Gene theory on Prime topological spaces

Shigeo Hattori

December 14, 2019

bayship.org@gmail.com

https://github.com/bayship-org/mathematics

1 Introduction

Although this article is not about knot theory, at first I give a conjecture in words of elementary knot theory. Then I, step by step, depict how the conjecture leads readers to a new frame work fundamental to topology and mathematics.

A notable thing is that this article somehow can be compared to biology, namely genomics whereas classical mathematics is somehow classical biology. Classical mathematics researches defined objects whereas this article mainly researches genes of objects, i.e., definitions of objects.

5

8

12

18

20

21

22

23

Currently, all proofs are abstract because almost all formal proofs of the theory are expected to require computer-assisted proofs; all definitions of objects must be input into computer programs.

Having said that, it is still true that the new theory is contributing sets of new fundamental notions to mathematics; an isomorphism between two sets as a generalization of homeomorphisms, a prime topological space, a prime set of sub spaces, a prime function, factorization of a non redundant logical expression; these are pairwise well related.

1.1 Notations

Blue texts indicate the words are new for readers; the words will be formally defined soon later. For example, prime topological space.

" $x = and \land y$ " is almost equivalent to " $x \land y$ " except that it is not promised to be commutative.

" $x \quad or \lor y$ " is almost equivalent to " $x \lor y$ " except that it is not promised to be commutative.

1.2 Conjecture	24
Conjecture 1.1. The following claim has no ¹ disproof.	25
Take $\forall k_u$ as an ² unknot.	26
$K := \{k \mid (k_u, k) \text{ are of a same ambient isotopy class}\}.$	27
$K_f := \{ k \in K \mid f(k_u) = f(k) \}.$	28
Take $\forall (k_0, k_1) :\in K_f^2$.	29
There exists $\exists F$ as an ambient isotopy on $R^3 * [0,1]$ such that as follows.	30
$F[1]$ ³ takes K_0 to K_1 .	31
Take $\forall x :\in [0,1], \forall k_x$ such that $F[x]$ takes k_0 to k_x . Then $k_x \in K_f$.	32
	33
Sub definitions with K as the domain:	34
• $j1(k) := \{j \mid$	35
j is an orthogonal ⁴ projection of k onto some infinite plane $\}$.	36
• $j2(k) := \{ j \in j1(k) \mid$	37
$\neg (\exists p \ _{and} \land \ p \in \text{image}(j) \ _{and} \land \mid j^{-1}(p) \mid > 2) \}.$	38
• $j3(k) := \{n \mid$	39
$\exists j and \land j \in j2(k) and \land n \text{ is the number of } 5 \text{double points on } j \}.$	40
\bullet $f(k) := \{m \mid$	41
m is the maximal number from $j3(k)$ }.	42
· · · · · · · · · · · · · · · · · · ·	43

2 Subtext and definition

Take $\forall d$ as a logical expression. To study d, ideally d must be minimum by the text length. Though it is difficult to prove such a condition.

44

Meanwhile all d with some words removed is said a **subtext** of d. More 47 formally, d must be expressed as a tree of logical operations. For example, $((x \wedge y) \vee ((\neg z) \vee (v \wedge w)))$ where variables also represent trees of logical operations. 49 And removing a word corresponds to changing one term of a binary operation 50

¹Probably it has no proof too.

²It can be any knot class.

³In other words, F takes K_0 to K_1 .

 $^{^4}$ Hence, j is a function from k to an infinite plane.

