MA2101S - Linear Algebra II (S) Suggested Solutions

(Semester 1, AY2023/2024)

Written by: Sarji Bona Audited by: Ikhoon Eom

Question 1

Let F be a field, and let V and W be F-vector spaces (not necessarily finite dimensional). Let $T:V\to W$ be an F-linear map, and let $T^*:W^*\to V^*$ denote the transpose (or dual) of T, obtained by setting $T^*(g):=g\circ T$ for any $g\in W^*$.

- (a) Show that T is surjective if and only if T^* is injective.
- (b) Show that T is injective if and only if T^* is surjective.

Solution:

(a) If T is surjective, let $f, g \in W^*$ such that $T^*(f) = T^*(g)$. Then for all $v \in V$, f(T(v)) = g(T(v)). Since (f - g)(T(v)) = 0 for all $v \in V$ and T is surjective, (f - g)(w) = 0 for all $w \in W$, implying f = g and T^* is injective.

If T is not surjective, then $\text{Im}(T) \subsetneq W$. Extend a basis β of Im(T) to a basis $\beta \cup \beta'$ of W. Let $f \in W^*$ satisfying $f(w_i) = 0 \ \forall w_i \in \beta$ and $f(w_j) = 1 \ \forall w_j \in \beta'$. Note that $T^*(f) = 0$, but $f \neq 0$, so T^* is not injective.

(b) If T is injective, note that there exists a linear map $S: \operatorname{Im}(T) \to V$ such that $S \circ T = \operatorname{id}_V$. Let U be a subspace of W such that $W = \operatorname{Im}(T) \oplus U$. Fix $f \in V^*$, and let $g \in W^*$ satisfying $g(u) = 0 \ \forall u \in U$ and $g(w) = f(S(w)) \ \forall w \in \operatorname{Im}(T)$. Then $(T^*(g))(v) = (g \circ T)(v) = g(T(v)) = f(S(T(v))) = f(v) \ \forall v \in V \Rightarrow T^*(g) = f$, hence, T^* is surjective.

If T^* is surjective, then $\text{Im}(T^*) = V^*$. For any $f \in V^*$, there exists $g \in W^*$ such that $f = T^*(g) = g \circ T$. So for all $v \in \text{Ker}(T)$, f(v) = 0. Assume that there exists nonzero $v \in \text{Ker}(T)$, then we can construct $f \in V^*$ such that f(v) = 1, contradiction. Thus, $\text{Ker}(T) = \{0\}$, implying that T is injective.

Let F be a field, let V be a finite dimensional F-vector space, and let $T \in \mathcal{L}(V)$ be an F-linear operator on V. Show that there exists a vector $v \in V$ with the following property: for any polynomial $f \in F[t]$, if f(T)v = 0 for in V, then f(T) = 0 in $\mathcal{L}(V)$.

Solution:

Let

$$p_T(t) = (\phi_1(t))^{m_1} (\phi_2(t))^{m_2} \dots (\phi_k(t))^{m_k}$$

be the minimal polynomial of T where $\phi_1(t), \phi_2(t), \dots, \phi_k(t)$ are distinct irreducible monic polynomials and m_1, m_2, \dots, m_k are positive integers.

Then by the Primary Decomposition Theorem, we have

$$V = \bigoplus_{i=1}^{k} W_i,$$

where $W_i = \text{Ker}(\phi_i(t)^{m_i})$ for all $i \in \{1, 2, ..., k\}$, each of them being T-invariant.

For each
$$i \in \{1, 2, \dots, k\}$$
, let $u_i \in W_i \setminus \operatorname{Ker}(\phi_i(t)^{m_i-1})$, and let $v = \sum_{i=1}^k u_i$.

Let f be any polynomial such that f(T)v = 0. Then $\sum_{i=1}^{k} f(T)u_i = 0$, implying $f(T)u_i = 0$

for all $i \in \{1, 2, ..., k\}$. Note that for all $i \in \{1, 2, ..., k\}$, the T-annihilator of u_i is $\phi_i(t)^{m_i}$, so $\phi_i(t)^{m_i} \mid f(t)$. Thus, $p_T(t) \mid f(t)$, implying that f(T) = 0.

Let V be a 7-dimensional \mathbb{C} -vector space, and let $T \in \mathcal{L}(V)$ be a linear operator on V, with Jordan canonical form

$$\begin{pmatrix} 2 & 1 & 0 & & & \\ 0 & 2 & 1 & & & \\ 0 & 0 & 2 & & & \\ & & & 2 & 1 & \\ & & & 0 & 2 & \\ & & & & 3 \\ & & & & 3 \end{pmatrix}.$$

For each eigenvalue λ of T, we let E_{λ} and K_{λ} denote respectively the λ -eigenspace and the λ -generalized eigenspace of T, and we let $T|_{K_{\lambda}}$ denote the restriction of T to K_{λ} .

Determine, with as little computation as possible,

(a) the characteristic polynomial of T;

and for each eigenvalue λ of T:

- (b) the dimensions $\dim(E_{\lambda})$ and $\dim(K_{\lambda})$;
- (c) the smallest $p \in \mathbb{Z}_{>0}$ such that $K_{\lambda} = \operatorname{Ker}(T|_{K_{\lambda}} \lambda)^{p}$;
- (d) the dimensions dim $\operatorname{Ker}(T|_{K_{\lambda}} \lambda)$, dim $\operatorname{Ker}(T|_{K_{\lambda}} \lambda)^2$, and dim $\operatorname{Ker}(T|_{K_{\lambda}} \lambda)^3$.

Solution:

- (a) the characteristic polynomial of the JCF of $T = (\mathbf{t} \mathbf{2})^{\mathbf{5}} (\mathbf{t} \mathbf{3})^{\mathbf{2}}$
- (b) $\dim(E_2) = \text{number of Jordan blocks of eigenvalue } 2 = \mathbf{2}$ $\dim(E_3) = \text{number of Jordan blocks of eigenvalue } 3 = \mathbf{2}$ $\dim(K_2) = \text{number of times 2 appears in the diagonal of JCF} = \mathbf{5}$ $\dim(K_3) = \text{number of times 3 appears in the diagonal of JCF} = \mathbf{2}$
- (c) smallest p for K_2 = the size of the largest Jordan block corresponding to value 2 = 3 smallest p for K_3 = the size of the largest Jordan block corresponding to value 3 = 1
- (d) $\dim \operatorname{Ker}(T|_{K_2} 2\operatorname{id}_V) = \dim(E_2) = \mathbf{2}$ $\dim \operatorname{Ker}(T|_{K_3} - 3\operatorname{id}_V) = \dim(K_3) = \mathbf{2}$ There are 2 Jordan blocks of at least size 2 and eigenvalue 2, so $\dim \operatorname{Ker}(T|_{K_2} - 2\operatorname{id}_V)^2 = \dim(E_2) + 2 = \mathbf{4}$ $\dim \operatorname{Ker}(T|_{K_3} - 3\operatorname{id}_V)^2 = \dim(K_3) = \mathbf{2}$ $\dim \operatorname{Ker}(T|_{K_2} - 2\operatorname{id}_V)^3 = \dim(K_2) = \mathbf{5}$ $\dim \operatorname{Ker}(T|_{K_3} - 3\operatorname{id}_V)^3 = \dim(K_3) = \mathbf{2}$

Let $A \in \mathbb{M}_5(\mathbb{C})$ denote the 5×5 matrix

$$A := \begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}.$$

Determine a Jordan canonical form $J \in \mathbb{M}_5(\mathbb{C})$ of A, as well as an invertible matrix $Q \in \mathrm{GL}_5(\mathbb{C})$ such that $Q^{-1}AQ = J$.

Solution: Note that 2 is the only eigenvalue of A. We see that

Note that dim Ker(A - 2I) = 3, dim $Ker(A - 2I)^2 = 4$, and dim $Ker(A - 2I)^3 = 5$, so a JCF of A contains 1 Jordan block of size 3 and 2 Jordan blocks of size 1.

Note that
$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \in \operatorname{Ker}(A-2I)^3 \setminus \operatorname{Ker}(A-2I)^2 \text{ and } (A-2I) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \text{ and } \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$

$$(A-2I)^2\begin{pmatrix}0\\0\\0\\0\\1\end{pmatrix}=\begin{pmatrix}3\\0\\0\\0\\0\end{pmatrix}, \text{ and we see that } \left\{\begin{pmatrix}3\\0\\0\\0\\0\end{pmatrix}, \begin{pmatrix}0\\1\\-1\\0\\0\end{pmatrix}, \begin{pmatrix}0\\0\\1\\-1\\0\end{pmatrix}\right\} \text{ is a basis for } \operatorname{Ker}(A-2I).$$

Hence, J is a JCF of A and $Q^{-1}AQ = J$ where

$$J = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix} \text{ and } Q = \begin{pmatrix} 3 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

Determine a list of as many entries $A \in M_8(\mathbb{R})$ as possible satisfying:

- (i) the characteristic polynomial of each matrix is $(t-1)^4(t^2+3)^2$,
- (ii) each matrix A satisfies $(A-1)^2(A^2+3)^2=0$ in $\mathbb{M}_8(\mathbb{R})$,
- (iii) no two matrices in the list are similar to each other over \mathbb{R} (i.e. they are pairwise not $GL_8(\mathbb{R})$ -conjugate to each other).

Solution: The minimal polynomial of A can only be $(t-1)(t^2+3), (t-1)^2(t^2+3), (t-1)(t^2+3)^2$, or $(t-1)^2(t^2+3)^2$. We list all rational canonical forms satisfying (i), (ii):

Case 1: The minimal polynomial of A is $(t-1)(t^2+3)$. The only possible RCF is that with invariant factors $t-1 \mid t-1 \mid (t-1)(t^2+3) \mid (t-1)(t^2+3)$.

Case 2: The minimal polynomial of A is $(t-1)^2(t^2+3)$. There are two possible RCFs, one with invariant factors $(t-1)^2(t^2+3) \mid (t-1)^2(t^2+3)$ and another with invariant factors $t-1 \mid (t-1)(t^2+3) \mid (t-1)^2(t^2+3)$.

Case 3: The minimal polynomial of A is $(t-1)(t^2+3)^2$. The only possible RCF is that with invariant factors $t-1 \mid t-1 \mid (t-1)(t^2+3)^2$.

Case 4: The minimal polynomial of A is $(t-1)^2(t^2+3)^2$. There are two possible RCFs, one with invariant factors $(t-1)^2 \mid (t-1)^2(t^2+3)^2$ and another with invariant factors $t-1 \mid t-1 \mid (t-1)^2(t^2+3)^2$.

These 6 RCFs give us the following list (the blank spaces are to be filled with 0s):

$$\begin{pmatrix} 0 & 0 & 0 & -9 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -6 \\ 0 & 0 & 1 & 0 \\ & & & 0 & -1 \\ & & & 1 & 2 \\ & & & & 0 & -1 \\ & & & & 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & -9 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -6 \\ 0 & 0 & 1 & 0 \\ & & & & 0 & -1 \\ & & & & 1 & 2 \\ & & & & & 1 \\ & & & & & 1 \end{pmatrix}.$$

Since two similar matrices must have the same RCF, this list satisfies condition (iii) and there can only be at most 6 entries in such a list. \Box