(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-263916

(43)公開日 平成11年(1999)9月28日

(51) Int.Cl. ⁶	識別記号	FI
C08L 101/00		C 0 8 L 101/00
C08K 9/04		C 0 8 K 9/04
C08L 79/04		. C08L 79/04
83/00		83/00
H01L 21/314		H 0 1 L 21/314 A
		審査請求 未請求 請求項の数6 OL (全 5 頁) 最終頁に続く
(21)出願番号	特願平10-67287	(71) 出願人 000005223
		富士通株式会社
(22) 出顧日	平成10年(1998) 3月17日	神奈川県川崎市中原区上小田中4丁目1番
		1号
		(72)発明者 松浦 東
		神奈川県川崎市中原区上小田中4丁目1番
		1号 富士通株式会社内
		(72)発明者 早野 智明
		神奈川県川崎市中原区上小田中4丁目1番
		1号 富士通株式会社内
	•	(74)代理人 弁理士 石田 敬 (外3名)
		最終頁に続く

(54) 【発明の名称】 低誘電率の回路配線用絶縁材料及びこれを用いた電子部品

(57)【要約】

【課題】 伝送遅延が減少して高速処理を可能にする電子部品における低誘電率の多層回路基板の層間絶縁膜に有用な材料を提供する。

【解決手段】 本発明の回路配線用絶縁材料は、絶縁性 樹脂基剤と、フラーレンあるいはカーボンナノチューブ に化学修飾を施して相溶性を向上させた化合物とを含 む。

【特許請求の範囲】

【請求項1】 絶縁性樹脂基剤とフラーレンあるいはカーボンナノチューブに化学修飾を施した化合物とを含む ことを特徴とする回路配線用絶縁材料。

【請求項2】 前記フラーレンあるいはカーボンナノチューブの炭素 − 炭素間の距離が4オングストローム

(0.4 n m)以上である、請求項1記載の回路配線用 絶縁材料。

【請求項3】 前記化学修飾がシリコーン系官能基、酸素を含む置換基、不飽和結合を持つ置換基又はフッ素原 10子でなされている、請求項1又は2記載の回路配線用絶縁材料。

【請求項4】 前記絶縁性樹脂基剤がポリイミド又はシリコーン樹脂である、請求項1から3までのいずれか一つに記載の回路配線用絶縁材料。

【請求項5】 請求項1から4までのいずれか一つに記載の材料を硬化させて形成されていることを特徴とする回路配線用絶縁膜。

【請求項6】 請求項5記載の絶縁膜を使用した多層回路配線基板を含む電子部品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体素子など電子デバイスを高密度に実装し、信号の高速伝播に適した、低誘電率多層回路配線の層間絶縁材料と、このような多層回路配線基板を含む大規模集積回路(LSI)等の電子部品に関する。

【0002】パーソナルコンピュータからハイパフォーマンスコンピュータに至るまでの各種コンピュータで使用される半導体素子の高速化は著しく、相対的に基板配 30線部における伝送遅延が、コンピュータの演算速度を左右するようになってきている。この結果、コンピュータの中央処理装置(CPU)用回路基板には、樹脂薄膜を層間絶縁膜とする、高密度かつ微細な多層配線に適した樹脂薄膜配線が適用されるようになってきた。将来のより高速なコンピュータを実現するには、高密度かつ微細な多層配線を活かし、かつ信号の高速伝播に適した低誘電率絶縁材料の開発が不可欠である。

[0003]

【従来の技術】従来、高速コンピュータに使用されてい 40 る高密度実装基板材料には、エポキシ、ポリイミドなど の樹脂が使用されている。更に、最近では、より低い誘電率を有する樹脂としてオレフィン系やフッ索系の材料 が注目されている。

【0004】材料の比誘電率ε,は、クラウジウスーモソッティの式によると以下のように表される。

[0005]

【数1】

$$\frac{\varepsilon \cdot -1}{\varepsilon \cdot +2} = \frac{N \alpha}{3 \varepsilon_0}$$

