

INDC International Nuclear Data Committee

HANDBOOK OF NUCLEAR DATA FOR SAFEGUARDS: DATABASE EXTENSIONS, AUGUST 2008

Prepared by

A. L. Nichols, D. L. Aldama*, M. Verpelli

* División de Información Centro de Gestión de la Información y Desarrollo de la Energía. Agencia de Energía Nuclear y Tecnologías de Avanzada. La Habana, Cuba.

Nuclear Data Section
Division of Physical and Chemical Sciences
Department of Nuclear Sciences and Applications
International Atomic Energy Agency
Vienna, Austria

August 2008

Selected INDC documents may be downloaded in electronic form from http://www-nds.iaea.org/indc_sel.html or sent as an e-mail attachment.

Requests for hardcopy or e-mail transmittal should be directed to services@iaeand.iaea.org or to:

Nuclear Data Section
International Atomic Energy Agency
PO Box 100
Wagramer Strasse 5
A-1400 Vienna
Austria

Printed by the IAEA in Austria

August 2008

HANDBOOK OF NUCLEAR DATA FOR SAFEGUARDS: ADDENDUM, AUGUST 2008

Prepared by

A. L. Nichols, D. L. Aldama*, M. Verpelli

*División de Información Centro de Gestión de la Información y Desarrollo de la Energía. Agencia de Energía Nuclear y Tecnologías de Avanzada. La Habana, Cuba.

Nuclear Data Section
Division of Physical and Chemical Sciences
Department of Nuclear Sciences and Applications
International Atomic Energy Agency
Vienna, Austria

Abstract

A set of recommended nuclear data were assembled in January 2007 that were judged to be suitable for universal adoption with respect to nuclear materials accounting techniques. These data were fully documented in IAEA report INDC(NDS)-0502, January 2007, and superseded the tabulations to be found within IAEA report INDC(NDS)-376, December 1997. Section A contains decay data, thermal neutron capture cross section data, resonance integrals and neutron emission yields per fission for relevant actinides and their natural decay products; Section B includes decay and thermal neutron capture cross section data for some important fission products; and Section C presents fission product yield data for selected actinides. Following the issue of this material, the authors were asked by users to extend the decay database to encompass a specific number of activation products, and also include additional fission product yield data. These requests have been addressed by creating Section D dedicated to decay data for relevant activation products, and extending Section C of the fission product yield database. All of the recommended data sets can be inspected as tables in this INDC(NDS) report, or through the adoption and use of appropriate software for which a Web site containing all of the data sets is located at http://www-nds.iaea.org/sgnucdat/

CONTENTS

1.	Introduction	9
2.	Definitions, Symbols and Notations	9
2.1.	Definitions	
2.2.	Units adopted	9
2.3.	Symbols and notations	
2.3.1.	Decay data	
2.3.2.	Cross-section and delayed-neutron data	10
3.	General rules for selection of data	11
4.	Contents of the tables	11
4.1.	Section A – Actinides and natural decay products	11
4.1.1.	Table A-1: Half-lives and branching fractions for actinides and natural decay products	
4.1.2.	Table A-2: Alpha-particle energies and emission probabilities for actinides and natural decay products	
4.1.3.	Table A-3: Gamma-ray energies and emission probabilities for actinides and natural decay products	
4.1.4.	Table A-4: K X-ray energies and intensities for actinides and natural decay products	
4.1.5.	Table A-5: Actinide data: Thermal neutron cross sections, resonance integrals and Westcott factors	
4.1.6.	Table A-6: Average number of neutrons emitted per fission	
4.1.7.	Table A-7: Delayed-neutron eight-group parameters	
4.2.	Section B – Fission products	
4.2.1.	Table B-1: Half-lives and branching fractions for fission products	
4.2.2.	Table B-2: Gamma-ray energies and emission probabilities for fission products	
4.2.3.	Table B-3: X-ray energies and intensities for fission product	19
4.2.4.	Table B-4: Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors	20
4.3.	Section C – Fission yields	20
4.3.1.	Table C-1.1: Th-232 chain fission yields	
4.3.2.	Table C-1.2: U-233 chain fission yields.	
4.3.3.	Table C-1.3: U-235 chain fission yields	
4.3.4.	Table C-1.4: U-238 chain fission yields	
4.3.5.	Table C-1.5: Pu-239 chain fission yields	
4.3.6.	Table C-1.6: Pu-241 chain fission yields	
4.3.7.	Table C-2.1: Th-232 independent fission yields for selected fission products	
4.3.8.	Table C-2.2: U-233 independent fission yields for selected fission products	
4.3.9.	Table C-2.3: U-235 independent fission yields for selected fission products	
	Table C-2.4: U-238 independent fission yields for selected fission products	
	Table C-2.5: Pu-239 independent fission yields for selected fission products	
	Table C-2.6: Pu-241 independent fission yields for selected fission products	
	Table C-3.1: 1n-232 cumulative fission yields for selected fission products	
	Table C-3.3: U-235 cumulative fission yields for selected fission products	

	6. Table C-3.4: U-238 cumulative fission yields for selected fission products	
	7. Table C-3.5: Pu-239 cumulative fission yields for selected fission products	
4.3.1 4.4.	8. Table C-3.6: Pu-241 cumulative fission yields for selected fission products	
4.4.1		24
4.4.2	. Table D-2: Gamma-ray energies and emission probabilities for activation products.	24
4.4.3	. Table D-3: X-ray energies and intensities for activation products	25
5.	Concluding Remarks	25
REC	OMMENDED NUCLEAR DATA TABLES, AUGUST 2008	27
A-1:	Half-lives and branching fractions for actinides and natural decay products	29
A-2:	Alpha-particle energies and emission probabilities for actinides and natural	
	decay products	33
A-3·	Gamma-ray energies and emission probabilities for actinides and natural	
110.	decay products	37
A 1.	K X-ray energies and intensities for actinides and natural decay products	
		43
A-3:	Actinide data: Thermal neutron cross sections, resonance integrals and	
	Westcott factors	48
A-6:	Average number of neutrons emitted per fission	51
A-7:	Delayed-neutron eight-group parameters	53
B-1:	Half-lives and branching fractions for fission products	57
B-2:	Gamma-ray energies and emission probabilities for fission products	60
B-3:	X-ray energies and intensities for fission products	64
B-4:	Fission product data: Thermal neutron cross sections, resonance integrals	
	and Westcott factors	66
		. 00
C-1:	Chain fission yields for selected actinides	71
C-2:	Selected independent fission product yields	89
C-3:	Selected cumulative fission product yields	01
D-1:	Half-lives and branching fractions for activation products	13
D-2:	Gamma-ray energies and emission probabilities for activation products	16
D-3:	X-ray energies and intensities for activation products	120

1. Introduction

The aim of the present handbook is to provide carefully selected and evaluated nuclear data suitable for application with respect to nuclear materials accounting techniques. These revised data supersede the tabulations to be found within IAEA reports INDC(NDS)-376, December 1997 and INDC(NDS)-0502, January 2007. The update is based on available evaluated nuclear databases and recently published files, books and technical reports.

Adopted definitions, symbols and notations are listed in Section 2, below. The selection rules for the recommended data from the various sources are given in Section 3, while Section 4 specifies the contents of the tables.

The nuclear data for safeguards are given in four sections:

Section A contains decay data, thermal neutron cross-section data, resonance integrals and neutron emission yields per fission for relevant actinides and their natural decay products;

Section B includes decay and thermal neutron cross-section data for some important fission products;

Section C presents fission product yield data for some selected actinides;

Section D provides decay data for some important activation products.

Additional remarks are given as footnotes to the corresponding tables.

2. Definitions, Symbols and Notations

2.1. Definitions

Nuclide: atoms characterized by atomic number Z and mass number A.

Radionuclide: radioactive nuclide.

Disintegration: spontaneous transformation of the nucleus into another nucleus that gives rise to a change in the atomic number, into two or more nuclei (fission), or a transition to a lower energy state of the same nucleus.

Emission probability: particles or quanta emitted per disintegration, or per 100 disintegrations (%).

Half-life $(T_{1/2})$: time required for the initial number of atomic nuclei to decrease by a factor of two via radioactive disintegration.

Independent fission yields: number of atoms of a specific nuclide produced directly by a fission event (not via radioactive decay of the precursors).

Cumulative fission yields: total number of atoms of a specific nuclide produced directly by a fission event and via decay of precursors.

Chain fission yields: sum of the cumulative yields of the last (stable or long-lived) chain members - obtained by means of mass spectrometric measurements of long-lived or stable products of mass chains.

Mass number yields: sum of all independent yields of a particular mass chain.

2.2. Units adopted

```
s: second; m: minute; h: hour; d: day
y: year (1 y = 365.24219878 d = 31556926 s \approx 365.2422 d)
```

J: joule; eV: electronvolt (1 eV = $1.602177 \times 10^{-19} \text{ J}$)

barn: 10⁻²⁴ cm²

2.3. Symbols and notations

2.3.1. Decay data

T_{1/2}: half-life

BF: branching fraction

α: alpha particle

 β^- : electron from β^- decay

 β^+ : positron from β^+ decay

e: electron

γ: gamma quantum

X: X-ray quantum

X_k: K X-ray quantum

n: neutron

SF: spontaneous fission

EC: electron capture

IT: isomeric transition

E: energy

 P_{α} : α -particle emission probability

 P_{γ} : γ -ray emission probability

P_x: X-ray emission probability

2.3.2. Cross-section and delayed-neutron data

 σ_0 : neutron cross section at 2200 m s⁻¹

σ: neutron cross section in a Maxwellian spectrum

 σ_r : neutron cross section measured with reactor neutrons

 σ_c : neutron cross section calculated from resonance parameters or derived from equivalent data of the natural element

 $\sigma_{(m)}$: neutron cross section leading to a metastable state of the product

 $\sigma_{(g)}$: neutron cross section leading to the ground state of the product

g Westcott factor: ratio of the Maxwellian averaged cross section σ to 2200 m s⁻¹ cross section σ_0 (g = σ/σ_0); if the cross section varies as a function of 1/v, g = 1.0

RI: infinite dilution resonance integral (including 1/v contribution)

y: subscript for radiative capture cross section

f: subscript for fission cross section

 v_t : total neutron yield per fission

v_d: delayed-neutron yield per fission

 $T_{1/2i}$: half-life of delayed-neutron group i

 λ_i : mean life of delayed-neutron group i

 α_i : ratio of the average number of delayed neutrons per fission emitted in group i to the average number of all delayed neutrons per fission ($\alpha_i = v_{di}/v_d$)

 β_i : ratio of the average number of delayed neutrons per fission emitted in group i to the average number of all neutrons per fission ($\beta_i = v_{di}/v_t = \alpha_i \cdot v_d/v_t$)

3. General rules for selection of data

The following criteria were applied in the course of selecting the data:

Preference was given to evaluated data recommended by international working groups and projects, reported in recent publications, or available on the web.

If the first criterion was not applicable, data were adopted from available evaluated nuclear data libraries: ENSDF for decay data and ENDF/B-VII or JEFF-3.1 for reaction data.

If uncertainties were not available in the evaluated nuclear data source, these parameters were adopted from the original documentation related to the selected source, or they were estimated from the experimental data available in the EXFOR library, or published in recent relevant papers or reports.

4. Contents of the tables

The data are presented in four sections:

Section A: Decay data, thermal neutron cross-section data, resonance integrals, average fission neutron yields and delayed-neutron eight-group parameters for actinides and natural decay products.

Section B: Decay data, thermal neutron cross-section data and resonance integrals for fission products.

Section C: Fission product yield data for the most important actinides.

Section D: Decay data for activation products.

4.1. Section A – Actinides and natural decay products

Table A-1: Half-lives and branching fractions for actinides and natural decay products

Table A-2: Alpha energies and emission probabilities for actinides and natural decay products

Table A-3: Gamma-ray energies and emission probabilities for actinides and natural decay products

Table A-4: X-ray energies and intensities for actinides and natural decay products

Table A-5: Actinide data: Thermal neutron cross sections, resonance integrals and Westcott factors

Table A-6: Average number of neutrons emitted per fission

Table A-7: Delayed-neutron eight-group parameters

A brief description of the data presented in each table is given below. Additional remarks are included as footnotes to the tables.

- 4.1.1. Table A-1: Half-lives and branching fractions for actinides and natural decay products Content of Table A-1:
- 1. Nuclide
- 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Units (s, m, h, d, y)
- 4. Decay mode $(\alpha, \beta^+, \beta^-, EC, IT, SF)$
- 5. Branching fraction with 1σ uncertainty, (BF $\pm \Delta$ BF)
- 6. Source of data

Data sources are listed below in order of preference:

- BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 A = 151 to 242, 2004.
- LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP WG/DDEPdata.htm, 3 October 2006.
- IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.
- ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 15 November 2006.

If the data in BIPM-5 and LNHB were the same for a given evaluation, BIPM-5 was quoted as the data source. Data from BIPM-5 and LNHB were adopted in preference to ENSDF data.

4.1.2. Table A-2: Alpha-particle energies and emission probabilities for actinides and natural decay products

Content of Table A-2:

- 1. Nuclide
- 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Half-life units (s, m, h, d, y)
- 4. α -particle energy with 1 σ uncertainty, ($E_{\alpha} \pm \Delta E_{\alpha}$ in keV)
- 5. Emission probability P_{α} per 100 decays with 1σ uncertainty, $(P_{\alpha} \pm \Delta P_{\alpha} \text{ in } \% \text{ decay})$
- 6. Source of data
- 7. Notes

Data sources are listed below in order of preference:

- BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 A = 151 to 242, 2004.
- LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 3 October 2006.
- ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 15 November 2006.

Same comments about preference are applicable as stated for Table A-1. Alpha particles with energies below 40 keV were normally omitted, as they are judged to be unsuitable for non-destructive assay.

4.1.3. Table A-3: Gamma-ray energies and emission probabilities for actinides and natural decay products

Content of Table A-3:

- 1. Nuclide
- 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Half-life units (s, m, h, d, y).
- 4. γ -ray energy with 1σ uncertainty, $(E_{\gamma} \pm \Delta E_{\gamma} \text{ in keV})$
- 5. Emission probability P_{γ} per 100 decays with 1σ uncertainty, $(P_{\gamma} \pm \Delta P_{\gamma})$ in % decay)
- 6. Source of data
- 7. Notes

Data sources are listed below in order of preference:

- ADS-98: I. Adsley, J.S. Backhouse, A.L. Nichols, J. Toole, U-238 Decay Chain: Resolution of Observed Anomalies in the Measured Secular Equilibrium Between Th-234 and Daughter Pa-234m, *Appl. Radiat. Isot.* **49** (1998) 1337.
- BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 A = 151 to 242, 2004.
- LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 3 October 2006.
- IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.
- ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 15 November 2006.

Same comments about preference are applicable as stated for Table A-1. Gamma rays with energies below 40 keV were normally omitted, as they are judged to be unsuitable for non-destructve assay.

- 4.1.4. Table A-4: K X-ray energies and intensities for actinides and natural decay products Content of Table A-4:
- 1. Nuclide
- 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Half-life units (s, m, h, d, y)
- 4. Decay mode $(\alpha, \beta^+, \beta^-, EC)$
- 5. Origin of K X-rays element of origin is specified, and the X-rays are defined on the basis of the Siegbahn notation. K X-rays associated with the following shell transitions are listed in the table:

$$K\alpha_2$$
 K -L2 $K\alpha_1$ K -L3

$$K'\beta_1 \begin{cases} K\beta_3 & K\text{-M2} \\ K\beta_1 & K\text{-M3} \\ K\beta_5 & K\text{-M5M4} \end{cases}$$

$$K'\beta_{2} \begin{cases} K\beta_{2} & K\text{-N3N2} \\ K\beta_{4} & K\text{-N5N4} \\ KO & K\text{-O23} \\ KP & K\text{-P23} \end{cases}$$

- 6. X-ray energy (E_x) or energy group in keV
- 7. Emission probability P_x per 100 decays with 1σ uncertainty, $(P_x \pm \Delta P_x \text{ in } \% \text{ decay})$
- 8. Source of data

Data sources are listed below in order of preference:

- PTB: E. Schönfeld, G. Rodloff, Energies and relative emission probabilities of K X-rays for elements with atomic number in the range from Z = 5 to Z = 100, Report PTB-6.11-1999-1, 1999.
- BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 A = 151 to 242, 2004.
- LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP WG/DDEPdata.htm, 3 October 2006.
- IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287,

May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

ENSDF: Evaluated Nuclear Structure Data File,

http://www-nds.iaea.org/ensdf/, 15 November 2006.

K X-ray energies were always adopted from PTB. If the data in BIPM-5 and LNHB were the same for a given evaluation, BIPM-5 was quoted as the data source. Data from BIPM-5 and LNHB were adopted in preference to ENSDF data.

When ENSDF was selected as the source of data, only the emission probability for the $K\alpha_1$ transition was adopted from this evaluated nuclear database. The emission probabilities for $K\alpha_2$, $K'\beta_1$ and $K'\beta_2$ were calculated using the relatives emission probabilities listed in PTB.

4.1.5. Table A-5: Actinide data: Thermal neutron cross sections, resonance integrals and Westcott factors

Content of Table A-5:

- 1. Nuclide
- 2. Type of thermal cross section $(\sigma_0, \sigma, \sigma_r, \sigma_c, \sigma_{(m)}, \sigma_{(g)})$
- 3. Thermal cross section with 1σ uncertainty in barns, $(\sigma \pm \Delta \sigma)$
- 4. We stcott factor, $(g \pm \Delta g)$
- 5. Resonance integral with 1σ uncertainty in barns, (RI $\pm \Delta$ RI)
- 6. Source of data

Data sources are listed below:

TRK-05: A. Trkov, G.L. Molnár, Zs. Révay, S.F. Mughabghab, R.B. Firestone, V.G. Pronyaev, A.L. Nichols, M.C. Moxon, Revisiting the ²³⁸U Thermal Capture Cross Section and Gamma-ray Emission Probabilities from ²³⁹Np Decay, *Nucl. Sci. Eng.* **150** (2005) 336.

ANR: S.F. Mughabghab, Atlas of Neutron Resonances, Resonance Parameters and Thermal Cross Sections, Z = 1 - 100, 5^{th} Edition, Elsevier, Amsterdam, 2006.

ENDF/B-VII: US Evaluated Nuclear Data Library ENDF/B-VII β3, Incident neutron data, http://www.nndc.bnl.gov/exfor4/endf00.htm, 2 October 2006; see also M.B. Chadwick *et al.*, ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, *Nucl. Data Sheets* **107** (2006) 2931.

JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron data,

http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006;

see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Cross sections, Westcott factors and resonance integrals were adopted from ANR, whereas the U-238 thermal neutron capture cross section was taken from TRK-05. When ANR data were incomplete or judged to be inadequate, the ENDF/B-VII and the JEFF-3.1 evaluated nuclear data libraries were used as data sources. Additional remarks are included as footnotes to the table.

4.1.6. Table A-6: Average number of neutrons emitted per fission

Content of Table A-6:

- 1. Nuclide (fissionable isotope)
- 2. Type of incident neutron spectrum (fast, thermal, spontaneous fission)
- 3. Total neutron yield per fission (v_t) and associated 1σ uncertainty, $(v_t \pm \Delta v_t)$
- 4. Source of data for v_t
- 5. Total delayed-neutron yield per fission (v_d) and associated 1σ uncertainty, ($v_d \pm \Delta v_d$)
- 6. Source of data for v_d

Data sources are listed below:

- IAEA-CRP-STD: S.A. Badikov, Chen Zhenpeng, A.D. Carlson, E.V. Gai, G.M. Hale, F.-J. Hambsch, H.M. Hofmann, T. Kawano, N.M. Larson, V.G. Pronyaev, D.L. Smith, Soo-Youl Oh, S. Tagesen, H.K. Vonach, A.L. Nichols, "International Evaluation of Neutron Cross-section Standards", IAEA Scientific and Technical Information report STI/PUB/1291, November 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-100807-4.
- NEA/WPEC-6: G. Rudstam, Ph. Finck, A. Filip, A. D'Angelo, R.D. McKnight, Delayed Neutron Data for the Major Actinides, NEA/WPEC-6, Volume 6, NEA/OECD, Paris, France, 2002.
- JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron and radioactive decay data files, http://www.nea.fr/html/dbdata/JEFF/, 26 February 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.
- ENDF/B-VII: US Evaluated Nuclear Data Library ENDF/B-VII β3, Incident neutron data, http://www.nndc.bnl.gov/exfor4/endf00.htm, 2 October 2006; see also M.B. Chadwick *et al.*, ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, *Nucl. Data Sheets* **107** (2006) 2931.
- P&I(1998): V.M. Piksaikin, S.G. Isaev, Correlation properties of delayed neutrons from fast neutron induced fission, pp. 1-13 in INDC(CCP)-415, October 1998, IAEA, Vienna, Austria.
- Mills(1995): R.W. Mills, Fission product yield evaluation, PhD thesis, University of Birmingham, UK, March 1995.
- Tuttle(1979): R.J. Tuttle, Delayed-neutron yields in nuclear fission, pp. 29-67 in Proc. Consultants' Meeting on Delayed Neutron Properties, 26-30 March 1979, INDC(NDS)-107 (1979) 29, IAEA, Vienna, Austria.
- EXFOR: Experimental Nuclear Reaction Data, http://www-nds.iaea.org/exfor/exfor00.htm, 27 March 2006.

Total fission neutron yields reported in IAEA-CRP-STD were preferred. Otherwise, JEFF-3.1 data were recommended, with the exceptions of Th-232 and U-238 for which ENDF/B-VII data were chosen.

Delayed-neutron yields were usually adopted from the JEFF-3.1 library; exceptions were U-238 and the delayed-neutron yields from spontaneous fission. ENDF/B-VII data were

selected for U-238, and values reported by Mills or Tuttle were adopted in the case of spontaneous fission.

Data adopted from the JEFF-3.1 or ENDF/B-VII evaluated nuclear data libraries were processed using the NJOY-99 code. A thermal or a fast reactor spectrum was used to average the corresponding thermal or fast neutron yield (GROUPR input option IWT = -4 and -8, respectively). If available, covariance file MF=31 was also processed to estimate uncertainties.

When the chosen data source did not include uncertainties, they were estimated from the experimental data to be found in the EXFOR library or reported by P&I (1998). The uncertainty was calculated on the basis of the following expression:

$$\sigma_{v} = [(v - v_{exp})^{2} + \sigma_{v,exp}^{2}]^{\frac{1}{2}}$$
,

where σ_v is the standard deviation of v (total or delayed-neutron yield),

v is the recommended value of v given in Table A-6,

 v_{exp} is the weighted average value of v calculated from the selected experimental data - weights were the inverse of the squares of the individual measured uncertainties, and

 $\sigma_{v,exp}$ is the standard deviation of v_{exp} .

4.1.7. Table A-7: Delayed-neutron eight-group parameters

Content of Table A-7:

- 1. Nuclide
- 2. Type of incident neutron spectrum (fast, thermal, spontaneous fission)
- 3. Delayed-neutron group
- 4. Half-life in seconds $(T_{1/2i})$
- 5. Decay constant in $s^{-1}(\lambda_i)$
- 6. Fraction $\alpha_i = v_{di}/v_d$ and associated 1σ uncertainty
- 7. Delayed neutron ratio $\beta_i = v_{di}/v_t$ [%] and associated 1σ uncertainty in percent
- 8. Notes

Sources of data:

- NEA/WPEC-6: G. Rudstam, Ph. Finck, A. Filip, A. D'Angelo, R.D. McKnight, Delayed Neutron Data for the Major Actinides, NEA/WPEC-6, Volume 6, NEA/OECD, Paris, France, 2002.
- JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron and radioactive decay data files, http://www.nea.fr/html/dbdata/JEFF/, 26 February 2006;

see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Recommended data were adopted from the JEFF-3.1 library and documentation. The eight-group delayed-neutron structure is discussed in NEA/WPEC-6.

- 4.2. Section B Fission products
- Table B-1: Half-lives and branching fractions for fission products
- Table B-2: Gamma-ray energies and emission probabilities for fission products
- Table B-3: X-ray energies and intensities for fission products.
- Table B-4: Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors

A brief description of the data presented in each table is given below. Additional remarks are included as footnotes to the tables.

4.2.1. Table B-1: Half-lives and branching fractions for fission products

Content of Table B-1:

- 1. Nuclide
- 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Units (s, m, h, d, y)
- 4. Decay mode (β⁻, EC, IT)
- 5. Branching fraction with 1σ uncertainty, (BF $\pm \Delta$ BF)
- 6. Source of data

Data sources are listed below in order of preference:

- IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.
- LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP WG/DDEPdata.htm, 3 October 2006.
- BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 A = 151 to 242, 2004.
- ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 15 November 2006.

If the data in BIPM-5 and LNHB were the same for a given evaluation, BIPM-5 was quoted as the data source. Data from BIPM-5 and LNHB were adopted in preference to ENSDF data.

4.2.2. Table B-2: Gamma-ray energies and emission probabilities for fission products

Content of Table B-2:

- 1. Nuclide
- 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Half-life units (s, m, h, d, y)
- 4. γ -ray energy with 1σ uncertainty, $(E_{\gamma} \pm \Delta E_{\gamma} \text{ in keV})$
- 5. Emission probability P_{γ} per 100 decays with 1σ uncertainty, $(P_{\gamma} \pm \Delta P_{\gamma})$ in % decay)

- 6. Source of data
- 7. Notes

Data sources are listed below in order of preference:

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP WG/DDEPdata.htm, 3 October 2006.

BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 - A = 151 to 242, 2004.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 15 November 2006.

Same comments about preference are applicable as noted for Table B-1. Gamma rays with energies below 40 keV were normally omitted, as they are judged to be unsuitable for non-destructive assay.

4.2.3. Table B-3: X-ray energies and intensities for fission products.

Content of Table B-3:

- 1. Nuclide
- 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Half-life units (s, m, h, d, y)
- 4. Decay mode (β^+ , β^- , EC, IT)
- 5. Origin of X-rays element of origin is specified, and the X-rays associated with $K\alpha_2$, $K\alpha_1$, $K'\beta_1$, $K'\beta_2$ and eventually L shell transitions are listed in the table.
- 6. X-ray energy (E_x) or energy group in keV
- 7. Emission probability P_x per 100 decays with 1σ uncertainty, $(P_x \pm \Delta P_x \text{ in } \% \text{ decay})$
- 8. Source of data

Data sources are listed below in order of preference:

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP WG/DDEPdata.htm, 5 June 2008.

4.2.4. Table B-4: Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors

Content of Table B-4:

- 1. Nuclide
- 2. Type of thermal cross section $(\sigma_0, \sigma, \sigma_r, \sigma_c, \sigma_{(m)}, \sigma_{(g)})$
- 3. Thermal cross section with 1σ uncertainty in barns, $(\sigma \pm \Delta \sigma)$
- 4. We stcott factor, $(g \pm \Delta g)$
- 5. Resonance integral with 1σ uncertainty in barns, (RI $\pm \Delta$ RI)
- 6. Source of data

Data sources are listed below:

- ANR: S.F. Mughabghab, Atlas of Neutron Resonances, Resonance Parameters and Thermal Cross Sections, Z = 1 100, 5^{th} Edition, Elsevier, Amsterdam, 2006.
- ENDF/B-VII: US Evaluated Nuclear Data Library ENDF/B-VII β3, Incident neutron data, http://www.nndc.bnl.gov/exfor4/endf00.htm, 2 October 2006; see also M.B. Chadwick *et al.*, ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, *Nucl. Data Sheets* **107** (2006) 2931.
- JENDL-3.3: Japanese Evaluated Nuclear Data Library, Incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006.
- HAR-91: H. Harada *et al.*, Proceedings of 1990 Symposium on Nuclear Data, Japan Atomic Energy Research Institute report JAERI-M 91-032 (1991) 199.
- GRY-87: G. Gryntakis *et al.*, Handbook on Nuclear Activation Data, IAEA Technical Reports Series No. 273 (1987) 199.
- SEK-87: T. Sekine *et al.*, Triple Neutron Capture of ¹⁵³Eu in a Reactor: the Cross Sections of ¹⁵⁴Eu and ¹⁵⁵Eu, *Appl. Radiat. Isot.* **38** (1987) 513.

Cross sections, Westcott factors and resonance integrals were adopted from ANR. When ANR data were incomplete or judged to be inadequate, the ENDF/B-VII evaluated nuclear data library was used as the data source. Furthermore, specific resonance integrals and cross sections were compared with equivalent data in the JENDL-3.3 library or other well known publications – any notable observations are included as footnotes to the table.

4.3. Section C – Fission yields

Table C-1.1: Th-232 chain fission yields

Table C-1.2: U-233 chain fission yields

Table C-1.3: U-235 chain fission yields

Table C-1.4: U-238 chain fission yields

Table C-1.5: Pu-239 chain fission yields

Table C-1.6: Pu-241 chain fission yields

Table C-2.1: Th-232 independent fission yields for selected fission products

Table C-2.2: U-233 independent fission yields for selected fission products

Table C-2.3: U-235 independent fission yields for selected fission products

- Table C-2.4: U-238 independent fission yields for selected fission products
- Table C-2.5: Pu-239 independent fission yields for selected fission products
- Table C-2.6: Pu-241 independent fission yields for selected fission products
- Table C-3.1: Th-232 cumulative fission yields for selected fission products
- Table C-3.2: U-233 cumulative fission yields for selected fission products
- Table C-3.3: U-235 cumulative fission yields for selected fission products
- Table C-3.4: U-238 cumulative fission yields for selected fission products
- Table C-3.5: Pu-239 cumulative fission yields for selected fission products
- Table C-3.6: Pu-241 cumulative fission yields for selected fission products

Tables C-1.1 to C-1.6 list the chain yields and associated 1σ uncertainties for all mass chains at different energies. A maximum of three neutron energies are given: thermal, fast and 14 MeV. The units are percent per fission; only chain fission yields greater than $10^{-6}\%$ per fission are shown.

Tables C-2.1 to C-2.6 contain the independent fission yields for 61 selected fission products at different neutron energies; units are % per fission.

Tables C-3.1 to C-3.6 present the cumulative fission yields in units of % per fission for the same 61 selected fission products at different neutron energies.

Data source for all tables in Section C:

JEFF-3.1: Joint Evaluated Fission and Fusion File, Neutron-induced fission yield library,

http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006 and 6 May 2008;

see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

The contents of the tables are described below.

- 4.3.1. Table C-1.1: Th-232 chain fission yields
 - 1. FPA: mass number of the chain.
 - 2. Fast fission yields and uncertainties as % per fission.
 - 3. 14-MeV fission yields and uncertainties as % per fission.
- 4.3.2. Table C-1.2: U-233 chain fission yields
 - 1. FPA: mass number of the chain.
 - 2. Thermal fission yields and uncertainties as % per fission.
 - 3. Fast fission yields and uncertainties as % per fission.
 - 4. 14-MeV fission yields and uncertainties as % per fission.
- 4.3.3. Table C-1.3: U-235 chain fission yields
 - 1. FPA: mass number of the chain.
 - 2. Thermal fission yields and uncertainties as % per fission.
 - 3. Fast fission yields and uncertainties as % per fission.
 - 4. 14-MeV fission yields and uncertainties as % per fission.

- 4.3.4. Table C-1.4: U-238 chain fission yields
 - 1. FPA: mass number of the chain.
 - 2. Fast fission yields and uncertainties as % per fission.
 - 3. 14-MeV fission yields and uncertainties as % per fission.
- 4.3.5. Table C-1.5: Pu-239 chain fission yields
 - 1. FPA: mass number of the chain.
 - 2. Thermal fission yields and uncertainties as % per fission.
 - 3. Fast fission yields and uncertainties as % per fission.
- 4.3.6. Table C-1.6: Pu-241 chain fission yields
 - 1. FPA: mass number of the chain.
 - 2. Thermal fission yields and uncertainties as % per fission.
 - 3. Fast fission yields and uncertainties as % per fission.
- 4.3.7. Table C-2.1: Th-232 independent fission yields for selected fission products
 - 1. Fission product.
 - 2. Independent fast fission product yields and uncertainties as % per fission.
 - 3. Independent 14-MeV fission product yields and uncertainties as % per fission.
- 4.3.8. Table C-2.2: U-233 independent fission yields for selected fission products
 - 1. Fission product.
 - 2. Independent thermal fission product yields and uncertainties as % per fission.
 - 3. Independent fast fission product yields and uncertainties as % per fission.
 - 4. Independent 14-MeV fission product yields and uncertainties as % per fission.
- 4.3.9. Table C-2.3: U-235 independent fission yields for selected fission products
 - 1. Fission product.
 - 2. Independent thermal fission product yields and uncertainties as % per fission.
 - 3. Independent fast fission product yields and uncertainties as % per fission.
 - 4. Independent 14-MeV fission product yields and uncertainties as % per fission.
- 4.3.10. Table C-2.4: U-238 independent fission yields for selected fission products
 - 1. Fission product.
 - 2. Independent fast fission product yields and uncertainties as % per fission.
 - 3. Independent 14-MeV fission product yields and uncertainties as % per fission.
- 4.3.11. Table C-2.5: Pu-239 independent fission yields for selected fission products
 - 1. Fission product.
 - 2. Independent thermal fission product yields and uncertainties as % per fission.
 - 3. Independent fast fission product yields and uncertainties as % per fission.
- 4.3.12. Table C-2.6: Pu-241 independent fission yields for selected fission products
 - 1. Fission product.

- 2. Independent thermal fission product yields and uncertainties as % per fission.
- 3. Independent fast fission product yields and uncertainties as % per fission.
- 4.3.13. Table C-3.1: Th-232 cumulative fission yields for selected fission product
 - 1. Fission product.
 - 2. Cumulative fast fission product yields and uncertainties as % per fission.
 - 3. Cumulative 14-MeV fission product yields and uncertainties as % per fission.
- 4.3.14. Table C-3.2: U-233 cumulative fission yields for selected fission products
 - 1. Fission product.
 - 2. Cumulative thermal fission product yields and uncertainties as % per fission.
 - 3. Cumulative fast fission product yields and uncertainties as % per fission.
 - 4. Cumulative 14-MeV fission product yields and uncertainties as % per fission.
- 4.3.15. Table C-3.3: U-235 cumulative fission yields for selected fission products
 - 1. Fission product.
 - 2. Cumulative thermal fission product yields and uncertainties as % per fission.
 - 3. Cumulative fast fission product yields and uncertainties as % per fission.
 - 4. Cumulative 14-MeV fission product yields and uncertainties as % per fission.
- 4.3.16. Table C-3.4: U-238 cumulative fission yields for selected fission products
 - 1. Fission product.
 - 2. Cumulative fast fission product yields and uncertainties as % per fission.
 - 3. Cumulative 14-MeV fission product yields and uncertainties as % per fission.
- 4.3.17. Table C-3.5: Pu-239 cumulative fission yields for selected fission products
 - 1. Fission product.
 - 2. Cumulative thermal fission product yields and uncertainties as % per fission.
 - 3. Cumulative fast fission product yields and uncertainties as % per fission.
- 4.3.18. Table C-3.6: Pu-241 cumulative fission yields for selected fission products
 - 1. Fission product.
 - 2. Cumulative thermal fission product yields and uncertainties as % per fission.
 - 3. Cumulative fast fission product yields and uncertainties as % per fission.

4.4. Section D – Activation products

- Table D-1: Half-lives and branching fractions for activation products
- Table D-2: Gamma-ray energies and emission probabilities for activation products
- Table D-3: X-ray energies and intensities for activation products.

A brief description of the data presented in each table is given below. Additional remarks are included as footnotes to the tables.

- 4.4.1. Table D-1: Half-lives and branching fractions for activation products
- Content of Table D-1:
 - 1. Nuclide
 - 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
 - 3. Units (s, m, h, d, y)
 - 4. Decay mode (β⁻, EC, IT)
 - 5. Branching fraction with 1σ uncertainty, (BF $\pm \Delta$ BF)
 - 6. Source of data

Data sources are listed below in order of preference:

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP WG/DDEPdata.htm, 5 June 2008.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 5 June 2008.

Data from IAEA-CRP-XG and LNHB were adopted in preference to ENSDF data.

- 4.4.2. Table D-2: Gamma-ray energies and emission probabilities for activation products Content of Table D-2:
- 1. Nuclide
- 2. Half-life with 1 σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Half-life units (s, m, h, d, y)
- 4. γ -ray energy with 1σ uncertainty, $(E_{\gamma} \pm \Delta E_{\gamma} \text{ in keV})$
- 5. Emission probability P_{γ} per 100 decays with 1σ uncertainty, $(P_{\gamma} \pm \Delta P_{\gamma})$ in % decay)
- 6. Source of data

Data sources are listed below in order of preference:

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 5 June 2008.

ENSDF: Evaluated Nuclear Structure Data File,

http://www-nds.iaea.org/ensdf/, 5 June 2008.

Same comments about preference are applicable as noted for Table D-1.

4.4.3. Table D-3: X-ray energies and intensities for activation products.

Content of Table D-3:

- 1. Nuclide
- 2. Half-life with 1σ uncertainty, $(T_{1/2} \pm \Delta T_{1/2})$
- 3. Half-life units (s, m, h, d, y)
- 4. Decay mode (β^+ , β^- , EC, IT)
- 5. Origin of X-rays element of origin is specified, and the X-rays associated with $K\alpha_2$, $K\alpha_1$, $K'\beta_1$, $K'\beta_2$ and eventually L shell transitions are listed in the table.
- 6. X-ray energy (E_x) or energy group in keV
- 7. Emission probability P_x per 100 decays with 1σ uncertainty, $(P_x \pm \Delta P_x \text{ in } \% \text{ decay})$
- 8. Source of data

Data sources are listed below in order of preference:

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, "Update of X-ray and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

LNHB: Laboratoire National Henri Becquerel, Decay Data Evaluation Project, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 5 June 2008.

