Variante 1: Bedienungsanleitung

Bevor der Raketenstart durchgeführt wird, müssen folgende Schritte sorgfältig abgearbeitet werden:

Akkustand prüfen:

Stelle sicher, dass der Akku des Moduls ausreichend geladen ist. Ein zu schwacher Akku (unter 20 %) kann zu Fehlfunktionen führen – insbesondere zum Ausfall der Fallschirmauslösung oder zur unvollständigen Datenaufzeichnung.

Fallschirm korrekt falten:

Hier ein Tutorial, wie man den Fallschirm richtig faltet, dass er zuverlässig aufgeht.

https://www.youtube.com/shorts/kGTpw6yevmc?feature=share

• Modul sicher befestigen:

Das Messmodul muss stabil und fest mit der Rakete bzw. der Flasche verbunden werden – am besten durch sorgfältiges Verkleben. Achte darauf, dass es nicht verrutschen kann. Wichtig: Der Fallschirm ist ausschließlich am Modul befestigt. Wenn sich das Modul während des Flugs von der Rakete löst, fällt die Flasche ungebremst zu Boden – das stellt eine erhebliche Gefahr dar!

• Rakete mit Wasser und Druckluft befüllen:

Fülle die Flasche mit der vorgesehenen Menge Wasser (ca. 1/3 der Flasche) und positioniere sie anschließend in der Startrampe. Über die Handpumpe wird nun Druckluft eingebracht – beachte hierbei unbedingt den maximalen Betriebsdruck von **5** bar.

Modul einschalten:

Schalte das Modul ein und beobachte das LCD-Display. Nach etwa 10 Sekunden erscheint die Anzeige "Launch →". Erst wenn diese angezeigt wird, ist das System vollständig initialisiert und bereit für den Start. Vorher darf die Rakete nicht ausgelöst werden.

Rakete starten:

Sobald das Display "Launch →" anzeigt, kann der Start ausgelöst werden. Das Modul beginnt automatisch mit der Aufzeichnung aller Flugdaten – inklusive Beschleunigung, Höhe und Systemstatus.

• Nach der Landung:

Rakete wieder einsammeln und ausschalten. Die log-Daten sind in CSV-Dateien auf der SD-Karte gespeichert.

Testen des Moduls

Nehmt euch das fertige Modul und überprüft, ob es wie gewünscht funktioniert. Beobachtet dabei insbesondere den Moment der Auslösung: Öffnet sich der Fallschirm genau dann, wenn ihr es erwartet habt? Überlegt euch mögliche Ursachen, wenn das Modul zu früh oder zu spät auslöst. Mögliche Fehlerquellen könnten sein:

- Ungenaue Sensordaten (z. B. Rauschen oder Verzögerungen)
- Fehlerhafte Berechnung der Höhe oder des Höhenabfalls
- Falsche Referenzwerte im Code
- Verzögerungen durch den Servo

Testet außerdem die Datenaufzeichnung auf der SD-Karte:

- Ist das Format korrekt? (z. B. CSV mit Kommas oder Semikolon getrennt)
- Stimmen die Einheiten? (z. B. Meter für Höhe, °C für Temperatur, hPa für Luftdruck)
- Sind die Messwerte in einer sinnvollen Größenordnung? (z. B. keine negativen Höhenwerte oder unrealistisch hohe Temperaturen)

Versucht, die aufgezeichneten Daten zu validieren:

- Ist der Verlauf der Höhe plausibel? Gibt es z. B. einen klar erkennbaren Anstieg beim Start und einen Abfall nach der höchsten Stelle?
- Entsprechen die Temperaturwerte etwa der Umgebungstemperatur?
- Verhält sich der Luftdruck physikalisch korrekt (z. B. sinkender Druck mit zunehmender Höhe)?

Diese Tests helfen euch, mögliche Fehler frühzeitig zu erkennen und die Funktion eures Systems zu verbessern.

Aufzeichnen der Flugdaten

Für die Test empfehlen wir die Finnen 1 und die ogive Spitze. Die Flasche sollte mit 500ml Wasser gefüllt sein und bis 5 bar Luftdruck.

Jetzt wird's spannend: Deine Rakete ist bereit für den Start – und dein Messmodul soll alle wichtigen Daten aufzeichnen! Höhe, Luftdruck, Temperatur und Bewegung geben dir spannende Einblicke in den Flugverlauf.

Mit diesen Daten kannst du später genau analysieren, wann der höchste Punkt erreicht wurde, wie schnell die Rakete steigt – und ob der Fallschirm im richtigen Moment ausgelöst wurde.

