\otimes

Influencia de nodos en una red: PageRank

Teoría & Aplicación

- David Halliday
- Christian Camilo Pabón
- Juan David Sánchez Murcia
- Tania Vanesa Vásquez Guevara

¿Qué es PageRank?

Es un algoritmo desarrollado por Larry Page y Serguéi Brin para optimizar las búsquedas de páginas web en Google

Usos

- MonitorRank: Brindar asistencia en el diagnóstico de Química, biología, neurociencia, sistemas diseñados, errores en sistemas distribuidos.
- sistemas matemáticos, deportes, literatura, bases de datos Predecir el <mark>tráfico en carreteras</mark>.
- datos, sistemas de recomendación, redes sociales, etc.
 ItemRank: Sistema de recomendación de items.
- GeneRank, ProteinRank, IsoRank.

Definiciones

Definición 1. Un grafo es un par G = (V, E), donde $V = \{v_1, v_2, \ldots, v_n\}$ es un conjunto finito de elementos y $E = \{e_1, e_2, \ldots, e_m\} \subseteq V \times V$ es un subconjunto de pares de nodos. Si E es un subconjunto de pares ordenados de nodos, el grafo G es un grafo orientado (o grafo directo).

Definición 2. Si G = (V, E) es un grafo directo, un camino directo en G es una secuencia de nodos (v_0, v_1, \ldots, v_k) tal que $(v_i, v_{i+1}) \in E$ para cada $i = 0, 1, \ldots, k-1$. Decimos que k es la longitud del camino.

Si ninguno de los nodos, con la posible excepción de v_0 y v_k , aparece dos veces en la secuencia, el camino es simple. Si $v_0 = v_k$ el camino está cerrado. Un camino que es simple y cerrado se llama ciclo.

Definición 3. En el mismo contexto de la Definición anterior, un camino no directo en G es una secuencia de nodos (v_0, v_1, \ldots, v_k) tales que (v_i, v_{i+1}) o (v_{i+1}, v_i) pertenece a E para cada $i = 0, 1, \ldots, k-1$.

Definición 4. Un grafo directo es conexo si por cada par de nodos (v_i, v_j) en V existe un camino no directo que los une. Un grafo directo es fuertemente conexo si por cada par de nodos (v_i, v_j) en V existe un camino directo que los une.

Grafo No Directo

Gráfico conectado

Grafo Directo

Gráfico fuertemente conectado

Matriz de Adyacencia

Supongamos que G = (V, E) es un gráfico directo.

Definición 5. Matriz de adyacencia La matriz de adyacencia A de G es una matriz cuadrada $n \times n$, donde n = |V|, tal que

$$a_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \in E \\ 0 & \text{if } (v_i, v_j) \notin E. \end{cases}$$

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

La matriz de adyacencia

Matriz de Permutación

Definición 6. Una matriz P de $n \times n$ cuyos filas se obtienen por cualquier permutación de las filas de la matriz identidad se denomina matriz de permutación.

Definición 7. Dada cualquier matriz cuadrada A de $n \times n$, el resultado $A' = PAP^T$, donde P es una matriz de permutación, se denomina permutación simétrica de A.

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

nodo 4 es el antiguo 2. Vale la pena señalar que la única multiplicación que queda de la matriz de adyacencia por una permutación P no es interesante y no está relacionada con una permutación de los nodos en el gráfico.

Teorema de Perron-Frobenius

Nos da información acerca de los valores y vectores propios de una matriz positiva, una primitiva y una no negativa.

Positiva $A = \left[\left. a_{i,j} \right. ight]$

$$a_{i,j} > 0$$

No negativa

$$A = [a_{i,j}\,] \ a_{i,j} \geq 0$$

Primitiva

Si es <mark>no negativa</mark> y tiene alguna <mark>potencia</mark> positiva

Es equivalente a ser no negativa, irreducible y aperiódica

Irreducible

Una matriz A se dice irreducible si

(i)
$$A$$
 no puede ser conjugada en forma de bloque triangular superior por una matriz de permutación P

$$PAP^{-1} \neq \begin{pmatrix} E & F \\ O & G \end{pmatrix}$$

(ii) Si asociamos la matriz A a la matriz de adyacencia de un grafo dirigido G_A , entonces A es irredicible si y solo si su grafo asociado G_A es fuertemente conexo

Teorema de Perron-Frobenius

Puede ser extendido a no negativas y primitivas

Teorema 1 (Teorema de Perron-Frobenius). Sea A una matriz positiva $n \times n$ con $\rho(A) = r$, donde $\rho(A)$ es el radio espectral de A. Entonces los siguientes enunciados son verdaderos:

- (i) r > 0
- (ii) r es un valor propio con vector propio v > 0. v es el único vector propio no negativo (salvo múltiplos) y es llamado el vector de Perron.
- (iii) r es el único valor propio en el circulo espectral de A
- (iv) r es una raíz simple del polinomio característico de A.

