Gestione dello Stallo

296

Il problema dello stallo

- Un insieme di processi bloccati ognuno in possesso di una risorsa ed in attesa di acquisire una risorsa posseduta da un altro processo (nell'insieme).
- Esempio
 - Il sistema ha due unità nastro.
 - P_1 e P_2 ognuno in possesso di una unità e ognuno ha bisogno di una seconda unità.
- Esempio
 - semafori A e B, inizializzati a 1

 P_0 P_1 wait (A); wait(B) wait (B); wait(A)

Sistemi Operativi A.A 2020/2021 297

Esempio del ponte

- Traffico solo in una direzione.
- Ogni sezione del ponte vista come risorsa.
- Se accade uno stallo, può essere risolto se una macchina torna indietro.
- Molte macchine potrebbero dover tornare indietro in caso di stallo.
- E' possibile avere attesa indefinita.

Sistemi Operativi A.A 2020/2021 298

298

Modello del sistema

- Tipi di risorse $R_1, R_2, ..., R_m$ es: cicli CPU, spazio memoria, dispositivi I/O
- Ogni tipo di risorsa R_i ha W_i istanze.
- Ogni processo usa una risorsa come segue:
 - richiesta
 - uso
 - rilascio

Sistemi Operativi A.A 2020/2021 299

Caratterizzazione dello stallo

lo stallo può avvenire se si hanno 4 condizioni contemporaneamente (condizioni necessarie):

- Mutua esclusione: solo un processo alla volta può usare una risorsa.
- Possesso e attesa: un processo in possesso di una o più risorse è in attesa di acquisire altre risorse possedute da altri processi.
- No prelazione: una risorsa può essere rilasciata solo volontariamente dal processo che la possiede quando ha finito di usarla.
- **Attesa circolare:** esiste una sequenza $\{P_0, P_1, ..., P_0\}$ di processi in attesa tale che P_0 è in attesa di una risorsa posseduta da P_1 , P_1 è in attesa risorsa posseduta da P_2 , ..., P_{n-1} è in attesa di una risorsa posseduta da P_n , e P_n è in attesa di una risorsa posseduta da P_0 .

Sistemi Operativi A.A 2020/2021 300

300

Grafo di allocazione delle risorse

Un insieme di vertici V e un insieme di archi E.

- V è partizionato in due insiemi:
 - $P = \{P_1, P_2, ..., P_n\}$, insieme di tutti i processi nel sistema.
 - $R = \{R_1, R_2, ..., R_m\}$, insieme di tutti i tipi di risorsa nel sistema.
- arco di richiesta: l'arco orientato $P_i \rightarrow R_j$ indica che il processo P_i sta richiedendo una risorsa del tipo R_j
- arco di assegnazione: l'arco orientato $R_j \rightarrow P_i$ indica che una istanza di R_i è assegnata a P_i

Sistemi Operativi A.A 2020/2021 301

Fatti

- Se il grafo non ha cicli \Rightarrow no stallo.
- Se il grafo contiene un ciclo ⇒
 - se solo una istanza per tipo di risorsa, STALLO.
 - se più di una istanza per tipo risorsa, si ha possibilità di stallo.

Sistemi Operativi A.A 2020/2021 306

306

Metodi per la gestione dello stallo

- Prevenire o evitare situazioni di stallo in modo che il sistema non entri mai in stallo.
- Permettere che il sistema entri in stallo, individuarlo e poi ripristinarlo.
- **Ignorare** il problema fingendo che situazioni di stallo non possano mai accadere nel sistema. Questa è la 'soluzione' di molti sistemi operativi tra cui Linux e Windows.

Sistemi Operativi A.A 2020/2021 307

Prevenzione dello stallo

Si vincola la modalità con cui si fanno richieste, in modo da escludere almeno una condizione necessaria per lo stallo

- Mutua esclusione non necessaria per risorse condivisibili; obbligatoria per risorse non condivisibili.
- Possesso e attesa garantire che quando un processo richiede una risorsa non possieda altre risorse.
 - processo richiede e acquisisce tutte le risorse necessarie prima dell'esecuzione o richiede risorse solo quando non ne possiede.
 - bassa utilizzazione delle risorse, possibile attesa indefinita.

Sistemi Operativi A.A 2020/2021 308

308

Prevenzione dello stallo (Cont.)

- No prelazione -
 - se un processo in possesso di alcune risorse richiede una risorsa non disponibile allora tutte le risorse possedute vengono rilasciate.
 - le risorse prelazionate sono aggiunte alla lista delle risorse per cui il processo è in attesa.
 - il processo ripartirà solo quando potra acquisire tutte le sue vecchie risorse più le nuove che sta richiedendo.
- Attesa circolare imporre un ordinamento totale a tutti i tipi di risorsa e imporre che ogni processo richieda le risorse in ordine crescente.

Sistemi Operativi A.A 2020/2021 309

Evitare lo stallo

E' necessario che il sistema possieda delle informazioni a priori.

- Il modello più semplice prevede che ogni processo dichiari il numero massimo di risorse di ogni tipo di cui potrebbe avere bisogno.
- L'algoritmo per evitare lo stallo esamina dinamicamente lo stato di allocazione delle risorse per assicurare che non ci potrà mai essere una condizione di attesa circolare.
- Lo stato di allocazione delle risorse è definito dal numero di risorse disponibili e allocate e dalle richieste massime dei processi.

Sistemi Operativi A.A 2020/2021 310

310

Stato Sicuro

- Quando un processo richiede una risorsa disponibile il sistema deve decidere se l'allocazione immediata al processo lascia il sistema in uno stato sicuro.
- Il sistema è in uno stato sicuro se esiste una sequenza sicura di tutti i processi.
- La **sequenza** <P₁, P₂, ..., P_n> è **sicura** se per ogni P_i, le risorse che P_i può ancora richiedere possono essere soddisfatte con le risorse attualmente disponibili + le risorse possedute da tutti i processi P_i, con j<i.
 - Se le necessità di P_i non sono disponibili, allora P_i può aspettare fino a che tutti P_j abbiano finito.
 - Quando P_j hanno terminato, P_i può ottenere tutte le risorse necessarie, eseguire, ritornare le risorse allocate e terminare.
 - Quando P_i termina, P_{i+1} può ottenere le risorse necessarie e così via...

Sistemi Operativi A.A 2020/2021 311

Fatti

- Se un sistema è in uno stato sicuro ⇒ no stallo.
- Se un sistema è un uno **stato non sicuro** ⇒ **possibilità di stallo**.
- Evitare stallo ⇒ assicurare che un sistema non entrerà mai in uno stato non sicuro.

Sistemi Operativi A.A 2020/2021 312

312

Algoritmo con grafo allocazione risorse

- Si usa in caso di unica istanza per ogni tipo di risorsa
- Arco di rivendicazione: $P_i \rightarrow R_j$ indica che il processo P_i potrebbe richiedere la risorsa R_j ; rappresentato da riga tratteggiata.
- Arco di rivendicazione convertito in un arco di richiesta quando un processo richiede la risorsa.
- Quando la risorsa viene rilasciata dal processo, arco di assegnazione convertito in arco di rivendicazione.
- Le risorse devono essere rivendicate a priori dal sistema.
- **Algoritmo:** una risorsa viene concessa se dopo sostituzione arco (rivendicazione → assegnazione) non si forma un ciclo nel grafo.
- Costo: O(n²)

Sistemi Operativi A.A 2020/2021 313

Algoritmo del Banchiere

- Si applica al caso di risorse con istanze multiple.
- Ogni processo deve dichiarare a priori il massimo uso per ogni tipo di risorsa.
- Quando un processo richiede una risorsa potrebbe dover attendere.
- Quando un processo prende tutte le risorse necessarie le deve ritornare in un tempo finito.

Sistemi Operativi A.A 2020/2021 316

316

Strutture dati per l'algoritmo del Banchiere

Sia n = numero di processi, e m = numero di tipi di risorse.

- **Available**: Vettore lungo m. Se Available[j] = k, ci sono k istanze della risorsa R_i disponibili.
- Max: matrice n x m.
 Se Max [i,j] = k, allora il processo P_i potrebbe richiedere al massimo k istanze del tipo di risorsa R_i.
- Allocation: matrice n x m. Se Allocation[i,j] = k allora P_i ha attualmente allocate k istanze di R_i.
- Need: matrice n x m.
 Se Need[i,j] = k, allora P_i potrebbe richidere altre k istanze di R_j per completare il task.

Need[i,j] = Max[i,j] - Allocation[i,j].

Sistemi Operativi A.A 2020/2021 317

Algoritmo verifica sicurezza

1. Siano Work e Finish vettori di lunghezza m e n.

Inizializzati:

Work = Available Finish [i] = false per i = 1,2, ..., n.

- 2. Trova un valore i tale che:
 - (a) Finish [i] = false
 - (b) $Need_i \leq Work$

Se i non esiste, vai a passo 4.

- Work = Work + Allocation; Finish[i] = true vai a passo 2.
- 4. Se Finish [i] == true per tutti gli i, allora il sistema si trova in uno **stato sicuro!**

Sistemi Operativi A.A 2020/2021 318

318

Algoritmo di richiesta risorse per il processo P_i

 $Request_i = vettore richieste per il processo <math>P_i$. Se $Request_i[j] = k$ allora il processo P_i vuole k istanze del tipo di risorsa R_i

- 1. Se Request_i ≤ Need_i vai a passo 2. Altrimenti, errore dal momento che il processo richiede più risorse di quelle dichiarate.
- 2. Se $Request_i \le Available$, vai a passo 3. Altrimenti P_i deve aspettare, perché le risorse non sono disponibili.
- 3. Pretende di allocare le risorse richieste a P_i modificando lo stato come segue:

Available = Available - Request;; Allocation; = Allocation; + Request;; Need; = Need; - Request;;

- ▶ Se dopo cambiamento **stato sicuro** \Rightarrow le risorse sono allocate a P_i .
- ▶ Se **stato unsafe** \Rightarrow P_i deve aspettare e il vecchio stato allocazione risorse deve essere rispristinato

UNIVERSITÀ DINFO DISIT FIRENZE

Sistemi On servici & & 2020/2021 310

Esempio Algoritmo del Banchiere

- 5 processi P_0 P_4 ; 3 tipi risorsa: A (10 istanze), B (5 istanze), and C (7 istanze).
- Snapshot al tempo T_0 :

	<u>Allocation</u>	<u> Max</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	010	753	3 3 2
Ρ	200	322	
Ρ	302	902	
Ρ	3 211	222	
P	4 002	433	

istemi Operativi A.A 2020/2021 320

320

Example (Cont.)

■ Calcolo matrice Need = Max - Allocation.

	<u>Allocation</u>	<u> Max</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC	ABC
P_0	010	753	743	3 3 2
P_1	200	322	122	
P_2	302	902	600	
P_3	2 1 1	222	011	
P_4	002	433	431	

- Il sistema è in uno stato sicuro dato che la sequenza $\langle P_1, P_3, P_4, P_2, P_0 \rangle$ è sicura.
 - Work = $[3\ 3\ 2] \rightarrow +A_1 \rightarrow [5\ 3\ 2] \rightarrow +A_3 \rightarrow [7\ 4\ 3] \rightarrow +A_4 \rightarrow [7\ 4\ 5] \rightarrow +A_2 \rightarrow [10\ 4\ 7] \rightarrow +A_0 \rightarrow [10\ 5\ 7]$

Setomi On annihi A A 2020 (2021 | 32.1

Esempio P_1 richiede (1,0,2) (Cont.)

■ Controllo Request \leq Available $(1,0,2) \leq (3,3,2) \Rightarrow$ true.

	<u>Allocation</u>	<u>Need</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	0 1 0	7 4 3	230
P_1	302	020	
P_2	302	600	
P_3	2 1 1	0 1 1	
P_4	002	4 3 1	

- Eseguendo alg. controllo sicurezza mostra che la sequenza $< P_1, P_3, P_4, P_0, P_2 >$ soddisfa il requisito.
 - Work = $[2\ 3\ 0] \rightarrow A_1 \rightarrow [5\ 3\ 2] \rightarrow A_3 \rightarrow [7\ 4\ 3] \rightarrow A_4 \rightarrow$ $[7\ 4\ 5] \rightarrow A_0 \rightarrow [7\ 5\ 5] \rightarrow A_2 \rightarrow [10\ 5\ 7]$
- Nel nuovo stato, la richiesta di P₄ (3,3,0) può essere concessa?
 - NO non disponibili
- La richiesta di P₀ (0,2,0) può essere concessa?
 - NO stato non sicuro

Sistemi Operativi A.A 2020/2021 322

322

Rilevamento dello Stallo

- Si permette al sistema di entrare in stallo
- Si usa algoritmo di rilevamento per rilevare condizione di stallo
- Si usa uno schema di ripristino

Sistemi Operativi A.A 2020/2021 323

Singola istanza per tipo risorsa

- Mantenere grafo d'attesa
 - I vertici sono processi.
 - $P_i \rightarrow P_j$ se P_i è in attesa di P_j .
- Periodicamente si invoca algoritmo per cercare ciclo nel grafo.
- Un algoritmo per cercare ciclo nel grafo richiede $O(n^2)$ operazioni, dove n è il numero di vertici del grafo.