[0006]ただし、との式の α は材料分子の分極率、Nは単位体積あたりの分子数、 ϵ 。は真空の誘電率である。

【0007】上式で、 ε 。について解き、 α 又はNで偏微分すればわかるように、分極率 α が小さいほど、また単位体積中の分子数Nが小さいほど、比誘電率 ε 。が小さくなる。この関係は、図1に示したN α と比誘電率 ε 。との関係の一例を示すグラフから明らかである。以下、比誘電率のことを単に「誘電率」と称することにする

【0008】上述のようにオレフィン系あるいはフッ素系の樹脂を用いることは、材料の分極率αを低く抑えるのに効果がある。しかし、これらの誘電率は2を下回らないことが知られている。また、これらの樹脂材料は、自己融着性や導体金属との密着性、層間のビア孔加工性など、現状では解決すべきことが多く残されている。

【0009】一方、単位体積当たりの分子数Nを小さくすることにより誘電率を下げる方法もある。例えば、単位体積当たりの分子数の少ないものとして発泡させた材料が存在するが、これらが微細配線の数μmあるいは数十μmオーダーの厚みの絶縁体として適さないことは明白である。

【0010】また、絶縁膜の軽量、低熱膨張率化を目的として、樹脂材料にガラス繊維や炭素繊維を混入して複合化することも考えられるが、ガラス繊維には誘電率を引き上げるという欠点があり、炭素繊維には絶縁耐圧を低下させるという欠点がある。

【0011】更に、分子レベルでの空間を取り入れることで材料の誘電率を低下させるために、分子内に空間のある構造を持つフラーレンなどを樹脂材料に混合する方法も考えられるが、フラーレンは限られた溶媒に、微量しか溶解せず、そのため樹脂に混合しても相分離しやすいという間題があった。

[0012]

【発明が解決しようとする課題】体誘電率の層間絶縁膜材料として将来より注目されているオレフイン系やフッ素系樹脂材料の誘電率は、2.1から2.8程度の範囲である。これまでも、これらの材料の誘電率を更に下回る材料がいくつか提案されてはいるが、現実の製造あるいは実装プロセスに対応できる特性を有し、また自己融着性や導体金属との密着性、層間のビア孔加工性など、絶縁材料として必須な性質を兼ね備えた、実用的な低誘電率層間絶縁材料に対して依然として大きな期待が寄せられている。

【0013】本発明は、それに応えて、微細パターンの 回路配線用の低誘電率の絶縁材料として有用な新しい材 50 料を提供するのを目的とする。また、このような新しい

特開平11-263916

低誘電率絶縁材料から形成した絶縁膜を含む電子部品を 提供することも本発明の目的である。

[0014]

【課題を解決するための手段】本発明の回路配線用絶縁 材料は、絶縁性樹脂基剤とフラーレンあるいはカーボン ナノチューブに化学修飾を施した化合物とを含むことを 特徴とする。

【0015】とのように、本発明は、絶縁膜材料の基剤 として用いられる樹脂との相溶性が本質的によくないフ ラーレンやカーボンナノチューブに化学修飾を施すこと 10 によって樹脂との相溶性を高めることで、樹脂中へのフ ラーレンやカーボンナノチューブの分散量を大きくし、 形成した絶縁膜の低誘電率化を達成したものである。

【0016】フラーレンやカーボンナノチューブは、炭 素原子のみから構成された分子内に空間を持つ構造の物 質としてよく知られている。フラーレンは、表面に炭素 原子から形成された網目構造のある中空の球状分子の化 合物であり、カーボンナノチューブは同様に表面に炭素 原子から形成された網目構造のある、中空の円筒状分子 の化合物である。とれらは、合成してもよく、あるいは 20 市販のものを使用してもよい。

【0017】フラーレンなどは、例えば、有機リチウム やグリニャール試薬を用いることにより化学修飾を施す ことができる(永島、神野、伊藤、日本化学会誌、Vo 1. 2、p91(1997)を参照)。これにより、フ ラーレンなどとポリイミドなどの絶縁樹脂との相溶性を 向上させ、樹脂中の空間を大きくすることにより、形成 した絶縁膜の誘電率を低下させることができる。あるい は、化学修飾によりフラーレンなどに絶縁樹脂との反応 性を付与することもできる。

