Package 'FMMcsVS'

February 8, 2023
Type Package
Title Bayesian Finite Mixure Regression Models with Cluster-Specific Variable Selections
Version 0.1.0
Author Zhen Wang
Maintainer Zhen Wang <zwangiowa@gmail.com></zwangiowa@gmail.com>
Description Different MCMC algorithms for different Bayesian mixture models in a regression setup, including clustering, variable selection and regression coeficcient estimations.
Depends Matrix,
R topics documented:
data_gen_func 2 posterior_inf 4 ppd_sim 7 r_sq_post 8 simulation_func 9 simulation_func_rpms 13

2 data_gen_func

data_gen_func

Generate Simulation Data

Description

Generate the simulation data for various models. The data consists of single-dim response y and multi-dim covariates X. For subjects in different clusters, (alpha, beta, zeta, lambda) are different. The function can generate correlated data, by specifying the correlation matrix among X, and balanced/inbalanced data by specifying the cluster probabilities.

For the split model, the data consists of y, fixed covariates W and random covariates Z. For subjects in different clusters, (alpha, beta, psi, zeta, lambda) are different.

Usage

```
 \begin{aligned} \text{data\_gen\_func}(\text{n} = 500, & \text{alpha\_true} = & \text{c}(0.1, -0.6, 0.5), \\ \text{beta\_true} = & \text{rbind}(\text{c}(0, 0, -0.5, 0, 0.5, 0), \\ & & \text{c}(-0.7, 0, 0.4, 0, 0, 0), \\ & & \text{c}(0.6, 0, 0, 0, -0.4, 0)), \\ \text{lambda} = & \text{c}(2, 2, 2), & \text{zeta\_sep} = 1, \\ \text{eta} = & 1, & \text{sample\_prob} = & \text{c}(1, 1, 1), \\ \text{cor\_mtx} = & \text{NULL}, & \text{rho} = & \text{rep}(0, 3)) \\ \end{aligned} \\ \text{data\_gen\_split}(\text{n} = & 500, & \text{alpha\_true} = & \text{c}(0.1, -0.6, 0.5), \\ \text{beta\_true} = & \text{rbind}(\text{c}(0, 0, -0.5, 0, 0.5, 0), \\ & & \text{c}(-0.7, 0, 0.4, 0, 0, 0), \\ & & \text{c}(0.6, 0, 0, 0, -0.4, 0)), \\ \text{psi\_true} = & \text{rep}(\text{c}(-1, 0, 1), 3), \\ \text{W\_mean} = & 0, & \text{lambda} = & \text{c}(2, 2, 2), & \text{zeta\_sep} = 1, \\ \text{eta} = & 1, & \text{sample\_prob} = & \text{c}(1, 1, 1), & \text{rho} = & 0.5) \end{aligned}
```

Arguments

n	sample size
$alpha_true$	numeric vector, each element represents intercept for each cluster, length should equal the number of clusters
beta_true	numeric matrix, each row represents regression coefficients for each cluster, number of rows should equal the number of clusters
lambda	numeric vector, each element represent precision of response y in each cluster
zeta_sep	numeric, the difference of zeta values in different clusters, the true zeta values are set to be seq(0, true_M-1) * zeta_sep
eta	numeric, precision of covariates X, for split model, the precision of Z
${\sf sample_prob}$	numeric vector, ratios of sizes of clusters
cor_mtx	numeric matrix, correlation matrix of X, default value is for D=6, M=3, X1-X2, X3-X4, X5-X6 have blocked-wise correlation with coefficients given by rho (no specified in definition)
rho	numeric vector, correlation coefficients among X in the case described above. For split model, rho is a numeric value, which is the pair-wise correlation among columns of W

data_gen_func 3

Details

For data_gen_func:

The regression coefficients alpha, beta, the mean of X, zeta, and the precision of y, lambda are cluster-specific.

If no cor_mtx value is specified: 1) if rho is a vector of zero's, generated samples have independent X's; 2) if non-zero values are specified in rho, it's assumed to be the D=6, M=3 case, with a blocked-wise correlations of X1-X2, X3-X4 and X5-X6, and correlation coefficients given by rho, if a different setup (eg, different D or M) is desired, cor_mtx must be specified.

