Índice

- 4.3.1 Breve introducción al álgebra relacional
- 4.3.2 Objetivo
- 4.3.3 Visión general
- 4.3.4 Optimización heurística
- 4.3.5 Estimación del coste
- 4.3.6 Optimización de consultas en Oracle
- 4.3.7 Ejercicios

Bibliografía

- Fundamentals of Database Systems. 6th Edition R. Elmasri y S.B. Navathe. Addison Wesley, 2010 Capítulo 18
- Database: Principles, Programming, and Performance, 2ª Edición P. O'Neil y E. O'Neil. Morgan Kaufmann, 2000 Capítulo 9
- Fundamentos de bases de datos. 5ª edición A. Silberschatz, H.F. Korth y S. Sudarshan. McGraw-Hill, 2006 Capítulos 15 y 17
- Oracle 10g: Manual del administrador K. Loney. McGraw-Hill, 2005 Capítulo 7

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.1 Álgebra relacional

Tema 4: Optimización de Bases de datos

- Los lenguajes relacionales son lenguajes formales (teóricomatemáticos) y se basan en el carácter conjuntista de una relación.
- El álgebra relacional es un lenguaje procedimental para la manipulación de relaciones.
- El Álgebra relacional fue desarrollada en 1970 y el cálculo relacional en 1971 por Codd.
- El Álgebra y el Cálculo Relacional proveen una forma teórica de manipular una base de datos relacional.
- Se basa en el álgebra de la teoría de conjuntos donde los operandos son tablas o relaciones.
- Manipula relaciones produciendo nuevas relaciones.
- Cualquier operación da como resultado una tabla o relación con la que se puede operar de nuevo.
- Consiste en operaciones que algunas de ellas son tomadas de la matemática, otras del lenguaje relacional y otras de lenguajes de programación comunes.
- La cláusula SELECT de SQL es en buena medida una implementación del álgebra relacional.

4.3.1 Álgebra relacional: operaciones

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

- Básicas
 - Unarias: operan con una sola tabla.
 - Selección
 - Proyección
 - Binarias o de conjunto: Operan con dos tablas.
 - Unión
 - Diferencia
 - Producto cartesiano
- Derivadas o adicionales: realizan en su proceso llamadas a las operaciones básicas.
 - Intersección
 - Cociente o división
 - Join o reunión

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.1 Álgebra relacional: operaciones

Tema 4: Optimización de Bases de datos

- De conjuntos:
 - Unión
 - Intersección
 - Diferencia de conjuntos
 - Producto Cartesiano
- · De programación:
 - Asignación

- · Relacionales:
 - Proyección
 - Selección
 - División o cociente
 - Join

4.3.1 Álgebra relacional: tablas de ejemplo

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

R		
Α	В	С
1	0	1
1	0	0
0	3	2
1	2	3
0	2	0

S		
В	D	
0	3	
3	0	
2	1	

Т		
Α	В	C
1	1	0
1	0	1
1	2	1
2	0	0
1	2	3

Q		
В	D	Е
2	1	0
1	1	1
2	1	3
0	3	0
3	0	0

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.1 Álgebra relacional: selección

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Notación: σ_c (R)

Ejemplo:

Tresul:= $\sigma_{(c>1 \text{ AND B}>2)}$ (R)

R		
Α	В	C
1	0	1
1	0	0
0	3	2
1	2	3
0	2	0

4.3.1 Álgebra relacional: proyección

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Notación: $\mathbf{\Pi}_{a1,a2,...}(R)$

Ejemplo:

Tresul:= $\mathbf{\pi}_{B,D}$ (Q)

Q		
В	D	Ε
2	1	0
1	1	1
2	1	3
0	3	0
3	0	0

Iresu		
В	D	
2	1	
1	1	
0	3	
3	0	
	,	

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.1 Álgebra relacional: unión

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Notación: R U S

Ejemplo:

T1:=
$$\mathbf{\pi}_{B,D}$$
 (Q)

Tresul:=T1 U S

T1		
В	D	
2	1	
1	1	
0	3	
3	0	

4.3.1 Álgebra relacional: diferencia

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Notación: R - S

Ejemplo:

Tresul:= R - T

R		
Α	В	C
1	0	1
1	0	0
0	3	2
1	2	3
0	2	0

T		
Α	В	С
1	1	0
1	0	1
1	2	1
2	0	0
1	2	3

Tresul			
Α	В	C	
1	0	0	
0	3	2	
0	2	0	

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

Parte III: Optimización de consultas

4.3.1 Álgebra relacional: producto cartesiano

Tema 4: Optimización de Bases de datos

Notación: R x S

Ejemplo:

Tresul:=R x S
Grado(R)=3 Grado(S)=2
Grado(R x S)=Grado(R)+Grado(S)=5
Cardinalidad(R)=5 Cardinalidad (S)=3
Cardinalidad(R x S)=C(R)XC(S)=15

1.		
Α	В	С
1	0	1
1	0	0
0	3	2
1	2	3
0	2	0

R

<u>S</u>	
В	D
0	3
3	0
2	1

Tresu A 1 1 1 1	R.B 0 0 0 0	C 1 1 1 0 0	S.B 0 3 2 0 3 2	D 3 0 1 3 0
1 0 0 0	0 3 3 3	0 2 2 2	2 0 3 2	1 3 0 1

4.3.1 Álgebra relacional: intersección

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Notación: **R** ∩ **S**

Ejemplo:

Tresul:= $R \cap T$

R		
Α	В	C
1	0	1
1	0	0
0	3	2
1	2	3
0	2	0

T		
Α	В	С
1	1	0
1	0	1
1	2	1
2	0	0
1	2	3

Tresul		
Α	В	С
1	0	1
1	2	3

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.1 Álgebra relacional: reunión natural (natural join)

Tema 4: Optimización de Bases de datos

Notación: R⊗S

Parte III: Optimización de consultas

Ejemplo:

Tresul:= $R \otimes T$

В	С
0	1
0	0
3	2
2	3
2	0
	0 0 3 2

S	
В	D
0	3
3	0
2	1

Tresul			
A	В	С	D
1	0	1	3
1	0	0	3
0	3	2	0
1	2	3	1
0	2	0	1

4.3.1 Álgebra relacional: división

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Notación: R ÷ S

Ejemplo:

Tresul:= Q ÷ V

Q		
В	D	Ш
2	1	0
1	1	1
2	1	3
0	3	0
3	0	0

V
Ε
0
3

Tresu		
В	D	
2	1	

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.1 Álgebra relacional: ejemplos de equivalencia con

Terna :- Optimización de Bases de datos

Parte III: Optimización de consultas

SELECT AL. nombre, ASIG. nombre, nota

FROM

AL, ASIG, ALAS

WHERE

AL.id = ALAS.id_al AND ASIG.id = ALAS.id_as

Tal.nombre, ASIG.nombre, nota (O Al.id=ALAS.id_al AND ASIG.id=ALAS.id_as (ALxASIGxALAS))

4.3.2 Objetivo

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

- Disminuir el tiempo de ejecución de las consultas que se realizan frecuentemente:
 - Modificar el diseño físico:
 - Añadir redundancia de datos: atributos calculables, vistas materializadas
 - · Añadir/modificar índices, clusters, etc.
 - Analizar la consulta:
 - · Escribiéndola de otra manera
 - Aportando más información al DBMS
 - · Dando "consejos" (hints) al DBMS sobre qué estrategia seguir
- → Es necesario conocer cómo elabora un plan de ejecución el DBMS, analizarlo y diseñar soluciones.

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.2 Objetivo: un ejemplo

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

- Tablas de "proveedores" (S) y "pedidos" (P) con 100 proveedores y 10.000 pedidos.
- Sólo 50 pedidos con el artículo P2.
- Consulta: "Obtener los nombres de los proveedores que nos sirven el artículo P2".

