Міністерство освіти та науки України Національний технічний університет України "Київський політехнічний інститут" Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

ЛАБОРАТОРНА РОБОТА № 2 3 дисципліни «Архітектура комп'ютерів-1»

На тему «СИНТЕЗ БЛОКІВ МІКРОПРОГРАМНОГО УПРАВЛІННЯ»

Виконав: студент 2 курсу ФІОТ групи ІВ-71 Мазан Я. В. Залікова — 7109

ПЕРЕВІРИВ: доц. Верба О. А.

Мета роботи:

Дослідити засоби побудови блоків мікропрограмного управління. Одержати навички в проектуванні й налагодженні схем пристроїв управління з мікропрограмним управлінням.

Завдання:

ІВ-71, 9 у списку → 7409

 $7409_{10} = 1110011110001_2$

a_6	\mathbf{a}_{5}	a ₄	Функція	Розрядність операндів (без знаку)
1	1	0	3-й спосіб множення	6

a ₄	\mathbf{a}_2	Спосіб адресації мікрокоманд	Ємність ПМК, слова	Використати зону β4 для перевірки слова МК
0	0	примусовий	32	На непарність

a_6	a ₅	a ₄	Тривалість операції підсумовування, такти			
1	1	0	5			
	Інші мікрооперації виконуються за один такт					

Операційна та функціональна схеми

Змістовний і закодований мікроалгоритми

Формат зони β_1

Враховуючи, що ємність ПМК дорівнює 32 слова, розрахуємо розрядність адреси:

$$n = log_2 32 = 5$$
.

3 розрядності адреси отримаємо довжину поля константи:

$$K = n - 1 = 4$$
.

Довжина поля управління мультиплексором:

$$k = 2;$$
 $q = log_2(k+2) = 2.$

 $({X, Z} -$ множина зовнішніх умов)

$$n_M = q = 2$$

$$n_K = K = 4$$

$$n_{\beta 1} = n_M + n_K = 6$$

Формат зони β_2

Використовуємо горизонтальне мікропрограмування і виділяємо на еожен керуючий сигнал 1 біт

Формат зони β_3

Максимальна тривалість МО дорівнює 5.

$$\Delta t_{max} = 4$$

$$n_{\beta 3} = \log_2 4 + 1 = 3$$

Формат зони β4

Для перевірки на непарність у зоні β 4 необхідно виділити один розряд.

Отримуємо наступний формат мікрокоманди:

Визначимо спосіб управління мультиплексором

m_2	m_1	УС
0	0	0
0	1	X
1	0	Z
1	1	1

Розміщуємо команди в ПМК

Адреса	ПМК
00000	П(1)
00001	2 📥
00011	→3 ←
00010	4 4
00110	K(5) ◀

Карта програмування БМУ

No	Адреса	β_1		β_2	β_3	β_4
MK		K	M	y ₁ y ₂ y ₃		
1	00000					
2	00001					
3	00011					
4	00010					

5 00110				
---------	--	--	--	--