SRM Institute of Science and Technology Department of Mathematics

18MAB102T-Advanced Calculus and Complex Analysis 2021-2022 Even

Unit – III: Laplace Transforms Tutorial Sheet - 9

S.No.	Questions	Answers
Part – A [3 Marks]		
1	Using Convolution theorem to evaluate $L^{-1}\left[\frac{s}{(s^2+4)^2}\right]$.	$\frac{\sin 2t}{4}$
2	Find the inverse Laplace transform of $\frac{1}{s^2 - 5s + 6}$ using	$e^{3t}-e^{2t}$
	Partial fraction method.	
3	Find $L^{-1}\left(\frac{1}{s(s^2+a^2)}\right)$ using convolution.	$\frac{1}{a^2} [1 - \cos at]$
4	Find $L^{-1}\left(\frac{s^3}{s^4-a^4}\right)$ using Partial fraction method.	$\frac{1}{2}[\cos h at + \cos at]$
5	Find $L^{-1}\left(\frac{2as}{(s^2+a^2)^2}\right)$.	$t \sin at$
Part – B [6 Marks]		
6	Solve the equation by Laplace transform $y'' + 2y' + 5y = e^{-t} \sin t$, $y(0) = 0$, $y'(0) = 1$.	$\frac{e^{-t}}{3}(\sin t + \sin 2t)$
7	Solve the equation by Laplace transform $y''+9y=6\cos 3t$, $y(0)=2$, $y'(0)=0$.	$2\cos 3t - t\sin 3t$
8	Find $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$ using convolution theorem.	$\frac{1}{a^2 - b^2} \left[a \sin at - b \sin bt \right]$
9	Find the inverse Laplace transform of $\frac{s+4}{s(s-1)(s^2+4)}$	$-1 + e^t - \frac{1}{2}\sin 2t$
	using Partial fraction method.	
10	Solve the equation by Laplace transform $y''-4y'+4y=64\sin 2t$, $y(0)=0$, $y'(0)=1$.	$-8e^{2t} + 17t e^{2t} + 8\cos 2t$