Sequential Circuit

Oleh: Ahmad Zaini

TE.141323 Rangkaian Digital

Teknik Multimedia dan Jaringan, Teknik Elektro

FTI - ITS

Sequential Circuit

Type of Digital circuit which the output is produced depended on input combination at the certain time and the output at the previous time.

Basic Memory Cell

- SR Flip Flop
- JK Flip Flop
- D Flip Flop
- T Flip Flop

Clock Pulse Triggered

Positive Pulse Triggered

Negative Pulse Triggered

Positive Edge Pulse Triggered (Rising Edge)

Negative Edge Pulse Triggered (Falliing Edge)

S	R	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

$$Q(t+1) = S + \bar{R}Q$$

$$Q(t+1) = S + \bar{R}Q$$

$$Q(t+1) = S + \bar{R}Q$$

$$Q(t+1) = S + \bar{R}Q$$

Set Reset Flip Flop Transition Table

S	R	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

Q	Q(t+1)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

$$Q(t+1) = S + \bar{R}Q$$

JK Flip Flop Transition Table

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Q	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

$$Q(t+1) = J \cdot \overline{Q(t)} + \overline{K} \cdot Q(t)$$

JK Flip Flop

$$Q(t+1) = J \cdot \overline{Q(t)} + \overline{K} \cdot Q(t)$$

D Flip Flop Transition Table

D	Q(t)	Q(t+1)
0	0	0
0	1	0
1	0	1
1	1	1

Q	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

$$Q(t+1) = D(t)$$

D Flip Flop

$$Q(t+1) = D(t)$$

D Flip Flop

$$Q(t+1) = D(t)$$

D Flip Flop

$$Q(t+1) = D(t)$$

T Flip Flop Transition Table

T	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Q	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

$$Q(t+1) = \overline{T} \cdot Q(t) + T \cdot \overline{Q(t)}$$

T Flip Flop

$$Q(t+1) = \overline{T} \cdot Q(t) + T \cdot \overline{Q(t)}$$

T Flip Flop

$$Q(t+1) = \overline{T} \cdot Q(t) + T \cdot \overline{Q(t)}$$

Moore Machine/Model

$$PS = f(NS)$$

 $NS = g(PS, IP)$

OP = h(PS)

Mealy Machine/Model

$$PS = f(NS)$$

$$NS = g(PS, IP)$$

$$OP = h(PS, IP)$$

Finite State Machine (FSM)

