

8 位微控制器

KF8F213 数据手册

产品订购信息

型号	FLASH	RAM	BLOCK EEPROM	最高内部晶 振	封装
KF8F213-S16	2K×16 位	256×8 位	N	16M	SOIC-16
KF8F213-SS16	2K×16 位	256×8 位	N	16M	SS0P-16
KF8F213-S20	2K×16 位	256×8 位	N	16M	S0IC-20
KF8F213-SS20	2K×16 位	256×8 位	N	16M	SS0P-20

引脚示意图

芯片引脚说明

引脚	I/0	引脚功	引脚说明
名		能	
1	Р	V _{DD}	电源
		P0. 5	带上拉和电平变化中断功能的双向输入输出端口
2	I/0	T1CK	T1 时钟输入
		P0. 4	带上拉和电平变化中断功能的双向输入输出端口
		AN3	ADC 输入通道 3
3	I/0	VREOUT	1.9V 参考电压输出
		T1G	T1 门控信号输入
		CLKOUT	系统时钟输出
		P0. 3	带电平变化中断的输入端口
4	I	RST	外部复位信号输入
		VPP	编程电压输入
5	I/0	P1.5	双向输入输出端口
		P3A	PWM3 输出
6	I/0	P1.4	双向输入输出端口
		P3B	PWM3 输出
		P1. 3	双向输入输出端口
7	I/0	AN7	ADC 输入通道 7
		INT2	外部中断 2 输入
		P3C	PWM3 输出

8	I/0	P1. 6	双向输入输出端口
9	I/0	P1. 7	双向输入输出端口
10	I/0	P2. 7	双向输入输出端口
		OP2IN+	运算放大器正端输入
11	I/0	P2. 6	双向输入输出端口
		OP2IN-	运算放大器负端输入
12	I/0	P2. 5	双向输入输出端口
		OP20UT	运算放大器输出
13	I/0	P2. 4	双向输入输出端口
		P1. 2	双向输入输出端口
14	1/0	AN6	ADC 输入通道 6
		INT1	外部中断 1 输入
		P3D	PWM3 输出
	1/0	P1. 1	双向输入输出端口
15		AN5	ADC 输入通道 5
		PWM2	PWM2 输出
	1/0	P1. 0	双向输入输出端口
16		AN4	ADC 输入通道 4
		PWM1	PWM1 输出
		P0. 2	带上拉和电平变化中断功能的双向输入输出端口
17	1/0	AN2	ADC 输入通道 2
		TOCK	T0 时钟输入
		C10UT	模拟比较器 1 输出
		INTO	外部中断 0 输入
		P0. 1	带上拉和电平变化中断功能的双向输入输出端口
18	I/0	AN1	ADC 输入通道 1
		ADVRIN	AD 外部参考电压输入
		C1-	模拟比较器 1 负端输入
		SPCLK	在线编程时钟输入
		P0. 0	带上拉和电平变化中断功能的双向输入输出端口
19	I/0	AN0	ADC 输入通道 0
		C1+	模拟比较器 1 正端输入
		SPDAT	在线编程数据输入
20	Р	Vss	地,0V 参考点

目 录

产品	订购信息	. 2
引脚]示意图	. 3
目	录	. 5
1	系统概述	10
1. 1. 1. 1.	2 系统框图 3 存储器 4 系统时钟 5 配置位	12 13 14 16
2	I/0端口介绍	18
2.	1 P0 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	20 20 21 21 22 26 26 26 27 28 28 28 28 29 29
3	存储器	
3. 3.	2 数据存储器 (RAM) 区 3. 2. 1 通用寄存器区 3. 2. 2 特殊功能寄存器 (SFR) 区	34 34 34

	3. 4	ID地址单元	36
4	汇编	指令及寻址方式	37
	4. 1	寻址方式3	37
	4. 1.		
	4. 1.		
	4. 1.	—	
	4. 1.		
	4. 1.		
	4. 2		
5	r - 1 144	Ť	วด
J			
	5. 1	中断相关的寄存器	
	5. 1.	7 - 7/4	
	5. 1.	1 91 (2.10.19)	
	5. 1.	- 1 4114.9 .4 14 mm ==	
	5. 1.		
	5. 2	INT中断	
	5. 2.		
	5. 2.		
	5. 2.	1 3/1	
	5. 3	定时器中断	
	5. 4	P0 口中断	
	5. 5	PWM中断	
	5. 6	模拟比较器中断	
	5. 7	中断现场保护	15
6	定时	T/计数器	16
	6. 1	定时/计数器 0(T0)	16
		1 OPTR选择寄存器	
	6. 1.		
	6. 1.		
	6. 1.		
	6. 1.		
	6. 2	定时/计数器 1(T1)	
	6. 2.	1 T1 控制寄存器	19
	6. 2.	2 T1 预分频器	50
	6. 2.		
	6. 2.	4 计数模式	51
	6. 2.		
	6. 2.		
	6. 3	定时器T2 ξ	52
	6. 3.	1 T2 相关的寄存器	52
	6.	. 3. 1. 1 T2 控制寄存器T2CTL	53

_			
	6. 3. 2	T2 的工作原理	53
	6. 3. 3	T2 中断	54
	6. 3. 4	T2 在休眠模式	54
	6. 3. 5	T2 分配给PWM3	54
7	模数(A/I	D) 转换模块	55
	7.1 与AI	D相关的寄存器	56
	7. 1. 1	AD控制寄存器 0 (ADCCTL0)	56
	7. 1. 2	AD控制寄存器 1 (ADCCTL1)	57
	7. 1. 3	模拟/数字口选择寄存器(ANSEL)	57
	7.2 通道	鱼的选择	58
	7.3 模拟	以输入口的配置	58
	7.4 A/D	转换参考电压的选择	58
	7.5 转换	钟时钟的选择	59
	7.6 输出	は格式	59
	7.7 $A/D^{\frac{1}{2}}$	转换的启动和完成	60
	7.8 A/D	工作在休眠模式	60
	7.9 复位	立的影响	60
	7.10	吏用A/D转换器的设置	60
8	PWM構体		61
Ü			
		1/2 模块	
	8. 1. 1	PWM1/2 相关的寄存器	
	8. 1. 2	PWM控制寄存器	
	8. 1. 3	PWM1/2 周期	
	8. 1. 4	PWM1/2 占空比	
	8. 1. 5	PWM1/2 分辨率	
	8. 1. 6	PWM1/2 中断	
	8. 1. 7	休眠模式下的操作	
	8. 1. 8	系统时钟频率的改变	
	8. 1. 9	复位的影响	
	8. 1. 10	PWM1/2 使用方法	
		3	
	8. 2. 1	PWM3 相关寄存器	
	8. 2. 2	PWM3CTL0 寄存器	
	8. 2. 3	PWM3CTL1 寄存器	
	8. 2. 4	P3ASCTL寄存器	
	8. 2. 5	PATRCTL寄存器	
	8. 2. 6	PWM3 的周期、占空比及分辨率	
	8. 2. 6.	· · · · · · ·	
	8. 2. 6.		
	8. 2. 6.	****	
	8. 2. 6.		
	8. 2. 7	单输出模式	71

附录 2	汇编指令集	112
附录 1	KF8F213 SFR地址映射及功能汇总	110
16	封装信息	106
15	直流特性图表	99
14. 7	. ,,,,,	
14. 6	=3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	
14. 5		
14. 4	=, =	
14. 3	7 7 7 200 14 12	
14. 2	静态电流特性	92
14. 1	极限参数值	91
14	电气规范	91
13	看门狗定时器	90
12	休眠模式	89
11. 7		
11.6	_ 5/5 1/5 1	
11.5		
11. 4		
11.3	WDT复位	85
11. 2	上电复位(POR)	85
11. 1	电源控制状态寄存器(PCTL)	84
11	复位	83
10. 4	比较器的用法	82
10. 3		
10. 2		
10. 1	模拟比较器原理	81
10	模拟比较器模块	81
9. 2	运放的使用	80
9. 1	运放控制寄存器	80
9 运	算放大器模块	80
	8.2.10.2 自动重启模式	79
	8. 2. 10. 1 自动关断模式	
٠.	2.10 自动关断和自动重启模式	
	2.9 全桥输出模式	
	8.2.8.1 死区延时	
8	2.8 半桥输出模式	73

附录 3 寄存器全称表	114
产品标识体系	116
版本信息	117
ROSH认证	118
吉明及销售网络	119

1 系统概述

KF8F213 为哈佛结构的精简指令 CPU。在这种结构中,程序和数据总线是相互独立的。指令字节长度为 16 位,大多数指令能在一个机器周期内执行完成。一共有 68 条指令,效率高,容易进行指令扩展。芯片内集成了多种外设,包括 2 个 8 位定时器/计数器 T0 和 T2、1 个 16 位定时器/计数器 T1、2 路 8 位 PWM 模块、1 路 10 位增强型 PWM 模块、1 个运算放大器、1 个模拟比较器模块、1 个 10 位 8 通道 AD 模块、硬件看门狗和低电压检测及低电压复位模块等。

芯片内集成了 256×8 位的数据存储器 RAM、2K×16 位的程序存储器。

1.1 芯片特征

CPU

高性能哈佛结构的 RISC CPU 68 条精简指令 支持中断处理,共 12 个中断源 复位向量位于 0000H,中断向量位于 0004H 工作频率为 62.5K~16MHZ,软件可选

● 存储器

2K×16 位 FLASH 程序存储器 256×8 位的数据存储器 工作寄存器组 R0~R7 FLASH 可经受 100 000 次写操作

● 特殊功能

内嵌上电复位电路 低电压检测及低电压复位 硬件看门狗 时钟精度±1% 提供一个 1.9V 的参考电压,精度为 1% 支持在线串行编程 低功耗休眠模式

● I/0 口配置

输入输出口:除 P0.3 只能作为输入口外其它端口均为双向口内置上拉功能:P0 口带有弱上拉功能(P0.3 除外)电平变化中断:P0 口均有电平变化中断功能

● 定时器/计数器

定时器 0: 带有 8 位预分频器的 8 位定时器/计数器 定时器 1: 带门控和预分频器的 16 位定时器/计数器 定时器2: 带8位周期寄存器、预分频器和后分频器的8位定时器/ 计数器

● 其它外设

2 路 8 位脉宽调制 PWM 模块 1 路 10 位增强型脉宽调制 PWM 模块 1 个运算放大器模块 1 个模拟比较器模块 一个 10 位 ADC 模块

● 工作条件

工作电压: 2.3V~5.5V 工作温度范围: -40~85℃(工业级) -40~125℃(扩展级)

1.2 系统框图

1.3 存储器

KF8F213 单片机的存储器包含:程序存储器(ROM)、数据存储器(RAM)。

KF8F213 的程序存储器空间为 $2K\times16$ 位,寻址范围为 $0000H\sim07FFH$,可擦写次数为 10 万次。数据存储器有三个存储区,这里称为特殊寄存器区 (SFR)、通用存储器区 0 和通用存储器区 1,每个存储器区有 128×8 位的存储单元,这三个区的地址分别为 $00H\sim7FH$ 、 $80H\sim0FFH$ 和 $180H\sim1FFH$ 。。有关以上各种存储器的具体介绍请参考第 3 章和第 4 章。

KungFu®

KF8F213 数据手册 V1.5

1.4 系统时钟

振荡周期又叫时钟周期,是振荡器振荡频率的倒数。本芯片中一个机器周期等于四个时钟周期,如图 1.1 所示。本芯片除执行部分跳转指令需要两个机器周期外,其余指令仅需要一个机器周期。

图 1.1 机器周期

KF8F213 单片机通过系统内部振荡器提供系统工作时钟,没有外部时钟输入和扩展口,时钟频率为 62.5khz~16Mhz,通过频率选择寄存器 0SCCTL(如寄存器 1.1 所示)选择系统工作频率。精度为±1%。

寄存器1.1: OSCCTL系统频率控制寄存器(地址:2FH)

CKOEN: 系统时钟输出使能位

CKOEN=1 使能系统时钟输出 CKOEN=0 禁止系统时钟输出

IRCF<2:0> 时钟频率选择位

111=16Mhz

110=8Mhz

101=4Mhz

100=2Mhz

011=1Mhz(默认)

010=500khz

001=250khz

000=62.5 khz

OSCCAL0、OSCCAL1 为内部振荡器时钟校准寄存器,用来存放系统时钟校准值。用户在编程时,需要在程序初始化部分将存放在程序空间 07FFH 和 07FEH 的晶振校准值读出来存放到 OSCCAL0 和 OSCCAL1,参考例子 1.1,否则会导致系统时钟频率不准。

例 1.1 读晶振校准值

CALL 0X7FF
MOV 0SCCALO, R0
CALL 0X7FE
MOV 0SCCAL1, R0

1.5 配置位

如寄存器 1.2 所示,用户在烧写程序时,在编程器中通过对配置位进行设置,使单片机启用诸如看门狗、程序代码保护、欠压检测等功能。KF8F213 的配置位映射在 2007H 地址单元。

寄存器1.2: CONFIG: 配置字(地址:2007H)

R/P	U	U	R/P	R/P	R/P	U	R/P	U	U	U
DEBUG	-	-	CODEP	LVREN	RSTEN	-	WDTEN	-	_	-
bit10		•	bit7		•		bit3			bit0

注: R=可读 P=编程时可写 U=空位

DEBUG: 在线调试使能位

DEBUG=1 禁止在线调试 DEBUG=0 使能在线调试

CODEP: 代码保护使能位

CODEP=1 禁止程序存储器代码保护

CODEP=0 使能程序存储器代码保护

LVREN: 欠压检测功能使能位

LVREN=1 使能欠压检查功能 LVREN=0 禁止欠压检查功能

RSTEN: P0. 3/RST 引脚功能选择

RSTEN=1 PO. 3/RST 引脚配置为外部复位输入 RSTEN=0 PO. 3/RST 引脚功能为数字输入口

WDTEN: 看门狗定时器(WDT)使能位

WDTEN=1 使能 WDT WDTEN=0 禁止 WDT

1.6 在线串行编程

如图 1.2、1.3 所示,在最终应用电路中可对 KF8F213 单片机进行在线串行编程。实现编程仅需要五根线包括:时钟线 (SPCLK)、数据线 (SPDAT)、电源线 (VDD)、地线 (VSS)、编程电压线 (VPP)。

开发人员和用户可以使用未编程的单片机来制造电路板,然后对其在线编程,调试等。 只要有电脑、USB下载线和编程器,即可在任何时候,任何地点,对电路板上的单片机程序 进行更新。

图 1.2 在线调试系统示意图

图 1.3 在线串行编程连接图

2 I/0端口介绍

如图 2.1 所示,KF8F213 单片机共有 20 个引脚,1 脚接电源正极,20 脚接电源负极,其余管脚均为 I/0 端口,包括 P0 口、P1 口、P2 口。P0 口共有 $P0.0 \sim P0.5$ 六个引脚,P1 口共有 $P1.0 \sim P1.7$ 八个引脚,P2 口共有 $P2.4 \sim P2.7$ 四个引脚。

图 2.1 KF8F213 引脚功能图

注:用户在正常使用时,通常会有一些用不到的引脚,如果直接把这些管脚悬空,而不做其他处理可能使单片机功耗增大,因此建议将那些不用的引脚设置为数字输出模式,如果P0.3未用,应外接上拉电阻。

2.1 P0 □

如图 2.1 所示,P0 口共有 6 个引脚,对应管脚为 $2\sim4$ 、 $17\sim19$ 。在线编程时 P0 口的 V_{PP} 、SPCLK、SPDAT 作为编程脚使用。P0.3 只能作为输入口且没有上拉功能,其它端口均可作为普通 I/0 口且带有上拉功能,P0 口所有引脚都有电平变化中断功能。各引脚功能表 2.1 所示。

表 2.1 P0 口各引脚功能介绍

引脚名	I/0	引脚功能	引脚说明
	I/0	P0. 5	带上拉和电平变化中断功能的双向输入输出端口
2		T1CK	T1 时钟输入
		P0.4	带上拉和电平变化中断功能的双向输入输出端口
		AN3	ADC 输入通道 3
3	I/0	VREOUT	1.9V 参考电压输出
		T1G	T1 门控信号输入
		CLKOUT	系统时钟输出
		P0.3	带电平变化中断的输入端口
4	I	RST	主复位信号输入
		VPP	编程电压输入
		P0. 2	带上拉和电平变化中断功能的双向输入输出端口
17	I/0	AN2	ADC 输入通道 2
		TOCK	T0 时钟输入
		C10UT	模拟比较器 1 输出
		INTO	外部中断 0 输入
		P0. 1	带上拉和电平变化中断功能的双向输入输出端口
18	I/0	AN1	ADC 输入通道 1
		ADVRIN	AD 外部参考电压输入
		C1-	模拟比较器 1 负端输入
		SPCLK	在线串行编程时钟输入
		P0. 0	带上拉和电平变化中断功能的双向输入输出端口
19	I/0	ANO	ADC 输入通道 0
		C1+	模拟比较器 1 正端输入
		SPDAT	在线串行编程数据输入

2.1.1 P0 口相关的寄存器

表 2.2 与 PO 端口相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
05H	P0	_	_	P05	P04	P03	P02	P01	P00
25H	TR0	-	_	TR05	TR04	TR03	TR02	TR01	TR00
36H	IOCL	_	_	IOCL5	IOCL4	IOCL3	IOCL2	IOCL1	IOCL0
35H	PUR	_	_	PUR5	PUR4	_	PUR2	PUR1	PUR0
OBH	INTCTL	AIE	PUIE	TOIE	INTOIE	POIE	TOIF	INT0IF	P0IF
2EH	PCTL	VREEN	VREOE	ı	SLVREN	_	_	POR	LVR
21H	OPTR	PUPH	INT0SE	T1CS	T1SE	PSA	PS2	PS1	PS0
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
2FH	OSCCTL	CKOEN	IRCS2	IRCS1	IRCS0	_	_	_	_
1BH	AMPCTL	_				_	_	AMP20N	_

2.1.1.1 P0 口状态寄存器

寄存器 P0 各位对应 P0 口相应引脚当前的状态,如寄存器 2.1 所示:

