

人工智能导论

不确定性

郭兰哲

南京大学 智能科学与技术学院

Homepage: www.lamda.nju.edu.cn/guolz

Email: guolz@nju.edu.cn

大纲

- □ 不确定环境
- □ 概率论基础
- □ 贝叶斯网:表示
- □ 贝叶斯网:语法语义
- □ 贝叶斯网:精确推理
- □ 贝叶斯网:近似推理

大纲

- □ 不确定环境
- □概率论基础
- □ 贝叶斯网:表示
- □ 贝叶斯网: 语法语义
- □ 贝叶斯网:精确推理
- □ 贝叶斯网:近似推理

不确定环境

■ 现实世界充满不确定性

• 以自动驾驶出租车agent为例,agent的目标是按时将乘客送到机场,令 A_t 表示在飞机起飞前 t 分钟出发,是否能按时到达?

□ 现实世界问题:

- 部分可观察(道路状况、其它司机的规划等)
- 噪声感知(地图导航)
- 建模复杂性(交通难预测)
- 缺少对动态世界的知识(爆胎、陨石)

不确定环境

■ 现实世界充满不确定性

• 以自动驾驶出租车agent为例,agent的目标是按时将乘客送到机场,令 A_t 表示在飞机起飞前 t 分钟出发,是否能按时到达?

□ 逻辑推理要么得出错误结论:

□ A₉₀能让我按时到达机场

■ 要么只能得到弱一些的结论:

□ A₉₀能让我按时到达机场,如果不抛锚、不堵车、不遇到交通事故、不爆胎、 飞机不会提前起飞、没有陨石砸到我的车,...

不确定环境下的决策

- □ 概率(probability)提供了一种方法概括由惰性(laziness)和无知(ignorance)产生的不确定性
 - laziness:为了确保得到一个没有任何意外的规则,需要列出前提和结论的完整集合, 工作量太大
 - ignorance: 对于该领域,缺少完整的认识和理论

- □ 堵车的概率是0.9
- **□** 发生堵车的情况下, A_{90} 能让我按时到达机场的概率为0.6, A_{120} 能让我按时到达机场的概率为0.8

不确定环境下的决策

假如:

```
P(A_{25} \text{ gets me there on time } | ...) = 0.04
P(A_{90} \text{ gets me there on time } | ...) = 0.70
P(A_{120} \text{ gets me there on time } | ...) = 0.95
P(A_{1440} \text{ gets me there on time } | ...) = 0.9999
```

如何做决策?

必须在各种决策的不同结果之间有所偏好: 效用理论(utility theory)

决策理论=概率理论+效用理论

大纲

- □ 不确定环境
- □ 概率论基础
- □ 贝叶斯网:表示
- □ 贝叶斯网: 语法语义
- □ 贝叶斯网:精确推理
- □ 贝叶斯网:近似推理

基本概率符号

- 所有可能的情况构成的集合 Ω 称为样本空间 (sample space)
 - 例如,掷骰子的六种可能情况: {1,2,3,4,5,6}

- 概率模型(probability model)为每一个可能的情况 ω 赋一个数值概率 $P(\omega)$
 - 例如, P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6.

- 根据概率论基本公理,有:
 - $0 \le P(\omega) \le 1$
 - $\sum_{\omega \in \Omega} P(\omega) = 1$

事件(event)

- Ω 的任何一个子集可以称为一个事件(event)
 - 例如, "点数小于4"的事件对应集合{1,2,3}
 - 例如, "点数是奇数"的事件对应集合{1,3,5}

- 一个事件 A 发生的概率等于集合中所有样本发生的概率之和:
 - $P(A) = \sum_{\omega \in A} P(\omega)$
 - 例如: (点数小于4) = P(1) + P(2) + P(3) = 1/2

随机变量(random variables)

- 一个随机变量是可以用来表示随机结果的变量, 取值自某个区间
 - Odd表示骰子点数是否为奇数? -> {true, false}
 - Odd(1) = true, Odd(6)=false
 - *T* = Is it hot or cold ? -> {hot, cold}
 - $D = \text{How log will take to get to the airport } ? -> [0, \infty]$

- 随机变量 X 的概率分布给出了其取值范围内每个值x的概率(事件X = x的概率)
 - $P(X = x) = \sum_{\{\omega: X(\omega) = x\}} P(\omega)$
 - 例如: P(Odd = true) = P(1) + P(3) + P(5) = 1/2

概率分布(probability distribution)

- 把所有取值及其概率关联起来;求和为1
 - 温度:

P(T)

Т	Р
hot	0.5
cold	0.5

• 天气:

P(*W*)

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

• 联合分布

P(T,W)

		温度	
		hot cold	
	sun	0.45	0.15
	rain	0.02	0.08
K	fog	0.03	0.27
	meteor	0.00	0.00

概率分布(probability distribution)

•
$$P(+x, +y)$$
?

•
$$P(+x)$$
?

•
$$P(+x \text{ OR } -y)$$

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	- y	0.3
-X	+y	0.4
-X	-у	0.1

边缘分布(marginal distribution)

• 除了某个变量的其他变量取每个可能值的概率相加

$$P(X=x) = \sum_{y} P(X=x, Y=y)$$

		Temp	erature		
		hot	cold		
L	sun	0.45	0.15	0.60	
Weather	rain	0.02	0.08	0.10	D/140
Мег	fog	0.03	0.27	0.30	P(W)
	meteor	0.00	0.00	0.00	
		0.50	0.50		
		P	$\overline{(T)}$	-	

边缘分布(marginal distribution)

X	Y	Р
+x	+y	0.2
+x	- y	0.3
-x	+y	0.4
-x	- y	0.1

$$P(x) = \sum_{y} P(x, y)$$

$$P(\mathbf{y}) = \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{y})$$

P(X)

X	Р
+x	
-x	

Υ	Р
+y	
-у	

边缘分布(marginal distribution)

P(X,Y)

X	Y	Р
+x	+y	0.2
+x	-у	0.3
-x	+ y	0.4
-X	-у	0.1

$$P(\mathbf{x}) = \sum_{\mathbf{y}} P(\mathbf{x}, \mathbf{y})$$

$$P(\mathbf{y}) = \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{y})$$

P(X)

X	Р
+x	0.5
- X	0.5

Y	Р
+y	0.6
-у	0.4

条件概率

- 无条件概率(unconditional probabilities)或先验概率(prior probabilities)
 - 例如: P(Weather = sunny) = 0.5
- 条件概率(conditional probabilities)或后验概率(posterior probabilities)
 - 例如: P(Weather = sunny | Temperature = cold) = 0.3

$$P(a \mid b) = \frac{P(a, b)}{P(b)}$$

P(T,W)

		Temperature	
		hot cold	
ľ	sun	0.45	0.15
the	rain	0.02	0.08
Weather	fog	0.03	0.27
1	meteor	0.00	0.00

$$P(W=s \mid T=c) = \frac{P(W=s, T=c)}{P(T=c)} = 0.15/0.50 = 0.3$$

$$= P(W=s, T=c) + P(W=r, T=c) + P(W=f, T=c) + P(W=m, T=c)$$

$$= 0.15 + 0.08 + 0.27 + 0.00 = 0.50$$

条件概率

P		X,	Y)
	•	,		/

X	Υ	Р
+x	+y	0.2
+x	-y	0.3
-X	+y	0.4
-X	-у	0.1

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

P	X	Y
1 1	$\langle \mathbf{x}, \mathbf{y} \rangle$	1)

X	Υ	Р
+x	+y	0.2
+x	- y	0.3
-X	+y	0.4
-X	-у	0.1

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

$$P(+x | +y)? 0.2 / 0.6 = 1/3$$

$$P(-y \mid +x)? 0.3 / 0.5 = 3/5$$

$$0.2 / 0.6 = 1/3$$

条件概率分布

• 给定一个变量集合,另一个变量集合的概率分布

		Temperature		
		hot	cold	
	sun	0.45	0.15	
Ithe	rain	0.02	0.08	
Weather	fog	0.03	0.27	
1	meteor	0.00	0.00	

归一化(Normalization)

- 概率之和为1
- 每一项乘 α = 1/(所有项之和)

P(W,T)

		Temperature		
		hot	cold	
	sun	0.45	0.15	
Ithe	rain	0.02	0.08	
Weather	fog	0.03	0.27	
	meteor	0.00	0.00	

乘法规则

$$P(a \mid b)P(b) = P(a, b)$$

$$P(a \mid b) = \frac{P(a, b)}{P(b)}$$

为了使 a 和 b 都成立,就需要 b 成立,并且在给定 b 成立的前提下 a 也成立

乘法规则

$P(W \mid T) P(T) = P(W, T)$

P(W, T)

		Temperature	
		hot	cold
ſ	sun	0.45	0.15
the	rain	0.02	0.08
Weather	fog	0.03	0.27
1	meteor	0.00	0.00

链式法则

重复应用乘法规则,可以得到:

$$P(x_1, x_2, x_3) = P(x_3 \mid x_1, x_2) P(x_1, x_2) = P(x_3 \mid x_1, x_2) P(x_2 \mid x_1) P(x_1)$$

$$\mathbf{P}(X_{1},...,X_{n}) = \mathbf{P}(X_{1},...,X_{n-1}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= \mathbf{P}(X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n_{1}}|X_{1},...,X_{n-2}) \ \mathbf{P}(X_{n}|X_{1},...,X_{n-1})
= ...
= \Partial_{i=1}^{n} \mathbf{P}(X_{i}|X_{1},...,X_{i-1})$$

