

# COMPARATIVE ANALYSIS ON RESEARCH PAPERS

Presented by:

Binary\_Girls

Farhana Akter Suci (B190305001)

Rifah Sajida Deya (B190305004)

Presented to:

Md. Aminul Islam, Ph.D.

Associate Professor

Department of Computer Science and Engineering

Jagannath University, Dhaka

15<sup>th</sup> January, 2025



# Summery

- The first paper proposes Multi-Level Stacking Ensemble for Detection of Alzheimer's Disease and application of SHAP Analysis in this field
- The second paper is actually a review paper of almost 47 authentic papers. It introduces a new approach to research and provides a summary of all the completed research methodologies proposed so far in the detection of Alzheimer's Disease.



# Explainable Artificial Intelligence of Multi-Level Stacking Ensemble for Detection of Alzheimer's Disease Based on Particle Swarm Optimization and the Sub-Scores of Cognitive Biomarkers

#### Authors:

Abdulaziz Almohimeed, Sherif Mostafa,

Redhwan M. A. Saad, Nora Mahmoud El-rashidy,

Sarah Farrag, Abdelkareem Gaballah,

Mohamed Abd Elaziz, Shaker El-sappagh,

and Hager Saleh



# Table of contents

| 01 | Problem<br>Statement | 05 | Result Analysis   |
|----|----------------------|----|-------------------|
| 02 | Objectives           | 06 | Visual Comparison |
| 03 | Introduction         | 07 | Conclusion        |
| 04 | Materials & Methods  |    |                   |



# **Problem Statement:**

Existing machine learning techniques for Alzheimer's disease (AD) detection often rely on single-modal data, limiting their ability to fully capture the complexity of AD progression. These approaches lack robust feature selection and interpretability, which hinders their effectiveness in leveraging diverse cognitive biomarkers for accurate and early-stage diagnosis.



# **Objectives:**

- > Enhance early Alzheimer's disease detection
- Optimize feature selection with Particle Swarm Optimization
- ➤ Integrate heterogeneous modalities efficiently
- ➤ Advance interpretability in AI diagnostics
- Demonstrate superior performance of multi-level stacking



# Introduction

Alzheimer's Disease (AD) is a leading cause of dementia, marked by progressive memory loss and cognitive decline, affecting over 50 million people globally—a number projected to triple by 2050. Mild Cognitive Impairment (MCI), a precursor to AD, presents an opportunity for early intervention, as approximately 10-15% of MCI patients transition to AD annually. Despite the lack of a cure, early detection and intervention can significantly reduce AD progression.



# Introduction

#### **Limitations of Previous Studies (Research Gap)**

- Most studies relied on single-modal data or summary scores.
- Few integrated cost-effective cognitive sub-scores for AD detection.
- > Explainability of black-box models remains under explored.

#### **The Proposed Framework:**





**Figure : The Proposed Framework** 

#### The Proposed Framework:



**Figure : The Proposed Framework** 



**Figure : Single Level Stacking Ensemble** 



Figure: The Multi-Level Stacking Ensemble

#### **Materials & Methods:**



#### Particle Swarm Optimization ( PSO )

#### **Algorithm**

**Input**: N: sample size

p:problem dimension

M:Maximum iterations

LS:the lower bound of the search space

US: the upper bound of the search space

**Output**: S<sub>best</sub>: the best solution

1 Start

2 Initialize the search process randomly.

#### **Materials & Methods:**



#### Particle Swarm Optimization ( PSO )

3 for i $\leftarrow$ 1 to N do

- 4 v<sub>i</sub><sup>0</sup>← random volicty vector [LSUUS]<sup>p</sup>
   //initialize the practical velocity
- 5. x<sub>i</sub><sup>0</sup>←random position [LSUUS]<sup>p</sup>//initialize position
- 6.  $p_{best}^{0} \leftarrow x_{i}^{0}$  initialize the best solution
- 7. Apply Precision performance matrix to get g<sub>best</sub><sup>0</sup>
- 8. m**←**1

# SYFIVE FACILITY

#### **Materials & Methods:**

- Particle Swarm Optimization ( PSO )
- 9. While m ≤ M do
- 10. For i=1 to N do
- 11.  $r^1 r^2 \leftarrow$  are two independent vectors that generated randomly  $[0.1]^D$
- 12. Apply Recall performance matrix //update the velocity.
- 13. Apply F-score performance matrix//update the position.



