Datenstrukturen und Algorithmen

Vorlesung 5: Rekursionsgleichungen (K4)

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

https://moves.rwth-aachen.de/teaching/ss-18/dsal/

24. April 2015

Übersicht

- Binäre Suche
 - Was ist binäre Suche?
 - Worst-Case Analyse von Binärer Suche
- Rekursionsgleichungen
 - Fibonacci-Zahlen
 - Ermittlung von Rekursionsgleichungen
- 3 Lösen von Rekursionsgleichungen
 - Die Substitutionsmethode
 - Rekursionsbäume

Übersicht

- Binäre Suche
 - Was ist binäre Suche?
 - Worst-Case Analyse von Binärer Suche
- Rekursionsgleichungen
 - Fibonacci-Zahlen
 - Ermittlung von Rekursionsgleichungen
- Lösen von Rekursionsgleichungen
 - Die Substitutionsmethode
 - Rekursionsbäume

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.

Ausgabe: Ist K in E enthalten?

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K. Ausgabe: 1st K in E enthalten?

Idee

Da E sortiert ist, können wir das gesuchte Element K schneller suchen.

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.

Binäre Suche

Ausgabe: Ist K in E enthalten?

Idee

Da E sortiert ist, können wir das gesuchte Element K schneller suchen. Liegt K nicht in der Mitte von E, dann:

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.

Ausgabe: Ist K in E enthalten?

Idee

Da E sortiert ist, können wir das gesuchte Element K schneller suchen. Liegt K nicht in der Mitte von E, dann:

1. suche in der linken Hälfte von E, falls K < E[mid]

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.

Binäre Suche

Ausgabe: Ist K in E enthalten?

Idee

Da E sortiert ist, können wir das gesuchte Element K schneller suchen. Liegt K nicht in der Mitte von E, dann:

- suche in der linken Hälfte von E, falls K < E[mid]
- 2. suche in der rechten Hälfte von E, falls K > E[mid]

Suchen in einem sortierten Array

Eingabe: Sortiertes Array E mit n Einträgen, und das gesuchte Element K.

Ausgabe: Ist K in E enthalten?

Idee

Da E sortiert ist, können wir das gesuchte Element K schneller suchen. Liegt K nicht in der Mitte von E, dann:

- 1. suche in der linken Hälfte von E, falls K < E[mid]
- 2. suche in der rechten Hälfte von E, falls K > E[mid]

Fazit:

Wir halbieren den Suchraum in jedem Durchlauf.

```
1-1
1 bool binSearch(int E[], int n, int K) {
     int left = 0, right = n - 1;
     while (left <= right) {</pre>
       int mid = floor((left + right) / 2); // runde ab
       if (E[mid] == K) { return true; }
       if (E[mid] > K) { right = mid - 1; }
       if (E[mid] < K) { left = mid + 1; }</pre>
     return false;
9
10 }
```

Abkürzungen: m = mid, r = right, l = left

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays

Im nächsten Durchlauf ist die Größe des Arrays m-I oder r-m.

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays

Im nächsten Durchlauf ist die Größe des Arrays m-1 oder r-m.

Hierbei ist
$$m = \lfloor (l+r)/2 \rfloor$$
.

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays

Im nächsten Durchlauf ist die Größe des Arrays m-1 oder r-m.

Hierbei ist
$$m = \lfloor (l+r)/2 \rfloor$$
.

Die neue Größe ist also:

$$m-l = \lfloor (l+r)/2 \rfloor - l = \lfloor (r-l)/2 \rfloor = \lfloor (n-1)/2 \rfloor$$

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays

Im nächsten Durchlauf ist die Größe des Arrays m-1 oder r-m.

Hierbei ist
$$m = \lfloor (I+r)/2 \rfloor$$
.

Die neue Größe ist also:

▶
$$m-l = \lfloor (l+r)/2 \rfloor - l = \lfloor (r-l)/2 \rfloor = \lfloor (n-1)/2 \rfloor$$
 oder

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays

Im nächsten Durchlauf ist die Größe des Arrays m-1 oder r-m.

Hierbei ist $m = (\lfloor (l+r)/2 \rfloor)$

Die neue Größe ist also:

- $m-l = \lfloor (l+r)/2 \rfloor l = \lfloor (r-l)/2 \rfloor = \lfloor (n-1)/2 \rfloor$ oder
- $r \underline{m} = r \lfloor (l+r)/2 \rfloor = \lceil (r-l)/2 \rceil = \lceil (n-1)/2 \rceil$

Abkürzungen: m = mid, r = right, l = left

Größe des undurchsuchten Arrays

Im nächsten Durchlauf ist die Größe des Arrays m-1 oder r-m.

Hierbei ist $m = \lfloor (I+r)/2 \rfloor$.

Die neue Größe ist also:

- $m-l = \lfloor (l+r)/2 \rfloor l = \lfloor (r-l)/2 \rfloor = \lfloor (n-1)/2 \rfloor$ oder
- $r-m = r-\lfloor (l+r)/2\rfloor = \lceil (r-l)/2\rceil \neq \lceil (n-1)/2\rceil$

Im schlimmsten Fall ist die neue Größe des Arrays also:

$$[(n-1)/2]$$

Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen Suche.

Binäre Suche

K&E Worn? -> Worst-case Verhalten

Rekursionsgleichung für Binäre Suche

SeS(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen Suche.

Wir erhalten die Rekursionsgleichung:

Rekursionsgleichungen

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen Suche.

Wir erhalten die Rekursionsgleichung:

$$S(n) = \begin{cases} \frac{0}{1 + S(\lceil (n-1)/2 \rceil)} & \text{falls } \frac{n=0}{n>0} \\ \frac{1}{1 + S(\lceil (n-1)/2 \rceil)} & \text{falls } \frac{n>0}{n>0} \end{cases}$$

$$k ?$$

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/3

Rekursionsgleichungen

Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen Suche.

Wir erhalten die Rekursionsgleichung:

$$S(n) = \begin{cases} 0 & \text{falls } n = 0 \\ 1 + S(\lceil (n-1)/2 \rceil) & \text{falls } n > 0 \end{cases}$$

Die ersten Werten sind:

Rekursionsgleichung für Binäre Suche

Sei S(n) die maximale Anzahl der Schleifendurchläufe bei einer erfolglosen Suche.

Wir erhalten die Rekursionsgleichung:

$$S(n) = \begin{cases} 0 & \text{falls } n = 0 \\ 1 + S(\lceil (n-1)/2 \rceil) & \text{falls } n > 0 \end{cases}$$

Die ersten Werten sind:

Wir haben letztes Mal abgeleitet:
$$S(n) = \lfloor \log(n) \rfloor + 1$$
.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 7/:

Betrachte den Spezialfall $n = 2^k - 1$.

Betrachte den Spezialfall $n = 2^k - 1$.

Betrachte den Spezialfal $n = 2^k - 1$.

$$\left[\frac{\mathsf{n}-\mathsf{i}}{2}\right] = \left[\frac{(2^k-1)-1}{2}\right] =$$

Betrachte den Spezialfall $n = 2^k - 1$.

$$\left\lceil \frac{(2^k-1)-1}{2} \right\rceil = \left\lceil \frac{2^k-2}{2} \right\rceil =$$

Betrachte den Spezialfall $n = 2^k$

$$\left\lceil \frac{(2^k - 1) - 1}{2} \right\rceil = \left\lceil \frac{2^k - 2}{2} \right\rceil = 2^{k-1} - 1 = 2^{k-1} - 1.$$

$$\left\lceil \frac{n-1}{2} \right\rceil = \left\lceil \frac{2^{k}-1}{2} \right\rceil = \left\lceil 2^{k-1} - \frac{1}{2} \right\rceil$$

Betrachte den Spezialfall $n = 2^k - 1$.

Da die maximale neue Größe des Arrays $\lceil (n-1)/2 \rceil$ ist, leiten wir her:

$$\left\lceil \frac{(2^k - 1) - 1}{2} \right\rceil = \left\lceil \frac{2^k - 2}{2} \right\rceil = \left\lceil 2^{k - 1} - 1 \right\rceil = 2^{k - 1} - 1.$$

Daher gilt für k>0 nach der Definition $S(n)=1+S(\lceil (n-1)/2\rceil)$, dass:

$$S(2^{k}-1) = 1+S(2^{k-1}-1)$$

Betrachte den Spezialfall $n = 2^k - 1$.

Da die maximale neue Größe des Arrays $\lceil (n-1)/2 \rceil$ ist, leiten wir her:

$$\left\lceil \frac{(2^k - 1) - 1}{2} \right\rceil = \left\lceil \frac{2^k - 2}{2} \right\rceil = \left\lceil 2^{k - 1} - 1 \right\rceil = 2^{k - 1} - 1.$$

Daher gilt für k>0 nach der Definition $S(n)=1+S(\lceil (n-1)/2\rceil)$, dass:

$$S(2^{k}-1) = 1 + S(2^{k-1}-1) \quad \text{und damit } S(2^{k}-1) = \underbrace{k} \underbrace{S(2^{0}-1)}_{=0}$$

$$S(2^{k-1}-1) = \underbrace{\lambda} + \underbrace{S(2^{k-2}-1)}_{=0} = \underbrace{\lambda} + \underbrace{S(2^{k-3}-1)}_{=0}$$

Betrachte den Spezialfall $n = 2^k - 1$.

Da die maximale neue Größe des Arrays $\lceil (n-1)/2 \rceil$ ist, leiten wir her:

$$\left\lceil \frac{(2^k - 1) - 1}{2} \right\rceil = \left\lceil \frac{2^k - 2}{2} \right\rceil = \left\lceil 2^{k - 1} - 1 \right\rceil = 2^{k - 1} - 1.$$

Daher gilt für k>0 nach der Definition $S(n)=1+S(\lceil (n-1)/2\rceil)$, dass:

$$S(2^k-1) = 1+S(2^{k-1}-1)$$
 und damit $S(2^k-1) = k+\underbrace{S(2^0-1)}_{2} = k$.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 8/

Vermutung: $S(2^k) = 1 + S(2^{k-1})$.

Vermutung: $S(2^k) = 1 + S(2^{k-1})$.

S(n) steigt monoton, also S(n) = k falls $2^{k-1} \le n < 2^k$.

$$S(4)=3$$
 $2^{2} \le n < 2^{k} = 2^{3}$
 $4 \le n < 8$

Vermutung: $S(2^k) = 1 + S(2^{k-1})$.

$$S(n)$$
 steigt monoton, also $S(n) = k$ falls $2^{k-1} \le n < 2^k$.

Oder: falls $k - 1 \leq \log(n) < k$.

$$\log \left(2^{k-1}\right) \leq \log(n) \leq \log(2^{k})$$

Joost-Pieter Katoen Datenstrukturen und Algorithmen 9/

Vermutung: $S(2^k) = 1 + S(2^{k-1})$.

S(n) steigt monoton, also S(n) = k falls $2^{k-1} \le n < 2^k$.

Oder: falls $k - 1 \leq \log(n) < k$.

Dann ist $S(n) = \lfloor \log(n) \rfloor + 1$.

Wir vermuten $S(n) = \lfloor \log(n) \rfloor + 1$ für n > 0

Wir vermuten
$$S(n) = \lfloor \log(n) \rfloor + 1$$
 für $n > 0$

Induktion über *n*:

Wir vermuten
$$S(n) = \lfloor \log(n) \rfloor + 1$$
 für $n > 0$

Induktion über n:

Basis:
$$S(1) = 1 = \lfloor \log(1) \rfloor + 1$$

Wir vermuten $S(n) = \lfloor \log(n) \rfloor + 1$ für n > 0

Induktion über n:

Basis:
$$S(1) = 1 = \lfloor \log(1) \rfloor + 1$$

Induktionsschritt: Sei n > 1. Dann:

Wir vermuten $S(n) = \lfloor \log(n) \rfloor + 1$ für n > 0

Induktion über n:

Basis:
$$S(1) = 1 = |\log(1)| + 1$$

Induktionsschritt: Sei n > 1. Dann:

$$S(n) = 1 + S(\lceil (n-1)/2 \rceil) =$$

Wir vermuten $S(n) = \lfloor \log(n) \rfloor + 1$ für n > 0

Induktion über n:

Basis:
$$S(1) = 1 = \lfloor \log(1) \rfloor + 1$$

Induktionsschritt: Sei n > 1. Dann:

$$S(n) = 1 + S(\lceil (n-1)/2 \rceil) = 1 + \lfloor \log(\lceil (n-1)/2 \rceil) \rfloor + 1$$

Wir vermuten $S(n) = \lfloor \log(n) \rfloor + 1$ für n > 0

Induktion über n:

Basis:
$$S(1) = 1 = \lfloor \log(1) \rfloor + 1$$

Induktionsschritt: Sei n > 1. Dann:

$$S(n) = 1 + S(\lceil (n-1)/2 \rceil) = 1 + \lfloor \log(\lceil (n-1)/2 \rceil) \rfloor + 1$$

Man kann zeigen (Hausaufgabe): $\lfloor \log(\lceil (n-1)/2 \rceil) \rfloor + 1 = \lfloor \log(n) \rfloor$.

Wir vermuten $S(n) = \lfloor \log(n) \rfloor + 1$ für n > 0

Induktion über n:

Basis:
$$S(1) = 1 = |\log(1)| + 1$$

Induktionsschritt: Sei n > 1. Dann:

$$S(n) = 1 + S(\lceil (n-1)/2 \rceil) = 1 + \lfloor \log(\lceil (n-1)/2 \rceil) \rfloor + 1$$

Man kann zeigen (Hausaufgabe): $\lfloor \log(\lceil (n-1)/2 \rceil) \rfloor + 1 = \lfloor \log(n) \rfloor$.

Damit: $S(n) = \lfloor \log(n) \rfloor + 1$ für n > 0.

