Calc4

Sven Köppel

koeppel@fias.uni-frankfurt.de

Generation date: Sunday 16th February, 2014, 13:06

1 Holography in D dim, corrected

This writeup contains the corrected calculations from Calc3 and then follows more strictly the Rizzo approach for calculation Black Hole properties.

1.1 Framework: Rizzo

From Rizzo2006 we have a generic solution for a Schwarzschild-like Metric in D dimensions (so n = D - 4 extra dimensions),

$$ds^{2} = (1 - f(r)) dt^{2} (1 - f(r))^{-1} dr^{2} + r^{2} d\Omega_{D-2}^{2}$$
(1)

It is the ODE

$$f'(r) + \frac{n+1}{r}f(r) = \frac{1}{M^*} \frac{2r\rho(r)}{n+2}$$
 (2)

with M_* the reduced fundamental mass scale of the theory (shortcut $M^* = M_*^{n+2}$). It is easy to solve this for any $\rho(r)$ to

$$f(r) = \frac{1}{r^{n+1}} \left(\frac{2}{(n+2)M^*} \int_{c_1}^r (r')^{n+2} \rho(r') dr' + c_2 \right) \quad \text{with } c_1, c_2 = \text{const}$$
 (3)

like already done in Calc3.

1.2 Holography in *D* dim

With the NS 2011 generalized density $\rho(r)$ to D dimensions,

$$\rho(r) = \frac{M}{\Omega(r)} \frac{\mathrm{d}h(r)}{\mathrm{d}r}, \quad \Omega(r) = \Omega_{D-2} r^{D-2} = \Omega_{n+2} r^{n+2} \tag{4}$$

the integral in f(r) is evaluated in a trivial manner (this was done wrong in Calc3). That is, it reads

$$f(r) = \frac{1}{r^{n+1}} \left(\frac{2}{(n+2)M^*} \int_{-\infty}^{r} \frac{M}{\Omega_{D-2}} h'(r') dr' + \text{const} \right)$$
 (5)

$$=\frac{2}{n+2}\frac{M}{M_*^{n+2}}\frac{1}{\Omega_{n+2}}\frac{h(r)}{r^{n+1}}$$
(6)

We note that the units are correct. With $h(r) = \theta(r)$ (in 5, h(r) = 1 in 6), the result gets the proper Schwarzschild-Tangherlini result $f(r) \propto 1/r^{D-3} = 1/r^{n+1}$.

1.3 Getting r_H

Rizzo already made a lot of effort to calculate r_H at $g_{00}=0$, that is, $f(r_H)=1$. The bottom line is that there are no more closed form solutions in the models he explored (NC, Lorentzian). Rizzo writes the horizon equation $f(r_H)=1$ as

$$m = M/M_*$$
 $y = M_*\sqrt{\theta}$ $c_n \approx (n+2)\Omega_{n+2}$ $x = M_*R_H$ $z = x/y = R_H/\sqrt{\theta}$ $x^{n+1} = \frac{m}{c_n}F_n(z)$ (7)

He lists possible $\delta(r)$ modeling expressions $\rho(r)$ and the functions $F_n(z)$ to be discussed. I added the two holography ones.

Label	ho(r)	$F_n(z)$
D dim NC (Rizzo2006)	$\rho = \frac{M}{(4\pi\theta)^{(n+3)/2}} e^{-r^2/4\theta}$	$F_n(z) = \frac{1}{\Gamma\left(\frac{n+3}{2}\right)} \gamma\left(\frac{n+3}{2}; \frac{z^2}{4}\right)$
Lorentzian (Rizzo2006)	$\rho \sim \frac{1}{(r^2 + L^2)^{\frac{n+4}{2}}}$	$G_n(z) = \frac{2}{\pi} \frac{(n+2)!!}{(n+1)!!} \int_0^z dt \frac{t^{n+2}}{(1+t^2)^{(n/2+2)}}$
D dim Holography	$\rho = \frac{M}{\Omega_{n+2}r^{n+2}}h'(r)$	$H_n(r) = h(r)$
$D \dim NS2011 h = \frac{r^2}{r^2 + L^2}$	$\rho = \frac{M}{\Omega_{n+2}} \frac{1}{r^{n+1}} \frac{L^2}{(L^2 + r^2)^2}$	$H_n(z) = \frac{z^2}{z^2 + 1}$ with $\sqrt{\theta} = L$

Rizzo claims that all ρ models behave quite similary. I wonder if his Lorentzian approach would be the right D dimensional extension to NS2011. All my holography functions lack a dependence of n.

1.4 Open Questions

- How to choose $\rho(r)$? Toy model or physical motivation? Where is the motivation?
- How much degrees of freedom in $\rho(r)$ choice? How to match $r_0 = l_*$, $M_0 = M_*$, $G = M_*^{1-m}$?
- What to do with the calculated quantities Horizons, Hawking Temperature, surface energy density, heat capacity?