Interaktive Systeme

3. Wahrnehmung: Raum und Tiefe

Prof. Dr. Eckhard Kruse

DHBW Mannheim

3D-Wahrnehmung

Übung

3.1 Wahrnehmung von Raum und Tiefe

Schauen Sie sich um: Durch welche optischen Merkmale nehmen Sie den dreidimensionalen Raum wahr (Tiefe, Entfernungen, was ist vorne/hinten)?

- a) Erstellen Sie eine Liste verschiedener Merkmale.
- b) Welcher dieser Merkmale sind auch in 2D-Darstellungen prinzipiell abbildbar? Wie?

Stereoskopisches Sehen

Stereoskopisches (binokulares) Sehen, Prinzip:

- Bilder des rechten und linken Auges werden überlagert/verglichen
- Pattern Matching: Zuordnung von Merkmalen im rechten und linken Bild
- Relative Verschiebung der einzelnen Merkmale: Disparation (engl. disparity)
- Berücksichtigung der Augenstellung
- Tiefen: Triangulation auf Basis der Disparation.
 - große Disparation: nah, kleine Disparation: fern
- Ergebnis: Bild mit überlagerten Tiefeninformation

Stereoskopisches Sehen wird auch in Computer Vision + Robotik eingesetzt.

(aber andere Techniken z.B. mit aktiver Beleuchtung sind weitaus robuster)

Probleme beim stereoskopischen Sehen?

Stereoskopisches Maschinensehen

Einschränkungen des stereoskopischen Sehens:

- Sparse depth image vs. Dense depth image
 - Pattern Matching: Korrespondenzproblem
- Augen-/Sensorabstand
 - zu nah: Triangulation ungenau
 - zu fern: Pattern Matching
- Computer: Pures Stereoskopisches Sehen: Nur eingeschränkt nützlich
- Mensch: Stereoskopisches Sehen
 - + andere Tiefenmerkmale + Vorwissen über die Welt
 - → sehr leistungsfähig.

Funktioniert zwar nicht so gut...

... sieht aber toll aus.

Stereogramm

Stereoskopische Anzeigen

Prinzip: Zwei Augen, zwei Bilder:

- Eigenes Display für jedes Auge
 - VR-Brille Virtual Reality / Augmented Reality
- Verschiedene Bilder je nach Betrachtungswinkel (→ Linsenraster)
 - "Wackelbilder" / "3D-Postkarten"
 - Autostereoskopisches Display: z.B. Nintendo 3ds
- Überlagerung beider Bilder auf einer Anzeige + Separation vor Auge:
 - Farbe: rot/grün, rot/cyan... Brillen
 - Zeit: Shutterbrillen
 - Polarisation: 3D-Kino
- "Subtil getrickst":

Interaktive Systeme: 3. Raum und Tiefe

- Hell-dunkel Brillen + horizontale Bewegungen
- Stereogramm

Ergonomie?

Wie beurteilen Sie die Zukunft von 3D für Kino, Fernsehen, Computer?

→ z.B. Diskussion mit dem Nachbarn? Pro - Contra?

Raum und Tiefe in GUIs

Übung

3.2 Raum und Tiefe in GUIs

Betrachten Sie die Benutzeroberfläche Ihres Betriebssystems und Anwendungsprogramme.

- a) Welche Mechanismen werden verwendet, um Raum/Tiefe darzustellen?
 (Merkliste: Stereoskopisches Sehen, Perspektive, Verdeckungen, Schatten, Spiegelungen, Lichteffekte, Unschärfe, Farb/Helligkeits-Gradienten, Bewegungen, Wissen über Objekte, Wissen über Szenen)
- b) Mit welcher Absicht/Funktion werden die Effekte eingesetzt?
- c) Bewerten Sie den Einsatz: Was ist nützlich? Nur schön? Überflüssig? Störend?
- d) Was würden Sie anders machen? Wo sehen Sie ungenutztes Potenzial?
- e) Beurteilen Sie auch das Verhältnis von Kosten (technischer Aufwand, CPU/GPU-Last) und Nutzen

Perspektive

Perspektive ist die Abbildung dreidimensionaler Objekte/Szenen auf eine (2D-)Ebene.

- Verschiedene Grundprinzipien:
 - Zentralprojektion (entspricht Kamera/menschlichem Sehen) → Fluchtpunkt
 - Parallelprojektion (Isometrisch), "pseudo 3D"
- Aufwand + Performance?
 - klein = weiter weg
 - 3D-Rendering mit Lichteffekten, Schatten usw.

