REGRESSION ANALYSIS

FINANCE AND ECONOMICS IN SPORT FALL 2022

UNDERSTANDING REGRESSION ANALYSIS

- Regression analysis is one of the most important methods in quantitative market research.
- Marketing and strategy departments of major companies use regression analysis regularly for decision-making
- Regression analysis can:
 - Indicate if independent variables have a significant relationship with a dependent variable.
 - Indicate the relative strength of different independent variables' effects on a dependent variable.
 - Make predictions.

UNDERSTANDING REGRESSION ANALYSIS

Notation:

For simple regression:

$$y = \alpha + \theta_1 x_1 + e$$

Y: Dependent variable

α: Intercept (constant)

 β_1 : Regression parameter (coefficient)

x₁: Independent variable

e: Error or residual

For multiple regression:

$$y = \alpha + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + e$$

Predicted (or estimated) value

UNDERSTANDING REGRESSION ANALYSIS

•
$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + e$$

• Total revenue = $\alpha + \theta_1$ Ticket+ θ_2 Media + θ_3 Donation+ e

 The regression estimation procedure attempts to fit a best possible line by using the observations. This line is optimal if the squared distances to all observation points are minimized.

THE PROCESS OF CONDUCTING A REGRESSION ANALYSIS

1	Check the regression analysis data requirements
2	Specify and estimate the regression model
3	Test the regression analysis assumptions
4	Interpret the regression results
5	Use the regression model

CHECK THE REGRESSION ANALYSIS DATA REQUIREMENTS

Sample size

- Formal power analysis (e.g. using G*power)
- Green's (1991) rule of thumb: 104+k where k is the number of independent variables

Scale type of the dependent variable

- Interval scaled
- Ratio scaled

Collinearity

- Collinearity is a data issue that arises if two independent variables are highly correlated.
- The **VIF** (Variance Inflation Factor) can indicate collinearity. **Values over 10 indicate collinearity.**
- If collinearity is present either use factor analysis, re-specify the regression model, or simply accept the collinearity (noting its presence).

SPECIFY AND ESTIMATE THE REGRESSION MODEL

- The goal is to build a simple yet complete model. Some suggestions
- If independent variables have overlap then focus on the most important or distinct variable.
- If you need to use a model for different circumstances, ensure the independent variables are the same to allow comparison.
- Consider the type of advice you want to give.
- Consider the sample sizes and rules of thumb.
 Smaller datasets require fewer independent variables
- If variables are ordinal, try to use dummy variables.

TEST THE REGRESSION ANALYSIS ASSUMPTIONS

- The regression model can be expressed linearly.
- The regression model's expected mean error is zero.
- The errors' variance is constant (homoscedasticity).
- The errors need to be approximately normally distributed (normality).
- The errors are independent (no autocorrelation).

LINEARITY

- Linearity is an assumption that asks if we can write the regression model as $y = \alpha + \beta_1 x_1 + ... + \beta_z x_{z+} e$
- A separate issue is if the relationship between y and x is best expressed as a linear relationship. If not, we can use transformations:
 - x²
 - Log (x)
- After such transformations the model is still linear!

HOMOSKEDASTICITY IS THE ERRORS' VARIANCE CONSTANT?

- Conduct the Breusch-Pagan test
- If p-value is less than 0.05, reject the null hypothesis of constant errors' variance).

Homoskedastic distribution

Heteroskedastic distribution

NORMALITY

ARE THE RESIDUALS APPROXIMATELY NORMALLY DISTRIBUTED?

- This assumption can be visualized using a histogram of the residuals.
- Skewness: -2 to 2
- Kurtosis: -7 to 7
- Conduct the Shapiro-Wilk test on the residuals
 - If *p-value* is less than 0.05, we can reject the null hypothesis of normality.

AUTOCORRELATION ARE THE ERRORS INDEPENDENT?

- Does one observation influence another?
- Use the Durbin-Watson test
- The test can have four conclusions:
 - The errors may be positively related (positive autocorrelation).
 - If positive errors are commonly followed by negative errors and negative errors by positive errors, we have negative autocorrelation.
 - If no systematic pattern of errors occurs, we have no autocorrelation. This absence of autocorrelation is required to estimate standard (OLS) regression models.
 - The D-W values may fall between the lower and upper critical value. If this occur, the test is inconclusive.

