О многомерной версии алгоритма Берлекэмпа—Месси

Пеленицын А. М. ulysses4ever@gmail.com

Кафедра алгебры и дискретной математики Факультет математики, механики и компьютерных наук Южный федеральный университет

30 октября 2009 г.

Содержание

- Одномерный случай
 - Линейные рекуррентные последовательности
 - Задача
 - Алгоритм
- Многомерный случай
 - Последовательности и полиномы
 - Задача
 - Алгоритм

Определение линейной рекуррентной последовательности

(Одномерная) Последовательность: $u\colon \mathbb{N}_0 \to \mathbb{F}_{\tilde{q}}$ ($\mathbb{N}_0 = \{0,1,\ldots\}$). u — линейная рекуррентная последовательность (ЛРП), если существуют $\{a_i\}_{i=0}^{k-1}$, такие что:

$$u_{n+k} = \sum_{i=0}^{k-1} a_i u_{i+n}, \quad n \in \mathbb{N}_0.$$

Тогда

- k порядок ЛРП u,
- ullet $\{a_i\}_{i=0}^{k-1}$ закон рекурсии ЛРП u.

Всем известный пример:

$$f_{n+2} = f_n + f_{n+1}$$

3акон рекурсии: $a_0=1$, $a_1=1$, порядок — 2.

Описание класса ЛРП

Теорема

Класс ЛРП совпадает с классом периодических последовательностей.

Доказательство

- Пусть и периодическая. Существуют р и r, τ . ч. $u_{n+p}=u_n$, $n \geqslant r$. Значит и ЛРП с законом рекурсии $a_r=1$ и $a_i=0$, где $i \in [0,p-1]_{\mathbb{N}_0} \setminus \{r\}$, порядка p+r.
- ② Пусть и ЛРП порядка k с законом рекурсии $\{a_i\}$.
 - $\overline{u}_n = (u_n, u_{n+1}, \dots, u_{n+k-1})$ вектор n-го состояния, он вполне определяет всю последовательность; в частности, если $\overline{u}_i = \overline{u}_j$, то $\overline{u}_{i+1} = \overline{u}_{j+1}$.
 - В последовательности $\bar{u}_0, \bar{u}_1, \dots$ лишь конечное число различных элементов, потому она периодическая.

Значит, и и периодическая.

Минимальный многочлен I

Для ЛРП u существует более одного закона рекурсии. Есть ли между ними связь? — $\frac{1}{2}$ Да, её можно описать в алгебраических терминах.

Пусть $\{a_i\}_{i=0}^{k-1}$ — закон рекурсии u. Назовём характеристическим многочленом u нормированный многочлен:

$$f(x) = x^k - \sum_{i=0}^{k-1} a_i x^i$$
.

Теорема

Пусть и — ЛРП, тогда существует единственный нормированный многочлен m(x), такой что любой характеристический многочлен f(x) ЛРП и делится на m(x).

Следствие

Множество характеристических многочленов ЛРП и составляет все нормированные многочлены идеала (m(x)).

Минимальный многочлен II

Степень m(x) называется линейной сложностью ЛРП u. Как найти m(x)?

От теории к практике

На практике нет возможности работать с бесконечными последовательностями.

На практике задача такова: для данных $\{u_i\}_{i=0}^m$ найти f(x) минимальной степени (обозначим её k), такой что

$$\sum_{i=0}^{k} f_i u_{i+n-k} = 0, \quad n \in [k, m]_{\mathbb{N}_0}.$$
 (1)

$$(f(x) = \sum_{i=0}^{k} f_i x^i)$$

Похоже на СЛАУ?

Решение этой задачи — f(x) — это минимальный полином ЛРП u, первые m членов которой совпадают с заданными $\{u_i\}_{i=0}^m$. Закон рекурсии u: $\{-\frac{f_i}{f_k}\}_{i=0}^{k-1}$.

Удобные обозначения

Для f(x) степени k, последовательности u и $n\geqslant k$ введём обозначение:

$$f[u]_n \stackrel{\text{def}}{=} \sum_{i=0}^k f_i u_{i+n-k} \quad (\in \mathbb{F}_{\tilde{q}}).$$

На практике задача такова: для данных $\{u_i\}_{i=0}^m$ найти f(x) минимальной степени (обозначим её k), такой что

$$f[u]_n = 0, \quad n \in [k, m]_{\mathbb{N}_0}.$$

Индукция

Будем рассуждать индуктивно.