5. Concluding Remarks

The most respected nuclear databases have been assessed in detail over the course of 2006 to mid-2008 in order to improve the contents of a recommended set of data files maintained by the International Atomic Energy Agency and entitled "Nuclear Data for Safeguards". An earlier version of these data files was used to specify the parameters to be included in the new tabulations, along with additional guidance on their contents from users and analytical specialists associated with the non-destructive assay of nuclear materials.

The recommended data sets can be inspected in tabulated form (see the section dedicated to Data Tables), or through the adoption and use of appropriate software. Users are referred to a previous IAEA report (INDC(NDS)-0502, January 2007) for an introduction to software that can be downloaded from the Web and used to undertake rapid inspections of the assembled database. An appropriate Web site has been established for access to the recommended database, and is located at http://www-nds.iaea.org/sgnucdat/

Every effort has been made to ensure that the recommended data are credible and correct with respect to their original sources. Despite these best endeavours, absolute correctness can not be fully guaranteed – any errors detected by data users should be communicated to the International Atomic Energy Agency, Nuclear Data Section, to ensure their elimination and correction (e-mail: online@iaeand.iaea.org).

RECOMMENDED NUCLEAR DATA TABLES, AUGUST 2008

- A-1: Half-lives and branching fractions for actinides and natural decay products.
- A-2: Alpha-particle energies and emission probabilities for actinides and natural decay products.
- A-3: Gamma-ray energies and emission probabilities for actinides and natural decay products.
- A-4: K X-ray energies and intensities for actinides and natural decay products.
- A-5: Actinide data: Thermal neutron cross sections, resonance integrals and Westcott factors.
- A-6: Average number of neutrons emitted per fission.
- A-7: Delayed-neutron eight-group parameters.
- B-1: Half-lives and branching fractions for fission products.
- B-2: Gamma-ray energies and emission probabilities for fission products.
- B-3: X-ray energies and intensities for fission products.
- B-4: Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors.
- C-1: Chain fission yields for selected actinides.
- C-2: Selected independent fission product yields.
- C-3: Selected cumulative fission product yields.
- D-1 Half-lives and branching fractions for activation products.
- D-2: Gamma-ray energies and emission probabilities for activation products.
- D-3: X-ray energies and intensities for activation products.

A-1. Half-lives and branching fractions for actinides and natural decay products.

References

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 3 October 2006.

BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 - A = 151 to 242, 2004.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 15 November 2006.

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA CRP "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

Table A-1. Half-lives and branching fractions for actinides and natural decay products.

Nuclide	Half-life T _{1/2}	Units Decay mode	Branching Fraction	Source
81-TI-206	4.202 ± 0.011	m β-	1.0	LNHB
81-TI-208	3.060 ± 0.008	m β-	1.0	BIPM-5
82-Pb-210	22.20 ± 0.22	y β- α	1.0 $(1.9 \pm 0.4) \times 10^{-8}$	ENSDF
82-Pb-211	36.1 ± 0.2	m β-	1.0	ENSDF
82-Pb-212	10.64 ± 0.01	h β-	1.0	BIPM-5
82-Pb-214	26.8 ± 0.9	m β-	1.0	ENSDF
83-Bi-211	2.14 ± 0.02	m α β-	0.99724 ± 0.00004 0.00276 ± 0.00004	ENSDF
83-Bi-212	60.54 ± 0.06	m α β-	0.3593 ± 0.0007 0.6407 ± 0.0007	BIPM-5
83-Bi-214	19.9 ± 0.4	m β- α	0.99979 ± 0.00001 0.00021 ± 0.00001	ENSDF
84-Po-210	138.376 ± 0.002	d α	1.0	ENSDF
86-Rn-219	3.96 ± 0.01	s a	1.0	ENSDF
86-Rn-220	55.8 ± 0.3	s a	1.0	BIPM-5
87-Fr-221	4.9 ± 0.2	m α β-	0.99995 ± 0.00003 0.00005 ± 0.00003	ENSDF

Table A-1. Half-lives and branching fractions for actinides and natural decay products.

Nuclide	Half-life T _{1/2}	Units	Decay mode	Branching Fraction	Source
88-Ra-223	11.43 ± 0.05	d	α ¹⁴ C	1.0 (8.9 ± 0.4) × 10 ⁻¹⁰	ENSDF
88-Ra-224	3.627 ± 0.007	d	α	1.0	BIPM-5
88-Ra-225	14.9 ± 0.2	d	β-	1.0	ENSDF
88-Ra-226	$(1.600 \pm 0.007) \times 10^3$	у	α	1.0	BIPM-5
88-Ra-228	5.75 ± 0.03	у	β-	1.0	ENSDF
89-Ac-224	2.78 ± 0.17	h	EC	0.909 + 0.014 - 0.020	ENSDF
			α	0.091 + 0.020 - 0.014	
89-Ac-225	10.0 ± 0.1	d	α	1.0	ENSDF
89-Ac-227	21.772 ± 0.003	У	α β-	0.01380 ± 0.00004 0.98620 ± 0.00004	ENSDF
89-Ac-228	6.15 ± 0.02	h	β-	1.0	ENSDF
90-Th-227	18.718 ± 0.005	d	α	1.0	BIPM-5
90-Th-228	698.60 ± 0.23	d	α	1.0	BIPM-5
90-Th-229	$(7.34 \pm 0.16) \times 10^3$	у	α	1.0	ENSDF
90-Th-230	$(7.538 \pm 0.030) \times 10^4$	у	α SF	1.0 ≤ 4. × 10 ⁻¹³	ENSDF
90-Th-231	25.52 ± 0.01	h	β- α	1.0 ~ 4. × 10 ⁻¹³	ENSDF
90-Th-232	$(1.405 \pm 0.006) \times 10^{10}$	у	α SF	1.0 (1.1 \pm 0.4) × 10 ⁻¹¹	ENSDF
90-Th-233	22.15 ± 0.15	m	β-	1.0	LNHB
90-Th-234	24.10 ± 0.03	d	β-	1.0	ENSDF
91-Pa-231	$(3.276 \pm 0.011) \times 10^4$	У	α SF	1.0 ≤ 3. × 10 ⁻¹²	ENSDF
91-Pa-232	1.32 ± 0.02	d	β- EC	0.99997 ± 0.00001 0.00003 ± 0.00001	ENSDF
91-Pa-233	26.98 ± 0.02	d	β-	1.0	LNHB

Table A-1. Half-lives and branching fractions for actinides and natural decay products.

Nuclide	Half-life T _{1/2}	Units Dec		Source
91-Pa-234	6.70 ± 0.05	h β-	1.0	ENSDF
91-Pa-234m	1.159 ± 0.016	m β- IT		IAEA-CRP-XG
92-U-232	68.9 ± 0.4	y α SF	1.0 < 1. × 10 ⁻¹⁴	ENSDF
92-U-233	$(1.592 \pm 0.002) \times 10^5$	y α SF	1.0 < 6. × 10 ⁻¹¹	ENSDF
92-U-234	$(2.455 \pm 0.006) \times 10^5$	y α SF	1.0 (1.6 ± 0.2) × 10 ⁻¹¹	LNHB
92-U-235	$(7.038 \pm 0.005) \times 10^8$	y α SF	1.0 (7. ± 2.) × 10 ⁻¹¹	ENSDF
92-U-235m	26. ± 1.	m IT	1.0	ENSDF
92-U-236	$(2.342 \pm 0.004) \times 10^7$	y α SF	1.0 (9.4 ± 0.4) × 10 ⁻¹⁰	ENSDF
92-U-237	6.749 ± 0.016	d β-	1.0	LNHB
92-U-238	(4.468 ± 0.005) × 10 ⁹	y α SF	1.0 (5.45 ± 0.04) × 10 ⁻⁷	LNHB
92-U-239	23.45 ± 0.02	m β-	1.0	ENSDF
93-Np-236	$(1.55 \pm 0.08) \times 10^5$	y β- α EC	0.0016 ± 0.0006	LNHB
93-Np-236m	22.5 ± 0.4	h β- EC		LNHB
93-Np-237	$(2.144 \pm 0.007) \times 10^6$	y α SF	1.0 < 2. × 10 ⁻¹²	ENSDF
93-Np-238	2.117 ± 0.002	d β-	1.0	ENSDF
93-Np-239	2.356 ± 0.003	d β-	1.0	ENSDF
94-Pu-236	2.858 ± 0.008	y α SF	1.0 (1.9 ± 0.4) × 10 ⁻⁹	ENSDF
94-Pu-238	87.74 ± 0.03	y α SF	1.0 (1.85 ± 0.05) × 10 ⁻⁶	BIPM-5

Table A-1. Half-lives and branching fractions for actinides and natural decay products.

Nuclide	Half-life T _{1/2}	Units Deca	* Branchino Fraction	Source
94-Pu-239	(2.411 ± 0.003) × 10 ⁴	y α SF	1.0 (3.1 \pm 0.6) × 10 ⁻¹²	ENSDF
94-Pu-240	$(6.561 \pm 0.007) \times 10^3$	y α SF	1.0 (5.7 ± 0.2) × 10 ⁻⁸	BIPM-5
94-Pu-241	14.290 ± 0.006	y α β-	0.0000245 ± 0.0000002 0.9999755 ± 0.0000002	ENSDF
94-Pu-242	$(3.73 \pm 0.03) \times 10^5$	y α SF	1.0 (5.49 ± 0.09) × 10 ⁻⁶	BIPM-5
94-Pu-243	4.956 ± 0.003	h β-	1.0	ENSDF
94-Pu-244	$(8.00 \pm 0.09) \times 10^7$	y α SF	0.99879 ± 0.00004 0.00121 ± 0.00004	ENSDF
94-Pu-245	10.5 ± 0.1	h β-	1.0	ENSDF
94-Pu-246	10.84 ± 0.02	d β-	1.0	ENSDF
95-Am-240	50.8 ± 0.3	h EC α	0.9999981 ± 0.0000007 0.0000019 ± 0.0000007	ENSDF
95-Am-241	432.6 ± 0.6	y α SF	1.0 (4.3 \pm 1.8) × 10 ⁻¹²	BIPM-5
95-Am-242	16.02 ± 0.02	h β- EC	0.827 ± 0.003 0.173 ± 0.003	ENSDF
95-Am-242m	141. ± 2.	y IT α SF	0.9955 ± 0.0002 0.0045 ± 0.0002 $< 4.7 \times 10^{-11}$	ENSDF
95-Am-243	$(7.370 \pm 0.017) \times 10^3$	y α SF	1.0 (3.8 \pm 0.7) × 10 ⁻¹¹	LNHB
96-Cm-242	162.86 ± 0.08	d α SF	1.0 (6.36 ± 0.14) × 10 ⁻⁸	LNHB
96-Cm-243	29.1 ± 0.1	y α EC SF	4.4	ENSDF
96-Cm-244	18.11 ± 0.03	y α SF	1.0 (1.36 ± 0.01) × 10 ⁻⁶	LNHB
98-Cf-252	2.645 ± 0.008	y α SF	0.96908 ± 0.00008 0.03092 ± 0.00008	ENSDF

¹ y = 1 year = 365.24219878 days

A-2. Alpha-particle energies and emission probabilities for actinides and natural decay products.

References

ENSDF: Evaluated Nuclear Structure Data File,

http://www-nds.iaea.org/ensdf/, 15 November 2006.

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm,

3 October 2006.

BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko,

R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5,

Table of Radionuclides, Vol. 2 - A = 151 to 242, 2004.

Table A-2. Alpha-particle energies and emission probabilities for actinides and natural decay products.

					particles		
Nuclide	Half-life			nergy		n probability	Source Notes
	T _{1/2}	Units	[1]	keV]	Ρ _α ['	% decay]	
83-Bi-211	2.14 ± 0.02	m	6278.2	± 0.7	16.19	± 0.14	ENSDF
			6622.9	± 0.6	83.54	± 0.14	
83-Bi-212	60.54 ± 0.06	m	5606.63	± 0.14	0.43	± 0.04	LNHB
			5768.27	± 0.10	0.63	± 0.03	
			6050.92	± 0.04	25.1	± 0.1	
			6090.02	± 0.04	9.7	± 0.1	
84-Po-210	138.376 ± 0.002	d	5304.33	± 0.07	100.		ENSDF
86-Rn-219	3.96 ± 0.01	s	6425.	± 1.	7.5	± 0.6	ENSDF
			6552.6	± 1.0	12.9	± 0.6	
			6819.1	± 0.3	79.4	± 1.0	
86-Rn-220	55.8 ± 0.3	s	5748.46	± 0.14	0.118	± 0.015	LNHB
			6288.22	± 0.10	99.882	± 0.015	
88-Ra-223	11.43 ± 0.05	d	5433.6	± 0.5	2.22	± 0.20	ENSDF
			5539.8	± 0.9	9.0	± 0.2	
			5606.73	± 0.30	25.2	± 0.5	
			5716.23	± 0.29	51.6	± 1.3	
			5747.0	± 0.4	9.0	± 0.2	
			5871.3	± 1.0	1.0	± 0.2	
88-Ra-224	3.627 ± 0.007	d	5448.81	± 0.16	5.26	± 0.07	LNHB
			5685.50	± 0.15	94.72	± 0.07	
88-Ra-226	$(1.600 \pm 0.007) \times 10^3$	у	4601.	± 1.	5.96	± 0.08	LNHB
			4784.34	± 0.25	94.03	± 0.08	
90-Th-227	18.718 ± 0.005	d	5668.0	± 1.5	2.06	± 0.12	LNHB
			5693.0	± 1.6	1.5	± 0.1	
			5700.8	± 1.6	3.63	± 0.20	
			5708.8	± 1.6	8.3	± 0.3	
			5713.2	± 1.6	4.89	± 0.20	
			5756.87	± 0.15	20.4	± 0.9	
			5807.5	± 1.5	1.27	± 0.02	
			5866.6	± 1.5	2.42	± 0.10	
			5959.7	± 1.5	3.00	± 0.15	
			5977.72	± 0.10	23.5	± 0.9	
			6008.8	± 1.5	2.90	± 0.15	
			6038.01	± 0.15	24.2	± 0.9	

Table A-2. Alpha-particle energies and emission probabilities for actinides and natural decay products.

					α particles			
Nuclide	Half-life		Er	nergy		on probability	Source	Notes
	T _{1/2}	Units	[]	keV]	P_{α}	[% decay]		
90-Th-228	698.60 ± 0.23	d	5340.38	± 0.22	26.2	± 0.2	BIPM-5	
			5423.28	± 0.22	73.2	± 0.2		
90-Th-229	$(7.34 \pm 0.16) \times 10^3$	٧	4797.8	± 1.2	1.5	± 0.2	ENSDF	
	·	,	4814.6	± 1.2	9.30	± 0.08		
			4838.	± 2.	5.0	± 0.2		
			4845.3	± 1.2	56.2	± 0.2		
			4901.0	± 1.2	10.20	± 0.08		
			4967.5	± 1.2	5.97	± 0.06		
			4978.5	± 1.2	3.17	± 0.04		
			5053.	± 2.	6.6	± 0.1		
90-Th-230	$(7.538 \pm 0.030) \times 10^4$	у	4620.5	± 1.5	23.4	± 0.1	ENSDF	
			4687.0	± 1.5	76.3	± 0.3		
90-Th-232	$(1.405 \pm 0.006) \times 10^{10}$	у	3947.2	± 2.0	21.7	± 1.3	ENSDF	
			4012.3	± 1.4	78.2	± 1.3		
91-Pa-231	$(3.276 \pm 0.011) \times 10^4$	у	4681.	± 2.	1.5	± 0.6	ENSDF	[1]
			4736.0	± 0.8	8.4	± 1.2		
			4853.	± 2.	1.4	± 0.4		
			4934.	± 2.	3.0	± 0.3		
			4951.3	± 1.4	22.8	± 5.8		
			4986.	± 2.	1.4	± 0.4		
			5013.8	± 1.4	25.4	± 14.1		
			5028.4	± 1.0	20.0	± 4.2		
			5058.6	± 1.5	11.0	± 2.0		
92-U -232	68.9 ± 0.4	у	5263.36	± 0.09	31.55	± 0.23	ENSDF	
			5320.12	± 0.14	68.15	± 0.23		
92-U -233	$(1.592 \pm 0.002) \times 10^{5}$	٧	4729.	± 1.	1.61	± 0.17	ENSDF	[2]
	,	,	4783.5	± 1.2	13.2	± 0.2		
			4824.2	± 1.2	84.4	± 0.5		
92-U -234	$(2.455 \pm 0.006) \times 10^{5}$	у	4722.4	± 0.7	28.42	± 0.02	LNHB	
			4774.6	± 0.7	71.37	± 0.02		
92-U -235	$(7.038 \pm 0.005) \times 10^8$	у	4150.	± 5.	0.9	± 0.2	ENSDF	
			4214.7	± 1.9	5.7	± 0.6		
			4366.1	± 2.0	17.	± 2.		
			4397.8	± 1.3	55.	± 3.		
			4414.	± 4.	2.1	± 0.2		
			4502.	± 2.	1.7	± 0.2		
			4556.	± 2.	4.2	± 0.3		
			4596.4	± 1.3	5.0	± 0.5		
92-U -236	$(2.342 \pm 0.004) \times 10^7$	у	4445.	± 5.	25.9	± 4.0	ENSDF	
			4494.	± 3.	73.8	± 4.0		
92-U -238	$(4.468 \pm 0.005) \times 10^9$	у	4151.	± 5.	22.33	± 0.50	LNHB	
			4198.	± 3.	77.54	± 0.50		

Table A-2. Alpha-particle energies and emission probabilities for actinides and natural decay products.

				αρ	oarticles			
Nuclide	Half-life T _{1/2}	Units		nergy keV]		probability decay]	Source	Notes
93-Np-237	$(2.144 \pm 0.007) \times 10^6$		4640.0	± 1.0	6.43	± 0.03	ENSDF	
93-NP-237	(2.144 ± 0.007) × 10	У	4640.0 4665.0	± 1.0 ± 0.9	6.43 3.478	± 0.03 ± 0.024	ENODE	
			4766.5	± 0.8	9.3	± 0.3		
			4771.4	± 0.8	23.2	± 0.3		
			4788.0	± 0.9	47.64	± 0.06		
			4803.5	± 1.0	2.014	± 0.017		
			4816.8	± 1.0	2.430	± 0.017		
94-Pu-236	2.858 ± 0.008	У	5721.00	± 0.10	30.6	± 0.5	ENSDF	
011 4 200	2.000 1 0.000	y	5767.66	± 0.08	69.3	± 0.5	LINODI	
94-Pu-238	87.74 ± 0.03	У	5456.26	± 0.20	28.25	± 0.06	BIPM-5	
		,	5499.03	± 0.20	71.04	± 0.06		
94-Pu-239	$(2.411 \pm 0.003) \times 10^4$	٧	5105.5	± 0.8	11.94	± 0.07	ENSDF	
011 4 200	(2.411 = 0.000) ** 10	y	5144.3	± 0.8	17.11	± 0.14	LITODI	
			5156.59	± 0.14	70.77	± 0.14		
94-Pu-240	$(6.561 \pm 0.007) \times 10^3$	У	5123.64	± 0.15	27.16	± 0.11	BIPM-5	
011 4 2 10	(0.001 = 0.001) * 10	y	5168.13	± 0.15	72.74	± 0.11	Dii iii 0	
94-Pu-241	14.290 ± 0.006	У	4853.0	± 1.1	0 000299	± 0.000006	ENSDF	[3]
34-1 U-241	14.230 I 0.000	у	4896.3	± 1.1		± 0.000003	LINODI	[0]
94-Pu-242	$(3.73 \pm 0.03) \times 10^5$	У	4858.1	± 0.9	23.49	± 0.18	BIPM-5	
04 1 U 242	(0.75 ± 0.05) × 10	у	4902.2	± 0.9	76.48	± 0.18	DII W 3	
95-Am-241	432.6 ± 0.6	У	5388.26	± 0.13	1.66	± 0.03	BIPM-5	
55 7 m 2-1	102.0 1 0.0	y	5442.86	± 0.10	13.23	± 0.10	DII W O	
			5485.56	± 0.12	84.45	± 0.10		
95-Am-242m	141. ± 2.	у	5143.0	± 1.3	0.0257	± 0.0012	ENSDF	[4]
00 7 411 2 12111	12.	y	5207.06	± 0.25	0.409	± 0.012	Z. (OD)	[.]
95-Am-243	$(7.370 \pm 0.017) \times 10^3$	٧	5181.	± 1.	1.383	± 0.007	LNHB	
00 7 411 2 10	(7.575 2 5.517)	y	5233.3	± 1.0	11.46	± 0.05	2.11.12	
			5275.3	± 1.0	86.74	± 0.05		
			5321.	± 1.	0.192	± 0.003		
			5349.4	± 2.3	0.240	± 0.003		
96-Cm-242	162.86 ± 0.08	d	6069.37	± 0.09	25.94	± 0.07	LNHB	
			6112.72	± 0.08	74.06	± 0.07		
96-Cm-243	29.1 ± 0.1	у	5686.	± 3.	1.6	± 0.2	ENSDF	[5]
		•	5742.1	± 0.9	11.5	± 0.5		
			5785.2	± 0.9	73.0	± 2.3		
			5991.8	± 1.5	5.7	± 0.2		
			6010.	± 3.	1.1	± 0.1		
			6058.	± 1.	4.7	± 0.3		
			6066.2	± 1.7	1.5	± 0.2		
96-Cm-244	18.11 ± 0.03	у	5762.65	± 0.05	23.3	± 0.4	LNHB	
			5804.77	± 0.05	76.7	± 0.4		
98-Cf -252	2.645 ± 0.008	у	6075.64	± 0.11	15.2	± 0.3	ENSDF	
		•	6118.10	± 0.04	81.6	± 0.3		

Table A-2. Alpha-particle energies and emission probabilities for actinides and natural decay products.

[1] No uncertainties available for the experimental emission probabilities reported in ENSDF, but the evaluators deduced the following emission data from the γ-ray transition balance:

Energy [keV]			P _α ^{cal} [% decay]		
4681.	±	2.	2.06	±	0.18
4736.0	±	0.8	9.3	±	0.7
4853.	±	2.	1.5	±	0.3
4934.	±	2.	3.0	±	0.3
4951.3	±	1.4	27.	±	4.
4986.	±	2.	1.2	±	0.3
5013.8	±	1.4	27.	±	14.
5028.4	±	1.0	19.	±	4.
5058.6	±	1.5	~ 9.		

The adopted 1 σ uncertainties were estimated from $\Delta P_{\alpha}^{\ 2}$ = ($P_{\alpha}^{\ }$ - $P_{\alpha}^{\ cal}$)² + ($\Delta P_{\alpha}^{\ cal}$)².

- [2] No uncertainties reported for the 4729-keV alpha-particle emission in ENSDF; an uncertainty of 1 keV was adopted for the energy, and approximately 10% relative uncertainty was recommended for the corresponding emission probability.
- [3] Only low intensity emissions.
- [4] Low intensity emissions included.
- [5] No uncertainties reported for the 5686- and 6010-keV alpha-particle emissions; a value of 3 keV was adopted from R.B. Firestone and V.S. Shirley (editor), Table of Isotopes, 8th ed., Volume II: A = 151 272, John Wiley & Sons, New York, 1996; approximately 10% relative uncertainty is recommended for the corresponding emission probabilities.

A-3. Gamma-ray energies and emission probabilities for actinides and natural decay products.

References

BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 - A = 151 to 242, 2004.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 15 November 2006.

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA CRP "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, October 2006.

ADS-98: I. Adsley, J.S. Backhouse, A.L. Nichols, J. Toole, U-238 Decay Chain: Resolution of Observed Anomalies in the Measured Secular Equilibrium Between Th-234 and Daughter Pa-234m, Appl. Radiat. Isot. 49 (1998) 1337.

Table A-3. Gamma-ray energies and emission probabilities for actinides and natural decay products.

Nuclide	Half-life T _{1/2}	Units	Energy [keV]	γ rays Emission probability [% decay]	Source Notes
81-TI-208	3.060 ± 0.008	m	277.37 ± 0.03 583.187 ± 0.002 860.56 ± 0.03 2614.511 ± 0.010	$\begin{array}{ccc} 6.6 & \pm 0.3 \\ 85.0 & \pm 0.3 \\ 12.5 & \pm 0.1 \\ 99.79 & \pm 0.01 \end{array}$	BIPM-5 [1]
82-Pb-210	22.20 ± 0.22	у	46.539 ± 0.001	4.25 ± 0.04	ENSDF
82-Pb-211	36.1 ± 0.2	m	404.853 ± 0.010 427.088 ± 0.010 704.64 ± 0.03 766.51 ± 0.03 832.01 ± 0.03	3.78 ± 0.06 1.76 ± 0.04 0.46 ± 0.01 0.62 ± 0.02 3.52 ± 0.06	ENSDF
82-Pb-212	10.64 ± 0.01	h	115.183 ± 0.005 238.632 ± 0.002 300.09 ± 0.01	0.623 ± 0.022 43.6 ± 0.3 3.18 ± 0.13	BIPM-5
82-Pb-214	26.8 ± 0.9	m	53.2275 ± 0.0021 241.997 ± 0.003 295.224 ± 0.002 351.932 ± 0.002	$ \begin{array}{rrrr} 1.066 & \pm 0.014 \\ 7.19 & \pm 0.06 \\ 18.28 & \pm 0.14 \\ 35.34 & \pm 0.27 \end{array} $	IAEA-CRP-XG
83-Bi-211	2.14 ± 0.02	m	351.06 ± 0.04	12.91 ± 0.11	ENSDF
83-Bi-212	60.54 ± 0.06	m	727.33 ± 0.01 785.37 ± 0.09 1078.63 ± 0.11 1620.74 ± 0.01	$\begin{array}{cccc} 6.74 & \pm & 0.12 \\ 1.11 & \pm & 0.01 \\ 0.55 & \pm & 0.02 \\ 1.51 & \pm & 0.03 \end{array}$	BIPM-5

Table A-3. Gamma-ray energies and emission probabilities for actinides and natural decay products.

Nuclide	ŀ	Half-life T _{1/2}	Units		nergy keV]		on probability % decay]	Source	Notes
83-Bi-214	19.9	± 0.4	m	609.316	± 0.003	45.16	± 0.33	IAEA-CRP-X	2
00-DI-Z14	10.0	1 0.4	1111	665.453	± 0.003	1.521	± 0.011	IALA-ON -A	J
				768.367	± 0.022	4.850	± 0.038		
				806.185	± 0.011	1.255	± 0.038		
						3.074			
				934.061	± 0.012		± 0.025		
				1120.287	± 0.010	14.78	± 0.11		
				1155.19	± 0.02	1.624	± 0.014		
				1238.110	± 0.012	5.785	± 0.045		
				1280.96	± 0.02	1.425	± 0.012		
				1377.669	± 0.012	3.954	± 0.033		
				1401.516	± 0.014	1.324	± 0.011		
				1407.993	± 0.007	2.369	± 0.019		
				1509.217	± 0.008	2.108	± 0.021		
				1661.316	± 0.013	1.037	± 0.010		
				1729.640	± 0.012	2.817	± 0.023		
				1764.539	± 0.015	15.17	± 0.12		
				1847.420	± 0.025	2.000	± 0.018		
				2118.536	± 0.008	1.148	± 0.011		
				2204.071	± 0.021	4.89	± 0.10		
				2447.673	± 0.010	1.536	± 0.015		
86-Rn-219	3.96	± 0.01	s	271.23	± 0.01	10.8	± 0.6	ENSDF	
				401.81	± 0.01	6.6	± 0.4		
86-Rn-220	55.8	± 0.3	s	549.76	± 0.04	0.115	± 0.015	BIPM-5	
88-Ra-223	11.43	± 0.05	d	122.319	± 0.010	1.21	± 0.02	ENSDF	
				144.235	± 0.010	3.27	± 0.08		
				154.208	± 0.010	5.70	± 0.16		
				269.463	± 0.010	13.9	± 0.3		
				323.871	± 0.010	3.99	± 0.09		
				338.282	± 0.010	2.84	± 0.07		
				445.033	± 0.012	1.29	± 0.05		
88-Ra-224	3.627	± 0.007	d	240.986	± 0.006	4.12	± 0.04	BIPM-5	
88-Ra-226	(1.600	± 0.007) × 10^3	у	186.211	± 0.013	3.533	± 0.028	IAEA-CRP-X	G
90-Th-227	18.718	+ 0.005	d	50.13	± 0.01	8.2	± 0.5*	LNHB	[2]
00 111 221	10.1 10	2 0.000	ŭ	79.69	± 0.02	1.90	± 0.11	LIVIE	[-]
				93.88	± 0.05	1.48	± 0.08		
				210.62	± 0.05	1.22	± 0.11		
				235.96	± 0.02	12.6	± 0.6		
				256.23	± 0.02	6.8	± 0.4		
				286.09	± 0.02	1.70	± 0.17*		
				289.59	± 0.10	1.9	± 0.4*		
				299.98	± 0.03	2.16	± 0.12*		
				304.50	± 0.02	1.12	± 0.12		
				329.85	± 0.02	2.9	± 0.2		
				334.37	± 0.02	1.11	± 0.09		
90-Th-228	698.60	+ 0.23	d	84.373	+ 0.003	1.17	± 0.05	BIPM-5	
00 111 220	000.00	_ 00	-		± 0.004	0.124	± 0.006	Bii iii 0	
					± 0.004	0.094	± 0.007		
				215.985		0.226	± 0.020		
90-Th-229	(734	± 0.16) × 10 ³	у	107.108	± 0.008	0.81	± 0.05	ENSDF	
	,	/	,	136.99	± 0.04	1.18	± 0.04		
				148.15	± 0.04	0.88	± 0.07		
					± 0.009	1.19 4.41	± 0.04 ± 0.07		

Table A-3. Gamma-ray energies and emission probabilities for actinides and natural decay products.

Nuclide	Half-life		Energy	γ rays Emissio	n probability	Source	Notes
	T _{1/2}	Units	[keV]	[%	decay]		
90-Th-230	$(7.538 \pm 0.030) \times 10^4$	у	67.672 ± 0.002	0.38	± 0.04	ENSDF	
	,	,	143.872 ± 0.004	0.049	± 0.004		
			253.729 ± 0.010	0.0111	± 0.0009		
90-Th-231	25.52 ± 0.01	h	58.5700 ± 0.0024	0.46	± 0.03	ENSDF	
			81.2280 ± 0.0014	0.90	± 0.06		
			82.0870 ± 0.0014	0.42	± 0.03		
			84.2140 ± 0.0013	6.6	± 0.4		
			89.95 ± 0.02	1.00	± 0.06		
			102.2700 ± 0.0013	0.44	± 0.03		
00 Th 000	(4.405 . 0.000) 4010		00.04 . 0.04	0.000	. 0.040	ENODE	
90-Th-232	$(1.405 \pm 0.006) \times 10^{10}$	У	63.81 ± 0.01	0.263	± 0.013	ENSDF	
			140.88 ± 0.01	0.021	± 0.004		
90-Th-233	22.15 ± 0.15	m	29.373 ± 0.010	2.5	± 0.4	LNHB	[3]
00 111 200	22.10 1 0.10		86.477 ± 0.010	2.7	± 0.4	LIVID	[0]
			94.65 ± 0.05	0.8	± 0.1		
			169.159 ± 0.010	0.34	± 0.05		
			459.222 ± 0.007	1.4	± 0.3		
			669.902 ± 0.016	0.68	± 0.14		
90-Th-234	24.10 ± 0.03	d	63.29 ± 0.02	3.70	± 0.06	ADS-98	[4]
			92.38 ± 0.01	2.62	± 0.06		
			92.80 ± 0.02	2.59	± 0.06		
			112.81 ± 0.05	0.244	± 0.015		
04 D= 004	(0.070 + 0.044) + 404		000.40 . 0.00	0.400	. 0.040	ENODE	
91-Pa-231	$(3.276 \pm 0.011) \times 10^4$	У	260.19 ± 0.06	0.188	± 0.012	ENSDF	
			283.69 ± 0.01 300.07 ± 0.01	1.7 2.5	± 0.1 ± 0.2		
			302.65 ± 0.05	2.5	± 0.2 ± 0.4		
			330.06 ± 0.01	1.40	± 0.4 ± 0.09		
			340.74 ± 0.05	0.181	± 0.09		
			357.12 ± 0.09	0.175	± 0.011		
			001112 2 0100	00	_ 0.0.0		
91-Pa-233	26.98 ± 0.02	d	75.269 ± 0.010	1.30	± 0.03	LNHB	
			86.595 ± 0.010	1.99	± 0.11		
			103.86 ± 0.01	0.853	± 0.006		
			271.555 ± 0.010	0.323	± 0.003		
			300.129 ± 0.005	6.60	± 0.21		
			311.904 ± 0.005	38.25	± 0.23		
			340.476 ± 0.005	4.47	± 0.03		
			375.404 ± 0.005	0.684	± 0.007		
			398.492 ± 0.005	1.408	± 0.014		
			415.764 ± 0.005	1.747	± 0.007		
91-Pa-234m	1.159 ± 0.016	m	258.24 ± 0.07	0.0726	± 0.0009	IAEA-CRP-XG	
51-Fa-234111	1.109 I U.U10	m	742.814 ± 0.022	0.0726	± 0.0009 ± 0.003	IAEA-URP-AU	1
			742.614 ± 0.022 766.358 ± 0.020	0.318	± 0.005		
			786.272 ± 0.022	0.054	± 0.003		
			1001.025 ± 0.022	0.832	± 0.001		
				5.55=			
92-U-232	68.9 ± 0.4	у	57.78 ± 0.05	0.200	± 0.002	ENSDF	[5]
		-	129.08 ± 0.05	0.0682	± 0.0004		
			270.2 ± 0.2	0.00316	± 0.00005		

Table A-3. Gamma-ray energies and emission probabilities for actinides and natural decay products.

Nuclide	Half-life		Energy		n probability	Source	Notes
	T _{1/2}	Units	[keV]	[%	decay]		
92-U-233	$(1.592 \pm 0.002) \times 10^5$	у	54.699 ± 0.001	0.0182	± 0.0003	ENSDF	[5]
	•	•	118.968 ± 0.002	0.00406	± 0.00004		
			120.816 ± 0.001	0.00332	± 0.00003		
			135.36 ± 0.03	0.00232	± 0.00002		
			146.345 ± 0.002	0.00657	± 0.00006		
			164.522 ± 0.002	0.00623	± 0.00005		
			208.171 ± 0.002	0.00229	± 0.00003		
			245.345 ± 0.002	0.00362	± 0.00003		
			291.354 ± 0.004	0.00537	± 0.00005		
			317.16 ± 0.01	0.00776	± 0.00007		
			320.541 ± 0.005	0.00290	± 0.00003		
92-U-234	$(2.455 \pm 0.006) \times 10^{5}$	у	53.20 ± 0.02	0.1253	± 0.0040	LNHB	[5]
			120.90 ± 0.04	0.0386	± 0.0032		
92-U-235	$(7.038 \pm 0.005) \times 10^{8}$	у	109.16 ± 0.02	1.54	± 0.06	ENSDF	
	,	-	140.76 ± 0.04	0.22	± 0.03		
			143.76 ± 0.02	10.96	± 0.14		
			163.33 ± 0.02	5.08	± 0.07		
			182.61 ± 0.05	0.34	± 0.03		
			185.715 ± 0.005	57.2	± 0.8		
			194.94 ± 0.01	0.63	± 0.02		
			202.11 ± 0.02	1.08	± 0.03		
			205.311 ± 0.010	5.01	± 0.06		
			221.38 ± 0.02	0.12	± 0.02		
92-U-236	$(2.342 \pm 0.004) \times 10^7$	у	49.369 ± 0.009	0.078	± 0.012	ENSDF	
			112.750 ± 0.015	0.019	± 0.003		
92-U-237	6.749 ± 0.016	d	59.5409 ± 0.0001	34.1	± 0.8	LNHB	
			64.83 ± 0.02	1.286	± 0.017		
			164.61 ± 0.02	1.86	± 0.03		
			208.00 ± 0.01	21.3	± 0.3		
			332.36 ± 0.04	1.199	± 0.016		
92-U-238	$(4.468 \pm 0.005) \times 10^9$	у	49.55 ± 0.06	0.0697	± 0.0026	LNHB	
			113.5 ± 0.1	0.0174	± 0.0047		
92-U-239	23.45 ± 0.02	m	43.533 ± 0.001	4.07	± 0.13	ENSDF	
			74.664 ± 0.001	49.2	± 1.2		
			662.24 ± 0.03	0.182	± 0.005		
			819.22 ± 0.04	0.148	± 0.004		
			844.10 ± 0.04	0.162	± 0.004		
93-Np-236m	22.5 ± 0.4	h	538.11 ± 0.10	0.0125	± 0.0015	LNHB	
			642.35 ± 0.09	1.08	± 0.06		
			687.60 ± 0.05	0.292	± 0.021		
93-Np-237	$(2.144 \pm 0.007) \times 10^6$	у	57.104 ± 0.020	0.354	± 0.008	ENSDF	
			86.477 ± 0.010	12.4	± 0.3		
			87.99 ± 0.03	0.167	± 0.004		
			117.702 ± 0.020	0.169	± 0.004		
			143.249 ± 0.020	0.443	± 0.008		
			151.414 ± 0.020	0.23	± 0.02		
			194.95 ± 0.03 212.29 ± 0.05	0.177 0.151	± 0.005 ± 0.003		

Table A-3. Gamma-ray energies and emission probabilities for actinides and natural decay products.

Nuclide	Half-life		Energy	γ rays Emission probability	Source	Notes
	T _{1/2}	Units	[keV]	[% decay]		
93-Np-238	2.117 ± 0.002	d	101.90 ± 0.03	0.251 ± 0.007	ENSDF	
			882.63 ± 0.03	0.811 ± 0.011		
			918.69 ± 0.04	0.532 ± 0.007		
			923.98 ± 0.02	2.62 ± 0.04		
			936.61 ± 0.06	0.368 ± 0.006		
			941.38 ± 0.05	0.514 ± 0.007		
			962.77 ± 0.03	0.645 ± 0.008		
			984.45 ± 0.02	25.19 ± 0.21		
			1025.87 ± 0.02	8.72 ± 0.15		
			1028.54 ± 0.02	18.3 ± 0.3		
93-Np-239	2.356 ± 0.003	d	61.460 ± 0.002	1.30 ± 0.02	ENSDF	
·			106.123 ± 0.002	26.3 ± 1.0		
			209.753 ± 0.002	3.42 ± 0.03		
			226.38 ± 0.02	0.259 ± 0.016		
			228.183 ± 0.001	11.14 ± 0.11		
			277.599 ± 0.001	14.44 ± 0.10		
			315.880 ± 0.003	1.60 ± 0.02		
			334.310 ± 0.002	2.06 ± 0.02		
94-Pu-236	2.858 ± 0.008	у	47.57 ± 0.01	0.066 ± 0.020	ENSDF	[6]
		,	109.00 ± 0.01	0.012 ± 0.004		[-]
			165.0 ± 0.5	0.00066 ± 0.00020		
			645. ± 2.	0.00024 ± 0.00008		
94-Pu-238	87.74 ± 0.03	у	43.498 ± 0.001	0.0397 ± 0.0008	BIPM-5	[7]
, , , u <u>2</u> 00	07.7 1 2 0.00	,	99.852 ± 0.003	0.00735 ± 0.00008	B.: 14: 0	1.1
			152.719 ± 0.002	0.000930 ± 0.000007		
94-Pu-239	$(2.411 \pm 0.003) \times 10^4$	у	51.624 ± 0.001	0.02722 ± 0.00003	ENSDF	[7]
)+1 u 200	(2.411 ± 0.003) ** 10	у	56.828 ± 0.003	0.001152 ± 0.000013	LINODI	[,]
			129.296 ± 0.001	0.00631 ± 0.00004		
			144.201 ± 0.003	0.00031 ± 0.00004 0.000283 ± 0.000006		
			146.094 ± 0.006	0.000119 ± 0.000003		
			161.450 ± 0.015	0.000119 ± 0.000003 0.000123 ± 0.000002		
			171.393 ± 0.006	0.000123 ± 0.000002 0.000110 ± 0.000002		
			195.679 ± 0.008	0.000107 ± 0.000001		
			203.550 ± 0.005	0.000569 ± 0.000003		
			332.845 ± 0.005	0.000494 ± 0.000003		
			345.013 ± 0.004	0.000556 ± 0.000005		
			375.054 ± 0.003	0.001554 ± 0.000009		
			380.191 ± 0.006	0.000305 ± 0.000006		
			382.75 ± 0.05	0.000259 ± 0.000005		
			392.53 ± 0.03	0.000205 ± 0.000020		
			413.713 ± 0.005	0.001466 ± 0.000011		
			422.598 ± 0.019	0.000122 ± 0.000002		
			451.481 ± 0.010	0.0001894 ± 0.0000016		
			645.94 ± 0.04	0.0000152 ± 0.0000003		
			652.05 ± 0.02	0.0000066 ± 0.0000002		
			658.86 ± 0.06	0.0000097 ± 0.0000002		
94-Pu-240	$(6.561 \pm 0.007) \times 10^3$	у	45.242 ± 0.003	0.0450 ± 0.0009	BIPM-5	[7]
d L -t0	(0.001 ± 0.001) ~ 10	y	104.234 ± 0.006	0.00714 ± 0.00007	2.1 W 0	[,]
			160.307 ± 0.003	0.0004045 ± 0.0000022		
94-Pu-241	14.290 ± 0.006	у	77.10 ± 0.10	0.0000211 ± 0.0000008	ENSDF	[7]
			103.680 ± 0.005	0.000102 ± 0.000002		
			148.567 ± 0.010	0.000185 ± 0.000003		

Table A-3. Gamma-ray energies and emission probabilities for actinides and natural decay products.

				γ rays		
Nuclide	Half-life		Energy	Emission probability	Source	Notes
	T _{1/2}	Units	[keV]	[% decay]		
94-Pu-242	$(3.73 \pm 0.03) \times 10^5$	У	44.915 ± 0.013	0.0376 ± 0.0008	BIPM-5	[7]
			103.50 ± 0.04	0.00251 ± 0.00011		
			158.80 ± 0.08	0.000298 ± 0.000020		
95-Am-241	432.6 ± 0.6	у	26.3446 ± 0.0002	2.40 ± 0.03	BIPM-5	[8]
		•	33.1963 ± 0.0003	0.121 ± 0.003		
			59.5409 ± 0.0001	35.78 ± 0.09		
			98.95 ± 0.01	0.0203 ± 0.0004		
			102.97 ± 0.01	0.0195 ± 0.0004		
			123.02 ± 0.02	0.00100 ± 0.00004		
			125.29 ± 0.01	0.0041 ± 0.0002		
			146.57 ± 0.01	0.00046 ± 0.00001		
			169.55 ± 0.02	0.00017 ± 0.00001		
			208.00 ± 0.02	0.000786 ± 0.000005		
			322.53 ± 0.03	0.000151 ± 0.000003		
			335.40 ± 0.03	0.000496 ± 0.000005		
			368.63 ± 0.03 662.41 ± 0.02	0.000214 ± 0.000004 0.000367 ± 0.000005		
95-Am-242m	141. ± 2.	У	49.35 ± 0.02	0.13 ± 0.01	ENSDF	[9]
			60.13 ± 0.06	0.005 ± 0.001		
			66.89 ± 0.02	0.015 ± 0.001		
			73.66 ± 0.02	0.008 ± 0.001		
			86.65 ± 0.02 135.19 ± 0.02	0.023 ± 0.001 0.007 ± 0.001		
			136.03 ± 0.02	0.007 ± 0.001 0.009 ± 0.001		
			130.03 1 0.02	0.000 1 0.001		
95-Am-243	$(7.370 \pm 0.017) \times 10^3$	У	43.53 ± 0.02	5.89 ± 0.10	LNHB	
			74.66 ± 0.02	67.2 ± 1.2		
			86.71 ± 0.02	0.346 ± 0.009		
			141.90 ± 0.06	0.115 ± 0.008		
96-Cm-242	162.86 ± 0.08	d	44.08 ± 0.03	0.0330 ± 0.0007	LNHB	[7]
			101.92 ± 0.04	0.00251 ± 0.00014		
			157.42 ± 0.09	0.00145 ± 0.00016		
96-Cm-243	29.1 ± 0.1	у	209.753 ± 0.002	3.29 ± 0.1	ENSDF	
			228.183 ± 0.002	10.6 ± 0.3		
			277.599 ± 0.002	14.0 ± 0.4		
			285.460 ± 0.002	0.73 ± 0.02		
96-Cm-244	18.11 ± 0.03	у	42.824 ± 0.008	0.0258 ± 0.0007	LNHB	[7]
			98.860 ± 0.013	0.00136 ± 0.00009		
			152.63 ± 0.02	0.00102 ± 0.00005		
98-Cf-252	2.645 ± 0.008	у	43.399 ± 0.025	0.0148 ± 0.0009	ENSDF	[7]
	0.000	,	100.2 ± 0.4	0.013 ± 0.006		r. 1

^[1] 510.7-keV emission probability of $22.6 \pm 0.2\%$ has been set aside as too close in energy to any annihilation radiation.

^[2] Possible minor interference from other gamma-ray emissions of comparable energy (*).

^[3] Doubly-placed transitions were not considered. Uncertainties of the emission probabilities are adopted from E. Browne, R.B. Firestone and V.S. Shirley, Table of Radioactive Isotopes, John Wiley & Sons, New York, 1986.

^[4] Measurement of the emission probability of the 63.29-keV gamma ray by Abousahl et al., Nucl. Instrum. Meth. Phys. Res. A517 (2004) 211, has been incorporated into an earlier evaluation (Adsley et al., Appl. Radiat. Isot. 49 (1998) 1337) to give a recommended value of (3.70 ± 0.06)%; all other emissions probabilities and uncertainties were adjusted accordingly.

^[5] Low intensity emissions.

^[6] Energy uncertainties are adopted from E. Browne, R.B. Firestone and V.S. Shirley, Table of Radioactive Isotopes, John Wiley & Sons, New York, 1986.

^[7] Low intensity emissions (no alternative).

^[8] Low intensity emissions included.

^[9] Low intensity emissions included; doubly-placed transitions were not considered.

A-4. K X-ray energies and intensities for actinides and natural decay products.

References

PTB: E. Schönfeld, G. Rodloff, Energies and relative emission probabilities of K X-rays for elements with atomic number in the range from Z = 5 to Z = 100, Report PTB-6.11-1999-1, 1999.

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 3 October 2006.

BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 2 - A = 151 to 242, 2004.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 25 October 2006; see also NuDat2, http://www.nndc.bnl.gov/nudat2, 25 October 2006.

Table A-4. K X-ray energies and intensities for actinides and natural decay products.

Nuclide	Half-life		Decay	Origin	Energy	Emiss	sion probability	Source
Nuclide	T _{1/2}	Units	mode	Origin	[keV]	P _x	[% decay]	Source
81-TI-206	4.202 ± 0.011	m	β-	Pb Kα ₂	72.8049	0.026	± 0.003	[1]
				Pb $K\alpha_1$	74.9700	0.044	± 0.005	
				Pb K'β ₁	84.451 – 85.470	0.0150	± 0.0017	
				Pb K'β ₂	87.238 – 88.003	0.0045	± 0.0006	
81-TI-208	3.060 ± 0.008	m	β-	Pb Kα ₂	72.8049	2.15	± 0.06	[1]
				Pb $K\alpha_1$	74.9700	3.61	± 0.09	
				Pb K'β ₁	84.451 - 85.470	1.23	± 0.04	
				Pb K'β ₂	87.238 - 88.003	0.373	± 0.013	
82-Pb-212	10.64 ± 0.01	h	β-	Bi Kα ₂	74.8157	10.7	± 0.3	[2]
			P	Bi Kα ₁	77.1088	17.9	± 0.5	[-]
				Bi K'β₁	86.835 - 87.862	6.12	± 0.20	
				Bi K'β ₂	89.732 - 90.522	1.87	± 0.07	
83-Bi -212	60.54 ± 0.06	m	α	Tl Kα ₂	70.8325	0.0563	± 0.0027	[2]
				TI Kα ₁	72.8725	0.095	± 0.005	
				TI K'β ₁	82.118 - 83.115	0.0323	± 0.0016	
				TI K'β ₂	84.838 - 85.530	0.0096	± 0.0005	
83-Bi -212	60.54 ± 0.06	m	β-	Po Kα ₂	76.864	0.0404	± 0.0010	[2]
				Po $K\alpha_1$	79.293	0.0672	± 0.0017	
				Po K'β ₁	89.256 - 90.363	0.0231	± 0.0007	
				Po K'β ₂	92.263 - 93.095	0.00720	± 0.00024	
88-Ra-224	3.627 ± 0.007	d	α	Rn Kα ₂	81.07	0.130	± 0.004	[2]
				Rn Kα₁	83.78	0.215	± 0.007	
				Rn K'β ₁	94.247 - 95.449	0.0744	± 0.0024	
				Rn K'β ₂	97.48 - 98.389	0.0238	± 0.0009	
88-Ra-226	$(1.600 \pm 0.007) \times 10^3$	٧	α	Rn Kα ₂	81.07	0.191	± 0.007	[2]
	(,	,		Rn Kα ₁	83.78	0.315	± 0.011	[-]
				Rn K'β ₁	94.247 – 95.449	0.109	± 0.004	
				Rn K' β_2	97.48 – 98.389	0.0349	± 0.0014	
89-Ac-224	2.78 ± 0.17	h	EC	Ra Kα ₂	85.43	22.2	± 0.8	[3]
				Ra Kα₁	88.47	36.2	± 1.2	
				Ra K'β₁	99.432 - 100.738	12.8	± 0.5	
				Ra K'β ₂	102.89 - 103.899	4.22	± 0.16	
89-Ac-224	2.78 ± 0.17	h	α	Fr Kα ₂	83.231	0.150	± 0.015	[3]
				Fr $K\alpha_1$	86.105	0.247	± 0.023	
				Fr K' β_1	96.815 -98.069	0.087	± 0.009	
				Fr K' β_2	100.16 - 101.118	0.028	± 0.003	

Table A-4. K X-ray energies and intensities for actinides and natural decay products.

Nuclida	Half-life		Decay	Origin	Energy	Emiss	ion probability	Course
Nuclide	T _{1/2}	Units	mode	Origin	[keV]	P_x	[% decay]	Source
89-Ac-228	6.15 ± 0.02	h	β-	Th Kα ₂	89.954	1.92	± 0.19	[3]
				Th $K\alpha_1$	93.351	3.1	± 0.3	
				Th $K'\beta_1$	104.819 - 106.239	1.11	± 0.11	
				Th K'β ₂	108.509 - 109.630	0.37	± 0.04	
90-Th-227	18.718 ± 0.005	d	α	Ra Kα ₂	85.43	1.81	± 0.06	[2]
				Ra Kα₁	88.47	2.96	± 0.10	
				Ra K'β₁	99.432 – 100.738	1.04	± 0.04	
				Ra K'β ₂	102.89 – 103.899	0.340	± 0.013	
90-Th-228	698.60 ± 0.23	d	α	Ra Kα ₂	85.43	0.0172	± 0.0008	[2]
				Ra $K\alpha_1$	88.47	0.0281	± 0.0012	
				Ra K' β_1	99.432 - 100.738	0.0098	± 0.0005	
				Ra K'β ₂	102.89 - 103.899	0.00323	± 0.00016	
90-Th-231	25.52 ± 0.01	h	β-	Pa Kα ₂	92.288	0.37	± 0.05	[3]
				Pa $K\alpha_1$	95.869	0.60	± 0.07	
				Pa K'β₁	107.595 - 109.072	0.216	± 0.026	
				Pa K'β ₂	111.405 - 112.575	0.073	± 0.009	
90-Th-233	22.15 ± 0.15	m	β-	Pa Kα ₂	92.288	0.48	± 0.05	[4]
				Pa Kα₁	95.869	0.78	± 0.08	
				Pa K'β₁	107.595 - 109.072	0.28	± 0.03	
				Pa K'β ₂	111.405 - 112.575	0.095	± 0.010	
91-Pa-231	$(3.276 \pm 0.011) \times 10^4$	у	α	Ac Kα ₂	87.768	0.75	± 0.04	[3]
				$Ac\ K\alpha_1$	90.885	1.22	± 0.06	
				Ac K'β ₁	102.101 - 103.462	0.435	± 0.022	
				Ac $K'\beta_2$	105.679 - 106.738	0.145	± 0.008	
91-Pa-232	1.32 ± 0.02	d	β-	U Kα ₂	94.666	1.06	± 0.04	[3]
				$U\ K\alpha_1$	98.440	1.70	± 0.06	
				U K'β₁	110.421 - 111.964	0.613	± 0.023	
				U K'β ₂	114.407 - 115.580	0.210	± 0.009	
91-Pa-233	26.98 ± 0.02	d	β-	U Kα ₂	94.666	9.09	± 0.25	[1]
				$U\ K\alpha_1$	98.440	14.6	± 0.4	
				U K'β ₁	110.421 - 111.964	5.25	± 0.21	
				U K'β ₂	114.407 - 115.580	1.80	± 0.08	

Table A-4. K X-ray energies and intensities for actinides and natural decay products.

Nuclide	Half-life T	Unito	Decay	Origin	Energy		ion probability	Source
	T _{1/2}		mode		[keV]		[% decay]	F01
91-Pa-234	6.75 ± 0.05	h	β-	U Kα ₂	94.666	12.3	± 0.8	[3]
				U Kα ₁	98.440	19.7	± 1.2	
				U K'β ₁	110.421 - 111.964	7.1	± 0.5	
				U K'β ₂	114.407 - 115.580	2.43	± 0.16	
92-U -233	$(1.592 \pm 0.002) \times 10^5$	у	α	Th $K\alpha_2$	89.954	0.00810	± 0.00022	[3]
				Th $K\alpha_1$	93.351	0.0131	± 0.0003	
				Th $K'\beta_1$	104.819 - 106.239	0.00469	± 0.00012	
				Th K'β ₂	108.509 - 109.630	0.00158	± 0.00005	
92-U -235	$(7.038 \pm 0.005) \times 10^8$	у	α	Th Kα ₂	89.954	3.46	± 0.09	[3]
				Th $K\alpha_1$	93.351	5.60	± 0.12	
				Th $K'\beta_1$	104.819 - 106.239	2.00	± 0.05	
				Th $K'\beta_2$	108.509 - 109.630	0.675	± 0.018	
92-U -237	6.749 ± 0.016	d	β-	Np Kα ₂	97.069	14.7	± 0.4	[1]
			·	Np Kα ₁	101.059	23.4	± 0.6	
				Np K'β ₁	113.303 - 114.912	8.50	± 0.27	
					117.463 - 118.646	2.92	± 0.10	
93-Np-236	$(1.55 \pm 0.08) \times 10^5$	У	EC	U Kα ₂	94.666	20.2	± 0.3	[1]
·	,	-		U Kα ₁	98.440	32.4	± 0.5	
				U Κ'β ₁	110.421 - 111.964		± 0.25	
				U K'β ₂	114.407 - 115.580	3.99	± 0.11	
93-Np-237	$(2.144 \pm 0.007) \times 10^6$	У	α	Pa Kα ₂	92.288	1.67	± 0.10	[3]
	(,		Pa Kα ₁	95.869	2.68	± 0.14	
				Pa K'β₁		0.96	± 0.06	
					111.405 - 112.575	0.327	± 0.018	
93-Np-238	2.117 ± 0.002	d	β-	Pu Kα ₂	99.525	0.172	± 0.009	[5]
		-	P	Pu Kα₁	103.734	0.272	± 0.013	[-]
					116.244 - 117.918	0.099	± 0.005	
					120.540 - 121.768	0.034	± 0.002	
93-Np-239	2.356 ± 0.003	d	β-	Pu Kα ₂	99.525	14.0	± 0.6	[3]
50 Hp 200	2.000 1 0.000	u	۲	Pu Kα ₁	103.734	22.2	± 0.8	[0]
				•	116.244 - 117.918	8.1	± 0.4	
					120.540 - 121.768	2.80	± 0.4 ± 0.11	
				. u / p ₂	120.040 - 121.700	2.00	± U.11	

Table A-4. K X-ray energies and intensities for actinides and natural decay products.

Nuclide		Half-life T _{1/2}	Units	Decay mode	Origin	Energy [keV]		on probability % decay]	Source
94-Pu-239	(2.411	± 0.003) × 10 ⁴	у	α	U Kα ₂	94.666	0.0036	± 0.0004	[3]
					U $K\alpha_1$	98.440	0.0058	± 0.0005	
					U K'β ₁	110.421 - 111.964	0.00209	± 0.00019	
					U K'β ₂	114.407 - 115.580	0.00072	± 0.00007	
94-Pu-241	14.290	± 0.006	у	α	U Kα ₂	94.666	0.000312	± 0.000011	[3]
					$U\ K\alpha_1$	98.440	0.000499	± 0.000017	
					$U K'\beta_1$	110.421 - 111.964	0.000180	± 0.000007	
					U K'β ₂	114.407 - 115.580	0.0000615	± 0.0000023	
95-Am-241	432.6	± 0.6	у	β-	Np Kα ₂	97.069	0.00116	± 0.00002	[2]
					$Np\; K\alpha_1$	101.059	0.00185	± 0.00004	
					$Np\; K'\beta_1$	113.303 - 114.912	0.000670	± 0.000014	
					Np K'β ₂	117.463 - 118.646	0.000231	± 0.000005	
95-Am-242	16.02	± 0.02	h	EC	Pu Kα ₂	99.525	3.6	± 0.3	[3]
					Pu $K\alpha_1$	103.734	5.7	± 0.4	
					Pu K' β_1	116.244 - 117.918	2.07	± 0.15	
					Pu K' β_2	120.540 - 121.768	0.72	± 0.06	
96-Cm-243	29.1	± 0.1	у	α	Pu Kα ₂	99.525	13.2	± 0.6	[3]
					Pu $K\alpha_1$	103.734	20.9	± 0.8	
					Pu K'β ₁	116.244 - 117.918	7.6	± 0.4	
					Pu K'β ₂	120.540 - 121.768	2.64	± 0.11	

^[1] X-ray energies adopted from PTB. Emission probabilities adopted from LNHB; the values listed in LNHB are consistent with the relative X-ray emission probabilities reported in PTB.

^[2] X-ray energies adopted from PTB. Emission probabilities adopted from BIPM-5 - the values listed in BIPM-5 are consistent with the relative X-ray emission probabilities reported in PTB.

^[3] X-ray energies adopted from PTB. Emission probabilities are calculated from the relative X-ray emission probabilities listed in PTB and the absolute $K\alpha_1$ -emission probability given in the ENSDF database.

^[4] X-ray energies adopted from PTB. Emission probabilities reported without uncertainties were adopted from LNHB. There are no precise measurements of P_x available in the literature for Th-233 and known experimental data without uncertainties are based on unpublished work; under these circumstances an uncertainty of ~10% was adopted for P_x values

^[5] X-ray energies adopted from PTB. Emission probabilities are not listed by NuDat2; therefore, the $K\alpha_1$ -emission probability was directly taken from the ENSDF file. The remaining X-ray emission probabilities were calculated from the relative X-ray emission probabilities listed in PTB and the absolute $K\alpha_1$ -emission probability extracted from the ENSDF database.

A-5. Actinide data: Thermal neutron cross sections, resonance integrals and Westcott factors.

References

- ANR: S.F. Mughabghab, Atlas of Neutron Resonances, Resonance Parameters and Thermal Cross Sections, Z = 1 100, 5th Edition, Elsevier, Amsterdam, 2006.
- ENDF/B-VII: US Evaluated Nuclear Data Library ENDF/B-VII β3, Incident neutron data, http://www.nndc.bnl.gov/exfor4/endf00.htm, 2 October 2006; see also M.B. Chadwick et al., ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, Nucl. Data Sheets 107 (2006) 2931.
 - JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.
 - TRK-05: A. Trkov, G.L. Molnár, Zs. Révay, S.F. Mughabghab, R.B. Firestone, V.G. Pronyaev, A.L. Nichols, M.C. Moxon, Revisiting the ²³⁸U Thermal Capture Cross Section and Gamma-ray Emission Probabilities from ²³⁹Np Decay, Nucl. Sci. Eng. 150 (2005) 336.
 - σ_0 Neutron cross section at 2200 m/s.
 - σ Neutron cross section measured in a Maxwellian spectrum.
 - σ_r Neutron cross section measured with reactor neutrons.
 - σ_{c} Neutron cross section calculated from resonance parameters or derived from equivalent data of the natural element.
 - $\sigma_{(m)}$ Neutron cross section leading to a metastable state of the product.
 - $\sigma_{(g)}$ Neutron cross section leading to the ground state of the product.
 - g Westcott factor: ratio of the Maxwellian averaged cross section σ to 2200 m/s cross section σ_0 (g = σ/σ_0). If the cross section varies as a function of 1/v, g = 1.0.
 - RI Infinite dilution resonance integral (including the 1/v contribution).
 - y Subscript for radiative capture cross section.
 - f Subscript for fission cross section.

Table A-5. Actinide data: Thermal neutron cross sections, resonance integrals and Westcott factors.

Nuclide	7	Thermal Cross	s Section	Westcott Factor	Resonance Integral	Source
	Type		[barn]	g	RI [barn]	
90-Th-232	$\sigma_{0\gamma}$	7.35	± 0.03	0.9982	83.3 ± 1.5	[1]
92-U -233	$\sigma_{0\gamma}$	45.5	± 0.7	1.0495 ± 0.0223	138. ± 6.	[2]
	σ_{0f}	529.1	± 1.2	0.9955 ± 0.0015	775. ± 17.	
92-U -234	$\sigma_{0\gamma}$	99.8	± 1.3	0.9903	640. ± 20.	[1]
92-U -235	$\sigma_{0\gamma}$	98.8	± 0.8	0.9956 ± 0.0016	146. ± 6.	[3]
	σ_{0f}	582.6	± 1.1	0.9771 ± 0.0008	275. ± 5.	
92-U -236	$\sigma_{0\gamma}$	5.09	± 0.10	1.0027	345. ± 15.	[4]
92-U -237	σ_{γ}	443.	± 167.	0.9767	1200. ± 200.	[5]
92-U -238	$\sigma_{0\gamma}$	2.683	± 0.012	1.0009	277. ± 3.	[6]
93-Np-237	$\sigma_{0\gamma}$	175.9	± 2.9	0.982	652. ± 24.	[1]
93-Np-239	$\sigma_{r\gamma}$	68.	± 10.	1.0005	455.	[7]
94-Pu-238	$\sigma_{0\gamma}$	540.	± 7.	0.9563	162. ± 15.	[1]
	σ_{0f}	17.9	± 0.4	0.9562	33. ± 5.	
94-Pu-239	$\sigma_{0\gamma}$	269.3	± 2.9	1.1369 ± 0.0119	180. ± 20.	[2]
	σ_{0f}	748.1	± 2.0	1.0553 ± 0.0013	303. ± 10.	
94-Pu-240	$\sigma_{0\gamma}$	289.5	± 1.4	1.0264	8452. ± 200.	[1]
94-Pu-241	$\sigma_{0\gamma}$	362.1	± 5.1	1.038	162. ± 8.	[8]
	σ_{0f}	1011.1	± 6.2	1.046 ± 0.006	570. ± 15.	
94-Pu-242	$\sigma_{0\gamma}$	18.5	± 0.5	1.0096	1115. ± 40.	[1]
95-Am-241	$\sigma_{0\gamma}$	587.	± 12.	1.051	1425. ± 100.	[1]
	σ_{0f}	3.20	± 0.09	0.996	14.4 ± 1.0	
	$\sigma_{0\gamma(g)}$	533.	± 13.		1230. ± 100.	
	$\sigma_{0\gamma(m)}$	54.	± 5.		195. ± 20.	
95-Am-242	$\sigma_{_{V}}$	330.	± 50.	1.0471	186.	[7]
	$\sigma_{f}^{'}$	2100.	± 200.	1.0502	986.	- -
95-Am-242m	Œ	1290.	± 300.	1.100	211.	ιΩι
30-MIII-242III	σ_{γ}					[9]
	σ_{0f}	6200.	± 200.	1.104	1570. ± 80.	

Table A-5. Actinide data: Thermal neutron cross sections, resonance integrals and Westcott factors.

Nuclide	-	Thermal Cros	s Section	Westcott Factor	Resonance Integral	Source
	Type	σ_{2}	, [barn]	g	RI [barn]	
95-Am-243	$\sigma_{0\gamma}$	75.1	± 1.8	1.014	1820. ± 70.	[10]
	σ_{f}	0.198	3 ± 0.0043	1.012	8.5 ± 0.5	
96-Cm-242	$\sigma_{_{_{m{V}}}}$	16.	± 5.	0.9939	110. ± 20.	[11]
	σ_{f}	< 5.		0.9964	12.9 ± 0.7	
96-Cm-243	$\sigma_{0\gamma}$	130.	± 10.	1.005	215. ± 20.	[1]
	σ_{0f}	617.	± 20.	1.0054	1570. ± 100.	
96-Cm-244	$\sigma_{0\gamma}$	15.2	± 1.2	0.999	655. ± 30.	[1]
	σ_{0f}	1.04	± 0.20	0.989	12.5 ± 2.5	

- [1] Data adopted from ANR; no uncertainty available for Westcott factors.
- [2] Data adopted from ANR; g_{γ} factor was calculated from fission and absorption cross-section data.
- [3] All data adopted from ANR.
- [4] Cross-section data and resonance integral adopted from ANR; Westcott factors without uncertainties calculated from the ENDF/B-VII library.
- [5] Cross-section data and resonance integral adopted from ANR; Westcott factor without uncertainty calculated from the JEFF-3.1 library; RI = 296 barns in the ENDF/B-VII library.
- [6] Thermal cross-section data adopted from TRK-05 (value of 2.680 \pm 0.019 barns reported in ANR), and g_{γ} and resonance integral take from ANR; no uncertainty available for Westcott factor.
- [7] Cross-section data adopted from ANR; Westcott factors without uncertainties and resonance integrals calculated from the ENDF/B-VII library; a relative uncertainty of 20% is recommended.
- [8] Data adopted from ANR; no uncertainty available for the g_v factor.
- [9] Data adopted from ANR; g_{γ} factor without uncertainty was calculated from the ENDF/B-VII library; resonance integral for radiative capture reported in ANR without uncertainty; a relative uncertainty of 20% is recommended.
- [10] Data adopted from ANR; g_f factor without uncertainty was calculated from the ENDF/B-VII library.
- [11] σ_{γ} and resonance integrals adopted from ANR; σ_f < 5 barns is reported in ANR; values of 3 and 5 barns are given in the ENDF/B-VII and the JEFF-3.1 libraries, respectively; Westcott factors without uncertainties were calculated from the JEFF-3.1 library.

A-6. Average number of neutrons emitted per fission.

References

IAEA-CRP-STD: S.A. Badikov, C. Zhenpeng, A.D. Carlson, E.V. Gai, G.M. Hale, F.-J. Hambsch, H.M. Hofmann, T. Kawano, N.M. Larson, V.G. Pronyaev, D.L. Smith, Soo-Youl Oh, S. Tagesen, H.K. Vonach, A.L. Nichols, IAEA CRP "International Evaluation of Neutron Cross-Section Standards", IAEA Scientific and Technical Information report STI/PUB/1291, November 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-100807-4. http://www-nds.iaea.org/standards/.

- ENDF/B-VII: US Evaluated Nuclear Data Library ENDF/B-VII β3, Incident neutron data, http://www.nndc.bnl.gov/exfor/endf00.htm, 2 October 2006; see also M.B. Chadwick et al., ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, Nucl. Data Sheets 107 (2006) 2931.
 - JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron and radioactive decay data files, http://www.nea.fr/html/dbdata/JEFF/, 26 February 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.
- NEA/WPEC-6: G. Rudstam, Ph. Finck, A. Filip, A. D'Angelo, R.D. McKnight, Delayed Neutron Data for the Major Actinides, NEA/WPEC-6, Volume 6, NEA/OECD, Paris, France, 2002.
 - EXFOR: Experimental Nuclear Reaction Data, http://www-nds.iaea.org/exfor/exfor00.htm, 27 March 2006.
 - P&I(1998): V.M. Piksaikin, S.G. Isaev, Correlation properties of delayed neutrons from fast neutron induced fission, pp. 1-13 in INDC(CCP)-415, October 1998, IAEA, Vienna, Austria.
 - Mills(1995): R.W. Mills, Fission product yield evaluation, PhD thesis, University of Birmingham, UK, March 1995.
 - Tuttle(1979): R.J. Tuttle, Delayed-neutron yields in nuclear fission, pp. 29-67 in Proc. Consultants' Meeting on Delayed Neutron Properties, 26-30 March 1979, INDC(NDS)-107 (1979) 29, IAEA, Vienna, Austria.

Table A-6. Average number of neutrons emitted per fission.

Nivaliala	T	Total neutr	on yield	Delayed-neutro	on yield
Nuclide	Туре	\boldsymbol{v}_t	Source	V _d	Source
90-Th-232	fast	2.456 ± 0.018	ENDF/B-VII	0.0499 ± 0.0019	ENDF/B-VII ⁽¹⁾
92-U -233	thermal	2.4968 ± 0.0036	IAEA-CRP-STD	0.0067 ± 0.0003	JEFF-3.1 ⁽²⁾
92-U -235	thermal	2.4355 ± 0.0023	IAEA-CRP-STD	0.0162 ± 0.0005	JEFF-3.1 ⁽³⁾
92-U -238	fast	2.819 ± 0.020	ENDF/B-VII ⁽⁴⁾	0.0465 ± 0.0024	JEFF-3.1 ⁽³⁾
92-Pu-238	fast	3.00 ± 0.14	JEFF-3.1 ⁽²⁾	0.0047 ± 0.0005	JEFF-3.1 ⁽¹⁾
94-Pu-239	thermal	2.8836 ± 0.0047	IAEA-CRP-STD	0.0065 ± 0.0003	JEFF-3.1 ⁽³⁾
94-Pu-240	fast	3.086 ± 0.025	JEFF-3.1 ⁽²⁾	0.0090 ± 0.0004	JEFF-3.1 ⁽¹⁾
94-Pu-241	thermal	2.9479 ± 0.0055	IAEA-CRP-STD	0.0160 ± 0.0008	JEFF-3.1 ⁽²⁾
94-Pu-242	fast	3.189 ± 0.035	JEFF-3.1 ⁽²⁾	0.0183 ± 0.0010	JEFF-3.1 ⁽¹⁾
95-Am-241	thermal	3.239 ± 0.024	JEFF-3.1 ⁽²⁾	0.0043 ± 0.0006	JEFF-3.1 ⁽²⁾
96-Cm-242	sf	2.529 ± 0.017	JEFF-3.1 ⁽⁵⁾	0.0013 ± 0.0003	Mills(1995)
96-Cm-243	thermal	3.433 ± 0.047	JEFF-3.1 ⁽²⁾	0.0030 ± 0.0003	JEFF-3.1 ⁽²⁾
96-Cm-244	sf	2.691 ± 0.012	JEFF-3.1 ⁽⁵⁾	0.0033 ± 0.0010	Mills(1995)
96-Cm-245	thermal	3.60 ± 0.13	JEFF-3.1 ⁽²⁾	0.0064 ± 0.0014	JEFF-3.1 ⁽²⁾
98-Cf -252	sf	3.7692 ± 0.0047	IAEA-CRP-STD	0.0086 ± 0.0010	Tuttle(1979)

fast = fast spectrum, thermal = thermal spectrum, sf = spontaneous fission.

⁽¹⁾ Uncertainties estimated from selected experimental data reported by P&I (1998).

⁽²⁾ Uncertainties estimated from selected experimental data available in EXFOR.

⁽³⁾ Delayed-neutron data adopted from NEA/WPEC-6.

⁽⁴⁾ Prompt-neutron yield adopted from ENDF/B-VII β3; uncertainty in prompt-neutron yield estimated from the U-238 covariance files included in the ENDF/B-VII β1 library (modification flag 5E for material 9237); total neutron yield calculated as the sum of prompt- and delayed-neutron yields.

⁽⁵⁾ Prompt-neutron yield adopted from the JEFF-3.1 radioactive decay data library; uncertainty in prompt-neutron yield estimated from selected experimental data available in EXFOR; total spontaneous neutron yield calculated as the sum of prompt- and delayed-neutron yields.

A-7. Delayed-neutron eight-group parameters.

References

JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron and radioactive decay data files, http://www.nea.fr/html/dbdata/JEFF/, 26 February 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

NEA/WPEC-6: G. Rudstam, Ph. Finck, A. Filip, A. D'Angelo, R.D. McKnight, Delayed Neutron Data for the Major Actinides, NEA/WPEC-6, Volume 6, NEA/OECD, Paris, France, 2002.

Table A-7. Delayed-neutron eight-group parameters.

Nuclide	Туре	Group	T _{1/2} [s]	λ _i [s ⁻¹]	α _i :	=v _i /v _d	β _i =ν	_i /v _t [%]	Notes
90-Th-232	fast	1	55.6	0.012467	0.0334	± 0.0025	0.0680	± 0.0058	[1]
		2	24.5	0.028292	0.0733	± 0.0053	0.149	± 0.013	
		3	16.3	0.042524	0.0931	± 0.0019	0.1892	± 0.0084	
		4	5.21	0.133042	0.136	± 0.024	0.276	± 0.050	
		5	2.37	0.292467	0.3815	± 0.0076	0.775	± 0.034	
		6	1.04	0.666488	0.1402	± 0.0082	0.285	± 0.021	
		7	0.424	1.634781	0.114	± 0.013	0.232	± 0.028	
		8	0.195	3.554600	0.0281	± 0.0006	0.0572	± 0.0026	
		Total	6.985	0.099229	1.000	± 0.030	2.032	± 0.079	
00.11.000	41	4	FF 0	0.040407	0.0707	. 0.0000	0.0044	. 0.0045	[4]
92-U-233	tnermai	1	55.6	0.012467	0.0797	± 0.0036	0.0214	± 0.0015	[1]
		2	24.5	0.028292	0.1670	± 0.0035	0.0448	± 0.0024	
		3	16.3	0.042524	0.1500	± 0.0030	0.0402	± 0.0022	
		4	5.21	0.133042	0.200	± 0.040	0.054	± 0.012	
		5	2.37	0.292467	0.298	± 0.022	0.0799	± 0.0071	
		6	1.04	0.666488	0.0388	± 0.0008	0.01040	± 0.00055	
		7	0.424	1.634781	0.056	± 0.025	0.015	± 0.0068	
		8	0.195	3.554600	0.0105	± 0.0002	0.00281	± 0.00015	
		Total	12.782	0.054228	1.000	± 0.053	0.268	± 0.013	
92-U-235	thermal	1	55.6	0.012467	0.0328	± 0.0042	0.0218	± 0.0029	[1]
92-0-233	uiciiiai	2	24.5	0.012407	0.0520	± 0.0042	0.0210	± 0.0056	ניו
		3	16.3	0.020292	0.1339	± 0.0000	0.1023	± 0.0063	
		4	5.21	0.042324	0.091	± 0.009	0.0003	± 0.0003	
		5	2.37	0.292467	0.3308	± 0.0066	0.2200	± 0.0083	
		6	1.04	0.666488	0.0902	± 0.0045	0.0600	± 0.0036	
		7	0.424	1.634781	0.0812	± 0.0016	0.0540	± 0.0021	
		8 Tatal	0.195	3.554600	0.0229	± 0.0095	0.0152	± 0.0064	
		Total	9.020	0.076849	1.000	± 0.029	0.665	± 0.021	

Table A-7. Delayed-neutron eight-group parameters.

Nuclide	Туре	Group	T _{1/2} [s]	$\lambda_i [s^{-1}]$	α _i ·	=v _i /v _d	β _i =v	_i /v _t	[%]	Notes
92-U-238	fast	1	55.6	0.012467	0.0084	± 0.0013	0.0139	±	0.0023	[1]
		2	24.5	0.028292	0.1040	± 0.0022	0.1716	±	0.0097	
		3	16.3	0.042524	0.0375	± 0.0008	0.0619	±	0.0035	
		4	5.21	0.133042	0.137	± 0.020	0.226	±	0.036	
		5	2.37	0.292467	0.294	± 0.012	0.485	±	0.033	
		6	1.04	0.666488	0.1980	± 0.0023	0.327	±	0.018	
		7	0.424	1.634781	0.128	± 0.013	0.211	±	0.025	
		8	0.195	3.554600	0.0931	± 0.0034	0.1536	±	0.0098	
		Total	5.315	0.130409	1.000	± 0.027	1.650	±	0.086	
94-Pu-238	fast	1	55.6	0.012467	0.045	± 0.009	0.0071	±	0.0017	[2]
		2	24.5	0.028292	0.250	± 0.018	0.0393	±	0.0056	
		3	16.3	0.042524	0.052	± 0.001	0.0082	±	0.0011	
		4	5.21	0.133042	0.256	± 0.014	0.0402	±	0.0054	
		5	2.37	0.292467	0.251	± 0.035	0.0394	±	0.0073	
		6	1.04	0.666488	0.119	± 0.012	0.0187	±	0.0030	
		7	0.424	1.634781	0.027	± 0.016	0.0042	±	0.0026	
		8	0.195	3.554600						
		Total	11.538	0.060073	1.000	± 0.048	0.157	±	0.019	
94-Pu-239	thermal	1	55.6	0.012467	0.032	± 0.012	0.0072	±	0.0028	[1]
		2	24.5	0.028292	0.237	± 0.034	0.0533	±	0.0081	
		3	16.3	0.042524	0.0826	± 0.0016	0.01859	±	0.00098	
		4	5.21	0.133042	0.182	± 0.052	0.041	±	0.012	
		5	2.37	0.292467	0.294	± 0.029	0.0662	±	0.0073	
		6	1.04	0.666488	0.0816	± 0.0016	0.01836	±	0.00097	
		7	0.424	1.634781	0.072	± 0.031	0.0162	±	0.0071	
		8	0.195	3.554600	0.0185	± 0.0004	0.00416	±	0.00023	
		Total	10.698	0.064794	1.000	± 0.077	0.225	±	0.011	
94-Pu-240	fast	1	55.6	0.012467	0.0220	± 0.0033	0.0064	±	0.0011	[1]
		2	24.5	0.028292	0.2069	± 0.0048	0.0604	±	0.0033	
		3	16.3	0.042524	0.0795	± 0.0016	0.0232	±	0.0013	
		4	5.21	0.133042	0.161	± 0.055	0.047	±	0.017	
		5	2.37	0.292467	0.3139	± 0.0088	0.0917	±	0.0051	
		6	1.04	0.666488	0.1050	± 0.0098	0.0307	±	0.0033	
		7	0.424	1.634781	0.079	± 0.017	0.0231	±	0.0051	
		8	0.195	3.554600	0.0325	± 0.0030	0.00949	±	0.00099	
		Total	9.320	0.074374	1.000	± 0.060	0.292	±	0.014	
94-Pu-241	thermal	1	55.6	0.012467	0.016	± 0.003	0.0087	±	0.0017	[1]
		2	24.5	0.028292	0.175	± 0.019	0.095	±	0.012	
		3	16.3	0.042524	0.055	± 0.012	0.0299	±	0.0067	
		4	5.21	0.133042	0.170	± 0.018	0.092	±	0.011	
		5	2.37	0.292467	0.280	± 0.035	0.152	±	0.021	
		6	1.04	0.666488	0.166	± 0.033	0.090	±	0.019	
		7	0.424	1.634781	0.113	± 0.035	0.061		0.020	
		8	0.195	3.554600	0.0245	± 0.0063	0.0133		0.0035	
		Total	7.848	0.088319	1.000	± 0.067	0.543		0.028	
		· otai	1.540	3.000010	1.000	_ 0.007	0.010	_	3.020	

Table A-7. Delayed-neutron eight-group parameters.

Nuclide	Туре	Group	T _{1/2} [s]	$\lambda_i [s^{-1}]$	α_{i}	=v _i /v _d	β _i =v	_i /v	_t [%]	Notes
94-Pu-242	fast	1	55.6	0.012467	0.0138	± 0.0003	0.00792	±	0.00048	[1]
		2	24.5	0.028292	0.095	± 0.051	0.055	±	0.030	
		3	16.3	0.042524	0.134	± 0.015	0.0769	±	0.0097	
		4	5.21	0.133042	0.033	± 0.020	0.019	±	0.012	
		5	2.37	0.292467	0.4038	± 0.0081	0.232	±	0.014	
		6	1.04	0.666488	0.001	± 0.060	0.001	±	0.035	
		7	0.424	1.634781	0.258	± 0.046	0.148	±	0.028	
		8	0.195	3.554600	0.062	± 0.052	0.036	±	0.030	
		Total	6.530	0.106145	1.00	± 0.11	0.574	±	0.032	
95-Am-241	thermal	1	55.6	0.012467	0.0340	± 0.0031	0.00448	±	0.00073	[1]
		2	24.5	0.028292	0.238	± 0.033	0.03137	±	0.00603	
		3	16.3	0.042524	0.061	± 0.012	0.00804	±	0.00191	
		4	5.21	0.133042	0.182	± 0.033	0.02399	±	0.00540	
		5	2.37	0.292467	0.305	± 0.035	0.04021	±	0.00707	
		6	1.04	0.666488	0.1060	± 0.0021	0.01397	±	0.00188	
		7	0.424	1.634781	0.038	± 0.066	0.00501	±	0.00873	
		8	0.195	3.554600	0.036	± 0.072	0.00475	±	0.00952	
		Total	10.518	0.065899	1.00	± 0.12	0.13183	±	0.01752	
96-Cm-245	thermal	1	55.6	0.012467	0.016	± 0.005	0.0028	±	0.0011	[2]
		2	24.5	0.028292	0.269	± 0.020	0.048	±	0.012	
		3	16.3	0.042524	0.045	± 0.001	0.0080	±	0.0018	
		4	5.21	0.133042	0.204	± 0.046	0.036	±	0.012	
		5	2.37	0.292467	0.255	± 0.040	0.045	±	0.013	
		6	1.04	0.666488	0.178	± 0.050	0.032	±	0.012	
		7	0.424	1.634781	0.033	± 0.084	0.006	±	0.016	
		8	0.195	3.554600						
		Total	10.080	0.068765	1.00	± 0.12	0.178	±	0.039	
98-Cf- 252	sf	1	55.6	0.012467	0.014	± 0.007	0.0032	±	0.0017	[2]
		2	24.5	0.028292	0.318	± 0.007	0.0725	±	0.0088	
		3	16.3	0.042524	0.001	± 0.024	0.0002	±	0.0055	
		4	5.21	0.133042	0.209	± 0.018	0.0477	±	0.0070	
		5	2.37	0.292467	0.200	± 0.004	0.0456	±	0.0055	
		6	1.04	0.666488	0.144	± 0.031	0.0328	±	0.0081	
		7	0.424	1.634781	0.114	± 0.044	0.026	±	0.011	
		8	0.195	3.554600						
		Total	10.347	0.066992	1.000	± 0.063	0.228	±	0.027	

fast = fast spectrum, thermal = thermal spectrum, sf = spontaneous fission.

^[1] Values of $T_{1/2}$, λ_i and α_i adopted from the JEFF-3.1 library; uncertainties in α_i adopted from NEA/WPEC-6.

^[2] Data adopted from NEA/WPEC-6.

- 56	_
------	---

B-1. Half-lives and branching fractions for fission products.

References

BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 1 - A = 1 to 150 and Vol. 2 - A = 151 to 242, 2004.

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 16 January 2006.

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA CRP "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 26 January 2006.

Table B-1. Half-lives and branching fractions for fission products.

Nuclide	ŀ	Half-life	Units	Decay	Branch	ing Fraction	Source	Notes
		T _{1/2}		mode				
35-Br- 85	2.90	± 0.06	m	β	1.0		ENSDF	[1]
36-Kr- 85	10.752	± 0.023	у	β	1.0		BIPM-5	
36-Kr- 85m	4.480	± 0.008	h	IT β⁻	0.214 0.786	± 0.005 ± 0.005	ENSDF	
38-Sr- 90	28.80	± 0.07	у	β	1.0		LNHB	
40-Zr- 95	64.032	± 0.006	d	β	1.0		LNHB	
41-Nb- 94	(7.3	$\pm 0.9) \times 10^{6}$	d	β	1.0		IAEA-CRP-XG	
41-Nb- 95	34.985	± 0.012	d	β	1.0		IAEA-CRP-XG	
41-Nb- 95m	3.61	± 0.03	d	IT β⁻	0.975 0.025	± 0.001 ± 0.001	LNHB	[2]
43-Tc- 99	(2.111	$\pm 0.012) \times 10^5$	у	β	1.0		ENSDF	
44-Ru-103	39.247	± 0.013	d	β	1.0		IAEA-CRP-XG	
44-Ru-106	1.018	± 0.005	у	β	1.0		IAEA-CRP-XG	
45-Rh-106	30.1	± 0.3	S	β	1.0		IAEA-CRP-XG	
50-Sn-121m	55.	± 5.	у	β ⁻ IT	0.224 0.776	± 0.020 ± 0.020	ENSDF	

Table B-1. Half-lives and branching fractions for fission products.

Nuclide	Н	alf-life T _{1/2}	Units	Decay mode	Branchir	ng Fraction	Source	Notes
51-Sb-122	2.7238	± 0.0002	d	EC β ⁻	0.0241 0.9759	± 0.0012 ± 0.0012	ENSDF	
51-Sb-124	60.20	± 0.03	d	β	1.0		ENSDF	
51-Sb-125	2.7584	± 0.0006	у	β	1.0		IAEA-CRP-XG	
53- I -129	(5.89	± 0.23) × 10 ⁹	d	β	1.0		IAEA-CRP-XG	
53- I -131	8.0233	± 0.0019	d	β	1.0		BIPM-5	
53- I -133	20.87	± 0.08	h	β	1.0		LNHB	[3]
53- I -135	6.57	± 0.02	h	β	1.0		ENSDF	
54-Xe-131m	11.930	± 0.016	d	IT	1.0		BIPM-5	
54-Xe-133	5.243	± 0.001	d	β	1.0		ENSDF	
54-Xe-133m	2.19	± 0.01	d	IT	1.0		ENSDF	
54-Xe-135	9.14	± 0.02	h	β	1.0		ENSDF	
54-Xe-135m	15.29	± 0.05	m	IT β ⁻	0.997 0.003	± 0.003 ± 0.003	ENSDF	[4]
55-Cs-134	2.063	± 0.003	у	β ⁻ EC		± 0.000001 ± 0.000001	IAEA-CRP-XG	[5]
55-Cs-137	30.05	± 0.08	у	β	1.0		LNHB	
56-Ba-140	12.753	± 0.004	d	β	1.0		BIPM-5	
57-La-140	1.67850	± 0.00017	d	β	1.0		BIPM-5	
58-Ce-141	32.508	± 0.010	d	β	1.0		LNHB	
58-Ce-144	285.1	± 0.6	d	β	1.0		IAEA-CRP-XG	
59-Pr-144	17.28	± 0.05	m	β	1.0		ENSDF	
60-Nd-147	10.98	± 0.01	d	β	1.0		ENSDF	
61-Pm-147	2.6234	± 0.0002	у	β	1.0		ENSDF	
61-Pm-148	5.368	± 0.002	d	β-	1.0		ENSDF	
61-Pm-148m	41.29	± 0.11	d	β ⁻ IT	0.958 0.042	± 0.007 ± 0.007	ENSDF	

Table B-1. Half-lives and branching fractions for fission products.

Nuclide	ŀ	Half-life T _{1/2}	Units	Decay mode	Branchi	ng Fraction	Source	Notes
61-Pm-149	2.2117	± 0.0021	d	β⁻	1.0		ENSDF	
61-Pm-151	1.1833	± 0.0017	d	β	1.0		ENSDF	
62-Sm-151	90.	± 8.	у	β	1.0		ENSDF	
62-Sm-153	1.938	± 0.010	d	β	1.0		IAEA-CRP-XG	
63-Eu-152	(4.941	$\pm 0.007) \times 10^3$	d	EC β ⁻	0.721 0.279	± 0.003 ± 0.003	IAEA-CRP-XG	[6]
63-Eu-154	(3.1381	$\pm 0.0014) \times 10^3$	d	β ⁻ EC	0.99982 0.00018	± 0.00013 ± 0.00013	IAEA-CRP-XG	[6]
63-Eu-155	4.753	± 0.016	у	β⁻	1.0		IAEA-CRP-XG	

¹ y = 1 year = 365.24219878 days

^[1] β - decay branches of 0.9982 ± 0.0002 to Kr-85m and 0.0018 ± 0.0002 to Kr-85.

^[2] ENSDF branching fractions: 0.944 \pm 0.007 for IT and 0.056 \pm 0.007 for β -.

^[3] β - decay branch of 0.0288 ± 0.0002 to Xe-133m.

^[4] Branching fractions were averaged from ENSDF database.

^[5] Branching fractions were adopted from ENSDF database.

^[6] Branching fractions were adopted from LNHB database.

B-2. Gamma-ray energies and emission probabilities for fission products.

References

BIPM-5: M.-M. Bé, V. Chisté, C. Dulieu, E. Browne, V. Chechev, N. Kuzmenko, R. Helmer, A. Nichols, E. Schönfeld, R. Dersch, Monographie BIPM-5, Table of Radionuclides, Vol. 1 - A = 1 to 150 and Vol. 2 - A = 151 to 242, 2004.

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 3 October 2006.

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA CRP "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other

Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 15 November 2006.

Table B-2. Gamma-ray energies and emission probabilities for fission products.

Nuclide		Half-life T _{1/2}	Units	Ene [ke	ergy		probability decay]	Source	Notes
35-Br-85	2.90	± 0.06	m	802.41	± 0.10	2.56	± 0.16	ENSDF	
		0.06		861.76 919.06	± 0.08 ± 0.08	0.228 0.65	± 0.019 ± 0.05		
		0.00		924.63	± 0.08	1.63	± 0.03		
				1727.02	± 0.00	0.38	± 0.03		
36-Kr- 85	10.752	± 0.023	у	513.997	± 0.005	0.435	± 0.010	BIPM-5	
36-Kr-85m	4.480	± 0.008	h	129.81	± 0.02	0.300	± 0.008	ENSDF	[1]
				151.195	± 0.006	75.0	± 0.6		[1]
				304.87	± 0.02	14.0	± 0.3		[2]
40-Zr- 95	64.032	± 0.006	d	235.69	± 0.02	0.27	± 0.02	LNHB	
				724.193	± 0.003	44.27	± 0.22		
				756.729	± 0.012	54.38	± 0.22		
41-Nb-94	(7.3	$\pm 0.9) \times 10^{6}$	d	702.639	± 0.004	99.815	± 0.006	IAEA-CRP-XG	
				871.114	± 0.003	99.892	± 0.003		
41-Nb- 95	34.985	± 0.012	d	765.803	± 0.006	99.808	± 0.007	IAEA-CRP-XG	
41-Nb- 95m	3.61	± 0.03	d	235.69	± 0.02	25.1	± 0.3	LNHB	
43-Tc-99	(2.111	± 0.012) × 10 ⁵	у	89.5	± 0.2	0.00065	± 0.00015	ENSDF	
44-Ru-103	39.247	± 0.013	d	39.760	± 0.010	0.071	± 0.003	IAEA-CRP-XG	
11114 100	00.217	2 0.010	ŭ	53.275	± 0.010	0.384	± 0.006	INEXTOR NO	
				294.98	± 0.02	0.289	± 0.006		
				443.80	± 0.02	0.344	± 0.003		
				497.08	± 0.02	91.31	± 0.07		
				557.04	± 0.02	0.855	± 0.005		
				610.33	± 0.02	5.78	± 0.03		
45-Rh-106	30.1	± 0.3	s		± 0.0023	20.50	± 0.21	IAEA-CRP-XG	[3]
				616.22	± 0.09	0.724	± 0.013		
				621.93	± 0.06	9.86	± 0.11		
				873.49	± 0.05	0.435	± 0.008		
				1050.41	± 0.06	1.488	± 0.022		
				1128.07	± 0.05	0.399	± 0.006		
50-Sn-121m	55.	± 5.	У	37.15	± 0.04	1.85	± 0.17	ENSDF	[1]

Table B-2. Gamma-ray energies and emission probabilities for fission products.

					γr	rays			
Nuclide		Half-life T _{1/2}	Units	Ener			n probability decay]	Source	Notes
51-Sb-122	2.7238	± 0.0002	d	564.24	± 0.04	70.68	± 0.18	ENSDF	[1]
				692.65	± 0.04	3.85	± 0.13		[1]
					± 0.04	0.76	± 0.04		[4]
				1256.93	± 0.04	0.81	± 0.04		[1]
51-Sb-124	60.20	± 0.03	d	602.7275	± 0.0017	98.3	± 0.3	ENSDF	
				645.8537		7.46	± 0.03		
					± 0.013	1.360	± 0.012		
					± 0.005	2.287	± 0.017		
				722.7842		10.81	± 0.05		
					± 0.005	0.743	± 0.005		
					± 0.003 ± 0.003	1.892 1.841	± 0.010 ± 0.012		
					± 0.003	1.588	± 0.012 ± 0.015		
					± 0.003	1.043	± 0.013		
					± 0.004	2.623	± 0.018		
					± 0.006	1.222	± 0.008		
					± 0.024	0.675	± 0.006		
				1690.975	± 0.004	47.79	± 0.18		
				2090.936	± 0.005	5.51	± 0.03		
51-Sb-125	2 7584	± 0.0006	у	176.314	± 0.002	6.82	± 0.07	IAEA-CRP-XG	
0.00.20		_ 0.0000	,		± 0.008	1.520	± 0.015		
					± 0.004	29.55	± 0.24		
				463.365	± 0.004	10.48	± 0.09		
					± 0.002	17.76	± 0.18		
					± 0.003	5.02	± 0.05		
					± 0.003	11.32	± 0.10		
				671.441	± 0.006	1.783	± 0.016		
53-I-129	(5.89	± 0.23) × 10 ⁹	d	39.578	± 0.004	7.42	± 0.08	IAEA-CRP-XG	
53- I-131	8.0233	± 0.0019	d		± 0.0019	2.607	± 0.027	BIPM-5	
					± 0.005	6.06	± 0.06		
					± 0.005	81.2	± 0.8		
					± 0.004 ± 0.005	7.26 1.796	± 0.08 ± 0.020		
				722.911	1 0.003	1.730	1 0.020		
53-I-133	20.87	± 0.08	h	262.70	± 0.06	0.356	± 0.012	LNHB	
				422.903	± 0.007	0.309	± 0.010		
					± 0.022	1.81	± 0.06		
				529.8709		86.3	± 0.2		
					± 0.010	0.539	± 0.015		
					± 0.009	0.645 1.49	± 0.019		
					± 0.006 ± 0.006	0.457	± 0.04 ± 0.015		
					± 0.000 ± 0.009	1.23	± 0.013		
					± 0.005	4.47	± 0.04		
					± 0.017	0.551	± 0.016		
					± 0.005	1.49	± 0.04		
					± 0.005	2.33	± 0.07		
54-Xe-131m	11.930	± 0.016	d	163.930	± 0.008	1.98	± 0.06	BIPM-5	
54-Xe-133	5.243	± 0.001	d	80.997	± 0.003	38.0	± 0.7	ENSDF	
55-Cs-134	2.063	± 0.003	у		± 0.003	8.37	± 0.03	IAEA-CRP-XG	
					± 0.003	15.38	± 0.04		
					± 0.003	97.650	± 0.018		
					± 0.03	85.5	± 0.3		
					± 0.004	8.70 2.017	± 0.03		
				1365.186	± 0.004	3.017	± 0.012		

Table B-2. Gamma-ray energies and emission probabilities for fission products.

					γ ra				
Nuclide		Half-life	Units	Enei			n probability	Source	Notes
		T _{1/2}		[ke	V]	[%	decay]		
55-Cs-137	30.05	± 0.08	у	661.657	± 0.003	84.99	± 0.20	LNHB	
56-Ba-140	12.753	± 0.004	d	29.9656	± 0.0015	14.32	± 0.25	BIPM-5	
					± 0.0025	0.201	± 0.004		
					± 0.0024	6.26	± 0.09		
				304.872	± 0.004	4.30	± 0.04		
				423.721	± 0.004	3.11	± 0.03		
				437.569	± 0.003	1.927	± 0.019		
				537.303	± 0.006	24.39	± 0.22		
57-La-140	1.67850	± 0.00017	d	328.761	± 0.004	20.8	± 0.3	BIPM-5	
				432.513	± 0.008	2.995	± 0.016		
				487.022	± 0.006	46.1	± 0.4		
				751.653	± 0.007	4.392	± 0.024		
				815.781	± 0.006	23.72	± 0.12		
				867.839	± 0.016	5.58	± 0.03		
				919.533	± 0.010	2.730	± 0.023		
				925.198	± 0.007	7.04	± 0.04		
				950.988	± 0.020	0.531	± 0.005		
				1596.203	± 0.013	95.40	± 0.08		
				2347.847	± 0.014	0.845	± 0.007		
				2521.390	± 0.014	3.412	± 0.024		
58-Ce-141	32.508	± 0.010	d	145.4433	± 0.0014	48.29	± 0.20	LNHB	
58-Ce-144	285.1	± 0.6	d	33.568	± 0.010	0.235	± 0.012	IAEA-CRP-XG	
				40.98	± 0.10	0.41	± 0.25		
				80.12	± 0.05	1.52	± 0.10		
				133.515	± 0.004	11.09	± 0.16		
59-Pr-144	17.28	± 0.05	m	696.505	± 0.004	1.342	± 0.014	IAEA-CRP-XG	[5]
				1489.148	± 0.003	0.296	± 0.005		
				2185.645	± 0.005	0.680	± 0.018		
60-Nd-147	10.98	± 0.01	d	91.105	± 0.002	27.9	± 1.1	ENSDF	
					± 0.015	0.80	± 0.06		
				319.411	± 0.018	1.95	± 0.14		
				398.155	± 0.020	0.87	± 0.07		
				439.895	± 0.022	1.20	± 0.10		
				531.016	± 0.022	13.1	± 0.9		
				685.90	± 0.04	0.81	± 0.06		
61-Pm-147	2.6234	± 0.0002	у	121.220	± 0.017	0.0028	5 ± 0.00011	ENSDF	[6]
61-Pm-148	5.368	± 0.002	d	550.27	± 0.03	22.0	± 0.5	ENSDF	
				611.26	± 0.03	1.02	± 0.03		
				896.42	± 0.03	0.98	± 0.02		
				914.85	± 0.03	11.5	± 0.3		
				1465.12	± 0.03	22.2	± 0.5		

Table B-2. Gamma-ray energies and emission probabilities for fission products.

				γ	rays			
Nuclide		Half-life	Units	Energy	Emissio	n probability	Source	Notes
		T _{1/2}		[keV]	[%	decay]		
61-Pm-148m	41.29	± 0.11	d	98.48 ± 0.03	2.47	± 0.05	ENSDF	
				189.63 ± 0.03	1.10	± 0.03		
				288.11 ± 0.03	12.56	± 0.16		
				311.63 ± 0.03	3.92	± 0.06		
				414.07 ± 0.03	18.66	± 0.24		
				432.78 ± 0.03	5.35	± 0.08		
				501.26 ± 0.03	6.75	± 0.10		
				550.27 ± 0.03	94.9	± 1.2		
				599.74 ± 0.03	12.54	± 0.17		
				611.26 ± 0.03	5.48	± 0.10		
				629.97 ± 0.03	89.0	± 0.9		
				725.70 ± 0.03	32.8	± 0.5		
				915.33 ± 0.03	17.17	± 0.25		
				1013.81 ± 0.03	20.3	± 0.3		
63-Eu-152	(4.941	± 0.007) × 10 ³	d	121.7817 ± 0.0003	28.41	± 0.13	IAEA-CRP-XG	[4]
00 20 102	(1.011	= 0.007 / 10		244.6974 ± 0.0008	7.55	± 0.04		[4]
				344.2785 ± 0.0012	26.58	± 0.12		[1]
				411.1165 ± 0.0012	2.237	± 0.010		[1]
				443.965 ± 0.003	3.125	± 0.014		[4]
				778.9045 ± 0.0024	12.96	± 0.06		[1]
				867.380 ± 0.003	4.241	± 0.023		[4]
				964.072 ± 0.018	14.62	± 0.06		[4]
				1085.837 ± 0.010	10.13	± 0.06		[4]
				1089.737 ± 0.005	1.731	± 0.010		[1]
				1112.076 ± 0.003	13.40	± 0.06		[4]
				1212.948 ± 0.011	1.415	± 0.009		[4]
				1299.142 ± 0.008	1.632	± 0.009		[1]
				1408.013 ± 0.003	20.85	± 0.09		[4]
63-Eu-154	(3.1381	$\pm 0.0014) \times 10^3$	d	123.0706 ± 0.0009	40.4	± 0.5	IAEA-CRP-XG	
00 20 101	(0.1001	= 0.0014) ** 10	-	247.9288 ± 0.0007	6.89	± 0.07	17 L27 C C T T T T C	
				591.755 ± 0.003	4.95	± 0.05		
				692.4205 ± 0.0018	1.79	± 0.03		
				723.3014 ± 0.0022	20.05	± 0.21		
				756.8020 ± 0.0023	4.53	± 0.05		
				873.1834 ± 0.0023	12.17	± 0.12		
				996.262 ± 0.006	10.50	± 0.12		
				1004.725 ± 0.007	17.85	± 0.17		
				1246.121 ± 0.004	0.862	± 0.008		
				1274.429 ± 0.004	34.9	± 0.3		
				1596.4804 ± 0.0028	1.783	± 0.017		
63-Eu-155	4.753	± 0.016	у	45.2990 ± 0.0010	1.31	± 0.05	IAEA-CRP-XG	
55 Eu 100	4.700	_ 0.010	у	60.0086 ± 0.0010	1.22	± 0.05	., \L, \ O \(\) =\(\)	
				86.0591 ± 0.0010	0.154	± 0.03 ± 0.017		
				86.5479 ± 0.0010	30.7	± 0.017		
				105.3083 ± 0.0010	21.1	± 0.5		

^[1] Gamma emission arises from β decay mode.

^[2] Gamma emission arises from isomeric transition decay mode.

^{[3] 511.8534-}keV emission is extremely close in energy to any annihilation radiation.

^[4] Gamma emission arises from electron-capture decay mode.

^[5] Half-life adopted from ENSDF; gamma-ray data taken from IAEA-CRP-XG.

^[6] Only low intensity emission (no alternative).

B-3. X-ray energies and emission probabilities for fission products.

References

Laboratoire National Henri Becquerel, Recommended Data, LNHB:

http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 5 June 2008.

M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA-CRP-XG:

IAEA CRP "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International

Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

Table B-3. X-ray energies and emission probabilities for fission products.

Nuclide	Half-life T _{1/2}	Units	Decay	Oı	rigin		ner [ke\		Emission p		Source
41-Nb-95m	3.61 ± 0.03	d	IT	Nb	Kα ₂	16.521			12.5	± 0.6	LNHB
					Kα ₁	16.615			23.9	± 1.0	
					K'β₁	18.607	_	18.780	6.19	± 0.27	
					K'β ₂	18.952	-	18.982	0.93	± 0.05	
44-Ru-103	39.247 ± 0.013	d	β	Rh	L	2.38	-	3.36	4.12	± 0.19	IAEA-CRP-XG
					Ka_2	20.074			2.48	± 0.15	
					$K\alpha_1$	20.216			4.7	± 0.3	
					K'β ₁	22.699	-	22.911	1.28	± 0.08	
					K'β ₂	23.172	-	23.217	0.212	± 0.015	
51-Sb-125	2.7584 ± 0.0006	у	β-	Те	Kα ₂	27.2020		0.0002	19.1	± 0.7	IAEA-CRP-XG
					Kα ₁	27.4726	±	0.0002	35.7	± 1.2	
					K'β ₁	30.945	-	31.236	10.2	± 0.4	
					K'β ₂	31.701	-	31.774	2.21	± 0.10	
53-I-129	$(5.89 \pm 0.23) \times 10^9$	d	β	Xe	L	3.64	-	5.30	7.9	± 0.4	IAEA-CRP-XG
					Kα ₂	29.459	±	0.002	20.1	± 0.3	
					Kα ₁	29.779	±	0.001	37.2	± 0.6	
					K'β ₁	33.56	-	33.88	10.3	± 0.4	
					K'β ₂	34.41	-	34.55	2.30	± 0.13	
53-I-131	8.0233 ± 0.0019	d	β	Xe	L	3.64	-	5.30	0.635	± 0.013	LNHB
					Kα ₂	29.459	±	0.002	1.54	± 0.04	
					Kα ₁	29.779	±	0.001	2.85	± 0.07	
					K'β ₁	33.56	-	33.88	0.826	± 0.021	
					K'β ₂	34.41	-	34.55	0.195	± 0.007	
54-Xe-131m	11.930 ± 0.016	d	IT	Xe	L	3.64	-	5.3	8.13		LNHB
					Kα ₂	29.459	±	0.002	15.4	± 0.7	
					Kα ₁	29.779	±	0.001	28.5	± 1.3	
					Κ'β ₁ Κ'β ₂	33.56 34.41	-	33.88 34.55	8.3 1.95	± 0.4 ± 0.10	
EE Co 127	20.05 0.09	V	β-	Ва	L	3.954		5.973	0.00	± 0.05	IAEA-CRP-XG
55-Cs-137	30.05 ± 0.08	У	Р	Ба	L Kα ₂	31.8174	-	5.975	0.90 1.95	± 0.05	IAEA-URP-AG
					Kα ₁	32.1939			3.59	± 0.07	
					K'β ₁	36.31	_	36.67	1.055	± 0.022	
						37.26	-			± 0.008	
58-Ce-141	32.508 ± 0.010	d	β	Pr	L	4.45	_	6.81	2.43	± 0.10	IAEA-CRP-XG
00 00 111	02.000 1 0.010	ŭ	٣		Ľ Kα ₂	35.5506		0.0002	4.74	± 0.10	
					Kα ₁	36.0267		0.0002	8.65	± 0.12	
					K'β ₁		_	41.05	2.63	± 0.05	
					I- 1						

Table B-3. X-ray energies and emission probabilities for fission products.

	Table B-3. A		Decay			<u> </u>					
Nuclide	Half-life T _{1/2}	Units	mode	Oı	rigin		nerg keV		Emission p [% de		Source
58-Ce-144/ 59-Pr-144	285.1 ± 0.6	d	β	Pr	L Kα ₂	4.45 35.5506	- ±	6.81 0.0002	1.42 2.56	± 0.14 ± 0.11	IAEA-CRP-XG
					$K\alpha_1$	36.0267	±	0.0002	4.69	± 0.19	
					$K'\beta_1$	40.65	-	41.05	1.41	± 0.06	
					K'β ₂	41.77	-	41.97	0.360	± 0.015	
62-Sm-153	1.938 ± 0.010	d	β	Eu	L	00	-	8.03	10.04		IAEA-CRP-XG
					Kα ₂	40.9024			16.3	± 0.3	
					Kα ₁	41.5427		40.07	29.3	± 0.4	
					K'β ₁		-	48.27	9.20	± 0.14	
					K'β ₂	48.39	-	48.50	2.36	± 0.11	
63-Eu-152	$(4.941 \pm 0.007) \times 10^3$	d	EC	Sm	L	5.61	-	7.18	13.0	± 0.4	IAEA-CRP-XG
	,				$K\alpha_2$	39.5229			20.8	± 0.3	
					$K\alpha_1$	40.1186			37.7	± 0.5	
					$K'\beta_1$	45.289	-	45.731	11.78	± 0.19	
					$K'\beta_2$	46.575	-	46.813	3.04	± 0.08	
63-Eu-154	$(3.1381 \pm 0.0014) \times 10^3$	d	β⁻	Gd	L	5.36	-	8.10	7.1	± 0.3	IAEA-CRP-XG
					$K\alpha_2$	42.3093			7.2	± 0.2	
					$K\alpha_1$	42.9967			13.0	± 0.3	
					$K'\beta_1$	48.556	-	49.053	4.1	± 0.1	
					K'β ₂	49.961	-	50.219	1.08	± 0.03	
63-Eu-155	4.753 ± 0.016	У	β	Gd	L		-	8.10	7.5	± 0.5	IAEA-CRP-XG
					Ka_2	42.3093			6.70	± 0.13	
					$K\alpha_1$	42.9967			12.05	± 0.23	
					K'β ₁	48.556	-	49.053	3.84	± 0.11	
					$K'\beta_2$	49.961	-	50.219	0.98	± 0.03	

B-4. Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors.

References

ANR: S.F. Mughabghab, Atlas of Neutron Resonances, Resonance Parameters and Thermal Cross Sections, Z = 1 - 100, 5th Edition, Elsevier, Amsterdam, 2006.

ENDF/B-VII: US Evaluated Nuclear Data Library ENDF/B-VII β3, Incident neutron data, http://www.nndc.bnl.gov/exfor4/endf00.htm, 2 October 2006; see also M.B. Chadwick et al., ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, Nucl. Data Sheets 107 (2006) 2931.

JENDL-3.3: Japanese Evaluated Nuclear Data Library, Incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006.

HAR-91: H. Harada et al., Proceedings of 1990 Symposium on Nuclear Data, Japan Atomic Energy Research Institute report JAERI-M 91-032 (1991) 199.

GRY-87: G. Gryntakis et al., Handbook on Nuclear Activation Data, IAEA Technical Reports Series No. 273 (1987) 199.

SEK-87: T. Sekine et al., Triple Neutron Capture of ¹⁵³Eu in a Reactor: the Cross Sections of ¹⁵⁴Eu and ¹⁵⁵Eu, Appl. Radiat. Isot. 38 (1987) 513.

 σ_0 Neutron cross section at 2200 m/s.

 σ Neutron cross section measured in a Maxwellian spectrum.

 σ_r Neutron cross section measured with reactor neutrons.

 $\sigma_{\rm c}$ Neutron cross section calculated from resonance parameters or derived from equivalent data of the natural element.

 $\sigma_{(m)}$ Neutron cross section leading to a metastable state of the product.

 $\sigma_{\text{(q)}}$ Neutron cross section leading to the ground state of the product.

g Westcott factor: ratio of the Maxwellian averaged cross section σ to 2200 m/s cross section σ_0 (g = σ/σ_0). If the cross section varies as a function of 1/v, g = 1.0.

RI Infinite dilution resonance integral (including the 1/v contribution).

γ Subscript for radiative capture cross section.

f Subscript for fission cross section.

Table B-4. Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors.

Nuclide	Туре	Thermal C⊦ σ _× [Westcott Factor g	Resonar RI	nce I [bar	-	Source
36-Kr- 82	$\sigma_{\scriptscriptstyle{Y}}$	19.	±	4.	1.0004	156.	±	20.	[1]
36-Kr- 83	σ_{γ}	197.	±	10.	0.9979	157.	±	25.	[1]
36-Kr 84	$\sigma_{\scriptscriptstyle{Y}}$	0.110	±	0.015	1.0004	2.43		0.20	[1]
	$\sigma_{\gamma(g)}$	0.042	±	0.004					
	$\sigma_{\gamma(m)}$	0.090	±	0.013					
36-Kr- 85	$\sigma_{\scriptscriptstyle{\gamma}}$	1.66	±	0.20	0.9996	1.8	±	1.0	[1]
38-Sr- 90	$\sigma_{0\gamma}$	0.0104	±	0.0014	1.000	0.104	±	0.016	[1]
40-Zr- 90	σ_{γ}	0.077	±	0.016	1.0003	0.17	±	0.02	[1]
40-Zr- 91	$\sigma_{_{\!$	0.83	±	0.08	1.0003	5.76	±	0.40	[1]
40-Zr- 92	σ_{γ}	0.26	±	0.08	1.0004	0.64	±	0.11	[2]

Table B-4. Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors.