【0018】 フラーレンあるいはカーボンナノチューブ の化学修飾は、例えばシリコーン系官能基や酸素を含む 置換基などで施すことができる。シリコーン系官能基や 酸素を含む置換基の例は、-Si(CH,),.-Si (CH₃), OCH₃, -Si(CH₃) (OCH₃) ,,-Si(CH,)(OCH(CH,),),等であ り、これらで化学修飾されたフラーレンあるいはカーボ ンナノチューブは絶縁材料の基剤樹脂との相溶性が向上 する。不飽和結合を持つ官能基を加えて、フラーレンあ るいはカーボンナノチューブの反応性を増加させてもよ 40 い。不飽和結合を持つ官能基の代表例は、アリル基、ア リール基、-C≡C-R(Rはアルキル基)等である。 また、フラーレンあるいはカーボンナノチューブ分子に 水素や、ふっ素を付加させて、これらの分子の共役系の 一部を飽和結合にすることも、絶縁材料の誘電率を低下 させるために効果がある。

【0019】絶縁材料の誘電率の低下に寄与する空間を 形成するためには、フラーレン等の分子長軸方向の炭素 一炭素間の距離が少なくとも4オングストローム(0.

方向の炭素一炭素間の距離が4オングストローム(0. 4 nm) 以上のフラーレンとしては、Czo、Cza、 C26, C28, C30, C32, C36, C50, C60, C70, C 76、C78、C80、C180、C240、C320、C340 など が考えられる。

【0020】本発明の絶縁材料は、化学修飾したフレー レンあるいはカーボンナノチューブを、絶縁材料の基剤 樹脂と混合して調製することができる。必要に応じ、溶 媒を使用しても差し支えない。フレーレンあるいはカー ボンナノチューブは、基剤樹脂又は基剤樹脂溶液に対す る溶解度に依存するとは言え、基剤樹脂又は基剤樹脂溶 液に飽和するまで加えることができる。この最大限の添 加量を用いた場合に、例えば形成した絶縁膜の耐熱性等 が問題となる場合には、フラーレン等の添加量を減少さ せるべきである。いずれにせよ、本発明の絶縁材料に混 入するフラーレンあるいはカーボンナノチューブの量 は、基剤樹脂の種類や絶縁膜に要求される特性に応じて 実験により簡単に決定することができる。

【0021】基剤樹脂は、多層配線の製造に用いられる 低誘電率の樹脂のいずれでもよい。基剤樹脂がポリイミ ドあるいはシリコーン樹脂であると、これらは特に耐熱 性にも優れることから、電子部品の組み立て工程や製品 の信頼性の面で有利である。

【0022】本発明の絶縁材料から多層回路基板の層間 絶縁膜を形成するには、絶縁材料を基板に塗布し、乾燥 後、基剤樹脂を硬化させればよく、これは多層回路基板 の分野でよく知られた手法であり、ここで詳しく説明す るには及ばない。

【0023】本発明の絶縁材料から形成した絶縁膜は、 基剤樹脂に分散した、分子レベルでの空間を備えた炭素 化合物の効果により、低誘電率、低熱膨張、高絶縁性を 具備する。この絶縁膜を層間絶縁膜として用いた、例え ばLSI等の電子部品は、高密度かつ微細な多層配線構 造を備えることができ、各種コンピュータの演算速度の 向上に大きく貢献する。

[0024]

【実施例】次に、本発明の実施例を説明するが、言うま でもなく本発明はこれらの実施例に限定されるものでは ない。

【0025】〔実施例1〕C。。フラーレン(アルドリッ チ社製)を70gのテトラヒドロフラン (THF) に過 飽和になるまで溶解後、グリニャール試薬ClMgCH , SiMe, (OCH (Me),) (この式のMeはメ チル基を表す)を用いて、20℃の温度で2時間の付加 反応を行った。付加反応後、溶媒のTHFを除去してか ら、この化学修飾したC。。フラーレンを、特開平8-2 59784号公報で示されるように、6-メチル-1, 4, 5, 8-ジメタノ-1, 2, 3, 4, 4a, 5, 8,8a-オクタヒドロナフタレンを公知の方法で開環 4 n m) 以上あるととが好ましい。例として、分子長軸 50 重合し、水紫添加して得た脂環式ポリオレフィンの10

