Twierdzenie Halla

Grzegorz Dłużewski

10 lipca 2020

Twierdzenie 1. Mamy dany graf G dwudzielny o (skończonych) klasach X i Y. Wtedy istnieje skojarzenie doskonałe z X do Y wtedy i tylko wtedy, gdy dla każdego $A \subset X$ zachodzi $|\Gamma(A)| \geqslant |A|$, gdzie $|\Gamma(A)|$ oznacza zbiór wszystkich sąsiadów A (nazywamy to warunkiem Halla).

Dowód. Sposób I:

Załóżmy, że znaleźliśmy jakieś skojarzenie M. Ścieżkę po krawędziach G nazwiemy zmiennq, jeśli jej krawędzie na zmianę są i nie są w M, a jeśli ponadto jej pierwsza i ostatnia krawędź nie należy do M.

Załóżmy, że dla każdego $A \subset X$ mamy $|\Gamma(A)| \ge |A|$, a jednocześnie największe możliwe skojarzenie M nie jest doskonałe. Innymi słowy, istnieje $x \in X$, który nie należy do tego skojarzenia.

No to co? x ma jakiegoś sąsiada $y \in Y$ (bo inaczej biorąc $X = \{x\}$ uzyskalibyśmy sprzeczność z warunkiem Halla). Ta krawędź sama w sobie tworzy ścieżkę zmienną. Weźmy teraz najdłuższą ścieżkę P (jej wierzchołki się nie powtarzają) zmienną zaczynającą się w x.

Jeśli jej koniec $y \in Y$ nie należy do skojarzenia M, to wyrzucamy z M wszystkie krawędzie z $M \cap P$, a dodajemy wszystkie krawędzie z $P \setminus M$. W ten sposób otrzymujemy większe skojarzenie, sprzeczność.

Jeśli z kole
i $y \in Y$ należy do skojarzenia, to dodajemy do ścieżki $z \in X$, że
 $zy \in M$ (z nie ma jeszcze w ścieżce, czemu?), a następnie chcieli
byśmy dodać jakiegoś sąsiada z spoza P. Ale takowy nie musi istnieć.

Sposób I – podejście II:

Bierzemy wszystkich sąsiadów x, tworząc masę potencjalnych zmiennych ścieżek, następnie "rzutujemy je w dół", tzn. rozszerzamy te ścieżki o ich pary w M (jeśli te pary nie istnieją, to mamy koniec zadania, bo otrzymujemy zmienną ścieżkę o obu końcach poza M). Następnie rozszerzamy te ścieżki o sąsiadów, "rzutujemy w dół" itd. W pewnym momencie ten proces musi się zakończyć. Ale wtedy dojdziemy otrzymujemy ścieżkę P taką, że $|P\cap X|=|P\cap Y|-1$, a jednocześnie $\Gamma(P\cap X)=P\cap Y$, sprzeczność.

Sposób II:

Indukcja po |X|.

Jeśli dla każdego $A \subsetneq X$ zachodzi $|\Gamma(A)| > |A|$, to bierzemy dowolny $x \in X$, jego sąsiada $y \in Y$, wyrzucamy wierzchołki x,y z G i stosujemy założenie indukcyjne.

Jeśli z kolei, istnieje $A \subsetneq X$ taki, że $|\Gamma(A)| = |A|$, to stosując założenie indukcyjne znajdujemy skojarzenie w A i widzimy, że możemy znaleźć skojarzenie z $X \setminus A$ do $Y \setminus \Gamma(A)$. Rzeczywiście, dla każdego $B \subset X \setminus A$, zbiór sąsiadów $B \le Y \setminus \Gamma(A)$, który oznaczymy $\tilde{\Gamma}(B)$ spełnia:

$$|\tilde{\Gamma}(B)| + |\Gamma(A)| = |\Gamma(A \cup B)| \geqslant |A \cup B| = |A| + |B|$$

zatem $|\tilde{\Gamma}(B)| \ge |B|$ i istnieje również skojarzenie z B do $Y \setminus \Gamma(A)$.

