Université Sultan Moulay Slimane

Ecole Supérieure de Technologie - Béni-Mellal

Contrôle de chimie générale du 28/12/2020 à 14h 30mn Durée 1h

Exercice 1:

Q1 : Equilibrer la réaction d'oxydoréduction suivante et déduire le rôle de chaque espèce :

$$MnO_4$$
 (aq) + Fe^{2+} (aq) $\rightarrow Mn^{2+}$ (aq) + Fe^{3+} (aq) (en milieu acide)

Exercice 2:

Q2: Combien y a-t-il de moles dans 2g de dihydrogène (H₂) à la température ambiante ?

Exercice 3:

Q3: Le spectre de l'atome d'hydrogène comporte une raie violette correspondant à une longueur d'onde de 410.5 nm, appartenant à la série de Balmer, à quelle transition de m à n cette raie est associée ?

Exercice 4:

Q4: Calculer la masse totale des électrons dans 1 Kg de Fer, dans lequel il y a 1.08x10²⁵ atomes.

Exercice 5:

Q5: Quels sont les éléments de la 4^{ème} période qui possèdent, dans leur état fondamental, trois électrons non appariés (célibataires) ?

<u>Q6</u>: L'atome d'étain (Sn) possède dans son état fondamental deux électrons sur la sous-couche 5p. Donner le nombre d'électrons de valence relatif.

Exercice 6:

Q7: Classer les éléments suivants par rayons atomiques croissants : Cs (Z=21), F (Z=9), K (Z=19), N (Z=7), Li(Z=3).

On donne:

- Masse molaires : $Fe = 56 \text{ g.mol}^{-1}$, $H = 1 \text{ g.mol}^{-1}$,
- Nombre d'Avogadro : $N = 6.023.10^{23}$. Masse de l'électron : $\mathbf{m}_{\ell} = 9.11 \times 10^{-28} \text{ g}$

• eV= 1,6.10⁻¹⁹ Joules, $h=6,62.10^{-34}$ J.s, c=3.108 m.s⁻¹

I.FORSAL Page 1/1