

AppSec Labs Ltd. info@appsec-labs.com

R U aBLE? BLE Application Hacking

Tal Melamed
Application Security Expert
Tal@AppSec-Labs.com

- What is BLE?
- BLE security
- BLE pairing
- Discovering services
- Cloning the device
- BLE MitM
- Available tools
- What's next?

about://me

- Tech Lead @ AppSec Labs
 Tal@AppSec-Labs.com
- Application Security Expert
- Follow me @ appsec.it
- https://github.com/nu11p0inter
- http://sl.owasp.org/talmelamed

AppSec Labs

https://appsec-labs.com/

AppSec Labs

Industry vectors:

amdocs

AppSec Labs provides its high end services to the following industry vectors: LIVEPERSON

Cloud

Travel and transport

IT Security products

Telecommunications

Government

Before we start

- AppSec Labs Securing the IoT
 - Sounds like a buzz
 - PenTesting RF Operated Devices, OWASP 2016
 - Azure IoT partner
 - https://appsec-labs.com/iot-security/

- What we offer?
 - SDLC, Training, Penetration-testing, Consulting
- This presentation is a result of a preliminary research on BLE security and part of a wide research for IoT Security

What is BLE?

- Bluetooth Low Energy
 - a.k.a Bluetooth Smart, part of Bluetooth 4
 - Designed to be power-efficient
 - Claimed to operate "month to years" on a single battery
 - Significantly smaller and cheaper.
 - Operates at 2.4 GHz (same as Bluetooth Classic)
 - Short range (<100m)</p>
- Low cost and ease of implementation lead BLE to be widely used among IoT devices and applications
- Used among medical, industrial and government equipment
 - Wearables, sensors, lightbulbs, medical devices, and many other smart-products.
- 48 billion IoT devices expected by 2021, and Bluetooth—predicted to be in nearly one-third of those devices

Bluetooth^{**}

Low Energy

To save you some questions

- BLE vs BT Classic
 - Different architecture (Master-Slave)
 - Different modulation parameters
 - Different channels
 - Different channel-hopping scheme
 - Different packet format
 - Different packet whitening

Where is the risk?

TECHNOLOGY NEWS | Tue Oct 4, 2016 | 3:58pm EDT

J&J warns diabetic patients: Insulin pump vulnerable to hacking

And for me?

OMG, your baby has 41° take him to the hospital!

Your blood sugar is way up. You should get your insulin...

Ok, medical but...

What else?

Opens the Garage door

Are you drunk?

Possibly anything!

BLE Architecture

- Apps
 - Applications are built on top
 - Interacts with host layer only
 - Different API's depending on the application environment
- Host
 - Sits on top of the Radio
 - Provides API to applications
- Controller
 - Radio Control
 - Connection Linking
 - Radio Testing
 - Interface to Host

BLE Security - Security Manager

- Three phase process on connection
 - Pairing feature exchange
 - Short term key generation
 - Transport specific key distribution
- Implements a number of cryptographic functions
- Memory and processing requirements are lower for responding (saves power)

BLE Security

- Uses AES-128 with CCM encryption engine
- Uses Key Distribution to share various keys
 - Identity Resolving Key is used for privacy
 - Signing Resolving Key provides fast authentication without encryption
 - Long Term Key is used
- Pairing encrypts the link using a Temporary Key (TK)
 - Derived from passkey
 - Then distribute keys
- Asymmetric key model
 - Slave gives keys to master with a diversifier
 - Slave can then recover keys from the diversifier

BLE Security: Pairing

- Performed to establish keys in order to encrypt a link.
- The keys can be used to encrypt a link in future reconnections, verify signed data, or perform random address resolution.
- 3-phase for paring
 - Pairing Feature Exchange
 - Short Term Key (STK) Generation (legacy pairing)
 - Long Term Key (LTK) Generation (Secure Connections)
 - Transport Specific Key Distribution

BLE Security: Pairing

- How to determine the temporary key (TK)?
 - Just Works
 - Legacy, most common
 - Devices without display cannot implement other
 - Its actually a key of zero, that's why it just works...

- In case the device has a display
- 1m options (BFable)
- Out of band (OOB)
 - Does not share secret key over the 2.4 GHz band (used by protocol)
 - Makes use of other mediums (e.g. NFC)
 - Once secret keys are exchanged, encrypts the channel
 - Not common (understatement haven't seen one yet)
- "None of the pairing methods provide protection against a passive eavesdropper" -Bluetooth Core Spec

Why not DH?

"A future version of this specification will include elliptic curve cryptography and Diffie-Hellman public key exchanges..."

