FISICA 1 (F) – PRIMERA PARTE –2^{do} CUATRIMESTRE/2010

GUIA 0

1. REPASO MATEMATICO

- 1 Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).
- 2 a) Hallar las componentes cartesianas de los siguientes vectores:

- b) Hallar el módulo y dirección de los siguientes vectores y representarlos gráficamente:
 - (i) $\vec{A} = (3,3)$

- (iv) $\vec{D} = (5,0)$
- (ii) $\vec{B} = (-1.25, -2.16)$
- (v) $\vec{E} = (0,3)$
- (iii) $\vec{C} = (-2.5, 4.33)$
- 3 Qué propiedades tienen los vectores \vec{A} y \vec{B} tales que:

a)
$$\vec{A} + \vec{B} = \vec{C}$$
 y $|\vec{A}| + |\vec{B}| = |\vec{C}|$

b)
$$\vec{A} + \vec{B} = \vec{A} - \vec{B}$$

b)
$$\vec{A} + \vec{B} = \vec{A} - \vec{B}$$

c) $\vec{A} + \vec{B} = \vec{C}$ y $A^2 + B^2 = C^2$

4 - Usando la definición de producto escalar, calcular

a)
$$\hat{i} \cdot \hat{j}$$

e)
$$\hat{j} \cdot \hat{j}$$

b)
$$\hat{i} \cdot \hat{k}$$

f)
$$\hat{k} \cdot \hat{k}$$

c)
$$\hat{j} \cdot \hat{k}$$

g)
$$\hat{j}$$

d)
$$\hat{i} \cdot \hat{i}$$

donde
$$\hat{i} = (1,0,0), \ \hat{j} = (0,1,0), \ \hat{k} = (0,0,1).$$

5 - Haciendo uso de la propiedad distributiva del producto escalar respecto de la suma, $\vec{C} \cdot (\vec{E} + \vec{F}) = \vec{C} \cdot \vec{E} + \hat{\vec{C}} \cdot \hat{\vec{F}}$ y de los resultados obtenidos en el ejercicio anterior, demostrar que si $\vec{A} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ y $\vec{B} = b_x \hat{i} + b_y \hat{j} + b_z \hat{k}$ entonces,

$$\vec{A} \cdot \vec{B} = a_x b_x + a_y b_y + a_z b_z.$$

6 - a) Utilizando el teorema de Pitágoras y la definición de las funciones trigonométricas, demostrar en el triángulo de la figura el "Teorema del Coseno":

$$AC^2 = AB^2 + BC^2 - 2AB BC \cos \beta,$$

donde AB, BC y AC son las longitudes de los respectivos lados.

AYUDA: Considerar los triángulos rectángulos ABD y ADC.

b) Utilizando la definición del seno demostrar sobre los mismos triángulos que

AC/sen
$$\beta = AB/sen \gamma$$
,

y generalizar el resultado para demostrar el "Teorema del Seno":

AC/sen
$$\beta = AB/sen \gamma = BC/sen \alpha$$
.

7 - a) Sean \hat{i} , \hat{j} y \hat{k} los versores de la terna mostrada en la figura (a). Usando la definición de producto vectorial, calcular

(i)
$$\hat{i} \times \hat{j}$$

(ii)
$$\hat{k} \times \hat{i}$$

(ii)
$$\hat{k} \times \hat{i}$$
 (iii) $\hat{j} \times \hat{k}$ (v) $\hat{j} \times \hat{j}$ (vi) $\hat{k} \times \hat{k}$

(iv)
$$\hat{i} \times \hat{i}$$

(v)
$$\hat{j} \times \hat{j}$$

(vi)
$$\hat{k} \times \hat{k}$$

b) Repetir el cálculo anterior para la terna de la figura (b) y comparar con los resultados obtenidos en ambos casos.

- NOTA: En lo sucesivo se convendrá en trabajar con ternas análogas a las del caso (a), en las cuales $\hat{i} \times \hat{j} = \hat{k}$, que se denominan "Ternas Derechas".
- 8 a) Demostrar que el producto vectorial no es asociativo y que dados los vectores \vec{A} , \vec{B} y \vec{C} , se cumple:

$$\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B} (\vec{A} \cdot \vec{C}) - \vec{C} (\vec{A} \cdot \vec{B}).$$

a) Probar que cualesquiera que sean los vectores, se cumple:

$$\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B}) = 0$$
.