寄存器2.1: P0: P0口状态寄存器(地址: 05H)

	bit7							bit0
复位值 xx xxxx	-	-	P05	P04	P03	P02	P01	P00
	U	U	R/W	R/W	R/W	R/W	R/W	R/W

P0<5:0>: P0 口各引脚状态位

P0x=1 对应引脚为逻辑高电平 P0x=0 对应引脚为逻辑低电平

2.1.1.2 P0 口方向控制寄存器

如寄存器 2.2 所示, TR0 为 P0 口方向控制寄存器, 当 TR0 某位置 1 时,将该引脚设置 为输入,此时引脚为三态(悬空),TR0 某位清 0,对应引脚设置为输出。

寄存器2.2: TRO: P0口方向控制寄存器(地址: 25H)

	bit7							bit0
复位值 11 1111	_	-	TR05	TR04	TR03	TR02	TR01	TR00
	U	U	R/W	R/W	R	R/W	R/W	R/W

TR0<5:4>: P0 口各引脚方向控制位 TR0<2:0>: P0 口各引脚方向控制位

TR0x=1 对应的引脚设置为输入TR0x=0 对应的引脚设置为输出

TR03 P0.3 引脚控制位,始终为1

KungFu®

KF8F213 数据手册 V1.5

2.1.1.3 上拉功能控制寄存器

KF8F213 中除了 P0.3 口没有内部上拉功能外,其它引脚均带有上拉功能,可通过上拉功能控制寄存器和 0PTR 寄存器中的 PUPH 来控制上拉功能是否打开。

如果要将某引脚的上拉功能打开,需要先将 PUPH (上拉功能总使能位) 位清 0,允许 P0 口上拉功能打开,然后再将要打开上拉功能的引脚,所对应的上拉功能控制位置 1 即可。寄存器 2.3 为上拉功能控制寄存器。

注:只有将引脚设置为数字输入口时才可开启上拉电阻功能,如果将某引脚设置为输出或者设置为模拟输入口时将会自动禁止该引脚的上拉电阻。

寄存器2.3: PUR: 弱上拉控制寄存器(地址: 35H)

	bit7							bit0	
复位值 11 -111	-	_	PUR5	PUR4	1	PUR2	PUR1	PUR0	
	U	U	R/W	R/W	U	R/W	R/W	R/W	

PUR<5:4>: 上拉功能使能位 PUR<2:0>: 上拉功能使能位

> PURx=1 使能上拉功能 PURx=0 禁止上拉功能

2.1.1.4 电平变化中断控制寄存器

P0 口每个引脚都具有电平变化中断功能,当引脚的当前电平与上次读 P0 寄存器时的电平不匹配时将产生电平变化中断。如寄存器 2.4 所示, IOCL 为电平变化中断控制寄存器,将 IOCL 某位置 1 将开启对应引脚的电平变化中断功能,如果该引脚电平发生变化,不管电平变化中断是否使能,电平变化中断标志位(P0IF)都会置 1,如果全局中断使能位(AIE)和电平变化中断使能位(P0IE)都已置 1,则会响应中断进入中断服务子程序。P0 口所有引脚的电平变化中断共用一个标志位 P0IF。

注: 1. 只有将引脚设置为数字输入口时才可开启电平变化中断功能,如果将某引脚设置为输 出或者设置为模拟输入口时将会自动禁止该引脚的电平变化中断功能。

2. P0口各引脚的电平变化中断共用一个中断使能位和中断响应标志位。

寄存器2.4: IOCL: 电平变化中断控制寄存器(地址:36H)

_	bit7							bit0
复位值 00 0000	-	-	IOCL5	IOCL4	IOCL3	IOCL2	IOCL1	IOCL0
•	U	U	R/W	R/W	R/W	R/W	R/W	R/W

IOCL<5:0>: PO 端口引脚电平变化中断使能控制位

IOCLx=1 使能对应引脚的电平变化中断 IOCLx=0 禁止对应引脚的电平变化中断

2.1.2 P0 口各引脚内部原理功能框图

如图 2.2、2.3 所示,为 P0 口引脚原理功能框图,各引脚的功能不同其图形会有一点差别,但是原理是相通的。

图 2.2 引脚 P0.3 原理功能框图

图 2.3 P0 口引脚原理框图

- 注: 图 2.3 引脚 P0.0~P0.2、P0.4、P0.5 原理功能框图
 - 1、P0.5没有模拟通道
 - 2、VREOUT 只针对 PO. 4
 - 3、C10UT 只针对 P0.2
 - 4、0POUT 只针对 P2.5

2.2 P1 口

如图 2.1 所示,P1 口具有 8 个引脚,对应管脚为 $5\sim9$ 、 $14\sim16$ 。所有管脚均可作为普通 I/0 口,部分引脚可作为 AD、外部中断 1/2 等的输入和 PWM 的输出。引脚功能如表 2.3 所示。

表 2.3 P1 口各引脚功能

-1.81-	- /-	- 1 His - 2	文 2.3 II 口行引牌为他
引脚	I/0	引脚功	引脚说明
名		能	
_	T /O	P1. 5	双向输入输出端口
5	I/0	P3A	PWM3 输出
C	T /O	P1. 4	双向输入输出端口
6	I/0 P3B		PWM3 输出
		P1. 3	双向输入输出端口
7	I/0	AN7	ADC 输入通道 7
'	1/0	INT2	外部中断 2 输入
		P3C	PWM3 输出
8	I/0	P1.6	双向输入输出端口
9	I/0	P1. 7	双向输入输出端口
		P1. 2	双向输入输出端口
14	I/0	AN6	ADC 输入通道 6
14	1/0	INT1	外部中断 1 输入
		P3D	PWM3 输出
		P1. 1	双向输入输出端口
15	I/0	AN5	ADC 输入通道 5
		PWM2	PWM2 输出
		P1. 0	双向输入输出端口
16	I/0	AN4	ADC 输入通道 4
		PWM1	PWM1 输出

2.2.1 P1 口相关的寄存器

表 2.4 与 P1 口相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
07H	P1	P17	P16	P15	P14	P13	P12	P11	P10
27H	TR1	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10
2CH	EIE1	-	ADIE	INT2IE	INT1IE	C1IE	PWM2IE	T2IE	T1IE
0CH	EIF1	_	ADIF	INT2IF	INT1IF	C1IF	PWM2IF	T2IF	T1IF
15H	PWMCTL	INT2SE	INT1SE	_	_	_	-	PWM20N	PWM10N
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
1BH	AMPCTL	_	_	_	_	_		AMP20N	_
57H	PWM3CTL0	P1M1	P1MO	PDT1	PDT0	PWM3M3	PWM3M2	PWM3M1	PWM3M0

2.2.1.1 P1 口状态寄存器

寄存器 P1 对应端口 P1 引脚作为普通 I/0 口时的状态。如寄存器 2.5 所示

寄存器2.5: P1: P1口状态寄存器(地址: 07H)

_	b1t/							b1tU
复位值 xxxx xxxx	P17	P16	P15	P14	P13	P12	P11	P10
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

P1<7:0>: P1 口各引脚状态位

P1x=1 对应引脚为逻辑高电平 P1x=0 对应引脚为逻辑低电平

2.2.1.2 P1 口方向控制寄存器

如寄存器 2.6 所示,通过将寄存器 TR1 中的某位置 1,将对应管脚设置为输入口。清 0设置为输出口,系统复位时,P1 口各引脚默认为输入口。

寄存器2.6:TR1:P1口方向控制寄存器(地址:27H)

	bit7							bit0
复位值 1111 1111	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10
•	R/W							

TR1<7:0>: P1 口引脚方向控制位

TR1x=1 P1 口对应引脚被配置为输入端口 TR1x=0 P1 口对应引脚被配置为输出端口

2.2.2 P1 口原理功能框图

如图 2.4 所示, P1 口共有 8 个引脚, 根据各引脚的作用不同, P1 口引脚原理功能框图中的模拟、PWM1/2/3、INT1/2 等部分有微小的变动。

图 2.4 P1 口引脚原理功能框图

注: 1、PWM1 只针对 P1.0

- 2、PWM2 只针对 P1.1
- 3、PWM3 分别为 P1.5、P1.4、P1.3 和 P1.2
- 4、P1.4/P1.5/P1.6/P1.7没有模拟功能

2.3 P2 □

如图 2.1 所示,P2 口共有 4 个引脚,对应管脚 $10\sim13$ 。所有管脚均可作为普通 I/0 口和运放的输入或者输出口。

引脚 I/0引脚功 引脚说明 名 能 P2. 7 10 I/0双向输入输出端口 OP2IN+ 运算放大器正端输入 双向输入输出端口 P2.6 11 I/0OP2IN-运算放大器负端输入 12 I/0P2.5 双向输入输出端口 OP20UT 运算放大器输出 I/0 13 P2.4 双向输入输出端口

表 2.5 P2 口各引脚功能

2.3.1 P2 口相关的寄存器

表 2.6 与 P2 口相关的寄存器

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位1	位 0
06H	P2	P27	P26	P25	P24	_	_	_	
26H	TR2	TR27	TR26	TR25	TR24	_	_	_	_
1DH	ANSEH	_	_	_	_	ANS11	ANS10	ANS9	_
1BH	AMPCTL	_	_	_	_	_	_	AMP20N	

2.3.1.1 P2 口状态寄存器(P2)

寄存器 P2 各位对应端口 P2 口各引脚作为普通 I/0 口时的状态。如寄存器 2.7 所示

寄存器2.7: P2: P2口状态寄存器(地址: 06H)

	bit7							bit0
复位值 xxxx	P27	P26	P25	P24	ı	1	1	-
	R/W	R/W	R/W	R/W	U	U	U	U

P2<7:4>: P2 口各引脚状态位

P2x=1 对应引脚为逻辑高电平 P2x=0 对应引脚为逻辑低电平

2.3.2 P2 口方向控制寄存器(TR2)

如寄存器 2.8 所示,通过将寄存器 TR2 中的某位置 1,将对应管脚设置为输入口。清 0设置为输出口。

寄存器2.8: TR2: P2口方向控制寄存器(地址: 26H)

 复位值 1111 --- TR27
 TR26
 TR25
 TR24

 R/W
 R/W
 R/W
 R/W
 U
 U

TR2<7:4>: P2 口各引脚方向控制位

TR2x=1 P2 口对应引脚被配置为输入端口TR2x=0 P2 口对应引脚被配置为输出端口

2.3.2.1 模拟口配置寄存器(ANSEH)

ANSEH 用来将 P2 口配置为模拟或数字 I/0 口, ANS9 对应 P2. 5, 以此类推 ANS11 对应 P2. 7。 ANSx=0 将对应引脚配置为数字 I/0 口。ANSx=1 将对应的引脚配置为模拟口。

寄存器2.9: ANSEH: 模拟口设置寄存器(地址: 1DH)

ANS<11:9>: P2 口模拟/数字口配置位

ANSx=1 将对应引脚配置为模拟 I/0 口 ANSx=0 将对应引脚配置为数字 I/0 口

2.3.2.2 AMP 控制寄存器 (AMPCTL)

如寄存器 2.10 所示,AMPCTL 为运放控制寄存器。当 AMP20N 置 1 时将运放 2 打开,AMP 清 0 运放 1 关闭。运放默认为关闭状态。

寄存器2.9: AMPCTL: 模拟口设置寄存器(地址: 1BH)

	bit7							bit0
复位值	-	-	-	-	-	-	AMP20N	-
0-	U	U	U	U	U	U	R/W	R/W

AMP20N

运放2使能位

AMP20N=1 打开运放 2 AMP20N=0 关闭运放 2

2.3.3 P2 口原理功能框图

如图 2.5 所示, P2 口共有 4 个引脚,根据各引脚的作用不同,P2 口引脚原理功能框图中的模拟输入和输出有微小差别。

图 2.5 P2 口引脚原理功能框图

3 存储器

如图 3.1 所示, KF8F213 中存储器主要由程序存储器 (ROM) 和数据存储器 (RAM) 组成,程序存储器和数据存储器地址空间相互独立。其中程序存储器为 2K×16 位的 FLASH 存储器;数据存储器由特殊功能寄存器和通用寄存器组成,特殊功能寄存器空间为 128×8 位,通用数据寄存器空间为 256×8 位。另外 KF8F213 中还有一些其它存储器,包括:寄存器组 R0~R7、8 级硬件堆栈、ID 地址单元等。

图 3.1 存储器组织图

3.1 程序存储器(ROM)区

KF8F213 有一个 13 位的程序计数器,最大可寻址 $8K \times 16$ 的程序存储空间。而在 KF8F213 中实际只实现了 $2K \times 16$ 的程序空间 ,地址为 $0000H \sim 07FFH$,复位向量入口地址为 0000H,中断向量入口地址为 0004H。

如图 3.2 所示,程序计数器 (PC) 的低 8 位 (PC $\langle 7:0 \rangle$)来自特殊功能寄存器 PCL,高 5 位 (PC $\langle 12:8 \rangle$)来自 PCH 寄存器。在任何复位发生后 PC 值将被清 0。在有任何未屏蔽中断发生后 PC 值将指向 0004H 地址。图 3.3 为程序存储器区的地址映射图。

在用户的程序中,每当执行一条汇编指令 PC 值会自动加 1,指向下一条要执行的指令。 当有子程序调用或响应中断时,CPU 会将 PC+1 后的值压入堆栈进行保存,然后将子程序或 中断入口地址送到 PC 中,CPU 根据 PC 的值跳转到对应的地址执行命令。

PCH<7:5>	PCH<4:0>	PCL<7:0>
----------	----------	----------

图 3.2 程序计数器 (PC)

图 3.3 KF8F213 程序存储器映射

3.2 数据存储器(RAM)区

如图 3.4 所示,KF8F213 中的数据存储器由三个区组成,每个区的空间都是 128 字节,其中一个区用作特殊功能寄存器区 (SFR) 使用;另外两个存储器区为通用寄存器区,由用户支配。SFR 地址空间为 $00H\sim7FH$;通用寄存器区地址为 $80H\sim0FFH$ 和 $180H\sim1FFH$,在这里将两个通用寄存器区称作 0 区和 1 区。

图 3.4 数据存储器地址映射图

3.2.1 通用寄存器区

如图 3.4 所示,通用寄存器的空间为 128×2 字节,0 区和 1 区通过 PSW 中的 RP0 (PSW. 5) 位进行选择,如表 3.1 所示。

 RP0 (PSW. 5)
 当前使用的通用寄存器区
 地址

 0
 0区
 80H~0FFH

 1
 1区
 180H~1FFH

表 3.1 通用寄存器区的选择

3.2.2 特殊功能寄存器(SFR)区

KF8F213 内部的 I/0 口控制、定时/计数器、PWM、运放、中断等各种控制寄存器和状态寄存器都称为特殊功能寄存器。附录 1 列出 SFR 的地址映射及复位初始值等。

状态字寄存器(PSW):如寄存器 3.1 所示,PSW 的低三位是算术运算标志位,在进行加、减等运算时对它们产生影响(具体请参考汇编指令部分)。TO和PD是复位状态位,当单片机

有复位或看门狗超时、执行休眠等指令时,会对这两位产生影响。RPO 为通用存储器区选择位。

寄存器3.1: PSW: 状态字寄存器(地址: 03H)

bit7							bit0
-	-	RP0	TO	PD	Z	DC	CY
保留	保留	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x

RPO: 通用寄存器区选择位

RP0=0 选择存储器区 0

RP0=1 选择存储器区 1

TO: 超时标志位

TO=1 在上电复位、CWDT 指令或 IDLE 指令执行之后

TO=0 WDT 超时被清 0

PD: 上电复位标志位

PD=1 上电复位或执行 CWDT 指令后

PD=0 执行 IDLE 指令后被清 0

Z: 零状态标志位

Z=1 算术运算或者逻辑运算的运行结果为 0

Z=0 算术运算或者逻辑运算的运行结果不为 0

DC: 辅助进/借位标志位

DC=1 执行结果的低 4 位向高 4 位有进位(加指令)或没有借位(减指令)

DC=0 执行结果的低 4 位向高 4 位没有进位(加指令)或有借位(减指令)

CY: 进位/借位标志位

CY=1 执行结果(8位)向高位有进位时(加指令)或没有借位(减指令)

CY=0 执行结果(8位)向高位无进位时(加指令)或有借位(减指令)

注:对于借位的情况,当指令执行后,低四位(或高四位)向高位有借位时,DC(或CY)标志为0,当没有借位时其值为1。关于对标志位是否产生影响的指令请参考"汇编指令集"部分。

3.3 寄存器组Rn

KF8F213 芯片中有一个工作寄存器组 R0~R7,可用做间接寻址的中间寄存器,存放操作数的地址; 隐含目的操作数的指令中,默认 R0 作为目的操作数(如: RRCR 0X81); 在读晶振校准值和参考电压校准值时,默认将读到的值送到 R0 中。

3.4 ID地址单元

KF8F213 的程序存储器空间的最后 4 个地址单元被指定为 ID 地址单元,地址为 7FCH~7FFH。用户可在其中存放校准值和或其它信息。正常运行时不能对这些地址单元进行访问,但在编程/校验时这些地址单元是可读写的。

4 汇编指令及寻址方式

4.1 寻址方式

KF8F213 系列单片机提供 5 种寻址方式,分别为: 寄存器寻址、直接寻址、立即数寻址、寄存器间接寻址和位寻址。KF8F213 的指令可以没有操作数、一个操作数、两个操作数。

4.1.1 寄存器寻址

采用这种寻址方式的指令中的操作数为寄存器组 R0-R7 的一个。例:

CLR R0 ; R0←0 将寄存器 R0 清 0 只有一个操作数 (R0 的值), 寻址方式为寄存器寻址。

ADD R0, R1 两个操作数(R0 和 R1), 寻址方式为寄存器寻址。

4.1.2 直接寻址

在指令中的操作数为某个寄存器的直接地址,该地址指出其参与运算的数据所在的地址。直接寻址可以是:特殊功能寄存器、通用数据存储器。 例:

MOV RO, 0X81 ; R0←(81H) 将 81H 单元的数据送到 R0 中指令中,源操作数寻址方式为直接寻址,目的操作数为寄存器寻址。

INC 0X3B ; 3BH ← (3BH) +1 将地址 3BH 里的值加 1, 3BH 即 BADDRL。 指令中含有一个操作数,寻址方式为直接寻址。

4.1.3 立即数寻址

在指令中的操作数为立即数。

例:

MOV RO, #0X20 ; RO←0X20 将立即数 0X20 送到寄存器 RO 中

ADD R0, #0X20 ; R0 \leftarrow (R0) #0X20 寄存器 R0 的值与 0X20 相加结果送到 R0 AND R0, #0X20 ; R0 \leftarrow (R0) &0X20 寄存器 R0 的值与 0X20 相与结果送到 R0 以上三条指令中源操作数都是#0X20,为立即数寻址,目的操作数为寄存器寻址。

4.1.4 寄存器间接寻址

这种寻址方式中,寄存器的内容指定操作数的地址,即寄存器中存放的是操作数的地址。间接寻址只有两条指令LD和ST。

例:

LD R0, [R1] ; R0←((R1)) 将 R1 的内容所指地址单元的数据送到 R0 指令中源操作数的寻址方式为寄存器间接寻址,目的操作数为寄存器寻址。

ST [R0], R1 ; (R0) ← (R1) 将 R1 的内容送到 R0 的内容所指向的地址单元指令中目的操作数的寻址方式为寄存器间接寻址,源操作数为寄存器寻址。

4.1.5 位寻址

指令中的操作数是寄存器的某位,这样的寻址方式称为位寻址。

例:

CLR INTCTL, 1 ; 将 INTCTL 的第 1 位清 0 CLR 0X80, 1 ; 将 80H 的第 1 位清 0

JNB 0X80,1 ; 如果 80H 的第 1 位为 0 则跳过下一条指令执行后面的程序

4.2 汇编指令

KF8F213 系列单片机汇编指令共有 68 条,除子程序调用、子程序返回、中断返回、部分跳转指令为双周期指令外,其余指令均为单周期指令。所有指令都占两个字节。

按照指令的功能可将其分为:数据传送指令、算术运算指令、逻辑运算指令、位操作指令和转移指令和特殊指令。具体指令集请参考附录 2。

5 中断

KF8F213 单片机的中断源有:

- INTO/1/2
- T0/1 溢出中断
- T2 中断
- P0 口引脚电平变化中断
- A/D 中断
- PWM1/2/3 中断
- CMP1 中断

在本系列单片机中只有一个中断优先级。所有中断发生后都会跳转到中断入口地址 0004H,在中断服务子程序中通过检测相应的中断标志位来确定具体是哪个中断源触发发生。

KF8F213 中的 INT1/2、T1、T2、ADC、PWM1/2 和 CMP1 都属于外设,因此对应的中断称作外设中断,其它中断源产生的中断属于内设中断。中断逻辑如图 5.1 所示。

图 5.1 中断逻辑

5.1 中断相关的寄存器

表 5.1 与中断相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
OBH	INTCTL	AIE	PUIE	TOIE	INT0IE	POIE	TOIF	INTOIF	P0IF
2CH	EIE1	1	ADIE	INT2IE	INT1IE	C1IE	PWM2IE	T2IE	T1IE
OCH	EIF1	_	ADIF	INT2IF	INT1IF	C1IF	PWM2IF	T2IF	T1IF
10H	T1CTL	_	T1GC	T1CKS1	T1CKS0		TISY	T1CS	T10N
15H	PWMCTL	INT2SE	INT1SE	_	_	_	-	PWM20N	PWM10N
21H	OPTR	PUPH	INTOSE	TOCS	T0SE	PSA	PS2	PS1	PS0
36H	IOCL	_	_	IOCL5	IOCL4	IOCL3	IOCL2	IOCL1	IOCL0

5.1.1 中断控制寄存器(INTCTL)

如寄存器 5.1 所示, 它包含:

- T0 寄存器溢出中断使能控制和标志位
- P0 口电平变化中断使能控制和标志位
- INTO 中断使能控制和标志位
- 外设中断和总中断使能位

AIE 为全局中断使能位,当其被清 0 时,禁止所有中断。PUIE 为外设中断使能位,当其被清 0 时禁止所有外设中断。具体的中断逻辑如图 5.1 所示。

注: 1. 当中断条件满足时,无论相应的中断使能位或者全局中断使能位AIE的状态如何,中断标志位将被硬件置1。

2. 中断条件满足时,中断标志位通过硬件置1,而清零则需要软件完成。

寄存器5.1: INTCTL: 中断控制寄存器(地址: 0BH)

	bit7							bit0
复位值 0000 0000	AIE	PUIE	TOIE	INT01E	POIE	TOIF	INT0IF	POIF
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

AIE: 全局中断使能位

AIE=1 使能所有未屏蔽的中断

AIE=0 禁止所有中断

PUIE: 外设中断使能位

PUIE=1 使能所有未屏蔽的外设中断

PUIE=0 禁止所有外设中断

TOIE: TO 溢出中断使能位

TOIE=1 使能 TO 中断

T0IE=0 禁止 T0 中断

INTOIE: INTO 中断使能位

INTOIE=1 使能 INTO 中断

INTOIE=0 禁止 INTO 中断

POIE: PO 口电平变化中断使能位

P0IE=1 使能 P0 口电平变化中断 P0IE=0 禁止 P0 口电平变化中断

TOIF: TO 溢出中断标志位

TOIF=1 TO 寄存器溢出 TOIF=0 TO 寄存器未溢出

INTOIF: INTO 中断标志位

INTOIF=1 INTO/P02 产生外部中断 INTOIF=0 INTO/P02 未产生外部中断

POIF: PO 口电平变化中断标志位

P0IF=1 引脚 P0.0~P0.5 至少有一个电平状态发生变化

P0IF=0 引脚 P0.0~P0.5 电平状态未发生变化

5.1.2 中断使能寄存器EIE1

如寄存器 5.2 所示, EIE1 是一个可读写的寄存器, 它包含:

- ADC 中断使能位
- INT1/2 中断使能位
- CMP1 中断使能位
- PWM2 中断使能位
- T2 中断使能位
- T1 中断使能位

寄存器5.2: EIE1: 中断使能寄存器(地址: 2CH)

- D H	<u>bit7</u>							bit0	
复位值-000-0-0	-	ADIE	INT2IE	INT1IE	C1 IE	PWM2IE	T2IE	TIIE	
	U	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

ADIE: AD 中断使能位

ADIE=1 使能 AD 中断 ADIE=0 禁止 AD 中断

INT2IE: INT2 中断使能位

INT2IE=1 使能 INT2 中断 INT2IE=0 禁止 INT2 中断

INT1IE: INT1 中断使能位

INT1IE=1 使能 INT1 中断 INT1IE=0 禁止 INT1 中断

C1IE: CMP1 中断使能位

C1IE=1 使能 CMP1 中断 C1IE=0 禁止 CMP1 中断

PWM2IE: PWM2 中断使能位

PWM2IE=1 使能 PWM2 中断 PWM2IE=0 禁止 PWM2 中断

KungFu®

KF8F213 数据手册 V1.5

T2IE: T2与PP3匹配中断允许位

T2IE=1 允许 T2 与 PP3 匹配中断 T2IE=0 禁止 T2 与 PP3 匹配中断

T1IE: T1 中断使能位

T1IE=1 使能 T1 中断 T1IE=0 禁止 T1 中断

5.1.3 中断标志寄存器EIF1

如寄存器 5.3 所示,中断标志寄存器包含:

- AD 中断标志位
- INT1/2 中断标志位
- CMP1 中断标志位
- PWM2 中断标志位
- T2 中断标志位

● T1 中断标志位

寄存器5.3: EIF1: 外设中断标志寄存器(地址0CH)

- D H-	<u>bit7</u>							bit0
复位值 -000 -000	-	ADIF	INT2IF	INT1IF	Clif	PWM2IF	T2IF	T1IF
	U	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ADIF: AD 完成中断标志位

ADIF=1 AD 转换完成

ADIF=0 AD 转换没有完成

INT2IF: INT2 中断标志位

INT2IF=1 INT2/P1.3 产生外部中断 INT2IF=0 INT2/P1.3 未产生外部中断

INT1IF: INT1 中断标志位

INT1IF=1 INT1/P1.2 产生外部中断 INT1IF=0 INT1/P1.2 未产生外部中断

C1IF: 模拟比较器 CMP1 中断标志位

C1IF=1 模拟比较器 CMP1 输出发生改变(必须软件清 0)

C1IF=0 模拟比较器 CMP1 输出未发生改变

PWM2IF: PWM2 中断标志位

PWM2IF=1 PWM1/2 使能时, T1H和 PP2 匹配 PWM2IF=0 PWM1/2 使能时, T1H和 PP2 不匹配

T2IF: T2与PP3匹配中断标志位

T2IF=1 发生了 T2 与 PP3 匹配 T2IF=0 未发生了 T2 与 PP3 匹配

T1IF: T1寄存器溢出标志位

T1IF=1 T1 寄存器溢出或 PWM1/2 使能时, T1L 与 PP1 匹配

T1IF=0 T1 寄存器未溢出或 PWM1/2 使能时, T1L 与 PP1 不匹配

5.1.4 中断响应

当中断被响应后:

- 1. AIE 位将被硬件清 0 以禁止其它中断;
- 2. 返回地址压入堆栈;
- 3. 中断入口地址载入 PC;
- 4. 执行该中断服务子程序;
- 5. 执行指令 IRET 退出中断服务子程序并将 AIE 置 1, 重新使能未屏蔽的中断;
- 6. 跳转到中断发生处继续执行下面的程序。

进入中断服务程序后,首先保存 PSW 和其它寄存器的值,然后通过查询中断标志位确定中断源。在重新使能中断之前,应在软件中将相应的中断标志位清 0,以避免出错。

- 注 1: 中断条件满足时, 无论相应的中断使能位或AIE位的状态为何, 中断标志位都将被置1。
- 2: 当执行一条清除AIE位的指令后,任何在下一周期等待响应的中断都将被忽略。当AIE位重新置1时,被忽略的中断请求将继续等待被响应。
- 3: 当对中断进行响应,进入中断服务子程序的时候硬件会将AIE位清零关闭总中断,当中断程序执行完,中断返回指令跳出中断子程序时,硬件将AIE位置1打开总中断。

5.2 INT中断

INT 中断有三个中断源: INT0、INT1 和 INT1, 都采用边沿触发方式, 如果触发边沿选择位(INTxSE)置 1, 则采用上升沿触发; 如果触发边沿选择位清 0, 则采用下降沿触发。

	A 1 1 1 1 1 1 1 1 - BB									
地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
0BH	INTCTL	AIE	PUIE	TOIE	INTOIE	POIE	TOIF	INTOIF	P0IF	
2CH	EIE1	-	ADIE	INT2IE	INT1IE	C1IE	PWM2IE	T2IE	T1IE	
0CH	EIF1	-	ADIF	INT2IF	INT1IF	C1IF	PWM2IF	T2IF	T1IF	
15H	PWMCTL	INT2SE	INT1SE	-	_	-	_	PWM20N	PWM10N	
21H	OPTR	PUPH	INT0SE	TOCS	TOSE	PSA	PS2	PS1	PS0	

表 5.2 与 INT 中断有关的寄存器

5.2.1 INTO 中断

INTO 中断通过寄存器 INTCTL 中的 INTOIE 位置 1 使能 INTO 中断。通过 OPTR 中的 INTOSE 位设置触发边沿,INTOSE 置 1,将 INTO 设置为上升沿触发,清零设置为下降沿触发。INTCTL 中的 INTOIF 为 INTO 的中断标志位。

INTO 引脚有触发脉冲时,INTOIF 被自动置 1,如果 INTOIE 和 AIE 位为 1,则响应 INTO 中断。

5.2.2 INT1 中断

INT1 中断通过寄存器 EIE1 中的 INT1IE 位置 1 使能 INT1 中断。通过 PWMCTL 中的 INT1SE 位设置触发边沿,INT1SE 置 1,将 INT1 设置为上升沿触发,清零设置为下降沿触发。EIF1中的 INT1IF为 INT1 的中断标志位。

INT1 引脚有触发脉冲时,INT1IF 被自动置 1,如果 INT1IE、PUIE 和 AIE 位为 1,则响应 INT1 中断。

5.2.3 INT2 中断

INT2 中断通过寄存器 EIE1 中的 INT2IE 位置 1 使能 INT2 中断。通过 PWMCTL 中的 INT2SE 位设置触发边沿,INT2SE 置 1,将 INT2 设置为上升沿触发,清零设置为下降沿触发。EIF1 中的 INT2IF 为 INT2 的中断标志位。

INT2 引脚有触发脉冲时,INT2IF 被自动置 1,如果 INT2IE、PUIE 和 AIE 位为 1,则响应 INT2 中断。

使用 INT 中断时的设置:

- 1. 将对应的 INTx 引脚设置为数字输入口。
- 2. 选择触发脉冲边沿时上升沿还是下降沿(INTO/1/2SE 置 1 为上升沿触发);
- 3. 将相应的外部中断使能位置 1(INTxIE);

*KungFu®

KF8F213 数据手册 V1.5

5.3 定时器中断

T0/1 寄存器发生溢出时,T0IF/T1IF 位将会被置 1。通过将 T0IE/T1IE 位置 1/清 0 可使能/禁止该中断。有关定时/计数器模块的操作,请参考定时/计数器部分。

当 T2 与 PP3 匹配时, T2IF 将被置 1。

5.4 P0 口中断

P0 口引脚的输入电平变化将使 P0IF (INTCTL. 0) 位置 1。通过设置/清除 P0IE (INTCTL. 3) 位,可使能/禁止该中断。且该端口各引脚可通过 I0CL 寄存器来对每个引脚进行配置。有关 P0 口的操作,请参考 P0 口部分。

5.5 PWM中断

使能 PWM1/2 后, T1L 分配给 PWM1 进行计数, T1H 分配给 PWM2 进行计数, 当 T1L/H 与 PP1/2 匹配时, 会触发相应的中断标志位 T1IF 和 PWM2IF。如果使能 T1IE 或者 PWM2IE,则会触发中断(AIE、PUIE 置 1)。

使能 PWM3 后,当 TH2 和 PP3 匹配时,会触发相应的中断标志 T2IF。如果 T2IE 使能,则会触发中断 (AIE、PUIE 置 1)。

详见 PWM 部分。

5.6 模拟比较器中断

当模拟比较器的控制寄存器 CMCTL1 的 C1M[1:0]不为 00 时,模拟比较器 CMP1 将使能, 开始工作。如果 CMP1 的正端输入大于负端输入时,将产生对应的中断标志。

详见模拟比较器部分。

5.7 中断现场保护

在中断响应时,硬件会把当前 PC 值加 1 入栈保存,中断结束后,硬件在将本次中断入 栈时的值弹出载入 PC,继续执行后面的程序。通常,用户可能希望在中断时对一些关键寄存 器的内容进行保存(例如,Rn 和 PSW)。这些都需通过软件方式实现。

6 定时/计数器

KF8F213 单片机提供一个 8 位的定时/计数器 T0、1 个 16 位的定时/计数器 T1 和 1 个 8 位定时器 T2。

6.1 定时/计数器 0(T0)

T0 是一个 8 位的定时/计数器, 当 T0 寄存器值加到 255 时, 再加 1, 则会产生溢出, T0 寄存器的值返回到 0 开始重新计数。

地址 寄存器 位 7 位.5 位.4 位.3 位 2 位 1 位.6 位.0 INTOIE POIE 0BH INTCTL AIE PUIE T0IE TOIF INT0IF P0IF 01H 8位计数器 **INTOSE** T₀CS T0SE PSA PS2 PS1 PS0 21H **OPTR PUPH** 25H TR03 TR02 TR01 TR00 TR0 TR05 **TR04**

表 6.1 与 TO 相关的寄存器

6.1.1 OPTR选择寄存器

如寄存器 6.1 所示, TOCS 为定时/计数模式选择位, TOSE 为计数模式时外部触发脉冲边沿选择位, PSA 用来将预分频器分配给 WDT 或者 TO, PS<2:0>对分频比分配。

寄存器6.1: OPTR: 选择寄存器(地址: 21H)

复位值	bit7							bit0
1111 1111	PUPH	INT0SE	T0CS	TOSE	PSA	PS2	PS1	PS0
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

PUPH P0 口上拉功能总使能位

 PUPH = 1
 禁止 P0 口所有上拉功能

 PUPH = 0
 允许 P0 口使用上拉功能

INTOSE INTO 中断触发脉冲边沿选择位

INTOSE=1 INTO/PO.2 为上升沿触发 INTOSE=0 INTO/PO.2 为下降沿触发

TOCS: TO 模式选择位

TOCS=1 计数模式, TO 的时钟为外部时钟 TOCK/PO. 2 TOCS=0 定时模式, TO 的时钟为机器内部时钟 FOSC/4

TOSE: TO 计数脉冲信号边沿选择位

TOSE=1 下降沿触发 TOSE=0 上升沿触发

PSA: 预分频器分配控制位

PSA=1 预分频器用于 WDT PSA=0 预分频器用于 T0 PS<2:0>: 预分频器分频比选择位

PS<2:0>	WDT 分频比	T0 分频比
000	1:1	1:2
001	1:2	1:4
010	1:4	1:8
011	1:8	1:16
100	1:16	1:32
101	1:32	1:64
110	1:64	1:128
111	1:128	1:256

6.1.2 预分频器

图 6.1 为预分频器的结构框图。T0 模块使用一个 8 位计数器作为预分频器。如寄存器 6.1 所示,通过软件设定 PSA 位 (OPTR. 3) 的状态可对预分频器的分配进行控制, PSA 位清 0 可将预分频器分配给 T0 模块。通过设置 PS<2:0 >位可选择预分频器的分频比。预分频器 是不可读写的。当预分频器用于 T0 模块时,所有写入 T0 寄存器的指令都会将预分频器清 0。当预分频器用于 WDT 时,CWDT 指令会同时将预分频器和看门狗定时器清 0。

