

DDR4

TS1GHR72V1Z TS2GHR72V1Z

288Pin DDR4 2133 RDIMM 8GB~16GB Based on 1Gx4

Description

DDR4 Registered DIMM is high-speed, low power memory module that use 1Gx4bits DDR4 SDRAM in FBGA package and a 4Kbits serial EEPROM on a 288-pin printed circuit board. DDR4 Registered DIMM is a Dual In-Line Memory Module and is intended for mounting into 288-pin edge connector sockets.

Synchronous design allows precise cycle control with the use of system clock. Data I/O transactions are possible on both edges of DQS. Range of operation frequencies, programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

Features

- RoHS compliant products.
- JEDEC standard 1.2V ± 0.06V power supply
- VDDQ=1.2V ± 0.06V
- Clock Freq: 1067MHZ for 2133Mb/s/Pin.
- Programmable CAS Latency: 10,11,12,13,14,15,16
- Programmable Additive Latency (Posted /CAS):
 0,CL-2 or CL-1 clock
- Programmable /CAS Write Latency (CWL)
 = 11, 14(DDR4-2133)
- 8 bit pre-fetch
- Burst Length: 4, 8
- Bi-directional Differential Data-Strobe
- On Die Termination with ODT pin
- Serial presence detect with EEPROM

On DIMM Thermal Sensor

Pin Identification

Symbol	Function
A0~A15	Register address input
BA0, BA1	Register bank select input
BG0, BG1	Register bank group select input
RAS_n	Register row address strobe input
CAS_n	Register column address strobe input
WE_n	Register write enable input
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input
CKE0, CKE1	Register clock enable lines input
ODT0, ODT1	Register on-die termination control lines input
ACT_n	Register input for activate input
DQ0~Q63	DIMM memory data bus
CB0~B7	DIMM ECC check bits
TDQS9_t~TDQS17_t TDQS9_c~TDQS17_c	Dummy loads for mixed populations of x4 based and x8 based RDIMMs.
DQS0_t~DQS17_t	Data Buffer data strobes (positive line of differential pair)
DQS0_c~DQS17_c	Data Buffer data strobes (negative line of differential pair)
CK0_t, CK1_t	Register clock input (positive line of differential pair)
CK0_c, CK1_c	Register clocks input (negative line of differential pair)
SCL	I2C serial bus clock for SPD/TS and register
SDA	I2C serial bus data line for SPD/TS and register
SA0~SA2	I2C slave address select for SPD/TS and register
PAR	Register parity input
VDD	SDRAM core power supply
VREFCA	SDRAM command/address reference supply
VSS	Power supply return (ground)
VDDSPD	Serial SPD/TS positive power supply
ALERT_n	Register ALERT_n output
VPP	SDRAM activating power supply
RESET_n	Set Register and SDRAMs to a Known State
EVENT_n	SPD signals a thermal event has occurred.
VTT	SDRAM I/O termination supply
RFU	Reserved for future use
NC	No Connection

Dimensions (Unit: millimeter)

Note:

1. Tolerances on all dimensions +/-0.15mm unless otherwise specified.

Pin Assignments

Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin
No	Name	No	Name	No	Name	No	Name	No	Name	No	Name	No	Name	No	Name
1	12V ³ ,NC	37	VSS	73	VDD	109	VSS TDQS14_t,	145	12V ³ ,NC	181	DQ29	217	VDD	253	DQ41
2	VSS	38	DQ24	74	CK0_t	110	DQS14_t	146	VREFCA	182	VSS	218	CK1_t	254	VSS
3	DQ4	39	VSS	75	CK0_c	111	TDQS14_c, DQS14_c	147	VSS	183	DQ25	219	CK1_c	255	DQS5_c
4	VSS	40	TDQS12_t, DQS12_t	76	VDD	112	VSS	148	DQ5	184	VSS	220	VDD	256	DQS5_t
5	DQ0	41	TDQS12_c, DQS12_c	77	VTT	113	DQ46	149	VSS	185	DQS3_c	221	VTT	257	VSS
6	VSS	42	VSS	78	EVENT_n	114	VSS	150	DQ1	186	DQS3_t	222	PARITY	258	DQ47
7	TDQS9_t, DQS9_t	43	DQ30	79	A0	115	DQ42	151	VSS	187	VSS	223	VDD	259	VSS
8	TDQS9_c, DQS9_c	44	VSS	80	VDD	116	VSS	152	DQS0_c	188	DQ31	224	BA1	260	DQ43
9	VSS	45	DQ26	81	BA0	117	DQ52	153	DQS0_t	189	VSS	225	A10/AP	261	VSS
10	DQ6	46	VSS	82	RAS_n/A16	118	VSS	154	VSS	190	DQ27	226	VDD	262	DQ53
11	VSS	47	CB4	83	VDD	119	DQ48	155	DQ7	191	VSS	227	RFU	263	VSS
12	DQ2	48	VSS	84	S0_n	120	VSS	156	VSS	192	CB5	228	WE_n/A14	264	DQ49
13	VSS	49	CB0	85	VDD	121	TDQS15_t, DQS15_t	157	DQ3	193	VSS	229	VDD	265	VSS
14	DQ12	50	VSS	86	CAS_n/A15	122	TDQS15_c, DQS15_c	158	VSS	194	CB1	230	NC	266	DQS6_c
15	VSS	51	TDQS17_t, DQS17_t	87	ODT0	123	VSS	159	DQ13	195	VSS	231	VDD	267	DQS6_t
16	DQ8	52	TDQS17_c, DQS17_c	88	VDD	124	DQ54	160	VSS	196	DQS8_c	232	A13	268	VSS
17	VSS	53	VSS	89	S1_n	125	VSS	161	DQ9	197	DQS8_t	233	VDD	269	DQ55
18	TDQS10_t, DQS10_t	54	CB6	90	VDD	126	DQ50	162	VSS	198	VSS	234	A17	270	VSS
19	TDQS10_c, DQS10_c	55	VSS	91	ODT1	127	VSS	163	DQS1_c	199	CB7	235	NC,C2	271	DQ51
20	VSS	56	CB2	92	VDD	128	DQ60	164	DQS1_t	200	VSS	236	VDD	272	VSS
21	DQ14	57	VSS	93	C0,CS2_n,NC	129	VSS	165	VSS	201	CB3	237	NC,CS3_c,C1	273	DQ61
22	VSS	58	RESET_n	94	VSS	130	DQ56	166	DQ15	202	VSS	238	SA2	274	VSS
23	DQ10	59	VDD	95	DQ36	131	VSS	167	VSS	203	CKE1	239	VSS	275	DQ57
24	VSS	60	CKE0	96	VSS	132	TDQS16_t, DQS16_t	168	DQ11	204	VDD	240	DQ37	276	VSS
25	DQ20	61	VDD	97	DQ32	133	TDQS16_c, DQS16_c	169	VSS	205	RFU	241	VSS	277	DQS7_c
26	VSS	62	ACT_n	98	VSS	134	VSS	170	DQ21	206	VDD	242	DQ33	278	DQS7_t
27	DQ16	63	BG0	99	TDQS13_t, DQS13_t	135	DQ62	171	VSS	207	BG1	243	VSS	279	VSS
28	VSS	64	VDD	100	TDQS13_c, DQS13_c	136	VSS	172	DQ17	208	ALERT_n	244	DQS4_c	280	DQ63
29	TDQS11_t, DQS11_t	65	A12/BC_n	101	VSS	137	DQ58	173	VSS	209	VDD	245	DQS4_t	281	VSS
30	TDQS11_c, DQS11_c	66	A9	102	DQ38	138	VSS	174	DQS2_c	210	A11	246	VSS	282	DQ59
31	VSS	67	VDD	103	VSS	139	SA0	175	DQS2_t	211	A7	247	DQ39	283	VSS
32	DQ22	68	A8	104	DQ34	140	SA1	176	VSS	212	VDD	248	VSS	284	VDDSPD
33	VSS	69	A6	105	VSS	141	SCL	177	DQ23	213	A5	249	DQ35	285	SDA
34	DQ18	70	VDD	106	DQ44	142	VPP	178	VSS	214	A4	250	VSS	286	VPP
35	VSS	71	А3	107	VSS	143	VPP	179	DQ19	215	VDD	251	DQ45	287	VPP
36	DQ28	72	A1	108	DQ40	144	RFU	180	VSS	216	A2	252	VSS	288	VPP⁴
Note	۸.														

