

Human Resource

BASIC PROGRAMMING FOR DATA SCIENTISTS AND DATA VISUALIZATION

Members

15 รัชชานนท์ พันกาฬสินธุ์

page 1

Get to know data

- enrollee_id : รหัสของผู้ลงทะเบียน
- city : รหัสเมือง
- citydevelopmentindex : ดัชนีการพัฒนาของเมือง (ปรับมาตราส่วนแล้ว)
- gender : เพศงองผู้สมัคร
- relevent_experience : ประสบการณ์ที่เกี่ยวข้องของผู้สมัคร
- enrolled_university : ประเภทของหลักสูตรมหาวิทยาลัยที่กำลังศึกษาอยู่ (ถ้า มี)
- education_level : ระดับการศึกษาของผู้ลงทะเบียน
- major_discipline : สาขาวิชาหลักที่ผู้สมัครจบการศึกษา
- experience : ประสบการณ์ทำงานทั้งหมดของผู้สมัคร (หน่วยปี)
- company_size : จำนวนพนักงานในบริษัทที่ทำงานปัจจุบัน
- company_type : ประเภทของบริษัทที่ทำงานปัจจุบัน
- lastnewjob : ความแตกต่างในจำนวนปีระหว่างงานก่อนหน้าและงานปัจจุบัน
- training_hours : จำนวนชั่วโมงการฝึกอบรมที่เสร็จสิ้น
- target : 0 ไม่ต้องการเปลี่ยนงาน
 - 1 กำลังมองหางานใหม่

```
import pandas as pd
import os
```

path_to_hr_ov = '/content/drive/MyDrive/data_viz_2024_DATA/project/hr_overview.csv'

```
hr_ov = pd.read_csv(path_to_hr_ov)
hr_ov
```

	enrollee_id	city	<pre>city_development_index</pre>	gender	relevent_experience	<pre>enrolled_university</pre>	education_level	major_discipline	experience	company_size	company_type	last_new_job	training_hours	target
0	8949	103	0.920	Male	Yes	no_enrollment	Graduate	STEM	>20	unknown	unknown	1	36	1.0
1	29725	40	0.776	Male	No	no_enrollment	Graduate	STEM	15	50-99	Pvt Ltd	>4	47	0.0
2	11561	21	0.624	unknown	No	Full time course	Graduate	STEM	5	unknown	unknown	never	83	0.0
3	33241	115	0.789	unknown	No	no_enrollment	Graduate	Business Degree	<1	unknown	Pvt Ltd	never	52	1.0
4	666	162	0.767	Male	Yes	no_enrollment	Masters	STEM	>20	50-99	Funded Startup		8	0.0

education_score

```
# ฟังก์ชันคำนวณคะแนนการศึกษา โดยใช้ weight
def calculate_weighted_education_score(row):
    score = 0
    # น้ำหนักสำหรับ education level
    education weights = {
        'Primary School': 1,
        'High School': 3,
        'Graduate': 5,
        'Masters': 7,
        'PhD': 9
    score += education weights.get(row['education level'], 0) * 1.5 # เพิ่มน้ำหนัก
    # น้ำหนักสำหรับ major discipline
    discipline weights = {
        'STEM': 3,
        'Humanities': 1,
        'Other': 1,
        'Business Degree': 2,
        'Arts': 1
    score += discipline_weights.get(row['major_discipline'], 0) * 1.2 # เพิ่มน้ำหนัก
```

```
# น้ำหนักสำหรับ enrolled university
    enrollment weights = {
        'no enrollment': 0,
        'Part time course': 2,
        'Full time course': 3
    score += enrollment weights.get(row['enrolled university'], 0) * 1.0 # เพิ่มน้ำหนัก
    return score # คืนคะแนนรวม
# คำนวณคะแนนการศึกษา
hr ov['education score'] = hr ov.apply(calculate weighted education score, axis=1)
# Normalization โดยให้คะแนนสูงสุดอยู่ที่ 10
max score = hr ov['education score'].max()
hr_ov['education_score'] = (hr_ov['education_score'] / max_score) * 10
# แสดงผลลัพธ์
print(hr ov[['education score']].head())
   education score
          6.491228
          6.491228
2
          8.245614
3
          5.789474
          8.245614
```

