LA VALORISATION ENERGETIQUE DES DECHETS

BOUDHINA MOHAMED-CPGE PSI - 2020/2021

Comment peut-on valoriser les déchets par incinération ?

SOMMAIRE:

- Présentation du dispositif
- **Etude de la turbine**
- Etude de la génératrice
- Incinération des déchets
- Conclusion

Etape 1: Présentation de la turbine

Caractéristiques:

- 3 turbines mobiles (20 pales) et de 2 turbines statiques dans le cylindre.
- Taille (L * W * H): env. 18 * 12,5 * 12,5 cm
- Matériau: métal, verre organique, plastique

Etude théorique de la turbine

Efficacité (Turbine de quelque 100W): 20 % à 30 %

Détermination du couple et de la puissance:

• <u>Première expérience</u> : **Frein Prony** Système (disque):

TMD:
$$J rac{d\omega}{dt} = M - M_{Frein}$$

M: Couple mécanique de la turbine

$$M_{frein} = Fl$$

• Régime permanent: $M = F \times I$

de la turbine

MATÉRIEL Utilisé:

• Conclusion:

Echec, trop de couple de frottement. La turbine s'arrête au moindre contact.

Deuxième expérience:

Système (masse m):

$$ec{N}=-mec{g}=-ec{P}$$

Glissement : $ec{T} = f imes ec{N}$

$$\Gamma_{frott} = -Tr = fmgr$$

 ω vitesse de rotation (rad/s)

- r: rayon du disque
- g: Pesanteur(9,81N/kg)

• TMD: $J rac{\partial \omega}{\partial t} = \Gamma_m - fmgr$

$$\frac{\partial \omega}{\partial t} = 0(RP) \longrightarrow \Gamma_m = fmgr$$

$$P = \Gamma \omega$$

Mesurer le coefficient de frottement :

• A l'équilibre: $\vec{P} + \vec{R} = \vec{0}$

$$P.sin\phi = R_T$$

$$P.cos\phi = R_N$$

 Lorsque l'angle φ devient égal à φ0, le solide se met à glisser. On a alors :

$$\frac{R_T}{R_N} = tan\phi_0 = \mu = \text{f= 0,52}$$

Roulement à bille

Axe principal (tige filetée)

Matériel utilisé:

<u>Protocole</u>: Faire varier la masse pour déterminer le couple. Refaire les mêmes mesures pour différentes pressions.

Conclusion:

Résultats expérimentaux :

Conclusion:

Les courbes obtenues sont similaires aux courbes théoriques. Les courbes montrent la précision de nos mesures.

Mesures expérimentales :

Conclusion:

Puissance max permet d'exploiter toute la puissance de la turbine en fonction de la pression.

La puissance et la vitesse de rotation augmente avec la pression.

MESURE DE RENDEMENT

P:Puissance mécanique calculée

 P_{e} : Puissance fournie à la turbine

Bilan mécanique sur le fluide(air):

$$P_e = D_v \times \Delta P_R$$

 D_v : Débit volumique de l'air ΔP_R : la variation de Pression $\Delta P_R = P_{entrant} - P_{sortant}$

P_{sortant}~Pression atmosphérique =1bar

Mesure du débit

- Remplissage jusqu'à ce que la pression de l'intérieur = pression de l'extérieur(atmosphérique)
- Chronométrage de la durée du remplissage

$$D_{v} = \frac{V}{\Delta T}$$

V: volume(m³) du sac ΔT: durée de remplissage

Résultats:

• Le rendement maximum est largement inférieur à 30 %. L'expérience est conforme à la théorie.

Pression(bar)	duree(s)	Dv(L/s)	ω(rad/s)	Pmax(W)	Pe(W)	η
1	6,1	4,5	160	0,35	2,9	0,12
1,5	5,2	5,3	170	0,67	5,9	0,11
1,75	4	6,2	176	1,38	13,5	0,1
2	3,7	7,5	201	1,71	17,6	0,09
2,25	3,4	8,4	227	2,11	23,7	0,08

Utilisation de la génératrice:

Extraction de puissance mécanique max

- R:resistance
 variable
- C:condensateur
- A:ampèremètre
- V:voltmètre

Resistance variable

Matériel utilisé:

Génératrice à courant continu:

Tension nominale: 7,2 V DC

Courant moyen: 1,1 A

Efficacité: 69 %

<u>Protocole:</u> faire varier la résistance pour obtenir la vitesse de rotation souhaitée

Conclusion:

Difficulté de mesurer avec précision la vitesse de rotation à cause de la liaison.

Les résultats expérimentaux:

$$\eta = \frac{Pelec}{Pmeca}$$
 PUISSANCE ELECTRIQUE:
$$P = UI = RI^{2}$$

Pression[bar]	Umes [V]	Imes [A]	Pelec [W]	Pmec [W]	η
1	NONE	NONE	NONE	0,35	NONE
1,5	1,45	0,06	0,08	0,67	0,12
1,75	0,66	0,18	0,12	1,38	0,09
2	0,88	0,18	0,16	1,71	0,092
2,25	0,86	0,22	0,19	2,11	0,089

Conclusion:

le rendement de la génératrice est très faible (max= 12%). Fonctionnement non nominal de la génératrice. <u>Idée d'amélioration</u> : Ajout d'un multiplicateur pour améliorer le rendement .

Etape 2 : Incinération des déchets

Modélisation Thermodynamique

Protocole:

Remplir la cocote de 2l d'eau. Utiliser le thermomètre et le manomètre pour mesurer la température de l'eau et la pression à la sortie de la cocote minute.

Conclusion:

La température a été mésuré(104°), mais pas la pression.

Idée d'amélioration: Prévoir un manomètre et un tuyau qui résiste à la chaleur.

Conclusion

- * Modèle théorique cohérent.
- Les caractéristiques de la turbine et la puissance fournie ont été détérminée avec précision.
- Le rendement de la turbine est cohérent.

Idée d'amélioration:

- Changer de génératrice.
- ❖ Ajout d'un multiplicateur .
- Se procurer le matériel nécessaire pour brancher la cocotte à la turbine.