重量%THF溶液に加えて、化学修飾C。。フラーレンで

【0026】次に、との溶液をシリコン基板上にスピン

コートし、乾燥後、220℃で5分の条件で熱硬化させ た。更に、アフターキュアとして、酸素濃度10ppm

以下の窒素雰囲気中にて200℃で5時間の熱硬化を行

い、絶縁膜を形成した。この絶縁膜の誘電率を、金電極

【0027】 〔実施例2〕 С。。フラーレン (アルドリッ

チ社製)を70gのテトラヒドロフラン (THF) に過

飽和になるまで溶解後、グリニャール試薬CIMgCH

, SiMe, (OCH(Me),) (この式のMeはメ

チル基を表す)を用いて、20°Cの温度で2時間の付加

反応を行った。この生成物に対し、更に t - ブチルリチ

ウムにより付加反応 (20°C、2時間) を行って、C。。

フラーレンに水素と t - ブチル基を付加させた。反応終

了後、溶媒のTHFを除去してから、この化学修飾した

C.。フラーレンを実施例1で使用したのと同じ脂環式ボ

飾C60フラーレンで飽和させた絶縁材料溶液を作った。

【0028】次に、この溶液をシリコン基板上に塗布

し、乾燥後、220℃で5分の条件で熱硬化させた。更

リオレフィンの10重量%THF溶液に加えて、化学修 20

(1mm×1mm)を蒸着し1MHzで測定したところ、

飽和させた絶縁材料溶液を作った。

2. 2であった。

*窒素雰囲気中にて200℃で5時間の熱硬化を行い、絶 緑障を形成した。この絶縁膜の誘電率を実施例1で説明 したとおりに測定したところ、誘電率は2.0であっ

【0029】〔比較例〕実施例1、2で使用したのと同 じC。。フラーレンを、やはり実施例1、2で使用したの と同じ脂環式ポリオレフィンの10重量%THF溶液に 飽和するまで溶解させた。こうして調製した絶縁材料の 溶液を基板上に塗布、乾燥し、220℃、5分の条件で 熱硬化させた。更に、アフターキュアとして、酸素濃度 10 p p m以下の窒素雰囲気中にて200℃、5時間の 熱硬化を行い、絶縁膜を形成した。実施例1で説明した 方法で測定したこの絶縁膜の誘電率は2.8であった。 [0030]

【発明の効果】以上説明したように、本発明によれば、 分子レベルで空間を形成できるフラーレンやカーボンナ ノチューブを絶縁材料中に効果的に取り込むことができ るため、微細パターンに適用できる低誘電率の絶縁膜を 提供すること、及びこの絶縁膜を含み高速の信号伝播に 適した多層回路基板を含む電子部品を提供することが可 能になる。

【図面の簡単な説明】

【図1】材料の単位体積中の分子数N及び分極率 aの積 と、比誘電率 ε 、との関係を示すグラフである。

に、アフターキュアとして、酸素濃度10ppm以下の*

フロントページの続き

HOIL 21/768

(51) Int.Cl.6

識別記号

FΙ

HOIL 21/90

S

特開平11-263916

(72)発明者 佐藤 博之

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72)発明者 横内 貴志男

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72)発明者 福山 俊一

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72)発明者 中田 義弘

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(11)Publication number:

11-263916

(43) Date of publication of application: 28.09.1999

(51)Int.CI.

C08L101/00 CO8K 9/04 CO8L 79/04 CO8L 83/00 H01L 21/314 H01L 21/768

(21)Application number : 10-067287

(71)Applicant: FUJITSU LTD

(22)Date of filing:

17.03.1998

(72)Inventor: MATSUURA AZUMA

HAYANO TOMOAKI SATO_HIROYUKI

YOKOUCHI KISHIO **FUKUYAMA SHUNICHI NAKADA YOSHIHIRO**

(54) LOW DIELECTRIC CONSTANT INSULATING MATERIAL FOR WIRING CIRCUIT AND ELECTRONIC PARTS USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a low dielectric constant insulating material for wiring circuit of fine patterns by including an insulating resin base and compounds which us obtained from chemical modification of a fullerence or a carbon nano- tube.

