CS 310

Homework Assignment No. 1

Due on Tue 1/21/2003

- 1. Use truth tables to determine whether the following logical equivalences are correct:
 - (a) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - (b) $(p \veebar q) \veebar r \equiv p \veebar (q \veebar r)$
 - (c) $(p \to q) \to r \equiv p \to (q \to r)$
 - (d) $(p \lor q) \lor r \equiv (p \leftrightarrow q) \leftrightarrow r$
- **2.** Let p and q be primitive statements such that $p \to q$ is false. Find the truth value of the following:
 - (a) $q \to p$
 - (b) $\overline{p} \to \overline{q}$
 - (c) $\overline{q} \to \overline{p}$
- **3.** Consider the following statements:
 - (a) $\forall x \forall y (x < y)$.
 - (b) $\forall x \exists y (x < y)$.
 - (c) $\exists x \forall y (x < y)$.
 - (d) $\exists x \exists y (x < y)$.

Determine their truth value assuming that the universe of discourse is:

- (1) The set of all integers.
- (2) The set of positive integers.
- (3) The set of negative integers.
- (4) The set $A = \{1, 2, 3, 4, 5\}.$
- 4. Consider the following premises:
 - 1. If A is large then B is small.
 - 2. If C is large then D is small.
 - 3. A is large or C is large.
 - 4. B is not small.

Use a formal argument to prove that D is small (write in three columns containing respectively a label, a proposition and a reason).

- 5. Prove the following statements using mathematical induction:
 - (a) $1 \cdot 2^0 + 2 \cdot 2^1 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + n \cdot 2^{n-1} = (n-1)2^n + 1$ for $n \ge 1$.
 - (b) $10^n < 2^{2^n}$ for $n \ge 4$.