SELECT DISTINCT S.NOMBRE FROM S, P WHERE S.S#=P.S# AND P.A#="P2";

1. SxP Card (SXP) = $100 \times 10000 = 1.000.000$

2. $\sigma_{S.S\#=P.S\#}(SxP)$ Card $(\sigma_{S.S\#=P.S\#}(SxP)) = 10.000$

3. $\sigma_{A\#="P2"}(\sigma_{S.S\#=P.S\#}(SxP))$ Card $(\sigma_{A\#="P2"}(\sigma_{S.S\#=P.S\#}(SxP)))=50$

Total operaciones E/S: 3.010.000

$$\Pi_{\text{S.nombre}} \left(\sigma_{\text{A\#="P2"}} \left(\sigma_{\text{S.S\#=P.S\#}} \left(\sigma_{\text{SXP}} \right) \right) \right) \qquad \Pi_{\text{S.nombre}} \left(\sigma_{\text{S.S\#=P.S\#}} \left(\sigma_{\text{A\#="P2"}} \left(\sigma_{\text{A\#="P2"}} \left(\sigma_{\text{A\#="P2"}} \right) \right) \right) \right)$$

1. $\sigma_{A\#="P2"}(P)$ Card($\sigma_{A\#="P2}(P)$)=50 (lectura de 10.000)

2. $Sx(\sigma_{A\#="P2"}(P))$ Card(Sx($\sigma_{A\#="P2"}(P)$) = 100x50=5000

3. $\sigma_{S.S\#=P.S\#}$ (Sx ($\sigma_{A\#="P2"}$ (P)) Card ($\sigma_{\text{S.S\#=P.S\#}}$ (Sx ($\sigma_{\text{A\#="P2"}}$ (P)))=50

Total operaciones E/S: 10.100

4.3.3 Visión general

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

4.3.3 Visión general

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

4.3.3 Visión general

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

4.3.3 Visión general

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

4.3.3 Visión general

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

4.3.3 Visión general

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

4.3.4 Optimización heurística: reglas de equivalencia

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Árbol transfromado

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.4 Transformar expresión: reglas de equivalencia

Tema 4: Optimización de Bases de datos 1. Cascada de selecciones

$$\sigma_{\text{C1} \land \text{C2}} (A) \equiv \sigma_{\text{C1}} (\sigma_{\text{C2}} (A))$$

- 2. Communtación de selecciones $\sigma_{\text{C1}}\left(\sigma_{\text{C2}}\left(\mathbb{A}\right)\right) \ \equiv \ \sigma_{\text{C2}}\left(\sigma_{\text{C1}}\left(\mathbb{A}\right)\right)$
- 3. Cascada de proyecciones $\pi_{P2}(\pi_{P1}(A)) \equiv \pi_{P2}(A)$
- 4. Equivalencia de Reunión σ_{C1} (A x B) \equiv A \otimes_{C1} B
- 5. Commutatividad (reunión) $A \otimes B = B \otimes A$
- 6. Asociatividad (reunión) (a) A \otimes (B \otimes C) \equiv (A \otimes B) \otimes C (b) A $\otimes_{\text{cl} \land \text{c3}}$ (B \otimes_{c2} C) \equiv (A \otimes_{c1} B) $\otimes_{\text{c2} \land \text{c3}}$ C donde C1 sólo implica atributos de A y B y C2 solo implica atributo de B y C

Parte III: Optimización de consultas

- 7. Propiedad distributiva (reunión) $\begin{array}{cccc} (\texttt{a}) \, \sigma_{\texttt{C1}} \, (\texttt{A} \, \otimes \, \texttt{B}) & \equiv \, \sigma_{\texttt{C1}} \, (\texttt{A}) \, \otimes \, \texttt{B} \\ (\texttt{b}) \, \sigma_{\texttt{C1} \land \texttt{C2}} \, (\texttt{A} \, \otimes \, \texttt{B}) & \equiv \, \sigma_{\texttt{C1}} \, (\texttt{A}) \, \otimes \, \sigma_{\texttt{C2}} \, (\texttt{B}) \\ \textbf{si C1 sólo implica atributos de A} \, \, \textbf{y} \, \, \texttt{C2} \\ \textbf{sólo atributos de B} \end{array}$
- 8. Propiedad distributiva (proyección) $\pi_P(A \otimes B) = (\pi_{P_A}(A)) \otimes (\pi_{P_B}(B))$ donde P_A , P_B son el conjunto d atributos involucrados en π_P y necesarios para hacer la proyección
- 9. Commutatividad (unión e intersección)
- 10. Asociatividad (unión e interesección)
- 11. Propiedad distributiva (selección, operadores conjuntos) $\sigma_{\text{C1}} (A-B) \equiv \sigma_{\text{C1}} (A) \sigma_{\text{C1}} B (B)$
- 12. Propiedad distributiva (proyección y unión)

