

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

SAMPLE EXAMINATION - 2018/2019

COMP 47460/47490 MACHINE LEARNING

Dr. Derek Greene* Dr. Aonghus Lawlor

Time allowed: 2 hours

Instructions for Candidates

Answer Question 1 and any two from Questions 2, 3, 4.

Non-programmable calculators allowed.

©UCD 2018/19 - SAMPLE Page 1 of 5

Q1:		(20 marks)	
	(a)	Explain why k -fold $cross\ validation\ provides\ a$ more robust evaluation in a classification problem like this, when compared with a single random train-test split.	[2]
	(b)	Outline one <i>non-linear activation function</i> which is commonly employed in neural networks.	[2]
	(c)	Explain what is meant by the <i>independence assumption</i> in the context of a Naïve Bayes classifier.	[2]
	(d)	Describe some of the differences between a lazy and eager learning approach, and explain which category you think best describes a feedforward neural network.	[2]
	(e)	Outline one situation where a cluster validation measure might be applied in unsupervised learning.	[2]
	(f)	When generating an ensemble of classifiers using a <i>random subspace</i> strategy, what might be the effect of choosing a subspace size that is either too low or too high?	[2]
	(g)	What is meant by a <i>feed-forward architecture</i> in the context of neural networks?	[2]
	(h)	Why might two wrappers employing different greedy search strategies select different feature subsets when applied on the same dataset?	[2]
	(i)	Describe one problem that can occur with the <i>Information Gain</i> criterion when applied for feature selection in Decision Trees.	[2]
	(j)	What is meant by the <i>curse of dimensionality</i> ? What are some common approaches in machine learning to deal with this problem?	[2]

©UCD 2018/19 - SAMPLE Page 2 of 5

- (a) i. A scientist measures the resistance, Ω , in a device for different temperatures T from 50°C to 100°C. She determines the slope of the best fit line to be 0.1021 ($\bar{T}=75.325$, $\bar{\Omega}=19.5074$). Write out the linear regression model for this dataset.
 - ii. Describe the sources of error (total error, regression error, residuals) in a linear regression model, and how they are related to each other.
 - iii. Given that SSE = 1.6123 and SSR = 38.2648, what is the coefficient of determination R^{29}
- (b) The confusion matrix below summarises the performance of a binary classifier, applied to a dataset of examples, which are annotated with 2 class labels {A, B}.

	A	В
A	470	160
В	50	120

Based on this matrix, calculate:

- (i) The precision score for each of the classes.
- (ii) The recall score for each of the classes.
- (iii) The overall classification accuracy.
- (c) (i) Suggest how we might choose an appropriate value for the parameter *k* when building a kNN classifier. [5]
 - (ii) Explain the difference between an *unweighted* kNN classifier and a *weighted* kNN classifier. For the latter, suggest an approach for calculating weights.

©UCD 2018/19 - SAMPLE Page 3 of 5

Q3: _______(15 marks)

(a) The table below shows a training set with 7 examples represented by 4 categorical features, describing a person's preferences for booking hotels. Each example has a binary class label: Book? = {yes, no}

[5]

[5]

Example	Stars	Pool	Beach	Gym	Book?
Hotel 1	2	N	N	Y	no
Hotel 2	2	Y	N	N	yes
Hotel 3	3	N	Y	N	no
Hotel 4	3	Y	N	Y	no
Hotel 5	3	N	N	N	no
Hotel 6	3	Y	Y	Y	yes
Hotel 7	4	Y	Y	Y	yes

- (i) Calculate the *overall entropy* for this data.
- (ii) Using *Information Gain*, identify the best feature to split the root node of a Decision Tree classifier built on the training set. Show your calculations.
- (b) (i) In the context of supervised learning, what is the difference between *overfitting* and *underfitting*?
 - (ii) Briefly outline one real-world application of classification, where the practical implications a *False Positive* error and a *False Negative* error might differ.
- (c) (i) Explain the difference between *single linkage*, *average linkage*, and *complete linkage* [5] in the context of hierarchical agglomerative clustering.
 - (ii) Which of these linkage strategies would you expect to be most affected by the presence of outliers in a dataset?

©UCD 2018/19 - SAMPLE Page 4 of 5

Q4: ______(15 marks)

(a) The dataset below has 9 specifications for laptops, each described by 4 categorical features. Each example has one of two class labels: Buy? = $\{yes, no\}$, indicating if a person will purchase the laptop.

[5]

[5]

[5]

Laptop	Drive	ScreenSize	Weight	Price>1k	Buy?
l_1	SSD	15	Medium	No	Yes
l_2	SSD	13	Medium	No	Yes
l_3	HDD	15	Medium	Yes	No
l_4	SSD	11	Light	No	No
l_5	HDD	15	Heavy	Yes	No
l_6	HDD	15	Heavy	No	No
l_7	SSD	15	Heavy	Yes	Yes
l_8	SSD	13	Heavy	No	No
l_9	HDD	13	Medium	No	Yes

- (i) Construct the contingency table of conditional and prior class probabilities that would be used by Naïve Bayes to build a classifier for this dataset.
- (ii) Based on the contingency table, use Naïve Bayes to estimate the likelihood that the following new laptop will be purchased. Show your calculations.
 (Drive = HDD, ScreenSize = 15, Weight = Medium, Price>1k = No)
- (b) The table below shows a dataset of 6 examples, each represented by 4 numeric features:

Example	f_1	f_2	f_3	f_4
x_1	6.3	2.5	5.0	1.9
x_2	4.6	3.4	1.4	0.3
x_3	5.4	3.9	1.7	0.4
x_4	6.7	3.0	5.2	2.3
x_5	6.7	3.3	5.7	2.5
x_6	5.0	3.6	1.4	0.2

These 6 examples have been assigned to 2 clusters by k-means as follows:

$$C_1 = \{x_2, x_3, x_6\}, C_2 = \{x_1, x_4, x_5\}$$

- (i) Based on the cluster assignments, compute the centroid vector for each cluster.
- (ii) To which cluster would k-means assign the new example x_7 ? Show your calculations. $x_7 = (6.00, 2.25, 4.60, 1.60)$
- (iii) Outline the main disadvantages of the k-means clustering algorithm.
- (c) (i) Explain how a simple *perceptron* can be used for binary classification.
 - (ii) What is the role of the *cost function* in a neural network? Outline one cost function which would be appropriate for use in a binary classification task.

©UCD 2018/19 - SAMPLE Page 5 of 5