Теория Вероятностей и Статистика Статистические оценки и их свойства

Потанин Богдан Станиславович

старший преподаватель, кандидат экономических наук

2021

Мотивация

• Информация о распределении многих случайных величин, таких как зарплата случайно взятого индивида, дневная посещаемость сайта или цена акции, может быть крайне полезна на практике.

- Информация о распределении многих случайных величин, таких как зарплата случайно взятого индивида, дневная посещаемость сайта или цена акции, может быть крайне полезна на практике.
- В теории вероятностей мы обычно предполагаем, что распределение случайных величин нам известно.

- Информация о распределении многих случайных величин, таких как зарплата случайно взятого индивида, дневная посещаемость сайта или цена акции, может быть крайне полезна на практике.
- В теории вероятностей мы обычно предполагаем, что распределение случайных величин нам известно.
- К сожалению, в реальности, распределение соответствующих случайных величин нам, как правило, неизвестно. Поэтому необходимо его аппроксимировать (оценить) при помощи имеющихся у нас данных: о зарплатах опрошенных индивидов, о посещаемости сайта и ценах акций в предшествующие дни и т.д.

- Информация о распределении многих случайных величин, таких как зарплата случайно взятого индивида, дневная посещаемость сайта или цена акции, может быть крайне полезна на практике.
- В теории вероятностей мы обычно предполагаем, что распределение случайных величин нам известно.
- К сожалению, в реальности, распределение соответствующих случайных величин нам, как правило, неизвестно. Поэтому необходимо его аппроксимировать (оценить) при помощи имеющихся у нас данных: о зарплатах опрошенных индивидов, о посещаемости сайта и ценах акций в предшествующие дни и т.д.
- Если аппроксимация неизвестного распределения или, по крайней мере, его отдельных характеристик (математическое ожидание, дисперсия и т.д.) окажется достаточно точна, то на практике вместо неизвестного истинного распределения и его характеристик можно использовать соответствующие аппроксимации.

- Информация о распределении многих случайных величин, таких как зарплата случайно взятого индивида, дневная посещаемость сайта или цена акции, может быть крайне полезна на практике.
- В теории вероятностей мы обычно предполагаем, что распределение случайных величин нам известно.
- К сожалению, в реальности, распределение соответствующих случайных величин нам, как правило, неизвестно. Поэтому необходимо его аппроксимировать (оценить) при помощи имеющихся у нас данных: о зарплатах опрошенных индивидов, о посещаемости сайта и ценах акций в предшествующие дни и т.д.
- Если аппроксимация неизвестного распределения или, по крайней мере, его отдельных характеристик (математическое ожидание, дисперсия и т.д.) окажется достаточно точна, то на практике вместо неизвестного истинного распределения и его характеристик можно использовать соответствующие аппроксимации.
- Математическая статистика, в частности, позволяет находить подобного рода аппроксимации (оценки) и определять их качество (насколько они точны).

Определение

• Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать **выборкой** объема $n \in N$.

- Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать **выборкой** объема $n \in N$.
- ullet Элементы выборки X_i , где $i \in \{1,...,n\}$, именуются **наблюдениями**.

- Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать выборкой объема $n \in N$.
- ullet Элементы выборки X_i , где $i \in \{1,...,n\}$, именуются наблюдениями.
- ullet Если $X_i\sim\Theta(heta)$, то выборка была получена из распределения Θ с вектором параметров heta.

- Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать выборкой объема $n \in N$.
- ullet Элементы выборки X_i , где $i \in \{1,...,n\}$, именуются наблюдениями.
- ullet Если $X_i\sim\Theta(heta)$, то выборка была получена из распределения Θ с вектором параметров heta.
- ullet Конкретные значения $x_1,...,x_n$, которые приняли наблюдения в выборке, именуются **реализациями**.

- Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать выборкой объема $n \in N$.
- ullet Элементы выборки X_i , где $i \in \{1,...,n\}$, именуются наблюдениями.
- ullet Если $X_i\sim\Theta(heta)$, то выборка была получена из распределения Θ с вектором параметров heta.
- Конкретные значения $x_1,...,x_n$, которые приняли наблюдения в выборке, именуются **реализациями**.
- Через $X = (X_1, ..., X_n)$ и $X = (x_1, ..., x_n)$ обозначим векторы, состоящие из наблюдений и их реализаций соответственно.

- Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать выборкой объема $n \in N$.
- ullet Элементы выборки X_i , где $i\in\{1,...,n\}$, именуются **наблюдениями**.
- ullet Если $X_i\sim\Theta(heta)$, то выборка была получена из распределения Θ с вектором параметров heta.
- Конкретные значения $x_1,...,x_n$, которые приняли наблюдения в выборке, именуются **реализациями**.
- Через $X = (X_1, ..., X_n)$ и $X = (x_1, ..., x_n)$ обозначим векторы, состоящие из наблюдений и их реализаций соответственно. Пример:
- Пример
- Лаврентий 3 раза подбрасывает обычную правильную монетку.

- Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать выборкой объема $n \in N$.
- ullet Элементы выборки X_i , где $i \in \{1,...,n\}$, именуются наблюдениями.
- ullet Если $X_i\sim\Theta(heta)$, то выборка была получена из распределения Θ с вектором параметров heta.
- Конкретные значения $x_1, ..., x_n$, которые приняли наблюдения в выборке, именуются **реализациями**.
- Через $X = (X_1, ..., X_n)$ и $X = (x_1, ..., x_n)$ обозначим векторы, состоящие из наблюдений и их реализаций соответственно. Пример:
- Лаврентий 3 раза подбрасывает обычную правильную монетку.
- Число орлов, которое выпадет при i-м броске (ноль или один), где $i \in \{1,2,3\}$, является случайной величиной $X_i \sim Ber(0.5)$ с параметром p=0.5.

- Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать выборкой объема $n \in N$.
- ullet Элементы выборки X_i , где $i \in \{1,...,n\}$, именуются наблюдениями.
- ullet Если $X_i\sim\Theta(heta)$, то выборка была получена из распределения Θ с вектором параметров heta.
- Конкретные значения $x_1,...,x_n$, которые приняли наблюдения в выборке, именуются **реализациями**.
- Через $X = (X_1, ..., X_n)$ и $X = (x_1, ..., x_n)$ обозначим векторы, состоящие из наблюдений и их реализаций соответственно. Пример:
- Лаврентий 3 раза подбрасывает обычную правильную монетку.
- Число орлов, которое выпадет при i-м броске (ноль или один), где $i \in \{1,2,3\}$, является случайной величиной $X_i \sim Ber(0.5)$ с параметром p=0.5.
- Поскольку X_1, X_2 и X_3 независимы и одинаково распределены, то они формируют выборку объема n=3 из распределения Ber(0.5).

- Последовательность независимых, одинаково распределенных случайных величин $X_1, X_2, ..., X_n$ будем именовать выборкой объема $n \in N$.
- ullet Элементы выборки X_i , где $i \in \{1,...,n\}$, именуются наблюдениями.
- ullet Если $X_i\sim\Theta(heta)$, то выборка была получена из распределения Θ с вектором параметров heta.
- Конкретные значения $x_1,...,x_n$, которые приняли наблюдения в выборке, именуются **реализациями**.
- Через $X = (X_1, ..., X_n)$ и $X = (x_1, ..., x_n)$ обозначим векторы, состоящие из наблюдений и их реализаций соответственно. Пример:
- Лаврентий 3 раза подбрасывает обычную правильную монетку.
- Число орлов, которое выпадет при i-м броске (ноль или один), где $i \in \{1,2,3\}$, является случайной величиной $X_i \sim Ber(0.5)$ с параметром p=0.5.
- Поскольку X_1, X_2 и X_3 независимы и одинаково распределены, то они формируют выборку объема n=3 из распределения Ber(0.5).
- Допустим, что первые два раза выпал орел, а последний раз решка. В таком случае реализации выборки будут иметь вид $x_1=1, x_2=1$ и $x_3=0$, что можно кратко записать как x=(1,1,0).

Определение и некоторые свойства

• Выборочное среднее является средним значением по выборке $X_1,...,X_n$:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Определение и некоторые свойства

• Выборочное среднее является средним значением по выборке $X_1,...,X_n$:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Реализация выборочного среднего рассчитывается по реализациям наблюдений:

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

Определение и некоторые свойства

ullet Выборочное среднее является средним значением по выборке $X_1,...,X_n$:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Реализация выборочного среднего рассчитывается по реализациям наблюдений:

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

• Пользуясь независимостью и одинаковой распределенностью элементов выборки нетрудно показать:

$$E(\overline{X}_n) = E(X_1)$$
 $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$

Определение и некоторые свойства

ullet Выборочное среднее является средним значением по выборке $X_1,...,X_n$:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Реализация выборочного среднего рассчитывается по реализациям наблюдений:

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

• Пользуясь независимостью и одинаковой распределенностью элементов выборки нетрудно показать:

$$E(\overline{X}_n) = E(X_1)$$
 $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$

Пример:

Имеется выборка объема n=3 из экспоненциального распределения с параметром $\lambda=0.2$. Найдем математическое ожидание, дисперсию и реализацию выборочного среднего, если известно, что x=(1,6,3).

Определение и некоторые свойства

ullet Выборочное среднее является средним значением по выборке $X_1,...,X_n$:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Реализация выборочного среднего рассчитывается по реализациям наблюдений:

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

• Пользуясь независимостью и одинаковой распределенностью элементов выборки нетрудно показать:

$$E(\overline{X}_n) = E(X_1)$$
 $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$

Пример:

Имеется выборка объема n=3 из экспоненциального распределения с параметром $\lambda=0.2$. Найдем математическое ожидание, дисперсию и реализацию выборочного среднего, если известно, что x=(1,6,3).

$$E(\overline{X}_3) = E(X_1) = 1/0.2 = 5$$

Определение и некоторые свойства

• Выборочное среднее является средним значением по выборке $X_1,...,X_n$:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Реализация выборочного среднего рассчитывается по реализациям наблюдений:

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

• Пользуясь независимостью и одинаковой распределенностью элементов выборки нетрудно показать:

$$E(\overline{X}_n) = E(X_1)$$
 $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$

Пример:

Имеется выборка объема n=3 из экспоненциального распределения с параметром $\lambda=0.2$. Найдем математическое ожидание, дисперсию и реализацию выборочного среднего, если известно, что x=(1,6,3).

$$E(\overline{X}_3) = E(X_1) = 1/0.2 = 5$$
 $Var(\overline{X}_3) = (1/0.2^2)/3 = 25/3$

Определение и некоторые свойства

Выборочное среднее является средним значением по выборке $X_1, ..., X_n$:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Реализация выборочного среднего рассчитывается по реализациям наблюдений:

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

Пользуясь независимостью и одинаковой распределенностью элементов выборки нетрудно показать:

$$E(\overline{X}_n) = E(X_1)$$
 $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$

Пример:

Имеется выборка объема n=3 из экспоненциального распределения с параметром $\lambda=0.2$. Найдем математическое ожидание, дисперсию и реализацию выборочного среднего, если известно, что x = (1, 6, 3).

$$E(\overline{X}_3) = E(X_1) = 1/0.2 = 5$$

$$E(\overline{X}_3) = E(X_1) = 1/0.2 = 5$$
 $Var(\overline{X}_3) = (1/0.2^2)/3 = 25/3$

$$\overline{x}_3 = (1+6+3)/3 = 10/3$$

Определение

ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta .

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta.
- ullet Для краткости обозначим $\hat{ heta}=\hat{ heta}\left(X_1,...,X_n
 ight)$ и $\hat{ heta}(x)=\hat{ heta}\left(x_1,...,x_n
 ight)$.

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta.
- ullet Для краткости обозначим $\hat{ heta}=\hat{ heta}\left(X_1,...,X_n
 ight)$ и $\hat{ heta}(x)=\hat{ heta}\left(x_1,...,x_n
 ight)$.
- Практический смысл: реализация оценки $\hat{\theta}(x)$ может рассматриваться в качестве приблизительного значения параметра θ .

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta.
- ullet Для краткости обозначим $\hat{ heta}=\hat{ heta}\left(X_1,...,X_n
 ight)$ и $\hat{ heta}(x)=\hat{ heta}\left(x_1,...,x_n
 ight)$.
- Практический смысл: реализация оценки $\hat{\theta}\left(x\right)$ может рассматриваться в качестве приблизительного значения параметра θ . Пример:
- ullet Лаврентий 5 раза подбрасывает монетку, выпадающую орлом с вероятностью p.

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta.
- ullet Для краткости обозначим $\hat{ heta}=\hat{ heta}\left(X_1,...,X_n
 ight)$ и $\hat{ heta}(extit{x})=\hat{ heta}\left(x_1,...,x_n
 ight)$.
- Практический смысл: реализация оценки $\hat{\theta}\left(x\right)$ может рассматриваться в качестве приблизительного значения параметра θ . Пример:
- Лаврентий 5 раза подбрасывает монетку, выпадающую орлом с вероятностью р.
- Число орлов, которое выпадет при i-м броске (ноль или один), где $i \in \{1,...,5\}$, является случайной величиной $X_i \sim Ber(p)$ с параметром $p \in (0,1)$.

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta.
- ullet Для краткости обозначим $\hat{ heta}=\hat{ heta}\left(X_1,...,X_n
 ight)$ и $\hat{ heta}(x)=\hat{ heta}\left(x_1,...,x_n
 ight)$.
- Практический смысл: реализация оценки $\hat{\theta}(x)$ может рассматриваться в качестве приблизительного значения параметра θ . Пример:
- Лаврентий 5 раза подбрасывает монетку, выпадающую орлом с вероятностью р.
- Число орлов, которое выпадет при i-м броске (ноль или один), где $i \in \{1,...,5\}$, является случайной величиной $X_i \sim Ber(p)$ с параметром $p \in (0,1)$.
- Броски Лаврентия формируют выборку $X_1,...,X_5$ объема n=5 из распределения Бернулли Ber(p) с параметром $p\in (0,1)$.

