Matemáticas Discretas Relaciones

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

25 de septiembre de 2023

Objetivos

- Formular enunciados formales en notación matemática usando lógica, conjuntos, relaciones, funciones, cardinalidad, y otras herramientas, desarrollando definiciones y teoremas al respecto, así como demostrar o refutar estos enunciados, usando variadas técnicas.
- Aplicar inducción como técnica para demostración de propiedades en conjuntos discretos y como técnica de definición formal de objetos discretos.
- Modelar formalmente un problema usando lógica, conjuntos, relaciones, y las propiedades necesarias, y demostrar propiedades al respecto de su modelo.

Contenidos

- Objetivos
- 2 Introducción
- 3 Definiciones básicas
- 4 Relaciones binarias
- 6 Propiedades
- 6 Relaciones de equivalencia
- 7 Relaciones de orden

Introducción

Las relaciones son un concepto muy usado en computación.

- Principalmente en Bases de Datos.
- ; Bases de datos relacionales?

Intuitivamente, una relación matemática puede verse como una correspondencia entre elementos de distintos dominios.

• En una base de datos, esta correspondencia está dada por una tabla.

Introducción

N° alumno	Nombre	Apellido	Carrera	Año
154	Diego	Valdés	Ingeniería comercial	5
339	María	Espinoza	Pedagogía	2
271	José	Barros	Periodismo	3
404	Josefina	Sáez	Medicina	1

Definición

Sean $a, b \in \mathcal{U}$ (donde \mathcal{U} es un conjunto universal). Definimos el **par ordenado** (a, b) como

$$(a,b) = \{\{a\}, \{a,b\}\}$$

¿Por qué lo definimos así?

• Para establecer la igualdad entre dos pares ordenados.

Propiedad

$$(a,b)=(c,d)$$
 si y sólo si $a=c \wedge b=d$.

Ejercicio

Demuestre la propiedad anterior.

Ejercicio

Considere la siguiente definición alternativa de un par ordenado:

$$(a,b) = \{a, \{b\}\}$$

¿Se cumple la propiedad anterior?

Podemos extender el concepto a tríos ordenados:

$$(a,b,c) = ((a,b),c)$$

o a cuadruplas ordenadas:

$$(a, b, c, d) = ((a, b, c), d) = (((a, b), c), d)$$

En general:

Definición

Sean $a_1, \ldots, a_n \in \mathcal{U}$. Definimos una n-tupla como:

$$(a_1,\ldots,a_n)=((a_1,\ldots,a_{n-1}),a_n).$$

Definición

Dados dos conjuntos A y B, definimos el **producto cartesiano** entre A y B como

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Ejemplo

Si $A=\{1,2\}$ y $B=\{3,4\}$, entonces $A\times B=\{(1,3),(1,4),(2,3),(2,4)\}.$

También podemos extender esta noción.

Definición

Dados conjuntos A_1, \ldots, A_n , definimos el **producto cartesiano** entre los A_i como

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_1 \in A_1 \wedge \ldots \wedge a_n \in A_n\}$$

Ejercicio

Defina el producto cartesiano de dimensión n usando la definición de producto cartesiano entre dos conjuntos.

Definición

Dados conjuntos A_1, \ldots, A_n , diremos que R es una **relación** sobre tales conjuntos si $R \subseteq A_1 \times \ldots \times A_n$.

Ejercicio

Defina la suma sobre los naturales como una relación sobre $\mathbb{N}, \mathbb{N}, \mathbb{N}$.

$$+_{\mathbb{N}} = \{(n_1, n_2, n_3) \in \mathbb{N} \times \mathbb{N} \times \mathbb{N} \mid sum(n_1, n_2) = n_3\}$$

$$(3, 4, 7) \in +_{\mathbb{N}} \qquad (0, 0, 1) \notin +_{\mathbb{N}}$$

Recuerde que sum es la suma que definimos en el capítulo de teoría de conjuntos.

La aridad de una relación R es el tamaño de las tuplas que la componen.

• Equivalentemente, diremos que R es una relación n-aria.

Ejemplo

La tabla que vimos al inicio:

N° alumno	Nombre	Apellido	Carrera	Año
154	Diego	Valdés	Ingeniería comercial	5
339	María	Espinoza	Pedagogía	2
271	José	Barros	Periodismo	3
404	Josefina	Sáez	Medicina	1

representa una relación 5-aria.

Un caso particular de suma importancia:

Definición

Dados conjuntos A y B, diremos que R es una **relación binaria** de A en B si $R \subseteq A \times B$.

Ejemplo

Si $A=\{1,2\}$ y $B=\{3,4\}$, entonces $R=\{(1,3),(2,4)\}$ es una relación binaria de A en B.

Ejercicio

¿Cuántas posibles relaciones binarias hay sobre dos conjuntos A y B?

Podemos tener una relación sobre un solo conjunto:

Definición

Dado un conjunto A, diremos que R es una **relación binaria** sobre A si $R\subseteq A\times A=A^2.$

Notación: cuando tengamos productos cartesianos entre un mismo conjunto, usaremos una notación de "potencia":

$$A \times \stackrel{(n-2 \text{ veces})}{\dots} \times A = A^n$$

Ejemplo

La relación binaria menor que :

$$\leq \subseteq \mathbb{N}^2$$
,

definida como sigue: dados $m, n \in \mathbb{N}$:

$$(m,n) \in < \text{si y sólo si } m \in n.$$

$$(1,3) \in < \qquad (10,4) \not\in < \qquad (7,7) \not\in <$$

La notación de conjuntos es un poco incómoda: $i(3,17) \in <?$

Dados $a, b \in A$, para indicar que están relacionados a través de R usamos cualquiera de las siguientes notaciones:

- \bullet $(a,b) \in R$
- \bullet R(a,b)
- aRb
 - Si no están relacionados, podemos escribir a Rb.

Nuestra elección dependerá del contexto.

Ejemplo

Ahora podríamos escribir:

$$3 < 17$$
 $7 < 6$

Paréntesis: notación infija

La última forma de escribir relaciones se llama notación infija.

Podemos extender tal notación a relaciones de mayor aridad. Por ejemplo, podríamos escribir $n_1+n_2=n_3$ si $(n_1,n_2,n_3)\in +_{\mathbb{N}}$:

$$3 + 4 = 7$$

y por lo tanto $n_1 + n_2 = n_3$ si y sólo si $sum(n_1, n_2) = n_3$.

¡Cuidado! El símbolo = ocupado en la primera parte es sólo un símbolo que forma parte de nuestra notación, y no debe ser confundido con el símbolo = usado en la segunda parte, que representa la igualdad de conjuntos definida en el capítulo anterior.

Ejemplo

La relación divide a, denotada por |, sobre los naturales sin el 0, es una relación tal que a está relacionado con b si y sólo si b es múltiplo de a:

$$a|b$$
 si y sólo si $\exists k \in \mathbb{N}$ tal que $b=ka$.

3|9|

18|72

7/9

Ejemplo

La relación equivalencia módulo n, denotada por \equiv_n , sobre los naturales, es una relación tal que a está relacionado con b si y sólo si |a-b| es múltiplo de n:

$$a \equiv_n b$$
 si y sólo si $\exists k \in \mathbb{N}$ tal que $|a - b| = kn$.

Por ejemplo, dado n=7:

$$2 \equiv_{7} 23$$
 $8 \equiv_{7} 1$ $19 \not\equiv_{7} 4$

Observación: de ahora en adelante trabajaremos con relaciones binarias sobre un conjunto, a las que nos referiremos simplemente como relaciones. Cuando sea de otra manera se explicitará.

Definición

Una relación R sobre un conjunto A es:

- **Refleja** si para cada $a \in A$ se tiene que R(a, a).
- Irrefleja si para cada $a \in A$ no se tiene que R(a,a).

Ejercicio

Dé ejemplos de relaciones reflejas e irreflejas sobre N.

Definición

Una relación R sobre un conjunto A es:

- Simétrica si para cada $a, b \in A$, si R(a, b) entonces R(b, a).
- **Asimétrica** si para cada $a,b \in A$, si R(a,b) entonces no es cierto que R(b,a).
- Antisimétrica si para cada $a,b \in A$, si R(a,b) y R(b,a), entonces a=b.

