

Sintesi di Reti Combinatorie

Ottimizzazione di Reti Combinatorie a 2 Livelli: Metodo di Quine-McCluskey

Ottimizzazione e cifre di merito Introduzione al Metodo di Quine-McCluskey Metodo di Quine-McCluskey per una funzione completamente specificata Metodo di Quine-McCluskey per una funzione non completamente specificata

Sintesi di reti combinatorie a due livelli

Objettivo della sintesi: ottimizzazione della rete combinatoria

- Minimizzazione dei costi
- Massimizzazione delle prestazioni
- Costi: area di silicio
 - dipende dalla libreria di componenti utilizzata nella realizzazione e dalla tecnologia implementativa dei componenti (*library binding* o mapping tecnologico)
 - standard cell
 - semi-custom (gate array: matrice di porte logiche per le quali è possibile fissare la struttura di interconnessione in fase di progettazione)
 - componenti programmabili (CPLD, FPGA) con funzionalità ridefinibile anche in funzionamento
- Prestazioni:
 - ritardo di propagazione (o latenza): tempo intercorso tra la presentazione degli ingressi e la generazione di un valore valido in uscita
 - throughput: tempo necessario tra la presentazione di un set di ingressi e il set successivo (uquale o inferiore alla latenza)

- 2 -

Stima di costi e prestazioni

- L'unica valutazione esatta possibile è quella di portare la fase di sintesi fino alla realizzazione circuitale: impraticabile perché troppo complessa.
- Nella ricerca di una soluzione ottima o ottimale è necessario poter stimare i costi e le prestazioni:
 - al più alto livello possibile di astrazione per decidere se proseguire o interrompere la ricerca dell'ottimalità
 - tramite cifre di merito che rappresentino stime indipendenti dalla tecnologia implementativa
 - con un "basso costo" di stima:
 - · il calcolo dei valori stimati deve essere rapido (poco complesso)
 - · stimatori a "grana grossa" suscettibili di raffinamenti

Area: cifre di merito (1)

Area di componenti e di collegamenti

- Area porte logiche
 - ad ogni porta è possibile associare un costo (funzione della tecnologia e del n° di ingressi per porta), se è nota la libreria
- Area collegamenti (wiring)
 - non definibile se non a implementazione effettuata. In generale, viene considerata proporzionale a quella delle porte

- 3 -

Area: cifre di merito (2)

- N° di letterali presenti nella rappresentazione fattorizzata della funzione
 - è una delle cifre di merito adottate comunemente per la stima dell'area ed è indipendente dalla libreria tecnologica
 - motivazione: l'ampiezza di una cella che contiene un gate virtuale è proporzionale agli "strati" di silicio che, a loro volta, sono proporzionali al n° di letterali (n° di ingressi al gate)
- Cardinalità della soluzione in rappresentazioni della funzione di tipo SoP o PoS
 - Misura la complessità della soluzione e dà indicazione del n° di porte logiche necessarie
 - Il n° di porte logiche è una stima dell'area indipendente dalla tecnologia

Sono i due criteri di costo utilizzati nell'ottimizzazione di reti a 2 livelli

- 5 -

Rappresentazione fattorizzata

- La rappresentazione fattorizzata di una funzione logica può essere costituita da:
 - un letterale
 - una somma di forme fattorizzate
 - un prodotto di forme fattorizzate
- cioè: da una qualsiasi espressione algebrica con parentesi, con l'unico vincolo che l'operazione di complementazione sia applicata solo a singole variabili
 - le ottimizzazioni delle forme canoniche (SOP e POS) mantengono fattorizzate le espressioni

Ritardo di propagazione: cifre di merito

Ritardo di propagazione del percorso critico, cioè del percorso più lungo che collega gli ingressi con l'uscita.