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta.
- ullet Для краткости обозначим $\hat{ heta}=\hat{ heta}\left(X_1,...,X_n
 ight)$ и $\hat{ heta}(x)=\hat{ heta}\left(x_1,...,x_n
 ight)$.
- Практический смысл: реализация оценки $\hat{\theta}(x)$ может рассматриваться в качестве приблизительного значения параметра θ . Пример:
- Лаврентий 5 раза подбрасывает монетку, выпадающую орлом с вероятностью р.
- Число орлов, которое выпадет при i-м броске (ноль или один), где $i \in \{1,...,5\}$, является случайной величиной $X_i \sim Ber(p)$ с параметром $p \in (0,1)$.
- Броски Лаврентия формируют выборку $X_1,...,X_5$ объема n=5 из распределения Бернулли Ber(p) с параметром $p\in(0,1)$.
- ullet Рассмотрим оценку $\hat{p}=\overline{X}_5$ и ее реализацию $\hat{p}(x)=\overline{x}_5$.

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta.
- ullet Для краткости обозначим $\hat{ heta}=\hat{ heta}\left(X_1,...,X_n
 ight)$ и $\hat{ heta}(extit{x})=\hat{ heta}\left(x_1,...,x_n
 ight)$.
- Практический смысл: реализация оценки $\hat{\theta}(x)$ может рассматриваться в качестве приблизительного значения параметра θ . Пример:
- Лаврентий 5 раза подбрасывает монетку, выпадающую орлом с вероятностью р.
- ullet Число орлов, которое выпадет при i-м броске (ноль или один), где $i\in\{1,...,5\}$, является случайной величиной $X_i\sim Ber(p)$ с параметром $p\in(0,1)$.
- Броски Лаврентия формируют выборку $X_1,...,X_5$ объема n=5 из распределения Бернулли Ber(p) с параметром $p\in(0,1)$.
- ullet Рассмотрим оценку $\hat{p}=\overline{X}_5$ и ее реализацию $\hat{p}(x)=\overline{x}_5$.
- ullet Пусть монетка 3 раза выпала орлом и 2 раза решкой, например, x=(1,1,0,1,0). Тогда $\hat{
 ho}(x)=(1+1+0+1+0)/5=0.6.$

- ullet Любая функция от выборки $T(X_1,...,X_n)$, не зависящая от параметра heta, именуется **статистикой**.
- ullet Пусть $X_i\sim\Theta(heta)$, где $heta\in R$. Статистика $\hat{ heta}\left(X_1,...,X_n
 ight)$ может рассматриваться в качестве **оценки** параметра heta.
- ullet Для краткости обозначим $\hat{ heta}=\hat{ heta}\left(X_1,...,X_n
 ight)$ и $\hat{ heta}(extit{x})=\hat{ heta}\left(x_1,...,x_n
 ight)$.
- Практический смысл: реализация оценки $\hat{\theta}(x)$ может рассматриваться в качестве приблизительного значения параметра θ . Пример:
- Лаврентий 5 раза подбрасывает монетку, выпадающую орлом с вероятностью р.
- Число орлов, которое выпадет при i-м броске (ноль или один), где $i \in \{1,...,5\}$, является случайной величиной $X_i \sim Ber(p)$ с параметром $p \in (0,1)$.
- Броски Лаврентия формируют выборку $X_1,...,X_5$ объема n=5 из распределения Бернулли Ber(p) с параметром $p\in(0,1)$.
- ullet Рассмотрим оценку $\hat{p}=\overline{X}_5$ и ее реализацию $\hat{p}(x)=\overline{x}_5$.
- ullet Пусть монетка 3 раза выпала орлом и 2 раза решкой, например, x=(1,1,0,1,0). Тогда $\hat{
 ho}(x)=(1+1+0+1+0)/5=0.6.$
- Если Лаврентий не знает истинной вероятности p, с которой монетка выпадает орлом, то он может предположить, что она приблизительно совпадает с реализацией ее оценки \hat{p} , то есть $p \approx \hat{p} = 0.6$.

Несмещенность

• Оценка $\hat{\theta}$ параметра θ является **несмещенной**, если при любом допустимом для распределения Θ (из которого была получена выборка) значении параметра θ :

$$E(\hat{\theta}) = \theta$$

Несмещенность

• Оценка $\hat{\theta}$ параметра θ является **несмещенной**, если при любом допустимом для распределения Θ (из которого была получена выборка) значении параметра θ :

$$E(\hat{\theta}) = \theta$$

ullet Разницу $E(\hat{ heta}) - heta$ часто именуют **величиной смещения** оценки $\hat{ heta}$.

Несмещенность

• Оценка $\hat{\theta}$ параметра θ является **несмещенной**, если при любом допустимом для распределения Θ (из которого была получена выборка) значении параметра θ :

$$E(\hat{\theta}) = \theta$$

- ullet Разницу $E(\hat{ heta}) heta$ часто именуют **величиной смещения** оценки $\hat{ heta}$. Примеры:
- ullet В примере с Лаврентием оценка \hat{p} является несмещенной оценкой параметра p:

$$E(\hat{p}) = E(\overline{X}_5) = E(X_1) = p$$

Несмещенность

• Оценка $\hat{\theta}$ параметра θ является **несмещенной**, если при любом допустимом для распределения Θ (из которого была получена выборка) значении параметра θ :

$$E(\hat{\theta}) = \theta$$

- ullet Разницу $E(\hat{ heta}) heta$ часто именуют **величиной смещения** оценки $\hat{ heta}$. Примеры:
- ullet В примере с Лаврентием оценка \hat{p} является несмещенной оценкой параметра p:

$$E(\hat{p}) = E(\overline{X}_5) = E(X_1) = p$$

Покажем, что другая оценка $\hat{p}^* = X_1 \times ... \times X_5$ окажется смещенной:

$$E(\hat{p}^*) = E(X_1) \times ... \times E(X_5) = p \times p \times p \times p \times p = p^5 \neq p$$

Несмещенность

• Оценка $\hat{\theta}$ параметра θ является **несмещенной**, если при любом допустимом для распределения Θ (из которого была получена выборка) значении параметра θ :

$$E(\hat{\theta}) = \theta$$

- ullet Разницу $E(\hat{ heta}) heta$ часто именуют величиной смещения оценки $\hat{ heta}$. Примеры:
- ullet В примере с Лаврентием оценка \hat{p} является несмещенной оценкой параметра p:

$$E(\hat{p}) = E(\overline{X}_5) = E(X_1) = p$$

Покажем, что другая оценка $\hat{p}^* = X_1 \times ... \times X_5$ окажется смещенной:

$$E(\hat{p}^*) = E(X_1) \times ... \times E(X_5) = p \times p \times p \times p \times p \times p = p^5 \neq p$$

• Имеется выборка объема n=3 из распределения Пуассона с параметром λ . Проверьте, являются ли несмещенными оценки $\hat{\lambda}_1=(X_1+X_2+X_3),\,\hat{\lambda}_2=(X_1+X_2-X_3)$ и $\hat{\lambda}_3=(X_1X_2+X_3).$

Несмещенность

• Оценка $\hat{\theta}$ параметра θ является **несмещенной**, если при любом допустимом для распределения Θ (из которого была получена выборка) значении параметра θ :

$$E(\hat{\theta}) = \theta$$

- ullet Разницу $E(\hat{ heta}) heta$ часто именуют величиной смещения оценки $\hat{ heta}$. Примеры:
- ullet В примере с Лаврентием оценка \hat{p} является несмещенной оценкой параметра p:

$$E(\hat{p}) = E(\overline{X}_5) = E(X_1) = p$$

Покажем, что другая оценка $\hat{p}^* = X_1 \times ... \times X_5$ окажется смещенной:

$$E(\hat{p}^*) = E(X_1) \times ... \times E(X_5) = p \times p \times p \times p \times p \times p = p^5 \neq p$$

• Имеется выборка объема n=3 из распределения Пуассона с параметром λ . Проверьте, являются ли несмещенными оценки $\hat{\lambda}_1=(X_1+X_2+X_3),~\hat{\lambda}_2=(X_1+X_2-X_3)$ и $\hat{\lambda}_3=(X_1X_2+X_3).$ Решение:

$$E(\hat{\lambda}_1) = E(X_1) + E(X_2) + E(X_3) = \lambda + \lambda + \lambda = 3\lambda \neq \lambda \implies$$
 смещенная

Несмещенность

• Оценка $\hat{\theta}$ параметра θ является **несмещенной**, если при любом допустимом для распределения Θ (из которого была получена выборка) значении параметра θ :

$$E(\hat{\theta}) = \theta$$

- ullet Разницу $E(\hat{ heta}) heta$ часто именуют величиной смещения оценки $\hat{ heta}$. Примеры:
- ullet В примере с Лаврентием оценка \hat{p} является несмещенной оценкой параметра p:

$$E(\hat{p}) = E(\overline{X}_5) = E(X_1) = p$$

Покажем, что другая оценка $\hat{p}^* = X_1 \times ... \times X_5$ окажется смещенной:

$$E(\hat{p}^*) = E(X_1) \times ... \times E(X_5) = p \times p \times p \times p \times p \times p = p^5 \neq p$$

• Имеется выборка объема n=3 из распределения Пуассона с параметром λ . Проверьте, являются ли несмещенными оценки $\hat{\lambda}_1=(X_1+X_2+X_3),~\hat{\lambda}_2=(X_1+X_2-X_3)$ и $\hat{\lambda}_3=(X_1X_2+X_3).$ Решение:

$$E(\hat{\lambda}_1) = E(X_1) + E(X_2) + E(X_3) = \lambda + \lambda + \lambda = 3\lambda \neq \lambda \implies$$
 смещенная $E(\hat{\lambda}_2) = E(X_1) + E(X_2) - E(X_3) = \lambda + \lambda - \lambda = \lambda \implies$ несмещенная

Несмещенность

• Оценка $\hat{\theta}$ параметра θ является **несмещенной**, если при любом допустимом для распределения Θ (из которого была получена выборка) значении параметра θ :

$$E(\hat{\theta}) = \theta$$

- ullet Разницу $E(\hat{ heta}) heta$ часто именуют величиной смещения оценки $\hat{ heta}$. Примеры:
- ullet В примере с Лаврентием оценка \hat{p} является несмещенной оценкой параметра p:

$$E(\hat{p}) = E(\overline{X}_5) = E(X_1) = p$$

Покажем, что другая оценка $\hat{p}^* = X_1 \times ... \times X_5$ окажется смещенной:

$$E(\hat{p}^*) = E(X_1) \times ... \times E(X_5) = p \times p \times p \times p \times p \times p = p^5 \neq p$$

• Имеется выборка объема n=3 из распределения Пуассона с параметром λ . Проверьте, являются ли несмещенными оценки $\hat{\lambda}_1=(X_1+X_2+X_3),~\hat{\lambda}_2=(X_1+X_2-X_3)$ и $\hat{\lambda}_3=(X_1X_2+X_3).$ Решение:

$$E(\hat{\lambda}_1) = E(X_1) + E(X_2) + E(X_3) = \lambda + \lambda + \lambda = 3\lambda \neq \lambda \implies$$
 смещенная $E(\hat{\lambda}_2) = E(X_1) + E(X_2) - E(X_3) = \lambda + \lambda - \lambda = \lambda \implies$ несмещенная $E(\hat{\lambda}_3) = E(X_1)E(X_2) + E(X_3) = \lambda^2 + \lambda \neq \lambda \implies$ смещенная

Асимптотическая несмещенность

• Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.

Асимптотическая несмещенность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется асимптотически несмещенной, если:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$

Асимптотическая несмещенность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется асимптотически несмещенной, если:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$

 Последовательность несмещенных оценок всегда будет асимптотически несмещенной, а обратное – не всегда верно.

Асимптотическая несмещенность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется асимптотически несмещенной, если:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$

• Последовательность несмещенных оценок всегда будет асимптотически несмещенной, а обратное — не всегда верно.

Пример:

Вы формируете выборку, записывая число посетителей магазина в выходные дни, которые подчиняется распределению Пуассона с параметром λ . Определите, будет ли ваша последовательность оценок $\hat{\lambda}_n = \frac{n}{n+1}\overline{X}_n$ асимптотически несмещенной, а также будут ли оценки этой последовательности несмещенными.

Асимптотическая несмещенность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется асимптотически несмещенной, если:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$

• Последовательность несмещенных оценок всегда будет асимптотически несмещенной, а обратное – не всегда верно.

Пример:

Вы формируете выборку, записывая число посетителей магазина в выходные дни, которые подчиняется распределению Пуассона с параметром λ . Определите, будет ли ваша последовательность оценок $\hat{\lambda}_n = \frac{n}{n+1}\overline{X}_n$ асимптотически несмещенной, а также будут ли оценки этой последовательности несмещенными.

Решение: асимптотическая несмещенность соблюдается, поскольку:

$$\lim_{n\to\infty} E(\hat{\lambda}_n) = \lim_{n\to\infty} E\left(\frac{n}{n+1}\overline{X}_n\right) = \lim_{n\to\infty} \frac{n}{n+1} E\left(\overline{X}_n\right) = 1 \times \lambda = \lambda$$

Асимптотическая несмещенность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется асимптотически несмещенной, если:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$

• Последовательность несмещенных оценок всегда будет асимптотически несмещенной, а обратное – не всегда верно.