 $\pi_{P}(A \cup B) \equiv \pi_{P}(A) \cup \pi_{P}(B)$

4.3.4 Transformar expresión: ejemplo de heurísticas

usuales Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

- Ejecutar operaciones de restricción σ tan pronto como sea posible
- 2. Ejecutar primero las restricciones σ más restrictivas (las que producen menor nº de filas)
- 3. Combinar un producto cartesiano \times con una restricción σ subsiguiente cuya condición represente una condición de reunión, convirtiéndolas en un join
- 4. Ejecutar las operaciones de proyección π tan pronto como sea posible

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.4 Transformar expresión: ejemplos

Tema 4: Optimización de Bases de datos Parte III: Optimización de consultas Consulta: Obtener los nombres de los suministradores que nos sirven el artículo P2

```
-- S: Suministadores, P: Producto \Pi_{\texttt{S.nombre}} \left( \, \sigma_{\texttt{A\#="P2"}} \, \wedge \, \texttt{s.s\#=P.s\#} \left( \, \texttt{SXP} \right) \, \right)
```

Transformación:

1. regla 7a:

$$\Pi_{\text{S.nombre}}$$
 ($\sigma_{\text{S.S\#=P.S\#}}$ ($Sx\sigma_{\text{A\#="P2"}}$ (P)))

4.3.4 Transformar expresión: ejemplos

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Consulta: Alumnos con más de un 7 en BBDD

-- A:alumno, B:alas,C:asig
$$\Pi_{\text{A.nombre}} \text{ (Onota>7 \land C.nombre='BBDD' \land A.dni=B.dni \land B.as=C.as (AxBxC))}$$

Transformación:

1. regla 7b:

$$\Pi_{A.nombre}$$
 ($\sigma_{B.as=C.as} \land A.dni=B.dni$ ($Ax\sigma_{nota>7}$ (B) $X\sigma_{C.nombre=\ BBDD'}$ (C)))

2. regla 7b:

$$\Pi_{\texttt{A.nombre}} \left(\texttt{OB.as=C.as} \left(\texttt{OA.dni=B.dni} \left(\texttt{AXOnota>7} \left(\texttt{B} \right) \right) \texttt{XOC.nombre='BBDD'} \left(\texttt{C} \right) \right) \right) \right)$$

3. regla 4 (reescritura):

$$\Pi_{A.nombre}$$
 ((A \otimes $\sigma_{nota>7}$ (B) \otimes $\sigma_{C.nombre='BBDD'}$ (C)))

4. regla 8

$$\Pi_{\text{A.nombre}}$$
 ($(\Pi_{\text{nombre,dni}}$ (A) $\otimes \sigma_{\text{nota>7}}$ (B) $\otimes \sigma_{\text{C.nombre='BBDD'}}$ ($\Pi_{\text{nombre,as}}$ (C)))

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.5 Estimación de coste

Tema 4: Optimización de Bases de datos

- El Optimizador tiene un conjunto de técnicas para realizar cada operación
- Ejemplo: técnicas para implementar la operación de selección σ :
 - Búsqueda Lineal
 - Búsqueda Binaria
 - Empleo de Índice Primario
 - Empleo de Índice Secundario
- ¿Cómo elige el Optimizador las técnicas adecuadas en cada caso?

4.3.5 Estimación de coste

Tema 4: Optimización de Bases de datos
• Variable a minimizar: tiempo total de ejecución.

- Factores que intervienen:
 - Acceso a memoria secundaria
 - 2. Almacenamiento en disco de estructuras temporales
 - 3.
 - 4. Acceso a los buffers en memoria principal
 - 5. Coste de comunicación por red
- Estos factores se de estiman atendiendo a diversos estadísticos. Por ejemplo, para una relación dada:
 - Número de tuplas, r.
 - Tamaño medio de cada tupla, R.
 - Número de bloques necesarios para almacenar la relación, b.
 - Factor de bloqueo (cuántas tuplas caben en un bloque), bfr.
 - Organización primaria de la tabla: ordenadada/desordenada, indice primario, pertenencia a un cluster, organizada por índice, particionada...
 - Nro. de valores distintos de un atributo, d.
 - Distribución media de valores de tal atributo, sl
 - Cardinalidad de selección(nro. de tuplas que tienen un valor determinado), s = sl*r
 - Altura del índice para cada atributo, x

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

Parte III: Optimización de consultas

4.3.5 Estimación de coste

Tema 4: Optimización de Bases de datos

- Variable a minimizar: tiempo total de ejecución.
- Factores que intervienen:
 - 1. Acceso a memoria secundaria
 - 2. Almacenamiento en disco de estructuras temporales
 - 3. Uso de CPU
 - 4. Acceso a los buffers en memoria principal
 - 5. Coste de comunicicación por red
- Estos factores se de estiman atendiendo a diversos estadísiticos dada:
 - Número de tuplas, r.
 - Tamaño medio de cada tupla, R.
 - Número de bloques necesarios para almacenar la relación, b.
 - Factor de bloqueo (cuántas tuplas caben en un bloque), bfr.
 - Organización primaria de la tabla: ordenadada/desordenada, indice primario, pertenencia a un cluster, organizada por índice, particionada...
 - Nro. de valores distintos de un atributo, d.
 - Distribución media de valores de tal atributo, sl
 - Cardinalidad de selección(nro. de tuplas que tienen un valor determinado), s = si*r
 - Altura del índice para cada atributo, x

¿Se podrá mantener información como esta siempre actualizada?

4.3.5 Estimación de coste

Tema 4: Optimización de Bases de datos
• Variable a minimizar: tiempo total de ejecución.

- Factores que intervienen:
 - Acceso a memoria secundaria
 - 2. Almacenamiento en disco de estructuras temporales
 - 3. Uso de CPU
 - 4. Acceso a los buffers en memoria principal
 - 5. Coste de comunicicación por red
- Estos factores se de estiman atendiendo a diversos estadísiticos. Por ejemplo, para una relación dada:
 - Número de tuplas, r.
 - Tamaño medio de cada tupla, R.
 - Número de bloques necesarios para almacenar la relaciona
 - Factor de bloqueo (cuántas tuplas caben en un bloque),
 - Organización primaria de la tabla: ordenadada/desordenadaz un cluster, organizada por índice, particionada...
 - Nro. de valores distintos de un atributo, d.
 - Distribución media de valores de tal atributo, sl
 - Cardinalidad de selección(nro. de tuplas que tienen un valor determinado), s = sl*r
 - Altura del índice para cada atributo, x

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

primano, pertenencia a

4.3.5 Estimación de coste: selección

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

Parte III: Optimización de consultas

En un atributo clave

¿qué valores tendra

en d,sl y s?

