Capstone Project - The Battle of Neighborhoods

Introduction

New York is one of the biggest cities in the world and has a huge number of companies based there. Every year a lot of Brazilians, like me, need to go there to work for some months or to live there. I will make a analysis to find out what is the best neighborhood for a Brazilian stay during some months in New York. I will start by looking for neighborhoods with Brazilian restaurants because I know that would be very hard for me not eating Brazilian food for more than one week. So I prefer to stay around some Brazilian foods. Also, going to Brazilian restaurants I can meet others Brazilians and chat a little bit in Portuguese. Than, I will look for others places that usually Brazilians love like supermarket, gym, bar and coffee. I will also list the best hotels to stay in those neighborhoods.

Data

For this project we need the following data:

- New York City data that contains list Boroughs, Neighborhoods along with their latitude and longitude. Data source:
 https://cocl.us/new_york_dataset (https://cocl.us/new_york_dataset) Description: This data set contains the required information. And we will use this data set to explore various neighborhoods of new york city.
- Brazilian restaurants in each neighborhood of new york city. Data source: Fousquare API Description: By using this api we will get all the venues in each neighborhood. We can filter these venues to get only brazilian restaurants.
- Hotel list with ratings Data source: Fousquare API Description: By using this api we will get all hotels around neighborhood with rate.

Methodology

The Methodology section will describe the main components of our analysis. All steps made during the analysis are described below.

1. Let's download all the dependencies that we will need for this analysis.

```
In [3]: import numpy as np # library to handle data in a vectorized manner
                          import pandas as pd # library for data analsysis
                          pd.set_option('display.max_columns', None)
                          pd.set_option('display.max_rows', None)
                          import json # library to handle JSON files
                          !conda install -c conda-forge geopy --yes # uncomment this line if you haven to comment this line is the comment thin you haven the comment this line is the comment that you have the comment this line is the comment that you have the commen
                          pleted the Foursquare API lab
                         from geopy.geocoders import Nominatim # convert an address into latitude and longit
                          ude values
                          import requests # library to handle requests
                          from pandas.io.json import json normalize # tranform JSON file into a pandas datafr
                          # Matplotlib and associated plotting modules
                          import matplotlib.cm as cm
                          import matplotlib.colors as colors
                          # import k-means from clustering stage
                          from sklearn.cluster import KMeans
                          !conda install -c conda-forge folium=0.5.0 --yes \# uncomment this line \mathbf{if} you haven
                         t completed the Foursquare API lab
                          import folium # map rendering library
                          print('Libraries imported.')
```

```
Solving environment: done
==> WARNING: A newer version of conda exists. <==
 current version: 4.5.11
 latest version: 4.7.12
Please update conda by running
   $ conda update -n base -c defaults conda
## Package Plan ##
 environment location: /home/jupyterlab/conda/envs/python
 added / updated specs:
   - geopy
The following packages will be downloaded:
                                      build
   -----
   geopy-1.20.0 | py_0 certifi-2019.9.11 | py36_0 geographiclib-1.49 | py_0
                                                  57 KB conda-forge
147 KB conda-forge
32 KB conda-forge
                                     py36 0
                                      ___0
py__0
                                                    32 KB conda-forge
                                                   237 KB
                                      Total:
The following NEW packages will be INSTALLED:
   geographiclib: 1.49-py_0 conda-forge
geopy: 1.20.0-py_0 conda-forge
The following packages will be UPDATED:
                2019.6.16-py36 1 conda-forge --> 2019.9.11-py36 0 conda-forge
   certifi:
Downloading and Extracting Packages
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
 current version: 4.5.11
 latest version: 4.7.12
Please update conda by running
   $ conda update -n base -c defaults conda
# All requested packages already installed.
Libraries imported.
```

1. Downloading and Exploring Dataset

We will use the New York dataset from this link: https://geo.nyu.edu/catalog/nyu_2451_34572 (https://geo.nyu.edu/catalog/nyu_2451_34572) to check which Boroughs and Neighborhoods have Brazilian restaurants.

We will use the same file that was downloaded previously for the lab.

```
In [4]: !wget -q -O 'newyork_data.json' https://cocl.us/new_york_dataset
    print('Data downloaded!')

Data downloaded!
```

Loading the data now.

```
In [5]: with open('newyork_data.json') as json_data:
    newyork_data = json.load(json_data)
```

As all the relevant data is in the *features* key, which is basically a list of the neighborhoods we will define a new variable that includes this data.

```
In [6]: neighborhoods_data = newyork_data['features']
```

Let's transform this data of nested Python dictionaries into a *pandas* dataframe.

Let's check the the first lines of dataframe created.

```
In [11]: neighborhoods.head()
Out[11]:
               Borough Neighborhood
                                        Latitude Longitude
            0
                  Bronx
                             Wakefield
                                      40.894705 -73.847201
            1
                  Bronx
                            Co-op City 40.874294 -73.829939
            2
                  Bronx
                           Eastchester 40.887556 -73.827806
            3
                  Bronx
                             Fieldston 40.895437 -73.905643
            4
                             Riverdale 40.890834 -73.912585
                  Bronx
```

Checking the dataset size.

The dataframe has 5 boroughs and 306 neighborhoods.

Now we will create a function to get top 100 venues from Foursquare api within a radius of 1000 metres for a given latitude and longitude. Below function will return us the venue id, venue name and category.

```
In [9]: def get_venues(lat,lng):
            #set variables
            radius=1000
            LIMIT=100
            CLIENT ID = 'VD2VBP2YGIDOVBIDH122JBCUN1YLNL44EPVCGDUAWBXSBO51'
            CLIENT SECRET = 'X353ACX0FWHWV3ZWKKGDWO4KXKU4YM2DX5CJDU4EM12MBZBU' # your Fours
        quare Secret
            VERSION = '20180605' # Foursquare API version
            #url to fetch data from foursquare api
            url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client secre
        t={}&v={}&ll={},{}&radius={}&limit={}'.format(
                    CLIENT ID,
                    CLIENT SECRET,
                    VERSION,
                    lat,
                    lng,
                    radius,
                    LIMIT)
            # get all the data
            results = requests.get(url).json()
            venue_data=results["response"]['groups'][0]['items']
            venue_details=[]
            for row in venue_data:
                try:
                    venue_id=row['venue']['id']
                    venue_name=row['venue']['name']
                    venue_category=row['venue']['categories'][0]['name']
                    venue details.append([venue id, venue name, venue category])
                except KeyError:
                    pass
            column names=['ID','Name','Category']
            df = pd.DataFrame(venue_details,columns=column_names)
            return df
```

