Slack

Design Timing Summary

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	6.300 ns	Worst Hold Slack (WHS):	0.147 ns	Worst Pulse Width Slack (WPWS):	9.500 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	59	Total Number of Endpoints:	59	Total Number of Endpoints:	51

Max delay path

(1.) timing report 顯示的最長路徑資訊如下:

```
可以看到 data path delay = 15.285ns, input delay = 2ns, output delay = 1ns, clock uncertainty = 0.035ns。我给定 clock cycle = 20ns,扣掉 (input delay + data path delay + output delay + clock uncertainty) 後,也就是 20 - 2 - 15.285 -1 - 0.0.35=1.679 是我最整個電路最長路徑的 slack。
```

Slack (MET): 1.679ns (required time - arrival time)

Source: tap_Do[16]

(input port clocked by axis_clk {rise@0.000ns fall@10.000ns

period=20.000ns})

Destination: sm_tdata[31]

(output port clocked by axis_clk {rise@0.000ns fall@10.000ns

period=20.000ns})
Path Group: axis_clk

Path Type: Max at Slow Process Corner

Requirement: 20.000ns (axis_clk rise@20.000ns - axis_clk

rise@0.000ns)

Data Path Delay: 15.285ns (logic 11.586ns (75.799%) route 3.699ns

(24.201%)

Logic Levels: 12 (CARRY4=5 DSP48E1=2 IBUF=1 LUT2=2 LUT6=1 OBUF=1)

Input Delay: 2.000ns

Output Delay: 1.000ns

Clock Uncertainty: 0.035ns ((TSJ² + TIJ²)^{1/2} + DJ) / 2 + PE

Total System Jitter (TSJ): 0.071ns
Total Input Jitter (TIJ): 0.000ns
Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns

(clock axis_clk rise edge)

	clock pessimism	20. 000 0. 000	20.000
20.000	clock uncertainty	-0.035	
19. 965	output delay	-1.000	
18. 965			
18. 965	required time		
17. 285	arrival time		_
	slack		1.679

尋找最大操作頻率與過程心得

在尋找最大操作頻率時,我們必須先找到最長路徑,在觀看合成報告時,可以明顯看到 FIR 的 32bit 乘加運算會造成很大的 data path delay,比對後發現此路徑就是最長的路徑,因此我們必須把 clock cycle time 提高,在這裡我的 data path delay 是 15.285ns 因此,我的最高操作頻率大概落在 16ns/次,也就是 62.5MHz。

在觀看 timing report 時,我發現如果 destination 如果是 latch,那這個 timing report 將不會考慮資料到 latch 的時間,因此不太精準,因此必須將 latch 改掉,如此才能知道更精確的 delay 時間。得知正確的 delay time後,也必須對 clock cycle time 進行修正來維持功能的正常。