AI Implications for Business Strategy

2. Machine Learning - Regression

Regression

- Unlike classification, a regression model produces a range of outputs rather that a category or classification
- ML has adapted regression techniques from statistics and other sciences
- Regression is based on the hypotheses
 - There are independent variables that serve as inputs to the model
 - There is a dependent variable whose value can be predicted from the inputs
 - For example, predicting house prices (dependent variable) from a combination of two independent variables - zip code and square footage
 - The model is an equation that defines the relationship between the dependent and independent variables
 - Independent variable = the one that we can manipulate
 - Dependent variable = the output of our model

Regression

- The simplest form of regression is a linear case where an independent variable x is used to predict an outcome y
 - Student IQ as a predictor of GPA
 - Engine size as a predictor of gas mileage
 - Calories eaten per day as a predictor of weight change
 - Hat size as a predictor of math ability
- In the linear case, we assume that changes in the input produce corresponding scaled changes in the output
 - For example, doubling the number of calories doubles the number of grams gained

Regression

- The blue dots are measurements
 - There appears to be a linear relation among the points
 - If it were an exact linear relationship, no need for ML
 - The line is our model that predicts the y value given an an x value
- ML regression algorithm is intended to find which line that is the best fit to the data
 - What "best fit" means will be defined later

Correlation

Correlation describes an association between variables

- When one variable changes, so does the other
- Correlation is a an observed relationship between variables
- When variables change together, they are said to exhibit "co-variance"
- Co-variance does **not** imply any underlying relationship between the variables

Correlation is strictly observational

- The ML regressor-predictor hypothesis is a description of the relationship between variables that co-vary
- Our co-variant ML model has predictive value and but has no explanatory power
- We may have no idea why our variables are co-variant, but we can still measure the relationship

Causation

- Implies a cause and effect relationship
 - Changes in the independent variable *always* produce changes in the dependent variable
 - Causation always implies correlation
 - There may be a proposed explanation as to what the causation mechanism is
- We cannot infer causation from correlation
 - The variables may both be influenced by a confounding third variable
 - Heat stroke and ice cream sales may be correlated
 - But they are both affected independently by the outdoor temperature
 - Temperature affects both ice cream sales and the number of cases of heat stroke independently
 - To assume ice cream sales cause heat stroke is not a valid hypothesis
 - Also called a Type I error or a false positive or failing to reject the null hypothesis

Type I and II Errors

- Looking for a way to estimate a tip from the cost of meal
 - In theory, it should be say 15%
 - In reality, it tends to vary due to other factors
- Creating a casual model is way too difficult
- Given the historical data, can we reproduce the results with a reasonable amount of "wiggle-room?"
 - Our model is an estimator of what, over a large number of observations, the expected value of the tip should be given the cost of the meat
- This depends on the population we sampled from
 - Four star Michelin restaurants in Manhattan versus local diners in rural Arkansas

Meal #	Bill (\$)	Tip (\$)
1	50	12
2	30	7
3	60	13
4	40	8
5	65	15
6	20	5
7	10	2
8	15	2
9	25	3
10	35	4

- The proposed line looks like a good fit
 - But we need a
 quantitative measure of
 how good the fit is
- This approach is quite ad hoc so far
 - Just eye-balling it
- The ML algorithm should be able to find this best fit line automatically

- The resulting model is a line ax+b = 0
 - The "a" is the regression coefficient
- A more common terminology is to say that the line is a hyperplane
 - Given a space of dimension n, a hyperplane is a subspace of dimension n-1
 - We start with an assumption of lineality

Accuracy

 Assume that we have decided that our model is

$$- ax + b = 0$$

- Where
 - a = 0.2428571
 - -x = amount of bill
 - b = -1.40
- How good is this estimate for the training data?
 - Can we do better?

		Actual tip (\$)	estimated tip
observed / known data	50 30	12 7	
	60 40	13 8	
	65 20	15 5	3.457142
	10 15	2	
	25	3	4.6714275
	35	4	7.0999985
New Data	70	₹	15.599997
	80 90	- ਹ	
	100	- ਦ	

Residual

- The difference between the actual data and the predicted value is called the residual
- The error for the regressor is some measure of the cumulative residuals
- Then the algorithm can try different lines until it finds one where the residuals are minimized
- Then this would be our optimal model
 - Optimal = lowest total error over all of the data points

Sum of Square Errors

- Also known as
 - Residual Sum of Squares (RSS)
 - Sum of Squared Residuals (SSR)
- In this formula
 - Yi: actual value
 - Ŷi: predicted value
- Properties
 - A good all purpose error metric that is widely used
 - SSE also 'amplifies' the outliers (because of squaring)
- For example, if SSE for model-A = 75 and SSE for model-B = 50
 - Model-B might be better fit

Mean Squared Error (MSE) (L2)

- Can be sensitive to outliers; predictions that deviate a lot from actual values are penalized heavily
- Easy to calculate gradients
- We get convergence to an optimal model faster

$$MSE = rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Root Mean Squared Error

- Has the advantage that error is in the same units as the data
- RMSE tells us the average distance between the predicted values from the model and the actual values in the dataset.
- So lower the RMSE the better; RMSE=0 would indicate a perfect model

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$

Mean Absolute Error (MAE)

- More robust and is generally not affected by outliers
- Use if 'outliers' are considered 'corrupt data' (or not critical part of data)

$$MAE = rac{1}{n} \sum_{i=1}^n \lvert y_i - \hat{y}_i
vert$$

Which Error Measure to Use

- Error functions tell us 'how far off' our prediction from actual value is.
- We have seen some popular error functions for regression
- Which one to use?
 - No 'hard' rules!, follow some practical guide lines
 - Try them all and see which one gives better results! :-)
 - Most ML libraries allow us to configure the error function very easily

Correlation Measures

- Correlation measures quantify the relationship between two variables
 - Positive correlation: Two variables move in the same direction
 - Negative correlation: Two variables move in opposite directions
 - Measured on a scale from -1 to +1
 - A value of 0 means that no correlation exists
- Correlation is a measure of how well variance in one variable is predicted by variance in the other variable
 - In other words, how well the data fits the model

Correlation Measures

R² Coefficient of Determination

- Coefficient of Determination tells us how well our model 'fits' the data
- R² usually between 0 and 1.0
 - 0: The model does not predict the outcome.
 - Between 0 and 1: The model partially predicts the outcome
 - 1 : The model perfectly predicts the outcome.
 - Values < 0 often mean the wrong model was used or some other problem
- So we want R² to be as close 1.0 as possible

$$R^{2} = \frac{N \sum xy - \sum x \sum y}{\sqrt{\left[N \sum x^{2} - (\sum x)^{2}\right] \left[N \sum y^{2} - (\sum y)^{2}\right]}}$$

What R² Measures

$$R^2 = 1 - \frac{\text{Residual variance}}{\text{Total variance}}$$

$$= \frac{\text{Total variance} - \text{Residual variance}}{\text{Total variance}}$$

$$= \frac{\text{Explained variance}}{\text{Total variance}}$$

$$= \text{Fraction of total variance explained}$$

Multiple Regression

- The basic 2-d case can be extended to an arbitrary number of dimensions
 - Assumption that the contribution of each variable is linear
 - All of the formulae and correlation measures work in n-space and the regression line is now a hyperplane
 - Assume that every prediction is a linear combination of the independent variables

$$y = \beta_0 + \beta_1 X_1 + \ldots + \beta_n X_n + \epsilon$$

Multi Co-linearity

- Can occur when we have more that one independent variable
 - We usually assume that the independent variables are not correlated
 - However, when two or more variable are predictable from the others we have co-linearity or multi colinearity
 - Example, we a have the three variables height, weight and BMI for medical data
 - BMI is a function of height and weight and can be predicted from the other two so adding the BMI as a variable does
 not improve the model but does increase the computational load

