Many Markets Make Good Neighbors: Multimarket Contact and Deposit Banking Hatfield and Wallen (2023)

Presenter: Giselle Labrador Badia

November 30, 2023

Introduction

Motivation and Goal

- Industry concentration has increased at the national level, but decreasing at the local level (Ksieh and Rossi-Hansberg (2021), Rossie-Hansberg et al. (2021)).
- ▶ If local is the relevant measure, why have markups and profitability increased? (De Loecker et al. (2020), Barkai (2020))
- Firms behave less competitively even though they face more competition.

Motivation and Goal

- ▶ Industry concentration has increased at the national level, but decreasing at the local level (Ksieh and Rossi-Hansberg (2021), Rossie-Hansberg et al. (2021)).
- ▶ If local is the relevant measure, why have markups and profitability increased? (De Loecker et al. (2020), Barkai (2020))
- Firms behave less competitively even though they face more competition.
- This paper proposes multimarket contact as a solution to this puzzle
 - Build model that shows an increase in multimarket contact leads firms to behave less competitively.
 - Empirically show this relationship in the deposit market.

Motivation and Goal

► The decrease in passthrough is evidence of an increase in market power in the deposit market.

Preview of Results

- ▶ **Model:** Multimarket contact leads to less competitive behavior.
 - Mergers lead to worse consumer outcomes even if they do not increase local concentration.
 - Markups are positively correlated with higher local concentration and multimarket contact.

Preview of Results

- ▶ **Model:** Multimarket contact leads to less competitive behavior.
 - Mergers lead to worse consumer outcomes even if they do not increase local concentration.
 - Markups are positively correlated with higher local concentration and multimarket contact.

Empirical Analysis:

- In the deposit market, multimarket contact enables banks to behave as if the local market was twice as concentrated.
- Estimate that markups have increased by 27% for retail industries while the propensity for retail networks to overlap has more than tripled.

Related Literature

Multimarket contact and collusive behavior.

- Bernheim and Whinston (1990) formalize the idea that multimarket contact can facilitate collusion.
- ► Empirical evidence: Busse (2000), celular phones; Ciliberto and Williams (2014), airlines; Jans and Rosenbaum (1990), cement; Fernandez and Marin (1998), hotels; Schmitt (2018), hospitals.
- Concentration and anticompetitive behavior in the banking industry.
 - ▶ Dreschsler et al (2017), Granja and Paixão (2020), Corbae and D'Erasmo (2020, 2021).
 - Collusive behavior in asset markets: Duffie and Stein (2015), LIBOR; Cai and Jahanshahloo (2019) foreign exchange market.

Theory

Model: Market Structure

Bertrand competition model with *M* markets, *F* firms.

- ▶ Market structure $k \in \{0, 1\}^{F,M}$, where $k_{fm} = 1$ if firm f operates in market m.
- ▶ *f* is *national* if $k_{fm} = 1$ for more than one *m*.
- f is *local* if $k_{fm} = 1$ for only one m.
- A merger where f adquires \hat{f} is a change in k where $k_m^f = 1$ for all m of the acquired firm, and $k_m^{\hat{f}} = 0$ for all m.
- A market extension merger where for all m either $k_m^f = 0$ for all m of the acquired firm, and $k_m^f = 0$.

Model: The Stage Game

- ▶ Each firm f chooses a price $p_{m \in [0,\infty]}$ and an aggresiveness $a_m^f \in [0,\infty]$ in each market m..
- The quantity demanded of firm f by consumers in market m is:

$$Q_{m}^{f}\left(p_{m},a_{m}\right)\equiv\psi_{m}D\left(\min_{\tilde{f}\in\mathcal{F}}\left\{p_{m}^{\tilde{f}}\right\}\right)\times\mathbb{1}_{\left\{f\in\mathbf{A}_{m}\left(r_{m}\right)\right\}}\frac{a_{m}^{b}}{\sum_{\tilde{f}\in\mathbf{A}_{m}\left(p_{m}\right)}a_{m}^{\tilde{f}}}$$

where ψ_m is the market size, D is a strictly decreasing and concave demand, $\mathbf{A}_m\left(p_m\right)$ is the set of firms with the lower price in m and r_m is the set of firms that operate in m.

