

Chapter 10: Hypothesis testing: Two-sample tests

After studying this chapter you should be able to:

- 1. conduct hypothesis tests for the means of two independent populations
- 2. conduct hypothesis tests for the means of two related populations
- 3. conduct hypothesis tests for the variances of two independent populations
- 4. conduct hypothesis tests for two population proportions

10.1
$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(72 - 66) - 0}{\sqrt{\frac{10^2}{30} + \frac{15^2}{30}}} = 1.8229$$

 $10.2 \quad Z = 1.8229$

Decision rule: If $Z_{calc} > 1.96$ or Z < -1.96, reject H_0 .

Decision: Since $Z_{calc} = 1.8229$ is greater than the critical bound of 1.96, reject H_0 . There is enough evidence to conclude that the first population mean is different to the second population mean.

10.3 p-value = 2(1.0–0.9656) = 0.0688, where 0.9656 is a cumulative probability for Z = 1.82.

10.4 (a)
$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(20) 4^2 + (17) 5^2}{19 + 16} = 21.29$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(53 - 48) - 0}{\sqrt{21.29 \left(\frac{1}{20} + \frac{1}{17}\right)}} = 3.29$$

(both formula updated)

(b)
$$df = (n_1 - 1) + (n_2 - 1) = 19 + 16 = 35$$

- (c) Decision rule: df = 35. If $t_{calc} > 2.4377$, reject H_0 .
- (d) Decision: Since t=3.29 is greater than the critical bound of XXXX, reject H_0 . There is enough evidence to conclude that the first population mean is larger than the second population mean.
- 10.5 Assume that you are sampling from two independent normal distributions with equal variances.

10.6
$$(\overline{X}_1 - \overline{X}_2) \pm t \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = (53 - 48) \pm 2.031 \sqrt{21.29 \left(\frac{1}{20} + \frac{1}{17}\right)}$$
 formula changed

 $1.81 \le \mu_1 - \mu_2 \le 8.09$ changed

10.7 question needs to say assume unequal variances

(a) $H_0: \mu_1 - \mu_2 \ge 0$ The mean estimated amount of calories in the cheeseburger is not lower for the people who thought about the cheesecake first than for the people who thought about the organic fruit salad first

 H_0 : $\mu_1 - \mu_2 < 0$ The mean estimated amount of calories in the cheeseburger is lower for the people who thought about the cheesecake first than for the people who thought about the organic fruit salad first

(b)

PHStat output:

Separate-Variances <i>t</i> Test for the Difference Between Two Means		
(assumes unequal population variances)		
Data		
Hypothesized Difference	0	
Level of Significance	0.01	
Population 1 Sample		
Sample Size	20	
Sample Mean	780	
Sample Standard Deviation	128	
Population 2 Sample		
Sample Size	20	
Sample Mean	1041	
Sample Standard Deviation	140	
Intermediate Calculations		
Numerator of Degrees of Freedom	3237120.6400	
Denominator of Degrees of Freedom	85867.8232	
Total Degrees of Freedom	37.6989	
Degrees of Freedom	37	
Separate Variance Denominator	42.4170	
Difference in Sample Means	-261	
Separate-Variance t Test Statistic	-6.1532	
Lower-Tail Test		
Lower Critical Value	-2.4314	
p-Value	0.0000	
Reject the null hypothesis		

Decision rule: if t_{calc} < -2.4314, reject H₀

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = -6.1532$$

Decision: Since -6.1532 < 2.4314, reject H_0 . There is evidence that the mean estimated amount of calories in the cheeseburger is lower for the people who thought about the cheesecake first than for the people who thought about the organic fruit salad first

10.8 (a)
$$H_0$$
: $\mu 1 - \mu 2 \le 0$
 H_1 : $\mu 1 - \mu 2 > 0$

where population 1 = private school students

population 2 = public school students.

$$df = (n_1 - 1) + (n_2 - 1) = 53 + 31 = 84$$

Decision rule: If $t_{calc} > 2.3733$, reject H_0 .

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(53)12^2 + (31)10^2}{53 + 31} = 127.76$$

Test statistic:
$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{76.5 - 74.7}{\sqrt{127.76 \left(\frac{1}{54} + \frac{1}{32}\right)}} = 0.7138$$

Decision: Since 0.7138 < 2.3733, do not reject H_0 . There is not enough evidence that private school students outperform public school students.

- 10.9 Assuming that the variance *e* of the weight loss of the high-protein diet and high-carbohydrate diet are the same, the appropriate test to perform is the pooled-variance test.
 - (a) $H_0: \mu_1 \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$
 - (b) A Type I error is committed when one concludes that there is a difference in mean weight loss between the two diets when there is no significant difference.
 - (c) A Type II error is committed when one concludes that there is no significant difference in mean weight loss between the two diets when there is indeed significant difference.

(d)
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(99)3.2^2 + (99)3.9^2}{(199)} = 12.725$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(7.6 - 6.7) - 0}{\sqrt{12.725 \left(\frac{1}{100} + \frac{1}{100}\right)}} = 1.7840$$

Critical values = ± 1.9720

Decision: Since $t_{calc} = 1.7840$ is between the critical bounds of ± 1.9720 , do not reject H_0 . There is no evidence of a difference between the mean weight loss of obese patients in the high-protein and high-carbohydrate diets.

10.10
$$H_0: \mu_1 - \mu_2 \le 0$$

 $H_1: \mu_1 - \mu_2 > 0$

where Campbelltown = population 1 and rest of Sydney = population 2

$$df = (n_1 - 1) + (n_2 - 1) = 222 + 222 = 444$$

Decision rule: If $t_{calc} > 1.645$, reject H_0 .

$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(222)12.1^2 + (222)12.7^2}{222 + 222} = 153.85$$

$$t_{calc} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{140.1 - 131.4}{\sqrt{153.85 \left(\frac{1}{222} + \frac{1}{222}\right)}} = 7.3898$$

Decision: Since $t_{calc} = 7.3898 > 1.645$, reject H_0 . There is evidence to suggest that the average petrol price in Campbelltown is greater than the rest of Sydney.

10.11 (a) Populations
$$1 = \text{female}$$
, $2 = \text{male}$

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$

Decision rule: df = 58. If t > 2.0017 or < -2.0017, reject H_0 .

$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(29)57.78^2 + (29)205.72^2}{29 + 29} = 22830.24 \text{ new}$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(79 - 157.17) - 0}{\sqrt{22830.24 \left(\frac{1}{30} + \frac{1}{30}\right)}} = -2.0036 \text{ new}$$

Decision: Since $t_{calc} = -2.0036$ is less than the lower critical bound of -2.0017, reject H_0 . There is sufficient evidence to conclude that there is enough evidence of a difference in the mean time spent on Facebook per day between males and females

(assumes equal population vari	ances)		
Data		Confidence Interval Estimate	
Hypothesized Difference	o	forthe Difference BetweenTwoMeans	
Level of Significance	0.05		
Population1S	ample	Data	
Sample Size	30	Confidence Level	95%
Sample Mean	79		
Sample Standard Deviati	57.78079862	Intermediate Cal	culations
Population2S	ample	Degrees of Freedom	58
Sample Size	30	t Value	2.0017
Sample Mean	157.1666667	Interval Half Width	78.0931
Sample StandardDeviati p	205.7227936		
		Confidence Interval	
Intermediate 0	Calculations	Interval Lower Limit	-156.2597
Population 1Sample Deg	29	Interval Upper Limit	-0.0736
Population 2Sample Deg	29		
Total Degrees of Freedo n	58		
Pooled Variance	22830.24425		
Standard Error	39.0130		
Difference in Sample Me	-78.16666667		
t Test Statistic	-2.0036		
Two-Tail T	est		
Lower Critical Value	-2.0017		
Upper Critical Value	2.0017		
<i>p</i> -Value	0.0498		
Reject the null	hypothesis		

- (b) You must assume that each of the two independent populations is normally distributed.
- 10.12 (a) $H_0: \mu_1 \mu_2 = 0$ where populations 1 = line A, 2 = line B $H_1: \mu_1 \mu_2 \neq 0$ Decision rule: df = 25. If $|t_{colc}| > 2.0595$, reject H_0 .

$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{(n_1 - 1) + (n_2 - 1)}$$

$$S_p^2 = \frac{(10)\ 0.615 + (15)\ 0.706}{10 + 15} = 0.0751$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$t = \frac{(410.25 - 409.85) - 0}{\sqrt{0.0751 \left(\frac{1}{11} + \frac{1}{16}\right)}} = 3.7276$$

Since t = 3.7276 > 2.0595 or p-value = 0.0010 < 0.05, reject H_0 . There is sufficient evidence of a difference in the mean weight of cans filled on the two lines.

(b) $H_0: \mu_1 - \mu_2 = 0$ where populations 1= line A, 2 = line B $H_1: \mu_1 - \mu_2 \neq 0$

Decision rule: df = 12. If $|t_{calc}| > 2.1788$, reject H_0 .

Test statistic:

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$
$$t = \frac{(410.25 - 409.89) - 0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = \frac{1}{2}$$

 $t = \frac{(410.23 - 409.89) - 0}{\sqrt{0.615^2 + 0.706^2}} = 1.562$

Since t = 1.5625 < 2.1788 or p-value = 0.1441 > 0.05, do not reject H_0 . There is not sufficient evidence of a difference in the mean weight of cans filled on the two lines.

- (c) The results from (a) and (b) are different. The results obtained from (b) may be more reliable because the sample variances from both samples suggest that the two population variances are not likely to be equal.
- 10.13 (a) $H_0: \mu_1 \mu_2 \ge 0$ $H_1: \mu_1 - \mu_2 < 0$

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{(33)(6.25) + (44)(25)}{77} = 16.96$$

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{(8 - 9.5) - 0}{\sqrt{16.96 \left(\frac{1}{34} + \frac{1}{45}\right)}} = 1.603$$

$$df = 45 + 34 - 2 = 77$$

Decision rule: Reject H_0 if $t_{calc} < -1.6649$.

Since $t_{calc} = -1.603 > -1.6649$, do not reject H_0 .

There is not enough evidence that the mean waiting time at the Bank of Singapore is lower than that at the competitor's bank.

(b)
$$\left(\bar{X}_{1} - \bar{X}_{2}\right) \pm t \sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)} = (8 - 9.5) \pm 1.99 \sqrt{16.96 \left(\frac{1}{34} + \frac{1}{45}\right)}$$

 $-3.362 \le \mu_{1} - \mu_{2} \le 0.362$

We are 95% confident that the difference in mean time waiting time between Bank of Singapore and the competitor's bank is between -3.362 and 0.362.

10.14

$$H_0: \mu_1 - \mu_2 \ge 0$$

$$H_0: \mu_1 - \mu_2 < 0$$

Degrees of freedom = 68

$$t_{calc} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)}}$$
$$t = \frac{(9.5 - 8) - 0}{\sqrt{\frac{6.25}{34} + \frac{25}{25}}} = -1.744$$

Decision rule: Reject H_0 if $t_{calc} < -1.667$.

Since $t_{calc} = -1.744 < -1.667$, do not reject H_0 .

There is sufficient evidence that the mean waiting time at the Bank of Singapore is lower than that at the competitor's bank.

The outcomes of the tests in 10.13(a) and 10.14 are different. The value of pooled t_{calc} in 10.13(a) is slightly lower and should be more reliable as variances at the two banks appear to be different.

10.15 (a) $H_0: \mu_1 - \mu_2 = 0$ M Mean times to clear problems at Office I and Office II are the same.

 $H_1: \mu_1 - \mu_2 \neq 0$ Mean times to clear problems at Office I and Office II are different

$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{\sqrt{(n_1 - 1) + (n_2 - 1)}} = 3.265 \text{ new}$$

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{1}\right)}{\sqrt{S_{P}^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = 0.354 \text{ new}$$

Reject H_0 if $t_{calc} > 2.024$ or $t_{calc} < -2.024$. Since $t_{calc} = 0.354$, that is < 2.024, do not reject.

(b)

t Test for Differences in Two Means	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	
Sample Size	20
Sample Mean	2.214
Sample Standard Deviation	1.718039
Population 2 Sample	
Sample Size	20
Sample Mean	2.0115
Sample Standard Deviation	1.891706
Intermediate Calculations	
Population 1 Sample Degrees of Freedom	19
Population 2 Sample Degrees of Freedom	19
Total Degrees of Freedom	38
Pooled Variance	3.265105
Difference in Sample Means	0.2025
t-Test Statistic	0.354386
Two-Tailed Test	
Lower Critical Value	-2.02439
Upper Critical Value	2.024394
p-Value	0.725009
Do not reject the null hypothesis	•

p-value = 0.725. The probability of obtaining a sample that will yield a t test statistic more extreme than 0.354 is 0.725 if, in fact, the mean times for Office I and II are the same.

(c)We need to assume that the two populations are normally distributed.

(d)
$$(\overline{X}_1 - \overline{X}_2) \pm t \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = (2.214 - 2.0115) \pm 2.024 \sqrt{3.265 \left(\frac{1}{20} + \frac{1}{20}\right)}$$
 new

$$-0.9543 \le \mu_1 - \mu_2 \le 1.3593$$

Since the Confidence Interval contains 0, we cannot claim that there's a difference between the two means

10.16 $H_0: \mu_I - \mu_{II} = 0$ Mean times to answer queries by Team I and Team II are the same. $H_1: \mu_I - \mu_{II} \neq 0$ Mean times to answer queries by Team I and Team II are different.

Degrees of freedom =38

$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

$$t = \frac{(2.719 - 2.6615) - 0}{\sqrt{\frac{2.482}{20} + \frac{2.813}{20}}} = 0.112$$

Since t_{calc} < 2.024 (same as in 10.15) do not reject the null.

There is not enough evidence to conclude that the time to answer queries by the two groups is different. The conclusions from both the pooled-variance t test and the separate variance t test are exactly the same.

10.17 (a)
$$H_0: \mu_1 - \mu_2 \ge 0$$
 $H_1: \mu_1 - \mu_2 < 0$

Where females = population 1 and males = population 2

Excel output:

t-Test: Two-Sample Assuming Equal Variances

	Female	male
Mean	49925.94444	77478.18182
Variance	489142253.2	673473852.5
Observations	18	22
Pooled Variance	591009716	
Hypothesized Mean Difference	0	
df	38	
	-	
t Stat	3.565965675	
$P(T \le t)$ one-tail	0.00049959	
t Critical one-tail	1.68595446	
$P(T \le t)$ two-tail	0.000999181	
t Critical two-tail	2.024394164	

Decision rule: Reject H_0 if $t_{calc} < -1.686$

Decision: Since $t_{calc} = -3.566$ is less than -1.686, reject H_0 . There is evidence that male graduate salaries exceed those of females.

- (b) p-value = 0.0005. The probability of obtaining two samples with a mean difference of -3.566 or less is 0.0005 if the mean female salaries are equal to those of males.
- (c) Since both sample sizes are smaller than 30, you need to assume that the population of male and female graduate salaries is normally distributed.

(d)
$$(\overline{X}_1 - \overline{X}_2) \pm t \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = (49925.94 - 77478.18) \pm 1.686 \sqrt{591009716 \left(\frac{1}{18} + \frac{1}{22}\right)}$$

$$-40578.7 \le \mu_1 - \mu_2 \le -14525.8$$

10.18
$$H_0: \mu_1 - \mu_2 \ge 0$$

$$H_1: \mu_1 - \mu_2 < 0$$

Excel output:

t-Test: Two-Sample Assuming Unequal Variances

	female	male
Mean	49925.94444	77478.18182
Variance	489142253.2	673473852.5
Observations	18	22
Hypothesized Mean Difference	0	
df	38	
t Stat	-3.624446816	
P(T<=t) one-tail	0.000422668	
t Critical one-tail	1.68595446	
$P(T \le t)$ two-tail	0.000845335	
t Critical two-tail	2.024394164	

Decision rule: reject H_0 if $t_{calc} < -1.686$

Decision: Since $t_{calc} = -3.624$ is less than the-1.686, reject H_0 . The value of pooled-variance t test statistic and the separate-variance t test statistic are almost identical.

10.19 (a) Population 1 = computer-assisted individual-based, 2 = team-based.

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

$$S_p^2 = \frac{(n_1 - 1) S_1^2 + (n_2 - 1) S_2^2}{(n_1 - 1) + (n_2 - 1)}$$

$$S_p^2 = \frac{(20) \cdot 1.9333^2 + (20) \cdot 4.5767^2}{20 + 20} = 12.3419$$

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$t = \frac{\left(17.5571 - 198905\right) - 0}{\sqrt{12.3419\left(\frac{1}{21} + \frac{1}{21}\right)}} = -2.1522$$

Decision rule: df = 40. If $t_{calc} < -2.0211$ or > 2.0211, reject H_0 .

Decision: Since $t_{calc} = -2.1522$ is below the lower critical bound of -2.0211, reject H_0 . There is enough evidence to conclude that the mean assembly times in seconds are different between employees trained in a computer-assisted, individual-based program and those in a team-based program.

(b) You must assume that each of the two independent populations is normally distributed.

(c)
$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$

t Test: Two-Sample Assuming Unequal Variances	Computer- ssisted program	Team- based
		program
Mean	17.55714286	19.8904761
		9
Variance	3.737571429	20.9459047
		6
Observations	21	21
Hypothesized Mean Difference	0	
Df	27	
t Stat	-2.152203195	
P(T<=t) one-tail	0.020240852	
t Critical one-tail	1.703288035	
P(T<=t) two-tail	0.040481703	
t Critical two-tail	2.051829142	

$$t = \frac{\left(17.5571 - 19.8905\right) - 0}{\sqrt{\frac{1.9333^2}{21} + \frac{4.5767^2}{21}}} = -2.1522$$

Decision rule: df = 27. If $t_{calc} < -2.052$ or > 2.052, reject H_0 .

Decision: Since $t_{calc} = -2.1522$ is below the lower critical bound of -2.052, reject H_0 . There is enough evidence to conclude that the mean assembly times in seconds are different between employees trained in a computer-assisted, individual-based program and those in a team-based program.

(d) The results in (a) and (c) are the same.

(e)
$$\left(\bar{X}_{1} - \bar{X}_{2}\right) \pm t \sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)} = \left(17.557 - 19.89\right) \pm 2.021 \sqrt{12.3419 \left(\frac{1}{21} + \frac{1}{21}\right)} -4.524 \le \mu_{1} - \mu_{2} \le -0.142$$

10.20
$$df = n - 1 = 12 - 1 = 11$$

10.21
$$df = n - 1 = 11 - 1 = 10$$

10.22 (a) Population 1 = June 2011 daily room rates, 2 = March 2015 daily rates.

$$H_0: \mu_D = 0$$
$$H_1: \mu_D \neq 0$$

$$\bar{D} = \frac{\sum_{i=1}^{n} D_{i}}{n} \qquad S_{D}^{2} = \sum_{i=1}^{n} (D_{i} - \bar{D})^{2} / n \\
= 27.39042 \qquad = 750.2353$$

$$t = \frac{\overline{D} - \mu_D}{S_D / \sqrt{n}} = \frac{7.333 - 0}{27.39 / \sqrt{18}} = 1.1359$$
$$df = (n - 1) = 17$$
$$t_{0.05} = 2.1098$$

	1			1
2015	2011	Diffs		
120	173	-53		
139	133	6		
105	90	15		
156	167	-11		
170	139	31		
139	141	-2	Mean	7.333333
201	180	21	SD	27.39042
247	223	24	n	18
122	116	6		
125	167	-42	t	1.135897
156	142	14		
316	273	43		
148	143	5		
177	124	53		
165	135	30		
191	176	15		
163	159	4		
235	262	-27		

Decision: Since $t_{calc} = 1.1359$ is less than the upper critical value of 2.1098, do not reject H_0 . There is insufficient evidence to conclude that there is a difference in the mean daily hotel rates in 2011 and 2015.

- (b) You must assume that the distribution of the differences between the hotel daily room rate in 2011 and 2015 is approximately normal.
- (c) *p*-value is 0.27. The probability of obtaining a mean difference in daily hotel rates that gives rise to a test statistic that deviates from 0 by 1.1359 or more in either direction is 0.27 if there is no difference in the mean daily hotel rate in 2011 and 2015.

(d)
$$\bar{D} \pm t \frac{S_p}{\sqrt{n}} = 7.333 \pm 2.1098 \frac{27.39}{\sqrt{18}} -6.2876 \le \mu_p \le 20.9536$$

You are 95% confident that the mean difference in hotel rate between 2011 and 2015 is somewhere between -\$6.29 and \$20.95.

10.23 (a) $H_0: \mu_D = 0$ vs. $H_1: \mu_D \neq 0$ Excel Output:

Pairedt Test	

Data	
HypothesizedMeanDifference	0
Level of significance	0.05
Intermediate Cal	culations
Sample Size	13
DBar	-8.9231
Degrees of Freedom	12
S _D	3.0403
Standard Error	0.8432
t Test Statistic	-10.5820
Two-Tail Tes	t
Lower Critical Value	-2.1788
Upper Critical Value	2.1788
<i>p</i> -Value	0.0000
Reject the null hypothesis	

Test statistic:
$$t = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = -10.582$$

Decision: Since $t_{calc} = -10.582$ falls below the lower critical values -2.1788, reject H_0 . There is enough evidence of a difference in the mean service rating between TV and phone.

(b) You must assume that the distribution of the differences between the mean measurements is approximately normal.

(c)

Both the boxplot and normal probability plot suggest that the distribution does not deviate too far from normal.

(d)
$$\bar{D} \pm t \frac{S_D}{\sqrt{n}} = -8.9231 \pm 2.1788 \frac{3.0403}{\sqrt{13}}$$
 new $-10.76 \le \mu_D \le -7.09$

You are 95% confident that the difference in the mean service rating between TV and phone is between -10.76 and -7.09

10.24 Excel output:

p		
	Cola A Adindex	Cola B(Test Cola) Adindex
Mean	18.55263158	21.31578947
StandardError	0.978937044	0.822086011
Median	18	21

Mode	24	21
StandardDeviation	6.034573222	5.067678519
Sample Variance	36.41607397	25.68136558
Kurtosis	-0.640865482	-0.294923931
Skewness	-0.077015645	-0.173917096
Range	24	21
Minimum	6	9
Maximum	30	30
Sum	705	810
Count	38	38
First Quartile	15	18
Third Quartile	24	24
Interquartile Range	9	6
1.33*StdDev	8.025982385	6.740012431
5*StdDev	30.17286611	25.3383926

From the descriptive statistics provided in the Microsoft Excel output there does not seem to be any violation of the assumption of normality. The mean and median are similar and the skewness value is near 0. Without observing other graphical devices such as a stem-and-leaf display, boxplot, or normal probability plot, the fact that the sample size (n = 38) is not very small enables us to assume that the paired t test is appropriate here.

PHStat output:

Pairedt Test		
Data		
HypothesizedMeanDifference	C	
Level of significance	0.05	
Intermediate Calcu	lations	
Sample Size	38	
DBar	-2.7632	
Degrees of Freedom	37	
S_{D}	6.6309	
Standard Error	1.0757	
t Test Statistic	-2.5688	
Lower-Tail Test		
Lower Critical Value	-1.6871	
<i>p</i> -Value	0.0072	
Reject the null hypothesis		

The PHStat output for the paired t test indicates the p-value is 0.0072 < 0.05, and, hence, reject H_0 that the mean Cola A Adindex is no less than Cola B (Test Cola) Adindex. There is enough evidence that the cola video ad is significant in raising the Adindex of the test Cola.

10.25 (a) Population 1 = Fruit Shop, 2 = Supermarket

 $H_0: \mu_D \ge 0$ $H_1: \mu_D < 0$

Excel output t-Test: Paired Two Sample for Means

		Thursday	Friday
Mean		130.9	148
Variance		94.54444	177.3333
Observations		10	10
Pearson Correlation		0.496847	
Hypothesized Difference	Mean	0	
Difference		U	
df		9	
t Stat		-4.51864	
P(T<=t) one-tail		0.000725	
t Critical one-tail		2.821438	
P(T<=t) two-tail		0.00145	
t Critical two-tail		3.249836	

df = 10-1 = 9

Decision rule: Reject H_0 is $t_{calc} < -2.821$

Decision: Since t = -4.519 is less than the lower critical value of -2.821, reject H_0 . There is sufficient evidence at $\alpha = 0.01$ to conclude that petrol prices increase on public holidays.

- (b) The p-value of 0.0007 indicates that there is a 0.0007 probability of observing a calculated value of -4.519 or less if petrol prices on public and non-public holidays are equal.
- 10.26 (a) Population 1 = Before Lumosity, 2 = After Lumosity

 $H_0: \mu_D \ge 0$ $H_1: \mu_D < 0$

Excel output

t-Test: Paired Two Sample for Means

		Before	After
Mean		108.2857	111.4286
Variance		299.5714	300.2857
Observations		7	7
Pearson Correlation		0.955863	
Hypothesized	Mean		
Difference		0	
df		6	
t Stat		-1.61602	
P(T<=t) one-tail		0.078609	
t Critical one-tail		3.142668	
P(T<=t) two-tail		0.157218	
t Critical two-tail		3.707428	

Decision rule: Reject H_0 if $t_{calc} < -3.143$

Decision: Since t = -1.616 is not less than the lower critical value of -3.143, do not reject H_0 . There is insufficient evidence at a = 0.01 to conclude that the mean IQ has increased after using Lumosity.

- (b) The differences between the IQ before and after using Lumosity is approximately normally distributed.
- (c) The *p*-value for this test is 0.079; it needs to be less than 0.01 in order to reject H_0 .
- 10.27 (a) change to 0.05 $\alpha = 0.05$, $n_1 = 8$, $n_2 = 7$, $F_U = 4.21$, $F_L = 0.2375$ i.e. $df_1 = 7$, $df_2 = 6$

(b)
$$\alpha = 0.05, n_1 = 9, n_2 = 6, F_{\cup} = 4.82, F_{\perp} = 0.2075$$

(c)
$$\alpha = 0.025, n_1 = 7, n_2 = 5, F_{\cup} = 9.20, F_{\perp} = 0.1087$$

(d)
$$\alpha = 0.01$$
, $n_1 = 9$, $n_2 = 9$, $F \cup = 6.03$, $F \cup = 0.1658$

10.28

(a)
$$\alpha = 0.05$$
, $n_1 = 8$, $n_2 = 7$, $F_{0.05} = 4.21$, i.e. $df_1 = 7$, $df_2 = 6$

(b)
$$\alpha = 0.025$$
, $n_1 = 9$, $n_2 = 6$, $F_{0.025} = 6.76$

(c)
$$\alpha = 0.01$$
, $n_1 = 7$, $n_2 = 5$, $F_{0.01} = 15.21$

(d)
$$\alpha = 0.005, n_1 = 9, n_2 = 9, F_{0.005} = 7.50$$

10.29

(a)
$$\alpha = 0.05$$
, $n_1 = 16$, $n_2 = 21$, $F_{0.95} = 0.4296$, i.e. $df_1 = 15$, $df_2 = 20$

(b)
$$\alpha = 0.025$$
, $n_1 = 16$, $n_2 = 21$, $F_{0.975} = 0.3629$

(c)
$$\alpha = 0.01$$
, $n_1 = 16$, $n_2 = 21$, $F_{0.99} = 0.2966$

(d)
$$\alpha = 0.005$$
, $n_1 = 16$, $n_2 = 21$, $F_{0.995} = 0.2576$

10.30

$$F_{calc} = \frac{S_2^2}{S_1^2} = \frac{161.9}{133.7} = 1.2109$$
 (or alternatively, $F_{calc} = \frac{S_2^2}{S_1^2} = \frac{133.7}{161.9} = 0.8258$)

- 10.31 There are $\upsilon_2=15$ and $\upsilon_1=10$ degrees of freedom respectively in numerator and denominator of $F=\frac{S_2^2}{S_1^2}$ (or alternatively, 10 and 15 in $F=\frac{S_1^2}{S_2^2}$)
- 10.32 $F_U = 3.52$ and $F_L = 0.327$ (or alternatively $F_U = 3.06 = 1/0.327$ and $F_L = 0.826 = 1/3.52$)
- 10.33 Since $F_{calc} = 1.2109 < F_U = 3.52$ and $F_{calc} = 1.2109 > F_L = 0.327$, then F_{calc} is not in the rejection region. Therefore, do not reject H_0 .
- 10.34 No, since the *F* test is very sensitive to the normality assumption, it cannot be validly used when that assumption is clearly violated by the statement that the data, unlike normally distributed data, is very skewed.

- 10.35 (a) $F_{\alpha k} = S_1^2/S_2^2 = 47.3/36.4 = 1.299$ which is considerably greater than 1, suggesting that $\sigma_1^2/\sigma_2^2 > 1$, that is, $\sigma_1^2 > \sigma_2^2$.
 - (b) $F_v = F(\alpha, \nu_1, \nu_2) = F(0.05, 15, 12) = 2.62$ where $\nu_1 = \text{df}_1 1 = 16 1$ and $\nu_2 = df_2 1 = 13 1$. Thus, since $F_{calc} = 1.299 < F_U = 2.62$, then do not reject H_0 : $\sigma_1^2 = \sigma_2^2$ in favour of H_1 : $\sigma_1^2 > \sigma_2^2$. There is little evidence to support the claim that $\sigma_1^2 > \sigma_2^2$.
 - (c) $F_L = F\Big(1-\alpha, \nu_1, \nu_2\Big) = F\Big(0.95, 15, 12\Big) = 0.4040$ and since $F_{calc} = 1.299$ is not even less than 1, it is certainly not in the lower rejection region, i.e. do not reject H_0 : $\sigma_1^2 = \sigma_2^2$ in favour of H_1 : $\sigma_1^2 < \sigma_2^2$. What little evidence there is that $\sigma_1^2 \neq \sigma_2^2$ is that $\sigma_1^2 > \sigma_2^2$.

10.36

(a)
$$H_0: \sigma_1^2 - \sigma_2^2 = 0$$

 $H_1: \sigma_1^2 - \sigma_2^2 \neq 0$

PHStat2 output

F Test for Differences in Two Variances

Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	54
Sample Variance	144
Smaller-Variance Sample	
Sample Size	32
Sample Variance	100

Intermediate Calculations	
F Test Statistic	1.4400
Population 1 Sample Degrees o	f
Freedom	53
Population 2 Sample Degrees o	f
Freedom	31

Two-Tail Test	
Upper Critical Value	1.9409
<i>p</i> -Value	0.2780
Do not reject the null	
hypothesis	

Since the p-value = 0.278 > 0.05, then do reject H_0 , i.e. underlying variances are equal.

(b) The test assumes that the two populations are both normally distributed.

- (c) The pooled variance *t* test is appropriate.
- 10.37 (a) H_0 : $\sigma_1^2 = \sigma_2^2$ The population variances are the same.

 H_1 : $\sigma_1^2 \neq \sigma_2^2$ The population variances are different.

Decision rule: If $F_{calc} > 2.9786$, reject H_0 .

Test statistic:
$$F = \frac{S_1^2}{S_2^2} = \frac{2.0822^2}{1.6380^2} = 1.6159$$

Decision: Since $F_{calc}=1.6159$ is below the upper critical bound of $F_{\alpha/2}=2.9786$, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different.

- (b) p-value = 0.715. The probability of obtaining a sample that yields a test statistic more extreme than 1.6159 is 0.715 if the null hypothesis that there is no difference in the two population variances is true.
- (c) The test assumes that the two populations are both normally distributed.

Normal Probability Plot of Waiting Time (Bank 1)

Normal Probability Plot of Waiting Time (Bank 2)

(c) cont.

Box-and-whisker Plot of Waiting Time

- (d) Based on the results of (b), it is not appropriate to use the pooled-variance *t*-test to compare the means of the two branches. That is, the *F*-ratio test for testing equality of variances is not justified and since we are not able to assume that the two population variances are equal, we cannot pool the sample variances.
- 10.38 (a) $H_0: \sigma_1^2 \sigma_2^2 = 0$ $H_1: \sigma_1^2 - \sigma_2^2 \neq 0$

PHStat2 output:

F Test for Differences in Two Variances

Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	11
Sample Variance	51.09090909
Smaller-Variance Sample	
Sample Size	11
Sample Variance	20.47272727

Intermediate Calculations					
F Test Sta	tis	tic			2.4956
Population	1	Sample	Degrees	of	
Freedom		-			10
Population	2	Sample	Degrees	of	
Freedom			-		10

Two	-Tail T	est			
Uppe	er Criti	cal Value	•		3.7168
p-Va	lue				0.1653
Do	not	reject	the	null	

Decision: Since the p-value is 0.1653 > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different.

- (b) The p-value = 0.1653. If the population variances of both groups were equal, the probability of a sample F ratio falling in the lower or upper rejection regions is 0.1653.
- (c) The test assumes that the two populations are both normally distributed.
- (d) The pooled-variance t test can be validly carried out.
- 10.39 (a) $H_0: \sigma_1^2 \sigma_2^2 = 0$ The population variances in petrol prices are the same for Campbelltown and the rest of Sydney.

 H_1 : $\sigma_1^2 - \sigma_2^2 \neq 0$ The population variances in petrol prices are not the same for Campbelltown and the rest of Sydney..

Decision rule: if F < 0.74 or F > 1.35, reject the null hypothesis (using n=120 as a proxy).

Test statistics
$$F = \frac{S_1^2}{S_2^2} = \frac{146.41}{161.29} = 0.91$$
.

Decision: Since F=0.74<0.91<1.35 we do not reject the null hypothesis. There is not enough evidence to conclude the population variances in petrol prices are different.

- (b) Assuming the underlying normality in the two populations is met, based on the results obtained in part (a), it is more appropriate to use the pooled-variance t test to compare petrol prices for Campbelltown and the rest of Sydney .
- 10.40 (a)

$$H_0: \pi_1 - \pi_2 = 0$$

 $H_1: \pi_1 - \pi_2 \neq 0$ new

$$Z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where } \overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{55 + 30}{120 + 65} = \frac{85}{185} = 0.459 \, \text{new}$$

$$= \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$= \frac{\left(\frac{55}{120} - \frac{30}{65}\right) - 0}{\sqrt{0.459(1 - 0.459)\left(\frac{1}{120} + \frac{1}{65}\right)}} \, \text{new}$$

$$= -0.04$$

Decision rule: if Z > 1.96 or , -1.96reject H_0

Since -0.04 > -1.96, do not reject $H_{0.}$. Thus there is no evidence that the two group population proportions are not equal.

(b)

$$(p_1 - p_2) \pm Z \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

$$= \left(\frac{55}{120} - \frac{30}{65}\right) \pm 1.96 \sqrt{\frac{\frac{55}{120}\left(1 - \frac{55}{120}\right)}{120} + \frac{\frac{30}{65}\left(1 - \frac{30}{65}\right)}{65}} \text{ new}$$

$$= -0.003 \pm 0.1505$$

10.41 (a)
$$H_0: \ \pi_1 - \pi_2 = 0 \\ H_1: \ \pi_1 - \pi_2 \neq 0$$
 new
$$Z = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where } \ \overline{p} = \frac{x_1 - x_2}{n_1 + n_2} = \frac{45 + 25}{100 + 50} = \frac{70}{150} = 0.467$$

$$= \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{\overline{p}\left(1 - \overline{p}\right)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$= \frac{\left(\frac{45}{100} - \frac{25}{50}\right) - 0}{\sqrt{0.467\left(1 - 0.467\right)\left(\frac{1}{100} + \frac{1}{50}\right)}}$$

$$= -0.5787$$

$$Z_{0.005} = \pm 2.576$$

Thus, fail to reject H_0 as the calculated z is in the non-rejection region. Thus there is not enough evidence that the two group population proportions are unequal.

(b)
$$(p_1 - p_2) \pm Z \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$$

$$= \left(\frac{45}{100} - \frac{25}{50}\right) \pm 2.576 \sqrt{\frac{45}{100} \left(1 - \frac{45}{100}\right) + \frac{25}{50} \left(1 - \frac{25}{50}\right)}$$

$$= -0.05 \pm 0.0132$$

$$= \left[-0.27272, 0.172716\right]$$

10.42 (a)
$$H_0: \pi_1 - \pi_2 \geq 0 \\ H_1: \pi_1 - \pi_2 < 0$$

Where population 1 = Christchurch and population 2 = Brisbane

$$p_1 = \frac{12}{365} = 0.0329, p_2 = \frac{32}{890} = 0.0360, \overline{p} = \frac{12 + 32}{365 + 890} = 0.0348$$

Using the 0.01 level of significance

Decision rule: Reject null hypothesis if Z_{calc} < -2.33.

$$Z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\overline{p}(1 - \overline{p})(\frac{1}{n_1} + \frac{1}{n_2})}} = -0.2703$$

Since -0.2703 > -2.33, we do not reject the null hypothesis at 1% level and conclude that there is not enough evidence that there is a significant improvement in the rate of resignations of Christchurch vs Brisbane factories.

(b)
$$-0.003078 \pm -2.33 \sqrt{\frac{0.0329(1 - 0.0329)}{365} + \frac{0.0360(1 - 0.0360)}{890}} = -0.003078 \pm 0.011228$$

= [-0.014306, 0.00815]

10.43 (a)
$$H_0: \pi_1 - \pi_2 = 0 \text{ new}$$

$$H_1: \pi_1 - \pi_2 \neq 0$$

$$p_1 = 0.38, p_2 = 0.33, \overline{p} = 0.34$$

Using the 0.05 level of significance

Decision, reject null hypothesis if $Z_{calc} < -1.96$ or > 1.96.

$$Z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = 2.6765 \text{ new}$$

Since 2.6765 > 1.96, we reject the null hypothesis. There is sufficient evidence of a significant difference in the proportion of technology crowd-funding projects and games crowd-funding projects that were successful.

ZTest for Differences inTwoProportions		
5 .		
Data		
HypothesizedDifference	0	
Level of Significance	0.05	
Group1		
Number of Items of Interest	316	
Sample Size	831	
Group2		
Number of Items of Interest	923	
Sample Size	2796	
Intermediate Calcu	ılations	
Group 1Proportion	0.380264741	
Group 2Proportion	0.330114449	
Difference in Two Proportions	0.050150292	
Average Proportion	0.3416	
Z Test Statistic	2.6765	
Two-Tail Test		
Lower Critical Value	-1.9600	
Upper Critical Value	1.9600	
<i>p</i> -Value	0.0074	
Reject the null hypothesis		

(b) p-value = 0.0074. The probability of obtaining a difference in proportions that gives rise to a test statistic that deviates from 0 in either direction by 2.6765 or more in either direction is virtually 0 if there is no difference in the proportion of technology crowd- funding projects and games crowd-funding projects that were successful

10.44 (a)
$$H_0: \pi_1 - \pi_2 = 0$$
 new $H_1: \pi_1 - \pi_2 \neq 0$

where Populations: 1 = males, 2 = females

Decision rule: If $Z_{calc} < -2.58$ or > 2.58, reject H_0 .

Zcalc = -3.5080

Decision: Since $Z_{calc} = -3.5080$ is less than the lower critical bound, reject H_0 . There is sufficient evidence to conclude that a significant difference exists in the proportion of males and females who enjoy shopping clothing for themselves

Z Test for Differences in Two Proportions	
Data	
Hypothesized Difference	0
Level of Significance	0.01
Group 1	
Number of Items of Interest 2°	

Sample Size	542		
Group 2			
Number of Items of Interest	276		
Sample Size	543		
Intermediate Calculations			
Group 1 Proportion	0.402214022		
Group 2 Proportion	0.508287293		
Difference in Two Proportions	-0.106073271		
Average Proportion	0.455299539		
Z Test Statistic	-3.50802898		
Two-Tail Test			
Lower Critical Value	-2.575829304		
Upper Critical Value	2.575829304		
<i>p</i> -Value 0.00045			
Reject the null hypothesis			

(b) p-value = 0.0005. The probability of obtaining a difference in two sample proportions of 0.1061 or more in either direction when the null hypothesis is true is 0.0005.

(c) Change question to 99%-0.1835 $\leq \pi_1 - \pi_2 \leq -0.0286$

You are 99% confident that the difference in the proportions of males and females who enjoy shopping clothing for themselves is between -0.1835 and - 0.0286.

Confidence Interval Estimate	
of the Difference Between Two Prop	oortions
Data	
Confidence Level	99%
Intermediate Calculations	
Z Value	-2.575829304
Std. Error of the Diff. between two Proportions	0.030064781
Interval Half Width	0.077441743
Confidence Interval	
Interval Lower Limit	-0.183515014
Interval Upper Limit	-0.028631527

10.45 $H_0: \pi_1 - \pi_2 \leq 0$ The proportion of car drivers in Malaysia that have converted to LPG fuel is no more than the proportion of car drivers in Singapore.

 $H_1:\pi_1-\pi_2>0 \ \ \text{The proportion of car drivers in Malaysia that have converted to}$ LPG fuel is greater than the proportion of car drivers in Singapore.

$$p_1 = 0.4, p_2 = 0.4, \overline{p} = 0.4$$

Using the 0.01 level of significance, reject H_0 , if $Z_{calc} > 2.326$.

$$Z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = 0.00$$

Since 0.00 < 2.326, we do not reject the null hypothesis, there is not enough evidence to show that the proportion of car drivers in Malaysia that have converted to LPG fuel is different as the proportion of car drivers in Singapore.