- ritardo di propagazione attraverso le porte logiche (in generale, nodi del circuito)
 - la valutazione esatta è possibile ed è funzione del fanout della porta che è noto se è nota la libreria di componenti
- ritardo di propagazione nei segmenti di interconnessione
 - è valutabile solo a implementazione effettuata: trascurato
- ritardo di propagazione = τ x N° di porte che costituiscono il percorso critico, con numero di ingressi per porta costante e τ = ritardo di propagazione in una porta AND o OR con quegli ingressi
 - è la cifra di merito adottata comunemente per la stima del ritardo di propagazione ed è indipendente dalla libreria tecnologica
 - è ricavabile direttamente dall'espressione logica

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey

- È un metodo di minimizzazione tabellare (automatizzato in strumenti CAD)
 - facile da tradurre in un algoritmo.
 - il numero di variabili trattate è teoricamente illimitato.
 - il problema dalla identificazione sia degli implicanti primi sia della copertura ottima della funzione è di complessità esponenziale. Questo rende praticamente impossibile identificare una soluzione ottima per un numero di variabili che supera l'ordine della decina
 - facile da estendere al caso di funzioni a più di una uscita.
 - consente di utilizzare diverse funzioni di costo purché additive
- Due fasi:
 - 1) Ricerca e identificazione di tutti gli implicanti primi (o espansione)
 - 2) Ricerca e identificazione della copertura ottima.
 - · Ottima perché minimizza i costi della rete da implementare.
 - L'individuazione della copertura ottima dipende dalla cifra di merito utilizzata per stimare i costi
 - Per semplicità si fa riferimento alla sola forma *Somma di Prodotti* (SOP). Il procedimento mostrato in questa sezione è facilmente estendibile alla forma *prodotti di somme* (POS).

- 7 -

- 8 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Prima Fase

 La ricerca degli implicanti primi viene attuata applicando sistematicamente la semplificazione

aZ + a'Z = (a+a')Z = Z, con Z termine prodotto

- Identificazione degli implicanti primi:
 - Il punto di partenza è l'insieme dei *mintermini* della funzione;
 - 1. Si confrontano esaustivamente tutti i termini prodotto ricavati al passo precedente;
 - 2. Si semplificano tutte quelle coppie che hanno una parte comune ed una sola variabile differente:
 - 3. Da ogni semplificazione si costruisce un termine prodotto, con meno letterali, che verrà utilizzato al passo successivo
 - 4. I termini prodotto semplificati vengono marcati;
 - La marcatura rende evidente che i mintermini/implicanti non sono primi poiché hanno partecipato alla realizzazione di un implicante con meno letterali
 - 5. Si crea un nuovo insieme di termini prodotto da confrontare e si ripete il passo 1
 - Il processo ha termine quando non sono più possibili delle riduzioni. I termini prodotto non marcati sono implicanti primi.

- 9 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Quine-McCluskey: Prima Fase*

Esempio

Nota: Il confronto esaustivo risolve i problemi sia dovuti alla replicazione dei termini sia legati alla identificazione dei termini da raggruppare.

- 10 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Prima Fase

Esempio (cont.)

Punto di partenza Passo 1 a b c Nessuna Riduzione: i due termini prodotto non 0 0 0 sono compatibili poiché nel primo manca a 0 1 1 🗸 mentre nel secondo manca c. 1 1 0 🗸 Fine del processo 1 1 1 🗸 Implicanti primi e primi essenziali 0 0 0; - 1 1; 1 1 -Termini non marcati a'b'c'; bc; ab

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Prima Fase

- Il numero dei confronti effettuati può essere ridotto: non vale la pena di confrontare quei termini che sono sicuramente diversi per più di un letterale
 - Si costruiscono dei gruppi costituiti dallo stesso numero di 1
 - Si confrontano tra loro solo le configurazioni che appartengono a gruppi che differiscono per un solo 1
 - Questo non garantisce che tutti i confronti siano utili; esclude solo i confronti sicuramente improduttivi

-11 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Prima Fase

- Algoritmo di Quine McCluskey
 - Definizione di insieme S_i:
 - insieme dei termini prodotto, all'iterazione j, con un numero di 1 pari ad i.
 - Definizione di etichetta:
 - Ad ogni termine prodotto è associata una etichetta che identifica l'insieme dei mintermini che esso copre.
 - L'etichetta di un nuovo termine prodotto è ottenuta per concatenamento delle etichette dei termini da cui proviene
 - L'etichetta facilita la costruzione della tabella di copertura (seconda fase)

10

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Prima Fase

Algoritmo di Quine - McCluskey (cont.)