Nuclide	Туре	Thermal C			Westcott Factor	Resonar	_	Source	
40.7 00		σ _x	lbai	rnj	g 1 0007		[ba	rnj	[0]
40-Zr- 93	σ_{γ}	0.696			1.0007	17.8			[3]
40-Zr- 94	σ_{γ}	0.0494	±	0.0017	1.0004	0.280	±	0.010	[1]
40-Zr- 95	$\sigma_{0\gamma}$	1.2			1.0004	7.79			[4]
40-Zr- 96	σ_{γ}	0.0229	±	0.0010	1.0006	5.28	±	0.11	[1]
41-Nb- 94	$\sigma_{0\gamma}$	14.9	±	1.0	0.999	125.	±	8.	[1]
42-Mo- 95	$\sigma_{_{\!Y}}$	13.4	±	0.3	1.0000	118.	±	7.	[1]
42-Mo- 96	σ_{γ}	0.5	±	0.2	1.0006	17.	±	3.	[1]
42-Mo- 97	$\sigma_{_{\!\gamma}}$	2.2	±	0.2	1.0001	14.4	±	3.0	[1]
42-Mo- 98	$\sigma_{0\gamma}$	0.130	±	0.006	1.0008	6.7	±	0.3	[1]
42-Mo-100	$\sigma_{_{\!\gamma}}$	0.199	±	0.003	1.0003	3.76	±	0.15	[1]
43 -Tc- 99	$\sigma_{0\gamma}$	22.8	±	1.3	1.004	358.	±	20.	[1]
44-Ru-100	$\sigma_{0\gamma}$	5.8	±	0.4	1.0003	11.2	±	1.1	[1]
44-Ru-101	$\sigma_{0\gamma}$	5.2	±	0.3	1.0011	102.	±	10.	[1]
44-Ru-102	$\sigma_{0\gamma}$	1.27	±	0.04	1.0003	4.9	±	0.3	[1]
44-Ru-103	$\sigma_{_{\!\gamma}}$	1.2			1.0017	47.			[5]
44-Ru-104	$\sigma_{0\gamma}$	0.491	±	0.010	1.0004	6.3	±	0.2	[1]
44-Ru-106	$\sigma_{0\gamma}$	0.146	±	0.045	1.0004	2.0	±	0.6	[1]
51-Sb-124	$\sigma_{0\gamma}$	17.4	±	2.8	1.000	156.			[6]
53-I-129	$\sigma_{0\gamma}$	30.3	±	1.2	0.998	33.8	±	1.4	[1]
54-Xe-130	$\sigma_{0\gamma}$	4.8	±	1.2	0.9984	4.8			[7]
	$\sigma_{0\gamma(m)}$	0.45	±	0.10					
54-Xe-131	$\sigma_{0\gamma}$	87.	±	10.	1.0015	890.	±	50.	[1]
54-Xe-132	$\sigma_{0\gamma} \\ \sigma_{0\gamma(m)}$	0.45 0.05	± ±	0.06 0.01	1.0004	5.0 0.9	±	0.6 0.2	[1]
	~ υγ(m)	0.05	_	0.01		0.9	_	0.2	
54-Xe-133	$\sigma_{r\gamma}$	190.	±	90.	1.0004	90.			[6]
54-Xe-135	$\sigma_{0\gamma}$	2650000.	±	110000.	1.1594	7600.	±	500.	[1]
54-Xe-136	$\sigma_{0\gamma}$	0.26	±	0.02	1.0007	0.74	±	0.21	[8]
55-Cs-133	$\sigma_{0\gamma}$	30.3	± +	1.1	1.0029	437.	± +	26.	[1]
	$\sigma_{0\gamma(m)}$	2.6	±	0.1		29.0	±	1.1	

Table B-4. Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors.

Nuclide	Туре	Thermal C			Westcott Factor	Resona		•	Source
			[bar		g		[ba	mj	[0]
55-Cs-134	$\sigma_{r\gamma}$	140.	±	12.	0.9985	105.			[9]
55-Cs-135	σ_{γ}	8.3	±	0.3	0.9977	37.9	±	2.7	[10]
55-Cs-137	$\sigma_{r\gamma}$	0.27	±	0.03	1.0005	0.35			[11]
58-Ce-144	σ_{γ}	1.0	±	0.1	1.0005	2.6	±	0.3	[1]
59-Pr-141	$\sigma_{0\gamma}$	11.5	±	0.3	0.9996	17.4	±	2.0	[1]
	$\sigma_{0\gamma(m)}$	3.9	±	0.3					
59-Pr-143	$\sigma_{0\gamma}$	90.	±	10.	0.9998	190.	±	25.	[1]
60-Nd-142	$\sigma_{_{\!Y}}$	18.7	±	0.7	0.9990	6.2			[12]
60-Nd-143	$\sigma_{0\gamma}$	325.	±	10.	0.9967	129.	±	30.	[1]
60-Nd-144	$\sigma_{_{\!Y}}$	3.6	±	0.3	1.0004	4.2	±	0.5	[1]
60-Nd-145	$\sigma_{0\gamma}$	50.0	±	1.0	1.0001	230.	±	35.	[1]
60-Nd-146	$\sigma_{0\gamma}$	1.49	±	0.06	1.0004	2.57	±	0.14	[1]
60-Nd-147	$\sigma_{_{\!\gamma}}$	440.	±	150.	0.9957	539.8			[13]
60-Nd-148	$\sigma_{0\gamma}$	2.58	±	0.07	1.0005	15.5	±	1.5	[1]
60-Nd-150	$\sigma_{0\gamma}$	1.04	±	0.04	1.0003	15.2	±	0.8	[1]
61-Pm-147	$\sigma_{0\gamma}$	168.4	±	3.5	0.9971	2064.	±	100.	[1]
	$\sigma_{0\gamma(g)}$	96.0	±	1.8		1274.	±	66.	
	$\sigma_{0\gamma(m)}$	72.4	±	3.0		790.	±	100.	
61-Pm-148	$\sigma_{r\gamma}$	2000.	±	1000.	1.0005	2515.			[14]
61-Pm-148m	$\sigma_{0\gamma}$	10600.	±	1000.	1.4863	3600.	±	2400.	[1]
61-Pm-149	σ_{γ}	1400.	±	300.	1.0005	1577.			[14]
61-Pm-151	$\sigma_{0\gamma}$	150.			1.0068	2977.			[15]
62-Sm-147	$\sigma_{0\gamma}$	57.	±	3.	0.9965	777.	±	30.	[1]
62-Sm-148	σ_{γ}	2.4	±	0.6	0.9995	27.	±	14.	[1]
62-Sm-149	$\sigma_{0\gamma}$	40140.	±	600.	1.7102	3390.			[16]
62-Sm-150	$\sigma_{0\gamma}$	100.	±	4.	0.9985	358.	±	50.	[17]
62-Sm-151	$\sigma_{0\gamma}$	15170.	±	300.	0.9274	3765.	±	160.	[17]
62-Sm-152	$\sigma_{0\gamma}$	206.	±	6.	1.0036	2970.	±	100.	[1]
62-Sm-153	$\sigma_{0\gamma}$	420.	±	180.	0.9999	4872.			[18]

Table B-4. Fission product data: Thermal neutron cross sections, resonance integrals and Westcott factors.

Nuclide	Туре	Thermal	Cross	Section	Westcott Factor	Reson	ance	Integral	Source
		σ_{x}	[barr	1]	g	F	RI [ba	rn]	
62-Sm-154	σ_{γ}	8.3	±	0.5	0.9994	36.	±	4.	[1]
63-Eu-151	$\sigma_{0\gamma}$	9200.	±	100.	0.8940	3300.	±	300.	[19]
	$\sigma_{0\gamma(g)}$	5900.	±	200.		1510.	±	330.	
	$\sigma_{0\gamma(m1)}$	3300.	±	200.		1790.	±	140.	
	$\sigma_{r\gamma(m2)}$	4.0	±	2.0					
63-Eu-152	$\sigma_{0\gamma}$	12800.	±	600.	0.967 ± 0.058	2310.			[20]
63-Eu-153	$\sigma_{0\gamma}$	312.	±	7.	0.9860	1420.	±	100.	[17]
63-Eu-154	$\sigma_{0\gamma}$	1340.	±	130.	1.229	1300.			[21]
63-Eu-155	σ_{γ}	3950.	±	125.	1.0219	15528.			[22]

- [1] Cross-section data and resonance integral adopted from ANR; Westcott factor calculated from the ENDF/B-VII library.
- [2] Cross-section data adopted from ANR; value of the resonance integral adopted from ANR; RI uncertainty adopted from GRY-87; Westcott factor calculated from the ENDF/B-VII library.
- [3] Data adopted from ENDF/B-VII; σ_{γ} < 4 barns and RI = 17.5 barns are reported in ANR; σ_{ν} = 2.24 barns and RI = 18.2 barns are reported in JENDL-3.3.
- [4] Data adopted from the ENDF/B-VII library; ENDF/B-VII data were adopted from JENDL-3.3; no data available in ANR.
- [5] Data adopted from the ENDF/B-VII library; values in ANR are 1.2 and 5 barns for the thermal cross section and resonance integral, respectively; no uncertainty was reported.
- [6] Cross-section data adopted from ANR; resonance integral and Westcott factor calculated from the ENDF/B-VII library; resonance integral not reported in ANR.
- [7] Cross-section data and resonance integral adopted from ANR; RI uncertainty not available; Westcott factor calculated from the ENDF/B-VII library.
- [8] Cross-section data and resonance integral adopted from ANR; Westcott factor calculated from the ENDF/B-VII library; RI = 0.14 ± 0.01 barns from resolved resonance parameters.
- [9] Cross-section data adopted from ANR; resonance integral and Westcott factor calculated from the ENDF/B-VII library; RI = 76 barns is reported in ANR from the resolved resonance parameters.
- [10] Cross-section data and resonance integral adopted from ANR; Westcott factor calculated from the ENDF/B-VII library; RI = 50.9 barns in the ENDF/B-VII library.
- [11] Cross-section data adopted from ANR; resonance integral and Westcott factor calculated from the ENDF/B-VII library; measured RI = 0.35 ± 0.07 barns reported by HAR-91.
- [12] Cross-section data adopted from ANR; resonance integral and Westcott factor calculated from the ENDF/B-VII library; values of 34 ± 11 and 8.8 ± 0.5 barns are also reported in ANR the first is an experimental value and the second was calculated from the resolved resonance parameters; the ENDF/B-VII evaluation is in good agreement with recent measurements of the capture cross section in the energy range between 3 and 225 keV.
- [13] Cross-section data adopted from ANR; resonance integral and Westcott factor calculated from the ENDF/B-VII library; a resonace integral of 430 barns was calculated from the resolved resonance parameters, and is reported in ANR.
- [14] Cross-section data adopted from ANR; resonance integral and Westcott factor calculated from the ENDF/B-VII library; resonance integrals are not reported in ANR.
- Data adopted from the ENDF/B-VII library; an upper limit of 700 barns is reported for σ_{γ} in ANR.
- [16] Data adopted from ANR; resonance integral calculated from resolved resonance parameters; a resonance integral of 3700 ± 400 barns is reported by GRY-87.
- [17] All data adopted from ANR.
- [18] Cross-section data adopted from ANR; Westcott factor and resonance integral calculated from the ENDF/B-VII library; a resonance integral of 3700 ± 2000 barns is reported by GRY-87.
- [19] All data adopted from ANR; resonance integral is not available for the Eu-151(n,γ)Eu-152m₂ reaction.
- [20] Cross-section data and Westcott factor taken from ANR; resonance integral calculated from the ENDF/B-VII library; a value of 2170 barns is reported in JENDL-3.3 for the resonance integral.
- [21] Cross-section data taken from ANR; Westcott factor calculated from the ENDF/B-VII library, a value of g = 0.8979 is reported in ANR; resonance integral adopted from the ENDF/B-VII library, while a value of 1500 ± 450 barns is reported by GRY-87.
- [22] Cross-section data taken from ANR; resonance integral and Westcott factor calculated from the ENDF/B-VII library; resonance integral in the ENDF/B-VII library is in good agreement with the value of 15300 ± 2700 barns reported by SEK-91; a resonance integral of 23200 ± 300 barns is reported in ANR.

C-1.1. Th-232 chain fission yields.

Reference

JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Table C-1.1. Th-232 chain fission yields.

FPA	Fast Fiss	ion	Yield	14-MeV F	ion Yield	
117	[% per			[% per		
1	0.00161	±	0.00027	0.00232	±	
2	0.000491	±	0.000076	0.00071	±	0.00011
3	0.00701	±	0.00069	0.0101	±	
4	0.1016	±	0.0059	0.1467	±	0.0085
69	0.0000025	±	0.0000004	0.00083	±	0.00013
70	0.0000111	±	0.0000017	0.00167	±	0.00025
71	0.0000454	±	0.0000068	0.00309	±	0.00046
72	0.000172	±	0.000034	0.00530	±	0.00080
73	0.000507	±	0.000076	0.0108	±	0.0016
74	0.00138	±	0.00020	0.0216	±	0.0032
75	0.00317	±	0.00048	0.0393	±	0.0061
76	0.00656	±	0.00100	0.071	±	0.011
77	0.0109	±	0.0012	0.123	±	0.016
78	0.0330	±	0.0052	0.287	±	0.059
79	0.089	±	0.015	0.81	±	0.22
80	0.233	±	0.045	1.15	±	0.36
81	0.52	±	0.12	1.45	±	0.58
82	1.13	±	0.32	1.86	±	0.83
83	2.08	±	0.44	2.52	±	0.91
84	4.64	±	0.74	3.43	±	0.84
85	4.29	±	0.24	4.01	±	0.69
86	6.9	±	1.5	4.78	±	0.81
87	6.77	±	0.63	5.4	±	1.1
88	7.06	±	0.40	5.07	±	0.25
89	7.21	±	0.70	5.96	±	0.73
90	7.32	±	0.36	6.2	±	1.5
91	7.1	±	1.3	5.85	±	0.28
92	7.07	±	0.28	5.39	±	
93	6.46	±	0.48	5.75	±	0.23
94	5.33	±	0.24	5.6	±	1.1
95	5.52	±	0.17	4.82	±	0.49
96	5.16	±	0.62	4.10	±	0.66
97	4.46	±	0.12	3.11	±	0.24
98	3.74	±	0.62	2.52	±	0.44
99	2.919	±	0.076	1.953	±	0.098
100	1.73	±	0.26	1.79	±	0.37
101	0.86	±	0.13	1.61	±	0.25
102	0.371	±	0.056	1.20	±	0.21
103	0.1538	±	0.0095	0.884	±	0.064
104	0.090	±	0.013	0.95	±	0.14

Table C-1.1. Th-232 chain fission yields.

FPA		ssion Yield		Fission Yield
		er fission]		r fission]
105	0.0711	± 0.0032	1.017	± 0.060
106	0.0541	± 0.0031	1.101	± 0.083
107	0.0525	± 0.0079	1.07	± 0.17
108	0.0535	± 0.0080	1.06	± 0.16
109	0.0532	± 0.0043	1.03	± 0.11
110	0.0591	± 0.0089	1.14	± 0.19
111	0.0650	± 0.0060	1.187	± 0.065
112	0.0693	± 0.0078	1.219	± 0.067
113	0.068	± 0.010	1.199	± 0.056
114	0.068	± 0.010	1.25	± 0.24
115	0.0662	± 0.0079	1.20	± 0.21
116	0.067	± 0.010	1.17	± 0.21
117	0.068	± 0.010	1.14	± 0.22
118	0.067	± 0.010	1.10	± 0.21
119	0.066	± 0.010	1.06	± 0.20
120	0.0652	± 0.0098	1.01	± 0.19
121	0.0636	± 0.0096	0.929	± 0.078
122	0.0617	± 0.0093	0.98	± 0.18
123	0.0595	± 0.0089	1.00	± 0.18
124	0.0573	± 0.0086	1.02	± 0.18
125	0.0560	± 0.0084	1.04	± 0.18
126	0.0593	± 0.0087	1.08	± 0.17
127	0.0800	± 0.0070	1.138	± 0.065
128	0.170	± 0.026	1.36	± 0.23
129	0.431	± 0.089	1.68	± 0.33
130	0.85	± 0.14	1.82	± 0.44
131	1.513	± 0.083	2.31	± 0.14
132	2.60	± 0.10	2.99	± 0.15
133	4.53	± 0.19	4.12	± 0.21
134	5.84	± 0.31	5.88	± 0.42
135	5.47	± 0.26	5.20	± 0.36
136	5.99	± 0.23	6.69	± 0.35
137	6.30	± 0.30	6.29	± 0.99
138	6.37	± 0.20	6.14	± 0.96
139	7.12	± 0.41	5.64	± 0.42
140	7.71	± 0.25	5.69	± 0.20
141	7.11	± 0.28	5.72	± 0.38
142	6.54	± 0.21	5.14	± 0.40
143	6.49	± 0.30	4.96	± 0.24
144	7.66	± 0.55	3.90	± 0.78
145	5.06	± 0.70	3.1	± 1.2
146	3.6	± 1.1	2.42	± 0.59
147	3.03	± 0.18	1.79	± 0.11
148	1.95	± 0.18	1.39	± 0.36
149	1.11	± 0.16	0.93	± 0.30
150	0.77	± 0.41	0.406	± 0.077
151	0.399	± 0.065	0.165	± 0.035
152	0.300	± 0.083	0.123	± 0.020
153	0.202	± 0.027	0.0858	± 0.0070
154	0.062	± 0.011	0.075	± 0.012
155	0.0158	± 0.0025	0.0552	± 0.0086
	5.5.00	_ 5.55_5	5.000=	= 0.000

Table C-1.1. Th-232 chain fission yields.

FPA	Fast Fiss			14-MeV F		
	[% per	fiss	ion]	[% per	ion]	
156	0.00252	±	0.00032	0.0363	±	0.0073
157	0.00086	±	0.00013	0.0187	±	0.0028
158	0.000275	±	0.000041	0.0093	±	0.0014
159	0.000082	±	0.000012	0.00440	±	0.00044
160	0.0000224	±	0.0000034	0.00222	±	0.00033
161	0.0000058	±	0.0000009	0.001060	±	0.000053
162	0.0000014	±	0.0000002	0.000419	±	0.000063

JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Table C-1.2. U-233 chain fission yields.

ΕDΛ	PA Thermal Fission Yield Fast Fission Yield 14-MeV Fission							sion Vield	
FPA	[% pe			[% per			14-iviev [% pe		
1	0.00334		0.00055	0.00334	±	0.00055	0.00310	±	0.00059
2	0.00334	±	0.00033	0.00334	±	0.00035	0.00310	±	0.00039
3	0.00003	±	0.00013	0.00102	±	0.00013	0.00093	±	0.0056
4	0.01140	±	0.0080	0.01140	±	0.00030	0.0240	±	0.0030
- 68	0.0000019	±	0.00000	0.0000017	±	0.0000	0.190	±	0.00041
69	0.0000072	±	0.0000003	0.0000017	±	0.0000002	0.00277	±	0.00067
70	0.0000072	±	0.0000011	0.0000001	±	0.0000032	0.0068	±	0.0010
71	0.0000288	±	0.000013	0.000069	±	0.000010	0.0099	±	0.0015
72	0.000281	±	0.000043	0.000212	±	0.000010	0.01365	±	0.00097
73	0.000251	±	0.00013	0.000614	±	0.000092	0.0234	±	0.0036
74	0.00244	±	0.00040	0.00169	±	0.00025	0.0393	±	0.0060
75	0.0066	±	0.0012	0.00431	±	0.00065	0.0637	±	0.0099
76	0.0173	±	0.0037	0.0105	±	0.0016	0.102	±	0.016
77	0.0395	±	0.0045	0.0240	±	0.0036	0.158	±	0.026
78	0.0634	±	0.0054	0.0518	±	0.0078	0.241	±	0.041
79	0.1267	±	0.0076	0.106	±	0.016	0.359	±	0.062
80	0.2496	±	0.0092	0.204	±	0.032	0.526	±	0.095
81	0.371	±	0.014	0.370	±	0.060	0.75	±	0.14
82	0.590	±	0.030	0.64	±	0.10	1.05	±	0.21
83	1.070	±	0.055	1.000	±	0.053	1.36	±	0.12
84	1.697	±	0.040	1.681	±	0.085	1.94	±	0.42
85	2.166	±	0.028	2.10	±	0.10	2.39	±	0.52
86	3.093	±	0.030	2.85	±	0.14	3.02	±	0.61
87	4.008	±	0.055	4.30	±	0.43	3.72	±	0.93
88	5.435	±	0.060	5.18	±	0.26	4.31	±	0.34
89	6.02	±	0.17	6.19	±	0.40	4.88	±	0.62
90	6.648	±	0.073	6.39	±	0.33	5.07	±	0.80
91	6.569	±	0.072	6.26	±	0.32	5.02	±	0.35
92	6.568	±	0.072	6.51	±	0.43	4.99	±	0.59
93	6.950	±	0.076	7.04	±	0.38	5.66	±	0.64
94	6.800	±	0.068	6.70	±	0.36	4.8	±	1.4
95	6.386	±	0.058	6.28	±	0.18	5.05	±	0.28
96	5.742	±	0.057	5.74	±	0.32	4.0	±	1.7
97	5.574		0.050	5.51	±	0.16	4.76	±	0.36
98	5.17		0.16	5.14	±		3.6	±	1.4
99	5.03	±	0.14	4.85	±	0.17	3.87	±	0.22
100	4.41	±	0.15	4.42	±	0.26	3.27	±	0.91
101	3.219	±	0.084	3.68	±	0.74	3.18	±	0.64
102	2.429	±	0.027	2.61	±	0.56	2.98	±	0.47
103	1.458		0.058	1.58	±	0.16	2.72	±	0.13
104	0.976	±	0.014	1.01	±	0.22	2.26	±	0.35

Table C-1.2. U-233 chain fission yields.

FPA	Thermal	Fice	ion Yield	 Fast Fi	ieeir	n	Vield	14-Me	\/ Fies	sion Yield
117		er fis		[% pe					per fis	
105	0.501		0.013	 0.55			0.11	1.84	•	0.14
106	0.2505	±	0.0078	0.291		±	0.029	1.46	±	0.26
107	0.1149	±	0.0034	0.160		±	0.027	1.36	±	0.32
108	0.0797	±	0.0026	0.101		±	0.017	1.31	±	0.35
109	0.0420	±	0.0045	0.076		±	0.013	1.31	±	0.39
110	0.0395	±	0.0043	0.068		±	0.011	1.26	±	0.34
111	0.0247	±	0.0021	0.065		±	0.011	1.31	±	0.16
112	0.0143	±	0.0010	0.063		±	0.010	1.61	±	0.12
113	0.0158	±	0.0027	0.062		±	0.010	1.19	±	0.29
114	0.0173	±	0.0031	0.061		±	0.010	1.12	±	0.32
115	0.0192	±	0.0016	0.0586		±	0.0043	1.27	±	0.17
116	0.0177	±	0.0030	0.0584		±	0.0098	1.36	±	0.34
117	0.0151	±	0.0011	0.0596		±	0.0064	1.33	±	0.32
118	0.0156	±	0.0011	0.0596		±	0.0064	1.30	±	0.32
119	0.0159	±	0.0013	0.0733		±	0.0088	1.26	±	0.30
120	0.0175	±	0.0013	0.0823		±	0.0090	1.22	±	0.28
121	0.0185	±	0.0012	0.080		±	0.013	1.19	±	0.25
122	0.0195	±	0.0012	0.0824		±	0.0089	1.22	±	0.26
123	0.0223	±	0.0034	0.090		±	0.015	1.28	±	0.26
124	0.0322	±	0.0022	0.119		±	0.012	1.39	±	0.23
125	0.116	±	0.014	0.149		±	0.011	1.516	±	0.095
126	0.233	±	0.032	0.325		±	0.075	1.79	±	0.24
127	0.47	±	0.11	0.50		±	0.19	2.14	±	0.11
128	0.93	±	0.15	1.17		±	0.51	2.50	±	0.41
129	1.63	±	0.26	1.73		±	0.24	3.01	±	0.43
130	2.65	±	0.43	2.40		±	0.60	3.69	±	0.64
131	3.565	±	0.100	3.86		±	0.13	4.47	±	0.94
132	4.80	±	0.14	4.71		±	0.12	4.01	±	0.39
133	5.98	±	0.17	5.70		±	0.17	4.56	±	0.49
134	6.29	±	0.25	6.37		±	0.36	4.81	±	0.43
135	5.50	±	0.37	6.28		±	0.27	5.24	±	0.67
136	8.7	±	2.0	6.92		±	0.33	5.8	±	1.3
137	6.21	±	0.22	6.51		±	0.31	5.06	±	0.43
138	6.02	±	0.38	6.62		±	0.42	5.9	±	1.1
139	5.625	±	0.096	6.47		±	0.41	5.81	±	0.31
140	6.45	±	0.26	6.20		±	0.20	4.71	±	0.33
141	6.218	±	0.081	6.49		±	0.23	4.49	±	0.17
142	6.83	±	0.33	6.47		±	0.41	3.75	±	0.60
143	5.91	±	0.12	5.38		±	0.28	3.18	±	0.12
144	4.655	±	0.093	4.49		±	0.18	2.46	±	0.52
145	3.399	±	0.068	3.24		±	0.19	1.93	±	0.46
146	2.529	±	0.048	2.41		±	0.14	1.51	±	0.37
147	1.827	±	0.086	1.737		±	0.050	1.251	±	0.073
148	1.294	±	0.025	1.204		±	0.060	0.98	±	0.22
149	0.769	±	0.031	0.717		±	0.034	0.81	±	0.18
150	0.4884	±	0.0073	0.466		±	0.023	0.64	±	0.12
151	0.333	±	0.017	0.312		±	0.014	0.49	±	0.11
152	0.1962	±	0.0084	0.1936		±	0.0095	0.281		0.050
153	0.106	±	0.042	0.118		±	0.022	0.144	±	0.017
154	0.0458		0.0022	0.067			0.010	0.099		0.016
155	0.0214	±	0.0060	0.0351		±	0.0053	0.067	±	0.011

Table C-1.2. U-233 chain fission yields.

FPA	Thermal Fission Yield [% per fission]			Fast Fission Yield [% per fission]			14-MeV Fission Yield [% per fission]			
156	0.0109	±	0.0018	0.0169	±	0.0027	0.0444	±	0.0035	
157	0.0069	±	0.0011	0.0116	±	0.0019	0.0284	±	0.0044	
158	0.00264	±	0.00045	0.00485	±	0.00073	0.0177	±	0.0027	
159	0.00096	±	0.00012	0.00189	±	0.00031	0.0108	±	0.0014	
160	0.000350	±	0.000053	0.00110	±	0.00016	0.0073	±	0.0010	
161	0.000119	±	0.000016	0.000494	±	0.000086	0.00475	±	0.00041	
162	0.0000338	±	0.0000051	0.000140	±	0.000021	0.00277	±	0.00042	
163	0.0000090	±	0.0000013	0.0000375	±	0.0000056	0.00157	±	0.00024	
164	0.0000022	±	0.0000003	0.0000094	±	0.0000014	0.00087	±	0.00013	

C-1.3. U-235 chain fission yields.

Reference

JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Table C-1.3. U-235 chain fission yields.

FPA	Thermal Fission Yield			Fast Fiss	ion	Yield	14-MeV Fission Yield		
	[% per			[% per			[% per		
1	0.00171		0.00018	0.00269		0.00044	0.00264		0.00045
2	0.00084	±	0.00015	0.00082	±	0.00012	0.00081	±	0.00012
3	0.01080	±	0.00040	0.01080	±	0.00040	0.0174	±	0.0036
4	0.1702	±	0.0049	0.1700	±	0.0049	0.1667	±	0.0088
70	0.0000033	±	0.0000005	0.0000052	±	0.0000008	0.00317	±	0.00046
71	0.0000109	±	0.0000016	0.0000175	±	0.0000026	0.00456	±	0.00068
72	0.0000340	±	0.0000051	0.0000561	±	0.0000084	0.00566	±	0.00043
73	0.000100	±	0.000019	0.000170	±	0.000026	0.0115	±	0.0012
74	0.000343	±	0.000052	0.000492	±	0.000074	0.0189	±	0.0029
75	0.000828	±	0.000084	0.00133	±	0.00020	0.0301	±	0.0046
76	0.00478	±	0.00081	0.00346	±	0.00054	0.0462	±	0.0069
77	0.00849	±	0.00070	0.0085	±	0.0014	0.0682	±	0.0070
78	0.0205	±	0.0011	0.0201	±	0.0035	0.121	±	0.019
79	0.0487	±	0.0053	0.0454	±	0.0091	0.206	±	0.033
80	0.1285	±	0.0068	0.099	±	0.023	0.338	±	0.055
81	0.1975	±	0.0097	0.200	±	0.051	0.530	±	0.085
82	0.328	±	0.012	0.380	±	0.099	0.78	±	0.11
83	0.558	±	0.016	0.587	±	0.034	1.15	±	0.13
84	1.028	±	0.019	1.087	±	0.063	1.42	±	0.29
85	1.310	±	0.012	1.313	±	0.043	1.77	±	0.34
86	2.003	±	0.020	2.04	±	0.13	2.20	±	0.41
87	2.604	±	0.028	2.69	±	0.12	2.68	±	0.28
88	3.569	±	0.063	3.75	±	0.26	3.79	±	0.36
89	4.690	±	0.057	4.38	±	0.12	4.029	±	0.085
90	5.73	±	0.13	5.22	±	0.18	4.41	±	0.18
91	5.849	±	0.053	5.37	±	0.12	4.59	±	0.14
92	6.041	±	0.066	5.86	±	0.16	5.00	±	0.75
93	6.435	±	0.089	6.06	±	0.13	5.40	±	0.58
94	6.403	±	0.090	6.15	±	0.33	5.04	±	0.94
95	6.502	±	0.072	6.349	±	0.083	5.07	±	0.19
96	6.302	±	0.095	6.32	±	0.48	4.8	±	1.1
97	6.000	±	0.083	6.033	±	0.065	5.21	±	0.25
98	5.734	±		6.20		0.63	4.6	±	1.3
99	6.132	±	0.092	5.80		0.13	5.02		0.13
100	6.25	±	-	6.48		0.36	4.1	±	1.1
101	5.168	±		5.24	±	0.20	3.78	±	0.92
102	4.286	±		4.48	±	0.22	3.42	±	0.71
103	3.103	±		3.248	±	0.042	3.14	±	0.11
104	1.876	±		2.29	±	0.27	2.46	±	0.47
105	0.946		0.010	1.282	±	0.060	1.73	±	-
106	0.410	±	0.011	0.469	±	0.036	2.15	±	0.59

Table C-1.3. U-235 chain fission yields.

FPA	Thermal	Fissi	on Yield	Fast Fis	ssior	Yield	14-MeV	/ Fiss	ion Yield
117	[% pe			[% pe				er fiss	
107	0.1393		0.0060	0.184		0.030	1.82		0.47
108	0.0571	±	0.0030	0.079	±		1.58	±	0.37
109	0.0288	±	0.0019	0.0457	±		1.301	±	0.091
110	0.0254	±	0.0020	0.0363	±		1.18	±	0.22
111	0.01970	±	0.00061	0.0329	±		1.195	±	0.030
112	0.01183	±	0.00071	0.0265	±		0.708	±	0.098
113	0.01596	±	0.00082	0.0346	±		1.09	±	0.15
114	0.01288	±	0.00066	0.0315	±		0.97	±	0.24
115	0.01136	±	0.00066	0.0270	±		0.972	±	0.044
116	0.01604	±	0.00087	0.0363	±		1.11	±	0.25
117	0.0123	±	0.0013	0.0381	±		1.13	±	0.25
118	0.0136	±	0.0024	0.0407	±		1.15	±	0.25
119	0.0150	±	0.0016	0.0427	±		1.15	±	0.23
120	0.0146	±	0.0017	0.0442	±		1.15	±	0.21
121	0.01260	±	0.00052	0.0451	±		1.14	±	0.11
122	0.0180	±	0.0012	0.0456	±		1.15	±	0.22
123	0.01506	±	0.00063	0.0465	±		1.18	±	0.28
124	0.0316	±	0.0027	0.0505	±		1.26	±	0.35
125	0.0260	±	0.0014	0.067	±		1.42	±	0.42
126	0.0594	±	0.0052	0.098	±		1.62	±	0.49
127	0.1202	±	0.0048	0.301	±		1.96	±	0.32
128	0.3306	±	0.0073	0.48	±		1.80	±	0.36
129	0.706	±	0.032	1.03	±		1.59	±	0.18
130	1.779	±	0.093	2.19	±		2.89	±	0.56
131	2.878	±	0.032	3.365	±		4.11	±	0.14
132	4.296	±	0.043	4.699	±		4.47	±	0.18
133	6.60	±	0.11	6.61	±		5.58	±	0.41
134	7.79	±	0.11	7.77	±		5.73	±	0.42
135	6.62	±	0.23	6.33	±		6.6	±	1.9
136	6.57	±	0.16	6.42	±		5.28	±	0.34
137	6.221	±	0.069	5.889	±	0.096	5.6	±	1.3
138	6.72	±	0.11	6.52	±	0.23	5.6	±	1.4
139	6.345	±	0.089	6.365	±	0.089	4.97	±	0.75
140	6.315	±	0.095	5.960	±	0.048	4.508	±	0.081
141	5.86	±	0.15	5.795	±	0.081	4.44	±	0.20
142	5.860	±	0.099	5.72	±	0.11	4.58	±	0.93
143	5.954	±	0.083	5.533	±	0.055	4.02	±	0.54
144	5.475	±	0.055	5.094	±	0.076	3.155	±	0.038
145	3.944	±	0.043	3.796	±	0.068	2.81	±	0.57
146	2.987	±	0.030	2.927	±	0.053	2.30	±	0.50
147	2.232	±	0.040	2.148	±	0.028	1.657	±	0.045
148	1.681	±	0.012	1.697	±	0.020	0.595	±	0.034
149	1.053	±	0.021	1.064	±		0.557	±	0.090
150	0.6508	±	0.0065	0.702	±		0.480	±	0.074
151	0.4204	±	0.0071	0.431	±		0.388	±	0.061
152	0.2526	±	0.0028	0.305	±		0.304	±	0.049
153	0.1477	±	0.0071	0.1512	±		0.230	±	0.015
154	0.0726	±	0.0023	0.1111	±		0.144	±	0.023
155	0.0308	±		0.044	±		0.088	±	0.014
156	0.01334	±		0.01783	±		0.0520	±	0.0018
157	0.00657	±	0.00047	0.0116	±	0.0020	0.0336	±	0.0051

Table C-1.3. U-235 chain fission yields.

FPA	Thermal Fission Yield [% per fission]			Fast Fission Yield [% per fission]			14-MeV Fission Yield [% per fission]			
158	0.00194	±	0.00027	0.0065	±	0.0010	0	.0210	±	0.0032
159	0.001061	±	0.000066	0.00317	±	0.00054	0	.0127	±	0.0013
160	0.000310	±	0.000047	0.00102	±	0.00015	0	.0082	±	0.0012
161	0.0000810	±	0.0000066	0.000302	±	0.000026	0	.00505	±	0.00039
162	0.0000272	±	0.0000041	0.000097	±	0.000014	0	.00317	±	0.00047
163	0.0000086	±	0.0000013	0.0000293	±	0.0000044	0	.00186	±	0.00028
164	0.0000026	±	0.0000004	0.0000084	±	0.0000013	0	.00104	±	0.00016

C-1.4. U-238 chain fission yields.

Reference

Table C-1.4. U-238 chain fission yields.

FPA	Fast Fiss	ion	Yield	14-MeV Fission Yield				
117	[% per			[% pe				
1	0.00235	±		0.00130	±			
2	0.00072	±	0.00011	0.000398	±	0.000068		
3	0.0103	±	0.0010	0.0065	±	0.0014		
4	0.1488	±	0.0086	0.0823	±	0.0078		
68	0.0000013	±	0.0000002	0.000282	±	0.000042		
69	0.0000035	±	0.0000005	0.000528	±	0.000079		
70	0.0000094	±	0.0000014	0.00099	±	0.00015		
71	0.0000242	±	0.0000036	0.00175	±	0.00026		
72	0.0000601	±	0.0000090	0.00300	±	0.00042		
73	0.000143	±	0.000021	0.0054	±	0.0010		
74	0.000336	±	0.000049	0.0091	±	0.0014		
75	0.00071	±	0.00011	0.0141	±	0.0022		
76	0.00151	±	0.00023	0.0219	±	0.0034		
77	0.00306	±	0.00050	0.0321	±	0.0031		
78	0.0077	±	0.0012	0.0416	±	0.0050		
79	0.0178	±	0.0027	0.095	±	0.016		
80	0.0405	±	0.0061	0.200	±	0.035		
81	0.080	±	0.013	0.362	±	0.075		
82	0.158	±	0.027	0.55	±	0.13		
83	0.304	±	0.054	0.738	±	0.037		
84	0.617	±	0.098	1.362	±	0.086		
85	0.85	±	0.11	1.052	±	0.066		
86	1.157	±	0.065	1.83	±	0.19		
87	1.699	±	0.069	1.923	±	0.091		
88	2.324	±	0.092	2.23	±	0.16		
89	3.035	±	0.079	2.78	±	0.12		
90	3.11	±	0.14	3.07	±	0.16		
91	4.16	±	0.14	3.635	±	0.084		
92	4.37	±	0.16	3.820	±	0.057		
93	5.38	±	0.26	4.59	±	0.12		
94	4.93	±	0.25	4.67	±	0.61		
95	5.188	±	0.089	4.594	±	0.056		
96	5.95	±	0.38	4.55	±	0.97		
97	5.720	±	0.080	5.206	±	0.046		
98	5.71	±	0.37	4.9	±	1.3		
99	6.181	±	0.099	5.737	±	0.040		
100	6.52	±	0.42	5.4	±	1.1		
101	6.43	±	0.29	5.80	±	0.10		
102	5.9	±	1.4	4.38	±	0.39		
103	6.029	±	0.096	4.495	±	0.085		

Table C-1.4. U-238 chain fission yields.

