Análisis y Visualización de Datos

Diplomatura CDAAyA 2025

Para pensar...

Varias Variables

En un mismo experimento o análisis podemos tomar en cuenta varios aspectos o medidas relevantes a la vez, así como combinación de situaciones, etc.

Sean X: $\Omega \rightarrow R$ e Y: $\Omega \rightarrow R$ variables aleatorias. función de densidad/probabilidad conjunta:

- f(x,y) p/ X e Y v.a. continuas, densidad, y
- f(x,y) = P(X = x, Y = y) p/discretas, prob. o densidad puntual

Varias Variables -> una variable

X: $\Omega \rightarrow R$ **e Y**: $\Omega \rightarrow R$ **variables aleatorias** con función de densidad o

probabilidad conjunta f(x,y).

Las densidades marginales son:

$$f_Y(y) = \sum_x f(x, y)$$
 p/ X discreta

$$f_X(x) = \sum_y f(x,y)$$
 p/ Y discreta

p/ modelos continuos se usa integral

Varias Variables

X: $\Omega \rightarrow \mathbb{R}$ **e Y**: $\Omega \rightarrow \mathbb{R}$ **variables aleatorias** con función de densidad o probabilidad conjunta f(x,y).

Las densidades condicionales:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$
, si $f_Y(y) > 0$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$
, si $f_X(x) > 0$

Percentiles

Los percentiles de crecimiento son percentiles de distribuciones condicionadas por

edad. Ver: el siguiente link curvas de crecimiento

Varias Variables: propiedades

X: $\Omega \rightarrow R$ **e Y**: $\Omega \rightarrow R$ variables aleatorias

Se pueden combinar v.a. numéricas. Por ejemplo, se puede definir la v.a. suma: $X+Y: \Omega \rightarrow R$ es una nueva v.a. $(X+Y)(\omega)=X(\omega)+Y(\omega)$ $p/c/\omega \in \Omega$. Y así con cualquier combinación de dos o más variables. X-Y, X/Y^2 , log(X.Y), etc. se cumple que:

• E(X+Y)=E(X)+E(Y), E(X-Y)=E(X)-E(Y), (media de la suma..., media de la resta..)

Varias Variables, numéricas

X: $\Omega \rightarrow R$ **e Y**: $\Omega \rightarrow R$ variables aleatorias

Se cumple: Var(X+Y)=Var(X)+Var(Y)-Cov(X,Y).

Se define la Covarianza y el Coeficiente de Correlación entre X e Y:

Cov (X,Y)=E{(X-
$$\mu_X$$
)(Y- μ_Y)}, para μ_X =E(X) y μ_Y =E(Y).

$$\rho = Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_1\sigma_2} \text{, p/} \ \sigma_1^{\text{2}=\text{Var(X)}} \text{y} \ \sigma_1^{\text{2}=\text{Var(Y)}}$$

Covarianza en gráficos

Independencia entre Variables

X e Y v.a. se dicen **independientes** si $f(x,y) = f_X(x)f_Y(y)$

(X₁,X₂, ...,X_n <u>muestra aleatoria</u> si son v.a. independientes:

$$f(x_1, x_2, ..., x_n) = f_{X_1}(x_1) f_{X_2}(x_2) ... f_{X_n}(x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

e idénticamente distribuidas (clones))

Varias Variables: independencia

 $X: \Omega \rightarrow R e Y: \Omega \rightarrow R$ variables aleatorias

Si X e Y son independientes ENTONCES se cumple:

- E(X.Y)=E(X).E(Y),
- Cov(X,Y)=0
- $\rho = Corr(X,Y) = 0$
- Var(X+Y)=Var(X)+Var(Y).

