Tema / Subtema Penelitian : Energi Baru, Terbarukan, Material Maju, Teknologi Informasi Dan Komunikasi / Material Maju

PROPOSAL PENELITIAN TAHUN ANGGARAN 2020 SKEMA PENELITIAN INOVASI DAN PERCEPATAN HILIRISASI

RANCANG BANGUN PLASMA TEGANGAN TINGGI UNTUK PENGOLAHAN LIMBAH CANGKANG KELAPA SAWIT UNTUK PRODUKSI GRAPHENE

KETUA : DR. FRI MURDIYA, S.T., M.T. NIDN. 0005028001 ANGGOTA : Prof. AMUN AMRI, Ph.D NIDN. 0031017205 EDDY HAMDANI,ST,MT NIDN. 0008096705

SUMBER DANA: DIPA LPPM UNIVERSITAS RIAU TAHUN 2020

LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT UNIVERSITAS RIAU Maret 2020

HALAMAN PENGESAHAN

1. Judul Penelitian

2. Ketua Kegiatan

(a) Nama Lengkap

(b) Jenis Kelamin

(c) NIP dan NIDN

(d) Jabatan Struktural

(e) Jabatan Fungsional

(f) Fakultas/Jurusan

(g) Alamat Kantor

(h) Telp/ Fax

(i) Alamat Rumah

(j) HP/Telp/Fax/e-mail

3. Anggota (1)

(a) Nama Lengkap

(b) Jabatan Fungsional

(c) NIDN

4. Jangka Waktu Kegiatan

5. Pembiayaan

Mengetahui,

(a) Dana diusulkan/disetujui

Sandhyavitri, M.Sc.

(b) Sumber Dana

Person Takultas Teknik,

N18.196801271995121001

: Rancang Bangun Plasma Tegangan Tinggi Untuk Pengolahan Limbah Cangkang Kelapa Sawit Untuk Produksi Graphene.

: DR. FRI MURDIYA, ST, MT.

: Laki-laki

: 198002052003121001 dan 0005028001

Sekretaris Jurusan

: Lektor

: Teknik / Teknik Elektro

Gedung C Lt.2 Fakultas Teknik Universitas

: Jl.Melati Indah Komplek Pondok Daun Residence Blok L7

: 081288816276/-/-/frimurdiya@eng.unri.ac.id

: Prof. AMUN AMRI,Ph.D

: Guru Besar

: 0031017205

: Tahun ke 1 dari rencana 1 Tahun

: Rp 70.000.000,-

: DIPA LPPM Universitas Riau Tahun 2020

Pekanbaru, 12 Maret 2020

Ketua Peneliti,

Dr. Fri Murdiya, ST, MT. NIP. 19800205200312 1 001

Menyetujui, Ketua LPPM Universitas Riau

Prof. Dr. Almasdi Syahza, SE., MP NIP. 19600822 199002 1 002

SURAT PERNYATAAN KESEDIAAN KERJASAMA DENGAN MITRA DALAM PENELITIAN INOVASI DAN PERCEPATAN HILIRISASI

Yang bertanda tangan dibawah ini :

Nama

: ALI MUHSON

Jabatan

: Direktur

Nama Perusahaan : CV. MITRA BLOK

Alamat Perusahaan : Jalan Kayu Jati Babon, Kec. Tampan Kota Pekanbaru, Riau. Kodepo

28293. HP.: 08126804124

1.1.1.1 Dengan ini menyatakan bersedia untuk bekerja sama dengan pelaksanaan kegiatan penelitian Inovasi dan Percepatan Hilirisasi :

Nama

: Dr. Fri Murdiya, ST,MT

Nama Institusi

: Program D3 Teknik Elektro Universitas Riau

Judul Penelitian

: RANCANG BANGUN PLASMA TEGANGAN TINGGI UNTUK

PENGOLAHAN LIMBAH CANGKANG KELAPA SAWIT UNTUK PRODUKSI

GRAPHENE

Untuk terlibat sebagai anggota dengan tugas dan kewajiban yang sudah pula disepakati Bersama sebelumnya.

1.1.1.2 Dengan ini menyatakan bersedia untuk membantu kegiatan selama program penelitian Inovasi dan Percepatan Hilirisasi berjalan dalam bentuk in kind yakni penyediaan sarana dan jasa pengembangan dan pengujian paving blok dengan campuran graphene hasil treatment dengan plasma tegangan tinggi.

1.1.1.3 CV. Mitra Blok berhak secara penuh atas lisensi paten dan publikasi ilmiah bersama. Bersama ini pula kami nyatakan dengan sebenarnya bahwa diantara kami dengan mitra tidak terdapat ikatan kekeluargaan dan ikatan usaha dalam wujud apapun juga.

Demikian surat pernyataan ini dibuat dengan kesadaran dan tanggung jawab tanpa ada unsur paksaan di dalam perbuatannya untuk dapat digunakan sebagaimana mestinya.

Pekanbaru, 12 Maret 2020

Pihak I Ketua Peneliti

Dr. Fri Murdiya, ST, MT

NIDN.0005028001

Pihak II

Direktur CV. Mitra Blok

RINGKASAN RENCANA PENELITIAN

Penelitian ini berlatar belakang dari pemanfaatan limbah cangkang kelapa sawit untuk

dikembang menjadi graphene yang digunakan pada bidang kimia, fisika dan medik.

Pembangkit plasma tegangan tinggi digunakan untuk produksi graphene adalah hal yang baru.

Pada umumnya, graphene diproduksi dengan metode top-down, exfoliating graphite, yang

menggunakan larutan kimia yang banyak dan disertai energi yang tinggi, pencukuran,

sonication atau proses secara elektro kimia. Dengan pembakaran karbon melalui plasma

tegangan tinggi, biayanya bisa lebih murah dan dapat diatur produksi graphene dalam satuan

gram dengan waktu dalam orde detik. Sintesisa graphene tidak memanfaatkan tungku dan tidak

menggunakan larutan atau gas kimia reaktif. Graphene dapat dimanfaatkan untuk pembuatan

komposit plastik, logam, kayu lapis, beton, dan bahan bangunan lainnya.

Tujuan umum dari penelitian ini adalah untuk ikut serta menjaga kelestarian lingkungan

dalam pengolahan limbah cangkang sawit dengan teknologi plasma tegangan tinggi menjadi

material graphene yang bermutu dan dapat dimanfaatkan pada banyak bidang. Adapun tujuan

khusus dari penelitian ini adalah untuk merancangbangun peralatan plasma tegangan tinggi

untuk produksi graphene dari limbah cangkang menjadi material yang bermutu dan digunakan

pada bahan pengisi/penguat paving blok pada CV. Mitra Blok jalan Kayu Jati Babon, Kec.

Tampan, Pekanbaru. Penelitian ini menjadikan CV. Mitra Blok sebagai mitra penelitian.

Metode penelitian yang diterapkan selama tahun 2020 adalah merancangbangun alat

plasma tegangan tinggi untuk pengolahan cangkang menjadi material graphene yang bermutu,

dan diaplikasikan sebagai bahan pengisi/penguat komposit paving blok. Selanjutnya dilakukan

pengujian dan pengukuran secara listrik dan mekanik sampai menghitung energi listrik yang

dibutuhkan untuk produksi graphene per gramnya. Target TKT pada penelitian ini adalah 6

(enam), diterimanya jurnal internasional terindeks Scopus di BEEI, buku ber-ISBN, Paten

Terdaftar, prototipe, disain/TTG dan meluluskan 2 (dua) orang mahasiswa S1 Teknik Elektro

serta konferensi nasional dengan publikasi terindeks Scopus.

Kata kunci: Plasma tegangan tinggi; cangkang sawit; graphene; pengukuran; energi;

iii

IDENTITAS ANGGOTA KEGIATAN PENELITIAN

1. Ketua Pelaksana

1	Nama Lengkap (dengan gelar)	DR. FRI MURDIYA, ST. MT
2	Jenis Kelamin	L
3	Jabatan Fungsional	Lektor
4	NIP	1980020520031210001
5	NIDN	0005028001
6	Tempat dan Tanggal Lahir	Sungai Penuh / 5 Februari 1980
7	E-mail	fri.murdiya@unri.ac.id
9	Nomor Telepon/HP	081288816276
10	Alamat Kantor	Kampus Bina Widya Km 12,5 Simpang Baru
		Pekanbaru
11	Nomor Telepon/Faks	0761 66595 / 0761 66596
12	Lulusan yang Telah Dihasilkan	S-1=0 orang
13	Mata Kuliah yg Diampu	1. Teknik Tegangan Tinggi
		2. Dasar Instalasi Listrik
		3. Gejala Medan Tinggi
		4. Keselamatan dan Kesehatan Kerja
		5. Bahan-Bahan Listrik

2. Anggota 1

1	Nama Lengkap (dengan gelar)	Prof. Amun Amri,Ph.D
2	Jenis Kelamin	L
3	Jabatan Fungsional	Guru besar
4	NIP	19720131 200003 1 001
5	NIDN	0031017205
6	Tempat dan Tanggal Lahir	Bengkulu, 31 Januari 1972
7	E-mail	amun_amri@unri.ac.id ;
		amun_amri@yahoo.com
8	Nomor Telepon/HP	0823 8176 0767
9	Alamat Kantor	Jurusan Teknik Kimia Fakultas Teknik
		Universitas Riau, Kampus Bina Widya Km 12,5 Panam Pekanbaru 28293
10	Nomor Telepon/Faks	0761-566937
11	Lulusan yang Telah Dihasilkan	S-1 = 35 orang; $S-2 = 4$ orang; $S-3 = 0$ orang
12	Mata Kuliah yg diampu	1 Metode Numerik
		2 Matematika Teknik Kimia
		3 Fenomena Perpindahan

a) Mahasiswa (1)

Nama : Parade Nadeak

Tempat/Tgl. Lahir : Sirunde/ 29 Desember 1995

NIM : 1607115565

Pekerjaan : Mahasiswa S1 Teknik Elektro UNRI

b) Mahasiswa (2)

Nama : Ericko Hardiwika Tempat/Tgl. Lahir : Minas/ 30 Mei 1996

NIM : 1507113562

Pekerjaan : Mahasiswa S1 Teknik Elektro UNRI

5. Mitra Perusahan

Nama Perusahaan : CV. Mitra Blok

Alamat : Jalan Kayu Jati Babon, Kec. Tampan, Pekanbaru

Direktur : Ali Muhson Hp : 08126804124

DAFTAR ISI

Halaman Pengesahan	i
Surat Kerjasama Mitra	ii
Ringkasan Rencana Penelitian	iii
Identitas Anggota Kegiatan Penelitian	iv
Daftar Isi	v
A. LATAR BELAKANG PENELITIAN	1
B. PERUMUSAN MASALAH	2
C. MAKSUD DAN TUJUAN PENELITIAN	2
D. LUARAN/MANFAAT PENELITIAN	3
E. TINJAUAN PUSTAKA	3
F. METODE PENELITIAN	6
G. JADWAL KEGIATAN	7
H. DAFTAR PUSTAKA	8
I. REKAPITULASI BIAYA	10
J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI	10
K. JUSTIFIKASI ANGGARAN PENELITIAN	11
I. LAMPIRAN	14

A. LATAR BELAKANG PENELITIAN

Pemanfaatan plasma tegangan tinggi untuk produksi graphene dari material karbon hasil limbah padat cangkang kelapa sawit adalah hal yang baru. Kebanyakan graphene skala besar diproduksi dengan pendekatan top-down, exfoliating graphite, yang sering membutuhkan pelarut dalam jumlah besar dengan pencampuran energi tinggi, pencukuran, sonication atau pengolahan secara elektrokimia. Meskipun oksidasi kimia dari grafit menjadi grafena oksida mendorong pengelupasan, ia membutuhkan oksidan yang keras dan meninggalkan graphene dengan struktur berlubang yang rusak setelah langkah reduksi. Sintesis bottom-up dari graphene berkualitas tinggi sering terbatas pada jumlah yang sangat kecil jika dilakukan dengan deposisi uap kimia atau metode organik sintetik canggih, atau menyediakan struktur yang cacat jika dilakukan dalam larutan curah. Di sini kami menunjukkan bahwa dengan memanaskan karbon melalui plasma tegangan tinggi dengan biaya yang murah seperti batu bara, kokas minyak bumi, biochar, karbon hitam, makanan buangan, ban karet dan limbah plastik campuran dapat mengatur jumlah graphene dalam skala gram dalam waktu kurang dari satu detik. Produk, bernama ash graphene (AG) setelah proses yang digunakan untuk memproduksinya, menunjukkan pengaturan turbostratic (yaitu, urutan kecil) antara lapisan graphene yang ditumpuk. Sintesis AG tidak menggunakan tungku dan tidak ada pelarut atau gas reaktif. Hasil tergantung pada kandungan karbon sumber; ketika menggunakan sumber karbon tinggi, seperti karbon hitam, batubara antrasit atau kokas terkalsinasi, hasil dapat berkisar dari 80 hingga 90 persen dengan kemurnian karbon lebih besar dari 99 persen. Tidak diperlukan langkah pemurnian dan biaya energi listrik untuk sintesis AG yang rendah dapat membuat AG cocok untuk digunakan dalam komposit massal plastik, logam, kayu lapis, beton, dan bahan bangunan lainnya.

Plasma tegangan tinggi yang diusulkan diberikan pada gambar 1 berikut ini. Plasma tegangan tinggi ini memanfaatkan energi discharge dari kapasitor dengan kapasitas besar terdiri dari 20 kapasistor 22.000uF dengan tegangan 400 Vdc. Plasma yang dihasilkan dihubungkan ke elektroda-elektroda dengan pembatas elektroda tersebut adalah material pembentuk graphene seperti karbon dari cangkang kelapa sawit. Tegangan pelepasan kapasitor berupa pulsa yang dikendalikan oleh saklar daya besar dengan bantuan Arduino UNO untuk mengatur waktu pelepasan dalam orde mili detik.

Gambar 1. Rangkaian pengolahan Graphene

B. PERUMUSAN MASALAH

Permasalahan dalam penelitian dengan konsep diatas adalah teknologi plasma tegangan tinggi dalam produksi graphene dari limbah padat hasil pembakaran adalah hal yang baru. Plasma tegangan tinggi ini dirancang dengan memanfaatkan energi kapasitor yang besar. Untuk itu perlu dilakukan perhitungan energi dengan graphene yang dihasilkan agar alat ini menjadi murah dalam produksinya dan ramah lingkungan.

