

Inspiration

Structure

How Diffusion Model can be applied in different fields?

Brief Introduction

前向加噪

反向去噪

模型训练

What is Diffusion Model?

Denoising Diffusion Probabilistic Models

What is Diffusion Model?

Forward Diffusion Process

$$x_{t} = \sqrt{\alpha_{t}} x_{t-1} + \sqrt{1 - \alpha_{t}} \varepsilon_{t-1}, \quad \varepsilon \sim \mathcal{N}(0, I)$$
$$q(x_{t} \mid x_{t-1}) = \mathcal{N}(x_{t}; \sqrt{\alpha_{t}} x_{t-1}, (1 - \alpha_{t})I)$$

Forward Diffusion Process

1 Forward (closed-form)

Where $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}} \varepsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \left(\sqrt{\alpha_{t-1}} \mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t-1}} \varepsilon_{t-2} \right) + \sqrt{1 - \alpha_{t}} \varepsilon_{t-1}$$

$$= \sqrt{\alpha_{t}} \alpha_{t-1} \mathbf{x}_{t-2} + \left(\sqrt{\alpha_{t} (1 - \alpha_{t-1})} \varepsilon_{t-2} + \sqrt{1 - \alpha_{t}} \varepsilon_{t-1} \right)$$

$$\vdots$$

$$= \sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, I)$$

Reverse Diffusion Process

Reverse Diffusion Process

Assume: the output is gaussian

Target Distribution: $q(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \mu_t(x_t), \Sigma_t(x_t))$

Approximated Distribution: $p_{\theta}(x_{t-1} \mid x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$

What is $q(x_{t-1} \mid x_t, x_0)$

If we know x_0 and x_t $q(x_{t-1}|x_t,x_0)$ is deterministic

Assume: Markov

$$q(x_{t-1} \mid x_t, x_0) = \frac{q(x_{t-1}, x_t, x_0)}{q(x_t, x_0)} = \frac{q(x_t \mid x_{t-1})q(x_{t-1} \mid x_0)q(x_0)}{q(x_t \mid x_0)q(x_0)} = \frac{q(x_t \mid x_{t-1})q(x_{t-1} \mid x_0)}{q(x_t \mid x_0)}$$

$$\begin{aligned} q(x_t \mid x_{t-1}) &\sim \mathcal{N}\left(x_t; \sqrt{\alpha_t} x_{t-1}, 1 - \alpha_t\right) \\ q(x_{t-1} \mid x_0) &\sim \mathcal{N}\left(x_{t-1}; \sqrt{\bar{\alpha}_{t-1}} x_0, 1 - \bar{\alpha}_{t-1}\right) \\ q(x_t \mid x_0) &\sim \mathcal{N}\left(x_t; \sqrt{\bar{\alpha}_t} x_0, 1 - \bar{\alpha}_t\right) \end{aligned}$$

$$=$$
 $\sqrt{lpha_t}$ $+$ $\sqrt{1-lpha_t}$ $+$

$$=\sqrt{\overline{lpha}_{t-1}}$$

$$=\sqrt{\overline{lpha}_{t-1}}+\sqrt{1-\overline{lpha}_{t-1}}$$

$$=\sqrt{\bar{c}}$$

$$=\sqrt{\overline{lpha}_t}$$
 $+\sqrt{1-\overline{lpha}_t}$ $+$

Remove x_0

3 Reverse If we know x_0

$$q(x_{t-1}|x_t,x_0) = \mathcal{N}\left(x_{t-1}; \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})x_t + \sqrt{\bar{\alpha}_{t-1}}(1-\alpha_t)x_0}{1-\bar{\alpha}_t}, \underbrace{\frac{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}I}_{\sum_q(t)}\right)$$

1 Forward (close-form)

$$x_{t} = \sqrt{\bar{\alpha}_{t}} x_{0} + \sqrt{1 - \bar{\alpha}_{t}} \varepsilon_{t} \Rightarrow x_{0} = \frac{x_{t} - \sqrt{1 - \bar{\alpha}_{t}} \varepsilon_{t}}{\sqrt{\bar{\alpha}_{t}}}$$

$$\frac{\sqrt{\alpha_{t}} (1 - \bar{\alpha}_{t-1}) x_{t} + \sqrt{\bar{\alpha}_{t-1}} (1 - \alpha_{t}) x_{0}}{1 - \bar{\alpha}_{t}} \Rightarrow \frac{1}{\sqrt{\bar{\alpha}_{t}}} \left(x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \varepsilon_{t} \right) \quad \text{noise predictor } \varepsilon_{t} (x_{0} \to x_{t})$$

Why not predict x_0 directly?

Summary

Forward Process:
$$q(x_t|x_{t-1}) = N(x_t; \sqrt{\alpha_t}x_{t-1}, (1-\alpha_t)I)$$

Reverse Process:
$$p(x_{t-1}|x_t) = N(x_{t-1}; \frac{1}{\sqrt{\alpha_t}}(x_t - \frac{1-\alpha_t}{\sqrt{1-\alpha_t}}\epsilon_t), \frac{1-\alpha_{t-1}}{1-\alpha_t}\beta_t I)$$

Reverse Diffusion Process

Maximum Likelihood Estimation

Sample $\{x^1, x^2, ..., x^m\}$ from $P_{data}(x)$

???

We can compute $P_{\theta}(x^i)$

$$\theta^* = arg \max_{\theta} \prod_{i=1}^m P_{\theta}(x^i)$$

Maximum Likelihood Estimation

2 Optimization (view 1)

$$\min -\log p_{\theta}(x_0) \leq -\log p_{\theta}(x_0) + D_{KL} \left(q(x_{1:T} \mid x_0) \, \| \, p_{\theta}(x_{1:T} \mid x_0) \right)$$

$$\min \ -\log p_{\theta}(x_0) \leq \mathbb{E}_{q(x_{1:T}\mid x_0)}\left[\log \frac{q(x_{1:T}\mid x_0)}{p_{\theta}(x_{0:T})}\right] \quad \textbf{(ELBO)}$$

$$\min \ -\log p_{\theta}(x_0) \leq \mathbb{E}_{q(x_{1:T}\mid x_0)} \left[\underbrace{D_{\textit{KL}}\left(q(x_T\mid x_0) \parallel p_{\theta}(x_T)\right)}_{\text{prior term}} \right] + \sum_{t=2}^{T} \underbrace{D_{\textit{KL}}\left(q(x_{t-1}\mid x_t, x_0) \parallel p_{\theta}(x_{t-1}\mid x_t)\right)}_{\text{reconstruction term}} - \log p_{\theta}(x_0\mid x_1)$$

Derivation Process

$$\begin{split} L_{\text{VLB}} &= \mathbb{E}_{q(\mathbf{x}_0:T)} \Big[\log \frac{q(\mathbf{x}_{1:T} | \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{0:T})} \Big] \\ &= \mathbb{E}_q \Big[\log \frac{\prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=1}^T \log \frac{q(\mathbf{x}_t | \mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \frac{q(\mathbf{x}_t | \mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)} + \log \frac{q(\mathbf{x}_1 | \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \Big(\frac{q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)} \cdot \frac{q(\mathbf{x}_t | \mathbf{x}_0)}{q(\mathbf{x}_{t-1} | \mathbf{x}_0)} \Big) + \log \frac{q(\mathbf{x}_1 | \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_t | \mathbf{x}_0)}{q(\mathbf{x}_1 | \mathbf{x}_0)} + \log \frac{q(\mathbf{x}_1 | \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)} \Big] \\ &= \mathbb{E}_q \Big[\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)} + \log \frac{q(\mathbf{x}_1 | \mathbf{x}_0)}{q(\mathbf{x}_1 | \mathbf{x}_0)} + \log \frac{q(\mathbf{x}_1 | \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)} \Big] \\ &= \mathbb{E}_q \Big[\log \frac{q(\mathbf{x}_T | \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[D_{\text{KL}} \Big(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_T) \Big) + \sum_{t=2}^T D_{\text{KL}} \Big(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \Big) - \log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[D_{\text{KL}} \Big(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_T) \Big) + \sum_{t=2}^T D_{\text{KL}} \Big(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \Big) - \log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[D_{\text{KL}} \Big(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_T) \Big) + \sum_{t=2}^T D_{\text{KL}} \Big(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t) \Big] \\ &= \mathbb{E}_q \Big[D_{\text{KL}} \Big(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_T) \Big) + \sum_{t=2}^T D_{\text{KL}} \Big(q(\mathbf{x}_t | \mathbf{x}_t) \parallel p_{\theta}(\mathbf{x}_t) \Big) + \sum_{t=2}^T D_{\text{KL}} \Big(q(\mathbf{x}_t | \mathbf{x}_t) \parallel p_{\theta}(\mathbf{x}_t) \Big) \Big] \\ &= \mathbb{E}_q \Big[D_{\text{KL}} \Big(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_T) \Big) + \sum_{t=2}^T$$

