DM 1 Les intégrales impropres

A) Les fonctions puissances

1°) Vérifier que, pour tout $x \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}$, $x^n = e^{n \ln x}$ Lorsque $x \in \mathbb{R}_+^*$ et $\alpha \in \mathbb{R}$, on définira en conséquence x^{α} par la relation suivante :

$$x^{\alpha} = e^{\alpha \ln x}$$

- **2°)** Lorsque $\alpha \in \mathbb{R}$, montrer que l'application $x \mapsto x^{\alpha}$ est dérivable sur \mathbb{R}_{+}^{*} et que, pour tout $x \in \mathbb{R}_{+}^{*}$, $\frac{d}{dx}(x^{\alpha}) = \alpha x^{\alpha-1}$.
- 3°) Pour tout $x \in]1, +\infty[$, calculer $\int_1^x \frac{dt}{t^2}$ et déterminer la limite de cette quantité lorsque x tend vers $+\infty$.
- **4**°) Pour tout $x \in]0,1[$, calculer $\int_x^1 \frac{dt}{\sqrt{t}}$ et déterminer la limite de cette quantité lorsque x tend vers 0.

Lorsque f est une application continue de [a,b[dans \mathbb{R} où $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b, on note $\int_a^b f(t) \ dt$ la limite réelle, si elle existe, de $\int_a^x f(t) \ dt$ lorsque x tend vers b.

De même, lorsque f est une application continue de]a,b] dans \mathbb{R} où $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$ avec a < b, on note $\int_a^b f(t) \ dt$ la limite réelle, si elle existe, de $\int_x^b f(t) \ dt$ lorsque x tend vers a.

- 5°) Étudier l'existence des quantités suivantes et, en cas d'existence, préciser leurs valeurs : $\int_{1}^{+\infty} \frac{dt}{t^2}$, $\int_{0}^{1} \frac{dt}{\sqrt{t}}$, $\int_{1}^{+\infty} \frac{dt}{t^{\alpha}}$, où $\alpha \in \mathbb{R}$ et $\int_{0}^{1} \frac{dt}{t^{\alpha}}$, où $\alpha \in \mathbb{R}$.
- B) Une intégrale doublement impropre

Notons f la fonction définie par : $f(x) = \frac{\ln x}{\sqrt{x(1-x)^{\frac{3}{2}}}}$.

- 6°) Déterminer le domaine de définition de f.
- 7°) Lorsque u est un réel tel que $\cos u \neq 0$, on pose $\tan u = \frac{\sin u}{\cos u}$ (cette expression se prononce "tangente de u"). Déterminer le domaine de définition de la fonction tan, montrer qu'elle est dérivable et que $\tan'(u) = \frac{1}{\cos^2 u}$.
- 8°) Soit $\alpha \in]\frac{\pi}{4}, \frac{\pi}{2}[$. En dérivant, montrer que $\int_{\frac{1}{2}}^{(\sin \alpha)^2} f(x) \ dx = \int_{\frac{\pi}{4}}^{\alpha} \frac{4 \ln \sin u}{\cos^2 u} \ du$, puis en intégrant par parties, en déduire la valeur de $\int_{\frac{1}{2}}^{(\sin \alpha)^2} f(x) \ dx$.
- 9°) Montrer que $\frac{\ln(t)}{t-1} \xrightarrow[t \to 1]{} 1$ puis en déduire l'existence et la valeur de la quantité $\lim_{\alpha \to \frac{\pi}{2}} \int_{\frac{1}{2}}^{\sin^2(\alpha)} f(x) \ dx$.
- 10°) On admet que, pour tout $x \in [-1, 1]$, il existe un unique réel dans l'intervalle $[-\frac{\pi}{2}, \frac{\pi}{2}]$, noté $\arcsin(x)$ tel que $\sin(\arcsin(x)) = x$. On admet également que l'application arcsin ainsi définie est continue sur [-1, 1].

En déduire l'existence et la valeur de $\int_{\frac{1}{2}}^{1} f(x) dx$.

11°) Calculer
$$\int_0^{\frac{1}{2}} f(x) dx$$
.

Soit $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R} \cup \{+\infty\}$ tels que a < b.

Soit g une application continue de]a,b[dans \mathbb{R} .

