МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 1.4.1

Изучение экспериментальных погрешностей на примере физического маятника

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

- 1. на примере измерения периода свободных колебаний физического маятника познакомиться с систематическими и случайными погрешностями, прямыми и косвенными измерениями
- 2. проверить справедливость формулы для периода колебаний физического маятника и определить значение ускорения свободного падения
- 3. убедиться в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качания маятника
- 4. оценить погрешность прямых и косвенных измерений и конечного результата

В работе используются:

- металлический стержень с опорной призмой
- дополнительный груз
- закреплённая на стене консоль
- подставка с острой гранью для определения цента масс маятника
- секундомер
- счётчик колебаний электронный
- линейки металлические различной длины
- штангенциркуль
- электронные весы ВЛТЭ-5100

2 Теоретические сведения

Пусть однородный стержень длины l подвешен на оси O на расстоянии a от центра масс C. При отклонении стержня от вертикали на малый угол φ начинаются колебания стержня, которые можно описать уравнением моментов относительно оси O:

$$I\ddot{\varphi} + mga\varphi = 0, (1)$$

где φ - угол отклонения маятника от вертикали, m - его масса, I - момент инерции относительно оси подвеса.

Получаес уравнение гармонических колебаний, где период равен:

$$T = 2\pi \sqrt{\frac{I}{mga}} \tag{2}$$

Используя теорему Гюйгенса-Штейнера получаем:

$$I = \frac{ml^2}{12} + ma^2 \tag{3}$$

Подставив это выражение в формулу (2), получим:

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{ga}} \tag{4}$$

Определим так называемую приведённую длину физического маятника:

$$l_{\rm np} = a + \frac{l^2}{12a},\tag{5}$$

получим, что период равен периоду колебаний математического маятника с длиной $l_{\rm np}$.

Рис. 1: Стержень как физический маятник

Рис. 2: К теореме Гюйгенса

В работе также будет изучаться затухание колебаний. Предполагая, что диссипация обусловлена вязким трением, пропорциональным угловой скорости маятника, получим зависимость амплитуды от времени:

$$A(t) = A_0 e^{-\gamma t} \tag{6}$$

За время $\tau_{\text{зат}} = 1/\gamma$ амплитуда A колебаний падает в e раз. Отношение времени жизни колебаний к периоду определяет добротность системы:

$$Q = \pi \frac{\tau_{\text{3aT}}}{T} \tag{7}$$

Наконец, добавим поправки к формуле (4), учитывающие, конечные массу и размер призмы. Точная формула имеет вид:

$$T = 2\pi \sqrt{\frac{I_{\rm cr} + I_{\rm np}}{m_{\rm cr}ga - m_{\rm np}ga_{\rm np}}} \tag{8}$$

Здесь $I_{\rm np}, m_{\rm np}, a_{\rm np}$ - соответственно момент инерции призмы относительно оси подвеса, её масса и расстояние от оси подвеса до центра масс призмы (знак "минус"в знаменателе означает, что призма находится над осью).

Заметим, что $m_{\rm np}\sim 10^{-1}$ кг, $a_{\rm np}\sim 1$ см, $m_{\rm cr}\sim 1$ кг, $a\geq 10$ см, поэтому $I_{\rm np}/I$ ст $\sim 10^{-3}$. Это означает, что можно не учитывать $I_{\rm np}$. Однако для моментов, создаваемых силами тяжести призмы и стержня, имеем:

$$\frac{M_{\rm np}}{M_{\rm cr}} = \frac{m_{\rm np} g a_{\rm np}}{m_{\rm cr} g a} \sim 10^{-2},$$

то есть имеем ошибку до 1%. Будем учитывать эту поправку.