Theorem

Die Worst Case Zeitkomplexität der binären Suche ist $W(n) = \log(n) + 1$

$$W(n) = \lfloor \log(n) \rfloor + 1.$$

Übersicht

- Binäre Suche
 - Was ist binäre Suche?
 - Worst-Case Analyse von Binärer Suche
- Rekursionsgleichungen
 - Fibonacci-Zahlen
 - Ermittlung von Rekursionsgleichungen
- 3 Lösen von Rekursionsgleichungen
 - Die Substitutionsmethode
 - Rekursionsbäume

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

method
$$f(\dots,n\dots)$$
?

$$f(\frac{n}{2}) + f(\frac{n}{2})$$

$$Z \text{ Awhite van } f$$

$$\text{mit Argunetyröpse } \frac{n}{2}$$

$$T_f(n) = 2 \cdot T_f(\frac{n}{2}) + C$$

Joost-Pieter Katoen Datenstrukturen und Algorithmen

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben beschreibt.

$$T(n) = 2T(\frac{n}{2}) + c$$

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben beschreibt.

Beispiele

►
$$T(n) = T(n-1) + 1$$

Lineare Suche

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben beschreibt.

Beispiele

►
$$T(n) = T(n-1) + 1$$

$$T(n) = T(\lceil (n-1)/2 \rceil) + 1$$

Lineare Suche

Binäre Suche

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben beschreibt.

Beispiele

►
$$T(n) = T(n-1) + 1$$

$$ightharpoonup T(n) = T(\lceil (n-1)/2 \rceil) + 1$$

►
$$T(n) = T(n-1) + n - 1$$

Lineare Suche

Binäre Suche

Bubblesort

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben beschreibt.

Beispiele

$$T(n) = T(n-1) + 1$$

$$ightharpoonup T(n) = T(\lceil (n-1)/2 \rceil) + 1$$

$$T(n) = T(n-1) + n - 1$$

►
$$T(n) = 2 \cdot T(n/2) + n - 1$$

Lineare Suche

Binäre Suche

Bubblesort

Mergesort

Rekursionsgleichung

Für rekursive Algorithmen wird die Laufzeit meistens durch Rekursionsgleichungen beschrieben.

Eine Rekursionsgleichung ist eine Gleichung oder eine Ungleichung, die eine Funktion durch ihre eigenen Funktionswerte für kleinere Eingaben beschreibt.

Beispiele

$$T(n) = T(n-1) + 1$$

$$ightharpoonup T(n) = T(\lceil (n-1)/2 \rceil) + 1$$

►
$$T(n) = T(n-1) + n - 1$$

$$T(n) = 2 \cdot T(n/2) + n - 1$$

$$T(n) = 7 \cdot T(n/2) + c \cdot n^2$$

Lineare Suche

Binäre Suche Bubblesort

Mergesort

Problem

Problem

Betrachte das Wachstum einer Kaninchenpopulation:

▶ Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.

Problem

- ▶ Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
- ▶ Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.

Problem

- ► Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
- ▶ Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
- Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.

Problem

- ▶ Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
- ▶ Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
- Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.
- Sie sterben nie und hören niemals auf.

Problem

Betrachte das Wachstum einer Kaninchenpopulation:

- ▶ Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
- ▶ Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
- Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.
- Sie sterben nie und hören niemals auf.

Lösung

Die Anzahl der Kaninchenpaare lässt sich wie folgt berechnen:

$$Fib(0) = 0$$

 $Fib(1) = 1$
 $Fib(n+2) = Fib(n+1) + Fib(n)$ für $n \ge 0$.

Fibonacci-Zahlen

Problem

Betrachte das Wachstum einer Kaninchenpopulation:

- ▶ Zu Beginn gibt es ein Paar geschlechtsreifer Kaninchen.
- ▶ Jedes neugeborene Paar wird im zweiten Lebensmonat geschlechtsreif.
- Jedes geschlechtsreife Paar wirft pro Monat ein weiteres Paar.
- Sie sterben nie und hören niemals auf.

Lösung

Die Anzahl der Kaninchenpaare lässt sich wie folgt berechnen:

$$Fib(0) = 0$$

$$Fib(1) = 1$$

$$Fib(n+2) = Fib(n+1) + Fib(n) \quad \text{für } n \geqslant 0.$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad \dots}{Fib(n) \mid 0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \dots}$$

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

```
1 int fibRec(int n) {
2   if (n == 0 || n == 1) {
3     return n;
4   }
5   return fibRec(n - 1) + fibRec(n - 2);
6 }
```

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

```
1 int fibRec(int n) {
2   if (n == 0 || n == 1) {
3     return n;
4   }
5   return fibRec(n - 1) + fibRec(n - 2);
6 }
```

Die zur Berechnung von fibRec(n) benötigte Anzahl arithmetischer Operationen $T_{fibRec}(n)$ ist durch folgende Rekursionsgleichung gegeben:

$$T_{fibRec}(0) = 0$$
 $T_{fibRec}(1) = 0$
 $T_{fibRec}(n+2) = T_{fibRec}(n+1) + T_{fibRec}(n) + 3$ für $n \ge 0$.

Naiver, rekursiver Algorithmus

Rekursiver Algorithmus

```
int fibRec(int n) {
   if (n == 0 || n == 1) {
     return n;
   }
   return fibRec(n - 1) + fibRec(n - 2);
   }
}
```

Die zur Berechnung von fibRec(n) benötigte Anzahl arithmetischer Operationen $T_{fibRec}(n)$ ist durch folgende Rekursionsgleichung gegeben:

$$T_{fibRec}(0) = 0$$
 $T_{fibRec}(1) = 0$
 $T_{fibRec}(n+2) = T_{fibRec}(n+1) + T_{fibRec}(n) + 3$ für $n \ge 0$.

Zur Ermittlung der Zeitkomplexitätsklasse von fibRec löst man diese Gleichung.

Problem

$$T_{fibRec}(0) = 0$$
 $T_{fibRec}(1) = 0$
 $T_{fibRec}(n+2) = T_{fibRec}(n+1) + T_{fibRec}(n) + 3$ für $n \ge 0$.

Problem

$$T_{fibRec}(0) = 0$$
 $T_{fibRec}(1) = 0$
 $T_{fibRec}(n+2) = T_{fibRec}(n+1) + T_{fibRec}(n) + 3$ für $n \ge 0$.

Lösung (mittels vollständiger Induktion)

$$T_{fibRec}(n) = 3 \cdot Fib(n+1) - 3.$$

Problem

$$T_{fibRec}(0)=0$$
 $T_{fibRec}(1)=0$
 $T_{fibRec}(n+2)=T_{fibRec}(n+1)+T_{fibRec}(n)+3$ für $n\geqslant 0$.

Lösung (mittels vollständiger Induktion)

$$T_{fibRec}(n) = 3 \cdot Fib(n+1) - 3.$$

Fakt

$$2^{(n-2)/2} \leqslant Fib(n) \leqslant 2^{n-2}$$
 für $n > 1$.

Problem

$$T_{fibRec}(0) = 0$$
 $T_{fibRec}(1) = 0$
 $T_{fibRec}(n+2) = T_{fibRec}(n+1) + T_{fibRec}(n) + 3$ für $n \geqslant 0$.

Lösung (mittels vollständiger Induktion)

$$T_{fibRec}(n) = 3 \cdot Fib(n+1) - 3.$$

Fakt

$$2^{(n-2)/2} \leqslant Fib(n) \leqslant 2^{n-2}$$
 für $n > 1$.

Damit ergibt sich:

$$T_{fibRec}(n) \in \Theta(2^n)$$
,

Problem

$$T_{fibRec}(0)=0$$

$$T_{fibRec}(1)=0$$

$$T_{fibRec}(n+2)=T_{fibRec}(n+1)+T_{fibRec}(n)+3 \quad f\"{u}r \ n\geqslant 0.$$

Lösung (mittels vollständiger Induktion)

$$T_{fibRec}(n) = 3 \cdot Fib(n+1) - 3.$$

Fakt

$$2^{(n-2)/2} \leqslant Fib(n) \leqslant 2^{n-2}$$
 für $n > 1$.

Damit ergibt sich:

 $T_{fibRec}(n) \in \Theta(2^n)$, oft abgekürzt dargestellt als $fibRec(n) \in \Theta(2^n)$.

Joost-Pieter Katoen Datenstrukturen und Algorithmen 16/

Ein iterativer Algorithmus

Iterativer Algorithmus

```
int fibIter(int n) {
  int f[n];
  f[0] = 0; f[1] = 1;
  for (int i = 2; i <= n; i++) {
    f[i] = f[i-1] + f[i-2];
  }
  return f[n];
  }
}</pre>
```

Ein iterativer Algorithmus

Iterativer Algorithmus

```
int fibIter(int n) {
  int f[n];
  f[0] = 0; f[1] = 1;
  for (int i = 2; i <= n; i++) {
    f[i] = f[i-1] + f[i-2];
  }
  return f[n];
  }
}</pre>
```

Die benötigte Anzahl arithmetischer Operationen $T_{fiblter}(n)$ ist:

$$T_{fiblter}(0) = 0$$
 und $T_{fiblter}(1) = 0$
 $T_{fiblter}(n+2) = 3 \cdot (n+1)$ für $n \ge 0$.

Ein iterativer Algorithmus

Iterativer Algorithmus

```
1 int fibIter(int n) {
2   int f[n];
3   f[0] = 0; f[1] = 1;
4   for (int i = 2; i <= n; i++) {
5     f[i] = f[i-1] + f[i-2];
6   }
7   return f[n];
8 }</pre>
```

Die benötigte Anzahl arithmetischer Operationen $T_{fiblter}(n)$ ist:

$$T_{fiblter}(0) = 0$$
 und $T_{fiblter}(1) = 0$
 $T_{fiblter}(n+2) = 3 \cdot (n+1)$ für $n \ge 0$.

Damit ergibt sich:

 $T_{fiblter}(n) \in \Theta(n)$, oder als Kurzschreibweise $fiblter(n) \in \Theta(n)$.

Ein iterativer Algorithmus (2)

Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in $\Theta(n)$.

Ein iterativer Algorithmus (2)

Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in $\Theta(n)$.

Beobachtung: jeder Durchlauf "benutzt" nur die Werte f[i-1] und f[i-2].

Ein iterativer Algorithmus (2)

Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in $\Theta(n)$.

Beobachtung: jeder Durchlauf "benutzt" nur die Werte f[i-1] und f[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Ein iterativer Algorithmus (2)

Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in $\Theta(n)$.

Beobachtung: jeder Durchlauf "benutzt" nur die Werte f[i-1] und f[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

```
1 int fibIter2(int n) {
2   int a = 0; int b = 1;
3   for (int i = 2; i <= n; i++) {
4      c = a + b;
5      a = b;
6      b = c;
7   }
8   return b;
9 }</pre>
```

Ein iterativer Algorithmus (2)

Jedoch: der fibIter Algorithmus hat eine Speicherkomplexität in $\Theta(n)$.

Beobachtung: jeder Durchlauf "benutzt" nur die Werte f[i-1] und f[i-2].

Zwei Variablen reichen also aus, um diese Werte zu speichern.

Iterativer Algorithmus

```
int fibIter2(int n) {
  int a = 0; int b = 1;
  for (int i = 2; i <= n; i++) {
    c = a + b;
    a = b;
    b = c;
  }
  return b;
}</pre>
```

Der fibIter2 Algorithmus hat eine Speicherkomplexität in $\Theta(1)$ und $T_{fibIter2}(n) \in \Theta(n)$.

Matrixdarstellung der Fibonacci-Zahlen

Es gilt für n > 0:

$$\begin{pmatrix} Fib(n+2) \\ Fib(n+1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} Fib(n+1) \\ Fib(n) \end{pmatrix}$$

Matrixdarstellung der Fibonacci-Zahlen

Es gilt für n > 0:

$$\begin{pmatrix} Fib(n+2) \\ Fib(n+1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} Fib(n+1) \\ Fib(n) \end{pmatrix}$$

Damit lässt sich Fib(n+2) durch Matrixpotenzierung berechnen:

$$\begin{pmatrix} Fib(n+2) \\ Fib(n+1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2} \cdot \begin{pmatrix} Fib(n) \\ Fib(n-1) \end{pmatrix} = \dots = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n} \cdot \begin{pmatrix} Fib(2) \\ Fib(1) \end{pmatrix}$$

Matrixdarstellung der Fibonacci-Zahlen

Es gilt für n > 0:

$$\begin{pmatrix} Fib(n+2) \\ Fib(n+1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} Fib(n+1) \\ Fib(n) \end{pmatrix}$$

Damit lässt sich Fib(n+2) durch Matrixpotenzierung berechnen:

$$\begin{pmatrix} Fib(n+2) \\ Fib(n+1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \cdot \begin{pmatrix} Fib(n) \\ Fib(n-1) \end{pmatrix} = \dots = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \cdot \begin{pmatrix} Fib(2) \\ Fib(1) \end{pmatrix}$$

Wie können wir Matrixpotenzen effizient berechnen?

Matrixdarstellung der Fibonacci-Zahlen

Es gilt für n > 0:

$$\begin{pmatrix} Fib(n+2) \\ Fib(n+1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} Fib(n+1) \\ Fib(n) \end{pmatrix}$$

Damit lässt sich Fib(n+2) durch Matrixpotenzierung berechnen:

$$\begin{pmatrix} Fib(n+2) \\ Fib(n+1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2} \cdot \begin{pmatrix} Fib(n) \\ Fib(n-1) \end{pmatrix} = \dots = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n} \cdot \begin{pmatrix} Fib(2) \\ Fib(1) \end{pmatrix}$$

- Wie können wir Matrixpotenzen effizient berechnen?
- ▶ Dies betrachten wir hier nicht im Detail; geht in $\Theta(\log(n))$

Praktische Konsequenzen

Beispiel

Größte lösbare Eingabelänge für angenommene 1 µs pro Operation:

Verfügbare Zeit	Rekursiv	Iterativ	Matrix
1 ms	14		10 ¹²
1 s	28	$5 \cdot 10^{5}$	10^{12000}
1 m	37	$3 \cdot 10^7$	10^{700000}
1 h	45	$1,8\cdot 10^9$	10^{10^6}

Vereinfachende Annahmen:

Lösbare Eingabelänge

Praktische Konsequenzen

Beispiel

Größte lösbare Eingabelänge für angenommene 1 µs pro Operation:

Verfügbare Zeit	Rekursiv	Iterativ	Matrix
1 ms	14		10 ¹²
1s	28	$5 \cdot 10^5$	10^{12000}
1 m	37	$3 \cdot 10^7$	10 ⁷⁰⁰ 000
1 h	45	1,8 · 10 ⁹	10 ¹⁰⁶

Vereinfachende Annahmen:

Lösbare Eingabelänge

Nur arithmetische Operationen wurden berücksichtigt.

Praktische Konsequenzen

Beispiel

Größte lösbare Eingabelänge für angenommene 1 µs pro Operation:

Verfügbare Zeit	Rekursiv	Iterativ	Matrix
1 ms	14	500	10 ¹²
1s	28	$5 \cdot 10^5$	10^{12000}
1 m	37	$3 \cdot 10^7$	10^{700000}
1 h	45	$1,8\cdot 10^9$	10 ¹⁰⁶

Vereinfachende Annahmen:

Lösbare Eingabelänge

- Nur arithmetische Operationen wurden berücksichtigt.
- ▶ Die Laufzeit der arithmetischen Operationen ist fix, also nicht von ihren jeweiligen Argumenten abhängig.

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:

▶ Die Kosten aufeinanderfolgender Blöcke werden addiert.

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:

- ▶ Die Kosten aufeinanderfolgender Blöcke werden addiert.
- ▶ Von alternativen Blöcken wird das Maximum genommen.

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:

- ▶ Die Kosten aufeinanderfolgender Blöcke werden addiert.
- ▶ Von alternativen Blöcken wird das Maximum genommen.
- ▶ Beim Aufruf von Unterprogrammen (etwa sub1()) wird $T_{sub1}(f(n))$ genommen, wobei f(n) die Länge der Parameter beim Funktionsaufruf —abhängig von der Eingabelänge n des Programms— ist.

Rekursionsgleichung im Worst-Case

Zur Ermittlung der Worst-Case Laufzeit T(n) zerlegen wir das Programm:

- ▶ Die Kosten aufeinanderfolgender Blöcke werden addiert.
- ▶ Von alternativen Blöcken wird das Maximum genommen.
- ▶ Beim Aufruf von Unterprogrammen (etwa sub1()) wird $T_{sub1}(f(n))$ genommen, wobei f(n) die Länge der Parameter beim Funktionsaufruf —abhängig von der Eingabelänge n des Programms— ist.
- Rekursive Aufrufe werden mit T(g(n)) veranschlagt; g(n) gibt wieder die von n abgeleitete Länge der Aufrufparameter an.

Übersicht

- Binäre Suche
 - Was ist binäre Suche?
 - Worst-Case Analyse von Binärer Suche
- 2 Rekursionsgleichungen
 - Fibonacci-Zahlen
 - Ermittlung von Rekursionsgleichungen
- 3 Lösen von Rekursionsgleichungen
 - Die Substitutionsmethode
 - Rekursionsbäume

► Wenn wir Rekursionsgleichungen aufstellen und lösen, vernachlässigen wir häufig das Runden auf ganze Zahlen, z. B.:

$$T(n) = T(|n/2|) + T(\lceil n/2 \rceil) + 3$$
 wird $T(n) = 2T(n/2) + 3$.

► Wenn wir Rekursionsgleichungen aufstellen und lösen, vernachlässigen wir häufig das Runden auf ganze Zahlen, z. B.:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 3$$
 wird $T(n) = 2T(n/2) + 3$.

Manchmal wird angenommen, daß T(n) für kleine n konstant ist anstatt genau festzustellen was T(0) und T(1) ist. Also z. B.:

$$T(0) = c \text{ und } T(1) = c' \text{ statt } T(0) = 4 \text{ und } T(1) = 7.$$

▶ Wenn wir Rekursionsgleichungen aufstellen und lösen, vernachlässigen wir häufig das Runden auf ganze Zahlen, z. B.:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 3$$
 wird $T(n) = 2T(n/2) + 3$.

Manchmal wird angenommen, daß T(n) für kleine n konstant ist anstatt genau festzustellen was T(0) und T(1) ist. Also z. B.:

$$T(0) = c$$
 und $T(1) = c'$ statt $T(0) = 4$ und $T(1) = 7$.

Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente haben, z. B.:

$$T(n) = T(\sqrt{n}) + n$$
 bedeutet $T(n) = T(|\sqrt{n}|) + n$.

► Wenn wir Rekursionsgleichungen aufstellen und lösen, vernachlässigen wir häufig das Runden auf ganze Zahlen, z. B.:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 3$$
 wird $T(n) = 2T(n/2) + 3$.

Manchmal wird angenommen, daß T(n) für kleine n konstant ist anstatt genau festzustellen was T(0) und T(1) ist. Also z. B.:

$$T(0) = c \text{ und } T(1) = c' \text{ statt } T(0) = 4 \text{ und } T(1) = 7.$$

► Wir nehmen an, dass die Funktionen nur ganzzahlige Argumente haben, z. B.:

$$T(n) = T(\sqrt{n}) + n$$
 bedeutet $T(n) = T(|\sqrt{n}|) + n$.

► Grund: die Lösung wird typischerweise nur um einen konstanten Faktor verändert, aber der Wachstumgrad bleibt unverändert.

Einfache Fälle

Für einfache Fälle gibt es geschlossene Lösungen, z. B. für $k, c \in \mathbb{N}$:

$$T(0) = k$$
 $T(n+1) = c \cdot T(n)$ für $n \ge 0$

hat die eindeutige Lösung $T(n) = c^n \cdot k$.

Einfache Fälle

Für einfache Fälle gibt es geschlossene Lösungen, z. B. für $k, c \in \mathbb{N}$:

$$T(0) = k$$

$$T(n+1) = c \cdot T(n) \quad \text{für } n \ge 0$$

hat die eindeutige Lösung $T(n) = c^n \cdot k$.

Und die Rekursionsgleichung:

$$T(0) = k$$

$$T(n+1) = T(n) + f(n) \quad \text{für } n \geqslant 0$$

hat die eindeutige Lösung $T(n) = T(0) + \sum_{i=1}^{n} f(i)$.

Einfache Fälle

Für einfache Fälle gibt es geschlossene Lösungen, z. B. für $k, c \in \mathbb{N}$:

$$T(0) = k$$

$$T(n+1) = c \cdot T(n) \quad \text{für } n \geqslant 0$$

hat die eindeutige Lösung $T(n) = c^n \cdot k$.

Und die Rekursionsgleichung:

$$T(0) = k$$

$$T(n+1) = T(n) + f(n) \quad \text{für } n \geqslant 0$$

hat die eindeutige Lösung $T(n) = T(0) + \sum_{i=1}^{n} f(i)$.

Bei der Zeitkomplexitätsanalyse treten solche Fälle jedoch selten auf.

Allgemeines Format der Rekursionsgleichung

Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene Lösung.

Allgemeines Format der Rekursionsgleichung

Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene Lösung.

Der typische Fall sieht folgendermaßen aus:

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$

wobei b > 0, c > 1 gilt und f(n) eine gegebene Funktion ist.

Allgemeines Format der Rekursionsgleichung

Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene Lösung.

Der typische Fall sieht folgendermaßen aus:

$$T(n) = \frac{b}{c} \cdot T\left(\frac{n}{c}\right) + f(n)$$

wobei b > 0, c > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

▶ Das zu analysierende Problem teilt sich jeweils in *b* Teilprobleme auf.

Allgemeines Format der Rekursionsgleichung

Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene Lösung.

Der typische Fall sieht folgendermaßen aus:

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$

wobei b > 0, c > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

- ▶ Das zu analysierende Problem teilt sich jeweils in *b* Teilprobleme auf.
- ▶ Jedes dieser Teilprobleme hat die Größe $\frac{n}{c}$.

Allgemeines Format der Rekursionsgleichung

Im allgemeinen Fall – der hier häufig auftritt – gibt es keine geschlossene Lösung.

Der typische Fall sieht folgendermaßen aus:

$$T(n) = b \cdot T\left(\frac{n}{c}\right) + f(n)$$

wobei b > 0, c > 1 gilt und f(n) eine gegebene Funktion ist.

Intuition:

- ▶ Das zu analysierende Problem teilt sich jeweils in b Teilprobleme auf.
- ▶ Jedes dieser Teilprobleme hat die Größe $\frac{n}{c}$.
- ▶ Die Kosten für das Aufteilen eines Problems und Kombinieren der Teillösungen sind f(n).

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

1. Rate die Form der Lösung, durch z. B.:

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - ▶ Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - ▶ Betrachtung des Rekursionsbaums

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - ▶ Betrachtung des Rekursionsbaums
- 2. Vollständige Induktion, um die Konstanten zu finden und zu zeigen, dass die Lösung funktioniert.

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - Betrachtung des Rekursionsbaums
- Vollständige Induktion, um die Konstanten zu finden und zu zeigen, dass die Lösung funktioniert.

Einige Hinweise

Diese Methode ist sehr leistungsfähig, aber

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - ▶ Betrachtung des Rekursionsbaums
- 2. Vollständige Induktion, um die Konstanten zu finden und zu zeigen, dass die Lösung funktioniert.

Einige Hinweise

- ▶ Diese Methode ist sehr leistungsfähig, aber
- ▶ kann nur in den Fällen angewendet werden, in denen es relativ einfach ist, die Form der Lösung zu erraten.

Die Substitutionsmethode: Beispiel

Beispiel

Betrachte folgende Rekursionsgleichung:

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

Die Substitutionsmethode: Beispiel

Beispiel

Betrachte folgende Rekursionsgleichung:

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log(n))$.

Die Substitutionsmethode: Beispiel

Beispiel

Betrachte folgende Rekursionsgleichung:

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log(n))$.
- ▶ Dazu müssen wir $T(n) \leq c \cdot n \cdot \log(n)$ zeigen, für ein geeignetes c > 0.

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log(n))$.
- ▶ Dazu müssen wir $T(n) \le c \cdot n \cdot \log(n)$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log(n)$.

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log(n))$.
- ▶ Dazu müssen wir $T(n) \le c \cdot n \cdot \log(n)$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log(n)$.
- ▶ Stelle fest, dass $T(1) = 1 \le c \cdot 1 \cdot \log(1) = 0$ verletzt ist.

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log(n))$.
- ▶ Dazu müssen wir $T(n) \le c \cdot n \cdot \log(n)$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log(n)$.
- ▶ Stelle fest, dass $T(1) = 1 \leqslant c \cdot 1 \cdot \log(1) = 0$ verletzt ist.
- ► Es gilt: $T(2) = 4 \leqslant c \cdot 2 \log(2)$ und $T(3) = 5 \leqslant c \cdot 3 \log(3)$ für $c \geqslant 2$

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log(n))$.
- ▶ Dazu müssen wir $T(n) \le c \cdot n \cdot \log(n)$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log(n)$.
- ▶ Stelle fest, dass $T(1) = 1 \leqslant c \cdot 1 \cdot \log(1) = 0$ verletzt ist.
- ► Es gilt: $T(2) = 4 \leqslant c \cdot 2 \log(2)$ und $T(3) = 5 \leqslant c \cdot 3 \log(3)$ für $c \geqslant 2$
- ▶ Überprüfe dann durch Substitution und Induktion (s. nächste Folie)

Beispiel

$$T(1) = 1$$

 $T(n) = 2 \cdot T(n/2) + n$ für $n > 1$.

- ▶ Wir vermuten als Lösung $T(n) \in O(n \cdot \log(n))$.
- ▶ Dazu müssen wir $T(n) \le c \cdot n \cdot \log(n)$ zeigen, für ein geeignetes c > 0.
- ▶ Bestimme, ob für ein geeignetes n_0 und für $n \ge n_0$ gilt, dass $T(n) \le c \cdot n \cdot \log(n)$.
- ▶ Stelle fest, dass $T(1) = 1 \le c \cdot 1 \cdot \log(1) = 0$ verletzt ist.
- ► Es gilt: $T(2) = 4 \leqslant c \cdot 2 \log(2)$ und $T(3) = 5 \leqslant c \cdot 3 \log(3)$ für $c \geqslant 2$
- ▶ Überprüfe dann durch Substitution und Induktion (s. nächste Folie)
- ▶ Damit gilt für jedes $c \ge 2$ und $n \ge n_0 > 1$, dass $T(n) \le c \cdot n \cdot \log(n)$.

$$T(n) = 2 \cdot T(n/2) + n \text{ für } n > 1, \text{ und } T(1) = 1$$

$$T(n) = 2 \cdot T(n/2) + n$$
 für $n > 1$, und $T(1) = 1$

$$T(n) = 2 \cdot T(n/2) + n$$

$$T(n) = 2 \cdot T(n/2) + n$$
 für $n > 1$, und $T(1) = 1$
$$T(n) = 2 \cdot T(n/2) + n$$
 | Induktionshypothese
$$\leq 2(c \cdot n/2 \cdot \log(n/2)) + n$$

$$T(n) = 2 \cdot T(n/2) + n$$
 für $n > 1$, und $T(1) = 1$
$$T(n) = 2 \cdot T(n/2) + n$$
 | Induktionshypothese
$$\leq 2(c \cdot n/2 \cdot \log(n/2)) + n$$

$$= c \cdot n \cdot \log(n/2) + n$$

$$T(n) = 2 \cdot T(n/2) + n$$
 für $n > 1$, und $T(1) = 1$

$$T(n) = 2 \cdot T(n/2) + n$$
 | Induktionshypothese
$$\leq 2 (c \cdot n/2 \cdot \log(n/2)) + n$$

$$= c \cdot n \cdot \log(n/2) + n$$
 | log-Rechnung: (log $\equiv \log_2$) \log(n/2) = \log(n/2) - \log(2)
$$= c \cdot n \cdot \log(n) - c \cdot n \cdot \log(2) + n$$

$$T(n) = 2 \cdot T(n/2) + n$$
 für $n > 1$, und $T(1) = 1$

$$T(n) = 2 \cdot T(n/2) + n$$
 | Induktionshypothese
$$\leq 2 (c \cdot n/2 \cdot \log(n/2)) + n$$

$$= c \cdot n \cdot \log(n/2) + n$$
 | $\log_{-Rechnung:} (\log \equiv \log_2) \log(n/2) = \log(n) - \log(2)$

$$= c \cdot n \cdot \log(n) - c \cdot n \cdot \log(2) + n$$

$$\leq c \cdot n \cdot \log(n) - c \cdot n + n$$

$$T(n) = 2 \cdot T(n/2) + n \text{ für } n > 1, \text{ und } T(1) = 1$$

$$T(n) = 2 \cdot T(n/2) + n \qquad | \text{ Induktionshypothese}$$

$$\leq 2(c \cdot n/2 \cdot \log(n/2)) + n$$

$$= c \cdot n \cdot \log(n/2) + n \qquad | \log \operatorname{-Rechnung:} (\log \equiv \log_2) \log(n/2) = \log(n) - \log(2)$$

$$= c \cdot n \cdot \log(n) - c \cdot n \cdot \log(2) + n$$

$$\leq c \cdot n \cdot \log(n) - c \cdot n + n \qquad | \operatorname{mit} c > 1 \text{ folgt sofort:}$$

$$\leq c \cdot n \cdot \log(n)$$

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal nicht mittels vollständiger Induktion bewiesen werden.

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

- 1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal nicht mittels vollständiger Induktion bewiesen werden.
 - Das Problem ist gewöhnlich, dass die Induktionsannahme nicht streng genug ist.

Die Substitutionsmethode: Feinheiten

Einige wichtige Hinweise

- 1. Die asymptotische Schranke ist korrekt erraten, kann aber manchmal nicht mittels vollständiger Induktion bewiesen werden.
 - Das Problem ist gewöhnlich, dass die Induktionsannahme nicht streng genug ist.
- 2. Manchmal ist eine Variablentransformation hilfreich, um zu einer Lösung zu geraten:

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$
 für $n > 0$

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$
 für $n > 0$

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$

Beispiel

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$
 für $n > 0$

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$

$$\Leftrightarrow T(2^m) = 2 \cdot T\left(2^{m/2}\right) + m$$

Variablentransformation $m = \log(n)$

$$\sqrt{n} = n_{15} = (5_m)_{15} = 5_m/5$$

Beispiel

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$
 für $n > 0$

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$

$$\Leftrightarrow T(2^m) = 2 \cdot T\left(2^{m/2}\right) + m$$

$$\Leftrightarrow S(m) = 2 \cdot S(m/2) + m$$

Variablentransformation $m = \log(n)$

Umbenennung $T(2^m) = S(m)$

Beispiel

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$
 für $n > 0$

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$

$$\Leftrightarrow T(2^m) = 2 \cdot T\left(2^{m/2}\right) + m$$

$$\Leftrightarrow S(m) = 2 \cdot S(m/2) + m$$

$$\Leftrightarrow S(m) \leqslant c \cdot m \cdot \log(m)$$

Variablentransformation $m = \log(n)$

Umbenennung
$$T(2^m) = S(m)$$

Lösung des vorherigen Beispiels

Beispiel

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$
 für $n > 0$

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$

$$\Leftrightarrow T(2^m) = 2 \cdot T\left(2^{m/2}\right) + m$$

$$\Leftrightarrow S(m) = 2 \cdot S(m/2) + m$$

$$\Leftrightarrow S(m) \leqslant c \cdot m \cdot \log(m)$$

$$\Leftrightarrow S(m) \in O(m \cdot \log(m))$$

Variablentransformation $m = \log(n)$

Umbenennung $T(2^m) = S(m)$

Lösung des vorherigen Beispiels

$$T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$$
 für $n > 0$
 $T(n) = 2 \cdot T(\sqrt{n}) + \log(n)$ | Variablentransformation $m = \log(n)$
 $\Leftrightarrow T(2^m) = 2 \cdot T(2^{m/2}) + m$ | Umbenennung $T(2^m) = S(m)$
 $\Leftrightarrow S(m) = 2 \cdot S(m/2) + m$ | Lösung des vorherigen Beispiels

 $\Leftrightarrow S(m) \leqslant c \cdot m \cdot \log(m)$
 $\Leftrightarrow S(m) \leqslant O(m \cdot \log(m))$ | $m = \log(n)$
 $\Leftrightarrow T(n) \leqslant O(\log(n) \cdot \log(\log(n)))$

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

1. Rate die Form der Lösung, durch z. B.:

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - ► Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - ▶ Betrachtung des Rekursionsbaums

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - ▶ Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - ▶ Betrachtung des Rekursionsbaums
- 2. Vollständige Induktion, um die Konstanten zu finden und zu zeigen, dass die Lösung funktioniert.

Substitutionsmethode

Die Substitutionsmethode besteht aus zwei Schritten:

- 1. Rate die Form der Lösung, durch z. B.:
 - Scharfes Hinsehen, kurze Eingaben ausprobieren und einsetzen
 - ▶ Betrachtung des Rekursionsbaums
- 2. Vollständige Induktion, um die Konstanten zu finden und zu zeigen, dass die Lösung funktioniert.

Wir betrachten nun detaillierter, wie man die Form der Lösung raten kann.

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

$$T(n) = 3 \cdot T(n/4) + n$$

Sei
$$n$$
 gold $T(n) = 3 \cdot T(\frac{n}{4}) + n$

$$= (*) T(\frac{n}{4}) = 3 \cdot T(\frac{n}{6}) + \frac{n}{4} + n$$

$$= 3 \cdot (3 \cdot T(\frac{n}{6}) + \frac{n}{4}) + n$$

$$= 3^{2} T(\frac{n}{6}) + \frac{3}{4} \cdot n + n$$

$$= (*) T(\frac{n}{6}) = 3 \cdot T(\frac{n}{6}) + \frac{n}{6} + n$$

$$= 3^{2} (3 \cdot T(\frac{n}{6}) + \frac{n}{6}) + \frac{3}{4} \cdot n + n$$

$$= 3^{2} (3 \cdot T(\frac{n}{6}) + \frac{n}{6}) + \frac{3}{4} \cdot n + n$$

$$= 3^{3} T(\frac{n}{6}) + (\frac{3}{4})^{2} \cdot n + (\frac{3}{4})^{3} \cdot n + (\frac{3}{4})^{6} \cdot n$$

$$= 3^{3} T(\frac{n}{6}) + (\frac{3}{4})^{2} \cdot n + (\frac{3}{4})^{6} \cdot n$$

$$= 3^{3} T(\frac{n}{6}) + (\frac{3}{4})^{2} \cdot n + (\frac{3}{4})^{6} \cdot n$$

Nehme an T(1) = C.

7. B
$$T(6u) = 3^3 \cdot T(1) + \left(\frac{3}{4}\right)^2 v + \left($$

also ? = logy 64 - 1.

