

RF02 programming guide

1. Brief description

RF02 is a low cost FSK transmit IC witch integrated all RF functions in a single chip. It only need a MCU, a crystal, a decouple capacitor and antenna to build a hi reliable FSK transmitter. The operation frequency can cover 300 to 1000MHz.

RF02 supports a command interface to setup frequency, deviation, output power and also data rate. No need any hardware adjustment when using in frequency-hopping applications

RF02 can be used in applications such as remote control toys, wireless alarm, wireless sensor, wireless keyboard/mouse, home-automation and wireless data collection.

2. Commands

1. Timing diagram

2. Configuration Setting Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	0	b1	b0	d2	d1	d0	x3	x2	x1	x0	ms	m2	m1	m0	8080h

b1..b0: band select:

b1	b0	band[MHz]
0	1	433
1	0	868
1	1	915

d2..d0: select frequency of CLK pin

d2	d1	d0	CLK frequency[MHz]
0	0	0	1
0	0	1	1.25
0	1	0	1.66
0	1	1	2
1	0	0	2.5
1	0	1	3.33
1	1	0	5
1	1	1	10

CLK signal is derive form crystal oscillator and it can be applied to MCU clock in to save a second crystal.

If not used, please set bit "dc" to disable CLK output

x3..x0: select crystal load capacitor

х3	x2	x1	х0	Load capacitor [pF]
0	0	0	0	8.5
0	0	0	1	9.0
0	0	1	0	9.5
0	0	1	1	10.0
1	1	1	0	15.5
1	1	1	1	16.0

To integrate the load capacitor internal can not only save cost, but also adjust reference frequency by software

ms: select modulation polarity

m2..m0: select frequency deviation

m2	m1	m0	frequency deviation[kHz]
0	0	0	30
0	0	1	60
0	1	0	90
0	1	1	120
1	0	0	150
1	0	1	180
1	1	0	210

3. Power Management Command

	bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
,		1	1	0	0	0	0	0	0	a1	a0	ex	es	ea	eb	et	dc	C000h

a1: Crystal oscillator and synthesizer are enabled by Data transmit Command and disable by Sleep command.

a0: Power amplifier is enabled by Data transmit Command and disable by Sleep Command.

ex: Enable crystal oscillator

es: Enable synthesizer

ea: Enable power amplifier

eb: Enable low battery detection funciton

et: Enable wake-up timer

dc: Disable output of CLK pin

4. Frequency Setting Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	1	0	f11	f10	f9	f8	f7	f6	f5	f4	f3	f2	f1	f0	A7D0h

f11..f0: set operation frequency: 433band: Fc=430+F*0.0025 MHz

868band: Fc=860+F*0.0050 MHz 915band: Fc=900+F*0.0075 MHz

Fc is carrier frequency

5. Data Rate Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	1	0	0	0	r7	r6	r5	r4	r3	r2	r1	r0	C800h

r7..r0: set data rate

BR=10000000/29/ (R+1)

BR is data rate

6. Power Setting Command

bit	7	6	5	4	3	2	1	0	POR
	1	0	1	1	0	p2	p1	p0	B0h

p2..p0: set relative output power:

Pout=Pmax-P*3 [dBm]

Pmax is the max output power; it is related to the antenna impedance.

7. Low Battery Detector and Tx bit Synchronization Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	0	0	1	0	dwc	0	ebs	t4	t3	t2	t1	t0	C200h

dwc: Disable wake-up timer periodical calibration

ebs: Enable TX bit synchronization function

t4..t0: Set threshold voltage of Low battery detector

V1b=2.2+T*0.1 [V]

8. Sleep Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	0	1	0	0	s7	s6	s5	s4	s3	s2	s1	s0	C400h

If crystal oscillator, synthesizer and power amplifier are auto-controlled, this command will close power amplifier and synthesizer immediately, then stop crystal oscillator after S periods of CLK signal

9. Wake-Up Timer Command

	bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
•		1	1	1	r4	r3	r2	r1	r0	m7	m6	m5	m4	m3	m2	m1	m0	E000h

The wake-up timer period is determined by:

$$T_{\text{wake-up}} = M * 2^{R} [ms]$$

For continual operation, bit 'et' must be cleared and set

10. Data Transmit Command

bit	7	6	5	4	3	2	1	0
	1	1	0	0	0	1	1	0

This command indicate that the following data on SDI pin is to be transmitted, the transmission stops if nSel return to hi.

11. Status Register Read Command

bit	15	14	13	12	11	10	Q	8	7	6	5	4	3	2	1	0	POR
Oit	13	17	13	12	- 11	10										0	TOR
	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	

This command is used to read internal status register content, output starts at 8_{th} clock of SCK.

12. PLL Setting and Reset Mode Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	1	0	0	1	0	bw1	bw0	0	0	0	0	dr	0	D200h

Bits 7-6 <bw1 : bw0> select the PLL bandwidth:

Bw1	Bw0	Max datarate	Phase Noise at 1MHz offset	Charage pump current				
		[kbps]	[dBc/Hz](typical)					
0	1	19.2	-112	25%				
1	1	38.4	-110	33%				
0	0	68.9	-107	50%				
1	0	115.2	-102	100%				

Bit 1 (*dr*): Disables the highly sensitive RESET mode. If this bit is cleared, a 600 mV glitch in the power supply may cause a system reset. Formore detailed description see the *Reset modes* section

3. Transmission Demo flow diagram

Note: After RF02 initialization, Open transmitter and use nIRQ as data rate clock. MCU write data bit on FSK pin at nIRQ falling edge.

4. Example 2(for PIC microcontroller)

copyright (c) 2006

Title: RF02B simple example based on PIC C

Current version: v1.0

Function: Package send Demo

Processor PIC16F73

Clock: 10MHz Crystal

Operate frequency: 434MHz
Data rate: 4.8kbps
Package size: 23byte
Author: Robben

Company: Hope microelectronic Co., Ltd.

