Лабораторная работа 1.2.1

Определение скорости полета пули при помощи баллистического маятника

Дербенев Никита Максимович

23 ноября 2023

Цель работы: Определмить скорость полета пули, применяя законы сохранения и используя баллистические маятники

В работе используются:

- 1. Духовое ружье на штативе
- 2. Осветитель
- 3. Оптическая система для измерения отклонений маятника
- 4. Измерительная линейка
- 5. 10 пуль
- 6. Весы
- 7. Баллистические маятники

Ход работы

1. Измерим на весах массу каждой пули (табл. 1). Погрешность весов: $\sigma_m=10~{\rm Mr}$

Таблица	1:	Массы	пуль
---------	----	-------	------

$N_{ar{f o}}$	1	2	3	4	5	6	7	8	9	10
m_i , M Γ	504	518	504	498	500	510	508	508	510	500

- 2. Измерим расстояние $L = (2197.5 \pm 1)$ мм.
- 3. Соберем оптическую систему, включим и отстроим шкалу на ноль. Убедимся, что холостые выстрелы не влияют на маятник (движение не заметно глазом). Убедимся, что затухание колебаний незначительно (за 10 колебаний амплитуда уменьшается меньше, чем наполовину).
- 4. Произведем 5 выстрелов пулями № 1-5, запишем амплитуду маятника в табл. 2:

Таблица 2: Результаты выстрелов в баллистический маятник №1

Nº	1	2	3	4	5						
Δx , mm	9.5	8.75	9.0	9.75	9.5						
L, mm		2197.5 ± 5									
m , M Γ	504	518	504	498	500						
M , Γ	2925 ± 5										
$u, \frac{M}{c}$	116.5	104.4	110.4	121.0	117.4						
$u_{\rm cp}, \frac{\rm M}{c}$	$114 \pm 11(9.5\%)$										

5. Расчитаем начальную скорость пули по формуле:

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x$$

Расчитаем погрешность скорости:

$$\begin{split} \varepsilon_{u_{\text{сист}}} &= \varepsilon_M + \varepsilon_m + \frac{1}{2}\varepsilon_g + \frac{1}{2}\varepsilon_L + \varepsilon_{\Delta x} \approx 7.5\% \\ \sigma_{u_{\text{сист}}} &= u\varepsilon_{u_{\text{сист}}} \approx 8.5\frac{\text{M}}{c} \\ \sigma_{u_{\text{случ}}} &\approx 6.6\frac{\text{M}}{c} \\ \sigma_u &= \sqrt{\sigma_{u_{\text{сист}}}^2 + \sigma_{u_{\text{случ}}}^2} \approx 10.8\frac{\text{M}}{c} \\ \varepsilon_u &= \frac{\sigma_u}{u} \approx 9.5\% \end{split}$$

По итогу получаем:

$$u = (114 \pm 11) \frac{M}{c} (9.5\%)$$

6. Измерим для баллистического маятника №2 параметры r, R и d (табл. 3):

Таблица 3: Параметры баллистического маятника №2

Параметр	r	R	d	
Значение, мм	213 ± 2	336.5 ± 0.5	1422 ± 1	

- 7. Измерим массы грузов: $M_1 = (725.5 \pm 0.1)$ г, $M_2 = (738.7 \pm 0.1)$ г
- 8. Настроим осветительную систему. Включим осветитель и отстроим шкалу на ноль. Убедимся, что холостые выстрелы не влияют на маятник (движение не заметно глазом). Убедимся, что затухание колебаний незначительно (за 10 колебаний амплитуда уменьшается меньше, чем наполовину).
- 9. Измерим период колебаний маятника T1 с грузом и T2 без (табл. 4):

Таблица 4: Период колебаний баллистического маятника №2

Опыт		C	⁹ грузам	И		Без грузов				
Nº	1	2	3	4	5	1	2	3	4	5
t, c	66.39	66.02	66.58	66.40	66.35	59.26	49.38	49.33	49.07	49.17
N	10	10	10	10	10	12	10	10	10	10
T, c	6.64	6.60	6.66	6.64	6.64	4.94	4.94	4.93	4.91	4.92
$T_{\rm cp},{ m c}$		6.64 ± 0.02					4.93 ± 0.01			

10. Произведем 5 выстрелов пулями №6-10, запишем амплитуду маятника в табл. 5:

Таблица 5: Результаты выстрелов в баллистический маятник №2

№	1	2	3	4	5			
Δx , MM	44	40	45	37.5	42.5			
m , M Γ	510	508	508	510	500			
$u, \frac{M}{c}$	99.6	90.9	102.2	78.1	98.1			
$u_{\rm cp}, \frac{{\scriptscriptstyle { m M}}}{c}$	$94 \pm 11 (11.7\%)$							

11. Расчитаем начальную скорость пули по формуле:

$$u = \varphi \frac{\sqrt{kI}}{mr} \approx x \frac{\sqrt{kI}}{2dmr}$$

$$\sqrt{kI} = \frac{4\pi MR^2 T_1}{T_1^2 - T_2^2} \approx (0.699 \pm 0.006) \frac{\text{KF} \cdot \text{M}^2}{c}$$

$$\varepsilon_u = \varepsilon_{\sqrt{kI}} + \varepsilon_x + \varepsilon_m + \varepsilon_r \approx 5.8\%$$

Расчитаем погрешность:

$$\begin{split} \sigma_{u_{\rm c,nyu}} &\approx 10 \frac{\rm M}{c} \\ \sigma_{u_{\rm chct}} &= u \varepsilon_u \approx 5 \frac{\rm M}{c} \\ \sigma_u &= \sqrt{\sigma_{u_{\rm chct}}^2 + \sigma_{u_{\rm c,nyu}}^2} \approx 10.9 \frac{\rm M}{c} \end{split}$$

По итогу:

$$u = (94 \pm 11) \frac{M}{c} (11.7\%)$$

Выводы: С помощью баллистического маятника можно оценить начальную скорость пули из духового ружья. Этот метод при модификафии также подойдет и для огнестрельного оружия, если расположить балличтический маятник достаточно далеко от оружия, чтобы пороховые газы на него не влияли. Основной причиной погрешностей стало определение амплитуды маятника. Также разброс значений связан с тем, что начальная скорость пули при каждом выстреле действительно разная, для увеличения точности необходимо больше выстрелов.