10.46 $H_0:\pi_{\scriptscriptstyle M}-\pi_{\scriptscriptstyle F}\geq 0$ The proportion of males who prefer margarine is at least the proportion of females who prefer margerine

 $H_1:\pi_{\scriptscriptstyle M}-\pi_{\scriptscriptstyle F}<0$ The proportion of males that prefer margarine is less than the proportion of females that prefer margarine

$$p_{_M} = 0.4024, p_{_F} = 0.4887, \overline{p} = 0.4558$$

Using the 0.05 level of significance

Decision, reject null hypothesis if $Z_{calc} < -1.645$.

$$Z = \frac{(p_{M} - p_{F}) - (\pi_{M} - \pi_{F})}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_{M}} + \frac{1}{n_{F}}\right)}} = -1.235$$

Since -1.235 > -1.645, we do not reject the null hypothesis at 5% level, there is insufficient evident to conclude that the proportion of males who prefer margarine is less than the proportion of females who prefer margarine.

- 10.47 Among the criteria to be used in selecting a particular hypothesis test are the type of data, whether the samples are independent or paired, whether the test involves central tendency or variation, whether the assumption of normality is valid and whether the variances in the two populations are equal.
- 10.48 The separate variance *t* test is used when the variances of independent populations are unequal.
- 10.49 The *F* test can be used to examine the differences in two variances when each of the two populations is assumed to be normally distributed.
- 10.50 With independent populations, the outcomes in one population do not depend on the outcomes in the second population. With two related populations, either repeated measurements are obtained on the same set of items or individuals, or items or individuals are paired or matched according to some characteristic.
- 10.51 Repeated measurements represent two measurements on the same items or individuals, while paired measurements involve matching items according to a characteristic of interest.
- 10.52 When you have obtained data from either repeated measurements or paired data.
- 10.53 They are two different ways of investigating the concern of whether there is a significant difference between the means of two independent populations. If the hypothesised value of 0 for the difference in two population means is not in the confidence interval, then, assuming a two-tailed test is used, the null hypothesis of no difference in the two population means can be rejected.

10.54 When parametric assumptions can be met that the data is normally distributed and measured at least at the interval scale.

10.55 One year return
$$H_0: \sigma_1^2 - \sigma_2^2 = 0$$

$$H_1: \sigma_1^2 - \sigma_2^2 \neq 0$$

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	10
Sample Variance	8.925161111
Smaller-Variance Sample	
Sample Size	10
Sample Variance	3.29496
Intermediate Calculations	
F Test Statistic	2.7087
Population 1 Sample Degrees of Freedom	9
Population 2 Sample Degrees of Freedom	9
Two-Tail Test	
Upper Critical Value	4.0260
p -Value	0.1538
Do not reject the null hypothe	sis
· · · · · · · · · · · · · · · · · · ·	

Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

Populations: 1 = short-term, 2 = long-term

Pooled-Variance t Testfor the Difference Between Two		
(assumes equal populationvariances)		
Data		
Hypothesized Difference	0	
Level of Significance	0.05	
Population1Sample		
Sample Size	10	
Sample Mean	5.046	
Sample StandardDeviation	1.815202468	
Population2Sample		
Sample Size	10	
Sample Mean	11.365	
Sample StandardDeviation	2.987500814	

Intermediate Calculations		
Population1Sample Degrees of Freedom	9	
Population2Sample Degrees of Freedom	9	
Total Degrees of Freedom	18	
Pooled Variance	6.1101	
Standard Error	1.1054	
Difference in Sample Means	-6.3190	
t Test Statistic	-5.7162	
Two-Tail Test		
Lower Critical Value	-2.1009	
Upper Critical Value	2.1009	
<i>p</i> -Value	0.0000	
Reject the null hypothesis		

Since the p-value = 0.0000 is less than 0.05, reject H_0 . There is sufficient evidence to conclude that the mean 1-year return is different between the long-term and short-term bond funds

Three year return

$$H_0: \sigma_1^2 - \sigma_2^2 = 0$$

$$H_1: \sigma_1^2 - \sigma_2^2 \neq 0$$

F Test for Differences inTwoVariances	
Data	
	0.05
Larger-Variance Samp	
Sample Size	10
Sample Variance	4.965444444
Smaller-Variance Sample	
Sample Size	10
Sample Variance	2.279555556
Intermediate Calculatio	ns
F Test Statistic	2.1783
Population1Sample Degrees of Freedom	9
Population2Sample Degrees of Freedom	9
Two-Tail Test	
UpperCritical Value	4.0260
<i>p</i> -Value	0.2617
Donot reject the null hypothesis	
0.05 1	

Since p-value > 0.05, do not reject H_0 . There is not enough evidence to conclude that the two population variances are different. Hence, the appropriate test for the difference in two means is the pooled-variance t test

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

Populations: 1 = short-term, 2 = long-term

Pooled-Variance t Testfor the Difference B	etweenTwo
(assumes equal population variances)	
Data	
HypothesizedDifference	0
Level of Significance	0.05
Population1Sample	
Sample Size	10
Sample Mean	4.82
Sample StandardDeviation	1.50981971
Population2Sample	
Sample Size	10
Sample Mean	11.59
Sample StandardDeviation	2.228327724
Intermediate Calculatio	ns
Population1Sample Degrees of Freedom	9
Population2Sample Degrees of Freedom	9
Total Degrees of Freedom	18
Pooled Variance	3.6225
Standard Error	0.8512
Difference in Sample Means	-6.7700
t Test Statistic	-7.9537
Two-Tail Test	
Lower Critical Value	-2.1009
Upper Critical Value	2.1009
<i>p</i> -Value	0.0000
Reject the null hypothe	esis

Reject the null hypothesis

Since the p-value < 0.05, reject H_0 . There is sufficient evidence to conclude that the mean 3-year return is different between the long-term and short-term funds

10.56 (a) $H_{0}: \sigma_{1}^{2} - \sigma_{2}^{2} = 0$ $H_{1}: \sigma_{1}^{2} - \sigma_{2}^{2} \neq 0$

F Test for Differences in Two Variances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	20
Sample Standard Deviation	5.714421
Smaller-Variance Sample	
Sample Size	38
Sample Standard Deviation	5.406387
Intermediate Calculations	

F Test Statistic	1.117198	
Population 1 Sample Degrees of Freedom	19	
Population 2 Sample Degrees of Freedom	37	
Two-Tail Test		
Upper Critical Value	2.11685	
p-Value	0.749246	
Do not reject the null hypothesis		

Since the p value > 0.05 there is not enough evidence of any difference in the variance of the study time for male students and female students

(b) Since there is not enough evidence of any difference in the variance of the study time for male students and female students, a pooled-variance t test should be used

(c)

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$

Pooled-Variance t Test for the Difference Between Two	
Means (assumes equal population variances)	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population 1 Sample	0.05
Sample Size	20
Sample Mean	16.625
Sample Mean Sample Standard Deviation	5.714421
Population 2 Sample	5.7 14421
Sample Size 38	
Sample Mean	11.02632
Sample Standard Deviation	5.406387
Sample Standard Deviation	3.400307
Intermediate Calculations	
Population 1 Sample Degrees of	19
Freedom	
Population 2 Sample Degrees of	37
Freedom	
Total Degrees of Freedom	56
Pooled Variance	30.39127
Difference in Sample Means	5.598684
t Test Statistic	3.676244
Two-Tail Test	
Lower Critical Value	-2.00324
Upper Critical Value	2.003241
p-Value	0.000532
Reject the null hypothesis	

(d) Since the p value < 0.05 there is enough evidence of a difference in the mean study time for male and female students

- 10.57 (a) At the 5% significance level, there is not enough evidence that the means of responses to 'I have been sunburnt at least once during the summer' are not equal.
 - (b) At the 5% significance level, there is enough evidence to conclude that the mean responses to 'I would willing to pay more for a sunscreen that I know will be more effective while I am swimming' are not equal.
 - (c) At the 5% significance level, there is enough evidence that the means of responses for males and females to 'skin cancer due to sun exposure is something I want to prevent' are not equal.
 - (d) At the 5% significance level, there is not enough evidence to conclude that the means of responses for males and females to 'I was not aware that sunscreen needs to be applied at least twenty minutes before exposure to the sun' are not equal.
 - (e) The means of the responses for males and females to two out of the four questions being asked in the survey are significantly different, at the 5% significance level.
- 10.58 (a) $H_{\scriptscriptstyle 0}:\mu_{\scriptscriptstyle A}-\mu_{\scriptscriptstyle S}=0$ Mean petrol is the same in Adelaide and rural South Australia

 $H_{\scriptscriptstyle 1}:\mu_{\scriptscriptstyle A}-\mu_{\scriptscriptstyle S}\neq 0$ Mean petrol is different in Adelaide and rural South Australia

Assuming that the samples are from underlying normal populations with equal variances, we can use pooled-variance t test. The t test statistics follow a t distribution with 44 degrees of freedom. Using a level of significance of 0.01, the critical values are -2.692 and 2.692.

Reject H_0 if $t_{calc} < -2.692$ or > 2.692 Test statistics:

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

Where:

$$S_p^2 = \frac{\left(n_1 - 1\right)S_1^2 + \left(n_2 - 1\right)S_2^2}{\left(n_1 - 1\right) + \left(n_2 - 1\right)} = \frac{24\left(0.23^2\right) + 20\left(0.74^2\right)}{24 + 20} = 0.278$$

$$t = \frac{\left(1.23 - 1.43\right) - 0}{\sqrt{0.278\left(\frac{1}{25} + \frac{1}{21}\right)}} = -1.281$$

Since, -1.281 > -2.692, we do not reject the null hypothesis and at 1% significance level, we conclude that there is not enough evidence that mean price petrol in Adelaide is higher than that of rural South Australia.

(b) $H_0:\sigma_{\rm A}^2-\sigma_{\rm S}^2=0\,{\rm The\ population\ variances\ for\ petrol\ in\ Adelaide\ and\ rural\ South\ Australia\ are\ the\ same}$

 $H_1: \sigma_A^2 - \sigma_S^2 \neq 0$ The population variances for petrol in Adelaide and rural South Australia are different

Decision rule: Reject null if F > 3.22, or F < 0.33

Test statistics:
$$F = \frac{S_A^2}{S_S^2} = \frac{0.23^2}{0.74^2} = 0.097$$

Decision: Since F = 0.097 is less than 0.33, we reject H_0 . There is enough evidence to conclude that Adelaide and rural South Australia have different population variances for mean petrol prices.

