Особенности отжига радиационных дефектов в облученных кристаллах p-Si

© Т.А. Пагава[¶]

Грузинский технический университет, РЦСИ, 0175 Тбилиси, Грузия

(Получена 26 июня 2006 г. Принята к печати 30 августа 2006 г.)

Исследовались монокристаллы p-кремния полученные методом Чохральского, с концентрацией дырок $p=6\cdot 10^{13}\,\mathrm{cm^{-3}}$. Образцы облучались электронами с энергией 8 МэВ при 300 К. Изохронный отжиг облученных кристаллов производился в интервале температур $T_{\mathrm{ann}}=100-500^{\circ}\mathrm{C}$. Исследования проводились методом Холла в интервале 77–300 К. Показано, что отжиг дивакансий происходит путем их преобразования в комплексы $\mathrm{B}_s V_2$. Комплексу $\mathrm{B}_s V_2$ соответствует уровень энергии $E_v+0.22\,\mathrm{эB}$, и он отжигается в интервале температур $360-440^{\circ}\mathrm{C}$. Высказано предположение, что дефекты с уровнем $E_v+0.2\,\mathrm{эB}$, которые отжигаются в интервале температур $T_{\mathrm{ann}}=340-450^{\circ}\mathrm{C}$, являются мультикомпонентными комплексами и содержат атомы легирующей и фоновых примесей.

PACS: 61.72.Ce, 61.80.Fe, 72.80.Cw

1. Введение

В работе [1] показано, что в образцах n-Si, облученных протонами с энергией 25 МэВ, дефекты с уровнем E_c — 0.17 эВ отжигаются в два этапа, при температурах $T_{\rm ann}=200\,$ и 300° С. Авторами работы было высказано предположение, что при $T_{\rm ann}=200$ ° С отжигается не A-центр, а другой дефект, с энергией ионизации, настолько близкой к энергии ионизации A-центра, что электрическими измерениями их трудно различить.

Авторы работы [2] показали, что таким дефектом является комплекс C_iC_s , так называемый G-центр (межузельный углерод—углерод в узле), который отжигается при $T_{\rm ann}=200^{\circ}{\rm C}$ и которому соответствует уровень $E_c-0.16$ эВ. Энергия активации отжига G-центра — $E_a=2$ эВ, а энергия диссоциации — 1.08 эВ [3].

Долгое время считалось, что в кристаллах n-Si уровень E_c –0.54 эВ принадлежит дивакансиям. Оказалось, что дивакансиям принадлежат уровни E_c –0.23 эВ, E_c –0.41 эВ и E_v + 0.28 эВ, а уровень E_c –0.54 эВ принадлежит другим дефектам, совпадающим с дивакансиями только по температуре отжига [4].

Кристаллы p-Si отличаются обилием различных радиационных дефектов (РД) [5,6]. Соответственно больше вероятность образования РД с одинаковой энергией ионизации (E_i) или температурой отжига $(T_{\rm ann})$.

Цель данной работы — идентификация различных РД с помощью E_i и $T_{\rm ann}$ из измерений температурных зависимостей концентрации основных носителей тока (p) в кристаллах p-Si сразу после облучения и в процессе изохронного отжига (MO).

2. Техника эксперимента

Исследовались образцы монокристаллического кремния, полученные методом Чохральского, с концентрацией дырок $p=6\cdot 10^{13}~{\rm cm}^{-3}$; плотность ростовых дислока-

ций составляла $10^3-10^4\,\mathrm{cm^{-2}}$. Исследуемые образцы облучались электронами с энергией 8 МэВ при комнатной температуре, доза облучения $\Phi=5\cdot 10^{15}\,\mathrm{cm^{-2}}$, плотность потока электронов $\phi=5\cdot 10^{12}\,\mathrm{cm^{-2}}\cdot\mathrm{c^{-1}}$. Изохронный отжиг облученных кристаллов проводился в температурном интервале $T_{\mathrm{ann}}=100-500^{\circ}\mathrm{C}$ с шагом $10^{\circ}\mathrm{C}$; время выдержки при фиксированной температуре равнялось $10\,\mathrm{muh}$. После каждого цикла ИО измерялась концентрация p методом Холла в интервале температур $T=77-300\,\mathrm{K}$. Омические контакты для измерения создавались путем втирания алюминия в поверхность исследуемого образца.

