Curs 12

Grafuri planare.

<u>Colorarea grafurilor.</u> Polinoame cromatice

lanuarie 2015

Grafuri planare Definiții și exemple

Un graf G este planar dacă poate fi desenat în plan astfel încât muchiile să nu se intersecteze decât în nodurile grafului. O astfel de desenare se numește reprezentare planară a lui G.

Grafuri planare Definiții și exemple

Un graf G este planar dacă poate fi desenat în plan astfel încât muchiile să nu se intersecteze decât în nodurile grafului. O astfel de desenare se numește reprezentare planară a lui G.

Noțiuni auxiliare

Regiune a unei reprezentări planare a grafului G: porțiune din plan în care orice 2 puncte pot fi unite cu o curbă care nu intersectează G

Noțiuni auxiliare

Regiune a unei reprezentări planare a grafului G: porțiune din plan în care orice 2 puncte pot fi unite cu o curbă care nu intersectează G

Noțiuni auxiliare

Regiune a unei reprezentări planare a grafului G: porțiune din plan în care orice 2 puncte pot fi unite cu o curbă care nu intersectează G

- Orice regiune este delimitată de muchii.
- Orice muchie este în contact cu una sau două regiuni.
- O muchie mărginește o regiune *R* dacă este în contact cu *R* și cu altă regiune.

Regiuni și grade de mărginire

 e_1 este în contact doar cu S_1 e_2 și e_3 sunt în contact doar cu S_2 $S_1 \text{ este mărginită de } e_7, e_8, e_9$ $S_3 \text{ este mărginită de } e_4, e_5, e_6$ $S_2 \text{ este mărginită de } e_4, e_5, e_6, e_7, e_8, e_9$

Regiuni și grade de mărginire

 e_1 este în contact doar cu S_1 e_2 și e_3 sunt în contact doar cu S_2 S_1 este mărginită de e_7 , e_8 , e_9 S_3 este mărginită de e_4 , e_5 , e_6 S_2 este mărginită de e_4 , e_5 , e_6 , e_7 , e_8 , e_9

Gradul de mărginire b(S) al unei regiuni S este numărul de muchii care mărginesc S.

$$b(S_1) = 3$$
, $b(S_2) = 6$, $b(S_3) = 3$

Proprietăți

Fie G un graf conex cu n noduri, q muchii, și o reprezentare planară a lui G cu r regiuni.

$$n = 7$$

$$q = 9$$

$$r = 4$$

$$n = 8$$

$$q = 12$$

$$r = 6$$

$$n = 10$$

$$q = 9$$

$$r = 1$$

Proprietăți

Fie G un graf conex cu n noduri, q muchii, și o reprezentare planară a lui G cu r regiuni.

n - q + r = 2 în toate cazurile.

Proprietăți ale grafurilor planare conexe

Teoremă (Formula lui Euler)

Dacă G este un graf planar conex cu n noduri, q muchii și r regiuni, atunci n - q + r = 2.

DEMONSTRAȚIE: Inducție după q.

CAZUL 1:
$$q = 0 \Rightarrow G = K_1$$
, pentru care $n = 1$, $q = 0$, $r = 1$, deci $n - q + r = 2$.

CAZUL 2:
$$G$$
 este arbore $\Rightarrow q = n - 1$ și $r = 1$, deci

$$n-q+r=n-(n-1)+1=2.$$

CAZUL 3: G este arbore conex cu cel puţin 1 ciclu. Fie e o muchie din ciclul respectiv, și G' = G - e.

G' este conex cu n noduri, q-1 muchii, și r-1 regiuni \Rightarrow conform ipotezei inductive: n-(q-1)+(r-1)=2. Rezultă că n-q+r=2 are loc și în acest caz.

Consecința 1

K_{3,3} nu este graf planar.

DEMONSTRAȚIE: $K_{3,3}$ are n=6 și $q=9 \Rightarrow$ dacă ar fi planar, ar avea r=q-n+2=5 regiuni R_i $(1 \le i \le 5)$. Fie $C=\sum_{i=1}^5 b(R_i)$.

- Orice muchie mărginește cel mult 2 regiuni $\Rightarrow C \le 2 q = 18$.
- $K_{3,3}$ este bipartit \Rightarrow nu conține C_3 ca subgraf, deci $b(S_i) \ge 4$ pentru toți i, și prin urmare $C \ge 4 \cdot 5 = 20$
- \Rightarrow contradicție, deci $K_{3,3}$ nu poate fi graf planar.

Consecința 2

Dacă G este graf planar cu $n \ge 3$ noduri și q muchii atunci $q \le 3$ n - 6. Mai mult, dacă q = 3 n - 6 atunci b(S) = 3 pentru orice regiune S din G.

DEMONSTRAȚIE. Fie
$$R_1, \ldots, R_r$$
 regiunile lui G , și $C = \sum_{i=1}^r b(R_i)$. Știm că $C \le 2q$ și că $C \ge 3r$ (deoarece $b(R_i) \ge 3$ pentru toți i). Deci $3r \le 2q \Rightarrow 3(2+q-n) \le 2q \Rightarrow q \le 3n-6$. Dacă egalitatea are loc, atunci $3r = 2q \Rightarrow C = \sum_{i=1}^r b(R_i) = 3r \Rightarrow b(R_i) = 3$ pt. toate regiunile R_i .

Consecința 2

Dacă G este graf planar cu $n \ge 3$ noduri și q muchii atunci $q \le 3$ n - 6. Mai mult, dacă q = 3 n - 6 atunci b(S) = 3 pentru orice regiune S din G.

DEMONSTRAȚIE. Fie
$$R_1, \ldots, R_r$$
 regiunile lui G , și $C = \sum_{i=1}^r b(R_i)$. Ştim că $C < 2q$ și că $C > 3r$ (deoarece $b(R_i) > 3$ pentru toți i). Deci

$$3r \le 2q \Rightarrow 3(2+q-n) \le 2q \Rightarrow q \le 3n-6$$
.

Dacă egalitatea are loc, atunci

$$3 r = 2 q \Rightarrow C = \sum_{i=1}^{r} b(R_i) = 3 r \Rightarrow b(R_i) = 3 \text{ pt. toate regiunile } R_i.$$

Consecința 3

 K_5 nu este graf planar.

DEMONSTRAȚIE: K_5 are n=5 noduri și q=10 muchii $\Rightarrow 3 \, n-6=9 < 10 = q \Rightarrow K_5$ nu poate fi planar (cf. Consecinței 2).

Consecința 4

 $\delta(G) \leq 5$ pentru orice graf planar G.

Demonstrație: Presupunem că G este graf planar cu n noduri și q muchii.

CAZUL 1:
$$n \le 6 \Rightarrow$$
 orice nod are grad $\le 5 \Rightarrow \delta(G) \le 5$.

CAZUL 2:
$$n > 6$$
. Fie $D = \sum_{v \in V} \deg(v)$. Rezultă că

$$D = 2 q$$
 (evident)
 $\leq 2 (3 n - 6)$ (conform Consecinței 2)
 $= 6 n - 12$.

Dacă
$$\delta(G) \geq 6$$
 atunci $D = \sum_{v \in V} \deg(v) \geq \sum_{v \in V} 6 = 6 n$, contradicție.

Deci $\delta(G) \leq 5$ trebuie să aibă loc.

Subdiviziuni

Fie G = (V, E) un graf neorientat, și (x, y) o muchie.

- O subdiviziune a lui (x, y) în G este o înlocuire a lui (x, y) în G cu o cale de la x la y prin puncte intermediare noi.
- Un graf H este o subdiviziune a unui graf G dacă H se poate obține din G printr-o secvență finită de subdiviziuni de muchii.

Exemplu G: H:

Criterii de detecție a grafurilor planare

Spunem că un graf G conține un graf H dacă H se poate obține prin eliminarea de noduri și muchii din G.

Remarcă

Dacă H este subgraf al lui G atunci G conține H. Reciproca este falsă: "G conține H" nu implică "H este subgraf al lui G".

• *H* este subgraf al lui *G* doar dacă se poate obține din *G* prin eliminare de noduri.

Teoremă (Teorema lui Kuratowski)

G este graf planar dacă și numai dacă nu conține subdiviziuni ale lui $K_{3,3}$ și ale lui K_5 .

Detecția grafurilor neplanare Criteriu bazat pe Teorema lui Kuratowski

Este G = (V, E) neplanar?

- **1** Mai întâi verificăm dacă G conține o subdiviziune a lui $K_{3,3}$:
 - ▶ Determinăm mulțimea S de noduri $v \in E$ cu deg $(v) \ge 3$.
 - Dacă |S| < 6, G nu poate conține o subdiviziune a lui $K_{3,3}$. Altfel, verificăm dacă putem alege 6 puncte din S care pot fi capete ale unei subdiviziuni a lui $K_{3,3}$.
- ② Apoi, verificăm dacă G conține o subdiviziune a lui K_5 :
 - ▶ Determinăm mulțimea S' de noduri $v \in E$ cu deg $(v) \ge 4$.
 - Dacă |S'| < 5, G nu poate conține o subdiviziune a lui K_5 . Altfel, verificăm dacă putem alege 5 puncte din S' care pot fi capete ale unei subdiviziuni a lui $K_{3,3}$.
- **1** Dacă ambele verificări eșuează $\Rightarrow G$ este graf planar.

Aplicați teorema lui Kuratowski pentru a decide care din grafurile următoare este planar:

Aplicați teorema lui Kuratowski pentru a decide care din grafurile următoare este planar:

7

Aplicați teorema lui Kuratowski pentru a decide care din grafurile următoare este planar:

Nu, deoarece conține o subdiviziune a lui $K_{3,3}$:

Aplicați teorema lui Kuratowski pentru a decide care din grafurile următoare este planar:

4.

Aplicați teorema lui Kuratowski pentru a decide care din grafurile următoare este planar:

Nu, deoarece conține o subdiviziune a lui K_5 :

4.

Aplicați teorema lui Kuratowski pentru a decide care din grafurile următoare este planar:

3. 5

Nu, deoarece conține o subdiviziune a lui K_5 :

4.

Nu, deoarece conține o subdiviziune a lui $K_{3,3}$:

Problemă motivantă

Adi, Barbu, Călin, Dan, Eugen, Florin, Gelu și Ion sunt senatori ai unui stat, și fac parte din 7 comitete:

```
 \begin{array}{l} \textit{C}_1 = \{ \mathsf{Adi}, \ \mathsf{Barbu}, \ \mathsf{C\"{a}lin} \}, \ \textit{C}_2 = \{ \mathsf{C\~{a}lin}, \ \mathsf{Dan}, \ \mathsf{Eugen} \}, \\ \textit{C}_3 = \{ \mathsf{Dan}, \mathsf{Florin} \}, \ \textit{C}_4 = \{ \mathsf{Adam}, \ \mathsf{Gelu} \}, \ \textit{C}_5 = \{ \mathsf{Eugen}, \ \mathsf{lon} \}, \\ \textit{C}_6 = \{ \mathsf{Eugen}, \mathsf{Barbu}, \mathsf{Gelu} \}, \ \textit{C}_7 = \{ \mathsf{Ion}, \ \mathsf{C\~{a}lin}, \ \mathsf{Florin} \}. \\ \end{array}
```

Fiecare comitet trebuie să fixeze o dată la care să se întâlnească toți membrii săi.

Întrebare: Care este numărul minim de date ce trebuiesc fixate pentru întâlniri, dacă se știe că nici un membru nu poate participa simultan la două întâlniri fixate la aceeași dată?

Observații:

- Două comitete C_i și C_j nu se pot întâlni la aceeași dată dacă și numai dacă au un membru comun (adică $C_i \cap C_i = \emptyset$).
- \Rightarrow Putem considera graful neorientat G cu
 - noduri = comitetele C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7
 - muchii (C_i, C_j) dacă C_i și C_j au un membru comun (adică $C_i \cap C_j = \emptyset$)
 - Colorăm fiecare nod C_i cu o culoare care reprezintă data la care are loc întâlnirea comitetului C_i
 - ⇒ problema se poate reformula astfel: care este numărul minim de culori pentru nodurile lui *G*, astfel încât nici o muchie să nu aibă capetele colorate la fel?

Definiție (colorare de noduri, număr cromatic)

O k-colorare a nodurilor unui graf G=(V,E) este o funcție $K:V \to \{1,\ldots,k\}$ astfel încât $K(u) \neq K(v)$ dacă $(u,v) \in E$. Numărul cromatic $\chi(G)$ al unui graf G este valoarea minimă a lui $k \in \mathbb{N}$ pt. care există o k-colorare a lui G.

$$K(C_1) = K(C_3) = K(C_5) = 1$$

$$K(C_2)=K(C_4)=2$$

$$K(C_6)=K(C_7)=3$$

Definiție (colorare de noduri, număr cromatic)

O k-colorare a nodurilor unui graf G=(V,E) este o funcție $K:V \to \{1,\ldots,k\}$ astfel încât $K(u) \neq K(v)$ dacă $(u,v) \in E$. Numărul cromatic $\chi(G)$ al unui graf G este valoarea minimă a lui $k \in \mathbb{N}$ pt. care există o k-colorare a lui G.

$$K(C_1) = K(C_3) = K(C_5) = 1$$

$$K(C_2) = K(C_4) = 2$$

$$K(C_6) = K(C_7) = 3$$

⇒ nr. minim de date este 3. (sunt necesare 3 culori)

Definiție (colorare de noduri, număr cromatic)

O k-colorare a nodurilor unui graf G=(V,E) este o funcție $K:V \to \{1,\ldots,k\}$ astfel încât $K(u) \neq K(v)$ dacă $(u,v) \in E$. Numărul cromatic $\chi(G)$ al unui graf G este valoarea minimă a lui $k \in \mathbb{N}$ pt. care există o k-colorare a lui G.

Colorări de noduri

Calculul lui $\chi(G)$ este o problemă dificilă (NP-completă).

- Birkhoff (\approx 1900) a descoperit o metodă de calcul al unui polinom $c_G(z)$ pentru orice graf G, numit polinomul cromatic al lui G, astfel încât
 - $c_G(k) = \text{nr. de } k\text{-colorări de noduri a lui } G$
- $\Rightarrow \chi(G) = \text{valoarea minimă a lui } k \text{ pt. care } c_G(k) > 0.$

Polinoame cromatice

Calculul lui $\chi(G)$ este o problemă dificilă (NP-completă).

- Birkhoff (\approx 1900) a descoperit o metodă de calcul al unui polinom $c_G(z)$ pentru orice graf G, numit polinomul cromatic al lui G, astfel încât
 - $c_G(k) = \text{nr. de } k\text{-colorări de noduri a lui } G$
- $\Rightarrow \chi(G) = \text{valoarea minimă a lui } k \text{ pt. care } c_G(k) > 0.$

Vom prezenta

- formule simple de calcul al lui $c_G(z)$ pentru grafuri speciale G.
- ② doi algoritmi recursivi de calcul al lui $c_G(z)$ pt. orice graf G.

• Graful vid E_n : v_1 v_2 \cdots v_n pentru fiecare nod, putem alege oricare din z culori:

$$\Rightarrow c_{E_n}(z) = z^n \text{ si } \chi(E_n) = 1$$

- Graful vid E_n : v_1 v_2 ... v_n pentru fiecare nod, putem alege oricare din z culori:
 - $\Rightarrow c_{E_n}(z) = z^n \text{ si } \chi(E_n) = 1$
- ② Arbore T_n cu n noduri:
 - z opțiuni pentru culoarea rădăcinii
 - orice alt nod poate fi colorat cu orice culoare diferită ce cea a nodului părinte $\Rightarrow z-1$ opțiuni pt. colorarea lui

$$\Rightarrow c_{\mathcal{T}_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(\mathcal{T}_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$$

- Graful vid E_n : v_1 v_2 \cdots v_n pentru fiecare nod, putem alege oricare din z culori: $z_n \in C_{E_n}(z) = z^n$ si $z_n \in C_{E_n}(z) = z^n$ si $z_n \in C_{E_n}(z) = z^n$
- 2 Arbore T_n cu n noduri:
 - z opțiuni pentru culoarea rădăcinii
 - ullet orice alt nod poate fi colorat cu orice culoare diferită ce cea a nodului părinte $\Rightarrow z-1$ opțiuni pt. colorarea lui

$$\Rightarrow c_{T_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(T_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$$

3 Caz special: graful $\frac{P_n}{p_n}$ (cale cu n noduri) este un arbore special cu n noduri: $\frac{(v_1) \cdots (v_n)}{p_n} \cdots \frac{(v_n)}{p_n}$

$$\Rightarrow c_{P_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(P_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$$

- Graful vid E_n : v_1 v_2 \cdots v_n pentru fiecare nod, putem alege oricare din z culori: $z_n \in C_{E_n}(z) = z^n$ si $z_n \in C_{E_n}(z) = z^n$ si $z_n \in C_{E_n}(z) = z^n$
- 2 Arbore T_n cu n noduri:
 - z opțiuni pentru culoarea rădăcinii
 - orice alt nod poate fi colorat cu orice culoare diferită ce cea a nodului părinte $\Rightarrow z-1$ opțiuni pt. colorarea lui

$$\Rightarrow c_{T_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(T_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$$

3 Caz special: graful $\frac{P_n}{p_n}$ (cale cu n noduri) este un arbore special cu n noduri: $\frac{(v_1) \cdots (v_n)}{p_n} \cdots \frac{(v_n)}{p_n}$

$$\Rightarrow c_{P_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(P_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$$

• Graful complet K_n :

$$c_{K_n}(z) = z \cdot (z-1) \cdot \ldots \cdot (z-n+1)$$
 și $\chi(K_n) = n$.

Calculul polinoamelor cromatice

Operații speciale asupra unui graf

Fie G = (V, E) un graf neorientat și e = (x, y) o muchie din E

- ightharpoonup G e este graful obținut din G prin eliminarea muchiei e
- ▶ G/e este graful obținut din G astfel:
 - Se înlocuiesc nodurile x şi y cu un singur nod, care se învecinează cu vecinii lui x şi ai lui y.

Calculul polinoamelor cromatice

Formule de calcul recursiv

Se observă că, pentru orice $e \in E$: $c_G(z) = c_{G-e}(z) - c_{G/e}(z)$ \Rightarrow doi algoritmi de calcul recursiv al polinomului cromatic:

① Se reduce G eliminând pe rând câte o muchie $e \in E$:

$$c_G(z) = c_{G-e}(z) - c_{G/e}(z)$$

până când se obțin grafuri speciale E_n sau T_n :

- Cazuri de bază: $c_{E_n}(z) = z^n$ și $c_{T_n}(z) = z \cdot (z-1)^{n-1}$
- Se extinde G adăugând pe rând muchii e care lipsesc din G:

$$c_G(z) = c_{\bar{G}}(z) + c_{\bar{G}/e}(z)$$

unde e este o muchie lipsă din G, și $\bar{G} = G + e$

• Caz de bază:
$$c_{K_n}(z) = z \cdot (z-1) \cdot \ldots \cdot (z-n+1)$$

Calculul polinomului cromatic prin reducere

Exemplu ilustrat

$$G: \bigvee_{a - b}^{d} c \quad c_{G}(z) = c_{G_{1}}(z) - c_{G_{2}}(z), \text{ unde}$$

$$G_{1}: \bigvee_{a - b}^{d} c \quad c_{G_{1}}(z) = c_{G_{11}}(z) - c_{G_{12}}(z) \quad G_{2}: \bigvee_{a - b}^{d} c \quad c_{G_{2}}(z) = c_{G_{21}}(z) - c_{G_{22}}(z) \quad \text{unde } G_{21} = G_{2} - (a\&b,c)$$

$$a \quad b \quad \text{si } G_{12} = G_{1}/(b,c) \quad a\&b \quad \text{si } G_{22} = G_{2}/(a\&b,c)$$