FPA	Fast Fig			14-MeV F		
	[% pe			[% per		_
104	4.94	±	0.81	3.63	±	0.13
105	3.74	±	0.12	3.109	±	0.047
106	2.52	±	0.11	2.56	±	0.13
107	1.78	±	0.12	1.83	±	0.22
108	0.602	±	0.096	1.67	±	0.41
109	0.159	±	0.011	1.35	±	0.12
110	0.098	±	0.016	1.18	±	0.23
111	0.0644	±	0.0023	0.971	±	0.049
112	0.0455	±	0.0048	1.022	±	0.032
113	0.0315	±	0.0059	0.912	±	0.042
114	0.0347	±	0.0054	0.92	±	0.14
115	0.0381	±	0.0019	0.900	±	0.025
116	0.0316	±	0.0050	0.91	±	0.14
117	0.0279	±	0.0043	0.90	±	0.14
118	0.0249	±	0.0039	0.92	±	0.18
119	0.0230	±	0.0036	0.99	±	0.18
120	0.0212	±	0.0033	1.05	±	0.19
121	0.0200	±	0.0030	1.10	±	0.18
122	0.0191	±	0.0029	1.13	±	0.21
123	0.0194	±	0.0030	1.22	±	0.31
124	0.0205	±	0.0032	1.23	±	0.23
125	0.0210	±	0.0038	1.277	±	0.063
126	0.093	±	0.020	1.38	±	0.25
127	0.1455	±	0.0080	1.436	±	0.020
128	0.294	±	0.070	1.56	±	0.26
129	0.622	±	0.034	1.66	±	0.19
130	1.65	±	0.53	2.97	±	0.83
131	3.321	±	0.083	3.62	±	0.17
132	4.76	±	0.17	4.690	±	0.066
133	6.71	±	0.23	5.74	±	0.17
134	6.83	±	0.61	6.37	±	0.33
135	6.44	±	0.27	5.46	±	0.12
136	7.31	±	0.66	6.33	±	0.56
137	6.02	±	0.15	5.62	±	0.68
138	6.03	±	0.22	4.65	±	0.20
139	5.85	±	0.34	4.99	±	0.21
140	5.972	±	0.084	4.620	±	0.037
141	5.93	±	0.45	4.418	±	0.080
142	4.90	±	0.26	4.20	±	0.11
143	4.68	±	0.11	3.855	±	0.058
144	4.67	±	0.11	3.58	±	0.14
145	3.88	±	0.21	2.99	±	0.15
146	3.57	±	0.18	2.63	±	0.38
147	2.677	±	0.046	2.134	±	0.041
148	2.296	±	0.037	1.37	±	0.15
149	1.683	±	0.067	1.358	±	0.080
150	1.311	±	0.049	0.98	±	0.24
151	0.810	±	0.012	0.800	±	0.057
152	0.557	±	0.032	0.54	±	0.12
153	0.367	±	0.014	0.395	±	0.021
154	0.239	±	0.018	0.262	±	0.048

Table C-1.4. U-238 chain fission yields.

FPA	Fast Fiss				sion Yield	
	[% per	1155	1011]	[70	ssion]	
155	0.127	±	0.021	0.174	±	0.030
156	0.0655	±	0.0017	0.1138	3 <u>±</u>	0.0082
157	0.0342	±	0.0053	0.071	±	0.011
158	0.0173	±	0.0026	0.0435	5 <u>±</u>	0.0068
159	0.00836	±	0.00093	0.0259) <u>±</u>	0.0032
160	0.00330	±	0.00050	0.0147	' ±	0.0022
161	0.001192	±	0.000093	0.0081	3 ±	0.00081
162	0.000548	±	0.000082	0.0054	ŀ3 ±	0.00082
163	0.000242	±	0.000036	0.0034	1 ±	0.00052
164	0.000102	±	0.000015	0.0020)3 ±	0.00030
165	0.0000418	±	0.0000063	0.0011	6 ±	0.00017
166	0.0000163	±	0.0000024	0.0006	30 ±	0.000063
167	0.0000062	±	0.0000009	0.0004	.08 ±	0.000061
168	0.0000022	±	0.000003	0.0002	238 ±	0.000036

JEFF-3.1: Joint Evaluated Fission and Fusion File, Incident neutron data,http://www-nds.iaea.org/exfor/endf00.htm, 2 October 2006; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Table C-1.5. Pu-239 chain fission yields.

FPA	Thermal F			Fast Fission Yield				
	[% per	fiss	-	[% per f	issi	•		
1	0.00408	±	0.00041	0.00346	±	0.00057		
2	0.00135	±	0.00019	0.00106	±	0.00016		
3	0.01420	±	0.00070	0.01420	±	0.00070		
4	0.2192	±	0.0090	0.2190	±	0.0090		
67	0.0000014	±	0.0000002	0.0000043	±	0.0000006		
68	0.0000035	±	0.0000005	0.0000111	±	0.0000017		
69	0.0000088	±	0.0000013	0.0000272	±	0.0000041		
70	0.0000214	±	0.0000032	0.0000656	±	0.0000098		
71	0.0000503	±	0.0000075	0.000153	±	0.000023		
72	0.000114	±	0.000017	0.000344	±	0.000052		
73	0.000289	±	0.000043	0.00075	±	0.00011		
74	0.00070	±	0.00011	0.00160	±	0.00024		
75	0.00162	±	0.00024	0.00325	±	0.00050		
76	0.00360	±	0.00054	0.0065	±	0.0010		
77	0.00768	±	0.00087	0.0125	±	0.0020		
78	0.0291	±	0.0028	0.0235	±	0.0039		
79	0.0550	±	0.0091	0.0429	±	0.0076		
80	0.101	±	0.018	0.077	±	0.015		
81	0.177	±	0.031	0.133	±	0.029		
82	0.232	±	0.041	0.226	±	0.054		
83	0.2820	±	0.0099	0.328	±	0.030		
84	0.478	±	0.020	0.525	±	0.036		
85	0.588	±	0.026	0.622	±	0.049		
86	0.784	±	0.018	0.825	±	0.053		
87	0.973	±	0.042	1.051	±	0.042		
88	1.306	±	0.036	1.447	±	0.097		
89	1.689	±	0.032	1.712	±	0.072		
90	2.013	±	0.054	2.031	±	0.057		
91	2.443	±	0.029	2.58	±	0.10		
92	3.026	±	0.066	3.08	±	0.15		
93	3.91	±	0.13	3.92	±	0.19		
94	4.32	±	0.12	4.25	±	0.20		
95	4.949	±	0.099	4.683	±	0.098		
96	4.94	±	0.15	4.89	±	0.22		
97	5.294	±	0.073	5.021	±	0.074		
98	5.86	±	0.65	5.61	±	0.27		
99	6.185	±	0.056	5.82	±	0.13		
100	6.84	±	1.00	6.61	±	0.34		
101	6.18	±	0.30	6.63	±	0.84		
102	6.08	±	0.51	6.76	±	0.82		

Table C-1.5. Pu-239 chain fission yields.

FPA	Thermo	l Ficci	on Yield	Fast Fission Yield				
ΓFA		r fissio			% per fissi			
103	6.948		0.083	6.59	±			
103	6.08		0.32	6.69	±	0.67		
105	5.76		0.32	5.28	±	0.10		
106	4.190		0.092	4.13	±	0.10		
107	3.18		0.18	3.14	±	0.59		
108	2.06		0.12	2.06	±	0.64		
109	1.67		0.12	1.43	±	0.29		
110	0.625		0.037	0.73	±	0.20		
111	0.3079		0.0074	0.409		0.020		
112	0.1282		0.0077	0.143		0.017		
113	0.0810		0.0041	0.129		0.018		
114	0.0539		0.0028	0.096		0.013		
115	0.0364		0.0019	0.076		0.0059		
116	0.0457		0.0023	0.062		0.0078		
117	0.0458		0.0023	0.055		0.011		
118	0.0457	±	0.0033	0.051	±	0.011		
119	0.0487	±	0.0035	0.054	ł ±	0.010		
120	0.0433	±	0.0064	0.053	30 ±	0.0097		
121	0.0551		0.0088	0.054		0.0098		
122	0.0697		0.0036	0.058		0.011		
123	0.089		0.015	0.069		0.013		
124	0.1283		0.0066	0.092		0.016		
125	0.117		0.015	0.138		0.022		
126	0.314		0.049	0.209		0.044		
127	0.461		0.027	0.53	±	0.14		
128	0.833		0.062	1.00	±	0.34		
129	1.407		0.086	1.31	±	0.13		
130	2.79		0.67	2.87	±	0.76		
131	3.724		0.078	4.09	±	0.12		
132	5.274		0.095	5.18	±	0.33		
133	6.99		0.13	7.03	±	0.33		
134	6.87		0.36	7.52	±	0.26		
135	7.38		0.24	7.54	±	0.23		
136	6.99		0.25	7.31	±	0.74		
137	6.594		0.080	6.36	±	0.12		
138	6.11		0.16	5.82	±	0.30		
139	5.968		0.090	5.53	±	0.28		
140 141	5.333		0.059	5.324 5.01		0.075		
141	5.205		0.073	5.01	±	0.16		
142 143	4.976 4.476		0.055	4.99 4.296	±	0.13 0.056		
143	4.476 3.756		0.049			0.053		
144 145	3.756		0.030 0.033	3.505 3.037		0.053		
145	3.036 2.496		0.033 0.025	3.037 2.527		0.053		
146	2.496		0.025 0.039	2.52 <i>1</i> 1.929		0.046		
147	2.0 44 1.658		0.039 0.017	1.928		0.046		
140	1.056		0.017	1.097		0.056		
150	0.977		0.032 0.013	1.275		0.036		
150	0.977		0.013	0.797		0.019		
151	0.770		0.018	0.797		0.047		
152	0.000		0.016	0.40) <u> </u>	0.18		
100	0.000	_	0.000	0.40	I	0.10		

Table C-1.5. Pu-239 chain fission yields.

FPA	Thermal F	iss	ion Yield	Fast Fission Yield				
	[% per	fiss	ion]		[% per f	issi	on]	
154	0.281	±	0.012		0.267	±	0.049	
155	0.174	±	0.030		0.171	±	0.054	
156	0.1097	±	0.0071		0.1270	±	0.0089	
157	0.0767	±	0.0082		0.1048	±	0.0051	
158	0.0415	±	0.0066		0.054	±	0.011	
159	0.0214	±	0.0020		0.0286	±	0.0052	
160	0.0105	±	0.0016		0.0144	±	0.0024	
161	0.00490	±	0.00046		0.00696	±	0.00067	
162	0.00240	±	0.00036		0.00352	±	0.00054	
163	0.00114	±	0.00017		0.00173	±	0.00026	
164	0.000523	±	0.000078		0.00082	±	0.00012	
165	0.000232	±	0.000035		0.000377	±	0.000057	
166	0.000099	±	0.000015		0.000166	±	0.000025	
167	0.0000412	±	0.0000062		0.000072	±	0.000011	
168	0.0000165	±	0.0000025		0.0000302	±	0.0000045	
169	0.0000064	±	0.0000010		0.0000122	±	0.0000018	
170	0.0000024	±	0.0000004		0.0000048	±	0.0000007	

C-1.6. Pu-241 chain fission yields.

Reference

Table C-1.6. Pu-241 chain fission yields.

FPA Thermal Fission Yield [% per fission] Fast Fission Yield [% per fission] 1 0.00294 ± 0.00048 0.00294 ± 0.00048 2 0.00090 ± 0.00013 0.00090 ± 0.00013 3 0.01410 ± 0.00061 0.01410 ± 0.00061 4 0.1860 ± 0.0071 0.1860 ± 0.0071 67 0.0000014 ± 0.0000004 0.0000034 ± 0.0000010 68 0.0000031 ± 0.000009 0.0000083 ± 0.0000059 70 0.0000138 ± 0.0000041 0.000046 ± 0.000014 71 0.0000277 ± 0.0000083 0.000104 ± 0.000031 72 0.000053 ± 0.000016 0.000228 ± 0.000068 73 0.00006 ± 0.000029 0.00049 ± 0.00015 74 0.000167 ± 0.000050 0.00102 ± 0.00030	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
68 0.0000031 ± 0.0000009 0.0000083 ± 0.0000025 69 0.0000066 ± 0.0000020 0.0000197 ± 0.0000059 70 0.0000138 ± 0.0000041 0.000046 ± 0.000014 71 0.0000277 ± 0.0000083 0.000104 ± 0.000031 72 0.000053 ± 0.000016 0.000228 ± 0.000068 73 0.000096 ± 0.000029 0.00049 ± 0.00015	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
70	
71 0.0000277 ± 0.0000083 0.000104 ± 0.000031 72 0.000053 ± 0.000016 0.000228 ± 0.000068 73 0.000096 ± 0.000029 0.00049 ± 0.00015	
72	
73 0.000096 ± 0.000029 0.00049 ± 0.00015	
74 0.000167 ± 0.000050 0.00102 ± 0.00030	
75 0.000265 ± 0.000080 0.00203 ± 0.00061	
76 0.00039 ± 0.00012 0.0040 ± 0.0012	
77 0.000496 ± 0.000067 0.0076 ± 0.0023	
78 0.0033 ± 0.0010 0.0142 ± 0.0043	
79 0.0102 ± 0.0031 0.0256 ± 0.0078	
80 0.0256 ± 0.0081 0.046 ± 0.014	
81 0.057 ± 0.019 0.077 ± 0.024	
82 0.118 ± 0.042 0.128 ± 0.039	
83 0.205 ± 0.010 0.2002 ± 0.0060	
84 0.379 ± 0.020 0.366 ± 0.011	
85 0.431 ± 0.069 0.401 ± 0.021	
86 0.644 ± 0.040 0.596 ± 0.018	
87 0.792 ± 0.078 0.795 ± 0.022	
88 1.018 ± 0.063 1.017 ± 0.030	
89 1.22 ± 0.13 1.41 ± 0.44	
90 1.510 ± 0.074 1.502 ± 0.041	
91 1.86 ± 0.10 1.896 ± 0.051	
92 2.29 ± 0.12 2.392 ± 0.064	
93 2.95 ± 0.15 3.101 ± 0.078	
94 3.18 ± 0.39 3.306 ± 0.086	
95 3.91 ± 0.15 3.84 ± 0.10	
96 4.23 ± 0.21 4.36 ± 0.12	
97 4.70 ± 0.22 4.69 ± 0.12	
98 4.82 ± 0.29 4.88 ± 0.14	
99 5.61 ± 0.25 4.1 ± 2.3	
100 5.75 \pm 0.49 6.18 \pm 0.17	
101 5.98 ± 0.35 6.34 ± 0.21	
102 6.23 \pm 0.33 6.70 \pm 0.21	

Table C-1.6. Pu-241 chain fission yields.

FPA		al Fission Yield		ssion Yield
		er fission]		r fission]
103	6.54	± 0.32	5.9	± 2.7
104	6.69	± 0.33	7.19	± 0.22
105	6.63	± 0.42	7.3	± 2.0
106	5.95	± 0.70	6.12	± 0.19
107	5.54	± 0.33	5.7	± 2.0
108	4.36	± 0.38	3.9	± 1.3
109	2.97	± 0.43	2.30	± 0.67
110	2.03	± 0.25	1.29	± 0.55
111	0.511	± 0.051	0.83	± 0.26
112	0.190	± 0.025	0.48	± 0.15
113	0.13	± 0.20	0.24	± 0.11
114	0.13	± 0.16	0.133	± 0.063
115	0.12	± 0.11	0.079	± 0.032
116	0.101	± 0.073	0.048	± 0.018
117	0.077	± 0.045	0.029	± 0.010
118	0.057	± 0.029	0.0191	± 0.0063
119	0.047	± 0.022	0.0143	± 0.0046
120	0.058	± 0.018	0.0141	± 0.0044
121	0.091	± 0.019	0.0173	± 0.0054
122	0.104	± 0.023	0.0248	± 0.0079
123	0.134	± 0.031	0.038	± 0.012
124	0.178	± 0.044	0.060	± 0.020
125	0.249	± 0.065	0.092	± 0.020
126	0.362	± 0.089	0.157	± 0.031
127	0.55	± 0.14	0.303	± 0.063
128	0.81	± 0.22	0.57	± 0.11
129	1.28	± 0.36	1.67	± 0.36
130	1.97	± 0.55	2.26	± 0.41
131	3.076	± 0.074	3.164	± 0.085
132	4.529	± 0.095	4.59	± 0.13
133	6.61	± 0.18	6.67	± 0.19
134	7.53	± 0.52	7.73	± 0.21
135	7.02	± 0.24	7.27	± 0.20
136	6.97	± 0.60	7.21	± 0.18
137	6.28	± 0.14	6.37	± 0.18
138	6.42	± 0.23	6.27	± 0.16 ± 0.18
139 140	5.95 5.76	± 0.30	6.16 5.26	
140	5.76 4.90	± 0.11 ± 0.12	5.36	
141			4.63	
142	4.74	± 0.14	4.68 4.59	± 0.13 ± 0.12
143	4.380 4.123	± 0.092 ± 0.095	4.59 4.18	
144				
145 146	3.141 2.657	± 0.091 ± 0.069	3.272 2.740	± 0.085 ± 0.071
146	2.057	± 0.069 ± 0.095	2.740	± 0.071 ± 0.062
148	1.881	± 0.093 ± 0.064	1.945	± 0.002 ± 0.049
149	1.454	± 0.004 ± 0.071	1.452	± 0.049 ± 0.041
150	1.454	± 0.071 ± 0.032	1.432	± 0.041 ± 0.032
151	0.86	± 0.032 ± 0.24	0.910	± 0.032 ± 0.025
151	0.718	± 0.052	0.711	± 0.019
153	0.40	± 0.032 ± 0.23	0.711	± 0.019 ± 0.19
100	0.40	± 0.23	0.40	± 0.19

Table C-1.6. Pu-241 chain fission yields.

FPA	Thermal F	iss	ion Yield	Fast Fission Yield				
	[% per	fiss	ion]	[% per f	issi	on]		
154	0.368	±	0.087	0.372	±	0.010		
155	0.19	±	0.35	0.231	±	0.084		
156	0.18	±	0.24	0.153	±	0.052		
157	0.17	±	0.16	0.098	±	0.032		
158	0.14	±	0.10	0.060	±	0.020		
159	0.112	±	0.058	0.036	±	0.011		
160	0.091	±	0.039	0.0209	±	0.0065		
161	0.067	±	0.024	0.0118	±	0.0036		
162	0.048	±	0.015	0.0064	±	0.0020		
163	0.024	±	0.011	0.0034	±	0.0010		
164	0.0125	±	0.0046	0.00176	±	0.00053		
165	0.0062	±	0.0021	0.00088	±	0.00026		
166	0.00293	±	0.00092	0.00043	±	0.00013		
167	0.00134	±	0.00041	0.000202	±	0.000061		
168	0.00059	±	0.00018	0.000093	±	0.000028		
169	0.000252	±	0.000076	0.000041	±	0.000012		
170	0.000104	±	0.000031	0.0000179	±	0.0000054		
171	0.000042	±	0.000013	0.0000075	±	0.0000023		
172	0.0000163	±	0.0000049	0.0000031	±	0.0000009		
173	0.0000062	±	0.0000019	0.0000012	±	0.0000004		
174	0.0000022	±	0.0000007	0.0	±	0.0		

Table C-2.1. Th-232 independent fission yields for selected fission products.

Fission product			n yields ssion]	14 MeV fission yields [% per fission]			
1- H- 1	0.00161	±	0.00055	0.00232	±	0.00080	
1- H- 2	0.00049	±	0.00017	0.00071	±	0.00024	
1- H- 3	0.0070	±	0.0022	0.0101	±	0.0032	
2-He- 3	0.	±	0.	0.	±	0.	
2-He- 4	0.102	±	0.031	0.147	±	0.045	
35-Br- 85	0.270	±	0.087	0.29	±	0.10	
36-Kr- 82	0.000000013	±	0.000000004	0.000000021	±	0.000000009	
36-Kr- 85	0.00115	±	0.00040	0.00131	±	0.00055	
36-Kr- 85m	0.000231	±	0.000081	0.000165	±	0.000070	
38-Sr- 90	0.00192	±	0.00072	0.0031	±	0.0011	
40-Zr- 95	0.00099	±	0.00036	0.00263	±	0.00096	
41-Nb- 94	1.44E-09	±	0.51E-09	9.9E-09	±	3.5E-09	
41-Nb- 95	0.000000136	±	0.000000049	0.00000066	±	0.00000024	
41-Nb- 95m	0.000000027	±	0.000000010	0.000000082	±	0.000000030	
42-Mo- 92	0.	±	0.	0.	±	0.	
42-Mo- 94	0.	±	0.	0.	±	0.	
42-Mo- 96	1.27E-10	±	0.50E-10	8.2E-10	±	3.0E-10	
42-Mo- 99	0.0000125	±	0.0000044	0.000036	±	0.000013	
43-Tc- 99	3.5E-10	±	1.2E-10	1.90E-09	±	0.67E-09	
44-Ru-103	0.	±	0.	0.	±	0.	
44-Ru-106	0.000000043	±	0.000000016	0.000056	±	0.000021	
45-Rh-106	0.	±	0.	9.6E-10	±	3.5E-10	
50-Sn-121m	0.0000029	±	0.0000011	0.00058	±	0.00021	
51-Sb-122	7.0E-09	±	2.7E-09	0.00000122	±	0.00000045	
51-Sb-124	0.0000028	±	0.0000011	0.000127	±	0.000048	
51-Sb-125	0.000129	±	0.000051	0.0057	±	0.0022	
52-Te-132	0.238	±	0.077	0.78	±	0.20	
53- I-129	0.	±	0.	3.6E-10	±	1.5E-10	
53- I-131	0.000042	±	0.000015	0.00051	±	0.00019	
53- I-133	0.0155	±	0.0057	0.055	±	0.019	
53- I-135	1.13	±	0.30	2.70	±	0.48	
54-Xe-128	0.	±	0.	0.	±	0.	
54-Xe-130	0.	±	0.	9.2E-10	±	3.7E-10	
54-Xe-131m	2.19E-09	±	0.79E-09	0.000000075	±	0.000000028	
54-Xe-133	0.0000074	±	0.0000027	0.000070	±	0.000026	
54-Xe-133m	0.0000207	±	0.0000077	0.00032	±	0.00012	

Table C-2.1. Th-232 independent fission yields for selected fission products.

Fission			n yields	14 MeV fission yields [% per fission]			
product			ssion]				
54-Xe-135	0.0039	±	0.0014	0.0223	±	0.0077	
54-Xe-135m	0.0110	±	0.0040	0.102	±	0.035	
55-Cs-134	0.000000080	±	0.000000030	0.00000254	±	0.00000098	
55-Cs-137	0.0051	±	0.0019	0.077	±	0.027	
56-Ba-140	0.0194	±	0.0072	0.209	±	0.066	
57-La-140	0.0000095	±	0.0000036	0.00049	±	0.00017	
58-Ce-141	0.000000021	±	0.000000008	0.0000032	±	0.0000012	
58-Ce-144	0.00106	±	0.00041	0.0191	±	0.0065	
59-Pr-144	0.00000011	±	0.000000004	0.00000077	±	0.00000027	
60-Nd-142	0.	±	0.	0.	±	0.	
60-Nd-144	0.	±	0.	5.3E-10	±	1.9E-10	
60-Nd-147	0.00000031	±	0.00000012	0.000040	±	0.000014	
61-Pm-147	0.	±	0.	2.67E-09	±	0.94E-09	
61-Pm-148	0.	±	0.	0.000000024	±	0.000000009	
61-Pm-148m	1.83E-10	±	0.74E-10	0.00000108	±	0.000000039	
61-Pm-149	0.00000014	±	0.000000005	0.0000044	±	0.0000016	
61-Pm-151	0.0000076	±	0.0000030	0.00028	±	0.00011	
62-Sm-148	0.	±	0.	0.	±	0.	
62-Sm-150	0.	±	0.	7.2E-09	±	2.7E-09	
62-Sm-151	4.6E-10	±	1.8E-10	0.000000141	±	0.000000056	
62-Sm-153	0.000000141	±	0.000000055	0.0000067	±	0.0000025	
63-Eu-151	0.	±	0.	0.	±	0.	
63-Eu-152	0.	±	0.	5.6E-11	±	2.1E-11	
63-Eu-154	1.75E-10	±	0.69E-10	0.000000096	±	0.000000038	
63-Eu-155	5.2E-09	±	2.1E-09	0.0000055	±	0.0000021	

C-2.2. U-233 independent fission yields for selected fission products.

Reference:

Table C-2.2. U-233 independent fission yields for selected fission products.

Fission	Thermal fission yields		Fast fis	ssion	yields	14 MeV fission yields			
product	[% pe		•	[% p		•	[% pe		•
1- H- 1	0.0033	±	0.0011	0.0033	±	0.0011	0.0031	±	0.0011
1- H- 2	0.00085	±	0.00023	0.00102	±	0.00034	0.00095	±	0.00033
1- H- 3	0.0114	±	0.0023	0.0114	±	0.0035	0.0248	±	0.0097
2-He- 3	0.	±	0.	0.	±	0.	0.	±	0.
2-He- 4	0.211	±	0.012	0.211	±	0.033	0.196	±	0.036
35-Br- 85	0.79	±	0.19	0.72	±	0.18	0.84	±	0.23
36-Kr- 82	0.000037	±	0.000013	0.00000213	±	0.00000081	0.0000036	±	0.0000013
36-Kr- 85	0.073	±	0.025	0.0204	±	0.0072	0.030	±	0.011
36-Kr- 85m	0.0168	±	0.0058	0.0041	±	0.0015	0.0038	±	0.0013
38-Sr- 90	0.29	±	0.10	0.090	±	0.032	0.126	±	0.045
40-Zr- 95	0.261	±	0.087	0.085	±	0.030	0.160	±	0.056
41-Nb- 94	0.0000270	±	0.0000099	0.0000028	±	0.0000010	0.0000117	±	0.0000052
41-Nb- 95	0.00075	±	0.00026	0.000128	±	0.000046	0.00046	±	0.00017
41-Nb- 95m	0.000173	±	0.000061	0.0000257	±	0.0000092	0.000058	±	0.000021
42-Mo- 92	0.	±	0.	0.	±	0.	0.	±	0.
42-Mo- 94	5.4E-09	±	2.0E-09	0.	±	0.	5.7E-10	±	2.6E-10
42-Mo- 96	0.0000097	±	0.0000034	0.00000059	±	0.00000021	0.0000028	±	0.000013
42-Mo- 99	0.0197	±	0.0071	0.0057	±	0.0021	0.0152	±	0.0054
43-Tc- 99	0.0000216	±	0.0000079	0.00000199	±	0.00000072	0.0000108	±	0.000039
44-Ru-103	0.000120	±	0.000044	0.0000227	±	0.0000080	0.000120	±	0.000045
44-Ru-106	0.000188	±	0.000072	0.000026	±	0.000010	0.0092	±	0.0038
45-Rh-106	4.5E-09	±	1.7E-09	0.	±	0.	0.00000185	±	0.0000077
50-Sn-121m	0.00046	±	0.00016	0.00159	±	0.00062	0.112	±	0.038
51-Sb-122	0.0000130	±	0.0000047	0.000033	±	0.000012	0.00228	±	0.00083
51-Sb-124	0.00052	±	0.00019	0.00169	±	0.00062	0.030	±	0.010
51-Sb-125	0.0146	±	0.0053	0.0161	±	0.0059	0.174	±	0.059
52-Te-132	3.29	±	0.38	3.19	±	0.38	2.77	±	0.35
53- I-129	0.000195	±	0.000069	0.000204	±	0.000080	0.00217	±	0.00086
53- I-131	0.036	±	0.013	0.055	±	0.020	0.229	±	0.076
53- I-133	0.66	±	0.19	0.95	±	0.24	1.10	±	0.18
53- I-135	2.96	±	0.48	4.00	±	0.52	2.32	±	0.47
54-Xe-128	1.03E-09	±	0.37E-09	3.5E-10	±	1.7E-10	1.81E-08	±	0.69E-08
54-Xe-130	0.0000044	±	0.0000016	0.00000208	±	0.00000092	0.000035	±	0.000013
54-Xe-131m	0.000092	±	0.000033	0.000074	±	0.000027	0.00082	±	0.00029
54-Xe-133	0.0113	±	0.0041	0.0107	±	0.0038	0.029	±	0.010
54-Xe-133m	0.0273	±	0.0100	0.030	±	0.011	0.135	±	0.046

Table C-2.2. U-233 independent fission yields for selected fission products.

Fission product	Thermal fission yields [% per fission]				yields sion]	14 MeV fission yields [% per fission]			
54-Xe-135	0.343	±	0.091	0.37	±	0.10	0.463	±	0.086
54-Xe-135m	0.83	±	0.22	1.04	±	0.28	2.12	±	0.40
55-Cs-134	0.00066	±	0.00023	0.00084	±	0.00030	0.0057	±	0.0020
55-Cs-137	0.49	±	0.17	0.92	±	0.28	2.14	±	0.46
56-Ba-140	1.50	±	0.40	1.75	±	0.44	3.03	±	0.45
57-La-140	0.0178	±	0.0062	0.029	±	0.010	0.238	±	0.083
58-Ce-141	0.00063	±	0.00022	0.00072	±	0.00026	0.0158	±	0.0057
58-Ce-144	0.283	±	0.094	0.37	±	0.12	0.90	±	0.26
59-Pr-144	0.000107	±	0.000038	0.000171	±	0.000061	0.00162	±	0.00066
60-Nd-142	2.02E-10	±	0.73E-10	0.	±	0.	3.4E-08	±	1.3E-08
60-Nd-144	0.00000069	±	0.00000025	0.00000062	±	0.00000022	0.000059	±	0.000024
60-Nd-147	0.00212	±	0.00078	0.0029	±	0.0011	0.047	±	0.017
61-Pm-147	0.00000098	±	0.00000036	0.00000155	±	0.00000057	0.000180	±	0.000066
61-Pm-148	0.0000048	±	0.0000018	0.0000082	±	0.0000030	0.00037	±	0.00015
61-Pm- 148m	0.0000112	±	0.0000043	0.0000222	±	0.0000083	0.00167	±	0.00069
61-Pm-149	0.000188	±	0.000070	0.00039	±	0.00014	0.0156	±	0.0064
61-Pm-151	0.0048	±	0.0021	0.0118	±	0.0041	0.147	±	0.050
62-Sm-148	3.2E-09	±	1.2E-09	2.8E-09	±	1.0E-09	0.00000152	±	0.00000063
62-Sm-150	0.00000242	±	0.00000088	0.0000032	±	0.0000011	0.00056	±	0.00024
62-Sm-151	0.000030	±	0.000011	0.000043	±	0.000016	0.0043	±	0.0018
62-Sm-153	0.00021	±	0.00013	0.00046	±	0.00019	0.0047	±	0.0016
63-Eu-151	4.3E-09	±	1.6E-09	6.5E-09	±	2.4E-09	0.0000058	±	0.0000025
63-Eu-152	3.2E-08	±	1.3E-08	6.6E-08	±	2.4E-08	0.0000179	±	0.0000071
63-Eu-154	0.0000041	±	0.0000016	0.0000147	±	0.0000057	0.00071	±	0.00028
63-Eu-155	0.000048	±	0.000020	0.000185	±	0.000073	0.0072	±	0.0027

C-2.3. U-235 independent fission yields for selected fission products.

Reference:

Table C-2.3. U-235 independent fission yields for selected fission products.

Fission product			ion yields ssion]			n yields ssion]		14 MeV fission yields [% per fission]		
1- H- 1	0.00171	±	0.00029	0.00269	±	0.00092	0.00264	±	0.00091	
1- H- 2	0.00084	±	0.00024	0.00082	±	0.00027	0.00081	±	0.00027	
1- H- 3	0.01080	±	0.00059	0.0108	±	0.0015	0.0174	±	0.0062	
2-He- 3	0.	±	0.	0.	±	0.	0.	±	0.	
2-He- 4	0.1700	±	0.0081	0.170	±	0.018	0.167	±	0.014	
35-Br- 85	0.219	±	0.071	0.304	±	0.091	1.04	±	0.22	
36-Kr- 82	0.000000217	±	0.000000075	0.00000108	±	0.00000033	0.00070	±	0.00026	
36-Kr- 85	0.0049	±	0.0018	0.0037	±	0.0013	0.109	±	0.041	
36-Kr- 85m	0.00112	±	0.00042	0.00074	±	0.00026	0.0137	±	0.0052	
38-Sr- 90	0.031	±	0.012	0.0125	±	0.0046	0.211	±	0.074	
40-Zr- 95	0.035	±	0.013	0.0093	±	0.0034	0.088	±	0.031	
41-Nb- 94	0.000000248	±	0.000000092	1.82E-08	±	0.65E-08	0.000030	±	0.000012	
41-Nb- 95	0.0000175	±	0.0000065	0.00000183	±	0.00000067	0.00056	±	0.00020	
41-Nb- 95m	0.0000041	±	0.0000015	0.00000037	±	0.00000013	0.000071	±	0.000025	
42-Mo- 92	0.	±	0.	0.	±	0.	0.	±	0.	
42-Mo- 94	0.	±	0.	0.	±	0.	1.01E-08	±	0.41E-08	
42-Mo- 96	6.9E-08	±	2.5E-08	1.66E-09	±	0.59E-09	0.0000047	±	0.0000019	
42-Mo- 99	0.00180	±	0.00066	0.000188	±	0.000068	0.0044	±	0.0015	
43-Tc- 99	0.00000029	±	0.00000011	5.3E-09	±	1.9E-09	0.0000046	±	0.0000016	
44-Ru-103	0.0000099	±	0.0000036	0.000000236	±	0.000000084	0.0000080	±	0.0000027	
44-Ru-106	0.0000028	±	0.0000011	0.0000035	±	0.0000013	0.0151	±	0.0052	
45-Rh-106	0.	±	0.	0.	±	0.	0.0000093	±	0.0000032	
50-Sn-121m	0.0000189	±	0.0000069	0.000041	±	0.000017	0.036	±	0.013	
51-Sb-122	0.000000172	±	0.000000063	0.00000173	±	0.000000070	0.00058	±	0.00023	
51-Sb-124	0.000038	±	0.000014	0.000044	±	0.000018	0.0076	±	0.0030	
51-Sb-125	0.00072	±	0.00026	0.00172	±	0.00067	0.174	±	0.062	
52-Te-132	1.61	±	0.37	2.15	±	0.42	3.05	±	0.35	
53- I-129	0.	±	0.	0.0000027	±	0.0000013	0.0057	±	0.0022	
53- I-131	0.00136	±	0.00047	0.0044	±	0.0017	0.268	±	0.092	
53- I-133	0.153	±	0.053	0.33	±	0.11	0.95	±	0.20	
53- I-135	2.55	±	0.54	3.79	±	0.55	3.99	±	0.60	
54-Xe-128	0.	±	0.	0.	±	0.	0.00000191	±	0.00000075	
54-Xe-130	4.8E-09	±	1.6E-09	9.3E-09	±	3.5E-09	0.00030	±	0.00011	
54-Xe-131m	0.00000036	±	0.00000012	0.00000074	±	0.00000028	0.00237	±	0.00087	

Table C-2.3. U-235 independent fission yields for selected fission products.

Fission	Thermal	fiss	ion yields	Fast fi	ssio	n yields	14 MeV fission yields		
product	[% pe	er fi	ssion]	[% p	er fi	ssion]	[% p	er f	ission]
54-Xe-133	0.00044	±	0.00016	0.00071	±	0.00026	0.0277	±	0.0096
54-Xe-133m	0.00106	±	0.00038	0.00198	±	0.00072	0.127	±	0.044
54-Xe-135	0.069	±	0.024	0.084	±	0.030	0.301	±	0.078
54-Xe-135m	0.167	±	0.057	0.236	±	0.083	1.38	±	0.36
55-Cs-134	0.0000070	±	0.0000026	0.0000148	±	0.0000054	0.0051	±	0.0018
55-Cs-137	0.072	±	0.026	0.122	±	0.044	1.14	±	0.32
56-Ba-140	0.29	±	0.10	0.278	±	0.097	1.22	±	0.32
57-La-140	0.00052	±	0.00019	0.00057	±	0.00021	0.034	±	0.012
58-Ce-141	0.0000056	±	0.0000020	0.00000219	±	0.00000080	0.00123	±	0.00044
58-Ce-144	0.035	±	0.013	0.0219	±	0.0081	0.180	±	0.057
59-Pr-144	0.00000168	±	0.00000063	0.00000072	±	0.00000027	0.000070	±	0.000025
60-Nd-142	0.	±	0.	0.	±	0.	3.0E-09	±	1.1E-09
60-Nd-144	1.08E-09	±	0.41E-09	0.	±	0.	0.00000165	±	0.00000058
60-Nd-147	0.000074	±	0.000026	0.0000168	±	0.0000062	0.00108	±	0.00039
61-Pm-147	3.5E-09	±	1.2E-09	3.1E-10	±	1.1E-10	0.00000145	±	0.00000052
61-Pm-148	4.4E-08	±	1.7E-08	6.5E-09	±	2.4E-09	0.00000106	±	0.00000040
61-Pm-148m	0.000000104	±	0.00000039	1.78E-08	±	0.66E-08	0.0000048	±	0.0000018
61-Pm-149	0.0000047	±	0.0000017	0.00000100	±	0.00000038	0.000088	±	0.000034
61-Pm-151	0.00067	±	0.00025	0.00025	±	0.00010	0.0029	±	0.0011
62-Sm-148	0.	±	0.	0.	±	0.	1.98E-09	±	0.75E-09
62-Sm-150	1.64E-08	±	0.60E-08	8.3E-10	±	3.1E-10	0.00000091	±	0.00000035
62-Sm-151	0.00000052	±	0.0000019	3.7E-08	±	1.5E-08	0.0000078	±	0.0000031
62-Sm-153	0.0000221	±	0.0000095	0.0000043	±	0.0000016	0.000058	±	0.000021
63-Eu-151	0.	±	0.	0.	±	0.	2.6E-09	±	1.0E-09
63-Eu-152	1.53E-10	±	0.57E-10	0.	±	0.	1.0E-08	±	0.4E-08
63-Eu-154	0.00000103	±	0.000000047	1.91E-08	±	0.71E-08	0.00000113	±	0.00000045
63-Eu-155	0.0000029	±	0.0000011	0.00000062	±	0.00000026	0.000026	±	0.000010

Table C-2.4. U-238 independent fission yields for selected fission products.

