Assignment 4

Question 1.

A maximal normal subgroup of the group G is a proper normal subgroup of G, such that any other normal subgroup N of G containing M must be equal to M or to G.

The non-trivial group G is simple if and only if the only normal subgroups of G are the trivial subgroup $\{e_G\}$ and G.

Show that M is a maximal normal subgroup of G if and only if G/M is simple.

Question 2.

For $1 \le i \le n$ take groups G_i and elements $a_i \in G_i$ of finite order.

Consider
$$G := \prod_{i=1}^n G_i$$
.

Show that the order of (a_1, a_2, \ldots, a_n) in G is the least common multiple of the orders of a_i in G_i , that is,

$$\operatorname{ord}(a_1, a_2, \dots, a_n) = \operatorname{lcm}(\operatorname{ord} a_1, \operatorname{ord} a_2, \dots, \operatorname{ord} a_n)$$

Question 3.

Take non-zero positive integers m and n.

Show that

$$\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/mn\mathbb{Z}$$

if and only if m and n are relatively prime, that is, gcd(m, n) = 1.

Question 4.

Let G be a group of order 324.

Show that G has subgroups of order 2, 3, 4, 9, 27 and 81, but none of order 10.