RE-IDENTIFICAÇÃO DE PESSOAS EM DIFERENTES DOMÍNIOS

Motivação

Objetivos

Treinar redes especialistas e comparar seus resultados com o estado da arte

Resolver o problema de cálculo de tempo de fila para a CyberLabs

Avaliar o potencial de técnicas de adaptação de domínio

Histórico de Métodos

- [1] HUANG, T.; RUSSELL, S. Object identication in a bayesian context. In: ISCAI, 1997.
- [2] ZAJDEL, W.; ZIVKOVIC, Z.; KROSE, B. J. A. Keeping track of humans: Have i seen this person before? In: ICRA,2005
- [3] GHEISSARI, N.; SEBASTIAN, T. B.; HARTLEY, R. Person reidentication using spatiotemporal appearance. In: CVPR, 2006
- [4] FARENZENA, M.; BAZZANI, L.; Person reidentication by symmetry-driven accumulation of local features. In: CVPR, 2010
- [5] LI, W.; ZHAO, R.; XIAO, T.; WANG, X. Deepreid: Deep Iter pairing neural network for person re-identication. In: CVPR, 2014.
- [6] YI, D.; LEI, Z.; LIAO, S.; LI, S. Z. Deep metric learning for person re-identication. In: ICPR 2014.

Bases de dados Viper

- Viper = Viewpoint Invariant Pedestrian Recognition
- 1264 imagens
- 632 pessoas distintas
- 2 câmeras móveis
- Resolução média: 48 × 128

Bases de dados CUHK03

- CUHK03 = Chinese University of Hong-Kong v03
- 13164 imagens
- 1360 pessoas distintas
- 6 câmeras distintas, mas imagens anotadas considerando classificação binária
- Cada pessoa aparece em apenas 2 câmeras
- Resolução média: 100 × 300

Bases de dados MARKET1501

- Base criada em um mercado
- 32217 imagens
- 1501 pessoas distintas
- 6 câmeras distintas
- Resolução média: 64 × 128

Criação da base de dados CyberQueue

Bases de dados CyberQueue - Características

- CyberQueue é a base criada para calcular o tempo de fila para a CyberLabs
- 117114 imagens
- 6261 pessoas distintas
- 3 câmeras distintas
- Cada pessoa aparece em apenas 2 câmeras
- Resolução média: 150 × 300

Reconhecimento facial x Re-identificação de pessoas

Metodologia de treinamento para avaliação no mesmo domínio

- Resnet 50
- Triplet loss
- Otimizador Adam
- Fine Tunning da ImageNet
- Batch size: 64

Resultados na base de dados Viper

Viper	Top-1	Top-5	Top-10
TMA	48.2%	-	87.7%
NFST	51.2%	82.1%	90.5%
SCSP	53.5%	82.6%	91.5%
SSDAL+XQDA	43.5%	82.6%	81.5%
LOMO+XQDA	40.0%	-	80.5%
MLAPG	40.7%	82.3%	-
GOG+XQDA	49.7%	79.7%	88.7%
TCP	47.8%	74.7%	84.8%
Spindle	53.8%	74.1%	83.2%
Nosso	34.3%	51.4%	60.0%

Resultados na base de dados Market1501

Market 1501	Top-1	mAP
Context	86.8%	66.7%
JLML	89.7%	74.5%
LSRO	88.4%	76.1%
SSM	88.2%	76.2%
DML	91.7%	77.1%
DPFL	92.2%	80.4%
MLFN	92.3%	82.4 %
Nosso	79.1%	$\boldsymbol{61.8\%}$

Resultados na base de dados CUHK03

CUHK03	Top-1
DGD	75.3%
Spindle	88.5%
HP-net	91.8%
LSRO	84.6%
SVDNet	81.8%
DPFL	82.0%
MLFN	82.8%
Nosso	81.4%

[13] LIU, X.; ZHAO, H.; TIAN, M.; SHENG, L.; SHAO, J.; YI, S.; YAN, J.; WANG, X. Hydraplusnet: Attentive deep features for pedestrian analysis. In: ICCV, 2017.

Resultados na base de dados CyberQueue

		Ti	Tipo de comparação				
Base de dados	CMC	Allshots	CUHK03	Market1501	mAP		
	Top-1	18.9%	38.2%	34.5%	31.2%		
CyberQueue	Top-5	31.2%	60.4%	50.6%	X		
	Top-10	38.1%	67.4%	57.7%	X		

Método de aprendizado por etapas

- 1. O treinamento se inicia com um batch pequeno (menor complexidade)
- 2. Ao apresentar um aprendizado para essa complexidade, aumenta-se o tamanho do batch
- 3. Repete-se o processo até que seja alcançado um aprendizado complexo

Método 1 – Fine Tunning

		Domínio Alvo				
Domínio fonte	\mathbf{CMC}	CUHK03	Market1501	Viper	CyberQueue	
	Top - 1	X	31.8%	24.8%	9.8%	
CUHK03	Top - 5	X	48.7%	53.0%	18.7%	
	Top - 10	X	57.3%	66.5%	24.8%	
	Top - 1	53.7%	X	22.3%	13.2%	
Market 1501	Top - 5	67.4%	X	50.6%	23.7%	
	Top - 10	74.8%	X	63.1%	30.3%	
	Top - 1	56.7%	35.1%	X	15.5%	
Viper	Top - 5	71.8%	52.0%	X	26.2%	
	Top - 10	78.6%	60.5%	X	33.0%	
CyberQueue	Top - 1	38.8%	23.2%	12.7%	X	
	Top - 5	55.2%	40.7%	32.8%	X	
	Top - 10	64.7%	48.1%	46.0%	X	

