1. Solution 1. Notice that for any value of j and k, i iterates k - j + 1 times. So given a specific value of j, since k goes from j to n, the number of times i iterates is

$$1 + 2 + \dots + (n - j + 1) = \frac{(n - j + 1)(n - j + 2)}{2} \ge \frac{(n - j + 1)(n - j)}{2}$$

So

total number of iterations
$$\geq \sum_{j=1}^{n} \frac{(n-j+1)(n-j+2)}{2}$$

$$= \frac{1}{2} \sum_{j=1}^{n} (n^2+n) - (2n+1)j + j^2$$

$$= \frac{1}{2} \left(n(n^2+n) - (2n+1) \frac{n(n+1)}{2} + \frac{n(n+1)(2n+1)}{6} \right)$$

$$= \frac{n(n^2-1)}{6}$$

Now set

$$\frac{n(n^2 - 1)}{6} \ge cn^3$$

and solve this inequality for n. We get

$$n \ge \frac{1}{\sqrt{1 - 6c}}.$$

Therefore, if we let c = 1/12 and $n_0 = 2$, we have that

total number of iterations $\geq cn^3$ whenever $n \geq n_0$.

So the runtime is $\Omega(n^3)$.

Solution 2. We have

total number of iterations
$$= \sum_{j=1}^{n} \sum_{k=j}^{n} \sum_{i=j}^{k} 1$$
$$\geq \sum_{j=1}^{n/3} \sum_{k=2n/3}^{n} \sum_{i=n/3}^{2n/3} 1$$
$$\geq \frac{n^3}{27}.$$

Therefore, if we let c = 1/27 and $n_0 = 1$, we have that

total number of iterations $\geq cn^3$ whenever $n \geq n_0$.

So the runtime is $\Omega(n^3)$.

Solution 3. Notice that the pseudocode iterates through all possible triplets (j, i, k) such that $j \leq i \leq k$ and such i, j, k each has a value between 1 and n. If we have ignore the duplicate values such as (2, 2, 3), then the total number of such triplets is

$$\binom{n}{3} = \frac{n(n-1)(n-2)}{6}.$$

 Set

$$\frac{n(n-1)(n-2)}{6} \ge cn^3.$$

Let c = 1/12. This simplifies to

$$n^2 - 6n + 4 \ge 0$$

Now it's easy to see that this inequality holds for all $n \ge 6$. Therefore, if we let c = 1/12 and $n_0 = 6$, we have that

total number of iterations $\geq cn^3$ whenever $n \geq n_0$.

So the runtime is $\Omega(n^3)$.

- **2.** If $n_0 = 59$, then $10n \log n < n^2$ whenever $n \ge n_0$.
- **3.** All answers below are approximate.

	1 Second	1 Hour	1 Month	1 Century
$\log n$	10^{300000}	10^{10^9}	$10^{9 \times 10^{11}}$	$10^{9 \times 10^{14}}$
\sqrt{n}	10^{12}	2×10^{19}	9×10^{24}	9×10^{30}
n	10^{6}	4×10^{9}	3×10^{12}	3×10^{15}
$n \log n$	6×10^{4}	10^{8}	8×10^{10}	7×10^{13}
n^2	10^{3}	6×10^{4}	2×10^{6}	5×10^{7}
n^3	10^{2}	2×10^3	2×10^{4}	2×10^{5}
2^n	20	32	41	51
n!	9	12	15	17

4. reverse(A):

The running time is 2n or O(n).