(ricorda: i=n° di 1, j=iterazione)

J=0;

tutti i *mintermini* appartenenti all'ON-set vengono etichettati e posti nei loro rispettivi S_i⁰;

Ripeti

Per tutti i k che vanno da min(i) fino a (max(i) - 1) confronta ogni configurazione in S_k^J con ogni altra in S_{k+1}^J . Le configurazioni semplificate vengono marcate ed il risultato della semplificazione viene etichettato e posto in S_k^{J+1} .

J=J+1;

Fino a che non sono più possibili delle riduzioni

Tutte le configurazioni non marcate sono implicanti primi o primi essenziali

- 13 -

- 14 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Quine-McCluskey: Prima Fase*

 $\Box \quad \mathsf{Esempio:} \quad f(a,b,c,d) = \mathit{ON}\big(1,9,11,12,13,14,15\big)$

0001	1 🗸		-001	1,9			
1001 1100	9 √ 12 √		10-1 1-01	9,11 ✓ 9,13 ✓ 12,13 ✓		11	9,11,13,15
1011 1101	11 ✓ 13 ✓	— <i>></i>		12,13 V 12,14 ✓	— <i>></i>	11	12,13,14,15
1110	14 🗸		1-11 11-1	11,15 ✓ 13,15 ✓		Tmpli/	canti Primi e
1111	15 🗸		111-	13,15 ✓ 14,15 ✓		-	essenziali:
						P1(9,	9): b' c' d 11,13,15): a d 2,13,14,15): a b

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Prima Fase

Osservazione

Il confronto esaustivo identifica tutti i possibili raggruppamenti. Nei passi intermedi il numero dei termini può aumentare considerevolmente per poi ridursi nei passi conclusivi

- 15 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Prima Fase

Esempio

- 17 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

- Identificare un sotto insieme degli implicanti ottenuti dalla prima fase tale per cui nessun 1 della funzione rimanga scoperto
- Si fa uso della tabella degli implicanti o tabella di copertura.
 - É una matrice binaria dove:
 - · Gli indici di riga sono gli implicanti primi identificati
 - Gli indici di colonna sono i mintermini appartenenti all'ON-set della funzione.
 - Gli elementi a_{i,j} della matrice sono pari a x (o 1) quando l'implicante i_esimo copre il mintermine j_esimo; altrimenti nulla (o 0)

D0/1 0) · latata			1	9	11	12	13	14	15
P0(1,9): b'c'd		P0	х	х					
P1(9,11,13,15): ad	-/	P1		х	x		x		х
P2(12,13,14,15): ab		P2				x	x	x	x

- 18 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

- Ricerca della copertura ottima: si deve introdurre la funzione costo
- Il costo si introduce aggiungendo di fianco alla colonna degli implicanti il loro costo espresso tramite una delle cifre di merito relative all'area
- In generale, nella colonna costo, viene riportato il n° di letterali di ogni implicante
- Nel metodo a singola uscita, se l'indicazione di costo viene omessa si intende che gli implicanti hanno tutti lo stesso costo e quindi si procede solo minimizzando la cardinalità della copertura

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

- Il problema della copertura è intrattabile (NP completo):
 - Si utilizzano criteri di essenzialità e dominanza per ridurre la complessità del problema (ridurre le dimensioni della tabella).
 - Successivamente si utilizza Branch&Bound
- Le relazioni tra gli implicanti identificati e i mintermini da coprire che permettono la semplificazione della tabella di copertura sono:
 - Criterio di Essenzialità (non dipende dalla funzione costo)
 - È un criterio di scelta (inserisce elementi nell'insieme di copertura) e, di conseguenza, di semplificazione poiché identifica ed estrae degli implicanti primi essenziali;
 - Criterio di Dominanza
 - È un criterio di sola semplificazione poiché riduce la dimensione dalla tabella di copertura eliminando righe (*implicanti*) o colonne (*mintermini*) senza operare alcuna scelta
 - Dominanza di riga (dipende dalla funzione costo)
 - Dominanza di colonna (non dipende dalla funzione costo)
 - · Una volta applicata l'essenzialità potrei fare una ricerca esaustiva

