2011-(05)maj-04: dag 27

Övning 9

1) Rita alla (icke-isomorfa) träd (sammanhängande, acyklisk graf) med 7 hörn. En av varje isomorfityp.

Max valens:

2:

3: 1) 1 hörn med valens 3:

2) 2 hörn med valens 3:

4:

5:

6:

Totalt 11 olika.

2) Grafen G = (V, E) saknar cykler, |V| = 143, |E| = 100. Hur många komponenter?

(G är en skog.) Varje komponent är ett träd (sammanhängande och acyklisk), så antelet hörn i den är 1 mer än kanter, i den. k stycken komponenter ger alltså 143 - 100 = 43 komponenter.

 $G = (V, E) \text{ med } \delta(x) + \delta(y) \ge n + 1$, (n = |V|), alla, $x, y \in V$. 3) Vi skall visa att G är sammanhängande.

Motsägelsevis:

Antag att G inte är sammanhängande, $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, och inga kanter mellan $u \in V_1$ och $v \in V_2$.

Om
$$x \in V_1 : \delta(x) \le |V_1| - 1$$

 $y \in V_2 : \delta(y) \le |V_2| - 1$

 $d\mathring{a} \, \delta(x) + \delta(y) \le |V_1| + |V_2| - 2 = n - 2.$ Motsägelse!

4) G = (V, E) bipartit $(V = X \sqcup Y)$

(⊔ används inte av läraren; $V = X \sqcup Y$ betyder $V = X \cup Y$, $X \cap Y = \emptyset$.)

$$|V| = n$$
, $|A| = k$, $|Y| = n - k$

Då: $e = |E| = \sum_{x \in X} \underbrace{\delta(x)}_{\leq n-k} \leq k(n-k) =$ $= \left(\frac{n}{2}\right)^2 - \left(k - \frac{n}{2}\right)^2 \leq \left(\frac{n}{2}\right)^2 \qquad \qquad n-k \text{ st}$

Till grafen
$$G = (V, E)$$
 bildas dess komplementgraf $\overline{G} = (V, E')$ så att $E \cap E' = \emptyset$, $K_n \cong (V, E \cup E')$, $(|V| = n)$, isomorfisk med (skrivs ibland \cong , \approx)

det vill säga; det går kanter i \overline{G} mellan hörn x och y omm det inte går en kant mellan dem i G.

Om ett hörn har valens δ i G, har det valens $(n-1) - \delta$ i \overline{G} .

a) Valenssekvensen δ_1 , δ_2 , ..., δ_n ger valenssekvensen i \overline{G} :

$$n-1-\delta_1,\,...,\,n-1-\delta_n$$

b) Om G är k-reguljär (det vill säga $\delta_1 = \delta_2 = ... = \delta_n = k$ (kan skrivas $\delta \cong k$, notera spegelvänt tilde)) är \overline{G} således (n -1-k)-reguljär.

Så enda möjliga \overline{G} :

$$C_8$$
, C_5 + C_3 , C_4 + C_4

Till exempel G som svarar mot $\overline{G} = C_5 + C_3$:

G smal

G tjock

7) $G = (V, E), \delta(v) \ge 3$ alla $v \in V, |E| = 28$ Hur stort kan |V| vara?

$$\sum_{\substack{v \in V \\ \ge 3|V|}} \delta(v) = 2|E|, \text{ så } |V| \le \frac{2 \cdot 28}{3} = 18\frac{2}{8}$$

Alltså $|V| \le 18$.

Men finns en sådan?

Så ja, |V| = 18 är möjligt.

- 8) Visa G osammanhängade $\Rightarrow \overline{G}$ sammanhängande.
 - x, y inet grannar i G: xy en väg mellan dem i G.
 - x, y grannar i G, z i en annan komponent: xzy en väg i $\overline{\mathsf{G}}$.
- 9) $(K_5 1 \text{ kant})$ är planär: (planär = kan ritas som en plan graf.)

10) G = (V, E) sammanhängande, 4-reguljär och planär, e = |E| = 16.

Vad är r, antalet ytor för en plan ritning av G?

Eulers polyederformel för sammanhängande grafer:

$$v - e + r = 2$$
 (r kallas ibland f.)

$$4v = \sum_{x \in V} \delta(x) = 2e = 32$$
 så $v = 8$ och

$$r = 2 - v + e = 2 - 8 + 16 = 10$$

Exempel:

11) G = (V, E) sammanhängande planär har ingen cykel av längd $< k, k \ge 3$.

Då är
$$k \cdot r \le \sum$$
 alla ytor (antalet kanter kring utan) = 2e

Så
$$r \le \frac{2}{k}e$$
 (varje biparitit graf: $k = 4$)

$$2 = v - e + r \le v + \underbrace{\left(\frac{2}{k} - 1\right)}_{<0} e, e \le \frac{k}{k - 2} (v - 2)$$

$$K = 3$$
: $e \le 3(v - 2)$
 $K = 4$: $e \le 2(v - 2)$

K_{3,3} är inte planär:

$$e = 9$$
, $v = 6$, $2(v - 2) = 8$

$$e > 2(v - 2)$$
 inte planär

Petersens graf:

b g e

(Alternativt:)

Petersens graf har inga cykler av längd \leq 4, det vill säga k = 5 i:

$$e \le \frac{k}{k \cdot 2}(v-2) = \frac{5}{3}v-2$$

$$e = 15, v = 10$$

$$\frac{5}{3}(v-2) = \frac{5}{3}8 = 13\frac{1}{3}$$

Så grafen är inte planär (inte ens om man tar bort ett hörn och dess kanter).

Kuratowskis sats:

Varje icke-planär graf "innehåller" antingen K₅ eller K₃,₃.

det finns en delgraf som är isomorf med en "subdivision" av K_5 eller $K_{3,3}$.

Den graf med extra hörn på kanter.

Wagners sats:

Detsamma med "innehåller" betyder att den har K_5 eller $K_{3,3}$ som minor. Det vill säga någon kantkontraktion av grafen har K_5 eller $K_{3,3}$ som delgraf.

Bort tagning av hörn i Petersensgraf:

Se: http://en.wikipedia.org/wiki/File:Kuratowski.gif