C. MAKSUD DAN TUJUAN PENELITIAN

Maksud dan tujuan umum dari penelitian ini adalah untuk menjaga kelestarian lingkungan dengan mendaur ulang limbah padat menjadi material graphene dengan bantuan plasma tegangan tinggi yang ramah lingkungan. Tujuan khusus dari penelitian ini adalah membuat alat plasma tegangan tinggi dan chamber pengolahan graphene. Urgensi penelitian

ini adalah menghasilkan alat pembangkit plasma tegangan tinggi yang dapat digunakan sebagai pemicu terbentuknya graphene yang bermutu tinggi dari limbah pabrik kelapa sawit (PKS) dengan disain yang lebih kokoh, handal, kecil dan murah dan dapat mengurangi ketergantungan kita terhadap barang impor. Spesifikasi khusus dari penelitian ini adalah sebagai penyokong transformasi material sampah/ limbah padat perkotaan menjadi material graphene yang bermutu tinggi yang dapat digunakan sebagai material pengisi/penguat paving blok. Teknologi ini merupakan hal yang baru dalam produksi graphene.

D. LUARAN/ MANFAAT PENELITIAN

Penelitian ini akan dihasilkan jurnal internasional terindeks Scopus BEEI, bahan ajar, prototipe dan meluluskan 2 (dua) orang mahasiswa S1 Teknik Elektro serta konferensi nasional dengan publikasi terindeks Scopus. Adapun manfaat penelitian ini adalah dalam produksi graphene, graphene tersebut dapat menjadi penguat paving blok pada CV. Mitra Blok, Jalan Kayu Jati Babon, Kec. Tampan Pekanbaru. Secara umum alat ini merupakan alat penunjang kelestarian lingkungan hidup. Adapun luaran yang dijanjikan dapat dilihat pada tabel 1.

Tabel 1. Luaran yang dijanjikan

No.	Jenis	Unit	Keterangan
1.	Artikel Ilmiah Terindeks Scopus	1	Eksamplar
2.	Paten dan HAKI	1	Eksamplar
3.	Prosiding terindeks Scopus	1	Eksamplar
4.	Prototipe	1	Eksamplar
5.	Teknologi Tepat Guna/ Model	1	Eksamplar
6.	Executif Summary	1	Eksamplar
7.	Laporan Akhir	2	Eksamplar
8.	Pembimbing Skripsi/Tugas Akhir	1	Eksamplar
9	Buku Ber ISBN	1	Eksamplar

E. TINJAUAN PUSTAKA

Penelitian ini adalah penelitian multi tahun yang dimulai pada tahun 2017 sampai 2021 dengan peta jalan penelitian seperti pada gambar 2 berikut ini. Penelitian ini berturut-turut dimulai dengan hibah penelitian produk terapan, usulan penelitian dasar dan usulan penelitian pengembangan serta menuju produk yang siap dipasarkan setelah pengujian-pengujian telah dilakukan.

Gambar 2. Peta jalan (roadmap) penelitian teknologi plasma tegangan tinggi

Tahap awal penelitian ini dimulai dari disain pembangkit tegangan tinggi untuk aplikasi plasma tegangan tinggi dengan merancang konverter flyback dan inverter H-bridge dengan disain dielektrik menggunakan kaca jendela dan keramik lantai yang dipengaruhi oleh medan magnet permanen yang berada dibawah elektroda katoda. Medan magnet dan plasma yang terjadi dirancang parallel. Plasma yang dihasilkan merupakan peluahan muatan listrik di permukaan dielektrik atau dikenal dengan surface barrier discharge generator [1,2,3,4]. Pada tahun 2020 sampai 2022 penelitian dilakukan untuk memproduksi graphene dari skala laboratorium sampai skala besar dari berbagai limbah yang memiliki karakteristik yang berbeda-beda. Tahun 2023, peneliti meneliti surface treatment pada material transparan yang tidak mengembun seperti kaca dan kaca film mobil dengan plasma tegangan tinggi. Tahun 2024, akan dilakukan penelitian plasma tegangan tinggi untuk pensterilan air minum sebagai pengganti bahan kimia yang umum dipakai pada pensterilan air minum. Tahun 2025 pemanfaatan plasma tegangan tinggi untuk dispersi carbon nanotube yang digunakan sebagai pengisi/ penguat pada material padat. Teknik pengukuran arus, tegangan dan daya peluahan muatan telah diperagakan oleh Murdiya dalam meneliti plasma di dalam minyak kelapa sawit. Penelitian ini menggunakan sumber catu daya tegangan sinusoidal pada frekuensi rendah 60 Hz. Untuk melakukan pengukuran daya peluahan muatan, peneliti ini menggunakan rangkaian sawyer-tower yang menjadi rujukan peneliti-peneliti untuk menganalisa muatan listrik dengan menggunakan diagram Lissajous [5].

Pelepasan listrik bertegangan tinggi dari bank kapasitor membawa sumber karbon ke suhu lebih tinggi dari 3.000 K dalam waktu kurang dari 100 ms, secara efektif mengubah karbon amorf menjadi graphene turbostratic. Dalam analisis mikroskop elektron transmisi (HR-TEM) resolusi tinggi, lapisan-lapisan graphene yang salah menunjukkan pola Moiré yang diharapkan, sedangkan graphene yang berasal dari ampas kopi bekas juga menunjukkan graphene lapisan tunggal heksagonal. Graphene berkualitas tinggi dapat dengan cepat diidentifikasi oleh Raman speccroscopy [6,7,8,9]. Graphene dari carbon black memiliki puncak 2D yang intens. Nilai tertinggi yang dilaporkan sejauh ini untuk segala bentuk graphene, dan mungkin merupakan hasil dari suhu ekstrem yang dicapai dalam proses flash, yang melampaui elemen non-karbon dari sistem [10,11].

Jarak lebih besar dari penelitian terdahulu dalam grafit khas Bernal (AB-stacked), 3,37 Å, menunjukkan struktur graphene yang diperluas dan turbostratic. Puncak (002) ditemukan tidak simetris, dengan ekor pada sudut kecil, yang selanjutnya menunjukkan sifat turbostratic dari graphene [12]. Proses flash cukup cepat untuk mencegah penumpukan AB. Graphene memiliki luas permukaan $\sim 295~\text{m}^2~\text{g}^{-1}$ dengan ukuran pori < 9 nm, yang diukur dengan analisis Brunauer-Emmett- Teller. Calcined petroleum coke (CPC) juga bekerja dengan baik untuk konversi ke graphene yang memiliki struktur nano yang mirip dengan graphene berbahan dasar karbon [13]. Karbon grafisasi menghasilkan lembaran graphene yang lebih besar. Analisis XRD dari karbon graphene menunjukkan, selain puncak dominan (002) pada 26.0 °, puncak tajam (100) pada 20 = 42.5 °, yang berhubungan dengan jarak interatomik dalam chamber. Lebar penuh sempit pada setengah maksimal dari puncak (100) menunjukkan ukuran lembaran dalam bidang yang lebih besar relatif terhadap graphene yang terbentuk dari beberapa bahan awal lainnya. HR-TEM mengungkapkan lembaran graphene terlipat dalam ukuran rata-rata 0,5 µm dan 1,2 µm, mirip dengan ukuran lembaran graphene yang diperoleh dengan pengelupasan grafit [14,15,16].

