

CHIMIE NIVEAU SUPÉRIEUR ÉPREUVE 1

Jeudi 10 mai 2007 (après-midi)

1 heure

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,000	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
ts 4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
lémen 3		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es (254)
e des é				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
odigu				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
ın péri				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
ficatio				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
ı classi				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
u de la				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
Le tableau de la classification périodique des éléments	Numéro atomique	Element Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
Le	Numéro	Eler Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
	•		'	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	; —	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		
							_		

- 1. La combustion complète d'un échantillon d'hydrocarbure produit 1,5 mol de dioxyde de carbone et 2,0 mol d'eau. Quelle est la formule moléculaire de cet hydrocarbure ?
 - A. C_2H_2
 - $B. C_2H_4$
 - $C. C_3H_4$
 - D. C_3H_8
- 2. Lors de l'addition d'un excès de $BaCl_2$ (aq) à un échantillon de $Fe(NH_4)_2(SO_4)_2$ (aq) pour déterminer la quantité en moles de sulfate présent, on obtient 5.02×10^{-3} mol de $BaSO_4$. Combien de moles d'ions sulfate et d'ions fer y avait-il dans l'échantillon de $Fe(NH_4)_2(SO_4)_2$?

	Quantité d'ions sulfate / moles	Quantité d'ions fer / moles
A.	$5,02 \times 10^{-3}$	$2,51 \times 10^{-3}$
B.	$10,04 \times 10^{-3}$	$5,02 \times 10^{-3}$
C.	$2,51 \times 10^{-3}$	$5,02 \times 10^{-3}$
D.	$10,04 \times 10^{-3}$	$2,51 \times 10^{-3}$

3. Quel est le volume d'acide sulfurique 0,500 mol dm⁻³ nécessaire pour réagir complètement avec 10,0 g de carbonate de calcium selon l'équation ci-dessous ?

$$CaCO_3(s) + H_2SO_4(aq) \rightarrow CaSO_4(aq) + H_2O(l) + CO_2(g)$$

- A. 100 cm^3
- B. 200 cm^3
- C. 300 cm³
- D. 400 cm³

4.		L'ion X^{2+} d'un métal de transition possède la configuration électronique [Ar] $3d^9$. Quel est le numéro atomique de cet élément ?		
	A.	27		
	B.	28		
	C.	29		
	D.	30		
5.	Que	lles propositions sont correctes à propos du spectre d'émission de l'atome d'hydrogène ?		
		 I. Les raies convergent aux énergies plus basses. II. Les transitions électroniques vers n = 1 sont responsables des raies dans la région UV. III. Les raies sont produites lorsque des électrons passent de niveaux d'énergie plus élevée vers des niveaux d'énergie plus basse. 		
	A.	I et II uniquement		
	B.	I et III uniquement		
	C.	II et III uniquement		
	D.	I, II et III		
6.	Que	lle est la proposition correcte à propos du groupe des halogènes ?		
	A.	Les ions halogénure sont tous des agents réducteurs, l'ion iodure étant le plus faible.		
	B.	Les halogènes sont tous des agents oxydants, le chlore étant le plus fort.		
	C.	Les ions chlorure peuvent être oxydés en chlore par le brome.		
	D.	Les ions iodure peuvent être oxydés en iode par le chlore.		

I. Les températures de fusion diminuent de $Li \rightarrow Cs$ pour les métaux alcalins.

-5-

- II. Les températures de fusion augmentent de $F \rightarrow I$ pour les halogènes.
- III. Les températures de fusion diminuent de Na → Ar pour les éléments de la 3^{ème} période.
- A. I et II uniquement
- B. I et III uniquement
- C. II et III uniquement
- D. I, II et III
- 8. Le composé $[Co(NH_3)_5Br]SO_4$ est un isomère du composé $[Co(NH_3)_5SO_4]Br$. Quel est l'état d'oxydation du cobalt dans ces composés ?

	$\left[\mathrm{Co}\left(\mathrm{NH_{3}}\right)_{5}\mathrm{Br}\right]\mathrm{SO}_{4}$	$[Co(NH_3)_5SO_4]Br$
A.	+3	+3
B.	+2	+1
C.	+3	+2
D.	+2	+3

- 9. Quand C_2H_4 , C_2H_2 et C_2H_6 sont classés dans l'ordre **croissant** de la longueur de la liaison C-C, quel est l'ordre correct?
 - A. C_2H_6 , C_2H_2 , C_2H_4
 - B. C_2H_4, C_2H_2, C_2H_6
 - C. C₂H₂, C₂H₄, C₂H₆
 - D. C_2H_4, C_2H_6, C_2H_2

10.

