Al in the Sciences and Engineering 2024: Lecture 18

Siddhartha Mishra

Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center, ETH Zürich, Switzerland.

What you learnt so far

- ▶ Operator learning: Given Abstract PDE: $\mathcal{D}_a(u) = f$
- ▶ Learn Solution Operator: $\mathcal{G}: \mathcal{X} \mapsto \mathcal{Y}$ with $\mathcal{G}(a, f) = u$
- ► Approximate with Operator Learning Algorithms:
 - CNN/UNet
 - DeepONet
 - ► FNO
 - CNO
- We focus on Transformers

Final version of a Transformer Block

Caveat: Computational Complexity

► Computational Cost is Quadratic in # (Tokens) !!

Compute
$$\sim \mathcal{O}(mnK^2)$$

- ▶ With *K* Input Length, *n* Input features and *m* hidden dimension.
- But lots of possible Parallelism in Computation
- $ightharpoonup \mathcal{O}(1)$ sequential operations.
- \triangleright $\mathcal{O}(1)$ Path Length.
- ► Nevertheless, Infeasible for 2 or 3-d inputs.

Possible Solution

- ▶ Vision Transformers (ViT) of Dosovitskiy et. al.
- ▶ For $D \subset \mathbb{R}^2$ + input $v \in C(D, \mathbb{R}^C)$
- A sequence of Operators of the form:
- ▶ Patch Embeddings+ Positional Encoding: $\hat{\mathbf{v}} = \hat{\mathbf{E}}(\mathbf{v}) + \mathbf{E}_{pos}(\mathbf{v})$
- ► LayerNorm + MSA+ Residual: $\bar{\mathbf{u}} = \hat{\mathbf{v}} + MSA(LN(\mathbf{v}))$
- ► LayerNorm + MLP+ Residual: $u = \bar{u} + MLP(LN(\bar{u}))$

Computational Complexity

- ▶ Given an Image at resolution $H \times W$
- ► Standard Transformer needs

Compute
$$\sim \mathcal{O}((HW)^2)$$

ViT needs

Compute
$$\sim \mathcal{O}\left(\frac{(HW)^2}{p^4}\right)$$

Still not scalable for small patch size p

Another Idea: Windowed Attention

- Introduced in Liu et. al.
- Use Windowed Attention:

► With *M*-Windows,

Compute
$$\sim \mathcal{O}\left(\frac{HWM^2}{p^2}\right)$$

Operator version of Windowed Attention

- ▶ For layer ℓ , Assume $D = \bigcup_{q=1}^{M} D_q^{w,\ell}$
- ▶ With non-overlapping Windows.
- Windowed Attention is instantiated as Operator:

$$\mathsf{u}(x) = \mathbb{A}_{W}(\mathsf{v})(x) = \mathsf{W} \int\limits_{D_{q_{x}}^{w,\ell}} \frac{e^{\frac{\langle \mathsf{Qv}(x),\mathsf{Kv}(y)\rangle}{\sqrt{m}}}}{\int\limits_{D_{q_{x}}^{w,\ell}} e^{\frac{\langle \mathsf{Qv}(z),\mathsf{Kv}(y)\rangle}{\sqrt{m}}} dz} \mathsf{Vv}(y)dy.$$

lacksquare Where $1 \leq q_{\scriptscriptstyle X} \leq M$ such that $x \in D^{w,\ell}_{q_{\scriptscriptstyle X}}$

Shifting the Windows

- ► How to Tokens outside the Window ?
- ► Solution: Window shifts across Layers !!

► Reduces Path Length across Tokens.

Swin Transformer Block

Modifications for Scalability

- ► Replace scaled dot product with Scaled Cosine
- Use MLPs on Relative Position Coordinates to generate positional encodings.

scOT: scalable Operator Transformer

Poisson with Gaussian Sources

Poisson with Gaussian Sources

Helmholtz

Helmholtz

Wave Equation

Allen-Cahn Equation

Navier-Stokes

Possible Solutions for Sample Efficiency

- ► Add Physics:
 - ► PINN type residual based loss functions
 - Preconditioned Physics-informed ReNOs
- Use data better through Foundation Models

Navier-Stokes

