

Masterclass organisée par : Togo Data Lab Fondements Mathématiques des Transformers et des LLMs

Module 1 : Fondements mathématiques (fonctions, matrices, algèbre linéaire)

Présentée par : Tiebekabe Pagdame Enseignant-chercheur - Université de Kara

Dates: 15-16 juillet 2025

Bienvenue à la Masterclass

Objectifs de la session

- Revoir les concepts fondamentaux de fonctions, matrices et algèbre linéaire.
- Comprendre les propriétés utiles en machine learning, deep learning, traitement du signal, etc.
- Développer l'intuition géométrique et l'agilité computationnelle.
- Préparer le terrain pour les réseaux de neurones et les transformations linéaires.

Public cible

- Étudiants en Mathématiques/Informatique et Science des Données
- Étudiants à la Faculté des Sciences et de la Santé
- Chercheurs en NLP
- Professionnels du secteur

Sommaire

- Notions fondamentales sur les fonctions
- Matrices et opérations matricielles
- Algèbre linéaire avancée

Définition formelle d'une fonction

Fonction (définition)

Soient A et B deux ensembles. Une **fonction** f de A vers B, notée $f:A\to B$, est une application qui associe à chaque élément $x\in A$ un unique élément $f(x)\in B$.

- A est appelé le domaine de définition (ou ensemble de départ).
- B est appelé le **codomaine** (ou ensemble d'arrivée).
- L'ensemble des valeurs effectivement prises par f est l'**image** de f: $\mathrm{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$.

Exemple

```
f: \mathbb{R} \to \mathbb{R} défini par f(x) = x^2
```

- Domaine : R, Codomaine : I
- Image : $\mathbb{R}_+ = [0, +\infty)$

Définition formelle d'une fonction

Fonction (définition)

Soient A et B deux ensembles. Une **fonction** f de A vers B, notée $f:A\to B$, est une application qui associe à chaque élément $x\in A$ un unique élément $f(x)\in B$.

- A est appelé le domaine de définition (ou ensemble de départ).
- *B* est appelé le **codomaine** (ou ensemble d'arrivée).
- L'ensemble des valeurs effectivement prises par f est l'**image** de f: $\mathrm{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$.

Exemple

 $f: \mathbb{R} \to \mathbb{R}$ défini par $f(x) = x^2$:

- ullet Domaine : \mathbb{R} , Codomaine : \mathbb{R}
- Image : $\mathbb{R}_+ = [0, +\infty)$

Graphe d'une fonction

Définition

Le **graphe** d'une fonction $f:A\to B$ est l'ensemble des couples :

$$Graph(f) = \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

- Chaque point du graphe représente un lien $x \mapsto f(x)$.
- En géométrie, pour $f:\mathbb{R} \to \mathbb{R}$, le graphe est une courbe dans le plan.

Remarque: Une courbe n'est le graphe d'une fonction que si toute verticale coupe la courbe en au plus un point.

Graphe d'une fonction

Définition

Le **graphe** d'une fonction $f:A\to B$ est l'ensemble des couples :

$$Graph(f) = \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

- Chaque point du graphe représente un lien $x \mapsto f(x)$.
- En géométrie, pour $f:\mathbb{R} \to \mathbb{R}$, le graphe est une courbe dans le plan.

Remarque: Une courbe n'est le graphe d'une fonction que si toute verticale coupe la courbe en au plus un point.

Fonction injective (injection)

Définition

Une fonction $f:A\to B$ est dite **injective** si :

$$\forall x_1, x_2 \in A, \quad f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

- Autrement dit, deux éléments différents de A ont toujours des images différentes.
- Il n'y a pas de "collisions" dans l'image.

Exemple

 $f: \mathbb{R} \to \mathbb{R}$ défini par f(x) = 2x + 1 est injective. Mais $f(x) = x^2$ ne l'est pas sur \mathbb{R} car f(1) = f(-1).

Fonction injective (injection)

Définition

Une fonction $f:A\to B$ est dite **injective** si :

$$\forall x_1, x_2 \in A, \quad f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

- Autrement dit, deux éléments différents de A ont toujours des images différentes.
- Il n'y a pas de "collisions" dans l'image.

Exemple

 $f:\mathbb{R}\to\mathbb{R}$ défini par f(x)=2x+1 est injective. Mais $f(x)=x^2$ ne l'est pas sur \mathbb{R} car f(1)=f(-1).

Fonction surjective (surjection)

Définition

Une fonction $f:A\to B$ est dite **surjective** si :

$$\forall y \in B, \ \exists x \in A \ \text{tel que } f(x) = y$$

- Autrement dit, l'image de f est exactement égale au codomaine : Im(f) = B.
- Tout élément du codomaine est atteint par la fonction.

Exemple

 $f:\mathbb{R}\to\mathbb{R}$ défini par $f(x)=x^3$ est surjective. Mais $f(x)=e^x$ n'est pas surjective si $B=\mathbb{R}$

Fonction surjective (surjection)

Définition

Une fonction $f:A\to B$ est dite **surjective** si :

$$\forall y \in B, \ \exists x \in A \ \text{tel que } f(x) = y$$

- Autrement dit, l'image de f est exactement égale au codomaine : Im(f) = B.
- Tout élément du codomaine est atteint par la fonction.

Exemple

 $f:\mathbb{R} \to \mathbb{R}$ défini par $f(x)=x^3$ est surjective. Mais $f(x)=e^x$ n'est pas surjective si $B=\mathbb{R}$.

Fonction bijective (bijection)

Définition

Une fonction $f: A \rightarrow B$ est dite **bijective** si elle est à la fois :

- injective : chaque valeur de B est atteinte par un seul x
- surjective : chaque $y \in B$ a un antécédent dans A
- Une bijection possède une **fonction réciproque** $f^{-1}: B \to A$ telle que $f^{-1}(f(x)) = x$.
- Les bijections permettent de faire des "changements de variables" ou des codages.

Exemple

 $f: \mathbb{R} \to \mathbb{R}$ défini par f(x) = x + 5 est bijective

Fonction bijective (bijection)

Définition

Une fonction $f: A \rightarrow B$ est dite **bijective** si elle est à la fois :

- injective : chaque valeur de B est atteinte par un seul x
- surjective : chaque $y \in B$ a un antécédent dans A
- Une bijection possède une fonction réciproque $f^{-1}: B \to A$ telle que $f^{-1}(f(x)) = x$.
- Les bijections permettent de faire des "changements de variables" ou des codages.

Exemple

 $f: \mathbb{R} \to \mathbb{R}$ défini par f(x) = x + 5 est bijective.

Fonctions linéaires et affines

Fonction linéaire

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est dite **linéaire** si $\exists a \in \mathbb{R}$ tel que f(x) = ax.

Fonction affine

Une fonction est **affine** si f(x) = ax + b avec $a, b \in \mathbb{R}$.

- Les fonctions linéaires sont les transformations de type homothéties.
- Les fonctions affines incluent une translation (elles représentent des droites).

Applications

Les neurones artificiels combinent souvent une transformation affine $f(x) = w^T x + b$ suivie d'une non-linéarité.

Fonctions linéaires et affines

Fonction linéaire

Une fonction $f : \mathbb{R} \to \mathbb{R}$ est dite **linéaire** si $\exists a \in \mathbb{R}$ tel que f(x) = ax.

Fonction affine

Une fonction est **affine** si f(x) = ax + b avec $a, b \in \mathbb{R}$.

- Les fonctions linéaires sont les transformations de type homothéties.
- Les fonctions affines incluent une translation (elles représentent des droites).

Applications

Les neurones artificiels combinent souvent une transformation affine $f(x) = w^T x + b$ suivie d'une non-linéarité.

Fonctions polynomiales

Définition

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est polynomiale de degré n si :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 avec $a_n \neq 0$

- Les polynômes modélisent des comportements courbes, sont dérivables partout.
- Leur étude s'appuie sur l'algèbre linéaire (espaces vectoriels de polynômes).

Utilisation

Les polynômes interviennent dans les séries de Taylor, les modèles de régression non-linéaire, etc

Fonctions polynomiales

Définition

Une fonction $f:\mathbb{R} \to \mathbb{R}$ est polynomiale de degré n si :

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 avec $a_n \neq 0$

- Les polynômes modélisent des comportements courbes, sont dérivables partout.
- Leur étude s'appuie sur l'algèbre linéaire (espaces vectoriels de polynômes).

Utilisation

Les polynômes interviennent dans les séries de Taylor, les modèles de régression non-linéaire, etc.

Fonction exponentielle

Définition

La fonction exponentielle réelle est définie par :

$$f(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

- Strictement croissante, dérivable partout, f'(x) = f(x).
- Image : $(0, +\infty)$; bijection entre \mathbb{R} et \mathbb{R}_+^* .

Application en IA

Intervient dans les fonctions d'activation comme la **sigmoïde** : $\sigma(x) = \frac{1}{1+e^{-x}}$.

Fonction exponentielle

Définition

La fonction exponentielle réelle est définie par :

$$f(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

- Strictement croissante, dérivable partout, f'(x) = f(x).
- Image : $(0, +\infty)$; bijection entre \mathbb{R} et \mathbb{R}_+^* .

Application en IA

Intervient dans les fonctions d'activation comme la **sigmoïde** : $\sigma(x) = \frac{1}{1+e^{-x}}$.

Fonction logarithme népérien

Définition

La fonction logarithme népérien est la bijection réciproque de l'exponentielle :

$$ln(x) = y \Leftrightarrow x = e^y$$
, pour $x > 0$

- Strictement croissante, dérivable sur $(0, +\infty)$.
- $\ln(ab) = \ln(a) + \ln(b), \ln(a^r) = r\ln(a).$

Utilisation

Très utilisé en backpropagation (log-loss), softmax, ou en normalisation des valeurs.

Fonction logarithme népérien

Définition

La fonction logarithme népérien est la bijection réciproque de l'exponentielle :

$$ln(x) = y \Leftrightarrow x = e^y$$
, pour $x > 0$

- Strictement croissante, dérivable sur $(0, +\infty)$.
- $\ln(ab) = \ln(a) + \ln(b), \ln(a^r) = r\ln(a).$

Utilisation

Très utilisé en backpropagation (log-loss), softmax, ou en normalisation des valeurs.

Fonction sigmoïde

Définition

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Image: (0,1)
- Dérivable : $\sigma'(x) = \sigma(x)(1 \sigma(x))$
- Fonction non linéaire, à pente maximale en x = 0

Propriétés en Deep Learning

- Bonne interprétation probabiliste (utilisée en sortie pour des probabilités).
- Peut saturer : le gradient devient quasi nul pour $|x| \gg 0$.

Fonction sigmoïde

Définition

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Image: (0,1)
- Dérivable : $\sigma'(x) = \sigma(x)(1 \sigma(x))$
- Fonction non linéaire, à pente maximale en x = 0

Propriétés en Deep Learning

- Bonne interprétation probabiliste (utilisée en sortie pour des probabilités).
- Peut saturer : le gradient devient quasi nul pour $|x| \gg 0$.

Fonction tangente hyperbolique (Tanh)

Définition

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- Image : (-1,1), centrée sur zéro
- Dérivable : $\tanh'(x) = 1 \tanh^2(x)$
- Courbe en forme de sigmoïde plus "centrée"

Avantages

- Zéro-centered meilleure convergence dans certains cas.
- Même inconvénient que $\sigma(x)$: saturation pour |x| grand.

Fonction tangente hyperbolique (Tanh)

Définition

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- Image : (-1,1), centrée sur zéro
- Dérivable : $\tanh'(x) = 1 \tanh^2(x)$
- Courbe en forme de sigmoïde plus "centrée"

Avantages

- Zéro-centered meilleure convergence dans certains cas.
- Même inconvénient que $\sigma(x)$: saturation pour |x| grand.

