MULTIVALUED
DEPENDENCIES AND
4NF

Relational Database Design Part5

Outline

Features of Good Relational Design

Atomic Domains and First Normal Form

Functional Dependencies

Normal Forms

Functional Dependency Theory

Decomposition Using Functional Dependencies

Algorithms for Decomposition using Functional Dependencies

Decomposition Using Multivalued Dependencies

More Normal Form

Multivalued Dependencies

Suppose we record names of children, and phone numbers for instructors:

- inst_child(ID, child_name)
- inst_phone(ID, phone_number)

If we were to combine these schemas to get

- inst_info(ID, child_name, phone_number)
- Example data:
 (99999, David, 512-555-1234)
 (99999, David, 512-555-4321)
 (99999, William, 512-555-1234)
 (99999, William, 512-555-4321)

This relation is in BCNF

• Why?

Multivalued Dependencies (MVDs)

Let R be a relation schema and let $\alpha \subseteq R$ and $\beta \subseteq R$. The **multivalued dependency**

$$\alpha \rightarrow \rightarrow \beta$$

holds on R if in any legal relation r(R), for all pairs for tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, there exist tuples t_3 and t_4 in r such that:

$$t_{1}[\alpha] = t_{2}[\alpha] = t_{3}[\alpha] = t_{4}[\alpha]$$

 $t_{3}[\beta] = t_{1}[\beta]$
 $t_{3}[R - \beta] = t_{2}[R - \beta]$
 $t_{4}[\beta] = t_{2}[\beta]$
 $t_{4}[R - \beta] = t_{1}[R - \beta]$

MVD (Cont.)

Tabular representation of $\alpha \rightarrow \rightarrow \beta$

	α	β	$R-\alpha-\beta$
t_1	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$a_{j+1} \dots a_n$
t_2	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$b_{j+1} \dots b_n$
t_3	$a_1 \dots a_i$	$a_{i+1} \dots a_j$	$b_{j+1} \dots b_n$
t_4	$a_1 \dots a_i$	$b_{i+1} \dots b_j$	$a_{j+1} \dots a_n$

Example

Let *R* be a relation schema with a set of attributes that are partitioned into 3 nonempty subsets.

We say that $Y \rightarrow Z$ (Y multi-determines Z) if and only if for all possible relations r (R)

$$< y_1, z_1, w_1 > \in r \text{ and } < y_1, z_2, w_2 > \in r$$

then

$$< y_1, z_1, w_2 > \in r \text{ and } < y_1, z_2, w_1 > \in r$$

Note that since the behavior of *Z* and *W* are identical it follows that

$$Y \longrightarrow Z \text{ if } Y \longrightarrow W$$

Example (Cont.)

In our example:

$$ID \longrightarrow child_name$$

 $ID \longrightarrow phone_number$

The above formal definition is supposed to formalize the notion that given a particular value of Y(ID) it has associated with it a set of values of $Z(child_name)$ and a set of values of $W(phone_number)$, and these two sets are in some sense independent of each other.

Note:

- If $Y \rightarrow Z$ then $Y \rightarrow Z$
- Indeed we have (in above notation) $Z_1 = Z_2$ The claim follows.

Use of Multivalued Dependencies

We use multivalued dependencies in two ways:

- 1. To test relations to **determine** whether they are legal under a given set of functional and multivalued dependencies
- 2. To specify **constraints** on the set of legal relations.We shall thus concern ourselves *only* with relations that satisfy a given set of functional and multivalued dependencies.

If a relation r fails to satisfy a given multivalued dependency, we can construct a relations r' that does satisfy the multivalued dependency by adding tuples to r.

Theory of MVDs

From the definition of multivalued dependency, we can derive the following rule:

• If $\alpha \rightarrow \beta$, then $\alpha \rightarrow \beta$

That is, every functional dependency is also a multivalued dependency

The **closure** D^+ of D is the set of all functional and multivalued dependencies logically implied by D.

- We can compute D⁺ from D, using the formal definitions of functional dependencies and multivalued dependencies.
- We can manage with such reasoning for very simple multivalued dependencies, which seem to be most common in practice
- For complex dependencies, it is better to reason about sets of dependencies using a system of inference

Fourth Normal Form

A relation schema R is in **4NF** with respect to a set D of functional and multivalued dependencies if for all multivalued dependencies in D^+ of the form

 $\alpha \longrightarrow \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following hold:

- $\alpha \rightarrow \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$ or $\alpha \cup \beta = R$)
- α is a superkey for schema R

If a relation is in 4NF it is in BCNF

Restriction of Multivalued Dependencies

The restriction of D to R_i is the set D_i consisting of

- All functional dependencies in D⁺ that include only attributes of R_i
- All multivalued dependencies of the form

$$\alpha \longrightarrow (\beta \cap R_i)$$

where $\alpha \subseteq R_i$ and $\alpha \longrightarrow \beta$ is in D^+

4NF Decomposition Algorithm

```
result: = \{R\};
done := false;
compute D<sup>+</sup>;
Let D<sub>i</sub> denote the restriction of D<sup>+</sup> to R<sub>i</sub>
   while (not done)
   if (there is a schema R<sub>i</sub> in result that is not in 4NF) then
     begin
           let \alpha \rightarrow \beta be a nontrivial multivalued dependency
that holds on R_i such that \alpha \to R_i is not in D_i, and \alpha \cap \beta = \phi;
       result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
     end
   else done:= true;
   Note: each R_i is in 4NF, and decomposition is lossless-join
```


Example

$$R = (A, B, C, G, H, I)$$

$$F = \{ A \longrightarrow B \\ B \longrightarrow HI \\ CG \longrightarrow H \}$$

R is not in 4NF since $A \rightarrow B$ and A is not a superkey for R

Decomposition

a)
$$R_1 = (A, B)$$

 $(R_1 \text{ is in 4NF})$

b)
$$R_2 = (A, C, G, H, I)$$

into R_3 and R_4)

(R_2 is not in 4NF, decompose

c)
$$R_3 = (C, G, H)$$

 $(R_3 \text{ is in 4NF})$

d)
$$R_4 = (A, C, G, I)$$

into R_5 and R_6)

 $(R_4 \text{ is not in 4NF, decompose})$

- $A \longrightarrow B$ and $B \longrightarrow HI \longrightarrow A \longrightarrow HI$, (MVD transitivity), and
- and hence $A \rightarrow \rightarrow I$ (MVD restriction to R_4)

e)
$$R_5 = (A, I)$$

 $(R_5 \text{ is in 4NF})$

$$f)R_6 = (A, C, G)$$

 $(R_6 \text{ is in } 4NF)$

Further Normal Forms

Join dependencies generalize multivalued dependencies

 lead to project-join normal form (PJNF) (also called fifth normal form)

A class of even more general constraints, leads to a normal form called **domain-key normal form**.

Problem with these generalized constraints: are hard to reason with, and no set of sound and complete set of inference rules exists.

Hence rarely used

Overall Database Design Process

We have assumed schema R is given

- R could have been generated when converting E-R diagram to a set of tables.
- R could have been a single relation containing all attributes that are of interest (called universal relation).
- Normalization breaks R into smaller relations.
- R could have been the result of some ad hoc design of relations, which we then test/convert to normal form.

Overall Database Design Process

We have assumed schema R is given

- R could have been generated when converting E-R diagram to a set of tables.
- R could have been a single relation containing all attributes that are of interest (called universal relation).
- Normalization breaks R into smaller relations.
- R could have been the result of some ad hoc design of relations, which we then test/convert to normal form.

