12 Days of Christmas Countdown Counter Design

Problem Analysis

We need to design a 4-bit counter that:

- Counts down from 12 (1100₂) to 1 (0001₂)
- Stays at 1 until Start pulse resets to 12
- Uses negative-edge triggered J-K flip-flops
- Uses asynchronous Preset/Clear for restart functionality

Part A: State Transition Table (Without Asynchronous Restart)

Let's define our states using 4 bits: Q₃Q₂Q₁Q₀

Current State	Q ₃	Q ₂	Q ₁	\mathbf{Q}_{0}	Decimal	Next State	Q ₃ ⁺	Q ₂ ⁺	Q ₁ ⁺	$\mathbf{Q_0}^{\star}$	Decimal [†]
12	1	1	0	0	12	11	1	0	1	1	11
11	1	0	1	1	11	10	1	0	1	0	10
10	1	0	1	0	10	9	1	0	0	1	9
9	1	0	0	1	9	8	1	0	0	0	8
8	1	0	0	0	8	7	0	1	1	1	7
7	0	1	1	1	7	6	0	1	1	0	6
6	0	1	1	0	6	5	0	1	0	1	5
5	0	1	0	1	5	4	0	1	0	0	4
4	0	1	0	0	4	3	0	0	1	1	3
3	0	0	1	1	3	2	0	0	1	0	2
2	0	0	1	0	2	1	0	0	0	1	1
1	0	0	0	1	1	1 (stay)	0	0	0	1	1
4											<u> </u>

Unused States (Don't Care Conditions):

- $0000_2 = 0$
- $1101_2 = 13$
- $1110_2 = 14$
- 1111₂ = 15

These will be treated as don't care (X) conditions in our Karnaugh maps.

Part B: J-K Flip-Flop Input Determination

For J-K flip-flops, the characteristic equation is:

•
$$J = 1, K = 0 \rightarrow Q^{+} = 1 \text{ (Set)}$$

•
$$J = 0, K = 1 \rightarrow Q^{+} = 0 \text{ (Reset)}$$

•
$$J = 1$$
, $K = 1 \rightarrow Q^+ = \bar{Q}$ (Toggle)

•
$$J = 0, K = 0 \rightarrow Q^{+} = Q \text{ (Hold)}$$

J-K Input Truth Table for Each Flip-Flop

Q	Q⁺	J	K
0	0	0	X
0	1	1	Х
1	0	X	1
1	1	Х	0
4		•	•

For Flip-Flop Q₃ (MSB):

$Q_3Q_2Q_1Q_0$	Q ₃	Q₃⁺	J ₃	K ₃	
1100	1	1	X	0	
1011	1	1	X	0	
1010	1	1	Х	0	
1001	1	1	X	0	
1000	1	0	X	1	
0111	0	0	0	Х	
0110	0	0	0	Х	
0101	0	0	0	Х	
0100	0	0	0	Х	
0011	0	0	0	Х	
0010	0	0	0	Х	
0001	0	0	0	Х	
4		•	•	•	•

Karnaugh Map for J₃:

Karnaugh Map for K₃:

```
Q_1Q_0
Q_3Q_2 00 01 11 10
00 X X X X
01 X X X
11 X X X X
10 1 X X X
```

 $\mathbf{J_3} = \mathbf{0}$ (always 0) $\mathbf{K_3} = \mathbf{\bar{Q}_2}\mathbf{\bar{Q}_1}\mathbf{\bar{Q}_0}$ (only high when $\mathbf{Q_2}\mathbf{Q_1}\mathbf{Q_0} = 000$, i.e., state $1000_2 = 8$)

For Flip-Flop Q₂:

$Q_3Q_2Q_1Q_0$	Q ₂	Q_2^+	J ₂	K ₂
1100	1	0	X	1
1011	0	0	0	Х
1010	0	0	0	Х
1001	0	0	0	Х
1000	0	1	1	X
0111	1	1	X	0
0110	1	1	X	0
0101	1	0	X	1
0100	1	1	X	0
0011	0	0	0	Х
0010	0	0	0	Х
0001	0	0	0	X

Karnaugh Map for J₂:

```
Q_1Q_0
Q_3Q_2 00 01 11 10
00 X 0 0 0
01 X 0 0 0
11 X X X X
10 1 X X X
```

