12.6 高斯定理 (1839)

高斯定理是反映静电场性质的一个基本定理。

高斯(Johann Carl Friedrich Gauss,1777~1855)

德国数学家、物理学家

一. 问题的提出:

由
$$\vec{E} = \int_{q}^{\infty} \frac{\vec{e}_r \, \mathrm{d} q}{4\pi\varepsilon_0 r^2}$$
, 原则上,任何电荷分布的电

场强度都可以求出,为何还要引入高斯定理?

目的:

- ①进一步搞清静电场的性质;
- ② 便于电场的求解;
- ③解决由场强求电荷分布的问题。

二. 高斯定理的内容

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{s} = \frac{\sum q_{|\Delta|}}{\varepsilon_{0}}$$

高斯定理:

在真空中的静电场内,通过任意闭合曲面的电通量,等于该曲面所包围电量的代数和除以 ε_0 。

三. 高斯定理的证明 分四步进行:

1. 求以点电荷为球心的球面的Φ

$$\Phi = \oint_{S_0} \vec{E} \cdot d\vec{s} = \oint_{S_0} \frac{q\vec{e}_r \cdot d\vec{s}}{4\pi\varepsilon_0 r^2}$$

$$= \oint_{S_0} \frac{q \cdot d\vec{s}}{4\pi\varepsilon_0 r^2} = \frac{q \cdot 4\pi r^2}{4\pi\varepsilon_0 r^2} = \frac{q}{\varepsilon_0}$$

由此可知:点电荷电场对球面的 Φ 与r无关,

即各球面的 Φ 相等 \rightarrow 点电荷的 \vec{E} 线连续。

2. 求点电荷场中任意闭合曲面的电通量:

为了把以上结论推广到任意曲面,我们需要借助立体角的概 念。如图,在闭合面 S内以点电荷 q 所在处 O为中心作一任意半 径 的球面 S'', 通过此球面的电通量等于 q/ε_0 。 由于电场分布的 球对称性,这电通量均匀地分布在4π球面度的立体角内,因此 在每个元立体角 $d\Omega$ 内的 电通量是 $\frac{q}{4\pi\epsilon_0}d\Omega$ 。 如果我们把这个 立体角的锥面延长, 使它在闭合面S上截出一个面元dS。设dS到点电荷 q 的距离为r, dS 的法线 n 与矢径 r (或场强 r)的夹角 为 θ ,则通过dS的电通量为

$$d\Phi = E\cos\theta \ dS = \frac{1}{4\pi\epsilon_0} \frac{q\cos\theta \ dS}{r^2}$$

式中 $dS\cos\theta = dS'$ 是 dS 在垂直于矢径方向的投影面积,所以

 $dS\cos\theta/r^2 = dS'/r^2$ 即为立体角 $d\Omega$, 于是

$$d\Phi = \frac{q}{4 \pi \varepsilon_0} d\Omega_0$$

$$\Delta \varphi = \frac{\Delta s}{r}$$

$$\varphi = \frac{2\pi r}{r} = 2\pi$$

$$\Delta\Omega = \frac{\Delta A_1}{r_1^2}$$

$$\Omega = \frac{4\pi r_1^2}{r_1^2} = 4\pi$$

由此可见,通过面元 dS 的电通量和通过球面 S'' 上与 dS 对应的面元 dS'' 的电通量 - 样,都等于 $\frac{q}{4\pi\epsilon_0}$ 乘以它们所张的共同的立体角 $d\Omega$ 。所以通过整个闭合面 S 的电通量都必定和通过球面 S'' 的电通量 - 样,等于 $\frac{q}{4\pi\epsilon_0}$ × $4\pi=\frac{q}{\epsilon_0}$ 。

下面证明: 通过不包围点电荷的任意闭合面 S的电通量恒为 0

我们知道,单个点电荷产生的电场线是辐向的直线,它们在周围空间连续不断。当点电荷在闭合面S之外时,从某个面元 dS上进入闭合面的电场线必然从另外一个面元 dS'上 穿出。

显然这一对面元 dS 和 dS'对点电荷所张的立体角数值相等。根据前式,通过 dS的电通量 $d\Phi$ 和通出dS'的电通量 $d\Phi'$ 数值相等,但符号相反,它们的代数和 $d\Phi + d\Phi' = 0$ 。通过整个闭合面 S 的电通量 Φ 是通过这样一对对面元的电通量之和,当然也是等于 0 的。

$$\therefore \quad \Phi = \begin{cases} \overline{\varepsilon_0}, & q \times S \neq S, \\ 0, & q \times S \neq S. \end{cases}$$

