Social Science Inquiry II

Week 8: Inference for multivariate regression, part II

Molly Offer-Westort

Department of Political Science, University of Chicago

Winter 2022

Loading packages for this class

```
> set.seed(60637)
> # For plotting:
> library(ggplot2)
> # library(devtools)
> # devtools::install_github("wilkelab/ungeviz")
> library(ungeviz)
> library(ggridges)
```

► Housekeeping

P-hacking

P-values

Suppose $\hat{\theta}$ is the general form for an estimate produced by our estimator, and $\hat{\theta}^*$ is the value we have actually observed.

P-values

▶ A two-tailed p-value under the null hypothesis is

$$p = \mathrm{P}_0[|\hat{\theta}| \ge |\hat{\theta}^*|]$$

i.e., the probability under the null distribution that we would see an estimate of $\hat{\theta}$ as or more extreme as what we saw from the data.

▶ Suppose we have some data, $(Y, X_1, X_2, ... X_K)$.

- ▶ Suppose we have some data, $(Y, X_1, X_2, ... X_K)$.
- ▶ Suppose the null distribution represents the truth.

- ▶ Suppose we have some data, $(Y, X_1, X_2, ... X_K)$.
- ► Suppose the null distribution represents the truth.
- ▶ If we test one hypothesis, what is the probability that we will find something that is statistically significant at $p \le 0.05$?

- ▶ Suppose we have some data, $(Y, X_1, X_2, ... X_K)$.
- ► Suppose the null distribution represents the truth.
- ▶ If we test one hypothesis, what is the probability that we will find something that is statistically significant at $p \le 0.05$?
- ▶ If we test two unrelated hypotheses, what is the probability that we will find something that is statistically significant at $p \le 0.05$?

▶ A: event we reject hypothesis 1 at $p \le 0.05$

- ▶ A: event we reject hypothesis 1 at $p \le 0.05$
- ▶ B: event we reject hypothesis 2 at $p \le 0.05$

- A: event we reject hypothesis 1 at $p \le 0.05$
- ▶ B: event we reject hypothesis 2 at $p \le 0.05$
- ► A ⊥ B: the two events are independent

- ▶ A: event we reject hypothesis 1 at $p \le 0.05$
- ▶ B: event we reject hypothesis 2 at $p \le 0.05$
- ► A ⊥ B: the two events are independent
- ▶ P[A] = 0.05

- ▶ A: event we reject hypothesis 1 at $p \le 0.05$
- ▶ B: event we reject hypothesis 2 at $p \le 0.05$
- ► A ⊥ B: the two events are independent
- ▶ P[A] = 0.05
- ▶ P[B] = 0.05

- A: event we reject hypothesis 1 at $p \le 0.05$
- ▶ B: event we reject hypothesis 2 at $p \le 0.05$
- ► A ⊥ B: the two events are independent
- ▶ P[A] = 0.05
- ▶ P[B] = 0.05
- ▶ $P[A \cup B]$? The probability we see event A OR B?

$$\mathrm{P}[A \cup B] = \mathrm{P}[A] + \mathrm{P}[A^C] \times \mathrm{P}[B|A^C]$$

$$P[A \cup B] = P[A] + P[A^C] \times P[B|A^C]$$

A and B are independent, so $\mathrm{P}[B|A^C] = \mathrm{P}[B]$

$$\mathrm{P}[\mathsf{A} \cup \mathsf{B}] = \mathrm{P}[\mathsf{A}] + \mathrm{P}[\mathsf{A}^\mathsf{C}] \times \mathrm{P}[\mathsf{B}|\mathsf{A}^\mathsf{C}]$$

A and B are independent, so $P[B|A^C] = P[B]$

$$P[A \cup B] = P[A] + P[A^{C}] \times P[B]$$

$$P[A \cup B] = P[A] + P[A^C] \times P[B|A^C]$$

A and B are independent, so $P[B|A^C] = P[B]$

$$P[A \cup B] = P[A] + P[A^{C}] \times P[B]$$

 $P[A \cup B] = 0.05 + 0.95 \times 0.05$

$$P[A \cup B] = P[A] + P[A^C] \times P[B|A^C]$$

A and B are independent, so $P[B|A^C] = P[B]$

$$P[A \cup B] = P[A] + P[A^{C}] \times P[B]$$

 $P[A \cup B] = 0.05 + 0.95 \times 0.05$
 $P[A \cup B] = 0.0975$

▶ and we conduct three independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 - 0.95^3 = 0.1426$

$$1 - 0.93 = 0.1420$$

- ▶ and we conduct three independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^3 = 0.1426$
- ▶ and we conduct four independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^4 = 0.1855$

