ОГЛАВЛЕНИЕ

Введение	3
Постановка задачи	4
1. Общая информация о криптосистеме Эль-Гамаля	5
1.1 Алгоритм создания открытого и закрытого ключей	6
1.2 Шифрование и расшифрование	6
1.3 Дешифрование	7
2. Алгоритмы решения задачи дискретного логарифмирования	8

введение.

В настоящее время в вузах Российской Федерации базовые стандарты обучения для ряда специальностей включают в себя разделы, связанные с изучением методов и средств защиты информации. Для успешного освоения данных тем необходимо понимание принципов и знание основных элементов криптографического преобразования информации.

В Интернете можно найти десятки описаний лабораторных работ, посвященных криптографической системе Эль Гамаля [1 – 3]. К сожалению, подавляющее большинство из них содержат задания учета особенностей Гамаля без Эль реализации схемы примеры длинной арифметики, не требуя обоснований алгоритмов и использования обучающих программ, не затрагивая вопросы криптоанализа. Известно несколько компьютерных обучающих программ, позволяющих быстро шифрования ознакомиться с алгоритмами достаточно полно расшифрования данных, используемыми в традиционных симметричных современных асимметричных криптосистемах. К сожалению, сети Интернет, представленные В программы, не сопровождаются исходными текстами, ограничиваются краткой справочной информацией содержат большое число ошибок и недочетов. В связи с и было принято решение: разработать алгоритм и реализовать свою электронную обучающую программу для изучения криптосистемы Эль Гамаля. Предлагаемый вариант лабораторной работы позволяет, на мой взгляд, преодолеть указанные недостатки.

постановка задачи

- 1. Провести анализ криптографического алгоритма Эль Гамаля.
- 2. Разработать сценарий выполнения лабораторной работы по изучению алгоритма Эль Гамаля.
- 3. Разработать и реализовать обучающую компьютерную программу "El-Gamal_Tutor".

1. ОБЩАЯ ИНФОРМАЦИЯ О КРИПТОСИСТЕМЕ ЭЛЬ-ГАМАЛЯ

Схема Эль-Гамаля (Elgamal) — криптосистема с открытым ключом, основанная на трудности вычисления дискретных логарифмов в конечном поле. Криптосистема включает в себя алгоритм шифрования и алгоритм цифровой подписи. Схема Эль-Гамаля лежит в основе бывших стандартов электронной цифровой подписи в США (DSA) и России (ГОСТ Р 34.10-94, ГОСТ Р 34.10-2001). Схема была предложена Тахером Эль-Гамалем в 1985 году. Эль-Гамаль разработал один из вариантов алгоритма Диффи-Хеллмана. Он усовершенствовал систему Диффи-Хеллмана и получил два алгоритма, которые использовались для шифрования и для обеспечения аутентификации. В отличие от RSA алгоритм Эль-Гамаля не был запатентован и, поэтому, стал более дешевой альтернативой, так как не требовалась оплата взносов за лицензию. Считается, что алгоритм попадает под действие патента Диффи-Хеллмана. Криптографические системы с открытым ключом используют так называемые односторонние функции, которые обладают следующим свойством:

- ullet Если известно x, то f(x) вычислить относительно просто
- ullet Если известно y=f(x), то для вычисления x нет простого (эффективного) пути.

Под односторонностью понимается не теоретическая однонаправленность, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства, за обозримый интервал времени. В основу криптографической системы Эль-Гамаля положена сложность задачи дискретного логарифмирования в конечном поле. Для шифрования используется операция возведения в степень по модулю большого числа. Для дешифрования за разумное время необходимо уметь вычислять дискретный логарифм в конечном поле по простому модулю, что является вычислительно трудной задачей. В криптографической системе с открытым ключом каждый участник располагает как открытым ключом (англ. public key), так и закрытым ключом (англ. private key). В криптографической

системе Эль-Гамаля открытый ключ состоит из тройки чисел, а закрытый ключ состоит из одного числа. Каждый участник создаёт свой открытый и закрытый ключ самостоятельно. Закрытый ключ каждый из них держит в секрете, а открытые ключи можно сообщать кому угодно или даже публиковать их.

1.1 Алгоритм создания открытого и закрытого ключей

Ключи в схеме Эль-Гамаля генерируются следующим образом:

- 1. Генерируется случайное простое число p.
- 2. Выбирается целое число g первообразный корень p.
- 3. Выбирается случайное целое число x, такое, что 1 < x < p.
- 4. Вычисляется $y = g^x \mod p$.
- 5. Открытым ключом является тройка (p, g, y), закрытым ключом число x.

1.2 Шифрование и расшифрование

Предположим, пользователь A хочет послать пользователю Б сообщение . Сообщениями являются целые числа в интервале от 0 до p-1. Алгоритм для шифрования:

- 1. Взять открытый ключ пользователя Б
- 2. Взять открытый текст М
- 3. Выбрать сессионный ключ случайное целое число k такое, что 1 < k < p-1
- 4. Зашифровать сообщение с использованием открытого ключа пользователя Б, то есть вычислить числа: $a = g^k \mod p$, и $b = y^k M \mod p$.

Алгоритм для расшифрования:

- 1. принять зашифрованное сообщение (a, b) от пользователя A
- 2. Взять свой закрытый ключ M
- 3. Применить закрытый клюдч для расшифрования сообщения: $M = b(a^x)^{-1} \bmod p$
- 4. При этом нетрудно проверить, что

$$(a^x)^{-1} \equiv g^{-kx} \pmod{p}$$
, и поэтому $b(a^x)^{-1} \equiv (y^k M) g^{-xk} \equiv (g^{xk} M) g^{-xk} \equiv M \pmod{p}$.

1.3 Дешифрование

Дешифрование - получение открытых данных по зашифрованным в условиях, когда алгоритм расшифрования и его секретные параметры не являются полностью известными и расшифрование не может быть выполнено обычным путем. Алгоритм для дешифрования криптосистемы Эль-Гамаля:

- 1. Перехватить зашифрованное сообщение (a, b).
- 2. Взять открытый ключ p, g, y
- 3. Решить относительно x уравнение $y \equiv g^x \pmod{p}$
- 4. Расшифровать сообщение по формуле $M = b(a^x)^{-1} mod p$

Собственно, самый главный вопрос из этого алгоритма — как по данным (p, g, y) найти x. Эта задача называется задачей дискретного логарифмирования [2].

2. АЛГОРИТМЫ РЕШЕНИЯ ЗАДАЧИ ДИСКРЕТНОГО ЛОГАРИФМИРОВАНИЯ

Рис. 1: Ну это типа Хеллман короч