Module 2 Unit 1 <u>SEMICONDUCTORS – FORMULA SHEET</u>

Г	Parameter	Formula
1.	Number of atoms per unit volume	$n = \frac{D \times N_0}{M}$
2.	Effective mass	$m^* = \frac{\hbar^2}{\left(\frac{d^2 E}{dk^2}\right)}$
3.	Intrinsic carrier concentration	n = p = $n_i = \sqrt{N_C N_V} \exp\left(-\frac{E_g}{2kT}\right)$
4.	Extrinsic carrier concentration	$\begin{array}{l} \underline{\text{N-type}} \colon \\ \bullet \text{Majority carriers: } n_n \approx N_D \text{ at RT} \\ \bullet \text{Minority carriers: } p_n \approx \frac{n_i^2}{N_D} \text{ at RT} \\ \bullet n = N_C \text{exp} \left(-\frac{E_C - E_F}{kT} \right) \text{ at moderate} \\ \text{temperatures} \\ \\ \underline{\text{N-type:}} \\ \bullet \text{Majority carriers: } p_p \approx N_A \text{ at RT} \\ \bullet \text{Minority carriers: } n_p \approx \frac{n_i^2}{N_A} \text{ at RT} \\ \bullet p = N_V \text{exp} \left(-\frac{E_F - E_V}{kT} \right) \text{ at moderate} \\ \end{array}$
5.	Conductivity and resistivity	temperatures $\frac{\text{Conductivity}}{\text{Intrinsic: } \sigma_i = q n_i (\mu_n + \mu_p)}$
		N-type: $\sigma_{\rm n}={\rm qn}_{\rm l}(\mu_{\rm n}+\mu_{\rm p})$ P-type: $\sigma_{\rm p}={\rm qp}\mu_{\rm p}$
	Defined and an element	Resistivity: $\rho = \frac{1}{\sigma}$
6.	Drift velocity and mobility	$\begin{array}{l} \underline{\text{Drift velocity}}:\\ v_d = \mu\epsilon\\ \\ \underline{\text{Mobility}}:\\ \mu = \frac{q\langle\tau\rangle}{m^*}; \langle\tau\rangle: \text{ average charge carrier lifetime} \end{array}$

7. Drift current density	$\begin{split} & \underline{\text{Electrons}}: \\ & J_n(\text{drift}) = q n \mu_n \epsilon = \sigma_n \epsilon \\ & \underline{\text{Holes}}: \end{split}$
	$J_{p}(drift) = qp\mu_{p}\varepsilon = \sigma_{p}\varepsilon$
8. Diffusion current density	Electrons:
	$J_{n}(diffusion) = qD_{n}\frac{dn}{dx}$
	<u>Holes</u> :
	$J_{p}(diffusion) = -qD_{p}\frac{dp}{dx}$
9. Einstein's relation	$\frac{D}{\mu} = \frac{kT}{q} = \text{constant at a given temperature}$
10. Probability factor for occupation of energy level E (Fermi-Dirac function)	$F(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$
	<u>Holes:</u> 1 – F(E)
11. Position of Fermi level in intrinsic semiconductors	$E_{\rm F} = E_{\rm i} = \frac{E_{\rm C} + E_{\rm V}}{2} + \frac{3}{4} k T \ln \frac{m_{\rm h}^*}{m_{\rm e}^*} \approx \frac{E_{\rm g}}{2}$
12. Fermi level shift due to doping	$\frac{\text{N-type}}{\text{E}_{\text{F}}-\text{E}_{\text{i}}}=\text{kT}\ln\left(\frac{\text{n}}{\text{n}_{\text{i}}}\right)\!;\text{p}\approx\text{N}_{\text{A}}\text{ at RT}$
	$\frac{\text{P-type}}{\text{E}_{\text{F}}-\text{E}_{\text{i}}=-\text{kTln}\left(\frac{\text{p}}{\text{n}_{\text{i}}}\right)}\!;\text{n}\approx\text{N}_{\text{D}}\text{ at RT}$