- 19 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

Criterio di Essenzialità:

- Descrizione:
 - Se una colonna contiene una sola x (*colonna singolare*), la riga che gli corrisponde è relativa ad un implicante primo essenziale (*riga essenziale*)
- Semplificazione:
 - La riga essenziale e le colonne da essa coperte vengono eliminate dalla tabella. All'insieme di copertura viene aggiunto l'implicante identificato

- 21 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

Criterio di dominanza di riga:

- Descrizione:
 - Un implicante P_i domina un implicante P_j quando P_i copre almeno tutti i *mintermini* coperti da P_i .
- Semplificazione:
 - P_j è eliminato dalla tabella (eliminazione della riga) se e solo se il suo costo è maggiore o uguale a quello di P_j.

Insieme di copertura: {P3}

Insieme di copertura: {P3}

- 22 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

- Criterio di dominanza di riga (cont.):
 - Estrazioni Indotte:
 - L'eliminazione di una riga può generare dei nuovi implicanti essenziali;
 - Poiché questi ultimi divengono essenziali a causa di eliminazioni di riga, le righe ad essi associate vengono chiamate righe essenziali secondarie (implicanti primi secondari).

Insieme di copertura: {P3}

Insieme di copertura: {P3}

Insieme di copertura: {P3; P4}

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

Dominanza tra colonne:

- Descrizione:
 - Un mintermine m_i domina un mintermine m_j se m_j è coperto dagli stessi implicanti di m_i più almeno 1
 - m_j è generato da tutti gli implicanti di m_i e da qualcuno in più. Per semplificare le scelte nella tabella, mantengo solo m_i che genera minori scelte, ma che assicura la copertura anche di m_i.
- Semplificazione:
 - m_j è eliminato dalla tabella. La semplificazione eseguita porta ad una copertura di costo non maggiore di quello che si otterrebbe mantenendo entrambi i mintermini, qualunque sia il costo associato ai termini prodotto stessi.

- 23 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

- Dominanza tra colonne (cont.):
 - Significato:
 - Coprire il mintermine I induce la copertura anche di B.

	₿	Ε	I	K			Ε	I	K
P0	×			х	l.	P0			x
Р1	×		х			P1		х	
Р2		x		x	/	P2 P4	х		x
P0 P1 P2 P4	×	х	x			P4	х	х	
- 1	\ \		1	I			I		

Insieme di copertura: {P3}

Insieme di copertura: {P3}

•se B non viene semplificato le possibili coperture dei mintermini B e I sono {P0 , P1} oppure {P0 , P4} oppure {P1} oppure {P4}

•se B viene semplificato le possibili coperture del mintermine I (che induce anche la copertura di B) sono $\{P1\}$ oppure $\{P4\}$

- 25 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

- Quando tutte le righe essenziali e le colonne e righe dominate sono rimosse, la tabella ottenuta, si definisce ciclica (non riducibile): tabella ciclica degli implicanti primi.
- Se la tabella è vuota, è stato determinato l'insieme di copertura.
- La scelta degli implicanti, in una tabella non riducibile, richiede l'applicazione di algoritmi specifici di ricerca della copertura come ad esempio:
 - Branch and Bound (B&B): metodo (generale) di ottimizzazione combinatoria, che consente di identificare la combinazione ottima di un numero finito di variabili discrete, secondo un prefissato criterio di valutazione
 - Nel caso di copertura di tabelle cicliche di implicanti, gli implicanti costituiscono le variabili e il criterio di valutazione è il costo (cardinalità o letterali) da minimizzare, con il vincolo della copertura

- 26 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Quine-McCluskey: Branch&Bound*

- Il metodo genera molte possibili soluzioni attraverso un processo di ricerca che può crescere esponenzialmente con le dimensioni della funzione.
- Data una soluzione, ottenuta ad un certo passo della ricerca, non è possibile dire se questa è ottima senza prima aver esaminato tutte le possibili alternative.
- Per ridurre la complessità della ricerca (numero di alternative esaminate) il metodo di B&B lavora appoggiandosi ad un albero delle scelte (branch), che genera, ad ogni scelta, una copertura parziale o finale con un costo associato
 - una volta individuata una soluzione finale, il suo costo viene considerato il *bound* da non superare nelle esplorazioni successive
 - la ricerca prosegue su tutte le scelte rimanenti. Quando viene individuata una soluzione parziale o finale con costo associato maggiore o uguale al bound, la ricerca lungo quel ramo dell'albero termina
 - quando viene individuata una soluzione finale con costo inferiore alla precedente, questo diventa il nuovo bound. La soluzione precedente viene scartata e la ricerca prosegue fino al termine dell'esame di tutte le alternative possibili