Calculul polinomului cromatic prin reducere

Exemplu ilustrat

$$G: \overset{\mathsf{d}}{\underset{\mathsf{a}}{\smile}} \overset{\mathsf{c}}{\underset{\mathsf{b}}{\smile}} c \qquad c_{G}(z) = c_{G_{1}}(z) - c_{G_{2}}(z), \text{ unde}$$

$$G_{1}: \overset{\mathsf{d}}{\underset{\mathsf{a}}{\smile}} \overset{\mathsf{c}}{\underset{\mathsf{b}}{\smile}} c \qquad c_{G_{1}}(z) = c_{G_{11}}(z) - c_{G_{12}}(z) \qquad G_{2}: \overset{\mathsf{d}}{\underset{\mathsf{a}}{\smile}} c \qquad c_{G_{2}}(z) = c_{G_{21}}(z) - c_{G_{22}}(z) \qquad \text{unde } G_{21} = G_{2} - (a \& b, c)$$

$$G_{11}: \overset{\mathsf{d}}{\underset{\mathsf{a}}{\smile}} \overset{\mathsf{d}}{\underset{\mathsf{b}}{\smile}} c \qquad G_{12}: \overset{\mathsf{d}}{\underset{\mathsf{a}}{\smile}} \overset{\mathsf{d}}{\underset{\mathsf{b}}{\smile}} c \qquad G_{22}: \overset{\mathsf{d}}{\underset{\mathsf{a}}{\smile}} c \qquad G_{22}: \overset{\mathsf{d}}{\underset{\mathsf{a}}{\smile}}$$

Grafurile următoare sunt izomorfe: $G_{12} \equiv G_{21}$ și $G_{22} = K_3$, deci:

$$c_G(z) = c_{G_{11}}(z) - 2 \cdot c_{G_{12}}(z) + \underbrace{z(z-1)(z-2)}_{c_{K_3}(z)}$$

Calculul polinomului cromatic prin reducere Exemplu ilustrat (continuare)

$$c_G(z) = c_{G_{11}}(z) - 2 \cdot c_{G_{12}}(z) + z(z-1)(z-2)$$

$$G_{11}: e^{d \cdot c} G_{12}: e^{d \cdot c}$$

Se observă că

•
$$c_{G_{11}}(z) = c_{T_5}(z) - c_{T_4}(z) = z(z-1)^4 - z(z-1)^3$$

•
$$c_{G_{12}}(z) = c_{T_4}(z) - c_{T_3}(z) = z(z-1)^3 - z(z-1)^2$$

$$\Rightarrow c_G(z) = z(z-1)^4 - z(z-1)^3 - 2(z(z-1)^3 - z(z-1)^2) + z(z-1)(z-2) = z^5 - 7z^4 + 18z^3 - 20z^2 + 8z$$

Calculul polinomului cromatic prin extindere

Exemplu ilustrat

$$G:egin{aligned} \mathsf{G} & \mathsf{C} & \mathsf{C}_G(z) = c_{G_1}(z) + c_{G_2}(z), \text{ unde} \end{aligned}$$
 $G_1 = G + (c,e):egin{aligned} \mathsf{G} & \mathsf{G}_2 = G_1/(c,e): & \mathsf{G}_2 = G_1/(c,e): & \mathsf{G}_3 = G_$

$$c_{G_2}(z) = z(z-1)(z-2)(z-3)$$
 decoarece $G_2 \equiv K_4$, si $c_{G_1}(z) = c_{G_{11}}(z) + c_{G_{12}}(z)$ unde $G_{11} : e^{\int_{a-b}^{d} c} G_{12} : \int_{a-b\&e}^{d} c G_{12} : \int_{a-b\&e}^{d} c G_{13} :$

