In [14]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt,seaborn as sns

Out[15]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_height
0	842	0	2.2	0	1	0	7	0.6	188	2	 20
1	1021	1	0.5	1	0	1	53	0.7	136	3	 905
2	563	1	0.5	1	2	1	41	0.9	145	5	 1263
3	615	1	2.5	0	0	0	10	8.0	131	6	 1216
4	1821	1	1.2	0	13	1	44	0.6	141	2	 1208
1995	794	1	0.5	1	0	1	2	0.8	106	6	 1222
1996	1965	1	2.6	1	0	0	39	0.2	187	4	 915
1997	1911	0	0.9	1	1	1	36	0.7	108	8	 868
1998	1512	0	0.9	0	4	1	46	0.1	145	5	 336
1999	510	1	2.0	1	5	1	45	0.9	168	6	 483

2000 rows × 21 columns

In [16]: test_df = pd.read_csv(r"C:\Users\sudheer\Downloads\Mobile_Price_Classification_test (1).csv")
 test_df

Out[16]:

	id	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	 рс	px_height
0	1	1043	1	1.8	1	14	0	5	0.1	193	 16	226
1	2	841	1	0.5	1	4	1	61	0.8	191	 12	746
2	3	1807	1	2.8	0	1	0	27	0.9	186	 4	1270
3	4	1546	0	0.5	1	18	1	25	0.5	96	 20	295
4	5	1434	0	1.4	0	11	1	49	0.5	108	 18	749
995	996	1700	1	1.9	0	0	1	54	0.5	170	 17	644
996	997	609	0	1.8	1	0	0	13	0.9	186	 2	1152
997	998	1185	0	1.4	0	1	1	8	0.5	80	 12	477
998	999	1533	1	0.5	1	0	0	50	0.4	171	 12	38
999	1000	1270	1	0.5	0	4	1	35	0.1	140	 19	457

1000 rows × 21 columns

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2000 entries, 0 to 1999 Data columns (total 21 columns): Column Non-Null Count Dtype - - -_____ 0 battery_power 2000 non-null int64 1 blue. 2000 non-null int64 float64 2 clock_speed 2000 non-null 3 dual_sim 2000 non-null int64 4 fc 2000 non-null int64 5 four_g 2000 non-null int64 6 int memory 2000 non-null int64 7 float64 m dep 2000 non-null 8 2000 non-null int64 mobile wt 9 n_cores 2000 non-null int64 10 рс 2000 non-null int64 11 px height 2000 non-null int64 12 px width 2000 non-null int64 13 ram 2000 non-null int64 14 sc h 2000 non-null int64 2000 non-null 15 sc w int64 int64 2000 non-null 16 talk_time 2000 non-null 17 three_g int64 18 touch screen 2000 non-null int64 19 wifi 2000 non-null int64 2000 non-null 20 price range int64 dtypes: float64(2), int64(19) memory usage: 328.2 KB In [18]: test_df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000 entries, 0 to 999 Data columns (total 21 columns): # Column Non-Null Count Dtype -------------0 id 1000 non-null int64 1 battery_power 1000 non-null int64 2 1000 non-null int64 blue 3 clock_speed 1000 non-null float64 4 1000 non-null int64 dual_sim 5 1000 non-null int64 fc 6 1000 non-null int64 four g 7 int memory 1000 non-null int64 8 m dep 1000 non-null float64 9 1000 non-null int64 mobile wt n cores 1000 non-null int64 10 1000 non-null int64 11 рс 1000 non-null px_height int64 12 13 px width 1000 non-null int64 14 ram 1000 non-null int64 15 sc h 1000 non-null int64 16 sc w 1000 non-null int64 17 talk_time 1000 non-null int64 1000 non-null int64 18 three g 1000 non-null 19 touch_screen int64 20 wifi 1000 non-null int64

In [17]: train_df.info()

dtypes: float64(2), int64(19)

memory usage: 164.2 KB

```
In [19]: | x=train_df.drop('wifi',axis=1)
         y=train_df['wifi']
In [20]: x=test_df.drop('wifi',axis=1)
         y=test_df['wifi']
In [21]: from sklearn.model selection import train test split
         x train,x test,y train,y test = train test split(x,y,train size=0.7,random state=42)
         x_train.shape,x_test.shape
Out[21]: ((700, 20), (300, 20))
In [22]: from sklearn.ensemble import RandomForestClassifier
         rfc = RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[22]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
In [23]: rf = RandomForestClassifier()
In [24]: params={'max_depth':[2,3,5,10,20],
          'min_samples_leaf':[5,10,20,50,100,200],
          'n_estimators':[10,25,30,50,100,200]}
In [25]: from sklearn.model selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rf,param_grid=params,cv=2,scoring='accuracy')
         grid_search.fit(x_train,y_train)
Out[25]:
                       GridSearchCV
           ▶ estimator: RandomForestClassifier
                ▶ RandomForestClassifier
In [26]: grid_search.best_score_
Out[26]: 0.5514285714285714
In [27]: rf_best=grid_search.best_estimator_
         rf_best
Out[27]:
                            RandomForestClassifier
          RandomForestClassifier(max_depth=20, min_samples_leaf=50)
```

```
In [28]: from sklearn.tree import plot tree
                      plt.figure(figsize=(80,40))
                      plot_tree(rf_best.estimators_[5], feature_names = x.columns,class_names=['Yes',"No"],filled=True
Out[28]: [Text(0.25, 0.9166666666666666, 'n cores <= 1.5\ngini = 0.5\nsamples = 444\nvalue = [356, 344]
                      \nclass = Yes'),
                       Text(0.125, 0.75, 'gini = 0.444\nsamples = 64\nvalue = [62, 31]\nclass = Yes'),
                        Text(0.375, 0.75, 'int memory <= 9.5\ngini = 0.5\nsamples = 380\nvalue = [294, 313]\nclass = N
                      o'),
                        Text(0.25, 0.583333333333334, 'gini = 0.407\nsamples = 51\nvalue = [63, 25]\nclass = Yes'),
                        Text(0.5, 0.58333333333334, 'id <= 581.0\ngini = 0.494\nsamples = 329\nvalue = [231, 288]\nc
                      lass = No'),
                        Text(0.25, 0.4166666666666667, 'm_dep <= 0.45\ngini = 0.478\nsamples = 193\nvalue = [118, 181]
                      \nclass = No'),
                        Text(0.125, 0.25, 'gini = 0.446 \setminus samples = 80 \setminus e = [41, 81] \setminus e = No'),
                        Text(0.375, 0.25, 'blue <= 0.5 \neq 0.492 = 113 \neq 0.492 = 113 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 = 1.492 =
                        Text(0.25, 0.083333333333333, 'gini = 0.459\nsamples = 50\nvalue = [30, 54]\nclass = No'),
                        Text(0.5, 0.08333333333333333, 'gini = 0.5\nsamples = 63\nvalue = [47, 46]\nclass = Yes'),
                        Text(0.75, 0.416666666666667, 'fc <= 2.5\ngini = 0.5\nsamples = 136\nvalue = [113, 107]\nclas
                      s = Yes'),
                        Text(0.625, 0.25, 'gini = 0.485\nsamples = 50\nvalue = [34, 48]\nclass = No'),
                        Text(0.875, 0.25, 'gini = 0.489\nsamples = 86\nvalue = [79, 59]\nclass = Yes')]
                                                                  n_cores <= 1.5
gini = 0.5
                                                                   samples = 444
                                                                value = [356, 344]
                                                                                           int_memory <= 9.5
                                         gini = 0.444
                                                                                                  gini = 0.5
                                      samples = 64
value = [62, 31]
                                                                                            samples = 380
value = [294, 313]
                                          class = Yes
                                                                                                  class = No
                                                                                                                            id <= 581.0
                                                                                                                            gini = 0.494
                                                                    samples = 51
                                                                                                                          samples = 329
                                                                  value = [63, 25]
                                                                                                                        value = [231, 288]
                                                                      class = Yes
                                                                                                                             class = No
                                                                                                                                                                                     fc <= 2.5
                                                                  m dep <= 0.45
                                                                gini = 0.478
samples = 193
value = [118, 181]
                                                                                                                                                                                     gini = 0.5
                                                                                                                                                                               samples = 136
value = [113, 107]
                                                                      class = No
                                                                                                                                                                                    class = Yes
                                                                                                 blue <= 0.5
                                         gini = 0.446
                                                                                                                                                       aini = 0.485
                                                                                                                                                                                                               gini = 0.489
                                                                                                gini = 0.492
                                                                                                                                                       samples
                                                                                                                                                                                                              samples = 86
                                                                                              samples = 113
                                       value = [41, 81]
                                                                                                                                                     value = [34, 48]
                                                                                                                                                                                                            value = [79, 59]
class = Yes
                                                                                             value = [77, 100]
                                                                                                                                                        class = No
                                                                                                  class = No
                                                                    gini = 0.459
                                                                                                                             gini = 0.5
                                                                  samples = 50
value = [30, 54]
                                                                                                                         samples = 63
value = [47, 46]
```

class = Yes

```
In [29]:
          from sklearn.tree import plot tree
          plt.figure(figsize=(80,40))
          plot_tree(rf_best.estimators_[7], feature_names = x.columns,class_names=['Yes',"No"],filled=True
Out[29]: [Text(0.636363636363636364, 0.9166666666666666666666, 'fc <= 6.5\ngini = 0.5\nsamples = 456\nvalue = [3
          53, 347]\nclass = Yes'),
           Text(0.4545454545454545453, 0.75, 'mobile wt <= 177.0 \ngini = 0.499 \nsamples = 336 \nvalue = [24]
          4, 272]\nclass = No'),
           Text(0.363636363636365, 0.583333333333333, 'battery_power <= 1560.5\ngini = 0.5\nsamples =
          271\nvalue = [216, 208]\nclass = Yes'),
           = [178, 143]\nclass = Yes'),
           Text(0.181818181818182, 0.25, 'clock speed <= 2.15\ngini = 0.48\nsamples = 141\nvalue = [13
          6, 91]\nclass = Yes'),
           Text(0.090909090909091, 0.08333333333333333, 'gini = 0.499\nsamples = 89\nvalue = [75, 68]\n
          class = Yes'),
           Text(0.27272727272727, 0.08333333333333333, 'gini = 0.398\nsamples = 52\nvalue = [61, 23]\nc
          lass = Yes'),
           Text(0.363636363636365, 0.25, 'gini = 0.494\nsamples = 62\nvalue = [42, 52]\nclass = No'),
           Text(0.4545454545454545, 0.416666666666666666666, 'gini = 0.466\nsamples = 68\nvalue = [38, 65]\nc
          lass = No').
           Text(0.5454545454545454, 0.5833333333333333, 'gini = 0.423\nsamples = 65\nvalue = [28, 64]\ncl
          ass = No'),
           Text(0.8181818181818182, 0.75, 'id <= 485.0\ngini = 0.483\nsamples = 120\nvalue = [109, 75]\nc
          lass = Yes'),
           Text(0.72727272727273, 0.583333333333334, 'gini = 0.494\nsamples = 60\nvalue = [55, 44]\ncl
          ass = Yes'),
           Text(0.90909090909091, 0.5833333333333334, 'gini = 0.463\nsamples = 60\nvalue = [54, 31]\ncl
          ass = Yes')]
                                                                          fc <= 6.5
                                                                          gini = 0.5
                                                                        samples = 456
value = [353, 347]
                                                                          class = Yes
                                                    mobile_wt <= 177.0
gini = 0.499
                                                                                             id <= 485.0
                                                                                             gini = 0.483
                                                     samples = 336
                                                                                            samples = 120
                                                    value = [244, 272]
                                                                                           value = [109, 75]
                                                       class = No
                                                                                             class = Yes
                                        battery_power <= 1560.5
                                                                gini = 0.423
                                                                                   gini = 0.494
                                                                                                       gini = 0.463
                                             gini = 0.5
                                                                                   samples = 60
                                                                samples = 65
                                                                                                      samples = 60
                                          samples = 271
value = [216, 208]
                                                                   = [28, 64]
                                                                                  value = [55, 44]
                                                                                                     value = [54, 31]
                                                                class = No
                                                                                    class = Yes
                                                                                                       class = Yes
                                             class = Yes
                                   id <= 671.5
                                                      aini = 0.466
                                   gini = 0.494
                                                      samples = 68
                                  samples = 203
                                                     value = [38, 65]
class = No
                                 value = [178, 143]
                                   class = Yes
                      clock speed <= 2.15
                                             aini = 0.494
                          gini = 0.48
                                            samples = 62
                         samples = 141
                                           value = [42, 52]
                        value = [136, 91]
                                             class = No
                          class = Yes
                gini = 0.499
                                   gini = 0.398
                samples = 89
                                  value = [61, 23]
               value = [75, 68]
In [30]: rf best.feature importances
Out[30]: array([0.06031287, 0.07588404, 0.01249582, 0.08418056, 0.01220114,
                  0.05887866, 0.02418764, 0.07420338, 0.06991117, 0.12339559,
```

0.01764515, 0.04971102, 0.06579852, 0.10809968, 0.06200155, 0.02275696, 0.02744152, 0.04592882, 0.00219524, 0.00277066])

```
In [31]: imp_df=pd.DataFrame({'Varname':x_train.columns,'Imp':rf_best.feature_importances_})
imp_df.sort_values(by='Imp',ascending=False)
```

Out[31]:

	Varname	lmp
9	mobile_wt	0.123396
13	px_width	0.108100
3	clock_speed	0.084181
1	battery_power	0.075884
7	int_memory	0.074203
8	m_dep	0.069911
12	px_height	0.065799
14	ram	0.062002
0	id	0.060313
5	fc	0.058879
11	рс	0.049711
17	talk_time	0.045929
16	sc_w	0.027442
6	four_g	0.024188
15	sc_h	0.022757
10	n_cores	0.017645
2	blue	0.012496
4	dual_sim	0.012201
19	touch_screen	0.002771
18	three_g	0.002195

In []: