香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九八二年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1982

Additional Mathematics I

MARKING SCHEME

This is a restricted document.

It is meant for use by markers of this paper for marking purposes only.

Reproduction in any form is strictly prohibited.

回香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1982

RESTRICTED 內部文件

1092

Solutions	Made	Remarks
$z^{x} = 10^{x+i}$		
x log 2 = (x+1) log 10	IM+IA	IM for taking log.
$\chi(\log 2-1)=1$ or $(0.3010-1)\pi=1$	IA	
$\alpha = \frac{1}{\log 2 - 1}$		
= -1.431	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	or any figure roundable to -1.431
=-1.43 (correct to 3 sig fig.) 1A 5	
lig 3/4 + log 3/25 - lig 3/9		
log 8 + log 5 - log 12		
$= \frac{\frac{1}{3} (\log 4 + \log 25 - \log 9)}{\log 5 + \log 5}$	14	log a = pliga
log 8 + log 5 - log 12		
$= \frac{1}{3} \frac{\log \frac{C(1)}{2}}{\log \frac{\delta \times 5}{12}}$	1 M +	$\log a + \log b = \log a$ $\log a - \log b = \log \frac{a}{b}$
	· / / M	loga-logb=logb
$= \frac{1}{3} \frac{\log \frac{2 \times 5}{3!}}{\log \frac{2 \times 5}{3!}}$,
3	2 1	
3	5	-
Alternatively, $3 = 0.350$	2 23	Expressing in powers
$\frac{\log^3 7 + \log^3 7 5 - \log^3 9}{\log 8 + \log 5 - \log 12} = \frac{\log^3 + \log^3 - \log^3}{\log^3 + \log^5 - \log^3 2}$	1093 092 ² 43	Expressing in powers of 2, 3.5
	!	loga = plug a
$= \frac{\frac{1}{3} \lfloor \log 2 + \log 5 - 2 \rfloor}{3 \log 2 + \log 5 - 2 \log 5}$	2-lug3 1M	$l \cdot g \cdot a \cdot b = l \cdot g \cdot a + l \cdot g \cdot k$
$= \frac{2}{3}$	2 /	1