Пример:

Вы формируете выборку, записывая число посетителей магазина в выходные дни, которые подчиняется распределению Пуассона с параметром λ . Определите, будет ли ваша последовательность оценок $\hat{\lambda}_n = \frac{n}{n+1}\overline{X}_n$ асимптотически несмещенной, а также будут ли оценки этой последовательности несмещенными.

Решение: асимптотическая несмещенность соблюдается, поскольку:

$$\lim_{n\to\infty} E(\hat{\lambda}_n) = \lim_{n\to\infty} E\left(\frac{n}{n+1}\overline{X}_n\right) = \lim_{n\to\infty} \frac{n}{n+1} E\left(\overline{X}_n\right) = 1 \times \lambda = \lambda$$

При этом оценки данной последовательности являются смещенными:

$$E(\hat{\lambda}_n) = \frac{n}{n+1}\lambda \neq \lambda$$

Состоятельность

• Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.

Состоятельность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется состоятельной, если $\hat{\theta}_n \xrightarrow{p} \theta$. Напомним, что для этого достаточно выполнения следующих условий:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$
 $\lim_{n\to\infty} Var(\hat{\theta}_n) = 0$

Состоятельность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется **состоятельной**, если $\hat{\theta}_n \xrightarrow{p} \theta$. Напомним, что для этого достаточно выполнения следующих условий:

$$\lim_{\substack{n\to\infty\\n\to\infty}} E(\hat{\theta}_n) = \theta$$

$$\lim_{\substack{n\to\infty\\n\to\infty}} Var(\hat{\theta}_n) = 0$$

Пример:

• Лаврентий бесконечное число раз подбрасывает монетку. Проверьте, будут ли состоятельными последовательности оценок $\hat{p}_n = \overline{X}_n$ и $\hat{p}_n^* = X_1 \times ... \times X_n$.

Состоятельность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется состоятельной, если $\hat{\theta}_n \xrightarrow{p} \theta$. Напомним, что для этого достаточно выполнения следующих условий:

$$\lim_{\substack{n\to\infty\\n\to\infty}} E(\hat{\theta}_n) = \theta$$

$$\lim_{\substack{n\to\infty\\n\to\infty}} Var(\hat{\theta}_n) = 0$$

Пример:

• Лаврентий бесконечное число раз подбрасывает монетку. Проверьте, будут ли состоятельными последовательности оценок $\hat{p}_n = \overline{X}_n$ и $\hat{p}_n^* = X_1 \times ... \times X_n$.

Решение: первая последовательность оценок состоятельная, поскольку соблюдены оба условия:

$$\lim_{n\to\infty} E(\hat{p}_n) = \lim_{n\to\infty} E(X_n) = \lim_{n\to\infty} p = p$$

Состоятельность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется состоятельной, если $\hat{\theta}_n \xrightarrow{p} \theta$. Напомним, что для этого достаточно выполнения следующих условий:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$

 $\lim_{n\to\infty} Var(\hat{\theta}_n) = 0$

Пример:

• Лаврентий бесконечное число раз подбрасывает монетку. Проверьте, будут ли состоятельными последовательности оценок $\hat{p}_n = \overline{X}_n$ и $\hat{p}_n^* = X_1 \times ... \times X_n$.

Решение: первая последовательность оценок состоятельная, поскольку соблюдены оба условия:

$$\lim_{n \to \infty} E(\hat{p}_n) = \lim_{n \to \infty} E(X_n) = \lim_{n \to \infty} p = p$$

$$\lim_{n \to \infty} Var(\hat{p}_n) = \lim_{n \to \infty} Var(\overline{X}_n) = \lim_{n \to \infty} Var(X_1)/n = 0$$

Состоятельность

- Рассмотрим бесконечную последовательность оценок $\hat{\theta_1}(X_1), \hat{\theta_2}(X_1, X_2), ...$, где n-я оценка $\hat{\theta_n}(X_1, ..., X_n)$ получена по выборке $X_1, ..., X_n$.
- Данная последовательность оценок именуется состоятельной, если $\hat{\theta}_n \xrightarrow{p} \theta$. Напомним, что для этого достаточно выполнения следующих условий:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$
 $\lim_{n\to\infty} Var(\hat{\theta}_n) = 0$

Пример:

• Лаврентий бесконечное число раз подбрасывает монетку. Проверьте, будут ли состоятельными последовательности оценок $\hat{p}_n = \overline{X}_n$ и $\hat{p}_n^* = X_1 \times ... \times X_n$.

Решение: первая последовательность оценок состоятельная, поскольку соблюдены оба условия:

$$\lim_{n \to \infty} E(\hat{p}_n) = \lim_{n \to \infty} E(X_n) = \lim_{n \to \infty} p = p$$

$$\lim_{n \to \infty} Var(\hat{p}_n) = \lim_{n \to \infty} Var(\overline{X}_n) = \lim_{n \to \infty} Var(X_1)/n = 0$$

Вторая последовательность оценок несостоятельная, так как не соблюдено одно из условий:

$$\lim_{n\to\infty} E(\hat{p}_n^*) = \lim_{n\to\infty} E(X_1) \times ... \times E(X_n) = \lim_{n\to\infty} p^n = 0 \neq p$$

Эффективность оценок

• Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$\mathit{MSE}(\hat{\theta}) = \mathit{E}((\hat{\theta} - \theta)^2) = \mathit{Var}(\hat{\theta}) + \mathit{E}(\hat{\theta} - \theta)^2$$

Эффективность оценок

Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E(\hat{\theta} - \theta)$$

 $\mathit{MSE}(\hat{\theta}) = \mathit{E}((\hat{\theta} - \theta)^2) = \mathit{Var}(\hat{\theta}) + \mathit{E}(\hat{\theta} - \theta)^2$ Чем меньше $\mathit{MSE}(\hat{\theta})$, тем выше эффективность оценки $\hat{\theta}$.

Эффективность оценок

• Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E(\hat{\theta} - \theta)^2$$

Чем меньше $MSE(\hat{ heta})$, тем выше эффективность оценки $\hat{ heta}$.

ullet Если оценка $\hat{ heta}$ несмещенная, то $\mathit{MSE}(\hat{ heta}) = \mathit{Var}(\hat{ heta}).$

Эффективность оценок

• Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E(\hat{\theta} - \theta)^2$$

Чем меньше $MSE(\hat{ heta})$, тем выше эффективность оценки $\hat{ heta}$.

- ullet Если оценка $\hat{ heta}$ несмещенная, то $\mathit{MSE}(\hat{ heta}) = \mathit{Var}(\hat{ heta}).$
- Рассмотрим множество оценок \mathcal{K} , часто именуемых классом. Оценка $\hat{\theta}$ именуется эффективной, если она обладает наибольшей эффективностью (наименьшим MSE) среди всех оценок при любом допустимом θ :

$$\textit{MSE}(\hat{\theta}) \leq \textit{MSE}(\hat{\theta}^*), \forall \hat{\theta}^* \in \mathcal{K}$$

Эффективность оценок

• Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E(\hat{\theta} - \theta)^2$$

Чем меньше $MSE(\hat{ heta})$, тем выше эффективность оценки $\hat{ heta}$.

- ullet Если оценка $\hat{ heta}$ несмещенная, то $MSE(\hat{ heta}) = Var(\hat{ heta}).$
- Рассмотрим множество оценок \mathcal{K} , часто именуемых классом. Оценка $\hat{\theta}$ именуется эффективной, если она обладает наибольшей эффективностью (наименьшим MSE) среди всех оценок при любом допустимом θ :

$$MSE(\hat{\theta}) \leq MSE(\hat{\theta}^*), \forall \hat{\theta}^* \in \mathcal{K}$$

Пример:

• В примере с Лаврентием рассмотрим оценки $\hat{p}_1=(X_1+X_2)/2,~\hat{p}_2=(2X_1-X_2)$ и $\hat{p}_3=3X_1$, формирующие класс $\mathcal{K}=\{\hat{p}_1,\hat{p}_2,\hat{p}_3\}$. Найдите эффективную оценку.

Эффективность оценок

• Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E(\hat{\theta} - \theta)^2$$

Чем меньше $MSE(\hat{ heta})$, тем выше эффективность оценки $\hat{ heta}$.

- ullet Если оценка $\hat{ heta}$ несмещенная, то $MSE(\hat{ heta}) = Var(\hat{ heta}).$
- Рассмотрим множество оценок \mathcal{K} , часто именуемых классом. Оценка $\hat{\theta}$ именуется эффективной, если она обладает наибольшей эффективностью (наименьшим MSE) среди всех оценок при любом допустимом θ :

$$MSE(\hat{\theta}) \leq MSE(\hat{\theta}^*), \forall \hat{\theta}^* \in \mathcal{K}$$

Пример:

• В примере с Лаврентием рассмотрим оценки $\hat{\rho}_1 = (X_1 + X_2)/2$, $\hat{\rho}_2 = (2X_1 - X_2)$ и $\hat{\rho}_3 = 3X_1$, формирующие класс $\mathcal{K} = \{\hat{\rho}_1, \hat{\rho}_2, \hat{\rho}_3\}$. Найдите эффективную оценку.

Решение: для краткости воспользуемся несмещенностью первых двух оценок:

$$MSE(\hat{p}_1) = Var(\hat{p}) = (Var(X_1) + Var(X_2))/4 = 0.5p(1-p)$$

Эффективность оценок

• Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E(\hat{\theta} - \theta)^2$$

Чем меньше $MSE(\hat{ heta})$, тем выше эффективность оценки $\hat{ heta}$.

- ullet Если оценка $\hat{ heta}$ несмещенная, то $\mathit{MSE}(\hat{ heta}) = \mathit{Var}(\hat{ heta}).$
- Рассмотрим множество оценок \mathcal{K} , часто именуемых классом. Оценка $\hat{\theta}$ именуется эффективной, если она обладает наибольшей эффективностью (наименьшим MSE) среди всех оценок при любом допустимом θ :

$$MSE(\hat{\theta}) \leq MSE(\hat{\theta}^*), \forall \hat{\theta}^* \in \mathcal{K}$$

Пример:

• В примере с Лаврентием рассмотрим оценки $\hat{\rho}_1 = (X_1 + X_2)/2$, $\hat{\rho}_2 = (2X_1 - X_2)$ и $\hat{\rho}_3 = 3X_1$, формирующие класс $\mathcal{K} = \{\hat{\rho}_1, \hat{\rho}_2, \hat{\rho}_3\}$. Найдите эффективную оценку.

Решение: для краткости воспользуемся несмещенностью первых двух оценок:

$$MSE(\hat{p}_1) = Var(\hat{p}) = (Var(X_1) + Var(X_2))/4 = 0.5p(1-p)$$

 $MSE(\hat{p}_2) = Var(\hat{p}_2) = 4Var(X_1) + Var(X_2) = 5p(1-p)$

Эффективность оценок

• Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E(\hat{\theta} - \theta)^2$$

Чем меньше $MSE(\hat{ heta})$, тем выше эффективность оценки $\hat{ heta}$.

- ullet Если оценка $\hat{ heta}$ несмещенная, то $MSE(\hat{ heta}) = Var(\hat{ heta}).$
- Рассмотрим множество оценок \mathcal{K} , часто именуемых классом. Оценка $\hat{\theta}$ именуется эффективной, если она обладает наибольшей эффективностью (наименьшим MSE) среди всех оценок при любом допустимом θ :

$$MSE(\hat{\theta}) \leq MSE(\hat{\theta}^*), \forall \hat{\theta}^* \in \mathcal{K}$$

Пример:

• В примере с Лаврентием рассмотрим оценки $\hat{\rho}_1=(X_1+X_2)/2,~\hat{\rho}_2=(2X_1-X_2)$ и $\hat{\rho}_3=3X_1$, формирующие класс $\mathcal{K}=\{\hat{\rho}_1,\hat{\rho}_2,\hat{\rho}_3\}$. Найдите эффективную оценку.

Решение: для краткости воспользуемся несмещенностью первых двух оценок:

$$\begin{split} \textit{MSE}(\hat{p}_1) &= \textit{Var}(\hat{p}) = \left(\textit{Var}(X_1) + \textit{Var}(X_2)\right)/4 = 0.5p(1-p) \\ \textit{MSE}(\hat{p}_2) &= \textit{Var}(\hat{p}_2) = 4\textit{Var}(X_1) + \textit{Var}(X_2) = 5p(1-p) \\ \textit{MSE}(\hat{p}_3) &= \textit{Var}(3X_1) + E(3X_1-p)^2 = 9p(1-p) + (3p-p)^2 = 5p(1-p) + 4p \end{split}$$

Эффективность оценок

• Эффективность оценок отражает их точность в соответствии с критерием ожидаемого среднеквадратического отклонения (MSE) от истинного значения параметра:

$$MSE(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = Var(\hat{\theta}) + E(\hat{\theta} - \theta)^2$$

Чем меньше $MSE(\hat{ heta})$, тем выше эффективность оценки $\hat{ heta}$.

- ullet Если оценка $\hat{ heta}$ несмещенная, то $\mathit{MSE}(\hat{ heta}) = \mathit{Var}(\hat{ heta}).$
- Рассмотрим множество оценок \mathcal{K} , часто именуемых классом. Оценка $\hat{\theta}$ именуется эффективной, если она обладает наибольшей эффективностью (наименьшим MSE) среди всех оценок при любом допустимом θ :

$$MSE(\hat{\theta}) \leq MSE(\hat{\theta}^*), \forall \hat{\theta}^* \in \mathcal{K}$$

Пример:

• В примере с Лаврентием рассмотрим оценки $\hat{\rho}_1=(X_1+X_2)/2,~\hat{\rho}_2=(2X_1-X_2)$ и $\hat{\rho}_3=3X_1$, формирующие класс $\mathcal{K}=\{\hat{\rho}_1,\hat{\rho}_2,\hat{\rho}_3\}$. Найдите эффективную оценку.

