Magnetismo

CM por Integración Directa

Ley de Biot-Savart

$$\overline{B}(\overline{r}) = \frac{\mu_0 i}{4\pi} \oint_C d\overline{r'} \wedge \frac{\overline{r} - \overline{r'}}{|\overline{r} - \overline{r'}|^3}$$

Permitividad Magnética del Vacío

$$\mu_0 = 4 \pi 10^{-7} \quad \left[\frac{Tm}{A} \right]$$

★ Alambre

CM - Alambre

$$\overline{B}(r,z) = \frac{\mu_0 i}{4 \pi r} \widehat{\varphi} \left(\frac{-(z-z_2)}{\left[r^2 + (z-z_2)^2\right]^{\frac{1}{2}}} + \frac{(z-z_1)}{\left[r^2 + (z-z_1)^2\right]^{\frac{1}{2}}} \right)$$

CM - Alambre Infinito

$$\overline{B}(r) = \frac{\mu_0 i}{2 \pi r} \widehat{\varphi}$$

CM - Alambre Semiinfinito

$$\overline{B}(r,z) = \frac{\mu_0 i}{4 \pi r} \widehat{\varphi} \left(1 + \frac{z}{\left[r^2 + z^2\right]^{\frac{1}{2}}} \right)$$

★ Espira

CM - Espira Circular

$$\overline{B}(z) = \frac{\mu_0 i R^2}{2 [z^2 + R^2]^{\frac{3}{2}}} \hat{k}$$

CM - Espira Circular $z \gg R$

$$\overline{B}(z) \sim \frac{1}{|z|^3}$$

CM - Espira Circular z = 0

$$\overline{B}(z) = \frac{\mu_0 i}{2R} \hat{k}$$

★ Semiespira

CM - Semiespira Circular

$$\overline{B}(z) = \frac{\mu_0 i R}{4 \pi [z^2 + R^2]^{\frac{3}{2}}} (2 z \hat{j} + R \pi \hat{k})$$

CM - Semiespira Circular z = 0

$$\overline{B}(z) = \frac{\mu_0 i}{4R} \hat{k}$$

★ Solenoide

Solenoide Ideal

 $p \ll R$

Densidad de Espiras

 $n = \frac{N}{I}$

Nro de Espiras Diferencial

dN = n dz'

CM Diferencial - Solenoide

$$d\overline{B}(z) = \frac{\mu_0 n i R^2}{2} \cdot \frac{dz'}{[(z-z')^2 + R^2]^{\frac{3}{2}}} \hat{k}$$

CM - Solenoide

$$\overline{B}(z) = \frac{\mu_0 n i}{2} \left(\frac{z + \frac{L}{2}}{\sqrt{(z + \frac{L}{2})^2 + R^2}} - \frac{z - \frac{L}{2}}{\sqrt{(z - \frac{L}{2})^2 + R^2}} \right) \hat{k}$$

CM - Solenoide

$$\overline{B}(z) = \frac{\mu_0 n i}{2} \left(\cos(\theta_1) + \cos(\theta_2) \right) \hat{k}$$

CM - Solenoide Infinito $L \gg R$

$$\overline{B}(z) = \mu_0 n i \hat{k}$$