TALLER DE CARTAS POR ATRIBUTOS

Vergara Pareja Gustavo

MIGUEL ÁNGEL LANCHEROS

Metrología y Control de Calidad - G1IM

Universidad de Córdoba

6 de Diciembre de 2023

${\rm \acute{I}ndice}$

1	Introducción	2
2	Carta de control por atributos P (Proporción de defectuosos)	2
3	Carta de control por atributos NP (Número de defectuosos)	4
4	Carta de control por atributos U (Número de ocurrencias por unidad)	7
\mathbf{R}	eferencias	10

1. Introducción

• Cualquier característica de calidad que pueda ser clasificada de forma binaria: "cumple o no cumple", "funciona o no funciona", "pasa o no pasa", "conforme o disconforme" "defectuoso, no defectuoso", será considerado como un atributo y para su control se utilizan Cartas de Control por Atributos. En el caso de las cartas para variables, tenemos dos cartas, una para la tendencia central y otra para la dispersión. En el control por atributos, tanto la media como la variabilidad de la proporción muestral dependen de un único parámetro, por lo que se hace sólo una carta de control. Existen diferentes tipos de cartas de control por atributos sin embargo solo estudiaremos las siguientes: Cartas P, NP, y U.

2. Carta de control por atributos P (Proporción de defectuosos)

Estas cartas miden la proporción de unidades no conformes en un grupo de unidades que se inspecciona.
El objetivo es comprobar si la evolución de las proporciones muestrales observadas son compatibles con un mismo valor poblacional p. Este tipo de grafica se puede construir con n constante o variable por lo que a continuación se muestra el procedimiento para ambos casos.

Paso 1: Recopilación de los datos.

Paso 2: Calculo de la proporción defectuosa de cada subgrupo (pi).

$$p_i = \frac{D_i}{n_i}$$
 $p_i = Proporción defectuosa por subgrupo $D_i = N$ úmero de partes defectuosas por subgrupo $n_i = T$ amaño de la muestra (variable)$

Paso 3: Calculo de la proporción defectuosa promedio.

$$\overline{p} = \frac{\sum_{i=1}^{k} D_i}{\sum_{i=1}^{k} n_i}$$
 D_i = Número de partes defectuosas por subgrupo
n_i = Tamaño de la muestra (variable)

Paso 4: Calculo de los límites de control para cada subgrupo.

$$UCL_{i} = \overline{p} + 3\sqrt{\frac{\overline{p} * (1 - \overline{p})}{n_{i}}}$$

$$CL = \overline{p}$$

$$LCL_{i} = \overline{p} - 3\sqrt{\frac{\overline{p} * (1 - \overline{p})}{n_{i}}}$$

Paso 5: Trazado de la gráfica y análisis de resultados.

Figura 2: Pasos para Carta P, con n variable

Paso 1: Recopilación de los datos

Establezca la frecuencia con la que los datos serán tomados (por horas, por días, por semanas). Los intervalos cortos entre tomas de muestras permitirán una rápida retroalimentación al proceso ante la presencia de problemas. Los tamaños de muestra grandes permiten evaluaciones más estables del desarrollo de proceso y son más sensibles a pequeños cambios en el promedio del mismo.

Se sugiere que el tamaño de muestra(n) sea al menos de 30 y que el numero de subgrupos (k) sea al menos 25.

Paso 2: Calculo de la proporción defectuosa de cada subgrupo (pi).

$$p_i = \frac{D_i}{n} \qquad \begin{array}{l} p_i = \text{Proporci\'on defectuosa por subgrupo} \\ D_i = \text{N\'umero de partes defectuosas por subgrupo} \\ n = \text{Tama\~no de la muestra (constante)} \end{array}$$

Paso 3: Calculo de la proporción defectuosa promedio.

Paso 4: Calculo de los límites de control.

$$\begin{split} UCL_p &= \overline{p} + 3\sqrt{\frac{\overline{p}*(1-\overline{p})}{n}} \\ CL_p &= \overline{p} \\ LCL_p &= \overline{p} - 3\sqrt{\frac{\overline{p}*(1-\overline{p})}{n}} \end{split}$$

NOTA: En algunos casos el límite de control inferior puede resultar negativo y con un valor muy pequeño, en la práctica es imposible que una proporción de no conformidad resulte negativa por lo tanto el valor de limite resultante se cambia a cero.

Paso 5: Trazado de la gráfica y análisis de resultados.

