

Social Network Analysis -- Recommendations

Instructor: Jen-Wei Huang

Office: 92528 in the EE building jwhuang@mail.ncku

Introduction

- Social network services have attracted lots of attention
- Social networking websites provide users to establish their own personal communities or social networks based on relationships of friends.

http://twitter.com/

Introduction

Recommendation systems have been proposed to integrate with business websites and social networking websites.

Recommendation Systems

- Recommendation systems usually utilize the following information from the social network.
 - Popularity
 - Similarity
 - Familiarity

GroupBuyer: A Personalized Group Buying Event Recommender System Using Social Information Filtering

Yun-Hui Hung, Jen-Wei Huang, Ming-Syan Chen

2011 International Workshop on Behavior Informatics (BI 2011) joint with the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'11), May 24, 2011.

P-SERS: Personalized Social Event Recommender System

Yun-Hui Hung, Jen-Wei Huang, Ming-Syan Chen

Behavior Computing: Modeling, Analysis, Mining and Decision, Springer, April, 2012.

Online Communities

Social Event Recommender System

Social Information Filtering	Examples
Collaborative	•Similar users [2]
Filtering (CF)	•Expert [3]
Social Filtering	•Friends
(SF)	Relations [4], [5]

- [2] Resnick, in CSCW, 1994.
- [3] Amatriain, in SIGIR, 2009.
- [4] Guy, in RecSys, 2009.
- [5] Guy, in CHI 2008.

Online Group Buying Communities

A group buying event

- Social networking functions
 - Knowing friends
 - Joining events

Data Mining & Social Network Analysis 2021/05/05

q

Major Components

- ullet Initiator I_{E_i}
- Participants P_{E_i}
- ightharpoonup Target T_{E_i}

Contribution

- Propose GroupBuyer, a personalized group buying event recommender system
- Use social information
- Model three major components
- Recommend group buying events

System Model

Candidate Selection

Data Mining & Social Network Analysis 2021/05/05

13

User Profile Collection

- User preference
 - Historical events

- User locations
 - User settings
 - Historical events

Social Graph Construction

- Social information
 - Friends
 - Co-buying relations

Graph type	Node type	Level	Social behavior example
Individual social graph	•User	Individual	Add as a friend
Group social graph	•User •Group	Group	Co-join a club

Data Mining & Social Network Analysis 2021/05/05

15

Social Measurement

Initiator Score

- Goal: expertise of initiating
 - Related to the target user
- ▶ Expertise graph^[6]
 - Joining behavior

▶ Social-HITS, similar to HITS^[7]

Relevant Set Retrieval

Related users

Subgraph Growth

- Incident edges of relevant set
 - Aggregated by user preference $Pref(U_{\iota}, C_{1}) = 2$ $Pref(U_{\iota}, C_{2}) = 10$

Initial Score Assignment

- Consider user experience
 - Authority score: initiating
 - Hub score: joining
 - Weighted-sum by user preference

Propagation

Automate user recommendation

Hub Propagation

Authority Propagation

- Run iterations
 - Weighted-sum with initial scores and normalize

Social-HITS

Initiator score

 $IS(I_{E_i}, U_t) = Authority(I_{E_i})$

- ullet Relative expertise to $U_{_t}$
 - Related users
 - PreferenceExperience
 - Joining behavior

Data Mining & Social Network Analysis 2021/05/05

Participant Score

- Goal: social influence
- Related users

Graph type	Influential power $p(U_j, U_t)$
Individual social graphs	Weights on direct links
Group social graphs	Bipartite network projection [8]

Data Mining & Social Network Analysis 2021/05/05

23

Bipartite Network Projection

 U_t is influenced by the users who co-join the group nodes.

$$f'(U_t) = \frac{1}{2} f(c_1) + \frac{1}{2} f(c_2)$$

$$f(c_1) = \frac{1}{4}f(U_1) + \frac{1}{4}f(U_2) + \frac{1}{4}f(U_1) + \frac{1}{4}f(U_3),$$

$$f(c_2) = \frac{1}{3}f(U_t) + \frac{1}{3}f(U_3) + \frac{1}{3}f(U_4),$$

$$f'(U_t) = \frac{1}{8}f(U_1) + \frac{1}{8}f(U_2) + \frac{7}{24}f(U_t) + \frac{7}{24}f(U_3) + \frac{1}{6}f(U_4).$$

Bipartite Network Projection

Projection graph

$$f'(U_t) = \frac{1}{8}f(U_1) + \frac{1}{8}f(U_2) + \frac{7}{24}f(U_t) + \frac{7}{24}f(U_3) + \frac{1}{6}f(U_4).$$

- Influential power $p(U_j, U_t)$
 - Projection edge weight

25

Participant Score

- Influential power $p(U_j, U_t)$
 - Individual graphs: edge weights
 - Group graphs: projection edge weights

$$p(U_j, U_t) = \hat{p}_{friend}(U_j, U_t) + \hat{p}_{join}(U_j, U_t) + \hat{p}_{co-join}(U_j, U_t) + \hat{p}_{co-club}(U_j, U_t)$$

Participant score

$$PS(P_{E_i} + I_{E_i}, U_t) = p(I_{E_i}, U_t) + \sum_{U_i \in P_{E_i}} p(U_j, U_t)$$

Target Score

- Goal: global popularity of the target
- Two attributes
 - Recent popularity
 - Good comments

$$TS(T_{E_t}, U_t) = Num * (1 + avgCmt)$$

Data Mining & Social Network Analysis 2021/05/05

27

Relevance Score

lacksquare Every candidate event E_i

$$RS(E_i, U_t) = \Pr ef(C_{E_i}, U_t) *$$

$$\left[\alpha * IS(I_{E_i}, U_t) + \beta * PS(I_{E_i} + P_{E_i}, U_t) + \gamma * TS(T_{E_i}, U_t)\right]$$

- Recommendation list
 - $_{\circ}$ Ranking candidates by $RS(E_{i},U_{t})$

Dataset and Prior User Study

- Group buying event recommendation on IHERGO^[1] (from 2010/1/1~2010/4/30)
 - Historical group buying events
 - 460,000 events, 124,000 users
- Three parameters by 5000 questionnaires
 - Initiator 60%
 - Target 70%
 - Participants 40%

[1] IHERGO, http://www.ihergo.com

Data Mining & Social Network Analysis 2021/05/05

29

Experiment Settings

- Recommendation satisfaction
 - Comparison with Random+PI, CF+PI, SF+PI
 - 671 users
 - Top-15 lists

* PI: place constraint

Method	#Users
Random+Pl	117
CF+Pl	78
SF+PI	121
GroupBuyer	178

Recommendation Satisfaction

- User satisfaction with top-k list
 - k=1, satisfaction=1; k=2, satisfaction=1/2

$$Satisfaction(k, method) = \frac{\sum_{U_j \in methodl=1}^{k} \sum_{l=1}^{k} \left(ans_l(U_j) * \frac{1}{l}\right)}{|U_j \in method| \sum_{l=1}^{k} \frac{1}{l}}$$

Event: Noodle Group Buying Event

Initiator: Alice

Store: Boss Q Noodles Place: Taipei Main Station

Are you interested in this event? YES, NO.

31

Satisfaction Comparison

Score Trends

Data Mining & Social Network Analysis 2021/05/05

33

Conclusions

- We proposed GroupBuyer to recommend the most relevant events to users
 - Model three major components
 - Recommend group buying events for the online group buying community, IHERGO

Discovering Unknown But Interesting Items on Personal Social Network

Juang-Lin Duan, Shashi Prasad, Jen-Wei Huang

Proc. of the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'12), pp. 145-156, May 29-Jun. 1, 2012.

Introduction

- Traditional recommendation systems may have the following problems:
 - Popular items always occupy the recommendation list but they are usually already known by the user.
 - Items recommended by familiar users who frequently communicate with the target user may not be interesting.
 - Items from similar users with lower popularity are ignored.

Introduction

- We propose UbiMiner, Unknown But Interesting Miner, to discover unknown but interesting items through the target user's social networks.
- UbiMiner considers
 - the popularity of items,
 - the social behavior of the target user, and
 - the similarity between users

Preliminary

- There are three major ways to develop recommendation systems.
 - Content-based recommendation
 - Collaborative filtering
 - Hybrid approaches
- Others

System Architecture

UBIS

- Unknown But Interesting Score (UBIS) contains:
 - Quartile-aided Popularity Score (QPS) of each item.
 - Social Behavior Score (SBS) by considering social interactions of users.
 - User Similarity Score (USS) of each friend of the target user.

Quartile-aided Popularity Score

- Popularity Score, *PS*_{iv}, is defined as the popularity, i.e., number of comments and likes, of a certain item *i* posted by user *v*.
- We use the concept of quartile and the long tail phenomenon, and sort items by popularity score PS_{iv} ascendingly.

