Walk the Talk

Analyzing the relation between implicit and explicit feedback for preference elicitation

Denis Parra, University of Pittsburgh

Dr. Xavier Amatriain, Telefonica R&D

Outline

- Introduction (motivation)
- The survey on last.fm users
 - What did we crawl, what did we ask, sampling strategy, results
- General analysis of the results
- Regression Analysis
- Discussion, ongoing work and (some) conclusions

Introduction (1/2)

- Most of recommender system approaches rely on explicit information of the users, but...
- Explicit feedback: scarce (people are not especially eager to rate or to provide personal info)
- Implicit feedback: Is less scarce, but (<u>Hu et al., 2008</u>)

1	There's no negative feedback	and if you watch a TV program just once or twice?
13	Noisy	but explicit feedback is also noisy (<u>Amatriain et al., 2009</u>)
	Preference & Confidence	we aim to map the I.F. to preference (our main goal)
The same	Lack of evaluation metrics	if we can map I.F. and E.F., we can have a comparable evaluation

Introduction (2/2)

- Is it possible to map implicit behavior to explicit preference (ratings)?
- Which variables better account for the amount of times a user listens to online albums? [Baltrunas & Amatriain CARS '09 workshop – RecSys 2009.]
- OUR APPROACH: Study with Last.fm users
 - Part I: demographics and online music consumption
 - Part II: Rating 100 albums collected from their last.fm user profile

2.1 Demographic/Consumption Data

- Gender
- Age
- Country
- Hours per week spent on internet [int_hrs_per_week]
- Hours per week listening to music online [msc_hrs_per_week]
- Number of concerts per year [conc_per_year]
- Do you read specialized music blogs or magazines? [blogs_mag]
- Do you have experience evaluating music online? [rate_music]
- How frequently do you buy physical music records? [buy_records]
- How frequently do you buy music online? [buy_online]
- Do you prefer listening to single tracks, whole albums or either way? [track_or_CD]

2.2 Albums listened to in last.fm

2.3 Survey Part II

- For item (album) sampling, we accounted for
 - Implicit Feedback (IF): playcount for a user on a given album.
 Changed to scale [1-3], 3 means being more listened to.
 - Global Popularity (GP): global playcount for all users on a given album [1-3]. Changed to scale [1-3], 3 means being more listened to.
 - Recentness (R): time elapsed since user played a given album.
 Changed to scale [1-3], 3 means being listened to more recently.

GP	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3
IF	1	1	1	2	2	2	3	3	3	1	1	1	2	2	2	3	3	3	1	1	1	2	2	2	3	3	3
\mathbf{R}	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
%	8,4	6	6,8	5,5	4	5,5	3,7	2,5	4,6	6,4	3,5	4,2	3,8	2	3,3	2	1	2,2	5,8	3	4	3,3	1,6	2,6	1,6	1	2

Table 1. Distribution of items in different bins. GP: global popularity, IF: implicit feedback, R: recentness, #: number of items in the bin, %: percentage of items in the bin.

2.4 Survey Screenshots

Requirements: 18 y.o., scrobblings > 5000

2.5 Survey Part I – Results (1/2)

151 users started 127 users 114 after filtering completed outliers

Users from 23 countries

25 users from Spain, 15 from USA, 16 from UK

80% spent 20 or more hours per week on the internet

50% listened to over 20 hours per week of music

9% did not attend music concerts

30% went to 11 or more concerts per year

2.5 Survey Part I – Results (2/2)

35% read sometimes music magazines or blogs

20% read them every week

50% never or seldom rated music online

45% bought between 1 and 10 records per year

18% did not buy any

35% never bought music online

8% bought music online at least once per month

14% preferred listening to single tracks

45% preferred listening to albums, ~40% either way

3.6 General Analysis - Assumptions

- We "expect" strong positive correlation between ratings and implicit feedback
- We "expect" some level of positive correlation between ratings and recentness
- We (don't?) expect a significant relation between ratings and global popularity
- On demographic data: Just listening to track or album shows a significant effect (using ANOVA) F(2, 62) = 3.949, p = 0.024

M2: implicit feedback & recentness

4 Regression Analysis

M1: implicit feedback

M4:

Interaction of implicit feedback & recentness

Model 1: $r_{iu} = \beta_0 + \beta_1 \cdot i f_{iu}$ Model 2: $r_{iu} = \beta_0 + \beta_1 \cdot i f_{iu} + \beta_2 \cdot r e_{iu}$

- Model 3: $r_{iu} = \beta_0 + \beta_1 \cdot i f_{iu} + \beta_2 \cdot r e_{iu} + \beta_3 \cdot g p_i \leftarrow$

 \rightarrow Model 4: $r_{iu} = \beta_0 + \beta_1 \cdot i f_{iu} + \beta_2 \cdot r e_{iu} + \beta_3 \cdot i f_{iu} \cdot r e_{iu}$

M3: implicit feedback, recentness, global

Model	R^2	F- $value$	$p ext{-}value$	β_0	β_1	β_2	β_3
		F(1,10120) = 1146					-
		F(2,10019) = 794.8					
		F(3,10018) = 531.8					
4	0.1368	F(3,10018) = 534.7	$< 2.2 \cdot 10^{-16}$	2.677	0.379	0.038	0.053

Table 1. Regression Results. R^2 , F-value, and p-value for the 5 models.

- Including Recentness increases R2 in more than 10% [1 -> 2]
- Including GP increases R2, not much compared to RE + IF [1 -> 3]
- Not Including GP, but including interaction between IF and RE improves the variance of the DV explained by the regression model.
 [2->4]

4.1 Regression Analysis

Model	RMSE1	RMSE2
User average	1.5308	1.1051
M1: Implicit feedback	1.4206	1.0402
M2: Implicit feedback + recentness	1.4136	1.034
M3: Implicit feedback + recentness + global popularity	1.4130	1.0338
M4: Interaction of Implicit feedback * recentness	1.4127	1.0332

- We tested conclusions of regression analysis by predicting the score, checking RMSE in 10fold cross validation.
- Results of regression analysis are supported.

4.2 Regression Analysis – Track or Album

Model	Tracks	Tracks/ Albums	Albums
User average	1.1833	1.1501	1.1306
M1: Implicit feedback	1.0417	1.0579	1.0257
M2: Implicit feedback + recentness	1.0383	1.0512	1.0169
M3: Implicit feedback + recentness + global popularity	1.0386	1.0507	1.0159
M4: Interaction of Implicit feedback * recentness	1.0384	1.049	1.0159

 Including this variable that seemed to have an effect in the general analysis, helped to improve accuracy of the model

5. Ongoing Work

- Incorporate the nested nature of the ratings: they are not independent, so our regression will consider the user as a random factor to group ratings by user (mixed model)
- Ratings are not continuous by nature: we will use logistic regression (back up slide for further discussion)
- Using raw data (with some transformations) as the value of some predictors (implicit feedback and global popularity)

6. Conclusions

- Using a linear model, Implicit feedback and recentness can help to predict explicit feedback (in the form of ratings)
- Global popularity doesn't show a significant improvement in the prediction task
- Our model can help to relate implicit and explicit feedback, helping to evaluate and compare explicit and implicit recommender systems.

THANKS

- For spending your time listening to this talk ©
- Questions?

Denis Parra

www.sis.pitt.edu/~dparra/dap89@pitt.edu

Survey part I results

Graphics comparing % of ratings given 2 variables

Discussion: Evaluating with RMSE

 Discussion after working on this paper: Should we continue using RMSE? IS NOT THE SAME MISPREDICTING a rating 2 by 3 than a rating 4

by 5

Comparison with Study of Duncan Watts

- ... on evolution of artificial markets, where Watts concludes that people is actually influenced by popularity of items
- ... but that are important differences with that study:
 - Watts study was trying to assess music quality, we asked users to avoid judging quality: just if they liked it or not.
 - In Watts study subjects were presented NEW songs that they HAD TO LISTEN TO in order to judge their quality.

3.1 Distribution of ratings

Average rating:

- Considering 0s:
- 3.206316
- Not considering 0s:
- 3.611144

3.2 Implicit Feedback

Fig. 3. Distribution of ratings given different values of implicit feedback

3.3 Recentness

Fig. 4. Distribution of ratings given different values of recentness

3.4 Global Popularity

Fig. 5. Distribution of ratings given different values of overall popularity

3.5 Effect of Track or CD

3 General Analysis

Initial assumption: Rating and IF (# playcount)
 must be strongly correlated.

Fig. 2. Relation between implicit feedback and explicit ratings