a , b , c は定数であって , 函数 $f(x)=a\sin x+b\cos x+c\cos 2x$ は $x=\frac{\pi}{4}$ において極大値 $6\sqrt{2}$ をとり , また $\int_0^{2\pi}f(x)\cos xdx=5\pi$ である . このとき

- (1) a,b,cを求める.
- (2) $0 \le x \le 2\pi$ の範囲で f(x) を最小にする x の値とその時の f(x) の値とを求めよ .

[解] $\cos x = t, \sin x = s$ とおく.

$$f'(x) = at - bs + 2c\cos 2x$$

である.まず,極大値の条件から $f\left(\frac{\pi}{4}\right)=0$ が 必要である.これと題意の条件から

$$\begin{cases} f'\left(\frac{\pi}{4}\right) = 0\\ f\left(\frac{\pi}{4}\right) = 6\sqrt{2}\\ \int_0^{2\pi} f(x)\cos x dx = 5\pi \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{\sqrt{2}}{2}(a-b) = 0\\ \frac{\sqrt{2}}{2}(a+b) + c = 6\sqrt{2}\\ b\pi = 5\pi \end{cases}$$

故に $(a,b,c)=(5,5,\sqrt{2})$ となる . f'(x) に値を代入する .

$$f'(x) = 5t - 5s + 2\sqrt{2}(t^2 - s^2)$$

= $(t - s) \left(5 + 4\sin\left(x + \frac{\pi}{4}\right)\right)$

したがって,下表を得る.

x	0		$\pi/4$		$5\pi/4$		2π
f'		+	0	_	0	+	
f	5	7		>	$-4\sqrt{2}$	7	

故に $x=\frac{\pi}{4}$ で極大となり十分である.以上から

(1)
$$(a,b,c) = (5,5,\sqrt{2})$$

(2)
$$\min f(x) = f\left(\frac{5\pi}{4}\right) = -4\sqrt{2}$$

となる.…(答)