Model: The Stage Game

- ▶ Each firm f chooses a price $p_{m \in [0,\infty]}$ and an aggresiveness $a_m^f \in [0,\infty]$ in each market m..
- The quantity demanded of firm *f* by consumers in market *m* is:

$$Q_{m}^{f}\left(p_{m},a_{m}\right)\equiv\psi_{m}D\left(\min_{\tilde{f}\in\mathcal{F}}\left\{p_{m}^{\tilde{f}}\right\}\right)\times\mathbb{1}_{\left\{f\in\mathbf{A}_{m}\left(r_{m}\right)\right\}}\frac{a_{m}^{b}}{\sum_{\tilde{f}\in\mathbf{A}_{m}\left(p_{m}\right)}a_{m}^{\tilde{f}}}$$

where ψ_m is the market size, D is a strictly decreasing and concave demand, $\mathbf{A}_m\left(p_m\right)$ is the set of firms with the lower price in m and r_m is the set of firms that operate in m.

Profits of firm f in market m are:

$$\Pi^{f}\left(\mathbf{p},\mathbf{a}\right)=\sum_{m\in\mathcal{M}}Q_{m}^{f}\left(\mathbf{p}_{m},\mathbf{a}_{m}\right)\left(\mathbf{p}_{m}^{f}-\mathbf{c}\right)$$

where c is the marginal cost of production.

Model: The Repeated Game

- \triangleright p° is the stage game monopoly price.
- ▶ In the stage game, if more than one firm operates in each market, then each firm obtains profits zero in every pure Nash equilibrium.
- ▶ In an economy with one market, If $|\mathbf{F}(m)| \leq \frac{1}{1-\delta}$ then any price $p \in [c, p^{\circ}]$ is sustainable; otherwise only p = c is sustainable.
- ▶ In the multimarket economy, prices p and quantities q are substained if:

$$rac{1}{1-\delta}\sum_{m\in M}\left(p_m-c
ight)q_m^f\geq\sum_{m\in M}\left(p_m-c
ight)\psi_mD\left(p_m
ight) ext{ for each firm }f,$$
 and $\sum_{f\in F}q_m^f=\psi_mD\left(p_m
ight)$ for each market $m.$

Merger ramifications, multimarket contact and competition

- ► **Theorem 1:** Let $\hat{\kappa}$ be a merger under κ and suppose that $\hat{\kappa}$ is sufficient for competition: Then any prices sustainable under κ are also sustainable under $\hat{\kappa}$.
 - ► The price is never lower after a merger even if the merger is a market extension merger.

Merger ramifications, multimarket contact and competition

- Theorem 1: Let $\hat{\kappa}$ be a merger under κ and suppose that $\hat{\kappa}$ is sufficient for competition: Then any prices sustainable under κ are also sustainable under $\hat{\kappa}$.
 - ▶ The price is never lower after a merger even if the merger is a market extension merger.
- ▶ **Theorem 2:** Suppose that for two markets m and n of equal size, less local firms in market m, and same national firms in both markets, then ln any highest-profit equilibrium for national firms, $p_m \ge p_n$..
 - ► If the market is less competitive, then it has a higher price.

Merger ramifications, multimarket contact and competition

- **Theorem 1:** Let $\hat{\kappa}$ be a merger under κ and suppose that $\hat{\kappa}$ is sufficient for competition: Then any prices sustainable under κ are also sustainable under $\hat{\kappa}$.
 - ▶ The price is never lower after a merger even if the merger is a market extension merger.
- ▶ **Theorem 2:** Suppose that for two markets m and n of equal size, less local firms in market m, and same national firms in both markets, then ln any highest-profit equilibrium for national firms, $p_m \ge p_n$..
 - ► If the market is less competitive, then it has a higher price.
- ▶ **Theorem 3:** Suppose that for two markets m and n of equal size, less firms in market m, and all national firms in n also in m, then ln any highest-profit equilibrium for national firms, $p_m \ge p_n$.
 - ▶ If the market has more multimarket contact, then it has a higher price.