SOLUTION: This material comprises (A) an insulating resin base (polyimide, silicone resin and the like) and (B) the compounds obtained by chemically modifying the fullerene (hollow spheroidal molecular compounds having carbon network structure on the surface) or the carbon nano-tube (hollow cylindrical molecular compounds having carbon network structure on the surface), with compounds including silicone based functional groups, or substituents including oxygen [-Si(CH3)3 or -Si(CH3)2OCH3 or the like]. For forming space contributing to the reduction of the dielectric constant of the insulating material, the fullerenes or the like, preferably have angstrom or more of carbon-carbon distance of the molecular longitudinal axis of the fullerenes (C20 or C30 fullerene or the like).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

* NOTICES *

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The insulating material for circuit wiring characterized by including the compound which gave chemical modification in an insulating resin matrix, fullerene, or a carbon nanotube.

[Claim 2] The insulating material for circuit wiring according to claim 1 whose distance between said fullerene or the carbon-carbon of a carbon nanotube is more than 4A (0.4nm).

[Claim 3] The insulating material for circuit wiring according to claim 1 or 2 by which said chemical modification is made by the silicone system functional group, the substituent containing oxygen, the substituent with an unsaturated bond, or the fluorine atom.

[Claim 4] The insulating material for circuit wiring of any one publication to claims 1-3 said whose insulating resin matrix is polyimide or silicone resin.

[Claim 5] The insulator layer for circuit wiring characterized by stiffening the ingredient of any one publication to claims 1-4, and being formed.

[Claim 6] Electronic parts containing the multilayer circuit wiring substrate which used the insulator layer according to claim 5.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention mounts electron devices, such as a semiconductor device, in high density, and relates to electronic parts, such as a layer insulation ingredient of low dielectric constant multilayer circuit wiring suitable for high-speed propagation of a signal, and a large-scale integrated circuit (LSI) containing such a multilayer circuit wiring substrate.

[0002] Improvement in the speed of the semiconductor device used by various computers until it results [from a personal computer] in a high performance computer is remarkable, and the transit delay in the substrate wiring section influences the operation speed of a computer increasingly relatively. Consequently, resin thin film wiring suitable for the high density and the detailed multilayer interconnection which use a resin thin film as an interlayer insulation film has come to be applied to the circuit board for central processing units (CPU) of a computer. In order to realize a future more nearly high-speed computer, development of the low dielectric constant insulating material which was suitable for high-speed propagation of a signal taking advantage of high density and a detailed multilayer interconnection is indispensable.

[Description of the Prior Art] Conventionally, resin, such as epoxy and polyimide, is used for the high density mounting board ingredient currently used for the high speed computing machine. Furthermore, recently, the ingredient of an olefin system or a fluorine system attracts attention as resin which has a lower dielectric constant.

[0004] Specific-inductive-capacity epsilons of an ingredient According to the formula of Clausius-MOSOTTEI, it is expressed as follows.

[0005]

[Equation 1]

$$\frac{\varepsilon \cdot - 1}{\varepsilon \cdot + 2} = \frac{N \alpha}{3 \varepsilon_0}$$

[0006] However, alpha of this formula is the polarizability of an ingredient molecule, and N is the molecularity per unit volume, and epsilon 0. It is the dielectric constant of vacuum.

[0007] an upper type -- epsilons ******* -- if it solves and a partial differential is carried out by alpha or N, so that it may understand and the molecularity N in unit volume is so small that polarizability alpha is small -- specific-inductive-capacity epsilons It becomes small. This relation is Nalpha and specific-inductive-capacity epsilons which were shown in <u>drawing 1</u>. It is clear from the graph which shows an example of relation. Hereafter, the thing of specific inductive capacity will only be called a "dielectric constant."

[0008] Using the resin of an olefin system or a fluorine system as mentioned above has effectiveness in stopping the polarizability alpha of an ingredient low. However, it is known that these dielectric constants will not be less than 2. moreover, these resin ingredients -- a self welding property and a conductor -- many things which should be solved are left behind in the present condition, such as adhesion with a metal, and beer hole workability between layers.