#### **Materials & Methods:**

#### Particle Swarm Optimization ( PSO )

14. **If** 
$$f(x_i^t) < f(x_{best}^{t-1})$$
 then

15. 
$$(x_{best_i}^t) \leftarrow f(x_{best_i}^t)$$

- 16. Apply precision performance matrix to get the best solution //update the over all best position.
- 17. m←m+1





#### **Single Level Stacking Ensemble**



**Figure : Single Level Stacking Ensemble** 

#### **Materials & Methods:**



#### Multi-level stacking ensemble model Development



FIGURE 3. Multi-level stacking ensemble learners for predicting Alzheimer's disease.

# **Results and Analysis:**



TABLE 2. The performance of models with the two classes and full features.

| Datasets     | Approaches                                | Models                          | Testing results |       |                |                |
|--------------|-------------------------------------------|---------------------------------|-----------------|-------|----------------|----------------|
| Datasets     | Approaches                                | Models                          |                 |       |                | F1             |
|              |                                           | RF                              | 85.97           | 85.08 | 85.97          | 85.47          |
|              |                                           | LR                              | 85.60           | 85.65 | 85.60          | 85.46          |
|              | D                                         | DT                              | 83.07           | 83.56 | 83.07          | 83.15          |
| ADAS         | Regular ML classifiers                    | SVM                             | 85.60           | 85.59 | 85.60          | 85.47          |
|              |                                           | KNN                             | 84.04           | 84.12 | 84.04          | 84.82          |
|              |                                           | NB                              | 84.25           | 84.36 | 84.25          | 84.93          |
|              | Stacking model                            | Stacking_ADAS                   | 86.21           | 86.20 | 86.21          | 86.04          |
|              |                                           | RF                              | 86.51           | 87.55 | 86.51          | 85.81          |
|              |                                           | LR                              | 86.15           | 86.38 | 86.15          | 86.87          |
|              | Danulas M. alassifass                     | DT                              | 83.51           | 83.55 | 83.51          | 83.81          |
| CDR          | Regular ML classifiers                    | SVM                             | 86.68           | 86.07 | 86.68          | 86.27          |
|              |                                           | KNN                             | 85.56           | 85.61 | 85.56          | 85.33          |
|              |                                           | NB                              | 85.27           | 85.40 | 85.27          | 85.98          |
|              | Stacking model                            | Stacking_CDR                    | 87.56           | 87.85 | 87.56          | 87.23          |
|              |                                           | RF                              | 83.87           | 84.45 | 83.87          | 83.07          |
|              |                                           | LR                              | 82.10           | 82.16 | 82.10          | 82.78          |
|              | Bossler M. slessific-                     | DT                              | 80.70           | 80.73 | 80.70          | 80.71          |
| FAQ          | Regular ML classifiers                    | SVM                             | 83.80           | 83.97 | 83.80          | 83.42          |
| ~            |                                           | KNN                             | 83.34           | 83.21 | 83.34          | 83.25          |
|              |                                           | NB                              | 82.63           | 82.64 | 82.63          | 82.26          |
|              | Stacking model                            | Stacking_FAQ                    | 85.56           | 85.61 | 85.56          | 85.33          |
|              |                                           | RF                              | 86.87           | 86.45 | 86.87          | 86.07          |
|              |                                           | LR                              | 85.15           | 85.09 | 85.15          | 85.02          |
|              | B 1 1                                     | DT                              | 84.70           | 84.73 | 84.70          | 84.71          |
| LD LG GDD    | Regular ML classifiers                    | SVM                             | 86.86           | 86.80 | 86.86          | 86.71          |
| ADAS_CDR     |                                           | KNN                             | 85.74           | 85.78 | 85.74          | 85.56          |
|              |                                           | NB                              | 85.68           | 85.62 | 85.68          | 85.49          |
|              | Stacking models                           | Stacking ADAS CDR               | 88.15           | 88.17 | 88.15          | 88.96          |
|              | Muti-level Stacking model                 | PMS_ ADAS_CDR                   | 89.03           | 89.97 | 89.03          | 89.94          |
|              | Muta level blacking model                 | RF                              | 86.58           | 86.70 | 86.58          | 86.96          |
|              |                                           | LR                              | 85.26           | 85.34 | 85.26          | 85.11          |
|              |                                           | DT                              | 84.31           | 84.29 | 84.31          | 84.63          |
|              | Regular ML classifiers                    | SVM                             | 86.46           | 86.61 | 86.46          | 86.24          |
| ADAS_FAQ     |                                           | KNN                             | 85.28           | 85.29 | 85.28          | 85.08          |
|              |                                           | NB                              | 85.97           | 85.67 | 85.97          | 85.51          |
|              | Stacking models                           | Stacking_ADAS_FAQ               | 87.56           | 87.85 | 87.56          | 87.23          |
|              | Muti-level Stacking model                 | PMS_ADAS_FAQ                    | 88.91           | 88.90 | 88.91          | 88.80          |
|              | Mad level blacking model                  | RF                              | 87.39           | 87.95 | 87.39          | 86.90          |
|              |                                           | LR                              | 89.15           | 89.22 | 89.15          | 88.93          |
|              |                                           | DT                              | 85.51           | 85.55 | 85.51          | 85.81          |
|              | Regular ML classifiers                    | SVM                             | 88.27           | 88.40 | 88.27          | 87.98          |
| CDR_FAQ      |                                           | KNN                             | 87.10           | 87.01 | 87.10          | 87.89          |
|              |                                           | NB                              | 86.92           | 86.83 | 86.92          | 86.66          |
|              | Steeleine models                          |                                 |                 | 88.68 |                |                |
|              | Stacking models Muti-level Stacking model | Stacking_CDR_FAQ<br>PMS_CDR_FAQ | 88.56<br>89.15  | 89.22 | 88.56<br>89.15 | 88.30<br>89.93 |
|              | Muu-ievei Stacking model                  |                                 |                 |       |                |                |
|              |                                           | RF<br>LR                        | 88.44           | 88.65 | 88.44          | 88.19          |
|              |                                           |                                 | 88.44           | 88.41 | 88.44          | 88.30          |
|              | Regular ML classifiers                    | DT                              | 85.39           | 85.34 | 85.39          | 85.17          |
| ADAS_CDR_FAQ |                                           | SVM                             | 88.56           | 88.61 | 88.56          | 88.33          |
|              |                                           | KNN                             | 87.10           | 86.98 | 87.10          | 86.99          |
|              | 8. 1.                                     | NB                              | 86.80           | 86.70 | 86.80          | 86.61          |
|              | Stacking model                            | Stacking_ADAS_CDR_FAQ           | 89.86           | 89.78 | 89.86          | 89.79          |
|              | Muti-level Stacking model                 | PMS ADAS CDR FAQ                | 90.27           | 90.18 | 90.27          | 90.14          |

TABLE 3. The performance of models with the two classes and selected features by swarm.

| Datasets     | Approaches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Models                | Testing results |                |                |                |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|----------------|----------------|----------------|--|
| Datasets     | Approaches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Models                | ACC             | PRE            | REC            | F1             |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RF                    | 85.97           | 85.08          | 85.97          | 85.47          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LR                    | 85.60           | 85.65          | 85.60          | 85.46          |  |
|              | Regular ML classifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DT                    | 83.07           | 83.56          | 83.07          | 83.15          |  |
| ADAS         | Regular WIL Classifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SVM                   | 85.60           | 85.59          | 85.60          | 85.47          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KNN                   | 84.04           | 84.12          | 84.04          | 84.82          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NB                    | 84.25           | 84.36          | 84.25          | 84.93          |  |
|              | Stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stacking_ADAS         | 86.21           | 86.20          | 86.21          | 86.04          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RF                    | 86.51           | 87.55          | 86.51          | 85.81          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LR                    | 86.15           | 86.38          | 86.15          | 86.87          |  |
|              | Regular ML classifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DT                    | 83.51           | 83.55          | 83.51          | 83.81          |  |
| CDR          | regular into chaosiners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SVM                   | 86.68           | 86.07          | 86.68          | 86.27          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KNN                   | 85.56           | 85.61          | 85.56          | 85.33          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NB                    | 85.27           | 85.40          | 85.27          | 85.98          |  |
|              | Stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stacking_CDR          | 87.56           | 87.85          | 87.56          | 87.23          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RF                    | 83.87           | 84.45          | 83.87          | 83.07          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LR                    | 82.10           | 82.16          | 82.10          | 82.78          |  |
| ELO          | Regular ML classifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DT                    | 80.70           | 80.73          | 80.70          | 80.71          |  |
| FAQ          | Transfer and the state of the s | SVM                   | 83.80           | 83.97          | 83.80          | 83.42          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KNN                   | 83.34           | 83.21          | 83.34          | 83.25          |  |
|              | g. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NB                    | 82.63           | 82.64          | 82.63          | 82.26          |  |
|              | Stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Stacking_FAQ          | 85.56           | 85.61          | 85.56          | 85.33          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RF                    | 86.87           | 86.45          | 86.87          | 86.07          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LR                    | 85.15           | 85.09          | 85.15          | 85.02          |  |
|              | Regular ML classifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DT                    | 84.70           | 84.73          | 84.70          | 84.71          |  |
| ADAS_CDR     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVM                   | 86.86           | 86.80          | 86.86          | 86.71          |  |
| _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KNN<br>NB             | 85.74           | 85.78          | 85.74          | 85.56          |  |
|              | Stanling madels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 85.68           | 85.62          | 85.68          | 85.49          |  |
|              | Stacking models Muti-level Stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stacking_ADAS_CDR     | 88.15           | 88.17<br>89.97 | 88.15<br>89.03 | 88.96<br>89.94 |  |
|              | Muti-level Stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PMS_ ADAS_CDR<br>RF   | 89.03           | 86.70          |                |                |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LR                    | 86.58<br>85.26  | 85.34          | 86.58<br>85.26 | 86.96<br>85.11 |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DT                    | 84.31           | 84.29          | 84.31          | 84.63          |  |
|              | Regular ML classifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SVM                   | 86.46           | 86.61          | 86.46          | 86.24          |  |
| ADAS_FAQ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KNN                   | 85.28           | 85.29          | 85.28          | 85.08          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NB                    | 85.97           | 85.67          | 85.97          | 85.51          |  |
|              | Stacking models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stacking_ADAS_FAQ     | 87.56           | 87.85          | 87.56          | 87.23          |  |
|              | Muti-level Stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PMS_ADAS_FAQ          | 88.91           | 88.90          | 88.91          | 88.80          |  |
|              | Made level Stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RF                    | 87.39           | 87.95          | 87.39          | 86.90          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LR                    | 89.15           | 89.22          | 89.15          | 88.93          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DT                    | 85.51           | 85.55          | 85.51          | 85.81          |  |
|              | Regular ML classifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SVM                   | 88.27           | 88.40          | 88.27          | 87.98          |  |
| CDR_FAQ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KNN                   | 87.10           | 87.01          | 87.10          | 87.89          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NB                    | 86.92           | 86.83          | 86.92          | 86.66          |  |
|              | Stacking models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stacking_CDR_FAQ      | 88.56           | 88.68          | 88.56          | 88.30          |  |
|              | Muti-level Stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PMS_CDR_FAQ           | 89.15           | 89.22          | 89.15          | 89.93          |  |
|              | multiple stacking model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RF                    | 88.44           | 88.65          | 88.44          | 88.19          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LR                    | 88.44           | 88.41          | 88.44          | 88.30          |  |
|              | Regular ML classifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DT                    | 85.39           | 85.34          | 85.39          | 85.17          |  |
| ADAG COD FIG |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVM                   | 88.56           | 88.61          | 88.56          | 88.33          |  |
| ADAS_CDR_FAQ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KNN                   | 87.10           | 86.98          | 87.10          | 86.99          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NB                    | 86.80           | 86.70          | 86.80          | 86.61          |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COLUMN ADAG CIND PAG  |                 | 89.78          | 89.86          | 89.79          |  |
|              | Stacking models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stacking ADAS_CDR_FAQ | 89.86           | 09./0          | 09.00          | 07.17          |  |

