Integración y Series

NOTAS DE CLASE

Septiembre 31 de 2023

Juan Camilo Lozano Suárez

1 El criterio de la integral

Teorema 1.1 (Criterio de la integral). Sea f una función positiva y decreciente definida en el intervalo $[1, \infty)$ tal $que \lim_{x\to\infty} f(x) = 0$. Para cualquier $n \in \mathbb{Z}^+$ definimos

$$S_n = \sum_{k=1}^n f(k),$$
 $t_n = \int_1^n f(x)dx,$ $d_n = s_n - t_n.$

Entonces tenemos:

- i) $0 < f(n+1) \le d_{n+1} \le d_n \le f(1)$, para cualquier $n \in \mathbb{Z}^+$.
- *ii*) $\lim_{n\to\infty} d_n$ existe.
- iii) $\sum_{n=1}^{\infty} f(n)$ converge, si y sólo si la sucesión $\{t_n\}$ converge.
- *iv*) $0 \le d_k \lim_{n \to \infty} d_n \le f(k)$, para cualquier $k \in \mathbb{Z}^+$.

Prueba. i) Ya que f es positiva en $[1, \infty)$, inmediatamente se tiene 0 < f(n+1) para todo $n \in \mathbb{Z}^+$. Como $f \searrow$ en $[1, \infty)$, para cada $k \in \mathbb{Z}^+$ tenemos $f(x) \leq f(k)$ para todo $x \in [k, k+1]$, de modo que $\int_k^{k+1} f(x) dx \leq \int_k^{k+1} f(k) dx$. Así, para cada $n \in \mathbb{Z}^+$ obtenemos:

$$t_{n+1} = \int_{1}^{n+1} f(x)dx$$

$$= \sum_{k=1}^{n} \int_{k}^{k+1} f(x)dx$$

$$\leq \sum_{k=1}^{n} \int_{k}^{k+1} f(k)dx$$

$$= \sum_{k=1}^{n} f(k) \int_{k}^{k+1} dx$$

$$= \sum_{k=1}^{n} f(k)$$

$$= S_{n}.$$

Así, se sigue $-S_n \le -t_{n+1}$ y $S_{n+1} - S_n \le S_{n+1} - t_{n+1} = d_{n+1}$, pero $S_{n+1} - S_n = \sum_{k=1}^{n+1} f(k) - \sum_{k=1}^{n} f(k) = f(n+1)$, luego $f(n+1) \le d_{n+1}$. Por otra parte, para cada $n \in \mathbb{Z}^+$ se tiene $f(x) \ge f(n+1)$ para todo $x \in [n, n+1]$ (nuevamente, porque $f \searrow en[1, \infty)$), por tanto

$$\int_{n}^{n+1} f(x)dx \ge \int_{n}^{n+1} f(n+1)dx = f(n+1) \int_{n}^{n+1} dx = f(n+1),$$

y $\int_{n}^{n+1} f(x)dx - f(n+1) \ge 0$. Así, se obtiene

$$d_n - d_{n+1} = (S_n - t_n) - (S_{n+1} - t_{n+1})$$

$$= (t_{n+1} - t_n) - (S_{n+1} - S_n)$$

$$= \left(\int_1^{n+1} f(x) dx - \int_1^n f(x) dx \right) - \left(\sum_{k=1}^{n+1} f(k) - \sum_{k=1}^n f(k) \right)$$

$$= \int_n^{n+1} f(x) dx - f(n+1) \ge 0,$$

con lo cual $d_{n+1} \leq d_n$. Como lo anterior vale para cualquier $n \in \mathbb{Z}^+$, hemos probado que $\{d_n\}$ es una sucesión decreciente, y por tanto para cualquier $n \in \mathbb{Z}^+$ se tiene

$$d_n \le d_1 = S_1 - t_1 = \sum_{k=1}^{1} f(k) - \int_1^1 f(x) dx = f(1),$$

lo cual completa la prueba de i).

