Laborato 3 Correspondecias Simples y Multiples

Grupo 6

Integrantes

- Edwin Sanchez
- Stephanie Tamayo
- Andres Felipe Torres
- Fredy Urrea
- Sergio Velasquez
- Manuel Espitia

Introduccion

Carga de achivos y organizaicon de los datos

```
library("FactoMineR")
library("dplyr")
library("kableExtra")
library(FactoMineR)
library(factoextra)
library(factoextra)
library(kableExtra)
library(readr)
library(tidyr)
library(dplyr)
encuesta <- read_csv2("ECC_completa_19426.csv")</pre>
```

Capitulo 5 Análisis de correspondencias simples (ACS)

Punto 1

Con la metodologia del ejemplo 5.4 hacer un ACS para la tabla de contigencias p17b x p21 con las preguntas "p17_b" (en las filas) sobre la facilidad para cumplir la ley y la preferencia por hacer acuerdos p21. Identificar patrones o tendencias si los hat comentar los resultados.

Punto 2

Construir la tabla de contigencias p17b x ciudad que le correspondio al frupo y las ciudades de Asuncion y Montevideo. Yuxtaponerla a la tabla p17b x p21 del ejerciio 1 y utlizarla como variables suplementarias para averiguar si se puede identificar algun patron o tendecia en la facilidad para cumplir la ley en las ciudades suplementarias con respecto a las tendencias de la ciudad que le correspondio al grupo

Punto 3

Realizar un ACS a la tabla de contigencias "p17_b" (filas) vs preferencia para hacer acuerdor p21 en un ejercicio similar al 1.

```
tabla <- table(encuesta$p17_b, encuesta$p21)</pre>
tabla_df <- as.data.frame(tabla)</pre>
tabla_bonita <- tabla_df %>%
  pivot_wider(names_from = Var2, values_from = Freq, values_fill = 0) %>%
  rename(`Facilidad para cumplir la ley (p17_b)` = Var1)
kable(tabla_bonita,
      caption = "Tabla de contingencia entre p17b y p21",
      format = "latex",
     booktabs = TRUE,
      escape = TRUE) %>%
 kable_styling(latex_options = c("striped", "hold_position"), font_size = 8) %>%
  column_spec(1, latex_column_spec = "p{3cm}") %>%
  column_spec(2, latex_column_spec = "p{2.5cm}") %>%
  column_spec(3, latex_column_spec = "p{2.5cm}") %>%
  column_spec(4, latex_column_spec = "p{2.5cm}") %>%
  column_spec(5, latex_column_spec = "p{2.5cm}")
```

Table 1: Tabla de contingencia entre p17b y p21

Facilidad para cumplir la ley (p17_b)	p21_HACACU=1_r	n p21_HACACU=2_o	cnp21_HACACU=3_o	es p21_HACACU=4_s
p17b_FACL=1_n	88	86	171	129
$p17b_FACL=2_cn$	315	262	746	428
p17b_FACL=3_cs	1088	1022	3705	2087
p17b_FACL=4_s	1420	1077	3262	3144

Ejecucion de acs

```
require(FactoMineR)
acsp17p21= CA(tabla, graph = T)
```


Tabla de valores propios y varainza acumulada

Warning in styling_latex_scale(out, table_info, "down"): Longtable cannot be ## resized.

Table 2: Tabla de valores propios y varianza explicada del ACS

	Valor propio	% de varianza	%varianza acumulada
dim 1	0.0127797	83.7061683	83.70617
$\dim 2$	0.0023611	15.4651828	99.17135
$\dim 3$	0.0001265	0.8286489	100.00000

Tabla contribuciones columnas

```
# Extraer solo primeras 2 dimensiones
coord_col <- acsp17p21$col$coord[, 1:2]
contrib_col <- acsp17p21$col$contrib[, 1:2]
cos2_col <- acsp17p21$col$cos2[, 1:2]</pre>
```

```
# Combinar en una sola tabla
tabla_columnas <- cbind(coord_col, contrib_col, cos2_col)

# Asignar nombres adecuados
colnames(tabla_columnas) <- c(
    "Coord_Dim1", "Coord_Dim2",
    "Contrib_Dim1", "Contrib_Dim2",
    "Cos2_Dim1", "Cos2_Dim2"
)</pre>
library(knitr)
```

Table 3: Coordenadas, contribuciones y cosenos cuadrados de las columnas (p21) - primeras 2 dimensiones

	Coord_Dim1	Coord_Dim2	Contrib_Dim1	Contrib_Dim2	Cos2_Dim1	Cos2_Dim2
p21_HACACU=1_n	0.051	0.078	3.143	38.914	0.292	0.668
p21_HACACU=2_cn	-0.042	0.078	1.804	32.764	0.215	0.723
p21_HACACU=3_cs	-0.115	-0.028	42.656	13.774	0.943	0.056
$p21_HACACU=4_s$	0.148	-0.034	52.397	14.549	0.951	0.049

Punto 4

Apilar como ilustrativa la tabla ciudades (filas) vs preferencias para hacer acuerdors p21 para investigar si hay algun patron o tendencia en las ciuades respecto a las tendencias de la ciudad que le correspondio al grupo

Punto 5

Seleccionar un pregunta del "Formulario Generico ECC" que el rupo considere de interes para realizar un ACS de la tabla de contigencia de esa pregunta con las ciudades e identificar tendencias o patrones por ciudades con respecto a esa pregunta

Punto 6

Explorar las posibles asociaciones de la pregunta seleccionada en el punto 5 con la pregunta sobre la facilidad para cumplir la ley "p17_b" adicionandola como varibale ilustrativa.

Capítulo 6 Análisis de correspondencias Múltiples (ACM)

Punto 1

Utilizar el archivo ECC_completa_19426.csv y los datos de la ciudad que le correspondió al grupo para el laboratorio de ACS para realizar un ACM con las siguientes preguntas como variables activas : p_20_a a

p20_k, p21, p27 y p33_a a p33_a_p.

Punto 2

Utilizar como variables ilustraticas el nivel socioeconomico (NSE), el sexo (p5) y el nivel educativo (p7 $_$ NEd) e identificar si hay alguna tendencias o patron de asociacion con las variables activas.