- 1. VPP is 2.5V DC
- VPF is 2.30 bC
 Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.
 Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM
 The 5th VPP is required on all modules, DIMMs.

Block Diagram 8GB, 1Gx72 Module(1 Rank x4)

NOTE:

- 1. Unless otherwise noted, resistor values are 15 $\!\Omega \pm 5\%$
- 2. See the Net Structure diagrams for all resistors associated with the command, address and control bus.
- 3. ZQ resistors are $240\Omega \pm 1\%$. For all other resistor values refer to the appropriate wiring diagram.

Block Diagram 16GB, 2Gx72 Module(2 Rank x4)

NOTE:

- 1. Unless otherwise noted, resistor values are $15\Omega \pm 5\%$.
- 2. See the Net Structure diagrams for all resistors associated with the command, address and control bus.
- 3. ZQ resistors are 240 $\!\Omega\pm1\%$. For all other resistor values refer to the appropriate wiring diagram.

This technical information is based on industry standard data and tests believed to be reliable. However, Transcend makes no warranties, either expressed or implied, as to its accuracy and assume no liability in connection with the use of this product. Transcend reserves the right to make changes in specifications at any time without prior notice.

Operating Temperature Condition

Parameter	Symbol	Rating	Unit	Note
Operating Temperature	TOPER	0 to 85	$^{\circ}$	1,2

Note:

- . Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
- 2. At 0 85°C, operation temperature range are the temperature which all DRAM specification will be supported.

Absolute Maximum DC Ratings

Parameter	Symbol	Value	Unit	Note
Voltage on VDD relative to Vss	VDD	-0.3 ~ 1.5	V	1
Voltage on VDDQ pin relative to Vss	VDDQ	-0.3 ~ 1.5	V	1
Voltage on VPP pin relative to Vss	VPP	-0.3 ~ 3.0	V	3
Voltage on any pin relative to Vss	VIN, VOUT	-0.3 ~ 1.5	V	1
Storage temperature	Tstg	-55~+100	°C	1,2

Note:

- Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the
 device. This is a stress rating only and functional operation of the device at these or any other conditions
 above those indicated in the operational sections of this specification is not implied. Exposure to absolute
 maximum rating conditions for extended periods may affect reliability.
- 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
- 3. VPP must be equal or greater than VDD/VDDQ at all times.

AC & DC Operating Conditions

Recommended DC operating conditions

Doromotor	Cumbal	Rating				Notes
Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Supply voltage	VDD	1.14	1.2	1.26	V	1, 2
Supply voltage for Output	VDDQ	1.14	1.2	1.26	V	1, 2
Wordline supply voltage	VPP	2.375	2.5	2.75	V	3

Note: 1. Under all conditions VDDQ must be less than or equal to VDD.

- 2. VDDQ tracks with VDD, AC parameters are measured with VDD and VDDQ tied together.
- 3. DC bandwidth is limited to 20MHz

Single-ended AC & DC input levels for Command and Address

enigio on aca x o a z o mparioron					
Donomotor	Cumbal	DDR4-1600/	l Init	Note	
Parameter	Symbol	Min	Max	V V V V	Note
I/O Reference Voltage (CMD/ADD)	VREFCA(DC)	0.49*VDDQ	0.51*VDDQ	V	1,2
DC Input Logic High	VIH(DC)	VREF+0.075	VDD	V	
DC Input Logic Low	VIL(DC)	VSS	VREF-0.075	V	
AC Input Logic High	VIH(AC)	VREF+0.1	Note 1	V	
AC Input Logic Low	VIL(AC)	Note 1	VREF-0.1	V	

Note: 1. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)

2. For reference : approx. VDD/2 ± 12mV

Differential AC and DC Input Levels

Devenuetes	Comphal	DDR4-1600/	11:4:4	Note	
Parameter	Symbol Min Max		Unit	Note	
differential input high DC	VIHdiff(DC)	+0.150	NOTE 3	V	1
differential input low DC	VILdiff(DC)	NOTE 3	-0.150	V	1
differential input high AC	VIHdiff(AC)	2 x (VIH(AC) - VREF)	NOTE 3	V	2
differential input low AC	VILdiff(AC)	NOTE 3	2 x (VIL(AC) -VREF)	V	2

Note: 1. Used to define a differential signal slew-rate.

- 2. for CK_t CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD and VREFCA;
- 3. These values are not defined; however, the differential signals CK_t CK_c, need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.

Single-ended AC & DC output levels

Parameter	Symbol	DDR4-1600/1866/2133		Note			
DC output high measurement level	VOH(DC)	1.1 x VDDQ	V				
DC output mid measurement level	VOM(DC)	0.8 x VDDQ	V				
DC output low measurement level	VOL(DC)	0.5 x VDDQ	V				
AC output high measurement level	VOH(AC)	(0.7 + 0.15) x VDDQ	V	1			
AC output low measurement level	VOL(AC)	(0.7 - 0.15) x VDDQ	V	1			

Note: 1. The swing of \pm 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7 Ω and an effective test load of 50 Ω to VTT = VDDQ.

Differential AC & DC output levels

Parameter	Symbol	DDR4-1600/1866/2133	Unit	Note
AC differential output high measurement level	VOHdiff(AC)	+0.3 x VDDQ	V	1
AC differential output low measurement level	VOLdiff(AC)	-0.3 x VDDQ	V	1

Note: 1. The swing of \pm 0.3 x VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7 Ω and an effective test load of 50 Ω to VTT = VDDQ at each of the differential outputs.

