Mathematical Economics Problem set 2018/19

Paulo Brito

23.11.2018

1 Deterministic dynamic optimisation: discrete time

1.1 Calculus of variations

- **1.1.1** Consider the calculus of variations problem: $\max_y \sum_{t=0}^3 (y_{t+1} 1/2y_t 2)^2$ such that $y_0 = y_4 = 1$.
 - (a) Determine the Euler-Lagrange equation.
 - (b) Determine the solution of the problem.
- **1.1.2** Consider the calculus of variations problem: $\max_y \sum_{t=0}^3 (y_{t+1} 1/2y_t 2)^2$ such that $y_0 = 1$ and y_4 is free.
 - (a) Determine the Euler-Lagrange equation and the first order conditions.
 - (b) Determine the solution of the problem.
- **1.1.3** Assume that there is a cake whose size at time $t \in \{0, 1, ..., T\}$, where T is finite, is W_t . A consumer wants to eat it in T periods; that is $W_T = 0$. The initial size of the cake is $W_0 = \phi > 0$. The consumer has a psychological discount factor $0 < \beta < 1$ and the period utility function is isoelastic $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ with $\sigma > 0$.
 - (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.
 - (b) Solve the cake-eating problem.
- **1.1.4** In problem 1.1.3 assume that the horizon T is infinite and $\lim_{t\to\infty} W_t \geq 0$.
 - (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.

- (b) Solve the problem.
- 1.1.5 Assume that that a consumer has an endowment denoted by W_t at time $t \in \{0, 1, ..., T\}$. The horizon T is finite. The endowment evolves over time as $W_{t+1} = (1+r)W_t C_t$, where C_t is the amount of the endowment consumed at time t and t > 0 is a parameter. Assume that $W_0 = \phi > 0$ and that the consumer wants to have $W_T = \phi$. The consumer has a psychological discount factor $0 < \beta < 1$ and the period utility function is logarithmic.
 - (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **1.1.6** In problem 1.1.5 assume that the horizon T is infinite and that $\lim_{t\to\infty} e^{-rt}W_t \geq 0$
 - (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- 1.1.7 Assume that that a consumer has an endowment denoted by W_t at time $t \in \{0, 1, ..., T\}$. The horizon T is finite. The endowment evolves over time as $W_{t+1} = (1+r)W_t C_t$, where C_t is the amount of the endowment consumed at time t and t > 0 is a parameter. Assume that $W_0 = \phi > 0$ and that the consumer wants to have $W_T = \phi$. The consumer has a psychological discount factor $0 < \beta < 1$ and the period utility function is isoelastic $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ with $\sigma > 0$.
 - (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.
 - (b) Solve the cake-eating problem.
- 1.1.8 In problem 1.1.7 assume that the horizon T is infinite and and $\lim_{t\to\infty} W_t \geq 0$.
 - (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- 1.1.9 Find the optimal investment sequence for a firm, $\{I_t\}_{t=0}^{\infty}$, that maximizes the value functional $\sum_{t=0}^{\infty} (1+r)^{-t} \pi_t$, where r>0 is the market interest rate. The cash flow in period t is $\pi_t = AK_t I_t(1+\xi I_t)$, where K_t is the capital stock, and A>0 and $\xi>0$ are productivity, and investment cost parameters, respectively. The restrictions of the problem are: the acumulation equation $K_{t+1} = I_t + (1-\delta)K_t$, where $\delta \in [0,1)$ is the rate of depreciation of capital, and the initial capital stock is given, $K_0 = \phi > 0$. Assume that $A > r + \delta$.

- (a) Write the problem as a calculus of variations problem and determine the optimality conditions.
- (b) Find an explicit solution for K_t . Justify and give an intuition for your the results.
- **1.1.10** A representative consumer has the utility function $u = \ln(c_t)$ and has a constant intertemporal discount factor β^t , ith $0 < \beta < 1$, and a finite lifetime T, she/he has the budget constraint $a_{t+1} = y c_t + (1+r)a_t$, and has to bequeath the same wealth received at birth $a_0 = a_T = A$.
 - (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- 1.1.11 A representative consumer has the utility function

$$u = B - \zeta^{-1} e^{-\zeta C_t},$$

where B > 0 and $\zeta > 0$, and has a constant intertemporal discount factor β^t , with $0 < \beta < 1$, and a finite lifetime T, she/he has the budget constraint $A_{t+1} = A_t - C_t$, and $A_0 = \phi$ and $A_T = 0$.

- (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.
- (b) Solve the problem.
- **1.1.12** A representative consumer has the utility function

$$u = B - \zeta^{-1} e^{-\zeta C_t},$$

where B > 0 and $\zeta > 0$, and has a constant intertemporal discount factor β^t , ith $0 < \beta < 1$, and a finite lifetime T, she/he has the budget constraint $A_{t+1} = Y - C_t + (1+r)A_t$, and has to bequeath the same wealth received at birth $A_0 = A_T = A$.

- (a) Transform the problem into a calculus variations problem, and determine the Euler-Lagrange condition.
- (b) Solve the problem.
- **1.1.13** A firm wants to maximise the present value of its cash-flow by selecting the optimal path of investment $I = \{I_t\}_{t=0}^{T-1}$ which solves the problem:

$$\max_{I} \sum_{t=0}^{T-1} \left(\frac{1}{1+r} \right)^{t} \left(pK_{t} - (I_{t})^{2} \right), \text{ subject to } K_{t+1} = I_{t} + K_{t}$$

and $K_0 = \phi > 0$ is given, and K_t is the stock of capital. The interest rate r and the output price p are positive parameters.

- (a) Transform into a calculus of variations problem and determine the first order conditions.
- (b) Solve the problem.
- **1.1.14** Consider the calculus of variations problem:

$$\max_{y_{t=0}^T} \sum_{t=0}^{T-1} -(y_{t+1} - y_t - 1)^2, \text{ subject to } y_0 = 1, \ y_T = 1 + T$$

for T > 0 and finite.

- (a) Write the first order conditions.
- (b) Solve the problem.
- **1.1.15** Consider the problem for a government which wants to control the level of debt over GDP, b_t , by solving the problem:

$$\max_{\{\tau_t\}_{t=0}^{T-1}} \sum_{t=0}^{T-1} \beta^t (-\tau_t^2)$$

subject to the budget constraint $b_{t+1} = (1+r)b_t - \tau_t$ and the initial and terminal values $b_0 = \phi > 0$ and $b_T = 0$. Assume that $0 < \beta < 1$, r > 0 and T > 0 and is finite.

- Write the problem as a calculus of variations problem and derive the first order conditions.
- Solve the problem and provide an intuition to your results.

1.2 Optimal control and the Pontriyagin's principle

- **1.2.1** Consider the optimal control problem: $\max_{u} \sum_{t=0}^{3} (2 u_t)^2$ subject to $y_{t+1} = 1/2y_t + u_t$ such that $y_0 = y_4 = 1$.
 - (a) Determine first order conditions from the Pontriyagin's maximum principle.
 - (b) Determine the solution of the problem.
- **1.2.2** Consider the optimal control problem: $\max_{u} \sum_{t=0}^{3} (2 u_t)^2$ subject to $y_{t+1} = 1/2y_t + u_t$ such that $y_0 = 1$ and y_4 is free.
 - (a) Determine first order conditions from the Pontriyagin's maximum principle.
 - (b) Determine the solution of the problem.

