

Počítačové siete 3 Úvod

Pavel Segeč

- Technológie zamerané na komunikáciu po IP (VoIP)
- Konvergované siete (+multimédia) a unified communication
- Protokoly
 - DNS, ENUM, SIP, SDP, Stun/Turn, RTP, SCTP, TLS, XMPP??, Jingle??
- Riešenia
 - Kamailio, Asterisk/FreeSwitch, SipXecs, Cisco, Lync???

Prednášky

- •Úvod
- •SIP základy + SDP
- •DNS, ENUM
- Transportné protokoly v IP telefónii
 - •UDP, RTP, RTCP, DCCP, SCTP?
- •SIP pokročilé
 - •IM a presence, PSTN interworking, programovanie služieb
- SIP NAT a bezpečnosť
- •H.323
- •SCCP
- MGCP/Megaco
- Quality of Service

Cvičenia

- Realizácia cvičení podľa pokynov
 - VirtualBox
 - Oblasť SIP, H.323, Cisco SCCP
 - Konfigurácia MM platformy
 - Diagnostika/Snifovanie
- Skupinová práca projekt
 - Realizácia zadania podľa pokynov

TESTOVANIE A SKÚŠANIE

- Test bude obsahovať okolo 40 otázok na 60 až 70 minút riešenia.
- Otázky môžu byť typu:
 - jedna správna odpoveď,
 - viac správnych odpovedí,
 - áno/nie,
 - vpíš odpoveď.
- Odpovede sú založené na textovej, obrázkovej forme otázky alebo nejakej aktivite (analýza vo wiresharku).

Hodnotenie

Test je možné spraviť na 100% a menej.

90% - A

80% - B

70% - C

65% - D

60% - E

Komunikácia

Komunikačné siete a signalizácia

- Komunikačná sieť
 - Súbor koncových staníc a sieťových uzlov prepojených komunikačnými linkami, ktoré umožňujú vzdialenú komunikáciu medzi používateľmi alebo koncovými stanicami
- Komunikačný protokol
 - Systém zadefinovaných pravidiel výmeny a spracovania informačných správ s definovaným formátom (syntax) a obsahom (sémantika)
- Signalizácia v komunikačných sieťach
 - Výmena riadiacich signálov (riadiacich informácií, signalizačných správ) za účelom riadenia komunikácie (prístup ku kom. službe)
 - Súčasť riadiacej roviny siete

Komunikačné siete a signalizácia (2)

- Telekomunikačné siete (prepojovanie okruhov)
 - Spojovo orientovaná služba
 - Signalizácia = Riadenie spojenia
 - Zostavenie
 - Dohľad
 - Rozpojenie
 - Ďalšie úlohy

- Počítačové siete (prepojovanie paketov)
 - Jednoduchá nespojová služba
 - Signalizácia = výmena informácií nevyhnutných k prenosu

Komunikačné siete - arch

Telekomunikačné siete

- KZ jednoduché, sieť "inteligentná"
- Previazanie riadenia a prenosu
- Signalizácia je navrhnutá pre danú sieť a služby na "mieru"
- Zavedenie služby rozšírenie signalizácie (a siete) o nové funkcie

Počítačové siete

- Sieť jednoduchá, koncové uzly (stanice) komplexné
 - E2E dizajn
- Oddelenie riadenia a prenosu
- Nové služby nevyžadujú rozšírenie funkcií siete

Vývoj signalizácie v telekomunikačných sieťach

 Signalizácia v telekomunikačných sieťach

- Účastnícka signalizácia (UNI) jednoduchšia
- Sieťová signalizácia (NNI) robustný systém
- Vývoj signalizácie
 - Od analógovej signalizácie (tóny, impulzy)
 k digitálnej (správy)
 - Od zdieľania signalizácie s prenosovým kanálom
 - Signalizácia pridružená kanálom (Channel Associated Signalling - CAS)
 - K oddelenej paketovej signalizačnej sieti
 - Signalizácia po spoločnom kanáli (Common Channel Signalling – CCS)

[Sumit Kasera, Nishit Naran: Communication Networks: Principles and Practice]

Základne prvky "klasickej" telefónie (PSTN/POTS)

Trunks - Time-Division Multiplexing

Central Office Switches - (Class 4/Class 5)

What Is a PBX?