# **Results and Analysis:**



| Datasets     | Approaches                                | Models                                    | Testing results |       |       |       |
|--------------|-------------------------------------------|-------------------------------------------|-----------------|-------|-------|-------|
| 2,4443043    | ripproudices                              |                                           | ACC             | PRE   | REC   | F1    |
|              |                                           | RF                                        | 85.97           | 85.08 | 85.97 | 85.47 |
|              |                                           | LR                                        | 85.60           | 85.65 | 85.60 | 85.46 |
|              | Regular ML classifiers                    | DT                                        | 83.07           | 83.56 | 83.07 | 83.15 |
| ADAS         | Regular WIE classifiers                   | SVM                                       | 85.60           | 85.59 | 85.60 | 85.47 |
|              |                                           | KNN                                       | 84.04           | 84.12 | 84.04 | 84.82 |
|              |                                           | NB                                        | 84.25           | 84.36 | 84.25 | 84.93 |
|              | Stacking model                            | Stacking_ADAS                             | 86.21           | 86.20 | 86.21 | 86.04 |
|              |                                           | RF                                        | 86.51           | 87.55 | 86.51 | 85.81 |
|              |                                           | LR                                        | 86.15           | 86.38 | 86.15 | 86.87 |
|              | Regular ML classifiers                    | DT                                        | 83.51           | 83.55 | 83.51 | 83.81 |
| CDR          | Regular IVIE classifiers                  | SVM                                       | 86.68           | 86.07 | 86.68 | 86.27 |
|              |                                           | KNN                                       | 85.56           | 85.61 | 85.56 | 85.33 |
|              |                                           | NB                                        | 85.27           | 85.40 | 85.27 | 85.98 |
|              | Stacking model                            | Stacking_CDR                              | 87.56           | 87.85 | 87.56 | 87.23 |
|              |                                           | RF                                        | 83.87           | 84.45 | 83.87 | 83.07 |
|              |                                           | LR                                        | 82.10           | 82.16 | 82.10 | 82.78 |
|              | Regular ML classifiers                    | DT                                        | 80.70           | 80.73 | 80.70 | 80.71 |
| FAQ          | regular IVIL classificis                  | SVM                                       | 83.80           | 83.97 | 83.80 | 83.42 |
|              |                                           | KNN                                       | 83.34           | 83.21 | 83.34 | 83.25 |
|              |                                           | NB                                        | 82.63           | 82.64 | 82.63 | 82.26 |
|              | Stacking model                            | Stacking_FAQ                              | 85.56           | 85.61 | 85.56 | 85.33 |
|              |                                           | RF                                        | 86.87           | 86.45 | 86.87 | 86.07 |
|              |                                           | LR                                        | 85.15           | 85.09 | 85.15 | 85.02 |
|              | Regular ML classifiers                    | DT                                        | 84.70           | 84.73 | 84.70 | 84.71 |
| ADAS CDB     |                                           | SVM                                       | 86.86           | 86.80 | 86.86 | 86.71 |
| ADAS_CDR     |                                           | KNN                                       | 85.74           | 85.78 | 85.74 | 85.56 |
|              |                                           | NB                                        | 85.68           | 85.62 | 85.68 | 85.49 |
|              | Stacking models                           | Stacking_ADAS_CDR                         | 88.15           | 88.17 | 88.15 | 88.96 |
|              | Muti-level Stacking model                 | PMS_ ADAS_CDR                             | 89.03           | 89.97 | 89.03 | 89.94 |
|              | Man forth blanking model                  | RF                                        | 86.58           | 86.70 | 86.58 | 86.96 |
|              |                                           | LR                                        | 85.26           | 85.34 | 85.26 | 85.11 |
|              | D1 MT -1:6                                | DT                                        | 84.31           | 84.29 | 84.31 | 84.63 |
| 4D45 E40     | Regular ML classifiers                    | SVM                                       | 86.46           | 86.61 | 86.46 | 86.24 |
| ADAS_FAQ     |                                           | KNN                                       | 85.28           | 85.29 | 85.28 | 85.08 |
|              |                                           | NB                                        | 85.97           | 85.67 | 85.97 | 85.51 |
|              | Stacking models                           | Stacking ADAS FAQ                         | 87.56           | 87.85 | 87.56 | 87.23 |
|              | Muti-level Stacking model                 | PMS_ADAS_FAQ                              | 88.91           | 88.90 | 88.91 | 88.80 |
|              |                                           | RF                                        | 87.39           | 87.95 | 87.39 | 86.90 |
|              | Regular ML classifiers                    | LR                                        | 89.15           | 89.22 | 89.15 | 88.93 |
|              |                                           | DT                                        | 85.51           | 85.55 | 85.51 | 85.81 |
| GDD FIG      |                                           | SVM                                       | 88.27           | 88.40 | 88.27 | 87.98 |
| CDR_FAQ      |                                           | KNN                                       | 87.10           | 87.01 | 87.10 | 87.89 |
|              |                                           | NB                                        | 86.92           | 86.83 | 86.92 | 86.66 |
|              | Stacking models                           | Stacking_CDR_FAQ                          | 88.56           | 88.68 | 88.56 | 88.30 |
|              | Muti-level Stacking model                 | PMS_CDR_FAQ                               | 89.15           | 89.22 | 89.15 | 89.93 |
|              | 2.200 level blacking model                | RF                                        | 88.44           | 88.65 | 88.44 | 88.19 |
|              |                                           | LR                                        | 88.44           | 88.41 | 88.44 | 88.30 |
|              |                                           | DT                                        | 85.39           | 85.34 | 85.39 | 85.17 |
|              | Regular ML classifiers                    | SVM                                       | 88.56           | 88.61 | 88.56 | 88.33 |
| ADAS_CDR_FAQ |                                           | KNN                                       | 87.10           | 86.98 | 87.10 | 86.99 |
|              |                                           | NB                                        | 86.80           | 86.70 | 86.80 | 86.61 |
|              | Stacking models                           |                                           | 89.86           | 89.78 | 89.86 | 89.79 |
|              | Stacking models Muti-level Stacking model | Stacking_ADAS_CDR_FAQ<br>PMS_ADAS_CDR_FAQ | 90.27           | 90.18 | 90.27 | 90.14 |
|              |                                           |                                           |                 |       |       |       |