For data_gen_split:

The regression coefficients alpha, beta for W, psi for Z, the mean of Z, zeta, and the precision of y, lambda, are cluster-specific.

W has a pair-wise correlation of rho.

Value

A list is returned:

У	numeric vector, response with length n
Χ	numeric matrix, covariates matrix with dimension M*D
W	numeric matrix, fixed covariates matrix in split model
Z	numeric matrix, random covariates matrix in split model
index	numeric vector with length n, group membership indicator ranging from 1 to M for each subject
alpha_true	specified true alpha values
beta_true	specified true beta values
psi_true	specified true psi values for split model

Author(s)

Zhen Wang ¡zwangiowa@gmail.com;

Examples

```
##generate data with independent X
sample_data_1 <- data_gen_func()

##generate inbalanced data with ratio 1:2:10
sample_data_2 <- data_gen_func(sample_prob = c(1,2,10))

##generate data where D=6, M=3, and X has blocked-wise correlations of X1-X2, X3-X4 and X5-X6, and correlation c
sample_data_3 <- data_gen_func(rho = c(0.2,0.5,0.8))

##generate data where correlation matrix among X is given by:
require(Matrix)
cor_mtx = bdiag(matrix(c(1/1, 0.8,0.8, 1/1), 2, 2),</pre>
```

matrix(c(1/1, 0.2,0.2, 1/1), 2, 2), matrix(c(1/1, 0.9,0.9, 1/1), 2, 2))

sample_data_4 <- data_gen_func(cor_mtx=cor_mtx)</pre>

4 posterior_inf

```
##generate data for the split model, where W has pair-wise correlation of 0.3
sample_split_data_1 <- data_gen_split(rho=0.3)</pre>
```

posterior_inf

Posterior Inference for Various Models

Description

Calculate different metrics defined in the paper to evaluate performance of different models in: clustering accuracy, parameter estimation accuracy and variable selection accuracy. Besides the N-IFPP models, functions for inference of RPMS, BNPmix (P-Y mixture models, M9 and M10) and mclust (model-based clustering, M7) are also included.

Usage

```
post_inf(sim_res, scl = 10001:1e5, data)
post_inf_rpms(sim_res, scl = 10001:1e5, data)
post_inf_bnpmix(sim_res, data)
mclust_vs(data)
```

Arguments

sim_res	list, MCMC simulation results, return from the simulation functions defined in the package
scl	numeric vector, index of remaining samples after burn-in
data	list, the data input used to run the simulations

Details

post_inf runs inference for N-IFPP models, post_inf_rpms runs inference results for the RPMS, post_inf_bnpmix runs inference for the two P-Y mixture models (M9, M10). The current versions of the functions can only handle the case of $M_{\rm true}=3$ as defined in the default simulation data setups.

mclust_vs does inference for the model-based clustering model (M7) introduced by Fraley and Raftrey (2002, JASA), two different types of VS procedures were implemented to adapt to the regression setup, which is not considered in the original model. The two methods are: 1) implemented the variable selection methods by the clustvarsel package, obtain the VS and clustering results, then a common set of variables are selected for all clusters, fit a linear regression model within each cluster to obtain estimates of alpha and beta; 2) run the

posterior_inf 5

mclust package for clustering with both the response and covariates, based on the clustering results with fixed K=3, run the variable selection procedure by the clustvarsel package for each cluster so a cluster-specific VS can be achieved, then within each cluster, fit a linear regression model to obtain estimates of alpha and beta;

Value

post_inf, post_inf_rpms and post_inf_bnpmix return:

true_size numeric vector, the true cluster sizes in the data

measure_km_ari numeric, a measurement defined to measure how far away the clusters are

from each other, calculated by the ARI values of the true clutering membership and the clustering result of the K-means method, a larger value generally means more distant clusters, thus easier clustering problem

auto_corr_k numeric vector, auto-correlations for posterior of K

geweke_k numeric, the Z-statistic for the geweke diagnostics for posterior of K

post_k numeric vector, posterior distribution of K

mse_a1, mse_a2, mse_a3

numeric vectors, the quartiles of the mean squared errors of alpha for the

3 clusters

mse_b1, mse_b2, mse_b3

numeric vectors, the quartiles of the mean squared errors of beta for the

3 clusters

ARI numeric vector, the (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1) quantiles of

