#### **Outline**



- 1. Why supercomputers?
- 2. Modern processors
- 3. Basic optimization techniques for serial code
- 4. Data access optimization

### 5. Parallel computers

- → Flynn's taxonomy
- → Basic limitations of par. computing
  - → Amdahl's law
  - → Gustafson's law
- → Multithreaded processors (SMT)
- → Multicore processors
- → Shared-memory computers
  - →UMA
  - →ccNUMA
- → Distributed-memory computers

- → Networks
  - → Basic performance characteristics
  - → Network topologies
    - → Buses
    - → Ring & fully connected networks
    - → Switched & fat-tree networks
    - → Mesh networks
  - → Networks in Top500
- 6. Parallelization and optimization strategies
- 7. Parallel algorithms
- 9. Distributed-memory programming with MPI
- 10. Shared-memory programming with OpenMP
- 11. Hybrid programming (MPI + OpenMP)
- 12. Heterogeneous architectures (GPUs, Xeon Phis)
- 13. Energy efficiency

### **Parallel computing**



- As all modern supercomputer architectures heavily depend on parallelism, this trend will substantially increase in the near future
- Parallel computing has already entered the everyday life
  - → Nearly every desktop pc or notebook sold today includes multicore chips (dual, quad, ...)
- Basic classification of parallel computers
  - → Shared-memory multiprocessors systems: Multiple processors can execute code in parallel but they all share one virtual address space (shared memory)
  - → Distributed-memory systems: Multiple processors/compute nodes are connected over a network. The processors each have their own virtual address space (memory).

### Flynn's Taxonomy





|                      | Single Instruction | <b>Multiple Instruction</b> |
|----------------------|--------------------|-----------------------------|
| Single Data          | SISD               | MISD                        |
| <b>Multiple Data</b> | SIMD               | MIMD                        |

- SISD Single instruction, single data
  - → An example is the classical von Neumann architecture
- SIMD Single instruction, multiple data
  - → Vector-processors, SIMD capabilities of modern superscalar microprocessors, GPU's
- MISD Multiple instructions, single data
  - → Not existant: Is commonly not regarded as practical relevant
- MIMD Multiple instructions, multiple data
  - → Shared memory, distributed memory architectures
- Only two still considered meaningful are SIMD and MIMD

### Single instruction multiple data (SIMD)







E.g. Vector units like MMX, SSE and AVX also belong to this category

# Multiple instruction multiple data (MIMD)





- Most general model: Each processor works on its own data with its own instruction stream
- Very general case:
  - → Every scenario can be mapped to MIMD
- Further breakdown of MIMD is usually based on the organization of memory
  - → Shared-memory systems
  - → Distributed-memory systems

### Multiple instruction multiple data (MIMD)





### In practice: Single Program Multiple data

- → All processors execute the same code stream
- → Just not the same instruction at the same time
- → Control flow is relatively independent and can be completely different
- → Amount of data to process may vary: Load balancing becomes important

#### **Outline**



- 1. Why supercomputers?
- 2. Modern processors
- 3. Basic optimization techniques for serial code
- 4. Data access optimization

### 5. Parallel computers

- → Flynn's taxonomy
- → Basic limitations of par. computing
  - → Amdahl's law
  - → Gustafson's law
- → Multithreaded processors (SMT)
- → Multicore processors
- → Shared-memory computers
  - →UMA
  - →ccNUMA
- → Distributed-memory computers

- → Networks
  - → Basic performance characteristics
  - → Network topologies
    - → Buses
    - → Ring & fully connected networks
    - → Switched & fat-tree networks
    - → Mesh networks
  - → Networks in Top500
- 6. Parallelization and optimization strategies
- 7. Parallel algorithms
- 9. Distributed-memory programming with MPI
- 10. Shared-memory programming with OpenMP
- 11. Hybrid programming (MPI + OpenMP)
- 12. Heterogeneous architectures (GPUs, Xeon Phis)
- 13. Energy efficiency

### **Example of parallel work**





### Example: 4 cars are produced in parallel



### **Limits of scalability**



- Parts of the manufacturing process can not be parallelized
  - → Example: Delivery of components (all workers have to wait)



### Limits of scalability (cont.)





- Individual steps may take more or less time
  - → Load imbalances lead to unused resources



#### **Performance Evaluation**





### Definition of Speedup (According to Amdahl)

- → Ratio between serial and parallel Execution of a Program
- → Indicatior for relative performance improvement

Speedup 
$$S_p(N) = \frac{T(1)}{T(N)}$$

- → With T(N): runtime of a (parallel) program with N Processors
- Efficiency:

Efficiency 
$$E_p(N) = \frac{S_p(N)}{N} = \frac{T(1)}{N \cdot T(N)}$$

### **Linear Speedup**





- Ideal situation: All work is perfectly parallelizable: linear Speedup
  - → In general: upper bound for parallel execution of programs



### **Limitations of scalability**



A model more close to reality: There are serial parts which limit the maximum speedup



