1. Objetivos

Objetivo General

Analizar y explicar experimentalmente la ley de ohm y kirchhoff mediante la demostración de un circuito mixto, a su vez conocer el comportamiento de todo el circuito usando la herramienta tecnológica de Tinkercad.

Objetivos Específicos

Explicar el proceso que se debe realizar para encontrar los valores calculados de manera teórica aplicando las leyes de ohm y kirchhoff, a su vez los valores simulados por el circuito realizado en tinkercad

Exponer los valores en tablas para comprobar que los valores calculados y los simulados no tienen un porcentaje de error mayor o 1%.

2. Marco teórico

Leyes de ohm

3. Procedimiento

Material y equipo requerido

Cantidad	Material o Equipo
1	Fuente de Voltaje de C.D.
2	Multímetros Digitales
1	Resistor de 1 kΩ
2	Resistores de 2.2 kΩ
1	Resistor de 1.8 kΩ
1	Resistor de 3.9 kΩ
1	Protoboard

• Armar el siguiente circuito en tinkercad

Circuito armado en Tinkercad

Mida el voltaje y corriente en cada uno de los elementos del circuito anote los resultados de las mediciones en la tabla

Valores calculados

· Como Reg 2 es equivalente a R3; R4 y R2 · Por ser paralelas

Req1 = R2 = D Req1 = R3+ R4

Reg 2 = 5-1,026-1,84

Reg 2 = 2, 134V

"Como R3 y R4 Son resistencia en serie el voltaje se divide

R3= 2.13V R4= 2.13V

· Calculo de Intensidades

$$R_1 = 1 K \Omega$$
 $V_{R_1} = 1,026 V$

$$R_3 = 2.2KQ$$
 $V_{R3} = 1.067V$

Valores simulados

Vr1 ^ Ir1

Vr2 ^ Ir2

Vr3 ^ Ir3

Vr5 ^ Ir5

4. Respuesta a interrogantes y calculo del error

Tabla 1.1 % de error entre valor calculado y valor simulado

 			<u> </u>
VARIABLE	VALOR CALCULADO	VALOR SIMULADO	% error
VRI(V)	1.027V	1.03V	0.2%
IRI (MA)	1.026mA	1.03 mA	0.3%
VR2 (V)	2.134V	2.12V	0.6%
IRE (mA)	0.54 mA	0.54mA	0%
VR3 (V)	1-067V	1.06V	0.6%
IR3 (mA)	0.485mA	O.48mA	0.6%
VRY (V)	1.0671	1-06 V	0.6%
IR4 (mA)	0.485mA	0.48mA	0.6%
VRS (V)	1.84 V	1.85V	0.2%
IRS (mA)	1.022mA	1.03mA	0.3%

Tabla 1.2 Verificar la ley de voltaje de kirchhoff

VOLTAJE	Trayectoria 1		Traye	ctoria 2	Trayectoria 3		
	Calculado	Medido	Calculado	Medido	Calculado	Medido	
$V_{T}(V)$							
V _{R1} (V)	1,027	1,03			1,027	1,03	
V _{R2} (V)	2,134	2,12	2,134	2,12			
V _{R3} (V)			1,067	1,06	1,067	1,06	
V _{R4} (V)			1,067	1,06	1,067	1,06	
V _{R5} (V)	1,84	1,85			1,84	1,85	
ΣΛ	5,0001	5	4,268	4,24	5,0001	5	

Tabla 1.3 Verificar la ley de corriente de kirchhoff

CORRIENTE	Nodo 1		Nodo 2		Nodo 3		Nodo 4		Nodo 5	
	Calculado	Medido	Calculado	Medido	Calculado	Medido	Calculado	Medido	Calculado	Medido
$I_{T}(mA)$	1.02mA	1.02mA	1.02mA	1.02mA	0.48mA	0.48mA	0.48mA	D. 48mA	0.48mA	0.48mA
I_{R1} (mA)	1.02mA	1.02mA	1.02mA	1.02mA	1.02mA	1.02mA	1.02mA	1.02mA	1.02ml	1.02mA
I_{R2} (mA)	0.54mA	0.54mA	0.54mA	0.54mA	0.54mA	0.54mA	D.54mA	D.54mA	0.54mA	0.54mA
I_{R3} (mA)	0.485mA	0.48mA	0.485mA	0.48mA	0.485mA	0.48mA	0.485mA	0.48mA	0.485mA	D.48mA
I_{R4} (mA)	0.485mA	0.48mA	0.485mA	0.48mA	0.485mA	0.48mA	0.485mA	0.48mA	0.485mA	D.48mA
I_{R5} (mA)	1.02mA	1.03mA	1.02mA	1.03mA	1.02mA	1.03mA	1.02mA	1.03mA	1.02mA	1.03mA
ΣI	4.57mA	4.57mA	4.57mA	4.57mA	4.03mA	4.03mA	4.03mA	4.03mA	4.03mA	4.03m1

5. Video

Link: https://youtu.be/hDOM-u7lhlA

6. Conclusiones

La simulación de tinkercad es una herramienta muy fundamental, ayuda mucho al momento de comprobar datos y asumes también sirve para recrear un circuito como en la vida real

Aprendimos y pusimos en practica las leyes más importantes de la electrónica, de esa manera saber analizar de forma indicada un circuito

7. Bibliografía

¿Qué es la ley de Ohm? (2016, 31 octubre). Fluke. https://www.fluke.com/es-ec/informacion/blog/electrica/que-es-la-ley-de-ohm

Veloso, C. (2020, 20 julio). *LEYES DE KIRCHHOFF*. Tutoriales de Electrónica | Matemática y Física. https://www.electrontools.com/Home/WP/ley-de-kirchhoff/