Quartile-aided Popularity Score

- Concept of quartile, $Q_r = |r(n + 1)/4|$.
- Upper quartile function, Q3(x)
- Quartile score, QS_{iv}

$$QS_{iv} = PS_{iv} - Q_3(PS_{iv})$$

Quartile-aided Popularity Score

Quartile-aided Popularity Score, QPS_{iv}

$$QPS_{iv} = 1 - \frac{QS_{iv}}{Max(QS_{iv}) + 1}$$

We can capture the popularity of items adjusted by the upper quartile.

iv	I_3U_5	I_1U_7	I_1U_3	I_6U_{19}	I_8U_7	$I_{10}U_3$	I_1U_5	I_1U_{17}	I_9U_3	I_7U_7	I ₅ U ₁₉	$I_{11}U_{17}$	I_2U_5	I ₄ U ₁₉
PS_{iv}	10	14	15	17	29	30	35	36	55	62	63	75	90	150
QS_{iv}	53	49	48	46	34	33	28	27	8	1	0	12	27	87
QPS _{iv}	0.40	0.44	0.45	0.48	0.61	0.63	0.68	0.69	0.91	0.99	1	0.86	0.69	0.01

Social Behavior Score

- UbiMiner includes two factors from the social behavior.
 - MF_{uv}: the number of Mutual Friends between user u and user v.
 - DC_{uv} : the number of Direct Communication between user u and user v.

Social Behavior Score

Social Behavior Score, SBS_{uv}

$$SBS_{uv} = \left(1 - \frac{MF_{uv}}{\underset{v \in friends \ of \ u}{Max}(MF_{uv}) + 1}\right) \times \left(1 - \frac{DC_{uv}}{\underset{v \in friends \ of \ u}{Max}(DC_{uv}) + 1}\right)$$

uv	U_1U_3	U_1U_7	$U_{1}U_{19}$	U_1U_5	U_1U_{17}
MF_{uv}	5	12	20	32	25
DC_{uv}	10	7	30	25	40
SBS _{uv}	0.64	0.53	0.1	0.01	0.007

User Similarity Score

The worth value of each action j, WV_{jv} .

$$WV_{jv} = \frac{\sum_{j \in all \ actions} times \ of \ action \ j}{times \ of \ action \ j}$$

	U	U_1			U_{19}		
	Number	WV_{jv}	Number	WV_{jv}	Number	WV_{jv}	
Article	100	16	200	9	50	31	
Commen	1t 500	3.2	400	4.5	600	2.5	
Like	1000	1.6	1200	1.5	900	1.7	

$$IS_{iv} = \sum_{j \in all \ actions} WV_{ji}$$

Data Mining & Social Network Analysis 2021/05/05

47

User Similarity Score

▶ User Behavior, *UB*_u:

$$UB_u = \{IS_{I_1}, \cdots, IS_{I_n}\}$$

User Similarity Score, USS_{uv}:

$$USS_{uv} = \frac{UB_u \cdot UB_v}{\|UB_u\| \|UB_v\|}$$

User Similarity Score

	I_1	I_2	I ₃	I_4	I_5
U_1	Post + like	Like + Comment	Like	Comment	N/A
U_3	Post	Post + Comment	Comment	Post + Like + Comment	Post
U ₁₉	N/A	Like + Comment	N/A	Like	Like

	IS_{I_1}	IS_{I_2}	IS_{I_3}	IS _{I4}	IS_{I_5}
U_1	17.6	4.8	1.6	3.2	0
U_3	9	13.5	4.5	15	9
U_{19}	0	4.2	0	1.7	1.7

USS between U_1 and U_3 is 0.62, U_1 and U_{19} is 0.28

Data Mining & Social Network Analysis 2021/05/05

49

Unknown But Interesting Score

Unknown But Interesting Score, UBIS;

$$UBIS_i = \sum_{v} (QPS_{iv} \times SBS_{uv} \times USS_{uv})$$

Finally, we sort UBIS and recommend the topk items to the target user.

i	\mathbf{I}_{9}	I ₁₀	I ₇	I ₈	I ₅	Iı	I_6	I ₂	I_3	I ₁₁	I_4
$UBIS_i$	0.29	0.20	0.15	0.09	0.07	0.04	0.03	0.006	0.004	0.0006	0.0001

Experimental Setup

- We implement four recommender systems on a popular social networking website, Facebook.
 - Facebook recommendation list is based on latest updates from user's posting (FB).
 - Traditional method is based on popularity of items with similarity among users (PS).
 - TANGENT [Onuma, KDD'09] is based on user's friendship and the frequency of each item.
 - UbiMiner recommends unknown but interesting items based on UBIS.

51

TANGENT

K. Onuma, H. Tong, and C. Faloutsos. Tangent: a novel, 'surprise me', recommendation algorithm. KDD '09

Questionnaire

Questionnaire

Welcom to UBI Recommendation system

[Recommended List 01]

Experimental Results

- We randomly invited 355 users to participate in our experiment.
- The experiments were conducted from July to September of 2011
- There are in average 185 active users participating per month.

Satisfaction Percentage

Overall satisfaction (Top-20 items)

56

Satisfaction Percentage

Top-5 list

Top-10 list

Data Mining & Social Network Analysis 2021/05/0

57

Satisfaction Percentage

Top-15 list

Top-20 list

Behavior Breakdown

- ▶ 119 users visit Facebook every day
- Case 1: Spend time on Facebook less than 1 hour.

Data Mining & Social Network Analysis 2021/05/05

59

Behavior Breakdown

- 119 users visit Facebook every day
- Case 2: Spend time on Facebook more than 5 hours.

Conclusions

- We proposed UbiMiner, which recommends unknown but interesting items by utilizing Quartile-aided Popularity Score, Social Behavior Score, and User Similarity Score.
- Experimental results show that the performance of UbiMiner outperforms that of traditional methods in terms of the percentages of unknown and interesting items in the recommendation lists.

61

References

- [1] IHERGO http://www.ihergo.com
- [2] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and J. Riedl. Grouplens: An open architecture for collaborative filtering of netnews. CSCW, 1994.
- [3] X. Amatriain, N. Lathia, J. M. Pujol, H. Kwak, and N. Oliver. A collaborative filtering approach based on expert opinions from the web. SIGIR, 2009.
- [4] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel, S. Yogev, and S. Ofek-Koifman. Personalized recommendation of social software items based on social relations. RecSys, 2009.
- [5] I. Guy, M. Jacovi, E. Shahar, N. Meshulam, V. Soroka, S. Farrell, Harvesting with SONAR: the value of aggregating social network information, CHI 2008.
- [6] J. Zhang, M. S. Ackerman, L. Adamic, Expertise Networks in Online Communities: Structure and Algorithms, WWW 2007.
- [7] J. M. Kleniberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999.
- [8] T. Zhou, J. Ren, M. c. v. Medo, and Y.-C. Zhang. Bipartite network projection and personal recommendation. *Phys. Rev. E*, 76(4):046115, Oct 2007.

References

- [9] Official facebook blog. People You May Know. http://blog.facebook.com/blog.php?post=15610312130. 2008.
- [10]R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining*, KDD '07, pages 95–104. ACM, 2007.
- [11]I. Cantador, A. Bellogín, and P. Castells. News@hand: A semantic web approach to recommending news. In W. Nejdl, J. Kay, P. Pu, and E. Herder, editors, *Adaptive Hypermedia and Adaptive Web-Based Systems*, volume 5149 of *Lecture Notes in Computer Science*, pages 279–283. Springer Berlin / Heidelberg, 2008.
- [12]J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy. Make new friends, but keep the old: recommending people on social networking sites. In *Proceedings of the 27th international conference on Human factors in computing systems*, CHI '09, pages 201–210. ACM, 2009.

63

References

- [13]S. Debnath, N. Ganguly, and P. Mitra. Feature weighting in content based recommendation system using social network analysis. In *Proceeding of the 17th international conference on World Wide Web*, WWW '08, pages 1041–1042. ACM, 2008.
- [14]C.-H. Lai and D.-R. Liu. Integrating knowledge flow mining and collaborative filtering to support document recommendation. Journal of Systems and Software, 82:2023–2037, 2009.
- [15]K. Onuma, H. Tong, and C. Faloutsos. Tangent: a novel, 'surprise me', recommendation algorithm. In *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining*, KDD '09, pages 657–666. ACM, 2009.
- [16]M. Pazzani and D. Billsus. Content-based recommendation systems. In *The Adaptive Web*, volume 4321 of *Lecture Notes in Computer Science*, pages 325–341. Springer Berlin / Heidelberg, 2007.