

Mechanik (Translation + Rotation)

GRUNDLA-GEN

SCAN ME

LÖSUN-GEN

SCAN ME

Aufgabenstellung

Ein Maxwell-Rad bewegt sich drehend unter dem Einfluss der Erdbeschleunigung reibungsfrei senkrecht nach unten. Dabei stellt sich eine konstante Beschleunigung ein.

Wellenradius	r = 3mm	Gesamtmasse	m = 0.53kg
Massenträgheitsmoment	$J_S = 430 \cdot 10^{-6} kg \cdot m^2$	Erdbeschleunigung	$g = 9.81 \frac{m}{s^2}$

Fragen /Aufgaben		
1.	Erstellen Sie die Bewegungsgleichung über den Impuls- und Drehimpulssatz.	
2.	Erstellen Sie die Bewegungsgleichung über den Energieerhaltungssatz.	
3.	Modellbildung über konzentrierte Ersatzelemente mittels LTSpice. Entwerfen Sie ein Schaltbild der Aufgabenstellung.	
4.	Bestimmen Sie das Wandlerprinzip und die Wandlerparameter aus den gemischten Ableitungen der Energieänderung.	
5.	Wie sehen die Funktionen $x(t)$ und $a(t)$ in der Simulation aus?	