Karbon lain yang berlimpah, dapat diperbarui atau bersumber dari limbah dapat digunakan, seperti arang, biochar, asam humat, keratin (rambut manusia), lignin, sukrosa, pati, kulit pinus, jelaga minyak zaitun, kubis, kelapa, cangkang pistachio, kulit kentang, ban karet dan plastik campuran, termasuk polietilen tereftalat (PET atau PETE), polietilen densitas tinggi atau rendah, polietilen klorida, polipropilen dan poliakrilonitril. Ketika mengubah polimer sintetik menjadi graphene, atom-atom non-karbon disublimasikan sebagai molekul-molekul kecil, yang mengarah ke produk dengan kandungan karbon sangat tinggi, seperti yang ditunjukkan di sini. Namun, polimer dan depolimerisasi karet juga dapat terjadi untuk menghasilkan oligomer yang sublim sebelum konversi; oleh karena itu, lebih ekonomis untuk menggunakan produk pirolisis di mana volatil pertama kali dihilangkan secara industri untuk sumber bahan bakar [17] dan sisa karbon diubah menjadi graphene. Ini ditunjukkan di sini dengan karbon hitam yang berasal dari ban karet. Tidak satu pun dari proses graphene ini yang dioptimalkan. Optimalisasi dilakukan hanya pada graphene dari black carbon, seperti dijelaskan di bawah ini. Proses Flash Joule Heating dapat memberikan rute yang mudah untuk mengubah produk limbah ini menjadi graphene, sebagai aditif komposit bangunan-bernilai tinggi potensial [18–21]. Dengan meningkatkan kompresi pada sampel antara dua elektroda, konduktivitas sumber karbon meningkat, sehingga mengurangi waktu pengosongan. Sambil mempertahankan suhu flash di antara percobaan berjalan di ~ 3.100 K, durasi flash singkat 10 ms menghasilkan pita 2D yang lebih tinggi, sedangkan flash 50–150 ms menghasilkan produk pita 2D lebih rendah. Ini menunjukkan bahwa, mengingat lebih banyak waktu, graphene flakes menumpuk, mengarahkan dan membentuk lebih banyak lapisan, menurunkan pita 2D dari graphene yang dihasilkan. Laju pendinginan yang rendah meningkatkan durasi blitz dan mengurangi pita 2D [22].

Studi sebelumnya telah menunjukkan bahwa graphene dapat disintesis tanpa katalis pada suhu yang sangat tinggi. Namun, ketika graphene dioptimalkan seperti yang ditunjukkan di sini, ia dapat memiliki kualitas yang sangat tinggi ketika waktu dan suhu reaksi dikontrol. Selanjutnya, arus listrik dapat memfasilitasi kristalisasi graphene. Degassing hidrogen, nitrogen, dan oksigen selama proses Flash Joule Heating dapat berkontribusi pada

pembentukan lembaran graphene yang besar dan tipis dalam graphene yang diturunkan dari kopi karena dapat mencegah penumpukan lapisan graphene, sehingga memungkinkan pertumbuhan lebih lanjut [23,24,25,26].

F. METODE PENELITIAN

Diagram alir penelitian diberikan pada gambar 3 diatas yang merupakan penelitian mono tahun di mulai pada tahun 2020.

Gambar 3. diagram alir *fishbone* plasma tegangan tinggi untuk pengolahan karbon menjadi graphene

Pada tahun 2020 ini penulis mengusulkan penelitian untuk meneliti rangkaian elektronik tegangan tinggi yang layak dan kokoh setelah dilakukan simulasi dan pemilihan komponen elektronikanya. Tahap pengujian ketahanan berlanjut pada tahun ini. Pembuatan chamber tempat reaksi senyawa karbon juga didisain. Pembangkit plasma tegangan tinggi digunakan untuk memenaskan material karbon di chamber yang akan menghasilkan graphene berkualitas tinggi. Graphene ini diuji dengan SEM dan Ramanspectrometry untuk melihat ukuran dan susunannya. Disain rangkaian yang diusulkan adalah pada gambar 4 dan 5 berikut ini. Dalam rangkaian elektronik ini digunakan 20 buah kapasitor elektrolit (C) 22.000 uF dengan tegangan 400 Vdc. Kapasitor-kapasitor tersebut terhubung parallel dan dicatu oleh power suplly dc 400 V. Setelah kapasitor-kapasitor terisi penuh, power supply dc 400 V dilepas. Dengan saklar daya tinggi dihubungkan dan waktu pensaklarannya diatur dengan Ardiuno UNO dalam orde milidetik. Pulsa tegangan kapasitor akan melewati elektroda-elektroda yang dibatasi material karbon dengan tegangan tinggi dan arus tinggi. Agar loncatan arus tidak terlalu tinggi maka rangkaian dilengkapi dengan sebuah induktor dan sebuah dioda freewheeling. Pulsa arus dan tegangan tinggi inilah yang dapat merubah komposisi material karbon dan terurai menjadi graphene yang berkualitas tinggi.

C: Kapasitor elektrolit 22.000 uF dan 400 Vdc

Gambar 4. Rangkaian pengolahan Graphene

Gambar 5. Chamber pengolahan karbon menjadi Graphene.

G. JADWAL KEGIATAN

Jadwal kegiatan penelitian selama tahun 2020 dapat dilihat pada tabel 2.

Tabel 2. Jadwal Kegiatan

No	Ianic Kagiatan					Tal	nun	202	20				
INO	Jenis Kegiatan		2	3	4	5	6	7	8	9	10	11	12
1	Studi literature												
2	Pembuatan catu daya												
	tegangan tinggi												
3	Pembuatan elektroda dan												
	chamber												
	Pengujian alat graphene												
4	production												
	Pengukuran arus,tegangan,												
	daya dan												
	Ramanspectroscopy,SEM												
	serta pengujian komposit												
5	paving blok graphene.												
	Penulisan makalah												
	seminar nasional terindeks												
6	Scopus dan proses submit												
	Penulisan Jurnal terindeks												
7	Scopus dan proses submit												
8	Penulisan laporan akhir												
9	Seminar hasil												

H. DAFTAR PUSTAKA

- [1] Fri Murdiya, Febrizal Febrizal, Amun Amri," The performance of surface barrier discharge in magnetic field driven by half bridge series resonance converter", <u>Journal of Mechatronics, Electrical Power, and Vehicular Technology</u>, Vol.8, No.2, pp.95-102, Dec. 2017.
- [2] Fri Murdiya, Febrizal, "The performance surface barrier discharge in magnetic field driven by series resonance converter", 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI), Langkawi Malaysia,25-27 Nov. 2017
- [3] F. Murdiya, B. Anto, E. Hamdani, Suwitno, E. Evrianto and A. Amri, "Barrier Discharge In Magnetic Field: The Effect Of Magnet Position Induced Discharge In The Gap," *2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI)*, Batam, Indonesia, 2018, pp. 175-178. doi: 10.1109/ICon-EEI.2018.8784138
- [4] F. Murdiya, A. Hamzah and D. Andrio, "The Application of Non-Sinusoidal Resonance Inverter on An Ozone Generator," *2019 IEEE Conference on Energy Conversion (CENCON)*, Yogyakarta, Indonesia, 2019, pp. 142-146. doi: 10.1109/CENCON47160.2019.8974757

