

THE HILLS GRAMMAR SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2003

MATHEMATICS

EXTENSION 1

Time Allowed:

Two hours (plus 5 minutes reading time)

Teacher Responsible:

Mr D Price

SPECIAL INSTRUCTIONS:

- · This paper contains 7 questions. ALL questions to be attempted.
- ALL questions are of equal value.
- ALL necessary working should be shown in every question in the booklets provided.
- Start each question in a new booklet.
- A table of standard integrals is supplied at the back of this paper.
- Board approved calculators may be used.
- Hand up your paper in ONE bundle, together with this question paper.
- ALL HSC course outcomes are being assessed in this task. The Course Outcomes are listed on the back of this sheet.

Students are advised that this is a Trial Examination only and cannot in any way guarantee the content or the format of the Higher School Certificate Examination.

Marks Differentiate $\cos^3 x$ Find the point which divides the line joining (4, 6) to (13, 5) externally in the Write down the equation of the vertical asymptote of y == dx using the substitution $u = x^4$

Question One

3.

3

(a) Evaluate $\frac{Lim}{x \to 0} = \frac{\tan 2x}{4x}$

1

3

(b) Solve the equation

$$\sin \theta + \sqrt{3} \cos \theta = 1$$
 for $0 \le \theta \le 2\pi$

- (c) Air is being pumped into a spherical balloon at the rate of $450 \text{cm}^3 \text{ s}^{-1}$. Calculate the rate at which the radius of the balloon is increasing at the instant when the radius reaches 15cm. $\left[V = \frac{4}{3}\pi r^3\right]$
- (d) Let $f(x) = \cos x \ln x$
 - (i) Show that a root to f(x) = 0 lies between 0.5 and 1.5.
 - (ii) Starting with a value of x = 1, use one application of Newton's method to find a better approximation to this root of f(x) = 0.

- (a) The region R is bounded by the curve $y = \cos x$, x = 0, $x = \frac{\pi}{2}$ and the x-axis.
 - (i) Sketch R.
 - (ii) Find the exact volume of the solid generated when the region R is rotated about the x-axis.
- If α , β , γ , are the roots of the cubic polynomial equation $x^3 + 4x^2 6x 8 = 0$ find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
- Find the term which is independent of x in the expansion of $\left(2x^3 + \frac{1}{3x^2}\right)^5$
- (d) The remainder when $x^3 + ax + b$ is divided by (x-2)(x+3) is 2x+1. Find the values of a and b.

7

(a)

 $P(4p, 2p^2)$ is a variable point on the parabola $x^2 = 8y$ as shown in the diagram above.

The normal at P cuts the y-axis at A and R is the midpoint of AP.

- (i) Show that the normal at P has equation $x + py = 4p + 2p^3$
- (ii) Show that R has coordinates $(2p, 2p^2 + 2)$
- (iii) Show that the locus of R is a parabola and show that the vertex of this parabola is the focus of the parabola $x^2 = 8y$.
- (b) (i) Evaluate $\int_{1}^{3} \frac{dx}{x}$
 - (ii) Use Simpson's rule with 3 function values to approximate $\int_{1}^{3} \frac{dx}{x}$
 - (iii) Use your results to parts (i) and (ii) to obtain an approximation for e. Give your answer correct to 3 decimal places.

(a) Evaluate $\cos \left[\tan^{-1} \left(-\frac{1}{\sqrt{3}} \right) \right]$

When the temperature T of a certain body is 65°C it is cooling at the rate of 1°C per minute.

Assuming Newton's law of cooling: $\frac{dT}{dt} = -k(T - S)$ where

T is the temperature of the body at time t minutes S is the temperature of the surrounding medium, assumed constant k is a constant

- (i) Show that $T = S + Ae^{-4t}$ is a solution of the given differential equation, where A is also a constant.
- (ii) Show that the value of k is 0.02 given that S is 15°C.
- (iii) Find T when t = 20 minutes, giving your answer to the nearest degree. (You may assume that initially T = 65)
- (iv) How long will it take for the temperature of the body to fall to 35°C?
- (b) The acceleration of a particle P, moving along a straight line has an acceleration given by

$$\frac{d^2x}{dt^2} = -4\left(x + \frac{16}{x^3}\right)$$

Given that P is initially at rest at the point x = 2, show that the velocity v at any time is given by

$$v^2 = 4\left(\frac{16-x^4}{x^2}\right)$$

(a) Prove by induction that, for all integers $n \ge 1$,

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

- (b) Let $f(x) = x^2 + 6x$ for $x \ge -3$
 - (i) Write down the range of f(x).
 - (ii) Briefly explain why the inverse function $f^{-1}(x)$ exists. Write down the domain and range of $f^{-1}(x)$.
 - (iii) Find $f^{-1}(x)$. Sketch the graph of $y = f^{-1}(x)$.
- (c) Sketch the graph of $y = 3 \cos^{-1} (\frac{x}{2} 1)$.

