Deungobur 386. Dokazamo, emo $\inf_{\substack{0;+\infty \\ 1+x}} \frac{x}{1+x} = 0 \quad u \quad \sup_{\substack{0;+\infty \\ 1+x}} \frac{x}{1+x} = 1.$

Pewerue: 3 anemuse, uno $f(x) = \frac{x}{1+x} < 1$ qua beex $x \in [0; +\infty)$, m.e. bornounserce nephoe yerobue b onpegenenum rozmoù bepareni reparen

Ecul E>1, mo $\frac{x}{1+x}>1-E$ gus beex $x\in [0;+\infty)$. Then $E\in (0,1)$ represents omnociments repaired

 $\frac{x}{1+x} > 1-\varepsilon \iff x > \frac{1}{\varepsilon}-1.$

Torge b zaemnoemu npu $x_{\xi} = \frac{2}{\xi} - 1$ by gen uner $f(x_{\xi}) = \frac{\frac{2}{\xi} - 1}{2} = \frac{2 - \xi}{2} = 1 - \frac{\xi}{2} + 1 - \frac{\xi}{2} + 1 - \xi$, m.e. bunomarce u buropoe y crobine us experience to zuoù beginneñ zparu.

Pabenembo inf $\frac{x}{x+1} = 0$ borrenaer og toro, toro, toro, toro $f(x) <math>\geq 0$ guo boex $x \in [0; +\infty)$ of f(0) = 0