- c) Demostrar que el producto mixto de tres vectores cualesquiera \vec{A} , \vec{B} y \vec{C} es igual al volumen del paralelepípedo construido sobre los mismos una vez llevado a partir de su origen común.
- d) Demostrar que la condición necesaria y suficiente para que tres vectores \vec{A} , \vec{B} y \vec{C} sean paralelos a un mismo plano es que su producto mixto sea nulo.
- 9 Hallar la expresión de los vectores posición, velocidad y aceleración en coordenadas polares y cilíndricas. Representar gráficamente.

2. CINEMÁTICA

- 10 Un cuerpo que en el instante t = 0 se encuentra en un punto A, viaja en línea recta con velocidad constante de módulo desconocido v. Cuando transcurre un tiempo T el móvil pasa por un punto B que está a distancia d de A.
 - a) Halle v.
 - b) Dé dos expresiones para la posición del cuerpo en función del tiempo, una considerando un sistema de coordenadas con origen en A y otra considerando un sistema de coordenadas con origen en B, y grafíquelas.
- 11 Un automóvil viaja en línea recta con velocidad constante desde A hasta C,

pasando por B. Se sabe que por A pasa a las 12 hs., por B a las 13 hs. y por C a las 15 hs. (AB = 50 km, BC = desconocido).

- a) Elija un origen de tiempo y un sistema de referencia.
- b) Elija un instante t_0 ¿cuánto vale x_0 ? Escriba la ecuación de movimiento.
- c) Elija otro instante t_0 ¿cuánto vale x_0 ? Escriba la ecuación de movimiento.
- d) Calcule la velocidad del auto y la distancia BC.
- 12 Un móvil 1 viaja en línea recta desde A hacia B (distancia AB = 300 km) a 80 km/h y otro móvil 2 lo hace desde B hacia A a 50 km/h. El móvil 2 parte 1 hora antes que el móvil 1.
 - a) Elija un origen de tiempo y un sistema de referencia.
 - b) Escriba los vectores velocidad \vec{v}_1 y \vec{v}_2 de los móviles 1 y 2, respectivamente.
 - c) En un mismo gráfico represente posición vs. tiempo para ambos móviles. Interprete el significado del punto de intersección de ambas curvas.
 - d) En un mismo gráfico represente velocidad vs. tiempo para ambos móviles. ¿ Cómo encontraría en este gráfico el tiempo de encuentro ?.
- 13 Repetir el problema anterior para el caso en que ambos móviles viajan desde A hacia B.
- 14 Un cuerpo viaja en línea recta con aceleración constante de módulo desconocido a y dirección como la de la figura. En el instante t = 0 el móvil pasa por el punto A con velocidad \vec{v}_0 como la de la figura, en $t = t_0$ el móvil pasa por B y tiene velocidad nula y en $t = t_1$ el móvil pasa por C.

- a) Elija un sistema de referencia y escriba las expresiones para la posición y la velocidad del móvil en función del tiempo, o sea x(t) y v(t).
- b) Halle *a* y la distancia AB.
- c) Calcule la distancia BC y la velocidad del móvil cuando pasa por C, $\dot{\epsilon}$ puede usar para este cálculo las expresiones x(t) y v(t) que escribió en el inciso a) ?.
- d) Halle la velocidad media entre A y B y entre A y C, ¿ coinciden estas dos velocidades medias ? ¿ por qué ?.
- 15 Un auto viaja por una ruta a 20 m/seg, un perro se cruza a 50 m,
 - a) ¿cómo deben ser los sentidos de los vectores aceleración y velocidad para que el auto frene?.
 - b) ¿Cuál es la desaceleración mínima que debe imprimirse al automóvil para no chocar al perro?.
 - c) Idem que (b) teniendo en cuenta que el tiempo de respuesta del chofer es 0.3 seg.
 - d) Muestre la situación calculada en (b) y (c) en un gráfico posición vs. tiempo.
- 16 Un cuerpo se deja caer desde un globo aerostático que desciende con velocidad 12 m/seg.
 - a) Elija un sistema de referencia y escriba las ecuaciones que describen el