Figura 1: Pasos para Carta P, con n constante

Un fabricante de latas de aluminio registra el número de partes defectuosas, tomando muestras cada hora de 50 latas, con 30 subgrupos. Construir la carta de control p (proporción de defectuosos) para la siguiente serie de datos obtenida durante el muestreo además dar un informe de la interpretación de carta obtenida. (Construir una carta de control P)

Figura 3: Gráfico Carta P

Subgrupo	Latas defectuosas	pi	UCL	CL	LCL
1	12	0.24	0.410239119 0.23133333		0.052427548
2	15	0.3	0.410239119	0.231333333	0.052427548
3	8	0.16	0.410239119	0.231333333	0.052427548
4	10	0.2	0.410239119	0.231333333	0.052427548
5	4	0.08	0.410239119	0.231333333	0.052427548
6	7	0.14	0.410239119	0.231333333	0.052427548
7	16	0.32	0.410239119	0.231333333	0.052427548
8	9	0.18	0.410239119	0.231333333	0.052427548
9	14	0.28	0.410239119	0.231333333	0.052427548
10	10	0.2	0.410239119	0.231333333	0.052427548
11	5	0.1	0.410239119	0.231333333	0.052427548
12	6	0.12	0.410239119	0.231333333	0.052427548
13	17	0.34	0.410239119	0.231333333	0.052427548
14	12	0.24	0.410239119	0.231333333	0.052427548
15	22	0.44	0.410239119	0.231333333	0.052427548
16	8	0.16	0.410239119	0.231333333	0.052427548
17	10	0.2	0.410239119	0.231333333	0.052427548
18	5	0.1	0.410239119	0.231333333	0.052427548
19	13	0.26	0.410239119	0.231333333	0.052427548
20	11	0.22	0.410239119	0.231333333	0.052427548
21	20	0.4	0.410239119	0.231333333	0.052427548
22	18	0.36	0.410239119	0.231333333	0.052427548
23	24	0.48	0.410239119	0.231333333	0.052427548
24	15	0.3	0.410239119	0.231333333	0.052427548
25	9	0.18	0.410239119	0.231333333	0.052427548
26	12	0.24	0.410239119	0.231333333	0.052427548
27	7	0.14	0.410239119	0.231333333	0.052427548
28	13	0.26	0.410239119	0.231333333	0.052427548
29	9	0.18	0.410239119	0.231333333	0.052427548
30	6	0.12	0.410239119	0.231333333	0.052427548
	347				
	P	0.231333333			

3. Carta de control por atributos NP (Número de defectuosos)

■ La carta np es una herramienta estadística usada para evaluar el número de artículos defectuosos o el número de artículos no conformes producidos por un proceso. Tenga en cuenta que siempre que una carta np se pueda utilizar también se podrá utilizar una carta p.

Paso 1: Recopilación de los datos.

Paso 2: Calculo de la proporción defectuosa de cada subgrupo (pi).

$$p_i = \frac{D_i}{n} \hspace{1cm} p_i = \begin{array}{ll} Proporción \ defectuosa \ por \ subgrupo \\ D_i = Número \ de \ partes \ defectuosas \ por \ subgrupo \\ n = Tamaño \ de \ la \ muestra \ (constante) \end{array}$$

Paso 3: Calculo de la proporción defectuosa promedio.

$$\overline{p} = \frac{\sum_{i=1}^{k} D_{i}}{n * k} \quad \begin{array}{l} D_{i} = \text{N\'{u}mero de partes defectuosas por subgrupo} \\ \text{n = Tama\~{n}o de la muestra (constante)} \\ \text{k = N\'{u}mero de subgrupos} \end{array}$$

Paso 4: Calculo de los límites de control.

$$\begin{aligned} &\mathrm{UCL} = \mathrm{n}\overline{\mathrm{p}} + 3 * \sqrt{\mathrm{n}\overline{\mathrm{p}} * \left(\mathbf{1} - \overline{\mathrm{p}}\right)} \\ &\mathrm{C}L = \mathrm{n}\overline{\mathrm{p}} \\ &\mathrm{LCL} = \mathrm{n}\overline{\mathrm{p}} - 3 * \sqrt{\mathrm{n}\overline{\mathrm{p}} * \left(\mathbf{1} - \overline{\mathrm{p}}\right)} \end{aligned}$$

Paso 5: Trazado de la gráfica y análisis de resultados.

Figura 4: Pasos para Carta NP

■ La siguiente tabla de datos fue obtenida mediante la apertura al azar de una caja seleccionada de cada envío y contando el número de perfiles de acero golpeados que tenia cada caja. Había 250 perfiles por caja. Construir una carta de control np (número de defectuosos).

