Quantum Basics for Game Design

VHAKTYR 2023/9/10

Content

- Quantum Computing Overview
 - state, gate and circuit
 - bloch sphere
 - theoretical: symbolic & matrix form
 - pragmatical: computer device
- Quantum Game Survey
 - gaming category exhibition
 - gameplay design

Toy to play: online quantum circuit simulator

- OriginQ: https://qcloud.originqc.com.cn/zh/computerServies/servies
- SpinQ: https://cloud.spinq.cn/circuitDesign/gemini
- HiQ: https://hiq.huaweicloud.com/portal/programming/hiq-composer?id=UntitledCircuit
- Q-Leaf: https://quantum-hub.baidu.com/services
- wybiral' simulator: https://wybiral.github.io/quantum/
- quirk: https://algassert.com/quirk

State: the operand

- Classical state: $|\uparrow\rangle$, $|\downarrow\rangle$; $|0\rangle$, $|1\rangle$; $|dead\rangle$, $|alive\rangle$
 - physical phenomenon what we can fully distinguish, diagonal to each other
- Superposition state
 - a single qubit: $|x\rangle$ no certainty
 - state expr can be decomposed into linear sum of classical states
 - $|x\rangle = -\sqrt{0.75}|0\rangle + \sqrt{0.25}i|1\rangle$
- Entangle state
 - two or more qubits: $|xy\rangle$ not independent
 - state expr cannot be decomposed to Cartesian product
 - $|xy\rangle = |00\rangle + |10\rangle = (|0\rangle + |1\rangle)|0\rangle$
 - $|xy\rangle = |00\rangle + |01\rangle + |11\rangle$
 - $|xy\rangle = |00\rangle + |11\rangle$

- - max entgl.

Gate: the operator

- Algebraic structure
 - arith: {N; +, -, *}, {C; +, -, *, /, |·|, phase}, {matrix; +, -, *, @, inv, eig/svd}
 - bool: {true, false; &, |, ^, ~, →}
 - com: {0, 1; send, receive, wait, sync}
 - quantum: {|0>, |1>; I, X, Y, Z, H, RX, RY, RZ, T, S, CNOT, SWAP}
- State + Gate = Circuit / Evolution
 - Algebra
 - expression: val = (-1 + 5/2) * 6
 - function: f(x,y) = 2 * x y
 - Quantum
 - circuit: $|phi\rangle = \text{CNOT}(\text{H@RX}(-0.8))|00\rangle$
 - variational circuit: $U(\theta)|00\rangle = CRY(H@RX(\theta_0), \theta_1)|00\rangle$

init state 100) is not input, it is const

Bloch sphere: visualize a single qubit

- qubit is 4-dim
 - amp: $|0\rangle / |1\rangle$; z-axis
 - sign: + / -; x-axis
 - phase: 1 / i; longitude
 - unit mod (constr.)
- state: a unit vector
 - global phase
- gate: rotate the vector
 - I, X, Y, Z
 - RX, RY, RZ
 - CNOT, SWAP

$$|\psi\rangle = (a+bi)|0\rangle + (c+di)|1\rangle$$

= $\cos(\theta)|0\rangle + \sin(\theta)e^{i\varphi}|1\rangle$
(保证在北半球 $|0\rangle$ 前系数为正)

Bloch sphere: what a gate does

- Pauli gates: I, X, Y, Z
 - $X|x\rangle = |\sim x\rangle$
- Hadamard gate: H
 - $X|0\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$
- Phase gate: P, S, T
- Rotation gates: RX, RY, RZ
 - $RX(\theta)|0\rangle = \cos(\theta)|0\rangle i\sin(\theta)|1\rangle$
- Swap gates: SWAP, iSWAP
 - SWAP $|xy\rangle = |yx\rangle$

Note: rot θ in formula \rightarrow rot $2*\theta$ on sphere

- Controlled gates: CNOT/CX, CZ, CRx, CU
 - $CNOT|xy\rangle = |x, x^y\rangle$

Write your first Q program 3

• A fair/unfair coin: superposition

1 OPENQASM 2.0; 2 include "qelib1.inc"; 3 qreg q[2]; 4 rx(pi/4) q[0];

• Bell/GHZ state: entanglement

1 OPENQASM 2.0; 2 include "qelib1.inc"; 3 qreg q[2]; 4 h q[0]; 5 cx q[0],q[1]; 6

A triple-face dice (via vqc)

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[2];
4 rx(7*pi/4) q[0];
5 ry(0.15278*pi) q[1];
6 cx q[0],q[1];
7 rx(0.49722*pi) q[0];
8 ry(0.15833*pi) q[1];
9

Run on a real quantum computer!!

本源量子云平台, 注册即可用真机!!

Quantum Computer

- 系统架构
 - 光量子: 光的偏振 O / O 或 + / x
 - 低温超导: 粒子的自旋 ↑/↓
- 问题: 噪声
 - 门的保真度 fidelity

量旋科技 核磁量子计算机 (教学用)

谷歌 超导量子计算机

量子计算硬件技术汇总

0K = -273.15°C

Tips: Quantum Computing Simulation

$$\begin{array}{c|c} |0\rangle & \hline & \\ |0\rangle & \hline & \\ \end{array} \right\} \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

Compute on matrix form of the gates & states

$$\mathrm{CNOT}(H \otimes I)|00\rangle = \left(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) \right) \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

https://en.wikipedia.org/wiki/Quantum_logic_gate

Content

- Quantum Computing Overview
 - state, gate and circuit
 - bloch sphere
 - theoretical: symbolic & matrix form
 - pragmatical: computer device
- Quantum Game Survey
 - gaming category exhibition
 - gameplay design

Game Category

- Single player
 - Action / Simulation
 - Adventure / Role-play
 - Tower defense / Rogue-like / Puzzle
- Two players
 - 棋: 资源对等、公开, 未知的只有对手策略
 - 牌: 资源不一定对等、不完全公开, 对手策略和对手私有资源都未知
- Duel goal
 - time racing
 - highest score

Q Game

Quantum Wheel game jam Qiskit 2019 Camps Qiskit 2019 Hackathons IBM Q Award 2019

• Game list

- https://github.com/HuangJunye/Awesome-Quantum-Games
- https://kiedos.art/quantum-games-list

2019

Quantum Wheel game jam

Qubit the Barbarian - You are Qubit the Barbarian on a quest in the Quantum maze. On your quest you navigate through the mysterious changing labyrinth fighting enemies and looking for food to stay alive. (by Henri Sarasvirta, Petri Sarasvirta, Teemu Kivikangas, Henri Lyyra, Leevi Leppäjärvi, Elie Abraham)

Q(Cards) - A quantum card game. (by Oskari Kerppo, Jorden Senior, Sabrina Maniscallo, Guillermo Garcia-Perez, Samuli Jääskeläinen, Sylvia Smatanova, Krista Erkkilä, Elie Abraham)

Quantum Socket - Quantum Socket is a game where you try to insert a USB cable the "right" way into a USB socket. (by Jere Sanisalo, Antti Svenn, Jaakko Iisalo)

h-am-s-t-a-r-w-a-v-e - Hamsterwave is a game where you use the quantum black box to move the hamster. (by Elie Abraham, Bjorn Lindholm, Sebastian Laitila, Thekids Laitila, Sun Park, Laura Piispanen, Julia Rassa, Igor Sokolov, Sabrina Maniscalco)

Schrödinger's Livingroom - All the stuff in Erwin Schrödinger's living room is |dead>+(alive> simultaneously! (by Adelina Lintuluoto, Daria Anttila, Matt Bengston, Sabine Harrer, Simon Nielsen, Reetu Kontio, Vasili Sevriuk)

Quantum Fruit - A game about quantum black box. (by Jaakko Sirén, Arvi Teikari, Rosanna Micieli, Nicola Lo Gullo)

SneaQysnake - A strange adventure of the snake in the "quantum world". (by Vasilii Sevriuk, Ivan Yamshchikov)

7 Battleships with complem	https://decodol	James Wootton	Windows, Mac	Linux-Jupy
8 Battleships with partial NC	https://medium	James Wootton	Windows, Mac	
9 BB84	https://github.c	Alberto Sebastian et al.		
10 Beach Buddy Diet	https://quantun	Teemu Kokkonen, Noora Heiskar	Windows, Mac	
11 Bean Jam	https://itch.io/ja	vvenomsnake		
12 Beat the Dome!	https://itch.io/ja	Julio Garcia, Carlos Vieira	Windows	
13 Benji the Blob	https://decodol-	James Wootton	Browser	
14 Black Box Toys	https://exca.itcl	Henri Sarasvirta	Windows, Linu	Educationa
15 Bloch duel	https://gitlab.cc			
16 Bloch duel v2	https://gitlab.cc			
17 Bloqit	https://github.c	Thomas Storwick, Kelly Zheng, J.	Windows, Mac	Linux, Andr
18 Body Scrubber	https://itch.io/ja	Mika Kar	Browser	
19 C.L.A.Y.	https://medium	MiTale Games		
20 CatBoxScissors	https://decodol-	James Wootton	Windows, Mac	
21 Catris	https://www.fin	Victor Matsuguma, Vinicius Pime	ntel, Franceline	Carvalho,
22 Cats	https://docs.mi			
23 chaos-of-the-b2	https://shelegic	Giorgi Shelegia, David Jimshelad	Windows	
24 Circuits	https://chord.cs	Quantum Realm Games / Quantin	Browser	Educationa
25 Cold to GO	https://itch.io/ja	Ida Aho, Miika Saunavaara, Ville	Simontaival	Educationa
26 Cool the Quantum	https://quantun	Sebastian C., Yasmine	VR	

Circuit Puzzle

- Qiskit Blocks
 - https://github.com/JavaFXpert/QiskitBlocks
- Quantum Flytrap
 - https://lab.quantumflytrap.com/game

Q Computer Simulation

- The qubit game
 - https://quantumai.google/education/thequbitgame

Chess

- Quantum Chess
 - https://store.steampowered.com/app/453870/Quantum_Chess/
- Quantum Tiq-Taq-Toe
 - https://tiqtaqtoe.com/start

Cards

- QuantumCards
 - https://github.com/SamuliJaaskelainen/QuantumCards
- Brackets
 - https://github.com/csferrie/Brakets

More Toys…

- https://enibolas.itch.io/schrdingers-livingroom
- https://gorsairs.github.io/Quaze/quaze.html
- https://quander.cs.uchicago.edu/
- https://github.com/QPong/QPong-Unity

Content

Quantum Computing Overview

- state, gate and circuit
- bloch sphere
- theoretical: symbolic & matrix form
- pragmatical: computer device
- Quantum Game Survey
 - gaming category exhibition
 - gameplay design