- [5] F. Murdiya, R. Hanaoka, H. Akiyama, K. Miyagi, K. Takamoto and T. Kano, "Creeping discharge developing on vegetable-based oil / pressboard interface under AC voltage," in *IEEE Transactions on Dielectrics and Electrical Insulation*, vol. 21, no. 5, pp. 2102-2110, Oct. 2014. doi: 10.1109/TDEI.2014.004569
- [6] Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. *Phys. Rev. Lett.* **97**, 187401 (2006).
- [7] Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. *Solid State Commun.* **143**, 47–57 (2007).
- [8] Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. *Phys. Rep.* **473**, 51–87 (2009).
- [9] Ni, Z. H. et al. Probing charged impurities in suspended graphene using Raman spectroscopy. *ACS Nano* **3**, 569–574 (2009).
- [10] Garlow, J. A. et al. Large-area growth of turbostratic graphene on Ni (111) via physical vapor deposition. *Sci. Rep.* **6**, 19804 (2016).
- [11] Niilisk, A. et al. Raman characterization of stacking in multi-layer graphene grown on Ni. *Carbon* **98**, 658–665 (2016).
- [12] Li, Z. Q. et al. X-ray diffraction patterns of graphite and turbostratic carbon. *Carbon* **45**, 1686–1695 (2007).
- [13] Franklin, R. E. Crystallite growth in graphitizing and non-graphitizing carbons. *Proc. R. Soc. Lond.* **209**, 196–218 (1951).
- [14] Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. *Nat. Nanotechnol.* **3**, 563–568 (2008).
- [15] Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. *Carbon* **45**, 1558–1565 (2007).
- [16] Cai, M., Thorpe, D., Adamson, D. H. & Schniepp, H. C. Methods of graphite exfoliation. *J. Mater. Chem.* **22**, 24992–25002 (2012).
- [17] Miandad, R. et al. Catalytic pyrolysis of plastic waste: moving toward pyrolysis based biorefineries. *Front. Energy Res.* 7, 27 (2019).
- [18] Gibb, B. C. Plastics are forever. Nat. Chem. 11, 394-395 (2019).
- [19] Parfitt, J., Barthel, M. & Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. *Philos. Trans. R. Soc. B* **365**, 3065–3081 (2010).
- [20] Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. *Global Food Losses and Food Waste: Extent, Causes and Prevention* (FAO, 2011); http://www.fao.org/3/a-i2697e.pdf.
- [21] Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. *Science* **347**, 768–771 (2015).
- [22] Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. *Science* ,**359**, 1489–1494 (2018).

- [23] Chakrabarti, A. et al. Conversion of carbon dioxide to few-layer graphene. *J. Mater. Chem.***21**, 9491–9493 (2011).
- [24] Lin, J. et al. Laser-induced porous graphene films from commercial polymers. *Nat. Commun.* **5**, 5714 (2014).
- [25] Nepal, A., Singh, G. P., Flanders, B. N. & Sorensen, C. M. One-step synthesis of graphene
- [26] via catalyst-free gas-phase hydrocarbon detonation. *Nanotechnology* **24**, 245602 (2013).
- [27] Huang, J. Y. et al. Real-time observation of tubule formation from amorphous carbon nanowires under high-bias Joule heating. *Nano Lett.* **6**, 1699–1705 (2006). 28. Harris, P. J. F. Engineering carbon materials with electricity. *Carbon* **122**, 504–513 (2017).

I. REKAPITULASI BIAYA

Jumlah dana yang diperlukan dalam penelitian ini adalah Rp. 70.000.000,- (tujuh puluh juta rupiah) seperti pada tabel 3 berikut.

Tabel 3. Rekapitulasi biaya penelitian

No	Jenis Pengeluaran	Biaya yang Diusulkan
		(Rp)
		Tahun 2020
1	Upah	-
2	Bahan habis pakai dan peralatan	42,000,000
3	Perjalanan	8.000,000
4	Lain-lain: publikasi, seminar, laporan	20,000,000
	Jumlah	70,000,000

J. SUSUNAN ORGANISASI DAN PEMBAGIAN TUGAS TIM PENELITI

Adapun susunan organisasi dan pembagian tugas tim peneliti diberikan pada tabel 4 berikut.

Tabel 4. Susunan organisasi dan pembagian tugas tim peneliti

No.	Nama / NIDN	Instansi	Bidang	Alokasi	Uraian Tugas
		Asal	Ilmu	Waktu	
				(jam/minggu)	
1	Dr. Fri Murdiya,	Jurusan	Teknik	8	Secara umum
	ST.,MT./	Teknik	Elektro		bertanggung jawab
	0005028001	Elektro			terhadap koordinasi

		Universitas			pelaksanaan
		Riau			penelitian secara
					keseluruhan. Secara
					khusus bertugas
					mendisain,
					membuat, dan
					menganalisis
					pembangkit plasma
					tegangan tinggi
					untuk produksi
					graphene. Membuat
					artikel ilmiah,
					bahan ajar,
					prototipe dan
					laporan akhir, paten
					dan buku ISBN
2	Prof. AMUN	Jurusan	Teknik	6	Bertugas
	AMRI,Ph.D/	Teknik	Kimia		menganalisa hasil
	0031017205	Kimia			sampel graphene.
		Universitas			Pengujian komposit
		Riau			paving blok dengan
					graphene.
					Membantu ketua
					menyelesaikan
					artikel ilmiah,
					prototipe, bahan
					ajar dan laporan
					akhir dan Paten
					serta Buku ISBN
3	Eddy	Jurusan	Teknik	6	Melakukan
	Hamdani,ST,MT/	Teknik	Elektro		pengujian dan
	0008096705	Elektro			pengukuran alat dan
		Universitas			produksi graphene.
		Riau			

K. JUSTIFIKASI ANGGARAN PENELITIAN

1. Gaji dan upah

Uraian	Jam Kerja	Jumlah Minggu	Harga Sat.	Jumlah
				0
				0
St	0			

2. Peralatan penunjang

Material	Justifikasi Pemakaian	Kuantitas	Sat.	Harga Satuan (Rp)	Harga Peralatan Penunjang (Rp)
					Tahun 2020
			Bulan		0
			Bulan		0
			Bulan		0
			Bulan		0
			Bulan		0
		•			
SUB TOTAL (Rp)					0

3. Bahan Habis Pakai

Material	Justifikasi Pemakaian	Kuantitas	Sat.	Harga Satuan (Rp)	Biaya per Tahun (Rp) Tahun 2020
Capacitor: 10x of 450 V, 22.000uF aluminum electrolytic capacitors (Mouser #80- PEH200YX460BQU2). This capacitor bank is for FG synthesis with batch sizes ≤0.5 g	Komponen elektronika	20	buah	1,500,000	30,000,000
Mechanical relay: 900 V, 500 A (TE Connectivity LEV200A5ANA)	Komponen elektronika	1	buah	350,000	350,000
Power supply: LED Power Supplies 299.6W 214-428V 700mA (Mouser # 709-HLG320H-C700B). Current knob is a 10 kΩ potentiometer	Komponen elektronika	1	set	4,850,000	4,850,000
Vcap is measured by a multimeter Fluke 189	Komponen elektronika	1	buah	1,500,000	1,500,000
Discharging and charging switch breaker: 400 V, 6A (ABB S 282 K 6A)	Komponen elektronika	1	buah	50,000	50,000

