GEARED - HEAD LATHE

Operation Instruction

MODEL: CQ6230A

CAUTION

- 1. WHEN UNPACKING, LATHE ACCESSORIES SHOULD CORRESPOND TO THE ITEM OF PACKING LIST. IF NOT, PLEASE MAKE CONTACT WITH YOUR DEALER.
- 2. NEVER USING THE MACHINE WITHOUT FIRST READING THE OPERATING INSTRUCTION AND UNDERSTANDING IT'S REQUIREMENTS OF INSTALLING, OPRERATING AND ADJUSTING ETC.
- 3. IF THE MACHINE OPERATING IS NOT ABLE TO BE SATISFIED IN USUAL OPERATING, MAINTENANCE AND WITHIN THE FIXED TIME, PLEASE MAKE CONTACT WITH YOUR DEALER.

CONTENTS

OUTSIDE DIAGRAM ····································
APPLICATION 2
MAIN TECHNICAL SPECIFICATION 2
HOISTING AND INSTALLATION 3
LATHE DRIVING SYSTEM DIAGRAM AND THE LIST OF
MAIN GEARS, SCREWS, AND NUTS 6
BEARING LIST ······10
LUBRICATION12
ELECTRICAL DOCUMENT CATALOGUE ······14
TRIAL DRIVE, ADJUSTMENT AND OPERATION25
MAINTENANCE32
DAMAGEABLE PARTS33

Fig.1 Outside Diagram

APPLICATION

The machine is a small-scale universal engine lathe. It can perform various turning operation, as well as boring, drilling, grooving and other operations. It can also be used for turning metric threads and inch threads.

The machine is characterized by simple construction, easy operation, large hole in spindle and small floor space. It is used in the instrument industry and rapairing workshops and is suitable for metal manufacture in single piece, small and medium batch production.

MAIN TECHNICAL SPECIFICATION

1. Main Specification	
Max. swing dia. of workpiece over bed	12"(300mm)
Max. swing dia. of workpiece over saddle	gap17"(430mm)
Max. swing over cross slide	
Max. length of workpiece	36"(900mm)
2. Headstock	
(dia. of)spindle bore	$1-\frac{1}{2}$ "(38mm)
Taper of spindle bore	M. T. No. 5
Range of spindle speeds (9 or 18 ch	anges)50-1500r.p.m.
3. Change Gears And Gear Box	
Threads which can be cut Metric: 22 kinds	, 0.35-4.5 mm
Inch: 32 k	inds, 4-56T.P.I
Saddle feed range per spindle revolution:	
16 kinds,	0.113-0.791mm/rev
Cross feed range per spindle revolution:	
16 kinds,	0.0316-0.268mm/rev
Threads per inch lead screw	8T. P. I.
Threads per inch cross screw	8T. P. I.
Cross feed per division on its dial 0.007	1"(0.025mm)
Threads per inch tool post screw	8T. P. I.
Tool Post feed per division on its dial 0.00	01"(0.03mm)
4. Tool Post And Saddle	
Max. turn angle of tool post	±90°
Tool slide travel	3"(76mm)

 $5\frac{1}{8}$ "(130mm) Cross slide travel Saddle travel 30"(760mm) 5. Tailstock $1\frac{1}{4}$ "(32mm) Dia. of tailstock quill Taper of tailstock quill bore Max. travel of tailstock quill 4"(100mm) 6. Motor Motor frequency 60 Hz or 50 Hz Motor horse power 1.5 HP(1.1KW) Motor rotational speed 1720 R. P. M. or 1420R. P. M. Motor voltage 220V/380V 3 phase or 110V/220V 1 phase 7. Lathe size and weight Overall dimensions $(L \times W \times H)$ $67'' \times 28 \frac{3}{4}'' \times 22 \frac{3}{8}'' (1700 \times 730 \times 570 \text{ mm})$ [With stands: $67'' \times 28 \frac{3}{4}'' \times 48 \frac{3}{8}'' (1700 \times 730 \times 1129 \text{ mm})$] Net weight 400 kg Gross weight 480 kg

HOISTING AND INSTALLATION

- 1. After unpacking, count the lathe accessories according to packing list.
- 2. Remove the paper which covered the unpainted surfaces and using a nonvolatile solvent and brush, thoroughly clean grease which covered surfaces.
- 3. Sling the machine as shown in the hoisting chart Fig. 2 when it is transporting.
- 4. The fixed dimension of this machine are shown in the Fig. 3. The machine should be firmly attached to the floor by lathe stands. If you purchases a bench lathe, place the chip tray on top of the bench; mark off the location of the bed mounting holes using a pencil. Then drill the six bolt holes.
- 5. To maintain accuracy, it is important to keep the bed way leveled. Please use the following procedure: Move the carriage to the headstock end of the bedway. Place the level in a 90 degree position on top of the cross slide. Loosen the mounting bolts and jack up the base stand(or bed) with adjusting washer to center the bubble in the level. Retighten the mounting bolts. Move the carriage to tailstock end of the bed way and repeat that procedure. After doing that please recheck the headstock end and continue the procedure until both ends of the

• 4 •

FIG. 3 Fixing dimensions for lathe stand cabinets

bedway are level (the longitudinal tolerance is 0.02/1000 and the cross one is 0.04/1000).

6. During transport and unpacking, it is likely that debris will be present on top of the lathe. Do not move the carriage or tailstock until the bed way has been thoroughly cleaned.

LATHE DRIVING SYSTEM AND THE LIST OF MAIN GEARS, SCREWS, NUTS

Machine driving system, see Fig. 4
The list of main gears, screws and nuts in the machine driving system

parts	part No.	descri- ption	No. of gear teeth or sc- rew thread	modulus or pitch	pressure angle	material	notes
	1	gear	42	m2	20 deg	45	
	2	gear	23	m2	20 deg	45	
	3	gear	51(47)	m2	20 deg	45	47 teeth gear is used to 18 change speed lathe
	4	gear	36	m2	20 deg	45	-
	5	gear	55	m2	20 deg	45	
	6	gear	27(31)	m2	20 deg	45	"
head-	7	gear	50(45)	m2	20 deg	45	"
stock	8	gear	65(58)	m2	20 deg	45	
	9	gear	21	m2	20 deg	45	
	10	gear	45	m2	20 deg	45	"
	11	gear	54(59)	m2	20 deg	45	"
	12	gear	39(46)	m2	20 deg	45	
	13	gear	83	m2	20 deg	45	
		paired	45	m2	20 deg	45	
	14	gear	40	m2	20 deg	45	
	15	paired	40	m2	20 deg	45	
	15	gear	45	m2	20 deg	45	

				1			头衣
parts	part No.	descri- ption	No. of teeth or thread	odulus or pitch	pressure angle	material	notes
	16	gear	32	m1.75	20 deg	45	
	17	gear	3 2	ml. 75	20 deg	45	
	18	gear	36	m1.75	20 deg	45	
	19	gear	18	m1.75	20 deg	45	
	20	gear	36	m1.75	20 deg	45	
	21	gear	16	m1.75	20 deg	45	
	22	gear	18	m1.75	20 deg	45	
gear- box	23	gear	19	m1.75	20 deg	45	
	24	gear	20	ml.75	20 deg	45	
	25	gear	22	m1.75	20 deg	45	
	26	gear	24	m1.75	20 deg	45	
	27	gear	26	m1.75	20 deg	45	
	28	gear	28	m1.75	20 deg	45	
	29	gear	1,8	m1.75	20 deg	45	
	30	gear	18	in1.75	20 deg	45	
	31	Paried	36	m1.75	20 de g		***************************************
	0.1	gear	18	m1.75	20 deg	45	
	32	gear	36	m1.75	20 deg	45	
	35	gear	11	m2	20 deg	45	
apron	36	rack		m2	20 deg	45	
-proti	37	lead screw	single thread	8 teeth per inch		45	
	38	half nuts	single thread	8 teeth per inch		ZQSn 6-6-3	