3.求点电荷系的电场中任意闭合曲面的电通量:

$$\vec{E} = \sum_{i} \vec{E}_{i} + \sum_{j} \vec{E}_{j}$$

$$(S内)$$

$$\Phi_{e} = \oint_{S} \vec{E} \cdot d\vec{s}$$

$$= \oint_{S} (\sum_{i} \vec{E}_{i}) \cdot d\vec{s} + \oint_{S} (\sum_{j} \vec{E}_{j} \cdot d\vec{s})$$

$$= \sum_{i} \oint_{S} \vec{E}_{i} \cdot d\vec{s} + \sum_{j} \oint_{S} \vec{E}_{j} \cdot d\vec{s}$$

$$= \sum_{i} \frac{q_{i}}{\varepsilon_{0}} + 0 = \frac{\sum_{j} q_{j}}{\varepsilon_{0}}$$

4.将以上结果推广至任意连续电荷分布:

$$\Phi_e = \oint_S \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \cdot \int_V \rho dV$$

利用矢量场论中的高斯定理

$$\oint_{S} \vec{A} \cdot d\vec{S} = \int_{V} \nabla \cdot \vec{A} dV$$

$$\oint_{S} \vec{E} \cdot d\vec{S} = \int_{V} \nabla \cdot \vec{E} dV = \int_{V} \frac{\rho}{\varepsilon_{0}} dV$$

由于封闭曲面S是任意取的,此式都满足,所以必须要求被积函数相等,于是有

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
 高斯定理的 微分形式

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho \, \vec{r}}{r^3} dV$$

$$\nabla \cdot \vec{E} = \rho / \varepsilon_0$$

四. 几点说明

- 1. 高斯定理是平方反比定律的必然结果;
- 2. Φ_e 由 $\Sigma q_{\text{内}}$ 的值决定,与 $q_{\text{內}}$ 分布无关;
- 3. \vec{E} 是总场强,它由 q_{H} 和 q_{M} 共同决定;
- 4. 高斯面为几何面, $q_{\text{内}}$ 和 q_{h} 总能分清;
- 5. 高斯定理也适用于变化电场;
- 6. 高斯定理给出电场线有如下性质:

电场线发自于正电荷,终止于负电荷,在无电荷处不中断。

证: 设P点有电场线发出

则:
$$\oint_S \vec{E} \cdot d\vec{s} > 0 \rightarrow q_{||} > 0$$

$$\Leftrightarrow$$
 $S \rightarrow 0$,则 $q_{\mid A} = q_p > 0$

若P点有电场线终止,

同理,有 $q_p < 0$ 。

若P点无电荷,则有:

$$\oint_{S} \vec{E} \cdot d\vec{s} = 0$$

即
$$N_{\lambda} = N_{\perp} \longrightarrow P$$
点处 \vec{E} 线连续。

以上性质说明静电场是有源场。

五. 哈密顿算符

▽为哈密顿算符(算子), 读作 "那勃勒(Nabla)" 或 "代尔(del)"。

$$\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}$$

柱坐标系:
$$\nabla = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_{\varphi} \frac{1}{r} \frac{\partial}{\partial \varphi} + \vec{e}_z \frac{\partial}{\partial z}$$

$$\nabla = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_\theta \frac{1}{r} \frac{\partial}{\partial \theta} + \vec{e}_\phi \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}$$

正交曲线坐标系中的散度

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\varphi}}{\partial \varphi} + \frac{\partial A_z}{\partial z}$$

球坐标系:

$$\nabla \cdot \vec{A} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_\theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

12.7 高斯定理应用举例

例12.3 已知:均匀带电球壳 $\rho(\bar{\mathbf{y}}q)$ 、 R_1 、 R_2 。

求: 电场强度的分布。

$$\frac{dS}{R_1}$$

$$R_2$$

$$S$$

$$\int_{S} \vec{E} \cdot d\vec{S} = \int_{S} E(r)\vec{e}_{r} \cdot d\vec{s}$$

$$= \int_{S} E(r) ds$$

$$= 4\pi r^{2} \cdot E(r)$$
又
$$\vec{E} \cdot d\vec{S} = \frac{q_{||}}{\varepsilon_{0}}$$

$$\vec{E} = E(r)\vec{e}_r = \frac{q_{|\gamma|}}{4\pi\varepsilon_0 r^2}\vec{e}_r$$

·
$$r < R_1$$
 , $q_{\mid \Delta} = 0$, 有 $E = 0$;

