

Oscilaciones simultáneas de varios cuerpos en interacción.

Si en un sistema complejo móvil existe una configuración de equilibrio y si el movimiento se mantiene acotado en la proximidad del equilibrio, la situación puede aproximarse por un sistema de cuerpos conectados por resortes.

Las **soluciones** que se encontrarán serán **oscilaciones superpuestas y simultáneas**, cada una caracterizada por su propia frecuencia.

Suponga dos masas conectadas por resortes, entre sí (*cadena lineal*). Los desplazamientos son sólo longitudinales.

Coordenadas generalizadas: los desplazamientos a partir de la posición de equilibrio.

$$T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2.$$

$$U = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_3x_2^2 + \frac{1}{2}k_2(x_2 - x_1)^2.$$

$$\mathcal{L} = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 - \frac{1}{2}k_1x_1^2 - \frac{1}{2}k_3x_2^2 - \frac{1}{2}k_2(x_2 - x_1)^2.$$

Trabajando la expresión de \mathcal{L} :

$$\mathcal{L} = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 - \frac{1}{2}k_1x_1^2 - \frac{1}{2}k_3x_2^2 - \frac{1}{2}k_2(x_1^2 + x_2^2 - 2x_1x_2)$$

= $\frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 - \frac{1}{2}(k_1 + k_2)x_1^2 + \frac{1}{2}2k_2x_1x_2 - \frac{1}{2}(k_2 + k_3)x_2^2$.

$$\mathcal{L} = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2 - \frac{1}{2}(k_1 + k_2)x_1^2 + \frac{1}{2}2k_2x_1x_2 - \frac{1}{2}(k_2 + k_3)x_2^2.$$

Las ecuaciones de movimiento serán:

$$\frac{\partial \mathcal{L}}{\partial \dot{x}_1} = m_1 \dot{x}_1 \xrightarrow{d/dt} m_1 \ddot{x}_1$$

$$\frac{\partial \mathcal{L}}{\partial x_1} = -(k_1 + k_2)x_1 + k_2 x_2$$

$$\cdots \text{idem } x_2 \cdots$$

$$m_1 \ddot{x}_1 = -(k_1 + k_2) \quad x_1 + k_2 \quad x_2$$

$$m_2 \ddot{x}_2 = k_2 \quad x_1 - (k_2 + k_3) x_2$$

$$\text{(Forma matricial de la ecuación del oscilador)}$$

$$m_1 \ddot{x_1} = -(k_1 + k_2) x_1 + k_2 x_2$$

 $m_2 \ddot{x_2} = k_2 x_1 - (k_2 + k_3) x_2$

ecuación del oscilador armónico)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \mathbf{M} = \begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix},$$

Como solución se propone las dos masas oscilan armónicamente con alguna frecuencia ω (desconocida). Usando la forma

compleja de la solución, con $x_i = \mathbb{R}z_i$: $z_1(t) = a_1 e^{i\omega t}, \quad z_2(t) = a_2 e^{i\omega t}.$

$$z_1(t) = a_1 e^{i\omega t},$$

$$z_2(t) = a_2 e^{i\omega t}.$$

$$\mathbf{z_1}$$
 y $\mathbf{z_2}$ pueden expresarse como vector: $\mathbf{z}(t) = \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \mathbf{a}e^{i\omega t}, \quad \mathbf{x}(t) = \mathrm{Re}\,\mathbf{z}(t), \quad \Rightarrow \text{ es la solución de } \mathbf{M}\ddot{\mathbf{x}} = -\mathbf{K}\mathbf{x}$

Sustituyendo la solución en la ecuación $\mathbf{M}\ddot{\mathbf{x}} = -\mathbf{K}\mathbf{x}$: $-\omega^2\mathbf{M}\,\mathbf{a}\,e^{i\omega t} = -\mathbf{K}\,\mathbf{a}\,e^{i\omega t}$, $=> -\omega^2\mathbf{M}\,\mathbf{a} = -\mathbf{K}\,\mathbf{a}$

$$\Rightarrow (\mathbf{K} - \omega^2 \mathbf{M}) \mathbf{a} = 0,$$

Autovector

Es un sistema algebraico para las amplitudes a.

Es una generalización de un problema de autovalores de una matriz, donde ω^2 es el autovalor y α es el autovector, y donde la matriz M aparece en lugar de I (matriz identidad).