Let's create the neighborhoods list that contains Brazilian restaurants

```
In [15]: column_names=['Borough', 'Neighborhood', 'ID', 'Name']
         br_rest_ny=pd.DataFrame(columns=column_names)
         count=1
         for row in neighborhoods.values.tolist():
             Borough, Neighborhood, Latitude, Longitude=row
             venues = get venues(Latitude, Longitude)
             br resturants=venues[venues['Category']=='Brazilian Restaurant']
             print('(',count,'/',len(neighborhoods),')','Brazilian Resturants in '+Neighborh
         ood+', '+Borough+':'+str(len(br resturants)))
             for resturant_detail in br_resturants.values.tolist():
                 id, name , category=resturant_detail
                 br_rest_ny = br_rest_ny.append({'Borough': Borough,
                                                          'Neighborhood': Neighborhood,
                                                          'ID': id,
                                                          'Name' : name
                                                         }, ignore_index=True)
             count+=1
```

```
( 1 / 306 ) Brazilian Resturants in Wakefield, Bronx:0
( 2 / 306 ) Brazilian Resturants in Co-op City, Bronx:0
( 3 / 306 ) Brazilian Resturants in Eastchester, Bronx:0
( 4 / 306 ) Brazilian Resturants in Fieldston, Bronx:0
( 5 / 306 ) Brazilian Resturants in Riverdale, Bronx:0
( 6 / 306 ) Brazilian Resturants in Kingsbridge, Bronx:0
( 7 / 306 ) Brazilian Resturants in Marble Hill, Manhattan:0
( 8 / 306 ) Brazilian Resturants in Woodlawn, Bronx:0
( 9 / 306 ) Brazilian Resturants in Norwood, Bronx:0
( 10 / 306 ) Brazilian Resturants in Williamsbridge, Bronx:0
( 11 \ / \ 306 ) Brazilian Resturants in Baychester, Bronx:0
( 12 / 306 ) Brazilian Resturants in Pelham Parkway, Bronx:0
( 13 / 306 ) Brazilian Resturants in City Island, Bronx:0
( 14 / 306 ) Brazilian Resturants in Bedford Park, Bronx:0
( 15 / 306 ) Brazilian Resturants in University Heights, Bronx:0
( 16 / 306 ) Brazilian Resturants in Morris Heights, Bronx:0
( 17 / 306 ) Brazilian Resturants in Fordham, Bronx:0
( 18 / 306 ) Brazilian Resturants in East Tremont, Bronx:0
( 19 / 306 ) Brazilian Resturants in West Farms, Bronx:0
( 20 / 306 ) Brazilian Resturants in High Bridge, Bronx:0
( 21 / 306 ) Brazilian Resturants in Melrose, Bronx:0
( 22 / 306 ) Brazilian Resturants in Mott Haven, Bronx:0
( 23 / 306 ) Brazilian Resturants in Port Morris, Bronx:0
( 24 / 306 ) Brazilian Resturants in Longwood, Bronx:0
( 25 / 306 ) Brazilian Resturants in Hunts Point, Bronx:0
( 26 / 306 ) Brazilian Resturants in Morrisania, Bronx:0
( 27 / 306 ) Brazilian Resturants in Soundview, Bronx:0
( 28 / 306 ) Brazilian Resturants in Clason Point, Bronx:0
( 29 / 306 ) Brazilian Resturants in Throgs Neck, Bronx:0
( 30 / 306 ) Brazilian Resturants in Country Club, Bronx:0
( 31 / 306 ) Brazilian Resturants in Parkchester, Bronx:0
( 32 / 306 ) Brazilian Resturants in Westchester Square, Bronx:0
( 33 / 306 ) Brazilian Resturants in Van Nest, Bronx:0
( 34 / 306 ) Brazilian Resturants in Morris Park, Bronx:0
( 35 / 306 ) Brazilian Resturants in Belmont, Bronx:0
( 36 / 306 ) Brazilian Resturants in Spuyten Duyvil, Bronx:0
( 37 / 306 ) Brazilian Resturants in North Riverdale, Bronx:0
( 38 / 306 ) Brazilian Resturants in Pelham Bay, Bronx:0
( 39 / 306 ) Brazilian Resturants in Schuylerville, Bronx:0
( 40 / 306 ) Brazilian Resturants in Edgewater Park, Bronx:0
( 41 / 306 ) Brazilian Resturants in Castle Hill, Bronx:0
( 42 / 306 ) Brazilian Resturants in Olinville, Bronx:0
( 43 / 306 ) Brazilian Resturants in Pelham Gardens, Bronx:0
( 44 / 306 ) Brazilian Resturants in Concourse, Bronx:0
( 45 / 306 ) Brazilian Resturants in Unionport, Bronx:0
( 46 / 306 ) Brazilian Resturants in Edenwald, Bronx:0
( 47 \ / \ 306 ) Brazilian Resturants in Bay Ridge, Brooklyn:0
( 48 / 306 ) Brazilian Resturants in Bensonhurst, Brooklyn:0
( 49 / 306 ) Brazilian Resturants in Sunset Park, Brooklyn:0
( 50 / 306 ) Brazilian Resturants in Greenpoint, Brooklyn:0
(51 / 306) Brazilian Resturants in Gravesend, Brooklyn:0
( 52 / 306 ) Brazilian Resturants in Brighton Beach, Brooklyn:0
( 53 / 306 ) Brazilian Resturants in Sheepshead Bay, Brooklyn:0
( 54 / 306 ) Brazilian Resturants in Manhattan Terrace, Brooklyn:0
( 55 / 306 ) Brazilian Resturants in Flatbush, Brooklyn:0
( 56 / 306 ) Brazilian Resturants in Crown Heights, Brooklyn:0
( 57 / 306 ) Brazilian Resturants in East Flatbush, Brooklyn:0
(58 / 306) Brazilian Resturants in Kensington, Brooklyn:0
( 59 / 306 ) Brazilian Resturants in Windsor Terrace, Brooklyn:0
( 60 / 306 ) Brazilian Resturants in Prospect Heights, Brooklyn:0
( 61 / 306 ) Brazilian Resturants in Brownsville, Brooklyn:0
( 62 / 306 ) Brazilian Resturants in Williamsburg, Brooklyn:0
(63 / 306) Brazilian Resturants in Bushwick, Brooklyn:0
( 64 / 306 ) Brazilian Resturants in Bedford Stuyvesant, Brooklyn:0
```

```
In [16]: #showing dataset result
br_rest_ny
```

Out[16]:

	Borough	ugh Neighborhood	ID	Name
0	Manhattan	attan Clinton	57671bd4498e7856b7d79963	Samba Kitchen & Bar
1	Manhattan	attan West Village	4a5b5143f964a520fdba1fe3	Berimbau do Brasil
2	Queens	eens Astoria	4bdf502a89ca76b062b75d5e	Favela Grill
3	Queens	eens Long Island City	5338a897498e1b9bc410d5d1	Beija Flor
4	Queens	eens East Elmhurst	4f0b6fb3e4b07c79f8f42d61	Rainhas Churrascaria
5	Queens	eens Steinway	58d6aa0898f8aa0d67c21411	Kilo
6	Queens	eens Rockaway Beach	5554b037498e2fc87369fe8a	The Summer Shift by The MP Shift
7	Queens	eens Ravenswood	4b6dbc02f964a520c98a2ce3	New York Pão de Queijo
8	Queens	eens Ravenswood	4c4f33b824edc9b633ab4ebb	Copacabana Brazilian Restaurant
9	Queens	eens Ravenswood	5338a897498e1b9bc410d5d1	Beija Flor
10	Queens	eens North Corona	4f0b6fb3e4b07c79f8f42d61	Rainhas Churrascaria
11	Manhattan	attan Stuyvesant Town	458d06def964a520ff3f1fe3	Esperanto

We see that Queens has the most of Brazilian restaurants and we Manhattan has only 3.

So now I will explore Queens Borough and find out a good place to leave for some months.

Out[12]:

	Borough	Neighborhood	Latitude	Longitude
0	Queens	Astoria	40.768509	-73.915654
1	Queens	Woodside	40.746349	-73.901842
2	Queens	Jackson Heights	40.751981	-73.882821
3	Queens	Elmhurst	40.744049	-73.881656
4	Queens	Howard Beach	40.654225	-73.838138

Now we will use same function used on New York lab to get top 100 venues to all the neighborhoods in Queens in na radius of 500 meters.

```
In [13]: CLIENT ID = 'VD2VBP2YGIDOVBIDH122JBCUN1YLNL44EPVCGDUAWBXSBO51'
         CLIENT SECRET = 'X353ACX0FWHWV3ZWKKGDWO4KXKU4YM2DX5CJDU4EM12MBZBU' # your Foursquar
         e Secret
         VERSION = '20180605' # Foursquare API version
         RADIUS=500
         LIMIT=100
         def getNearbyVenues(names, latitudes, longitudes, radius=500):
             venues list=[]
             for name, lat, lng in zip(names, latitudes, longitudes):
                 print(name)
                 # create the API request URL
                 url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client se
         cret={}&v={}&ll={},{}&radius={}&limit={}'.format(
                     CLIENT ID,
                     CLIENT_SECRET,
                     VERSION,
                     lat,
                     lng,
                     radius,
                     LIMIT)
                  # make the GET request
                 results = requests.get(url).json()["response"]['groups'][0]['items']
                 # return only relevant information for each nearby venue
                 venues_list.append([(
                     name,
                     lat,
                     lng,
                     v['venue']['name'],
                     v['venue']['location']['lat'],
                     v['venue']['location']['lng'],
                     v['venue']['categories'][0]['name']) for v in results])
             nearby venues = pd.DataFrame([item for venue list in venues list for item in ve
         nue list])
             nearby_venues.columns = ['Neighborhood',
                            'Neighborhood Latitude',
                            'Neighborhood Longitude',
                            'Venue',
                            'Venue Latitude',
                            'Venue Longitude',
                            'Venue Category']
             return(nearby venues)
```

Here we will run the above function on each neighborhood and create a new dataframe called queens_venues.

Astoria

Woodside

Jackson Heights

Elmhurst

Howard Beach

Corona

Forest Hills

Kew Gardens

Richmond Hill

Flushing

Long Island City

Sunnyside

East Elmhurst

Maspeth

Ridgewood

Glendale

Rego Park

Woodhaven

Ozone Park

South Ozone Park

College Point

Whitestone

Bayside

Auburndale

Little Neck

Douglaston

Glen Oaks

Bellerose

Kew Gardens Hills

Fresh Meadows

Briarwood

Jamaica Center

Oakland Gardens

Queens Village

Hollis

South Jamaica

St. Albans

Rochdale

Springfield Gardens

Cambria Heights

Rosedale

Far Rockaway

Broad Channel

Breezy Point

Steinway

Beechhurst

Bay Terrace

Edgemere

Arverne

Rockaway Beach

Neponsit

Murray Hill

Floral Park

Holliswood

Jamaica Estates

Queensboro Hill

Hillcrest

Ravenswood

Lindenwood

Laurelton

Lefrak City

Belle Harbor

Rockaway Park

Somerville

9/21/2019, 10:08 PM 12 of 37

Checking queens_venues dataframe size and first lines:

Out[15]:

Venue Category	Venue Longitude	Venue Latitude	Venue	Neighborhood Longitude	Neighborhood Latitude	leighborhood	Ne
Brazilian Restaurant	-73.917897	40.767348	Favela Grill	-73.915654	40.768509	Astoria	0
Gym	-73.918977	40.769404	CrossFit Queens	-73.915654	40.768509	Astoria	1
Gourmet Shop	-73.919253	40.769198	Titan Foods Inc.	-73.915654	40.768509	Astoria	2
Gourmet Shop	-73.917012	40.769856	Orange Blossom	-73.915654	40.768509	Astoria	3
Gym	-73.912403	40.769114	Simply Fit Astoria	-73.915654	40.768509	Astoria	4

1. Analyzing each Neighborhood in Queens Borough.

```
In [26]: # one hot encoding
    queens_onehot = pd.get_dummies(queens_venues[['Venue Category']], prefix="", prefix
    _sep="")

# add neighborhood column back to dataframe
    queens_onehot['Neighborhood'] = queens_venues['Neighborhood']

# move neighborhood column to the first column
    fixed_columns = [queens_onehot.columns[-1]] + list(queens_onehot.columns[:-1])
    queens_onehot = queens_onehot[fixed_columns]
```

Out[26]:

		Yoga Studio	Accessories Store	Afghan Restaurant		•	Argentinian Restaurant		Art Museum	Arts & Crafts Store	Arts Entertainme
-	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	
	3	0	0	0	0	0	0	0	0	0	
	4	0	0	0	0	0	0	0	0	0	

Next, let's group rows by neighborhood and by taking the mean of the frequency of occurrence of each category

```
In [27]: queens_grouped = queens_onehot.groupby('Neighborhood').mean().reset_index()
   queens_grouped
```

Out[27]:

	Neighborhood	Yoga Studio	Accessories Store	Afghan Restaurant	American Restaurant	Arepa Restaurant	Argentinian Restaurant	Art Gallery	Art Museum
0	Arverne	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
1	Astoria	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2	Astoria Heights	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
3	Auburndale	0.000000	0.000000	0.000000	0.052632	0.000000	0.000000	0.000000	0.000000
4	Bay Terrace	0.000000	0.024390	0.000000	0.048780	0.000000	0.000000	0.000000	0.000000
5	Bayside	0.013514	0.000000	0.000000	0.040541	0.000000	0.000000	0.000000	0.000000
6	Bayswater	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
7	Beechhurst	0.062500	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
8	Bellaire	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
9	Belle Harbor	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
10	Bellerose	0.000000	0.000000	0.000000	0.055556	0.000000	0.000000	0.000000	0.000000
11	Blissville	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
12	Breezy Point	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
13	Briarwood	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
14	Broad Channel	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
15	Brookville	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
16	Cambria Heights	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
17	College Point	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
18	Corona	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
19	Douglaston	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
20	East Elmhurst	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
21	Edgemere	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
22	Elmhurst	0.000000	0.000000	0.000000	0.000000	0.000000	0.025000	0.000000	0.000000
23	Far Rockaway	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
24	Floral Park	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25	Flushing	0.016949	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
26	Forest Hills	0.050000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
27	Forest Hills Gardens	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
28	Fresh Meadows	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
29	Glen Oaks	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
30	Glendale	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
31	Hammels	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
32	Hillcrest	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
33	Hollis	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
34	Holliswood	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
35	Howard Beach	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
36	Hunters Point	0.013514	0.000000	0.000000	0.027027	0.000000	0.000000	0.000000	0.000000

So in dataframe above, we can see what venues, with frequency, we have for each neighborhood in a radius of 500 meters. We can check for example how many restaurants, churches, gyms and so on we have on Astoria or any other neighborhood in Queens.

