Comptage de matrices à signe alternant en fonction du nombre d'entrées négatives.

Robert Cori, Philippe Duchon, Florent Le Gac

23 mars 2010

- Introduction
 - Matrices à signe alternant
- 2 ASMs contractés
 - Contraction d'ASM
 - Calcul du nombre d'ASMs associés à un ASM contracté
 - Formule de comptage des ASMs par les ASMs contractés
- 3 Asymptotique de A(n, k)
- 4 Conclusion

Outline

- Introduction
 - Matrices à signe alternant
- 2 ASMs contractés
 - Contraction d'ASM
 - Calcul du nombre d'ASMs associés à un ASM contracté
 - Formule de comptage des ASMs par les ASMs contractés
- 3 Asymptotique de A(n, k)
- 4 Conclusion

Définition

Une matrice à signe alternant (ASM) de taille n est une matrice $n \times n$ vérifiant que :

- les entrées de la matrice sont dans $\{-1,0,1\}$.
- les entrées alternent en signe sur chaque ligne et colonne.
- la somme des entrées de chaque ligne et chaque colonne vaut
 1.

Cas particulier d'ASM : les permutations, qui n'ont pas de -1.

Un ASM de taille 8 avec 3 entrées négatives

- A(n) est l'ensemble des ASMs de taille n
- A(n, k) est l'ensemble des ASMs de taille n avec k entrées négatives.

Le nombre de matrices à signe alternant est donné par :

Théorème (Zeilberger 96)

$$|A(n)| = \prod_{0 \le i \le n} \frac{(3i+1)!}{(n+i)!}$$

Théorème (Aval, Cori, Duchon, Le Gac)

$$|A(n,0)| = n!$$

$$|A(n,1)| = n!(f(n,3))$$

$$|A(n,2)| = n!(2.f(n,4) + 44.f(n,5) + 200.f(n,6))$$

$$|A(n,3)| = n!(14.f(n,5) + 780.f(n,6) + 15590.f(n,7)$$

$$+ 137984.f(n,8) + 470400.f(n,9))$$

avec
$$f(n,t) = \frac{n(n-1)...(n-t+1)}{(t!)^2}$$

Résultats

Nous présentons :

• une formule générale :

$$|A(n,k)| = \sum_{t=?}^{?} |C(t,k)| f(n,t)$$

- une interprétation des coefficients |C(t, k)|
- le calcul du coefficient dominant (l'asymptotique)

Outline

- Introduction
 - Matrices à signe alternant
- 2 ASMs contractés
 - Contraction d'ASM
 - Calcul du nombre d'ASMs associés à un ASM contracté
 - Formule de comptage des ASMs par les ASMs contractés
- 3 Asymptotique de A(n, k)
- 4 Conclusion

Contraction d'ASM

Definition (entrée isolée)

Une entrée d'ASM est dite *isolée* si à la fois sa ligne et sa colonne ne contiennent aucune autre entrée non nulle.

Seul les entrées positives sont susceptibles d'être isolées.

Contraction d'ASM

Definition (ASM contracté)

Un ASM est dit contracté s'il ne contient aucune entrée isolée.

Tout ASM A admet un unique ASM contracté. On l'obtient en retirant la ligne et la colonne de chaque entrée isolée de A.

L'ordre dans lequel on retire les 1 isolés n'a pas d'importance.

Nombre d'ASMs de taille *n* associés à un ASM contracté

C(n, k) est l'ensemble des ASMs contractés de taille n possédant k entrées négatives.

Propriété

Pour tout ASM contracté c de taille t, le nombre d'ASMs de taille n se contractant en c est donné par n!f(n,t).

$$n!f(n,t) = (n-t)! {n \choose t}^2$$
$$= n! \frac{n(n-1)...(n-t+1)}{(t!)^2}$$

Ce nombre ne dépend que de la taille de l'ASM contracté.

Nombre d'ASMs de taille *n* associés à un ASM contracté

Preuve

Nous donnons une bijection entre les ASMs de taille n, et les quadruplets formés de :

- l'ASM contracté associé, de taille t,
- une matrice de permutation de taille (n-t),
- un ensemble d'entiers $L = \{l_1, \dots, l_{n-t}\}$ représentant des indices de lignes,
- un ensemble d'entiers $C = \{c_1, \dots, c_{n-t}\}$ représentant des indices de colonnes.

Le nombre de choix possibles est donné par $(n-t)! \binom{n}{n-t}^2$.

Nombre d'ASMs de taille *n* associés à un ASM contracté

Dès lors, nous pouvons écrire :

Formule de comptage

$$|A(n,k)| = n! \sum_{t=1}^{??} |C(t,k)| f(n,t)$$

Taille maximale

La taille maximale d'un ASM contracté comptant k entrées négatives est 3k.

- taille(ASM) = #(1) #(-1)
- pour un contracté, #(1) est plus petit que 4 fois #(-1).

Taille minimale

La taille minimale d'un ASM contracté est donnée par :

$$low(k) = \begin{cases} 2i & \text{if } (i-1)^2 < k \le (i-1)i, \\ 2i+1 & \text{if } (i-1)i < k \le i^2 \end{cases}$$

Le nombre maximal de -1 dans un ASM contracté est donné par :

- i^2 pour la taille 2i + 1,
- (i-1)i pour la taille 2i
- Le nombre maximal de -1 est une fonction croissante de n.

Théorème

$$|A(n,k)| = n! \sum_{t=low(k)}^{3k} |C(t,k)| f(n,t)$$

Outline

- Introduction
 - Matrices à signe alternant
- ASMs contractés
 - Contraction d'ASM
 - Calcul du nombre d'ASMs associés à un ASM contracté
 - Formule de comptage des ASMs par les ASMs contractés
- 3 Asymptotique de A(n, k)
- 4 Conclusion

Asymptotique pour |A(n, k)|

Formule de comptage

$$|A(n,k)| = n! \sum_{t=low(k)}^{3k} |C(t,k)| \frac{n(n-1)...(n-t+1)}{(t!)^2}$$

- $\frac{|A(n,k)|}{n!}$ est un polynôme en n de degré 3k.
- Son coefficient dominant est donc $\frac{|C(3k,k)|}{(3k)!^2}$.

Asymptotique pour |A(n, k)|

On appelle contracté maximal de taille k un ASM contracté de C(3k, k).

Remarquons que pour un contracté maximal de taille 3k, il y a exactement :

- k entrées négatives
- 4k entrées positives

Donc un tel ASM posséde exactement :

- k lignes ayant 3 valeurs non nulles (1, -1, 1),
- 2k lignes avec 1 unique valeur non nulle (1).

Codages des contractés maximaux

Definition

On note M(k) l'ensemble des mots de taille k définis comme suit : Un mot u est dans M(k) ssi :

- u est formé de k triplets et 2k singletons dans [3k].
- les k triplets forment une partition de [3k]
- chaque triplet (a, b, c) est précédé et suivi d'un singleton (b)

Propriété

L'ensemble des mots dans M(k) est en bijection avec C(3k, k).

Bijection entre M(k) et C(3k, k)

Chaque ligne est remplacée par la suite des indices de colonne de ses valeurs non nulles.

Bijection entre M(k) et C(3k, k)

Bijection entre M(k) et C(3k, k)

Remarque

Il existe une bijection semblable en travaillant sur les colonnes plutôt que les lignes.

Relation sur le nombre d'ASMs dans C(3k, k)

Nous allons montrer que :

Propriété

$$|C(3k, k)| = \frac{(3k)!}{6^k} \frac{(3k)!}{6^k k!}$$

Preuve du nombre d'ASMs dans C(3k, k)

Nous donnons une bijection entre M(k) et les couples formés de :

- S_1 , une partition (ordonnée) en k triplets de [3k].
- S_2 , une partition (non ordonnée) en k triplets de [3k].

Propriété

Le nombre de couples (S_1, S_2) possibles est compté par : $\frac{(3k)!}{6^k} \frac{(3k)!}{6^k k!}$

Preuve du nombre d'ASMs dans C(3k, k)

Etant donné un mot $u \in M(k)$, on note c son ASM associé et u' le mot dans M(k) des colonnes de c.

- S_1 est l'ensemble des triplets de u (pris dans l'ordre)
- S_2 est l'ensemble des triplets de u' (pris dans n'importe quel ordre)

Etant donné (S_1, S_2) nous construisons un mot $u \in M(k)$:

- On ordonne S_2 en fonction des valeurs médianes de ses triplets.
- Pour chaque couple de triplets $(g, c, d) \in S_1$ et $(h, l, b) \in S_2$ (pris dans l'ordre) :
 - On place un -1 en position (c, l)
 - On place quatre 1 en positions (g, l), (d, l), (c, h) et (c, b).

$$S_1 = \{(2,3,6), (5,7,9), (1,4,8)\}, \ S_2 = \{(1,3,5), (2,6,8), (4,7,9)\}$$

$$S_1 = \{(5,7,9), (1,4,8)\}, S_2 = \{(2,6,8), (4,7,9)\}$$

[(2,3,6), (1,3,5)]

```
S_1 = \{(1,4,8)\}, S_2 = \{\}
[(2,3,6),(1,3,5)],[(5,7,9),(2,6,8)]
                 . 1 -1 . . 1 . . .
```

Asymptotique de |A(n, k)|

L'asymptotique des ASMs de taille n avec k entrées négatives est donnée par :

Theorem

$$|A(n,k)| = n! \frac{n^{3k}}{36^k k!} (1 + O(1/n))$$

Outline

- Introduction
 - Matrices à signe alternant
- 2 ASMs contractés
 - Contraction d'ASM
 - Calcul du nombre d'ASMs associés à un ASM contracté
 - Formule de comptage des ASMs par les ASMs contractés
- 3 Asymptotique de A(n, k)
- 4 Conclusion

Conclusion

Nous avons donné:

- une formule (non explicite) pour |A(n, k)|
- l'asymptotique pour |A(n, k)|
- la formule exacte pour |A(n,3)|

Nous travaillons actuellement sur :

- une formule pour calculer les |C(t, k)|
- Calculer |A(n, k)| pour k = 4, 5, ...