- **1.2.3** Assume that there is a cake whose size at time $t \in \{0, 1, ..., T\}$, where T is finite, is W_t . A consumer wants to eat it in T periods. The initial size of the cake is $W_0 = \phi > 0$. The consumer has a psychological discount factor $0 < \beta < 1$ and the period utility function is isoelastic $u(c) = \frac{c^{1-\sigma}}{1-\sigma}$ with $\sigma > 0$.
 - (a) Determine first order conditions from the Pontriyagin's maximum principle.
 - (b) Determine the solution of the problem.
- **1.2.4** Consider the optimal control problem: $\max_{\{u\}} \sum_{t=0}^{3} y_t (2 u_t)^2$ subject to $y_{t+1} = 1/2(y_t u_t)$ e a $y_0 = 0$ e $y_4 = 45/2$.
 - (a) Write the first order conditions according to Pontriyagin's principle.
 - (b) Solve the problem, that is determine the optimal sequences $\{y_t^*\}_{t=0}^4$ and $\{u_t^*\}_{t=0}^4$
- **1.2.5** Consider problem **1.1.3**.
 - (a) Write the first order conditions from the Pontryiagin's maximum principle.
 - (b) Solve the problem.
- **1.2.6** Consider problem **1.1.4**.
 - (a) Write the first order conditions from the Pontryiagin's maximum principle.
 - (b) Solve the problem.
- **1.2.7** Consider problem **1.1.5**.
 - (a) Write the first order conditions from the Pontrylagin's maximum principle.
 - (b) Solve the problem.
- **1.2.8** Consider problem **1.1.6**.
 - (a) Write the first order conditions from the Pontryiagin's maximum principle.
 - (b) Solve the problem.
- **1.2.9** Consider problem **1.1.7**.
 - (a) Write the first order conditions from the Pontrylagin's maximum principle.
 - (b) Solve the problem.
- **1.2.10** Consider problem **1.1.8**.
 - (a) Write the first order conditions from the Pontrylagin's maximum principle.
 - (b) Solve the problem.

1.2.11 Consider problem **1.1.9**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

1.2.12 Consider problem **1.1.10**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

1.2.13 Consider problem **1.1.11**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

1.2.14 Consider problem **1.1.12**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.
- 1.2.15 Find the optimal investment sequence, $\{I_t\}_{t=0}^T$, that maximizes the value functional

$$\sum_{t=0}^{T} \left(\frac{1}{1+r} \right)^{t} \left(pK_{t} - I_{t}(1+(1/2)I_{t}) \right)$$

where K_t is the capital stock, r > 0 is the market interest rate, and p > 0 is a productivity parameter. The restrictions of the problem are: the acumulation equation is $K_{t+1} = I_t + (1 - \delta)K_t$, where δ is the rate of depreciation of capital, and the initial and terminal capital stock is given by $K_0 = K_T = \phi > 0$. Assume that $p > r + \delta$ and $\delta \in [0, 1)$.

- (a) Write the problem as a optimal problem and determine the optimality conditions from the Pontryiagin,'s maximum principle.
- (b) Find an explicit solution for K_t . Justify and give an intuition for your the results.
- **1.2.16** A representative consumer wants to maximize the intertemporal utility functional $\sum_{t=0}^{\infty} \beta^t \ln(C_t^{\alpha} Z_t^{1-\alpha})$, where $0 < \alpha < 1$ and $0 < \beta < 1$, by using consumption C_t as a control variable. The variable Z_t denotes habits and is governed by the difference equation $Z_{t+1} = \delta(Z_t C_t)$, where $\delta > 0$. The following initial and terminal conditions hold: $Z(0) = Z_0 > 0$, and $\lim_{t \to \infty} \beta^t Z(t) \ge 0$.
 - (a) Write the first order optimality conditions from the Pontyiagin's maximum principle.
 - (b) Solve the problem, and provide an intuition to your results.

Deterministic dynamic optimisation: continuous time

Calculus of variations

- **2.1.1** Solve $\max_{y} \int_{0}^{T} \ln(ay(t) + b\dot{y}(t)) dt$ for $y(0) = y_0$ given and y(T) = 0.
 - (a) Write the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.2** Solve $\max_u \int_0^\infty u(t)^2 dt$ subject to $\dot{y} = ay(t) + u(t)$ given $y(0) = y_0$.
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.3** A representative consumer has the utility functional $\int_0^T e^{-\rho t} \ln(C(t)) dt$, where $\rho > 0$, and T is finite. She/he has the budget constraint $\dot{A}(t) = -C(t) + rA(t)$, and has initial and terminal wealth $A(0) = A(T) = A_0$.
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.4** A representative consumer has the utility functional $\int_0^T e^{-\rho t} \ln(C(t)) dt$, where $\rho > 0$, and T is finite. She/he has the budget constraint $\dot{A}(t) = -C(t) + rA(t)$, and has initial wealth $A(0) = A_0$ and $A(T) \ge 0$.
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.5** A representative consumer has the utility functional $\int_0^\infty e^{-\rho t} \ln(C(t)) dt$, where $\rho > 0$, and T is finite. She/he has the budget constraint $\dot{A}(t) = -C(t) + rA(t)$, and has initial wealth $A(0) = A_0$ and $\lim_{t\to\infty} A(t) \geq 0$.
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.6** A representative consumer has the utility functional $\int_0^T e^{-\rho t} (1-\sigma)^{-1} (C(t))^{1-\sigma} dt$, where $\rho > 0$ and $\sigma > 0$ (but $\sigma \neq 1$), and T is finite. She/he has the budget constraint $\dot{A}(t) = -C(t) + rA(t)$, and has initial and terminal wealth $A(0) = A(T) = A_0$.