- ii) De i) se tiene que $\{d_n\}$ es una sucesión decreciente y acotada inferiormente por 0, y por lo tanto $\{d_n\}$ converge, es decir, $\lim_{n\to\infty} d_n$ existe.
- iii) Se tiene que la serie $\sum_{n=1}^{\infty} f(n)$ converge, si y sólo si su sucesión de sumas parciales $\{S_n\}$ converge. Como $\lim_{n\to\infty} d_n = \lim_{n\to\infty} (S_n t_n)$ existe, si $\lim_{n\to\infty} S_n$ existe, también lo hace $\lim_{n\to\infty} (S_n (S_n t_n)) = \lim_{n\to\infty} t_n$, y recíprocamente, si $\lim_{n\to\infty} t_n$ existe, también lo hace $\lim_{n\to\infty} ((S_n t_n) + t_n) = \lim_{n\to\infty} S_n$. Así, $\{t_n\}$ converge, si y sólo si $\{S_n\}$ converge, es decir, si y sólo si $\sum_{n=1}^{\infty} f(n)$ converge.
- iv) Sea $n \in \mathbb{Z}^+$ cualquiera. En la prueba de i) se dedujo $d_n d_{n+1} = \int_n^{n+1} f(x) dx f(n+1)$. Como además tenemos

$$\int_{n}^{n+1} f(x)dx \le \int_{n}^{n+1} f(n)dx = f(n) \int_{n}^{n+1} dx = f(n),$$

tenemos

$$0 \le d_n - d_{n+1} = \int_n^{n+1} f(x)dx - f(n+1) \le f(n) - f(n+1).$$

Como esto vale para $n \in \mathbb{Z}^+$ arbitrario, para cualesquiera $k, \omega \in \mathbb{Z}^+$ con $\omega \geq k$, tendremos

$$0 \le \sum_{n=k}^{\omega} (d_n - d_n + 1) \le \sum_{n=k}^{\omega} (f(n) - f(n+1)),$$

y por lo tanto

$$0 \le \sum_{n=k}^{\infty} (d_n - d_{n+1}) \le \sum_{n=k}^{\infty} (f(n) - f(n+1)).$$

Notemos además que las series $\sum_{n=k}^{\infty} (d_n - d_{n+1})$ y $\sum_{n=k}^{\infty} (f(n) - f(n+1))$ son telescópicas, de modo que

$$\sum_{n=k}^{\infty} (d_n - d_{n+1}) = d_k - \lim_{n \to \infty} d_{n+1} = d_k - \lim_{n \to \infty} d_n,$$

y,

$$\sum_{n=k}^{\infty} (f(n) - f(n+1)) = f(k) - \lim_{n \to \infty} f(n+1) = f(k),$$

pues por hipótesis $\lim_{x\to\infty} f(x) = 0$. Así, obtenemos

$$0 \le d_k - \lim_{n \to \infty} d_n \le f(k),$$

para $k \in \mathbb{Z}^+$ cualquiera.

Observación 1.2. • Que la sucesión $\{t_n\}$ converja quiere decir que $\lim_{n\to\infty} t_n = \lim_{n\to\infty} \int_1^n f(x)dx$ exista, es decir, que la integral impropia $\int_1^\infty f(x)dx$ converge. Así, iii) nos dice que $\sum_{k=1}^\infty f(n)$ converge, si y sólo si $\int_1^\infty f(x)dx$ converge; en la práctica, esta es la forma de usar el criterio de la integral para estudiar la convergencia de series.

• Si llamamos $D = \lim_{n \to \infty} d_n$, entonces i) implica $0 \le D \le f(1)$, y de iv) se tiene

$$0 \le \sum_{k=1}^{n} f(k) - \int_{1}^{n} f(x)dx - D \le f(n)$$
 (1)

para cualquier $n \in \mathbb{Z}^+$. Esta desigualdad es extremadamente útil para calcular ciertas sumas finitas mediante integrales.

Ejemplo 1.3. Sea $s \in \mathbb{R}$ cualquiera, y estudiemos la convergencia de la serie $\sum_{n=1}^{\infty} \frac{1}{n^s}$. Si $s \leq 0$, se tiene $\lim_{x \to \infty} \frac{1}{n^s} \neq 0$ y por tanto $\sum_{n=1}^{\infty} \frac{1}{n^s}$ diverge trivialmente. Supongamos s > 0 con $s \neq 1$, y consideremos $f: [1,\infty) \to \mathbb{R}$ como la función definida mediante $f(x) = \frac{1}{x^s}$ para cualquier $x \in [1,\infty)$. Tenemos que f es positiva decreciente $y \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{x^s} = 0$; por ende podemos usar el criterio de la integral. Se tiene

$$\int_{1}^{\infty} \frac{1}{x^{s}} dx = \lim_{\omega \to \infty} \int_{1}^{\omega} \frac{1}{x^{s}} dx = \lim_{\omega \to \infty} \left(\frac{x^{1-s}}{1-s} \right) \Big|_{1}^{\omega} = \lim_{\omega \to \infty} \left(\frac{1}{1-s} (w^{1-s} - 1) \right);$$

este límite converge si 1 < s y diverge si 0 < s < 1. Por el criterio de la integral $\sum_{n=1}^{\infty} \frac{1}{n^s}$ converge si s > 1 y diverge si 0 < s < 1. Si s = 1 entonces $\sum_{n=1}^{\infty} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{1}{n}$, y obtenemos la serie armónica, que es divergente.

2 La notación O grande y o pequeña

Definición 2.1. Sean $\{a_n\}$ y $\{b_n\}$ sucesiones reales con $b_n \ge 0$ para todo $n \in \mathbb{Z}^+$. Escribimos $a_n = O(b_n)$ (léase " a_n es O grande de b_n "), si existe $M \in \mathbb{R}^+$ tal que $|a_n| \le Mb_n$ para todo $n \in \mathbb{Z}^+$. Escribimos $a_n = o(b_n)$ (léase " a_n es o pequeña de b_n ") cuando $n \to \infty$, si $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$.

Observación 2.2. Una ecuación de la forma $a_n = c_n + O(b_n)$ significa que $a_n - c_n = O(b_n)$. Similarmente, $a_n = c_n + o(b_n)$ significa $a_n - c_n = o(b_n)$. La ventaja de esta notación es que nos permite reemplazar ciertas designaldades por igualdades. Por ejemplo, la designaldad 1 implica

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(x)dx + D + O(f(n)).$$
 (2)

Ejemplo 2.3. Tomemos $f(x) = \frac{1}{x}$ en el Teorema 1.1. Tenemos entonces $t_n = \int_1^n \frac{1}{x} dx = \log n$, y el inciso ii) nos garantiza la existencia del límite

$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right),\,$$

un famoso número conocido como constante de Euler, o constante de Euler-Mascheroni (no confundir con el número de Euler "e"), y se denota usualmente por C (o por γ). Así, de la Ecuación 2 obtenemos:

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + C + O\left(\frac{1}{n}\right).$$

Ejemplo 2.4. Ahora, dado $s \in \mathbb{R}$ cualquiera, con $s \neq 1$, tomemos $f(x) = \frac{1}{x^s}$ en el Teorema 1.1. En el ejemplo 1.3 probamos que la serie $\sum_{n=1}^{\infty} \frac{1}{n^s}$ converge únicamente cuando s > 1. Para s > 1, dicha serie define una importante función conocida como la función zeta de Riemann:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad (s > 1).$$

Para $s > 0, s \neq 1$, podemos aplicar la Ecuación 2 para obtener

$$\sum_{k=1}^{n} \frac{1}{k^s} = \frac{n^{1-s} - 1}{1-s} + C(s) + O\left(\frac{1}{n^s}\right),$$

donde $C(s) = \lim_{n \to \infty} \left(\left(\sum_{k=1}^n \frac{1}{k^s} \right) - \frac{n^{1-s} - 1}{1-s} \right).$

3 Límite superior y límite inferior de una sucesión de números reales

En el curso de Introducción al Análisis real se estudió el concepto de límite superior y límite inferior de una sucesión con valores reales. En la presente sección hacemos un pequeño recuerdo de las definiciones y algunos teoremas que se usarán más adelante.

Definición 3.1. Sea $\{a_n\}$ una sucesión de números reales. Suponga que existe $U \in \mathbb{R}$ que satisface las siguientes dos condiciones:

i) Para todo $\varepsilon > 0$ existe $N \in \mathbb{Z}^+$ tal que para cualquier n > N se tiene

$$a_n < U + \varepsilon$$
.

ii) Para todo $\varepsilon > 0$ y para todo entero m > 0 existe un entero n > m tal que

$$a_n > U - \varepsilon$$
.

