Machine Learning od podstaw

Michał Lipka SAP 20 Listopada, 2019

PUBLIC

Hack Your Career

Fit yourself in IT – Rozegraj swoją rekrutację

15.10.2019

Marek Nawa Maciej Ogrodnik Machine Learning od podstaw

20.11.2019 Michał Lipka

Getting started with OAUTH 2.0

29.10.2019

Tomasz Miler

Building a city with SCRUM - Workshop

12.12.2019

Michał Drzewiecki

SAP Labs Poland

Top ecommerce, marketing, billing

Development: Go, Java, Cloud Native solutions

> 400 pracowników

Najlepszy Pracodawca w rankingu AON

Jedno z 20 centrów SAP's Labs Network

Agenda:

- Co to tak w ogóle jest machine learning?
- Sposoby uczenia
- Reprezentacja modelu: hipoteza, funkcja kosztu, gradient prosty
- Regresja liniowa
- Klasyfikacja
- Sieci neuronowe

"The field of study that gives computers the ability to learn without being explicitly programmed."

Arthur Samuel

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

Tom M. Mitchell

Sortowanie tablic

Teoria grafów

Rodzaje uczenia:

- Nadzorowane
- Nienadzorowane
- Inne: drzewa decyzji, uczenie przez wzmacnianie

Hipoteza

Regresja liniowa

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

	X (rozmiar w m2)	Y (cena w tyś)
$x^{(1)}, y^{(1)}$	28	100
$x^{(2)}, y^{(2)}$	29	110
$x^{(3)}, y^{(3)}$	31	130
$x^{(4)}, y^{(4)}$	31	133
$x^{(i)}, y^{(i)}$	•••	

Dwa pytania:

- skąd wiemy, że dana prosta jest "dobra" ?
- jak ją policzyć?

Funkcja kosztu

$$J(\theta)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = h_{\theta}(x^{(i)}) - y^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\min_{(\theta_0,\theta_1)} (\theta_0,\theta_1)$$

Jak wygląda proces uczenia?

Gradient prosty

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Coursera, Machine Learning, Andrew Ng

Gradient prosty

- Zaczynami z dowolnymi θ_0 , θ_1
- Zmieniamy θ_0 , θ_1 tak żeby $J(\theta)$ się zmniejszało

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m ((h_\theta(x^{(i)}) - y^{(i)}) * x^{(i)})$$

Wiele atrybutów

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
 gdzie: $x_0 = 1$

$$h_{\theta}(x) = \theta^{T} x \qquad \qquad x = \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{n} \end{bmatrix}$$

Nieliniowa hipoteza

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_2 x_1 x_2 + \theta_2 x_2 + \theta_2 x_2^2$$

Klasyfikacja

Regresja logistyczna

$$h_{\theta}(x) = g(\theta^T x)$$

$$z = \theta^T x$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Funkcja logistyczna

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = g(\theta^T x)$$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
 $\theta_0 = 7, \theta_1 = -1, \theta_2 = 1$

Funkcja kosztu dla regresji logistycznej:

$$J(\theta) = \frac{1}{m} \sum_{i=0}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & y = 1\\ -\log(1 - h_{\theta}(x)) & y = 0 \end{cases}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=0}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Gradient prosty

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) - y^{(i)}) * x^{(i)})$$

Sieci neuronowe

Warstwy ukryte

Warstwa wejściowa

Funkcja kosztu sieci neuronowej:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} log \left(\left(h_{\theta}(x^{(i)}) \right)_k \right) + (1 - y_k^{(i)}) log \left(1 - \left(h_{\theta}(x^{(i)}) \right)_k \right) \right]$$

https://www.coursera.org/learn/machine-learning/

Dziękuję.

Michał Lipka michal.lipka@sap.com

