Seungjae Ryan Lee

Chapter 8: Planning and Learning with

Tabular Methods

endtoend. ai

Major Themes of Chapter 8

- 1. Unifying *planning* and *learning* methods
 - Model-based methods rely on planning
 - Model-free methods rely on learning
- 2. Benefits of planning in small, incremental steps
 - Key to efficient combination of planning and learning

Model of the Environment

- Anything the agent can use to predict the environment
- Used to mimic or simulate experience

1. Distribution models

- Describe all possibilities and probabilities
- Stronger but difficult to obtain

2. Sample models

- Produce one possibility sampled according to the probabilities
- Weaker but easier to obtain

Planning

- Process of using a model to produce / improve policy
- State-space Planning
 - Search through the state space for optimal policy
 - Includes RL approaches introduced until now
- Plan-space Planning
 - Search through space of plans
 - Not efficient in RL
 - o ex) Evolutionary methods

State-space Planning

- All state-space planning methods share common structure
 - o Involves computing value functions
 - Compute value functions by updates or backup operations

ex) Dynamic Programming

Relationship between Planning and Learning

- Both estimate value function by backup update operations
- Planning uses simulated experience from model
- Learning uses real experience from environment

Random-sample one-step tabular Q-planning

- Planning and Learning is similar enough to transfer algorithms
- Same convergence guarantees as one-step tabular Q-learning
 - All states and actions selected infinitely many times
 - Step size decrease over time
- Need just the sample model

Random-sample one-step tabular Q-planning

Random-sample one-step tabular Q-planning

Loop forever:

- 1. Select a state, $S \in \mathcal{S}$, and an action, $A \in \mathcal{A}(S)$, at random
- 2. Send S, A to a sample model, and obtain a sample next reward, R, and a sample next state, S'
- 3. Apply one-step tabular Q-learning to S, A, R, S': $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$

On-line Planning

- Need to incorporate new experience with planning
- Divide computational resources between decision making and model learning

Roles of Real Experience

- 1. *Model learning*: Improve the model to increase accuracy
- 2. *Direct RL*: Directly improve the value function and policy

Direct Reinforcement Learning

- Improve value functions and policy with real experience
- Simpler and not affected by bias from model design

Indirect Reinforcement Learning

- Improve value functions and policy by improving the model
- Achieve better policy with fewer environmental interactions

Dyna-Q

- Simple on-line planning agent with all processes
 - Planning: random-sample one-step tabular Q-planning
 - Direct RL: one-step tabular Q-learning
 - Model learning: Return last observed next state and reward as prediction

Dyna-Q: Implementation

Order of process on a serial computer

- Can be parallelized to a reactive, deliberative agent
 - *reactive*: responding instantly to latest information
 - o deliberative: always planning in the background
- Planning is most computationally intensive
 - Complete n iteration of Q-planning algorithm on each timestep

Dyna-Q: Pseudocode

```
Tabular Dyna-Q
Initialize Q(s, a) and Model(s, a) for all s \in S and a \in A(s)
Loop forever:
   (a) S \leftarrow \text{current (nonterminal) state}
   (b) A \leftarrow \varepsilon-greedy(S, Q)
   (c) Take action A; observe resultant reward, R, and state, S'
                                                                                   Acting
   (d) Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]
                                                                                   Direct RL
   (e) Model(S, A) \leftarrow R, S' (assuming deterministic environment)
                                                                                   Model Learning
   (f) Loop repeat n times:
                                                                                   Planning
         S \leftarrow \text{random previously observed state}
         A \leftarrow \text{random action previously taken in } S
         R, S' \leftarrow Model(S, A)
         Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]
```

Dyna Maze Example

- Only reward is on reaching goal state (+1)
 - Takes long time for reward propagate

Dyna Maze Example: Result

Much faster convergence to optimal policy

Dyna Maze Example: Intuition

- Without planning, each episode adds only one step to the policy
- With planning, extensive policy is developed by the end of episode