Calculul polinomului cromatic prin extindere Exemplu ilustrat (continuare)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

unde
$$G_{12}$$
: $\begin{pmatrix} c \\ c \end{pmatrix}$

Calculul polinomului cromatic prin extindere Exemplu ilustrat (continuare)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

unde
$$G_{12}$$
: c

$$a-b\&e$$

$$c_{G_{12}}(z)=c_{G_{121}}(z)+c_{G_{122}}(z)=c_{K_4}(z)+c_{K_3}(z)$$
 unde

Calculul polinomului cromatic prin extindere Exemplu ilustrat (continuare)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

unde
$$G_{12}$$
: c

$$a-b\&e$$

$$c_{G_{12}}(z)=c_{G_{121}}(z)+c_{G_{122}}(z)=c_{K_4}(z)+c_{K_3}(z) \text{ unde}$$

unde
$$G_{121}$$
: unde G_{122} :
$$G_{121} \equiv K_4$$
 unde G_{122} :
$$G_{122} \equiv K_3$$

$$\Rightarrow c_G(z) = c_{K_5}(z) + 3c_{K_4}(z) + c_{K_3}(z) = z^5 - 7z^4 + 18z^3 - 20z^2 + 8z$$

Proprietăți ale polinomului cromatic

Dacă G = (V, E) este un graf neorientat cu n noduri și q muchii atunci polinomul cromatic $c_G(z)$ satisface condițiile următoare:

- Are gradul n.
- Coeficientul lui zⁿ este 1.
- ► Coeficienții săi au semne alternante.
- ► Termenul constant este 0.
- ▶ Coeficientul lui z^{n-1} este -q.

Exemplu

$$\begin{array}{ll}
 & n = 5, \ q = 7 \\
 & c_G(z) = z^5 - 7z^4 + 18z^3 - 20z^2 + 8z
\end{array}$$

- Fiecare țară a unei hărți se reprezintă ca nod al unui graf
- Două noduri se conectează dacă și numai dacă țările respective au o graniță nebanală (mai mult decât un punct)
- \Rightarrow graf neorientat G_H corespunzător unei hărți H. De exemplu:

OBSERVAŢIE: H este hartă dacă și numai dacă G_H este graf planar.

Colorarea hărții cu 4 culori

Țările unei hărți *H* pot fi colorate cu 4 culori, astfel încât să nu existe țări învecinate colorate la fel.

Colorarea hărții cu 4 culori

Țările unei hărți H pot fi colorate cu 4 culori, astfel încât să nu existe țări învecinate colorate la fel.

Observații

Colorarea hărții cu 4 culori

Țările unei hărți H pot fi colorate cu 4 culori, astfel încât să nu existe țări învecinate colorate la fel.

Observații

- 1 Una dintre cele mai faimoase teoreme din Teoria Grafurilor
 - Demonstrație extrem de lungă și complexă
 - Problemă propusă in 1858, rezolvată de-abia în 1976 (Appel & Haken)
 - Echivalentă cu faptul că graful planar *G_H* este 4-colorabil.

Colorarea hărții cu 4 culori

Țările unei hărți H pot fi colorate cu 4 culori, astfel încât să nu existe țări învecinate colorate la fel.

Observații

- Una dintre cele mai faimoase teoreme din Teoria Grafurilor
 - Demonstrație extrem de lungă și complexă
 - Problemă propusă in 1858, rezolvată de-abia în 1976 (Appel & Haken)
 - Echivalentă cu faptul că graful planar G_H este 4-colorabil.
- Teorema este echivalentă cu afirmația:

$$\chi(G) \leq 4$$
 pentru orice graf planar G .

Colorarea hărții cu 5 culori

Țările unei hărți H pot fi colorate cu 5 culori, astfel încât să nu existe țări învecinate colorate la fel. sau, echivalent: $\chi(G) < 5$ pentru orice graf planar G.