Чтобы измерить $a_{\rm np}$, будем находить расстояние $x_{\rm q}$ от центра масс стержня с призмой до точки подвеса и вычислять $a_{\rm np}$ по очевидной формуле:

$$a_{\rm np} = \frac{m_{\rm cr} a - (m_{\rm cr} + m_{\rm np}) x_{\rm n}}{m_{\rm np}} \tag{9}$$

Рис. 3: . Смещение центра масс из-за подвесной призмы

В итоге формула для периода примет вид:

$$T = 2\pi \sqrt{\frac{\frac{l^2}{12} + a^2}{g(1 + \frac{m_{\text{np}}}{m_{\text{cr}}})x_{\text{II}}}}$$
 (10)

3 Оборудование и экспериментальные погрешности

Секундомер: $\sigma_s = \pm 0.03$

Линейка металлическая: $\sigma_{\text{лин}} = \pm 0.05 \text{ см}$

Штангенциркуль: $\sigma_{\text{mr}} = \pm 0.005 \text{ см}$

Электронные весы ВЛТЭ-5100: $\sigma_m = \pm 0.1 \; \Gamma$

4 Результаты измерений и обработка данных

4.1 Оценка максимальной погрешности

Оценим, с какой относительной погрешностью $\varepsilon_{\rm max}$ имеет смысл измерять период колебаний маятника. Для этого рассчитаем сумарную относительную погрешность измерения приборов (линейки, штангенциркуля и секундомера).

Наибольшее расстояние, измеренное штангенциркулем $L_{max}^{\text{шт}}=100$ см, а наибольшее измеренное линейкой $L_{max}^{\text{лин}}=50$ см. Наибольшие измерения секундомером будут порядка T=30 с. Поэтому относительные погрешности вычисляются так:

$$\varepsilon_s = 0.10\%, \ \varepsilon_{\text{int}} = 0.01\%, \ \varepsilon_{\text{juh}} = 0.05\%$$
 (11)

Максимальную относительную погрешность измерения периода колебаний вычислим по формуле:

$$\varepsilon_{\text{max}} = \sqrt{(\varepsilon^s)^2 + (\varepsilon^{\text{mt}})^2 + (\varepsilon^{\text{лин}})^2} \approx 0.11\%$$
 (12)

4.2 Измерение значений параметров установки

С помощью штангенциркуля измерим длину стердня $l = (98,410 \pm 0,005)$ см ($\varepsilon = 0,01\%$).

С помощью электронных весов измерим массы стержня $m_0=(868,3\pm0,1~{\rm r}),$ призмы $m_{\rm np}=(79,6\pm0,1)~{\rm r}$ и дополнительного груза $m_{\rm r}=(291,0\pm0,1)~{\rm r}.$ Для них соответственно вычислим относительные погрешности:

$$\varepsilon_0 = 0.01\%, \ \varepsilon_{\rm np} = 0.13\%, \ \varepsilon_{\rm r} = 0.03\%$$
 (13)

4.3 Определение центра масс стержня

Снимем со стержня призму и дополнительный груз, после чего с балансируя стержень на подставке с острой гранью определим точку центра масс и определим координату центра масс $x_{\scriptscriptstyle \rm II}^{\scriptscriptstyle \rm cr}=(49.90\pm0.13)$ см. В данном случае погрешность измерения $x_{\scriptscriptstyle \rm II}^{\rm cr}$ равна ширине подставки.

4.4 Определение центра масс системы с призмой

Закрепим призму на стержне, так чтобы нижний конец стержня находился в зоне срабатывания датчика, но не задевал его. Измерим с помощью линейки положение острия призмы на стержне $x_{\rm np}=(20,00\pm0,05)$ см. Вычислим расстояние от острия призмы до центра масс стержня $a=x_{\rm ц}^{\rm cr}-x_{\rm np}=(29,9\pm0,1)$ см ($\varepsilon_a=0,33\%$). Погрешность a равна удвоенной погрешности измерений линейки, потому что вычисляется как разность двух величин.