[0009] There is also the approach of on the other hand lowering a dielectric constant by making molecularity N per unit volume small. For example, although the ingredient made to foam as what has the few molecularity per

[0010] Moreover, although mixing and compound-izing a glass fiber and a carbon fiber into a resin ingredient for the purpose of the light weight of an insulator layer and the formation of a low-fever expansion coefficient is also considered, a glass fiber has the fault of pulling up a dielectric constant, and a carbon fiber has the fault of reducing withstand voltage.

[0011] Furthermore, in order to reduce the dielectric constant of an ingredient by taking in the space in a molecular level, how to mix fullerene with the structure which has space in intramolecular etc. into a resin ingredient was also considered, but fullerene had a title, while saying that it was easy to carry out phase separation, even if it dissolved only the minute amount in the limited solvent, therefore mixed to resin. [0012]

[Problem(s) to be Solved by the Invention] The dielectric constant of the olefin system which attracts attention from the future as an interlayer insulation film ingredient of a body dielectric constant, or a fluororesin ingredient is about 2.1 to 2.8 range. the property that it can respond to actual manufacture or a mounting process although some ingredients which are further less than the dielectric constant of these ingredients are proposed until now -- having -- moreover, a self welding property and a conductor -- it has a still great hope to the practical low dielectric constant layer insulation ingredient which has a property indispensable as insulating materials, such as adhesion with a metal, and beer hole workability between layers.

[0013] This invention aims at offering a new ingredient useful as an insulating material of a low dielectric constant for circuit wiring of a detailed pattern in response to it. Moreover, it is also the purpose of this invention to offer the electronic parts containing the insulator layer formed from such a new low dielectric constant insulating material.

[0014]

[Means for Solving the Problem] The insulating material for circuit wiring of this invention is characterized by including the compound which gave chemical modification in an insulating resin matrix, fullerene, or a carbon nanotube.

[0015] Thus, when compatibility with the resin used as a basis of an insulator layer ingredient essentially gives chemical modification to the fullerene and the carbon nanotube which are not good, this invention is raising compatibility with resin, and attains low dielectric constant-ization of the insulator layer which enlarged fullerene to the inside of resin, and variance of a carbon nanotube, and formed them.

[0016] Fullerene and a carbon nanotube are well known as matter of the structure which has space in the intramolecular which consisted of only carbon atoms. Fullerene is the compound of the globular molecule of hollow with the network structure formed in the front face from the carbon atom, and a carbon nanotube is the compound of a cylindrical molecule in the air with the network structure similarly formed in the front face from the carbon atom. These may be compounded or may use a commercial thing.

[0017] Fullerene etc. can give chemical modification by using for example, an organic lithium and a Grignard reagent (see Nagashima, Jinno, Ito, the Chemical Society of Japan, Vol.2, and p91 (1997)). The dielectric constant of the formed insulator layer can be reduced by raising the compatibility of fullerene etc. and insulating resin, such as polyimide, and enlarging space in resin by this. Or chemical modification can also give reactivity with insulating resin to fullerene etc.

[0018] Chemical modification of fullerene or a carbon nanotube can be given by the substituent containing for example, a silicone system functional group or oxygen etc. the example of the substituent containing a silicone system functional group or oxygen -Si (CH3)3, -Si(CH3)2 OCH3, -Si (CH3) (OCH3)2, and -Si (CH3) (OCH2 (CH3))2 etc. -- it is -- compatibility of the carbon nanotube [the fullerene or the carbon nanotube] by which chemical modification was carried out by these with the basis resin of an insulating material improves. A functional group with an unsaturated bond may be added and the reactivity of fullerene or a carbon nanotube may be made to increase. The examples of representation of a functional group with an unsaturated bond are an allyl group, an aryl group, -C**C-R (R is an alkyl group), etc. Moreover, hydrogen and fluorine are made to add to fullerene or a carbon nanotube molecule, and in order that making saturation association a part of conjugated system of these molecules may also reduce the dielectric constant of an insulating material, it is effective.

[0019] In order to form the space which contributes to decline in the dielectric constant of an insulating

[0021] Any of the resin of a low dielectric constant used for manufacture of a multilayer interconnection are sufficient as basis resin. Since especially these are excellent also in thermal resistance in basis resin being polyimide or silicone resin, it is advantageous in respect of the dependability of the assembler of electronic parts degree, or a product.

