Autovalores y Autovectores

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

1 de febrero de 2022

Agenda de Autovalores y Autovectores

- Definiciones y ejemplos
- ② Ejemplos
- 3 Autovalores, autovectores e independencia lineal
- El polinomio característico
- 5 Autovalores y autovectores de matrices importantes
- Recapitulando
- Ejercicios

Definiciones y ejemplos

• **Definición** $|\psi\rangle$ un autovector del operador $\mathbb A$ si se cumple que $\mathbb A$ $|\psi\rangle=\lambda\,|\psi\rangle$. Con λ (en general será un número complejo) es el autovalor del autovector $|\psi\rangle$

Definiciones y ejemplos

- **Definición** $|\psi\rangle$ un autovector del operador $\mathbb A$ si se cumple que $\mathbb A\,|\psi\rangle=\lambda\,|\psi\rangle$. Con λ (en general será un número complejo) es el autovalor del autovector $|\psi\rangle$
- Ejemplo: Reflexión respecto al plano xy. Si $\mathbb{R}: \mathbf{V}^3 \to \mathbf{V}^3$ es tal que $\mathbb{R} |\psi\rangle = \left|\tilde{\psi}\right\rangle$, una reflexión en el plano xy. Esto es $\mathbb{R} |\mathrm{i}\rangle = |\mathrm{i}\rangle$; $\mathbb{R} |\mathrm{j}\rangle = |\mathrm{j}\rangle$; $\mathbb{R} |\mathrm{k}\rangle = -|\mathrm{k}\rangle$, $|\mathrm{i}\rangle, |\mathrm{j}\rangle, |\mathrm{k}\rangle$ vectores unitarios cartesianos. Entonces $\forall |\Psi\rangle_{xy}$ será autovector de \mathbb{R} con un autovalor $\lambda=1$, mientras que cualquier otro vector $|\Phi\rangle\in\mathbf{V}^3$, que no esté en el plano, cumple con $|\Phi\rangle=c\,|\mathrm{k}\rangle$ y también será autovector de \mathbb{R} pero esta vez con un autovalor $\lambda=-1$.

Definiciones y ejemplos

- **Definición** $|\psi\rangle$ un autovector del operador $\mathbb A$ si se cumple que $\mathbb A\,|\psi\rangle=\lambda\,|\psi\rangle$. Con λ (en general será un número complejo) es el autovalor del autovector $|\psi\rangle$
- Ejemplo: Reflexión respecto al plano xy. Si $\mathbb{R}: \mathbf{V}^3 \to \mathbf{V}^3$ es tal que $\mathbb{R} |\psi\rangle = \left|\tilde{\psi}\right\rangle$, una reflexión en el plano xy. Esto es $\mathbb{R} |\mathrm{i}\rangle = |\mathrm{i}\rangle$; $\mathbb{R} |\mathrm{j}\rangle = |\mathrm{j}\rangle$; $\mathbb{R} |\mathrm{k}\rangle = -|\mathrm{k}\rangle$, $|\mathrm{i}\rangle, |\mathrm{j}\rangle, |\mathrm{k}\rangle$ vectores unitarios cartesianos. Entonces $\forall |\Psi\rangle_{xy}$ será autovector de \mathbb{R} con un autovalor $\lambda=1$, mientras que cualquier otro vector $|\Phi\rangle\in\mathbf{V}^3$, que no esté en el plano, cumple con $|\Phi\rangle=c\,|\mathrm{k}\rangle$ y también será autovector de \mathbb{R} pero esta vez con un autovalor $\lambda=-1$.
- **Ejemplo: Rotaciones reales.** Un espacio vectorial $real\ \mathbf{V}^2$ con una base cartesiana: $|\mathrm{i}\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix},\ \mathrm{y}\ |\mathrm{j}\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Entonces si $\mathbb{R}\ |a\rangle = \lambda\ |a\rangle\ \Rightarrow$ el ángulo de rotación $\theta = n\pi$ con n entero: $\lambda = 1 \Leftrightarrow \theta = 2n\pi\ \mathrm{y}\ \lambda = -1 \Leftrightarrow \theta = (2n-1)\pi$.

Ejemplos

• **Ejemplo: Rotaciones "complejas".** Consideramos el plano complejo donde cualquier vector en su forma polar es $|z\rangle = r\mathrm{e}^{i\theta}$. Entonces: $\mathbb{R}|z\rangle = r\mathrm{e}^{i(\theta+\alpha)} = \mathrm{e}^{i\alpha}|z\rangle$, si queremos $\lambda = \mathrm{e}^{i\alpha}$ reales, necesariamente $\alpha = n\pi$ con n entero.

Ejemplos

- **Ejemplo: Rotaciones "complejas".** Consideramos el plano complejo donde cualquier vector en su forma polar es $|z\rangle=r\mathrm{e}^{i\theta}$. Entonces: $\mathbb{R}\,|z\rangle=r\mathrm{e}^{i(\theta+\alpha)}=\mathrm{e}^{i\alpha}\,|z\rangle$, si queremos $\lambda=\mathrm{e}^{i\alpha}$ reales, necesariamente $\alpha=n\pi$ con n entero.
- **Ejemplo: Proyectores.** Dado $P_{\psi} = |\psi\rangle \langle \psi|$ y con una ecuación de autovalores, $P_{\psi} |\varphi\rangle = \lambda |\varphi\rangle$, para un $|\varphi\rangle$ arbitrario
 - ① Si $|\psi\rangle$ es colineal con $|\varphi\rangle$, entonces $|\psi\rangle \propto |\varphi\rangle$ y consecuentemente $P_{\psi} |\varphi\rangle = P_{\psi}(\alpha |\psi\rangle) = (|\psi\rangle \langle \psi|) (\alpha |\psi\rangle) \Rightarrow \tilde{\lambda} |\psi\rangle$, con $\tilde{\lambda} = \alpha \langle \psi |\psi\rangle$
 - ② Si ahora el $|\varphi\rangle$ es ortogonal a $|\psi\rangle$, $\langle\psi|\varphi\rangle=0 \ \Rightarrow \ \lambda=0$,

Entonces el espectro del operador $P_{\psi}=|\psi\rangle\,\langle\psi|$ es 0 y 1. El primero es degenerado y el segundo es simple.

Ejemplos

- **Ejemplo: Rotaciones "complejas".** Consideramos el plano complejo donde cualquier vector en su forma polar es $|z\rangle=r\mathrm{e}^{i\theta}$. Entonces: $\mathbb{R}\,|z\rangle=r\mathrm{e}^{i(\theta+\alpha)}=\mathrm{e}^{i\alpha}\,|z\rangle$, si queremos $\lambda=\mathrm{e}^{i\alpha}$ reales, necesariamente $\alpha=n\pi$ con n entero.
- **Ejemplo: Proyectores.** Dado $P_{\psi} = |\psi\rangle \langle \psi|$ y con una ecuación de autovalores, $P_{\psi} |\varphi\rangle = \lambda |\varphi\rangle$, para un $|\varphi\rangle$ arbitrario
 - ① Si $|\psi\rangle$ es colineal con $|\varphi\rangle$, entonces $|\psi\rangle \propto |\varphi\rangle$ y consecuentemente $P_{\psi}|\varphi\rangle = P_{\psi}(\alpha|\psi\rangle) = (|\psi\rangle\langle\psi|)(\alpha|\psi\rangle) \Rightarrow \tilde{\lambda}|\psi\rangle$, con $\tilde{\lambda} = \alpha\langle\psi|\psi\rangle$
 - ② Si ahora el $|\varphi\rangle$ es ortogonal a $|\psi\rangle$, $\langle\psi|\varphi\rangle=0 \ \Rightarrow \ \lambda=0$,

Entonces el espectro del operador $P_{\psi} = |\psi\rangle \langle \psi|$ es 0 y 1. El primero es degenerado y el segundo es simple.

• **Ejemplo: El operador diferenciación.** Consideremos el operador $\mathbb{D}|f\rangle \to D(f) = f'$. Los autovectores del operador diferenciación satisfacen la ecuación: $\mathbb{D}|f\rangle = \lambda|f\rangle \to D(f)(x) = f'(x) = \lambda f(x)$. La solución es una exponencial: $|f\rangle \to f(x) = \mathrm{e}^{\lambda x}$, donde la f(x) se denomina *autofunción* del operador.

4 / 11

Autovalores, autovectores e independencia lineal

• Autovalores, autovectores e independencia lineal $\{|\psi_1\rangle, \cdots |\psi_k\rangle\}$ autovectores de $\mathbb{A}: \mathbf{V}^m \to \mathbf{V}^n$. Si existen k autovalores: $\{\lambda_1, \lambda_2, \cdots, \lambda_k\}$, **distintos** correspondientes a cada autovector $|\psi_j\rangle$, entonces los $\{|\psi_1\rangle, \cdots, |\psi_k\rangle\}$ son linealmente independientes y por lo tanto $\{|\psi_i\rangle\}$ es base

Autovalores, autovectores e independencia lineal

- Autovalores, autovectores e independencia lineal $\{|\psi_1\rangle,\cdots|\psi_k\rangle\}$ autovectores de $\mathbb{A}:\mathbf{V}^m\to\mathbf{V}^n$. Si existen k autovalores: $\{\lambda_1,\lambda_2,\cdots,\lambda_k\}$, **distintos** correspondientes a cada autovector $|\psi_j\rangle$, entonces los $\{|\psi_1\rangle,\cdots,|\psi_k\rangle\}$ son linealmente independientes y por lo tanto $\{|\psi_i\rangle\}$ es base
- La representación matricial del operador $\mathbb{A}: \mathbf{V}^n \to \mathbf{V}^n$ en la base de autovectores $\{|\psi_i\rangle\}$ es diagonal:

$$\langle \psi^i | \mathbb{A} | \psi_j \rangle = A_j^i = \operatorname{diag} (\lambda_1, \lambda_2, \cdots, \lambda_n).$$

(continuará...)

• La representación matricial de la ecuación de autovalores es diagonal si existe una base ortogonal:

$$\mathbb{A}\left|\psi\right\rangle = \lambda\left|\psi\right\rangle \Rightarrow \left\{\left|\mathbf{e}_{i}\right\rangle\right\} \left\langle\mathbf{e}^{i}\right| \mathbb{A}\left|\mathbf{e}_{j}\right\rangle \left\langle\mathbf{e}^{j}\right. \left|\psi\right\rangle = \lambda\left\langle\mathbf{e}^{i}\right. \left|\psi\right\rangle \Rightarrow \mathit{A}_{j}^{i} \left.\mathit{c}^{j}\right. = \lambda\mathit{c}^{i} \,,$$

la base ortonormal, $\{|{\bf e}_i\rangle\}$, genera una representación diagonal de $\mathbb A$, y entonces $A^i_j \propto \delta^i_j$.

• La representación matricial de la ecuación de autovalores es diagonal si existe una base ortogonal:

$$\mathbb{A} \left| \psi \right\rangle = \lambda \left| \psi \right\rangle \Rightarrow \left\{ \left| \mathbf{e}_i \right\rangle \right\} \left\langle \mathbf{e}^i \right| \mathbb{A} \left| \mathbf{e}_j \right\rangle \left\langle \mathbf{e}^j \right. \left| \psi \right\rangle = \lambda \left\langle \mathbf{e}^i \right. \left| \psi \right\rangle \Rightarrow \textit{A}^i_j \ \textit{c}^j = \lambda \textit{c}^i \,,$$

la base ortonormal, $\{|e_i\rangle\}$, genera una representación diagonal de \mathbb{A} , y entonces $A_i^i \propto \delta_i^i$.

• Entonces $A^i_j \ c^j = \lambda c^i \Rightarrow \left(A^i_j - \lambda \delta^i_j\right) c^j = 0 \Rightarrow \det |\mathbb{A} - \lambda \mathbb{I}| = 0$ Es la ecuación característica (o secular) y a partir de ella emergen los autovalores del operador \mathbb{A} :

$$\det \left| A_j^i - \lambda \delta_j^i \right| = \left| \begin{array}{cccc} A_1^1 - \lambda & A_2^1 & \cdots & A_n^1 \\ A_1^2 & A_2^2 - \lambda & & A_n^2 \\ \vdots & & \ddots & \\ A_1^n & A_2^n & & A_n^n - \lambda \end{array} \right| = 0 \, .$$

• El polinomio característico será independiente de la base de la representación matricial det $\left|\left\langle \mathbf{e}^{i}\right| \mathbb{A}\left|\mathbf{e}_{j}\right\rangle \right|=\det\left|\left\langle \mathbf{\tilde{e}}^{\prime}\right| \mathbb{A}\left|\mathbf{\tilde{e}}_{m}\right\rangle \right|$.

