DeepKriging on the Sphere: Baseline vs. Spherical Variants

Yue Yu[†]

1/16

Motivation & Goals

- **Goal:** Apply DeepKriging to processes on the sphere S^2 and compare:
 - Baseline Euclidean DeepKriging (lat-lon treated as flat 2D).
 - Option A: **Spherical** DeepKriging with great-circle RBFs.
 - Option B: **Spherical CNN** (Chebyshev graph convolutions).
- Why: Euclidean distances distort neighborhoods on the globe (poles/dateline).

Research Meeting

Baseline Euclidean DeepKriging — Overview

Idea: Treat (lat, lon) as flat 2D coordinates; build Euclidean RBF features and learn a nonlinear predictor with an MLP (DeepKriging).

Pipeline:

- **①** Sample *N* sites uniformly on S^2 ; simulate $y = f + \varepsilon$ via truncated spherical harmonics with Matérn-like spectrum.
- ② Normalize $(lat, lon) \mapsto [-1, 1]^2$; place *multi-resolution* grid centers in lat–lon.
- Ompute Euclidean distances to centers; map to compactly supported Wendland C⁴ features:

$$\phi(r) = \begin{cases} (1-r)^6 \frac{35r^2 + 18r + 3}{3}, & 0 \le r \le 1, \\ 0, & r > 1, \end{cases} \qquad r = \frac{\|x - c\|_2}{\theta}.$$

4 Concatenate [intercept $| \phi]$ and fit an MLP head 50-50-50 ightarrow 1 with MSF.

Research Meeting September 10th, 2025 3 / 16

Baseline Euclidean DeepKriging — Feature Engineering

Centers (multi-res): Cartesian product grids per level (e.g., 9×18 , 18×36).

Range selection (auto- θ).

- Per level ℓ : compute median nearest-neighbor distance among centers; set $\theta_{\ell} = \kappa \cdot \text{medianNN}_{\ell}$.
- Coverage guard: If any site activates $< m_{\min}$ bases, inflate all $\theta_{\ell} \leftarrow \gamma \, \theta_{\ell}$ iteratively.

Known limitations: Distances distort near poles; centers non-uniform in surface area measure.

Option A — Spherical DK with Great-Circle RBFs: Concept

Goal: Respect spherical geometry by replacing flat distances with *great-circle* (haversine) distances while keeping a compactly supported basis.

Centers on S^2 : Use Fibonacci (low-anisotropy) nodes per level; optionally add coarse levels to ensure global coverage.

Distances: For site x and center c with spherical angle $\alpha(x,c)$:

$$d_{\rm gc}(x,c) = R \cdot \alpha(x,c), \qquad \alpha = 2 \arcsin \sqrt{\sin^2 \frac{\Delta \varphi}{2} + \cos \varphi_x \cos \varphi_c \sin^2 \frac{\Delta \lambda}{2}}.$$

Kernel: Same Wendland C^4 with $r = d_{gc}/\theta$.

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Option A — GC-RBFs: Construction & Tuning

Per-level range (auto- θ):

- For level ℓ with centers $\{c\}$, compute center–center geodesic distances and pick $\theta_{\ell} = \kappa \cdot \text{medianNN}_{\ell}$.
- Coverage guard: ensure each sample activates at least m_{min} bases by multiplicative inflation.

Design matrix: $\Phi_{ij} = \phi(d_{gc}(x_i, c_j)/\theta_{\ell(j)})$; concatenate intercept/covariates if any.

Head & loss. Same $50\text{-}50\text{-}50 \to 1$ MLP, MSE objective.

Advantages:

- Geometry-aware neighborhoods; compact support gives sparsity and local adaptivity.
- Maintains interpretability of range/levels similar to classical kriging practice.

Research Meeting September 10th, 2025 6 / 16

Option A — Practical Workflow

Workflow.

- Pick levels (e.g., 64, 256 centers) via Fibonacci nodes; precompute pairwise center geodesic distances.
- ② Auto- θ : $\theta_{\ell} \leftarrow \kappa \cdot \text{medianNN}_{\ell}$; enforce coverage.
- **3** Build Φ on train/val/test; train MLP head (Adam, early stopping).
- **1** Inspect coverage stats, residual maps, and sensitivity to κ , m_{\min} , and level sets.

Research Meeting

Option B — Spherical CNN (Chebyshev) on a kNN Sphere Graph

Graph: Build geodesic k-NN graph: adjacency W from great-circle distances; symmetric normalization.

Laplacian: $L = I - D^{-1/2}WD^{-1/2}$; estimate $\lambda_{max}(L)$ (power iteration); rescale

$$ilde{L} = rac{2}{\lambda_{\mathsf{max}}} \, L - I \, \in [-1, 1]$$

for Chebyshev stability.

Chebyshev conv (order K).

$$T_0X = X$$
, $T_1X = \tilde{L}X$, $T_kX = 2\tilde{L}(T_{k-1}X) - T_{k-2}X$.

Feature map: $Z = \sum_{k=0}^{K-1} T_k X \Theta_k$.

Research Meeting

Option B — Inputs, Head, and Stabilization

Inputs X: Positional encodings $[1, \sin \varphi, \cos \varphi, \sin \lambda, \cos \lambda]$ and (optionally) low-order harmonics to inject global structure.

Backbone: Two ChebConv layers (orders K), each with LayerNorm + LeakyReLU.

Head: Concatenate skip $([Z \mid X]) \rightarrow \mathsf{MLP}\ 50\text{-}50\text{-}50 \rightarrow 1$; optionally add linear skip XW to output. Train on z-scored y.

Why this helps:

- Rescaling by λ_{max} prevents spectral shrinkage/explosion.
- Skip connections and LayerNorm mitigate dead filters; inputs carry large-scale modes.

Option B — Training Recipe & Diagnostics

Recipe:

- **1** Choose $k \in [12, 20]$, $K \in [3, 6]$, channels per layer $\in [16, 64]$.
- ② Build graph/Laplacian, compute λ_{max} , construct \tilde{L} .
- Full-batch training (batch= N) for graph ops; Adam with EarlyStopping & ReduceLROnPlateau.

Diagnostics:

- Conv1 feature std (channels) ⇒ check for collapse.
- Ablate k, K, channels; visualize residuals vs. latitude/longitude.

10 / 16

Data & Simulation Setup

- Sample N locations uniformly on $S^2 \Rightarrow (lat, lon)$.
- Simulate a smooth isotropic field using a truncated spherical-harmonic expansion:

$$\begin{split} f(\theta,\phi) &= \sum_{\ell=0}^{L_{\text{max}}} \sum_{m=-\ell}^{\ell} w_{\ell m} Y_{\ell m}(\theta,\phi), \\ \mathbb{E}[w_{\ell m}^2] &= C_{\ell}, \quad C_{\ell} = \sigma_f^2 \big(1 + \alpha \, \ell(\ell+1)\big)^{-\nu}. \end{split}$$

- Add noise: $y = f + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma_n^2)$.
- Split: train/val/test via train_test_split;
 Evaluation Metrics: RMSE/MAE (same as used in Chen et al. (2020)).

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q ②

Quantitative Snapshot (current runs)

Model	RMSE (test)	MAE (test)
EuDK-RBF (Baseline)	≈ 0.250	≈ 0.164
SphDK-GC-RBF (Option A)	≈ 0.183	≈ 0.143
SphDK-SCNN (Option B)	≈ 1.497	≈ 1.165

- EuDK baseline performs well despite geometry mismatch;
- Option A and B are *work-in-progress*: Option A expected to improve with auto- θ tuning and coarser levels;
- Option B improved with Laplacian rescaling, richer inputs, and normalization, but still under baseline.

12 / 16

Representative Plots

Baseline: Euclidean DeepKriging

Option A: (Spherical DK with Great-Circle RBFs)

Option B: (Spherical CNN—Chebyshev Graph Convolutions)

Research Meeting September 10th, 2025 13 / 16

Takeaways & Next Steps

Takeaways

- Baseline EuDK is a strong yardstick; local structure dominates in this simulation.
- Geometry-aware methods need careful feature coverage (A) and spectral scaling (B).

Next Steps

- Option A: add coarse level(s) (e.g., 1, 16, 64, 256), increase θ multiplier, target min-activation \geq 12.
- Option B: larger k, K, channels; include harmonics up to $L_{\text{feat}} = 6-8$; mutual-kNN; mild dropout/L2.
- Benchmark against real geospatial datasets; ablate hyperparameters and report Cls.

Research Meeting September 10th, 2025 14 / 16

Questions?

Thank you!

References I

W. Chen, Y. Li, B. J. Reich, and Y. Sun. Deepkriging: Spatially dependent deep neural networks for spatial prediction. *arXiv* preprint *arXiv*:2007.11972, 2020.