Dataset	Approch	CNN Architecture	Val Accuracy	Test Accuracy
Wheat Disease Detection Link	ADASYN+ CLAHE+ XGBOOST	ResNet50V2	0.95755	0.90094
		Xception	0.94275	0.83310719
		DenseNet121	0.986417	0.9565807
		Inception	0.92869	0.8778833
		Inception_Res	0.93088	0.85074
		DenseNet201	0.989813	0.964721
		MobileNetV2	0.9643463	0.941655359
		DenseNet169	0.988115	0.9592944
	SMOTETOMAKE + CLAHE + XGBOOST	DenseNet201	0.9864176	0.9667869
	SMOTETOMAKE + XGBOOST (colsample_bytree =1.0, gamma=0.2, learning_rate=0.1, max_depth=5, n_estimators=200, subsample=0.8, random_state=42) + Contrast stretching	DenseNet201	0.972835	0.948439
	SMOTETOMAKE + XGBOOST + CLAHE + Color thresholding	DenseNet201	0.981324	0.987788
	SMOTETOMAKE	DenseNet201	0.9915110	0.990502

	+ XGBOOST + (CLAHE + Color thresholding)+ Origine data			
	SMOTETOMAKE + ADABOOST + (CLAHE + Color thresholding)+ Origine data	DenseNet201	0.9779286	0.97557666
	Ensemble learning + (CLAHE + Color thresholding)+ Origine data	DenseNet201	0.9932088	0.99864314
Wheat Leaf Dataset <u>Link</u>	Ensemble learning + (CLAHE + Color thresholding)+ Origine data	DenseNet201	1	0.9756097560 97561

1. Data Preprocessing

• Image Loading and Resizing:

- Images are loaded from the specified directories (train_dir and test_dir).
- Images are resized to a fixed size (IMG_SIZE = (224, 224)) to ensure uniformity.

• CLAHE (Contrast Limited Adaptive Histogram Equalization):

 Applied to enhance the contrast of the images, particularly useful for improving the visibility of subtle features in the images.

• Color Thresholding:

 Used to remove the green background from the images, isolating the wheat plants for better feature extraction.

• Normalization:

• Pixel values are normalized to the range [0, 1] by dividing by 255.0.

2. Feature Extraction

• DenseNet201 (Pre-trained CNN):

- A pre-trained DenseNet201 model (trained on ImageNet) is used as a feature extractor.
- The model is modified to exclude the top classification layers, and a GlobalAveragePooling2D layer is added to reduce the spatial dimensions to a fixed-size feature vector.

• Feature Extraction for Original and Preprocessed Images:

 Features are extracted separately for both the original and preprocessed images.

• Feature Concatenation:

 Features from the original and preprocessed images are concatenated to create a richer feature representation.

3. Model Building

• Ensemble Learning:

- Three classifiers are used:
 - 1. **Random Forest (RF)**: A robust ensemble method that builds multiple decision trees and aggregates their predictions.
 - 2. Decision Tree (DT): A simple tree-based classifier.
 - 3. **Support Vector Machine (SVM)**: A powerful classifier that finds the optimal hyperplane to separate classes.
- These classifiers are combined using a VotingClassifier with hard voting, where the final prediction is based on the majority vote of the individual classifiers.

4. Training and Validation

• Training:

 The ensemble model is trained on the concatenated features extracted from the training data.

Validation:

 The model is validated on a separate validation set to evaluate its performance and avoid overfitting. • Validation accuracy is calculated to assess the model's performance.

5. Testing and Evaluation

• Testing:

o The trained ensemble model is tested on the test dataset.

• Evaluation Metrics:

- o **Accuracy**: Measures the proportion of correctly classified samples.
- Classification Report: Provides precision, recall, and F1-score for each class.
- Confusion Matrix: Visualizes the performance of the classifier by showing the true vs. predicted labels.

Strengths of the Methodology:

- **Preprocessing**: Enhances image quality and isolates relevant features.
- **Feature Extraction**: Leverages a powerful pre-trained CNN to extract meaningful features.
- **Ensemble Learning**: Combines multiple models to improve generalization and robustness.

Potential Improvements:

- **Hyperparameter Tuning**: Fine-tuning hyperparameters for the individual models (RF, DT, SVM) and the ensemble.
- Cross-Validation: Using cross-validation to ensure the model's stability and generalizability.
- Advanced Ensembling: Exploring stacking or boosting techniques for better performance.
- **Data Augmentation**: Adding more data augmentation techniques (e.g., rotation, flipping) to increase the diversity of the training data.