Address Signaling

- Tone telephone
 - DTMF dialing

Rotary telephone

Pulse dialing

To čo spustilo súčasné komun. trendy

- Voice over IP (IP telefónia)
- VoIP je rodina služieb pre obojsmerný prenos hlasu
 - s využitím sietí pracujúcich na báze protokolu IP
- Prvá lastovička VoIP sa objavila v roku 1995
 - Softvérový produkt izraelskej firmy Vocaltec na prenos hlasu cez dial-up pripojenie
- VoIP dospelo vývojom do IP telefónie
 - poskytovania telefónnych služieb pomocou telefónov využívajúcich IP protokol ako transport pre hlasové dáta
 - IP telefónia = VoIP + aplikačná nádstavba

Voice over IP – IP telefónia (2)

- Hlavná motivácia za vývojom a nasadením je šetrenie prostriedkov a integrácia služieb
 - Nižšie poplatky za komunikačné služby.
 - Jednotná, konsolidovaná infraštruktúra pre dáta a hlas, lepšie využívanie zariadení a zamestnancov.
 - Efektívne možnosti komunikácie a inovatívne služby.
 - Prístup k novým komunikačným zariadeniam.
 - Integrácia do existujúcich podnikových systémov.
 - Mobilita

Trend v komunikačných sieťach – konvergencia

- Vplyvy: technologický vývoj, ekonomické a sociálne vplyvy
- Konvergencia sietí

Mobilné sie

- Nové komunikačné sieťové architektúry poskytujúce viaceré služby (Hlas, dáta, video a ich kombinácie)
- Prínos: redukcia nákladov, nové služby
- Súčasný trend v konvergencii: "All over IP" (All IP)

Konvergencia z pohľadu ETSI - NGN

Architektúra NGN - IMS

- IP Multimedia Subsystem IMS
 - Podľa ETSI TISPAN NGN R1

- Riadiaca rovina a jej protokoly
 - Protokoly prebraté z IETF
 - · SIP signalizácia
 - SDP/RTP/DNS/Diameter/IPS ec/Megaco

Entity a rozhrania v IMS

- Riadiace (signalizačné) SIP servery
- Databázy
- Služby
- Účtovanie
- Spolupráca s inými/pôvodnými sieťami a práca s médiami

Charakteristika NGN/IMS sietí

- NGN siete sú svojou povahou veľmi heterogénne a komplexné
 - Majú byť schopné pripojiť všetky súčasné typy koncových terminálov (analógové, ISDN, GSM/UMTS, WiFi, WiMAX, DSL, ...)
 - Majú zabezpečiť mobilitu v danej sieti i medzi týmito sieťami
 - Majú umožňovať poskytovanie rôznych služieb
 - Nezávisle na druhu terminálu majú poskytovať pre danú službu rovnakú úroveň kvality
- → viac o NGN na predmete inž. štúdia ASI Integrácia sietí

Podniková komunikácia - Unified communication (UC)

- Najnovší trend
- UC je intregrovaná platforma pre:
 - real time služby
 - Hlasová a video telefónia
 - Konferenčné služby
 - Instant messaging, presence
 - non real time služby
 - Web, sms, fax,
 - Voicemail a bežný mail
- Ponúka
 - integráciu komunikačných prostriedkov
 - Čokoľvek, kdekoľvek, kedykoľvek
 - a výbornú mobilitu
 - Používateľov, terminálov, služieb

Unified communication

IETF prístup - IP konvergovaná architektúra → Unified Communication

- SIP Unified Communication UC
 - Trend "All IP" pre podniky, operátorov (služieb, ISP, hlasových)

- Jednotné Internet URI adresovanie pre všetky služby
- Audio, video
- Konferencie
- Rýchle správy a Presence (IMP)
- IMP XCAP úložisko
- Voicemail/IVR
- Prepojenie na iné riešenia
 - XMPP, H.323, PSTN gateway
- NAT "friendly"
- IPv4/IPv6
- Vysoká dostupnosť (HA)
- WWW, email ...
- Flexibilná tvorba nových služieb

NASADENIE MULTIMÉDIÍ V IP

Potreba zabezpečiť pri MM v IP

- 90roky 20st.: technologický, štandardizačný rozvoj
 - Transformácia Internetu (IP) na multi/mediálnu a multiservisnú sieť
 (Hlas, video, dáta, IMP)
- Potreba riešenia špecifických oblastí
 - Riadenie komunikačnej relácie (spojenia)
 - Adresovanie
 - Signalizácia
 - Popis a výmena parametrov spojenia
 - Toky médií
 - Podpora prenosu a identifikácie multimediálnych tokov
 - Garancia obsluhy (poskytnutie Quality of Service QoS)
 - Potreba výkonného transportu (nárast tokov)
 - Podporné súvisiace oblasti
 - Autentifikácia, Autorizácia a Účtovanie, bezpečnosť, ...
- Zvyčajne viedlo k vývoju nových protokolov na aplikačnej vrstve

Aplikačná vrstva - riešenie

- Riešenia pre jednotlivé identifikované oblasti (zjednodušené):
 - 1. Riadenie relácie (spojenia) a signalizácia
 - Adresovanie: DNS
 - Signalizácia: Session Initiation Protocol (SIP), H.248/MEGACO, Real Time Streaming Protocol (RTSP)
 - Popis a výmena parametrov: SDP

2. Toky médií

- 1. Podpora novým typom tokov, zvyčajne prebiehajúcich v reálnom čase
 - Real-Time Transport protocol (RTP)
- 2. Quality of Service (poskytnutie QoS)
 - Integrated services and Differentiated services architecture
 - » Resource Reservation Protocol (RSVP), prioritization scheme
- 3. Výkonný transport
 - 1. MPLS, MetroEthernet
- 3. Podporné oblasti
 - 1. Autentifikácia, Autorizácia a Účtovanie (Authentication, Authorization, Accounting)
 - RADIUS, DIAMETER
 - 2. Bezpečnosť
 - Secure RTP
 - Iné: IPSec (IP Security), TLS (Transport Layer Security)
 - 3. Konfigurácia resp. autokonfigurácia
 - Dynamic Host Configuration Protocol (DHCP, DHCPv6)

IETF multimediálna architektúra Protokolové ZOO

- Multimediálna konferenčná IETF architektúra
 - Otvorené komunikačné protokoly per službu/funkciu

Signaling and session control

- Signaling and session control protocols
 - Call Control Protocols
 - Sesion Control
 - Protocols used for establishing real-time interactive multimedia sessions
 - » H.323 and Session Initiation Protocol (SIP)
 - Streaming control protocol
 - Real Time Streaming Protocol (RTSP)
 - Device Control Protocols
 - H.248 / MEGACO, SIGTRAN

september 13 33

Signalizácia v konvergovaných sieťach – Session Initiation Protocol (SIP)

"Session Initiation Protocol - je <u>signalizačný</u> (<u>a už aj IMP</u>) protokol pracujúci na úrovni <u>aplikačnej vrstvy</u>, ktorý definuje, ako iniciovať, modifikovať a ukončovať interaktívne, <u>multimediálne</u> komunikačné spojenie medzi dvomi a <u>viac</u> používateľmi." [IETF RFC 3261 Session Initiation Protocol]

Vlastnosti

- Jednoduchosť
- Flexibilný a ľahko rozšíriteľný
- Škálovateľný
- Bohatá podpora vývoja služieb (aktivátor)

Typická SIP architektúra

SIP – základy a princíp činnosti

Adresovanie (SIP URI): sip:peter@uniza.sk sip:jan@uniza.sk **SIP** entity: User Agent (UA) Lokalizačná Kto a kde je uniza.sk? Proxy server Odpoveď: IP adresa servera uniza.sk služba jan@uniza.sk Lokalizácia INVITE sip:jan@158.193.152.64:11761 smerovan INVITE sip:jan@uniza.sk SIP/2.0 Redirect ser Via: SIP/2.0/TCP 158.193.139.99:3320 branch=z9hG4bK-d8754z-36ad3acd9edfe31c-1---d8754z-;rport Presmer Max-Forwards: 70 Registration Contact: <sip:peter@158.193.139.99:3320; cransport=TCP> From: "pepe" < sip:peter@uniza.sk >; tag=f50192d6 server To: <sip:jan@uniza.sk Registrá Call-ID: NTJhNzdmZiOl'Nl'Vml CSeq: 1 INVITE mobilita Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE, SIP správy SUBSCRIBE, INFO. Content-Type: application/sdp Dotaz Supported: replaces User-Agent: X-Lite 4 release 4.0 stamp 58832 Odpoveď Content-Length: 355 Trojcestný mechanizmus

