

General Dual-Port SRAM 4096 WORDS X 12 BITS, MUX 8 SMIC 55nm LL Logic Process

Version 1.3.a

DISCLAIMER

SMIC hereby provides the quality information but makes no claims, rompises or guarantees about the accuracy, completeness, or adequacy of the information herein. The information contained herein is provided on an "AS IS" basis without any warranty, and SMIC assumes no obligation to provide support of any kind or otherwise maintain the information. SMIC disclaims any representation that the information does not infringe any intellectual property rights or proprietary rights of any third parties. SMIC makes no other warranty, whether express, implied or statutory as to any matter whatsoever, including but not limited to the accuracy or sufficiency of any information or the merchantability and fitness for a particular purpose. Neither SMIC nor any of its representatives shall be liable for any cause of action incurred to connect to this service.

STATEMENT OF USE AND CONFIDENTIALITY

The following/attached material contains confidential and proprietary information of SMIC. This material is based upon information which SMIC considers reliable, but SMIC neither represents nor warrants that such information is accurate or complete, and it must not be relied upon as such. This information was prepared for informational purposes and is for the use by SMIC's customer only. SMIC reserves the right to make changes in the information at any time without notice. No part of this information may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written consent of SMIC. Any unauthorized use or disclosure of this material is strictly prohibited and may be unlawful. By accepting this material, the receiving party shall be deemed to have acknowledged, accepted, and agreed to be bound by the foregoing limitations and restrictions. Thank you.

OVERVIEW

The General Dual-Port SRAM(BW) is designed for SMIC's 55nm CMOS Logic process. The memory is optimized for speed, power and area. It operates at a voltage range of 1.08V to 1.32V and a temperature range of -40°C to 125°C.

The write enable (WENA,WENB), bit-write enable (BWENA[n-1:0], BWENB[n-1:0]), chip enable(CENA,CENB), address(AA[i-1:0],AB[i-1:0]) and data in (DA[n-1:0],DB[n-1:0]) signals are latched on the rising-edge of the clock(CLKA,CLKB). When CENA(CENB) is low and WENA(WENB) is high the menory will be in read oprarion. When CENA(CENB) and WENA(WENB) are both low and BWENA[j](BWENB[j]) is high, the memory will be in read operation. By address AA[i-1:0](AB[i-1:0]) the data is read and output on the port QA[j](QB[j]). When CENA(CENB) and WENA(WENB) are both low and BWENA[j](BWENB[j]) is low, the memory will be in write operation. Data on DA[j](DB[j]) would be written through AA[i-1:0](AB[i-1:0]) and then be output on QA[j](QB[j]). When CENA(CENB) is high the memory is in standby mode. Meanwhile, the data stored in memory is retained but cannot be read or written.

CONFIGURATION:

PARAMETER	VALUE
Mux	8
Words	4096
Bits	12
Width	252.4um
Height	319.25um
Area	80578.700um ²

PIN DEFINITION:

PIN	DIRECTION	DEFINITION		
AA[11:0]	Input	A Port Address Inputs		
AB[11:0]	Input	B Port Address Inputs		
DA[11:0]	Input	A Port Data Inputs		
DB[11:0]	Input	B Port Data Inputs		
BWENA[11:0]	Input	A Port Bit-Write Enable		
BWENB[11:0]	Input	B Port Bit-Write Enable		
CENA	Input	A Port Enable		
CENB	Input	B Port Enable		
CLKA	Input	A Port Clock Input		
CLKB	Input	B Port Clock Input		
QA[11:0]	Output	A Port Data Outputs		
QB[11:0]	Output	B Port Data Outputs		

TIMING:

PARAMETE R	DESCRIPTION	FF CO 1.32V,	RNER -40°C	FF CO 1.32V		FF CO 1.32V,	RNER 125°C		RNER -40°C		RNER 125°C	TT CO 1.2V,	RNER 25°C
(ns)		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Tcyc	Cycle Time	0.982		1.040		1.189		5.000		4.937		2.303	
Та	Access Time ¹	0.744		0.788		0.901			3.788		3.740		1.744
Tah	Address Hold	0.121		0.126		0.129		0.149		0.157		0.131	
Tas	Address Setup	0.245		0.257		0.290		0.639		0.677		0.374	
Tbwh	Bwen Hold	0.162		0.160		0.154		0.216		0.210		0.174	
Tbws	Bwen Setup	0.166		0.178		0.192		0.331		0.390		0.210	
Tch	Cen Hold	0.067		0.065		0.058		0.235		0.182		0.084	
Tcs	Cen Setup	0.180		0.183		0.189		0.297		0.309		0.211	
Tdh	Data Hold	0.162		0.160		0.154		0.215		0.210		0.174	
Tds	Data Setup	0.169		0.181		0.196		0.348		0.406		0.226	
Twh	Wen Hold	0.084		0.084		0.073		0.091		0.075		0.079	
Tws	Wen Setup	0.170		0.187		0.222		0.413		0.470		0.265	
Tclkh	Clock High	0.020		0.020		0.020		0.040		0.040		0.020	
Tclkl	Clock Low	0.099		0.099		0.110		0.231		0.253		0.143	
Tclkr	Clock Rise Skew	0.500		0.500		0.500		1.000		1.000		0.600	
Tcc	Clock Collision	0.982		1.040		1.189		5.000		4.937		2.303	

Timing simulation conditions:

POWER:

PARAMETER	FF CORNER 1.32V, -40°C	FF CORNER 1.32V, 0°C	FF CORNER 1.32V, 125°C	SS CORNER 1.08V, -40°C	SS CORNER 1.08V, 125°C	TT CORNER 1.2V, 25°C
AC Current (uA/MHz) ²	11.273	11.403	12.597	10.597	10.431	11.707
Read AC Current (uA/MHz)	9.803	9.917	11.055	9.509	9.250	10.358
Write AC Current (uA/MHz)	12.743	12.888	14.140	11.685	11.612	13.055
Standby Power (mW)	0.006490	0.030607	1.369610	0.000275	0.025005	0.004766
Deselect Power (uA/MHz) ³	1.355	1.375	1.517	1.020	1.048	1.179

Power simulation conditions:

^{1.} Access time = best case for fast corner and worst case for slow/typical corners

^{2.} CEN is low, 50% read / 50% write operations, all addresses and 50% of input pins toggle at 1Mhz

^{3.} CEN is high, 50% of input pins toggle at 1Mhz

WRITE CYCLE TIMING:

READ CYCLE TIMING:

WRITE TO READ CYCLE TIMING:

READ TO WRITE CYCLE TIMING:

WRITE TO WRITE CYCLE TIMING:

READ TO READ CYCLE TIMING:

Datasheet Revision History

Date	Version	Changes
	null	

Semiconductor Manufacturing International Corporation

No. 18 Zhangjiang Road Pudong New Area Shanghai 201203

The People Republic of China

URL: www.smics.com