

08/821003

DAVID NEWMAN & ASSOCIATES PC
ATTORNEYS AT LAW

CENTENNIAL SQUARE
P.O. Box 2728
LA PLATA, MARYLAND 20646
(301) 934-6100

FACSIMILE
(301) 934-5782

REHOBOTH BEACH, DE
(302) 226-3300

DAVID B. NEWMAN, JR.
SUZIN C. BAILEY

March 19, 1997

Honorable Commissioner of Patents
and Trademarks
Washington, D.C. 20231

I HEREBY CERTIFY THAT THIS CORRESPONDENCE IS BEING
DEPOSITED WITH THE UNITED STATES POSTAL SERVICE AS
FIRST CLASS MAIL IN AN ENVELOPE ADDRESSED TO:
COMMISSIONER OF PATENTS AND TRADEMARKS
WASHINGTON, D.C. 20231
ON THE DATE INDICATED BELOW.

DAVID NEWMAN & ASSOCIATES, P.C.

BY Tan Dickerson March 19, 1997

Re: New Continuation Patent Application
For: PROGRAMMABLE TWO-PART MATCHED
FILTER FOR SPREAD SPECTRUM
Inventor: SORIN DAVIDOVICI
Our Ref: GBTI22US

Sir:

This is a request for a continuation patent application under 37 C.F.R. § 1.53 of prior application serial no. 08/450,312 filed May 25, 1995, entitled PROGRAMMABLE TWO-PART MATCHED FILTER FOR SPREAD SPECTRUM by the following inventor:

SORIN DAVIDOVICI

The filing date of which is hereby claimed for common subject matter under 35 U.S.C. § 120.

Enclosed herewith are the following papers for filing in the United States Patent and Trademark Office in connection with the above-identified continuation application:

1. Abstract (1 page) and Specification (31 pages) and having multiple dependent claims, with the equivalent of 14 claims, including 2 independent claims; and
2. Three (3) sheets of informal drawings.

Address all correspondence concerning this application to:

DAVID NEWMAN & ASSOCIATES, P.C.
Centennial Square
P.O. Box 2728
La Plata, Maryland 20646-2728
Telephone: (301) 934-6100

DAVID NEWMAN & ASSOCIATES PC

Honorable Commissioner of Patents
and Trademarks
March 19, 1997
Page 2

Please accord this application a serial number and filing date.

Respectfully submitted,

DAVID NEWMAN & ASSOCIATES, P.C.

By:

David B. Newman, Jr.
Registration No. 30 966

DBN:dec

Enclosures: As stated

18/821003

A/AD
A/LLCBACKGROUND OF THE INVENTION

This invention relates to spread spectrum communications, and more particularly to a programmable matched filter which can be used for despreading a pilot-chip-code-sequence signal and a message-chip-code-sequence signal.

5

DESCRIPTION OF THE RELEVANT ART

Spread spectrum communications require that an incoming spreading chip-code sequence embedded in a spread-spectrum signal, and the local spreading chip-code sequence at a receiver, be phase synchronized prior to processing of information transfer. Phase synchronization of the spreading chip code sequences is commonly known as code acquisition. Code acquisition is one of the most difficult issues facing the system designer.

Code acquisition is followed by the tracking process. Due to imperfect frequency references the incoming spreading chip-code sequence and the local spreading chip-code sequence tend to lose phase synchronization. Retaining the phase synchronization, or tracking, is a difficult process that typically employs feedback loops.

Conventional spread-spectrum systems implemented without the benefit of a matched filter employ additional circuits, such as delay locked loops (DLLs) dedicated to achieving and sustaining fine grained phase synchronization between the local spreading code and the incoming spreading code to within a unit of time which is less than the duration of one signal sample.

10

Patent
Office
Washington
D.C.
20591

15

Patent
Office
Washington
D.C.
20591

20

25
LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

The circuits for sustaining fine grain phase synchronization are difficult to design and implement.

In wireless environments, minimizing the performance degradation due to long or short duration attenuation of the incoming signal caused by changing propagation channel conditions is highly desirable. As the quality of the channel degrades, the quality of the detected signal degrades, often below acceptable levels.

Typical systems combat this condition by employing any of a variety of techniques collectively known as diversity processing. The diversity processing techniques have in common the ability to independently manipulate the information received through separate propagation paths, or channels, independently. The benefit from diversity processing is that when a given propagation channel degrades, the information can be recovered from signals received via other channels. A common though suboptimum, diversity technique is to employ two or more separate antennas and process the signal via two or more processing chains in parallel. Although necessary, the use of two or more antennas and processing is a difficult and costly undertaking, requiring two or more times the number of circuits required for one path as well as additional circuits and processing for insuring that the individual channel outputs are synchronized. A better approach is to employ a wideband signal of bandwidth W . If the multipath spread were T_M then the receiver can recover $L = T_M(W+1)$ replicas of the incoming signal. If the receiver properly processed the replicas, then the

5

10

15

20

25

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

receiver attains the performance of an equivalent Lth order diversity communication system. For wideband systems the value of L can become very large and it becomes unfeasible to implement L processing paths. Thus a non-matched filter receiver can not attain the best possible performance.

The coherent demodulation of information signals requires that the phase of the carrier, at the radio frequency (RF), intermediate frequency (IF) or other frequency at which the demodulation is to take place, be known. The extraction of the phase of the carrier information requires that additional feedback loops be employed, such as phase-locked loops (PLLs), Costas loops, nth power loops or other devices capable of extracting the carrier phase information. In the wireless environment, where signals propagate through a multitude of separate and independent channels, each path processed by the receiver requires its own carrier phase information and therefore its own means to extract it. This requirement greatly increases the potential complexity of the system. The need to limit system complexity acts so as to limit the system performance.

Conventional receivers, for spread-spectrum reception or other coherent systems, employ circuits dedicated to extracting the carrier phase. These techniques, e.g., phase-locked loops (PLLs), Costas loops, nth power loops, etc., exhibit design and implementation complexities that are well documented throughout the professional literature. A separate and independent set of these circuits is implemented for each individual signal path,

5

10

15

20

25

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

or channel, that is received. Practical limits on system complexity force the system to receive a small subset of the $L=T_M(W+1)$ independent signal replicas. Typically up to three such circuit sets can be practically implemented and thus only up to three independent signal replicas can be received and processed.

