El Proceso Unificado de Desarrollo

Se apoya en tres principios básicos:

Los casos de uso dirigen y controlan el proceso de desarrollo en su totalidad

Es la pieza clave que permite comprender el sistema, organizar el desarrollo y hacer evolucionar el software.

El desarrollo se plantea de manera progresiva, de tal modo que se atenúen los riesgos y se planteen las cuestiones en el instante en el que estamos capacitados para resolverlas.

Dirigido por casos de uso

Estado de aspectos de los Casos de Uso al finalizar cada fase

	Modelo de Negocio Terminado	Casos de Uso Identificados	Casos de Uso Descritos	Casos de Uso Analizados	Casos de Uso Diseñados, Implementados y Probados
Fase de Concepción	50% - 70%	50%	10%	5%	Muy poco, puede que sólo algo relativo a un prototipo para probar conceptos
Fase de Elaboración	Casi el 100%	80% o más	40% - 80%	20% -40%	Menos del 10%
Fase de Construcción	100%	100%	100%	100%	100%
Fase de Transición					

The Unified Software Development Process. I. Jacobson, G. Booch y J. Rumbaugh. página 358. Addison-Wesley, 1999.

Centrado en la arquitectura

- Arquitectura de un sistema es la organización o estructura de sus partes más relevantes
- Un arquitectura ejecutable es una implementación parcial del sistema, construida para demostrar algunas funciones y propiedades
- RUP establece refinamientos sucesivos de una arquitectura ejecutable, construida como un prototipo evolutivo

∠Workflows (Disciplinas)

Workflows Primarios

- •Business Modeling (Modado del Negocio)
- •Requirements (Requisitos)
- Analysis & Design (Análisis y Diseño)
- •Implementation (Implementación)
- Test (Pruebas)
- Deployment (Despliegue)

Workflows de Apoyo

- Environment (Entorno)
- Project Management (Gestión del Proyecto)
- •Configuration & Change Management (Gestión de Configuración y Cambios)

Proceso iterativo e incremental

Workers

Analyst workers

- Business-Process Analyst
- Business Designer
- Business-Model Reviewer
- Requirements Reviewer
- System Analyst
- Use-Case Specifier
- User-Interface Designer

Developer workers

- Architect
- Architecture Reviewer
- Capsule Designer
- Code Reviewer
- Database Designer
- Design Reviewer
- Designer
- Implementer
- Integrator

Testing professional workers

- Test Designer
- ✓ Tester

Manager workers

- Change Control Manager
- Configuration Manager
- Deployment Manager
- Process Engineer
- Project Manager
- Project Reviewer

Other workers

- Any Worker
- Course Developer
- Graphic Artist
- Stakeholder
- ✓ System Administrator
- Technical Writer
- Tool Specialist

Artefactos

- Resultado parcial o final que es producido y usado durante el proyecto. Son las entradas y salidas de las actividades
- ∠ Un artefacto puede ser un documento, un modelo o un elemento de modelo
- Conjuntos de Artefactos
- ∠ Deployment Set
- ∠ Project Management Set

Proceso iterativo e incremental

Workers, Actividades, Artefactos

Ejemplo: System Analyst Worker

Cada etapa itera sobre cinco flujos de trabajo:

∠Requisitos

Averiguar lo que el sistema debe hacer.

∠Análisis

n Conseguir una compresión más precisa de los requisitos.

∠ Diseño

Compresión de requisitos no funcionales y adaptación de los requisitos funcionales para su implementación.

∠Implementación

Implementación de clases y pruebas de componentes individuales. Distribución del sistema asignándolo a nodos.

∠Prueba

Planificar, diseñar y realizar las pruebas de integración y de sistema.

Proceso iterativo e incremental

Se definen cuatro etapas:

∠Inicio

Se desarrolla una descripción del producto final y se presenta el análisis del negocio asociado al sistema a desarrollar

∠Elaboración

Se especifican en detalle la mayoría de los casos de uso y se diseña la arquitectura.

∠Construcción

Se crea el producto. La base arquitectónica crece hasta convertirse en el producto final.

∠Transición

Básicamente, agrupa actividades encaminadas a hacer llegar el producto al usuario: distribución, training, soporte, mantenimiento.

Cada etapa incluye:

- Evaluación de la etapa

Etapa de inicio

Inicio

- •Objetivos
- •Planificación
- •Actividades
- •Evaluación Elaboración Construcción Transacción

Establece la viabilidad

- ∠ Delimitar el ámbito del sistema.
- Esbozar una propuesta de arquitectura del sistema.
- ✓ Identificar riesgos críticos.
- Demostrar a usuarios o clientes que el sistema propuesto es capaz de solventar sus problemas, para lo cual puede ser útil construir un pequeño prototipo.

Planificación

Llevar a cabo los siguientes pasos:

- Reunir la información recogida antes de que el proyecto comenzase.
- Organizarla de forma que pueda ser utilizada.
- Reunir a un pequeño grupo de gente que sepa cómo utilizarla.
- Descubrir lo que falta, no en términos de las cuatro fases, sino en términos de los objetivos altamente limitados de la fase de inicio.

Inicio

- Objetivos
- •Planificación
- •Actividades
- •Evaluación

Elaboración Construcción Transacción

Fuentes de información

Inicio

- •Objetivos
- •Planificación
- Actividades
- •Evaluación

Elaboración Construcción Transacción Explorar fuentes de información previa.

- ≤Software para venta en general.
 - Existen trabajos de responsables de marketing que permiten obtener información del nuevo sistema.
- ≤Software para otra área de la empresa.
 - ∠ Un área encarga el sistema directamente pero no parte de ningún estudio inicial.
 - ✓ Se parte de un estudio global de tipo planificación estratégica que aporta modelos del negocio.
- ≤Software para otra organización cliente.
 - ∠Podemos partir de un documento de petición inicial detallado.

Grandes tareas

Inicio

- Objetivos
- •Planificación
- Actividades
- •Evaluación

Elaboración

Construcción Transacción

- Ejecución de flujos de trabajo fundamentales.
- ✓ Identificación de riesgos críticos.

Ejecución de flujos de trabajo fundamentales

Inicio

- •Objetivos
- •Planificación
- Actividades
- •Evaluación

Elaboración Construcción Transacción

Recopilar de requisitos

- Enumerar los requisitos candidatos
- Representar los requisitos funcionales como casos de uso.
 - ✓ Encontrar actores y casos de uso
 - ∠Determinar la prioridad de los casos de uso.
 - ✓ Detallar cada casos de uso
 - Construir un prototipo de la interfaz
 - Estructurar el modelo de casos de uso.
- Recoger los requisitos no funcionales.

Ejecución de flujos de trabajo fundamentales

Inicio

- Objetivos
- •Planificación
- Actividades
- •Evaluación

Elaboración Construcción Transacción

Analizar:

- Refinar los requisitos y estructurarlos en un modelo de análisis.
- ∠ Definir un modelo de análisis que permita apreciar los recursos compartidos por varios casos de uso.
- Analizar una clase y analizar un paquete.

Ejecución de flujos de trabajo fundamentales

Inicio

- •Objetivos
- •Planificación
- Actividades
- •Evaluación

Elaboración Construcción Transacción

Diseñar:

- ≤ Esbozar el diseño de la arquitectura.
 - Esbozar los modelos de diseño.

Ejecución de flujos de trabajo fundamentales

Inicio

- •Objetivos
- •Planificación
- Actividades
- •Evaluación Elaboración Construcción Transacción

Implementar

- En algunos proyectos que se tiene poca experiencia en su desarrollo puede ser necesario la realización de un pequeño prototipo.
- En general no es necesario realizar este flujo.

Probar

No se realiza ningún trabajo significativo de pruebas durante esta etapa.

Ajustar el proyecto al entorno de desarrollo

Inicio

- •Objetivos
- •Planificación
- Actividades
- •Evaluación

Elaboración Construcción Transacción

- - ∠ Un proceso de desarrollo.
 - ∠ Las herramientas para llevarlo a cabo.
 - Herramientas para soportar lo flujo de trabajo.
 - ∠ Herramientas para la administración y gestión de proyecto, gestión de configuraciones, etc.

I dentificación de riesgos críticos

Inicio

- Objetivos
- •Planificación
- Actividades
- •Evaluación

Elaboración Construcción Transacción **Riesgo**: probabilidad de que un proyecto experimente sucesos no deseados y que ponen en peligro el éxito del mismo.

- - ∠Prioridad.
 - ✓Impacto: qué partes del proyecto se pueden ver afectadas.

 - ∠Contingencia: qué hay que hacer si se produce el riesgo.
- ∠Si no se planifican los riesgos estos se suelen presentar al finalizar el proyecto.
- ∠Cuanto antes se detecten y se estudien los efectos y las acciones de contingencia será mejor.

I dentificación de riesgos críticos

Inicio

- •Objetivos
- •Planificación
- Actividades
- •Evaluación

Elaboración Construcción Transacción

Clasificación de riesgos críticos.

- ≪Relacionados con tecnología utilizada.
 - ✓ Novedad de las tecnologías utilizadas.
 - ∠ Utilización de entornos de desarrollo nuevos.
- Relativos a la arquitectura.
 - Selección de los casos de uso críticos para definirla.
- Relativos a construir el sistema adecuado
- Relativos a requisitos no funcionales
 - ✓ Seguridad de los datos.
 - Rendimiento o tiempo de respuesta.
 - Fiabilidad de los cálculos.
 - ✓ Usabilidad.

Evaluación

Evaluar la etapa finalizada.

✓ Ver si se han cumplido los objetivos y metas definidas al principio

Planificar y estimar costes de la siguiente etapa.

- ✓ Presentar una estimación del coste y esfuerzo

 - Aproximado de la totalidad del proyecto.
- Realizar un primer análisis de coste/beneficio.
- ✓ Planificar temporalmente la siguiente etapa.

Inicio

- Objetivos
- Planificación
- Actividades
- •Evaluación

Elaboración Construcción Transacción

Etapa de elaboración

Objetivo: elaborar una arquitectura estable para guiar el sistema a lo largo de su vida futura.

- ≤Se centra en la factibilidad
- Se centra en el estudio de la funcionalidad significativa desde el punto de vista arquitectónico.
- ✓ Identifica los riesgos significativos.
- Especifica los valores de los atributos de calidad, como: tiempo de respuesta, seguridad, fiabilidad, etc.
- Recopila los casos de uso para el 80% de los requisitos funcionales.

Inicio Elaboración

- Objetivos
- Planificación
- •Actividades
- •Evaluación

Construcción Transacción

Planificación

Inicio

Elaboración

- •Objetivos
- •Planificación
- •Actividades
- •Evaluación
- Construcción

Transacción

Antes de empezar.

la fase de inicio.

- Revisar la planificación realizada al final de
- ∠Creación del equipo de trabajo.
- Establecer las metas a alcanzar tras la finalización de la etapa.

 - ✓ Definición de la línea base de la arquitectura.

 - ✓ Reevaluar el análisis de coste/beneficio realizado en la fase de inicio.

Inicio

Elaboración

- •Objetivos
- •Planificación
- Actividades
- •Evaluación

Construcción Transacción

Recopilar de requisitos

- Encontrar casos de uso y actores.
- ✓ Desarrollar prototipos de las interfaces de usuario.
- ∠ Detallar cada caso de uso.
- Estructurar el modelo de casos de uso.

