Topic 3: 1-way Analysis of Variance

ENVX2001 - Applied Statistical Methods

Januar Harianto

Outline

Week	Lecturer	Lecture Topic	Assessment	Lab				
Part 1:	Part 1: Designed Studies							
1	Januar Harianto	Introduction: Surveys		Lab 1				
2	Januar Harianto	Surveys: Sampling designs		Lab 2				
3	Januar Harianto	ANOVA I: One-way Analysis of Variance (ANOVA)		Lab 3				
4	Aaron Greenville	ANOVA II: Introduction to experimental design	Report 1	No Labs				
5	Aaron Greenville	ANOVA III: ANOVA with blocking		Lab 4				
6	Aaron Greenville	ANOVA IV: ANOVA with 2 or more factors		Lab 5				
Part 2:	Finding Patterns in	Data						
7	Liana Pozza	Regression I: Multiple linear regression	Report 2	Lab 6				
8	Liana Pozza	Regression II: Variable selection		Lab 7				
9	Liana Pozza	Regression III: Predictive modelling		Lab 8				
10	Mathew Crowther	Multivariate analysis I: Principal component analysis (PCA)		Lab 9				
11	Mathew Crowther	Multivariate analysis II: Clustering		Lab 10				
12	Mathew Crowther	Multivariate analysis III: MDS and MANOVA		Lab 11				
Part 3: Revision								
13	TBA	Revision	Presentation	Lab 12				

Outline

Two-sample t-test

William Gosset (1908)

Analysis of Variance (ANOVA)

Ronald Fisher (1925)

3 / 40

Learning outcomes

At the end of this topic students should be able to:

- Describe the concept of how the ANOVA is used to determine whether there is a statistically significant difference in the means of treatments;
- Demonstrate proficiency in the use of R (and interpretation of the output) for performing an analysis of variance (ANOVA) on experimental data with 1 treatment factor.

Revisiting the t-test

Example

- Weights of two breeds of cattle are to be compared
- Twelve cattle from Breed 1 were randomly sampled, and another 15 weights from Breed 2 were also recorded

148.1 146.2 152.8
152.8
135.3
151.2
146.3
163.5
146.6
162.4
140.2
159.4
181.8
165.1
165.0
141.6

5 / 40

Two-sample t-test

Import data

```
cattle <- read_csv("assets/tables/cattle.csv") %>%
  pivot_longer(cols = starts_with("Breed"), names_to = "breed", values_to = "weight") %>%
  mutate(breed = as.factor(breed))
```

Tidying the data (FYI).

Before After

```
## # A tibble: 15 x 2
                                                 ## # A tibble: 30 x 2
     Breed1 Breed2
                                                       breed weight
##
      <dbl> <dbl>
                                                       <fct>
                                                             <dbl>
            148.
       188.
                                                 ## 1 Breed1
                                                               188.
## 2
      180. 146.
                                                    2 Breed2 148.
## 3
      199. 153.
                                                 ## 3 Breed1 180.
      191. 135.
                                                 ## 4 Breed2 146.
## 5
       196. 151.
                                                 ## 5 Breed1
                                                               199.
       204.
             146.
                                                    6 Breed2
                                                               153.
```

Descriptive statistics (mean)

```
with(cattle, mean(weight[breed == "Breed1"],
    na.rm = TRUE))

## [1] 196.175

with(cattle, mean(weight[breed == "Breed2"],
    na.rm = TRUE))

## [1] 153.7
```

Descriptive statistics (sd)

```
with(cattle, sd(weight[breed == "Breed1"],
    na.rm = TRUE))

## [1] 10.61604

with(cattle, sd(weight[breed == "Breed2"],
    na.rm = TRUE))

## [1] 12.30139
```

7 / 40

Two-sample t-test

Model assumptions: Equal variances

```
• \sigma_1^2 pprox \sigma_2^2
```

ullet General guide: $rac{larger\ standard\ deviation}{smaller\ standard\ deviation} < 2.0$

```
12.30139/10.61604
```

[1] 1.158755

· Only difference between the two distributions is where the distribution located, otherwise the same

Model assumptions: Normality

```
ggplot(cattle, aes(breed, weight)) +
  geom_boxplot() + cowplot::theme_cowplot()
```


9 / 40

Two-sample t-test

Model assumptions: Normality

ullet $y_{i,j} \sim N(\mu_i, \sigma^2)$ or $arepsilon_{i,j} \sim N(\mu_i, \sigma^2)$

```
shapiro.test(cattle$weight)
```

```
##
## Shapiro-Wilk normality test
##
## data: cattle$weight
## W = 0.93704, p-value = 0.103
```

• If p > 0.05, the distribution of the cattle data is not significantly different from a normal distribution, *i.e.* we can assume normality.

