Assignment 2: Panorama

Jakob Brünker 24.05.2016

- Mapping to Cylindrical Panorama
- Creating the Panorama
- Using the image to look around the scene
- Using HDR input images
- Using the image in combination with a preexisting normal map

Given: α : angle around cylinder; d: vertical offset along cylinder

Rotate around z-axis and move vertically:
$$p = \begin{pmatrix} \cos(\alpha) \\ \sin(\alpha) \\ d \end{pmatrix}$$

angle between
$$p$$
 and original point $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$: $\beta = \cos^{-1} \begin{pmatrix} \frac{p \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}}{\|p\|} \end{pmatrix}$

cross product between
$$p$$
 and $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$: $u = \begin{pmatrix} 0 \\ p_3 \\ -p_2 \end{pmatrix}$

cross product between p and $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$: $u = \begin{pmatrix} 0 \\ p_3 \\ -p_2 \end{pmatrix}$ rotating $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ by $\frac{\beta}{2}$ about u and projecting onto image plane (i.e. ignoring x coordinate) yields:

horizontal image coordinate: $\frac{u_3}{\|u\|} \sin\left(\frac{\beta}{2}\right)$

vertical image coordinate: $\frac{u_2}{\|u\|} \sin\left(\frac{\beta}{2}\right)$

(image coordinates are normalized to [-1,1])

matrix for rotation about arbitrary axis taken and adapted from https://en.wikipedia.org/wiki/Rotation matrix#Rotation matrix from axis and angle

Creating the Panorama

Using HDR input images

Using the image in combination with a preexisting normal map

Using the image in combination with a preexisting normal map

Using the image in combination with a preexisting normal map