On suppose qu'il existe $c \in]a, b[$ tel que $\int_x^c g(t) dt$ converge vers une limite réelle lorsque x tend vers a et tel que $\int_c^x g(t) dt$ converge vers une limite réelle lorsque x tend vers a. Ainsi, $\int_a^c g(t) dt$ et $\int_c^b g(t) dt$ sont supposées définies.

- 12°) Montrer que la quantité $\int_a^c g(t) dt + \int_c^b g(t) dt$ ne dépend pas de c. On la notera $\int_a^b g(t) dt$.
- 13°) Montrer que $\int_0^1 \frac{\ln x}{\sqrt{x}(1-x)^{\frac{3}{2}}} dx$ est bien définie et donner sa valeur.

C) Un peu de théorie

Pour la suite, f désigne à nouveau une application quelconque.

On admettra le théorème suivant, appelé $th\acute{e}or\`{e}me$ de la limite monotone: Soit $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b. Soit f une application de [a,b[dans \mathbb{R} que l'on suppose croissante. Alors f(t) possède une limite réelle lorsque t tend vers b, avec $t \in [a,b[$, si et seulement si f est majorée, c'est-à-dire si et seulement si il existe $M \in \mathbb{R}$ tel que, pour tout $t \in [a,b[$, $f(t) \leq M$.

- 14°) Soit a et b deux réels tels que a < b. Si f est une application continue de [a,b] dans \mathbb{R} , montrer que $\int_{x}^{b} f(t) dt \xrightarrow[x \to a]{} \int_{a}^{b} f(t) dt$ et que $\int_{a}^{x} f(t) dt \xrightarrow[x \to b]{} \int_{a}^{b} f(t) dt$. En déduire l'existence de $\int_{0}^{1} \frac{\sin t}{t} dt$.
- 15°) Soit $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b. Soit f une application continue de [a,b[dans \mathbb{R} . On suppose que, pour tout $t \in [a,b[$, $f(t) \geq 0$. Montrer que $\int_a^b f(t) \ dt$ est définie si et seulement si l'application $x \longmapsto \int_a^x f(t) \ dt$ est majorée.
- **16°)** Soit $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b. Soit f et g deux applications continues de [a, b[dans \mathbb{R} . On suppose que, pour tout $t \in [a, b[$, $0 \le g(t) \le f(t)$.

Montrer que si $\int_a^b f(t) dt$ est définie, alors $\int_a^b g(t) dt$ est également définie. En déduire que $\int_1^{+\infty} \frac{|\cos t|}{t^2} dt$ est définie.

17°) Soit $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b. Soit f une application continue de [a, b[dans \mathbb{R} . Pour tout $t \in [a, b[$, on pose $f^+(t) = \max(f(t), 0)$ et $f^-(t) = \max(-f(t), 0)$. Exprimer f et $t \longmapsto |f(t)|$ en fonction de f^+ et f^- .

En déduire que si $\int_a^b |f(t)| dt$ est définie, alors $\int_a^b f(t) dt$ est aussi définie.

- D) Calcul de $\int_0^{+\infty} \frac{\sin t}{t} dt$
- 18°) Montrer que $\int_0^{+\infty} \frac{\sin t}{t} dt$ est définie.
- **19°)** Montrer que pour tout $t \in]0, \frac{\pi}{2}]$ et $n \in \mathbb{N}$, $\frac{\sin((2n+1)t)}{\sin t} = 1 + 2\sum_{k=1}^{n} \cos(2kt)$.
- **20**°) En déduire la valeur de $\int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{\sin t} dt$.

Pour tout $t \in]0, \frac{\pi}{2}]$, on pose $h(t) = \frac{1}{t} - \frac{1}{\sin t}$ et on convient que h(0) = 0. On admettra que h est une application de classe C^1 sur $[0, \frac{\pi}{2}]$, c'est-à-dire que h est dérivable et que h' est continue.

On admettra également les propriétés suivantes, appelées inégalité triangulaire :

- pour tout $a, b \in \mathbb{R}$, $|a+b| \le |a| + |b|$;
- si $a, b \in \mathbb{R}$ avec a < b et si f est une application continue de [a, b] dans \mathbb{R} , alors $\left| \int_a^b f(t) \ dt \right| \le \int_a^b |f(t)| \ dt.$
- **21°)** Montrer que $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$.