图 6.1 预分频器框图

6.1.3 定时模式

通过将 TOCS 位 (OPTR. 5) 清 0 可选择定时器模式。在定时模式中,如果不使用预分频器,每一个机器周期 TO 寄存器的值加 1。如果 TO 寄存器被写入初始值,则在接下来的两个机器周期将不执行递增操作,用户可通过将校正值写入 TO 寄存器进行修正。

KungFu®

KF8F213 数据手册 V1.5

6.1.4 计数模式

通过将 TOCS 位 (OPTR. 5) 置 1 可选择计数模式。在该模式下, TO 模块在 TOCK 引脚信号的每一次上升沿 (TOSE 位清 0) 或下降沿 (TOSE 位置 1) 递增计数。

当不使用预分频器时,要求 TOCK 的高电平状态和低电平状态分别保持至少 2Tosc 的时间,以实现 TOCK 与内部相位时钟的同步。

6.1.5 T0 的使用

T0 在使用时通过以下步骤进行设置:

- 1. 通过将 TOCS 位清 0/置 1 选择定时/计数模式(如果是计数模式,再设置 TOSE 选择脉冲触发边沿,将对应的计数脉冲输入脚 TOCK 设置为输入);
- 2. 如果需要分频,则将预分频器分配给 T0,并设置分频比;
- 3. 给 T0 寄存器设置初始值;
- 4. 如果使用中断方式则将 TOIE 和 AIE 位置 1。

6.2 定时/计数器 1(T1)

T1 是一个 16 位的定时/计数器,T1 的低 8 位在寄存器 T1L 中,高 8 位在寄存器 T1H 中,当 T1 计数值达到 65535 后,T1 的值再加 1 就会产生溢出,将 T1 中断标志位置 1。T1 属于外部单元,因此在使用 T1 中断时,需将 PUIE 位置 1,使能外设中断。如图 6.2 所示为 T1 的原理框图。

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位1	位 0		
OBH	INTCTL	AIE	PUIE	TOIE	INTOIE	P0IE	TOIF	INTOIF	POIF		
0EH	T1L		T1 低 8 位								
0FH	T1H		T1 高 8 位								
ОСН	EIF1	_	ADIF	INT2IF	INT1IF	C1IF	PWM2IF	T2IF	T1IF		
2CH	EIE1	_	ADIE	INT2IE	INT1IE	C1IE	PWM2IE	T2IE	T1IE		
10H	T1CTL	_	T1GC	T1CKS1	T1CKS0	_	T1SY	T1CS	T10N		
25H	TR0	_	_	TR05	TR04	TR03	TR02	TR01	TR00		

表 6.2 与 T1 相关的寄存器

图 6.2 T1 原理框图

6.2.1 T1 控制寄存器

如寄存器 6.2 所示,T1 控制寄存器(T1CTL)用于启动/禁止 T1 以及选择 T1 模块的不同功能特性。

寄存器6.2: T1CTL: T1控制寄存器(地址: 10H)

E D H	bit7							bit0
复位值-000-000	-	T1GC	T1CKS1	T1CKS0	_	T1SY	T1CS	T10N
	U	R/W	R/W	R/W	U	R/W	R/W	R/W

T1GC: T1 门控使能位

如果 T10N=0 则该位被忽略

如果 T10N=1 则:

T1GC = 1 使能 $\overline{T1G}$ 引脚控制 (如果 $\overline{T1G}$ 引脚为低电平, 启动 T1, 为高电平,

关闭 T1)

T1GC =0 禁止 T1G 引脚控制

T1CKS<1:0>: T1 输入时钟预分频比选择位

T1CKS<1:0>=11 1/8 倍预分频比 T1CKS<1:0>=10 1/4 倍预分频比 T1CKS<1:0>=01 1/2 倍预分频比 T1CKS<1:0>=00 1/1 倍预分频比

 $\overline{\text{T1SY}}$: T1 计数模式外部触发脉冲输入同步控制位

T1CS=1:

TISY = 1 不与外部触发脉冲输入同步 T1SY = 0 与外部触发脉冲输入同步

T1CS=0: 该位被忽略, T1 使用内部时钟

T1CS: T1 定时/计数模式选择

> T1CS=1 计数模式, T1 时钟为外部时钟 T1CK/P0.5 T1CS=0 定时模式,T1时钟为内部时钟FOSC/4

T10N: T1 启动控制位

> T10N=1 启动 T1 T10N=0 停止 T1

6.2.2 T1 预分频器

如寄存器 6.2 所示, T1 具有四个预分频器选择项, 允许对时钟输入进行 1、2、4、或 8 倍分频。T1CKS 位(T1CTL<5:4>)对预分频计数器进行控制。T1 预分频计数器不能直接进行 读写操作,可通过写入TIH或TIL使预分频计数器清0。

6.2.3 定时模式

通过将 T1CS 位清 0 将 T1 设定为定时模式, T1 工作在定时模式时, 对单片机内部时钟 进行计数, 当不使用预分频器时, 每个机器周期 T1 寄存器自加 1, 加到 0FFFFH 后再加 1, T1 溢出,将 T1 中断标志位 I1IF 置 1。

如果使能 T1 门控引脚,H T10N=1,则在 TIG 引脚为低电平时,启动 T1,如果 TIG 引脚 为高电平,禁止T1。使用该方式可粗略的对TIG引脚的低电平持续时间进行计算。

KungFu®

KF8F213 数据手册 V1.5

6.2.4 计数模式

通过将 T1CS 位置 1 将 T1 设定为计数模式,在计数模式时,T1 在计数脉冲 T1CK 的上升沿进行递增计数。T1 的计数模式又有同步计数和异步计数两种方式,

如果控制位 $\overline{\text{T1SY}}$ (T1CTL. 2)置 1,则 T1 工作在异步计数模式。计数器根据 T1CK 引脚的脉冲进行递增计数。在休眠模式下,计数器将继续递增并在溢出时产生中断以唤醒处理器。

如果控制位 $\overline{T1SY}$ (T1CTL. 2)清 0,则 T1 工作在同步计数模式。在内部相位时钟的 Q2 和 Q4 周期对 T1CK 引脚电平进行采样,可以实现 T1CK 与内部相位时钟的同步。

6.2.5 T1 在休眠模式下的运行

只有设定在异步计数器模式时,T1 才能在休眠模式下工作。在该模式下,计数脉冲 T1CK 使计数器递增。通过如下步骤设定定时器以唤醒器件:

- 使能 T1 (T10N/T1CTL. 0 置 1)
- 将 T1 IE 位 (EIE1. 0) 置 1
- 将 PUIE 位 (INTCTL. 6) 置 1

器件将在溢出时被唤醒。如果 AIE 位(INTCTL. 7)置 1,器件将被唤醒并跳转至中断服务程序。

6.2.6 T1 分配给PWM1/2

当使用 PWM1/2 时需要用到 T1,单片机将 T1L, T1 IE, T1 IF 分配给 PWM1, T1H 分配给 PWM2, 具体使用方法参见 PWM1/2 部分。

6.3 定时器T2

T2 与 T0/1 有所不同,T2 是一个 8 位的定时器,没有外部计数时钟输入脚,T2 的原理框图如图 $6.3~\mathrm{fh}$ 示。

图 6.3 定时器 T2 原理框图

6.3.1 T2 相关的寄存器

表 6.3 与 T2 相关的寄存器

地址	寄存器	位7	位 6	位 5	位 4	位 3	位 2	位 1	位 0		
OBH	INTCTL	AIE	PUIE	TOIE	INTOIE	POIE	TOIF	INTOIF	POIF		
ОСН	EIF1	-	ADIF	INT1IF	INT1IF	C1IF	PWM2	T2IF	T1IF		
							IF				
2CH	EIE1	_	ADIE	INT1IE	INT1IE	C1IE	PWM2	T2IE	T1IE		
							IE				
12H	T2CTL	-	T2CKBS	T2CKBS2	T2CKBS1	T2CKBS0	T20N	T2CKPS1	T2CKPS0		
			3								
11H	T2				T2	寄存器					
52H	PP3		PWM3 周期寄存器								
54H	T2CCR		T2 启动 ADC 设置寄存器								

6.3.1.1T2 控制寄存器T2CTL

寄存器6.3: T2CTL: T2控制寄存器(地址: 12H)

	U	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
复位值-000 0000	-	T2CKBS3	T2CKBS2	T2CKBS1	T2CKBS0	T20N	T2CKPS1	T2CKPS0	
	bit7							bitU	

T2CKBS<3:0>: T2分频器2分频比选择位

T2CKBS<3:0>=0000: 分频比为 1:1 T2CKBS<3:0>=0001: 分频比为 1:2 T2CKBS<3:0>=0010: 分频比为 1:3 T2CKBS<3:0>=0011: 分频比为 1:4 T2CKBS<3:0>=0100: 分频比为 1:5 T2CKBS<3:0>=0101: 分频比为 1:6 T2CKBS<3:0>=0110: 分频比为 1:7 T2CKBS<3:0>=0111: 分频比为 1:8 T2CKBS<3:0>=1000: 分频比为 1:9 T2CKBS<3:0>=1001: 分频比为 1:10 T2CKBS<3:0>=1010: 分频比为 1:11 T2CKBS<3:0>=1011: 分频比为 1:12 T2CKBS<3:0>=1100: 分频比为 1:13 T2CKBS<3:0>=1101: 分频比为 1:14 T2CKBS<3:0>=1110: 分频比为 1:15 T2CKBS<3:0>=1111: 分频比为 1:16

T20N: T2 使能位

T20N=1: 使能 T2 T20N=0: 禁止 T2

T2CKPS<1:0>: T2分频器1分频比选择位

T2CKPS<1:0>=00: 分频比为 1:1 T2CKPS<1:0>=01: 分频比为 1:4 T2CKPS<1:0>=1x: 分频比为 1:16

6.3.2 T2 的工作原理

通过 T2CTL 的 T20N 启动/禁止 T2。如图 6.2 所示,为 T2 的原理框图,T2 的计数时钟为系统时钟,每个机器周期(分频器 1 分频比为 1:1 时)寄存器 T2 的值自动加 1。

Fosc/4 先经过分频器 1 分频后送到 T2 寄存器,进行加一计数,分频器 1 通过设置寄存器 T2CTL 中的 T2CKPS<1:0>位,可将 Fosc/4 进行 1:1、1:4 和 1:16 分频。

当 T2 寄存器与 PP3 相等时,T2 自动清 0,发出相等信号给分频器 2,分频器 2 递增。同时 T2 的值与寄存器 T2CCR 相比较,如果等于 T2CCR,且对应的控制位置 1,则会发出信号,使 ADSTART 位置 1。

分频器 2 的分频比可通过寄存器 T2CTL 中的 T2CKBS<3:0>位设置为 1:1 至 1:16。当 设置为 1:1 时,每次寄存器 T2 与 PP3 相等,将会使 T2 中断标志位 T2IF 置 1;当其设置为 1:2 时,寄存器 T2 与 PP3 相等累计两次才会使 T2IF 置 1,以此类推。

T2的预分频器 1的预分频比由寄存器 T2CTL的 T2CKPS<1:0>位设置。分频器 2由寄存器 T2CTL的 T2CKBS<1:0>位设置。如果对 T2寄存器执行写操作、对寄存器 T2CTL执行写操作或

发生任何器件复位事件(上电复位、RST复位、看门狗复位或欠压复位), 分频器 1/2 的计数器将被清 0。

寄存器 T2、PP3 和 T2CCR 均可读写。任何复位时,寄存器 T2 均被设置为 00H, T2CCR 被设置为 XXH, PP3 被设置为 0FFH

6.3.3 T2 中断

如图 6.3 所示, 预分频器 2 的计算器达到设定值后将会使中断标志位置 1, 如果使能位 T2IE 为 1, 且全局中断和外设中断允许位为 1, 将会相应 T2 中断。

6.3.4 T2 在休眠模式

单片机进入休眠模式后,因 T2 使用系统时钟,因此 T2 将停止工作。

6.3.5 T2 分配给PWM3

PWM3 在使用时,需要使用 T2 进行定时,PWM3 的详细内容请参考 PWM3 部分。

7 模数(A/D)转换模块

模数 (A/D) 转换模块可将模拟输入信号转换为十位二进制值。KF8F213 拥有 8 路模拟输入通道。转换器通过逐次逼近法将模拟输入信号转换为二进制值,并将转换结果存放到 10 位寄存器中。可通过软件方式选择内部 1.9V 参考电压 VREOUT、VDD 或施加在 ADVRIN 引脚上的电压作为转换使用的参考电压。图 7.1 显示了 KF8F213 中 A/D 转换模块的结构框图。

图 7.1 AD 模块结构框图

7.1 与AD相关的寄存器

表 7.1 与 AD 转换相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
OBH	INTCTL	AIE	PUIE	T1IE	INTOIE	POIE	TOIF	INTOIF	POIF	
2CH	EIE1	1	ADIE	INT2IE	INT1IE	C1IE	PWM2IE	T2IE	T1IE	
OCH	EIF1		ADIF	INT2IF	INT1IF	C1IF	PWM2IF	T2IF	T1IF	
1FH	ADCCTL0	ADLR	T2CCRON	CHS3	CHS2	CHS1	CHS0	START	ADEN	
3FH	ADCCTL1	1	ADCS2	ADCS1	ADCS0	VCFG1	VCFG0	1	_	
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	
1CH	VRECAL			į	参考电压	交准寄存 器	器			
1EH	ADCDATAH		AD 高 8 位							
3EH	ADCDATAL		AD 低 8 位							

7.1.1 AD控制寄存器 0(ADCCTL0)

如寄存器 7.1 所示, AD 控制寄存器 0 包括:转换结果输出格式选择、模拟通道选择和 AD 启动。

寄存器7.1: ADCCTLO: A/D控制寄存器0(地址: 1FH)

	bit7		-					bit0
复位值 0000 0000	ADLR	T2CCRON	CHS3	CHS2	CHS1	CHS0	START	ADEN
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ADLR: A/D 转换结果输出格式选择位

ADLR=1 结果右对齐

ADLR=0 结果左对齐

T2CCRON: T2 触发 AD 启动使能位

T2CCRON=1 使能 T2 触发 AD 启动 T2CCRON=0 禁止 T2 触发 AD 启动

CHS<3:0>: 模拟通道选择位

CHS<3:0>=0000 通道 00 (AN0) CHS<3:0>=0001 通道 01 (AN1) CHS<3:0>=0010 通道 02 (AN2) CHS<3:0>=0011 通道 03 (AN3) CHS<3:0>=0100 通道 04 (AN4) CHS<3:0>=0101 通道 05 (AN5) CHS<3:0>=0110 通道 06 (AN6) CHS<3:0>=0111 通道 07 (AN7) CHS<3:0>=1101 OP20UT

CHS $\langle 3:0 \rangle = 1110$ VREOUT (1. 9V) $^{(1)}$

START: A/D 转换状态位

START=1 A/D 转换正在进行,该位置 1 将启动 A/D 转换,在转换结束后该位

将被硬件自动清 0。

START=0 A/D 转换结束或者未进行

ADEN: A/D 转换使能位

ADEN=1 A/D 转换模块正在工作

ADEN=0 A/D 转换器关闭且不消耗工作电流

注 (1): 如果內部使用参考电压 VREOUT 时 (用作 AD 参考电压和比较器参考电压),不需要将寄存器 PCTL 的 VREOE (PCTL. 6) 位置 1。

7.1.2 AD控制寄存器 1(ADCCTL1)

如寄存器 7.2 所示, AD 控制寄存器 1包含 AD 时钟选择和参考电压选择位。

寄存器7.2: ADCCTL1: A/D控制寄存器1(地址: 3FH)

复片店 .	bit7							bit0
复位值 -000 00	-	ADCS2	ADCS1	ADCS0	VCFG1	VCFG0	1	-
•	U	R/W	R/W	R/W	R/W	R/W	U	U

ADCS<2:0>: A/D 转换时钟选择位

ADCS<2:0>=000 Fad=Fosc/2 ADCS<2:0>=001 Fad=Fosc/8 ADCS<2:0>=010 Fad=Fosc/32

ADCS<2:0>=x11 Fad=内部专用 500Khz 时钟

ADCS<2:0>=100 Fad=Fosc/4 ADCS<2:0>=101 Fad=Fosc/16 ADCS<2:0>=110 Fad=Fosc/64

VCFG<1:0>: A/D 转换参考电压选择位

VCFG<1:0>=0X VDD 作为 ADC 参考电压 VCFG<1:0>=10 ADVRIN 作为 ADC 参考电压

VCFG<1:0>=11 VREOUT 作为 ADC 参考电压 (1)

注(1): 如果內部使用参考电压 VREOUT 时(用作 AD 参考电压和比较器参考电压),不需要将寄存器 PCTL 的 VREOE(PCTL. 6)位置 1。

7.1.3 模拟/数字口选择寄存器(ANSEL)

如寄存器 7.3 所示,ANSEL 寄存器用于将 A/D 转换输入引脚设置为模拟口,通过将 ANSEL 某位置 1,将对应的引脚设置为模拟口,清 0 设置为数字 I/O 口。

寄存器7.3: ANSEL: 模拟/数字口设置寄存器(地址: 31H)

	bit7							bit0
复位值 0000 0000	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
•	R/W							

ANS<7:0>: 引脚 AN7~AN0 分别配置为模拟或数字 I/0 口的控制位

KungFu®

KF8F213 数据手册 V1.5

ANSx=1 将对应引脚配置为模拟口

ANSx=0 将对应引脚配置为数字 I/0 口或者特殊功能引脚

7.2 通道的选择

如图 7.1 所示, KF8F213 中的 A/D 转换模块的输入可以选择 10 路, 其中 8 路来自外部的模拟信号, 剩下 2 路为运放 2 的输出 OP2OUT 和内部 1.9V 参考电压 VREOUT。通过寄存器 ADCCTLO (如寄存器 7.1 所示)进行通道的选择。

7.3 模拟输入口的配置

当选择 ANO~AN7 作为 A/D 转换的输入时,需要将对应的引脚配置为模拟输入口。通过将寄存器 ANSEL 的某位置 1 将对应的引脚配置为模拟口,然后把寄存器 TRO(或 TR1)的对应位置 1 把该引脚配置为输入口,此时该引脚被设置为模拟输入口。

