שיעור 11 רדוקציות פולינומיאליות

שלמה -NP היא CLIQUE 11.1

$CLIQUE \in NPC$ 11.1 משפט

CLIQUE היא (ראו הגדרה CLIQUE):

$$CLIQUE = \{\langle G, k \rangle \mid k$$
 מכיל קליקה בגודל מכיל מכיל מכיל מיקה בגודל מ

שלמה -NP שלמה CLIQUE

הוכחה:

- .9.2 במשפט $CLIQUE \in NP$ הוכחנו כי
- $.3SAT \leqslant_{P} CLIQUE$ נוכיח כי NP היא היא CLIQUE היא נוכיח כי

פונקצית הרדוקציה

ונוכיח כי $\langle G,k
angle$ מעל ϕ מעל משתנים x_1,x_2,\ldots,x_n המכיל משתנים ϕ מעל משתנים היינתן נוסחת

$$\left\langle \phi\right\rangle \in 3SAT\quad\Leftrightarrow\quad \left\langle G,k\right\rangle \in CLIQUE\ .$$

נבנה את הגרף G באופן הבא:

G הקדקודים של

 $:\!C_i$ של ליטרלים ללחטרלים המתאימים קודקודים מכילה t_i שלשה ניצור ליטרלים ללחטרלים ב- ϕ ב- C_i קודקודים לכל

$$x_1 \vee \bar{x}_3 \vee x_4 \longrightarrow (x_1) (\bar{x}_3)$$

:G הצלעות של

נבחר בין כל שני קודקודים פרט לזוגות הבאים:

- זוג קודקודים המתאימים למשתנה ומשלים שלו.
 - זוג קודקודים שנמצאים באותה שלושה.

לדוגמה:

$$\phi = \begin{pmatrix} \frac{T}{x_1} & \frac{T}{\bar{x}_2} \vee x_3 \\ C_1 & C_2 \end{pmatrix} \wedge \begin{pmatrix} \bar{x}_1 \vee \frac{T}{\bar{x}_2} \vee x_3 \\ C_3 \end{pmatrix}$$

.k=m נקבע

נכונות הרדוקציה

- $.\phi$ ניתן לבנות את G בזמן פולינומיאלי בגודל (1
 - 2) נוכיח כי

$$\langle \phi \rangle \in 3SAT \quad \Leftrightarrow \quad \langle G, k \rangle \in CLIQUE \ .$$

⇒ כיוון

- ϕ נניח כי ϕ ספיקה ונסתכל על השמה המספקת את ϕ .
- T יש לפחות ליטרל אחד שקיבל ערך ϕ בכל פסוקית בכל ϕ
- . נבחר מכל שלשה t_i בקודקוד אחד המתאים לליטרל שקיבל ערך T ב- T ונוסיף אותו לקליקה.
- מספר הקודקודים שבחרנו שווה k וכל שניים מהם מחוברים בצלע כי לא בחרנו שני קודקודים מאותה שלשה ולא בחרנו שני קודקודים המתאימים למשתנה ומשלים שלו.
 - k מכיל קליקה בגודל G

\Rightarrow כיוון

- . נניח כי G מכיל קליקה בגודל k ונסתכל על קליקה כזו. ullet
- לפי הבנייה הקליקה מכילה בדיוק קודקוד אחד מכל שלשה t_i . ניתן השמה למשתנים של ϕ כך שהליטרל שמתאים לקודקוד שנמצא בקליקה יקבל ערך T.
 - השמה זו אפשרית מכיוון שהקליקה לא מכילה שני קודקודים המתאימים למשתנה ומשלים שלו.

- בנוסף השמ זו מספקת את ϕ מכיוון שהקליקה מכילה קודקוד מכל שלשה t_i ולכן הליטרל המתאים לקודקוד פולעה העל היש לערך C_i הוא מספק את הפסוקית בשלשה t_i קיבל ערך t_i ולכן הוא מספק את הפסוקית
 - . לכן ϕ ספיקה

11.2 בעיית הקבוצה הבלתי תלויה

הגדרה 11.1 קבוצה בלתי תלויה

כך $S\subseteq V$ בהינתן גרף לא מכוון G=(V,E), קבוצה בלתי תלויה ב- G היא תת-קבוצה של קודקודים קבוצה בהינתן גרף לא מתקיים $u,\mathbf{v}\in S$ מתקיים שלכל שני קודקודים $u,\mathbf{v}\in S$

 $\pm k=3$ קבוצה בלתי תלוייה בגודל

k=3 קבוצה בלתי תלוייה בגודל

IS בעיית באדרה בעיית

k ומספר G=(V,E) ומספר

 $rac{1}{2}$ בגודל G -בגודל תלויה ב- G בגודל פלט:

 $IS = \{\langle G, k \rangle \mid k$ גרף גודל בלתי קבוצה בלתי קבוצה המכיל המכיל גרף גרף גרף א

$IS \in NPC$ בשפט 11.2 משפט

הבעייה IS היא NP שלמה.

הוכחה:

 $IS \in NP$ נוכיח כי (1)

IS נבנה אלגוריתם אימות V עבור $(\langle G, k \rangle, y)$ על קלט V

- . האם y האם G השונים מ- g השונים היא קבוצה של ϕ
 - . אם לא \Leftrightarrow דוחה.
 - G -בודק האם כל שני קודקודים מ-y לא מחוברים בצלע ב-
 - \circ אם כן \Leftrightarrow מקבל.

. אם לא \Leftrightarrow דוחה \circ

$CLIQUE \leqslant_P IS$ נוכיח כי (2)

פונקצית הרדוקציה:

:בהינתן אוג $\langle G,k \rangle$ הקלט של $\langle CLIQUE$, ניצור אוג בהינתן אוג ל $\langle G,k \rangle$ הקלט של

$$\langle G, k \rangle \in CLIQUE \iff \langle G', k' \rangle \in IS$$
.

הפונקציית הרדוקציה מוגדרת כך שהתנאים הבאים מתקיימים:

G=(V,E) נניח שהגרף הוא (1

G=(V,E) אז הגרף הוא הגרף המשלים של G'

כאשר
$$G'=ar{G}=ig(V,ar{E}ig)$$
 כאשר

$$\bar{E} = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$$
.

.k' = k (2

לדוגמה, בהינתן הגרף R מחזירה את ממכיל קליקה בגודל k=3, הפונקציית הרדוקציה המסיר שמכיל קליקה את הגרף G=(V,E) ואת המספר בתרשים למטה: K'=k=3 ואת המספר $\bar{G}=(V,\bar{E})$

נכונות הרדוקציה

- G ניתן לבנות G' בזמן פולינומיאלי בגודל (1
- $\langle G,k \rangle \in CLIQUE \quad \Leftrightarrow \quad \langle G',k' \rangle \in IS$. נוכיח כי

⇒ כיוון

$$k$$
 ושלם $G=(V,E)$ ושלם . $\langle G,k \rangle \in CLIQUE$ נניח כי

- k מכיל קליקה מכיל מכיל $G \Leftarrow$
- $(u_1,u_2)\in E$ אזי (S הקליקה שני קודקודים u_1,u_2 (אם אוי $u_1,u_2\in S$ אם כלומר, כל שני קדקודים ב- S מחוברים בצלע של
- $.(u_1,u_2)\notin ar{E}$ אזי אזי $u_1,u_2\in S$ אם \Leftarrow .G' לא מחוברים ב- S לא מחוברים בצלע של המשלים של הגרף $ar{G}$, דהיינו

- k'=k בגודל ב- G' בלתי תלוייה ב- היא קבוצה היא קבוצה S
 - k' מכיל קבוצה בלתי מלויה בגודל מכיל מכיל מכיל מכיל מכיל מכיל מכיל
 - $\langle G', k \rangle \in IS \Leftarrow$

\Rightarrow כיוון

.k' ושלם G' בהינתן גרף

$$.\langle G',k'
angle \in IS$$
 נניח כי

- k' מכיל קבוצה בלתי תלוייה $G' \Leftarrow$
- $.(u_1,u_2)\notin \bar E$ אזי אזי $u_1,u_2\in S$ אם \Leftarrow .G' אם פלומר, כל שני קדקודים ב- S לא מחוברים בצלע של
- $.(u_1,u_2)\in E$ אזי $u_1,u_2\in S$ אם \Leftarrow . G(V,E) שני קדקודים ב- S מחוברים בצלע של
 - k=k' בגודל G -ב היא קליקה הקבוצה S אותה הקבוצה \Leftarrow
 - k מכיל קליקה בגודל $G \Leftarrow$
 - $\langle G, k \rangle \in CLIQUE \Leftarrow$

11.3 בעיית הכיסוי בקודקודים

הגדרה 11.3 כיסוי בקודקודים

כך כך $C\subseteq V$ פיחון של תת-קבוצה ב- הוא הוא קסוו, כיסוי בקודקודים אוG=(V,E) או מכוון גרף א מכוו גרף או $v\in C$ או עו $u\in C$ מתקיים $u,v\in S$ שלכל אלע

k=2 כיסוי בקדקודים בגודל

k=5 כיסוי בקדקודים בגודל

 $\cdot k = 5$ כיסוי בקדקודים בגודל

VC הבעייה 11.4

VC הגדרה 11.4 בעיית

k ומספר G=(V,E) ומספר

 $rac{1}{2} k$ בגודל G - בקודקודים ב- בגודל

 $VC = \{\langle G, k
angle \mid \ k$ גרף לא מכוון המכיל כיסוי בקודקודים בגודל $G \ \}$

$VC \in NPC$ 11.3 משפט

. שלמה NP היא VC הבעייה

הוכחה:

 $VC \in NP$ נוכיח כי

VC עבור V עבור אימות עבור

 $:(\left\langle G,k\right
angle ,y)$ על קלט =V

- y -בודק האם כל צלע ב- G מכילה לפחות קצה אחד ב-
 - אם כן \Leftrightarrow מקבל. \circ
 - . אם לא \Leftrightarrow דוחה \circ

 $IS \leqslant_P VC$ נוכיח כי VC היא NP קשה ע"י רדוקציה

פונקצית הרדוקציה:

ונוכיח ער אוג אוג אר הקלט של על אוג אוג אוג אוג הקלט של ל $\langle G,k\rangle$ הקלט של בהינתן אוג בהינתן אוג אוג אוג וונוכיח של אוג

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in VC .$$

הפונקציית הרדוקציה מוגדרת כך שהתנאים הבאים מתקיימים:

.G = (V, E) נניח שהגרף הוא (1

G=(V,E) אז הגרף G' הוא אותו גרף

$$.k' = |V| - k$$
 (2)

נכונות הרדוקציה

- G ניתן לבנות G' בזמן פולינומיאלי בגודל (1
- $\langle G,k \rangle \in IS \quad \Leftrightarrow \quad \langle G',k' \rangle \in VC$. נוכיח כי (2

⇒ כיוון

k ושלם G=(V,E) ושלם

 $.\langle G,k \rangle \in IS$ נניח כי

תשפ"ה סמסטר ב'

- k בגודל מכיל מכיל בלתי תלוייה מכיל קבוצה $G \Leftarrow$
- $.(u_1,u_2)\notin E$ אז $u_2\in S$ וגם $u_1\in S$ אם \Leftarrow .G -כלומר, כל שני קדקודים ב- S לא מחוברים בצלע
 - היא: היאת היאר הגרירה אלוגית של השלילה הלוגית של $u_1 \notin S$ או $u_1 \notin S$ או $u_1, u_2 \in E$ אם
 - $.u_2 \in V \backslash S$ או $u_1 \in V \backslash S$ או $(u_1,u_2) \in E$ אם \Leftarrow
 - .k' = |V| k בגודל ב- ביסוי קדקודים ליסוי $V \backslash S \Leftarrow$
 - k' מכיל מכיל מכיל מכיל מכיל מכיל מכיל בגודל G'=G
 - $\langle G', k' \rangle \in VC \Leftarrow$

\Rightarrow כיוון

 $.k^{\prime}$ ושלם G^{\prime} בהינתן גרף

 $\langle G',k'
angle \in VC$ נניח כי

- k' מכיל כיסוי בקדקודים מכיל $G' \Leftarrow$
- $u_2 \in C$ או $u_1 \in C$ או $(u_1, u_2) \in E$ אם \Leftarrow
- :היאת היאת של הגרירה היאת היא \Leftarrow . $(u_1,u_2)\notin E$ אם $u_2\notin C$ וגם $u_1\notin C$ אם
- $(u_1,u_2) \notin E$ אם $u_2 \in V \backslash C$ וגם $u_1 \in V \backslash C$ אם \leftarrow
- .G' בצלע ב- על לא מחוברים בצלע ב- כל שני קדקודים ב-
- k = |V| k' בגודל G' ב- בלתי בלתי בלתי החא $V \backslash C \Leftarrow$

PARTITION 11.5

הגדרה 11.5 בעיית PARTITION

 $S=\{x_1,x_2,\dots,x_n\}$ קלט: קבוצת מספרים שלמים $Y\subseteq S$ שלמים קיימת תת-קבוצה $Y\subseteq S$ כך ש $Y=\sum_{y\in Y}y=\sum_{y\in S\setminus Y}y$ האם קיימת תת-קבוצה אם קיימת תת-קבוצה ישרא

 $PARTITION = \left\{ S \ \middle| \ \sum_{y \in Y} y = \sum_{y \in S \setminus Y} y$ כך ש- $Y \subseteq S$ כך ארקבוצה $S \right\}$

11.6 רדוקציות פולינומיאליות

משפט 11.4 רדוקציות פולינומיאליות

 $SAT \leqslant_{P} 3SAT$

 $3SAT \leqslant_P CLIQUE$

 $CLIQUE \leqslant_P IS$

 $IS \leqslant_P VC$

 $SubSetSum \leq_{P} PARTITION$

 $HAMPATH \leqslant_P HAMCYCLE$

שלמות NP שלמות 11.7

משפט 11.5 שפות NP משפט

שלמה. (משפט קוק לוין) -NP SAT

-NP 3SAT

-NP HAMPATH

-NP CLIQUE

IS שלמה.

-NP VC