⁵That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point is a crossing or a tangent point.

to a unit term. For example, removing x from $(x \wedge y)$ results y through $(\top \wedge y)$; removing y from $(x \vee y)$ results x through $(x \vee \bot)$. The original d is said **non redundant** if all its subtext is not equivalent to d. Especially, if d is a definition then d is said **non redundant** if all its subtext does not define any equivalent entity as d. In the rest, logical expressions are expected to be non redundant fundamentally, still practically preserving human readability. 58 3 Prime topological space I claim that the conjecture is special because Euclidean spaces are prime topological spaces. 61 **Definition 3.1** (Prime topological space). Take $\forall X$ as a topological space. 62 Then X is said **prime** if: *1 $_{and} \wedge$ *2. 1. Let d be the definition of X. Take $\forall Y$ such that the definition of Y is a sub definition of d. If X is homeomorphic to some sub space of Y then (X,Y)65 are homeomorphic. **2.** Take $\forall y$ as a non empty open set of X. Then y is not a countable set. 68 **Proposition 1** (Prime topological space). Take $\forall (n, R^n)$ such that $(n \ge 1)$ 69 $and \wedge R^n$ is a Euclidean space of n-dimension). Then R^n is a prime topological 71 space. *Proof.* Refer to the definition of prime topological space. As **Assumption1**, this proposition fails. Hence (*1 $_{and} \wedge$ *2) of the definition fails with \mathbb{R}^n in place of X. Though it holds as follows. Hence Assumption 1 is false. 74 75 Consider *1 with \mathbb{R}^n in place of X. It simply holds because we can find some definition d of \mathbb{R}^n in accepted research papers of topology theory such that *1 77 holds for (d, R^n) in place of (d, X). In our favor, d is not referenced elsewhere 78 in the definition. Consider *2 with \mathbb{R}^n in place of X. It simply holds as an accepted fact of 80 elementary topology theory. If some non empty open set $\exists y$ of \mathbb{R}^n is countable,

then the well known formula fails. Namely, take $\forall p_1 :\in y$, then $\exists e :> 0$ such that: Take $\forall p_2 :\in \operatorname{Space}(X)$, then $(\operatorname{distance}(p_1, p_2) < e) \to (p_2 \in y)$. The

formula fails because all open ball $\forall b$ with e as the radius is not countable in	84
terms of $Space(b)$.	85
"Space(X)", that is, the set of all points of X .	86
4 Preliminary definitions	87
4.1 Isomorphism of memBers	88
Take $\forall m$. Then m is said a memBer if m is a member of some set.	89
Take $\forall \{c_i\}_{i\in[1,n]\subset\mathbb{N}}$ as a chain such that $c_i\in c_{i+1}$ if the indices are in the	90
index set. Take $\forall i :\in [1, n]$, then c_i is said a deep member of c_n denoted as	91
$c_i \in ^{deep} c_n$. ⁶ Be careful.	92
Take $\forall m$ as a memBer, then $\operatorname{Space}(m)$ denotes the set of all points (p as	93
each) such that $p \in deep$ m .	94
And m is said a constant-memBer if Space $(m) = \emptyset$; especially m is said	95
an empty constant-memBer if all deep member of m is a set. Importantly,	96
all number is a constant-memBer.	97
The deep graph of m is defined as the directed graph (V, E) on the set V	98
of all deep members of m such that $E = \{(v1, v2) \in V * V \mid v1 \in v2\}.$	99
Ultimately, two memBers are said isomorphic by f if: (Their deep graphs	100
are isomorphic by $\exists f$ as a graph isomorphism $and \land relate-constant-memBer(f))$.101
That is, take $\forall L$ as a binary relation, then it is written as relate-constant-	102
$\mathbf{memBer}(L)$ if: Take $\forall (x,y) :\in L$ such that either x or y is a constant-memBer,	103
then $x = y$.	104
	105
Although not necessary for this article, the following link proves that all home-	106
omorphism of topological spaces is an isomorphism of memBers.	107
Link to the proof: All homeomorphism is an isomorphism of memBers.	108
4.2 Specifiable	109
Definition 4.1 (Charifolds relatively to) Take $\forall (x,y)$ such that the definition	110
Definition 4.1 (Specifiable relatively to). Take $\forall (x,y)$ such that the definition	
of y entirely depends on x , then y is said specifiable relatively to x if it holds as follows.	
	112
Let d_x be the definition of x ; let d_{y1} be the definition of y excluding d_x ; let	
d_{y2} be a copy of d_{y1} . For $d_x+d_{y1}+d_{y2}$ as a concatenated text, y of d_{y1} and y of	
d_{y2} are identical.	115

⁶There possibly exist multiple chains of set membership between (c_1, c_n) .

