

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Generating Discrete Random Variates

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

Prerequisite

We assume the knowledge of discrete random variables (sect.6.1). In particular:

- Equilakely(a,b)
- Geometric(p)
- Bernoulli(p)
- Binomial(n,p)
- Pascal(n,p)
- Poisson(μ)

Prof. Vittoria de Nitto Personè

2

anche esponenziale fa qualcosa, manipolando un random. uguale anche la uniform (il continuo dell'equilikely)

```
ssq2.c
                                distribution-driven simulation
#include <stdio.h>
#include <math.h>
#include "rng.h"
#define LAST
                       10000L
                                 /* number of jobs processed */
#define START
                       0.0
double Exponential(double m)
                                                   /* ----*
{return (-m * log(1.0 - Random())); }
                                                    m > 0.0
double Uniform(double a, double b)
\{\text{return } (a + (b - a) * \text{Random}());
                                                      a < b
                  double GetArrival(void)
             {static double arrival = START;
               arrival += Exponential(2.0);
                     return (arrival);}
                 double GetService(void)
               {return (Uniform(1.0, 2.0));}
                      Prof. Vittoria de Nitto Personè
```

cdf = cumulativa.

uno F* perchè nel caso var. discrete non è una vera inversa, prende numero (0,1) che è probabilità e ci dà x che corrisponde alla cumulativa in x.

la cumulativa in x dovrebbe avere quel valore di probabilità.

Discrete Simulation Generating Discrete Random Variates

Preliminary Definitions

X random variable, $F(\cdot)$ is the cdf of X

The inverse distribution function (idf) of X is the function

 $F^*: (0, 1) \to \chi, \forall u \in (0, 1)$

$$F^*(u) = \min_{x} \{x : u < F(x)\}$$

that is, if $F^*(u)=x$, x is the smallest possible value of X for which F(x) is greater than u

non è esattamente quell'x, ma il più piccolo u tale che F(x) sia minore di u.

Prof. Vittoria de Nitto Personè

5

Discrete Simulation

6

5

il supporto χ

assume valori discreti da "a" a "b". definisco anche prob X<=x = u1

Prof. Vittoria de Nitto Personè

for which $F(x-1) \le u < F(x)$

come lo trovo? modo 1, parto dal minimo, incremento finchè rispetto la condizione.

con molti valori è ricerca lineare lentissima.

```
Discrete Simulation
Generating Discrete Random Variates

Algorithm 1

x = a;
while (F(x) <= u)
x++;
return x; /*x is F^*(u)^*/

Average case analysis:
• let Y be the number of while loop passes
• Y = X - a
• E[Y] = E[X - a] = E[X] - a = \mu - a

Linear search algorithm!

Prof. Vittoria de Nitto Personè

7
```

7

parto dalla moda (il piu probabile). da li mi muovo avanti o indietro.

con funzioni semplice si possono scrivere inverse esplicite.

Discrete Simulation Generating Discrete Random Variates

Idf Examples

- In some cases $F^*(u)$ can be determined explicitly
- If X is Bernoulli(p) and F(x) = u, then x=0 iff 0 < u < 1-p

$$F^*(u) = \begin{cases} 0 & 0 < u < 1 - p \\ 1 & 1 - p \le u < 1 \end{cases}$$

Prof. Vittoria de Nitto Personè

9

9

posso fare questa cosa perchè:

Discrete Simulation Generating Discrete Random Variates

Random Variate Generation By Inversion

- X is a discrete random variable with $\inf F^*(\cdot)$ (esplicity)
- continuous random variable *U* is *Uniform*(0,1)
- Z is the discrete random variable defined by $Z = F^*(U)$

Theorem

Z and X are identically distributed

this Theorem allows any discrete random variable (with known idf) to be generated with one call to Random()

Algorithm 3

Prof. Vittoria de Nitto Personè

10

Discrete Simulation Generating Discrete Random Variates

More inversion examples

Generating a Bernoulli(p) random variate

Generating an Equilikely(a,b) random variate

```
u = Random();
return a + (long) (u * (b - a + 1));
```

Prof. Vittoria de Nitto Personè

13

13

Discrete Simulation Generating Discrete Random Variates

Library rvgs

pseudo-rand by lehmer

- Includes 6 discrete random variate generators (as below) and 7 continuous random variate generators
 - long Bernoulli(double p)
 - long Binomial(long n, double p)
 - long Equilikely(long a, long b)
 - long Geometric(double p)
 - long Pascal(long n, double p)
 - long Poisson(double μ)
- Functions Bernoulli, Equilikely, Geometric use inversion; essentially ideal
- Functions Binomial, Pascal, Poisson do not use inversion

Prof. Vittoria de Nitto Personè

14

Discrete Simulation Generating Discrete Random Variates

Library rvms

- Provides accurate pdf, cdf, idf functions for many random variates
- Idfs can be used to generate random variates by inversion
- Functions idfBinomial, idfPascal, idfPoisson may have high marginal execution times
- Not recommended when many observations are needed due to time inefficiency
- Array of cdf values with inversion may be preferred

Prof. Vittoria de Nitto Personè

15

15

a volte è meglio usare un sottoinsieme, sia per realismo che per efficienza.

Discrete Simulation Discrete Random Variates

Truncation

Sometimes, the realistic values of a variable are restricted to a subset

X random variable with possible values $\chi = \{0, 1, 2, ...\}$ and cdf $F(x) = Pr(X \le x)$

Vocable • want to restrict X to the finite range $0 \le a \le x \le b < \infty$

Coo $\leq x$: $\alpha = \Pr(X < a) = \Pr(X \leq a-1) = F(a-1)$ (cumulativa)

Cools dy. $\beta = \Pr(X > b) = 1 - \Pr(X \le b) = 1 - F(b)$ (1- cumulativa)

 $Pr(a \le X \le b) = Pr(X \le b) - Pr(X \le a) = F(b) - F(a-1)$

essentially, always true iff $F(b) \cong 1.0$ and $F(a-1) \cong 0.0$

Prof. Vittoria de Nitto Personè

16

Discrete Simulation
Discrete Random Variates

Specifying truncation points

if a and b are specified (punti limite)

Left-tail, right-tail probabilities α and β obtained using cdf

$$\alpha = \Pr(X < a) = F(a-1)$$
 and $\beta = \Pr(X > b) = 1-F(b)$
transformation is exact

• if α and β are specified

idf can be used to obtain a and b $a = F^*(\alpha) \quad \text{and} \quad b = F^*(1-\beta)$ transformation is not exact because X is discrete $\Pr(X < a) \le \alpha \quad \text{and} \quad \Pr(X > b) < \beta$

Prof. Vittoria de Nitto Personè

17

F* è approssimazione inversa, non è "esatta", perchè passo

17 dal continuo ad alcuni valori discreti.

qui vediamo come calcolare i vari passaggi. ho una disuguaglianza, con un <=, mentre beta è <. quindi non sono "esatti".

gli effetti sono insignificanti se tolgo poco, ma può avere senso per efficienza, se la funzione è complessa, per realismo. Se la troncata è molto diversa, ho nuova var.random!

Discrete Simulation
Discrete Random Variates

Effects of truncation

sometimes truncation is <u>insignificant</u>: truncated and un-truncated random variables have (essentially) the same distribution

Truncation is useful for efficiency:

- When idf is complex, inversion requires cdf search
- cdf values are typically stored in an array
- Small range gives improved space/time efficiency

Truncation is useful for realism:

• Prevents arbitrarily large values possible from some variates

In some applications, truncation is significant

- Produces a new random variable
- Must be done correctly!

Prof. Vittoria de Nitto Personè

19