UNIVERSITY OF NEW SOUTH WALES School of Mathematics and Statistics

MATH2089 Numerical Methods and Statistics Term 2, 2019

Numerical Methods Tutorial – Week 10

1. Use Euler's method, using the given step size h, to solve the following IVPs. Compute the actual errors at each time step.

(a)
$$y' = te^{3t} - 2y$$
, $t \in (0,1]$, $y(0) = 0$, $h = 0.5$

• Solution:
$$y(t) = \frac{1}{5}te^{3t} - \frac{1}{25}e^{3t} + \frac{1}{25}e^{-2t}$$

(b)
$$y' = 1 + \frac{y}{t}$$
, $t \in (1, 2]$, $y(1) = 2$, $h = 0.25$

• Solution:
$$y(t) = t \log(t) + 2t$$

(c)
$$y' = \frac{2}{t}y + t^2e^t$$
, $t \in (1, 2]$, $y(1) = 0$, $h = 0.1$

• Solution:
$$y(t) = t^2(e^t - e)$$

2. Consider the Initial Value Problem (IVP)

$$y' = f(t, y), \quad t > t_0, \qquad y(t_0) = y_0.$$

At step n we know t_n , $y_n \approx y(t_n)$ and $t_{n+1} = t_n + h$. A ν -stage explicit Runge-Kutta method with parameters a_{ij} , b_j , c_j is

$$\xi_{1} = y_{n}$$

$$\xi_{2} = y_{n} + ha_{2,1}f(t_{n} + c_{1}h, \xi_{1})$$

$$\xi_{3} = y_{n} + ha_{3,1}f(t_{n} + c_{1}h, \xi_{1}) + ha_{3,2}f(t_{n} + c_{2}h, \xi_{2})$$

$$\vdots$$

$$\xi_{\nu} = y_{n} + h\sum_{i=1}^{\nu-1} a_{\nu,i}f(t_{n} + c_{i}h, \xi_{i})$$

Then the next approximation $y_{n+1} \approx y(t_{n+1})$ is

$$y_{n+1} = y_n + h \sum_{j=1}^{\nu} b_j f(t_n + c_j h, \xi_j).$$

The classical fourth order four-stage Runge-Kutta method RK4 is defined by the following tableau

$$\begin{array}{c|c} \mathbf{c} & A \\ \hline & \mathbf{b}^T \end{array} = \begin{array}{c|c} 0 \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 & 1 \\ \hline & \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} \end{array}$$

1

(a) Write down the formulae to define y_{n+1} from y_n for this method.

(b) Use the formulae obtained above (with h=0.2) to compute an approximation to y(0.2), where y satisfies the IVP

$$y' = \frac{y+t}{y-t}, \qquad y(0) = 1.$$

3. Consider Poisson's equation

$$\nabla^2 u(\mathbf{x}) = f(\mathbf{x})$$

on the rectangular domain

$$\Omega = \left\{ \mathbf{x} \in \mathbb{R}^2 : 0 \le x \le L_x, \quad 0 \le y \le L_y \right\}.$$

Divide the x interval $[0, L_x]$ into m+1 equal length subintervals

$$0 = x_0 < x_1 < x_2 < \dots < x_{m-1} < x_m < x_{m+1} = L_x,$$

$$x_i = i \ h_x, \quad i = 0, \dots, m+1, \qquad h_x = \frac{L_x}{m+1}.$$

Divide the y interval $[0, L_y]$ into n+1 equal length subintervals

$$0 = y_0 < y_1 < y_2 < \dots < y_{n-1} < y_n < y_{n+1} = L_y,$$

$$y_j = j h_y, \quad j = 0, \dots, n+1, \qquad h_y = \frac{L_y}{n+1}.$$

Let $u_{ij} \approx u(x_i, y_j)$

Figure 1: Grid for m = 5 and n = 3

- (a) Is this an elliptic, parabolic or hyperbolic PDE?
- (b) What problem could this model?

- (c) What else is needed to completely specify the problem?
- (d) At the grid point x_i , y_j use central difference approximations of $O(h^2)$ to the second derivatives to derive an approximation to Poisson's equation.
- (e) Consider a problem with Dirichlet boundary conditions $u(\mathbf{x}) = 20$ for $\mathbf{x} \in \partial \Omega$. For $L_x = 3, m = 5$ and $L_y = 2, n = 3$
 - i. Give the equation at the grid point (x_3, y_2)
 - ii. Give the equation at the grid point (x_5, y_3)
 - iii. generate the linear system $A\mathbf{u} = \mathbf{b}$ corresponding to a row-ordering of the variables.
 - iv. Write the coefficient matrix A as the block matrix

$$A = \begin{bmatrix} B & -I \\ -I & B & -I \\ & -I & B & -I \\ & & \ddots & \ddots & \ddots \\ & & & -I & B & -I \\ & & & & -I & B & -I \\ & & & & -I & B \end{bmatrix}$$

What are the matrices B and I.

v. Say what you can about the structure of the coefficient matrix A that could make solving the linear system $A\mathbf{u} = \mathbf{b}$ more efficient.

Figure 2: Spy plot of coefficient matrix for m = 5 and n = 3