Изменение концентрации дырок в процессе ИО определялось по кривым $p=f(10^3/T)$ при 260 К. Энергии ионизации уровней дефектов E_i определялись в предположении $\varepsilon_F=E_i$, где ε_F — энергия уровня Ферми, по формуле

$$p = N_v F_{1/2} \left(\frac{\varepsilon_F}{kT} \right),$$

где N_v — эффективная плотность состоянии в валентной зоне, $F_{1/2}$ — интеграл Ферми–Дирака, k — постоянная Больцмана. Соответствующие участки на зависимостях $p=f(10^3/T)$ выбирались с учетом степени истощения определенного уровня и кратности вырождения валентной зоны кремния. В сильно компенсированных образцах энергии E_i определялись по наклону зависимостей $p=f(10^3/T)$. Концентрации различных РД после каждого цикла ИО вычислялись с помощью ступенчатых зависимостей $p=f(10^3/T)$ и $p=f(T_{\rm ann})$ в интервалах $77-300\,{\rm K}$ и $100-500^{\circ}{\rm C}$ соответственно. Ошибка измерения этих величин не превышала 10%.

3. Результаты исследований и их обсуждение

На рисунке показаны изменения концентрации основных носителей тока p и концентрации различных РД N_{rd}

[¶] E-mail: tpagava@gtu.ge

652 Т.А. Пагава

Зависимость концентрации дырок p(I) и некоторых радиационных дефектов N_{rd} (2–7) от температуры изохронного отжига в облученных электронами кристаллах p-Si. 5 — H_1 , H_2 ; 6 — D_1 , D_2 .

в зависимости от температуры ИО T_{ann} (кривые 1 и 2–7 соответственно).

В интервале $T_{\rm ann}=170-200^{\circ}{\rm C}$ резкое увеличение p связано с отжигом дефектов с уровнем энергии $E_v+0.45$ эВ и с концентрацией $N_{rd}\approx 5\cdot 10^{12}\,{\rm cm}^{-3}$ (см. рисунок, кривые I,2). Этот уровень принадлежит комплексу $V+{\rm B}$ [7].

В интервале $T_{\text{ann}} = 270 - 280^{\circ}\text{C}$ отжигаются дефекты с уровнем энергии $E_v + 0.26$ эВ. Природа этих дефектов неизвестна (рисунок, кривая 3).

В области $T_{\rm ann} = 270 - 300^{\circ}{\rm C}$ отжигаются дефекты с уровнем энергии $E_v + 0.28$ эВ и концентрацией $\sim 8 \cdot 10^{12} \, \text{см}^{-3}$ (рисунок, кривая 4). Судя по величинам $T_{\rm ann}$ и E_i этими центрами являются дивакансии [4]. В процессе отжига дивакансий наблюдается резкое увеличение концентрации дефектов с уровнем $E_v + 0.22\,$ эВ (рисунок, кривая 5). Концентрации исчезнувших дивакансий и образующихся при этом центров с уровнем $E_v + 0.22$ эВ (*H*-центры) равны. Это означает, что Н-центры содержат дивакансии. Н-центры, которые образуются при отжиге дивакансий, являются глубокими донорами $(E_v + 0.22 \, \mathrm{pB})$ и не могут изменить концентрацию р при комнатной температуре. Требуется предложить такой механизм отжига дивакансий, при котором p должна расти, хотя в интервале $T_{\rm ann} = 270 - 290^{\circ}{\rm C}$ p = const. По-видимому, комплексы, которые образуются при отжиге дивакансий, содержат атомы бора. Концентрация блокированных атомов бора $N_{\rm B}$ в процессе образования H-центров и основных носителей тока p, которые образуются при отжиге дивакансий, равны. Поэтому в интервале $T_{\text{ann}} = 270 - 290^{\circ}\text{C}$ изменения концентрации $\Delta p = 0$. Полученные результаты подтверждают высказанное авторами [8] мнение о существовании в облученных кристаллах p-Si комплексов BV_2 , которые отжигаются в интервале температур 350-400°C.