- El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_i \rangle| = \det |\langle \tilde{e}' | \mathbb{A} | \tilde{e}_m \rangle|$.
- El polinomio característico será un polinomio de grado *n*. Las raíces de este polinomio serán los autovalores.

- El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_j \rangle| = \det |\langle \tilde{e}' | \mathbb{A} | \tilde{e}_m \rangle|$.
- El polinomio característico será un polinomio de grado *n*. Las raíces de este polinomio serán los autovalores.
- Las raíces podrán ser: n reales y distintas, m reales, distintas y k iguales, con m = n k o algunas imaginarias

- El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_j \rangle| = \det |\langle \tilde{e}^l | \mathbb{A} | \tilde{e}_m \rangle|$.
- El polinomio característico será un polinomio de grado *n*. Las raíces de este polinomio serán los autovalores.
- Las raíces podrán ser: n reales y distintas, m reales, distintas y k iguales, con m=n-k o algunas imaginarias
- Para el caso de *n* raíces reales y distintas. Los *n* autovalores distintos, estarán asociados a *n* autovectores también distintos.

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_m) \cdots (\lambda - \lambda_n).$$

- El polinomio característico será independiente de la base de la representación matricial det $|\langle e^i | \mathbb{A} | e_i \rangle| = \det |\langle \tilde{e}^l | \mathbb{A} | \tilde{e}_m \rangle|$.
- El polinomio característico será un polinomio de grado *n*. Las raíces de este polinomio serán los autovalores.
- Las raíces podrán ser: n reales y distintas, m reales, distintas y k iguales, con m=n-k o algunas imaginarias
- Para el caso de *n* raíces reales y distintas. Los *n* autovalores distintos, estarán asociados a *n* autovectores también distintos.

$$P(\lambda) = \det |A_j^i - \lambda \delta_j^i| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_m) \cdots (\lambda - \lambda_n).$$

• Un operador $\mathbb A$ con una representación matricial $n \times n$, con n autovalores distintos, asociados a n autovectores linealmente independientes generán una representación matricial diagonal. $\langle \psi^i | \mathbb A | \psi_j \rangle = A^i_j = \mathrm{diag} \left(\lambda_1, \lambda_2, \cdots, \lambda_n \right)$.

 Si las raíces del polinomio característico presentan algún grado de multiplicidad, el polinomio característico podrá factorizarse como:

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)^k (\lambda - \lambda_2) \cdots (\lambda - \lambda_m).$$

Existirán m = n - k raíces simples asociadas con m = n - k autovectores linealmente independientes

• Si las raíces del polinomio característico presentan algún grado de multiplicidad, el polinomio característico podrá factorizarse como:

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)^k (\lambda - \lambda_2) \cdots (\lambda - \lambda_m).$$

Existirán m = n - k raíces simples asociadas con m = n - k autovectores linealmente independientes

• El autovalor λ_1 , con multiplicidad k podrá ser asociado con $1, 2, \cdots$ hasta k autovectores linealmente independientes.

• Si las raíces del polinomio característico presentan algún grado de multiplicidad, el polinomio característico podrá factorizarse como:

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)^k (\lambda - \lambda_2) \cdots (\lambda - \lambda_m).$$

Existirán m = n - k raíces simples asociadas con m = n - k autovectores linealmente independientes

- El autovalor λ_1 , con multiplicidad k podrá ser asociado con $1, 2, \cdots$ hasta k autovectores linealmente independientes.
- El autovalor λ_1 , estará asociado a un subespacio vectorial, denominado autoespacio \mathbf{S}_{λ_1} tal que $\dim(\mathbf{S}_{\lambda_1}) \leq$ grado de multiplicidad del autovalor λ_1

Autovalores y autovectores de matrices importante

Siempre se cumple que

$$\left. \begin{array}{l} \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left| \mathbf{u}_{i} \right\rangle \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\ \\ \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \right| \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\ \\ \left\langle \mathbf{u}^{j} \right| \mathbb{A} - \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \left(\lambda_{i} - \lambda_{j}^{*}\right) \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle . \end{array} \right\} \Rightarrow$$

• Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son distintos, $(i \neq j)$ entonces los autovectores serán ortogonales, $\langle \mathbf{u}^j | \mathbf{u}_i \rangle \propto \delta_i^j$.