Fission	Fast fis	14 MeV fission yields				
product			ssion]			ssion]
1- H- 1	0.00235	±	0.00081	0.00130	±	0.00046
1- H- 2	0.00072	±	0.00024	0.00040	±	0.00014
1- H- 3	0.0103	±	0.0032	0.0065	±	0.0025
2-He- 3	0.	±	0.	0.	±	0.
2-He- 4	0.149	±	0.045	0.082	±	0.011
35-Br- 85	0.046	±	0.016	0.077	±	0.028
36-Kr- 82	1.14E-09	±	0.44E-09	6.5E-09	±	2.3E-09
36-Kr- 85	0.000185	±	0.000066	0.00047	±	0.00017
36-Kr- 85m	0.000037	±	0.000013	0.000060	±	0.000021
38-Sr- 90	0.00078	±	0.00029	0.00288	±	0.00099
40-Zr- 95	0.00094	±	0.00034	0.0053	±	0.0019
41-Nb- 94	1.18E-09	±	0.43E-09	2.51E-08	±	0.93E-08
41-Nb- 95	0.000000132	±	0.000000048	0.00000196	±	0.00000069
41-Nb- 95m	2.66E-08	±	0.96E-08	0.000000247	±	0.00000087
42-Mo- 92	0.	±	0.	0.	±	0.
42-Mo- 94	0.	±	0.	0.	±	0.
42-Mo- 96	1.50E-10	±	0.57E-10	3.2E-09	±	1.4E-09
42-Mo- 99	0.0000260	±	0.0000094	0.000256	±	0.000092
43-Tc- 99	7.3E-10	±	2.6E-10	2.01E-08	±	0.73E-08
44-Ru-103	7.0E-08	±	2.5E-08	0.00000072	±	0.00000026
44-Ru-106	0.00197	±	0.00076	0.000221	±	0.000087
45-Rh-106	0.000000182	±	0.000000070	9.3E-11	±	3.7E-11
50-Sn-121m	0.00000027	±	0.00000010	0.00059	±	0.00022
51-Sb-122	4.1E-10	±	1.6E-10	0.00000085	±	0.0000032
51-Sb-124	0.00000027	±	0.0000010	0.000075	±	0.000027
51-Sb-125	0.0000161	±	0.0000065	0.0036	±	0.0013
52-Te-132	0.34	±	0.11	0.90	±	0.28
53- I-129	1.33E-10	±	0.50E-10	3.5E-10	±	1.3E-10
53- I-131	0.000051	±	0.000017	0.00057	±	0.00020
53- I-133	0.0170	±	0.0060	0.068	±	0.025
53- I-135	1.12	±	0.32	1.99	±	0.48
54-Xe-128	0.	±	0.	0.	±	0.
54-Xe-130	0.	±	0.	6.9E-10	±	2.2E-10
54-Xe-131m	2.03E-09	±	0.68E-09	7.2E-08	±	2.5E-08
54-Xe-133	0.0000067	±	0.0000024	0.000089	±	0.000032

Table C-2.4. U-238 independent fission yields for selected fission products.

Fission	Fast fis	ssior	n yields	14 MeV fission yields			
product	[% p	er fis	ssion]	[% pe	er fis	ssion]	
54-Xe-133m	0.0000188	±	0.0000067	0.00041	±	0.00015	
54-Xe-135	0.0038	±	0.0014	0.0256	±	0.0095	
54-Xe-135m	0.0106	±	0.0038	0.117	±	0.044	
55-Cs-134	6.0E-08	±	2.1E-08	0.0000033	±	0.0000012	
55-Cs-137	0.0044	±	0.0016	0.083	±	0.030	
56-Ba-140	0.0142	±	0.0052	0.192	±	0.076	
57-La-140	0.0000068	±	0.0000025	0.00072	±	0.00027	
58-Ce-141	1.58E-08	±	0.55E-08	0.000058	±	0.0000021	
58-Ce-144	0.00066	±	0.00024	0.028	±	0.011	
59-Pr-144	6.9E-09	±	2.5E-09	0.00000168	±	0.00000065	
60-Nd-142	0.	±	0.	0.	±	0.	
60-Nd-144	0.	±	0.	1.70E-09	±	0.66E-09	
60-Nd-147	0.00000032	±	0.00000012	0.000132	±	0.000048	
61-Pm-147	0.	±	0.	1.39E-08	±	0.51E-08	
61-Pm-148	1.0E-10	±	0.4E-10	0.00000105	±	0.000000039	
61-Pm-148m	2.72E-10	±	0.99E-10	0.00000048	±	0.0000018	
61-Pm-149	2.53E-08	±	0.92E-08	0.0000237	±	0.0000087	
61-Pm-151	0.0000182	±	0.0000067	0.0035	±	0.0013	
62-Sm-148	0.	±	0.	0.	±	0.	
62-Sm-150	0.	±	0.	9.2E-08	±	3.9E-08	
62-Sm-151	1.19E-09	±	0.44E-09	0.0000031	±	0.0000012	
62-Sm-153	0.00000033	±	0.00000012	0.000094	±	0.000035	
63-Eu-151	0.	±	0.	1.04E-10	±	0.39E-10	
63-Eu-152	0.	±	0.	1.60E-09	±	0.66E-09	
63-Eu-154	9.1E-10	±	3.3E-10	0.00000150	±	0.00000061	
63-Eu-155	5.6E-08	±	2.2E-08	0.000063	±	0.000025	

Table C-2.5. Pu-239 independent fission yields for selected fission products.

Fission			ion yields	Fast fission yields			
product		er fi	ssion]		er fis	ssion]	
1- H- 1	0.00408	±	0.00071	0.0035	±	0.0012	
1- H- 2	0.00135	±	0.00029	0.00106	±	0.00035	
1- H- 3	0.0142	±	0.0011	0.0142	±	0.0033	
2-He- 3	0.	±	0.	0.	±	0.	
2-He- 4	0.219	±	0.012	0.219	±	0.025	
35-Br- 85	0.209	±	0.051	0.171	±	0.051	
36-Kr- 82	0.0000050	±	0.0000019	0.00000046	±	0.00000016	
36-Kr- 85	0.0117	±	0.0042	0.0048	±	0.0017	
36-Kr- 85m	0.00270	±	0.00098	0.00096	±	0.00034	
38-Sr- 90	0.057	±	0.021	0.0240	±	0.0088	
40-Zr- 95	0.133	±	0.048	0.058	±	0.021	
41-Nb- 94	0.0000099	±	0.0000036	0.00000160	±	0.0000058	
41-Nb- 95	0.00036	±	0.00013	0.000085	±	0.000031	
41-Nb- 95m	0.000084	±	0.000031	0.0000170	±	0.0000062	
42-Mo- 92	0.	±	0.	0.	±	0.	
42-Mo- 94	1.52E-09	±	0.56E-09	0.	±	0.	
42-Mo- 96	0.0000048	±	0.0000017	0.00000050	±	0.0000018	
42-Mo- 99	0.0191	±	0.0069	0.0064	±	0.0023	
43-Tc- 99	0.0000133	±	0.0000048	0.00000216	±	0.0000077	
44-Ru-103	0.00035	±	0.00013	0.000083	±	0.000030	
44-Ru-106	0.30	±	0.10	0.187	±	0.072	
45-Rh-106	0.00082	±	0.00030	0.000255	±	0.000096	
50-Sn-121m	0.00047	±	0.00018	0.00044	±	0.00017	
51-Sb-122	0.0000112	±	0.0000041	0.0000066	±	0.0000025	
51-Sb-124	0.00097	±	0.00035	0.00060	±	0.00022	
51-Sb-125	0.0125	±	0.0044	0.0155	±	0.0055	
52-Te-132	2.94	±	0.45	3.00	±	0.46	
53- I-129	0.000065	±	0.000023	0.000074	±	0.000025	
53- I-131	0.0234	±	0.0081	0.037	±	0.013	
53- I-133	0.64	±	0.20	0.87	±	0.26	
53- I-135	4.19	±	0.62	4.96	±	0.61	
54-Xe-128	1.64E-10	±	0.58E-10	0.	±	0.	
54-Xe-130	0.00000116	±	0.0000036	0.00000099	±	0.0000033	
54-Xe-131m	0.000032	±	0.000011	0.000036	±	0.000013	
54-Xe-133	0.0071	±	0.0026	0.0085	±	0.0031	
54-Xe-133m	0.0172	±	0.0063	0.0238	±	0.0086	

Table C-2.5. Pu-239 independent fission yields for selected fission products.

Fission	Thermal	fiss	ion yields	Fast fission yields			
product	[% pe	er fis	ssion]	[% pe	er fis	ssion]	
54-Xe-135	0.306	±	0.097	0.34	±	0.11	
54-Xe-135m	0.74	±	0.24	0.94	±	0.30	
55-Cs-134	0.00039	±	0.00014	0.00061	±	0.00022	
55-Cs-137	0.46	±	0.16	0.69	±	0.25	
56-Ba-140	0.88	±	0.28	1.11	±	0.35	
57-La-140	0.0113	±	0.0040	0.0209	±	0.0075	
58-Ce-141	0.00029	±	0.00011	0.00044	±	0.00016	
58-Ce-144	0.163	±	0.060	0.243	±	0.088	
59-Pr-144	0.000064	±	0.000024	0.000114	±	0.000041	
60-Nd-142	0.	±	0.	0.	±	0.	
60-Nd-144	0.000000261	±	0.000000096	0.00000038	±	0.0000014	
60-Nd-147	0.00174	±	0.00063	0.0030	±	0.0011	
61-Pm-147	0.00000077	±	0.00000028	0.00000155	±	0.00000057	
61-Pm-148	0.0000050	±	0.0000019	0.0000105	±	0.0000040	
61-Pm-148m	0.0000118	±	0.0000044	0.000029	±	0.000011	
61-Pm-149	0.000272	±	0.000098	0.00066	±	0.00024	
61-Pm-151	0.0140	±	0.0048	0.028	±	0.011	
62-Sm-148	2.18E-09	±	0.81E-09	3.5E-09	±	1.3E-09	
62-Sm-150	0.0000032	±	0.0000011	0.0000066	±	0.0000024	
62-Sm-151	0.000053	±	0.000019	0.000110	±	0.000041	
62-Sm-153	0.00087	±	0.00031	0.00150	±	0.00077	
63-Eu-151	7.3E-09	±	2.6E-09	1.67E-08	±	0.62E-08	
63-Eu-152	9.2E-08	±	3.3E-08	0.000000208	±	0.000000081	
63-Eu-154	0.0000258	±	0.0000092	0.000061	±	0.000024	
63-Eu-155	0.00037	±	0.00014	0.00094	±	0.00042	

Table C-2.6. Pu-241 independent fission yields for selected fission products.

Fission Thermal fission yields Fast fission yields									
product			ssion]	[% per fission]					
1- H- 1	0.0029	±	0.0010	0.0029	±	0.0010			
1- H- 2	0.00090	±	0.00030	0.00090	±	0.00030			
1- H- 3	0.0141	±	0.0021	0.0141	±	0.0043			
2-He- 3	0.	±	0.	0.	±	0.			
2-He- 4	0.186	±	0.020	0.186	±	0.056			
35-Br- 85	0.069	±	0.028	0.066	±	0.021			
36-Kr- 82	8.0E-08	±	3.4E-08	2.6E-08	±	1.2E-08			
36-Kr- 85	0.00152	±	0.00062	0.00078	±	0.00028			
36-Kr- 85m	0.00035	±	0.00014	0.000157	±	0.000057			
38-Sr- 90	0.0082	±	0.0031	0.0043	±	0.0016			
40-Zr- 95	0.0200	±	0.0075	0.0108	±	0.0039			
41-Nb- 94	0.000000177	±	0.000000068	8.0E-08	±	2.8E-08			
41-Nb- 95	0.0000130	±	0.0000049	0.0000062	±	0.0000023			
41-Nb- 95m	0.0000030	±	0.0000011	0.00000125	±	0.00000045			
42-Mo- 92	0.	±	0.	0.	±	0.			
42-Mo- 94	0.	±	0.	0.	±	0.			
42-Mo- 96	6.1E-08	±	2.4E-08	2.00E-08	±	0.75E-08			
42-Mo- 99	0.00177	±	0.00064	0.00059	±	0.00031			
43-Tc- 99	0.000000252	±	0.000000092	7.5E-08	±	4.0E-08			
44-Ru-103	0.0000165	±	0.0000061	0.0000058	±	0.0000029			
44-Ru-106	0.105	±	0.043	0.071	±	0.027			
45-Rh-106	0.000073	±	0.000030	0.000033	±	0.000012			
50-Sn-121m	0.0000103	±	0.0000043	0.0000026	±	0.0000012			
51-Sb-122	0.00000188	±	0.000000079	5.7E-08	±	2.6E-08			
51-Sb-124	0.000073	±	0.000031	0.000027	±	0.000012			
51-Sb-125	0.0032	±	0.0014	0.00136	±	0.00055			
52-Te-132	1.16	±	0.34	1.39	±	0.39			
53- I-129	2.3E-10	±	1.1E-10	3.8E-10	±	1.4E-10			
53- I-131	0.00092	±	0.00033	0.00255	±	0.00090			
53- I-133	0.130	±	0.046	0.227	±	0.081			
53- I-135	2.41	±	0.60	3.36	±	0.65			
54-Xe-128	0.	±	0.	0.	±	0.			
54-Xe-130	1.90E-09	±	0.87E-09	1.0E-08	±	0.4E-08			
54-Xe-131m	0.000000166	±	0.000000060	0.00000063	±	0.00000022			
54-Xe-133	0.000262	±	0.000094	0.00059	±	0.00021			

Table C-2.6. Pu-241 independent fission yields for selected fission products.

Fission Thermal fission yields Fast fission yields								
product			ssion]			ssion]		
54-Xe-133m	0.00063	±	0.00023	0.00166	±	0.00059		
54-Xe-135	0.051	±	0.019	0.081	±	0.030		
54-Xe-135m	0.124	±	0.046	0.227	±	0.083		
55-Cs-134	0.0000053	±	0.0000020	0.0000203	±	0.0000076		
55-Cs-137	0.065	±	0.024	0.141	±	0.052		
56-Ba-140	0.178	±	0.068	0.29	±	0.11		
57-La-140	0.00038	±	0.00014	0.00126	±	0.00046		
58-Ce-141	0.00000275	±	0.00000099	0.0000098	±	0.0000038		
58-Ce-144	0.0174	±	0.0067	0.039	±	0.015		
59-Pr-144	0.00000098	±	0.0000038	0.0000040	±	0.0000015		
60-Nd-142	0.	±	0.	0.	±	0.		
60-Nd-144	4.4E-10	±	1.7E-10	2.9E-09	±	1.1E-09		
60-Nd-147	0.000043	±	0.000016	0.000141	±	0.000051		
61-Pm-147	2.23E-09	±	0.83E-09	1.50E-08	±	0.55E-08		
61-Pm-148	3.8E-08	±	1.4E-08	0.000000195	±	0.000000071		
61-Pm-148m	8.9E-08	±	3.2E-08	0.0000053	±	0.0000019		
61-Pm-149	0.0000045	±	0.000018	0.0000215	±	0.0000079		
61-Pm-151	0.00102	±	0.00048	0.0033	±	0.0012		
62-Sm-148	0.	±	0.	0.	±	0.		
62-Sm-150	1.42E-08	±	0.56E-08	8.6E-08	±	3.1E-08		
62-Sm-151	0.00000055	±	0.00000026	0.00000257	±	0.00000094		
62-Sm-153	0.000045	±	0.000023	0.000122	±	0.000062		
63-Eu-151	0.	±	0.	0.	±	0.		
63-Eu-152	2.9E-10	±	1.1E-10	1.89E-09	±	0.68E-09		
63-Eu-154	0.00000047	±	0.00000020	0.00000203	±	0.00000075		
63-Eu-155	0.000013	±	0.000012	0.000059	±	0.000029		

JEFF-3.1: Joint Evaluated Fission and Fusion File, incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 6 May 2008; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Table C-3.1. Th-232 cumulative fission yields for selected fission products.

Fission	Fast fi	ssior	n yields	14 MeV fission yields			
product			ssion]		[% per fission]		
1- H- 1	0.00161	±	0.00027	0.00232	±	0.00039	
1- H- 2	0.000491	±	0.000076	0.00071	±	0.00011	
1- H- 3	0.00701	±	0.00069	0.0101	±	0.0010	
2-He- 3	0.00701	±	0.00069	0.0101	±	0.0010	
2-He- 4	0.1016	±	0.0059	0.1467	±	0.0085	
35-Br- 85	4.29	±	0.24	4.01	±	0.69	
36-Kr- 82	0.000088	±	0.000034	0.000144	±	0.000085	
36-Kr- 85	0.924	±	0.096	0.86	±	0.18	
36-Kr- 85m	4.28	±	0.24	4.00	±	0.69	
38-Sr- 90	7.32	±	0.36	6.2	±	1.5	
40-Zr- 95	5.52	±	0.17	4.82	±	0.49	
41-Nb- 94	2.30E-09	±	0.61E-09	1.33E-08	±	0.46E-08	
41-Nb- 95	5.52	±	0.17	4.82	±	0.49	
41-Nb- 95m	0.0597	±	0.0076	0.0521	±	0.0085	
42-Mo- 92	0.	±	0.	0.	±	0.	
42-Mo- 94	0.	±	0.	0.	±	0.	
42-Mo- 96	0.0000060	±	0.0000024	0.0000220	±	0.0000087	
42-Mo- 99	2.919	±	0.076	1.953	±	0.098	
43-Tc- 99	2.919	±	0.076	1.953	±	0.098	
44-Ru-103	0.1538	±	0.0095	0.884	±	0.064	
44-Ru-106	0.0541	±	0.0031	1.101	±	0.083	
45-Rh-106	0.0541	±	0.0031	1.101	±	0.083	
50-Sn-121m	0.00432	±	0.00091	0.080	±	0.011	
51-Sb-122	1.64E-08	±	0.52E-08	0.0000040	±	0.000014	
51-Sb-124	0.0000073	±	0.0000020	0.00046	±	0.00014	
51-Sb-125	0.0560	±	0.0084	1.04	±	0.18	
52-Te-132	2.60	±	0.10	2.98	±	0.15	
53- I-129	0.431	±	0.089	1.68	±	0.33	
53- I-131	1.513	±	0.083	2.31	±	0.14	
53- I-133	4.53	±	0.19	4.12	±	0.21	
53- I-135	5.45	±	0.26	5.08	±	0.35	
54-Xe-128	0.	±	0.	2.5E-10	±	1.1E-10	
54-Xe-130	1.56E-10	±	0.56E-10	0.0000161	±	0.0000067	
54-Xe-131m	0.0164	±	0.0020	0.0250	±	0.0032	
54-Xe-133	4.53	±	0.19	4.12	±	0.21	

Table C-3.1. Th-232 cumulative fission yields for selected fission products.

Fission			n yields	14 MeV fission yields			
product		er fis	ssion]		er fis	ssion]	
54-Xe-133m	0.129	±	0.013	0.117	±	0.013	
54-Xe-135	5.46	±	0.26	5.19	±	0.36	
54-Xe-135m	0.911	±	0.095	0.94	±	0.12	
55-Cs-134	0.000000150	±	0.000000041	0.0000066	±	0.0000019	
55-Cs-137	6.30	±	0.30	6.29	±	0.99	
56-Ba-140	7.71	±	0.25	5.69	±	0.20	
57-La-140	7.71	±	0.25	5.69	±	0.20	
58-Ce-141	7.11	±	0.28	5.72	±	0.38	
58-Ce-144	7.66	±	0.55	3.90	±	0.78	
59-Pr-144	7.66	±	0.55	3.90	±	0.78	
60-Nd-142	0.	±	0.	5.1E-09	±	1.6E-09	
60-Nd-144	7.66	±	0.55	3.90	±	0.78	
60-Nd-147	3.03	±	0.18	1.79	±	0.11	
61-Pm-147	3.03	±	0.18	1.79	±	0.11	
61-Pm-148	0.	±	0.	2.9E-08	±	1.2E-08	
61-Pm-148m	1.83E-10	±	0.76E-10	0.00000108	±	0.00000048	
61-Pm-149	1.11	±	0.16	0.93	±	0.30	
61-Pm-151	0.399	±	0.065	0.165	±	0.035	
62-Sm-148	2.50E-10	±	0.79E-10	0.000000132	±	0.000000051	
62-Sm-150	0.00000044	±	0.00000032	0.000042	±	0.000018	
62-Sm-151	0.399	±	0.065	0.165	±	0.035	
62-Sm-153	0.202	±	0.027	0.0858	±	0.0070	
63-Eu-151	0.399	±	0.065	0.165	±	0.035	
63-Eu-152	0.	±	0.	1.84E-10	±	0.61E-10	
63-Eu-154	3.6E-10	±	1.2E-10	0.000000279	±	0.00000093	
63-Eu-155	0.0158	±	0.0025	0.0552	±	0.0086	

C-3.2. U-233 cumulative fission yields for selected fission products.

Reference:

Table C-3.2. U-233 cumulative fission yields for selected fission products.

Fission product	Thermal fission yields [% per fission]				n yields ssion]	14 MeV fission yields [% per fission]			
1- H- 1	0.00334	±	0.00055	0.00334	±	0.00055	0.00310	±	0.00059
1- H- 2	0.00085	±	0.00013	0.00102	±	0.00015	0.00095	±	0.00017
1- H- 3	0.01140	±	0.00050	0.01140	±	0.00050	0.0248	±	0.0056
2-He- 3	0.01140	±	0.00050	0.01140	±	0.00050	0.0248	±	0.0056
2-He- 4	0.2111	±	0.0080	0.2110	±	0.0080	0.196	±	0.021
35-Br- 85	2.076	±	0.030	2.08	±	0.10	2.36	±	0.52
36-Kr- 82	0.0070	±	0.0018	0.00216	±	0.00073	0.0036	±	0.0013
36-Kr- 85	0.523	±	0.048	0.468	±	0.051	0.54	±	0.13
36-Kr- 85m	2.089	±	0.029	2.08	±	0.10	2.35	±	0.52
38-Sr- 90	6.647	±	0.073	6.39	±	0.33	5.07	±	0.80
40-Zr- 95	6.385	±	0.058	6.28	±	0.18	5.05	±	0.28
41-Nb- 94	0.000046	±	0.000012	0.0000045	±	0.0000012	0.0000157	±	0.0000073
41-Nb- 95	6.382	±	0.057	6.28	±	0.18	5.05	±	0.28
41-Nb- 95m	0.0692	±	0.0082	0.0679	±	0.0084	0.0546	±	0.0077
42-Mo- 92	0.	±	0.	0.	±	0.	0.	±	0.
42-Mo- 94	0.000000101	±	0.000000035	8.4E-09	±	3.2E-09	2.1E-08	±	1.1E-08
42-Mo- 96	0.0083	±	0.0029	0.00216	±	0.00079	0.0055	±	0.0034
42-Mo- 99	5.03	±	0.14	4.85	±	0.17	3.87	±	0.22
43-Tc- 99	5.03	±	0.14	4.85	±	0.17	3.87	±	0.22
44-Ru-103	1.458	±	0.058	1.58	±	0.16	2.72	±	0.13
44-Ru-106	0.2505	±	0.0078	0.291	±	0.029	1.46	±	0.26
45-Rh-106	0.2505	±	0.0078	0.291	±	0.029	1.46	±	0.26
50-Sn-121m	0.00207	±	0.00028	0.0087	±	0.0019	0.217	±	0.056
51-Sb-122	0.0000276	±	0.0000073	0.000077	±	0.000022	0.0075	±	0.0026
51-Sb-124	0.00123	±	0.00026	0.0044	±	0.0010	0.109	±	0.030
51-Sb-125	0.116	±	0.014	0.149	±	0.011	1.515	±	0.095
52-Te-132	4.59	±	0.14	4.38	±	0.12	3.23	±	0.32
53- I-129	1.63	±	0.26	1.73	±	0.24	3.01	±	0.43
53- I-131	3.565	±	0.100	3.86	±	0.13	4.47	±	0.94
53- I-133	5.94	±	0.17	5.66	±	0.17	4.40	±	0.48
53- I-135	4.31	±	0.32	4.84	±	0.25	2.47	±	0.40
54-Xe-128	0.0000064	±	0.0000025	0.0000065	±	0.0000043	0.000135	±	0.000056
54-Xe-130	0.00325	±	0.00100	0.0034	±	0.0014	0.0246	±	0.0085
54-Xe-131m	0.0388	±	0.0040	0.0420	±	0.0044	0.049	±	0.012
54-Xe-133	5.98	±	0.17	5.70	±	0.17	4.56	±	0.49
54-Xe-133m	0.197	±	0.016	0.191	±	0.017	0.260	±	0.053

Table C-3.2. U-233 cumulative fission yields for selected fission products.

Fission	,			Fast fission yields			14 MeV fission yields		
product		[% per fission]			er fis	ssion]	[% p	er fis	ssion]
54-Xe-135	5.47	±	0.37	6.25	±	0.27	5.04	±	0.64
54-Xe-135m	1.54	±	0.20	1.84	±	0.23	2.53	±	0.38
55-Cs-134	0.00114	±	0.00029	0.00158	±	0.00041	0.0147	±	0.0040
55-Cs-137	6.20	±	0.22	6.50	±	0.31	4.95	±	0.43
56-Ba-140	6.43	±	0.26	6.17	±	0.20	4.47	±	0.32
57-La-140	6.45	±	0.26	6.20	±	0.20	4.71	±	0.33
58-Ce-141	6.218	±	0.081	6.49	±	0.23	4.49	±	0.17
58-Ce-144	4.654	±	0.093	4.49	±	0.18	2.43	±	0.52
59-Pr-144	4.655	±	0.093	4.49	±	0.18	2.46	±	0.52
60-Nd-142	0.00000331	±	0.00000092	0.0000042	±	0.0000012	0.000247	±	0.000090
60-Nd-144	4.655	±	0.093	4.49	±	0.18	2.46	±	0.52
60-Nd-147	1.827	±	0.086	1.737	±	0.050	1.251	±	0.073
61-Pm-147	1.827	±	0.086	1.737	±	0.050	1.251	±	0.073
61-Pm-148	0.0000053	±	0.0000018	0.0000093	±	0.0000031	0.00045	±	0.00019
61-Pm-148m	0.0000112	±	0.0000043	0.0000222	±	0.0000083	0.00167	±	0.00079
61-Pm-149	0.769	±	0.031	0.717	±	0.034	0.81	±	0.18
61-Pm-151	0.333	±	0.017	0.312	±	0.014	0.49	±	0.11
62-Sm-148	0.0000159	±	0.0000045	0.0000304	±	0.0000086	0.00204	±	0.00082
62-Sm-150	0.00113	±	0.00042	0.00248	±	0.00089	0.055	±	0.023
62-Sm-151	0.333	±	0.017	0.312	±	0.014	0.49	±	0.11
62-Sm-153	0.106	±	0.042	0.118	±	0.022	0.144	±	0.017
63-Eu-151	0.333	±	0.017	0.312	±	0.014	0.49	±	0.11
63-Eu-152	6.8E-08	±	2.0E-08	0.0000001 52	±	0.0000000 41	0.000059	±	0.000021
63-Eu-154	0.0000078	±	0.0000022	0.0000306	±	0.0000096	0.00208	±	0.00067
63-Eu-155	0.0214	±	0.0060	0.0351	±	0.0053	0.067	±	0.011

Table C-3.3. U-235 cumulative fission yields for selected fission products.

Fission product	Thermal fission yields [% per fission]				n yields ssion]		14 MeV fission yields [% per fission]		
1- H- 1	0.00171	±	0.00018	0.00269	±	0.00044	0.00264	±	0.00045
1- H- 2	0.00084	±	0.00015	0.00082	±	0.00012	0.00081	±	0.00012
1- H- 3	0.01080	±	0.00040	0.01080	±	0.00040	0.0174	±	0.0036
2-He- 3	0.01080	±	0.00040	0.01080	±	0.00040	0.0174	±	0.0036
2-He- 4	0.1702	±	0.0049	0.1700	±	0.0049	0.1667	±	0.0088
35-Br- 85	1.304	±	0.012	1.309	±	0.043	1.64	±	0.31
36-Kr- 82	0.000285	±	0.000076	0.00044	±	0.00016	0.038	±	0.012
36-Kr- 85	0.286	±	0.021	0.286	±	0.026	0.47	±	0.10
36-Kr- 85m	1.303	±	0.012	1.307	±	0.043	1.65	±	0.31
38-Sr- 90	5.73	±	0.13	5.22	±	0.18	4.41	±	0.18
40-Zr- 95	6.502	±	0.072	6.349	±	0.083	5.07	±	0.19
41-Nb- 94	0.00000042	±	0.0000011	2.90E-08	±	0.77E-08	0.000040	±	0.000015
41-Nb- 95	6.498	±	0.072	6.345	±	0.083	5.07	±	0.19
41-Nb- 95m	0.0702	±	0.0067	0.0686	±	0.0071	0.0548	±	0.0072
42-Mo- 92	0.	±	0.	0.	±	0.	0.	±	0.
42-Mo- 94	8.7E-10	±	3.2E-10	0.	±	0.	6.2E-08	±	2.5E-08
42-Mo- 96	0.00042	±	0.00015	0.000069	±	0.000025	0.0033	±	0.0015
42-Mo- 99	6.132	±	0.092	5.80	±	0.13	5.02	±	0.13
43-Tc- 99	6.132	±	0.092	5.80	±	0.13	5.02	±	0.13
44-Ru-103	3.103	±	0.084	3.248	±	0.042	3.14	±	0.11
44-Ru-106	0.410	±	0.011	0.469	±	0.036	2.15	±	0.59
45-Rh-106	0.410	±	0.011	0.469	±	0.036	2.15	±	0.59
50-Sn-121m	0.00106	±	0.00011	0.00390	±	0.00091	0.142	±	0.023
51-Sb-122	0.000000366	±	0.000000098	0.00000040	±	0.00000014	0.00193	±	0.00068
51-Sb-124	0.000089	±	0.000021	0.000112	±	0.000034	0.027	±	0.010
51-Sb-125	0.0260	±	0.0014	0.067	±	0.011	1.42	±	0.42
52-Te-132	4.276	±	0.043	4.639	±	0.065	3.85	±	0.16
53- I-129	0.706	±	0.032	1.03	±	0.26	1.59	±	0.18
53- I-131	2.878	±	0.032	3.365	±	0.054	4.11	±	0.14
53- I-133	6.59	±	0.11	6.61	±	0.13	5.42	±	0.40
53- I-135	6.39	±	0.22	6.01	±	0.18	4.8	±	1.4
54-Xe-128	0.	±	0.	0.	±	0.	0.00108	±	0.00048
54-Xe-130	0.0000380	±	0.0000098	0.000152	±	0.000055	0.038	±	0.014
54-Xe-131m	0.0313	±	0.0030	0.0365	±	0.0031	0.0470	±	0.0049
54-Xe-133	6.60	±	0.11	6.61	±	0.13	5.57	±	0.41
54-Xe-133m	0.189	±	0.015	0.190	±	0.015	0.281	±	0.049

Table C-3.3. U-235 cumulative fission yields for selected fission products.

Fission product	Thermal fission yields [% per fission]				n yields ssion]			on yields ssion]	
54-Xe-135	6.61	±	0.22	6.32	±	0.18	6.4	±	1.8
54-Xe-135m	1.22	±	0.12	1.23	±	0.13	2.17	±	0.66
55-Cs-134	0.0000121	±	0.0000032	0.0000279	±	0.0000073	0.0132	±	0.0035
55-Cs-137	6.221	±	0.069	5.889	±	0.096	5.6	±	1.3
56-Ba-140	6.314	±	0.095	5.959	±	0.048	4.474	±	0.081
57-La-140	6.315	±	0.095	5.960	±	0.048	4.508	±	0.081
58-Ce-141	5.86	±	0.15	5.795	±	0.081	4.44	±	0.20
58-Ce-144	5.474	±	0.055	5.094	±	0.076	3.154	±	0.038
59-Pr-144	5.474	±	0.055	5.094	±	0.076	3.155	±	0.038
60-Nd-142	6.3E-09	±	1.7E-09	1.70E-09	±	0.48E-09	0.0000137	±	0.0000049
60-Nd-144	5.475	±	0.055	5.094	±	0.076	3.155	±	0.038
60-Nd-147	2.232	±	0.040	2.148	±	0.028	1.657	±	0.045
61-Pm-147	2.232	±	0.040	2.148	±	0.028	1.657	±	0.045
61-Pm-148	5.0E-08	±	1.7E-08	7.4E-09	±	2.5E-09	0.00000130	±	0.00000042
61-Pm-148m	0.000000104	±	0.00000039	1.78E-08	±	0.66E-08	0.0000048	±	0.0000018
61-Pm-149	1.053	±	0.021	1.064	±	0.030	0.557	±	0.090
61-Pm-151	0.4204	±	0.0071	0.431	±	0.015	0.388	±	0.061
62-Sm-148	0.000000149	±	0.000000041	2.43E-08	±	0.68E-08	0.0000058	±	0.0000018
62-Sm-150	0.000061	±	0.000022	0.0000201	±	0.0000077	0.00045	±	0.00018
62-Sm-151	0.4204	±	0.0071	0.431	±	0.015	0.388	±	0.061
62-Sm-153	0.1477	±	0.0071	0.1512	±	0.0097	0.230	±	0.015
63-Eu-151	0.4204	±	0.0071	0.431	±	0.015	0.388	±	0.061
63-Eu-152	3.24E-10	±	0.85E-10	0.	±	0.	3.3E-08	±	1.1E-08
63-Eu-154	0.000000195	±	0.000000064	4.0E-08	±	1.1E-08	0.0000033	±	0.0000011
63-Eu-155	0.0308	±	0.0013	0.044	±	0.010	0.088	±	0.014

Table C-3.4. U-238 cumulative fission yields for selected fission products.

Fission Fast fission yields 14 MeV fission yields										
Fission			•	14 MeV fission yields [% per fission]						
product			ssion]							
1- H- 1	0.00235	±	0.00040	0.00130	±	0.00024				
1- H- 2	0.00072	±	0.00011	0.000398	±	0.000068				
1- H- 3	0.0103	±	0.0010	0.0065	±	0.0014				
2-He- 3	0.0103	±	0.0010	0.0065	±	0.0014				
2-He- 4	0.1488	±	0.0086	0.0823	±	0.0078				
35-Br- 85	0.85	±	0.11	1.051	±	0.066				
36-Kr- 82	0.0000089	±	0.0000030	0.000044	±	0.000016				
36-Kr- 85	0.182	±	0.030	0.227	±	0.026				
36-Kr- 85m	0.85	±	0.11	1.050	±	0.066				
38-Sr- 90	3.11	±	0.14	3.07	±	0.16				
40-Zr- 95	5.188	±	0.089	4.594	±	0.056				
41-Nb- 94	1.89E-09	±	0.51E-09	3.4E-08	±	1.1E-08				
41-Nb- 95	5.185	±	0.089	4.591	±	0.056				
41-Nb- 95m	0.0561	±	0.0069	0.0496	±	0.0056				
42-Mo- 92	0.	±	0.	0.	±	0.				
42-Mo- 94	0.	±	0.	0.	±	0.				
42-Mo- 96	0.0000063	±	0.0000024	0.000053	±	0.000026				
42-Mo- 99	6.181	±	0.099	5.737	±	0.040				
43-Tc- 99	6.181	±	0.099	5.737	±	0.040				
44-Ru-103	6.029	±	0.096	4.495	±	0.085				
44-Ru-106	2.52	±	0.11	2.56	±	0.13				
45-Rh-106	2.52	±	0.11	2.56	±	0.13				
50-Sn-121m	0.00125	±	0.00026	0.091	±	0.019				
51-Sb-122	9.7E-10	±	3.1E-10	0.00000283	±	0.00000096				
51-Sb-124	0.00000068	±	0.00000019	0.000270	±	0.000080				
51-Sb-125	0.0210	±	0.0038	1.277	±	0.063				
52-Te-132	4.76	±	0.17	4.679	±	0.066				
53- I-129	0.622	±	0.034	1.66	±	0.19				
53- I-131	3.321	±	0.083	3.62	±	0.17				
53- I-133	6.71	±	0.23	5.74	±	0.17				
53- I-135	6.42	±	0.27	5.32	±	0.12				
54-Xe-128	0.	±	0.	2.9E-10	±	1.2E-10				
54-Xe-130	3.1E-10	±	1.3E-10	0.0000149	±	0.0000057				
54-Xe-131m	0.0361	±	0.0036	0.0393	±	0.0045				
54-Xe-133	6.71	±	0.23	5.74	±	0.17				

Table C-3.4. U-238 cumulative fission yields for selected fission products.

