Cours: Logique Formelle

Chapitre 2: Logique Propositionnelle (Partie 2)

Réalisé par:

Dr. Sakka Rouis Taoufik

1

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

2) Formes normales disjonctives

Exemple : En utilisant **la table de vérité** déterminer une formule en forme normale disjonctive équivalente à $((p \lor q) \to r) \land (p \leftrightarrow r)$

р	q	r	$p \vee q$	$((p \lor q) \to r)$	$p \leftrightarrow r$	$((p \lor q) \to r) \land (p \leftrightarrow r)$
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	V	V	V	V
V	F	F	V	F	F	F
F	V	V	V	V	F	F
F	V	F	V	F	V	F
F	F	V	F	V	F	F
F	F	F	F	V	V	V

➤ Conclusion: $(p \land q \land r) \lor (p \land (\neg q) \land r) \lor ((\neg p) \land (\neg q) \land (\neg r))$ est une formule en forme normale disjonctive équivalente à $((p \lor q) \rightarrow r) \land (p \leftrightarrow r)$

III. Sémantique propositionnelle

- 2) Formes normales disjonctives
- Exercice : En utilisant la table de vérité déterminer une formule en forme normale disjonctive équivalente à :

1/
$$(p \rightarrow (\neg r)) \land (q \land (\neg r))$$

$$2/q \wedge ((p \wedge r) \vee \neg (p \vee r))$$

3

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

- 2) Formes normales disjonctives
- > Tableaux de Karnaugh

Le code binaire Gray, contrairement au code binaire naturel, permet de ne faire évoluer qu'un bit lorsque l'on passe d'un code à son suivant ou son précédent.

À partir de 6 variables, le tableau de Karnaugh devient de plus en plus imposant. Pour le moment, on va se limiter à 4 variables.

Les variables se répartissent sur les 2 côtés.

III. Sémantique propositionnelle

2) Formes normales disjonctives

> Tableaux de Karnaugh

Le but est très simple. Il faut effectuer des regroupements de 1; par paquets de 1, 2, 4 ,8, 16, Ces regroupements doivent être des **rectangles** ou des **carrés**, jamais de travers, et les **plus grands possible** sachant qu'un élément **déjà utilisé peut être repris**.

Attention : ne pas oublier que le tableau de Karnaugh est *écrit* sur un cylindre.

5

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

2) Formes normales disjonctives

> Tableaux de Karnaugh

Exemple 1: parton du table 1 on peut faire ces 4 rassemblements :

F			a	b						
ľ		0 0	0 1	11	10					
	0 0	0	0	1	1					
c d	0 1	1	1	1	1					
Cu	11	0	0	0	1					
	10	0	0	1	1					

F 00 01 11 10

cd 00 0 0 1 1

11 0 0 0 1

10 1 1

10 0 0 1

10 0 0 1

F 00 01 11 10

cd 01 1 1 1 1

11 0 0 0 1

10 0 0 1 1

NB. Le dernier tableaux est inutile puisqu'il peut être fait par les 2 de gauche au dessus

F			a	b							
		0 0	0 1	11	1 0						
	0 0	0	0	1	1						
c d	0 1	1	1	1	1						
Cu	11	0	0	0	1						
	10	0	0	1	1						

- III. Sémantique propositionnelle
- 2) Formes normales disjonctives

> Tableaux de Karnaugh

Maintenant on essaie de résoudre les rassemblements. Pour cela, il faut que les variables participant au rassemblement concerné ne changent pas.

Exemple avec le rassemblement bleu :

Dans les 4 cas possibles, la variable a est toujours à 1 et la variable d est toujours à 0

→ La solution bleue donne : a ∧ ¬ d

F			a	a b								
·		0 0	0 1	11	10							
	0 0	0	0	1	1							
c d	0 1	1	1	1	1							
Cu	11	0	0	0	1							
	10	0	0	1	1							

7

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

- 2) Formes normales disjonctives
- Tableaux de Karnaugh

$$a \wedge \neg d$$

$$\neg c \land d$$

$$a \wedge \neg b$$

 \triangleright Conclusion: F= (a $\land \neg$ d) v (\neg c \land d) v (a $\land \neg$ b)

III. Sémantique propositionnelle

- 2) Formes normales disjonctives
- ➤ Exemple 2: en utilisant les tableaux de Karnaugh, déterminer une formule en FND équivalente à la forme R suivante:

R		a b				R		a b				R		a b			D		a b				
		0 0	0 1	11	10	K		0 0	0 1	11	10	K		0 0	0 1	11	10	^		0 0	0 1	11	10
	0 0	0	0	1	0		0 0	0	0	1	0		0 0	0	0	1	0		0 0	0	0	1	0
	0 1	1	0	1	1	م دا	0 1	1	0	1	1	c d	0 1	1	0	1	1	c d	0 1	1	0	1	1
CC	11	1	1	1	1	c d	11	1	1	1	1		11	1	1	1	1		11	1	1	1	1
	1 0	0	0	1	0		10	0	0	1	0		10	0	0	1	0		10	0	0	1	0

Rassemblement vert : a ∧ b
Rassemblement bleu : c ∧ d
Rassemblement orange : ¬ b ∧ d

Conclusion: R= $(a \land b) \lor (c \land d) \lor (\neg b \land d)$

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

- 2) Formes normales disjonctives
- **Exercice 1:** en utilisant les **tableaux de Karnaugh**, déterminer une formule en FND équivalente à $p \rightarrow (q \lor r)$

Conclusion: