Comparison tables: BBOB 2009 noisy testbed

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [13, 8]. The experimental set-up is described in [12].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [12] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 02-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		rget	est/D	3 [15]	[IDEA [4]	UOA [23]	AcG [9]	BFGS [22]	1A-ES [14]	[A-ES [2]	DASA [18]	0 [11]	SO [5]	UOA [23]	4L [20]	1 IDEA [4]	hain [19]	um) [16]	OA [23]	ES [1]	[9]	nnds [7]	Carlo [3]	MA-ES [21]	'IT [17]	rcia) [10]
		Δ ftarget	ERT_{best}/Γ	ALPS [15]	AMaLGaM IDE	avg NEWUOA	BayEDAcG [9]	BFG	BIPOP-CMA-ES	(1+1)-CMA-ES	DAS	DEPSO [11	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20	iAMaLGaM IDEA [MA-LS-Chain	MCS (Neum)	NEWUOA [2	(1+1)	PSC	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21	SNOBFIT [17]	VNS (Garcia)
		1e-07	11.3	250	12	1.6	190		13	7.2	51	44	59	-	17	8.4	26	1200	1.9	7.5	130	330	17e-6/1e6	9.5	1.9	15
		1e-05	9.77	190	9.6	1.7	170		11	6.1	46	37	31	-	17	7.2	27	210	7	9	88	240	3.1e5	2.8	1.6	15
	SO	1e-04	8.43	160	8.8	1.9	190		9.3	6.3	45	34	27	-	19	9.9	30	21	2.3	5.9	73	180	1.8e4	7.3	1.2	15
	moderate Gauss	1e-03	7.17	120	8.1	7	160	14e-2/4e3	8.5	5.8	49	34	22	1.1	22	6.5	29	1.2	2.5	5.3	52	110	3100	6.2	-1	16
	mode	1e-02	5.57	28	7.4	2.3	150	1e4	7.7	5.5	46	26	18	1.4	27	5.9	22	1.5	2.3	5.2	31	40	330	6.3	П	17
nsion	Sphere	1e-01	ro	32	ಬ	2.1	110	1900	2.8	3.9	40	20	13	1.4	22	4	13	1.2	2.1	3.5	13	11	34	4.3	Н	14
by dimension	$101 \mathrm{ S}$	1e+00	4	4.9	5.6	1.7	4.9	250	2.2	73	33	5.4	3.9	1.3	6.2	1.9	5.1	1.1	1.8	2.3	3.6	2.6	3.7	1.9	-	9
		1e + 01	6.0	1.6	7	3.2	77	140	5.3	3.3	57	2.7	1.4	3.2	1.4	2.2	2.4	П	2.4	3.3	2.3	2.8	1.9	2.9	7	5.6
value d		1e + 02	0.5	1	П	1	1	1	1	1	1	1	П	1	П	-	П	1	П	1	-	П	П	1	-	
ach this		1e + 03	0.5	1	1	Т	1	1	1	Т	1	П	П	1	1	1	П	1	1	1	П	н	П	1	П	1
action evaluations to reach this value divided		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)
nct																										

Table 2: 02-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			Δ ftarget	$_{ m best/D}$	S [15]	M IDEA [4]	VUOA [23]	BayEDAcG [9]	BFGS [22]	MA-ES [14]	MA-ES [2]	DASA [18]	SO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	AMaLGaM IDEA [4]	Chain [19]	MCS (Neum) [16]	JOA [23])-ES [1]	[9] O	PSO_Bounds [7]	Monte Carlo [3]	POP-SEP-CMA-ES [21]	FIT [17]	arcia) [10]
			Δft	ERT	ALPS	AMaLGaM IDE	avg NEWUOA	BayEI	BFC	BIPOP-CMA-ES	(1+1)-CMA-ES	DAS	DEP	EDA-	full NEV	GLOE	iAMaLGa	MA-LS-Chain	MCS (N	NEWL	(1+1)	PS	PSO_B	Monte	IPOP-SEP-	SNOBFIT [VNS (Garcia)
			1e-07	15.5	190	8.7	2.8	22		9.4	5.3	47	34	43	-	11	6.7	19	3600	4.4	5.4	06	240	12e-6/1e6	7.5	4.3	12
			1e-05	12.5	150	8.1	3.4	88		8.6	4.9	44	28	27	П	13	9	21	350	5.2	4.9	64	180	2.6e5	8.9	4.5	12
			1e-04	11.1	120	7.1	3.7	92		2.8	4.5	44	24	22	П	15	5.5	22	200	5.8	4.4	20	140	1.1e4	9.9	1.7	11
		e unif	1e-03	9.57	91	9	4.1	86		6.9	4.3	44	24	17	н	17	4.8	21	1.4	9.9	4	40	85	3100	6.2	1.4	12
0		e moderate uni	1e-02	8.3	89	ಬ	4.4	71	11e-2/4e3	5.5	3.8	43	17	12	-	18	4.3	15	1.2	7	3.2	19	32	140	5.8	П	12
107	nsion	$\mathbf{Spher}\epsilon$	1e-01	5.37	20	4.4	5.6	6	1e3	4.7	က	20	13	6.6	1.5	18	4.1	11	1.1	9.3	3.2	Π	14	22	4.9	-	12
Sec	oy dime	102																									7
, , ,	this value divided by dimension		1e + 01	6.0	2.1	2.5	4	1.8	66	3.6	2.4	70	2.7	1.7	4	2.8	2.7	2.4	П	7.1	2.5	က	3.2	71	5.3	77	2.6
	value d		1e + 02	0.5	1	1.1	1.2	Т	П	1	Н	13	1	1		Н	1	1	П	1	П	Н	1.1	Н	П	Н	-
	ch this		1e+03	0.5	1	1	П	1	п	1	1	1	1	-		1	1	1	П	П	1	П		1	1	П	Н
0	nction evaluations to reach		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)
	nctic																										

Table 3: 02-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

on e	on evaluations to reach	tnis va	uue aivi	idea by	dimensi	on	,					
				10	$3 \mathrm{Sphe}$	ere mo	Sphere moderate	e Cauchy	hy			
	Δ ftarget	1e+03	1e + 02	1e + 01	$1e+\tilde{0}0$	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
	$_{ m ERT_{best}/D}$	0.5	0.5	6.0	3.93	4.7	4.7	4.7	4.9	4.9	6.77	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
	ALPS	1	1	3.1	4.6	44	110	190	310	420	0049	ALPS [15]
	AMaLGaM IDEA	1	1	1.5	2.3	5.6	7.8	12	16	180	340	AMaLGaM IDEA [4]
	avg NEWUOA	1	Н	3.1	1.8	2.1	က	4.1	4.4	7.1	6.9	avg NEWUOA [23]
	$_{ m BayEDAcG}$	1	1.1	$^{2.6}$	2.2	81	180	190	200	210	270	$\overline{\mathrm{BayEDAcG}}$ [9]
	BFGS	1	1	8.6	3.5	4.5	4.6	4.6	4.4	4.4	3.2	BFGS [22]
	BIPOP-CMA-ES	1	1	3.9	3.1	9	6.6	14	17	24	24	BIPOP-CMA-ES [14]
	(1+1)-CMA-ES	1	Н	2.1	1.7	4	9	13	30	22	150	(1+1)-CMA-ES [2]
	DASA	1	1	42	22	37	130	260	1e3	3e3	1.9e4	DASA [18]
	DEPSO	1	1	1.6	2.7	13	24	34	62	88	230	DEPSO [11]
	EDA-PSO	1	1	2.2	3.4	8.9	20	31	09	200	1.3e4	EDA-PSO [5]
	full NEWUOA	1	Н	3.3	1.5	1.5	1.6	1.6	1.6	1.7	1.2	full NEWUOA [23]
	GLOBAL	1	1	7	3.1	23	30	34	33	39	52	GLOBAL [20]
	iAMaLGaM IDEA	-1	П	2.5	2.6	4.1	6.7	9.5	13	230	860	iAMaLGaM IDEA [4]
	MA-LS-Chain	П	П	2.7	3.8	14	27	47	09	72	63	MA-LS-Chain [19]
	MCS (Neum)	-1	1	Н	Н	1.3	1.9	1.9	1.9	100	120	MCS (Neum) [16]
	NEWUOA	П	П	3.2	1.6	2.1	3.1	4.2	4.9	6.4	7.8	NEWUOA [23]
	(1+1)-ES	1	1	2.1	1.5	4.2	7.2	11	36	28	290	(1+1)-ES [1]
	PSO	н	1.1	3.4	3.4	11	37	100	240	220	2.8e4	PSO [6]
	PSO_Bounds	-1	1	2.5	3.8	17	55	210	3400	2200	4.3e4	PSO_Bounds [7]
	Monte Carlo	П	П	2.4	က	34	320	3700	3.2e4	3.1e5	96e-7/1e6	Monte Carlo [3]
_	POP-SEP-CMA-ES	1	1	4.2	3.3	5.3	7.9	11	14	18	19	IPOP-SEP-CMA-ES [21]
	SNOBFIT	-	П	2.4	Н	-	П	П	П	-	П	SNOBFIT [17]
	VNS (Garcia)	1	П	5.6	6.7	14	21	24	56	59	29	VNS (Garcia) [10]

Table 4: 02-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Table 5: 02-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	202	38	9	390			4.1	9.9	5.6e4	150	09	48	-	7.9	8.7		110	2e3	19	22		6	34	14
	1e-05	198	26	9	200			3.8 8.0	6.7	2300	18	41	17	1	∞	8.7	43e-5/3e4	41	220	13	39	14e-5/1e6	9.1	22	12
if	1e-04	195	19	5.9	22			3.6	6.7	1200	7.4	53	14	1	œ	8.6	300	42	85	9.1	31	7400	9.5	12	12
derate unif	1e-03	190	13	5.9	29	12e-2/2e3	32e-2/3e3	3.6	9.9	350	5.8	19	11	-	∞	9.9	120	22	31	6.4	19	550	9.3	7.6	8.2
ck mc	1e-02	186	∞	5. 8.	9.8	71	220	5.6	3.9	100	3.3	8.7	8.3	П	œ	4.7	56	6.3	10	3.6	8.7	89	9.3	5.6	8.2
senbro	1e-01	178	3.7	5.6	2.3	14	71	1.1	7	52	1.5	7	2.2	П	7.2	1.6	3.2	3.1	3.1	1.8	2.3	8.3	6.4	1.6	3.5
105 Rosenbrock mode	1e+00	7.37	22	120	13	58	340	5.7	16	300	14	12	19	15	24	11	1	16	18	11	8.8	32	53	6.1	13
Г	_	2.7																							
	1e + 02	2	က	1.7	3.7	2.3	54	1.6	2.5	29	3.4	3.5	3.3	2.8	2.4	က	-	2.7	2.3	2.5	2.8	2.6	2.9	1.8	3.9
	1e+03	9.0	2.2	1.4	6.4	3.9	64	3.8	3.2	53	2.3	4.3	4.8	3.3	2.7	4.3	П	6.3	3.9	3.2	2.9	3.7	9	2.3	9.5
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 6: 02-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		\sim 07 Δ ftarget	325 ERT $_{ m best}/{ m D}$		27 AMaLGaM IDEA [4]	av	Ř		M	16 $(1+1)$ -CMA-ES [2]	7/8e5 DASA [18]		e3 EDA-PSO [5]	1 full NEWUOA [23]	1.9 GLOBAL [20]	43 iAMaLGaM IĎEÁ [4]	2.1 MA-LS-Chain [19]	5/3e4 MCS (Neum) [16]		(1+1)-ES [1]		130 PSO_Bounds [7]	5/1e6 Monte Carlo [3]	IPOF	5/3e3 SNOBFIT [17]	11
			245																							
							٥-																-			
	Cauchy	1e-04	206	22	11	3.3	66e-3/2e	1.8	2.6	v	260	18	27	1.1	1	15	2.4	210	3.2	06	37	99	8300	2.3	28	0
	moderate (176	14	11	3.2	160	1.8	2.6	က	150	10	19	П	1.1	16	2.3	92	3.2	19	∞	52	1500	2.5	12	0 1
		1e-02	140	8.2	13	2.1	92	2.1	8.8	1.7	160	5.6	12	Н	1.3	17	2.5	39	2.3	8.7	ಬ	11	130	5.9	7.7	00
noisu	nbrock	1e-01	69.5	7.2	16	2.1	17	2.2	3.3	1.2	100	5.1	5.1	П	2.1	16	2.9	œ	7	3.3	4.1	7.3	20	4.4	5.6	Of Cr
y dimension	106 Rosenbrock	1e+00	9.7	15	5.8	4.5	31	13	17	6.4	160	19	9.3	5.1	11	61	10	Н	6.1	10	6	11	22	11	6.9	14
divided by	10	1e + 01	2.7	10	4.6	3.7	6.1	13	œ	ъ	96	17	5	23	7.4	5.2	5.7	Н	2.6	5.1	3.3	10	6.3	5.2	3.5	0
\sim			2																							
ach this		1e + 03	9.0	3.2	$^{2.6}$	4.6	2.4	16	4.1	3.2	26	4.4	3.1	8	2.5	2.7	4.2	П	3.1	5.6	2.8	3.3	3.2	4	2.3	0
nction evaluations to reach this value		Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 7: 02-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

oon evaluations to reac	acn this va	uns value divided	iaea by	107 dimensi	Ħ.	$_{ m I}^{ m I}$	nss				
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	0.5	0.5	6.0	9.9	13.9	26.7	78.8	101	128	211	${ m ERT_{best}/D}$
ALPS	1	1	2.6	3.5	12	6.6	12	15	16	15	ALPS [15]
AMaLGaM IDEA	1	1	2.3	1.7	2.3	-	1	1	1	1.9	AMaLGaM İDEA [4]
avg NEWUOA	П	1	14	32	24	13	15	31	45	80	avg NEWUOA [23]
$\operatorname{BayEDAcG}$	П	1.1	2.4	1.2	4	4.2	4.4	4.7	4.7	4.4	BayEDAcG [9]
BFGS	1	1	86	110	300	880	099	520	410	65e-3/4e3	BFGS [22]
BIPOP-CMA-ES	П	1	12	3.6	2.9	1.2	1.2	1.2	1.2	П	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	1	35	7.2	7.7	5.9	2.4	2.3	3.7	6.3	(1+1)-CMA-ES [2]
DASA	1	1	210	130	330	190	440	250	1400	4100	DASA [18]
DEPSO	1	1	2.9	4.8	6.5	က	3.8	3.7	3.6	3.1	DEPSO [11]
EDA-PSO	1	1.1	1.7	2.9	4.9	2.2	4.4	6.4	9.3	6.6	EDA-PSO [5]
full NEWUOA	П	1	12	9.7	21	6.9	9.6	18	19	28	full NEWUOA [23]
GLOBAL	1	1.1	2.6	2.7	6.9	4.8	4.4	4	4.6	∞	GLOBAL [20]
iAMaLGaM IDEA	1	1	2.5	47	33	8.4	6.2	2	11	8.9	iAMaLGaM IDEA [4]
MA-LS-Chain	П	1	2.3	1.6	4.6	8.8	3.8	3.9	4.5	က	MA-LS-Chain [19]
MCS (Neum)	Н	1	Н	П	П	18	22	170	1400	86e-6/3e4	MCS (Neum) [16]
NEWUOA	н	П	56	20	31	17	20	37	82	83	NEWUOA [23]
(1+1)-ES	П	1	8.2	8.1	8.3	4.3	3.6	3.3	3.2	4.6	(1+1)-ES [1]
PSO	П	П	77	2.3	4.2	3.2	4.9	6.2	7.1	8.9	PSO [6]
PSO_Bounds	Н	1	1.7	2.1	5.1	5.2	8. 5.	16	19	20	PSO_Bounds [7]
Monte Carlo	н	П	2.1	2.8	13	19	280	2400	1.8e4	7e4	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	1	41	16	8.5	2.7	2.1	1.8	2.1	1.5	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	П	2.1	1.1	9.9	9.9	6.5	6.2	6.4	7.3	SNOBFIT [17]
VNS (Garcia)	Н	-	2.6	80	42	18	16	12	10	6.3	VNS (Garcia) [10]

Table 8: 02-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	1e+03 1 0.5 1	1e+02 0.5 1.1	1e+01 0.9 2.5 1.9	1e+00 15 1 1 42	1e-01 101 1.9 32 20	1e-02 713 1.3 6.2 18	1e-02 1e-03 713 1710 1.3 1.1 6.2 4.3 18 16	1e-04 2610 1.6 4.4 14e-3/6e3	1e-05 3680 1.9 5.9	1e-07 7990 1.5 7.3	Aftarget ERThest/D ALPS [15] AMaLGaM IDEA [4] avg NEWUOA [23]
BayEDAcG BFGS BIPOP-CMA-ES			3.1 29 55	10 6.8 10	8 1 4 2 α 2 7 α α	18 5 7 7 7	16 7 11	86e-3/2e3 43e-3/800 1			BayEDAcG [9] BFGS [22] BIPOP-CMA-ES [14] (1±1)-CMA-FS [2]
DEPSO EDA-PSO			2.4 2.4 1.9	2.9 1.1	88 1.9	2.4 1	11 100 5.4 1.2	20 300 26e-4/2e3 1.3	2300	99e-6/6e5 1.2	(1+1)-CMA-ED [2] DASA [18] DEPSO [11] EDA-PSO [5]
full NEWUOA GLOBAL iAMaLGaM IDEA MA-LS-Chain			62 1.7 2.5 2.7	53 1.3 48	42 1.3 20 1.6	42 1.2 8 1	22e-3/7e3 4.8 9.8 1	11 1.4	34e-4/2e3 9.9 1.4	. · 8	full NEWUOA [23] GLOBAL [20] iAMaLGaM IDEA [4] MA-LS-Chain [19]
$\begin{array}{c} \text{ICS (Neum)} \\ \text{NEWUOA} \\ \text{(1+1)-ES} \end{array}$			1 120 36	3.3 56 9.4	2.8 9 6	5.5 3.4	11 25 3.9	140 $13e-3/6e3$ 14	43e-5/3e4 31	400	MCS (Neum) [16] $NEWUOA [23]$ $(1+1)-ES [1]$
PSO PSO_Bounds Monte Carlo			8.4 7.8 8.4	1.1 1.1 1.3	1.3	1.3	1.9 5.6 8.9	3.3 5 66	2.6 4.6 480	1.8 2.8 17e-6/1e6	PSO [6] PSO_Bounds [7] Monte Carlo [3]
P-SEP-CMA-ES SNOBFIT VNS (Garcia)			600 1.3 2.6	73 1.2 46	29 3.6 16	6.5 8.4 7.8	4.5 10 5.4	4.5 14 3.7	5.5 58e-4/3e3 3	19	IPOP-SEP-CMA-ES [21] SNOBFIT [17] VNS (Garcia) [10]

Table 9: 02-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

ction evaluations to reach this value divided by	en triis V.	alue div.	ided by			2	;				
				FOT	' 2 '	re Caucily	CIIJ			1	
Δ ftarget	1e+03	1e+02	1e+01	1e+00	1e-01	1e-0.5	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT}_{ m best}/{ m D}$	0.5	0.5	0.0	4.77	6.3	33.6	34	48.2	48.2	48.2	${ m ERT}_{ m best}/{ m D}$
ALPS	1	1	3.1	4.3	22	11	09	330	2400	7.5e4	ALPS [15]
AMaLGaM IDEA	1	1	2.5	ಣ	4.6	14	36	54	100	290	AMaLGaM IDEA [4]
avg NEWUOA	П	П	3.3	2.6	15	7	6	11	15	31	avg NEWUOA [23]
${f BayEDAcG}$	Н	П	2.7	4.5	12	9.5	13	12	17	28	BayEDAcG [9]
BFGS	1	1	15	8.3	9.2	1.4	1.4	П	П	П	BFGS [22]
BIPOP-CMA-ES	П	П	3.2	77	4.1	1.5	2.3	2.1	3.4	5.4	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	П	4	2.5	9.3	16	61	240	3e3	49e-6/1e4	(1+1)-CMA-ES [2]
DASA	1	П	96	210	470	440	2200	4.2e4	1.9e5	15e-5/6e5	DASA [18]
DEPSO	1	1	2.8	5.6	18	7.5	13	23	22	15e-6/2e3	DEPSO [11]
EDA-PSO	П	П	2.3	3.1	8.8 8.8	4.8	45	490	3800	13e-6/1e5	EDA-PSO[5]
full NEWUOA	П	П	4	1.2	3.3	Н	П	1.5	1.5	1.5	full NEWUOA [23]
GLOBAL	1	1	2.1	2.4	18	2.8	12	21	61	15e-6/2e3	GLOBAL [20]
iAMaLGaM IDEA	1	1	2.8	1.8	က	13	59	35	100	320	iAMaLGaM IDEA [4]
MA-LS-Chain	Н	П	2.5	2.4	10	4.5	9.4	11	16	23	MA-LS-Chain [19]
MCS (Neum)	П	н	П	-		15	35	31	38	87	MCS (Neum) [16]
NEWUOA	1	1	3.3	3.6	12	5.6	10	13	22	36	NEWUOA [23]
(1+1)-ES	П	П	3.4	1.8	4.6	3.1	31	140	820	5e4	(1+1)-ES $[1]$
PSO	Н	П	က	2.2	12	9.4	510	1100	4700	17e-6/1e5	PSO [6]
PSO_Bounds	П	П	1.7	2.1	12	230	1500	8200	1.4e4	2.9e4	PSO_Bounds [7]
Monte Carlo	1	1	2.5	2.4	23	28	490	3e3	6.7e4	15e-6/1e6	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	П	3.3	2.5	3.8	1.4	2.4	2.4	3.3	4.5	IPOP-SEP-CMA-ES [21]
SNOBFIT	Н	П	1.7	П	5.6	1.6	16	24	39	210	SNOBFIT [17]
VNS (Garcia)	П	Н	2.6	ಬ	11	က	4.1	3.8	4.7	6.2	VNS (Garcia) [10]

Table 10: 02-D, running time excess ERT/ERT_{best} on f_{110} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4580	2.4	2.4	12e-4/5e3	٠		1.5	32	2100	17e-6/2e3	2.6		٠	1.3	1.9		٠	49	1.6	က	65e-6/1e6	П	•	3.2
	1e-05	4200	1.4	2.6	5.9			1.3	5.8	270	1.4	1.9			1.4	1		19e-4/5e3	8.6	1.2	2.2	3600	1.1	57e-4/3e3	2.3
SS	1e-04	2180	1.8	4.9	11			2.4	5.8	190	1	2.9		10e-3/800	2.5	1.8	18e-4/3e4	36	7.2	1.3	2.8	099	2.1	16	3.3
prock Gauss	1e-03	1160	2.3	9.2	8.9	13e-2/2e3	52e-2/2e3	3.4	2.4	100	1	3.3	62e-4/6e3	6.1	4.1	2.2	93	9.1	6.4	1.4	3.1	180	3.8	5.3	5.5
${f Rosen k}$	1e-02	651	2.1	16	က	44	41	5.5	8.7	47	П	3.2	8.5	7	9.9	2.1	10	4.4	8.7	1.5	8.8	22	4.4	3.4	6
	1e-01	312	1.5	22	2.2	10	43	4	1.7	32	п	1.6	2.8	1.3	6	1.2	1.9	2.9	1.6	1.1	7	5.9	4.5	8.7	7.3
in the second	1e+00	17.1	7.1	29	5.1	19	88	13	9.3	110	6.9	6.4	17	4.7	22	8.		15	6.9	9.9	12	11	28	7.8	5.3
	1e+01	3.57	8.9	4.2	11	5.7	62	4.1	3.2	150	11	5.3	56	4.9	100	6.1		16	4.9	8.	7.5	5.5	4.8	5.6	5.9
100	1e + 02	2.2	7	73	10	1.7	34	3.5	2.5	140	1.6	1.7	17	77	1.8	2.4	Н	15	5.9	1.9	2.1	2.7	4.2	2.4	3.5
Caci	1e + 03	9.0	2.8	4.2	3.8	2.4	41	6.2	3.4	130	2.2	2.5	21	2.7	2.4	ಣ	1	22	3.9	3.1	2.9	3.1	4.3	3.1	9.5
rancolon evaluations to reach this value divided by	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 11: 02-D, running time excess ERT/ERT_{best} on f_{111} , in italics is given the median function value and the median number of

fingtion evaluations to reach this vialue divided by dimension	s to read	oh this r	zalna dir	rided by	dimension)				
		CITIO III		ided by	111 R	osenbr	111 Rosenbrock unif				
$\Delta { m ftarget}$	1e+03	1e+02	1e + 01	1e+00	1e-01	1e-02	1e-03		1e-05		$\Delta ext{ftarget}$
${ m ERT_{best}/D}$	9.0	3.73	12.1	59.4	359	2710	6360	14600	30900	84600	$\text{ERT}_{\text{best}}/ ext{D}$
ALPS	2.9	1.8	1.9	4.1	2.7	1.1	1		1		ALPS [15]
AMaLGaM IDEA	2.2	1	1	9.2	8.3	6.3	5.5		3.2		AMaLGaM İDEA [4]
avg NEWUOA	72	48	45	29	53	33	26e-2/6e3				avg NEWUOA [23]
BayEDAcG	7. 8.	1.1	77	6.4	36	10	35e-2/2e3				BayEDAcG [9]
BFGS	7.8	8.4	7.7	8.2	59e-2/700						BFGS [22]
BIPOP-CMA-ES	4.5	2.6	7.3	9	2.4	1.5	4.2		3.1		BIPOP-CMA-ES [14]
(1+1)-CMA-ES	4.1	1.8	7.4	6.5	4	3.6	7.6		64e-4/1e4		(1+1)-CMA-ES [2]
DASA	230	110	120	91	88	33	110		90e-5/6e5		DASA [18]
DEPSO	1.7	2.6	3.3	5.7	5.7	11	28e-3/2e3				DEPSO[11]
EDA-PSO	2.1	1.7	1.4	2.1	2.2	1.1	4.7		6.4		EDA-PSO [5]
full NEWUOA	94	37	26	27	31	35	15e-2/7e3				full NEWUOA [23]
GLOBAL	1.7	1.4	1.9	2.5	2.4	1.8	3.5				GLOBAL [20]
iAMaLGaM IDEA	1.9	1.6	1.4	28	21	10	6.2		3.1		iAMaLGaM IDEA [4]
MA-LS-Chain	3.4	1.8	1.7	1.3	2.2	1	1.2		2.2		MA-LS-Chain [19]
MCS (Neum)	1	2.4	1.4	1	4.3	5.5	56				MCS (Neum) [16]
NEWUOA	140	33	21	22	19	11	68e-3/6e3				NEWUOA [23]
(1+1)-ES	46	12	14	11	5.6	2.1	5.7		21		(1+1)-ES [1]
PSO	2.2	1.2	1.9	73	П	4.2	4.6		5.6		PSO [6]
PSO_Bounds	2.6	1.6	1.7	1.3	21	3.2	2.3		2.3		PSO_Bounds [7]
Monte Carlo	3.9	1.6	1.5	2.7	5.5	4.3	28		480		Monte Carlo [3]
IPOP-SEP-CMA-ES	4.6	1.8	11	16	7.4	2.6	2.8		4.6		IPOP-SEP-CMA-ES [21]
SNOBFIT	ಬ	2.4	2.8	4.2	10	6.4	5.6		1.2		SNOBFIT [17]
VNS (Garcia)	9.2	2.1	78	62	22	5.6	4.1		2.5		VNS (Garcia) [10]

Table 12: 02-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			•	•	112 R	12 Rosenbrock	Cauchy	hy			
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	9.0	2	2.7	7.3	312	522	222	618	989	992	${ m ERT}_{ m best}/{ m D}$
ALPS	2.3	2.9	9.2	15	1.6	3.5	9.7	78	880	4.7e4	ALPS [15]
AMaLGaM IDEA	2.7	1.7	4.3	64	14	11	56	32	26	91	AMaLGaM İDÉA [4]
avg NEWUOA		2.2	5.1	11	1.1	4.6	22	120	19e-4/5e3		avg NEWUOA [23]
${ m BayEDAcG}$	2.4	2.5	4.5	27	4.8	88e-3/2e3	•				BayEDAcG $[9]$
BFGS	33	27	36	47	3.4	12	16	29	39	14e-3/4e3	BFGS [22]
BIPOP-CMA-ES		က	37	44	1.7	1.6	1.7	1.7	1.7	1.7	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	3.4	77	4.3	13	1.9	က	13	110	52e-5/1e4		(1+1)-CMA-ES [2]
DASA	43	23	140	160	56	71	270	3400	19e-5/7e5		DASA [18]
DEPSO	3.6	4	7.4	13	1.2	3.8	8.7	34e-4/2e3			DEPSO [11]
EDA-PSO	က	2.2	8.1	9.5	1.9	9	23	290	2100	12e-5/1e5	EDA-PSO [5]
full NEWUOA	6.9	က	3.1	16	1.3	2.5	7.4	13	25	53	full NEWUOA [23]
GLOBAL	3.3	2.5	8.1	16	1.2	က	5.9	7.7	7	10e-3/1e3	GLOBAL [20]
iAMaLGaM IDEA	1.9	1.7	4	100	14	19	35	65	29	100	iAMaLGaM IDEA [4]
MA-LS-Chain	2.1	2.5	6.3	7.7	1	1.7	2.8	3.8	3.9	9.2	MA-LS-Chain [19]
MCS (Neum)	Н	Н	1	П	7.7	31	87	11e-4/3e4			MCS (Neum) [16]
NEWUOA	5.1	2.7	ಬ	13	1.2	1.7	6.6	110	100	70e-5/5e3	NEWUOA [23]
(1+1)-ES	2.8	2.1	3.4	15	1.9	4.5	16	92	800	18e-7/1e6	(1+1)-ES [1]
PSO	1.8	2.1	8.1	9.2	1.6	4.6	88	360	920	41e-5/1e5	PSO [6]
PSO_Bounds	2.2	2.1	6.2	8. 8.	1.7	6.2	46	230	1100	10e-5/1e5	PSO_Bounds [7]
Monte Carlo	3.1	2.4	5.9	14	5.6	28	300	2800	0086	17e-5/1e6	Monte Carlo [3]
IPOP-SEP-CMA-ES	3.4	2.7	5.4	9.4	1.1	1	Н	1.1	1	1	IPOP-SEP-CMA-ES [21]
SNOBFIT	2.9	77	2.9	10	2.2	4	62	58	12e-3/3e3		SNOBFIT [17]
VNS (Garcia)	9.2	3.9	9.5	14	1.3	1		1	1	1	VNS (Garcia) [10]

Table 13: 02-D, running time excess ERT/ERT $_{\rm best}$ on f_{113} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

113 Sten-ellipsoid Gauss

	Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	438	4.1	П	13	20		2.5	4.4	380	1.6	7.3	15	1.7	2.1	2.3	57	14	3.7	1.6	ಬ	130	5.3	5.1	8.6
	1e-05	87.1	13	1	33	69		12	19	220	7.1	25	47	9.7	10	6.6	92	42	15	5.9	13	160	27	20	43
	1e-04	87.1	13	1	33	69		12	19	220	7.1	22	47	9.2	10	6.6	92	42	15	5.9	13	160	22	20	43
nss	1e-03	87.1	13	П	33	69		12	19	220	7.1	22	47	9.7	10	6.6	92	42	15	5.9	13	160	27	20	43
psoid Ga	$^{-}$ 1e-02	8.69	11	1	19	26	60e-2/3e3	14	17	009	.v. 8.v.	19	26	5.7	13	7.2	37	29	8.9	5.1	11	54	27	20	52
tep-elli	1e-01	43.7	12	П	9.7	30	260	13	11	380	5.2	8.9	17	5.5	20	5.6	6.1	16	6.4	3.6	4.3	18	32	10	63
113 S1	1e+00	15.7	4.3	1.1	6.1	2.3	91	6.4	7.4	180	5.4	2.2	4.8	4.1	1	2.6	1.2	5.8	5.7	2.6	77	4.7	13	4	22
	1e + 01	2.37	2.2	2.3	9.5	2.4	81	5.1	12	220	4.3	2.5	11	4.2	2.9	2.6	1	12	13	4.7	3.4	2.9	4.2	1.8	2.7
	1e + 02	1.07	1.6	1.6	13	1.3	24	4.1	21	120	1.8	1.9	11	1.9	1.6	1	1.3	8.7	10	1.8	1.6	1.6	3.3	1.1	2.2
	1e+03	0.5	1	1.3	2.1	1.3	26	1.1	40	9.2	1.7	1.7	2.5	7	1.6	1.1	1.4	2.4	9.3	1.4	1.2	1.6	1.8	1	1
	Δ ftarget	$\overline{\mathrm{ERT}}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 14: 02-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 15: 02-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension $f_{115} = f_{115}

Table 16: 02-D, running time excess ERT/ERT_{best} on f_{116} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Δftarget L16 Ellipsoid Gauss Hasel Described to the control of the c	director evaluations to reach time v	o to read	v cilio io	arme	divided by		,				
						Ilipsoi	d Gauss				
3.27 6.77 24.6 50.3 77.6 103 138 165 521 894 1.8 3.1 3.6 14 23 33 45 56 30 27 1.8 3.1 3.6 14 23 33 45 56 30 27 2.8 3.1 3.2 10 1.1 1.2 2.7 1.2 1	$\Delta { m ftarget}$	1e + 03	1e+02	1e+01	1e+00	$1\bar{e}$ -02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
1.8 3.1 3.6 14 23 34 56 30 27 1.7 1.6 1.2 1 1 1 1 1 1 1 I <td>${ m ERT_{best}/D}$</td> <td>3.27</td> <td>6.77</td> <td>24.6</td> <td>50.3</td> <td>103</td> <td>138</td> <td>165</td> <td>521</td> <td>894</td> <td>$\text{ERT}_{ ext{best}}/ ext{D}$</td>	${ m ERT_{best}/D}$	3.27	6.77	24.6	50.3	103	138	165	521	894	$\text{ERT}_{ ext{best}}/ ext{D}$
1.7 1.6 1.2 1 2 2 4 1 1<	ALPS	1.8	3.1	3.6	14	33	45	56	30	27	ALPS [15]
7.9 6.2 12 15 32 98 130 480 $14e-3/5e3$. 2.8 5.2 9.7 63 110 280 $28e-1/2e3$. . 1.9 9.4 15 61 $62e-1/1e3$. . . 1.9 9.4 15 61 $62e-1/1e3$. . . 1.9 9.4 15 61 62 9 49 110 . . 1.7 1.7 8.1 11 29 49 110 420 270 160 4.8 47 43 130 500 1.3e4 1.8e4 29e-5/7e5 . 1.4 4.7 43 16 14 16 26 3.7 3.6 3.7 3.6 3.7 3.6 3.6 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 <td>AMaLGaM IDEA</td> <td>1.7</td> <td>1.6</td> <td>1.2</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>AMaLGaM IDEA [4]</td>	AMaLGaM IDEA	1.7	1.6	1.2	1	1	1	1	1	1	AMaLGaM IDEA [4]
2.8 5.2 9.7 63 110 280 $28e-1/2e3$.	avg NEWUOA	7.9	6.2	12	15	86	130	480	14e-3/5e3		avg NEWUOA [23]
30 35 60 410 $59e-1/1e3$.	BayEDAcG	2.8	5.2	9.7	63	280	28e-1/2e3				BayEDAcG [9]
1.9 9.4 15 61 62 51 39 33 11 6.5 B 1.7 1.7 8.1 11 29 49 110 420 270 160 4.8 4.7 8.3 13 50 163 190 1.3e4 1.8e4 29e-5/7e5 160 1.9 3.6 5.1 18 30 46 64 76 29 27 160 8.3 15 11 17 44 110 320 11e-3/6e3 . . . 8.3 15 17 44 110 320 11e-3/6e3 . . . 1.4 3.5 11 23 43 49 51 4.1 2.5 1.5 2.4 3.7 3.2 12 3.2 43 49 50 3.2 1.5 1.5 5.4 4.6 6.3 18 38 110	BFGS	30	35	09	410						BFGS [22]
1.7 8.1 11 29 49 110 420 270 160 48 47 43 130 500 163 1900 1.3e4 1.8e4 29e-5/7e5 1.4 45 6.5 13 15 15 14 16 26 1.9 3.6 5.1 18 30 46 64 76 29 77 8.3 15 17 44 110 320 11e-3/6e3 .	BIPOP-CMA-ES	1.9	9.4	15	61	51	39	33	11	6.5	BIPOP-CMA-ES [14]
48 47 43 130 500 1e3 1900 1.3e4 1.8e4 $29e-5/7e5$ 1.4 4.2 6.8 13 15 24 31 41 18 16 1.9 3.6 5.1 18 30 46 64 7 29 27 1.4 4.1 18 30 46 64 7 29 27 1.4 4.1 3.5 8.3 12 37 28 16 17 4.1 2.5 27 1.2 1.8 6.7 24 10 14 12 4.1 2.5 18 18 2.4 3.7 3.3 11 23 44 49 51 22 1.5 1.5 5.4 4.6 6.3 18 38 10 46-3/5e3 <td>(1+1)-CMA-ES</td> <td>1.7</td> <td>1.7</td> <td>8.1</td> <td>11</td> <td>49</td> <td>110</td> <td>420</td> <td>270</td> <td>160</td> <td>(1+1)-CMA-ES [2]</td>	(1+1)-CMA-ES	1.7	1.7	8.1	11	49	110	420	270	160	(1+1)-CMA-ES [2]
1.4 4.2 6.8 13 15 24 31 41 18 16 8.3 36 5.1 18 30 46 64 76 29 27 1.3 3.5 5.1 18 30 46 16 76 29 27 1.4 4.1 13 44 110 320 $16-3/6e3$. . 2.4 4.1 3.5 8.3 12 27 28 18 18 2.4 3.7 3.3 11 23 49 51 22 15 15 5.4 3.7 3.2 12 23 24e-3/3e4 5.9 3.7 3.2 12 20 64 130 84 79 28 20 5.3 3.7 3.9 410 280 270 920 4.1e4 80e-5/4e6 . 2	DASA	48	47	43	130	1e3	1900	1.3e4	1.8e4	29e-5/7e5	DASA [18]
1.9 3.6 5.1 18 30 46 64 76 29 27 8.3 15 11 17 44 110 320 $11e-3/6e3$. . 1.4 15 14 110 320 $11e-3/6e3$. . 1.4 1.8 6.7 24 12 31 9.8 18 2.4 3.7 3.3 11 23 43 49 51 2.5 15 5.4 4.6 6.3 18 86 730 $24e-3/8e4$. . . 5.4 4.6 6.3 18 86 770 $24e-3/5e3$. . . 5.4 4.6 6.3 18 10 $24e-3/8e3$ 5.3 3.7 3.9 120 64 130 280 28 20 30 2.3 3.4 3.2 <	DEPSO	1.4	4.2	8.9	13	24	31	41	18	16	DEPSO [11]
8.3 15 11 17 44 110 320 $11e-3/6e3$ 1.4 4.1 3.5 8.3 12 37 28 31 9.8 18 1.2 1.8 6.7 12 14 12 4.1 2.5 18 2.4 3.7 3.3 11 23 43 49 51 2.5 15 15 5.4 4.6 6.3 18 86 730 $24e-3/3e4$	EDA-PSO	1.9	3.6	5.1	18	46	64	92	29	27	EDA-PSO [5]
1.4 4.1 3.5 8.3 12 37 28 31 9.8 18 1.2 1.8 6.7 24 23 19 14 12 4.1 2.5 18 2.4 3.7 3.3 11 23 43 49 51 2.5 15 15 5.4 4.6 6.3 18 38 110 $24e-3/3e4$ 5.9 3.7 3.2 12 20 64 130 $50e-3/5e3$ 2.3 3.7 5.9 3.5 120 64 130 $50e-3/5e3$ 2.3 3.7 5.9 3.5 120 100 84 79 28 20 3.4 3.5 2.0 2.0 4.1e4 $80e-5/1e6$ 4 6.5 8.9 48 100 $12e-2/3e3$	full NEWUOA	8.3	15	11	17	110	320	11e-3/6e3			full NEWUOA [23]
1.2 1.8 6.7 24 23 19 14 12 4.1 2.5 i_i 2.4 3.7 3.3 11 23 43 49 51 22 15 i_i 1 1 13 38 10 $24e^{-3}/3e^4$ i_i i_i i_i 5.4 4.6 6.3 18 38 10 i_i i_i i_i 2.3 3.7 5.9 35 120 64 130 i_i i_i i_i 2.3 3.7 5.9 35 120 i_i i_i i_i i_i 2.3 3.7 410 280 270 9200 i_i i_i i_i 3 5.5 29 270 9200 i_i i_i i_i 1.7 1.6 8.9 48 100 i_i i_i i_i 1.8 4 67	GLOBAL	1.4	4.1	3.5	8. 8.	37	28	31	8.6	18	GLOBAL [20]
2.4 3.7 3.3 11 23 43 49 51 22 15 1 1 1 13 86 730 $24e^{-3}/3e4$ 5.4 4.6 6.3 18 38 110 570 $50e^{-3}/5e3$ 2.3 3.7 3.2 12 20 64 130 84 790 280 1500 2.3 3.7 5.9 35 120 100 84 79 28 20 3.4 3 113 410 280 230 190 180 82 63 63 1.7 1.6 5.5 29 280 2700 9200 $4.1e4$ $80e-5/1e6$. 1.7 1.6 8.9 48 100 $12e-2/3e3$ 12 3.9 IPO 1.8 4 67 75 55 39 35 </td <td>iAMaLGaM IDEA</td> <td>1.2</td> <td>1.8</td> <td>6.7</td> <td>24</td> <td>19</td> <td>14</td> <td>12</td> <td>4.1</td> <td>2.5</td> <td>iAMaLGaM IDEA [4]</td>	iAMaLGaM IDEA	1.2	1.8	6.7	24	19	14	12	4.1	2.5	iAMaLGaM IDEA [4]
1 1 1 1 13 86 730 $24e-3/3e4$ <td>MA-LS-Chain</td> <td>2.4</td> <td>3.7</td> <td>3.3</td> <td>11</td> <td>43</td> <td>49</td> <td>51</td> <td>22</td> <td>15</td> <td>MA-LS-Chain [19]</td>	MA-LS-Chain	2.4	3.7	3.3	11	43	49	51	22	15	MA-LS-Chain [19]
5.4 4.6 6.3 18 38 110 570 $50e-3/5e3$ 5.9 3.7 3.2 12 20 64 130 500 350 1500 2.3 3.7 5.9 35 120 100 84 79 28 20 3.4 3.4 3.9	MCS (Neum)	1	1	П	13	730	24e-3/3e4				MCS (Neum) [16]
5.9 3.7 3.2 12 20 64 130 500 350 1500 2.3 3.7 5.9 35 120 100 84 79 28 20 3.4 3 13 410 280 230 180 82 63 2 5.5 5.5 280 2700 9200 4.1e4 $80e-5/1e6$. 1.7 1.6 5 8.9 48 100 120 $12e-2/3e3$. . 1.8 4 67 75 55 50 39 35 13 16	NEWUOA	5.4	4.6	6.3	18	110	570	50e-3/5e3			NEWUOA [23]
2.33.75.935120100847928203.4313410280230190180826312.55.529280270092004.164 $80e-5/1e6$.1.71.658.94810012e-2/3e36.53.9IPC1.846775555039351316	(1+1)-ES	5.9	3.7	3.2	12	64	130	200	350	1500	(1+1)-ES [1]
3.4313410280230190180826322.55.529280 2700 9200 $4.1e4$ $80e-5/1e6$.1.71.6540413224 20 6.5 3.9IPO1.71.658948100120 $12e-2/3e3$ 3.9IPO1.846775555039351316	PSO	2.3	3.7	5.9	35	100	84	79	28	20	PSO [6]
22.55.52928027009200 $4.1e4$ $80e-5/1e6$.118.1174041322420 6.5 3.9II1.71.658.948100120 $12e-2/3e3$ 1.846775555039351316	PSO_Bounds	3.4	က	13	410	230	190	180	82	63	PSO_Bounds [7]
11 8.1 17 40 41 32 24 20 6.5 3.9 II 1.7 1.6 5 8.9 48 100 120 $12e-2/3e3$	Monte Carlo	77	2.2	5.5	29	2700	9200	4.1e4	80e-5/1e6		Monte Carlo [3]
1.71.658.948100120 $12e-2/3e3$ 1.846775555039351316	POP-SEP-CMA-ES	11	8.1	17	40	32	24	20	6.5	3.9	IPOP-SEP-CMA-ES [21]
1.8 4 67 75 55 50 39 35 13 16 °	SNOBFIT	1.7	1.6	5	8.9	100	120	12e-2/3e3			SNOBFIT [17]
	VNS (Garcia)	1.8	4	29	75	50	39	35	13	16	VNS (Garcia) [10]

