

Aufgabenstellung

Validierung Sondenmodell FeFlow / Delphin v1.1

Stephan Hirth, Hauke Hirsch, Oliver Suft, Mario Rammler

Inhaltsverzeichnis

1.	Vorbemerkungen	3
	1.1. Aufgabenstellung	
	1.1.1. Geometrie	
	1.1.2. Randbedinungen	
	1.1.3. Variantenanalyse	

1. Vorbemerkungen

Dieser Testfall dient dazu die Erdsondenmodelle in Delphin und FeFlow zu validieren mit einer Cross-Validation.

1.1. Aufgabenstellung

Nachfolgend finden sich alle relevanten Informationen zum Testfall.

1.1.1. Geometrie

Es wird ein Sondenfeld mit den Abmessungen von 50*50m betrachtet. Die Sondenlänge beträgt l=100m.

1.1.2. Randbedinungen

Solvereinstellungen

- Die maximale Zeitschrittlänge sollte bei < 12 h liegen
- Die maximale Toleranz sollte bei 10⁻⁴ liegen

Entzug

- Entzugsprofil: Wärmeentzug in Stunden- oder Tagesauflösung
- Die Entzugsleistung soll linear interpoliert werden

Erdreich

- Die Wärmeleitfähigkeit des Erdreichs beträgt $\lambda = 2.9 \frac{W}{\text{mK}}$
- Die Kapazität des Erdreichs beträgt $c_p = 1274 \frac{\mathrm{J}}{\mathrm{kgK}}$
- Die Dichte des Erdreichs beträgt $\rho = 2000 \frac{\text{kg}}{\text{m}^3}$
- Der Wärmestrom über die Erdreichoberfläche (oberer Rand) ist gleich Null (adiabat).
- Der Wärmestrom über die untere Schnittebene des Erdreichs (unterer Rand) ist gleich Null (adiabat).
- Die Temperatur an den seitlichen Rändern beträgt $T_{\rm Rand}=11^{\circ}{\rm C}.$

Trägermedium

- Wasser-Glykol-Gemsich (20% Glykolanteil)
- Wärmeleitfähigkeit des Trägermediums: $\lambda = 0.5 \frac{W}{\text{mK}}$
- Dichte des Trägermediums: $\rho = 1032 \frac{\text{kg}}{m^3}$
- Kinematische Viskosität: $\nu = 5.00 \cdot 10^{-6} \frac{m^2}{s}$
- Dynamische Viskosität: $\eta=5.16\cdot 10^{-3}\frac{{
 m kg}^s}{{
 m ms}}$ Spezifische Wärmekapazität: $c=3850\frac{{
 m J}}{{
 m kgK}}$

- Der Bohrlochwiderstand beträgt $R=0.135 rac{ ext{mK}}{W}$ (Die konkreten Eigenschaften des Bohrlochs sollen sich aus dem Bohrlochwiderstand ergeben, deswegen sind keine konkreten Bohrlocheigenschaften angegeben)
- Das Bohrloch hat einen Durchmesser $d=150\mathrm{mm}$
- Der Abstand der Rohre in der Sonde sollen $d_{\mathrm{Rohr}} = 53\mathrm{mm}$
- Der Rohraußendurchmesser beträgt $d_{\rm Außen}=32{\rm mm}$
- Die Rohrdicke beträgt $d=3.2 \mathrm{mm}$

1.1.3. Variantenanalyse

Variante 1: Vergleich Einzelsonde Doppel-U, 100 m

- Simulation über 5 Jahre
- kein Grundwasserfluss
- Entzugsprofil: Entzugsprofil_Einzelsonde.tsv

Variante 2: Vergleich Sondenfeld 5x5, Doppel-U, 100 m

- Sondenfeld 25 Doppel-U-Sonden (5x5)
- Randabstand von äußerster Sonde beträgt 50m
- Tiefe: 100 m
- Abstand: 6 m (Mitte zu Mitte)
- Simulation über 5 Jahre
- kein Grundwasserfluss
- Entzugsprofil: Entzugsprofil_Sondenfeld.tsv