- (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
- (b) Solve the problem.
- **2.1.7** A representative consumer has the utility functional $\int_0^T e^{-\rho t} (1-\sigma)^{-1} (C(t))^{1-\sigma} dt$, where $\rho > 0$, and T is finite. She/he has the budget constraint $\dot{A}(t) = -C(t) + rA(t)$, and has initial wealth $A(0) = A_0$ and $A(T) \ge 0$.
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.8** A representative consumer has the utility functional $\int_0^\infty e^{-\rho t} (1-\sigma)^{-1} (C(t))^{1-\sigma} dt$, where $\rho > 0$. She/he has the budget constraint $\dot{A}(t) = -C(t) + rA(t)$, and has initial wealth $A(0) = A_0$ and $\lim_{t\to\infty} A(t) \geq 0$.
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.9** Solve $\max_C \int_0^\infty e^{-\rho t} \left(B \zeta \exp{-(C(t)/\zeta)} dt, \zeta > 0 \text{ subject to } \dot{A} = rA C \text{ where } A(0) = A_0 \text{ given and } \lim_{t \to \infty} e^{-rt} A(t) \ge 0$
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.10** Solve $\max_{\pi} \int_0^T -(\pi(t))^2 e^{-\rho t} dt$ subject to $\dot{\pi} = \pi \bar{\pi}$, where $\rho > 0$, subject to $\pi(0) = 0$.
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.11** Solve $\max_{I} \int_{0}^{\infty} e^{-rt} \left(pK(t) qI(t)^{2} \right) dt$ subject to $\dot{K} = I(t) \delta K(t) \ K(0) = k_{0} > 0$.
 - (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
 - (b) Solve the problem.
- **2.1.12** Solve $\max_{I} \int_{0}^{\infty} e^{-rt} \left(pK(t) qI(t)(1 + \xi I(t)/K(t)) \right) dt$ subject to $\dot{K} = I(t) \delta K(t) = K(0) = k_0 > 0$.

- (a) Write the problem as a calculus of variations problem and determine the Euler-Lagrange condition.
- (b) Solve the problem.
- **2.1.13** Consider the calculus of variations problem:

$$\max_{y(.)} \int_{0}^{T} -(\dot{y}(t) - y(t))^{2} dt, \text{ subject to } y(0) = 1$$

for T finite and known.

- (a) Write the first order conditions.
- (b) Solve the problem.
- **2.1.14** A central bank wants to determine the optimal inflation rate $\pi(.)$ by maximising the objective function $\int_0^T -(u(t)^2 + \pi(t)^2)e^{-\rho t}dt$ where u(.) is the unemployment rate. It also wants set the terminal variation of the inflation rate to zero, i.e., $\dot{\pi}(T) = 0$. However, it faces the following constraints: $\dot{\pi} = u^n u$, where u^n is the constant natural unemployment rate, and $\pi(0) = \pi_0$ is given.
 - (a) Write the problem as a calculus of variations problem and derive the first order conditions.
 - (b) Determine the optimal inflation rate function, $\pi^*(t)$, and provide an intuition to your results.

Optimal control: Pontryiagin's principle

- **2.2.1** Consider problem **2.1.3**.
 - (a) Write the first order conditions from the Pontryiagin's maximum principle.
 - (b) Solve the problem.
- 2.2.2 Consider problem 2.1.4.
 - (a) Write the first order conditions from the Pontrylagin's maximum principle.
 - (b) Solve the problem.
- 2.2.3 Consider problem 2.1.5.
 - (a) Write the first order conditions from the Pontryiagin's maximum principle.
 - (b) Solve the problem.
- **2.2.4** Consider problem **2.1.6**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

2.2.5 Consider problem **2.1.7**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

2.2.6 Consider problem **2.1.8**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

2.2.7 Consider problem **2.1.9**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

2.2.8 Consider problem **2.1.10**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

2.2.9 Consider problem **2.1.11**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

2.2.10 Consider problem **2.1.12**.

- (a) Write the first order conditions from the Pontryiagin's maximum principle.
- (b) Solve the problem.