(Paréntesis matemático)

Para una matriz \mathbf{A} (cuadrada de orden n):

Si λ es un autovalor de A, entonces existe un autovector \mathbf{v} ($\mathbf{v} \neq 0$) tal que: $A\mathbf{v} = \lambda \mathbf{v} \Rightarrow (A - \lambda \mathbf{I}) \mathbf{v} = \mathbf{0}$

Si $v \neq 0 =>$ la matriz $A - \lambda I$ es singular => se puede escribir el **Polinomio Característico**: $|A - \lambda I| = 0$.

Este determinante da los autovalores de A, tantos autovalores como la dimensión de la matriz A.

$$(A - \lambda I) v = 0$$

Autovalor

Autovector

la matriz M aparece en lugar de I; ω^2 en lugar de λ . Se resuelve como el problema habitual de

autovalores: para tener amplitudes **a** no nulas, la matriz $K - \omega^2 M$ debe ser singular, es decir:

$$\det(\mathbf{K} - \omega^2 \mathbf{M}) = 0$$

 $\det(\mathbf{K} - \omega^2 \mathbf{M}) = 0$ \rightarrow se llama *ecuación característica* y es un polinomio cuadrático en ω^2

Su solución da las **frecuencias** (ω) que se buscan para la solución x(t), y puede haber más de una.

$$z_1(t) = a_1 e^{i\omega t}, \quad z_2(t) = a_2 e^{i\omega t}.$$

$$\mathbf{z}(t) = \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \mathbf{a}e^{i\omega t}, \ \mathbf{x}(t) = \operatorname{Re}\mathbf{z}(t),$$

Estas frecuencias se llaman frecuencias normales o autofrecuencias. Los autovectores a se llaman modos normales.

Una vez encontrados, resta escribir la solución de alguna manera conveniente.

Caso de las masas $(m_1 = m_2 = m)$ y resortes iguales $(k_1 = k_2 = k)$:

$$\begin{cases} m\ddot{x_1} = -2kx_1 + kx_2 \\ m\ddot{x_2} = kx_1 - 2kx_2 \end{cases}$$

$$M\ddot{\mathbf{x}} = -\mathbf{K}\mathbf{x}$$

$$\mathbf{M} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix} \Rightarrow \mathbf{K} - \omega^2 \mathbf{M} = \begin{bmatrix} 2k - m\,\omega^2 & -k \\ -k & 2k - m\,\omega^2 \end{bmatrix}$$

El determinante será:

$$\det(\mathbf{K} - \omega^2 \mathbf{M}) = (2k - m\omega^2)^2 - k^2.$$

Si
$$\lambda = \omega^2$$
:

$$4k^{2} + m^{2}\lambda^{2} - 4km\lambda - k^{2} = 0 \Rightarrow m^{2}\lambda^{2} - 4km\lambda + 3k^{2} = 0$$

$$\Rightarrow \lambda_{\pm} = \frac{4k \, \cancel{m} \pm \sqrt{16k^2 \cancel{m}^2 - 4\cancel{m}^2 3k^2}}{2m^2} \qquad \qquad = \frac{\cancel{4}k}{2m} \pm \frac{\sqrt{4k^2}}{2m} = \frac{2k}{m} \pm \frac{k}{m} = \begin{cases} \frac{3k}{m}, \\ \frac{k}{m}, \end{cases}$$

ales:
$$\omega_1 = \sqrt{\frac{k}{m}}, \quad \omega_2 = \sqrt{\frac{3k}{m}}$$

Por tanto, hay dos frecuencias normales:
$$\omega_1=\sqrt{rac{k}{m}}, \quad \omega_2=\sqrt{rac{3k}{m}}.$$

Éstas son dos **frecuencias** (ω) a las cuales las dos masas pueden oscilar de **manera puramente armónica**. ω_1 es la

frecuencia de oscilación de una masa m sujeta a un resorte de constante elástica k. Se buscarán ahora los modos normales (a) de estas oscilaciones.

$$\mathbf{z}(t) = \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \mathbf{a}e^{i\omega t}, \quad \mathbf{x}(t) = \operatorname{Re}\mathbf{z}(t),$$

$$m_1 \ddot{x}_1 = -(k_1 + k_2)x_1 + k_2 x_2$$

$$m_2 \ddot{x}_2 = k_2 x_1 - (k_2 + k_3)x_2$$

$$(\mathbf{K} - \omega^2 \mathbf{M})\mathbf{a} = 0$$

Modo de
$$\omega_1 = \sqrt{k/m}$$
:

$$\mathbf{K} - \omega_1^2 \mathbf{M} = \begin{bmatrix} 2k - \varkappa \frac{k}{\varkappa} & -k \\ -k & 2k - \varkappa \frac{k}{\varkappa} \end{bmatrix} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix},$$

que tiene determinante 0. El sistema algebraico es $|(\mathbf{K} - \omega^2 \mathbf{M})\mathbf{a} = 0|$:

$$\begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = 0 \Rightarrow a_1 - a_2 = 0 \Rightarrow a_1 = a_2 := a, \quad \mathbf{z}(t) = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} e^{i\omega_1 t} = \begin{bmatrix} a \\ a \end{bmatrix} e^{i\omega_1 t}.$$

Para tomar la parte real se puede considerar: $a=Ae^{-i\phi}$ $\mathbf{x}(t)=\begin{vmatrix}A\\A\end{vmatrix}\cos(\omega_1 t-\phi).$

$$-i\phi$$
 A

$$m_1$$
 m_2 k_1 k_2 k_3

$$\omega_1 = \sqrt{\frac{k}{m}}, \quad \omega_2 = \sqrt{\frac{3k}{m}}$$

$$(\mathbf{K} - \omega^2 \mathbf{M})\mathbf{a} = 0$$

$$\mathbf{z}(t) = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} e^{i\omega_1 t} = \begin{bmatrix} a \\ a \end{bmatrix} e^{i\omega_1 t}.$$

Las dos masas oscilan con la misma frecuencia ω_1 , la misma amplitud Ay la **misma fase**.

El resorte del medio no se comprime ni se expande (como si no existiera).

Esto explica por qué
$$\omega_1 = \sqrt{k/m}$$

Modo de $\omega_2 = \sqrt{3k/m}$:

$$\mathbf{K} - \omega_2^2 \mathbf{M} = \begin{bmatrix} 2k - m\frac{3k}{m} & -k \\ -k & 2k - m\frac{3k}{m} \end{bmatrix} = \begin{bmatrix} -k & -k \\ -k & -k \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = 0 \Rightarrow a_1 + a_2 = 0 \Rightarrow a_1 = -a_2 := a.$$

$$\begin{bmatrix} m_1 & m_2 \\ k_1 & k_2 & k_3 \end{bmatrix}$$

$$\omega_1 = \sqrt{\frac{k}{m}}, \quad \omega_2 = \sqrt{\frac{3k}{m}}$$

Es decir:
$$\mathbf{z}(t) = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} e^{i\omega_2 t} = \begin{bmatrix} a \\ -a \end{bmatrix} e^{i\omega_2 t}$$
.

Nuevamente si $a = Ae^{-i\phi}$

$$\mathbf{x}(t) = \begin{bmatrix} A \\ -A \end{bmatrix} \cos(\omega_2 t - \phi).$$

Las dos masas oscilan con la misma frecuencia ω_2 , la misma amplitud A y la misma fase pero en sentidos opuestos.

El resorte del medio sí se comprime y se expande. Esto explica por qué $\omega_2 \neq \omega_1 = \sqrt{k/m}$. El sistema se comporta como si hubiera un resorte de constante elástica 3k para cada masa por **separado**.

La solución general es una combinación lineal de las dos soluciones encontradas:

$$\mathbf{z}(t) = a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{i\omega_1 t} + a_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{i\omega_2 t}, \quad \mathbf{x}(t) = A_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \cos(\omega_1 t - \phi_1) + A_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \cos(\omega_2 t - \phi_2),$$

Acoplamiento débil:

El resorte del medio es mucho más blando que los otros dos: $k_2 << k$

$$\begin{cases}
m\ddot{x_1} = -(k+k_2)x_1 + k_2x_2 \\
m\ddot{x_2} = k_2x_1 - (k_2+k)x_2
\end{cases}$$

$$M\ddot{x} = -Kx$$

$$\mathbf{M} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \quad \mathbf{K} = \begin{bmatrix} k + k_2 & -k_2 \\ -k_2 & k + k_2 \end{bmatrix},$$

$$\mathbf{M} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \quad \mathbf{K} = \begin{bmatrix} k + k_2 & -k_2 \\ -k_2 & k + k_2 \end{bmatrix}, \quad \mathbf{K} - \omega^2 \mathbf{M} = \begin{bmatrix} k + k_2 - m\omega^2 & -k_2 \\ -k_2 & k + k_2 - m\omega^2 \end{bmatrix}.$$

$$\det(\mathbf{K} - \omega^2 \mathbf{M}) = (k + k_2 - m\omega^2)^2 - k_2^2 = (k_2 + (k - m\omega^2))^2 - k_2^2 = k_2^2 + (k - m\omega^2)^2 + 2k_2(k - m\omega^2) - k_2^2$$

$$= (k - m\omega^2)(2k_2 + k - m\omega^2) = 0$$

$$\Rightarrow \omega_1 = \sqrt{\frac{k}{m}}, \quad \omega_2 = \sqrt{\frac{k+2k_2}{m}}.$$

La ω_1 es exactamente la misma que en el caso de resortes iguales (el movimiento del modo correspondiente no afecta el resorte del medio).

La segunda frecuencia en este caso es muy parecida a ω_1 , porque $k_2 << k$.

Si el acoplamiento es nulo, las dos frecuencias son iguales: una situación llamada degeneración. La presencia del acoplamiento rompe la degeneración, separando las dos frecuencias.

Acoplamiento débil:

Como ω_1 y ω_2 son similares, se calcula un promedio: $\omega_0 = \frac{\omega_1 + \omega_2}{2} \approx \omega_1$

El desvío de ω_0 se llama ϵ : $\omega_1 = \omega_0 - \epsilon, \quad \omega_2 = \omega_0 + \epsilon.$

Los modos normales en forma compleja serán:

$$\mathbf{z}_1(t) = \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} e^{i\omega_1 t} = a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{i(\omega_0 - \epsilon)t}, \quad \mathbf{z}_2(t) = \begin{bmatrix} a_2 \\ -a_2 \end{bmatrix} e^{i\omega_2 t} = a_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{i(\omega_0 + \epsilon)t}.$$

La solución general será $\mathbf{z}(t) = \mathbf{z}_1(t) + \mathbf{z}_2(t) = a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{i(\omega_0 - \epsilon)t} + a_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{i(\omega_0 + \epsilon)t},$

$$\Rightarrow \mathbf{z}(t) = \left(a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-i\epsilon t} + a_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{i\epsilon t}\right) e^{i\omega_0 t}.$$

El primer factor varía mucho más lento dado que $\varepsilon \ll \omega_0$

En un corto tiempo, el primer factor es casi cte. La oscilación es casi como la del modo desacoplado: $\mathbf{z}(t) = \mathbf{a}e^{i\omega_0t}$. Con el tiempo, el primer término comienza a crecer.

Supongamos que
$$a_1=a_2:=rac{a}{2}\in\mathbb{R}$$

$$\Rightarrow \mathbf{z}(t) = \left(a_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-i\epsilon t} + a_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{i\epsilon t}\right) e^{i\omega_0 t}.$$

$$\Rightarrow \mathbf{z}(t) = \frac{a}{2} \begin{bmatrix} e^{-i\epsilon t} + e^{i\epsilon t} \\ e^{-i\epsilon t} - e^{i\epsilon t} \end{bmatrix} e^{i\omega_0 t} = a \begin{bmatrix} \cos \epsilon t \\ -i\sin \epsilon t \end{bmatrix} e^{i\omega_0 t}.$$

Para las posiciones de las masas, se toma la parte real:

$$x_1(t) = a\cos\epsilon t\cos\omega_0 t,$$

$$x_2(t) = a\sin\epsilon t\sin\omega_0 t.$$

A tiempo t = 0:

$$x_1(0) = a, \quad x_2(0) = 0,$$

$$x_1(0) = a, \quad x_2(0) = 0, \qquad \dot{x}_1(0) = 0, \quad \dot{x}_2(0) = 0.$$

Se aparta la masa 1 de su equilibrio y se suelta (la masa 2 quieta). Como $\varepsilon \ll \omega_0$, hay un tiempo $(0 \le t \ll 1/\varepsilon)$ durante el cual las funciones de ϵt no cambian: $\cos \epsilon t \approx 1$ y $\sin \epsilon t \approx 0$. Así que durante ese tiempo:

$$x_1(t) \approx a \cos \omega_0 t$$
, $x_2(t) \approx 0$.

Se observa que la masa 1 oscila como si estuviera libre, y la masa 2 no se mueve. Pero en realidad la masa 1 está deformando el resorte blando del medio, así que esta situación no puede

durar. Con suficiente tiempo, va a hacer oscilar a la masa 2.

Con el tiempo, el factor sin $\epsilon t \approx 1$, el cos $\epsilon t \approx 0$, y en medio período (de la frecuencia ϵ , $t \approx \pi/(2\epsilon)$. La situación se habrá invertido: $x_1(t) \approx 0, \ x_2(t) \approx a \sin \omega_0 t$.

Por tanto, la oscilación rápido ω_0 pasa lentamente de la masa 1 a la 2 y regresa.

El movimiento resultante se denomina "batido".

$$x_1(t) = a\cos\epsilon t\cos\omega_0 t$$
,

$$x_2(t) = a \sin \epsilon t \sin \omega_0 t.$$