WO 2005/090581 PCT/EP2005/002734 1/40

SEOUENCE LISTING

<110> BASF Plant Science GmbH SweTree Technologies AB

5

<120> IMPROVED CONSTRUCTS FOR MARKER EXCISION BASED ON DUAL-FUNCTION SELECTION MARKER

10 <130> PF 55443 EP

<160> 16

<170> PatentIn version 3.1

15

<210> 1

<211> 1160

<212> DNA

<213> Rhodosporidium toruloides

20

<220>

<221> CDS

<222> (1)..(1104)

<223> coding for DAAO

25

<400> 1

atg cac tcg cag aag cgc gtc gtt gtc ctc gga tca ggc gtt atc ggt 48 Met His Ser Gln Lys Arg Val Val Leu Gly Ser Gly Val Ile Gly 5 10 15

30

96 ctg agc agc gcc ctc atc ctc gct cgg aag ggc tac agc gtg cat att Leu Ser Ser Ala Leu Ile Leu Ala Arg Lys Gly Tyr Ser Val His Ile 20 -25

35 ctc gcg cgc gac ttg ccg gag gac gtc tcg agc cag act ttc gct tca 144 Leu Ala Arg Asp Leu Pro Glu Asp Val Ser Ser Gln Thr Phe Ala Ser 35 40

cca tgg gct ggc gcg aat tgg acg cct ttc atg acg ctt aca gac ggt 192 40 Pro Trp Ala Gly Ala Asn Trp Thr Pro Phe Met Thr Leu Thr Asp Gly 60 50 55

cct cga caa gca aaa tgg gaa gaa tcg act ttc aag aag tgg gtc gag 240 Pro Arg Gln Ala Lys Trp Glu Glu Ser Thr Phe Lys Lys Trp Val Glu 45 70 75

5		gtc Val									_		_					288
Ü		cag Gln		-	-		_						_	_		_		336
10		aat Asn								-	-				_		-	384
15		gta Val 130			_				-		_		_		-	_		432
20		ctt Leu	_	_		_	_	_				_			_	cgg Arg 160	-	480
25		gtt Val											_	_	-			528
		gct Ala									-				-			576
30	_	gcc Ala				_	,,,,	•		_		_	_					624
35		cga Arg 210	-		_	-	_		_		_			_				672
40		ccc Pro														-		720
45		gac Asp	-	-	_		-				_	_	_					768

		-							-,					•				
		cac His			-						_	-	_				816	
5		Gl ^y			_		-			-		_	_		-		864	
10	_	ggc Gly 290			_	-			_			_	-			_	912	
15		aca Thr													-	gcg Ala 320	960	
20	_	gag Glu				Thr				-						-	1008	
20		tac Tyr															1056	
25		gag Glu															1104	
30	tag	ggcg	gga t	ittgt	ggct	ig ta	attgo	cggg	c ato	ctaca	aaga	aaaa	aaaa	aaa a	aaaa	aa	1160	
35	<210 <211 <212 <213	1> 3 2> 1	2 368 PRT Rhodo	ospoi	ridi	ım to	orulo	oide:	5									
40	<400 Met 1	O> 2 His		Gln	Lys 5	Arg	Val	Val	Val	Leu 10	Gly	Ser	Gly	Val	Ile 15	Gly		
40	Leu	Ser	Ser	Ala 20	Leu	Ile	Leu	Ala	Arg 25	Lys	Gly	Tyr	Ser	Val 30	His	Ile		
45	Leu	Ala	Arg 35	Asp	Leu	Pro	Glu	A <i>s</i> p 40	Val	Ser	Ser	Gln	Thr 45	Phe	Ala	Ser		

4/40

	Pro	Trp 50	Ala	Gly	Ala	Asn	Trp 55	Thr	Pro	Phe	Met	Thr 60	Leu	Thr	Asp	Gly
5	Pro 65	Arg	Gln	Ala	Lys	Trp 70	Glu	Glu	Ser	Thr	Phe 75	Lys	Lys	Trp	Val	Glu 80
10	Leu	Val	Pro	Thr	Gly 85	His	Ala	Met	Trp	Leu 90	Lys	Gly	Thr	Arg	Arg 95	Phe
	Ala	Gln	Asn	Glu 100	Asp	Gly	Leu	Leu	Gly 105	His	Trp	Tyr	Lys	Asp 110	Ile	Thr
15	Pro	Asn	Tyr 115	Arg	Pro	Leu	Pro	Ser 120	Ser	Glu	Cys	Pro	Pro 125	Gly	Ala	Ile
	Gly	Val 130	Thr	Tyr	Asp	Thr	Leu 135	Ser	Val	His	Ala	Pro 140	Lys	Tyr	Cys	Gln
.20	Tyr 145	Leu	Ala	Arg	Glu	Leu 150	Gln	Lys	Leu	Gly	Ala 155	Thr	Phe	Glu	Arg	Arg 160
25	Thr	Val	Thr	Ser	Leu 165	Glu	Gln	Ala	Phe	Asp 170	Gly	Ala	Asp	Leu	Val 175	Val
	Asn	Ala	Thr	Gly 180	Leu	Gly	Ala	Lys	Ser 185	Ile	Ala	Gly	Ile	Asp 190	Asp	Gln
30	Ala	Ala	Glu 195	Pro	Ile	Arg	Gly	Gln 200	Thr	Val	Leu	Val	Lys 205	Ser	Pro	Cys
	Lys	Arg 210	Cys	Thr	Met	Asp	Ser 215	Ser	Asp	Pro	Ala	Ser 220	Pro	Ala	Tyr	Ile
35	Ile 225	Pro	Arg	Pro	Gly	Gly 230	Glu	Val	Ile	Cys	Gly 235	Gly	Thr	Tyr	Gly	Val 240
40	Gly	Asp	Trp	Asp	Leu 245	Ser	Val	Asn	Pro	Glu 250	Thr	Val	Gln	_	Ile 255	Leu
	Lys	His	Cys	Leu 260	Arg	Leu	Asp	Pro	Thr 265	Ile	Ser	Ser	Asp	Gly 270	Thr	Ile
45	Glu	Gly	Ile 275	Glu	Val	Leu	Arg	His 280	Äsn	Val	Gly	Leu	Arg 285	Pro	Ala	Arg

300

315

Arg Gly Gly Pro Arg Val Glu Ala Glu Arg Ile Val Leu Pro Leu Asp

5 Arg Thr Lys Ser Pro Leu Ser Leu Gly Arg Gly Ser Ala Arg Ala Ala

295

310

Lys Glu Lys Glu Val Thr Leu Val His Ala Tyr Gly Phe Ser Ser Ala 325 330 335

10

Gly Tyr Gln Gln Ser Trp Gly Ala Ala Glu Asp Val Ala Gln Leu Val 340 345 350

Asp Glu Ala Phe Gln Arg Tyr His Gly Ala Ala Arg Glu Ser Lys Leu
15 355 360 365

<210> 3

<211> 1005

290

305

<212> DNA

20 <213> Caenorhabditis elegans

<220>

<221> CDS

<222> (1)..(1002)

25 <223> coding for DAAO

<400> 3

atg gca aac ata att ccg aag att gca att atc ggc gaa gga gtc att 48

Met Ala Asn Ile Ile Pro Lys Ile Ala Ile Ile Gly Glu Gly Val Ile

30 1 5 10 15

gga tgt act tca gca ctt caa ata tca aaa gct ata cca aat gcg aaa 96
Gly Cys Thr Ser Ala Leu Gln Ile Ser Lys Ala Ile Pro Asn Ala Lys
20 25 30

35

ata act gtg ctc cac gat aaa cca ttt aaa aaa tcg tgc agt gca gga 144

Ile Thr Val Leu His Asp Lys Pro Phe Lys Lys Ser Cys Ser Ala Gly
35 40 45

40 cca gca gga tta ttt aga atc gat tat gag gag aat act gaa tac gga 192
Pro Ala Gly Leu Phe Arg Ile Asp Tyr Glu Glu Asn Thr Glu Tyr Gly
50 55 60

cgt gct tct ttc gcc tgg ttc tca cat ctc tat cgc act aca aaa gga 240

45 Arg Ala Ser Phe Ala Trp Phe Ser His Leu Tyr Arg Thr Thr Lys Gly

	65			70				75					80		
5									att Ile						288
10						_	-		ggc Gly	-					336
									gac Asp				_		384
15		_	_				_		gca Ala 140		_				432
20						_	_		gag Glu						480
25						_		_	gtc Val	_		_		٠	528
30	tac Tyr								ggt Gly		_		_		576
									gtc Val		_		_		624
35								_	gac Asp 220					,	672
40						_	-		tcc Ser		_	_	-		720
45		-							aga Arg		_				768

		_			_				gga Gly 265	_	_			-			816
5 .									gga Gly					_			86 4
10		_	_				_		aac Asn			_		_	_		912
15									gga Gly								· 960
20	_			_					aag Lys		_				taa		1005
25	<210 <210 <210 <210	1> 3	334 PRT	orhal	odit:	is ei	egai	าร									
	<400		1	<i>-</i>			.cgu.										
30	Met 1	Ala	Asn	Ile	Ile 5	Pro	Lys	Ile	Ala	Ile 10	Ile	Gly	Glu	Gly	Val 15	Ile.	•
	Gly	Cys	Thr	Ser 20	Ala		Gln	Ile	Ser 25	Lys ·	Ala	Ile	Pro	Asn 30	Ala	Lys	
35	Ile	Thr	Val 35	Leu	His	Asp	Lys	Pro 40	Phe	Lys	Lys	Ser	Cys 45	Ser	Ala	Gly	
	Pro	Ala 50	Gly	Leu	Phe	Arg	Ile 55	Asp	Tyr	Glu	Glu	Asn 60	Thr	Glu	Tyr	Gly	
40	Arg 65	Ala	Ser	Phe	Ala	Trp 70	Phe	Ser	His	Leu	Туг 75	Arg	Thr	Thr	Lys	Gly 80	
45	Ser	Glu	Thr	Gly	Val 85	Lys	Leu	Val	Ser	Gly 90	His	Ile	Gln	S.er	Asp 95	Asn	

8/40		

Leu Glu Ser Leu Lys Gln Gln Gln Arg Ala Tyr Gly Asp Ile Val Tyr Asn Phe Arg Phe Leu Asp Asp Arg Glu Arg Leu Asp Ile Phe Pro Glu Pro Ser Lys His Cys Ile His Tyr Thr Ala Tyr Ala Ser Glu Gly Asn Lys Tyr Val Pro Tyr Leu Lys Asn Leu Leu Glu Gln Lys Ile Glu Phe Lys Gln Glu Val Thr Ser Leu Asp Ala Val Ala Asp Ala Gly Tyr Asp Val Ile Val Asn Cys Ala Gly Leu Tyr Gly Gly Lys Leu Ala Gly Asp Asp Asp Thr Cys Tyr Pro Ile Arg Gly Val Ile Leu Glu Val Asp Ala Pro Trp His Lys His Phe Asn Tyr Arg Asp Phe Thr Thr Phe Thr Ile Pro Lys Glu His Ser Val Val Gly Ser Thr Lys Gln Asp Asn Arg Trp Asp Leu Glu Ile Thr Asp Glu Asp Arg Asn Asp Ile Leu - 30 Lys Arg Tyr Ile Ala Leu His Pro Gly Met Arg Glu Pro Lys Ile Ile 265 · Lys Glu Trp Ser Ala Leu Arg Pro Gly Arg Lys His Val Arg Ile Glu . Ala Gln Lys Arg Thr Ser Val Gly Asn Ser Lys Asp Tyr Met Val Val His His Tyr Gly His Gly Ser Asn Gly Phe Thr Leu Gly Trp Gly Thr Ala Ile Glu Ala Thr Lys Leu Val Lys Thr Ala Leu Gly Leu

· 325

<210> 5 <211> 1186 <212> DNA <213> Nectria haematococca 5 <220> <221> CDS <222> (42)..(1124) <223> coding for DAAO 10 <400> 5 agcgacttga atttagcgaa aagaacttgt caaccacaat c atg tcc aac aca atc 56 Met Ser Asn Thr Ile 1 5 15 gtc gtc gtt ggt gcc ggt gtc att ggc ttg acg tcg gcc ttg ttg ctc 104 Val Val Val Gly Ala Gly Val Ile Gly Leu Thr Ser Ala Leu Leu Leu 10 15 20 tcc aag aac aag ggc aac aag atc acc gtc gtg gcc aag cac atg ccc 152 Ser Lys Asn Lys Gly Asn Lys Ile Thr Val Val Ala Lys His Met Pro 25 . 30 200 ggc gac tat gac gtt gaa tac gcc tcg cct ttt gct ggt gcc aac cac 25 Gly Asp Tyr Asp Val Glu Tyr Ala Ser Pro Phe Ala Gly Ala Asn His 50 40 45 248 tcc ccc atg gcg acg gaa gag agc agc gaa tgg gaa cgt cgc act tgg Ser Pro Met Ala Thr Glu Glu Ser Ser Glu Trp Glu Arg Arg Thr Trp 30 65 55 60 tac gag ttt aag aga ctg gtc gag gag gtc cct gag gcc ggt gtt cat 296 Tyr Glu Phe Lys Arg Leu Val Glu Glu Val Pro Glu Ala Gly Val His 80 70 75 35 ttc cag aag tct cgc atc cag agg cgc aat gtg gac act gaa aag gcg 344 Phe Gln Lys Ser Arg Ile Gln Arg Arg Asn Val Asp Thr Glu Lys Ala 100 90 95 40 cag agg tct ggt ttc cca gac gcc ctc ttc tcg aaa gaa ccc tgg ttc 392 Gln Arg Ser Gly Phe Pro Asp Ala Leu Phe Ser Lys Glu Pro Trp Phe 110 105 aag aac atg ttt gag gac ttc cgt gag cac cct agc gag gtc atc 440 45 Lys Asn Met Phe Glu Asp Phe Arg Glu Gln His Pro Ser Glu Val Ile

			120		_		125				130					
5	Pro		tac Tyr													488
10	_		tac Tyr													536
.0			aag Lys													584
15			gcg Ala								Ala					632
20			tac Tyr 200											gcg Ala		680
25			cag Gln												-	728
00			ggt Gly							Met						776
30			gct Ala	Gly										Gly		824
35			gag Glu		Gln								Met			872
40	-		gtc Val 280	Glu				Ile				Gly				920
45		-	agc Ser				Ala				Pro					968

5	-					gag Glu 315					-						1016
	• -					cac His											1064
10	_	_			-	gtc Val											1112
15	_		aag Lys 360	_	tagt	tga	aaa q	ggaat	tgaat	g ag	gtaat	agta	a att	iggat	tatt		1164
	ggaa	aatad	ccg t	catt	gaad	ct c	Ð.										1186
20	<210 <211 <212	1> 3 2> 1	6 361 PRT														
	<213	3> 1	Nect	ria 1	naema	atoco	occa										
25	<213 <400		Nect:	ria h	naema	atoco	occa										
25	<400	O> (б			Val		Val	Gly	Ala 10	Gly	Val	Ile	Gly	Leu 15	Thr	
25 30	<400 Met 1)> (Ser	6 Asn	Thr	Ile 5		Val			10	-				15		
	<400 Met 1 Ser	O> (Ser Ala	6 Asn Leu	Thr Leu 20	Ile 5 Leu	Val	Val Lys	Asn	Lys 25	10 Gly	Asn	Lys	Ile	Thr 30	15 Val	Val	
	<400 Met 1 Ser	Ser Ala Lys	Asn Leu His 35	Thr Leu 20 Met	Ile 5 Leu Pro	Val Ser	Val Lys Asp	Asn Tyr 40	Lys 25 Asp	10 Gly Val	Asn	Lys Tyr	Ile Ala 45	Thr 30 Ser	15 Val Pro	Val Phe	
30	<400 Met 1 Ser Ala	Ser Ala Lys Gly 50	Asn Leu His 35	Thr Leu 20 Met	Ile 5 Leu Pro	Val Ser Gly	Val Lys Asp Pro	Asn Tyr 40 Met	Lys 25 Asp	10 Gly Val	Asn Glu	Lys Tyr Glu 60	Ile Ala 45 Ser	Thr 30 Ser	15 Val Pro Glu	Val Phe Trp	
30 35	<400 Met 1 Ser Ala Ala Glu 65	Ser Ala Lys Gly 50 Arg	Asn Leu His 35 Ala	Thr Leu 20 Met Asn	Ile 5 Leu Pro His	Val Ser Gly Ser	Val Lys Asp Pro 55	Asn Tyr 40 Met	Lys 25 Asp Ala	Gly Val Thr	Asn Glu Glu Leu 75	Lys Tyr Glu 60 Val	Ile Ala 45 Ser	Thr 30 Ser Ser	Val Pro Glu Val	Val Phe Trp Pro 80	

WO 2005/090581		PC1/EP2005/002
	12/40	

	Lys	Glu	Pro 115	Trp	Phe	Lys	Asn	Met 120	Phe	Glu	Asp	Phe	Arg 125	Glu	Gln	His
5	Pro	Ser 130	Glu	Val	Ile	Pro	Gly 135	Tyr	Asp	Ser	Gly	Cys 140	Glu	Phe	Thr	Ser
10	Val	Cys	Ile	Asn	Thr	Ala 150	Ile	Tyr	Leu	Pro	Trp 155	Leu	Leu	Gly	Gln	Су <i>s</i> 160
	Ile	Lys	Asn	Gly	Val 165	Ile	Val	Lys	Arg	Ala 170	Ile	Leu	Asn	Asp	Ile 175	Ser
15	Glu	Ala	Lys	Lys 180	Leu	Ser	His	Ala	Gly 185	Lys	Thr	Pro	Asn	Ile 190	Ile	Val
	Aşn	Ala	Thr 195	Gly	Leu	Gly	Ser	Tyr 200	Lys	Leu	Gly	Gly	Val 205	Glu	Asp	Lys
20	Thr	Met 210	Ala	Pro	Ala	Arg	Gly 215	Gln	Ile	Val	Val	Val 220	Arg	Asn	Glu	Ser
25	Ser 225	Pro	Met	Leu	Leu	Thr 230	Ser	Gly	Val		Asp 235	Gly	Gly	Ala	Asp	Val 240
	Met	Tyr	Leu	Met	Gln 245	Arg	Ala	Ala	Gly	Gly 250	Gly	Thr	Ile	Leu	Gly 255	Gly
30	Thr	Tyr	Asp	Val 2.60	Gly	Asn	Trp	Glu	Ser 265	Gln	Pro	Asp	Pro	Asn 270	Ile	Ala
	Asn	Arg	Ile 275	Met	Gln	Arg	Ile	Val 280	Glu	Val	Arg	Pro	Glu 285	Ile	Ala	Asn
35	Gly	Lys 290	Gly	Val	Lys	Gly	Leu 295	Ser	Val	Ile	Arg	His 300	Ala	Val	Gly	Met
40	Arg 305	Pro	Trp	Arg	Lys	Asp 310	Gly	Val	Arg	Ile	Glu 315	Glu	Glu	Lys	Leu	Asp 320
-	Asp	Glu	Thr	Trp	Ile 325	Val	His	Asn	Tyr	Gly 330	His	Ser	Gly	Trp	Gly 335	Tyr

Gln Gly Ser Tyr Gly Cys Ala Glu Asn Val Val Gln Leu Val Asp Lys 350 340 345 Val Gly Lys Ala Ala Lys Ser Lys Leu 5 360 355 <210> 7 <211> 1071 <212> DNA 10 <213> Trigonopsis variabilis <220> <221> CDS <222> (1)..(1068) 15 <223> ' <400> 7 atg gct aaa atc gtt gtt att ggt gcc ggt gtt gcc ggt tta act aca Met Ala Lys Ile Val Val Ile Gly Ala Gly Val Ala Gly Leu Thr Thr 20 5 10 15 1 gct ctt caa ctt ctt cgt aaa gga cat gag gtt aca att gtg tcc gag Ala Leu Gln Leu Leu Arg Lys Gly His Glu Val Thr Ile Val Ser Glu 20 25 25 . ttt acg ccc ggt gat ctt agt atc gga tat acc tcg cct tgg gca ggt 144 Phe Thr Pro Gly Asp Leu Ser Ile Gly Tyr Thr Ser Pro Trp Ala Gly 40 35 30 gcc aac tgg ctc aca ttt tac gat gga ggc aag tta gcc gac tac gat 192 Ala Asn Trp Leu Thr Phe Tyr Asp Gly Gly Lys Leu Ala Asp Tyr Asp 50 55 60 qcc qtc tct tat cct atc ttg cga gag ctg gct cga agc agc ccc gag 240 Ala Val Ser Tyr Pro Ile Leu Arg Glu Leu Ala Arg Ser Ser Pro Glu 35 70 75

gct gga att cga ctc atc agc caa cgc tcc cat gtt ctc aag cgt gat

Ala Gly Ile Arg Leu Ile Ser Gln Arg Ser His Val Leu Lys Arg Asp

85

90

95

ctt cct aaa ctg gaa gtt gcc atg tcg gcc atc tgt caa cgc aat ccc 336
Leu Pro Lys Leu Glu Val Ala Met Ser Ala Ile Cys Gln Arg Asn Pro
100 105 110

45

40

WO 2005/090581 PCT/EP2005/002734 14/40

									14/40	,							
						gtc Val											384
5						gat Asp											432
10	-					gtc Val 150		-			_	_			_		480
15	_			_	_	gtg Val	_		_		Val						528
20	-					tcc Ser		-					-				576
-,	•					gcc Ala					Gly						624
25	_				_	gga Gly		Val									672
30		_	_			tcc Ser 230	_			Gļu		_		_		·	720
35					_	acc Thr											768
40					Asn	aac Asn											816
		-				aga Arg	_										864

gat ggc cct ctt gac att gtg cgc gaa tgc gtt ggc cac cgt cct ggt Asp Gly Pro Leu Asp Ile Val Arg Glu Cys Val Gly His Arg Pro Gly

aga gag ggc ggt ccc cga gta gaa tta gag aag atc ccc ggc gtt ggc Arg Glu Gly Gly Pro Arg Val Glu Leu Glu Lys Ile Pro Gly Val Gly

ttt gtt gtc cat aac tat ggt gcc gcc ggt gct ggt tac caa tcc tct Phe Val Val His Asn Tyr Gly Ala Ala Gly Ala Gly Tyr Gln Ser Ser

tac ggc atg gct gat gaa gct gtt tct tac gtc gaa aga gct ctt act Tyr Gly Met Ala Asp Glu Ala Val Ser Tyr Val Glu Arg Ala Leu Thr

cgt cca aac ctt tag Arg Pro Asn Leu

<210> 8 <211> 356 <212> PRT

<213> Trigonopsis variabilis

<400> 8

Met Ala Lys Ile Val Val Ile Gly Ala Gly Val Ala Gly Leu Thr Thr

Ala Leu Gln Leu Leu Arg Lys Gly His Glu Val Thr Ile Val Ser Glu

Phe Thr Pro Gly Asp Leu Ser Ile Gly Tyr Thr Ser Pro Trp Ala Gly

Ala Asn Trp Leu Thr Phe Tyr Asp Gly Gly Lys Leu Ala Asp Tyr Asp

Ala Val Ser Tyr Pro Ile Leu Arg Glu Leu Ala Arg Ser Ser Pro Glu

Ala Gly Ile Arg Leu Ile Ser Gln Arg Ser His Val Leu Lys Arg Asp

Leu Pro Lys Leu Glu Val Ala Met Ser Ala Ile Cys Gln Arg Asn Pro Trp Phe Lys Asn Thr Val Asp Ser Phe Glu Ile Ile Glu Asp Arg Ser Arg Ile Val His Asp Asp Val Ala Tyr Leu Val Glu Phe Arg Ser Val Cys Ile His Thr Gly Val Tyr Leu Asn Trp Leu Met Ser Gln Cys Leu Ser Leu Gly Ala Thr Val Val Lys Arg Arg Val Asn His Ile Lys Asp Ala Asn Leu Leu His Ser Ser Gly Ser Arg Pro Asp Val Ile Val Asn Cys Ser Gly Leu Phe Ala Arg Phe Leu Gly Gly Val Glu Asp Lys Met Tyr Pro Ile Arg Gly Gln Val Val Leu Val Arg Asn Ser Leu Pro Phe Met Ala Ser Phe Ser Ser Thr Pro Glu Lys Glu Asn Glu Asp Glu Ala Leu Tyr Ile Met Thr Arg Phe Asp Gly Thr Ser Ile Ile Gly Gly Cys Phe Gln Pro Asn Asn Trp Ser Ser Glu Pro Asp Pro Ser Leu Thr 260 265 His Arg Ile Leu Ser Arg Ala Leu Asp Arg Phe Pro Glu Leu Thr Lys

Asp Gly Pro Leu Asp Ile Val Arg Glu Cys Val Gly His Arg Pro Gly

Arg Glu Gly Gly Pro Arg Val Glu Leu Glu Lys Ile Pro Gly Val Gly

Phe Val Val His Asn Tyr Gly Ala Ala Gly Ala Gly Tyr Gln Ser Ser

	Tyr Gly Met Ala	-	l Ser Tyr Val Glu Arg 345	Ala Leu Thr 350
5	Arg Pro Asn Leu 355	ı		
10	<210> 9 <211> 1047 <212> DNA <213> Schizosa	ccharomyces pomi	be	
15	<220> <221> CDS <222> (22)(1 <223> coding f			
20	<400> 9 atgactaagg aaaa		t att gtc atc gtt ggc p Ile Val Ile Val Gly 5	
25			t ctt tca gac ttg ggt e Leu Ser Asp Leu Gly 20	•
30			t acg cct gaa gat cgt r Thr Pro Glu Asp Arg 35	
			a aat ttc tgt agc att a Asn Phe Cys Ser Ile 55	_
35			t aaa atc act tac cat p Lys Ile Thr Tyr His 70	
40			a gca gga atc cgt ttt u Ala Gly Ile Arg Phe 85	
45			g aaa cac gac aaa atc o Lys His Asp Lys Ile 100	

WO 2005/090581 PCT/EP2005/002734

18/40 aat acc tat gtc aga gat ttc aaa gtt atc cct gaa aaa gat ctt cca Asn Thr Tyr Val Arg Asp Phe Lys Val Ile Pro Glu Lys Asp Leu Pro gga gaa tgt atc tac gga cat aag gcc acc acc ttt tta atc aac gct Gly Glu Cys Ile Tyr Gly His Lys Ala Thr Thr Phe Leu Ile Asn Ala cct cat tac ttg aat tat atg tac aag ctg ctc att gaa gct ggc gtc Pro His Tyr Leu Asn Tyr Met Tyr Lys Leu Leu Ile Glu Ala Gly Val gaa ttt gaa aag aaa gaa ttg agt cac atc aaa gag act gtc gaa gaa Glu Phe Glu Lys Lys Glu Leu Ser His Ile Lys Glu Thr Val Glu Glu act cca gaa gct tca gta gta ttt aat tgc act ggt ctc tgg gct tcc Thr Pro Glu Ala Ser Val Val Phe Asn Cys Thr Gly Leu Trp Ala Ser aaa ttg ggt ggc gtt gaa gac ccg gac gtt tat ccg act cgt gga cat Lys Leu Gly Gly Val Glu Asp Pro Asp Val Tyr Pro Thr Arg Gly His gtt gtt ttg gtt aag gct cct cat gta aca gaa act cgc att ttg aat Val Val Leu Val Lys Ala Pro His Val Thr Glu Thr Arg Ile Leu Asn ggc aag aac tot gat acc tat att att cct cgt ccc tta aat ggt gga Gly Lys Asn Ser Asp Thr Tyr Ile Ile Pro Arg Pro Leu Asn Gly Gly gtc att tgc ggc ggt ttc atg caa cca gga aac tgg gat cgt gaa att Val Ile Cys Gly Gly Phe Met Gln Pro Gly Asn Trp Asp Arg Glu Ile cac cct gaa gac act ttg gat atc ctt aag aga aca tcg gct ttg atg His Pro Glu Asp Thr Leu Asp Ile Leu Lys Arg Thr Ser Ala Leu Met

cca gaa ttg ttc cac ggc aag ggt ccg gag ggt gct gaa att att caa Pro Glu Leu Phe His Gly Lys Gly Pro Glu Gly Ala Glu Ile Ile Gln

								12/40	,							
	gaa tgt Glu Cys		Gly													915
5	ctt gat Leu Asr 300	Val														963
10	gct tct Ala Ser 315															1011
15	gtc atg Val Met									gct	tag					1047
20	<212>	10 340 PRT Schi	zosac	cchai	romvo	ces r	oombe	2								
					,	I		-								
25		10							Val 10	Ile	Gly	Leu	Thr	Thr 15	Ala	
	<400> Arg Asp 1 Trp Ile	10 Ile Leu	Val Ser 20	Ile 5	Val Leu	Gly Gly	Ala Leu	Gly Ala 25	10 Pro	Arg	Ile	Lys	Val 30	15 [.] Ile	Æla	
25 30	<400> Arg Asp	10 Ile Leu Thr 35	Val Ser 20	Ile 5 Asp Glu	Val Leu Asp	Gly Gly Arg	Ala Leu Ser 40	Gly Ala 25 Val	10 Pro Glu	Arg Tyr	Ile Thr	Lys Ser	Val 30 Pro	15 Ile Trp	Ala Ala	
	<400> Arg Asp 1 Trp Ile Lys Tyr	10 Ile Leu Thr 35 Asn	Val Ser 20 Pro	Ile 5 Asp Glu Cys	Val Leu Asp Ser	Gly Gly Arg Ile 55	Ala Leu Ser 40 Ser	Gly Ala 25 Val	10 Pro Glu Thr	Arg Tyr Asp	Ile Thr Asp	Lys Ser 45 Asn	Val 30 Pro Ala	15 Ile Trp	Ala Ala Arg	
30	<400> Arg Asp 1 Trp Ile Lys Tyr Gly Ala 50 Trp Asp	10 Ile Leu Thr 35 Asn	Val Ser 20 Pro Phe	Ile 5 Asp Glu Cys	Val Leu Asp Ser Tyr 70	Gly Gly Arg Ile 55	Ala Leu Ser 40 Ser	Gly Ala 25 Val Ala	10 Pro Glu Thr	Arg Tyr Asp Tyr 75	Ile Thr Asp 60 Leu	Lys Ser 45 Asn	Val 30 Pro Ala	15 Ile Trp Leu Thr	Ala Ala Arg Arg	

20/4
/11/4

	Phe	Lys	Val 115	Ile	Pro	Glu	Lys	Asp 120	Leu	Pro	Gly	Glu	Cys 125	Ile	Tyr	Gly
-5	His	Lys 130	Ala	Thr	Thr	Phe	Leu 135	Ile	Asn	Ala	Pro	His 140	Tyr	Leu	Asn	Tyr
	Met 145	Tyr	Lys	Leu	Leu	Ile 150	Glu	Ala	Gly	Val	Glu 155	Phe	Glu	Lys	Lys	Glu 160
10	Leu	Ser	His	Ile	Lys 165	Glu	Thr	Val	Glu	Glu 170	Thr	Pro	Glu	Ala	Ser 175	Val
15	Val	Phe	Asn	Cys 180	Thr	Gly	Leu	Tŗp	Ala 185	Ser	Lys	Leu	Gly	Gly 190	Val	Glu
,,,	Asp	Pro	Asp 195	Val	Tyr	Pro	Thr	Arg 200	Gly	His	Val	Val	Leu 205	Val	Lys	Ala
20	Pro	His 210	Val	Thr	Glu	Thr	Arg 215	Ile	Leu	Asn	Gly	Lys 220	Asn	Ser	Asp	Thr
	Tyr 225	Ile	Ile	Pro	Arg	Pro 230	Leu	Asn	Gly	Gly	Val 235	Ile	Cys	Gly	Gly	Phe 240
25	Met	Gln	Pro	Gly	Asn 245	Trp	Asp	Arg	Glu	Ile 250	His	Pro	Glu	Asp	Thr 255	Leu
30	Asp	Ile	Leu	Lуя 260	Arg	Thr	Ser	Ala	Leu 265	Met	Pro	Glu	Leu	Phe 270	His	Gly
	Lys	Gly	Pro 275	Glu [.]	Gly	Ala	Glu	Ile 280	Ile	Gln	Glu	Cys	Val 285	Gly	Phe	Arg
35	Pro	Ser 290	Arg	Lys	Gly	Gly	Ala 295	Arg	Val	Glu	Leu	Asp 300	Val	Val	Pro	Gly
40	Thr 305	Ser	Val	Pro	Leu	Val 310	His	Asp	Tyr	Gly	Ala 315	Ser	Gly	Thr	Gly	Tyr 320
- 10	Gln	Ala	Gly	Tyr	Gly 325	Met	Ala	Leu	Asp	Ser 330	Val	Met	Leu	Ala	Leu 335	Pro
45	Lys	Ile	Lys	Leu 340												

5 10	<pre><210> 11 <211> 963 <212> DNA <213> Streptomyces coelicolor <220> <221> CDS <222> (31)(957) <223> coding for DAAO <220> <221> misc_feature <222> (880)(936)</pre>	
45	<223> DAAO signature	
15	<400> 11	
	gtggaaaccg aactggatga cgagcgggat ggc gaa gtc gtc gtg gtc ggc Gly Glu Val Val Val Gly Gly 1 5	5 4
20		
	ggg gtg atc ggg ctg acg acg gcc gtc gtc ctc gcc gag cgg ggc aga Gly Val Ile Gly Leu Thr Thr Ala Val Val Leu Ala Glu Arg Gly Arg 10 15 20	102
25	cgg gtg cgg ctg tgg acc cgg gag ccc gcg gag cgg acc acc tcg gtg Arg Val Arg Leu Trp Thr Arg Glu Pro Ala Glu Arg Thr Thr Ser Val 25 30 35 40	15 O
30	gta gcg ggc ggg ctg tgg tgg ccg tac cgg atc gag ccg gtc gcg ctg Val Ala Gly Gly Leu Trp Trp Pro Tyr Arg Ile Glu Pro Val Ala Leu 45 50 55	198
35	gcc cag gcc tgg gcg ctg cgt tcc ctg gac gtg tac gag gag ctg gcg Ala Gln Ala Trp Ala Leu Arg Ser Leu Asp Val Tyr Glu Glu Leu Ala 60 65 70	24 6
40	gca cgg ccc ggg cag acc ggc gta cgc atg ctc gaa ggg gtg ctc ggc Ala Arg Pro Gly Gln Thr Gly Val Arg Met Leu Glu Gly Val Leu Gly 75 80 85	294
.5	gag acc ggc ctg gac gag gtg gac ggg tgg gcc gcg gcc cgg ctg ccg Glu Thr Gly Leu Asp Glu Val Asp Gly Trp Ala Ala Ala Arg Leu Pro 90 95 100	342
45	ggg ctg cgc gcg gcg agc gcc gcc gag tac gcc ggg acg ggg ctg tgg	390

	Gly 105	Leu	Arg	Ala	Ala	Ser 110	Ala	Ala	Glu	Tyr	Ala 115	_	Thr	Gly	Leu	Trp 120	
5						atc Ile							_		_		438
10						gcg Ala								_	_		486
15						gac Asp											534
15						gtg Val											582
20						gag Glu 190								-	_		630
25						Gly							_	_	_		678
30						ggc Gly									Thr		726
35						gcg Ala											774
						gga Gly											822
40						gcg Ala 270											870
45						cac His											918

285 290 295

gtg gcc tgg ggc tgc gct cag gag gcg gcc cgg ctc gcc tcctga 963
Val Ala Trp Gly Cys Ala Gln Glu Ala Ala Arg Leu Ala

5 300 305 ·

<210> 12

<211> 309

10 <212> PRT

<213> Streptomyces coelicolor

<220>

<221> misc feature

15 <222> (880)..(936)

<223> DAAO signature

<400> 12

Gly Glu Val Val Val Gly Gly Gly Val Ile Gly Leu Thr Thr Ala

20 1 5 10 15

20 1 5 10 15

Val Val Leu Ala Glu Arg Gly Arg Arg Val Arg Leu Trp Thr Arg Glu 20 25 30

25 Pro Ala Glu Arg Thr Thr Ser Val Val Ala Gly Gly Leu Trp Trp Pro 35 40 45

Tyr Arg Ile Glu Pro Val Ala Leu Ala Gln Ala Trp Ala Leu Arg Ser 50 55 60

Leu Asp Val Tyr Glu Glu Leu Ala Ala Arg Pro Gly Gln Thr Gly Val
65 70 75 80

Arg Met Leu Glu Gly Val Leu Gly Glu Thr Gly Leu Asp Glu Val Asp 35 90 95

Gly Trp Ala Ala Arg Leu Pro Gly Leu Arg Ala Ala Ser Ala Ala 100 105 110

40 Glu Tyr Ala Gly Thr Gly Leu Trp Ala Arg Leu Pro Leu Ile Asp Met
115 120 125

Ser Thr His Leu Pro Trp Leu Arg Glu Arg Leu Leu Ala Ala Gly Gly
130 135 140

30

Thr Val Glu Asp Arg Ala Val Thr Asp Leu Ala Glu Ala Asp Ala Pro 150 145 155 Val Val Val Asn Cys Thr Gly Leu Gly Ala Arg Glu Leu Val Pro Asp 165 170 175 Pro Ala Val Arg Pro Val Arg Gly Gln Leu Val Val Glu Asn Pro 180 185 10 Gly Ile His Asn Trp Leu Val Ala Ala Asp Ala Asp Ser Gly Glu Thr 195 200 Thr Tyr Phe Leu Pro Gln Pro Gly Arg Leu Leu Gly Gly Thr Ala 215 220 210 15 Glu Glu Asp Ala Trp Ser Thr Glu Pro Asp Pro Glu Val. Ala Ala Ala 230 235 225 Ile Val Arg Arg Cys Ala Ala Leu Arg Pro Glu Ile Ala Gly Ala Arg . 250 20 245 255 Val Leu Ala His Leu Val Gly Leu Arg Pro Ala Arg Asp Ala Val Arg 260 265 270 25 Leu Glu Arg Gly Thr Leu Pro Asp Gly Arg Arg Leu Val His Asn Tyr 280 275 285 Gly His Gly Gly Ala Gly Val Thr Val Ala Trp Gly Cys Ala Gln Glu 290 . 295 300 30 Ala Ala Arg Leu Ala 305 <210> 13 <211> 1038 <212> DNA

35

<213> Candida boidinii

<220> **40** <221> CDS <222> (1)..(1035) <223> coding for DAAO

	<400	0> :	13												
	_	-		caa Gln	_	-									48
5				tgt Cys 20					-	_	_			•	96
10				gct Ala											144
15				gca Ala											192
20				gct Ala								-			240
25				tta Leu									_		288
20				tgg Trp 100				-	-						336
30				ctt Leu											384
35	_			gaa Glu			_						tgt Cys		432
40				tta Leu		_	-				-		-		480
45				aga Arg	His										528

				gtt Val						_	_	_		576
5				gat Asp									1	624
10				cca Pro					-	_			ı	672
15			Thr	tat Tyr 230								_	•	720
00				ttc Phe		·Lys							•	7 68
20				gat Asp			-	_					{	316
25				gaa Glu									8	364
30				cat His					_	_	_	-	<u>S</u>	912
35				act Thr 310								ggt Gly 320	<u>c</u>	960
40				ggt Gly									10	800
70				aaa Lys			tag	٠,					10	38

. 27/40

<210> 14

<211> 345

<212> PRT

<213> Candida boidinii

5

<400> 14

Met Gly Asp Gln Ile Val Val Leu Gly Ser Gly Ile Ile Gly Leu Tyr

1 5 10 15

10 Thr Thr Tyr Cys Leu Ile Tyr Glu Ala Gly Cys Ala Pro Ala Lys Ile 20 25 30

Thr Ile Val Ala Glu Phe Leu Pro Gly Asp Gln Ser Thr Leu Tyr Thr 35 40 45

15

Ser Pro Trp Ala Gly Gly Asn Phe Ser Cys Ile Ser Pro Ala Asp Asp 50 55 60

Thr Thr Leu Ala Tyr Asp Lys Phe Thr Tyr Leu Asn Leu Phe Lys Ile

20 65 70 75 80

His Lys Lys Leu Gly Gly Pro Glu Cys Gly Leu Asp Asn Lys Pro Ser 85 . 90 . 95

25 Thr Glu Tyr Trp Asp Phe Tyr Pro Gly Asp Glu Lys Val Asn Ser Leu 100 105 110

Lys Gln Tyr Leu Lys Asp Phe Lys Val Ile Pro Lys Ser Glu Leu Pro 115 120 125

30

Glu Gly Val Glu Tyr Gly Ile Ser Tyr Thr Thr Trp Asn Phe Asn Cys 130 135 140

Pro Val Phe Leu Gln Asn Met Ala Asn Phe Leu Asn Lys Arg Asn Val 35 145 150 155 160

Thr Ile Ile Arg Lys His Leu Thr His Ile Ser Gln Ala Tyr Leu Thr 165 170 175

40 Val Asn Thr Lys Val Val Phe Asn Cys Thr Gly Ile Gly Ala Ala Asp 180 185 190

Leu Gly Gly Val Lys Asp Glu Lys Val Tyr Pro Thr Arg Gly Gln Val
195 200 205

Val Val Val Arg Ala Pro His Ile Gln Glu Asn Lys Met Arg Trp Gly 215 220 210

Lys Asp Tyr Ala Thr Tyr Île Ile Pro Arg Pro Tyr Ser Asn Gly Glu 5 225 230 235

Leu Val Leu Gly Gly Phe Leu Gln Lys Asp Asn Trp Thr Gly Asn Thr 245 250

10

Phe Gly Phe Glu Thr Asp Asp Ile Val Ser Arg Thr Thr Ser Leu Leu 260 265 270

Pro Lys Ile Leu Asp Glu Pro Leu His Ile Ile Arg Val Ala Ala Gly 15 275 280 285

Leu Arg Pro Ser Arg His Gly Gly Pro Arg Ile Glu Ala Glu Val Cys 290 295 300

20 Glu Glu Gly Lys Leu Thr Ile His Asn Tyr Gly Ala Ser Gly Tyr Gly 315 305 310

Tyr Gln Ala Gly Tyr Gly Met Ser Tyr Glu Ala Val Lys Leu Leu Val 330 335 325

25

Asp Asn Gln Lys Val Lys Ala Lys Leu 340 345

30 <210> 15

<211> 12466

<212> DNA

<213> vector daaoSceITetON

35 <220>

<221> misc feature

<222> (38)..(183)

<223> Agrobacterium right border

40 <220>

<221> misc_feature

<222> (445)..(462)

