dynamic programming

1 Recursive Techniques in Efficient Algorithms

• divide and conquer: get solution for problem size *n* from solutions of *dis*-*joint* subproblems of size < *n*

$$T(n) = n + 2T(n/2)$$

• telescoping: get solution for problem size n from solutions of one subproblem of size < n

$$C(n) = n + C(n/2)$$

• dynamic programming: get solution for problem size n from solutions of many em not necessarily disjoint subproblems of size < n. Reasonably efficient if total number of subproblems is not too large.

$$M = M_1 \times \dots M_n$$

- dimension of matrices: each M_i is $r_{i-1} \times r_i$ matrix.
- unit of cost: multiply and accumulate.
- scalar product of length *n* costs *n*
- multiplying $a \times b$ matrix with $b \times c$ matrix: $b \cdot (a \cdot c)$.

$$M = M_1 \times \dots M_n$$

- dimension of matrices: each M_i is $r_{i-1} \times r_i$ matrix.
- unit of cost: multiply and accumulate.
- scalar product of length *n* costs *n*
- multiplying $a \times b$ matrix with $b \times c$ matrix: $b \cdot (a \cdot c)$.

Assiciativity: many orders if evaluation posssible.

Example

$$n = 3$$
, $r_0 = 10$, $r_1 = 20$, $r_{=}50$, $r_3 = 2$

• $(M_1 \times M_2) \times M_3$:

$$10 \cdot 20 \cdot 50 + 10 \cdot 50 \cdot 2 = 10000 + 1000 = 11000$$

• $M_1 \times (M_2 \times M_3)$:

$$20 \cdot 50 \cdot 2 + 10 \cdot 20 \cdot 2 = 2000 + 400 = 2400$$

$$M = M_1 \times \dots M_n$$

- dimension of matrices: each M_i is $r_{i-1} \times r_i$ matrix.
- unit of cost: multiply and accumulate.
- scalar product of length *n* costs *n*
- multiplying $a \times b$ matrix with $b \times c$ matrix: $b \cdot (a \cdot c)$.

Assiciativity: many orders if evaluation posssible.

Example

$$n = 3$$
, $r_0 = 10$, $r_1 = 20$, $r_{=}50$, $r_3 = 2$

• $(M_1 \times M_2) \times M_3$:

$$10 \cdot 20 \cdot 50 + 10 \cdot 50 \cdot 2 = 10000 + 1000 = 11000$$

• $M_1 \times (M_2 \times M_3)$:

$$20 \cdot 50 \cdot 2 + 10 \cdot 20 \cdot 2 = 2000 + 400 = 2400$$

Promlem:

- input: $n, r_0, \ldots r_n$
- find optimal order of evaluation! (there are terribly many)

$$M = M_1 \times \dots M_n$$

- dimension of matrices: each M_i is $r_{i-1} \times r_i$ matrix.
- unit of cost: multiply and accumulate.
- scalar product of length *n* costs *n*
- multiplying $a \times b$ matrix with $b \times c$ matrix: $b \cdot (a \cdot c)$.

Assiciativity: many orders if evaluation posssible.

Example

$$n = 3$$
, $r_0 = 10$, $r_1 = 20$, $r_{=}50$, $r_3 = 2$

• $(M_1 \times M_2) \times M_3$:

$$10 \cdot 20 \cdot 50 + 10 \cdot 50 \cdot 2 = 10000 + 1000 = 11000$$

• $M_1 \times (M_2 \times M_3)$:

$$20 \cdot 50 \cdot 2 + 10 \cdot 20 \cdot 2 = 2000 + 400 = 2400$$

Promlem:

- input: $n, r_0, \ldots r_n$
- find optimal order of evaluation! (there are terribly many)

crucial observation:

Let m_{ij} be the minimal cost for computing $M_i \times ... \times M_j$. Then

$$m_{ij} = \begin{cases} 0 : i = j \\ \min\{m_{ik} + m_{k+1,j} + r_{i-1}r_kr_j : i \le k \le j\} \end{cases}$$

minimizing over orders

$$(M_i \times \ldots M_k) \times (M_{k+1} \times \ldots \times M_j)$$

$$M = M_1 \times \dots M_n$$

- dimension of matrices: each M_i is $r_{i-1} \times r_i$ matrix.
- unit of cost: multiply and accumulate.
- scalar product of length *n* costs *n*
- multiplying $a \times b$ matrix with $b \times c$ matrix: $b \cdot (a \cdot c)$.

Assiciativity: many orders if evaluation posssible.

Example

$$n = 3$$
, $r_0 = 10$, $r_1 = 20$, $r_{=}50$, $r_3 = 2$

• $(M_1 \times M_2) \times M_3$:

$$10 \cdot 20 \cdot 50 + 10 \cdot 50 \cdot 2 = 10000 + 1000 = 11000$$

• $M_1 \times (M_2 \times M_3)$:

$$20 \cdot 50 \cdot 2 + 10 \cdot 20 \cdot 2 = 2000 + 400 = 2400$$

Promlem:

- input: $n, r_0, \ldots r_n$
- find optimal order of evaluation! (there are terribly many)

crucial observation:

Let m_{ij} be the minimal cost for computing $M_i \times ... \times M_j$. Then

$$m_{ij} = \begin{cases} 0 : i = j \\ \min\{m_{ik} + m_{k+1,j} + r_{i-1}r_kr_j : i \le k \le j\} \end{cases}$$

minimizing over orders

$$(M_i \times \ldots M_k) \times (M_{k+1} \times \ldots \times M_j)$$

algorithm

- compute $m_{i,j}$ in order of j-i. Record for each m_{ij} the optimal k(i,j).
- table of *n* rows $x \in [0: n-1]$. In row *x* store $m_{1,1+x}, m_{2,2+x}, ...$
- computation for an entry in row x + 1 accesses at most 2x entries in rows y < x. Time O(n)
- $O(n^2)$ table entries; total time $O(n^3)$

Promlem:

- input: $n, r_0, \ldots r_n$
- find optimal order of evaluation! (there are terribly many)

crucial observation:

Let m_{ij} be the minimal cost for computing $M_i \times ... \times M_j$. Then

$$m_{ij} = \begin{cases} 0 : i = j \\ \min\{m_{ik} + m_{k+1,j} + r_{i-1}r_kr_j : i \le k \le j\} \end{cases}$$

minimizing over orders

$$(M_i \times \ldots M_k) \times (M_{k+1} \times \ldots \times M_j)$$

algorithm

- compute $m_{i,j}$ in order of j-i. Record for each m_{ij} the optimal k(i,j).
- table of n rows $x \in [0: n-1]$. In row x store $m_{1,1+x}, m_{2,2+x}, \dots$
- computation for an entry in row x + 1 accesses at most 2x entries in rows y < x. Time O(n)
- $O(n^2)$ table entries; total time $O(n^3)$

Promlem:

• input: $n, r_0, \ldots r_n$

• find optimal order of evaluation! (there are terribly many)

crucial observation:

Let m_{ij} be the minimal cost for computing $M_i \times ... \times M_j$. Then

$$m_{ij} = \begin{cases} 0 : i = j \\ \min\{m_{ik} + m_{k+1,j} + r_{i-1}r_kr_j : i \le k \le j\} \end{cases}$$

minimizing over orders

$$(M_i \times \ldots M_k) \times (M_{k+1} \times \ldots \times M_j)$$

algorithm

- compute $m_{i,j}$ in order of j-i. Record for each m_{ij} the optimal k(i,j).
- table of *n* rows $x \in [0: n-1]$. In row *x* store $m_{1,1+x}, m_{2,2+x}, \dots$
- computation for an entry in row x + 1 accesses at most 2x entries in rows y < x. Time O(n)
- $O(n^2)$ table entries; total time $O(n^3)$

example [AHU: Aho, Hopcroft, Ullman]

$$n = 4$$
, $r_0, \dots, r_4 = 10, 20, 50, 1, 100$

$m_{11} = 0$	$m_{22} = 0$	$m_{33} = 0$	$m_{44} = 0$
$m_{12} = 10000$	$m_{23} = 1000$	$m_{34} = 5000$	
$m_{13} = 1200$	$m_{24} = 3000$		
$m_{14} = 2200$			

Table 1: Values m_{ij} are computed row by row

The dynamic programming algorithm, but amazingly enough missing both in [AHU] and [CLRS].

from I2OS slide set 2

A context-free grammar G consists of the following components:

- a finite set of symbols G.T, called the alphabet of terminal symbols,
- a finite set of symbols G.N, called the alphabet of nonterminal symbols,
- a start symbol $G.S \in G.N$, and
- a finite set $G.P \subset G.N \times (G.N \cup G.T)^*$ of *productions*.

