CS 188: Artificial Intelligence

Reinforcement Learning

Dan Klein, Pieter Abbeel University of California, Berkeley

Reinforcement Learning

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Example: Learning to Walk

Before Learning

A Learning Trial

After Learning [1K Trials]

Example: Learning to Walk

Initial

Example: Learning to Walk

Training

Example: Learning to Walk

Finished

Example: Toddler Robot

The Crawler!

[You, in Project 3]

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy $\pi(s)$

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Model-Based Learning

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

• For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

A CD B D Δ E

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1

D, exit, x, +10

C, east, D, -1

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s,a,s')$$
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25
...

$$\hat{R}(s, a, s')$$

R(B, east, C) = -1R(C, east, D) = -1R(D, exit, x) = +10

Example: Expected Age

Goal: Compute expected age of cs188 students

Without P(A), instead collect samples $[a_1, a_2, ... a_N]$

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Α CD D $\mathsf{B} \mathsf{D}$ Δ E

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Output Values

	-10 A	
+8 B	+4 C	+10 D
	-2 E	

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 s, $\pi(s)$, s'

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

■ Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{s} sample_i$$

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

Exponential Moving Average

- Exponential moving average
 - ullet The running interpolation update: $ar{x}_n = (1-lpha) \cdot ar{x}_{n-1} + lpha \cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Observed Transitions States B, east, C, -2 C, east, D, -2 Α 0 0 0 •0 B C D 0 -1 -1 3 8 0 0 0 Assume: $\gamma = 1$, $\alpha = 1/2$ $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q(s, a)$$

$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$$

[demo - grid, crawler Q's]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

■ Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Modified Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$$

The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute V*, Q*, π* exactly
 - Evaluate a fixed policy π
- If we don't know the MDP
 - We can estimate the MDP then solve
 - We can estimate V for a fixed policy π
 - We can estimate Q*(s,a) for the optimal policy while executing an exploration policy

Techniques:

- Offline MDP Solution
 - Value Iteration
 - Policy evaluation
- Reinforcement Learning
 - Model-based RL
 - Model-free: Value learning
 - Model-free: Q-learning