[0022] In order to form the interlayer insulation film of a multilayered circuit board from the insulating material of this invention, this is the technique which the field of a multilayered circuit board is sufficient as, and was known, and it is not necessary to explain it in detail here that what is necessary is to apply an insulating material to a substrate and just to stiffen basis resin after desiccation.

[0023] The insulator layer formed from the insulating material of this invention possesses a low dielectric constant, low-fever expansion, and high insulation according to the effectiveness of the carbon compound equipped with the space in a molecular level distributed to basis resin. For example, it used this insulator layer as an interlayer insulation film, electronic parts, such as LSI, can be equipped with high density and detailed multilayer-interconnection structure, and contribute to improvement in the operation speed of various computers greatly.

[0024]

[Example] Next, although the example of this invention is explained, needless to say, this invention is not limited to these examples.

[0025] [Example 1] The addition reaction of 2 hours was performed at the temperature of 20 degrees C after the dissolution using Grignard reagent ClMgCH2 SiMe2 (Me of this (OCH2 (Me)) formula expresses a methyl group) until it became supersaturation to the 70g tetrahydrofuran (THF) about C60 fullerene (Aldrich make). It is 6-methyl as JP,8-259784,A shows this C60 fullerene that carried out chemical modification after an addition reaction, after removing THF of a solvent. - 1, 4, 5, 8-dimethano - The insulating material solution which was saturated with chemical modification C60 fullerene in addition to the 10-% of the weight THF solution of the alicyclic polyolefine which carried out ring opening polymerization of the 1, 2, 3, 4,a [4], 5, 8, and 8a-octahydronaphthalene, hydrogenated it, and obtained it by the well-known approach was made.

[0026] Next, the spin coat of this solution was carried out on the silicon substrate, and heat curing was carried out on the conditions for 5 minutes by 220 degrees C after desiccation. Furthermore, as after-cure, heat curing of 5 hours was performed at 200 degrees C in the nitrogen-gas-atmosphere mind of 10 ppm or less of oxygen densities, and the insulator layer was formed. It was 2.2, when the golden electrode (1mmx1mm) was vapor-deposited and the dielectric constant of this insulator layer was measured by 1MHz.

[0027] [Example 2] The addition reaction of 2 hours was performed at the temperature of 20 degrees C after the dissolution using Grignard reagent ClMgCH2 SiMe2 (Me of this (OCH2 (Me)) formula expresses a methyl group) until it became supersaturation to the 70g tetrahydrofuran (THF) about C60 fullerene (Aldrich make). t-butyl lithium performed the addition reaction (20 degrees C, 2 hours) further, and hydrogen and t-butyl were made to add to C60 fullerene to this product. After reaction termination, after removing THF of a solvent, the insulating material solution which saturated with chemical modification C60 fullerene this C60 fullerene that carried out chemical modification in addition to the 10-% of the weight THF solution of the same alicyclic polyolefine as having used it in the example 1 was made.

[0028] Next, this solution was applied on the silicon substrate and heat curing was carried out on the conditions for 5 minutes by 220 degrees C after desiccation. Furthermore, as after-cure, heat curing of 5 hours was

[0029] [Example of a comparison] The C60 same fullerene as having used it in the examples 1 and 2 was dissolved until it was saturated in the 10-% of the weight THF solution of the same alicyclic polyolefine as having used it in the examples 1 and 2 too. In this way, the prepared solution of an insulating material was applied on the substrate, it dried, and heat curing was carried out on 220 degrees C and the conditions for 5 minutes. Furthermore, as after-cure, 200 degrees C and heat curing of 5 hours were performed in the nitrogengas-atmosphere mind of 10 ppm or less of oxygen densities, and the insulator layer was formed. The dielectric constant of this insulator layer measured by the approach explained in the example 1 was 2.8.

[Effect of the Invention] Since the fullerene and the carbon nanotube which can form space with a molecular level can be incorporated effectively in an insulating material according to this invention as explained above, it becomes possible to offer the insulator layer of a low dielectric constant applicable to a detailed pattern, and to offer the electronic parts containing the multilayered circuit board which was suitable for high-speed signal propagation including this insulator layer.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Translation done.]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.