331 – Intro to Intelligent Systems Week07b First-Order Predicate Logic R&N Chapter 8

T.J. Borrelli

First-Order (Predicate) Logic

- Propositional logic assumes the world contains facts
- Predicate logic (like natural language) assumes the world contains:
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Why FOL?

- Why do we need First-order logic?
- Propositional logic is too weak a language to represent knowledge of complex environments in a concise way
- We already saw this to some degree with the Wumpus world example – we would need many Rules (R_n) in order to make valid conclusions
- FOL has sufficient expressive power to deal with partial information

FOL

- We adopt the foundation of propositional logic:
- Declarative knowledge and inference are separate, and inference is entirely domain independent
- Compositionality the meaning of a sentence is a function of the meaning of its parts.
- Context-independent and unambiguous
- FOL can easily express facts about some or all objects in the universe

Logics

- **Ontological commitment what the logic assumes about the nature of reality
- **Epistemological commitments the possible states of knowledge that it allows with respect to each fact
- ** more on this if you put on exam.

Propositional Logic VS FOL

Logic	Ontological commitment (what exists in the world)	Epistemological Commitment (what an agent believes about facts)
Propositional Logic	facts	True/false/unknown
First-order Logic	Facts, objects, relations	True/false/unknown

Syntax of Predicate Calculus

Symbols represent constants, variables, functions, or predicates:

- Constants begin with a lower-case letter
 - bill, john, etc.
 - The constants 'true' and 'false' are reserved as truth symbols
- Variables begin with an upper-case letter
 - For example, X, is a variable that can represent any constant
- Functions have input and produce an output
 - plus(5,4)
 - The arity of a function is the number of arguments
 - For example, 'plus' has an arity of 2
- Predicates are similar to functions, but return true
 - A predicate names a relationship between objects in the world
 - For example, father(bill, john) means that "bill is the father of john"
 - father(bill, X) refers to any child of bill

Semantics of Predicate Calculus

- Quantification of variables is important
- When a variable appears in a sentence, that variable serves as a placeholder
 - For example, the "X" in likes(george, X)
 - Any constant allowed under the interpretation can be substituted for it in the expression
 - Substituting "kate" or "susie" for "X" forms the statement likes(george, kate) or likes(george, susie)

Sentences in Predicate Calculus

- Sentences are created by combining predicates using logical operators (the same as used for propositional calculus) and quantifiers
- Examples:

```
likes(george, kate) ∧ friend(X, george)
¬helps(X, X)
has_children(ben, plus(2, 3))
friend(father_of(david, X), father_of(andrew, Y))
```

- likes, friend, helps and father_of and has_children are predicates
- plus is a function

Sentences in Predicate Calculus

 When a variable appears in a sentence, it refers to unspecified objects in the domain.
 First order predicate calculus includes two additional symbols, the variable quantifiers ∀ and ∃, that constrain the meaning of a sentence:

3Y friend(Y, peter)

∀X likes(X, ice_cream)

Quantifiers ∀ and ∃

- Y The universal quantifier
 ∀X p(X) is read "For all X, p(X) is true"
- 3 The existential quantifier

 3X p(X) is read "There exists an X such that p(X) is true"
- Relationship between the quantifiers:

$$\exists X p(X) \equiv \neg(\forall X) \neg p(X)$$

"There exists an X for which p(X) is true" is equivalent to "it is not true that for all X p(X) does not hold"

Universal Quantification

• Typically, \rightarrow is the main connective with \forall

Example: "Everyone at RIT is smart":

 $\forall X \text{ at}(X, \text{rit}) \rightarrow \text{smart}(X)$

 Common mistake: using ∧ as the main connective with ∀:

 $\forall X \text{ at}(X, \text{rit}) \land \text{smart}(X)$

means "Everyone is at RIT and everyone is smart"

Existential Quantification

Typically, ∧ is the main connective with ∃

Example: "Someone at RIT is smart": $\exists X \text{ at}(X, \text{ rit}) \land \text{smart}(X)$

 Common mistake: using → as the main connective with ∃:

 $\exists X \text{ at}(X, \text{rit}) \rightarrow \text{smart}(X)$

This means:

"If RIT has a student then that student is smart."

Properties of Quantifiers

- YX YY is the same as YY YX
- 3X 3Y is the same as 3Y 3X
- $\exists X \forall Y \text{ is not the same as } \forall Y \exists X$
- ∃X ∀Y loves(X,Y)
 - "There is a person who loves everyone"
- ∀Y ∃X loves(X,Y)
 - "Everyone is loved by someone"
- Quantifier duality: each can be expressed using the other:
 - $\forall X \text{ likes}(X, \text{iceCream}) = \neg \exists X \neg \text{likes}(X, \text{iceCream})$
 - $-\exists X \text{ likes}(X, \text{broccoli}) = \neg \forall X \neg \text{likes}(X, \text{broccoli})$

Equality

 term₁ = term₂ is true under a given interpretation if and only if term₁ and term₂ refer to the same object

 For example, the definition of sibling in terms of parent is:

```
\forall X,Y (\neg (X = Y) \land \exists M,F \neg (M = F) \land parent(M,X) \land parent(F,X) \land parent(M,Y) \land parent(F,Y) \rightarrow sibling(X,Y))
```

Using First-Order Logic

First-order rules for the kinship domain:

- A brother is a male sibling
- $\forall X,Y (male(X) \land sibling(X,Y) \rightarrow brother(X,Y))$
- "sibling" is symmetric
- $\forall X,Y (sibling(Y,X) \rightarrow sibling(X,Y))$
- One's mother is one's female parent
- $\forall M,C (female(M) \land parent(M,C) \rightarrow mother(M,C))$

Using First-Order Logic

For example, given the following facts:

```
mother(eve,abel)
mother(eve,cain)
father(adam,abel)
father(adam,cain)
```

And the following rules:

```
\forall X,Y \text{ (father(X,Y) } v \text{ mother(X,Y)} \rightarrow parent(X,Y))
\forall X,Y,Z \text{ (parent(X,Y) } \lambda \text{ parent(X,Z)} \rightarrow sibling(Y,Z))
```

One can conclude that cain and abel are siblings (or half-siblings)

Examples of First-Order Predicates

- "If it doesn't rain on Monday, Tom will go to the mountains."
 -weather(rain, monday) → go(tom, mountains)
- "Emma is a Doberman pinscher and a good dog."
 is_a(emma,doberman) ∧ good_dog(emma)
- "All basketball players are tall."
 ∀ X (basketball_player(X) → tall(X))
- "Some people like anchovies."
 ∃ X (person(X) ∧ likes(X, anchovies))
- "If wishes were horses, beggars would ride." equal(wishes, horses) → ride(beggars)
- "Nobody likes taxes."
 ¬∃ X likes(X, taxes)

Blocks World Example

A collection of logical clauses describes the important properties and relationships in a Blocks World:

> on(c,a) on(b,d) onTable(a) onTable(d) clear(b) clear(c)

Suppose you want to define a test to determine whether **all** blocks are clear (have nothing stacked on top of them):

 \forall X (\neg \exists Y on (Y, X)) \rightarrow clear(X).

"For all X, if there does not exist a Y such that Y is on X, then X is clear."