1.
$$S_0 = $175$$

Sell 100 call [1 contract]
Sell 100 Put (1 contract)
 $K = 175
 $T = Sept.1b$ (4 Weeks)
\$5/call, \$4.5/Put

a) Pay off function

$$Call = \int_{0}^{\infty} -100(175 - S_{T}) S_{T} > 175$$

b) P/L

Short Call P/L: \$5x100-100(175- ST)

Short Put P/L: \$4.5x60-100\$7-175)

- C) Max Profit 1\$5 x100+\$4.5x100-\$9500 Max loss 1 infinity
- d). When ST E (165.5, 1845)
- e). Iron condor type strategy is best for shorting volatility as a there is little price movement.

2. The treasuer can buy call with Strike Price @0.95 With maturity Date 6 month from today.

Sell put with strike Price 1.05 n/maturity Pate 6 month from Today

a)
$$G_F = (1 - 15\%) G_S$$
 $h^* = P \frac{G_S}{G_F}$ $P = 0.8$

$$1 = 0.85 \frac{6s}{6r}$$

$$\frac{1}{0.85} = \frac{0.8}{0.85} = 0.94/2$$

$$N^{*} = \frac{h^{\dagger} N_{A}}{R_{F}}$$

$$= \frac{0.94 R \times 800000}{42000}$$

$$= \frac{0.94 R \times 800000}{42000}$$

Yes, AAL is better off with the hedge B/c it generates Profit.

a) Zero Coupon Rote
$$6m$$
, $12m$, $18m$, $24m$.
A · e^{-r·n}
 $6m$ month : $100 \cdot e^{-r_0(0.5) \cdot 0.5} = 98.49$

$$r_0(05) = \ln\left(\frac{100}{9849}\right) \cdot \frac{1}{015}$$

= 0.03043
= 3.043%

12 month;
$$|00 \cdot e^{-\gamma_0(1) \cdot 1}| = 96.87$$

 $|\gamma_0(1)| = |\gamma_0(1)| = 96.87$
 $|\gamma_0(1)| = |\gamma_0(1)| = 96.87$

18 Month; 1.5 e
$$r_0(0,S) \cdot 0.5 = r_0(1) \cdot 1 = r_0(1.5) \cdot 1.5 = r_0(1) \cdot 1 = r_0(1.5) \cdot 1.5 = r_0(1) \cdot 1 = r_0(1) \cdot 1 = r_0(1.5) \cdot 1.5 = r_0(1) \cdot 1 = r_0(1) \cdot 1$$

B). Borrow and lend \$100 @ Zero Spot Rate

Given the condition in Question, There is arbitrage Room.

The max Profit is calculated below by

borrowing maney @ Zero Rate Ilven at 18th month, in

24 time idle Start
Borrow 49%
18th 29th

100 (e^{0.04} x^{0.5} - e^{0.0304250.5}) = 0.488

D)
$$F_0(\tau) = 55$$
 > $S_0e^{r\tau} = 52.56$
 $t = 0$ borrow $SO/Share @ 5%$
buy | unit Asset of Short Position in forward
 $t = 12$ Sell the asset @ \$55
 $Gain$; $55 - 52.56 = 2.44$

c)
$$F_{o}(T) = 45 \ L \ S_{o}e^{T} = 52.56$$

 $t = 0$ Sell lunit of asset @\$52.56
 $t = 12$ buy lunit of asset @\$45
 $gain : 52.56-45 = 7.56