

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Publications of IISER Mohali (/jspui/handle/123456789/4)
- / Research Articles (/jspui/handle/123456789/9)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3968 Title: Age and metallicity of galaxies in different environments of the Coma supercluster Authors: Tiwari, Juhi (/jspui/browse?type=author&value=Tiwari%2C+Juhi) Mahajan, Smriti (/jspui/browse?type=author&value=Mahajan%2C+Smriti) Singh, Kulinder Pal (/jspui/browse?type=author&value=Singh%2C+Kulinder+Pal) Galaxies Keywords: Supercluster Metallicity 2020 Issue Date: Publisher: Elsevier Citation: New Astronomy, 81, 101417. Abstract: We analyse luminosity-weighted ages and metallicity (Z) of galaxies in a continuous range of environments, i.e. clusters, filaments and voids prevalent in the Coma supercluster (Mpc). Specifically, we employ two absorption line indices, Hβ and (Fe) as tracers of age and metallicity of galaxies. We find that the stellar-phase metallicity of galaxies declines with increasing age as a function of stellar mass (M*) as well as environment. On the filaments, metallicity of galaxies varies as a function of their distance from the spine of the filament, such that galaxies closer to the centre of the filaments have lower metallicity relative to their counterparts 1 Mpc away from it. The mean age of intermediate mass galaxies (1010 < M*/M⊙ < 1010.5) galaxies is statistically significantly different in different environments such that, the galaxies in clusters are older than the filament galaxies by 1-1.5 Gyr, while their counterparts in the voids are younger than filament galaxies by 1 Gyr. The massive galaxies (M^*/M_{\odot} > 1010.5), on the other hand show no such difference for the galaxies in clusters and filaments, but their counterparts in voids are found to be younger by ~ 0.5 Gyr. At fixed age however, Z of galaxies is independent of their M* in all environments, except the most massive (M*/M \odot \gtrsim 1010.7), oldest galaxies (\gtrsim 9 Gyr) which show a sharp decline in their Z with M*. Our results support a scenario where galaxies in the nearby Universe have grown by accreting smaller galaxies or primordial gas from the large-scale cosmic web. URI: https://www.sciencedirect.com/science/article/pii/S1384107620300634?via%3Dihub (https://www.sciencedirect.com/science/article/pii/S1384107620300634?via%3Dihub) https://doi.org/10.1016/j.newast.2020.101417 (https://doi.org/10.1016/j.newast.2020.101417) http://hdl.handle.net/123456789/3968 (http://hdl.handle.net/123456789/3968) Appears in Research Articles (/jspui/handle/123456789/9) Collections:

Files	in	This	Item
1 1162	111	11113	IICII

Files III TIIIS ILETII.				
File	Description	Size	Format	
Need to add pdf. (/ispui/bitstream/123456789/3968/1/Need%20to%20add%20pdf.)		8.43 kB	Unknown	View/Open (/jspui/bitstream/123456789/396

Show full item record (/jspui/handle/123456789/3968?mode=full)

. I (/jspui/handle/123456789/3968/statistics)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.