2.2.11 Consider the following endogenous growth model:

$$\max_{C} \int_{0}^{\infty} \frac{1}{1-\sigma} C(t)^{1-\sigma} e^{-\rho t} dt, \text{ subject to } \dot{K} = Y(t) - C(t)$$

together with $K(0) = K_0$ given and $\lim_{t\to\infty} e^{-At}K(t) \ge 0$. The production function is linear Y(t) = AK(t) and the parameters verify: $\rho > 0$, $\sigma > 1$ and A > 0.

(a) Write the first order conditions according to the maximum principle of Pontriyagin.

- (b) Solve the problem. Under which conditions the solution displays unbounded growth?
- **2.2.12** A representative consumer wants to maximize the intertemporal utility functional $\int_0^\infty e^{-\rho t} \ln{(C(t))} dt$, where $\rho > 0$, by using consumption C(.) as a control variable. She/he has initial wealth $A(0) = A_0$, and the instantaneous budget constraint is $\dot{A}(t) = (1-\tau)(Y+rA(t)) C(t)$, where income Y is constant and positive, and the income tax rate verifies $0 < \tau < 1$. The non-Ponzi game condition $\lim_{t\to\infty} e^{-rt}A(t) \ge 0$ holds.
 - (a) Write the first order optimality conditions from the Pontryiagin's maximum principle.
 - (b) Solve the problem, and supply an intuition for your results.
- **2.2.13** Assuming that x(.) is a state variable and u(.) is a control variable, consider the optimal control problem

$$\max_{(u(t))_{t=0}^{\infty}} \int_{0}^{\infty} (x(t)^{2} + u(t)^{2})e^{-\rho t} dt$$

subject to $\dot{x} = \alpha(x-u)$ and $x(0) = \phi$ and $\lim_{t\to\infty} x(t)e^{-\rho t} = 0$. Assume that $0 < \rho < 2\alpha$ and that $\phi > 0$

- (a) Determine the optimality conditions from the Pontryiagin,'s maximum principle.
- (b) Find an explicit solution for the optimal state variable x(.). Justify.

Dynamic programming

- **2.3.1** Consider the optimal control problem $\max_{u} \int_{0}^{4} (2-u)^{2} dt$ subject to $\dot{y} = 1/2y(t) + u(t)$ for $t \in [0, 4]$ and y(0) = 1.
 - (a) Write the HJB equation.
 - (b) Determine the optimal policy function.
- **2.3.2** Assume that there is an endowment whose size at time $t \in [0, T]$, where T is finite, is W(t). A consumer wants to consume until time T. That is W(T) = 0. The initial size of the cake is $W(0) = \phi > 0$. The consumer has a psychological rate of time preference $\rho > 0$ and a static logarithmic utility function. Determine the optimal consumption strategy using the principle of dynamic programming.
 - (a) Write the HJB equation.
 - (b) Determine the optimal policy function.