No. de envío	Perfiles golpeados	pi	UCL	CL	LCL
1	20	0.08	42.87690185	27.93333333	12.98976482
2	28	0.112	42.87690185	27.93333333	12.98976482
3	24	0.096	42.87690185	27.93333333	12.98976482
4	21	0.084	42.87690185	27.93333333	12.98976482
5	32	0.128	42.87690185	27.93333333	12.98976482
6	33	0.132	42.87690185	27.93333333	12.98976482
7	31	0.124	42.87690185	27.93333333	12.98976482
8	29	0.116	42.87690185	27.93333333	12.98976482
9	30	0.12	42.87690185	27.93333333	12.98976482
10	34	0.136	42.87690185	27.93333333	12.98976482
11	32	0.128	42.87690185	27.93333333	12.98976482
12	24	0.096	42.87690185	27.93333333	12.98976482
13	29	0.116	42.87690185	27.93333333	12.98976482
14	27	0.108	42.87690185	27.93333333	12.98976482
15	37	0.148	42.87690185	27.93333333	12.98976482
16	23	0.092	42.87690185	27.93333333	12.98976482
17	27	0.108	42.87690185	27.93333333	12.98976482
18	28	0.112	42.87690185	27.93333333	12.98976482
19	31	0.124	42.87690185	27.93333333	12.98976482
20	27	0.108	42.87690185	27.93333333	12.98976482
21	30	0.12	42.87690185	27.93333333	12.98976482
22	23	0.092	42.87690185	27.93333333	12.98976482
23	23	0.092	42.87690185	27.93333333	12.98976482
24	27	0.108	42.87690185	27.93333333	12.98976482
25	35	0.14	42.87690185	27.93333333	12.98976482
26	29	0.116	42.87690185	27.93333333	12.98976482
27	23	0.092	42.87690185	27.93333333	12.98976482
28	23	0.092	42.87690185	27.93333333	12.98976482
29	30	0.12	42.87690185	27.93333333	12.98976482
30	28	0.112	42.87690185	27.93333333	12.98976482
	838				
	P	0.111733333			

Figura 5: Gráfico Carta NP

4. Carta de control por atributos U (Número de ocurrencias por unidad)

 La carta u es una herramienta estadística usada para evaluar la variación del número promedio de defectos por articulo o unidad. Se usa cuando el tamaño del subgrupo no es constante. Paso 1: Recopilación de los datos.

Paso 2: Calculo de ui

$$u_i = \frac{c_i}{n_i}$$
 ci = Número de defectos encontrados
ni= Tamaño de la muestra (variable)

Paso 3: Calculo de \overline{u}

$$\overline{u} = \frac{\sum_{i=1}^k c_i}{\sum_{i=1}^k n_i}$$

Paso 4: Calculo de n promedio n

$$\overline{n} = \frac{\sum_{i=1}^k ni}{k}$$

Paso 5: Calculo de los límites de control.

$$UCL = \overline{u} + 3\sqrt{\frac{\overline{u}}{\overline{n}}}$$

$$CL = \overline{u}$$

$$LCL = \overline{u} - 3\sqrt{\frac{\overline{u}}{\overline{n}}}$$

Paso 5: Trazado de la gráfica y análisis de resultados.

Figura 6: Pasos para Carta U

En una fábrica se ensamblan artículos electrónicos y al final del proceso se hace una inspección por muestreo para detectar defectos relativamente menores. En la siguiente tabla se presenta el número de defectos observados en muestreos realizados en 24 lotes consecutivos de piezas electrónicas. Construir una carta de control U.

Lote	Tamaño de muestra	Detectos encontrados	Ui	UCL	CL	LCL
1	20	17	0.85	1.701638622	1.045714286	0.38978995
2	20	24	1.2	1.701638622	1.045714286	0.38978995
3	20	16	0.8	1.701638622	1.045714286	0.38978995
4	20	26	1.3	1.701638622	1.045714286	0.38978995
5	15	15	1	1.701638622	1.045714286	0.38978995
6	15	15	1	1.701638622	1.045714286	0.38978995
7	15	20	1.333333333	1.701638622	1.045714286	0.38978995
8	25	18	0.72	1.701638622	1.045714286	0.38978995
9	25	26	1.04	1.701638622	1.045714286	0.38978995
10	25	10	0.4	1.701638622	1.045714286	0.38978995
11	25	25	1	1.701638622	1.045714286	0.38978995
12	30	21	0.7	1.701638622	1.045714286	0.38978995
13	30	40	1.333333333	1.701638622	1.045714286	0.38978995
14	30	24	0.8	1.701638622	1.045714286	0.38978995
15	30	46	1.533333333	1.701638622	1.045714286	0.38978995
16	30	32	1.06666667	1.701638622	1.045714286	0.38978995
17	30	30	1	1.701638622	1.045714286	0.38978995
18	30	34	1.133333333	1.701638622	1.045714286	0.38978995
19	15	11	0.733333333	1.701638622	1.045714286	0.38978995
20	15	14	0.933333333	1.701638622	1.045714286	0.38978995
21	15	30	2	1.701638622	1.045714286	0.38978995
22	15	17	1.133333333	1.701638622	1.045714286	0.38978995
23	15	18	1.2	1.701638622	1.045714286	0.38978995
24	15	20	1.333333333	1.701638622	1.045714286	0.38978995
	525	549				
	U	1.045714286				
	n	21.875		<u> </u>	l	I

Figura 7: Gráfico Carta U

Referencias

Alvarez Borrego, J. (2012). Control estadístico de procesos.

Cabezón Gutiérrez, S., y cols. (2014). Control de calidad en la produccion industrial.

Estadística, P. y. (2023, julio). *Gráfico de control NP*. https://www.probabilidadyestadistica.net/grafico-de-control (Accessed: 2023-12-6)

Evans, J., y Lindsay, W. (2014). Administracion y control de la calidad (9.ª ed.). Valle de México: Cengage Learning Editores S.A. de C.V.