ARI values calculated by all posterior samples of c

MS numeric vector, the mean Missed Spaecity for each cluster

ARI_bnpmix numeric vector, the ARI values calculated from all posterior samples of c

by BNPmix

mclust_vs returns:

clust_no_g numeric vector, the sizes of clusters by mclust when G is not pre-specified

ari_no_g numeric, ARI values for clustering results by mclust when G is not pre-

specified

cluster_no_g_vs numeric, the sizes of clusters by clustvarsel when G is not pre-specified

ari_no_g_vs numeric, ARI values for clustering results by clustvarsel when G is not

pre-specified

clust_g3 numeric vector, the sizes of clusters by mclust when G is fixed at 3

ari_g3 numeric, ARI values for clustering results by mclust when G is fixed at 3 clust_g3_vs numeric, ARI values for clustering results by clustvarsel when G is fixed

at 3

ari_g3_vs numeric, ARI values for clustering results by clustvarsel when G is fixed

at 3

6 posterior_inf

```
se_a1.1, se_a2.1, se_a3.1
                 squared-errors of alpha values for M7, method 1)
se_b1.1, se_b2.1, se_b3.1
                 squared-errors of alpha values for M7, method 1)
FS1.1, FS2.1, FS3.1
                 FS values for each cluster for M7, method 1)
MS1.1, MS2.1, MS3.1
                 MS values for each cluster for M7, method 1)
se_a1.2, se_a2.2, se_a3.2
                 squared-errors of alpha values for M7, method 2)
se_b1.2, se_b2.2, se_b3.2
                 squared-errors of alpha values for M7, method 2)
FS1.2, FS2.2, FS3.2
                 FS values for each cluster for M7, method 2)
MS1.2, MS2.2, MS3.2
                 MS values for each cluster for M7, method 2)
```

Note

The MSE values, FS, MS values for VS accuracy are calculated with samples of K = M = 3. ARI values are calculated with all posterior samples.

Author(s)

Zhen Wang ¡zwangiowa@gmail.com;

References

Chris Fraley and Adrian E Raftery. Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97(458):611–631, 2002.

Riccardo Corradin, Antonio Canale, and Bernardo Nipoti. Bnpmix: An r package for bayesian non- parametric modeling via pitman-yor mixtures. Journal of Statistical Software, 100(15):1–33, 2021.

```
##generate simulation data
simulation_data <- data_gen_func()

##FBMM with VS, hyper-prior for beta_bel
simulation_1 <- simulation_func(simulation_data$X, simulation_data$y, prior="Bessel")

##run posterior inference, burn-in the first 20k samples
post_fbmm_vs_1 <- post_inf(simulation_1, 20001:1e5, simulation_data)</pre>
```

ppd_sim 7

ppd_sim	Calculate the Posterior Predictive Density (ppd) for New Data Subjects
	· ·

Description

A function to calculate the posterior predictive density for a new subject with response y^* and covariates X^* .

Usage

```
ppd_sim(sim.res, x.new, y.new, scl=10001:1e5, thin=20)
```

Arguments

sim.res	list, MCMC simulation results returned by simulation_func, simulation_split or simulation_func_rpms
x.new	numeric vector of length D, covariates for the new subject
y.new	numeric, the new y value to estimate the ppd at
scl	numeric vector, the index of remaining samples after burn-in
thin	numeric, the thinning factor to speed up calculations, posterior samples for every thin-th iterations are used to calculate ppd

Details

See the Appendix of the paper for formulas of the ppd.

Value

The ppd of x.new at y.new is returned.

Author(s)

Zhen Wang ¡zwangiowa@gmail.com;

```
##generate simulation data
simulation_data <- data_gen_func()

##FBMM without VS, hyper-prior for beta_bel
simulation_1 <- simulation_func(simulation_data$X, simulation_data$y, prior="Bessel", SS=F)

x.new <- rnorm(6)
y.new <- 0.5

##calculate ppd
ppd.new.sample <- ppd_sim(simulation_1, x.new, y.new, scl=10001:1e5, thin=20)</pre>
```

r_sq_post

r_sq_post

Calculate R-square Values for all MCMC Samples

Description

A function to calculate the R-square values for all posterior samples returned by MCMC simulations.