Well, that's too bad, I already bought the device!

So? Is it secure or not?

- In practice, ~80% of tested devices do not implement BLE-layer encryption
- Mobile apps cannot control the pairing (OS level)
- Why?
 - As always, security is left behind (cost, time, etc.)
 - Multiple users/apps using the same devices
 - Access sharing
 - Backups to the cloud
 - Public access devices (e.g. cash register)
 - Hardware, software or even UX compatibilities/requirements

GATT

- Generic Attribute Profile (GATT) used by BLE to communicate with each other
- Client Server Architecture
 - Built on top of ATT (Attribute Protocol)
 - GATT Server stores data using ATT
 - GATT Server accepts ATT requests to serve

and save attributes

- Organized in data objects
 - Profiles
 - Services
 - Characteristics

GATT

- Services & characteristic are identified by an associated UUID
- A characteristic contains a single value ("attribute")
 - Can be read, written to or subscribed for notifications

SERVICE							
Characteristic							
Descriptor: string (e.g. "Battery level")							
Descriptor: subscription status							
Properties: read, write, notify (authenticated or not)							
Value							
Characteristic							
()							
SERVICE							
()							

Typical flow

How does that work?

Hello everyone!
I am a BLE device
and these are my services

Discovering Services

Peripheral

Scanner

BLE cmd basics

- # hciconfig hci0 up/down/reset
- # hcitool lescan
- # hcidump -x -t hci0

```
root@AppSecLabs:~# hciconfig
hci0: Type: BR/EDR Bus: USB
BD Address: 00:22:D0:B9:6D:B2 ACL MTU: 310:10 SC0 MTU: 64:8
UP RUNNING
RX bytes:13854 acl:0 sco:0 events:389 errors:0
TX bytes:3721 acl:0 sco:0 commands:150 errors:0

root@AppSecLabs:~# hcitool lescan
LE Scan ...
F8:04:2E:87:47:B1 (unknown)
F8:04:2E:87:47:B1 (unknown)
18:7A:93:51:B3:BC (unknown)
18:7A:93:51:B3:BC power watch+
F8:04:2E:87:47:B1 (unknown)
```


gatttool


```
root@AppSecLabs:~# gatttool --device=18:7A:93:51:B3:BC --interactive
[18:7A:93:51:B3:BC][LE]> connect
Attempting to connect to 18:7A:93:51:B3:BC
Connection successful
Connection successful
[18:7A:93:51:B3:BC][LE]> characteristics
handle: 0x0002, char properties: 0x02, char value handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805f9b34fb
handle: 0x0004, char properties: 0x02, char value handle: 0x0005, uuid: 00002a01-0000-1000-8000-00805f9b34fb
handle: 0x0006, char properties: 0x08, char value handle: 0x0007, uuid: 00002a03-0000-1000-8000-00805f9b34fb
handle: 0x0008, char properties: 0x02, char value handle: 0x0009, uuid: 00002a02-0000-1000-8000-00805f9b34fb
handle: 0x000a, char properties: 0x02, char value handle: 0x000b, uuid: 00002a04-0000-1000-8000-00805f9b34fb
handle: 0x000d, char properties: 0x22, char value handle: 0x000e, uuid: 00002a05-0000-1000-8000-00805f9b34fb
handle: 0x0011, char properties: 0x02, char value handle: 0x0012, uuid: 00002a25-0000-1000-8000-00805f9b34fb
handle: 0x0014, char properties: 0x02, char value handle: 0x0015, uuid: 00002a29-0000-1000-8000-00805f9b34fb
handle: 0x0017, char properties: 0x02, char value handle: 0x0018, uuid: 00002a23-0000-1000-8000-00805f9b34fb
[18:7A:93:51:B3:BC][LE] > char-read-uuid 0000fff5-0000-1000-8000-00805f9b34fb
handle: 0x0048    value: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12
[18:7A:93:51:B3:BC][LE]>
[18:7A:93:51:B3:BC][LE]> char-read-hnd 0x0047 scovering services and characteristi
Characteristic value/descriptor: 02 48 00 f5 ff
[18:7A:93:51:B3:BC][LE]>
[18:7A:93:51:B3:BC][LE] > char-write-cmd 0x0007 0100
[18:7A:93:51:B3:BC][LE]> char-write-req 0x0007 260900035800000100000059 -listen
Erron: Characteristic Write Request failed: Attribute value length is invalid
[18:7A:93:51:B3:BC][LE]>
[18:7A:93:51:B3:BC][LE]> char-write-req 0x0007 0100 -listen
Characteristic value was written successfully
[18:7A:93:51:B3:BC][LE]>
```


Cloning the device

- Scan devices
- Listen to advertisements
- Clone
- Advertise cloned services
- Let client connect to your "fake device".
- MitM!

Normal MitM

What do we need?

- CSR 4.0 dongle x2
 - One will service as the client
 - The other as the server
 - \$2.70 in aliexpres

Desired MitM for BLE

Tampering

Tampering with data using Burp

	Target	Proxy	Spider		Scanner		Intruder	Re	epeater	
Inter	cept HTTP I	nistory Web	Sockets history	Options						
Filter:	Showing all ite	ems								?
#	URL		Direction	Edited	▼ Length	SSL	Time		Listen	
772	http://10.0.0).107:2846/	Incoming	✓	150		20:21:00 15	Jan 2017	2846	
482	http://10.0.0	.107:2846/	Incoming	V	150		20:00:50 15	Jan 2017	2846	
440	http://10.0.0	.107:2846/	Incoming	\checkmark	150		19:59:44 15	Jan 2017	2846	
437	http://10.0.0	.107:2846/	Incoming	\checkmark	150		19:59:39 15	Jan 2017	2846	
434	http://10.0.0	.107:2846/	Incoming	\checkmark	150		19:59:35 15	Jan 2017	2846	
431	http://10.0.0	.107:2846/	Incoming	\checkmark	150		19:59:26 15	Jan 2017	2846	
374	http://10.0.0	.107:2846/	Incoming	✓	150		19:57:41 15	Jan 2017	2846	
371	http://10.0.0	.107:2846/	Incoming	\checkmark	150		19:57:34 15	Jan 2017	2846	
362	http://10.0.0	.107:2846/	Incoming	\checkmark	150		19:57:22 15	Jan 2017	2846	
290	http://10.0.0	.107:2846/	Incoming	\checkmark	150		19:55:45 15	Jan 2017	2846	
249	http://10.0.0	.107:2846/	Incoming	\checkmark	150		19:54:44 15	Jan 2017	2846	
132	http://10.0.0	.107:2846/	Incoming	\checkmark	150		17:20:19 15	Jan 2017	2846	1
107	http://40.0.0	107-20461	Incoming		150		17:20:02 15	lon 2017	2016	
Orig	inal message	Edited mess	age							
Raw	Hex									
			114":"187=93 000000000001c1	_)","charact	eristic	Uuid":"	

gattacker

BLE (Bluetooth Low Energy) security assessment using Man-in-the-Middle

https://github.com/securing/gattacker

BtleJuice

- Bluetooth Smart (LE) Man-in-the-Middle framework https://github.com/DigitalSecurity/BtleJuice
- Web interface

\leftarrow \rightarrow G	🗅 localhost:8080/#						☆	:	
BtleJuice							9	ф	
Action	Service Characteristic								
Connected									
notification	180f	2a19	.G						
read	180f	2a19	.G						
read	7b122568-6677-7f8c-f8e9-	7b121991-6677-7f8c-f8e9-	01 06						
	af0eedb36e3a	af0eedb36e3a							
read	7b122568-6677-7f8c-f8e9-	7b121993-6677-7f8c-f8e9-	00 00 00 00						
	af0eedb36e3a	af0eedb36e3a							
read	7b122568-6677-7f8c-f8e9-	7b121998-6677-7f8c-f8e9-	13						
	af0eedb36e3a	af0eedb36e3a							
write	1803	2a06	02						
write	b0ad1523-99b2-7e1d-fc0d-	b0ad1525-99b2-7e1d-fc0d-	00						
	6d399e1edf02	6d399e1edf02							

Replay & on-the-fly data modification

Thanks

- Sławomir Jasek (gattacker, BH USA 2016)
- Damien Cauquil (Btlejuice, Hack.lu 2016)
- Zero_Chaos & Granolocks (DEF CON 24)
- Mike Ryan (lacklustre.net)
- Sandeep Mistry (github.com/sandeepmistry)

What's next?

Bluetooth 5

- Significantly increasing the range, speed and broadcast messaging capacity of Bluetooth applications
 - 4x the range, 2x the speed and 8x the broadcasting message capacity
 - "connectionless" IoT, advancing beacon and location-based capabilities
 - Improved interoperability and coexistence with other wireless technologies
 - Advance IoT experience by enabling simple and effortless interactions across the vast range of connected devices

https://www.bluetooth.com/bluetooth5

Thank you!

Stay tuned: https://appsec-labs.com/iot-security/

