Intermediate Test 2 – Solutions

Stellenbosch Camp 2018

1. For any real number x, let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x, and let $\{x\} = x - \lfloor x \rfloor$ be the fractional part of x. Find all real numbers a, b, and c such that

$$\lfloor a \rfloor + \{b\} = -2.3,$$

$$[b] + \{c\} = 8.9,$$
 and

$$|c| + \{a\} = 23.4.$$

The first equation gives us that $\lfloor a \rfloor = -3$ and $\{b\} = 0.7$. The second equation gives us tht $\lfloor b \rfloor = 8$ and $\{c\} = 0.9$. The last equation implies that $\lfloor c \rfloor = 23$ and $\{a\} = 0.4$. It follows that a = -2.6, b = 8.7 and c = 23.9.

2. Lets PQRS be a cyclic quadrilateral such that PQ = QR, PR = SR and $PQ \parallel SR$. Let ASB be a tangent at S where A lies on PQ. If $\angle BSR = 72^{\circ}$, find the value of $\angle RPQ$.

By the tan-chord theorem, we have that $\angle SPR = \angle BSR = 72^{\circ}$. Since PR = SR, we find that $\angle RSP = \angle SPR = 72^{\circ}$. Since PQRS is a cyclic quadrilateral, we have that $\angle PQR = 180^{\circ} - \angle RSP = 180^{\circ} - 72^{\circ} = 108^{\circ}$.

Now note that $\angle PQR + \angle RPQ + \angle QRP = 180^{\circ}$. However, PQR is an isosceles triangle, so $\angle RPQ = \angle QRP$, and so we have that

$$2\angle RPQ + 108^{\circ} = \angle RPQ + \angle QRP + \angle PQR = 180^{\circ},$$

and so $\angle RPQ = 36^{\circ}$.

3. Let n be a positive integer. Find the last digit of

$$n^{2018} + (n+1)^{2018} + \dots + (n+99)^{2018}$$
.

Let

$$S = n^{2018} + (n+1)^{2018} + \dots + (n+99)^{2018}.$$

Note that among any 10 consecutive integers, we have one integer with each possible remainder modulo 10. We thus have that

$$k^{2018} + (k+1)^{2018} + \dots + (k+9)^{2018} \equiv 0^{2018} + 1^{2018} + \dots + 9^{2018} \pmod{10}.$$

The numbers $n, (n+1), (n+2), \ldots, (n+99)$ consists of 10 groups of 10 consecutive positive integers, and so we have that

$$\begin{split} S &\equiv \underbrace{\left(0^{2018} + 1^{2018} + \dots + 9^{2018}\right) + \left(0^{2018} + 1^{2018} + \dots + 9^{2018}\right) + \dots + \left(0^{2018} + 1^{2018} + \dots + 9^{2018}\right)}_{\text{10 times}} \\ &\equiv 10 \left(0^{2018} + 1^{2018} + \dots + 9^{2018}\right) \\ &\equiv 0 \pmod{10}, \end{split}$$

and so the last digit of S is always a 0.

4. Let ABC be a triangle, and let the midpoint of AC be M. The circle tangent to BC at B and passing through M meets the line AB again at P. Prove that $AB \times BP = 2BM^2$.

Construct point N, the midpoint of AB. By midpoint $Th^{\underline{m}}$, NM||BC. Using this and Tan-Chord $Th^{\underline{m}}$, we get: $\angle BMN = \angle MBC = \angle MPB$. Since we also have that $\angle PBM = \angle MBN$, we have that $\triangle BMN \sim \triangle BPM$. So

$$\frac{BM}{BP} = \frac{BN}{BM}$$

$$\Rightarrow BM^2 = BN \cdot BP = \left(\frac{1}{2}AB\right) \cdot BP$$

5. Show that for all positive real numbers x and y,

$$\frac{x^2}{x+2y} + \frac{y^2}{2x+y} \ge \frac{x+y}{3}.$$

By the Cauchy-Schwarz inequality (in "Engel Form") we have that

$$\frac{x^2}{x+2y} + \frac{y^2}{2x+y} \ge \frac{(x+y)^2}{(x+2y) + (2y+x)} = \frac{x+y}{3}.$$