Fonction d'activation ReLU

Définition

$$ReLU(x) = max(0,x)$$

- Non dérivable en x = 0, mais utilisée massivement en pratique.
- Simple, computationnellement efficace.
- Image : $[0, +\infty)$

Avantages / limites

- Accélère la convergence.
- ullet Problème de "neurones morts" quand x < 0 de manière permanente.

Fonction d'activation ReLU

Définition

$$ReLU(x) = max(0,x)$$

- Non dérivable en x = 0, mais utilisée massivement en pratique.
- Simple, computationnellement efficace.
- Image : $[0, +\infty)$

Avantages / limites

- Accélère la convergence.
- ullet Problème de "neurones morts" quand x < 0 de manière permanente.

Fonction GELU

Définition

GELU(x) =
$$x \cdot \Phi(x)$$
, où $\Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x}{\sqrt{2}} \right) \right]$

- $\Phi(x)$ est la fonction de répartition de la loi normale.
- Fonction lisse, proche de ReLU mais plus fine statistiquement.

Utilisation avancée

Adoptée dans les Transformers (BERT, GPT-2) car elle combine efficacité computationnelle et régularité du gradient.

Fonction GELU

Définition

GELU(x) =
$$x \cdot \Phi(x)$$
, où $\Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf} \left(\frac{x}{\sqrt{2}} \right) \right]$

- $\Phi(x)$ est la fonction de répartition de la loi normale.
- Fonction lisse, proche de ReLU mais plus fine statistiquement.

Utilisation avancée

Adoptée dans les Transformers (BERT, GPT-2) car elle combine efficacité computationnelle et régularité du gradient.

Continuité d'une fonction réelle

Définition

Une fonction $f:\mathbb{R} \to \mathbb{R}$ est **continue en** $x_0 \in \mathbb{R}$ si :

$$\lim_{x \to x_0} f(x) = f(x_0)$$

- Intuitivement : pas de "saut", ni de "trou".
- Toute fonction dérivable en un point est continue en ce point (mais la réciproque est fausse).

Conséquence

La continuité assure la stabilité du modèle : petites perturbations d'entrée ⇒ petites variations de sortie.

Continuité d'une fonction réelle

Définition

Une fonction $f:\mathbb{R} \to \mathbb{R}$ est **continue en** $x_0 \in \mathbb{R}$ si :

$$\lim_{x \to x_0} f(x) = f(x_0)$$

- Intuitivement : pas de "saut", ni de "trou".
- Toute fonction dérivable en un point est continue en ce point (mais la réciproque est fausse).

Conséquence

La continuité assure la stabilité du modèle : petites perturbations d'entrée ⇒ petites variations de sortie.

Continuité d'une fonction réelle

Définition

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est **continue en** $x_0 \in \mathbb{R}$ si :

$$\lim_{x \to x_0} f(x) = f(x_0)$$

- Intuitivement : pas de "saut", ni de "trou".
- Toute fonction dérivable en un point est continue en ce point (mais la réciproque est fausse).

Conséquence

La continuité assure la stabilité du modèle : petites perturbations d'entrée ⇒ petites variations de sortie.

Dérivabilité : définition et intérêt

Définition

f est **dérivable en** x_0 si la limite suivante existe :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- Donne le taux de variation instantané.
- Fonctions usuelles (exp, In, polynômes, sigmoïde, tanh, GELU) sont dérivables partout.
- ReLU n'est pas dérivable en x = 0, mais reste utilisée car presque partout dérivable.

Optimisation par descente de gradient

Idée clé

Minimiser une fonction de coût $J(\theta)$ en ajustant les paramètres θ dans le sens opposé au gradient :

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$$

- $\nabla_{\theta} J$ n'existe que si J est dérivable.
- Les fonctions d'activation doivent donc être dérivables (ou presque partout dérivables).

Importance

La forme de f influence la vitesse et la stabilité de la convergence.

Optimisation par descente de gradient

Idée clé

Minimiser une fonction de coût $J(\theta)$ en ajustant les paramètres θ dans le sens opposé au gradient :

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$$

- $\nabla_{\theta} J$ n'existe que si J est dérivable.
- Les fonctions d'activation doivent donc être dérivables (ou presque partout dérivables).

Importance

La forme de f influence la vitesse et la stabilité de la convergence.

Optimisation par descente de gradient

Idée clé

Minimiser une fonction de coût $J(\theta)$ en ajustant les paramètres θ dans le sens opposé au gradient :

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$$

- $\nabla_{\theta} J$ n'existe que si J est dérivable.
- Les fonctions d'activation doivent donc être dérivables (ou presque partout dérivables).

Importance

La forme de f influence la vitesse et la stabilité de la convergence.

Rétropropagation (Backpropagation)

Principe

Algorithme qui applique la règle de la chaîne pour propager les gradients de la sortie vers l'entrée :

$$\frac{\partial J}{\partial \theta} = \frac{\partial J}{\partial z_n} \cdot \frac{\partial z_n}{\partial z_{n-1}} \cdots \frac{\partial z_1}{\partial \theta}$$

- Chaque fonction utilisée dans le réseau doit être différentiable pour propager l'information.
- Fonctions d'activation choisies pour leur dérivée simple à calculer.

Rétropropagation (Backpropagation)

Principe

Algorithme qui applique la règle de la chaîne pour propager les gradients de la sortie vers l'entrée :

$$\frac{\partial J}{\partial \theta} = \frac{\partial J}{\partial z_n} \cdot \frac{\partial z_n}{\partial z_{n-1}} \cdots \frac{\partial z_1}{\partial \theta}$$

- Chaque fonction utilisée dans le réseau doit être différentiable pour propager l'information.
- Fonctions d'activation choisies pour leur dérivée simple à calculer.

Dérivabilité, expressivité et efficacité

- $\sigma(x)$, $\tanh(x)$: dérivables partout mais saturent \Rightarrow gradients faibles.
- ReLU(x) : non dérivable en 0, mais simple et efficace, introduit de la sparsité.
- GELU(x) : dérivable partout, plus fluide que ReLU.

Compromis

Le choix repose sur un équilibre entre

- Continuité/dérivabilité
- Coût de calcul
- Propriétés d'apprentissage (vitesse, stabilité)

Dérivabilité, expressivité et efficacité

- $\sigma(x)$, $\tanh(x)$: dérivables partout mais saturent \Rightarrow gradients faibles.
- ReLU(x) : non dérivable en 0, mais simple et efficace, introduit de la sparsité.
- GELU(x) : dérivable partout, plus fluide que ReLU.

Compromis

Le choix repose sur un équilibre entre :

- Continuité/dérivabilité
- Coût de calcul
- Propriétés d'apprentissage (vitesse, stabilité)

Objets de base en algèbre linéaire

- Scalaire : un seul nombre réel $a \in \mathbb{R}$.
- Vecteur : une liste ordonnée de scalaires

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$

• Matrice : tableau de scalaires organisés en lignes et colonnes :

 $\mathbf{X} \in \mathbb{R}^{m \times n}$ (matrice à m lignes et n colonnes)

Notation conventionnelle

- X : matrice
- x : vecteur
- x : scalaire

Objets de base en algèbre linéaire

- Scalaire : un seul nombre réel $a \in \mathbb{R}$.
- Vecteur : une liste ordonnée de scalaires

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$

• Matrice : tableau de scalaires organisés en lignes et colonnes :

 $\mathbf{X} \in \mathbb{R}^{m \times n}$ (matrice à m lignes et n colonnes)

Notation conventionnelle

- X : matrice
- o x : vecteur
- x : scalaire

Scalaires et vecteurs

Scalaire : un nombre réel $a \in \mathbb{R}$ (température, poids, coût...)

Vecteur colonne :

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$

- Coordonnées : v_i pour i = 1, ..., n
- ullet Rⁿ est un espace vectoriel de dimension n
- Interprétation : points, directions, poids...

Vecteur ligne : $\mathbf{v}^{\perp} = [v_1, v_2, \dots, v_n] \in \mathbb{R}^{1 \times n}$

Scalaires et vecteurs

Scalaire : un nombre réel $a \in \mathbb{R}$ (température, poids, coût...)

Vecteur colonne :

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$$

- Coordonnées : v_i pour i = 1, ..., n
- ullet Rⁿ est un espace vectoriel de dimension n
- Interprétation : points, directions, poids...

Vecteur ligne : $\mathbf{v}^{\top} = [v_1, v_2, \dots, v_n] \in \mathbb{R}^{1 \times n}$

Matrices : définitions et notations

Matrice $\mathbf{X} \in \mathbb{R}^{m \times n}$:

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$$

- $x_{i,j}$: élément en ligne i, colonne j
- m = nombre de lignes (exemples)
- n =nombre de colonnes (features)

Exemple

X peut représenter un batch de données : m exemples, chacun de n dimensions

Matrices : définitions et notations

Matrice $\mathbf{X} \in \mathbb{R}^{m \times n}$:

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$$

- $x_{i,j}$: élément en ligne i, colonne j
- m = nombre de lignes (exemples)
- *n* = nombre de colonnes (features)

Exemple

X peut représenter un batch de données : m exemples, chacun de n dimensions

Matrices : définitions et notations

Matrice $\mathbf{X} \in \mathbb{R}^{m \times n}$:

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$$

- x_{i,j}: élément en ligne i, colonne j
- m = nombre de lignes (exemples)
- *n* = nombre de colonnes (features)

Exemple

X peut représenter un batch de données : m exemples, chacun de n dimensions.

Interprétation des dimensions en apprentissage

Exemple : classification supervisée

$$\mathbf{X} \in \mathbb{R}^{m \times n}, \quad \mathbf{y} \in \mathbb{R}^{m \times 1}$$

- *m* : nombre d'exemples (données d'entraînement)
- n : nombre de variables/features
- X : matrice de design, chaque ligne = un vecteur d'entrée
- y : vecteur des sorties/étiquettes

Réseaux de neurones

- Poids = matrices W
- Inputs = vecteurs x
- Opérations = produits matriciels, compositions non linéaires

Interprétation des dimensions en apprentissage

Exemple : classification supervisée

$$\mathbf{X} \in \mathbb{R}^{m \times n}, \quad \mathbf{y} \in \mathbb{R}^{m \times 1}$$

- *m* : nombre d'exemples (données d'entraînement)
- n : nombre de variables/features
- X : matrice de design, chaque ligne = un vecteur d'entrée
- y : vecteur des sorties/étiquettes

Réseaux de neurones

- Poids = matrices W
- Inputs = vecteurs :
- Opérations = produits matriciels, compositions non linéaires

Interprétation des dimensions en apprentissage

Exemple : classification supervisée

$$\mathbf{X} \in \mathbb{R}^{m \times n}, \quad \mathbf{y} \in \mathbb{R}^{m \times 1}$$

- *m* : nombre d'exemples (données d'entraînement)
- n : nombre de variables/features
- X : matrice de design, chaque ligne = un vecteur d'entrée
- y : vecteur des sorties/étiquettes

Réseaux de neurones

- Poids = matrices W
- Inputs = vecteurs x
- Opérations = produits matriciels, compositions non linéaires

Addition et transposition

Addition de matrices : $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$

Transposée d'une matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$:

Propriétés

$$\bullet \ (\mathbf{A} + \mathbf{B})^\top = \mathbf{A}^\top + \mathbf{B}^\top$$

$$\bullet \ (\mathbf{A}^\top)^\top = \mathbf{A}$$

$\mathbf{C} = \mathbf{A} + \mathbf{B} \Rightarrow c_{ij} = a_{ij} + b_{ij}$

$$\mathbf{A}^{\top} \in \mathbb{R}^{n \times m}, \quad (\mathbf{A}^{\top})_{ij} = a_{ji}$$

Addition et transposition

Addition de matrices : $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$

$$\mathbf{C} = \mathbf{A} + \mathbf{B} \Rightarrow c_{ij} = a_{ij} + b_{ij}$$

Transposée d'une matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$:

$$\mathbf{A}^{\top} \in \mathbb{R}^{n \times m}, \quad (\mathbf{A}^{\top})_{ij} = a_{ji}$$

$$\bullet \ (\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$$

$$\bullet \ (\mathbf{A}^\top)^\top = \mathbf{A}$$

Addition et transposition

Addition de matrices : $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$

$$\mathbf{C} = \mathbf{A} + \mathbf{B} \Rightarrow c_{ij} = a_{ij} + b_{ij}$$

Transposée d'une matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$:

$$\mathbf{A}^{\top} \in \mathbb{R}^{n \times m}, \quad (\mathbf{A}^{\top})_{ij} = a_{ji}$$

$$\bullet \ (\mathbf{A} + \mathbf{B})^\top = \mathbf{A}^\top + \mathbf{B}^\top$$

$$\bullet \ (\mathbf{A}^\top)^\top = \mathbf{A}$$

Produit scalaire

Produit scalaire de deux vecteurs $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$:

$$\mathbf{u}^{\top}\mathbf{v} = \sum_{i=1}^{n} u_i v_i \in \mathbb{R}$$

- Résultat : scalaire
- Mesure l'alignement (cosinus de l'angle entre les vecteurs)

- Symétrie : $\mathbf{u}^{\top}\mathbf{v} = \mathbf{v}^{\top}\mathbf{v}$
- Linéarité : $\mathbf{u}^{\top}(a\mathbf{v} + b\mathbf{w}) = a\mathbf{u}^{\top}\mathbf{v} + b\mathbf{u}^{\top}\mathbf{v}$

Produit scalaire

Produit scalaire de deux vecteurs $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$:

$$\mathbf{u}^{\top}\mathbf{v} = \sum_{i=1}^{n} u_i v_i \in \mathbb{R}$$

- Résultat : scalaire
- Mesure l'alignement (cosinus de l'angle entre les vecteurs)

- Symétrie : $\mathbf{u}^{\top}\mathbf{v} = \mathbf{v}^{\top}\mathbf{v}$
- Linéarité : $\mathbf{u}^{\top}(a\mathbf{v} + b\mathbf{w}) = a\mathbf{u}^{\top}\mathbf{v} + b\mathbf{u}^{\top}\mathbf{v}$

Produit scalaire

Produit scalaire de deux vecteurs $\mathbf{u},\mathbf{v}\in\mathbb{R}^n$:

$$\mathbf{u}^{\top}\mathbf{v} = \sum_{i=1}^{n} u_i v_i \in \mathbb{R}$$

- Résultat : scalaire
- Mesure l'alignement (cosinus de l'angle entre les vecteurs)

- $\bullet \; \; \mathsf{Sym\acute{e}trie} : \mathbf{u}^\top \mathbf{v} = \mathbf{v}^\top \mathbf{u}$
- Linéarité : $\mathbf{u}^{\top}(a\mathbf{v} + b\mathbf{w}) = a\mathbf{u}^{\top}\mathbf{v} + b\mathbf{u}^{\top}\mathbf{w}$

Produit matriciel

Produit matriciel:

$$\mathbf{C} = \mathbf{A}\mathbf{B}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{B} \in \mathbb{R}^{n \times p} \Rightarrow \mathbf{C} \in \mathbb{R}^{m \times p}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Interprétation

- Composition de transformations linéaires
- Produit de couches dans les réseaux de neurones

Produit matriciel

Produit matriciel:

$$\mathbf{C} = \mathbf{AB}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{B} \in \mathbb{R}^{n \times p} \Rightarrow \mathbf{C} \in \mathbb{R}^{m \times p}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Interprétation

- Composition de transformations linéaires
- Produit de couches dans les réseaux de neurones

Produit matriciel

Produit matriciel:

$$\mathbf{C} = \mathbf{A}\mathbf{B}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{B} \in \mathbb{R}^{n \times p} \Rightarrow \mathbf{C} \in \mathbb{R}^{m \times p}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Interprétation :

- Composition de transformations linéaires
- Produit de couches dans les réseaux de neurones

Inversibilité

Définition : Une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$ est **inversible** s'il existe \mathbf{A}^{-1} tel que :

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$$

- A est alors dite non singulière
- Sinon, elle est **singulière** (non inversible)

Conditions d'inversibilité

- $det(\mathbf{A}) \neq 0$
- Les colonnes sont linéairement indépendantes

Inversibilité

Définition : Une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$ est **inversible** s'il existe \mathbf{A}^{-1} tel que :

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$$

- A est alors dite non singulière
- Sinon, elle est singulière (non inversible)

Conditions d'inversibilité :

- $det(\mathbf{A}) \neq 0$
- Les colonnes sont linéairement indépendantes

Inversibilité

Définition : Une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$ est **inversible** s'il existe \mathbf{A}^{-1} tel que :

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$$

- A est alors dite non singulière
- Sinon, elle est singulière (non inversible)

Conditions d'inversibilité :

- $det(\mathbf{A}) \neq 0$
- Les colonnes sont linéairement indépendantes

Trace d'une matrice

Trace d'une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

- Somme des éléments diagonaux
- Invariante par changement de base
- tr(AB) = tr(BA) si les produits sont définis

Applications

- En statistiques : trace = somme des variances (matrice de covariance)
- En apprentissage : régularisation par la trace

Trace d'une matrice

Trace d'une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

- Somme des éléments diagonaux
- Invariante par changement de base
- \bullet tr(AB) = tr(BA) si les produits sont définis

Applications

- En statistiques : trace = somme des variances (matrice de covariance)
- En apprentissage : régularisation par la trace

Trace d'une matrice

Trace d'une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$:

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

- Somme des éléments diagonaux
- Invariante par changement de base
- tr(AB) = tr(BA) si les produits sont définis

Applications:

- En statistiques : trace = somme des variances (matrice de covariance)
- En apprentissage : régularisation par la trace

Déterminant : $det(\mathbf{A})$, pour une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$

- Donne une mesure de la "taille" du parallélépipède formé par les colonnes
- \bullet $det(A) = 0 \Leftrightarrow A$ non inversible
- \bullet $det(\mathbf{A}^{\top}) = det(\mathbf{A})$

Cas 2 x 2 ·

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - b$$

Déterminant : $det(\mathbf{A})$, pour une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$

- Donne une mesure de la "taille" du parallélépipède formé par les colonnes
- \bullet $det(A) = 0 \Leftrightarrow A$ non inversible
- $det(\mathbf{A}^{\top}) = det(\mathbf{A})$

Cas 2 × 2 ·

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Déterminant : $det(\mathbf{A})$, pour une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$

- Donne une mesure de la "taille" du parallélépipède formé par les colonnes
- \bullet $det(A) = 0 \Leftrightarrow A$ non inversible

Cas 2×2 :

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Déterminant : $det(\mathbf{A})$, pour une matrice carrée $\mathbf{A} \in \mathbb{R}^{n \times n}$

- Donne une mesure de la "taille" du parallélépipède formé par les colonnes
- \bullet $det(A) = 0 \Leftrightarrow A$ non inversible
- $det(\mathbf{AB}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$
- $det(\mathbf{A}^{\top}) = det(\mathbf{A})$

Cas 2×2 :

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Matrice identité

Définition : La matrice identité $\mathbf{I}_n \in \mathbb{R}^{n \times n}$ est la matrice carrée telle que :

$$(\mathbf{I}_n)_{ij} = egin{cases} 1 & ext{si } i = j \\ 0 & ext{sinon} \end{cases}$$

Propriété fondamentale

$$\forall \mathbf{A} \in \mathbb{R}^{n \times n}, \quad \mathbf{AI}_n = \mathbf{I}_n \mathbf{A} = \mathbf{A}$$

Rôle : élément neutre du produit matricle

Matrice identité

Définition : La matrice identité $\mathbf{I}_n \in \mathbb{R}^{n \times n}$ est la matrice carrée telle que :

$$(\mathbf{I}_n)_{ij} = egin{cases} 1 & ext{si } i = j \\ 0 & ext{sinon} \end{cases}$$

Propriété fondamentale :

$$\forall \mathbf{A} \in \mathbb{R}^{n \times n}, \quad \mathbf{A}\mathbf{I}_n = \mathbf{I}_n \mathbf{A} = \mathbf{A}$$

Role : element neutre du produit matricle

Matrice identité

Définition : La matrice identité $\mathbf{I}_n \in \mathbb{R}^{n \times n}$ est la matrice carrée telle que :

$$(\mathbf{I}_n)_{ij} = egin{cases} 1 & ext{si } i = j \\ 0 & ext{sinon} \end{cases}$$

Propriété fondamentale :

$$\forall \mathbf{A} \in \mathbb{R}^{n \times n}, \quad \mathbf{A}\mathbf{I}_n = \mathbf{I}_n \mathbf{A} = \mathbf{A}$$

Rôle : élément neutre du produit matriciel

Matrice diagonale

Définition : Une matrice $\mathbf{D} \in \mathbb{R}^{n \times n}$ est dite **diagonale** si :

$$d_{ij} = 0$$
 pour $i \neq j$

$$\mathbf{D} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

Propriétés

- Facile à inverser si $d_i \neq 0$
- $\det(\mathbf{D}) = \prod_{i=1}^n d_i$
- $\mathbf{D}^k = \operatorname{diag}(d_1^k, \dots, d_n^k)$

Matrice diagonale

Définition : Une matrice $\mathbf{D} \in \mathbb{R}^{n \times n}$ est dite **diagonale** si :

$$d_{ij} = 0$$
 pour $i \neq j$

$$\mathbf{D} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

Propriétés

- Facile à inverser si $d_i \neq 0$
- $\det(\mathbf{D}) = \prod_{i=1}^n d_i$
- $\bullet \ \mathbf{D}^k = \operatorname{diag}(d_1^k, \dots, d_n^k)$

Matrice diagonale

Définition : Une matrice $\mathbf{D} \in \mathbb{R}^{n \times n}$ est dite **diagonale** si :

$$d_{ij} = 0$$
 pour $i \neq j$

$$\mathbf{D} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$

Propriétés :

- Facile à inverser si $d_i \neq 0$
- $\bullet \det(\mathbf{D}) = \prod_{i=1}^n d_i$
- $\bullet \ \mathbf{D}^k = \operatorname{diag}(d_1^k, \dots, d_n^k)$

Matrice symétrique

Définition : Une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$ est **symétrique** si :

$$\mathbf{A}^\top = \mathbf{A}$$

Propriétés

- Les éléments diagonaux sont réels.
- $\forall \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^\top \mathbf{A} \mathbf{x} \in \mathbb{R}$
- Admet des valeurs propres réelles
- Diagonalisable dans une base orthonormale

Applications : matrices de covariance, Hessienne

Matrice symétrique

Définition : Une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$ est **symétrique** si :

$$\mathbf{A}^{\top} = \mathbf{A}$$

Propriétés :

- Les éléments diagonaux sont réels.
- $\forall \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^\top \mathbf{A} \mathbf{x} \in \mathbb{R}$
- Admet des valeurs propres réelles
- Diagonalisable dans une base orthonormale