- A. MgCl₂
- B. HCl
- C. H₂CO
- D. NH₄Cl
- 11. Quand les espèces BF_2^+ , BF_3 et BF_4^- sont rangées dans l'ordre **croissant** de la valeur de l'angle de liaison F-B-F, quel est l'ordre correct ?

-6-

Quel composé renferme à la fois des liaisons ioniques et des liaisons covalentes ?

- $A. \quad BF_{3}\,, BF_{4}^{\scriptscriptstyle -}\,, BF_{2}^{\scriptscriptstyle +}$
- B. BF_4^-, BF_3, BF_2^+
- C. BF_2^+ , BF_4^- , BF_3
- D. BF_2^+ , BF_3 , BF_4^-
- 12. Quelle est la molécule plane ayant la forme d'un carré?
 - A. XeO₄
 - B. XeF₄
 - C. SF₄
 - D. SiF₄

Quelle est l'hybridation des atomes d'azote I, II, III et IV dans les molécules suivantes ? 13.

	I	II	III	IV
A.	sp^2	sp^2	sp ³	sp ³
B.	sp ³	sp^3	sp ²	sp ²
C.	sp ²	sp ²	sp	sp
D.	sp ³	sp ³	sp	sp

- 1 mole d'hydrogène, 2 moles d'oxygène et 3 moles de dioxyde de carbone sont placées dans une **14.** enceinte fermée, à 298 K. Dans quel rapport se distribuent les énergies cinétiques moyennes de chacun des gaz dans ces conditions?
 - A. 1:2:3
 - В. 3:2:1
 - C. 1:1:1
 - D. 1:2:1
- 15. On considère les réactions suivantes :

$$S(s) + 1\frac{1}{2}O_2(g) \to SO_3(g)$$
 $\Delta H^{\ominus} = -395 \text{ kJ mol}^{-1}$

$$\Delta H^{\ominus} = -395 \text{ kJ mol}^{-1}$$

$$SO_2(g) + \frac{1}{2}O_2(g) \to SO_3(g)$$
 $\Delta H^{\Theta} = -98 \text{ kJ mol}^{-1}$

$$\Delta H^{\oplus} = -98 \text{ kJ mol}^{-1}$$

Quelle est la valeur de ΔH^{Θ} (en kJ mol⁻¹) pour la réaction ci-dessous ?

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

- A. -297
- В. +297
- C. -493
- +493 D.

- **16.** Quelle proposition est correcte à propos d'une réaction endothermique ?
 - A. Les liaisons sont plus fortes dans les produits que dans les réactifs.
 - B. Les liaisons sont plus fortes dans les réactifs que dans les produits.
 - C. L'enthalpie des produits est inférieure à celle des réactifs.
 - D. La réaction est spontanée à de basses températures mais devient non-spontanée à des températures élevées.
- 17. On considère les informations suivantes :

Composé	$C_6H_6(1)$	$CO_2(g)$	H ₂ O(l)
$\Delta H_{\rm f}^{\Theta} / \text{ kJ mol}^{-1}$	+49	-394	-286

$$C_6H_6(l) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l)$$

Quelle expression fournit la valeur correcte de la variation d'enthalpie standard de combustion du benzène (l), en kJ mol⁻¹ ?

A.
$$12(-394) + 6(-286) - 2(49)$$

B.
$$12(394) + 6(286) - 2(-49)$$

C.
$$6(-394) + 3(-286) - (49)$$

D.
$$6(394) + 3(286) - (-49)$$

18. Quelle équation représente l'enthalpie de réseau de l'oxyde de magnésium ?

A.
$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$

B.
$$Mg^{2+}(g) + O^{2-}(g) \to MgO(g)$$

C.
$$Mg^{2+}(g) + \frac{1}{2}O_2(g) \to MgO(s)$$

$$\mathrm{D.} \quad Mg^{2^+}(g) + \mathrm{O}^{2^-}(g) \to Mg\mathrm{O}\,(s)$$

19. À 25 °C, on ajoute 100 cm³ d'acide chlorhydrique 1,0 mol dm⁻³ à 3,5 g de carbonate de magnésium. Quelle combinaison de facteurs **n'augmentera pas** la vitesse initiale de la réaction effectuée avec la même masse de carbonate de magnésium ?

	Volume d'HCl / cm ³	Concentration d'HCl / mol dm ⁻³	Température / °C
A.	200	1,0	25
B.	100	2,0	25
C.	100	1,0	35
D.	200	2,0	25

20. On considère la réaction suivante :

$$2I^{-}(aq) + H_{2}O_{2}(aq) + 2H^{+}(aq) \rightarrow I_{2}(aq) + 2H_{2}O(1)$$

En présence de $S_2O_3^{2-}$ (aq) et d'une solution d'amidon, le temps nécessaire à l'apparition d'une coloration bleue a été mesuré pour différentes valeurs des concentrations des réactifs.

