第17讲 无穷小量与无穷大量

- 第一次数学危机 —— 无理数的发现
- 第二次数学危机 —— 微积分的逻辑基础

问题:一质点做直线运动,在时刻t距离出发点的距离为 $s=t^2$,求质点在 t_0 时刻的速度.

考虑 t_0 后的极短瞬间 Δt , 质点在该瞬间走过的路程为

$$\Delta s = (t_0 + \Delta t)^2 - t_0^2 = 2t_0 \Delta t + \Delta t^2$$

质点在该瞬间的速度为 $\frac{\Delta s}{\Delta t} = 2t_0 + \Delta t = 2t_0$

- 第一次数学危机 —— 无理数的发现
- 第二次数学危机 —— 微积分的逻辑基础

"无穷小量是已死量的幽灵."

自然与自然的规律隐藏在茫茫黑夜中, 上帝说"让牛顿降生吧", 于是一片光明。

亚历山大・蒲柏

乔治·贝克莱 (George Berkeley)

无穷小的概念

无穷小的运算性质

无穷大与铅直渐近线

无穷小的比较

● 无穷小

定义1 若 $\lim_{x\to x^*} f(x) = 0$,则称函数f(x)是过程 $x\to x^*$ 的无穷小.

其中 $x \to x^*$ 表示连续变量的六种变化过程之一.

思考:0是不是无穷小?10-10是不是无穷小?

说明:

- (1) 除 0 以外任何很小的常数都不是无穷小;
- (2) 称一个函数是无穷小时必须同时指明自变量的变化过程.

例如,因为 $\lim_{x\to\infty}\frac{1}{x}=0$,所以 $\frac{1}{x}$ 是过程 $x\to\infty$ 的无穷小.

因为
$$\lim_{x\to 0} x^2 = 0$$
, $\lim_{x\to 0} \sin x = 0$, $\lim_{x\to 0} \ln(1+x) = 0$,

所以 x^2 , $\sin x$, $\ln(1+x)$ 都是过程 $x \to 0$ 的无穷小.

因为 $\lim_{x\to 0^+} \sqrt{x} = 0$,所以 \sqrt{x} 是过程 $x\to 0^+$ 的无穷小.

• • • • •

定理 1(无穷小与函数极限的关系)

$$\lim_{x \to x_0} f(x) = A \longrightarrow f(x) = A + \alpha(x), 其中\alpha(x)为 x \to x_0 时的$$
无穷小量.

$$\lim_{x\to\infty} f(x) = A \longrightarrow f(x) = A + \alpha(x), 其中\alpha(x)为 x \to \infty$$
 时的
无穷小量.

> 函数与其极限相差相应过程的无穷小.

- 有限个无穷小之和仍是无穷小.
- 有限个无穷小之积仍是无穷小.
- 无穷小与有界函数之积是无穷小.__

注意:同一命题所对应的过程相同

定理2 (1) 设 f(x) 为过程 $x \to x_0$ 的无穷小, g(x)在 x_0 的某个去心邻域中有界,则 f(x)g(x) 也是过程 $x \to x_0$ 的无穷小. (2) 设 f(x) 为过程 $x \to \infty$ 的无穷小, g(x)在某个无穷邻域中有界,则 f(x)g(x) 也是过程 $x \to \infty$ 的无穷小.

例1 求极限 $\lim_{x\to 0} x \sin \frac{1}{x}$. (无穷小与有界函数之积)

例2 求极限 $\lim_{x\to\infty}\frac{\sin x}{x}$. (无穷小与有界函数之积)

● 无穷大

定义2 (1) 若 $\forall M > 0$, $\exists \delta > 0$, $\exists 0 < |x - x_0| < \delta$ 时,有|f(x)| > M, 则称函数f(x)为过程 $x \to x_0$ 的无穷大,记为

$$\lim_{x \to x_0} f(x) = \infty .$$

(2) 若 $\forall M > 0$, $\exists \delta > 0$, $\dot{\exists} 0 < |x - x_0| < \delta$ 时,有f(x) > M,

则称函数f(x)为过程 $x \to x_0$ 的正无穷大,记为

$$\lim_{x\to x_0} f(x) = -\infty.$$

注:此时称 $x = x_0$ 为函数 y = f(x) 图形的铅直渐近线.

x = 0为 $f(x) = \ln x$ 铅直渐近线

● 无穷大与无穷小的关系

定理3 (1) 若
$$\lim_{x \to x_0} f(x) = \infty$$
 , 则 $\lim_{x \to x_0} \frac{1}{f(x)} = 0$;

(2) 若 f(x) 在 x_0 的某去心邻域内非零,且 $\lim_{x\to x_0} f(x) = 0$,则

$$\lim_{x \to x_0} \frac{1}{f(x)} = \infty.$$

推论 若 $\lim f_i(x) = \infty (i = 1, \dots, n)$, 则 $\lim \prod_{i=1}^n f(x) = \infty$.

例3 证明: $f(x) = x + \sin x$ 是过程 $x \to \infty$ 的无穷大.

用"0"和"∞"分别表示同一过程的无穷小和无穷大,则

无穷大与无穷小的关系可表示为 "
$$\infty = \frac{1}{0}$$
".

