

FCTUC FACULDADE DE CIÊNCIAS
E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Universidade de Coimbra Faculdade de Ciências Tecnologia Licenciatura em Engenharia Informática - Introdução à Inteligência Artificial 2018/2019 3º Ano – 2º Semestre

RELATÓRIO TP2

DEIBaLLZ The Evolutionary Tactic

Coimbra, 24 de Maio de 2019

2016225773 João Pedro Santos Rodrigues uc2016225773@student.uc.pt 2016225581 Cláudio André Ventura Alves uc2016225581@student.uc.pt

Introdução

O presente relatório tem como objetivo clarificar e explicar as decisões tomadas em relação ao problema exposto no Trabalho Prático nrº2, que pretende aprofundar a análise do Algoritmo Genético.

Este trabalho prático teve como objetivos genéricos:

- A aquisição de competência de modelação de um problema como uma pesquisa em um espaço de estados.
- A aquisição de competência relacionadas com analise, desenvolvimento, implementação e teste de agentes adaptativos.

O Algoritmo Genético tem por base encontrar soluções aproximadas em problemas de procura. Este algoritmo usa técnicas inspiradas na biologia evolutiva como aptidão, recombinação, mutação, seleção e elitismo.

Meta 1

Nesta meta foi implementado todo o código essencial para o bom funcionamento da rede neuronal.

Na arquitetura da rede neuronal desenvolvida existem 3 camadas com vários nós. A primeira camada é a Camada de Entrada com 15 nós, a segunda camada é a Camada Escondida com 20 nós e a última camada é a Camada de Saída com 2 nós.

Seleção

Neste passo do algoritmo foi implementado o mecanismo de seleção por torneio conforme pedido no enunciado. Este mecanismo seleciona um número de indivíduos da geração de forma aleatória, retornando apenas o melhor individuo dessa seleção. Este número de indivíduos é parametrizado através da interface do Unity.

Mutação

O operador de mutação desenvolvido tem como parâmetro a probabilidade, parâmetro este que é recebido na interface do Unity. Quando a função de mutação é chamada, é gerado um número aleatório entre 0 e 1, se este número estiver dentro da probabilidade, a mutação é realizada. A mutação consiste na geração aleatório de um novo genoma do indivíduo, aumentando assim a variabilidade da população.

Cross-over

O operador de crossover desenvolvido tem como parâmetro a probabilidade, parâmetro este que é recebido na interface do Unity. Quando a função de mutação é chamada, é gerado um número aleatório entre 0 e 1, se este número estiver dentro da probabilidade, o crossover é realizado. O crossover consiste na recombinação a dois pontos, isto é, a partir de dois indivíduos já gerados, é gerado um novo indivíduo com características dos seus antecessores.

Aptidão

A função de aptidão/ fitness serve para avaliar o desempenho de cada individuo.

Fitness += distanceTravelled * 1 / 100

Fitness += Mathf.Pow(distanceToBall, -1) * 50

Fitness += driveTime * 10

Fitness += GoalsOnAdversaryGoal * 250000

Fitness -= GoalsOnMyGoal* 450000

Nesta função de aptidão foram valorizadas: a distância percorrida, a distância à bola, o tempo de condução e os golos marcados na baliza do adversário. Foi desvalorizado os golos marcados na nossa baliza.

Elitismo

O elitismo consiste em manter para a geração seguinte uma percentagem de indivíduos com os melhores resultados da função de aptidão. Por exemplo se o elitismo é de 0.1 e nós temos 100 indivíduos, o elitismo vai manter os 10 melhores indivíduos e passá-los para a geração seguinte. O elitismo é uma variável que pode ou não ser utilizada, por isso é necessário haver um parâmetro de check e um parâmetro do valor de elitismo pretendido.

Meta 2

A experimentação é uma fase fundamental no desenrolar deste trabalho, pois para perceber todos os fatores do algoritmo genético é preciso fazer variados testes e assim retirar as suas respetivas conclusões.

Testes 1, 2, 3 e 4

	Sem elitismo		Sem elitismo
15G	Population 40 Tournment Size 15	15G	Population 40 Tournment Size 15
	Crossover 0,4 Mutation 0,1		Crossover 0,1 Mutation 0,4
1	600,5756	1	-399379,4
2	-149493,4	2	50570,44
3	100597,8	3	500560
4	550490,1	4	100547,9
5	1000621	5	50399,69
6	750677,8	6	300694,3
7	300695,3	7	500547,7
8	-349569,8	8	-149389,4
9	300660,6	9	550680,6
10	550514,5	10	-149419,3
11	50690,59	11	300539,8
12	50607,41	12	50580,09
13	-149333,9	13	100670,5
14	50567,13	14	50627,97
15	-599369,6	15	50662,03
	163930,407		127259,528

	Com elitismo 0,1		Com elitismo 0,1
15G	Population 40 Tournment Size 15	15G	Population 40 Tournment Size 15
	Crossover 0,4 Mutation 0,1		Crossover 0,1 Mutation 0,4
1	550608,1	1	50507,78
2	100502,2	2	300676,3
3	500507,8	3	50580,56
4	300608,1	4	500520,8
5	250520,3	5	-14937
6	550610,4	6	690,5929
7	550526,4	7	250680,9
8	1000663	8	300641,4
9	1250518	9	300607,7
10	-149360,1	10	300340,1
11	50665,03	11	300510,6
12	-149373,3	12	300683,8
13	359,7889	13	50697,06
14	250644,1	14	690,8282
15	300516,4	15	250600,8
	357234,4146		196232,8147

O objetivo deste teste foi verificar o efeito do elitismo, crossover e mutação.

