

Gameboard

Maths

Matrices: nxm Rules 2i

Matrices: nxm Rules 2i

The matrices ${f A}$, ${f B}$ and ${f C}$ are given by ${f A}=\begin{pmatrix}1&-4\end{pmatrix}$, ${f B}=\begin{pmatrix}5\\3\end{pmatrix}$ and ${f C}=\begin{pmatrix}3&0\\-2&2\end{pmatrix}$

Part A AB

The matrix \mathbf{AB} can be written as the 1×1 matrix a.

Find a.

The following symbols may be useful: a

Part B $\mathbf{BA} - 4\mathbf{C}$

Give the first row of the matrix given by $\mathbf{BA} - 4\mathbf{C}$ in the form x y with a single space between x and y.

Give the second row of the matrix given by $\mathbf{BA} - 4\mathbf{C}$ in the form $x\,y$ with no spaces at the beginning or end.

Adapted with permission from UCLES, A Level, June 2010, Paper 4725, Question 2.

Gameboard

Maths

2x2 Operations 2ii

2x2 Operations 2ii

The matrices ${f A}$ and ${f B}$ are given by ${f A}=egin{pmatrix} 2 & 1 \ 3 & 2 \end{pmatrix}$ and ${f B}=egin{pmatrix} a & -1 \ -3 & -2 \end{pmatrix}$.

Part A a

a satisfies the equation $2\mathbf{A}+\mathbf{B}=egin{pmatrix}1&1\3&2\end{pmatrix}$.

Find the value of a.

The following symbols may be useful: a

Part B Alternate value of a

Now take a to satisfy the equation $\mathbf{AB} = \begin{pmatrix} 7 & -4 \\ 9 & -7 \end{pmatrix}$.

Find the value of a.

The following symbols may be useful: a

Adapted with permission from UCLES, A Level, June 2007, Paper 4725, Question 1.

Gameboard:

STEM SMART Double Maths 9 - Matrices

<u>Gameboard</u>

Maths

2x2 Determinants and Inverses 1ii

2x2 Determinants and Inverses 1ii

The matrices ${f A}$ and ${f B}$ are given by ${f A}=\begin{pmatrix}2&1\\-4&5\end{pmatrix}$ and ${f B}=\begin{pmatrix}3&1\\2&3\end{pmatrix}$. ${f I}$ denotes the 2×2 identity matrix.

Part A
$$4\mathbf{A} - \mathbf{B} + 2\mathbf{I}$$

Give the first row of the matrix given by $4\mathbf{A} - \mathbf{B} + 2\mathbf{I}$ in the form x y with a single space between x and y.

Give the second row of the matrix given by $4\mathbf{A} - \mathbf{B} + 2\mathbf{I}$ in the form x y with a single space between x and y.

Part B \mathbf{A}^{-1}

$$\mathbf{A}^{-1}$$
 can be written in the form $\mathbf{A}^{-1} = egin{pmatrix} lpha & eta \\ \gamma & \delta \end{pmatrix}$.

Find $\alpha + \beta + \gamma + \delta$ in exact form.

Part C
$$\left(\mathbf{A}\mathbf{B}^{-1}\right)^{-1}$$

$$\left(\mathbf{A}\mathbf{B}^{-1}\right)^{-1}$$
 can be written in the form $\left(\mathbf{A}\mathbf{B}^{-1}\right)^{-1}=egin{pmatrix} lpha & eta \\ \gamma & \delta \end{pmatrix}$.

Find $\alpha + \beta + \gamma + \delta$ in exact form.

Adapted with permission from UCLES, A Level, Jan 2014, Paper 4725, Question 3.

Gameboard:

STEM SMART Double Maths 9 - Matrices

Gameboard

Maths

Matrices: 3x3 Determinants and Inverses 1i

Matrices: 3x3 Determinants and Inverses 1i

The matrix \mathbf{A} is given by $\mathbf{A}=\begin{pmatrix}a&8&10\\2&1&2\\4&3&6\end{pmatrix}$. The matrix \mathbf{B} is such that $\mathbf{A}\mathbf{B}=\begin{pmatrix}a&6&1\\1&1&0\\1&3&0\end{pmatrix}$.

Part A $\det \mathbf{AB}$

Find $\det \mathbf{AB}$.

The following symbols may be useful: a

Part B $(AB)^{-1}$

Give the first row of $(\mathbf{AB})^{-1}$ in the form $x\ y\ z$ with a space between $x,\ y$ and $z.\ x,\ y$ and z are in exact form.

