Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3110	Дата и время измерений	06.01.2021 21:40		
Студент Цыпандин Николай	Работа выполнена	07.01.2021		
Преподаватель Коробков М.П.	Отчет принят			

Рабочий протокол и отчет по лабораторной работе № 1.07V Маятник Максвелла

1. Цель работы

- Изучение динамики плоского движения твердого тела на примере маятника Максвелла.
- Проверка выполнения закона сохранения энергии маятника с учетом потерь на отражение и трение.
- Определение центрального осевого момента инерции маятника Максвелла.

2. Задачи, решаемые при выполнении работы

- Измерение, с помощью виртуальной установки, интервалов времени необходимые для прохождения различных промежутков расстояния.
- Нахождение величины $\frac{1}{2}g\langle t\rangle^2$, построение графика зависимости $\frac{1}{2}g\langle t\rangle^2$ от Δh и нахождение коэффициента данной зависимости (α).
- Нахождение центрального момента инерции и сравнение полученного значения с теоретическим.
- Найти кинетическую и полную энергию в моменты трех прохождений одной из заранее установленных точек и построить графики зависимости кинетической и полной энергии от высоты положения маятника относительно стола для трех моментов времени.

3. Объект исследования

• Маятник Максвелла.

4. Метод экспериментального исследования

Многократные прямые измерения, построение графиков зависимостей и сравнение полученных величин с теоретическими значениями.

5. Рабочие формулы и исходные данные

$$\begin{split} I_c &= mr^2 \left(\frac{g}{a} - 1\right) \\ h &= \frac{at^2}{2} \\ \vartheta &= \frac{2h}{t} \\ E_{\text{кин}} &= \frac{1}{2} m \left(\frac{I_c}{mr^2}\right) \cdot \vartheta^2 \\ E_{\text{пот}} &= mgH \\ E_{\text{кин}} &= E_{\text{кин}} + E_{\text{пот}} \end{split}$$

6. Измерительные приборы

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой счетчик	Измерительный прибор	0 – 10000мс	0,1мс
2	Линейка	Mepa	0-100см	0,5 мм

7. Схема установки

Рис. 2. Схема лабораторного стенда

- 1. Цифровой счетчик
- 2. Колесо (масса m=370 г, радиус оси r=2,0 мм, радиус маховика R=65 мм)
- 3. Рамка с фотоэлементами
- 4. Вертикальная линейка
- 5. Пусковой механизм

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов)

Таблица №1: Результаты прямых измерений (I) и их обработка

$h_0 = 0,1,$ M	0,2	0,3	0,4	0,5	0,6	0,7	0,8
t ₁ , MC	2612,2	3713,7	4559,6	5273,1	5896,5	6459,9	6978,3
t ₂ , MC	2613,1	3712,6	4560,8	5265,3	5897,3	6455,2	6984,3
t ₃ , MC	2612,9	3719,7	4558,3	5268,4	5889,5	6459,3	6979,1
t ₄ , MC	2611,9	3717,8	4560,1	5266,8	5896,3	6453,2	6981,9
t ₅ , MC	2616,1	3716,1	4562,1	5271,6	5896,5	6459,2	6971,9
Δh _i , м	0,1	0,2	0,3	0,4	0,5	0,6	0,7
<t>, c</t>	2,613	3,716	4,560	5,269	5,895	6,457	6,979
g <t>^2/2</t>	33,531	67,800	102,105	136,315	170,640	204,735	239,155

$$t_{cp} = \left(\frac{1}{N} \sum_{i=1}^{N} t_i\right); \ t_{cp1} = \frac{13,065}{5} = 2,613c$$
$$\Delta h_i = h_i - h_0$$
$$\frac{1}{2} g\langle t \rangle^2 = \frac{9,82 * (2,613)^2}{2} = 33,531$$

Таблица №2: Результаты прямых измерений (II) и их обработка

$h_0 = 0,1,$ M	0,2	0,3	0,4	0,5	0,6	0,7	0,8
t ₁ , MC	52,9	37,3	30,7	26,5	23,9	21,6	19,9
t ₂ , мс	81,1	44,1	33,8	28,5	25,1	22,5	20,7
t ₃ , MC	81,6	44,4	34	28,7	25,3	22,9	20,8
v ₁ , м/с	0,0756	0,1072	0,1303	0,1509	0,1674	0,1852	0,2010
v ₂ , м/с	0,0493	0,0907	0,1183	0,1404	0,1594	0,1778	0,1932
v ₃ , м/с	0,0490	0,0901	0,1176	0,1394	0,1581	0,1747	0,1923

$$\vartheta_1 = rac{2r}{t_1} = rac{2*0,002}{52,9*0,001} = 0,0756$$
, где $r-$ радиус оси равный 2мм

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов)

$$\alpha = \frac{\sum_{i=1}^{N} Y_i X_i}{\sum_{i=1}^{N} X_i^2} = \frac{\sum_{i=1}^{7} \frac{1}{2} g(t)_i^2 \Delta h_i}{\sum_{i=1}^{7} \Delta h_i^2} =$$

$$= \frac{(33,531*10*0,01) + (67,800*20*0,01) + (102,105*30*0,01) + (136,315*40*0,01) + (10^2*0,01^2) + (20^2*0,01^2) + (30^2*0,01^2) + (40^2*0,01$$

$$\begin{split} I_c &= (\alpha - 1)mr^2 = (340.2)*0.37*(0.002)^2 = 0.640*10^{-3} \\ I_{\text{reop}} &= mR^2 = 0.37*(0.065)^2 = 1.563*10^{-3} \end{split}$$

