twitch stream chat modeling

Jia Jia Shameek

Data Project Process

EDA

Text Modeling: Counter-Strike in Session2

Sentiment Distribution per Channel

Text Clustering: Counter-Strike in Session2

Channel Style Clustering (3D PCA)

Emoji Preferences Across Games

Before diving into semantic embeddings, let's first look at how emoji usage varies by game

t-SNE of Emoji Embeddings

Some dense regions correspond to tactical game callouts, while others are driven by reactions, memes or inside jokes

Even without labels, structure emerges, showing how shared language, repetition, and cultural references organise chat semantically

We move from words to emojis: Emoji Sentiment Score

Using a combination of external sentiment rankings (like Emoji Sentiment Ranking from Škrlj et al.) and custom mappings

Emoji Co-occurrence Embeddings

Emojis that appear together often are embedded closer using Node2Vec.

We then color them using a sentiment gradient red for negative, green for positive, gray for neutral.

What emerges is a kind of emotional map of chat