analisi Definizione di rapporto incrementale e di Derivata di una funzione

definizione di rapporto incrementale di una funzione in un punto $x_{\mathbf{0}}$

- data una funzione y = f(x) ed un punto x_0 appartenente al dominio D della funzione
- si chiama **rapporto incrementale** della funzione f(x) nel punto x_0 il rapporto:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + h) - f(x_0)}{h}$$

- $\Delta x = (x_0 + h) x_0 = h$ si chiama incremento della variabile x
- $\Delta y = f(x_0 + h) f(x_0)$ si chiama incremento della funzione

il rapporto incrementale ha senso per ogni h tale che $x_0 + h$ appartiene ancora al dominio $\mathbf D$ della funzione

definizione di derivata prima di una funzione in un punto $x_{\mathbf{0}}$

- data una funzione y = f(x) ed un punto x_0 appartenente al dominio D della funzione
- si definisce **derivata prima di** f(x) **nel punto** x_0 il limite, **se esiste** ¹ ed è **finito**, del rapporto incrementale di f(x) in x_0 :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

1) si ricorda che affinché il limite esista devono esistere essere uguali i limiti da sinistra e da destra della funzione

se una funzione è derivabile in tutti i punti di un intervallo o del dominio si dice che f(x) è derivabile nell'intervallo o nel dominio. Per indicare la derivata prima si usano equivalentemente i seguenti simboli: f'(x), y'(x), Df(x)

definizione di derivata prima sinistra e destra di una funzione in un punto x_0

si definisce **derivata prima sinistra di** f(x) **nel punto** x_0 il limite sinistro, **se esiste ed è finito**, del rapporto incrementale di f(x) in x_0 :

$$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$

si definisce **derivata prima destra di** f(x) **nel punto** x_0 il limite destro, **se esiste ed è finito**, del rapporto incrementale di f(x) in x_0 :

$$f'_{+}(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

la derivata prima di una funzione f(x) in un punto x_0 rappresenta il coefficiente angolare della retta tangente al grafico della funzione nel punto di ascissa x_0 cioè nel punto $P_0(x_0, f(x_0))$:

$$f'(x_0) = m$$

per trovare l'equazione della retta y = mx + q tangente al grafico di una funzione f(x) nel punto $P_0(x_0, f(x_0))$:

- si calcola la derivata prima della funzione nel punto x_0 , il suo valore rappresenta il coefficiente angolare della tangente
- nell'equazione del fascio di rette $y y_0 = m(x x_0)$ si sostituiscono ad x_0 ed y_0 le coordinate del punto $P_0(x_0, f(x_0))$ e ad m il valore della derivata prima della funzione cioè $f'(x_0)$
- si ottiene così l'equazione della retta tangente: $y f(x_0) = f'(x_0)(x x_0)$