Medical Image Computing

Assignment 1

Shreyas Grampurohit (21D070029) Soham Nivargi (21D070074) Q1 - Bayesian Denoising of a Phantom Magnetic Resonance Image

→ Implemented both Gaussian and Rician Noise Model, and quadratic, discontinuous-adaptive Huber function, discontinuous-adaptive function

Quadratic prior	Discontinuity-adaptive Huber prior	Discontinuity-adaptive prior
Quadratic Prior 7 6 8 3 2 1 0 1 2 3	Page 1.5 O.5 -2 -1 O.5 X	Discontinuous Function 1.8 1.6 1.4 1.7 1.8 1.8 1.9 1.9 1.2 1.0 1.2 1.3 1.4 1.5 1.4 1.5 1.5 1.6 1.4 1.5 1.5 1.6 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8

RRMSE(noisylmage, noiselesslmage) = 0.3334

MRF Prior	Quadratic function	Discontinuity-Adaptive Huber function	Discontinuity-adaptive function
(a, γ)	(0.05, _)	(0.96, 0.01)	(0.97, 0.00512)
RRMSE(α, γ)	0.3159	0.2351	0.2375
RRMSE(min(1.2* α ,1), γ)	0.3162	0.3365	0.2809
RRMSE(0.8* α , γ)	0.3168	0.2499	0.2700
RRMSE(α, 1.2*γ)	0.3159	0.2354	0.2378
RRMSE(α, 0.8*γ)	0.3159	0.2352	0.2387

Noiseless	Noisy	Quadratic
DIscontinuity-adaptive Huber	Discontinuity-adaptive Function	

Q2 - Bayesian Denoising of a Brain Magnetic Resonance Image

RRMSE(noisylmage, noiselesslmage) = 0.2373

MRF Prior	Quadratic function	Discontinuity-Adaptive Huber function	Discontinuity-adaptive function
(α, γ)	(0.23, _)	(0.95, 0.01)	(0.95, 0.01)
RRMSE(α, γ)	0.1545	0.1316	0.1316
RRMSE(min(1.2* α ,1), γ)	0.1656	0.2649	0.2724
RRMSE(0.8*α, γ)	0.1594	0.1660	0.1696
RRMSE(α, 1.2*γ)	0.1545	0.1317	0.1320
RRMSE(a, $0.8^*\gamma$)	0.1545	0.1338	0.1330

Noiseless	Noisy	Quadratic
DIscontinuity-adaptive Huber	Discontinuity-adaptive Function	

Q3 - Bayesian Denoising of a RGB Microscopy Image

RRMSE(noisylmage, noiselesslmage) = 0.1899

MRF Prior	Prior A	Prior B	Prior C
(α, γ)	(0.23, _)	(0.28, _)	(_, _)
RRMSE(α, γ)	0.1722	0.1731	_
RRMSE(min(1.2* α ,1), γ)	0.1723	0.1740	_
RRMSE(0.8*a, γ)	0.1728	0.1753	_
RRMSE(α, 1.2*γ)	0.1722	0.1731	_
RRMSE(α, 0.8*γ)	0.1722	0.1731	_

Noiseless	Noisy	Α
В	С	

Q4: Dictionary Learning on Image Patches, Followed by Image Denoising.

Strategy for selection of patches:

Out of all patches, choose those patches with variance greater than a threshold. Choose threshold such that there are a good number of patches.

Objective function vs Iterations (p = 2)

Objective function vs Iterations (p = 1.6)

Objective function vs Iterations (p = 1.2)

Objective function vs Iterations (p = 0.8)

Loss drops down to upto 2500

Initial D vs Learned D (p = 2)

smooth

Initial D vs Learned D (p = 1.6)

less smooth

Initial D vs Learned D (p = 1.2)

lesser smooth

Initial D vs Learned D (p = 0.8)

least smooth

Histograms

lesser the value of p, greater the frequency near zero Since smaller p denotes higher sparsity p=1.6

$\min_{r} \sum_{i=1}^{I} \|x_i - Dr_i\|_2^2 + \lambda \|r_i\|_p^p$

Loss vs Iteration for denoising

Original, noisy and denoised images

