Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 1 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$
 is linearly dependent or linearly independent

Standard S3.
$$\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$$
 Eind a basis for W .

Standard S4.
$$\begin{bmatrix} 1 \\ -1 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 4 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -7 \end{bmatrix} \end{bmatrix}$$
. Compute the dimension of W .

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Standard A2.	Mark:

Determine if the map $T: \mathcal{P}^4 \to \mathcal{P}^3$ given by T(f) = f' - f'' is a linear transformation or not.

Additional Notes/Marks

Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 18 Version 2

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.	Mark:	
Determine if the vectors	$\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix},$	$\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix}$ are linearly dependent or linearly independent

Standard S3.
$$\begin{bmatrix} & & & & \\ & & & & \\ & & & \\ Let \ W = \mathrm{span} \left(\left\{ \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 3 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\} \right). \text{ Find a basis of } W.$$

Standard S4.
$$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}$$
 Eind the dimension of W .

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and $\mathbb{R}^4.$

Standard A2.	Mark:

Determine if the map $T: \mathcal{P}^3 \to \mathcal{P}^4$ given by T(f(x)) = xf(x) - f(x) is a linear transformation or not.

Additional Notes/Marks

Name:	
J#:	Dr. Clontz
Date:	

${\bf MASTERY~QUIZ~DAY~18}$

Math 237 – Linear Algebra Fall 2017

Version 3

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Determine if the set of polynomials $\{x^3 - 8x, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Standard S3.

$$\begin{bmatrix}
 & \text{Mark:} \\
 & 1 \\
 & 2 \\
 & 1
 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}
 \end{bmatrix}.$$
Find a basis for W .

Standard S4.
$$\begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
 Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$. Compute the dimension of W .

Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3\\3x_2 - x_3 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^4 and $\mathbb{R}^2.$

Mark:

Determine if $D: M_{2,2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$ is a linear transformation or not.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

	Mark:
Standard S1.	

Determine if the set of polynomials $\{x^3 - 8x, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Standard S3.
$$\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$$
 Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} -3 \\ -8 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}\right\}\right)$. Find a basis for W .

Standard S4. Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \operatorname{span}\left(\left\{x^3 - x^2 + 3x - 3, 2x^3 + x + 1, 3x^3 - x^2 + 4x - 2, x^3 + x^2 + x - 7\right\}\right)$. Compute the dimension of W.

Standard A1.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Mark:

Determine if $D: M_{2,2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$ is a linear transformation or not.

Name:	
J#:	Dr. Clontz
Date:	

Version 5

Math 237 – Linear Algebra Fall 2017

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.
$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$
 is linearly dependent or linearly independent

Standard S3.

Mark:

Let W be the subspace of \mathcal{P}_2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Standard S4. Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \operatorname{span}\left(\left\{x^3 - x^2 + 3x - 3, 2x^3 + x + 1, 3x^3 - x^2 + 4x - 2, x^3 + x^2 + x - 7\right\}\right)$. Compute the dimension of W.

Standard A1. Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 0 \end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and $\mathbb{R}^4.$

Mark:

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ \sqrt{x}+\sqrt{y} \end{bmatrix}$. Determine if T is a linear transformation.

Name:	
J#:	Dr. Clontz
Date:	

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard S1.

Mark:

Determine if the set of polynomials $\{x^3 - 8x, x^3 + 2x^2 + 2, -x^2 + 3\}$ is linearly dependent or linearly independent

Standard S3. $\begin{bmatrix} & & & \\ & & & & \\ & &$

Standard S4.

$$\begin{bmatrix}
1 \\
-1 \\
3 \\
-3
\end{bmatrix}, \begin{bmatrix}
2 \\
0 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
3 \\
-1 \\
4 \\
-2
\end{bmatrix}, \begin{bmatrix}
1 \\
1 \\
1 \\
-7
\end{bmatrix}
\right\}.

Compute the dimension of W .$$

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}$$

. Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Mark:

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ \sqrt{x}+\sqrt{y} \end{bmatrix}$. Determine if T is a linear transformation.