							ラ大ルく
parts	part No.	descri- ption	No. of teeth or thread	modulus or pitch	pressure angle	material	notes
	39	worm	single thread	m2	20 deg	45	
	40	worm gear	24	m2	20 deg	ZQSn 6-6-3	
	41	gear	12	m2	20 deg	45	
	42	gear	50	m2	20 deg	45	
	43	pinoin	25	m2	20 deg	45	
	44	nut	single thread	8 teeth per inch		ZQSn 6-6-3	lefthand thread
	45	screw	single thread	8 teeth per inch		45	lefthand thread
apron	46	gear	14	m2	20 deg	45	
	47	gear	51	m2	20 deg	45	
	48	gear	13	m2	20 deg	45	
	49·	gear	25	m2	20 deg	45	
	50	gear	48	m2	20 deg	45	
	51	scrèw	single thread	8 teeth per inch		45	
	52	screw	single thread	8 teeth per inch		ZQSn 6-6-3	
tail- stock	53	screw	single thread	10 teeth per inch		45	lefthand thread
STOCK	54	nut	single thread	10 teeth per inch		ZQSn 6-6-3	lefthand thread
		gear	49	m1.5	20 deg	45	
		gear	25	m1.5	20 deg	45	
		gear	50	m1.5	20 deg	45	2 pieces
change gear		gear	71	m1.5	20 deg	45	
Bear		gear	80	m1.5	20 deg	HT200	
							. 8 .

Fig. 4 Driving System

BEARING LIST(See Fig 5)

Type	Name	Specification	QTY	Installation
60104	single row ball bearing with shield	20 × 42 × 12	2	
60304	"	20 × 52 × 15	1	
104	single row . ball bearing	20 × 42 × 12	3	headstock
204	"	20 × 47 × 14	1	neadstock
D7211	single row taper roller bearing	55×100×23	1	
D7212	"	60 ×110 ×24	1	
7000102	single row ball bearing	15 × 32 × 8	6	
8103	single row ball thrust bearing	17 ×30 ×9	3	gear box
8101	"	12×26×9	2	•
8102	"	15 × 28 × 9	2	carriage
8101	"	12×26×9	1	tailstock
80202	single row ball bearing with two end shield	15 × 35 × 11	1	change gear
100	single row ball thrust bearing	10×26×8	1	gear box
104	11	20×42×12	1	B

LUBRICATION

- * All moving parts and sliding surfaces should be regularly lubricated with clean lubricating oil. Please refer to Fig. 6 for the lubrication holes.
- * No.1, the cover of headstock, is for headstock lubrication point. Open the cover and fill oil until it reachs the oil-leve sight gauge. Running for the first two weeks, or usually for three monthes, exchange the oil. While exchanging the oil, loosen the oil screw and flow all-out the oil. Then wash the headstock with kerosene etc. and pour clean oil into headstock.
- * No. 2 through 11 are lubrication points (see Fig. 6). They are oiled with oil gun twice a day.
- * No. 2 is the lubrication point for gear box. No. 3 for change gear. No. 4 for apron. No. 5 (two slanting holes) for gear box. No. 6(two points) for carriage sliding. No. 7 for handwheel. No. 8 (two points) for collar of bracket. No. 9 for tailstock. No. 10 for tool post slide. No. 11 for saddle screw.
- * The other sliding surfaces contain dovetail slot, half nut, worm gear, lead screw, feed rod, handle rod, quill of tailstock etc. They should be oiled before operating and after doing.
- * Oil recommendations: a. For headstock and feedbox; Mobil D.T.E. light. b. For all other applications; Mobil Vactra No. 2.

Fig.6 Lubrication Chart

ELECTRICAL DOCUMENT CATALOGUE

No.	Name	Page
1	electrical doucument catalogue	14
2	electrical system explanation	14
3	Fig. 7 wiring diagram for 3 phase	15
4	Fig. 8 distributing plate arrangement for 3 phase	16
5	Fig. 9 electrical equipment connection for 3 phase	17
6	Fig.10 wiring diagram for 1 phase (1)	18
7	Fig.11 wiring diagram for 1 phase (2)	19
8	Fig.12 distributing plate arrangement for 1 phase	20
9	Fig.13 electrical equipment connection for 1 phase	21 .
10	Fig. 14 the motor 110v/220v transferring connection diagram for 1 phase	22
11	Fig.15 electrical equipment Arrangement	23
12	electrical element list	24

ELECTRICAL SYSTEM EXPLANATION

* The standard lathe are wired for 220v/380v 3 phase 60 & 50 Cycle [See Fig. 7] or for 110v/220v 1 phase 60 & 50 cycle (See Fig.10) according to order. For connection to motor (I phase. 110v/220v), please see Fig.14 transferring connection diagran.

For electrical connections, merely connect your supply lines to the leads provided on the lathe, Before connecting, make sure the motor specification and the machine wiring correspond with power supply and connect 15/30A fuse into power line.