Deposit Banking Model

- ▶ Capacity $k \in \{0, \psi_m\}^{F,M}$.
- ▶ Merger results in a new capacity $k_m^{\hat{f}} = k_m^f + k_m^{\hat{f}}$.
- \triangleright Consumer's demand depend on FED rate f and preference for liquidity λ :

$$D(r, f) \equiv (1 + \lambda) \frac{r}{f + \lambda r}$$

Quantity of consumers of bank b in market m is:

$$Q_m^b\left(r_m,a_m
ight)\equiv\psi_m\mathbb{1}_{\left\{b\in\mathbf{A}_m\left(r_m
ight)
ight\}}rac{a_m^b}{\sum_{ar{b}\in\mathbf{A}_m\left(r_m
ight)}^ba_m^{ar{b}}}$$

▶ Banks choose $r_m^b \in [0, f]$ and $a_n^b \in [0, \infty]$. Profits of bank b in market m are:

$$\Pi_{m}^{b}\left(r_{m},a_{m},f\right)\equiv Q_{m}^{b}\left(r_{m},a_{m}\right)D\left(r_{m}^{b},f\right)\left(f-r_{m}^{b}\right)-c\underbrace{\max\left\{0,Q_{m}^{b}\left(r_{m},a_{m}\right)-\kappa_{m}^{b}\right\}}_{\text{Consumers over capacity}}$$

10/27

- ▶ 2 markets m (2 banks), n (5 banks) with size $\psi_m = \psi_n = 1$, f = 1, $\lambda = 3$, c = 0, capacities are 1, $\delta = 7/9$
- No banks is in both markets.
- Monopoly profits are substained in m but not in n.

- ▶ 2 markets m (2 banks), n (5 banks) with size $\psi_m = \psi_n = 1$, f = 1, $\lambda = 3$, c = 0, capacities are 1, $\delta = 7/9$
- No banks is in both markets.
- Monopoly profits are substained in m but not in n.
- After a **merger** where bank in *m* acquires bank in *n* (market extension merger).
- Now the monopoly profits are substained in *m* and *n*.
- \blacktriangleright Bank has a "slack" in the concentrated market m, so it reduces supply in n.

- $ightharpoonup r_n^*$ in dark green, consumer demand in light green.¹
- Only one bank in both market.

¹Postmerger: 2 markets m (2 banks), n (5 banks) with size $\psi_m = \psi_n = 1$, f = 1, $\lambda = 3$, c = 0, capacities are 1, $\delta = 7/9$, r_0 is the monopoly rate, f is the competitive rate.

- $ightharpoonup r_n^*$ in dark green, r_m^* in dash red, consumer demand in light green.²
- Only one bank in both market.

Capacity of Rival Banks in Market \boldsymbol{m}

²Postmerger: 2 markets m (5 banks), n (5 banks) with size $\psi_m = \psi_n = 1$, f = 1, $\lambda = 3$, c = 0, capacities are 1, $\delta = 7/9$, r_0 is the monopoly rate, f is the competitive rate.

Deposit Banking Model: Merger ramifications, multimarket contact and competition

► Theorem 1:

► The profits are never lower after a merger even if the merger is a market extension merger.

Deposit Banking Model: Merger ramifications, multimarket contact and competition

► Theorem 1:

- ► The profits are never lower after a merger even if the merger is a market extension merger.
- ▶ **Theorem 2:** In markets that only differ in local concentration,
 - ▶ if the market is less competitive (lower capacity), then it has a higher spread and higher capture rate.

