PT1000 Messwandler

\triangle

Wichtiger Hinweis!

Lesen Sie diese Gebrauchsanleitung, bevor Sie diesen PT1000 Messwandler-Bausatz in Betrieb nehmen. Bewahren Sie diese Gebrauchsanleitung an einem für alle Benutzer jederzeit zugänglichen Platz auf.

Sicherheitshinweise:

Bei allen Geräten, die zu ihrem Betrieb eine elektrische Spannung benötigen, müssen die gültigen VDE-Vorschriften beachtet werden. Besonders relevant sind für diesen PT1000 Messwandler-Bausatz die VDE-Richtlinien VDE 0100, VDE 0550/0551, VDE 0700, VDE 0711 und VDE 0860. Bitte beachten Sie auch nachfolgende Sicherheitshinweise:

- Baugruppen und Bauteile gehören nicht in Kinderhände!
- Beim Umgang mit Produkten, die mit elektrischer Spannung in Berührung kommen, müssen die gültigen VDE-Vorschriften beachtet werden.
- Bauteile, Baugruppen oder Geräte, dürfen nur in Betrieb genommen werden, wenn sie vorher berührungssicher in ein Gehäuse eingebaut wurden. Während des Einbaus müssen diese vom Stromnetz getrennt sein.
- Geräte, die mit einer Versorgungsspannung größer als 24 V- betrieben werden, dürfen nur von einer fachkundigen Person angeschlossen werden.
- In Schulen, Ausbildungseinrichtungen, Hobby- und Selbsthilfewerkstätten ist das Betreiben von Baugruppen durch geschultes Personal verantwortlich zu überwachen.
- Betreiben Sie die Baugruppe nicht in einer Umgebung, in welcher brennbare Gase, Dämpfe oder Stäube vorhanden sind oder vorhanden sein können.
- Falls das Gerät repariert werden muss, dürfen nur Original-Ersatzteile verwendet werden! Die Verwendung abweichender Ersatzteile kann zu ernsthaften Sach- und Personenschäden führen! Eine Reparatur des Gerätes darf nur vom Elektrofachmann durchgeführt werden!

Bestimmungsgemäße Verwendung:

Der PT1000 Messwandler -Bausatz ist als Experimentier- und Lernplatine entwickelt worden. Er ist nicht geeignet, Steuerungsaufgaben im produktiven Betrieb zu übernehmen. Der PT1000 Messwandler ist für den Gebrauch in trockenen und sauberen Räumen bestimmt. Ein anderer Einsatz als angegeben ist nicht zulässig!

Der nicht bestimmungsgemäße Einsatz dieses Produktes kann dieses beschädigen, was mit Gefahren, wie z.B. Kurzschluss, Brand, elektrischer Schlag etc. verbunden ist. Das gesamte Produkt darf nicht geändert bzw. umgebaut werden! Auf keinen Fall darf 230 V~ Netzspannung angeschlossen werden. Es besteht dann Lebensgefahr.

Für alle Personen- und Sachschäden, die aus nicht bestimmungsgemäßer Verwendung entstehen, ist nicht der Hersteller, sondern der Betreiber verantwortlich. Bitte beachten Sie, dass Bedien- und/oder Anschlussfehler außerhalb unseres Einflussbereiches liegen. Verständlicherweise können wir für Schäden, die daraus entstehen, keinerlei Haftung übernehmen.

Montage der Bauelemente

PT1000 Messwandler-Bausatz

Der PT1000 Messwandler-Bausatz benötigt für seine Funktionalität nur wenige Bauelemente wie Widerstände, Elko, Kondensatoren, Diode, IC und Anschlussklemmen. Aus diesem Grunde wurde bei der Entwicklung des Platinenlayouts darauf Wert gelegt, dass eine leichte und schnelle Montage der Bauteile ermöglicht wird und bestmögliche Übersichtlichkeit gegeben ist, um so die universellen Anwendungsmöglichkeiten des Bausatzes zu erhöhen.

Wir empfehlen deshalb den Aufbau der Platine genauso vorzunehmen, wie er nachfolgend beschrieben wird.

