QUORA QUESTION PAIRS COMPETITION

PROYECTO PNLP

ADQUIRIR Y APLICAR TÉCNICAS DE ANÁLISIS DE DATOS Y MODELOS PREDICTIVOS MEDIANTE LA FORMACIÓN DE UN PORTAFOLIO DE PROYECTOS KAGGLE

MISIÓN

MISIÓN Y OBJETIVOS

Se espera que al finalizar el proyecto se logren los siguientes objetivos:

- Describir el flujo de trabajo de proyecto Data Science.
- Aprender y mejorar habilidades de programación en R y Python.
- Manejar herramientas estadísticas para la exploración de datos.
- Analizar hipótesis de trabajo e implementar soluciones para corroborar o rechazar estás mismas.
- Comprender la importancia de la definición de métricas de evaluación de modelos, feature engineering, model tunning, y ensembles.
- Conocer y evaluar distintos modelos predictivos relevantes para NLP.
- Implementar procesos de preprocesamientos de datos particularmente para NLP.

RESUMEN FLUJO PROYECTO DATA SCIENCE

Se compone de varios pasos críticos

DATA SETUP

El primer paso es disponer una buena calidad de data, esto no es siempre posible, pero en nuestro caso tenemos suerte

REVISIÓN DE LA LITERATURA

Generalmente no es necesario reinventar la rueda, alguien mas afuera ya hizo algo semejante (chinito), por lo que es valido gastar tiempo revisando blogs y proyectos mangle anteriores

- www.kaggle.com
- <u>tidytextmining.com</u>
- Data Science workflow
- http://stackoverflow.com
- http://blog.kaggle.com
- Discusión proyecto

MARCO DE EVALUACIÓN

La definición de una adecuada(s) métricas de evaluación es crítico para el desempeño de nuestro proyecto y evitar el overfitting

EXPLORATORY DATA ANALYSIS (EDA)

Parte fundamental para entender los datos, resumirlos, visualizarlos, y descubrir potencialmente variables que podrían influir en el modelo y procesamiento. Es la base para la construcción de modelos.


```
employees kw
mprove englh
st books uned stes d st
s dference blck mey kw gog
wy lem ern mey c mke frst dy

mke mey c e c lern gog frst
ree es nld trump st book
nt kw
get rd c get feel lke
d c le c
c co rs es
c mprove st wy quests qu
yer old
wld wr c fd s st c cree pros cs
lose ght hllry cln c buy
progrmg lguge c sp k quests
computer scence
new employees m people
```

PREPROCESAMIENTO

Es necesario preparar la data para que sea facilmente digerible por el modelo.

- Fuente: Integrar de diversas fuentes para mejorar la predictibilidad
- Calidad: procesar data ausente, ruidosa o inconsistente
- Formato: Datos incompatibles por los modelos, por ejemplo en NLP es necesario transformar palabras en números

PREPROCESAMIENTO

Es necesario preparar la data para que sea facilmente digerible por el modelo.

COMING UP WITH FEATURES IS DIFFICULT, TIME-CONSUMING, REQUIRES EXPERT KNOWLEDGE. 'APPLIED MACHINE LEARNING' IS BASICALLY FEATURE ENGINEERING.

FEATURE ENGINEERING

MODEL TUNING

Este punto es el más simple y es la etapa de afinar los parámetros de los modelos, no obstante puede tomar extensos tiempos de computación

ESSENTIALLY, ALL MODELS ARE WRONG, BUT SOME ARE USEFUL

GEORGE BOX - ENSEMBLE