Usage

```
r_sq_post(sim_res, data, scl=10001:1e5)
```

Arguments

sim_res	list, MCMC simulation results returned by simulation_func, simulation_split
	or simulation_func_rpms

data dataframe, consists of response y and covariates X

scl numeric vector, the index of remaining samples after burn-in

Details

Given the posterior samples of K, and c, for each iteration, within each cluster, fit a linear regression, obtain the R^2 value, then for each iteration, we obtain k_post R^2 values for k_post different clusters. Do such calculations for all posterior samples.

Value

The R-square values for all clusters in all posterior samples are returned as a numeric vector.

Author(s)

Zhen Wang ¡zwangiowa@gmail.com;

```
##generate simulation data
simulation_data <- data_gen_func()

##FBMM without VS, hyper-prior for beta_bel
simulation_1 <- simulation_func(simulation_data$X, simulation_data$y, prior="Bessel", SS=F)

##calculate the R^2 values
r_sq_samples <- r_sq_post(simulation_1, simulation_data)</pre>
```

simulation_func

MCMC Simulations for the Bayesian Finite Mixture Regression Models with Cluster-Specific Variable Selection

Description

A simulation function running MCMC simulations for various models with different algorithms. Accepted data should be one-dim response y and multi-dim (D ξ = 1) covariates X expect for the split model, for split model, W and Z should be specified instead of a single covariates matrix X.

Usage

```
simulation_func(X, y, prior = "Dirichlet", SS = TRUE, N = 1e5, gamma_hyperprior = TRUE,
               gamma_fixed = 1, a_gamma = 10, b_gamma = 10, a_unif = 0,
               a_w = 1, b_w = 1, Lambda = 3, a_bessel = 2,
          b_bessel_hyperprior = TRUE, b_bessel_fixed = 1.1, a_b_bessel = 1, b_b_bessel = 10,
               mu = 0, a_tau = 1, b_tau = 1, a_zeta = 0, b_zeta = 1,
               a_1ambda = 5, b_1ambda = 2, a_1pha = 0, b_2pha = 0.01,
               a_eta = 5, b_eta = 2, L_dynamic = 10, M_init = 6,
               lambda_init = 2, alpha_init = 0)
simulation_split(W, Z, y, prior = "Dirichlet", SS = TRUE, N = 1e5, gamma_hyperprior = TRUE,
                gamma_fixed = 1, a_gamma = 1, b_gamma = 1,
                a_w = 1, b_w = 1, Lambda = 3, a_bessel = 2,
          b_bessel_hyperprior = TRUE, b_bessel_fixed = 1.1, a_b_bessel = 1, b_b_bessel = 10,
                mu = 0, a_tau = 1, b_tau = 1, a_zeta = 0, b_zeta = 1,
                a_psi = 0, a_4 = 1, b_4 = 1,
                a_{a} = 5, b_{a} = 0, b_{a} = 0, b_{a} = 0.01,
                a_{eta} = 5, b_{eta} = 2, M_{init} = 6,
                lambda_init = 2, alpha_init = 0)
```

Arguments

Χ	numeric matrix, covariates matrix
W	numeric matrix, covariates matrix that is fixed in a split model
X	numeric matrix, covariates matrix that is modeled with Gaussian distributions in a split model
у	numeric vector, response