ASSUMPTION CHECKS

Normali	ity Tests
---------	-----------

Statistic	р
0.875	< .001
0.146	< .001
59.8	< .001
	0.875 0.146

Note. Additional results provided by moretests

Heteroskedasticity Tests

	Statistic	р
Breusch-Pagan	471	< .001 _
Goldfeld-Quandt	0.878	0.974
Harrison-McCabe	0.532	0.978

Note. Additional results provided by moretests

P-value <0.05, suggesting that the errors are not normally distributed (i.e., reject the null hypothesis of normality).

P-value <0.05, suggesting that the error variance is not constant (i.e., reject the null hypothesis of constant error variance).

ASSUMPTION CHECKS

Durbin–Watson Test for Autoc

Autocorrelation	DW Statistic	р
0.546	0.908	< .001

Collinearity Statistics

	VIF _	Tolerance
media	2.07	0.484
donor	2.00	0.501
sponsor	1.81	0.553
stfee	1.15	0.869

DW statistic <1.352, suggesting that positive autocorrelation exists (i.e., reject the null hypothesis of no autocorrelation).

VIF < 10, suggesting no collinearity.

- Overall model fit
 - F-test: If *p-value* is less than 0.05, the model is significant and acceptable.

• R² or Adjusted R²: range 0 - 1

$$R^2 = \frac{SS_R}{SS_E + SS_R} = \frac{SS_R}{SS_T}$$

For comparing different models

63.8% of variance are explained

Significant F-value (p<0.05) suggesting a significant model.

- To find the effects of individual variables:
- Consider the significance of the parameter of each variable (not the intercept) in turn. The hypothesis tested for each variable is
 - H_0 : $\beta_1 = 0$ (line is horizontal)
 - H_1 : $\beta_1 \neq 0$ (regression line is not horizontal)
- If the *p* column of the model coefficients table in *Jamovi* indicates a value below 0.05, we consider this to be significant.

Model Coefficients - tickets					
Estimate	SE	t	р	Stand. Estimate	
4.09e+6	334181.2499	12.25	< .001		
0.0909	0.0160	5.68	< .001	0.116	
0.3269	0.0179	18.23	< .001	0.367	
0.8096	0.0444	18.22	< .001	0.349	
-0.3655	0.0340	-10.76	< .001	-0.164	
	4.09e+6 0.0909 0.3269 0.8096	Estimate SE 4.09e+6 334181.2499 0.0909 0.0160 0.3269 0.0179 0.8096 0.0444	Estimate SE t 4.09e+6 334181.2499 12.25 0.0909 0.0160 5.68 0.3269 0.0179 18.23 0.8096 0.0444 18.22	Estimate SE t p 4.09e+6 334181.2499 12.25 < .001	

Significant p-value (p<0.05) suggesting a significant independent variables.

For significant variables also consider:

- The sign
- The βs. (direction of the regression line)
 - Unstandardized: expresses the effect of a one-unit change in the independent variable on the dependent.
 - The standardized effect: the effect relative to the other variables. Standardized effects can be compared but not for dummy variables

USE THE REGRESSION RESULTS FOR PREDICTION

Model Coeff	icients - ticke	ets			
Predictor	Estimate	SE	t	р	Stand. Estimate
Intercept	4.09e+6	334181.2499	12.25	< .001	
media	0.0909	0.0160	5.68	< .001	0.116
donor	0.3269	0.0179	18.23	< .001	0.367
sponsor	0.8096	0.0444	18.22	< .001	0.349
stfee	-0.3655	0.0340	-10.76	< .001	-0.164

- Prediction of effects or interpreting effects.
- Prediction: consider the model and results obtained:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + e$$

What is our predicted tickets revenues if we set the media to \$4 million, the donor to \$3 million, the sponsor to \$2 million, and the student fee (stfee) to \$1 million?

4,090,000 + 0.0909 (4,000,000) + 0.3269 (3,000,000) + 0.8096 (2,000,000)

- -0.3655(1,000,000)
- = \$6,688,000

SUMMARY

- Regression analysis is one of the most important methods in empirical economic research.
- The regression analysis puts an optimal line through the observed points
- Assumptions should be checked.
- Interpretation of results
 - Consider model fit and the effects of individual variables.

CLASS ACTIVITY

- Review Quiz
- Class assignment
 - Regression analysis assumptions
 - Regression model fit
 - Effects of independent variables
 - Interpretation of the results
 - Prediction