II. Invariance

AS.150.498: Modal Logic and Its Applications Johns Hopkins University, Spring 2017

Now that we have a syntax and semantics for the basic sentential modal language \mathcal{L} , let us ask: when are two Kripke models effectively the same with respect to \mathcal{L} ?

1 Bisimulation

Definition 2.1. Pointed models \mathcal{M}, w and \mathcal{N}, v are **modally equivalent**, $\mathcal{M}, w \longleftrightarrow \mathcal{N}, v$, provided that for every $\varphi \in S_{\mathcal{L}}$, $[\![\varphi]\!]_{\mathcal{M}}^w = [\![\varphi]\!]_{\mathcal{N}}^v$.

That is, \mathcal{L} cannot tell modally equivalent pointed models apart.

It is sufficient for modal equivalence that a special kind of relation holds between pointed models:

Definition 2.2. Given $\mathcal{M} = \langle \mathcal{W}^{\mathcal{M}}, \mathcal{R}^{\mathcal{M}}, \mathcal{V}^{\mathcal{M}} \rangle$ and $\mathcal{N} = \langle \mathcal{W}^{\mathcal{N}}, \mathcal{R}^{\mathcal{N}}, \mathcal{V}^{\mathcal{N}} \rangle$, a **bisimulation** between \mathcal{M}, w and \mathcal{N}, v is a binary relation $\mathcal{Z} \subseteq \mathcal{W}^{\mathcal{M}} \times \mathcal{W}^{\mathcal{N}}$ such that $w\mathcal{Z}v$ and for all worlds $x \in \mathcal{W}^{\mathcal{M}}$ and $y \in \mathcal{W}^{\mathcal{N}}$, if $x\mathcal{Z}y$ then:

(atomic harmony) For all $p \in At_{\mathcal{L}}$, $\mathcal{V}^{\mathcal{M}}(p, x) = \mathcal{V}^{\mathcal{N}}(p, y)$.

(**zig**) If $x\mathcal{R}^{\mathcal{M}}z$, then there exists $z' \in \mathcal{W}^{\mathcal{N}}$ such that $y\mathcal{R}^{\mathcal{N}}z'$ and $z\mathcal{Z}z'$.

(**zag**) If $y\mathcal{R}^{\mathcal{N}}z'$, then there exists $z \in \mathcal{W}^{\mathcal{M}}$ such that $x\mathcal{R}^{\mathcal{M}}z$ and $z'\mathcal{Z}z$.

We say that \mathcal{M}, w and \mathcal{N}, v are **bisimilar**: $\mathcal{M}, w \cong \mathcal{N}, v$.

For example, these pointed models are bisimilar:

But these pointed models are not:

Lemma 2.1. (Invariance Lemma) $\mathcal{M}, w \cong \mathcal{N}, v$ only if $\mathcal{M}, w \longleftrightarrow \mathcal{N}, v$.

The proof is a straightforward induction on the complexity of sentences in $\mathcal{S}_{\mathcal{L}}$.

To establish that $\mathcal{M}, w \neq \mathcal{N}, v$, it suffices to find some sentence $\varphi \in S_{\mathcal{L}}$ such that $[\![\varphi]\!]_{\mathcal{M}}^w \neq [\![\varphi]\!]_{\mathcal{N}}^v$. For the above non-bisimilar pointed models, $[\![\Box(\Box\bot\vee\Diamond\Box\bot)]\!]_{\mathcal{M}}^w = T$ but $[\![\Box(\Box\bot\vee\Diamond\Box\bot)]\!]_{\mathcal{N}}^v = F$.

The converse of the Invariance Lemma also holds when the pointed models are *finite*—that is, when $|\mathcal{W}^{\mathcal{M}}| = m$ and $|\mathcal{W}^{\mathcal{N}}| = n$ for $m, n \in \mathbb{N}$:

Lemma 2.2. For finite pointed models \mathcal{M}, w and \mathcal{N}, v , $\mathcal{M}, w \iff \mathcal{N}, v$ only if $\mathcal{M}, w \rightleftharpoons \mathcal{N}, v$.

For the proof, let xZy when $\mathcal{M}, x \leftrightarrow \mathcal{N}, y$.

2 Smaller Models

Since \mathcal{L} cannot tell bisimilar pointed models apart, it is sometimes useful to thin a pointed model by finding a bisimilar pointed submodel. Let us consider two ways to do this.

Definition 2.3. Given $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \mathcal{V} \rangle$, $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \mathcal{V}' \rangle$ is a **submodel** of \mathcal{M} if and only if:

 $\mathcal{W}' \subseteq \mathcal{W}$ \mathcal{R}' is the restriction of \mathcal{R} to \mathcal{W}'

 \mathcal{V}' is the restriction of \mathcal{V} to \mathcal{W}'

 $^{^1\}mathrm{The}$ converse of the Invariance Lemma would hold for all pointed models if $\mathcal L$ allowed for infinite conjunctions.

Definition 2.4. Given $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \mathcal{V} \rangle$ and $w \in \mathcal{W}$, the submodel generated from w is the submodel \mathcal{M}' where \mathcal{W}' is the set of worlds reachable from w in 0 or more steps along \mathcal{R} .

Fact 2.1. If \mathcal{M}' is the submodel of \mathcal{M} generated from w, $\mathcal{M}, w \cong \mathcal{M}', w$. The identity relation is a bisimulation.

