Лабораторная работа №2

Задача о погоне

Прагматика выполнения работы

- Знакомство с основами математического моделирования на примере задачи о погоне.
- Визуализация результатов моделирования путем построения графиков.

Цель выполнения работы

- Научиться строить математические модели для выбора правильной стратегии при решении задачи поиска на примере задачи о погоне.
- Научиться решать уравнения и строить графики в системе Scilab

Постановка задачи лабораторной работы

• На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 17,4 км от катера.

Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,8 раза больше скорости браконьерской лодки.

Задания для выполнения

- 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Найти точку пересечения траектории катера и лодки.

Выполнение работы

Вывод уравнения 1/6

• Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер — k-x (или k+x в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или k-x/4.8v (во втором случае k+x/4.8v). Так как время одно и то же, то эти величины одинаковы.

Вывод уравнения 2/6

ullet Тогда неизвестное расстояние x можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{k-x}{4.8v}$$
 в первом случае

ИЛИ

$$\frac{x}{v} = \frac{k+x}{4.8v} \text{ во в тором.}$$

Отсюда мы найдем два значения $x_1=\frac{17.4}{5.8}=3$ и $x_2=\frac{17.4}{3.8}=\frac{8.7}{1.9}$, задачу будем решать для двух случаев.

Вывод уравнения 3/6

• После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса, удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r — радиальная скорость и v_τ — тангенциальная скорость (рис. 2). Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = v$.

Вывод уравнения 4/6

• Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{\partial \theta}{\partial t}$ на радиус $r,\ v_{ au}=r\frac{\partial \theta}{\partial t}$

Из рисунка (рис. 1) видно: $v_{ au}=\sqrt{23.04v^2-v^2}=\sqrt{22.04}v$ (учитывая, что радиальная скорость равна v). Тогда получаем $r\frac{\partial \theta}{\partial t}=\sqrt{22.04}v$

Вывод уравнения 5/6

• Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

$$egin{cases} rac{\partial r}{\partial t} = v \ rrac{\partial heta}{\partial t} = \sqrt{22.04}v \end{cases}$$

с начальными условиями

1.
$$egin{cases} heta_0=0 \ r_0=3 \end{cases}$$
2. $egin{cases} heta_0=-\pi \ r_0=rac{8.7}{1.0} \end{cases}$

Вывод уравнения 6/6

Исключая из полученной системы производную по $m{t}$, можно перейти к следующему уравнению:

$$rac{\partial r}{\partial heta} = rac{r}{\sqrt{22.04}}.$$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

Результаты выполнения работы

рис.2 Графики

Спасибо за внимание!