Chapter 3、系統與系統工程

- 3.1 系統
- 3.2 系統工程與管理
- 3.3 系統化思維
- 3.4 系統分析與建模
- 3.5 企業系統

Basic Principles

- ■世上沒有萬靈丹
- ■回歸製造基本面
- 從系統的角度看問題 (系統化思維)
 - ■企業是一個系統
- ■企業會用到很多系統

3.1 系統

Why?

Manufacturing system is a System

Manufacturing re-engineering (digital/intelligent transformation) is a system engineering process

系統 Systems

A system is a unity formed of many often diverse parts subject to a common plan to serve a common purpose.

系統是由多個相互關聯和相互作用的元素組成的整體,這些元素共同工作以達到某一特定的目的或目標。

系統要素

Boundary (範圍)

External Entities (systems) (外界系統)

Mission/Objective (使命/目標)

Attributes (Features屬性/特徵) Functions (功能)
Behavior (行為)

Elements (元素)

Attributes and behavior of elements (元素的屬性/特徵與行為)

Relations/interactions among elements (元素間的關係與互動為)

組件和子系統:一個系統通常由多個組件或子系統組成。

邊界:系統有明確的邊界,區分它與外部環境。

輸入和輸出:系統接收輸入,經過內部處理後產生輸出。

相互作用:系統的組件之間存在相互作用和依賴關係。

動態性:系統可分靜態與動態,動態系統會隨著時間的推 移發生變化。

開放與封閉:開放系統與其環境交互作用,封閉系統則不與外部環境交互作用。

系統的本質

大至無外(宇宙) 小至無內(電子) 內有系統 外有系統 系統都有生命 (生命週期)

- 不會獨立存在 → 相依相存 → 不斷互動運作 變異(成長/衰退)
 - →互動中彼此影響

系統與外在因素(系統)不斷互動相互影響而變異 (成長/衰退)

系統的成長/衰退也受內部元素(因素)影響

Human-being as a system

Cause ----- → Effect

3.2 系統工程與管理

Why?

Manufacturing system is a System

Manufacturing re-engineering (digital/intelligent transformation) is a system engineering process

系統工程 (System Engineering)

The process, methods and technology to plan, design and construct a system.

(系統工程: 有計畫的將互異的個體結合成整體 以達成一共同目的的工程和任務。)

定義:系統工程是一種工程方法,它從整體的、整合的角度,設計、實現和管理複雜的系統,以確保 系統能夠滿足用戶和其他利益相關者的需求。

特點:

整體性:系統工程強調整體性,考慮系統的所有組件和它們之間的相互作用。

生命周期觀點:從系統的概念、設計、實現、營 運到退役,都在系統工程的考慮範疇內。

跨領域:涉及多個工程和管理領域,如軟體工程、電機工程、機械工程、項目管理等。

主要活動:

- 1.需求分析:確定用戶和其他利害相關者的需求。
- 2. 設計: 創建系統架構和詳細設計。
- 3. 實現: 構建或購買系統組件, 再加以整合。
- 4.驗證和驗收:確保系統滿足需求。
- 5. 運營和維護:確保系統在其整個生命周期中正常運行。

工具和方法:系統工程使用各種工具和方法,如模擬、建模、 風險分析和優化。

應用領域:系統工程可以應用於任何複雜的系統,如飛機、火箭、醫療設備、計算機網路和大型企業系統。

系統工程常用專用名詞之一般定義簡述

- 1. <u>系統: 系統是將許多互異的個體為達成一共同目的</u> 的而依照一共同計畫合成的整體。
 - 2. <u>系統工程:</u> 有計畫的將互異的個體結合成整體 以達成一共同目的的工程和任務。
 - 3. <u>系統工程師</u>: 有計畫的將互異的個體(包括人及物)結合成整體以達成一共同目的的人。

2024/9/22 21

- 4. 介面: 兩個及兩個以上的個體 (包括人、物、單位、和系統等)之間的關係。
- 5. 倫理: 人與人之間正常關係的道德原則。

單位倫理: 人與所屬單位之間的正常關係道德原則。

系統倫理: 人與所屬系統之間的正常關係道德原則

6. 生命週期(Life cycle): 一個系統自開始構想,經過概念分析、設計、製造、使用和後勤保養、以及報廢等的整個過程。

系統工程的四要素:

- (1)系統目標
- (2)系統工程步驟(程序),
- (3)系統工程方法與技術,
- (4)系統工程管理

系統工程的七步驟:

- (1)需求分析
- (2)規劃
- (3)可行性分析/評估
- (4)設計
- (5)開發/建構·
- (6)導入/實施,
- (7)評量與持續改善。

系統工程要素

系統工程管理

3.3 系統化思維 Systematic Thinking

Why Systematic Thinking?