Typical co-linearity cases

- One predictor variable is a multiple of another (height in inches and height in cms)
- One variable is a transformed version of the other (original cost and cost in 2023 dollars)
- Dummy variable single categorical variable "gender" is converted to two binary variables, male and female
- Common hidden variable both of the variables are correlated with the same third variable which may not be expressed in our data set

Multi Co-linearity

- Co-linearity effects
 - Weakens the statistical measures overall and reduces the ability to identify significant variables
 - Reduces potential explanatory power of the model
 - Tends to increase Type II inference errors
- Measuring Co-linearity
 - We can measure pairwise correlation between independent variables
 - Or use a special measure called VIF = Variance Inflation Factor
- Fixing Co-linearity
 - Remove the duplicate variable
 - Reduce the variables to a smaller set with no co-linearity (partial least squares regression)

Multi Co-linearity

Multivariate					
Correlations					
	Weight	Height	ВМІ		
Weight	1.0000	0.5129	0.8668		
Height	0.5129	1.0000	0.0220		
BMI	0.8668	0.0220	1.0000		

Variable Importance

- Not all independent variables are equal
 - Eg. Percent body fat is probably a better predictor of diabetes than height
 - In other words, some variables contribute more the prediction than others
- Model performance is improved by discovering and prioritizing the important independent variables
- Standardize or normalize all of the variables then compare coefficients
 - Without normalizing, this comparison is meaningless
 - Variables using vastly different scales may mask which ones are important
- Changes in R² as each variable is included in the measure
 - The more important a variable, the greater the change in R² when it is added
 - Look for the variable that produces the greatest increase in R²

Polynomial Regression

- Sometimes the best predictor is not linear but a higher degree function
 - Like a parabola for example

$$Y = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \dots + \theta_n x^n$$

Polynomial Regression

- Multi co-linearlity is an issue
 - We are using different powers of the same independent variable
- Very complex to compute
- Often can be piece-wise approximated by a series of linear functions
- The additional computational load of a polynomial model may not be justified
 - Linear approximations are easier to compute
 - Linear approximation are often "good enough"

Bias and Variance

Gradient Descent

- How do we actually train a model
- We have a loss function (normally denoted by "J") that
 - For a given model, computes a total error for the model for a set of points
 - We take the gradient to look for the direction to proceed that gives us the best reduction in error

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) (for j = 1 and j = 0) }
```


Gradient Descent

Gradient Descent

- Essentially, we minimize the cost or loss function for the model
 - We have seen a variety of loss functions earlier
- For GD to work the loss function must be:
 - Differentiable
 - Convex
- We control the rate of convergence with a hyper-parameter called the learning rate
 - This specifies the "size" of the increment to be taken in the direction that reduces loss

Differentiable / Non-differentiable

Convex / Non-convex

 Convex function – any two points on the function can be connected by a line segment that doesn't pass through any other points on the function

Convex Surface

Gradient Descent Process

The GD Process

- Choose a starting point
- Calculate the gradient from the derivative
- Choose the direction that the gradient is steepest
- Move a set increment (learning rate) in that direction to a new point
- If we have reached the maximum number of iterations then stop
- If the required accuracy has been reached then stop
- Otherwise make the new point our starting point and repeat

Learning Rate

- We "tune" or select the learning rate
 - Too high and the GD function bounces around
 - Too low and the GD converges too slowly

Semi-convex Functions

- These are functions with saddle points
 - Represent local minima and maxima
 - All semi-convex functions are locally convex
- Final result depends on the range of the data
- Also depends on the starting point chose
- Often local minimal are good enough for GD

Stochastic Gradient Descent

- Computing GD can be very expensive when
 - Training data sets are large
 - Computing the GD function is computationally expensive
- Stochastic GD samples the training data
 - Computes GD convergence on the sample
 - Then shuffles the data and does it again
 - If more than one data point is in the sample, it is "batch SGD"
 - Also helps avoids local maxima and minima for semi-convex functions

End of Module

