- Une porte de garage basculante se compose d'un panneau (1) articulé en A sur deux bras (2) disposés symétriquement, et en E sur deux patins de guidage (5). Les patins translatent verticalement dans deux rails de guidage (6).
- Un opérateur manipule la porte au moyen de la poignée F de sorte que la vitesse de E soit constante et égale à V_{E 5/6} = 1 ms⁻¹.
- L'étude est réalisée dans le plan de symétrie du dispositif.
- On considère la porte en position $\alpha = 25^{\circ}$.
 - 1. Définir les trajectoires $T_{E(5/6)}$ et $T_{A(2/0)}$.
 - 2. Montrer que $\overline{V_{E(1/6)}} = \overline{V_{E(5/6)}}$, puis tracer le vecteur vitesse $\overline{V_{E(1/6)}}$.
 - 3. Montrer que $V_{A(1/0)} = V_{A(2/0)}$, puis tracer le support de la vitesse $V_{A(1/0)}$.
 - 4. Déterminer I_{1/0}: le centre de rotation instantanée de la porte (1).
 - 5. Déterminer $V_{A(1/0)}$ et $V_{G(1/0)}$ à l'aide de la méthode du C.I.R.