Now let's create a function to sort the venues in descending order.

```
In [28]: def return_most_common_venues(row, num_top_venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False)

    return row_categories_sorted.index.values[0:num_top_venues]
```

And create a new dataframe with top 10 venues for each neighborhood.

```
In [60]: | num_top_venues = 10
         indicators = ['st', 'nd', 'rd']
         # create columns according to number of top venues
         columns = ['Neighborhood']
         for ind in np.arange(num_top_venues):
             try:
                 columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
             except:
                 columns.append('{}th Most Common Venue'.format(ind+1))
         # create a new dataframe
         neighborhoods_venues_sorted = pd.DataFrame(columns=columns)
         neighborhoods venues sorted['Neighborhood'] = queens grouped['Neighborhood']
         for ind in np.arange(queens_grouped.shape[0]):
             neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(queens_gr
         ouped.iloc[ind, :], num top venues)
         neighborhoods_venues_sorted.head()
```

Out[60]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Mc Comm Ven
0	Arverne	Surf Spot	Sandwich Place	Metro Station	Beach	Bed & Breakfast	Thai Restaurant	Donut Shop	Coff Sh
1	Astoria	Bar	Middle Eastern Restaurant	Greek Restaurant	Hookah Bar	Seafood Restaurant	Mediterranean Restaurant	Bakery	Piz Pla
2	Astoria Heights	Playground	Italian Restaurant	Plaza	Bus Station	Bowling Alley	Supermarket	Bakery	Burç Jo
3	Auburndale	Hookah Bar	Gymnastics Gym	Korean Restaurant	Supermarket	Noodle House	Furniture / Home Store	Italian Restaurant	Discou Sto
4	Bay Terrace	Clothing Store	Women's Store	Shoe Store	Cosmetics Shop	American Restaurant	Donut Shop	Mobile Phone Shop	Ki Sto

1. Clustering neighborhoods

Now we will use k-means clustering model to cluster the neighborhoods into 3 clusters. I tried to set the number of clusters to 4 and 5, but it created 2 groups with one neighborhood on each, so I decided to keep only 3 clusters. We will check how the neighborhoods in each cluster are similar to each other in terms of the features included in the dataset.

Let's create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood.

```
In [62]: # add clustering labels
    neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_)

queens_merged = queens_data

# merge toronto_grouped with toronto_data to add latitude/longitude for each neighborhood
queens_merged = queens_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood')

queens_merged.head()
```

Out[62]:

	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	51 Cc
0	Queens	Astoria	40.768509	-73.915654	2	Bar	Middle Eastern Restaurant	Greek Restaurant	Hookah Bar	E Res
1	Queens	Woodside	40.746349	-73.901842	2	Grocery Store	Thai Restaurant	Latin American Restaurant	Filipino Restaurant	
2	Queens	Jackson Heights	40.751981	-73.882821	2	Latin American Restaurant	Peruvian Restaurant	Bakery	Mobile Phone Shop	Ar Res
3	Queens	Elmhurst	40.744049	-73.881656	2	Thai Restaurant	Mexican Restaurant	South American Restaurant	Chinese Restaurant	Vietr Res
4	Queens	Howard Beach	40.654225	-73.838138	2	Italian Restaurant	Fast Food Restaurant	Pharmacy	Bagel Shop	Cons Land:

Let's get the geographical coordinates of Queens to create a map showing the 3 clusters that were created.

```
In [63]: address = 'Queens, NY'
    geolocator = Nominatim(user_agent="ny_explorer")
    location = geolocator.geocode(address)
    latitude = location.latitude
    longitude = location.longitude
    print('The geograpical coordinate of Queens are {}, {}.'.format(latitude, longitude))
```

The geograpical coordinate of Queens are 40.6524927, -73.7914214158161.

```
In [64]: # create map
          map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
          # set color scheme for the clusters
          x = np.arange(kclusters)
          ys = [i + x + (i*x)**2  for i  in range(kclusters)]
          colors array = cm.rainbow(np.linspace(0, 1, len(ys)))
          rainbow = [colors.rgb2hex(i) for i in colors array]
          # add markers to the map
          markers colors = []
          for lat, lon, poi, cluster in zip(queens_merged['Latitude'], queens_merged['Longitu
          de'], queens_merged['Neighborhood'], queens_merged['Cluster Labels']):
    label = folium.Popup(str(poi) + 'Cluster ' + str(cluster), parse_html=True)
              folium.CircleMarker(
                   [lat, lon],
                   radius=5,
                   popup=label,
                   color=rainbow[cluster-1],
                   fill=True,
                   fill_color=rainbow[cluster-1],
                   fill_opacity=0.7).add_to(map_clusters)
          map_clusters
```

Out[64]:

You can see in the map that most of neighborhoods is on cluster 3 in green . Let's see each cluster below on dataframe.

In [65]: #Cluster 1 - In this cluster we have neighborhoods with first common venue Park and others similar venues like Women's Store, Farmers Market, Eletronics Stores and oth

> queens merged.loc[queens merged['Cluster Labels'] == 0, queens merged.columns[[1] + list(range(5, queens merged.shape[1]))]]

Out[65]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	
63	Somerville	Park	Women's Store	Farmers Market	Electronics Store	Empanada Restaurant	Event Space	Falafel Restaurant	Farm	I R
79	Bayswater	Park	Playground	Women's Store	Farmers Market	Electronics Store	Empanada Restaurant	Event Space	Falafel Restaurant	

In [66]: | #Cluster 2 - This cluster we have most of neighborhoods with first common venue Bea ch and others similar venues like Event Space, Bus Stop and Fast Food Restaurant.

queens merged.loc[queens merged['Cluster Labels'] == 1, queens merged.columns[[1] + list(range(5, queens_merged.shape[1]))]]

