Eric Yarger, D208 Task 2

Design research question, Select Variables from model

What variables from the data set are the most effective at predicting if a patient will be Readmitted?

In [1]:

```
#Import Libraries
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
import missingno as msno
from scipy import stats
from scipy.stats import zscore
```

In [2]:

```
# Read in medical_clean datafile
df = pd.read_csv('C:/Users/ericy/Desktop/medical_clean.csv')
```

Environment Details

In [3]:

```
# Jupyter environment version
!jupyter --version
jupyter core
               : 4.6.3
jupyter-notebook: 6.0.3
qtconsole : 4.7.2
ipython
                : 7.13.0
ipykernel : 5.1.4
jupyter client : 6.1.2
jupyter lab
               : 1.2.6
              : 5.6.1
nbconvert
              : 7.5.1
ipywidgets
nbformat
                : 5.0.4
               : 4.3.3
traitlets
In [4]:
# Python Environment version
import platform
print(platform.python_version())
```

3.7.7

Cleaning, Preparation, Manipulation

```
In [5]:
```

```
#Rename columns for dataset cohesiveness and readability
df.rename(columns={'Item1':'Timely_admis','Item2':'Timely_treat','Item3':'Timely_vis','Item4':'Reliability','Item5':'Options','Item6':'Hours','Item7':'Courteous','Item8':'Listen'},inplace=True)
```

In [6]:

Check for null values
msno.matrix(df)

Out[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe44118c88>

In [7]:

Overview of data set - type, null count, variable names df.info()

```
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 50 columns):
#
     Column
                          Non-Null Count
                                           Dtype
- - -
 0
     CaseOrder
                          10000 non-null
                                           int64
     Customer id
 1
                          10000 non-null
                                           object
 2
     Interaction
                          10000 non-null
                                           object
 3
                          10000 non-null
     UTD
                                           object
 4
                          10000 non-null
     City
                                           object
 5
                          10000 non-null
     State
                                           object
 6
                          10000 non-null
     County
                                           object
                          10000 non-null
 7
     Zip
                                           int64
 8
     Lat
                          10000 non-null
                                           float64
 9
     Lng
                          10000 non-null
                                           float64
     Population
                          10000 non-null
 10
                                           int64
                          10000 non-null
 11
     Area
                                           object
     TimeZone
                          10000 non-null
 12
                                           object
 13
                          10000 non-null
     1nh
                                           obiect
 14
     Children
                          10000 non-null
 15
                          10000 non-null
     Age
                                           int64
 16
     Income
                          10000 non-null
                                           float64
                          10000 non-null
 17
     Marital
                                           object
 18
     Gender
                          10000 non-null
                                           object
                          10000 non-null
 19
     ReAdmis
                                           object
 20
     VitD levels
                          10000 non-null
 21
     Doc visits
                          10000 non-null
                                           int64
 22
     Full meals eaten
                          10000 non-null
                                           int64
 23
                          10000 non-null
     vitD_supp
                                           int64
 24
     Soft drink
                          10000 non-null
                                           object
     Initial admin
                          10000 non-null
 25
                                           object
 26
     HighBlood
                          10000 non-null
                                           object
 27
                          10000 non-null
     Stroke
                                           object
 28
     Complication_risk
                          10000 non-null
                                           object
 29
     Overweight
                          10000 non-null
                                           obiect
 30
     Arthritis
                          10000 non-null
                                           object
 31
     Diabetes
                          10000 non-null
                                           object
 32
     Hyperlipidemia
                          10000 non-null
                                           object
 33
     BackPain
                          10000 non-null
                                           obiect
 34
     Anxiety
                          10000 non-null
                                           object
 35
     Allergic rhinitis
                          10000 non-null
                                           obiect
 36
     Reflux esophagitis
                          10000 non-null
                                           object
 37
     Asthma
                          10000 non-null
                                           obiect
 38
     Services
                          10000 non-null
                                           object
 39
     Initial days
                          10000 non-null
                                           float64
 40
     TotalCharge
                          10000 non-null
                                            float64
 41
     Additional charges
                          10000 non-null
                                           float64
 42
     Timely_admis
                          10000 non-null
                                           int64
 43
     Timely_treat
                          10000 non-null
                                           int64
                          10000 non-null
 44
     Timely_vis
                                           int64
 45
     Reliability
                          10000 non-null
                                           int64
 46
     Options
                          10000 non-null
                                           int64
 47
     Hours
                          10000 non-null
                                           int64
 48
     Courteous
                          10000 non-null
                                           int64
    Listen
                          10000 non-null int64
dtypes: float64(7), int64(16), object(27)
memory usage: 3.8+ MB
```

<class 'pandas.core.frame.DataFrame'>

In [8]:

```
sns.boxplot(df['Income'])
```

Out[8]:

<matplotlib.axes. subplots.AxesSubplot at 0x1fe448f8688>

In [9]:

sns.boxplot(df['vitD_supp'])

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe4351f348>

In [10]:

sns.boxplot(df['VitD_levels'])

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe4358ca48>

In [11]:

sns.boxplot(df['Doc_visits'])

Out[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe435efd08>

In [12]:

sns.boxplot(df['Full_meals_eaten'])

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe43653608>

In [13]:

sns.boxplot(df['Initial_days'])

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe436c3408>

In [14]:

sns.boxplot(df['TotalCharge'])

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe43737248>

In [15]:

sns.boxplot(df['Additional_charges'])

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe4377ab48>

In [16]:

sns.boxplot(df['Age'])

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe437ff308>

In [17]:

sns.boxplot(df['Children'])

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe43860088>

In [18]:

```
sns.boxplot(df['Population'])
```

Out[18]:

<matplotlib.axes. subplots.AxesSubplot at 0x1fe438bf608>

In [19]:

```
# Outlier removal method via Z-score, Code reference (Bushmanov, 2019)
num_data = df.select_dtypes(include=['number'])
cat_data = df.select_dtypes(exclude=['number'])
```

In [20]:

```
idx = np.all(stats.zscore(num_data) <3, axis=1)</pre>
```

In [21]:

```
df = pd.concat([num_data.loc[idx], cat_data.loc[idx]], axis=1)
```

In [22]:

```
# Target variable, change responses to numerical binary
df['ReAdmis'].replace(('Yes','No'), (1,0), inplace=True)
```

In [23]:

```
sns.boxplot(df['Income'])
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe448ee808>

In [24]:

sns.boxplot(df['vitD_supp'])

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe42fb2c48>

In [25]:

sns.boxplot(df['VitD_levels'])

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe4302a9c8>

In [26]:

sns.boxplot(df['Doc_visits'])

Out[26]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe4308a708>

In [27]:

sns.boxplot(df['Full_meals_eaten'])

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe430f5448>

In [28]:

sns.boxplot(df['Initial_days'])

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe43105708>

In [29]:

sns.boxplot(df['TotalCharge'])

Out[29]:

 $\verb|-matplotlib.axes._subplots.AxesSubplot| at 0x1fe45fedd88>$

In [30]:

sns.boxplot(df['Additional_charges'])

Out[30]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe46056208>

In [31]:

sns.boxplot(df['Age'])

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe460b5ec8>

In [32]:

sns.boxplot(df['Children'])

Out[32]:

<matplotlib.axes._subplots.AxesSubplot at 0x1fe46124108>


```
In [33]:
```

```
sns.boxplot(df['Population'])
```

Out[33]:

<matplotlib.axes. subplots.AxesSubplot at 0x1fe46189288>

Univariate Visualization

Histograms

Identify Feature Distribution and Normality

```
In [34]:
```

```
df.hist(figsize=(20,20))
```

Out[34]:

```
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x000001FE4623C888>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x000001FE46267B48>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE462A33C8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE462DC448>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46314588>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x000001FE4634C608>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46387708>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE4650D848>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46519448>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46553608>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x000001FE465B9AC8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE465EFBC8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE4662ACC8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46661E08>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE4669BF08>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x000001FE466D3FC8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46712148>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46749248>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46782348>
        <matplotlib.axes. subplots.AxesSubplot object at 0x000001FE467BA488>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x000001FE467F5588>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE4682C608>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE46865748>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE4689E888>
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001FE468D9988>]],
      dtype=object)
```


Bivariate Visualization

Scatterplots with

X-Axis = ReAdmis

Y-Axis = Independent feature

In [35]:

sns.pairplot(df, x_vars=['ReAdmis'], y_vars=['CaseOrder','Initial_days','VitD_levels','Doc_visits','vitD_supp','S
oft_drink','Initial_admin','HighBlood','Stroke','Complication_risk','Overweight','Arthritis','Diabetes','Hyperlip
idemia','BackPain','Anxiety','Allergic_rhinitis','Reflux_esophagitis','Asthma','Services','TotalCharge','Addition
al charges'])

Out[35]:

<seaborn.axisgrid.PairGrid at 0x1fe47635fc8>

In []:

In [36]:

sns.pairplot(df, x_vars=['ReAdmis'], y_vars=['Timely_admis','Timely_treat','Timely_vis','Reliability','Options','
Hours','Courteous','Listen'])

Out[36]:

<seaborn.axisgrid.PairGrid at 0x1fe486c1cc8>


