NOMBRES ET CALCULS

I) NOTATIONS UTILISÉES EN LYCÉE

1) Ensembles de nombres

- IN désigne l'ensemble des entiers naturels (positifs)
- Z désigne l'ensemble des entiers relatifs (positifs ou négatifs)
- \mathbb{D} désigne l'ensemble des nombres décimaux (qui peuvent s'écrire avec un nombre <u>fini</u> de décimales, donc $\frac{1}{3} \notin \mathbb{D}$!)
- \mathbb{Q} désigne l'ensemble des nombres rationnels (quotients <u>d'entiers</u> donc $\frac{\pi}{2} \notin \mathbb{Q}$!)
- IR désigne l'ensemble des nombres réels (tous les nombres connus en 2^{de})

2) Notations complémentaires

- ullet $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$
- IR+ désigne l'ensemble des réels positifs ou nuls
- Q* désigne l'ensemble des rationnels sauf zéro
- $\mathbb{R} \setminus \{1; 3\}$ désigne l'ensemble des réels sauf 1 et 3

3) Montrer qu'un nombre est décimal

Pour montrer qu'un nombre appartient à \mathbb{D} , il peut être commode de le convertir en fraction décimale. En effet, un nombre possédant n décimales peut toujours s'écrire sous la forme $\frac{a}{10^n}$ avec $a \in \mathbb{Z}$

Ex:
$$0,12345 = \frac{12345}{100000} = \frac{12345}{10^5}$$

Exercice 1 : $\frac{4}{25}$ est-il décimal ?

$$\frac{4}{25} = \frac{16}{100} = 0.16$$
 donc $\frac{4}{25} \in \mathbb{D}$

Exercice 2 : Démonstration « par l'absurde » à connaître :

A l'inverse, montrons que $\frac{1}{3}$ n'est pas décimal :

Supposons que $\frac{1}{3}$ soit décimal.

alors il existe deux entiers a et n, tels que $\frac{1}{3} = \frac{a}{10^n}$

donc
$$a = \frac{10^n}{3}$$

or la somme des chiffres de 10^n est toujours égale à 1 donc 10^n ne peut être divisible par 3

donc a ne peut être entier

donc l'hypothèse de départ ne peut être vraie

p21: 15, 21 p22: 36, 37 p24: 81, 82 + feuille 1.1

4) Intervalles de ℝ

Un intervalle de IR est un ensemble de réels définis par un encadrement ou une inégalité.

L'ensemble des réels <i>x</i> tels que :	se représente graphiquement :	et se note :
$3 \leqslant x < 5$	3 5	[3;5[
3 > x > 1	1 3]1;3[
$-10 \leq x$	<u>−10</u>	[−10; +∞[

5) Intersections et réunions d'ensembles

Soient deux ensembles A et B.

- La réunion de A et de B est l'ensemble des éléments qui appartiennent à A ou à B. On la note A \cup B.
- L'intersection de A et de B est l'ensemble des éléments qui appartiennent à A \underline{et} à B. On la note A \cap B.

Ex avec des intervalles:

- A = [1; 5[et B =]-3; 4] A \cap B = [1; 4] A \cup B =]-3; 5[
- A = $[2; +\infty[\text{ et B} =]-\infty; 0]$ A \cap B = \emptyset A \cup B = $]-\infty; 0] \cup [2; +\infty[$
- $A = [0 ; 2[et B =]-1 ; +\infty[$ $A \cap B = [0 ; 2[= A$ $A \cup B =]-1 ; +\infty[= B$

p22: 46, 53, 54

p23: 56, 57, 58, 67

p26: 110, 111

p27: 119

6) Dans les exercices

<u>Avant</u> de modifier une expression contenant une variable, il faut <u>définir</u> cette variable et notamment vérifier qu'elle ne prend pas de <u>valeurs</u> <u>interdites</u>.

Voici donc quelques réflexes de rédaction à prendre dès le début de l'année :

Ex1: Développer :
$$A = (2x-1)(x^2+2)$$

Pour tout x de
$$\mathbb{R}$$
: A=(2x-1)(x²+2)=2x³-x²+4x-2

Ex2: Simplifier:
$$B = \frac{(x+1)^2(x-1)}{x^2-1}$$

Conditions:
$$x^2 - 1 \neq 0 \Leftrightarrow (x - 1)(x + 1) \neq 0 \Leftrightarrow x \neq 1 \text{ et } x \neq -1$$

Pour tout x de
$$\mathbb{R} \setminus \{-1; 1\}$$
: $B = \frac{(x+1)^2(x-1)}{x^2-1} = \frac{(x+1)^2(x-1)}{(x-1)(x+1)} = x+1$

Ex3: Résoudre (E) :
$$x^2+4>4x$$

(E)
$$\Leftrightarrow x^2 - 4x + 4 > 0$$

(E)
$$\Leftrightarrow$$
 $(x-2)^2 > 0$

Or un carré est toujours positif ou nul $S = \mathbb{R} \setminus \{-2\}$

Ex4: Résoudre (I):
$$-3x+1 \ge x-3$$

$$(I) \Leftrightarrow -4x \geqslant -4$$

$$(I) \Leftrightarrow x \leq 1$$

$$S =]-\infty; 1]$$

II) RÈGLES DE CALCUL

1) Quotients:

CONDITION	RÈGLE	
	TEGE	
$a \in \mathbb{R} \text{ et } b \in \mathbb{R}^*$	$\frac{-a}{b} = \frac{a}{-b} = -\frac{a}{b}$	
$a \in \mathbb{R} ; b \in \mathbb{R}^* ;$ $c \in \mathbb{R} \text{ et } d \in \mathbb{R}^*$	$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$	
$a \in \mathbb{R} ; b \in \mathbb{R}^* ;$ $c \in \mathbb{R} \text{ et } d \in \mathbb{R}^*$	$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	
$a \in \mathbb{R} ; b \in \mathbb{R}^* ;$ $c \in \mathbb{R}^* \text{ et } d \in \mathbb{R}^*$	$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c}$	

2) Puissances: (n et m entiers strictement positifs)

CONDITION	RÈGLE	
$a \in \mathbb{R}^*$	$a^0 = 1$	
$a \in \mathbb{R}^*$	$a^{-n} = \frac{1}{a^n}$	
$a \in \mathbb{R}$	$a^m \times a^n = a^{m+n}$	
$a \in \mathbb{R}^*$	$\frac{a^m}{a^n} = a^{m-n}$	
$a \in \mathbb{R}$	$(a^m)^n = a^{m \times n}$	
$a \in \mathbb{R} \text{ et } b \in \mathbb{R}$	$(ab)^n = a^n b^n$	
$a \in \mathbb{R} \text{ et } b \in \mathbb{R}^*$	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$	

Remarque : Il n'y a pas de règle avec $a^m + a^n$

3) Identités remarquables :

CONDITION	RÈGLE
$a \in \mathbb{R} \text{ et } b \in \mathbb{R}$	$(a+b)(a-b)=a^2-b^2$
$a \in \mathbb{R} \text{ et } b \in \mathbb{R}$	$(a+b)^2 = a^2 + 2ab + b^2$
$a \in \mathbb{R} \text{ et } b \in \mathbb{R}$	$(a-b)^2 = a^2 - 2ab + b^2$

Rem : illustration géométrique de $(a+b)^2 = a^2 + 2ab + b^2$:

p22: 41

p25: 86

p26: 100, 107 p28: 136, 137

p69: 3, 4, 5, 7, 8

p79: 27, 31

p80: 43, 44, 50, 53, 55

p81: 59, 60, 61, 62

p90: 154

comparer 2 nombres:

p86: 114, 115, 116, 118

III) FACTORISER UNE EXPRESSION

Factoriser une expression, c'est chercher à la transformer en un produit de facteurs du 1^{er} degré. Pour cela, 2 techniques à essayer <u>dans l'ordre</u>:

1) D'abord, chercher un facteur commun

Pour tout x de \mathbb{R} :

$$A = (4x-3)(x+2)-x(8x-6)-4x+3$$

$$A = (4x-3)(x+2)-2x(4x-3)-(4x-3)$$

$$A = (4x-3)[x+2-2x-1]$$

$$A = (4x-3)(1-x)$$

2) Ensuite seulement, chercher une identité remarquable

Pour tout x de \mathbb{R} :

$$B=32 x^{2}-48 x+18$$

$$B=2(16 x^{2}-24 x+9)$$

$$B=2(4 x-3)^{2}$$

p81: 64, 65, 70 p84: 101, 102

IV) VALEUR ABSOLUE D'UN RÉEL

1) Définition

On appelle « valeur absolue d'un réel x », le réel noté |x| tel que :

$$\begin{cases} \sin x \ge 0 \text{ alors } |x| = x \\ \sin x \le 0 \text{ alors } |x| = -x \end{cases}$$

La valeur absolue permet donc de « rendre positif » un nombre quelconque.

Exemples:

$$|5| = \overline{5}$$

 $|-5| = -(-5) = 5$
 $|2 + 5| = 7$
 $|4 - \pi| = 4 - \pi$
 $|2 - 5| = -(2 - 5) = 5 - 2 = 3$
 $|\pi - 4| = -(\pi - 4) = 4 - \pi$

2) Écart entre deux nombres

Cette année, nous utiliserons cette notation pour désigner « la distance entre deux nombres », c'est à dire la différence entre le plus grand et le plus petit de ces deux nombres.

En effet, sur une droite graduée, la distance d entre 2 points d'abscisses x

et
$$a$$
 est telle que :
$$\begin{cases} \sin x \ge a \text{ alors } d = x - a \\ \sin x \le a \text{ alors } d = a - x \end{cases}$$

La distance entre 2 réels x et a est donc égale à |x-a| ou encore à |a-x|

Application:

Équation ou inéquation	Droite graduée	Solutions
x-5 =4	1 5 9	$S = \{1; 9\}$
$ x = \sqrt{2}$		
x+1 = 4		
$ x-2 \leq 4$		

3) Valeurs approchées d'un nombre

Soit r, un réel positif (en général tout petit).

On dit que a est une « valeur approchée » de x à r près lorsque $|x-a| \le r$

Tous les nombres de l'intervalle ci-dessus sont des valeurs approchées possibles de x à r près.

En pratique, on cherche une valeur approchée de *x* lorsque ce réel a un très grand nombre de décimales et que l'on veut le remplacer par un nombre très proche ayant peu de décimales !

Exemple : Valeurs approchées de π à 10^{-2} près :

3,14; 3,15; 3,135; 3,1416 sont des valeurs approchées de π à 10^{-2} près. Parmi ces possibilités, on préférera en général 3,14 et 3,15 qui n'ont que 2 décimales. Et on appellera « arrondi de π à 10^{-2} près » celle de ces deux valeurs qui est la plus proche de π , c'est à dire 3,14.

p11: 2 p21: 19 p22: 39 p24: 78, 79, 80 p27: 122 p28: 130, 131, 132 p30: 152, 158 + feuille 1.3