RESTRICTED 内部文件				
Solution	mahs	Remarks		
t (sinkt) (3+2 cookt) & cookt - sinkt (-2 k sinkt)	14	Chain Rule		
$\frac{d}{dt} \left(\frac{\text{Sinkt}}{3 + 2 \cosh t} \right) = \frac{(3 + 2 \cosh t) \text{kasht} - \text{sinkt} (-2 \text{k sinkt})}{(3 + 2 \cosh t)^2}$	1 M	austint Rule		
$= \frac{3k\cosh t + 2k(\cos^2 kt + \sin^2 kt)}{2k}$	14			
$\frac{-}{(3+2\cosh t)^2}$		~-		
$= \frac{3 \text{ k coht } + 2 \text{ k}}{}$				
$= \frac{1}{(3+2\cosh t)^2}$				
When $t = \frac{3\pi}{2k}$, $\frac{d\theta}{dt} = \frac{3k \cos \frac{3\pi}{3} + 2k}{(3 + 2\cos \frac{3\pi}{3})^2}$	114	Substitution		
$\frac{dt}{dt} \left(3 + 2 \cos \frac{37}{2}\right)^2$				
$=\frac{2k}{q}$	2 A			
(4) $-1-i = \sqrt{2} \left(\cos(-\frac{2}{4}\pi) + i\sin(-\frac{2}{4}\pi) \right) \left(\sqrt{2} \cos(-\frac{2\pi}{4}) \right)$	6	or \$\frac{5}{4}\pi, 225°, -/35°		
		471, 223, 733		
$1-i = \int_{\mathcal{R}} \left[\cos(-\frac{1}{4}\pi) + i \sin(-\frac{1}{4}\pi) \right]$	J A	υπ ₹π, 3/5°, -45°		
$\frac{-1-i}{(1-i)^5} = \frac{\int_2 \left[\cos(-\frac{3}{4}\pi) + i \sin(-\frac{3}{4}\pi) \right]}{\left[\sqrt{2} \cos(-\frac{1}{4}\pi) + i \sin(-\frac{1}{4}\pi) \right]^5}$				
$(1-i)^5 \qquad \left[\sqrt{2} \cos(-\frac{1}{4}\pi) + i \sin(-\frac{1}{4}\pi)\right]^2$				
$= \frac{\sqrt{2} \left[\cos \left(-\frac{3}{4}\pi \right) + i \sin \left(-\frac{3}{4}\pi \right) \right]}{\left(-\frac{5}{2} \right) \left(-\frac{5}{2} - \frac{1}{2} \right)}$	IM	De Moivre's Thu		
$(\sqrt{2})^{5} \left(\cos \left(-\frac{5}{4}\pi \right) + i \sin \left(-\frac{5}{4}\pi \right) \right)$	(t ell	$\frac{\cos\theta}{\cos\phi} = \cos(\theta - \phi)$		
$=\frac{1}{4}\left(\cos\Xi+i\sin\Xi\right)$	i	1		
$or = \frac{-1-i}{4(-i+i)} = \frac{(-1-i)^{2}}{4(-1+i)(-1-i)}$	(1M)	For multiplying -1 - i in descominator		
=4i				
(5) $\gamma = \chi^{3} - 9\chi^{2} + 30\chi + 4$	6	-		
Slope if tangent = $\frac{dy}{dx} = 3x^2 - 18x + 30$	1 M+11	I'm for attempt to " aiff.		
A tangent /1 x-axis iff 3x218x+30=0 for some	χ.			
Since discriminant = 18-4x3x30	2111+15	_		
= -36 < 0		$= 3\{(x-3)^{\frac{2}{7}} + 1\}$ $= 0$		
$3x^2-16x+30=0$ has no real with . Hence tangent	IM	Association of "slope = 0" with tangent 11 x-axis".		
RESTRICTED 内部文	件	I with tangent 11 x-axis.		
G.F. 405 (2/77)		and the second s		

	KESIKILIEU 内部又	11	(3)
	Solutions	Martes	Remembo
$\frac{d}{dx} \left(x + x^2 \right)$ $= 1 + 2x + 3$	$+ (n-1)\chi^{n-1} + \chi^n$	IA	
$\frac{d}{dx} \left\{ \frac{\chi(\chi^n - \chi_n)}{\chi - 1} \right\}$	$\frac{1}{2} = \frac{(\chi - 1) \left[(\eta + 1) \chi^{m} - 1 \right] - (\chi^{n+1} \chi)}{(\chi - 1)^{2}}$	1M + (A	Quotient Rule
1+2x+ Putting n=10,x 1+2(2)+	$= \frac{n x^{n+1} (n+1) x^{n} + 1}{(x-1)^{2}}$ $+ (n+1) x^{n-2} + n x^{n-1} = \frac{n x^{n+1} (n+1) x^{n} + 1}{(x-2)^{2}}$ $= 2,$ $3(2)^{2} + \dots + 9(2)^{3} + 10(2)^{9}$	14	
	$= \frac{10 \times 2^{1/2} - 1/2 \times 2^{1/2} + 1}{(2-1)^2}$ $= 9 \times 2^{1/2} + 1$	1 M	no mark for direct calculation
	= 9217 (9208 from table) 6	
$\frac{y}{ x-2 \leq 1}$	$\langle \Rightarrow -1 \leq \chi - 2 \leq 1$ $\langle \Rightarrow 1 \leq \chi \leq 3$	1 M	A for O 1 < x < 3 O 1 < x < 3 O 1 < x < 3 O 5 < x < 3
, ξ χ ≤ 3	$\Rightarrow \leq x^2 \leq q$	17	Graphical method
.`	$-5 \le \chi^{2} - 6 \le 3$ $ \chi^{2} - 6 \le 5$	IA	Graphical method or Checking end-points + sketching graph to support
The max.	value of $\chi^2 - 6$ is 5	6	
			•