Model equation

• Observed data = Group Mean + Random Error (residuals)

$$y_{i,j} = \mu_i + arepsilon_{i,j}$$

• $i = 1, 2 \ (group); j = 1, 2, \dots, n_i \ (replicate)$

In cattle example:

- μ_1 = mean body weight (kg) for cattle in Breed 1
- μ_2 = mean body weight (kg) for cattle in Breed 2

11 / 40

Two-sample t-test

T-test

```
with(cattle, t.test(weight[breed == "Breed1"], weight[breed == "Breed2"],
    var.equal = TRUE))
##
##
```

```
## Two Sample t-test
##
## data: weight[breed == "Breed1"] and weight[breed == "Breed2"]
## t = 9.4624, df = 25, p-value = 9.663e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 33.23011 51.71989
## sample estimates:
## mean of x mean of y
## 196.175 153.700
```

Interpretation

13 / 40

Two-sample t-test

Hypothesis testing

• Null hypothesis:

$$H_0: \mu_1=\mu_2$$

• Alternate hypothesis:

$$H_1: \mu_1
eq \mu_2$$

• Test statistic:

$$t=rac{ar{y}_2-ar{y}_1}{\sqrt{s^2(rac{1}{n_2}+rac{1}{n_1})}}=rac{ar{y}_2-ar{y}_1}{se(ar{y}_2-ar{y}_1)}=rac{\Delta\ in\ mean}{standard\ error\ of\ the\ \Delta\ in\ mean}$$

• Degrees of freedom:

$$n_1+n_2-2$$

T-distribution

- changes shape with datasets size degrees of freedom (df)
- as n increases >> closer to normal distribution
- for standard normal distribution, 95% observations found in interval [-1.96,1.96]

15 / 40

Analysis of Variance (ANOVA)

Example

- A study was undertaken to compare the weight gains (g) of chicks on four different diets
- Twenty similar chicks were used in the study and were randomly allocated to one of the four groups
- The allocation was done in such a way as to have equal replication (five chicks) in each treatment group

Diet 1	Diet 2	Diet 3	Diet 4
99	61	42	169
88	112	97	137
76	30	81	169
38	89	95	85
94	63	92	154

Should we use a t-test?

- We have 4 treatments
- We could do a series of t-tests for the 6 possible pairwise comparisons
 - o 1 vs 2; 1 vs 3; 1 vs 4; 2 vs 3; 2 vs 4; 3 vs 4
- **Problem**: even if the true differences between treatment (population) means differ, each test has a 5% probability of incorrectly finding significant results
 - \circ 6 tests, we have 0.95⁶ = 0.735 = 73.5% of getting all correct
 - o 26.5% chance of getting at least 1 incorrect
- We need a method to test for the equality of treatments simultaneously
 - o This avoids the problem of multiple comparisons

17 / 40

ANOVA

- Differences between the 4 diets
 - treatment effect
- · Differences within diets
 - o due to background random environmental fluctuations, genetics, experimental error

Which model best describes data?

Group means shown separately

Overall mean

19 / 40

ANOVA: Terminology

- Suppose in general that we have t different treatments, and have drawn samples of size n_1, n_2, \ldots, n_t from the 1st, 2nd, ..., tth population
- The total number of observations is $n_1, n_2, \ldots, n_t = N$. In the diets example, there are t = 4 treatments, with equal replication $(n_1 = n_2 = n_3 = n_4 = 5)$ with N = 20
- For equally replicated designs, we will use r as the number of replicates per group (with N=rt)
- In the chick example, there is only one factor or treatment factor (diet)
- That factor has 4 levels (the 4 diet options).
- Hence the ANOVA conducted on these data is a 1-way (or 1-factor) ANOVA

Model equation

• Observed data = Group Mean + Random Error (residuals)

$$y_{i,j} = \mu_i + arepsilon_{i,j}$$

• $i = 1, 2 (group); j = 1, 2, ..., n_i (replicate)$

In cattle example:

- $y_{i,j}$ = observed weight gain for j^{th} chicken on Diet i;
- μ_i = mean weight gain for chicks on Diet, i.