(c)
$$(\overline{X}_1 + \overline{X}_2) \pm t_{n_1 + n_2 - 2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$(1.23 - 1.43) \pm 2.692 \sqrt{(0.278) \left(\frac{1}{25} + \frac{1}{21}\right)}$$

$$-0.62 \le \mu_1 - \mu_2 \le 0.22$$

We are 95% confident that the difference in mean petrol prices between Adelaide and rural South Australia is between -0.62 to 0.22. From a hypothesis-testing perspective, since the interval includes zero, we do not reject the null hypothesis of no difference between the means of the two populations.

10.59 (a)

> H_{o} : $\mu_{\mathrm{R}} \! \leq \! 6$: The mean processing time in the research department is not greater than 6 seconds

> $H_{\scriptscriptstyle 0}$: $\mu_{\scriptscriptstyle R} > 6$: The mean processing time in the research department is greater than 6 seconds

Decision rule:
$$df = 5$$
. If $t_{calc} > 2.015$, reject null hypothesis.
Test statistics: $t = \frac{\overline{X} - \mu}{S} = \frac{85 - 6}{3.1464} = 1.9463$

Decision: Since t = 1.9643 < 2.015, do not reject the null hypothesis. There is not enough evidence to conclude that the mean processing time in the research department is greater than 6 seconds.

 $H_0:\sigma_{\scriptscriptstyle A}^2-\sigma_{\scriptscriptstyle R}^2=0$: The population variances for processing times are the (b) same for the accounting department and research department $H_1:\sigma_{\rm A}^2-\sigma_{\rm R}^2 \neq 0$: The population variances for processing times are different for the accounting department and the research department Decision rule: if F < 0.107 or F > 7.39, reject the null hypothesis.

Test statistics
$$F = \frac{S_A^2}{S_P^2} = \frac{3.2711^2}{3.1464^2} = 1.08$$
.

Decision: Since F = 1.08 is between critical bounds of 0.107 and 7.39, do not reject the null hypothesis. There is not enough evidence to conclude that the population variances for processing times are different for the accounting department and the research department.

(c) $H_0: \mu_{\scriptscriptstyle A} - \mu_{\scriptscriptstyle R} = 0$: The two departments have the same mean processing time

 $H_1: \mu_A - \mu_R \neq 0$: The two departments have different mean processing time Assuming that the samples are from underlying normal populations with equal variances, we can use pooled-variance t test. The t test statistics follow a t distribution with 9 degrees of freedom. Using a level of significance of 0.05, the critical values are -2.2622 and 2.2622.

Reject H_0 if $t_{calc} < -2.2622$ or > 2.2622

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$

Where:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)} = \frac{4(3.2711^2) + 5(3.1464^2)}{4 + 5} = 10.2556$$

$$t = \frac{(7.8 - 8.5) - 0}{\sqrt{10.2556(\frac{1}{5} + \frac{1}{6})}} = -0.3610$$

Since, -0.3610 > -2.2622, we do not reject the null hypothesis and at 5% significance level, we conclude that there is not enough evidence that the two departments have different mean processing times.

(d) (a) p-value = 0.0545. Since the p-value > 0.05, the probability of obtaining a t test statistic value that is 1.9643 or greater is 5.46% if the mean processing time in the research department is no more than 6 seconds.

(b) Given F=1.08, numerator df=4 and denominator df=5 for a two-tailed hypothesis test:

$$P\left(\frac{1}{F_{5,4}} < \frac{1}{1.08}\right) = 0.4551 \ P\left(F_{5,4} > 1.08\right) = 0.4551$$
$$p - value = P\left(\frac{1}{F_{5,4}} < \frac{1}{1.08}\right) + P\left(F_{5,4} > 1.08\right) = 0.9102$$

The probability of obtaining the F statistic value that is smaller than 1.108 or larger than 1.08 is 91.02% if the population variances for processing times are the same for the accounting department and the research department.

(c) Given t = -0.3610, df = 9 for a two-tailed hypothesis test, the p-value = 0.7264 using excel.

(e)
$$\left(\bar{X}_{A} - \bar{X}_{R}\right) \pm t_{n1+n2-2} \sqrt{S_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}$$

$$-0.7 \pm 2.2622 \sqrt{10.2556 \left(\frac{1}{5} + \frac{1}{6}\right)} = -5.0867 \le \mu_{A} - \mu_{R} \le 3.6867$$

You are 95% confident that the mean difference in the mean processing times between the accounting and research departments is between – 5.0867 and 3.6867 seconds.

10.60 (a) $H_0: \mu_{\rm Z} - \mu_{\rm A} \le 0$ New Zealand watches no more television on average than Australia

 $H_1: \mu_z - \mu_A > 0$ New Zealand has the higher average than Australia

Assuming that the samples are from underlying normal populations with equal variances, we can use pooled-variance t test. The t test statistics follow a t distribution with 100 degrees of freedom. Use a level of significance of 0.05. The critical value is 2.692.

Reject H_0 if $t_{calc} > 2.692$.

Test statistics:
$$t = \frac{\left(\overline{X}_z - \overline{X}_A\right) - \left(\mu_z - \mu_A\right)}{\sqrt{S_p^2 \left(\frac{1}{n_z} + \frac{1}{n_A}\right)}}$$

Where:
$$S_p^2 = \frac{(n_z - 1) S_z^2 + (n_A - 1) S_A^2}{(n_z - 1) + (n_A - 1)} = \frac{40(34^2) + 60(23^2)}{100} = 779.8$$

$$t = \frac{\left(245 - 220\right) - \left(\mu_Z - \mu_A\right)}{\sqrt{779.8\left(\frac{1}{41} + \frac{1}{61}\right)}} = 4.43$$

Since 4.43 > 2.692, we reject the null hypothesis and we conclude that at 5% significance level, there is enough evidence that New Zealand has a higher mean of watching television compared to Australia.

(b) $H_0: \mu_{\rm Z} - \mu_{\rm A} \leq 0$ New Zealand watches no more television on average than Australia

 $H_1: \mu_Z - \mu_A > 0$ New Zealand has the higher average than Australia Test statistics:

$$df = 64$$

$$t = \frac{\left(\overline{X}_z - \overline{X}_A\right) - \left(\mu_z - \mu_A\right)}{\sqrt{\frac{S_z^2}{n_z} + \frac{S_A^2}{n_A}}} = \frac{25 - 0}{6.072} = 4.117$$

Decision: reject H_0 if $t_{calc} > 1.669$.

Since 4.117 > 1.669, we reject the null hypothesis. We conclude that at 5% significance level, there is enough evidence that New Zealand has a higher mean of watching television compared to Australia.

(c) $H_0: \sigma_Z^2 - \sigma_A^2 = 0$: The population variances for mean time to watch TV are the same for New Zealand and Australia

 $H_1: \sigma_z^2 - \sigma_A^2 \neq 0$ The population variances for mean time to watch TV are different for New Zealand and Australia

Decision rule: if F_{calc} < 0.556 or > 1.74, reject the null hypothesis.

Test statistics:
$$F = \frac{S_Z^2}{S_A^2} = \frac{34^2}{23^2} = 2.185$$
.

Decision: Since F = 2.185 > 1.74 we reject the null hypothesis. There is enough evidence to conclude that the population variances for mean time to watch TV are different for New Zealand and Australia.

- (d) Test in part (b) is appropriate since the variances of Australia and New Zealand are different.
- (e) As illustrated in part (d) in which there is enough evidence that the population variances are different for the mean time of watching television for Australia and New Zealand, the t test with unequal variances is appropriate in this case. The p-value is virtually zero. The probability of observing a sample t_{calc} that is greater than 4.117 is 0% which is an unlikely event.

The test in (a) is not appropriate since based on the result of hypothesis testing in (d), we know that the variances are unequal. The p-value in this case is also virtually zero. In this case, two tests give us the same result.

10.61 (a)
$$H_0: \sigma_1^2 - \sigma_2^2 = 0 \\ H_1: \sigma_1^2 - \sigma_2^2 \neq 0$$

Population 1 = Pinterest, 2 = Facebook

F Test for Differences inTwoVariances	
Data	
Level of Significance	0.05
Larger-Variance Sample	
Sample Size	500
Sample Variance	22500
Smaller-Variance Sample	
Sample Size	500
Sample Variance	6400
Intermediate Calculations	
F Test Statistic	3.5156
Population1Sample Degrees of Freedom	499
Population2Sample Degrees of Freedom	499
Two-Tail Test	
Upper Critical Value	1.1921
<i>p</i> -Value	0.0000
Reject the null hypothesis	

Since the p-value < 0.05, reject H_0 . There is enough evidence of a difference in the variances of the order values between Pinterest shoppers and Facebook shoppers. Hence, a separate-variance t test is appropriate

(b)
$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$

Separate-Variances t Test for the Differ	ence BetweenT
(assumes unequal populationvar	
Data	
Hypothesized Difference	0
Level of Significance	0.05
Population1Samp	le
Sample Size	500
Sample Mean	153
Sample StandardDeviation	150.0000
Population2Samp	le
Sample Size	500
Sample Mean	85
Sample StandardDeviation	80.0000
Intermediate Calcul	ations
Numerator of Degrees of Freedom	3340.8400
Denominator of Degrees of Freedom	4.3865
Total Degrees of Freedom	761.6268
Degrees of Freedom	761
Standard Error	7.6026
Difference in Sample Means	68.0000
Separate-Variance t Test Statistic	8.9443
Two-Tail Test	
Lower Critical Value	-1.9631
Upper Critical Value	1.9631
<i>p</i> -Value	0.0000
Reject the null hypo	thesis

Since the *p*-value is virtually zero, reject H_0 . There is enough evidence of a difference in the mean order value between Pinterest shoppers and Facebook shoppers (c) $53.0754 \le \mu_1 - \mu_2 \le 82.92462003$

10.62 (a)
$$\begin{aligned} H_0: \pi_1 - \pi_2 &= 0 \\ H_1: \pi_1 - \pi_2 &\neq 0 \end{aligned}$$

where Populations: 1 = Males, 2 = Females

PHStat2 output:

ZTest for Differences inTwoProportions

-	
Data	
HypothesizedDifference	0
Level of Significance	0.05
Group1	
Number of Items of Interest	50
Sample Size	300
Group2	
Number of Items of Interest	96
Sample Size	330
Intermediate Calculations	
Group 1Proportion	0.166666667
Group 2Proportion	0.290909091
Difference in Two Proportions	-0.12424242
Average Proportion	0.2317
Z Test Statistic	-3.6911
Two-Tail Test	
Lower Critical Value	-1.9600
Upper Critical Value	1.9600
<i>p</i> -Value	0.0002
Reject the null hypothesis	

Since the p-value is smaller than 0.05, reject H_0 . There is enough evidence of a difference between males and females in the proportion who order dessert

Decision rule: Reject H_0 if $Z_{calc} > 1.645$

Decision: Since $Z_{calc} = 1.07 < 1.645$, we do not reject H_0 . There is insufficient evidence to suggest a greater proportion of younger voters vote for the Greens compared to older voters.

