Climate control system for plants in the cloud Bachelor's thesis

Author: S. Xiao Fernández Marín Advisor: Iván González Martínez

Table of Contents

OOIIntroduction

OldState-Of-The-Art

Design of the System

IOODissertation

Results and Discussion

Conclusions and Future Work

001 Introduction

Motivation

Goals

010

State-Of-The-Art

Cloud Computing

Internet of Things

Network of physical objects with sensors and connectivity for data exchange.

- Wi-Fi
- Bluetooth
- RFID
- WSN

- Improved efficiency
- Automation
- Data-driven decision-making.

Models of the project in the present

Active plant wall for green indoor climate based on cloud and IoT

Camponectado

Postscapes

Databases used

plantinfo clean

TABLE COLUMNS

011

Design of the System

High-Level diagram

Low-Level System diagram

Low-Level Arduino diagram

100

Dissertation

Main Database - VBA, Combine to CSV

2

7

8

9

10

11

12

13

14

15 16

17

18

19

20

21

22

23


```
import pandas as pd
# Create the dataframe we will use later
merged = pd.DataFrame()
# As there are 12 files in total, we create a loop
for file in range(1, 13):
                                                                    merged_10a.csv
                                                   merged 8a.csv
    # Read the data from each file
    month data = pd.read csv(f"{file}.csv")
    # Get the name and delete the null rows
    name = list(month data["Name"])
    name = [x \text{ for } x \text{ in } name \text{ if } not(pd.isnull(x)) == True]
    # Get the month you have to sow each plant. Depends on the file it is in
    sowMonth = [
    sowMonth.extend([file]*len(name))
    # Create a dicitonary to append it to the file
    data = {"Name": name,
            "sowMonth": sowMonth}
    merged = merged.append(pd.DataFrame(data))
# Create file
merged.to csv("merged Xa.csv")
                                                                             16
```

Main Database - Merge to final file


```
minTinC = plantInfo clean["sowInstructions"].str.extract("._Best_planted_at_soil_temperatures_between_
    (\w+)[U+FFFD]C.")
maxTinC = plantInfo clean["sowInstructions"].str.extract("C_and_(\w+).")
minTinF = plantInfo clean["sowInstructions"].str.extract("._Best_planted_at_soil_temperatures_between_
    (\w+)[U+FFFD]F.")
maxTinF = plantInfo clean["sowInstructions"].str.extract("F_and_(\w+).")
farenheitMin = II
farenheitMax
for i in range(
                                            nC[0][i] is not np.nan):
   if (minTin
       min
       farenh
       farenh
                      prueba.csv
plantInfo clea
plantInfo clean "max I in " = I arenneitMax
plantInfo clean["sowInstructions"] = plantInfo clean["sowInstructions"].map(lambda x: re.sub(r"._Best_
    planted_at_soil_temperatures_between_\d+[U+FFFD]\w_and_\d+[U+FFFD]\w._\(Show_
    [U+FFFD]\w/\w+\)", ".", x)) # Delete the duplicated information
plantInfo clean.sort values(["Name"], inplace=True) # We sort the list first by the sowing month and
     then by name
```

plantInfo clean.to csv("prueba.csv") # We store the final file

Main Database

AMAZI III AMAZI					1000			The second second
Name	sowInstructions	spaceInstructionsInches	harvestInstructions	compatiblePlants	sowMonthJan	easyGrow	minTinF	maxTinF
Amaranth	Sow in garden. Sow seed at a depth approximately three times the diameter of the seed.	20	7-8 weeks.	Onionsor cornor peppersor egg plantor tomatoes	1	1	64	86
Angelica	Sow in garden. Sow seed at a depth approximately three times the diameter of the seed.	18	18 months. Angelica archangelica has slightly dull leavesor not shiny	Any herbs that like dampor shady areas - mintor lemon balm	0	1	50	77
Artichokes (Globe)	Sow in garden. Sow seed at a depth approximately three times the diameter of the seed.	71	42-57 weeks.	Needs a lot of space. Best in separate bed	0	1	59	64
Asparagus	Plant as crowns.	12	2-3 years. Plant 'crowns' to harvest earlier .	Parsleyor Basilor Nasturtiumsor Lettuce	1	1	61	86
Asparagus Pea	Sow in garden. Sow seed at a depth approximately three times the diameter of the seed.	9	8-11 weeks. Pick earlyor pick often.	Best grown in separate bed	0	1	59	68