Actividades

Inicio

Elaboración

- •Objetivos
- •Planificación
- •Actividades
- •Evaluación

Construcción Transacción

Analizar

- roles con que participa cada una.
- apreciar los recursos compartidos por varios casos de uso.
- Analizar una clase.

Inicio

Elaboración

- •Objetivos
- •Planificación
- •Actividades
- •Evaluación

Construcción Transacción

Diseñar

- ∠Esbozar el diseño de la arquitectura.
 - ✓ Identificar la arquitectura en capas.
 - ✓ Identifica los subsistema y sus interfaces
 - ✓ Identifica las clases de diseño significativas para la arquitectura.
 - ✓ Si se trata de un sistema distribuido, identificar los nodos y las configuraciones de red.
- ∠Diseñar un caso de uso.
- ∠Diseñar una clase y un subsistema.

Actividades

Inicio

Elaboración

- •Objetivos
- •Planificación
- •Actividades
- •Evaluación

Construcción

Transacción

Implementar

- ✓ Implementación de la arquitectura.
- ✓Integrar el sistema desarrollado.

Inicio

Elaboración

- •Objetivos
- •Planificación
- Actividades
- •Evaluación

Construcción

Transacción

Probar

- ∠Planificar las pruebas.
- ∠Diseñar las pruebas.

Evaluación

Inicio

Elaboración •Objetivos

- •Planificación
- Actividades
- •Evaluación

Construcción Transacción

Evaluar la etapa finalizada.

✓Ver si se han cumplido los objetivos y metas definidas al principio.

Planificar y estimar costes de la siguiente etapa.

- ✓ Presentar una estimación del coste y esfuerzo del resto del proyecto o de cada uno de los subsistemas a construir
- Revisar el análisis de coste/beneficio.
- ✓ Planificar temporalmente la siguiente etapa.

Etapa de Construcción

Objetivo: Desarrollar el sistema de una forma rápida, económica y respetando los estándares de calidad.

- Minimizar los costes de desarrollo, optimizando recursos y evitando rehacer y descartar trabajo.
- ∠Alcanzar versiones útiles (alpha, beta, otras versiones de test) rápidamente.

Inicio
Elaboración
Construcción
Objetivos
Actividades
Evaluación
Transacción

Actividades

Inicio
Elaboración
Construcción
•Objetivos
•Actividades
•Evaluación
Transacción

- ✓Getión y control de recursos, optimización del proceso
- ∠Desarrollo completo de componentes y test contra los criterios de evaluación definidos.
- Evaluación de las versiones del producto frente a los criterios de aceptación

Evaluación

Inicio Elaboración Construcción

- •Objetivos
- Actividades
- •Evaluación
- Transacción

Productos

- ∠ Los manuales de usuario
- ∠ Una descripción de la versión actual

Evaluar la etapa finalizada.

- Estimar si el producto (beta), site, y usuarios se encuentran en disposición de ser operativos sin incurrir en riesgos.
- Evaluar si los recursos consumidos respecto a los estimados son aceptables o no.

Etapa de Transacción

Objetivo: transferir el producto software objeto del proyecto a los usuarios.

Inicio Elaboración Construcción Transacción

- Objetivos
- •Actividades •Evaluación
- Alcanzar los usuarios un nivel de autosuficiencia.
 - Alcanzar un acuerdo por parte de los stakeholders que se han conseguido los objetivos propuestos.
 - prácticamente como sea posible

Inicio Elaboración Construcción Transacción •Objetivos •Actividades

•Evaluación

- Ingeniería específica de distribución
- Actividades de ajuste: errores, rendimiento y usabilidad
- Evaluación del producto frente a los criterios de aceptación y los requisitos del sistema (visión)

Evaluación

Inicio Elaboración Construcción Transacción •Objetivos •Actividades •Evaluación

Evaluar la etapa finalizada.

- Estimar si el producto cumple con los requisitos, sino nueva iteración.
- Evaluar si los recursos consumidos respecto a los estimados son aceptables o no.