1.11 Theorem. Let $a, b, c, n \in \mathbb{Z}$ with n > 0. If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proof. Let $a, b, c, n \in \mathbb{Z}$ with n > 0 be given such that $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Then by definition, $n \mid (a-b)$ and $n \mid (b-c)$. We may choose $t, u \in \mathbb{Z}$ such that a - b = nt and b - c = nu, by definition of divisibility. Using algebra, b = nu + c, and by substitution,

$$a - (nu + c) = nt,$$

$$a - nu - c = nt,$$

$$a - c = nt + nu$$

$$= n(t + u).$$

By CPI, we may choose $k \in \mathbb{Z}$ such that t+u=k. Therefore, a-c=nk, and by definition of divisibility, $n \mid (a-c)$. Lastly, by definition of congruence of modulo, $a \equiv c \pmod{n}$.