Systematic thinking is a systematic way of thinking that helps people understand problems more clearly, develop solutions, and effectively manage complexity.

系統化思維是一種以系統為基礎的思考方式,能夠 幫助人們更清晰地理解問題、制定解決方案,並有 效管理複雜性。

「在四/二年內,學會系統思考,發展出一套看世界、看事物的架構,培養深度思考的能力」 (天下雜誌)

Systematic Thinking

- 1.全面性: 系統化思維能夠幫助人們從整體的角度看待問題, 而不是僅僅關注局部或表面現象。這有助於發現問題的根本原因, 而不是僅僅應對表面症狀。
- 2.結構化:透過系統化思維,人們可以將複雜的問題分解為 更小、更易管理的部分。這種結構化的方法有助於更有效地處 理問題,減少混亂和混亂。
- 3.整合性: 系統化思維有助於整合不同範疇的知識和信息, 從而形成更全面和完整的解決方案。這種整合性能夠提高解決 問題的效率和準確性。
- 4.預測性:通過系統化思維,人們可以更好地預測問題的發展趨勢和可能的結果。這有助於制定更有效的應對策略,降低風險。
- 5. 邏輯性: 邏輯性思維能建立有效溝通、理解和分析的基礎。 6. 深度性: 深度思考的重要性在於它有助於人們更好地理解事物的本質、發現問題的根本原因,並制定更有效的解決方案。 7. 持續性改進: 系統化思維強調不斷學習和改進的重要性, 這有助於人們不斷提高解決問題的能力,並適應變化的環境。

2024/9/22

31

2024/9/22 32

歸納

Specialization Generalization

演繹

Generalization > Specialization

2024/9/22 33

結構化思惟

帶來甚麼效益? 如何衡量? KPI

系統化思維: 邏輯思考 → Problem solving

邏輯思考是一種系統性的思維方式,用於分析問題、解 決問題和做出合理的決策。

2024/9/22 36

系統化思維: 邏輯思考 ←→ 系統工程

系統化思維: 邏輯思考

因果分析是一種研究或分析事件、行為或現象之間因果關係 的方法。

因果分析的目的是確定一個事件(稱為結果或效應)是否由 一個或多個其他事件(稱為原因或因素)引起或影響。

因果分析有助於我們理解事件之間的因果聯繫,並可以用來 預測和解釋現象。

因果分析可以在各種領域中應用,包括科學、醫學、社會科學、經濟學、工程和統計學等。

常見的因果分析方法和工具:實驗研究、觀察性研究、 因果關係圖、統計技術。

因果關係圖 (Cause-effectiveness diagram) 特性要因圖

找原因

找對策

2024/9/22

41

經驗累積與知識建構

深度思考 → 不斷逼問事物(問題)的本質

深度思考強調對問題、主題或情況的全面理解和深入分析。這種思考方式的目標是超越表面層次,探索更深的意義、因果關係和潛在的解決方案。以下是深度思考的一些特徵和核心概念:

全面性:深度思考要求對問題或主題進行全面考慮,包括其各個方面、相關聯的因素以及可能的影響。這可能涉及到搜集大量信息、進行研究和訪談,以確保有足夠的背景知識。

分析性:深度思考通常涉及到對信息的分析和評估。這包括對數據、證據、觀點和理論的詳細研究,以了解它們之間的關聯性和重要性。

批判性思考:深度思考鼓勵批判性思考,即質疑、挑戰和評估不同的觀點和假設。這有助於確保思考過程是客觀和有邏輯的。

綜合和創新性:深度思考可以涉及到將不同的想法、觀點和概念合併在一起,以產生新的洞察力和解決方案。這種綜合和創造性思維有時可以引導到創新。

長期視角:深度思考不僅關注當前情況,還關注未來和長期後果。它考慮到決策和行動的長期影響,而不僅僅是眼前的 利益。

深度思考

深度思考的重要性在於它有助於人們更好地理解事物的本質、發現問題的根本原因,並制定更有效的解決方案。它有助於人們更好地理解世界、解決問題、培養批判性思維,並促進創造力和創新性的發揮。

- 1.洞察力和理解力:深度思考有助於人們深入探究問題背後的原因和本質,從而獲得更深入的洞察力和理解力。
- 2.問題解決:深度思考有助於人們發現問題的根本原因,而不僅僅是應對表面現象。這使得他們能夠制定更有效的解決方案。
- 3.批判性思維:深度思考有助於培養批判性思維能力,使人們能夠客觀、 全面地評估信息和觀點。
- 4.創造力和創新性:深度思考能夠激發創造力和創新性,幫助人們找到新的思路和解決方案。
- 5.有效學習: 深度思考有助於提高學習效率,使人們更深入地理解和吸收知識。

此生為何而來?