A complex matched filter consists of two identical branches, in-phase (I) and quadrature (Q), used to process in-phase and quadrature signals. Each branch consists of a local signal reference register, an incoming signal register, a multiplication layer and an adder tree. The multiplication layer and the adder tree contained in the in-phase and quadrature branches are identical and may contain the majority of the gates used to implement the matched filter. To implement a matched filter it is preferable to reduce the size of the structure as much as possible.

Processing multiple signals, whether QPSK or BPSK modulated, simultaneously by matched filtering is desirable. An example of a requirement for processing multiple signals is the simultaneous matched filter processing of a data signal and a pilot signal, from a spread-spectrum signal combining such signals. This normally requires the implementation of two or more matched filter structures, one per signal. Matched filters are large and difficult structures to build. Thus, limiting the size and complexity of the devices as much as possible is desirable.

SUMMARY OF THE INVENTION

A general object of the invention is a spread-spectrum receiver which reduces cost and circuit complexity, reduces the volume required and improves the performance, i.e., acquisition time, of conventional spread-spectrum chip-sequence signal acquisition.

Another object of the invention is a spread-spectrum receiver which has improved bit-error-rate (BER) performance over conventional coherent demodulation techniques, methods and circuits.

An additional object of the invention is to reduce cost and circuit complexity, reduce the volume required and improve the performance of conventional diversity reception, separation and combining techniques, methods and circuits.

A further object of the invention is to reduce the complexity associated with the simultaneous matched filter processing of multiple signals.

A still further object of the invention is to reduce the size and complexity associated with the implementation of complex in-phase matched filters and quadrature-phase matched filters.

According to the present invention, as embodied and broadly described herein, a spread-spectrum-matched-filter apparatus is provided including a code generator, a programmable-matched filter, a frame-matched filter, and a controller. The code generator is coupled to the programmable-matched filter and to the controller. The frame-matched filter is coupled to the

5

10

15

20

25

output of the programmable-matched filter.

The spread-spectrum-matched-filter apparatus can be used as part of a spread-spectrum receiver, for receiving a received spread-spectrum signal. A received spread-spectrum signal, as used herein, is a spread-spectrum signal arriving at the input of the spread-spectrum receiver. The received spread-spectrum signal is assumed to include a pilot-spread-spectrum channel and a data-spread-spectrum channel. The pilot-spread-spectrum channel is generated from spread-spectrum processing a pilot-bit-sequence signal with a pilot-chip-sequence signal. The data-spread-spectrum channel is generated from spread-spectrum processing a data-bit-sequence signal with a data-chip-sequence signal.

The code generator generates a replica of the pilot-chip-sequence signal and a replica of the data-chip-sequence signal. The programmable-matched-filter has a programmable-impulse response which can be matched to a pilot-spread-spectrum channel or the data-spread-spectrum channel of the received spread-spectrum signal. The replica of the data-chip-sequence signal generated by the code generator is used to set or match the programmable-impulse response of the programmable-matched filter to the data-chip-sequence signal embedded in the received spread-spectrum signal. When matched, upon receiving the received spread-spectrum signal having the data-spread-spectrum channel embedded herein, the programmable-matched filter can detect and output a data-bit-sequence signal.

The replica of the pilot-chip-sequence signal generated by

the code generator can set the programmable-impulse response of the programmable-matched filter to be matched to the pilot-chip-sequence signal embedded in the received spread-spectrum signal. With this setting, the programmable-matched filter can detect and output a despread-pilot-bit-sequence signal.

5 The frame-matched filter has a frame-impulse response which is matched to the pilot-bit-sequence signal. Accordingly, the frame-matched filter filters the despread-pilot-bit-sequence signal and generates, as an output, a peak-pilot-correlation signal in response to the despread-pilot-bit-sequence signal matching the frame-impulse response.

10 The controller controls to which of the programmable-impulse responses the programmable-matched filter is set. The controller can generate a pilot-control signal to cause the match of the programmable-impulse response of the programmable-matched filter to that of the pilot-chip-sequence signal embedded in the received-spread-spectrum signal. The controller also can generate a data-control signal to cause the programmable-impulse response of the programmable-matched filter to be matched to the data-chip-sequence signal of the received spread-spectrum signal. Timing to the controller can be from the peak-pilot-correlation signal generated at the output of the frame-matched filter. Thus, in response to the peak-pilot-correlation signal, using the data-control signal, the controller can cause the programmable-matched filter to be matched from the replica of the pilot-chip-sequence signal, to the pilot-chip-sequence signal. At a time delay from the peak-

15
20
25

5 pilot-correlation signal, using the pilot-control signal, the controller can cause the programmable-matched filter to be matched from the replica of the data-chip-sequence signal, to the data-chip-sequence signal embedded in the received-spread-spectrum signal.

10 The present invention also includes a method for using a programmable-matched filter and a frame-matched filter as part of a spread-spectrum receiver on a received spread-spectrum signal. As with the spread-spectrum-matched-filter apparatus set forth above, the received spread-spectrum signal is assumed to include a pilot-spread-spectrum channel and a data-spread-spectrum channel. The pilot-spread-spectrum channel is generated from spread-spectrum processing a pilot-bit-sequence signal with a pilot-chip-sequence signal. The data-spread-spectrum channel is generated from spread-spectrum processing a data-bit-sequence signal with a data-chip-sequence signal.

15 The steps include generating a replica of the pilot-chip-sequence signal and a replica of the data-chip-sequence signal, and programming, using the replica of the pilot-chip-sequence signal and the replica of the data-chip-sequence signal, the programmable-matched filter to have an impulse response matched to either of the pilot-chip-sequence signal or the data-chip-sequence signal, respectively. When the programmable-matched filter is matched to the pilot-chip-sequence signal, the method includes the steps of despread the pilot-spread-spectrum signal from the received spread-spectrum signal as a despread-pilot-bit-sequence signal, and filtering with the frame-matched

RECORDED IN U.S. PATENT AND TRADEMARK OFFICE
SEARCHED INDEXED SERIALIZED FILED

20

25

30

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

filter the despread-pilot-bit-sequence signal and generating a peak-pilot-correlation signal.

When the programmable-matched filter is matched to the data-chip-sequence signal, the steps include despread the data-spread-spectrum signal from the received spread-spectrum signal as a despread-data-bit-sequence signal.

Additional objects and advantages of the invention are set forth in part in the description which follows, and in part are obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention also may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention, and together with the description serve to explain the principles of the invention.

FIG. 1 is a block diagram of a signal-time-sharing, matched-filter-based demodulator;

FIG. 2 illustrates a matched filter using time sharing of multiplier array and adder tree; and

FIG. 3 shows possible timing of signal-time-sharing, matched-filter-based demodulator.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference now is made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals indicate like elements throughout the several views.

The present invention provides a new and novel spread-spectrum-matched-filter apparatus which can be used as part of a spread-spectrum receiver on a received spread-spectrum signal.

The received spread-spectrum signal is assumed to have a pilot-spread-spectrum channel and a data-spread-spectrum channel. The pilot-spread-spectrum channel is generated from spread-spectrum processing, by using techniques well known in the art, a pilot-bit-sequence signal with a pilot-chip-sequence signal. The pilot-bit-sequence signal may be a constant level, i.e., just a series of 1-bits, or a series of 0-bits, or alternating 1-bits and 0-bits, or other sequence as desired. Typically, data are not sent with a pilot-bit-sequence signal. In some applications, data, preferably with a low data rate, may be imposed on the pilot-bit-sequence signal. The pilot-chip-sequence signal is user defined, and in a usual practice, is used with a pilot-bit-sequence signal.

The data-spread-spectrum channel is generated similarly, from techniques well known in the art as used for the pilot-spread-spectrum channel, by spread-spectrum processing a data-bit-sequence signal with a data-chip-sequence signal. The data-bit-sequence signal may be derived from data, or analog signal converted to data, or other source of data bits. The data-chip-

sequence signal can be user defined, and preferably is orthogonal to the pilot-chip-sequence signal, as is well known in the art.

Broadly, the spread-spectrum-matched-filter apparatus includes code means, programmable-matched means, frame-matched means, control means, and demodulator means. The control means is coupled to the code means and programmable-matched means. The frame-matched means is coupled to the output of the programmable-matched means. The demodulator means is coupled to the output of the programmable-matched means.

The code means generates a replica of the pilot-chip-sequence signal and a replica of the data-chip-sequence signal. These replicas of the pilot-chip-sequence signal and the data-chip-sequence signal are the same sequences as used for generating the received spread-spectrum signal which arrives at the input of the spread-spectrum-matched-filter apparatus. The code means can change over time the particular chipping sequence from which the replica of the pilot-chip-sequence signal and from which the replica of the data-chip-sequence signal are generated. Accordingly, the spread-spectrum-matched-filter apparatus can be used for a variety of pilot-chip-sequence signals and data-chip-sequence signals as generated by the code means, as might be used in a cellular-spread-spectrum architecture where a receiver might move from one geographical area to another. As the spread-spectrum-matched-filter apparatus moves from one geographical area to another, by way of example, a requirement might be imposed of having to change the

PAPERS
DRAFTED
BY
S&G
2/28/90

20

25

25

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

pilot-chip-sequence signal and the data-chip-sequence signal in each of the different geographical areas.

The programmable-matched means has a programmable-impulse response. The programmable-impulse response can be set from the replica of the pilot-chip-sequence signal generated by the code means, and the replica of the data-chip-sequence signal generated by the code means. Thus, the programmable-impulse response may be set for filtering from the received spread-spectrum signal, the pilot-spread-spectrum channel. With the programmable-impulse response set to the replica of the pilot-chip-sequence signal, and with the pilot-spread-spectrum channel at the receiver, the programmable-matched means outputs a despread-pilot-bit-sequence signal.

When the programmable-matched means has the programmable-impulse response set from the replica of the data-chip-sequence signal, then the programmable-matched means filters from the received spread-spectrum signal, the data-spread-spectrum channel. Thus, the programmable-matched means can output the despread-data-bit-sequence signal. Accordingly, the programmable-matched means can despread either of the pilot-spread-spectrum channel or the data-spread-spectrum channel, depending on how the programmable-impulse response is set. As set forth below, the programmable-matched means changes dynamically, while receiving the received spread-spectrum signal, allowing the programmable-matched means to be time shared while receiving the pilot-chip-sequence signal and the data-chip-sequence signal.

The frame-matched means has a frame-impulse response matched to the pilot-bit-sequence signal. Thus, the frame-matched means filters the despread-pilot-bit-sequence signal from the programmable-matched means, and generates as a result thereof, a peak-pilot-correlation signal when the despread-pilot-bit-sequence signal matches the frame-impulse response. The frame-matched means may have a programmable-frame-impulse response, which might change between different geographical areas.

The control means controls the setting of the programmable-impulse response of the programmable-matched means. The control means can dynamically set the programmable-matched means, by using the replica of the pilot-chip-sequence signal generated by the code means, to match the pilot-chip-sequence signal embedded in the received spread-spectrum signal. Similarly, the control means can dynamically set the programmable-matched means, by using the replica of the data-chip-sequence signal generated by the code means, to match the data-chip-sequence signal. The control means can set the programmable-impulse response alternately, at various time delays, so that the programmable-matched means alternately detects the pilot-bit-sequence signal and the data-bit-sequence signal embedded in the received-spread-spectrum signal.

The programmable-matched means may include an in-phase-programmable-matched means and a quadrature-phase-programmable-matched means. The in-phase-programmable-matched means has an in-phase-programmable-impulse response which can be set from the

replica of the pilot-chip-sequence signal or the replica of the data-chip-sequence signal generated by the code means.

Depending on which setting the in-phase-programmable-matched means has, the in-phase-programmable-matched means despreads from the received spread-spectrum signal, an in-phase-component of the pilot-spread-spectrum signal channel as a despread-in-phase-component of the pilot-bit-sequence signal, or an in-phase component of the data-spread-spectrum channel as a despread-in-phase component of the data-bit-sequence signal.