SDP ---

Device control - H.248/MEGACO

MEdia GAteway
Control Protocol

- IETF/ITU-T
 - RFC3015
- Developed for IP/SCN network interconnection
 - Protocol for controlling telephony gateways

Streaming control

- What is Streaming:
 - Streaming is the process of playing a file while it is still downloading.
 - Streaming technology lets a user view and hear digitized content video, sound and animation as it is being downloaded.
- The user is expecting the same functions as from "classical" video remote control:
 - Play
 - Pause
 - Fast Forward/Rewind
 - Record

Real Time Streaming Protocol (RTSP)

- Defined in RFC 2326
- RTSP is a session control protocol for streaming media over the Internet.
- RTSP provides:
 - Remote control like operations
 - such as STOP, PAUSE/RESUME, FAST FORWARD and FAST REWIND, RECORD
 - Messages are HTTP1/1 based.
 - Allows to choose optimal delivery channels (e.g. UDP, multicast UDP, or TCP) and delivery mechanisms based on RTP.
- RTSP is used to establish and control:
 - a single, time synchronized stream
 - or several, time synchronized streams of continuous audio or video between media servers and their clients.
- RTSP supports the following operations:
 - Media retrieval. The client can request a presentation description and ask the server to set up a session to send the requested media data (SDP).
 - Adding media to an existing session. The server or the client can notify each other about any additional media becoming available to the established session.

SESSION ANNOUNCEMENT AND DESCRIPTION

Session description needs

- Due to strong heterogeneity of the Internet terminals
 - When initiating multimedia teleconferences, voice-over-IP calls, streaming video, or other sessions, there is a requirement to convey media details, transport addresses, and other session description metadata to the participants
- IETF Session Description Protocol
 - SDP provides a standard representation for such information, irrespective of how that information is transported.
 - SDP is purely a format for session description
 - it does not incorporate a transport protocol

Popis médií – Session Description Protocol (SDP)

```
\mathbf{v}=0
o=peter 0 0 IN IP4
  192.168.1.101
c=IN IP4 192.168.1.101
t = 0 0
m=audio 5000 RTP/AVP 0 8 96
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:96 iLBC/8000
m=video 5002 RTP/AVP 97
a=rtpmap:97 H264/90000
m=message 4535 TCP/MSRP *
```

v= Verzia SDP protokolu, teraz 0

o=meno vlastníka, id relácie (NTP), verzia (NTP), typ siete (IN), typ adresy (IPv4 or IPv6) a samotná IP adresa

s= Meno relácie

c= informácia o spojení, typ siete (IN), typ adresy (IPv4), samotná IP adresa pre tok médií

m= typ média, port, transport, Typy média: "audio", "video", "text", "application", a "message"

Mapuje m= parameter na kódovaciu schému

IP/PSTN INTERWORKING

- ADDRESSING

september 13 43

ENUM

Problem statements

- For a call that starts out as VoIP, how do you know to keep the call on the IP-plane (as opposed to the PSTN) for a dialed number or route it to PSTN?
 - Is the service on the Internet (IP only service)?
 - Is the service on the PSTN?
- How do IP network elements (gateways, SIP servers, etc) find services if you only have a telephone (E.164) number
- How do you address an IP-based voice terminal from the PSTN?

