PBS How to generate pdf Abacus.

Version 1.00

Table of content

1	PRE	REQUISITES	2
_	1 1/41		
3	AUT	OMATIC GENERATION OF THE ABACUS PDF FILE	4
	3.1	GENERATE THE SCRIPT #1	4
	3.2	GENERATE THE ABACUS	4
	3.3	GENERATE THE SCRIPT #2	4
	3.4	CONVERT HTML TO PDF	5
	3.5	Merge PDF Files	5
4	FILE	S CONTENTS	5

1 Prerequisites

The Rifle, Mounting device, Sight, Amo, Bullet, Zeroing conditions and Shooting conditions are well known.

The CSV files have been created accordingly.

Zeroing has been done and the zero.csv file has been updated accordingly.

2 Manual check

Create a Shooting with all options (except Zeroing), a Target distance of 1000m, Wind 6 m/s coming from II and a half (2.5) hour. For Coriolis use a shooting direction of 180° and for the Horizontal Angle use 15° (which is quite huge for a target at 1'000m).

Use ICAO Atmosphere (Alt. = 0m, Pressure = 1013.25 hPa, Temp. = 15°C, Relative Humidity =0%) and a latitude of 46.3°N.

Reset all options to none, Wind speed to 0, Shooting Direction to 0, Horizontal Angle to 0.

Set generate Abacus to Y.

Generate the Abacus.

Check that the Elevation and Windage for the 1000m distance given by the Shooting card and by the Abacus, the result should be close.

Shooting Card example:

PBS v1.19 2024 Shooting Card									
RIFLE: RUGER PRECISION RIFLE 0.308 (inch) Win - Rifle Bore RightTwist 1:10.0 (inch)- Sight Height: 68.0 (mm)									
BULLET: 0.308 (inch) Win175(gr) SIERRA HPBT Matchking - Muzzle Speed 800 (m/s) in ICAO Atmosphere - Ballistic Coefficient in current conditions: G1 0.496 - G7 0.249									
Time Of Flight (s): 1.93 Bullet Stability Factor $Sg = 2.51 - Sg > 1.5$ Bullet is Stable									
ALTITUDE (m): 0.0 LATITUDE (°): 46.3 North - Shooting Direction, relative to the North (°): 180.0 - Coriolis effects =Y									
ELEVATION		WINDAGE							
DATA	CLICKS	DA	CLICKS						
TARGET DISTANCE (m) Include Gravity, Drag, Range Wind, Coriolis & Non-ICAO Influences	1000	175.1	BULLET MAX HEIGHT (m)	9.49 @ DISTANCE (m) 799.2	N A				
SHOOTING ANGLE, relative to the horizontal (°)	-16.6	SPIN DRIFT							
P (hPa), 1013.25 is the reference	1013.25	NΑ	WIND Direction (hour)	2.5 WIND Speed (m/s) 6.0	NΑ				
T (°C), 15°C is the reference	15.0	NΑ							
RANGE WIND INFLUENCE	NΑ	CROSS WIND INFLUENCE							
AERODYNAMIC JUMP (Due to Range Wind)	-1.8	Coriolis Lateral impact -1.							
TOTAL ELEVATION	156.7	TOTAL WINDAGE: 34.							

Abacus example:

PBS v1.19 2024 Generic Abacus - 308(inch) 175(gr) Bullet - SIERRA HPBT Matchking - Rifle Bore RightTwist 1:10.0 (inch) - Muzzle Speed 800 (m/s) in ICAO Atmosphere - Sight Height : 68.0 (mm) - Ballistic Coefficient in current conditions : G1 0.496 - G7 0.249															
1000 = 158 1025 = 167						= 167		1050 = 176				1075 = 185			
Vertical Shooting Angle (deg) Vertical Shooting Angle (deg)					ng Ang	le (deg)	Vertical Shooting Angle (deg)				Vertical Shooting Angle (deg)				
0	10	20	30	0	10	20	30	0	10	20	30	0	10	20	30
0	-7	-28	-57	0	-8	-30	-60	0	-8	-31	-64	0	-9	-33	-68
Local Absolute Pressure (hPA)															
1088	1073	1058	1043	1028	1013	998	983	968	953	938	923	908	893	878	863
28	22	16	10	5	0	-4	-9	-13	-18	-22	-25	-29	-32	-35	-39
Air Temperature (°C)															
57.5	55.0	52.5	50.0	47.5	45.0	42.5	40.0	37.5	35.0	32.5	30.0	27.5	25.0	22.5	20.0
-24	-23	-22	-21	-20	-18	-17	-16	-14	-13	-11	-10	-8	-7	-5	-3
17.5	15.0	12.5	10.0	7.5	5.0	2.5	0.0	-2.5	-5.0	-7.5	-10.0	-12.5	-15.0	-17.5	-20.0
-1	0	1	3	5	8	10	12	14	17	19	22	25	28	31	34
-22.5	-25.0	-27.5	-30.0	-32.5	-35.0	-37.5	-40.0	-42.5	-45.0	-47.5	-50.0	-52.5	-55.0	-57.5	-60.0
37	40	44	47	51	55	59	63	68	73	78	83	88	94	100	106
Wind Speed (m/s) - Wind Direction (hour) -> I / V II / IV III VI IX VIII / X VIII /								VII / XI	XII						
-0.0								E: 1.0 W: 7.0 AJ: -0.0	E: 1.0 W: 12.0 AJ: -1.0	E: 0.0 W: 13.0 AJ:	E: -1.0 W: 0.0 AJ: -0.0	E: 0.0 W: -13.0 AJ:	E: -1.0 W: -12.0 AJ:	E: -1.0 W: -7.0 AJ:	E: 1.0 W: -0.0 AJ
								E: 2.0 W: 14.0 AJ:	E: 1.0 W: 23.0 AJ:	E: 0.0 W: 27.0 AJ:	E: -2.0 W: 0.0 AJ:	E: 0.0 W: -27.0 AJ:	E: -1.0 W: -23.0 AJ:	E: -2.0 W: -13.0 AJ:	E: 2.0 W: -0.0 A
									-1.0	-1.0	-0.0	1.0	1.0	1.0	0.0
E: 3.0 V								E: 3.0 W: 21.0 AJ:	E: 2.0 W: 35.0 AJ:	E: 0.0 W: 40.0 AJ:	E: -3.0 W: 0.0 AJ:	E: 0.0 W: -40.0 AJ:	E: -2.0 W: -34.0 AJ:	E: -3.0 W: -20.0 AJ:	E: 3.0 W: -0.0 AJ
-1.0								-1.0	-2.0	-2.0	-0.0	2.0	2.0	1.0	0.0
														E: -4.0 W: -26.0 AJ:	
									-2.0	-2.0	-0.0	2.0	2.0	1.0	0.0
			1	0										E: -4.0 W: -32.0 AJ:	
·						-2.0	-3.0	-3.0	-0.0	3.0	3.0	2.0	0.0		
Spin Drift (click): -4 Maximum Y (m): 9.6 At (m): 804.0 Time to get there (s): 1.92															
How to use this Abacus ? Read HowToPBS_Abacus.pdf in https://github.com/fabienfigueras/TLD															

Cross check:

Shooting Card

Target Distance = 1000m Elevation= 175.1

Shooting Angle 15°: Elevation = -16.6

Aerodynamic Jump : Elevation = -1,8

Elevation: 175.1-16.6-1.8 = 156.7 clicks, rounded to +157 Up

Windage:

Spind Drift: -3.6

Cross Wind: 39.1

Corriolis: -1.1

Windage: -3.6+39.1-1.1 = 34.4 clicks, rounded to +34 Right

Abacus

Target Distance = 1000m, Elevation: 158

Shooting Angle: 15° for Elevation is 10 = -7 for 20 = -28 average is (-7-28)/2=-17.5

Pressure: 1'013.25 hPa Elevation is 0

Temperature: 15°C Elevation is 0

Wind:

Speed: 6 m/s

Direction: 2.5h

For II/IV O'clock Elevation is 2 Windage 35 and Aerodynamic Jump (Elevation) -2

For III O'clock Elevation is 0 Windage 40 and Aerodynamic Jump (Elevation) -2

Average values are: Elevation = 1 Windage = 37.5 and Aerodynamic Jump (Elevation) = -2

Windage for Spin Drift is -4

Finally:

Elevation: 158-17.5+0+0+1-2 = 139.5, rounded to +139 or +140 Up

Windage: 37.5-4 = 33.5, rounded to +33 or +34 Right.