The quadrature-phase-programmable-matched means has a quadrature-impulse response which can be set from the replica of the pilot-chip-sequence signal or the replica of the data-chip-sequence signal generated by the code means. When the quadrature-phase-programmable-matched means has the quadrature-impulse response matched to the pilot-chip-sequence signal, the quadrature-phase-programmable-matched means despreads from the received spread-spectrum signal a quadrature-phase component of the pilot-spread-spectrum channel as a despread-quadrature-phase component of the pilot-bit-sequence signal. Similarly, when the quadrature-phase-programmable-matched means has the quadrature-programmable-impulse response set from the replica of the data-chip-sequence signal, the quadrature-phase-programmable-matched means despreads the received spread-spectrum signal as a quadrature-component of the data-spread-spectrum channel as a despread-quadrature-phase component of the despread data-bit-sequence.

5

10

15

20

25

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

In use, the control means has the in-phase-programmable-matched means and the quadrature-phase-programmable-matched means time synchronized so that they are alternatively matched to detect the pilot-chip-sequence signal or the data-chip-sequence signal. This dynamic changing of the in-phase-programmable-matched means and the quadrature-phase-programmable-matched means is done alternately during reception of a spread-spectrum signal, time sharing these elements for detecting the pilot-chip-sequence signal and the data-chip-sequence signal embedded in the received spread-spectrum signal.

The frame-matched means may include an in-phase-frame-matched means and a quadrature-phase-frame-matched means. The in-phase-frame-matched means has an in-phase-frame-impulse response matched to an in-phase component of the pilot-bit-sequence signal. When the in-phase component of the despread-pilot-bit-sequence signal from the in-phase-programmable-matched means matches the in-phase-frame-impulse response, then an in-phase-peak-pilot-correlation signal is generated.

The quadrature-phase-frame-matched means has a quadrature-phase-frame-impulse response matched to a quadrature-phase component of the pilot-bit-sequence signal. When the quadrature-phase component of the despread-pilot-bit-sequence signal matches the quadrature-phase-frame-impulse response of the quadrature-phase-frame-matched means, then a quadrature-phase-peak-pilot-correlation signal is generated.

In the exemplary arrangement shown in FIG. 1, the code means is embodied as a code generator 43, the programmable-

10

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9

matched means is embodied as an in-phase-programmable-matched filter 35 and a quadrature-phase programmable-matched filter 37, the frame-matched means is embodied as an in-phase-frame-matched filter 38 and a quadrature-phase-frame-matched filter 39, the control means is embodied as a controller 46, and the demodulator means is embodied as a demodulator 41. The in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 may be constructed as digital-matched filters, surface-acoustic-wave devices, or as software embedded in a processor or as an application specific integrated circuit (ASIC). Also shown is a voltage controlled oscillator 45, timing generator 44, diversity combiner 42, frame processor 40, Costas loop 36 (or other generic tracking loop), in-phase analog-to-digital converter 33, quadrature-phase analog-to-digital converter 34, in-phase mixer 31, and quadrature-phase mixer 32. The in-phase analog-to-digital converter 33 is coupled between in-phase mixer 31 and in-phase-programmable-matched filter 35. The quadrature-phase analog-to-digital converter 34 is coupled between the quadrature-phase mixer 32 and the quadrature-phase-programmable-matched filter 37. The Costas loop 36 is coupled to the output of the in-phase-programmable-matched filter 35, to the demodulator 41, and to the in-phase mixer 31 and the quadrature-phase mixer 32. The in-phase-frame-matched filter 38 is coupled between the in-phase-programmable-matched filter 35 and the frame processor 40 and the demodulator 41. The quadrature-phase-frame-matched filter 39 is coupled between the quadrature-phase-programmable-

SEARCHED
INDEXED
SERIALIZED
FILED

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

matched filter 37 and the processor 40 and the demodulator 41. The code generator 43 is coupled between timing generator 44 and to the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37. The voltage controlled oscillator 45 is coupled to the timing generator 44 and to the matched-filter controller 46. The diversity combiner 42 is coupled to the frame processor 40 and the demodulator 41. The controller 46 is coupled to the frame processor 40. The prefixes "in-phase" and "quadrature-phase" denote that component, i.e., in-phase or quadrature-phase, of the received-spread-spectrum signal, with which the element operates.

For control, indicated by broken lines, the controller 46 is coupled to the diversity combiner 42, the frame-matched filter 38, the frame-matched filter 39, the demodulator 41, the timing generator 44, the code generator 43, the in-phase-analog-to-digital converter 33, and the quadrature-phase-analog-to-digital converter 34.

Referring to FIG. 1, a received spread-spectrum signal at the signal input is translated to an intermediate frequency or baseband frequency by in-phase mixer 31 and quadrature-phase mixer 32. For discussion purposes, the received-spread-spectrum signal is assumed to be translated to a baseband frequency. Thus, the baseband received spread-spectrum signal is converted to a digital signal by in-phase analog-to-digital converter 33 and quadrature-phase analog-to-digital converter 34. Thus, a baseband version of the received spread-spectrum signal is at the input of the in-phase-programmable-matched filter 35 and the

5

10

15

20

25

quadrature-phase-programmable-matched filter 37.

The in-phase-programmable-matched filter 35 has an in-phase-programmable-impulse response which is set by the replica of the pilot-chip-sequence signal or the replica of the data-chip-sequence signal from code generator 43. Depending on the setting, the in-phase-programmable-matched filter 35 can despread the received spread-spectrum signal as a despread-in-phase component of the pilot-bit-sequence signal or as a despread-in-phase component of the data-spread-spectrum channel. Accordingly, the in-phase-programmable-matched filter 35 outputs either a despread-in-phase component of the pilot-bit-sequence signal, or a despread-in-phase component of the data-bit-sequence signal as a despread-data-bit-sequence signal.

Similarly, the quadrature-phase-programmable-matched filter 37 has a programmable-impulse response which can be set by the replica of the pilot-chip-sequence signal or the replica of the data-chip-sequence signal generated by the code generator 43. Depending on the setting, the quadrature-phase-programmable-matched filter 37 despreads the received spread-spectrum signal as a quadrature-phase component of the pilot-spread-spectrum channel or as a quadrature-phase component of the data-spread-spectrum channel. These can be either the despread-quadrature-phase-pilot-bit-sequence signal or the quadrature-phase-data-bit-sequence signal.

