Mathematical Physics Course Notes

Isaac Holt

December 30, 2022

1 The action principle

1.1 Calculus of variatons

Definition 1.1.1. A functional is a map from a set of functions to \mathbb{R} , e.g. $f:(\mathbb{R} \to \mathbb{R}) \to \mathbb{R}$.

Definition 1.1.2. Let y(t) be a function with fixed values at endpoints a and b. y is **stationary** for a functional S if

$$\frac{dS(y(t) + \epsilon z(t))}{d\epsilon} \Big|_{\epsilon=0} = 0$$

for every smooth (continuous derivative to every order) z(t) such that z(a) = z(b) = 0.

Remark. Functions y(t) may be referred to as **paths** and so functions that satisfy the above definition are referred to as **stationary paths**.

Definition 1.1.3. Let S be an action functional (or just action). The action principle states that the paths described by particles are stationary paths of S.

Mathematically, given a particle moving in one dimension with position given by x(t), for arbitrary smooth small deformations $\delta x(t)$ around the true path x(t) (the path the particle follows):

$$\delta S := S(x + \delta x) - S(x) = O((\delta x)^2)$$

Lemma 1.1.4. (Fundamental lemma of the calculus of variations) Let f(x) be a continuous function in the interval [a, b] such that

$$\int_{a}^{b} f(x)g(x)dx = 0$$

for every smooth function g(x) in [a,b] such that g(a)=g(b)=0. Then f(x)=0 $\forall x\in [a,b]$.

Definition 1.1.5. Let L(r, s) be a function of two real variables. If a functional S can be expressed as the time integral of L, i.e. if

$$S(x) = \int_{t_0}^{t_1} L(x(t), \dot{x}(t))dt$$

then L is called a **Lagrangian**.

Definition 1.1.6. For a Lagrangian L, the Euler-Lagrange equation is given by

$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 0$$

where

$$\frac{\partial L}{\partial x} = \frac{\partial L(r,s)}{\partial r} \Big|_{(r,s)=(x(t),\dot{x}(t))} \quad \text{and} \quad \frac{\partial L}{\partial \dot{x}} = \frac{\partial L(r,s)}{\partial s} \Big|_{(r,s)=(x(t),\dot{x}(t))}$$

Remark. \dot{x} does not depend on x:

$$\frac{\partial x}{\partial \dot{x}} = \frac{\partial \dot{x}}{\partial x} = 0$$

Remark. The Euler-Lagrange equation only applies to one-dimensional cases.

1.2 Configuration space and generalised coordinates

Definition 1.2.1. Configuration space, denoted C, is the set of all possible (in principle) instantaneous configurations for a given a physical system.

Remark. This definition includes positions, but does not include velocities.

Remark. A configuration space must be constructed before a Lagrangian is constructed. The Lagrangian describes the dynamics of this configuration space.

Example 1.2.2. A particle moving in \mathbb{R}^d has configuration space \mathbb{R}^d .

Example 1.2.3. N distinct particles moving in \mathbb{R}^d have configuration space $(\mathbb{R}^d)^N = \mathbb{R}^{dN}$. The configuration space would still be \mathbb{R}^{dN} if the particles were electrically charged, as the charge of the particles does not affect their positions, at least initially.

Example 1.2.4. Two distinct particles joined by a rigid rod have configuration space \mathbb{R}^{2d-1} . One particle has configuration space \mathbb{R}^d and there are d-1 angles that must specified to choose the position of the second particle relative to the other.

Definition 1.2.5. Let S be a physical system with configuration space C. Then S has $\dim(C)$ degrees of freedom.

Remark. For every configuration space, any choice of coordinate system is valid, and the Lagrangian formalism holds regardless of this choice.

Definition 1.2.6. For a configuration space C, a set of coordinates in this space is called a set of **generalised coordinates**. Often generalized coordinates are represented with q_i , $i \in \{1, \ldots, \dim(C)\}$ where \underline{q} is the coordinate vector with components q_i .