Sicherheitshinweise

Bevor du mit dem Start beginnst, beachte folgende Punkte:

- Luftpumpe prüfen: Achte darauf, dass die Luftpumpe einen genau Anzeige hat. Die 5 Bar dürfen nicht überschritten werden.
- Zustand der Flasche prüfen: nach einigen Flügen können sich Risse am Hals der Flasche bilden. Außerdem wird die Flasche zunehmend dünner. Wechsle die Flasche nach 10 Starts aus.
- Sicherheitsabstand einhalten: Alle Zuschauer und Beteiligten müssen beim Start mindestens 5 m Abstand halten.
- Schutzbrille tragen: Bei Arbeiten mit Druckluft ist eine Schutzbrille Pflicht.
- Modul richtig befestigen: Das Modul muss mit der Flasche stabil verklebt sein, da diese sonst getrennt herunterfallen könnten.
- Startrampe nur auf freiem Gelände verwenden: Kein Start in der Nähe von Gebäuden, Straßen oder Stromleitungen. Empfehlung hierzu ist einer der kurzen Seiten eines Sportplatzes und leicht in die andere Richtung ausrichten. (maximal 20 Grad von der Senkrechten)
- Nie auf Menschen oder Tiere zielen: Die Rakete ist kein Spielzeug!
- Niemals die Rakete versuchen zu fangen.

Analyse der Daten

Aufgabe: Auswertung der Flugdaten mit Excel

Für die Auswertung der Daten könnt euch für das Programm eure Wahl entscheiden. Bei Vorerfahrung kann Python mit dem Modul MathPlotLib eine Möglichkeit sein. Für den ersten Umgang mit Daten empfiehlt sich Excel.

Auswertung mit Excel:

- 1. CSV-Datei öffnen
 - Starte Excel
 - Öffne deine log_XXXX.csv-Datei
 - Spaltenüberschriften umbenennen:
 - Zeit [s], Höhe [m], Beschleunigung [g], Luftdruck [hPa], Temperatur [°C] etc
 - Achte auf richtige Schreibweise (Excel verwendet Kommas für die Nachkommastellen, in der CSV Datei sind es Punkte – das Tool Suchen und Ersetzten kann helfen)
- 2. Höhe über Zeit Diagramm erstellen
 - Spalten "Zeit [s]" und "Höhe [m]" markieren
 - Einfügen → Liniendiagramm
 - Flugverlauf sichtbar machen

Arbeite aus den Daten folgende Wert heraus.

- Höchste Beschleunigung
- Apogäum
- Flugdauer
- Maximale Geschwindigkeit
- Sinkgeschwindigkeit
- Kann man daraus die Formel für den Senkrechten Wurf ausarbeiten?
- Bestimme den c w Wert des Fallschirms (Masse, Luftdichte und Fläche gegeben)
- Bestimme die Schubkurve Wasserrakete wie unterscheidet sie schon von großen Raketen bzw. Modellraketen mit Schwarzpulvermotor

Daten präsentieren

Nachdem du deine Flugdaten ausgewertet hast, geht es nun darum, die Ergebnisse klar und verständlich darzustellen. Eine gute Präsentation hilft dabei, deine Messungen nachvollziehbar zu machen und besondere Erkenntnisse hervorzuheben.

Übersichtliche Darstellung

- Erstelle eine strukturierte Auswertung in Excel oder PowerPoint.
- Nutze Tabellen für Werte wie Apogäum, Flugdauer, Maximalgeschwindigkeit etc.
- Verwende Diagramme, z. B.:
 - Höhe über Zeit (für Flugkurve)
 - o Geschwindigkeit über Zeit
 - o Schubkurve
 - o Beschleunigung über Zei

Hebe Besonderheiten hervor

- Zeige deutlich, wo das Apogäum liegt
- Benenne Stellen mit besonderer Beschleunigung oder auffälligem Flugverhalten.
- Wenn der Fallschirm ausgelöst wurde: Markiere diesen Zeitpunkt (z. B. durch eine vertikale Linie im Diagramm).
- Was ist bei euren Daten besonders
- Gab es Probleme bei der Auswertung

Wenn jede Gruppe die gleichen Daten vorstellt, kann es schnell langweilig werden. Konzentriert euch auf die Erfolge oder Probleme, die ihr das Projekt hinweg hattet.

Interpretation

Erkläre mit eigenen Worten:

- Was passiert wann?
- Warum sieht die Kurve so aus?
- Welche Phase des Flugs erkennst du (Start, Steigflug, Apogäum, Sinkflug)?
- Vergleiche berechnete Werte mit theoretischen Erwartungen (z. B. Höhe beim senkrechten Wurf).

Kreative Präsentationsform

- Erstelle ein kurzes Poster, ein Video mit Flug- und Datenanalyse oder einen digitalen Bericht.
- Baue Screenshots deiner Diagramme ein.
- Ergänze ein Fazit: Was würdest du beim nächsten Mal anders machen?

Ziel ist nicht nur, die Daten zu zeigen – sondern auch zu erklären, was sie bedeuten und was du daraus gelernt hast.