Martian Weather Forecasting and Anomaly Detection

Leveraging NASA REMS Data for Predictive Insights

By: Tristan Peters Mentor: Ernest Selvaraj Date: May 2025

The Challenge: Mars's Unpredictable Environment

- Vital for Mission Success (Planning, Safety, Equipment Longevity)
- Need for Autonomous Real-Time Awareness
- Opportunity: Unique Long-Term REMS Dataset (3,197 Sols)

Project Objectives: Delivering Actionable Insights

Forecast:

 Accurately predict Martian ground temperature

Detect:

Identify atypical atmospheric behavior

Enable:

Create robust data pipeline

Detect

Pipeline

The Data: Unveiling Mars from Gale Crater

Source:

NASA Curiosity Rover (REMS Instrumentation)

• Scope:

3,197 Martian Days (Sols) of Atmospheric Data

Key Variables:

- Temperature (Air and Ground)
- Pressure (Atmospheric)
- Solar Longitude (Mars Orbital Position)
- UV Radiation (Categorical Index)
- Day Length (Minutes of Sunlight)

Data Challenges: Unique Martian Complexities

- Significant Missing Data
- Unique Martian Time Structure
- Complex Sequential Gaps

Source: https://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html

Approach: Building a Solid Data Foundation

Rigorous Cleaning:

- Dropped unusable features
- Standardized values

• Targeted Imputation:

- Numerical: Linear
- Categorical: Rolling Mode

Outcome:

- Chronologically sound
- No missing data
- Ready for analysis

Date	Temp	Pressure
Sol 1	12	750
Sol 2	2	
Sol 4	6	745

Approach: Unlocking Temporal Insights

Cyclical Encoding:

 Capture seasonal patterns from Solar Longitude

Derived Features:

 Day Length, Martian Month, Year, and Seasons

Result:

Enhanced data for time-series modeling

Key Insights: Understanding Martian Dynamics

Strong Seasonal Swings:

 Temperature and pressure driven by solar longitude

Temp-Pressure Correlation:

Clear positive relationship observed

UV Radiation:

- Follows seasonal trends
- Often a lagging indicator

3D Scatter Plot of mean pressure, day length, avg ground temp by Season

Forecasting Martian Temperature: Diverse Modeling Approaches

SARIMA:

- Univariate Time Series
- Focus on Core Seasonal Trends

SARIMAX:

- Multivariate Time Series
- Improved Accuracy via Atmospheric Context

LSTM:

- Neutral Network for Sequence Learning
- Complex Patterns and Fine Scale Variations

Forecasting Performance: Selecting the Right Tool

Model	MAE	RMSE	sMAPE	Directional Accuracy
SARIMA	3.570	4.525	8.326%	43.98%
SARIMAX	2.097	2.914	4.913%	50.24%
LSTM	1.768	2.939	$\boldsymbol{4.162\%}$	49.66%

Key Findings:

- SARIMAX offers best balance
- LSTM excels at MAE performance

Select SARIMAX for robust, contextual forecasts

LSTM for nuanced, high-accuracy predictions

Anomaly Detection: Spotting the Unexpected

Approach:

- Hybrid statistical forecasting with Deep Learning
- LSTM autoencoder

• How it Works:

- Models "normal" forecast errors
- Flags large deviations

Threshold:

 Deviations greater than 95th percentile of reconstruction error

Detection Results: Identifying Significant Deviations

Success:

System flagged atypical atmospheric sequences

Key Insight:

 Flagged anomalies suggest areas of high volatility

Impact:

Highlights subtle patterns missed by direct observation

Integrated Pipeline: Data to Insights

Key Achievements & Impact

Developed:

End-to-end Martian weather analysis pipeline.

Demonstrated:

Effective forecasting

SARIMAX MAE: 2.10°C

■ LSTM MAE: 1.77°C

Enabled:

Hybrid anomaly detection identifying key environmental shifts

Foundation:

For enhanced scientific analysis and autonomous mission ops.

Recommendations: Putting Insights to Work

Monitor:

Integrate anomaly detection for early warnings.

Plan:

Use forecasts for tactical rover operations.

Simulate:

Employ pipeline in mission rehearsals and system testing.

Thank You!

With Gratitude to:

- The Springboard Team for their support and resources.
- My Mentor, Ernest Selvaraj, for his invaluable guidance and patience.

Open to Questions and Feedback!

