New Results for Garbling Arithmetic and High Fan-In Computations

Mike Rosulek Oregon State

Garbling Gadgets for Boolean and Arithmetic Circuits Marshall Ball, Tal Malkin, Mike Rosulek

CCS 2016; eprint.iacr.org/2016/969

Garbling a circuit:

▶ Pick random **labels** W_0 , W_1 on each wire

Garbling a circuit:

▶ Pick random **labels** W_0 , W_1 on each wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Carbled encoding =** one label per wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Garbled encoding =** one label per wire

Garbled evaluation:

Only one ciphertext per gate is decryptable

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbled circuits = boolean circuits

Size of Garbled Circuits

		gc size ($\times \lambda$ bits)	
		XOR	AND
Textbook + P&P	[Yao86 + BeaverMicaliRogaway90]	4	4
GRR3	[NaorPinkasSumner99]	3	3
Free XOR	[KolesnikovSchneider08]	0	3
GRR2	[PinkasSchneiderSmartWilliams09]	2	2
FleXOR	[KolesnikovMohasselRosulek14]	{0,1,2}	2
Half gates	[ZahurRosulekEvans15]	0	2

[&]quot;traditional" GC only: ignoring privacy-free, gate-private, formulas-only, etc.

Size of Garbled Circuits

		gc size ($\times \lambda$ bits)	
		XOR	AND
Textbook + P&P	[Yao86 + BeaverMicaliRogaway90]	4	4
GRR3	[NaorPinkasSumner99]	3	3
Free XOR	[KolesnikovSchneider08]	0	3
GRR2	[PinkasSchneiderSmartWilliams09]	2	2
FleXOR	[KolesnikovMohasselRosulek14]	{0,1,2}	2
Half gates	[ZahurRosulekEvans15]	0	2 *

[&]quot;traditional" GC only: ignoring privacy-free, gate-private, formulas-only, etc.

What about all the interesting things that are clunky to write as a boolean circuit?

Garbling Gadgets for Boolean and Arithmetic Circuits Marshall Ball, Tal Malkin, Mike Rosulek CCS 2016

- 1. New garbled circuit building blocks
- 2. Applications to arithmetic computations
- 3. Applications to high-fan-in boolean computations
- 4. Other challenges

Garbling Gadgets for Boolean and Arithmetic Circuits Marshall Ball, Tal Malkin, Mike Rosulek CCS 2016

- 1. New garbled circuit building blocks
 - Generalized Free-XOR (very simple)
- 2. Applications to arithmetic computations
- 3. Applications to high-fan-in boolean computations
- 4. Other challenges

Garbling Gadgets for Boolean and Arithmetic Circuits Marshall Ball, Tal Malkin, Mike Rosulek CCS 2016

- 1. New garbled circuit building blocks
 - Generalized Free-XOR (very simple)
- 2. Applications to arithmetic computations
 - Encoding under many moduli (also very simple)
- 3. Applications to high-fan-in boolean computations
- 4. Other challenges

$$\xrightarrow{A_0,A_1} C_0,C_1$$

Wire's offset ≡ XOR of its two labels

$$\begin{array}{c|c}
A, A \oplus \Delta_A \\
\hline
B, B \oplus \Delta_B
\end{array}$$

Wire's offset ≡ XOR of its two labels

$$\begin{array}{c}
A,A \oplus \Delta \\
\hline
B,B \oplus \Delta
\end{array}$$

- Wire's offset ≡ XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset Δ

$$\begin{array}{c} C \leftarrow \{0,1\}^{\lambda} \\ \hline B, B \oplus \Delta \end{array}$$

- Wire's offset ≡ XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset Δ

- Wire's offset ≡ XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset Δ
- ightharpoonup Choose false output label = false input \oplus false input

- ► Wire's **offset** = XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset Δ
- ► Choose false output label = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)

