

Unsupervised Learning

Madson L. D. Dias

Huawei / IFCE

March 26, 2021

- Unsupervised Learning
 Introduction
 Applications
 Supervised Learning vs. Unsupervised Learning
- Clustering Formal Definition Types of clustering Clustering using k-means
- Oimensionality reduction Principal Component Analysis

- Unsupervised Learning
 Introduction
 Applications
 Supervised Learning vs. Unsupervised Learning
- Clustering Formal Definition Types of clustering Clustering using k-means
- Oimensionality reduction Principal Component Analysis

Unsupervised Learning Introduction

Applications
Supervised Learning vs. Unsupervised Learning

- Clustering Formal Definition Types of clustering Clustering using k-means
- Oimensionality reduction Principal Component Analysis

Unsupervised Learning

- A type of machine learning algorithm used to draw inferences from data sets consisting of input data without labels
- Task of inferring a function to describe hidden structure from unlabeled data.

Unsupervised Learning

- A type of machine learning algorithm used to draw inferences from data sets consisting of input data without labels
- Task of inferring a function to describe hidden structure from unlabeled data.

• Unsupervised Learning

Introduction

Applications

Supervised Learning vs. Unsupervised Learning

- Clustering Formal Definition Types of clustering Clustering using k-means
- Oimensionality reduction Principal Component Analysis

Applications of Unsupervised Learning

Clustering

- Process of grouping data into different clusters or groups.
- ullet Same group o similar and different groups o dissimilar
- Used for analyzing and grouping data without labels

Applications of Unsupervised Learning

Dimensionality reduction

- Process of reducing the number of variables
- Simplify the data without losing too much information
- This method is also called feature extraction

Applications of Unsupervised Learning

Anomaly detection

- Identification of rare observations, which brings suspicions
- The model is trained with a lot of normal instances
- Also called as Novelty Detection and Outlier Detection

Unsupervised Learning

Introduction Applications

Supervised Learning vs. Unsupervised Learning

- Clustering Formal Definition Types of clustering Clustering using k-means
- Oimensionality reduction Principal Component Analysis

Supervised Learning vs. Unsupervised Learning

Parameter	Supervised Learning	Unsupervised Learning
Learning Complexity	Labelled Dataset Guided learning Simpler method More Accurate	Unlabelled Dataset Guided by some metric Computationally complex Less Accurate
Accuracy	More Accurate	Less Accurate

- Unsupervised Learning
 Introduction
 Applications
 Supervised Learning vs. Unsupervised Learning
- Clustering Formal Definition Types of clustering Clustering using k-means
- Dimensionality reductionPrincipal Component Analysis

- Unsupervised Learning
 Introduction
 Applications
 Supervised Learning vs. Unsupervised Learning
- Clustering Formal Definition

Types of clustering Clustering using k-means

Oimensionality reduction Principal Component Analysis

Formal definition of Clustering

• Given a dataset $\mathcal{D} = \{ \boldsymbol{x}_n \in \mathbb{R}^D \}_{n=1}^N$, where \boldsymbol{x} is a vector with D dimensions and N is the number of elements of the data set¹. The task of clustering is to find a function $g(\boldsymbol{x})$ in that $g: \mathbb{R}^D \to \mathbb{N}^K$, where $\mathcal{C} \in \mathbb{N}^K$ is a set of sets $\mathcal{C} = \{\mathcal{C}_k\}_{k=1}^{K < N}$ containing clusters $\mathcal{C}_k = \{\boldsymbol{x}_n: g(\boldsymbol{x}_n) = k\}$ such that

$$C_k \neq \emptyset, \forall k \tag{1}$$

$$\bigcup_{k=1}^{K} C_k = \mathcal{D} \tag{2}$$

$$C_k \cap C_j = \emptyset, \ \forall k, j \text{ where } k \neq j$$
 (3)

¹The \mathbb{R}^D space is called "data space" or "input space".

