# VALENCE BOND THEORY & HYBRIDIZATION

#### **DETERMINING THE HYBRIDIZATION OF ATOMS**

Example: **SO**<sub>2</sub>

1) Count the number of lone pairs and bonded atoms around the atom



3

Count out the same number with the following sequence in this direction



.: hybridization of S is sp<sup>2</sup>

#### **DETERMINING THE HYBRIDIZATION OF ATOMS**

Example: PCl<sub>5</sub>



1) Count the number of lone pairs and bonded atoms around the atom

5

Count out the same number with the following sequence in this direction



.: hybridization of P is sp<sup>3</sup>d

#### **DETERMINING THE HYBRIDIZATION OF ATOMS**

Example: CCl<sub>4</sub>



1) Count the number of lone pairs and bonded atoms around the atom

4

Count out the same number with the following sequence in this direction



.: hybridization of C is sp<sup>3</sup>

#### **EXPLAINING BONDING WITH HYBRIDIZATION**

Example: CCl<sub>4</sub>

How does **sp**<sup>3</sup> hybridization explain how carbon bonds in CCl<sub>4</sub>?



Energy level diagram of carbon:



A covalent bond forms when two <u>half-filled</u> orbitals overlap (i.e.  $\mathcal{L}$ ) to produce a new combined orbital containing two electrons of opposite spin.

#### **EXPLAINING BONDING WITH HYBRIDIZATION**

A covalent bond forms when two <u>half-filled</u> orbitals overlap (i.e. 1) to produce a new combined orbital containing two electrons of opposite spin.



- This overlapping results in a decrease in the energy of the atoms forming the bond
- The shared electron pair is most likely to be found in the space between the two nuclei of the atoms forming the bonds.

Linus Pauling: Valence Bond Theory

#### **EXPLAINING BONDING WITH HYBRIDIZATION**

Example: CCl<sub>4</sub>

The orbitals can hybridize with each other to form 4 bonds:



## **HYBRIDIZATION THEORY**

- The Hybridization Theory provides a description of the process involving the combination of atomic orbitals to create new bonding orbitals
- A hybrid orbital is created by combining at least two different orbitals to produce maximum bonding opportunities
- Hybrid orbitals are created through the promotion of electrons



One of carbons 2s electrons is promoted to the empty 2p orbital



The result produces 4 unpaired electrons for bonding

# EXPLAINING HYBRIDIZATION

Example: CCl<sub>4</sub>



# EXPLAINING HYBRIDIZATION

Example: CCl<sub>4</sub>

What really happens?

The nucleus of a chlorine atom attracts one of the lower-energy valence electrons on carbon.

This causes an excitation, moving a 2s electron into a 2p orbital. This, however, increases the attraction of the carbon nucleus on the valence electrons (since the nucleus is slightly less shielded)



#### EXPLAINING HYBRIDIZATION

Example: CCl<sub>4</sub>

What really happens?



**Ground state** 

**Excited state** 

sp<sup>3</sup> hybridized state

Example: CH<sub>4</sub>

4 hydrogen atoms bond, thus filling every orbital to make a stable product



# SIGMA AND PI BONDS

#### σ-bond

A sigma bond (σ-bond) is a bond formed by the overlap of orbitals in an end-to-end fashion

 electron density is concentrated between the nuclei of the bonding atoms

#### π-bond

A pi bond ( $\pi$  bond) is a bond formed by the overlap of orbitals in a side-by-side fashion

 electron density concentrated above and below the plane of the nuclei of the bonding atoms



# SIGMA AND PI BONDS

#### sigma bond



rotate B 60° around axis, no change

A sigma bond allows free rotation.

sigma bond



rotate B 60° around axis, no change

A pi bond does not allow free rotation

pi bond



rotate B 60° around axis, bond breaks

Example: C<sub>2</sub>H<sub>4</sub>



- -Double bonds are composed of a sigma bond (end-to-end) and a pi  $(\pi)$  bond (side-by-side overlap)
- -pi are covalent bonds, but are weaker than sigma bonds (require less energy to break)

Example: C<sub>2</sub>H<sub>4</sub>

The orbitals will **hybridize** to make 3 sigma bonds + 1 pi bond:



## Example: Ethene (C<sub>2</sub>H<sub>4</sub>)



Example: C<sub>2</sub>H<sub>4</sub>

How do the carbons bond in ethene?



The  $\pi$  bond is symmetrical and above the plane and prevents rotation around the axis between the carbon atoms

Example: C<sub>2</sub>H<sub>4</sub>

To draw it more simply...



Example: C<sub>2</sub>H<sub>4</sub>



Example: C<sub>2</sub>H<sub>2</sub>



Triple bonds are composed of a sigma bond (end-to-end) and two pi  $(\pi)$  bonds (side-by-side)

Example: C<sub>2</sub>H<sub>2</sub>

The orbitals will hybridize to make 2 sigma bonds + 2 pi bonds:



Example: C<sub>2</sub>H<sub>2</sub>



Example: C<sub>2</sub>H<sub>2</sub>



Example: C<sub>2</sub>H<sub>2</sub>



# **EXAMPLE: BENZENE**

Example: C<sub>6</sub>H<sub>6</sub>



# HYBRIDIZATION SUMMARY

**Summary:** Hybridization of Carbon to Make Multiple Bonds

| Bond Type | Hybrids           | Pure | Bond<br>Distribution                                                 |
|-----------|-------------------|------|----------------------------------------------------------------------|
| Single    | 4 sp <sup>3</sup> | 0    | Hybrids make 4 σ bonds                                               |
| Double    | 3 sp <sup>2</sup> | 1 p  | $\pi$ bond is made from pure orbital, $\sigma$ is made from a hybrid |
| Triple    | 2 sp              | 2 p  | π bonds are made from both pure orbitals, σ is made from a hybrid    |

## HYBRIDIZATION OF BORON

Hybridization theory explains how boron can make 3 bonds (ex. BCl<sub>3</sub>)



# HYBRIDIZATION OF BORON

Hybridization theory explains how boron can make 3 bonds (ex. BCl<sub>3</sub>)



#### HYBRIDIZATION OF BERYLLIUM

Hybridization theory explains how beryllium can make 2 bonds even though its 2s orbital is full (ex. BeCl<sub>2</sub>)



One electron from 2s is promoted to 2p to form two new hybridized orbitals

# HYBRIDIZATION OF BERYLLIUM

Hybridization theory explains how beryllium can make 2 bonds even though its 2s orbital is full (ex. BeCl<sub>2</sub>)



#### HYBRIDIZATION OF SULFUR

Hybridization theory explains how sulfur can make 6 bonds (ex. SF<sub>6</sub>) sp<sup>3</sup>d<sup>2</sup> Hybridization



1 electron from 3s is promoted to 3p, and 2 electrons from 3p are promoted to 3d

## **HYBRIDIZATION OF SULFUR**



1 electron from 3s is promoted to 3p, and 2 electrons from 3p are promoted to 3d

# HYBRIDIZATION OF SULFUR

Hybridization theory explains how sulfur can make 6 bonds (ex. SF<sub>6</sub>)



#### **HYBRIDIZATION OF PHOSPHORUS**

Hybridization theory explains how **phosphorus** can have a valence of +5



Figure 1: Depiction of sp<sup>3</sup>d hybridization.

One 3s electron is promoted to 3d, forming 5 hybridized orbitals

## HYBRIDIZATION OF PHOSPHORUS

Hybridization theory explains how phosphorus can have a valence of +5 (ex.  $PCl_5$ )



One 3s electron is promoted to 3d, forming 5 hybridized orbitals

#### **HYBRIDIZATION OF PHOSPHORUS**

Hybridization theory explains how phosphorus can have a valence of +5 (ex.  $PCl_5$ )



# **HYBRIDIZATION**

#### **Summary**

| Number of groups attached to central atom | Hybridization                  | Example           |
|-------------------------------------------|--------------------------------|-------------------|
| Two groups                                | sp                             | BeCl <sub>2</sub> |
| Three groups                              | sp <sup>2</sup>                | BCl <sub>3</sub>  |
| Four groups                               | sp <sup>3</sup>                | CH <sub>4</sub>   |
| Five groups                               | sp <sup>3</sup> d              | PCI <sub>5</sub>  |
| Six groups                                | sp <sup>3</sup> d <sup>2</sup> | SF <sub>6</sub>   |

## HYBRIDIZATION

#### Homework

 Use the valence bond model or hybridization theory to show the bonding in the following molecules: BeH<sub>2</sub>, BH<sub>3</sub>, CCl<sub>4</sub>, PCl<sub>5</sub>, SF<sub>6</sub>

2. Page 238 # 1 – 5, 7, 8, 10