IDD Specification parameters Definition (IDD values are for full operating range of Voltage and Temperature) 8GB, 1Gx72 Module(1 Rank x4)

Parameter	Symbol	DDR4 2133 CL15	Unit
Operating One bank Active-Precharge current ; tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD0	1280	mA
Operating One bank Active-read-Precharge current; IOUT = 0mA; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD = tRCD(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W	IDD1	1450	mA
Precharge power-down current ; All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD2P	500	mA
Precharge quiet standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, /CS is HIGH; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD2Q	1020	mA
Precharge standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, /CS is HIGH; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD2N	1040	mA
Active power - down current; All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD3P	570	mA
Active standby current; All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD3N	1210	mA
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W	IDD4R	2240	mA
Operating burst write current; All banks open, Continuous burst writes; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING IDD4R	IDD4W	2050	mA
Burst refresh current; tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD5	3480	mA
Self refresh current; CK and /CK at 0V; CKE = 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING	IDD6	260	mA
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 8, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), Trc = tRC(IDD), tRRD = tRRD(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R;	IDD7	3240	mA

Note: 1.Module IDD was calculated on the specific brand DRAM(2Xnm) component IDD and can be differently measured according to DQ loading capacitor.

16GB, 2Gx72 Module(2 Rank x4)

Parameter	Symbol	DDR4 2133 CL15	Unit
Operating One bank Active-Precharge current ; tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD0	1600	mA
Operating One bank Active-read-Precharge current; IOUT = 0mA; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD = tRCD(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W	IDD1	1780	mA
Precharge power-down current ; All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD2P	720	mA
Precharge quiet standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, /CS is HIGH; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD2Q	1310	mA
Precharge standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, /CS is HIGH; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD2N	1370	mA
Active power - down current; All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD3P	870	mA
Active standby current; All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD3N	1540	mA
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W	IDD4R	2580	mA
Operating burst write current; All banks open, Continuous burst writes; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING IDD4R	IDD4W	2380	mA
Burst refresh current; tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD5	3810	mA
Self refresh current; CK and /CK at 0V; CKE = 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING	IDD6	500	mA
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 8, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), Trc = tRC(IDD), tRRD = tRRD(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R;	IDD7	3580	mA

Note: 1.Module IDD was calculated on the specific brand DRAM(2Xnm) component IDD and can be differently measured according to DQ loading capacitor.

Timing Parameters & Specifications

Speed		DDR4	2133	Unit
Parameter	Symbol	Min	Max	
Average Clock Period	tCK	0.938	<1.071	ns
CK high-level width	tCH	0.48	0.52	tCK
CK low-level width	tCL	0.48	0.52	tCK
DQS_t,DQS_c to DQ skew, per group, per access	tDQSQ	-	TBD	tCK/2
DQS_t,DQS_c to DQ Skew determin-istic, per group, per access	tDQSQ	-	TBD	tCK/2
DQ output hold time from DQS_t,DQS_c	tQH	TBD	•	tCK/2
DQ output hold time deterministic from DQS_t, DQS_c	tQH	TBD	-	UI
DQS_t,DQS_c to DQ Skew total, per group, per access; DBI enabled	tDQSQ	-	TBD	UI
DQ output hold time total from DQS_t, DQS_c; DBI enabled	tQH	TBD	-	UI
DQ to DQ offset , per group, per ac-cess referenced to DQS_t, DQS_c	tDQSQ	TBD	TBD	UI
DQS_t, DQS_c differential READ Pre-amble (2 clock preamble)	tRPRE	0.9	TBD	tCK
DQS_t, DQS_c differential READ Postamble	tRPST	TBD	TBD	tCK
DQS_t, DQS_c differential WRITE Preamble	tWPRE	0.9	-	tCK
DQS_t, DQS_c differential WRITE Postamble	tWPST	TBD	TBD	tCK
DQS_t and DQS_c low-impedance time (Referenced from RL-1)	tLZ(DQS)	-360	180	ps
DQS_t and DQS_c high-impedance time (Referenced from RL+BL/2)	tHZ(DQS)	-	180	ps
DQS_t, DQS_c differential input low pulse width	tDQSL	0.46	0.54	tCK
DQS_t, DQS_c differential input high pulse width	tDQSH	0.46	0.54	tCK
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge (1 clock preamble)	tDQSS	-0.27	0.27	tCK
DQS_t, DQS_c falling edge setup time to CK_t, CK_c rising edge	tDSS	0.18	-	tCK
DQS_t, DQS_c falling edge hold time from CK_t, CK_c rising edge	tDSH	0.18	-	tCK
Delay from start of internal write trans-action to internal read command for different bank group	tWTR_S	Max(2nCK, 2.5ns)	-	
Delay from start of internal write trans-action to internal read command for same bank group	tWTR_L	Max(4nCK,7.5ns)	-	

WRITE recovery time	tWR	15	-	ns
Mode Register Set command cycle time	tMRD	8	_	nCK
Speed		DDR4	2133	Unit
Parameter	Symbol	Min	Max	
CAS_n to CAS_n command delay for same bank group		6	-	nCK
CAS_n to CAS_n command delay for different bank group	tCCD_S	4	-	nCK
Auto precharge write recovery + precharge time	tDAL	tWR+tF	RP/tCK	nCK
ACTIVATE to ACTIVATE Command delay to different bank group for 2KB page size	tRRD_S(2K)	Max(4nCK,5.3ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to different bank group for 1KB page size	tRRD_S(1K)	Max(4nCK,3.7ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to different bank group for 1/2KB page size	tRRD_S (1/ 2K)	Max(4nCK,3.7ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to same bank group for 2KB page size	tRRD_L(2K)	Max(4nCK,6.4ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to same bank group for 1KB page size	tRRD_L(1K)	Max(4nCK,5.3ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to same bank group for 1/2KB page size	tRRD_L (1/ 2K)	Max(4nCK,5.3ns)	-	nCK
Four activate window for 2KB page size	tFAW_2K	Max(28nCK, 30ns)	-	ns
Four activate window for 1KB page size	tFAW_1K	Max(20nCK, 21ns)	-	ns
Four activate window for 1/2KB page size	tFAW_1/2K	Max(16nCK, 15ns)	-	ns
Power-up and RESET calibration time	tZQinit	1024	-	nCK
Normal operation Full calibration time	tZQoper	512	-	nCK
Normal operation short calibration time	tZQCS	128	-	nCK
Exit Self Refresh to commands not re-quiring a locked DLL	tXS	tRFC(min)+ 10ns	-	
Exit Self Refresh to commands requir-ing a locked DLL	tXSDLL	tDLLK(min)	-	
Internal READ Command to PRE-CHARGE Command delay	tRTP	Max(4nCK,7.5ns)	-	
Minimum CKE low width for Self re-fresh entry to exit timing	tCKESR	tCKE(min)+1nCK	-	
Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL	tXP	Max (4nCK,6ns)	-	
CKE minimum pulse width	tCKE	Max (3nCK,5ns)	-	
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)	tAONAS	1.0	9.0	ns
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)	tAOFAS	1.0	9.0	ns
RTT dynamic change skew	tADC	0.3	0.7	tCK

