Discrete mathematics – long question

State and prove the Chinese Remainder Theorem concerning the simultaneous solution of congruences to co-prime moduli, and the uniqueness of that solution.	tion of a pair [10 marks]
Define the set of units modulo n , U_n , and Euler's totient function, $\varphi(n)$.	[2 marks]
Given natural numbers m and n with no common factors, define $f: U_{mn} \to U_m \times U_n$ by $f(u) = (u \mod m, u \mod n)$. Prove carefully that f is a bijective	
	[6 marks]
Deduce that φ is multiplicative, and calculate $\varphi(175)$.	[2 marks]

Solution

Given $(m,n)=1$ we can solve $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ and the solution is unique modulo mn (m,n)=1, so use Euclid to find s and t such that ms + nt = 1 Let $c = bms + ant$ and show it works Uniqueness	[1] [2] [1] [2] [2]
$U_n = \{ x \in N \mid 0 < x < n & (x,n) = 1 \}$	[1]
$\phi(n) = U_n $ Shere CEUm	[1]
$(u,mn) = 1 \Rightarrow (u,m) = 1$ so $(u \mod m, m) = 1$ and f is well-defined Given $a \in U_m$ and $b \in U_n$, find $c \in Z_{mn}$ using the CRT so f is surjective $u_1 \equiv u_2 \pmod m$ & $u_1 \equiv u_2 \pmod n$ $\Rightarrow u_1 \equiv u_2 \pmod m$, so f is injective	[2] [2] [2]
$(\mathbf{m},\mathbf{n}) = 1 \Rightarrow \varphi(\mathbf{m}\mathbf{n}) = \varphi(\mathbf{m})\varphi(\mathbf{n})$	[1]
$\varphi(175) = 120$	[1]

Computer Science Tripos Part IA 2005

Paper 1 Question 7

PR — Discrete Mathematics