Primer on Machine Learning

attilagk

Lazy8

Machine Learning is Everywhere

- ▶ pattern detection and recognition (iphone touch ID, face ID, word autocomplete, speech to text)
- history based recommendation (youtube, facebook, google search, amazon,...)
 - products for customers
 - customers for providers
- email filtering and classification (gmail)

Machine Learning and Artificial Intelligence

1950s

[getting] machines to exhibit behavior, which if done by humans, would be assumed to involve the use of intelligence¹ computational methods to automatically learn and to improve with experience²

now

ML³ statistical ("statistical learning") Al analytical (knowledge, logic)

¹Arthur Samuel, 1983

²http://www.mlplatform.nl/what-is-machine-learning/

³may mean Maximum Likelihood: abbrev. not widely used → ← ≥ → ← ≥ → へ ?

Machine Learning Now

- big data
 - data science, data mining, ...
 - myth: machine learning needs big data⁴
- fast computers
- emerging new methods
 - deep learning, reinfocement learning, ...

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC)
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- 7. select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC) -
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- 7. select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

skill set	
EN	expert knowledge
ST	statistics
PR	programming
DSS	domain spec. software
HPC	high perf. comp.
LIB	ML libraries ^a
DOC	L ^A T⊨X, Web

^aPython, R, Java, Julia, Scala, Mat

My Story with Machine Learning⁵

Myth: it's like cooking

skill	2006	2017
expert knowledge	?	?
statistics	-	+
programming	-	+
domain spec. softw.	-	+
high perform. comp.	-	?
ML libraries	-	?
LATEX, Meb.	-	+

PLoS One. 2012;7(5):e36546.

⁵http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036546

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC)
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- 7. select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

The "Home" Data

Useless except for demonstration

observation	input features / variables				output		
i	x_{i1}	x _{i2}	l	X_{ip}	Уi		
home	price/sqft	elevation		beds	city		
training data							
1	999	10		2	NY		
2	1939	0		2	NY		
:	:	:	:	:	:		
491	764	163		1	SF		
492	762	216		3	SF		
test data							
493	1196	40		2	?		
:	:	:	:	:	:		

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC)
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

Inspecting Dependencies

2 input features: 2D plots

All Inputs

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC)
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- 7. select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

The "Home" Data

Useless except for demonstration

observation	input features / variables				output		
i	x_{i1}	x _{i2}	l	X_{ip}	Уi		
home	price/sqft	elevation		beds	city		
training data							
1	999	10		2	NY		
2	1939	0		2	NY		
:	:	:	:	:	:		
491	764	163		1	SF		
492	762	216		3	SF		
test data							
493	1196	40		2	?		
:	:	:	:	:	:		

Tasks

- 1. supervised learning: training and test data
 - prediction, classification
 - pattern recognition
 - business, medical, ... predictions & decisions
- 2. unsupervised learning: only training data
 - structure discovery
 - social, biol., tech. networks, associations,...
 - probabilistic expert systems
 - hypothesis testing, feature subset selection
 - research, marketing
 - matrix completion (imputation)
 - recommendation systems

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC)
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- 7. select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

Decision Tree is a Simple Model for Classification

A.k.a. CART: Classification And Regression Tree⁶

Normal Model of Data $x_1, ..., x_N$ for Prediction/Inference Normal distribution \mathcal{N} with parameters μ, σ^2

Model for Unsupervised Prediction of Citation Influences⁷

⁷http://www.machinelearning.org/proceedings/icml2007/papers/257apdf

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC)
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- 7. select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

Various Fitted Models Partitioning Input Space⁸

decision tree

generalized linear regression

K-means classifier

support vector machine

Fitting Decision Trees with R and rpart

Why R?

- created by and for biostatisticians
- functional language (like JavaScript)
- open source
- mature
- lots of machine learning packages
- ► R2D3⁹

Fitted Decision Tree(s)¹⁰

Several related trees may be fitted. This one is rather complex.

¹⁰https://attilagk.github.io/R-you-experienced/2017-

Demo with "Visual Intro" 11

Observe progressive growth of tree!

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC)
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- 7. select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

Fitted Decision Tree(s)¹⁰

Several related trees may be fitted. This one is rather complex.

Tree selection based on fit (error) and complexity (cp)

¹⁰https://attilagk.github.io/R-you-experienced/2017-

Fitted Decision Tree(s)¹⁰

Several related trees may be fitted. This one is rather complex.

The optimal tree

¹⁰https://attilagk.github.io/R-you-experienced/2017-

Various Fitted Models Partitioning Input Space⁸

decision tree performs poorly

generalized linear regression

K-means classifier

support vector machine

- 1. design project (EN, ST)
- 2. collect and clean data (EN, PR, DSS, HPC)
- 3. explore data (EN, PR)
- 4. formulate task (EN, ST)
- 5. build models (EN, ST)
- 6. fit/learn/train the model(s) (PR, LIB, HPC)
- 7. select best model(s) (ST, PR, LIB, HPC)
- 8. apply best model to test data (PR, LIB)
- 9. interpret and report results (EN, ST, DOC)

All Inputs

Fitted Decision Tree(s)¹⁰

Several related trees may be fitted. This one is rather complex.

¹⁰https://attilagk.github.io/R-you-experienced/2017-

at "the average of traning data"

at varying elevation

at varying price/sqft and average (40m) elevation

at varying price/sqft and 30m elevation

Conclusion: Machine Learning and You

1. understanding it

- learn concepts not cooking
- collaboration, interpretation

2. doing it

- ▶ Hello World! is easy but useless
- obtaining skills takes years but then pays off

Resources

- The Elements of Statistical Learning https://web.stanford.edu/ hastie/Papers/ESLII.pdf
- Machine Learning https://www.cs.ubc.ca/ murphyk/MLbook/
- An Introduction to R https://cran.r-project.org/doc/manuals/r-release/R-intro.htm
- https://attilagk.github.io/R-you-experienced

Conclusion: Machine Learning and You

1. understanding it

- learn concepts not cooking
- collaboration, interpretation

2. doing it

- ▶ Hello World! is easy but useless
- obtaining skills takes years but then pays off

Resources

- The Elements of Statistical Learning https://web.stanford.edu/ hastie/Papers/ESLII.pdf
- Machine Learning https://www.cs.ubc.ca/ murphyk/MLbook/
- An Introduction to R https://cran.r-project.org/doc/manuals/r-release/R-intro.html
- https://attilagk.github.io/R-you-experienced