Unsupervised Learning
 Introduction
 Applications
 Supervised Learning vs. Unsupervised Learning

Clustering

Formal Definition

Types of clustering

Clustering using k-means

3 Dimensionality reduction Principal Component Analysis

Types of clustering algorithms

- Clustering itself can be categorized into two types
 - Hard Clustering
 - Soft Clustering
- We can also categorize clustering methods by their methodology and learning algorithms

Density-based clustering

- In this method, the clusters are created based upon the density
 of the data points which are represented in the data space.
- Regions that become **dense** due to the huge number of data points residing in that region are considered as **clusters**
- Points in the sparse region are considered as noise or outliers

Hierarchical Clustering

- Divides the clusters based on the distance metrics
- Agglomerative or Divisive
- Create a distance matrix of all the existing clusters and perform the linkage between the clusters depending on the criteria of the linkage
 - Single Linkage
 - Complete Linkage
 - Average Linkage

Partitioning Clustering

- The clusters are partitioned based upon the characteristics of the data points
- We need to specify the number of clusters to be created
- Iterative process to reassign the data points between clusters based upon the distance

Fuzzy clustering

- In fuzzy clustering, the assignment of the data points in any of the clusters is not decisive
- Here, one data point can belong to more than one cluster
- It provides the outcome as the probability of the data point belonging to each of the clusters.

Grid-based clustering

- The data set is represented into a grid structure which comprises of grids (also called cells).
- After partitioning the data sets into cells, it computes the density of the cells which helps in identifying the clusters.
- This makes it appropriate for dealing with big data sets

Unsupervised Learning
 Introduction
 Applications
 Supervised Learning vs. Unsupervised Learning

Clustering

Formal Definition
Types of clustering

Clustering using k-means

Dimensionality reduction Principal Component Analysis

k-means clustering

- One of the most popular choices for analysts to create clusters.
- We need to specify the number of clusters to be created for this clustering method.

Definition

• Given a dataset $\mathcal{D} = \{x_n \in \mathcal{R}^D\}_{n=1}^N$, k-means clustering aims to partition the N observations into $K(\leq N)$ sets so as to minimize the *within-cluster* sum of squares (i.e. variance). Formally, the objective is to find:

$$C^{\star} = \arg\min_{C} \sum_{k=1}^{K} \sum_{\boldsymbol{x} \in C_{k}} \|\boldsymbol{x} - \boldsymbol{\mu}_{k}\|^{2}$$
 (4)

where μ_k is the centroid of the cluster C_k .

k-means clustering

Algorithm

- 1. Specity the number K of clusters to assingn
- 2. Randomly initialize K centroids
- 3. Repeat until the centroid positions do not change
 - 3.1. Assign each point to its closest centroid
 - 3.2. Compute the new centroid (mean) of each cluster

k-means clustering

"Talk is cheap. Show me the code."

- Linus Torvalds

https://github.com/omadson/vds

- Unsupervised Learning
 Introduction
 Applications
 Supervised Learning vs. Unsupervised Learning
- Clustering Formal Definition Types of clustering Clustering using k-means
- Oimensionality reduction Principal Component Analysis

Dimensionality reduction

- Transformation of data from a high-dimensional space into a low-dimensional space
- Ideally close to its intrinsic dimension.
- Methods
 - Feature selection
 - Feature projection

- Unsupervised Learning
 Introduction
 Applications
 Supervised Learning vs. Unsupervised Learning
- Clustering Formal Definition Types of clustering Clustering using k-means
- Oimensionality reduction Principal Component Analysis

 PCA is often used to reduce the dimensionality of large data sets, by transforming a large set of variables into a smaller one that still contains most of the information in the large set.

• Consider a set of points $\mathcal{D} = \{x_n\}_{n=1}^N$ in a D-dimensional space, such that their mean $\mu = \mathbf{0}$, i.e., centroid is at the origin.

- The PCA want to finds a line l through the origin that maximizes the projections x'_n of the points x_n on l.
- Let q denote the unit vector along line l.