```
In [37]:
```

df.corr()

Out[37]:

	CaseOrder	Zip	Lat	Lng	Population	Children	Age	Income	VitD_levels	Doc_visits	
CaseOrder	1.000000	0.010465	-0.012946	-0.012081	0.001489	0.017027	-0.003011	-0.012265	-0.015026	-0.006920	
Zip	0.010465	1.000000	-0.084258	-0.913573	0.012947	0.014307	-0.003327	0.010507	-0.010747	0.000257	
Lat	-0.012946	-0.084258	1.000000	0.001062	-0.187334	0.005874	-0.000132	-0.015414	-0.005158	0.004689	
Lng	-0.012081	-0.913573	0.001062	1.000000	-0.018263	-0.014141	0.002780	-0.008175	0.000931	0.002417	
Population	0.001489	0.012947	-0.187334	-0.018263	1.000000	0.007810	-0.018884	0.002162	0.004719	0.016088	
Children	0.017027	0.014307	0.005874	-0.014141	0.007810	1.000000	0.006050	0.003951	0.006542	-0.003467	
Age	-0.003011	-0.003327	-0.000132	0.002780	-0.018884	0.006050	1.000000	-0.003218	0.008795	0.010819	
Income	-0.012265	0.010507	-0.015414	-0.008175	0.002162	0.003951	-0.003218	1.000000	-0.015684	0.011179	
VitD_levels	-0.015026	-0.010747	-0.005158	0.000931	0.004719	0.006542	0.008795	-0.015684	1.000000	0.010297	
Doc_visits	-0.006920	0.000257	0.004689	0.002417	0.016088	-0.003467	0.010819	0.011179	0.010297	1.000000	
Full_meals_eaten	-0.020805	0.013077	-0.001353	-0.013120	-0.025711	-0.005112	0.008499	-0.012628	0.032606	-0.004586	
vitD_supp	0.026011	0.009348	0.005225	-0.001817	0.004134	-0.010125	0.009336	0.001478	-0.015671	0.002755	
Initial_days	0.831426	0.011103	-0.009938	-0.006659	0.004435	0.022122	0.009943	-0.006543	-0.007267	-0.008363	
TotalCharge	0.821397	0.010493	-0.012843	-0.005866	0.004758	0.022909	0.010785	-0.008523	-0.004403	-0.005363	
dditional_charges	-0.003178	0.001545	-0.001433	0.003290	-0.011835	0.014076	0.716409	-0.005190	0.006120	0.014611	
Timely_admis	-0.016607	-0.008630	0.008075	0.011933	0.004194	0.004097	0.005614	-0.004194	0.010499	0.003984	
Timely_treat	-0.005508	-0.002475	0.009184	-0.002521	0.016837	0.006169	0.004382	-0.012371	0.003697	0.004377	
Timely_vis	-0.006320	-0.010277	0.010924	0.002614	-0.004754	-0.002485	0.006990	-0.007394	-0.011930	-0.003794	
Reliability	-0.016204	0.001231	-0.011577	0.000283	-0.008892	-0.001091	0.003407	-0.003532	-0.016650	-0.006303	
Options	-0.004709	0.006290	0.000179	-0.002771	0.013720	0.003409	-0.013980	-0.005088	0.007878	-0.011124	
Hours	-0.006087	-0.001406	0.009542	-0.004637	0.007970	-0.002796	0.003434	0.003083	0.004610	0.009226	
Courteous	0.005102	-0.004203	0.009071	0.002070	0.010529	0.015894	0.009339	0.008516	-0.007461	0.005322	
Listen	-0.012319	-0.010159	0.004348	0.003871	-0.005522	-0.011509	0.002873	0.020238	-0.024347	0.006145	
ReAdmis	0.661462	0.009519	-0.012324	-0.004241	0.007563	0.023890	0.011880	-0.008669	0.002858	-0.002226	

Dummies & Renaming

```
In [38]:
```

```
df.drop('CaseOrder',axis=1, inplace=True)
```

In [39]:

```
#Get dummies code reference (Pandas.get_dummies, N.d.)
df = pd.get_dummies(df, columns=['Area','Marital','Gender','Doc_visits','vitD_supp','Soft_drink','Initial_admin',
'HighBlood','Stroke','Complication_risk','Overweight','Arthritis','Diabetes','Hyperlipidemia','BackPain','Anxiety
','Allergic_rhinitis','Reflux_esophagitis','Asthma','Services'], drop_first=True)
```

In [40]:

```
df = pd.get_dummies(df, columns=['Timely_admis','Timely_treat','Timely_vis','Reliability','Options','Hours','Cour
teous','Listen'],drop_first=True)
```

In [41]:

```
df = pd.get_dummies(df, columns=['ReAdmis'],drop_first=True)
```

In [42]:

```
df = pd.get_dummies(df, columns=['Children'],drop_first=True)
```

In [43]:

In [44]:

df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 9206 entries, 0 to 9999 Columns: 104 entries, Zip to Children_8

dtypes: float64(7), int64(4), object(8), uint8(85)

memory usage: 2.2+ MB

In [45]:

df.corr()

Out[45]:

			_		_					
	Zip	Lat	Lng	Population	Age	Income	VitD_levels	Full_meals_eaten	Initial_days	TotalCharge
Zip	1.000000	-0.084258	-0.913573	0.012947	-0.003327	0.010507	-0.010747	0.013077	0.011103	0.010493
Lat	-0.084258	1.000000	0.001062	-0.187334	-0.000132	-0.015414	-0.005158	-0.001353	-0.009938	-0.012843
Lng	-0.913573	0.001062	1.000000	-0.018263	0.002780	-0.008175	0.000931	-0.013120	-0.006659	-0.005866
Population	0.012947	-0.187334	-0.018263	1.000000	-0.018884	0.002162	0.004719	-0.025711	0.004435	0.004758
Age	-0.003327	-0.000132	0.002780	-0.018884	1.000000	-0.003218	0.008795	0.008499	0.009943	0.010785
Children_4	-0.010340	0.010405	0.009916	-0.003323	-0.003005	0.011490	-0.006051	0.003615	0.021351	0.021048
Children_5	0.003784	0.021356	-0.005049	0.005497	0.022290	0.008891	-0.001607	-0.011876	-0.001752	0.000456
Children_6	0.000098	-0.020881	0.008090	0.002481	-0.009710	0.006582	0.012478	0.008461	0.016965	0.017821
Children_7	0.009911	0.006720	-0.006050	-0.007526	-0.000799	0.003081	0.013216	-0.015356	0.005094	0.006228
Children_8	0.025547	0.006500	-0.028345	0.009924	0.015824	-0.011951	-0.003578	0.004367	0.008185	0.008947
96 rows x 9	C aalumna									
an mule x q	n commne									

In [46]:

```
# Heatmap code reference (Seaborn.heatmap, N.d.)
import matplotlib
matplotlib.pyplot.figure(figsize=(20,20))
heatmap = sns.heatmap(df.corr()[['ReAdmis_1']].sort_values(by='ReAdmis_1', ascending=False), vmin=-1, vmax=1, ann
ot=True, cmap='BrBG')
heatmap.set_title('Variables correlating with ReAdmis Heatmap',pad=12)
```

Out[46]:

$Text(0.5,\ 1,\ 'Variables\ correlating\ with\ ReAdmis\ Heatmap')$

In [47]:

```
fig_dims = (20, 20)
fig, ax = plt.subplots(figsize=fig_dims)
sns.heatmap(df.corr(), ax=ax)
plt.show()
```



```
In [48]:
```

```
df.to_excel('C:/Users/ericy/Desktop/D208.2.full.xlsx', index=False)
```

Inital Feature Selection

VIF technique code reference (Zach, 2020)

Target variable is ReAdmis_1 Correlation > .02 for explanatory variable selection

```
In [49]:
```

```
abs(df.corr()["ReAdmis_1"][abs(df.corr()["ReAdmis_1"])>=0.02].drop('ReAdmis_1')).index.tolist()

Out[49]:
['Initial_days',
    'TotalCharge',
    'Services_CT_Scan',
    'Timely_admis_6',
    'Timely_vis_3',
    'Hours_6',
    'Listen_6',
    'Children_1',
    'Children_4']
In [50]:
```

```
In [51]:
from patsy import dmatrices
from statsmodels.stats.outliers_influence import variance_inflation_factor
y, \ X = dmatrices('ReAdmis_1 \sim Initial_days + TotalCharge + Children_1 + Children_4 + Services_CT_Scan + Timely_vis_3 + Tim
 _admis_6+Listen_6+Hours_6', data=df, return_type='dataframe')
In [52]:
vif = pd.DataFrame()
vif['VIF'] = [variance inflation factor(X.values, i) for i in range(X.shape[1])]
vif['variable'] = X.columns
In [53]:
vif
Out[53]:
                      VIF
                                                        variable
 0 57.215523
                                                       Intercept
  1 40.824852
                                                   Initial_days
  2 40.825038
                                                TotalCharge
          1.041991
                                                   Children 1
          1.041378
                                                   Children_4
           1.001029 Services_CT_Scan
          1.011761
                                               Timely_vis_3
          1.023459
                                        Timely_admis_6
           1.004894
                                                        Listen_6
           1.017869
                                                        Hours 6
In [54]:
y, X = dmatrices('ReAdmis_1 ~ Initial_days+Children_1+Children_4+Services_CT_Scan+Timely_vis_3+Timely_admis_6+Lis
ten_6+Hours_6', data=df, return_type='dataframe')
In [55]:
vif = pd.DataFrame()
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['variable'] = X.columns
In [56]:
vif
Out[56]:
```

	VIF	variable
0	4.053441	Intercept
1	1.002430	Initial_days
2	1.041870	Children_1
3	1.041375	Children_4
4	1.000610	Services_CT_Scan
5	1.011730	Timely_vis_3
6	1.023351	Timely_admis_6
7	1.004721	Listen_6
8	1.017866	Hours_6

C2: Summary Statistics for target variable & all predictor variables for inital model

```
In [57]:
dfi = df[[
 'ReAdmis_1',
 'Children_1',
    'Children_4',
 'Initial_days'
 'Services_CT_Scan',
 'Timely_vis_3',
 'Timely_admis_6',
'Listen_6',
'Hours_6']]
In [58]:
dfi.to_excel('C:/Users/ericy/Desktop/D208.2.Selected.xlsx', index=False)
In [59]:
dfi['ReAdmis_1'].unique()
Out[59]:
array([0, 1], dtype=uint8)
In [60]:
dfi.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9206 entries, 0 to 9999
Data columns (total 9 columns):
                       Non-Null Count Dtype
#
    Column
                        -----
0
    ReAdmis_1
                       9206 non-null
                                        uint8
     Children 1
                       9206 non-null
                                        uint8
 1
 2
     Children_4
                       9206 non-null
                                        uint8
 3
     Initial \overline{d}ays
                       9206 non-null
                                        float64
     Services_CT_Scan 9206 non-null
                                        uint8
 5
     Timely_vis_3
                       9206 non-null
                                        uint8
 6
    Timely_admis_6
                       9206 non-null
                                        uint8
 7
    Listen 6
                       9206 non-null
                                        uint8
8
                       9206 non-null
    Hours_6
                                        uint8
dtypes: float64(1), uint8(8)
memory usage: 215.8 KB
```

In [61]:

dfi.describe()

Out[61]:

	ReAdmis_1	Children_1	Children_4	Initial_days	Services_CT_Scan	Timely_vis_3	Timely_admis_6	Listen_6	Hours_6
count	9206.000000	9206.000000	9206.00000	9206.000000	9206.000000	9206.000000	9206.000000	9206.000000	9206.000000
mean	0.366935	0.256137	0.10189	34.399945	0.122855	0.339561	0.020747	0.022268	0.021399
std	0.481995	0.436522	0.30252	26.325319	0.328288	0.473586	0.142545	0.147562	0.144718
min	0.000000	0.000000	0.00000	1.001981	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.00000	7.881412	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.00000	30.841461	0.000000	0.000000	0.000000	0.000000	0.000000
75%	1.000000	1.000000	0.00000	61.157838	0.000000	1.000000	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.00000	71.981490	1.000000	1.000000	1.000000	1.000000	1.000000

```
dfi.corr()
Out[62]:
                  ReAdmis_1
                              Children_1
                                         Children_4 Initial_days Services_CT_Scan Timely_vis_3 Timely_admis_6
                                                                                                              Listen_6
                                                                                                                        Hours_
       ReAdmis 1
                     1 000000
                               -0.025936
                                           0.022959
                                                      0.852064
                                                                        0.026087
                                                                                     0.021399
                                                                                                    -0.023851 -0.020195
                                                                                                                       -0.02380
       Children_1
                    -0.025936
                                1.000000
                                          -0.197647
                                                      -0.035131
                                                                        0.004024
                                                                                     0.001216
                                                                                                    0.005373 -0.000857
                                                                                                                       -0.00594
                                                                                     -0.008726
       Children_4
                     0.022959
                               -0.197647
                                           1.000000
                                                      0.021351
                                                                        0.004116
                                                                                                    -0.001161 -0.002160 -0.01754
       Initial_days
                     0.852064
                               -0.035131
                                           0.021351
                                                      1 000000
                                                                        0.010723
                                                                                     0.013412
                                                                                                    -0.013688 -0.012797 -0.02178
 Services_CT_Scan
                     0.026087
                                0.004024
                                           0.004116
                                                      0.010723
                                                                        1.000000
                                                                                     -0.016801
                                                                                                    -0.005723
                                                                                                              0.008555
                                                                                                                        0.00639
      Timely vis 3
                     0.021399
                                0.001216
                                          -0.008726
                                                      0.013412
                                                                        -0.016801
                                                                                     1.000000
                                                                                                    -0.094715 -0.028930
                                                                                                                       -0.05055
   Timely_admis_6
                    -0.023851
                                0.005373
                                          -0.001161
                                                      -0.013688
                                                                        -0.005723
                                                                                    -0.094715
                                                                                                     1 000000
                                                                                                              0.045175
                                                                                                                        0 11539
         Listen_6
                    -0.020195
                               -0.000857
                                          -0.002160
                                                      -0.012797
                                                                        0.008555
                                                                                     -0.028930
                                                                                                     0.045175
                                                                                                              1.000000
                                                                                                                        0.04890
         Hours 6
                    -0.023807
                               -0.005948
                                          -0.017549
                                                      -0.021784
                                                                        0.006397
                                                                                     -0.050554
                                                                                                     0.115398
                                                                                                             0.048904
                                                                                                                        1.00000
In [63]:
dfi.mean()
Out[63]:
                          0.366935
ReAdmis 1
Children 1
                          0.256137
Children_4
                          0.101890
Initial days
                         34.399945
Services_CT_Scan
                          0.122855
Timely vis 3
                          0.339561
{\tt Timely\_admis\_6}
                          0.020747
Listen 6
                          0.022268
                          0.021399
Hours 6
dtype: float64
In [64]:
dfi.median()
Out[64]:
                          0.000000
ReAdmis_1
Children 1
                          0.000000
Children_4
                          0.000000
Initial_days
                         30.841461
Services_CT_Scan
                          0.000000
Timely_vis_3
                          0.000000
Timely_admis_6
                          0.000000
                          0.000000
Listen 6
                          0.000000
Hours 6
dtype: float64
In [65]:
dfi.mode()
Out[65]:
   ReAdmis_1 Children_1 Children_4 Initial_days Services_CT_Scan Timely_vis_3 Timely_admis_6 Listen_6 Hours_6
0
          0.0
                     0.0
                                0.0
                                       67.42139
                                                              0.0
                                                                           0.0
                                                                                          0.0
                                                                                                   0.0
                                                                                                            0.0
 1
          NaN
                     NaN
                               NaN
                                       70.32542
                                                             NaN
                                                                          NaN
                                                                                         NaN
                                                                                                  NaN
                                                                                                           NaN
In [66]:
# C5: Prepared Dataset
dfi.to csv('C:/Users/ericy/Desktop/D208.2 prepared.csv', index=False)
```

Initial Logistic Regression Model