experience_score

```
import pandas as pd
def calculate weighted experience score(row):
   """Calculates experience score based on experience and relevant experience."
    # ตรวจสอบว่า experience เป็น 'unknown'
   if row['experience'] == 'unknown':
       return 'unknown' # คืนค่า 'unknown' ถ้าข้อมูลเป็น 'unknown'
   score = 0
        # แปลงค่า experience เป็น int
        experience = int(row['experience'])
        # คำนวณคะแนนตามช่วงของประสบการณ์
       if experience <= 5:
            score += experience * 1.5
        elif experience > 5 and experience <= 10:
            score += 5 * 1.5 + (experience - 5) * 1
        elif experience > 10 and experience <= 20:
            score += 5 * 1.5 + 5 * 1 + (experience - 10) * 0.5
        elif experience > 20:
           score += 5 * 1.5 + 5 * 1 + 10 * 0.5 + (experience - 20) * 0.25
```

```
# เพิ่มคะแนนสำหรับ relevant experience
        if row['relevent experience'] == 'Yes':
            score += 2
    except ValueError:
        if row['experience'] == '<1':</pre>
            score += 1
        elif row['experience'] == '>20':
            score += 10
        else:
            pass
    # Normalize คะแนนให้เต็ม 10
    # คะแนนสูงสุดในกรณีที่มีประสบการณ์ 20+ และมี relevant experience คือ 10
    max score = 10
    normalized score = (score / max score) * 10
    return min(normalized_score, 10) # คืนคะแนนไม่เกิน 10
# คำนวณคะแนนการประสบการณ์
hr_ov['experience_score'] = hr_ov.apply(calculate_weighted_experience_score, axis=1)
# ตรวจสอบค่าที่ได้ในคอลัมน์ experience score
print(hr ov[['experience', 'experience score']].head())
```

	experience	experience_score
0	>20	10.0
1	15	10.0
2	5	7.5
3	<1	1.0
4	>20	10.0

training_score

```
def calculate training score(row):
    """Calculates training score based on training hours."""
    training hours = row['training hours']
    # ตรวจสอบว่ามีข้อมูล training_hours หรือไม่
    if pd.isnull(training hours):
        return 'unknown' # คืนค่า 'unknown' หากไม่มีข้อมูล
    max_hours = hr_ov['training_hours'].max() # ชั่วโมงสูงสุดใน training_hours
    # คำนวณคะแนนการฝึกอบรม
    score = (training_hours / max_hours) * 10
    return min(score, 10) # Ensure score doesn't exceed 10
# คำนวณคะแนนการฝึกอบรม
hr_ov['training_score'] = hr_ov.apply(calculate_training_score, axis=1)
# ตรวจสอบค่าที่ได้ในคอลัมน์ training score
print(hr_ov[['training_hours', 'training_score']].head())
```

```
training_hours training_score
0 36 1.071429
1 47 1.398810
2 83 2.470238
3 52 1.547619
4 8 0.238095
```

