

Support Vector Machines

Machine Learning

Norman Juchler

Learning objectives

- Explain the core concepts of SVMs
- Differentiate between linear and non-linear SVMs
- Be aware of its strengths and limitations

Context

- Supervised learning
 - (Mainly) classification
 - (...but also) regression
- Proposed by Vapnik and Chervonenkis in 70s/80s/90s
- Robust method with a solid theoretical foundation
- Can be seen as an extension of linear classifiers

Basic form is linear, but nonlinear variants are available too

Motivation

Which of the classifiers H1, H2, H3 is the best?

Key concepts: Support vectors and margin

- Linear classifier: Find hyperplane that best separates the classes in the feature space
- Any hyperplane ca be expressed as

$$\mathbf{w}^T \mathbf{x} - b = 0$$

- Geometric interpretation: w is the normal of the decision boundary / hyperplane!
- Definition: The nearest points of each class to a hyperplane are called support vectors
- Key idea: SVMs find the hyperplane with maximal distance (margin) to the support vectors.

Let's try to formulate the optimization criterion!

Observations:

- The vector **w** is responsible for the orientation of the hyperplane (it's its normal vector)
- It turns out: the margin width is 2/||w|| (see here)
- This will be the boundary condition:

$$\mathbf{w}^T \mathbf{x}_i - b \ge 1$$
, if $y_i = c_1$
 $\mathbf{w}^T \mathbf{x}_i - b \le -1$, if $y_i = c_2$

- Bias term b determines the position of the plane
- Trick: Let's use here the class labels {-1, 1}! Why? Because we can rewrite this:

$$y_i(\mathbf{w}^T\mathbf{x}_i - b) \ge 1 \quad \forall i$$

Optimization with "hard margins":

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2$$
 subject to: $y_i(\mathbf{w}^T\mathbf{x}_i - b) \geq 1 \quad \forall i$

- This criterion ensures all data points are correctly classified and lie outside the margin.
- Problem: This works only perfectly separable dataset!

Optimization with "soft margins":

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \text{ subject to:}$$

$$y_i(\mathbf{w}^T \mathbf{x}_i - b) \ge 1 - \xi_i \quad \forall i$$

$$\xi \ge 0 \quad \forall i$$

- This formulation introduces the slack variable ξ_i
 - Extent to which the i-th data point violates the margin
- Optimization relies on regularization parameter C:
 - Large C: Penalizes classification errors heavily, leading to a smaller margin and less tolerance for violations.
 - Small C: Penalizes errors less, allowing for a larger margin and more violations.

Optimization with "soft margins":

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \text{subject to}$$

$$y_i(\mathbf{w}^T \mathbf{x}_i - b) \ge 1 - \xi_i \quad \forall i$$

$$\xi \ge 0 \quad \forall i$$

- This formulation introduces the slack variable ξ_i
 - Extent to which the i-th data point violates the margin
- Equivalent formulation:

Weighting between hard and soft margin constraint

Working of SVM

Finding a separating line without margin-violating points is not always possible.

- Smaller values of C: More margin violating points, making the model more robust to outliers and increasing margin width.
- Larger values of C: Decrease the number of misclassified (training) points.

Linear versus nonlinear SVM

Linear models

When applied directly in feature space, the above algorithm can only describe linear classification boundaries.

Non-linear models

- Idea: Transform the features X to another space first
- Then fit the maximum-margin hyperplane in this transformed feature space.

The kernel trick

- Idea: It can be useful to transform the data into a higher-dimensional space!
- This can make the data better linearly separable.

$$\phi(\mathbf{a})^{\mathsf{T}}\phi(\mathbf{b}) = \begin{pmatrix} a_1^2 \\ \sqrt{2} a_1 a_2 \\ a_2^2 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} b_1^2 \\ \sqrt{2} b_1 b_2 \\ b_2^2 \end{pmatrix} = a_1^2 b_1^2 + 2a_1 b_1 a_2 b_2 + a_2^2 b_2^2$$
$$= (a_1 b_1 + a_2 b_2)^2 = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}^2 = (\mathbf{a}^{\mathsf{T}} \mathbf{b})^2$$

• The "trick" is that for a suitable transformation function φ, we can calculate the result of the kernel function in the original space, without having to actually perform the transformation to the higher-dimensional space.

Nonlinear classification

Kernels enable SVMs to learn non-linear separation function.

Figure 25: Example of how a transformation to a higher-dimensional space may improve data separability.

Effect of different kernels

Summary

SVMs in a nutshell

- SVMs are supervised machine learning algorithms for classification and regression tasks
- Key idea: Maximize the margin between data points of different classes to ensure better generalization.
- Basic SVMs are linear, but nonlinear cases can be handled with kernel functions
- Support vectors: Are the critical data points closest to the hyperplane
- Advantages:
 - Effective in high-dimensional spaces
 - Robust to overfitting (when properly tuned)
- Limitations:
 - Can be computationally expensive, especially with large datasets
 - Requires careful selection of hyperparameters and kernel type

Further reading watching

- StatQuest:
 - Support Vector Machines (main ideas) (20min)
 - Support Vector Machines (polynomial kernel) (7min)
 - Support Vector Machines (RBF kernel) (15min)
- Interactive demo: Link