思考:下面哪些结果是确定的?

$$0+0,0\cdot 0,\frac{0}{0},0+\infty,0\cdot \infty,\frac{\infty}{\infty},\infty-\infty.$$

下面的四个函数都是过程 $x \to 0$ 的无穷小:

$$f(x) = x$$
, $g(x) = \sin x$, $\varphi(x) = x^2$, $\psi(x) = \ln(1 + 2x)$.

χ	f(x)	g(x)	$\varphi(x)$	$\psi(x)$
0.5	0.5	0.479426	0.25	0.693147
0.4	0.4	0.389418	0.16	0.587787
0.3	0.3	0.29552	0.09	0.470004
0.2	0.2	0.198669	0.04	0.336472
0.1	0.1	0.099833	0.01	0.182322
0.05	0.05	0.049979	0.0025	0.09531

\boldsymbol{x}	$\frac{\varphi(x)}{g(x)} = \frac{x^2}{\sin x}$	$\frac{g(x)}{f(x)} = \frac{\sin x}{x}$	$\frac{\psi(x)}{f(x)} = \frac{\ln(1+2x)}{x}$	$\frac{g(x)}{\varphi(x)} = \frac{\sin x}{x^2}$
0.5	0.521457	0.958851	1.386294	1.917702
0.4	0.410869	0.973546	1.469467	2.433865
0.3	0.304548	0.985067	1.566679	3.283558
0.2	0.20134	0.993347	1.682361	4.966733
0.1	0.100167	0.998334	1.823216	9.983342
0.05	0.050021	0.999583	1.906204	19.99167
0.01	0.01	0.999983	1.980263	99.99833

定义3 设f(x), g(x)均是过程 $x \to x^*$ 中的无穷小, 且 $g(x) \neq 0$,

(1) 若 $\lim_{x\to x^*} \frac{f(x)}{g(x)} = 0$, 则称 f(x) 是 g(x) 在过程 $x\to x^*$ 的高阶

无穷小,记作 $f(x) = o(g(x))(x \rightarrow x^*)$.

也称 g(x) 是 f(x) 在过程 $x \to x^*$ 的低阶无穷小.

例如,
$$\frac{\varphi(x)}{g(x)} = \frac{x^2}{\sin x} \to 0$$
($x \to 0$) $\Rightarrow \varphi(x) = o(g(x))(x \to 0)$

定义3 设f(x), g(x)均是过程 $x \to x^*$ 中的无穷小, 且 $g(x) \neq 0$,

(2) 若
$$\lim_{x\to x^*} \frac{f(x)}{g(x)} = C \neq 0$$
, 则称 $f(x)$ 是 $g(x)$ 在过程 $x\to x^*$ 的同阶无穷小。

(3) 若
$$\lim_{x \to x^*} \frac{f(x)}{g(x)} = 1$$
,则称 $f(x)$ 是 $g(x)$ 在过程 $x \to x^*$ 的等价无穷小,记为 $f(x) \sim g(x)$ ($x \to x^*$).

例如,
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{x}{\sin x} = 1 \Rightarrow x \sim \sin x \quad (x\to 0)$$

例4 证明下列等价关系(过程均为 $x \to 0$):

(1)
$$\sin x \sim x$$
; (2) $1 - \cos x \sim \frac{1}{2}x^2$; (3) $\tan x \sim x$;

例5 证明下列等价关系(过程均为 $x \to 0$):

(1)
$$\ln(1+x)\sim x$$
; (2) $e^x - 1\sim x$;

(3)
$$a^x - 1 \sim x \ln a \ (a > 0, a \neq 1);$$

(4)
$$(1+x)^a - 1 \sim ax (a \neq 0)$$
.

> 同一过程的等价无穷小具有传递性.

定理4 设 $f_j(x)$ (j = 1,2) 和 $g_j(x)$ (j = 1,2) 均为过程 $x \to x^*$ 的无穷小, $f_j(x)$, $g_j(x)$ (j = 1,2) 在相应的去心邻域中不等于0,且有 $f_1(x) \sim f_2(x)$ $(x \to x^*)$, $g_1(x) \sim g_2(x)$ $(x \to x^*)$.

(1) 若极限 $\lim_{x\to x^*} \frac{f_1(x)}{g_1(x)}$ 存在,则极限 $\lim_{x\to x^*} \frac{f_2(x)}{g_2(x)}$ 一定存在,且

$$\lim_{x \to x^*} \frac{f_1(x)}{g_1(x)} = \lim_{x \to x^*} \frac{f_2(x)}{g_2(x)}.$$
 (无穷小等价代换)

(2) 若
$$\lim_{x \to x^*} \frac{f_1(x)}{g_1(x)} = \infty$$
,则有 $\lim_{x \to x^*} \frac{f_2(x)}{g_2(x)} = \infty$.

例6 计算函数极限 $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$

错误的等价代换:
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3} \neq \lim_{x\to 0} \frac{x - x}{x^3} = 0$$

例7 计算函数极限 $\lim_{x\to 0} \frac{1-\sqrt{\cos x}}{\ln(2-e^{x^2})}$.

