Algebra Ph.D. Qualifying Exam

January 2017

Answer any **five** of the following eight questions.

You should state clearly any general results you use.

- 1. Suppose σ is an element of order 2 in the alternating group A_n . Prove that there exists a $\tau \in S_n$ such that $\tau^2 = \sigma$.
- 2. Let G be a group of order 56 with a normal 2-Sylow subgroup Q, and let P be a 7-Sylow subgroup of G. Show that either $G \cong P \times Q$ or $Q \cong C_2 \times C_2 \times C_2$. (Hint: P acts on $Q \setminus \{e\}$ via conjugation; show that this action is either trivial or transitive.)
- 3. By considering the map $f(X) \mapsto (f(1), f(2))$ or otherwise, prove that $\mathbb{Z}[X]/(X^2 3X + 2)$ is isomorphic to the ring $\mathbb{Z} \times \mathbb{Z}$.
- 4. (a) Show that any finite subgroup of the group of units of an integral domain R is cyclic. (Hint: consider the number of roots of the equation $X^d 1 = 0$ for suitable d.)
 - (b) Give an example to show that (a) may fail to hold if R is not an integral domain.
- 5. Let $p \neq 5$ be an odd prime and let ζ be a primitive 5th root of 1 in an extension field of \mathbb{F}_p . Let $\alpha = \zeta + \zeta^{-1}$. Show that $(2\alpha + 1)^2 = 5$ and that

5 is a square in \mathbb{F}_p \iff $\alpha^p = \alpha$ \iff $p \equiv \pm 1 \mod 5$.

- 6. Let $f(X) = X^4 + 4X^2 + 2$. Find the Galois group of the splitting field of f over the following fields.
 - (a) \mathbb{Q} . (Hint: show that if α is a root of f then $\sqrt{2}/\alpha$ is also a root.)
 - (b) \mathbb{F}_2 .
 - (c) \mathbb{F}_3 .
- 7. Let R be an integral domain. Recall that an R-module is called torsion-free if for every element $a \neq 0$ in R and $m \neq 0$ in the module, $am \neq 0$. Let N be an R-submodule of an R-module M.
 - (a) Show that if N and M/N are torsion-free, then so is M.
 - (b) Show that the converse holds in (a) for every N, M if and only if R is a field.
- 8. Identify with proof $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}[X]$.