Ejercicio

Dé ejemplos de relaciones simétricas, asimétricas y antisimétricas sobre $\mathbb{N}.$

Definición

Una relación R sobre un conjunto A es:

- Transitiva si para cada $a,b,c\in A$, si R(a,b) y R(b,c), entonces R(a,c).
- Conexa si para cada $a, b \in A$, se tiene que R(a, b) o R(b, a).

Ejercicio

Dé ejemplos de relaciones transitivas y conexas sobre \mathbb{N} .

Ejercicios

- 1 Demuestre que la relación | es refleja, antisimétrica y transitiva.
- 2 Demuestre que la relación \equiv_n es refleja, simétrica y transitiva.

Las propiedades de las relaciones se pueden usar para definir tipos de relaciones. Un tipo muy importante es el siguiente:

Definición

Una relación R sobre A es una **relación de equivalencia** si es refleja, simétrica y transitiva.

Ya mostramos una relación de equivalencia, ¿cierto?

Ejercicio

Demuestre que \equiv_n es una relación de equivalencia.

Ejercicio

Demuestre que la relación equivalencia lógica sobre $L(P)^2$:

$$\varphi \equiv \psi$$
 si y sólo si $\forall \sigma$, $\sigma(\varphi) = \sigma(\psi)$

es una relación de equivalencia.

Definición

Sea \sim una relación de equivalencia sobre un conjunto A y un elemento $x \in A$. La **clase de equivalencia** de x bajo \sim es el conjunto

$$[x]_{\sim} = \{ y \in A \mid x \sim y \}.$$

Ejercicio

Estudie las clases de equivalencia de la relación de equivalencia lógica. ¿Qué representan? ¿Cuántas hay?

Si la relación se entiende del contexto, sólo escribiremos [x].

Teorema

Sea \sim una relación de equivalencia sobre un conjunto A.

- 2 $x \sim y$ si y sólo si [x] = [y].
- **3** Si $[x] \neq [y]$ entonces $[x] \cap [y] = \emptyset$.

Ejercicio

Demuestre el teorema.

Definición

Sea \sim una relación de equivalencia sobre un conjunto A. El **conjunto cuociente** de A con respecto a \sim es el conjunto de todas las clases de equivalencia de \sim :

$$A/\sim = \{[x] \mid x \in A\}$$

Ejercicio

Determine \mathbb{N}/\equiv_4 .

Definición

El **índice** de una relación de equivalencia es la cantidad de clases de equivalencia que induce. Es decir, la cantidad de elementos de su conjunto cuociente.

Ejercicio

¿Cuál es el índice de \equiv_4 ?

Definición

Sea A un conjunto cualquiera, y $\mathcal S$ una colección de subconjuntos de A ($\mathcal S\subseteq\mathcal P(A)$). Diremos que $\mathcal S$ es una **partición** de A si cumple que:

- $2 \mid \mathcal{S} = A$
- $\forall X, Y \in \mathcal{S}$, si $X \neq Y$ entonces $X \cap Y = \emptyset$.

Ejercicio

Dé ejemplos de particiones de \mathbb{N} .

Teorema

Si \sim es una relación de equivalencia sobre un conjunto A, entonces A/\sim es una partición de A.

Ejercicio

Demuestre el teorema.

Algo muy interesante es que lo inverso también se cumple:

Teorema

Si ${\mathcal S}$ es una partición cualquiera de un conjunto A, entonces la relación

$$x \sim y \Leftrightarrow \exists X \in \mathcal{S} \text{ tal que } \{x, y\} \subseteq X$$

es una relación de equivalencia sobre A.

Un elemento x estará relacionado con y si ambos pertenecen al mismo conjunto de la partición.

Ejercicio

Demuestre el teorema.

Construcción de conjuntos

Una de las aplicaciones más importantes de las relaciones de equivalencia es la definición de nuevos conjuntos. Lo que haremos será:

- Tomar un conjunto ya conocido (¿por ejemplo?).
- Calcular su conjunto cuociente respecto a alguna relación de equivalencia.
- Nombrar al conjunto y sus elementos.
- Definir operaciones sobre el nuevo conjunto, basándonos en los operadores del conjunto original.

