NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MEKANIKK, TERMO- OG FLUIDDYNAMIKK

Side 1 av 4

Faglig kontakt under eksamen:

Navn: Tlf.: Iver Brevik (735) 93555

EKSAMEN I FAG 61124 / 66031 FLUIDMEKANIKK FOR FAK. VII

Mandag 6.mai 1996 Tid: kl. 0900 - 1300

Hjelpemidler:

B2- Typegodkjent kalkulator, med tomt minne, i henhold til liste utarbeidet

av NTNU tillatt.

Bestemte trykte hjelpemidler tillatt:

Formelsamling i matematikk

Formelliste, vedheftet oppgavesettet

Oppgave 1

a) En vannvogn av lengde L akselereres langs x-aksen med konstant akselerasjon a_x . Vannets tetthet er ρ , atmosfæretrykket er p_0 , og tyngdens akselerasjon er g. Finn trykket p(x,z) i vannet, idet du legger koordinatsystemet fast i vognen som vist på figuren. Vanndybden H ved x=0 antas kjent.

Side 3 av 4

Et U-rør er delvis fylt av en væske. Røret er festet til en vogn som akselererer langs x-aksen med konstant akselerasjon a_x , og skal benyttes til å måle størrelsen av a_x . En leser av høydeforskjellen h i røret. Finn a_x som funksjon av g, h og L.

Side 2 av 4

Oppgave 2

En igloo (snøhytte) har form av en halvsylinder med radius R. Se bort fra veggtykkelsen. Lufta antas friksjonsfri, med konstant tetthet ρ . Det blåser en vind på tvers mot iglooen, med opprinnelig hastighet V_{\bullet} som vist på figuren. Legg origo i punktet O.

a) Hastighetspotensialet Φ for potensialstrømningen på utsiden (r ≥ R) oppgis å ha formen

$$\Phi = V_{-}\left(r + \frac{k}{r}\right)\cos\theta ,$$

hvor k er en konstant. Bestem verdien av k. Finn også strømfunksjonen Y på utsiden.

b) Finn trykket p(R, θ) på utsiden av veggen. Inngangen til iglooen er markert med I på figuren. Her i oppgaven skal det antas at bredden av åpningen er meget liten i forhold til R.

Anta først at I ligger nede ved platået (vinkel $\theta_0=0$). Hva er da den vertikale nettokraft F_y på iglooen, per lengdeenhet i z-retningen? [Hint: Trykket p_{in} inne i iglooen er alltid lik trykket ved inngangen.]

c) Du finner at $F_y > 0$, slik at iglooen blir utsatt for en løftekraft. Når vinden er sterk, kan denne kraften true med å løfte hele iglooen til værs. En av eskimoene innser imidlertid at man kan unngå problemet ved å flytte inngangen et stykke opp på veggen, tilsvarende en vinkel $\theta_0 > 0$ på figuren. For hvilken verdi av θ_0 vil løftekraften F_v bli lik null?

Oppgave 3

En rektangulær tank med sidekanter a og b er fylt med vann opp til høyden d. Figuren viser tanken sett ovenfra. Horisontale akser er x og y. La z-aksen peke oppover, og la planet z=0 falle sammen med vannspeilet når vannet er i ro.

Oppgaven i det følgende går ut på å analysere de mulige stasjonære svingemodene til den frie overflate i tanken.

a) Gi først en kort utledning av den kinematiske betingelse for den frie overflaten. Bruk denne, samt den dynamiske overflatebetingelse (Bernoullis ligning) til å utlede den frie overflatebetingelse for hastighetspotensialet Φ i lineær teori:

$$\frac{\partial^2 \Phi}{\partial t^2} + g \frac{\partial \Phi}{\partial z} = 0 , \quad z=0.$$

b) Hastighetspotensialet oppgis å ha formen

$$\Phi = f(x,y) \cosh k(z+d) \cos \omega t$$
.

Forklar hvorfor funksjonen f(x,y) må oppfylle differensialligningen

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + k^2 f = 0.$$

Finn dispersjonsrelasjonen $\omega = \omega(k)$.

c) Anta at f(x,y) har formen

 $f = \cos px \cos qy$,

hvor p og q er konstanter. Betrakt de kinematiske grensebetingelsene ved tankens sidevegger, x=0,a og y=0,b. Hvilke krav setter disse betingelsene på verdiene av p og q? Finn de mulige verdiene av bølgetallet k samt vinkelfrekvensen ω .

 Oppgave 3 b
Incompressibilitet $\nabla \cdot \vec{V} = \vec{\sigma} \vec{\Phi} = 0$ gir ved
 innselling as $\Phi = \int (x,y) \cosh k(z+d) \cos \omega t$, at
$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial y^2} = 0.$
 Regner ut
 $\frac{\partial \Phi}{\partial t^2} = -\omega \left\{ \cosh k(z+d) \cos \omega t \right\}$
 q = qk sinh k(z+d) cos wt.
 Sett z = 0. Fri overfletebehigelse gir - w² p coshkd cos wt + g k p sinh kd cos wt = 0
- ω coshkd cos ωt + gk sinh kd cos ωt = 0
 ω = gk tanh kd Samme som for propagnende bolger.
Innselling av f = easpx cos q y gir
\$ = cospx eosqy coshk(z+d) coswt.
 $u = \frac{\partial \Phi}{\partial x} = - p \sin px \cos qy \cosh k(z+d) \cos \omega t$
w = 20 = - q cospx singy coshk(z+d) coswt.
H_a^2 ha $u = 0$ for $x = 0$, a , a , $v = 0$ for $y = 0$, b . $\Rightarrow \sin pa = 0$, $\sin qb = 0$
 $\frac{\text{Alha}}{\text{Dr}} p = m\pi/a$, $q = n\pi/b$, may n hele tall.
 The $p = m\pi/a$, $q = n\pi/b$, moy n hele tall. The D folger $p^2 + q^2 = k^2$. Tillaffe verdin av k allm
$k = \pi \sqrt{\frac{m^2}{a^2} + \frac{n^2}{b^2}}$, word to the trende vinbolfeliums
w = \gk tank kd