(b) From the PHStat2 output, the p-value is 0.1422.

(c)

F Test Two-Sample for Variances

	Male	Female
Mean	88683.23684	74575.17544
Variance	3834187011	2243135437
Observations	114	114
df	113	113
F	1.709298042	
P(F <= f)		
one-tail	0.002354401	
<i>F</i> Critical		
one-tail	1.553351444	

 H_0 : $\sigma_{\scriptscriptstyle M}^2 - \sigma_{\scriptscriptstyle F}^2 = 0$: The population variances are the same

 $H_1:\sigma_M^2-\sigma_F^2\neq 0$: The population variances are different

Decision rule: if F_{calc} < 0.614 or > 1.629, reject null hypothesis.

Test statistics: $F = \frac{S_M^2}{S_F^2} = 1.709$

Decision: Since F = 1.709 > 1.629, reject null hypothesis. There is enough evidence to conclude that the two population variances are different.

The two normal probability plots do not suggest any departure from the normality assumption. You can perform F test on the different variances.

$$H_0: \sigma_C^2 - \sigma_S^2 = 0$$
, $H_1: \sigma_C^2 - \sigma_S^2 \neq 0$

F Test Two-Samp Variances		
	Variable 1	Variable 2
Mean	1313.566667	1435
Variance	8088.529885	14939.79592
Observations	30	50
df	29	49
F	0.541408325	
P(F <= f) one-		
tail	0.039847629	

F Critical one-		
tail	0.562623603	

Since the p-value = 0.07965 > 0.05, we do not reject the null hypothesis. There is not sufficient evidence to conclude that two variances are different. We can perform pooled variance t test for differences in means.

$$H_0: \mu_C - \mu_S = 0$$

 $H_1: \mu_C - \mu_S \neq 0$

t Test: Two-Sample Assuming Equal Variances					
	Variable 1	Variable 2			
Mean	1313.566667	1435			
Variance	8088.529885	14939.79592			
Observations	30	50			
Pooled Variance	12392.53034				
Hypothesized Mean					
Difference	0				
df	78				
<i>t</i> Stat	-4.72344168				
$P(T \le t)$ one-tail	5.03164E-06				
t Critical one-tail	1.664624645				
$P(T \le t)$ two-tail	1.00633E-05	_			
t Critical two-tail	1.990847069				

Since the p-values are essentially zero, reject the null hypothesis. There is sufficient evidence to conclude that means of transport costs are different for NSW and Sydney trainees.

Both normal probability plots suggest that both distributions are not normal. It is inappropriate to perform an F test on the difference in variances. Values on sample variances, $S_c^2 = 617974.01$ and $S_s^2 = 1306292.396$, suggest that a separate variance t test is more appropriate.

$$H_0: \mu_C - \mu_S = 0$$

$$H_1: \mu_C - \mu_S \neq 0$$

t Test: Two-Sample Assuming Unequal Variances				
t rest. Two Sumple Assuming offequal variance				
	Variable 1	<i>Variable</i> 2		
Mean	5986.7	7917.18		
Variance	617974.0103	1306292		
Observations	30	50		
Hypothesized Mean				
Difference	0			
Df	76			
<i>t</i> Stat	-8.93080768			
$P(T \le t)$ one-tail	9.05559E-14			
t Critical one-tail	1.665151353			
$P(T \le t)$ two-tail	1.81112E-13			
t Critical two-tail	1.99167261			

Since the p-value is essentially zero, reject the null hypothesis. There is sufficient evidence to conclude that the means of the rent cost are different for NSW country and Sydney.

Both normal probability plots suggest that both distributions are not normal. It is inappropriate to perform an F test on the difference in variances. Values on sample variances, $S_{\mathcal{C}}^2 = 9410128.179$ and $S_{\mathcal{S}}^2 = 15180521.27$, suggest that a separate variance t test is more appropriate.

$$H_0: \mu_C - \mu_S = 0$$

 $H_1: \mu_C - \mu_S \neq 0$

t Test: Two-Sample Assuming Unequal Variances						
	Variable					
	1 Varia					
Mean	27478.4	29124.44				
Variance	9410128	15180521				
Observations	30	50				
Hypothesized	0					

Mean Difference		
df	72	
t Stat	-2.09507	
$P(T \le t)$ one-tail	0.019841	
t Critical one-tail	1.666294	
$P(T \le t)$ two-tail	0.039683	
t Critical two-tail	1.993464	

Since the p-values for a two-tail test is 0.0397 < 0.05, reject the null hypothesis. There is sufficient evidence to conclude that the means of the annual wages are different for NSW country and Sydney trainees.

10.64

•			
Α		В	
Mean	7377.325	Mean	8260.9
Standard		Standard	
Error	135.3817224	Error	143.8566051
Median	7316.5	Median	8140.5
Mode	8416	Mode	#N/A
Standard		Standard	
Deviation	856.2291925	Deviation	909.8290569
Sample		Sample	
Variance	733128.4301	Variance	827788.9128
Kurtosis	-1.010573077	Kurtosis	-1.311672475
Skewness	-0.17096025	Skewness	0.047944167
Range	3187	Range	3043
Minimum	5544	Minimum	6701
Maximum	8731	Maximum	9744
Sum	295093	Sum	330436
Count	40	Count	40

From the descriptive statistics above, we know that both data seem to have come from rather symmetrical distributions that are quite normally distributed since the value of skewness is close to zero.

F Test Two-Sa				
	Α	В		
Mean	7377.325	8260.9		
Variance	733128.4301	827788.9		
Observations	40	40		
df	39	39		
F	0.885646593			
P(F <= f)				
one-tail	0.35321677			
F Critical				
one-tail	0.586694336			

The following F test p-value = 0.7064. Do not reject the null hypothesis. There is insufficient evidence that the two population variances are significantly different at 5% significance level.

Since both data are drawn from independent populations, the most appropriate test for any difference in the life of the bulbs between two manufacturers is the pooled variance t test.

t Test: Two-Sample Assuming Equal Variances				
	Α	В		
Mean	7377.325	8260.9		
Variance	733128.4301	827788.9		
Observations	40	40		
Pooled Variance	780458.6715			
Hypothesized Mean				
Difference	0			
df	78			
t Stat	-4.472841019			
P(T<=t) one-tail	1.29478E-05			
t Critical one-tail	1.664624645			
P(T<=t) two-tail	2.58957E-05			
t Critical two-tail	1.990847069			

Since the p-value is virtually zero, at the 5% significance level, there is sufficient evidence to reject the null hypothesis of no difference in the mean life of the bulbs between two manufacturers. Based on the above analysis we can conclude that there is significant difference in the life of the bulbs between two manufacturers.

10.65 Female

		Current		Тор		Season	
Age		points		speed		points	
Mean	24.48387	Mean	184.9032	Mean	71.70968	Mean	3460.323
Standard		Standard		Standard		Standard	
Error	0.483871	Error	2.599981	Error	0.464187	Error	105.6994
Median	24	Median	183	Median	72	Median	3505
Mode	23	Mode	184	Mode	72	Mode	3590
Standard		Standard		Standard		Standard	
Deviation	2.69408	Deviation	14.47608	Deviation	2.584486	Deviation	588.5093
Sample		Sample		Sample		Sample	
Variance	7.258065	Variance	209.557	Variance	6.67957	Variance	346343.2
Kurtosis	0.050729	Kurtosis	2.586411	Kurtosis	-0.51209	Kurtosis	-1.2441
Skewness	0.013505	Skewness	1.489346	Skewness	0.157465	Skewness	-0.17929
Range	12	Range	64	Range	10	Range	1830
Minimum	18	Minimum	163	Minimum	67	Minimum	2485
Maximum	30	Maximum	227	Maximum	77	Maximum	4315
Sum	759	Sum	5732	Sum	2223	Sum	107270
Count	31	Count	31	Count	31	Count	31

Male

		Current		Тор		Season	
Age		points		speed		points	
Mean	22.15556	Mean	187.9778	Mean	71	Mean	3391.722
Standard		Standard		Standard		Standard	
Error	0.456309	Error	1.33931	Error	0.331079	Error	50.79488
Median	21	Median	189	Median	71	Median	3427.5
Mode	21	Mode	201	Mode	68	Mode	3990
Standard		Standard		Standard		Standard	
Deviation	4.328923	Deviation	12.70581	Deviation	3.140887	Deviation	481.8825
Sample		Sample		Sample		Sample	
Variance	18.73958	Variance	161.4377	Variance	9.865169	Variance	232210.8
Kurtosis	8.172932	Kurtosis	-0.29096	Kurtosis	-0.0965	Kurtosis	-0.50866
Skewness	2.47886	Skewness	-0.2567	Skewness	0.556294	Skewness	-0.29968
Range	24	Range	60	Range	14	Range	2165
Minimum	17	Minimum	155	Minimum	65	Minimum	2150
Maximum	41	Maximum	215	Maximum	79	Maximum	4315
Sum	1994	Sum	16918	Sum	6390	Sum	305255
Count	90	Count	90	Count	90	Count	90

From the descriptive statistics above, we can see that the value of skewness and kurtosis are quite different from normal distribution. The F test for the difference in variances, which is sensitive to departure from normal probability distribution assumption, will not be appropriate. The variances of all the variables between female and male cyclists are also quite different. Hence, you perform separate variance t tests on the difference on means.

$$H_0: \mu_F - \mu_M = 0$$

 $H_1: \mu_F - \mu_M \neq 0$

t Test: Two-Sample Variances	Assuming	Unequal
	Variable 1	<i>Variable</i> 2
Mean	24.48387	22.15556
Variance	7.258065	18.73958
Observations	31	90
Hypothesized Mean		
Difference	0	
Df	85	
t Stat	3.500737	
P(T<=t) one-tail	0.000371	
t Critical one-tail	1.662978	
P(T<=t) two-tail	0.000742	
t Critical two-tail	1.988268	

Since the p-value is 0.0007 < 0.05, we reject the null hypothesis. There is sufficient evidence to conclude that the mean ages are different between males and females.

Current points:

$$H_0: \mu_F - \mu_M = 0$$

$$H_1: \mu_F - \mu_M \neq 0$$

t Test: Two-Sample Variances	Assuming	Unequal
	Variable	Variable
	1	2
Mean	184.9032	187.9778
Variance	209.557	161.4377
Observations	31	90
Hypothesized Mean		
Difference	0	
df	47	
t Stat	-1.05125	
P(T<=t) one-tail	0.14926	
t Critical one-tail	1.677927	
P(T<=t) two-tail	0.298519	
t Critical two-tail	2.011741	

Since, the p-values = 0.298 > 0.05, we do not reject the null hypothesis. There is not enough evidence to conclude that the mean current points are different between males and females.

$$H_0: \mu_F - \mu_M = 0$$

$$H_1: \mu_F - \mu_M \neq 0$$

t Test: Two-Sample Variances	Assuming	Unequal
	Variable 1	Variable 2
Mean	71.70968	71
Variance	6.67957	9.865169
Observations	31	90
Hypothesized Mean Difference	0	
df	63	
t Stat	1.244698	
P(T<=t) one-tail	0.108927	
t Critical one-tail	1.669402	
P(T<=t) two-tail	0.217853	
t Critical two-tail	1.998341	

Since p-value = 0.2179 > 0.05, we do not reject the null hypothesis. There is not enough evidence to conclude that the mean top speed is different between males and females.

Season points

$$H_0: \mu_F - \mu_M = 0$$

$$H_1: \mu_F - \mu_M \neq 0$$

t Test: Two-Sample	Assuming	Unequal
Variances		
	Variable	Variable
	1	2
Mean	3460.323	3391.722
Variance	346343.2	232210.8
Observations	31	90
Hypothesized Mean		
Difference	0	
Df	45	
t Stat	0.584973	
P(T<=t) one-tail	0.280744	
t Critical one-tail	1.679427	
P(T<=t) two-tail	0.561488	
t Critical two-tail	2.014103	

Since the p-values = 0.5615 > 0.05, we do not reject the null hypothesis. There is not sufficient evidence that the mean season points are different between males and females.

10.66

$$H_0: \mu_D = 0$$

$$H_1: \mu_D \neq 0$$

Choosing the level of significance = 0.1 and assuming the differences are normally distributed, use paired t test. Degrees of freedom = 7 Reject null hypothesis if $t_{calc} > 1.895$ or < -1.895.

$$t = \frac{\bar{D} - \mu_{D}}{\frac{S_{D}}{\sqrt{n}}} = \frac{-35.125}{44.95} = -0.781$$

Since -0.781 > -1.895, we do not reject the null hypothesis and there is not enough evidence that the husband and wife of a couple have different spending patterns at 10% significance level.

10.67
$$H_0: \sigma_1^2 - \sigma_2^2 = 0$$

$$H_1: \sigma_1^2 - \sigma_2^2 \neq 0$$

FTestfor Differences in Two Variances		
Data		
Level of Significance	0.01	
Larger-Variance Sample		
Sample Size	100	
Sample Variance	15625	
Smaller-Variance Sample		
Sample Size	100	
Sample Variance	10000	
Intermediate Calculations		
F Test Statistic	1.5625	

Population1SampleDegreesofFreedo	99	
Population2SampleDegreesofFreedo	99	
Two-Tail Test		
Upper Critical Value	1.6854	
<i>p</i> -Value	0.0274	
Donot reject the null hypothesis		

Since p > 0.01 there is not enough evidence of a difference in the variances of the amount of time spent talking between women and men

(b)It is more appropriate to use a pooled-variance *t* test

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

Pooled-Variance t Testforthe Difference	a Retwee		
(assumes equal populationvariances)	CDCLVVCC		
Data			
HypothesizedDifference	0		
Level of Significance	0.01		
Population1Sample			
Sample Size	100		
Sample Mean	818		
Sample StandardDeviation	125		
Population2Sample			
Sample Size	100		
Sample Mean	716		
Sample StandardDeviation	100		
Intermediate Calculation	Intermediate Calculations		
Population1SampleDegreesofFreedo	99		
Population2SampleDegreesofFreedo	99		
Total Degrees of Freedom	198		
Pooled Variance	12812.5		
Standard Error	16.0078		
Difference in Sample Means	102		
t Test Statistic	6.3719		
Two-Tail Test	Two-Tail Test		
Lower Critical Value	-2.6009		
Upper Critical Value	2.6009		
<i>p</i> -Value	0.0000		
Reject the null hypothesis			

Since p value is virtually zero there is enough evidence of a difference in the mean amount of time spent talking between women and men.

(c)
$$H_0: \sigma_1^2 - \sigma_2^2 = 0$$

$$H_1: \sigma_1^2 - \sigma_2^2 \neq 0$$

FTestfor Differences in Two Variances		
Data		
Level of Significance	0.01	
Larger-Variance Sample	е	
Sample Size	100	
Sample Variance	22500	
Smaller-Variance Sample		
Sample Size	100	
Sample Variance	15625	
Intermediate Calculations		
F Test Statistic	1.4400	
Population1SampleDegreesofFreedo	99	
Population2SampleDegreesofFreedo	99	
Two-Tail Test		
Upper Critical Value	1.6854	
<i>p</i> -Value	0.0711	
Donot reject the null hypothesis		

Since p value > 0.01 there is not enough evidence of a difference in the variances of the number of text messages sent per month by women and men.

(d) It is more appropriate to use a pooled-variance t test.

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

(assumes equal populationvariances)		
Data		
HypothesizedDifference	0	
Level of Significance	0.01	
Population1Sample		
Sample Size	100	
Sample Mean	716	
Sample StandardDeviation	150	
Population2Sample		
Sample Size	100	
Sample Mean	555	
Sample StandardDeviation	125	
Intermediate Calculations		
Population1SampleDegreesofFreedo	99	
Population2SampleDegreesofFreedo	99	
Total Degrees of Freedom	198	
Pooled Variance	19062.5	
Standard Error	19.5256	
Difference in Sample Means	161	
t Test Statistic	8.2456	
Two-Tail Test		
Lower Critical Value	-2.6009	
Upper Critical Value	2.6009	
<i>p</i> -Value	0.0000	
Reject the null hypothesis		

Since p value is virtually zero there is enough evidence of a difference in the mean number of text messages sent per month by women and men

$$H_0: \sigma_L^2 - \sigma_S^2 \le 0$$
 , $H_1: \sigma_L^2 - \sigma_S^2 > 0$

Decision rule: If $F_{calc} > 4.54$, reject null hypothesis.

Test statistics:
$$F = \frac{S_l^2}{S_s^2} = 1.345$$

Decision: Since F = 1.345 < 4.54, we do not reject the null hypothesis. There is not enough evidence to conclude that two population variances are different at 1% significance level.

10.69 (a) As the data prices for the same items at two different stores, a paired t test is appropriate.

 $H_0: \mu_{\mathcal{C}} - \mu_{\mathcal{W}} = 0$ The mean price of stationery at Coles and Woolworths are the same in the week

 $H_1:\mu_{\rm C}-\mu_{\rm W} \neq 0$ The mean price of stationery at Coles and Woolworths are different in the week

t Test: Paired Two-Sample for Means		
	Coles	Woolworths
Mean	0.719333	0.702667
Variance	0.37575	0.371807
Observations	15	15
Pearson Correlation	0.960864	
Hypothesized Mean		
Difference	0	
Df	14	
t Stat	0.377318	
P(T<=t) one-tail	0.355798	
t Critical one-tail	2.624494	
P(T<=t) two-tail	0.711595	
t Critical two-tail	2.976843	

Since t = 0.377 < 2.9768, we do not reject the null hypothesis and conclude that there is insufficient evidence that the mean price of stationery was different at Coles and Woolworths.

(b) The p-value for two-tail test is 0.7116 > 0.01, so we do not reject the null hypothesis. The p-value represents the probability of obtaining samples that will yield a test statistic more extreme than 0.3773 if the means are equal.

$$H_0: \pi_p - \pi_r \leq 0$$

$$H_1: \pi_p - \pi_r > 0$$

$$p_p = 0.74$$
, $p_r = 0.4635$, $\overline{p} = 0.5976$

Using the 0.01 level of significance

Decision, reject null hypothesis if $Z_{calc} > 2.326$

$$Z = \frac{(p_{p} - p_{r}) - (\pi_{p} - \pi_{r})}{\sqrt{\overline{p}(1 - \overline{p})(\frac{1}{n_{p}} + \frac{1}{n_{r}})}} = 11.521$$

Since 11.521 > 2.326, we reject the null hypothesis and conclude that there is enough evidence that the proportion of city dwellers who have access ADSL is higher than the proportion of regional dwellers.

10.71
$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$
df = 20 + 20 -2 = 38

Decision rule: Reject H_0 if $t_{calc} < -2.0244$ or > 2.0244.

Since $t_{calc} = 5.1615 > 2.0244$, reject H_0 .

There is enough evidence of a difference in the mean delivery time in the two wings of the hotel.

10.72 To construct the 95% confidence interval estimate in question 10.70

$$(0.74 - 0.4635) \pm 1.96 \sqrt{\frac{0.1824}{800} + \frac{0.2487}{850}} = [0.2318, 0.32125]$$

You have 95% confidence that the difference between the population proportion of city dwellers and regional dwellers who have access to ADSL is between 0.2315 and 0.3213.

10.73

$$H_0: \pi_p - \pi_F \le 0 \\ H_1: \pi_p - \pi_F > 0$$

$$p_1 = 0.76$$
, $p_2 = 0.78$, $\overline{p} = 0.773$

Using the 0.1 level of significance Decision, reject null hypothesis if $Z_{calc} > 2.326$

$$Z = \frac{(p_{p} - p_{f}) - (\pi_{p} - \pi_{f})}{\sqrt{\overline{p}(1 - \overline{p})\left(\frac{1}{n_{p}} + \frac{1}{n_{f}}\right)}} = -0.323$$

Since -0.323 < 1.282, we reject the null hypothesis at 10% level and conclude that there is not enough evidence that the proportion of young males is higher than the proportion of males speeding on a regular basis.