Expérience	[I ⁻] / mol dm ⁻³	$[\mathrm{H_2O_2}] /\mathrm{mol}\mathrm{dm}^{-3}$	$[\mathrm{H^+}]$ / mol dm $^{-3}$	Temps / s
1	0,10	0,12	0,01	25
2	0,05	0,12	0,01	50
3	0,10	0,06	0,01	100

Quel est l'ordre correct de la réaction par rapport à Γ et à H_2O_2 ?

	I ⁻	$\mathrm{H_2O_2}$
A.	1	2
B.	1/2	<u>1</u> 4
C.	2	1
D.	2	4

- **21.** Quelle est la proposition correcte à propos du chemin réactionnel d'une réaction déterminée lorsqu'elle est effectuée en présence ou en l'absence d'un catalyseur ?
 - A. La variation d'enthalpie de la réaction catalysée est inférieure à la variation d'enthalpie de la réaction non catalysée.
 - B. La variation d'enthalpie de la réaction catalysée est supérieure à la variation d'enthalpie de la réaction non catalysée.
 - C. La variation d'enthalpie de la réaction catalysée est égale à la variation d'enthalpie de la réaction non catalysée.
 - D. L'énergie d'activation de la réaction catalysée est supérieure à l'énergie d'activation de la réaction non catalysée.
- 22. On considère la réaction suivante, à l'équilibre dans une enceinte fermée, à 350 °C.

$$SO_2(g) + Cl_2(g) \rightleftharpoons SO_2Cl_2(g)$$
 $\Delta H^{\ominus} = -85 \text{ kJ}$

Quelle proposition est correcte?

- A. Une diminution de la température augmentera la quantité de SO₂Cl₂(g).
- B. Une augmentation du volume de l'enceinte augmentera la quantité de SO₂Cl₂(g).
- C. Une augmentation de la température augmentera la quantité de $SO_2Cl_2(g)$.
- D. L'addition d'un catalyseur augmentera la quantité de $SO_2Cl_2(g)$.
- 23. Une enceinte réactionnelle de $1,0 \, \mathrm{dm^3}$ contient initialement $6,0 \, \mathrm{mol} \, \mathrm{de} \, \mathbf{P} \, \mathrm{et} \, 6,0 \, \mathrm{mol} \, \mathrm{de} \, \mathbf{Q}$. À l'équilibre, il s'est formé $4,0 \, \mathrm{mol} \, \mathrm{de} \, \mathbf{R}$. Quelle est la valeur de K_{c} pour la réaction répondant à l'équation ci-dessous ?

$$P(g) + Q(g) \rightleftharpoons R(g) + S(g)$$

- A. 0,11
- B. 0,25
- C. 0,44
- D. 4,00

-11-

- A. CH₃COOH (aq) réagit plus lentement, car son pH est inférieur à celui de HCl(aq).
- B. Le volume de CO₂(g) obtenu est plus faible avec CH₃COOH (aq) qu'avec HCl(aq).
- C. Le volume de CO₂(g) obtenu est plus élevé avec CH₃COOH(aq) qu'avec HCl(aq).
- D. Le volume de CO₂(g) obtenu est le même avec CH₃COOH (aq) et avec HCl(aq).

25. L'ammoniac (NH_3) en solution aqueuse est une base faible dont la constante d'ionisation est K_b . Quelle est l'expression de la constante d'ionisation pour la réaction ci-dessous ?

$$NH_4^+(aq) + H_2O(l) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$$

- A. $\frac{K_{\rm w}}{K_{\rm a}}$
- B. $\frac{K_a}{K_w}$
- C. $\frac{K_{\rm w}}{K_{\rm b}}$
- D. $\frac{K_{\rm b}}{K_{\rm w}}$

26. Les valeurs des pK_a de quatre acides sont les suivantes :

- W 4,87
- X 4,82
- Y 4,86
- Z 4,85

Quel est l'ordre correct lorsque ces acides sont classés dans l'ordre croissant de leur force ?

- A. X, Z, Y, W
- B. X, Y, Z, W
- C. W, Z, Y, X
- D. W, Y, Z, X

- 27. On dissout 10 cm³ d'acide nitrique (HNO₃) 0,01 mol dm⁻³ dans 90 cm³ d'eau. Que vaut le pH de la solution obtenue ?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 28. Une base, à la concentration de 0,10 mol dm⁻³, est titrée à l'aide de 25 cm³ d'un acide de concentration 0,10 mol dm⁻³. Quel couple acide-base aurait le pH le plus élevé au point d'équivalence ?
 - A. NaOH (aq) et CH₃COOH (aq)
 - B. NaOH (aq) et HNO₃ (aq)
 - C. NH₃(aq) et HNO₃(aq)
 - D. NH₃(aq) et CH₃COOH(aq)
- 29. On considère les réactions spontanées suivantes :

$$\begin{split} Fe(s) + Cu^{2+}(aq) &\to Fe^{2+}(aq) + Cu(s) \\ Cu(s) + 2Ag^{+}(aq) &\to Cu^{2+}(aq) + 2Ag(s) \\ Zn(s) + Fe^{2+}(aq) &\to Zn^{2+}(aq) + Fe(s) \end{split}$$

Quelle est la combinaison correcte de l'agent oxydant le plus fort et de l'agent réducteur le plus fort ?