<223> recognition / cleavage site for I-SceI endonuclease

```
<220>
     <221> terminator
     <222> (196)..(400)
     <223> complementary: 35S terminator
 5
     <220>
     <221> misc_feature
     <222> (515)..(1222)
     <223> complementary: coding for I-SceI endonuclease
10
     <220>
     <221> promoter
     <222> (1270)..(1660)
     <223> complementary: coding for pTOP10P teracyclin regulatable promoter
15
     <220>
     <221> terminator
     <222> (1735)..(1990)
     <223> complementary: NOS terminator
20
     <220>
     <221> misc feature
     <222> (2067)..(3173)
     <223> complementary: coding for Rhodotorula gracilis D-amino acid oxida
25
     <220>
     <221> promoter
     <222> (3217)..(5028)
30
     <223> complementary: Arabidopsis thaliana nitrilase I promoter
     <220>
     <221> terminator
     <222> (5118)..(5343)
35
     <223> complementary: OCS terminator
     <220>
    <221> misc_feature
     <222> (5418)..(6425)
40
     <223> complementary: coding for tetracyclin repressor rtTA
     <220>
    <221> promoter
    <222> (6479)..(7341)
45
    <223> complementary: coding for Pisum sativum ptxA promoter
```

```
<220>
    <221> terminator
    <222>
            (7345) \dots (7549)
    <223> complementary: coding for 23S terminator (functioning as homology
 5
             sequence)
    <220>
    <221> misc feature
    <222>
           (7618)..(7834)
10
    <223> Agrobacterium left border
    <400> 15
    aatattcaaa caaacacata cagcgcgact tatcatggac atacaaatgg acgaacggat
                                                                           60
    aaaccttttc acgccctttt aaatatccga ttattctaat aaacgctctt ttctcttagg
                                                                          120
15
    tttacccgcc aatatatcct gtcaaacact gatagtttaa actgaaggcg ggaaacgaca
                                                                          180
    atcagatctg gtacccggtc actggatttt ggttttagga attagaaatt ttattgatag
                                                                          240
    aagtatttta caaatacaaa tacatactaa gggtttctta tatgctcaac acatgagcga
                                                                          300
    aaccctataa gaaccctaat tcccttatct gggaactact cacacattat tctggagaaa
                                                                          360
    aatagagaga gatagatttg tagagagaga ctggtgattt ttgcgccggg taccccaaac
                                                                          420
20
    tgtctcacga cgttttgaac ccagattacc ctgttatccc tagtcgagcg gccgccagtg
                                                                          480
    tgatggatat ctgcagaatt cgccctttta gatcttattt caggaaagtt tcggaggaga
                                                                          540
    tagtgttcgg cagtttgtac atcatctgcg ggatcaggta cggtttgatc aggttgtaga
                                                                          600
    agatcaggta agacatagaa tcgatgtaga tgatcggttt gtttttgttg atttttacgt
                                                                          660
    aacagttcag ttggaatttg ttacgcagac ccttaaccag gtattctact tcttcgaaag
                                                                          720
25
    tgaaagactg ggtgttcagt acgatcgatt tgttggtaga gtttttgttg taatcccatt
                                                                          780
    taccaccatc atccatgaac cagtatgcca gagacatcgg ggtcaggtag ttttcaacca
                                                                          840
    ggttgttcgg gatggttttt ttgttgttaa cgatgaacag gctagccagt ttgttgaaag
                                                                          900
    cttggtgttt gaaagtctgg gcgccccagg tgattaccag gttacccagg tggttaacac
                                                                          960
    gttctttttt gtgcggcggg gacagtaccc actgatcgta cagcagacat acgtggtcca
                                                                         1020
30
    tgtatgcttt gtttttccac tcgaactgca tacagtaggt tttaccttca tcacgagaac
                                                                         1080
    ggatgtaagc atcacccagg atcagaccga tacctgcttc gaactgttcg atgttcagtt
                                                                         1140
    cgatcagctg ggatttgtat tctttcagca gtttagagtt cggacccagg ttcattacct
                                                                         1200
    ggtttttttt gatgtttttc atatggtcga ctaaagggcg aattccagca cactggcggc
                                                                         1260
    cgttactagc ccgggctcga gcaaatgtct agaaaggcct tatatacgta aagggtcttg
                                                                         1320
35
    cgaagactag atcactctat ctcgagttta ccactcccta tcagtgatag agaaaagtga
                                                                         1380
    aagtcgagtt taccactccc tatcagtgat agagaaaagt gaaagtcgag tttaccactc
                                                                         1440
    cctatcagtg atagagaaaa gtgaaagtcg agtttaccac tccctatccg tgatagagaa
                                                                         1500
    aagtgaaagt cgagtttacc actccctatc agtgatagag aaaagtgaaa gtcgagttta
                                                                         1560
    ccactcccta tcagtgatag agaaaatgaa agtcgagttt accactccct atcagtgata
                                                                         1620
40
    gagaaaagtg aaagtcgagc tcggtaccga gctcgaattc agcacactgg cggccgttac
                                                                         1680
    tagtggatca attcactggc cgtcgtttta caacgactca gagcttgaca ggaggcccga
                                                                         1740
    tctagtaaca tagatgacac cgcgcgcgat aatttatcct agtttgcgcg ctatattttg
                                                                         1800
    ttttctatcg cgtattaaat gtataattgc gggactctaa tcataaaaac ccatctcata
                                                                         1860
    aataacgtca tgcattacat gttaattatt acatgcttaa cgtaattcaa cagaaattat
                                                                         1920
45
    atgataatca tcgcaagacc ggcaacagga ttcaatctta agaaacttta ttgccaaatg
                                                                         1980
```

	tttgaacgat	cggggatcat	ccgggtctgt	ggcgggaact	ccacgaaaat	atccgaacgc	2040
	agcaagatct	agagcttggg	tcccgcctac	aacttcgact	cccdcdccdc	gccgtggtac	2100
	cgctggaacg	cctcgtcgac	gagctgcgcg	acatcctccg	ccgcgcccca	actctgctgg	2160
	tatcccgcac	tcgagaagcc	atacgcatgc	acaagcgtga	cctccttctc	cttcgccgct	2220
5	cgtgcgctgc	ccctgccgag	cgagagggc	gactttgtcc	ggtcgagagg	caggacgatc	2280
	cgttctgcct	caacgcgggg	tccgcctcgt	cgtgcaggtc	gcaagccgac	gttgtggcgg	2340
	aggacctcga	tgccttcgat	cgttccgtcg	ctcgagatgg	tcgggtcgag	gcgcaagcag	2400
	tgcttgagga	tccgctggac	cgtctctggg	ttgacagaca	agtcccagtc	tcccacgccg	2460
	tacgtcccgc	cgcagatgac	ttcgccacct	ggtcggggaa	tgatgtaggc	gggagaagcg	2520
10	gggtcggacg	agtccatcgt	gcatcgcttg	catggggact	tgacgaggac	ggtttgcccg	2580
	cggattggct	cggcggcttg	gtcgtcgatg	cccgcaatcg	acttggcgcc	aagtcccgta	2640
	gcgttgacca	ccaaatccgc	accgtcgaac	gcctgctcaa	gcgacgtaac	ggtccgtctc	2700
	tcaaacgtcg	cgccgagctt	ctgcagctct	cttgcaaggt	actggcagta	ctttggtgcg	2760
	tggacggaga	gggtgtcgta	ggttacgccg	atagcgccag	gtggacattc	ggaagatggg	2820
15	agggggcggt	aatttggcgt	gatgtccttg	taccagtgcc	cgagcaagcc	gtcttcgttc	2880
	tgcgcgaacc	gcctcgtccc	cttgagccac	atggcatggc	ccgtcgggac	caactcgacc	2940
	cacttcttga	aagtcgattc	ttcccatttt	gcttgtcgag	gaccgtctgt	aagcgtcatg	3000
	aaaggcgtcc	aattcgcgcc	agcccatggt	gaagcgaaag	tctggctcga	gacgtcctcc	3060
			atgcacgctg	_			3120
.20			tccgaggaca			•	3180
			tatcgcccgg				3240
			gaagcaatat				3300
	cacgtttatt	ttcctattgg	agacggtaac	gaagatcgaa	cctgtggtgg	aaatgaaaca	3360
			gtttcttttc				3420
25			taataattga				3480
			tgaatataaa				3540
		=	ttggacacaa			•	3600
			ataaaaaact				3660
	=		ttccttaaat				3720
30			gttatagata				3780
		-	aataatattg				3840
	-		tcttagctgt				3900
	-	-	gtatagattt				3960
			atttaatctt				4020
35	_		gattaaataa		_		4080
			actattattg				4140
			aatttttgaa				4200
	=	= ::	aaaccaaacc				4260
4.0			gataaaagaa				4320
40			caaattccac			•	4380
		_	gtctttttat				4440
	-		ccatatatat	· ·			4500
	_		catagettet				4560
4 ==		=	ttaatatatg			•	4620
45	acagtaactt	aattattaaa	cattctaaat	gcaaatatgc	aaagaaaaaa	aagaaaagaa	4680

				_,			
	cacaactgaa	atcaaagcca	gattcataat	aattggctac	atggttgtag	aatgtagggt	4740
	aacacaacat	ccagaattga	acactcaaat	tggatgatag	atggataatc	tttagataca	4800
	agagaattgg	ttctcttcca	ttattaacga	aaataaagaa	aaaaagttta	gcataaaagt	4860
	ttgaaactca	acataacatt	ttgaacttga	ctccttcata	ggagtgacat	gaactgacga	4920
5	atcacaaccg	attacttgtt	tgagtcatct	tccgctttct	ccaccttcga	aatgaatgtg	4980
	accggtttct	tegggtgete	atttacggtc	aagtgtaaaa	catctggtct	cgaggtacct	5040
	ggtagggata	acagggtaat	ctgggttcaa	aacgtcgtga	gacagtttgg	tgcaggtcga	5100
	aattcgagct	cggtaccaat	tcccatcttg	aaagaaatat	agtttaaata	tttattgata	5160
	aaataacaag	tcaggtatta	tagtccaagc	aaaaacataa	atttattgat	gcaagtttaa	5220
10	attcagaaat	atttcaataa	ctgattatat	cagctggtac	attgccgtag	atgaaagact	5280
	gagtgcgata	ttatgtgtaa	tacataaatt	gatgatatag	ctagcttagc	tcatcggggg	5340
	atcttgcgcc	gggtaccgag	ctcggtagca	attcccgagg	ctgtagccga	cgatggtgcg	5400
	ccaggagagt	tgttgatcta	cccaccgtac	tcgtcaattc	caagggcatc	ggtaaacatc	5460
	tgctcaaact	cgaagtcggc	catatccaga	gcgccgtagg	gggcggagtc	gtggggggta	5520
15	aatcccggac	ccggggaatc	cccgtccccc	aacatgtcca	gatcgaaatc	gtctagcgcg	5580
	tcggcatgcg	ccatcgccac	gtcctcgccg	tctaagtgga	gctcgtcccc	caggctgaca	5640
*	tcggtcgggg	gggccgtcga	cagtctgcgc	gtgtgtcccg	cggggagaaa	ggacaggcgc	5700
	ggagccgcca	gccccgcctc	ttcgggggcg	tcgtcgtccg	ggagatcgag	caggccctcg	5760
	atggtagacc	cgtaattgtt	tttcgtacgc	gcgcggctgt	acgcggaccc	actttcacat	5820
20	ttaagttgtt	tttctaatcc	gcatatgatc	aattcaaggc	cgaataagaa	ggctggctct	5880
	gcaccttggt	gatcaaataa	ttcgatagct	tgtcgtaata	atggcggcat	actatcagta	5940
•	gtaggtgttt	ccctttcttc	tttagcgact	tgatgctctt	gatcttccaa	tacgcaacct	6000
	aaagtaaaat	gccccacagc	gctgagtgca	tataacgcgt	tctctagtga	aaaaccttgt	6060
	tggcataaaa	aggctaattg	attttcgaga	gtttcatact	gtttttctgt	aggccgtgta	6120
25	tctgaatgta	cttttgctcc	attgcgatga	cttagtaaag	cacatctaaa	acttttagcg	6180
	ttattgcgta	aaaaatcttg	ccagctttcc	ccttttaaag	ggcaaaagtg	agtatggtgc	6240
	ctatctaaca	tctcaatggc	taaggcgtcg	agcaaagccc	gcttattttt	tacatgccaa	6300
	tacagtgtag	gctgctctac	accaagcttc	tgggcgagtt	tacgggttgt	taaaccttcg	6360
•	attccgacct	cattaagcag	ctctaatgcg	ctgttaatca	ctttactttt	atctaatcta	6420
30	gacatggtcg	atcgactcta	gactagtgga	tccgatatcg	cccgggctcg	actctagagt	6480
-					agctttgcac		6540
	agaatgagtg	atgaggttta	tatggtgaaa	aaaactatga	aattttgata	ttttgatata	6600
	tctttctcgt	gagtcatátt	cacggaccat	gttgcagcaa	attggaatta	aactattcat	. 6660
	tttttatgtt	aaatcattga	ttgattttta	gtgggcctcg	ttacatattc	aagagttaga	6720
35	=				ccatttttt		6780
	_				aaaagtttga		6840
	_				cgacccgtga		6900
					ttaattatgc	•	6960
					gtatctttta		7020
40					actttgatgt		7080
		-			aagggacttg		7140
					aacattaatt		7200
			-		gcttgaaaaa		7260
					ggtgtaaaat		7320
45	ctcagcttca	caaaaaattg	cggacggtca	ctggattttg	gttttaggaa	ttagaaattt	7380

