27 de Març de 2014

1. El transistor MOS emprat en el circuit de la figura té les corbes característiques que es mostren a l'esquerra. (5 punts)

a) Indique el valor del paràmetre V_T del transistor. Justifique la resposta. (0.5 punts)

b) Indique el valor del paràmetre K del transistor. Justifique la resposta. (0.5 punts)

saturação > 2000 plana >
$$V_{63} = 5V$$
, $J_{0} = 2 mA$
 $\hat{I}_{0} = k(V_{65} - V_{7})^{2} \rightarrow 2 = k(5-3)^{2} \rightarrow k = \frac{2}{4} = 0.5 mA/V^{2}$

c) Calcule analíticament el punt de treball del transistor: Q (V_{GS}, I_{DS}, V_{DS}). Verifique la zona de funcionament del transistor. (2 punts)

$$V_6 = V_{divisor}$$
 remistin format per R1 i R2 = $\frac{10R_2}{R_1+R_2} = 5V$
 $V_6s = 5-0 = 5V$
Supotem saturació: $I_0 = K(V_{6s}-V_{7})^2 = 0.5(5-3)^2 = 2mA$
 $V_{0s} = 10 - I_0 R_0 = 10 - (2 \times 2) = 10 - 4 = 6V$
 $V_{0s} > V_{6s} - V_{7} \rightarrow 6 > 5 - 3 \rightarrow E$; confirma la faltiració
 $V_{0s} > V_{6s} - V_{7} \rightarrow 6 > 5 - 3 \rightarrow E$; confirma la faltiració
Paunt $R = \{V_{6s} = 5V, I_{0s} = 2mA, V_{0s} = 6V\}$

d) Dibuixe la recta de càrrega sobre les corbes, indicant els punts de tall amb els eixos. Comprove el punt Q obtingut en l'apartat anterior. (1 punt)

punts de tall
$$V: Ios = \frac{Voo}{Ro} = \frac{10}{2} = 5mA$$

27 de Març de 2014

2. Dibuixe el circuit corresponent a una porta lògica NAND de 2 entrades, amb transistors NMOS y resistències. (1 punt)

* En abunts digitals in tegrats,
que comparteixen el matix
substrat, es connecten els substrats
a massa

3. Supose en la porta NAND de l'apartat anterior, les següents dades:

NMOS: $K=0.2\text{mA/V}^2$, $V_T=2.5\text{V}$ R_D (resistència de drenador) = 49K

Replene la taula de la veritat, indicant el valor de la tensió d'eixida. Calcule R_{on} suposant que en la zona lineal es pot utilitzar l'expressió aproximada $I_{DS}\approx 2K(V_{GS}-V_T)$. Justifique els resultats. (4 punts)

A	В	F (nivell lògic)	$V_{F}(V)$
"0" (0V)	"0" (0V)	ex / 11	5V
"0" (0V)	"1" (5V)	W"	5V
"1" (5V)	"0" (0V)	"1"	51/
"1" (5V)	"1" (5V)	"0"	2 0.2V

^{*}En el cas A=B="1", supose per simplificar que els dos transistors tenen la mateixa R_{on}

Ron =
$$\frac{1}{2 \times (V_{65} - V_{7})} = \frac{1}{(2 \times 0.2)(5 - 2.5)} = \frac{1}{(0.4) \times 2.5}$$

Prenen $V_{00} = 5V$, cornectint and la tenno del "1" lègic.

o $A = 8 = "0" \rightarrow elc 2$ transtors tallats $\rightarrow \frac{1}{2} \frac{1}{49k} = 5V$

o $A = "0", 8 = 1" \rightarrow \frac{1}{2} \frac{1}{49k} = 5V$

From $\frac{3}{2}$

o $A = "1", 8 = 0" \rightarrow idlen \rightarrow V_{F} = 5V$

o $A = 1", 8 = 1" \rightarrow idlen \rightarrow V_{F} = 5V$

The series of $\frac{1}{3} \frac{1}{49k} = \frac{5}{49k} = \frac{5}{4$

Tipus B

27 de Març de 2014

1. El transistor MOS emprat en el circuit de la figura té les corbes característiques que es mostren a l'esquerra. (5 punts)

a) Indique el valor del paràmetre V_T del transistor. Justifique la resposta. (0.5 punts)

b) Indique el valor del paràmetre K del transistor. Justifique la resposta. (0.5 punts)

$$Saturació \rightarrow tona plana \rightarrow V_{GS} = 5V$$
, $I_{D} = 2mA$
 $I_{D} = k(V_{GS} - V_{T})^{2} \rightarrow 2 = k(5-3)^{2} \rightarrow k = 2/y = 0.5 mA/v^{2}$

c) Calcule analíticament el punt de treball del transistor: Q (V_{GS}, I_{DS}, V_{DS}). Verifique la zona de funcionament del transistor. (2 punts)

d) Dibuixe la recta de càrrega sobre les corbes, indicant els punts de tall amb els eixos. Comprove el punt Q obtingut en l'apartat anterior. (1 punt)

punts de tall
$$\begin{cases}
H: V_{DS} = V_{DD} = 10V \\
V: \overline{1}_{DS} = \frac{V_{DD}}{RD} = \frac{10}{2.5} = 4 \text{ m A}
\end{cases}$$

e) Calcule el nou valor de R_D que deixe al transistor en el límit entre les zones de saturació i lineal. (1 punts)

27 de Març de 2014

2. Dibuixe el circuit corresponent a una porta lògica NOR de 2 entrades, amb transistors NMOS y resistències. (1 punt)

3. Supose en la porta NOR de l'apartat anterior, les següents dades:

NMOS: $K=0.4\text{mA/V}^2$, $V_T=2.5\text{V}$ R_D (resistència de drenador) = 50K

Replene la taula de la veritat, indicant el valor de la tensió d'eixida. Calcule R_{on} suposant que en la zona lineal es pot utilitzar l'expressió aproximada: $I_{DS} \approx 2K(V_{GS}-V_T)V_{DS}$. Justifique els resultats. (4 punts)

A	В	F (nivell lògic)	$V_{F}(V)$
"0" (0V)	"0" (0V)	14"	V29 = 5 V
"0" (0V)	"1" (5V)	11011	≈ 0.05 V
"1" (5V)	"0" (0V)	4011	≈ 0.05 V
"1" (5V)	"1" (5V)	"0"	≈ 0.025V

$$Ron = \frac{1}{2 \text{ K}(V65-V_T)} = \frac{1}{2 \times 0.4 (5-2.5)} = \frac{1}{0.8 \times 2.5} = 0.5 \text{ KZ}$$

$$Prenem \quad VDD = 5V \quad \text{coincident amb la teubo'} \quad \text{del '1''}$$

$$los = \frac{1}{2 \times 0.4 (5-2.5)} = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$los = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$los = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times 0.7} \approx 0.05 \text{ V}$$

$$Ron = \frac{1}{2 \times$$