R Tutorial

In R, comments are indicated in code with a "#" character.

1 Reading in Data and Basic Statistical Functions

1.1 Read in the data.

```
a) Read the data in as a .csv file.
student <- read.csv('/Users/class.csv')
read.csv()
```

b) Read the data in as a .xls file.

First we need to install the gdata package, and then call the package to use.

```
# The package we need to read in a .xls file (gdata) must first be
# installed and then called to use
library(gdata)

student_xls <- read.xls('/Users/class.xls', 1)

read.xls()</pre>
```

c) Read the data in as a .json file.

First we need to install the rjson (install.packages(pkgs='rjson')), and then call the package to use. There is more code involved in reading a .json file into R so it becomes a proper data frame, however we will not at this time dive into the explanation for all this code, but it should become evident throughout the tutorial.

1.2 Find the dimensions of the data set.

Information about an R data frame is available by calling the dim() function, with the data name as an argument.

```
dim(student)
## [1] 19 5
```

1.3 Find basic information about the data set.

```
str(student)
## 'data.frame': 19 obs. of 5 variables:
## $ Name : Factor w/ 19 levels "Alfred","Alice",..: 1 2 3 4 5 6 7 8 9 10
...
## $ Sex : Factor w/ 2 levels "F","M": 2 1 1 1 2 2 1 1 2 2 ...
## $ Age : int 14 13 13 14 14 12 12 15 13 12 ...
## $ Height: num 69 56.5 65.3 62.8 63.5 57.3 59.8 62.5 62.5 59 ...
## $ Weight: num 112 84 98 102 102 ...
```

1.4 Look at the first 5 observations.

The first 5 observations of a data frame are available by calling the head() function, with the data name as an argument. By default, head() returns 4 observations, but we can alter the function to return 5 observations in the way shown below. The tail() function is analogous and returns the last observations.

```
head(student, n=5)
##
       Name Sex Age Height Weight
## 1 Alfred
             M 14
                    69.0 112.5
      Alice
             F 13
                    56.5
## 2
                          84.0
## 3 Barbara F 13
                    65.3
                          98.0
## 4
      Carol
           F 14
                    62.8 102.5
## 5
      Henry M 14
                    63.5 102.5
```

1.5 Calculate mean of numeric variables.

```
# We must apply the is.numeric function to the data set which returns a
# matrix of booleans that we then use to subset the dataset to return
# only numeric variables

# Then we can use the colMeans function to return the mean of
# column variables
colMeans(student[sapply(student, is.numeric)])
```

```
## Age Height Weight
## 13.31579 62.33684 100.02632
```

colMeans() sapply() is.numeric

1.6 Compute summary statistics of the data set.

Summary statistics of a data frame are available by calling the summary() function, with the data name as an argument.

```
summary(student)
##
        Name
               Sex
                                         Height
                                                        Weight
                           Age
               F: 9
                                                    Min.
## Alfred: 1
                      Min.
                            :11.00
                                     Min.
                                            :51.30
                                                          : 50.50
## Alice : 1
                                     1st Qu.:58.25
               M:10
                      1st Qu.:12.00
                                                    1st Qu.: 84.25
## Barbara: 1
                      Median :13.00
                                     Median :62.80
                                                    Median : 99.50
## Carol : 1
                      Mean :13.32
                                     Mean :62.34
                                                    Mean
                                                           :100.03
                                                    3rd Qu.:112.25
                      3rd Qu.:14.50
                                     3rd Qu.:65.90
## Henry : 1
## James : 1
                             :16.00
                                     Max. :72.00
                                                           :150.00
                      Max.
                                                    Max.
## (Other):13
```

1.7 Descriptive statistics functions applied to columns of the data set.

```
# Notice the subsetting of student with the $ character
sd(student$Weight)
## [1] 22.77393
sum(student$Weight)
## [1] 1900.5
length(student$Weight)
## [1] 19
max(student$Weight)
## [1] 150
min(student$Weight)
## [1] 50.5
median(student$Weight)
## [1] 99.5
```

sd() sum() length() max() min() median()

1.8 Produce a one-way table to describe the frequency of a variable.

a) Produce a one-way table of a discrete variable.

```
table(student$Age)
##
## 11 12 13 14 15 16
## 2 5 3 4 4 1
```

b) Produce a one-way table of a categorical variable.

```
table(student$Sex)
##
## F M
## 9 10
```

table()

1.9 Produce a two-way table to visualize the frequency of two categorical (or discrete) variables.

```
table(student$Age, student$Sex)
##
##
        F M
##
     11 1 1
     12 2 3
##
     13 2 1
##
##
     14 2 2
     15 2 2
##
     16 0 1
##
```

table()

1.10 Select a subset of the data that meets a certain criterion.

```
# The "," character tells R to select all columns of the data set
females <- student[which(student$Sex == 'F'), ]</pre>
head(females, n=5)
##
       Name Sex Age Height Weight
## 2
      Alice F 13
                      56.5
                            84.0
## 3 Barbara
              F 13
                     65.3
                           98.0
## 4
      Carol
            F 14
                     62.8 102.5
## 7
            F 12
       Jane
                     59.8
                           84.5
## 8 Janet F 15
                     62.5 112.5
```

which()

1.11 Determine the correlation between two continuous variables.

```
height_weight <- subset(student, select = c(Height, Weight))
cor(height_weight, method = "pearson")

## Height Weight
## Height 1.0000000 0.8777852
## Weight 0.8777852 1.0000000
```

cor()

2 Basic Graphing and Plotting Functions

2.1 Visualize a single continuous variable by producing a histogram.

```
# Setting student$Weight to a new variable "Weight" cleans up the labeling of
# the histogram
Weight <- student$Weight
hist(Weight)</pre>
```

Histogram of Weight

hist()

2.2 Visualize a single continuous variable by producing a boxplot.

```
# points(mean(Weight)) tells R to plot the mean of the variable
# on the boxplot
boxplot(Weight, ylab="Weight")
points(mean(Weight))
```


boxplot() points()

2.3 Visualize two continuous variables by producing a scatterplot.

Height <- student\$Height
Notice here you specify the x variable first and then the y variable
plot(Height, Weight)</pre>

plot()

2.4 Visualize a relationship between two continuous variables by producing a scatterplot and a plotted line of best fit.

```
plot(Height, Weight)

# Lm() models Weight as a function of Height and returns the parameters
# of the Line of best fit
model <- lm(Weight~Height)
coeff <- coef(model)
intercept <- as.matrix(coeff[1])[1]
slope <- as.matrix(coeff[2])[1]

# abline() prints the line of best fit
abline(lm(Weight~Height))

# text() prints the equation of the line of best fit, with the first
# two arguments specifying the x and y location, respectively, of where
# the text should be printed on the graph
text(60, 140, bquote(Line: y == .(slope) * x + .(intercept)))</pre>
```


lm() coef() as.matrix() abline() text() bquote()

2.5 Visualize a categorical variable by producing a bar chart.

```
counts <- table(student$Sex)
# beside = TRUE indicates to print the bars side by side instead of on top of
# each other
# names.arg indicates which names to use to label the bars
barplot(counts, beside=TRUE, ylab= "Frequency", xlab= "Sex",
names.arg=names(counts))</pre>
```


barplot() names()

2.6 Visualize a continuous variable, grouped by a categorical variable, using side-by-side boxplots.

a) Simple side-by-side boxplot without color.

```
# Subset data set to return only female weights, and then only male weights
Female_Weight <- student[which(student$Sex == 'F'), "Weight"]
Male_Weight <- student[which(student$Sex == 'M'), "Weight"]

# Find the mean of both arrays
means <- c(mean(Female_Weight), mean(Male_Weight))

# Syntax indicates Weight as a function of Sex
boxplot(student$Weight ~ student$Sex, ylab= "Weight", xlab= "Sex")

# Plot means on boxplots in blue
points(means, col= "blue")</pre>
```


b) More advanced side-by-side boxplot with color.

ggplot2 factor() c() aes() geom_boxplot() stat_summary()

3 Basic Data Wrangling and Manipulation

3.1 Create a new variable in a data set as a function of existing variables in the data set.

```
# Notice here how you can create the BMI column in the data set just by
# naming it
student$BMI <- student$Weight / (student$Height)**2 * 703</pre>
head(student, n=5)
##
       Name
               Sex Age Height Weight
## 1 Alfred
              Male 14
                         69.0 112.5 16.61153
      Alice Female 13
                         56.5 84.0 18.49855
## 3 Barbara Female 13
                         65.3 98.0 16.15679
## 4
      Carol Female 14
                         62.8 102.5 18.27090
## 5
      Henry Male 14
                         63.5 102.5 17.87030
```

3.2 Create a new variable in a data set using if/else logic of existing variables in the data set.

```
# Notice the use of the ifelse() function for a single if condition
student$BMI_Class <- ifelse(student$BMI<19.0, "Underweight", "Healthy")</pre>
head(student, n=5)
##
       Name
               Sex Age Height Weight
                                         BMI
                                               BMI Class
              Male 14
                         69.0 112.5 16.61153 Underweight
## 1 Alfred
## 2
      Alice Female 13
                        56.5 84.0 18.49855 Underweight
## 3 Barbara Female 13
                        65.3 98.0 16.15679 Underweight
## 4
      Carol Female 14
                        62.8 102.5 18.27090 Underweight
## 5
      Henry Male 14 63.5 102.5 17.87030 Underweight
```

ifelse()

3.3 Create a new variable in a data set using mathematical functions applied to existing variables in the data set.

Using the log() function, the exp() function, the sqrt() function, and the abs() function.

```
student$LogWeight <- log(student$Weight)</pre>
student$ExpAge <- exp(student$Age)</pre>
student$SqrtHeight <- sqrt(student$Height)</pre>
student$BMI Neg <- ifelse(student$BMI < 19.0, -student$BMI, student$BMI)</pre>
student$BMI_Pos <- abs(student$BMI_Neg)</pre>
# Create a boolean variable
student$BMI Check <- (student$BMI == student$BMI Pos)</pre>
head(student, n=5)
##
        Name
               Sex Age Height Weight
                                          BMI
                                                 BMI Class LogWeight
## 1 Alfred
              Male 14 69.0 112.5 16.61153 Underweight 4.722953
      Alice Female 13
## 2
                          56.5 84.0 18.49855 Underweight 4.430817
## 3 Barbara Female 13
                          65.3 98.0 16.15679 Underweight 4.584967
      Carol Female 14
                         62.8 102.5 18.27090 Underweight 4.629863
## 4
## 5
              Male 14
                         63.5 102.5 17.87030 Underweight 4.629863
      Henry
        ExpAge SqrtHeight BMI Neg BMI Pos BMI Check
##
## 1 1202604.3 8.306624 -16.61153 16.61153
                                                  TRUE
## 2 442413.4 7.516648 -18.49855 18.49855
                                                  TRUE
## 3 442413.4 8.080842 -16.15679 16.15679
                                                  TRUE
## 4 1202604.3 7.924645 -18.27090 18.27090
                                                  TRUE
## 5 1202604.3 7.968689 -17.87030 17.87030
                                                  TRUE
```

3.4 Drop variables from a data set.

```
Sex Age Height Weight
                                        BMI
       Name
                                             BMI Class
     Alfred
                        69.0 112.5 16.61153 Underweight
## 1
             Male 14
## 2
      Alice Female 13
                        56.5
                              84.0 18.49855 Underweight
## 3 Barbara Female 13
                        65.3 98.0 16.15679 Underweight
## 4
      Carol Female 14
                        62.8 102.5 18.27090 Underweight
## 5
      Henry Male 14 63.5 102.5 17.87030 Underweight
```

subset()

3.5 Sort a data set by a variable.

a) Sort data set by a continuous variable.

```
student <- student[order(student$Age), ]</pre>
# Notice that R uses a stable sorting algorithm by default
head(student, n=5)
##
       Name
               Sex Age Height Weight
                                         BMI
                                               BMI Class
## 11 Joyce Female 11
                         51.3
                                50.5 13.49000 Underweight
                         57.5
## 18 Thomas
              Male 11
                                85.0 18.07335 Underweight
## 6
      James
              Male 12
                         57.3 83.0 17.77150 Underweight
## 7
       Jane Female 12
                         59.8 84.5 16.61153 Underweight
              Male 12
## 10
                         59.0 99.5 20.09437
       John
                                                 Healthy
```

b) Sort data set by a categorical variable.

```
student <- student[order(student$Sex), ]</pre>
# Notice that the data is now sorted first by Sex and then within Sex by Age
head(student, n=5)
##
        Name
                Sex Age Height Weight
                                           BMI
                                                 BMI Class
## 11
       Joyce Female 11
                          51.3
                                 50.5 13.49000 Underweight
## 7
        Jane Female 12
                          59.8
                                 84.5 16.61153 Underweight
## 13 Louise Female 12
                        56.3
                                 77.0 17.07770 Underweight
       Alice Female 13 56.5
## 2
                                 84.0 18.49855 Underweight
## 3 Barbara Female 13 65.3 98.0 16.15679 Underweight
```

order()

3.6 Compute descriptive statistics of continuous variables, grouped by a categorical variable.

```
# Notice the syntax of Age, Height, Weight, and BMI as a function of Sex aggregate(cbind(Age, Height, Weight, BMI) ~ Sex, student, mean)

## Sex Age Height Weight BMI

## 1 Female 13.22222 60.58889 90.11111 17.05104

## 2 Male 13.40000 63.91000 108.95000 18.59424
```

aggregate() cbind()