Таблица №3

H _i , M	0,8	0,7	0,6	0,5	0,4	0,3	0,2
Екин,1	0,458	0,921	1,360	1,826	2,244	2,748	3,237
Екин,2	0,125	0,423	0,720	1,012	1,305	1,624	1,919
Екин,3	0,124	0,417	0,711	0,998	1,285	1,568	1,901
Епот	3,270	2,907	2,543	2,180	1,817	1,453	1,090
Еполн,1	3,728	3,828	3,904	4,006	4,061	4,201	4,327
Еполн,2	3,395	3,330	3,263	3,192	3,122	3,078	3,009
Еполн,3	3,394	3,324	3,255	3,178	3,101	3,022	2,991

$$E_{\text{кин 1}} = \frac{1}{2} m \left(\frac{I_c}{mr^2} + 1 \right) \cdot \vartheta^2 = \frac{1}{2} * 0,37 * \left(\frac{0,00064}{0,37*(0,002)^2} + 1 \right) * 0,0756^2 = 0,458$$
 $E_{\text{пот 1}} = mgH = 0,37 * 9,82 * 0,9 = 3,27$
 $E_{\text{полн 1}} = E_{\text{пот 1}} + E_{\text{кин 1}} = 3,27 + 0,458 = 3,728$

10. Расчет погрешностей измерений (для прямых и косвенных)

$$\sigma_{\alpha} = \sqrt{\frac{\sum_{i=1}^{N} (Y_{i} - \alpha X_{i})^{2}}{(N-1)\sum_{i=1}^{N} X_{i}^{2}}} = \sqrt{\frac{\sum_{i=1}^{7} \left(\frac{1}{2}g\langle t\rangle_{i}^{2} - \alpha \Delta h_{i}\right)^{2}}{(7-1)\sum_{i=1}^{7} \Delta h_{i}^{2}}} = \frac{\sqrt{\frac{0.344169787 + 0.18884 + 0.061 + 0.02353 + 0.00296 + 0.00101 + 0.11245}{6 * (0.01 + 0.04 + 0.09 + 0.16 + 0.25 + 0.36 + 0.49)}} = 0,296$$

$$\Delta_{\alpha} = 2\sigma_{\alpha} = 0.592$$

$$\delta_{\alpha} = \frac{\Delta_{\alpha}}{\alpha} = \frac{0.592}{341.2} \cdot 100\% = 0.17\%$$

$$\frac{\Delta_{I_{c}}}{I_{c}} = \sqrt{\left(\frac{\Delta_{\alpha}}{\alpha}\right)^{2} + \left(\frac{\Delta_{m}}{m}\right)^{2} + \left(2 \cdot \frac{\Delta_{r}}{r}\right)^{2}} = 0,082$$

$$\Delta_{I_{c}} = \frac{\Delta_{I_{c}}}{I_{c}} \cdot I_{c} = 0.000082$$

$$\delta_{I_{c}} = \frac{\Delta_{I_{c}}}{I_{c}} \cdot 100\% = 12,8\%$$

11.Графики

График 1.

График зависимости g<t>^2/2 от Δh

Красный – t1 Оранжевый – t2 Зеленый – t3

Красный – t1 Оранжевый – t2 Зеленый – t3

$$\begin{split} E_{\text{кин1,t1}} &= \frac{1}{2} m \left(\frac{I_c}{m r^2} + 1 \right) \cdot \vartheta^2 = \frac{1}{2} * 0,37 * \left(\frac{0,00064}{0,37*(0,002)^2} + 1 \right) * 0,0756^2 = 0,458 \\ E_{\text{пот 1,t1}} &= mgH = 0,37 * 9,82 * 0,9 = 3,27 \\ E_{\text{полн 1,t1}} &= E_{\text{пот 1,t1}} + E_{\text{кин 1,t1}} = 3,27 + 0,458 = 3,728 \end{split}$$

Наклон графика объясняется тем, что кинетическая энергия $(E_{\text{кин}})$ сильно убывает по росту H, интенсивнее чем возрастание потенциальной энергии $(E_{\text{пот}})$ по росту H, а кинетическая энергия, в свою очередь, растет из-за роста мгновенной скорости (ϑ_i) по росту H (можно убедиться, взглянув на таблицу №2), так еще и мгновенная скорость стоит в квадрате в формуле вычисления

Кинетической энергии. Этим и объясняется поведение графика зависимости $E_{\text{полн}}$ от H, его наклон, знак углового коэффициента. Для t2 и t3, ситуация аналогична.

12.Окончательные результаты

- $I_c = 0.000640 \pm 0.000082 \text{ kg} \cdot \text{m}^2; \ \delta_{I_c} = 12.8\%$
- Значение момента инерции маятника Ic, его абсолютная и относительная погрешность. $\frac{I_c}{I_{\rm reop}} = 0.41$
- Результат сравнения экспериментального и расчетного значения момента инерции.
- Графики зависимостей $E_{\text{кин}}(\mathbf{H})$ и $\mathbf{E}_{\text{полн}}(\mathbf{H})$ для t_1, t_2 и t_3

13. Выводы и анализ результатов работы

- В результате эксперимента мы получили значение момента инерции маятника, которое отличается от рассчитанного значения в 0,41 раз, изза того, что в полученном значении предполагается, что вся масса маховика сосредоточена на его внешней поверхности.
- Не смотря на значения Н графики кинетической и полной энергии при t2 и t3 практически не отличаются (в пределах погрешности). График при t1 находится выше графиков t2 и t3 на определенное постоянное значение, которое не зависит от H.

14. Дополнительные задания

15. Выполнение дополнительных заданий