- * Electrical control box is located behind the headstock.
- * Put the cs handle in the middle position and push the "power start" to close the electrical circuit. The cs switch is wired for counter-clockwise spindle rotation in the forward position and clockwise spindle rotation in the reverse position. If not, turn off the power and interchange the leads according to the motor wiring diagram.
- * Putting cs-handle in the middle position can stop the machine. Pushing the knob "reset" will open the circuit.
- * The machine must be connected to ground or ground wire.

Fig. 8 Distributing Plate Arrangement For 3 Phase

Control Come + 24.	Signal Emergency Forward run Reverse run	5 6 7 8	$ \begin{array}{c} TC \\ EAV \\ RA \\ RA$
For Contract	Reverse run Forward run George	2 3 4	Ov/220v) Ircd Ingram Siring Cois Islagram Fig. 10 Wiring
		3	Suggestion Suggestion 1)Frequency: 50Hz Phase: 1 Power Volt: 240V 2)Frequency: 60Hz Phase: 1 Power Volt:110v/220v Note:(Input Voltage:110v/220v) Machine should be wired as, diagram 10 when Input voltage is 110v and it pr should be Wired as diagram 11 when Input voltage is 220V.

Fig. 12 Distributing Plate Arrangement For 1 Phase

* 21 *

Caution: When 110v transfer to 220v, only $3 \text{ wires were connected}, \quad Z_1 \ , \ U_1 \ , \ V_2$ not Z_2 ,

Fg.14 The motor 110v/220v Transferring Connection Diagram For 1 Phase

Fig. 15 Electrical Equipment Arrangement

				Z Sex										
	Note					overload reing						Voltage for Lamp 6.3 V		Voltage for Lamp 6.3 V
	60Hz, Quantity	П.	1	-	1	1	H	П	1	1	1	П	1	1
	Phase 1, 60Hz, 110V/220V	YC90L-4 1.1KW 1720r/min	3TB43 Control volta 29V	"	"	YJR16B-20/3 22A	BKC-50 Primary: 0-110V-220V Secondory: 0-6V,0-29V	BLF-1 2A	BLF-1 1A	HZ5B-10/2 D009	LAY3-01 ZS/1	LA19-11D Green	LA19–11 Black	XD-1 . White
pe	Phase 3, 60Hz, 220V	Y90S-4 1.1KW 1720r/min	3TB43 Control volta 29V	"	"	JR16B-20/3 5A	BKC-50 Primary: 0-220V Secondory: 0-6V,0-29V	BLF-1 2A	BLF-1 1A	HZ5B-10/2 D009 HZ5B-10/2 D009	LAY3-01 ZS/1	LA19-11D Green	LA19–11 Black	XD-1 White
Type	Phase 1, 50Hz, 220V	1 KW YL90S-41.1KW 1420r/min	STB41 3TB41 3TB43 STB43 Control volta 24V Control volta 29V Control volta 29V	"	"	JR16B-20/3 11A	BKC-50 Primary: 0-220V Secondary: 0-6V,0-24V	BLF-1 2A	BLF-1 1A	HZ5B-10/2 D009	LAY3-01 ZS/1	LA19-11D . Green	LA19-11 Black	XD-1 White
	Phase 3, 50Hz, 380V	Y90S-4 1.1 KW 1420r/min	3TB41 Control volta 24V	ll l	N	JR16B-20/3 3.5A	BKC-50 Primary: 0-380V Secondary: 0-6V,0-24V	BLF-1 2A	BLF-1 1A	HZ5B-10/2 D009	LAY3-01 ZS/1	LA19-11D Green	LA19–11 Black	XD-1 White
	Name	Induction Motor	AC Contactor	"	"	Heating device relay	Transformer for Primary Contol circuit 0-380V Supply Secondar	Fuse	"	Selector Switch	Reset	Power start	Inching	Indicator lamp
	Symbol	M	KM1	KM2	KM3	FR	TC	FU1	FU2	SA (CS)	SB1	SB2	SB3	HL

10 + 231C

Eelectrical Element List

Trial drive, adjusting and operating instruction

- 1. Before operating the machine, read this operating instruction and understanding it's requirement of adjusting, operating, maintenance and lubrication etc.
- 2. The machine is equipped with 1 or 2 V-belts from the motor to the low rear pulley. It is advisable to check the tension before staring the machine. The belts should be depressed about 1/2 inch by normal finger pressure. Tight belt will ruin the bearing. Adjust the tension, if necessary.
- 3. When trial driving, set changing lever on the Lowest speed and let the speed step by step until the highest speed (then the feed lever in the middle rate) each step operating for over 5 minutes.
- 4. Machine Operating Lever. See Fig. 16

Headstock

- * With the help of lever (1), (2) and V-belts the headstock can provide 18 or 9 step speeds from 50 to 1500 r. p. m as shown in "spindle speed chart" located on the front side of headstock (See fig.17)
- * Starting & stopping of spindle can be made merely by the starting lever (11). Moving the lever (11) up, the spindle will be counter-clockwise rotation; starting lever (11) down, the spindle will be reverse rotation.

Quick Change Gear Box

* Lever (6) and lever (4) are selecting lever of threading or feed. Lever (6) has four positions, "G" "E" positions are for feeding rod, "F""D" are for lead screw. Lever (4) has eight positions. You can change the position of Lever (4) and Lever (6) to provide all kinds of feeding rates (See Fig .18) and thread range (See Fig .19). To change the Lever (4), you must unlock the Lever (5) first, after finishing you must lock it.

Caution: Always stop the spindle before engaging any of above 3 levers.

Carriage Assembly

· 26 ·

List 1:9 step spindle speed

		Spi	indle spe	ed chart	
			1	2	3
	A	60Hz	270	1400	800
()	A	50Hz	250	1500	850
	D	60Hz	75	360	220
·	В	50Hz	50	325	200
	C	60Hz	200	1000	600
	C	50Hz	150	950	540

List 2:18 step spindle speed

			S	oindle	spee	d cha	rt	
		60Hz		Ι			I	
	P	OUTIZ	1	2	3	1	2	3
		A	320	1550	950	220	1150	700
-4-		В	90	430	260	60	300	200
		С	240	1200	725	180	890	525

Fig. 17 spindle Speed Chart

50		1	2	3	4	5	6	7	8
		FEEDING - inch/							
	G	0.0078	0. 0069	0. 0066	0.0062	0.0057	0. 0052	0. 0048	0.0045
	Ε	0.0311	0. 0277	0. 0262	0. 0249	0. 0226	0.0207	0. 0191	0.0178
50		-	FE	EDING	-~	^^	mm,	/	
	G	0. 197	0. 176	0. 166	0. 158	0. 144	0. 131	0. 121	0. 113
	E	0. 790	0. 704	0. 665	0. 632	0. 574	0. 526	0. 485	0. 452
25			FEE	DING	-~	<u></u>	inch	n/	
	G	0. 0027	0. 0024	0.0023	0.0022	0.0020	0.0018	0. 0017	0.0016
	Ε	0.0110	0.0098	0.0092	0.0088	0.0080	0.0073	0. 0067	0.0063
			FE	EDING	-~	~~	- mm/	/	
71	G	0. 070	0. 062	0. 059	0. 056	0. 051	0. 046	0. 043	0. 040
	Е	0. 278	0. 248	0. 234	0. 223	0. 202	0. 185	0. 171	0. 159

Fig. 18

		(CHA	NGE	GEA	IR CI	HART	FO	R mm	s I	ZE	
F		BINAT R GEA		position			mm	PER	PIT	СН		
	F		G	bos	1	2	3	4	5	6	7	8
	05	ANN	7.1	D	2. 25	2		1. 75		1.5	1. 375	1. 25
	25 ANY	71	F	0. 55	0. 5		0. 45	0.4		0. 35		
	40	418/	74	D				3. 5				2.5
	49	ANY	71	F					0.8			
	50	ANN	7.1	D	4. 5	4	3. 75		3. 25	3	2.75	
	50	ANY	71	F		1		0. 9				
		(CHA	NGE	GEA	ıR Cl	HART	FOI	R mm	SI	ZE	
		BINAT R GEA		positioN				T . F	P . 1			
	F		G	posi	1	2	3	4	5	6	7	8
	50	ANY	50	D	4	41/2	43/4	5	51/2	6	61/2	7
G		7.41		F	16	18	19	20	22	24	26	28
	65	42.27	50	D	8	9	91/2	10	11	12	13	14
	25	ANY	50	F	32	36	38	40	44	48	52	56