SERIAL PRESENCE DETECT SPECIFICATION

	TS1GHR72V1Z Serial Presence Detect							
Byte No.	Function Described	Standard Specification	Vendor Part					
0	Number of Bytes Used / Number of Bytes in SPD Device / CRC Coverage	CRC:0-255Byte SPD Byte use: 512Byte SPD Byte total: 512Byte	24					
1	SPD Revision	-	-					
2	Key Byte / DRAM Device Type	DDR4 SDRAM	0C					
3	Key Byte / Module Type	RDIMM	01					
4	SDRAM Density and Banks	4Gb, 16banks	84					
5	SDRAM Addressing	ROW:16, Column:10	21					
6	SDRAM Package Type	-	-					
7	SDRAM Optional Features	-	-					
8	SDRAM Thermal and Refresh Options	-	-					
9	Other SDRAM Optional Features	-	-					
10	Reserved	-	00					
11	Module Nominal Voltage, VDD	1.2V	03					
12	Module Organization	1Rank, 4bits	00					
13	Module Memory Bus Width	ECC, 72bits	0B					
14	Module Thermal Sensor	Support	80					
15-16	Reserved	-	00					
17	Timebases	-	00					
18	SDRAM Minimum Cycle Time (tCKAVGmin)	0.938ns	08					
19	SDRAM Maximum Cycle Time (tCKAVGmax)	1.5ns	0C					
20-23	CAS Latencies Supported	10, 11, 12, 13, 14, 15, 16	-					
24	Minimum CAS Latency Time (tAAmin)	13.75ns	6E					
25	Minimum RAS to CAS Delay Time (tRCDmin)	13.75ns	6E					
26	Minimum Row Precharge Delay Time (tRPmin)	13.75ns	6E					
27	Upper Nibbles for tRASmin and tRCmin	-	11					
28	Minimum Active to Precharge Delay Time (tRASmin), Least Significant Byte	33ns	08					
29	Minimum Active to Active/Refresh Delay Time (tRCmin), Least Significant Byte	46.75ns	76					
30-31	Minimum Refresh Recovery Delay Time (tRFC1min)	260ns	20,08					
32-33	Minimum Refresh Recovery Delay Time (tRFC2min)	160ns	00,05					
34-35	Minimum Refresh Recovery Delay Time (tRFC4min)	110ns	70,03					
36-37	Minimum Four Activate Window Delay Time (tFAWmin)	15ns	00,78					
38	Minimum Activate to Activate Delay Time (tRRD_Smin), different bank group	3.7ns	1E					
39	Minimum Activate to Activate Delay Time (tRRD_Lmin), same bank group	5.3ns	2B					
40	Minimum CAS to CAS Delay Time (tCCD_Lmin),	5.625ns	2E					

	same bank group		
41-59	Reserved	-	00
60-77	Connector to SDRAM Bit Mapping	-	-
78-116	Reserved	-	00
	Fine Offset for Minimum CAS to CAS Delay Time		
117	(tCCD_Lmin), same bank group	-	83
118	Fine Offset for Minimum Activate to Activate Delay		B5
110	Time (tRRD_Lmin), same bank group	-	Б5
119	Fine Offset for Minimum Activate to Activate Delay	-	CE
	Time (tRRD_Smin), different bank group Fine Offset for Minimum Active to Active/Refresh		-
120	Delay Time (tRCmin)	-	00
	Fine Offset for Minimum Row Precharge Delay Time		
121	(tRPmin)	-	00
100	Fine Offset for Minimum RAS to CAS Delay Time		00
122	(tRCDmin)	-	00
123	Fine Offset for Minimum CAS Latency Time (tAAmin)	-	00
124	Fine Offset for SDRAM Maximum Cycle Time	-	00
	(tCKAVGmax)		
125	Fine Offset for SDRAM Minimum Cycle Time (tCKAVGmin)	-	C2
126-127	Cyclical Redundancy Code	-	-
128	Raw Card Extension, Module Nominal Height	31.25mm	11
129	Module Maximum Thickness	Planar Double Sides	11
130	Reference Raw Card Used	Revision 0, Raw card C	02
131	DIMM Module Attributes	1 Row,1 Register	05
132	RDIMM Thermal Heat Spreader Solution	Not incorporated	00
133-134	Register Manufacturer ID Code	By Manufacturer	Variable
135	Register Revision Number	By Manufacturer	Variable
136	Address Mapping from Register to DRAM	Not Mirrored	00
	11 0 0	Moderate Drive:	
		Chip select, ODT, CKE	
137	Register Output Drive Strength for Control	Moderate Drive:	55
		Command/Address	
138	Register Output Drive Strength for CK	Moderate Drive	05
139-253	Reserved	-	00
254-255	Cyclical Redundancy Code (CRC)	-	-
256-319	Reserved	-	00
320-321	Module Manufacturer ID Code	_	-
322	Module Manufacturing Location	_	_
323-324	Module Manufacturing Date	_	_
325-324	Module Serial Number	_	_
329-348	Module Part Number	_	_
349	Module Revision Code	-	00
350-351	DRAM Manufacturer ID Code	By Manufacturer	Variable
352		by Manufacturer	variable 00
	DRAM Stepping Manufacturer Specific Data	By Manufacturer	Variable
353-381	•	by Manufacturer	
382-383	Reserved	<u>-</u>	00

384-551 End User Programmable - -

TS2GHR72V1Z Serial Presence Detect							
Byte No.	Function Described	Standard Specification	Vendor Part				
	Number of Bytes Used / Number of Bytes in SPD Device / CRC Coverage	CRC:0-255Byte SPD Byte use: 512Byte SPD Byte total: 512Byte	24				
1	SPD Revision	-	-				
2	Key Byte / DRAM Device Type	DDR4 SDRAM	0C				
3	Key Byte / Module Type	RDIMM	01				
4	SDRAM Density and Banks	4Gb, 16banks	84				
5	SDRAM Addressing	ROW:16, Column:10	21				
6	SDRAM Package Type	-	-				
7	SDRAM Optional Features	-	-				
8	SDRAM Thermal and Refresh Options	-	-				
9	Other SDRAM Optional Features	-	-				
10	Reserved	-	00				
11	Module Nominal Voltage, VDD	1.2V	03				
12	Module Organization	2Rank, 4bits	08				
13	Module Memory Bus Width	ECC, 72bits	0B				
14	Module Thermal Sensor	Support	80				
15-16	Reserved	-	00				
17	Timebases	-	00				
18	SDRAM Minimum Cycle Time (tCKAVGmin)	0.938ns	08				
19	SDRAM Maximum Cycle Time (tCKAVGmax)	1.5ns	0C				
20-23	CAS Latencies Supported	10, 11, 12, 13, 14, 15, 16	-				
24	Minimum CAS Latency Time (tAAmin)	13.75ns	6E				
25	Minimum RAS to CAS Delay Time (tRCDmin)	13.75ns	6E				
26	Minimum Row Precharge Delay Time (tRPmin)	13.75ns	6E				
27	Upper Nibbles for tRASmin and tRCmin	-	11				
28	Minimum Active to Precharge Delay Time (tRASmin), Least Significant Byte	33ns	08				
29	Minimum Active to Active/Refresh Delay Time (tRCmin), Least Significant Byte	46.75ns	76				
30-31	Minimum Refresh Recovery Delay Time (tRFC1min)	260ns	20,08				
32-33	Minimum Refresh Recovery Delay Time (tRFC2min)	160ns	00,05				
34-35	Minimum Refresh Recovery Delay Time (tRFC4min)	110ns	70,03				
36-37	Minimum Four Activate Window Delay Time (tFAWmin)	15ns	00,78				
38	Minimum Activate to Activate Delay Time (tRRD_Smin), different bank group	3.7ns	1E				
39	Minimum Activate to Activate Delay Time (tRRD_Lmin), same bank group	5.3ns	2B				
40	Minimum CAS to CAS Delay Time (tCCD_Lmin), same bank group	5.625ns	2E				
41-59	Reserved	-	00				

60-77	Connector to SDRAM Bit Mapping	-	-
78-116	Reserved	-	00
117	Fine Offset for Minimum CAS to CAS Delay Time		83
117	(tCCD_Lmin), same bank group	-	83
118	Fine Offset for Minimum Activate to Activate Delay	_	B5
	Time (tRRD_Lmin), same bank group Fine Offset for Minimum Activate to Activate Delay		-
119	Time (tRRD_Smin), different bank group	-	CE
120	Fine Offset for Minimum Active to Active/Refresh Delay Time (tRCmin)	-	00
121	Fine Offset for Minimum Row Precharge Delay Time (tRPmin)	-	00
122	Fine Offset for Minimum RAS to CAS Delay Time (tRCDmin)	-	00
123	Fine Offset for Minimum CAS Latency Time (tAAmin)	-	00
124	Fine Offset for SDRAM Maximum Cycle Time (tCKAVGmax)	-	00
125	Fine Offset for SDRAM Minimum Cycle Time (tCKAVGmin)	-	C2
126-127	Cyclical Redundancy Code	-	-
128	Raw Card Extension, Module Nominal Height	31.25mm	11
129	Module Maximum Thickness	Planar Double Sides	11
130	Reference Raw Card Used	Revision 0, Raw card A	00
131	DIMM Module Attributes	2 Row,1 Register	09
132	RDIMM Thermal Heat Spreader Solution	Not incorporated	00
133-134	Register Manufacturer ID Code	By Manufacturer	Variable
135	Register Revision Number	By Manufacturer	Variable
136	Address Mapping from Register to DRAM	Mirrored	01
137	Register Output Drive Strength for Control	Moderate Drive: Chip select, ODT, CKE Strong Drive: Command/Address	65
138	Register Output Drive Strength for CK	Moderate Drive	05
139-253	Reserved	-	00
254-255	Cyclical Redundancy Code (CRC)	-	-
256-319	Reserved	-	00
320-321	Module Manufacturer ID Code	-	-
322	Module Manufacturing Location	-	-
323-324	Module Manufacturing Date	-	-
325-328	Module Serial Number	-	-
329-348	Module Part Number	-	-
349	Module Revision Code	-	00
350-351	DRAM Manufacturer ID Code	By Manufacturer	Variable
352	DRAM Stepping	-	00
353-381	Manufacturer Specific Data	By Manufacturer	Variable
382-383	Reserved	-	00
384-551	End User Programmable	-	-

DDR4

TS2GHR72V1PL

288Pin DDR4 2133 VLP RDIMM 16GB Based on 2Gx4 DDP

Description

DDR4 VLP Registered DIMM is high-speed, low power memory module that use 2Gx4bits DDR4 SDRAM in FBGA package and a 4Kbits serial EEPROM on a 288-pin printed circuit board. DDR4 VLP Registered DIMM is a Dual In-Line Memory Module and is intended for mounting into 288-pin edge connector sockets.

Synchronous design allows precise cycle control with the use of system clock. Data I/O transactions are possible on both edges of DQS. Range of operation frequencies, programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

Features

- · RoHS compliant products.
- JEDEC standard 1.2V ± 0.06V power supply
- VDDQ=1.2V ± 0.06V
- Clock Freq: 1067MHZ for 2133Mb/s/Pin.
- Programmable CAS Latency: 10,11,12,13,14,15,16
- Programmable Additive Latency (Posted /CAS): 0,CL-2 or CL-1 clock
- Programmable /CAS Write Latency (CWL)
 = 11, 14(DDR4-2133)
- · 8 bit pre-fetch
- Burst Length: 4, 8
- Bi-directional Differential Data-Strobe
- On Die Termination with ODT pin

- Serial presence detect with EEPROM
- On DIMM Thermal
- Asynchronous reset

Pin Identification

Symbol	Function
A0~A17	Register address input
BA0, BA1	Register bank select input
BG0, BG1	Register bank group select input
RAS_n	Register row address strobe input
CAS_n	Register column address strobe input
WE_n	Register write enable input
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input
CKE0, CKE1	Register clock enable lines input
ODT0, ODT1	Register on-die termination control lines input
ACT_n	Register input for activate input
DQ0~Q63	DIMM memory data bus
CB0~B7	DIMM ECC check bits
DQS0_t~DQS17_t	Data Buffer data strobes (positive line of differential pair)
DQS0_c~DQS17_c	Data Buffer data strobes (negative line of differential pair)
CK0_t, CK1_t	Register clock input (positive line of differential pair)
CK0_c, CK1_c	Register clocks input (negative line of differential pair)
SCL	I2C serial bus clock for SPD/TS and register
SDA	I2C serial bus data line for SPD/TS and register
SA0~SA2	I2C slave address select for SPD/TS and register
PAR	Register parity input
VDD	SDRAM core power supply
VREFCA	SDRAM command/address reference supply
VSS	Power supply return (ground)
VDDSPD	Serial SPD/TS positive power supply
ALERT_n	Register ALERT_n output
VPP	SDRAM activating power supply
RESET_n	Set Register and SDRAMs to a Known State

EVENT n	SPD signals a thermal event has		NC	No Connection
	occurred.			
VTT	SDRAM I/O termination supply			
RFU	Reserved for future use			

Dimensions (Unit: millimeter)

Detail C

Detail D

Note:

1. Tolerances on all dimensions +/-0.15mm unless otherwise specified.

Pin Assignments

Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin	Pin
No	Name	No	Name	No	Name	No	Name	No	Name	No	Name	No	Name	No	Name
1	12V ³ ,NC	37	VSS	73	VDD	109	VSS TDQS14_t,	145	12V ³ ,NC	181	DQ29	217	VDD	253	DQ41
2	VSS	38	DQ24	74	CK0_t	110	DQS14_t	146	VREFCA	182	VSS	218	CK1_t	254	VSS
3	DQ4	39	VSS	75	CK0_c	111	TDQS14_c, DQS14_c	147	VSS	183	DQ25	219	CK1_c	255	DQS5_c
4	VSS	40	TDQS12_t, DQS12_t	76	VDD	112	VSS	148	DQ5	184	VSS	220	VDD	256	DQS5_t
5	DQ0	41	TDQS12_c, DQS12_c	77	VTT	113	DQ46	149	VSS	185	DQS3_c	221	VTT	257	VSS
6	VSS	42	VSS	78	EVENT_n	114	VSS	150	DQ1	186	DQS3_t	222	PARITY	258	DQ47
7	TDQS9_t, DQS9_t	43	DQ30	79	A0	115	DQ42	151	VSS	187	VSS	223	VDD	259	VSS
8	TDQS9_c, DQS9_c	44	VSS	80	VDD	116	VSS	152	DQS0_c	188	DQ31	224	BA1	260	DQ43
9	VSS	45	DQ26	81	BA0	117	DQ52	153	DQS0_t	189	VSS	225	A10/AP	261	VSS
10	DQ6	46	VSS	82	RAS_n/A16	118	VSS	154	VSS	190	DQ27	226	VDD	262	DQ53
11	VSS	47	CB4	83	VDD	119	DQ48	155	DQ7	191	VSS	227	RFU	263	VSS
12	DQ2	48	VSS	84	S0_n	120	VSS	156	VSS	192	CB5	228	WE_n/A14	264	DQ49
13	VSS	49	CB0	85	VDD	121	TDQS15_t, DQS15_t	157	DQ3	193	VSS	229	VDD	265	VSS
14	DQ12	50	VSS	86	CAS_n/A15	122	TDQS15_c, DQS15_c	158	VSS	194	CB1	230	NC	266	DQS6_c
15	VSS	51	TDQS17_t, DQS17_t	87	ODT0	123	VSS	159	DQ13	195	VSS	231	VDD	267	DQS6_t
16	DQ8	52	TDQS17_c, DQS17_c	88	VDD	124	DQ54	160	VSS	196	DQS8_c	232	A13	268	VSS
17	VSS	53	VSS	89	S1_n	125	VSS	161	DQ9	197	DQS8_t	233	VDD	269	DQ55
18	TDQS10_t, DQS10_t	54	CB6	90	VDD	126	DQ50	162	VSS	198	VSS	234	A17	270	VSS
19	TDQS10_c, DQS10_c	55	VSS	91	ODT1	127	VSS	163	DQS1_c	199	CB7	235	NC,C2	271	DQ51
20	VSS	56	CB2	92	VDD	128	DQ60	164	DQS1_t	200	VSS	236	VDD	272	VSS
21	DQ14	57	VSS	93	C0,CS2_n,NC	129	VSS	165	VSS	201	CB3	237	NC,CS3_c,C1	273	DQ61
22	VSS	58	RESET_n	94	VSS	130	DQ56	166	DQ15	202	VSS	238	SA2	274	VSS
23	DQ10	59	VDD	95	DQ36	131	VSS	167	VSS	203	CKE1	239	VSS	275	DQ57
24	VSS	60	CKE0	96	VSS	132	TDQS16_t, DQS16_t	168	DQ11	204	VDD	240	DQ37	276	VSS
25	DQ20	61	VDD	97	DQ32	133	TDQS16_c, DQS16_c	169	VSS	205	RFU	241	VSS	277	DQS7_c
26	VSS	62	ACT_n	98	VSS	134	VSS	170	DQ21	206	VDD	242	DQ33	278	DQS7_t
27	DQ16	63	BG0	99	TDQS13_t, DQS13_t	135	DQ62	171	VSS	207	BG1	243	VSS	279	VSS
28	VSS	64	VDD	100	TDQS13_c, DQS13_c	136	VSS	172	DQ17	208	ALERT_n	244	DQS4_c	280	DQ63
29	TDQS11_t, DQS11_t	65	A12/BC_n	101	VSS	137	DQ58	173	VSS	209	VDD	245	DQS4_t	281	VSS
30	TDQS11_c, DQS11_c	66	A9	102	DQ38	138	VSS	174	DQS2_c	210	A11	246	VSS	282	DQ59
31	VSS	67	VDD	103	VSS	139	SA0	175	DQS2_t	211	A7	247	DQ39	283	VSS
32	DQ22	68	A8	104	DQ34	140	SA1	176	VSS	212	VDD	248	VSS	284	VDDSPD
33	VSS	69	A6	105	VSS	141	SCL	177	DQ23	213	A5	249	DQ35	285	SDA
34	DQ18	70	VDD	106	DQ44	142	VPP	178	VSS	214	A4	250	VSS	286	VPP
35	VSS	71	А3	107	VSS	143	VPP	179	DQ19	215	VDD	251	DQ45	287	VPP
36	DQ28	72	A1	108	DQ40	144	RFU	180	VSS	216	A2	252	VSS	288	VPP⁴
Note	۸.														

^{1.} VPP is 2.5V DC

VPF is 2.30 bC
 Pin 230 is defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pin 230 is defined as SAVE_n for NVDIMMs.
 Pins 1 and 145 are defined as NC for UDIMMs, RDIMMs and LRDIMMs. Pins 1 and 145 are defined as 12V for Hybrid /NVDIMM
 The 5th VPP is required on all modules, DIMMs.

Block Diagram

16GB, 2Gx72 Module(2 Rank x4)

- . Unless otherwise noted, resistor values are 15 Ω \pm 5%.
- 2. See the Net Structure diagrams for all resistors associated with the command, address and control bus 3. ZQ resistors are $240\Omega\pm1\%$. For all other resistor values refer to the appropriate wiring diagram.

This technical information is based on industry standard data and tests believed to be reliable. However, Transcend makes no warranties, either expressed or implied, as to its accuracy and assume no liability in connection with the use of this product. Transcend reserves the right to make changes in specifications at any time without prior notice.

Operating Temperature Condition

Parameter	Symbol	Rating	Unit	Note
Operating Temperature	TOPER	0 to 85	°C	1,2

Note: 3. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.

4. At 0 - 85°C, operation temperature range are the temperature which all DRAM specification will be supported.

Absolute Maximum DC Ratings

Parameter	Symbol	Value	Unit	Note
Voltage on VDD relative to Vss	VDD	-0.3 ~ 1.5	V	1
Voltage on VDDQ pin relative to Vss	VDDQ	-0.3 ~ 1.5	V	1
Voltage on VPP pin relative to Vss	VPP	-0.3 ~ 3.0	V	3
Voltage on any pin relative to Vss	VIN, VOUT	-0.3 ~ 1.5	V	1
Storage temperature	Tstg	-55~+100	°C	1,2

Note: 4. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

- 5. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
- 6. VPP must be equal or greater than VDD/VDDQ at all times.

AC & DC Operating Conditions

Recommended DC operating conditions

Doromotor	Symbol		1110:4	Natas		
Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Supply voltage	VDD	1.14	1.2	1.26	V	1, 2
Supply voltage for Output	VDDQ	1.14	1.2	1.26	V	1, 2
Wordline supply voltage	VPP	2.375	2.5	2.75	V	3

Note: 4. Under all conditions VDDQ must be less than or equal to VDD.

- 5. VDDQ tracks with VDD, AC parameters are measured with VDD and VDDQ tied together.
- 6. DC bandwidth is limited to 20MHz

Single-ended AC & DC input levels for Command and Address

onigio oriada il o a 20 impar iororo ior communa ana ricanoco									
Donomotor.	Compleal	DDR4-1600/	Unit	Nata					
Parameter	Symbol	Min	Max	Unit	Note				
I/O Reference Voltage (CMD/ADD)	VREFCA(DC)	0.49*VDDQ	0.51*VDDQ	V	1,2				
DC Input Logic High	VIH(DC)	VREF+0.075	VDD	V					
DC Input Logic Low	VIL(DC)	VSS	VREF-0.075	V					
AC Input Logic High	VIH(AC)	VREF+0.1	Note 1	V					
AC Input Logic Low	VIL(AC)	Note 1	VREF-0.1	V					

Note: 3. The AC peak noise on VREFCA may not allow VREFCA to deviate from VREFCA(DC) by more than ± 1% VDD (for reference : approx. ± 12mV)

4. For reference : approx. VDD/2 ± 12mV

Differential AC and DC Input Levels

Danamatan	O-mark at	DDR4-1600/1866/2133		11	Nete
Parameter	Symbol	Min	Max	Unit	Note
differential input high DC	VIHdiff(DC)	+0.150	NOTE 3	V	1
differential input low DC	VILdiff(DC)	NOTE 3	-0.150	V	1
differential input high AC	VIHdiff(AC)	2 x (VIH(AC) - VREF)	NOTE 3	٧	2
differential input low AC	VILdiff(AC)	NOTE 3	2 x (VIL(AC) -VREF)	V	2

Note: 4. Used to define a differential signal slew-rate.

- 5. for CK_t CK_c use VIH.CA/VIL.CA(AC) of ADD/CMD and VREFCA;
- 6. These values are not defined; however, the differential signals CK_t CK_c, need to be within the respective limits (VIH.CA(DC) max, VIL.CA(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot.

Single-ended AC & DC output levels

onighe character as a calculation of						
Parameter	Symbol	DDR4-1600/1866/2133	Unit	Note		
DC output high measurement level	VOH(DC)	1.1 x VDDQ	V			
DC output mid measurement level	VOM(DC)	0.8 x VDDQ	V			
DC output low measurement level	VOL(DC)	0.5 x VDDQ	V			
AC output high measurement level	VOH(AC)	(0.7 + 0.15) x VDDQ	V	1		
AC output low measurement level	VOL(AC)	(0.7 - 0.15) x VDDQ	V	1		

Note: 2. The swing of \pm 0.15 × VDDQ is based on approximately 50% of the static single-ended output peak-to-peak swing with a driver impedance of RZQ/7 Ω and an effective test load of 50 Ω to VTT = VDDQ.

Differential AC & DC output levels

Parameter	Symbol	DDR4-1600/1866/2133	Unit	Note
AC differential output high measurement level	VOHdiff(AC)	+0.3 x VDDQ	V	1
AC differential output low measurement level	VOLdiff(AC)	-0.3 x VDDQ	V	1

Note: 2. The swing of \pm 0.3 \times VDDQ is based on approximately 50% of the static differential output peak-to-peak swing with a driver impedance of RZQ/7 Ω and an effective test load of 50 Ω to VTT = VDDQ at each of the differential outputs.

IDD Specification parameters Definition(IDD values are for full operating range of Voltage and Temperature) 16GB, 2Gx72 Module(2 Rank x4)

Parameter	Symbol	DDR4 2133 CL15	Unit
Operating One bank Active-Precharge current; tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD0	1600	mA
Operating One bank Active-read-Precharge current; IOUT = 0mA; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD = tRCD(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W	IDD1	1780	mA
Precharge power-down current ; All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD2P	720	mA
Precharge quiet standby current ; All banks idle; tCK = tCK(IDD); CKE is HIGH, /CS is HIGH; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD2Q	1310	mA
Precharge standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, /CS is HIGH; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD2N	1370	mA
Active power - down current; All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	IDD3P	870	mA
Active standby current; All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD3N	1540	mA
Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W	IDD4R	2580	mA
Operating burst write current ; All banks open, Continuous burst writes; BL = 8, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, /CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING IDD4R	IDD4W	2380	mA
Burst refresh current; tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, /CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING	IDD5	3810	mA
Self refresh current; CK and /CK at 0V; CKE = 0.2V; Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING	IDD6	500	mA
Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 8, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), Trc = tRC(IDD), tRRD = tRRD(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are STABLE during DESELECTS; Data pattern is same as IDD4R;	IDD7	3580	mA

Note: 1.Module IDD was calculated on the specific brand DRAM(2Xnm) component IDD and can be differently measured according to DQ loading capacitor.

Timing Parameters & Specifications

Speed		DDR4	Unit	
Parameter	Symbol	Min	Max	
Average Clock Period	tCK	0.938	<1.071	ns
CK high-level width	tCH	0.48	0.52	tCK
CK low-level width	tCL	0.48	0.52	tCK
DQS_t,DQS_c to DQ skew, per group, per access	tDQSQ	-	TBD	tCK/2
DQS_t,DQS_c to DQ Skew determin-istic, per group, per access	tDQSQ	-	TBD	tCK/2
DQ output hold time from DQS_t,DQS_c	tQH	TBD	-	tCK/2
DQ output hold time deterministic from DQS_t, DQS_c	tQH	TBD	-	UI
DQS_t,DQS_c to DQ Skew total, per group, per access; DBI enabled	tDQSQ	-	TBD	UI
DQ output hold time total from DQS_t, DQS_c; DBI enabled	tQH	TBD	-	UI
DQ to DQ offset , per group, per ac-cess referenced to DQS_t, DQS_c	tDQSQ	TBD	TBD	UI
DQS_t, DQS_c differential READ Pre-amble (2 clock preamble)	tRPRE	0.9	TBD	tCK
DQS_t, DQS_c differential READ Postamble	tRPST	TBD	TBD	tCK
DQS_t, DQS_c differential WRITE Preamble	tWPRE	0.9	-	tCK
DQS_t, DQS_c differential WRITE Postamble	tWPST	TBD	TBD	tCK
DQS_t and DQS_c low-impedance time (Referenced from RL-1)	tLZ(DQS)	-360	180	ps
DQS_t and DQS_c high-impedance time (Referenced from RL+BL/2)	tHZ(DQS)	-	180	ps
DQS_t, DQS_c differential input low pulse width	tDQSL	0.46	0.54	tCK
DQS_t, DQS_c differential input high pulse width	tDQSH	0.46	0.54	tCK
DQS_t, DQS_c rising edge to CK_t, CK_c rising edge (1 clock preamble)	tDQSS	-0.27	0.27	tCK
DQS_t, DQS_c falling edge setup time to CK_t, CK_c rising edge	tDSS	0.18	-	tCK
DQS_t, DQS_c falling edge hold time from CK_t, CK_c rising edge	tDSH	0.18	-	tCK
Delay from start of internal write trans-action to internal read command for different bank group	tWTR_S	Max(2nCK, 2.5ns)	-	
Delay from start of internal write trans-action to internal read command for same bank group	tWTR_L	Max(4nCK,7.5ns)	-	
WRITE recovery time	tWR	15	-	ns
Mode Register Set command cycle time	tMRD	8	-	nCK