For the second kind of submodel, consider the set $\mathcal{Z}_{\mathcal{M}}$ of bisimulations between a model \mathcal{M} and any of its worlds and this same model \mathcal{M} and any of its worlds (the *autobisimulations* of \mathcal{M}). Note that $\mathcal{Z}_{\mathcal{M}}$ is nonempty since it includes the identity relation. Now consider the union $\cup \mathcal{Z}_{\mathcal{M}}$ of all the bisimulations in $\mathcal{Z}_{\mathcal{M}}$. It is easy to verify that $\cup \mathcal{Z}_{\mathcal{M}}$ is both a bisimulation and an equivalence relation on \mathcal{W} .

For $w \in \mathcal{W}$, let $[w] = \{v \in \mathcal{W} : w \cup \mathcal{Z}_{\mathcal{M}}v\}$.

Definition 2.5. Given $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \mathcal{V} \rangle$, the **bisimulation contraction** of \mathcal{M} is the model $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \mathcal{V}' \rangle$ where:

$$\mathcal{W}' = \{ [w] : w \in \mathcal{W} \}$$

$$\mathcal{R}' = \{ \langle [w], [v] \rangle : \text{there is } x \in [w] \text{ and } y \in [v] \text{ such that } x\mathcal{R}y \}$$

$$\mathcal{V}'(p, [w]) = \mathcal{V}(p, w)$$

Fact 2.2. If \mathcal{M}' is the bisimulation contraction of \mathcal{M} , \mathcal{M} , $w \Leftrightarrow \mathcal{M}'$, [w]. The relation sending $x \in \mathcal{W}$ to $[x] \in \mathcal{W}'$ is a bisimulation.

Note that in the above figure, the submodel of \mathcal{M} generated from w is just \mathcal{M} itself. So the two kinds of bisimilar submodels that we have been considering differ.

3 Bigger Models

It is also sometimes useful to transform a pointed model into a larger bisimilar pointed model.

Definition 2.6. Given $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \mathcal{V} \rangle$ that is generated from w, the **tree** unraveling of \mathcal{M} around w is the model $\mathcal{M}' = \langle \mathcal{W}', \mathcal{R}', \mathcal{V}' \rangle$ where:

$$\mathcal{W}' = \{\langle w,...,w_n \rangle : w,...,w_n \in \mathcal{W} \text{ and } w\mathcal{R}w_2...w_{n-1}\mathcal{R}w_n \} \text{ (note: } w_1 = w)$$

$$\mathcal{R}' = \{\langle \langle x_1,...,x_n \rangle, \langle y_1,...,y_m \rangle \rangle : \langle y_1,...,y_m \rangle = \langle x_1,...,x_n,z \rangle \text{ for } z \in \mathcal{W} \}$$

$$\mathcal{V}'(p,\langle w,...,w_n \rangle) = \mathcal{V}(p,w_n)$$

Fact 2.3. If \mathcal{M}' is the tree unraveling of \mathcal{M} around w, $\mathcal{M}, w \cong \mathcal{M}', \langle w \rangle$. The relation sending $x \in \mathcal{W}$ to all worlds $\langle w, ..., w_n \rangle \in \mathcal{W}'$ where $w_n = x$ is a bisimulation.

4 Application: Undefinability of Operators

A nice application of the Invariance Lemma is that we can use it to prove that certain operators are undefinable in the sentential modal language \mathcal{L} .

Fact 2.4. The following universal operator \mathcal{A} is undefinable in \mathcal{L} :

$$[\![\mathcal{A}\varphi]\!]_{\mathcal{M}}^w = T \quad \text{iff} \quad \forall v \in \mathcal{W}([\![\varphi]\!]_{\mathcal{M}}^v = T)$$

Proof: Suppose that \mathcal{A} is definable in \mathcal{L} —that is, there is a basic modal formula $\alpha(\cdot)$ in \mathcal{L} such that $[\![\mathcal{A}\varphi]\!]_{\mathcal{M}}^w = [\![\alpha(\varphi)]\!]_{\mathcal{M}}^w$. Now consider the bisimilar pointed models below. $[\![\mathcal{A}B]\!]_{\mathcal{M}}^w = T$ so $[\![\alpha(B)]\!]_{\mathcal{M}}^w = T$ where $\alpha(B) \in S_{\mathcal{L}}$. But since $\mathcal{M}, w \cong \mathcal{N}, v$, $\mathcal{M}, w \leadsto \mathcal{N}, v$, so $[\![\alpha(B)]\!]_{\mathcal{N}}^v = [\![\mathcal{A}B]\!]_{\mathcal{N}}^v = T$ which is a contradiction.

Fact 2.5. The following 'exists two' operator \Diamond_2 is undefinable in \mathcal{L} :

$$[\![\lozenge_2 \varphi]\!]_{\mathcal{M}}^w = T \quad \text{iff} \quad \exists v_1, v_2 \in \{v : w \mathcal{R} v\} (v_1 \neq v_2 \land [\![\varphi]\!]_{\mathcal{M}}^{v_1} = [\![\varphi]\!]_{\mathcal{M}}^{v_2} = T)$$

Proof: Suppose that \lozenge_2 is definable in \mathcal{L} —that is, there is a basic modal formula $\alpha(\cdot)$ such that $[\![\lozenge_2\varphi]\!]_{\mathcal{M}}^w = [\![\alpha(\varphi)]\!]_{\mathcal{M}}^w$. Now consider the bisimilar pointed models below. $[\![\lozenge_2B]\!]_{\mathcal{M}}^w = T$ so $[\![\alpha(B)]\!]_{\mathcal{M}}^w = T$ where $\alpha(B) \in S_{\mathcal{L}}$. But since $\mathcal{M}, w \cong \mathcal{N}, v, \mathcal{M}, w \leadsto \mathcal{N}, v$, so $[\![\alpha(B)]\!]_{\mathcal{N}}^v = [\![\lozenge_2B]\!]_{\mathcal{N}}^v = T$ which is a contradiction.

