Rapid Miner Studio

- การจัดการข้อมูล (Data management)
- การนำข้อมูลเข้า
- Model
 - Euclidean Distance/k-NN Algorithm
 - Linear Regression Analysis
 - k-Means Clustering Algorithm
 - Artificial Neural Networks and Deep Learning

แนะนำเมนูหลัก 5 ฟังก์ชันการทำงานหลัก

• Repository คือ ที่เก็บข้อมูลและเก็บ Process ที่ได้สร้างไว้ เพื่อไม่ต้องโหลดไฟล์ใหม่ ทุกครั้ง

• เปลี่ยนชื่อตามที่ต้องการ

นำข้อมูลต่อไปนี้ เข้า Excel และวิเคราะห์ข้อมูลด้วย RapidMiner

• ตารางที่ 1 ข้อมูลประวัติ (ข้อมูลฝึกฝน)

ID	Name	Weight	Height	Cholesterol	Blood sugar level	Result
1	One	70	175	175	80	Good
2	Two	81	159	250	250	Bad
3	Three	78	180	180	95	Good
4	Four	85	174	300	300	Bad
5	Five	76	163	250	245	Bad

• เลือกไฟล์ที่ต้องการวิเคราะห์

- 3 คือ เลือกข้อมูลว่าอยู่ ใน Sheet ใด
- 4 คือ เลือกช่วงของ column
- 5 คือ กำหนดว่าแถวใด เป็น header

• กำหนดชนิดของข้อมูลให้เหมาะสำหรับการวิเคราะห์

Format your columns.

Replace errors with missing values ①

了 1 1 1		ID	Name	Weight	Height	Cholesterol ♣ ▼ integer	Blood suga ❖ ▼ integer	Resi polyi
	1	1	One	70	175	175	80	Goc
	2	2	Two	81	159	250	250	Bad
	3	3	Three	78	180	180	95	Goc
	4	4	Four	85	174	300	300	Bad
	5	5	Five	76	163	250	245	Bad

ชนิดของข้อมูลใน RapidMiner

• ชนิดของข้อมูล (Value type) คือ ค่าของข้อมูลที่เก็บในแต่ละแอตทริบิวต์ (Attribute)

• Polynominal ข้อมูลประเภท Category (ข้อมูลที่ไม่ใช่ตัวเลข) มีค่ามากกว่า 2 ค่าขึ้นไป เช่น อาชีพ และศาสนา เป็นต้น

• Binominal ข้อมูลประเภท Category (ข้อมูลที่ไม่ใช่ตัวเลข) มีค่าเพียง 2 ค่าเท่านั้น เช่น เพศ

เป็นโรคหรือไม่เป็นโรค เป็นต้น

• Real ทศนิยม

• Integer ข้อมูลประเภทตัวเลข

จำนวนเต็มบวก ลบ ศูนย์

ชนิดของข้อมูล

• คลิก 7 กำหนดให้ ID เป็นชนิด ID เนื่องจากเป็น Attribute ที่ไม่นำมาวิเคราะห์

• เมื่อนำข้อมูลเข้าเรียบร้อยแล้ว

เมื่อนำข้อมูอเข้าแล้ว สามารถดูสถิติได้

เช่น ค่า Max, Min, Average

Result History		ExampleSet (//SI/Patient d	ata)	× Exam	pleSet (//SI/Pa	tient data) ×		
Data		Name	 	Туре	Missing	Statistics		Filter (7 / 7 attributes): Search for Attributes
	~	Id ID		Integer	0	Min 1	Max 5	Average 3
Statistics	~	Label Result		Polynominal	0	Least Good (2)	Most Bad (3)	Values Bad (3), Good (2)
	~	Name		Polynominal	0	Least Two (1)	Most Five (1)	Values Five (1), Four (1),[3 more]
Visualizations	~	Weight		Integer	0	Min 70	Max 85	Average 78
Annotations	~	Height		Integer	0	Min 159	Max 180	Average 170.200
	~	Cholesterol		Integer	0	Min 175	Max 300	Average 231
	~	Blood sugar level		Integer	0	Min 80	Max 300	Average 194
	Show	ving attributes 1 - 7						Examples: 5 Special Attributes: 2 Regular At

เมื่อนำข้อมูลเข้าแล้ว สามารถ Visualization ได้

• Visualization คือ นำข้อมูลดิบมาเปลี่ยนเป็นกราฟ แผนภูมิ หรือแม้กระทั่งวิดีโอที่ช่วย อธิบายปริมาณ หรือตัวเลข เพื่อให้เข้าใจได้ง่ายขึ้น