Verdeckung

Verdeckung:

- Vollständige Konturen erscheinen weiter vorne als unvollständige
- Wirkung der Konturen → Gestaltgesetze der Schließung und guten Fortsetzung.

Stichwort: **Z-Buffer**

Der Z-Buffer speichert für jeden Bildpunkt Tiefeninformationen und ermöglicht zu entscheiden, ob beim Zeichnen (und vor allem 3D Rendern) der jeweilige Bildpunkt eines Objekts erscheint oder verdeckt ist.

Schatten, Spiegelungen und Licht

Schatten, Spiegelungen und die Art der Lichtreflektion geben Hinweise auf Oberflächenprofile und räumliche Lagen von Objekten zueinander.

Gradienten

Gradienten bei der Farbdarstellung können Tiefeneindrücke vermitteln:

- hinten → geringer Kontrast
- hinten → geringe Sättigung
- hinten → Blaustich
- Hell/dunkel: Vorne mittlere Helligkeit (+hoher Kontrast). Hinten hell oder dunkel (und kontrastarm).

Caspar David Friedrich Der Wanderer über dem Nebelmeer, ca. 1817

Wissen über die Szene

Vorwissen über Objekte und Szenen erlauben es, zusätzliche Information aus dem Bildinhalt abzuleiten.

Interaktive Systeme: 3. Raum und Tiefe

GUI Entwurfsmuster: Hintergrund

Empfehlung für Bildschirmhintergründe:

"Deep Background"

Hintergrund mit Tiefenwirkung

→ Vordergrund tritt stärker hervor, hebt sich ab (s. Figur und Grund)

Untersuchen Sie in Ihrem Betriebssystem vorhandene Bildschirmhintergründe:

- a) Welche Hintergründe treten optisch weit zurück, welche wirken nah?
- b) Welche Tiefenwirkungen kommen dabei zum Tragen?
- c) Welche Hintergründe finden Sie gut geeignet, welche nicht? Warum?

Prototyp "Tiefes GUI"

Übung

3.3 Prototyp "Tiefes GUI" - Vorgehen

Es soll ein Prototyp entwickelt werden für ein GUI, das Tiefe und Raum zur Visualisierung nutzt.

Was wäre ein sinnvolles Vorgehen? Welche Schritte sind durchzuführen?

Mockup "Tiefes GUI"

Interaktive Systeme: 3. Raum und Tiefe

Entwerfen Sie mit einem Malprogramm (z.B. Gimp oder Photoshop) ein Mockups für GUIs, die auf verschiedene Weise Tiefe visualisieren.

- Erstellen Sie mehrere Zeichenebenen, die Sie jeweils mit Bildern von Fenstern (z.B. per Screencopy) füllen. Positionieren Sie die Ebenen und Fenster.
- Bearbeiten Sie die einzelnen Ebenen mit den Effekten des Malprogrammes, um die gewünschten Effekte hervorzurufen (z.B. Skalieren, perspektivisches Verzerren, Blur, Transparency, Color Curves...)
- c) Wie beurteilen Sie Ästhetik und Usability Ihrer Entwürfe? Was würde sich für reale GUIs von Betriebssystemen / Anwendungen eignen?

Prototyp "Tiefes GUI"

Übung

3.4 SW-Entwurf + Prototyp "Tiefes GUI"

Entwickeln Sie ein Programm, um Tiefeneffekte darzustellen.

Anforderungen:

- 1. Verwaltung einer Menge von (rechteckigen) Bildobjekten
 - welches sind geeignete Attribute?
 - wie werden die Objekte entsprechend ihrer Tiefe im Raum dargestellt?
- 2. Interaktion: Objektpositionen lassen sich manuell verändern
 - z.B. Anklicken und Verschieben in x, y, z-Richtung.
- a) Entwurf: Objekte? Daten? Methoden? Kontrollfluss?
- b) Implementierung auf Basis des Entwurfs Wie lassen sich Farbgradienten berechnen? Schatten? Weitere Effekte?

Prototyp "Tiefes GUI"

Raum+Tiefe im "Material Design"

Untersuchen Sie das "Material Design": http://material.io

Welche der angesprochenen und im Prototyp bearbeiteten Konzepte zu Raum und Tiefe finden Sie wieder? Wie werden sie umgesetzt?

MATERIAL DESIGN

Physical Properties

Elevation System

Motion Scaling Parallax Scrimming Light and Shadows

Depicting Elevation