RESTRICTED 内部文件	1	- 4
Solutions	marks	Remarks
$8) (a) At B, \frac{ds}{dt} = 0$	214	
t = 60(sec)	IA	
The boat stops after 60 sec		
$S = \int_0^{60} \frac{ds}{dt} at$	1A+1M +1M	IM 60 IM J ds dt Alt method
$= \int_{0}^{60} \sqrt{2} \left(2 - \frac{t}{30}\right) dt$		$S = \int \frac{ds}{dt} dt \qquad IM$ $= 2\sqrt{2}t - \frac{\sqrt{2}t^2}{60} + C$
$=\left[2\sqrt{2}t-\frac{\sqrt{2}t^2}{60}\right]_0^6$	I A	t=0 IM c=0 IM
$= 60 \int z m$ $AB = 60 \int z m$	/A 8	$S = 60\sqrt{2} , 1A$
(b) 0 n 1 0 n 1/4 c		
BC = ABCO075 $= 60$	i A	
AC = BC = 60 $AC = BC = 60$ $AC = BC = 60$	_ I A	
Let $PC = x$, $AP = 60 - x$		
$PB = \int PC^{2} + BC^{2}$	IA	
$= \int \chi^2 + 36v0$	RA	
Time required $t = \frac{6v - x}{5} + \frac{\sqrt{x^2 + 36vo}}{3}$	11411	1
$\frac{dt}{dx} = -\frac{1}{5} + \frac{2x}{6\sqrt{\chi^2 + 3600}}$	2 <i>A</i>	
$\frac{\partial t}{\partial x} = 0 \implies \frac{1}{5} = \frac{\chi}{3 \int \vec{x} + \hat{s} \vec{b} \vec{w}}$	11	
$= 25x^{2} = 9x^{2}, 9x^{3} + 6x^{3}$	IA	
$x = 45 \left(x = -45 \text{ rejented}\right)$	一川為	Accept 5 ming 45 also or $X = \pm 45$
RESTRICTED 内部 3	LIT	

Provided by dse.life

KESIKICIEU 内部义内 Solutions	marks	Remarks
(8) (contles) On checking, it is found that t		Uptumal
is a min. at x=45		
$t = \frac{60 - 45}{5} + \frac{45^2 + 3600}{3}$	IM	•
= 28 sec.	1A 12	
<u>Alt</u>		
(b) Let $AP = y$ $PB = \sqrt{(6052)^2 + y^2 - 12052}$ Gos 45	1 A	•
$= \int y^{2} - 120 y + 7200 A y P$		
$t = \frac{y}{5} + \frac{\int y^2 - 120 y + 7200}{3}$	liytim	,
$\frac{dt}{dy} = \frac{1}{5} + \frac{1}{6} \int \frac{2y-120}{y^2-120y+7200}$	2A	
$\frac{dt}{dy} = 0 \implies \frac{3\sqrt{y^2 - 120y + 72m} + 5y - 300}{15} = 0$	1M	
=> 9(y²-120y+7200)=(300-5yi)		
= 90000-3000 y+25y ²	IA	
$y^2 - 120y + 1575 = 0$	- Aires	
(y-15)(y-105)=0 y=15 (y=105 rejeited)	14	Accept "y=15" or "y=15 or 105"
On checking, + is min at y=15		
$t = \frac{15}{5} + \frac{15^{2} - 120 \times 15 + 7200}{3}$	14	- : Fa
= 28 (sec)	14	If a cond. write: t = 28 or 46,