Comparison

Method	Elevation	Windage		
PBS	157	34		
Abacus	139/140	33/34		
Difference	+16/+17	+1/0		
Comments	Coriolis is not taken into	Coriolis is not taken into		
	account in Abacus	account in Abacus		

Applied Ballistic:

G1 0.496

Wind direction is II (2) or III (3) hours

For II

Elevation: 132U

Windage: 36R

For III

Elevation: 131U

Windage: 42R

3 Automatic generation of the Abacus pdf file

Automatic generation of the Abacus pdf file is a multiple steps process.

3.1 Generate the script #1

To generate the bash script type this command in a terminal.

```
./PBS Abacus Script Creation.bash
```

3.2 Generate the Abacus

As soon as the new file is generated, this command in a terminal.

```
time ./PBS_Abacus_Creation.bsh
```

All the html file are generated.

3.3 Generate the script #2

To generate the bash script to convert the html files into pdf files, type this command in a terminal.

```
./PBS_Abacus_htmlToPDF.bash
```

3.4 Convert html to pdf

To convert the html files into pdf files, type this command in a terminal.

```
./PBS_Abacus_HTML2PDF.bsh
```

3.5 Merge pdf files

A finally to merge all the pdf files into one single pdf file, type this command in a terminal.

```
python3 ./pdf-merge.py
```

4 Files contents

This bash file is used to generate another bash script, which itself will create all the html Abacus files.

If required, edit the file and change the version of PBS (highlighted bellow).

```
To launch the script enter: ./PBS Abacus Script Creation.bash
cat ./PBS Abacus Script Creation.bash
#!/bin/bash
Echo "PBS Abacus Creation"
Str1="python3 ./PBS-v119.py 0.224 43 800 "
Str2=" 200 N 0 6 N 0.0001 N 0 N G1 1 Y"
Dist=100
echo "#!/bin/bash" >./PBS_Abacus_Creation.bsh
while [ $Dist -le 1600 ]
Cmd="$Str1$(printf "%d" $Dist)$Str2"
echo $Cmd
echo $Cmd >>./PBS_Abacus_Creation.bsh
echo "sleep 5" >>./PBS_Abacus_Creation.bsh
echo "wait" >>./PBS_Abacus_Creation.bsh
Dist=$[$Dist+100]
done
```

This bash file was generated automatically and is used to generate all the html Abacus files.

Execution time 18+5=23 secondes * number of distance

We have 100 to 1500 => 15 distances, total duration 23*15=354 seconds, roughly 6 minutes.

To launch the script enter: time ./PBS Abacus Creation.bsh

time is not mandatory but it gives the total time of execution of the script when it ended.

```
cat ./PBS Abacus Creation.bsh
#!/bin/bash
python3 ./PBS-v119.py 0.224 43 800 100 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 200 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 300 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 400 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 500 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 600 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 700 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 800 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 900 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 1000 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 1100 200 N 0 6 N 0.0001 N 0 N G1 1 Y
```

```
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 1200 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 1300 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 1400 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 1500 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
python3 ./PBS-v119.py 0.224 43 800 1600 200 N 0 6 N 0.0001 N 0 N G1 1 Y
sleep 5
wait
```

This bash file is used to generate another bash script, which itself will convert all individual html file into pdf.

```
To launch the script enter: ./PBS Abacus htmlToPDF.bash
cat ./PBS_Abacus_htmlToPDF.bash
#!/bin/bash
Echo "PBS Abacus html files conversion to pdf"
Str0="python3 h2p-v100.py"
Str1=" Abacus-308_GGG_175_"
Str2="_2024-09-25.html"
Str3=" Abacus-308_GGG_175_"
#Str4="_2024-09-23.pdf"
Str4=".pdf"
Dist=100
echo "#!/bin/bash" >./PBS_Abacus_HTML2PDF.bsh
while [ $Dist -le 1600 ]
do
Cmd="$Str0$Str1$(printf "%d" $Dist)$Str2$Str3$(printf "%d" $Dist)$Str4"
echo $Cmd
echo $Cmd >>./PBS_Abacus_HTML2PDF.bsh
echo "wait" >>./PBS_Abacus_HTML2PDF.bsh
```

```
Dist=$[$Dist+100]
```

done

This bash file was generated automatically and is used to convert all individual html Abacus files into pdf (New files are created).

```
To launch the script enter: ./PBS Abacus HTML2PDF.bsh
cat ./PBS Abacus HTML2PDF.bsh
#!/bin/bash
python3 h2p-v100.py Abacus-308_GGG_175_100_2024-09-25.html Abacus-308_GGG_175_100.pdf
wait
python3 h2p-v100.py Abacus-308_GGG_175_200_2024-09-25.html Abacus-308_GGG_175_200.pdf
wait
python3 h2p-v100.py Abacus-308_GGG_175_300_2024-09-25.html Abacus-308_GGG_175_300.pdf
python3 h2p-v100.py Abacus-308_GGG_175_400_2024-09-25.html Abacus-308_GGG_175_400.pdf
wait
python3 h2p-v100.py Abacus-308_GGG_175_500_2024-09-25.html Abacus-308_GGG_175_500.pdf
wait
python3 h2p-v100.py Abacus-308_GGG_175_600_2024-09-25.html Abacus-308_GGG_175_600.pdf
python3 h2p-v100.py Abacus-308_GGG_175_700_2024-09-25.html Abacus-308_GGG_175_700.pdf
wait
python3 h2p-v100.py Abacus-308_GGG_175_800_2024-09-25.html Abacus-308_GGG_175_800.pdf
wait
python3 h2p-v100.py Abacus-308_GGG_175_900_2024-09-25.html Abacus-308_GGG_175_900.pdf
python3 h2p-v100.py Abacus-308_GGG_175_1000_2024-09-25.html Abacus-308_GGG_175_1000.pdf
python3 h2p-v100.py Abacus-308_GGG_175_1100_2024-09-25.html Abacus-308_GGG_175_1100.pdf
wait
python3 h2p-v100.py Abacus-308_GGG_175_1200_2024-09-25.html Abacus-308_GGG_175_1200.pdf
python3 h2p-v100.py Abacus-308_GGG_175_1300_2024-09-25.html Abacus-308_GGG_175_1300.pdf
python3 h2p-v100.py Abacus-308_GGG_175_1400_2024-09-25.html Abacus-308_GGG_175_1400.pdf
wait
python3 h2p-v100.py Abacus-308_GGG_175_1500_2024-09-25.html Abacus-308_GGG_175_1500.pdf
wait
```

```
\label{eq:python3} \ \text{h2p-v100.py Abacus-308\_GGG\_175\_1600\_2024-09-25.html Abacus-308\_GGG\_175\_1600.pdf} \\ \text{wait}
```

This python script is used to merge all the pdf file into one pdf file.

To modify the name of the output file, edit the file and change the name (highlighted bellow).

To launch the script enter: python3 ./pdf-merge.py

```
cat pdf-merge.py
from pypdf import PdfWriter
OutputFile="Abacus-Ruger-308_GGG_175.pdf"
Str1="Abacus-308_GGG_175_"
#Str2="_2024-09-23.pdf"
Str2=".pdf"
Dist=100
i=0
pdfs = []
while Dist <= 1600:
       FileName= Str1+str(Dist)+Str2
       pdfs.append(FileName)
#
     print("FileNAme [",i,"] = ",pdfs[i])
       Dist += 100
       i+=1
# merger = PdfMerger()
print(" Merging pdfs...")
merger = PdfWriter()
for pdf in pdfs:
    merger.append(pdf)
merger.write(OutputFile)
merger.close()
```