Practice paper - 4

Topic – Basic BJT Amplifiers

1. Consider the following common-emitter amplifier circuit (Figure 1). Estimate the Q-point, small signal voltage gain, input and output resistances. Given that $\beta = 65$ and $V_A = 50$ V. Assume $V_{BE_ON} = 0.7$ V.

Figure 1

2. For the following amplifier circuit (shown in Fig. 2) the Si BJT has β = 200 and V_A = 150 V.

Figure 2

- (a) Calculate I_C, I_B, I_E, V_{EC}. You can ignore the Early effect in DC bias calculations.
- (b) Draw the AC equivalent circuit and determine the AC model parameters.
- (c) Calculate the voltage gain.

3. Find the bias point, the amplifier parameters and the gain of the circuit shown below (Fig. 3) Consider the Si BJT has β = 200 and Early voltage (V_A) = 150 V. You can ignore Early effect in DC bias calculations.

Figure 3

- **4.** The transistor parameters for the circuit in Figure 4 are $\beta = 120$ and $V_A = \infty$.
- (a) Find I_{CQ} and V_{CEQ} .
- (b) Plot the dc and ac load lines.
- (c) Find the maximum swing of collector current.
- (d) Calculate the small-signal voltage gain.
- (e) Determine the input and output resistances R_{ib} and R_o as shown in the figure.

Figure 4

- 5. The parameters of the transistor in the circuit in Figure 5 are $\beta = 100$ and $V_A = 100$ V.
- (a) Find the dc voltages at the base and emitter terminals.
- (b) Find R_C such that $V_{CEQ} = 3.5 \text{ V}$.
- (c) Assuming C_C and C_E act as short circuits, determine the small-signal voltage gain $A_v = v_o/v_s$.
- (d) Repeat part (c) if the magnitude of source resistance (R_S) is changed to $500~\Omega$.

Figure 5

6. Find the expression of small signal voltage gain for the following circuit (Figure 6)

Figure 6