- The projection x_n' of x_n on l is $x_n' = x_n^{\top} q$.
- ullet The mean squared projection is the variance V over all points

$$V = \frac{1}{N} \sum_{n=1}^{N} x_n^{\prime \, 2} \tag{5}$$

$$=\frac{1}{N}\sum_{n=1}^{N}(\boldsymbol{x}_{n}^{\top}\boldsymbol{q})^{2}$$
(6)

$$= \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{q}^{\top} \boldsymbol{x}_n) (\boldsymbol{x}_n^{\top} \boldsymbol{q})$$
 (7)

$$= \boldsymbol{q}^{\top} \left[\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\top} \right] \boldsymbol{q}$$
 (8)

• The middle factor is the covariance matrix C of the data points

$$\mathbf{C} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n \boldsymbol{x}_n^{\top}$$
 (9)

ullet We want to find a unit vector $oldsymbol{q}$ that maximizes the variance V

$$\boldsymbol{q}^{\star} = \arg\max_{\boldsymbol{q}} \boldsymbol{q}^{\top} \mathbf{C} \boldsymbol{q}, \tag{10}$$

- Put $\|q\| = 1$ constraint to avoid overflow
- The constraint optimization problem

maximize
$$V = \mathbf{q}^{\mathsf{T}} \mathbf{C} \mathbf{q}$$
 subject to $\|\mathbf{q}\| = 1$. (11)

Lagrange multiplier method

• Consider this problem

maximize
$$f(x)$$
 subject to $g(x) = c$. (12)

• Lagrange multiplier method introduces a Lagrange multiplier λ to combine $f(\boldsymbol{x})$ and $g(\boldsymbol{x})$ as

$$L(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) - \lambda(g(\boldsymbol{x}) - c)$$
(13)

Then, we can solve using

$$\frac{\partial L(\boldsymbol{x},\lambda)}{\partial \boldsymbol{x}} = 0, \quad \frac{\partial L(\boldsymbol{x},\lambda)}{\partial \lambda} = 0 \tag{14}$$

- Use Lagrange multiplier method, combine V and the constraint
- Consider this problem

maximize
$$L = \boldsymbol{q}^{\top} \mathbf{C} \boldsymbol{q} - \lambda (\boldsymbol{q}^{\top} \boldsymbol{q} - 1)$$
 (15)

• Now, we differentiate L with respect to q and λ :

$$\frac{\partial L}{\partial \boldsymbol{x}} = 2\boldsymbol{q}^{\mathsf{T}}\mathbf{C} - 2\lambda\boldsymbol{q}^{\mathsf{T}} = 0$$

$$\frac{\partial L}{\partial \lambda} = \boldsymbol{q}^{\mathsf{T}}\boldsymbol{q} - 1 = 0$$
(16)

$$\frac{\partial L}{\partial \lambda} = \boldsymbol{q}^{\mathsf{T}} \boldsymbol{q} - 1 = 0 \tag{17}$$

Eq. (16) gives

$$\mathbf{q}^{\mathsf{T}}\mathbf{C} = \lambda \mathbf{q}^{\mathsf{T}} \Longleftrightarrow \mathbf{C}\mathbf{q} = \lambda \mathbf{q} \tag{18}$$

• This is called an eigenvector equation

General PCA

ullet PCA transforms $oldsymbol{x}_n$ into a new vector $oldsymbol{y}_n$ through $oldsymbol{Q}$ as follows:

$$\boldsymbol{x}_n' = \boldsymbol{Q}^{\top}(\boldsymbol{x}_n - \boldsymbol{\mu}) = \sum_{m=1}^{M} (\boldsymbol{x}_n - \boldsymbol{\mu})^{\top} \boldsymbol{q}_m \boldsymbol{q}_m$$
 (19)

• Each component of x'_n is

$$x'_{nm} = (\boldsymbol{x}_n - \boldsymbol{\mu})^{\top} \boldsymbol{q}_m \tag{20}$$

• This is the projection of $x_n - \mu$ on q_m .

"Talk is cheap. Show me the code."

- Linus Torvalds

https://github.com/omadson/vds

Bye-Bye!

Thank you!