ASSIGNMENT 01: DATA ANALYSIS

1. Student details:

A. Name: Shreyash Shashikant Kumbhar

B. Student ID: 21263426

C. Email ID: shreyash.kumbhar2@mail.dcu.ie

2. Link for the Git repository:

https://github.com/SSHREYASH10/CLOUD_TECHNOLOGIES.git

3.

A. About the dataset:

"Stack Exchange is a network of question and answer websites on diverse topics in many different fields, each site covering a specific topic, where questions, answers, and users are subject to a reputation award process. The sites are modelled after Stack Overflow, a forum for computer programming questions that was the original site in this network."

(Information Source: https://en.wikipedia.org/wiki/Stack_Exchange)

B. Steps taken to acquire the dataset:

I am required to acquire the top 200,000 posts by ViewCount but the problem is that I can only download a maximum of 50,000 records at a time. This means that I would need to run at least 4 to 5 queries in total to obtain the 200,000 posts. The first thing to figure out would be the range of the values in the "ViewCount" field that constitutes the top 200,000 posts. After a series of attempts to find the lower bound value in "ViewCount" that accommodates the 200,000 records, I discover that the values in "ViewCount" greater than 41322 give me 200,011 data records and so it is safe to say that I can get at least 200,000 records by offering 41322 as my lower bound in "ViewCount". Therefore, on running the following query, I got the 200,000 posts' record.

select count(*) from posts where posts. ViewCount > 41322

Next, given that I can only obtain 50,000 records at a time, I can break down the whole range of "posts.ViewCount > 41322" into 4 parts, each of which has 50,000 records. In order to sort this out simple, I will arrange them in the descending order.

For top 25%

select top 50000 * from posts where posts. ViewCount > 41322 order by posts. ViewCount DESC

From the last few records fetched from the query, I can obtain the upper bound in "ViewCount" to use for the next query. For example, in the following screenshot, we can see that 127402 is the ViewCount value which can be utilized as the upper bound for the next query. (I have applied the same logic for the next queries as well)

ld	PostTypeld	AcceptedAnswerld	Pare	CreationDate	DeletionDate	Score	ViewCount	Body	OwnerUserId	OwnerDisplayName
14344289	1	14344290		2013-01-15 18:23:02		101	12/433	>Fancybox breaks with the new jQuery v1	1055987	
5107901	1	5233488		2011-02-24 17:00:43		100	127433	I have an editText, starting value is \$0.00	599116	
19102220	1	21836761		2013-09-30 19:28:12		72	127428	Is it possible to query for a distinct/unique	904196	
1708826	1			2009-11-10 15:32:45		16	127425	I am using MySQL. My root user doesn't	202335	
2590286	1			2010-04-07 05:53:49		41	127423	I am not a regex expert, but my request is	151278	
21700364	1	21700383		2014-02-11 11:17:30		71	127423	I have a list view for delete id. I'd like to a	1246950	
12845993	1			2012-10-11 18:14:40		12	127422	I'm trying to view the files and folders at r	1721234	
32759272	1			2015-09-24 10:40:09		111	127417	I'm trying to eliminate 2 CSS files that are	4951059	
33692296	1			2015-11-13 11:59:35		23	127417	I created a folder in order for it to be the	5556411	
8618374	1	8618395		2011-12-23 16:30:59		28	127413	I need to show the name of the currently	979470	
34444295	1			2015-12-23 21:51:35		65	127413	I am quite new to R. Using the ta	5712688	
3980968	1	3981067		2010-10-20 18:14:47		88	127412	>Does anyone know if there is a limit to the	402662	
586781	1	588708		2009-02-25 16:37:23		119	127411	I'm dealing with a Postgres table (called "I	68623	Joshua Berry
4126326	1	4126475		2010-11-08 17:29:43		81	127409	I see a lot of questions and answers re <c< td=""><td>334755</td><td></td></c<>	334755	
4292769	1	14653239		2010-11-27 17:02:07		54	127406	What is the location of mysql client <code< p=""></code<>	196032	
26510033	1	26510099		2014-10-22 14:33:56		23	127402	I am just trying to add 1 hour to a value, it	2548283	

50000 rows returned in 6479 m

For next 25%

select top 50000 * from posts where posts. ViewCount <= 127402 order by posts. ViewCount DESC

➤ This CSV file consists of 1 duplicate record -----(1) with respect to the previous CSV file.