3.7 Add a new row to the bottom of a data set.

```
# Look at the tail of the data currently
tail(student, n=5)
##
         Name Sex Age Height Weight
                                         BMI
                                               BMI Class
## 1
      Alfred Male 14
                        69.0 112.5 16.61153 Underweight
## 5
                        63.5 102.5 17.87030 Underweight
       Henry Male 14
## 17 Ronald Male 15
                        67.0 133.0 20.82847
                                                 Healthy
## 19 William Male 15
                        66.5 112.0 17.80451 Underweight
## 15
     Philip Male 16
                        72.0 150.0 20.34144
                                                 Healthy
# rbind.data.frame() function binds two data frames together by rows
student <- rbind.data.frame(student, data.frame(Name='Jane', Sex = 'F', Age =</pre>
14,
                                               Height = 56.3, Weight = 77.0,
                                               BMI = 17.077695,
                                               BMI_Class = 'Underweight'))
tail(student, n=5)
##
         Name Sex Age Height Weight
                                          BMI
                                                BMI Class
## 5
        Henry Male 14
                         63.5 102.5 17.87030 Underweight
        Ronald Male
                         67.0 133.0 20.82847
## 17
                    15
                                                  Healthy
## 19
      William Male
                    15
                         66.5 112.0 17.80451 Underweight
## 15
        Philip Male
                    16
                         72.0 150.0 20.34144
                                                  Healthy
## 110
         Jane F
                    14
                         56.3 77.0 17.07769 Underweight
```

data.frame() rbind.data.frame()

3.8 Create a user defined function and apply it to a variable in the data set to create a new variable in the data set.

```
toKG <- function(lb) {</pre>
  return(0.45359237 * 1b)
}
student$Weight_KG <- toKG(student$Weight)</pre>
head(student, n=5)
##
         Name
                 Sex Age Height Weight
                                            BMI
                                                  BMI Class Weight KG
## 11
        Joyce Female 11
                           51.3
                                  50.5 13.49000 Underweight
                                                              22.90641
## 7
         Jane Female 12
                           59.8
                                  84.5 16.61153 Underweight
                                                              38.32856
## 13
       Louise Female 12
                           56.3
                                  77.0 17.07770 Underweight
                                                              34.92661
## 2
        Alice Female 13
                           56.5
                                  84.0 18.49855 Underweight
                                                              38.10176
## 3 Barbara Female 13
                                  98.0 16.15679 Underweight
                           65.3
                                                             44.45205
```

4 More Advanced Data Wrangling

4.1 Drop observations with missing information.

```
# Notice the use of the fish data set because it has some missing
# observations
fish <- read.csv('/Users/fish.csv')</pre>
# First sort by Weight, requesting those with NA for Weight first
fish <- fish[order(fish$Weight, na.last=FALSE), ]</pre>
head(fish, n=5)
##
       Species Weight Length1 Length2 Length3 Height Width
                  NA
                         29.5
                                 32.0
                                         37.3 13.9129 5.0728
## 14
         Bream
## 41
         Roach
                  0.0
                         19.0
                                 20.5
                                         22.8 6.4752 3.3516
## 73
        Perch
                  5.9
                         7.5
                                  8.4
                                         8.8 2.1120 1.4080
## 146
        Smelt
                 6.7
                         9.3
                                 9.8
                                         10.8 1.7388 1.0476
## 148
        Smelt
                 7.0
                         10.1
                                10.6
                                        11.6 1.7284 1.1484
new fish <- na.omit(fish)</pre>
head(new_fish, n=5)
       Species Weight Length1 Length2 Length3 Height Width
##
                                 20.5
## 41
         Roach
                  0.0
                         19.0
                                         22.8 6.4752 3.3516
## 73
         Perch
                  5.9
                         7.5
                                  8.4
                                         8.8 2.1120 1.4080
## 146
        Smelt
                  6.7
                         9.3
                                 9.8
                                         10.8 1.7388 1.0476
                 7.0
## 148
        Smelt
                         10.1
                                 10.6
                                        11.6 1.7284 1.1484
## 147
                 7.5
                         10.0
                                 10.5 11.6 1.9720 1.1600
        Smelt
```

na.omit()

4.2 Merge two data sets together on a common variable.

a) First, select specific columns of a data set to create two smaller data sets.

```
# Notice the use of the student data set again, however we want to reload
# it without the changes we've made previously
student <- read.csv('/Users/class.csv')</pre>
student1 <- subset(student, select=c(Name, Sex, Age))</pre>
head(student1, n=5)
##
        Name Sex Age
## 1 Alfred
                  14
               М
## 2
       Alice
                  13
## 3 Barbara
               F
                  13
               F 14
## 4
       Carol
## 5
       Henry
               M 14
student2 <- subset(student, select=c(Name, Height, Weight))</pre>
head(student2, n=5)
```

```
## Name Height Weight
## 1 Alfred 69.0 112.5
## 2 Alice 56.5 84.0
## 3 Barbara 65.3 98.0
## 4 Carol 62.8 102.5
## 5 Henry 63.5 102.5
```

b) Second, we want to merge the two smaller data sets on the common variable.

```
new <- merge(student1, student2)</pre>
head(new, n=5)
##
       Name Sex Age Height Weight
## 1 Alfred M 14
                    69.0 112.5
## 2
      Alice F 13
                    56.5 84.0
## 3 Barbara F 13
                    65.3
                         98.0
      Carol F 14
## 4
                    62.8 102.5
## 5
      Henry M 14
                    63.5 102.5
```

merge()

c) Finally, we want to check to see if the merged data set is the same as the original data set.

```
all.equal(student, new)
## [1] TRUE
```

all.equal()

4.3 Merge two data sets together by index number only.

a) First, select specific columns of a data set to create two smaller data sets.

```
newstudent1 <- subset(student, select=c(Name, Sex, Age))</pre>
head(newstudent1, n=5)
##
       Name Sex Age
## 1 Alfred
              M 14
## 2
      Alice
              F 13
## 3 Barbara
             F 13
## 4
             F 14
      Carol
## 5
              M 14
      Henry
newstudent2 <- subset(student, select=c(Height, Weight))</pre>
head(newstudent2, n=5)
##
    Height Weight
## 1
      69.0 112.5
## 2
      56.5
             84.0
## 3 65.3 98.0
```

```
## 4 62.8 102.5
## 5 63.5 102.5
```

b) Second, we want to join the two smaller data sets.

```
new2 <- cbind(newstudent1, newstudent2)</pre>
head(new2, n=5)
##
       Name Sex Age Height Weight
## 1 Alfred
             M 14
                     69.0 112.5
## 2
     Alice
             F 13
                     56.5
                           84.0
## 3 Barbara
              F
                13
                     65.3
                           98.0
## 4
      Carol
            F 14
                     62.8 102.5
## 5
      Henry M 14
                     63.5 102.5
```

c) Finally, we want to check to see if the joined data set is the same as the original data set.

```
all.equal(student, new2)
## [1] TRUE
```

