LISTING OF THE CLAIMS

No claims are currently being amended, canceled or added. All pending claims are reproduced below.

- 1. (Previously Presented) A method comprising:
- (a) storing a plurality of independent sets of filter coefficients in a memory, wherein each set of filter coefficients defines a different polyphase filter function, wherein each of the different polyphase filter functions would result in at least some modifying of a signal if the signal were filtered in accordance with the polyphase filter function, and wherein each of the different polyphase filter functions would result in modifying of a signal in a different manner than the other polyphase filter functions;
- (b) storing a value in a filter selection register;
- (c) selecting a single one of the independent sets of filter coefficients based on the value stored in the filter selection register;
- (d) receiving an audio input signal including a plurality of samples;
- (e) estimating a sample rate of the audio input signal;
- (f) interpolating the single one selected set of filter coefficients, in dependence on the estimated sample rate of the audio input signal, to thereby produce interpolated polyphase filter coefficients; and
- (g) convolving the produced interpolated polyphase filter coefficients with the samples of the audio input signal to produce a filtered audio output signal that differs from the audio input signal regardless of which single one of the sets of filter coefficients is selected;
 - wherein said selecting the single one of the independent sets of filter coefficients at step (c) is performed prior to receiving the audio input signal at step (d), independent of the audio input signal received at step (d), and independent of the filtered audio output signal produced at step (g); and
 - wherein the same single one of the sets of filter coefficients selected at step (c) is used at steps (f) and (g) to produce the filtered audio output signal produced at step (g).

2. (Previously Presented) The method of claim 1, wherein the audio input signal is convolved with the interpolated filter coefficients in a sample rate converter of a digital pulse width modulation (PWM) audio amplifier.

3.-6. (Canceled)

7. (Original) The method of claim 1, wherein the plurality of sets of filter

coefficients are stored in a single memory.

8. (Previously Presented) The method of claim 1, wherein the single one selected

set of filter coefficients are interpolated according to a cubic spline algorithm.

9. (Original) The method of claim 1, wherein each of the plurality of sets of filter

coefficients comprise polyphase filter coefficients.

10. (Previously Presented) A system comprising:

a coefficient interpolator;

a filter selection register;

a memory coupled to the coefficient interpolator; and

a sample rate estimator configured to estimate a sample rate of an audio input

signal;

wherein the memory is configured to store multiple independent sets of filter

coefficients, wherein each set of filter coefficients defines a different

polyphase filter function, wherein each of the different polyphase filter

functions would result in at least some modifying of a signal if the signal

were filtered in accordance with the polyphase filter function, and wherein

each of the different polyphase filter functions would result in modifying

of a signal in a different manner than the other polyphase filter functions;

and

wherein the coefficient interpolator is configured to interpolate a selected single

one of the independent sets of filter coefficients, in dependence on the

3

estimated sample rate of the audio input signal, to thereby produce

interpolated polyphase filter coefficients; and

wherein the selected single of one of the independent sets of filter coefficients is

selected based on contents of the filter selection register, independent of

the audio input signal received, and independent of the filtered audio

output signal produced; and

wherein the same single one of the sets of filter coefficients selected is used to

produce the filtered audio output signal.

11. (Previously Presented) The system of claim 10, further comprising a convolution

engine coupled to the coefficient interpolator and configured to convolve the input signal

with the produced interpolated polyphase coefficients corresponding to the selected

single one of the sets of filter coefficients to produce an output signal that differs from the

input signal regardless of which one of the sets of filter coefficients is selected.

12. (Previously Presented) The system of claim 11, wherein:

the convolution engine is implemented in a sample rate converter of a pulse width

modulation (PWM) amplifier.

13.-18. (Canceled)

19. (Original) The system of claim 10, wherein the memory comprises a single

memory module configured to store the multiple sets of filter coefficients.

20. (Previously Presented) The system of claim 19, wherein each of the multiple

independent sets of filter coefficients comprise polyphase filter coefficients.

21. (Original) The system of claim 10, wherein the coefficient interpolator is

configured to interpolate the selected set of filter coefficients according to a cubic spline

algorithm.

4

22. (Previously Presented) A method comprising:

storing a plurality of independent sets of filter coefficients in a memory, wherein each set of filter coefficients defines a different polyphase filter function, wherein each of the different polyphase filter functions would result in at least some modifying of a signal if the signal were filtered in accordance with the polyphase filter function, and wherein each of the different polyphase filter functions would result in modifying of a signal in a different manner than the other polyphase filter functions;

storing a value in a filter selection register;

selecting a single one of the sets of filter coefficients based on the value stored in the filter selection register;

estimating a sample rate of an input signal;

receiving an audio data signal and frame sync signals associated with the audio data signal;

estimating, based on the frame sync signals, a sample rate of audio data signal;

interpolating the single one selected set of filter coefficients, in dependence on the estimated sample rate of the input signal, to thereby produce interpolated polyphase filter coefficients; and

convolving the produced interpolated polyphase filter coefficients with the received audio data signal to produce a filtered audio data signal that differs from the received audio data signal regardless of which single one of the sets of filter coefficients is selected;

wherein said selecting the single one of the independent sets of filter coefficients is performed prior to receiving the audio input audio signal, independent of the audio input signal received, and independent of the filtered audio output signal produced; and

wherein the same single one of the sets of filter coefficients selected is used to produce the filtered audio output signal.

23. (Previously Presented) The method of claim 22, further comprising performing the method in a sample rate converter of a digital PWM amplifier.

24. (Previously Presented) The method of claim 1, wherein the plurality of sets of

filter coefficients are stored in the memory prior to receiving the input signal, and

wherein the filter function defined by each set of filter coefficients corrects distortion in

the output signal.

25. (Previously Presented) The system of claim 10, wherein the memory is

configured to store the multiple sets of filter coefficients prior to receiving an input

signal, and wherein the filter function defined by each set of filter coefficients corrects

distortion in an output signal produced by convolving the input signal with interpolated

coefficients based on the corresponding set of filter coefficients.

26. (Previously Presented) The method of claim 22, wherein the plurality of sets of

filter coefficients are stored in the memory prior to receiving the audio data signal, and

wherein the filter function defined by each set of filter coefficients corrects distortion in

the produced filtered audio signal.

27. (Previously Presented) The method of claim 1, wherein the output signal,

resulting from the convolving step, is dependent on which single one of the independent

sets of filter coefficients is selected, such that for the same input signal a different output

signal would be produced if a different one of the independent sets of filter coefficients

were selected.

28. (Previously Presented) The system of claim 11, wherein the output signal,

produced by the convolution engine, is dependent on which single one of the independent

sets of filter coefficients is selected, such that for the same input signal a different output

signal would be produced if a different one of the independent sets of filter coefficients

were selected.

29. (Previously Presented) The method of claim 22, wherein the filtered audio data

signal, resulting from the convolving step, is dependent on which one of the independent

sets of filter coefficients is the single one selected, such that for the same received audio

6

data signal a different filtered audio data signal would be produced if a different one of the independent sets of filter coefficients were the single one selected.