The in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 are ultimately controlled by the controller 46. The controller 46 controls

PAGES FIFTEEN OF SEVENTEEN

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

timing and determines at desired timings when the code generator 43 sets the programmable-impulse responses of the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 to the respective pilot-chip-sequence signal or the data-chip-sequence signal.

As shown in FIG. 2, the controller 46 controls the in-phase signal register 51 and the quadrature-phase signal register 52, which correspond to the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37, respectively.

In FIG. 1, the Costas loop 36 uses the output from the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 to generate the cosine and sine signals for in-phase mixer 31 and quadrature-phase mixer 32, respectively.

When the in-phase-programmable-matched filter 35 and quadrature-phase-programmable-matched filter 37 have their respective programmable-impulse responses matched to the pilot-chip-sequence signal, then the output is a despread-pilot-bit-sequence signal. The despread-pilot-bit-sequence signal is passed through in-phase-frame-matched filter 38 and quadrature-phase-frame-matched filter 39, respectively. The in-phase-frame-matched filter 38 has an in-phase-frame-impulse response matched to the in-phase component of the pilot-bit-sequence signal, and accordingly, generates an in-phase-peak-pilot correlation signal when the in-phase component of the despread-pilot-bit-sequence signal matches the in-phase-frame-impulse

response. Similarly, the quadrature-phase-frame-matched filter 39 has a quadrature-phase-frame-impulse response matched to a quadrature-phase component of the pilot-bit-sequence signal. When the despread pilot-bit-sequence signal from the quadrature-phase-programmable-matched filter 37 matches the quadrature-phase-frame-impulse response of the quadrature-phase-matched filter 37, then the quadrature-phase-frame-matched filter outputs a quadrature-phase-peak-pilot-correlation signal. The in-phase-peak-pilot-correlation signal and the quadrature-phase-peak-pilot-correlation signal are demodulated by demodulator 47, and can be used as a initial timing signal for controlling when the diversity combiner 47 combines the output from the demodulator 41 for the respective signals from in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37.

Additionally, the in-phase-peak-pilot-correlation signal and the quadrature-phase-peak-pilot-correlation signal can be processed by frame processor 40 to trigger a timing signal to controller 46 which actuates the timing for when a respective in-phase-programmable-impulse response and the quadrature-phase-programmable-impulse response of the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37, respectively are matched to either of the pilot-chip-sequence signal or the data-chip-sequence signal.

In a particular implementation of the present invention, the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 have their respective in-

phase-programmable-impulse response and quadrature-phase-programmable-impulse response staggered, under the control of the controller 46, such that they are matched to the pilot-chip-sequence signal and then to the data-chip-sequence signal every five microseconds. Accordingly, each of the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 can have their respective in-phase-programmable-impulse response and quadrature-phase-programmable-impulse response loaded within five microseconds.

Typically, current designs have these respective programmable-matched filters loaded within 2.5 microseconds, for a system operating at 100 MHz, with each of the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 having a 250 stage shift register.

The demodulator 41 can be implemented using coherent demodulation, or alternatively noncoherent demodulation.

The diversity combiner 42 combines in a variety of ways, such as maximum likelihood, straight combining, addition, or the demodulated outputs from the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 as demodulated through demodulator 41.

FIG. 2 illustrates the matched filter using the time sharing of the multiplier array and adder tree. Shown in FIG. 2 are in-phase-signal register 51, quadrature-phase-signal register 52, reference-signal register 53, multiplier array 54, adder tree 55, data register 56, and controller 46. As shown, the dotted lines indicate that the controller 46 provides the

necessary controlling of the in-phase-signal register 51, the quadrature-phase-signal register 52, the reference-signal reference 53 and the data register 56. The solid lines indicate the signal flow from the in-phase-signal register 51, the quadrature-phase-signal register 52, the reference-signal register 53 through multiplexer 57. The in-phase-signal register 51 and the quadrature-phase-signal register 52 are coupled through multiplexer 57 to multiplier array 54 to adder tree 55 to data register 56. The data register 56 has the in-phase output and quadrature-phase output.

FIG. 3 illustrates block timing of the signal sharing, matched-filter-based correlator. As shown, a frame can begin every 8192 chips and a first signal, such as the pilot-chip-sequence signal can be output from the code generator 43 every 256 chips. Similarly, a second signal, such as a data-chip-sequence signal can be output every 256 chips, but staggered from the first signal, i.e., the pilot signal. Thus, the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 are loaded with the first signal, the pilot-chip-sequence signal, and then staggered and loaded with the second signal, the data-chip-sequence signal. The first signal would represent loading the respective matched filters with the pilot-chip-sequence signal and the second signal would be the timing for loading the respective matched filters with the data-chip-sequence signal.

The present invention also includes a method which uses a programmable-matched filter and a frame-matched filter with a

10

15

20

25

25

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

spread-spectrum receiver on a received spread-spectrum signal. As with the apparatus previously disclosed, the received spread-spectrum signal is assumed to have a pilot-spread-spectrum channel and a data-spread-spectrum channel. The pilot-spread-spectrum channel is generated from spread-spectrum processing a pilot-bit-sequence signal with a pilot-chip-sequence signal. The data-spread-spectrum channel is generated from spread-spectrum processing a data-bit-sequence signal with a data-chip-sequence signal.

The method comprises the steps of generating a replica of the pilot-chip-sequence signal and a replica of the data-chip-sequence signal. In response to the currents of a peak-pilot correlation signal, at an appropriate delay, the method generates a pilot-control signal. In response to the pilot-control signal, the method programs the programmable-matched filter with the replica of the pilot-chip-sequence signal to set the programmable-matched filter to have a programmable-impulse response matched to the pilot-chip-sequence signal. With the programmable-matched filter matched to the pilot-chip-sequence signal, the method despreads the pilot-spread-spectrum channel from the received spread-spectrum signal as a despread pilot-bit-sequence signal.

