The domain of each of the following functions is $x \in \mathbb{R}$. For each function, find its inverse $f^{-1}(x)$. 1

a
$$f: x \rightarrow 10x + 3$$

b
$$f: x \to 9 + 2x$$

c f:
$$x \rightarrow 5 - 6x$$

d
$$f: x \to \frac{x+3}{4}$$

e f:
$$x \to \frac{1}{3}(2x-5)$$
 f f: $x \to 8 - \frac{3}{5}x$

f
$$f: x \rightarrow 8 - \frac{3}{5}x$$

For each function, find $f^{-1}(x)$ and state its domain. 2

a
$$f(x) \equiv \ln x, x \in \mathbb{R}, x > 0$$

b
$$f(x) \equiv \frac{1}{x}, x \in \mathbb{R}, x \neq 0$$

c
$$f(x) \equiv \sqrt[4]{x}, x \in \mathbb{R}, x > 0$$

d
$$f(x) \equiv 3x - 4, x \in \mathbb{R}, 0 \le x < 3$$

$$\mathbf{e} \quad \mathbf{f}(x) \equiv \frac{1}{x-5} \,, \ x \in \mathbb{R} \,, \ x \neq 5$$

f
$$f(x) \equiv 2 + \frac{1}{x}, x \in \mathbb{R}, x \neq 0$$

3 For each of the following functions,

i find, in the form $f^{-1}: x \to ...$, the inverse function of f and state its domain,

ii sketch y = f(x) and $y = f^{-1}(x)$ on the same set of axes.

$$\mathbf{a} \quad \mathbf{f} : x \to 2x + 1, \ x \in \mathbb{R}$$

b
$$f: x \to \frac{1-x}{5}, x \in \mathbb{R}$$

a
$$f: x \to 2x + 1, x \in \mathbb{R}$$
 b $f: x \to \frac{1-x}{5}, x \in \mathbb{R}$ **c** $f: x \to \frac{10}{x}, x \in \mathbb{R}, x \neq 0$

d
$$f: x \to x^2, x \in \mathbb{R}, x > 0$$
 e $f: x \to e^x, x \in \mathbb{R}$ **f** $f: x \to x^3, x \in \mathbb{R}$

$$\mathbf{e} \quad \mathbf{f} : x \to \mathbf{e}^x, \ x \in \mathbb{R}$$

f
$$f: x \to x^3, x \in \mathbb{R}$$

For each of the following, solve the equation $f^{-1}(x) = g(x)$.

a
$$f: x \to 5x + 1, x \in \mathbb{R}$$

$$g: x \to 2, x \in \mathbb{R}$$

b
$$f: x \to \frac{2x-4}{3}, x \in \mathbb{R}$$

$$g: x \to 7 - x, \ x \in \mathbb{R}$$

c
$$f: x \to e^x + 2, x \in \mathbb{R}$$

$$g: x \to \ln(3x - 8), \ x \in \mathbb{R}, \ x > \frac{8}{3}$$

d
$$f: x \to \sqrt{x+2}$$
, $x \in \mathbb{R}$, $x \ge -2$ $g: x \to 3x-4$, $x \in \mathbb{R}$

$$g: x \to 3x - 4, x \in \mathbb{R}$$

e
$$f: x \to \frac{4}{x+3}, x \in \mathbb{R}, x \neq -3$$
 $g: x \to 5(x+1), x \in \mathbb{R}$

$$g: x \to 5(x+1), x \in \mathbb{R}$$

The function f is defined by $f: x \to 4 - 2x, x \in \mathbb{R}$. 5

a Sketch y = f(x) and $y = f^{-1}(x)$ on the same set of axes.

b Find the coordinates of the point where the lines y = f(x) and $y = f^{-1}(x)$ intersect.

6 The functions f and g are defined by

$$f: x \to 3 - 2x, \ x \in \mathbb{R}$$

$$f: x \to 3-2x, \ x \in \mathbb{R}$$
 $g: x \to \frac{1}{2x+4}, \ x \in \mathbb{R}, \ x \neq -2$

a Find $g^{-1}(x)$ and state its domain and range.

b Express gf in terms of x and state its domain.

c Solve the equation $gf(x) = f^{-1}(x)$.

