Aufgabe 1 (Frühjahr 2007). Zeigen Sie:

- (a) Ist R ein Hauptidealring, so ist jedes vom Nullideal verschiedene Primideal in R ein maximales Ideal.
- (b) Ist R ein Integritätsring und der Polynomring R[X] ein Hauptidealring, so ist R ein Körper.

Aufgabe 2 (Herbst 2013). Es sei p eine Primzahl. Man zeige, daß außer 3 jeder Primteiler von $2^p + 1$ gößer als p ist.

Hinweis: Betrachten Sie die multiplikative Ordnung von 2 modulo eines Primteilers von $2^p + 1$.

Aufgabe 3 (Frühjahr 2014). Es seien K ein Körper, K[X] der Polynomring über K und m, n nichtnegative ganze Zahlen. Zeigen Sie:

Sei $g = \operatorname{ggT}(m, n)$ in \mathbb{Z} , dann ist $X^g - 1$ ein größter gemeinsamer Teiler von $X^m - 1$ und $X^n - 1$ in K[X].

Aufgabe 4 (Frühjahr 2002). Sei $R = \mathbb{Z}[T]$ der Ring der formalen Potenzreihen mit Koeffizienten in \mathbb{Z} .

- (a) Sei $\mathfrak{m} \subset R$ ein maximales Ideal in R. Zeigen Sie: $\mathfrak{m} \cap \mathbb{Z}$ ist ein maximales Ideal in \mathbb{Z} .
- (b) Bestimmen Sie die Gruppe der Einheiten R^* .
- (c) Bestimmen Sie alle maximalen Ideale in R.

Aufgabe 5 (??). Für $R = \mathbb{Z}$ und $R = \mathbb{Z}[X]$ untersuche man das durch die Primzahl $2 \in \mathbb{Z}$ erzeugte Hauptideal (2) in R und beweise oder widerlege die folgenden Aussagen:

- (a) (2) ist ein Primideal in R.
- (b) (2) ist ein maximales Ideal in R.

Aufgabe 6 (??). Sei R ein (unitärer) kommutativer Ring, $\mathfrak{m} \subset R$ ein maximales Ideal. Sei 1+a invertierbar für jedes Element $a \in \mathfrak{m}$. Zeigen Sie, daß \mathfrak{m} das einzige maximale Ideal von R ist.

Aufgabe 7 (??). Sei R ein Integritätsbereich und $I \subset R$ ein Primideal, so daß der Index [R:I] der additiven Gruppen (R,+) und (I,+) endlich ist. Zeigen Sie, daß I ein maximales Ideal von R ist.