2. Boolesche Algebra

#DigitalTechnik

Themen

1. Allgemeines

Allgemeines

- Benannt nach George Boole (1815 1864)
- Rechensystem mit einer endlichen Wertemenge und gewissen Regeln:
 - endliche Wertemenge W
 - zwei zweistellige Operatoren ⊗, ⊕
 - Abgeschlossenheit: $\forall a,b \in \mathbb{W}$:

 $a\otimes b\in \mathbb{W}$

 $a\oplus b\in \mathbb{W}$

Es gelten die vier Huntingtonschen Axiome:

H1 — Kommutativgesetz

$$a \otimes b = b \otimes a$$

$$a\otimes b=b\oplus a$$

H2 — Distributivgesetz

$$a \oplus (b \otimes c) = (a \oplus b) \otimes (a \oplus c)$$

$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

H3 — Neutrales Element

 $\exists e,n\in\mathbb{W}$ mit:

$$a \oplus n = a$$

$$a\otimes e=a$$

H4 — Inverses Element

Für alle $a \in \mathbb{W}$ gibt es $\overline{a} \in \mathbb{W}$ mit

$$a \otimes \overline{a} = n$$

$$a\oplus \overline{a}=e$$

Hinweis: Verknüpfung mit dem inversen Element ergibt das neutrale Element der jeweils anderen Verknüpfung.

Spezialfall - Schaltalgebra

Wertemenge besteht aus zwei Werten:

```
W = \{true, false\}= \{1, 0\}= \{on, off\}
```

→ "Aussagenlogik", "Rechnen mit Wahrheitswerten"

Operatoren:

- statt $\otimes \rightarrow$ UND/AND \wedge , (\cdot)
- statt \oplus → ODER/OR \lor , (+) zwischen zwei Variablen kann der Operator " \cdot " weggelassen werden: $a \cdot b = ab$

einstelliger Operator definiert durch H4:

$$\overline{a} \rightarrow \text{NICHT/NOT}, \overline{a}, \neg a$$

Huntington'sche Axiome in der Schaltalgebra

```
H1 — Kommutativgesetz a \wedge b = b \wedge a; a \vee b = b \vee a H2 — Distributivgesetz a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge v) a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) H3 — Neutrales Element \exists_{1,0} \in \mathbb{W}: a \wedge 1 = a; a \vee 0 = a H4 — Inverses Element \exists_{\overline{a}}: a \wedge \overline{a} = 0; a \vee \overline{a} = 1
```

Warum Schaltalgebra?

Die zweistelligen Operatoren können durch Stromkreise mit zwei Schaltern dargestellt werden:

UND -
$$a \wedge b$$

ODER – $a \lor b$

Außerdem können die Operatoren mit Wertetabellen dargestellt werden: **UND:**

b	a	$a \wedge b$
0	0	0
0	1	0
1	0	0
1	1	1

ODER:

b	a	$a \lor b$
0	0	0
0	1	1
1	0	1
1	1	1

NICHT:

a	\bar{a}
0	1
1	0

Terme

Terme bestehen aus:

- Konstanten
- · Variablen als Platzhalter
- ein- / zweistellige Operatoren
- Klammern

Belegung:

Eingangsbelegung ist die Zuordnung jeweils eines konkreten Wertes zu jeder (Eingangs-)Variablen.

Ausgangsbelegung ist der Wert, der sich ergibt, wenn man einen Term bei einer konkreten Eingangsbelegung "auswertet".

Auswertung von Termen:

$$(a \wedge \neg c) \vee 1 \wedge (b \wedge c) \vee (0 \wedge d)$$

- 1. Festlegen einer konkreten Eingangsbelegung
 - Ersetzen der Variablen durch die entsprechenden Werte
- 2. Auswertung von "innen nach außen", beginnend mit dem Teilausdruck mit der höchsten Bindungskraft bis zum letzen Teil mit der niedrigsten Bindungskraft.

$$()>\neg>\wedge>\vee$$

- bei gleicher Bindungskraft (also gleichen Operatoren) Auswertung von links nach rechts

A	В	С	D	((A	٨	¬C)	٧	(VERUM	٨	(B ^	C))) v	(FALSUM	^ D)
1	1	1	1		0	0	1	1	1	1	*1	0	0
1	1	1	0		0	0	1	1	1	1	*1	0	0
1	1	0	1		1	1	1	1	0	0	*1	0	0
1	1	0	0		1	1	1	1	0	0	*1	0	0
1	0	1	1		0	0	0	1	0	0	*0	0	0
1	0	1	0		0	0	0	1	0	0	*0	0	0
1	0	0	1		1	1	1	1	0	0	*1	0	0
1	0	0	0		1	1	1	1	0	0	*1	0	0
0	1	1	1		0	0	1	1	1	1	*1	0	0
0	1	1	0		0	0	1	1	1	1	*1	0	0
0	1	0	1		0	1	0	1	0	0	*0	0	0
0	1	0	0		0	1	0	1	0	0	*0	0	0
0	0	1	1		0	0	0	1	0	0	*0	0	0
0	0	1	0		0	0	0	1	0	0	*0	0	0
0	0	0	1		0	1	0	1	0	0	*0	0	0
0	0	0	0		0	1	0	1	0	0	*0	0	0

Gesetze

Aus den Huntingtonschen Axiomen lassen sich mehrere Gesetze ableiten:

Assoziativgesetz:

$$(a \wedge b) \wedge c = a \wedge (b \wedge c) \ (a \vee b) \vee c = a \vee (b \vee c)$$

Idempotenzgesetz:

$$a \wedge a = a$$

 $a \vee a = a$

Absorptionsgesetz:

$$a \wedge (a \vee b) = a$$

 $a \vee (a \wedge b) = a$

DeMorgan:

$$eg(a \wedge b) = \neg a \vee \neg b$$
 $eg(a \vee b) = \neg a \wedge \neg b$

0-Dominanz

$$a \wedge 0 = 0$$

1-Dominanz

$$a \lor 1 = 1$$

Beweis von Gesetzen

a) algebraische Umformungen

mit Hilfe der Axiome und bereits bewiesener Gesetze

Bsp.: Idempotenz:
$$a \wedge a \stackrel{!}{=} a$$
 $\stackrel{!}{=} \rightarrow$ was zu beweisen ist $a \stackrel{H3}{=} a \wedge 1 \stackrel{H4}{=} a \wedge (a \vee \neg a) \stackrel{H2}{=} (a \wedge a) \vee (a \wedge \neg a) \stackrel{H4}{=} (a \wedge a) \vee 0 \stackrel{H3}{=} a \wedge a$ \blacksquare \longrightarrow q.e.d (v. b) über Wertetabellen

Für alle *Eingangsbelegungen* ergeben die beiden Terme links und rechts jeweils dieselbe *Ausgangsbelegung*.

Bsp.: *Assoziativität*: $(a \lor b) \lor c \stackrel{!}{=} a \lor (b \lor c)$

NR	С	b	a	$a \lor b$	$(a \lor b) \lor c$	$b \lor c$	$a \vee (b \vee c)$
0	0	0	0	0	0	0	0
1	1	0	0	1	1	0	1
2	0	1	0	1	1	1	1
3	0	1	1	1	1	1	1
4	1	0	0	0	1	1	1
5	1	0	1	1	1	1	1

NR	С	b	a	$a \lor b$	$(a \lor b) \lor c$	$b \lor c$	$a \lor (b \lor c)$
6	1	1	0	1	1	1	1
7	1	1	1	1	1	1	1

 $\rightarrow \blacksquare$

c) Existenz des inversen Elements über H4

falls: $a \wedge \neg b = 0$ und $a \vee \neg b = 1$, dann a = b

Bsp.: $DeMorgan: \neg(a \land b) \stackrel{!}{=} \neg a \lor \neg b$

über

$$\neg\neg(a \land b) \land (\neg a \lor \neg b) \stackrel{!}{=} 0$$

$$\neg\neg(a \land b) \lor (\neg a \neg b) \stackrel{!}{=} 1$$

$$\neg\neg(a \land b) \land (\neg a \lor \neg b)$$

$$\frac{\text{dopp. Neg.}}{=} (a \land b) \land (\neg a \lor \neg b)$$

$$\frac{H2}{=} ((a \land b) \land \neg a) \lor ((a \land b) \land \neg b)$$

$$\text{H1 & AssG} \\
= (b \land (a \land \neg a)) \lor (a \land (b \land \neg b))$$

$$\frac{H4}{=} (b \land 0) \lor (a \land 0)$$

$$\frac{0-Dom.}{=} 0 \lor 0$$

$$\frac{1}{\text{Idem. oder H3}} = 0$$

$$\neg\neg(a \land b) \lor (\neg a \lor \neg b)$$

$$\frac{dopp. Neg.}{=} (a \land b) \lor (\neg a \land \neg b)$$

$$\frac{H2}{=} (a \lor (\neg a \lor \neg b)) \land (b \lor (\neg a \lor \neg b))$$

$$\frac{H1}{=} (a \lor (\neg a \lor \neg b)) \land (b \lor (\neg a \lor \neg b))$$

$$\frac{H1}{=} (a \lor (\neg a \lor \neg b)) \land (b \lor (\neg a \lor \neg b))$$

$$\frac{H1}{=} (a \lor (\neg a \lor \neg b)) \land (b \lor (\neg a \lor \neg b))$$

$$\frac{H1}{=} (a \lor (\neg a \lor \neg b)) \land (b \lor (\neg a \lor \neg b))$$

$$\frac{H1}{=} (a \lor (\neg a \lor \neg b)) \land (b \lor (\neg a \lor \neg b))$$

$$\frac{H3}{=} (a \lor (\neg a \lor \neg b)) \land (b \lor (\neg a \lor \neg b))$$

$$\frac{H4}{=} (1 \lor \neg b) \land (1 \lor \neg a)$$

$$\frac{1-\text{Dom.}}{=} 1 \land 1$$

$$\frac{1}{=} (a \lor (\neg a \lor \neg b))$$

$$\frac{1}{=} (a \lor (\neg a \lor \neg b)$$

$$\frac{1}{=} (a$$

insegsamt: ■

Nachtragsbeweise:

doppelte Negation: $\neg \neg a = a$

Beweisen über spezielle Interpretation von H4: $\neg \neg a \land \neg a \stackrel{!}{=} 0$ und $\neg \neg a \lor \neg a \stackrel{!}{=} 1$

$$eg \neg a \wedge
eg a \overset{\mathrm{H4}}{=} 0$$

$$eg \neg a \lor
eg a \stackrel{\mathrm{H4}}{=} 1$$

O-Dominanz: $a \wedge 0 \stackrel{!}{=} 0$

$$a \wedge 0 \overset{\mathrm{H4}}{=} a \wedge (a \wedge
eg a) \overset{\mathrm{AssG}}{=} (a \wedge a) \wedge
eg a \overset{\mathrm{Idem.}}{=} a \wedge
eg a \overset{\mathrm{H4}}{=} 0$$

1-Dominanz: $a \lor 1 \stackrel{!}{=} 1$

Absorptionsgesetz:
$$a \wedge (a \vee b) \stackrel{!}{=} a$$
 und gleichzeitig $a \vee (a \wedge b) \stackrel{!}{=} a$

$$a \wedge (a \vee b) \stackrel{\text{H2}}{=} (a \wedge a) \vee (a \wedge b) \stackrel{\text{Idem.}}{=} a \vee (a \wedge b) \stackrel{\text{H3}}{=} (a \wedge 1) \vee (a \wedge b) \stackrel{\text{H2}}{=} a \wedge (1 \vee b) \stackrel{\text{1-Dom}}{=} a \wedge 1 \stackrel{\text{H3}}{=} a$$

Darstellung von Funktionen

1 Definition

Eine Funktion der Schaltalgebra, abhängig von n Variablen, ordnet jeder Eingangsbelegung genau eine Ausgangsbelegung zu.

- 1. Funktionsterm
- 2. Wertetabelle (geht hier auch zur Definition einer Funktion aufgrund der endlichen Wertemenge)

Äquivalenz von Funktionen: Eine durch einen Funktionsterm gegebene Funktion ist äquivalent zu einer durch einen anderen Funktionsterm gegebenen Funktion, wenn sie dieselbe Wertetabelle aufweist.

Hinweise:

- Für jede Funktion gibt es unterschiedlich viele äquivalente Funktionsterme!
- Die Anzahl nicht-äquivalenter Funktionen abhängig von n Variablen ist endlich!

Funktionen abhängig von n Eingangsvariablen

$$n = 0$$

$$f_0 = 0$$
 "Nullfunktion" $f_1 = 1$ "Einsfunktion" \Rightarrow zwei verschiedene Funktionen abhängig von keiner Variablen

n = 1

$$f_{2}(a) = a \text{ "Identität von a"}$$

$$f_{1}(a) = \overline{a} \text{ "Negation von a"}$$

$$f_{0}(a) = 0 \text{ "Nullfunktion"}$$

$$f_{3}(a) = 1 \text{ "Einsfunktion"}$$

$$\Rightarrow \text{ vier verschiedene Funktionen abhängig von einer Variablen}$$

b	a	\int_0	f_1	f_2	\int_3	f_4	f_5	f_6	f_7	\int_{8}	f_9	f_{10}	f_{11}	f_{12}	$\int f_{13}$	$\int f_{14}$	f_{15}
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
f(a,b)	0	$\neg(a \lor b)$	$a \rightarrow \overline{b}$	<u>q</u>	$\overline{b \rightarrow a}$	\overline{a}	$(a \lor b) \land \neg (a \land b) = a\overline{b} \lor \overline{a}b$	$\neg(a \land b)$	$a \wedge b$	$a \leftrightarrow b$	ಜ	$b \rightarrow a$	Р	$a \rightarrow b$	$a \lor b$	1
	Bezeichnung	Nullfunktion	Nicht-ODER	Inhibition (negierte Implikation)	Negation von b	Inhibition (negierte Implikation)	Negation von a	Exklusiv-Oder / Antivalenz	Nicht-UND	UND-Funktion	Äquivalenz	Identität von a	Implikation (aus b folgt a)	Identität von b	Implikation (aus a folgt b)	ODER-Funktion	Einsfunktion
⇒ i	nsges	samt	16	verse	chiec	lene	Fun	ktio	nen	abhä	ingig	g von	2 Va	riable	en!		

n

n	$\# Fkt = 2^{2^n}$	$\#$ ZeilenWertetabelle = 2^n
0	2	1
1	4	2
2	16	4
3	256	8
4	65536	16
5	$\approx 4Mrd$.	32
6	pprox 16Trillionen	64