•
$$R_1 < r < R_2$$
, $q_{|\gamma|} = \frac{4\pi}{3} (r^3 - R_1^3) \rho$,

有
$$\vec{E} = \frac{\rho}{3\varepsilon_0} (r - \frac{R_1^3}{r^2}) \vec{e}_r$$

•
$$r > R_2$$
, $q_{|\gamma|} = \frac{4\pi}{3} (R_2^3 - R_1^3) \rho = q$,

有
$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \vec{e}_r$$
 (同点电荷的电场)

讨论

1. E 的分布

2. 特殊情况

1) 令 $R_1=0$,得均匀带电球的情形:

$$\vec{E} = \begin{cases} \frac{\rho \vec{r}}{3\varepsilon_0} & (球 \land) \end{cases}$$

$$\vec{E} = \begin{cases} \frac{\rho R_2}{3\varepsilon_0} = \frac{q}{4\pi\varepsilon_0 R_2^2} \\ \frac{q\vec{e}_r}{4\pi\varepsilon_0 r^2} & (球 \land) \end{cases}$$

2) 令 $R_1 = R_2 = R$,且q不变, 得均匀带电球面

的情形:
$$\vec{E} = \begin{cases} 0 , (球面内) \\ \frac{q\vec{e}_r}{4\pi\varepsilon_0 r^2}, (球面外) \end{cases}$$

在r = R 处 E 不连续, 这是因为忽略了电荷厚度所致。

面电荷所在处的场强

$$\vec{E}_{1+} = \frac{\sigma}{2\varepsilon_0} \vec{n}$$

$$\vec{E}_{1+} = \frac{\sigma}{2\varepsilon_0} \vec{n} \qquad \qquad \vec{E}_{1-} = -\frac{\sigma}{2\varepsilon_0} \vec{n}$$

$$\vec{E}_{+} = \frac{\sigma}{2\varepsilon_{0}} \, \vec{n} + \vec{E}_{2}$$

$$\vec{E}_{-} = -\frac{\sigma}{2\varepsilon_0} \, \vec{n} + \vec{E}_2$$

P点的场强
$$\vec{E} = \vec{E}_2 = \frac{1}{2} (\vec{E}_+ + \vec{E}_-)$$

化学家的原子和分子

英语原子一词为atom,源于希腊文ατομοζ,α代表否定,τομοζ意思是"可分割的",故atom

的原意是"不可分割的"东西, atom最早的中译 名是"莫破",见于严复译的《穆勒名学》。

近代化学(chemistry)是从中古时代炼金术 (alchemy) 脱胎出来的。

17世纪,玻意耳,元素

18世纪末,法国化学家拉瓦锡用定量的方法发现了氧,从而搞清了燃烧的本质,成为近代化学的 先驱。 1807年, 道尔顿发现倍比定律, 并提出原子论。

1869年,门捷列夫提出元素周期率。

预言多种元素。

19世纪的化学确立了这样的概念:

有的物质是可以用化学手段使之分解的,这种物质叫"化合物";有的物质则不能用化学的方法使之改变,这类物质叫"元素"。

化合物是由分子组成的,分子是由原子组成,原子则不能用任何化学手段加以分割和改变。

原子决不能被看作简单的东西或已知的最小的实物粒子。

— 恩格斯 (1882)

物理学家的原子

20世纪物理学家从化学家手里接过接力棒,向 物质结构的亚原子层次进军。

1897, 汤姆森发现电子, "莫破"被击破了。

1911,卢瑟福

1913, 玻尔

1919, 卢瑟福, 质子

1932, 查德威克, 中子

The Nobel Prize in Physics 1906

"in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases"

Joseph John Thomson

United Kingdom

University of Cambridge Cambridge, United Kingdom

b. 1856

d. 1940

早期的原子结构模型

卢瑟福α粒子散射实验示意图

张三慧,大学物理学(力学、热学),第三版,A版,北京:清华大学出版社,2008,p.103,例3.19

卢瑟福的原子核式模型

原子具有类似太阳系 的结构,原子中心是带正 电的原子核,集中了几乎 整个的原子质量,电子绕 着原子核旋转,原子核所 带正电荷电量与电子所带 负电荷电量相等。大角度 散射是α粒子与硬心原子 核作用的结果。

The Nobel Prize in Chemistry 1908

"for his investigations into the disintegration of the elements, and the chemistry of radioactive substances"

Ernest Rutherford

United Kingdom and New Zealand

Victoria University Manchester, United Kingdom

b. 1871(in Nelson, New Zealand)d. 1937

1766 -1844

1856 -1940

1871-1937

1885-1962

1887-1961

实心小球模型 (道尔顿)