RESTRICTED 內部文件	+ ,	(b) ·
Solutions	marko	Remarks
(9) (a) $f(x) = \chi^3 - (\beta + 1) \chi^2 + (\beta - g) x + g$		
f(i) = 1 - (p+i) + (p-g) + g	127	
(x-1) is a factor of the	1/4	ower
f(x) = (x-1)(x2-1x-9)	IA.	
x=1 is a solution of from=0		
Let Sin A = 1. A = 90°	1+1A	
Sin B and sine are the worts of x2-px-g=0	114	
Since ABC is a \(\Delta\), sin B, sin C \(\dagger^0\), i. \(\gamma \dagger^0\)	1.4	
	7	
$(b) R_1 = f(b)$	/ 4	
= 9		
$R_2 = f(\beta)$		
$= p^{3} - (p+1)p^{2} + (p-q)p + q$		
= 8-19	1/3	
$\frac{2\mathcal{G}}{p} = R_1 - R_2$		
= q - (q - pq)		
= 78	/ A	
$g(p^2-2)=0$		
Since $g \neq 0$, $\beta = \pm \sqrt{2}$	1+11	9
Sin B + Ain C = A	IM	appointing - we must and

= 52 (-ve root agrided) | 14 rejecting - we not and subst.

RESTRICTED 内部文件

KESIKICIEU M Solutions	的义士 Mondos	Remarks (7)
9 (conted) As $B + C = 90^{\circ}$ C = 90 - B		
$\sin B + \cos B = \sqrt{2}$	lm+1A	
$\frac{1}{\sqrt{2}} \sin \beta + \frac{1}{\sqrt{2}} \cos \beta = 1$ $\sin (45^{\circ} + \beta) = 1$ $45^{\circ} + \beta = 90^{\circ}$ $\beta = 45^{\circ}$ $C = 45^{\circ}$ $ABC is isocialis$	IM IA	$\sin^{2}\beta + \cos^{2}\beta + 2\sin\beta\cos\beta$ $= 2$ $5 \sin^{2}\beta = 1$ $2 \beta = 90^{\circ}$ $\beta = 45^{\circ}$ $C = 45^{\circ}$
$Q = -\sin \beta \sin C$ $= -\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = -\frac{1}{2}$	0 1A 13	May be awarded if given at end of (a)
(10) (a) $f(x) = 2x^3 - 9x^2 + 12x - 5$ $f'(x) = 6x^2 - 16x + 12$ $= 6(x^2 - 3x + 2)$ = 6(x - 1)(x - 2)	14	
1/(x)=0 (=> X=1 m 2	/M+/	A
f''(x) = 12x - 18 At $x = 1$, $f''(x) = -6 < 0$	1A	
At $x=2$, $f''(x) = 6 > 0$	JA	
· (2,-1) is a min pt	1A	

G.F. 405 (2/77)

G.F. 405 (2/77)

w v	RESTRICTED 内部文件	man ko	(9) Remarks
	Solutions	Man Ro	1 Kinarks
(I) (a) Let	Z = a+bi		
	$\overline{z} = a - bi$	A	
(i) (Z	$^{2} = a^{2} + b^{2}$	1A-	
2 2 2	= (a+bi)(a-bi)		
	$= a^2 + b^2$	IA	
	= (2)2		
$(ii) - \frac{i}{2}$	$(2-2)=-\frac{i}{2}[(a+hi)-(a-hi)]$		
; ;	$=-\frac{n}{2}(2bi).$		•
w.	· = b	IA	
	= Im(Z)	14	
		5	
(b)(i) 1	0-91=17+91=) (17-91=17+912	17	
	$= (p-q)(\overline{p-q}) = (p+q)(\overline{p+q})$ $= (p-q)(\overline{p}-\overline{q}) = (p+q)(\overline{p}+\overline{q})$	1M	
	=> pp+qq-pq-pq=pp+qq+pq+pq	IA	
: : :	: 2(カ夏+万里)=0		
] -	7, \(\bar{g} + \bar{p} \bar{g} = 0	IA	
Im ($\left(\frac{ih}{g}\right) = -\frac{i}{2}\left(\frac{ih}{g} - \left(\frac{ih}{g}\right)\right)$	IM	
t.	$=-\frac{1}{2}\left[\frac{i\rho}{q}-\frac{\overline{i}\rho}{\overline{q}}\right].$	IN	
	$= -\frac{i}{2} \left[\frac{ip\overline{q} - i\overline{p}\overline{q}}{a\overline{q}} \right]$		*
	$= -\frac{i^2}{2} \left[\frac{p\overline{q} + \overline{pq}}{q\overline{q}} \right]$	1/1	
	= 0	11	1