注:如果某引脚被配置为模拟输入口,将会自动禁止有效地数字I/0、上拉电阻和电平变化中断。

7.4 A/D转换参考电压的选择

KF8F213 中 ADC 模块的参考电压可以选择 3 种分别为: 电源电压 (VDD)、外部参考电压 (ADVRIN)和内部 1.9V 参考电压 VREOUT。通过寄存器 ADCCTL1 (如寄存器 2 所示)的 VCFG<1:0> 设置参考电压。

VREOUT 参考电压

KF8F213 内部有一个参考电压模块,使能该功能后,通过引脚 PO. 4/VREOUT 可输出稳定的 1.9V 参考电压 (VREOE=1),精度为 1%。如果内部使用参考电压 VREOUT 时(用作 AD 参考电压和比较器参考电压),不需要将寄存器 PCTL 的 VREOE (PCTL. 6) 位置 1。

参考电压模块通过电源控制寄存器的高两位进行控制(PCTL. <7:6>),将 VREEN(PCTL. 7)位置 1 将打开参考电压模块,此时的 1.9V 参考电压可供芯片内部使用,再将 VREOE(PCTL. 6)位置 1 可使能内部 1.9V 参考电压输出,相应的引脚输出 1.9V 参考电压。

用户如果要用到内部 1.9V 参考电压,需先读出 7FDH 地址的参考电压校准值(例 7.1),送到 VRECAL 寄存器,然后根据需要设置 PCTL 中的 VREEN 和 VREOE 位。

例 7.1:

CALL 0X7FD MOV VRECAL, RO

7.5 转换时钟的选择

完成一次 A/D 转换所需要的时间为 11Tad。如寄存器 7.2 所示,可通过软件方式设置 ADCS 位 (ADCCTL1<6:4>) 选择转换时钟源,共有 7 种时钟选项。Tad 和 Fad 分别为 A/D 转换时钟周期和频率。

为保证 A/D 转换的正确进行,所选择的 A/D 转换时钟周期(Tad)典型值应在 1us 左右。

7.6 输出格式

KF8F213 中 A/D 转换的结果为 10 位二进制数,A/D 转换结果寄存器为两个 8 位的寄存器。用户可以通过 ADLR (ADCCTLO. 7) 设置转换结果输出格式,ADLR 置 1 输出为右对齐,ADLR 清 0 输出为左对齐。如图 7.2 所示。

图 7.2 ADC 结构对齐方式

KungFu®

KF8F213 数据手册 V1.5

7.7 A/D转换的启动和完成

先将 ADEN 位置 1, 然后将 START 位 (ADCCR0. 1) 置 1 即可启动 A/D 转换。当转换结束时,A/D 模块将:

- 1. 将 START 位清 0
- 2. 将 ADIF 位置 1
- 3. 如果使能 A/D 转换中断,则响应中断

可以采取在程序中将 START 位清 0 的方法中止当前的转换操作。在 A/D 转换采样全部结束之前,ADCDATAH: ADCDATAL 寄存器中的内容将不会被更新,而是仍旧保留前一次的转换结果。A/D 转换被中止后,需至少等待 2Tad 的延时时间后才能开始下一次数据采集。

7.8 A/D 工作在休眠模式

A/D 转换器模块可以在休眠模式下工作。这需要把 AD 的时钟源设定为 A/D 专用的内部振荡器。 当选择了专用内部时钟源后,A/D 需等待一个指令周期后才能启动转换操作,转换结束后,START 位将被清 0,且转换结果将被载入 ADCDATAH: ADCDATAL 寄存器。如果 A/D 中断被使能,器件将从休眠状态唤醒。如果 A/D 中断被禁止, A/D 转换模块在转换完成后被关闭。

如果 A/D 时钟源为不是 AD 专用内部振荡器,执行 IDLE 指令将导致当前转换操作中止,并使 A/D 模块关闭。

7.9 复位的影响

器件复位将强制所有寄存器进入复位状态。因此, A/D 模块将被关闭,任何进行中的转换操作被中止。ADCDATAH: ADCDATAL 寄存器中的值不变。

7.10使用A/D转换器的设置

启动 A/D 转换器时的设置:

- 1. 选择 A/D 采样输入通道,设置 A/D 转换结果对齐方式;
- 2. 将对应的 A/D 采样输入通道设置为模拟输入模式;
- 3. 选择参考电压和 A/D 采样时钟频率, 打开 A/D 转换;
- 4. 如果采用中断方式, 使能 A/D 转换中断;
- 5. 等待 AD 所需的采集时间:
- 6. 启动 A/D 转换:
- 7. 查询 AD 是否转换完成 (START=0) 或进入 AD 中断;
- 8. 读取 AD 转换结果。

8 PWM模块

KF8F213 单片机具有 2 路 8 位的 PWM 模块 PWM1/PWM2 和 1 路 10 位增强型 PWM3 模块。其中 PWM1 和 PWM2 结构相同。PWM3 模块有 4 个输出引脚、带有死区延时、自动关断、自动重启等功能。

8.1 PWM1/2 模块

启动 PWM 后,在对应的 PWM1(或 PWM2)引脚输出 PWM 脉冲。PWM 脉冲的频率和占空比通过 PP1(或 PP2)和 PWM1L(或 PWM2L)设置。

图 8.1 显示了 PWM 逻辑框图。其中 PP1 为 PWM1 模块的周期寄存器,PWM1L 为 PWM1 模块占空比设置寄存器,使用 PWM 时需要将定时器 1 配置给 PWM 做定时用,其中 T1L、T1IE 和 T1IF分配给 PWM1, T1H 分配给 PWM2。启动 PWM1 后,当 T1L 计数值和 PP1 相等时,P1.0 引脚被置1,此时 T1L 被清0,重新开始计数,当 T1L 的计数值和 PWM1L 相等时,P1.0 引脚清0(基如图 8.2 所示)。改变 PP1 和 PWM1L 的值可产生不同的 PWM1 周期和 PWM1 占空比。PWM2 模块的工作原理和 PWM1 模块完全一致。

图 8.1 PWM1/2 逻辑框图

图 8.2 PWM1 输出波形图

8.1.1 PWM1/2 相关的寄存器

表 8.1 与 PWM 相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
OBH	INTCTL	AIE	PUIE	TOIE	INTOIE	POIE	TOIF	INT0IF	POIF
2CH	EIE1	-	ADIE	INT2IE	INT1IE	C1IE	PWM2IE	T2IE	T1IE
ОСН	EIF1	1	ADIF	INT2IF	INT1IF	C1IF	PWM2IF	T2IF	T1IF
OEH	T1L				定时器	1低8位			
0FH	T1H				定时器	1高8位			
13H	PWM1L				PWM1 占空	比寄存器	器		
14H	PWM1H			PWM	[1 寄存器(与用户是	无关)		
16H	PP1				PWM1 周昇	朝寄存器			
32H	PP2				PWM2 周其	朝寄存器			
33H	PWM2L				PWM2 占空	比寄存器	器		
34H	PWM2H			PWM	[2 寄存器(与用户是	无关)		
10H	T1CTL	-	T1GC	T1CKS1	T1CKS0	-	T1SY	T1CS	T10N
15H	PWMCTL	INT2SE	INT1SE	_	_	_	-	PWM20N	PWM10N
27H	TR1	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0

8.1.2 PWM控制寄存器

PWM 控制寄存器包括 PWM1/2 的启动控制位和 INT1/2 触发脉冲边沿选择。

寄存器8.1: PWMCTL: PWM启动控制寄存器(地址: 15H)

有片片 .	bit7							bit0	_
复位值 1100	INT2SE	INT1SE	-	-	-	-	PWM20N	PWM10N	
•	R/W	R/W	U	U	U	U	R/W	R/W	

INT2SE: INT2 触发脉冲边沿选择位

INT2SE=1 上升沿触发

INT2SE=0 下降沿触发

INT1SE: INT1 触发脉冲边沿选择位

INT1SE=1 上升沿触发

INT1SE=0 下降沿触发

PWM2ON: PWM2 启动控制位

PWM20N=1 启动 PWM2

PWM2ON=0 禁止PWM2

PWM10N: PWM1 启动控制位

PWM10N=1 启动 PWM1 PWM10N=0 禁止 PWM1

8.1.3 PWM1/2 周期

PWM 周期通过 PP1/2 (地址: 16H/32H, 如寄存器 10.2 所示)进行设置, PP1/2 是一个 8 位的寄存器,其值可设置为0~255。PWM周期通过式8.1进行计算。

R/W

R/W

R/W

R/W

R/W

PWM1/2 占空比 8.1.4

R/W

R/W

PWM 占空比通过 PWM1/2L(地址: 13H/33H, 如寄存器 8.3 所示)设置, 可写入一个 8 位的 值到 PWM1/2L 来设置占空比。脉冲宽度和占空比通过式 8.2 和式 8.3 计算:

8.1.5 PWM1/2 分辨率

分辨率决定在给定周期内的占空比数。例如,10 位分辨率将产生 1024 个离散的占空比,8 位分辨率产生 256 个离散的占空比。KF8F213 中当 PP1/2 为 255 时,PWM 的最大分辨率为8 位。分辨率的计算公式如式8.4 所示。

$$\bigstar$$
 式8.4: 分辨率= $\frac{\text{Log}[(PPx+1)]}{\log 2}$ 位 (x=1、2)

8.1.6 PWM1/2 中断

PWM2 有一个专门的中断使能位 PWM2IE 和中断标志位 PWM2IF, 当启动 PWM2 后, 会对 PWM2IF 产生影响, 而 PWM1 和定时器 T1 共用中断使能位 T1IE 和中断标志位 T1IF。

在 PWM1/2 启用后,当 T1L/H 的计数值与 PWM1L/2L 的值匹配后,其对应的输出引脚变为低电平。当 T1L/H 的计数值与 PP1/2 的值匹配后,其对应的输出引脚变为高电平,同时将 T1L/H 清 0,将 T1IF/PWM2IF 置 1,如果允许 T1 或 PWM2 中断,将会转入对应的中断子程序中。

8.1.7 休眠模式下的操作

在休眠模式下,T1 寄存器将不会递增并且模块的状态将保持不变。PWM1/2 输出引脚电平保持不变(如果输出为高电平,则保持高电平,如果为低电平保持低电平)。当器件被唤醒时,T1 将从原来的状态继续工作。

8.1.8 系统时钟频率的改变

PWM1/2 的输出频率是通过 T1L/H 定时产生的,而定时器的计数时钟为系统时钟。因此系统时钟频率发生任何改变都会使 PWM 频率发生变化。

8.1.9 复位的影响

任何复位都会将所有端口强制为输入模式,并强制 PWM1/2 使用的寄存器进入其复位状态。

8.1.10 PWM1/2 使用方法

PWM1/2 工作的设置应按照以下步骤:

- 1、 将 TR10 或 TR11 置 1,禁止引脚 P1. 0/PWM1 或 P1. 1/PWM2 的输出驱动器。
- 2、 赋 PP1 或 PP2 寄存器的初值以设置 PWM1 或 PWM2 的 PWM 周期。
- 3、 赋 PWM1L 或 PWM2L 寄存器的初值以设置 PWM1 或 PWM2 的占空比。
- 4、 配置并启动定时器/计数器 T1:
 - 配置 T1CTL 寄存器的 T1CKS1 和 T1CKS0 以选择 T1 的预分频比;
 - 将 T1L/H 清 0;
 - 将 T1CTL 寄存器的 T10N 位置 1 以启动 T1。
- 5、 将 PWMCTL 寄存器的 PWM1 ON 或 PWM2 ON 置 1 以启动 PWM1 或 PWM2。
- 6、 将 TR10 或 TR11 清 0 使能引脚 P1. 0/PWM1 或 P1. 1/PWM2 的输出驱动器。

8.2 PWM3

PWM3 与 PWM1/2 不同: 带有死区控制延时功能,占空比设置寄存器为 10 位,PWM3 最多可在 4 个不同的引脚(P3A、P3B、P3C 和 P3D)输出 PWM 信号,分辨率最高 10 位;PWM3 有 4 种输出模式:单输出、半桥输出、全桥正向输出模式和全桥反向输出模式,通过寄存器PWM3CTL0 中的 P3M<1:0>位选择 4 种输出模式之一(如表 8.3),通过 PWM3M<1:0>位设置各引脚的有效电平(可设置为高电平有效和低电平有效)。PWM3 的原理框图如图 8.3 所示。

图 8.3 PWM3 原理框图

表 8.3 PWM3 输出模式控制及有效引脚

PWM3 输出模式	P3M<1:0>	有效引脚
单输出模式	00	默认将 P3A 配置为 PWM 输出, P3B、P3C 和 P3D 配置为端口引脚; 可通过 PATRCTL 寄存器中的 STR <d:a>各位置 1, 分别将 P3A、P3B、P3C 和 P3D 配置为 PWM 输出; PWM3 最多可在 4 个引脚输出 PWM 信号。</d:a>
半桥输出模式	10	P3A 和 P3B 配置为调制输出, P3C 和 P3D 配置为端口引脚, 半桥输出模式带有死区控制功能
全桥正向输出模式	01	P3D 配置为 PWM 调制输出; P3A 为有效电平; P3B 和 P3C 为 无效电平
全桥反向输出模式	11	P3B 配置为 PWM 调制输出; P3C 为有效电平, P3A 和 P3D 为 无效电平

注: 各种输出模式的详细介绍请参考本节相应部分。

8.2.1 PWM3 相关寄存器

表 8.3 与 PWM3 相关的寄存器

	A - 11112 HA 14 14 HA									
地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
OBH	INTCTL	AIE	PUIE	TOIE	INTOIE	POIE	TOIF	INT0IF	POIF	
11H	T2	T1 低 8 化	T1 低 8 位							
12H	T2CTL	_	T2CKBS	T2CKBS	T2CKBS	T2CKBS	T20N	T2CKPS	T2CKPS0	
			3	2	1	0		1		
52H	PP3	PWM3 周刻	朝设置寄存	存器						
55H	PWM3L	PWM3 占含	PWM3 占空比设置寄存器							
56H	PWM3H	PWM3 寄	存器							
57H	PWM3CTL0	P3M1	P3M0	PDT1	PDT0	P30N1	P30N0	PWM3M1	PWM3M0	
5BH	PWM3CTL1	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	
5CH	P3ASCTL	P3ASE	P3ASS2	P3ASS1	P3ASS0	P3SSAC	P3SSAC0	P3SSBD	P3SSBD0	
						1		1		
5DH	PATRCTL	_	_	_	STRSYN	STREND	STRENC	STRENB	STRENA	
					С					

8.2.2 PWM3CTL0 寄存器

寄存器8.4: PWM3CTL0: PWM3控制寄存器0(地址: 57H)

有 片 片	bit7							bit0
复位值 0000 0000	P3M1	P3M0	PDT1	PDT0	P30N1	P30N0	PWM3M1	PWM3M0
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

P3M<1:0>: PWM3 输出配置位

如果 P30N<1:0>=00、01 或 10, P3A、P3B、P3C 和 P3D 为端口引脚

如果 P30N<1:0>=11:

P3M<1:0>=00: 单输出模式; 默认 P3A 配置为 PWM 输出, P3B、P3C 和 P3D 为端

口引脚;可通过 PATRCTL 寄存器中的 STR<A:D>各位置 1,分别将 P3A、P3B、P3C 和 P3D 配置为 PWM 输出; PWM3 最多可提供 4 路

PWM 输出

P3M<1:0>=01: 全桥正向输出模式; P3D 配置为 PWM 调制输出, P3A 为有效电

平, P3B和P3C为无效电平

P3M<1:0>=10: 半桥输出模式; P3A 和 P3B 配置为调制输出; P3C 和 P3D 被分配

为端口引脚, 此模式带有死区控制功能

P3M<1:0>=11: 全桥反向输出模式; P3B 配置为调制输出; P3C 为有效电平; P3A

和 P3D 为无效电平

PDT1<1:0>: PWM3 十位占空比的低 2 位, 高 8 位由寄存器 PWM3CTL0 提供

P30N<1:0>: PWM3 开关位

P30N<1:0>=11: 打开 PWM3

P30N<1:0>=00、01 或 10: 关闭 PWM3

PWM3M<1:0>: PWM3 输出有效电平设置位

PWM3M<1:0>=00: P3A、P3B、P3C 和 P3D 均为高电平有效

PWM3M<1:0>=01: P3A 和 P3C 为高电平有效; P3B 和 P3D 为低电平有效 PWM3M<1:0>=10: P3A 和 P3C 为低电平有效; P3B 和 P3D 为高电平有效

PWM3M<1:0>=11: P3A、P3B、P3C 和 P3D 均为低电平有效

8.2.3 PWM3CTL1 寄存器

寄存器8.5: PWM3CTL1: PWM3控制寄存器1(地址: 5BH)

有片店 .	bit7							bit0	
复位值 0000 0000	PRSEN	PDC6	PDC5	PDC5	PDC3	PDC2	PDC1	PDC0	
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

PRSEN: PWM 重启使能位

PRSEN=1: 自动关闭时,一旦关闭事件消失,P3ASE 位将自动清零,PWM 自动重

启

PRSEN=0: 自动关闭时, P3ASE 由软件清零, 以重启 PWM

PDC<6:0>: PWM 死区延时时间设置位,用于设置死区延时的时间

8.2.4 P3ASCTL寄存器

寄存器8.6: P3ASCTL: PWM3自动关闭控制寄存器(地址: 5CH)

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
复位值 0000 0000	P3ASE	P3ASS2	P3ASS1	P3ASS0	P3SSAC1	P3SSAC0	P3SSBD1	P3SSBD0]
与) 上 上	b1t7							bit0	

P3ASE: 自动关闭事件状态位

P3ASE=1: 发生了关闭事件; 四路输出为关闭状态

P3ASE=0: 四路输出正常工作

P3ASS<2:0>: 自动关闭源选择位

000 =禁止自动关断

001 =比较器 C1 输出高电平

100 =INT 引脚上的 V_⊥

101 =INT 引脚上的 V₁₁ 或比较器 C1 输出高电平

其它 =未使用

P3SSAC<1:0>: 引脚 P3A 和 P3C 关闭状态控制位

P3SSAC<1:0>=00: 驱动引脚 P3A 和 P3C 为 0 P3SSAC<1:0>=01: 驱动引脚 P3A 和 P3C 为 1 P3SSAC<1:0>=1x: 引脚 P3A 和 P3C 为三态

P3SSBD<1:0>: 引脚 P3B 和 P3D 关闭状态控制位

P3SSBD<1:0>=00: 驱动引脚 P3B 和 P3D 为 0

P3SSBD<1:0>=01: 驱动引脚 P3B 和 P3D 为 1 P3SSBD<1:0>=1x: 引脚 P3B 和 P3D 为三态

8.2.5 PATRCTL寄存器

寄存器8.7: PATRCTL: 脉冲转向控制寄存器(地址: 5DH)

有 片 店	bit7							bit0
复位值 0 0001	-	_	-	STRSYNC	STREND	STRENC	STRENB	STRENA
•	U	U	U	R/W	R/W	R/W	R/W	R/W

STRSYNC: 转向同步位

STRSYNC=1: 在下一个 PWM 周期发生输出转向更新

STRSYNC=0: 在指令周期边界的开始发生输出转向更新

STREND: 转向使能位 D

STREND=1: P3D 引脚输出 PWM 波形, 其极性由 PWM3M<1:0>控制

STREND=0: P3D 引脚被分配为端口引脚

STRENC: 转向使能位 C

STRENC=1: P3C 引脚输出 PWM 波形, 其极性由 PWM3M<1:0>控制

STRENC=0: P3C 引脚被分配为端口引脚

STRENB: 转向使能位 B

STRENB=1: P3B 引脚输出 PWM 波形, 其极性由 PWM3M<1:0>控制

STRENB=0: P3B 引脚被分配为端口引脚

STRENA: 转向使能位 A

STRENA=1: P3A 引脚输出 PWM 波形, 其极性由 PWM3M<1:0>控制

STRENA=0: P3A 引脚被分配为端口引脚

8.2.6 PWM3 的周期、占空比及分辨率

8.2.6.1 PWM3 周期

PWM3 的周期过 8 位的寄存器 PP3 (地址: 52H)进行设置, 其值可设置为 $0\sim255$, PWM3 的周期通过式 8.5 进行计算。

★ 式8.5: PWM周期=(PP3+1) • 4 • Tosc • (T2预分频比)

8.2.6.2 PWM3 占空比

PWM3 占空比设置寄存器为 10 位,通过寄存器 PWM3L(地址:55H)和 PWM3CTL0的 PDT<1:0〉位进行设置,PWM3L为占空比的高 8 位,PDT<1:0〉为低两位。脉冲宽度和占空比通过式 8.6和式 8.7 计算:

★ 式8.6: 脉冲宽度=(PWM3L:PWM3CTL0<5:4>) • Tosc • (T2预分频比)

★ 式8.7: 占空比= <u>脉冲宽度</u> = <u>PWM3L:PWM3CTL0<5:4></u> 4(PP3+1)

8.2.6.3 PWM3 分辨率

中当 PP3 为 255 时, PWM3 的最大分辨率为 10 位。分辨率的计算公式如式 8.8 所示。

★ 式8.8: 分辨率= $\frac{\text{Log}[4(PP3+1)]}{\log 2}$ 位

8.2.6.4 PWM3 中断

当 PWM3 调制输出满一个周期时,将中断标志位 T2IF 置一,如果 PWM3 中断使能,且 AIE(全局中断允许位)和 PUIE(外设中断允许位)置一,程序将相应中断。

8.2.7 单输出模式

通过将寄存器 PWM3CTL0 中的 P3M<1:0>位设置为 00,选择单输出模式,在此模式下,默认从 P3A 引脚输出 PWM 信号, P3B、P3C 和 P3D 引脚为通用端口引脚。

在使能相应的 PWM3 引脚时,应将对应的 TRx. x 位清零,以将此引脚设置为输出模式;如果相应引脚为模拟数字共用引脚,应将该引脚设置为通用数字 I/0 口。

可通过设置寄存器 PATRCTL(参考寄存器 8.7)的 STREN<D:A>位,使能或禁止 PWM3 的 4路输出, PWM3 使用单输出模式时,最多可同时在 4个引脚输出同一个 PWM 信号。如图 8.4 所示,在单输出模式下,将 P3A 一路设置为 PWM 输出和 P3A 和 P3B 两路同时设置为 PWM 输出的示例,其它设置情况与此类似。

图 8.4 PWM3 的输出示例

在单输出模式过程中,如果开始时某路输出 PWM 信号无效(为通用端口),现在要将其设置为有效 PWM 输出,此时可通过寄存器 PATRCTL 中的 STRSYNC 位进行设置引脚输出切换时是否与指令同步。如图 8.5 所示,STRSYNC=1 时,对应引脚 P3x 输出的 PWM 信号在 STRENx 置一后且的 PWM3 输出信号周期结束时输出; STRSYNC=0 时,对应引脚 P3x 输出的 PWM 信号在STRENx 置一后立即输出;

图 8.5 单输出模式 PWM 输出引脚切换

8.2.8 半桥输出模式

通过将寄存器 PWM3CTL0 的 P3M<1:0>位设置为 10,把 PWM3 设置为半桥输出模式。在此模式下,P3A 和 P3B 被配置为调制输出,来驱动推挽式负载,P3C 和 P3D 被配置为通用端口。PWM 输出信号在 P3A 引脚上输出,而互补的 PWM 输出信号在 P3B 引脚上输出,如图 8.6 所示。

图 8.6 半桥输出模式输出信号示例

半桥输出模式可用于控制半桥和全桥控制电路,如图 8.7 所示,为半桥输出模式应用于半桥桥和全桥控制电路的示例。半桥输出模式应用于两个开关管的半桥控制电路,或使用 2个 PWM 信号来控制 4个开关管的全桥控制电路。

图 8.7 半桥输出模式应用举例

在使用半桥输出模式时,需将 P3A 和 P3B 引脚对应的方向控制位 TR1. x 清零,设置为输出,将对应 ANSEx 位清零,设置为数字 I/O 口。

半桥输出模式具有可编程的死区延时功能,由于外部电路种的开关管等元件导通和截止时间存在差异,可用来防止在半桥驱动电路中产生直通电流,损坏相关电路。PWM3CTL1 寄存器中 PDC<6:0> 位的值用来设置死区延时时间。如果该值大于脉冲宽度,在整个周期内对应的输出将保持无效。

8.2.8.1死区延时

如图 8.7(a)、8.8 所示,在半桥输出模式应用中,P3A 和P3B 一直以 PWM 频率调制两个开关管,通常开关管的截止比导通需要更多的时间。如果 QA 和 QB 同时导通,两个管子可能会在一段很短的时间内都处于导通状态,在这很短的时间内,将会产生很大的电流流过两个管子,从而可能导致电路损坏。直到一个管子完全截止才会退出此状态(图 8.13(a)中的(1)、(2)、(3)和(4)处所示)。

为了避免开关期间产生这种具有破坏性的直通电流,可使其中一个管子关闭后再打开另一个管子。在半桥输出模式下,使用一个可编程死区延时模块,来避免产生的直通电流破坏电路。如图 8.8 所示,该延时在 PWM3 信号从非有效电平到有效电平转换时发生。延时时间通过寄存器 PWM3CTL1 的低 7 位进行设置。延时时间计数公式如式 8.9 所示。

★ 式8.9: 延时时间= PDC<6:0>・4 • Tosc

图 8.8 带死区控制和不带死区控制时的信号示例

8.2.9 全桥输出模式

全桥输出模式有全桥正向输出模式和全桥反向输出模式两种。通过将寄存器 PWM3CTL0 的 P3M<1:0>设置为 01,把 PWM3 设置为全桥正向输出模式;将其设置为 11,把 PWM3 设置为全桥反向输出模式。

在全桥输出模式下,P3A、P3B、P3C和P3D四个引脚都用作输出。将其设置为全桥正向模式时,引脚P3A被设置为有效电平,引脚P3D为PWM调制信号,P3B和P3C为无效电平,图 8.9(a)和8.10(a)为全桥正向输出模式引脚信号示例。将其设置为全桥反向输出模式时,P3C被驱动为有效电平,引脚P3B为PWM调制信号,而P3A和P3D为无效电平,图 8.9(a)和8.10(b)为全桥反向输出模式引脚信号示例。图 8.11给出了全桥输出模式的应用电路示例。

8.9 全桥输出模式引脚信号示例(高电平有效)

8.10 全桥输出模式引脚信号示例(低电平有效)

图 8.11 全桥输出模式应用电路示例

在使用全桥输出模式时,需将 P3A、P3B、P3C 和 P3D 引脚对应的方向控制位 TR1x 清零,设置为输出,将对应 ANSEx 位清零,设置为数字 I/O 口。

从全桥输出模式引脚信号波形以及应用电路示例可以看出:正向模式时,调制输出仅能

控制一组开关管,假设此时流经负载的电流为正,则反向模式控制另一组开关管,使流经负载的电流为负。因此在使用全桥输出模式时,可将正向模式应与反向模式配合使用,使流经负载的电流方向改变。

通过将寄存器 PWM3CTL0 的 P3M<1:0>位设置为 01(正向模式)和 11(反向模式)来改变流经负载的电流。如图 8.12 所示,从一种模式模式切换到另一种模式时,在前一种模式最后一个周期结束之前,P3B(或 P3D)被切换到无效状态,P3A(或 P3C)被切换到相反的状态。图中时间 $T=1/Fosc \bullet T2$ 预分频值。

图 8.12 全桥正向、反向输出模式转换示例(高电平有效)

全桥输出模式下没有死区延时功能。通常在此模式中,任何时间只调制一对输出,因此不会导致电路产生直通电流,所以不需要死区延时。然而,当 PWM 的占空比接近百分之一百,且开关管导通时间小于截止时间时,将会导致电路产生直通电流。图 8.13 为此情况下各处信号示例。

图 8.13 接近满占空比时换向时信号示例

图 8.13 中在 t0 时刻 P3A 和 P3D 变为无效, P3C 为有效。QA、QB、QC 和 QD 分别为四路 PWM3 输出控制的开关管,QAoff 和 QDoff 为开关管的截止延时时间,QBon 和 QCon 为导通延

芯旺微电子 - 77/119 - Chip**○N**

时时间,由于管子导通和截止时间的差异,在第一次换向时,开关管 QC 和 QD 产生直通电流,持续时间为 T1,在后面一次换向时 QA 和 QB 产生直通电流,持续时间为 T2。

为了消除这种问题,可将换向前一个PWM信号周期的占空比调小,或者选用开关速度快的驱动电路,或者其它方法。

8.2.10 自动关断和自动重启模式

8.2.10.1 自动关断模式

PWM3 模块具有自动关断功能。如图 8.14 所示,为自动关断模式的原理框图。使能自动关断功能后,在外部关断事件发生时,该功能自动禁止 PWM 输出,然后将 P3A、P3B、P3C 和 P3D 四个引脚输出电平置于其预定义的状态。此模式用于防止 PWM 破坏应用电路。

自动关断模式具有 3 个关断源: INTO 引脚的逻辑低电平、比较器 1 输出高电平和在软件中直接将 P3ASE 位置一。关断源触发关断的信号是高电平或低电平,而不是上升沿或下降沿,只要关断源的关断电平存在,自动关断状态将保持。

图 8.14 自动关断模式原理框图

通过寄存器 P3ASCTL 的 P3ASS<2:0>位选择自动关断源。将 P3ASS<2:0>位设置为 000 时, 关闭自动关断功能。

寄存器 P3ASCTL (寄存器 8.6)中的 P3ASE 位指示关断的状态。如果该位为 0,表示 PWM3 的四个引脚输出正常的 PWM 信号,如果该位为 1,表示 PWM 的四路输出处于关断状态。

发生关断事件时,将会:

- ① P3ASE 位被置 1。直到被软件清零或发生自动重启才会将该位清零。
- ② 使能的四个 PWM 引脚将被置于关断电平状态。

关断时,四路输出电平的状态由寄存器 P3ASCTL 的 P3SSAC<1:0>和 P3SSBD<1:0>位决定。通过设定可将输出引脚置为: 三态、高电平和低电平三种状态。其中 P3A 和 P3C 的状态由 P3SSAC<1:0>设置, P3B 和 P3D 的状态由 P3SSBD<1:0>设置。

打开自动关断功能后,如果关断源产生关断事件,则 P3ASE 标志位被硬件置 1,四路输出被驱动为关断模式电平;关断源清除关断事件后,P3ASE 仍然为 1(如果 PRSEN=0),四路输出仍然为关断模式电平,直到将 P3ASE 位清零,PWM 重启。

8.2.10.2 自动重启模式

可将 PWM3 配置为一旦清除自动关断条件就自动重启 PWM。通过将 PWM3CTL1 寄存器中的 PRSEN 位置 1 使能自动重启。

如果使能自动重启,只要自动关断条件有效,P3ASE 位就将保持置 1。当清除自动关闭条件时,将通过硬件将P3ASE 位清零,并且将恢复常规操作。

如图 8.15 所示,在图(a)中,PRSEN=0,自动重启模式关闭,通过软件将P3ASE标志位清零,PWM 才会重启。在图(b)中,PRSEN=1,自动重启模式被打开,关断事件被清除后,P3ASE标志位由硬件自动清零,然后重启PWM。

图 8.15 自动重启和软件重启 PWM 示例

9 运算放大器模块

KF8F213 具有 1 个运算放大器,内部框图如图 9.1 所示。

图 9.1 运放内部框图

表 9.1 与运放相关的寄存器

地址	寄存器	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
1BH	AMPCTL	1	_	_	1	_	_	AMP20N	1
1DH	ANSEH	-	_	-	_	ANS11	ANS10	ANS9	-
26H	TR2	TR27	TR26	TR25	TR24	-	-	=	=

9.1 运放控制寄存器

运放模块通过与外部元件连接实现其放大等作用。如寄存器 9.1 所示为运放控制寄存器, AMP20N 为运放使能位,置1使能运放,清0关闭运放。

寄存器9.1: AMPCTL: 运放控制寄存器(1BH)

AMP20N: 运放使能位

AMP20N=1 使能运放 2 AMP20N=0 禁止运放 2

9.2 运放的使用

使用运放时软件的设置:

- 1、将对应的引脚设置为模拟输入;
- 2、打开运放(AMP20N =1)。

注: 1、运放输出端也要设为模拟输入口

2、休眠模式下运放被强制关闭不能使用

10 模拟比较器模块.

KF8F213 含有 1 路模拟比较器,其中模拟比较器的正端输入为 10 端口,负端输入可选择 10 端口、1.9V 的 VREOUT 或内部的 1/2VDD。

10.1模拟比较器原理

图 10.1 模拟比较器模块

10.2 CMCTLO 寄存器

寄存器10.1:CMCTL0: CMCTL0控制寄存器(地址: 19H)

C10UT: 比较器 1 输出

1 = C1IN+ > C1IN-

0 = C1IN+ < C1IN-

C10E: 比较器 CMP1 输出使能位

1 = CMP1 输出到对应引脚

0 = CMP1 不输出到对应引脚

10.3 CMCTL1 寄存器

寄存器10.2:CMCTL1: CMCTL1控制寄存器(地址: 1AH)

有片店 .	bit7							bit0			
复位值 00	-	_	-	_	_	_	C1M1	C1MO			
•	U	U	U	U	U	U	R/W	R/W			

C1M[1:0]: 模拟比较器 1 的负输入端选择位

00 = 模拟比较器 1 关断

01 = P0.1 作为 CMP1 的负端输入

10 = VREOUT 的输出作为 CMP1 的负端输入

11 = 1/2VDD 作为 CMP1 的负端输入

比较器 CMP1 在读 CMCTLO 时产生 C1IF 的清 0 信号。

10.4比较器的用法

- 1、配置 I/O 口。需要作为输入的 I/O 端口如果有模拟输入功能则设为模拟输入口,否则只用设为输入口,需要作为输出的 I/O 端口只用设为输出口;
- 2、配置 CMCTLO 寄存器。选择是否输出到对应引脚;
- 3、配置 CMCTL1 寄存器。选择输入模式。

11 复位

KF8F213 具有:上电复位(POR)、WDT 复位、RST 复位和欠压检测复位(LVR)四种复位方式。

有些寄存器的状态在任何复位条件下都不会受到影响,上电复位时它们的状态不定,而 在其它复位发生时其状态将保持不变。其它大多数寄存器在复位事件发生时将被复位成"复 位状态"。图 11.1 给出了片内复位电路的简化结构方框图。

图 11.1 片内复位电路简化框图

注: 上电延时定时器只对上电复位(POR)和欠压复位(LVR)有效

11.1 电源控制状态寄存器(PCTL)

如寄存器 11.1 所示, \overline{LVR} 位的状态在单片机上电复位时是不确定的。如果用户在使用中要用到该位,在程序初始化部分需将其置 1,随后如果有复位发生且 \overline{LVR} =0,则表示发生过欠压检测复位。 \overline{LVR} 状态位是"无关"位,如果欠压检测电路被关闭(通过设定配置字中的 \overline{LVR} 位和 PCTL 中的 SLVREN 位), \overline{LVR} 状态位是不可预知的。 \overline{POR} 是上电复位状态位,该位在上电复位时被清 0,在其它情况下不受影响。

寄存器11.1: PCTL: 电源控制寄存器(地址:2EH)

_	bit7							bit0
复位值 00-1xx	VREEN	VRE0E	-	SLVREN	-	-	POR	LVR
•	R/W	R/W	U	R/W	U	U	R/W	R/W

VREEN: 参考电压使能位

VREEN=1 使能参考电压 VREEN=0 关闭参考电压

VREOE: 参考电压输出使能位 (1)

VREOE=1 通过 VREOUT 引脚输出参考电压

VREOE=0 禁止参考电压输出

SLVREN: 软件欠压检测使能位

SLVREN=1 使能欠压检测 SLVREN=0 禁止欠压检测

POR: 上电复位状态位

 POR =1
 未发生上电复位

 POR =0
 发生了上电复位

LVR: 欠压复位状态位

 LVR = 1
 未发生欠压复位

 LVR = 0
 已发生欠压复位

注 (1): 如果内部使用参考电压 VREOUT 时 (用作 AD 参考电压和比较器参考电压),不需要将寄存器 PCTL 的 VREOE (PCTL. 6) 位置 1。

11.2上电复位(POR)

在 VDD 达到适合单片机正常工作的电平之前,片内上电复位电路使单片机保持在复位状态,直到 VDD 达到正常工作电平之后单片机才开始正常工作。KF8F213 的上电复位时间为 70ms 左右。

11.3WDT复位

看门狗定时器有一个独立的时钟源,因此单片机在正常工作和休眠模式下都可以正常工作。在单片机正常工作且打开看门狗后,当看门狗计数器计满后产生溢出,将使单片机复位。

在休眠模式下,WDT 也可以正常工作,当WDT 定时器计满溢出后,将会使单片机从休眠模式唤醒转入正常工作模式,在休眠模式不会对各寄存器复位。

11.4RST复位

使能外部 RST 复位(配置位 RSTEN=1)后,当引脚 P0. $3/\overline{RST}$ 输入复位信号,不管单片机工作在正常模式还是休眠模式,均会使单片机复位。通过在编程时将 P0. 3 引脚配置为 \overline{RST} 复位引脚,即可打开 \overline{RST} 复位。

在 $\overline{\text{RST}}$ 复位时, KF8F213 器件有一个噪声滤波器用于检测和滤除小脉冲, 图 11. 2 是建议 $\overline{\text{RST}}$ 复位电路。

图 11.2 建议 RST 复位电路

KungFu®

KF8F213 数据手册 V1.5

11.5欠压检测复位(LVR)

KF8F213 系列中的单片机具有片内欠压检测复位电路。通过编程时设定配置位中的 LVREN 位可以禁止/使能(清 0/置 1)欠压检测复位电路,当配置位中的 LVREN 位被使能后,用户还要在软件中设置 PCTL 中的 SLVREN 位来禁止/使能(清 0/置 1)欠压检测复位电路。

如果 VDD 跌落至 VLVR (VLVR=2.1V) 以下且持续时间大于 TLVR (TLVR 大于 10us),欠压检测电路将使单片机复位,单片机保持复位状态直到 VDD 上升到 VLVR 以上(如图 10.3 所示),此时上电延时定时器启动,使器件在随后 70ms 左右的延时时间处于延时复位状态,过了 70ms以后单片机开始正常工作。

如果 VDD 跌落至 VLVR 以下的时间小于规定参数(TLVR),将不保证可产生复位。

如果在上电延时定时器运行过程中发生 VDD 跌落至 VLVR 以下的情况,器件将返回欠压 检测复位状态且上电延时定时器被重新初始化。直到 VDD 上升至 VLVR 以上时,上电延时定 时器启动一个 70ms 的复位延时,如在延时器件没有欠压发生,单片机会退出复位状态开始 正常工作。

11.6上电延时定时器

上电延时定时器仅在器件上电复位或欠压检测复位发生后提供一个长度为 70ms(标称值)的固定延时时间。上电延时定时器的定时时钟为系统内部振荡器。只要单片机产生上电复位或欠压检测复位,单片机就会在上电复位或欠压检测复位发生后保持复位状态 70ms。上电延时定时器使单片机在 VDD 上升到适当电平后才投入正常运行。

由于 VDD、温度、制造工艺、内部震荡器频率等的变化,不同单片机的上电延时时间有所差异。

11.7不同复位条件下对寄存器的影响

表 11.1 寄存器在各种复位发生后的状态

寄存器	地址	上电复位	RST 复位 欠压检测	中断唤醒 WDT 超时唤醒
TO	01H	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	02Н	0000 0000	0000 0000	PC+1
PSW	03H	01 1xxx	0q quuu	uq quuu
PO	05H	xx xxxx	xx xxxx	uu uuuu
P2	06H	XXXX	XXXX	uuuu
P1	07H	XXXX XXXX	XXXX XXXX	uuuu uuuu
PCH	OAH	0 0000	0 0000	u uuuu
INTCTL	OBH	0000 0000	0000 0000	uuuu uuuu
EIF1	OCH OCH	-000 -000	-000 -000	-uuu -uuu
T1L	0EH	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1H	0FH	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CTL	10H	-000 0000	-uuu -uuu	+
T2	11H	0000 0000	0000 0000	-uuu -uuu
T2CTL	12H	-000 0000	-000 0000	-000 0000
PWM1L	13H			+
PWM1H		XXXX XXXX	XXXX XXXX	uuuu uuuu
PWMTH	14H 15H	XXXX XXXX	XXXX XXXX	uuuu uuuu
		1100	1100	uuuu
PP1	16H	1111_1111	0.0.000	uuuu uuuu
CMCTL0	19H	-0-0 0000	-0-0 0000	-u-u uuuu
CMCTL1	1AH	0000 0000	0000 0000	uuuu uuuu
AMPCTL	1BH	0-	0-	u-
VRECAL	1CH	0000 0000	uuuu uuuu	uuuu uuuu
ANSEH	1DH	000-	000-	uuu-
ADCDATAH	1EH	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCCTL0	1FH	0000 0000	0000 0000	uuuu uuuu
OPTR	21H	1111 1111	1111 1111	uuuu uuuu
TRO	25H	11 11111	11 1111	uu uuuu
TR2	26H	1111	1111	uuuu
TR1	27H	1111 1111	1111 1111	uuuu uuuu
EIE1	2CH	-000 -000	-000 -000	-uuu -uuu
PCTL	2EH	00-1xx	uu-uuu	uu-uuu
OSCCTL	2FH	0011	0011	uuuu
OSCCAL0	30H	0000 0000	uuuu uuuu	uuuu uuuu
ANSEL	31H	0000 0000	0000 0000	uuuu uuuu
PP2	32H	1111 1111	uuuu uuuu	uuuu uuuu
PWM2L	33H	XXXX XXXX	XXXX XXXX	uuuu uuuu
PWM2H	34H	XXXX XXXX	XXXX XXXX	uuuu uuuu
PUR	35H	11 -111	11 -111	uu -uuu
IOCL	36H	00 0000	00 0000	uu uuuu
OSCCAL1	37H	000	uuu	uuu
ADCDATAL	ЗЕН	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCCTL1	3FH	-000 00	-000 00	-uuu uu
PP3	52H	1111 1111	uuuu uuuu	uuuu uuuu
T2CCR	54H	XXXX XXXX	uuuu uuuu	uuuu uuuu
PWM3L	55H	XXXX XXXX	XXXX XXXX	uuuu uuuu
PWM3H	56H	XXXX XXXX	XXXX XXXX	uuuu uuuu
PWM3CTL0	57H	0000 0000	0000 0000	uuuu uuuu
PWM3CTL1	5BH	0000 0000	0000 0000	uuuu uuuu
P3ASCTL	5CH	0000 0000	0000 0000	uuuu uuuu

寄存器	地址	上电复位	RST 复位 欠压检测	中断唤醒 WDT 超时唤醒
PATRCTL	5DH	0 0001	u uuuu	u uuuu

表 11.2 不同复位条件下对标志位的影响

77 == 1172, = 2711 174 175 = 272 17							
POR	LVR	TO	PD	复位方式			
0	u	1	1	上电复位			
1	0	1	1	欠压检测复位			
u	u	0	u	WDT 复位			
u	u	0	0	WDT 唤醒			
u	u	u	u	正常操作中的RST复位			
u	u	1	0	休眠模式中的RST复位			

图注: u=未发生变化

12 休眠模式

当单片机空闲的时候,为使其功耗降到最低,可以将其转入休眠模式。通过执行一条 IDLE 指令即可进入休眠模式。

为使这种方式下的电流消耗降至最低,应使所有 I/0 口状态确定,如果有的端口没有使用,最好设置为输入,接到 VDD 或 VSS 上,如果没用的端口悬空,应设置为输出,以确保 I/0 引脚没有耗散电流产生,其他在休眠时不用的外设都要关闭。

注:在单片机正常工作时,通常有些引脚用不到,有的用户可能会直接将去悬空。为了减小单片机的功耗,应该将不用的引脚设置为数字输出。如果是P0口的引脚则可打开上拉电阻或者设置为数字输出皆可。

单片机进入休眠模式一段时间后由于工作的需要,要将单片机从休眠模式唤醒,在 KF8F213 中可通过以下方式将单片机从休眠模式唤醒:

- 1. RST 引脚上输入的外部复位
- 2. 看门狗定时器唤醒(如果 WDT 已被使能)
- 3. INTO 外部中断
- 4. T0 中断
- 5. P0 口电平变化中断外设中断。
- 6. 外设中断

RST 引脚输入的复位信号在唤醒单片机的同时也将导致单片机复位。其它唤醒时将单片机从休眠模式唤醒,并不会导致复位。可通过状态寄存器中的 \overline{TO} 和 \overline{PD} 位来确定单片机唤醒的原因。上电时 \overline{PD} 位将被置 1,而当器件从休眠模式唤醒时,该位将被清 0。 \overline{TO} 位则在WDT 唤醒发生时被清 0。

在使用后三种方式唤醒时,必须使能相应的中断使能位,唤醒与 AIE 位的状态无关。如果 AIE 位被清 0,单片机被唤醒后将继续执行 IDLE 指令后面的指令。如果 AIE 位被置 1,单片机执行 IDLE 指令后面一条指令后进入中断子程序。如果不希望执行 IDLE 指令后面的那条指令直接进入中断子程序,在 IDLE 指令加一条 NOP 指令即可。

13 看门狗定时器

为了防止单片机在正常工作时程序跑飞, KF8F213 提供一个看门狗定时器, 单片机正常工作时, 当看门狗定时器定时时间达到超时时间后, 会使单片机产生复位。

看门狗定时器使用片内看门狗专用 RC 振荡器,因此它无需外接任何器件,在休眠模式仍能正常运行。在正常运行时,WDT 超时事件将使单片机产生一次复位。如果单片机处于休眠模式,WDT 超时事件将唤醒单片机并使其继续执行 IDLE 后面的指令。通过将配置位 WDTE 清 0/置 1,可关闭/打开 WDT。

WDT 周期:

WDT 不使用预分频器时超时时间为 18ms。由于温度、电源电压和工艺等的差异,不同器件之间的超时周期稍有不同。通过软件将 0PTR 寄存器的 PSA 位置 1,可将预分频器分配给WDT。设置 PS<2:0>选择预分频器的分频比,分频比可选择为:1/1、1/2、1/4、1/8、1/16、1/32、1/64、1/128。使用预分频器时,最长超时时间可达 2.3 秒。

为了防止在正常工作时看门狗超时复位,要在固定的时间内对看门狗定时器清0。执行 CWDT 和 IDLE 指令后会将 WDT 和预分频器清0,当看门狗定时器出现超时时,状态寄存器中的 \overline{TO} 位将被清0。

13.1 看门狗定时器框图

14 电气规范

14.1极限参数值

	极限参数值	
序号	参数说明	参数范围
1	偏置电压下的环境温度	-40°C 至+125°C
2	储存温度	-65°C 至+150°C
3	VDD 相对于VSS 的电压	-0.3V 至+5.5V
4	VPP 相对于Vss 的电压	-0.3V 至+13.5V
5	其它引脚相对于VSS 的电压	-0.3V 至(VDD + 0.3V)
6	VSS 引脚的最大输出电流	100 mA
7	VDD 引脚的最大输入电流	100 mA
8	任一I/O 引脚的最大输出灌电流	25 mA
9	任一I/O 引脚的最大输出拉电流	20 mA
10	I/O口 的最大灌电流	95 mA
11	I/O口 的最大拉电流	95 mA

备注:如果器件的工作条件超过"最大值",可能会对器件造成永久性损坏。上述值仅为运行条件极大值,建议不要使器件在该规范规定的范围以外运行。器件长时间工作在最大值条件下,其稳定性会受到影响。

14.2静态电流特性

表14.1芯片静态电流(IDD)特性

		测试条	件: 25°C			
	测试条件					
序号	振荡频率	VDD (V)	最小值	典型值	最大值	单位
4		2.5	_	923	_	
1	Fosc=16MHz	3.0	_	1219	_	
		4.0	_	1950	_	
		5.0		2802	_	
	F 01411	2.5	_	679	_	
2	Fosc =8MHz	3.0	_	919	_	
		4.0	_	1528	_	
		5.0	_	2261	_	
_		2.5	_	499	_	1
3	Fosc =4MHz	3.0	_	690	_	1
		4.0	_	1195	_	1
		5.0	_	1808	_	
		2.5	_	404	_	uA
4	Fosc =2MHz	3.0	_	576	_	
		4.0	_	1012	_	
		5.0	_	1607	_	
		2.5	_	359	_	
5	Fosc =1MHz	3.0	_	516	_	
		4.0	_	945	_	
		5.0	_	1487	_	
		2.5	_	336	_	
6	Fosc =500KHz	3.0	_	486	_	
		4.0	_	899	_	
		5.0	_	1417	_	
		2.5	_	324	_	
7	Fosc =250KHz	3.0	_	471	_	1
		4.0	_	875	_	1
		5.0	_	1388	_	1
_		2.5	_	315	_	1
8	Fosc =62.5KHz	3.0	_	459	_	1
		4.0	_	857	_	1
		5.0	_	1357	_	1

注 **1**: 在正常的工作模式下, IDD 测量的条件为: 所有I/O 引脚均设置为输出低,RST = Vss ,禁止 WDT,关闭时钟输出。

2: 供电电流主要随工作电压和频率而变化。其它因素,如I/O 引脚负载和开关速率、内部代码执行模式和温度也会影响电流消耗。

14.3外设电流特性

表14.2芯片外设电流特性

测试条件: 25°C								
序号	测试参数	测试条件		最小值	典型值	最大值	单位	
			VDD (V)					
1	在职由济(IDD)	WDT、BOR、比较器等	2.5	_	0.1	_		
1	休眠电流(IPD)	外设被禁止	3.0	_	0.3	_		
			4.0	_	0.6			
			5.0	_	1.0	_		
			2.5	_	1.12	_		
2	WDT 电流		3.0	_	2.3			
	(IWDT)		4.0	_	6.4	_		
			5.0	_	12.56	_		
			2.5	_	12.48	_	μA	
3	欠电压复位电		3.0	_	15.7	_	μ, ι	
	流(ILVR)		4.0		22.12	_		
			5.0	_	28.66	_		
		都使能单个比较器	2.5	_	13.04	_		
4	比较器电流		3.0	_	16.94	_		
	(ICMP)		4.0	_	25.12	_		
			5.0	_	33.4	_		
		单个 IO 口	2.5	_	64.96	_		
5	弱上拉电流		3.0	_	103.74	_		
	(IPUR)		4.0	_	198.42	_		
			5.0	_	312.9	_		

- 注 **1:** 外设电流是基本IDD 或IPD 电流以及相应外设使能时消耗的额外电流的总和。外设电流可以从此电流中减去基本IDD 或IPD 电流得出。
 - 2: 休眠电流与振荡器类型无关。掉电电流是在器件休眠时,所有I/O 引脚设置为输出低,RST = Vss; 禁止WDT,关闭时钟输出时测得的。
 - 3: 外设电流还可能受到温度的影响。

14.4 I/O端口电平和芯片供电电压特性

表 14.3 芯片 IO 端口电平特性

	工作温度 -40℃≤TA≤+85℃ (工业级)								
符号	参数说明	测试条件	最小值	典型值	最大值	单位			
VIL	输入低电平 I/O引脚 采用TTL缓冲器 采用施密特缓冲触 发器	$4.5V \leqslant VDD \leqslant 5.5V$ $2.5V \leqslant VDD \leqslant 4.5V$ $2.5V \leqslant VDD \leqslant 5.5V$	Vss Vss Vss	_ _ _	0.7 0.15VDD 0.2 VDD	V V			
ViH	输入高电平 I/O端口 采用TTL缓冲器 采用施密特缓冲触 发器		VDD -0.7 0.6 VDD		VDD VDD	V			

表 14.4 芯片供电电压特性

	工作温度 -40℃≤TA≤+85℃ (工业级)								
符号	参数说明	测试条件	最小值	典型值	最大值	单位			
VDD	电源电压	FOSC ≤ 4 MHz: FOSC ≤ 8 MHz FOSC ≤ 16 MHz	2.5 2.5 4.0	_ _ _	5.5 5.5 5.5	\ \ \			
VLVR	VDD 起始电压确保 能够产生欠压复位信 号		_	2.0	_	V			
VPOR	VDD 起始电压确保 能够产生内部上电复 位信号		_	2.3	_	٧			

14.5比较器模块规范

表14.5 比较器模块规范

7C110 PB/CH (V9/)/2/10										
测试条件(测试条件(特别声明除外):									
VDD=5. 0V, VSS=0V, T=25℃										
工作温度	工作温度 -40℃≤TA≤+85℃ (工业级)									
参数编号	符号	特性	最小值	典型值	最大值	单位	备注			
1	V_{os}	输入失调电压	_	1	_	mV				
2	$V_{\scriptscriptstyle \rm ICM}$	输入共模电压	0	1	V _{DD} -1.5	V				
3	C_{MRR}	共模抑制比	+55	1		db				
4	T_{RESP}	响应时间上升沿	_	150	_	ns				
5	1 RESP	响应时间下降沿	_	200	_	ns				

14.6运算放大器模块规范

表 14.6 运算放大器模块直流特性

		秋 14.0 色	开从八帕化	於人且 如於) <u> </u>			
测试条件(测试条件 (特别声明除外):							
VCM=OV, V	VCM=0V, VOUT=VDD/2, VDD=5.0V, VSS=0V, CL=47pF, RL=100k, T=25℃							
工作温度	工作温度 -40℃≤TA≤+85℃ (工业级)							
参数编号	符号	特性	最小值	典型值	最大值	单位	备注	
1	V_{0S}	输入失调电压	_	±5	-	mV		
2	V_{CM}	输入共模电压范围	V_{ss}	_	$V_{\scriptscriptstyle DD}$	V	VDD=5. 0V	
3	C_{MR}	共模抑制比	ı	85	ı	db	VCM=VDD/2, Freq=DC	
4	A_{OL}	差模开环直流电压增益	_	90	-	db	无负载	
5	A_{OL}	差模开环直流电压增益	_	60	_	db	有负载	
6	V_{OT}	输出电压摆幅	V _{SS} +10	_	V _{DD} -10	mV		
7	PSR	电源电压抑制比		80		db		
8		由源由流	_	40	_	11. A	$V_{pp}=3$ 3V	

