Proof. Without loss of generality, let $X = \{1, 2, ..., m\}$. In order to define a map $f: X \to Y$ we need to make m choices, each time from n possibilities: f(1) can take n different values, so can f(2), and so on up to f(m). Thus there are

$$\underbrace{n\cdots n} = n^m$$

different maps $X \to Y$.