Different patterns in Algorithm

Sequential

Sequential structure executes the program in the order in which they appear in the program

Selectional (conditional-branching)

Selection structure control the flow of statement execution based on some condition

Iterational (Loops)

Iterational structures are used when part of the program is to be executed several times

Sequential Pattern

Example 1: Find the average runs scored by a batsman in 4 matches

Algorithm:

Step 1: Start

Step 2: Input 4 scores say runs1,runs2,runs3 and runs4

Step 3: Accumulate runs1,runs2,run3,and runs4 and store it in the variable called total_runs

Step 4: Divide total_runs by 4 and find the average

Step 5: Display the average

Step 6: Stop

Flowchart

Pseudo code:

Begin
read run1,run2,run3 and run4
compute total_run= run1+run2+run3+run4
compute batting_average= total_run/4
display batting_average
end

Batting Average

```
print("Enter four scores")
run1 = int(input())
run2 = int(input())
run3 = int(input())
run4 = int(input())
total_run=(run1+run2+run3+run4)
batting_average= total_run/4
print('batting_average is' ,batting_average)
```

Area of a circle

Step 1 : Start

Step 2: Get the input for RADIUS

Step 3: Find the square of RADIUS and store it in SQUARE

Step 4: Multiply SQUARE with 3.14 and store the result in

AREA

Step 5: Stop

Flowchart

Pseudo code:

```
begin
accept radius
compute square = radius * radius
compute area = pi * square
display area
end
```

Area of a circle

```
import math
print("Enter radius")
radius=float(input())
area = math.pi*radius*radius
print("area of circle is ", area)
```

Exercise

An university is setting up a new lab at their premises. Design an algorithm and write Python code to determine the approximate cost to be spent for setting up the lab. Cost for setting the lab is sum of cost of computers, cost of furnitures and labour cost. Use the following formulae for solving the problem:

Cost of computer = cost of one computer * number of computers

Cost of furniture = Number of tables * cost of one table + number of chairs * cost of one chair

Labour cost = number of hours worked * wages per hour

Budget for Lab

Input	Processing	Output
cost of one computer, number of computers, number of tables, cost of one chairs, cost of one chair, number of hours worked, wages per hour	cost of furniture + labour cost	Budget for Lab
	Cost of computer = cost of one computer * number of computers	
	Cost of furniture = Number of tables * cost of one table + number of chairs * cost of one chair	
	Labour cost = number of hours worked * wages per hour	

Python Program

```
print("Enter cost of one computer")
cost Computer = float(input())
print ("Enter num of computers")
num Computer = int(input())
print("Enter cost of one table")
cost Table = float(input())
print("Enter num of tables")
num Tables = int(input())
print("Enter cost of one chair")
cost Chair = float(input())
print("Enter num of chairs")
num Chairs = int(input())
print("Enter wage for one hour")
wages Per Hr = float(input())
print("Enter num of hours")
num Hrs = int(input())
```

Python Program

Browsing Problem

Given the number of hours and minutes browsed, write a program to calculate bill for Internet Browsing in a browsing center. The conditions are given below.

- (a) 1 Hour Rs.50
- (b) 1 minute Re. 1
- (c) Rs. 200 for five hours

Boundary condition: User can only browse for a maximum of 7 hours

Check boundary conditions

Browsing Program

Input	Processing	Output
Number of hours and minutes browsed	Check number of hours browsed, if it is greater than 5 then add Rs 200 to amount for five hours and subtract 5 from hours	
	Add Rs for each hour and Re 1 for each minute	
	Basic process involved: Multiplication and addition	

Pseudocode

```
READ hours and minutes
SET amount = 0
IF hours >=5 then
  CALCULATE amount as amount + 200
  COMPUTE hours as hours – 5
END IF
COMPUTE amount as amount + hours * 50
COMPUTE amount as amount + minutes * 1
PRINT amount
```

Input

Hours = 6

Minutes = 21

Output

Amount = 271

Processing Involved

Amount = 200 for first five hours

50 for sixth hour

21 for each minute

Input

Hours = 8

Minutes = 21

Output

Invalid input

Processing Involved

Boundary conditions are violated

Already Know

- To read values from user
- Write arithmetic expressions in Python
- Print values in a formatted way

Yet to learn

Check a condition

Selection pattern

 A selection control statement is a control statement providing selective execution of instructions.

Control flow of decision making

If Statement

 An if statement is a selection control statement based on the value of a given Boolean expression.

The if statement in Python is

If statement	Example use
If condition: statements	<pre>If grade >=70: print('pass')</pre>
else:	else:
statements	Print('fail')

Indentation in Python

- One fairly unique aspect of Python is that the amount of indentation of each program line is significant.
- In Python indentation is used to associate and group statements

Valid indentation		Invalid indentation	
(a) if condition: statement statement else: statement statement statement	(b) if condition: statement statement else: statement statement statement	(c) if condition: statement statement else: statement statement statement	(d) if condition: statement statement else: statement statement statement

Nested if Statements

- There are often times when selection among more than two sets of statements (suites) is needed.
- For such situations, if statements can be nested, resulting in multi-way selection.

```
Nested if statements
                                  Example use
                          if grade >= 90:
if condition:
                               print('Grade of A')
    statements
                          else:
else:
    if condition:
                               if grade >= 80:
        statements
                                   print('Grade of B')
                               else:
    else:
        if condition:
                                   if grade >= 70:
            statements
                                       print('Grade of C')
                                   else:
                                       if grade >= 60:
            etc.
                                            print('Grade of D'
                                       else:
                                            print('Grade of F'
```