Em relação ao elitismo é verificado que os valores obtidos com esta componente ativa são mais satisfatórios do que com a componente inativa, o que vai de encontro às nossas iniciais conclusões. Na nossa opinião o valor ideal para o elitismo é de 0,1 / 10%, pois se o valor for muito maior, a geração não evolui o que vai contra o objetivo da rede neuronal. Confirma-se então que se deve manter certos indivíduos de geração em geração.

Em relação ao crossover e à mutação, concluímos que a taxa de crossover deve ser maior que a taxa de mutação, o que vai de encontro às nossas iniciais conclusões, pois já tendo uma grande variabilidade, o objetivo passa por recombinar indivíduos, melhorando assim o seu desempenho.

Testes 5,6,7 e 8

	Sem elitismo		Sem elitismo
30G	Population 40 Tournment Size 15	30G	Population 40 Tournment Size 15
	Crossover 0,4 Mutation 0,1		Crossover 0,1 Mutation 0,4
1	50681,41	1	-149414,4
2	-149359,3	2	50539,97
3	500602,7	3	100577,3
4	600617,8	4	-149452,5
5	750567,8	5	500510,5
6	50577,16	6	50657,63
7	1000547	7	100697,3
8	-399392,3	8	250600,7
9	50657,81	9	300580,6
10	250620,8	10	530,1863
11	50640,59	11	100529,8
12	500640,1	12	550694,2
13	300638,1	13	300575,4
14	550612,8	14	300530,6
15	350507,9	15	550504,4
	297277,358		190577,4458

	Com elitismo 0,1		Com elitismo 0,1
30G	Population 40 Tournment Size 15	30G	Population 40 Tournment Size 15
	Crossover 0,4 Mutation 0,1		Crossover 0,1 Mutation 0,4
1	50667,59	1	500668
2	750680,7	2	300520,6
3	550628,1	3	-149323
4	300329,8	4	50611,41
5	300648,1	5	300684,1
6	750639,9	6	300630,8
7	750641,1	7	250542,1
8	750598,3	8	50671,63
9	300587,1	9	550540,6
10	2000668	10	50610,47
11	550586,2	11	-149462,1
12	500677,8	12	50636,91
13	<u>1250608</u>	13	750689,8
14	50637,66	14	100669,8
15	1250632	15	-149353,6
	673948,69		187289,168

O objetivo deste teste foi verificar o efeito do número de gerações. Ao aumentar o número de gerações verificamos que os valores ficaram mais consolidados, logo quanto mais gerações, maior a evolução da rede neuronal.

Com isto, concluímos que obtivemos melhores valores com 30 gerações e elitismo 0,1.

Testes 9 e 10

	Com elitismo 0,1		Com elitismo 0,1
30G	Population 40 Tournment Size 15	30G	Population 40 Tournment Size 15
	Crossover 0,3 Mutation 0,1		Crossover 0,2 Mutation 0,1
1	1800627	1	750687,6
2	300656,6	2	750677,3
3	3300578	3	300654,7
4	1000648	4	500597
5	50617,28	5	550637,9
6	250672,9	6	300536,4
7	550627,9	7	550618,1
8	550567,3	8	300550,8
9	1000698	9	300617,4
10	300650	10	750608,1
11	-149469,4	11	750666,6
12	1000596	12	300607,4
13	500537,9	13	250691,7
14	1250658	14	1000648
15	100677,9	15	550598,1
	787289,5587		527293,14

Através deste teste é possível verificar que o melhor valor de crossover que encontrámos é de 0,3.

Com este teste decidimos então que o valor final de crossover é de 0,3.

Testes 11, 12 e 13

	Com elitismo 0,1		Com elitismo 0,1
30G	Population 40 Tournment Size 15	30G	Population 40 Tournment Size 15
	Crossover 0,3 Mutation 0,05		Crossover 0,3 Mutation 0,2
1	. 550647,9	1	750597,9
2	800677,9	2	1300567
3	1250538	3	550537,9
4	750605	4	250527,8
5	1000638	5	50690,84
6	1000626	6	550616,4
7	50615,03	7	638,1038
8	300667,5	8	550697,9
9	300677,8	9	1000510
10	550638,1	10	500646,5
11	. 750671,2	11	50587,31
12	550668,1	12	50613,78
13	550668,1	13	100320,4
14	500668,1	14	577,2302
15	550608,1	15	300637,9
	636357,6236		400584,4643

	Com elitismo 0,1
30G Population 40 Tournment Size 15	
	Crossover 0,3 Mutation 0,0
1	550589,9
2	1000668
3	750577,5
4	1100607
5	1000608
6	550668
7	300640
8	300687,8
9	250520,5
10	750687,8
11	1000510
12	300637,9
13	250610,4
14	500640,6
15	750608,1
	623950,7667

O objetivo destes últimos testes foi verificar qual o melhor valor para a componente da mutação, chegando assim à conclusão de que 0.1 será então o valor mais adequado.

Depois de todos os testes realizados chegámos então aos valores "ótimos". Elitismo: 0.1, 30 gerações, crossover: 0.3, mutação: 0.1 .