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Branch&Bound

- Branch&Bound: ogni scelta (branch) corrisponde ad un ramo dell'albero delle scelte
 - Si sceglie un implicante primo Pi come appartenente alla soluzione e si elimina la riga corrispondente e le colonne coperte da Pi dalla tabella di copertura.
 - La tabella ridotta viene esaminata per altre possibili semplificazioni (righe essenziali o relazioni di dominanza) che possono portare direttamente ad una soluzione finale Si di costo Ci.
 - Se la tabella ottenuta dalle semplificazioni, non è riducibile si sceglie un secondo implicante Pj tra quelli rimasti (considerando quindi come possibile copertura parziale la coppia Pi Pj) iterando il procedimento di semplificazione e così fino a coprire la funzione a costo Ci.
 - Una volta individuata una soluzione si risale nell'albero, per esaminare le scelte rimaste.
 - Si mantiene sempre la soluzione a costo minore (bound) e si confronta il costo ottenuto con il costo minore, quando lo si supera quella soluzione viene abbandonata.

- 27 -

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Seconda Fase

Dalla scelta di P0, si procede scegliendo P1 e quindi P2, identificando la soluzione {P0,P1,P2}. Il ramo {P0,P1,P3} non viene esaminato perché porterebbe ad un soluzione dello stesso costo di quella individuata. Si risale fino a P0 per esaminare le soluzioni derivate dalla scelta {P0,P2}, e così via. Individuata la soluzione {P1,P3}, questa costituisce il nuovo bound e, nell'esempio, il procedimento di ricerca termina perché tutte le altre soluzioni sono di costo non inferiore a 2 implicanti.

- 29

OUTECHO O

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey: Sommario

- Identificazione degli implicanti primi
- Soluzione della tabella di copertura
 - 1. Identificazione e scelta degli implicanti primi essenziali primari;
 - 2. Applicazione della dominanza di colonna e di riga;
 - 3. Identificazione e scelta degli implicanti primi essenziali secondari; se ne esistono si ritorna al passo 2, altrimenti vai al passo 4;

- 30 -

4. Applicazione dell'algoritmo di B&B

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Quine-McCluskey*

Esempio: f(a, b, c, d) = ON(1,4,5,6,9,13,14,15)

(, , , , , , , , , , , , , , , , , , ,	- /
0-01 1,5 ✓ -001 1,9 ✓	
	-01 1,5,9,13
-101 5,13 ✓ -110 6 14	
1 01 0 12 /	icanti Identificati:
11-1 13,15 111- 14,15	P0(1,5,9,13): c'd P1(4,5): a'bc' P2(4,6): a'bd' P3(6,14): bcd' P4(13,15): abd P5(14,15): abc
	0-01 1,5 \(\sqrt{-001} \) 1,9 \(\sqrt{010-} \) 4,5 \\ 01-0 \) 4,6 \\ \tag{-101} 5,13 \(\sqrt{-110} \) 6,14 \\ 1-01 \) 9,13 \(\sqrt{11-1} \) 13,15

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Quine-McCluskey*

Esempio (cont.): Essenzialità Dominanza di riga 9 13 14 15 --P0-**▼**P1 Р1 P2 х х x P2 х P3 х x x Р3 х P4 √ P5 x x P5 х Insieme di copertura: {P0} Insieme di copertura: {P0} Essenzialità secondaria

f(a,b,c,d) = c'd+a'bc'+abc

Insieme di copertura: {PO, P2, P5}

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey : DC

- L'estensione alle funzioni non completamente specificate richiede l'aggiunta delle seguenti regole:
 - Ricerca degli implicanti primi:
 - Nel passo relativo alla generazione degli implicanti primi, le condizioni di indifferenza sono trattate come 1.
 - Ricerca della copertura ottima:
 - Nella tabella di copertura compaiono, come indici di colonna, solo i mintermini appartenenti all'ON-set.
 - L'ON-set rappresenta l'insieme dei termini che vincola la funzionalità da realizzare.
 - Il DC-set è l'insieme dei termini che rappresenta i gradi di libertà per realizzare la funzionalità stessa: non è obbligatorio sceglierli, può essere conveniente

Sintesi di reti combinatorie a due livelli: Metodi esatti - Quine-McCluskey : DC

Attenzione!!

- Se al termine del procedimento di generazione di implicanti primi, uno dei termini non marcati ha un'etichetta costituita da soli DC, il termine generato non è un implicante della funzione
- Si noti che se venisse considerato nella tabella di copertura, la sua inclusione genererebbe una riga vuota

- 33 -

- 34 -

Sintesi di reti combinatorie a due livelli: *Metodi esatti - Quine-McCluskey: DC*

Esempio: f(a, b, c, d) = ON(0,2,12,13) DC(4,5)

- 35 -

Sintesi di reti combinatorie a due livelli: Modelli di costo per area

- Consideriamo le due differenti cifre di merito per attribuire il costo agli implicanti:
 - Cardinalità: il costo di ciascuna porta (AND e OR) è considerato indipendente dal numero degli ingressi (minimizzazione della cardinalità).
 - Letterali: il costo di una porta dipende anche dal numero degli ingressi (minimizzazione del n° di letterali della copertura).
- Per funzioni a singola uscita a n variabili

Minimizzazione cardinalità iminimizzazione letterali

- Solo per $n \le 4$
- Per n=5 a pari numero di letterali posso avere diversa cardinalità

- 36 -

Per n>5 posso avere cardinalità inferiore e numero di letterali superiore

Cardinalità: numero ingressi ininfluente

- In questo modello, conta solo il numero delle porte AND e OR utilizzate
- Le porte OR e AND hanno un numero arbitrario di ingressi
- Poiché la sintesi lavora con forme SOP, il numero di porte OR non varia tra le implementazioni, quindi il costo dell'implementazione è proporzionale al numero di porte AND utilizzate (dualmente con forme POS è proporzionale al numero di porte OR utilizzate)
- Se attribuiamo costo uguale a tutti gli implicanti, minimizzare la somma degli implicanti utilizzati equivale a minimizzare il numero di porte AND, e quindi il numero complessivo di porte

Cardinalità: valutazione del costo

SOP ottimizzata

$$f = abc + a'b'c + c'd$$

Implicanti	costo				
abc	1				
a'b'c	1				
c'd	1				
f	3				

Numero porte ANDOR = n° imp. + 1

Numero porte ANDOR = 3 + 1

- 37 -

- 38 -

Cardinalità: ulteriore raffinamento della valutazione del costo

- In una forma SOP ottimizzata possono essere presenti implicanti costituiti da un solo letterale
- Questi implicanti vengono considerati a tutti gli effetti ai fini della cardinalità
- Nell'implementazione questi implicanti non "generano" nessuna porta AND ma costituiscono semplicemente degli ingressi alla porta OR
- La relazione tra cardinalità e numero delle porte diventa

Numero porte ANDOR = n° impl. - n° impl. con un solo letterale + 1 Numero porte ANDOR = 4 - 1 + 1 = 4

Letterali: valutazione del costo

- Tra tutte le possibili dipendenze, consideriamo quella che si crea implementando le porte a più ingressi con porte a due ingressi
- In questo caso, ogni implicante a n ingressi aggiunto alla soluzione contribuisce nell'implementazione con:
 - n-1 porte AND a 2 ingressi per realizzare il prodotto
 - 1 ingresso alla porta OR

- Il costo di un implicante è quindi pari al numero dei suoi letterali

Letterali: valutazione del costo

SOP ottimizzata

f = abc + a'b'c + c'd

Implicanti costo abc 3 a'b'c 3 c'd 2 f 8

Numero porte ANDOR = Sommatoria letterali - 1 Numero porte ANDOR = 8 - 1

- 41 -