2013학년도 2학	학 과		감!	독교수확인	
과 목 명	일반수학 2	학 번			
출제교수명	공	교수명	분 반		
시 혐 일 시	2013년 12월 16일 (오전 10:00-11:40)	성 명		점 수	

1번 -	10번-	은 단	답형	문제(건	각 5점	H 만점)	입니다.	풀
이과정	은 쓸	필요	없고	답만	쓰면	됩니다		

3. 벡터장 $F = \langle x^2yz, 3xyz^3, x^2 - z^2 \rangle$ 에 대하여 $\nabla \times F$ 와 $\nabla \circ (\nabla \times F)$ 를 구하시오.

1. 함수 $f(x,y) = 2x^3 + xy^2 + 5x^2 + y^2$ 의 임계점들 중 안 장점을 모두 구하시오.

답:

2. 다음 이중적분을 계산하시오.

$$\int_0^4 \int_{\sqrt{y}}^2 y \sqrt{1+x^5} \, dx \, dy$$

답:

4. 구면 $x^2 + y^2 + z^2 = 4$ 을 평면 z = 1 로 자른다고 할 때, 잘리는 부분 중 윗부분의 겉넓이를 구하시오.

답:

답:

2013학년도 2학기 (기말고사)		학 과		감!	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2013년 12월 16일 (오전 10:00-11:40)	성 명		점 수	

5.	영역 $T = \{(x \mid x \mid$	$ y,z) 0 \le x \le \pi, 0 \le y \le \pi, 0 \le z \le \pi$	π
에	대하여 삼중조	분 $\iiint_T x y \sin(yz) dV$ 을 구하시오.	

7. 다음과 같이 직교좌표를 이용한 삼중적분을 주면좌표 를 이용한 삼중적분으로 표현할 때 주면좌표에서의 구간 값들(a, b, c, d, e, f)과 피적분 함수(g)를 구하시오.

값들
$$(a, b, c, d, e, f)$$
과 피적분 함수 (g) 를 구청
$$\int_0^1 \int_0^{\sqrt{1-y^2}} \int_{x^2+y^2}^{\sqrt{x^2+y^2}} xz \, dz \, dx \, dy$$
$$= \int_a^b \int_c^d \int_e^f g \, dz \, dr \, d\theta$$

답:

6. 평면 영역 $R = \{(x,y)| 1 \le x^2 + y^2 \le 9, \ 0 \le y \le x\}$ 의 윗부분과 곡면 $z = \tan^{-1}(\frac{y}{x})$ 의 아랫부분으로 이루어진 $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} e^{-\left(x^2+y^2+z^2\right)^{\frac{3}{2}}} dz \, dy \, dx$ 입체의 부피를 구하시오.

답:

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} e^{-(x^2+y^2+z^2)^{\frac{3}{2}}} dz dy dx$$

답:

답:

2013학년도 2학기 (기말고사)		학 과		감!	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2013년 12월 16일 (오전 10:00-11:40)	성 명		점 수	

9.	벡터장	F(x)	$(y) = \langle$	$\langle -y \rangle$,-xy	y > 에	대하여	선적
\int_{a}	$F \cdot T ds$	을	구하시	오.	여기	서 ($C(t) = (\cos t)$, sint
O	$\leq t \leq \frac{\pi}{2}$	이고	<i>T</i> 는 -	곡선	C의	단위	대하여 $C(t) = (\cos t$ 접선벡터이	다.

분 11번~15번은 서술형 문제(각 10점 만점)입니다. 풀 $_{t),}$ 이과정을 모두 서술하여야 합니다.

11. 삼차원 공간에서 곡면 $x^2 + y^2 + z^2 = \sqrt{x^2 + y^2}$ 으로 둘러싸이는 입체 T의 부피를 구면좌표계에서의 삼중적 분을 이용하여 구하시오.

rl	
띱	
ш	

10. 보존적 벡터장 $F = \langle 2xy - 3yz, x^2 - 3xz, 6z^2 - 3xy \rangle$ 의 퍼텐셜 함수 f(x, y, z) 를 구하시오.

답:

2013학년도 2학기 (기말고사)		학 과		감!	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2013년 12월 16일 (오전 10:00-11:40)	성 명		점 수	

지 B 를 지 (오전 10:00-11:40)	
12. 삼차원 공간에서 원통 입체 $T = \{(x,y,z) x^2 + y^2 \le 4, \ 0 \le z \le 2\}$ 의 겉면(경계면)을 S 라 하자. S 의 외향단위법선 벡터를 n 이라 할 때, S 를 통한 벡터장 $F(x,y,z) = \langle x^2, 2y, 4z^2 \rangle$ 의 유량(flux) $\iint_S F \cdot n dS \mbox{$ \ominus$} \mbox{$ \frown$} n dS$	13. 삼각형 ABC 의 세 내각을 x,y,z 라고 할 때, 라그랑 즈 승수법을 이용하여 함수 $f(x,y,z)=\sin x \sin y \sin z$

2013학년도 2학기 (기말고사)		학 과		감	독교수확인
과 목 명	일반수학 2	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2013년 12월 16일 (오전 10:00-11:40)	성 명		점 수	

14.	다음	선적분

$$\oint_{C} \sqrt{x^{2} + y^{2}} \, dx + y(xy + \ln(x + \sqrt{x^{2} + y^{2}})) dy$$

인 반시계방향의 원이다.

15. yz 평면상의 평면곡선 z=y $(z \ge 0)를 <math>z$ -축을 중심 으로 회전하여 얻은 공간곡면을 S_{l} 이라 하자.

- 을 구하시오. 여기서 C 는 중심이 원점이고 반지름이 1 (1) 곡면 $S = \left\{(x,y,z) \in S_1 \mid x^2 + y^2 + (z-a)^2 \leq a^2 \right\}$, (a > 0) 를 구면좌표를 이용하여 매개 변수식 $\overrightarrow{r}(\rho,\theta) = \langle x(\rho,\theta), y(\rho,\theta), z(\rho,\theta) \rangle$ 으로 나타내시오.
 - (2) 곡면적분 $\iint_S z \ dS$ 를 구하시오.