Mathematical Analysis Homework 4: Solutions

Cory Nezin

September 20, 2017

1. Let $\{a_n\}_{n=1}^{\infty} \subseteq \mathbb{R}^m$ be Cauchy with respect to $\| \|_{\infty}$. Prove that $\{a_{nk}\}_{n=1}^{\infty} \subseteq \mathbb{R}$ is Cauchy for each k=1,...,m where $a_n=(a_{n1},a_{n2},...,a_{nm})$ Proof:

 $\{a_n\}_{n=1}^{\infty} \subseteq \mathbb{R}^m \text{ is Cauchy } \to \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n, p > N, \|a_n - a_p\|_{\infty} < \epsilon.$

Since $a_n - a_p \in \mathbb{R}^m$ is finite,

$$||a_{n} - a_{p}||_{\infty} = \sup\{|a_{n} - a_{p}|; n, p > N\}$$

$$= \max\{|a_{n} - a_{p}|; n, p > N\}$$

$$= \max\{|a_{n1} - a_{p1}|, |a_{n2} - a_{p2}|, ..., |a_{np} - a_{pm}|\}$$

$$< \epsilon$$

Or,
$$|a_{nk} - a_{pk}| < \epsilon \ \forall k \in \{1, ..., m\}; \ \forall n, m > N$$

So $\{a_{nk}\}_{n=1}^{\infty}$ is Cauchy.

2. Prove that $(\mathbb{R}^m, \| \|_{\infty})$ is a complete normed linear space assuming that \mathbb{R} is Cauchy complete.

Proof:

From the previous problem, if $\{a_n\}_{n=1}^{\infty}$ is Cauchy, then $\{a_{nk}\}_{n=1}^{\infty} \in \mathbb{R}$ is a Cauchy sequence for fixed $k \in \{1, ..., m\}$

By Cauchy completeness of \mathbb{R} , this sequence necessarily converges to some value $a_{\infty k} \in \mathbb{R}$. This implies $\forall \epsilon > 0, \exists N \in \mathbb{N}, a_{\infty k} \in \mathbb{R}$ such that $|a_{\infty k} - a_{nk}| < \epsilon; n > N$ Therefore $\epsilon > |a_{\infty k} - a_{nk}| \ \forall k \in \{1, ..., m\} \to \epsilon > \max\{|a_{n1} - a_{p1}|, |a_{n2} - a_{p2}|, ..., |a_{np} - a_{pm}|\} = \|a_{\infty} - a_{n}\|_{\infty}$ Since $a_{\infty} \in \mathbb{R}^{m}$, $(\mathbb{R}^{m}, \|\|_{\infty})$ is Cauchy complete. \blacksquare