Algoritmo	Descripción	Coste (en accesos a bloques)
S1	Se cargan secuencialmente todos los bloques	b b/2, si se trata de una clave
S2	Búsqueda binaria sobre un campo ordenado	log_2 b , si se trata de una clave log_2 b + (s/bfr)-1, en otro caso
S3a	Usando un índice primario para recuperar una única tupla	x +1
S3b	Usando un índice hash para recuperar una única tupla	1 o 2, depende del tipo de hash implementando
S4	Usando un índice ordenado para recuperar varias tuplas	x +(b /2)
S5	Usando un <i>cluster</i> para recuperar varias tuplas	x+(s/bfr)
S6	Usando un índice secundario	(a) x+1+s (b) x + (b ₁₁ /2)+(r/2)

Selecciones que involucran más de un atributo:

S7: Selección conjuntiva. Se recuperan las filas por uno de los campos y se filtran iterativamente atendiendo al resto de las condiciones. El coste: la del campo por el que se recuperó

S8: Selección conjuntiva usando un índice compuesto: la misma que S3a, S5 o S6

4.3.5 Estimación de coste: Ejemplo

Tema 4: Optimización de Bases de datos • Tabla Empleado

Parte III: Optimización de consultas

- $r_E=10.000$ filas
- b_E= 2000 bloques
- bfr_E = 10000 filas/2000 bloques = 5 filas/bloque
- Diseño físico de la tabla:
 - 1. Un índice cluster en el campo salario
 - $X_{salario} = 3$ accesos
 - $S_{salario} = 20$ filas ($sl_{salario} = 0.002$)
 - 2. Un índice secundario en el atributo clave dni
 - $X_{dni} = 4$ accesos
 - $S_{dni} = 1$ (sl_{dni} , 0.0001, es un campo clave)
 - 3. Un índice secundario en un campo no clave dpto
 - $X_{dpto} = 2$ accesos
 - $d_{dpto} = 125 \text{ departamentos}$
 - $Sl_{dpto} = 1/125 = 0.008$
 - $S_{dpto} = r_E * sl_{dpto} = 80$
 - 4. Un índice secundario en el campo sexo
 - $X_{sexo} = 1$
 - $d_{sexo} = 2$
 - $S_{sexo} = r_E/d_{sexo} = 10000/2 = 5000$

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

Parte III: Optimización de consultas

4.3.5 Estimación de coste: Ejemplo

Tema 4: Optimización de Bases de datos

- Ej1: $\sigma_{\text{dni}=^{1}72123456H}$, (EMPLEADO)
 - $C_{S1}(Ej1) = b/2 = 1000$
 - $C_{S6a}(Ej1) = x_{dni} + s_{dni} = 4 + 1 = 5$
- Ej2: $\sigma_{dpto>5}$ (EMPLEADO)
 - $C_{s1}(Ej2) = b = 2000$
 - C_{S6b} (Ej2) = x_{dto} + (b_{I1} /2) + (r/2) =2+4/2+10000/2=5004
- Ej3: $\sigma_{dpto=5}$ (EMPLEADO)
 - $C_{S1}(Ej3) = b = 2000$
 - $C_{S6a}(Ej3) = x_{dpto} + s_{dpto} = 2 + 80 = 82 \checkmark$
- Ej4: $\sigma_{dpto=5 \ \land \ salario>30000 \ \land \ sexo=\ `F'}$ (EMPLEADO)

Selección conjuntiva. Calculamos el coste para cada condición

- dpto=5 \rightarrow C_{S1}(Ej4)=82
- salario>30000 →
 - $C_{S4}(Ej4) = X_{salario} + (b_E/2) = 3 + (2000/2) = 10003$
- Sexo='F' → C_{S6a} (Ej3)= x_{sexo} + s_{sexo} =1+5000=5001

4.3.5 Estimación de coste: reunión

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

• Es necesario estimar el número de tuplas resultante: especificidad de reunión (*join selectivity*):

$$js = |(R\bigotimes_{C} S)| / |RxS| = |(R\bigotimes_{C} S)| / (|R|*|S|)$$
 donde R y S son dos relaciones y C la condición del *join*

- En el peor caso js=1, coincide con un producto cartesiano
- Tamaño del join: js*|R|*|S|
- Para estimar el coste de la reunión debemos considerar:
 - El coste de lectura, que variará según los accesos físicos disponibles
 - El coste de escribir el resultado en disco:
 - $(js*|R|*|S|)/bfr_{RS}$

donde bfr_{RS} es el número de filas que caben en cada bloque

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.5 Estimación de coste: reunión natural