Table 17: 02-D, running time excess ERT/ERT_{best} on f_{117} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

				idea of	11	17 Ellipsoid unif	l unif				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	$1e-\overline{0}2$	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{ ext{best}}/ ext{D}$	4.77	17.4	83.7	673	3230	0969	14100	14900	18200	21600	ERT_{best}/D
ALPS	1.6	1.8	1.6	1.1	1.1	1	1.3	2.4	2.8	7.9	ALPS [15]
AMaLGaM IDEA	1.7	1.3	4.9	6.6	4.5	4.6	2.6	2.5	2.9	4.1	AMaLGaM IDEA [4]
avg NEWUOA	15	32	24	10	8.4	78e-2/6e3			-		avg NEWUOA [23]
$\operatorname{BayEDAcG}$	2.4	2.6	17	42	78e-1/2e3			·			BayEDAcG [9]
BFGS	9.8	5.3	4.9	6.2	2.7	40e-1/600					BFGS [22]
BIPOP-CMA-ES	2.2	5.4	6.7	% %	2.1	1.6	1	П	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	9.5	4.5	ಬ	1.8	2.1	10	10	32e-3/1e4	-		(1+1)-CMA-ES [2]
DASA	06	80	28	51	46	120	310	71e-4/6e5	-		DASA [18]
DEPSO	П	4.1	3.6	1.9	4.1	46e-2/2e3					DEPSO [11]
EDA-PSO	1.3	2.6	1.2	9	2.4	2.5	4.6	9.6	17	21	EDA-PSO [5]
full NEWUOA	55	41	25	14	31	14	87e-2/7e3				full NEWUOA [23]
GLOBAL	1.4	1	2.3	1.3	1.9	1.8	25e-2/2e3				GLOBAL [20]
iAMaLGaM IDEA	43	12	11	5.7	4.5	3.4	· 61		3.3	6.5	iAMaLGaM IDEA [4]
MA-LS-Chain	1.3	1.1	1.2	1	1	1.7	1.9	12	27e-4/1e4		MA-LS-Chain [19]
MCS (Neum)	1.4	1.2	1	1.4	4.2	8.4	27e-3/3e4		-		MCS (Neum) [16]
NEWUOA	43	22	29	12	26	97e-2/6e3					NEWUOA [23]
(1+1)-ES	3.1	9	6.2	2.3	1.9	4	8.2		26	099	(1+1)-ES [1]
PSO	1.4	1.3	4.6	52	12	13	11	16	24	99	PSO [6]
PSO_Bounds	2.5	1.1	1.6	52	21	17	21		37	29	PSO_Bounds [7]
Monte Carlo	1.5	-	2.8	3.2	4.4	31	120		10e-4/1e6		Monte Carlo [3]
IPOP-SEP-CMA-ES	22	27	10	5.3	2.8	1.9	1.2		4	39e-4/1e4	IPOP-SEP-CMA-ES [21]
SNOBFIT	2.1	1.2	3.5	2.6	5.1	2.5	51e-2/3e3				SNOBFIT [17]
VNS (Garcia)	1.3	1.3	41	11	5.6	4.5	3.8	12	29	410	VNS (Garcia) [10]

Table 18: 02-D, running time excess ERT/ERT_{best} on f_{118} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Cauchy	1e-04 $1e-05$ $1e-07$	326 388 486 E	630 $2400 44e-7/2e6$	6.2 14	220 90e-5/5e3		54 45	2.3 2.1 1.9 E	460 98e-5/1e4 . (1+	1.5e4 $43e-5/7e5$	92 30e-3/2e3 .	510 1800 12e-5/1e5	60 220	4.1 4.9	9.7 14	3 3.8 3.9 1	1100 $27e-4/3e4$.	71 190 $11e-4/5e3$	1200	650 $1200 33e-5/1e5$	2200 88e-5/1e5 .	64e-5/1e6	1.6 1.4	110 95 32e-4/3e3	1
					·																			H		
																							٠	4 1.5	32e-4,	1
	auchy	•																								1
	llipsoid C ϵ	e-02 1e-0	252 292	12 60			110 71e-2/																			1 1
diffiension	118 E	1e-01 1	66.2	20																					4.1	3.4
vided by			51.5				28										6.2									3.7
is value divided p			5 10.5																							1 14
		1e+03 1e+	2.1 2.	6.3	4.4	2.4	3.1 7.	17 2	3.5	2.8	16 1	5.4	2.8	2.3	3.6	3.1 5.	5.7 7.	-	2.1	3.6	2.1	3.2 7.	2.6	4.1 9.	1.7 2.2	2.9
nunction evaluations to reach th		Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 19: 02-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median final function value and the median number of function avaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	5040	8.5	П	67e-6/5e3	18e-5/2e3		က	9.9	1800	79e-7/2e3	32	32e-5/6e3	32e-5/700	1.6	2.1	٠	15	11	47	45	٠	1.2	7.4	9.9
		1e-05	2380	1.9	1.2	8.9	3.9		7	2.4	009	П	2.9	38	7	2.1	н		33	3.3	4.4	4	18e-5/1e6	1.7	2.6	2.4
	s Gauss	1e-04	950	2.9	2.5	9.9	4.4		က	က	330	1	4.4	15	2.2	က	1.3	18e-4/3e4	19	3.1	1.3	4.1	2500	2.8	4	2.9
	ent power	1e-03	520	3	3.3	5.9	2.1	13e-2/4e3	1.6	1.6	200	1	3.1	11	1.6	4.5	1.4	150	7.1	1.1	1.5	3.6	380	1.3	2.7	2.5
on	ij	1e-02	88	2	12	14	4	220	-	7.2	360	3.7	4.9	13	4.3	12	4.3	40	23	3.6	3.5 5.	5.5	22	3.8	4	1.8
dimension	Sum of		35.5		13	œ	4.4	160	1.2	7.9	170	3.6	5.6	4.8	4.1	7.8	5.6	1.2	8.6	7.3	2.2	3.3	8.9	п	3.2	2.8
led by o	119 S	1e+00	5.37	1.8	28	18	6.3	28	2.9	12	280	2.2	2.3	8.7	2.3	2.1	5.6	П	15	22	က	7	2.1	2.5	1.3	4.2
ue divic		1e+01	0.7	1.6	1.7	2.9	1.4	43	3.8	1.5	91	1.6	1.2	3.2	1.6	1.4	1.7	-	3.1	11	77	7	1.7	1.7	1.9	2.1
this val		1e + 02	0.5	1.5	П	1.4	1.3	12	2.3	н	-	П	1.3	1.6	1.3	1.1	1.2	-	2.6	77	1.1	1.1	1.4	1.2	1.3	-
o reach		1e + 03	0.5	1	Н	Н			Н				Н		Н	Н	-	н	Н	П	Н		Н	П	-	1
function evaluations to reach this value		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 20: 02-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	94300	6.1	21			-	П		89e-5/6e5		10e-6/1e5			160	99e-6/1e4			50e-7/1e6	12e-6/1e5	29e-6/1e5	-			260
		1e-05	37700	1.3	6.9				П		230		4.2			17	3.9			22	4.2	4.9	16e-5/1e6	36e-5/1e4		8.1
;	nnif	1e-04	13000		7.1		·		1.2	57e-4/1e4	210		2.3		٠	14	1.1	38e-4 /3e4		22	3.1	5.8	250	11	٠	3.3
	ent powers unif	$\overline{1}e-03$		l		94e-3/6e3								44e-3/7e3	13e-3/2e3	15	1.8	41	98e-3/6e3	10	5.8	6.5	56	ъ	19e-3/3e3	4.9
sion	120 Sum of different	1e-02	1260	1.2	7.3	15	21e-2/2e3	9.2	1.1	6	73	4	1.4	92	3.8	14	1	14	34	5.3	2	7	5.9	5.1	3.9	5.9
dimension	0 Sun	1e-01		7			22							17	1.1	56	1	3.1	41	4.8	39	1.1	2.5	14	7	20
nded by	12	1e+00	2.67	1.1	1.3	74	3.1	20	11	13	310	3.2	Н	22	2.1	22	2.2	3.8	61	25	2.4	က	2.5	35	2.6	4
alue div		1e+01	0.7	1.9	1.2	37	1.1	9.2	4.4	2.6	98	1.5	1.8	48	1.5	1.3	1.6	1	48	11	77	1.4	1.5	က	1.7	2.1
h this v		1e+02	0.5	1.1	1.3	9.2	-	7	73	1.1	75	1	1.2	20	1.1	1.2	1.2	1	3.1	7	1.3	1.3	1.3	1.3	1.3	П
to reac		1e + 03	0.5	1	1	П	П	П	-	П	П	1	1	П	-	П	1	П	1	П	1	П	-	П	-	1
function evaluations to reach this v		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 21: 02-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

menon evaluations to reach	reach c	iiis valut	anvide.	u by um	ν						
			٠.	$121~\mathrm{Sum}$		of different		ers Cauchy			
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04		1e-07	
$\text{ERT}_{\text{best}}/\text{D}$	0.5	0.5	0.7	3.53	21	71.8	164	376	260	851	H
ALPS	1	1.4	7	2	9.2	18	90	089		50e-7/2e6	
AMaLGaM IDEA	П	1.1	1.4	2.7	1.4	22	30	29		160	AMaLGaM İDEA [4]
avg NEWUOA	П	1.6	2.6	5.7	4.4	6.3	22	35			avg NEWUOA [23]
$\operatorname{BayEDAcG}$	П	1.1	1.3	4.7	8.6	4.8	4.7	10	53	28e-5/2e3	BayEDAcG [9]
BFGS	П	9.6	22	34	16	15	27	46	48	78e-5/4e3	BFGS [22]
BIPOP-CMA-ES	П	1.5	3.1	3.5	1.4	1	1.3	1.4	7	2.6	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	н	1.2	3.4	7.9	14	21	61	190	62e-5/1e4		(1+1)-CMA-ES [2]
DASA	П	14	160	270	230	880	2200	12e-4/6e5			DASA [18]
DEPSO	Н	1.6	2.5	4.2	5.1	4.1	5.4	22	38e-5/2e3		DEPSO [11]
EDA-PSO	Н	1	1.6	4	3.2	15	180	1800	55e-5/1e5		EDA-PSO [5]
full NEWUOA	П	2.1	4	1.6	1.7	1.5	8.9	15	25	34e-6/5e3	full NEWUOA [23]
GLOBAL	Н	1.3	1.8	2.6	9.2	5.2	10	21	59e-5/2e3		GLOBAL [20]
iAMaLGaM IDEA	Н	1.4	1.7	2.5	15	11	22	32	64	250	iAMaLGaM IDEA [4]
MA-LS-Chain	П	1.3	1.6	4.5	4	4.1	4.4	4.2	7.1	38	MA-LS-Chain [19]
MCS (Neum)	Н	1	П	н	Н	66	510	23e-4/3e4			MCS (Neum) [16]
NEWUOA	Н	1.6	2.7	4.4	ಣ	7.6	14	22	120	40e-5/5e3	NEWUOA [23]
(1+1)-ES	П	1.6	3.2	4.8	4.3	8.6	28	320	5500	16e-6/1e6	(1+1)-ES [1]
PSO	П	1.3	1.6	3.3	6.2	88	310	1900	2500	32e-5/1e5	PSO [6]
PSO_Bounds	Н	1.2	2.5	က	7.4	240	400	410	1200	21e-5/1e5	PSO_Bounds [7]
Monte Carlo	Н	1.3	1.6	2.6	9.4	20	830	1.3e4	2.7e4	27e-5/1e6	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	1.2	3	5.2	1.8	1.1	Н	-1	1.2	П	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1.1	1.9	1.9	2.5	11	73	24e-4/3e3	-		SNOBFIT [17]
VNS (Garcia)	П	1	2.1	6.5	4.1	1.7	1.6	1.1	П	1:1	VNS (Garcia) [10]

Table 22: 02-D, running time excess ERT/ERT_{best} on f_{122} , in italics is given the median final function value and the median number of

		7 Δ ftarget	0 ERT _{best} /D		⋖	av	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]			Н	full NEWUOA [23]			MA-LS-Chain [19]				PSO [6]	Д		IPOP-SEP-CMA-ES [21]		VNS (Garcia) [10]
			4780						1								က									59
		1e-0	2180	4.1	2.9		•		П		٠	6.9	6		٠	9	2.7	٠	•	2100	4.8	7.8	٠	1.6	•	16
		1e-04	1680	3.9	2.9				1	48e-4/1e4	87e-4/6e5	2.1	8.7			6.3	2.4			570	4.8	6.2		7	75e-4/3e3	6.9
	Gauss	1e-03	1120	4.3	3.7	11e-2/5e3	16e-3/2e3		П	09	2700	1.9	9.7	59e-3/6e3		7.5	2.7	18e-3/3e4	99e - 3/5e3	65	5.6	6.9	79e-4/1e6	2.5	6.1	6.1
	naffer F7 (1e-02	705	4	4.8	55	9.7		1	9.3	096	1.5	8.6	62	64e-3/1e3	7.8	3.1	240	54	16	7	6.1	1400	2.4	3.1	6.9
dimension	$122~\mathrm{Sc}$	1e-01	261	4.4	9.9	33	3.4	47e-2/3e3	1	9.2	300	77	8.9	20	3.3	9.9	3.6	23	30	7.2	11	3.6	28	ಬ	3.2	15
value divided by		1e+00	47.7	2.9	14	9.7	3.2	40	77	5.1	170	2.6	1.2	7	1.7	19	2.1	Н	16	3.5	3.5	1.3	2.9	15	2.2	27
alue di		1e+01	1.47	7	2.2	14	1.7	46	8.7	16	320	П	8.7	11	1.8	1.7	1.7	1.4	9.7	21	2.5	1.7	2.4	3.9	1.8	2.5
		1e+02	0.5	1.2	1.1	1.3	1.1	3.8	1.2	1.9	30	1.3	1.6	1.4	1	1.3	1.4	1	1.7	40	1.1	1.1	-1	2.3	1.3	П
to read		1e + 03	0.5	1	П	П	1.1	-	П	П	-	-	П	П	1	П	П	1	П	1.1	1	1	-	1	П	П
function evaluations to reach this v		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 23: 02-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07		29e-6/2e6					1				•		•	11e-4/1e6	•				•		•		•	
	1e-05	5e4	340	98e-5/1e6				1							300					58e-4/1e5	47e-4/1e5				21e-5/1e7
	1e-04	0	40	240				1							520				57e-4/1e6	51	26			21e-2/3e3	930
7 unif	1e-03		7.6	20				1	16e-2/1e4			81e-4/1e5			130	32e-3/1e4			350		36	12e-3/1e6		1.9	45
123 Schaffer F7 u	1e-02	12400	1.6	13	46e-2/6e3			1	5.8	40e-3/6e5	19e-2/2e3	6.5	36e-2/7e3	16e-2/2e3	25	12	58e-3/3e4	44e-2/6e3	38	7	6.1	160	92e-3/1e4	2.9	5.7
123	1e-01	3190	1	9	28	10e-1/2e3	53e-2/800	1.2	6.6	52	2.1	1.2	31	1.4	7.6	1.2	8.7	28	4.9	3.9	5.9	5.3	4.7	2.6	5.1
	1e+00	106	1.2	22	24	23	7.1	5.2	7.7	22	2.7	1.4	27	1.3	57	1.2	1.8	32	8.7	3.2	1.2	П	23	က	46
	1e+01	1.57	1.6	1.7	99	2.6	6.4	52	20	130	1.7	1.6	73	1.7	2.1	2.3	П	26	99	2.4	2.3	1.8	74	1.2	2.1
	1e + 02	0.5	1.1	1.3	9.2	1.5	1	1.1	1.9	4.1	1.2	1.1	11	1.4	1.4	1.3	1	1	2.2	1.1	1.3	1.2	1.3	1.4	П
	1e+03	0.5	Т	1	П	Н	Н	1	П	Н	Н	1	1.1	Н	1.1	1	П	Н	Н	1.1	1.1	Н	Н	Н	н
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 24: 02-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 134 Schoffen F7 Comban

	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4510		450		٠		3.1		٠					670	٠							П		340
	1e-05	2800		44		٠		1.5		٠					110	٠							-		220
	1e-04	1740				15e-4/2e3		1.1	17e-3/1e4						41	14e-3/1e4			10e-4/1e6	13e-3/1e5		78e-4/1e6	1		30
Cauchy	1e-03	966	3900	23	98e-3/5e3	9.4		1	140		79e-4/2e3	18e-3/1e5	17e-3/5e3	98e-3/1e3	30	140		33e-3/5e3	2e3	470				32e-3/3e3	21
ffer F7 Ca	1e-02	340			61			1	88	32e-3/6e5	8.9	1300	49	24	23	42	68e-3/3e4	46	36	260	430	2900	1.6	110	22
124 Schaffer F7	1e-01	158	5.8	8.3	22	2.8	53e-2/4e3	1	5.7	220	4.2	9.5	9.1	6.7	9.2	2.6	92	14	9	13	110	84	1.5	8.2	13
•	1e+00	31.8	2.2	11	9.3	3.3	28	က	4.9	170	4	7	5.4	2.8	5.6	2.1	-	6.5	5.6	1.8	1.8	5.9	2.5	3.5	26
	1e+01	1.77	1.5	1.4	12	1.6	48	3.3	1.9	110	1.4	П	2.5	1.2	1.9	7		5.6	10	1.3	1.4	1.4	4.9	2.1	1.9
	1e + 02	0.5	1.4	1.1	1.7	1.3	17	1.4	2.4	9	1.1	1.1	1.8	-	1.3	1.3	-	2.5	1.6	1.3	1.3	1.1	1.1	1.3	-
	1e+03	0.5	1.1	1	1	1	1	П	1	1.6	П	П	1	П	1.1	1	П	П	1.1	П	П	П	1	П	1
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 25: 02-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

this value divided by dimension	125 Griewank-Rosenbrock Gauss	1e+00 $1e-01$ $1e-02$ $1e-03$ $1e-04$ $1e-05$	0.5 0.5 0.5 74.3 575 1230 1930 3780 ERT $_{\rm best}/{\rm D}$	4.3 77 3.6 1.5 1.3 1.6 1.6	3.3 38 1 13 7.7 5.5 2.9 A	46 1.8 2.7 2.4 2.3	5.5 32 1.5 1 2 3.4 49e-6/2e3	87 730 40 49 46 59e-4/4e3	5.1 34 1.9 3 2.2 1.9	3.5 84 4 4.4 2.9	280 2400 64 91 89 120	5.6 120 2.5 1.7 1 1	3.9 52 1.4 1.9 1.9 2.4	7.3 66 2.5 3.5 2.8	4.7 56 2.3 1.4 1 1.5	4.7 500 13 20 11	5.6 44 2 4 2.3 2.1	1 1 1.2 8 10 13	6.1 77 1.4 2.6 2.1 2.6 10	22 130 5.5 4.2 3.7 3 6.5	5.1 43 2.2 7.4 5.8 6.1 3.5	4 32 1.6 2.5 2.5 1.8	4.1 53 3.2 4.4 6.5 12	2.7 200 4.3 5.4 3.6 3.3	4.9 31 4.2 4.3 2.9 2.4	77 77 77 77 77 77 77 77 77 77 77 77 77
zided by din	125 G																									
value di		1e + 02	0.5	1	1	П	1	1	1	П	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1	
		1e + 03	0.5	1	1	-	1	1	1	-	1	1	1	-	-1	1	1	1	1	-1	1	1	1	1	П	
ction evaluations to reach		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VINIC (Comoio)

Table 26: 02-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-0.7	18200	1.4	5.3		26e-3/2e3		2.5	27e-5/1e4	42	1.6	3.2		17e-4/2e3	8.4	1	19e-6/3e4		∞	4.2	2.6	13	8.2	7	5.4
	1e-05	5530	7	9.1	18e-4/6e3	5.1		2.6	6.2	89	2.6	2.8		1.5	14	1	7.1		8.3	6.9	4.1	4.2	v	3.1	5.4
k unif	1e-04	3410	1.2	7.1	7.8	8.2		77	7.4	09	4.2	2.2	27e-4 /7e3	1.3	10	1	4.3	32e-4 /6e3	8.9	7.8	4.4	2.4	9.9	ಬ	6.4
Rosenbroc	1e-01 $1e-02$ $1e-03$	1710	1.6	10	11	7.6	95e-4/900	1.5	3.9	59	3.3	1.5	17	2.4	8.6	1	3.4	52	4.7	11	4.6	1.6	7.4	10	7
vank-1	1e-02	151	1.3	8.3	15	37	7.7	1.4	1.9	20	3.6	1.2	8.9	1.7	20	1.3	1.6	15	2.5	1.2	-	1.8	2.8	5.9	17
Griev	1e-01	0.5	47	41	029	340	170	42	230	3400	64	33	260	22	096	53	П	009	230	22	51	31	590	26	29
126 126	1 1e+00	0.5	4.6	22	95	3.6	17	4.8	2.8	420	4.7	3.5	130	3.7	4.7	6.3	1	200	39	5.2	6.7	5.9	18	6.9	2.5
ranc divided by difficultation 126 Griewa	1e+01	0.5	1	1.1	26	1.1	77	1	1.1	3.7	1.2	1.2	19	1.1	1.1	1.3	1	2.1	2.1	1.3	1.1	П	1.1	1.3	1.2
מ	1e+02	0.5	1	1	1	П	1	1	1	1	1	1	П	-	1	1	1	-	П	1	1	1	1	П	н
O I Cacil	1e+03	0.5	1	1	1	П	1	1	1	-	1	1	1	П	1	1	1	П	1	П	1	1	1	П	н
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 27: 02-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		127 Griewan		127 Gri	iewank	ewank-Rosenbrock	nbroc	k Cauchy			
	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta ext{ftarget}$
	0.5	0.5	0.5	0.5	0.5	93	593	2010	3390	3640	ERT_{best}/D
ALPS	1	1	1.1	6.3	43	7	3.7	4	7.1	06	ALPS [15]
AMaLGaM IDEA	1	1	1.3	4.7	28	11	16	8.4	9.6	17	AMaLGaM İDÉA [4]
γ	П	1	1.3	7.2	72	1.6	3.5	1.8	2.5	16e-6/5e3	avg NEWUOA [23]
7 5	1	1	1.1	6.1	20	1	1	1	4.1	62e-6/2e3	BayEDAcG [9]
	1	1	5.2	54	580	15	45	27	16e-4/4e3		BFGS [22]
-ES	1	1	1.1	5.3	32	1.9	8.7	7	1.7	2.2	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	1	1.1	6.5	140	5.1	12	8.4	14	25e-5/1e4	(1+1)-CMA-ES [2]
	1	1	14	170	2200	98	210	130	440	2400	DASA [18]
	1	1	1.3	3.1	27	1.7	1.6	2.1	7	4	DEPSO [11]
_	1	1	1.3	3.7	40	2.1	6.4	7.9	12	120	EDA-PSO [5]
full NEWUOA	П	1	1.4	13	84	7	5.3	3.7	7.2	22	full NEWUOA [23]
	1	1	1.3	5.7	99	2.4	7.7	16e-4/2e3			GLOBAL [20]
DEA	1	1	1.1	2.8	27	7.9	10	11	13	38	iAMaLGaM IDEA [4]
ain	П	1	1.1	7.3	44	1.3	3.3	1.9	3.2	20	MA-LS-Chain [19]
m)	-	1	1	П	П	3.2	5.6	5.8	6.4	42e-7/3e4	MCS (Neum) [16]
A	1	1	2.1	6.2	95	1.8	4.9	3.8	2.8	6	NEWUOA [23]
70	П	1	1.9	6.3	64	2.5	7.1	5.4	8.4	88	(1+1)-ES $[1]$
	П	1	1.4	4.3	35	2.5	30	19	16	98	PSO [6]
ds	-	1	1	7.5	44	1.4	88	47	37	130	PSO_Bounds [7]
:lo	1	1	1.1	4.4	26	2.7	6.1	4.9	11	110	Monte Carlo [3]
IA-ES	П	1	1.1	4.9	47	8.8	3.7	1.6	П	П	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1	1	4.7	36	3.8	11	5.5	11	10	SNOBFIT [17]
VNS (Garcia)	Н	-	1.2	2.5	48	7.5	26	12	œ	12	VNS (Garcia) [10]

Table 28: 02-D, running time excess ERT/ERT_{best} on f_{128} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		1e-07 Δ ftarget	$_{ m 310}$ ERT $_{ m best}/{ m D}$	6.2 ALPS [15]	9.9 AMaLGaM İDEA [4]	32 avg NEWUOA [23]	45 BayEDAcG [9]	. BFGS [22]	5.5 BIPOP-CMA-ES [14]	2 (1+1)-CMA-ES [2]	400 DASA [18]	2.4 DEPSO [11]	5.8 EDA-PSO [5]	15 full NEWUOA [23]	1 GLOBAL [20]	21 iAMaLGaM IDEA [4]	3.2 MA-LS-Chain [19]	82 MCS (Neum) [16]	4		2.3 PSO [6]	29 PSO_Bounds [7]	540 Monte Carlo [3]	14 IPOP-SEP-CMA-ES [21]	5.6 SNOBFIT [17]	16 VNS (Garcia) [10]
			297	4.5	6	9.7	18		5.4	1.8	180	1.9	4.6	11	1	22	3	8. 8.	14	2.7	1.5	28	31	14	3.6	17
		1e-04	205	4.9	13	8.7	14	20e-3/4e3	7.7	2.6	100	2.4	4.9	13	1	32	3.7	1.9	16	3.5	1.5	38	24	18	4.4	24
	auss	1e-03	194	2.7	12	7.4	11	270	6.7	2.5	22	2.5	5.6	10	1	33	3.2	1.1	8.6	3.7	1.2	38	8.	17	8.8	25
	Gallagher Gauss	1e-02	157	2.3	14	7.9	5.2	09	5.1	က	72	2.4	1.7	10	-	41	1.8	1.1	8.6	3.7	1.2	46	3.2	21	က	29
on	Gallag	1e-01	67.2	2.2	32	9.3	3.4	29	8.4	6.7	140	4.4	2.5	13	-	79	2.1	1.9	9.2	7.5	1.6	110	1.8	41	3.3	59
dimensi	128	1e+00	20.7	2.2	47	21	4.8	65	7.8	16	170	3.9	3.5	21	1	110	1.5	2.1	17	11	2.4	1.9	1.4	28	4.7	73
ach this value divided by dimension	•	1e+01	6.0	1.3	1	5.9	1.1	12	1.3	1.9	20	1	1.1	3.1	1.5	1	1.7	1.4	1.9	1.8	1.5	1.3	1.1	1	1.9	Н
lue divi		1e + 02	0.5	1	1	П	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	П
this va		1e + 03	0.5	1	1	П	П	1	1	П	1	1	1	н	1	1	1	н	1	1	П	1	1	1	1	П
tion evaluations to reach		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 29: 02-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 30: 02-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	2220	15	8.1	6.9	13	22	1.2	4.7	200	2.3	140	6.2	1.1	13	П	20	9.9	9	20	83	38	1.1	7.4	11
	1e-05	988	4.1	20	7.5	10	20	က	4	320	2.2	21	3.8	П	21	2.1	17	4.7	3.9	110	130	15	8.8	8.1	17
	1e-04	824	1.3	17	3.9	6.7	12	3.2	3.1	120	1.2	15	2.1	П	22	1.7	4.3	3.6	3.1	110	110	4	5.9	2.1	14
chy	1e-03	399	1.5	17	3.6	9.7	12	6.5	3.1	63	1.8	7.3	3.9	1.4	27	2.2	Н	3.8	2.5	150	170	4.1	5.9	7	24
30 Gallagher Cauchy	1e-02	248	1.5	16	5.6	11	14	10	1.8	29	1.8	6.2	3.1	1.5	38	2.1		3.7	2.4	110	200	2.1	7.9	1.1	34
allaghe	1e-01	99.2	1	39	3.7	6	15	21	4.3	88	5.6	2.2	ಬ	1.4	72	1.6	1.1	5.4	4.1	110	160	1.5	14	1.4	09
130 Ga	1e+00	22.6	1	45	8.2	5.9	22	24	11	82	2.3	7	10	2.3	98	2.4	2.5	8.6	8.9	330	7	1.6	2.8	2.4	160
,	1e+01	0.767	1.7	1.2	3.2	1.3	13	1.4	1.6	09	77	1.6	2.3	1.3	1.5	1.5	1.7	2.8	2.5	1.7	1.7	1.3	П	1	1.2
	1e + 02	0.5	1	Н	П	1	1	1	П	1	1	Н		Н	1	1	П	1	-1	1	П	Н	1	1	1
	1e+03	0.5	1	Н	Н	Т	1	1	Н	Т	1	Н	-	Н	1	1	П	1	1	1	П	Н	П	1	1
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 31: 03-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

																								[1]		
		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [2	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	12.7	240	15	1.4	230		12	6.5	42	40	150		10	8.6	20	96e-7/2e4	2.2	6.2	26	300		9.3	1.7	13
		1e-05	11.1	190	12	1.4	200		8.6	5.5	40	34	26	П	11	8.1	20	1600	2.3	5.2	71	230	17e-4/1e6	7.7	1.5	12
	ISS	1e-04	10.7	160	11	1.4	200		8.6	ಬ	35	28	69	-	11	8.9	19	240	2.5	4.5	26	180	1.3e6	6.9	1.2	11
	te Gau	1e-03	9.33	130	6.6	1.5	220		7.8	4.4	32	22	41	1.1	12	6.3	20	7	2.4	4.4	44	130	2.7e5	5.9	П	11
	a)		6.73					4																		
by dimension	Sphere	1e-01	6.33	29	7.3	1.7	130	4100	5.3	3.6	31	17	12	1.4	16	4.4	15	1.4	2.2	3.5	18	30	360	4.4	П	10
	101	1e+00	4.4	21	5.3	1.6	52	800	4	3.1	25	11	7.3	1.7	17	2.9	8.2	П	77	က	7.7	7.7	16	2.8	1.1	8.5
divided			1.2																							5.6
this value		1e + 02	0.333	1.1	1	2.1	1	1	1	П	1.2	1.1	1.1	П	1.1	1	1.1	П	1.5	1.5	-1	Н	1.2	1.1	1.1	Н
_		1e+03	0.333	1	1	Н	Т	1	1		Т	1	1		1	1	1		1	П	Н		Н	П	1	-
unction evaluations to reach		Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 32: 03-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]	
		1e-07	16	190	11	2.2	180		9.1	5.2	52	33	120	П	8.1	7.8	17	26e-6/2e4	10	4.7	80	230	٠	7.2	2.2	11	
		1e-05	13	170	6.6	2.2	210		8.3	4.8	48	59	82	П	9.3	7.1	19	2800	9.1	4.3	64	180		9.9	7	10	
	Ŧ		11.6																								
	$_{ m ate}$ $_{ m uni}$	1e-03	10.8	120	7.7	2.8	190		6.5	4	38	21	30	1	10	5.5	19	140	8.9	3.6	37	110	3e5	5.1	1.4	9.2	
	ohere moderate unif	1e-02	9.33	83	6.5	2.6	100	11e-1/4e3	5.5	3.4	39	17	15	1	12	4.2	16	38	7.2	3.2	26	73	2200	4.9	1.2	9.4	
imension	Sphe	$1e^{-01}$	7.56	54	5.7	2.9	110	7200	4.6	က	32	15	11	1.1	14	3.2	12	1.4	5.4	2.7	15	19	320	3.9	Н	6.6	
by din	102	1e+00	4.04	13	5.1	2.8	17	1500	3.2	5.6	29	11	8.2	1.7	14	က	10	-	5.7	3.1	8.9	7.7	11	3.5	1.5	6.6	
divided		1e+01	1.2	3.2	2.5	3.6	5.6	140	3.9	2.2	36	1	2.5	3.1	2.9	2.5	7. 8.	-	5.9	3.8	2.2	2.2	1.5	3.8	1	5.6	
is value		1e + 02	0.333	1	1.1	1.9	1.1	6.1	П	1.5	6.5	1	1.1	1	1	1	1.1	-	1.5	1.1	П	1	1.1	1	1.1	н	
#		1e+03	0.333	1	1	1	1		-	-	1	1	1	-	1		-	-	1	1	-	-	1	1	-	1	
nction evaluations to reach		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)	

Table 33: 03-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

103 Sphere moderate Cauchy

	$\Delta { m ftarget}$	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	14.2	2.5e5	620	6	330	1.2	12	170	1e6	190	69e-7/1e5	1.8	33	810	25	98	8.6	880	19e-6/1e5	14e-6/1e5		9.3	1	13
	1e-05	7.73	2e3	340	10	440	2.1	15	99	1.6e4	120	8e3	8.8	35	220	35	87	5.8 8.0	160	2.3e4	2.8e4	•	13	П	20
ucny	1e-04	6.58	280	91	9.2	510	2.5	14	40	2800	110	730	3.2	32	12	36	36	5.9	20	1600	4800	14e-4/1e6	12	Н	19
ate Ca	1e-03	6.38	200	22	5.6	320	5.6	12	22	440	64	100	73	20	9.3	34	2.1	4.8	14	340	250	5.3e5	10	-	16
moder	1e-02	6.38	120	13	73	310	5.6	7.8	7.8	130	28	21	1.3	17	6.9	23	77	3.4	7.2	58	92	1.2e4	7.6	-	14
onere	1e-01	4.33 6.38	71	9.7	1.6	140	2.2	5.3	4.9	49	17	11	1.3	14	4.4	13	1.3	5.6	3.7	18	31	320	5.1	П	12
103 2	1e+00	4.33	19	6.4	1.7	17	3.7	4	3.2	33	12	6.7	1.6	12	3.5	7.8	-	2.1	8.7	7.5	6.1	18	4.2	1.1	9.4
	1e+01	1.2	2.6	4.9	3.3	2.5	3.5	5.1	3.4	59	1.9	1.9	3.5	1.9	5.6	3.5	Н	3.4	3.3	2.5	2.3	3.4	4.5	2.3	5.6
	1e + 02	0.333	1	1.1	1.9	1	1.3	1.3	П	5.1	1	1.1	П	1.1	1.1	1.1	1	1	1.1	П	1.1	1	1	1.1	П
	1e + 03	0.333	1	1	1	1	1	1	-	1	1	-	-	1	1	1	-	1	1	-	1	1	1	1	1
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 34: 03-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Table 35: 03-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		1100 ERT $_{ m best}/{ m D}$		1.6 AMaLGaM IDEA [4]	20e-4/6e3 avg NEWUOA [23]			B	10 $(1+1)$ -CMA-ES [2]		DEPSO [11]		[n]		Į.			70 NEWUOA [23]				. Monte Carlo [3]	2 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	8.1 VNS (Garcia) [10]
	1e-05	1090	∞	1.5	75	-	٠	1.3	9.6	710	71e-4/2e3	16	21	Н	1.3	5.4		69	100	31	79	٠	7		7.
iif	1e-04	1090	6.4	1.5	35			1.2	7.8	300	27	12	14	1	1.3	5.4		21	38	25	74		7	16e-2/2e3	4.5
derate un	1e-01 $1e-02$ $1e-03$ 1	1080	4.5	1.4	8.2			1.2	4.9	94	8.6	6	6.7	-	1.3	5.2	57e-3/2e4	7.5	12	20	54	45e-3/1e6	77	10	7
ock me	1e-02	1080	2.9	1.4	3.2			1	1.9	32	2.1	6.1	4.7	1	1.3	4.8	100	7	ಬ	13	51	0009	1.8	11	3.4
Sosenbr (1e-01	357	4.7	2.8	1.6	10e-1/2e3		2.5	3.4	34	2.5	9.1	က	Н	3.7	11	37	1.9	3.9	29	27	1400	5.2	10	α rc
	1e+00																								
	1e+01	9.29	28	3.2	1.8	26	910	4.1	2.1	22	7.7	6.9	1.4	11	2.1	7.1	1	1.5	2.8	10	14	50	2.8	1.8	7 0
	1e + 02	5.64	7.7	2.2	1.8	3.3	130	2.7	1.6	24	ಬ	3.9	1.7	3.7	1.5	5.3	1	2.5	3.2	2.7	5.5	7.8	2.7	77	œ
	1e+03	1.4	4.2	3.7	2.7	3.5	160	4.2	2.7	69	4.3	3.2	4.6	2.5	2.5	3.1	1	ಬ	6.1	4.4	1.7	2.2	5.1	3.8	С. Л.
	$\Delta \mathrm{ftarget}$	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 36: 03-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	482	37e-7/2e6	43	7.5	•	7.6	1.5	26	•		97e-5/1e5	1.6	16	51	1.6		33	3e4	•		٠	1.2	٠	п
	1e-05	431	1900	27	22		7.6	1.5	19	10e-5/1e6		3300	1.4	3.7	25	1.6		13	1200	14e-3/1e5	17e-4/1e5		1.2		1
chy	1e-04	276	240	32	3.3		7.6	2.2	11	0099		1600	1	2.5	31	2.3	40e-3/2e4	14	240	5400	1500		1.8		1.5
106 Rosenbrock moderate Cauchy	1e-03	253	55	31	2.1		œ	2.1	7.2	540	38e-3/2e3	460	1	1.3	22	2.4	086	7.4	100	1700	480		1.9	12e-2/2e3	1.5
orock mod	1e-02	148	25	34	1		13	3.3	6.2	270	200	52	1	2.1	24	3.4	810	4.4	32	910	620	42e-3/1e6	က	160	2.3
06 Rosenl	1e-01	52	37	30	1.9	73e-2/2e3	23	6.9	6.1	190	34	69	П	3.8	41	7	230	5.6	24	230	170	9100	7.1	63	5.6
·—	1e+00	22.8	29	18	2.4	32	18	7.1	5.5	150	12	44	1	8.9	37	8.3	23	3.3	3.5	14	33	290	7.5	3.6	8.1
	1e+01	9.6	21	3.7	1.1	7.5	12	က	1.9	14	11	7.6	1.2	9.4	2.4	6.4	1	1	2.1	œ	11	43	2.9	1.9	7.1
	1e + 02	6.87	5.3	7	1.1	3.8	7	1.9	1.1	12	3.2	3.1	1.3	4	1.5	4.4	1	1	2.3	3.6	3.9	7.9	1.8	1.6	6.7
	1e+03	1.4	2.4	2.9	3.1	3.8	18	4.6	1.7	21	4.6	4.9	4.2	2.5	3.5	3.4	Н	က	3.4	2.4	2.5	4.9	3.7	2.9	2.5
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 37: 03-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	228	18	6.3		7.4		1	140	٠	3.6	42	28e-4 /7e3	66e-4/700	11	4.6			780	7.2	22		3.8	35	2.8
	1e-05	168	16	∞	16e-3/6e3	7.1		1	61	24e-4/8e5	3.6	38	610	31	12	ಬ		57e-4/5e3	180	6.2	20		4.2	15	3.1
	1e-04	138	16	9.5	590	6.9		1	32	9.2e4	3.6	36	350	38	15	5.6	16e-4/2e4	530	64	5.9	18	16e-4/1e6	4.2	12	3.57
Gauss	1e-03	108	14	4.6	360	8.9		1	19	2.6e4	3.3	32	130	22	16	5.8	670	150	22	5.4	14	2.2e4	3.2	8.8 8.0	4.2
ohere ($^{-}$ $^{1e-02}$	77.4	13	2.8	120	6.2		П	16	5e3	3.5	23	85	11	23	2.8	81	65	18	4.3	10	086	3.9	2.8	1.6
$107~\mathrm{Sr}$	1e-01	51	6	7.8	45	4	10e-1/3e3	1	13	1400	2.5	6.1	40	6.5	14	4	13	61	14	77	5.4	58	ŭ	5.9	1.8
	1e+00	15.6	4.3	1.6	20	4.2	310	1.8	8.6	260	3.2	2.5	21	4.8	16	က	1	29	17	1.5	2.9	4.3	∞	3.6	2.3
	1e + 01	1.96	2.1	1.7	17	2.3	87	4	17	280	2.4	1.6	22	1.6	3.4	1.6	2.4	12	13	1.2	1	7	28	2.2	1.6
	1e+02	0.333	1.1	1	Н	Т	1	1	Н	1.5	1.2	1.1		1	Н	1.2	Н	1.1	1.1	1.1	1.1	1.1	Н	1	-1
	1e + 03	0.333	1	1	П	1	1	1	П	1	1	Н	н	1	1	1	-	1	1	1	-	1	1	1	П
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 38: 03-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median function value and the median number of

