Disaster Recovery & Migrations

Disaster Recovery Overview

- Any event that has a negative impact on a company's business continuity or finances is a disaster
- Disaster recovery (DR) is about preparing for and recovering from a disaster
- What kind of disaster recovery?
 - On-premise => On-premise: traditional DR, and very expensive
 - On-premise => AWS Cloud: hybrid recovery
 - AWS Cloud Region A => AWS Cloud Region B
- Need to define two terms:
 - RPO: Recovery Point Objective
 - RTO: Recovery Time Objective

RPO and RTO

Disaster Recovery Strategies

- Backup and Restore
- Pilot Light
- Warm Standby
- Hot Site / Multi Site Approach

Backup and Restore (High RPO)

Disaster Recovery - Pilot Light

- A small version of the app is always running in the cloud
- Useful for the critical core (pilot light)
- Very similar to Backup and Restore
- Faster than Backup and Restore as critical systems are already up

Warm Standby

- Full system is up and running, but at minimum size
- Upon disaster, we can scale to production load

Multi Site / Hot Site Approach

- Very low RTO (minutes or seconds) very expensive
- Full Production Scale is running AWS and On Premise

All AWS Multi Region

Disaster Recovery Tips

- Backup
 - EBS Snapshots, RDS automated backups / Snapshots, etc...
 - Regular pushes to S3 / S3 IA / Glacier, Lifecycle Policy, Cross Region Replication
 - · From On-Premise: Snowball or Storage Gateway
- High Availability
 - Use Route53 to migrate DNS over from Region to Region
 - RDS Multi-AZ, ElastiCache Multi-AZ, EFS, S3
 - Site to Site VPN as a recovery from Direct Connect
- Replication
 - RDS Replication (Cross Region), AWS Aurora + Global Databases
 - Database replication from on-premises to RDS
 - Storage Gateway
- Automation
 - CloudFormation / Elastic Beanstalk to re-create a whole new environment
 - Recover / Reboot EC2 instances with CloudWatch if alarms fail
 - · AWS Lambda functions for customized automations
- Chaos
 - Netflix has a "simian-army" randomly terminating EC2

DMS - Database Migration Service

- Quickly and securely migrate databases to AWS, resilient, self healing
- The source database remains available during the migration
- Supports:
 - Homogeneous migrations: ex Oracle to Oracle
 - Heterogeneous migrations: ex Microsoft SQL Server to Aurora
- Continuous Data Replication using CDC
- You must create an EC2 instance to perform the replication tasks

DMS Sources and Targets

SOURCES:

- On-Premises and EC2 instances databases: Oracle, MS SQL Server, MySQL, MariaDB, PostgreSQL, MongoDB, SAP,DB2
- Azure: Azure SQL Database
- Amazon RDS: all including Aurora
- Amazon S3
- DocumentDB

TARGETS:

- On-Premises and EC2 instances databases: Oracle, MS SQL Server, MySQL, MariaDB, PostgreSQL, SAP
- Amazon RDS
- Redshift, DynamoDB, S3
- OpenSearch Service
- Kinesis Data Streams
- Apache Kafka
- DocumentDB & Amazon Neptune
- Redis & Babelfish

AWS Schema Conversion Tool (SCT)

- Convert your Database's Schema from one engine to another
- Example OLTP: (SQL Server or Oracle) to MySQL, PostgreSQL, Aurora
- Example OLAP: (Teradata or Oracle) to Amazon Redshift
- Prefer compute-intensive instances to optimize data conversions

- You do not need to use SCT if you are migrating the same DB engine
 - Ex: On-Premise PostgreSQL => RDS PostgreSQL
 - The DB engine is still PostgreSQL (RDS is the platform)

DMS - Continuous Replication

AWS DMS - Multi-AZ Deployment

- When Multi-AZ Enabled, DMS provisions and maintains a synchronously stand replica in a different AZ
- Advantages:
 - Provides Data Redundancy
 - Eliminates I/O freezes
 - Minimizes latency spikes

RDS & Aurora MySQL Migrations

- RDS MySQL to Aurora MySQL
 - Option 1: DB Snapshots from RDS MySQL restored as MySQL Aurora DB
 - Option 2 Create an Aurora Read Replica from your RDS MySQL, and when the replication lag is 0, promote it as its own DB cluster (can take time and cost \$)
- External MySQL to Aurora MySQL
 - Option 1:
 - Use Percona XtraBackup to create a file backup in Amazon S3
 - Create an Aurora MySQL DB from Amazon S3
 - Option 2:
 - Create an Aurora MySQL DB
 - Use the mysqldump utility to migrate MySQL into Aurora (slower than S3 method)
- · Use DMS if both databases are up and running