G.F. 405 (2 '77)

RESTRICTED 內部文件

	RESTRICTED 内 Solutions	部文件	mahs	(1) Remantes
(12)(0)(1) + (2-(12)(12)(12)(12)(12)(12)(12)(12)(12)(12)	b+1)t+(b-1)=0(*)			
	$unant = (b+1)^2 - 4(b-1)$		IA	
	$= b^2 - 2b + 5$			
	$= (h-1)^2 + 4$		1A	• .
Since discre N., Nr	inimant > 0 are real and distinct.	}		
(ii) (1-71)(1	- N2) = 1 - (N+ N2) + N1 N2			
	= 1 - (b+1) + (b-1)		1 1 1	
	= -1		IA	
: eithe	< 0 1-λ, >0 and 1-λ2(0)		1 A	
Q	$1-\lambda_1<0$ and $1-\lambda_1>0$		I A	
je zit	un A, < 1 < Az			
(L-1	$\gamma_{2}<1<\lambda_{1}$		7	
(b) If \(\sigma \) is	a noot of (*).			
7)2-	$(b+1)\gamma + (b-1) = 0$		1m	
bC	$(-\lambda) = 1 + \lambda - \lambda^2$			
b	$= \frac{1+\lambda-\lambda^2}{1-\lambda}$		IA	
$(1-\lambda)(\lambda_1+$	$2x+b)-\lambda(x^2+1)$			
= (1->)	$\left(\left(\chi^{2}+2\chi+\frac{1+\eta-\eta^{2}}{1-\chi}\right)-\eta(\chi^{2}+1)\right)$!	IM	•
= (1-2)	$\frac{(1-\lambda)(\gamma^{2}+2\chi)+1+\lambda-\lambda^{2}-\lambda(1-\lambda)}{1-\lambda}$)(x31)]		
_	$+ \lambda^2 \chi^2 + 2(1-\lambda)\chi + 1$		IA	
$= \int (1-7)$ G.F. 405 (2/77)	RESTRICTED P	的部文	<u>IA</u> 5	

	RESTRICTED 内部文件	1120/2	(12) Remades
· · · · · · · · · · · · · · · · · · ·	2	7764/5	
(12) ($(1-\lambda)[(\gamma^2+2x+b)-\lambda(x^2+1)] = [(1-\lambda)x+1]$ $\geq 0 \text{(further real } x)$	114	
	$(1-\lambda)\left[\frac{\chi^2+2\chi+b}{\chi^2+1}-\lambda\right]>0 (\chi^2+1>0)$	14	
	Since N, n are roots of (*)		
	$(1-\lambda_1)\left(\frac{\chi^2+2\chi+b}{\chi^2+1}-\lambda_1\right) > 0$	IM	
	and $(1-\lambda_2)\left[\frac{\chi^2+2\chi+b}{\chi^2+1}-\lambda_2\right] > 0$ for all real x	IM	
	If $\lambda_1 < \lambda_2$, by (a) $\lambda_1 < 1 < \lambda_2$	114	. ,
	: 1-21>0 => \frac{\chi^2 + 2 \times + b}{\chi^2 + 1} - \chi_1 > 0	lin	
	$\frac{\chi^2_{+2} \times + b}{\chi^2_{+1}} \geqslant \lambda,$		
<i>À</i> ₩	and $1-\lambda_2 < 0 \Rightarrow \frac{\chi^2+2\chi+b}{\chi^2+1} - \lambda_2 \leq 0$	IM	
	x3+1 ≤ 12 Hxe1R	>	
	$A_1 \leq \frac{x^2 + 2x + b}{x^2 + 1} \leq \lambda_2$	1	-
		8	
	•		