Chapitre 21

Applications linéaires

21	Applications linéaires	1
	21.4 Exemple	2
	21.8 Structure de $\mathcal{L}(E,F)$	2
	21.10Composition de deux AL	

21.4 Exemple

Exemple 21.4.1

L'application de \mathbb{R}^2 dans \mathbb{R} définie par f(x,y) = 2x + 3y.

Soit $((x,y),(x',y'),\lambda) \in (\mathbb{R}^2)^2 \times \mathbb{R}$. On a

$$f((x,y) + \lambda(x',y')) = f(x + \lambda x', y + \lambda y')$$

= 2(x + \lambda x') + 3(y + \lambda y')
= 2x + 3y + \lambda(2x' + 3y')
= f(x,y) + \lambda f(x',y').

21.8 Structure de $\mathcal{L}(E, F)$

Propostion 21.8

 $\mathcal{L}(E,F)$ est un estpace vectoriel sur \mathbb{K} .

- $\mathcal{L}(E,F) \subset F^E$
- $-\overline{0}\mathcal{L}(E,F)$
- Soit $(f,g) \in \mathcal{L}(E,F)^2$ et $\alpha \in \mathbb{K}$. Soit $(x,y) \in E^2, \lambda \in \mathbb{K}$. On a :

$$\begin{split} (f+\alpha g)(x+\lambda y) &= f(x+\lambda y) + \alpha g(x+\lambda y) \\ &= f(x) + \lambda f(y) + \alpha g(x) + \alpha \lambda g(y) \\ &= f(x) + \alpha g(x) + \lambda (f(y) + \alpha g(y)) \\ &= (f+\alpha g)(x) + \lambda (f+\alpha g)(y). \end{split}$$

Donc $f + \alpha g \in \mathcal{L}(E, F)$.

21.10 Composition de deux AL

Propostion 21.10

Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, alors $g \circ f \in \mathcal{L}(E, G)$.

Soit $(x, y) \in E^2$ et $\lambda \in \mathbb{K}$:

$$g \circ f(x + \lambda y) = g(f(x + \lambda y))$$

$$= g(f(x) + \lambda f(y))$$

$$= g(f(x)) + \lambda g(f(y))$$

$$= g \circ f(x) + \lambda g \circ f(y).$$

Donc $g \circ f \in \mathcal{L}(E, G)$.