Strahlung und Strahlenschutz in den Physikalischen Praktika

- Was ist Strahlung?
- Welche Gefahren entstehen durch Strahlung?
- Wie kann man sich vor Strahlung schützen?

Was ist Strahlung

Strahlung ist Transport von Energie

z.B. Wasserstrahl, Wärmestrahlung, Licht

Strahlungsklassen

Grundsätzlich ist zu unterscheiden zwischen

Materiestrahlung und elektromagnetischer Strahlung.

Materiestrahlen:

 α -Strahlen

β-Strahlen

Neutronenstrahlen

Elektromagnetische Strahlung

γ-Strahlung

Röntgenstrahlung

Masse wird transportiert!

Masseloser Energietransport!

Kernreaktionen und Zerfallsarten

Kernspaltung:

Der Kern zerbricht in zwei etwa gleich große Teile und mehrere freie Neutronen

Neutronen-Strahlung

Alpha-Zerfall:

Der Kern sendet 2 Protonen und 2 Neutronen aus

Alpha-Strahlung

Beta-Zerfall:

Der Kern sendet ein Elektron oder ein Positron aus

Beta-Strahlung

Gamma-Zerfall:

Der Kern sendet ein Photon aus (elektromagnetische Welle)

Gamma-Strahlung

Röntgenstrahlung

- energiereiche elektromagnetische Strahlung (Photonenstrahlung)
- durchdringende Strahlung
- Röntgenröhre emittiert Photonen

Aktivität

Die Aktivität ist ein Maß für die Menge einer radioaktiven Substanz.

Sie gibt an, wie viel Atomkerne dieser Substanz pro Sekunde zerfallen und wird gemessen in Becquerel (Bq).

1 Becquerel = 1 Zerfall pro Sekunde 1 Bq = 1/s

Halbwertszeit

Die Halbwertszeit eines Radionuklids ist

- diejenige Zeit, nach der die Hälfte der radioaktiven Kerne zerfallen ist.
- diejenige Zeit, nach der die Aktivität auf die Hälfte abgeklungen ist.

Werte liegen zwischen Bruchteilen von Millisekunden und Jahrmilliarden.

Was ist ionisierende Strahlung?

Elektronen-Ionen-Paare

lonisierung:

Entlang der Spur eines ionisierenden

Teilchens bilden sich

Elektronen-lonen-Paare.

Insbesondere bei lebender Materie kann dies Schädigungen verursachen!

Wirkung von ionisierender Strahlung auf lebende Materie

Reparatur: Intakte Zelle Keine Reparatur: Zelltod

Fehlerhafte Reparatur:

- Erbgutveränderung
- Krebs

Strahlung und Strahlenschutz in den Physikalischen Praktika

Ionisierende Strahlung

verursacht

Veränderungen in der Materie.

Ein quantitatives

Maß für diese Veränderungen
erhält man durch Angabe einer

Dosis

Energiedosis - Körperdosis

Energiedosis

beschreibt physikalische Prozesse

(Energieübertrag auf Materie)

Einheit: Gray (Gy)

Energieübertrag von Strahlung auf Materie 1 Gy = 1 J/kg

Körperdosis

ist ein Maß für Gefährdung (keine physikalische Größe)

Einheit: Sievert (Sv)

Bindeglied zwischen Energiedosis und Körperdosis: Strahlungs-Wichtungsfaktoren

Strahlungs- Wichtungsfaktor

Durch Multiplikation der Energiedosis [in Gy]

mit dem Strahlungs-Wichtungsfaktor

erhält man die Körperdosis [in Sv].

Körperdosis = Strahlungs-Wichtungsfaktor - Energiedosis

Strahlung	V	Vichtungsfak	ctor
Röntgen- und Gamma-Strahlung:	~\\\\ >	1	
Beta-Strahlung:	•	1	
Neutronenstrahlung:	0	5–20	(energieabhängig)
Alpha-Strahlung:	6	20	

Strahlenexposition in Deutschland

Natürliche Strahlenexposition

Relevante Beiträge zur natürlichen Strahlenexposition liefern:

- kosmische Strahlung (externe Bestrahlung)
- natürliche Radionuklide (externe Bestrahlung und Inkorporation)

Gesamtexposition aus natürlichen Quellen pro Jahr: 2,1 mSv

Medizin

Beispiele für typische Dosiswerte bei medizinischen Anwendungen:

Röntgendiagnostik:		
Untersuchungsart	effektive Dosis	
•Zahnaufnahme	\leq 0,01 mSv	
 Mammographie 	0,4 - 0,6 mSv	
•Lendenwirbelsäule	0,8 - 1,8 mSv	
•CT Kopf	2 - 4 mSv	
•Magen	6 - 12 mSv	
•CT Bauchraum	10 - 25 mSv	

Nuklearmedizin (Szintigraphie):

untersuchtes Organ effektive Dosis

•Schilddrüse ca. 1 mSv

•Skelett, Knochenmark 5 - 10 mSv

•Tumor 10 - 30 mSv

Strahlentherapie:

Zur gezielten Zellabtötung bei der

Tumorbekämpfung: mehrere Sv!

(i.d.R. Teilkörperdosen)

Arteriographie

10 - 20 mSv

Strahlenschäden

Akute Strahlenschäden

- deterministische Effekte, d.h. Schwere des Schadens abhängig von der Dosis
- verursacht durch Abtötung von Zellen
- Schäden erst überhalb eines Schwellenwerts (>250 mSv)

Strahleninduzierte Spätschäden

- stochastische Effekte, d.h. Wahrscheinlichkeit für das Auftreten des Schaden abhängig von der Dosis
- verursacht durch Modifikation der Erbinformation (DNA)
- kein Schwellenwert

Deterministische Schäden

- Schwere des Schadens abhängig von der Dosis
- Schaden tritt oberhalb eines
- Dosisrate spielt große Rolle
- Schaden tritt oberhalb eines
 Schwellwerts mit Sicherheit auf
 Dosisrate spielt große Rolle
 Beispiele:
 Veränderung des Blutbilds,
 Schädigungen der Haut, Übelkeit, - Beispiele: Tod

Deterministische Schäden bei Teilkörperexposition der Haut

Deterministische Schäden erst bei (Teilkörper-)Dosen über 250 mSv.

Stochastische Schäden

- Schwere des Schadens unabhängig von der Dosis
- Wahrscheinlichkeit für das Auftreten des Schadens abhängig von der Dosis
- kein Schwellwert
- Dosisrate spielt i.Allg. keine Rolle
- Beispiele: Krebs, Leukämie, Erbschäden

Strahlenkrankheit

Auswirkungen kurzfristiger radioaktiver Bestrahlung des gesamten Körpers

Äquivalentdosis	Bewertung	Symptome	
bis 0,2 Sv		Mögliche angenommene Spätfolgen: Krebs, Erbgutveränderung. Diese zählen nicht zur Strahlenkrankheit im eigentlichen Sinne; sie sind stochastische Strahlenschäden (siehe Strahlenrisiko).	
0,2-0,5 Sv		Keine Symptome, nur labortechnisch feststellbare Reduzierung der roten Blutkörperchen	
0,5-1 Sv		Leichter Strahlenkater mit Kopfschmerzen und erhöhtem Infektionsrisiko. Temporäre Sterilität beim Mann ist möglich.	
1–2 Sv	leichte Strahlenkrankheit	10 % Todesfälle nach 30 Tagen (Letale Dosis(LD) 10/30). Zu den typischen Symptomen zählen – beginnend innerhalb von 3-6 Stunden nach der Bestrahlung, einige Stunden bis zu einem Tag andauernd – leichte bis mittlere Übelkeit (50 % wahrscheinlich bei 2 Sv) mit gelegentlichem Erbrechen. Dem folgt eine Erholungsphase, in der die Symptome abklingen. Leichte Symptome kehren nach 10-14 Tagen zurück. Diese Symptome dauern etwa vier Wochen an und bestehen aus Appetitlosigkeit (50 % wahrscheinlich bei 1,5 Sv), Unwohlsein und Ermüdung (50 % wahrscheinlich bei 2 Sv). Die Genesung von anderen Verletzungen ist beeinträchtigt, und es besteht ein erhöhtes Infektionsrisiko. Temporäre Unfruchtbarkeit beim Mann ist die Regel.	
2–3 Sv	schwere Strahlenkrankheit	35 % Todesfälle nach 30 Tagen (LD 35/30). Erkrankungen nehmen stark zu und eine signifikante Sterblichkeit setzt ein. Übelkeit ist die Regel (100 % bei 3 Sv), das Auftreten von Erbrechen erreicht 50 % bei 2,8 Sv. Die Anfangssymptome beginnen innerhalb von einer bis sechs Stunden und dauern ein bis zwei Tage an. Danach setzt eine 7- bis 14-tägig Erholungsphase ein. Wenn diese vorüber ist, treten folgende Symptome auf: Haarausfall am ganzen Körper (50 % wahrscheinlich bei 3 Sv), Unwohlsein und Ermüdung. Der Verlust von weißen Blutkörperchen ist massiv, und das Infektionsrisiko steigt rapide an. Bei Frauen beginnt das Auftreten permanenter Sterilität. Die Genesung dauert einen bis mehrere Monate.	
3–4 Sv	schwere Strahlenkrankheit	50 % Todesfälle nach 30 Tagen (LD 50/30). Nach der Erholungsphase treten zusätzlich folgende Symptome auf: Durchfall (50 % wahrscheinlich bei 3,5 Sv) und unkontrollierte Blutungen im Mund, unter der Haut und in den Nieren (50 % wahrscheinlich bei 4 Sv).	

Strahlenkrankheit

4–6 Sv	schwerste Strahlenkrankheit	60 % Todesfälle nach 30 Tagen (LD 60/30). Die Sterblichkeit erhöht sich schrittweise von ca. 50 % bei 4,5 Sv bis zu 90 % bei 6 Sv (außer bei massiver medizinischer Intensiwersorgung). Das Auftreten der Anfangssymptome beginnt innerhalb von 30–120 Minuten und dauert bis zu zwei Tage. Danach setzt eine 7- bis 14-tägige Erholungsphase ein. Wenn diese vorüber ist, treten im Allgemeinen die gleichen Symptome wie bei 3–4 Sv verstärkt auf. Bei Frauen ist permanente Unfruchtbarkeit die Regel. Die Genesung dauert mehrere Monate bis 1 Jahr. Der Tod tritt in der Regel 2–12 Wochen nach der Bestrahlung durch Infektionen und Blutungen ein.
6–10 Sv	schwerste Strahlenkrankheit	100 % Todesfälle nach 14 Tagen (LD 100/14). Die Überlebenschance hängt von der Güte und dem möglichst frühen Beginn der intensivmedizinischen Versorgung ab. Das Knochenmark ist nahezu oder vollständig zerstört, und eine Knochenmarktransplantation ist erforderlich. Das Magen- und Darmgewebe ist schwer geschädigt. Die Anfangssymptome treten innerhalb von 15–30 Minuten auf und dauern bis zu zwei Tage an. Danach setzt eine 5- bis 10-tägige Erholungsphase ein, die als Walking-Ghost-Phase bezeichnet wird. Die Endphase endet mit dem Eintritt des Todes durch Infektionen und innere Blutungen. Falls eine Genesung eintritt, dauert sie mehrere Jahre, wobei sie wahrscheinlich nie vollständig erfolgen wird.
10–20 Sv	schwerste Strahlenkrankheit	100 % Todesfälle nach 7 Tagen (LD 100/7). Diese hohe Dosis führt zu spontanen Symptomen innerhalb von 5–30 Minuten. Nach der sofortigen Übelkeit durch die direkte Aktivierung der Chemorezeptoren im Gehirn und großer Schwäche folgt eine mehrtägige Phase des Wohlbefindens (Walking-Ghost-Phase). Danach folgt die Sterbephase mit raschem Zelltod im Magen-Darmtrakt, der zu massivem Durchfall, Darmblutungen und Wasserverlust sowie der Störung des Elektrolythaushalts führt. Der Tod tritt mit Fieberdelirien und Koma durch Kreislaufversagen ein. Behandlung kann nur noch palliativ erfolgen.
20-50 Sv	schwerste Strahlenkrankheit	100 % Todesfälle nach 3 Tagen (LD 100/3), im Übrigen wie bei "10–20 Sv"
über 50 Sv		Sofortige Desorientierung und Koma innerhalb von Sekunden oder Minuten. Der Tod tritt in wenigen Stunden durch völliges Versagen des Nervensystems ein.
über 80 Sv		Die US-Streitkräfte rechnen bei einer Dosis von 80 Sv schneller Neutronenstrahlung mit einem sofortigen Eintritt des Todes.

Natürliche Strahlung

Dosisleistung: ca. 80 - 280 nSV/h

Fukushima-Daiichi

Gemessene Dosisleistungen an ausgewählten Messpunkten Fukushima Daiichi - Daten des Betreibers TEPCO

Strahlung und Strahlenschutz in den Physikalischen Praktika

Tödliche Dosis		7000 mSv
Schwellendosis für akute Strahlenschäden		250 mSv
Jahresgrenzwert für beruflich strahlenexponierte Personen		20 mSv
Computertomographie Brustkorb		20 mSv
Mittlere jährliche Belastung für den Bundesbürger		4 mSv
Jahresgrenzwert für nicht beruflich strahlenexponierte Personen		1 mSv
Röntgenaufnahme Schädel		0,1 mSv
Physikalisches Praktikum		~10 μSv
17.2.12	Physikalisches Institut	J.Wagner

Strahlenschutzgrundsätze

Jede unnötige Strahlenexposition vermeiden! Jede unvermeidbare Strahlenexposition so gering wie möglich halten!

Die drei "A" des Strahlenschutzes

Abstand halten Aufenthaltsdauer beschränken Abschirmungen verwenden

Abstand halten

Abstandsquadratgesetz:

Abstand Dosisleistung

doppelt 1/4 3fach 1/9

4fach 1/16

5fach 1/25

Je größer der Abstand von der Strahlungsquelle, desto geringer ist die Wahrscheinlichkeit getroffen zu werden

kleiner Abstand: große Anzahl von "Strahlungstreffern"

großer Abstand: kleine Anzahl von "Strahlungstreffern"

Aufenthaltsdauer beschränken

Die Dosis erhöht sich linear mit der Aufenthaltsdauer:

Dauer	Dosis
doppelt	doppelt
3fach	3fach
4fach	4fach
5fach	5fach

Je länger die Aufenthaltszeit in einem Strahlungsfeld, desto höher ist die dabei erhaltene Dosis.

Abschirmung α-Strahlung

Faustregel für die Reichweite von Alpha-Teilchen:

Reichweite in Luft in cm = Energie in MeV

- In festen und flüssigen Stoffen noch sehr viel geringere Reichweiten
- Reichweite in menschlichem Gewebe (Wasser): ca. 0,05 mm

- •Alpha-Strahlung muss nicht abgeschirmt werden!
- Inkorporation sehr gefährlich

Abschirmung β-Strahlung

- Reichweite in Luft: einige Meter
- Reichweite in menschlichem Gewebe (Wasser): ca. 1 cm

Wenige Zentimeter Aluminium oder Plexiglas schirmen Beta-Strahlung vollständig ab!

Vorsicht Bremsstrahlung!

Stoffe mit hoher Ordnungszahl (z.B. Blei) eignen sich nicht zur Abschirmung von Beta-Strahlung!

Abschirmung γ-Strahlung/Röntgenstrahlung

Gamma-Strahlung hat unendliche Reichweite

- vollständige Abschirmung nicht möglich

- Schwächung in Luft vernachlässigbar: hundert Meter Luft schwächen nur auf die Hälfte
- in menschlichem Gewebe (Wasser): 50 cm schwächen auf ein Zehntel

Gamma-Strahlung wird mit Stoffen hoher Dichte und hoher Ordnungszahl effektiv geschwächt! Dasselbe gilt für Röntgenstrahlung!

Reichweite ionisierender Strahlung

Alpha-Strahlung

- Reichweite in Luft: wenige Zentimeter
- Reichweite in Gewebe: einige Mikrometer

Beta-Strahlung

- Reichweite in Luft: maximal wenige Meter
- Reichweite in Gewebe: wenige Millimeter

Gamma- und Röntgen-Strahlung

- Reichweite: unendlich
- Schwächung durch Materialien hoher Dichte (z.B. Blei)

Neutronen-Strahlung

- Reichweite: unendlich
- Schwächung durch Kombination verschiedener Materialien (z.B. Paraffin + Cadmium + Blei)

Umschlossene radioaktive Stoffe

Radioaktive Substanz in inaktivem Stoff eingebettet oder umhüllt

Austritt radioaktiver Stoffe verhindert

Abmessung mindestens 2 Millimeter

Daraus folgt für den Umgang mit umschlossenen radioaktiven Stoffen:

Keine Inkorporationsgefahr

bei üblicher betriebsmäßiger Beanspruchung.

Die drei "A" des Strahlenschutzes

Abstand halten Aufenthaltsdauer beschränken Abschirmungen verwenden