UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i MAT1110 — Kalkulus og lineær algebra

Eksamensdag: 15. august 2008

Tid for eksamen: 09.00-12.00

Oppgavesettet er på 3 sider.

Vedlegg: Formelark

Tillatte hjelpemidler: Godkjent lommeregner

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Under sensureringen teller i utgangspunktet alle deloppgaver (1a, 1b, 2, 3a osv.) 10 poeng hver. Du må begrunne alle svar, og du må vise nok mellomregninger til at man lett kan følge argumentene dine.

Oppgave 1

a) Finn den reduserte trappeformen til matrisen

$$A = \left(\begin{array}{cccc} 1 & 1 & 1 & 0 \\ 0 & 2 & 1 & -1 \\ 1 & -1 & 0 & 1 \\ 0 & -4 & -2 & 2 \end{array}\right)$$

b) Finn to lineært uavhengige søyler i A og skriv de andre søylene som lineærkombinasjoner av disse.

Oppgave 2

Finn det stasjonære punktet til funksjonen $f(x,y) = x^2 - 2xy + 2y^2 - 2y$ og avgjør om det er et lokalt maksimum, et lokalt minimum eller et sadelpunkt.

Oppgave 3

Avgjør om rekken konvergerer eller divergerer:

a)
$$\sum_{n=1}^{\infty} \frac{n^2 - 2n}{4n^3 + 2}$$

b)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

(Fortsettes på side 2.)

Oppgave 4

T er området i \mathbb{R}^3 avgrenset av paraboloiden $z=x^2+y^2$ og planet $z=x-2y-\frac{1}{4}.$

a) Vis at volumet til T er

$$V = \iint_{S} (x - 2y - x^2 - y^2 - \frac{1}{4}) \, dx dy$$

der S er sirkelen i xy-planet med sentrum i $(\frac{1}{2}, -1)$ og radius 1.

b) Regn ut volumet V.

Oppgave 5

Dersom du i MATLAB taster inn kommandoene

>> t=0:0.01:1; >> x=sin(2*pi*t); >> y=t.*(1-t); >> plot(x,y) >> axis('equal')

får du figuren nedenfor. Finn arealet til området avgrenset av kurven.

Oppgave 6

I denne oppgaven er

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{array}\right)$$

en symmetrisk 3×3 -matrise, og $f : \mathbb{R}^3 \to \mathbb{R}$ er funksjonen $f(\mathbf{x}) = (A\mathbf{x}) \cdot \mathbf{x}$ (der $(A\mathbf{x}) \cdot \mathbf{x}$ betegner skalarproduktet mellom vektorene $A\mathbf{x}$ og \mathbf{x}).

a) Vis at

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$$

Vis også at dersom \mathbf{x} er en egenvektor med egenverdi λ , så er $f(\mathbf{x}) = \lambda |\mathbf{x}|^2$.

(Fortsettes på side 3.)

b) $S = \{\mathbf{x} \in \mathbb{R}^3 : |\mathbf{x}| = 1\}$ er kuleskallet om origo med radius 1. Forklar at når vi innskrenker f til S, så har funksjonen maksimumsog minimumspunkter. Bruk Lagranges multiplikatormetode til å vise at disse maksimums- og minimumspunktene er egenvektorer til A. Vis til slutt at maksimumsverdien til f på S er den største egenverdien til A, mens minimumsverdien er den minste egenverdien til A.

SLUTT