LBP and GLCM

Dr. V Masilamani

masila@iiitdm.ac.in

Department of Computer Science and Engineering IIITDM Kancheepuram Chennai-127

Overview

- Texture Descriptors
 - Local Binary Pattern
 - Gray Level Co-occurrence Matrix(GLCM)

Texture Descriptors

- ► Texture: **Near** periodical arrangement of pixel values or patches in image
- ► Textures are important discriminating features

Texture Descriptors (cont.)

- ► Textures of leaves are different from that of leaves with some disease
- ► Textures of solar panel with defects are different from without defect

Local Binary Pattern

Local Binary Pattern for a pixel (x, y) in an image f

- ▶ Consider 3×3 window centered at (x, y) in f, say w
- Define: w'(x,y) = 1 if w(x,y) > pixel value at the center of <math>w w'(x,y) = 0 otherwise
- Arrange the bits from TopLeft, moving clockwise
- Convert the binary sequence to decimal, which is called as LBP for the pixel (x, y)

How to find LBP for an image or a segment of an image Method 1:

- Find LBP for each pixel (x, y)
- ► Find the histogram of all those LBP values

Issues with the method 1:

- ► The local pattern is not captured effectively
 - As LBP of pixels in different locations are aggregated

Image; LBP; Histogram

Image; LBP; Histogram

Method 2:

i/p: Image/Segment of image o/p: feature vector fv that describes image/segment

- ▶ Divide the image into blocks of size 16×16
- ▶ For each block B_i $1 \le i \le k$
 - Find LBP for each pixel $(x, y) \in B_i$
 - Find the histogram of all those LBP values, say h_i
 - Normalize h_i, say the resultant is H_i
- lacktriangle Concatenate all H_i s , and output $f_V = (H_1, H_2, ... H_k)$

- \triangleright Size of the feature vector 256K, where k is number of blocks
- Is there a way to reduce the size of the feature vector, and also to increase the discrimination capability
 - PCA: Transform n dimensional feature vectors to k dimension such that variance of the transformed vectors is maximum
 - LDA: Transforms n dimensional feature vector to k dimensional vector such that
 - 1) inter class variance is high
 - 2) intra class variance is low
 - ICA: Transforms n dimensional feature vectors to k dimensional vectors such that components(features) of the reduced feature vector are statistically independent

PCA vs LDA

Some Applications of LBP features

- ► To Classify the objects, when different objects have different texture
- ► SIFT descriptor for each key point may be computed as LBP of the patch centered at the point

What is GLCM:

- ► i/p: Gray scale image;
- o/p: Gray scale image representing frequency or probability of co-occurrence of pixel values i and j as neighbours in a fixed direction d

When the direction is diagonal

2	1	2	0	1
0	2	1	1	2
0	1	2	2	0
1	2	2	0	1
2	0	1	0	1

$$P_d = \begin{bmatrix} 0 & 2 & 2 & 0 \\ 2 & 1 & 2 & 1 \\ 2 & 3 & 2 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

When the direction is horizontal

(a) Input Image

(b) Gray Levels of Input Image

(c) Gray Level Co-Occurrence Matrix (GLCM)

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	0	0	0	0	0	0
2	1	0	1	0	0	0	0	0	0	0
3	0	1	0	1	0	0	0	0	0	0
4	0	0	1	4	1	0	0	0	0	0
5	0	0	0	1	0	1	0	0	0	0
6	0	0	0	0	1	0	1	0	0	0
7	0	0	0	0	0	1	0	1	0	0
8	0	0	0	0	0	0	1	9	1	0
9	0	0	0	0		b	0	1	0	1
10	0	0	0	0	0	0	0	0	1	0
									+	
							F	$P_{i,j} = P$	8.9=1	

How many directions are to be considered

- Any number of directions can be considered
- ► For each direction, one GLCM matrix will be obtained
- Set of directions need to be chosen such that Statistical metrics on GLCM in such directions are
 - Very different for different objects
 - Similar for similar objects

Some Statistical measures based on GLCM

Let $P = (p_{i,j})$ be the GLCM, where $p_{i,j}$ is the probability of co-occurence of i and j in a particular direction

- ▶ Energy: $\sum p_{i,j}^2$
 - Measures the energy of co-occurrence
 - Energy is more for some distributions, and less for some distributions
- ► Entropy: $-\sum p_{i,j}ln(p_{i,j})$
 - Measures the uncertainty of co-occurrence of i and j
- ► Contrast: $\sum p_{i,j}(i-j)^2$
 - ullet Measures the contrast between i and j
- ► Homogeneity: $\sum \frac{p_{i,j}}{1+|i-j|}$

- Measures the closeness of the elements in the GLCM to GLCM diagonal
- ► Correlation: $\sum \frac{(i-\mu i)(j-\mu j)}{\sigma i \sigma j} p_{i,j}$
 - Measures the correlation between i and j, when the co-occur
- ► Mean of *i*, when *i* and *j* co-occur: $\sum_{i,j} ip_{i,j}$
- ▶ Variance of *i*, when *i* and *j* co-occur: $\sum_{i,j} (i \mu i)^2 p_{i,j}$
- ▶ Kth moment of element difference: $\sum (i-j)^k p_{i,j}$

How to find contrast

*

0.167	0.083	0.042	0
0.083	0.167	0	0
0.042	0	0.25	0.042
0	0	0.042	0.083

Contrast weight

Horizontal GLCM

	0	0.083	0.168	0
_	0.083	0	0	0
-	0.168	0	0	0.042
	0	0	0.042	0
_	0.168 0	0	•	

How to find homogeneity

1	0.5	0.333	0.25
0.5	1	0.5	0.333
0.333	0.5	1	0.5
0.25	0.333	0.5	1

0.167	0.083	0.042	0
0.083	0.167	0	0
0.042	0	0.25	0.042
0	0	0.042	0.083

similarity weight

Horizontal GLCM

	0.167	0.042	0.014	0
_	0.042	0.167	0	0
-	0.014	0	0.25	0.021
	0	0	0.021	0.083

0.167+0.042+0.014+0.042+0.167+ 0.014+0.25+0.021+0.021+0.083 = 0.804

Graphical view of GLCM of various textures