Symbols are either terminal or nonterminal, never both:

$$G.T \cap G.N = \emptyset$$
.

If (n, w) is a production of grammar G, i.e., $(n, w) \in G.P$, we say that the string w is directly derived in G from the nonterminal symbol n. As a shorthand, we write

$$n \rightarrow_G w$$
.

If there are several strings w^1, \ldots, w^s that are directly derived in G from n, we write

$$n \rightarrow_G w^1 \mid \ldots \mid w^s$$
.

$$n \rightarrow_G \mathcal{E}$$
,

allowed, but we avoid it

$$T=G.T$$
,

$$N = G.N$$
,

$$S = G.S$$
,

$$P = G.P$$
,

$$\rightarrow = \rightarrow_G$$
.

if G is clear

 $N \cap T = \emptyset$ nonterminals, terminals

$$S \in Nstartsymbol$$

$$P \subset N \times (N \cup T)^* productions$$

$$T = \{0, 1, X\},\$$
 $N = \{V, B, \langle BS \rangle\},\$
 $S = V,\$
 $B \to 0 \mid 1,\$
 $\langle BS \rangle \to B \mid B \langle BS \rangle,\$
 $V \to X \langle BS \rangle \mid 0 \mid 1.$

Definition

$$n \to_G^* y$$

Nonterminal *n* derives $y \in (T \cup N)^*$

•

$$n \to_G^* n$$

• If

$$n \to_G^* umv$$
, $m \to w \in P$

then

$$n \rightarrow^* uwv$$

• this is all

Example grammar

$$V \to^* X \langle BS \rangle \to^* XB \langle BS \rangle \to^* XBB \to^* X0B \to^* X01$$

$$T = \{0, 1, X\},\$$
 $N = \{V, B, \langle BS \rangle\},\$
 $S = V,\$
 $B \to 0 \mid 1,\$
 $\langle BS \rangle \to B \mid B \langle BS \rangle,\$
 $V \to X \langle BS \rangle \mid 0 \mid 1.$

Example grammar

$$V \to^* X \langle BS \rangle \to^* XB \langle BS \rangle \to^* XBB \to^* X0B \to^* X01$$

$$T = \{0, 1, X\},\$$
 $N = \{V, B, \langle BS \rangle\},\$
 $S = V,\$
 $B \to 0 \mid 1,\$
 $\langle BS \rangle \to B \mid B \langle BS \rangle,\$
 $V \to X \langle BS \rangle \mid 0 \mid 1.$

derivation trees: example

def: derivation trees, quick and dirty

- 1. a single nonterminal n is a derivation tree with root n and border word n.
- 2. if *T* is a derivation tree with root *n* and border word umv and $m \to w \in P$ is a production with $w = w_0 \dots w_{k-1}$, then the tree illustrated in Fig. 71 is a derivation tree with root *n* and border word uwv.¹
- 3. all derivation trees can be generated by finitely many applications of the above two rules.

The dynamic programming algorithm, but amazingly enough missing both in [AHU] and [CLRS].

reminder: context free grammars G

Components

- alphabet of terminals T
- alphabet of non termnals *N*
- startsymbos $s \in N$
- system of productions $P \subseteq N \times (N \cup T)^+$
- for $(n, w) \in P$ one writes $n \to w$.
- note: we excluded productions of the form $N \to \varepsilon$ (empty word). In standard definition allowed. Consequences only mildly interesting IMHO (in my humble opinion)

The dynamic programming algorithm, but amazingly enough missing both in [AHU] and [CLRS].

reminder: context free grammars G

Components

- alphabet of terminals T
- alphabet of non termnals *N*
- startsymbos $s \in N$
- system of productions $P \subseteq N \times (N \cup T)^+$
- for $(n, w) \in P$ one writes $n \to w$.
- note: we excluded productions of the form $N \to \varepsilon$ (empty word). In standard definition allowed. Consequences only mildly interesting IMHO (in my humble opinion)

For G we defined

• $r \to^* w$ iff there is a derivation trees for G with root r and border word w.

The dynamic programming algorithm, but amazingly enough missing both in [AHU] and [CLRS].

reminder: context free grammars G

Components

- alphabet of terminals T
- alphabet of non termnals *N*
- startsymbos $s \in N$
- system of productions $P \subseteq N \times (N \cup T)^+$
- for $(n, w) \in P$ one writes $n \to w$.
- note: we excluded productions of the form $N \to \varepsilon$ (empty word). In standard definition allowed. Consequences only mildly interesting IMHO (in my humble opinion)

For G we defined

- $r \to^* w$ iff there is a derivation trees for G with root r and border word w.
- language generated by G:

$$L(G) = \{ w \in T^+ : S \to^* w \}$$

The dynamic programming algorithm, but amazingly enough missing both in [AHU] and [CLRS].

reminder: context free grammars G

Components

- alphabet of terminals T
- alphabet of non termnals *N*
- startsymbos $s \in N$
- system of productions $P \subseteq N \times (N \cup T)^+$
- for $(n, w) \in P$ one writes $n \to w$.
- note: we excluded productions of the form $N \to \varepsilon$ (empty word). In standard definition allowed. Consequences only mildly interesting IMHO (in my humble opinion)

For G we defined

- $r \to^* w$ iff there is a derivation trees for G with root r and border word w.
- language generated by G:

$$L(G) = \{ w \in T^+ : S \to^* w \}$$

Fix *G*:

problem

- input $w \in T^+$
- decide if $w \in L(G)$
- trying all trees would be terribly slow.

Grammar has normal form if all productions have the form

- $n \to AB$ with $A, B \in N \cup T$ i.e. right hand sides of productions have length 2
- except $S \to x$ with $a \in T$ i.e. signle terminals $x \in L(G)$ are derived directly from S.

Grammar has normal form if all productions have the form

- $n \rightarrow AB$ with $A, B \in N \cup T$ i.e. right hand sides of productions have length 2
- except $S \to x$ with $a \in T$ i.e. signle terminals $x \in L(G)$ are derived directly from S.

Transforming *G* **to normal form:**

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \rightarrow a_1 \dots a_s \ s \geq 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

Grammar has *normal form* if all productions have the form

- $n \rightarrow AB$ with $A, B \in N \cup T$ i.e. right hand sides of productions have length 2
- except S → x with a ∈ T
 i.e. signle terminals x ∈ L(G) are derived directly from S.

Transforming *G* **to normal form:**

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \rightarrow a_1 \dots a_s \ s \geq 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• for non terminals $A \in N$ define chain(A) as the set of $a \in N \cup T$ which can be derived from A ba a chain of productions

$$A = N_0 \rightarrow N_1 \rightarrow ... \rightarrow N_k = a \text{ with } N_i \in N \cup T \text{ for all } i$$

Compute chain(A) for all $a \in N$ of the original grammar.

Grammar has *normal form* if all productions have the form

- $n \rightarrow AB$ with $A, B \in N \cup T$ i.e. right hand sides of productions have length 2
- except S → x with a ∈ T
 i.e. signle terminals x ∈ L(G) are derived directly from S.

Transforming *G* **to normal form:**

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \rightarrow a_1 \dots a_s \ s \geq 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• for non terminals $A \in N$ define chain(A) as the set of $a \in N \cup T$ which can be derived from A ba a chain of productions

$$A = N_0 \rightarrow N_1 \rightarrow ... \rightarrow N_k = a \text{ with } N_i \in N \cup T \text{ for all } i$$

Compute chain(A) for all $a \in N$ of the original grammar.

• for each $A \in N$ with $chain(A) \neq \emptyset$ add to productions of the form

$$N \rightarrow AB$$

the productions

$$N \to XB$$
, $X \in chain(a)$

and to productions of the form

$$N \rightarrow BA$$

the productions

$$N \to BX$$
, $X \in chain(A)$

Grammar has *normal form* if all productions have the form

- $n \rightarrow AB$ with $A, B \in N \cup T$ i.e. right hand sides of productions have length 2
- except S → x with a ∈ T
 i.e. signle terminals x ∈ L(G) are derived directly from S.