Bestückungsplan

Stück	Bauteil	Wert
1	R1	1,24 kΩ
1	R2	30 kΩ
5	R3 – R7	10 kΩ
1	R8	4,7 kΩ
1	R9	470 Ω
1	C1	220 µF
1	D1 – D3	1N 4148
4	C2, C3, C6, C8	100 nF
2	C4, C5	100 μF
2	TR1, TR2	Trimmpoti 50 kΩ
2	X1, X3	Anschlussklemme 2-polig
2	X2, X4	Anschlussklemme 3-polig
1	IC1	Spannungsregler 7805
1	IC2	TLC2264
1	IC3	LM317
1	L1	Spule 10 µH
1		Platine

Stückliste

Bevor Sie mit der eigentlichen Montage beginnen, überprüfen Sie zuerst anhand der oben aufgeführten Stückliste, ob alle Bauteile im Lieferumfang enthalten sind. Nach der Überprüfung der Stückliste sollten Sie zunächst mit der Montage derjenigen Bauteile beginnen, die die niedrigsten Bauformen besitzen. Demzufolge sollte mit den Widerständen, und Dioden begonnen werden. Danach fahren Sie mit der Integrierten Schaltung (IC), Kondensatoren und dem Elektrolyt-Kondensator (Elko) fort. Zuletzt sollten die beiden 2-poligen Anschlussklemmen verlötet werden.

Widerstände:

Um mit der Montage der Widerstände beginnen zu können, muss zunächst ermittelt werden, welchen Wert jeder einzelne Widerstand besitzt, um ihn so anschließend an der richtigen Stelle auf der Platine platzieren zu können. Zur Ermittlung des Widerstandswertes kann der auf dem Widerstand aufgedruckter Farbcode dienen (siehe Tabelle) oder der Wert des Widerstandes kann mit Hilfe eines Vielfachmessgerätes mit integriertem Ohmmeter messtechnisch bestimmt werden. Zum Ablesen des Farbcodes wird der Widerstand so gehalten, dass sich der goldfarbene Toleranzring auf der rechten Seite des Widerstandskörpers befindet. Die Farbringe werden dann von links nach rechts abgelesen.

Bezeichnung	Wert	Ring 1	Ring 2	Ring 3	Ring 4	Ring 5
R1	1,24 kΩ	braun	rot	gelb	braun	braun
R2	30 kΩ	orange	schwarz	schwarz	rot	braun
R3 – R7	10 kΩ	braun	schwarz	schwarz	rot	braun
R8	4,7 kΩ	gelb	violett	schwarz	braun	braun
R9	470 Ω	gelb	violett	schwarz	schwarz	braun

Nach der Ermittlung des Widerstandswertes sollten die Anschlussdrähte des Widerstandes entsprechend dem Rastermaß rechtwinklig abgebogen und in die vorgesehenen Bohrungen auf der Platine (siehe Bestückungsplan) gesteckt werden. Damit die Widerstände beim Umdrehen der Platine nicht herausfallen können, biegen Sie die Anschlussdrähte leicht auseinander und verlöten diese an den Lötpunkten mit den Leiterbahnen auf der Rückseite der Platine. Anschließend sollten die überstehenden Anschlussdrähte abgeschnitten werden.

Spulen (Induktivitäten):

Die in diesem Bausatz verwendete Widerstände und Spulen sind wegen ihrer nahezu identischen Bauform nur durch den aufgedruckten Farbcode, welche der unteren Tabelle zu entnehmen ist, eindeutig zu unterscheiden.

Bezeichnung	Wert	Ring 1	Ring 2	Ring 3	Ring 4
L1	10 μΗ	braun	schwarz	schwarz	silber

Nach der Identifizierung der Spulen sollten die Anschlussdrähte dieser entsprechend dem Rastermaß rechtwinklig abgebogen und in die vorgesehenen Bohrungen auf der Platine (siehe Bestückungsplan) gesteckt werden. Damit die Spulen beim Umdrehen der Platine nicht herausfallen können, biegen Sie die Anschlussdrähte leicht auseinander und verlöten diese an den Lötpunkten mit den Leiterbahnen auf der Rückseite der Platine. Anschließend sollten die überstehenden Anschlussdrähte abgeschnitten werden.

Diode:

Nachdem die Widerstände auf der Platine platziert und verlötet wurden, kann mit dem Einbau der Diode begonnen werden. Im Gegensatz zu den Widerständen ist der Typ der Diode auf deren Gehäuse aufgedruckt. Für die Montage der Diode ist es ebenso ratsam wie für die Widerstände, deren Anschlussdrähte entsprechend dem Rastermaß rechtwinklig abzubiegen und in die für die Diode vorgesehenen Bohrungen zu stecken. Beachten Sie dabei unbedingt die Polarität der Diode (grauer Kathodenstrich der Diode muss mit dem Strich des Bestückungsdrucks auf der Platine übereinstimmen).