Applications : matrices de covariance, Hessienne

Matrice symétrique

Définition : Une matrice $\mathbf{A} \in \mathbb{R}^{n \times n}$ est **symétrique** si :

$$\mathbf{A}^\top = \mathbf{A}$$

Propriétés :

- Les éléments diagonaux sont réels.
- $\forall \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \in \mathbb{R}$
- Admet des valeurs propres réelles
- Diagonalisable dans une base orthonormale

Applications : matrices de covariance, Hessienne

Matrice orthogonale

Définition : $\mathbf{Q} \in \mathbb{R}^{n \times n}$ est orthogonale si :

$$\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{Q}\mathbf{Q}^{\top} = \mathbf{I}_n$$

Propriétés

- $Q^{-1} = Q^{\top}$
- Conserve les normes : $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$
- Produit de vecteurs orthonormés

Applications

- Transformations orthogonales (rotations, réflexions)
- Décompositions QR, PCA

Matrice orthogonale

Définition : $\mathbf{Q} \in \mathbb{R}^{n \times n}$ est orthogonale si :

$$\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{Q}\mathbf{Q}^{\top} = \mathbf{I}_n$$

Propriétés :

- $\bullet \ \mathbf{Q}^{-1} = \mathbf{Q}^{\top}$
- ullet Conserve les normes : $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$
- Produit de vecteurs orthonormés

Applications

- Transformations orthogonales (rotations, réflexions)
- Décompositions QR, PCA

Matrice orthogonale

Définition : $\mathbf{Q} \in \mathbb{R}^{n \times n}$ est orthogonale si :

$$\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{Q}\mathbf{Q}^{\top} = \mathbf{I}_n$$

Propriétés :

- $\bullet \ \mathbf{Q}^{-1} = \mathbf{Q}^{\top}$
- Conserve les normes : $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$
- Produit de vecteurs orthonormés

Applications:

- Transformations orthogonales (rotations, réflexions)
- Décompositions QR, PCA

Comparaison des matrices spéciales

Туре	Définition	Propriétés clés
Identité	$I_{ij} = \delta_{ij}$	Neutre pour le produit
Diagonale	$a_{ij} = 0$ si $i \neq j$	Facile à inverser
Symétrique	$\mathbf{A}^{\top} = \mathbf{A}$	Valeurs propres réelles
Orthogonale	$\mathbf{Q}^{\top} = \mathbf{Q}^{-1}$	Norme conservée

Applications en apprentissage automatique

- **Identité** : poids initiaux, régularisation (ex : ridge I_n)
- Matrices diagonales : simplifie le calcul des gradients, jacobiens diagonaux
- Symétriques : matrices de covariance, hessienne
- Orthogonales:
 - Initialisation des réseaux (orthogonal init)
 - RNNs stables (préservent norme des vecteurs)

Conclusion : La structure d'une matrice a un impact direct sur la stabilité numérique, l'interprétabilité, et la convergence des algorithme

Applications en apprentissage automatique

- **Identité** : poids initiaux, régularisation (ex : ridge I_n)
- Matrices diagonales : simplifie le calcul des gradients, jacobiens diagonaux
- Symétriques : matrices de covariance, hessienne
- Orthogonales:
 - Initialisation des réseaux (orthogonal init)
 - RNNs stables (préservent norme des vecteurs)

Conclusion : La structure d'une matrice a un impact direct sur la stabilité numérique, l'interprétabilité, et la convergence des algorithmes.

Soit une matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$ et un vecteur colonne $\mathbf{x} \in \mathbb{R}^n$.

Produit

$$\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^n$$

Formule explicite

$$y_i = \sum_{i=1}^n a_{ij}x_j$$
, pour $i = 1, \dots, m$

Interprétation : combinaison linéaire des colonnes de A pondérées par les coordonnées de x

Soit une matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$ et un vecteur colonne $\mathbf{x} \in \mathbb{R}^n$.

Produit:

$$\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^m$$

Formule explicite

$$y_i = \sum_{i=1}^n a_{ij} x_j$$
, pour $i = 1, \dots, m$

Interprétation : combinaison linéaire des colonnes de A pondérées par les coordonnées de x

Soit une matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$ et un vecteur colonne $\mathbf{x} \in \mathbb{R}^n$.

Produit :

$$\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^m$$

Formule explicite :

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
, pour $i = 1, \dots, m$

Interprétation : combinaison linéaire des colonnes de A pondérées par les coordonnées de x

Soit une matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$ et un vecteur colonne $\mathbf{x} \in \mathbb{R}^n$.

Produit :

$$\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^m$$

Formule explicite :

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
, pour $i = 1, \dots, m$

Interprétation : combinaison linéaire des colonnes de A pondérées par les coordonnées de x.

L'application linéaire $x\mapsto Ax$ est une transformation de l'espace.

- $\mathbf{A} \in \mathbb{R}^{n \times n}$ peut :
 - faire une rotation
 - une dilatation
 - une réflexion
 - une projection
- Si A n'est pas carrée : transformation entre espaces de dimension différente.

Exemple

$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \text{dilatation selon l'axe } x$$

Illustration visuelle : le vecteur x est "déformé" par A dans un nouvel espace.

L'application linéaire $x \mapsto Ax$ est une transformation de l'espace.

- ullet $\mathbf{A} \in \mathbb{R}^{n imes n}$ peut :
 - faire une rotation
 - une dilatation
 - une réflexion
 - une projection
- Si A n'est pas carrée : transformation entre espaces de dimension différente.

Exemple

$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \text{dilatation selon l'axe } x$$

Illustration visuelle : le vecteur x est "déformé" par A dans un nouvel espace.

L'application linéaire $x \mapsto Ax$ est une transformation de l'espace.

- ullet $\mathbf{A} \in \mathbb{R}^{n imes n}$ peut :
 - faire une rotation
 - une dilatation
 - une réflexion
 - une projection
- Si A n'est pas carrée : transformation entre espaces de dimension différente.

Exemple:

$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow \text{dilatation selon l'axe } x$$

Illustration visuelle : le vecteur x est "déformé" par A dans un nouvel espace.

L'application linéaire $x \mapsto Ax$ est une transformation de l'espace.

- ullet $\mathbf{A} \in \mathbb{R}^{n imes n}$ peut :
 - ► faire une rotation
 - une dilatation
 - une réflexion
 - une projection
- $\bullet\,$ Si A n'est pas carrée : transformation entre espaces de dimension différente.

Matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$: transforme $\mathbf{x} \in \mathbb{R}^n$ en un vecteur $\mathbf{y} \in \mathbb{R}^m$

Exemple 1 : compression (n = 5, m = 2)

 $\mathbf{A} \in \mathbb{R}^{2 imes 5}, \;\;\;$ projection d'un espace de haute dimension vers un plar

Exemple 2 : expansion (n = 2, m = 4)

 $\mathbf{A} \in \mathbb{R}^{4 imes 2}$, immersion d'un plan dans un espace 4E

Usage: représentation des données, réduction de dimension, reconstruction.

Matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$: transforme $\mathbf{x} \in \mathbb{R}^n$ en un vecteur $\mathbf{y} \in \mathbb{R}^m$ Exemple 1: compression (n = 5, m = 2):

 $\mathbf{A} \in \mathbb{R}^{2 \times 5}, \quad \text{projection d'un espace de haute dimension vers un plan}$

Exemple 2 : expansion (n = 2, m = 4)

 $\mathbf{A} \in \mathbb{R}^{4 imes 2}$, immersion d'un plan dans un espace 4 \mathbf{I}

Usage: représentation des données, réduction de dimension, reconstruction,

Matrice $\mathbf{A} \in \mathbb{R}^{m \times n}$: transforme $\mathbf{x} \in \mathbb{R}^n$ en un vecteur $\mathbf{y} \in \mathbb{R}^m$

Exemple 1 : compression (n = 5, m = 2):

 $\mathbf{A} \in \mathbb{R}^{2 \times 5}, \quad \text{projection d'un espace de haute dimension vers un plan}$

Exemple 2 : expansion (n=2, m=4) :

 $\mathbf{A} \in \mathbb{R}^{4 \times 2}$, immersion d'un plan dans un espace 4D

Usage: représentation des données, réduction de dimension, reconstruction,

Matrice $\mathbf{A} \in \mathbb{R}^{m imes n}$: transforme $\mathbf{x} \in \mathbb{R}^n$ en un vecteur $\mathbf{y} \in \mathbb{R}^m$

Exemple 1 : compression (n = 5, m = 2) :

 $\mathbf{A} \in \mathbb{R}^{2 \times 5}, \quad \text{projection d'un espace de haute dimension vers un plan}$

Exemple 2 : expansion (n=2, m=4) :

 $\mathbf{A} \in \mathbb{R}^{4 \times 2}$, immersion d'un plan dans un espace 4D

Usage: représentation des données, réduction de dimension, reconstruction.

Couches linéaires dans un réseau de neurones

Opération fondamentale :

$$y = Wx + b$$

Оù

- $\mathbf{x} \in \mathbb{R}^n$: entrée (features)
- ullet $\mathbf{W} \in \mathbb{R}^{m \times n}$: poids de la couche
- $oldsymbol{b} \in \mathbb{R}^m$: biais
- $\mathbf{y} \in \mathbb{R}^m$: sortie (logits ou activation)

But : apprendre W, b pour approximer des fonctions non linéaires via combinaisons linéaires + activation

Couches linéaires dans un réseau de neurones

Opération fondamentale :

$$\mathbf{y} = \mathbf{W}\mathbf{x} + \mathbf{b}$$

Où:

- $ullet \mathbf{x} \in \mathbb{R}^n$: entrée (features)
- ullet $\mathbf{W} \in \mathbb{R}^{m imes n}$: poids de la couche
- $oldsymbol{o}$ $oldsymbol{b} \in \mathbb{R}^m$: biais
- $\mathbf{y} \in \mathbb{R}^m$: sortie (logits ou activation)

But : apprendre W, b pour approximer des fonctions non linéaires via combinaisons linéaires + activation

Couches linéaires dans un réseau de neurones

Opération fondamentale :

$$\mathbf{y} = \mathbf{W}\mathbf{x} + \mathbf{b}$$

Où:

- $ullet \mathbf{x} \in \mathbb{R}^n$: entrée (features)
- ullet $\mathbf{W} \in \mathbb{R}^{m imes n}$: poids de la couche
- $\mathbf{b} \in \mathbb{R}^m$: biais
- $\mathbf{y} \in \mathbb{R}^m$: sortie (logits ou activation)

But: apprendre W, b pour approximer des fonctions non linéaires via combinaisons linéaires + activation

Intuition en apprentissage profond

Chaque couche linéaire transforme les données :

Input
$$x \stackrel{Wx+b}{\longrightarrow}$$
 Espace latent y

Röle

- Encoder l'information dans un autre espace
- Préparer les données pour les non-linéarités (ReLU, Tanh, etc.)
- Construire progressivement des représentations complexes

Remarque

- Sans multiplication matrice/vecteur, il n'y a pas de capacité d'apprentissage!
- Le gradient (via rétropropagation) est calculé directement sur W et b.

Intuition en apprentissage profond

Chaque couche linéaire transforme les données :

Input
$$x \stackrel{Wx+b}{\longrightarrow}$$
 Espace latent y

Rôle:

- Encoder l'information dans un autre espace
- Préparer les données pour les non-linéarités (ReLU, Tanh, etc.)
- Construire progressivement des représentations complexes

Remarque

- Sans multiplication matrice/vecteur, il n'y a pas de capacité d'apprentissage!
- Le gradient (via rétropropagation) est calculé directement sur W et b.