- movimiento del cuerpo.
- b) Calcule la velocidad y la distancia recorrida por el cuerpo al cabo de 10 seg.
- c) Resuelva los incisos (a) y (b) considerando que el globo asciende a 12 m/seg.
- 17 Una piedra en caída libre recorre 67 m en el último segundo de su movimiento antes de tocar el piso. Suponiendo que partió del reposo, determine la altura desde la cual cayó, el tiempo que tarda en llegar al piso y la velocidad de llegada.
- 18 Desde una terraza a 40 m del suelo se lanza hacia arriba una piedra con velocidad 15 m/seg.
- a) ¿Con qué velocidad vuelve a pasar por el nivel de la terraza?.
- b) ¿Cuándo llega al suelo?.
- c) ¿Cuándo y dónde se encuentra con una piedra arrojada desde el suelo hacia arriba con una velocidad de 55 m/seg y que parte desde el suelo en el mismo instante que la anterior?.
- d) Represente gráficamente.
- 19 Un automóvil cuya velocidad es 90 km/h pasa ante un puesto caminero. En ese instante sale en su persecución un patrullero que parte del reposo y acelera uniformemente de modo que alcanza una velocidad de 90 km/h en 10 seg. Halle:
 - a) El tiempo que dura la persecución.
 - b) El punto en que el patrullero alcanza el automóvil.
 - c) La velocidad del patrullero en el punto de alcance.

3. DINÁMICA - INTERACCIONES

20 - En el sistema de la figura señale las fuerzas que actúan sobre cada uno de los cuerpos e indique los pares de interacción.

Sugerencia: aísle cada cuerpo, dibuje las fuerzas que actúan sobre él, aclarando qué interacción las origina.

21 - Sea el sistema de la figura donde: no hay fricción, el hilo tiene masa despreciable y es inextensible y la polea es de masa despreciable y sin rozamiento.

- a) Diga cuáles son todas las fuerzas ejercidas sobre las masas y sobre el hilo. Indique los pares de acción y reacción.
- b) ¿Cuál es la aceleración del sistema en función de m_1 , m_2 , α y g?
- 22 El sistema de la figura, formado por dos partículas de masas m_1 y m_2 parte del reposo y se mueve de tal forma que la masa m_1 sube recorriendo todo el plano inclinado en un tiempo T. Intercambiando las partículas, m_2 recorre todo el plano subiendo en un tiempo T/4 (no hay rozamiento). Sabiendo que $m_1/m_2 = 9$, hallar α .

4. INTERACCIÓN DE ROZAMIENTO

23 - Un cuerpo se apoya sobre un plano inclinado que forma un ángulo α con la

horizontal. El coeficiente de rozamiento estático entre el cuerpo y el plano es $\mu_e = 0.2$ y el dinámico $\mu_d = 0.1$.

- a) ¿ Cuánto debe valer α para que el cuerpo abandone su estado inicial de reposo?.
- b) ¿ Cuál es la aceleración del cuerpo para el ángulo calculado en (a) ?.

5. TRABAJO Y ENERGÍA

- 24 i) ¿Qué trabajo realiza un levantador de pesas que levanta 100 kg a una altura de 2m? (note que la pesa tiene velocidades inicial y final nulas).
 - ii) Compare el resultado en i) con el trabajo realizado por una persona de 70 kg que sube cuatro pisos por escalera (distancia vertical: 12 m).
 - iii) Estimando los tiempos requeridos para realizar los trabajos de i) y ii), halle las potencias correspondientes.
- 25 Una partícula de masa m se mueve sobre una superficie horizontal. El coeficiente de rozamiento es μ_d . Considere una trayectoria circular de radio R.
 - i) Calcule el trabajo de la fuerza de rozamiento cuando la partícula se mueve desde A hasta B, siendo A y B dos puntos diametralmente opuestos.
 - ii) Repita el cálculo anterior cuando la partícula se mueve sobre la recta AB.
- 26 Un cuerpo de 15 kg se deja caer desde una altura de 15 m y alcanza el suelo en 2 seg. Suponga constante la fuerza de resistencia del aire.
 - a) ¿Cuál es la magnitud de la fuerza de resistencia?.
 - b) ¿Cuál es la velocidad del cuerpo inmediatamente antes de chocar contra el suelo?.
- 27 En la figura se muestra el esquema de un juguete que consiste en un auto sobre un riel que forma un círculo vertical de radio *R*.
 - a) ¿Cuál es la velocidad mínima del autito en la parte superior del "loop" para que no se caiga?.
 - b) Suponiendo que el juguete es de buena calidad, y que el rozamiento es despreciable, ¿cuál es la altura *h* desde la que se deberá dejar caer el auto?.
 - c) Después de haber usado este juguete varias veces, se observa que la altura *h* mínima requerida para que el auto dé la vuelta sin caerse, es 1,3 veces la calculada en b), ¿cuál es el trabajo de las fuerzas disipativas?.