		$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	10700	3.1	32				П				9.9			100	20		-		42	64	٠		-	490
		1e-05	5730	2.7	19		•		П		·		7.2			44	ro		٠	٠	23	41	٠	91e-5/1e4	·	150
		1e-04	2060	2.1	15		•		1		99e-4/8e5		5.1			32	7		٠	53e-5/1e6	11	45	92e-5/1e6	30		22
	if	1e-03	3610	1.7	13				1	42e-3/1e4	3400		2.6		92e-3/1e3	16	1.5	37e-3/2e4		280	11	35	370	3.7	11e-2/2e3	13
	Sphere unif	1e-02	1840	1.5	9.2	39e-2/6e3							2.2	31e-2/7e3	10	17	1.4	130	41e-2/5e3	43	12	22	36	9	13	8.4
value divided by dimension	\sim	1e-01	655	1.8	11	130	64e-2/2e3	92e-2/800	1.2	7.2	230	9	1	50	2.6	20	П	8.8	36	13	13	П	2.7	7	4	10
ided by	•	1e+00	32.8	1.7	45	82	25	32	7.5	21	350	9	1.9	180	4.8	57	2.8	3.9	26	39	1	2.6	3.1	44	4.2	69
alue div		1e+01	1.93	1.4	1.3	120	2.4	38	36	72	510	4.4	1.5	82	2.1	92	1.9	3.2	110	24	1	2.5	1.1	180	1.5	1.6
sh this v		1e + 02	0.333	1.1	1	1.5	1.1	П	1.2	П	11	П	1.1	15	П	П	1	П	Н	Н	1	1.1	1	1	П	П
s to read		1e+03	0.333	1	1	1	-	-	1	1	-	-	1	1	1	1	1	1	1	1	1	1	1	1	П	1
function evaluations to reach this v		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 39: 03-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

				,	$109 \mathrm{ S}$	Sphere	Cauchy	λy			
Δ ftarget	1e + 03	1e+02	1e + 01	1e+00	_	$^{-}1e-02$		1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	0.333	0.333	1.2	6.84	31.1	48.5		64.5	83.7	83.7	${ m ERT_{best}/D}$
ALPS	1	1.1	2.1	13	1	36		1.3e4	1.4e5	42e-6/2e6	ALPS [15]
AMaLGaM IDEA	П	1.1	3.3	38		22		92	120	210	AMaLGaM İDEA [4]
avg NEWUOA	Н	1.5	3.4	7.6		8.9		58	110	260	avg NEWUOA [23]
BayEDAcG	Т	П	2.4	27		22		25	21	36	BayEDAcG [9]
BFGS	1	9.3	39	8.7		1.3		1	1	П	BFGS [22]
BIPOP-CMA-ES	1	П	2.9	2.3		1.5		2.4	2.4	3.5	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	1.2	2.9	5.5		47		18e-4/1e4			(1+1)-CMA-ES [2]
DASA	Н	3.1	200	400	_	1.1e4		63e-4/9e5			DASA [18]
DEPSO	1	1	3.1	6.4		7		92	350	15e-5/2e3	DEPSO [11]
EDA-PSO	П	П	81	3.8		110		83e-5/1e5			EDA-PSO [5]
full NEWUOA	П	П	6.4	2.1		1.6		2.2	1.7	1.7	full NEWUOA [23]
GLOBAL	1	1.2	4.5	10		4.6		39e-4/500		•	GLOBAL [20]
iAMaLGaM IDEA	Н	1.1	2.2	7		18		62	140	490	iAMaLGaM IDEA [4]
MA-LS-Chain	П	1.1	3.3	5.4		5.8		20	26	56	MA-LS-Chain [19]
MCS (Neum)	П	П	1	1		81		150	160	190	MCS (Neum) [16]
NEWUOA	1	1.3	5.3	6.2		12		150	180	17e-5/5e3	NEWUOA [23]
(1+1)-ES	П	П	3.8	1.9		27		2200	8.2e4	25e-6/1e6	(1+1)-ES [1]
PSO	П	П	2.5	8.4		290		7300	1.8e4	19e-4/1e5	PSO [6]
PSO_Bounds	П	1.1	2.5	3.7		3100		2.3e4	18e-3/1e5		PSO_Bounds [7]
Monte Carlo	Н	1.1	1.6	9.2		2500		19e-4/1e6		•	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	П	3.4	1.8		1		2.4	2.2	3.6	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1.1	2.6	1.1		17		380	31e-4/2e3		SNOBFIT [17]
VNS (Garcia)	Н	н	2.6	5.9		2.1		3.1	က	4.2	VNS (Garcia) [10]

Table 40: 03-D, running time excess ERT/ERT_{best} on f_{110} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Afterget ERT best/D AMALGAM IDEA avg NEWUOA BayEDAcG BREDA-CMA-ES (1+1)-CMA-ES (1+1)-CMA-ES (1+1)-CMA-ES (1+1)-CMA-ES (1+1)-CMA-ES (1+1)-CMA-ES (1+1)-CMA-ES (1+1)-CMA-ES (1+1)-ES (1+1)-ES (1+1)-ES	10+03 1.44 2.3 2.3 2.3 2.3 50 6.9 6.9 6.9 6.9 7.2 2.2 3.2 3.2 3.2 3.2 3.2 5.3 5.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6	1e+02 8.44 1.8 3.9 1.8 3.9 1.8 1.8 2.0 5.3 2.0 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.0 3.5 3.9 3.9 3.9 3.9 3.9 3.9 3.0 3.0 3.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	1e+01 18.7 18.7 2.2 2.2 2.20 2.20 2.20 2.20 2.3 6.7 6.5 1.6 4 1.6 4 1.6 6.8	1e+00 307 2.6 8.4 6.6 6.6 4.8 109 110 110 1.1 1.1 1.1 1.1 1.1 1.1	2090 2090 33 33 33 33 33 33 34 170 170 170 170 170 170 170 170 170 170	10-02 6820 1.2 26 26 34e-2/6e3 4.2 2.9 3.7 180 1 98e-3/400 11 11 16 16 17 17 18 11 11 11 11 12 13 14 16 17 18 17 18 18 18 18 18 18 18 18 18 18	e-01 1e-02 1e-03 1 1.2 1 1 1.2 1 1 2.6 16820 11800 8.4 34e-2/6e3 1.4 34e-2/6e3 2.2 3.7 13 170 180 240 1.7 180 240 1.7 91e-2/400 8.5 11 9.8 6.5 16 9.2 6.5 11 22e-2/5e3 1.1 22e-2/5e3 1.1 22e-2/5e3 1.1 22e-2/5e3	1e-04 20400 1.2 9.1	1e-05 20700 1.6 9.1 1 1 48e-4/9e5 5.8 76e-3/2e4	1e-07 21200 21200 2.5 8.9 1 1 5.7 690	Aftarget ERT _{Dest} /D ALPS [15] AMALGaM IDES [15] avg NEWUOA [23] BayEDAcG [9] BFGS [22] BIPOP-CMA-ES [14] (1+1)-CMA-ES [2] DASA [18] DEPSO [11] EDA-PSO [5] full NEWUOA [23] GLOBAL [20] iAMALGAM IDEA [4] MACS (Neum) [16] NEWUOA [23] (1+1)-ES [1]
PSO-Bounds	2. 2. 4. 4.	2.6	5.0 5.0	52 50 70	97 73	59 30	55 35	32 25e-2/1e5		21e-2/1e5	Д
PSO_Bounds	2.4	2.1	5.6	26	73	30	35	25e-2/1e5			
Monte Carlo	77	3.2	16	55	200	2100	32e-3/1e6				Monte Carlo $[3]$
OP-SEP-CMA-ES	3.8	15	7.6	3.9	6.6	6.1	3.5	3.3	3.2	8.9	IPOP-SEP-CMA-ÈŚ [21]
SNOBFIT	3.4	1.6	2.9	4.2	3.4	3.6	76e-2/2e3				SNOBFIT [17]
VNS (Carcia)	7	1	70	00	7	•	1	(0		0.00

Table 41: 03-D, running time excess ERT/ERT_{best} on f_{111} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

111 Research 111.

	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4.91e5	6.1	30				1							30										13e-6/9e6
	1e-05	4.76e5	1.2	9.1		•		П		•		•			15					87e-3/1e5	٠				28
	1e-04	2e5	П	9.1				2.4							16					3.4	25e-3/1e5				16
unif	1e-03	64900	П	22				6.2				15e-2/1e5			12	52e-3/2e4			64e-4/1e6	10	10		47e-2/1e4		9.3
111 Rosenbrock unif	1e-02	25300	1	16				13	89e-2/1e4	29e-2/8e5		22		25e-1/1e3	13	8.9	47e-2/2e4	74e-1/5e3	36	16	8.9	75e-3/1e6	5.9		8.1
111 Rc	1e-01	0666	1	7		15e+0/2e3		3.1	15	210	12e-1/2e3	19	76e-1/7e3	77	13	1.7	5.3	7.8	8.7	8.4	4.5	80	4.5	37e-1/2e3	6.4
	1e+00	1160	1.3	4.2	45e-1/6e3	11	25e+0/600	1.4	9.3	250	3.4	2.9	25	က	11	1	7.5	32	5.3	11	1.6	19	5.1	6.4	9
	1e+01	58	4.8	П	55	45	150	4.1	17	350	4.2	ಬ	96	4.3	32	2.4	7.4	85	11	1.8	2.9	8.9	24	8.6	46
	1e + 02	17.2	2.1	1.4	99	4.6	12	9.2	16	310	2.1	1.1	73	1.9	18	77	2.4	42	12	1	1.4	2.4	26	1.9	27
	1e+03	3.36	1.8	1.1	52	1.7	15	က	20	310	2.1	1	42	1.2	1.1	1.5	2.5	32	17	1.1	1.3	П	2.9	1.8	П
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 42: 03-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	3	200		Trace of		-					
					112 K	112 Rosenbrock)				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	1.4	6.38	9.6	113	523	826	950	993	1040	1180	$\text{ERT}_{\text{best}}/\text{D}$
ALPS	4.3	9.1	27	7.4	5.3	37	1400	1.2e4	55e-5/2e6		ALPS [15]
AMaLGaM IDEA	2.5	2.5	4	12	24	63	80	68	140	170	AMaLGaM IDEA [4]
avg NEWUOA	2.8	1.1	2.1	2.5	1.8	9.5	85	20e-3/6e3			avg NEWUOA [23]
BayEDAcG	3.3	3.5	7.7	22	10e-1/2e3						BayEDAcG [9]
BFGS	39	53	70	43	11e-1/3e3	·					BFGS [22]
BIPOP-CMA-ES	3.8	77	33	1	1		1	1.1	1.1	1.2	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	3.9	2.1	3.3	2.6	6.4		18e-3/1e4				(1+1)-CMA-ES [2]
DASA	39	59	06	61	87		7e3	1.4e4	48e-4/1e6		DASA [18]
DEPSO	5.3	3.5	7.8	3.5	16						DEPSO [11]
EDA-PSO	3.5	3.1	6.1	6.4	61	1800	39e-3/1e5				EDA-PSO[5]
full NEWUOA	4.3	1.4	2.5	1.7	5.6	13	49	13e-3/7e3			full NEWUOA [23]
GLOBAL	2.5	5.1	11	7	2.4	30e-2/400				·	GLOBAL [20]
iAMaLGaM IDEA	33	1.8	2.4	4.9	51	58	74	100	140	200	iAMaLGaM IDEA [4]
MA-LS-Chain	3.3	4.6	6.9	1.8	2.7	6.2	18	44		60e-5/2e4	MA-LS-Chain [19]
MCS (Neum)	1	1.1	1	11	50	12e-2/2e4					MCS (Neum) [16]
NEWUOA	77	1	1.3	1.7	1.4	8.7	37	73	44e-4/5e3	٠	NEWUOA [23]
(1+1)-ES	4.3	2.4	2.5	2.1	3.2	23	320	3300	30e-5/1e6		(1+1)-ES [1]
PSO	2.6	3.4	7.7	22	400	340	20e-2/1e5				PSO [6]
PSO_Bounds	3.7	2.9	12	7.8	170	200	1500	72e-3/1e5		-	PSO_Bounds [7]
Monte Carlo	3.4	10	41	160	096	8300	60e-3/1e6			٠	Monte Carlo [3]
IPOP-SEP-CMA-ES	2.3	1.7	2.7	2.2	1.2	1.1	1	1	1	1	IPOP-SEP-CMA-ES [21]
SNOBFIT	2.5	1.3	2.5	5.9	6.1	30	17e-2/2e3				SNOBFIT [17]
VNS (Garcia)	2.5	7.4	7.9	3.2	1.3	1.1		1.1	1.1		VNS (Garcia) [10]

Table 43: 03-D, running time excess ERT/ERT_{best} on f_{113} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			t	/D	5])EA [4]	A [23]	[6]	[2]	ES [14]	ES [2]	∞ <u></u>	11]	ত্র	A [23]	[20])EA [4]	in [19]	(16]	[23]	[1]		ls [7]	lo [3]	A-ES [21]	[17]	a) [10]
			Δ ftarget	${ m ERT_{best}/I}$	ALPS [15]	AMaLGaM II	avg NEWUOA [5	BayEDAc	BFGS [22]	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA [18]	DEPSO [11	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-	SNOBFIT [17]	VNS (Garcia) [10]
			1e-0.7	1140	2.2	1.9	57e-3/6e3	œ		1.8	22	1400	1	4.4	15e-3/7e3		4.4	2.1	15e-3/2e4	74e-3/5e3	28	11	2.8	4200	3.1	6.2	6.4
			1e-05	1080	2.1	7	72	8.2		1.9	22	1e3	Н	3.7	92		4.6	2.1	230	20	23	12	5.6	1300	5.9	9.9	8.9
			1e-04	1080	2.1	7	75	8.2		1.9	22	1e3	П	3.7	92		4.6	2.1	230	20	23	12	5.6	1300	5.9	9.9	8.9
`		Gauss	1e-03	1080	2.1	7	75	8.2		1.9	22	1e3	П	3.7	95	12e-2/400	4.6	2.1	230	20	23	12	2.6	1300	2.9	9.9	8.9
,		ipsoid	$^{-}1e-02$	1030	1.8	2.1	25	8.5		1.9	8.9	800	1	3.6	16	4.2	4.6	7	20	12	14	10	2.3	520	က	6.9	6.2
	dimension	3 Step-ell	$1e-0\overline{1}$	649	1.5	1.9	œ	3.4	19e-1/2e3	2.4	2.5	120	1	2.4	7.7	2.3	4.8	2.4	3.8 8.8	5.1	2.1	1.2	1.6	28	3.5	4.7	.00 0.00
בים ר בים ר	ò	11	1e+00	42.2	7.2	П	15	2.8	710	2.4	12	530	2.9	3.7	14	3.9	17	3.6	2.7	14	7.3	3.7	2.9	17	16	∞	11
	dividec		1e + 01	8.8 8.8	3.1	1.1	8.2	1.8	92	3.7	16	220	3.3	2.5	9.7	1.8	25	1.8	2.3	7.7	11	1.4	1.6	က	56	1	3.1
-	this value divided		1e + 02	1.13	1.7	77	5.6	1	43	15	1.8	170	2.9	2.1	7.5	2.6	1.5	1.9	2.1	14	16	1.7	1.3	1.4	4.2	1.1	2.2
17 7	reach th		1e + 03	0.333	1.3	1.5	1.6	1.4	7.1	1.2	1.3	5.7	1.2	1.3	1.5	1.5	1.2	1.3	1	1.5	1.9	1.3	1.3	1.3	1.9	1.2	-
	inction evaluations to reach t		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 44: 03-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Aftarget ERT, pest / D ALPS [15] AMALGAM IDEA [4] avg NEWUOA [23] BASEDACG [9] BFGS [22] BIPOP-CMA-ES [14] (1+1)-CMA-ES [2] DASA [18] DEPSO [11] EDA-PSO [5] full NEWUOA [23] GLOBAL [20] iAMA-LS-Chain [19] MCS (Neum) [16] NEWUOA [23] (1+1)-ES [1] PSO-Bounds [7] Monte Carlo [3] IPOP-SEP-CMA-ES [21]	11-4 11.4 3.1 1.4 3.1 1.0 1.0 22e-2/2e3 6.3 6.3 7. 5.5 1.3 1.3 1.3 2.5 2.5	1e-05 9440 1.1 3.4 	16-04 94400 1.1 1.1 3.4 3.4 3.4 1300 3.2 4.1 6 6 6 1300 1300 1300 1300 1300 1300 13	iff 1-6-03 19-400 11-1 1.1 1.1 13.0 13.0 13.0 13.0 13.0 13.0	Lipsoid unif 1e-02 1e-02 99 6290 94 1.4 4.8 3 1.4 17e-2/1e4 940 18 4.8 8.8 8.8 8.8 8.8 8.8 4.6 6.6 19 93e-2/1e3 8.8 46 46 46 46 46 46 46 46 46 46 46 46 46	114 Step-el 114 Step-el 100 2090 1.1 7.1 11e-1/6e3 18e-1/800 1.2 520 4.5 520 4.5 50 2.6 50 2.8 13 13 14 14 15 2.8 2.8 3.8 3.8 13 13 13 13 13 13 13 2.8 2.8 2.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3	1 UV QIII 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1e+01 8.53 2.4 2.9 100 100 100 100 100 27 540 3.5 2.8 96 2.5 120 1 120 1 4.9 71 2.5 1.8 1.8 1.8	11.5 Value of 1.6 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.6 Value of 1.6 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.8 Value of 1.9	10401 11 10+03 10.333 1.3 1.3 1.3 1.1 1.5 1.5 1.5 1.1 1.1 1.1 1.1	Aftarget 1e+0 ERT best / D 0.333 ALPS 1.2 AMALGAM IDEA 1.3 avg NEWUOA 1.3 BrGS 3.4 BrOP-CMA-ES 1.1 (1+1)-CMA-ES 1.1 DEPSO 1.3 EDA-PSO 1.3 GLOBAL 1.5 GLOBAL 1.5 GLOBAL 1.5 MA-LS-Chain 1.1 MCS (Neum) 1 NEWUOA 1.4 MA-LS-Chain 1.1 MCS (Neum) 1 NEWUOA 1.4 MA-LS-Chain 1.1 MCS (Neum) 1 NEWUOA 1.4 PSO Bounds 1.4 MOS Carlo 1.2 PSO Bounds 1.2 HOP-SEP-CMA-ES 1.2
SNOBFII [17]	. ì	. 0			136-2/263	21 0	3.7	2.7 С. с.	0.0	L.5	SNOBFII
SNOBFIT [17]			٠	٠	756-2/263	12	2.7	2.3	2.5	1.3	SNOBFIT
IPOP-SEP-CMA-ES [21]	2.5	77	7	77	2.1	2.3	8.5	27	110	1.2	IPOP-SEP-CMA-ES
Monte Carlo [3]	1300	130	130	130	110	12	2.1	1.8	2.1	1.2	Monte Carlo
PSO_Bounds [7]	20	17	17	17	20	33	22	1.8	2.1	н	PSO_Bounds
PSO [6]	61	30	30	30	45	27	45	ಬ	2.3	1.4	PSO
(1+1)-ES [1]	230	51	51	51	46	14	8.1	25	22	20	(1+1)-ES
NEWUOA [23]			-			11e-1/5e3	31	71	20	1	NEWUOA
MCS (Neum) [16]					93e-3/2e4	8.1	3.6	4.9	1.9	П	MCS (Neum)
MA-LS-Chain [19]	1.3	-	Н	-	П		П	-	1.8	1.1	MA-LS-Chain
iAMaLGaM IDEA [4]	5.5	9	9	9	8.8	13	17	120	1.6	1.4	iAMaLGaM IDEA
GLOBAL [20]			٠		34e-2/1e3	2.8	1.1	2.5	1.6	1.5	GLOBAL
full NEWUOA [23]					13e-1/7e3	20	41	96	65	1.5	full NEWUOA
EDA-PSO [5]	6.3	4.1	4.1	4.1	2.9	2.6	1.1	2.8	1.7	1.3	EDA-PSO
DEPSO [11]	22e-2/2e3	3.2	3.2	3.2	4.8	4.5	2.5	3.5	1	1.3	DEPSO
DASA [18]	1100	1300	1300	1300	940	520	110	540	160	16	DASA
(1+1)-CMA-ES [2]					17e-2/1e4	12	5.3	27	18	1.1	(1+1)-CMA-ES
BIPOP-CMA-ES [14]	1	1	1	-	1.4	1.2	1.7	16	1.8	1	BIPOP-CMA-ES
BFGS [22]						26e-1/800	34	20	34	3.4	BFGS
BayEDAcG [9]			•			18e-1/2e3	12	19	77	1.2	$_{ m BayEDAcG}$
avg NEWUOA [23]						11e-1/6e3	56	100	140	П	avg NEWUOA
AMaLGaM IDEA [4]	3.1	3.4	3.4	3.4	4.8	7.1	8.5	2.9	1.8	1.3	AMaLGaM IDEA
ALPS [15]	1.4	1.1	1.1	1.1	1.4	1.1	1.4	2.4	7	1.2	ALPS
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	10900	9440	9440	9440	6290	2090	338	8.53	0.978	0.333	$\text{ERT}_{\text{best}}/\text{D}$
$\Delta { m ftarget}$	1e-07	1e-05	1e-04	1e-03	$^{-}$ 1e-02	1e-01	1e+00	1e + 01	1e + 02	1e + 03	Δ ftarget
				ij	lipsoid un	114 Step-el	_				
						nension	TID ÁG T	י מוייות	IIS Value	Teach of	ction evaluations to

Table 45: 03-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

					4				4							4								[21]		
		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM IDEA [4	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [2]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	415	200	6.9	59	69		3.6	78	11e-3/9e5	6.5	490	28		8.6	9.9		150	130	1e3	410	32e-4/1e6	1	58	1.5
		1e-05	297	99	8.2	45	96		4.1	49	1.4e4	6.1	320	56		10	6.2		220	53	580	220	2100	Н	81	77
		1e-04	297	99	8.2	45	96		4.1	49	1.4e4	6.1	320	56		10	6.2		220	53	280	220	5100	П	81	77
,	Cauchy	1e-03	297	99	8.2	45	96		4.1	49	1.4e4	6.1	320	26	41e-3/600	10	6.2	39e-3/2e4	220	53	580	570	5100	Н	81	7
	piosdi	$^{-1e-02}$	280	49	8.9	19	48		3.8	30	5300	5.2	100	15	31	œ	4.6	820	99	24	280	430	1700		82	1.9
	$5 m \ Step-elli$									4.7																
by dir	115 St	1e+00	39.5	7.8	П	2.6	6.7	50e-1/2e3	1.5	4.8	480	3.4	2.6	1.8	4.6	12	2.6	3.2	4	2.8	4.1	390	21	1.3	5.3	2.5
divided		1e + 01	3.87	6.9	3.2	1.1	4.4	190	5.9	4.8	380	7.4	3.6	1.4	3.9	2.1	5.8	П	Н	က	4.4	4.4	7.2	2.9	7	6.9
this value divided		1e + 02	0.933	2.1	1.6	3.1	77	89	3.5	2.2	110	4.8	2.4	2.6	1.6	1.6	7	-	2.8	2.1	1.8	1.9	3.3	က	1.9	က
		1e + 03			1.3		1.1	11		1.8			1.1			1.3	1.1	1	2.4	1.1	1.3	1.3	П	1.7	1.2	1
nction evaluations to reach		Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 46: 03-D, running time excess ERT/ERT_{best} on f_{116} , in italics is given the median function value and the median number of

			$3200 3790 \text{ERT}_{\text{best}}/\text{D}$			avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	2.4 2.1 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	. DASA [18]	23 . DEPSO [11]	130 110	full NEWUOA [23]		1.3 1.2 iA	13 29 1	MCS (Neum) [16]		(1	450 390 PSO [6]	PSC		1.7 1.6 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	
		1e-04	3150	9	1		-						130		- `		11			92e-5/1e	460	31e-2/1e5		1.8		
	SS	1e-03	2380	5.3	1												14					280		2.3		
	llipsoid Gauss	1e-02	2050	3.9	1		49e-1/2e3		က	72	19e-2/9e5	4.5	61	49	5.7	1.1	8.1	26e-2/2e4	49e-1/5e3	20	150	100	13e-2/1e6	2.6	5.8	
	116 E	1e-01	1470	2.9	1.4	$30e-1/\ell$	9.2		3.4		2800			89				37	20	23	120	110	1300	က	∞	
value divided by dimension	,	1e+00	881	1.6	1.7	28	6.9	73e+0/1e3	2.4	6.7	280	1.1	3.5	14	2.8	1	2.1	5.3	41	7.8	45	100	87	3.6	13	
alue div		_	56.2			65												4.2	45	19	280	290	48	22	14	
-		1e + 02	25.3	2.2	1.2	24	7.8	36	3.1	9	190	5.6	2.6	17	2.2	1	1.9	1.5	18	10	1.5	1.8	7	22	က	
to read		1e + 03	6.2	1.8	1.6	19	1.9	35	1.5	6.2	140	1.7	1.7	32	2.5	2.1	1.8	1.8	12	11	1.4	1.7	2.5	54	77	
function evaluations to reach this		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	

Table 47: 03-D, running time excess ERT/ERT $_{
m best}$ on f_{117} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	26700	450	23				1							16										19e-5/9e6
	1e-05	24600	30	13				1			-	64e-2/1e5			& &						17e-1/1e5				2500
	1e-04	23500	9.7	7.9			·	1				61			7.6	28e-2/2e4				•	61	٠		•	920
nif	1e-03	20600	4.8	5.5				1				69			6.9	11			43e-3/1e6		34		12e-1/1e4		140
117 Ellipsoid unif	1e-02	18800	3.2	4.5				1		49e-2/8e5		75			4.5	57. 8.0	19e-1/2e4		170		36	17e-2/1e6	∞		27
117 I	1e-01	13200	1.2	2.4		٠		П	28e-1/1e4	440	12e+0/2e3	17			က	2.9	18	•	40	32e-2/1e5	22	360	11	•	8.6
	1e+00	4790	1	2.6	44e+0/6e3	44e+0/2e3	52e+0/600	1.1	5.1	160	6.1	8.9	17e+0/7e3	11e+0/1e3	2.6	1.7	8.4	23e+0/5e3	7.1		25	10	3.7	98e-1/2e3	3.3
	1e+01	797	1	5.8	33	36	11	2.9	9	85	4.7	2.2	22	2.6	5.8	1.5	77	96	7.2	13	47	က	4.2	2.5	7.4
	1e + 02	9.92	1.8	16	48	12	7.1	6.4	6.3	110	3.2	1.1	22	2.5	19	2.5	1.1	27	6	1	1.7	1.4	13	1.7	30
	1e+03	6.2	1.5	7	99	2.2	12	18	27	310	3.3	1.5	62	2.3	20	1.8	73	46	24	7	2.4	1.4	57	2.3	П
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 48: 03-D, running time excess ERT/ERT_{best} on f_{118} , in italics is given the median function value and the median number of

function exaluations to reach this value divided by dimension	s to read	oh this	, ларында	vided by	dimension)					
				viaca by	118 El	118 Ellipsoid Cauchy	uchy				
$\Delta { m ftarget}$	1e + 03	1e+02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{ ext{best}}/ ext{D}$	4.6	8.9	36.3	68.2	237	284	336	392	428	531	$_{ m ERT_{best}/D}$
ALPS	3.6	20	14	19	13	280	4100	83e-5/2e6			ALPS [15]
AMaLGaM IDEA	1.4	3.6	1.3	П	4.8	6.5	8.4	12	20	41	AMaLGaM IDEA [4]
avg NEWUOA	1	1.4	1	22	5.4	26	2.2	43e-4/6e3			avg NEWUOA [23]
BayEDAcG	2.8	30	110	130	15e+0/2e3						BayEDAcG [9]
BFGS	37	88	09	220	37e-1/3e3	·					BFGS [22]
BIPOP-CMA-ES	2.8	7.3	4.6	5.1	2.3	2.3	2.2	2.1	2.1	1.9	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1.7	4.5	3.1	5.1	7.1	100	14e-3/1e4				(1+1)-CMA-ES [2]
DASA	36	240	250	1600	4300	1.7e4	60e-3/1e6				DASA [18]
DEPSO	3.5	10	8.1	18	22						DEPSO [11]
EDA-PSO	2.8	8.6	22	45	160		2e3	12e-3/1e5		-	EDA-PSO [5]
full NEWUOA	1	1	1	2.7	5.8		140				full NEWUOA [23]
GLOBAL	4.1	12	3.3	2.8	1.8		27e-3/400				GLOBAL [20]
iAMaLGaM IDEA	1.7	2.9	1	7.5	4		20	30	51	84	iAMaLGaM IDEA [4]
MA-LS-Chain	2.3	7	4.8	6.9	4.2		14		32	61	MA-LS-Chain [19]
MCS (Neum)	2.5	7.4	6.3	92	510	25e-2/2e4					MCS (Neum) [16]
NEWUOA	1.3	1.4	1.7	3.7	6.5	43	110	19e-3/5e3			NEWUOA [23]
(1+1)-ES	4.2	7.3	11	20	52	230	3800	1.8e4	93e-5/1e6		(1+1)-ES [1]
PSO	2.1	6.3	10	260	1200	4900	4200	42e-2/1e5		-	PSO [6]
PSO_Bounds	2.4	7.8	12	1e3	850	1500	4400	68e-2/1e5			PSO_Bounds [7]
Monte Carlo	1.9	18	69	1e3	2e4	16e-2/1e6	٠				Monte Carlo [3]
IPOP-SEP-CMA-ES	1.9	7.8	6.5	5.1	1.7	1.6	1.7	1.6	1.6	1.4	IPOP-SEP-CMA-ES [21]
SNOBFIT	1.6	6.2	9.5	28	66	15e-1/2e3					SNOBFIT [17]
VNS (Garcia)	1.3	8.9	3.1	2.9	Н		П	1	1	П	VNS (Garcia) [10]

Table 49: 03-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median final function value and the median number of

function evaluations to reach this v	is to read	ch this ι		alue divided by	din	sion					
				119	$\mathbf{S}^{\mathbf{r}}$	m of different	at powers	(5)			
$\Delta { m ftarget}$	1e+03	1e+02	1e+01	1e+00	1e-01	1e-02	$^{-}1e-03$		1e-05	1e-07	Δ ftarget
$\text{ERT}_{\text{best}}/\text{D}$	0.333	0.333	0.733	22.1	140	203	899	1890	4010	5240	${ m ERT_{best}/D}$
ALPS	1	1.3	2.4	2.7	3.9	6.3	3.4		3.3	58	ALPS [15]
AMaLGaM IDEA	1	1.1	1.7	19	3.3	2.6	4.5		1	1	AMaLGaM İDEA [4]
avg NEWUOA	1	1	23	8.2	16	51	13e-3/6e3				avg NEWUOA [23]
BayEDAcG	П	1.1	7	5.8	2.4	3.5	2.3		47e-5/2e3	•	BayEDAcG [9]
BFGS	-1	ಬ	06	93	310	69e-2/3e3					BFGS [22]
BIPOP-CMA-ES	1	1.1	3.3	2.5	1	1	1.2		2.5	2.8	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	1	12	11	6.9	11	21		24e-4/1e4		(1+1)-CMA-ES [2]
DASA	1	44	280	460	410	2700	1.9e4	-		•	DASA [18]
DEPSO	-1	П	2.1	2.4	1.4	2.2			1.8	33e-6/2e3	DEPSO [11]
EDA-PSO	1	1.1	1.5	1	5.6	14	6.7		2.5	130	EDA-PSO [5]
full NEWUOA	1	1.9	3.9	7.6	18	41	150	1			full NEWUOA [23]
GLOBAL	1	1.3	2.1	1.8	8.7	7.3	6.4	-	•	•	GLOBAL [20]
iAMaLGaM IDEA	П	1.1	2.3	11	4.8	13	5.1		1.7	2.1	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1.2	2.4	1.6	2.5	3.4	1.6		1.5	42	MA-LS-Chain [19]
MCS (Neum)	1	1	9.9	1.3	3.8	91	350		94e-4/2e4		MCS (Neum) [16]
NEWUOA	1	2.5	13	18	27	120	110	-		٠	NEWUOA [23]
(1+1)-ES	1	2.4	12	5.2	5.1	22	30		420	11e-6/1e6	(1+1)-ES [1]
PSO	1	1.2	1.6	1.6	1.4	2.4	7		24	280	PSO [6]
PSO_Bounds	1	1.1	2.4	1.8	2.5	7.1	4.8		16	130	PSO_Bounds [7]
Monte Carlo	1	1.1	1.4	2.6	33	066	35e-4/1e6			٠	Monte Carlo [3]
IPOP-SEP-CMA-ES	1	2.1	3.9	17	3.7	3.9	2.7		1.2	1.1	IPOP-SEP-CMA-ES [21]
SNOBFIT	1	1.2	2.5	2.6	3.1	5.8	8.5		6.2	38e-4 /2e3	SNOBFIT [17]
VNS (Garcia)	1	1	1	27	4.7	4.7	3.3		4.1	110	VNS (Garcia) [10]

Table 50: 03-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

					TEO Dain of anicion		Power arm				
$\Delta \mathrm{ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\text{ERT}_{ ext{best}}/ ext{D}$	0.333	0.333	0.733	26.8	601	2310	10600	25300	40100	88600	${ m ERT_{best}/D}$
ALPS	1	1.3	2.4	2.3	2.1	3.4	2.1	က	11	18e-7/2e6	ALPS [15]
AMaLGaM IDEA	П	1.2	2.5		20	17	12	24	92	28e-6/1e6	AMaLGaM IDEA [4]
avg NEWUOA	П	24	120		40	36e-2/6e3					avg NEWUOA [23]
BayEDAcG	П	1.3	1.9	20	47	43e-2/2e3		•			BayEDAcG [9]
BFGS	1	6.1	48		10e-1/900			·			BFGS [22]
BIPOP-CMA-ES	П	1	22		1.5	1	1	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	2.3	47		8.9	64	53e-3/1e4				(1+1)-CMA-ES [2]
DASA	П	2.6	260		330	5400	47e-3/8e5	•			DASA [18]
DEPSO	1	1.2	2.5	2.8	6.4	11e-2/2e3		·			DEPSO [11]
EDA-PSO	1	1	1.9	2.5	2.4	9	4.6	12	19e-5/1e5		EDA-PSO [5]
full NEWUOA	П	3.1	140	74	85	25e-2/7e3					full NEWUOA [23]
GLOBAL	П	1.1	1.6	2.3	4.9	8.1	13e-2/1e3				GLOBAL [20]
iAMaLGaM IDEA	1	1	2.5	56	21	15	17	48	110	160	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1.2	2.4	1.3	1	2.1	1.5	57e-5/2e4			MA-LS-Chain [19]
MCS (Neum)	П	1	9.9	4.3	6.5	31	38e-3/2e4				MCS (Neum) [16]
NEWUOA	1	1.7	120	62	62						NEWUOA [23]
(1+1)-ES	1	1.4	34	18	13		099	25e-4/1e6			(1+1)-ES $[1]$
PSO	1	1.1	1.9	1	21		8.4	12	37	58e- $5/1e5$	PSO [6]
PSO_Bounds	П	1.3	2.3	270		20	13	18	36	12e-4/1e5	PSO_Bounds [7]
Monte Carlo	П	1.1	1.7	7	7.1	150	44e-4/1e6	٠			Monte Carlo [3]
IPOP-SEP-CMA-ES	Н	Н	180	32		4.7	4.5	61e-4/1e4			IPOP-SEP-CMA-ES [21]
SNOBFIT	Н	1.3	1.9	6.5		12e-2/2e3					SNOBFIT [17]
VNS (Garcia)	П	н	н	130		16	17	89	022	16e-6/9e6	VNS (Garcia) [10]

Table 51: 03-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]		iAMaLGaM IDEA [4]		MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-0.7	1110		140				2.5							220	43e-6/2e4							1		1.1
	1e-05	992	27e-5/2e6	54		31e-5/2e3	12e-3/3e3	1.9			12e-4/2e3	•		•	79	29	·	•		•	·	•	1.1		-1
Cauchy	$^{1e-04}$	200	2.3e4	36	47e-4/5e3	28	95	1.5	44e-4/1e4		58		18e-4 /6e3		28	18			24e-5/1e6	20e-4/1e5		31e-4/1e6	1.3	10e-3/2e3	1
nt powers	1e-02 $1e-03$	233	1500	15	320	8.7	100	П	290	25e-3/9e5	23	51e-4/1e5	88	12e-3/800	25	10	22e-3/2e4	62e-4/5e3	640	6300	16e-3/1e5	6.1e4	1.5	49	1.2
$\frac{1}{2}$	1e-02	83.4	110	22	27	14	09	1	47	4.3e4	9	630	8.9	59	20	2.2	2800	43	46	780	2200	2200	1.2	32	1.8
21 Sum of	1e-01	38.6			5.3																210				2.5
121 Sum of di	1e+00	13.5	3.4	1.3	3.5	4.4	21	-	1.8	220	2.3	1.8	2.3	3.7	19	2.1	1.4	3.6	1.4	1.6	2.1	3.7	1.1	-	2.7
200	1e + 01	0.733	1.9	2.5	5.9	2.2	09	3.4	1.8	270	2.3	2.5	4.2	1.4	3.1	1.7	2.1	3.2	ъ	2.8	2.4	2.4	4.8	2.3	1
	1e+02	0.333	1.2	1.3	2.3	1.3	П	П	1.9	15	П	1.3	2.5	1.1	1.1	1.1	1	1.2	1.1	1.1	1.2	1.2	1.1	1.2	П
CICACII	1e + 03	0.333	1	1	1	-	1	1	1	-	П	П	1	П	1	1	1	П	1	П	1	П	1	П	П
ranceion evaluations to reach the	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 52: 03-D, running time excess ERT/ERT_{best} on f_{122} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	50.00	01110		199	199 Cch	199 Cobaffor F7 Course	00110				
A ft. cm. co. t	10.109	10.100	10.101	10.100	124 OCHO		10.09	100	0	10.07	A ft c most
Artarget	re+03	1e+02	16+01	1e+00	16-01	1e-02	1e-03	1e-04	cn-ət	16-07	Aitarget
$_{ m ERT_{best}/D}$	0.333	0.333		119	601	1440	2530	3460	4080	6340	${ m ERT_{best}/D}$
ALPS	1	1.2	1	3	3.6	3.4	3.2	3.5	4.9	12	ALPS [15]
AMaLGaM IDEA	1	1.2	7	2.2	5.2	3.2	2.7	2.7	2.4	3.8	AMaLGaM IDEA [4]
avg NEWUOA	1	2.1	13	22 3	37e-2/6e3						avg NEWUOA [23]
BayEDAcG	1	1.4		2.1	3.1	67e-3/2e3	-	-		-	BayEDAcG [9]
BFGS	1	44		21e-1/3e3							BFGS [22]
BIPOP-CMA-ES	1	1.1		2.3	1	1	1	1	П	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	-1		10	35	11e-2/1e4					(1+1)-CMA-ES [2]
DASA	1	48	64	390	1e4	21e-2/8e5	-	-		-	DASA [18]
DEPSO	1	1.6	3.7	7	2.4	8.9	23e-3/2e3				DEPSO [11]
EDA-PSO	1	1.2	1.9	3.1	5.4	4.6	6.9	8.5	11	11	EDA-PSO [5]
full NEWUOA	1	2.1	14	12	32e-2/7e3						full NEWUOA [23]
GLOBAL	1	1.1	က	3.1	25	52e-2/1e3					GLOBAL [20]
iAMaLGaM IDEA	1	1.5	1.6	5.1	12	10	6.9	7.4	6.9	6.9	Ϋ́I
MA-LS-Chain	1	1.5	1.5	1.6	2.6	2.8	2.7	2.6	3.8	15e-7/2e4	
MCS (Neum)	1	1	1	1.7	84	16e-2/2e4					2
NEWUOA	Н	1.1	8.5	21	120	65e-2/5e3			-		NEWUOA [23]
(1+1)-ES	-	1.5	12	8.4	20	1300	2600	12e-3/1e6			(1+1)-ES [1]
PSO	П	1.1	1.1	1	27	29		29	28	51	PSO [6]
PSO_Bounds	1	1.2	2.2	130	120	29		48	45	72	PSO_Bounds [7]
Monte Carlo	П	1.3	-	9.9	1e3	79e-3/1e6					Monte Carlo [3]
IPOP-SEP-CMA-ES	1	1.4	57	3.2	3.6	2.3	2.5	2.7	2.4	3.5	IPOP-SEP-CMA-ES [21]
SNOBFIT	1	1.2	2.2	က	5.6	17		27e-2/2e3			SNOBFIT [17]
VNS (Garcia)	1	-1	1.8	8.9	9.4	6	11	28	160	2600	VNS (Garcia) [10]

Table 53: 03-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

tunction evaluations to reach this value divided by dimension 123 Schaffer F7 unif	1e+03 $1e+02$ $1e+01$ $1e+00$ $1e-01$ $1e-02$ $1e-03$ $1e-04$ $1e-05$	0.333 0.333 1.64 515 7280 16700 31100 43100 63600 1.47e5 E	1 1.2 1.2 4 220 $12e-3/2e6$	1 1.2 2.7	1 12	1 1.1 2.4 55 $19e^{-1/2e3}$	1 5.3 27	1 1.2 32 1.4	1 1.6 29 8.5 60e-2/1e4	1 6.9 300	1 1.3 1.3 5.5 11e-1/2e3	1 1.1 2.5 2.2 $17 88e - 3/1e5$	1 15 140 47	1.1 1.1 1.2 1.2 $59e-2/1e3$	1 1.5 1 18 30	1 1.5 1.7 1.1 7.2 $12e-2/2e4$	1 1 4.2 3.2 $43e-2/2e4$	1 12 130 20 $12e-1/5e3$	1 14 36 6.6 110 72e-3/1e6	1 1.2 2.4 31 22	1 1.3 2 15	1.1 1.3 1.9 1 94 $79e-3/1e6$	1 1.7 15 9.1	1.1 1.1 1.9 1.7 $77e-2/2e3$	1 1 2.1 11
nction evaluations t		$\mathrm{ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 54: 03-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

