AUTONOMIC SYSTEM PHARMACOLOGY

Part 1:

GENERAL CONCEPTS

Dr Channa D. Ranasinha

PLAN FOR LECTURES

- 1. General concepts
- 2. Sympathomimetics
- 3. Sympathetic blockers
- 4. Muscarinic drugs
- 5. Nicotinic drugs

Autonomic nervous system controls the visceral functions of the body, largely under involuntary control.

Divided into sympathetic and parasympathetic systems.

OVERVIEW

- Anatomical layout
- Transmitters
- Receptors
- Effects on end organs
- Drug classes
 - Cholinergic + modifiers
 - Adrenergic + modifiers

ANATOMICAL LAYOUT 1/2

Series of 2 nerves, pre & post ganglionic.

Parasympathetic Nervous System (PsNS)

- Preganglionic cell body in cranio- (III, VII, IX,
 X) sacral (S1-4) CNS
- Long preganglionic nerve to wall of end-organ
- Short intramural postganglionic fibre

ANATOMICAL LAYOUT 2/2

Sympathetic Nervous System (SNS):

- cell body in intermediolateral horn of thoracolumbar spinal cord (T1 to L2)
- short preganglionic nerve to ganglion *either* in paravertebral sympathetic chain *or* prevertebral ganglia to synapse with:
- long postganglionic nerve to end-organ. n.b.
 adrenal medulla which releases adrenaline (Adr)

TRANSMITTERS 1/3

There are two main ones:

• Acetylcholine:
$$CH_3$$
-C-O- CH_2 - CH_2 - N - CH_3

(ACh)

HO

• Noradrenaline: HO -

(NA)

OH

TRANSMITTERS 2/3

- All preganglionic fibres are cholinergic (ACh), both SNS & PsNS
- PsNS postganglionic neurones are also cholinergic (ACh)
- Most SNS postganglionic neurones are adrenergic (NA rather than Adr)
 - Except sweat glands, piloerector muscles & a few blood vessels which are <u>cholinergic</u>

TRANSMITTERS 3/3

• Both transmitters are preformed and stored in the vesicles in the nerve endings

• With depolarisation, vesicles fuse to membrane and empty contents to exterior

• They diffuse across the synapse to reach the membrane of the effector cell (post-ganglionic or end-organ)

RECEPTORS 1/3

• NA and ACh stimulate the effector organ by binding to highly specific sites on the outer cell membrane (receptors), linked to the cell interior by transmembrane proteins.

• Activation causes changes in ion permeability or enzyme activity and leads to cellular action

RECEPTORS 2/3

Cholinergic receptors are of 2 kinds, both activated by acetylcholine:

• Nicotinic

At SNS and PsNS ganglia i.e. on postganglionic cell bodies & non-ANS sites e.g. motor end plate

• Muscarinic

Found at all PsNS postganglionic nerve endings & SNS postganglionic cholinergic nerve endings i.e. on these effector cell membranes

RECEPTORS 3/3

Adrenergic receptors are of two main types which are stimulated to different extents NA & Adr:

• <u>α-receptors</u>

 vasoconstriction, pupil dilation, intestinal relaxation, sphincter contraction,

• <u>β-receptors</u>

- $-\beta1$: +ve inotropic and chronotropic, lipolysis
- β2: vasodilatation, intestinal, bronchial, bladder & uterine relaxation, glycogenolysis

DESTRUCTION OF TRANSMITTERS

Both are short lived after secretion across the synapse:

- Cholinergic transmission is terminated by acetylcholinesterase in the post-synaptic environment. Re-used in the presynaptic nerve ending.
- Adrenergic transmission is terminated by reuptake into the presynaptic nerve ending (most) & by metabolism: MOA and COMT.

ADRENAL MEDULLA

A special case in the postganglionic SNS.

- Releases Adr:NA 4:1, into blood stream
- Adrenergic actions last much longer
- Adr has equal α and β activity, while NA has strong α and little, if any, β activity.

EFFECTS OF SYMPATHETIC STIMULATION

EFFECTS OF PARASYMPATHETIC STIMULATION

THE CONCEPT OF "TONE"

- SNS & PsNS are continually active, the basal activity is called tone.
- Importance is that it allows a single system to alter the activity of an end-organ
 - E.g. SNS keeps arterioles constricted at half their maximum diameter
 - Increased SNS tone —— vasoconstriction
 - Decreased SNS tone vasodilatation
 - Each organ has a predominant tone, SNS or PsNS

GANGLIONIC NEUROTRANSMISSION

At the synapse between pre & post ganglionic nerve is cholinergic, to nicotinic receptors.

- Ganglion stimulants: nicotine
- Ganglion blockers: hexamethionium (the earliest anti-hypertensives)

DRUGS THAT ACT OF ADRENERGIC RECEPTORS

agonist

antagonists

α_1	NA, Adr, ephedrine*, phenylephrine	Phenoxybenzamine,phentolamine, indoramin, labetolol, prazosin, doxazosin
α_2	NA, Adr, ephedrine*, clonidine, methyldopa	Phenoxybenzamine, phentolamine
β_1	Adr, ephedrine*, isoprenaline, dopamine, dobutamine	Propranolol, labetolol, timolol, atenolol, metoprolol
β_2	Adr,ephedrine*, isoprenaline, salbutamol, terbuterline, salmeterol	Propranolol, labetolol, timolol

CONCLUSION

- Anatomical layout: pre & post ganglionic nerves
- Transmitters: Ach & NA (Adr)
- Receptors: $M/N & \alpha/\beta$
- Effects on end organs: 'fight or flight' vs 'sleepy old man'
- Drug classes:
 - Cholinergic agonists, anticholinergics, Achesterase inhibitors
 - Adrenergic agonists and antagonists: α and β