Рассчитаем положение центра масс системы стержня с призмой $x_{\rm n}$ по формуле:

$$x_{\text{II}} = \frac{m_0 x_{\text{II}}^{\text{CT}} + m_{\text{IIP}} x_{\text{IIP}}}{m_0 + m_{\text{IIP}}} \approx 47,39 \text{ cm}$$
 (14)

Систематическую погрешность измерения $\sigma_{x_{\mathfrak{q}}}$ можно вычислить по формуле:

$$\sigma_{x_{\text{II}}} = \sqrt{\left(\frac{dx_{\text{II}}}{dm_0}\right)^2 \sigma_{m_0}^2 + \left(\frac{dx_{\text{II}}}{dx_{\text{II}}^{\text{CT}}}\right)^2 \sigma_{x_{\text{II}}^{\text{CT}}}^2 + \left(\frac{dx_{\text{II}}}{dm_{\text{IIp}}}\right)^2 \sigma_{m_{\text{IIp}}}^2 + \left(\frac{dx_{\text{II}}}{dx_{\text{IIp}}}\right)^2 \sigma_{x_{\text{IIp}}}^2} \approx 0.05 \text{ cm}$$
 (15)

Таким образом: $x_{\rm H}=(47.39\pm0.05)~{\rm cm}~(\varepsilon_{x_{\rm H}}=0.10\%)$. Так как относительная погрешность измерения a больше $\varepsilon_{\rm max}$, то скорректируем $\varepsilon_{\rm max}$:

$$\varepsilon_{\text{max}} = 0.33\%$$
 (16)

4.5 Предварительный опыт по измерению периода колебаний

Установим маятник на консоли, после чего отклоним его на угол 5°. Убедившись, что маятник качается без помех, змерим время n=20 колебаний $t=30{,}55$ с. Вычисли значение $T=\frac{t}{n}=1{,}528$ с. Теперь по формуле полученной из (4) посчитаем предварительное значение g:

$$g = 4\pi^2 \frac{\frac{l^2}{12} + a^2}{aT^2} \approx 9.6 \frac{M}{c^2}$$
 (17)

Полученное значение отличается от табличного $(9.81 \frac{M}{c^2})$ на 1.9%.

4.6 Определение случайной погрешности измерения с помощью секундомера

Повторим измерения t из предыдущего пункта ещё пять раз, результаты занесём в таблицу:

N (номер измерения)	1	2	3	4	5
t, c	30,54	30,55	30,56	30,56	30,56

Так как результаты измерений отличаются не более чем на приборную погрешность секундомера, то случайная погрешность измерений мала, в сравнении с приборной, и ей иожно пренебречь.

$$\sigma_t^{\text{полн}} = \sigma_s = 0.03 \text{ c}$$
 (18)

4.7 Определение оптимального значения n

погрешность T вычисляется по формуле:

$$\sigma_T^{\text{полн}} = \frac{\sigma_t^{\text{полн}}}{n} = 0,0015 \text{ c}$$
 (19)

Тогда относительная погрешность $\varepsilon_T = 0.10\% < \varepsilon_{\rm max} = 0.11\%$. Таким образом n=20 является оптимальным значение для проведения измерений.

4.8 Определение центра масс дополнительного груза

Для измерения центра масс системы с дополнительным грузом, нужно измерить $x_{\rm u0}$ – расстояние от центра масс стержня без груза до острия призмы, причем погрешность $\sigma_{x_{\rm u0}}$ равна удвоенной приборной погрешности линейки.

$$x_{\text{II}0} = x_{\text{II}} - x_{\text{IIP}} = (27.39 \pm 0.1) \text{ cm}$$
 (20)

Закрепим груз в произвольном месте и измерим положение центра масс $x_{\rm q}=(21{,}50\pm0{,}13)~{\rm cm}.$

4.9 Рассчёт положения центра масс груза

Рассчитаем положение центра масс гуза по формуле:

$$y = \frac{Mx_{\rm u} - m_0 x_{\rm u}}{m_{\rm r}} = 2{,}32 \text{ cm}$$
 (21)

M в данном случае — полная масса маятника. $M=(1238,9\pm0,3)$ г, погрешность равна утроенной приборной погрешности линейки, так как величина получена как сумма трёх величин с погрешностью равной приборной.

4.10 Измерение периода колебаний маятника по n полным колебаниям

Проведём измерение периода колебаний по n полным колебаниям для десяти положений груза y. Для каждого измерения рассчитаем значение g по формуле (17). Результаты запишем в таблицу:

N оп.	y, cm	$x_{\rm ц}$, см	t, c	T, c	g , M/c^2
1	2	21,43	29,97	1,499	10,0
2	9	23,07	29,19	1,460	10,5
3	16	24,71	28,72	1,436	10,9
4	23	26,36	28,58	1,429	11,0
5	30	28,00	28,67	1,434	10,9
6	37	29,65	28,98	1,449	10,7
7	44	31,29	29,44	1,472	10,4
8	51	32,93	30,03	1,502	10,0
9	58	34,58	30,75	1,538	9,5
10	65	36,22	31,54	1,577	9,0

4.11 Определение приведённой длины маятника

Данный пункт задания не выполнялся во время лабораторной работы.

4.12 Оценка затухания колебаний маятника

Для оценки затухания измерим число колебаний $n_{\text{зат}}$, за которое их амплитуда уменьшилась вдвое: $n_{\text{зат}} = 267$. $\tau_{\text{зат}} = 107$, за которое амплитуда падает в 2 раза, $\tau_{\text{зат}} = 407$, 59 с. Добротность Q вычислим по формуле (7):

$$Q = \pi \frac{\tau_{\text{3aT}}}{T} = 838 \tag{22}$$

Декремент затухания γ вычислим по формуле:

$$\gamma = -\frac{\ln 0.5}{\tau_{\text{BAT}}} = 0.0017 \text{ c}^{-1} \tag{23}$$

4.13 Оценка погрешности результата вычисления д

Для оценки погрешности измерения g найдём среднее значение $\overline{g}=\frac{\sum g_i}{N}=10{,}3$ $\frac{\text{м}}{\text{c}^2}$

Случайная погрешность измерения
$$\sigma_g^{\text{случ}} = \sqrt{\frac{1}{N(N-1)}\sum (g_i - \overline{g})^2} \approx 0.2 \frac{\text{м}}{\text{c}^2}$$

Систематическую погрешность измерения g можно вычислить по формуле:

$$\sigma_g^{\text{chct}} = \sqrt{\left(\frac{dg}{dl}\right)^2 \sigma_l^2 + \left(\frac{dg}{da}\right)^2 \sigma_a^2 + \left(\frac{dg}{dT}\right)^2 \sigma_T^2} \tag{24}$$

Для каждого из значений g посчитаем $\sigma_a^{\text{сист}}$ и занесём результаты в таблицу:

$g, \text{ M/c}^2,$									
$\sigma_g^{\text{сист}}, \text{ M/c}^2$	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2

Получаем, что $\overline{\sigma_g^{\text{сист}}} = 0.2 \frac{\text{м}}{\text{c}^2}$

Тогда
$$\sigma_g^{\text{полн}} = \sqrt{\left(\sigma_g^{\text{случ}}\right)^2 + \left(\overline{\sigma_g^{\text{сист}}}\right)^2} \approx 0.3 \frac{\text{м}}{\text{c}^2}$$

4.14 Построение и анализ графика зависимости T от y

График зависимости периода колебаний T от положения груза y представлен на puc. 4. Как видно из графика зависимость имеет минимум. Определим по графику положение минимума $T_{min}=1,\!429$ с и сравним его с теоретическим расчетом минимального значения

$$T = 2\pi \sqrt{\frac{J_0 + m_{\rm r} y^2}{gMx_{\rm rr}}} \tag{25}$$

$$T_{min}^{\text{reop}} = min \left\{ 2\pi \sqrt{\frac{J_0 + m_{\text{r}} y^2}{gM x_{\text{II}}}} \right\} = 2\pi \sqrt{\frac{J_0}{gM x_{\text{II}}}} \approx 1,49 \text{ c},$$
 (26)

4.15 Построение и анализ графика зависимости $T^2x_{\mathbf{q}}$ от y^2

Постром график, откладывая по оси абсцисс величину $u=T^2x_{\rm ц}$, а по оси ординат величину $v=y^2$. График представлен на puc. 5. как видно из графика точки хорошо ложаться на одну прямую.