Solutions - ENUM or Enum (TElephone NUmber Mapping)

- ENUM <u>RFC 3761</u> is a protocol that uses the Internet DNS system to translate <u>E.164</u> (i.e. ordinary) telephone numbers into IP addressing schemes (like SIP, H323 or Email) with Naming Authority Pointer (NAPTR) records
 - Make association between real telephone numbers (E.164 addresses) in addition to addressing used in IP
 - SIP addresses, IP addresses

ENUM in a nutshell

1) Take a dialed phone number

++421 41 5134 323

3.2.3.4.3.1.5.1.4.1.2.4.e164.arpa.

- 2) Turn it into FQDN domain name
- 3) Ask the DNS
- 4) DNS return list of URI's

- 1) sip:palo@sip.fri.uniza.sk
- 2) mailto:palo@fri.uniza.sk
- 3) tel:00421903123456
- 4) http://www.kis.fri.uniza.sk

Podpora multimédií

Multimedia communication characteristics

- Real-time multimedia session communication characteristics
 - How to compensate for IP limitations?
 - Packet losses, out of order delivery, packet duplication
 - UDP?, TCP?
 - How to identify content type of delivered media stream
 - How to deals with different content coding
 - How to notify source about received traffic characteristics
 - How to deals with conferencing
 - Many to many communication
 - How to identify participants
 - etc...

Real-Time Transport Protocol (RTP)

- RFC 3550
- Specially designed for end to end real time traffic transmission
 - Video, audio
- Provides
 - Payload identification
 - Allows identify type of delivered multimedia content, i.e. media stream encoding
 - Simplified identification and processing, end nodes, net nodes
 - Sequence numbering
 - · Packet losses, out of order delivery, packet duplication
 - Time-stamping
 - RTP headers contains timing information. Audio data can be played out as they are produced by the source
 - Delivery monitoring (RTCP)
 - Packet loss ratio, delay jitter and other status info can be monitored and delivered between transmitters
 - Participants identification
 - CNAME, NAME, EMAIL ..
- RTP consist of two parts:
 - Main RTP
 - carry real-time data
 - RTP control protocol (RTCP)
 - monitor the quality of service and to convey information about the participants
- Used for SIP, H.323, MGCP sessions
- Works with queuing to prioritize voice traffic over other traffic

QUALITY OF SERVICE (QoS)

Multimedia transport characteristics

- Real-time multimedia data transport characteristics
 - Data generated "real time" and need to be delivered on time
 - They are unusable if delivered with delay
 - High, strict requirements on delay and jitter
 - Relatively losses intolerant
 - Depend on codec used and losses ratio
 - Different bandwidth requirements
 - Video, audio, text ...
 - Different session types and parameters

Quality of Service – "Classical IP"

- Packets between end's are routed following "best" routing path
 - Each path: different characteristic, parameters, performance
 - Different nodes, link types, traffic conditions, etc.
- Factors influences packet delivery
 - Throughput
 - Packet losses
 - Congestion, errors
 - Packet delay
 - Propagation and serialization delay + Processing and queuing delay
 - Jitter (Delay variation)
- Parameters known as QoS matrix
 - Parameters hardly predictable

Priepustnosť - Throughput

- BW_{MAX}= min (10M, 512k, 256k, 100M)
- $BW_{AVAIL} = BW_{MAX} / Flows$
- Maximálna priepustnosť pre tok je obmedzená najpomalšou linkou v ceste
- O túto prenosovú kapacitu sa uchádzajú mnohé toky, čím môžu znížiť jej dostupnosť pre ktorúkoľvek individuálnu aplikáciu
- Nedostatok prenosovej kapacity má negatívny vplyv na aplikácie
- Riešenie:
 - Upgrade kapacity linky (nie vždy sa dá, ekonomické faktory)
 - Kompresia dát a hlavičiek protokolov
 - Prioritizácia paketov

Straty paketov – Packet losses

- **Výstupné straty** (output drops) :
 - Tail drops
 - Zahltenie (congestion) vyrovnávacích pamätí (buffers) výstupných front, daného sieťového rozhrania smerovača
- Vstupné straty (input drops)
 - Zahltenie CPU:
 - Smerovač nemôže prijať paket na vstupnom rozhraní
 - Smerovač nemôže prepnúť paket na výstupné rozhranie
 - Chyba rámcov:
 - CRC error, runt, giant
- Riešenie:
 - Zrýchliť linku (najlepšie, ale aj najdrahšie riešenie)
 - Garantovať dostatočné pásmo pre citlivé pakety
 - Predchádzať zahlteniu náhodným zahadzovaním menej dôležitých paketov ešte skôr, než dôjde k zahlteniu