Deposit Banking Model: Merger ramifications, multimarket contact and competition

► Theorem 1:

- ► The profits are never lower after a merger even if the merger is a market extension merger.
- ▶ **Theorem 2:** In markets that only differ in local concentration,
 - if the market is less competitive (lower capacity), then it has a higher spread and higher capture rate.
- ▶ **Theorem 3:** In markets that only differ in multimarket contact,
 - If the market has more multimarket contact, then it has a higher spread and higher capture rate.

Empirical Analysis

Data and Definitions

- ► SOD data: 2019 counties, 146 banks.
- ▶ RateWatch: deposit interest rate, use only rate-setting branches by quarters.
- ▶ Multimarket contact between banks *i* and *j* in market *m*:

$$\mathrm{MMC}_{i,j} \equiv \sum_{c} \left(\theta_{c}^{i} \cdot \theta_{c}^{j} \right)^{rac{1}{2}}$$

where $\theta_c^i \equiv \frac{q_c^i}{\sum_c q_c^i}$ be the sales portfolio share of firm i in market c.

Multimarket contact in county c:

$$MMC_c \equiv \frac{\sum_i \sum_{j \neq i} MMC_{i,j} q_c^i q_c^j}{\sum_i \sum_{j \neq i} q_c^i q_c^j}$$

15/27

Branch network 2005

Branch network 2018

Deposit spread

Bank market power is measured by deposit spread beta (1-passthrough rate):

$$\Delta y_{b,t} = \alpha_b + \beta \Delta FF_t + \epsilon_{b,t}$$

where $y_{b,t}$ is the deposit spread and FF_t is Fed Funds rate.

Table 1: Deposit Spread Beta

	Δ Savings Spread						
Sample	(1) 2001-2020	(2) 2001-2006	(3) 2007-2009	(4) 2010-2020			
$\Delta \mathrm{FF}$	0.791** (0.045)	0.640** (0.034)	0.833** (0.087)	0.957** (0.006)			
Quarter FE	N	N	N	N			
Bank FE	Y	\mathbf{Y}	Y	Y			
Branch FE	Y	Y	Y	Y			
Adjusted \mathbb{R}^2	0.73	0.60	0.68	0.95			
N	$53,\!376$	13,833	8,649	30,790			

Deposit spread: Across Bank-Branches Estimates

For each branch *b* in market *m*, estimate:

$$\Delta y_{b,t} = \alpha_b + \beta_b \Delta F F_t + \epsilon_{b,t}$$

where $\Delta y_{b,t}$ is the change in the deposit spread and ΔFF_t is the change in the FED rate.

Within-bank and Across-County Estimates

Table 2: Deposit Spread Betas and Imperfect Competition

	Δ Deposit Spread					
	(1)	(2)	(3)	(4)	(5)	(6)
Δ FF \times MMC	0.070**	0.056**			0.070**	0.056**
	(0.03)	(0.02)			(0.03)	(0.02)
Δ FF \times Branch-HHI			0.031	0.096**	0.007	-0.013
			(0.03)	(0.04)	(0.04)	(0.04)
Quarter FE	Y	Y	Y	Y	Y	Y
Branch FE	Y	Y	\mathbf{Y}	Y	Y	Y
Bank FE	Y	Y	\mathbf{Y}	\mathbf{Y}	Y	\mathbf{Y}
$\mathrm{Bank} \times \mathrm{Quarter} \; \mathrm{FE}$	Y	Y	\mathbf{Y}	N	Y	Y
State \times Quarter FE	Y	N	\mathbf{Y}	N	Y	N
Adjusted \mathbb{R}^2	0.919	0.914	0.915	0.765	0.919	0.914
N	43,787	43,885	48,432	53,376	43,787	43,885

³Standard errors clustered by county-by-year level, 2001-2020.

Within-bank and Across-County Estimates

► If each local market is an island, multimarket contact enables banks to behave as if the local market was twice as concentrated.