Kill switch			buah		1,100,000
breaker: 440 V, 63 A		1		1,100,000	
(AAB S283 UC Z 63A)	Komponen elektronika				
Controller:			buah		450,000
Arduino Uno with	Komponen	1		450,000	
LCD display	elektronika		1 1		1 200 000
Inductor: 24 mH (Mouser #553-C-80U)	Komponen elektronika	1	buah	1,200,000	1,200,000
Diode: 1200			buah		2,500,000
V, 560 A (Mouser #747-MDO500-12N1)	Komponen elektronika	5		500,000	
	42,000,000				

4. Perjalanan

Material	Justifikasi Perjalanan	Kuantitas	Sat	Harga Satuan (Rp)	Biaya per Tahun (Rp) Tahun 2020
Transportasi lokal	Pengambilan	4	Hari	750,000	3,000,000
	sampel				
	limbah				
Tiket Pesawat	Seminar	1	pp	4,000,000	4,000,000
Hotel	seminar	2	malam	500,000	1,000,000
					0
					0
	8,000,000				

5. Biaya Non Operasional

Kegiatan	Justifikasi	Kuantitas	Sat.	Harga Satuan	Biaya per Tahun (Rp)
		Ruaminas		(Rp)	Tahun 2020
Seminar Internasional	biaya pendaftaran seminar	1	ls	3,000,000	3,000,000
Biaya submit jurnal terindeks scopus	Biaya submit	1	1s	4,000,000	4,000,000
Proof reading paper	Uji kelayakan paper	2	ls	1,500,000	3,000,000
Pendaftaran Paten	Paten	1	1s	5,000,000	5,000,000
Biaya SEM	analiasa	1	1s	5,000,000	5,000,000
	SUB TOTAL	L (Rp)			20,000,000
TOTAL ANGGARAN YANG DIPERLUKAN SELURUH TAHUN (Rp)					70,000,000

L. LAMPIRAN

1. Ketua Peneliti

1	Nama Lengkap (dengan gelar)	DR. FRI MURDIYA, ST. MT	
2	Jenis Kelamin	L	
3	Jabatan Fungsional	Lektor	
4	NIP	1980020520031210001	
5	NIDN	0005028001	
6	Tempat dan Tanggal Lahir	Sungai Penuh / 5 Februari 1980	
7	E-mail	frimurdiya@gmail.com	
9	Nomor Telepon/HP	081288816276	
10	Alamat Kantor	Kampus Bina Widya Km 12,5 Simpang Baru	
		Pekanbaru	
11	Nomor Telepon/Faks	0761 66595 / 0761 66596	
12	Lulusan yang Telah Dihasilkan	S-1 = 10 orang D3 : 5 orang	
13	Mata Kuliah yg Diampu	1. Teknik Tegangan Tinggi	
		2. Dasar Instalasi Listrik	
		3. Gejala Medan Tinggi	
		4. Kalkulus 2	
		5. Bahan-Bahan Listrik	

	S-1	S-2	S-3
Nama Perguruan Tinggi	Universitas	Institut Teknologi	Kanazawa Institute
	Sumatera Utara	Bandung	of Technology
Bidang Ilmu	Teknik Elektro	Teknik Elektro	Teknik Elektro
Tahun Masuk-Lulus	1998-2003	2006-2008	2012-2005
JudulSkripsi/Thesis	Pengaturan motor	Studi sistem	Research on
	induksi satu fasa	proteksi petir pada	creeping discharge
	dengan	saluran udara	phenomena in
	menggunakan	tegangan ekstra	insulating oils:
	Thyristor	tinggi 275 kv di	vegetable-based
	konfigurasi dioda	daerah tropis	oils as substitute of
	jembatan		mineral oil
Nama	Ir. Mustafrind	Dr. Ir. Reynaldo	Prof. Dr.Eng.
Pembimbing/Promotor	Lubis	Zoro	Ryoichi Hanaoka

Pengalaman Penelitian Dalam 5 Tahun Terakhir

No.	Tahun	Tahun Judul Penelitian		Pendanaan		
110.	Tanun	Judui i chentian	Sumber	Jml (Juta Rp)		
1	2017-2018	Pembangkit plasma tegangan tinggi	DRPM DIKTI	115		
2	2016	Cangkang Kelapa Sawit sebagai	DIPA LPPM	35		
		Isolator Tegangan Tinggi	UNRI			
3	2012-2015	Disolved Gas Analysis in The	MEXT JAPAN	-		
		Vegetable Oil	WILAT JAPAN			

4	2012-2013	Properties of Creeping Streamer		-
		Progressed Dielectric Barrier with	MEXT JAPAN	
		Narrow Gap in PFAE Oil		
5	2013-2015	Creeping Discharge Developing on	MEXT JAPAN	-
		Vegetable-Based Oil / Pressboard		
		Interface under AC Voltage		
6	2012-2014	Negative Creeping Discharge along	MEXT JAPAN	-
		Aerial Insulated Wire under Wet		
		Condition		

Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No.	Tahun	Judul Pengabdian Kepada Masyarakat	Penda	naan
NO.	Tanun	Judui Feligabutan Kepada Wasyarakat	Sumber*	Jml (Juta Rp)
1	2018	Pompa air tenaga surya untuk	DIPA LPPM	10
		menunjang persedian air di panti	UNRI	
		asuhan Putri Tujuh Ujung Batu		
2	2017	PLTS untuk lampu jalan di Pasantren	DIPA LPPM	10
		Indragiri Hilir	UNRI	
3	2012	Pelatihan perakitan PLC berbasis	Jurusan Teknik	2,5
		Mikrokontroler di SMK	Elektro	
		Muhammadiyah Pekanbaru	Universitas	
			Riau	
4	2012	Aplikasi lampu LED untuk penerangan	Dana DPP/SPP	3
			Universitas	
			Riau. Lembaga	
			Penelitian	
			Universitas	
			Riau.	

Publikasi Artikel Ilmiah Dalam Jurnal alam 5 Tahun Terakhir

No	Judul Artikel Ilmiah	Volume /Nomor/Tahun	Nama Jurnal
1		Vol.8, No.2,	Journal of
	The performance of surface barrier discharge in	pp.95-102,	Mechatronics,
	magnetic field driven by half bridge series	Dec. 2017	Electrical Power,
	resonance converter		and Vehicular
			<u>Technology</u>
2	Creeping Discharge Developing on Vegetable-	Vol.21, No. 5 /	IEEE Trans.
	Based Oil / Pressboard Interface under AC	2014	Dielectr. Electr.
	Voltage		Insul.
3	Negative Creeping Discharge along Aerial	Vol.134, No. 5	IEEJ Transactions
	Insulated Wire under Wet Condition	/ 2014	on Power and
			Energy

4	Properties of Creeping Streamer Progressed	Vol.7,pp.1257-	Journal of Energy
	Dielectric Barrier with Narrow Gap in PFAE Oil	1264/ 2013.	and Power
			Engineering

F. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

No ·	Nama Pertemuan Ilmiah/Seminar	Judul Artikel Ilmiah	Waktu dan Tempat
1	Icon EEI 2018	DBD induced magnetic Field	2018/ Batam Indonesia
2	ICEEI 2017	The performance surface barrier discharge in magnetic field driven by series resonance converter	2017/ Langkawi Malaysia
3	International on Symposium High Voltage	Creeping discharge over pressboard in the vegetable oil	2013/ Seoul Korea Selatan
4	Seminar on Japan Petroleum	Disolved gas analysis in the vegetable oil by arc discharge	2013 / Kyoto Japan

G. Karya Buku dalam 5 Tahun Terakhir

No	Judul Buku	Tahun	Jumlah Halaman	Penerbit
1				
2				

H. Perolehan HKI dalam 5-10 Tahun Terakhir

No.	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID
1				
2				

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No.	Judul/Tema/Jenis Rekayasa Sosial Lainnya	Tahun	Tempat	Respon
	yang Telah Diterapkan	Tanun	Penerapan	Masyarakat
1				
2				

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **Penelitian Inovasi dan Percepatan Hilirisasi DIPA Universitas Riau.**

Pekanbaru, 13 Maret 2020 Peneliti

(<u>Dr. Fri Murdiya, ST. MT</u>) NIP. 198002052003121001

Biodata Anggota 1

A. Identitas Diri

Nama Lengkap	Prof. Amun Amri, ST, MT, PhD
Jenis Kelamin	L
Jabatan Fungsional	Guru Besar
NIP	19720131 200003 1 001
NIDN	0031017205
Tempat dan Tanggal Lahir	Bengkulu, 31 Januari 1972
E-mail	amun_amri@unri.ac.id; amun_amri@yahoo.com
Nomor Telepon/HP	0823 8176 0767
Alamat Kantor	Jurusan Teknik Kimia Fakultas Teknik
	Universitas Riau, Kampus Bina Widya Km 12,5
	Panam Pekanbaru 28293
Nomor Telepon/Faks	0761-566937
Lulusan yang Telah Dihasilkan	S-1 = 25 orang; $S-2 = orang$; $S-3 = orang$
Mata Kuliah yg diampu	1 Metode Numerik
	2 Matematika Teknik Kimia
	3 Fenomena Perpindahan
	4 Thermodinamika Teknik
	5 Instrumentasi Proses
	Jenis Kelamin Jabatan Fungsional NIP NIDN Tempat dan Tanggal Lahir E-mail Nomor Telepon/HP Alamat Kantor Nomor Telepon/Faks Lulusan yang Telah Dihasilkan

B. Riwayat Pendidikan

	S-1	S-2	S-3
Nama	Universitas Gadjah	Universitas	Murdoch University
Perguruan Tinggi	Mada	Gadjah Mada	-
Bidang Ilmu	Teknik Nuklir	Teknik Kimia	Chemical and Material Engineering

Tahun Masuk-	1991-1996	1999-2002	2010-2013
Lulus			
Judul	Pemanfaatan	Rekayasa Zeolit	Structural, Optical and
Skripsi/Tesis	Logam Perak Kota	Alam dengan	Mechanical Characterizations
/Disertasi	Gede Sebagai	impregnasi 2-	of Nanostructured Copper
	Alternatif Bahan	mercaptobenzotia	Cobalt Oxide Coatings
	Emiter untuk	zol untuk	Synthesized via Sol-gel
	Detektor Netron	Adsorpsi Cd dan	Method for Solar Selective
	Swadaya	Cr	Absorber
Nama	Ir. Agus Baskoro	Dr. Supranto,	Dr. Zhong Tao Jiang
Pembimbing/		Msc, PhD	_
Promotor			

C. Pengalaman Penelitian dalam 5 tahun terakhir

No	Tahun	Judul Penelitian	Pendana	an
			Sumber	Rp
				(Juta)
1.	2016	Synthesis of Copper-cobalt-titanium Based	Hibah	160
		Thin Film Coating on Aluminum Substrate	Kerjasama Luar	
		via Reproducible Sol-gel Process	Negeri (KLN) –	
		for Durable Solar Selective Absorber	Tahun II	
2.	2015	Modifikasi Struktur Film Tipis Tembaga	SINAS	250
		Kobal Oksida Terintegrasi Antirefleksi	Kemenristek	
		Silika Melalui Deposisi Pemintalan Elektrik		
		pada Substrat Aluminium sebagai Solar		
		Selektif Absorber		
3.	2015	Synthesis of Copper-cobalt-titanium Based	Hibah	160
		Thin Film Coating on Aluminum Substrate	Kerjasama Luar	
		via Reproducible Sol-gel Process	Negeri (KLN)	
		for Durable Solar Selective Absorber		
4.	2015	Sintesis Film Tipis Tembaga Oksida	Hibah Bersaing	65
		Terintegrasi Antirefleksi Silika di Atas	_	
		Substrat Aluminium dengan Metode Sol-gel		
		sebagai Solar Selektif Absorber		
5.	2010-	Structural, Optical and Mechanical	Beasiswa LN	-
	2013	Characterisations of Nanostructured Copper	Dikti	
		Cobalt Oxide Coatings Synthesised via Sol-	(riset S3)	
		gel Method for Solar Selective Absorber		

D. Pengalaman Pengabdian Kepada Masyarakat dalam 5 Tahun Terakhir

No.	Tahun	Judul Pengabdian pada Masyarakat	Pendanaan	
			Sumber	Jumlah
1.	2015	Pelatihan Pembuatan Biobriket Biomassa "Fire Dough" dari Limbah Cangkang Sawit untuk Bahan Bakar di Desa Koto Taluk Kec. Kuantan Tengah kab. Kuantan Singigi, Riau	BOPTN	10 Juta
2.	2014	Pelatihan Pembuatan Biobriket dari Cangkang Sawit untuk Bahan Bakar di Desa Tambak Kec. Kuala Cenaku, Kab. Indragiri Hulu, Riau	BOPTN	10 juta

3.	2014	Pelatihan Pembuatan Tauco di Desa Tambak Kec.	BOPTN	10 juta
		Kuala Cenaku, kab. Indragiri Hulu, Riau		
4.	2013	Penyuluhan Bahaya Bahan Pengawet Aditif pada	BOPTN	5 juta
		Makanan di Kelurahan Tuah Karya Panam		
		Pekanbaru		

