	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Sommer 2009

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1		Aufgabe 6	
Aufgabe 2		Aufgabe 7	
Aufgabe 3		Aufgabe 8	
Aufgabe 4		Aufgabe 9	
Aufgabe 5			
Total OC I		Total OC II	
Note OC I		Note OC II	
		Note OC	

1. Aufgabe (9.5 Pkt)

a) 1 Pkt.	Zeichnen Sie die Strukturformel von:	
	10-Allyl-1-tert-butyl-6-cyclopropylanthracen	
b) 1 Pkt.	Zeichnen Sie die Strukturformel (inkl. Stereochemie) von:	
D) II KI.		
	(4R,5S,Z)-2-Ethyl-4,5-dihydroxyhex-2-endiamid	
c) 4.5 Pkt.	Benennen Sie die folgenden Verbindungen nach IUPAC	
	(wo erforderlich inkl. stereochemische Deskriptoren!)	
HOO	\mathbb{N}	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	HN—	
/	$\stackrel{\prime}{\square}$ ${\square}$ ${\square}$	
\		
	\bigvee	
	N N	
HOO	CF ₃	
	OI 3	
d) 3 Pkt	Zu welcher Substanzklasse gehören die folgenden Verbindungen?	
a) o i ki	O	
/		
\	s,	
	U	
	Dunisto Aufacho 1	
	Punkte Aufgabe 1	

2. Aufgabe (5.5 Pkt)

a) 2 Pkt. Tragen Sie in den folgenden Lewisformeln die fehlenden Formalladungen ein:	T
b) 1 1/2 Pkt. Zeichnen Sie je eine weitere möglichst gute Grenzstruktur der untenstehenden Verbindungen	
O — N —	
$\bigoplus_{H_2C} N + N + O$	
H—N	
c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten	
Atomen an. Bindungsgeometrie	
4	
Punkte Aufgabe 2	

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folgende Wenn ja, um welche Art von Isome		
НО НО НО	OH OH OH HO OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
0	(+) (-) (-)	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
CI Br	Br C CI	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
N		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch
		Übertrag Aufgabe 3

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?		
Welches ist die Beziehung zwischen a und d?		
HOOC H HOOC H HOOC H COOH		
COOH HOOC H COOH		
a b c d		
chiral		
achiral		
Enantiomere Moleküle b und c sind Diastereoisomere identisch		
c) 5 Pkt. Die Fischerprojektion einer Glucose ist unten angegeben.		
1 CHO HO 2 H HO 4 H HO 5 H HO 6 CH ₂ OH		
Glucose Perspektivformel Enantiomeres		
c1) 1/2 Pkt. Handelt es sich um D- oder L- Glucose?		
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).		
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zur dargestellten Glucose enantiomeren Moleküls (Projektion ergänzen).		
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C2 und C4 in der abgebildeten Glucose mit CIP Deskriptoren. C2: R S S S S S 		
c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es?		
Übertrag Aufgabe 3		

Aufgabe 3 (Fortsetzung).

4. Aufgabe (14 Pkt)

Aufgabe 4 (Fortsetzung).

 b) 5 Pkt. (je ½ für richtige Wahl und Begründung pro Paar) Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen. 			
Wichtgste Effekte:	•	,	
 Elektronegativität des direkt Atomgrösse/Polarisierbarke Hybridisierung des durch De σ-Akzeptor = -I Effekt. π-Akzeptor Effekt (-M). π-Donor Effekt (+M). Solvatation (Wechselwirkung) 	it des direkt an das eprotonierung entste	Proton gebunden Atoms. ehenden lone pairs	
8. Wasserstoffbrücken.			
N————OH	м Дон	vichtigster Effekt (1-8)	
H H OCH3	SCH ₃		
O_2N NO_2	O_2N		
соон но	оос Соон		
\sim -NH $_2$	—ОН		
		Übertrag Aufgabe 4	
			· <u>I</u>

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Begründung

Begründung

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?
 Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Begründung:

ΑL	itgabe (6 Pkt)				
a)	2 Pkt. Wie gross ist die freie Reakti (keine Punkte ohne Lösungsweg	•	Gleichgewichts 2	2)?	
1)	ноос соон	K ₁	COOH	K ₁ = 0.01	

2 Pkt. Zeichnen Sie die Konformere von (S)-2,2,3-Trimethylpentan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil $[E(\Theta)]$ der Rotation um die C(3)-C(4) Bindung (Θ = Diederwinkel C(2)-C(3)-C(4)-C(5), d.h. Θ =0°, wenn die Bindungen C(2)-C(3) und C(4)-C(5) verdeckt stehen).

Wie gross ist ∆G°(2)? Antwort:

2 Pkt. Die freie Aktivierungsenthalpie ΔG^{\dagger} der Umwandlung von trans-Amiden in die cis-Konformation beträgt ca. 78.5 kJ/mol. Ester wandlen sich bei Raumtemperatur 100'000 mal schneller von der trans- in die cis-Konformation um als Amide. Wie gross ist die freie Aktivierungsenthalpie bei Estern? (keine Punkte ohne Lösungsweg!)

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Wie würden Sie die nachstehenden Umwandlungen durchführen? Geben Sie **alle** benötigten Reagenzien, Lösungsmittel und allenfalls Katalysatoren an!

Bemerkung: eine Stufe beinhaltet auch die entsprechende Aufarbeitung!

2 Stufen

d)
$$Br$$
 CH_3 H

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Welche Hauptprodukte erwarten Sie bei den folgenden Umsetzungen und um welchen Reaktionstyp, bzw. um welche Namensreaktion handelt es sich dabei?				
(Wo erforderlich, Stereochemie angeben!).	2 Stereoisomere			
Br ₂ Et ₂ O als Lösungsmittel 20 min – 70°				
	Тур:			
b) CH ₃ CH ₃ $\xrightarrow{K \text{ tert-BuO}} \bigcirc$ CH ₃ $\xrightarrow{K \text{ tert-BuO}} \bigcirc$ DMSO, 8 h 50° 1 Equiv. Pyridin CH ₂ Cl ₂ als Lsgsm.	Typ:			
16 h 23°				
d) CN 65% HNO ₃ , 4 h 20°	Тур:			
e) Br 2) 2-Pentanon 3) H ₃ O ⁺ , H ₂ O	Typ:			
	Punkte Aufgabe 7			

8. Aufgabe (a=8 Pkt, b=2 Pkt; total 10 Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!	
Ph Ph AcOH, 16 h, 100°	
Mechanismus:	
b) Ist der neugebildete Heterocyclus aromatisch? ja: nein:	
Begründung (ohne befriedigende Begründung gibt es keine Punkte):	
Punkte Aufgabe 8	

3 Pte

9. Aufgabe (*a=4 Pkt,b=2x3 Pkt; total 10Pkt*)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

b) Wie lautet die Regel von *Markownikow*? Geben Sie ein Anwendungsbeispiel! Regel:

Anwendungsbeispiel: