Nome completo:

Número de estudante:

Nas questões 1, 2 e 3 indique apenas a resposta nos locais indicados. Nas questões 4, 5 e 6 justifique convenientemente as suas respostas e indique os principais cálculos.

Nota: C(n,k) $e\binom{n}{k}$ denotam o mesmo número.

1. Em cada alínea, assinale, com uma cruz X, todas as opções correctas.

(a) $mdc(3^{999} + 5, 3^{999} + 6)$ é igual a

3

1 X

 3^{999}

(b) O número de sequências binárias (palavras no alfabeto $\{0,1\}$) de comprimento 15 em que o número de zeros é exactamente igual a 9, é

 $\binom{15}{9}$

X

 $\binom{15}{6}$

X

6!9!

(c) O número máximo de arestas de um grafo simples com 65 vértices é

 $\binom{65}{2}$

X

 $\frac{65\times6}{2}$

X

 $64 + 63 + \binom{63}{2}$

X

2. Indique na caixa à direita,

(a) o coeficiente de x^{127} no desenvolvimento de $(x+1)^{327}$.

 $\binom{327}{127}$

(b) o número de divisores de $21 \times 170 \times 101 \times 19$ que têm exactamente 5 factores na sua factorização em primos?

 $\binom{7}{5}$

Factorização em números ímpares $21 \times 170 \times 101 \times 19 \times = 3 \times 7 \times 5 \times 2 \times 17 \times 101 \times 19$.

(c) o número de soluções $(x_1,x_2,x_3,x_4,x_5,x_6,x_7)$, em inteiros não negativos, da equação $x_1+x_2+x_3+x_4+x_5+x_6+x_7=9$.

3. Acrescente um número mínimo de arestas ao grafo abaixo de modo a que o grafo resultante seja

semieuleriano.

O grafo tem 4 vértices de grau ímpar c,e,h,f. Basta acrescentar uma aresta formada por dois vértices de grau ímpar, resultando deste modo um grafo com exactamente dois vértices de grau ímpar que é consequentemente semieuleriano. Por exemplo, acrescente-se a aresta $\{c,f\}$.

4. (a) Resolva a congruência $6x \equiv_{23} -6$ em \mathbb{Z} .

$$6x \equiv_{23} -6 \Leftrightarrow 4 \times 6x \equiv_{23} 4 \times (-6) \Leftrightarrow x \equiv_{23} -1$$

Soluções inteiras: $\{-1+23k: k \in \mathbb{Z}\}.$

(b) Descodifique a mensagem "XGRRQ", que foi encriptada com a função

$$f(p) = (6p + 6) \mod 23,$$

identificando as 23 letras do alfabeto pelos inteiros $0, 1, 2, \dots, 22$ (como mostra a figura).

A	1	В	С	D	Е	F	G	Н	Ι	J	L	Μ	N	О	Р	Q	R	S	Т	U	V	X	Z
		\updownarrow	‡																				
()	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22

 $f^{-1}(p) = 4p - 1 \mod 23$. Mensagem dsencriptada:PASSO.

5. Considere o grafo G

(a) Escreva a matriz A de adjacência do grafo G.

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

- (b) Sendo A a matriz calculada em (a), o que enumera a entrada (5,5) da matriz A^{14} ?

 A entrada (5,5) da matriz A^{14} conta o número de caminhos de comprimento 14 que ligam o vértice 5 a si próprio. Ou seja, o número de caminhos fechados de comprimento 14 com início e fim no vértice 5.
- (c) Use a matriz A de adjacência do grafo G, calculada em (a), para determinar o número de caminhos fechados de comprimento quatro com início e fim no vértice 5.

A entrada (5,5) da matriz A^4 conta o número de caminhos de comprimento 4 que ligam o vértice 5 a si próprio. A entrada (5,5) de A^4 é igual a

(linha 5 de A) $\times A^2 \times$ (columa 5 de A) =

$$= \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix} \times A \times A \times \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 3 \end{bmatrix} \times A \times \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = 10$$

(d) O grafo G acima é bipartido? Caso seja, exiba uma bipartição.

G é uma árvore porque é conexo e sem ciclos, portanto, é um grafo bipartido. Uma bipartição de G é, por exemplo, definida pela seguinte coloração dos vértices:

Os vértices 4 e 5 a vermelho e os restantes a preto: vértices adjacentes não têm a mesma cor.

6. Qual é o número máximo de vértices de grau 5 que uma árvore com 13 vértices pode ter? Indique uma árvore nessas condições.

Seja T uma árvore com 13 vértices onde k vértices v_1,v_2,\ldots,v_k têm grau 5. Então pelo lema dos apertos de mão

$$g(v_1) + \dots + g(v_k) + \sum_{i=k+1}^{13} g(v_i) = 2(13-1) \Leftrightarrow 5k + \sum_{i=k+1}^{13} g(v_i) = 24$$

Como numa árvore com mais do que 1 vértice todos vértices têm grau ≥ 1 porque é um grafo conexo, vem que

$$24 = 5k + \sum_{i=k+1}^{13} g(v_i) \ge 5k + 13 - k \Leftrightarrow 24 - 13 \ge 4k \Leftrightarrow 4k \le 11.$$

Ou seja, k é no máximo 2. De facto existe uma árvore com 13 vértices e 2 vértices de grau 5. Por exemplo,

Cotação:

- 1) 0.5+0.7+0.75
- 2) 0.7 + 0.75 + 0.7
- 3) 0.5
- 4) 1.9
- 5) 2.5
- 6)1.0