Пусть f(x) — полином минимальной степени (обозначим её k), такой что

$$f[u]_n = 0, \quad k \leqslant n \leqslant p.$$

Как получить полином минимальной степени f'(x) (обозначим её k'), такой что

$$f'[u]_n = 0, \quad k' \leqslant n \leqslant p+1?$$

- $f[u]_{p+1} = 0$ нам повезло: $f'(x) \stackrel{\text{def}}{=} f(x)$.
- ② $f[u]_{p+1} \neq 0$ придётся потрудиться.

Степень f'(x)

$\overline{\mathsf{Л}}$ емма (о нижней границе для степени f'(x))

Для степени k' полинома f'(x) выполнено:

$$k' \geqslant p - k + 1$$
.

Следствие

Для степени k' полинома f'(x) выполнено

$$k' \geqslant \max(p-k+1,k)$$
.

Следствие

Если будет найден h(x), такой что

- **1** $h[u]_n = 0, \quad n \leq p+1,$
- **2** $\deg h = \max(p k + 1, k),$

το $f'(x) \stackrel{\text{def}}{=} h(x)$.

«Формула Берлекэмпа»

позволяет построить h(x), такой что

- **1** $h[u]_n = 0, \quad n \leq p+1,$

на основе имеющегося f(x) и некоторого полинома g(x).

То есть

$$h(x) = h(f,g),$$

 $f'(x) \stackrel{\text{def}}{=} h(x).$

Индукция

Уточним и завершим шаг индукции.

Пусть f(x) — полином минимальной степени, такой что

$$f[u]_n = 0, \quad n \leqslant p,$$

и g(x) подходящий для формулы Берлекэмпа полином.

Как получить f'(x), g'(x), такие что...?

Возможные варианты:

- \bullet $f[u]_{p+1}=0$ тогда $f'(x)\stackrel{\mathsf{def}}{=} f(x),\ g'(x)\stackrel{\mathsf{def}}{=} g(x).$
- ② $f[u]_{p+1} \neq 0$ тогда f'(x) = h(f,g), и если k' = k, то $g'(x) \stackrel{\mathsf{def}}{=} g(x)$, иначе $g'(x) \stackrel{\mathsf{def}}{=} f(x)$.

«Формула Берлекэмпа»

$$h(f,g) = x^{r-s}f(x) - \frac{d_p}{d_q}x^{r-p+q-t}g(x).$$

Обозначения. $s,t,p,q,r\in\mathbb{N}_0$, $d_p,d_q\in\mathbb{F}_{ ilde{q}}$.

- $s = \deg f$, $t = \deg g$;
- ullet p текущий шаг, q таков, что $\forall m < q \colon g[u]_m = 0$ и $g[u]_q
 eq 0$;
- $\bullet d_p = f[u]_p, \ d_q = g[u]_q;$

База индукции

Инициализация: f=1. $h_0 = x^{p+1} - \frac{u_{p+1}}{u_p}$, если p < m, $h_0 = x^{m+1}$ иначе.

Степень h(f,g) (связь f и g)

$$h(f,g) = x^{r-s} f(x) - \frac{d_p}{d_a} x^{r-p+q-t} g(x),$$

где $r = \max(s, p - q + t)$.

Bonpoc:
$$deg(h) \stackrel{?}{=} max(s, p-s+1)$$
.

0 r = s:

$$\deg(h) = \deg(f - x^{s-p+q-t}g) = \max(s, s-p+q) \stackrel{p>q}{=} s.$$

2 r = p - q + t:

$$\deg(h) = \deg(x^{p-q+t-s}f - g) = \max(p - q + t, t) =$$

$$\stackrel{p>q}{=} p - q + t \stackrel{*}{=} p - s + 1,$$

(st) — по предположению индукции s=q-t+1.