•
$$P(X=x | Y=y)=P(X=x)$$
,

•
$$f(x,y) = f_X(x)f_Y(y)$$

•
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{f_X(x)f_Y(y)}{f_Y(y)} = f_X(x)$$

Ejemplo: distribución Normal bivariada

Diremos que el par (X, Y) de v.a. tiene distribución normal bivariada

si función de densidad conjunta es:

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\{-\frac{1}{2\sigma_1^2\sigma_2^2(1-\rho^2)}(\sigma_2^2(x-\mu_1)^2 + \sigma_1^2(y-\mu_2)^2 - 2\sigma_1\sigma_2\rho(x-\mu_1)(y-\mu_2))\}$$

$$\mu_1$$
= E(X), μ_2 = E(Y), σ_1^2 = Var(X), σ_2^2 = Var(Y), $\rho = Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_1\sigma_2}$

Ejemplo: distribución Normal bivariada

X e Y v.a. con distribución normal bivariada

<u>independientes</u> ⇔

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_1 \sigma_2} = 0$$

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\{-\frac{1}{2\sigma_1^2\sigma_2^2(1-\rho^2)}(\sigma_2^2(x-\mu_1)^2 + \sigma_1^2(y-\mu_2)^2 - 2\sigma_1\sigma_2\rho(x-\mu_1)(y-\mu_2))\}$$

$$f(\mathbf{X},\mathbf{y}) = \left[\frac{1}{\sigma_1\sqrt{2\pi}}\exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right)\right]\left[\frac{1}{\sigma_2\sqrt{2\pi}}\exp\left(-\frac{(x-\mu_2)^2}{2\sigma_2^2}\right)\right] = f_X(x)f_Y(y)$$

Datos simulados con distribución Normal bivariada

Asociación de Variables

Para variables Categóricas: tablas de contingencia

	Diestro	Zurdo	TOTAL
Hombre	43	9	52
Mujer	44	4	48
TOTAL	87	13	100

Para variables Numéricas: Covarianza y Correlación, p/asociación lineal

Covarianza y Correlación

$$Cov(X,Y) = \frac{\sum_{1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n}$$

Si Cov_{xv}> 0, la correlación ("alineación") es directa.

•Si Cov_{xv}< 0, la correlación ("alineación") es inversa

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_1 \sigma_2}$$

El valor del índice de correlación r= ρ varía en el intervalo [-1,1],

Correlación en gráficos

Interpretación

- •Si *r* = 1, existe una correlación positiva perfecta. El índice indica una dependencia total entre las dos variables denominada *relación directa*: cuando una de ellas aumenta, la otra también lo hace en proporción constante.
- •Si 0 < r < 1, existe una correlación positiva.
- \bullet Si r = 0, no existe relación lineal. Pero esto no necesariamente implica que las variables son independientes: pueden existir todavía relaciones no lineales entre las dos variables.
- •Si -1 < r < 0, existe una correlación negativa.
- •Si r = -1, existe una correlación negativa perfecta. El índice indica una dependencia total entre las dos variables llamada *relación inversa*: cuando una de ellas aumenta, la otra disminuye en proporción constante.

Coeficiente de correlación lineal. Spearman

O Coeficiente de Spearman

Para (X,Y) par de v.a. Si no sabemos si su distribución conj. es Normal o tenemos pocos datos. O si la/s variable/s son del tipo ordinal.

- analíticamente tiene un cálculo tedioso

Coeficiente de correlación lineal. Tau de Kendall

O Coeficiente de Correlación por Rangos de Kendall

Medida de asociación no paramétrica utilizada para variables cualitativas ordinales o de razón (numéricas). Estas variables son distribuidas en categorías con varios niveles que cumplen un orden, por ejemplo, muy bajo, bajo, medio, alto y muy alto.

- Sólo se puede aplicar a partir de tablas cuadradas.
- Las variables utilizadas deben ser de nivel ordinal, intervalo o razón
- Su resultado debe encontrarse en el rango de -1 a 1.
- Tiene sentido su aplicación, si las variables objeto de estudio no poseen una distribución poblacional conjunta normal

Cuidado!

Recuerden que **la correlación no implica causalidad**. Por ejemplo, si las ventas de helados están correlacionadas positivamente con los ataques de los tiburones a los nadadores, eso no significa que el consumo de helados de alguna manera hace que los tiburones ataquen. Otra variable, como el clima cálido, puede provocar un aumento tanto en las ventas de helados como en las visitas a las playas.

Correlación versus causalidad

La correlación no es causal y otra variable inadvertida puede estar influyendo en los resultados.

https://tylervigen.com/spurious-correlations

Notebook <u>03 Varias</u> Variables.ipynb