prior char, priors on mixture weights, or different algorithm. "Dirichlet" for FDMM with conditional algorithm, "Bessel" for FBMM with conditional algorithm, "Dynamic_FDMM" for the Dynamic FDMM model with conditional algorithm, "Dirichlet_Marginal" for FDMM with marginal algorithm, "Uniform" for FUMM with conditional algorithm. For split model, only "Dirichlet" and "Bessel" are enabled SS logical, if TRUE, spike and slab prior is specified on beta for clusterspecific variable selection; if FALSE, a continuous Gaussian prior is specified to beta, no variable selection in implemented numeric, number of iterations Ν gamma_hyperprior logical, if TRUE, for FDMMM with conditional and marginal algorithm, a hyper-prior is specified to the concentration parameter gamma, otherwise, gamma is fixed numeric, if gamma_hyperprior=FALSE, the fixed value for gamma gamma_fixed a_gamma, b_gamma numeric, if gamma_hyperprior=TRUE, a Gamma(a_gamma, b_gamma) is assigned to gamma numeric, for FUMM, the unnormalised mixture weights S follows Unif(a_unif, a_unif 1), $0_{i}=a_{uni}f_{i}1$ a_w, b_w numeric, a Beta(a_w, b_w) is assigned to the SS weights w Lambda numeric, M ~ Posson_1(Lambda), a shifted Poisson distribution numeric, for FBMM, alpha_bel is fixed at this value a_bessel b_bessel_hyperprior logical, if TRUE, a hyperprior is specified to beta_bel b_bessel_fixed numeric, if b_bessel_hyperprior=FALSE, beta_bel is fixed at this value a_b_bessel, b_b_bessel numeric, if b_bessel_hyperprior=TRUE, a Gamma(a_b_bessel, b_b_bessel) hyper-prior is assigned to beta_bel-1 numeric, mean of the slab part of the SS prior on beta mu a_tau, b_tau numeric, a Gamma(a_tau, b_tau) hyper-prior for the precision parameter tau of the slab part of the SS prior on beta numeric, a Normal(a_tau, b_tau) hyper-prior for the mean parameter of a_zeta, b_zeta X, zeta a_lambda, b_lambda numeric, a Gamma(a_lambda, b_lambda) hyper-prior for the precision parameter of y, lambda a_alpha, b_alpha numeric, a Normal(a_alpha, b_alpha) hyper-prior for the intercept parameter alpha numeric, a Gamma(a_eta, b_eta) hyper-prior for the precision parameter a_eta, b_eta of X, eta a_psi numeric, the prior mean for psi, the regression coefficients corresponding to W a_4, b_4 numeric, a Gamma(a_4, b_4) hyper-prior is assigned to b_psi, the prior

precison of psi

L_dynamic numeric, the number of the auxiliary states, L, in Algorithm 8 of Neal

(20000, JCGS)

M_init numeric, initial value of M
lambda_init numeric, initial value of lambda
alpha_init numeric, initial value of alpha

Details

For simulation_func, a total of four different models are considered: within the N-IFPP category: FDMM, FBMM and FUMM, not in N-IFPP: Dynamic FDMM model introduced in Fr\"uhwirth-Schnatter et al (2021, BA).

For the FDMM, both the conditional and marginal algorithms are implemented, for other models, only the conditional algorithm is implemented.

For the marginal algorithm, Algorithm 8 of Neal (2000, JCGS) is applied.

For simulation_split, condistional algorithms are implemented for the split model, for FDMM and FBMM only.

Value

 b_lambda

pre-specified values

M_post	numeric vector of length N, posterior samples of M
c_post	numeric matrix of dim N*n, each row represents posterior samples of c for one iteration
$k_{_}post$	numeric vector of length N, posterior samples of K
U	numeric vector of length N, posterior samples of U, the auxiliary variable for the conditional algorithm of N-IFPP models
gamma_post	numeric vector of length N, posterior samples of the concentration parameter gamma in both FDMM models
Beta_post	list, each element of the list represents posterior samples of all beta components in each iteration, of length M_post*D
alpha_post	list, each element of the list represents posterior samples of all alpha components in each iteration, of length $\rm M_post$
zeta₋post	list, each element of the list represents posterior samples of all zeta components in each iteration, of length $\rm M_post*D$
lambda_post	numeric vector, posterior samples of lambda, precision of y
eta_post	numeric vector, posterior samples of eta, precision of X
tau_post	numeric vector, posterior samples of tau, precision of the slab part in SS prior $$
w_post	numeric matrix of dim N*D, each row represents posterior smaples of the SS weights, w, in one iteration
weight_post	list, each element represents posterior samples of the mixture weights, omega, of length $\rm M_post$
psi_post	numeric matrix, each row represents posterior smaples of psi for each iteration, for split model only
b_psi_post	numeric vector, posterior smaples of b_psi, for split model only
$a_{-}lambda$	pre-specified values

a_eta	pre-specified values
b_eta	pre-specified values
Χ	covariates input
У	response input
W	covariates input that is fixed, for split model only
Z	covariates input that is modeled, for split model only

Note

For current version of simulation_split, it's required that $\dim(W) \ \xi = 2$ and $\dim(Z) \ \xi = 3$.