					4 [4]	[23]			[14]	[2]				[23]		A [4]	19]	[91	\sim			7]	3]	SS [21]		10]
		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM IDE	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19	MCS (Neum) [1	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	4960		160				2.3							180								П		890
		1e-05	4300		54				1.3						٠	110			-		-		-	П		260
		1e-04	3100	-	29				1.3				•			52	36e-3/2e4		·		•		·	1	•	52
	ıchy	1e-03	2360		10		34e-4/2e3		1.3				•		-	19	88		•	12e-3/1e6			•	П	•	12
	124 Schaffer F7 Cauchy	1e-02	1140	2.1e4	4.8	18e-2/5e3	1.9		1.2	77e-3/1e4	19e-2/9e5	34e-3/2e3	47e-3/1e5	92e-3/6e3		11	28	15e-2/2e4	14e-2/5e3	1900	84e-3/1e5	26e-2/1e5	96e-3/1e6	1	23e-2/2e3	14
dimension	124 Schaf	1e-01	309	27	3.9	59	2.9	10e-1/3e3	П	34	4.1e4	4	230	17	30e-2/600	11	2.7	170	36	29	360	730	4500	1.1	92	4
ded by	,	1e+00	65.2	4.7	1	7.7	1.4	81	1.5	4.1	250	2.5	1.4	5.6	3.6	3.8	1.5	9.9	13	2.6	1.6	3.9	11	3.4	1.7	1.1
ue divi		1e+01	1.2	7	77	11	2.8	94	2.5	17	330	3.8	7	11	1.9	2.2	2.4	-	5.6	10	2.1	2.3	3.3	4.3	7	2.9
this val		1e+02	0.333	1.2	1.2	1.5	1.4	14	1.1	1	5.7	1.2	1.2	က	1.4	1.1	1.5	1	1.5	1.5	1.4	1.1	1.1	1.3	1.1	
o reach		1e + 03	0.333	1	1	1	Т	1	1	1	Т	1	1.1	1	1	Н	1	Н	Н	П	Н	Н	Н	Н	1	-
function evaluations to reach this value divided by dimension		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 55: 03-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

idiletion evaluations to reach this	o to reak	CIIIO II	value divided by difficialor.	7. nan ng		r BP_B	Jourhan	93116			
Aftarget	16+03	1e+02	16+01	1e+00	16-01 18-01	7 WALIN-1005 18-02	1e-03	16-04	16-05	16-07	Aftarget
ERT _{best} /D		0.333	0.333	0.333	0.333	0.333 0.333 1290	8230	11700	12100	12700	$ ext{ERT}_{ ext{best}}/ ext{D}$
ALPS	1	1	1.1	9.5	520	1.1	1.4	1.6	1.7	2.7	ALPS [15]
AMaLGaM IDEA	1	1	1.2	6.7	100	4.3	2.9	2.1	7	1.9	AMaLGaM ÌDÉA [4]
avg NEWUOA	1	1	1.4	9.3	330	1.8	က	6.9	6.7	40e-4/6e3	avg NEWUOA [23]
BayEDAcG	П	П	П	9.6	310	2.3	92e-4 /2e3	•	-		BayEDAcG [9]
BFGS	П	П	6.3	170	1.2e4	85e-3/4e3	·			·	BFGS [22]
BIPOP-CMA-ES	1	1	1.1	9.3	290	1.8	П	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	П	1.3	92	770	3.9	5.2	5.9	12	48e-4/1e4	(1+1)-CMA-ES [2]
DASA	П	П	14	1900	1.4e4	140	330	510	066	28e-4/9e5	DASA [18]
DEPSO	П	П	1.6	11	540	1.9	3.6	67e-4/2e3			DEPSO [11]
EDA-PSO	1	1	1.2	9.2	280	2.6	4	12	20	52	EDA-PSO [5]
full NEWUOA	1	1	2.1	11	280	1.2	3.7	8.4	25e-4 /7e3		full NEWUOA [23]
GLOBAL	1	1	1.2	8.3	420	7	2.2	13e-3/1e3			GLOBAL [20]
iAMaLGaM IDEA	П	П	1.1	7.7	1500	6.7	6.3	7.2	7	7.4	iAMaLGaM IĎEÁ [4]
MA-LS-Chain	1	1	1.1	7.8	240	1.5	1.2	1.7	2.8	5.7	MA-LS-Chain [19]
MCS (Neum)	П	1	П	1	П	1.9	20e-4/2e4				MCS (Neum) [16]
NEWUOA	П	П	2.8	10	330	1	2.8	7	1.9	19e-4 /5e3	NEWUOA [23]
(1+1)-ES	1	1	2.1	89	730	3.5	7.9	22	30	240	(1+1)-ES [1]
PSO	П	П	1.2	16	440	10	36	22	55	25	PSO [6]
PSO_Bounds	П	П	1.1	9.1	750	8.6	6.3	7.2	11	34	PSO_Bounds [7]
Monte Carlo	П	П	П	12	710	17	51	1200	31e-5/1e6	٠	Monte Carlo [3]
IPOP-SEP-CMA-ES	1	1	1	11	510	3.6	18	13	12	37e-4/1e4	IPOP-SEP-CMA-ES [21]
SNOBFIT	1	1	1.3	15	320	2.4	17e-3/2e3	•			SNOBFIT [17]
VNS (Garcia)	П	П	1.4	23	230	5.1	5.9	7.8	11	22	VNS (Garcia) [10]

Table 56: 03-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median final function value and the median number of

		$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	3.2e5	5.7	21e-5/1e6				1							45				55e-5/1e6		27e-4/1e5	28e-5/1e6			130
		1e-05	2.08e5	2.3	29				1				15e-4/1e5			33	25e-4/2e4			72	43e-4/1e5	7.2	7.1	14e-3/1e4		23
	iif	1e-04	1.11e5	3.4	40				1				6.4			15	7			28	13	13	29	1.4		17
	126 Griewank-Rosenbrock unif	1e-03	37700	3.4	6.4		95e-3/2e3	-	1	12e-3/1e4	50e-4 /8e5	23e-3/2e3	8.5			12	5.9	10e-3/2e4	48e-3/5e3	17	38	8.3	20	4	29e-3/2e3	19
ion	wank-Rose	1e-02	4500	1.3	4.2	49e-3/6e3	6.3	10e-2/900	-1	4.7	130	3.3	4.4	63e-3/7e3	34e-3/1e3	3.2	1	5.1	17	22	5.7	13	4.6	5.7	1.6	9.6
dimens	6 Grie	1e-01	0.333	650	4800	6200	5700	5200	920	1500	2.6e4	1500	910	1.1e4	520	3600	270	-	8600	1400	260	4.6e4	650	3200	1100	8200
ded by	$1\overline{2}$	1e+00	0.333	œ	œ	260	12	29	16	160	099	12	9.7	250	7.9	16	8.9	-	270	89	6.5	12	6.5	8.9	13	23
value divided by dimension		1e + 01	0.333	1.1	1.3	1.7	1.3	3.9	1	П	9.3	1.3	1.2	16	1.1	1	1.1	н	13	1.3	1.3	1.1	Н	П	1.1	1.4
		1e + 02	0.333	1	1		1	1	1		Н	1	1	Н	1	1	1		Н	1	Н		Н	П	1	Н
to reach		1e+03	0.333	1	1	П	1	1	1	П	1	1	1	1	1	1	1	П	П	1	П	П	П	1	1	1
function evaluations to reach this		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 57: 03-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		rget	est/D	3 [15]	1 IDEA [4]	UOA [23]	4cG [9]	5 [22]	$[A-ES\ [14]]$	[A-ES [2]]	OASA [18]	0 [11]	SO [5]	UOA [23]	AL [20]	1 IDEA [4]	hain [19]	um) [16]	OA [23]	ES [1]	[9]	[2] spun	Jarlo [3]	MA-ES [21]	TT [17]	rcia) [10]
		$\Delta \mathrm{ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDĒA [4	avg NEWUOA [23]	BayEDAcG [9]	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO [1]	EDA-PSO [5	full NEWUOA [GLOBAL [20	iAMaLGaM IDEA [4	MA-LS-Chain [19]	MCS (Neum)	NEWUOA [23]	(1+1)-ES [PSC	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21	SNOBFIT [17]	VNS (Garcia)
		1e-07	15300	57e-6/2e6	26		٠		1.5		٠		•			09	•		61e-4/4e3	19e-5/1e6	٠	٠	74e-5/1e6	-1	٠	24
		1e-05	15100	770	13		72e-4/2e3		1.5		62e-4/8e5					28	36e-4/2e4		4.2	460		67e-4/1e5	450	1		23
	Cauchy	1e-04	15000	94	7.6		7						Ü	`			15					47				20
		1e-03	13000	19	4.3	61e-4/5e3	2.3		1	16e-3/1e4	920	2.3	55	7	44e-3/1e3	11	8.3	47e-4/2e4	2.3	27	46e-4/1e5	35	61	1	29e-3/2e3	12
sion	wank-Ros	1e-02	1170	8.1	10	4.5	Н	51e-3/3e3	1.3	20	260	3.5	29	2.4	14	8.6	3.2	7.3	1.6	12	36	28	20	က	4.7	20
dimensior	7 Griew	1e-01	0.333	490	140	290	230	5100	120	920	2.3e4	310	540	270	640	2300	150	П	280	1e3	1400	2.2e4	290	420	006	290
divided by	$12\overline{7}$	1e+00	0.333	13	8.9	11	6.6	190	8.9	11	870	11	6	13	7.7	11	8.9	1	18	48	12	10	13	10	8.9	23
value div		1e + 01	0.333	1	1.2	2.1	1.3	1	-	1.5	20	1.5	1.5	1.7	1.3	1.2	1.1	1	2.1	1.1	1.1	1.3	1.1	1.1	1.3	1.4
this v		1e + 02	0.333	1	П	п	П	-	П	1	П	1	П	1	1	-	П	1	1	1	1	П	-	1	1	-
to reac		1e + 03	0.333	1	1	1	П	1	1	1	П	П	1	1	1	1	1	1	1	Н	П	1	П	П	П	П
function evaluations to reach this v		$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 58: 03-D, running time excess ERT/ERT_{best} on f_{128} , in italics is given the median final function value and the median number of

		Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	POP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	1450	1.8						3.9	096	1.4	13	35									84e-7/1e6	H	8.3	7.1
		1e-05	905	2.1	9.7	45			7.7	4.7	340	2.1	20	6.2	1	12	7	59	89e-4 /5e3	3.2	34	30	1200	6.1	3.1	11
			903				∞																			
	Gauss																									
uc	Gallagher	$1e-0\overline{2}$	449	1.5	19	25	33	12e-1/3e3	15	3.1	140	3.7	37	6.1	1	21	2.5	3.9	14	4.1	29	58	18	11	2.3	22
limensi	128	1e-01	375	1.1	21	19	7.1	55	14	2.3	100	4	43	4.1	1	23	1.8	1.3	9.1	3.7	92	89	2.5	13	1.5	26
led by c	•		142																							
ue divic		1e + 01	1.84	1.3	1.4	4.3	1.5	26	2.3	1.4	80	1.7	1.5	6.6	1.4	2.1	1	4.8	1.7	4	1.6	1.4	2.1	2.8	1.9	2.5
this val		1e + 02	0.333	1	1	П	1	1	1	П	1	1	П	1	1	1	1	П	1	1	П	П	1	1	П	1
o reach		1e + 03	0.333	1	1	П	Т	1	1	П	Т	1	Н	П	1	1	1	Н	1	Н	Н	Н	Н	П	Н	П
function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 59: 03-D, running time excess ERT/ERT $_{
m best}$ on f_{129} , in italics is given the median final function value and the median number of

f 1: 1 1 1 1) +	1. 41.5.	,	Jesu L	1.)				
tunction evaluations to reach this value divided by dimension $129\ ($	is to read		varue div	vided by	, curiner, 1	129 Gallagher unif	ner unif				
$\Delta { m ftarget}$	1e+03	1e+02	1e + 01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.333	0.333	1.6	121	1130	2620	3860	8260	9450	12800	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	1	1	1	2.4	-1	1.1	1.4	1	1	1	ALPS [15]
AMaLGaM IDEA	1	1	1.4	38		22	24	15	14	10	AMaLGaM İDEA [4]
avg NEWUOA	1	1	51	34	12	15	21	6.6	23e-2/6e3		avg NEWUOA [23]
BayEDAcG	1	1	1.8	15		61e-2/2e3	-	-			BayEDAcG [9]
BFGS	1	1	26	9.1		88e-2/900					BFGS [22]
BIPOP-CMA-ES	1	1	3.3	5.8		1.1	1	3.1	3.5	2.7	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	1	2.9	16		7.5	8.5	18	17e-3/1e4		(1+1)-CMA-ES [2]
DASA	П	П	93	160		98	140	320	640	20e-5/8e5	DASA [18]
DEPSO	1	1	2.1	3.9		5.4	11e-2/2e3				DEPSO [11]
EDA-PSO	П	1	1.5	1.8		18	18	13	12	9.3	EDA-PSO [5]
full NEWUOA	1	1	150	44		18	12	50e-2/7e3			full NEWUOA [23]
GLOBAL	П	-	1.1	1.6		2.5	50e-3/1e3				GLOBAL $[20]$
iAMaLGaM IDEA	1	1	1.7	56		5.8	7.8	6.7	9	7.1	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1	1.7	1		1.6	1.7	1.8	1.9	2.5	MA-LS-Chain [19]
MCS (Neum)	1	1	6.3	3.3	2.1	4.1	10	29	25	37e-4/2e4	MCS (Neum) [16]
NEWUOA	П	1	26	63		30	21	79e-2/5e3			NEWUOA [23]
(1+1)-ES	-	1	7.2	6.2		3.1	ಬ	9.7	31	200	(1+1)-ES [1]
PSO	П	1	1.8	150		51	41	26	23	22	PSO [6]
PSO_Bounds	П	-	1.8	130		44	31	19	17	13	PSO_Bounds [7]
Monte Carlo	-	н	1.7	1.6		1.7	8.9	20	150	1100	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	1	2.8	25		9.4	6.7	5.2	7.1	11	IPOP-SEP-CMA-ES [21]
SNOBFIT	1	1	3.2	2.7		1	1.9	1.4	1.2	22e-3/2e3	SNOBFIT [17]
VNS (Garcia)	П	П	2.6	40	11	9.2	8.8	ಬ	4.8	4.5	VNS (Garcia) [10]

Table 60: 03-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IĎEÁ [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	4780	180	11	90e-5/5e3	6.2		4.9	30	14e-5/9e5	63e-4/2e3	15e-5/1e5	53e-6/6e3	2.6	11	1.7	36e-5/2e4	86e-4 /5e3	150	300	140	3e3	Н	-	9.2
		1e-05	3980	6	10	5.7	7.2		5.9	8.3	1500	1.7	180	7	1	6	1	62	17	7	100	160	300	1.2	•	6.6
		1e-04	2260	3.3	17	5.6	3.8		10	4.4	800	2.8	82	2.5	1	11	1.7	54	9.9	5.6	74	69	98	7	42e-3/2e3	11
	Cauchy	1e-03	501	4.3	69	11	17		46	15	790	6.3	86	7.7	1	47	8.9	19	21	5.2	110	240	62	9.5	15	52
	30 Gallagher C	1e-02	305	4.1	110	8.5	27	53e-2/3e3	44	8.	740	œ	37	5.6	1	09	7.1	9.6	18	4.9	130	290	15	15	12	61
nension	30 Ga	1e-01	172	2.2	130	12	33	63	44	7	230	5.6	5.6	6.4	-	74	10	7.5	9.4	8.7	150	390	4.4	23	5.8	100
by din		1e+00	81.7	2.4	92	3.9	5.7	33	24	9	130	6.1	1.4	4.1	1	54	9.3	3.9	က	3.7	5.8	92	2.1	ಬ	4.6	83
divided		1e+01	1.84	1.1	1.4	2.6	1.4	34	1.9	2.2	41	1.4	1.7	2.2	1.3	1	2.3	2.9	77	2.8	1.6	1.9	1.3	1.9	1.4	2.5
this value divided by dimension		1e + 02	0.333	1	1	н	1	1	1	н	1	1	1	Н	1	1	1	-	Н	П	Н	н	Н	Н	П	Н
		1e + 03	0.333	1	1	П	Т	1	1	П	Т	1	1	Н	1	1	1	П	Н	Н	Н	Н	Н	П	Н	Т
inction evaluations to reach		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 61: 05-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

s to reach this value divided by dimension 1	arcia) [10]
this value divided by dimension 101 Sphere moderate Gauss 101 Sphere moderate Gauss 101 Sphere moderate Gauss 102	VNS (Garcia)
this value divided by dimension 101 Sphere moderate Gauss 101 Sphere moderate Gauss 101 Sphere moderate Gauss 102	11
this value divided by dimension 101 Sphere moderate Gauss 102 2.2 7.39 8.83 9.8 12.4 1.3 1.2 2.9 1.5 1.6 1.7 1.5 1.1 3.2 3.	9.1
this value divided by dimension 101 Sphere moderate G. 102	8.6
this value divided by dimension 101 Sphere moderate 102	7.9
this value of 0.2 1.3	8.2
this value of 0.2 1.3	7.5
this value of 0.2 1.3	8.9
+ _m	7.4
+ _m	1.6
S to 1	1
Aftarget 1e+0: Aftarget 1e+0: ERT best/D 0.2 ALPS 1 AMALGAM IDEA 1 avg NEWUOA 1 BRGS 1 BRGS 1 BROP-CMA-ES 1 (1+1)-CMA-ES 1 DASA 1 DASA 1 DASA 1 DASA 1 GLOBAL 1 AMALGAM IDEA 1 GLOBAL 1 iAMALGAM IDEA 1 MA-LS-Chain 1 MA-LS-Chain 1 NEWUOA 1 NEWUOA 1 PSO 1 PSO 1 PSO 1 PSO BODEPSO 1 NEWUCA 1 AMA-LS-Chain 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1 NGS (Neum) 1	VNS (Garcia)

Table 62: 05-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	1e-05 $1e-07$	17.1 19.8 1	150 170 ALP	13 15 AMa	1.6 1.5 avg NEW	120 130 BayED		6.3 7.2 B	3.7 4.2 (1	32 38	24	390 470		5 5.1	7.5 8.5	16		33 41	3.3 3.9	45 55	180 250		ಬ	1.7	и
unif		14.4 15.5															43								
moderate	1e-02	13.2	92	8.7	1.4	110		4.3	2.6	23	15	180	1	5.5	4.9	12	200	15	2.3	23	82	11e-2/1e6	3.6	1	6.9
phere	$^{\bullet}$ 1e-01	10	73	9.2	1.5	29		4	2.2	22	13	96	1.2	6.7	4.2	12	120	-1	2.5	15	47	1.7e5	3.2	П	œ
$102 \mathrm{ S}$	1e+00	7.07	51	9	1.4	23	59e-1/3e3	က	2.3	23	6	8.3	1.4	8.9	2.8	8.2	1	9	2.1	10	15	430	2.9	1.2	9
anvide:	1e + 01	2.21	9.9	2.2	2.7	12	890	2.7	2.2	41	2.8	4.9	3.2	8.2	8.8	6.9		6.3	2.9	4	4.1	4.2	3.1	7	7
Ania value	1e + 02	0.2	1.2	1.3	1.3	1.3	53	1	1.1	61	1.4	1.5	3.8 8.8	1.5	1.3	1.3	1	3.9	3.9	1.3	1.6	1.1	1.1	1.1	9
-	1e+03	0.2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	1	-
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Carcia)

Table 63: 05-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 64: 05-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Table 65: 05-D, running time excess ERT/ERT $_{\rm best}$ on f_{105} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 105 Recorders mediantees unif

		$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	4	avg NEWUOA [23]		BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	2240	17	1.7	45e-4/7e3			П		0099	·	38e-8/1e5			1.5	30			6500	•			2.4	•	24
	1e-05	2160	9.4	1.7	46	-		1	16e-3/1e4	200		31	22e-3/9e3		1.5	31			170				2.5		25
	1e-04	2130	7.8	1.7	47			1	33	240		24	61		1.5	31			20	•			2.2	•	25
e unif	1e-03	2080	9	1.8	14	-		1	34	100		18	31		1.5	32		38e-3/5e3	16	70e-2/1e5	15e-1/1e5				26
k moderat	1e-02	1030 $2e3$ 2080	4.6	1.8	4.4			1	11	22	17e-1/2e3	12	9.3	75e-2/200	1.5	33		ы	4.3	200	200		2.6	32e-1/1e3	24
${f Rosenbroc}$	1e-01	1030	5.1	3.3	1.9			1.7	4.1	12	14	13	4.5	1	2.8	44	32e-1/1e4	3.3	1.3	630	1400		ಬ	14	31
105	1e+00	287	2	11	2.4	37e-1/2e3		3.7	4.4	16	16	20	1.6	-	8	28	520	2.7	1.7	64	1400	69e-1/1e6	18	49	42
	1e + 01	33.3	22	2.4	1.7	28		1.7	1.5	17	5.3	40	1.7	2.5	1.5	3.9	1.6	1.7		6.4	15	1.4e4	1.3	2.2	27
	1e+02	12.4	26	3.2	3.7	10	82e+1/1e3	2.4	3.2	36	6.2	6.1	4.2	4.8	1.9	ಬ	-1	2.8	1.8	6.5	8.9	160	1.8	4	89
	1e+03	3.28	13	4	1.4	5.8	410	က	2.3	29	9		2.2		2.3	9	1.1	Н	2.6	6.3	3.4	8.7	က	2.5	8.4
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 66: 05-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	ERT_{best}/D		4	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]		full NEWUOA [23]	GLOBAL [20]	ΙĀ	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	617	-	282	21e-5/8e3			1.7				•	31	11e-4/400	140	4.5				•			П	•	4.6
	1e-05	577		28	200			1.7					18	13	43	3.5			10e-5/1e6				1		4.9
ιy	1e-04	556	28e-5/1e6	22	30			1.7	54e-4/1e4	18e-4/1e6			7.8	2.7	23	3.1		79e-4/7e3	2900				1		ಬ
ate Cauch	1e-03	533	410	12	9.1		67e-2/5e3	1.6	85	1.3e4			3.1	1.4	13	2.8		59	260				1	18e-1/1e3	5.2
Rosenbrock moderate Cauchy	1e-02	354	110	11	5.8	34e-1/2e3	210	2.3	22	320	14e-1/2e3	20e-2/1e5	1.7	-	11	3.1		27	38	79e-2/1e5	14e-1/1e5	٠		40	
.06 Rosenbi	1e-01	210	37	5.3	2.4	140	100	3.2	8.6	48	140	0029	1	1	10	3.7	27e-1/1e4	ಸು	17	3100	3100		2.1	19	6.3
10	1e+00	106	20	8.8	1.5	270	54	4.3	4	31	35	58	Н	1.3	9.1	3.9	1300	2.2	6.5	360	1900	62e-1/1e6	က	18	11
	1e+01	15.5	49	5.3	1	53	23	3.9	2.5	23	11	88	1.2	4.6	က	7.5	3.2	1.1	1.7	13	35	1.6e4	2.7	က	22
	1e + 02	10.1	26	3.7	1.2	11	22	3.4	2.7	26	7.2	7.6	1.4	6.5	2.3	5.9	1.4	1	1.7	6.2	17	150	2.5	2.6	5.4
	1e+03	3.56	10	4	1.9	8.8	13	2.9	2.3	17	6.1	3.8	77	6.7	2.4	4.8	1	1.1	2.5	4	6.1	∞	3.1	2.9	8.2
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 67: 05-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$1e-07$ Δ ftarget	370 ERT _{best} /D		7	avg NEWUOA [23]		. BFGS [22]	1 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]			34 EDA-PSO [5]	full NEWUOA [23]			5 MA-LS-Chain [19]		. NEWUOA [23]		10 PSO [6]	70 PSO_Bounds [7]	. Monte Carlo [3]	8.9 IPOP-SEP-CMA-ES [21]		9.1 VNS (Garcia) [10]
	1e-05	275	14	11		22		П			2.5	32			22	9				8.6	83		9.2		8.7
	1e-04	234	14	13		10																			
SS	1e-03	188	13	11		7.7		1			3.7	29			22	7			7.5e4	9.9	100		11	14e-2/1e3	10
Sphere Gauss	1e-02	138	13	12		7.7		1	19e-2/1e4	29e-2/7e5	3.9	27	96e-2/8e3	٠	26	6.9	81e-3/1e4		0089	4.8	29	96e-3/1e6	11	53	6.7
$107~\mathrm{Sr}$	1e-01	9.06	12	18	14e-1/6e3	7.1		1	210	3.6e4	3.6	20	1400	77e-2/700	28	8.9	72	17e-1/5e3	650	4.3	32	1.3e4	5.6	36	6.3
?	1e+00	45.5	10	5.8	320	6.7	61e-1/2e3	1	42	3e3	3.1	11	250	12	31	ಬ	4.2	190	59	2.6	5.4	48	10	13	œ
	1e+01	7.97	2.7	1.7	89	2.2	150	1.7	21	009	3.3	1.6	82	5.6	33	1.9	3.9	09	31	1.3	П	4.5	5.6	1.5	2.7
	1e + 02	0.2	1.4	1.3	2.7	1.4	12	1.4	п	110	1.6	1.3	6.1	1.1	1.9	1.5	1	2.7	3.3	1.3	1.7	1.9	1.2	1.2	1.6
	1e+03	0.2	1	1	1	1	-	1	1	Н	-	1	1	Н	-	1	1	Н	1	1	1	П	1	Н	Н
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 68: 05-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Aftarget 1e+03 1e+02 1e+01 1e+00 1e-01	1e+03	1e+02	1e+01	16+00	${108\atop 10-01}$	$108 \; \textbf{Sphere unif} \\ \begin{array}{c} 108 \\ 10 \end{array}$		1e-04	1e-05	16-07	Aftarget
$_{ m ERT_{best}/D}$	0.2	0.2	17.3	1030	2890	4930	6190	8240	11700	16100	${ m ERT_{best}/D}$
ALPS	1	1.1	1.1	1	4.5	13	35	180	1200	98e-6/1e6	ALPS [15]
AMaLGaM IDEA	1	1.7	75	12	17	20	31	73	170	450	AMaLGaM IDEA [4]
avg NEWUOA	П	က	150	44	27e-1/6e3						avg NEWUOA [23]
$\operatorname{BayEDAcG}$	П	1.5	18	34e-1/2e3				·			BayEDAcG [9]
BFGS	н	9.9	56	84e-1/900							BFGS [22]
BIPOP-CMA-ES	1	1	6.1	1	1	1	1	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	33	24	15	12e-1/1e4						(1+1)-CMA-ES [2]
DASA	П	240	260	460	65e-2/7e5			•	•		DASA [18]
DEPSO	П	1.1	2.3	9.3	19e-1/2e3						DEPSO [11]
EDA-PSO	1	1.1		11	41	300	38e-3/1e5		٠		EDA-PSO [5]
full NEWUOA	П	68		43e-1/9e3							full NEWUOA [23]
GLOBAL	Т	1.2		3.6	16e-1/900				•		GLOBAL [20]
iAMaLGaM IDEA	П	1.6	130	16	26	33	42	61	81	210	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1.7		1	3.9	17	29e-3/2e4	•			MA-LS-Chain [19]
MCS (Neum)	П	П	15	6.1	51	54e-2/1e4					MCS (Neum) [16]
NEWUOA	Н	48	22	64	41e-1/5e3			٠	•		NEWUOA [23]
(1+1)-ES	1	96	24	30	830	12e-2/1e6					(1+1)-ES [1]
PSO	1	1.4	420	48	71	290	54e-2/1e5	•			PSO [6]
PSO_Bounds	П	1.1	410	98	96	290	230	69e-2/1e5			PSO_Bounds [7]
Monte Carlo	н	1.6	П	4.1	480	98e-3/1e6		٠			Monte Carlo [3]
IPOP-SEP-CMA-ES	П	П	100	6.7	7.6	9.7	20e-2/1e4				IPOP-SEP-CMA-ES [21]
SNOBFIT	1	1.5	3.5	6.5	ಬ	25e-1/1e3	٠.	•			SNOBFIT [17]
VNS (Garcia)	Н	1.6	61	11	44	450	4900	39e-4/7e6			VNS (Garcia) [10]

Table 69: 05-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	189		170		19	П	1.5				•	20		410	430	340	•		•			1.2	•	1.8
	1e-05	175		71		17	1.1	1.1					22		180	72	370						1	10e-3/1e3	1.3
	1e-04	139	-	40		20	1.4	1.1	٠	•	51e-4/2e3	•	28	49e-3/200	110	47	300	·	13e-4/1e6	•				100	
Cauchy	1e-03	114	43e-4/1e6	36	67e-4/6e3	22	1.7	1.1	20e-3/1e4		130	30e-3/1e5	21	35	65	20	120	41e-3/5e3	1.4e4	46e-3/1e5	13e-2/1e5		1	35	1.3
\mathbf{Sphere}	1e-02	75	3500	20	47	24	2.5	1	430	15e-2/7e5	25	2e4	13	53	33	12	32	880	290	2e4	1.9e4	88e-3/1e6	1.1	16	1.5
109	1e-01	43.3	42	19	26	24	3.4	1.1	22	4.3e4	5.7	550	6.1	5.1	16	5.1	22	83	13	1400	2700	2.2e4	-	3.6	1.6
•		11.4																							
	1e + 01	2.2	5.2	3.7	4.3	8.6	39	3.5	2.2	320	6.6	3.1	5.6	8.1	2.6	5.8	1	4.8	2.7	4.1	3.6	11	4.1	2.4	7.3
	1e + 02	0.2	1.7	1.3	1.5	1.3	18	1.6	2.1	4.7	1.4	1.5	5.6	1.3	1.4	1.5	1	1.7	2.2	1.1	1.4	1.5	1.7	1.5	1.6
	1e + 03	0.2	1	1	Т	1	1	1	П	1	1	П	1	1	1	1	П	1	П	П	1	П	1	1	1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 70: 05-D, running time excess ERT/ERT $_{\rm best}$ on f_{110} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	1.22e5	38	17				1							22										77e-6/7e6
	1e-05	1.21e5	8.3	17				1							20										160
	1e-04	1.19e5	3.6	17				1							20										20
	1e-03	1.19e5	1.8	17				1							17						20e-1/1e5				28
ock Gauss	1e-02	1.12e5	1	18				П				٠			12	15e-1/2e4		٠		•	13	٠	٠	٠	9.7
110 Rosenbrock Gauss	1e-01	24000	1	83				3.7	52e-1/1e4		20e-1/2e3	23e-1/1e5			46	15		13e+0/5e3	29e-2/1e6	17e-1/1e5	59		21e-1/1e4	15e+0/1e3	11
11	1e+00	6720	1	74	27e+0/6e3	30e-1/2e3		4.8	22	92e-1/7e5	-	220	15e+0/8e3	32e+0/400	9.1	11	54e-1/1e4	10	33	30	09	63e-1/1e6	6.1	2.1	∞ ∞.
	1e + 01	190	4.4	4.7	240	1.9		1	20	3600	1.7	11	140	6	4.7	1.9	8.3	120	21	2.4	42	1900	2.9	8.5	3.4
	1e + 02	48	6.2	1	34	2.7	73e+1/1e3	2.2	13	1e3	2.5	4.9	37	ಬ	5.6	2.2	3.1	23	16	2.5	4	31	3.9	7.2	1.5
	1e + 03	69.6	4.5	1.5	20	2.4	92	1.3	∞	550	2.7	1.7	28	2.7	1.1	1.8	2.1	17	13	1	1.7	3.1	1.2	1.7	3.4
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 71: 05-D, running time excess ERT/ERT_{best} on f_{111} , in italics is given the median final function value and the median number of

		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	6.26e6		•				Н				•				•		•							•
		1e-05	6.2e6		•		•		-		•				•		•		•		•		•		•	
		1e-04	4.62e6		•		•		1		•				•		•		•				•		•	
		1e-03	4.61e6	•					-1				•			26e-2/1e6							•			11e-2/6e6
	ck unif	1e-02	4.59e6	34e-2/1e6	•		•		П		•	·				3.2							٠		•	20
on	111 Rosenbrock unif	1e-01	1.77e6	2.5	53e-2/1e6				1				24e-1/1e5			2.5	19e-1/2e4				31e-1/1e5	14e+0/1e5				5.4
l by dimensi	111	1e+00	1.22e5	-	4.5		•		2.2	44e+0/1e4	21e+0/7e5	31e+0/2e3	5.4			3.7	1.4	12e+0/1e4	•	45e-1/1e6	3.4	12	66e - 1/1e6	46e-1/1e4	٠	3.6
zalue divided		1e+01	1370	1.5	9.9	20e+1/6e3	67e + 0/2e3	10e+2/600	н	110	3500	22	3.5	16e+1/8e3	12e+1/900	7.2	1.4	22	36e+1/5e3	130	38	110	210	4.9	10e+1/1e3	11
sh this v		1e + 02	214	2.5	က	09	4.1	38	1.5	20	089	2.9	က	100	7.8	8.3	П	ಬ	26	28	35	73	14	13	8.7	21
s to read		1e+03	13.9	2.9	1.3	140	1.8	61	4.7	19	1e3	3.2	1	150	3.5	1.3	1.5	7.1	28	19	2.6	2.5	2.3	85	2.1	83
function evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 72: 05-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

rancelon evaluations to reach this	5 tO 164	_	varue ar	arde divided by dimension	inclusion 112 Rosenh	Bosenbrock Cauchy	γų				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	. 0	16-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\text{ERT}_{ ext{best}}/ ext{D}$	3.33	9.63	21.3	337	684	832	006	963	1030	1120	$\text{ERT}_{ ext{best}}/ ext{D}$
ALPS	6	29	33	19	330	50e-3/1e6					ALPS[15]
AMaLGaM IDEA	3.9	3.6	3.5	30	190	270	260	330	380	350	AMaLGaM İDEA [4]
avg NEWUOA	1.5	2.2	3.1	4.9	23	110	14e-2/7e3				avg NEWUOA [23]
$\operatorname{BayEDAcG}$	4.9	8.2	46	35e-1/2e3						•	BayEDAcG [9]
BFGS	130	390	920	92e+0/3e3							BFGS [22]
BIPOP-CMA-ES	2.5	6.3	4	1	1.2	1.2	1.3	1.3	1.3	1.3	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	2.1	3.9	3.2	8.9	100	29e-2/1e4					(1+1)-CMA-ES [2]
DASA	22	41	42	340	2600	18e-2/9e5		-			DASA [18]
DEPSO	8.9	6.1	7.4	40	44	25e-1/2e3					DEPSO [11]
EDA-PSO	5.2	12	62	18e-1/1e5							EDA-PSO [5]
full NEWUOA	7	1.8	1	6.3	18	150	93e-3/9e3				full NEWUOA [23]
GLOBAL	6.1	7	4.1	1.7	7	16e-1/300					GLOBAL [20]
iAMaLGaM IDEA	2.4	2.2	2.3	91		420		460	440	570	iAMaLGaM IĎEÁ [4]
MA-LS-Chain	6.4	6.3	5.4	15	110	420	390	28e-2/2e4			MA-LS-Chain [19]
MCS (Neum)	1.1	1.4	41	37e-1/1e4							MCS (Neum) [16]
NEWUOA	Н	Н	1.9	7.7	110	44e-2/5e3				•	NEWUOA [23]
(1+1)-ES	2.6	2.7	2.4	4.5	65	2400	14e-3/1e6				(1+1)-ES [1]
PSO	4.1	5.8	8.4	1900	2e3	15e-1/1e5				•	PSO [6]
PSO_Bounds	5.4	11	29	1200	29e-1/1e5						PSO_Bounds [7]
Monte Carlo	12	160	1.9e4	71e-1/1e6							Monte Carlo [3]
IPOP-SEP-CMA-ES	2.6	2.5	71	2.5	1.7	1.5	1.5	1.5	1.4	1.4	IPOP-SEP-CMA-ES [21]
SNOBFIT	2.4	1.9	2.7	34e-1/1e3					-	•	SNOBFIT [17]
VNS (Garcia)	9.1	7.2	4.5	1.1	1	1	1	-1	-	П	VNS (Garcia) [10]

Table 73: 05-D, running time excess ERT/ERT_{best} on f_{113} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	4880	1.6	1		9		1.1			1.4	15			1.8	5.3					43		1.3		15
		1e-05	4830	1.5	1		6.1		1:1			1.4	15			1.8	5.3				-	43		1.3		15
		1e-04	4830	1.5	1		6.1		1.1			1.4	15			1.8	5.3				-	43		1.3		15
			4830	1.5	1		6.1		1.1			1.4	15			1.8	5.3			23e-3/1e6		43		1.3		15
	Step-ellipsoid Gauss	1e-02	4800	1.1	1	13e-1/6e3	6.1		1.1	96e-2/1e4		1.1	11		18e-1/900	1.6	3.4	48e-2/1e4		1400	54e-2/1e5	33		1.2		7.3
umension	Step-ellip	1e-01	1620	7	2.4	52	3.2		1.7	92	11e-1/7e5	-	17	14e-1/8e3	7.3	4.2	4.9	92						3.3	30e-1/1e3	13
ded by dime	113	1e+00	377	2.6	4.6	31	2.6	24e+0/2e3	1.3	40	2700	1	3.4	57	6.6	4.7	1.5	6	44	32	180	21	350	6.7	18	13
ue divic		1e + 01	26.5	5.9	1.2	14	3.4	180	1.5	8.6	540	3.1	4.5	19	4.1	П	2.5	1.5	13	13	470	2.2	8.7	16	7.7	28
this val		1e+02	1.92	1.2	1	23	1.3	100	2.4	22	220	3.5	2.8	28	1.1	1.8	2.1	7	15	12	1.8	1.8	1.3	74	2.3	2.3
o reach		1e+03	0.2	1.3	1.3	1.7	1.8	14	2.1	1.1	6.3	1.3	1.3	2.3	1.9	1.9	1.5	П	2.1	2.5	1.5	1.5	1.3	2.2	1.2	н
function evaluations to reach this value (Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 74: 05-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	1e-05	16700 17000 E	63 96 ALPS [15]	19 20 AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	. BFGS [22]	1 1 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	. DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	. GLOBAL [20]	43 42 iAMaLGaM IDEA [4]	. MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	. (1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	. IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	
		16700	63	19		٠		-		٠		٠		٠	43	٠		٠		٠		٠	٠	٠	
	1e-03	16700	63	19				П				•			43	•		٠		•		٠		•	0
id unif	1e-02	15800	35	14				-1				-			28	29e-2/2e4				73e-2/1e5	47e-1/1e5	44e-2/1e6	99e-2/1e4		0 0
114 Step-ellipsoid unif	1e-01	11300	2	5.7		٠		-1	29e-1/1e4	18e-1/7e5	٠.	73e-2/1e5		45e-1/900	15	5.8	13e-1/1e4		29e-2/1e6	39	130	1300	12	•	
114 St	1e+00	2940	1.6	7.1	11e+0/6e3	73e-1/2e3		1	24	1100	42e-1/2e3	28	82e-1/8e3	4.5	14	1.6	7.5	89e-1/5e3	70	27	140	34	4.6	56e-1/1e3	
מו ומכ	1e+01	153	1.2	17	74	6.9	28e+0/800	2.2	7.2	260	4.7	21	09	2.7	11	1.3	2.2	43	13	1	100	2.7	15	3.5	
	1e+02	2.32	1	1.4	110	1.3	29	21	43	430	5.6	1.3	180	77	1.5	2.1	ಬ	150	38	1.6	1.9	1.6	130	2.7	
	1e + 03	0.2	1.3	1.6	1.3	1.2	20	1.5	1.1	4.6	1.2	1.3	1.1	1.5	1.5	1.3	1	1	6.6	1.2	1.4	1.5	1.3	1.5	,
initiation of an entire transfer of the second states of the second sec	Δ ftarget	$\overline{\mathrm{ERT}_{\mathrm{best}}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	

Table 75: 05-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	594	16e-3/1e6	6.5				5.7							18	280			2.5e4				П		5.2
		1e-05	510	1.3e4	ro		٠		5.9	-	٠		٠			20	150	-		1.4e4	•		•	П	-	5.3
		1e-04	510	1.3e4	rΟ				5.9							20	150			1.4e4				П	-	5.3
	chy	1e-03	510	1.3e4			89e-2/2e3		5.9			58e-3/2e3			٠	20	150			1.4e4	•		٠	П	•	5.3
	ipsoid Cauchy	1e-02	455	0096	5.6	10e-2/6e3	63		9.9	11e-2/1e4		65	65e-3/1e5	57e-3/8e3		19	72	83e-2/1e4	34e-2/4e3	3e3		38e-2/1e5		П		5.7
	$5 m \ Step-ellij$	$1e-\overline{01}$	366	25	2.9	28	78		6.5	43	63e-2/8e5	6.5	180	17	84e-2/300	8.7	30	400	42	64	580	1100	34e-2/1e6	1	11e-1/1e3	4.4
rided by dim	11	1e+00	26	8.9	4.1	4.2	21	24e+0/2e3	2.6	7.4	2700	5.5	19	2.8	4.7	4.2	3.2	43	14	11	190	400	910	1.5	17	1
alue div		1e + 01	12.7	13	1.8	1.1	5.9	2200	1.5	4.7	420	4.8	7.7	-1	4.4	1.6	က	1.4	2.9	1.7	$^{2.6}$	5.1	22	1.4	4.6	3.4
h this v		1e + 02	2.01	2.5	1.9	1.6	1.5	120	1.7	1.4	45	2.3	1.7	77	1.2	1.3	1.5	1.4	1.2	2.1	1.3	-	1.8	1.4	1.4	2.1
to reac		1e+03	0.2	1.3	1.3	1.1	1.5	32	1.3	1.3	18	1.1	1.7	2.9	1.2	1.1	1.3	П	2.1	1.9	1.5	1.3	1.3	П	1.1	1
function evaluations to reach this value		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 76: 05-D, running time excess ERT/ERT $_{
m best}$ on f_{116} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 116 Filipsoid Cause

	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS[15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	6330	2300	П				7							5.6								7		910
	1e-05	0209	280	П				7				•			5.6								2.1	•	570
	1e-04	5520	22	П				2.1				•			8.7								2.5	•	630
	1e-03	5370	26	1		-		2.1		-		18e-1/1e5			2.4	37e-2/2e4							2.3		260
ssnı	1e-02	5250	14	1		-		2.1		-	73e-1/2e3	270			2.4	69							2.3		200
116 Ellipsoid Gauss	1e-01	4460	4.5	1				1.9			3.2	150			2.5	14	12e+0/1e4		17e-1/1e6		19e+0/1e5		2.7		52
116 E	1e+00	2890	2.4	1		37e+0/2e3		7	18e+0/1e4	12e+0/7e5	4.7	96		94e+0/900	3.2	5.6	49		1600	15e+0/1e5	150	11e+0/1e6	2.5		22
	1e+01		1.5	П	95e+0/6e3	12							10e+1/8e	4.5	4	2.6	16	74e+0/5e3	40	240	130	1700	4.5	83e+0/1e3	14
	1e + 02	268	2.1	1	35	4.3	12e + 2/900	1.1	13	220	1.5	3.4	45	3.2	4	1	1.3	20	11	09	09	19	6.3	4.7	12
	1e+03	22.9	3.1	1	59		89	1.8	8.1	150	2.6	1.7	37	2.6	15	1.4	1.8	27	6.2	2.8	1.2	3.8 8.8	1.9	1.1	77
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 77: 05-D, running time excess ERT/ERT_{best} on f_{117} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			di nani in		117 Ellingeid	J: 01.					
ė ·			,		ri Empsore	ı umı i	,	,	1		ė d
Δ ftarget	1e+03	1e+02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	34.5	865	5340	15200	21900	25700	27400	30300	34600	38300	$_{ m ERT_{best}/D}$
ALPS	1.4	1	3.1	9.3	46	570	13e-2/1e6				ALPS [15]
AMaLGaM IDEA	1	5.9	5.6	5.9	8.4	6.6	15	27	45	370	AMaLGaM IDEA [4]
avg NEWUOA	38	100	30e+1/6e3								avg NEWUOA [23]
BayEDAcG	1.6	21e+1/2e3							-	٠	BayEDAcG [9]
BFGS	18	91e+1/600									BFGS [22]
BIPOP-CMA-ES	9.9	2.1	-	-	-	-	1	1	Н	П	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	24	11	28	77e+0/1e4			-				(1+1)-CMA-ES [2]
DASA	160	190	39e+0/7e5							•	DASA [18]
DEPSO	3.7	7.2	15e+1/2e3								DEPSO [11]
EDA-PSO	1.2	15	28	15e+0/1e5						•	EDA-PSO [5]
full NEWUOA	160	45	28e+1/8e3				-				full NEWUOA [23]
GLOBAL	2.9	3.6	17e+1/800								GLOBAL [20]
iAMaLGaM IDEA	15	4.5	4.3	6	12	17	32	35	67	14e-6/1e6	iAMaLGaM IDEA [4]
MA-LS-Chain	7	1.2	2.2	24	27e-1/2e4						MA-LS-Chain [19]
MCS (Neum)	2.2	1.3	12	36e+0/1e4			-				MCS (Neum) [16]
NEWUOA	41	41e+1/5e3					-		-	•	NEWUOA [23]
(1+1)-ES	18	17	130	930	67e-1/1e6						(1+1)-ES [1]
PSO	89	46	22	96	19e+0/1e5					•	PSO [6]
PSO_Bounds	77	43	120	93	39e+0/1e5		-				PSO_Bounds [7]
Monte Carlo		7.7	240	94e-1/1e6						•	Monte Carlo [3]
IPOP-SEP-CMA-ES	62	10	8.7	9.7	6.7	26e+0/1e4					IPOP-SEP-CMA-ES [21]
SNOBFIT		8.4	21e+1/1e3							•	SNOBFIT [17]
VNS (Garcia)	100	14	21	270	4600	99L/2-909					VNS (Garcia) [10]

Table 78: 05-D, running time excess ERT/ERT_{best} on f_{118} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	583		54		٠		1.8		-					130	640				•		٠	1.4		П
	1e-05	486		30				7				•			09	370							1.6	•	1
	1e-04	441		16				7							44	260							1.6		1
	1e-03	400	41e-3/1e6	10		-		2.1				57e-2/1e5			22	130							1.7		1
ą	1e-02			4.9	18e-2/7e3			2.1	32e-2/1e4	•	37e-1/2e3	4e3	22e-2/9e3		11	98		30e-2/5e3				٠	1.7	•	П
118 Ellipsoid ($1\bar{e}$ -01	311	940	3.6	64	-	·	1.9	230	27e-1/9e5	26	910	20	74e-2/700	7.7	44		120	22e-2/1e6	51e-1/1e5		٠	1.8	•	П
118	1e+00	243	32	2.6		06		7	22	2.7e4	38	320	5.9	က	3.1	14	13e+0/1e4	10	530	2700	12e+0/1e5	10e+0/1e6	7	33e+0/1e3	1
	1e+01	85.8	13	1	1.8	66	31e+1/3e3	3.2	∞	1300	17	110	1.3	1.8	2.7	4.1	140	4.3	36	800	1800	1.5e4	3.8	87	1.8
	1e + 02	10.9	34							270	18	65	П	7	3.4	12	24	1.3	13	029	59	200	9.7	23	8.3
	1e+03	5.28	10	3.4	1.2	12	210	4.2	2.8	53	10	5.6	1.3	6	2.8	ರ	10	П	3.7	4.3	4.9	6	3.9	3.2	8.4
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 79: 05-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension the particle of different powers G_{2116} .

	Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	POP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
			99	·	avg	В			(1+									Z			19e-5/1e5 PS		2.8 IPOP-		1.2e4 VN
		30 9950		-				5 2.3				0 98e-6/1e5			3.6	7 61e-7									
		0902 0	29	1	•	,2e3 .	٠	1.		•	,2e3	210	•	•	3.6	4.	•	٠	٠	14e-5	26	٠	1.7	٠	130
powers Gauss	le-04		2.2	1		68e-4/2e3		1		-	19e-4/2e3	15			3.8	1.1		٠	1e6 .	36	35	٠	1.5	٠	7.9
ent powers	1e-03	2070	7	2.7		7.1		1	(e4	7e5 .	1.8	2.8	se3 .		6.7	1.3	(e4		13e-3/	18	17	. ge	2.5	(e3 .	4.6
of different	1e-02	473	4.6	10	e3	4.2	e3						31e-2/8e3		19									51e-2/1e3	10
$119 \mathrm{~Sum}$ of						4.6							260				43					6400	8.5	21	7.4
	11 1e+00	5 131				2.5				750		1.9	22	4.7	2.8	1.3	73	35	12	71	. 56	12	11	4.1	8.2
	2 1e+01	2.3	2.1	1.4	19	2.2	220	1.9	18	210	1.5	1.4	12	П	1.3	1.6	3.5	26	15	1.8	1.7	1.4	4.5	1.7	2.8
	1e + 02	0.2	1.8	1.8	3.4	1.3	45	1.7	32	41	1.5	1.4	4.6	1.5	1.3	1.8	П	1.7	63	1.3	1.2	1.5	5.4	1.3	1.2
	1e+03	0.2		1	п	1.1		1	П	П		1	п	П		1	п	П		-	П		П	П	П
	$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 80: 05-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	$_{ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	1.1e5		٠		•	٠	-		٠		٠				٠				٠		٠			
		1e-05	00299		68e-5/1e6		•		н		٠		٠			13e-4/1e6	•				٠		٠		•	
		1e-04	35400	34e-4/1e6	130				Н		-					420					16e-2/1e5		٠		•	
٠	vers unit	1e-03	14500	1e3	99				П		-		68e-3/1e5			130	34e-3/2e4				100			30e-2/1e4		58e-4 /7e6
	rerent pov	1e-02	0069	53	35				-				64				26	48e-2/1e4		91e-3/1e6	200	60e-2/1e5	11e-2/1e6	21		740
nension	120 Sum of different powers unit	1e-01	3740	2.8	16	15e-1/6e3	17e-1/2e3		П	45e-2/1e4	44e-2/7e5	10e-1/2e3	23	22e-1/9e3	90e-2/900	34	5.1	38	24e-1/5e3	340	44	22	550	5.9	13e-1/1e3	41
divided by dimension	120	1e+00	580	1	13	49	49	37e-1/900	1.1	9.4	260	ы	14	63	1.8	24		8.5		21	120	88	2.3	11	3.3	11
		1e+01	3.21	1.5	1.5	94	1.2	40	17	29	840	2.3	1.1	150	П	1.2	1	3.7	130	54	7	1	1.1	48	1.2	7
ı this va		1e + 02	0.2	1.3	1.4	42	1.6	19	26	4.6	40	1.4	1.3	30	1.3	1.2	1.1	П	34	2.7	1.8	1.7	1.8	1.2	1.5	1.2
to reac.		1e+03	0.2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1.3	1	1	1	1	1	1
function evaluations to reach this value		$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 81: 05-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$1e-07$ Δ ftarget	1240 ERT _{best} /D	. ALPS [15]	99 AMaLGaM IDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	. BFGS [22]	2.2 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	. DASA [18]	. DEPSO [11]	. EDA-PSO [5]	full NEWUOA [23]	. GLOBAL [20]	210 iAMaLGaM IDEA [4]	. MA-LS-Chain [19]	. $MCS (Neum) [16]$. NEWUOA [23]	(1+1)-ES [1]	. PSO [6]	. PSO_Bounds [7]	. Monte Carlo [3]	1.1 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	1 VNS (Garcia) [10]
	1e-05	774		42				7				•			110	•		•		•		•	1.2	•	п
hy	1e-04	525		34		41e-4/2e3		1.7							110	99e-5/2e4							1.2		1
121 Sum of different powers Cauchy	1e-03		97e-4/1e6	26	38e-3/6e3	29		1.1			14e-3/2e3	•	13e-3/8e3		49	120		٠	51e-4/1e6		27e-2/1e5	٠	1.1	•	П
fferent po	1e-02	107	1.3e4	25	200	18	50e-2/3e3	П	35e-3/1e4	34e-2/7e5	62	98e-3/1e5	150	10e-2/400	41	40	88e-3/1e4	86e-3/4e3	2200	83e-3/1e5	1.4e4	87e-3/1e6	1.3	11e-2/1e3	1.3
of di	1e-01	54.6	150	12	45	22	370	1	59	1.9e5	5.9	2100	33	11	5.6	5.2	180	92	49	2300	3800	2e4	1.1	24	1.3
21 Sun	1e+00	22.2	11	1.8	3.3	23	7.1	1.1	8.6	3100	2.9	6.6	9.6	3.5	1.1	3.7	11	15	4.5	380	200	53	1	1.9	1.9
121 Sum of di	П	1.72	1	2.1	4.3	က	42	2.7	1.6	180	4.6	2.5	3.2	1.9	2.5	2.8	1.5	4.8	က	1.6	1.8	2.4	2.3	1.6	3.8
	1e+02	0.2	1.3	1.5	3.3	1.7	130	4.3	1	13	1.1	1.7	œ	1.7	1.3	1.7	1	3.9	4.4	1.5	1.5	1.6	1.5	1.5	1.2
	1e + 03	0.2	1.1	1	1	Т	П	1	1	Н	1	Н	1.2	1	1	Н	-1	Н	П	Н	1.1	Н	П	Н	
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 82: 05-D, running time excess ERT/ERT_{best} on f_{122} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

					B - 1 - 5 - 6 - 1		2				
				7	122 Schaner F7 Gauss	F L	Gauss				
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\text{ERT}_{\text{best}}/\text{D}$	0.2	0.2	2.04	345	1840	4320	6020	8140	10700	22300	${ m ERT_{best}/D}$
ALPS	1	1.1	7	2.9	2.8	4.9	20	47	640	29e-6/1e6	ALPS [15]
AMaLGaM IDEA	1	1.3		4.9	5.6	3.5	3.6	3.7	3.8	2.6	AMaLGaM IDEA [4]
avg NEWUOA	1	1.5		34	11e-1/6e3						avg NEWUOA [23]
BayEDAcG	1	1.3		2.3	30e-2/2e3					•	BayEDAcG [9]
BFGS	П	12		36e - 1/3e3							BFGS [22]
BIPOP-CMA-ES	П	Н		н		-1	1	-	Н	н	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	П	21	28							(1+1)-CMA-ES [2]
DASA	П	3.7	410	3200	10e-1/7e5	-				•	DASA [18]
DEPSO	1	1.1		2.9							DEPSO [11]
EDA-PSO	1	1		10		96	230	37e-3/1e5	٠		EDA-PSO [5]
full NEWUOA	1	2.1	30	110	17e-1/8e3						full NEWUOA [23]
GLOBAL	1	1.2		18e-1/900							GLOBAL [20]
iAMaLGaM IDEA	1.1	1.3		12	14	6	7.1	5.8	5.7	3.6	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1.3	1.6	4.3	4.8	8.9	61	76e-4/2e4		•	MA-LS-Chain [19]
MCS (Neum)	1	П	2.8	13	54e-2/1e4						MCS (Neum) [16]
NEWUOA	П	1.9	14	91	18e-1/5e3					•	NEWUOA [23]
(1+1)-ES	-	3.1	17	72	24e-2/1e6					٠	(1+1)-ES [1]
PSO	П	1.1	н	48	120	330	17e-2/1e5			·	PSO [6]
PSO_Bounds	1	1.1	1.7	22	55	160	85e-3/1e5				PSO_Bounds [7]
Monte Carlo	-	1.1	7	100	46e-2/1e6						Monte Carlo [3]
IPOP-SEP-CMA-ES	-	Н	7	8.1	3.6	3.3	3.3	6	14	6.7	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1.1	1.9	13	20e-1/1e3	-			-		SNOBFIT [17]
VNS (Garcia)	1	1	3.4	18	34	120	1800	76e-5/8e6		-	VNS (Garcia) [10]

Table 83: 05-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

different evaluations to reach	reach		mivion of	uns value uivided by dimension							
				12:	123 Schaffer F7 unif	F'7 unif					
Δ ftarget	1e + 03	1e + 02	1e + 01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT}_{ m best}/{ m D}$	0.2	0.2	2.24	3210	16300	45500	67100	90300	1.34e5	4.43e5	${ m ERT_{best}/D}$
ALPS	1	1.1	1.1	2.1	25e-2/1e6						ALPS [15]
AMaLGaM IDEA	1	1.4	1.8	8.7	150	15e-2/1e6		•			AMaLGaM İDÉA [4]
avg NEWUOA	1	2.2	80	26e-1/6e3							avg NEWUOA [23]
BayEDAcG	1	1.1	2.7	25e-1/2e3				•	•	•	BayEDAcG [9]
BFGS	1	1.4	46	39e-1/900							BFGS [22]
BIPOP-CMA-ES	1	1.5	8.1	-1	1	П	1	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	1	27	21e-1/1e4							(1+1)-CMA-ES [2]
DASA	П	09	420	3e3	14e-1/7e5			•	•		DASA [18]
DEPSO	1	1.3	2.2	9.5	26e-1/2e3						DEPSO [11]
EDA-PSO	1	1.2	1.7	33	74e-2/1e5			•	٠	٠	EDA-PSO [5]
full NEWUOA	1	1.1	110	18	35e-1/9e3						full NEWUOA [23]
GLOBAL	1	1.1	1.4	20e-1/800				•	•	•	GLOBAL [20]
iAMaLGaM IDEA	П	1	2.1	19	160	18e-2/1e6					iAMaLGaM IĎEÁ [4]
MA-LS-Chain	1	1.3	1.3	2.4	64e-2/2e4	•		•	٠	٠	MA-LS-Chain [19]
MCS (Neum)	1	1	6.3	21	16e-1/1e4						MCS (Neum) [16]
NEWUOA	П	1.3	65	37e-1/5e3					•		NEWUOA [23]
(1+1)-ES	1	1.2	22	23	59e-2/1e6						(1+1)-ES [1]
PSO	П	П	1.7	48	87	12e - 1/1e5		•			PSO [6]
PSO_Bounds	П	П	1.2	20	18e-1/1e5						PSO_Bounds [7]
Monte Carlo	-	1.2	-	15	49e-2/1e6						Monte Carlo [3]
IPOP-SEP-CMA-ES	1	1.1	6.1	5.5	10e-1/1e4						IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1.2	3.5	25e-1/1e3				•			SNOBFIT [17]
VNS (Garcia)	Т	Т	3.1	28	3300	16e-2/8e6					VNS (Garcia) [10]

Table 84: 05-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	19000	-	17	٠	٠		П	٠			•		٠	35	•		•		•			1.9	·	20e-6/7e6
	1e-05	0020	-	19				1.2							22			٠							5400
	1e-04	5280		16				1.1							48								1		460
ıchy	1e-03	4100		10		13e-3/2e3		1.1							17								1		69
124 Schaffer F7 Cauchy	1e-02	1790	15e-2/1e6	10		က		1.2				-			18	20e-2/2e4			12e-2/1e6	52e-2/1e5			1		41
124 Schaf	1e-01	208	3.3e4	15	63e-2/6e3	6.9	39e-1/3e3	П	38e-2/1e4	97e-2/7e5	27e-2/2e3	56e-2/1e5	47e-2/8e3	91e-2/800	40	870	55e-2/1e4	11e-1/4e3	3.5e4	0089	77e-2/1e5	46e-2/1e6	3.9	88e-2/1e3	30
•	1e+00	40.4	14	25	88	8.7	066	1.1	33	2e4	10	270	45	21	15	5.1	16	160	35	930	1400	096	П	18	21
	1e + 01	1.95	1.4	2.1	6.1	1.8	73	1.5	4.7	320	77	77	5.3	1.7	1.1	1.8	1	က	4.7	1.2	1.6	1.9	1.8	1.1	3.5
	1e+02	0.2	1.1	1.3	2.1	1.1	2.2	1.5	1.1	6.5	1.1	1.1	1.3	1.2	1.1	1.3		1.1	1.4	1.1	Н	1.1	1.6	П	
	1e + 03	0.2	Т	Н	Н	Т	1	1	Н	Н	1	1	н	Н	Н	1	н	1	Н	Н	П	Н	Н	Н	н
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 85: 05-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median final function value and the median number of

Table 86: 05-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 87: 05-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

					1 [4]	23]			[14]	[2]				[23]		4 [4]	19]	[9]	<u>.</u>			7]	3	'S [21]		10]
		$\Delta { m ft}$ arget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [MA-LS-Chain [19]	MCS (Neum) [1	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	79100		56				П							180										210
		1e-05	77900		14		•		П						٠	40										210
		1e-04	77000		10				1							41								18e-3/1e4		210
	k Cauchy	1e-03	68300		5.1				1							17	32e-3/2e4			24e-3/1e6			33e-3/1e6	2.2		120
	Griewank-Rosenbrock Cauchy	1e-02	25700	17e-3/1e6	2.2	53e-3/6e3	41e-3/2e3		1.2	92e-3/1e4	86e-3/7e5	96e-3/2e3	49e-3/1e5	59e-3/8e3		3.9	7	25e-3/1e4	62e-3/4e3	550	75e-3/1e5	78e-3/1e5	540	1	20e-2/1e3	14
dimension	Griewank	1e-01	0.2	2.5e4	2700	5200	2200	38e-2/3e3	2100	5.5e4	2.8e6	1.5e4	6.3e4	1.1e4	24e-2/800	0086	8600	1	7200	3.6e4	1.5e5	1.3e5	1.2e5	3700	2.2e4	2.7e4
ded by	127 (1e+00	0.2	46	40	18	35	1300	19	51	4400	36	32	22	37	24	39	1	14	65	40	44	47	19	24	52
lue divi		1e+01	0.2	1.4	1.1	77	1.3	7.8	1	1.3	61	1.3	1.3	4.1	1.1	1.3	1.2	Н	2.2	1.1	Н	1.2	Н	П	1.3	Н
ı this va		1e + 02	0.2	Т	1	Н	П	1	1	П	Н	1	1	П	1	1	1	Н	Н	П	Н	Н	Н	П	Н	Н
to reack		1e + 03	0.2	1	1	1	П	1	1	Т	П	1	1	1	1	1	1	П	П	П	П	П	П	П	П	1
function evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 88: 05-D, running time excess ERT/ERT_{best} on f_{128} , in italics is given the median final function value and the median number of

function evaluations to reach this	s to read	-	value div	value divided by dimension	mension						
					128 G	128 Gallagher C	75				
Δ ftarget	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02		1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	0.2	0.2	22.2	820	1560	2100	2490	2980	3440	4230	${ m ERT_{best}/D}$
ALPS	1	1	1.7	1	1	1		1	1	1	ALPS [15]
AMaLGaM IDEA	1	1	1.2	46	46	35		25	22	18	AMaLGaM IDEA [4]
avg NEWUOA	1	П	11	9.3	7.5	42	0.)				avg NEWUOA [23]
$\operatorname{BayEDAcG}$	1	Т	1.3	2.8	19	60e-2/2e3					BayEDAcG [9]
BFGS	1	1	88	94e-1/2e3							BFGS [22]
BIPOP-CMA-ES	1	1	2.5	6.9	10	7.8		5.5	4.8	3.9	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	П	9.1	4.6	8.9	11		14	19	28e-3/1e4	(1+1)-CMA-ES [2]
DASA	1	Т	230	180	400	2400		65e-3/7e5			DASA [18]
DEPSO	1	1	2.8	4.4	3.9	2.9		2.1	1.8	1.5	DEPSO [11]
EDA-PSO	1	П	1.4	33	44	33		24	21	17	EDA-PSO [5]
full NEWUOA	1	П	15	11	36	57	. 7				full NEWUOA [23]
GLOBAL	1	1	1	1.6	2.3	1.7		17e-1/900			GLOBAL [20]
iAMaLGaM IDEA	1	1	8.2	34	21	16		12	11	8.9	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1	1.1	1.3	1.3	1.5		1.5	1.4	1.3	MA-LS-Chain [19]
MCS (Neum)	1	П	4.6	2.3	3.6	9.2		49e-3/1e4			MCS (Neum) [16]
NEWUOA	1	1	12	17	43	19e-1/5e3					NEWUOA [23]
(1+1)-ES	1	П	7.5	5.8	8.4	10		75	140	1e3	(1+1)-ES [1]
PSO	П	П	1.9	20	73	55		39	34	27	PSO [6]
PSO_Bounds	1	Н	2.5	100	130	130		93	81	99	PSO_Bounds [7]
Monte Carlo	П	Н	1.8	4.1	41	710		10e-3/1e6			Monte Carlo [3]
IPOP-SEP-CMA-ES	1	П	8.9	13	7.6	5.7		4	3.5	2.8	IPOP-SEP-CMA-ES [21]
SNOBFIT	П	П	2.4	3.3	4.7	7.1		18e-1/1e3			SNOBFIT [17]
VNS (Garcia)	1	П	1	13	12	8.7		6.2	5.5	ъ	VNS (Garcia) [10]

Table 89: 05-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]		MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	1.16e5	1	4.2		·		1.9		•		12			8.6	16e-3/2e4		٠		٠	٠	•		٠	240
	1e-05	1.02e5	1	3.3				2.5				6.7			5.8	3.6									56
	1e-04	72900	1	4.5				က				9.5			4.4	ಬ						13e-3/1e6			16
nif	1e-03	26900	1	4.8				3.9				12			4.7	6.5			60e-4/1e6	20e-1/1e5		260			8.9
129 Gallagher unif	$\widetilde{1e}$ -02	46300	1	4.2				4.8	77e-2/1e4	25e-2/7e5		6		21e-1/900	4.3	1.7	64e-2/1e4		23	15	20e-1/1e5	36	18e-1/1e4		7
129 G	1e-01	11900	1.7	12	30e-1/6e3			9.5	5.9	400	24e-1/2e3	11	55e-1/9e3	1	13	1.6	2.8	61e-1/5e3	6	34	34	5.7	3.8		8.9
•	1e+00	2140	2.7	19	20	62e-1/2e3	76e-1/900	7.1	5.7	140	14	36	58	1.7	25	1	4.9	16	8.9	130	130	1.3	9.2	29e-1/1e3	16
	1e+01	12.8	3.3	2.7	89	27	85	12	34	230	5.7	5.3	130	1.5	22	1.5	6.6	120	29	1	2.8	2.8	42	5.3	2.5
	1e + 02	0.2	1	1	1	П	1	1	1	П	-	1	1	1	1	1	1	1	-	П	1	-	-	П	П
	1e+03	0.2	1	1	П	П	Н	П	П	Н	Н	П	1	Н		П	1	П	1	Н	П	Н	1	Н	1
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 90: 05-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		6910 ERT _{best} /D		15 AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	. BFGS [22]	5 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]		-2/2e3 DEPSO [11]	. EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	7.5 iAMaLGaM IDEA [4]	2.9 MA-LS-Chain [19]	. MCS (Neum) [16]		57e-6/1e6 (1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	. Monte Carlo [3]	1 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	17 VNS (Garcia) [10]
		0849						വ			4.4 94e		14e-4/8e3										1	-	18
		6750			13			വ	71e-4/1e4		4.4	23e-3/1e5	17	33e-3/500	7	2.3			92	220		42e-4/1e6	1	39e-2/1e3	18
Cauchy	1e-03	6560	19	13	က				8.9				2.4					_				2300		2.3	
Gallagher	1e-02	1640	4.8	52	9	19e-1/2e3		20	9	60e-3/7e5	3.1	130	က	1	23	8.2	40	19	9.9	250	84e-2/1e5	530	4.1	9.1	20
y dimension 130		209																							
videa b	1e+00	162	7.7	160	6.4	170	110	57	8.9	550	12	310	-1	1	130	27	21	11	8	380	570	31	27	3.8	120
value di	1e+01	10.9	1.4	2.1	1.3	2.2	34	1.9	2.7	150	4.6	22	က	2.5	1.5	2.4	4.1	2.3	3.3	1.7	3.1	3.2	1	1.5	1.8
SIII CIIIS	1e + 02	0.2		1	П	П		1	П	П	-	1	П	1	-	1	П	1	1	1	П	1	1	П	н
s to rear	1e+03	0.2	1	1	-1	1	1	П	1	П	1	1	1	-	1	1	-1	-	1	1	1	1	1	1	п
nunction evaluations to reach this value	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 91: 10-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\widetilde{\mathrm{ERT}}_{\mathrm{hest}}/\mathrm{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	22.6	160	28	1.4	140		6.1	3.5	21	41	640	П	2	14	18		2.9	2.9	45	480		5.1	1.9	6.7
	1e-05	21	120	24	1.3	130		5.1	5.9	18	31	510	Н	4.1	11	16		2.3	2.4	35	280	•	4.3	1.6	5.7
	1e-04	20	110	22	1.3	130		4.6	5.6	16	56	440	П	3.9	6.6	15		2.1	2.5	31	250	•	3.9	1.4	5.3
881188	1e-03	19.4	68	19	1.2	110		4	2.2	14	21	360	П	3.7	8.3	13	28e-3/4e3	1.9	1.8	25	220		3.3	1.3	4.5
noderate Gauss	1e-02	18.5	72	15	1.2	98		3.3	1.8	13	16	280	П	3.3	6.9	11	870	1.6	1.5	18	150		8.7	1.1	4
_	•	18	51	11	Н	45		2.2	1.4	10	11	180	Н	က	5.1	8.3	20	1.1	1.2	12	96	-	2.5	П	3.3
Ol Sphere	1e+00	4	130	30	3.4	81		7.8	4.2	34	27	380	4.1	11	13	19	П	က	3.7	25	140	36e-1/1e6	6.5	3.9	11
divided by	1e+01	2.6	20	17	2.9	53	36e+0/3e3	5.4	33	30	16	25	4	13	8.1	11	Н	2.1	3.1	8.9	13	2200	5.1	4.6	12
ıs varue	1e + 02	0.1	4.5	6.4	20	7.1	840	13	6.9	180	5.8	6.1	45	3.9	5.7	5.5	Н	15	15	5.3	5.5	3.1	11	10	12
eacm un	1e+03	0.1	1	1	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	П	-
metion evaluations to reach	$\Delta { m ftarget}$	$\widetilde{\mathrm{ERT}}_{\mathrm{hest}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 92: 10-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

			30.4 ERT _{best} /D		20 AMaLGaM IDEA [4]	av	63 BayEDAcG [9]		4.5 BIPOP-CMA-ES [14]	(1+1	22 DASA [18]	29 DEPSO [11]		1 full NEWUOA [23]	26 GLOBAL [20]	10 iAMaLGaM IDEA [4]	14 MA-LS-Chain [19]	. MCS (Neum) [16]				440 PSO_Bounds [7]	. Monte Carlo [3]	IPOI	5.3 SNOBFIT [17]	5 VNS (Garcia) [10]
		1e-05	26.5	100	17	1.4	61		4	2.3	18	24	400	П	7.2	8.9	13		150	2.2	300	220		3.2	3.6	4.6
		1e-04	23.9	91	17	1.3	22		3.8	2.5	17	22	370		4.9	8.3	13		81	2.1	320	210		က	5.6	7
		1e-03	22.6	28	15	1.2	41		3.2	1.9	15	18	310	Н	4.3	7.3	12		48	1.7	340	190		2.7	2.1	4.1
	moderate unif	1e-02	20.8	64	13	1.1	37		2.9	1.6	13	14	250	-	3.8 8.0	6.1	11	13e-2/4e3	30	1.5	360	140		2.3	2.1	7
,	e mod	1e-01	17.6	52	11	-	22		5.6	1.3	12	11	200	1.1	3.3	5.1	9.5	460	6	1.3	420	66	٠	2.1	7	7 %
dimension	$102~\mathrm{Spher}$	$1e+\overline{00}$	4.08	130	30	3.2	73		7.1	4	34	26	390	4.2	10	13	21	-	6.7	4	1800	86	33e-1/1e6	6.1	7.6	11
divided by		1e + 01	2.57	69	17	2.9	51	34e+0/3e3	4.9	3.1	31	18	45	4.3	13	7.2	11	-	3.5	က	9.1	13	3100	4.1	6.1	1.0
this value		1e + 02	0.1	3.7	8.9	31	2.8	640	8.5	11	190	5.7	4.8	40	4.9	4.4	5.1	П	18	15	4.7	7.1	6.2	6	6.3	1.0
		1e + 03	0.1	1	1	1	1	1	П	1	-	1	П	1	1	1	1	1	-	1	1	1	1	1	П	-
inction evaluations to reach		$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	$_{ m DASA}$	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VAICE (Comon)

Table 93: 10-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 94: 10-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

104 Rosenbrock moderate Gauss

			1e+00		1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
4.81	1 23.4	45.3	666	1660	1840	1940	2020	2080	2200	${ m ERT_{best}/D}$
					16	21	33	51	110	ALPS [15]
				П	1	1	1	1	П	AMaLGaM iDEA [4]
		1		22	67e-2/8e3					avg NEWUOA [23]
		47		-		-	•		-	BayEDAcG [9]
										BFGS [22]
	e 9	3.6		1.3	1.3	1.3	1.2	1.2	1.2	BIPOP-CMA-ES [14]
		2.8				46e-2/1e4				(1+1)-CMA-ES [2]
		15				78	180	1900	28e-6/9e5	DASA [18]
		11								DEPSO[11]
		26			22	28	34	40	67e-8/1e5	EDA-PSO [5]
		1.6			2.5	6.4	6.1	11	14	full NEWUOA [23]
		1.8			2.8	39e-1/300	•		•	GLOBAL [20]
		2.9	2.5	1.6	1.5	1.5	1.5	1.5	1.4	iAMaLGaM IDEA [4]
		5.7	34	21	20	19	18	18	17	MA-LS-Chain [19]
		61e+0/4e3								MCS (Neum) [16]
		7.2		47	55e-2/5e3					Z
		1.8		6.6	32	99	390	1200	21e-6/1e6	(1+1)-ES $[1]$
		9.4		430	59e-1/1e5					
		7.1	099	400	220	730	200	63e-1/1e5		PSO_Bounds [7]
		. ga								Monte Carlo [3]
IPOP-SEP-CMA-ES 3.1		1.3		3.6	3.3	3.2	က	က	2.8	IPOP-SEP-CMA-ES [21]
		18	7.3	13e+0/500			٠			SNOBFIT [17]
		22	54	51	46	4.5	44	42	40	VNS (Garcia) [10]

Table 95: 10-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

105 Rosenbrock moderate unif

	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	7970	42	1.2	-	-		1	-	24e-5/8e5			-		2.8		-		71e-5/1e6						4900
	1e-05	7820	19	1.2				П		1400					2.8				1800						1200
	1e-04	7730	14	1.2				П		250					7 8.8				300						800
	1e-03	7420	12	1.2	88e-2/8e3			1	55e-2/1e4	54					2.9				170						730
moderate unii	1e-02	7260	6.9	1.2	16			1	20	17			32e-2/1e4		2.9				45		75e-1/1e5		72e-1/1e4		650
STOCK INOU	1e-01	7010	5.3	1.2	3.7	•		1	4.4	2.6			6.4	70e-1/300	က	52e-1/5e4		52e-1/5e3	10	65e-1/1e5	200		20	٠	300
105 Rosent	1e+00	2150	10	3.9	5.1	83e-1/2e3		2.9	4.5	3.1	76e-1/2e3	52e-1/1e5	4.4	П	9.5	160		10	8.7	300	320		32	16e+0/500	310
	1e+01	95	16	2.3	2.5	18		1	1.8	18	3.4	45	1.2	1.6	1.2	5.2	70e+0/4e3	11	1.7	80	86		П	11	18
	1e+02	32.8			1.7								1.3				25	1.2	1	220	16	32e+1/1e6	1.4	4.6	29
	1e+03	3.11	74	13	1.9	42	20e+3/1e3	4.8	3.7	33	18	120	2.9	11	6	12	7	Н	3.6	15	27				
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 96: 10-D, running time excess ERT/ERT $_{\rm best}$ on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension 106 Posonbook moderate Cauchy

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07			620		•		1.2		•		•			810	32				•			П	•	4.2
	1e-05	897	-	430		٠		1.2							340	14							-1	٠	4.3
	1e-04	874	•	340				1.2							210	11			57e-4/1e6				П		4.4
Cauchy	1e-03	850	12e-3/5e5	210	13e-2/9e3			1.2	51e-2/1e4	16e-3/1e6			48e-3/1e4		90	8.2		11e-2/7e3	1.7e4				П		4.5
lerate Cau	1e-02	819	1500	98	160			1.1	170	4e3			88		46	6.5		26	370	62e-1/1e5			-		4.6
.06 Rosenbrock moderate	1e-01	771	140	45	19			1	40	29	67e-1/2e3		8.1	42e-1/300	17	4.9		14	61	1800			-		4.8
106 Kosen	1e+00	342	140	35	5.4	11e+0/2e3		1.7	24	9.9	82	43e-1/1e5		5.4	21	5.7			18	1900	65e-1/1e5		7	70e-1/500	11
	1e + 01	28.8	47	8.6	1.3	100	44e+0/4e3	2.9	3.5	11	17	160	Н	2.6	4.4	8.3	61e+0/4e3	1.6	2.4	13	320		2.1		4.6
	1e+02	12.8	47	2.6	1		210				10	140	1.5	3.3		7.3			2.3		37	32e+1/1e6	2.3	9.3	5.3
	1e + 03	3.44	72	13	1.5	36	71	5.3	3.5	21	16	140	2.6	8.6	7.1	11	5.3	Т	2.7	8.6	27	1e4	4.8	8.8	11
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 97: 10-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta ext{ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	1430	98	9.4				П				24			22	5. 8.		•		1e3			13	•	096
	1e-05	1130	56	9.7				1				28			30	6.3				310			8.2	•	200
	1e-04	096	19	10				П				32			35	6.9		•		210			9.2	•	110
	1e-03	735	14	12		32e-3/2e3		П				40			45	7.7				260	59e-2/1e5		12		65
ınss	1e-02	521	11	14		59		-				37			53	8.7		٠		240	1300		14		42
Sphere Gauss	1e-01	387	∞	15		4.5		П			97e-2/2e3	30			42	6.9			19e-1/1e6	270	260		16		36
107 S	1e+00	225	9	13	15e+0/7e3	4		1	11e+0/1e4	11e+0/4e5	13		13e+0/1e4	17e+0/500	26	6.1	87e-1/4e3						16	13e+0/500	27
	1e+01	94.5			230	က	33e+0/1e3	П	230	1.1e4	2.7	9.5	230	22	3.9	2.2	28	130	240	460	84	38	12	11	28
	1e + 02	0.1	5.1	3.5	32	4.2	009	17	180	3e3	4.1	3.5	130	5.1	-1	6.1	-	15	200	4.9	4.4	4.2	17	7.9	12
	1e+03	0.1	1	-	1	1	1	1	-	1	1	-	-	1	1	-	1	П	1	П	1	1	-1	1	1
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 98: 10-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	idiliction evaluations to reach time	s to read		value divided by difficusion	oy amensic)II	•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					ī	08 Sphere	unif					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Δ ftarget	1e+03	1e + 02	1e+01		1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.1	0.1	1e3	3140	4760	7750	10900	13600	17900	30800	${ m ERT_{best}/D}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ALPS	1	2.6	1.2	460	12e-1/5e5			•			ALPS [15]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AMaLGaM IDEA	1	5.2	19	33	77	85	320	28e-4/1e6			AMaLGaM IDEA [4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	avg NEWUOA	1	1400	27e+0/7e3								avg NEWUOA [23]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BayEDAcG	1	5.7	21e+0/2e3					•	•		BayEDAcG [9]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BFGS	П	240	40e+0/800								BFGS [22]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BIPOP-CMA-ES	1	180	1	1	1	П	1	1	1	1	BIPOP-CMA-ES [14]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1+1)-CMA-ES	1	380	30	13e+0/1e4							(1+1)-CMA-ES [2]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DASA	Н	4600	640	10e+0/4e5				•			DASA [18]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DEPSO	П	28	59	18e+0/2e3							DEPSO [11]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	EDA-PSO	1	4.4	94	450	99e-1/1e5			•			EDA-PSO [5]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	full NEWUOA	1	3300	140	29e+0/1e4							full NEWUOA [23]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GLOBAL	П	3.9	19e+0/500					•	•		GLOBAL [20]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	iAMaLGaM IDEA	П	5.9	18	61	97	160	1300	1100	62e-4/1e6		iAMaLGaM IDEA [4]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MA-LS-Chain	1	5.5	1.1	240	24e-1/5e4		-	•			MA-LS-Chain [19]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MCS (Neum)	1	1	27	18e+0/4e3							MCS (Neum) [16]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NEWUOA	П	290	28e+0/4e3					•			NEWUOA [23]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1+1)-ES	1	270	92	54e-1/1e6							(1+1)-ES [1]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PSO	1	2.7	190	17e+0/1e5				•			PSO [6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PSO_Bounds	1	4.7	120	11e+0/1e5							PSO_Bounds [7]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Monte Carlo	П	9	4.1	34e-1/1e6				٠	•		Monte Carlo [3]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	POP-SEP-CMA-ES	1	47	45	15e+0/1e4							IPOP-SEP-CMA-ES [21]
1 12 48 $4300 13e^{-1}/5e6$	SNOBFIT	1	5.1	21e+0/500			-		•			SNOBFIT [17]
	VNS (Garcia)	П	12	48	4300	13e-1/5e6						VNS (Garcia) [10]

Table 99: 10-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median final function value and the median number of

		1e-07	$179 242 ERT_{best}/D$		1 160 AMaLGaM IDEA [4]	av.	35e-7/2e3	7.3		(1+1)-CMA-ES [2]	DASA [18]	. DEPSO [11]	. EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	70 450 iAMaLGaM IDEA [4]	. MA-LS-Chain [19]	240	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	. Monte Carlo [3]	. 1 IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	2 1 2 VNS (Carcia) [10]
			146 17		.6		19 17	9.7								190 27	28e-4/5e4	180 320						1 1		1.3
		1e-03	116		53		21	12	1.1								_	230	٠				٠	-		1.3
	ere Cauchy	1e-02	82.4	20e-2/5e5	43	31e-2/7e3	17	17	1.1	30e-2/1e4		87e-3/2e3	•	34e-2/1e4		54	180	200		42e-3/1e6			٠	П	85e-2/500	1.4
mension	$109 \; \mathrm{Sphere}$	1e-01	49.9	1.4e5	12	029	11	28	1.1	1400	-	46	13e-1/1e5	2900	35e-2/300	10	9.2	73	57e-2/4e3	1900	10e-1/1e5	-		1	140	
'ided by din		1e+00	28.6	57	4.1	38	11	49	1.1	53	26e-1/5e5	7.5	1.1e4	24	6.3	2.1	4.5	19	22	7.7	4100	31e-1/1e5	29e-1/1e6	1	18	9.1
value div		1e + 01	2.79	89	16	11	43	270	4.7	8.9	1600	17	39	27	13	8.3	10	1	12	5.9	160	2600	2400	4.8	6.5	Ξ
		1e + 02	0.1	2.3	4.9	20	2.9	440	13	13	150	6.1	4.1	33	7.3	5.1	5.3	1	16	12	5.1	22	5.9	6	4.8	12
to reacl		1e+03	0.1	1	1	1	П	П	1	1	Н	П	П	П	П	П	1	1	П	Н	П	П	1	1	П	-
function evaluations to reach this		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 100: 10-D, running time excess ERT/ERT_{best} on f₁₁₀, in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

110 Rosenbrock Gauss

	Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL $[20]$	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	nan		٠		٠		•		•		٠		٠		٠		•		•		•		•	
	1e-05	nan		٠		•		•		•		٠		•		٠		•		•		•		•	
	1e-04	nan		٠		•		•		•		٠		•		٠		•		•		•		•	
	1e-03	nan						56e-1 $/1e6$																	
anss	1e-02	1.64e7	27e-1/5e5	•		٠		1				•		٠		•				•		•		•	
10 Rosenbrock Gauss	1e-01	7.03e6	1					2.3																	16e- $1/6e6$
110 Kose	1e+00	3.32e6	1	70e-1/1e6		11e+0/2e3		4.9				87e-1/1e5			61e-1/1e6	75e-1/5e4				14e+0/1e5	27e+0/1e5		95e-1/1e4		3.6
	1e+01	1120	15	6.5		4.3		1		·	28e+0/2e3	83			20	7.4				610	370	·	13	·	39
	1e+02	141	6.1	1.1	16e + 2/7e3	3.9		1	69e+1/1e4	79e+1/4e5	5.7	12	27e+2/1e4		4.3	က	45e+1/4e3	83e+1/4e3	14e+1/1e6	17	370	26e+1/1e6	9.2	43e+1/500	26
	1e + 03													41e+2/400					570			1600			1.9
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 101: 10-D, running time excess ERT/ERT_{best} on f_{111} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO[11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	nan		•		٠				•				•		•		•		•		•		•	
	1e-05	nan		•		•				•						•				•					
	1e-04	nan	•	٠		•		•		•		•		•		٠		•		٠		•		•	
	1e-03	nan		•		•		•		•		•		•		•		•		•		•		•	
ij	1e-02	nan		•		•				•						•				•					
ck un	1e-01	nan		•		٠				•				•		•		•		•		•		•	
111 Rosenbrock unif	1e+00	nan		80e - 1/1e6				70e-1/1e6							86e - 1/1e6										
111	1e+01	8290	21e+0/5e5	16		39e+1/2e3		1				17e+1/1e5			35	42e+0/5e4				76e+1/1e5			11e+1/1e4		23e+0/6e6
	1e+02	1950	3.8	3.7	10e+3/7e3	15		П	-		21e+2/2e3	120			11	5.6	20e+2/4e3		54e+1/1e6	730	85e+1/1e5	30e+1/1e6	9.2		130
	1e+03	384	1.8	9	260	1.5	14e+3/500	1.1	25e+2/1e4	19e + 2/4e5	24	45	94e+2/1e4	56e+2/400	4.6	1	33	74e+2/4e3	340	250	180	59	13	28e+2/500	34
	Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS							DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	闰	SNOBFIT	VNS (Garcia)

Table 102: 10-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median function value and the median number

		$\Delta { m ftarget}$	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	2040		210				1.1				•			310	•							П		3.2
		1e-05	1950		220				1.1				٠			320	٠							-		3.3
		1e-04	1890		230		-		1.1		٠					330								П		3.3
		1e-03	1820		230		-		1.1				•		-	310	•		-					Н	-	3.4
	uchy	1e-02	1740	-	240	42e-1/8e3			1.1							320								1		3.6
	112 Rosenbrock Cauchy	1e-01	1610	17e-1/5e5	250	71			1						•	340	56e-1/5e4			70e-2/1e6				1		3.7
y dimension	112 Roser	1e+00	1160	1500	300	86	85e-1/2e3		1	48e-1/1e4	31e-1/6e5	88e-1/2e3	93e-1/1e5	32e-1/1e4	78e-1/300	390	280		81e-1/5e3	092	10e+0/1e5	16e+0/1e5		1.2	21e+0/500	4.9
lue divided b		1e + 01	88.4	30	9.9	10	23		1.2	8.1	320	15	300	4.6	2.5	2.2	2.9	66e+0/4e3	27	7.4	1400	1.6e4	٠	П	40	1.2
each this va		1e + 02	14.9	37	5.9	2.2	20	24e+2/2e3	20	4.5	61	8.4	120	က	3.7	4.1	6.1	37	1	2.7	530	51	33e+1/1e6	2.6	6.8	4.3
ons to r		1e + 03	3.71	56	11	1.5	31	2900	4.6	3.6	23	15	120	2.7	8.9	6.4	9.7	4.3		3.7	11	31	8100	4.4	7.8	10
of function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 103: 10-D, running time excess ERT/ERT_{best} on f_{113} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	11200	83	1.6				1							3.9	65									0069
		1e-05	10900	72	1.6				П		-					4.1	29									7100
		1e-04	10900	72	1.6				П		-					4.1	29									7100
		1e-03	10900	72	1.6				П		-					4.1	29									7100
į	Gauss	1e-02	10900	43	1.4		٠		1		•		٠		٠	4.1	29		٠		٠		٠			7100
T.	113 Step-ellipsoid Gauss	$1\bar{e}$ -01	10300	7.3	1.2				1			-	21e-1/1e5			3.4	16			-	70e-1/1e5			23e-1/1e4		360
by dimensio	$113 \mathrm{\ Step}$	1e+00	2760	5.9	2.9		40e-1/2e3		1	32e+0/1e4	25e+0/4e5	10e+0/2e3	73			4.7	7	23e+0/4e3		87e-1/1e6	510	23e+0/1e5	10e+0/1e6	17	-	64
alue divided		1e+01	447	2.4	1.8	40e+0/7e3	2.3	14e+1/1e3	1	320	1.4e4	6.3	58	50e+0/1e4	34e+0/600	3.1	2.2	130	39e+0/4e3	1200	150	1500	4200	7.4	29e+0/500	14
h this v		1e + 02	15.3	3.3		59			1	55	260	3.1	24	100	3.5	1.1	7	12	47	37	2.8	2.1	3.4	16	4.2	2.3
to reac		1e + 03	0.1	2.6	1.7	4.9	1.9	110	4	5.8	260	1.7	2.6	8.6	1.9	1.8	1.9	Н	32	22	1.8	1.8	2.2	3.2	2.2	1.4
of function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 104: 10-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	40600		180				П							170										
		1e-05	39000		120				П							180							-			
		1e-04	39000		120								-			180				٠			-		•	
		1e-03	39000		120		-		П							180										
	d unif	1e-02	38600		120		•		Н						·	180			·						•	
	llipsoi	$1e_{-01}$	33100		30		•		Н						·	29			·						•	
y dimension	114 Step-ellipsoid unif	1e+00	12800	47e-1/5e5	11				1		28e+0/4e5		55e+0/1e5			20	67e-1/5e4			16e+0/1e6			11e+0/1e6			42e-1/5e6
ne divided b		1e+01	3660	9.7	5.7	82e+0/7e3	66e+0/2e3	15e+1/800	-1	40e+0/1e4	1800	79e+0/2e3	180	77e+0/1e4	68e+0/400	12	10	39e+0/4e3	88e+0/4e3	2e3	70e+0/1e5	49e+0/1e5	520	39e+0/1e4	51e+0/500	190
this val		1e+02	30.7	2.3	2.5	240	18	83	6.1	89	370	38	820	140	2.3	31	1.4	20	110	61	510	200	П	120	7. 8.	170
o reach		1e + 03	0.1	2.7	2.6	100	1.7	49	4.1	110	96	2.3	77	180	2.3	1.8	2.7	1	32	110	1.7	2.1	2.2	2.1	2.4	1.4
t function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 105: 10-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Aftarget 1e+03 ERT _{Dest} /D 0.1 ALPS 2.1 AMALGaM IDEA 2 avg NEWUOA 7 BAyEDAcG 1.9 BFGS 150 BIPOP-CMA-ES 4.5 (1+1)-CMA-ES 4.5 (1+1)-CMA-ES 35 DEPSO 1.9 EDA-PSO 2 full NEWUOA 16 GLOBAL 2.4 iAMALGaM IDEA 1.9 MA-LS-Chain 1.9 MA-LS-Chain 1.9 MA-LS-Chain 1.9 NEWUOA 11 NEWU

Table 106: 10-D, running time excess ERT/ERT_{best} on f_{116} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

of function evaluations to reach this value divided by dimension 116 Fil	OIIS to reach	uns value u	ivided by an	nension 116 Ellipsoid Gauss	id Ganss						
Δ ftarget	1e + 03	1e+02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\Gamma_{ m best/D}$	105	1650	7140	10600	10900	11300	11600	11900	12300	16700	$\text{ERT}_{ ext{best}}/ ext{D}$
ALPS	4.8	ಬ	15	160	15e-1/5e5						ALPS [15]
GaM IDEA	1	1	1	1	1	-	1	1	1	1	AMaLGaM IDEA [4]
avg NEWUOA	970	35e+2/7e3									avg NEWUOA [23]
BayEDAcG	16	18	68e + 1/2e3	-	-						BayEDAcG [9]
BFGS	10e+3/800				·						BFGS [22]
OP-CMA-ES	5.1	2.2	1.3	1.3	1.6	1.7	1.7	1.7	1.7	1.3	BIPOP-CMA-ES [14]
1)-CMA-ES	130	86e+1/1e4									(1+1)-CMA-ES [2]
DASA	6200	10e+2/4e5	-	-	•						DASA [18]
DEPSO	13	18	63e+1/2e3		·						DEPSO [11]
DA-PSO	150	390	200	46e+1/1e5							EDA-PSO [5]
full NEWUOA	1400	25e+2/1e4									full NEWUOA [23]
GLOBAL	31e+2/500										GLOBAL [20]
iAMaLGaM IDEA	1.7	2.5	2.8	2.7	က	3.4	3.5	3.5	3.7	2.8	iAMaLGaM IDEA [4]
MA-LS-Chain	5.2	15	33	30e+0/5e4							MA-LS-Chain [19]
MCS (Neum)	45	99e+1/4e3	-		-						MCS (Neum) [16]
IEWUOA	28e+2/4e3										NEWUOA [23]
(1+1)-ES	330	28e+1/1e6									(1+1)-ES [1]
PSO	530	890	59e+1/1e5								PSO [6]
PSO_Bounds		850	46e+1/1e5	-	-						PSO_Bounds [7]
onte Carlo	530	40e+1/1e6								-	Monte Carlo [3]
SEP-CMA-ES	46	16	17e+1/1e4								IPOP-SEP-CMA-ES [21]
NOBFIT	9.3	18e + 2/500			•	-					SNOBFIT [17]
VNS (Garcia)	87	54	1400	12e+0/5e6							VNS (Garcia) [10]

Table 107: 10-D, running time excess ERT/ERT_{best} on f_{117} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 108: 10-D, running time excess ERT/ERT_{best} on f_{118} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	908		34				1.8				-			140								1.4		П
	1e-05	207		20				1.9		•		-			29					•			1.5	•	П
	1e-04	651		12		٠		7		-				٠	54					٠			1.5	٠	-1
	1e-03	610		12				7		-		•			30					•			1.5	•	П
>	1e-02	530		9.6		•		2.1		٠		٠		٠	18	64e-2/5e4				٠			1.7	٠	н
118 Ellipsoid Cauchy	1e-01	434	30e-1/5e5	4.4				2.2					48e-1/1e4		5.1	780							1.8		1
118 Ellips	1e+00	324	2.2e4	2.9	37e-1/9e3			2.2	13e+0/1e4				430	16e+0/1e3	2.2	130		99e-1/5e3	16e+0/1e6	54e+0/1e5			2.1		1
>	1e+01	135	260	1.3	17	-		3.2	350	58e+0/7e5	72e+0/2e3	29e+0/1e5	14	20		16		22	5e4	1e4	63e+0/1e5		3.4		1.7
	1e + 02	31.2	40	3.6	3.2	59e+1/2e3		5.6	18	4900	61	72	П	5.3	2.8	12	65e+1/4e3	3.9	150	2300	1700	34e+1/1e6	7.8	40e+1/500	4.3
	1e+03	10.6	34	4.8	-1	86	71e+2/2e3	6.2	2.7	110	14	52	-1	3.8	3.7	6.7	140	1.2	4.9	6.7	18	2200	5.6	16	7.1
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 109: 10-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	4e4		1.1		•		П		٠					2.5					•		•		•	
	1e-05	30100		1.2				1		•					2.4										
	1e-04	17900	43e-5/5e5	1.3		-		1				64e-4/1e5			3.5	49e-5/5e4							54e-4/1e4		10e-4/7e6
Gauss	1e-03	3650	44	3.9	-	-		1	-	-		180	-		13	9.1				38e-2/1e5			20		2900
nt powers	1e-02	1120	11	8.3		67e-3/2e3		1				83			24	9.3				380	28e-1/1e5		7.1		180
119 Sum of different powers Gauss	1e-01	497	œ	14		4.1		1			80e-2/2e3	110			38	∞.∞			13e-1/1e6	330	2800	14e-1/1e6	13		41
$119~\mathrm{Sum}$	1e+00	312	4.1	8.5	65e-1/7e3	2.6		-	31e-1/1e4	33e-1/4e5	9.9	83	55e-1/1e4	54e-1/600	10	3.2	56e-1/4e3	60e-1/4e3	4.6e4	230		4.7e4		52e-1/500	18
	1e+01	12.8	3.4	2.1	200	9.9	13e+0/2e3	1	87	1100	5.9	4.6	160	8.7	1.4	1.7	18	120	44	1.4	260	7.5	34	9.7	2.6
	1e + 02	0.1	2.9	2.7	22	2.2	270	7.5	99	750	2.2	2.7	120	3.4	3.1	4	П	11	170	3.3	3.1	3.1	7.1	4.3	က
	1e+03	0.1	1	1	1	1	1.7	1	1	П	1.1	1	1	1	1	1	1	1	1.5	1	1.1	1	1	Н	1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 110: 10-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

of function evaluations to reach this value divided by difficulties of diff	o to reac	. SIII II	aine aiv	120 Sum	ed by different powers unif	t powe	ers unif				
Δ ftarget	1e + 03	1e + 02	1e + 01	1e+00	1e-01	$^{1}_{1e-02}$	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT}_{ m best}/{ m D}$	0.1	0.1	47.1	3990	7460	15700	43900	93000	1.27e5	2.5e5	${ m ERT_{best}/D}$
ALPS	1	2.8	1.7	48	62e-2/5e5						ALPS [15]
AMaLGaM IDEA	1	1.9	6.4	16	39	130	32e-3/1e6	•	•		AMaLGaM İDÉA [4]
avg NEWUOA	1	440	160	97e-1/7e3							avg NEWUOA [23]
$\operatorname{BayEDAcG}$	1	2.8	13	77e-1/2e3		•		•	•	•	BayEDAcG [9]
BFGS	-	110	260	15e+0/800							BFGS [22]
BIPOP-CMA-ES	1	17	4.1	П	1	1	1	1	1	П	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	220	64	63e-1/1e4							(1+1)-CMA-ES [2]
DASA	П	43	460	46e-1/4e5							DASA [18]
DEPSO	1	2.5	21	63e-1/2e3							DEPSO [11]
EDA-PSO	1	2.8	330	160	47e-1/1e5			•	•		EDA-PSO [5]
full NEWUOA	1	440	310	99e-1/1e4							full NEWUOA [23]
GLOBAL	П	2.3	2.3	79e-1/500					•		GLOBAL [20]
iAMaLGaM IDEA	-	2.8	15	29	86	290	47e-3/1e6				iAMaLGaM IDEA [4]
MA-LS-Chain	П	5.1	Н	18	10e-1/5e4	•		•			MA-LS-Chain [19]
MCS (Neum)	1	Н	59	81e-1/4e3							MCS (Neum) [16]
NEWUOA	П	180	150	11e+0/4e3					•		NEWUOA [23]
(1+1)-ES	1	220	46	3700	23e-1/1e6						(1+1)-ES [1]
PSO	П	3.2	330	350	48e-1/1e5	•			•		PSO [6]
PSO_Bounds	1	2.6	770	61e-1/1e5							PSO_Bounds [7]
Monte Carlo	П	2.7	7	15e-1/1e6					•		Monte Carlo [3]
IPOP-SEP-CMA-ES	1	2100	86	52e-1/1e4							IPOP-SEP-CMA-ES [21]
SNOBFIT	П	3.1	4.1	69e-1/500							SNOBFIT [17]
VNS (Garcia)	1	က	26	380	63e-2/6e6						VNS (Garcia) [10]

Table 111: 10-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median final function value and the median number of function avaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	1820	-	43		-		2.1		-		-			120	-		•				-	П		П
		1e-05	666	-	46				1.9							130							-	1.1		н
		1e-04	694		39				1.4							87			٠					1.1		П
	Cauchy	1e-03	368	٠	32	-	41e-3/2e3		1.1				•			94	٠	·		-	-			1.2		П
	powers C	$^{-}$ 1e-02	148		44	76e-2/7e3	64		1.1			17e-2/2e3				72	28e-3/5e4			10e-2/1e6				1		1.1
nension	of different	1e-01	63.1	25e-2/5e5	30	1700	30		1.1	49e-2/1e4		140	14e-1/1e5	55e-2/1e4	11e-1/300	21	43		11e-1/4e3	2.8e4	13e-1/1e5			1		1.4
vided by dir	121 Sum of different powers (1e+00	31.7	81	11	150	22	10e+0/2e3	1	41	26e-1/5e5	8.8	9400	140	18	3.4	4.8	22e-1/4e3	220	54	7400	20e-1/1e5	15e-1/1e6	1	26e-1/500	1.6
value di		1e + 01	7.24	9.6	3.2	2.1	8.6	570	1.1	4	580	4.6	2.3	10	3.8	1.6	2.2	7.1	3.4	3.3	1.7	4.9	9.6	1	4.4	3.5
ch this		1e + 02	0.1	3.3	2.1	15	1.7	400	5.4	4.7	45	2.5	2.9	32	1.9	2.9	2.7	1	7.9	11	2.9	2.9	က	4.1	3.5	3
s to rea		1e+03	0.1	1.1	1	-		1	П	п	н	1	П		1	1	-	-	П	1	1		1	1	-	П
of function evaluations to reach		$\Delta \mathrm{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 112: 10-D, running time excess ERT/ERT_{best} on f_{122} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension.

	$\Delta \mathrm{ftarget}$	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	81700		5.4		٠		1							4										
	1e-05	43900		2.3				-1							3.4			٠							
	1e-04	17600		4.2				-1							7.7			٠							
	1e-03	14100		ro				-1							8.6			٠							
77 Gauss	1e-02	9790	12e-2/5e5	6.2				1							11										24e-2/7e6
122 Schaffer F7 Gauss	1e-01	3320	069	10		85e-2/2e3		1				16e-1/1e5			27	56e-2/5e4				25e-1/1e5	24e-1/1e5		14e-1/1e4		2.9e4
122	1e+00	1160	17	4.2	42e-1/7e3	2.4	82e-1/2e3	П	40e-1/1e4	38e-1/4e5	27e-1/2e3	200	49e-1/1e4	50e-1/600	11	17	37e-1/4e3	47e-1/4e3	19e-1/1e6	610	580	20e-1/1e6	18	49e-1/500	150
	1e+01	5.53	1.9	1.7	28	1.4	140	1.7	24	350	3.8	3.4	65	2.4	1	1.2	3.3	45	20	1.7	4.1	2.8	39	4.2	3.7
	1e + 02	0.1	1.3	1.3	3.7	1.2	11	П	1.5	П	1.1	1.1	10	1.1	1.1	1.3	1	2.5	П	1.1	1	1.2	1.1	П	1
	1e + 03	0.1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	1	1	1	-1
	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 113: 10-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	1.03e6		•				1				٠		•				•		•		•			
		1e-05	3.33e5						П																	
		1e-04	1.99e5						Н				•													
	•	1e-03	1.29e5		•				П				•		•						•					
	F7 unif	1e-02	66500		•				Н						•						•					
nsion	123 Schaffer F7 unif	1e-01	38900		68e - 2/1e6				Н				•		•	85e-2/1e6										
ed by dime	$\stackrel{\circ}{123}$	1e+00	9440	15e-1/5e5	34	68e-1/7e3	57e-1/2e3	87e-1/900	1	48e-1/1e4	37e-1/4e5	50e-1/2e3	48e-1/1e5	60e-1/1e4	53e-1/400	79	19e-1/5e4	47e-1/4e3	64e-1/4e3	25e-1/1e6	43e-1/1e5	56e-1/1e5	20e-1/1e6	44e-1/1e4	53e-1/500	15e-1/6e6
ue divid		1e+01	3.99	2.4	က	180	9.3	150	18	140	290	64	3.7	350	ಬ	5.9	-	37	190	92	2.8	6.1	3.1	160	5.4	350
this val		1e + 02	0.1	1.1	1.9	1.3	1.1	11	2.5	1.2	2.7	1.2	1.3	91	1	1.3	1.3	н	31	17	1.3	1.1	1.1	1.6	1.1	П
o reach		1e + 03	0.1	1	-		П	1	-	1	П	1	1	-	1	1	-	-	1	1	-	-	1	1	-	-
function evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 114: 10-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median final function value and the median number of function f_{124} ,

		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	33100	•	7.4				1							8.6								86e-6/1e4		
		1e-05	13700	•	7.9				П							17			٠					5.3		
		1e-04	7380	٠	10		-		1							27								2.2		64e-5/6e6
	Jauchy	1e-03	5290	•	9.7		74e-3/2e3		1							26								1.5		520
	r F7 (1e-02	3430		4.6		8.7		П							17			٠					1.5		46
dimension	124 Schaffer F7 Cauchy	1e-01	1050	99e-2/5e5	4.9		2.7			19e-1/1e4		97e-2/2e3				16	62e-2/5e4		•	93e-2/1e6			٠	2.3	٠	8.6
nis value divided by dimension	·	1e+00	61.4	7200	6.7	24e-1/7e3	10	89e-1/2e3	1	2400	31e-1/5e5	20	31e-1/1e5	23e-1/1e4	33e-1/500	12	130	25e-1/4e3	34e-1/4e3	1.2e4	27e-1/1e5	34e-1/1e5	22e-1/1e6	5.5	28e-1/500	1.5
s value		1e+01	3.73	2.8	2.2	12	8.7	460	1.8	6				9.2	3.2	1.5	1.7	П	11	8.9	1.3	2.4	2.2	1.8	77	4.1
each thi		1e + 02	0.1	1.2	1.3	3.5	1.3	6.9	2.1	3.3	П	1.4	1.2	П	1.3	1.1	1.3	П	ಬ	8.6	1.4	П	1.3	1.3	1.5	П
ons to re		1e+03	0.1	1	П	1	1	1	1	1	П	1	1.1	1	1	П	1	1	1	П	1	П	П	П	П	н
of function evaluations to reach th		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 115: 10-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

Table 116: 10-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	nan		٠		•		٠				٠				٠				٠					
		1e-05	nan		٠		•		٠		•		٠				•		•		•		•			
		1e-04	nan				٠				•				٠				•				•			
	nnif	1e-03	nan														•				•		•			
	senbrock 1	1e-02	nan	•	11e-2/1e6		٠		84e-3/7e5		٠		41e-2/1e5		•	13e-2/1e6	•	25e-3/4e3	•		•		•	•	•	
nension	126 Griewank-Rosenbrock unif	1e-01	0.1	21e-2/5e5	4.9e7	89e-2/7e3	59e-2/2e3	11e-1/1e3	3.9e6	53e-2/1e4	47e-2/4e5	77e-2/2e3	1.5e7	75e-2/1e4	78e-2/500	3.3e7	22e-2/5e4		66e-2/4e3	30e-2/1e6	34e-2/1e5	61e-2/1e5	31e-2/1e6	41e-2/1e4	73e-2/500	16e-2/7e6
d by dir	$126~\mathrm{Gr}$	1e+00	0.1	510	220	4.9e4	310	1.6e4	870	4500	1.1e5	1e3	2600	7.1e4	1500	200	190	-	1.2e4	0089	950	1.5e5	086	1.3e4	029	1.8e4
divide	_	1e + 01	0.1	1	1.3	9.4	1.1	6.1	1	П	1.2	1.1	1	28	1.1	1.3	1.1	П	59	П	1.3	н	1.1	1.1	1.2	1.4
iis value		1e+02	0.1	1	1	П	П	1	1	П	1	1	1	П	1	1	П	-	П	1	П		1	1	-	П
reach th		1e + 03	0.1	1	1	П	_	1	1	П	1	1	1	П	1	1	П	1	П	1	П	П	-	1	-	н
function evaluations to reach this value divided by dimension		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 117: 10-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

				[4]				4					~		[4]								[21]		
	Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [1	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IĎEÁ [MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	[POP-SEP-CMA-ES	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	2.11e5		34				1							21	•									
	1e-05	2.08e5		34				1							21										
	1e-04	2.06e5		34				1							22	•									
Cauchy	1e-03	1.35e5		25				-1			-				23								34e-3/1e4		96e-4/7e6
osenbrock	1e-02	79900	-	5.5				-1							15	-	25e-3/4e3						1.8		93
$riewank$ -R α	1e-01	0.1	17e-2/5e5	1.3e5	20e-2/7e3	21e-2/2e3	11e-1/2e3	8.5e4	39e-2/1e4	46e-2/4e5	33e-2/2e3	29e-2/1e5	23e-2/1e4	68e-2/500	4e5	19e-2/5e4	П	25e-2/4e3	19e-2/1e6	32e-2/1e5	40e-2/1e5	33e-2/1e6	3.7e4	65e-2/500	3.8e5
127 G	1e+00	0.1	370	150	40	240	5.8e4	54	790	5.8e4	280	92	69	880	90	130	н	42	850	570	530	1200	47	250	220
	1e + 01	0.1	1	1	1	1.2	09	1	1	10	1.1	1.1	1	1.1	1	1.1	1	2.4	2.5	1.1	П	1.1	1	П	1.4
	1e+02	0.1	1	1	-	1	1	1	-	1	-	П	-	1	1	1	1	1	1	П	-	П	-	П	-
	1e + 03	0.1	Т	1	Н	Т	1	1	Н	П	Н	Н	П	1	П	1	Н	1	П	Н	Н	Н	Н	Н	Н
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)
	127 Griewank-Rosenbrock Cauchy				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 118: 10-D, running time excess ERT/ERT_{best} on f_{128} , in italics is given the median function value and the median number of function f_{128} , f_{138} , f_{1

of function evaluations to reach this value divided by dimension	ions to r	each thi	is value divid	ded by dimer	sion						
				128 (128 Gallagher Gauss	Gauss					
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.1	0.1	915	13800	14000	14400	29200	29300	38300	52900	${ m ERT_{best}/D}$
ALPS	Т	1		1.7		7	1.1	1.2	1	1	ALPS [15]
AMaLGaM IDEA	1	1	ಬ	5.1	5.4	5.4	8.8	8.7	2.1	1.6	AMaLGaM İDÉA [4]
avg NEWUOA	П	1	32	21e+0/7e3							avg NEWUOA [23]
$\operatorname{BayEDAcG}$	П	1	2.6	2.2	93e-1/2e3					•	BayEDAcG [9]
BFGS	П	1	57e+0/2e3								BFGS [22]
BIPOP-CMA-ES	1	1	1		9.9	6.4	3.2	3.2	2.4	1.8	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	П	1	25	15e+0/1e4							(1+1)-CMA-ES [2]
DASA	П	1	400	91e-1/4e5	٠					•	DASA [18]
DEPSO	П	1	5.2	1	-	1	1	1	15e+0/2e3		DEPSO [11]
EDA-PSO	1	1	310	100	100	26	48	48	37	27	EDA-PSO [5]
full NEWUOA	Н	1	22	23e+0/1e4							full NEWUOA [23]
GLOBAL	1	1	8.6	22e+0/500							GLOBAL [20]
iAMaLGaM IDEA	П	1	14	9	11	11	5.7	5.8	4.4	3.3	iAMaLGaM IDEA [4]
MA-LS-Chain	1	1	4.1	2.9	က	3.1	1.6	1.6	1.2	1	MA-LS-Chain [19]
MCS (Neum)	Н	1	14	4.1	13e+0/4e3						MCS (Neum) [16]
NEWUOA	1	1	24e+0/4e3							•	NEWUOA [23]
(1+1)-ES	Н	1	36	120	16e-1/1e6						(1+1)-ES [1]
PSO	Н	-	230	16e+0/1e5						-	PSO [6]
PSO_Bounds	Н	-	220	19e+0/1e5							PSO_Bounds [7]
Monte Carlo	Н	1	11	1100	20e-1/1e6					•	Monte Carlo [3]
IPOP-SEP-CMA-ES	Н	1	11	3.2	4.9	10	ಬ	ಬ	3.8	2.8	IPOP-SEP-CMA-ES [21]
SNOBFIT	Н	-	4	22e+0/500	•					-	SNOBFIT [17]
VNS (Garcia)	Н	н	31	6	9.1	11	7	10	13	14	VNS (Garcia) [10]

Table 119: 10-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

of function evaluations to reach	us to rea	ach unis	this value divided by difficultion	1 by dimens	1011	٠					
				129 (129 Gallagher unit	unit					
Δ ftarget	1e + 03	1e + 02	1e + 01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{\text{best}}/ ext{D}$	0.1	0.1	5400	1.36e5	1.41e5	1.42e5	1.43e5	1.44e5	1.45e5	1.47e5	${ m ERT_{best}/D}$
ALPS	1	1	2	26	23e-1/5e5						ALPS [15]
AMaLGaM IDEA	П	1	12	6.1	14	23	23	23	31	100	AMaLGaM IDEA [4]
avg NEWUOA	П	1	39e+0/7e3								avg NEWUOA [23]
$\operatorname{BayEDAcG}$	Н	П	30e+0/2e3				•	•			BayEDAcG [9]
BFGS	1	1	46e+0/900								BFGS [22]
BIPOP-CMA-ES	П	1	1	П	1	1	1	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	Н	1	18e+0/1e4		-						(1+1)-CMA-ES [2]
DASA	П	1	360	13e+0/4e5			٠	٠			DASA [18]
DEPSO	П	1	5.5	24e+0/2e3							DEPSO [11]
EDA-PSO	П	1	260	20e+0/1e5			٠	٠			EDA-PSO [5]
full NEWUOA	П	1	41e+0/1e4								full NEWUOA [23]
GLOBAL	1	П	28e+0/400				•	•			GLOBAL [20]
iAMaLGaM IDEA	1	1	12	18	47	100	66	66	86	97	iAMaLGaM IĎEÁ [4]
MA-LS-Chain	П	1	1.7	5.3	48e-1/5e4		•	•			MA-LS-Chain [19]
MCS (Neum)	Н	1	21e+0/4e3								MCS (Neum) [16]
NEWUOA	П	П	39e+0/4e3				٠	٠			NEWUOA [23]
(1+1)-ES	Н	1	21	110	56e-1/1e6		•	•			(1+1)-ES [1]
PSO	П	П	260	18e+0/1e5			•	•			PSO [6]
PSO_Bounds	Н	1	260	26e+0/1e5							PSO_Bounds [7]
Monte Carlo	1	Т	1.3	32	20e-1/1e6		٠	٠			Monte Carlo [3]
IPOP-SEP-CMA-ES	Н	1	13	22e+0/1e4			•	•			IPOP-SEP-CMA-ES [21]
SNOBFIT	П	П	27e+0/500				•	•			SNOBFIT [17]
VNS (Garcia)	Н	1	42	69	72e-2/7e6						VNS (Garcia) [10]

Table 120: 10-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-0.7	7330		20				9.4				٠			21								П	٠	19
	1e-05	7220	-	20		·		9.2		•		•			12	15e-5/5e4				٠	٠	٠	1	•	20
	1e-04	7150	-	20		ē		9.6		•		•			11	15		14e-1/4e3		·	٠	•	1	•	20
chy	1e-03	7090		19				9.6							8.4	5.2		8.7	18e-3/1e6				1		20
130 Gallagher Cauchy	1e-02	7050	62e-3/5e5	19	41e-2/7e3			9.7	51e-2/1e4		19e-1/2e3		12e-2/1e4	50e-2/600	1.8	3.9		∞. ∞.	460	25e-1/1e5			1		20
130 Galla	1e-01	3750	29	35	8.6	20e-1/2e3		18	11		1.8	53e-1/1e5	5.1	П	1.5	7.1		∞	24	190		21e-1/1e6	1.9	28e-1/500	38
•	1e+00	588	6	170	9	23	10e+0/2e3	34	6.5	30e-1/5e5	10	089	8.3	-	4.4	19	30e-1/4e3	11	4.6	089	69e-1/1e5	2.4e4	11	12	210
	1e+01	48.1	6.7	∞	1.9	17	100	4.9	2.5	590	8.3	380	6.7	1	1	4.7	32	2.6	1.7		770		2.3	2.5	26
	1e + 02	0.1	1	1	1	1	-	1	1	1	-	1	1	1	-	1	П	1	1	1	1	П	1	1	1
	1e+03	0.1	1	1	1	П	1	1	1	П	1	1	1	1	1	1	1	1	1	н	1	н	1	1	1
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 121: 20-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

			39.1 ERT _{hest} /D		31 AMaLGaM IDEA [4]	.1 avg NEWUOA [23]			ш	.1 $(1+1)$ -CMA-ES [2]				1 full NEWUOA [23]		15 iAMaLGaM IDEA [4]								IPOI	SNOBFIT [17]	INIC (Coo.) [10]
												ye													37e-1/300	
	70		35.8																1.2	1.4	19	260		2.1	100	3.6
i	Gauss	1e-03	32.8	09	22	П	51		2.5	1.4	8.3	35	180	1.1	7.8	10	8.4								110	
	$_{ m derate}$	1e-02	29.7	51	21	П	34		7	1.3	6.9	23	160	1.1	7.1	8.7	7.4		1.1	1.2	13	230	٠	1.7	28	2.3
THEFTSION	om ere mo	1e-01	24.4	44	20	н	32		1.9	1.2	6.3	16	140	1.4	5.3	8.1	7	11e-1/4e3	1.1	1.2	11	220		1.6	43 32 28	2.2
_	$101 \mathrm{ Sp}$	1e+00	18	38	18	1.2	31		1.8	1.2	9	10	120	1.7	3.5	7.4	6.2	330	П	1.2	8.6	200		1.6	43	2.2
tilis value divided		1e+01	2.96	100	22	3.3	110	11e+1/3e3	6.1	4.4	22	23	260	5.8	9.1	23	17	1	3.1	4.9	16	91	29e+0/1e6	5.5	52	oc rc
		1e + 02	0.28	91	59	19	93	2.1e4	14	15	63	32	19	43	34	22	20	Н	8.9	16	15	15	120	12	21	35
is to rea		1e+03	0.02	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	1	1	-	1	1	,-
of full citoff evaluations to reach		Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 122: 20-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension f_{102} and f_{102} and f_{102} and f_{102} are the median number of function evaluations to reach this value divided by dimension f_{102} and f_{102} are the median function f_{102} and f_{102} are the median number of function f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} and f_{102} are the median f_{102} are the median f_{102} are the median f_{102} and f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} and f_{102} are the median f_{102} are the median f_{102} and f_{102} are the median f_{102} are the median f_{102} are the median f_{102} and f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are the median f_{102} are t

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM İDĒA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO $[11]$	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		70.3									Α.														77
	1e-05	57.9	53	19	1.1	37		1.8	1.1	17	170	280	1		7.8	6.5		31e-5/5e3	290	140	390		1.5		1.9
		48.9																			440				1.9
inni e	1e-03	40.4	50	21	1	34		1.8	1.2	11	37	330	1.1	24e-3/600	œ	7.3		52	23	190	510		1.6		ĸ
oderate	1e-02	34.2	44	21	П	33		1.8	1.1	8.9	21	350	1.2	26	7.5	7.5		24	15	220	570		1.6	-	7
Sphere mo	1e-01	26.8	41	21	П	29		1.7	1.1	8.5	14	390	1.4	14	7.2	7.5	25e-1/4e3	8.9	9	280	089		1.5		77
102	1e+00	19.9	34	19	1.1	27								5.4					4	370	270		1.5	18e+0/300	ĸ
	1e+01	10.6	29	18	1	30	12e+1/3e3	1.7	1.1	8.2	6.9	74	1.7	3.1	6.1	5.6	6	3.1							
	1e + 02	0.29	61	46	19	52	6.4e4	13	12	72	35	20	42	42	18	19	1	9.7	34	19	15	110	13	35	36
	1e+03	0.05	1	1	1	1	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1	1	1	П	П
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 123: 20-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	123		110		95e-8/2e3	1.5	1.2		•			550	1.1	420	480	450						1	8.6	1.3
	1e-05	94.7		81		23	1.9	1.2					26	1.4	160	35	91						П	3.5	1.3
	1e-04	80.2	-	51	14e-4/1e4	25	2.3	1.2	16e-4/1e4				29	1.6	34	9.3	83	48e-4/5e3	42e-5/1e6	•			1	2.6	1.2
Cauchy	$1e-0\tilde{3}$	65.7	81e-4/2e5	19	099	26	2.8	1.2	069	75e-4/4e5		-	7.8	7	21	9	35	1200	4300	·			1	1.7	1.3
3 Sphere moderate (1e-02	52.1	3600	11	20	25	3.5	1.2	12	5800	34e-3/2e3	28e-3/1e5	1.2	2.4	9.7	4.7	15	44	21	66e-3/1e5	-		-1	-1	1.2
3 Sphere r	$\overline{1}e-01$	31.4	36	15	7	29	5.9	1.5	2.5	87	38	110	1.1	4	7.6	5.7	26	5.9	1.7	1700	51e-2/1e5		1.3	-	1.6
103 9	1e+00	19.8	36	18	1	28	8.	1.7	1.1	9.9	9.2	110	1.6	4.1	6.3	5.4	31	1.1	1.2	460	2700		1.4	1.5	1.9
	1e+01	3.27	93	62	က	100	46	5.5	3.7	17	20	250	5.2	17	20	14	Н	2.3	3.4	14	88	28e+0/1e6	ಬ	8.9	7.7
	1e + 02	0.28	06	61	19	73	510	15	15	64	42	29	44	120	20	19	1	9.2	15	14	17	160	15	25	37
	1e+03	0.02	1	1	П	1	1	1	1	1	Н	1	1	Н	Н	1	П	Н	1	1	П	Н	П	Н	1
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 124: 20-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

104 Rosenbrock moderate Gauss

	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	9810	31e-5/2e5	1				1.6							4.5										ė
	1e-05	9470	120	1		•		1.6		24e-5/6e5					4.6									•	
	1e-04	9290	72	П				1.6		160					4.6										
SSI	1e-03	9120	24	1				1.6		44				82e-1/900	4.7										
lerate Gau	1e-02	8900	17	1				1.7		22				1.7	4.8				12e-1/1e6						
104 Kosenbrock moderate Gauss	1e-01	8570	12	1		•		1.7		4.3		-		1.7	4.9	-			770	-	72e+0/1e5			•	
104 Kosen	1e+00	4280	19	1.9	98e-1/1e4			3.2	12e+0/1e4	3.6			13e+0/1e4	1	9.6	14e+0/1e5		17e+0/6e3	440	17e+0/1e5	330	٠		•	
	1e+01	1180	09	4.7	11	26e+0/2e3		10	28	2.8	19e+0/2e3					290		89	45	340	1200		17e+0/1e4		15e+0/7e5
	1e+02	48.2	21	7	1.4	16		1.2	2.1	11	8.2	47	1.2	2.2	က	3.9	20e+1/4e3	1.5	П	330	670	·	21		П
	1e + 03			30		22	13e+4/1e3	4.6	2.9	18	17	230	3.2	5.3	15	14	79	-1	2.9	1400	94	91e + 2/1e6		63e+2/300	
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES					GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 125: 20-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

105 Rosenbrock moderate unif

	$\Delta ext{ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	33500		26		•		1				٠				٠				•				•	
	1e-05	33000	60e-4/2e5	26				1																	
	1e-04	32800	110	26				П				·				·									-
	1e-03	32500	21	57				П																	
are nun	1e-02	32100	9.7	57		-		1		26e-2/5e5											-				
ock moder	1e-01	31600	5.5	45				1		51						15e+0/1e5									-
too nosembrock moderate um	1e+00	30500	4	46	12e+0/1e4			1	17e+0/1e4	4.6			14e+0/1e4	27e+0/700	13e+0/1e6	49			13e+0/1e6	18e+0/1e5		-			
T	1e+01	9590	8.3	120	7.2	33e+0/2e3		2.7	15	1.4	20e+0/2e3	17e+0/1e5	7.2	-	1500	150		24e+0/5e3	340	89	78e+0/1e5		18e+0/1e4		16e+0/7e5
	1e + 02	29	18	5.1	1.6	16		1.5	1.7	14	6.9	40	П	2.5	2.3	4.4	19e+1/4e3	7.2	4.3	7.1	096		9	32e + 2/300	33
	1e+03	10.2	39	15	-1	30	15e+4/1e3	2.3	1.5	11	8.7	120	1.5	2.7	7.3	7.4	22	1.5	2.1	9.2	44	88e+2/1e6	1.8	370	2.9
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 126: 20-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta \mathrm{ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	1370		1400				1.5												•			П	•	2.7
	1e-05	1320		1500		•		1.5		٠		•								•			П	•	2.8
	1e-04	1300	-	1500				1.5								15e-3/1e5							1		2.8
	1e-03	1270		1500		•		1.5				-				1100				•			П	•	2.8
e Cauchy	1e-02	1240	12e-2/2e5	1200		٠		1.4		76e-3/9e5		٠	97e-2/1e4		47e-1/1e6	160				•		٠	1	•	2.9
k moderat	1e-01	1190	940	1200				1.4		320			28	22e-1/1e3	1.2e4	29		49e-1/8e3	42e-2/1e6				1		က
106 Rosenbrock moderate Cauchy	1e+00	1080	130	1300	74e-1/1e4			1.3	62e-1/1e4	12			12	5.4	6100	18		31	210	17e+0/1e5	18e+0/1e5		1		3.1
106	1e+01	574	92	640	8.1	51e+0/2e3		1	15	2.8	25e+0/2e3	16e+0/1e5	3.3	1.9	130	8.2		7	œ	2400	2500		1.1		1
	1e + 02	24.8	41	12	1.6	42	91e+1/4e3	2.6	1.7	7.8	13	95	1.7	4.6	5.5	∞	20e+1/4e3	П	1.2	630	140		1.6	22e + 2/300	2.4
	1e+03	5.97	62	25	1.6	52	810	4.2	2.4	13	14	200	2.5	5.3	12					14	110	98e + 2/1e6	3.3	150	2
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 127: 20-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 128: 20-D, running time excess ERT/ERT_{best} on f_{108} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

of function evaluations to reach this value divided by dimension	108 Sphere unif	$1e+03$ $1e+02$ $1e+01$ $1e+00$ $1e-01$ $1e-02$ $1e-02$ $1e-03$ $1e-04$ $1e-05$ $1e-07$ $\Delta ftarget$	19.4 2900 4860 10200 19800 22300 25400 31500 44900 E	24e+0/2e5	1 1.3 30 160 $48e-2/1e6$ AMaLGaM IDEA [4]	1 700 $11e+1/9e3$ avg NEWUOA [23]	1 10 $72e+\theta/2e3$ BayEDAcG [9]	1 120 $11e+1/800$ BFGS [22]		1 190 $80e+0/1e4$ $(1+1)$ -CMA-ES [2]	1 870 $64e+\theta/3e5$ DASA [18]		1 $3400 \ 91e+\theta/1e5$ EDA-PSO [5]	1 1600 11e+1/1e4 full NEWUOA [23]	1 4.5 $80e+\phi/300$ GLOBAL [20]	1 20 76 270 670 $85e-2/1e6$ iAMalGaM IDEA [4]	1 1 $21e+0/1e5$ MA-LS-Chain [19]	1 19 $69e+0/4e3$ MCS (Neum) [16]	91e+0/4e3	41e+0/1e6 (1)	1 $3400 95e + \theta/1e5$ PSO [6]	1 5900 10e+1/1e5 PSO_Bounds [7]	28e+0/1e6	1 420 72e+0/1e4 IPOP-SEP-CMA-ES [21]	1 2.5 $67e+0/300$ SNOBFIT [17]	
n this value di						ľ		ľ						ľ						٠		ľ	ye	Ì		
ns to reach		1e + 03		1	1	П	1	1	1	П	1	1	1	-1	1	1	1	П	1	1	1	1	1	1	1	
ınction evaluatio		Δ ftarget	$\text{ERT}_{\text{hest}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	