(da i=0 an start)

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

$$T(n) = 3 \cdot T(n/4) + n$$

$$= 3 \cdot (3 \cdot T(n/16) + n/4) + n$$
| Einsetzen

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

Beispiel

$$T(n) = 3 \cdot T(n/4) + n$$

= $3 \cdot (3 \cdot T(n/16) + n/4) + n$
= $9 \cdot (3 \cdot T(n/64) + n/16) + 3 \cdot n/4 + n$

Einsetzen

Nochmal einsetzen

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

$$T(n) = 3 \cdot T(n/4) + n$$
 | Einsetzen

$$= 3 \cdot (3 \cdot T(n/16) + n/4)) + n$$
 | Nochmal einsetzen

$$= 9 \cdot (3 \cdot T(n/64) + n/16)) + 3 \cdot n/4 + n$$
 | Vereinfachen

$$= 27 \cdot T(n/64) + \left(\frac{3}{4}\right)^2 \cdot n + \left(\frac{3}{4}\right)^1 \cdot n + \left(\frac{3}{4}\right)^0 \cdot n$$

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

Beispiel

$$T(n) = 3 \cdot T(n/4) + n$$
 | Einsetzen

$$= 3 \cdot (3 \cdot T(n/16) + n/4)) + n$$
 | Nochmal einsetzen

$$= 9 \cdot (3 \cdot T(n/64) + n/16)) + 3 \cdot n/4 + n$$
 | Vereinfachen

$$= 27 \cdot T(n/64) + \left(\frac{3}{4}\right)^2 \cdot n + \left(\frac{3}{4}\right)^1 \cdot n + \left(\frac{3}{4}\right)^0 \cdot n$$

Wir nehmen T(1) = c an und erhalten: $T(n) = \sum_{i=0}^{\log_4(n)-1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)}$

Grundidee

Wiederholtes Einsetzen der Rekursionsgleichung in sich selbst, bis man ein Muster erkennt.

Beispiel

$$T(n) = 3 \cdot T(n/4) + n$$
 | Einsetzen

$$= 3 \cdot (3 \cdot T(n/16) + n/4)) + n$$
 | Nochmal einsetzen

$$= 9 \cdot (3 \cdot T(n/64) + n/16)) + 3 \cdot n/4 + n$$
 | Vereinfachen

$$= 27 \cdot T(n/64) + \left(\frac{3}{4}\right)^2 \cdot n + \left(\frac{3}{4}\right)^1 \cdot n + \left(\frac{3}{4}\right)^0 \cdot n$$

Wir nehmen T(1) = c an und erhalten: $T(n) = \sum_{i=0}^{\log_4(n)-1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)}$

Diese Aussage kann mit Hilfe der Substitutionsmethode gezeigt werden.

Raten der Lösung durch Rekursionsbäume

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

Rekursionsbaum

1. Jeder Knoten stellt die Kosten eines Teilproblems dar.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).
- 2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).
- 2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
- 3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

Rekursionsbaum

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).
- 2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
- 3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann mit Hilfe der Substitutionsmethode überprüft werden kann.

Grundidee

Stelle das Ineinander-Einsetzen als Baum dar, indem man Buch über das aktuelle Rekursionsargument und die nicht-rekursiven Kosten führt.

Rekursionsbaum

- 1. Jeder Knoten stellt die Kosten eines Teilproblems dar.
 - ▶ Die Wurzel stellt die zu analysierenden Kosten T(n) dar.
 - ▶ Die Blätter stellen die Kosten der Basisfälle dar, z. B. T(0) oder T(1).
- 2. Wir summieren die Kosten innerhalb jeder Ebene des Baumes.
- 3. Die Gesamtkosten := summieren über die Kosten aller Ebenen.

Wichtiger Hinweis

Ein Rekursionsbaum ist sehr nützlich, um eine Lösung zu raten, die dann mit Hilfe der Substitutionsmethode überprüft werden kann.

Der Baum selber reicht jedoch meistens nicht als Beweis.

Beispiel

Der Rekursionsbaum von $T(n) = 3 \cdot T(n/4) + n$ sieht etwa so aus:

$$T(n) = \underbrace{\sum_{i=0}^{\log_4(n)-1}}_{\text{Summe "über}} \underbrace{\left(\frac{3}{4}\right)^i \cdot n}_{\text{Kosten pro}} + \underbrace{c \cdot n^{\log_4(3)}}_{\text{Gesamtkosten}}$$

$$\text{Gesamtkosten}$$
für die Blätter
$$\text{mit } T(1) = c$$

$$T(n) = \sum_{i=0}^{\log_4(n)-1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)}$$

$$T(n) = \sum_{i=0}^{\log_4(n)-1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)} \quad | \text{ Vernachlässigen kleinerer Terme}$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)}$$

Eine obere Schranke für die Komplexität erhält man nun folgendermaßen:

$$T(n) = \sum_{i=0}^{\log_4(n)-1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)} \quad | \text{ Vernachlässigen kleinerer Terme}$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)} \quad | \text{ Geometrische Reihe}$$

$$< \frac{1}{1-(3/4)} \cdot n + c \cdot n^{\log_4(3)} \quad | \text{ Fix } | \text{ alc 1 gills}$$

| Geometrische Reihe

for
$$|a| < 1$$
 gilt
$$\sum_{i=0}^{\infty} a_i a_i^i = \frac{d}{1-a}$$

36/37

$$T(n) = \sum_{i=0}^{\log_4(n)-1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)} \quad | \text{ Vernachlässigen kleinerer Terme}$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)} \quad | \text{ Geometrische Reihe}$$

$$< \frac{1}{1-(3/4)} \cdot n + c \cdot n^{\log_4(3)} \quad | \text{ Umformen}$$

$$< 4 \cdot n + c \cdot n^{\log_4(3)}$$

Eine obere Schranke für die Komplexität erhält man nun folgendermaßen:

$$T(n) = \sum_{i=0}^{\log_4(n)-1} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)} \quad | \text{ Vernachlässigen kleinerer Terme}$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{4}\right)^i \cdot n + c \cdot n^{\log_4(3)} \qquad | \text{ Geometrische Reihe}$$

$$< \frac{1}{1-(3/4)} \cdot n + c \cdot n^{\log_4(3)} \qquad | \text{ Umformen}$$

$$T(n) \in O(n)$$
.

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) = 3 \cdot T(n/4) + n$$

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) = 3 \cdot T(n/4) + n$$
 | Induktionshypothese $\leq 3d \cdot n/4 + n$

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) = 3 \cdot T(n/4) + n$$
 | Induktionshypothese
 $\leq 3d \cdot n/4 + n$
 $= \frac{3}{4}d \cdot n + n$

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) = 3 \cdot T(n/4) + n$$
 | Induktionshypothese $\leq 3d \cdot n/4 + n$ | $= \frac{3}{4}d \cdot n + n$ | $= \left(\frac{3}{4}d + 1\right) \cdot n$

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) = 3 \cdot T(n/4) + n$$
 | Induktionshypothese
 $\leqslant 3d \cdot n/4 + n$ | $= \frac{3}{4}d \cdot n + n$ | mit $d \geqslant 4$ folgt sofort:
 $\leqslant d \cdot n$

Wir können die Substitutionsmethode benutzen, um die Vermutung zu bestätigen, dass:

$$T(n) \in O(n)$$
 eine obere Schranke von $T(n) = 3 \cdot T(n/4) + n$ ist.

$$T(n) = 3 \cdot T(n/4) + n$$
 | Induktionshypothese $\leq 3d \cdot n/4 + n$ | $= \frac{3}{4}d \cdot n + n$ | mit $d \geq 4$ folgt sofort: $\leq d \cdot n$

Und wir stellen fest, dass es ein n_0 gibt, sodass $T(n_0) \leq d \cdot n_0$ ist.

Nächste Vorlesung

Nächste Vorlesung

Montag 7. Mai, 08:30 (Hörsaal H01). Bis dann!

Nächste Frontalübung

Freitag 4. Mai, 13:15 (Hörsaal H01) statt am 1. Mai.