3.4 系統分析與建模 System Analysis and Modeling

系統分析,旨在研究特定系統的特徵以及結構中各元素(各子系統)的相互作用,系統的對外接口與界面,以及該<u>系統整體的行為、功能和局限</u>,從而為系統的優化與有關<u>決策</u>提供參考和依據。

系統分析的經常目標之一,在於改善決策過程及系統性能,以期達到系統的整體最優。

系統建模 (System Modeling)

系統建模(System Modeling)是一個涉及到描述、分析和預測系統行為和性能的過程。系統建模的主要目標是創建一個抽象的、視覺化的、數學化的系統表示,以便更好地理解和優化系統。以下是系統建模通常涉及的一些主要方面和任務:

- 1.系統描述和邊界定義:確定要建模的系統的範圍和邊界。
- 2. 系統組成和關係建模:識別系統的組成部分以及它們之間的相互關係。
- 3.動態行為建模:描述系統隨時間的演化,包括如何回應輸入、事件或條件的變化。
- 4.性能分析:評估系統的性能指標,如回應時間、輸送量、效率等。
- 5.模型驗證和驗證:驗證模型是否準確地反映了實際系統的行為,並且驗證模型的預測是否與實際觀測一致。

系統Modeling

系統有其Functions Functional Modeling (IDEF 0)

IDEF(ICAM Definition Languages)是20世紀70年代由美國空軍發明,最早用於描述企業內部運作的一套建模方法。經過不斷的完善改進,其用途變廣泛,現在可以適用於一般的軟體開發。目前,IDEF的方法共十六種--從IDEF0到IDEF14(包括IDEF1X在內)。

IDEF0: 功能建模 (Function Modeling

IDEF1: 資訊建模 (Information Modeling

IDEF1 X: 資料建模(Data Modeling

IDEF2: 模擬建模設計 (Simulation Model Design)

IDEF3: 流程描述獲取 (Process Description Capture

IDEF4: 物件導向設計(OO設計)(Object-Oriented Design

IDEF5: 本體描述獲取 (Ontology Description Capture

IDEF6: 設計理論獲取 (Design Rationale

IDEF7: 資訊系統審核 (Information System Auditing)

IDEF8: 人機界面設計(User Interface Modeling)

IDEF9: 場景驅動信息系統設計(Scenario-Driven IS Design)

IDEF10: 實施體系結構建模 (Implementation Architecture Modeling)

IDEF11: 資訊實體建模 (Information Artifact Modeling)

IDEF12: 組織建模 (Organization Modeling)

IDEF13: 三模式映射設計 (Three Schema Mapping Design)

IDEF14: 網絡設計方法 (Network Design)

IDEF0 Basic Construct

ICOMs

Inputs: 所需的特定事物例如

資原

Controls:標準,政策,引導)

引導整個流程

Output:輸入所產出的特定

事物

Mechanisms: the agents (人員, 工具.) that accomplish the actions delineated within the process

IDEF0 Functional Decomposition

Fig. 4.3 CODEC Ltd. gearbox manufacturing

Fig. 4.4 Detailed view of the A0 level of the CODEC Ltd example

Fig. 4.6 IDEF0 model of the Control Shop Floor Operation function

3.5企業系統

Enterprise as a System and a Production System

Enterprise System Operation Cycle

Manufacturing System Modeling

Functions of Manufacturing Enterprises

商業模式 Business Model

商業模式 (又稱為營運模式或營業模式)

商業模式即是一個事業(a business)創造營收(revenue) 與利潤(profit)的手段與方法。(Wikipedia)

一家公司用來建立並使用資源,以提供比其競爭對手更好的價值給其顧客,並藉此賺取利潤的方法。(Afuah & Tucci)

一家企業用來產生營收以支撐本身營運的模式,此模式能指出企業於供應鏈中之定位。(Turban, et al., 2002)

商業模式係指企業營運的方法(Rappa (2003)、Afuah and Tucci (2001)、Turban et al (2002))

Afuah & Tucci(2001)則更進一步說明商務模式,他們認為商務模式是企業運用資源,提供比其競爭對手更好的價值給顧客,並藉此獲利的方法,所以商務模式可類比為一種系統的概念,它是由各種要素組成,要素間互相聯結,並且是動態的。