Construcción de conjuntos

Tomemos un conjunto y una relación de equivalencia que ya hayamos visto.

Definición

El conjunto de los números naturales módulo 4 será el conjunto cuociente de $\mathbb N$ respecto a \equiv_4 :

$$\mathbb{N}_4 = \mathbb{N}/\equiv_4 = \{[0], [1], [2], [3]\}.$$

¿Cómo definimos la suma módulo 4?

$$[i] +_4 [j] = [i+j]$$

Ejercicio

Calcule $[3] +_4 [2] y [1] +_4 [3]$.

Construcción de conjuntos

Ejercicio

Defina la multiplicación módulo 4 y calcule $[2] \cdot_4 [3]$.

Ahora podríamos renombrar los elementos de \mathbb{N}_4 :

$$[0] \leftrightarrow 0 \hspace{0.5cm} [1] \leftrightarrow 1 \hspace{0.5cm} [2] \leftrightarrow 2 \hspace{0.5cm} [3] \leftrightarrow 3$$

Y ocupar simplemente + y \cdot , obteniendo un nuevo conjunto con operadores bien definidos:

$$\mathbb{N}_4 = \{0, 1, 2, 3\}$$
 con operadores $+ y \cdot$

tal que, por ejemplo, 1 + 1 = 2, 3 + 3 = 2, $3 \cdot 3 = 1$, etc.

Una relación de equivalencia fundamental

Veamos una relación de equivalencia más interesante.

Definición

La relación \downarrow sobre $\mathbb{N} \times \mathbb{N}$ se define como

$$(m,n)\downarrow(r,s)\Leftrightarrow m+s=n+r.$$

Ejercicio

Demuestre que \(\psi \) es una relación de equivalencia.

¿Cuáles son las clases de equivalencia inducidas por \$\psi\$?

```
 [(0,0)] = \{(0,0), (1,1), (2,2), \dots\} 
 [(0,1)] = \{(0,1), (1,2), (2,3), \dots\} 
 [(1,0)] = \{(1,0), (2,1), (3,2), \dots\} 
 [(0,2)] = \{(0,2), (1,3), (2,4), \dots\} 
 [(2,0)] = \{(2,0), (3,1), (4,2), \dots\} 
 \vdots 
 [(0,n)] = \{(0,n), (1,n+1), (2,n+2), \dots\} 
 [(n,0)] = \{(n,0), (n+1,1), (n+2,2), \dots\} 
 \vdots
```

¿Qué podemos hacer ahora?

Definición

El conjunto de los **números enteros** \mathbb{Z} se define como el conjunto cuociente de \mathbb{N}^2 respecto a \downarrow :

$$\mathbb{Z} = \mathbb{N}^2/\downarrow = \{[(0,0)], [(0,1)], [(1,0)], [(0,2)], [(2,0)], \ldots\}.$$

¿Qué representan las clases de equivalencia?

- [(0,0)] será el entero 0.
- [(0,i)] será el entero i.
- [(i,0)] será el entero -i.

Renombramos los elementos de \mathbb{Z} :

$$\begin{split} & [(0,0)] \leftrightarrow 0 \\ & [(0,1)] \leftrightarrow 1 \\ & [(1,0)] \leftrightarrow -1 \\ & [(0,2)] \leftrightarrow 2 \\ & [(2,0)] \leftrightarrow -2 \\ & \vdots \\ & [(0,i)] \leftrightarrow i \\ & [(i,0)] \leftrightarrow -i \\ & \vdots \end{split}$$

Y obtenemos entonces el conjunto de los números enteros

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}.$$

Importante: "-1" es sólo un **nombre** para la clase de equivalencia [(1,0)]. El símbolo "-" no significa nada por sí solo para nosotros.

Intentemos definir los operadores $+\downarrow$ y $\cdot\downarrow$, teniendo en cuenta que deben "captar la estructura" de los números enteros.

Definición

$$[(m,n)] +_{\downarrow} [(r,s)] = [(m+r,n+s)]$$

Ejercicio

Calcule $7 +_{\downarrow} -5$, $-18 +_{\downarrow} 4$ y $-3 +_{\downarrow} -6$.