Speed		DDR4	4 2133	Unit
Parameter	Symbol	Min	Max	
CAS_n to CAS_n command delay for same bank group	tCCD_L	6	-	nCK
CAS_n to CAS_n command delay for different bank group	tCCD_S	4	-	nCK
Auto precharge write recovery + precharge time	tDAL	tWR+t	RP/tCK	nCK
ACTIVATE to ACTIVATE Command delay to different bank group for 2KB page size	tRRD_S(2K)	Max(4nCK,5.3ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to different bank group for 1KB page size	tRRD_S(1K)	Max(4nCK,3.7ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to different bank group for 1/2KB page size	tRRD_S (1/ 2K)	Max(4nCK,3.7ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to same bank group for 2KB page size	tRRD_L(2K)	Max(4nCK,6.4ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to same bank group for 1KB page size	tRRD_L(1K)	Max(4nCK,5.3ns)	-	nCK
ACTIVATE to ACTIVATE Command delay to same bank group for 1/2KB page size	tRRD_L (1/ 2K)	Max(4nCK,5.3ns)	-	nCK
Four activate window for 2KB page size	tFAW_2K	Max(28nCK, 30ns)	-	ns
Four activate window for 1KB page size	tFAW_1K	Max(20nCK, 21ns)	-	ns
Four activate window for 1/2KB page size	tFAW_1/2K	Max(16nCK, 15ns)	-	ns
Power-up and RESET calibration time	tZQinit	1024	-	nCK
Normal operation Full calibration time	tZQoper	512	-	nCK
Normal operation short calibration time	tZQCS	128	-	nCK
Exit Self Refresh to commands not re-quiring a locked DLL	tXS	tRFC(min)+ 10ns	-	
Exit Self Refresh to commands requir-ing a locked DLL	tXSDLL	tDLLK(min)	-	
Internal READ Command to PRE-CHARGE Command delay	tRTP	Max(4nCK,7.5ns)	-	
Minimum CKE low width for Self re-fresh entry to exit timing	tCKESR	tCKE(min)+1nCK	-	
Exit Power Down with DLL on to any valid command; Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL	tXP	Max (4nCK,6ns)	-	
CKE minimum pulse width	tCKE	Max (3nCK,5ns)	-	
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)	tAONAS	1.0	9.0	ns
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)	tAOFAS	1.0	9.0	ns
RTT dynamic change skew	tADC	0.3	0.7	tCK

SERIAL PRESENCE DETECT SPECIFICATION

	TS2GHR72V1PL Serial Pr	esence Detect	
Byte No.	Function Described	Standard Specification	Vendor Part
0	Number of Bytes Used / Number of Bytes in SPD Device / CRC Coverage	CRC:0-255Byte SPD Byte use: 384Byte SPD Byte total: 512Byte	23
1	SPD Revision	-	_
2	Key Byte / DRAM Device Type	DDR4 SDRAM	0C
3	Key Byte / Module Type	RDIMM	01
4	SDRAM Density and Banks	4Gb, 16banks	84
5	SDRAM Addressing	ROW:16, Column:10	21
6	SDRAM Package Type	DDP	91
7	SDRAM Optional Features	-	-
8	SDRAM Thermal and Refresh Options	-	-
9	Other SDRAM Optional Features	-	-
10	Reserved	-	00
11	Module Nominal Voltage, VDD	1.2V	03
12	Module Organization	2Rank, 4bits	08
13	Module Memory Bus Width	ECC, 72bits	0B
14	Module Thermal Sensor	Support	80
15-16	Reserved	-	00
17	Timebases	-	00
18	SDRAM Minimum Cycle Time (tCKAVGmin)	0.938ns	08
19	SDRAM Maximum Cycle Time (tCKAVGmax)	1.5ns	0C
20-23	CAS Latencies Supported	10, 11, 12, 13, 14, 15, 16	-
24	Minimum CAS Latency Time (tAAmin)	13.75ns	6E
25	Minimum RAS to CAS Delay Time (tRCDmin)	13.75ns	6E
26	Minimum Row Precharge Delay Time (tRPmin)	13.75ns	6E
27	Upper Nibbles for tRASmin and tRCmin	-	11
28	Minimum Active to Precharge Delay Time (tRASmin), Least Significant Byte	33ns	08
29	Minimum Active to Active/Refresh Delay Time (tRCmin), Least Significant Byte	46.75ns	76
30-31	Minimum Refresh Recovery Delay Time (tRFC1min)	260ns	20,08
32-33	Minimum Refresh Recovery Delay Time (tRFC2min)	160ns	00,05
34-35	Minimum Refresh Recovery Delay Time (tRFC4min)	110ns	70,03
36-37	Minimum Four Activate Window Delay Time (tFAWmin)	15ns	00,78
38	Minimum Activate to Activate Delay Time (tRRD_Smin), different bank group	3.7ns	1E
39	Minimum Activate to Activate Delay Time (tRRD_Lmin), same bank group	5.3ns	2B
40	Minimum CAS to CAS Delay Time (tCCD_Lmin), same bank group	5.625ns	2E
41-59	Reserved	-	00
60-77	Connector to SDRAM Bit Mapping	-	-

78-116	Reserved	-	00
	Fine Offset for Minimum CAS to CAS Delay Time (tCCD_Lmin), same bank group	-	83
110	Fine Offset for Minimum Activate to Activate Delay Time (tRRD_Lmin), same bank group	-	B5
110	Fine Offset for Minimum Activate to Activate Delay Time (tRRD_Smin), different bank group	-	CE
120	Fine Offset for Minimum Active to Active/Refresh Delay Time (tRCmin)	-	00
121	Fine Offset for Minimum Row Precharge Delay Time (tRPmin)	-	00
122	Fine Offset for Minimum RAS to CAS Delay Time (tRCDmin)	-	00
	Fine Offset for Minimum CAS Latency Time (tAAmin)	-	00
	Fine Offset for SDRAM Maximum Cycle Time (tCKAVGmax)	-	00
105	Fine Offset for SDRAM Minimum Cycle Time (tCKAVGmin)	-	C2
	Cyclical Redundancy Code	-	-
	Raw Card Extension, Module Nominal Height	18.75mm	04
	Module Maximum Thickness	Planar Double Sides	11
_	Reference Raw Card Used	Revision 0, Raw card J	08
	DIMM Module Attributes	1 Row,1 Register	05
_	RDIMM Thermal Heat Spreader Solution	Not incorporated	00
	Register Manufacturer ID Code	By Manufacturer	Variable
	Register Revision Number	By Manufacturer	Variable
	Address Mapping from Register to DRAM	Not Mirrored	00
	Register Output Drive Strength for Control	Moderate Drive: Chip select, ODT, CKE Strong Drive: Command/Address	65
138	Register Output Drive Strength for CK	Moderate Drive	05
139-253	Reserved	-	00
254-255	Cyclical Redundancy Code (CRC)	-	-
256-319	Reserved	-	00
320-321	Module Manufacturer ID Code	-	-
322	Module Manufacturing Location	-	-
323-324	Module Manufacturing Date	-	-
325-328	Module Serial Number	-	-
	Module Part Number	-	-
	Module Revision Code	-	00
-	DRAM Manufacturer ID Code	By Manufacturer	Variable
	DRAM Stepping	-	00
	Manufacturer Specific Data	By Manufacturer	Variable
	•		
382-383	Reserved	-	00