概率推理

- 概率推理 (probability inference): 给定一个概率模型, 计算某个期望的概率
 - 给定某些证据(evidence)计算某个变量的概率
 - P(airport on time | no accidents) = 0.90

- 随着新的证据出现,概率也会发生变化
 - P(airport on time | no accidents) = 0.90
 - P(airport on time | no accidents, raining) = 0.80

一个有三个布尔变量toothache(牙痛)、cavity(牙齿有洞)、catch(牙医探针污染造成的牙龈感染)组成的问题域,其完全联合分布为:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

一个有三个布尔变量toothache(牙痛)、cavity(牙齿有洞)、catch(牙医探针污染造成的牙龈感染)组成的问题域,其完全联合分布为:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

一个有三个布尔变量toothache(牙痛)、cavity(牙齿有洞)、catch(牙医探针污染造成的牙龈感染)组成的问题域,其完全联合分布为:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

P(cavity or toothache)

= 0.108 + 0.012 + 0.016 + 0.064 + 0.072 + 0.008 = 0.28

一个有三个布尔变量toothache(牙痛)、cavity(牙齿有洞)、catch(牙医探针污染造成的牙龈感染)组成的问题域,其完全联合分布为:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$P(cavity|toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$$

$$= \frac{0.018 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

一个有三个布尔变量toothache(牙痛)、cavity(牙齿有洞)、catch(牙医探针污染造成的牙龈感染)组成的问题域,其完全联合分布为:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

```
\mathbf{P}(Cavity|toothache) = \alpha \mathbf{P}(Cavity,toothache)
= \alpha \left[\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch)\right]
= \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle\right]
= \alpha \left\langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle
```

通用推理过程:

• 考虑只查询一个变量的情况,假设这个变量为X(这个例子中是Cavity),假设E是证据变量集合(这个例子中只有Toothache),e表示其观察值;并假设H为其余未观测变量(这个例子中是Catch),计算过程为:

$$P(X|e) = \alpha P(X,e) = \alpha \sum_{h} (X,e,h)$$

Step1: 选择(select)与证据

变量一致的部分

Step2: 对未观测变量求和 消元(summing out)

Step3: 归一化(Normalize)

• 假设共n个变量,每个变量有d个取值:

• 空间复杂度: $O(d^n)$

• 时间复杂度: $O(d^n)$

可扩展性差!

独立性 (independence)

• *A*和*B*是独立的:

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A,B) = P(A)P(B)$

P(Toothache, Catch, Cavity, Weather)= P(Toothache, Catch, Cavity)P(Weather)

有助于减少问题域表示的规模并降低推理问题的复杂度,

然而现实世界中独立性非常难以满足

条件独立性 (independence)

如果已知病人是否有牙洞, Toothache 和 Catch 是相互独立的,可以写作:

P(toothache, catch|cavity) = P(toothache|cavit)P(catch|cavity)

那么:

P(Toothache, Catch, Cavity)

- = P(Toothache, Catch|Cavity)P(Cavity)
- = P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

通过条件独立性将一个大的概率问题分解成一些联系非常弱的子集, 是人工智能历史上最重大的进展之一

条件独立性 (independence)

• 考虑如下情况:

- 堵车 (traffic)
- 打伞 (umbrella)
- 下爾 (raining)

条件独立性 (independence)

• 考虑如下情况:

- 着火 (fire)
- 冒烟 (smoke)
- 警报 (alarm)

贝叶斯规则

乘法规则: P(a|b)P(b) = P(a,b) = P(b|a)P(a)

二 贝叶斯规则:
$$P(a|b) = \frac{P(b|a)P(a)}{P(b)}$$

为什么贝叶斯规则很有用?

$$P(cause|effect) = \frac{P(effect|cause)P(cause)}{P(effect)}$$

贝叶斯规则是大多数进行概率推理的现代人工智能系统的基础

贝叶斯规则

- 医生知道脑膜炎会引起病人脖子僵硬,比如有70%的可能性;医生还了解一些无条件先验知识:例如,病人脑膜炎的概率为1/50000
- 令M表示病人患有脑膜炎, S表示病人脖子僵硬

$$P(s|m) = 0.7$$

 $P(m) = 1/50000$
 $P(s) = 0.01$

• 脖子僵硬的人中, 患脑膜炎的概率

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.7 * 1/50000}{0.01} = 0.0014$$

贝叶斯规则

P(D|W)

P(W)

R	Р
sun	0.8
rain	0.2

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

• P(W|dry)?

