Examen de Cálculo I

5 de diciembre de 2012

Soluciones

1. Sean A y B conjuntos de números reales, no vacíos y minorados, verificando que ínf A =inf B = 1. Se considera el conjunto

$$C = \left\{ \frac{1}{\sqrt{a+b}} : a \in A, b \in B \right\}$$

Probar que C está mayorado y calcular su supremo.

Solución

Para $c \in C$, tenemos $c = 1/\sqrt{a+b}$ con $a \in A$ y $b \in B$. Por ser $a \ge$ inf A = 1 y también $b \ge$ inf B = 1, deducimos:

$$a+b \ge 2 \implies \sqrt{a+b} \ge \sqrt{2} \implies c = \frac{1}{\sqrt{a+b}} \le \frac{1}{\sqrt{2}}$$

Hemos probado que $1/\sqrt{2}$ es mayorante de C, así que C está mayorado y sup $C \le 1/\sqrt{2}$.

Por otra parte, para cualesquiera $a \in A$ y $b \in B$, tenemos $1/\sqrt{a+b} \in C$. Por tanto,

$$\frac{1}{\sqrt{a+b}} \le \sup C \implies a+b \ge \frac{1}{(\sup C)^2} \implies a \ge \frac{1}{(\sup C)^2} - b$$

Como esta desigualdad es válida para todo $a \in A$, tenemos que $1/(\sup C)^2 - b$ es minorante de A. Por tanto:

$$\frac{1}{(\sup C)^2} - b \le \inf A = 1 \implies \frac{1}{(\sup C)^2} - 1 \le b$$

Ahora, esta desigualdad es válida para todo $b \in B$, luego $1/(\sup C)^2 - 1$ es minorante de B. Por tanto,

$$\frac{1}{(\sup C)^2} - 1 \le \inf B = 1 \implies (\sup C)^2 \ge \frac{1}{2} \implies \sup C \ge \frac{1}{\sqrt{2}}$$

Junto con la otra desigualdad ya probada, concluimos: sup $C = 1/\sqrt{2}$.

2. Se considera la sucesión $\{x_n\}$ definida por:

$$x_1 = 1$$
, $x_{n+1} = \frac{x_n}{\sqrt{1 + x_n^3}} \quad \forall n \in \mathbb{N}$

Estudiar la convergencia de las sucesiones $\{x_n\}$ y $\{\sqrt[n]{x_n}\}$.

Solución

Es claro que $x_1 > 0$ y, suponiendo que $x_n > 0$, tenemos

$$x_{n+1} = \frac{x_n}{\sqrt{1 + x_n^3}} > 0$$

Por inducción, hemos probado que $x_n > 0$ para todo $n \in \mathbb{N}$. En particular, la sucesión $\{x_n\}$ está minorada.

Para todo $n \in \mathbb{N}$, tenemos $\sqrt{1+x_n^3} > 1$, luego

$$\frac{x_{n+1}}{x_n} = \frac{1}{\sqrt{1+x_n^3}} < 1$$

Esto prueba que $x_{n+1} < x_n$ para todo $n \in \mathbb{N}$, así que la sucesión $\{x_n\}$ es decreciente, pero también está minorada, luego es convergente.

Poniendo $L = \lim_{n \to \infty} x_n$ tenemos que $\{x_{n+1}\} \to L$, pero también

$$\{x_{n+1}\} = \left\{\frac{x_n}{\sqrt{1+x_n^3}}\right\} \to \frac{L}{\sqrt{1+L^3}}$$

Por tanto:

$$L = \frac{L}{\sqrt{1+L^3}} \implies L^2(1+L^3) = L^2 \implies L^5 = 0 \implies L = 0$$

Queda así probado que $\lim_{n\to\infty} x_n = 0$.

De $\{x_n^3\} \to 0$ deducimos que

$$\left\{\frac{x_{n+1}}{x_n}\right\} = \left\{\frac{1}{\sqrt{1+x_n^3}}\right\} \to 1$$

Aplicando el criterio de la raíz, concluimos que $\{\sqrt[n]{x_n}\} \to 1$.

- 3. Decir si las siguientes afirmaciones son ciertas o falsas, explicando las respuestas:
 - a) Toda unión de conjuntos finitos es un conjunto numerable.

Solución. Esta afirmación es FALSA. Sabemos que $\mathbb R$ no es numerable, pero escribiendo

$$\mathbb{R} = \bigcup_{x \in \mathbb{R}} \{x\}$$

vemos que \mathbb{R} es una unión de conjuntos, cada uno de los cuales es finito, pues tiene sólo un elemento.

b) El conjunto $\{r\sqrt{2} : r \in \mathbb{Q}\}$ es denso en \mathbb{R} .

Solución. Esta afirmación es CIERTA. Dados $x, y \in \mathbb{R}$ con x < y, se tiene $x/\sqrt{2} < y/\sqrt{2}$, luego, por la densidad de \mathbb{Q} en \mathbb{R} , existe $r \in \mathbb{Q}$ tal que $x/\sqrt{2} < r < y/\sqrt{2}$, es decir, $x < r\sqrt{2} < y$.

c) Toda sucesión monótona, que admita una sucesión parcial convergente, es convergente.

Solución. Esta afirmación es CIERTA. Una sucesión monótona ha de ser convergente o divergente, pero si es divergente, todas sus sucesiones parciales también lo son, luego si admite una sucesión parcial convergente, tendrá que ser convergente.

d) Si $\{x_n\}$ e $\{y_n\}$ son successiones divergentes, entonces $\{x_n + y_n\}$ es convergente o divergente.

Solución. Esta afirmación es FALSA. Tomando $\{x_n\} = \{n + (-1)^n\}$ e $\{y_n\} = \{-n\}$, es claro que $\{x_n\}$ e $\{y_n\}$ son divergentes y, sin embargo, la sucesión $\{x_n + y_n\} = \{(-1)^n\}$ no converge ni diverge.