Give the second row of $(\mathbf{AB})^{-1}$ in the form $x\ y\ z$ with a space between $x,\ y$ and $z.\ x,\ y$ and z are in exact form.

Give the third row of $(\mathbf{AB})^{-1}$ in the form $x\ y\ z$ with a space between $x,\ y$ and $z.\ x,\ y$ and z are in exact form.

Dart	_	\mathbf{P}^{-1}
Part		

Give the first row of \mathbf{B}^{-1} in the form x y z with a space between x, y and z. x, y and z are in exact form.

Give the second row of \mathbf{B}^{-1} in the form $x\ y\ z$ with a space between $x,\ y$ and $z.\ x,\ y$ and z are in exact form.

Give the third row of \mathbf{B}^{-1} in the form $x\ y\ z$ with a space between x, y and z. x, y and z are in exact form.

Adapted with permission from UCLES, A Level, June 2008, Paper 4725, Question 10.

Gameboard:

STEM SMART Double Maths 9 - Matrices

Gameboard

Maths

3 Simultaneous Equations 3i

3 Simultaneous Equations 3i

The matrix
$${f B}$$
 is given by ${f B}=egin{pmatrix} a & 1 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

Part A a

Find the value of a in exact form, given that \mathbf{B} is singular.

The following symbols may be useful: a

Part B
$$\mathbf{B}^{-1}$$

$$\mathbf{B}^{-1}$$
 can be written in the form $\mathbf{B}^{-1} = \begin{pmatrix} \alpha & \beta & \gamma \\ \delta & \epsilon & \zeta \\ \eta & \theta & \iota \end{pmatrix}$. You are given that \mathbf{B} is non-singular.

Give an expression for $\alpha-\beta+\gamma-\delta+\epsilon-\zeta+\eta-\theta+\iota$ in terms of a.

The following symbols may be useful: a

Part C Simultaneous equations

x, y and z satisfy the following simultaneous equations

$$-x + y + 3z = 1$$

$$2x + y - z = 4$$

$$y + 2z = -1$$

Use matrix methods to solve this question only.

Find x in exact form.

The following symbols may be useful: x

Find y in exact form.

The following symbols may be useful: y

Find z in exact form.

The following symbols may be useful: z

Adapted with permission from UCLES, A Level, June 2005, Paper 4725, Question 7.

Gameboard:

STEM SMART Double Maths 9 - Matrices

<u>Home</u> <u>Gameboard</u> Maths Algebra Matrices - Intersecting Lines

Matrices - Intersecting Lines

Two lines are described by

$$3x - 4y - 1 = 0$$

 $2x + py - 10 = 0$.

where p is a constant. Use matrix notation to find the coordinates of the point of intersection of these two lines.

Part A Write in matrix form

Write these equations in matrix form $\mathbf{A}\mathbf{x} = \mathbf{b}$. If the matrix A is written in the form $\mathbf{A} = egin{pmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{pmatrix}$ give the values of these matrix elements. Give the value of a_{11} . Give the value of a_{12} . Give the value of a_{21} . Give the value of a_{22} . The following symbols may be useful: p Part B Condition for no intersection Use the matrix to find the value of p for which the lines do not intersect. Give your answer as an improper fraction. The following symbols may be useful: p

Part C The inverse matrix

Find \mathbf{A}^{-1} , the inverse of \mathbf{A} .

If the matrix \mathbf{A}^{-1} is written in the form

$$\mathbf{A}^{-1} = egin{pmatrix} lpha_{11} & lpha_{12} \ lpha_{21} & lpha_{22} \end{pmatrix}$$

give the values of these matrix elements

Give an expression for α_{11} .

The following symbols may be useful: p

Give an expression for α_{12} .

The following symbols may be useful: p

Give an expression for α_{21} .

The following symbols may be useful: p

Give an expression for α_{22} .

The following symbols may be useful: p

Part D	Components of	point of in	itersection
--------	---------------	-------------	-------------

Using ${f A}^{-1}$ obtain expressions for the x and y components for the point of intersection.		
Give an expression for the x -component of the point of intersection.		
The following symbols may be useful: p		
Give an expression for the y -component of the point of intersection.		
The following symbols may be useful: p		

Part E A value for p

If the y-component of the point of intersection is equal to 2, find the value of p.

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 9 - Matrices

Home Gameboard

ard Maths

Algebra

Matrices - Linear Equations 2

Matrices - Linear Equations 2

Use matrix notation to solve the following set of three equations for x, y and z:

$$x + cy = c$$
$$x - y + 3z = -c$$
$$2x - 2y - z = 2.$$

Part A Determinant of the matrix

Write these equations in matrix form $\mathbf{R}\mathbf{x} = \mathbf{p}$. Hence deduce the determinant of \mathbf{R} and find the value of c for which there is no unique solution.

Find the determinant of \mathbf{R} .

The following symbols may be useful: \ensuremath{c}

Deduce the value of c for which there is no unique solution.

Part B The inverse matrix

Find the inverse matrix \mathbf{R}^{-1} .

If the matrix \mathbf{R}^{-1} is written in the form

$$\mathbf{R}^{-1} = egin{pmatrix}
ho_{11} &
ho_{12} &
ho_{13} \
ho_{21} &
ho_{22} &
ho_{23} \
ho_{31} &
ho_{32} &
ho_{33} \end{pmatrix}$$

give expressions for the elements of ${\bf R}^{-1}$ on the leading diagonal i.e. ρ_{11} , ρ_{22} and ρ_{33} .

Give an expression for ρ_{11}

The following symbols may be useful: c

Give an expression for ρ_{22}

The following symbols may be useful: c

Give an expression for ρ_{33} .

The following symbols may be useful: c

Part C	Solution to the set of equations if $c=1$
Using ${f R}$	$^{-1}$, find the solutions for x,y and z if $c=1.$
Find the	value of x .
Find the	value of y .
Find the	value of z .
, ma are	value of 2.

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 9 - Matrices

Home Gameboard Maths Algebra Matrices - Linear Equations 3

Matrices - Linear Equations 3

A system consists of three masses m_1 , m_2 and m_3 in a line; they each have the same mass m. The mass m_2 is in the centre and connected by springs of spring constant k to m_1 on the left and m_3 on the right. The masses are all performing simple harmonic motion at the same angular frequency ω such that their equations of motion are

$$-kx_1+kx_2=-m\omega^2x_1 \ kx_1-2kx_2+kx_3=-m\omega^2x_2 \ kx_2-kx_3=-m\omega^2x_3.$$

where x_1 , x_2 and x_3 are the displacements of m_1 , m_2 and m_3 respectively.

These equations can be written in matrix form

$$\mathbf{A}\mathbf{x} = -m\omega^2\mathbf{x}$$

$$= -m\omega^2\mathbf{I}\mathbf{x}$$

$$\Rightarrow (\mathbf{A} + m\omega^2\mathbf{I})\mathbf{x} = 0$$

A matrix equation of this sort only has solutions if $|\mathbf{A} + m\omega^2\mathbf{I}| = 0$. Use this to find the possible values of ω^2 . For each value of ω find the relationship between x_1 , x_2 and x_3 .

Part A The matrix A

If the matrix A is written in the form

$$\mathbf{A} = egin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

deduce the expressions for the following elements of ${\bf A}$.

Give the expression for a_{11} .

The following symbols may be useful: k, $\ m$

Give the expression for a_{21} .

The following symbols may be useful: k, $\ m$

Give the expression for a_{22} .

The following symbols may be useful: k, m

Give the expression for a_{31} .

The following symbols may be useful: k, $\ m$

Part B The possible values of ω^2

Write down the matrix $\mathbf{A} + m\omega^2\mathbf{I}$. Using the fact that non-zero solutions to the equation $(\mathbf{A} + m\omega^2\mathbf{I})\mathbf{x} = 0$ require that $|\mathbf{A} + m\omega^2\mathbf{I}| = 0$, deduce the three values of ω^2 . The three values, ω_1^2 , ω_2^2 and ω_3^2 , are such that $\omega_1^2 < \omega_2^2 < \omega_3^2$.

Give an expression for the 11 component (i.e. the component in row 1, column 1) of ${f A}+m\omega^2{f I}$.

The following symbols may be useful: k, m, omega

Find an expression for ω_1^2 .

The following symbols may be useful: k, m

Find an expression for ω_2^2 .

Find an expression for ω_3^2 .

The following symbols may be useful: k, m

Part C The relationship between x_1 , x_2 and x_3

Since the determinant of the matrix is zero there are no unique solutions to the set of three equations; however, for each value of ω^2 , x_1 , x_2 and x_3 have a fixed relationship to each other. On the assumption that $x_1=1$, find x_2 and x_3 for each of the three frequencies deduced in Part B. Give your answers using the format 1,a,b with no spaces, where $x_1=1$, $x_2=a$ and $x_3=b$.

Given that $x_1 = 1$, find x_2 and x_3 for ω_1^2 .

Given that $x_1=1$, find x_2 and x_3 for ω_2^2 .

Given that $x_1=1$, find x_2 and x_3 for ω_3^2 .

Created for isaacphysics.org by Julia Riley