Question Number	Answer		Mark
16(a)	(Wires) cut lines of magnetic flux		
	Or flux <u>linkage</u> (with coil) changing	(1)	2
	Induces emf	(1)	2
16(b)	Use of $A = \pi (d/2)^2$	(1)	
	Applies knowledge of flux = flux density \times area	(1)	
	Flux = 8.8×10^{-5} (Wb) (at least 2 s.f)	(1)	3
	Example of calculation		
	$A = \pi \times (0.025 \text{ m} / 2)^2$		
	$= 4.9 \times 10^{-4} \mathrm{m}^2$		
	$\varphi = 0.18 \text{ T} \times 4.9 \times 10^{-4} \text{ m}^2$ = 8.84 \times 10^{-5} Wb		
	= 8.84 × 10 Wb		
16(c)	Determine maximum gradient of graph	(1)	
	Use of flux linkage = $N \varphi$	(1)	
	Use of $\varepsilon = dN\varphi/dt$	(1)	
	V = 2.3 V (range rounds - 2.2 V to 2.6 V)	(1)	4
	Example of calculation		
	max gradient = 4.62×10^{-4} Wb s ⁻¹		
	max $V = 5000 \times 4.62 \times 10^{-4} \text{ Wb s}^{-1} = 2.3 \text{ V}$		
16(d)	By Lenz's law, current/e.m.f./field/force produced is so as to oppose the		
	cause of the current/e.m.f.	(1)	
	Force on wire due to interaction of induced current and field	(1)	
	Force to left, so, by (Fleming) LHR	(1)	
	current into page and student is correct (dependent on MP3)	(1)	4
	Total for question 16		13