葡萄干蛋糕模型 (汤姆孙)

行星模型 (卢瑟福)

玻尔模型 (玻尔)

电子云模型 (薛定谔)

例12.4

已知: 无限长均匀带电直线, 线电荷密度为λ。

求: \vec{E} 的分布

解: 分析 产的对称性:

轴对称 无限长 $\vec{E} = E(r)\vec{e}_r$

选同轴柱体表面为高斯面S,

$$\oint_{S} \vec{E} \cdot d\vec{s} = \oint_{S_{1}} \vec{E} \cdot d\vec{s} + \oint_{S_{2}} \vec{E} \cdot d\vec{s} + \oint_{S_{3}} \vec{E} \cdot d\vec{s}$$

$$= \mathbf{0} + \mathbf{0} + \mathbf{E} \cdot \int_{S_{3}} ds = \mathbf{E} \cdot 2\pi r l$$

$$= S_{3} + S_{3} +$$

$$\oint_{S} \vec{E} \cdot d\vec{s} = E \cdot 2\pi r l = \frac{\lambda l}{(\vec{a})} \frac{\varepsilon_{0}}{\varepsilon_{0}}$$

$$\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \vec{e}_r$$

1) E 的分布: $E \propto \frac{1}{r}$

$$r \rightarrow 0$$
, $E \rightarrow \infty$,

说明此时带电直线不能视为几何线。

2) 所求出的 \vec{E} 是仅由 $q_{\text{内}} = \lambda l$ 产生的吗?

例12.5 一半径为R、电荷密度为ρ的均匀带电球内 有一半径为r的空腔,证明空腔内为均匀电场。

证明: 取以r'为半径,o'为心的高斯球面

用高斯定理:

$$\Phi_{E} = \oint \vec{E} \cdot d\vec{S} = \oint E dS = E \cdot 4\pi r^{2}$$

$$\Phi_E = \frac{1}{\varepsilon_o} \int_V dq = 0$$

$$\vec{\mathbf{r}}' - \vec{\mathbf{r}}'' = \vec{\mathbf{o}}\vec{\mathbf{o}}'$$

证明: 设想空腔内充有+ρ和-ρ的电荷, 所有+ρ构成一完整的带电球, 过空腔内任一点P,作以r'为半径, o为心的高斯球面。

用高斯定理:

$$\Phi_{E} = \oint \vec{E} \cdot d\vec{S} = \oint E dS = E \cdot 4\pi r'^{2}$$

$$\Phi_{E} = \frac{1}{\varepsilon_{o}} \int_{V} dq$$

$$\vec{E}' = \frac{\rho}{3\varepsilon_{o}} \vec{r}'$$

过空腔内任一点P,作以r''为半径, o'为心的高斯球面。 同理可得 -ρ 在P点产生的电场:

$$\vec{E}'' = -\frac{\rho}{3\epsilon_0} \vec{r}''$$

 $\vec{\mathbf{r}}' - \vec{\mathbf{r}}'' = \overrightarrow{\mathbf{o}}\overrightarrow{\mathbf{o}}' \qquad \vec{\mathbf{E}}'' = -\frac{\rho}{3\epsilon_0}\vec{\mathbf{r}}''$ P点的合场强: $\vec{\mathbf{E}} = \vec{\mathbf{E}}' + \vec{\mathbf{E}}'' = \frac{\rho}{3\epsilon_0}\vec{\mathbf{r}}' - \frac{\rho}{3\epsilon_0}\vec{\mathbf{r}}'' = \frac{\rho}{3\epsilon_0}(\vec{\mathbf{r}}' - \vec{\mathbf{r}}'')$ $\therefore \vec{\mathbf{E}} = \frac{\rho}{3\epsilon_0}\overrightarrow{\mathbf{o}}\overrightarrow{\mathbf{o}}' \quad \text{即腔内为均匀电场!}$

小结 应用高斯定理求场强的要点:

适用对象: 有球、柱、平面对称的某些电荷分布。

- 方法要点: (1) 分析 \vec{E} 的对称性;
 - (2) 选取高斯面的原则:
 - 1) 需通过待求 \vec{E} 的区域;
 - 2) 在S上待求 \vec{E} 处, \vec{E} // $d\vec{s}$ 且等大, 使得 $\int \vec{E} \cdot d\vec{s} = E \int ds$, 其余处必须有 $\vec{E} \cdot d\vec{s} = 0$ { 或 $\vec{E} \perp d\vec{s}$ 。

第12章结束