company_exposure

```
"""Calculates company exposure score based on company_size and company_type.""
      # ตรวจสอบข้อมลที่เป็น 'unknown'
      if row['company_size'] == 'unknown' or row['company_type'] == 'unknown':
      return 'unknown' # คืนค่า 'unknown' หากข้อมลเป็น 'unknown'
      weight_company_size = 0.6 # น้ำหนักให้กับ company_size
     weight_company_type = 0.4 # น้ำหนักให้กับ company type
     # คะแนนตามขนาดบริษัท
     if row['company_size'] == '<10':
      score += 2 * weight_company_size
    elif row['company_size'] == '10-49':
      score += 3 * weight company size
     elif row['company_size'] == '50-99':
      score += 4 * weight_company_size
     elif row['company_size'] == '100-500':
      score += 5 * weight_company_size
     elif row['company_size'] == '500-999':
      score += 6 * weight_company_size
    elif row['company_size'] == '1000-4999':
      score += 7 * weight_company_size
    elif row['company_size'] == '5000-9999':
      score += 8 * weight_company_size
      elif row['company_size'] == '10000+':
       score += 9 * weight company size
31
     # คะแนนตามประเภทบริษัท
     if row['company_type'] == 'Pvt Ltd':
      score += 4 * weight_company_type
     elif row['company_type'] == 'Funded Startup':
      score += 6 * weight_company_type
     elif row['company_type'] == 'Public Sector':
      score += 3 * weight_company_type
     elif row['company_type'] == 'NGO':
      score += 2 * weight_company_type
     elif row['company_type'] == 'Early Stage Startup':
      score += 5 * weight_company_type
      elif row['company_type'] == 'Other':
         score += 1 * weight company type
      return score # คืนคะแนนรวม
```

```
48 # คำนวณคะแนน
49 hr_ov['company_exposure_raw'] = hr_ov.apply(calculate_company_exposure, axis=1)
51 # Normalize คะแนนให้อยู่ในช่วง 0-10
52 def normalize score(score, min_score, max_score):
       """Normalize score to a scale of 0-10."""
54
      if score == 'unknown':
55
        return 'unknown'
       normalized = (score - min_score) / (max_score - min_score) * 10
       return min(max(normalized, 0), 10) # Ensure score is within 0-10
59 # Filter out 'unknown' values before calculating min and max
60 # แก้ไข: กรองค่า 'unknown' ออกก่อนคำนวณค่าต่ำสดและสงสด
61 numerical_exposure = hr_ov['company_exposure_raw'][hr_ov['company_exposure_raw'] != 'unknown']
62 # แปลง numerical exposure เป็นตัวเลข
63 numerical_exposure = pd.to_numeric(numerical_exposure)
66 # คำนวณค่าต่ำสุดและค่าสูงสุดของคะแนนจากข้อมูลที่เป็นตัวเลข
67 min score = numerical exposure.min()
68 max score = numerical exposure.max()
70 # Normalize ดะแนน
71 hr_ov['company_exposure'] = hr_ov['company_exposure_raw'].apply(lambda x: normalize_score(x, min_score, max_score))
73 # ตรวจสอบค่าที่ได้ในคอลัมน์ company exposure
74 print(hr_ov[['company_size', 'company_type', 'company_exposure_raw', 'company_exposure']].head())
```

```
company size
                  company_type company_exposure_raw company_exposure
       unknown
                       unknown
                                             unknown
                                                              unknown
                       Pvt Ltd
                                                 4.0
                                                             4.44444
         50-99
                       unknown
       unknown
                                             unknown
                                                              unknown
3
                       Pvt Ltd
       unknown
                                             unknown
                                                              unknown
         50-99 Funded Startup
                                                             5.925926
```

