SCHEME I

TRIVALENT CONJUGATE

NONAVALENT CONJUGATE

O Tn -ANTIGEN

• AMIDE BOND

F16.1 A

SCHEME . II

SYNTHESIS OF ANTIGEN CLUSTERS.

General formula:
$$Ac-(Ser)_{m}-(Thr)_{n}-NH-(CH_{2})_{3}-COOH$$

$$(m + n \leq 3)$$
Examples: $Ac-Ser-NH-(CH_{2})_{3}-COOH$

$$Ac-Thr-NH-(CH_{2})_{3}-COOH$$

$$Ac-Ser-Ser-NH-(CH_{2})_{3}-COOH$$

$$Ac-Ser-Ser-NH-(CH_{2})_{3}-COOH$$

$$Ac-Ser-Ser-NH-(CH_{2})_{3}-COOH$$

$$Ac-Ser-Thr-Thr-NH-(CH_{2})_{3}-COOH$$

FIG.

N

CONSTRUCTION OF MULTIVALENT SYSTEMS.

H₂N=COOH SPACER ARM (e.g. 4-aminobutyric acid)

FIG.

DESIGN FOR EFFECTIVE PRESENTATION OF SYNTHETIC ANTIGENS TO IMMUNE SYSTEM.

)	-carrier protein (e.g. BSA, KLH)
<u> </u>		-tripalmitoyl-S-glycerylcysteinyl-seryl-serine
		-monophosphoryl lipid A
	•	constructed antigen systems

FIG.

W

SYNTHESIS OF 5

Reagents: i) Boc₂O, Et₃N, MeOH; i i) NHS, EDC, $CH_2C\ell_2$; i i i) $H_2N-(CH_2)_3-COOH$, Et₃N, DMF; iv) HCOOH; v) Ac_2O , MeOH; vi) 10% 1N NaOH in MeOH, 5 min.

R:
$$ACO OAC$$
 $ACO OAC$
 $ACO OA$

SYNTHESIS OF 6

Reagents: i) Et3N, DMF; i i) 9a,b .Et3N, DMF; i i i) HCOOH; iv) Ac20, MeOH; v) 10% 1N NaOH in MeOH, 1 h.

PREPARATION OF CORE STRUCTURE

Reagents: i) Boc_2O , Et_3N , MeOH; i i) NHS, EDC, CH_2C1_2 ; i i i) $H_2N-(CH_2)_3-COOH$, Et_3N , DMF; iv) HCOOH.

$$R'$$
-Lys-Lys-NH-(CH₂)₃-COOH $\frac{iii}{R'}$ R'' -Lys-Lys-NH-(CH₂)₃-COOH $\frac{iii}{R'}$ R'' R'' 23a,b 24a,b

Reagents: i) NHS, EDC, DMF; i i) 21,El3N, DMF- H_2O ; i i i) 10% 1N NaOH in MeOH, 5 min.

CONJUGATION WITH CARRIER PROTEINS

Reagents: i) NHS, EDC, DMF; i i) BSA/KLH, NaHCO3, DMF-H2O.

CONJUGATION WITH NON-MACROMOLECULES

Reagents: i) NHS, EDC, CH2Cl2: i i) NH2NH2, og MeOH; i i i) DNF-H2O.

FIG. - 6A

MPL

29

Reagents: i) NaCNBH3, NaHCO3, H2O.

FIG.

60

In general, x,y,z are odd, even and odd number; e.g. 17,14,17

FIG.

Reagents: i) Et3N, DMF; i i) HCOOH; i i i) Ac20, MeOH; iv) 10% 1N NaOH-MeOH, 5 min.

FIG.

Y = terminal protected residue. X = spacer.

Z = active functional group ready to link to core or carrier molecule (e.g. activated carboxyl)

Cycle is repeated 4-5 times

Figure 13