E. Publikasi Artikel Ilmiah Dalam Jurnal dalam 5 Tahun Terakhir

No.	Judul Artikel Ilmiah	Nama Jurnal	Volume/ Nomor/ Tahun
1.	Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered $Ti_xM_{1-x-y}N_y$ films.	RSC Advances (Royal Society of Chemistry, UK) http://pubs.rsc.org/en/con tent/articlelanding/2016/r a/c6ra02550a#!divAbstra ct	(in press, 2016)
2.	Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin films	Journal of Alloys and Compounds (ScienceDirect/Elsevier)	vol. 671, pp. 254- 266, 2016.
3.	Double-sided F and Cl adsorptions on Graphene at various atomic ratios: Geometric, orientation and electronic structure aspects	Applied Surface Science (ScienceDirect/Elsevier) http://www.sciencedirect. com/science/article/pii/S 0169433215030664	(in press, 2016)
4.	3D transition metal oxide based sol-gel derived coatings for photothermal applications	International Journal of Chemical Engineering	Vol 2(1), pp. 78-82, 2015.
5.	Optical properties and thermal durability of copper cobalt oxide thin film coatings with integrated silica antireflection layer	Ceramics International (ScienceDirect/Elsevier)	vol. 40, pp. 16569- 16575/ 2014
6.	Understanding local bonding structures of Ni-doped chromium nitride coatings through synchrotron radiation NEXAFS spectroscopy	The Journal of Physical Chemistry C (ACS Publication)	vol. 118, pp. 18573- 18579/ 2014
7.	Developments in the Synthesis of Flat Plate Solar Selective Absorber Materials via Sol- Gel Methods: A Review	Renewable & Sustainable Energy Reviews (ScienceDirect/Elsevier)	In print: (RSER-D- 13- 00712R1)
8.	Tailoring the physicochemical and mechanical properties of optical copper cobalt oxide thin films through annealing treatment	Surface and Coatings Technology (ScienceDirect/Elsevier)	Vol. 239, pp. 212- 221/ 2014
9.	Efek perubahan komposisi terhadap karakteristik nanostruktur koating tembaga kobal oksida.	Buletin ilmiah MRS-Id, Published by: Indonesian Material Research Society	vol. 1 No. 2 tahun 2014.(http:

		(ITB Bandung)	//mrs-
			id.org/en/)
10.	Surface electronic structure and mechanical	The Journal of Physical	Vol. 117/
	characteristics of copper cobalt oxide thin	Chemistry C	No. 32 /
	film coatings: Soft X-ray synchrotron	(ACS Publication)	2013
	radiation spectroscopic analyses and		
	modelling.		
11.	Solar absorptance of copper–cobalt oxide	Applied Surface Science	Vol. 275,
	thin film coatings with nano-size, grain-like	(ScienceDirect/Elsevier)	pp. 127-
	morphology: Optimization and synchrotron		135/
	radiation XPS studies.		2013
12.	Near-edge X-ray absorption fine structure	Journal of Alloys and	vol. 578,
	studies of Cr _{1-x} M _x N coatings	Compounds	2013
		(ScienceDirect/Elsevier)	
13.	Optical and mechanical characterization of	Surface and Coatings	vol. 207,
	novel cobalt-based metal oxide thin films	Technology	pp. 367-
	synthesized using sol-gel dip-coating	(ScienceDirect/Elsevier)	374/
	method		2012

F. Pemakalah Seminar Ilmiah (Oral Presentation) dalam 5 Tahun Terakhir

	Nama Pertemuan Ilmiah/ Judul Artikel Ilmiah Waktu dan Tempat				
No.	Nama Pertemuan Ilmiah/	Judui Artikei iimian	Waktu dan Tempat		
	seminar				
1.	Seminar Ilmiah Insentif	Sifat Optis Tembaga Kobal	Bandung 3-4		
	Riset Sistem Inovasi	oksida Pada Aluminium yang	December 2015		
	Nasional	Dideposisi Melalui Metode			
		Electrospinning			
2.	International Conference	Synthesis of Copper Oxide Thin	Pekanbaru, Riau,		
	on Oleo and Petrochemical	Film via Sol-gel Dip-coating	Indonesia, 23		
	Engineering 2015	Route for Spectrally Selective	November 2015		
		Absorber Material.			
3.	Western Australian	Structural and Optical	University of Western		
	Institute of Physics	Properties of Spin Coating ITO	Australia, Perth,		
	Conference 2015	thin films	Australia, October		
		-	2015		
4.	1st International	Solar Absorptance and Thermal	Pekanbaru-Indonesia,		
	Conference on Science	Emittance of Nitrate Based	September 28-29,		
	and Engineering (ICoSE)	Copper Cobalt Oxide Coating	2015		
	for Instrumentation,	Synthesized via Sol-Gel Dip-			
	Environment and	Coating Method			
	Renewable Energy	C			
5.	International Conference	Synthesis of Copper Oxide Thin	Padang, Indonesia,		
	on Mathematics, Science	Film via Sol-gel Dip-coating	October 2015.		
	and Technology	Route for Spectrally Selective			
	(ICOMSET)	Absorber Material			
6.	Royal Society of Western	Development of solar selective	3rd October 2014, the		
	Australia	surfaces for photothermal	University of Western		
		applications.	Australia		
7.	International Conference	Spectral selectivity of	26-28 August 2014,		
	on Smart Materials and	unbalanced magnetron	Bangkok, Thailand.		
	Surfaces (ICSMS)	sputtered TiN, TiAlN and	_		

		T: AIC: Marantina and VDD	
		TiAlSiN coatings: XRD,	
		SEM and optical analyses.	
8.	7th International	Sol-gel process in the	2-3 December 2014,
	Conference on Chemical	synthesis of cobalt based	Yogyakarta,
	Engineering (AUN SEED	mixed oxides as solar	Indonesia.
	NET – Chemical	selective absorber thin film	
	Engineering)	coatings for photothermal	
		collector.	
9.	7 th International	Optical properties of copper	18-21 September
	Conference on Surfaces,	cobalt metal oxide thin films	2012,
	Coatings and	synthesized via sol-gel dip-	Prague,
	Nanostructured Materials	coating method	Cekoslowakia
10.	3rd International Chemical	Characterization of copper	21-23 December
	and Environmental	cobalt oxide thin film coatings	2012, Kuala Lumpur,
	Engineering Conference	synthesized via sol-gel dip-	Malaysia.
		coating method.	
11.	MUPSA Conference 2012	Investigation of cobalt-based	27 th September 2012,
		metal oxide thin films	Murdoch University,
		synthesized via a sol-gel dip-	Australia
		coating method	

G. Karya Buku dalam 5 Tahun Terakhir

No.	Judul Buku	Tahun	Jumlah halaman	Penerbit
1	-			

H. Perolehan HKI dalam 5-10 Tahun Terakhir

No.	Judul/Tema HKI	Tahun	Jenis	Nomor P/ID
1	Metode Pembuatan Sodium Lignosulfonat	2008	Paten	P00200800670
	dengan Pemasakkan Langsung Serbuk			
	Biomassa Pelepah Sawit Menggunakan			
	Pelarut Sodium Bisulfit			

I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya dalam 5 Tahun Terakhir

No	Judul/Tema/Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan	Tahun	Tempat Penerapan	Respon Masyarakat
1	-			

J. Penghargaan dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No	Jenis Penghargaan	Institusi Pemberi	Tahun
		Penghargaan	
1.	Dosen Terbaik di Fakultas Teknik 2015	Fakultas Teknik Universitas Riau	2015
2.	Peneliti Terbaik III di Universitas Riau	Universitas Riau	2014
3.	Pemenang Lomba Kreativitas Pemanfaatan Limbah	Pemerintah Daerah Provinsi Riau	2009
4.	Perintis Pengusul Paten di Universitas Riau	Universitas Riau	2008

5.	Peneliti Berprestasi 2008	Jurusan Teknik Kimia	2008
		Universitas Riau	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan **Penelitian Inovasi dan Percepatan Hilirisasi DIPA UNRI**.

Pekanbaru, 13 Maret 2020 Peneliti,

(Prof. Amun Amri, ST, MT, PhD)