LECTURE 3: Independence

- Independence of two events
- Conditional independence
- Independence of a collection of events
- Pairwise independence
- Reliability
- The king's sibling puzzle

A model based on conditional probabilities

• 3 tosses of a biased coin: P(H) = p, P(T) = 1 - p

- Multiplication rule: P(THT) =
- Total probability:

$$P(1 \text{ head}) =$$

Bayes rule:

P(first toss is H | 1 head) =

Independence of two events

- Intuitive "definition": P(B | A) = P(B)
 - occurrence of A provides no new information about B

Definition of independence: $P(A \cap B) = P(A) \cdot P(B)$

- Symmetric with respect to A and B
- implies $P(A \mid B) = P(A)$
- applies even if P(A) = 0

Independence of event complements

Definition of independence: $P(A \cap B) = P(A) \cdot P(B)$

- If A and B are independent, then A and B^c are independent.
 - Intuitive argument

Formal proof

Conditional independence

 \bullet Conditional independence, given C, is defined as independence under the probability law $\mathbf{P}(\,\cdot\mid C)$

Assume A and B are independent

• If we are told that C occurred, are A and B independent?

Conditioning may affect independence

- Two unfair coins, A and B: $P(H \mid coin A) = 0.9$, $P(H \mid coin B) = 0.1$
- choose either coin with equal probability

• Are coin tosses independent?

- Compare: P(toss 11 = H)

 $P(\text{toss } 11 = H \mid \text{first } 10 \text{ tosses are heads})$

Independence of a collection of events

• Intuitive "definition": Information on some of the events does not change probabilities related to the remaining events

Definition: Events A_1, A_2, \ldots, A_n are called **independent** if:

$$\mathbf{P}(A_i \cap A_j \cap \cdots \cap A_m) = \mathbf{P}(A_i)\mathbf{P}(A_j)\cdots\mathbf{P}(A_m)$$
 for any distinct indices i, j, \dots, m

$$n = 3$$
:

$$\left. \begin{array}{l} \mathbf{P}(A_1 \cap A_2) = \mathbf{P}(A_1) \cdot \mathbf{P}(A_2) \\ \mathbf{P}(A_1 \cap A_3) = \mathbf{P}(A_1) \cdot \mathbf{P}(A_3) \\ \mathbf{P}(A_2 \cap A_3) = \mathbf{P}(A_2) \cdot \mathbf{P}(A_3) \end{array} \right\} \quad \text{pairwise independence}$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2) \cdot P(A_3)$$

Independence vs. pairwise independence

- Two independent fair coin tosses
- H_1 : First toss is H
- H_2 : Second toss is H

$$P(H_1) = P(H_2) = 1/2$$

HH	HT
TH	TT

 H_1 , H_2 , and C are pairwise independent, but not independent

Reliability

 p_i : probability that unit i is "up"

independent units

probability that system is "up"?

The king's sibling

• The king comes from a family of two children. What is the probability that his sibling is female?