Table 129: 20-D, running time excess ERT/ERT_{best} on f₁₀₉, in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL $[20]$	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	248		69			130	-							370								-		1.2
	1e-05	179		65		26e-5/2e3	180	1.1							430								1		1.2
	1e-04	150		53	-	100	210	1.1							440		13e-1/4e3				-		П		1.2
	1e-03	114		63		24	280	1.1				٠			310	٠	490						1		1.2
Cauchy	1e-02	84		29		27	380	1.1		·				٠	63	54e-3/1e5	670			٠		٠	П	•	1.2
109 Sphere	1e-01	56.9		46		25	260	1.1			99e-2/2e3			25e-1/400	20	860	086		72e-2/1e6				1		1.2
_	1e+00	31.6	18e-1/2e5	26	25e-1/9e3	23	490	1.2	16e-1/1e4	12e+0/3e5	26	74e-1/1e5	29e-1/1e4		8.5		280	33e-1/4e3	3800	61e-1/1e5	17e+0/1e5		П	94e-1/300	1.4
	1e+01	16.6	20	9.1	17	20	610	1.2	11	4.2e4	7.2	2500	23	က	4	3.9	20	17	5.7	2600	2.4e4	28e+0/1e6	1	16	1.6
	1e + 02	0.28	20	61	19	93	0029	14	12	096	49	22	93	20	22	20	1	8.6	20	15	41	100	11	23	37
	1e+03	0.05	1	П	1	1	1	1	1	П	1	1	1	1	1	1	1	1	1	П	1	1	1	1	П
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 130: 20-D, running time excess ERT/ERT_{best} on f_{110} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 131: 20-D, running time excess ERT/ERT_{best} on f_{111} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		1e-03 1e-04 1e-05 1e-07 Δ ftarget	nan nan nan ERT $_{ m best}/{ m D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	$\cdot \cdot \cdot \cdot \cdot (1+1)$ -CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]		iAMaLGaM IĎEÁ [4]		MCS (Neum) [16]	NEWUOA [23]	$(1+1)$ -ES [1]		PSO_Bounds [7]		IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	iif	1e-02 16	nan 1		•						•		•				•									
	111 Rosenbrock unif	1e-01	nan		•		•				•		•		•		٠		•				•			
sion	{osenb	1e+00	nan		٠								٠		•		•									
ea by aimen	111 F	1e+01	nan	•	23e+0/1e6		٠	•	18e+0/1e6		٠		•		•	27e+0/1e6	•		•		•		•		•	
value divid		1e+02	4350	99e+1/2e5	12		22e+2/2e3		П							33	17e + 2/1e5							15e + 2/1e4		
to reach this		1e + 03	1020	350	7.4	94e+3/9e3	29	15e+4/400	1	44e+3/1e4	35e+3/3e5	77e+3/2e3	36e + 3/1e5	11e+4/1e4	58e + 3/200	18	1500	21e+3/4e3	63e+3/4e3	15e+3/1e6	51e+3/1e5	48e+3/1e5	94e+2/1e6	24	34e+3/300	76e+2/7e5
nunction evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 132: 20-D, running time excess ERT/ERT_{best} on f_{112} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES $[1]$	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	3910		1200				1.2						-	460								П		2.2
	1e-05	3810		1200				1.2							480								1		2.5
	1e-04	3740		1200		•		1.2						-	480			٠				٠	П		2.2
	1e-03	3680		1200				1.2							490								1		5.6
hy	1e-02	3610		920				1.2							200								1		5.6
Canc	1e-01	3480		930				1.1							520								1		5.6
112 Rosenbrock Cauchy	1e+00	3210	-	780				1.1				-		34e+0/500	260	-		-	15e+0/1e6			-	1	-	2.6
112 Rosen	1e+01	1280	21e+0/2e5	260	20e+0/1e4	48e+0/2e3		1	20e+0/1e4	18e+0/4e5	37e+0/2e3	27e+0/1e5	19e+0/1e4	2.2	540	16e+0/1e5		29e+0/5e3	5300	78e+0/1e5	24e+1/1e5		1.1		1.2
	1e+02	43.3	40	7.5	က	23		2.2	3.7	84	18	54	4.1	2.3	3.3	4.6	20e+1/4e3	2.6	2.7	1200	1.5e4		1	15e+2/300	1.4
	1e+03	6.61	59	23	1.3	45	14e+4/2e3	3.3	2.3	13	12	180	2.2	4.4	11	10	240	1	2.2		88	76e+2/1e6	2.9	87	4.6
	$\Delta \mathrm{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 133: 20-D, running time excess ERT/ERT_{best} on f_{113} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 134: 20-D, running time excess ERT/ERT_{best} on f_{114} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

114 Step-ellipsoid unif	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1660 10400 55900 72300 78500 78500 78500 78500 79100 ERT_{best}/D	49 $70e+0/2e5$ ALPS [15]	34 62 89 89 89 89 $^{\prime}$	av av	2e+1/2e3 BayEDAcG [9]	7e+1/700 BFGS [22]	1 1 1 1 1 1 1 B			9e+1/2e3 DEPSO [11]		ing		12 42 260 27e-1/1e6 iAMaLGaM IDEA [4]					6e+1/1e5 PSO [6]	BSC		45 17e+1/1e4 IPOP-SEP-CMA-ES [21]		
114			70e+0/2e5	12				1				-				37e+0/1e5						11e+1/1e6	17e+1/1e4		1 0/1 1
T arms Agrae a	1e + 02	1660			44e+1/9e3	32e+1/2e3	67e+1/700	П	34e+1/1e4	27e+1/3e5	49e+1/2e3	30e+1/1e5	53e+1/1e4	36e+1/300	12		30e+1/4e3	47e+1/4e3	16e+1/1e6	26e+1/1e5	37e+1/1e5			37e+1/300	
	1e + 03	0.59	3.7	3.2	700	2.8	220	78	510	2300	32	3.6	1e3	2.5	2.8	3.2	210	370	230	80	1.2e4	3.5	2700	7.4	
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	(· C) CINI

Table 135: 20-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
	1e-07	6450	•	П				က						-	6.9							-	1.4		1200
	1e-05	6340	٠	1				က						-	7							-	1.4	٠	1200
	1e-04	6340	•	1		٠		က				٠			7	٠		•		٠			1.4	•	1200
	1e-03	6340		П				က						-	7							-	1.4		1200
ıchy	1e-02	6330	•	П				က							7								1.4		1200
osoid Cau	1e-01	4590		1				3.9							2.4	15e-1/1e5							1.9		350
15 Step-ellipsoid Cauchy	1e+00	1510	54e-1/2e5	1.2	93e-1/1e4	90e-1/2e3		6.5			93e-1/2e3	16e+0/1e5	10e+0/1e4	-	1.7	470		18e+0/4e3	14e+0/1e6	•		-	П	-	100
1.1	1e+01	120	320	2.1	110	22		1	21e+0/1e4	41e+0/3e5	19	3500	120	29e+0/300	1.3	5.7	72e+0/4e3	240	1.2e5	32e+0/1e5	47e+0/1e5	11e+1/1e6	1.3	14e+1/300	4.6
	1e + 02	10	20	11	1.5	22	62e+1/2e3	1.7	6.2	260	9.9	40	4.3	4.5	4.5	4.7	160	1	8.3	390	19	2.5e5	1.8	180	2.4
	1e + 03	0.53	4.1	3.3	7.2	2.6	1900	3.2	3.9	21	3.2	2.7	17	3.5	2.4	2.4	П	3.3	7.5	2.1	2.7	3.1	2.5	3.3	1.1
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 136: 20-D, running time excess ERT/ERT_{best} on f_{116} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-0.7	56200		1.4		•		Н				•		٠	2.6			٠		•		•		•	
		1e-05	54000	-	1.4		-		Т							2.4			٠							
		1e-04	52800		1.4		•	•	Н			•	٠		٠	2.5			٠		٠		•		•	
		1e-03	51700		1.2		•	•	Н			•	٠		٠	2.5			٠		٠		•		•	
	Jauss	1e-02	50200	-	П				1							2.5										
	psoid (1e-01	44600		П				1.1							2.5			٠							
nension	116 Ellipsoid Gauss	1e+00	34700	-	П				1.2							2.9										
best d by dir	, T	1e + 01	24900		П				1.4							3.7										
value divide		1e+02	9510	30e+1/2e5	1				1.7				41e+2/1e5			5.4	57e+1/1e5							13e + 2/1e4		14e+2/5e5
o reach this		1e+03	1810	8.6	1	20e+3/9e3	24e+2/2e3	55e+3/700	1.1	16e+3/1e4	95e+2/3e5	16e+3/2e3	780	23e+3/1e4	23e+3/300	2.4	25	12e+3/4e3	22e+3/4e3	59e+2/1e6	60e+2/1e5	72e+2/1e5	44e+2/1e6	26	18e + 3/300	029
function evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 137: 20-D, running time excess ERT/ERT_{best} on f_{117} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

of function evaluations to reach this value divided by dimension	117 Ellipsoid unif	$1e+01$ $1e+00$ $1e-\overline{0}1$ $1e-02$ $1e-03$ $1e-04$ $1e-05$	89300 1.23e5 1.3e5 1.38e5 1.45e5 1.54e5 1.62e5 1.81e5 $\rm ERT_{best}/D$	ALPS [15]	14 17 90e-1/1e6 AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcg [BFGS [22]	1 1 1 1 1 BIPOP-CMA-ES [14]		DASA [18]	DEPSO [11]	EDA-PSO [5]		GLOBAL [20	36 120 $19e+o/1e6$ iAMaLGaM IDEA [4]	MA-LS-Chain [19]		NEWUOA [23]		PSO [6]	PSO_Bounds [7]			SNOBFIT [17	
									1																	
	<u>د</u>					·	•			•	•	•		ľ			-	·	-		-		-	•		
	d uni	1e-0	1.38e	•	٠		٠	٠	1		٠		٠		•		٠	•	•	•	•		•	٠	٠	
nsion	7 Ellipsoi	$1e-\overline{0}1$	1.3e5	•	90e - 1/1e6	٠.	٠		1		٠		٠		٠	19e+0/1e6	•		•		•		•		٠	
by dime	T	1e+00	1.23e5		17				1				٠		•	120	•		•		٠				٠	
divided		1e + 01	89300		14				1				٠		•	36	•		•		٠				٠	
s value		1e+02	35500		5.7		•		1		•		٠		•	13	•			•	٠				٠	
to reach this		1e + 03	10100	32e+2/2e5	3.1	24e+3/9e3	13e + 3/2e3	49e+3/500	П	18e + 3/1e4	12e+3/3e5	26e+3/2e3	13e + 3/1e5	32e+3/1e4	26e+3/200	7.5	36e + 2/1e5	20e + 3/4e3	26e + 3/4e3	69e + 2/1e6				99e+2/1e4		
ction evaluations		Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	

Table 138: 20-D, running time excess ERT/ERT pest on f118, in italics is given the median final function value and the median number

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	1630		8.8 8.8				1.6							44								-		П
		1e-05	1500		8.8				1.6							47								1.1		-
		1e-04	1390		7.3				1.6				•			40	•				•			1.1	•	-
		1e-03	1320		7.3				1.5							34								1.1		-
	>:	1e-02	1110		8.9				1.6							14			-				-	1.3		н
	Cauch	1e-01	876		5.9				1.6							6.9								1.4		н
ension	118 Ellipsoid Cauchy	1e+00	589	-	1.9				1.8			-				4.4	10e+0/1e5							1.8		н
this value divided by dimension	118	1e+01	345	46e+0/2e5	1.4	43e+0/1e4			1.9	13e+1/1e4			31e+1/1e5	44e+0/1e4	15e+1/1e3	2.4	470		62e+0/6e3					2.2		П
his value div		1e+02	184	340	1.9	7.9	10e + 2/2e3		1.4	410	32e+1/5e5	55e+1/2e3	3600	9.2	82	П	8.8	٠	6.7	18e+1/1e6	56e+1/1e5	78e+1/1e5	٠	2.3	·	Н
		1e+03	26.3	32	6.9	1.3	120	46e+3/2e3	3.4	3.8	240	18	58	-	က	3.9	6	26e+2/4e3	1.2	18	009	2600	53e+2/1e6	3.5	54e+2/300	3.6
of function evaluations to reach		Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 139: 20-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	119 Sum of different nowers Gauss	1e+02 1e+01	0.05 139 1470 1800 3160 20500 47100 $7e4$ 95100 E	6.4 3.6 55 960 $31e-2/2e5$ ALPS [15]	6.8 12	15e+0/9e3 av			1.6 1 1 1 1 1 1.3 1.1 B			13	089		5.1 $21e+0/400$ GLOBAL [20]		190 $13e-2/1e5$	1 87 $14e+0/4e3$ MCS (Neum) [16]	33 $400 18e + 0/4e3 NEWUOA [23]$	7300	1100 11e+o/1e5			21 41 20 83 16e-1/1e4 IPOP-SEP-CMA-ES [21]	18-10/800
2 1e+01 139 3.6 15e+0/9e3 2.7 43e+0/1e3 1.6 17e+0/1e3 13 680 13 680 183 87 87 87 87 87 87 87 87 87 87	different n	1e-01	1800	096	12		15e-1/2e3		1							44	190							83	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sum of	1e+00	1470	55	8.9		3.9		1		17e+0/3e5	83e-1/2e3	95e-1/1e5	18e+0/1e4		22	47	14e+0/4e3	18e+0/4e3	97e-1/1e6	11e+0/1e5	12e+0/1e5	84e-1/1e6	20	
TOI: 10 TH 1	11	٠.	139	3.6	П	15e+0/9e3	2.7	43e+0/1e3	1.6	17e+0/1e4	2.7e4	13	089	1e3	21e+0/400	4.2	2.5	87	400	7300	1100	2e3	1800	41	180+0/300
10+03 0.05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1e + 02	0.05	6.4	8. 8.	300	5.7	740	14	420	2300	4.6	9.9	720	5.1	5.3	5.7	1	33	250	3.9	6.5	5.7	21	4.9
	27 20 57	1e+03	0.02	1	1	П	П	1	1	1	П	1	1	1	-	1	1	1	1	1	1	1	1	1	_

Table 140: 20-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median final function value and the median number

		$\Delta \mathrm{ftarget}$	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS $[22]$	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	6.75e5		•		•		1		•		٠		•		٠		•		•		•		•	
		1e-05	3.37e5	•					П				•				•						•		•	
		1e-04	2.7e5				•		П		•														•	
	unif	1e-03	00962				•		П		•														•	
)	owers	1e-02	42600	•	•		•		П		•		•		•		•		•		•				•	
n u	ifferent po	1e-01	14100		37e-2/1e6				1							39e-2/1e6	•									
led by dimension	120 Sum of different powers unif	1e+00	8940	58e-1/2e5	57				1				27e+0/1e5			120	56e-1/1e5	15e+0/4e3		11e+0/1e6			81e-1/1e6	17e+0/1e4		10e+0/6e5
this value divided by dimension	120	1e+01	1800	6.7	5. 5.	29e+0/9e3	20e+0/2e3	34e+0/800		20e+0/1e4	20e+0/3e5	31e+0/2e3	380	34e+0/1e4	24e+0/300	10	1.3	15	30e+0/4e3	2500	27e+0/1e5	25e+0/1e5	120	41	19e+0/300	450
		1e + 02	0.05	4.9	7.3	092	4.6	470	120	066	1300	9.7	4.2	3300	5.3	3.7	6.3	-	290	420	5.3	8.5	3.9	6300	3.5	3.6
to reac		1e+03	0.02	1	П	1	1.1	1	П	П	П	1	1	1	-	1	1	1	-	1	П	1	1.1	1	1	П
of function evaluations to reach		$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 141: 20-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta ext{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	2870		20				1.9				٠			39	-				-			П	•	1.2
		1e-05	1720	-	15		•		1.3						-	20	•		-		•		-	Н		1.1
		1e-04	1100	•	13		•		1.2						•	75	-		•		-		•	Н	٠	1.2
	chy	1e-03	465		22				1.1							120								1.2		1
	wers Cau	1e-02	172	٠	36		58e-3/2e3		1.1			-	-		٠	150	18e-2/1e5		٠				٠	П		1.1
ion	ifferent pc	1e-01	71.3		47		43		1.2			11e-1/2e3				57	9200							1		1.3
d by dimens	121 Sum of different powers Cauchy	1e+00	38.5	20e-1/2e5	9	40e-1/9e3	33		П	32e-1/1e4	11e+0/3e5	130	50e-1/1e5	53e-1/1e4	62e-1/400	12	26	60e-1/4e3	52e-1/4e3	16e-1/1e6	64e-1/1e5	85e-1/1e5	82e-1/1e6	1		1.2
this value divided by dimension	121	1e + 01	12.4	13	6.4	49	20	33e+0/2e3	1.2	33	7.6e4	7.7	2e3	73	4.8	3.4	3.9	16	31	17	1800	4100	2.6e4	1	16e+0/300	1.8
		1e + 02	0.05	4.7	6.5	82	5.3	2500	23	23	65	10	2.2	130	7.4	5.1	4.5	-	29	25	3.5	4.7	3.9	15	2.2	3.6
s to rea		1e + 03	0.02	1	П	П	П	1	П	П	П	1	П		1	1	П		1	1.1	П		1	1	-	1
of function evaluations to reach		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 142: 20-D, running time excess ERT/ERT_{best} on f_{122} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 143: 20-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 144: 20-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$\Delta { m ftarget}$	ERT_{best}/D	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	4e4		2.3				1							4.3					-					
		1e-05	19400	-	3.3				П							6.2								41e-5/1e4		·
		1e-04	14300		4.3		•		Н							8.3								2.4	•	
	hy	1e-03	6350		4.5				Н		٠					17					٠			2.2		24e-3/4e5
	7 Cauc	1e-02	3220		ro		٠		1	-	-		٠		•	22	•	-	•		•		•	1.9	•	086
nsion	124 Schaffer F7 Cauchy	1e-01	2040		3.3		37e-2/2e3		П							19	16e-1/1e5							2.5		8.1
led by dime	124 S	1e+00	6.76	28e-1/2e5	11	59e-1/9e3	13		-	51e-1/1e4	69e-1/3e5	28e-1/2e3	60e-1/1e5	66e-1/1e4	69e-1/300	7.8	1.5e4	66e-1/4e3	66e-1/4e3	36e-1/1e6	54e-1/1e5	57e-1/1e5	51e-1/1e6	7.1	85e-1/300	П
s value divic		1e+01	9.61	4.9	4.6	92	8.7	13e+0/2e3	1.1	14	470	3.6	7.6	120	4.1	2.8	1.2	12	91	99	160	35	46	П	6.7	1.9
ach thi		1e + 02	0.02	1.5	1.5	3.3	1.1	120	4.7	3.7	12	1.9	1.4	1.5	1.5	1.4	1.3	1	10	4.3	1.2	1.7	1.1	3.3	1.2	1.2
ns to re		1e+03	0.05	1	1	п	-	П	1	1	П	П	1	п	-	-	П	1	-	1	1	-	н	1	1	1
of function evaluations to reach this value divided by dimension		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 145: 20-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median function value and the median number

of function evaluations to reach	each this value divided by dimension 125 Griewank- 3 10+01 10+01	16+01	$125~\mathrm{Grie} \ ^{1.05}$	125 Griewank-Rosenbrock Gauss $\frac{1}{16+00}$	inbrock G	auss	16-04	16-05	16-07	Affaroet
0.05	0.05		0.05	0.05	6.24e5	1.25e6	3.12e6	4.01e6	4.03e6	$ m ERT_{best}/D$
1 1	1		2500	38e-2/2e5						ALPS [15]
1 1.1	1.1		1e3	24e-2/1e6						AMaLGaM IDEA [4]
1 1	-		490	45e-2/9e3						avg NEWUOA [23]
1 1.1	1:1		1800	50e-2/2e3			•			BayEDAcG [9]
1 53	53		21e-1/2e3							BFGS [22]
1 1	П		380	9.8e6	Н	П	П	-	П	BIPOP-CMA-ES [14]
1 1	П		1.9e5	96e-2/1e4						(1+1)-CMA-ES [2]
1 1.1	1:1		2.4e7	11e-1/3e5			•			DASA [18]
1 1.2	1.2		7800	81e-2/2e3						DEPSO $[11]$
1 1.2	1.2		3.1e5	40e-2/1e5						EDA-PSO [5]
1 1.7	1.7		098	44e-2/1e4						full NEWUOA [23]
1 1.1	1.1		14e-1/400							GLOBAL $[20]$
1 1.1	1.1		089	24e-2/1e6						iAMaLGaM IDEA [4]
1 1.2	1.2		1500	39e-2/1e5						MA-LS-Chain [19]
1 1	-			1	25e-3/4e3					MCS (Neum) [16]
1 1	П		410	49e-2/4e3			•			NEWUOA [23]
1 1	-		6.5e5	75e-2/1e6						(1+1)-ES [1]
1 1.1	1.1		2.9e5	72e-2/1e5						PSO [6]
1 1.1	1.1		1.4e6	86e-2/1e5						PSO_Bounds [7]
1 1	П		5.9e5	80e - 2/1e6			•			Monte Carlo [3]
1 1	П		2e4	59e-2/1e4			•			IPOP-SEP-CMA-ES [21]
1 1.1	1.1		1600	91e-2/300			•			SNOBFIT [17]
1 1	П		4.2e4	44e-2/2e6			•			VNS (Garcia) [10]

Table 146: 20-D, running time excess ERT/ERT_{best} on f_{126} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	nan				•				•		•		٠		•		•				•		•	•
		1e-05	nan		•		•		•		•		•		•		•		•		•		•		•	•
		1e-04	nan		•		•		•		•		•		•		•		•		•		•		•	•
	nif	1e-03	nan	•	•		•		•		•		•		•		•		•		•		•		•	•
)	nbrock u	1e-02	nan		•		•		•		•		•		•		•	25e-3/4e3	•		•		•		•	•
2000	d by difficultion 126 Griewank-Rosenbrock unif	1e-01	0.05	57e-2/2e5	31e-2/1e6	16e-1/9e3	94e-2/2e3	•	30e-2/5e5	11e-1/1e4	12e-1/3e5	•	10e-1/1e5		•	34e-2/1e6	52e-2/1e5	Т	12e-1/4e3	85e-2/1e6	10e-1/1e5		76e-2/1e6	89e-2/1e4	86e-2/300	67e-2/2e6
lod by dimo	ted by differ 126 Griev	1e+00	0.05	2500	1300	2.6e6	3.3e4	17e-1/1e3	5800	1.4e6	7.7e7	13e-1/2e3	2.3e6	16e-1/1e4	14e-1/300	5700	2500	1	1.3e5	3.1e6	3.1e6	14e-1/1e5	3.2e5	1.8e5	1400	1.3e6
7	ne anvic	1e + 01	0.05	1	П	120	П	23	П	П	81	1.1	1.2	310	1.1	1.1	1.1	1	4.2	1	1.1	П	1.1	1	П	П
this mal	tilis val	1e+02	0.05	1	1	-	-	1	1	-	-	1	1	1	1	-1	1	1	-	1	1	-	1	1	-	-
do oor o	o reacii	1e+03	0.05	1	П	1	-	П	П	1	-	1	1	1	1	1	П	1	1	1	П	1	П	1	П	-
firm of ion orrelined to mosely this realise divided has dimension	iunction evaluations t	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 147: 20-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$1e-04$ $1e-05$ $1e-07$ $\Delta ftarget$	3.4e5 $3.63e5$ $3.71e5$ ERT _{best} /D	ALPS [15]	AMaLGaM IDEA [4]	. avg NEWUOA [23]	. BayEDAcG [9]	BFGS [22]	1 1 BIPOP-CMA-ES [14]	$\cdot \qquad \cdot \qquad (1+1)\text{-CMA-ES}$ [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	· · · · full NEWUOA [23]	GLOBAL [20]	44 41 40 iAMaLGaM IDEA [4]		MCS (Neum) [16]	NEWUOA [23]	$(1+1)$ -ES [1]		PSO_Bounds [7]	Monte Carlo [3]	. IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	
	Jauchy	1e-03	2.22e5	•	83e-4/1e6	•	•		1						٠	29	٠		٠		•		•		•	
	enbrock (1e-02	79500		13				1							19	•	25e-3/4e3						83e-3/1e4		45e-3/2e6
inclinion i	127 Griewank-Rosenbrock Cauchy	1e-01	0.05	46e-2/2e5	1.5e6	43e-2/9e3	42e-2/2e3		9e5	81e-2/1e4	11e-1/3e5	65e-2/2e3	73e-2/1e5	44e-2/1e4		3.3e6	43e-2/1e5	-1	45e-2/4e3	62e-2/1e6	86e-2/1e5	99e-2/1e5	79e-2/1e6	1.7e5	87e-2/300	1.1e6
	127 Gri	1e+00	0.05	1400	092	220	1600	20e-1/2e3	180	3e4	7.5e7	920	9.7e5	1400	15e-1/300	260	420	1	250	2.8e4	1.2e6	2.3e6	5.2e5	180	1700	350
varue		1e + 01	0.02	1.3	1.1	7.7	1.1	140	1	1	П	1.1	1.1	1	1.1	1	1.1	1	3.7	1.3	П	1.1	1.3	1	1.1	-
		1e + 02	0.05	1	П	П		1	П	п	н	1	1	П	1	1	П	-	П	1		П	1	1	-	-
21 00 01		1e + 03	0.05	1	-1	п		1	-1	п	н	1	1	п	1	1	-1	-	П	1		П	П	1	П	-
of turned of the control of the cont		$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 148: 20-D, running time excess ERT/ERT_{best} on f_{128} , in italics is given the median function value and the median number

of function evaluations to reach this value divided by dimension	ns to res	sch this	value divided	Dest dimensity	Sion)					
				128 C	allaghe	128 Gallagher Gauss					
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	$^{1e-01}$	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	0.02	0.05	7020	6.69e5	8.61e5	8.61e5	8.61e5	8.62e5	8.62e5	8.62e5	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	1	1	240	5.3	4.3	34e+0/2e5					ALPS [15]
AMaLGaM IDEA	П	1	16	1.2	1.1	1.1	1.1	1.1	1.1	1.1	AMaLGaM IDEA [4]
avg NEWUOA	Н	1	69e+0/9e3								avg NEWUOA [23]
$\operatorname{BayEDAcG}$	П	П	45e+0/2e3			٠				•	BayEDAcG [9]
BFGS	1	1	75e+0/1e3								BFGS [22]
BIPOP-CMA-ES	П	П	1	1	1	Н	П	-	Н	Н	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	Н	1	66e+0/1e4								(1+1)-CMA-ES [2]
DASA	П	1	61e+0/3e5			٠				•	DASA [18]
DEPSO	1	1	66e+0/2e3								DEPSO [11]
EDA-PSO	П	П	73e+0/1e5							•	EDA-PSO [5]
full NEWUOA	н	П	71e+0/1e4								full NEWUOA [23]
GLOBAL	н	П	69e+0/400			٠				•	GLOBAL [20]
iAMaLGaM IDEA	П	1	62	4.9	17	17	17	17	17	17	iAMaLGaM IDEA [4]
MA-LS-Chain	П	1	210	30e+0/1e5		-			•	•	MA-LS-Chain [19]
MCS (Neum)	П	1	66e+0/4e3			·					MCS (Neum) [16]
NEWUOA	1	1	70e+0/4e3			•				•	NEWUOA [23]
(1+1)-ES	П	П	34e+0/1e6								(1+1)-ES [1]
PSO	Н	Н	67e+0/1e5								PSO [6]
PSO_Bounds	н	П	72e+0/1e5								PSO_Bounds [7]
Monte Carlo	н	П	24e+0/1e6			٠				•	Monte Carlo [3]
IPOP-SEP-CMA-ES	П	1	21	65e+0/1e4							IPOP-SEP-CMA-ES [21]
SNOBFIT	П	1	008/0+89				٠			-	SNOBFIT [17]
VNS (Garcia)	-	Н	2e3	35e+0/1e6							VNS (Garcia) [10]

Table 149: 20-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median function value and the median number

		$\Delta { m ftarget}$	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	2.12e6		٠				1		•		٠		•				•		•				•	
		1e-05	2.1e6		•		٠		1		•		•		٠		•		٠				•			
		1e-04	2.1e6	•	•		•		1		•		•		•		•		•		•				•	
		1e-03	2.09e6				•		1								•									
	unif	1e-02	2.08e6				•		1		•															
sion	129 Gallagher unif	1e-01	2.08e6	-	23e+0/1e6		٠		П		•		•		•		٠		•							
y dimensic	129	1e+00	2.07e6		7.1				1		•		•													
ue divided by		1e + 01	3.91e5	32e+0/2e5	18	74e+0/9e3	69e+0/2e3	006/0 + 990	-1	70e+0/1e4	58e+0/3e5	72e+0/2e3	70e+0/1e5	75e+0/1e4	00e/0 + 89	31e+0/1e6	27e+0/1e5	67e+0/4e3	73e+0/4e3	48e+0/1e6	67e+0/1e5	70e+0/1e5	24e+0/1e6	69e+0/1e4	67e + 0/300	56e+0/7e5
this va		1e + 02	0.05	П	П	П	-	-	1	-	_	П	П	-	П	П	1	П	П	1	П	П	-	1	П	-
o reach		1e+03	0.05	1	П	П	-	-	1	1	1	П	П	1	1	1	1	П	1	П	П	П	1	1	П	-
of function evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 150: 20-D, running time excess ERT/ERT_{best} on f₁₃₀, in italics is given the median final function value and the median number of function and this malia divided by dimension

		Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM İDEA [4]	avg NEWUOA [23]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	EDA-PSO [5]	full NEWUOA [23]	GLOBAL [20]	iAMaLGaM IDEA [4]	MA-LS-Chain [19]	MCS (Neum) [16]	NEWUOA [23]	(1+1)-ES [1]	PSO [6]	PSO_Bounds [7]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]	SNOBFIT [17]	VNS (Garcia) [10]
		1e-07	12900	٠	82				14				-			320					٠		•	П	•	47
		1e-05	12800		83				14						-	130								П		48
		1e-04	12700	•	83				14							91	21e-1/1e5				-			П		48
		1e-03	12700		83				14							29	120							-		48
	Cauchy	1e-02	12600		83				14				•		٠	42	38		•	•				п		48
•	$130~{ m Gallagher}$ C	1e-01	12600	21e-1/2e5	81		٠		14			62e-1/2e3			72e-1/300	38	32		•	74e-2/1e6				П	٠	48
this value divided by dimension	130 G	1e+00	4660	092	220	45e-1/9e3	99e-1/2e3	75e+0/2e3	33	25e-1/1e4	19e+0/3e5	6.3	49e+0/1e5	70e-1/1e4	1	74			77e-1/4e3	200	17e+0/1e5	50e+0/1e5		1.7		28
value divid		1e + 01	245	17	7.1	9.9	10	140	1.9	2.5	7500	6.3	5700	19	1	5.6	24	37	9.1	4.2	1600	5700	25e+0/1e6	7	62e+0/300	69
ach this		1e+02	0.02	1	1	Н		П	Н	П	Н	П	Н	Н	1	П	1		Н	1	1		1	П	П	1
ns to re		1e + 03	0.05	1	П	1	-	п	-	П	-	п	-	-	1	п	П		1	1	П	п	1	П	-	1
of function evaluations to reach		Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	EDA-PSO	full NEWUOA	GLOBAL	iAMaLGaM IDEA	MA-LS-Chain	MCS (Neum)	NEWUOA	(1+1)-ES	PSO	PSO_Bounds	Monte Carlo	IPOP-SEP-CMA-ES	SNOBFIT	VNS (Garcia)

Table 151: 40-D, running time excess ERT/ERT_{best} on f_{101} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 152: 40-D, running time excess ERT/ERT_{best} on f_{102} , in italics is given the median function value and the median number

the rote is to be a mineral control of the first pest of 102, in rotation of the income function value and one income function			Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	iAMaLGaM IDEA [4]	(1+1)-ES [1]	Monte Carlo [3]	IPOP_SEP_CMA_ES [21]
M VOLUE OUI			1e-07	113	59	26		•	1.1	19e-7/1e4		•	9.7	•		-
TOTTO I			1e-05	88.9	43	26			1.1	31			9.7			-
TICATORI TITIO			1e-04	77.5	40	26	29e-5/2e3	٠	1.1	11	42e-4/3e5	٠	9.6	•		_
		unif	1e-03	65.7	38	27	28		1.1	3.7	6.6e4		9.6			-
ATTENDED		e moderate unif	1e-02	55.3	35	26	28	٠	1.1	1.5	1200	16e-2/2e3	9.2	٠		-
1 1102, 111	imension	102 Sphere n	1e-01	43.6			28		1.1	1	100	230	9.1	27e-1/1e6		-
· pest	led by di	102	1e+00	32.1	28	27	28		1.1	1.1	16	23	8.7	4.4e5		-
17.	ue divid		1e+01	20.5	23	30	29		1.1	1.3	14	7.1	∞	3900		-
THE COORD	each this val		1e+02	8.36	11	22	30	29e+1/2e3	1.1	1.5	5.3	4	6.4	22	13e+1/1e6	-
Similar	ons to r		1e + 03	0.025	1	1	П	П	1	1	П	П	1	Н	П	-
TOT TOT TO TO	of function evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	TPOP-SEP-CMA-ES

Table 153: 40-D, running time excess ERT/ERT_{best} on f_{103} , in italics is given the median final function value and the median number

of function evaluations to reach this value divided by dimension	ions to 1	reach this va	Jue divic	Jed hv	limension	D					
				103	\vdash	oderate Ca	Cauchy				
$\Delta { m ftarget}$	1e + 03	1e+02	1e + 01		1e-01	1e-02	1e-03	1e-04	1e-05	_	Δ ftarget
$\overline{\mathrm{ERT}_{\mathrm{best}}}/\mathrm{D}$	0.025	5.92	13.2	30.6	42.3	54	89	81.6	95.4	124	${ m ERT_{best}/D}$
ALPS	1	15	34	28		41e-3/1e5					ALPS [15]
AMaLGaM IDEA	1	24	47	30		24	22	36	89	130	AMaLGaM IDEA [4]
$_{ m BayEDAcG}$	1	41	44	29	28	31	29	33e-5/2e3			BayEDAcG [9]
BFGS	1	73	48	29	21	17	13	12	10	œ	BFGS [22]
BIPOP-CMA-ES	1	1.5	1.7	1.1	1.1	1.1	1.1	1.1	1.1	1.1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	1.3	1.1	1.1	5.3	1300	13e-3/1e4			•	(1+1)-CMA-ES [2]
DASA	1	4.2	6.1	5.1	260	36e-3/3e5	-				DASA [18]
DEPSO	1	5.2	12	62	79e-2/2e3						DEPSO[11]
iAMaLGaM IDEA	1	8.6	13	9.1	12	21	49	85	350	260	iAMaLGaM IDEA [4]
(1+1)-ES	1	1	1	1	6.5	2.3e4	84e-4/1e6			•	(1+1)-ES [1]
Monte Carlo	1	14e+1/1e6			-						Monte Carlo [3]
IPOP-SEP-CMA-ES	П	1.3	1.5	Н	П	Н	П	1	П	П	IPOP-SEP-CMA-ES [21]

Table 154: 40-D, running time excess ERT/ERT_{best} on f_{104} , in italics is given the median final function value and the median number

of function evaluations to reach		his val	this value divided by dimension	dimen	sion						
			104]	Rosenb	.04 Rosenbrock moderate Gauss	erate (Gauss				
Δ ftarget	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
${ m ERT_{best}/D}$	18.6	243	77200	89900	91400	92200	92600	93000	93400	94100	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	34	21	П	3.4	9.2	20	14e-1/1e5				ALPS [15]
AMaLGaM IDEA	23	3.3	4.1	3.7	3.7	3.7	3.7	3.7	3.7	3.7	AMaLGaM IDEA [4]
$_{ m BayEDAcG}$	31	7.9	63e+0/2e3								BayEDAcG [9]
BFGS	50e+4/1e3				٠	٠					BFGS [22]
BIPOP-CMA-ES	1.4	1	1.1	1	1	1	1	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	П	39e+0/1e4		•		-				(1+1)-CMA-ES [2]
DASA	5.5	45	4.9	31	74e-1/4e5						DASA [18]
DEPSO	13	13	96e+0/2e3		٠						DEPSO [11]
iAMaLGaM IDEA	9.4	1.3	18	20	23	28	28	27	27	27	iAMaLGaM IDEA [4]
(1+1)-ES	1.5	24	45e+0/1e6		·						(1+1)-ES [1]
Monte Carlo	93e + 3/1e6										Monte Carlo [3]
IPOP-SEP-CMA-ES	1.3	5.3	37e+0/1e4		٠		•				IPOP-SEP-CMA-ES [21]

Table 155: 40-D, running time excess ERT/ERT_{best} on f_{105} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

								<u> </u>				₩			[21]
		Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	iAMaLGaM IDEA [4]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]
		1e-0.7	1.57e5				•	П	٠		•		٠		
		1e-05	1.55e5		٠		•	1	•		•		•		•
		1e-04	1.54e5				•	1	٠		•		٠		
		1e-03	1.53e5		٠		•	1	•		•		•		•
anoto 11	grave u	1e-02	1.52e5				•	П	٠		•		٠		
d by difficulti 105 Roscubrook modorate unif	TOCK IIIOUC	1e-01	1.51e5	10e+0/1e5	•		•	1	•		•		•	•	•
unnens. Rosonb		1e+00	1.48e5	3.6				1							
uns value divided by dimension	COT	1e+01	1.4e5	1.4	35e+0/1e6	81e+0/2e3		1	72e+0/1e4	96e+0/3e5	10e+1/2e3	35e+0/1e6	15e+1/1e6		38e+0/1e4
nis valu		1e + 02	166	36	5.3	14		1	23	2100	32	1.9	4.4e4		9.5
		1e + 03	23.9	25	21	25	46e+4/900	1.1	1.4	6.9	10	7.5	20	99e + 3/1e6	
or runction evaluations to reach		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 156: 40-D, running time excess ERT/ERT_{best} on f_{106} , in italics is given the median function value and the median number

1890 1991 199	0		and /	7 1001	0						
of function evaluations to reach	as to reach the	his valu	this value divided by dimension	dimension							
			106~ m R	osenbrock	moderate	Canc	J.Y				
Δ ftarget	1e + 03	1e+02	1e + 01	1e+00	1e-01	1e-02	1e-02 $1e-03$	1e-04	1e-05		$\Delta { m ftarget}$
$\text{ERT}_{ ext{best}}/ ext{D}$	16.9	47.9	1730	2270	2390	2450	2490	2520	2540	2600	${ m ERT_{best}/D}$
ALPS	36	09	38	160	39e - 1/1e5	•	•				ALPS [15]
AMaLGaM IDEA	26	18	27e+0/1e6			•	•	٠	•	•	AMaLGaM IDĒA [4]
BayEDAcG	34	7.1	10e+1/2e3								BayEDAcG [9]
BFGS	12e+3/4e3					•	•	•		•	BFGS [22]
BIPOP-CMA-ES	1.6	1.6	П	1.2	1.3	1.3	1.3	1.3	1.3	1.3	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1.1	1	28e+0/1e4			•	•	٠	•	•	(1+1)-CMA-ES [2]
DASA	5.8	22	14	200	73e-2/7e5						DASA [18]
DEPSO	15	95	11e+1/2e3			•	•	•		•	DEPSO [11]
iAMaLGaM IDEA	10	6.5	29e+0/1e6								iAMaLGaM IDEA [4]
(1+1)-ES	1	2.5	8300	13e+0/1e6		•	•	•	•	•	(1+1)-ES [1]
Monte Carlo	92e + 3/1e6		-								Monte Carlo [3]
IPOP-SEP-CMA-ES	1.3	1.3	Н	Н	1	Т	1	1	1	П	IPOP-SEP-CMA-ES [21]

Table 157: 40-D, running time excess ERT/ERT_{best} on f_{107} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

unction evaluations to reach this value divided by dimension	reach	this value div	ided by dime	ension	ζ						
			10	107 Sphere Gauss	ere Ga	russ					
	1e + 03	1e+02	1e+01	1e + 00	$1e+\bar{0}0$ $1e-01$ $1e-02$	1e-02	1e-03	1e-0	1e-05	1e-07	Δ ftarget
	0.025	225	096	1440	1870	2170	2440	272	0 3010 3	3620	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
ALPS	1	10	35e+0/1e5								ALPS [15]
AMaLGaM IDEA	1	1.5	15	48	20	45	41	39	36	32	AMaLGaM IDEA [4]
BayEDAcG	П	2.7	22e+0/2e3								BayEDAcG [9]
	1	29e+1/1e3						٠			BFGS [22]
-ES	1	1.7	1	1	П	П	П	-	-	-	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	22e+1/1e4									(1+1)-CMA-ES [2]
	1	20e+1/2e5									DASA [18]
	1	19e+1/2e3									DEPSO[11]
iAMaLGaM IDEA	1	1	130	110	140	170	150	140	130	110	iAMaLGaM IDEA [4]
(1+1)-ES	П	17e+1/1e6						٠			(1+1)-ES [1]
Monte Carlo	1	13e+1/1e6									Monte Carlo [3]
IPOP-SEP-CMA-ES	Т	099	17e+1/1e4		٠	٠					IPOP-SEP-CMA-ES [21]

Table 158: 40-D, running time excess ERT/ERT_{best} on f₁₀₈, in italics is given the median final function value and the median number

of function evaluations to reach this value divided by dimension	ons to re	each this val	ue divided by	/ dimen	sion						
				108	108 Sphere unif	nif					
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05 1e-07	1e-07	Δ ftarget
${ m ERT}_{ m best}/{ m D}$	0.025	2340	5370	14000	23400	37400	45900	52500	70400	1.06e5	${ m ERT_{best}/D}$
ALPS	1	120	11e+1/1e5			•	•			•	ALPS [15]
AMaLGaM IDEA	1	4.1	130	520	630	46e-1/1e6	•			•	AMaLGaM IDEA [4]
$_{ m BayEDAcG}$	1	22e+1/2e3									BayEDAcG [9]
BFGS	1	32e+1/800			٠	•	•	•		•	BFGS [22]
BIPOP-CMA-ES	1	1	1	1	1	1	1	1	1	1	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	22e+1/1e4			•	٠	•			•	(1+1)-CMA-ES [2]
DASA	1	23e+1/2e5									DASA [18]
DEPSO	1	31e+1/2e3			٠	•	•	•		•	DEPSO [11]
iAMaLGaM IDEA	1	20	270	520	82e-1/1e6						iAMaLGaM IDEA [4]
(1+1)-ES	П	18e+1/1e6			٠	•					(1+1)-ES [1]
Monte Carlo	1	14e+1/1e6				•					Monte Carlo [3]
IPOP-SEP-CMA-ES	-	29e+1/1e4	-		•	•	•			•	IPOP-SEP-CMA-ES [21]

Table 159: 40-D, running time excess ERT/ERT_{best} on f_{109} , in italics is given the median function value and the median number