### Visual Comparison:



The results of two classes AD and CN The best models for each modality





(b) two classes, multi modalities

(a) two classes, single modality

Figure: The best models for each modality with two classes and selected features



# **Visual Comparison:**





(a) two classes, single modality

(b) two classes, multi modalities

**Figure :** The best models for each modality with three classes and selected features





TABLE 6. comparing with previous studies that used different datasets to detect AD.

| Research study | Dataset                                      | Models                        | Classes                    | The performance                                 |
|----------------|----------------------------------------------|-------------------------------|----------------------------|-------------------------------------------------|
| [37]           | OASIS                                        | XBoost                        | non-demented<br>demented   | ACC=85.12,<br>PRE=83,<br>REC=83 and F1=85       |
| [38]           | OASIS                                        | svm                           | non-demented<br>demented   | ACC=92 and REC=91.89                            |
| [39]           | OASIS dataset                                | CHFS+SVM                      | non-demented<br>demented   | ACC=96.50%,<br>REC=96.5                         |
| [45]           | ADNI                                         | Deep CNN                      | CN, EMCI, LMCI and AD      | ACC=93                                          |
| [46]           | ADNI                                         | SVM                           | CN, EMCI, LMCI and AD      | REC=75<br>F1=72                                 |
| [47]           | ADNI                                         | GLM                           | CN, EMCI, LMCI, SMC and AD | ACC=88.24                                       |
| [48]           | MRI and PET                                  | XGB                           | NC, MCI, and AD            | ACC=98.06%                                      |
| [39]           | Multi-modality (MRI,FDG, and PET)            | ML models                     | AD and CN                  | ACC= 94.8%                                      |
| Our work       | Sub-scores of fusion<br>(FQA, CDR, and ADAS) | Muti-level of stacking models | AD and CN                  | ACC=92.08<br>PRE=92.07<br>REC=92.08<br>F1=92.01 |



# SHAP Analysis SHAP (SHapley Additive exPlanations)

SHAP (SHapley Additive exPlanations) values are a way to explain the output of any machine learning model.

#### **☐** Model Interpretability

Used to make the machine learning model interpretable

#### ☐ Transparency in Black-Box Models

Explains the model's predictions, making them easier for doctors to interpret

# **SHAP Analysis:**





FIGURE 12. Summary plot for two class problems (0=AD, 1=CN).

#### **SHAP** Analysis





Figure: Waterfall for three classes problem



# **References:**

- [1] A.Association, "2018 Alzheimer's disease facts and figures," Alzheimer's Dementia, vol. 14, no. 3, pp. 367–429, Mar. 2018.
- [2] S. Al-Shoukry, T. H. Rassem, and N. M. Makbol, "Alzheimer's diseases detection byusingdeeplearningalgorithms: Amini-review," IEEE Access, vol. 8, pp. 77131–77141, 2020.
- [3] R. H. Blank and R. H. Blank, "Alzheimer's disease and other dementias: An introduction," in Social & Public Policy of Alzheimer's Disease in the United States, 2019, pp. 1–26.
- [4] World Health Origination. Accessed: 2023. [Online]. Available: https://www.who.int/news/item/07-12-2017-dementia-number-of-people affected-to-triple-in-next-30-years
- [5] J.NeugroschlandS.Wang, "Alzheimer's disease: Diagnosis and treatment across the spectrum of disease severity," Mount Sinai J. Med., J. Transl. Personalized Med., vol. 78, no. 4, pp. 596–612, Jul. 2011.
- [6] M. S. Albert, S. T. DeKosky, D. Dickson, B. Dubois, H. H. Feldman, N. C. Fox, A. Gamst, D. M. Holtzman, W. J. Jagust, and R. C. Petersen, "The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the national institute on aging-Alzheimer's asso ciation workgroups on diagnostic guidelines for Alzheimer's disease," Focus, vol. 11, no. 1, pp. 96–106, 2013.



# **Conclusion:**

- ☐ A new multi-level stacking model has been proposed to predict Alzheimer's Disease (AD) with higher accuracy.
- ☐ The study addresses classification problems with two classes (AD, CN) and three classes (AD, CN, sMCI).
- ☐ The proposed multi-level stacking model outperformed single-level stacking and classical ML models, achieving the highest performance with selected features for both two-class (accuracy = 92.08%) and three-class (accuracy = 90.03%) problems.
- ☐ Multi-modalities demonstrated superior results compared to single modalities.



