IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) An optical data storage system for recording and/or reading, using a radiation beam, having a wavelength λ , focused onto a data storage layer of an optical data storage medium, said system comprising:
- the medium having a cover layer that is transparent to the focused radiation beam,
- an optical head, including an objective having a numerical aperture NA, said objective including a solid immersion lens that is adapted for being present at a free working distance of smaller than $\lambda/10$ from an outermost surface of said medium and arranged on the cover layer side of said optical data storage medium, and from which solid immersion lens the focused radiation beam is coupled by evanescent wave coupling into the cover layer of the optical data storage medium during recording/reading,

characterized in that,

the optical head comprises:

- a first adjustable optical element corresponding to the solid immersion lens,
- means for axially moving the first optical element and dynamically keeping constant the distance between cover layer and

solid immersion lens,

- a second adjustable optical element,
- means for dynamically adjusting the second optical element for changing the focal position of the focal point of the focused radiation beam relative to an exit surface of the solid immersion lens.
- 2. (original) An optical recording and reading system as claimed in claim 1, wherein the second optical element is present in the objective.
- 3. (original) An optical recording and reading system as claimed in claim 1, wherein the second optical element is present outside the objective.
- 4. (currently amended) An optical recording and reading system as claimed in claims 2 or 3claim 2, wherein the second optical element is axially movable with respect to the first optical element.
- 5. (currently amended) An optical recording and reading system as claimed in any one of claims 2 or 3 claim 2, wherein the second optical element has a focal length which is electrically

adjustable, e.g. by electrowetting or by electrically influencing the orientation of liquid crystal material.

- 6. (original) A method of optical recording and/or reading with a system as claimed in claim 1, wherein:
- the free working distance is kept constant by using a first, relatively high bandwidth servo loop based on a gap error signal, e.g. derived from the amount of evanescent coupling between the solid immersion lens and the cover layer,
- the first optical element is actuated based on the first servo loop,
- a second, relatively high bandwidth servo loop is active based on a focus control signal,
- the second optical element is adjusted based on the second servo loop in order to retrieve an optimal modulated signal.
- 7. (original) Method as claimed in claim 6, wherein the focus control signal is derived from the modulation depth of a modulated signal recorded in the data storage layer.
- 8. (original) A method as claimed in claim 6, wherein the focus control signal is derived from an S-curve type focus error signal.

- 9. (original) A method as claimed in claim 7, wherein an oscillation is superimposed on the adjustment of the second optical element and wherein the focus control signal additionally is derived from the oscillation direction of the second optical element.
- 10. (original) A method as claimed in claim 7, wherein the modulated signal is present as pre-recorded data in the optical data storage medium.
- 11. (original) A method as claimed in claim 7, wherein the modulated signal is present in a lead-in area of the optical data storage medium.
- 12. (original) A method as claimed in claim 7, wherein the modulated signal is present as a wobbled track of the optical data storage medium.