Autovalores y autovectores de matrices importante

Siempre se cumple que

$$\left. \begin{array}{l} \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left| \mathbf{u}_{i} \right\rangle \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\
\left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \right| \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\
\left\langle \mathbf{u}^{j} \right| \mathbb{A} - \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \left(\lambda_{i} - \lambda_{j}^{*}\right) \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle .
\end{array} \right\} \Rightarrow$$

- Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son distintos, $(i \neq j)$ entonces los autovectores serán ortogonales, $\langle \mathbf{u}^j | \mathbf{u}_i \rangle \propto \delta_i^j$.
- Si $\mathbb A$ es hermítico, $\mathbb A=\mathbb A^\dagger$ y autovectores son los mismos, (i=j) entonces los autovalores son reales: $\lambda_i=\lambda_i^*$.

Autovalores y autovectores de matrices importante

Siempre se cumple que

$$\left. \begin{array}{l} \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left| \mathbf{u}_{i} \right\rangle \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A} \left| \mathbf{u}_{i} \right\rangle = \lambda_{i} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\
\left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \right| \quad \Rightarrow \quad \left\langle \mathbf{u}^{j} \right| \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \lambda_{j}^{*} \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle \\
\left\langle \mathbf{u}^{j} \right| \mathbb{A} - \mathbb{A}^{\dagger} \left| \mathbf{u}_{i} \right\rangle = \left(\lambda_{i} - \lambda_{j}^{*}\right) \left\langle \mathbf{u}^{j} \left| \mathbf{u}_{i} \right\rangle .
\end{array} \right\} \Rightarrow$$

- Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son distintos, $(i \neq j)$ entonces los autovectores serán ortogonales, $\langle \mathbf{u}^j | \mathbf{u}_i \rangle \propto \delta_i^j$.
- Si \mathbb{A} es hermítico, $\mathbb{A} = \mathbb{A}^{\dagger}$ y autovectores son los mismos, (i = j) entonces los autovalores son reales: $\lambda_i = \lambda_i^*$.
- \bullet Si $\mathbb A$ es unitario, $\mathbb A\equiv \mathbb U$, se cumple que $\mathbb U^\dagger=\mathbb U^{-1}$ entonces

$$\mathbb{U} \ket{\psi_j} = \lambda_j \ket{\psi_j} \Rightarrow \left\langle \psi^j \middle| \mathbb{U}^\dagger \mathbb{U} \ket{\psi_j} = 1 = \lambda_j^* \lambda_j \ \Rightarrow \ \lambda_j = \mathrm{e}^{i\varphi_j} \,,$$

con φ_{μ} una función real.

• La ecuación de autovalores $\mathbb{A} \ket{\psi} = \lambda \ket{\psi}$, es una ecuación con dos incógnitas: λ y $\ket{\psi}$, o una ecuación un UNA incógnita doble: λ y $\ket{\psi}$.

- La ecuación de autovalores $\mathbb{A}\ket{\psi}=\lambda\ket{\psi}$, es una ecuación con dos incógnitas: λ y $\ket{\psi}$, o una ecuación un UNA incógnita doble: λ y $\ket{\psi}$.
- 2 Los autovectores para autovalores distintos forman base

- La ecuación de autovalores $\mathbb{A} |\psi\rangle = \lambda |\psi\rangle$, es una ecuación con dos incógnitas: λ y $|\psi\rangle$, o una ecuación un UNA incógnita doble: λ y $|\psi\rangle$.
- Los autovectores para autovalores distintos forman base
- **③** La representación matricial del operador $A^i_j = \langle \psi^i | \mathbb{A} | \psi_j \rangle$ en la base de autovectores $\{|\psi_i\rangle\}$ es diagonal con los autovalores: $\langle \psi^i | \mathbb{A} | \psi_i \rangle = A^i_i = \operatorname{diag} (\lambda_1, \lambda_2, \cdots, \lambda_n)$.