DEMONSTRAŢIE: Inducţie după n= numărul de noduri din G. Teorema este evidentă pt. $n\geq 5$, deci considerăm doar $n\geq 6$. $\delta(G)\leq 5$ datorită consecintți 4, deci G are un nod V cu $\deg(V)\leq 5$. Fie G' graful obţinut prin eliminarea lui V din $G\Rightarrow G'$ are n-1 noduri, deci $\chi(G')\leq 5$ conform ipotezei inductive. Deci putem presupune că G' are o 5-colorare cu culorile 1,2,3,4,5. CAZUL 1: $\deg(G)=d\leq 4$. Fie V_1,\ldots,V_d vecinii lui V, cu culorile C_1,\ldots,C_d .

pentru nodul v putem alege orice culoare $c \in \{1, 2, 3, 4, 5\} - \{c_1, \dots, c_d\}$ $\Rightarrow G$ este 5-colorabil.

CAZUL 2: deg(v) = 5, deci v are 5 vecini v_1, v_2, v_3, v_4, v_5 pe care-i presupunem colorați cu culorile c_1, c_2, c_3, c_4, c_5 .

- **1** Dacă $\{c_1, c_2, c_3, c_4, c_5\}$ ≠ $\{1, 2, 3, 4, 5\}$, putem să-l colorăm pe v cu orice culoare $c \in \{1, 2, 3, 4, 5\} \{c_1, c_2, c_3, c_4, c_5\}$ ⇒ G este 5-colorabil.
- ② Dacă $\{c_1, c_2, c_3, c_4, c_5\} = \{1, 2, 3, 4, 5\}$, putem presupune că $c_1 = 1, c_2 = 2, c_3, c_4 = 4, c_5 = 5$.

Idee de bază: Vom rearanja culorile lui G' pentru a face disponibilă o culoare pentru v.

Considerăm toate nodurile lui G' care sunt colorate cu 1 (roșu) și 3 (verde). CAZUL 2.1. G' nu are nici o cale de la v_1 la v_3 colorată doar cu 1 și 3. Fie H subgraful lui G' care conține toate căile ce pornesc din v_1 și sunt colorate doar cu 1 (roșu) și 3 (verde).

Considerăm toate nodurile lui G' care sunt colorate cu 1 (roșu) și 3 (verde). CAZUL 2.1. G' nu are nici o cale de la v_1 la v_3 colorată doar cu 1 și 3. Fie H subgraful lui G' care conține toate căile ce pornesc din v_1 și sunt colorate doar cu 1 (roșu) și 3 (verde).

• $V[v_3] \cap V(H) = \emptyset$, adică nici v_3 și nici vecinii lui v_3 nu sunt noduri din H.

Considerăm toate nodurile lui G' care sunt colorate cu 1 (roșu) și 3 (verde). CAZUL 2.1. G' nu are nici o cale de la v_1 la v_3 colorată doar cu 1 și 3. Fie H subgraful lui G' care conține toate căile ce pornesc din v_1 și sunt colorate doar cu 1 (roșu) și 3 (verde).

- $V[v_3] \cap V(H) = \emptyset$, adică nici v_3 și nici vecinii lui v_3 nu sunt noduri din H.
- Putem interschimba culorile 1 și 3 în H, iar apoi să atribuim culoarea 1 (roșu) lui $v \Rightarrow G$ este 5-colorabil.

Considerăm toate nodurile lui G' care sunt colorate cu 1 (roșu) și 3 (verde). CAZUL 2.1. G' nu are nici o cale de la v_1 la v_3 colorată doar cu 1 și 3. Fie H subgraful lui G' care conține toate căile ce pornesc din v_1 și sunt colorate doar cu 1 (roșu) și 3 (verde).

- $V[v_3] \cap V(H) = \emptyset$, adică nici v_3 și nici vecinii lui v_3 nu sunt noduri din H.
- Putem interschimba culorile 1 și 3 în H, iar apoi să atribuim culoarea 1 (roșu) lui $v \Rightarrow G$ este 5-colorabil.

CAZUL 2.2. G' are o cale de la v_1 la v_3 colorată doar cu culorile 1 și cu $3\Rightarrow$ una din următoarele situații are loc:

În ambele cazuri, nu poate exista o cale de la v_2 la v_4 colorată doar cu culorile 2 și 4 \Rightarrow cazul 2.1 este aplicabil pentru nodurile v_2 și $v_4 \Rightarrow G$ este 5-colorabil și în cazul acesta.