Para cada $t = 1, 2, \ldots$ para cada par de estados i, j y para cada secuencia de estados $v_0, v_1, \ldots, v_{t-1} \in E$

 $Prob(X_{t+1} = j \mid X_0 = v_0, X_1 = v_1, \dots, X_{t-1} = v_{t-1}, X_t = i) = Prob(X_{t+1} = j \mid X_t = i).$

Estos significa que la probabilidad de que el sistema pase del estado i al estado j en el tiempo t, es independiente de los estados anteriores al tiempo t.

Matriz de transición
$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & 1 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

1. $p_{ij} \geq 0$ para cada i, j

2.
$$\sum_{j=1}^n p_{ij} = 1$$
 para cada i,j

Definición 8. Una cadena de Markov es irreducible si su matriz de transición P es irreducible.

Definición 10. Un vector de probabilidad p es un vector de probabilidad estacionario para una cadena de Markov con matriz de transición P si:

$$p^T P = P^T$$

 $p^{T}(t) = (p_1(t), \dots, p_n(t))$

$$p_{j}(t+1) = \operatorname{Prob}(X_{t+1} = j) = \operatorname{Prob}((X_{t+1} = j) \cap (X_{t} = 1 \cup \ldots \cup X_{t} = n))$$

$$= \operatorname{Prob}((X_{t+1} = j \cap X_{t} = 1) \cup \ldots \cup (X_{t+1} \cap X_{t} = n))$$

$$= \sum_{i=1}^{n} \operatorname{Prob}(X_{t+1} = j \cap X_{t} = i)$$

$$= \sum_{i=1}^{n} \operatorname{Prob}(X_{t+1} = j \mid X_{t} = i) \cdot \operatorname{Prob}(X_{t} = i)$$

$$= \sum_{i=1}^{n} p_{ij} \cdot p_{i}(t)$$

 $p^T(t+1) = p^T(t)P.$

Iteration 1

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 3 \\ 2 \end{bmatrix} \equiv \begin{bmatrix} 0.213 \\ 0.426 \\ 0.426 \\ 0.639 \\ 0.426 \end{bmatrix}$$

05

Iteration 2

	COIC	1610							
	•			\neg				1 1	
0	1	0	0	0	0.213	ΙI	0.426		0.195
1	0	0	1	0	0.426		0.852	_	0.389
0	0	0	1	1	0.426	-	1.065	-	0.486
0	1	1	0	1	0.639	ΙI	1.278		0.584
0	0	1	1	0	0.426	ll	1.065		0.486
_	20								

Método de potencias

Iteration 3

10	CIG	LIV	110						
				\neg					_ ¬
0	1	0	0	0	0.195	ΙI	0.389		0.176
1	0	0	1	0	0.389		0.779		0.352
0	0	0	1	1	0.486	=	1.07	=	0.484
0	1	1	0	1	0.584	ΙI	1.361		0.616
0	0	1	1	0	0.486	ΙI	1.07		0.484
_						J		l,	

Numerical Analysis

Iteration 4

$r(P) = \sum \frac{r(P)}{r(P)}$

 $a_{ij} = Prob(P_j \text{ tiene enlace a } P_i) = \begin{cases} \frac{1}{|P_j|} & \text{si } P_j \text{ tiene enlace a } P_i \\ 0 & \text{en otro caso,} \end{cases}$

06

$r^{(0)} = \left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)^T$ Algoritmo PageRank

 $r^{(k)} = Ar^{(k-1)}$

Una matriz de Markov P converge únicamente a un vector estrictamente positivo si se cumple que P es estocástica, irreducible y aperiódica.

La matriz estocástica
$$S$$

$$S = A + a \left(\frac{1}{n}e^{T}\right)$$

 $G = \alpha S + \frac{(1 - \alpha)}{n} e e^{T}$

La matriz de Google G

Referencias

- ☐ Gleich, David F.. "PageRank beyond the Web." (2014).
- Alberto Peretti, Alberto Roveda et al. On the mathematical background of Google PageRank algorithm. Inf. téc. 2014
- Carl D Meyer. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000
- Charles R MacCluer. "The many proofs and applications of Perron's theorem". En: Siam Review 42.3 (2000), págs. 487-498
- Amy N Langville y Carl D Meyer. "Google's PageRank and beyond". En:
 Google's PageRank and Beyond. Princeton University Press, 2011
- Keshi Dai. PageRank Lecture Note. 2009.
 - Hannah Cairns. "Perron's Theorem in an Hour". En: The American Mathematical Monthly 128.8 (2021), págs. 748-752