Sistemi Operativi A.A 2020/2021 324

324

Grafo allocazione risorse e Grafo d'attesa

Grafo allocazione risorse Corrispondente grafo d'attesa

UNIVERSITÀ DINFO DISIT FIRENZE

Sistemi Operativi A.A 2020/2021 325

Molte istanze per tipo di risorsa

- Available: Un vettore di lunghezza m indica il numero di risorse disponibili per ogni tipo di risorsa.
- Allocation: Una matrice n x m definisce il numero di risorse per ogni tipo allocate al processo.
- Request: Una matrice $n \times m$ indica la richiesta corrente di ogni processo. Se Request [i][j] = k, allora il processo P_i sta richiedendo k risorse in più del tipo di risorsa R_i .

Sistemi Operativi A.A 2020/2021 326

326

Algoritmo rilevazione stallo

- 1. Siano *Work* e *Finish* due vettori di lunghezza *m* e *n*, Inizializzare:
 - (a) Work = Available
 - (b) Per i = 1, 2, ..., n, se Allocation_i $\neq 0$, then Finish[i] = false; altrimenti, Finish[i] = true.
- 2. Trovare un indice i tale che:
 - (a) Finish[i] == false
 - (b) $Request_i \leq Work$

Se i non esiste, vai al passo 4.

- 3. Work = Work + Allocation; Finish[i] = true vai al passo 2.
- 4. Se Finish[i] == false, per qualche i, $1 \le i \le n$, allora il **sistema è in stallo**. Inoltre, se Finish[i] == false, allora P_i è in stallo.

L'Algoritmo richiede un ordine di $O(m \times n^2)$ operazioni per rilevare la condizione di stallo.

Sistemi Onessiti A A 2020 DOM 327

Esempio

- Cinque processi $P_0 \dots P_4$; tre tipi di risorse A (7 istanze), B (2 istanze), and C (6 istanze).
- Snapshot a tempo T_0 :

	<u>Allocation</u>	Request	<u>Available</u>
	ABC	ABC	ABC
P_0	010	000	000
P_1	200	202	
P_2	303	000	
P_3	211	100	
P_4	002	002	

La sequenza $\langle P_0, P_2, P_3, P_1, P_4 \rangle$ porterà ad avere Finish[i] = true per ogni i.

Sistemi Operativi A.A 2020/2021 328

328

Esempio (Cont.)

 $ightharpoonup P_2$ richiede una istanza in più di C.

	<u>Allocation</u>	<u>Request</u>	<u>Available</u>
	ABC	ABC	ABC
P_0	010	000	000
P_1	200	202	
P_2	303	0 0 1	
P_3	211	100	
P_4	002	002	

- Stato del sistema?
 - Può ottenere risorse possedute da P_0 , ma insufficienti per soddisfare richieste degli altri processi.
 - Esiste uno stallo formato dai processi P_1 , P_2 , P_3 , e P_4 .

Sistemi Onesati i A A 2020 (2021 | 320

Uso dell'alg. di rilevamento

- Quando e ogni quanto invocarlo dipende da:
 - Ogni quanto lo stallo potrebbe verificarsi?
 - Quanti processi dovranno essere annullati (rolled back)?
 - uno per ogni ciclo disgiunto
- Se l'alg. di rilevamento è invocato arbitrariamente, possono formarsi molti cicli nel grafo delle risorse ed è difficile determinare quale dei processi in stallo ha "causato" lo stallo.
- Chiamarlo troppo spesso ha costo computazionale elavato
- Ripristino dallo stallo:
 - terminare processi
 - prelazione risorse

Sistemi Operativi A.A 2020/2021 330

330

Ripristino dallo stallo: Terminazione dei processi

- Terminare tutti i processi in stallo.
- Terminare un processo alla volta fino all'eliminazione del ciclo.
- In base a cosa scegliere il processo da terminare?
 - Priorità del processo
 - Per quanto tempo ha computato e quanto ancora rimane.
 - Risorse che il processo ha usato.
 - Risorse ancora necessarie al completamento.
 - Numero processi che devono essere terminati.
 - Il tipo di processo: interattivo o batch

Sistemi Operativi A.A 2020/2021 331

Ripristino da stallo: Prelazione risorse

- **Selezionare una vittima** minimizzando il costo. (es. n. risorse possedute, quantità di tempo già spesa)
- Fare Rollback ritornare ad uno stato sicuro e far ripartire il processo da questo stato.
- Attesa indefinita uno stesso processo selezionato sempre come vittima → includere il numero di rollback nel fattore di costo.

