MATHÉMATIQUES I

Dans tout le problème I désigne un intervalle non majoré de \mathbb{R} .

Le but du problème est l'étude des solutions de l'équation différentielle

$$E_f: y' - y + f(x) = 0$$

où f est une application continue définie sur I et à valeurs réelles ou complexes.

On verra que l'espace des solutions contient une solution f_1 ayant un comportement particulier en $+\infty$.

Les parties I et II portent sur deux exemples. La partie III met en place l'application $\Phi: f \mapsto f_1$ dans un cadre général. Les Parties IV à VI envisagent diverses propriétés de la fonction f et sont largement indépendantes.

Les symboles ${\rm I\!R}$ et ${\rm C\!\!\!\! C}$ désignent respectivement les corps des nombres réels et des nombres complexes.

Partie I - Étude d'un premier exemple

I.A - Pour $x \in \mathbb{R}$, montrer l'existence et donner la valeur des expressions suivantes :

$$e^x \int_{x}^{+\infty} e^{-t} \cos t \ dt, \qquad e^x \int_{x}^{+\infty} e^{-t} \sin t \ dt$$

I.B - On considère l'équation différentielle

$$y' - y + \cos x = 0$$
, $x \in \mathbb{R}$

Déterminer une fonction Y_0 bornée et une fonction g telles que la solution générale sur $\mathbb R$ de cette équation différentielle puisse se mettre sous la forme

$$Y_{\lambda}(x) = \lambda g(x) + Y_0(x)$$
, où $\lambda \in \mathbb{R}$

Donner sans démonstration le résultat analogue relatif à l'équation différentielle $y'-y+\sin x=0$.

 ${\bf I.C}$ - Soit Π le plan vectoriel engendré par les fonctions cosinus et sinus dans l'espace vectoriel des fonctions de ${\bf I\!R}$ dans ${\bf I\!R}$, c'est-à-dire l'ensemble des fonctions de la forme

$$x \mapsto \alpha \cos x + \beta \sin x$$

Filière MP

où α et β sont des nombres réels. Pour tout $f\in\Pi$, on définit f_1 par la formule

$$\forall x \in \mathbb{R}, f_1(x) = e^x \int_x^{+\infty} e^{-t} f(t) dt$$

I.C.1) Montrer que la transformation $f \mapsto f_1$ définit une application $\Phi: \Pi \to \Pi$. La linéarité de Φ étant considérée comme évidente, donner la matrice de Φ dans la base de Π constituée des fonctions cosinus et sinus.

I.C.2) On munit Π de la norme

$$||f||_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|$$

Déterminer une constante k > 0 telle que, pour tout $f \in \Pi$, on ait

$$\|f_1\|_{\infty} \le k \|f\|_{\infty}$$

Pour $f \in \Pi$, on définit par récurrence la suite $(f_n)_{n \in \mathbb{N}^*}$ où $f_1 = \Phi(f)$ et pour tout $n \in \mathbb{N}^*$, $f_{n+1} = \Phi(f_n)$.

Étudier l'existence de la limite de cette suite relativement à la norme définie sur Π et déterminer la valeur de cette limite.

Partie II - Étude d'un deuxième exemple

On donne, pour x > 0, l'équation différentielle

$$y'-y+\frac{1}{x}=0.$$

II.A - Montrer qu'il existe sur l'intervalle $]0+\infty[$ une unique solution Y_0 bornée quand x tend vers l'infini et exprimer $Y_0(x)$ sous forme d'une intégrale.

Quelle expression donner à la solution générale Y_{λ} , où $\lambda \in \mathbb{R}$, l'indexation étant telle que pour $\lambda = 0$, on ait la solution bornée Y_0 ? Étudier le comportement de $Y_{\lambda}(x)$ lorsque x tend vers 0 par valeurs positives.

On note \mathscr{C}_{λ} la courbe représentative de la solution Y_{λ} .

II.B - Pour tout point $m(x_m, y_m)$ du demi-plan x > 0, on note Y_m la solution de l'équation vérifiant $Y_m(x_m) = y_m$ et \mathcal{C}_m sa courbe représentative.

Filière MP

II.B.1) Déterminer l'ensemble \mathscr{H} des points m tels que $Y'_m(x_m) = 0$. Même question pour l'ensemble \mathscr{I} des m tels que $Y''_m(x_m) = 0$. Donner sans démonstration une interprétation géométrique pour chacun des ensembles \mathscr{H} et \mathscr{I} .

II.B.2) Quelle est la place de la courbe \mathscr{C}_0 représentative de la solution Y_0 par rapport aux courbes \mathscr{H} et \mathscr{I} ?

(on pourra faire des intégrations par parties sur $Y_0(x) = e^x \int_x^{+\infty} \frac{e^{-t}}{t} dt$).

II.B.3) Tracer sans explication sur un même dessin des ébauches des courbes \mathscr{H} , \mathscr{I} , \mathscr{C}_0 , \mathscr{C}_{λ_1} , \mathscr{C}_{λ_2} , où λ_1 et λ_2 sont des réels respectivement négatif et positif.

Partie III - La transformation o

On suppose maintenant que I est un intervalle ouvert de la forme $]a, +\infty[$, a pouvant être égal à $-\infty$.

Dans le \mathbb{C} -espace vectoriel $\mathscr{C}^0(I,\mathbb{C})$ des fonctions continues sur I à valeurs complexes, on considère le sous-ensemble

$$\mathbf{E} = \left\{ f \mid \exists \ \alpha \in \mathbb{R}, \lim_{x \to +\infty} \frac{f(x)}{x^{\alpha}} = 0 \right\}$$

Autrement dit, \mathcal{E} est l'ensemble des fonctions f négligeables en $+\infty$ devant une certaine fonction puissance $x \mapsto x^{\alpha}$ (α dépendant de f).

III.A - Montrer que ${\bf E}$ est un sous-espace vectoriel de ${\mathscr C}^0(I,{\mathbb C})$

Étant donné $f \in \mathbf{E}$ et $x \in I$, on considère l'équation différentielle $E_f \colon y' - y + f(x) = 0$

III.B - Montrer que E_f admet une unique solution $f_1 \in \mathbf{E}$ définie par la formule $\forall x \in \mathbb{R}, \ f_1(x) = e^x \int_{-\pi}^{+\infty} e^{-t} f(t) dt \ .$

On définit l'application $\Phi \colon \mathbf{E} \to \mathbf{E}$ par $\Phi(f) = f_1$; elle est évidemment linéaire.

III.C - Soit Φ^n la composée n fois de Φ avec elle-même. Pour $f \in \mathbf{E}$, on pose $f_n = \Phi^n(f)$ (avec $f_0 = f = \phi^0(f)$). Montrer que les conditions suivantes sont équivalentes :

- (i) la suite (f_n) converge uniformément sur tout compact de I,
- (ii) la suite (f_n) converge uniformément vers une constante sur tout compact de I,
- (iii) la série $\sum f_n'$ converge uniformément sur tout compact de I .

III.D - Montrer que

$$\forall x \in I, \forall n \in {\rm I\!N}^*, \ f_{n+1}(x) = e^x \int_x^{+\infty} \frac{(t-x)^n}{n!} f(t) e^{-t} dt = \int_0^{+\infty} \frac{u^n}{n!} f(x+u) e^{-u} du$$

(on pourra raisonner par récurrence en écrivant $f_{n+1} = \Phi^n(f_1)$ et intégrer par parties).

III.E - L'application linéaire

$$\Phi: \mathbf{E} \to \mathbf{E}, f \mapsto f_1$$

est-elle injective ? Montrer que l'image de Φ est l'ensemble des applications $g \in \mathcal{C}^1(I, \mathbb{C})$ telles que $g \in \mathcal{E}$ et $g' \in \mathcal{E}$.

Partie IV - Fonctions bornées

Soit ${\mathcal B}$ l'espace des fonctions continues bornées sur IR à valeurs complexes. ${\mathcal B}$ étant un sous espace vectoriel de ${\boldsymbol \epsilon}$ (défini au III), l'application ${\boldsymbol \Phi}$ est définie sur ${\mathcal B}$.

IV.A - Montrer que pour tout $f \in \mathcal{B}$, l'équation différentielle E_f a une unique solution bornée f_1 .

 $extbf{IV.B}$ - On munit \mathscr{B} de la norme

$$||f||_{\infty} = \sup\{|f(t)|, t \in \mathbb{R}\}$$

L'application Φ est-elle continue pour cette norme?

IV.C - Soit \mathscr{L} (resp. \mathscr{L}_0) le sous-espace de \mathscr{B} des fonctions ayant une limite (resp. une limite nulle) en $+\infty$, \mathscr{K} le sous-espace des fonctions constantes. Montrer que \mathscr{L}_0 et \mathscr{K} sont des sous-espaces supplémentaires de \mathscr{L} .