21 / 40

ANOVA

Model assumptions: Normality

- ullet $y_{i,j} \sim N(\mu_i, \sigma^2)$ or $arepsilon_{i,j} \sim N(\mu_i, \sigma^2)$
- Check this assumptions using a histogram, boxplot for each group
- Or examine residuals (Topic 4)

```
chicks <- read_csv("assets/tables/chicks.csv") %>%
  pivot_longer(cols = starts_with("Diet"),
    names_to = "diet",
    values_to = "weight") %>%
  mutate(diet = as.factor(diet))
```

ggplot(chicks, aes(diet, weight)) +
 geom_boxplot()

Model assumptions: Normality

```
hist(chicks$weight)
```

```
shapiro.test(chicks$weight)
```

```
##
## Shapiro-Wilk normality test
##
## data: chicks$weight
## W = 0.93272, p-value = 0.1742
```

 If p > 0.05, the distribution of the cattle data is not significantly different from a normal distribution, i.e. we can assume normality.

23 / 40

ANOVA

Model assumptions: Equal variances

```
• \sigma_1^2=\sigma_2^2=\ldots=\sigma_t^2
```

- ullet General guide: $rac{largest\ standard\ deviation}{smallest\ standard\ deviation} < 2.0$
- Alternatively: perform a formal hypothesis test, e.g. Bartlett's test of homogeneity of variance.

```
bartlett.test(weight ~ diet, data = chicks)
```

```
##
## Bartlett test of homogeneity of variances
##
## data: weight by diet
## Bartlett's K-squared = 0.85164, df = 3, p-value = 0.8371
```

Bartlett's test is not reliable if data is not normal

Hypothesis testing

• Null hypothesis:

$$H_0: \mu_1=\mu_2=\ldots=\mu_t$$

• Alternate hypothesis:

$$H_1: not \ all \ \mu_i \ are \ equal$$

• Important: only tells us that at least 2 treatment (group) means are different

25 / 40

ANOVA

Concept

- Partition the variability of the data into components:
 - Differences due to treatments
 - Residual variation

Total Sums-of-Square (SS) = Treatment SS + Residual SS

Table

- Partition the variability of the data into components:
 - Differences due to treatments
 - Residual variation

Source	df	Sums-of-square (SS)	Mean-square (MS)	F statistic
Treatment	t-1	SS_{trt}	SS_{trt}/df_{trt}	MS_{trt}/Ms_{res}
Residual	N-t	SS_{res}	SS_{res}/df_{res}	
Total	N-1	SS_{tot}	SS_{tot}/df_{tot}	

N = number of observations, t = treatment levels

27 / 40

ANOVA

Calculations

Total sum-of-squares, SS_{tot}

$$SS_{tot} = \sum (data - overall\ mean)^2$$

```
library(dplyr) # load package
overall_mean <- mean(chicks$weight) # calculate overall mean
tot_ss <- mutate(chicks, sst = (weight - overall_mean)^2) # calculate (data - overall mean)^2
sum(tot_ss$sst) # sum for total ss</pre>
```

[1] 29678.95

Calculations

Treatment sum-of-squares, SS_{trt}

$$SS_{trt} = \sum n_i imes (group\ mean - overall\ mean)^2$$

```
# using dplyr again
chicks <- group_by(chicks, diet) # group by diet, so that we can summarise by group
grp <- summarise(chicks, grp_mean = mean(weight)) # summarise by group
trt_ss <- mutate(grp, sstr = (grp_mean - overall_mean)^2) # calculate (grp mean - overall mean)^2
5* sum(trt_ss$str) # sum for treatment ss</pre>
```