Else if Ladder

```
if grade >= 90:
    print('Grade of A')
elif grade >= 80:
  print('Grade of B')
elif grade >= 70:
   print ('Grade of C')
elif grade >= 60:
   print('Grade of D')
else:
   print('Grade of F')
```

Multiple Conditions

- Multiple conditions can be check in a 'if' statement using logical operators 'and' and 'or'.
- Python code to print 'excellent' if mark1 and mark2 is greater than or equal to 90, print 'good' if mark1 or mark2 is greater than or equal to 90, print 'need to improve' if both mark1 and mark2 are lesser than 90

```
if mark1>=90 and mark2 >= 90:
    print('excellent')
if mark1>=90 or mark2 >= 90:
    print('good')
else:
    print('needs to improve')
```

Browsing Program

```
print ("enter num of hours")
hour = int(input())
print("enter num of minutes")
min = int(input())
if (hour>7):
    print ("Invalid input")
elif hour>=5:
    amount = 200
    hour = hour - 5
    amount = amount + hour * 50 + min
    print(amount)
```

Eligibility for Scholarship

Government of India has decided to give scholarship for students who are first graduates in family and have scored average > 98 in math, physics and chemistry. Design an algorithm and write a Python program to check if a student is eligible for scholarship

Boundary Conditions: All marks should be >0

Browsing Program

Input	Processing	Output
Read first graduate, physcis, chemistry and maths marks	Compute total = phy mark + che mark + math mark Average = total/3 Check if the student is first graduate and average >=98	Print either candidate qualified for Scholarship or candidate not qualified for Scholarship

Algorithm

- Step 1 : Start
- Step 2: Read first graduate, physcis, chemistry and maths marks
- Step 3: If anyone of the mark is less than 0 then print 'invalid input' and terminate execution
- Step 3: Accumulate all the marks and store it in Total
- Step 4: Divide Total by 3 and store it in Average
- Step 5: If student is first graduate Average score is greater than or equal to 98 then print candidate qualified for Scholarship

Else

Print candidate not qualified for scholarship

Stop 6: Stop

Input

First graduate = 1 Phy mark = 98, Che mark = 99, math mark = 98

Output

candidate qualified for Scholarship

Processing Involved

Total = 295

Average = 98.33

Student is first graduate and average > 98

Input

First graduate = 0 Phy mark = 98, Che mark = 99, math mark = 98

Output

candidate qualified for Scholarship

Processing Involved

Total = 295

Average = 98.33

Student is not first graduate but average > 98

Input

First graduate = 1 Phy mark = 98, Che mark = 99, math mark = 90

Output

candidate qualified for Scholarship

Processing Involved

Total = 287

Average = 95.67

Student is first graduate but average < 98

```
print('Is first graduate(1 for yes and 0 for no')
first = int(input())
print('Enter Physics Marks')
phy mark = float(input())
print('Enter Chemistry Marks')
che mark=float(input())
print('Enter Math Marks')
mat mark=float(input())
total mark= phy mark+che mark+mat mark
```

```
if (phy_mark <0 or che_mark <0 or mat_mark<0):
    print('Invalid input')
else:
    average = total_mark/3
    if first==1 and average >= 98 :
        print('candidate qualified for Scholarship')
    else:
        print('candidate not qualified for Scholarship')
```

Algorithm for Largest of Three numbers

Step1: Start

Step2: Read value of a, b and c

Step3: If a is greater than b then

compare a with c and if a is bigger then say a is biggest else say c is biggest

else Compare b with c, if b is greater than c say b is biggest else c is biggest

Step 5: Stop

Flowchart

Input

$$a = 12$$
, $b = 13$, $c = 14$

Output

c is greatest

Processing Involved

B is greater than a but c is greater than b

Input

$$a = 13$$
, $b = 12$, $c = 14$

Output

c is greatest

Processing Involved

a is greater than b but c is greater than a

Input

$$a = 13$$
, $b = 2$, $c = 4$

Output

a is greatest

Processing Involved

a is greater than b and a is greater than c

Input

$$a = 3$$
, $b = 12$, $c = 4$

Output

b is greatest

Processing Involved

b is greater than a and b is greater than c

```
a = int(input())
b = int(input())
c = int(input())
if a>b:
    if a>c:
        print ('a is greatest')
    else:
        print ('c is greatest')
else:
    if b>c:
        print ('b is greatest')
    else:
        print ('c is greatest')
```

The if/else Ternary Expression

Consider the following statement, which sets A to either Y or Z, based on the truth value of X:

if X:

$$A = Y$$

else:

$$A = Z$$

new expression format that allows us to say the same thing in one expression:

$$A = Y \text{ if } X \text{ else } Z$$

```
>>> A = 't' if 'spam' else 'f'
>>> A
't'
>>> A = 't' if '' else 'f'
>>> A
'f'
```

Exercise Problem

- 1. Write a python code to check whether a given number of odd or even?
- 2. Write a python code to check whether a given year is leap year or not?
- 3. Write a python code in finding the roots of a quadratic equation?
- 4. Write a python program to segregate student based on their CGPA. The details are as follows:

```
<=9 CGPA <=10 - outstanding
<=8 CGPA <9 - excellent
<=7 CGPA <8 - good
<=6 CGPA <7 - average
<=5 CGPA <6 - better
CGPA<5 - poor
```