Stochastic Modelling

isakhammer

2020

Contents

1	Lec	ture 1	2	2
	1.1	Practic	cal Information	2
	1.2		matical description)
	1.3		from Statistics Course)
		1.3.1	Combining Event	2
		1.3.2	Probability	3
		1.3.3	Law of total probability	3
		1.3.4	Independence	
		1.3.5	Random Variables	3
		1.3.6	Notation for random variables	ı
		1.3.7	Discrete random variables	į
		1.3.8	CFD	į
		1.3.9	Continious random vairbales	
		1.3.10	Important properties	
			Expectation	
			Variance	
		1.3.13	Joint CDF	
			Joint distribution for discrete random variables	1
		-	Joint distribution for continuous random variables	1
			Independence	1

1 Lecture 1

1.1 Practical Information

Two projects

- The projects count 20% and exam 80%.
- Must be done with two people.
- If you want to do statistics is it worth learning R.

Course Overview

- Markov chains for discret time and discrete outcome.
 - Set of states and discrete time points.
 - Transition between states
 - Future depends on the present, but not the past.
- Continious time Markoc chains. (continious time and discrete toutcome.
- Brownian motion and Gaussian processes (continionus time and continious outcome.)

1.2 Mathematical description

Definition 1.1. A stochastic process $\{x(t), t \in T\}$ is a family of random variables, where T is a set of indicies, and X(t) is a random variable for each value of t.

1.3 Recall from Statistics Course

A random experiment is performed the outcome of the experiment is random.

- THe set of possible outcomes is the sample space ω
 - An **event** $A \subset \omega$ if the outcome is contained in A
 - The **complement** of an event A is $A^c = \omega \setminus A$
 - The **null event** \emptyset is the empty set $\emptyset = \omega \setminus \omega$

1.3.1 Combining Event

Let A and B be events

- The union $A \cup B$ is the event that at least one of A and B occur.
- the intersection $A \cap B$ is the event that both A and B occur.

The events A_1,A_2,\ldots are called disjoint (or **mutually exclusive**) if $A_i\cap A_j=\emptyset$ for $i\neq j$

1.3.2 Probability

Pr is called a probability on ω if

- Pr $\{\omega\} = 1$
- $0 \le P\{A\} \le 1$ for all events A
- For A_1, A_2, \ldots that are mutually exclusive

$$P\left\{\bigcup_{i=1}^{\infty} A_i\right\} = \sum_{i=1}^{\infty} P\left\{A_i\right\}$$

We call $P\{A\}$ the probability of A.

1.3.3 Law of total probability

Let A_1, A_2, \ldots be a partition of ω ie

- $\omega = \bigcup_{i=1}^{\infty} A_i$
- A_1, A_2, A_3, \ldots are mutually exclusive.

Then for any event B

$$P\{B\} = \sum_{i=1}^{\infty} P\{B \cap A_i\}$$

This concept is very important.

1.3.4 Independence

Event A and B are independent of

$$P\{A \cap B\} = P\{A\}P\{B\}$$

Events A_1, \ldots, A_n are independent if for any subset

$$P\left\{\bigcap_{j=1}^{k} A_{i_j}\right\} = \prod_{j=1}^{k} P\left\{A_{i_j}\right\}$$

In this case $P\left\{\bigcap_{i=1}^{n} A_1\right\} = \prod_{i=1}^{n} P\left\{A_i\right\}$

1.3.5 Random Variables

Definition 1.2. A random variable is a real-vaued function on the sample space. Informally: A random variable is a real valued variable that takes on its value by chance.

Example.

- Throw two dice. X = sum of the two dice
- Throw a coin. X is 1 for heads and X is 0 for tails.

1.3.6 Notation for random variables

We use

- upper case letters such at X, Y and Z to represent random variables.
- lower case letters as x, y, z to denote the real-valued realized value of a the random variable.

Expression such as $\{X \leq x\}$ denators the event that X assumes a value less than or earl to the real number x.