Entonces U es llamado el límite superior de $\{a_n\}$ y escribimos

$$U = \limsup_{n \to \infty} a_n.$$

El inciso (i) implica que la sucesión $\{a_n\}$ está aacotada superiormente; si no lo está, definimos $\limsup_{n\to\infty} a_n = \infty$. Si la sucesión está acotada superiormente pero no inferiormente, y si no tiene límite superior finito, definimos $\limsup_{n\to\infty} = -\infty$. El límite inferior de $\{a_n\}$ se define como:

$$\liminf_{n \to \infty} a_n = -\limsup_{n \to \infty} (-a_n).$$

Observación 3.2. El inciso (i) significa que a partir de cierto punto todos los términos de la sucesión $\{a_n\}$ estarán a la izquierda de $U + \varepsilon$; esto también lo expresamos diciendo que "casi toda la sucesión" está a la izquierda de $U + \varepsilon$. El inciso (ii) significa que hay infinitos términos de la sucesión a la derecha de $U - \varepsilon$.

Teorema 3.3. Sea $\{a_n\}$ una sucesión de números reales. Entonces se tiene:

- a) $\limsup_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$.
- **b)** La sucesión $\{a_n\}$ converge si, y sólo si, $\limsup_{n\to\infty} a_n$ y $\liminf_{n\to\infty} a_n$ son ambos finitos e iguales; en este caso, $\lim_{n\to\infty} a_n = \lim\inf_{n\to\infty} a_n = \lim\sup_{n\to\infty} a_n$.
- c) La sucesión $\{a_n\}$ diverge hacia ∞ si, y sólo si, $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = \infty$.
- d) La sucesión $\{a_n\}$ diverge hacia $-\infty$ si, y sólo si, $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = -\infty$.

Teorema 3.4. Suponga que $a_n \leq b_n$ para todo $n \in \mathbb{Z}^+$. Entonces se tiene:

$$\liminf_{n\to\infty} a_n \leq \liminf_{n\to\infty} b_n \quad y \quad \limsup_{n\to\infty} a_n \leq \limsup_{n\to\infty} b_n.$$

Ejemplo 3.5.

- 1. $a_n = (-1)^n (1 + 1/n)$, $\lim \inf_{n \to \infty} a_n = -1$, $\lim \sup a_n = 1$.
- 2. $a_n = (-1)^n$, $\lim \inf_{n \to \infty} a_n = -1$, $\lim \sup_{n \to \infty} a_n = 1$.
- 3. $a_n = (-1)^n n$, $\lim \inf_{n \to \infty} a_n = -\infty$, $\lim \sup_{n \to \infty} a_n = \infty$.
- 4. $a_n = n^2 \sin^2\left(\frac{1}{2}n\pi\right)$, $\lim \inf_{n\to\infty} a_n = 0$, $\lim \sup a_n = \infty$.

4 Criterio del cociente y criterio de la raíz

Teorema 4.1 (Criterio del cociente). Sea $\sum a_n$ una serie de números complejos no nulos, y tomemos

$$r = \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|, \qquad R = \limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Entonces se tiene que:

- a) Si R < 1, la serie $\sum a_n$ converge absolutamente.
- **b)** Si r > 1, la serie $\sum a_n$ diverge.

- c) Si $r \le 1 \le R$, el criterio no decide.
- Prueba. a) Supongamos que R < 1. Entonces existe $x \in \mathbb{R}$ tal que R < x < 1. Tomemos $\varepsilon := x R > 0$. Por la definición de R, existe $N \in \mathbb{Z}^+$ tal que para cualquier $n \ge N$ se tiene $\left|\frac{a_{n+1}}{a_n}\right| < R + \varepsilon = R + (x R) = x$. Sea $n \ge N$ cualquiera. Como $x = \frac{x^{n+1}}{x^n}$ (sabemos que $x \ne 0$ pues $R \ge 0$, ya que $\left\{\left|\frac{a_{n+1}}{a_n}\right|\right\}$ es una sucesión de términos positivos), se tiene $\left|\frac{a_{n+1}}{a_n}\right| < \frac{x^{n+1}}{x^n}$, y,