	tattgataga	agtattttac	aaatacaaat	acatactaag	ggtttcttat	atgctcaaca	7440
	catgagcgaa	accctataag	aaccctaatt	cccttatctg	ggaactactc	acacattatt	7500
	ctggagaaaa	atagagagag	atagatttgt	agagagagac	tggtgatttt	ccgggggatc	7560
	ctctagagtc	gaggtaccga	gctcgaattc	actggccgtc	gttttacaac	gactcagtac	7620
5	tgcttggtaa	taattgtcat	tagattgttt	ttatgcatag	atgcactcga	aatcagccaa	7680
	ttttagacaa	gtatcaaacg	gatgttaatt	cagtacatta	aagacgtccg	caatgtgtta	7740
	ttaagttgtc	taagcgtcaa	tttgtttaca	ccacaatata	tcctgccacc	agccagccaa	7800
	cagctccccg	accggcagct	cggcacaaaa	tcaccacgcg	tctaaaaagg	tgatgtgtat	7860
	ttgagtaaaa	cagcttgcgt	catgcggtcg	ctgcgtatat	gatgcgatga	gtaaataaac	7920
10	aaatacgcaa	ggggaacgca	tgaaggttat	cgctgtactt	aaccagaaag	gcgggtcagg	7980
	caagacgacc	atcgcaaccc	atctagcccg	cgccctgcaa	ctcgccgggg	ccgatgttct	8040
	gttagtcgat	tccgatcccc	agggcagtgc	ccgcgattgg	gcggccgtgc	gggaagatca	8100
	accgctaacc	gttgtcggca	tcgaccgccc	gacgattgac	cgcgacgtga	aggccatcgg	8160
	ccggcgcgac	ttcgtagtga	tcgacggagc	gccccaggcg	gcggacttgg	ctgtgtccgc	8220
15	gatcaaggca	gccgacttcg	tgctgattcc	ggtgcagcca	agcccttacg	acatatgggc.	8280
	caccgccgac	ctggtggagc	tggttaagca	gcgcattgag	gtcacggatg	gaaggctaca	8340
	agcggccttt	gtcgtgtcgc	gggcgatcaa	aggcacgcgc	atcggcggtg	aggttgccga	8400
	ggcgctggcc	gggtacgagc	tgcccattct	tgagtcccgt	atcacgcagc	gcgtgagcta	8460
*	cccaggcact	gccgccgccg	gcacaaccgt	tcttgaatca	gaacccgagg	gcgacgctgc	8520
20	ccgcgaggtc	caggcgctgg	ccgctgaaat	taaatcaaaa	ctcatttgag	ttaatgaggt	8580
	aaagagaaaa	tgagcaaaag	cacaaacacg	ctaagtgccg	gccgtccgag	cgcacgcagc	8640
	agcaaggctg	caacgttggc	cagcctggca	gacacgccag.	ccatgaagcg	ggtcaacttt	8700
	cagttgccgg	cggaggatca	caccaagctg	aagatgtacg	cggtacgcca	aggcaagacc	8760
	attaccgagc	tgctatctga	atacatcgcg	cagctaccag	agtaaatgag	caaatgaata	8820
25	aatgagtaga	tgaattttag	cggctaaagg	aggcggcatg	gaaaatcaag	aacaaccagg	8880
	caccgacgcc	gtggaatgcc	ccatgtgtgg	aggaacgggc	ggttggccag	gcgtaagcgg	8940
	ctgggttgtc	tgccggccct	gcaatggcac	tggaaccccc	aagcccgagg	aatcggcgtg	9000
	agcggtcgca	aaccatccgg	cccggtacaa	atcggcgcgg	cgctgggtga	tgacctggtg	9060
	gagaagttga	aggccgcgca	ggccgcccag	cggcaacgca	tcgaggcaga	agacgccccg	9120
30	gtgaatcgtg	gcaaggggcc	gctgatcgaa	tccgcaaaga	atcccggcaa	ccgccggcag	9180
-	ccggtgcgcc	gtcgattagg	aagccgccca	agggcgacga	gcaaccagat	tttttcgttc	9240
	cgatgctcta	tgacgtgggc	acccgcgata	gtcgcagcat	catggacgtg	gccgttttcc	9300
	gtctgtcgaa	gcgtgaccga	cgagctggcģ	aggtgatccg	ctacgagctt	ccagacgggc	9360
	acgtagaggt	ttccgcaggg	ccggccggca	tggccagtgt	gtgggattac	gacctggtac	9420
35	tgatggcggt	ttcccatcta	accgaatcca	tgaaccgata	ccgggaaggg	aagggagaca	9480
	agcccggccg	cgtgttccgt	ccacacgttg	cggacgtact	caagttctgc	cggcgagccg	9540
	atggcggaaa	gcagaaagac	gacctggtag	aaacctgcat	tcggttaaac	accacgcacg	9600
	ttgccatgca	gcgtacgaag	aaggccaaga	acggccgcct	ggtgacggta	tccgagggtg	9660
	aagccttgat	tagccgctac	aagatcgtaa	agagcgaaac	cdddcddccd	gagtacatcg	9720
40		agctgattgg					9780
	tgacggttca	ccccgattac	tttttgatcg	atcccggcat	cggccgtttt	ctctaccgcc	9840
		cgccgcaggc					9900
		cgccggagag					9960
		gccggagtac					10020
45	tcatgcgcta	ccgcaacctg	atcgagggcg	aagcatccgc	cggttcctaa	tgtacggagc	10080

	agatgctagg	gcaaattgcc	ctagcagggg	aaaaaggtcg	aaaaggtctc	tttcctgtgg	10140
	atagcacgta	cattgggaac	ccaaagccgt	acattgggaa	ccggaacccg	tacattggga	10200
•	acccaaagcc	gtacattggg	aaccggtcac	acatgtaagt	gactgatata	aaagagaaaa	10260
	aaggcgattt	ttccgcctaa	aactctttaa	aacttattaa	aactcttaaa	acccgcctgg	10320
5	cctgtgcata	actgtctggc	cagcgcacag	ccgaagagct	gcaaaaagcg	cctacccttc	10380
	ggtcgctgcg	ctccctacgc	cccgccgctt	cgcgtcggcc	tatcgcggcc	tatgcggtgt	10440
	gaaataccgc	acagatgcgt	aaggagaaaa	taccgcatca	ggcgctcttc	cgcttcctcg	10500
	ctcactgact	cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	10560
	gcggtaatac	ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	10620
10	ggccagcaaa	aggccaggaa	ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggctc	10680
	cgcccccctg	acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	10740
	ggactataaa	gataccaggc	gtttccccct	ggaagctccc	tegtgegete	tcctgttccg	10800
	accctgccgc	ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgctttct	10860
	catagctcac	gctgtaggta	tctcagttcg	gtgtaggtcg	ttcgctccaa	gctgggctgt	10920
15	gtgcacgaac	ccccgttca	gcccgaccgc	tgcgccttat	ccggtaacta	tcgtcttgag	10980
	tccaacccgg	taagacacga	cttatcgcca	ctggcagcag	ccactggtaa	caggattagc	11040
	agagcgaggt	atgtaggcgg	tgctacagag	ttcttgaagt	ggtggcctaa	ctacggctac	11100
	actagaagga	cagtatttgg	tatctgcgct	ctgctgaagc	cagttacctt	cggaaaaaga	11160
	gttggtagct	cttgatccgg	caaacaaacc	accgctggta	gcggtggttt	ttttgtttgc	11220
20	aagcagcaga	ttacgcgcag	aaaaaaagga	tctcaagaag	atcctttgat	cttttctacg	11280
	gggtctgacg	ctcagtggaa	cgaaaactca	cgttaaggga	ttttggtcat	gcatgatata	11340
	tctcccaatt	tgtgtagggc	ttattatgca	cgcttaaaaa	taataaaagc	agacttgacc	11400
	tgatagtttg	gctgtgagca	attatgtgct	tagtgcatct	aacgcttgag	ttaagccgcg	11460
	ccgcgaagcg	gcgtcggctt	gaacgaattt	ctagctagac	attatttgcc	gactaccttg	11520
25	gtgatctcgc	ctttcacgta	gtggacaaat	tcttccaact	gatctgcgcg	cgaggccaag	11580
	cgatcttctt	cttgtccaag	ataagcctgt	ctagcttcaa	gtatgacggg	ctgatactgg	11640
	gccggcaggc	gctccattgc	ccagtcggca	gcgacatcct	tcggcgcgat	tttgccggtt	11700
	actgcgctgt	accaaatgcg	ggacaacgta	agcactacat	ttcgctcatc	gccagcccag	11760
	tcgggcggcg	agttccatag	cgttaaggtt	tcatttagcg	cctcaaatag	atcctgttca	11820
30	ggaaccggat	caaagagttc	ctccgccgct	ggacctacca	aggcaacgct	atgttctctt	11880
	gcttttgtca	gcaagatagc	cagatcaatg	tcgatcgtgg	ctggctcgaa	gatacctgca	11940
	agaatgtcat	tgcgctgcca	ttctccaaat	tgcagttcgc	gcttagctgg	ataacgccac	12000
	ggaatgatgt	cgtcgtgcac	aacaatggtg	acttctacag	cgcggagaat	ctcgctctct	12060
	ccaggggaag	ccgaagtttc	caaaaggtcg	ttgatcaaag	ctcgccgcgt	tgtttcatca	12120
35	agccttacgg	tcaccgtaac	cagcaaatca	atatcactgt	gtggcttcag	gccgccatcc	12180
	actgcggagc	cgtacaaatg	tacggccagc	aacgtcggtt	cgagatggcg	ctcgatgacg	12240
	ccaactacct	ctgatagttg	agtcgatact	tcggcgatca	ccgcttcccc	catgatgttt	12300
		tagggcgact					12360
	catcgaccca	cggcgtaacg	cgcttgctgc	ttggatgccc	gaggcataga	ctgtacccca	12420
40	aaaaaacagt	cataacaagc	catgaaaacc	gccactgcgt	tccatg		12466

