Colle 11A: Surprise

Exercice 1:

Soit $n \in \mathbb{N} \setminus \{0,1\}$. On pose $\omega = \exp(2i\pi/n)$. On définit les matrices $A, B \in \mathcal{M}_n(\mathbb{R})$ par :

$$\forall p, q \in [1, n], a_{p,q} = \omega^{pq} \text{ et } b_{p,q} = \omega^{-pq}$$

Calculer A^2 , AB et, si possible, l'inverse de A.

Exercice 2:

Soit l'équation différentielle : A(t)y'' + B(t)y' + C(t)y = 0.

- 1. Si $z(u) = y(\frac{1}{u})$, trouver l'équation différentielle vérifiée par z.
- 2. Trouver A, B, C tel que $T_n = \cos(n \arccos(x))$ soit solution.
- 3. Trouver l'autre solution.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 11B: Surprise

Exercice 1:

Soit
$$n \in \mathbb{N} \setminus \{0,1\}$$
 et $z \in \mathbb{C}$. On pose $\omega = \exp(2i\pi/n)$. Calculer $\sum_{k=0}^{n-1} (z + \omega^k)^n$.

Exercice 2:

Soit E, F deux espaces vectoriels et $u \in \mathcal{L}(E, F)$. Montrer que $\Phi : (x, y) \mapsto (x, y - u(x))$ est un automorphisme de $E \times F$.

Exercice 3 : Suites de Cauchy

On dit qu'une suite réelle $(u_n)_{n\in\mathbb{N}}$ est de Cauchy lorsque pour tout $\varepsilon>0$, il existe un entier N tel que pour tout entiers $p,q\geqslant N$, on a :

$$|u_p - u_q| < \varepsilon$$

- 1. Montrer que toute suite convergente est de Cauchy.
- 2. On s'intéresse à la réciproque de la proposition précédente. Soit alors $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy.
 - (a) Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée.
 - (b) En déduire que $(u_n)_{n\in\mathbb{N}}$ converge.

Colle 11C: Surprise

Exercice 1 : Fonctions de Lambert

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = xe^x$.

- 1. Justifier que f réalise une bijection de l'intervalle $[-1, +\infty[$ vers l'intervalle $[-e^{-1}, +\infty[$.
- 2. La réciprique de f est désormais notée W. Justifier que W est dérivable sur l'intervalle $]-e^{-1},+\infty[$ et que pour tout $x \neq 0$ on a :

$$W'(x) = \frac{W(x)}{x(1+W(x))}$$

Exercice 2: Matrices nilpotentes

Soit $A \in \mathcal{M}_n(\mathbb{R})$ nilpotente. Montrer que $I_n - A$ est inversible et déterminer son inverse.

Exercice 3:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On définit la suite réelle $(T_n)_{n\in\mathbb{N}}$ pour tout $n\in\mathbb{N}$ par :

$$T_n = \frac{1}{n} \sum_{k=1}^n u_k$$

- 1. Montrer que si $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ alors $(T_n)_{n\in\mathbb{N}}$ converge vers ℓ . (Indication : commencer par le cas $\ell=0$)
- 2. La réciproque est-elle vraie?
- 3. Application : déterminer la limite quand $n \to +\infty$ de $\prod_{k=1}^n \left(1 + \frac{2}{k}\right)^{k/n}$.