Eg. If $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3,3), (4,4)\}$ then R is a relation in $R: A \longrightarrow A$ and $R \subseteq A \times A$.

This relation is symmetric as can be seen by considering all possible cases. For eg 1R2 and 2R1 so that fine and the rest are trivial.

Eg. If $A = \{1, 2, 3, 4\}$, and $R = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}$. This isn't symmetric since IRZ but 2K1. H's also not reflexive because 2K2 and 3K3. (Instead of saying 2K2 you can also say $(2,2) \notin R$.)

Eg. If A = (all straight lines in the plane) and define I an A by a ∈ A, b ∈ A then a I b if the lines a and b are at right angles. This is a relation on A.

This is symmetric since if a is a line at right angles to b then b is also a line at right angles to a in all => bla. It's not reflexive since a line isn't perpendicular to itself.

Transitivity: A relation R: A -> A in transitive if and only If whenever a Rb and bRc we also have a Rc.

Eg. A= {1,2,3,4}, R= {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}
If you consider the possible cases it's clear R in transitive.

Eg. $A = \{1,2,3,4\}$, $R = \{(1,3),(2,1)\}$ This isn't transitive since 2R1 and 1RS but 2R5 ie $(2,1) \notin \mathbb{R}$.

Eg. A = [all straight lines in the plane], R = 1 as before. Thin isn't transitive since if a 1 b and b1c then a and a are perrallel.

To show a relation init reflexive, symmetric or transitive it's sufficient to find a single counter-example, is a single case for which the property doesn't hold.

Antisymmetric: A relation R: A -> A is autisymmetric if and only if given a Rb and bRa then a = b.

Eg. Let \mathbb{Z} be the set of all integers and define $R: \mathbb{Z} \to \mathbb{Z}$ by aRb if and only if $a \le b$. Then R contains pairs like (1,1), (1,2), (-1,2), (0,10) etc. but doesn't contain (0,-1)

This relation is antisymmetric because as b and bsa implies by the basic rules for anithmetric that a=b.

R is reflexive because as a for every a=7. H init symmetric, for eg 253 but 3\$2. It is transitive since as b and bsc implies asc.

Eg. A = {all straight lines in the plane}, R = L as before. This init antisymmetric. As a counter-ex. take any two L lines a, b. Then a 1 b, b 1 a but a + b.

Eg. Define a relation P(A), A + & by aRb if and only if a \subsets \text{b}, where a \text{b} \in \mathbb{P(A)} is a and b are subsets \text{d}.

This is reflexive since $a \le a$ for every a. It isn't symmetric It isn't symmetric since $a \le a$ in $a \ne b$ but $a \ne a$ in $a \ne a$ in $a \ne a$ and $a \le b$ and $a \le c$.

R is anti-symmetric since $a \le b$ and $a \ne a$ implies that a = b.

Equivalence Relations:

A relation R: A -> A, A +Ø, which is reflexive, symmetric and transitive is called an <u>equivalence</u> relation.

Eg. Let T = {all plane triangles } and define a relation R on T by aRb if the triangles a and b are congruent, is a and b have the same sides and angles or a and the reflection of b have the same sides and angles.