Intuition en apprentissage profond

Chaque couche linéaire transforme les données :

Input
$$x \stackrel{Wx+b}{\longrightarrow}$$
 Espace latent y

Rôle:

- Encoder l'information dans un autre espace
- Préparer les données pour les non-linéarités (ReLU, Tanh, etc.)
- Construire progressivement des représentations complexes

Remarque:

- Sans multiplication matrice/vecteur, il n'y a pas de capacité d'apprentissage!
- Le gradient (via rétropropagation) est calculé directement sur W et b.

Espaces vectoriels : définition formelle

Définition: Un espace vectoriel V sur un corps \mathbb{K} (souvent \mathbb{R} ou \mathbb{C}) est un ensemble muni de deux opérations:

- Addition vectorielle : $+: V \times V \rightarrow V$
- Multiplication scalaire $: \cdot : \mathbb{K} \times V \to V$

Exemples:

- \mathbb{R}^n avec addition et multiplication scalaire usuelles
- Ensemble des fonctions continues sur [a,b]

Espaces vectoriels : définition formelle

Définition: Un espace vectoriel V sur un corps \mathbb{K} (souvent \mathbb{R} ou \mathbb{C}) est un ensemble muni de deux opérations:

- Addition vectorielle : $+: V \times V \rightarrow V$
- Multiplication scalaire $: \cdot : \mathbb{K} \times V \to V$

 $Ces\ op\'erations\ doivent\ satisfaire\ les\ 8\ axiomes\ suivants\ (associativit\'e,\ commutativit\'e,\ neutres,\ etc.).$

Exemples

- \mathbb{R}^n avec addition et multiplication scalaire usuelles
- Ensemble des fonctions continues sur [a,b]

Espaces vectoriels : définition formelle

Définition : Un espace vectoriel V sur un corps $\mathbb K$ (souvent $\mathbb R$ ou $\mathbb C$) est un ensemble muni de deux opérations :

- Addition vectorielle : $+: V \times V \rightarrow V$
- Multiplication scalaire $: \cdot : \mathbb{K} \times V \to V$

Ces opérations doivent satisfaire les 8 axiomes suivants (associativité, commutativité, neutres, etc.).

Exemples:

- \mathbb{R}^n avec addition et multiplication scalaire usuelles
- Ensemble des fonctions continues sur [a,b]

Combinaisons linéaires

Définition : Soient $\mathbf{v}_1,\dots,\mathbf{v}_k\in V$ et $\lambda_1,\dots,\lambda_k\in\mathbb{K}.$

_a combinaison linéaire

$$\mathbf{w} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k$$

est un élément de V

En Deep Learning

- Les couches linéaires produisent des combinaisons linéaires d'entrées pondérées.
- L'espace engendré par un ensemble de vecteurs est l'ensemble de toutes les combinaisons linéaires possibles.

Combinaisons linéaires

Définition : Soient $\mathbf{v}_1,\dots,\mathbf{v}_k\in V$ et $\lambda_1,\dots,\lambda_k\in\mathbb{K}.$

La combinaison linéaire :

$$\mathbf{w} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k$$

est un élément de V.

En Deep Learning

- Les couches linéaires produisent des combinaisons linéaires d'entrées pondérées.
- L'espace engendré par un ensemble de vecteurs est l'ensemble de toutes les combinaisons linéaires possibles.

Combinaisons linéaires

Définition : Soient $\mathbf{v}_1,\dots,\mathbf{v}_k\in V$ et $\lambda_1,\dots,\lambda_k\in\mathbb{K}.$

La combinaison linéaire :

$$\mathbf{w} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k$$

est un élément de V.

En Deep Learning:

- Les couches linéaires produisent des combinaisons linéaires d'entrées pondérées.
- L'espace engendré par un ensemble de vecteurs est l'ensemble de toutes les combinaisons linéaires possibles.

Familles libres et génératrices

Famille génératrice : Un ensemble $\{v_1, \dots, v_k\}$ est générateur de V si tout vecteur de V est combinaison linéaire de ces vecteurs.

Famille libre : Aucune combinaison linéaire non triviale des vecteurs ne donne le vecteur nul

$$\lambda_1 \mathbf{v}_1 + \cdots + \lambda_k \mathbf{v}_k = \mathbf{0} \Rightarrow \lambda_i = 0 \ \forall i$$

Une base est une famille libre et génératrice de V.

Familles libres et génératrices

 $\textbf{Famille génératrice}: \textbf{Un ensemble } \{v_1, \dots, v_k\} \text{ set générateur de } V \text{ si tout vecteur de } V \text{ est combinaison linéaire de ces vecteurs.}$

Famille libre : Aucune combinaison linéaire non triviale des vecteurs ne donne le vecteur nul :

$$\lambda_1 \mathbf{v}_1 + \cdots + \lambda_k \mathbf{v}_k = \mathbf{0} \Rightarrow \lambda_i = 0 \ \forall i$$

Une base est une famille libre et génératrice de V.

Familles libres et génératrices

Famille génératrice : Un ensemble $\{v_1, \dots, v_k\}$ est générateur de V si tout vecteur de V est combinaison linéaire de ces vecteurs.

Famille libre : Aucune combinaison linéaire non triviale des vecteurs ne donne le vecteur nul :

$$\lambda_1 \mathbf{v}_1 + \cdots + \lambda_k \mathbf{v}_k = \mathbf{0} \Rightarrow \lambda_i = 0 \ \forall i$$

Une base est une famille libre et génératrice de V.

Base d'un espace vectoriel

Définition : Une base \mathcal{B} de V est un ensemble de vecteurs tel que :

- B est libre
- ullet ${\mathcal B}$ engendre V

Exemple dans \mathbb{R}^3

$$\mathcal{B} = \left\{ \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Tout vecteur v $\in \mathbb{R}^3$ peut s'écrire de manière unique

$$\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_1$$

Base d'un espace vectoriel

Définition : Une base \mathcal{B} de V est un ensemble de vecteurs tel que :

- B est libre
- ullet ${\mathcal B}$ engendre V

Exemple dans \mathbb{R}^3 :

$$\mathcal{B} = \left\{ \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Tout vecteur v $\in \mathbb{R}^3$ peut s'écrire de manière unique

$$\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_1$$

Base d'un espace vectoriel

Définition : Une base \mathcal{B} de V est un ensemble de vecteurs tel que :

- B est libre
- ullet ${\mathcal B}$ engendre V

Exemple dans \mathbb{R}^3 :

$$\mathcal{B} = \left\{ \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Tout vecteur $\mathbf{v} \in \mathbb{R}^3$ peut s'écrire de manière unique :

$$\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$$

Dimension d'un espace vectoriel

Définition: La dimension de V, notée $\dim(V)$, est le nombre de vecteurs dans une base de V.

Exemples

- $\dim(\mathbb{R}^n) = n$
- L'ensemble des polynômes de degré $\leq n$ a pour dimension n+1
- L'espace des matrices $m \times n$ a pour dimension mn

Propriété : Toutes les bases d'un espace vectoriel ont le même nombre de vecteurs.

Dimension d'un espace vectoriel

Définition : La dimension de V, notée $\dim(V)$, est le nombre de vecteurs dans une base de V. **Exemples** :

- $\dim(\mathbb{R}^n) = n$
- L'ensemble des polynômes de degré $\leq n$ a pour dimension n+1
- L'espace des matrices $m \times n$ a pour dimension mn

Propriété: Toutes les bases d'un espace vectoriel ont le même nombre de vecteurs.

Dimension d'un espace vectoriel

 $\textbf{D\'efinition}: \text{La dimension de } V, \text{ not\'ee } \dim(V), \text{ est le nombre de vecteurs dans une base de } V.$

Exemples :

- $\dim(\mathbb{R}^n) = n$
- L'ensemble des polynômes de degré $\leq n$ a pour dimension n+1
- L'espace des matrices $m \times n$ a pour dimension mn

Propriété : Toutes les bases d'un espace vectoriel ont le même nombre de vecteurs.

Importance des espaces vectoriels en IA

Pourquoi s'en soucier?

- ullet Les données (images, sons, textes) sont représentées comme des vecteurs dans \mathbb{R}^n
- Les couches de neurones réalisent des transformations linéaires entre espaces vectoriels
- Les dimensions déterminent la capacité de représentation d'un modèle

Remarque

- La réduction de dimension (ex : PCA) s'appuie sur ces notions.
- Comprendre les bases permet de visualiser les changements de repères dans les embeddings.

Importance des espaces vectoriels en IA

Pourquoi s'en soucier?

- ullet Les données (images, sons, textes) sont représentées comme des vecteurs dans \mathbb{R}^n
- Les couches de neurones réalisent des transformations linéaires entre espaces vectoriels
- Les dimensions déterminent la capacité de représentation d'un modèle

Remarque:

- La réduction de dimension (ex : PCA) s'appuie sur ces notions.
- Comprendre les bases permet de visualiser les changements de repères dans les embeddings.

Rang d'une matrice : définition

Définition : Le rang d'une matrice $A \in \mathbb{R}^{m \times n}$ est :

- le nombre de lignes (ou colonnes) linéairement indépendantes ;
- la dimension de l'image de l'application linéaire associée à A;
- ullet le nombre de pivots non nuls dans la forme échelonnée de A.

Notation : $\operatorname{rang}(A)$ ou $\operatorname{rg}(A)$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \operatorname{rang}(A) = 2$$

Rang d'une matrice : définition

Définition : Le rang d'une matrice $A \in \mathbb{R}^{m \times n}$ est :

- le nombre de lignes (ou colonnes) linéairement indépendantes ;
- la dimension de l'image de l'application linéaire associée à A;
- ullet le nombre de pivots non nuls dans la forme échelonnée de A.

Notation: rang(A) ou rg(A).

Exemple

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \operatorname{rang}(A) = 1$$

Rang d'une matrice : définition

Définition : Le rang d'une matrice $A \in \mathbb{R}^{m \times n}$ est :

- le nombre de lignes (ou colonnes) linéairement indépendantes ;
- la dimension de l'image de l'application linéaire associée à A;
- ullet le nombre de pivots non nuls dans la forme échelonnée de A.

Notation : rang(A) ou rg(A).

Exemple:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \operatorname{rang}(A) = 2$$

Systèmes d'équations linéaires

Un système linéaire s'écrit sous la forme :

$$A\mathbf{x} = \mathbf{b}$$
 où $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$

Classification selon le rang

- Unique solution : $\operatorname{rang}(A) = \operatorname{rang}([A \mid \mathbf{b}]) = n$
- Infinité de solutions : $rang(A) = rang([A \mid \mathbf{b}]) < n$
- Aucune solution : $rang(A) < rang([A \mid \mathbf{b}])$

Systèmes d'équations linéaires

Un système linéaire s'écrit sous la forme :

$$A\mathbf{x} = \mathbf{b}$$
 où $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$

Classification selon le rang :

- Unique solution : $\operatorname{rang}(A) = \operatorname{rang}([A \mid \mathbf{b}]) = n$
- $\bullet \ \ \textbf{Infinit\'e de solutions} : \operatorname{rang}(A) = \operatorname{rang}([A \mid \mathbf{b}]) < n$
- $\bullet \ \ \textbf{Aucune solution} : \operatorname{rang}(A) < \operatorname{rang}([A \mid \mathbf{b}])$

Méthode de Gauss : principe

La méthode de Gauss (ou élimination de Gauss) consiste à :

- Réduire le système à une forme triangulaire (forme échelonnée);
- Résoudre par substitution arrière.

Opérations autorisées (opérations élémentaires)

- Permutation de lignes;
- Multiplication d'une ligne par un scalaire non nul;
- Ajout d'un multiple d'une ligne à une autre.