Tema 4: Optimización de Bases de datos

Algoritmo	Descripción	Coste (en accesos a bloques)		
J1	Fuerza bruta: bucle anidado que recorre ambas tablas, a modo de matriz bidimensional	$C_{J1}=b_R + (b_R^*b_S) + ((js^* R ^* S)/bfr_{RS})$		
J2	Si existe un índice en una de las tablas sobre los campos del <i>join</i> , se recorre secuencialmente la tabla no indexada y se usa el índice para recuperar los valores conicidentes en la tabla indexada	Indice secundario: $C_{J2a} = b_R + (R * (x_B + s_B)) + ((js^* R ^* S)/bfr_{RS});$		
J3	Si ambas tablas están físicamente ordenadas por los campos del <i>join</i> , se recorren secuencialmente y a la vez ambas tablas recuperando los valores coincidentes	$C_{J3a} = C_S + b_R + b_S + ((js^* R ^* S)/bfr_{RS})$ $C_S = Coste de ordenar ambas tablas$		

4.3.5 Estimación de coste: ejemplo

```
Tema 4: Optimización de Bases de datos \xi EMPLEADO \otimes_{dno=DNumber}DPTO ?
                                                            Parte III: Optimización de consultas
      - Dnumber clave de departamento, x<sub>Dnumber</sub>=1
      - r_D = 125 (hay 125 departamentos)
      - b_D = 13 bloques
      - bfr_{ED}=4
     J1, EMPLEADO \otimes_{\text{dno=Dnumber}} DPTO
           C_{.11} = b_E + (b_E * b_D) + ((j s * r_E * r_D) / b f r_{ED})
                = 2000 + (2000*13) + (((1/125)*10.000*125)/4) = 30.500
    J1, DPTO \otimes_{dno=Dnumber} EMPLEADO
           C_{J1} = b_D + (b_D * b_E) + ((j s * r_E * r_D) / b f r_{ED})
                = 13+(13*2000) + (((1/125)*10.000*125)/4) = 28513
   J2, EMPLEADO ⊗<sub>dno=Dnumber</sub> DPTO
           C_{J2} = b_E + (r_E * (x_{Dnumber} + 1)) + ((js*r_E*r_D)/bfr_{ED})
               = 2000 + (10000 \times 2) + (((1/125) \times 10.000 \times 125)/4) = 24500
    J2, DPTO ⊗<sub>dno=Dnumber</sub> EMPLEADO
           C_{J2} = b_D + (r_D * (x_{Dno} + S_{Dno})) + ((js*r_E*r_D)/bfr_{ED})
                = 13 + (125 * (2 + 80)) + (((1/125) * 10.000 * 125)/4) = 12763
```


Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.5 Estimación de coste: algunas anotaciones

Tema 4: Optimización de Bases de datos

- Una consulta con n reuniones tendrá n! posibles ordenes. No siempre es posible evaluarlas todas
- El valor de js en ocasiones está mal estimado
- La optimización semántica puede utilizar restricciones del dominio codificadas en la base de datos:
 - Algunas se usan: restricción de identidad, integridad referencial, etc.
 - Otras, son más propias de ontologías y bases de conocimiento:
 - Un alumno no tiene más de siete convocatorias → no buscar más convocatorias una vez encontradas siete
 - Una asignatura pertenece exclusivamente a uno de los siguiente conjuntos: obligatoria, optativa, troncal → dejar de buscar una vez localizada en uno de esos conjuntos.

4.3.6 Optimización de consultas en Oracle:

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

- Utiliza transformaciones sobre la consulta y estimación del coste
- A cada plan le asigna un coste estimado:
 - E/S, tiempo de CPU, uso de memoria
 - Hipótesis: menor coste → menor tiempo de ejecución
 - Realidad: no siempre es así
- Permite incluír consejos o directrices sobre cómo realizar el plan de ejecución
 - Priorizar la obtención de primeros resultados o la resolución completa de la consulta
 - Qué acceso a dato utilizar (secuencial índice, etc)
 - En qué orden ejecutar los joins
 - Cómo evaluar las condiciones de tales joins
 - ...

