第十次作业参考答案

By 梁文艺 朱映

1. 设 K 中 $C=\{c_1\}, f=\{f_1^2\}, R=\{R_1^2\}$,解释域 Z 是整数集。 $\overline{c_1}=0$, $\overline{f_1^2}$ 是减法, $\overline{R_1^2}$ 是 "<"。求 $|p|_Z$,其中 p 为

1. $\forall x_1 \ R_1^2(f_1^2(c_1,x_1),c_1)$

答: 令 $q=R_1^2(f_1^2(c_1,x_1),c_1)$,取 $\psi\in\Phi$ 的 x_1 变通 ψ' 使得 $\psi'(x_1)=-1$,则 $\psi'(R_1^2(f_1^2(c_1,x_1),c_1))=0+1<0=0$,故 $|q|(\psi')=0$,因为 x_1 是任意的,则 $|p|_Z=0$ 。

2. $\forall x_1 \forall x_2 \ \neg R_1^2(f_1^2(x_1, x_2), x_1)$

答:令 $q = \neg R_1^2(f_1^2(x_1,x_2),x_1)$,取 $\psi \in \Phi$ 的 x_2 变通 ψ' 使得 $\psi'(x_2) = 1$,则 $\psi'(R_1^2(f_1^2(x_1,x_2),x_1)) = \neg(\overline{x_1} - 1 < \overline{x_1}) = 0$,故 $|q|(\psi') = 0$,因为 x_2 是任意的,则 $|p|_Z = 0$ 。

3. $\forall x_1 \forall x_2 \forall x_3 \ (R_1^2(x_1,x_2) o R_1^2(f_1^2(x_1,x_3),f_1^2(x_2,x_3)))$

答:令 $q=R_1^2(x_1,x_2) \to R_1^2(f_1^2(x_1,x_3),f_1^2(x_2,x_3))$,任取 $\psi\in\Phi$,则 当 $\psi'(R_1^2(x_1,x_2))=1$ 时, $\psi'(R_1^2(f_1^2(x_1,x_3),f_1^2(x_2,x_3)))=1$,故 $|q|(\psi)=1$;当 $\psi'(R_1^2(x_1,x_2))=9$ 时, $|q|(\psi)=1$;因为 ψ 是任意的,则 $|p|_Z=1$ 。

4. $\forall x_1 \exists x_2 \ R_1^2(x_1, f_1^2(f_1^2(x_1, x_2), x_2))$

答:令 $q=R_1^2(x_1,f_1^2(f_1^2(x_1,x_2),x_2)$,取 $\psi\in\Phi$ 的 x_2 变通 ψ' 使得 $\psi'(x_2)=-1$,则 $\psi'(f_1^2(f_1^2(x_1,x_2),x_2))=\overline{x_1}+2$, $\psi'(q)=\overline{x_1}<\overline{x_1}<\overline{x_1}+2$,故 $|q|(\psi')=1$,因为 x_2 是存在约束的,则 $|p|_Z=1$ 。

2. **试证** $|p|_M=1\Rightarrow |\exists xp|_M=1$ 。 反向是否成立? 说明理由证明:

$$|p|_{M}=1$$
 $\Rightarrow |\neg p|_{M}=0$
 $\Rightarrow |\forall x\neg p|_{M}=0$
 $\Rightarrow |\neg \forall x\neg p|_{M}=1$
 $\Rightarrow |\exists xp|_{M}=1$

反向不成立,以书中2.2.1小节例1中的 K 和 N 为例,N 为 K 的解释域, $N=\{0,1,2,\dots\},\overline{c_1}=0,\overline{R_1^2}:$ 相等(=) 有 $|\exists x_1\ R_1^2(x_1,c_1)|_N=1$,但是 $|R_1^2(x_1,c_1)|_N$ 没有意义。(取 $\psi(x_1)=0$ 时, $|R_1^2(x_1,c_1)|(\psi)=1$,而取 $\psi(x_1)=1$ 时, $|R_1^2(x_1,c_1)|(\psi)=1$,

3. 求与下列公式等价的前束范式,并给出求解过程:

$$orall x_1 R_1^2(x_1,x_2)
ightarrow orall x_1 orall x_2 R_2^2(x_1,x_2)$$

答:

$$\forall x_1 R_1^2(x_1, x_2) \to \forall x_1 \forall x_2 R_2^2(x_1, x_2)$$
 (约束变元换名)
$$\forall x_1 R_1^2(x_1, x_2) \to \forall x_3 \forall x_4 R_2^2(x_3, x_4)$$
 (第本p77命题2.3)
$$\exists x_1 (R_1^2(x_1, x_2) \to \forall x_3 \forall x_4 R_2^2(x_3, x_4))$$
 (课本p77命题2.2,前束范式)

$$\forall x_1 R_1^2(x_1, x_2) \to \forall x_1 \forall x_2 R_2^2(x_1, x_2)$$

$$\neg \forall x_1 R_1^2(x_1, x_2) \lor \forall x_1 \forall x_2 R_2^2(x_1, x_2)$$

$$\exists x_1 \neg R_1^2(x_1, x_2) \lor \forall x_1 \forall x_2 R_2^2(x_1, x_2)$$

$$\exists x_1 \neg R_1^2(x_1, x_2) \lor \forall x_3 \forall x_4 R_2^2(x_3, x_4)$$

$$\exists x_1 \forall x_3 \forall x_4 (\neg R_1^2(x_1, x_2) \lor R_2^2(x_3, x_4))$$

$$(量词辖域调整)$$