Amdahl's law assumes the program is dividable into an ideal parallelizable fraction p and a serial fraction s (non-parallelizable)

#### **Amdahl's Law**





$$s + p = 1 \rightarrow p = 1 - s$$

$$T(1) = (p + s) \cdot T(1)$$

$$p \cdot T(1)$$

$$s \cdot T(1)$$

The parallelized program's execution time is then assumed to be (with N processors):

$$\rightarrow$$
 T(N) =  $(s + \frac{p}{N}) \cdot T(1)$ 

The speedup thus resembles to:

$$S_p(N) = \frac{T(1)}{T(N)} = \frac{1}{s + \frac{1-s}{N}}$$

Amdahl's Law (1967) or "strong scaling"

### Amdahl's Law (cont.)





- Example: Program with 5% serial and 95% parallel fraction
  - → Speedup according to Amdahl:

$$S_{0.95}(N) = \frac{T(1)}{T(N)} = \frac{1}{0.05 + \frac{1 - 0.05}{N}}$$



# Speedup examples with varying s







# Efficiency examples with varying s







# Limit value consideration of S<sub>p</sub>





$$S_p(N) = \frac{T(1)}{T(N)} = \frac{1}{s + \frac{1-s}{N}}$$

$$S_{max} = \lim_{N \to \infty} S_p(N) = \lim_{N \to \infty} \frac{1}{s + \frac{1-s}{N}} = \frac{1}{s}$$

Example: s=0.05



#### Limitation of Amdahl's Law



### Amdahl's law assumption

- → Tasks exist that are perfectly parallelizable
- In reality, no task is perfectly parallelizable
  - → Resources have to be shared. These mostly have to be used serially
  - → Dependencies between tasks exists which have to be communicated
  - → Generally tasks have to communicate information to each other



# Limit value consideration of E<sub>p</sub>





### the benefit of parallelization may be limited

- → Limited scalability leads to inefficient utilization of available resources
- → Parallel efficiency describes the utilization of available computing resources through parallelization:

$$\lim_{N\to\infty} \varepsilon_p(N) = \lim_{N\to\infty} \frac{\mathbf{1}}{s(N-1)+1} = 0$$

### Problems of real world applications

- → Load imbalance
- Communication overhead
- → Problem size usually varies with increasing number of processors

#### **Outline**



- 1. Why supercomputers?
- 2. Modern processors
- 3. Basic optimization techniques for serial code
- 4. Data access optimization

### 5. Parallel computers

- → Flynn's taxonomy
- → Basic limitations of par. computing
  - → Amdahl's law
  - → Gustafson's law
- → Multithreaded processors (SMT)
- → Multicore processors
- → Shared-memory computers
  - → Cache coherence
  - →UMA
  - →ccNUMA
- → Distributed-memory computers

- → Networks
  - → Basic performance characteristics
  - → Network topologies
    - → Buses
    - → Ring & fully connected networks
    - → Switched & fat-tree networks
    - → Mesh networks
  - → Networks in Top500
- 6. Parallelization and optimization strategies
- 7. Parallel algorithms
- 9. Distributed-memory programming with MPI
- 10. Shared-memory programming with OpenMP
- 11. Hybrid programming (MPI + OpenMP)
- 12. Heterogeneous architectures (GPUs, Xeon Phis)
- 13. Energy efficiency

# Weak scaling vs. strong scaling





#### Gustafson's law

- → Addresses the assumption of a fixed Data set, which Amdahl's law is based on
- → Problem size changes for weak scaling, fixed runtime (sketched below)



#### **Gustafson's Law**





#### Gustafson's law

- → Computations involving an arbitrarily large data set can be efficiently parallelized
- → Counterpoint to Amdahl's law, which puts a limit on the speedup of computations involving a fixed-size data set
- Assumption: execution time of a program can be decomposed into

$$s + p = (1 - p) + p = 1$$

- → The key assumption here is that the work that needs to be done varies linearly with the number of involved processors
- $\rightarrow$  Time that a single processor needs: (1-p) + Np = p(N-1) + 1

#### **Gustafson's Law**





### Speedup with Gustafson's law:

$$S_p(N) = \frac{T(1)}{T(N)} = \frac{(1-p) + Np}{(1-p) + p} = Np + s$$

"weak scaling"

And efficiency:

$$\varepsilon_p(N) = \frac{S_p(N)}{N} = \frac{(1-p)}{N} + p$$

### Implications

- $\rightarrow p$  (=fraction of time that the program executes in parallel) is held fixed
- → (while) the number of processors N is varied
- → With increasing number of processors, the speedup grows linearly
- → The serial part becomes more and more unimportant with more processors involved.