Author(s)

Zhen Wang ¡zwangiowa@gmail.com;

References

Generalized Mixtures of Finite Mixtures and Telescoping Sampling. Sylvia Fr\"uhwirth-Schnatter, Gertraud Malsiner-Walli, and Bettina Gr\"un, Bayesian Analysis, 16: 1279-1307, 2021.

Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2):249–265, 2000.

Is infinity that far? A Bayesian nonparametric perspective of finite mixture models. Raffaele Argiento and Maria De Iorio, Ann. Statist. 50(5): 2641-2663, 2022.

 $simulation_func_rpms$ $MCMC\ Simulations\ for\ the\ RPMS\ Model$

Description

A simulation function running MCMC simulations for the RPMS model introduced in Barcella et al (SIM, 2016). Accepted data should be one-dim response y and multi-dim (D i=1) covariates X.

Usage

Arguments

_	
Χ	numeric matrix, covariates matrix
У	numeric vector, response
SS	logical, if TRUE, spike and slab prior is specified on beta for cluster-specific variable selection; if FALSE, a continuous Gaussian prior is specified to beta, no variable selection in implemented
N	numeric, number of iterations
a_w, b_w	numeric, a Beta(a_w, b_w) is assigned to the SS weights w
mu	numeric, mean of the slab part of the SS prior on beta
a_tau, b_tau	numeric, a Gamma(a_tau, b_tau) hyper-prior for the precision parameter tau of the slab part of the SS prior on beta
a_zeta, b_zeta	numeric, a Normal (a_tau, b_tau) hyper-prior for the mean parameter of X, zeta
a_lambda, b_lam	bda
	numeric, a Gamma(a_lambda, b_lambda) hyper-prior for the precision parameter of y, lambda
a_alpha, b_alph	
	numeric, a Normal(a_alpha, b_alpha) hyper-prior for the intercept parameter alpha
a_eta, b_eta	numeric, a Gamma (a_eta, b_eta) hyper-prior for the precision parameter of X, eta
a_adp, b_adp	numeric, a Gamma (a_adp, b_adp) hyper-prior for the concentration parameter, alpha, of ${\rm DP}$
$k_{-}init$	numeric, initial value of K
$lambda_init\\$	numeric, initial value of lambda
$alpha_dp_init$	numeric, initial value of alpha of DP
$alpha_{\scriptscriptstyle{-}}init$	numeric, initial value of alpha
m_aux	numeric, the number of the auxiliary states, m, in Algorithm 8 of Neal (20000, JCGS)

Details

A marginal algorithm is implemented, Algorithm 8 of Neal (2000, JCGS) is applied in this algorithm.

Value

c_post	numeric matrix of dim N*n, each row represents posterior samples of c for one iteration
k_post	numeric vector of length N, posterior samples of K
alpha_dp_post	numeric vector of length N, posterior samples of concentration parameter alpha of DP
Beta_post	list, each element of the list represents posterior samples of all beta components in each iteration, of length $\rm M_post^*D$
alpha_post	list, each element of the list represents posterior samples of all alpha components in each iteration, of length $Mpost$
zeta₋post	list, each element of the list represents posterior samples of all zeta components in each iteration, of length $Mpost^*D$
$lambda_post$	numeric vector, posterior samples of lambda, precision of y
eta₋post	numeric vector, posterior samples of eta, precision of X
tau₋post	numeric vector, posterior samples of tau, precision of the slab part in SS prior
w_post	numeric matrix of dim N^*D , each row represents posterior smaples of the SS weights, w, in one iteration
a_lambda	pre-specified values
$b_{-}lambda$	pre-specified values
a_eta	pre-specified values
b_eta	pre-specified values
Χ	covariates input

Author(s)

У

Zhen Wang ¡zwangiowa@gmail.com;

response input

References

William Barcella, Maria De Iorio, Gianluca Baio, and James Malone-Lee. Variable selection in co-variate dependent random partition models: an application to urinary tract infection. Statistics in Medicine, 35(8):1373–1389, 2016.

Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9(2):249–265, 2000.

```
##generate simulation data
simulation_data <- data_gen_func()

##RPMS with VS
simulation_rpms_1 <- simulation_func_rpms(simulation_data$X, simulation_data$y)</pre>
```

simulation_func_rpms 15

```
##RPMS without VS
simulation_rpms_2 <- simulation_func_rpms(simulation_data$X, simulation_data$y, SS=F)</pre>
```