4.4 Create a pivot table to summarize information about a data set.

```
# Notice we are using a new data set that needs to be read into the
# environment
price <- read.csv('/Users/price.csv')</pre>
# The package we need (dplyr) must first be
# installed and then called to use
require(dplvr)
# The following code is used to remove the "," and "$" characters from the
# ACTUAL column so that values can be summed
price$ACTUAL <- gsub('[$]', '', price$ACTUAL)</pre>
price$ACTUAL <- as.numeric(gsub(',', '', price$ACTUAL))</pre>
filtered = group_by(price, COUNTRY, STATE, PRODTYPE, PRODUCT)
basic_sum = summarise(filtered, REVENUE = sum(ACTUAL))
head(basic sum, n=5)
## Source: local data frame [5 x 5]
## Groups: COUNTRY, STATE, PRODTYPE [3]
##
##
    COUNTRY
                        STATE PRODTYPE PRODUCT
                                                 REVENUE
##
      <fctr>
                       <fctr>
                                 <fctr> <fctr>
                                                    <dbl>
## 1 Canada British Columbia FURNITURE
                                            BED 197706.6
## 2 Canada British Columbia FURNITURE
                                           SOFA 216282.6
## 3 Canada British Columbia
                                 OFFICE CHAIR 200905.2
## 4 Canada British Columbia
                                 OFFICE
                                           DESK 186262.2
## 5 Canada
                      Ontario FURNITURE BED 194493.6
```

4.5 Return all unique values from a text variable.

```
print(unique(price$STATE))
                                                     Florida
    [1] California
                              Colorado
                                                     North Carolina
## [4] Illinois
                              New York
                                                     Baja California Norte
## [7] Texas
                              Washington
## [10] Campeche
                              Michoacan
                                                     Nuevo Leon
## [13] British Columbia
                              Ontario
                                                     Ouebec
## [16] Saskatchewan
## 16 Levels: Baja California Norte British Columbia California ...
Washington
```

unique()

5 Preparation & Basic Regression

5.1 Pre-process a data set using principal component analysis.

```
# Notice we are using a new data set that needs to be read into the
# environment
iris <- read.csv('/Users/iris.csv')</pre>
features <- subset(iris, select = -c(Target))</pre>
pca <- prcomp(x = features, scale = TRUE)</pre>
print(pca)
## Standard deviations:
## [1] 1.7061120 0.9598025 0.3838662 0.1435538
##
## Rotation:
                                         PC2
                             PC1
                                                    PC3
                                                                PC4
## sepal.length..cm. 0.5223716 -0.37231836 0.7210168 0.2619956
## sepal.width..cm. -0.2633549 -0.92555649 -0.2420329 -0.1241348
## petal.length..cm. 0.5812540 -0.02109478 -0.1408923 -0.8011543
## petal.width..cm. 0.5656110 -0.06541577 -0.6338014 0.5235463
```

prcomp()

5.2 Split data into training and testing data and export as a .csv file.

```
# Set the sample size of the training data
smp_size <- floor(0.7 * nrow(iris))

# set.seed() is used to specify a seed for a random integer so that the
# results are reproducible
set.seed(29)
train_ind <- sample(seq_len(nrow(iris)), size = smp_size)</pre>
```

```
train <- iris[train_ind, ]
test <- iris[-train_ind, ]
write.csv(train, file = "/Users/iris_train.csv")
write.csv(test, file = "/Users/iris_test.csv")</pre>
```

floor() nrow() set.seed() sample() seq_len() write.csv()

5.3 Fit a logistic regression model.

```
# Notice we are using a new data set that needs to be read into the
# environment
tips <- read.csv('/Users/tips.csv')</pre>
# The following code is used to determine if the individual left more
# than a 15% tip
tips$fifteen <- 0.15 * tips$total_bill
tips$greater15 <- ifelse(tips$tip > tips$fifteen, 1, 0)
# Notice the syntax of greater15 as a function of total_bill
logreg <- glm(greater15 ~ total_bill, data = tips, family =</pre>
"binomial"(link='logit'))
summary(logreg)
##
## Call:
## glm(formula = greater15 ~ total bill, family = binomial(link = "logit"),
##
       data = tips)
##
## Deviance Residuals:
      Min
                 10
                      Median
                                   3Q
                                           Max
## -1.6757 -1.1766
                      0.8145
                               1.0145
                                        2.0774
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
                                     4.646 3.39e-06 ***
## (Intercept) 1.64772 0.35467
## total bill -0.07248
                           0.01678 -4.319 1.57e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 335.48 on 243 degrees of freedom
## Residual deviance: 313.74 on 242 degrees of freedom
## AIC: 317.74
## Number of Fisher Scoring iterations: 4
```

5.4 Fit a linear regression model.

```
# Notice we are using the same data set, but it needs to be read in again
# without the previous changes we made
tips <- read.csv('/Users/tips.csv')</pre>
# Notice the syntax of tip as function of total_bill
linreg <- lm(tip ~ total_bill, data = tips)</pre>
summary(linreg)
##
## Call:
## lm(formula = tip ~ total_bill, data = tips)
##
## Residuals:
               1Q Median
                                3Q
      Min
                                       Max
## -3.1982 -0.5652 -0.0974 0.4863 3.7434
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.920270  0.159735  5.761 2.53e-08 ***
## total_bill 0.105025 0.007365 14.260 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.022 on 242 degrees of freedom
## Multiple R-squared: 0.4566, Adjusted R-squared: 0.4544
## F-statistic: 203.4 on 1 and 242 DF, p-value: < 2.2e-16
```

6 Regression & Machine Learning: Modeling & Prediction

Many of the following models will make use of the predict() function.

6.1 Fit a logistic regression model on training data and assess against testing data.

a) Fit a logistic regression model on training data.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/tips_train.csv')
test <- read.csv('/Users/tips_test.csv')

# The following code is used to determine if the individual left more
# than a 15% tip
train$fifteen <- 0.15 * train$total_bill
train$greater15 <- ifelse(train$tip > train$fifteen, 1, 0)
test$fifteen <- 0.15 * test$total_bill
test$greater15 <- ifelse(test$tip > test$fifteen, 1, 0)
```

```
# Notice the syntax of greater15 as a function of total bill
logreg <- glm(greater15 ~ total bill, data = train, family =</pre>
"binomial"(link='logit'))
summary(logreg)
##
## Call:
## glm(formula = greater15 ~ total bill, family = binomial(link = "logit"),
      data = train)
##
## Deviance Residuals:
      Min
                1Q Median
                                   3Q
                                          Max
##
## -1.6409 -1.1929
                    0.8144 1.0027
                                       2.0381
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.64613 0.39459 4.172 3.02e-05 ***
## total bill -0.07064 0.01849 -3.820 0.000134 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 267.61 on 194 degrees of freedom
## Residual deviance: 250.58 on 193 degrees of freedom
## AIC: 254.58
##
## Number of Fisher Scoring iterations: 4
```

b) Assess the model against the testing data.