	Agent oxydant le plus fort	Agent réducteur le plus fort
A.	Ag(s)	Zn(s)
B.	Ag ⁺ (aq)	Zn(s)
C.	Zn ²⁺ (aq)	Ag(s)
D.	Zn(s)	Ag ⁺ (aq)

- **30.** Quelle est la proposition correcte?
 - A. Les réactions redox spontanées produisent de l'électricité dans une cellule électrolytique.

-13-

- B. L'électricité est utilisée pour produire une réaction redox non-spontanée dans une cellule voltaïque.
- C. L'oxydation se produit à l'électrode négative dans une cellule voltaïque et à l'électrode positive dans une cellule électrolytique.
- D. L'oxydation se produit à l'électrode négative dans une cellule voltaïque, mais la réduction se produit à l'électrode positive dans une cellule électrolytique.
- 31. On considère les potentiels standard d'électrode des réactions suivantes :

$$Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq) + 0.15V$$

$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq) + 0.77V$$

Quelle est la valeur de la force électromotrice (en volts) produite par la réaction spontanée ?

- A. +1,69
- B. +1,39
- C. +0,92
- D. +0,62
- **32.** Au cours de l'électrolyse de l'eau acidifiée, si 8,4 cm³ d'hydrogène gazeux sont produits, quel est le volume d'oxygène gazeux obtenu ?
 - A. $4,2 \text{ cm}^3$
 - B. 8,4 cm³
 - C. $12,6 \text{ cm}^3$
 - D. 16,8 cm³

- 33. Quels facteurs influencent la quantité de métal formée au cours d'une électrolyse ?
 - I. La charge portée par l'ion métallique.
 - II. L'intensité du courant.
 - III. Le temps d'électrolyse.
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- **34.** Le Nylon est un polymère de condensation obtenu à partir de l'acide hexanedioïque et du 1,6 diaminohexane. Quel type de liaison est présent dans le Nylon ?
 - A. Amide
 - B. Ester
 - C. Amine
 - D. Carboxyle
- 35. Quel est le nom conforme aux conventions de l'UICPA du composé suivant ?

- A. 3,3,4-triméthylhexane
- B. 3,4,4-triméthylhexane
- C. 4-éthyl-3,4-diméthylpentane
- D. 2-éthyl-2,3-diméthylpentane

36. Combien y-a-t-il d'atomes de carbone chiral dans une molécule de glucose ?

- A. 1
- B. 2
- C. 3
- D. 4
- 37. Un composé organique X réagit avec un excès de dichromate (VI) de potassium acidifié pour former un composé Y, lequel réagit avec le carbonate de sodium en produisant du $CO_2(g)$.

Quelle formule est possible pour le composé \mathbf{X} ?

- A. CH₃CH₂COOH
- B. CH₃CH₂CH₂OH
- C. CH₃CH(OH)CH₃
- D. $(CH_3)_3COH$

38.	Quel est le rapport des aires comprises sous les pics du spectre RMN ¹ H du composé suivant ?
	CH ₃ CH(CH ₃)CH ₂ CH ₃

- A. 3:1:3:2:3
- B. 3:2:3:1:3
- C. 3:1:3:5
- D. 6:1:2:3
- 39. Quelle proposition est correcte à propos d'une réaction de substitution nucléophile ?
 - A. Les halogénoalcanes tertiaires réagissent plus lentement que les halogénoalcanes primaires.
 - B. La vitesse d'hydrolyse est plus grande pour CH₃CH₂CH₂Cl que pour CH₃CH₂CH₂I.
 - C. Si l'on double la concentration de OH^- , on double la vitesse de la réaction $S_N 2$, mais pas celle de la réaction $S_N 1$.
 - D. Les halogénoalcanes primaires suivent généralement un mécanisme $S_{\rm N}1$, tandis que les halogénoalcanes tertiaires suivent un mécanisme $S_{\rm N}2$.
- **40.** Le spectre de masse d'une molécule C_3H_6O présente des pics principaux pour des valeurs de m/z de 58, 43 et 15. Quelle est la formule brute la plus probable de ce composé ?
 - A. CH₃CH₂CHO
 - B. CH₃COCH₃
 - C. CH₃CH₂OCH₃
 - D. CH₃CH₂CH₂OH