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.6 Optimización de consultas en Oracle: ejemplo (1)

Tema 4: Optimización de Bases de datos • Consulta:

Parte III: Optimización de consultas

```
SELECT DISTINCT A.NODO_ID, B.NODO_B_ID NODO_EQ1
FROM A, B, C
WHERE A.NODO_ID = B.NODO_A_ID
AND B.NODO_B_ID = C.NODO_ID;
```

SQL> @c:\oracle\ora92\rdbms\admin\utlxpls

PLAN TABLE OUTPUT

Id Operation	Name	Rows	Bytes	Cost
0 SELECT STATEMENT 1 SORT UNIQUE 2 NESTED LOOPS 3 MERGE JOIN CARTESIAN 4 TABLE ACCESS FULL 5 BUFFER SORT 6 INDEX FULL SCAN * 7 INDEX RANGE SCAN	TMPNOD PK_NOD IDX_NOD	5554 5554 5554 5985M 1327 4510K 4510K	124K 124K 124K 61G 6635 25M 25M 12	23 23 2 2 2 2

Predicate Information (identified by operation id):

7 - access("B"."NODO_B_ID"="C"."NODO_ID" AND "A"."NODO_ID"="B"."NODO_A_ID")

Tiempo de ejecución: 11 horas

4.3.6 Optimización de consultas en Oracle: ejemplo (y 2)

Tema 4: Optimización de Bases de datos • Consulta (reescrita):

Parte III: Optimización de consultas

```
SELECT DISTINCT A.NODO_ID, B.NODO_B_ID NODO_EQ1
FROM A, (select distinct nodo_a_id, nodo_b_id from B) B, C
WHERE A.NODO_ID = B.NODO_A_ID
AND B.NODO B ID = C.NODO ID;
```

PLAN TABLE OUTPUT

Id Operation	Name	Rows	Bytes	Cost
0 SELECT STATEMENT 1 NESTED LOOPS 2 NESTED LOOPS 3 VIEW 4 SORT UNIQUE 5 TABLE ACCESS FULL * 6 INDEX UNIQUE SCAN * 7 INDEX UNIQUE SCAN	 RE_03 PK_EL_3 PK_R_3	5554 5554 5554 5554 7159K 7159K 1	200K 200K 168K 177M 81M 81M 5 6	13626

Predicate Information (identified by operation id):

```
6 - access("B"."NODO_B_ID"="C"."NODO_ID")
```

7 - access("A"."NODO_ID"="B"."NODO_A_ID")

Tiempo de ejecución: 1 hora 20 segundos

Grado en Informática

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago

4.3.7 Ejercicios

Tema 4: Optimización de Bases de datos

- ¿Por qué se debe expresar la consulta SQL en términos de álgebra relacional?
- 2. Si tuvieras que implementar un join, ¿cuándo usarias J1 y cuándo J2?
- 3. ¿Qué es la optimización heurística? ¿es óptima?
- 4. ¿Por qué no es posible implementar la optimización semántica completa en las DBMS actuales? ¿qué haría falta?
- 5. Dada las siguiente consulta

```
SELECT E.Fname, E.Lname, E.Address
FROM EMPLEADO E, DEPARTMENTO D
WHERE D.Dname='Research' AND D.Dnumber=E.Dno;
```

- 1. Expresa la consulta usando álgebra relacional
- 2. Dibuja un arbol de equilencia
- 3. Transforma el árbol aplicando las heurísticas del apartado 4.3.4

4.3.7 Ejercicios

Tema 4: Optimización de Bases de datos

Parte III: Optimización de consultas

6. Usando los datos estadísticos del ejemplo de estimación de coste del apartado 4.3.5, ¿qué coste podrían tener la siguiente expresiones usando los diferentes algoritmos propuestos?

 $\sigma_{\text{salario}>30000}$ (EMPLEADO $\otimes_{\text{Dno=Dnumber}}$ DEPARTAMENTO)

Gestión y Administración de Bases de Datos

Fernando Martínez Santiago