```
# Prediction on testing data
predictions <- predict(logreg, test, type = 'response')
predY <- ifelse(predictions < 0.5, 0, 1)

# Determine how many were correctly classified
Results <- ifelse(predY == test$greater15, "Correct", "Wrong")
table(Results)

## Results
## Correct Wrong
## 34 15</pre>
```

6.2 Fit a linear regression model on training data and assess against testing data.

a) Fit a linear regression model on training data.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/boston_train.csv')
test <- read.csv('/Users/boston_test.csv')</pre>
```

```
# Notice the syntax of tip as function of total_bill
linreg <- lm(Target ~ ., data = train)</pre>
summary(linreg)
##
## Call:
## lm(formula = Target ~ ., data = train)
## Residuals:
       Min
                 10
                     Median
                                  30
                                         Max
##
## -15.6466 -2.8461 -0.5395
                              1.7077
                                     26.2160
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 36.108196 6.504968 5.551 5.73e-08 ***
## X0
               ## X1
                0.046034
                          0.017150 2.684 0.007626 **
                0.036413
## X2
                          0.076006 0.479 0.632186
               3.247961
## X3
                          1.074138 3.024 0.002686 **
              -14.872938 4.636090 -3.208 0.001463 **
## X4
                3.576869
                          0.536993 6.661 1.10e-10 ***
## X5
## X6
               ## X7
               -1.368905
                          0.252960 -5.412 1.18e-07 ***
## X8
               0.313120
                          0.082366 3.802 0.000170 ***
                          0.004599 -2.801 0.005383 **
## X9
              -0.012882
## X10
              -0.976900
                          0.170996 -5.713 2.43e-08 ***
                          0.003359 3.372 0.000832 ***
## X11
               0.011326
                          0.062563 -8.419 1.08e-15 ***
               -0.526715
## X12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.988 on 340 degrees of freedom
## Multiple R-squared: 0.7236, Adjusted R-squared: 0.7131
## F-statistic: 68.48 on 13 and 340 DF, p-value: < 2.2e-16
b) Assess the model against the testing data.
# Predict the tip based on the total_bill given in the testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$target_hat = predict(linreg, newdata = test)
# Compute the squared difference between predicted tip and actual tip
prediction$sq_diff <- (prediction$target_hat - test$Target)**2</pre>
# Compute the mean of the squared differences (mean squared error)
# as an assessment of the model
mean_sq_error <- mean(prediction$sq_diff)</pre>
print(mean_sq_error)
## [1] 17.77131
```

6.3 Fit a decision tree model on training data and assess against testing data.

- a) Fit a decision tree classification model.
- i) Fit a decision tree classification model on training data, plot the tree, and determine variable importance.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/breastcancer_train.csv')
test <- read.csv('/Users/breastcancer_test.csv')

# The package we need to fit a tree model (tree) must first be
# installed and then called to use
library(tree)

# The "." character tells the model to use all variables except the response
# variabe (Target)
treeMod <- tree(Target ~ ., data = train, method = "class")

# Plot the decision tree
plot(treeMod)
text(treeMod)</pre>
```



```
# Determine variable importance
summary(treeMod)

##

## Regression tree:

## tree(formula = Target ~ ., data = train, method = "class")

## Variables actually used in tree construction:

## [1] "X23" "X27" "X1" "X28" "X4"

## Number of terminal nodes: 6

## Residual mean deviance: 0.02688 = 10.54 / 392

## Distribution of residuals:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.97820 -0.01575 0.02183 0.00000 0.02183 0.98430
```

ii) Assess the model against the testing data.

```
# Prediction on testing data
out <- predict(treeMod, test)
out <- unname(out)
pred.response <- ifelse(out < 0.5, 0, 1)

# Determine how many were correctly classified
Results <- ifelse(test$Target == pred.response, "Correct", "Wrong")
table(Results)</pre>
```

```
## Results
## Correct Wrong
## 159 12
```

b) Fit a decision tree regression model.

i) Fit a decision tree regression model on training data, plot the tree, and determine variable importance.

```
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/boston_train.csv')
test <- read.csv('/Users/boston_test.csv')

treeMod <- tree(Target ~ ., data = train, method = "anova")

# Plot the decision tree
plot(treeMod)
text(treeMod)</pre>
```



```
##
## Regression tree:
## tree(formula = Target ~ ., data = train, method = "anova")
## Variables actually used in tree construction:
## [1] "X5" "X12" "X7" "X0"
## Number of terminal nodes: 7
## Residual mean deviance: 14.67 = 5091 / 347
## Distribution of residuals:
      Min. 1st Qu.
                       Median
                                  Mean 3rd Qu.
                                                     Max.
## -28.0000 -1.8070
                       0.3264
                                0.0000 2.2320 10.0100
ii) Assess the model against the testing data.
# Predict the tip based on the total bill given in the testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$target_hat = predict(treeMod, newdata = test)
# Compute the squared difference between predicted tip and actual tip
prediction$sq diff <- (prediction$target hat - test$Target)**2</pre>
# Compute the mean of the squared differences (mean squared error)
# as an assessment of the model
mean_sq_error <- mean(prediction$sq_diff)</pre>
print(mean sq error)
## [1] 25.12126
```

tree

6.4 Fit a random forest model on training data and assess against testing data.

a) Fit a random forest classification model.

i) Fit a random forest classification model on training data and determine variable importance.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/breastcancer_train.csv')
test <- read.csv('/Users/breastcancer_test.csv')

# The package we need to fit a random forest model (randomForest) must
# first be installed and then called to use
require(randomForest)
set.seed(29)

rfMod <- randomForest(as.factor(Target) ~ ., data = train)

# Determine variable importance
print(importance(rfMod))</pre>
```

```
##
       MeanDecreaseGini
## X0
               7.4350001
## X1
               3.2158122
## X2
               8.1031917
## X3
              10.0537757
## X4
               1.6386749
## X5
               2.0837671
## X6
               9.6116813
## X7
              21.6437079
## X8
               0.7307710
## X9
               0.6775099
## X10
               2.6091324
## X11
               1.4562832
## X12
               3.2163635
## X13
               7.1262562
## X14
               0.9956042
## X15
               0.7235749
## X16
               0.9234519
## X17
               0.9404855
## X18
               0.7108068
## X19
               0.9439451
## X20
             18.9098892
## X21
               3.9869086
## X22
              21.5688509
## X23
              20.1310343
## X24
               2.6803628
## X25
               2.3652153
## X26
               8.0234990
## X27
              22.8845187
## X28
               2.2314638
## X29
               1.4673965
ii) Assess the model against the testing data.
# Prediction on testing data
pred.response <- predict(rfMod, test)</pre>
```

```
# Prediction on testing data
pred.response <- predict(rfMod, test)

# Determine how many were correctly classified
Results <- ifelse(test$Target == pred.response, "Correct", "Wrong")
table(Results)

## Results
## Correct Wrong
## 166 5</pre>
```