<210> 16

<211> 12539

45 <212> DNA

<213> daaoNit-PRecombination

```
<220>
  5
     <221> misc feature
     <222> (38)..(183)
     <223> Agrobacterium right border
     <220>
 10
     <221> terminator
     <222> (196)..(400)
     <223> complementary: 35S terminator
     <220>
 15
     <221> misc feature
     <222> (445)..(462)
     <223> cleavage / recognition site for I-SceI endonuclease
     <220>
 20 <221> terminator
     <222> (589)..(844)
<223> complementary: nos terminator
    <220>
 25 <221> misc_feature
     <222> (921)..(2027)
     <223> complementary: coding for Rhodotorula gracilis D-amino acid oxida
30 <220>
     <221> promoter
     <222> (2071)..(3882)
     <223> complementary: A-thaliana nitrilase I promoter
 35 <220>
     <221> terminator
     <222> (3972)..(4176)
     <223> complementary: 35S terminator
 40
     <220>
     <221> misc feature
     <222> (4251)..(6248)
     <223> complementary: coding for beta-glucuronidase
```

```
<220>
    <221> promoter
    <222>
            (6302)..(7619)
           complementar. coding for sTPT promoter
    <223>
5
    <220>
    <221> misc feature
    <222>
           (7691)..(7907)
    <223> Agrobacterium left border
10
    <400> 16
                                                                            60
    aatattcaaa caaacacata cagcgcgact tatcatggac atacaaatgg acgaacggat
                                                                           120
    aaaccttttc acgccctttt aaatatccga ttattctaat aaacgctctt ttctcttagg
                                                                           180
    tttacccqcc aatatatcct gtcaaacact gatagtttaa actgaaggcg ggaaacgaca
    atcagatctg gtacccggtc actggatttt ggttttagga attagaaatt ttattgatag
                                                                           240
15
                                                                           300
    aagtatttta caaatacaaa tacatactaa gggtttctta tatgctcaac acatgagcga
                                                                           360
    aaccctataa gaaccctaat tcccttatct gggaactact cacacattat tctggagaaa
                                                                           420
    aatagagaga gatagatttg tagagagaga ctggtgattt ttgcgccggg taccccaaac
    tgtctcacga cgttttgaac ccagattacc ctgttatccc tagtcgagcg gccgccagtg
                                                                           480
    tgatggatat ctgcagaatt cgccctttta gatcagcaca ctggcggccg ttactagtgg
                                                                           540
20
    atcaattcac tggccgtcgt tttacaacga ctcagagctt gacaggaggc ccgatctagt
                                                                           600
                                                                           660
    aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat tttgttttct
                                                                           720
     atcqcqtatt aaatqtataa ttqcqqqact ctaatcataa aaacccatct cataaataac
                                                                           780
     gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa ttatatgata
                                                                           840
25
     atcatcgcaa gaccggcaac aggattcaat cttaagaaac tttattgcca aatgtttgaa
     cgatcgggga tcatccgggt ctgtggcggg aactccacga aaatatccga acgcagcaag
                                                                           900
     atctagaget tgggtecege ctacaactte gactecegeg cegegeegtg gtacegetgg
                                                                           960
     aacgcctcgt cgacgagctg cgcgacatcc tccgccgcgc cccaactctg ctggtatccc
                                                                          1020
                                                                          1080
     qcactcgaga agccatacgc atgcacaagc gtgacctcct tctccttcgc cgctcgtgcg
30
                                                                          1140
     ctgcccctgc cgagcgagag gggcgacttt gtccggtcga gaggcaggac gatccgttct
                                                                          1200
     qcctcaacgc ggggtccgcc tcgtcgtgca ggtcgcaagc cgacgttgtg gcggaggacc
                                                                          1.260
     togatgcott cgatogttoc gtogotogag atggtogggt cgaggogcaa gcagtgottg
     aggatecget ggacegtete tgggttgaca gacaagtece agteteceae geegtacgte
                                                                          1320
                                                                          1380
     ccqccqcaqa tqacttcqcc acctgqtcqq ggaatgatqt aggcgggaga agcggggtcq
35
                                                                          1440
     qacqagtcca tcgtgcatcg cttgcatggg gacttgacga ggacggtttg cccgcggatt
                                                                          1500
     ggctcggcgg cttggtcgtc gatgcccgca atcgacttgg cgccaagtcc cgtagcgttg
     accaccadat ccgcaccgtc gaacgcctgc tcaagcgacg taacggtccg tctctcaaac
                                                                          1560
                                                                          1620
     qtcqcqcqa qcttctqcaq ctctcttqca aggtactggc agtactttgg tgcgtggacg
     gagagggtgt cgtaggttac gccgatagcg ccaggtggac attcggaaga tgggaggggg
                                                                          1680
40
                                                                          1740
     cggtaatttg gcgtgatgtc cttgtaccag tgcccgagca agccgtcttc gttctgcgcg
     aaccgcctcg tccccttgag ccacatggca tggcccgtcg ggaccaactc gacccacttc
                                                                          1800
     ttqaaaqtcq attcttccca ttttgcttgt cgaggaccgt ctgtaagcgt catgaaaggc
                                                                          1860
                                                                          1920
     gtocaattog cgccagccca tggtgaagcg aaagtotggo togagacgto ctocggcaag
                                                                          1980
     tegegegega gaatatgeae getgtageee tteegagega ggatgaggge getgeteaga
45
                                                                          2040
     ccgataacgc ctgatccgag gacaacgacg cgcttctgcg agtgcatggg ccctcgacta
```

	gagtcgagat	ccgatatcgc	ccgggctcga	gtctttgttt	tttactttgg	ttcatgacac	2100
	tcagagactt	gagagaagca	atatatagac	ttttttttgt	ttttttttg	tggtcacgtt	2160
	tattttccta	ttggagacgg	taacgaagat	cgaacctgtg	gtggaaatga	aacaaggtgg	2220
	gactagccca	cgtggtttct	tttctctgca	ttgatttgtt	tttgttttt	ttgtaaagtt	2280
5	cacatcaaac	ctactaataa	ttgagaagaa	aaataaaatc	tattgattga	ttaaaccagc	2340
	cgatgcttta	tgtctgaata	taaaaaagaa	gtgaaaaccc	cgtttaagaa	ttacaacggt	2400
	ggtttacaaa	gtatttggac	acaataaatc	caaacgaaat	aaaacaaaat	ggagaactac	2460
	caaataaaaa	acaaataaaa	aacttaaaag	aatttattcc	atttttttc	ccgtagaatt	2520
	tattctttta	tggattcctt	aaatccatat	ttgatgcatt	ttgattcctc	ataataggta	2580
10	ataatatata	ctatgttata	gatatgtttc	taattcgtat	taacctacct	ttttttggtc	2640
	gtacgattct	acctaataat	attgaacgga	attgatgttt	tggaccactt	agaaagtatt	2700
	tttttttgg	tttgtcttag	ctgtatttca	ttaaatataa	atttaaataa	gaaatgtcat	2760
	aaataaaatt	tgacgtatag	attttttaaa	tccattttat	gttatttaat	atttgaaatg	2820
	tgagtttggc	tcctatttaa	tcttaggatg	ggttaatact	aagttttcct	taatgaatta	2880
15	tctcagagaa	actggattaa	ataaactaaa	aaatagatca	atgtgttttg	gtccggtcaa	2940
	atatctttgg	atttactatt	attggcgaaa	agaaagtctc	atatagtaaa	tcatattcct	3000
	acaagagaaa	tcaaaatttt	tgaattaaca	tggattgtat	agtttcttat	ataaccaatt	3060
	agttcgcatc	aagaaaacca	aaccccaatt	aataatcaaa	cgggcttggt	aggaatattt	3120
-	cattgcagct	ttcagataaa	agaaaaaaac	acacactcaa	gtcttttatt	tcatctttct	3180
20	tacttgcagg	aactcaaatt	ccactttgcc	acttttcttt	acaaataaac	acaaattgtc	3240
	-	aatagtcttt	=				3300
	attgtgacag	ccatccatat	atatagggaa	tgtaaaacaa	caacatgtga	agtcacatat	3360
	acgtaatggt	ttagcatagc	ttctattttc	gttgtcaata	ttagtcattc	caaaacattt	3420
	-	taaattaata	-				3480
25	acttaattat	taaacattct	aaatgcaaat	atgcaaagaa	aaaaaagaaa	agaacacaac	3540
	tgaaatcaaa	gccagattca	taataattgg	ctacatggtt	gtagaatgta	gggtaacaca	3600
		ttgaacactc					3660
	ttggttctct	tccattatta	acgaaaataa	agaaaaaaag	tttagcataa	aagtttgaaa	3720
	•	cattttgaac	-				3780
30	accgattact	tgtttgagtc	atcttccgct	ttctccacct	tcgaaatgaa	tgtgaccggt	3840
		gctcatttac	- -				3900
	gataacaggg	taatctgggt'	tcaaaacgtc	gtgagacagt	ttggtgcagg	tcgaaattcg	3960
		ccggtcactg	= '				4020
		tacaaataca					4080
35		cctaattccc					4140
		gatttgtaga					4200
		aggctgtagc					4260
		gcggttttc					4320
		teggtttgeg					4380
40		gcgaggtcgc				•	4440
		caaagacgcg					4500
		tgtacattga					4560
		gatgcagttt					4620
		aatcgccgct					4.680
45	tcaaagagat	cgctgatggt	atcggtgtga	gcgtcgcaga	acattacatt	gacgcaggtg	4740

				., .			
	atcggacgcg	tcgggtcgag	tttacgcgtt	gcttccgcca	gtggcgaaat	attcccgtgc	4800
	acttgcggac	gggtatccgg	ttcgttggca	atactccaca	tcaccacgct	tgggtggttt	4860
	ttgtcacgcg	ctatcagctc	tttaatcgcc	tgtaagtgcg	cttgctgagt	ttccccgttg	4920
	actgcctctt	cgctgtacag	ttctttcggc	ttgttgcccg	cttcgaaacc	aatgcctaaa	4980
5	gagaggttaa	agccgacagc	agcagtttca	tcaatcacca	cgatgccatg	ttcatctgcc	5040
	cagtcgagca	tctcttcagc	gtaagggtaa	tgcgaggtac	ggtaggagtt	ggccccaatc	5100
	cagtccatta	atgcgtggtc	gtgcaccatc	agcacgttat	cgaatccttt	gccacgtaag	5160
	tccgcatctt	catgacgacc	aaagccagta	aagtagaacg	gtttgtggtt	aatcaggaac	5220
	tgttcgccct	tcactgccac	tgaccggatg	ccgacgcgaa	gcgggtagat	atcacactct	5280
10	gtctggcttt	tggctgtgac	gcacagttca	tagagataac	cttcacccgg	ttgccagagg	5340
	tgcggattca	ccacttgcaa	agtcccgcta	gtgccttgtc	cagttgcaac	cacctgttga	5400
	tccgcatcac	gcagttcaac	gctgacatca	ccattggcca	ccacctgcca	gtcaacagac	5460
	gcgtggttac	agtcttgcgc	gacatgcgtc	accacggtga	tatcgtccac	ccaggtgttc	·5520
	ggcgtggtgt	agagcattac.	gctgcgatgg	attccggcat	agttaaagaa	atcatggaag	5580
15	taagactgct	ttttcttgcc	gttttcgtcg	gtaatcacca	ttcccggcgg	gatagtctgc	5640
	cagttcagtt	cgttgttcac	acaaacggtg	atacctgcac	atcaacaaat	tttggtcata	5700
	tattagaaaa	gttataaatt	aaaatataca	cacttataaa	ctacagaaaa	gcaattgcta	5760
	tatactacat	tcttttattt	tgaaaaaaat	atttgaaata	ttatattact	actaattaat	5820
	gataattatt	atatatatat.	caaaggtaga	agcagaaact	tacgtacact	tttcccggca	5880
20	ataacatacg	gcgtgacatc	ggcttcaaat	ggcgtatagc	cgccctgatg	ctccatcact	5940
	tcctgattat	tgacccacac	tttgccgtaa	tgagtgaccg	catcgaaacg	cagcacgata	6000
*	cgctggcctg	cccaaccttt	cggtataaag	acttcgcgct	gataccagac	gttgcccgca	6060
	taattacgaa	tatctgcatc	ggcgaactga	tcgttaaaac	tgcctggcac	agcaattgcc	6120
	cggctttctt	gtaacgcgct	ttcccaccaa	cgctgaccaa	ttccacagtt	ttcgcgatcc	6180
25	agactgaatg	cccacaggcc	gtcgagtttt	ttgatttcac	gggttggggt	ttctacagga	6240
	cgtaccatgg	tcgatcgacț	ctagactagt	ggatccgata	tcgcccgggc	tcgactctag	6300
	atgaaatcga	aattcagagt	tttgatagtg	agagcaaaga	gggacggact	tatgaggatt	6360
			tacttgttga				6420
•			atggagttat				6480
30	gtagagaatg	atgtaattag	ataagaatct	tgagatactg	gtttagattg	gatgagtgta	6540
		=	agtggatggt				6600
			tcatctgtat				6660
	tgaaattttg			-		-	6720
	-	_	caagaaagta				6780
35	taaaggtatc						6840
	_	-	acgttattct				6900
	_		ttatcaaagt				6960
			taatttttt				7020
			atgtattatg				7080
40	-		tcttttttt				7140
	-		tcaattaatt				7200
	-	_	tgagggaacc				7260
			gtttatactt				7320
4 ==	=	-	cttatgaagt				7380
45	gtgattgatg	ttattggttg	attgagtgat	tattgtatta	gtatgtaagc	aaagatgatt	7440