- Wire's offset ≡ XOR of its two labels
- Choose all wires in circuit to have same (secret) offset \(\Delta \)
- ► Choose false output label = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)

- ► Wire's **offset** = XOR of its two labels
- lacktriangle Choose all wires in circuit to have same (secret) offset Δ
- ► Choose false output label = false input ⊕ false input
- Evaluate by xoring input wire labels (no crypto)

$$\begin{array}{c}
A_0, A_1, \dots, A_{m-1} \\
\hline
B_0, B_1, \dots, B_{m-1}
\end{array}$$

• Wires carry semantic values in \mathbb{Z}_m (m=2 is Free-XOR)

$$\begin{array}{c} A_0, A_1, \dots, A_{m-1} \\ \hline B_0, B_1, \dots, B_{m-1} \\ \end{array}$$

- Wires carry semantic values in \mathbb{Z}_m (m=2 is Free-XOR)
- Wire labels interpreted as elements of $(\mathbb{Z}_m)^{\lambda}$

$$A, A + \Delta, A + 2\Delta, \dots$$

$$B, B + \Delta, B + 2\Delta, \dots$$

$$C, C + \Delta, C + 2\Delta, \dots$$

- Wires carry semantic values in \mathbb{Z}_m (m=2 is Free-XOR)
- Wire labels interpreted as elements of $(\mathbb{Z}_m)^{\lambda}$
- ▶ Wire label encoding $a \in \mathbb{Z}_m$ is $A + a\Delta$ for global $\Delta \in (\mathbb{Z}_m)^{\lambda}$

$$\begin{array}{c}
C \leftarrow \$ \\
A, A + \Delta, A + 2\Delta, \dots \\
B, B + \Delta, B + 2\Delta, \dots
\end{array}$$

- Wires carry semantic values in \mathbb{Z}_m (m=2 is Free-XOR)
- Wire labels interpreted as elements of $(\mathbb{Z}_m)^{\lambda}$
- ▶ Wire label encoding $a \in \mathbb{Z}_m$ is $A + a\Delta$ for global $\Delta \in (\mathbb{Z}_m)^{\lambda}$

$$C := A + B$$

$$A, A + \Delta, A + 2\Delta, \dots$$

$$B, B + \Delta, B + 2\Delta, \dots$$

$$A = A + B$$

$$ZERO = A + B$$

- Wires carry semantic values in \mathbb{Z}_m (m=2 is Free-XOR)
- Wire labels interpreted as elements of $(\mathbb{Z}_m)^{\lambda}$
- ▶ Wire label encoding $a \in \mathbb{Z}_m$ is $A + a\Delta$ for global $\Delta \in (\mathbb{Z}_m)^{\lambda}$
- Choose zero output label = zero input + zero input

- Wires carry semantic values in \mathbb{Z}_m (m=2 is Free-XOR)
- Wire labels interpreted as elements of $(\mathbb{Z}_m)^{\lambda}$
- ▶ Wire label encoding $a \in \mathbb{Z}_m$ is $A + a\Delta$ for global $\Delta \in (\mathbb{Z}_m)^{\lambda}$
- Choose zero output label = zero input + zero input
- ► **Free addition** mod *m*: add labels componentwise mod *m*

- Wires carry semantic values in \mathbb{Z}_m (m=2 is Free-XOR)
- Wire labels interpreted as elements of $(\mathbb{Z}_m)^{\lambda}$
- ▶ Wire label encoding $a \in \mathbb{Z}_m$ is $A + a\Delta$ for global $\Delta \in (\mathbb{Z}_m)^{\lambda}$
- Choose zero output label = zero input + zero input
- Free addition mod m: add labels componentwise mod m
- Free multiplication by public constant c, if gcd(c, m) = 1

Unary gates

Unary gates

▶ Different "preferred modulus" on each wire \Rightarrow different offsets \triangle

Unary gates

- ▶ Different "preferred modulus" on each wire \Rightarrow different offsets \triangle
- **Cost:** *m* ciphertexts

Unary gates

- ▶ Different "preferred modulus" on each wire \Rightarrow different offsets \triangle
- **Cost:** *m* ciphertexts
- ▶ m-1 using simple generalization of GRR3 technique

Summary of basic garbling

We can efficiently garble any computation/circuit where:

- **Each** wire has a preferred modulus \mathbb{Z}_m
 - \Rightarrow Wire-label-offset Δ_m global to all \mathbb{Z}_m -wires
- Addition gates: all wires touching gate have same modulus
 - ⇒ Garbling cost: free
- Mult-by-constant gates: input/output wires have same modulus
 - ⇒ Garbling cost: free
- ▶ Unary gates: \mathbb{Z}_m input and \mathbb{Z}_ℓ output
 - \Rightarrow Garbling cost: m-1 ciphertexts

Scenario

Securely compute linear optimization problem on 32-bit values.

⇒ Almost all operations are addition, multiplication, etc

"Standard approach"

- Represent 32-bit integers in binary
- ▶ Build circuit from boolean addition/multiplication subcircuits
- ► Garble the resulting circuit (AND costs 2, XOR costs 0)

"Standard approach"

- Represent 32-bit integers in binary
- ► Build circuit from boolean addition/multiplication subcircuits
- ► Garble the resulting circuit (AND costs 2, XOR costs 0)

	cost (# ciphertexts)
addition	62
multiplication by public constant	758
multiplication	1200
squaring, cubing, etc	1864

"Standard approach"

- Represent 32-bit integers in binary
- ▶ Build circuit from boolean addition/multiplication subcircuits
- ► Garble the resulting circuit (AND costs 2, XOR costs 0)

	cost (# ciphertexts)
addition	62
multiplication by public constant	758
multiplication	1200
squaring, cubing, etc	1864

Note: prior work on garbling arithmetic circuits [ApplebaumIshaiKushilevitz11]

- ✓ free addition, good native support for large integers
- X based on LWE (vs AES for us)

Our scheme supports free addition. What about multiplication?

Multiplication

► Straight-forward approach:

Cost: m² ciphertexts (textbook Yao)

Multiplication

Straight-forward approach:

Cost: m² ciphertexts (textbook Yao)

▶ Better approach: **log-transform** (works when *m* small)

(plus extra edge cases when $0 \in \{x, y\}$)

Cost: $\sim 6m$ ciphertexts

Multiplication

Straight-forward approach:

Cost: m^2 ciphertexts (textbook Yao)

▶ Better approach: **log-transform** (works when *m* small)

(plus extra edge cases when $0 \in \{x, y\}$)

Cost: $\sim 6m$ ciphertexts

Best approach: **generalize half-gates** (works when *m* is prime) **Cost**: 2*m* ciphertexts (also in [MalkinPastroShelat])

First Approach:

- Use our new garbling scheme
- Every wire is a $\mathbb{Z}_{2^{32}}$ wire

First Approach:

- Use our new garbling scheme
- Every wire is a $\mathbb{Z}_{2^{32}}$ wire

	standard	this
addition	62	0
multiplication by public constant	758	0
multiplication	1200	25769803776
squaring, cubing, etc	1864	4294967296

$$\mathbb{Z}_{4294967296} = \mathbb{Z}_{2^{32}}$$

$$\downarrow$$

$$\mathbb{Z}_{6469693230}$$

$$\mathbb{Z}_{4294967296} = \mathbb{Z}_{2^{32}}$$

$$\downarrow$$

$$\mathbb{Z}_{6469693230} = \mathbb{Z}_{2\cdot 3\cdot 5}...$$

Idea: Use many moduli in single circuit

Idea: Use many moduli in single circuit

- ▶ Represent large ints via **Chinese remainder**: $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \cdots$
- For each logical value, circuit includes mod-2 wire, mod-3 wire, . . .
- ▶ For 32-bit integers, first 10 primes suffice: $2 \cdot 3 \cdot 5 \cdots 29 > 2^{32}$

Idea: Use many moduli in single circuit

- ▶ Represent large ints via **Chinese remainder**: $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \cdots$
- ► For each *logical* value, circuit includes mod-2 wire, mod-3 wire, . . .
- ▶ For 32-bit integers, first 10 primes suffice: $2 \cdot 3 \cdot 5 \cdots 29 > 2^{32}$

Costs:

- ▶ To add mod $2 \cdot 3 \cdots 29$, just add each CRT residue
- ► To multiply by constant, just multiply each CRT residue
 - ⇒ garbling cost = **free**

Idea: Use many moduli in single circuit

- ▶ Represent large ints via **Chinese remainder**: $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \cdots$
- ► For each *logical* value, circuit includes mod-2 wire, mod-3 wire, . . .
- ▶ For 32-bit integers, first 10 primes suffice: $2 \cdot 3 \cdot 5 \cdots 29 > 2^{32}$

Costs:

- ▶ To add mod $2 \cdot 3 \cdots 29$, just add each CRT residue
- ► To multiply by constant, just multiply each CRT residue
 - ⇒ garbling cost = **free**
- ▶ To multiply mod $2 \cdot 3 \cdots 29$, just multiply each CRT residue
 - \Rightarrow garbling cost $\sim 2(2+3+5+\cdots+29)$

Idea: Use many moduli in single circuit

- ▶ Represent large ints via **Chinese remainder**: $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \cdots$
- ▶ For each *logical* value, circuit includes mod-2 wire, mod-3 wire, . . .
- ▶ For 32-bit integers, first 10 primes suffice: $2 \cdot 3 \cdot 5 \cdots 29 > 2^{32}$

Costs:

- ▶ To add mod $2 \cdot 3 \cdots 29$, just add each CRT residue
- ► To multiply by constant, just multiply each CRT residue
 - ⇒ garbling cost = **free**
- ▶ To multiply mod $2 \cdot 3 \cdots 29$, just multiply each CRT residue
 - \Rightarrow garbling cost $\sim 2(2+3+5+\cdots+29)$
- ► To raise to public power, use **unary gate** $x \mapsto x^c$ on each CRT residue
 - \Rightarrow garbling cost = $(2-1) + (3-1) + (5-1) + \cdots + (29-1)$

	standard	awful	CRT
addition	62	0	0
multiplication by public constant	758	0	0
multiplication	1200	25769803776	724
squaring, cubing, etc	1864	4294967296	119

	standard	awful	CRT
addition	62	0	0
multiplication by public constant	758	0	0
multiplication	1200	25769803776	724 (<mark>238</mark>)
squaring, cubing, etc	1864	4294967296	119

Scenario

Securely compute boolean circuit with high-fan-in threshold gates.

► fan-in-100: AND, OR, majority, threshold, etc.

$$NC^0 \subsetneq AC^0 \subsetneq TC^0$$

Scenario

Securely compute boolean circuit with high-fan-in threshold gates.

► fan-in-100: AND, OR, majority, threshold, etc.

$$\mathsf{NC}^0 \subsetneq \mathsf{AC}^0 \subsetneq \mathsf{TC}^0$$

"Standard approach"

- Express threshold gates in terms of fan-in-2 gates
- Garble the resulting circuit (AND costs 2, XOR costs 0)

Scenario

Securely compute boolean circuit with high-fan-in threshold gates.

► fan-in-100: AND, OR, majority, threshold, etc.

$$\mathsf{NC}^0 \subsetneq \mathsf{AC}^0 \subsetneq \mathsf{TC}^0$$

"Standard approach"

- Express threshold gates in terms of fan-in-2 gates
- ► Garble the resulting circuit (AND costs 2, XOR costs 0)

	cost (# ciphertexts)
AND/OR	198
majority	948

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100]$$

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{101}]$$

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{101}]$$

- Represent each bit in \mathbb{Z}_{101}
- ▶ Cost to garble sum in \mathbb{Z}_{101} is **free**
- ► Equality comparison is simple \mathbb{Z}_{101} -unary gate \Rightarrow cost = 100

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{101}]$$

- Represent each bit in \mathbb{Z}_{101}
- ► Cost to garble sum in \mathbb{Z}_{101} is **free**
- ► Equality comparison is simple \mathbb{Z}_{101} -unary gate \Rightarrow cost = 100

	standard	better
AND/OR	198	100
majority	948	

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{101}]$$

- Represent each bit in \mathbb{Z}_{101}
- ► Cost to garble sum in \mathbb{Z}_{101} is **free**
- ► Equality comparison is simple \mathbb{Z}_{101} -unary gate \Rightarrow cost = 100

	standard	better
AND/OR	198	100
majority	948	100

Same logic for MAJ
$$(x_1,...,x_{100}) = [\sum_i x_i \stackrel{?}{>} 50]$$

$$\mathbb{Z}_{101}$$

$$\downarrow$$

$$\mathbb{Z}_{210} = \mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$$

Insight: take advantage of multiple moduli

$$AND(x_1,...,x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$

Insight: take advantage of multiple moduli

AND
$$(x_1, ..., x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$

= $[\sum x_i \stackrel{?}{=} 100 \pmod{p} \ \forall p \in \{2, 3, 5, 7\}]$

Insight: take advantage of multiple moduli

AND
$$(x_1, ..., x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$

= $[\sum x_i \stackrel{?}{=} 100 \pmod{p} \ \forall p \in \{2, 3, 5, 7\}]$

Our approach

▶ Represent each bit via mod-2 wire, mod-3 wire, mod-5 wire, . . .

Insight: take advantage of multiple moduli

AND
$$(x_1, ..., x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$

= $[\sum x_i \stackrel{?}{=} 100 \pmod{p} \ \forall p \in \{2, 3, 5, 7\}]$

Our approach

- ► Represent each bit via mod-2 wire, mod-3 wire, mod-5 wire, . . .
- Each summation mod p is free
- Cost of equality tests = 2 + 3 + 5 + 7

Insight: take advantage of multiple moduli

AND
$$(x_1, ..., x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$

= $[\sum x_i \stackrel{?}{=} 100 \pmod{p} \ \forall p \in \{2, 3, 5, 7\}]$

Our approach

- ► Represent each bit via mod-2 wire, mod-3 wire, mod-5 wire, . . .
- Each summation mod p is free
- Cost of equality tests = 2 + 3 + 5 + 7
- ► Compute AND of 4 equality test results \Rightarrow cost = 4 (previous method)

Insight: take advantage of multiple moduli

AND
$$(x_1, ..., x_{100}) = [\sum x_i \stackrel{?}{=} 100] = [\sum x_i \stackrel{?}{=} 100 \pmod{210}]$$

= $[\sum x_i \stackrel{?}{=} 100 \pmod{p} \ \forall p \in \{2, 3, 5, 7\}]$

Our approach

- ► Represent each bit via mod-2 wire, mod-3 wire, mod-5 wire, . . .
- Each summation mod p is free
- Cost of equality tests = 2 + 3 + 5 + 7
- ► Compute AND of 4 equality test results \Rightarrow cost = 4 (previous method)

	standard	better	best
AND/OR	198	100	21
majority	948	100	-

Summarizing the Gadgets

For arithmetic operations on bounded integers:

- Represent in primorial modulus + CRT (10-20 primes)
- Free addition & multiplication by constant!
- Multiplication concretely better than boolean
- Exponentiation concretely+asymptotically better

Summarizing the Gadgets

For arithmetic operations on bounded integers:

- Represent in primorial modulus + CRT (10-20 primes)
- Free addition & multiplication by constant!
- Multiplication concretely better than boolean
- Exponentiation concretely+asymptotically better

For high-fan-in computations on bits:

- Represent bits in primorial modulus + CRT (3-5 primes)
- ► Threshold gates (incl. AND, OR) **exponentially better** than boolean

Our gadgets:

"If values are represented in CRT form then garbled operations are cheap."

Our gadgets:

"If values are represented in CRT form then garbled operations are cheap."

But doesn't it cost something to get values into CRT form??

Claim:

It's **not hard** to convert into CRT representation $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$

Claim:

It's **not hard** to convert into CRT representation $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$

From binary $b_n b_{n-1} \cdots b_1 b_0$:

- ► For all i, j, use unary gate $b_i \mapsto b_i \pmod{p_j}$ (1 ciphertext each)
- For all j, add to obtain $\sum_i b_i 2^i \pmod{p_j}$ (free)
- ► Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

Claim:

It's **not hard** to convert into CRT representation $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_k}$

From binary $b_n b_{n-1} \cdots b_1 b_0$:

- ► For all i, j, use unary gate $b_i \mapsto b_i \pmod{p_j}$ (1 ciphertext each)
- For all j, add to obtain $\sum_i b_i 2^i \pmod{p_j}$ (free)
- ► Total cost = (# primes) × (# bits) (e.g., 320 ciphertexts for 32 bits)

At the input level (e.g., OTs in Yao): (similar to [Gilboa99,KellerOrsiniScholl16])

- Outside of the circuit, convert plaintext input into CRT form
- ► Convert \mathbb{Z}_{p_i} -residue to binary, and transfer it using $\lceil \log p_j \rceil$ OTs
- ► Total cost: $\sum_{j} \log p_{j}$ OTs (e.g., 37 OTs for 32-bit values)

Challenges

Challenges

Problems that still seem very hard:

- Comparing two CRT-encoded values
- Converting CRT representation to binary
- Integer division
- Modular reduction different than the CRT composite modulus (e.g., garbled RSA)

Challenges

Problems that still **seem very hard**:

- Comparing two CRT-encoded values
- Converting CRT representation to binary
- Integer division
- Modular reduction different than the CRT composite modulus (e.g., garbled RSA)

```
CRT view of \mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}:
      00000
      11111
      2220 2
      3 3 0 1 3
      4410 4
      50215
      6100 6
      02117
      1421 29
      2000 30
```

CRT view of $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$:

```
00000
11111
2220 2
3 3 0 1 3
4410 4
50215
6100 6
02117
1 4 2 1 29
2000 30
```

Theorem

CRT representation sucks for comparisons!

CRT view of $\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$:

0000	0	0	0
1111	1	1	1
2220	2	1 0	2
3 3 0 1	3	11	3
4410	4	2 0	4
5021	5	2 1	5
6100	6	100	6
0 2 1 1	7	101	7
÷	:	:	:
1421	29	4 2 1	29
2000	30	1000	30
:	:	:	:
•	•	•	

CRT view of 2	$\mathbb{Z}_{2\cdot 3\cdot 5\cdot 7}$:	Primorial Mixed R	adix (PMR)
0 0 0 0	0	0	0
1111	1	1	1
2220	2	10	2
3 3 0 1	3	11	3
4 4 1 0	4	2 0	4
5021	5	2 1	5
6100	6	100	6
0 2 1 1	7	101	7
÷	:	:	:
1421	29	4 2 1	29
2000	30	1000	30
:	:	:	:

CRT values given

Convert both CRT values to PMR

Compare PMR (simple $L \rightarrow R$ scan)

CRT values given

Convert both CRT values to PMR

PMR representation of *x*:

...,
$$\left\lfloor \frac{x}{2 \cdot 3 \cdot 5} \right\rfloor \% 7$$
, $\left\lfloor \frac{x}{2 \cdot 3} \right\rfloor \% 5$, $\left\lfloor \frac{x}{2} \right\rfloor \% 3$, $\lfloor x \rfloor \% 2$

