Logică pentru Informatică - Săptămâna 10 Semantica Logicii de Ordinul I Exerciții pentru Seminar

January 7, 2019

Toate exercițiile folosesc signatura Σ (Exemplul 3.1, pagina 6), Σ -structurile S_1, S_2, S_3, S_4, S_5 (Exemplul 3.3, pagina 7) și S_1 -atribuirile α_1, α_2 (Exemplul 3.4 și Exemplul 3.5 pagina 8), definite în notele de curs.

- 1. Marcați aparițiile libere și respectiv aparițiile legate ale variabilelor în formulele de mai jos:
 - (a) $\phi_1 \triangleq (\forall x. P(x, x) \land P(x, y)) \land P(x, z);$ (b) $\phi_2 \triangleq (\forall x. P(f(x, x), i(x)) \land \exists y. (P(x, y) \land P(x, z))).$
- 2. Identificați domeniul de vizibilitate, pentru fiecare cuantificator, în formulele ϕ_1 și ϕ_2 date în **Exercițiul** 1.
- 3. Găsiți variabilele, variabilele libere și respectiv variabilele legate ale formulelor ϕ_1 și ϕ_2 date în Exercitiul 1.
- 4. Stabiliți dacă:
 - (a) $S_1, \alpha_1 \models P(x_2, x_3);$
 - (b) $S_1, \alpha_1 \models \neg P(x_2, x_3);$
 - (c) $S_1, \alpha_1 \models \neg P(x_2, x_3) \land P(x_1, x_1);$
 - (d) $S_1, \alpha_1 \models \exists x_3. P(x_2, x_3);$
 - (e) $S_1, \alpha_1 \models \forall x_2. \exists x_3. P(x_2, x_3);$
 - (f) $S_1, \alpha_1 \models \exists x_3. \forall x_2. P(x_2, x_3);$
 - (g) $S_1, \alpha_2 \models \forall x_2. \exists x_3. P(x_2, i(x_3));$
- 5. Găsiți pentru fiecare dintre itemii de mai jos câte o S_2 -atribuire α_3 astfel încât:
 - (a) $S_2, \alpha_3 \models P(x_1, x_2);$

- (b) $S_2, \alpha_3 \models P(f(x_1, x_2), x_3);$
- (c) $S_2, \alpha_3 \models P(f(x_1, x_2), i(x_3));$
- (d) $S_2, \alpha_3 \models P(x, e);$
- (e) $S_2, \alpha_3 \models \exists y. P(x, i(y));$
- (f) $S_2, \alpha_3 \models \forall y. P(x, i(y)).$
- 6. Arătați că următoarele formule sunt valide în S_2 :
 - (a) $\forall x. \exists y. P(x, i(y));$
 - (b) $\forall x. P(f(x, e), x);$
 - (c) $\forall x. P(x, i(i(x))).$
- 7. Arătați că formula $\forall x. \exists y. P(x, i(y))$ nu este validă în S_3 .
- 8. Găsiți o formulă care să fie satisfiabilă în S_1 dar nu în S_3 .
- 9. Găsiți o formulă fără variabile libere care să fie satisfiabilă în S_5 dar nu în S_4 .
- 10. Arătați că formula $\forall x. \exists y. P(x, y)$ nu este validă (atenție, conform Definiției 3.8 din notele de curs).
- 11. Arătați că formula $(\forall x. P(x, x)) \rightarrow \exists x_2. P(x_1, x_2)$ este validă (atenție, folosiți corect Definiția 3.8 din notele de curs).
- 12. Arătați că formula $\forall x. \exists y. P(x,y)$ nu este validă (atenție, folosiți corect Definiția 3.8 din notele de curs).
- 13. Arătați că formula $\forall x. \neg P(x, x)$ este satisfiabilă (conform Definiției 3.7 din notele de curs).
- 14. Arătați că formula $\forall x. \neg P(x, x) \land \exists x. P(x, x)$ nu este satisfiabilă (conform Definiției 3.7 din notele de curs).