- P(sun|dry) = P(dry|sun) * P(sun) = 0.9 * 0.8 = 0.72
- P(rain|dry) = P(dry|rain) * P(rain) = 0.3 * 0.2 = 0.14
- $P(sun|dry) = \frac{0.72}{0.72 + 0.14} = 12/13$
- $P(sun|dry) = \frac{0.14}{0.72 + 0.14} = 1/13$

大纲

- □ 不确定环境
- □概率论基础
- □ 贝叶斯网:表示
- □ 贝叶斯网: 语法语义
- □ 贝叶斯网:精确推理
- □ 贝叶斯网:近似推理

贝叶斯网

- 贝叶斯网(Bayesian network)是一个图模型,用简单的条件分布描述复杂的联合分布
- 图中的边可以用于表示变量之间的依赖关系

- Weather独立于其他变量
- 给定Cavity后Toothache和Catch 是条件独立的

Example: Coin flip

• n 次独立地掷硬币

• •

• 绝对独立: 任意两个变量之间都不具有关联

Example: 堵车

□ 变量:

• T: 堵车

• U: 打伞

• R: 下雨

Example: 烟雾警报

□ 变量:

• F: 着火

• S: 烟雾

• A: 烟雾警报

Example Bayes Net: Car Insurance

Example Bayes Net: Car Won't Start

贝叶斯网的语法语义

贝叶斯网: Syntax

- 每个节点对应一个随机变量
- 一组有向边,没有有向回路(有向无环图, DAG)
- 每个节点有一个条件概率分布 $P(X_i|Parents(X_i))$,量化其父节点对该节点的影响
 - 条件概率表 (Conditional Probability Table, CPT)

Bayes net = Topology (graph) + Local Conditional Probabilities

例子: 防盗报警器

你在家里安装了一个新防盗报警器,这个报警器对于探测小偷闯入很可靠,但偶尔也会对轻微的地震有反应。你有两个邻居John和Mary,他们承诺在你工作时听到警报声就给你打电话。 John听到警报声总是会给你打电话,但有时候会把电话铃声当成警报声,Mary喜欢大声听音乐,因此有时候听不见警报声。给定他们是否给你打电话,怎么估计有人入室盗窃的概率?

变量: Burglar、Earthquake、Alarm、JohnCalls、MaryCalls

网络结构反映了因果关系:

- 小偷闯入影响警报
- 地震影响警报
- 警报导致Mary打电话
- 警报导致John打电话

例子: 防盗报警器

P(E)	
true	false
0.002	0.998

В	Е	P(A B,E)	
		true	false
true	true	0.95	0.05
true	false	0.94	0.06
false	true	0.29	0.71
false	false	0.001	0.999

Α	P(M A)	
	true	false
true	0.7	0.3
false	0.01	0.99

每个CPT表中自由变量的数目?

- 父节点: d₁,...,d_k
- 当前节点: d
- 每一行求和为1

$$(d-1)\prod_i d_i$$

Α	P(J A)	
	true	false
true	0.9	0.1
false	0.05	0.95

2

大纲

- □ 不确定环境
- □概率论基础
- □ 贝叶斯网:表示
- □ 贝叶斯网: 语法语义
- □ 贝叶斯网:精确推理
- □ 贝叶斯网:近似推理

Global Semantic

□ 完整的联合分布可以由局部条件分布的乘积得到:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(x_i))$$

Example: Coin flip

• •

h	0.5
t	0.5

. . .

h	0.5
t	0.5

P(h, h, t, h) = ?

Example: Traffic

P(R,T)

+r	+t	3/16
+r	+	1/16
-r	+t	6/16
-r	-t	6/16

0.9

0.05

true

false

0.1

0.95

P(E)		
true false		
0.002	0.998	

 $P(b, \Box e, a, \Box j, \Box m)$ = P(b) P(□e) P(a|b,□e) P(□j|a) P(□m|a)

=.001x.998x.94x.1x.3=.000028

В	Е	P(A B,E)	
		true	false
true	true	0.95	0.05
true	false	0.94	0.06
false	true	0.29	0.71
false	false	0.001	0.999

Α	P(M A)		
	true false		
true	0.7	0.3	
false	0.01	0.99	

56

紧致性(compactness)

- □假设:
 - *n*个随机变量
 - 取值集合的大小d
 - 最大父节点的数目k
- □ 完全联合分布: $O(d^n)$
- □ 贝叶斯网: $O(nd^{k+1})$

都可以描述完全联合分布,但 是贝叶斯网更节省空间,并且 更容易获取local CPT