- La ecuación de autovalores $\mathbb{A} \ket{\psi} = \lambda \ket{\psi}$, es una ecuación con dos incógnitas: λ y $\ket{\psi}$, o una ecuación un UNA incógnita doble: λ y $\ket{\psi}$.
- 2 Los autovectores para autovalores distintos forman base
- **③** La representación matricial del operador $A^i_j = \langle \psi^i | \mathbb{A} | \psi_j \rangle$ en la base de autovectores $\{|\psi_i\rangle\}$ es diagonal con los autovalores: $\langle \psi^i | \mathbb{A} | \psi_j \rangle = A^i_j = \mathrm{diag} \left(\lambda_1, \lambda_2, \cdots, \lambda_n\right)$.
- Los autovalores (y después los autovectores) se calculan a mediante el polinomio característico

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

- La ecuación de autovalores $\mathbb{A} |\psi\rangle = \lambda |\psi\rangle$, es una ecuación con dos incógnitas: λ y $|\psi\rangle$, o una ecuación un UNA incógnita doble: λ y $|\psi\rangle$.
- Los autovectores para autovalores distintos forman base
- **3** La representación matricial del operador $A^i_j = \langle \psi^i | \mathbb{A} | \psi_j \rangle$ en la base de autovectores $\{ |\psi_i \rangle \}$ es diagonal con los autovalores: $\langle \psi^i | \mathbb{A} | \psi_j \rangle = A^i_i = \mathrm{diag} \left(\lambda_1, \lambda_2, \cdots, \lambda_n \right)$.
- Los autovalores (y después los autovectores) se calculan a mediante el polinomio característico

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

• Los autovalores pueden ser n simples o individuales $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_n$

- La ecuación de autovalores $\mathbb{A} |\psi\rangle = \lambda |\psi\rangle$, es una ecuación con dos incógnitas: λ y $|\psi\rangle$, o una ecuación un UNA incógnita doble: λ y $|\psi\rangle$.
- Los autovectores para autovalores distintos forman base
- ③ La representación matricial del operador $A^i_j = \langle \psi^i | \mathbb{A} | \psi_j \rangle$ en la base de autovectores $\{|\psi_i\rangle\}$ es diagonal con los autovalores: $\langle \psi^i | \mathbb{A} | \psi_j \rangle = A^i_i = \mathrm{diag} \left(\lambda_1, \lambda_2, \cdots, \lambda_n\right)$.
- Los autovalores (y después los autovectores) se calculan a mediante el polinomio característico

$$P(\lambda) = \det \left| A_j^i - \lambda \delta_j^i \right| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n).$$

- Los autovalores pueden ser n simples o individuales $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_n$
- Los autovalores pueden ser m = n k con al menos k-degeneraciones $P(\lambda) = \det \left| A_i^i \lambda \delta_i^i \right| = (\lambda \lambda_1)^k (\lambda \lambda_2) \cdots (\lambda \lambda_m).$

Ejercicios para la discusión

- Si $|v_1\rangle$ y $|v_2\rangle$ son autovectores del operador lineal $\mathbb A$ con distintos autovalores λ_1 y λ_2 , respectivamente. Muestre que $\alpha |v_1\rangle + \beta |v_2\rangle$ ($\alpha \neq 0, \beta \neq 0$) no es un autovector de $\mathbb A$.
- Onsidere las siguientes representaciones matriciales de operadores

$$\langle e^{i} | \mathbb{A} | e_{j} \rangle = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 3 & 3 & 20 \end{pmatrix} \quad \langle e^{i} | \mathbb{B} | e_{j} \rangle = \begin{pmatrix} 4 & -3 & 1 \\ 4 & -1 & 0 \\ 1 & 7 & -4 \end{pmatrix} \mathbf{y}$$

encuentre sus autovalores y autovectores

- Sean A y B dos operadores hermíticos, con autovalores no degenerados y un operador unitario definido como: U = A + iB. Muestre que
 - Si \mathbb{A} y \mathbb{B} conmutan, $[\mathbb{B}, \mathbb{A}] = 0$, los autovectores de \mathbb{A} también lo son de \mathbb{B} .
 - \circ Si $\mathbb{U} |v_i\rangle = \mu_i |v_i\rangle$, entonces $|\mu_i| = 1$.