Método 2 – Transferência direta

		Domínio Alvo			
Domínio fonte	CMC	CUHK03	Market1501	Viper	CyberQueue
	Top - 1	X	3.7%	10.1%	0.1%
CUHK03	Top - 5	X	8.1%	22.5%	0.4%
	Top - 10	X	11.3%	29.0%	0.5%
	Top - 1	5.2%	X	12.5%	0.2%
${ m Market 1501}$	Top - 5	10.2%	X	25.0%	0.5%
	Top - 10	14.3%	X	33.1%	0.8%
	Top - 1	4.3%	34.3%	X	0.3%
Viper	Top - 5	9.2%	51.4%	X	0.6%
	Top - 10	14.1%	60.0%	X	0.9%
CyberQueue	Top - 1	0.3%	0.5%	1.1%	X
	Top - 5	1.1%	1.4%	4.0%	X
	Top - 10	1.6%	2.1%	6.6%	X

Método 3 – Pseudo Rótulos – Resultado dos agrupamentos

	Domínio Alvo							
Domínio fonte	CUHK03	CUHK03 Market1501 Viper CyberQueue						
CUHK03	X	1.50%	10.13%	0.22%				
Market1501	2.75%	X	10.28%	0.23%				
Viper	3.40%	4.50%	X	0.23%				
CyberQueue	0.25%	0.12%	1.42%	X				

Método 3 – Pseudo Rótulos – Sentindo semântico

Método 3 – Pseudo Rótulos - Resultados

		Domínio Alvo			
Domínio fonte	CMC	CUHK03	Market1501	Viper	CyberQueue
	Top - 1	X	5.7%	10.1%	0.1%
CUHK03	Top - 5	X	11.9%	22.5%	0.3%
	Top - 10	X	16.4%	29.0%	0.4%
	Top - 1	6.5%	X	11.4%	0.2%
Market1501	Top - 5	11.8%	X	22.5%	0.5%
	Top - 10	16.9%	X	33.3%	0.8%
	Top - 1	2.0%	14.6%	X	0.2%
Viper	Top - 5	5.5%	26.5%	X	0.4%
	Top - 10	8.9%	33.9%	X	0.7%
CyberQueue	Top - 1	0.3%	0.3%	1.1%	X
	Top - 5	1.1%	1.0%	4.0%	X
	Top - 10	1.6%	1.6%	6.6%	X

Método 4 – Uso de GAN cíclica para pré-processamento de dados Exemplos

Método 4 – Uso de GAN cíclica para pré-processamento de dados Resultados

		Domínio Alvo			
Domínio fonte	CMC	CUHK03	Market1501	Viper	CyberQueue
	Top - 1	X	6.2%	11.6%	0.7%
CUHK03	Top - 5	X	12.8%	25.5%	1.8%
	Top - 10	X	17.4%	34.7%	2.8%
	Top - 1	13.9%	X	9.8%	0.3%
Market 1501	Top - 5	23.1%	X	26.9%	0.8%
	Top - 10	29.8%	X	36.4%	1.3%
	Top - 1	9.5%	21.8%	X	0.4%
Viper	Top - 5	18.1%	36.9%	X	0.9%
	Top - 10	24.6%	45.1%	X	1.3%
CyberQueue	Top - 1	0.3%	1.1%	1.7%	X
	Top - 5	1.1%	2.7%	7.3%	X
	Top - 10	1.6%	3.8%	9.8%	X

Comparação dos métodos de adaptação de domínio

		Target domain				
Source domain	Método	CUHK03	Market1501	Viper	CyberQueue	
	1	X	31.8%	24.8%	9.8%	
CUHK03	2	X	3.7%	10.1%	0.3%	
COHNOS	3	X	5.7%	22.6%	0.1%	
	4	X	6.2%	11.6%	0.7%	
	1	53.7%	X	22.3%	13.2%	
Market1501	2	5.2%	X	12.5%	0.2%	
Wiai ket 1501	3	6.5%	X	11.4%	0.2%	
	4	13.9%	X	9.8%	0.3%	
	1	56.7%	35.1%	X	15.5%	
Vinor	2	4.3%	34.3%	X	0.3%	
Viper	3	2.0%	14.6%	X	0.2%	
	4	4.3%	21.8%	X	0.4%	
	1	46.1%	23.2%	12.7%	X	
Carlo an Orrano	2	0.3%	0.3%	1.3%	X	
CyberQueue	3	0.7%	0.3%	3.0%	X	
	4	1.3%	1.1%	1.7%	X	

Conclusões

- As arquiteturas modularizadas mostraram um grande potencial para resolver o desafio em questão
- Mesmo com baixa performance de resultado, a rede treinada na base de dados CyberQueue já possui valor para aplicações práticas
- A técnica de pseudo rótulos reduz o custo computacional da adaptação de domínio, no entanto para aplicações reais seria interessante iniciar esse método com um percentual dos rótulos anotados à mão
- As GANs apresentaram resultados interessantes de adaptação de domínio, contudo alteraram a morfologia da imagem da pessoa

Trabalhos Futuros

- Melhorar a baseline do trabalho explorando o potencial das arquiteturas modularizadas
- Experimentar mais métodos de aumento de dados.
- Estudar uma maneira de incrementar a GAN cíclica para preservar mais a imagem da pessoa.
- Experimentar uma combinação das técnicas de adaptação de domínio utilizadas.
 Por exemplo, utilizar a técnica de pseudo-rótulos após o uso da GAN para préprocessamento.

Obrigado!