Out[66]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Mos Commoi Venue
43	Breezy Point	Beach	Monument / Landmark	Board Shop	Trail	Women's Store	Fast Food Restaurant	Event Space	Falafe Restauran
50	Neponsit	Beach	Bus Stop	Filipino Restaurant	Event Space	Falafel Restaurant	Farm	Farmers Market	Fast Food Restauran
61	Belle Harbor	Beach	Spa	Deli / Bodega	Chinese Restaurant	Ice Cream Shop	Pharmacy	Bus Stop	Italiaı Restauran
62	Rockaway Park	Beach	Pizza Place	Deli / Bodega	Bank	Donut Shop	Bagel Shop	Mediterranean Restaurant	Bus Stoj
75	Roxbury	Beach	Fast Food Restaurant	Irish Pub	Trail	Hardware Store	Baseball Field	Deli / Bodega	Pul
77	Malba	Tennis Court	Rest Area	Egyptian Restaurant	Electronics Store	Empanada Restaurant	Event Space	Falafel Restaurant	Farn
78	Hammels	Beach	Bus Station	Building	Fast Food Restaurant	Gym / Fitness Center	Café	Shoe Store	Dog Rui

9/21/2019, 10:08 PM 20 of 37

```
In [67]: #Cluster 3 - - In this cluster we have neighborhoods with high number of restaurant
s, bars, stores, gyms and supermarkets.

queens_merged.loc[queens_merged['Cluster Labels'] == 2, queens_merged.columns[[1] +
list(range(5, queens_merged.shape[1]))]]
```

Out[67]:

-		Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue
-	0	Astoria	Bar	Middle Eastern Restaurant	Greek Restaurant	Hookah Bar	Seafood Restaurant	Mediterranean Restaurant	Bakery
	1	Woodside	Grocery Store	Thai Restaurant	Latin American Restaurant	Filipino Restaurant	Bakery	American Restaurant	Pizza Place
	2	Jackson Heights	Latin American Restaurant	Peruvian Restaurant	Bakery	Mobile Phone Shop	South American Restaurant	Thai Restaurant	Diner
	3	Elmhurst	Thai Restaurant	Mexican Restaurant	South American Restaurant	Chinese Restaurant	Vietnamese Restaurant	Bubble Tea Shop	Hotpot Restaurant
	4	Howard Beach	Italian Restaurant	Fast Food Restaurant	Pharmacy	Bagel Shop	Construction & Landscaping	Sandwich Place	Deli / Bodega
	5	Corona	Mexican Restaurant	Convenience Store	Juice Bar	Deli / Bodega	Park	Donut Shop	Restaurant
	6	Forest Hills	Gym	Gym / Fitness Center	Park	Food Truck	Thai Restaurant	Asian Restaurant	Yoga Studio
	7	Kew Gardens	Chinese Restaurant	Deli / Bodega	Bar	Bank	Cosmetics Shop	Pizza Place	Donut Shop
	8	Richmond Hill	Pizza Place	Bank	Latin American Restaurant	Lounge	Caribbean Restaurant	Spanish Restaurant	Supermarket
	9	Flushing	Hotpot Restaurant	Chinese Restaurant	Korean Restaurant	Bubble Tea Shop	Karaoke Bar	Construction & Landscaping	Bakery
	10	Long Island City	Coffee Shop	Hotel	Bar	Gym / Fitness Center	Café	Pizza Place	Mexican Restaurant
	11	Sunnyside	Pizza Place	South American Restaurant	Italian Restaurant	Chinese Restaurant	Hotel	Discount Store	Coffee Shop
	12	East Elmhurst	Donut Shop	Lake	Rental Car Location	Chinese Restaurant	Gas Station	Coffee Shop	Supermarket
	13	Maspeth	Pizza Place	Diner	Mobile Phone Shop	Grocery Store	Bank	Pharmacy	Chinese Restaurant
	14	Ridgewood	Bakery	Deli / Bodega	Bank	Pizza Place	Mobile Phone Shop	Greek Restaurant	Grocery Store
	15	Glendale	Arts & Crafts Store	Food & Drink Shop	Pizza Place	Brewery	Food	Food Court	Flower Shop
	16	Rego Park	Bakery	Sandwich Place	Donut Shop	Grocery Store	Restaurant	Sushi Restaurant	Pizza Place
	17	Woodhaven	Deli / Bodega	Bank	Pharmacy	Hookah Bar	Park	Dive Bar	Donut Shop
	18	Ozone Park	Diner	Pharmacy	Pizza Place	Fast Food Restaurant	Gym	Bank	Martial Arts Dojo
	19	South Ozone Park	Park	Deli / Bodega	Fast Food Restaurant	Food	Food Truck	Hotel	Bar
	20	College Point	Deli / Bodega	Bakery	Karaoke Bar	Latin American Restaurant	Asian Restaurant	Pizza Place	Bar

So now, Brazilians who needs to move to New York have a lot of information about Neighborhoods in Queens (where there are most of Brazilian restaurants) to choose where to leave. Analyzing all those clusters, I prefer to leave in one of neighborhoods on cluster 3. I chose 3 neighborhoods that looks very nice for me because they have good restaurants and gyms around: Long Island City, Forest Hills and Hunters Point. So now I will search for hotels on those places.

1. Search for a specific venue category

```
https://api.foursquare.com/v2/venues/ search ?client_id= CLIENT_ID & client_secret= CLIENT_SECRET &ll= LATITUDE , LONGITUDE &v= VERSION & query= QUERY &radius= RADIUS &limit= LIMIT
```

Let's check the latitude and longitude for 3 neighborhoods: Long Island City, Forest Hills and Hunters Point

```
In [50]: neigh_list = ['Long Island City', 'Forest Hills', 'Hunters Point']
    possible_neigh_df = queens_data.loc[queens_data['Neighborhood'].isin(neigh_list)]
    possible_neigh_df
```

Out[50]:

	Borough	Neighborhood	Latitude	Longitude
6	Queens	Forest Hills	40.725264	-73.844475
10	Queens	Long Island City	40.750217	-73.939202
72	Queens	Hunters Point	40.743414	-73.953868

Checking if there is any hotel around Forest Hills Neighborhood. I used a radius of 700 meters

```
In [63]: latitude=40.725264
  longitude=-73.844475
  search_query = 'hotel'
  radius = 700
  url = 'https://api.foursquare.com/v2/venues/search?client_id={}&client_secret={}&l
  l={},{}&v={}&query={}&radius={}&limit={}'.format(CLIENT_ID, CLIENT_SECRET, latitud
  e, longitude, VERSION, search_query, radius, LIMIT)
  url
```

Out[63]: 'https://api.foursquare.com/v2/venues/search?client_id=VD2VBP2YGIDOVBIDH122JBCUN 1YLNL44EPVCGDUAWBXSB051&client_secret=X353ACX0FWHWV3ZWKKGDW04KXKU4YM2DX5CJDU4EM1 2MBZBU&l1=40.725264,-73.844475&v=20180605&query=hotel&radius=700&limit=100'

```
In [56]: results = requests.get(url).json()
         results
Out[56]: {'meta': {'code': 200, 'requestId': '5d7fedb9ad1789002cf71d0b'},
          'response': {'venues': [{'id': '4dd7f0821fc7d8d86645fad7',
              'name': 'Hotel Pennsylvania Preservation Society',
             'location': {'address': '99-22 67th Rd',
              'crossStreet': 'Austin Street & Booth Street',
              'lat': 40.72404943670689,
              'lng': -73.85355930152319,
               'labeledLatLngs': [{'label': 'display',
                'lat': 40.72404943670689,
                'lng': -73.85355930152319}],
              'distance': 778,
               'postalCode': '11375',
               'cc': 'US',
               'city': 'Forest Hills',
               'state': 'NY',
               'country': 'United States',
               'formattedAddress': ['99-22 67th Rd (Austin Street & Booth Street)',
               'Forest Hills, NY 11375',
               'United States']},
              'categories': [{'id': '50328a8e91d4c4b30a586d6c',
               'name': 'Non-Profit',
               'pluralName': 'Non-Profits',
               'shortName': 'Non-Profit',
               'icon': {'prefix': 'https://ss3.4sqi.net/img/categories v2/building/defaul
                'suffix': '.png'},
               'primary': True}],
             'venuePage': {'id': '49998039'},
             'referralId': 'v-1568665017',
              'hasPerk': False } ] } }
```