Derivation Process

$$L_{t-1} = \mathbb{E}_{q} \left[\frac{1}{2\sigma_{t}^{2}} \| \tilde{\boldsymbol{\mu}}_{t}(\mathbf{x}_{t}, \mathbf{x}_{0}) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t) \|^{2} \right] + C$$

$$L_{t-1} - C = \mathbb{E}_{\mathbf{x}_{0}, \epsilon} \left[\frac{1}{2\sigma_{t}^{2}} \| \hat{\boldsymbol{\mu}}_{t}\left(\mathbf{x}_{t}(\mathbf{x}_{0}, \epsilon), \frac{1}{\sqrt{\bar{\alpha}_{t}}}(\mathbf{x}_{t}(\mathbf{x}_{0}, \epsilon) - \sqrt{1 - \bar{\alpha}_{t}}\epsilon)\right) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}(\mathbf{x}_{0}, \epsilon), t) \|^{2} \right]$$

$$= \mathbb{E}_{\mathbf{x}_{0}, \epsilon} \left[\frac{1}{2\sigma_{t}^{2}} \| \frac{1}{\sqrt{\bar{\alpha}_{t}}} \left(\mathbf{x}_{t}(\mathbf{x}_{0}, \epsilon) - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}}\epsilon\right) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}(\mathbf{x}_{0}, \epsilon), t) \|^{2} \right]$$

$$\boldsymbol{\mu}_{\theta}(\mathbf{x}_{t}, t) = \tilde{\boldsymbol{\mu}}_{t} \left(\mathbf{x}_{t}, \frac{1}{\sqrt{\bar{\alpha}_{t}}}(\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}}\epsilon_{\theta}(\mathbf{x}_{t}))\right) = \frac{1}{\sqrt{\bar{\alpha}_{t}}} \left(\mathbf{x}_{t} - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}}\epsilon_{\theta}(\mathbf{x}_{t}, t)\right)$$

$$\mathbb{E}_{\mathbf{x}_{0}, \epsilon} \left[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2}\alpha_{t}(1 - \bar{\alpha}_{t})} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\epsilon, t) \|^{2} \right]$$

$$L_{\text{simple}}(\theta) := \mathbb{E}_{t, \mathbf{x}_{0}, \epsilon} \left[\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\epsilon, t) \|^{2} \right]$$

Diffusion Model Test by Pytorch

Applications

TXT2IMG

LDM&DALLE

LLM

LLaDA

Robotics

Diffusion Policy

Application 01 —— 图像生成 txt2img

什么是txt2img?

通过给定文本提示词(text prompt) 输出一张匹配提示词的图片。

DALLE 2 By OpenAI

Hierarchical Text-Conditional Image Generation with CLIP Latents

Have a try! Open Source

本地部署

网站访问

https://github.com/AUTOMATIC1111/stable-diffusion-webui

Application 01 —— LDM 原理

Application 01 —— 图像生成 DALLE2

Have a try! API supported

https://platform.openai.com/docs/overview

A photo of a white fur monster standing in a purple room

panda mad scientist mixing sparkling chemicals, artstation

vibrant portrait painting of Salvador Dalí with a robotic half face

Application 01 —— 图像生成 DALLE2

Application 02 —— LLaDA

扩散模型也能玩转大语言模型?

Large Language Diffusion Models

What is LLaDA? Large Language Diffusion with mAsking

A text generation method different from the traditional **left-to-right** approach

Application 02 —— LLaDA

传统路径: Auto Regression

每次生成一个token,新生成的token会拼到序列末尾 每个token的生成依赖于之前所有已生成的tokens

LLaDA

Mask的过程体现了diffusion加噪去噪的思想

Talk is Cheap, Show me the Code!

Application 02 — LLaDA

Performance

Application o3 —— Robotics

Diffusion Policy

Application 03 —— Robotics

Image Diffusion

Action Diffusion

Action Multimodality

Multiple valid actions for the same observation

Surprisingly Common

Action Multimodality

Action Space Scalability

Easily afford action sequence prediction

Training Stability

Compared to Energy Based Models

Approach

Step1 训练阶段: 学习"去噪"过程 经过多次迭代去噪,模型生成出符合当前观察条件的"干净"动作x0

$$x_{k-1} = lpha(x_k - \gamma \epsilon_{ heta}(x_k, k) + N(0, \sigma^2 I))$$
 $L = MSE(\epsilon_k, \epsilon_{ heta}(x_0 + \epsilon_k, k))$ \mathbb{R}^{k} இத் இத் இதற்ற இத

Step2 得分匹配来优化动作的能量

$$\nabla_a \log p(a|o) = -\nabla_a E_{\theta}(a,o)$$

沿着降低能量的方向调整动作

Step3 InfoNCE损失:区分"好"动作与"坏"动作

$$L_{infoNCE} = -\log\left(rac{e^{-E_{ heta}\left(o,a
ight)}}{e^{-E_{ heta}\left(o,a
ight)} + \sum_{j=1}^{N_{neg}}e^{-E_{ heta}\left(o, ilde{a}_{j}
ight)}}
ight)$$
 "大" 动作

Step4 推理阶段:实时生成动作序列

Reference

If you are interested in this topic, check these papers uploaded in DingTalk Group

Thanks