Решение: для краткости воспользуемся несмещенностью первых двух оценок:

$$MSE(\hat{p}_1) = Var(\hat{p}) = (Var(X_1) + Var(X_2))/4 = 0.5p(1-p)$$

$$MSE(\hat{p}_2) = Var(\hat{p}_2) = 4Var(X_1) + Var(X_2) = 5p(1-p)$$

$$MSE(\hat{p}_3) = Var(3X_1) + E(3X_1 - p)^2 = 9p(1-p) + (3p-p)^2 = 5p(1-p) + 4p$$

Поскольку $0.5p(1-p) \le 5p(1-p) \le 5p(1-p) + 4p$ при любом допустимом значении параметра p, то есть при $p \in (0,1)$, то оценка \hat{p}_1 является эффективной в классе \mathcal{K} .

Определение и свойства

• Рассмотрим оценку $\hat{g}(\theta)$ функции $g(\theta)$ от параметра θ . Ее свойства определяются по аналогии с рассмотренными ранее свойствами оценки параметра.

Определение и свойства

- Рассмотрим оценку $\hat{g}(\theta)$ функции $g(\theta)$ от параметра θ . Ее свойства определяются по аналогии с рассмотренными ранее свойствами оценки параметра.
- Обычно в качестве функций от параметров рассматривают различные характеристики распределений, такие как математическое ожидание, дисперсия, мода, медиана, квантили, вероятности и т.д.

Определение и свойства

- Рассмотрим оценку $\hat{g}(\theta)$ функции $g(\theta)$ от параметра θ . Ее свойства определяются по аналогии с рассмотренными ранее свойствами оценки параметра.
- Обычно в качестве функций от параметров рассматривают различные характеристики распределений, такие как математическое ожидание, дисперсия, мода, медиана, квантили, вероятности и т.д.
- Если бесконечная последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, \dots$ является состоятельной для параметра $g(\theta)$, то, по теореме Манна-Вальда, последовательность непрерывных функций от этих оценок $g(\hat{\theta}_1), g(\hat{\theta}_2), \dots$ будет состоятельной для функции от параметра $g(\theta)$. То есть для непрерывной функции $g(\theta)$ из $\hat{\theta}_n \stackrel{P}{\to} \theta$ следует $g(\hat{\theta}_n) \stackrel{P}{\to} g(\theta)$.

Определение и свойства

- Рассмотрим оценку $\hat{g}(\theta)$ функции $g(\theta)$ от параметра θ . Ее свойства определяются по аналогии с рассмотренными ранее свойствами оценки параметра.
- Обычно в качестве функций от параметров рассматривают различные характеристики распределений, такие как математическое ожидание, дисперсия, мода, медиана, квантили, вероятности и т.д.
- Если бесконечная последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, \dots$ является состоятельной для параметра $g(\theta)$, то, по теореме Манна-Вальда, последовательность непрерывных функций от этих оценок $g(\hat{\theta}_1), g(\hat{\theta}_2), \dots$ будет состоятельной для функции от параметра $g(\theta)$. То есть для непрерывной функции $g(\theta)$ из $\hat{\theta}_n \stackrel{P}{\to} \theta$ следует $g(\hat{\theta}_n) \stackrel{P}{\to} g(\theta)$.

Пример:

• Вернемся к примеру с Лаврентием и найдем состоятельную оценку дисперсии числа орлов, выпадающих при одном броске, то есть оценку $\widehat{Var}(X_i)$ дисперсии $Var(X_i)$.

Определение и свойства

- Рассмотрим оценку $\hat{g}(\theta)$ функции $g(\theta)$ от параметра θ . Ее свойства определяются по аналогии с рассмотренными ранее свойствами оценки параметра.
- Обычно в качестве функций от параметров рассматривают различные характеристики распределений, такие как математическое ожидание, дисперсия, мода, медиана, квантили, вероятности и т.д.
- Если бесконечная последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, \dots$ является состоятельной для параметра $g(\theta)$, то, по теореме Манна-Вальда, последовательность непрерывных функций от этих оценок $g(\hat{\theta}_1), g(\hat{\theta}_2), \dots$ будет состоятельной для функции от параметра $g(\theta)$. То есть для непрерывной функции $g(\theta)$ из $\hat{\theta}_n \stackrel{P}{\to} \theta$ следует $g(\hat{\theta}_n) \stackrel{P}{\to} g(\theta)$.

Пример:

- Вернемся к примеру с Лаврентием и найдем состоятельную оценку дисперсии числа орлов, выпадающих при одном броске, то есть оценку $\widehat{Var}(X_i)$ дисперсии $Var(X_i)$.
- ullet Поскольку $X_i \sim Ber(p)$, то $g(p) = Var(X_i) = p(1-p)$.

Определение и свойства

- Рассмотрим оценку $\hat{g}(\theta)$ функции $g(\theta)$ от параметра θ . Ее свойства определяются по аналогии с рассмотренными ранее свойствами оценки параметра.
- Обычно в качестве функций от параметров рассматривают различные характеристики распределений, такие как математическое ожидание, дисперсия, мода, медиана, квантили, вероятности и т.д.
- Если бесконечная последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, \dots$ является состоятельной для параметра $g(\theta)$, то, по теореме Манна-Вальда, последовательность непрерывных функций от этих оценок $g(\hat{\theta}_1), g(\hat{\theta}_2), \dots$ будет состоятельной для функции от параметра $g(\theta)$. То есть для непрерывной функции $g(\theta)$ из $\hat{\theta}_n \stackrel{P}{\to} \theta$ следует $g(\hat{\theta}_n) \stackrel{P}{\to} g(\theta)$.

Пример:

- Вернемся к примеру с Лаврентием и найдем состоятельную оценку дисперсии числа орлов, выпадающих при одном броске, то есть оценку $\widehat{Var}(X_i)$ дисперсии $Var(X_i)$.
- ullet Поскольку $X_i \sim Ber(p)$, то $g(p) = Var(X_i) = p(1-p)$.
- Так как $\hat{p} = \overline{X}_n$ является состоятельной оценкой для параметра p и функция g(p) = p(1-p) непрерывна, то по теореме Манна-Вальда состоятельная оценка этой функции, то есть дисперсии $Var(X_i)$, будет иметь вид:

$$\widehat{Var}(X_i) = g(\hat{p}) = \hat{p}(1-\hat{p}) = \overline{X}_n(1-\overline{X}_n)$$

Определение и свойства

- Рассмотрим оценку $\hat{g}(\theta)$ функции $g(\theta)$ от параметра θ . Ее свойства определяются по аналогии с рассмотренными ранее свойствами оценки параметра.
- Обычно в качестве функций от параметров рассматривают различные характеристики распределений, такие как математическое ожидание, дисперсия, мода, медиана, квантили, вероятности и т.д.
- Если бесконечная последовательность оценок $\hat{\theta}_1, \hat{\theta}_2, \dots$ является состоятельной для параметра $g(\theta)$, то, по теореме Манна-Вальда, последовательность непрерывных функций от этих оценок $g(\hat{\theta}_1), g(\hat{\theta}_2), \dots$ будет состоятельной для функции от параметра $g(\theta)$. То есть для непрерывной функции $g(\theta)$ из $\hat{\theta}_n \stackrel{P}{\to} \theta$ следует $g(\hat{\theta}_n) \stackrel{P}{\to} g(\theta)$.