For next 25%

select top 50000 * from posts where posts. ViewCount <= 74596 order by posts. ViewCount DESC

- ➤ This CSV file consists of **1 duplicate record** ------(2) with respect to the previous CSV file.
- > It also consists of **1 empty record** which will be removed during the data cleaning process.

For next 25%

select top 50000 * from posts where posts. ViewCount <= 53211 order by posts. ViewCount DESC

➤ This CSV file consists of **4 duplicate record** ----- (3) with respect to the previous CSV file.

Now, from (1), (2) and (3), we have **6 duplicate records** in total which will be removed during the data cleaning process and so we will **fall short of 6 records to complete the 200,000 records count**. Therefore, I am applying the following additional query which will give me 15 records (as shown in the following screenshot) of which **5 duplicate records** with respect to the previous CSV file and **the additional records after the 200,000 records count is completed** will be removed during the data cleaning process.

select top 50000 * from posts where posts. ViewCount >= 453209 and posts. ViewCount <= 41325 order by posts. ViewCount DESC

ld 🔺	PostTypel	AcceptedAnswerl	Pare	CreationDate -	DeletionDate -	Score -	ViewCount -	Body A	OwnerUserId -	OwnerDisplayName -
15426232	1	15428618		2013-03-15 06:36:48		26	53211	I have a class need to be dessrialized usi	1965322	
9372901	1	9374207		2012-02-21 05:58:35		11	53211	As you all know Compare validators can	571507	
8783753	1			2012-01-09 03:58:51		55	53211	I'm doing a simple insert into Mongo <td>1125472</td> <td></td>	1125472	
34369616	1	34369669		2015-12-19 10:19:33		40	53211	I downloaded some PDF files in my app a	997120	
21555086	1	21558737		2014-02-04 14:24:13		17	53211	I am working on SSIS Package .I added o	3203331	
11045731	1	11062636		2012-06-15 06:36:33		18	53210	I am using the iTextSharp.dll with the follo	1354337	
3672272	1	3672312		2010-09-08 22:09:29		106	53210	I am having trouble determining the <a hr<="" p="">	306348	
9587907	1	9588010		2012-03-06 16:35:56		18	53210	I am currently writing a small script that c	1030100	
29179631	1	29179765		2015-03-21 05:35:44		20	53210	I have Python 2.7.5 that installed with Arc	4557462	
15417415	1			2013-03-14 18:31:21		9	53210	I have a python script technically named	2170780	
5606747	1	5606776		2011-04-09 17:50:07		14	53209	i am using <code>string path =</code>		user339160
12486488	1	12486522		2012-09-18 23:23:42		3	53209	I'd like to change the color of my navbar fi	1379955	
1616822	1	1616825		2009-10-24 03:15:53		3	53209	Why <code><div style="width:50%" /&g</code>	90096	
5279079	1	5533882		2011-03-11 22:31:43		18	53209	This is my query: <pre><code>SELE</code></pre>	656079	
23667528	1			2014-05-15 00:52:26		25	53209	Why doesn't <code>:not(:last-of-type)<td></td><td>user3638892</td></code>		user3638892

15 rows returned in 1 ms (cached)

4. Steps taken to:

A. Load and merge the data in HDFS:

Firstly, upload the 5 downloaded CSV files in the local home directory and check whether the same are present in it using the ls command. Then, move the files on Hadoop using the put command and check for their presence. Lastly, merge all the 5 CSV files into a single CSV file using the cat command and again check whether that single CSV file is present in it.