1.3.7 Discrete random variables

The random variable X is **discrete** if it has a finite or countable number of possible outcomes x_1, x_2, \ldots

• The **probability mass function** $p_x(x)$ is given by

$$p_x(x) = P\{X = x\}$$

and satisfies

$$\sum_{i=1}^{\infty} p_x(x_i) = 1 \quad \text{and} \quad 0 \le p_x(x_i) \le 1$$

• The cumulative distribution function (CDF) a of X can be written

$$F_{x}\left(x\right) = P\left\{X \leq x\right\} = \sum_{i: x_{i} \leq x} p_{x}\left(x_{i}\right)$$

1.3.8 CFD

The CDF of X may also be called the **distribution function** of X Let $F_x(x)$ be the CDF of X, then

- $F_x(x)$ is monetonaly increasing.
- F_x is a stepfunction, which is a pieace-wise constant with jumps at x_i .
- $\lim_{x\to\infty} F_x(x) = 1$
- $\lim_{x\to-\infty} F_x(x) = 0$

1.3.9 Continious random vairbales

A continious random variables takes value o a continious scale.

- The CDF, $F_x(x) = P(X \le x)$ is continious.
- The **probability density function** (PDF) $f_x(x) = F'_x(x)$ can be used to calculate probabilities

$$Pr \{a < X < b\} = Pr \{a \le X < b\} = Pr \{a < X \le b\}$$
$$= Pr \{a \le X \le b\} = \int_a^b f_x(x) dx$$

1.3.10 Important properties

- CDF:
 - Monotonely increaing
 - continious
 - $-\lim_{x\to\infty} F_x = 1$ and $\lim_{x\to-\infty} F_x(x) = 0$
- PDF

$$-f_{x}(x) \geq 0 \text{ for } x \in \mathbb{R}$$

$$-\int_{-\infty}^{\infty} f_x(x) dx = 1$$

1.3.11 Expectation

Let $g: \mathbb{R} \to \mathbb{R}$ be a function and X be a random variable.

• If X is discrete, the expected value of g(X) is

$$E\left[g\left(X\right)\right] = \sum_{x:p_{x}\left(x\right)>0} g\left(x\right) p_{x}\left(x\right)$$

• If X is continous, the expected value of g(X) is

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_x(x) dx$$

1.3.12 Variance

The variance of the random variable X is

$$Var\left[X\right] = E\left[(X - E\left[X\right])^2\right] = E\left[X^2\right] - E\left[X\right]^2$$

Important properties of expectation and variance.

• Expectations is linear

$$E[aX + bY + c] = aE[X] + bE[Y] + c.$$

• Variance scales quadratically and is invaraient to the addition of constants

$$Var\left[aX + b\right] = a^2 Var\left[X\right]$$

• fir independent stochastic variables.

$$Var[X + Y] = Var[X] + Var[Y]$$

1.3.13 Joint CDF

If (X, Y) is a pair for random variables, their **joint comulative distribution** function is given by

$$F_{X,Y} = F(x, y) = Pr\{X \le x \cap Y \le y\}$$

.

1.3.14 Joint distribution for discrete random variables

If X and Y are discrete, the **joint probability mass function** $p_{x,y} = Pr\{X = x, Y = y\}$. can be used to compute probabilities

$$Pr\left\{a < X < b, c < Y \le d\right\} = \sum_{a < x \le b} \sum_{c < y \le d} p_{X,Y}\left(x,y\right)$$

1.3.15 Joint distribution for continous random variables

If X and Y are continious the **joint probability density function** $f_{X,Y}\left(x,y\right)=f\left(x,y\right)=\frac{\partial^{2}}{\partial x\partial y}F\left(x,y\right)$ can be used to compute probabilities

$$Pr\left\{a < X \le b, \quad c < Y \le d\right\} = \int_{a}^{b} \int_{c}^{d} f\left(x, y\right) dx dy$$

1.3.16 Independence

The random variables X and Y are independent if

$$Pr\{X < a, Y < b\} = Pr\{X < a\} \cdot Pr\{Y < b\}, \quad \forall a, b \in \mathbb{R}$$

In terms of CDFs: $F_{X,Y}(a,b) = F_X(a) \cdot F_Y(b) \quad \forall a,b \in \mathbb{R}$

- $p_{X,Y}(x,y) = p_X(x) \cdot p_Y(Y)$ for discrete random variables
- $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(Y)$ for continuous random variables.