b) Fit a random forest regression model.

```
i) Fit a random forest regression model on training data and determine variable importance.
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/boston_train.csv')</pre>
```

```
test <- read.csv('/Users/boston test.csv')</pre>
# The package we need to fit a random forest model (randomForest) must
# first be installed and then called to use
require(randomForest)
set.seed(29)
rfMod <- randomForest(Target ~ ., data = train)</pre>
# Determine variable importance
print(importance(rfMod))
##
       IncNodePurity
## X0
           2147.2876
## X1
           246.8517
           1915.5704
## X2
## X3
           230.8659
## X4
          1776.4803
         8451.8355
## X5
## X6
          850.6732
## X7
          2105.0723
## X8
           298.5322
## X9
           939.6180
## X10
           1739.6930
           651.7589
## X11
## X12
           8662.2980
ii) Assess the model against the testing data.
# Predict the Target in the testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$target hat = predict(rfMod, newdata = test)
# Compute the squared difference between predicted tip and actual tip
prediction$sq_diff <- (prediction$target_hat - test$Target)**2</pre>
# Compute the mean of the squared differences (mean squared error)
# as an assessment of the model
mean_sq_error <- mean(prediction$sq_diff)</pre>
print(mean_sq_error)
## [1] 9.028163
```

randomForest

6.5 Fit a gradient boosting model on training data and assess against testing data.

a) Fit a gradient boosting classification model.

i) Fit a gradient boosting classification model on training data and determine variable importance.

```
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/breastcancer train.csv')</pre>
test <- read.csv('/Users/breastcancer_test.csv')</pre>
# The package we need to fit a gradient boosting model (gbm) must first
# be installed and then called to use
require(gbm)
set.seed(29)
# distribution = "bernoulli" is appropriate when there are only 2
# unique values
# n.trees = total number of trees to fit which is analogous to the number
# of iterations
# shrinkage = learning rate or step-size reduction, whereas a lower
# Learning rate requires more iterations
gbMod <- gbm(Target ~ ., distribution = "bernoulli", data = train, n.trees =
2500, shrinkage = .01)
# Determine variable importance
summary(gbMod)
```



```
##
                 rel.inf
       var
## X27 X27 27.501030040
## X7
        X7 20.685752752
## X23 X23 19.499763247
## X22 X22 15.467662358
## X13 X13
            3.461620283
## X20 X20
            3.420135928
## X21 X21
            3.112590280
## X1
        X1
            1.565270103
## X26 X26
            0.977012668
## X24 X24
            0.699708897
## X28 X28
            0.570461255
## X18 X18
            0.467509741
            0.395889286
## X11 X11
## X15 X15
            0.310587247
## X29 X29
            0.250279911
## X3
        Х3
            0.228744132
## X25 X25
            0.221418596
## X4
        X4
            0.211240553
## X14 X14
            0.209380216
## X6
        X6
            0.190119477
## X9
        X9
            0.178909422
## X19 X19
            0.109630024
```

```
## X10 X10 0.091983934

## X17 X17 0.053485704

## X8 X8 0.045784794

## X12 X12 0.033088702

## X5 X5 0.021833418

## X16 X16 0.008407155

## X0 X0 0.008278750

## X2 X2 0.002421124
```

ii) Assess the model against the testing data.

b) Fit a gradient boosting regression model.

i) Fit a gradient boosting regression model on training data and determine variable importance.

```
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/boston train.csv')</pre>
test <- read.csv('/Users/boston_test.csv')</pre>
# The package we need to fit a gradient boosting model (qbm) must first
# be installed and then called to use
require(gbm)
set.seed(29)
# distribution = "bernoulli" is appropriate when there are only 2
# unique values
# n.trees = total number of trees to fit which is analogous to the number
# of iterations
# shrinkage = learning rate or step-size reduction, whereas a lower
# Learning rate requires more iterations
# Fit the model, dividing target by 50 for scaling
gbMod <- gbm(Target / 50 ~ ., data = train, distribution = "gaussian",
n.trees = 2500, shrinkage = .01)
# Determine variable importance
summary(gbMod)
```



```
##
              rel.inf
       var
## X12 X12 41.8822593
## X5
        X5 32.8464221
## X7
        X7
            8.2981404
## X0
        X0
            5.9373914
## X4
        Χ4
           2.8678768
## X11 X11
            2.0983248
## X10 X10
            1.9043257
## X3
        X3 1.6390562
## X6
        X6 0.9700331
## X9
        X9
            0.8179346
## X8
        X8
            0.5157516
## X2
        X2 0.2224838
## X1
        X1 0.0000000
```

ii) Assess the model against the testing data.

```
# Compute the mean of the squared differences (mean squared error)
# as an assessment of the model
mean_sq_error <- mean(prediction$sq_diff)
print(mean_sq_error)
## [1] 11.88728
gbm</pre>
```

gom

6.6 Fit an extreme gradient boosting model on training data and assess against testing data.

a) Fit an extreme gradient boosting classification model.

```
i) Fit an extreme gradient boosting classification model on training data.
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/breastcancer_train.csv')</pre>
test <- read.csv('/Users/breastcancer test.csv')</pre>
# The package we need to fit an extreme gradient boosting model (xgboost)
# must first be installed and then called to use
require(xgboost)
set.seed(29)
# Fit the model
xgbMod <- xgboost(data.matrix(subset(train, select = -c(Target))),</pre>
                  data.matrix(train$Target), max_depth = 3, nrounds = 2,
                  objective = "binary:logistic", n_estimators = 2500,
                  shrinkage = .01)
## [1] train-error:0.037688
## [2] train-error:0.020101
ii) Assess the model against the testing data.
# Prediction on testing data
predictions <- predict(xgbMod, data.matrix(subset(test, select = -</pre>
c(Target))))
pred.response <- ifelse(predictions < 0.5, 0, 1)</pre>
# Determine how many were correctly classified
Results <- ifelse(test$Target == pred.response, "Correct", "Wrong")</pre>
table(Results)
## Results
## Correct
             Wrong
## 165
```

b) Fit an extreme gradient boosting regression model.

```
i) Fit an extreme gradient boosting regression model on training data.
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/boston_train.csv')</pre>
test <- read.csv('/Users/boston_test.csv')</pre>
# The package we need to fit an extreme gradient boosting model (xgboost)
# must first be installed and then called to use
require(xgboost)
set.seed(29)
# Fit the model, dividing target by 50 for scaling
xgbMod <- xgboost(data.matrix(subset(train, select = -c(Target))),</pre>
                 data.matrix(train$Target / 50), max_depth = 3, nrounds = 2,
                 n_estimators = 2500, shrinkage = .01)
## [1] train-rmse:0.146609
## [2] train-rmse:0.114851
ii) Assess the model against the testing data.
# Predict the target in the testing data, remembering to
# multiply by 50
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$target_hat <- predict(xgbMod,</pre>
                                  data.matrix(subset(test, select = -
c(Target))))*50
# Compute the squared difference between predicted tip and actual tip
prediction$sq diff <- (prediction$target hat - test$Target)**2</pre>
# Compute the mean of the squared differences (mean squared error)
# as an assessment of the model
mean_sq_error <- mean(prediction$sq_diff)</pre>
print(mean_sq_error)
## [1] 36.13079
```

xgboost

6.7 Fit a support vector model on training data and assess against testing data.

- a) Fit a support vector classification model.
- i) Fit a support vector classification model on training data.
 # Notice we are re-using data sets but it is good to re-read the original
 # version back into the environment

```
train <- read.csv('/Users/breastcancer_train.csv')</pre>
test <- read.csv('/Users/breastcancer_test.csv')</pre>
# The package we need to fit an svm model (e1071) must first
# be installed and then called to use
library(e1071)
# Fit a support vector classification model
svMod <- svm(Target ~ ., train, type = 'C-classification', kernel = 'linear')</pre>
ii) Assess the model against the testing data.
# Prediction on testing data
pred.response <- unname(predict(svMod, test))</pre>
# Determine how many were correctly classified
Results <- ifelse(test$Target == pred.response, "Correct", "Wrong")</pre>
table(Results)
## Results
## Correct Wrong
## 166
```

b) Fit a support vector regression model.

```
i) Generate random data based on a sine curve.
set.seed(29)
# Generate the time variable
t <- seq(from = 0, to = 0.5*pi,length.out=100)

# Generate the sine curve with uniform noise
y1 <- 5*sin(3*t) + runif(100)

# Create a data frame for the generated data
random_data <- data.frame(matrix(ncol=0, nrow = 100))
random_data$X <- t
random_data$Y <- y1

# Plot the generated data
plot(t,y1)</pre>
```


seq() runif()

ii) Fit a support vector regression model to the data and assess the predictions.

```
# The package we need to fit an svm model (e1071) must first
# be installed and then called to use
library(e1071)

model <- svm(Y ~ X, random_data)
predictedY <- predict(model, random_data)
plot.new()
plot(random_data$X, random_data$Y)
points(random_data$X, predictedY, col = "red", pch = 4)</pre>
```



```
prediction = data.frame(matrix(ncol = 0, nrow = nrow(random_data)))
prediction$predY <- predictedY
prediction$actual <- random_data$Y
prediction$sq_diff <- (prediction$predY - prediction$actual)**2
print(mean(prediction$sq_diff))
## [1] 0.08052554</pre>
```

e1071 svm()

6.8 Fit a neural network model on training data and assess against testing data.

a) Fit a neural network classification model.

```
i) Fit a neural network classification model on training data.
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/digits_train.csv')
test <- read.csv('/Users/digits_test.csv')</pre>
trainInputs <- subset(train, select = -c(Target))
```

```
testInputs <- subset(test, select = -c(Target))
# The package we need to fit a neural network model (RSNNS) must
# first be installed and then called to use
library(RSNNS)
set.seed(29)
trainTarget <- decodeClassLabels(train$Target)</pre>
testTarget <- decodeClassLabels(test$Target)</pre>
nnMod <- mlp(trainInputs, trainTarget, inputsTest=testInputs,</pre>
targetsTest=testTarget, size = 100, maxit = 200)
ii) Assess the model against the testing data.
predictions <- predict(nnMod, testInputs)</pre>
confusionMatrix(testTarget, predictions)
         predictions
##
## targets 1 2 3 4 5 6 7 8 9 10
       1 55 0 0 0 1 0 1 1 0 0
##
       2
          054 2 0 0 0 1 0 1 0
##
       3 0 0 58 0 0 0 0 0 0
##
       4 0 0 0 56 0 1 0 2 0 0
##
       5 0 0 0 0 53 0 0 0 1 0
##
##
       6 0 0 0 0 0 58 1 0 0 0
      7 0 0 0 0 0 0 41 0 0 0
##
##
       8 0 1 0 0 0 0 0 49 0 1
##
       9
          1 3 0 3 0 0 0 0 36 2
##
       10 0 1 0 0 0 1 0 2 1 52
```

confusionMatrix()

b) Fit a neural network regression model.

```
i) Fit a neural network regression model on training data.
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/boston_train.csv')
test <- read.csv('/Users/boston_test.csv')

# Scale input data
scaled_train <- data.frame(scale(subset(train, select = -c(Target))))
scaled_test <- data.frame(scale(subset(test, select = -c(Target))))

# Fit neural network regression model, dividing target by 50 for scaling
nnMod <- mlp(scaled_train, train$Target / 50, inputsTest=scaled_test,
targetsTest=test$Target / 50, maxit = 1000)</pre>
```

scale()

```
# Assess against testing data, remembering to multiply by 50
preds = data.frame(matrix(ncol = 0, nrow = nrow(test)))
preds$predY <- predict(nnMod, scaled_test)*50
preds$target <- test$Target
preds$sq_error <- (preds$predY - preds$target)**2
print(mean(preds$sq_error))</pre>
## [1] 24.9167
```

RSNNS

7 Model Evaluation & Selection

7.1 Evaluate the accuracy of regression models.

a) Evaluation on training data.

```
# Notice we are re-using data sets but it is good to re-read the original
# version back into the environment
train <- read.csv('/Users/boston_train.csv')</pre>
test <- read.csv('/Users/boston_test.csv')</pre>
# Random Forest Regression Model
set.seed(29)
rfMod <- randomForest(Target ~ ., data = train)</pre>
# Evaluation on training data
pred rf <- predict(rfMod, train)</pre>
pred_rf <- unname(pred_rf)</pre>
# Determine coefficient of determination score
r2_rf <- 1 - ( (sum((train$Target - pred_rf)**2)) / (sum((train$Target -
mean(train$Target))**2)) )
print(paste0("Random forest regression model r^2 score (coefficient of
determination): ", r2_rf))
## [1] "Random forest regression model r^2 score (coefficient of
determination): 0.972080769152132"
```

unname()

```
b) Evaluation on testing data.
```

```
# Random Forest Regression Model (rfMod)

# Evaluation on testing data
pred_rf <- predict(rfMod, test)
pred_rf <- unname(pred_rf)</pre>
```

```
# Determine coefficient of determination score
r2_rf = 1 - ( (sum((test$Target - pred_rf)**2)) / (sum((test$Target -
mean(test$Target))**2)) )
print(paste0("Random forest regression model r^2 score (coefficient of
determination): ", r2_rf))
## [1] "Random forest regression model r^2 score (coefficient of
determination): 0.886681832095677"
```

The formula used here for the coefficient score is based off the Python skearn formula for r2_score. For more information about model assessment in R, please review information about the R package caret.