For example, let x be a Euclidean space of 1-dimension; take $\forall y \in \text{Space}(x)$. 117 For this case, $d_x+d_{y1}+d_{y2}$ is that: let x be a Euclidean space of 1-dimension; 118 take $\forall y :\in \operatorname{Space}(x); take \forall y :\in \operatorname{Space}(x)$. For this case, needless to say, y of d_{y1} 119 and y of d_{y2} are not said identical; for some case they are identical and for some 120 case they are not. So this y is not specifiable relatively to x. For example, let x be a Euclidean space of 1-dimension; take $\forall y$ such that 122 $y := \{(z1, z2) \mid (z1, z2) \in \text{Space}(x)^2 \}$. For this case, $d_x + d_{y1} + d_{y2}$ is that: let x 123 be a Euclidean space of 1-dimension; take $\forall y$ such that $y := \{(z1, z2) \mid (z1, z2) \in 124\}$ Space $(x)^2$ }; take $\forall y$ such that $y := \{(z1, z2) \mid (z1, z2) \in \operatorname{Space}(x)^2 \}$. For this 125 case, needless to say, y of d_{y1} and y of d_{y2} are identical. So this y is specifiable 126 relatively to x. 4.3 Factor proposition 128 **Definition 4.2** (Factor proposition). Take $\forall p$ as a predicate written in a form 129 of a finite sequence of non redundant logical conjunctions. Then all non 130 empty sub sequence of p is said a **factor proposition** of p. For example: Let $p(y) :\equiv (y = \{1, 2\} \land y \in 2^{\mathbb{N}}).$ Then p has no factor proposition because it is redundant.

For example: Let $p(y) :\equiv (y = \{1, 2\}).$

Let $q(y) :\equiv (y \ni 1 \land y \ni 2 \land |y| = 2)$.

It is trivial that $p(y) \equiv q(y)$.

For example, $(y \ni 1 \land y \ni 2)$ is a factor proposition of q(y).

In a broader sense, $(y \ni 1 \land y \ni 2)$ is a factor proposition of p(y).

Other examples of factor propositions of $(y = \{1, 2\})$:

 $(y \ni 1 \land y \ni 2 \land |y| = 2)$ $(y \ni 1 \land y \ni 2 \land |y| = 2).$ $(y \ni 1 \land y \ni 2 \land |y| = 2).$ $(y \ni 1 \land y \ni 2 \land |y| = 2).$ $(y \ni 1 \land y \ni 2 \land |y| = 2).$ $(y \ni 1 \land y \ni 2 \land |y| = 2).$ (148) $(y \ni 1 \land y \ni 2 \land |y| = 2).$