1 11 111 111 25%																	_
this value divided by dimension 1e+02 1e+02 1e+01 1e+02 1e+03 1e+04 1e+05 7.73 21 1e+00 1e-01 1e-02 1e-03 1e-04 1e-05 7.73 21 36.4 62.6 91.8 124 156 188 12 16 16 16 16 16 15 16 16 16 16 16 16 16 16				Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	iAMaLGaM IDEA [4]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21
this value divided by dimension 1e+02 1e+01 1e+02 1e+00 1e-01 1e-02 1e-03 7.73 2.1 36.4 62.6 91.8 124 124 12 1464 $116+0/165$ 15 46 124 16 16 16 16 16 16 16 17 17 1.1 1 1 1 1 1 1 1 1 1							150			П				350			-
this value divided by dimension 1e+02 1e+01 1e+02 1e+00 1e-01 1e-02 1e-03 7.73 2.1 36.4 62.6 91.8 124 124 12 1464 $116+0/165$ 15 46 124 16 16 16 16 16 16 16 17 17 1.1 1 1 1 1 1 1 1 1 1				1e-05	188		150		٠	-			٠	410			-
this value divided by dimension 109 Sphere Cauchy 109 Sphere Cauchy 1109 Sphere Cauchy 1109 Sphere Cauchy 1109 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Cauchy 1100 Sphere Spher				1e-04	156	-	140			-				430			П
this value divided by dimension 1e+02 1e+01 1e+01 1e+02 1 1e+01 1e+02 1.7.73 2.1 36.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6				1e-03	124	-	130	10e-3/2e3		1				490			-1
this value divided by dimension 1e+02 1e+01 1e+01 1e+02 1 1e+01 1e+02 1.7.73 2.1 36.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	0		ıchy	1e-02	91.8		46	46		1.1				230			-
this value divided by different black of the control of the contr			re Caı	1e-01	62.6	-	15	23		1.1	٠			87	٠		П
Aftarget 1e+03 1e+02 1e+01 ERT _{best} /D 0.025 7.73 21 ALPS 1 1e+02 1e+01 ALPS 1 12 1.4e4 AMALGAM IDEA 1 16 16 BayEDAcG 1 31 28 BIPOP-CMA-ES 1 39e+1/2e3 1 (1+1)-CMA-ES 1 5.6 390 IAMALGAM IDEA 1 240 37e+0/2e5 DEPSO 1 4.8 60 Monte Carlo Monte Carlo I 13e+1/1e6 1 I 19e+1/1e6 1 I 19e-SDEP CMA-ES 1 1 13e+1/1e6 1 I 18e-I/1e6 1 I 18e-I/1e6 1 I 18e-I/1e6 1 I 18e-I/1e6 1 I 18e-I/1e6 1 I 18e-I/1e6 1 I 18e-I/1e6 1 I 18e-I/1e6 1 I 18e-I/1e6 1	(COT 6	dimension	$109~\mathrm{Sphe}$	1e+00	36.4	11e+0/1e5	16	26		1.1	87e-1/1e4		62e-1/2e3	27	52e-1/1e6		
Aftarget 1e+03 1e+02 ERT _{best} /D 0.025 7.73 AMALGAM IDEA 1 16 BAYEDAG 1 18 BAYEDAG 1 16 BAYEDAG 1 16 BAYEDAG 1 38e+1/2e3 BIPOP-CMA-ES 1 5.6 DASA 1 240 DEPSO 1 4.8 IAMALGAM IDEA 1 7.4 (1+1)-ES 1 13e+1/1e6 IPOP-SEP-CMA-ES 1 1.9	nsad /	e divided by	•	1e+01	21	1.4e4	16	28	٠	П	390	37e+0/2e5	09	9.7	1600		
Aftarget 1e+03 ERT _{best} /D 0.025 ALPS 1 AMALGAM IDEA 1 BayEDAcG 1 BRGS 1 BROP-CMA-ES 1 IDASA 1 DASA 1				1e+02	7.73	12	16	31	33e+1/2e3	1	5.6	240	4.8	7.4	1.9	13e+1/1e6	П
Aftarget Aftarget BRT _{best} /D ALPS AMALGAM IDEA BAPEDACG BRGS BRFGS BRPOP-CMA-ES (1+1)-CMA-ES (1+1)-ES Monte Carlo IPOP-SEP-CMA-ES	0	s to rea		1e+03	0.025	1	1	п	1	1	-1	1	1	1	-1	1	Н
		of function evaluation		Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 160: 40-D, running time excess ERT/ERT_{best} on f_{110} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

14016 100. 40-L	, ı uııııı	ng nime eyee	35 LIVI / LIV.	hest on Ji	10, 111 100	alles is	given u	TIC TICC	11411 11111	ar runci	וווויי	rable 100. 40-D, I diffing time excess $\text{Erv}_1/\text{Erv}_1/\text{Erv}_1$ on $J110$, in france is given the median limit of the order and the median limit.	
of function evaluations to reach this value divided by dimension	uations	to reach this	s value divide	ed by dimen	sion								
				110~ m R	110 Rosenbrock Gauss	ock G	anss						
Δ ftarget	et	1e + 03	1e+02	1e+01	1e+00 1e-01 1e-02	1e-01	1e-02		1e-04	1e-03 $1e-04$ $1e-05$ $1e-07$	1e-07	$\Delta { m ftarget}$	
ERT _{best} /D	f/D	388	4140	nan	nan	nan	nan	nan	nan	nan	nan	${ m ERT}_{ m best}/{ m D}$	
ALPS	T.C.	160	73e+1/1e5									ALPS [15]	
AMaLGaM IDEA	IDEA	4.6	3.7	38e+0/1e6								AMaLGaM IDEA [4]	
BayEDAcG	Λ_{cG}	4.5	72e+1/2e3									BayEDAcG [9]	
BFGS	ĵ.	52e+4/500							•			BFGS [22]	
BIPOP-CMA-ES	IA-ES	1	1	37e+0/1e6								BIPOP-CMA-ES [14]	
(1+1)-CMA-ES	A-ES	24e+4/1e4		•			•			•	•	(1+1)-CMA-ES [2]	
DASA	-	23e+4/2e5										DASA $[18]$	
DEPSO	0	35e+4/2e3							•			DEPSO [11]	
iAMaLGaM IDEA	I IDEA	9	33	39e+0/1e6								iAMaLGaM IDEA [4]	
(1+1)-ES	ES	14e+4/1e6										(1+1)-ES [1]	
Monte Carlo	arlo	92e+3/1e6		•								Monte Carlo [3]	
IPOP-SEP-CMA-ES	MA-ES	100+3/161										IPOP-SEP-CMA-ES [21]	

in italics is given the median final function value and the median number Table 161: 40-D, running time excess ${\rm ERT/ERT_{bv}}$ of function evaluations to reach this value divided

II.					ı											
e median			et	г/Д	15]	DEA [4]	ر (ج	[22]	ES [14]	-ES [2]	[18]	[11]	(DEA [4]	S [1]	rlo [3]	[A-ES [21]
and the			$\Delta ftarget$	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11	AMaLGaM IDEA [4]	(1+1)-ES $[1]$	Monte Carlo [3]	POP-SEP-CMA-ES [21]
ı value						AN			BII				iAN		_	IPOI
unction			1e-04 $1e-05$ $1e-07$	nan	•	•	•	•		•		•		٠	•	
nnal I			1e-05	nan		•		•		•		•		•		٠
nechan			1e-04	nan	•	٠		٠		٠		٠				
n tne 1			1e-03	nan		٠		•		٠		•		•		٠
is give		s unif	1e-02	nan				•				•				
$_{17ancs}$		nbrock	1e+00 1e-01 1e-02	nan		•		•		•		•		•		
$J_{111}, { m ln}$	ension	11 Rosenbrock unif	1e+00	nan		٠		•		٠		•				•
$^{'}\mathrm{KL}_{\mathrm{best}}$ on .	ided by dim	111	1e+01	nan	-	71e+0/1e6		•	38e+0/1e6			•	59e+0/1e6			
EKI/E	alue div		1e + 02	15500		18			1				37			
time excess	reach this v		1e + 03	2640	30e+3/1e5	6.2	21e+3/2e3	76e+4/400	1	27e+4/1e4	24e+4/2e5	44e+4/2e3	44	16e+4/1e6	94e + 3/1e6	49e+4/1e4
able 101: 40-D, running time excess EKL/EKL_{Dest} on J_{111} , in italics is given the median must finitely value and the median nu	function evaluations to reach this value divided by dimension		$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES
able	func.															

on f_{119} , in italics is given the median final function value and the median number Table 162: 40-D, running time excess ERT/ERT_{be} of function evaluations to reach this value divided \mathbb{R}

table 102: 40-D,	I UIIIII	ng mme exec	ess trut / tru	Thest Ou 11.	12, 111, 106	alics is	giveii u	ne med	1411 IIII	a mic	וסוו עמי	table 102. 40 -D, tuilling time excess $LM_{\rm Pest}$ on $J112$, in traines is given the median minar function value and the median multi-	=======================================
of function evaluations to reach this value divided by dimension	ations	to reach this	s value divid	ed by dimen	sion								
				112~ m Rc	112 Rosenbrock Cauchy	ock Ca	uchy						
Δ ftarget	17	1e + 03	1e + 02	1e + 01	1e+00	1e+00 $1e-01$ $1e-02$	1e-02	1e-03	1e-04	1e-05 1e-07	1e-07	$\Delta { m ftarget}$	
ERT _{best} /D	Ū,	18.4	72.3	4450	6350	0299	0089	0689	0969	7030	7160	${ m ERT_{best}/D}$	
ALPS		33	3900	11e+1/1e5								ALPS [15]	ı
AMaLGaM IDEA	DEA	27	12	21e+0/1e6					•		•	AMaLGaM IDEA [4]	
BayEDAcG	بِ	32	28	89e+0/2e3								BayEDAcG [9]	
BFGS		51e+4/2e3		•		•		•	•	•	•	BFGS [22]	
BIPOP-CMA-ES	4-ES	1.4	П	1.1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	BIPOP-CMA-ES [14]	
(1+1)-CMA-ES	ES	1.2	35	63e+0/1e4		•			•		•	(1+1)-CMA-ES [2]	
DASA		ы	4e3	97e+0/3e5								DASA $[18]$	
DEPSO		15	24e+1/2e3				•		•		•	DEPSO [11]	
iAMaLGaM IDEA	IDEA	9.6	5.1	28e+0/1e6								iAMaLGaM IDEA [4]	
(1+1)-ES	ĵ.	1	94	51e+0/1e6					•	•	•	(1+1)-ES [1]	
Monte Carlo	rlo	89e+3/1e6										Monte Carlo [3]	
IPOP-SEP-CMA-ES	AA-FS	1.2	2.2		-		-	-	-		-	IPOP-SEP-CMA-ES [21]	

in italics is given the median final function value and the median number Table 163: 40-D, running time excess ${\rm ERT/ERT}_{\rm D}$ of function evaluations to reach this value divided

mmi																1
excess EK1/EK1 _{best} on J ₁₁₃ , in italics is given the median final function value and the median number			Δ ftarget	ERT _{best} /D	ALPS [15]	AMaLGaM İDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	AMaLGaM IDEA [4]	(1+1)-ES $[1]$	Monte Carlo [3]	[POP-SEP-CMA-ES [21]
ue and				_		AMa.	Ř		BIPC	(1+		П	iAMa	<u> </u>	Me	IPOP-9
lon vall			1e-07	75100	-	2.1		٠	-			٠	5.1			
runct			1e-05 1e-07	75000		2.1			1				5.1			
lan nns			1e-03 1e-04	75000		2.1		٠	1			٠	5.1			
ne med			1e-03	75000		2.1			1				5.1			
given t		Gauss	1e-02	75000		2.1		٠	1			٠	5.1			
ancs is		psoid (1e+00 - 1e-01	67400		2.1			1				5.3			
13, In 1	nsion	113 Step-ellipsoid Gauss	1e + 00	63500		2.1			1				5.1			
$^{\rm KL}_{ m best}$ on J_1	ded by dime	113 St	1e+01	11000	10e+1/1e5	3.2			1	-			15	-	-	-
cess ERI/EI	iis value divi		1e+02	1430	140	1.9	18e+1/2e3		1	11e+2/1e4	89e+1/2e5	13e + 2/2e3	3.6	72e+1/1e6	52e+1/1e6	51e+1/1e4
ing time ex	s to reach th		1e+03	51.8	2.1	1.9	4	19e + 2/1e3	73	870	3200	120	1	1900	24	29
Table 103: 40-D, running time	of function evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES
_	0															

in italics is given the median final function value and the median number Table 164: 40-D. running time excess ERT/ERT.

Table 104: 40-D, running time excess EKL/EKL_{Dest} on f_{114} , in italics is given the median finction value and the median number	of function evaluations to reach this value divided by dimension	114 Step-ellipsoid unif	1e-03 $1e-04$ $1e-05$ $1e-07$	42000 1.64e5 2.51e5 2.88e5 2.88e5 2.88e5 2.92e5 E	50e+1/1e5 ALPS [15]	9 62 $12e+0/1e6$ AMaLGaM IDEA [4]	94e+1/2e3 BayEDAcG [9]	00 BFGS [22]	1 1 1 1 1 1 BPOP-CMA-ES [14]	13e+2/1e4	99e+1/2e5 DASA [18]	23 DEPSO [11]	29 360 $19e+0/1e6$ iAMaLGaM IDEA [4]	74e + 1/1e6 (1+1)-ES [1]	54e+1/1e6 Monte Carlo [3]	English to the transfer of the
$-$ best on J_{114} , 1	d by dimension	$114 { m \ Step}$			•		٠	•	1 1	•		•		٠	•	
cess ERI/ERI	his value divide			7	50e+1/1e5	6	94e+1/2e3		1	13e + 2/1e4	99e+1/2e5			74e+1/1e6	54e+1/1e6	
ning time ex	ns to reach th		1e+03	165	2.1	1	12	19e+2/700	2.6	430	066	20e+2/2e3	10	1200	11	,
lable 104: 40-D, run	of function evaluation		Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 165: 40-D, running time excess ERT/ERT_{best} on f_{115} , in italics is given the median final function value and the median number

		1e-05 1e-07	10500 10500 ERT $_{\rm best}/{ m D}$. ALPS [15]	1 1 AMaLGaM IDEA [4]	BayEDAcG [9]	. BFGS [22]	4 4 BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	. DEPSO [11]	6 5.9 iAMaLGaM IDEA [4]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]
		1e-04	10500		1			4	٠			9			
		1e-03	10500		1		٠	4	٠			9			
	115 Step-ellipsoid Cauchy	1e-02	10500	-	П			4				9	-		31e-1/1e4
	ipsoid	1e-01	9320		1			4.1				4.5			15
nension	tep-ell	1e+00 $1e-01$	4860		1			9.9				3.4			29
this value divided by dimension	115 S	1e + 01	514	41e+0/1e5	1.1	25e+0/2e3		1.8	10e+1/1e4		59e+0/2e3	1	12e+1/1e6		1.1
		1e + 02	26.7	16	12	25	٠	1.1	470	17e+1/2e5	24	4.8	2.6e5	53e+1/1e6	
ns to reach		1e + 03	4.15	8.9	11	14	17e + 2/2e3	1	1.2	7.1	3.8	4.9	2.2	420	1.1
of function evaluations to reach		Δ ftarget	$\text{ERT}_{\text{best}}/\text{D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

Table 166: 40-D, running time excess ERT/ERT_{best} on f_{116} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

																1]
The state of the s			Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	iAMaLGaM IDEA [4]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]
-			1e-07	1.36e5		-1			1.2				3.3			
			1e-05	1.28e5		1			1.2				3.4			
			1e-04	1.25e5		1			1.2				3.4			
		Ø	1e-03	1.21e5		1			1.3				3.5			
0		116 Ellipsoid Gauss	1e-02	1.17e5		1			1.3	٠			3.6	٠		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ion	Ilipsoi	$1\bar{\mathrm{e}}$ -01	1.13e5		1		٠	1.3	÷			3.7	÷		٠
711(dimens	116 E	1e + 00	1.08e5		1			1.3				3.8			
TSOC TALL	rided by	•	1e+01	1.04e5		1			1				3.6			
-	alue div		1e + 02	60200		1.2			1				3.2			
2	reach this v		1e + 03	13100	65e+2/1e5	П	20e+3/2e3	19e+4/500	1.1	93e+3/1e4	71e+3/2e5	14e+4/2e3	6.1	49e+3/1e6	37e+3/1e6	52e+3/1e4
3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	function evaluations to reach this value divided by dimension		Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES
	fun															

on f_{117} , in italics is given the median final function value and the median number Table 167: 40-D, running time excess ERT/ERT_{bes} of function evaluations to reach this value divided by

Table 107: 40-D, running time excess E_{LL}/E_{LL} best on J117, in trancs is given the median much factor value and the median num	ing time exec	SS ELL	$^\prime$ Errt $_{ m pe}$	$_{\rm st}$ on $_{\rm J117}$, 1	III Italic	S IS SIVE	en the n	nechan 1	mai ium	crion va	ine and the median in	=
of function evaluations to reach this value divided by dimension	to reach this	s value c	livided k	by dimension	T.							
				117 Ellipsoid unif	lipsoid	l unif						
Δ ftarget	1e + 03	1e + 02		1e+00	$\hat{1}e-01$	1e-02	1e-03		1e-05	1e-07	$\Delta { m ftarget}$	
$\text{ERT}_{\text{best}}/\text{D}$	31300	1.35e5	2.11e5	2.97e5	3.4e5	3.65e5	4.33e5	4.57e5	4.79e5	5.28e5	$\text{ERT}_{\text{best}}/\text{D}$	
ALPS	31e+3/1e5			•							ALPS [15]	
AMaLGaM IDEA	4.3	11	23	90e+0/1e6							AMaLGaM IDEA [4]	
BayEDAcG	58e+3/2e3										BayEDAcG [9]	
BFGS	16e+4/400										BFGS [22]	
BIPOP-CMA-ES	1	1	1	П	1	1	1	1	1	1	BIPOP-CMA-ES [14]	
(1+1)-CMA-ES	12e+4/1e4				•						(1+1)-CMA-ES [2]	
DASA	82e+3/2e5			•							DASA [18]	
DEPSO	18e+4/2e3										DEPSO [11]	
iAMaLGaM IDEA	14	15	7.1	13e+1/1e6							iAMaLGaM IDEA [4]	
(1+1)-ES	50e + 3/1e6										(1+1)-ES [1]	
Monte Carlo	37e+3/1e6										Monte Carlo [3]	
IPOP-SEP-CMA-ES	14e+4/1e4			•	•	•	•				IPOP-SEP-CMA-ES [21]	

on f_{118} , in italics is given the median final function value and the median number Table 168: 40-D, running time excess ERT/ERT_{bes} of function evaluations to reach this value divided by

=======================================																
meana				Д		EA [4]	[6]	- T	3S [14]	3S [2]	~	T	EA [4]	Ξ	3]	POP-SEP-CMA-ES [21]
am n			Δ ftarget	ERT _{best} /D	ALPS [15]	AMaLGaM İDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [1	AMaLGaM IDEA [4]	(1+1)-ES $[1]$	Monte Carlo [3]	P-CMA
ne an			4	EH	A	AMaLC	Bay	B	BIPOP.	(1+1)	Ď,	DE	iAMaL((1+	Mon	OP-SE
OII Val			20	3290		9			4				3			=
milcr.			1e-07	329		Ä	·	٠	H.	•	•	٠	2	٠	•	_
111131			1e-05	3110		16		٠	1.3	٠		٠	24	٠		-
ecman				2920		16			1.2	•			56	•		-
rie in			1e-03	2720		10			1.2				23			-
s given		uchy	1e-02	2410		3.2			1.1		-		18	-		-
rancs		oid Ca	1e-01	2050		7			1.1				7.3			-
118, 111	nsion	118 Ellipsoid Cauchy	$1e + 0\bar{0}$	1200		1			1.4				6.5			1.4
est on J	by dime	118	$1e+01$ $1e+0\overline{0}$ $1e-01$ $1e-0\overline{2}$	086		1			1	•			1.8			1.1
q_{1}	ue divided		1e+02	363	38e+1/1e5	2.1			1.2	46e+1/1e4	13e+2/4e5		1	96e+1/1e6		1.6
TIME excess r	reach this val		1e + 03	139	35	3.5	28e+2/2e3	16e+4/2e3	1	7.7	1.9e4	24e+2/2e3	1.6	8200	38e + 3/1e6	1.3
DIE 100: 40-L), Fulling time excess $\text{DAJ}/\text{DAJ}_{ ext{best}}$ on $J118$, in trancs is given the median index function value and the median in	unction evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES
DIE 1	func				I											

Table 169: 40-D, running time excess ERT/ERT_{best} on f_{119} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	0		in / The Desi	1 (6117)		0					$\frac{1}{1}$
function evaluations to reach this value divided by dimension	to reach	this val	ne divided by	/ dimension							
			119 S	119 Sum of different powers Gauss	erent	powers	Gauss				
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-01 = 1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\text{ERT}_{\text{best}}/\text{D}$	0.025	1.28	1060	3080	3930	13300	53000	1.18e5	2.51e5	3.2e5	ERT_{best}/D
ALPS	Т	1.8	20	88e-1/1e5							ALPS [15]
AMaLGaM IDEA	1	1	4.8	17	24	8. 8.	3.9	2.2	1.2	1.3	AMaLGaM IDEA [4]
BayEDAcG	1.1	1.2	2.2	93e-1/2e3							BayEDAcG [9]
BFGS	Т	029	95e+0/1e3								BFGS [22]
BIPOP-CMA-ES	1	7.7	-	1	П	1	1	1	1	П	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	180	51e+0/1e4								(1+1)-CMA-ES [2]
DASA	П	069	43e+0/2e5								DASA [18]
DEPSO	1.1	8.6	35e+0/2e3								DEPSO $[11]$
iAMaLGaM IDEA	1	2.7	5.5	57	84	27	7	3.2	1.5	1.5	iAMaLGaM IDEA [4]
(1+1)-ES	1.7	7.5	36e+0/1e6								(1+1)-ES [1]
Monte Carlo	П	1.2	28e+0/1e6								Monte Carlo [3]
IPOP-SEP-CMA-ES	4.1	4	26e+0/1e4								IPOP-SEP-CMA-ES [21]

Table 170: 40-D, running time excess ERT/ERT_{best} on f_{120} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

table 110. 30-P, tunning anne excess ritt/ritt best on /120, in regices is given and innea function value and ancidan num	o reach this value divided by dimension	120 Sum of different powers unif	$1e+03$ $1e+02$ $1e+01$ $1e+00$ $1e-01$ $1e-01$ $1e-03$ $1e-04$ $1e-05$ $1e-07$ Δ ffarget	996e6 E	1 1 $23e+0/1e5$ ALPS [15]	1 2.8 17 30e-1/1e6 AMaLGaM IDEA [4]	1 1.2 53+0/2e3 BayEDAcG [9]	3.7 550 82e+0/800 BFGS [22]	1 68 1 1 1 1 1 1 BIPOP-CMA-ES [14]	1 400 $61e+0/1e4$	47e+0/2e5	1 1300 $95e+6/2e3$ DEPSO [11]	1 5.4 64 $48e-1/1e6$ iAMaLGaM IDEA [4]	1 220 $39e+\phi/1e6$	1 1.9 $29e+0/1e6$ Monte Carlo [3]	
	his value divi		1e+02 1e+		1 23e+0	2.8	Ī	Ī	68		`					
S oming S	o reach t		1e + 03	0.025	1	1	1	3.7	1	1	1	1	1	1	1	
10. 10. 10. 10. 1 min.	function evaluations t		Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	

Table 171: 40-D, running time excess ERT/ERT_{best} on f_{121} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

sto reach this value divided by dimension 121 Sum of different powers Cauchy 121 Sum of different powers Cauchy $1-0.25$ 1.4 18.2 $16+01$ $16+02$ $16+03$ $16+02$ $16+03$ $16+03$ $16+02$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+03$ $16+13$ 16				get	t/D	[15]	IDEA [4]	.G [9]	[22]	A-ES [14]	A-ES [2]	[18]	[11]	IDEA [4]	S [1]	arlo [3]	MA-ES [21]
this value divided by dimension 121 Sum of different powers Cauchy 1e+02				$\Delta ext{ftar}_l$	ERTbes	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11	iAMaLGaM IDEA [4	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]
this value divided by dimension 12.1 Sum of different powers Cauchy 1.21 Sum of different powers Cauchy 1.4 Sum of different powers Cauchy 1.4 Sum of different powers Cauchy 1.4 Sum of different powers Cauchy 1.4 Sum of 1.4				1e-07	5040		11			7				65			Н
this value divided by dimension 12.1 Sum of different powers Cauchy 1.21 Sum of different powers Cauchy 1.4 Sum of different powers Cauchy 1.4 Sum of different powers Cauchy 1.4 Sum of different powers Cauchy 1.4 Sum of 1.4				1e-05	2430		21			1.6				110			Н
this value divided by dimension 121 Sum of different powers Cauchy 1-4 18.2 1e+00 1e+00 1e-01 1e-02 1e-03 1.4 18.2 43.5 84 205 689 1 1600 $84e^{-1}/1e^5$ 84 205 689 1.8 3 3 3 $8e^{-2}/2e^3$ 1 1.9 2400 $14e^{+0}/1e^4$ 1 3.5 $27e^{+0}/2e^3$ 1 1.1 1 1 1 3.4 28 $54e^{-1}/2e^3$ 1 1.5 8.3 $28e^{-1}/2e^3$ 1 1.6 28e $6e^{-1}/2e^3$ 1 1.7 1 1 1 1 1.8 28e $6e^{-1}/2e^3$ 1 2.9 $6e^{-1}/2e^3$ 1 3.1 28e $6e^{-1}/2e^3$ 1 3.1 3.2 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5				1e-04	1430		35			1.3				100			-
this value divided by dimension 12.1 Sum of different power 1							73			П				130			-
this value div 1e+02 $1e+141.4$ 1.8 $1.81.8$ 1.8 $1.91.9$ $2.41.9$ $2.41.9$ $2.41.9$ $2.41.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ 2.8			ers Ca	1e-02	202		130			Н	•			310	•		Н
this value div 1e+02 $1e+141.4$ 1.8 $1.81.8$ 1.8 $1.91.9$ $2.41.9$ $2.41.9$ $2.41.9$ $2.41.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ 2.8		J	erent power	$1e-0\overline{1}$	84		37	38e-2/2e3		1.1				100			П
this value div 1e+02 $1e+141.4$ 1.8 $1.81.8$ 1.8 $1.91.9$ $2.41.9$ $2.41.9$ $2.41.9$ $2.41.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ $2.81.5$ 2.8	SU J. 2217	y dimension	um of diffe	1e+00	43.5	84e-1/1e5	13	35		1.1	14e+0/1e4		54e-1/2e3	28	95e-1/1e6		
Afarget 1e+03 1e+02 ERT _{Dest} /D 0.025 1.4 AMALGaM IDEA 1 1.8 BAyEDAcG 1 2.3 BFGS 1 1600 BIPOP-CMA-ES 1 1.9 (1+1)-CMA-ES 1 35 DEPSO 1.1 3.4 iAMALGaM IDEA 1 1.5 IAMALGA	this value divided	lue divided l	121 S	1e + 01	18.2	1600	14	33	92e+0/2e3	1.1	2400				4.8e4	28e+0/1e6	-
Afarget 1e+03 ERT _{best} /D 0.025 ALPS 1 AMALGaM IDEA 1 BAyEDAcG 1 BROP-CMA-ES 1 (1+1)-CMA-ES 1 DASA 1.1 DEPSO 1.1 iAMALGAM IDEA 1 iAMALGAM IDEA 1 iAMALGAM IDEA 1 (1+1)-ES 1 Monte Carlo 1.1 IPOP-SEP-CMA-ES 1		this va		1e + 02	1.4	1	1.8	2.3	1600	1.8	1.9	35	3.4	1.5	2.7	1.2	2.5
Aftarget ERT _{best} /D AMALGAM IDEA BAYEDACG BROP-CMA-ES (1+1)-CMA-ES DASA DEPSO iAMALGAM IDEA DEPSO iAMALGAM IDEA DEPSO iAMALGAM IDEA (1+1)-ES Monte Carlo IPOP-SEP-CMA-ES	0	to reach		1e + 03	0.025	1	1	П	Т	1	1	П	1.1	1	1	1.1	-
		nction evaluations t		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	$_{ m BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES

in italics is given the median final function value and the median number Table 172: 40-D, running time excess ERT/ERT.

Table 173: 40-D, running time excess ERT/ERT_{best} on f_{123} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

						[4]			4.				[4]			[51]
alla tile illedia			Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO $[11]$	AMaLGaM IDEA [4]	(1+1)-ES $[1]$	Monte Carlo [3]	POP-SEP-CMA-ES [21]
value						4			Ш				17.			IP(
11011			1e-07	1.83e7		٠		•	П	•		•		•		
ma mi			1e-05 1e-07	5.67e6	•	٠		•	1	•						
neman 1			1e-04	9.4e5	•	٠		•	1	•						
T OIL			1e-03	5.98e5		•		•	Н	•		•		•		
IS SIVEII			1e-01 $1e-02$	3.88e5		٠		•	1	•						
III Italies	n	23 Schaffer F7 unif	1e-01	2.36e5				٠	1	٠						
st on $J123$, 1	y dimension	$123~\mathrm{Sch}$	1e+00	59200	82e-1/1e5	43e-1/1e6			1	14e+0/1e4			46e-1/1e6	11e+0/1e6	88e - 1/1e6	. ,
ed באזבר / דאור	lue divided b		1e+01	331	20	1	13e+0/2e3	18e+0/900	3.3	430	12e+0/2e5	20e+0/2e3	11	1.4e4	470	130+0/10/
	this va		1e+02	0.025	1.5	1.3	1.1	28	2.5	1	6.6	1.1	1.1	34	1.2	-
arma St	to reach		1e + 03	0.025	1	1	1	1	1	1	1	1	1	П	1	-
table 119. $\pm v_c - D$, running time excess $D(v_c) = \frac{1}{D} \int D(v_c) dv_c$ in transfer the inequal final function value and the inequal func	of function evaluations to reach this value divided by dimension		Δ ftarget	ERT _{best} /D	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES
Ī	of 1															

Table 174: 40-D, running time excess ERT/ERT_{best} on f_{124} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

						4			4]				[4]			[21]
			Δ ftarget	ERT_{best}/D	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	3IPOP-CMA-ES [14]	[1+1)-CMA-ES $[2]$	DASA [18]	DEPSO [11]	AMaLGaM IDEA [4]	(1+1)-ES $[1]$	Monte Carlo [3]	POP-SEP-CMA-ES [21]
				щ		AMal	B		BIPO	(1+1)		Н	iAMa	٥	Ψ	S-dOdi
			1e-07		٠	Н			П	•			3.3	•		
			1e-05	28600		1.3			1				6.4			
			1e-04	20500	•	1.6			-				8. 8.			16e-4/1e4
 		>	1e-02 $1e-03$	9160	٠	3.5			1				19			2.2
0		Cauch	1e-02	6580		4.6			1				27			1.5
	sion	124 Schaffer F7 Cauchy	1e-01	5310	•	5.4	11e-1/2e3		-				16			1.4
Dest 717#7	ed by dimens	$124~\mathrm{Sc}$	1e+00	754	59e-1/1e5	1.4	5.2		-	95e-1/1e4	11e+0/2e5	58e-1/2e3	3.5	84e-1/1e6	89e-1/1e6	3.2
of function exaliations to reach this value divided by dimension	value divid		1e+01	14.3	13	6.6	20	17e+0/2e3	-	200	1.6e5	8.2	4.6	4600	1.2e4	-
	ch this		1e + 02	0.025	1.2	1.1	1.1	180	4.1	-1	1.3	1.3	1.3	4.2	1.4	3.1
	is to rea		1e + 03	0.025	1	1	1	1	1	1	1	1	1	1	П	Н
	function evaluation		$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	$\operatorname{BayEDAcG}$	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES
	5															

Table 175: 40-D, running time excess ERT/ERT_{best} on f_{125} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

on $f_{1,96}$, in italics is given the median final function value and the median number Table 176: 40-D, running time excess ERT/ERT_{best} of function evaluations to reach this value divided by

T-01: 40-T	7, rummg	riiie ex	CCSS FIN	T / EDT	hest on 112	6, 111 IUAIICS	is give	T file II	rectian	nnan in	IICLIOII	For 100: 40-D, running time excess $Enr/EnrE_{pest}$ on J126, in traines is given the median inner one and the median numerial section V
unction eval	uations to	reach th	his value	e divide	inction evaluations to reach this value divided by dimension	sion						
				-	$126~{ m Griew}$	126 Griewank-Rosenbrock unif	brock	$_{ m unif}$				
Δft	Δ ftarget	1e+03	1e + 02	1e + 01	1e+00	1e-01	1e-02 1e-03	1e-03	1e-04	1e-04 $1e-05$ $1e-07$	1e-07	$\Delta { m ftarget}$
ERT	ERT_{best}/D	0.025	0.025	0.025	218	nan	nan	nan	nan	nan	nan	$\text{ERT}_{\text{best}}/\text{D}$
A	ALPS	1	1	1.1	10	81e-2/1e5			•			ALPS [15]
AMaLG	AMaLGaM IDEA	1	1	1.1	П	50e-2/1e6	٠	٠	•	•		AMaLGaM IDEA [4]
Bayk	BayEDAcG	П	1	1.1	12e-1/2e3							BayEDAcG [9]
Bi	BFGS	1	1	28	29e-1/1e3	•	•	•	٠	•	•	BFGS [22]
BIPOP.	BIPOP-CMA-ES	1	1	1	.8	50e-2/4e5						BIPOP-CMA-ES [14]
$(1+1)^{-1}$	(1+1)-CMA-ES	1	1	1	16e-1/1e4		٠	٠	•	•		(1+1)-CMA-ES [2]
D'	DASA	П	1	1	20e-1/2e5							DASA [18]
DE	DEPSO	1	1	1.1	23e-1/2e3	•	•		•	•		DEPSO [11]
iAMaLG	iAMaLGaM IDEA	1	1	1	4.3	51e-2/1e6						iAMaLGaM IDEA [4]
(1+	(1+1)-ES	П	П	П	16e-1/1e6				•	•		(1+1)-ES [1]
Mont	Monte Carlo	1	1	1.1	14e-1/1e6	•			•			Monte Carlo [3]
IPOP-SE	POP-SEP-CMA-ES	-	-	-	17e-1/1e4		٠	•		•	•	IPOP-SEP-CMA-ES [21]

Table 177: 40-D, running time excess ERT/ERT_{best} on f_{127} , in italics is given the median function value and the median number

	0			CESC	7776	0					
of function evaluations to reach this value divided by dimension	ons to re	ach this	value d	ivided by d	imension						
				127 Gri	ewank-Ro	127 Griewank-Rosenbrock Cauchy	Cauchy				
Δ ftarget	1e + 03	1e+02	1e + 01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{\text{best}}/\text{D}$	0.025	0.025	0.025	17.6	44700	2.63e5	3.78e5	6.24e5	6.49e5	6.66e5	${ m ERT_{best}/D}$
ALPS	1	1	1.1	7.1	70e-2/1e5	-					ALPS [15]
AMaLGaM IDEA	1	1	1	_	2.3	26	19e - 3/1e6	•	٠	٠	AMaLGaM IDEA [4]
BayEDAcG	1	1	1.2	13	59e-2/2e3						BayEDAcG [9]
BFGS	1	П	300	28e-1/2e3			•		•	•	BFGS [22]
BIPOP-CMA-ES	1	1	1	1	2.4	1	1	1	1	П	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	П	1	13e-1/1e4		-	٠		•	•	(1+1)-CMA-ES [2]
DASA	П	П	1	20e-1/2e5							DASA [18]
DEPSO	1	П	1	53	95e-2/2e3		•		•	•	DEPSO [11]
iAMaLGaM IDEA	1	1	1.2	4	3.5	8.7	11e-3/1e6				iAMaLGaM IDEA [4]
(1+1)-ES	П	П	П	8.4e5	11e-1/1e6		•				(1+1)-ES [1]
Monte Carlo	П	П	1.1	15e-1/1e6							Monte Carlo [3]
IPOP-SEP-CMA-ES	Н	Н	-	1.1	Н	16e-2/1e4	•		•	•	IPOP-SEP-CMA-ES [21]

Table 178: 40-D, running time excess ERT/ERT_{best} on f_{128} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

ore 110: 40-12, 1 mmm	S ULLILLO C.		r, Litt best	011 / 128	s, 111 10cm	12 13 81	VCII UIIC	HICHIGH	TITION TO	TICOTOTI V	included the transport of the pest of 128, in tented in the incurant interior value and the incurrent number of	4
function evaluations to reach this value divided by dimension	o reach t	this valu	e divided by	dimens	ion							
				128 G	128 Gallagher Gauss	er Gaus	SS					
Δ ftarget	1e + 03	1e+03 $1e+02$	1e + 01	1e+00	$1e+00 1e-0\overline{1} 1e-02 1e-03$	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$	
${ m ERT_{best}/D}$	0.025	0.025	1.03e5	9.57e5	2.82e6	2.82e6 2.82e6 2.82e6	2.82e6	2.82e6	2.82e6	2.82e6	ERT_{best}/D	
ALPS	1	1	70e+0/1e5								ALPS [15]	
AMaLGaM IDEA	П	1	10	3.4	2.4	2.4	2.4	2.4	2.4	2.4	AMaLGaM IDEA [4]	
BayEDAcG	П	1	73e+0/2e3								BayEDAcG [9]	
BFGS	П	1	84e+0/1e3							٠	BFGS [22]	
BIPOP-CMA-ES	1	1	1	1	1	1	1	1	1	1	BIPOP-CMA-ES [14]	
(1+1)-CMA-ES	П	1	81e+0/1e4				•	•		•	(1+1)-CMA-ES $[2]$	
DASA	Н	1	79e+0/2e5								DASA [18]	
DEPSO	П	1	80e+0/2e3							٠	DEPSO [11]	
iAMaLGaM IDEA	1	1	32	4.8	2.5	2.5	2.5	2.5	2.5	2.5	iAMaLGaM IDEA [4]	
(1+1)-ES	П	1	74e+0/1e6				•	•		•	(1+1)-ES [1]	
Monte Carlo	П	1	68e+0/1e6								Monte Carlo [3]	
TEOD SED CMA FS		-	800+0 /101								TEOD SED CMA ES [91]	

Table 179: 40-D, running time excess ERT/ERT_{best} on f_{129} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

mii					ı											
able 113. 40-D, running time excess first least on 1129, in reades is given the median innerion value and the median nu			Δ ftarget	${ m ERT_{best}/D}$	ALPS [15]	AMaLGaM IDEA [4]	BayEDAcG [9]	BFGS [22]	BIPOP-CMA-ES [14]	(1+1)-CMA-ES [2]	DASA [18]	DEPSO [11]	iAMaLGaM IDEA [4]	(1+1)-ES [1]	Monte Carlo [3]	IPOP-SEP-CMA-ES [21]
IIICEIOII V			1e-07	2.62e6					1							
IIIIai II			1e-05	2.59e6		٠		٠	1	٠		٠		•		
meman			1e-04	2.58e6		٠		٠	1	٠		٠				
		£	1e-03	2.56e6		•		•	1	•		•				
S er enr		129 Gallagher unif	1e+00 $1e-01$ $1e-02$	2.55e6		٠		•	1	٠		•		•		
9, 111 Ita	sion	Gallagl	1e-01	2.54e6		•			1	•						
OII J12	dimen	129	1e + 00	9.4e5					1							
tar / pest	e divided by		1e + 01	8.67e5	70e+0/1e5	991/0 + 999	81e+0/2e3	84e+0/800	1	80e+0/1e4	79e+0/2e5	84e+0/2e3	991/0 + 999	74e+0/1e6	68e + 0/1e6	810+0/101
ACCESS IN	his valu		1e+02	0.025	1	1	1	1	1	1	1	1	1	П	1	-
, ume e	reach t		1e + 03	0.025	Т	1	Н	Т	1	1	Н	Т	1	Н	Н	-
16 113. 40-D, 1 unung	function evaluations to reach this value divided by dimension		Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	BayEDAcG	BFGS	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	iAMaLGaM IDEA	(1+1)-ES	Monte Carlo	IPOP-SEP-CMA-ES
g	ίf															

Table 180: 40-D, running time excess ERT/ERT_{best} on f_{130} , in italics is given the median function value and the median number

)		_	neon)					
of function evaluations to reach	s to read		this value divided by dimension	by dimensic	no						
				130 Gal	130 Gallagher Cauchy	uchy					
Δ ftarget	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
ERT_{best}/D	0.025	0.025	317	6930	42100	42200	42200	42300	42400	42500	ERT_{best}/D
ALPS	1	1	42e+0/1e5	-							ALPS [15]
AMaLGaM IDEA	П	Т	7.5	100	92	92	95	95	92	92	AMaLGaM IDEA [4]
$_{ m BayEDAcG}$	н	П	3.8	П	17e-1/2e3						BayEDAcG [9]
BFGS	1	П	83e+0/2e3		•	٠		٠			BFGS [22]
BIPOP-CMA-ES	1	П	1	24	7.9	7.9	6.7	7.9	7.9	7.9	BIPOP-CMA-ES [14]
(1+1)-CMA-ES	1	1	47e+0/1e4								(1+1)-CMA-ES [2]
DASA	1	П	75e+0/2e5								DASA [18]
DEPSO	1	Т	12	20e+0/2e3		•	•	•			DEPSO [11]
iAMaLGaM IDEA	1	П	3.4	99	40	20	89	70	26	26	iAMaLGaM IDEA [4]
(1+1)-ES	1	П	2.2e4	20e+0/1e6	-						(1+1)-ES [1]
Monte Carlo	1	П	68e+0/1e6								Monte Carlo [3]
IPOP-SEP-CMA-ES	П	-	-	1.6		-	Н	-	Н	Н	IPOP-SEP-CMA-ES [21]

References

- [1] Anne Auger. Benchmarking the (1+1)-ES with one-fifth success rule on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2453–2458.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2467–2472.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2485–2490.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noisy black-box optimization benchmarking. In Rothlauf [24], pages 2351–2358.
- [5] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [24], pages 2263–2268.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [24], pages 2269–2274.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [24], pages 2275–2280.
- [8] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noisy functions. Technical Report 2009/21, Research Center PPE, 2009.
- [9] Marcus R. Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noisy function testbed. In Rothlauf [24], pages 2383–2388.
- [10] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noisy BBObenchmark 2009 testbed. In Rothlauf [24], pages 2367–2374.
- [11] José García-Nieto, Enrique Alba, and Javier Apolloni. Particle swarm hybridized with differential evolution: black box optimization benchmarking for noisy functions. In Rothlauf [24], pages 2343–2350.
- [12] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [13] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA, 2009.
- [14] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2397–2402.

- [15] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noisy testbed.
- [16] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 988.
- [17] Waltraud Huyer and Arnold Neumaier. Benchmarking of SNOBFIT on the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 987.
- [18] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noisy function testbed. In Rothlauf [24], pages 2375–2382.
- [19] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noisy functions. In Rothlauf [24], pages 2359–2366.
- [20] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noisy function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 985.
- [21] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2441–2446.
- [22] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2415–2420.
- [23] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 noisy testbed. In Rothlauf [24], pages 2429–2434.
- [24] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.