Энергия активации процесса миграции дивакансий составляет ~ 1.3 эВ, а энергия связи дефекта равна 1.47 эВ [4,9], поэтому дивакансия по кристаллу может мигрировать без распада. Также известно, что комплексы VВ отжигаются в области 180°С (рисунок, кривая 2) и поэтому не могут участвовать в процессе формирования комплексов B_sV_2 в температурном интервале 270—300°С. Исходя из вышеизложенного можно предположить, что комплексы BV_2 образуются (или дивакансии отжигаются) по реакции

$$B_s + V_2 \rightarrow B_s V_2$$

а не при последовательном захвате узловым бором генерируемых облучением вакансий, как это предполагается в работе [8].

Как видно из рисунка, H-центры отжигаются в два этапа: в интервалах $T_{\rm ann}=300-320^{\circ}{\rm C}$ и $360-440^{\circ}{\rm C}$. Начальная концентрация H-центров равняется $3.5\cdot 10^{12}\,{\rm cm}^{-3}$. Такое же количество центров отжигается на первом этапе отжига H-центров. На втором этапе отжига концентрация распавшихся центров совпадает с концентрацией образующихся при отжиге дивакансий комплексов BV_2 ($8\cdot 10^{12}\,{\rm cm}^{-3}$). Полученные результаты позволяют предположить, что комплексы BV_2 образуются в интервале $270-300^{\circ}{\rm C}$ при отжиге дивакансий и диссоцируют в области $400^{\circ}{\rm C}$ (центры H_1), а центры, которые отжигаются на первом этапе, по энергии ионизации совпадают с комплексом BV_2 и отжигаются в интервале температур $T_{\rm ann}=300-320^{\circ}{\rm C}$ (центры H_2).

Как видно из рисунка (кривая 6), в два этапа отжигаются также дефекты с уровнем $E_v + 0.2$ эВ (D-центры): $T_{\rm ann} = 270 - 290$ и $340 - 450 ^{\circ}$ С. Начальная концентрация D-центров равняется $6 \cdot 10^{12}$ см $^{-3}$. Отрицательный отжиг D-центров совпадает с отжигом центров H_2 , и изменение их концентраций составляет $\Delta N_D \approx \Delta N_{H_2} \approx 3.5 \cdot 10^{12}$ см $^{-3}$. На первом этапе концентрация отожженных дефектов $\sim 10^{12}$ см $^{-3}$.

По-видимому, в процессе облучения в исследуемых образцах образуются центры D_1 (концентрация $N_{D_1} =$ $=10^{12}\,\mathrm{cm}^{-3})$ и D_2 (концентрация $N_{\mathrm{D}_2}=5\cdot10^{12}\,\mathrm{cm}^{-3})$ с одинаковой энергией уровня $E_v + 0.20$ эВ. Центры D_1 отжигаются в интервале $T_{\text{ann}} = 270 - 290^{\circ}\text{C}$. В области распада H_2 наблюдается отрицательный отжиг D_2 , и в интервале $T_{\rm ann}=340-450^{\circ}{\rm C}$ они окончательно отжигаются. В области отрицательного отжига центров D_2 p = const (рисунок, кривая 1). Это позволяет предположить, что увеличение концентрации центров D_2 в процессе ИО происходит в результате взаимодействия между фрагментами распада центров H_2 и атомами легирующей примеси (В). В процессе формирования центров D_2 не исключено также участие фоновых примесей — С и О [10,11]. В интервале $T_{\rm ann} = 320 - 400^{\circ}{
m C}$ отжигаются дефекты с уровнем $E_v + 0.4$ эВ (рисунок, кривая 7), которые принадлежат комплексу V_2O_2 [6]. При отжиге этих дефектов не

Параметры ряда дефектов

Тип дефекта	E_i , эВ	$T_{ m ann},{}^{\circ}{ m C}$	Возможная идентификация
H_1	0.22 ± 0.01	360-440	$\mathrm{B}V_2$
H_2	0.22 ± 0.01	300 - 320	_
D_1	0.20 ± 0.01	270 - 290	_
D_2	0.20 ± 0.01	340-450	V + O + B?

наблюдается отрицательного отжига других существующих дефектов. По-видимому, они перестраиваются в другие глубокие дефекты по реакциям

$$V_2O_2 + V \rightarrow V_3O_2$$

или

$$V_2O_2 + VO \rightarrow V_3O_3$$
,

которые образуются в процессе термообработки и отжигаются при более высоких температурах [4,6].

Изменение концентраций дырок после отжига комплексов V_2O_2 связано с распадом или образованием глубоких центров с высокой термостабильностью [6].