4.16 Применение метода наименьших квадратов

Методом наименьших квадратов определим параметры (k, b) наилучшей прямой u = kv + b:

$$k = \frac{\langle uv\rangle - \langle u\rangle\langle v\rangle}{\langle v^2\rangle - \langle v\rangle^2} = 0.01 \frac{c^2}{\text{cm}}$$
(27)

$$b = \langle u \rangle - k \langle v \rangle = 48,48 \text{ cm} \cdot c^2 \tag{28}$$

Найдём их погрешности (σ_k σ_b):

$$\sigma_k = \frac{1}{\sqrt{10}} \sqrt{\frac{\langle u^2 \rangle - \langle u \rangle^2}{\langle v^2 \rangle - \langle v \rangle^2} - k^2} = 3.9 \cdot 10^{-5} \frac{c^2}{\text{cM}}$$
(29)

$$\sigma_b = \sigma_k \sqrt{\langle v^2 \rangle - \langle v \rangle^2} \approx 0.05 \cdot c^2.$$
 (30)

По наклону прямой рассчитаем величину ускорения свободного падения g. Формулу для рассчёта g получим из формулы (25):

$$u = T^2 x_{\text{II}} = \frac{4\pi^2}{gM} \left(m_{\text{r}} y^2 + J_0 \right) = \frac{4\pi^2 m_{\text{r}}}{gM} y^2 + \frac{4\pi^2 J_0}{gM} = kv + b$$
 (31)

Отсюда следует, что

$$k = \frac{4\pi^2 m_{\rm r}}{gM} \tag{32}$$

$$g = \frac{4\pi^2 m_{\rm r}}{kM} \approx 9.4 \, \frac{\rm M}{{\rm c}^2}$$
 (33)

4.17 Оценка погрешности д

Погрешность измерения q в пункте 4.16 вычисляется по формуле:

$$\sigma_g = \sqrt{\left(\frac{dg}{dm_{\rm r}}\right)^2 \sigma_{m_{\rm r}}^2 + \left(\frac{dg}{dk}\right)^2 \sigma_k^2 + \left(\frac{dg}{dM}\right)^2 \sigma_M^2} \approx 0.04 \frac{M}{c^2}$$
 (34)

4.18 Сравнение результатов расчёта g

Сравним результат расчёта по пункте 4.16 с непосредственным усреднением, проведённым в пункте 4.13.

Для пункта 4.13: $g = (10.3 \pm 0.2) \frac{\text{м}}{\text{c}^2}$

Для пункта 4.16: $g = (9.4 \pm 0.04) \frac{\text{M}}{\text{c}^2}$

Как видно, расчёт g через МНК гораздо точнее, чем метод из пункта 4.13, а значит он предпочтительнее.

5 Обсуждение результатов и выводы

В ходе работы мы познакомились с систематическими и случайными погрешностями, прямыми и косвенными измерениями.

Была подтверждена справедливость формулы для периода колебаний физического маятника. Было посчитано значение ускорения свободного падения двумя различными методами. Были оценены погрешности косвенных измерений и конечного результата.

Убедились в справедливости теоремы Гюйгенса об обратимости точек опоры и центра качения маятника.

По результатам сделанных измерений можно сделать вывод, что метод наименьших квадратов наиболее подходит для измерения ускорения свободного падения при помощи физического маятника.

Рис. 4: $\Gamma pa\phi u\kappa$ зависимости T от y.

Рис. 5: График зависимости T^2x_u от y^2 .