1 Erster Hauptsatz

1.1 Beziehung zwischen ΔU und ΔH

Wir betrachten die Umwandlung von 1.0 mol an Calcit (CaCO3) in Aragonit. Bei einem Druck von 0.1 MPa beträgt die Änderung der Inneren Energie 0.21 kJ. Die Änderung des Volumens ΔV kann mit

$$\Delta V = V_2 - V_1 = n M_{\text{CaCO}_3} \cdot \left(\frac{1}{\rho_2} - \frac{1}{\rho_1}\right) \tag{1}$$

berechnet werden. Damit ergibt sich für die Enthalpieänderung

$$\Delta H^{\circ} = \Delta U + p\Delta V = kJ. \tag{2}$$

1.2 Verbrennungswärme mithilfe des Kirchhoff'schen Gesetz

Wir betrachten die Verbrennung von Graphit zu $CO_{2(g)}$ bei 1500 K und 1 bar. Neben $\Delta_f H^{+} = -393.51 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ benötigen wir folgende Entwicklungen der isobaren Wärmekapazitäten C_p :

$$C_p(C) = 16.86 + 4.77 \cdot 10^{-3}T - 8.54 \cdot 10^{5}T^{-2}$$

$$C_p(O_{2(g)}) = 29.96 + 4.18 \cdot 10^{-3}T - 1.67 \cdot 10^{5}T^{-2}$$

$$C_p(CO_{2(g)}) = 42.22 + 8.79 \cdot 10^{-3}T - 8.62 \cdot 10^{5}T^{-2}.$$
(3)

Mithilfe der Verbrennungsreaktion

$$C_{(f)} + O_{2(g)} \longrightarrow CO_{2(g)}$$
 {1}

berechnet sich die Wärmekapazität C_p der Reaktion gemäß

$$C_p = C_p \left(\text{CO}_{2(g)} \right) - C_p \left(\text{O}_{2(g)} \right) - C_p \left(\text{C} \right)$$

= $-4.6 - 0.16 \cdot 10^{-3} T + 1.59 \cdot 10^5 T^{-2}$. (4)

und mit dem Kirchhoff'schen Gesetz kann die Enthalpie berechnet werden:

$$H_{T_2} = H_{T_1} + \int_{T_1}^{T_2} C_p \, dT$$

$$= H_{T_1} + \left[-4.6T - \frac{1}{2}0.16 \cdot 10^{-3} T^2 - \frac{1}{3}1.59 \cdot 10^5 T^{-3} \right]_{T_1}^{T_2}$$

$$= kJ.$$
(5)

Florian Kluibenschedl Seite 1

1.3 Kreisprozess

Ein Mol eines ein-atomigen, idealen Gases $(C_V = \frac{3}{2}R)$ wird einem Kreisprozess unterworfen $(p_A = 1 \text{ bar}, T_A = 273 \text{ K})$. Bei der reversiblen adiabatischen Expansion auf das doppelte Volumen $(V_E = 2V_A)$ ist $\Delta U = w_{ad}, q = 0$. Die Volumensarbeit w_{ad} berechnet sich mit

$$w_{ad} = \frac{p_A V_A}{\gamma - 1} \cdot \left(\frac{V_A^{\gamma - 1}}{V_E^{\gamma - 1}} - 1\right)$$
$$= \frac{p_A V_A}{\gamma - 1} \cdot \left(\frac{1}{2^{\gamma - 1}} - 1\right) = J.$$
(6)

Bei der isochoren Erwärmung auf T_H wird keine Volumensarbeit verrichtet. Die Änderung der inneren Energie und der Wärme berechnet sich wie folgt:

$$\Delta U = q = C_V \Delta T = C_V (T_H - T_A) = J. \tag{7}$$

Beim letzten Schritt, der isothermen, reversiblen Kompression auf V_A ist $\Delta U = 0$ und damit q = -w, wobei

$$w = -RTn \ln \left(\frac{V_A}{V_E}\right) = RTn \ln(2) = J.$$
 (8)

Florian Kluibenschedl Seite 2