career_progression

```
import pandas as pd
# Function to convert last_new_job to a score
def last new job score(last new job):
  if last new job == '<1':
      return 1
   elif last_new_job == '1':
      return 2
   elif last_new_job == '2':
      return 3
  elif last_new_job == '3':
  elif last_new_job == '4':
   elif last_new_job == 'never':
      return 0
      return 6 # for '5+', or any unknown value
# Function to calculate career progression
def calculate career progression(row):
  # Get the last_new_job_score
  job score = last new job score(row['last new job'])
   # Calculate the career progression score
   career_progression = (row['education_score'] + row['experience_score']) / (1 + job_score)
   return career progression
```

```
# Apply the function to calculate raw career progression scores
hr ov['career progression raw'] = hr ov.apply(calculate career progression, axis=1)
# Normalize career progression to a 0-10 scale
min score = hr ov['career progression raw'].min()
max score = hr ov['career progression raw'].max()
# Avoid division by zero
if max score > min score:
    hr ov['career progression'] = (hr ov['career progression raw'] - min score) / (max score - min score) * 10
    hr ov['career progression'] = 0 # All values are the same if max == min
# Display the first few rows to verify
print(hr_ov[['education_score', 'experience_score', 'last_new_job', 'career_progression']].head())
   education_score experience_score last_new_job_career_progression
          6.491228
                               10.0
                                                            2.649985
          6.491228
                                10.0
                                                            1.058046
                                7.5
                                                            7.843897
          8.245614
                                            never
          5.789474
                                1.0
                                                            3.304966
                                            never
          8.245614
                                10.0
                                               4
                                                            1.405225
```

hr_ov = hr_ov.drop(['company_exposure_raw', 'career_progression_raw'], axis=1)

hr_ov.head(30)

	enrollee_id	city	city_development_index	gender	relevent_experience	enrolled_university	education_level	major_discipline	experience	company_size	company_type	last_new_job	training_hours	target	education_score	experience_score	training_score	company_exposure	career_progression
0	8949	103	0.920	Male	Yes	no_enrollment	Graduate	STEM	>20	unknown	unknown	1	36	1.0	6.491228	10.0	1.071429	unknown	2.649988
1	29725	40	0.778	Male	No	no_enrollment	Graduate	STEM	15	50-99	Pvt Ltd	>4	47	0.0	6.491228	10.0	1.398810	4.44444	1.058046
2	11561	21	0.624	unknown	No	Full time course	Graduate	STEM	5	unknown	unknown	never	83	0.0	8.245614	7.5	2.470238	unknown	7.843897
3	33241	115	0.789	unknown	No	no_enrollment	Graduate	Business Degree	<1	unknown	Pvt Ltd	never	52	1.0	5.789474	1.0	1.547819	unknown	3.304966
4	666	162	0.787	Male	Yes	no_enrollment	Masters	STEM	>20	50-99	Funded Startup	4	8	0.0	8.245614	10.0	0.238095	5.925926	1.405228
5	21651	176	0.764	unknown	Yes	Part time course	Graduate	STEM	11	unknown	unknown	1	24	1.0	7.660819	10.0	0.714288	unknown	2.847566
6	28806	160	0.920	Male	Yes	no_enrollment	High School	unknown	5	50-99	Funded Startup	1	24	0.0	2.631579	9.5	0.714286	5.925926	1.913502

hr_ov.	hr_ov.describe()												
	enrollee_id	city	city_development_index	training_hours	target	education_score	experience_score	training_score	career_progression				
count	19158.000000	19158.000000	19158.000000	19158.000000	19158.000000	19158.000000	19158.000000	19158.000000	19158.000000				
mean	16875.358179	80.128876	0.828848	65.366896	0.249348	6.530813	8.510700	1.945443	2.418953				
std	9616.292592	46.413570	0.123362	60.058462	0.432647	1.861612	2.553477	1.787454	1.693364				
min	1.000000	1.000000	0.448000	1.000000	0.000000	0.701754	1.000000	0.029762	0.000000				
25%	8554.250000	21.000000	0.740000	23.000000	0.000000	6.491228	8.000000	0.684524	1.273339				
50%	16982.500000	101.000000	0.903000	47.000000	0.000000	6.491228	10.000000	1.398810	2.017232				
75%	25169.750000	104.000000	0.920000	88.000000	0.000000	8.245614	10.000000	2.619048	2.649985				
max	33380.000000	180.000000	0.949000	336.000000	1.000000	10.000000	10.000000	10.000000	10.000000				

Dashboard

Visualization

Visualization

Visualization