Transforming *G* **to normal form:**

• eliminate right hand sides with more than 2 symbols: for each production

$$P: n \rightarrow a_1 \dots a_s \ s \geq 2$$

introduce a new non terminal x and and replace p by

$$p \rightarrow a_1 \dots a_{s-2}x$$
, $x \rightarrow a_{s-1}a_s$

Repeat until all right hand sides have length 2 or 1.

• for non terminals $A \in N$ define chain(A) as the set of $a \in N \cup T$ which can be derived from A ba a chain of productions

$$A = N_0 \rightarrow N_1 \rightarrow ... \rightarrow N_k = a \text{ with } N_i \in N \cup T \text{ for all } i$$

Compute chain(A) for all $a \in N$ of the original grammar.

• for each $A \in N$ with $chain(A) \neq \emptyset$ add to productions of the form

$$N \rightarrow AB$$

the productions

$$N \to XB$$
, $X \in chain(a)$

and to productions of the form

$$N \rightarrow BA$$

the productions

$$N \to BX$$
, $X \in chain(A)$

• for all $x \in chain(S) \cap T$ add

$$S \rightarrow x$$

- assume *G* is in normal form.
- input $w = w_1 \dots w_n \in T^+$
- **crucial definition:** For $1 \le i \le n$ define the sets of terminals

$$n_{i,i} = \{w_i\}$$

and for $1 \le i < j \le n$ define the *finite* sets of non terminals

$$n_{i,j} = \{ A \in \mathbb{N} : A \to^* w_i \dots w_j \}$$

- assume *G* is in normal form.
- input $w = w_1 \dots w_n \in T^+$
- **crucial definition:** For $1 \le i \le n$ define the sets of terminals

$$n_{i,i} = \{w_i\}$$

and for $1 \le i < j \le n$ define the *finite* sets of non terminals

$$n_{i,j} = \{ A \in \mathbb{N} : A \to^* w_i \dots w_j \}$$

• Compute these sets in order of increasing j - i.

$$n_{i,i+1} = \{ A \in N : A \to w_i w_{i+1} \}$$

$$n_{i,j} = \bigcup_{i \le k \le j} \{ C \in N : C \to AB, A \in n_{i,k}, B \in n_{k+1,j} \}$$

Figure 1: To subtree with border word w[i:j] has a root C and the sons A and B of C are roots of subtrees with border words w[i,k] and w[k+1:j] for some k.

- assume G is in normal form.
- input $w = w_1 \dots w_n \in T^+$
- **crucial definition:** For $1 \le i \le n$ define the sets of terminals

$$n_{i,i} = \{w_i\}$$

and for $1 \le i < j \le n$ define the *finite* sets of non terminals

$$n_{i,j} = \{ A \in N : A \to^* w_i \dots w_j \}$$

• Compute these sets in order of increasing j - i.

$$n_{i,i+1} = \{ A \in N : A \to w_i w_{i+1} \}$$

$$n_{i,j} = \bigcup_{i \le k \le j} \{ C \in N : C \to AB, A \in n_{i,k}, B \in n_{k+1,j} \}$$

Figure 1: To subtree with border word w[i:j] has a root C and the sons A and B of C are roots of subtrees with border words w[i,k] and w[k+1:j] for some k.

For implementation in rows x with $n_{1,1+x}, n_{2,2+x}, \dots$

- assume G is in normal form.
- input $w = w_1 \dots w_n \in T^+$
- **crucial definition:** For $1 \le i \le n$ define the sets of terminals

$$n_{i,i} = \{w_i\}$$

and for $1 \le i < j \le n$ define the *finite* sets of non terminals

$$n_{i,j} = \{ A \in N : A \to^* w_i \dots w_j \}$$

• Compute these sets in order of increasing j - i.

$$n_{i,i+1} = \{ A \in N : A \to w_i w_{i+1} \}$$

$$n_{i,j} = \bigcup_{i \le k \le j} \{ C \in N : C \to AB, A \in n_{i,k}, B \in n_{k+1,j} \}$$

Figure 1: To subtree with border word w[i:j] has a root C and the sons A and B of C are roots of subtrees with border words w[i,k] and w[k+1:j] for some k.

For implementation in rows x with $n_{1,1+x}, n_{2,2+x}, \dots$

• time: for each i, j, k time O(1) because sets $n_{i,j}$ are finite. There are $O(n^3)$ such triples.