

Gaussian process regression models under linear inequality conditions

A. F. López-Lopera¹, F. Bachoc², N. Durrande^{1,3}, and O. Roustant¹.

MINES Saint-Étienne

Nantes, France. 21-23 March 2018.

¹Mines Saint-Étienne, France. ²Institut de Mathmatiques de Toulouse, France. ³PROWLER.io, UK. Méthodes d'Analyse Stochastique pour les Codes et Traitements Numériques 2018 (Mascot-Num)

Introduction

- Gaussian processes (GPs) have become one of the most attractive Bayesian frameworks in different decision tasks [1].
- It is shown that considering inequality constraints in GPs (e.g. positiveness, monotonicity) can lead to more accurate regression models [2].
- We build on the framework proposed in [2] and our contributions are threefold:
- 1. We extend their framework for general sets of linear inequality constraints.
- 2. We suggest an efficient MCMC sampler to approximate the posterior.
- 3. We investigate theoretical/numerical properties of a constrained likelihood.

Materials and Methods

Gaussian process (GP) regression models

A GP is a collection of random variables, any finite number of which have a joint Gaussian distribution [1]. Let Y be a GP. Then, Y is completely defined by its mean function m and covariance function k

$$Y(x) \sim \mathcal{GP}(m(x), k(x, x')),$$
 (1)

where $m(x) = \mathbb{E}\{Y(x)\}$ and $k(x, x') = \mathbb{E}\{[Y(x) - m(x)][Y(x') - m(x')]\}.$

Figure 1: Examples GP regression models.

GP regression models under linear inequality conditions [3]

1) Define the finite-dimensional GP Y_m as the piecewise linear interpolation of Y at knots t_1, \dots, t_m (equally-spaced)

$$Y_m(x) = \sum_{j=1}^m Y(t_j)\phi_j(x), \text{ s.t. } \begin{cases} Y_m(x_i) = y_i & \text{(interpolation conditions)}, \\ Y_m \in \mathcal{E} & \text{(inequality conditions)}, \end{cases}$$
(2)

where $x_i \in [0,1]$, $y_i \in \mathbb{R}$ for $i=1,\cdots,n$, $\boldsymbol{\xi}=[Y(t_1),\cdots,Y(t_m)] \sim \mathcal{N}(\mathbf{0},\boldsymbol{\Gamma})$ with covariance matrix $\boldsymbol{\Gamma}$, and $\phi_1\cdots,\phi_m$ are hat basis functions.

Figure 2: Finite-dimensional approximation of GP regression models.

Property: the function $Y_m(x) \in \mathcal{E} \leftrightarrow$ the vector $\boldsymbol{\xi} \in \mathcal{C}$ [2].

2) Since linearity preserves Gaussian distributions, quantifying uncertainty on Y_m relies on simulating a truncated Gaussian vector $\boldsymbol{\xi} \in \mathcal{C}$ (e.g. MC, MCMC).

Result 1. Performance of MC and MCMC samplers

Table 1: Samplers: Rejection Sampling from the Mode (RSM) [2], Exponential Tilting (ET), Gibbs Sampling (Gibbs), Metropolis-Hasting (MH), Hamiltonian Monte Carlo (HMC) [4]. **Indicators:** effective sample size: ESS = $n/(1+2\sum_{\forall k}\widehat{\rho}_k)$, time normalised (TN)-ESS.

Toy Example	Method	CPU Time [s]	ESS [$\times 10^4$] ($q_{10\%}, q_{50\%}, q_{90\%}$)	TN-ESS $[\times 10^4 s^{-1}]$	Hyperparameter
Figure 1(b)	RSM	-	-	-	_
	ET	41.16	(0.99, 1.00, 1.00)	0.02	_
	Gibbs	40.28	(0.37, 0.6, 0.91)	0.01	thinning = 1000
	MH	_	-	-	_
	НМС	12.92	(0.85, 0.93, 1.00)	0.07	_

References

- [1] C. E. Rasmussen and C. K. I. Williams, *Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)*. The MIT Press, 2005.
- [2] H. Maatouk and X. Bay, "Gaussian process emulators for computer experiments with inequality constraints," *Mathematical Geosciences*, vol. 49, no. 5, pp. 557–582, 2017.
- [3] A. F. López-Lopera, F. Bachoc, N. Durrande, and O. Roustant, "Finite-dimensional Gaussian approximation with linear inequality constraints," *ArXiv e-prints*, Oct. 2017.
- [4] A. Pakman and L. Paninski, "Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians," *Journal of Computational and Graphical Statistics*, vol. 23, no. 2, pp. 518–542, 2014.

Result 2. Constrained Maximum Likelihood (CML)

The conditional log-likelihood is written

$$\mathcal{L}_{\mathcal{C},m}(\theta) = \log p_{\theta}(\mathbf{Y}_m) + \log P_{\theta}(\boldsymbol{\xi} \in \mathcal{C}|\Phi\boldsymbol{\xi} = \mathbf{Y}_m) - \log P_{\theta}(\boldsymbol{\xi} \in \mathcal{C}), \tag{3}$$

where the first term is the unconstrained log-likelihood.

Asymptotic property [3]: Let

$$\mathcal{L}_{\mathcal{C},n}(\boldsymbol{\theta}) = \mathcal{L}_n(\boldsymbol{\theta}) + \log P_{\boldsymbol{\theta}}(Y \in \mathcal{E}_{\kappa}|\mathbf{Y}_n) - \log P_{\boldsymbol{\theta}}(Y \in \mathcal{E}_{\kappa}),$$

where \mathcal{E}_{κ} is the set of boundedness, monotonicity, and convexity constraints for $\kappa=1,2,3$ (resp.). Assume that $\forall \varepsilon>0$ and $\forall M<\infty$ (Consistency of the ML),

$$P\bigg(\sup_{\|\boldsymbol{\theta}-\boldsymbol{\theta}^*\|\geq\varepsilon}(\mathcal{L}_n(\boldsymbol{\theta})-\mathcal{L}_n(\boldsymbol{\theta}^*))\geq -M\bigg)\xrightarrow[n\to\infty]{}0.$$

Then, (Consistency of the conditional CML)

$$P\bigg(\sup_{\|\boldsymbol{\theta}-\boldsymbol{\theta}^*\|\geq\varepsilon}(\mathcal{L}_{\mathcal{C},n}(\boldsymbol{\theta})-\mathcal{L}_{\mathcal{C},n}(\boldsymbol{\theta}^*))\geq -M \ \middle| \ Y\in\mathcal{E}_{\kappa}\bigg)\xrightarrow[n\to\infty]{}0.$$

Consequently, $\operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ \mathcal{L}_{\textit{n}}(\boldsymbol{\theta}) \xrightarrow[n \to \infty]{\textit{P}} \boldsymbol{\theta}^* \text{ and } \operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ \mathcal{L}_{\mathcal{C},\textit{n}}(\boldsymbol{\theta}) \xrightarrow[n \to \infty]{\textit{P}|Y \in \mathcal{E}_{\kappa}} \boldsymbol{\theta}^*.$

Result 3. 2D Nuclear Criticality Example

Figure 3: Nuclear criticality safety dataset. k_{eff} is positive and non-decreasing.

(d) GP + ML (n = 8) (e) Constr. GP + ML (n = 8) (f) Constr. GP + CML (n = 8) **Figure 4:** 2D GP regression models using different number of training points n. ML: Maximum Likelihood. CML: Constrained Maximum Likelihood.

Table 2: Performance of GPs for different n and using 20 random Latin hypercube designs. The accuracy is evaluated using the mean μ and the standard deviation σ of the Q^2 results.

n	GP + MLE	Constr. $GP + MLE$	Constr. $GP + CMLE$
	$\mu \pm \sigma$	$\mu \pm \sigma$	$\mu \pm \sigma$
2	-0.128 ± 1.004	0.967 ± 0.026	0.952 ± 0.043
4	0.558 ± 0.260	0.981 ± 0.014	$\boldsymbol{0.996 \pm 0.006}$
6	0.858 ± 0.139	0.940 ± 0.059	0.995 ± 0.004
8	0.962 ± 0.035	0.995 ± 0.003	0.981 ± 0.011

Conclusions

- We extended the framework proposed in [2] to deal with any set of linear inequality constraints.
- We suggested an efficient MCMC sampler based on HMC [4] to approximate the truncated posterior distribution.
- We further investigated theoretical/numerical properties of a constrained likelihood. The asymptotic properties are detailed in [3].

Future works

- To scale the proposed framework for higher dimensions and for a high number of observations.
- To study more theoretical properties of the constrained likelihood.

Acknowledgment

► This work was funded by the chair of applied mathematics OQUAIDO. We thank Yann Richet (IRSN) for providing the nuclear criticality safety data.