[1] 16466.95

29 / 40

ANOVA

Calculations

Residual sum-of-squares, SS_{res}

$$SS_{res} = \sum (data - group\ mean)^2$$

```
merged <- merge(chicks, grp)
res_ss <- mutate(merged, ssr = (weight - grp_mean)^2)
sum(res_ss$ssr)</pre>
```

[1] 13212

Table

Source	df	Sums-of-square (SS)	Mean-square (MS)	F statistic
Treatment	t-1	SS_{trt}	SS_{trt}/df_{trt}	MS_{trt}/Ms_{res}
Residual	N-t	SS_{res}	SS_{res}/df_{res}	
Total	N-1	SS_{tot}	SS_{tot}/df_{tot}	

Chick weight example

Source	df	Sums-of-square (SS)	Mean-square (MS)	F statistic
Treatment	3	16467	5489	6.65
Residual	16	13212	826	
Total	19	29679	1562	

31 / 40

ANOVA

R

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Table

Source	df	Sums-of-square (SS)	Mean-square (MS)	F statistic
Treatment	3	16467	5489	6.65
Residual	16	13212	826	
Total	19	29679	1562	

• Test statistic:

$$F = rac{treatment \ MS}{residual \ MS}; df = t-1, \ N-1$$

- the **residual MS** is an estimate of σ^2 , so $s = \sqrt{residual\ MS} = \sqrt{826} = 28.7$
- s is the pooled standard deviation from pooling t = 4 groups
- treatment MS is also an estimate of σ^2 (if the null hypothesis is true)

33 / 40

ANOVA

• Test statistic:

$$F = rac{treatment \ MS}{residual \ MS}; df = t-1, \ N-t$$

- If the null hypothesis is true, the observed F statistic (variance ratio) will have a value around 1; large F values indicate the null hypothesis is false
- Hypothesis test: Compare observed F statistic with F distribution with t-1 and N-t degrees of freedom (d.f.), e.g. $Ft-1,\ N-t$ or $F_{treat\ d.f.,residual\ d.f.}$

- Our example: $F = \frac{5489}{826} = 6.65$ with d. f. = 3, 16
- ullet Probability of obtaining the observed test statistics or larger, $P=P(F_{3,16}>6.65=0.04)$
- Since p-value is small (\$<0.05\$) we reject the null hypothesis
 - there are significant differences in mean weight gain amongst the 4 diets
- Proportion of variability explained by diets:

$$rac{Treatment \ SS}{TotalSS} = 16647 \div 29679 = 0.55 \ (55\%)$$

35 / 40

ANOVA

Which pairs of groups means are (statistically) different?

• We could look at the 95% CI for each mean and see which overlap.

$$95\%CI = ar{y} \pm t_{residual~d.f.}^{0.052} imes se(ar{y})$$

where

$$se(ar{y}) = \sqrt{rac{residual\ MS}{n_i}}$$

and n_i is the number of replicates in treatment, i

• e.g. for Diet 4:

$$95\%CI = 142.8 \pm 2.12 imes \sqrt{rac{826}{5}}$$

$$95\%CI$$
 = [115.6, 170]

Which pairs of groups means are (statistically) different?

```
library(emmeans)
 emm <- emmeans(model, "diet")</pre>
 emm
##
    diet
           emmean
                     SE df lower.CL upper.CL
    Diet 1
             79.0 12.9 16
                                51.8
                                        106.2
    Diet 2
             71.0 12.9 16
                                43.8
                                         98.2
             81.4 12.9 16
                                54.2
                                        108.6
    Diet 4 142.8 12.9 16
                               115.6
                                        170.0
##
##
## Confidence level used: 0.95
```


37 / 40

Summary

- 2-sample t-tests are limited to situation when we have experiments with only 2 levels
- The ANOVA allows us to analyse experiments with 2 or more treatment levels
- It can be generalised to analyse any experiment, e.g. more than 1 treatment factors
- The ANOVA table helps us determine whether there is a significant different between at least one pair of treatment means

Next week

- How to (better) identify which pair(s) are significant different
- · How to test the model assumptions

Thanks!

Slides created via the R package xaringan.

39 / 40

Readings

- Quinn & Keough (2002)
 - ∘ Chapter 7: Section 7.1
- Mead et al. (2002)
 - Chapter 18: Sections 18.1-18.3 (most is for finite populations but useful for conceptual understanding)