Dawid Lipiński (238186) Informatyka III Aplikacje internetowe i bazy danych

Algorytmy Numeryczne - Zadanie 2

Operacje na macierzach

Zdefiniowany został parametryzowany szablon klasy C++ reprezentujący macierz nad ciałem liczb rzeczywistych oraz stworzone przeciążone operatory dodawania, odejmowania, mnożenia i dzielenia.

Operacje na ułamkach

Zdefiniowany został szablon klacy C++ reprezentujący ułamek, wraz z przeciążonymi operatorami, składający się z licznika I mianownika, które to są zmiennymi typu BigInteger (zewnętrzna klasa).

Testy poprawności

Wszystkie testy (nie licząc metody Gaussa) przeprowadzone zostały używając następujących typów reprezentujących

liczbę rzeczywistą:

- typu pojedynczej precyzji: float,
- typu podwójnej precyzji: double
- typu własnego MyFraction, który przechowuje liczbę w postaci ułamka liczb typu BigInteger.

Dodawanie, mnożenie oraz implementacja metody Gaussa

Dla losowych macierzy kwadratowych A, B, C I wektora X wykonane zostały testy badające poprawność (błedy) I wydajność (czas działania następujących operacji):

- A * X,
- (A + B + C) * X,
- A * (B * C),
- metoda Gaussa z pełnym wyborem elementu podstawowego,
- metoda Gaussa z częściowym wyborem elementu podstawowego.

Wyniki i czas działania powyższych operacji zostały porównane z wynikami uzyskanymi przu użyciu klasy Matrix z biblioteki Eigen3.

Czasy wykonania

double

float

Czasy wykonania mierzone w ilości cykli procesora ukazujące różnice między metodami są na wykresach poniżej:

0

double

float

eigen

eigen

Czasy operacji Gauss

Błędy

Poprawność implementacji zostały przedstawione na poniższych wykresach, obrazujących maksymalną oraz średnią bezwględną różnicę między wynikiem Eigen3 a własnym. Uwaga: W przypadku metody Gaussa została przedstawiona tylko całkowita, gdyż wynik był jednakowy z półowicznym. Na wykresach oś Y czasem posiada skalę logarytmiczną.

1.00E+00

1.00E-02

1.00E-04

1.00E-06 1.00E-08

1.00E-10

1.00E-12

1.00E-14

1.00E-16 1.00E-18

Błędy operacji A*X, (A+B+C)*X, A*(B*C):

Wynik niebieski oznacza błąd maksymalny, pomarańczowy zaś błąd średni.

• A * X

Rozmiar macierzy: 50x50

double

float

Rozmiar macierzy 100x100

 $\bullet (A + B + C) * X$

Rozmiarz macierzy 50x50

Rozmiar macierzy 100x100

MyFraction

• A * (B * C)

Błędy operacji implementacji metodu Gaussa:

<u>Wnioski</u>

Na podstawie przeprowadzonych testów I obliczeń, można stwierdzić:

- 1. Zastosowanie własnego ułamka z licznikiem I mianownikiem BigInteger poprawia dokładność, leć rażąco zwiększa czas wykonania.
- 2. Rozmiar macierzy znacząco wpływa na czas jej obliczenia, lecz nieznacznie na błędy obliczeniowe.
- 3. Metody Gaussa mają jednakową dokładność, lecz czas wykonania prezentuje się następująco: Pełen wybór < Połowiczny wybór < Bez wyboru.