- **Zadanie 1.** Mamy dwie kwadratowe kartki papieru, każda o polu 2020. Każdą z nich podzielono na 2020 wielokątów o polu 1 (możliwe, że w całkowicie różny sposób). Udowodnić, że gdy nałoży się jedną na drugą, to można je przebić 2020 pinezkami w taki sposób, by każdy wielokąt na każdej kartce został przebity dokładnie raz.
- **Zadanie 2.** Święty Mikołaj ma n prezentów, które chce rozdać n dzieciom, przy czym i-te dziecko lubi x_i prezentów. Udowodnić, że jeśli

$$\sum_{i=1}^{n} \frac{1}{x_i} \leqslant 1$$

to święty Mikołaj może rozdać prezenty dzieciom w taki sposób, aby każde było zadowolone.

- **Zadanie 3.** Dominik i Julia wykonują następującą sztuczkę magiczną. Podczas, gdy Julia jest poza pokojem, Dominik zachęca jednego z widzów do podania pewnej liczby N-cyfrowej (może ona mieć wiodą Następnie zakrywa on dwie wybrane przez siebie sąsiednie cyfry. Po powrocie do pokoju, Julia widząc liczbę z zakrytymi dwoma sąsiednimi cyrfami mówi, co się pod nimi kryje. Jaka jest najmniejsza wartość N, dla której ta sztuczka może się udać niezależnie od tego, jaką liczbę poda widz?
- **Zadanie 4.** Tabelę $n \times n$ wypełnioną liczbami od 1 do n nazywamy $kwadratem\ lacińskim$, jeśli dla każdego $k \in \{1,2,\ldots,n\}$ liczba k występuje w każdej kolumnie i każdym wierszu dokładnie raz. Udowodnić, że po wypełnieniu pierwszych k rzędów kwadratu łacińskiego (kolejne są wciąż puste) w taki sposób, że każda wartość występuje w każdym rzędzie i kolumnie co najwyżej raz można uzupełnić tę tabelę do kwadratu łacińskiego.
- **Zadanie 5.** Pewien turniej szachowy, w którym brało udział 2n uczestników trwał 2n-1 dni i każdego dnia każdy zawodnik rozegrał dokładnie jeden mecz, przy czym w trakcie całego turnieju każdy zagrał z każdym. Czy da się z każdego dnia wybrać po jednym zawodniku, który wygrał danego dnia w taki sposób, by żaden zawodnik nie został wybrany dwa razy?
- **Zadanie 6.** Oznaczmy $[n] = \{1, 2, ..., n\}$. Dwa podzbiory $A, B \subset [n]$ nazywamy nieporównywalnymi, jeśli żaden z nich nie jest podzbiorem drugiego. Udowodnić, że maksymalna liczba nieporównywalnych podzbiorów wynosi $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$.
- **Zadanie 7.** Dany jest graf dwudzielny o klasach $X=\mathbb{N},Y=\mathbb{N}.$ Załóżmy, że dla każdego $A\subset X$ mamy $|\Gamma(A)|\geqslant |A|.$ Czy istnieje skojarzenie doskonałe z X do Y? Co jeśli stopień każdego wierzchołka jest skończony?
- **Zadanie 8.** *Linią* w prostokątnej tabeli *M* wypełnionej zerami i jedynkami będziemy nazywać kolumnę lub rząd. Udowodnić, że najmniejszy zestaw linii przykrywających wszystkie jedynki jest równy maksymalnej liczbie jedynek, z których żadne dwie nie leżą na tej samej linii.
- **Zadanie 9.** Udowodnić, że w grze w kółko i krzyżyk na $[n]^d$ (tzn. $n \times n \times n \times \dots$ w d wymiarach), nie istnieje strategia wygrywająca.