67. $\int e^{3x} \cos x \, dx$ vaut, à une constante près :

1.
$$\frac{e^{3x}(\sin x + \cos x)}{10}$$

$$3. \frac{e^{3x}(\sin x + 3\cos x)}{}$$

1.
$$\frac{e^{3x}(\sin x + \cos x)}{10}$$
 3. $\frac{e^{3x}(\sin x + 3\cos x)}{4}$ 5. $\frac{e^{3x}(\sin x - 3\cos x)}{4}$

2.
$$\frac{e^{3x}(\sin x + 3\cos x)}{10}$$
 4. $\frac{e^{3x}(\sin x - 3\cos x)}{10}$ (M. 90)

$$4. \frac{e^{3x}(\sin x - 3\cos x)}{10}$$

68. L'aire comprise entre la parabole $y^2 = 2x + 4$ et la droite 3y - 2x - 4 = 0égale à 2. 9/2 3. 9/4 4. 32/3 5. 8/3 (M. 90) 1. 122/6

69. La surface du cercle de centre (1, 1) et tangent à la droite d'équation y = 2x est: 1. 3π 2. $\pi/3$ 3. $\pi/5$ 4. $2\pi/5$ 5. 5π

1.
$$3\pi$$
 2. $\pi/3$

.70.
$$\int_0^1 \frac{dx}{\sqrt{x^2 - x + 16}} =$$

1.
$$\ln 3$$
 2. $\ln 5/3$ 3. $\ln 7/5$ 4. $\ln 11/8$ 5. $\ln 9/7$ (M. 81)

71. L'aire hachurée de la parabole d'équation $y^2 - 2x = 0$ vaut $\sqrt{8}$; a =

(M.91)

72. Soit la fonction $y = \frac{x}{4v^3 + 1}$ et C sa courbe représentative dans un repère orthonormé. D le domaine limité par l'axe Ox et C. Le volume V, du solide engendré par la rotation de D autour de 0x vaut : 2. $\pi/12$ 3. $\pi^2/2$ 4. $3\pi/7$ 5. $4\pi/15$ (B. 92)

- $1.3\pi/2$