EXERCICES TIRÉS DE L'EXAMEN PARTIEL H2014

Problème no. 1 (25 points)

a) Une charge \mathbf{Z}_2 est connectée à une source sinusoïdale 600 V / 60 Hz par une impédance \mathbf{Z}_1 = (5 + j10) Ω

L'ampèremètre indique 15 A. Le voltmètre indique 600 V.

La tension V_s est prise comme référence de phase.

- Calculer la tension V_1 (valeur efficace et phase), la phase du courant I_1 et la phase de la tension V_2 . (8 points)
- Tracer un diagramme vectoriel pour illustrer les relations entre $\mathbf{V}_s, \mathbf{V}_1, \mathbf{V}_2$ et \mathbf{I}_1 . (4 points)
- Déterminer l'impédance \mathbf{Z}_2 . Quelle est la nature de cette impédance? (résistive, inductive ou capacitive?) (5 points)
- b) Sans faire d'intégrales compliquées, déterminer la valeur efficace des tensions suivantes. (8 points)

Problème no. 2 (25 points)

Une usine consomme une puissance totale de 240 kW avec un facteur de puissance 0.74 arrière. Cette usine est alimentée par une ligne de transport triphasée dont l'impédance est $(0.6 + j2.5) \Omega$ par phase.

- a) Calculer la tension ligne-ligne à la charge. (10 points)
- Calculer les pertes sur la ligne de transport. (5 points)
- b) Un banc de trois condensateurs en Y est connecté en parallèle avec la charge pour amener le facteur de puissance de la charge à 0.90.

Calculer la valeur de chaque condensateur et le courant efficace dans chaque condensateur. (10 points)

<u>Note:</u> On suppose que la tension ligne-ligne à la charge ne change pas après la connexion des condensateurs.

Problème no. 3 (25 points)

Une source triphasée équilibrée 600 V / 60 Hz est connectée à une charge déséquilibrée. La séquence de phase de la source est directe (abc).

La tension V_{AN} de la source est prise comme référence de phase.

- a) Calculer les courants de ligne I_A , I_B , I_C (valeur efficace et phase). (8 points) Tracer un diagramme vectoriel illustrant les tensions V_{AN} , V_{BN} , V_{CN} et les courants I_A , I_B , I_C . (3 points)
- b) Calculer la puissance active et la puissance réactive dans la charge. (6 points) Déduire le facteur de puissance. (2 points)
- c) On relie les deux neutres N et N'.

Calculer le courant I_N qui circulera dans la ligne neutre. (6 points)

Problème no. 4 (25 points)

Soit les deux bobines sur noyau magnétique suivantes:

On suppose que la perméabilité du noyau magnétique est constante et égale à $3000\mu_0$. On suppose qu'il y a pas de fuite magnétique. On suppose que la résistance du fil de cuivre est négligeable.

- a) Calculer l'inductance de chaque bobine. (10 points)
- b) On applique une tension sinusoïdale 120 V / 60 Hz aux bornes de la **bobine no. 1**. On mesure un courant égal à 0.345 A qui circule dans la bobine.
- Calculer la densité de flux maximale dans le noyau magnétique. (4 points)
- Tracer un circuit équivalent pour la bobine. (4 points)
- Calculer les valeurs des éléments de ce circuit équivalent. (3 points)
- Déterminer les pertes Fer (4 points)