы матрицы
$$A_{ijk}$$
: $X_1 = \begin{pmatrix} 1 \\ 2 \\ -1/2 \end{pmatrix}$, $X_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $X_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.
$$\begin{pmatrix} -1 & 2 & 2 \\ -4 & 5 & 4 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1/2 \end{pmatrix} = \begin{pmatrix} -1 \cdot 1 + 2 \cdot 2 + 2 \cdot (-1/2) \\ -4 \cdot 1 + 5 \cdot 2 + 4 \cdot (-1/2) \\ 1 \cdot 1 - 1 \cdot 2 + 0 \cdot (-1/2) \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \\ -1/2 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2 & 2 \\ -4 & 5 & 4 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \cdot 1 + 2 \cdot 0 + 2 \cdot 1 \\ -4 \cdot 1 + 5 \cdot 0 + 4 \cdot 1 \\ 1 \cdot 1 - 1 \cdot 0 + 0 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2 & 2 \\ -4 & 5 & 4 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \cdot 1 + 2 \cdot 1 + 2 \cdot 0 \\ -4 \cdot 1 + 5 \cdot 1 + 4 \cdot 0 \\ 1 \cdot 1 - 1 \cdot 1 + 0 \cdot 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Построим треугольник с вершинами в точках, радиус-векторы которых являются собственными векторами матрицы A_{ijk} , и треугольник, полученный в результате линейного преобразования.

В результате линейного преобразования векторы X_2 и X_3 не изменились, вектор X_1 не изменил направления, а его модуль увеличился в два раза

Еще о свойствах спектра.....

!!!!!!!! Спектр оператора A содержится в круге радиуса ||A||.

О нормах матриц смотри тему 2.

Критерий сходимости итерационного процесса.

Пусть система AX = B имеет единственное решение X^* . Преобразуем эту систему к виду X = CX + D. Итерационный процесс

$$X^{(n+1)}=CX^{(n)}+D, n\geq 0,$$

сходится к решению X^* при любом начальном приближении X^0 тогда и только тогда, когда все собственные значения матрицы C по модулю меньше единицы.