4.4 Prime function	150
Definition 4.3 (Prime function). Take $\forall f$ as a function. Then f is said a prime function if: (*1 $_{and} \land \dots _{and} \land \ ^*3$).	151 152
1. The image of f is a set of non empty constant-memBers.	153
2. Take $\forall g$ such that (*s1 $_{and} \land \dots _{and} \land \ *s6)).$	154
3. Then (*s7 $_{and} \land \dots _{and} \land $ *s9) holds.	155
	156
s1. The definition of g is a sub definition of the definition of f .	157
s2. g is specifiable relatively to f .	158
s3. $\exists (x1, x2, x3) :\in \text{domain}(g)^3.$	159
s4. $x1$ is a non empty constant-memBer.	160
s5. $x2 \neq x3$.	161
s6. $g(x2) = g(x3)$.	162
	163
s7. Let $p1(x) :\equiv (x = x2)$.	164
s8. Let $p2(x) :\equiv (g(x) = g(x2))$.	165
s9. $p2$ is a factor proposition of $p1$.	166
•	167
	168
For example, let $f(x :\in \mathbb{R}) := \text{if } (x < 0 or \forall x > 1) \text{ then } \top \text{ else } \bot$. Then *1 of	169
the definition holds for f in place of f . Though this f is not a prime function.	170
Because, for f , *2 holds whereas *3 dose not hold. Let us more formally define	171
f as follows.	172
$g1(x :\in \mathbb{R}) := (x, (\text{if } x < 0)).$	173
$g2((x,b) :\in \text{image}(g1)) := (b \lor (\text{if } x > 1)).$	174
$f(x :\in \mathbb{R}) := g2 \circ g1(x).$	175
That is, $f(x) = \{g2(z) \mid z \in g1(x) \}.$	176
	177
For the new definition, *2 holds for $g2$ in place of g ; for example, $g2(-1,\top) = g2(2,\bot)$)1.78

Meanwhile *3 fails for g2.

I claim that the conjecture is special because all sets of sub spaces defined in the conjecture are prime sets of sub spaces of a prime topological space. Namely (K, K_f) .	
Definition 5.1 (Prime set of sub spaces). Take $\forall X$ as a prime topological space. Let $K_0 :=$ (the set of all sub spaces of X). Take $\forall f$ as a prime function on K_0 such that f is specifiable relatively to X . Take $\forall K$ such that: $K \subset \text{domain}(f)$ $and \land \exists x1 :\in \text{domain}(f)$ $and \land \text{take}$ $\forall x :\in \text{domain}(f)$ $and \land (x \in K) \equiv (f(x) = f(x1))$. Then K is said a prime set of sub spaces of X . In addition, take $\forall [1,n] \subset \mathbb{N}_1$, take $\forall \{K_i\}_{i\in[1,n]}$ as a set of prime sets of sub spaces of X .	188 188 188 188
Proposition 2. Refer to the conjecture. (K, K_f) of the conjecture are prime sets of sub spaces of \mathbb{R}^3 .	19: 19:
$Proof\ for\ K.$ Refer to the conjecture. Let Def(prime set) denote the definition titled as "prime set of sub spaces".	19 19
• $X := R^3$.	19
• $K_0 :=$ (the set of all sub spaces of X).	19
K cam be redefined as follows.	198 198
• $S_F := $ (the set of all ambient isotopy on $X * [0,1]$).	20
• $S_F := \{ F[1] \mid F \in S_F \}.$	20
• $S_F := \text{take } \forall h \text{ as a bijection from*to } \mathbb{R} * S_F.$	20
• $g1(k :\in K_0) := \{k\} * S_F.$	20
• $g2((k, r, F) :\in \bigcup \operatorname{image}(g1)) := (r, {}^{7}\operatorname{if}(F \operatorname{takes} k_u \operatorname{to} k)).$	20
• $g3((r,b) :\in \text{image}(g2)) := b.$	20
• $g4(k:\in K_0):=(g3\circ g2)\stackrel{\in}{\circ} g1(k).$ 8 Footnote on the new symbol.	20 20

180

Prime set of sub spaces

5

 $^8\text{That is, } (y = \text{fun2} \stackrel{\in}{\circ} \text{fun1}(x)) \equiv (y = \{\text{fun2}(z) \mid \exists z \in \text{fun1}(x) \ \}).$

