02-02 Représentation des documents et métriques de distance

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE ET SERVICES AUX ENTREPRISES

Sommaire

- 1. Représentation des documents
- 2. Métriques de distance
- 3. Lectures et références

Sommaire

- 1. Représentation des documents
- 2. Métriques de distance
- 3. Lectures et références

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot

Messi est un joueur de foot de l'équipe d'Argentine. Au Québec, le foot est appelé "soccer"

- Modèle sac de mots (bag of words)
 - Ignore l'ordre des mots
 - Compte le nombre d'occurence de chaque mot
 - Équivalent à un histogramme

Messi est un joueur de foot de l'équipe d'Argentine. Au Québec, le foot est appelé "soccer"

Représentation word count - Inconvénients

- Les mots fréquents dominent les mots rares
- le / de / est / foot
- Messi / soccer / etc ...

Messi est un joueur de foot de l'équipe d'Argentine. Au Québec, le foot est appelé "soccer" ...

- La représentation TF-IDF met l'accent sur les mots importants
 - Term Frequency (TF) Fréquence d'apparition dans le document (local)

TF =			WOI	rd co	unt			

- La représentation TF-IDF met l'accent sur les mots importants
 - Term Frequency (TF) Fréquence d'apparition dans le document (local)

o Inverse Document Frequency (IDF) - Fréquence d'apparition (inverse) dans le corpus (global)

IDF =		100		#documents						
			log	1+#	docur	nents	utilisa	nt le r	not	

■ Term Frequency Inverse Document Frequency (TF-IDF)

■ Term Frequency Inverse Document Frequency (TF-IDF)

TF-IDF = word count
$$\times \log \frac{\text{#documents}}{1 + \text{#documents utilisant le mot}}$$

Compromis entre fréquence locale et rareté globale

https://github.com/mswawola-cegep/420-a58-sf.git
Télécharger les données depuis **Teams**Class Materials/people_wiki.zip
02-02-A1

Sommaire

- 1. Représentation des documents
- 2. Métriques de distance
- 3. Lectures et références

Métriques de distance: notion de "plus proche"

■ En 1D, distance euclidienne

distance
$$(x_i,x_q)=|x_i-x_q|$$

- Dans le cas de plusieurs dimensions:
 - Il existe plusieurs fonctions de distance intéressantes
 - Fléau de la dimension
 - Il peut être intéressant d'appliquer un poids différent à chaque dimension (feature weight)

Feature weight (1/3)

■ Tout simplement parce que certaines dimensions / variables peuvent être plus importantes que d'autres!

Nombre de chambres

Nombre de salles de bain

Superficie habitable

Superficie du terrain

Nombre d'étages

Vue panoramique

Année de construction

. . . .

Feature weight (1/3)

■ Tout simplement parce que certaines dimensions / variables peuvent être plus importantes que d'autres!

Nombre de chambres

Nombre de salles de bain

Superficie habitable

Superficie du terrain

Nombre d'étages

Vue panoramique

Année de construction

. . . .

Feature weight (2/3)

■ Tout simplement parce que certaines dimensions / variables peuvent être plus importantes que d'autres!

Titre

Abstract

Texte principal

Sous-titres

Conclusion

....

Feature weight (2/3)

■ Tout simplement parce que certaines dimensions / variables peuvent être plus importantes que d'autres!

Titre

Abstract

Texte principal

Sous-titres

Conclusion

....

Mise à l'échelle revisitée

- Tout simplement parce que certaines dimensions / variables peuvent être plus importantes que d'autres!
- Également, certaines variables varient plus que d'autres

Distance euclidienne pondérée

Formellement:

 a_1 , a_2 , ..., a_n sont les poids appliqués aux différentes variables. Permet de définir l'importance relative

Poids binaires

Formellement:

Choisir 0 ou 1 comme poids permet de réaliser une sélection de variables

Poids binaires

Formellement:

distance
$$(x_i, x_q) = \sqrt{a_1(x_{i1} - x_{q1})^2 + \cdots + a_n(x_{in} - x_{qn})^2}$$

L'ingénierie de données est couverte par le cours
420-A56-SF - Transformation et manipulation des

Choisir 0 ou 1 comme poi**données** réaliser une sélection de variables

Distance euclidienne (non pondérée)

La distance euclidienne peut-être définie par un produit de deux vecteurs:

distance
$$(x_i,x_q)=\sqrt{(x_{i1}-x_{q1})^2+\cdots+(x_{in}-x_{qn})^2}$$

Distance euclidienne (non pondérée)

La distance euclidienne peut-être définie par un produit de deux vecteurs:

$$\operatorname{distance}\left(x_{i},x_{q}
ight)=\sqrt{\left(x_{i1}-x_{q1}
ight)^{2}+\cdots+\left(x_{in}-x_{qn}
ight)^{2}}\qquad =\sqrt{\left(x_{i}-x_{q}
ight)^{T}\left(x_{i}-x_{q}
ight)}$$

Distance euclidienne pondérée

La dist. euclidienne pondérée peut-être définie par un produit de deux vecteurs:

Mesure de similarité

X_C

5 0 0 1 2 ····· ► Similarité = $x_i^T x_q$

X

Que vaut est la similarité?

Mesure de similarité

5 0 0 1 2 ····· ► Similarité = $x_i^T x_a$

Que vaut est la similarité?

Normalisation de la similarité

Similarité =
$$\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{q}$$
 Normalisation $\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{q}$ $\mathbf{x}_{i}^{\mathsf{T}}\mathbf{x}_{q}$ $\mathbf{x}_{q}^{\mathsf{T}}\mathbf{x}_{q}$ $\mathbf{x}_{q}^{\mathsf{T}}\mathbf{x}_{q}$ Similarité cosinus !

Exercice: normaliser le vecteur suivant

1/6	0	0	0	3/6	5/6	0	0	1/6	0
-----	---	---	---	-----	-----	---	---	-----	---

Similarité cosinus

D'une manière générale, la similarité cosinus est comprise entre -1 et 1

Quels sont les cosinus de ces angles ?

Similarité cosinus

D'une manière générale, la similarité cosinus est comprise entre -1 et 1

Question pourquoi?

Nous pouvons aussi définir la distance cosinus: distance = 1 - similarité

Normaliser ou pas?

Normaliser ou pas?

volumineux

volumineux

Autres métriques de distance

- Basée sur la corrélation
- Mahalanobis
- Rank-based
- Manhattan
- Jaccard
- Hamming
- **.**..

Combinaison de métriques - Exemple

- Texte des documents
 - Distance cosinus
- Nombre de lectures des documents
 - Distance euclidienne
- Affecter un poids différent à chaque métrique

https://github.com/mswawola-cegep/420-a58-sf.git 02-02-A2

Sommaire

- 1. Représentation des documents
- 2. Métriques de distance
- 3. Lectures et références

Lectures et références

[1] Machine Learning: Clustering and Retrieval - Emily Fox & Carlos Guestrin - University of Washington