Transformed vari-

able scale level

	1	Selection of objects and variables	data matrix $[x_{ij}]$		
		Variable scale level	ratio	ratio	interval
		Selection of vari-	n7 – quotient transformation (x/range) n8 – quotient transformation (x/max)	n2 – Weber standardization n3 – unitization	n1 – standardization n2 – Weber standardization n3 – unitization
		formula	n10 – quotient transformation (x/sum)	n4 – unitization with zero minimum n5 – normalization in range	n4 – unitization with zero minimum n5 – normalization in range

interval

interval

Types of variable normalization formulas

(n1)
$$z_{ij} = s_{j}^{-1} x_{ij} - \overline{x}_{j} s_{j}^{-1},$$
(n2)
$$z_{ij} = (x_{ij} - Me_{j})/1,4826 \cdot MAD_{j},$$
(n3)
$$z_{ij} = r_{j}^{-1} x_{ij} - \overline{x}_{j} r_{j}^{-1},$$
(n4)
$$z_{ij} = \left[x_{ij} - \min_{i} \{x_{ij}\}\right] / r_{j}$$
(n5)
$$z_{ij} = (x_{ij} - \overline{x}_{j}) / \max_{i} |x_{ij} - \overline{x}_{j}|$$
(n6)
$$x_{ij} / s_{j}$$
(n7)
$$x_{ij} / r_{j}$$
n(8)
$$x_{ij} / \max_{i} \{x_{ij}\}$$
(n9)
$$x_{ij} / \overline{x}_{j}$$
(n10)

ratio

where: $x_{ij}(z_{ij}) - i$ -th observation on j-th variable (i-th normalized observation on j-th variable), \overline{x}_j, s_j – mean and standard deviation for j-th variable, Me_j , MAD_j – median and median absolute deviation for j-th variable,

 $x_{ii}/\sqrt{\sum_{i=1}^{n}x_{ii}^2}$

 $r_j = \max_i \{x_{ij}\} - \min_i \{x_{ij}\}.$

References

(n11)

Gatnar, E., Walesiak, M. (Eds.) (2004), *Metody statystycznej analizy wielowymiarowej w badaniach marketingowych [Multivariate statistical analysis methods in marketing research]*, Wydawnictwo AE, Wroclaw, pp. 35-38.

Jajuga, K., Walesiak, M. (2000), Standardisation of data set under different measurement scales, In: R. Decker, W. Gaul (Eds.), Classification and information processing at the turn of the millennium, Springer-Verlag, Berlin, Heidelberg, pp. 105-112.

Milligan, G.W., Cooper, M.C. (1988), A study of standardization of variables in cluster analysis, "Journal of Classification", vol. 5, pp. 181-204.