$$\frac{|a_{n+1}|}{r^{n+1}} < \frac{|a_n|}{r^n} \le \frac{|a_n|}{r^n},$$

con lo cual, para cualquier $n \geq N$ se tiene $|a_n| \leq cx^n$, donde $c = \frac{|a_n|}{x^N} \in \mathbb{R}^+$. Tenemos que $\sum x^n$ es una sevie geométrica de radio $x \in (0, L)$, y por tanto $\sum x^n$ converge. Así, por el criterio de companación se deduce que $\sum |a_n|$ converge, es decir, $\sum a_n$ converge absolutamente.

- b) Suponganos que r > 1. Existe $x \in \mathbb{R}$ tal que r > x > 1, Tomenos $\varepsilon = r x > 0$. Por la defintición de r, existe $N \in \mathbb{Z}^+$ tal que para todo $n \ge N$ se tiene $\left|\frac{a_{n+1}}{a_n}\right| > r \varepsilon = r (r-x) = x > 1$, y por tanto $|a_{n+1}| > |a_n|$. Esto quiere decir que a partir de cierto punto, $\{|a_n|\}$ se comporta como una sucesión creciente de términos positivos, lo que implica $\lim_{n\to\infty} |a_n| \ne 0$ y por tanto $\lim_{n\to\infty} a_n \ne 0$, con lo cual $\sum a_n$ diverge.
- c) Para probar c) consideremos los siguientes dos ejemplos: para la serie $\sum \frac{1}{n}$ se tiene

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{n+1}}{\frac{1}{n}} \right| = \lim_{n \to \infty} \left(\frac{n}{n+1} \right) = 1,$$

luego r=R=1, y se tiene que $\sum \frac{1}{n}$ diverge; para la serie $\sum \frac{1}{n^2}$ se tiene

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} \right| = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1,$$

y r=R=1, pero en este caso, por el Ejemplo 1.3, se tiene que $\sum \frac{1}{n^2}$ converge.

Teorema 4.2 (Criterio de la raiz). Sea $\sum a_n$ una serie de números complejos, y tomemos

$$\rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Entonces se tiene:

- a) Si $\rho < 1$, la serie $\sum a_n$ converge absolutamente.
- **b)** Si $\rho > 1$, la serie $\sum a_n$ diverge.
- c) Si $\rho = 1$, el criterio no decide.
- Prueba. a) Supongamos que $\rho < 1$. Existe $x \in \mathbb{R}$ tal gue $\rho < x < 1$. Tomemos $\varepsilon = x \rho > 0$. Por la definición de ρ , existe $N \in \mathbb{Z}^+$ tal que para cualquier $n \geq N$ se tiene $\sqrt[n]{|a_n|} , y por tanto <math>|a_n| < x^n$. Notemos que $\sum x^n$ es una serie geométrica con radio $x \in (0,1)$ (tenemos $x > \rho$ y $\rho \geq 0$ pues $\left\{\sqrt[n]{|a_n|}\right\}$ es una sucesión de términos no negativos), y por tanto converge. Del criterio de comparación se sigue que $\sum |a_n|$ converge, es decir, $\sum a_n$ converge absolutamente.

- b) Supongamos que $\rho > 1$. Existe $x \in \mathbb{R}$ tal que $\rho > x > 1$. Tomemos $\varepsilon = \rho x > 0$. Por la definición de ρ , para todo m > 0 existe n > m tal que $\sqrt[n]{|a_n|} > p \varepsilon = p (p x) = x > 1$, y por tanto se tiene $|a_n| > 1$ infinitas veces, con lo cual $\lim_{n \to \infty} |a_n| \neq 0$ y $\lim_{n \to \infty} a_n \neq 0$. Con lo anterior, $\sum a_n$ diverge.
- c) Para probar c) podemos tomar los mismos ejemplos usados en el Teorema 4.1: para la serie divergente $\sum \frac{1}{n}$ tenemos $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{n}} = 1$ y por tanto $\rho = 1$, y para la serie convergente $\sum \frac{1}{n^2}$ también se tiene $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \lim_{n\to\infty} \sqrt[n]{\frac{1}{n^2}} = 1$ y $\rho = 1$.