Forecasting Problem 2 Solution

Quarter	Building Permits, x	Lumber Sales (1,000s of bd ft), y 12.6			
1	8				
2	12	16.3			
3	7	9.3			
4	9	11.5			
5	15	18.1 7.6 6.2			
6	6				
7	5				
8	8	14.2			
9	10	15.0			
10	12	17.8			

SUMMARY (DUTPUT								
Regressio	n Statistics								
Multiple R	0.925475								
R Square	0.856503								
Adjusted R Square	0.838566								
Standard Error	1.67644								
Observation s	10								
ANOVA									
7.11.0 771	df	SS	MS	F	Significance F				
Regression	1	134.2004	134.2004	47.75045	0.000123				
Residual	8		2.810453						
Total	9	156.684							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%	
Intercept	1.340654	1.74928	0.766404	0.465447	-2.69319	5.3745	-2.69319	5.3745	
Permits	1.252103	0.181197	6.91017	0.000123	0.834262	1.669944	0.834262	1.669944	

Step 1: Compute Components of Linear Regression Equation

$$\overline{x} = \frac{92}{10} = 92$$

$$\overline{y} = \frac{128.6}{10} = 12.86$$

$$b = \frac{\sum xy - n\overline{xy}}{\sum x^2 - n\overline{x}^2} = \frac{(1,290.3) - (10)(9.2)(12.86)}{(932) - (10)(9.2)^2} = 1.25$$

$$a = \overline{y} - b\overline{x} = 12.86 - (1.25)(9.2) = 1.36$$

Step 2: Develop the Linear regression equation

$$y = a + bx$$
, $y = 1.36 + 1.25x$

Step 3: Compute the Correlation Coefficient

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

$$r = \frac{(10)(1,170.3) - (92)(128.6)}{\sqrt{[(10)(932) - (92^2)][(10)(1,810.48) - (128.6)^2]}} = 0.925$$

Step 4: Calculate the forecast for x = 10 permits

$$Y = a + bx = 1.36 + 1.25(10) = 13.86$$
 or 1,386 board ft