hduser@Dell:/usr/local/hadoop\$ ls

hduser@Dell:/usr/local/hadoop\$ hadoop fs -put QueryResults.csv /

hduser@Dell:/usr/local/hadoop\$ hadoop fs -put QueryResults 1.csv /

hduser@Dell:/usr/local/hadoop\$ hadoop fs -put QueryResults 2.csv /

hduser@Dell:/usr/local/hadoop\$ hadoop fs -put QueryResults_3.csv /

hduser@Dell:/usr/local/hadoop\$ hadoop fs -put QueryResults_4.csv /

hduser@Dell:/usr/local/hadoop\$ hadoop fs -ls /

hduser@Dell:/usr/local/hadoop\$ cat QueryResults.csv QueryResults_1.csv QueryResults 2.csv QueryResults 3.csv QueryResults 4.csv > Final QueryResults.csv

hduser@Dell:/usr/local/hadoop\$ hadoop fs -ls /

```
NOTICE-binary
        NSF.txt NOTICE.txt QueryNesults_1.csv QueryNesults_3.csv README.txt ecc 160 Incomes John Hermann School (Notice 160 Incomes John Hermann) Section (Notice 16
                                                           doop$ hadoop fs -put QueryResults_3.csv
                        13:27:57,928 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicabl :/usr/local/hadoop$ hadoop fs -put QueryResults_4.csv /
021-10-22 13:28:08,852 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicabl
021-10-22 13:28:35,376 WARN util.NativeCodeloader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
                            1 hduser supergroup
                                                                                54871720 2021-10-22 13:26 /OuervResults.csv
                                                                                62237507 2021-10-22 13:27 /QueryResults_1.csv
62794654 2021-10-22 13:27 /QueryResults_2.csv
                                                                                 68622160 2021-10-22 13:27 /QueryResults_3.csv
14598 2021-10-22 13:28 /QueryResults_4.csv
                            1 hduser supergroup
                           1 hduser supergroup
                                                                                                  0 2021-10-15 15:49 /bigdata
0 2021-10-20 16:34 /tmp
                                 hduser supergroup 0 2021-10-20 16:41 /user
sr/local/hadoop$ cat QueryResults_4.csv QueryResults_1.csv QueryResults_2.csv QueryResults_3.csv QueryResults_4.csv > Final_QueryResults.cs
021-10-22 14:30:10,950 WARN util.NativeCodeloader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicabl
                            1 hduser supergroup 248540639 2021-10-22 14:25 /Final_QueryResults.csv
                            1 hduser supergroup
                                                                                 54871720 2021-10-22 13:26 /QueryResults.csv
                                                                                 62237507 2021-10-22 13:27 /QueryResults_1.csv
                               hduser supergroup
                                                                              62794654 2021-10-22 13:27 /QueryResults_2.csv
68622160 2021-10-22 13:27 /QueryResults_3.csv
                            1 \ \mathsf{hduser} \ \mathsf{supergroup}
                            1 hduser supergroup
                                                                                        14598 2021-10-22 13:28 /QueryResults_4.csv
0 2021-10-15 15:49 /bigdata
0 2021-10-22 14:04 /tmp
                            - hduser supergroup
                                 hduser supergroup
                                                                                                  0 2021-10-20 16:41 /user
```

B. Clean the data in PIG:

Firstly, load the data from HDFS to PIG, specifying each data type.

grunt>stackdata=LOAD'hdfs://localhost:9870/usr/local/hadoopFinal_QueryResults.cs v' USING PigStorage (',') AS (id:int, posttypeid:int, acceptedanswerid:int, parentid:int, creationdate:chararray, deletiondate:chararray, score:int, viewcount:int, body:chararray, owneruserid:int, ownerdisplayname:chararray, lasteditoruserld:int, lasteditordisplayname:chararray, lasteditdate:chararray, lastactivitydate:chararray, title:chararray, tags:chararray, answercount:int, commentcount:int, favoritecount:int, closeddate:chararray, communityowneddate:chararray);

```
grunt> DESCRIBE stackdata;
```

Now, we do not need every field present in the data. Therefore, we generate a new table with the required fields only and also remove the empty records present in the data.

grunt> pickCols = FOREACH stackdata GENERATE id, score, viewcount, owneruserid, title, tags, (REPLACE(body,'[\r\n]+',' ')) AS body;

```
grunt> DESCRIBE pickCols;
```