But : Identifier les pivots \Rightarrow déterminer le rang

Méthode de Gauss : principe

La méthode de Gauss (ou élimination de Gauss) consiste à :

- Réduire le système à une forme triangulaire (forme échelonnée);
- Résoudre par substitution arrière.

Opérations autorisées (opérations élémentaires) :

- Permutation de lignes;
- Multiplication d'une ligne par un scalaire non nul;
- Ajout d'un multiple d'une ligne à une autre.

But : Identifier les pivots \Rightarrow déterminer le rang

Méthode de Gauss : principe

La méthode de Gauss (ou élimination de Gauss) consiste à :

- Réduire le système à une forme triangulaire (forme échelonnée);
- Résoudre par substitution arrière.

Opérations autorisées (opérations élémentaires) :

- Permutation de lignes;
- Multiplication d'une ligne par un scalaire non nul;
- Ajout d'un multiple d'une ligne à une autre.

 $\textbf{But}: \text{Identifier les pivots} \Rightarrow \text{déterminer le rang}.$

Méthode de Gauss : exemple

Résolvons:

$$\begin{cases} x+y+z = 6 \\ 2x+3y+z = 14 \\ x+2y+3z = 14 \end{cases}$$

Forme matricielle augmentée

$$\begin{bmatrix}
1 & 1 & 1 & 6 \\
2 & 3 & 1 & 14 \\
1 & 2 & 3 & 14
\end{bmatrix}$$

Après élimination (détails à faire au tableau ou en notes)

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \Rightarrow (z=2, y=4, x=0)$$

Méthode de Gauss : exemple

Résolvons:

$$\begin{cases} x + y + z = 6 \\ 2x + 3y + z = 14 \\ x + 2y + 3z = 14 \end{cases}$$

Forme matricielle augmentée :

$$\left[\begin{array}{ccc|cccc}
1 & 1 & 1 & 6 \\
2 & 3 & 1 & 14 \\
1 & 2 & 3 & 14
\end{array}\right]$$

Après élimination (détails à faire au tableau ou en notes)

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \Rightarrow (z=2, y=4, x=0)$$

Méthode de Gauss : exemple

Résolvons:

$$\begin{cases} x+y+z = 6 \\ 2x+3y+z = 14 \\ x+2y+3z = 14 \end{cases}$$

Forme matricielle augmentée :

$$\left[\begin{array}{ccc|cccc}
1 & 1 & 1 & 6 \\
2 & 3 & 1 & 14 \\
1 & 2 & 3 & 14
\end{array}\right]$$

Après élimination (détails à faire au tableau ou en notes) :

$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & -1 & | & 2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \Rightarrow (z=2, y=4, x=0)$$

Interprétation géométrique du rang

Cas de 2 ou 3 équations à 2 ou 3 inconnues :

- Chaque équation représente un hyperplan
- Le rang représente le nombre de directions indépendantes ;
- Rang 1 : plans parallèles (ou confondus) ⇒ intersection ligne ou vide ;
- Rang 2 (en 3D): intersection en une droite ou un point
- Rang 3 (en 3D): intersection unique (point).

En image : intersection de plans en 3D.

Interprétation géométrique du rang

Cas de 2 ou 3 équations à 2 ou 3 inconnues :

- Chaque équation représente un hyperplan;
- Le rang représente le nombre de directions indépendantes ;
- Rang 1 : plans parallèles (ou confondus) ⇒ intersection ligne ou vide ;
- Rang 2 (en 3D): intersection en une droite ou un point;
- Rang 3 (en 3D): intersection unique (point).

En image : intersection de plans en 3D.

Interprétation géométrique du rang

Cas de 2 ou 3 équations à 2 ou 3 inconnues :

- Chaque équation représente un hyperplan;
- Le rang représente le nombre de directions indépendantes ;
- Rang 1 : plans parallèles (ou confondus) ⇒ intersection ligne ou vide ;
- Rang 2 (en 3D): intersection en une droite ou un point;
- Rang 3 (en 3D): intersection unique (point).

En image: intersection de plans en 3D.

Pourquoi s'intéresser au rang?

En apprentissage automatique :

- Les données sont représentées par des matrices (features × échantillons);
- Un rang faible indique de la redondance ⇒ **réduction de dimension** utile ;
- Le rang est lié à la capacité à inverser ou pseudo-inverser une matrice (A^{\dagger}) ;
- En réseaux de neurones : vérifier la capacité des couches à capturer des représentations linéaires distinctes.

Conclusion : Le rang est fondamental pour comprendre la structure des données et la stabilité des solutions.

Pourquoi s'intéresser au rang?

En apprentissage automatique :

- Les données sont représentées par des matrices (features × échantillons);
- Un rang faible indique de la redondance ⇒ **réduction de dimension** utile ;
- Le rang est lié à la capacité à inverser ou pseudo-inverser une matrice (A^{\dagger}) ;
- En réseaux de neurones : vérifier la capacité des couches à capturer des représentations linéaires distinctes.

Conclusion: Le rang est fondamental pour comprendre la structure des données et la stabilité des solutions.

Changement de base : motivation

Pourquoi changer de base?

- Pour simplifier les calculs (ex. base orthonormée);
- Pour exprimer un vecteur dans un nouveau repère plus adapté au problème ;
- Pour compresser l'information ou réduire la dimension.

Définition: Soit $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ une base de \mathbb{R}^n . Tout vecteur $\mathbf{x} \in \mathbb{R}^n$ s'écrit de manière unique :

$$\mathbf{x} = a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}$$

Les coordonnées (a_1, \ldots, a_n) sont les **coordonnées de x dans la base** \mathcal{B} .

Changement de base : motivation

Pourquoi changer de base?

- Pour simplifier les calculs (ex. base orthonormée);
- Pour exprimer un vecteur dans un nouveau repère plus adapté au problème;
- Pour compresser l'information ou réduire la dimension.

Définition : Soit $\mathcal{B}=\{\mathbf{v}_1,\dots,\mathbf{v}_n\}$ une base de \mathbb{R}^n . Tout vecteur $\mathbf{x}\in\mathbb{R}^n$ s'écrit de manière unique :

$$\mathbf{x} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$$

Les coordonnées (a_1, \ldots, a_n) sont les **coordonnées de x dans la base** \mathcal{B} .

Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{R}^n .

Soit P la matrice de passage de \mathcal{B}' vers \mathcal{B}

$$[\mathbf{x}]_{\mathcal{B}} = P \cdot [\mathbf{x}]_{\mathcal{B}}$$

Interprétation: La matrice P est formée par les vecteurs de \mathcal{B}' exprimés dans la base \mathcal{B}

$$P = \begin{bmatrix} | & & | \\ \mathbf{v}_1' & \cdots & \mathbf{v}_n' \\ | & & | \end{bmatrix}$$

Changement de base très utile si \mathscr{B}' est orthonormale.

Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{R}^n .

Soit P la matrice de passage de \mathcal{B}' vers \mathcal{B} :

$$[\mathbf{x}]_{\mathcal{B}} = P \cdot [\mathbf{x}]_{\mathcal{B}'}$$

Interprétation: La matrice P est formée par les vecteurs de \mathcal{B}' exprimés dans la base \mathcal{B}

$$P = \begin{bmatrix} | & & | \\ \mathbf{v}_1' & \cdots & \mathbf{v}_n' \\ | & & | \end{bmatrix}$$

Changement de base très utile si \mathscr{B}' est orthonormale.

Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{R}^n .

Soit P la matrice de passage de \mathcal{B}' vers \mathcal{B} :

$$[\mathbf{x}]_{\mathcal{B}} = P \cdot [\mathbf{x}]_{\mathcal{B}'}$$

Interprétation : La matrice P est formée par les vecteurs de \mathcal{B}' exprimés dans la base \mathcal{B} :

$$P = \begin{bmatrix} | & & | \\ \mathbf{v}'_1 & \cdots & \mathbf{v}'_n \\ | & & | \end{bmatrix}$$

Changement de base très utile si \mathscr{B}' est orthonormale.

Soient \mathcal{B} et \mathcal{B}' deux bases de \mathbb{R}^n .

Soit P la matrice de passage de \mathcal{B}' vers \mathcal{B} :

$$[\mathbf{x}]_{\mathcal{B}} = P \cdot [\mathbf{x}]_{\mathcal{B}'}$$

Interprétation : La matrice P est formée par les vecteurs de \mathcal{B}' exprimés dans la base \mathcal{B} :

$$P = \begin{bmatrix} | & & | \\ \mathbf{v}'_1 & \cdots & \mathbf{v}'_n \\ | & & | \end{bmatrix}$$

Changement de base très utile si \mathcal{B}^\prime est orthonormale.

Procédé de Gram-Schmidt (1/2)

Objectif : Transformer une base quelconque $\{v_1, \dots, v_n\}$ en une base **orthogonale**.

Formules: Soit

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{v}_1 \\ \mathbf{u}_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 \\ \mathbf{u}_3 &= \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \frac{\langle \mathbf{v}_3, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 \end{aligned}$$

Et ainsi de suite.

Procédé de Gram-Schmidt (1/2)

 $\textbf{Objectif}: \textbf{Transformer une base quelconque} \ \{\textbf{v}_1, \dots, \textbf{v}_n\} \ \textbf{en une base} \ \textbf{orthogonale}.$

Formules: Soit

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{v}_1 \\ \mathbf{u}_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 \\ \mathbf{u}_3 &= \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \frac{\langle \mathbf{v}_3, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 \end{aligned}$$

Et ainsi de suite.

Procédé de Gram-Schmidt (1/2)

 $\textbf{Objectif}: \textbf{Transformer une base quelconque} \ \{\textbf{v}_1, \dots, \textbf{v}_n\} \ \textbf{en une base} \ \textbf{orthogonale}.$

Formules: Soit

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{v}_1 \\ \mathbf{u}_2 &= \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 \\ \mathbf{u}_3 &= \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \frac{\langle \mathbf{v}_3, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 \end{aligned}$$

Et ainsi de suite...

Procédé de Gram-Schmidt (2/2)

Remarque : On obtient une base $\{u_1,\ldots,u_n\}$ orthogonale. Pour obtenir une base orthonormée, on normalise :

$$\mathbf{e}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|}$$

Utilité

- Diagonalisation plus facile (matrices symétriques);
- Calculs simplifiés avec $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}$;
- Étape de base dans la décomposition QR et dans l'ACP.

Procédé de Gram-Schmidt (2/2)

Remarque : On obtient une base $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ orthogonale. Pour obtenir une base orthonormée, on normalise :

$$\mathbf{e}_i = \frac{\mathbf{u}_i}{\|\mathbf{u}_i\|}$$

Utilité :

- Diagonalisation plus facile (matrices symétriques);
- Calculs simplifiés avec $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \delta_{ij}$;
- Étape de base dans la décomposition QR et dans l'ACP.

Application : réduction de dimension (PCA)

ACP (Analyse en Composantes Principales) :

- Objectif: trouver une base orthogonale où les données sont projetées avec variance maximale;
- Basée sur les vecteurs propres de la matrice de covariance;
- Retourne une nouvelle base $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ (avec k < n).

Interprétation géométrique

- Nouvelle base = directions principales de la distribution;
- Les données sont « compressées » dans ce nouveau repère.

Application : réduction de dimension (PCA)

ACP (Analyse en Composantes Principales) :

- Objectif: trouver une base orthogonale où les données sont projetées avec variance maximale;
- Basée sur les vecteurs propres de la matrice de covariance;
- Retourne une nouvelle base $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ (avec k < n).

Interprétation géométrique :

- Nouvelle base = directions principales de la distribution;
- Les données sont « compressées » dans ce nouveau repère.

ACP: résumé mathématique

Étapes de la PCA :

- **1** Centrer les données : $X \leftarrow X \mu$
- ② Calculer la matrice de covariance : $C = \frac{1}{n}X^TX$
- **③** Calculer les vecteurs propres $\{\mathbf{v}_i\}$ et valeurs propres $\{\lambda_i\}$ de C
- Choisir les k plus grandes λ_i et construire la base projetée U_k
- **5** Nouvelle représentation : $Z = XU_k$

Avantages

- Réduction de dimension
- Compression avec perte minimale d'information;
- Très utilisé en Machine Learning pour la pré-analyse.

ACP: résumé mathématique

Étapes de la PCA :

- Centrer les données : $X \leftarrow X \mu$
- ② Calculer la matrice de covariance : $C = \frac{1}{n}X^TX$
- **③** Calculer les vecteurs propres $\{\mathbf{v}_i\}$ et valeurs propres $\{\lambda_i\}$ de C
- **6** Choisir les k plus grandes λ_i et construire la base projetée U_k
- **5** Nouvelle représentation : $Z = XU_k$

Avantages :

- Réduction de dimension ;
- Compression avec perte minimale d'information;
- Très utilisé en Machine Learning pour la pré-analyse.

Valeurs propres et vecteurs propres

Définitions :

Soit $A \in \mathbb{R}^{n \times n}$. Un vecteur $\mathbf{v} \neq \mathbf{0}$ est un **vecteur propre** de A s'il existe un scalaire λ tel que :

$$A\mathbf{v} = \lambda \mathbf{v}$$

λ est alors une valeur propre de A.

Interprétation géométrique : \mathbf{v} est une direction invariante par A; A étire (ou contracte ou inverse) \mathbf{v} sans changer sa direction

Valeurs propres et vecteurs propres

Définitions :

Soit $A \in \mathbb{R}^{n \times n}$. Un vecteur $\mathbf{v} \neq \mathbf{0}$ est un **vecteur propre** de A s'il existe un scalaire λ tel que :

$$A\mathbf{v} = \lambda \mathbf{v}$$

 λ est alors une **valeur propre** de A.

 $\textbf{Interpr\'{e}tation g\'{e}om\'{e}trique: v} \text{ est une direction invariante par } A; A \text{ \'{e}tire (ou contracte ou inverse) } v \text{ sans changer sa direction.}$

Comment calculer les valeurs propres?

Équation caractéristique :

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Rightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}$$

 $\Rightarrow \quad \det(A - \lambda I) = 0$

Cette équation donne un polynôme de degré *n* (appelé polynôme caractéristique), dont les racines sont les valeurs propres λ. **Exemple**:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \det(A - \lambda I) = (\lambda - 3)(\lambda - 1) \Rightarrow \lambda = 3,$$

Comment calculer les valeurs propres?

Équation caractéristique :

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Rightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}$$

 $\Rightarrow \quad \det(A - \lambda I) = 0$

Cette équation donne un polynôme de degré n (appelé polynôme caractéristique), dont les racines sont les valeurs propres λ .

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \det(A - \lambda I) = (\lambda - 3)(\lambda - 1) \Rightarrow \lambda = 3, 1$$

Comment calculer les valeurs propres?

Équation caractéristique :

$$A\mathbf{v} = \lambda \mathbf{v} \quad \Rightarrow \quad (A - \lambda I)\mathbf{v} = \mathbf{0}$$

 $\Rightarrow \quad \det(A - \lambda I) = 0$

Cette équation donne un polynôme de degré n (appelé polynôme caractéristique), dont les racines sont les valeurs propres λ .

Exemple:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \det(A - \lambda I) = (\lambda - 3)(\lambda - 1) \Rightarrow \lambda = 3, 1$$

Diagonalisation

 $\textbf{D\'efinition}: \textbf{Une matrice } A \in \mathbb{R}^{n \times n} \textbf{ est diagonalisable s'il existe une matrice inversible } P \textbf{ et une matrice diagonale } D \textbf{ telles que}:$

$$A = PDP^{-1}$$

Condition nécessaire : A possède n vecteurs propres linéairement indépendants

$$A^k = PD^kP^{-1}$$
 avec $D^k = \operatorname{diag}(\lambda_1^k, \dots, \lambda_n^k)$

Diagonalisation

Définition: Une matrice $A \in \mathbb{R}^{n \times n}$ est diagonalisable s'il existe une matrice inversible P et une matrice diagonale D telles que :

$$A = PDP^{-1}$$

Condition nécessaire : A possède n vecteurs propres linéairement indépendants.

Intérêt : La puissance k d'une matrice devient facile à calculer :

$$A^k = PD^kP^{-1}$$
 avec $D^k = \operatorname{diag}(\lambda_1^k, \dots, \lambda_n^k)$

Diagonalisation

 $\textbf{D\'efinition}: \textbf{Une matrice } A \in \mathbb{R}^{n \times n} \textbf{ est diagonalisable s'il existe une matrice inversible } P \textbf{ et une matrice diagonale } D \textbf{ telles que}:$

$$A = PDP^{-1}$$

Condition nécessaire : A possède n vecteurs propres linéairement indépendants.

Intérêt : La puissance k d'une matrice devient facile à calculer :

$$A^k = PD^kP^{-1}$$
 avec $D^k = \operatorname{diag}(\lambda_1^k, \dots, \lambda_n^k)$

Considérons un système dynamique linéaire discret :

$$\mathbf{x}_{t+1} = A\mathbf{x}_t$$

Si \mathbf{x}_0 est combinaison des vecteurs propres de A:

$$\mathbf{x}_t = A^t \mathbf{x}_0 = PD^t P^{-1} \mathbf{x}_0$$

Stabilité

- Si $|\lambda_i| < 1$ pour tout i, alors $\mathbf{x}_t \to 0$;
- Si certains $|\lambda_i| > 1$, alors le système diverge.

Les valeurs propres déterminent le comportement à long terme

Considérons un système dynamique linéaire discret :

$$\mathbf{x}_{t+1} = A\mathbf{x}_t$$

Si \mathbf{x}_0 est combinaison des vecteurs propres de A:

$$\mathbf{x}_t = A^t \mathbf{x}_0 = PD^t P^{-1} \mathbf{x}_0$$

Stabilité

- Si $|\lambda_i| < 1$ pour tout i, alors $\mathbf{x}_t \to 0$;
- Si certains $|\lambda_i| > 1$, alors le système diverge.

Les valeurs propres déterminent le comportement à long terme.

Considérons un système dynamique linéaire discret :

$$\mathbf{x}_{t+1} = A\mathbf{x}_t$$

Si x_0 est combinaison des vecteurs propres de A:

$$\mathbf{x}_t = A^t \mathbf{x}_0 = PD^t P^{-1} \mathbf{x}_0$$

Stabilité :

- Si $|\lambda_i| < 1$ pour tout i, alors $\mathbf{x}_t \to 0$;
- Si certains $|\lambda_i| > 1$, alors le système diverge.

Les valeurs propres déterminent le comportement à long terme.

Considérons un système dynamique linéaire discret :

$$\mathbf{x}_{t+1} = A\mathbf{x}_t$$

Si x_0 est combinaison des vecteurs propres de A:

$$\mathbf{x}_t = A^t \mathbf{x}_0 = PD^t P^{-1} \mathbf{x}_0$$

Stabilité :

- Si $|\lambda_i| < 1$ pour tout i, alors $\mathbf{x}_t \to 0$;
- Si certains $|\lambda_i| > 1$, alors le système diverge.

Les valeurs propres déterminent le comportement à long terme.

Lien avec les réseaux dynamiques

Soit A la matrice d'adjacence pondérée d'un graphe. L'état du réseau à l'instant t peut être modélisé par :

$$\mathbf{x}_{t+1} = A\mathbf{x}_t$$

Exemples d'applications

- Diffusion de l'information (ou virus);
- Synchronisation dans un réseau;
- Réseaux de neurones récurrents linéarisés.

La dynamique est contrôlée par les valeurs propres de A

Lien avec les réseaux dynamiques

Soit A la matrice d'adjacence pondérée d'un graphe. L'état du réseau à l'instant t peut être modélisé par :

$$\mathbf{x}_{t+1} = A\mathbf{x}_t$$

Exemples d'applications :

- Diffusion de l'information (ou virus);
- Synchronisation dans un réseau;
- Réseaux de neurones récurrents linéarisés.

La dynamique est contrôlée par les valeurs propres de A

Lien avec les réseaux dynamiques

Soit A la matrice d'adjacence pondérée d'un graphe. L'état du réseau à l'instant t peut être modélisé par :

$$\mathbf{x}_{t+1} = A\mathbf{x}_t$$

Exemples d'applications :

- Diffusion de l'information (ou virus);
- Synchronisation dans un réseau;
- Réseaux de neurones récurrents linéarisés.

La dynamique est contrôlée par les valeurs propres de A.

Chaînes de Markov : rappel

Soit P une matrice de transition de probabilité (stochastique) :

$$P_{ij} = \mathbb{P}[\operatorname{\acute{e}tat} j \ \operatorname{\grave{a}} t + 1 \mid \operatorname{\acute{e}tat} i \ \operatorname{\grave{a}} t]$$

L'état du système à l'instant t est

$$\mathbf{p}^{(t)} = P^t \mathbf{p}^{(0)}$$

Objectif : étudier le comportement à long terme $\lim_{t\to\infty} P^t \mathbf{p}^{(0)}$

Chaînes de Markov : rappel

Soit ${\it P}$ une matrice de transition de probabilité (stochastique) :

$$P_{ij} = \mathbb{P}[\operatorname{\acute{e}tat} j \ \operatorname{\grave{a}} t + 1 \mid \operatorname{\acute{e}tat} i \ \operatorname{\grave{a}} t]$$

L'état du système à l'instant t est :

$$\mathbf{p}^{(t)} = P^t \mathbf{p}^{(0)}$$

Objectif : étudier le comportement à long terme $\lim_{t\to\infty} P^t \mathbf{p}^{(0)}$

Chaînes de Markov : rappel

Soit P une matrice de transition de probabilité (stochastique) :

$$P_{ij} = \mathbb{P}[$$
état j à $t+1$ $|$ état i à t $]$

L'état du système à l'instant t est :

$$\mathbf{p}^{(t)} = P^t \mathbf{p}^{(0)}$$

Objectif : étudier le comportement à long terme $\lim_{t \to \infty} P^t \mathbf{p}^{(0)}$

Chaînes de Markov et valeurs propres

Fait : P a toujours une valeur propre $\lambda_1=1$. Si la chaîne est irréductible et apériodique :

$$\lim_{t o \infty} P^t = \mathbf{1} \pi^T$$
 où π est la distribution stationnaire

Rôle des autres valeurs propres

- Les λ_i avec $|\lambda_i| < 1$ contrôlent la vitesse de convergence vers l'équilibre ;
- Plus $|\lambda_2|$ est petit, plus la chaîne converge vite.

Outils utilisés en théorie des graphes, random walk, PageRank, etc.

Chaînes de Markov et valeurs propres

Fait : P a toujours une valeur propre $\lambda_1=1$. Si la chaîne est irréductible et apériodique :

$$\lim_{t \to \infty} P^t = \mathbf{1} \pi^T$$
 où π est la distribution stationnaire

Rôle des autres valeurs propres :

- Les λ_i avec $|\lambda_i| < 1$ contrôlent la vitesse de convergence vers l'équilibre ;
- Plus |λ₂| est petit, plus la chaîne converge vite.