Основные параметры наблюдаемых РД с одинаковой E_i и их возможная идентификация приведены в таблице.

4. Заключение

Для идентификации различных радиационных дефектов в кристаллах p-Si изучены пределы термической стабильности и энергетический спектр этих дефектов. Проведенные исследования показали, что дефекты с уровнем энергий $E_v+(0.22\pm0.01)$ эВ отжигаются в два этапа: $T_{\rm ann}=300-320^{\circ}{\rm C}~(H_2)$ и $360-440^{\circ}{\rm C}~(H_1)$. На первом этапе отжигается неизвестный центр, который образуется в процессе облучения, а на втором — комплекс BV_2 , который образуется в процессе отжига дивакансий, в области $290^{\circ}{\rm C}$ по реакции

$$B_s + V_2 \rightarrow B_s V_2$$
.

Два неизвестных дефекта $(D_1$ и $D_2)$ имеют также одинаковую энергию ионизации (0.2 ± 0.01) эВ, они отжигаются при $T_{\rm ann}=270-290^{\circ}{\rm C}~(D_1)$ и $340-450^{\circ}{\rm C}~(D_2)$. При распаде центров H_2 в интервале $T_{\rm ann}=290-320^{\circ}{\rm C}$ наблюдается отрицательный отжиг центров D_2 . Предположительно, D_2 -центры являются многокомпонентными комплексами и состоят из вакансий, фоновых и легирующих примесей.

Список литературы

- [1] З.В. Башелейшвили, Т.А. Пагава, В.В. Санадзе. *Тр. ГПИ. Сер. Физика твердого тела* (Тбилиси, 1979) с. 73.
- [2] И.Ф. Медведева, Л.Ф. Макаренко, В.П. Маркевич, Л.И. Мурин. Изв. АН БССР. Сер. физ.-мат. наук, № 3, 19 (1991).

- [3] Н.И. Бояркина, С.А. Смагулова. ФТП, 38, 513 (2004).
- [4] В.С. Вавилов, В.Ф. Киселев, Б.Н. Мукашев. Дефекты в кремнии и на его поверхности (М., Наука, 1990).
- [5] В.И. Губская, П.В. Кучинский, В.М. Ломако. ФТП, 20, 1055 (1986).
- [6] Т.А. Пагава. ФТП, 38, 665 (2004).
- [7] И.Д. Конозенко, А.К. Семенюк, В.И. Хиврич. *Радиационные эффекты в кремнии* (Киев, Наук. думка, 1974).
- [8] P.F. Lugakov, T.A. Lukashevich. Phys. Status Solidi A, 85, 441 (1984).
- [9] A.O. Evwaraye, E. Sun, J. Appl. Phys., 47, 3376 (1976).
- [10] М.Ю. Барабаненков, А.В. Леонов, В.Н. Мордкович, Н.М. Омельяновская. ФТП, 33, 897 (1999).
- [11] F.P. Anre, P.M. Mooney. J. Appl. Phys., 55, 984 (1984).

Редактор Л.В. Шаронова

Annealing peculiarities for radiation-induced defects in *p*-Si crystals

T.A. Pagava

Georgian Technical University, RCSR, 0175 Tbilisi, Georgia

Abstract The *p*-Si single crystals with the hole concentartion of $p = 6 \cdot 10^{13} \, \mathrm{cm^{-3}}$ prepared by the Czochralski method have been studied. The specimens were irradiated with 8 MeV electrons at a temperature of 300 K. Then they were isochronically annealed within the $T_{\mathrm{ann}} = 100 - 500^{\circ}\mathrm{C}$ interval. The Hall measurements were carried out within the interval 77–300 K. The annealing of divacancies has been shown to take place in form of their conversion into $B_s V_2$ complexes through the $B_s + V_2 \rightarrow B_s V_2$ reaction. The level of $E_v + 0.22 \, \mathrm{eV}$ attributes to the $B_s V_2 - \mathrm{complex}$ which is annealed within the interval $360 - 440^{\circ}\mathrm{C}$. The defects with the level of $E_v + 0.2 \, \mathrm{eV}$ annealed within the interval $T_{\mathrm{ann}} = 340 - 450^{\circ}\mathrm{C}$ are proposed to be multicomponent complexes containing both doping and background impurities.