

Bibliometrics: Predicting Publication Success

Team 4: Tamanna Baig and Jon Oakley

April 18th 2019

Clemson University

Introduction

Motivation

Introduction

Preprocessing

Visualization

Classification

Results

Conclusio

Knowledge is power

- Sir Francis Bacon

Motivation

Introduction

Preprocessing

Visualization

Classification

Results

- 2.5 million scientific papers published each year¹
- Research trends
- Research funding

¹The STM Report; Fourth Edition, March 2015

Background: Bibliometrics

Introduction

Preprocessing

Visualization

Classification

Results

Background: Bibliometrics

Introduction

Visualization

CI---:6:--+:-

Results

Defining the Problem

Introduction

Preprocessing

Visualization

Classification

Result

- Given: a corpus of academic publications
- Goal: predict which papers will be "successful"
- Success Metric: citation count
- Success Definition: citation count > median citation count for that cluster
- Evaluation Metric: accuracy

Overview

Introduction

Preprocessing

Visualization

Preprocessing

Workflow

ntroduction

Preprocessing

Visualization

Classificatio

Results

Extraction, Thinning, and Meta Features

Introduction

Preprocessing

D .. II.

- Initial Corpus: 22,588
- Removed:
 - ☐ Papers after 2013
 - □ Outliers
 - ☐ Papers missing features
- Final Corpus: 4,914

Clustering

ntroduction

Preprocessing

Visualization

Classification

D. . II.

Clustering: Choosing K

Introduction

Preprocessing

Visualization

Classificatio

Danislan

Clustering: Good Clusters

ntroduction

Preprocessing

Visualization

Cluster	Count	Keywords
Clustel	Count	reywords
0	15	alice, bob, girls, programming, communication
4	106	video, videos, 3D, quality, streams, users
15	170	query, XML, search, data, databases
17	869	design, people, user, information, research
20	93	internet, TCP, network, protocol, congestion
22	60	privacy, private, data, information, awareness

Visualization

Yearly Publications

ntroduction

Prenrocessing

Visualization

Classification

Results

Author Publications

Introduction
Preprocessing

Visualization

Classificatio

Popular Publications

ntroduction

Visualization

Institution Publications

troduction

Preprocessing

Visualization

Classification

Classification

Workflow

ntroduction

Preprocessing

Visualization

Classification

Results

Random Forest

ntroductio

Preprocessin

Visualization

Classification

Classificatio

Results

Multinomial Naive Bayes

ntroduction

Preprocessing

Visualizat

Classification

Results

$$\begin{split} \hat{c} &= \underset{c \in C}{\operatorname{argmax}} \ P(d|c)P(c) \\ P(d|c) &= P(f_1, f_2, ..., f_n|c) = P(f_1|c)P(f_2|c)...P(f_n|c) \\ P(c) &= \frac{N_c}{N_d} \end{split}$$

- c: Class
- d: Document
- f_i : Feature
- N_c : Number of words in class c
- $-N_d$: Number of words in document d

Classifier Accuracy

ntroduction

Preprocessing

Visualization

Classification

Results

$$\label{eq:accuracy} \text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

Training Method

Introduction

Prenrocessino

Visualization

Classification

Results

- test_train_split: 50%
- GridSearchCV
- CV = 5
- RF Params: n_estimators and max_features

Results

Workflow

ntroduction

Preprocessing

Visualization

Results

Classification Parameters

Preprocessing

Visualization

Results

	Numeric Classifier Parameters			
Cluster	n_estimators	max_features		
4	10	2		
15	10	6		
17	8	2		
20	12	2		
22	6	4		

Classification Parameters

Preprocessing

Visualization

Classification

Results

	Ensemble Classifier Parameters			
Cluster	n_estimators	max_features		
4	1	1		
15	4	1		
17	1	1		
20	1	1		
22	1	1		

Feature Importance

ntroduction

Preprocessing

Visualization

Results

Conclusio

Numeric Feature Weight Cluster Title Abstract Keyword Year Author Page (length) (length) (length) Count Count 4 0.089 0.117 0.143 0.240 0.188 0.223 0.160 0.175 15 0.157 0.121 0.321 0.065 17 0.136 0.253 0.183 0.089 0.165 0.174 20 0.087 0.214 0.242 0.109 0.228 0.121 22 0.140 0.038 0.066 0.556 0.155 0.045

Feature Importance

ntroduction

Preprocessing

Results

	Ensemble Feature Weight					
Cluster	Numeric	Title	Abstract	Keyword		
	Classifier	Classifier	Classifier	Classifier		
4	1	0	0	0		
15	0.420	0.271	0.059	0.250		
17	0.917	0	0.083	0		
20	1	0	0	0		
22	1	0	0	0		

Classification Accuracy

ntroductio

Preprocessing

VIDUUILUUIOII

Results

Conclusion

	Accuracy (%)				
Cluster	Numeric	Title	Abstract	Keywords	Ensemble
4	60.4	45.8	56.3	58.3	60.4
15	63.0	64.2	65.4	55.6	61.7
17	64.2	59.1	59.6	62.5	68.5
20	64.3	42.9	35.7	38.1	64.3
22	64.3	0.5	0.5	0.5	64.3

- Overall Accuracy (All Clusters): 57.7%

- Overall Accuracy (4,15,17,20,22): 66.5%

Conclusions

ntroduction

Preprocessing

VISUAIIZACIOII

Classificatio

- Cleaning data is important
- Some clusters are better than others
- 66.5% prediction accuracy in optimal clusters
- Future work: targeted dataset
- Controlling for year

Introduction

Preprocessing

Visualization

Results

Conclusion

WIN ARE HATS SO EXPOSIVE IN UNITY DO TUNIS HAVE DIFFERENT FINEERPRINTS SUITY IS HITTPS (ROSSED OUT IN REL BURY DO YOUR BOOGS HURT? WHY ARE AMERICANS AFRAID OF DRAGONS SUITY IS THERE A LINE. THROUGH HITMS OF DRAGONS SUITY BOOGS HURT? WHY ARE AMERICANS AFRAID OF DRAGONS SUITY IS THERE AD UNE RISKOVED HURTS ON PREBOO MHY IS HTTPS IMPORTANT WHY AREN'T MY ARMS GROWING Y POI FEEL WHY ARE THERE DOORS ON THE FREEWAY # WHY ARE THERE KICKING IN MY STOMACH WHY ARE THERE KICKING IN MY STOMACH WHY ARE THERE TWO SUASHES AFTER HTTP WHY ARE TEXT MESSAGES BLUE LIHY ARE THERE **GHOSTS** SOUIRRELS UHY DO Q TIPS FEEL GOOD WHY AREN'T 100 THERE GUNS IN WHY IS SEX HARRY POTTER 50 IMPORTANT PROSPITING SO HARD O WHY AREN'T THERE E GRADES THESE A O CHI RESSIDE O WHY IS ISOLATION BAD OF LIM OF REPRESENTED SOURCE OF THE TOTAL CONTINUE AND THE TOTAL CONTIN

https://xkcd.com/1256

WHY AREN'T THERE ANY FOREIGN MILITARY BASES IN AMERICA

28

WHY ARENT BULLETS SHARP TO WHY IS LYING GOOD F