สร้าง process ใหม่

Repository

Euclidean Distance/k-NN Algorithm

การนำข้อมูลทดสอบ ชื่อ Patient data test

ID	Name	Weight	Height	Cholesterol	Blood sugar level
1	Α	45	150	199	72
2	В	56	175	284	141
3	С	68	162	158	124
4	D	81	179	248	210

k-NN

• นำข้อมูล Patient data test เข้า

Annotations

ถ้าเลือก k=1

ผลลัพธ์

งาน

- 1. จากนั้นใช้ k-NN Algorithm, k=3
- 2. จากนั้นใช้ k-NN Algorithm, k=5

Linear Regression Analysis

คำถาม จงทำนายว่าเมื่อ Temperature = 10 แล้วจะมีความดันเท่าไร ตาราง ข้อมูล Temperature Pressure อุณหภูมิและความดัน

Temperature (x)	Pressure (y)
1	2
2	4
3	5
4	4
5	5
10	?

ข้อที่ 1 ข้อมูล Temperature Pressure

- นำข้อมูล train เข้าและเปลี่ยนให้ pressure เป็น label
- จากนั้น นำข้อมูล test เข้า

ข้อที่ 1 ข้อมูล Temperature Pressure

ข้อที่ 1 ข้อมูล Temperature Pressure

Testing ข้อมูล Temperature Pressure

ผลลัพธ์ของค่าความดัน

ข้อมูลสำหรับวิเคราะห์ Multiple linear regression

ตารางที่ 2 ข้อมูลสำหรับวิเคราะห์ Multiple linear regression

Training

Weight	Height	Blood sugar level	Cholesterol
70.2	175.9	80.36	175.2
81.3	159.3	250.3	250.1
78.3	180.3	95.6	180.3
85.2	174.1	300.4	300.0
76.1	163.3	245.65	250.7

Test

Weight	Height	Blood sugar level	Cholesterol
70.2	175.9	80.36	?
81.3	159.3	250.3	?
78.3	180.3	95.6	?
85.2	174.1	300.4	?
76.1	163.3	245.65	?

การวิเคราะห์ Multiple linear regression

วิเคราะห์ Multiple linear regression

Openin	Turborrep	Mr Auto Model			
Row No.	Cholesterol	prediction(C	Weight	Height	Blood sugar
1	175.200	170.430	70.200	175.900	80.360
2	250.100	250.194	81.300	159.300	250.300
3	180.300	184.937	78.300	180.300	95.600
4	300	298.301	85.200	174.100	300.400
5	250.700	252.439	76.100	163.300	245.650

k-Means Clustering Algorithm

กำหนดให้มีข้อมูล Customer ดังตารางข้างล่างนี้ ให้แบ่งกลุ่มข้อมูลออกเป็น 3 กลุ่ม

Name	รายได้ (พันบาทต่อเดือน)	จำนวนหนี้ (พันบาทต่อเดือน)	จำนวนสมาชิก ที่ต้องดูแล
A	25	1	2
V	80	15	8
X	6	1	5
Т	8	2	6
G	30	0	9
R	27	3	2
Y	50	12	10

กลุ่มที่ 1 คือใครบ้าง
กลุ่มที่ 2 คือใครบ้าง
กลุ่มที่ 3 คือใครบ้าง

Format your columns.

Replace errors with missing values ①

	Name polynominal id	in ♦ ▼ integer	out ♣ ▼ integer	care integer
1	A	25	1	2
2	V	80	15	8
3	Х	6	1	5
4	Т	8	2	6
5	G	30	0	9
6	R	27	3	2
7	Υ	50	12	10

Artificial Neural Networks โครงข่ายประสาทเทียม

80

ตารางที่ 1 ประวัติคนไข้ (Patient data)

ID	Name	Weight	Height	Cholesterol	Blood sugar level	Result
1	One	70	175	175	80	Good
2	Two	81	159	250	250	Bad
3	Three	78	180	180	95	Good
4	Four	85	174	300	300	Bad
5	Five	76	163	250	245	Bad

ตารางที่ 2 ประวัติคนไข้

ID	Name	Weight	Height	Cholesterol	Blood sugar level
1	А	45	150	199	72
2	В	56	175	284	141
3	С	68	162	158	124
4	D	81	179	248	210

เมื่อใช้ข้อมูลตารางที่ 1 และ 2

เมื่อใช้ข้อมูลตารางที่ 1 และ 2

Row No.	Name	Result	prediction(R
1	One	Good	Good
2	Two	Bad	Bad
3	Three	Good	Good
4	Four	Bad	Bad
5	Five	Bad	Bad

เมื่อใช้ข้อมูลตารางที่ 1 และ 2 กรณี test data

เมื่อใช้ Neural Net กับข้อมูล TempPressure