Example 1.2.7. A particle moving in \mathbb{R}^2 , with configuration space \mathbb{R}^2 . We could use Cartesian or polar coordinates to describe the position of the particle in this space (both are equally valid).

Definition 1.2.8. Let C be a configuration space and let $\underline{q}(t) \in C$ be a path. For a Lagrangian function $L(q, \dot{q})$, the **Euler-Lagrange equations** state that

$$\frac{\partial L}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = 0 \quad \forall i \in \{1, \dots, \dim(C)\}$$

Remark. The Euler-Lagrange equations are valid in any coordinate system.

Remark. Similarly to the one-dimensional case:

$$\frac{\partial q_i}{\partial \dot{q}_i} = \frac{\partial \dot{q}_i}{\partial q_i} = 0$$

and

$$\frac{\partial q_i}{\partial q_j} = \frac{\partial \dot{q}_i}{\partial \dot{q}_j} = \delta_{ij}$$

1.3 Lagrangians for classical mechanics

Definition 1.3.1. In a system with kinetic energy $T(\underline{q}, \underline{\dot{q}})$ and potential energy $V(\underline{q})$, the Lagrangian that describes the equations of motion in that system is given by

$$L(\underline{q}, \underline{\dot{q}}) = T(\underline{q}, \underline{\dot{q}}) - V(\underline{q})$$

1.4 Ignorable coordinates and conservation of generalised momenta

Definition 1.4.1. Let $\{q_1, \ldots, q_N\}$ be a set of generalised coordinates. A specific coordinates q_i is **ignorable** if the Lagrangian function expressed in these generalised coordinates does not depend on q_i , i.e. if

$$\frac{\partial L}{\partial q_i} = 0$$

Definition 1.4.2. The **generalised momentum** p_i associated with a generalised coordinate q_i is given by

$$p_i := \frac{\partial L}{\partial \dot{q}_i}$$

Proposition 1.4.3. The generalised momentum associated to an ignorable coordinate is conserved.

Proof. From the Euler-Lagrange equation for q_i ,

$$0 = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = \frac{dp_i}{dt} - 0 = \frac{dp_i}{dt}$$

Example 1.4.4. For a free particle moving in d dimensions, in Cartesian coordinates we have

$$L = T - V = \frac{1}{2}m\sum_{i=1}^{d} \dot{x}_{i}^{2}$$

so every coordinate is ignorable. The generalised momenta are

$$p_i = \frac{\partial L}{\partial \dot{x}_i} = m\dot{x}_i$$

So here the conservation of generalised momenta is the conservation of the linear momenta.

2 Symmetries, Noether's theorem and conservation laws

2.1 Ordinary symmetries

Definition 2.1.1. For a uniparametric family of smooth maps $\phi(\epsilon): C \to C$ from configuration space to itself, with $\phi(0)$ the identity map, this family of maps is called a **transformation depending on** ϵ . In any coordinates system this transformation can be written as

$$q_i \to \phi_i(q_1, \ldots, q_N, \epsilon)$$

where the ϕ_i 's are a set of $N := \dim(C)$ functions representing the transformation in the coordinate system. The change in velocities is defined as

$$\dot{q}_i \to \frac{d}{dt}\phi_i$$

Remark. q'_i is used to denote $\phi(q_i, \epsilon)$, so often we write $q_i \to q'_i = \ldots$, where \ldots is a function of q_i and ϵ .

Definition 2.1.2. The generator of ϕ is

$$\frac{d\phi(\epsilon)}{d\epsilon}\Big|_{\epsilon=0} := \lim_{\epsilon \to 0} \frac{\phi(\epsilon) - \phi(0)}{\epsilon}$$

In any coordinate system,

$$q_i \to \phi_i(\underline{q}, \epsilon) = q_i + \epsilon a_i(\underline{q}) + O(\epsilon^2)$$

where

$$a_i = \frac{\partial \phi_i(\underline{q}, \epsilon)}{\partial \epsilon} \Big|_{\epsilon=0}$$

is a function of the generalised coordinates. Hence the transformation generator is a_i . For the velocities the transformation is

$$\dot{q}_i \rightarrow \dot{q}_i + \epsilon a_i(q_1, \dots, q_N, \dot{q}_1, \dots, \dot{q}_N) + O(\epsilon^2)$$

where the generator is \dot{a}_i .

3 Hamiltonian Formalism

Definition 3.0.1. The classical state of a system at a given instant in time is a complete set of data that fully specifies the future evolution of the system.

Remark. Any set of data that fully fixes future evolution is valid.

Definition 3.0.2. The phase (or state) space is the set of all possible states for a system at a given time.

Example 3.0.3. A free particle moving in \mathbb{R} . The phase space is \mathbb{R}^2 (\mathbb{R} for position, \mathbb{R} for velocity).

Definition 3.0.4. The **Hamiltonian formalism** studies dynamics in a phase space, parameterised by $\underline{q}(t)$ and $\underline{p}(t)$, where $p_i = \frac{\partial L}{\partial \dot{q}_i}$, the momentum.

Example 3.0.5. A particle moving in \mathbb{R} , with $L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2$. Then $p_x = \frac{\partial L}{\partial \dot{x}} = m\dot{x}$ so $\dot{x}(x, p_x) = \frac{p_x}{m}$.

In the Hamltonian formalism, $L(x, p_x) = \frac{p_x^2}{2m}$.

Example 3.0.6. A particle moving in \mathbb{R}^2 (in polar coordinates).

 $L(r, \theta, \dot{r}, \dot{\theta}) = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2)$. So $p_r = m\dot{r}$ and $p_{\theta} = mr^2\dot{\theta}$.

So $\dot{r}(r, \theta, p_r, p_{\theta}) = \frac{p_r}{m}, \ \dot{\theta}(r, \theta, p_r, p_{\theta}) = \frac{p_{\theta}}{mr^2}.$ $L(r, \theta, \dot{r}, \dot{\theta}) = L(r, \theta, p_r, p_{\theta}) = \frac{1}{2} (\frac{p_r^2}{m} + \frac{p_{\theta}^2}{mr^2}).$

Definition 3.0.7. Given two functions $f(\underline{q},\underline{p},t)$ and $g(\underline{q},\underline{p},t)$ in phase space their Poisson bracket is:

$$\{f,g\} := \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$$

where n is the dimension of the configuration space.

Remark. In the Hamiltonian formalism, $\frac{\partial q_i}{\partial p_i} = \frac{\partial p_j}{\partial q_i} = 0$.

Similarly, $\frac{\partial q_i}{\partial q_j} = \frac{\partial p_i}{\partial p_j} = \delta_{i,j}$

Example 3.0.8. Let $f = q_i$, $g = q_j$. $\{q_i, q_j\} = 0$, and $\{p_i, p_j\} = 0$. $\{q_i, p_j\} = 0$ $\sum_{k=1}^{n} \delta_{i,j} \delta_{j,k} = \delta_{i,j}.$

Definition 3.0.9. Let \mathbb{F} be the set functions from a phase space P to \mathbb{R}

Definition 3.0.10. The Hamiltonian flow $\Phi_f^{(s)}$, with $(s) \in \mathbb{R}$, $f \in F$ operator maps \mathbb{F} to \mathbb{F} and is defined as

$$\Phi_f^{(s)}(g) := e^{s\{\cdot,f\}}g := g + s\{g,f\} + \frac{s^2}{2}\{\{g,f\},f\} + \cdots$$

Remark. The transformation generated by f has generator $a_i = \{q_i, f\}$ where $q_i \rightarrow$ $q_i + \epsilon a_i$.