Arduino and Breadboard

Temperature and humidity unit


```
33
     void loop() {
34
       while (!Serial.available());
35
       String str(Serial.readString());
36
       char str array[str.length()+1];
       str.toCharArray(str array, str.length()+1);
37
38
39
       if (strcmp(str array, "readT") == 0) {
40
         Serial.print(dht.readTemperature(true));
41
         Serial.print(",");
42
         Serial.print(dht.readTemperature());
43
44
45
       if (strcmp(str array, "hot") == 0) {
46
         analogWrite(FANPIN, 150);
47
         digitalWrite(BLUELED, LOW); // Stop turning up blinds
48
         digitalWrite(REDLED, HIGH); // Turn down blinds
49
        else if (strcmp(str array, "cold") == 0) { // If cold, open blinds
50
         analogWrite(FANPIN, 0);
51
         digitalWrite(REDLED, LOW); // Stop turning up blinds
52
         digitalWrite(BLUELED, HIGH); // Turn up blinds
53
       } else {
```

Light detection unit


```
53
        else {
54
        int light = analogRead(PHOTOPIN);
         if (light > 900){ // Its bright AND not cold, red led on -> Close blinds
55
56
          digitalWrite(BLUELED, LOW); // Stop turning up blinds
57
          digitalWrite(REDLED, HIGH); // Turn down blinds
58
         } else if (light < 500){ // Its dark, blue led on -> Open blinds
59
          digitalWrite(REDLED, LOW); // Stop turning up blinds
          digitalWrite(BLUELED, HIGH); // Turn up blinds
60
         } else {
61
62
          digitalWrite(REDLED, LOW); // Stop turning up blinds
63
          digitalWrite(BLUELED, LOW); // Stop turning up blinds
64
65
```

Water supply unit


```
// Check water level, if less than half, an alarm will turn on
int water = analogRead(SENSORPIN);
if ( water < 255){ tone(BUZZER, 2500); }// Send 1KHz sound signal...
else { noTone(BUZZER); }
}
```


Connecting the PC with the database

Sequence diagram

Results and Discussion

Statistics

Temperature before implementation of fan

Temperature after implementation of fan

Hot signal

Cold signal

No signal

Time	Print	Time	Print		
13:30:31.539094	Local sent: 65.3	13:30:31.825181	Cloud received: 65.3		
13:30:43.850577	Local received: cold	13:30:33.803240	Cloud sent: cold		
13:30:47.644026	Local sent: 63.32	13:30:47.902480	Cloud received: 63.32		
13:30:59.900718	Local received: cold	13:30:49.853312	Cloud sent: cold		
13:31:02.799246	3:31:02.799246 Local sent: 63.86		Cloud received: 63.86		
13:31:14.981682	Local received: cold	13:31:05.520761	Cloud sent: cold		
13:31:17.943842	Local sent: 63.86	13:31:18.727527	Cloud received: 63.86		
13:31:30.167591	Local received: cold	13:31:20.743666	Cloud sent: cold		
13:31:33.249010	Local sent: 63.86	13:31:34.160295	Cloud received: 63.86		
13:31:45.631100	Local received: cold	13:31:36.108277	Cloud sent: cold		

(a) Local python output		(b) Cloud python output			

Today, 11/1/2023 at 13:12:11 it's 18°C

Know your plants

Ge	t If The Current Temperature Is Good For A Plant
	Get Which Plants Are Good For The Current T
	Search By Filter
	Get Recommendation By My Plants Db
	Add Plant To My Db

Enter the nam

Name

You can p

Strawberries (from seeds).

Sow instructions: Start inside in pots or trays after chilling seeds.. Sow seed at a depth approximately three times the diameter of the seed.

Plant around 25.5 inches between any other plant

Harvest instructions: 1 years. Seedlings need to grow for about a year before fruiting. Remove first flowers. .

Plants that are compatible: Better in a bed on their own to allow good sun and air circulation

To avoid: Avoid growing close to: If you are using rotation bedsor avoid putting strawberries where you have grown tomatoesor potatoesor peppers or eggplant

Culinary hints: Strawberries can be used in any dessert needing soft fruit or berries. Summer pudding with raspberries and blackberries or boysenberriesor mousseor trifleor dipped in melted chocolate or just with cream. Sprinkle a bowl of strawberries with balsamic vinegar and a little sugar to enhance the flavour and colour. Straight from the gardenor warmed by the sun is best.

For more information visit this link.

Ideal to grow in: Februay,

Minimum temperature: 10.0°C. Maximum temperature: 20.0°C

Conclusions and Future Work

Conclusions

07

Practical and effective solution for the problem we had.

02

Successfully **achieved all goals** in designing and implementing the system.

03

technologies were employed to enable monitoring and a response mechanism.

04

Cost-effective, easy-to-use, and highly functional system created. 05

The **knowledge acquired** during the project process, with cloud services being a new area of study.

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.