Основные определения

- ullet n-мерная последовательность $u\colon u\colon \mathbb{N}_0^n o \mathbb{F}_{ ilde{q}}.$
- ullet Если $oldsymbol{m} \in \mathbb{N}_0^{oldsymbol{n}}$, то $x^{oldsymbol{m}} = x_1^{m_1} x_2^{m_2} \cdots x_n^{m_n}$.
- Полином f(x) от n переменных: $f(x) = \sum_{i \in \Gamma_f} f_i x^i$. Конечное множество $\Gamma_f(\subset \mathbb{N}_0^n)$ «носитель» f. $f_i \in \mathbb{F}_{\widetilde{q}}$.
- Степень f(x)?

Мономиальный порядок

Мономиальный порядок < на множестве мономов $\mathrm{Mon}_n = \{x^m \mid m \in \mathbb{N}_0^n\}$ это бинарное отношение, обладающее свойствами:

- ullet < полный порядок (линейный порядок, при котором любое $M\subset {\sf Mon}_n$ имеет наименьший элемент),
- ② для $u, v, w \in \mathsf{Mon}_n$ если u < v, то uw < vw.

Пример.

$$x^{m} < x^{k} \iff \left(\left(\sum_{i} m_{i} < \sum_{i} k_{i} \right) \lor \right)$$

$$\left(\sum_{i} m_{i} = \sum_{i} k_{i} \right) \land \left(\exists j \forall i > j : \left(m_{i} = k_{i} \right) \land \left(m_{j} < k_{j} \right) \right) \right)$$

Зафиксируем <. Тогда определена функция $\deg\colon \mathbb{F}_{\widetilde{q}}[x] o \mathbb{N}_0^n,$ $\deg(f) = \max_< \Gamma_f.$

Порядки на \mathbb{N}_0^n

Мономиальный порядок на (Mon_n,\cdot) индуцирует полный порядок на $(\mathbb{N}_0^n,+)$, согласованный с полугрупповой структурой. Если $\pmb{n}\in\mathbb{N}_0^n$, обозначим через $\pmb{n}'\in\mathbb{N}_0^n$ точку, непосредственно следующую за \pmb{n} относительно этого порядка.

Определим ещё частичный порядок \leqslant_{P} на \mathbb{N}_0^n :

$$\mathbf{m} \leqslant_{\mathsf{P}} \mathbf{k} \Leftrightarrow \forall i : m_i \leqslant k_i$$
.

В терминах мономов \leqslant_{P} означает делимость: если $\pmb{m} \leqslant_{\mathsf{P}} \pmb{k}$, то корректно определён моном $x^{\pmb{k}}/x^{\pmb{m}} = x^{\pmb{k}-\pmb{m}}$ ($\pmb{k}-\pmb{m} \in \mathbb{N}_0^n$).

Для $oldsymbol{p},oldsymbol{q}\in\mathbb{N}_0^n$ введём обозначения для множеств точек:

$$\begin{split} & \boldsymbol{\Sigma_q} = \{ \boldsymbol{m} \in \mathbb{N}_0^n \mid \boldsymbol{q} \leqslant_{\mathsf{P}} \boldsymbol{m} \}, \\ & \boldsymbol{\Sigma_q^p} = \{ \boldsymbol{m} \in \mathbb{N}_0^n \mid \boldsymbol{q} \leqslant_{\mathsf{P}} \boldsymbol{m} < \boldsymbol{p} \}, \\ & \boldsymbol{\Gamma_p} = \{ \boldsymbol{m} \in \mathbb{N}_0^n \mid \boldsymbol{m} \leqslant_{\mathsf{P}} \boldsymbol{p} \}. \end{split}$$

Линейные рекуррентные последовательности

u называется линейной рекуррентной последовательностью, если существуют $\{f_i\}_{i\in\Gamma}$ ($\Gamma\subset\mathbb{N}_0^n$, $|\Gamma|<\infty$, $s=\max_<\Gamma$), такие что:

$$\sum_{i\in\Gamma}f_i\,u_{m+i-s}=0\quad\forall m\in\Sigma_s.$$

Как и прежде, определяется характеристический полином $f(x) = \sum_{i \in \Gamma} f_i x^i$ для ЛРП u и вводится обозначение:

$$f[u]_{\boldsymbol{m}} \stackrel{\text{def}}{=} \sum_{i} f_{i} u_{i+\boldsymbol{m}-\boldsymbol{s}} \quad \forall \boldsymbol{m} \in \Sigma_{\boldsymbol{s}},$$

где $s = \deg f$.

Теорема

Множество I(u) характеристических полиномов ЛРП и является идеалом в $\mathbb{F}_{\tilde{q}}[x]$.

Базовые сведения о $\mathbb{F}_{\tilde{q}}[x]$ -идеалах I [CLO'S00]

- ullet идеалы в $\mathbb{F}_{\tilde{a}}[x]$ не являются главными;
- однако справедлива

Теорема («Гильберта о базисе»)

Любой идеал $I \subset \mathbb{F}_{\tilde{q}}[x]$ конечнопорождён, т. е. существуют $\{f_i(x)\}_{i=1}^k$, такие что

$$I = \{f_1g_1 + \ldots + f_kg_k \mid g_1(x), \ldots, g_k(x) \in \mathbb{F}_{\tilde{q}}[x]\} \stackrel{\text{def}}{=} \langle f_1, \ldots, f_k \rangle.$$

Базовые сведения о $\mathbb{F}_{ ilde{q}}[x]$ -идеалах II [CLO'S00]

- базис существенно неединственен (в частности, разные базисы могут содержать разное количество элементов);
- однако существуют «хорошие» базисы: базисы Грёбнера

Определение

Набор полиномов $\{f_i(x)\}_{i=1}^k \subset I$ называется базисом Грёбнера идеала I, если:

$$\forall g \in I \ \exists i : \deg f_i \leqslant_P \deg g.$$

B этом случае $I = \langle f_1, \dots, f_k \rangle$.

Определение

Нормированный базис Грёбнера $\{f_i(x)\}_{i=1}^k$ идеала I называется минимальным базисом Грёбнера, если:

$$\forall i \forall j \neq i : \deg f_i \not\leq_P \deg f_j$$
.

Задача

Рассмотрим отрезок последовательности $u'':\Sigma_0''\to \mathbb{F}_{\tilde{q}}$. Для любого $f\in \mathbb{F}_{\tilde{q}}[x]$ условие

$$\forall {m m} \in \Sigma_{\deg f}^{m r} \colon f[u]_{m m} = 0$$

будем записывать просто $f[u^r] = 0$ или кратко: f[u] = 0.

Определение

Множество нормированных полиномов $F = \{f_i(x)\}_{i=1}^k$ называется минимальным множеством для отрезка последовательности $u^r : \Sigma_0^r \to \mathbb{F}_{\tilde{q}}$, если выполнены условия:

Как найти минимальное множество для отрезка u^r ?

Класс минимальных множеств

Множество минимальных множеств отрезка последовательности $u^r : \Sigma_{\mathbf{n}}^r \to \mathbb{F}_{\tilde{a}}$ обозначим $\mathscr{F}(u^r)$.

Как выглядит $deg(\{f(x) \mid f[u] = 0\})$?

Пусть $F \in \mathscr{F}(u^r)$. Обозначим:

$$\Sigma(u^r) \stackrel{\text{def}}{=} \bigcup_{f \in F} \Sigma_{\deg f},$$
$$\Delta(u^r) \stackrel{\text{def}}{=} \Sigma_{\mathbf{0}} \setminus \Sigma.$$

Для краткости можно писать $\Sigma(r)$, $\Delta(r)$.

Индукция

Будем рассуждать индуктивно.

Пусть
$$m{p} < m{r}$$
, $F \in \mathscr{F}(u^{m{p}})$, $G \subset \mathbb{F}_{\tilde{q}}[x]$ $(|G| < \infty)$.

Необходимо найти
$$F' \in \mathscr{F}(u^{\mathbf{p}'}), \ G' \subset \mathbb{F}_{\tilde{q}}[x] \ (|G'| < \infty).$$

Для каждого $f \in F$ есть две возможности:

- $oldsymbol{0} f[u]_{oldsymbol{
 ho}} = 0$ тогда $f \in F'$.
- **a** $f[u]_{p} \neq 0 \dots$

Связь F и G

$$\forall g \in G \ \exists q \colon g \in F(u^q) \land g[u]_q \neq 0.$$

Требование: $\{q - \deg g | g \in G\} = \max_{\leq p} \Delta(u^r)$.