Karnaugh Map for K2:

```
Q_1Q_0

Q_3Q_2 00 01 11 10

00 X X X X

01 0 1 X 0

11 1 X X X

10 X X X X
```

 $\mathbf{J_2} = \mathbf{Q_3}\mathbf{\bar{Q}_1}\mathbf{\bar{Q}_0}$ (high when in state $1000_2 = 8$) $\mathbf{K_2} = \mathbf{Q_3}\mathbf{\bar{Q}_1}\mathbf{\bar{Q}_0} + \mathbf{\bar{Q}_3}\mathbf{Q_1}\mathbf{\bar{Q}_0}$ (high when in states $1100_2 = 12$ or $0101_2 = 5$)

For Flip-Flop Q₁:

$Q_3Q_2Q_1Q_0$	Q ₁	Q ₁ ⁺	J ₁	K ₁
1100	0	1	1	Х
1011	1	1	Х	0
1010	1	0	Х	1
1001	0	0	0	Х
1000	0	1	1	X
0111	1	1	Х	0
0110	1	0	Х	1
0101	0	0	0	Х
0100	0	1	1	X
0011	1	1	Х	0
0010	1	0	Х	1
0001	0	0	0	Х
◀				▶

Karnaugh Map for J_1 :

```
Q_1Q_0
Q_3Q_2 00 01 11 10
00 X 0 X 1
01 1 0 X X
11 1 X X X
```

Karnaugh Map for K₁:

```
Q_1Q_0
Q_3Q_2 00 01 11 10
00 X X 0 X
01 X X 0 1
11 X X X 1
10 X X 0 1
```

$$J_1 = \bar{Q}_2 \bar{Q}_0 + Q_3 \bar{Q}_0 K_1 = Q_0$$

For Flip-Flop Q₀ (LSB):

$Q_3Q_2Q_1Q_0$	Q_0	Q ₀ ⁺	J ₀	K ₀
1100	0	1	1	Х
1011	1	0	Х	1
1010	0	1	1	Х
1001	1	0	Х	1
1000	0	1	1	X
0111	1	0	Х	1
0110	0	1	1	X
0101	1	0	Х	1
0100	0	1	1	Х
0011	1	0	Х	1
0010	0	1	1	Х
0001	1	1	Х	0
4				•

Karnaugh Map for J₀:

```
Q_1Q_0
Q_3Q_2 00 01 11 10
00 X X X 1
01 1 X X 1
11 1 X X 1
10 1 X X 1
```

Karnaugh Map for K₀:

```
\begin{array}{c} Q_1Q_0 \\ Q_3Q_2 \ 00 \ 01 \ 11 \ 10 \\ 00 \ X \ X \ 1 \ X \\ 01 \ X \ 1 \ 1 \ X \\ 11 \ X \ 1 \ X \ X \\ 10 \ X \ 1 \ X \ X \end{array}
```

 $\mathbf{J_0} = \mathbf{\bar{Q_0}}$ (always complement when $\mathbf{Q_0} = \mathbf{0}$) $\mathbf{K_0} = \mathbf{\bar{Q_3}} + \mathbf{Q_2} + \mathbf{Q_1}$ (complement except when in state $0001_2 = \mathbf{0}$)

Final Simplified Expressions:

```
\begin{split} J_3 &= 0 \ K_3 = \bar{Q}_2 \bar{Q}_1 \bar{Q}_0 \\ J_2 &= Q_3 \bar{Q}_1 \bar{Q}_0 \\ K_2 &= Q_3 \bar{Q}_1 \bar{Q}_0 + \bar{Q}_3 Q_1 \bar{Q}_0 \\ J_1 &= \bar{Q}_2 \bar{Q}_0 + Q_3 \bar{Q}_0 \ K_1 = Q_0 \\ J_0 &= \bar{Q}_0 \ K_0 = \bar{Q}_3 + Q_2 + Q_1 \end{split}
```

Asynchronous Restart Implementation:

To implement the Start pulse functionality:

- $\bullet~$ Connect Start signal to asynchronous PRESET inputs of Q_{3} and Q_{2}
- Connect Start signal to asynchronous CLEAR inputs of Q_{1} and Q_{0}
- This will immediately set the counter to $1100_2 = 12$ when Start is pulsed