Montrer que ces sous-espaces sont stables par $\boldsymbol{\Phi}$.

IV.D - Montrer, à l'aide du III.D, que pour tout $f \in \mathcal{L}$, la suite (f_n) converge uniformément sur tout intervalle $[a, +\infty[$ vers une constante que l'on précisera (couper l'intervalle d'intégration en exprimant que f a une limite en $+\infty$).

IV.E - Montrer que l'application linéaire $\Phi: f \mapsto f_1$ est une injection de \mathscr{B} dans le sous-espace des fonctions bornées de classe C^1 sur \mathbb{R} .

L'application $x \mapsto \sin(x^2)$ est-elle dans l'image de Φ ? Préciser l'image de Φ .

Partie V - Fonctions périodiques

Soit $\mathcal P$ l'espace des fonctions continues 2π -périodiques.

V.A - Montrer que pour tout $f \in \mathcal{P}$, l'équation différentielle E_f a une unique solution périodique f_1 .

Cette fonction f_1 est-elle somme de sa série de Fourier?

V.B - Quel lien a-t-on entre les coefficients de Fourier complexes $c_k(f)$ et $c_k(f_1)$?

V.C - Soit \mathscr{P}_0 le sous-espace des $f \in \mathscr{P}$ dont la valeur moyenne

$$c_0(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)dt$$

est nulle et $\mathcal K$ le sous-espace des fonctions constantes. Montrer que $\mathcal P_0$ et $\mathcal K$ sont des sous-espaces supplémentaires de $\mathcal P$.

Montrer que pour tout $f \in \mathcal{P}$, la suite (f_n) converge uniformément sur IR vers une constante que l'on précisera.

V.D - Montrer que l'application linéaire $\Phi: f \mapsto f_1$ est une bijection de \mathscr{P} sur le sous-espace \mathscr{P}_1 des fonctions 2π -périodiques de classe C^1 .

V.E - On considère sur \mathscr{P} et \mathscr{P}_1 les normes N_1 et N_2 suivantes :

$$N_{1}(f) = \int_{0}^{2\pi} |f(t)| dt \,, \, N_{2}(f) = \sqrt{\int_{0}^{2\pi} |f(t)|^{2} dt}$$

Les applications Φ et Φ^{-1} sont-elles continues pour la norme N_1 ? Même question pour la norme N_2 .

Partie VI - Fonctions polynomiales

Soit d un entier naturel et \mathscr{FP}_d le \mathbb{C} -espace vectoriel de dimension d+1 des fonctions polynomiales de IR dans \mathbb{C} à coefficients complexes de degré inférieur ou égal à d.

VI.A - Soit une famille $\xi=(\xi_0,...,\xi_d)$ de d + 1 nombres réels distincts. Pour tout $f\in\mathscr{FP}_d$, on pose

$$N_{\xi}(f) = \sup_{0 \le i \le d} |f(\xi_i)|$$

Montrer que c'est une norme sur \mathscr{FP}_d .

 $extbf{VI.B}$ - Soit une suite de fonctions polynomiales de \mathscr{FP}_d

$$x \mapsto f_n(x) = a_{d,n} x^d + a_{d-1,n} x^{d-1} + \dots + a_{0,n}$$

Montrer que les conditions suivantes sont équivalentes :

- (i) la suite (f_n) converge simplement sur \mathbb{C} ,
- (ii) la suite (f_n) converge uniformément sur tout compact de \mathbb{C} ,
- (iii) il existe d+1 nombres réels distincts $\xi_0,...,\xi_d$ tels que, pour tout indice $0 \le i \le d$, la suite $(f_n(\xi_i))$ converge.
- (iv) chacune des d+1 suites numériques $(a_{i,n})_{n \in \mathbb{N}}$, pour $0 \le i \le d$, converge.
- **VI.C** Pour tout $f \in \mathscr{FP}_d$, montrer que l'équation différentielle E_f a une unique solution $f_1 = \Phi(f)$ dans \mathscr{FP}_d .

On note encore $\Phi: f \mapsto f_1$; Φ est considéré ici comme un endomorphisme de $\widehat{\mathscr{FP}}_d$.

VI.D - Pour f fonction polynomiale de degré d, on forme la suite de fonctions polynomiales (f_n) où $f_n = \Phi^n(f)$. Cette suite vérifie-t-elle les conditions équivalentes de VI.B?