As mentioned earlier, we need to remove the duplicate records present in the data. So, removing the same using the DISTINCT function.

```
grunt> datadistinct = DISTINCT pickCols;
```

Also, the additional records after the 200,000 records count is completed need to be removed. Therefore, removing the same using the LIMIT function and thereafter reverifying the count of the remaining records using the COUNT_STAR function which return the value 200,000!

```
grunt> datalimit = LIMIT datadistinct 200000;
```

```
grunt> stackfull = GROUP datalimit ALL;
```

grunt> stackcount = FOREACH stackfull GENERATE COUNT_STAR(datalimit.id) AS cnt;

grunt> dump stackcount;

Lastly, creating a new file folder to save this cleaned up data.

grunt> STORE datalimit INTO 'Pig_QueryResults' USING PigStorage(',');

```
symuto stackdata = 1000 '/hadooprinal QueryResults.cov' USIND Pigitorage (',') AS (ddinit, nosttypeidi.int, acceptedanomeridi.int, omeritonidate:chararray, alektionidate:chararray, lastactivitydate:chararray, lastactivitydate: alactactivitydate: chararray, lastactivitydate: chararray, la
```

C. Query the data using HIVE:

In order to load the cleaned data from PIG to HIVE, we create a database and a table in HIVE.

hive> CREATE DATABASE user db;

hive> USE user_db;

hive> CREATE TABLE user_db.stackdata_analysis (id int, score int, viewcount int, owneruserid int, ownerusername string, title string, tags string, body string);

```
Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4j2.properties Async: true
hive> CREATE DATABASE user_db;
OK
Time taken: 0.654 seconds
hive> USE user_db;
OK
Time taken: 0.095 seconds
hive> CREATE DATABASE user_db;
OK
Time taken: 0.095 seconds
hive> CREATE TABLE user_db.stackdata_analysis (id int, score int, viewcount int, owneruserid int, title string, tags string,body string);
OK
Time taken: 0.652 seconds
hive> CREATE TABLE user_db.stackdata_analysis (id int, score int, viewcount int, owneruserid int, title string, tags string,body string);
Time taken: 0.652 seconds
```

Now, we can transfer the cleaned data from PIG into the above created table in HIVE.

hive> STORE Pig_QueryResults INTO 'user_db.stackdata_analysis' USING org.apache.hive.hcatalog.pig.HCatStorer();

In order to verify that the data has been transferred properly, we check the count of the 'id' field which returns the value 200,000!

hive> SELECT COUNT(id) FROM user_db.stackdata_analysis;

Queries for:

The top 10 posts by score

hive> SELECT id, title, score FROM user_db.stackdata_analysis ORDER BY score DESC LIMIT 10;

The top 10 users by post score

hive> SELECT owneruserid AS USERID, ownerusername, SUM(score) AS SCORE FROM user_db.stackdata_analysis GROUP BY owneruserid having owneruserid is not null SORT BY score DESC LIMIT 10;

```
aunching Job 1 out of 1
 ez session was closed. Reopening...
 ession re-established.
 tatus: Running (Executing on YARN cluster with App id application 1635264620812 0005)
       VERTICES
                                 STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
 ap 1 ..... container
                               SUCCEEDED
 educer 2 ..... container
                               SUCCEEDED
 educer 3 ..... container
87234 GManNickG
     readonly
e-satis 26878
       pupeno 25944
       Hamza Yerlikaya 24024
51816 Joan Venge
49153 Ali 20203
179736 TIMEX 19603
95592 Matthew Rankin 19479
      flybywire 19362
 ime taken: 34.873 seconds, Fetched: 10 row(s)
```

The number of distinct users, who used the word "cloud" in one of their posts

hive> SELECT COUNT(DISTINCT owneruserid) FROM user_db.stackdata_analysis WHERE UPPER(body) LIKE '%CLOUD%' OR UPPER(title) LIKE '%CLOUD%' OR LOWER(body) LIKE '%cloud%' OR UPPER(tags) LIKE '%CLOUD%' OR LOWER(title) LIKE '%cloud%' OR LOWER(tags) LIKE '%CLOUD%';

D. Calculate TF-IDF with HIVE:

Creating a table with the columns required to calculate TF-IDF and putting it into the local.

hive> create table user_db.grouped_users_posts as select owneruserid as a, body as b, SUM(score) as c from user_db.stackdata_analysis group by owneruserid,body;

hive> INSERT OVERWRITE LOCAL DIRECTORY '/home/hduser/tfidfdata' ROW FORMAT DELIMITED FIELDS TERMINATED BY ','

select owneruserid, body from user_db.stackdata_analysis where owneruserid in (select id from user_db.grouped_users_posts);

The MapReduce program needs the input file to be separated by space rather than comma. Therefore, replacing the comma with spaces and then moving the file into a folder in the local from HDFS.

- > cd tfidfdata > sed 's/,/ /g' 000000 0 > inputfile
- > hadoop fs -mkdir /mappred
- > hadoop fs -put inputfile /mappred

Now, the Implementation of TF-IDF in Hadoop using Python will be in three phases using three mappers and three reducers. Using the following commands to run TF-IDF on the cluster.

- > hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar -file /home/hduser/MAPPER_01.py /home/hduser/REDUCER_01.py -mapper "python MAPPER_01.py" -reducer "python REDUCER_01.py" -input hdfs://cluster-3299-m/mapinput/inputfile -output hdfs://cluster-3299-m/mappred1
- > hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar -file /home/hduser/MAPPER_02.py /home/hduser/REDUCER_02.py -mapper "python MAPPER_02.py" -reducer "python REDUCER_02.py" -input hdfs://cluster-3299-m/mappred1/part-00000 hdfs://cluster-3299-m/mappred1/part-00001 hdfs://cluster-3299-m/mappred1/part-00002 hdfs://cluster-3299-m/mappred1/part-00004 output hdfs://cluster-3299-m/mappred2
- > hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar -file /home/hduser/MAPPER_03.py /home/hduser/REDUCER_03.py -mapper "python MAPPER_03.py" -reducer "python REDUCER_03.py" -input hdfs://cluster-3299-m/mappred2/part-00000 hdfs://cluster-3299-m/mappred2/part-00001 hdfs://cluster-3299-m/mappred2/part-00002 hdfs://cluster-3299-m/mappred2/part-00004 output hdfs://cluster-3299-m/mappredf

Using the hadoop fs -getmerge command to merge the output files into a single CSV file (tfidfout.csv). Now, replacing the spaces and saving the file into another CSV file(tfidfout1.csv).

> sed -e 's/\s/,/g' tfidfout.csv > tfidfout1.csv

Thereafter, creating an external table in HIVE and loading the CSV file into the table.

hive> create external table if not exists TFIDF_data2 (Term String, Id int, tfidf float)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';

hive> load data local inpath 'tfidfout1.csv' overwrite into table TFIDF_data2;

Finally, running the following query to calculate the per-user TF-IDF of the top 10 terms for each of the top 10 users.

hive> SELECT *
FROM (
SELECT ROW_NUMBER()
OVER(PARTITION BY Id
ORDER BY tfidf DESC) AS TfidfRank, *
FROM TfIDF_data2) n
WHERE TfidfRank IN (1,2,3,4,5,6,7,8,9,10);

- To conclude, I have used all the 3 technologies for the following tasks:
 - 1. HDFS: Load and merge the data
 - 2. PIG: Clean the data
 - 3. HIVE: Query the data and calculate TF-IDF

My concept behind using all the 3 technologies for various tasks was simply to get use to all the 3 platforms irrespective of the advantageous of one platform over the others and thereby get good hands-on!

5. REFERENCES:

- 1. https://data.stackexchange.com/stackoverflow/query/new
- 2. https://www.guru99.com/file-permissions.html
- 3. https://pig.apache.org/docs/r0.17.0/api/org/apache/pig/piggybank/storage/CSVExcelStorage.html
- 4. https://www.geeksforgeeks.org/tf-idf-model-for-page-ranking/
- 5. https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.ht ml
- 6. https://www.projectpro.io/article/mapreduce-vs-pig-vs-hive/163