# Speedup examples with varying s





$$\lim_{N\to\infty} S_p(N) = \lim_{N\to\infty} (Np + s) = \infty$$

These speedup measurements are usually not done in



**Introduction to HPC** 

Prof. Matthias Müller | IT Center der RWTH Aachen University

# Efficiency examples with varying s





$$\lim_{N\to\infty} \varepsilon_p(N) = \lim_{N\to\infty} (\frac{(\mathbf{1}-\boldsymbol{p})}{\boldsymbol{N}} + \boldsymbol{p}) = p$$

These efficiency measurements are usually not done in real world.



### Real-world example



- In real world, you usually measure runtimes
  - → Increase data set with increasing number of processors
- Perfect weak scaling: constant runtime among varying #processors



#### **General considerations**



- The serial fraction of execution time depends on the algorithm
- In practice, "s" is determined empirically
  - → Non parallelizable parts of the application
  - → I/O (e.g. when reading input data)
  - → Communication pattern of the application
  - → Worksharing (load balance) while both Amdahl's and Gustafson's Law assume perfect load balance
  - → Processor details: cache, memory bandwidth, etc..
  - → Implementation of the parallel runtime (OpenMP + MPI)



Question 1: Determine the code balance  $B_c$  of the loop nest of the following code. Assume that a store goes directly to the main memory (no temporal stores).

```
double a[N][N];
double b[N];
double c;

for (int i=0; i<N; ++i) {
    for (int j=0; j<N; ++j) {
        a[i][j] = b[j] * b[j] * c;
    }
}</pre>
```

a) 
$$B_c = \frac{3 \text{ words}}{3 \text{ Flops}}$$

$$b) B_c = \frac{3 \text{ words}}{2 \text{ Flops}}$$

$$C) B_c = \frac{2 \text{ words}}{2 \text{ Flops}}$$

$$\frac{d}{d}B_c = \frac{4 \text{ words}}{2 \text{ Flops}}$$



Question 1: Determine the code balance  $B_c$  of the loop nest of the following code. Assume that a store goes directly to the main memory (no temporal stores).





Question 2: Determine the theoretical double precision peak performance (Flop/s) of the following exemplary architecture:

- → 10 cores, 3.0 GHz clock frequency
- → Fused-Multiply add (FMA): 1 ADD & 1 MULT per cycle
- → width of vector registers: 256 bit
- → One double precision value takes 64 bit

a) 
$$10 \cdot 3.0 \text{ GHz} \cdot 2 = 60 \text{ GFlop/s}$$

**b)** 
$$10 \cdot 3.0 \text{ GHz } \cdot 4 = 120 \text{ GFlop/s}$$

c) 
$$10 \cdot 3.0 \text{ GHz} \cdot 8 = 240 \text{ GFlop/s}$$

d) 
$$10 \cdot 3.0 \text{ GHz } \cdot 512 = 15.36 \text{ TFlop/s}$$



Question 2: Determine the theoretical double precision peak performance (Flop/s) of the following exemplary architecture:

- → 10 cores, 3.0 GHz clock frequency
- → Fused-Multiply add (FMA): 1 ADD & 1 MULT per cycle
- → width of vector registers: 256 bit
- → One double precision value takes 64 bit

c) #cores 
$$\cdot$$
 frequency  $\cdot$   $\frac{\text{operations}}{\text{cycle}}$ 

$$= 10 \cdot 3.0 \, \text{GHz} \cdot 2 \cdot 4 = 240 \, \text{GFlop/s}$$



Question 3: From an experiment we know that for a given problem an application runs for 16 minutes with one thread and 4 minutes with 8 threads. What speedup and parallel efficiency does the parallel execution reach?

- a) Speedup = 1, parallel efficiency = 1
- b) Speedup = 4, parallel efficiency = 0.5
- c) Speedup = 4, parallel efficiency = 2
- d) Speedup = 0.25, parallel efficiency = 0.5



Question 3: From an experiment we know that for a given problem an application runs for 16 minutes with one thread and 4 minutes with 8 threads. What speedup and parallel efficiency does the parallel execution reach?

b) Speedup 
$$S_p = \frac{T_s}{T_p} = \frac{16 \text{ min}}{4 \text{ min}} = 4$$

Parallel efficiency = 
$$\frac{S_p}{N} = \frac{4}{8} = 0.5$$



Question 4: Given is an application with two parts A and B. The serial execution time of part A is 10 seconds and of part B 40 seconds. Only part B can be sped up by utilizing multiple threads. How many threads are required to achieve a speedup of 2 according to Amdahl's law?

- a) 2 threads
- b) 3 threads
- c) 4 threads
- d) 8 threads



Question 4: Given is an application with two parts A and B. The serial execution time of part A is 10 seconds and of part B 40 seconds. Only part B can be sped up by utilizing multiple threads. How many threads are required to achieve a speedup of 2 according to Amdahl's law?

b) 
$$S_p(N) = \frac{1}{s + \frac{1-s}{N}} \rightarrow N = \frac{1-s}{\frac{1}{S_p(N)} - s} = \frac{1-0.2}{\frac{1}{2} - 0.2} = 2.\overline{6}$$

→ minimum 3 threads