The Gaussian Neural Process

Wessel P. Bruinsma^{1,2}, James Requeima^{1,2}, Andrew Y. K. Foong¹, Jonathan Gordon¹, Richard E. Turner¹

¹University of Cambridge, ²Invenia Labs

Advances in Approximate Bayesian Inference 2020

Neural Processes and Prediction Maps

Gaussian, translation-equivariant (TE) prediction maps (∏^{TE}_G):

$$\pi \colon \mathcal{D} \to \mathsf{Gaussian} \ \mathsf{processes} \ \mathcal{P}_{\mathsf{G}}, \quad \pi(\mathsf{T}_{\tau}D) = \mathsf{T}_{\tau}\pi(D).$$

The Gaussian Neural Process

e.g., a sawtooth wave

- Given a non-Gaussian, stationary stochastic process f.
- Posterior prediction map: $\pi_f \colon \mathcal{D} \to \mathcal{P}$, $\pi_f(D) = p(f \mid D)$.
- f stationary $\iff \pi_f$ translation equivariant.
- Goal: approximate π_f with Gaussian, TE $\tilde{\pi} \in \Pi_{\mathsf{G}}^{\mathsf{TE}}$:

$$\tilde{\pi}(D) = \mathop{\arg\min}_{\mu \in \mathcal{P}_{\mathbf{G}}} \ \mathrm{KL}(\pi_f(D), \mu). {\color{blue} \rightarrow} \ \operatorname*{careful\ theoretical}_{\text{analysis\ in\ paper}}$$

- X Approximate f with GP and perform GP inference.
- \checkmark Directly approximate every posterior of f with a GP.
- Gaussian Neural Process (GNP): general parametrisation of $\tilde{\pi}$.

backed by universal representation theorem in paper

- GNP: fully general parametrisation of a TE map $\mathcal{D} o \mathcal{P}_{\mathsf{G}}$.
- Separately parametrises mean map m and kernel map k:

$$m\colon \mathcal{D} \to \text{mean functions}, \quad k\colon \mathcal{D} \to \text{kernel functions}.$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \qquad \text{diagonally TE?}$$

- Build on SetConv (Gordon et al., 2020): functional representation of data.
- Train with maximum likelihood:

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^{N} \log p(D_i^{(t)} | D_i^{(c)}, \theta).$$

√ Closed-form predictive: no approximation required!

Results 6/7

- ullet Gaussian Neural Process: param. of a TE map ${\mathcal D} o {\mathcal P}_{\sf G}.$
- ✓ Parametrisation is general (universal repr. theorem).
- ✓ Closed-form predictive: no approximation required.
- Computationally expensive.

Julia: https://github.com/wesselb/NeuralProcesses.jl Python: https://github.com/wesselb/neuralprocesses (▲)

Appendix

References

Gordon, J., Bruinsma, W. P., Foong, A. Y. K., Requeima, J., Dubois, Y., & Turner, R. E. (2020). Convolutional conditional neural processes. *International Conference on Learning Representations* (ICLR), 8th. https://openreview.net/forum?id=Skey4eBYPS