RDS & Aurora PostgreSQL Migrations

- RDS PostgreSQL to Aurora PostgreSQL
 - Option 1: DB Snapshots from RDS PostgreSQL restored as PostgreSQL Aurora DB
 - Option 2 Create an Aurora Read Replica from your RDS PostgreSQL, and when the replication lag is 0, promote it as its own DB cluster (can take time and cost \$)
- External PostgreSQL to Aurora PostgreSQL
 - Create a backup and put it in Amazon S3
 - Import it using the aws_s3 Aurora extension
- Use DMS if both databases are up and running

On-Premise strategy with AWS

- Ability to download Amazon Linux 2 AMI as aVM (.iso format)
 - VMWare, KVM, VirtualBox (Oracle VM), Microsoft Hyper-V
- VM Import / Export
 - Migrate existing applications into EC2
 - Create a DR repository strategy for your on-premises VMs
 - Can export back the VMs from EC2 to on-premises
- AWS Application Discovery Service
 - Gather information about your on-premises servers to plan a migration
 - Server utilization and dependency mappings
 - Track with AWS Migration Hub
- AWS Database Migration Service (DMS)
 - replicate On-premise => AWS ,AWS => AWS,AWS => On-premise
 - · Works with various database technologies (Oracle, MySQL, DynamoDB, etc..)
- AWS Server Migration Service (SMS)
 - Incremental replication of on-premises live servers to AWS

AWS Backup

- Fully managed service
- Centrally manage and automate backups across AWS services
- No need to create custom scripts and manual processes
- Supported services:
 - Amazon EC2 / Amazon EBS
 - Amazon S3
 - Amazon RDS (all DBs engines) / Amazon Aurora / Amazon DynamoDB
 - Amazon DocumentDB / Amazon Neptune
 - Amazon EFS / Amazon FSx (Lustre & Windows File Server)
 - AWS Storage Gateway (Volume Gateway)
- Supports cross-region backups
- Supports cross-account backups

AWS Backup

- Supports PITR for supported services
- On-Demand and Scheduled backups
- Tag-based backup policies
- You create backup policies known as Backup Plans
 - Backup frequency (every 12 hours, daily, weekly, monthly, cron expression)
 - Backup window
 - Transition to Cold Storage (Never, Days, Weeks, Months, Years)
 - Retention Period (Always, Days, Weeks, Months, Years)

AWS Backup

AWS Backup Vault Lock

- Enforce a WORM (Write Once Read Many) state for all the backups that you store in your AWS Backup Vault
- Additional layer of defense to protect your backups against:
 - Inadvertent or malicious delete operations
 - Updates that shorten or alter retention periods
- Even the root user cannot delete backups when enabled

AWS Application Discovery Service

- Plan migration projects by gathering information about on-premises data centers
- Server utilization data and dependency mapping are important for migrations
- Agentless Discovery (AWS Agentless Discovery Connector)
 - VM inventory, configuration, and performance history such as CPU, memory, and disk usage
- Agent-based Discovery (AWS Application Discovery Agent)
 - System configuration, system performance, running processes, and details of the network connections between systems
- Resulting data can be viewed within AWS Migration Hub

AWS Application Migration Service (MGN)

- The "AWS evolution" of CloudEndure Migration, replacing AWS Server Migration Service (SMS)
- Lift-and-shift (rehost) solution which simplify migrating applications to AWS
- Converts your physical, virtual, and cloud-based servers to run natively on AWS
- Supports wide range of platforms, Operating Systems, and databases
- Minimal downtime, reduced costs

VMware Cloud on AWS

- Some customers use VM ware Cloud to manage their on-premises Data Center
- They want to extend the Data Center capacity to AWS, but keep using the VMware Cloud software
- ...Enter VMware Cloud on AWS
- Use cases
 - Migrate your VM ware vSphere-based workloads to AWS
 - Run your production workloads across VMware vSphere-based private, public, and hybrid doud environments
 - Have a disaster recover strategy

Transferring large amount of data into AWS

- Example: transfer 200 TB of data in the cloud. We have a 100 Mbps internet connection.
- Over the internet / Site-to-Site VPN:
 - Immediate to setup
 - Will take 200(TB)*1000(GB)*1000(MB)*8(Mb)/100 Mbps = 16,000,000s = 185d
- Over direct connect 1Gbps:
 - Long for the one-time setup (over a month)
 - Will take 200(TB)*1000(GB)*8(Gb)/1 Gbps = 1,600,000s = 18.5d
- Over Snowball:
 - Will take 2 to 3 snowballs in parallel
 - Takes about 1 week for the end-to-end transfer
 - Can be combined with DMS
- For on-going replication / transfers: Site-to-Site VPN or DX with DMS or DataSync