Halfway through second episode

Black square
: location of the agent

Possibility of a Wrong Model

- Model can be wrong for various reasons:
 - Stochastic environment & limited number of samples
 - Function approximation
 - Environment has changed
- Can lead to suboptimal policy

Optimistic Wrong Model: Blocking Maze Example

- Agent can correct modelling error for optimistic models
 - Agent attempts to "exploit" false opportunities
 - Agent discovers they do not exist

Environment changes after 1000 timesteps

Optimistic Wrong Model: Blocking Maze Example

endtoend. ai

Pessimistic Wrong Model: Shortcut Maze Example

- Agent might never learn modelling error for optimistic models
 - Agent never realizes a better path exists
 - Unlikely even with an ε-greedy policy

Environment changes after 1000 timesteps

Pessimistic Wrong Model: Shortcut Maze Example

Dyna-Q+

- Need to balance exploration and exploitation
- Keep track of elapsed time au since last visit for each state-action pair
- Add bonus reward $\kappa \sqrt{\tau}$ during *planning*
- Allow untried state-action pair to be visited in planning

Costly, but the computational curiosity is worth the cost

Prioritized Sweeping: Intuition

- Focused simulated transitions and updates can make planning more efficient
 - At the start of second episode, only the penultimate state has nonzero value estimate
 - Almost updates do nothing

Prioritized Sweeping: Backward Focusing

- Intuition: work backward from "goal states"
- Work back from any state whose value changed
 - Typically implies other states' values also changed
- Update predecessor states of changed state

Prioritized Sweeping

- Not all changes are equally useful
 - o magnitude of change in value
 - transition probabilities
- Prioritize updates via priority queue
 - Pop max-priority pair and update
 - Insert all predecessor pairs with effect above some small threshold
 - (Only keep higher priority if already exists)
 - Repeat until quiescence

Prioritized Sweeping: Pseudocode

Prioritized sweeping for a deterministic environment

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow policy(S, Q)$
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Model(S, A) \leftarrow R, S'$
- (e) $P \leftarrow |R + \gamma \max_a Q(S', a) Q(S, A)|$.
- (f) if $P > \theta$, then insert S, A into PQueue with priority P
- (g) Loop repeat n times, while PQueue is not empty:

$$S, A \leftarrow first(PQueue)$$

$$R, S' \leftarrow Model(S, A)$$

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

Loop for all \bar{S}, \bar{A} predicted to lead to S:

$$\bar{R} \leftarrow \text{predicted reward for } \bar{S}, \bar{A}, S$$

$$P \leftarrow |\bar{R} + \gamma \max_{a} Q(\underline{S}, \underline{a}) - Q(\bar{S}, \bar{A})|.$$

if
$$P > \theta$$
 then insert \bar{S}, \bar{A} into $PQueue$ with priority P

Prioritized Sweeping: Maze Example

Decisive advantage over unprioritized Dyna-Q

Prioritized Sweeping: Rod Maneuvering Example

- Maneuver rod around obstacles
 - 14400 potential states, 4 actions (translate, rotate)
- Too large to be solved without prioritization

Prioritized Sweeping: Limitations

- Stochastic environment
 - Use expected update instead of sample updates
 - Can waste computation on low-probability transitions
- How about sample updates?

Expected vs Sample Updates

- Recurring theme throughout RL
- Any can be used for planning

Expected vs Sample Updates

Expected updates yields better estimate

$$Q(s, a) \leftarrow \sum_{s', r} \hat{p}(s', r | s, a) \left[r + \gamma \max_{a'} Q(s', a') \right].$$

Sample updates requires less computation

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[R + \gamma \max_{a'} Q(S', a') - Q(s, a) \right],$$

Expected vs Sample Updates: Computation

- Branching factor d: number of possible next states
 - Determines computation needed for expected update
 - $T(Expected update) \approx d * T(Sample update)$