• $f4(k :\in K_0) := \text{if } (g4(k) = g4(k_u)).$ 9Footnote.	208 209
• $K := \{ k \in K_0 \mid \top = f4(k) \}.$	210
	211
The antecedent of Def(prime set) holds for $(R^3, K_0, f4, K)$ in place of $(X, K_0, f, K_0, $	
as follows.	213
	21 4
Requirement for X : To be a prime topological space.	215
In the previous proposition, \mathbb{R}^n is said to be so.	216
	217
Requirement for K_0 : =(the set of all sub spaces of X).	218
K_0 is defined to be so.	219
	220
Requirement for f : f is a prime function on K_0 such that f is specifiable	221
relatively to X .	22 2
In the definition of $f4$, it is clear that: $f4$ is a function on K_0 and is speci-	22 3
fiable relatively to X , although some sub functions are not specifiable relatively to X .	22 4
f4 is a prime function as follows. Let Def(prime function) denote the defi-	225
nition titled as "Prime function".	226
*1 of Def(prime function) holds for $f4$. Namely image($f4$) = $\{\top, \bot\}$.	227
Let us search for functions defined either explicitly or implicitly in the	
definition of $f4$ such that *2 of Def(prime function) holds with it in place of	
g. Be careful that *s2 of *2 of Def(prime function) says g must be specifiable	230
relatively to X .	231
As you can see in the definition of $f4$, there exists no such sub definition.	232
	233
Requirement for $K: K \subset \text{domain}(f)$ $and \land \exists x1 :\in \text{domain}(f)$ $and \land \text{take}$	
$\forall x :\in \operatorname{domain}(f) and \land \ (x \in K) \equiv (f(x) = f(x1)).$	235
Recall k_u defined in the conjecture. Needless to say, $f4(k_u) = \top$.	236
In fact, $K \subset \operatorname{domain}(f4)$ $and \land \exists k_u :\in \operatorname{domain}(f4)$ $and \land \exists k_u :\in \operatorname{domain}(f4)$	237
take $\forall x :\in \text{domain}(f4)$ and $(x \in K) \equiv (f4(x) = f4(k_u))$.	238
	239

Proof for K_f . Refer to the conjecture. Let Def(prime set) denote the definition titled as "prime set of sub spaces". K_f can be redefined as follows.

 $^{{}^{9}}g4(k_u) = \{\top, \bot\}.$

• $j1(k :\in K_0) := \{j \mid j \text{ is an orthogonal } ^{10}\text{projection of } k \text{ onto some infinite plane } \exists P \}$.	242243
• $j2(j :\in \bigcup image(j1)) := \{j\}*image(j).$	244
• $j3((j,p):\in\bigcup \text{image}(j2)):=\{x\in \text{domain}(j)\mid j(x)=p\ \}.$	245
• $j4 := (lambda(x : x) \circ collect(S: S = 2) \circ j3 \stackrel{\epsilon}{\circ} j2) \stackrel{\epsilon}{\circ} j1.$	246
• That is, $lambda(y: w(y)) \circ t(x) := w(t(x))$.	247
• That is, $\operatorname{collect}(y:w(y)) \circ t(x) := \{y:\in t(x) \mid w(y) \equiv \top \}.$	24 8
• $f4 := \text{lambda}(S: \text{ the maximum number from } S) \circ j4.$	249
• $K_f := \{k \in K_0 \mid f4(k) = f4(k_u) \}.$	250
The antecedent of Def(prime set) holds for $(R^3, K_0, f4, K)$ in place of (X, K_0, f, K) as follows.	253
Requirement for X : Omitted.	254255
Requirement for K_0 : Omitted.	256257258
Requirement for f : f is a prime function on K_0 such that f is specifiable relatively to X .	259 260
In the definition of $f4$, it is clear that: $f4$ is a function on K_0 and is specifiable relatively to X .	261262
f4 is a prime function as follows. Let Def(prime function) denote the definition titled as "Prime function".	263 264
*1 of Def(prime function) holds for $f4$. Namely image($f4$) $\subset \mathbb{N}$. Let us search for functions defined either explicitly or implicitly in the	
definition of $f4$ such that *2 of Def(prime function) holds with it in place of g . Be careful that *s2 of *2 of Def(prime function) says g must be specifiable relatively to X .	
As you can see in the definition of $f4$, there exists exactly one such sub definition. Namely the latter term of the composition of $f4$; lambda(S : the maximum	27 0
number from S). For example, for two distinct inputs,($\{9,10\},\{8,9,10\}$), of the	272

 $^{11}\mathrm{lambda}$ function, the outputs are equal.