Solutions for discrete time problems

- 1.1.1 (a) $y_{t+2} = \frac{5}{2}y_{t+1} y_t 2$ for t = 0, 1, 2. (b) $y_t^* = 4 \frac{3}{17}(2^{4-t} 2^{-t})$ for $t = 0, \dots, 4$.
- 1.1.2 (a) $y_{t+2} = \frac{5}{2}y_{t+1} y_t 2$ for t = 0, 1, 2. (b) $y_t^* = -2^{-t}(3 2^{2+t})$ for $t = 0, \dots, 4$.
- 1.1.3 (a) $W_{t+2} = (1+b)W_{t+1} bW_t$ for t = 0, ..., T-2, where $b \equiv \beta^{1/\sigma}$. (b) $W_t = \frac{\phi(b^t b^T)}{(1-b^T)}$ for t = 0, ..., T.
- 1.1.5 (a) $W_{t+2} = (1+r)((1+\beta)W_{t+1} (1+r)\beta W_t)$ for t = 0, ..., T-2. (b) $W_t = \phi(1+r)^{t-T}(1-\beta^t + (1+r)^T(\beta^t \beta^T))/(1-\beta^T)$
- 1.1.11 (a) $\ln(\beta) + \zeta(2W_{t+1} W_{t+2} W_t) = 0$ for t = 0, ..., T 2. (b) $W_t^* = \phi(1 t/T) + \frac{t(t-T)}{2\zeta} \ln(\beta)$
- 1.1.14 (a) The first order conditions are $y_{t+2} 2y_{t+1} + y_t = 0$, $y_0 = 1$ and $y_T = 1 + T$. (b) The solution is $y_t = 1 + t$ for $t \in \{0, 1, \dots, T\}$
- 1.1.15 (a) $b_{t+2}^* \left(1 + r \frac{1}{\beta(1+r)}\right) b_{t+1}^* + \frac{1}{\beta} b_t^* = 0$, $b_0^* = \phi$ and $b_T^* = 0$; (b) $b_t^* = \phi(\beta + r\beta)^{-t} \left(1 \frac{1 (1 + r)^t (\beta + r\beta)^t}{1 (1 + r)^T (\beta + r\beta)^T}\right)$
 - 1.2.4 (a) $y_t^* = (3/2)(-1+2^t)$ and $u_t^* = (3/2)(1-3(2^t))$ for t=0,1,2,3,4 or $y_t^* = \{0,3/2,9/2,21/2,45/2\}$ and $u_t^* = \{-3,-15/2,-33/2,-69/2\}$.
- 1.2.15 (a) The first order conditions are $\eta_{t+1} = ((1+r)\eta_t p) \frac{1}{1-\delta}$ and $K_{t+1} = \eta_t 1 + (1-\delta)K_t$ for $t \in \{0, 1, \dots, T\}$, $K_0 = \phi = K_T$. (b) The problem has the unique solution

$$K_{t} = k^{*} + (\phi - k^{*}) \left(\frac{((1+r^{*})^{T} - 1)(1-\delta)^{t} + (1-(1-\delta)^{T})(1+r^{*})^{t}}{(1+r^{*})^{T} - (1-\delta)^{T}} \right)$$

$$\eta_{t} = \eta^{*} + \frac{(r^{*} + \delta)(\phi - k^{*})(1-(1-\delta)^{T})}{(1+r^{*})^{T} - (1-\delta)^{T}} (1+r^{*})^{t}$$

for $t \in \{0, 1, ..., T\}$, where $1 + r^* = \frac{1+r}{1-\delta}$, $k^* = \frac{p-(r+\delta)}{\delta(r+\delta)}$ and $\eta^* = \frac{p}{r+\delta}$.

1.2.16 (a) F.o.c. $C_t^* = (\alpha)/\delta)\frac{1}{\eta_t}$, $\eta_{t+1} = \frac{\eta_t}{\beta\delta} - \frac{1-\alpha}{\delta Z_{t+1}^*}$, $Z_{t+1}^* = \delta(Z_t^* - C_t^*)$, $Z_0^* = Z_0$ and $\lim_{t\to\infty} \beta^t \eta_t Z_t^* = 0$; (b) the solution $Z_t^* = Z_0 \left(\frac{\beta\delta}{\alpha + (1-\alpha)\beta}\right)^t$ and $C_t^* = \frac{\alpha(1-\alpha)}{\alpha + \beta(1-\alpha)} Z_t^*$