# A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease

#### Authors:

Akhilesh Deep Arya,

Sourabh Singh Verma,

Prasun Chakarabarti,

Tulika Chakrabarti,

Ahmed A. Elngar,

Ali-Mohammad Kamali and

Mohammad Nami



# Table of contents

01 05 Introduction **Visual Comparison** 02 **Objectives** 06 Limitations 03 Literature selection 07 Conclusion 04 Methodes & Models





- Overview of Alzheimer's Disease (AD):
  - > Progressive neurodegenerative condition
  - ➤ Primarily affects cognitive and memory functions in the elderly
  - Most cases of this disease are observed in people aging 65 and above
  - ➤ It is observed that people with higher education are at less risk
- Early detection is crucial for:
  - > Delaying mental health effects
  - > Improving patient quality of life

#### Different Stages of MCI/AD:

| Stage No | Stage Name                                       |
|----------|--------------------------------------------------|
| 1        | Pre-clinical<br>Alzheimer's<br>disease           |
| 2        | Mild cognitive impairment (MCI)                  |
| 3        | Mild dementia                                    |
| 4        | Moderate dementia                                |
| 5        | Severe dementia<br>due to Alzheimer's<br>disease |



#### Current State of Research:

- Advanced Diagnostics:
  - a) MRI and PET scans
  - b) Integration of machine learning and deep learning models for better diagnostic accuracy



Figure 1: MRI scans images of different stages of AD



Figure 2: PET scans images of different stages of AD

# **Objectives:**

- To analysis the models and methods used in different papers
- Compare the accuracy of the models
- Provide an overview about all the research works











#### Pre-processing methods:

- 1. Image normalization
- 2. Image cropping and resizing
- 3. Image augmentation
- 4. Feature extraction
- 5. Data augmentation





Figure: Description of modalities, feature selection, feature extraction, and classification algorithms used to predict AD and NC cases



#### Machine Learning Models:

- Logistic Regression
  - Predicts the probability of a binary outcome (e.g., disease vs. no disease)
  - Works well for linear relationships
- Support Vector Machine
  - Separates data into categories using a hyperplane
  - Effective for both linear and non-linear data
- Random Forest
  - Uses multiple decision trees for predictions
  - Reduces overfitting and improves accuracy
- Linear Discriminant Analysis (LDA):
  - Useful for classification tasks with multiple categories
  - Assumes data is normally distributed
  - Projects data into lower-dimensional space while maximizing class separability

# क्ष्माण स्थातनगणि

# Deep Learning Models:

- ANN
  - A basic neural network with 1-2 hidden layers
- DNN
  - A neural network with multiple hidden layers (deep architecture)
  - Learns hierarchical representations of data
- RNN
  - Retains information from previous inputs (memory)
  - Can analyze progression over time, useful for disease progression prediction



#### CNN

- Designed for image processing and pattern recognition
- Captures spatial features like edges, shapes, and textures.
- Widely used in medical imaging tasks

There are some specific CNN models used in prediction of Alzheimer's disease. Some models which provide better accuracy are given below:

- ResNet101
  - Deep CNN with 101 layers
  - Excels in processing complex and detailed images
- VGG
  - Deep CNN with a simple architecture (e.g., 16 or 19 layers)
  - Performs well on image classification tasks



- VoxCNN
  - A CNN specifically designed for volumetric data (e.g., 3D brain scans)
  - Captures spatial and volumetric features effectively
- DenseNet
  - Deep CNN where each layer connects to every other layer
  - Reduces redundancy and enhances feature propagation

# **Visual Comparison**



Comparison chart of accuracy derived from different articles:



Table to represent Methodes and accuracy of the papers:

| References                   | Method                            | AD:NC Acc | SEN recall     | SPE                 | Precision           | AUC           |
|------------------------------|-----------------------------------|-----------|----------------|---------------------|---------------------|---------------|
| Zhang D et al. [3]           | Multi-kernel SVM                  | 78.40     | 79.00          | 78.00               | ( <del>,,,</del> )) | 76.80         |
| Suk H et al. [4]             | Group sparse representation + SVM | 89.19     | 91.00          | 88.00               | -                   | 95.60         |
| Lu D et al. [6]              | DNN                               | 82.93     | 79.69          | 83.84               | ) <del>-</del> :    | -             |
| Tong T et al. [7]            | Multiple instance learning + SVM  | 89.00     | _              | -                   | _                   | -             |
| Lee G et al. [9]             | Multi- model deep learning + RNN  | 81.00     | 84.00          | 80.00               | _                   | 86.00         |
| Xiao Z et al. [10]           | SVM-REF with covariance           | 85.71     | 79.63          | 91.38               |                     | _             |
| Ortiz A et al. [12]          | Deep belief network (SVM)         | 90.00     | 86.00          | 94.00               | -                   | 95.00         |
| Subramoniam M et al.(a) [14] | Vanilla DNN                       | 95.31     | -              | -                   | ( <del></del> )     | -             |
| Subramoniam M et al.(b) [14] | CNN                               | 95.32     | 2-             | -                   | -                   | -             |
| Yue L et al.(a) [23]         | CNN                               | 99.40     | 100            | -                   | 98.80               | 97.20         |
| Yue L et al.(b) [23]         | CNN                               | 98.60     | 97.20          | -                   | 100                 | 98.60         |
| Goryawala M et al. [24]      | Linear regression model + LDA     | 93.90     | 96.30          | 89.50               | 93.80               | _             |
| Aderghal [25]                | 2D CNN                            | 91.41     | 93.75          | 89.60               | _                   | -             |
| Korolev (a) [26]             | 3D CNN                            | 79.00     | <del></del>    | -                   | -                   | 88.00         |
| Korolev (b) [26]             | ResNet                            | 80.00     | -              | -                   | -                   | 87.00         |
| Cheng and Liu [27]           | RNN                               | 91.20     | 91.40          | 83.84               | 95.30               | -             |
| Choi H et al. [28]           | 3D CNN                            | 96.00     | _              | -                   | -                   | 91.00         |
| Cheng and Liu [29]           | 3D CNN                            | 89.60     | 87.10          | 92.00               | _                   | 94.45         |
| Kumar N et al. [30]          | Linear discriminant analysis      | 98.92     | · <u>-</u>     | _                   | _                   | 320           |
| Ji h et al. [31]             | CNN                               | 98.59     | 97.22          | 100                 | -                   | -             |
| Battineni G et al. [32]      | Linear regression model           | 98.30     | 97.40          | 1. <del>75</del> .1 | 98.60               | 99.70         |
| Kumari R et al. [33]         | CNN                               | 90.25     | 85.53          | -                   | -                   | -             |
| Alickovic E et al. [34]      | Random forest                     | 85.77     | 54.17          | 97.44               | -                   | -             |
| Madiwalar S et al. [35]      | Extra tree                        | 93.14     | 85.00          | -                   | 85.00               | -             |
| Pan D et al. [36]            | CNN                               | 84.00     | 8 <del>=</del> | _                   | _                   | 92.00         |
| Alroobaea R et al. (a) [37]  | Random forest                     | 98.89     | 99.19          | _                   | 98.89               | 3 <u>20</u> 0 |
| Alroobaea R et al. (b) [37]  | Logistic regression               | 84.33     | 84.14          |                     | 84.54               | -             |
| Savita et al. [38]           | SVM                               | 85.80     | -              | -                   | 87.83               | -             |
| Li and Yang [39]             | SVM                               | 90.00     | 93.90          | 85.10               | -                   | 97.00         |
| Mehmood A et al. [40]        | CNN                               | 98.73     | 98.19          | 99.09               | -                   | -             |



# Frequency of methods used in different articles taken in the study, and average accuracy using different classifiers:







# Limitations

- Only worked with image data
- XAI can be added

#### References

- Alzheimer's Association (2019) Alzheimer's Disease Facts and Figures.
- Alzheimer's Association Report, 01 March 2019 15:321. https://doi.org/10.1016/j.jalz.2019.01.010
- Bhushan I, Kour M, Kour G, et al. Alzheimer's disease: Causes and treatment A review. Ann Biotechnol. 2018; 1(1): 1002.
- Zhang D (2012) Predicting future clinical changes of MCI Patients using longitudinal and multimodal biomarkers. PLoS ONE 7:1–15
- Wee CY, Suk HII (2013) Discriminative Group Sparse Representation for Mild Cognitive Impairment Classification. Springer International Switzerland, Cham, pp 131–138
- Verma SS, Prasad A, Kumar A (2022) CovXmlc: High performance COVID19 detection on Xray images using multimodal classification. Biomed Signal Processing Control 71:103272 6. Popuri K, Donghuan Lu (2018)
- Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG PET images. Sci Rep 8:1–13 7. Wolz R, Tong T (2014)



# **Conclusion**

- In the paper, authors tried to provide a review of all the research works published
- By studying the paper, researchers can easily understand about all the published research works and get idea about proposed methodologies
- This paper makes it easier for the researchers to grasp where they can contribute and how they can contribute