Outils utilisés en théorie des graphes, random walk, PageRank, etc

Chaînes de Markov et valeurs propres

Fait : P a toujours une valeur propre $\lambda_1=1$. Si la chaîne est irréductible et apériodique :

$$\lim_{t o \infty} P^t = \mathbf{1} \pi^T$$
 où π est la distribution stationnaire

Rôle des autres valeurs propres :

- Les λ_i avec $|\lambda_i| < 1$ contrôlent la vitesse de convergence vers l'équilibre ;
- Plus $|\lambda_2|$ est petit, plus la chaîne converge vite.

Outils utilisés en théorie des graphes, random walk, PageRank, etc.

Introduction à la décomposition

Objectif: Écrire une matrice $A \in \mathbb{R}^{m \times n}$ comme produit de trois matrices plus simples.

Décomposition en valeurs singulières (SVD)

$$A = U\Sigma V^T$$

- \bullet $U \in \mathbb{R}^{m \times m}$: matrice orthogonale $(U^T U = I)$
- ullet $V \in \mathbb{R}^{n \times n}$: matrice orthogonale
- $\Sigma \in \mathbb{R}^{m \times n}$: matrice diagonale avec valeurs singulières $\sigma_1 > \sigma_2 > \cdots > 0$

Introduction à la décomposition

Objectif : Écrire une matrice $A \in \mathbb{R}^{m \times n}$ comme produit de trois matrices plus simples.

Décomposition en valeurs singulières (SVD) :

$$A = U\Sigma V^T$$

- ullet $U \in \mathbb{R}^{m imes m}$: matrice orthogonale ($U^T U = I$)
- ullet $V\in\mathbb{R}^{n imes n}$: matrice orthogonale
- $\Sigma \in \mathbb{R}^{m \times n}$: matrice diagonale avec valeurs singulières $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$

Interprétation géométrique de la SVD

La SVD transforme un vecteur ${\bf x}$ en trois étapes :

$$A\mathbf{x} = U\Sigma V^T\mathbf{x}$$

- \bullet V^T **x**: rotation (changement de base) dans l'espace des colonnes
- ullet Σ : mise à l'échelle des composantes
- ullet U : rotation finale dans l'espace des lignes

La SVD donne une description optimale de A en termes de directions principales.

Interprétation géométrique de la SVD

La SVD transforme un vecteur \boldsymbol{x} en trois étapes :

$$A\mathbf{x} = U\Sigma V^T\mathbf{x}$$

- ullet $V^T \mathbf{x}$: rotation (changement de base) dans l'espace des colonnes
- $\bullet~\Sigma$: mise à l'échelle des composantes
- $\bullet \ U$: rotation finale dans l'espace des lignes

La SVD donne une description optimale de A en termes de directions principales.

Interprétation géométrique de la SVD

La SVD transforme un vecteur \boldsymbol{x} en trois étapes :

$$A\mathbf{x} = U\Sigma V^T\mathbf{x}$$

- ullet $V^T \mathbf{x}$: rotation (changement de base) dans l'espace des colonnes
- $\bullet~\Sigma$: mise à l'échelle des composantes
- ullet U : rotation finale dans l'espace des lignes

La SVD donne une description optimale de A en termes de directions principales.

Soit:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

On peut écrire

$$A = U\Sigma V^T$$
 où $\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}$

Valeurs singulières

$$\sigma_1 = 4$$
, $\sigma_2 = 2$

A étire plus dans une direction que dans une autre.

Soit:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

On peut écrire :

$$A = U\Sigma V^T$$
 où $\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}$

Valeurs singulières :

$$\sigma_1 = 4$$
, $\sigma_2 = 2$

A étire plus dans une direction que dans une autre.

Soit:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

On peut écrire :

$$A = U\Sigma V^T$$
 où $\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}$

Valeurs singulières :

$$\sigma_1=4, \quad \sigma_2=2$$

A étire plus dans une direction que dans une autre.

Soit:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

On peut écrire :

$$A = U\Sigma V^T$$
 où $\Sigma = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix}$

Valeurs singulières :

$$\sigma_1 = 4, \quad \sigma_2 = 2$$

 ${\it A}$ étire plus dans une direction que dans une autre.

SVD pour réduction de dimension

La SVD permet une approximation de rang \boldsymbol{k} :

$$A \approx A_k = U_k \Sigma_k V_k^T$$

ΟÙ

- U_k : les k premières colonnes de U
- Σ_k : matrice $k \times k$ avec les k plus grandes valeurs singulières
- V_k : les k premières colonnes de V

Théorème d'Eckart-Young: A_k est la meilleure approximation de A de rang k (en norme Frobenius)

SVD pour réduction de dimension

La SVD permet une approximation de rang \boldsymbol{k} :

$$A \approx A_k = U_k \Sigma_k V_k^T$$

où:

- U_k : les k premières colonnes de U
- Σ_k : matrice $k \times k$ avec les k plus grandes valeurs singulières
- V_k : les k premières colonnes de V

Théorème d'Eckart-Young: A_k est la meilleure approximation de A de rang k (en norme Frobenius)

SVD pour réduction de dimension

La SVD permet une approximation de rang \boldsymbol{k} :

$$A \approx A_k = U_k \Sigma_k V_k^T$$

où:

- U_k : les k premières colonnes de U
- Σ_k : matrice $k \times k$ avec les k plus grandes valeurs singulières
- V_k : les k premières colonnes de V

Théorème d'Eckart-Young : A_k est la meilleure approximation de A de rang k (en norme Frobenius).

Application: compression d'image

Une image (niveau de gris) est une matrice $A \in \mathbb{R}^{m \times n}$.

On applique la SVD : $A = U\Sigma V^T$

On garde les *k* plus grandes valeurs singulières

$$A_k = U_k \Sigma_k V_k^T$$

Compression

- $k = 50 \ll m, n$: image approximée avec peu de stockage;
- Visualisation proche de l'original si σ_k suffisamment grands.

Application: compression d'image

Une image (niveau de gris) est une matrice $A \in \mathbb{R}^{m \times n}$. On applique la SVD : $A = U\Sigma V^T$

On garde les k plus grandes valeurs singulières

$$A_k = U_k \Sigma_k V_k^T$$

Compression

- $k = 50 \ll m, n$: image approximée avec peu de stockage;
- Visualisation proche de l'original si σ_k suffisamment grands.

Application: compression d'image

Une image (niveau de gris) est une matrice $A \in \mathbb{R}^{m \times n}$.

On applique la SVD : $A = U\Sigma V^T$

On garde les \boldsymbol{k} plus grandes valeurs singulières :

$$A_k = U_k \Sigma_k V_k^T$$

Compression

- $k = 50 \ll m, n$: image approximée avec peu de stockage;
- Visualisation proche de l'original si σ_k suffisamment grands.

Application : compression d'image

Une image (niveau de gris) est une matrice $A \in \mathbb{R}^{m \times n}$.

On applique la SVD : $A = U\Sigma V^T$

On garde les k plus grandes valeurs singulières :

$$A_k = U_k \Sigma_k V_k^T$$

Compression:

- $k = 50 \ll m, n$: image approximée avec peu de stockage;
- Visualisation proche de l'original si σ_k suffisamment grands.

SVD en NLP : analyse sémantique latente (LSA)

Matrice document-terme $A \in \mathbb{R}^{m \times n}$:

 $A_{ij} = \mathsf{pond\acute{e}ration} \; \mathsf{TF}\text{-IDF} \; \mathsf{du} \; \mathsf{terme} \; j \; \mathsf{dans} \; \mathsf{le} \; \mathsf{document} \; i$

SVD

$$A \approx U_k \Sigma_k V_k$$

- ullet U_k : représentation des documents dans l'espace latent
- V_k : représentation des termes
- Σ_k : importance des dimensions sémantiques

Réduction de bruit, extraction de thèmes

SVD en NLP: analyse sémantique latente (LSA)

Matrice document-terme $A \in \mathbb{R}^{m \times n}$:

 $A_{ij} = \mathsf{pond\acute{e}ration} \; \mathsf{TF}\text{-IDF} \; \mathsf{du} \; \mathsf{terme} \; j \; \mathsf{dans} \; \mathsf{le} \; \mathsf{document} \; i$

SVD:

$$A \approx U_k \Sigma_k V_k^T$$

- ullet U_k : représentation des documents dans l'espace latent
- V_k : représentation des termes
- Σ_k : importance des dimensions sémantiques

Réduction de bruit, extraction de thèmes

SVD en NLP : analyse sémantique latente (LSA)

Matrice document-terme $A \in \mathbb{R}^{m \times n}$:

 $A_{ij} = \mathsf{pond\acute{e}ration} \; \mathsf{TF}\text{-}\mathsf{IDF} \; \mathsf{du} \; \mathsf{terme} \; j \; \mathsf{dans} \; \mathsf{le} \; \mathsf{document} \; i$

SVD:

$$A \approx U_k \Sigma_k V_k^T$$

- ullet U_k : représentation des documents dans l'espace latent
- V_k: représentation des termes
- ullet Σ_k : importance des dimensions sémantiques

Réduction de bruit, extraction de thèmes.

SVD en NLP : analyse sémantique latente (LSA)

Matrice document-terme $A \in \mathbb{R}^{m \times n}$:

 $A_{ij} = \mathsf{pond\acute{e}ration} \; \mathsf{TF}\text{-}\mathsf{IDF} \; \mathsf{du} \; \mathsf{terme} \; j \; \mathsf{dans} \; \mathsf{le} \; \mathsf{document} \; i$

SVD:

$$A \approx U_k \Sigma_k V_k^T$$

- ullet U_k : représentation des documents dans l'espace latent
- V_k: représentation des termes
- \bullet Σ_k : importance des dimensions sémantiques

Réduction de bruit, extraction de thèmes.

Interprétation sémantique

La SVD regroupe les termes co-occurrents dans des dimensions principales.

Exemple

- termes: "chat", "animal", "chien", "voiture", "camion"
- SVD les regroupe par sémantique : (animaux vs véhicules)

Cela améliore la recherche sémantique

- Interrogation "chien" → document contenant "chat"
- Grâce à la proximité dans l'espace latent

Interprétation sémantique

La SVD regroupe les termes co-occurrents dans des dimensions principales. Exemple :

- termes: "chat", "animal", "chien", "voiture", "camion"
- SVD les regroupe par sémantique : (animaux vs véhicules)

Cela améliore la recherche sémantique

- Interrogation "chien" → document contenant "chat"
- Grâce à la proximité dans l'espace latent

Interprétation sémantique

La SVD regroupe les termes co-occurrents dans des dimensions principales.

Exemple:

- termes: "chat", "animal", "chien", "voiture", "camion"
- SVD les regroupe par sémantique : (animaux vs véhicules)

Cela améliore la recherche sémantique :

- Interrogation "chien" → document contenant "chat"
- Grâce à la proximité dans l'espace latent

Résumé et perspectives

Résumé :

- SVD décompose toute matrice A en $U\Sigma V^T$
- Donne une base orthonormée optimale (compression, approximation)
- Clé en réduction de dimension, visualisation, NLP

Perspectives

- Intégration dans l'apprentissage automatique (Truncated SVD)
- Lien avec PCA (analyse en composantes principales)
- Alternatives : NMF, autoencodeurs

Résumé et perspectives

Résumé :

- SVD décompose toute matrice A en $U\Sigma V^T$
- Donne une base orthonormée optimale (compression, approximation)
- Clé en réduction de dimension, visualisation, NLP

Perspectives:

- Intégration dans l'apprentissage automatique (Truncated SVD)
- Lien avec PCA (analyse en composantes principales)
- Alternatives : NMF, autoencodeurs