Пример:

- Вернемся к примеру с Лаврентием и найдем состоятельную оценку дисперсии числа орлов, выпадающих при одном броске, то есть оценку $\widehat{Var}(X_i)$ дисперсии $Var(X_i)$.
- ullet Поскольку $X_i \sim Ber(p)$, то $g(p) = Var(X_i) = p(1-p)$.
- Так как $\hat{p} = \overline{X}_n$ является состоятельной оценкой для параметра p и функция g(p) = p(1-p) непрерывна, то по теореме Манна-Вальда состоятельная оценка этой функции, то есть дисперсии $Var(X_i)$, будет иметь вид:

$$\widehat{Var}(X_i) = g(\hat{p}) = \hat{p}(1-\hat{p}) = \overline{X}_n(1-\overline{X}_n)$$

• Полученная оценка дисперсии является смещенной, поскольку:

$$E(\widehat{Var}(X_i)) = E(\overline{X}_n(1-\overline{X}_n)) = E(\overline{X}_n) - E(\overline{X}_n^2) = E(\overline{X}_n) - Var(\overline{X}_n) - E(\overline{X}_n)^2 = p - \frac{p(1-p)}{n} - p^2 \neq p(1-p)$$

Доходы населения

Доход случайно взятого индивида является случайной величиной с функцией плотности:

$$f_{X_i}(x) = \begin{cases} 2x/\theta^2, \text{ при } x \in [0,\theta] \\ 0, \text{ в противном случае} \end{cases}, \text{ где } \theta > 0$$
 Из доходов случайно взятых индивидов была сформирована выборка $X_1,...,X_n$.

Доходы населения

• Доход случайно взятого индивида является случайной величиной с функцией плотности:

$$f_{X_i}(x) = egin{cases} 2x/ heta^2, ext{ при } x \in [0, heta] \ 0, ext{ в противном случае} \end{cases}, ext{ где } heta > 0$$

Из доходов случайно взятых индивидов была сформирована выборка $X_1,...,X_n$.

ullet Покажем, что $\hat{ heta}_n=1.5\overline{X}_n$ является несмещенной оценкой параметра heta:

$$E(\hat{\theta}_n) = E(1.5\overline{X}_n) = 1.5E(\overline{X}_n) = 1.5E(X_i) = 1.5\int_0^{\theta} (2x/\theta^2)xdx = \theta$$

Доходы населения

• Доход случайно взятого индивида является случайной величиной с функцией плотности:

$$f_{X_i}(x) = egin{cases} 2x/ heta^2, \ ext{при } x \in [0, heta] \ 0, \ ext{в противном случае} \end{cases}, \ ext{где } heta > 0$$

Из доходов случайно взятых индивидов была сформирована выборка $X_1,...,X_n$.

ullet Покажем, что $\hat{ heta}_n=1.5\overline{X}_n$ является несмещенной оценкой параметра heta:

$$E(\hat{\theta}_n) = E(1.5\overline{X}_n) = 1.5E(\overline{X}_n) = 1.5E(X_i) = 1.5\int_0^{\theta} (2x/\theta^2)xdx = \theta$$

ullet Бесконечная последовательность оценок $\hat{ heta}_1,\hat{ heta}_2,...$ является состоятельной, так как:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \lim_{n\to\infty} \theta = \theta$$

Доходы населения

• Доход случайно взятого индивида является случайной величиной с функцией плотности:

$$f_{X_i}(x) = egin{cases} 2x/ heta^2, ext{ при } x \in [0, heta] \ 0, ext{ в противном случае} \end{cases}, ext{ где } heta > 0$$

Из доходов случайно взятых индивидов была сформирована выборка $X_1,...,X_n$.

ullet Покажем, что $\hat{ heta}_n=1.5\overline{X}_n$ является несмещенной оценкой параметра heta:

$$E(\hat{\theta}_n) = E(1.5\overline{X}_n) = 1.5E(\overline{X}_n) = 1.5E(X_i) = 1.5\int_0^{\theta} (2x/\theta^2)xdx = \theta$$

ullet Бесконечная последовательность оценок $\hat{ heta}_1,\hat{ heta}_2,...$ является состоятельной, так как:

$$\lim_{n \to \infty} E(\hat{\theta}_n) = \lim_{n \to \infty} \theta = \theta$$

$$\lim_{n \to \infty} Var(\hat{\theta}_n) = \lim_{n \to \infty} Var(1.5\overline{X}) = \lim_{n \to \infty} \frac{1.5^2}{n} Var(X_1) = 0$$

Доходы населения

• Доход случайно взятого индивида является случайной величиной с функцией плотности:

$$f_{X_i}(x) = egin{cases} 2x/ heta^2, \ ext{при } x \in [0, heta] \ 0, \ ext{в противном случае} \end{cases}, \ ext{где } heta > 0$$

Из доходов случайно взятых индивидов была сформирована выборка $X_1,...,X_n$.

• Покажем, что $\hat{\theta}_n = 1.5\overline{X}_n$ является несмещенной оценкой параметра θ :

$$E(\hat{\theta}_n) = E(1.5\overline{X}_n) = 1.5E(\overline{X}_n) = 1.5E(X_i) = 1.5\int_0^{\theta} (2x/\theta^2)xdx = \theta$$

ullet Бесконечная последовательность оценок $\hat{ heta}_1,\hat{ heta}_2,\dots$ является состоятельной, так как:

$$\lim_{n \to \infty} E(\hat{\theta}_n) = \lim_{n \to \infty} \theta = \theta$$

$$\lim_{n \to \infty} Var(\hat{\theta}_n) = \lim_{n \to \infty} Var(1.5\overline{X}) = \lim_{n \to \infty} \frac{1.5^2}{n} Var(X_1) = 0$$

• Нетрудно показать, что медиана X_1 равна $m = \theta/\sqrt{2}$. Поскольку речь идет о непрерывной функции от параметра, то по теореме Манна-Вальда состоятельная последовательность оценок медианы заработков случайно взятого индивида будет иметь вид:

$$\hat{m}_n = \hat{\theta}_n/\sqrt{2} = 1.5\overline{X}_n/\sqrt{2}$$