273

 $^{^{10}}$ Hence, j is a function from k to an infinite plane. 11 I do not claim that it is a lambda function in the formal sense.

Refer to "s7 to "s9 of "3 of Def(prime function).	274
Call the lambda function as $j5$.	275
Let $p1(x) :\equiv (x = x2)$.	276
Let $p2(x) := (j5(x) = j5(x2)).$	277
Then $p2$ is a factor proposition of $p1$.	27 8
Hence *3 holds for $j5$ in place of g .	279
	280
Requirement for $K: K \subset \text{domain}(f)$ $and \land \exists x1 :\in \text{domain}(f)$ $and \land \text{take}$	281
$\forall x :\in \text{domain}(f) and \land \ (\ x \in K\) \equiv (\ f(x) = f(x1)\).$	282
	283
In fact, $K \subset \text{domain}(f4)$ $and \land \exists k_u :\in \text{domain}(f4)$ $and \land$	2 84
take $\forall x :\in \text{domain}(f4)$ and $(x \in K) \equiv (f4(x) = f4(k_u))$.	285
	286
6 To project symmetry	
6 To project symmetry	287
I claim that the conjecture is special because we now can replace the words	288
"ambient isotopy" with the new words "to project symmetry" so that the new	
conjecture implies the first conjecture. And the new notion is far more funda-	
	291
- *	292
	293
Definition 6.1 (To project symmetry). Take $\forall (m1, m2)$ as memBers.	294
Then $m2$ is said to project the symmetry to $m1$ if *1 implies *2.	295
1 Take $\forall (d1, d2, d3)$ as deep members of $m1$ such that	296
(// 0 14 10) // 0 10 10))	297
$((m2, \omega1, \omega0), (m2, \omega2, \omega0))$ are isomorphic).	201
2 $((m2, m1, d1, d3), (m2, m1, d2, d3))$ are isomorphic.	298
_	299
	499
	300
Now the first conjecture can be generalized as follows.	301
Conjecture 6.1	0.00
o	302
Take $\forall (X, K)$ such that K is a prime set of sub spaces of a prime topological	
1 13 11 11 11 11 11 11 11 11 11 11 11 11	304 305

Propositi	ion 3. Conjecture 6.1 implies Conjecture 1.1.	306 307
sumption the assumption denote R^3	sume this proposition fails. Hence Conjecture 1.1 fails with an a that Conjecture 6.1 holds. First of all, by a previous propositio ption of Conjecture 6.1 holds for (R^3, K_f) in place of (X, K) . Let of Conjecture 1.1. There exists a counterexample of Conjecture 1. $(k1, k2) :\in K_f^2$ such that $(*1 \ and \land *2)$.	ns- 308 n, 309 X 310
	F as an ambient isotopy on $X^*[0,1]$ such that $F[1]$ takes $k1$ to k in for some time point $\exists t : \in [0,1], F[t]$ takes $k1$ to $\exists k : \notin K_f$.	2. 313 314
2. $(k1, k2)$) are disjoint.	315
Meanw	Thile there exists $\exists k3 :\in K_f$ such that (*3 $_{and} \land$ *4).	316
3. *1 fails	for $(k1, k3)$ in place of $(k1, k2)$.	317
4. (k1, k2,	k3) are pairwise disjoint.	318
	of Conjecture 1.1. That $(k1, k2, k3) \in K^3$ implies that $(X, k2)$ are isomorphic. Hence $(X, k2, k1)$ and $(X, k3, k1)$ are also isomorphic	
	ture 6.1 says that X projects the symmetry to K_f . Hence (X, K_f, k_f)	
and (X, K)	$(f,k3,k1)$ are isomorphic. It contradicts to (*1 $and \wedge$ $and \wedge *4$	
Hence the	main assumption is false.	324