Principles of Biomedical Ultrasound and Photoacoustics

hw01: Displacement and Strain

Due on Thursday, Nov 2, 2017

106061531 Fu-En Wang

1 Introduction

For Focused Ultrasound Thermal Therapy, an important technique is to estimate the temperature change before and after applying it. The estimation can be derived by the echo-time shift before and after heating. Moreover, the temperature change can be formula as:

$$\Delta T(z) = \frac{C_0}{2} \cdot K \cdot \frac{\partial \Delta t(z)}{\partial z} \tag{1}$$

where $\Delta T(z)$ is the temperature change, C_0 is the speed of sound, K is a constant, $\frac{\partial \Delta t(z)}{\partial z}$ is the **thermal** strain.

In this homework, we need to finish the following requirements:

- 1. Estimate echo time shift in μs as a function of depth
- 2. Estimate thermal strain in % as a function of depth

2 Source Code

In this zip archive, there are two matlab source code files:

- 1. EE6265_HW1_106061531.m
- 2. Windows.m

"EE6265_HW1_106061531.m" is the main flow of this homework. It will use the class **Windows** in "Windows.m" to create an object, which can manage each window and makes our code more elegant, and plot figures with our given parameters.

Page 2 of 2