Nachdem Sie die Anschlussdrähte der Diode auf der Unterseite der Platine leicht auseinander gebogen haben, um das Durchrutschen beim Umdrehen der Platine zu vermeiden, können Sie mit dem Verlöten beginnen. Die überstehenden Anschlussdrähte sollten nach dem Verlöten gekürzt werden.

Integrierte Schaltungen (ICs):

Auch bei der Montage der ICs ist unbedingt auf die Pinbelegung zu achten, da die ICs bei falschem Einbau beschädigt werden. Die Einkerbung auf der Oberseite des ICs muss bei der Montage mit der Einkerbung des IC-Sockels und dem Bestückungsdruck der Platine übereinstimmen.

Kondensatoren und Elektrolyt-Kondensatoren (Elkos):

Ähnlich wie bei den Dioden ist der Wert der Kondensatoren bzw. Elektrolyt-Kondensatoren auf dem Bauteil aufgedruckt. Im Gegensatz zu Kondensatoren ist bei Elektrolyt-Kondensatoren unbedingt auf deren Polung zu achten.

Je nach Hersteller besitzen Elektrolyt-Kondensatoren unterschiedliche Kennzeichnungen ihrer Polarität. Einige Hersteller kennzeichnen den Pluspol mit "+", andere dagegen den Minuspol entsprechend mit "-". Bitte achten Sie darauf, dass die Polarität des Elektrolyt-Kondensators mit der Angabe der Polarität des Bestückungsdruckes auf der Platine übereinstimmt. Ebenso wie bei den zuvor montierten Bauteilen sollten die Anschlussdrähte der Kondensatoren und Elektrolyt-Kondensatoren auf der Unterseite der Platine leicht nach außen gebogen werden, damit diese Bauteile beim Umdrehen der Platine und dem anschließenden Verlöten der Anschlussdrähte nicht herausfallen. Die überstehenden Draht-enden der Bauteile sollten wie gewohnt nach dem Verlöten der Bauteile entfernt werden.

Anschlussklemmen

Die 2-poligen Anschlussklemmen und 3-poligen Anschlussklemmen sollten entsprechend des Bestückungsplanes auf der Platine positioniert und deren Anschlussstifte auf der Unterseite der Platine verlötet werden. Die Anschlussklemmen können durch seitlich angebrachte Führungsstifte aneinander gereiht werden. Bedingt durch die größere Massefläche der Leiterbahn und der Anschlussklemme muss hier die Lötstelle etwas länger als sonst aufgeheizt werden, bis das Lötzinn gut fließt und saubere Lötstellen bildet.

Vor Anschluss des PT1000 Messwandler-Bausatz an die Stromversorgung sollten Sie eine abschließende Kontrolle der Platine durchführen:

- Sind alle Lötzinnreste und abgeschnittenen Drahtenden, die Kurzschlüsse verursachen könnten, entfernt?
- Wurden alle Bauteile richtig eingesetzt (ICs)?
- Sind Elkos, Dioden und andere Bauteile richtig gepolt?

Schaltplan für den PT1000 Messwandler-Bausatz

Kurzbeschreibung des PT1000 Messwandler-Bausatz

Features:

Das PT1000 Messwandlermodul ist für den PT1000 Temperaturfühler entwickelt worden. Es erlaubt eine einfache Auswertung mit dem Mikrokontroller. Der PT1000 Messwandler Bausatz ist mit nachfolgenden Eigenschaften ausgestattet:

• Offset und Verstärkung über Spindeltrimmer einstellbar • Messausgangspannung 0...5 V- • Betriebsspannung wahlweise max. 5V- oder 12 V- /max. 50mA • Montagefähig auf DIN-Schienen • Maße (LxBxH): 82x28x25 mm

Inbetriebnahme:

Beispiel: Es soll im Temperaturbereich von 0° Celsius bis 250° Celsius gemessen werden.

- 1. Potentiometer mit einem eingestellten Wert von genau 1 k Ω (0° Celsius entspricht 1000 Ω) an Kontakt X2-2 und Kontakt X2-3 sowie eine Drahtbrücke an Kontakt X2-1 und Kontakt X2-2 anklemmen.
- 2. Das Messwandlermodul mit Betriebsspannung versorgen.
- 3. An MP2 (Messpunkt 2) mit einem Multimeter Spannung messen und dabei Trimmpotentiometer TR1(Offset) drehen bis ca. 0 Volt zu messen ist.
- 4. Jetzt Potentiometer an Kontakt X2-2 und X2-3 auf 1940 Ω einstellen (siehe Tabelle 1 (250 ° Celsius entspricht 1940 Ω).
- 5. Am Messausgang mit dem TR2 (Verstärkung) die gewünschte maximale Ausgangsspannung einstellen.

