Last time: Low-rank approximation Goal: Given $A \in \mathbb{R}^{m \times n}$, $k < \min\{m, n\}$ (assume m > n) min $||A-A_k||$ (*) rank (Ak) sk Here we take 11.11 to be 2-norm or Frobenius norm Dr equivalently, find the optimal range: min || A - Q RQ TA || (***)

Q R R = : Pa projection outo span of Q Q RQ = I K Solution: Let SVD of A be $A = U \Sigma V^T = \sum_{i=1}^{n} 6i u_i v_i^T$ where U=[v1 42 ··· um] & Rmxm $V = [v_1, v_2, \dots, v_n] \in \mathbb{R}^{n \times n}$ [= diag(6,..., 6n) & Rman The optimal rank- k approximation of A is given by $A_k := \bigcup_k \sum_k V_{ic}^T = \sum_{i=1}^n 6_i u_i v_i^T$ where Uk=[v1 42 ··· Uk] & Rmxk V_k= [v, v₂ ... v_k] ∈ R "*k Ix= diag(6,..., 6k) E RKXK The optimal QK = UK = [U, ... UK]

Algorithm: (Randomized SVD)
Stage A: 1) Generate iid Ganssian random matrix
Optimal range $\Omega \in \mathbb{R}^{n \times (k+p)}$
Optimal range $\Omega \in \mathbb{R}^{n \times (k+p)}$ finder 2) Compute $Y = A \Omega \in \mathbb{R}^{m \times (k+p)}$
3) Compute QR fact. Y= QK+pR, QK+p6 Rmx(K+p)
Stage B: 1) Compute $B = \hat{Q}_{k+p}^T A \in \mathbb{R}^{(k+p) \times n}$
Post-processing 2) Compute SVD: $B = U_{k+p} \sum_{k+p} V_{k+p}$
Post-processing 2) Compute SVD: $B = U_{k+p} \sum_{k+p} V_{(k+p)}$ (truncated SVD) 3) Compute $U_{k+p} = Q_{k+p} U_{k+p} \in \mathbb{R}^{m \times (k+p)}$
Out put: $\hat{A}_{k} := \hat{U}_{k} \hat{\Sigma}_{k} \hat{V}_{k}^{T} = \sum_{i=1}^{k} \hat{S}_{i} \hat{u}_{i} \hat{v}_{i}^{T}$
Error analysis: Let $P_Y := \hat{Q}_{K+P} \hat{Q}_{K+P}^T$
We split the final error into two parts
11 A - Âx 11 = 11A - PYA 11 + 11 PYA - Âx 11
approximation err truncation err
of ranger finder (stage B) (Stage A)
Given akp, Stage B is computing the best rank k
approximation of $P_{Y}A := \hat{Q}_{K+P} \hat{Q}_{K+P} \hat{Q}_{K+P} A$
b.c. $P_Y A = \hat{Q}_{k+p} \hat{U}_{k+p} \hat{\Sigma}_{k+p} \hat{V}_{k+p} \longrightarrow SVD \text{ of } P_Y A$
and the output truncates to the top k modes
Thus IIPY A - Âkll is easy to controll:
approx. of A