6

Infinitesimally, $\Phi_f^{(s)}(g) := g + \epsilon \{g, f\} + O(\epsilon^2)$

TODO: properties on poisson bracket

Example 3.0.11. (Rotation in \mathbb{R}^2 in Cartesian coordinates) As a guess, choose f = $q_1\dot{q_2} - \dot{q_1}q_2$, the angular momentum.

 $L = \frac{1}{2}(\dot{q_1}^2 + \dot{q_2}^2) - V(q_1, q_2)$ so $p_1 = \frac{\partial L}{\partial \dot{q_1}} = \dot{q_1}$ and $p_2 = \frac{\partial L}{\partial \dot{q_2}} = \dot{q_2} \Rightarrow f = q_1 p_2 - q_2 p_1$. Then $q_1 \to q_1 + \epsilon \{q_1, f\} + O(\epsilon^2) = q_1 + \epsilon \{q_1, q_1p_2 - q_2p_1\} = q_1 + \epsilon \{q_1, q_1p_2\} - q_2p_1$ $\epsilon\{q_1,q_2p_1\} = q_1 + \epsilon\{q_1,q_1\}p_2 + \epsilon\{q_1,p_2\}q_1 - \epsilon\{q_1,q_2\}p_1 - \epsilon\{q_1,p_1\}q_2 = q_1 - \epsilon q_2$

Similarly, $q_2 \to q_2 + \epsilon q_1$ so $(q_1, q_2) \to (q_1, q_2) + \epsilon((0, -1), (1, 0))(q_1, q_2)$ TODO make into matrices and column vectors.

Definition 3.0.12. The **Hamiltonian** is the energy expressed in Hamiltonian coordinates:

$$H = \sum_{i=1}^{n} q_i(\underline{\dot{q}}, \underline{p}) p_i - L(\underline{q}, \underline{\dot{q}}(\underline{q}, \underline{p}))$$

Example 3.0.13. (Harmonic oscillator in one dimension) Let $\frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2 \Rightarrow p =$ $m\dot{x} \Rightarrow \dot{x} = \frac{p}{m}$.

$$H = \dot{x}p - L = \frac{p^2}{m} - (\frac{1}{2}\frac{p^2}{m} - \frac{1}{2}kx^2) = \frac{1}{2}\frac{p^2}{m} + \frac{1}{2}kx^2$$

Theorem 3.0.14. The time evolution of the phase space coordinates $\underline{q},\underline{p}$ is generated by Hamiltonian flow Φ_H :

$$q_i(t+a) = \Phi_H^{(a)} q_i(t), p_i(t+a) = \Phi_H^{(a)} p_i(t)$$

Infinitesimally, $q_i(t) + \epsilon \dot{q}_i(t) + O(\epsilon^2) = q_i(t + \epsilon) = q_i(t) + \epsilon \{q_i, H\} + O(\epsilon^2) \Leftrightarrow \dot{q}_i = \{q_i, H\} = \frac{\partial H}{\partial p_i}$ and similarly, $\dot{p}_i = \{p_i, H\} = -\frac{\partial H}{\partial q_i}$. These equations are called **Hamilton's equations**.

Proof. $\frac{\partial H}{\partial q_i}$. TODO: complete this proof, finish rest of notes from lecture.

Corollary 3.0.15. The time evolution of any function f(q,p) in phase space is generated by Φ_H :

$$\frac{df}{dt} = \{f, H\}$$

If f(q, p, t) depends explicitly on time then

$$\frac{df}{dt} = \{f, h\} + \frac{\partial f}{\partial t}$$

Proof.
$$\frac{df}{dt} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \dot{q}_i + \frac{\partial f}{\partial p_i} \dot{p}_i \right) + \frac{\partial f}{\partial t} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial H}{\partial q_i} \right) + \frac{\partial f}{\partial t} = \{f, H\} + \frac{\partial f}{\partial t}.$$