"SoC architectures and FPGA prototyping"

Lab 4 - Implementing a Cortex-M0 based SoC on the DE10-Lite Intel FPGA board

The latest and greatest Cortex-M0 (and Cortex-M3) Design Start package (rel2 at this time) can be downloaded after registering with ARM using the following link

https://www.arm.com/resources/designstart

For the reasons I detailed in lecture 7 (must watch before starting this lab) we are going to use the older rel0 package. Please download the Lab4 archive from BB and unzip it into a suitable location. Have the file *Lab4_RTL.pdf* to hand to see all the connections.

Assignment 1: Designing a peripheral device for the AMBA3 AHB-Lite bus (amend AHB2LED.v file)

You are going to amend the given peripheral that allows the SoC to operate LEDs and SWitches according to the diagram below

Figure 1 Block diagram of the peripheral to implement in your Lab4 design

The schematic diagram of the DFF with enable and reset, and appropriate Verilog code to implement it (from https://www.eeweb.com/verilog-flip-flop-with-enable-and-asynchronous-reset/) are presented below:

Figure 2 Schematic diagram of a D flip-flop with reset and enable

- Go through the file line by line, consult this lecture's notes and wiring diagram; replace all the ?...? placeholders with the appropriate information
- show me (or better email me) this file for sign off

Assignment 2: Connecting constituents of a Cortex-M0 based SoC to the system bus (amend AHBLITE_SYS.v file)

You are going to amend the given top file in order to instantiate

- the CPU the memory the LED peripheral
- the address decoder, which generates peripheral select signals and controls the multiplexer at the input of the CPU
- the multiplexer that produces the system-wide *HReady* signal.
 - Go through the file line by line, consult this lecture's notes and wiring diagram; replace all the ?...? placeholders with the appropriate information

Assignment 3: Compile the amended design and run it on the FPGA board

Helpful hints:

- Make sure you go through both files without leaving any lines that require amends unedited
- Only when you fully amended both the files perform the compilation
- · Then load the SOF file to the board
- Press KEY[0] to reset the SoC anytime
- TAKE YOUR TIME
- I will help you with the error messages
- When the design works, enter the last ten bits (least significant bits, LSBs) of your student ID number in binary using SW[9:0] and take a photograph of the board.

Lab 4

Personalisation:
Your student ID number (in binary, 10 LSBs) =
Assignment 1
Screenshot of the Verilog code for the developed peripheral
Assignment 2
Screenshot of the Verilog code for the instantiation of the memory module AHB2MEM_BRAN ONLY

Assignment 3
Screenshot of the maximum clock frequency for the design
Photograph of the operating board where the 10 LSBs of your student ID number were set
Your reflections based on the work that you have completed:
- your overall assessment of the lab's difficulty level (leave only one) - Way too difficult Too difficult Comfortable Too easy Way too easy
- what was more difficult to you (leave only one) - coding the peripheral OR connecting IPs
- personal reflection on application of structural Verilog to SoC design
- any other comments regarding this lab