 $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| \leq || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| = || P_{\Upsilon} (A - A_{K})|| \leq || A - A_{K}|| \leq \left(\frac{\hat{\Sigma}}{\hat{\Sigma}} G_{j}^{2}\right)^{\frac{1}{2}},$ $|| P_{\Upsilon} A - \hat{A}_{K}|| = || P_{\Upsilon} (A - A_{K})|| = |$ It remains to analyze the error in Stage A ... e. 11A-PrAll · Special case: rank(A) = 1k, se Rnxk Then $Y = A\Omega = U_k \Sigma_k (V_k^T \Omega)$ $rank(V_k^T \Omega) = k$ almost surely $rank(V_k^T\Omega) = k$ almost surely so range $(Y) = range(U_k) = range(A)$ almost surely => 11A-PrA11 = 0 · General case: rank (A) > k . over sampling p > 1 $Y = A\Omega = [U_k, \bar{U}] \begin{bmatrix} \bar{\Sigma}_k \bar{z} \end{bmatrix} \begin{bmatrix} V_k^T \\ \bar{V}^T \end{bmatrix} \Omega$ = $U_k \sum_k (V_k^T \Omega) + U \widehat{\Sigma} (V^T \Omega)$ =: Y_k perturbation $O(6_{k+1})$ $V_k \sum_k (V_k^T \Omega) + U \widehat{\Sigma} (V^T \Omega)$ Thm (Perfarbation lemma) For ||·||= ||·||2 or ||·||F. and any DER nx(K+p), s.t. Vx D has feel yow rank, then ||(I-PY)A|| 2 ≤ || \(\bar{\Sigma}\)| + || \(\bar{\Sigma}\)(\(\bar{\Sigma}\)) (\(\bar{\Sigma}\)) (\(\bar{\Sigma}\)) (\(\bar{\Sigma}\)) (n-t)x(k+p) Ω_{i} := pseduo inverse Dr. Dr iid Gaussian entry Use this lemma, we can prove average error bound: $\mathbb{E}\left[\|(\mathbf{I}-\mathbf{Pr})\mathbf{A}\|_{\mathbf{F}}^{2}\right] \leq \|\mathbf{\tilde{\Sigma}}\|_{\mathbf{F}}^{2} + \mathbb{E}\left\|\mathbf{\tilde{\Sigma}}\Omega_{2}\Omega_{1}^{\dagger}\|_{\mathbf{F}}^{2}\right]$

E[||SGT||²] = 11SH² 11TH² Conditioned on I, we have $\mathbb{E}\left(\|\Sigma_{\Omega_{1}}\Omega_{1}^{\dagger}\|_{F}^{2}|\Omega_{1}\right)=\|\overline{\Sigma}\|_{F}^{2}\|\Omega_{1}^{\dagger}\|_{F}^{2}$ (exercise) $\mathbb{E}\left[\left\|\left(\mathbb{I}-P_{f}\right)A\right\|_{F}^{2}\right] \leq \left\|\widehat{\Sigma}\right\|_{F}^{2} + \left\|\widehat{\Sigma}_{F}\right\|_{F}^{2} \mathbb{E}\left[\left\|\Omega_{f}^{\dagger}\right\|_{F}^{2}\right]$ Wichart $= \left(1 + \frac{k}{p-1}\right) \| \sum_{k=1}^{\infty} \|_{F}^{2}$ distribution $= \left(1 + \frac{k}{p-1}\right) \left(\sum_{j>k} 6_j^2\right)^{1/2}$ $= +r[(\Omega^T, \Omega_I)^{-1}]$ Similar bound can be obtained for 2-norm Thm A G RMxn. k>2, p>2 s.t. K+p < 1 min fm.n) Then Stage A produces mx (K+p) orthonormal basis, s.t. E[11A- QK+P QK+P A 11] = 6K+1 [1+ 4 K+P \ min \m.n] If 4 log 4 & p & min {m.n}, then 11A - Q Exp Q KTp A 112 < 6k+, [1+9/k+p /min/min] with probability > 1-3p-P For p=10. failure probability = 3×10-10! In the proof above, essentially we want $\|(\nabla^{T}\Omega)(v_{k}^{T}\Omega)^{\dagger}\| = O(1)$ In the special case k+p=n, and $\Omega=In$ $\|(\overline{V}^{\mathsf{T}}\Omega)(V_{\mathsf{K}}^{\mathsf{T}}\Omega)^{\mathsf{T}}\| = \|\overline{V}^{\mathsf{T}}V_{\mathsf{K}}\| =$ Re orthogonal basis

In general, we have

$$\begin{array}{c} \overline{V}^{\intercal}\Omega = \begin{bmatrix} \overline{V}_{1}^{\intercal} - \overline{V}_{1}^{\intercal} -$$

when	l~ k	(log(k),	we	have		
0.4	≤6R(V*	₍ ال	6,(V*	(U) <	1.48	
		•				