Hoja 3. Estimadores de máxima verosimilitud Estadística. Grupo m3

Ejercicio 1. Sea (X_1, \ldots, X_n) una muestra aleatoria. En los siguientes casos, encontrar el estimador de máxima verosimilitud para θ :

1. $f_{\theta}(x) = \frac{1}{\theta}$ si $x = 1, 2, \dots, \theta$ (θ es entero y $1 \le \theta \le \theta_0$)

La función de verosimilitud es

$$L(\theta) = \frac{1}{\theta^n} I_{\{x_{(n),\dots,\theta_0}\}}(\theta).$$

Como $\frac{1}{\theta^n}$ es decreciente, el máximo se alcanza en $x_{(n)}$ y $\hat{\theta}_{MV} = x_{(n)} \in \{1,\ldots,\theta_0\} = \Theta$.

2. $f_{\theta}(x) = e^{-x+\theta} \text{ si } \theta \le x < \infty \text{ y } \theta > 0$

La función de verosimilitud es

$$L(\theta) = \exp\{-\sum_{j=1}^{n} x_j + n\theta\} I_{(0,x_{(1)}]}(\theta).$$

Como $\exp\{n\theta\}$ es creciente, el máximo de la verosimilitud se alcanza en $x_{(1)}$ y entonces $\hat{\theta}_{MV}=x_{(1)}>0$.

3. $f_{\theta}(x) = \theta \alpha x^{\alpha - 1} e^{-\theta x^{\alpha}}$ para x > 0 ($\alpha > 0$ conocido)

La función de verosimilitud es

$$L(\theta) = \theta^n \alpha^n \prod_{j=1}^n x_j^{\alpha-1} \exp\{-\theta \sum_{j=1}^n x_j^{\alpha}\}\$$

y la función soporte es

$$l(\theta) = n \ln \theta + n \ln \alpha + \sum_{j=1}^{n} (\alpha - 1) \ln x_j - \theta \sum_{j=1}^{n} x_j^{\alpha}.$$

Derivando e igualando a cero

$$l'(\theta) = \frac{n}{\theta} - \sum_{j=1}^{n} x_j^{\alpha} = 0,$$

$$\hat{\theta} = \frac{n}{\sum_{j=1}^{n} x_j^{\alpha}},$$

y como $l''(\theta) = -\frac{n}{\theta^2} < 0$, entonces $\hat{\theta}_{MV} = \frac{n}{\sum_{i=1}^{n} x_j^{\alpha}} > 0$.

4. $f_{\theta}(x) = \theta(1-x)^{\theta-1} \text{ si } 0 \le x \le 1 \text{ y } \theta \ge 1$

La función de verosimilitud es

$$L(\theta) = \theta^n \prod_{j=1}^n (1 - x_j)^{\theta - 1}$$

y la función soporte es

$$l(\theta) = n \ln \theta + (\theta - 1) \sum_{j=1}^{n} \ln(1 - x_j).$$

Derivando e igualando a cero

$$l'(\theta) = \frac{n}{\theta} + \sum_{j=1}^{n} \ln(1 - x_j) = 0,$$

 $\hat{\theta} = \left(-\frac{1}{n} \sum_{j=1}^{n} \ln(1 - x_j)\right)^{-1},$

y como $l''(\theta) = -\frac{n}{\theta^2} < 0, \,$ entonces se alcanza un valor máximo en

$$\hat{\theta} = \left(-\frac{1}{n}\sum_{j=1}^{n}\ln(1-x_j)\right)^{-1}.$$

Pero, cuando $\hat{\theta} < 1$, la función soporte es decreciente en todo $\theta \ge 1$, y en este caso se alcanza el máximo en $\hat{\theta} = 1$.

Es decir, el estimador de máxima verosimilitud es

$$\hat{\theta}_{MV} = \max \left\{ \left(-\frac{1}{n} \sum_{j=1}^{n} \ln(1 - x_j) \right)^{-1}, 1 \right\}.$$

Pero, si $x_j = 0$ para todo j = 1, ..., n; entonces $\hat{\theta}_{MV}$ no existe.

5. $f_{\theta}(x) = \theta(1-\theta)^{-1} x^{\frac{2\theta-1}{1-\theta}}$ si $0 < x \le 1$ y $1/2 \le \theta < 1$

La función de verosimilitud es

$$L(\theta) = \theta^{n} (1 - \theta)^{-n} \prod_{j=1}^{n} x_{j}^{\frac{2\theta - 1}{1 - \theta}}$$

y la función soporte es

$$l(\theta) = n \ln \theta - n \ln(1 - \theta) + \frac{2\theta - 1}{1 - \theta} \sum_{i=1}^{n} \ln x_j.$$

Derivando e igualando a cero

$$l'(\theta) = \frac{n}{\theta} + \frac{n}{1-\theta} + \frac{1}{(1-\theta)^2} \sum_{j=1}^{n} \ln x_j = 0,$$

$$\hat{\theta} = \left(1 - \frac{1}{n} \sum_{j=1}^{n} \ln x_j\right)^{-1},$$

y como $l''(\hat{\theta}) < 0$, entonces se alcanza un valor máximo en

$$\hat{\theta} = \left(1 - \frac{1}{n} \sum_{j=1}^{n} \ln x_j\right)^{-1} < 1 \text{ siempre que } 0 < x < 1.$$

Pero, cuando $\hat{\theta} < 1/2$, la función soporte es decreciente en todo $\theta \ge 1/2$, y en este caso se alcanza el máximo en $\hat{\theta} = 1/2$.

Es decir, el estimador de máxima verosimilitud es

$$\hat{\theta}_{MV} = \max \left\{ \left(1 - \frac{1}{n} \sum_{j=1}^{n} \ln x_j \right)^{-1}, 1/2 \right\}.$$

Pero, si $x_j = 1$ para todo j = 1, ..., n; entonces $\hat{\theta}_{MV}$ no existe.