The functions f and g are defined by 7

$$f: x \to 5x + 2, \ x \in \mathbb{R}$$
 $g: x \to \frac{1}{x}, \ x \in \mathbb{R}, \ x \neq 0$

a Find the following functions, stating the domain in each case.

$$\mathbf{i}$$
 \mathbf{f}^{-1}

iii
$$(fg)^{-1}$$

b Solve the equation $f^{-1}(x) = fg(x)$, giving your answers correct to 2 decimal places.

- For each of the following functions, find the inverse function in the form $f^{-1}: x \to ...$ and state 8
 - **a** $f: x \to \frac{1}{2} \ln (4x 9), x \in \mathbb{R}, x > 2\frac{1}{4}$ **b** $f: x \to \frac{x 2}{x + 5}, x \in \mathbb{R}, x \neq -5$

- **c** f: $x \to e^{0.4x-2}$, $x \in \mathbb{R}$
- **d** $f: x \to \sqrt[3]{x^5 3}$, $x \in \mathbb{R}$
- **e** $f: x \to \log_{10}(2-7x), x \in \mathbb{R}, x < \frac{2}{7}$ **f** $f: x \to \frac{4-x}{3x+2}, x \in \mathbb{R}, x \neq -\frac{2}{3}$
- 9 For each of the following functions,
 - i find, in the form $f^{-1}: x \to ...$, the inverse function of f and state its domain,
 - ii sketch y = f(x) and $y = f^{-1}(x)$ on the same set of axes.
 - **a** $f: x \to e^{2x}, x \in \mathbb{R}$

- **b** f: $x \to x^2 + 4, x \in \mathbb{R}, x > 0$
- c f: $x \to \ln(x-3), x \in \mathbb{R}, x > 3$
- **d** f: $x \to x^2 + 6x + 9$ $x \in \mathbb{R}$ x > -3
- 10 For each of the following functions,
 - i find the range of f,
 - ii find $f^{-1}(x)$, stating its domain.
- **a** $f(x) \equiv x^2 + 6x + 3$, $x \in \mathbb{R}$, x < -3 **b** $f(x) \equiv x^2 4x + 5$, $x \in \mathbb{R}$, $x \ge 2$ **c** $f(x) \equiv x^2 + 5x 2$, $x \in \mathbb{R}$, $x < -2\frac{1}{2}$ **d** $f(x) \equiv x^2 3x + 5$, $x \in \mathbb{R}$, x < 4 **e** $f(x) \equiv (2 x)(4 + x)$, $x \in \mathbb{R}$, $x \ge -1$ **f** $f(x) \equiv 20x 5x^2$, $x \in \mathbb{R}$, x > 2

- For each of the following, solve the equation $f^{-1}(x) = g(x)$. 11

 - **a** $f: x \to \frac{1}{3}(2x-5), x \in \mathbb{R}$ $g: x \to \frac{4}{2-x}, x \in \mathbb{R}, x \neq 2$
 - **b** $f: x \to \ln \frac{x+3}{5}, x \in \mathbb{R}, x > -3$ $g: x \to 10 6e^{-x}, x \in \mathbb{R}$
 - **c** $f: x \to x^2 4, x \in \mathbb{R}, x > 0$ $g: x \to \frac{x+6}{2}, x \in \mathbb{R}$
- 12 The function f is defined by

$$f: x \to \frac{x+b}{x+a}, \ x \in \mathbb{R}, \ x \neq 2.$$

a State the value of the constant a.

Given that f(6) = 4,

- **b** find the value of the constant b,
- **c** find $f^{-1}(x)$ and state its domain.
- The functions f and g are defined by 13

$$f: x \to x^2 - 3x, \ x \in \mathbb{R}, \ x \ge 1\frac{1}{2},$$

$$g: x \to 2x + 3, x \in \mathbb{R}$$
.

- a Find, in the form $f^{-1}: x \to ...$, the inverse function of f and state its domain.
- **b** On the same set of axes, sketch y = f(x) and $y = f^{-1}(x)$.

Given that $f^{-1}g^{-1}(12) = a(1 + \sqrt{3})$,

c show that $a = 1\frac{1}{2}$.