7.2 Evaluate the accuracy of classification models.

a) Evaluation on training data.

```
# Notice we are using new data sets that need to be read into
# the environment
train <- read.csv('/Users/digits_train.csv')
test <- read.csv('/Users/digits_test.csv')
set.seed(29)

# Random Forest Classification Model

rfMod <- randomForest(as.factor(Target) ~ ., data = train)

# Evaluation on training data
pred_rf <- predict(rfMod, train)
pred_rf <- unname(pred_rf)

# Determine accuracy score
accuracy_rf <- (1/nrow(train)) * sum(as.numeric(pred_rf == train$Target))
print(paste0("Random forest model accuracy: ", accuracy_rf))

## [1] "Random forest model accuracy: 1"</pre>
```

b) Evaluation on testing data.

```
# Random Forest Classification Model (rfMod)

# Evaluation on testing data
pred_rf <- predict(rfMod, test)
pred_rf <- unname(pred_rf)

# Determine accuracy score
accuracy_rf <- (1/nrow(test)) * sum(as.numeric(pred_rf == test$Target))
print(paste0("Random forest model accuracy: ", accuracy_rf))

## [1] "Random forest model accuracy: 0.974074074074074"</pre>
```

The formula used here for the accuracy score is based off the Python skearn formula for accuracy_score. For more information about model assessment in R, please review information about the R package caret.

7.3 Evaluation with cross validation.

a) KFold

```
# Notice we are using a new data set that needs to be read into the
# environment
breastcancer = read.csv('/Users/breastcancer.csv')
# The packages we need (caret & randomForest) must first
# be installed and then called to use
library(caret)
library(randomForest)
# Create the 5 cross validation folds
train control <- trainControl(method = "cv", number = 5, savePredictions =
TRUE)
# Convert Target into a factor variable for the random forest model
breastcancer$Target <- factor(breastcancer$Target, levels = c(1,0),</pre>
                       labels = c(1, 0)
# Train the model, using the 5 cross validation folds
model <- train(Target~., data = breastcancer, trControl = train control,</pre>
method = "rf")
# Assess the accuracy of the model
tab <- model pred
tab$correct <- (tab$pred == tab$obs)</pre>
tab$correct num <- ifelse(tab$correct=="TRUE", 1, 0)</pre>
aggdata <- unname(as.matrix(aggregate(correct_num ~ Resample, tab, sum)))</pre>
aggdata <- as.numeric(aggdata[,2])</pre>
counts <- unname(table(tab$Resample))</pre>
accuracy <-c(0,0,0,0,0)
for (i in 1:5) {
  accuracy[i] <- aggdata[i]/counts[i]</pre>
}
print(paste0("Accuracy: ", round(mean(accuracy)*100, digits=2), "% +/- ",
round(sd(accuracy)*100, digits=2), "%"))
## [1] "Accuracy: 95.84% +/- 1.22%"
```

caret

b) ShuffleSplit

```
# Notice we are using a new data set that needs to be read into the
# environment
breastcancer = read.csv('/Users/breastcancer.csv')
# The package we need to create a data partition (caret) must first
# be installed and then called to use
require(caret)
require(randomForest)
set.seed(29)
X = subset(breastcancer, select = -c(Target))
Y = breastcancer$Target
# Create the data partition
trainIndex <- createDataPartition(Y, times = 5, p = 0.7, list = FALSE)</pre>
accuracy <-c(0, 0, 0, 0, 0)
for (i in 1:5) {
  nam <- paste("data_train", i, sep ="")</pre>
  assign(nam, breastcancer[trainIndex[,i],])
  nam <- paste("data_test", i, sep ="")</pre>
  assign(nam, breastcancer[-trainIndex[,i],])
}
data train <- list(data train1, data train2, data train3, data train4,
data train5)
data test <- list(data test1, data test2, data test3, data test4, data test5)</pre>
# Train the model and assess the accuracy
for (i in 1:5) {
  fit <- randomForest(as.factor(Target) ~ ., data = data_train[[i]])</pre>
  Prediction <- predict(fit, data test[[i]])</pre>
  Prediction <- unname(Prediction)</pre>
  correct <- (data_test[[i]]$Target == Prediction)</pre>
  counts <- unname(table(correct))</pre>
  accuracy[i] <- counts[2] / sum(counts)</pre>
}
print(paste0("Accuracy: ", round(mean(accuracy)*100, digits=2), "% +/- ",
round(sd(accuracy)*100, digits=2), "%"))
## [1] "Accuracy: 94.24% +/- 1.05%"
```

createDataPartition

Appendix

1 Built-in R-Objects

Vectors

- Logical
- Numeric
- Integer
- Complex
- Character
- Raw

Lists

Matrics

Arrays

Factors

Data Frames

Alphabetical Index

Array

A one-dimensional data frame. Please see the following example of array creation and access:

```
my_array <- c(1, 3, 5, 9)
print(my_array)
## [1] 1 3 5 9
print(my_array[1])
## [1] 1</pre>
```

caret

An R programming package of tools for training and plotting classification and regression models.

Data Frame

An R Data Frame is a two-dimensional tabular structure with labeled axes (rows and columns), where data observations are represented by rows and data variables are represented by columns.

Dictionary

A dictionary is an associative array which is indexed by keys which map to values. Therefore, a dictionary is an unordered set of key:value pairs where each key is unique. In R, a dictionary can be implemented using a named list. Please see the following example of named list creation and access:

```
student <- read.csv('/Users/class.csv')
values <- student$Age
names(values) <- student$Name
print(values["James"])
## James
## 12</pre>
```

dplyr

An R programming package of tools for working with data frame like objects.

gbm

An R programming package useful for building and analyzing gradient boosting models.

gdata

An R programming package of tools useful for data manipulation.

List

An R list is a sequence of comma-separated objects that need not be of the same type. Please see the following example of list creation and access:

```
list1 <- list('item1', 102)
print(list1)

## [[1]]
## [1] "item1"
##
## [[2]]
## [1] 102
print(list1[1])</pre>
```

```
## [[1]]
## [1] "item1"
```

randomForest

An R programming package of tools useful for building and analyzing classification and regression random forest models.

RSNNS [#RSNNS]

An R programming package of tools useful for building and analyzing classification and regression neural network models.

rjson

An R programming package of tools useful for converting R objects into JSON objects, and JSON objects into R objects.

tree

An R programming package of tools useful for building and analyzing classification and regression decision trees.

Vector

A one-dimensional data structure which is able to hold different classes of elements, but only one class per vector.

xgboost

An R programming package of tools useful for building and analyzing classification and regression extreme gradient boosting models.

For more information on R packages and functions, along with helpful examples, please see R.