Table 2: Deposit Spread Betas and Imperfect Competition

	Δ Deposit Spread					
	(1)	(2)	(3)	(4)	(5)	(6)
Δ FF \times MMC	0.070**	0.056**			0.070**	0.056**
	(0.03)	(0.02)			(0.03)	(0.02)
Δ FF \times Branch-HHI			0.031	0.096**	0.007	-0.013
			(0.03)	(0.04)	(0.04)	(0.04)
Quarter FE	Y	Y	Y	Y	Y	Y
Branch FE	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	Y	\mathbf{Y}	\mathbf{Y}
Bank FE	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	Y	\mathbf{Y}	\mathbf{Y}
$\mathrm{Bank} \times \mathrm{Quarter} \; \mathrm{FE}$	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	N	Y	\mathbf{Y}
State \times Quarter FE	\mathbf{Y}	N	\mathbf{Y}	N	Y	N
Adjusted \mathbb{R}^2	0.919	0.914	0.915	0.765	0.919	0.914
N	43,787	$43,\!885$	$48,\!432$	53,376	43,787	$43,\!885$

Deposit Market Contact and Merger Activity

▶ The Network $MMC_{i,j}$ of acquiring bank i and target bank j is

Network MMC_{i,j} =
$$\frac{\sum_{n \neq i} \text{MMC}_{i,n} q_{c(n)}^{j}}{\sum_{n} q_{c(n)}^{j}}$$

where n are other national banks, $\mathrm{MMC}_{i,n}$ is the multimarket contact of i and n, and $q_{c(n)}^{i}$ is the quantity of target bank j 's deposits that overlap with n.

We estimate the association between mergers and multimarket contact:

$$\mathsf{Merger}_{i,j,t} = lpha_{i,t} + eta \; \mathsf{Network} \; \mathsf{MMC}_{i,j} + \xi X_{i,j,t} + \epsilon_{i,j,t},$$

where $\alpha_{i,t}$ is an acquirer bank-by-time fixed effect and $X_{i,j,t}$ are control variables.

Deposit Market Contact and Merger Activity

Table 3: Mergers and Deposit Market MMC

	(1)	(2)	(3)	(4)
Network $\mathrm{MMC}_{i,j}$	0.537**	0.565**	0.563**	0.508**
	(0.07)	(0.07)	(0.07)	(0.07)
Distance	-0.124**	-0.119**	-0.119**	-0.120**
	(0.01)	(0.01)	(0.01)	(0.01)
HHI	-0.023	0.015		
	(0.02)	(0.02)		
Δ HHI	0.386**			
	(0.08)			
Pop Growth	1.446**			
	(0.26)			
Deposits Growth	0.011			
	(0.02)			
$\mathrm{Bank}\times\mathrm{Year}\;\mathrm{FE}$	\mathbf{Y}	\mathbf{Y}	Y	N
Bank and Year FE	Y	Y	Y	Y
Adjusted \mathbb{R}^2	0.18	0.18	0.18	0.17
N	9,052	9,052	9,052	9,052

Deposit Market Branch Warfare

 $y_{b,t} = \alpha_t + \beta_t T_{c(b)} + \epsilon_{b,t}$, where $y_{b,t}$ is the deposit spread for branch b, and $T_{c(b)}$ is 1 if Wells Fargo or JP Morgan Chase has a branch in the county of branch b.

Multimarket Contact and Retail Industries

- Use data from Dun and Bradstreet (D&B) and data on public firms from CRSP and Compustat.
- Constructs the sales portfolio using:

$$\hat{q}_c^i = \frac{\text{establishments}_c^i}{\sum_{j \in \textit{ind}(i)} \text{establishments}_c^j} \text{population}_c$$

where establishments c is the number of establishments of firm i in county c and ind(i) is the industry of firm i.

Multimarket Contact and Retail Industries

Conclusions

Conclusions

- Reconcile puzzle of U.S. deposit markets becoming less concentrated and less competitive.
 - Banks' threat of competitive behavior in other markets to discipline behavior in markets with more competitors.
 - Overlaps reduce passthrough rate and increase markups.
 - Banks are twice as likely to merge into markets with high multimarket contact.
- Framework to studying how multimarket contact decreases competition.
- Antitrust regulators may need to consider multimarket contact when evaluating mergers.

Thank you!