Compare PMR (simple $L\rightarrow R$ scan)

CRT values given

Convert both CRT values to PMR

Simple building block:

$$(x\%p, x\%q) \mapsto \left[\frac{x}{p}\right]\%q$$

allows you to compute PMR representation of *x*:

...,
$$\left\lfloor \frac{x}{2 \cdot 3 \cdot 5} \right\rfloor \% 7$$
, $\left\lfloor \frac{x}{2 \cdot 3} \right\rfloor \% 5$, $\left\lfloor \frac{x}{2} \right\rfloor \% 3$, $\lfloor x \rfloor \% 2$

Compare PMR (simple $L \rightarrow R$ scan)

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
															4

[x/3] % 5 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

X	U	ı	2	3	4	J	O	/	0	9	10	11	12	13	14
x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
<i>x</i> %3 − <i>x</i> %5	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
[x/3] % 5	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract x%3 - x%5

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

														13	
x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
x % 5	0	1	2	3	4	0	1	2	3	4	0	1	2	3	2 4
x%3 - x%5	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
$\lfloor x/3 \rfloor \% 5$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract x%3 - x%5

2. Result has the same "constant segments" as what we want

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
x % 5	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
x%3 - x%5	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
(x%3 - x%5)%7	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
$\lfloor x/3 \rfloor \% 5$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

1. Subtract $x\%3 - x\%5 \pmod{7}$ is fine)

2. Result has the same "constant segments" as what we want

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
x % 5	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
x%3 - x%5	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
(x%3 - x%5)%7	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
$\lfloor x/3 \rfloor \% 5$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

- 1. Subtract $x\%3 x\%5 \pmod{7}$ is fine)
 - "Project" x%3 and x%5 to \mathbb{Z}_7 wires
 - Subtract mod 7 for free
- 2. Result has the same "constant segments" as what we want

$$(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$$

X	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
x % 3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
x % 5	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
x%3 - x%5	0	0	0	-3	-3	2	-1	-1	-1	-4	1	1	-2	-2	-2
(x%3 - x%5)%7	0	0	0	4	4	2	6	6	6	3	1	1	5	5	5
$\lfloor x/3 \rfloor \% 5$	0	0	0	1	1	1	2	2	2	3	3	3	4	4	4

- 1. Subtract x%3 x%5 (mod 7 is fine)
 - "Project" x%3 and x%5 to \mathbb{Z}_7 wires
 - Subtract mod 7 for free
- 2. Result has the same "constant segments" as what we want
 - Apply unary projection:

- 1. General $(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$ gadget costs $\sim 2p + 2q$ ciphertexts
- 2. PMR conversion requires this gadget between all pairs of primes
- 3. Total cost $O(k^3)$ for k-bit integers

- 1. General $(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$ gadget costs $\sim 2p + 2q$ ciphertexts
- 2. PMR conversion requires this gadget between all pairs of primes
- 3. Total cost $O(k^3)$ for k-bit integers

Operations on 32-bit integers:

	standard	ours
addition	62	0
multiplication by public constant	758	0
multiplication	1200	238
squaring, cubing, etc	1864	119

- 1. General $(x\%p, x\%q) \mapsto \lfloor x/p \rfloor \%q$ gadget costs $\sim 2p + 2q$ ciphertexts
- 2. PMR conversion requires this gadget between all pairs of primes
- 3. Total cost $O(k^3)$ for k-bit integers

Operations on 32-bit integers:

	standard	ours
addition	62	0
multiplication by public constant	758	0
multiplication	1200	238
squaring, cubing, etc	1864	119
comparison	64	2541

Future Directions

- Better comparison, conversion, division, modular reduction
- New circuit ideas for "CRT architecture"
- 3 Implementation, applications

the end!