```
In [67]:
```

In [62]:

D1: Initial Logistic Regression with logit. Code Reference (Cosine1509, 2022).
from statsmodels.formula.api import logit

In [68]: re_log = logit('ReAdmis_1 ~ Initial_days + Children_1 + Children_4 + Services_CT_Scan + Timely_vis_3 + Timely_ad mis 6 + Listen_6+ Hours_6', data=df).fit()

Optimization terminated successfully.

Current function value: 0.048161

Iterations 13

In [69]:

```
print(re log.summary())
```

Logit Regression Results

Dep. Variable: Model: Method: Date: Time: converged:	Logit MLE Tue, 05 Jul 2022 14:09:23 True	No. Observations: Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null:	9206 9197 8 0.9267 -443.37 -6051.1
Covariance Type:	nonrobust	LLR p-value:	0.000
	coef std er	r z P>lzl	[0.025 0.975]

	coef	std err	Z	P> z	[0.025	0.975]
Intercept Initial_days Children_1 Children_4 Services_CT_Scan Timely vis 3	-54.2497 0.9959 -0.3136 0.1378 0.9881 0.4035	2.606 0.048 0.207 0.277 0.277 0.185	-20.815 20.902 -1.516 0.497 3.561 2.179	0.000 0.000 0.129 0.619 0.000 0.029	-59.358 0.903 -0.719 -0.405 0.444 0.040	-49.141 1.089 0.092 0.681 1.532 0.767
Timety_VIS_3 Timely_admis_6 Listen_6 Hours_6	-0.1088 -1.1492 -0.4155	0.669 0.556 0.584	-0.163 -2.068 -0.711	0.029 0.871 0.039 0.477	-1.420 -2.238 -1.560	1.202 -0.060 0.729

Possibly complete quasi-separation: A fraction 0.74 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

Reduced Feature Selection

In [70]:

```
## K Nearast Neighbors & correlation for feature selection
# Code Reference (Feely, 2020), starting at 12:30 in video - going to minute 16:00
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import KFold
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_predict
from sklearn.linear_model import LinearRegression
from math import sqrt
```

K Nearast Neighbors & correlation for feature selection

Code Reference (Feely, 2020), starting at 12:30 in video - going to minute 16:00

```
In [71]:
```

```
X=df[['Initial_days','Children_1','Children_4','Services_CT_Scan','Timely_vis_3','Timely_admis_6','Listen_6','Hou
rs_6']]
y = df.ReAdmis_1
B=df[['ReAdmis_1','Initial_days','Children_1','Children_4','Services_CT_Scan','Timely_vis_3','Timely_admis_6','Li
sten_6','Hours_6']]
```

In [72]:

```
cv = KFold(n_splits=10, random_state=0, shuffle=True)
classifier_pipeline = make_pipeline(StandardScaler(), KNeighborsRegressor(n_neighbors=10))
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),2)))
print("Pseudo_R_squared: " + str(round(r2_score(y,y_pred),2)))
```

RMSE: 0.15

Pseudo R squared: 0.91

```
vals = [0.02,.022,.025,.03,.025,.04,.045,0.05,0.08,0.1,0.2]
for val in vals:
    features = abs(B.corr()["ReAdmis_1"][abs(df.corr()["ReAdmis_1"])>val].drop('ReAdmis_1')).index.tolist()
    X = B.drop(columns='ReAdmis_1')
    X=X[features]
    print(features)
    y pred = cross val predict(classifier pipeline, X, y, cv=cv)
    print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),2)))
['Initial days', 'Children 1', 'Children 4', 'Services CT Scan', 'Timely vis 3', 'Timely admis 6', '
Listen_6',
RMSE: 0.15
           'Hours_6']
['Initial days', 'Children 1', 'Children 4', 'Services CT Scan', 'Timely admis 6', 'Hours 6']
RMSE: 0.14
['Initial_days', 'Children_1', 'Services_CT_Scan']
RMSE: 0.13
['Initial_days']
RMSE: 0.13
['Initial_days', 'Children_1', 'Services_CT_Scan']
RMSE: 0.13
['Initial days']
RMSE: 0.13
['Initial_days']
RMSE: 0.13
['Initial days']
RMSE: 0.13
['Initial_days']
RMSE: 0.13
['Initial_days']
RMSE: 0.13
['Initial days']
RMSE: 0.13
E2 Inital Model evalutaion metrics, including confusion matrix
In [74]:
#Code Reference (Sklearn.metrics.confusion matrix, N.d.), (Sklearn.metrics.accuracy score, N.d.)
#Code Reference (Zach, 2021) for confusion matrix.
Xtest = df[['Initial days','Children 1','Children 4','Services CT Scan','Timely vis 3','Timely admis 6','Listen 6
 ,'Hours 6']]
ytest = df['ReAdmis 1']
p = re_log.predict(Xtest)
prediction = list(map(round, p))
In [75]:
#Confusion Matrix Initial Model
from sklearn.metrics import (confusion_matrix, accuracy_score)
conf mat = confusion matrix(ytest, prediction)
print ('Confusion Matrix : \n', conf_mat)
print ('Test Accuracy is ', accuracy score(ytest, prediction))
Confusion Matrix :
 [[5727 101]
   94 3284]]
Test Accuracy is 0.9788181620682164
In [76]:
# Prediction Classification Report, Initial Model
from sklearn.metrics import classification_report
print(classification_report(ytest, prediction))
                           recall f1-score
              precision
                                              support
           0
                   0.98
                             0.98
                                       0.98
                                                 5828
           1
                   0.97
                             0.97
                                       0.97
                                                 3378
```

0.98

0.98

0.98

9206

9206

9206

In [73]:

accuracy

macro avg weighted avg 0.98

0.98

0.98

0.98

Predictions from the initial model used to perform the analysis
print(prediction)

```
0.0.
0,
Θ,
0,
0.0.
Θ,
Θ,
0,
Θ,
0, 0,
0, 0,
Θ,
```

```
Θ,
   0, 0,
  0, 0, 0,
 0, 0, 0,
  0, 0, 0, 0, 0, 0,
  Θ,
  Θ,
  Θ,
   0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0,
          0, 0, 0, 0,
            Θ,
Θ,
Θ,
Θ,
 0, 0, 0,
0, 0,
 Θ,
Θ,
 Θ,
 0, 0, 0,
  Θ,
          0, 0, 0, 0,
            Θ,
            Θ,
Θ,
0, 0, 0, 0, 0,
   0,
Θ,
0, 0,
0, 0, 0,
 Θ,
0, 0, 0,
 0, 0,
            0, 0,
0, 0, 0,
 0, 0,
Θ,
0, 0,
 Θ,
0, 0,
            0, 0,
0, 0,
 0, 0, 0,
0, 0, 0,
Θ,
1, 0, 0,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0
1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0
, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0
0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
```

```
1, 0,
               1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1
         1, 0, 0,
         1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1
 1, 1,
 1, 1,
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1
 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1
, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1
, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1,
 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
                                                            0, 1, 1
 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0,
0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0,
1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
                                                              1, 1
 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1,
 Θ,
   1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1
, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1,
   1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1,
1, 0,
 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1,
   1, 0, 0, 0,
           1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
   1, 1, 1,
         1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
                                                        1, 0, 1,
, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1
 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,
, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
 Θ,
   0, 0, 0, 1, 1, 0,
                                                          0, 1,
               1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
   1, 0, 1,
                                                        1, 0, 0,
, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1,
   1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
1, 1,
 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1,
                                                        1, 0, 0, 0, 1
 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1
 0, 1,
```

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, , 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1 , 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, , 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1]

Reduced model

Created from feature selection P(z) < .05 and RMSE minimization