Fission			n yields	14 MeV fission yields			
product		er fis	ssion]		er fis	ssion]	
54-Xe-133m	0.191	±	0.017	0.164	±	0.016	
54-Xe-135	6.43	±	0.27	5.45	±	0.12	
54-Xe-135m	1.07	±	0.11	0.99	±	0.10	
55-Cs-134	0.000000113	±	0.000000030	0.0000086	±	0.0000024	
55-Cs-137	6.02	±	0.15	5.62	±	0.68	
56-Ba-140	5.972	±	0.084	4.619	±	0.037	
57-La-140	5.972	±	0.084	4.620	±	0.037	
58-Ce-141	5.93	±	0.45	4.418	±	0.080	
58-Ce-144	4.67	±	0.11	3.58	±	0.14	
59-Pr-144	4.67	±	0.11	3.58	±	0.14	
60-Nd-142	0.	±	0.	1.21E-08	±	0.36E-08	
60-Nd-144	4.67	±	0.11	3.58	±	0.14	
60-Nd-147	2.677	±	0.046	2.134	±	0.041	
61-Pm-147	2.677	±	0.046	2.134	±	0.041	
61-Pm-148	1.13E-10	±	0.37E-10	0.000000129	±	0.000000043	
61-Pm-148m	2.72E-10	±	0.99E-10	0.00000048	±	0.0000018	
61-Pm-149	1.683	±	0.067	1.358	±	0.080	
61-Pm-151	0.810	±	0.012	0.800	±	0.057	
62-Sm-148	3.7E-10	±	1.0E-10	0.00000058	±	0.0000018	
62-Sm-150	0.00000084	±	0.00000032	0.00032	±	0.00016	
62-Sm-151	0.810	±	0.012	0.800	±	0.057	
62-Sm-153	0.367	±	0.014	0.395	±	0.021	
63-Eu-151	0.810	±	0.012	0.800	±	0.057	
63-Eu-152	0.	±	0.	5.3E-09	±	2.0E-09	
63-Eu-154	1.90E-09	±	0.51E-09	0.0000044	±	0.0000015	
63-Eu-155	0.127	±	0.021	0.174	±	0.030	

Reference:

JEFF-3.1: Joint Evaluated Fission and Fusion File, incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 6 May 2008; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Table C-3.5. Pu-239 cumulative fission yields for selected fission products.

Fission		ion yields	Fast fission yields [% per fission]					
product			ssion]					
1- H- 1	0.00408	±	0.00041	0.00346	±	0.00057		
1- H- 2	0.00135	±	0.00019	0.00106	±	0.00016		
1- H- 3	0.01420	±	0.00070	0.01420	±	0.00070		
2-He- 3	0.01420	±	0.00070	0.01420	±	0.00070		
2-He- 4	0.2192	±	0.0090	0.2190	±	0.0090		
35-Br- 85	0.574	±	0.026	0.617	±	0.049		
36-Kr- 82	0.00175	±	0.00060	0.00055	±	0.00020		
36-Kr- 85	0.136	±	0.014	0.138	±	0.017		
36-Kr- 85m	0.576	±	0.026	0.617	±	0.049		
38-Sr- 90	2.013	±	0.054	2.031	±	0.057		
40-Zr- 95	4.949	±	0.099	4.682	±	0.098		
41-Nb- 94	0.0000168	±	0.0000045	0.00000255	±	0.00000069		
41-Nb- 95	4.946	±	0.099	4.680	±	0.098		
41-Nb- 95m	0.0535	±	0.0066	0.0506	±	0.0062		
42-Mo- 92	0.	±	0.	0.	±	0.		
42-Mo- 94	3.6E-08	±	1.3E-08	4.8E-09	±	1.7E-09		
42-Mo- 96	0.0051	±	0.0018	0.00170	±	0.00062		
42-Mo- 99	6.185	±	0.056 5.82		±	0.13		
43-Tc- 99	6.184	±	0.056	5.82	±	0.13		
44-Ru-103	6.948	±	0.083	6.59	±	0.16		
44-Ru-106	4.188	±	0.092	4.13	±	0.24		
45-Rh-106	4.188	±	0.092	4.13	±	0.24		
50-Sn-121m	0.0052	±	0.0011	0.0053	±	0.0012		
51-Sb-122	0.0000240	±	0.0000063	0.0000153	±	0.0000050		
51-Sb-124	0.00228	±	0.00049	0.00154	±	0.00043		
51-Sb-125	0.117	±	0.015	0.138	±	0.022		
52-Te-132	5.095	±	0.094	4.92	±	0.32		
53- I-129	1.407	±	0.086	1.31	±	0.13		
53- I-131	3.724	±	0.078	4.09	±	0.12		
53- I-133	6.97	±	0.13	6.99	±	0.33		
53- I-135	6.33	±	0.23	6.24	±	0.22		
54-Xe-128	0.00000234	±	0.00000085	0.0000025	±	0.0000012		
54-Xe-130	0.00166	±	0.00056	0.00231	±	0.00085		
54-Xe-131m	0.0405	±	0.0040	0.0444	±	0.0044		
54-Xe-133	6.99	±	0.13	7.03	±	0.33		
54-Xe-133m	0.216	±	0.016	0.223	±	0.021		

Table C-3.5. Pu-239 cumulative fission yields for selected fission products.

Fission	Thermal	fiss	ion yields	Fast fission yields					
product			ssion]			ssion]			
54-Xe-135	7.36	±	0.24	7.50	±	0.23			
54-Xe-135m	1.78	±	0.21	1.97	±	0.25			
55-Cs-134	0.00067	±	0.00018	0.00115	±	0.00030			
55-Cs-137	6.588	±	0.080	6.35	±	0.12			
56-Ba-140	5.322	±	0.059	5.303	±	0.074			
57-La-140	5.333	±	0.059	5.324	±	0.075			
58-Ce-141	5.205	±	0.073	5.01	±	0.16			
58-Ce-144	3.755	±	0.030	3.504	±	0.053			
59-Pr-144	3.756	±	0.030	3.505	±	0.053			
60-Nd-142	0.00000145	±	0.00000040	0.00000251	±	0.00000072			
60-Nd-144	3.756	±	0.030	3.505	±	0.053			
60-Nd-147	2.044	±	0.039	1.929	±	0.046			
61-Pm-147	2.044	±	0.039	1.929	±	0.046			
61-Pm-148	0.0000056	±	0.0000019	0.0000120	±	0.0000040			
61-Pm-148m	0.0000118	±	0.0000044	0.000029	±	0.000011			
61-Pm-149	1.263	±	0.032	1.275	±	0.056			
61-Pm-151	0.776	±	0.018	0.796	±	0.037			
62-Sm-148	0.0000168	±	0.0000046	0.000039	±	0.000011			
62-Sm-150	0.00227	±	0.00078	0.0051	±	0.0019			
62-Sm-151	0.776	±	0.018	0.797	±	0.037			
62-Sm-153	0.380	±	0.030	0.40	±	0.18			
63-Eu-151	0.776	±	0.018	0.797	±	0.037			
63-Eu-152	0.000000195		0.000000050	0.00000048	±	0.0000014			
63-Eu-154	0.000049		0.000012	0.000127	±	0.000043			
63-Eu-155	0.174	±	0.030	0.171	±	0.054			

Reference:

JEFF-3.1: Joint Evaluated Fission and Fusion File, incident neutron data, http://www-nds.iaea.org/exfor/endf00.htm, 6 May 2008; see also A. Koning, R. Forrest, M. Kellett, R. Mills, H. Henriksson, Y. Rugama, The JEFF-3.1 Nuclear Data Library, JEFF Report 21, OECD/NEA, Paris, France, 2006, ISBN 92-64-02314-3.

Table C-3.6. Pu-241 cumulative fission yields for selected fission products.

Fission			ion yields	Fast fission yields				
product			ssion]			ssion]		
1- H- 1	0.00294	±	0.00048	0.00294	±	0.00048		
1- H- 2	0.00090	±	0.00013	0.00090	±	0.00013		
1- H- 3	0.01410	±	0.00061	0.01410	±	0.00061		
2-He- 3	0.01410	±	0.00061	0.01410	±	0.00061		
2-He- 4	0.1860	±	0.0071	0.1860	±	0.0071		
35-Br- 85	0.429	±	0.069	0.400	±	0.021		
36-Kr- 82	0.000124	±	0.000059	0.000071	±	0.000033		
36-Kr- 85	0.094	±	0.018	0.0870	±	0.0090		
36-Kr- 85m	0.429	±	0.069	0.400	±	0.021		
38-Sr- 90	1.510	±	0.074	1.502	±	0.041		
40-Zr- 95	3.91	±	0.15	3.84	±	0.10		
41-Nb- 94	0.000000301	±	0.000000090	0.000000127	±	0.000000033		
41-Nb- 95	3.91	±	0.15	3.840	±	0.100		
41-Nb- 95m	0.0423	±	0.0048	0.0415	±	0.0047		
42-Mo- 92	0.	±	0.	0.	±	0.		
42-Mo- 94	6.2E-10	±	2.5E-10	2.38E-10	±	0.85E-10		
42-Mo- 96	0.00033	±	0.00013	0.000177	±	0.000066		
42-Mo- 99	5.61	±	0.25	4.1	±	2.3		
43-Tc- 99	5.61	±	0.25	4.1	±	2.3		
44-Ru-103	6.54	±	0.32	5.9	±	2.7		
44-Ru-106	5.95	±	0.70	6.12	±	0.19		
45-Rh-106	5.95	±	0.70	6.12	±	0.19		
50-Sn-121m	0.0065	±	0.0017	0.00127	±	0.00048		
51-Sb-122	0.00000040	±	0.00000015	0.000000134	±	0.000000061		
51-Sb-124	0.000172	±	0.000061	0.000069	±	0.000029		
51-Sb-125	0.249	±	0.065	0.092	±	0.020		
52-Te-132	4.512	±	0.095	4.56	±	0.13		
53- I-129	1.28	±	0.36	1.67	±	0.36		
53- I-131	3.076	±	0.074	3.164	±	0.085		
53- I-133	6.61	±	0.18	6.67	±	0.19		
53- I-135	6.84	±	0.23	6.96	±	0.19		
54-Xe-128	1.27E-10	±	0.69E-10	1.04E-10	±	0.48E-10		
54-Xe-130	0.000023	±	0.000010	0.000093	±	0.000032		
54-Xe-131m	0.0334	±	0.0036	0.0344	±	0.0035		
54-Xe-133	6.61	±	0.18	6.67	±	0.19		
54-Xe-133m	0.189	±	0.017	0.191	±	0.018		

Table C-3.6. Pu-241 cumulative fission yields for selected fission products.

Fission			ion yields	Fast fission yields				
product	[% pe	er fis	ssion]		er fis	ssion]		
54-Xe-135	7.01	±	0.24	7.26	±	0.20		
54-Xe-135m	1.25	±	0.13	1.38	±	0.14		
55-Cs-134	0.0000092	±	0.0000026	0.000038	±	0.000010		
55-Cs-137	6.28	±	0.14	6.37	±	0.18		
56-Ba-140	5.76	±	0.11	5.36	±	0.14		
57-La-140	5.76	±	0.11	5.36	±	0.14		
58-Ce-141	4.90	±	0.12	4.63	±	0.62		
58-Ce-144	4.123	±	0.095	4.18	±	0.11		
59-Pr-144	4.123	±	0.095	4.18	±	0.11		
60-Nd-142	3.7E-09	±	1.0E-09	2.30E-08	±	0.64E-08		
60-Nd-144	4.123	±	0.095	4.18	±	0.11		
60-Nd-147	2.252	±	0.095	2.228	±	0.062		
61-Pm-147	2.252	±	0.095	2.228	±	0.062		
61-Pm-148	4.2E-08	±	1.4E-08	0.000000222	±	0.000000072		
61-Pm-148m	8.9E-08	±	3.2E-08	0.00000053	±	0.0000019		
61-Pm-149	1.454	±	0.071	1.452	±	0.041		
61-Pm-151	0.86	±	0.24	0.910	±	0.025		
62-Sm-148	0.000000127	±	0.000000034	0.00000073	±	0.00000020		
62-Sm-150	0.000079	±	0.000031	0.00033	±	0.00012		
62-Sm-151	0.86	±	0.24	0.910	±	0.025		
62-Sm-153	0.40	±	0.23	0.45	±	0.19		
63-Eu-151	0.86	±	0.24	0.910	±	0.025		
63-Eu-152	6.2E-10	±	1.7E-10	4.4E-09	±	1.1E-09		
63-Eu-154	0.00000089	±	0.00000034	0.0000042	±	0.0000011		
63-Eu-155	0.19	±	0.35	0.231	±	0.084		

D-1. Half-lives and branching fractions for activation products.

References

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 5 June 2008.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 5 June 2008.

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA CRP "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-

Table D-1. Half-lives and branching fractions for activation products.

Nuclide		Half			Decay		ning Fraction	Source	Notes
1-H-3	12.312	T ₁	0.025	у	mode β ⁻	1.0		LNHB	
4-Be-10	(1.51	±	0.06) × 10 ⁶	у	β-	1.0		ENSDF	
6-C-14	(5.70	±	0.03) × 10 ³	у	β-	1.0		LNHB	
6-C-15	2.449	±	0.005	s	β-	1.0		ENSDF	
7-N-16	7.13	±	0.02	s	β-	1.0		ENSDF	
8-O-19	26.88	±	0.05	S	β-	1.0		ENSDF	
11-Na-22	950.57	±	0.23	d	β ⁺ EC	0.8989 0.1011	± 0.0002 ± 0.0002	IAEA-CRP-XG	[1]
11-Na-24	0.62329	±	0.00006	d	β	1.0		IAEA-CRP-XG	
12-Mg-27	9.458	±	0.012	m	β-	1.0		ENSDF	
13-Al-26	(7.17	±	0.24) × 10 ⁵	у	β ⁺ EC	0.8175 0.1825	± 0.0023 ± 0.0023	LNHB	[2]
16-S-35	87.32	±	0.16	d	β-	1.0		LNHB	
17-CI-36	(3.01	±	0.03) × 10 ⁵	у	β ⁻ EC	0.981 0.019	± 0.001 ± 0.001	LNHB	
18-Ar-39	269.	±	3.	У	β-	1.0		ENSDF	
18-Ar-41	109.61	±	0.04	m	β	1.0		ENSDF	
19-K-40	(4.563	±	0.013) × 10 ¹¹	d	β ⁻ EC	0.8914 0.1086	± 0.0013 ± 0.0013	IAEA-CRP-XG	[1]
19-K-42	12.360	±	0.012	h	β	1.0		ENSDF	
20-Ca-41	(1.02	±	0.07) × 10 ⁵	У	EC	1.0		ENSDF	

Table D-1. Half-lives and branching fractions for activation products.

Nuclide		Half			ctions fo Decay		products. ing Fraction	Source	Notes
00.0.17	100.00	T.			mode	4.0		ENCDE	
20-Ca-45	162.61	±	0.09	d	β¯	1.0		ENSDF	
21-Sc-47	3.3492	±	0.0006	d	β-	1.0		ENSDF	
21-Sc-48	43.67	±	0.09	h	β	1.0		ENSDF	
24-Cr-51	27.7009	±	0.0020	d	EC	1.0		IAEA-CRP-XG	
25-Mn-54	312.29	±	0.26	d	EC	1.0		IAEA-CRP-XG	
25-Mn-56	0.107449	±	0.000019	d	β	1.0		IAEA-CRP-XG	
26-Fe-55	(1.0027	±	$0.0023) \times 10^3$	d	EC	1.0		IAEA-CRP-XG	
26-Fe-59	44.494	±	0.013	d	β	1.0		IAEA-CRP-XG	
27-Co-57	271.80	±	0.05	d	EC	1.0		IAEA-CRP-XG	
27-Co-58	70.86	±	0.06	d	EC β ⁺	0.8500 0.1500	± 0.002 ± 0.002	IAEA-CRP-XG	[1]
27-Co-60	(1.92523	±	$0.00027) \times 10^3$	d	β-	1.0		IAEA-CRP-XG	
28-Ni-59	(7.6	±	0.5) × 10 ⁴	у	EC	1.0		ENSDF	
28-Ni-63	98.7	±	2.4	у	β	1.0		LNHB	
28-Ni-65	2.51719	±	0.00026	h	β-	1.0		ENSDF	
29-Cu-64	0.52929	±	0.00018	d	β ⁻ β ⁺ EC	0.390 0.179 0.431	± 0.003 ± 0.002 ± 0.005	IAEA-CRP-XG	[1]
29-Cu-66	5.120	±	0.014	m	β-	1.0		ENSDF	
30-Zn-65	243.86	±	0.20	d	EC β [†]	0.9858 0.0142	± 0.0001 ± 0.0001	IAEA-CRP-XG	[1]
41-Nb-93m	(5.73	±	0.22) × 10 ³	d	IT	1.0		IAEA-CRP-XG	
42-Mo-93	(4.0	±	0.8) × 10 ³	у	EC	1.0		ENSDF	
43-Tc-99m	0.250281	±	0.000022	d	β ⁻ IT		± 0.000006 ± 0.000006	IAEA-CRP-XG	[1]
47-Ag-110m	249.85	±	0.10	d	β ⁻ IT	0.9864 0.0136	± 0.0008 ± 0.0008	IAEA-CRP-XG	[1]
49-ln-115m	4.486	±	0.004	h	IT β⁻	0.950 0.050	± 0.008 ± 0.008	ENSDF	
53-I-126	12.93	±	0.05	d	EC β ⁻	0.527 0.473	± 0.006 ± 0.006	ENSDF	
72-Hf-175	70.	±	2.	d	EC	1.0		ENSDF	
72-Hf-181	42.39	±	0.06	d	β-	1.0		ENSDF	

Table D-1. Half-lives and branching fractions for activation products.

Nuclide		Half	f-life	Units		Branching Fraction	Source	Notes
73-Ta-182	114.43		0.04	d	β	1.0	ENSDF	
74-W-181	121.2	±	0.2	d	EC	1.0	ENSDF	
74-W-185	75.1	±	0.3	d	β	1.0	ENSDF	
74-W-187	23.72	±	0.06	h	β	1.0	ENSDF	
79-Au-198	2.6950	±	0.0007	d	β-	1.0	IAEA-CRP-XG	
80-Hg-197	64.14	±	0.05	h	EC	1.0	ENSDF	
80-Hg-203	46.594	±	0.012	d	β-	1.0	IAEA-CRP-XG	

^[1] Branching fractions from LNHB database.
[2] Branching fractions renormalised to sum to 1.0.

D-2. Gamma-ray energies and emission probabilities for activation products.

References

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 5 June 2008.

ENSDF: Evaluated Nuclear Structure Data File, http://www-nds.iaea.org/ensdf/, 5 June 2008.

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski.

G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods,

IAEA CRP "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

Table D-2. Gamma-ray energies and emission probabilities for activation products.

Nuclide Half-life Units Energ			0,		Emission p		,	Source	Notes	
	T _{1/2}		[ke\	-		[% c		,.		
6-C-15	2.449 ± 0.005	S	5297.817	±	0.014	63.2	±	8.0	ENSDF	
7-N-16	7.13 ± 0.02	S	6128.63	±	0.04	67.0	±	0.6	ENSDF	
			7115.15	±	0.14	4.9	±	0.4		
8-O-19	26.88 ± 0.05	S	109.894	±	0.005	2.54	±	0.10	ENSDF	
			197.142	±	0.004	95.9	±	2.1		
			1356.843	±	0.008	50.4	±	1.1		
			1444.085	±	0.010	2.64	±	0.06		
			1553.970	±	0.008	1.39	±	0.03		
11-Na-22	950.57 ± 0.23	d	511.			179.8	±	0.2	IAEA-CRP-XG	[1]
			1274.537	±	0.003	99.940	±	0.014		
11-Na-24	0.62329 ± 0.00006	d	1368.626	±	0.005	99.9935	±	0.0005	IAEA-CRP-XG	
			2754.007	±	0.011	99.872	±	0.008		
12-Mg-27	9.458 ± 0.012	m	170.686	±	0.015	8.0		0.1	ENSDF	
			843.76	±	0.03	71.8	±	0.4		
			1014.44	±	0.04	28.0	±	0.4		
13-Al-26	$(7.17 \pm 0.24) \times 10^5$	у	511.			163.5	±	0.4	LNHB	[1]
			1129.67	±	0.10	2.5		0.2		
			1808.65	±	0.07	99.76		0.04		
			2938.	±	1.	0.24	±	0.04		
18-Ar-41	109.61 ± 0.04	m	1293.64	±	0.04	99.160	±	0.020	ENSDF	
19-K-40	$(4.563 \pm 0.013) \times 10^{11}$	d	1460.822	±	0.006	10.66	±	0.13	IAEA-CRP-XG	
19-K-42	12.360 ± 0.012	h	312.60	±	0.25	0.34	±	0.02	ENSDF	
			1524.6	±	0.3	18.08	±	0.09		
21-Sc-47	3.3492 ± 0.0006	d	159.381	±	0.015	68.3	±	0.4	ENSDF	
21-Sc-48	43.67 ± 0.09	h	175.361	±	0.005	7.48	±	0.10	ENSDF	
			983.526	±	0.012	100.0	±	0.6		
			1037.522	±	0.012	97.6	±	0.7		
			1212.880	±	0.012	2.38	±	0.04		
			1312.120	±	0.012	100.0	±	0.7		
24-Cr-51	27.7009 ± 0.0020	d	320.0835	±	0.0004	9.87	±	0.05	IAEA-CRP-XG	
25-Mn-54	312.29 ± 0.26	d	834.838	±	0.005	99.9746	±	0.0011	IAEA-CRP-XG	

Table D-2. Gamma-ray energies and emission probabilities for activation products.										
Nuclide		Units	Ener			Emission p		•	Source	Notes
	T _{1/2}		[ke\	/]		[% d				
25-Mn-56	0.107449 ± 0.000019	d	846.7638		0.0019	98.85		0.03	IAEA-CRP-XG	
			1810.726	±	0.004	26.9		0.4		
			2113.092	±	0.006	14.2		0.3		
			2523.06	±	0.05	1.02	±	0.02		
26-Fe-59	44.494 ± 0.013	d	142.651	±	0.002	0.972	+	0.015	IAEA-CRP-XG	
201000	44.404 ± 0.010	u	192.349	±	0.005	2.92		0.03	INERCOIN XO	
			1099.245	±	0.003	56.59		0.21		
			1291.590	±	0.006	43.21		0.25		
27-Co-57	271.80 ± 0.05	d	122.06065		0.00012	85.51		0.06	IAEA-CRP-XG	
			136.47356) ±	0.00029	10.71	±	0.15		
27-Co-58	70.86 ± 0.06	d	511.			30.0	_	0.4	IAEA-CRP-XG	[4]
27-00-30	70.00 ± 0.00	u	810.759	±	0.002	99.45		0.01	IALA-CINI -AG	[1]
			010.700	-	0.002	00.40	_	0.01		
27-Co-60	$(1.92523 \pm 0.00027) \times 10^3$	d	1173.228	±	0.003	99.85	±	0.03	IAEA-CRP-XG	
2. 00 00	()		1332.492	±	0.004	99.9826				
28-Ni-65	2.51719 ± 0.00026	h	366.27	±	0.03	4.81		0.06	ENSDF	
			507.9	±	0.1	0.293	±	0.005		
			1115.53	±	0.04	15.43		0.13		
			1481.84	±	0.05	23.59		0.14		
			1623.42	±	0.06	0.498				
			1724.92	±	0.06	0.399	±	0.012		
29-Cu-64	0.52929 ± 0.00018	d	511.			35.72	±	0.28	IAEA-CRP-XG	[1]
20 04 0.	0.02020 2 0.000 .0	~	1345.77	±	0.16	0.475				1.1
29-Cu-66	5.120 ± 0.014	m	833.0	±	1.0	0.220	±	0.004	ENSDF	
			1039.2	±	0.2	9.23	±	0.09		
20.7- 25	040.00 + 0.00	_	544			0.04		0.04	IAEA ODD VO	F41
30-Zn-65	243.86 ± 0.20	d	511.		0.000	2.84		0.04	IAEA-CRP-XG	[1]
			1115.539	±	0.002	50.60	I	0.22		
43-Tc-99m	0.250281 ± 0.000022	d	140.511	±	0.001	88.5	±	0.2	IAEA-CRP-XG	
	0.20020 : = 0.000022	~	42.683	±	0.001	0.023				
47-Ag-110m	249.85 ± 0.10	d	446.812	±	0.003	3.65	±	0.05	IAEA-CRP-XG	[2]
			620.3553	±	0.0017	2.72	±	0.08		
			657.7600		0.0011	94.38		0.08		
			677.6217		0.0012	10.56		0.06		
			687.0091		0.0018	6.45		0.03		
			706.6760			16.48		80.0		
			744.2755		0.0018	4.71		0.03		
			763.9424		0.0017	22.31		0.09		
			818.0244 884.6781		0.0018 0.0013	7.33 74.0		0.04 1.2		
			937.483	±	0.0013	74.0 34.51		0.27		
			1384.2931		0.003	24.7		0.27		
			1475.7792		0.0023	4.03		0.05		
			1505.0280		0.0020	13.16		0.16		
			1562.294	±	0.018	1.21		0.03		

	Table D-2. Gamma-ray energies and emission probabilities for activation products.									
Nuclide	Half-life	Units	Energy	/		Emission		-	Source	Notes
	T _{1/2}		[keV]			[% c				
49-In-115m	4.486 ± 0.004	h	336.241 ±	Ė	0.025	45.9	±	2.3	ENSDF	
53-I-126	12.93 ± 0.05	d	388.633 ±	-	0.011	35.6	+	0.6	ENSDF	[3]
00 1 120	12.00 2 0.00	G	491.243 ±		0.011	2.88		0.05	LITODI	[3]
			666.331 ±		0.012	32.9		0.8		[4]
			753.819 ±		0.013	4.15		0.10		[4]
			879.876 ±		0.013	0.744		0.017		[3]
			1420.19 ±		0.03			0.010		[4]
72-Hf-175	70. ± 2.	d	89.36 ±	L	0.01	2.40	_	0.20	ENSDF	
72-111-175	7 O. ± Z.	u	113.81 ±		0.02	0.29		0.20	LINODI	
			229.6 ±		0.6	0.68		0.03		
			343.40 ±		80.0	84.		3.		
			353.3 ±		0.2	0.228		0.019		
			433.0 ±		0.5	1.44		0.06		
72-Hf-181	42.39 ± 0.06	d	133.021 ±	-	0.019	43.3	_	0.5	ENSDF	
72-111-101	42.55 ± 0.00	u	136.260 ±		0.018	5.85		0.19	LINODI	
			136.86 ± 345.93 ±		0.04	0.86 15.12		0.19 0.12		
			475.99 ±		0.00			0.12		
			482.18 ±		0.09	80.5		0.007		
			615.17 ±		0.03			0.018		
			015.17 ±	<u> </u>	0.11	0.233	_	0.016		
73-Ta-182	114.43 ± 0.04	d	65.72201 ±		0.00018	2.92		0.07	ENSDF	
			67.75001 ±		0.00019	41.2		0.9		
			84.68080 ±		0.00024	2.65		0.07		
			100.1065 ±		0.0003	14.1		0.3		
			113.6725 ±		0.0003	1.88		0.04		
			116.4186 ±		0.0007	0.431		0.009		
			152.4308 ±		0.0003	6.93		0.13		
			156.3876 ±		0.0003	2.64 3.08		0.05 0.06		
			179.3945 ± 198.3532 ±		0.0003	1.44		0.00		
			222.1096 ±		0.0003	7.49		0.03		
			229.3220 ±		0.0004	3.63		0.14		
			264.0752 ±		0.0003	3.61		0.07		
			927.992 ±		0.002			0.013		
			959.7296 ±		0.0019			0.008		
			1001.6950 ±		0.0019	2.07		0.04		
			1044.4099 ±		0.0019			0.006		
			1113.40 ±		0.05			0.009		
			1121.3008 ±		0.0017	34.9		0.6		
			1157.3127 ±			0.59		0.11		
			1158.0817 ±			0.40		0.06		
			1189.0503 ±		0.0017	16.2		0.3		
			1221.4066 ±		0.0017	27.0		0.5		
			1223.8033 ±		0.0019	0.23		0.08		
			1231.0157 ±		0.0017	11.44		0.20		
			1257.4185 ±		0.0018	1.49		0.03		
			1273.7305 ±	Ŀ	0.0017	0.651	±	0.011		
			1289.1561 ±	Ŀ	0.0017	1.35	±	0.02		
			1342.72 ±	Ŀ	0.05	0.251	±	0.005		
			1373.8363 ±	ŧ	0.0017	0.218	±	0.004		
74-W-181	121.2 ± 0.2	d	136.28 ±	ŧ	0.02	0.0311	±	0.0010	ENSDF	
			152.32 ±	ŧ	0.02	0.083	±	0.003		
74-W-185	75.1 ± 0.3	d	125.358 ±	E	0.003	0.0192	±	0.0007	ENSDF	

Table D-2. Gamma-ray energies and emission probabilities for activation products.

	rable D-2. Gamma-ra		na cinission pro	our	JIII 100 101 0					
Nuclide	Half-life	Units	Energ	lУ		Emission	prol	oability	Source	Notes
	T _{1/2}		[keV]			[% c	dec	ay]		
74-W-187	23.72 ± 0.06	h	72.002	±	0.004	11.1	±	0.4	ENSDF	
			134.247	±	0.007	8.8	±	0.3		
			479.550	±	0.022	21.8	±	0.7		
			551.52	±	0.04	5.08	±	0.17		
			618.26	±	0.04	6.28	±	0.21		
			625.519	±	0.010	1.09	±	0.04		
			685.73	±	0.04	27.3	±	0.9		
			772.89	±	0.05	4.12	±	0.13		
79-Au-198	2.6950 ± 0.0007	d	411.80205	±	0.00017	95.54	±	0.07	IAEA-CRP-XG	
			675.8836	±	0.0007	0.806	±	0.007		
			1087.6842	±	0.0007	0.159	±	0.003		
80-Hg-197	64.14 ± 0.05	h	77.351	±	0.002	18.7	±	0.4	ENSDF	
•			191.364	±	0.015	0.632	±	0.022		
80-Hg-203	46.594 ± 0.012	d	279.1952	±	0.0010	81.48	±	0.08	IAEA-CRP-XG	

Annihilation radiation.
 With ¹¹⁰Ag.
 Gamma emission arises from β^{*} decay mode.
 Gamma emission arises from electron-capture decay mode.

D-3. X-ray energies and emission probabilities for activation products.

References

LNHB: Laboratoire National Henri Becquerel, Recommended Data, http://www.nucleide.org/DDEP_WG/DDEPdata.htm, 5 June 2008.

IAEA-CRP-XG: M.-M. Bé, V.P. Chechev, R. Dersch, O.A.M. Helene, R.G. Helmer, M. Herman, S. Hlaváč, A. Marcinkowski, G.L. Molnár, A.L. Nichols, E. Schönfeld, V.R. Vanin, M.J. Woods, IAEA CRP "Update of X Ray and Gamma Ray Decay Data Standards for Detector Calibration and Other Applications", IAEA Scientific and Technical Information report STI/PUB/1287, May 2007, International Atomic Energy Agency, Vienna, Austria, ISBN 92-0-113606-4.

Table D-3. X-ray energies and emission probabilities for activation products.

Nuclide	Half-life T _{1/2}	Units	Decay mode	Oı	rigin	Energy [keV]				mission probability So [% decay]		Source
13-Al-26	$(7.17 \pm 0.24) \times 10^5$	у	β ⁺	Mg	Kα ₂	1.2536	0.160	±	0.006	LNHB		
			EC		Kα ₁	1.2536	0.318		0.011			
19-K-40	$(4.563 \pm 0.013) \times 10^{11}$	d	EC	Ar	K	2.96 - 3.19	0.997	±	0.022	IAEA-CRP-XG		
24-Cr-51	27.7009 ± 0.0020	d	EC	V	Κα Κβ	4.94 - 4.95 5.43 - 5.46	20.2 2.69		0.3 0.07	IAEA-CRP-XG		
25-Mn-54	312.29 ± 0.26	d	EC	Cr	Κα Κβ	5.405 - 5.415 5.947	0.227 0.0305		0.003 0.0007	IAEA-CRP-XG		
26-Fe-55	$(1.0027 \pm 0.0023) \times 10^3$	d	EC	Mn	$K\alpha_2$	5.8877	8.45	±	0.14	IAEA-CRP-XG		
					$K\alpha_1$	5.8988	16.56	±	0.27			
					K'β ₁	6.49 - 6.54	3.40	±	0.07			
26-Fe-59	44.494 ± 0.013	d	β	Со	Κα	6.92	0.0177	±	0.0003	IAEA-CRP-XG		
27-Co-57	271.80 ± 0.05	d	EC	Fe	$K\alpha_2$	6.39084	16.8	±	0.3	IAEA-CRP-XG		
					$K\alpha_1 \\$	6.40384	33.2	±	0.5			
					K'β ₁	7.058 - 7.108	7.1	±	0.2			
27-Co-58	70.86 ± 0.06	d	EC β [†]	Fe	Κα Κβ	6.40 7.06	23.5 3.20		0.3 0.10	IAEA-CRP-XG		
27-Co-60	$(1.92523 \pm 0.00027) \times 10^3$	d	β	Ni	Κα Κβ	7.46 - 7.48 8.26 - 8.33			0.0003 0.00005	IAEA-CRP-XG		
29-Cu-64	0.52929 ± 0.00018	d	β⁺ EC	Ni	Κα Κβ	7.46 - 7.48 8.26 - 8.33	14.15 1.95		0.17 0.04	IAEA-CRP-XG		
					·φ	0.20	1.00	_	0.01			
30-Zn-65	243.86 ± 0.20	d	EC β ⁺	Cu	Κα Κβ	8.03 - 8.05 8.90 - 8.98	34.7 4.82		0.3 0.07	IAEA-CRP-XG		
41-Nb-93m	$(5.73 \pm 0.22) \times 10^3$	d	IT	Nb	Kα ₂	16.5213	3.16	±	0.07	IAEA-CRP-XG		
	,				$K\alpha_1$	16.6152	6.04	±	0.12			
					K'β ₁	18.618	1.56	±	0.05			
					K'β ₂	18.953	0.23	±	0.01			
43-Tc-99m	0.250281 ± 0.000022	d	IT	Тс	Kα ₂	18.2510	2.22	±	0.07	IAEA-CRP-XG		
					$K\alpha_1 \\$	18.3672	4.21	±	0.12			
					$K'\beta_1$	20.60 - 20.79	1.12	±	0.04			
					$K^{\prime}\beta_2$	21.00 - 21.04	0.177	±	0.008			

Table D-3. X-ray energies and emission probabilities for activation products.

Nuclide	Half-life	Units	Decay	0	rigin	Energy			robability	Source
	T _{1/2}		mode			[keV]	[%	de	ecay]	
47-Ag-110m	249.85 ± 0.10	d	ΙT	Ag	$K\alpha_2$	21.9906	0.198	±	0.012	IAEA-CRP-XG
					$K\alpha_1$	22.1632	0.372	±	0.022	
					$K'\beta_1$	24.912 - 25.146	0.103	±	0.007	
					$K'\beta_2$	25.457 - 25.512	0.0179	±	0.0012	
47-Ag-110m	249.85 ± 0.10	d	β⁻	Cd	Kα ₂	22.9843	0.153	±	0.009	
					$K\alpha_1$	23.1738	0.288	±	0.016	
					$K'\beta_1$	26.061 - 26.304	0.080	±	0.005	
					$K'\beta_2$	26.64 - 26.70	0.0146	±	0.0009	
79-Au-198	2.6950 ± 0.0007	d	β	Hg	L	8.72 – 14.85	1.20	±	0.05	IAEA-CRP-XG
					$K\alpha_2$	68.8952 ± 0.0012	0.809	±	0.008	
					$K\alpha_1$	70.8196 ± 0.0012	1.372	±	0.012	
					$K'\beta_1$	79.82 - 80.76	0.466	±	0.008	
					$K'\beta_2$	82.43 - 83.03	0.136	±	0.004	
80-Hg-203	46.594 ± 0.012	d	β	TI	L	8.953 - 14.738	5.43	±	0.09	IAEA-CRP-XG
					$K\alpha_2$	70.8325 ± 0.0008	3.75	±	0.04	
					$K\alpha_1 \\$	72.8725 ± 0.0008	6.33	±	0.06	
					$K'\beta_1$	82.118 - 83.115	2.15	±	0.04	
					$K'\beta_2$	84.838 - 85.530	0.64	±	0.02	

e-mail: services@iaeand.iaea.org fax: (43-1) 26007

telephone: (43-1) 2600-21710 Web: http://www-nds.iaea.org