表 14.7 运算放大器模块交流特性

测试条件(测试条件(特别声明除外):							
VCM=0V, VOUT=VDD/2, VDD=5. 0V, VSS=0V, CL=47pF, RL=100k, T=25℃								
工作温度	工作温度 -40℃≤TA≤+85℃ (工业级)							
参数编号	符号	特性	最小值	典型值	最大值	单位	备注	
1	GBWP	单位增益带宽	_	3	ı	MHz		
2	T_{ON}	建立时间	_	10	15	μs		
3	Θ_{M}	相位裕度	_	60	1	deg		
4	SR	摆率	2	_	_	V/μ s		

14.7 A/D 转换器 (ADC) 特性

表 14.8 A/D 转换器 (ADC) 特性

	工作温度 -40℃≤TA≤+85℃(工业级)						
符号	参数说明	测试条件	最小值	典型值	最大值	单位	
N _R	分辨率	_	_	_	10	位	
E _{IL}	积分误差	VREF = 5V, V_{DD} =5.0V, T=25°C	_	_	±1	LSB	
E _{DL}	微分误差	VREF = 5V, V_{DD} =5.0V, T=25°C	_	_	±1	LSB	
E _{OFF}	失调误差	$VREF = 5V$, $V_{DD}=5.0V$, $T=25^{\circ}C$	_	_	±1	LSB	
E _{GN}	增益误差	VREF = 5V, V_{DD} =5.0V, T=25°C	_	_	±1	LSB	
V _{REF}	参考电压	保证1个LSb的精度	2	_	VDD	V	
V _{AIN}	满量程范围	_	Vss	_	VREF	V	
TCNV	AD转换时间	A/D控制寄存器ADCCTL0中的 START位被清零	_	11	_	TAD	

15 直流特性图表

备注:某些图表中的数据超出了规定的工作范围(即超出了规定的VDD 范围),这些图表仅供参考,器件只有在规定的范围下工作才可以确保正常运行。

图**15-1**: 不同**V**DD 时典型**I**DD - **F**osc 关系曲线图

图15-2: 不同VDD 时典型IPD - VDD 关系曲线图

图15-3: 弱上拉电流IPUR - VDD 关系曲线图

图15-4: 不同VDD时看门狗预分频比 一周期关系曲线图

备注: 1/1 分频时看门狗周期为 18ms。

图15-5: 看门狗电流 - VDD关系曲线图

图15-6: 比较器电流 - VDD关系曲线图(使能一路比较器)

图 **15-7**: 欠压复位电流 **ILVR** — **VDD** 关系曲线图

图**15-8**: 不同温度时**V**OH - **I**OH 关系曲线图(**V**DD = **5.0V**)

图15-9: 不同温度时VOH — IOH 关系曲线图(VDD = 3.0V)

图**15-10**: 不同温度时**V**OH - **I**OL 关系曲线图(**V**DD = **5.0V**)

图**15-11**: 不同温度时**V**OH - **I**OL 关系曲线图(**V**DD = **3.0V**)

图**15-12**: 上拉功能打开时端口电压VOP - 电流IOP 关系曲线图(VDD = 5.0V)

图**15-13**: 上拉功能打开时端口电压VOP - 电流IOP关系曲线图(VDD = 2.7V)

16 封装信息

20 脚 SOIC 封装

20 脚 SSOP 封装

16 脚 SOIC 封装

16 脚 SSOP 封装

附录 1 KF8F213 SFR地址映射及功能汇总

地址	名称	位7	位 6	位 5	位 4	位 3	位 2	位1	位 0	复位初值
01H	T0					0(T0)寄存				xxxx xxxx
02H	PCL			1	呈序计数器	(PC) 低字节				0000 0000
03H	PSW	-	_	RP0	TO	PD	Z	DC	CY	01 1xxx
05H	P0	-	_	P05	P04	P03	P02	P01	P00	xx xxxx
06H	P2	P27	P26	P25	P24	-	_	-	-	xxxx
07H	P1	P17	P16	P15	P14	P13	P12	P11	P10	XXXX XXXX
OAH	PCH	_	_	-			计数器(PC)高		T	0 0000
0BH	INTCTL	AIE	PUIE	TOIE	INTOIE	POIE	TOIF	INTOIF	POIF	0000 0000
ОСН	EIF1	-	ADIF	INT2IF	INT1IF	C1IF	PWM2IF	T2IF	T1IF	-000 -000
0EH	T1L					低字节寄				XXXX XXXX
0FH	T1H		I			高字节寄	存器 		T	XXXX XXXX
10H	T1CTL	_	T1GC	T1CKS1	T1CKS0	-	T1SY	T1CS	T10N	-000 0000
11H	T2		ı			2(T2)寄存		1	1	0000 0000
12H	T2CTL	_	T2CKBS3	T2CKBS2	T2CKBS1	T2CKBS0	T20N	T2CKPS1	T2CKPS0	-000 0000
13H	PWM1L			Р		设置寄存器	Ŧ.			XXXX XXXX
14H	PWM1H		I		PWM1 a	寄存器	Τ		T	XXXX XXXX
15H	PWMCTL	INT2SE	INT1SE	_		-	_	PWM20N	PWM10N	1100
16H	PP1		I		PWM1 周昇	明寄存器	Τ		T	1111_1111
19H	CMCTLO	_	_	_	C10UT	_	C10E	_	-	00 00
1AH	CMCTL1	_	_	_	_	-	_	C1M1	C1MO	0000 0000
1BH	AMPCTL	_	_	_	-	-	-	AMP20N	_	0-
1CH	VRECAL		ı			校准值寄存			1	0000 0000
1DH	ANSEH	_	_	-	-	ANS11	ANS10	ANS9	-	000-
1EH	ADCDATAH					存器高字节				XXXX XXXX
1FH	ADCCTL0	ADLR	T2CCRON	CHS3	CHS2	CHS1	CHS0	START	ADEN	0000 0000
21H	OPTR	PUPH	INT0SE	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111
25H	TRO	_	_	TR05	TR04	TR03	TR02	TR01	TR00	11 11111
26H	TR2	TR27	TR26	TR25	TR24	mp 10	mp 1 0	WD 1.1	mp.10	1111
27H	TR1	TR17	TR16	TR15	TR14	TR13	TR12	TR11	TR10	1111 1111
2CH	EIE1	-	ADIE	INT2IE	INT1 IE	C1IE	PWM2IE	T2IE	T1IE	-000 -000
2EH	PCTL	VREEN	VREOE	- TD001	SLVREN	_	_	POR	LVR -	00-1xx
2FH	OSCCTL	CKOEN	IRCS2	IRCS1	IRCS0		_	-	_	0011
30H	OSCCALO	ANICZ	ANGC	ANGE		直寄存器 0	ANICO	ANCI	ANICO	0000 0000
31H	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	0000 0000
32H	PP2				PWM2 周身		4			1111 1111
33H	PWM2L			P		设置寄存器	Ť			XXXX XXXX
34H	PWM2H			DUDE	PWM2 F	分仔裔 	DUDO	DUD1	DUDO	XXXX XXXX
35H	PUR	_	_	PUR5	PUR4	TOCLO	PUR2	PUR1	PUR0	11 -111
36H	IOCL OCCCAL1	_	_	IOCL5	IOCL4	IOCL3	IOCL2	IOCL1	IOCL0	00 0000
37H	OSCCAL1		晶振校准值寄存器 1 ADC 数据寄存器低字节							000
3EH 3FH	ADCDATAL ADCCTL1	_	ADCCO			ı		1 .	1 .	-000 00
		_	- ADCS2 ADCS1 ADCS0 VCFG1 VCFG0 - - PWM3 周期寄存器							
52H 54H	PP3 T2CCR			,			<u> </u>			1111 1111
			T2 触发 AD 启动寄存器 PWM3 占空比寄存器							XXXX XXXX
55H	PWM3L									XXXX XXXX
56H	PWM3H PWM3CTLO	D2M1	P3M0	DDT1	PWM3 F	ı	DSUMO	DWM9M1	OMGMIID	XXXX XXXX
57H	PWM3CTL0	P3M1		PDT1	PDT0	P30N1	P30N0	PWM3M1	PWM3M0	0000 0000
5BH	PWM3CTL1	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000
5CH	P3ASCTL	P3ASE	P3ASS2	P3ASS1	P3ASS0	P3SSAC1	P3SSAC0	P3SSBD1	P3SSBD0	0000 0000

地址	名称	位 7	位 6	位 5	位 4	位 3	位 2	位1	位 0	复位初值
5DH	PATRCTL	_	_	_	STRSYNC	STREND	STRENC	STRENB	STRENA	0 0001

注 "-"表示未用的存储单元 "x"表示不定

附录 2 汇编指令集

助记符、操作数	指令说明	周期	影响标志					
NOP	空操作指令	1						
CRET	子程序返回指令	2						
RRET Rn,#data	立即数送到 Rn 中返回	2						
IRET	中断返回指令	2						
CWDT	WDT 清 0	1						
IDLE	进入休眠模式	1						
数据传送指令								
MOV dir	dir←(dir)	1	Z					
MOV Rn, dir	Rn←(dir)	1						
MOV dir, Rn	dir←(Rn)	1						
MOV Rn,#data	Rn←data	1						
MOV Rn, Rs	Rn←(Rs)	1						
LD Rn, [Rs]	$Rn \leftarrow ((Rs))$	1						
ST [Rn], Rs	(Rn) ← (Rs)	1						
SWAPR Rn, dir	Rn<7:4>=dir<3:0>	1						
	Rn<3:0>=dir<7:4>							
SWAP dir	dir<7:4>=dir<3:0>	1						
	dir<3:0>=dir<7:4>							
	算术运算指令		•					
ADD Rm, dir	$Rm \leftarrow (Rm) + (dir)$	1	CY, DC, Z					
ADD dir, Rm	dir←(Rm)+(dir)	1	CY, DC, Z					
ADD Rn,#data	Rn←(Rn)+data	1	CY, DC, Z					
ADD Rn, Rs	$Rn \leftarrow (Rn) + (Rs)$	1	CY, DC, Z					
SUB Rm, dir	Rm←(dir)-(Rm)	1	CY, DC, Z					
SUB dir, Rm	dir←(dir)-(Rm)	1	CY, DC, Z					
SUB Rn,#data	Rn←data-(Rn)	1	CY, DC, Z					
SUB Rn, Rs	$Rn \leftarrow (Rs) - (Rn)$	1	CY, DC, Z					
INC dir	dir←(dir)+1	1	Z					
INCR dir	R0←(dir)+1	1	Z					
INC Rn	Rn ← (Rn) +1	1	Z					
DEC dir	dir←(dir)-1	1	Z					
DECR dir	R0←(dir)-1	1	Z					
DEC Rn	Rn ← (Rn) -1	1	Z					
	逻辑运算指令							
AND Rm, dir	Rm←(Rm)∧(dir)	1	Z					
AND dir, Rm	dir←(dir)∧(Rm)	1	Z					
AND Rn,#data	Rn←(Rn)∧data	1	Z					
AND Rn, Rs	Rn←(Rn) ∧ (Rs)	1	Z					
ORL Rm, dir	Rm←(Rm)∨(dir)	1	Z					
ORL dir, Rm	dir←(dir)∨(Rm)	1	Z					
ORL Rn,#data	Rn←(Rn)∨data	1	Z					
ORL Rn, Rs	$Rn \leftarrow (Rn) \lor (Rs)$	1	Z					

助记符、操作数	指令说明	周期	影响标志
XOR Rm, dir	Rm←(Rm)⊕(dir)	1	Z
XOR dir, Rm	dir←(dir)⊕(Rm)	1	Z
XOR Rn, #data	Rn←(Rn)⊕data	1	Z
XOR Rn, Rs	$Rn \leftarrow (Rn) \oplus (Rs)$	1	Z
CLR Rn	Rn=0	1	Z
CLR dir	dir=0	1	Z
CPLR dir	R0←/(dir)	1	Z
CPL dir	dir←/(dir)	1	Z
CPL Rn	Rn←/(Rn)	1	Z
RRCR dir	RO←(dir) 带进位 C 循环右移 1 位	1	CY
RRC dir	dir←(dir) 带进位 C 循环右移 1 位	1	CY
RRC Rn	Rn←(Rn) 带进位 C 循环右移 1 位	1	CY
RLCR dir	R0←(dir)带进位 C 循环左移 1 位	1	CY
RLC dir	dir←(dir)带进位 C 循环左移 1 位	1	CY
RLC Rn	Rn←(Rn) 带进位 C 循环左移 1 位	1	CY
	位操作指令		
CLR dir, b	将 dir 的 b 位清 0	1	
SET dir,b	将 dir 的 b 位置 1	1	
CLR Rn, b	将 Rn 的 b 位清 0	1	
SET Rn, b	将 Rn 的 b 位置 1	1	
	转移指令		
DECRJZ dir	R0←(dir)-1, 为 0 跳过下一条指令	1/2	
DECJZ dir	dir←(dir)-1, 为 0 跳过下一条指令	1/2	
DECJZ Rn	Rn←(Rn)-1, 为 0 跳过下一条指令	1/2	
INCRJZ dir	R0←(dir)+1, 为 0 跳过下一条指令	1/2	
INCJZ dir	dir←(dir)+1, 为 0 跳过下一条指令	1/2	
INCJZ Rn	Rn←(Rn)+1, 为 0 跳过下一条指令	1/2	
JNB dir,b	dir 的 b 位为 0 跳过下一条指令	1/2	
JB dir,b	dir 的 b 位为 1 跳过下一条指令	1/2	
JNB Rn, b	Rn 的 b 位为 0 跳过下一条指令	1/2	
JB Rn, b	Rn 的 b 位为 1 跳过下一条指令	1/2	
JMP #data12	无条件转移指令	2	
CALL #data12	子程序调用指令	2	

注: dir 为通用寄存器或特殊功能寄存器; Rn、Rs 表示 R0~R7; Rm 表示 R0~R3; #data 表示 8 位立即数; #data12 表示 12 位立即数; b 表示寄存器的第 b 位; [Rn]表示 Rn 中的数值指向的地址中数据;()表示特殊功能寄存器、通用数据寄存器或寄存器组中的数据。

芯旺微电子 - 113/119 - Chip**○N**

附录 3 寄存器全称表

地址		全称
01H	TO	Timer 0
02Н	PCL	Program Counter Low
03Н	PSW	Program Status Word
05H	P0	Port 0
06H	P2	Port2
07Н	P1	Port 1
OAH	РСН	Program Counter High
OBH	INTCTL	Interrupt control
ОСН	EIF1	Enable Interrupt Flag 1
ODH	EIF2	Enable Interrupt Flag 2
OEH	T1L	Timer 1 Low
OFH	T1H	Timer 1 High
10H	T1CTL	Timer 1 Control
11H	T2	Timer 2
12H	T2CTL	Timer 2 Control
13H	PWM1L	Pulse-Width Modulation 1 Low
14H	PWM1H	Pulse-Width Modulation 1 High
15H	PWMCTL	Pulse-Width Modulation Control
16H	PP1	Pulse-Width Modulation Periods 1
19H	CMCTLO	Compare Control 0
1AH	CMCTL1	Compare Control 1
1BH	AMPCTL	Amplifier Control
1CH	VRECAL	Vref Calibration
1DH	ANSEH	Analog Numbers Select High
1EH	ADCDATAH	Analog Digital Convert Data High
1FH	ADCCTL0	Analog Digital Convert Control O
21H	OPTR	Opt Register
25H	TRO	Trend Register O
26H	TR2	Trend Register 2
27H	TR1	Trend Register 1
2CH	EIE1	Enable Interrupt Enable 1
2EH	PCTL	Power Control
2FH	OSCCTL	Operation System Crystal Control
30H	OSCCAL0	Operation System Crystal Calibration O
31H	ANSEL	Analog Numbers Select Low
32H	PP2	Pulse-Width Modulation Periods 2
33H	PWM2L	Pulse-Width Modulation 2 Low
34H	PWM2H	Pulse-Width Modulation 2 High
35H	PUR	Push Register
36H	IOCL	Input Output Control
37H	OSCCAL1	Operation System Crystal Calibration 1
ЗЕН	ADCDATAL	Analog Digital Convert Data Low

3FH	ADCCTL1	Analog Digital Convert Control 1
52H	PP3	Pulse-Width Modulation Periods 3
55H	PWM3L	Pulse-Width Modulation 3 Low
56H	PWM3H	Pulse-Width Modulation 3 High
57H	PWM3CTL0	Pulse-Width Modulation 3 Control 0
5BH	PWM3CTL1	Pulse-Width Modulation 3 Control 1
5CH	P3ASCTL	Pulse-Width Modulation 3 Auto Shut Control
5DH	PATRCTL	Pulse Auto Turn Control

产品标识体系

产品系列: KF8F = KF系列闪存8位单片机

产品型号: 213 = 213型

封装形式: P = DIP

S = SOICSS = SSOP

示例:

1) KF8F213-S 表示 KF 系列 213 型贴片式单片机

2) KF8F213-SS 表示 KF 系列 213 型贴片式单片机

注: SSOP 比 SOIC 之间的管脚距离及管脚宽度更短一些。

版本信息

版本 1.0

新的数据手册

版本 1.1

增加了交流和直流特性参数;修正了文档中部分叙述。

版本 1.2

修正了文档中部分叙述。

版本 1.3

修改了版本订购信息和文档中部分叙述。

版本 1.4

增加了模拟比较器的用法说明,修改了相关寄存器与地址的匹配性。

版本 1.5

修正了 INTCTL 寄存器的相关描述。

ROSH认证

本产品已通过 ROSH 检测。

声明及销售网络

销售及服务网点

上海 TEL:021-50275927

地址 上海浦东张江科苑路 201 号