Get relevant part of JSON and transform it into a pandas dataframe

```
In [60]: # assign relevant part of JSON to venues
         venues = results['response']['venues']
         # tranform venues into a dataframe
         dataframe = json normalize(venues)
         dataframe
Out[60]:
```

	id	name	categories	referralld	hasPerk	location.address
0	4dd7f0821fc7d8d86645fad7	Hotel Pennsylvania Preservation Society	[{'id': '50328a8e91d4c4b30a586d6c', 'name': 'N	v-1568665017	False	99-22 67th Ro

Lets see the rating for this hotel

This venue has not been rated yet.

Unfortunately there is no rate for this hotel on Foursquare. So, let me check the hotels on others 2 neighborhoods

```
In [110]: #Long Island City
latitude=40.750217
longitude=-73.939202
search_query = 'hotel'
radius = 700
url = 'https://api.foursquare.com/v2/venues/search?client_id={}&client_secret={}&l
l={},{}&v={}&query={}&radius={}&limit={}'.format(CLIENT_ID, CLIENT_SECRET, latitud
e, longitude, VERSION, search_query, radius, LIMIT)
results = requests.get(url).json()
# assign relevant part of JSON to venues
venues = results['response']['venues']

# tranform venues into a dataframe
dataframe = json_normalize(venues)
dataframe
```

Out[110]:

	id	name	categories	referralld	hasPerk	location.addre
0	4dfa7f1c8877b30c3988120f	Z NYC Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	11-01 43 Aven
1	57f9887a498e90a780b039cc	The Vue Hotel, an Ascend Hotel Collection Member	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	40-47 22nd
2	4b494c3df964a520c36c26e3	Best Western Plaza Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	3934 21st
3	4bc4baedd57beee15cc3479f	Hotel Verve	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	4003 29th
4	4df142ca18386ecb4e26dad1	Z Hotel New York - Rooftop Bar/Lounge	[{'id': '4bf58dd8d48988d1d5941735', 'name': 'H	v-1568669215	False	1101 43rd A
5	59d21cf58a6f171bfe1100ef	Boro Hotel Fitness Center	[{'id': '4bf58dd8d48988d175941735', 'name': 'G	v-1568669215	False	Level C, Bo Hotel, 38-38, 27 Stre
6	5578639e498eb1d3badc495f	Boro Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	38-28 27th
7	4fe7048c754a0d91c0a9ef30	Q4 Hotel	[{'id': '4bf58dd8d48988d1ee931735', 'name': 'H	v-1568669215	False	29-09 Quee Plaza North L
8	57193525498e590d64281443	LIC Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	44 21th Stre Long Isla
9	5d56b49827dd5a00082a76ba	Lic Plaza Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	40-36 27th Stre
10	4f04ad3d6da1b97b167b2a86	Hotel Vetiver	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	2911 39th A
11	59fa1f641de765135cbe403d	Q4 Hotel and Hostel	[{'id': '4bf58dd8d48988d1ee931735', 'name': 'H	v-1568669215	False	29-09 Quee Plaza
12	5a91e6258b98fd465be61c71	Feather Factory Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	2632 Skillm A
13	59f9cafdf193c01073424c15	Giorgio Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	38-60 10 Street, Quee
14	58e1af3b54386d495993cadb	Boro Hotel Lobby Bar	[{'id': '4bf58dd8d48988d116941735', 'name': 'B	v-1568669215	False	Ni
15	4ff0bd6fe4b0db68d4b32cc0	Nesva Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669215	False	39-12 29th
16	5972c4d4db1d817cc8e462f4	Boro Hotel Rooftop Lounge	[{'id': '4bf58dd8d48988d1d5941735', 'name': 'H	v-1568669215	False	Boro Ho
17	51a2cd67498ed44656af0078	Henry Limousine Ltd Main Office At The Z	[{'id': '4bf58dd8d48988d130951735', 'name': 'T	v-1568669215	False	1101 43rd A

```
In [111]: # keep only columns that include venue name and ID.
filtered_columns = ['id', 'name']
    dataframe_filtered = dataframe.loc[:, filtered_columns]
    dataframe_filtered.rename(columns={'name':'Name'}, inplace=True)
    dataframe_filtered.rename(columns={'id':'ID'}, inplace=True)
    dataframe_filtered
```

Out[111]:

Name	ID	
Z NYC Hotel	4dfa7f1c8877b30c3988120f	0
The Vue Hotel, an Ascend Hotel Collection Member	57f9887a498e90a780b039cc	1
Best Western Plaza Hotel	4b494c3df964a520c36c26e3	2
Hotel Verve	4bc4baedd57beee15cc3479f	3
Z Hotel New York - Rooftop Bar/Lounge	4df142ca18386ecb4e26dad1	4
Boro Hotel Fitness Center	59d21cf58a6f171bfe1100ef	5
Boro Hotel	5578639e498eb1d3badc495f	6
Q4 Hotel	4fe7048c754a0d91c0a9ef30	7
LIC Hotel	57193525498e590d64281443	8
Lic Plaza Hotel	5d56b49827dd5a00082a76ba	9
Hotel Vetiver	4f04ad3d6da1b97b167b2a86	10
Q4 Hotel and Hostel	59fa1f641de765135cbe403d	11
Feather Factory Hotel	5a91e6258b98fd465be61c71	12
Giorgio Hotel	59f9cafdf193c01073424c15	13
Boro Hotel Lobby Bar	58e1af3b54386d495993cadb	14
Nesva Hotel	4ff0bd6fe4b0db68d4b32cc0	15
Boro Hotel Rooftop Lounge	5972c4d4db1d817cc8e462f4	16
Henry Limousine Ltd Main Office At The Z Hotel	51a2cd67498ed44656af0078	17
Z NYC Hotel @Room 903	522d47cd498e8690612dabec	18
Holiday Inn L.I. City-Manhattan View	4b1d1678f964a520b90b24e3	19
Ramada Long Island City	4b64aeeef964a52036c82ae3	20
Loews Hotels	52f27359498e7163b8ef6279	21

