- $\bullet \quad Y_i = B_0 + B_1 x_i + e_i$
 - \circ $B_0 + B_1 x_i =$ systematic
 - \circ e_i = random
 - Aggregation of all the nudges
 - The balance of the nudges
- $e_i^{\sim} N(0, \sigma^2)$
 - Mean = 0
 - Variance = σ^2
- Chain of reasoning (depends upon the notion that each nudge is the same size and independent of each other)
 - Residuals are aggregations of nudges
 - Each nudge is a coin flip up or down
 - Therefore, the sum of nudges is described by a binomial distribution
 - 10 flips (N)
 - X = number of heards

$$\circ \binom{10}{\kappa} P^k (1-p)^{(10-k)}$$

O P(x=k) =
$$\binom{10}{K} P^k (1-p)^{(10-k)}$$
 if probability (heads) = P

• $\binom{10}{K} = \binom{n}{K}$

- Binomial distribution is approximately normal for large N (number of nudges)
- Normal distribution is designed for minnows and not sharks
 - Not for dominant features
 - o IBM stock distributions don't follow a normal distribution
 - More like the shark
 - DOW Jones
 - Averaging effect allows us to interpret why normal distributions work better for DOW jones than IBC
 - But normal is still not great for DOW jones
 - Big economic effects that affect the stock in general
- Normal linear regression model
 - $\circ \quad \text{Linearity: } \hat{y}_i = \beta_0 + \beta_1 x_i \ (+\beta_2 x_{i2} + \cdots)$
 - Assumptions
 - Normality

○
$$Y_i = B_0 + B_1 x_i + e_i$$

○ $e_i^{\sim} N(0, \sigma^2)$

- Independence: no residual provides information about any other
- Constant variance
 - Not spread out for certain parts of the line
 - Homoscedasticity
 - Heteroscedasticity
- NLRM → explicitly formulas for standard errors and prediction intervals
 - \circ \rightarrow = fancy math

o Page 137-138 for more details