Fig. 19

- * Handwheel (7) is used for manually moving the carriage along the bedway.
- * crossfeed crank (19) is used to manually move the cross slide in or out.
- * Compound slide crank (16) is used to manually move the tool post. The compound is fully adjustable to any angle and is also used for threading or machining an angle on the workpiece.
- * Starting/stopping lever (11) is used to control the spindle direction of rotating, either forward or reverse.
- * Thread lever (9) is used to engage the half nuts when threading.
- * Feed lever (8) is used to engage either the longitudinal or cross feed. This lever has a safety interlock to prevent accidental engagement of the half nuts when the lathe is in feed mode. There are three positions: Center or disengaged position. Upper position engages the power longitudinal feed. Lower position engages the power cross feed.
- * The lead/feed lever (3) is used to change the direction of either longitudinal or cross feed in remaining the same spindle rotation.
- * Thread cutting dial (10) is used to engage the half nuts with the leadscrew in the same thread that has been previously cut. Please note, Use any line of the dial for even pitches of threads; but you must use the same starting line for odd pitches of threads. i.e. when cutting a shaft with 10 T. P. I, engage the half nuts at any number on the thread dial; when cutting an odd pitches, if you start the cut using a 1 or a 3, continue to use the 1 or the 3 until the thread is finished.
- * The clamp lever (18) is used to secured tool post against loosing. Loosing the Lever, the tool post can rotate counter-clockwise to change cutting tools.
- * Saddle lock screw (17) is used to firmly clamp saddle to bed way.
- * Compound slide screw (20) is used to clamp conpound silde to saddle.

Tailstock

- * The handwheel (12) is used to feed or retreat the quill. Turning the handwheel in counter-clockwise until a full stop is reached will automatically eject the tool being used.
- * The tailstock clamp lever (13) locks the tailstock to the bedway. To lock, put the lever up. To release, put it down.
- * The quill lock lever (15) prevent the quill from moving. Before operating the handwheel (12), release the lever. Feeding the quill to desired position, lock it.
- * Two set screws (14) on either side of the base is used to offset the tailstock. After taper adjustment is made, retighten both screws
- 5. See the Fig. 21 Adjust the clearance of cross feed nuts on the saddle as following.

Fig. 21 Adjust the clearance of cross feed nuts

Loose 2-M6 screw (2) then rotate the screw (1) down until the slide moves with a slight drag. Last, retighten the 2-M6 screws.

Fig. 22 chuck or face plate lock structure

See the Fig. 22, the Mounting and detaching of chuck or face plate. The
connection between spindle and chuck or face plate is made by type D cam
lock structure according to china national Standard GB5900.3-86(similar to

ISO702 /II-1975)

When mounting, put the three pull pin of chuck or face plate into the three holes (See Fig. 22) on the spindle face end. Then turn the three cams (See, Fig. 22) with the help of square head wrench when turning the cams clockwise the chuck or face plate will be locked. When turning the cams counter-clockwise to certain point, the chuck or face plate can be detached.

LATHE MAINTENANCE

- 1. Before operating the machine, check the oil level and lubricate all sliding and rotating parts according to "Lubricate Chart" (Fig. 6)
- 2. Always clean every sliding surfaces to prevent the chips. Often check the felt element on each end of the saddle. If being damaged, wash or change it. After operating, clean every parts of the machine and oil each slide surfaces, leadscrew, feed rod etc. to avoid rusting.
- 3. Periodically wash headstock, gear box, apron and change oil.
- 4. Keep oil from falling on the motor and v-belt. Periodically check and adjust v-belt.
- 5. Don't change every gear levers when the spindle is running to prevent damaging gears. If unable to change, you can turn the spindle with hand.
- 6. When changing spindle rotating direction, it can be accomplished with the help of forward and reverse rotation of motor. It is necessary first to stop spindle. Don't directly change the motor rotating direction before spindle stopped.
- 7. When using steady rest or follower rest, frequently oil the touching positions between slide pieces and workpiece.
- 8. Protect the spindle nose, short taper, taper bore of spindle from roughing and impacting on the working accuracy.
- 9. Finding the machine damaged, repair it immediately.

DAMAGEABLE PARTS

No.	Name	Material	Q'ty	Notes
1	Cross feed nuts	ZQ Sn6-6-3	2	5008
2	Half nut	ZQ Sn6-6-3	1	4024

the rest 12.5/

Appendix Fig. 1 Cross feed nuts Material ZQSn 6-6-3

Appendix Fig. 2 half nut Material ZQSr6-6-3