There are a huge list of hotels on Long Island City. So let's create a function to check the rates, likes and tips for all hotels in the list.

```
In [106]: CLIENT ID = 'VD2VBP2YGIDOVBIDH122JBCUN1YLNL44EPVCGDUAWBXSBO51'
          CLIENT SECRET = 'X353ACX0FWHWV3ZWKKGDWO4KXKU4YM2DX5CJDU4EM12MBZBU' # your Foursqua
          re Secret
          VERSION = '20180605' # Foursquare API version
          def get venue details(venue id):
              #url to fetch data from foursquare api
              url = 'https://api.foursquare.com/v2/venues/{}?&client id={}&client secret={}&
          v={}'.format(
                      venue id,
                      CLIENT ID,
                      CLIENT SECRET,
                      VERSION)
              # get all the data
              results = requests.get(url).json()
              venue data=results['response']['venue']
              venue_details=[]
              try:
                  venue id=venue data['id']
                  venue name=venue data['name']
                  venue_likes=venue_data['likes']['count']
                  venue_rating=venue_data['rating']
                  venue_tips=venue_data['tips']['count']
                  venue_details.append([venue_id,venue_name,venue_likes,venue_rating,venue_t
          ips])
              except KeyError:
                  pass
              column names=['ID','Name','Likes','Rating','Tips']
              df = pd.DataFrame(venue_details,columns=column_names)
              return df
```

```
In [112]: # prepare neighborhood list that contains hotels
          column names=['ID','Name','Likes','Rating','Tips']
          hotel_list=pd.DataFrame(columns=column_names)
          count=1
          for row in dataframe filtered.values.tolist():
              ID, Name=row
              try:
                  venue details=get_venue_details(ID)
                  print(venue details)
                  id, name, likes, rating, tips=venue_details.values.tolist()[0]
              except IndexError:
                  print('No data available for id=',id)
                  # we will assign 0 value for these resturants as they may have been
                  #recently opened or details does not exist in FourSquare Database
                  id, name, likes, rating, tips=[0]*5
              print('(',count,'/',len(dataframe filtered),')','processed')
              hotel list = hotel list.append({'ID': id,
                                       'Name' : name,
                                       'Likes' : likes,
                                       'Rating' : rating,
                                       'Tips' : tips
                                      }, ignore_index=True)
              count+=1
```

```
ΙD
                                Name Likes Rating Tips
0 4dfa7f1c8877b30c3988120f Z NYC Hotel 74 7.3
( 1 / 22 ) processed
Empty DataFrame
Columns: [ID, Name, Likes, Rating, Tips]
Index: []
No data available for id= 4dfa7f1c8877b30c3988120f
( 2 / 22 ) processed
                                             Name Likes Rating Tips
                       ΤD
0 4b494c3df964a520c36c26e3 Best Western Plaza Hotel
                                                    56 6.7
( 3 / 22 ) processed
                      ID
                                Name Likes Rating Tips
0 4bc4baedd57beee15cc3479f Hotel Verve 18 6.4
( 4 / 22 ) processed
                                                          Name Likes \
                      ΙD
0 4df142ca18386ecb4e26dad1 Z Hotel New York - Rooftop Bar/Lounge 45
  Rating Tips
  7.1 20
( 5 / 22 ) processed
Empty DataFrame
Columns: [ID, Name, Likes, Rating, Tips]
Index: []
No data available for id= 4df142ca18386ecb4e26dad1
( 6 / 22 ) processed
                      ID
                               Name Likes Rating Tips
0 5578639e498eb1d3badc495f Boro Hotel 66 9.0 12
( 7 / 22 ) processed
                      ID
                             Name Likes Rating Tips
0 4fe7048c754a0d91c0a9ef30 Q4 Hotel 41 7.2
( 8 / 22 ) processed
                      ID Name Likes Rating Tips
0 57193525498e590d64281443 LIC Hotel 17 7.1
( 9 / 22 ) processed
Empty DataFrame
Columns: [ID, Name, Likes, Rating, Tips]
No data available for id= 57193525498e590d64281443
( 10 / 22 ) processed
                       ΤD
                                   Name Likes Rating Tips
0 4f04ad3d6da1b97b167b2a86 Hotel Vetiver 42 6.6 12
( 11 / 22 ) processed
Empty DataFrame
Columns: [ID, Name, Likes, Rating, Tips]
No data available for id= 4f04ad3d6da1b97b167b2a86
( 12 / 22 ) processed
Empty DataFrame
Columns: [ID, Name, Likes, Rating, Tips]
Index: []
No data available for id= 0
( 13 / 22 ) processed
Empty DataFrame
Columns: [ID, Name, Likes, Rating, Tips]
Index: []
No data available for id= 0
( 14 / 22 ) processed
Empty DataFrame
Columns: [ID, Name, Likes, Rating, Tips]
Index: []
No data available for id= 0
( 15 / 22 ) processed
                                Name Likes Rating Tips
                       ΙD
0 4ff0bd6fe4b0db68d4b32cc0 Nesva Hotel 12 6.3
```

In [113]: hotel_list

Out[113]:

	ID	Name	Likes	Rating	Tips
0	4dfa7f1c8877b30c3988120f	Z NYC Hotel	74	7.3	38
1	0	0	0	0.0	0
2	4b494c3df964a520c36c26e3	Best Western Plaza Hotel	56	6.7	24
3	4bc4baedd57beee15cc3479f	Hotel Verve	18	6.4	14
4	4df142ca18386ecb4e26dad1	Z Hotel New York - Rooftop Bar/Lounge	45	7.1	20
5	0	0	0	0.0	0
6	5578639e498eb1d3badc495f	Boro Hotel	66	9.0	12
7	4fe7048c754a0d91c0a9ef30	Q4 Hotel	41	7.2	22
8	57193525498e590d64281443	LIC Hotel	17	7.1	6
9	0	0	0	0.0	0
10	4f04ad3d6da1b97b167b2a86	Hotel Vetiver	42	6.6	12
11	0	0	0	0.0	0
12	0	0	0	0.0	0
13	0	0	0	0.0	0
14	0	0	0	0.0	0
15	4ff0bd6fe4b0db68d4b32cc0	Nesva Hotel	12	6.3	8
16	0	0	0	0.0	0
17	0	0	0	0.0	0
18	0	0	0	0.0	0
19	4b1d1678f964a520b90b24e3	Holiday Inn L.I. City-Manhattan View	30	6.7	17
20	4b64aeeef964a52036c82ae3	Ramada Long Island City	16	4.9	15
21	0	0	0	0.0	0

We see that the hotel with best rate is Boro Hotel. Now let check hotels in Hunters Point.

```
In [114]: #Hunters Point
    latitude=40.743414
    longitude=-73.95386
    search_query = 'hotel'
    radius = 700
    url = 'https://api.foursquare.com/v2/venues/search?client_id={}&client_secret={}&l
    l={},{}&v={}&query={}&radius={}&limit={}'.format(CLIENT_ID, CLIENT_SECRET, latitud
    e, longitude, VERSION, search_query, radius, LIMIT)
    results = requests.get(url).json()
    # assign relevant part of JSON to venues
    venues = results['response']['venues']

# tranform venues into a dataframe
    dataframe = json_normalize(venues)
    dataframe
```