- If enough time for expected update, resulting estimate is usually better
 - No sampling error
- If not enough time, sample update can at least somewhat improve estimate
 - Smaller steps

Expected vs Sample Updates: Analysis

- Sample updates reduce error according to $\sqrt{\frac{b-1}{bt}}$
- Does not account sample update having better estimate of successor states

Distributing Updates

- 1. Dynamic Programming
 - Sweep through entire state space (or state-action space)
- 2. Dyna-Q
 - Sample uniformly

Both suffers from updating irrelevant states most of the time

Trajectory Sampling

- Gather experience by sampling explicit individual trajectories
 - Sample state transitions and rewards from the model
 - Sample actions from a distribution

- Effects of on-policy distribution
 - Can ignore vast, uninteresting parts of the space
 - Significantly advantageous when function approximation is used

Trajectory Sampling: On-policy Distribution Example

- Faster planning initially, but retarded in the long run
- Better when branching factor b is small (can focus on just few states)

Trajectory Sampling: On-policy Distribution Example

- Long-lasting advantage when state space is large
 - Focusing on states have bigger impact when state space is large

Real-time Dynamic Programming (RTDP)

- On-policy trajectory-sampling value iteration algorithm
- Gather real or simulated trajectories
 - Asynchronous DP: nonsystematic sweeps

Update with value iteration

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = a]$$

= $\max_{a} \sum_{s',r} p(s',r \mid s,a) \Big[r + \gamma v_k(s') \Big],$

RTDP: Prediction and Control

- Prediction problem: skip any state not reachable by policy
- Control problem: find the *optimal partial policy*
 - A policy that is optimal for relevant states but arbitrary for other states
 - Finding such policy requires visiting all (s, a) infinitely many times

Stochastic Optimal Path Problems

Conditions

- Undiscounted episodic task with absorbing goal states
- Initial value of every goal state is 0
- At least one policy can definitively reach a goal state from any starting state
- All rewards from non-goal states are negative
- All initial values are optimistic

Guarantees

RTDP does not need to visit all (s, a) infinite times to find optimal partial policy

Stochastic Optimal Path Problem: Racetrack

- 9115 reachable states, 599 relevant
- RTDP needs half the update of DP
 - Visits almost all states at least once
 - Focuses to relevant states quickly

	DP	RTDP
Average computation to convergence	28 sweeps	4000 episodes
Average number of updates to convergence	252,784	127,600
Average number of updates per episode	-	31.9
% of states updated ≤ 100 times		98.45
% of states updated ≤ 10 times		80.51
% of states updated 0 times		3.18

DP vs. RTDP: Checking Convergence

- DP: Update with exhaustive sweeps until Δv is sufficiently small
 - Unaware of policy performance until value function has converged
 - Could lead to overcomputation
- RTDP: Update with trajectories
 - Check policy performance via trajectories
 - Detect convergence earlier than DP

Background Planning vs. Decision-Time Planning

Background Planning

- Gradually improve policy or value function
- Not focused on the current state
- Better when low-latency action selection is required

Decision-Time Planning

- Select single action through planning
- Focused on the current state
- Typically discard value / policy used in planning after each action selection
- Most useful when fast responses are not required

Heuristic Search

- Generate tree of possible continuations for each encountered states
 - Compute best action with the search tree
 - More computation is needed
 - Slower response time
- Value function can be held constant or updated
- Works best with perfect model and imperfect Q

Heuristic Search: Focusing States

- Focus on states that might immediate follow the current state
 - Computations: Generate tree with current state as head
 - Memory: Store estimates only for relevant states
- Particularly efficient when state space is large (ex. chess)

Heuristic Search: Focusing Updates

- Focus distribution of updates on the current state
 - Construct search tree
 - Perform one-step updates from bottom-up

Rollout Algorithms

- Estimate Q by averaging simulated trajectories from a rollout policy
- Choose action with highest Q
- Does not compute Q for all states / actions (unlike MC control)
- Not a *learning* algorithm since values and policies are not stored

Rollout Algorithms: Policy

- Satisfies the *policy improvement theorem* for the policy π
 - Same as one step of the policy iteration algorithm

$$v_{\pi'}(s) = q_{\pi}(s,a) \geq v_{\pi}(s)$$

- Rollout seeks to improve upon the default policy, not to find the optimal policy
 - Better default policy → Better estimates → Better policy from rollout algorithm

Rollout Algorithms: Time Constraints

- Good rollout policies need a lot of trajectories
- Rollout algorithms often have strict time constraints

Possible Mitigations

- 1. Run trajectories on separate processors
- 2. Truncate simulated trajectories before termination
 - Use stored evaluation function
- 3. Prune unlikely candidate actions

Monte Carlo Tree Search (MCTS)

- Rollout algorithm with directed simulations
 - Accumulate value estimates in a tree structure
 - Direct simulations toward more high-rewarding trajectories
- Behind successes in Go

Monte Carlo Tree Search: Algorithm

- Repeat until termination:
 - a. **Selection**: Select beginning of trajectory
 - b. **Expansion**: Expand tree
 - c. **Simulation**: Simulate an episode
 - d. Backup: Update values
- Select action with some criteria
 - a. Largest action value
 - b. Largest visit count

Monte Carlo Tree Search: Selection

- Start at the root node
- Traverse down the tree to select a leaf node

Monte Carlo Tree Search: Expansion

- Expand the selected leaf node
 - Add one or more child nodes via unexplored actions

Monte Carlo Tree Search: Simulation

- From leaf node or new child node, simulate a complete episode
- Generates a Monte Carlo trial
 - Selected first by the tree policy
 - Selected beyond the tree by the rollout policy

Monte Carlo Tree Search: Backup

- Update or Initialize values of nodes traversed in *tree policy*
 - No values saved for the rollout policy beyond the tree

endtoend. ai

Monte Carlo Tree Search: Insight

- Can use online, incremental, sample-based methods
- Can focus MC trials on segments with high-return trajectories
- Can efficiently grow a partial value table
 - Does not need to save all values
 - Does not need function approximation

Summary of Chapter 8

- Planning requires a model of the environment
 - Distribution model consists of transition probabilities
 - Sample model produces single transitions and rewards
- Planning and Learning share many similarities
 - Any learning method can be converted to planning method
- Planning can vary in size of updates
 - o ex) 1-step sample updates
- Planning can vary in distribution of updates
 - o ex) Prioritized sweeping, On-policy trajectory sampling, RTDP
- Planning can focus forward from pertinent states
 - Decision-time planning
 - o ex) Heuristic search, Rollout algorithms, MCTS

Summary of Part I

- Three underlying ideas:
 - a. Estimate value functions
 - b. Back up values along actual / possible state trajectories
 - c. Use Generalized Policy Iteration (GPI)
 - Keep approximate value function and policy
 - Use one to improve another

Summary of Part I: Dimensions

- Three important dimensions:
 - a. Sample update vs Expected update
 - Sample update: Using a sample trajectory
 - Expected update: Using the distribution model
 - b. Depth of updates: degree of bootstrapping
 - c. On-policy vs Off-policy methods

One undiscussed important dimension:
 Function Approximation

Summary of Part I: Other Dimensions

- Episodic vs. Continuing returns
- Discounted vs. Undiscounted returns
- Action values vs. State values vs. Afterstate values
- Exploration methods
 - ε-greedy, optimistic initialization, softmax, UCB
- Synchronous vs. Asynchronous updates
- Real vs. Simulated experience
- Location, Timing, and Memory of updates
 - Which state or state-action pair to update in model-based methods?
 - Should updates be part of selected actions, or only afterward?
 - How long should the updated values be retained?

Thank you!

Original content from

Reinforcement Learning: An Introduction by Sutton and Barto

You can find more content in

- github.com/seungjaeryanlee
- www.endtoend.ai