Definición

$$[(m,n)] \cdot_{\downarrow} [(r,s)] = [(m \cdot s + n \cdot r, m \cdot r + n \cdot s)]$$

Ejercicio

Calcule $-3 \cdot 1 - 4$ y $3 \cdot 1 3$.

Finalmente, podemos renombrar las operaciones anteriores, y obtenemos el conjunto de los números enteros con sus dos operaciones habituales:

$$\mathbb{Z} = \{0, 1, -1, 2, -2, 3, \ldots\}$$
 con las operaciones $+ y \cdot \ldots$

Definición

Una relación R sobre A es una **relación de orden parcial** si es refleja, antisimétrica y transitiva.

Conocemos muchas relaciones de orden parcial, ¿cierto?

Generalmente denotaremos una relación de orden parcial con el símbolo \preceq .

- $(x,y) \in \preceq x \preceq y$.
- x es menor (o menor-igual) que y.

Si \preceq es una relación de orden parcial sobre A, diremos que el par (A, \preceq) es un **orden parcial**.

Ejemplos

- **1** Los pares (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) son órdenes parciales.
- **2** El par $(\mathbb{N}\setminus\{0\}, |)$ es un orden parcial.
- **3** Si A es un conjunto cualquiera, el par $(\mathcal{P}(A),\subseteq)$ es un orden parcial.

Ejercicio

Demuestre los ejemplos anteriores.

¿Por qué orden parcial?

Definición

Una relación \leq sobre A es una **relación de orden total** (o lineal) si es una relación de orden parcial y además es conexa.

¿Qué quiere decir esto?

Para todo par $x, y \in A$, se tiene que $x \leq y$ o $y \leq x$

Similarmente al caso anterior, diremos que un par (A, \preceq) es un orden total.

Al hablar de órdenes parciales o totales, ¿qué estamos diciendo sobre el conjunto?

- Implícitamente, establecemos cierta estructura sobre él.
- Nos gustaría entonces hablar de elementos menores que, mayores que, mínimos, máximos. . .

Definición

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- **1** x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- 2 x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- **3** x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Definición

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- **1** x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- ② x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- **3** x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Ejercicio

Sea el orden parcial $(\mathbb{N}\setminus\{0\},|)$ y $S=\{2,3,5,10,15,20\}\subseteq\mathbb{N}.$ Estudie los conceptos anteriores.

Ejercicio

Sea el orden parcial $(\mathcal{P}(\{1,2,3,4\}),\subseteq)$ y $S = \{\{1\},\{1,2\},\{1,3\},\{1,2,3,4\}\}$. Estudie los conceptos anteriores.

Ejercicio

En cada caso, ¿podemos encontrar un S tal que todos sus elementos sean minimales y maximales a la vez?

Teorema

Sea (A, \preceq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Ejercicio

Demuestre el teorema.

Ejercicio

Demuestre el resultado análogo para el máximo.

Esto nos permite hablar de **el** mínimo o **el** máximo, que denotaremos por min(S) y max(S) respectivamente.

Vimos que hay conjuntos sin mínimo o máximo. La siguiente definición extiende estos conceptos.

Definición

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un **ínfimo** de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior.

Análogamente se define el supremo de un conjunto.

Ejercicio

Dé ejemplos de conjuntos que no tengan mínimo pero sí ínfimo, y lo análogo para máximo y supremo.

Teorema

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

Ejercicio

Demuestre el teorema.

Esto nos permite hablar de **el** supremo o **el** ínfimo, que denotaremos por sup(S) e inf(S) respectivamente.

¿Existen conjuntos acotados inferiormente (superiormente) que no tengan ínfimo (supremo)?

Definición

Sea (A, \preceq) un orden parcial. Este se dice **superiormente completo** si para cada $S \subseteq A$ no vacío, si S tiene cota superior, entonces tiene supremo.

De manera similar definimos el concepto de ser inferiormente completo.

Teorema

 (A, \preceq) es superiormente completo si y sólo si es inferiormente completo.

Ejercicio

Demuestre el teorema.

Matemáticas Discretas Relaciones

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

25 de septiembre de 2023