高等数学A练习题目

一、选择题

1. 已知空间两点 $P_1(4,3,2)$ 和 $P_2(3,1,4)$,则向量 $\overrightarrow{P_1P_2}$ 的模为【 】

B. **5**

 $C. \quad \sqrt{6}$

D. 9

2. 直线 $L: \frac{x+1}{2} = \frac{y+2}{5} = \frac{z-3}{3}$ 与平面 $\Pi: x+2y-4z+3=0$ 的位置关系是【 】

A. L在 Π 上 B. L垂直于 Π C. L平行于 Π D. L与 Π 斜交

3. 设 $z = xy + e^x y^2$, 则 dz(0,1) =【 】

A. 2dx - 2dy B. 2dx + 2dy C. -2dx + 2dy D. -2dx - 2dy

4. 设 f(x+az, y+bz) = 0,则 $a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} =$ 【 】

A. 0

B. 1

C. -1 D. 2ab

5. 设D是xOy面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域, D_1 是D在第一象限部

分,则 $\iint_{\mathbb{R}} (xy + \cos x \sin y) dxdy = \mathbb{I}$

A. $2\iint \cos x \sin y dx dy$

B. $2\iint_{D_1} xy dx dy$

C. $4\iint_{\mathbb{R}} (xy + \cos x \sin y) \cos x \sin y dxdy$

6. 设 f(x, y, z) 连续, Ω 是三个坐标平面及平面 x + y + z = 1 所围成的空间闭区域,

将 $\iiint_{\Omega} f(x, y, z) dv$ 化为三次积分,正确的是【 】

A. $\int_0^1 dx \int_0^1 dy \int_0^1 f(x, y, z) dz$

B. $\int_{0}^{1} dx \int_{0}^{1} dy \int_{0}^{1-x-y} f(x, y, z) dz$

C. $\int_0^1 dx \int_0^{1-y} dy \int_0^{1-x-y} f(x, y, z) dz$ D. $\int_0^1 dx \int_0^{1-x} dy \int_0^{1-x-y} f(x, y, z) dz$

7. 设L是自原点O(0,0),经A(2,0)到B(2,2)的有向折线,则 $\int_L xy^2 \mathrm{d}x + y(x-y) \mathrm{d}y =$ 【 】

A. $\frac{8}{3}$

B. 4

C. $-\frac{8}{3}$ D. $\frac{4}{3}$

- A. $2\pi a^2$
- $B 4\pi a^2$
- C. $4\pi a^3$
- D. πa^5

9. 设 $f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1+x^2, & 0 \le x < \pi, \end{cases}$ f(x) 的周期为 2π ,则 f(x) 的傅里叶级数在 $x = \pi$ 处收敛于【 】

- A. $1 + \pi^2$ B. $\frac{1 + \pi^2}{2}$ C. $\frac{\pi^2}{2}$

10.关于级数 $\sum_{n}^{\infty} \frac{(-1)^n}{n^p}$, 正确的说法是【 】

A. p > 1时条件收敛

- B. 0 时条件收敛
- C. **0** < *p* ≤ 1 时绝对收敛
- D. 0 < *p* ≤1 时发散

二、判断题

-) 1. 在空间直角坐标系中,方程 $x^2 + y^2 = 4$ 表示一个圆.
-) 2. 若函数 z = f(x, y) 在点 (x_0, y_0) 处的一阶偏导数连续,则在该点可微.
-)3. 若 f(x, y) 在有界闭区域 D 上连续,则 $\iint_{\mathbb{R}} k f(x, y) d\sigma = k \iint_{\mathbb{R}} f(x, y) d\sigma$.
-) 4. 设 L 是圆周 $x^2 + y^2 = a^2(a > 0)$, 则 $\oint_L (x^2 + y^2) ds = a^2 \oint_L ds = 2\pi a^3$.
- () 5. 若 $\lim_{n\to\infty} u_n = 0$,则级数 $\sum_{n=0}^{\infty} u_n$ 收敛.

三、填空题

1.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{2 - \sqrt{xy + 4}}{xy} = \underline{\qquad}.$$

2. 函数 $f(x, y) = x^2 + 2y^2$ 在点 (0,1) 处的方向导数的最大值为______.

3. 交换积分次序
$$\int_0^1 dx \int_0^{x^2} f(x, y) dy + \int_1^3 dx \int_0^{\frac{3-x}{2}} f(x, y) dy = \underline{\qquad}$$
.

4. 若曲线积分 $\int_{L} \frac{x dx - ay dy}{x^2 + y^2 - 1}$ 在区域 $D = \{(x, y) | x^2 + y^2 < 1\}$ 内与路径无关,则 $a = \underline{\hspace{1cm}}$.

四、计算题

1. 求过点(1,1,1)且垂直于两平面x-y+z=7和3x+2y-12z+5=0的平面方程.

3. 计算
$$\iint_{D} \frac{y}{x} dx dy$$
, 其中 D 为 $y = 2x$, $y = x$, $x = 4$, $x = 2$ 所围成的闭区域.

4. 计算
$$\iint_{\Omega} (x^2 + y^2) dv$$
, 其中 Ω 是由抛物面 $x^2 + y^2 = 2z$ 及平面 $z = 2$ 所围成的闭区域.

5. 计算
$$\int_L (x^2 - y) dx + (y^2 - x) dy$$
, 其中 L 是沿逆时针方向以原点为圆心, a 为半径的上半圆周.

6. 将函数
$$f(x) = \frac{1}{5-x}$$
 展开成 $(x-2)$ 的幂级数.

7. 计算
$$\iint_{\Sigma} xz dS$$
, 其中 Σ 是平面 $x+y+z=1$ 在第一卦限的部分.

五、应用题

某工厂生产产品 A 需用两种原料,其价格分别为 2 万元/千克和 1 万元/千克. 当这两种原料的投入量分别为 x 千克和 y 千克时,可生产产品 z 千克,且 $z=20-x^2+10x-2y^2+5y$. 若产品 A 价格为 5 万元/千克,试确定投入量,使利润最大.