3

3

(a) "

An arrow is fired horizontally with a speed of 60ms⁻¹ from the top of a 20m high wall on level ground as represented in the diagram above.

It is given that $\ddot{x} = 0$ and $\ddot{y} = -10$ where (x, y) is the position of the arrow at time t seconds after firing.

- (i) Using calculus, show that x = 60t and $y = 20 5t^2$.
- (ii) Find the time taken for the arrow to hit the ground.
- (iii) Find the distance R metres from base of the wall where the arrow hits the ground.
- (iv) Find the acute angle to the horizontal at which the arrow hits the ground.
- (b) It is given that:

$$(1+x)^{2n} = \sum_{k=0}^{2n} {2n \choose k} x^k$$

- (i) Show that $\sum_{k=0}^{2n} {2n \choose k} = 4^n$
- (ii) $\sum_{k=0}^{2n} {2n \choose k} \frac{1}{k+1} = \frac{4^{n+1}-2}{4n+2}$

mal HSC EXTI 2003 method 2 Sign diagram = 1 Lim fam 2x 2 20-20 200 1 mechada +- formulas =-0.334 f(51) is contino 2 TEST B = TT (why?) for 0.5226 /15 L45= 0-13 => there apists s Let 570 + 13 was RHS = 1 oc in this cope interval for for E RSIN(0+2) DIT 0=0 RDO BRUST probably the more difficult method, but (ii) RSin x = -13 solution in tormula in it can be done! XX-20625556 el (cos 26) z = 20 - fe (w derive former quickly) = 3 cos oc . (- sm x) du = 40 E doc R2=4=> P=2 also oxxX forx (4,6) /4 Let (cr, y,) be this 2 SIN (0+写)=1 $x_r = -4 + 52$ Sm(0+1/3)=/2 = [- / T-a] = 45 = 16 · · · MARANNARAS Jr= -6+20

most 1
$\frac{\text{method}2}{\left(2\chi^{2}+\frac{1}{3}\chi^{2}\right)^{5}}$
$=(x^{3})^{5}\left(2+\frac{1}{32c^{5}}\right)^{5}$
= 20'5 (2+1)5
teens I le.
$= \binom{5}{3} \frac{2^{2}}{3^{3}} = \frac{40}{27}$
(d) 23 tane + b
= (01-2100+3) Ray + 22+. Let Play = 20 + and +1
PE)=8+2a+6- =2+2+1
2a+6=-3
P(-3)=-2)-3a +-6 = 2x-3+1
[-3a+b=22]
Solvery gives
9=-5
<i>&=</i> 7

4.

(i)

$$x^2 = 8y = y = \frac{1}{2}x^2$$
 $y' = \frac{1}{4}x$
 $y' = \frac{1}{4}x$

$$= 8 y^{2} y^{2} \frac{1}{6} x^{2}$$

$$= 8 y^{2} y^{2} \frac{1}{6} x^{2}$$

$$= 4 x^{2} (4p, 2p^{2})$$

$$= 4 x^{2} (4p, 2p^{2})$$

$$= 4 x^{2} (4p, 2p^{2})$$

$$= 4 x^{2} (2p^{2} - 4p^{2})$$

$$= 4 x^{2} (2p^{2} - 4p^{2})$$

$$= (0, 04 + 2p^{2})$$

$$= (04 + 2p^{2})$$

$$= (04 + 2p^{2})$$

$$= (04 + 2p^{2})$$

$$= (04$$

Prost=472Py	1
1000 = (6,2) (3)	25
Herra peoult.	1)
(L) (3-100	=
(1) (adac	=
= [ln >c] 3	
: h3 O	(b)
(G)	
2 1 2 3 4 1 12 13	-
5 do = 1 [gotay, +]	e
) == = ILO 00 0	
= 1/3 [1 + 4+2 +-	: إِنَّ
= <u>10</u> 9	2) G
	7 10
(ii) h 3 = 10	
099 - 3	7
$e' = 3$ $(e'^{9}q)^{9}/_{10} = 3$	
6 ÷ 3 0.8	•
= 2-68787	
(5)	₹ _j

(i) fer= 2(x+6) T=15+AR when to .65=15+A A= 50 Domain of fire HORAGE (8) 15 =15 +50e (") at ground : t=-1 lu 0.4 (2 ×1) = 45.81.... = 46 minutes So though theme. for 1= & Aromoly 72-9 and 42-3 Ave for 1= tox1 42 +64 -.. by M.I. Ave かりうろ

(ii) integrating
$$\frac{(1+2l)}{2n+1} + C = \sum_{0}^{2n+1} \binom{2n}{k} \times \binom{2n}{k} \times$$