```
In [78]:
```

```
#reduced_log = logit('ReAdmis_1 ~ Initial_days', data=df).fit()
reduced_log = logit('ReAdmis_1 ~ Initial_days+Services_CT_Scan', data=df).fit()
```

Optimization terminated successfully.

Current function value: 0.048910

Iterations 13

In [79]:

```
print(reduced_log.summary())
```

Logit Regression Results

Dep. Variable: ReAdmis 1 No. Observations: 9206 Logit Df Residuals: MLE Df Model: Model: 9203 Method: Pseudo R-squ.: Tue, 05 Jul 2022 0.9256 Date: 14:09:36 Log-Likelihood: -450.27 Time: True LL-Null: obust LLR p-value: -6051.1 converged: Covariance Type: nonrobust 0.000

=======================================	coef	std err	z	P> z	[0.025	0.975]
Intercept	-53.6643	2.561	-20.955	0.000	-58.684	-48.645
Initial_days	0.9858	0.047	21.022	0.000	0.894	1.078
Services_CT_Scan	0.9831	0.276	3.557	0.000	0.441	1.525

Possibly complete quasi-separation: A fraction 0.73 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

E2 Reduced Model Evaluation Metrics, including confusion matrix

```
In [80]:
```

```
#Xtest1 = df[['Initial_days']]
Xtest1 = df[['Initial_days','Services_CT_Scan']]
ytest1 = df['ReAdmis_1']
```

```
In [81]:
```

```
# Confusion Matrix for Reduced Model
g = reduced_log.predict(Xtest1)
reduced_prediction = list(map(round, g))
```

In [82]:

```
from sklearn.metrics import (confusion_matrix, accuracy_score)
conf_mat1 = confusion_matrix(ytest1, reduced_prediction)
print ('Confusion Matrix : \n', conf_mat1)
print ('Test Accuracy is ', accuracy_score(ytest1, reduced_prediction))
```

Confusion Matrix : [[5727 101] [94 3284]] Test Accuracy is 0.9788181620682164

In [83]:

from sklearn.metrics import classification report

In [84]:

```
# # Prediction Classification Report, Reduced Model
print(classification_report(ytest1, prediction))
```

	precision	recall	f1-score	support
0 1	0.98 0.97	0.98 0.97	0.98 0.97	5828 3378
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	9206 9206 9206

In [85]:

```
# Predictions from the reduced model used to perform the analysis
print(reduced_prediction)
```

```
0, 0,
 0, 0,
Θ,
0,
Θ,
Θ,
Θ,
0,
Θ,
0, 0, 0,
Θ,
0, 0,
Θ,
0,
0, 0,
Θ,
0,
Θ,
     Θ,
 0, 0,
0, 0, 0,
Θ,
0, 0,
0, 0,
0,
 0, 0,
 Θ,
0, 0,
Θ,
Θ,
Θ,
Θ,
0, 0,
0,
0,
     Θ,
0,
Θ,
 Θ,
 0,
 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0,
   0, 0, 0, 0, 0, 0,
    0, 0, 0, 0,
     Θ,
Θ,
0, 0,
0,
Θ,
Θ,
Θ,
 Θ,
 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   0, 0, 0, 0, 0, 0,
    0, 0, 0, 0,
     Θ,
     Θ,
Θ,
0, 0,
0, 0,
0, 0,
0, 0, 0,
0, 0,
Θ,
 0,
0, 0, 0, 0,
    0, 0, 0, 0,
     Θ,
     Θ,
Θ,
0, 0,
0, 0, 0,
```

```
0, 0, 0, 0, 0,
     Θ,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    Θ,
       Θ,
          Θ,
                             0, 0, 0, 0, 0, 0,
                                      0, 0, 0, 0,
                                            Θ,
                                              Θ,
Θ,
Θ,
1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,
  1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
  1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
                                          1, 0, 0,
1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0
, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
           0, 1, 0, 1, 1, 1,
                    1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1,
  1, 1, 1,
       1, 1, 1,
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
       1, 0, 1,
1, 1, 0, 1,
     1,
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0
, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1
0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
  1, 1,
1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0
0, 1,
1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1,
0,\ 1,\ 0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,
1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1
1, 1,
, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1
0, 1, 0, 0, 1,
0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1,
, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1
, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1,
  1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1
1, 1,
, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1,
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1
0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1
, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0,
```

1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, , 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, , 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 , 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, Θ, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1 , 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, Θ, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, Θ, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, Θ, 0, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, Θ, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, , 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, , 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1]