			•	,			
•	gttcttatga	ggtaatttgt	tactcattca	tccttttgca	tatgagaaat	tgtgttagcg	7500
	tacgcaaaac	aatagagaac	ataaaagata	tgtgtattta	tttaaggtga	cttttgttaa	7560
	tgatattgta	gtatctatac	atttatatat	aacttgttga	atttgagtat	aagctatcag	7620
*	gatccggggg	atcctctaga	gtcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	7680
5	aacgactcag	tactgcttgg	taataattgt	cattagattg	tttttatgca	tagatgcact	7740
	cgaaatcagc	caattttaga	caagtatcaa	acggatgtta	attcagtaca	ttaaagacgt	7800
	ccgcaatgtg	ttattaagtt	gtctaagcgt	caatttgttt	acaccacaat	atatcctgcc	7860
	accagccagc	caacagctcc	ccgaccggca	gctcggcaca	aaatcaccac	gcgtctaaaa	7920
	aggtgatgtg	tatttgagta	aaacagcttg	cgtcatgcgg	tcgctgcgta	tatgatgcga	7980
10	tgagtaaata	aacaaatacg	caaggggaac	gcatgaaggt	tatcgctgta	cttaaccaga	8040
	aaggcgggtc	aggcaagacg	accatcgcaa	cccatctagc	ccgcgccctg	caactcgccg	8100
	gggccgatgt	tctgttagtc	gattccgatc	cccagggcag	tgcccgcgat	tgggcggccg	8160
	tgcgggaaga	tcaaccgcta	accgttgtcg	gcatcgaccg	cccgacgatt	gaccgcgacg	8220
	tgaaggccat	cggccggcgc	gacttcgtag	tgatcgacgg	agcgccccag	gcggcggact	8280
15 .	tggctgtgtc	cgcgatcaag	gcagccgact.	tcgtgctgat	tccggtgcag	ccaagccctt	8340
	acgacatatg	ggccaccgcc	gacctggtgg	agctggttaa	gcagcgcatt	gaggtcacgg	8400
	atggaaggct	acaagcggcc	tttgtcgtgt	cgcgggcgat	caaaggcacg	cgcatcggcg	8460
	gtgaggttgc	cgaggcgctg	gccgggtacg	agctgcccat	tcttgagtcc	cgtatcacgc	8520
	agcgcgtgag	ctacccaggc	actgccgccg	ccggcacaac	cgttcttgaa	tcagaacccg	8580
20	agggcgacgc	tgcccgcgag	gtccaggcgc	tggccgctga	aattaaatca	aaactcattt	8640
	gagttaatga	ggtaaagaga	aaatgagcaa	aagcacaaac	acgctaagtg	ceggeegtee	8700
	gagcgcacgc	agcagcaagg	ctgcaacgtt	ggccagcctg	gcagacacgc	cagccatgaa	8760
	gcgggtcaac	tttcagttgc	cggcggagga	tcacaccaag	ctgaagatgt	acgcggtacg	8820
	ccaaggcaag	accattaccg	agctgctatc	tgaatacatc	gcgcagctac	cagagtaaat	8880
25	gagcaaatga	ataaatgagt	agatgaattť.	tagcggctaa	aggaggcggc	atggaaaatc	8940
	aagaacaacc	aggcaccgac	gccgtggaat	gccccatgtg	tggaggaacg	ggcggttggc	9000
	caggcgtaag	cggctgggtt	gtctgccggc	cctgcaatgg	cactggaacc	cccaagcccg	9060
	aggaatcggc	gtgagcggtc	gcaaaccatc	cggcccggta	caaatcggcg	cggcgctggg	9120
	tgatgacctg	gtggagaagt	tgaaggccgc	gcaggccgcc	cagcggcaac	. gcatcgaggc	9180
30	agaagacgcc	ccggtgaatc	gtggcaaggg	gccgctgatc	gaatccgcaa	agaatcccgg	9240
			gccgtcgatt				9300
	gattttttcg	ttccgatgct	ctatgacgtg	ggcacccgcg	atagtcgcag	catcatggac	9360
			gaagcgtgac				9420
			ggtttccgca				9480
35			ggtttcccat		•		9540
	_		ccgcgtgttc				9600
			aaagcagaaa				9660
			gcagcgtacg				9720
			gattagccgc				9780
40			gctagctgat				9840
			tcaccccgat				9900
			ccgcgccgca				9960
			cagcgccgga				10020
			cctgccggag				10080
45	ggcccgatcc	tagtcatgcg	ctaccgcaac	ctgatcgagg	gcgaagcatc	cgccggttcc	10140

	taatgtacgg	agcagatgct	agggcaaatt	gccctagcag	gggaaaaagg	tcgaaaaggt	10200
	ctctttcctg	tggatagcac	gtacattggg	aacccaaagc	cgtacattgg	gaaccggaac	10260
5	ccgtacattg	ggaacccaaa	gccgtacatt	gggaaccggt	cacacatgta	agtgactgat	10320
	ataaaagaga	aaaaaggcga	tttttccgcc	taaaactctt	taaaacttat	taaaactctt	10380
	aaaacccgcc	tggcctgtgc	ataactgtct	ggccagcgca	cagccgaaga	gctgcaaaaa	10440
	gcgcctaccc	ttcggtcgct	gcgctcccta	cgccccgccg	cttcgcgtcg	gcctatcgcg	10500
	gcctatgcgg	tgtgaaatac	cgcacagatg	cgtaaggaga	aaataccgca	tcaggcgctc	10560
	ttccgcttcc	tcgctcactg	actcgctgcg	ctcggtcgtt	cggctgcggc	gagcggtatc	10620
	agctcactca	aaggcggtaa	tacggttatc	cacagaatca	ggggataacg	caggaaagaa	10680
10	catgtgagca	aaaggccagc	aaaaggccag	gaaccgtaaa	aaggccgcgt	tgctggcgtt	10740
	tttccatagg	ctccgccccc	ctgacgagca	tcacaaaaat	cgacgctcaa	gtcagaggtg	10800
	gcgaaacccg	acaggactat	aaagatacca	ggcgtttccc	cctggaagct	ccctcgtgcg	10860
	ctctcctgtt	ccgaccctgc	cgcttaccgg	atacctgtcc	gcctttctcc	cttcgggaag	10920
	cgtggcgctt	tctcatagct	cacgctgtag	gtatctcagt	tcggtgtagg	tcgttcgctc	10980
15	caagctgggc	tgtgtgcacg	aaccccccgt	tcagcccgac	cgctgcgcct	tatccggtaa	11040
	ctatcgtctt	gagtccaacc	cggtaagaca	cgacttatcg	ccactggcag	cagccactgg	11100
	taacaggatt	agcagagcga	ggtatgtagg	cggtgctaca	gagttcttga	agtggtggcc	11160
	taactacggc	tacactagaa	ggacagtatt	tggtatctgc	gctctgctga	agccagttac	11220
	cttcggaaaa	agagttggta	gctcttgatc	cggcaaacaa	accaccgctg	gtagcggtgg	11280
20	tttttttgtt	tgcaagcagc	agattacgcg	cagaaaaaaa	ggatctcaag	aagatccttt	11340
	gatcttttct	acggggtctg	acgctcagtg	gaacgaaaac	tcacgttaag	ggattttggt	11400
•	catgcatgat	atatctccca	atttgtgtag	ggcttattat	gcacgcttaa	aaataataaa	11460
	agcagacttg	acctgatagt	ttggctgtga	gcaattatgt	gcttagtgca	tctaacgctt	11520
	gagttaagcc	gcgccgcgaa	gcggcgtcgg	cttgaacgaa	tttctagcta	gacattattt	11580
25	gccgactacc	ttggtgatct	cgcctttcac	gtagtggaca	aattcttcca	actgatctgc	11640
	gcgcgaggcc	aagcgatctt	cttcttgtcc	aagataagcc	tgtctagctt	caagtatgac	11700
	gggctgatac	tgggccggca	ggcgctccat	tgcccagtcg	gcagcgacat	ccttcggcgc	11760
	gattttgccg	gttactgcgc	tgtaccaaat	gcgggacaac	gtaagcacta	catttcgctc	11820
	atcgccagcc	cagtcgggcg	gcgagttcca	tagcgttaag	gtttcattta	gcgcctcaaa	11880
30	tagatcctgt	tcaggaaccg	gatcaaagag	ttcctccgcc	gctggaccta	ccaaggcaac	11940
	gctatgttct.	cttgcttttg	tcagcaagat	agccagatca	atgtcgatcg	tggctggctc	12000
	gaagatacct	gcaagaatgt	cattgcgctg	.ccattctcca	aattgcagtt	cgcgcttagc .	12060
35	tggataacgc	cacggaatga	tgtcgtcgtg	cacaacaatg	gtgacttcta	cagcgcggag	12120
	aatctcgctc	tctccagggg	aagccgaagt	ttccaaaagg	tcgttgatca,	aagctcgccg	12180
	cgttgtttca	tcaagcctta	cggtcaccgt	aaccagcaaa	tcaatatcac	tgtgtggctt	12240
	caggccgcca	tccactgcgg	agccgtacaa	atgtacggcc	agcaacgtcg	gttcgagatg	12300
	gcgctcgatg	acgccaacta	cctctgatag	ttgagtcgat	acttcggcga	tcaccgcttc	12360
	ccccatgatg	tttaactttg	ttttagggcg	actgccctgc	tgcgtaacat	cgttgctgct	12420
	ccataacatc	aaacatcgac	ccacggcgta	acgcgcttgc	tgcttggatg	cccgaggcat	12480
40	agactgtacc	ccaaaaaaac	agtcataaca	agccatgaaa	accgccactg	cgttccatg	12539