Hebbian Equivelance of Backpropagation

Batuhan Başerdem

Cold Spring Harbor Labs

bbaserde@cshl.edu

April 5, 2017

Motivation

Rundov

Current Resul

Motivation

Rundown

Motivation of problem at hand

Batuhan Başerdem

Motivation

Rundown

- Preprocessing in olfactory system
- Dendritic connections
- ► Local algorithm vs. backpropagation

/lotivation

rrent Results

viot iv at io n

undown

Current Result

► Rectified Linear Unit

viotiv atioi

undown

Single layer, 10 digits, results

Batuhan Başerdem

Motivation

un dow n

Current Resul

► Learning is happening.

Single layer, 10 digits, A is fixed; Error

Batuhan Başerdem

Motiv ation

Single layer, 10 digits, A is fixed; Layer Average

Single layer, 10 digits; Error

Batuhan Başerdem

Motivation

Single layer, 10 digits; Layer Average

Batuhan Başerdem

Motivation

- ▶ Better results when last layer feedback to X is blocked
- Better results when A layer is fixed to identity
- ▶ Initial hurdle with error rate going up is decreased
- Biasing rules work, but no improvement over performance
- ReLU and ReSU similar performance

- A is fixed at identity.
- Bias is learned
- Steepness is 10
- Learning rate is 5×10^{-8}
- Learning rate not adaptive
- Weight decay is not used
- ► Simulation time = 2
- \triangleright simulation time steps = 0.007
- Nonlinearity = ReLU

Single layer, example; errors

Batuhan Başerdem

Motivation

Single layer, example; averages

Motivation Rundown

Rundown

- ▶ Better results when last layer feedback to X is blocked
- ▶ Better results when A layer is fixed to identity