Лемма о границе для степени $f'(x) \in F'$

Обозначим $F_{\mathrm{fail}} = \{ f \in F \mid f[u]_{\boldsymbol{p}} \neq 0 \}.$

Лемма

Пусть $f(x) \in F_{\mathrm{fail}}$, тогда не существует $f'(x) \in F'$, такого что:

$$\deg f' \leqslant_P (\boldsymbol{p} - \deg f).$$

То есть $\deg f' \in \Sigma_0 \setminus \Gamma_{\boldsymbol{p}-\deg f}$.

Следствие

Пусть
$$\Gamma = \bigcup_{f \in F_{\mathrm{fail}}} \Gamma_{m{p} - \deg f}$$
, тогда

$$\deg(F') \subset (\Sigma(u^{\mathbf{p}}) \setminus \Gamma).$$

Степень $f \in F_{\mathrm{fail}}$ и формула Берлекэмпа

• Если $p - \deg f \in \Delta(u^p)$, то на степень f' нет дополнительных ограничений и формула Берлекэмпа h(f,g) позволяет построить $f' \colon \deg f' = \deg f$. В качестве g нужно взять такой элемент G, что $p - \deg f \leqslant_P q - \deg g$.

$$h(f,g) = f - \frac{d_{\mathbf{p}}}{d_{\mathbf{q}}} x^{\mathbf{q} - \deg g - (\mathbf{p} - \deg f)} g.$$

 $oldsymbol{2}$ Если $oldsymbol{p}-\deg f
ot\in\Delta(u^{oldsymbol{p}}),\ldots$

Остались нерассмотренными $f \in F_{\mathrm{fail}}$, такие что $m{p} - \deg f \not\in \Delta(u^{m{p}})$, обозначим их F_{fail} .

Для каждой пары (f,g), где $f\in \mathcal{F}_{\mathrm{fall}}$, $g\in \mathcal{G}$,

- ullet если $oldsymbol{s}'=\max(\deg f,oldsymbol{p}-oldsymbol{q}+\deg oldsymbol{g})$ минимальна по $\leqslant_{ extsf{P}}$ в $S'=\{\max(\deg f,oldsymbol{p}-oldsymbol{q}+\deg oldsymbol{g})\mid f\in F_{ ext{fall}},oldsymbol{g}\in G\},$
- то полином:

$$h(f,g) = x^{s'-\deg f} f - \frac{d_{\mathbf{p}}}{d_{\mathbf{q}}} g$$

добавляется в F'.

Вырожденный случай

Пусть \hat{S} множество минимальных по \leqslant_{P} элементов в $\Sigma(u^{m{p}})\setminus \Gamma_{m{p}}.$

Для каждого $\hat{s}\in\hat{S}$, если не найдётся такого $s'\in S'$, что $s'\leqslant_{\mathrm{P}}\hat{s}$, тогда для каждого $f\in F_{\mathrm{fall}}$, такого что $\deg f\leqslant_{\mathrm{P}}\hat{s}$, полином

$$h(f) = x^{s' - \deg f} f$$

добавляется в F'.

Библиография

[KKMN94]

[Sakata88]

[Blahut86]	Блейхут Р. Теория и практика кодов, контролирующих ошибки: Пер. с англ. / М.: Мир, 1986.
[CLO'S00]	Кокс Д., Литтл Дж., О'Ши Д. Идеалы, многообразия и алгоритмы.

Кокс Д., Литтл Дж., О Ши Д. Идеалы, многообразия и алгоритмы. Введение в вычислительные аспекты алгебраической геометрии и коммутативной алгебры. / М.: Мир, 2000.

Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A. Linear

recurring sequences over rings and modules. // I. of Math. Science. Contemporary Math. and it's Appl. Thematic surveys, vol. 10, 1994.

[LN88] Лидл Р., Нидеррайтер Г. Конечные поля: В 2-х т. / М.: Мир, 1988

Лидл Р., Нидеррайтер Г. Конечные поля: В 2-х т. / М.: Мир, 1988. 822 стр.

Sakata S. Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array // J. Symb. Comp. 1988. Vol. 5. 1988. Pp. 321–337.

[Sakata 90] Sakata S. Extension of the Berlekamp-Massey algorithm to N dimensions. // Inform. and Comput. 84, no. 2. 1990. Pp. 207-239.

[Sakata 9] Sakata S. The BMS Algorithm // Chapter in Gröbner Bases, Coding, and Cryptography, Springer, 2009.