todo: tên tiêu đề chưa biết dịch ntn 😢

- Mặt phẳng chiếu 2D
 - Phép chuyến vị của vector
 - Phép nhân vector/matrix:
 - Kí hiệu đường thẳng đồng nhất:
 - Kí hiệu điểm đồng nhất:
 - Tìm giao của 2 đường thẳng
 - Tìm đường thẳng qua 2 điểm
 - Điểm và đuường thẳng ở vô cùng.
 - Todo: A model for the projective plane. cũng chưa biết dịch ntn
 - Tính đối lập (duality)
 - Todo: đường conic và phương trình đường conic

Mặt phẳng chiếu 2D

Phép chuyển vị của vector

• Với một vector ngang (hoặc dọc) x thì vector dọc (hoặc ngang) tương ứng với nó là x^T . Cụ thể,

Với một vector ngang (hoặc dọc)
$$x$$
 thì vector dọc (hoặc ngang) tương ứng với nó là x^T . Cụ thế, một vector ngang $x=(a_1,a_2,...a_n)$ sẽ có vector dọc tương ứng là $x^T=\begin{pmatrix} a_1\\a_2\\ \vdots\\a_n \end{pmatrix}$ và ngược lại.

- Mục đích của phép chuyển vị là để cho việc nhân vector với matrix được dễ dàng.
- Khi viết $x=(a_1,a_2,...a_n)$ ta hiểu đây là vector **ngang**.

Phép nhân vector/matrix:

- Phép nhân matrix: Tiếng anh, Tiêng việt.
- Phép nhân vô hướng 2 vector: 2 vector cùng chiều a, b, thay vì ta viết a.b, ta sử dụng kí hiệu **chuyển vị** và chuyển nó thành phép **nhân ma trận** ab^T hoặc a^Tb
- Tích có hướng của vector 3 chiều: tiếng anh.
 - \circ 2 vector u=(a,b,c) và v=(x,y,z) có tích có hướng u imes v=(y,z)

Kí hiệu đường thẳng đồng nhất:

- Vì mỗi đường thẳng trên mặt phẳng đều có phương trình dạng ax+by+c=0 nên mỗi đường thẳng được chọn bởi bộ 3 số (a,b,c) và ta sẽ đại diện mỗi đường thẳng bằng 1 vector **dọc** $(a,b,c)^T$.
- Vector $(0,0,0)^T$ sẽ **không** đại diện cho đường thẳng nào cả.
- Tập hợp các đường thẳng có dạng $(ka,kb,kc)^T$ với k bất kì đều đại diện cho cùng 1 đường thẳng

Kí hiệu điểm đồng nhất:

- Thay vị sử dụng cặp điểm, ta sử dụng vector $\mathbf{doc}\ (x,y,1)^T$ để biểu diễn điểm (x,y) trên mặt phẳng.
- **Mục đích** cho việc biểu diễn như vậy để có thể dễ dàng kiểm tra điểm $p=(x,y,1)^T$ có thuộc đường thẳng bằng $l=(a,b,c)^T$ không bằng biểu thức $(x,y,1).(a,b,c)^T=(ax+by+c)=0$, hay nói cách khác, $p^Tl=0$.
- Mở rộng ra, vector dọc $(x,y,z)^T$ có thể biểu diễn điểm $\left(\frac{x}{z},\frac{y}{z}\right)$ trên mặt phẳng toạ độ.

Tìm giao của 2 đường thẳng

- Hai đường thẳng l_1 và l_2 sẽ có giao điểm $x=l_1 imes l_2$.
- Thật vậy, $l_1(l_1 imes l_2)=0$ và $l_2(l_1 imes l_2)=0$, do vector $l_1 imes l_2$ trong không gian cùng song với cả l_1 và l_2 . Như vậy l_1 và l_2 đều đi qua điểm $l_1 imes l_2$

Tìm đường thẳng qua 2 điểm

- ullet Hai điểm p_1 và p_2 có sẽ có đường thẳng $l=p_1 imes p2$ cùng đi qua chúng.
- ullet Cũng như trên, do $p_1.(p_1 imes p_2)=0$ và $p_2.(p_1 imes p_2)=0$. Như vậy p_1 và p_2 đều thuộc đường thẳng $p_1 imes p_2$

Điểm và đuường thẳng ở vô cùng.

- Các điểm có dạng $(x_1,x_2,0)^T$ là những điểm ở vô cùng, vì ta không thể tìm thấy điểm $(x_1/0,x_2/0)$ trên mặt phẳng tọa độ.
- Tập hợp các điểm ở vô cùng tạo thành đường thẳng ở vô cùng $(0,0,1)^T$ (thật vậy $(a,-b,0)^T(0,0,1)=0$).
- ullet Mọi đường thẳng l=(a,b,c) đều giao với đường thẳng $(0,0,1)^T$ tại điểm $(b,-a,0)^T$

Todo: A model for the projective plane. cũng chưa biết dịch ntn

Tính đối lập (duality)

- Ta có thể đảo vai trò của điểm và đường thẳng cho nhau:
 - o Chúng đều là vector 3 chiều dọc.
 - \circ Biểu thức kiểm tra điểm x nằm trên đường thẳng l là $x^T l = 0$ có thể đổi thành $l^T x = 0$.
 - Ngoài ra việc tìm giao điểm và đường thẳng qua 2 điểm chúng đều có thể đảo chỗ cho nhau.
- Đây gọi là nguyên tắc đôi lập (duality principle)

Todo: đường conic và phương trình đường conic