Fakultät Angewandte Naturwissenschaften und Wirtschaftsingenieurwesen

Übungen zu Analytische Grundlagen - WIW-1: Blatt 4

WS 2014/15

1. Lineare Gleichungssysteme

Man bestimme die Lösungen (falls möglich) folgender linearer Gleichungssysteme. Man wende dabei das Eliminationsverfahren an (die Wahl, ob in Gleichungsdarstellung oder Matrixdarstellung liegt bei Ihnen!)

a)
$$x_1 + x_2 + x_3 = 2$$
 (A9.1) $2x_1 + 3x_2 + x_3 = -1$ $3x_1 + x_2 + 4x_3 = 13$

b)
$$x_1 + 2x_2 + x_3 = 3$$
 (A9.2) $x_1 - x_2 - x_3 = 1$ $3x_1 + 3x_2 + x_3 = 8$

c)
$$2x_1 + x_2 + x_3 = 1$$
 (A9.3)
 $4x_1 + x_2 + 2x_3 = 0$
 $2x_1 + x_3 = -1$

d)
$$-x_1 + 8x_2 + 3x_3 = 2$$

$$2x_1 + 4x_2 - x_3 = 1$$

$$5x_2 + x_3 = 0$$

$$-3x_1 + 9x_2 + 5x_3 = 1$$
(A9.4)

2. Rechnen mit Matrizen

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 0 & 3 \\ 5 & 1 & -4 \end{bmatrix} , \quad B = \begin{bmatrix} -1 & 3 & 2 \\ 5 & 1 & 0 \\ -3 & 2 & 4 \end{bmatrix} , \quad C = \begin{bmatrix} 4 & 2 \\ 0 & -1 \\ 5 & -3 \end{bmatrix} , \quad D = \begin{bmatrix} -2 & 3 & 1 \\ 3 & 4 & 5 \\ 1 & 5 & 7 \end{bmatrix}$$
 Man berechne

- a) A+B , A-B
- b) $A \cdot C$, $B \cdot C$, $(A+B) \cdot C$ und vergleiche die Ergebnisse von $(A+B) \cdot C$ und $(A \cdot C + B \cdot C)$
- c) $(A \cdot B) \cdot C$ und $A \cdot (B \cdot C)$ und vergleiche beide Ergebnisse. (A10.1)
- d) A^T , B^T , C^T , D^T . Ist eine der Matrizen symmetrisch?
- e) $(A \cdot B)^T$ und $B^T \cdot A^T$

3. Gleichungssysteme und Darstellungsformen

3.1 Man stelle folgende lineare Gleichungssysteme in Matrixform $A \cdot x = b$ dar: (A10.3)

a)
$$2x_1 + x_2 + x_3 = 1$$
 b) $2x_1 + 4x_2 + 6x_3 = 12$ c) $-x_1 + 8x_2 + 3x_3 = 2$ $4x_1 + x_2 + 2x_3 = 0$ $x_1 + 3x_2 + 7x_3 = 16$ $2x_1 + 4x_2 - x_3 = 1$ $3x_1 + 3x_2 - 2x_3 = -9$ $-3x_1 + 9x_2 + 5x_3 = 1$ $2x_1 + x_3 = -1$

3.2 Man stelle folgende LGS in Komponentenform dar:

a)
$$A \cdot x = b$$
 , $B \cdot x = c$, $C \cdot x = 0$ (wobei $x \in \mathbb{R}^{3,1}$ bzw. $x \in \mathbb{R}^{5,1}$). (A10.4)

b) Ist die Gleichung $A \cdot x = c$ bzw. $B \cdot x = b$ definiert? Man benutze

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 4 & 0 & 3 \\ 5 & 1 & -4 \end{bmatrix} , B = \begin{bmatrix} 1 & -3 & 2 & 4 & 1 \\ -2 & 1 & 7 & 3 & -4 \\ 4 & -3 & 0 & -2 & 0 \\ 2 & 6 & 8 & 7 & -2 \end{bmatrix} , C = \begin{bmatrix} 2 & -1 & 3 \end{bmatrix} , b = \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} , c = \begin{bmatrix} 3 \\ -1 \\ 4 \\ 2 \end{bmatrix}$$

(entnommen der Übungssammlung von Prof. Schulte aus den Blättern 9 und 10 mit Lösungen)