- ▶ and we conduct three independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^3 = 0.1426$
- ▶ and we conduct four independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1-0.95^4=0.1855$
- ▶ and we conduct ten independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^{10} = 0.4013$

- ▶ and we conduct three independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^3 = 0.1426$
- ▶ and we conduct four independent tests, the probability that at least one of them will be statistically significant at $p \le 0.05$ is $1 0.95^4 = 0.1855$
- ▶ and we conduct ten independent tests, the probability that *at least* one of them will be statistically significant at $p \le 0.05$ is $1 0.95^{10} = 0.4013$

This becomes a real problem when researchers run many tests in their papers!

	Fail to reject null hypothesis	Reject null hypothesis
	(p > 0.05)	$(p \le 0.05)$
Null hypothesis true	True negative	Type I error, false positive
Null hypothesis false	Type II error, false negative	True positive

► Type I error: (false positive) we see an effect, where one doesn't really exist

	Fail to reject null hypothesis	Reject null hypothesis
	(p > 0.05)	$(p \leq 0.05)$
Null hypothesis true	True negative	Type I error, false positive
Null hypothesis false	Type II error, false negative	True positive

- ► Type I error: (false positive) we see an effect, where one doesn't really exist
- ► Type II error: (false negative) we didn't see an effect, but one really does exist

► Comparisons across multiple treatments; A to B, B to C, A to C...

- ► Comparisons across multiple treatments; A to B, B to C, A to C...
- Multiple outcomes

- ► Comparisons across multiple treatments; A to B, B to C, A to C...
- Multiple outcomes
- Heterogeneous treatment effects (where is the cut point)

- ► Comparisons across multiple treatments; A to B, B to C, A to C...
- ► Multiple outcomes
- ► Heterogeneous treatment effects (where is the cut point)
- Multiple regression specifications (specification search)

- ► Comparisons across multiple treatments; A to B, B to C, A to C...
- Multiple outcomes
- Heterogeneous treatment effects (where is the cut point)
- ► Multiple regression specifications (specification search)

These tests aren't all fully independent, but the more tests we do, the more likely we are to uncover a false positive.

Ways to account for multiple testing

► Pre-specification of analyses

Ways to account for multiple testing

- ▶ Pre-specification of analyses
- Separating data in training and testing sets (more on this with machine learning)

Ways to account for multiple testing

- ▶ Pre-specification of analyses
- Separating data in training and testing sets (more on this with machine learning)
- ► p-value adjustment

p-value adjustment

	Fail to reject null hypothesis	Reject null hypothesis
	(p > 0.05)	$(p \leq 0.05)$
Null hypothesis true	True negative	Type I error, false positive
Null hypothesis false	Type II error, false negative	True positive

► Family-Wise Error Rate (FWER): the probability of falsely rejecting even one *true* null hypothesis;

► Family-Wise Error Rate (FWER): the probability of falsely rejecting even one *true* null hypothesis; P[Type I error > 0]

- ► Family-Wise Error Rate (FWER): the probability of falsely rejecting even one *true* null hypothesis; P[Type I error > 0]
- ► False Discovery Rate (FDR): expected proportion of false discoveries among all discoveries;

- ► Family-Wise Error Rate (FWER): the probability of falsely rejecting even one *true* null hypothesis; P[Type I error > 0]
- ► False Discovery Rate (FDR): expected proportion of false discoveries among all discoveries; E [# False discoveries/# All discoveries]

- ► Correcting FWER
 - ▶ Bonferroni correction: for m hypotheses, for significance level α , implement α/m

Correcting FWER

- ▶ Bonferroni correction: for m hypotheses, for significance level α , implement α/m
- ▶ four independent tests, the probability that at least one of them will be statistically significant at $p \le \alpha$ is $1 (1 \alpha)^4$
- For $\alpha = 0.05$, $1 0.95^4 = 0.1855$

► Correcting FWER

- ▶ Bonferroni correction: for m hypotheses, for significance level α , implement α/m
- ▶ four independent tests, the probability that at least one of them will be statistically significant at $p \le \alpha$ is $1 (1 \alpha)^4$
- For $\alpha = 0.05$, $1 0.95^4 = 0.1855$
- ▶ With Bonferroni correction: $1 (1 \alpha/4)^4 = 0.0491$

Correcting FWER

- ▶ Bonferroni correction: for m hypotheses, for significance level α , implement α/m
- ▶ four independent tests, the probability that at least one of them will be statistically significant at $p \le \alpha$ is $1 (1 \alpha)^4$
- For $\alpha = 0.05$, $1 0.95^4 = 0.1855$
- ▶ With Bonferroni correction: $1 (1 \alpha/4)^4 = 0.0491$
- ► Ten independent tests: $1 (1 \alpha/10)^{10} = 0.0489$

What if tests are not independent?

What if tests are not independent? Bonferroni is too aggressive.

$$\mathrm{P}[\mathsf{A} \cup \mathsf{B}] = \mathrm{P}[\mathsf{A}] + \mathrm{P}[\mathsf{A}^\mathsf{C}] \times \mathrm{P}[\mathsf{B}|\mathsf{A}^\mathsf{C}]$$

What if tests are not independent? Bonferroni is too aggressive.

$$P[A \cup B] = P[A] + P[A^C] \times P[B|A^C]$$

What if tests are not independent? Bonferroni is too aggressive.

$$P[A \cup B] = P[A] + P[A^C] \times P[B|A^C]$$

What if tests are not independent? Bonferroni is too aggressive.

$$\mathrm{P}[\mathsf{A} \cup \mathsf{B}] = \mathrm{P}[\mathsf{A}] + \mathrm{P}[\mathsf{A}^\mathsf{C}] \times \mathrm{P}[\mathsf{B}|\mathsf{A}^\mathsf{C}]$$

- Correcting FWER
 - ▶ Holm correction: for *m* hypotheses, for significance level α :
 - Order the m conventionally calculated p-values from smallest to largest

What if tests are not independent? Bonferroni is too aggressive.

$$\mathrm{P}[\mathsf{A} \cup \mathsf{B}] = \mathrm{P}[\mathsf{A}] + \mathrm{P}[\mathsf{A}^\mathsf{C}] \times \mathrm{P}[\mathsf{B}|\mathsf{A}^\mathsf{C}]$$

If A and B are positively correlated $\mathrm{P}[\mathsf{B}|\mathsf{A}^\mathsf{C}] \leq \mathrm{P}[\mathsf{B}]$

- Correcting FWER
 - ▶ Holm correction: for *m* hypotheses, for significance level α :
 - Order the m conventionally calculated p-values from smallest to largest
 - Find the *smallest* p-value indexed as k such that $p_k > rac{lpha}{m+1-k}$

What if tests are not independent? Bonferroni is too aggressive.

$$P[A \cup B] = P[A] + P[A^C] \times P[B|A^C]$$

- Correcting FWER
 - ▶ Holm correction: for *m* hypotheses, for significance level α :
 - Order the m conventionally calculated p-values from smallest to largest
 - ▶ Find the *smallest* p-value indexed as k such that $p_k > \frac{\alpha}{m+1-k}$
 - Reject all p-values greater than or equal to p_k, accept all p-values less p_k

- Correcting FDR
 - ▶ Benjamini-Hochberg correction: for m hypotheses, for significance level α :
 - Order the m conventionally calculated p-values from smallest to largest

- Correcting FDR
 - ▶ Benjamini-Hochberg correction: for m hypotheses, for significance level α :
 - Order the m conventionally calculated p-values from smallest to largest
 - ▶ Find the *largest* p-value indexed as k such that $p_k \leq \frac{k}{m}\alpha$

- Correcting FDR
 - ▶ Benjamini-Hochberg correction: for m hypotheses, for significance level α :
 - Order the m conventionally calculated p-values from smallest to largest
 - ▶ Find the *largest* p-value indexed as k such that $p_k \leq \frac{k}{m}\alpha$
 - Reject all p-values greater than p_k, accept all p-values less than or equal to p_k

▶ In either case, for more complex settings, try simulation.

Multiple testing

▶ When can you consider tests as unrelated?

Multiple testing

- ▶ When can you consider tests as unrelated?
- Exploratory vs. confirmatory hypotheses?

Some alternatives to confidence intervals (via ungeviz) Show the underlying data.

```
> ggplot(iris, aes(Species, Sepal.Length,fill = Species)) +
+ geom_violin(alpha = 0.25, color = NA) +
+ geom_point(position = position_jitter(width = 0.3, height = 0), size = 0.5) +
+ geom_bnline(aes(colour = Species), stat = "summary", width = 0.6, size = 1.5, fun = 'mean')
```


Some alternatives to confidence intervals (via ungeviz)

Shaded confidence strips.

Some alternatives to confidence intervals (via ungeviz)

Confidence densities.

References I

Clause Wilke: https://wilkelab.org/ungeviz/index.html