Question 1 (Leibniz Integral Rule). Let $E \in \mathcal{M}(\mathbb{R})$ and let $f: E \times [c,d] \to \mathbb{R}$ be such that

- (I) for each $t \in [c, d]$, the function $g_t : E \to \mathbb{R}$ defined by g(x) = f(x, t) is Lebesgue integrable,
- (II) for almost every $x \in E$, the function $h_x : (c, d) \to \mathbb{R}$ defined by $h_x(t) = f(x, t)$ is differentiable on (c, d), and
- (III) there exists a Lebesgue integrable function $\theta: E \to \mathbb{R}$ such that $|h'_x(t)| \le \theta(x)$ for all $t \in (c, d)$ and almost every $x \in E$.

Then

$$\frac{d}{dt} \int_{E} f(x,t) \, d\lambda(x) = \int_{E} \frac{\partial f}{\partial t}(x,t) \, d\lambda(x)$$

for all $t \in (c, d)$.

Question 2. Recall that a function $f:[a,b] \to \mathbb{R}$ is said to be *Lipschitz* if there exists a constant K such that

$$|f(x) - f(y)| \le K|x - y|$$

for all $x, y \in [a, b]$.

Prove that an absolutely continuous function $f:[a,b]\to\mathbb{R}$ is Lipschitz if and only if $|f'|\in L_\infty([a,b],\lambda)$.

Question 3. Let $f:[a,b]\to\mathbb{R}$ be a strictly increasing, absolutely continuous function.

- a) Prove that if G is a G_{δ} -subset of (a,b), then f(G) is Lebesgue measurable and $\lambda(f(G)) = \int_G f' d\lambda$.
- b) Prove that if $A \subseteq [a, b]$ is Lebesgue measurable with $\lambda(A) = 0$ then $\lambda(f(A)) = 0$.
- c) Let c = f(a) and d = f(b). Prove that if $g: [c, d] \to [0, \infty]$ is Borel, then

$$\int_{[c,d]} g \, d\lambda = \int_{[a,b]} (g \circ f) f' \, d\lambda.$$

Question 4. A monotone function $f:[a,b]\to\mathbb{R}$ is said to be *singular* if f'=0 λ -almost everywhere.

- a) Prove that any non-decreasing function on [a, b] is the sum of an absolutely continuous non-decreasing function and a singular non-decreasing function.
- b) Let $f:[a,b]\to\mathbb{R}$ be a non-decreasing singular function. Prove that f has the following property: (S) For all $\epsilon,\delta>0$ there exists

$$a < a_1 < b_1 < a_2 < b_2 < \dots < a_n < b_n < b$$

such that

$$\sum_{k=1}^{n} |b_k - a_k| < \delta \quad \text{and} \quad \sum_{k=1}^{n} |f(b_k) - f(a_k)| > f(b) - f(a) - \epsilon.$$

- c) Let $f:[a,b]\to\mathbb{R}$ be a non-decreasing function with property (S) from part b). Use part a) to prove that f is singular.
- d) Let $(f_n)_{n\geq 1}$ be a sequence of non-decreasing singular functions on [a,b] such that the function f defined for all $x\in [a,b]$ by

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

is finite everywhere. Prove that f is singular.

e) Show that there exists a strictly increasing, singular, continuous function on [0, 1].