The frame-matched filter has a frame-impulse response matched to the pilot-bit-sequence signal. The method therefore uses the frame-matched filter to filter the despread pilot-bit-sequence signal. The method thereafter generates from the filtered despread-pilot-bit-sequence signal, the peak-pilot-

correlation signal in response to the despread-pilot-bit-sequence signal matching the frame-impulse response of the frame-matched filter.

The method also generates at a time delay from the pilot-control signal, and in response to the peak-pilot-correlation signal, a data-control signal. In response to the data-control signal, the method programs the programmable-matched filter with the replica of the data-chip-sequence signal so that the programmable-matched filter has the programmable-impulse response matched to the data-chip-sequence signal. The method thereby despreads, while the programmable-matched filter is matched to the data-chip-sequence signal, the data-spread-spectrum channel from the received spread-spectrum signal as a despread-data-bit-sequence signal.

The method as described herein may be extended to in-phase and quadrature-phase components of a received-spread-spectrum signal. As such, the method would have the step of despreads the pilot-spread-spectrum channel from the received spread-spectrum signal including the steps of despreads, from the received spread-spectrum signal, the in-phase component of the pilot-spread-spectrum channel as a despread in-phase component of the pilot-bit-sequence signal, and despreads, from the received spread-spectrum signal, the quadrature-phase component of the pilot-spread-spectrum channel as a despread-quadrature-phase component of the pilot-bit-sequence signal.

Similarly, the in-phase component and the quadrature-phase component of the received-spread-spectrum signal can be despread

as in-phase components and quadrature-phase components of the data-spread-spectrum channel. Accordingly, the method would include despreading, from the received spread-spectrum signal, an in-phase component of the data-spread-spectrum channel as a despread-in-phase component of the despread-data-bit-sequence signal. The method would also include despreading, a quadrature-phase component of the data-spread-spectrum channel as a despread-quadrature-phase component of the despread-data-bit-sequence signal.

When filtering the despread pilot-bit-sequence signal into in-phase components and quadrature-phase components of the despread-pilot-bit-sequence signal, the method can also include generating an in-phase-peak-pilot-correlation signal and a quadrature-phase-peak-pilot-correlation signal, in response to the in-phase component and the quadrature-phase component of the despread pilot-bit-sequence signal matching the in-phase-frame-impulse response and the quadrature-phase-frame-impulse response, respectively.

In operation the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 are loaded with M local sequence symbols, i.e., either the replica of the pilot-chip-sequence signal or the replica of the data-chip-sequence signal. The incoming received spread-spectrum signal samples generated by in-phase-analog-to-digital converter 33 and quadrature-phase-analog-to-digital converter 34, respectively, slide by, i.e. are correlated against, the local replicas until they line up, at which time a large information

bearing output is produced. The generation of this large output does not require that a synchronization process be successfully completed a priori or that additional circuits dedicated to the acquisition process be employed and it achieves code

5 synchronization in the shortest possible time to acquire the incoming spreading chip-sequence signal. This has the advantage of lower implementation cost, lower physical volume, less power consumption, more rapid implementation and much better performance as measured by the time required to achieve code

10 synchronization.

The presence of a strong signal level output indicates that at that specific moment in time M incoming signal symbols and the M symbols of the local spreading code, i.e. chip-sequence signal, loaded in the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 are in alignment. The requirement exists that the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 be fully loaded with the next M symbols of the local spreading code, the pilot-chip-sequence signal or the data-chip-sequence signal at any time prior to the arrival of the next M incoming signal symbols at the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37. The value of the number M, which denotes the size of the respective programmable-matched filter as measured in number of signal samples, is much larger than any value on the order of one; in the present embodiment M is on the order of 250. Because M is much larger than one the

circuits required to implement the code phase synchronization functions are much easier to design and implement. This has the advantage of lower implementation cost, lower physical volume, less power consumption, more rapid implementation and inherently better performance.

The in-phase-programmable-matched filter 35 and the quadrature-phase-programmable filter 37 identify, characterize and extract the information which arrives through all available channels, or paths, intrinsically without any additional and parallel signal processing paths. The spreading code loaded as a local reference in the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 remain in place until all propagation channels have the opportunity to deliver the information signal at the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37; the matched filter can then easily recover all $L=T_M(W+1)$ signals it is capable of receiving. As the input signals are offset in time due to differences in length of the propagation path, and since the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 are linear devices, the outputs due to the signals propagation through different channels are output by the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 offset in time. Thus the reception and separation of the signals propagating through different channels does not require any additional circuits and the individual signals, which are now separate in time can be

easily individually manipulated and combined in optimum ways such that the matched filter receiver attains the performance of a L-diversity system.

A receiver capable of identifying, separating and combining large numbers (L) of signal replicas propagating through different channels is referred to as a RAKE receiver. The RAKE receiver structure is optimal and the matched filter can implement it without the excessive complexity incurred by alternative system implementations. The in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37 implementation of the heart of the diversity processing system has the advantage of lower implementation cost, lower physical volume, less power consumption, more rapid implementation, less complex control and better performance.

The programmable-matched-filter-based demodulator as described herein utilizes only one such set of circuits and, using information which is intrinsically generated, can then coherently demodulate any number of signal replicas, including all $L=T_M(W+1)$, that arrive via separate propagation paths. The mechanism by which this is accomplished is to employ one conventional phase tracking circuit, e.g., phase-locked loop (PLLs), Costas loop 36, or n^{th} power loop, in order to establish a temporarily stable phase reference and then extract the phase offset of each individual signal with respect to that phase reference. The incoming signal is first downconverted non-coherently to some frequency, including the 0 Hz frequency (DC). Then the in-phase and quadrature-phase channel outputs are read

from the in-phase-programmable-matched filter 35 and the quadrature-phase-programmable-matched filter 37, respectively. The phase offset of the carrier signal is contained in the relative amplitudes of the in-phase and quadrature-phase outputs which are then used directly to demodulate the received data signal in a differential mode. Alternatively the phase estimate of the individual propagation paths can be improved by further matched filtering to demodulate the signal with performance equal to or better than that obtained using conventional coherent demodulators but without the added complexity introduced by conventional coherent demodulators. Therefore the programmable-matched filter-based implementation has the advantage of much lower complexity, lower implementation cost, lower physical volume, less power consumption, more rapid implementation and better performance.