Solutions for continuous-time problems

- 2.1.1 (a) $b^2\ddot{y}(t) + 2ab\dot{y}(t) + a^2y(t) = 0$ for $t \in [0, \infty)$. (b) $y^*(t) = (1/T)(T t)y_0e^{-at/b}$ for $t \in [0, \infty)$.
- 2.1.2 (a) $\ddot{y}(t) a^2 y(t) = 0$ for $t \in [0, T]$. (b) $y^*(t) = y_0 e^{at}$ for $t \in [0, T]$.
- 2.1.3 (a) $\ddot{A}(t) + (\rho 2r)\dot{A}(t) + r(r \rho)A(t) = 0$ for $t \in [0, T]$. (b) $A^*(t) = A_0 \left(e^{rt} (1 - e^{(r-\rho)T}) - e^{(r-\rho)t} (1 - e^{rT}) \right) / (e^{rT} - e^{(r-\rho)T})$ for $t \in [0, T]$.
- 2.1.4 (a) $\ddot{A}(t) + (\rho 2r)\dot{A}(t) + r(r \rho)A(t) = 0$ for $t \in [0, T]$. (b) $A^*(t) = A_0 e^{rt} \left(1 - e^{(T-t)\rho}\right) / (1 - e^{\rho T})$ for $t \in [0, T]$.
- 2.1.5 (a) $\ddot{A}(t) + (\rho 2r)\dot{A}(t) + r(r \rho)A(t) = 0$ for $t \in [0, \infty)$. (b) $A^*(t) = A_0 e^{(r-\rho)t}$ for $t \in [0, \infty)$.
- 2.1.6 (a) $\sigma \ddot{A}(t) (r(1+\sigma) \rho)\dot{A}(t) + r(r-\rho)A(t) = 0 \text{ for } t \in [0,T].$ (b) $A^*(t) = A_0 \left(e^{rt} (1 - e^{(r-\rho)T/\sigma}) - e^{(r-\rho)t/\sigma} (1 - e^{rT}) \right) / (e^{rT} - e^{(r-\rho)T/\sigma}) \text{ for } t \in [0,T].$
- 2.1.13 (a) The first order conditions are: $\ddot{y}(t) \dot{y}(t) = 0$ for $t \in [0, T]$, y(0) = 1 and $2(y(T) \dot{y}(T)) = 0$. (b) The solution is $y(t) = e^t$ for $t \in [0, T]$.
- 2.1.14 (a) $\ddot{\pi}^* = \rho \dot{\pi}^* + \pi^* \rho u^n$, $\pi^*(0) = \pi_0$, and $\dot{\pi}^*(T) = 0$; (b) $\pi(t) = \bar{\pi} + (\pi_0 \bar{\pi}) \left(\frac{\lambda_- e^{\lambda_- T + \lambda_+ t} \lambda_+ e^{\lambda_+ T + \lambda_- t}}{\lambda_- e^{\lambda_- T} \lambda_+ e^{\lambda_+ T}} \right)$ where $\bar{\pi} = \rho u^n$, $\lambda_{\pm} = \frac{1}{2} \left(\rho \pm \sqrt{\rho^2 + 4} \right)$.
- 2.2.12 (a) The first order conditions include the optimality conditions 1/C(t) = Q(t), $\dot{Q}(t) = (\rho r(1-\tau))Q(t)$ and $\lim_{t\to\infty} Q(t)A(t)e^{-\rho t} = 0$, plus the admissibility conditions $\dot{A}(t) = (1-\tau)(Y+rA(t)) C(t)$ and $A(0) = A_0$. (b) The problem has the unique solution (where $\gamma \equiv r(1-\tau) \rho$), $C(t) = \rho (A_0 + Y/r) e^{\gamma t}$ and $A(t) = -Y/r + (A_0 + Y/r) e^{\gamma t}$ for $t \in [0, \infty)$. Then: if $\gamma < 0$ then $\lim_{t\to\infty} (C(t), A(t)) = (0, -Y/r)$, if $\gamma = 0$ then $\lim_{t\to\infty} (C(t), A(t)) = (\rho (A_0 + Y/r), -Y/r)$ or if $\gamma > 0$ then $\lim_{t\to\infty} (C(t), A(t)) = (+\infty, +\infty)$.
- 2.2.13 (a) $u^*(t) = \frac{\alpha}{2}q(t)$, $\dot{q}(t) = (\alpha \alpha)q(t) 2x^*(t)$, $\dot{x}^*(t) = \alpha(x^*(t) u^*(t))$, $x^*(0) = \phi$ and $\lim_{t \to \infty} x^*(t)e^{-\rho t} = 0$; (b) $x^*(t) = \phi e^{\lambda_s t}$ where $\lambda_s = \frac{\rho}{2} \left(\left(\frac{\rho}{2} \alpha(\rho 2\alpha)\right)^2\right)^{1/2} < 0$