Out[114]:

	id	name	categories	referralld	hasPerk	location.address	I
0	4e87b2e329c23b6afa01d71a	The Box House Hotel	[{'id': '4bf58dd8d48988d1fa931735', 'name': 'H	v-1568669495	False	77 Box St	_
1	56dca6a6cd1056a1df5908de	Hotel Bennica Grand Café	[{'id': '4bf58dd8d48988d16d941735', 'name': 'C	v-1568669495	False	NaN	
2	4fe76145e4b0a0c3b0b59f23	Desi' Hotel Lounge	[{'id': '4d954b06a243a5684965b473', 'name': 'R	v-1568669495	False	NaN	

Name

Out[115]:

Hamo		
The Box House Hotel	4e87b2e329c23b6afa01d71a	0
Hotel Bennica Grand Café	56dca6a6cd1056a1df5908de	1
Desi' Hotel Lounge	4fe76145e4b0a0c3b0b59f23	2

ID

```
In [116]: | # prepare neighborhood list that contains hotels
          column names=['ID','Name','Likes','Rating','Tips']
          hotel_list=pd.DataFrame(columns=column_names)
          count=1
          for row in dataframe filtered.values.tolist():
              ID, Name=row
              try:
                  venue details=get venue details(ID)
                  print(venue details)
                  id, name, likes, rating, tips=venue details.values.tolist()[0]
              except IndexError:
                  print('No data available for id=',id)
                  # we will assign 0 value for these resturants as they may have been
                  #recently opened or details does not exist in FourSquare Database
                  id, name, likes, rating, tips=[0]*5
              print('(',count,'/',len(dataframe filtered),')','processed')
              hotel list = hotel list.append({'ID': id,
                                       'Name' : name,
                                       'Likes' : likes,
                                       'Rating' : rating,
                                       'Tips' : tips
                                      }, ignore_index=True)
              count+=1
                                   ΙD
                                                      Name Likes Rating Tips
          0 4e87b2e329c23b6afa01d71a The Box House Hotel
                                                             102
                                                                   8.4
                                                                              22
          (1/3) processed
         Empty DataFrame
         Columns: [ID, Name, Likes, Rating, Tips]
         No data available for id= 4e87b2e329c23b6afa01d71a
          (2/3) processed
          Empty DataFrame
         Columns: [ID, Name, Likes, Rating, Tips]
         Index: []
         No data available for id= 0
          (3/3) processed
```

That is not a very good rating. Let's check the rating of the second closest Italian restaurant.

```
In [117]:
             hotel list
Out[117]:
                                      ID
                                                     Name Likes Rating Tips
             0 4e87b2e329c23b6afa01d71a The Box House Hotel
                                                              102
                                                                      8.4
                                                                            22
             1
                                      0
                                                                0
                                                                            0
                                                         0
                                                                      0.0
             2
                                      0
                                                         0
                                                                0
                                                                      0.0
                                                                            0
```

The Box House Hotel looks a very good option too. Let me check now if there is train or metro around the both hotels that is better rated: The Box House Hotel around Hunters Point or Boro Hotel in Long Island City.

```
In [122]: #Box House Hotel
    latitude=40.737683
    longitude=-73.953455
    search_query = 'subway'
    radius = 500
    url = 'https://api.foursquare.com/v2/venues/search?client_id={}&client_secret={}&l
    l={},{}&v={}&query={}&radius={}&limit={}'.format(CLIENT_ID, CLIENT_SECRET, latitud
    e, longitude, VERSION, search_query, radius, LIMIT)
    results = requests.get(url).json()
    # assign relevant part of JSON to venues
    venues = results['response']['venues']

# tranform venues into a dataframe
    dataframe = json_normalize(venues)
    dataframe
```

Out[122]:

location.address	hasPerk	referralld	categories	name	id	
Greenpoint Ave	False	v-1568670491	[{'id': '4bf58dd8d48988d1fd931735', 'name': 'M	MTA Subway - Greenpoint Ave (G)	4b07380af964a520ebf922e3	0
10-46 Jacksor Ave	False	v-1568670491	[{'id': '4bf58dd8d48988d1c5941735', 'name': 'S	SUBWAY	4f024eb48b81b0190d2d5192	1
10-40 Border Ave	False	v-1568670491	[{'id': '4d4b7105d754a06375d81259', 'name': 'P	Subway Parking	4e24110122717a5245e4919e	2
NaN	False	v-1568670491	[{'id': '4bf58dd8d48988d12b951735', 'name': 'B	MTA Bus - G Train Shuttle	4b526470f964a5200a7b27e3	3

```
In [121]: #Boro Hotel
    latitude=40.754708
    longitude=-73.935824
    search_query = 'subway'
    radius = 500
    url = 'https://api.foursquare.com/v2/venues/search?client_id={}&client_secret={}&l
    l={},{}&v={}&query={}&radius={}&limit={}'.format(CLIENT_ID, CLIENT_SECRET, latitud
    e, longitude, VERSION, search_query, radius, LIMIT)
    results = requests.get(url).json()
    # assign relevant part of JSON to venues
    venues = results['response']['venues']

# tranform venues into a dataframe
    dataframe = json_normalize(venues)
    dataframe
```

Out[121]:

	id	name	categories	referralld	hasPerk	location.addres
0	4ad684abf964a520970721e3	MTA Subway - Queensboro Plaza (7/N/W)	[{'id': '4bf58dd8d48988d1fd931735', 'name': 'M	v-1568670458	False	Queensbor Plaz
1	4bebd433a9900f4799331840	MTA Subway - Queens Plaza (E/M/R)	[{'id': '4bf58dd8d48988d1fd931735', 'name': 'M	v-1568670459	False	Queens Plaza :
2	4b2c5b4ff964a5203ac624e3	MTA Subway - 39th Ave (N/W)	[{'id': '4bf58dd8d48988d1fd931735', 'name': 'M	v-1568670459	False	39th Av
3	50789d32e4b06da1414ea72c	SUBWAY	[{'id': '4bf58dd8d48988d1c5941735', 'name': 'S	v-1568670459	False	39-42 21st S

Results

Both hotels are near to subways stations. So I can stay on one of those two. Now I will need only check the price and availability of them to decide where will be my home for some months!

Discussion section

Doing this analysis we found out that Queens Borough have the most of Brazilian restaurants. So we analyzed each neighborhood in Queens to know if any of them would be a good place for Brazilians stay for some months or even leave in New York city. We found out that most of neighborhoods have a lot of restaurants and others places that Brazilians love like Gyms, Bars, Supermarkets, Parks, Coffees and there are public transportation available. We also clustered the neighborhoods on 7 clusters to check how similar were them.

Conclusion

Each person can check the list of venues for each neighborhood and decide what would be the best one to stay. I decided to stay in Hunters Point or Long Island City, because both neighborhoods are similiar and have good hotels.

37 of 37