PT1000 Temperaturfühler

Tabelle 1

°C	0	1	2	3	4	5	6	7	8	9
-40	842,713	838,754	834,795	830,834	826,871	822,908	818,943	814,976	811,008	807,039
-30	882,222	878,277	874,331	870,383	866,434	862,484	858,532	854,579	850,625	846,669
-20	921,603	917,671	913,737	909,802	905,866	901,929	897,990	894,050	890,109	886,166
-10	960,861	956,941	953,019	949,097	945,173	941,247	937,321	933,394	929,465	925,535
0	1000,000	1003,907	992,182	1011,719	1015,623	1019,526	1023,427	1027,328	1031,227	1035,125
10	1039,022	1042,918	1046,813	1050,706	1054,599	1058,490	1062,380	1066,269	1070,156	1074,043
20	1077,928	1081,813	1085,696	1089,578	1093,458	1097,338	1101,216	1105,094	1108,970	1112,845
30	1116,718	1120,591	1124,463	1128,333	1132,202	1136,070	1139,937	1143,802	1147,667	1151,530
40	1155,392	1159,254	1163,113	1166,972	1170,830	1174,686	1178,541	1182,395	1186,248	1190,100
50	1193,951	1197,800	1201,648	1205,495	1209,341	1213,186	1217,030	1220,872	1224,713	1228,554
60	1232,392	1236,230	1240,067	1243,902	1247,737	1251,570	1255,402	1259,233	1263,063	1266,891
70	1270,718	1274,545	1278,370	1282,194	1286,016	1289,838	1293,658	1297,478	1301,296	1305,113
80	1308,928	1312,743	1316,556	1320,369	1324,180	1327,990	1331,799	1335,606	1339,413	1343,218
90	1347,022	1350,825	1354,627	1358,428	1362,227	1366,026	1369,823	1373,619	1377,414	1381,207
100	1385,000	1388,791	1392,582	1396,371	1400,159	1403,945	1407,731	1411,515	1415,299	1419,081
110	1422,862	1426,642	1430,420	1434,198	1437,974	1441,749	1445,523	1449,296	1453,068	1456,838
120	1460,608	1464,376	1468,143	1471,909	1475,673	1479,437	1483,199	1486,960	1490,721	1494,479
130	1498,237	1501,994	1505,749	1509,504	1513,257	1517,009	1520,759	1524,509	1528,257	1532,005
140	1535,751	1539,496	1543,240	1546,982	1550,724	1554,464	1558,203	1561,941	1565,678	1569,414
150	1573,149	1576,882	1580,614	1584,345	1588,075	1591,804	1591,804	1599,258	1602,983	1606,707
160	1610,430	1614,152	1617,872	1621,592	1625,310	1629,027	1629,027	1636,458	1640,172	1643,884
170	1647,596	1651,306	1655,015	1658,723	1662,429	1666,135	1666,135	1673,542	1677,245	1680,945
180	1684,645	1688,344	1692,041	1695,737	1699,432	1703,126	1703,126	1710,511	1714,201	1717,890
190	1721,579	1725,266	1728,951	1732,636	1736,319	1740,002	1740,002	1747,363	1751,042	1754,719
200	1758,396	1762,071	1765,746	1769,419	1773,090	1176,761	1776,761	1784,099	1787,766	1791,432
210	1795,097	1798,761	1802,424	1806,085	1809,745	1813,405	1813,405	1820,719	1824,375	1828,029
220	1831,683	1835,335	1838,986	1842,636	1846,284	1849,932	1849,932	1857,223	1860,867	1864,510
230	1868,152	1871,793	1875,432	1879,070	1882,707	1886,343	1886,343	1893,611	1897,244	1900,875
240	1904,505	1908,134	1911,762	1915,389	1919,014	1922,638	1922,638	1929,844	1933,504	1937,124
250	1940,743	1944,360	1947,976	1951,591	1955,205	1958,818	1958,818	1966,040	1969,649	1973,257

Beispiel:

-23° Celsius = 909,802 Ω