Contact: +86-0755-86106557 E-MAIL: hopefsk@hoperf.com

Date: 2006-11-10

#include "pic.h"

typedef unsigned char uchar; typedef unsigned int uint;

#define SDI RB5
#define SCK RB4
#define nSEL RB2
#define FSK RB1
#define nIRQ RB7
#define SDO RB6

#define SDI_OUT() TRISB5=0
#define SCK_OUT() TRISB4=0

Tel: +86-755-82973805 http://www.hoperf.com Fax: +86-755-82973550

E-mail: sales@hoperf.com

HOPE RF

```
#define nSEL_OUT()
                      TRISB2=0
#define FSK_OUT()
                      TRISB1=0
#define nIRQ IN()
                      TRISB7=1
#define SDO_IN()
                      TRISB6=1
void WriteO( void );
void Writel( void );
void WriteCMD( uint CMD );
void RF2_Init( void );
void DelayUs( uint us );
void WriteFSKbyte( uchar DATA );
void DelayMs(uint ms);
 CONFIG (0x3FF2);
/****************
Port initialization
**************
void RF2_Init( void )
{
 nSEL=1;
 SDI=1;
 SCK=0;
 FSK=0;
 nSEL_OUT();
 SDI_OUT();
 SDO IN();
 SCK_OUT();
 FSK_OUT();
 nIRQ_IN();
void main()
 uint ChkSum;
 RF2_Init();
 WriteCMD( 0xCC00 ); // read status
 WriteCMD( 0x8B81 ); //433BAND, +/-60kHz
 WriteCMD(0xA640); // freq = 434MHz
 WriteCMD( 0xC847 ); // 4.8k bps
 WriteCMD( 0xC220 ); // ENABLE BIT SYNC
 WriteCMD( 0xC001 ); // close all , the module will get into the sleep state.
 while(1)
```

Fax: +86-755-82973550

8

HOPE RF

```
ChkSum=0;
WriteCMD( 0xC039 ); // stat Tx
WriteFSKbyte( 0xAA ); // send Preamble
WriteFSKbyte( 0xAA ); // send preamble
WriteFSKbyte( 0xAA ); // send preamble
WriteFSKbyte( 0x2D ); // send sync word
WriteFSKbyte( 0xD4 ); // send sync word
WriteFSKbyte( 0x30 );//DATA0
ChkSum+=0x30;
WriteFSKbyte( 0x31 );//DATA1
ChkSum+=0x31;
WriteFSKbyte( 0x32 );
ChkSum+=0x32:
WriteFSKbyte( 0x33 );
ChkSum+=0x33;
WriteFSKbyte( 0x34 );
ChkSum+=0x34:
WriteFSKbyte(0x35);
ChkSum+=0x35;
WriteFSKbyte( 0x36 );
ChkSum+=0x36;
WriteFSKbyte( 0x37 );
ChkSum+=0x37;
WriteFSKbyte( 0x38 );
ChkSum+=0x38;
WriteFSKbyte( 0x39 );
ChkSum+=0x39;
WriteFSKbyte( 0x3A );
ChkSum+=0x3A;
WriteFSKbyte( 0x3B );
ChkSum+=0x3B;
WriteFSKbyte( 0x3C );
ChkSum+=0x3C:
WriteFSKbyte(0x3D);
ChkSum+=0x3D;
WriteFSKbyte( 0x3E );
ChkSum+=0x3E;
WriteFSKbyte( 0x3F );//DATA15
ChkSum+=0x3F;
ChkSum&=0x0FF;
WriteFSKbyte( ChkSum ); // send checksum
```

Fax: +86-755-82973550 E-mail: <u>sales@hoperf.com</u>

HOPE RF

```
WriteFSKbyte( 0xAA );
    WriteCMD( 0xC001 );
    DelayMs( 1000 );
  }
}
/***********
Write 0
*************
void WriteO( void )
{
 SCK=0;
 NOP();
 SDI=0;
 NOP();
 SCK=1;
 NOP();
}
/*********************
Write 1
*************
void Writel( void )
{
 SCK=0;
 NOP();
 SDI=1;
 NOP();
 NOP();
 NOP();
 NOP();
 NOP();
```

HOPE RF

```
NOP();
 SCK=1;
 NOP();
}
/************
Write one byte sending data
*************
void WriteFSKbyte( uchar DATA )
 uchar n=8;
 while(n--)
    while(!nIRQ);
    while(nIRQ);
    if (DATA&0x80)
     FSK=1;
    else
     FSK=0:
    DATA=DATA<<1;
  }
/**************
Write one command
************
void WriteCMD( uint CMD )
 uchar n=16;
 SCK=0;
 nSEL=0;
 while(n--)
  {
    if (CMD&0x8000)
     Writel();
    else
     WriteO();
```

Fax: +86-755-82973550


```
CMD=CMD<<1;
 }
 SCK=0;
 nSEL=1;
}
/*************
**************
void DelayUs( uint us )
{
 uint i;
 while(us--)
  {
    i=2;
    while( i-- )
      {
       NOP();
  }
/************
Delay
************
void DelayMs(uint ms)
 uchar i;
 while (ms--)
  i=35;
  while(i--)
   DelayUs(1);
  }
 }
}
```

12

HOPE MICROELECTRONICS CO.,LTD

Add:4/F, Block B3, East Industrial Area, Huaqiaocheng, Shenzhen, Guangdong, China

Tel: 86-755-82973805
Fax: 86-755-82973550
Email: sales@hoperf.com
trade@hoperf.com

Website: http://www.hoperf.com

http://hoperf.en.alibaba.com

This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.