Oneskorenie v IP sieťach

Propagation delay (fixné)

- Čas prenesenia paketu linkou
- Závisí na šírke pásma (priepustnosti) linky

Serialization delay (fixné)

 Čas, ktorý je potrebný na odoslanie paketu rozhraním danej prenosovej rýchlosti

Processing (forwarding) delay (variabilné)

- Čas potrebný smerovačom na prenesenie paketu zo vstupného rozhrania do výstupnej fronty výstupného rozhrania (zahŕňa aj spracovanie paketu)
- Ovplyvňujú viaceré faktory:
 - Rýchlosť a vyťaženosť CPU, architektúra smerovača a pod.

Queuing delay (variabilné)

- Čas, ktorý strávi paket vo výstupnej fronte smerovača
- Závisí od:
 - Veľkosti a počtu paketov vo fronte pred ním
 - Na priepustnosti rozhrania (rýchlosti) serializácia

Ťažko predpovedateľné!!!

Podľa zaťaženia, počtu paketov, veľkosti paketov a pod.

Jitter (Delay variation)

Variabilné oneskorenie (priemerné oneskorenie)

- Pakety do siete vstupujú v pravidelných intervaloch
- K príjemcovi však môžu doraziť v inom poradí a v nepravidelných rozostupoch
- Kolísanie oneskorenia (jitter) je miera nerovnomernosti oneskorenia,
 viditeľná ako premenlivá veľkosť intervalu medzi prichádzajúcimi paketmi

Dôvod:

- Preťaženie uzla spôsobuje zachytávanie paketov vo výstupných frontách sieťových uzlov a spôsobuje odosielanie paketov toho istého toku v nepravidelných intervaloch
- Serializácia na pomalých linkách
- Koncové zariadenie musí byť schopné
 - Usporiadať pakety do pôvodného poradia
 - Vyrovnať kolísanie v oneskorení

Quality of Service – "Classical IP"

- Internet today
 - Provides "best effort" data delivery
 - Flat system, without packet categorization
 - Complexity stays in the end-hosts
 - Network core remains simple
 - As demands exceeds capacity, service degrades gracefully (increased jitter etc.)
- The goal of QoS:
 - Provide some level of predictability and control beyond the current IP "best-effort" service

How to achieve QoS

- Requirements for new mechanisms
 - There is a need for mechanisms, to allow distinguish different data flows
 - and process it a special, required way
 - No flat anymore!!
 - There is a need for advanced resource management mechanisms
 - Which allows manage net resources
 - bandwidth, delay, loss, jitter
 - With focus on different data flows requirements

QoS tools (mechanisms)

Classification and marking

- Allows define classification criteria
 - How to find traffic which required special processing

Scheduling and policing enforcement

 Allows create special processing mechanisms for classified flows and control traffic compliance

Policy Control

Who may requires a special handling for their data

Admission Control

— Has network enough to provide required resources?

Present QoS models

- 1. Best-Effort (BE) model
 - Current public internet model
- 2. Ralative priority marking model
 - Layer 2
 - IEEE 802.1p Class of Service
 - Layer 3
 - Type of Service / IP precedence
 "Historical" model
- 3. Label switching model
 - MPLS, ATM, FR
- 4. Two new QoS models:
 - Resource reservation (IntServ)
 - Required resources are signaled by user/application
 - Prioritization (DiffServ)
 - Flows are classified into different groups with similar processing

NEW TRANSPORT LAYER PROTOCOL

Transport layer - SCTP

- Stream Control Transmission Protocol (SCTP)
 - RFC 2960 main SCTP specification
- SCTP features set
 - Connection oriented
 - Message (stream) oriented
 - Provide reliable, acknowledged transmission
 - Flow control
 - Multistreaming
 - Multihoming
- Designed:
 - to transport PSTN signaling messages (SS7) over IP networks
 - IP / PSTN interworking
- Present usage:
 - Signaling transport of MTP2, MTP3, SIP
 - Reliable Server Pooling
 - DIAMETER communication