A set of multipliers and the associated adder tree may be eliminated. By inputting the signals at the input of the remaining set of multipliers and the associated adder tree from two multiplexers, each multiplexer may serve to connect to the multiplier/adder tree structure either the in-phase or quadrature-phase signal registers. This implementation adds the complexity of two multiplexers and reduces the complexity associated with a set of multipliers and an adder tree for a significant net reduction in complexity.

The programmable-matched filter is a digital signal processor, the output of which is of interest only at that instant of time when the portion of interest of the incoming

signal is fully loaded and is of no interest at any other time. In the present implementation the size of the programmable-matched filters is approximately 250 stages and it requires 250 clock cycles to load the input samples of the received spread-spectrum signal. Its output is of interest only for one or two clock cycles and is of no interest for the rest of approximately 248 clock cycles. Thus the circuit can be reused during these 248 clock cycles. Two or more signals, say N signals, can utilize the same matched filter provided that the signals are not lined up in phase and thus the outputs are staggered in time. If N=5 signals must share the same matched filter, the signals could then be staggered by approximately 45 clock cycles and the matched filter could be operated in a number of ways, including the following manner:

1. Starting at clock cycle 5, the programmable-matched filters are loaded with the reference corresponding to the first signal. The output due to the first signal will occur during the 50th and 51st clock cycle.
2. Starting at clock cycle 55, the programmable-matched filters are loaded with the reference corresponding to the second signal. The output due to the second signal will occur during the 100th and 101st clock cycle.
3. Starting at clock cycle 105, the programmable-matched filters are loaded with the reference corresponding to the third signal. The output to the third signal will occur during the 150th and 151st clock cycle.

4. Starting at clock cycle 155, the programmable-matched filters are loaded with the reference corresponding to the fourth signal. The output due to the fourth signal will occur during the 200th and 201st clock cycle.

5. Starting at clock cycle 205, the programmable-matched filters are loaded with the reference corresponding to the fifth signal. The output due to the fifth signal will occur during the 250th and 251st clock cycle.

The cycle then repeats itself for the next output due to the first, second, third, fourth and fifth signals using only one matched filter. The complexity of and size of implementation is reduced by 80% while the signal processing benefits remain constant.

It will be apparent to those skilled in the art that various modifications can be made to the spread-spectrum-matched-filter apparatus of the instant invention without departing from the scope or spirit of the invention, and it is intended that the present invention cover modifications and variations of the spread-spectrum-matched-filter apparatus provided they come within the scope of the appended claims and their equivalents.

DRAFTED BY
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

I CLAIM:

5 1. A method, using a programmable-matched filter and a frame-matched filter with a spread-spectrum receiver on a received spread-spectrum signal, the received spread-spectrum signal having a pilot-spread-spectrum channel generated from spread-spectrum processing a pilot-bit-sequence signal with a pilot-chip-sequence signal and a data spread-spectrum channel generated from spread-spectrum processing a data-bit-sequence signal with a data-chip-sequence signal, comprising the steps of:

10 programming said programmable-matched filter, responsive to a pilot-control signal, to set said programmable-matched filter to having a programmable-impulse response matched to the pilot-chip-sequence signal;

15 despreadening, with the programmable-matched filter matched to the pilot-chip-sequence signal, the pilot-spread-spectrum channel as a despread-pilot-bit-sequence signal;

20 filtering, with said frame-matched filter having a frame-impulse response matched to the pilot-bit-sequence signal, the despread-pilot-bit-sequence signal;

25 generating from the filtered despread-pilot-bit-sequence signal, responsive to the despread-pilot-bit-sequence signal matching the frame-impulse response of the frame-matched filter, a peak-pilot-correlation signal;

LA PLATA, MD 20646
(301) 934-6100

25
LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

generating, responsive to the peak-pilot-correlation signal, at a time delay from the pilot-control signal, a data-control signal;

30

programming said programmable-matched filter,
responsive to the data-control signal, to have the programmable-
impulse response matched to the data-chip-sequence signal; and
despreadening, with the programmable-matched filter
matched to the data-chip-sequence signal, the data-spread-
spectrum channel as a despread-data-bit-sequence signal.

2. The method as set forth in claim 1, with the step of
despreadening the pilot-spread-spectrum channel further including
the steps of:

despreadening, from the received spread-spectrum signal,
an in-phase component of the pilot-spread-spectrum channel as a
despread-in-phase component of the despread-pilot-bit-sequence
signal; and

despreadening, from the received spread-spectrum signal,
a quadrature-phase component of the pilot-spread-spectrum
channel as a despread-quadrature-phase component of the
despread-pilot-bit-sequence signal.

10

3. The method as set forth in claim 1 or 2 with the step
of despreadening the data-spread-spectrum channel further
including the steps of:

5

despreadening, from the received spread-spectrum signal,
an in-phase component of the data-spread-spectrum channel as a
despread-in-phase component of the despread-data-bit-sequence
signal; and

despread, from the received spread-spectrum signal,
a quadrature-phase component of the data-spread-spectrum channel
as a despread-quadrature-phase component of the despread-data-
bit-sequence signal.

4. The method as set forth in claim 2 with the step of
filtering the despread pilot-bit-sequence signal further
including the steps of:

generating an in-phase-peak-pilot-correlation signal
in response to the despread-in-phase component of the despread-
pilot-bit-sequence signal matching an in-phase-frame-impulse
response; and

generating a quadrature-phase peak-pilot-correlation
signal in response to the despread-quadrature-phase component of
the despread-pilot-bit sequence signal matching a quadrature-
phase-frame-impulse response.

5. The method as set forth in claim 1, further including
the step of demodulating the despread-data-bit-sequence signal
as a received data-bit-sequence signal.

6. The method as set forth in claim 2 further including
the step of demodulating an in-phase component of the despread-
data-bit-sequence signal and a quadrature-phase component of the
despread-data-bit-sequence signal, as a received-data-bit-
sequence signal.