CHARAKTERISTIKA ZDROJOV VOIP

Charakteristika zdrojov – voice over IP

- Požiadavky transportu hlasu (VoIP) na QoS
 - Pravidelný priebeh
 - Nenáročný na šírku pásma
 - Vyžaduje garanciu prenosového pásma
 - 8kbps do 64kbps podľa kodeku
 - + réžia siete (12kbps 80kbps)
 - Necitlivý na straty
 - Podľa typu kodeku
 - 0,1% 5%
 - Citlivý na oneskorenie (one way latency)
 - < 150 ms
 - > 200ms = degradácia kvality
 - Jitter
 - < 30ms

Digitizing Analog Signals

- 1. Sample the analog signal regularly.
- 2. Quantize the sample.
- 3. Encode the value into a binary expression.
- 4. Compress the samples to reduce bandwidth, optional step.

Nyquist Theorem

Hlasové kodeky (ITU)

Codec	G.711	G.726 r32	G.726 r24	G.726 r16	G.728	G.729	G.723 r63	G.723 r53
Bandwidth	64	32	24	16	16	8	6.3	5.3
	kbps	kbps	kbps	kbps	kbps	kbps	kbps	kbps

Požiadavky hlasu (VoIP) na šírku pásma

- Digitalizovaný hlas sa postupne zabalí do RTP, UDP a IP
- Obvykle sa do paketu vkladá 20ms úsek reči
- Hlas sa odosiela ako intenzívny tok malých paketov
- Réžia na IP, UDP a RTP hlavičky je veľmi veľká
- Vplyv na BW:
 - Kodek, Packet overhead, kompresia (cRTP)

Odhad šírky pásma

názov kodeku	šírka pásma [kbit/s]	veľkosť vzorky [B]	veľkosť vzorky [ms]	IP bandwidth [kbit/s]	Ethernet bandwidth [kbit/s]	PPP & FR bandwidth [kbit/s]	5% RTCP Ethernet overhead
G.711	64	240	30	74,67	79,47	76,27	83,44
G.711	64	160	20	80	87,2	82,4	91,56
G.722	64	160	20	80	87,2	82,4	91,56
C.726	32	80	20	48	55,2	50,4	57,96
G.726	24	60	20	40	47,2	42,4	49,56
G.728	16	60	30	26,67	31,47	28,27	33,04
G.728	16	40	20	32	39,2	34,4	41,16
G.729	8	40	40	16	19,6	17,2	20,58
G.729	8	20	20	24	31,2	26,4	32,76
G.723.1	6,3	24	30	17,07	21,87	18,67	22,96
G.723.1	5,3	20	30	16	20,8	17,6	21,84
iLBC_mode_30	13,33	50	30	24	28,8	25,6	30,24
iLBC mode 20	15,2	38	20	31,2	38,4	33,6	40,32

Požiadavky hlasu (VoIP) na oneskorenie

- K ostatným oneskoreniam v prípade VoIP pribúda:
 - Packetization delay
 - Čas kým sa nazbiera 20ms hlasu potrebných na vytvorenie VoIP paketu
 - Codec delay
 - "Rýchlosť" kodeka
 - Do 5ms podľa typu kodeka
 - De-jitter buffer (playout buffer)
 - Rieši prehrávanie hlas. vzoriek
 - 30, 40 ms

Záverom – aká bude budúcnosť?

- Z pohľadu komunikačných sietí
 - Založená na IP protokole
 - SIP alebo XMPP?
 - Naďalej telekomunikačné siete (spoľahlivosť, dostupnosť, garancie)
 - a Internet (služby/aplikácie/obsah)
- Z pohľadu používateľov dominantný vplyv ("user centric")
 - Sami rozhodujú ako a čím komunikovať
 - Skupinová komunikácia a sociálne komunity
 - Budovanie a zdieľanie obsahu
 - Posilnenie konvergencie BYOD, WebRTC = posilnenie web technológií
 - Nárast IMP a Peer-to-Peer komunikácie (torrent?)
- Z pohľadu našich študentov
 - Perspektívna