7. A method, using a programmable-matched filter having a first plurality of taps and a frame-matched filter having a second plurality of taps with a spread-spectrum receiver on a received spread-spectrum signal to generate a code having a first plurality of chips, the first plurality of chips being equal to a product of the first plurality of taps and the second plurality of taps, the received spread-spectrum signal having a pilot-spread-spectrum channel generated from spread-spectrum processing a pilot-bit-sequence signal with a pilot-chip-sequence signal and a data spread-spectrum channel generated from spread-spectrum processing a data-bit-sequence signal with a data-chip-sequence signal, comprising the steps of:

generating a replica of the pilot-chip-sequence signal;

generating a replica of the data-chip-sequence signal;

generating, responsive to a peak-pilot correlation signal, a pilot-control signal;

programming said programmable-matched filter to set the first plurality of taps of said programmable-matched filter to have a programmable-impulse response matched to the pilot-chip-sequence signal;

despreadening the pilot-spread-spectrum channel as a despread-pilot-bit-sequence signal, each bit of the despread-pilot-bit-sequence having a second plurality of chips, a number of the second plurality of chips being equal to a number of the first plurality of taps;

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

outputting, on the basis of one output for every second plurality of chips, the despread-pilot-bit-sequence signal to the frame-matched filter;

filtering, with said frame-matched filter having a frame-impulse response matched to the pilot-bit-sequence signal, the despread-pilot-bit-sequence signal, each of the second plurality of taps of said frame-matched filter for correlating with a respective bit of the despread-pilot-bit-sequence signal;

generating a peak-pilot-correlation signal in response to a frame of the despread-pilot-bit-sequence signal matching the frame-impulse response of the frame-matched filter;

programming said programmable-matched filter, responsive to the peak-pilot-correlation signal, to have the programmable-impulse response matched to the data-chip-sequence signal; and

despreading the data-spread-spectrum channel as a despread-data-bit-sequence signal.

8. The method as set forth in claim 7, with the step of despreading the pilot-spread-spectrum channel further including the steps of:

despreading an in-phase component of the pilot-spread-spectrum channel as a despread-in-phase component of the despread-pilot-bit-sequence signal; and

despreading a quadrature-phase component of the pilot-spread-spectrum channel as a despread-quadrature-phase component of the despread-pilot-bit-sequence signal.

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

9. The method as set forth in claim 7 or 8 with the step
of despreading the data-spread-spectrum channel further
including the steps of:

despreading an in-phase component of the data-spread-
spectrum channel as a despread-in-phase component of the
despread-data-bit-sequence signal; and

despreading a quadrature-phase component of the data-
spread-spectrum channel as a despread-quadrature-phase component
of the despread-data-bit-sequence signal.

10. The method as set forth in claim 8 with the step of
generating a peak-pilot-correlation signal further including the
steps of:

generating an in-phase-peak-pilot-correlation signal
in response to the despread-in-phase component of the despread-
pilot-bit-sequence signal matching an in-phase-frame-impulse
response; and

generating a quadrature-phase peak-pilot-correlation
signal in response to the despread-quadrature-phase component of
the despread-pilot-bit sequence signal matching a quadrature-
phase-frame-impulse response.

11. The method as set forth in claim 7, further including
the step of demodulating the despread-data-bit-sequence signal
as a received data-bit-sequence signal.

12. The method as set forth in claim 8 further including the step of demodulating an in-phase component of the despread-data-bit-sequence signal and a quadrature-phase component of the despread-data-bit-sequence signal, as a received-data-bit-sequence signal.

ABSTRACT

A spread-spectrum-matched-filter apparatus including a code generator, a programmable-matched filter, a frame-matched filter, and a controller. The code generator generates replicas of a pilot-chip-sequence signal and a data-chip-sequence signal, which are used to set the programmable-impulse response of the programmable-matched filter. The programmable-impulse response is alternately changed between that of the pilot-chip-sequence signal and the data-chip-sequence signal so that the programmable-matched filter alternately detects the pilot-spread-spectrum channel and the data-spread-spectrum channel embedded in a received spread-spectrum signal. The frame-matched filter detects a despread-pilot-bit-sequence signal and generates a peak-pilot-correlation signal which can be used for timing of the controller as to when to trigger changing the programmable-impulse response of the programmable-matched filter.

T:\GBT\GBTI22US.AP-DEC-TMD03/19

Attorney Docket: GBTI22US

UNITED STATES PATENT APPLICATION

of

SORIN DAVIDOVICI

for

PROGRAMMABLE TWO-PART MATCHED
FILTER FOR SPREAD SPECTRUM

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

FIG. 1

FIG. 2

FIG. 3

76
Aug 1 1997

Attorney Docket: GBTI22US

DECLARATION AND POWER OF ATTORNEY

As below-named inventor, I hereby declare that: my residence, post office address, and citizenship are as stated below next to my name; that I believe I am the original, first, and sole inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled:

PROGRAMMABLE TWO-PART MATCHED
FILTER FOR SPREAD SPECTRUM

the specification for which was filed on March 20, 1997, having Serial No. 08/821,003.

I hereby state that I have reviewed and understand the contents of the above-identified patent application, including the claims.

I acknowledge the duty to disclose information which is material to the examination of this application, in accordance with Title 37, Code of Federal Regulations, § 1.56(a).

I hereby appoint the following attorneys to prosecute this application and transact all business in the Patent and Trademark Office connected therewith: David B. Newman, Jr., Registration No. 30,966, and Suzin C. Bailey, Registration No. P-40,495.

Please address all correspondence to:

DAVID NEWMAN & ASSOCIATES, P.C.
Centennial Square
Post Office Box 2728
La Plata, Maryland 20646-2728
Telephone No. (301) 934-6100

I hereby declare that all statements made herein of my own

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301) 934-6100

knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Name of inventor:

103 Sorin Davidovici

Residence:

35-38 75th Street, Apartment 6A
Jackson Heights, New York 11372 NY

Post Office Address:

35-38 75th Street, Apartment 6A
Jackson Heights, New York 11372

Citizenship: United States

S. Newman

Date: 4 May 97

T:\GBT\GBTI22US.DPA-DEC07/31

LAW OFFICES
DAVID NEWMAN
& ASSOCIATES, P.C.
CENTENNIAL SQUARE
P.O. BOX 2728
LA PLATA, MD 20646
(301)934-6100