Árvore Geradora Mínima Generalizada

Autor:

Pedro Lucas Botelho Freitas

Disciplina:

DCC059 - Teoria dos Grafos

 $\begin{array}{c} {\rm JUIZ~DE~FORA} \\ 2025 \end{array}$

Sumário

1	Des	crição do Problema	2
	1.1	Definição Formal	2
	1.2	Complexidade Computacional	2
	1.3	Desafios	2
	1.4	Objetivo	3
2	Des	crição das Instâncias	3
3	Des	crição dos Métodos Implementados	3
	3.1	Algoritmo Guloso	4
	3.2	Algoritmo Randomizado	4
	3.3	Algoritmo Reativo	4
	3.4	Estrutura e Modularidade do Código	4
	3.5	Gerenciamento de Memória	4
	3.6	Abordagem Orientada a Objetos e Clareza	4
4	Ana	álise de Tempo de Execução entre Lista e Matriz	5
	4.1	Matriz de Adjacência	5
	4.2	Lista de Adjacência	5
	4.3	Discussão	7
5	Ana	álise de Resultado com Teste de Hipótese entre os Métodos	7
	5.1	Resultados por Instância	8
	5.2	Resumo Estatístico	10
	5.3	Testes de Hipótese	10
	5.4	Visualização dos Resultados	11
	5.5	Discussão	12
6	Cor	nclusões	13
	6.1	Desempenho dos Algoritmos	13
	6.2	Contribuições do Trabalho	13
	6.3	Considerações Finais	13

1 Descrição do Problema

O problema da **Árvore Geradora Mínima Generalizada** (AGMG) consiste em, dado um grafo G = (V, E) cujos vértices estão particionados em k clusters, selecionar exatamente um vértice de cada cluster e construir uma árvore que conecte os vértices escolhidos de forma que o custo total (soma dos pesos das arestas utilizadas) seja mínimo.

1.1 Definição Formal

Seja G = (V, E) um grafo e seja a partição de V dada por

$$V = V_1 \cup V_2 \cup \cdots \cup V_k$$
, com $V_i \cap V_j = \emptyset$ para $i \neq j$.

O objetivo é selecionar um vértice $v_i \in V_i$, para cada i = 1, ..., k, e determinar uma árvore geradora T sobre o conjunto $\{v_1, v_2, ..., v_k\}$, de forma que:

$$\operatorname{custo}(T) = \sum_{(u,v)\in T} w(u,v)$$

seja mínimo.

1.2 Complexidade Computacional

Embora o problema clássico da árvore geradora mínima (resolvido por algoritmos de Primou Kruskal) seja solucionável em tempo polinomial, a restrição de escolher um vértice por cluster torna o problema NP-difícil. Isso implica que, para instâncias de grande escala, a obtenção de soluções exatas torna-se inviável, o que motiva a adoção de métodos heurísticos e metaheurísticos.

1.3 Desafios

Entre os principais desafios estão:

- Explosão combinatória: A escolha de um vértice para cada cluster implica um número exponencial de combinações possíveis.
- Interdependência: A seleção de um vértice afeta diretamente a qualidade da árvore geradora obtida.
- Balanceamento: Obter um equilíbrio entre a qualidade (custo total mínimo) e o tempo computacional, especialmente em grafos grandes e complexos.

1.4 Objetivo

O trabalho tem como objetivo implementar e comparar três abordagens heurísticas para resolver a AGMG:

- 1. **Algoritmo Guloso:** Seleciona iterativamente a aresta de menor custo que conecta um vértice de um cluster ainda não representado a um já incluído na solução.
- 2. **Algoritmo Randomizado:** Introduz aleatoriedade na escolha dos vértices e arestas, buscando escapar de mínimos locais e diversificar as soluções.
- 3. **Algoritmo Reativo:** Combina as estratégias gulosa e randomizada de forma adaptativa, ajustando os parâmetros durante a execução com base no desempenho.

2 Descrição das Instâncias

Foram utilizadas dez instâncias de grafos, cujas características são as seguintes

- Instância 1: 5000 vértices, 10.000 arestas, 1000 clusters, não direcionado.
- Instância 2: 6000 vértices, 15.000 arestas, 500 clusters, direcionado.
- Instância 3: 7000 vértices, 20.000 arestas, 3000 clusters, não direcionado.
- Instância 4: 8000 vértices, 25.000 arestas, 1500 clusters, direcionado.
- Instância 5: 9000 vértices, 30.000 arestas, 1800 clusters, não direcionado.
- Instância 6: 5500 vértices, 12.000 arestas, 1200 clusters, não direcionado.
- Instância 7: 6500 vértices, 5000 arestas, 800 clusters, direcionado.
- Instância 8: 7566 vértices, 22.222 arestas, 5 clusters, não direcionado.
- Instância 9: 8665 vértices, 27.654 arestas, 3100 clusters, direcionado.
- Instância 10: 9500 vértices, 35.000 arestas, 900 clusters, não direcionado.

3 Descrição dos Métodos Implementados

Foram desenvolvidas três abordagens para a resolução da AGMG, conforme descrito a seguir.

3.1 Algoritmo Guloso

Esta abordagem constrói a solução de forma iterativa. A cada iteração, seleciona-se a aresta de menor custo que conecta um vértice pertencente a um cluster ainda não representado a um vértice já incluído na árvore. Embora simples e com tempo de execução reduzido, o método pode ficar preso em mínimos locais.

3.2 Algoritmo Randomizado

O método randomizado introduz um componente estocástico na seleção dos vértices e arestas. Ao escolher aleatoriamente entre as opções candidatas (por exemplo, dentre as arestas de menor custo), o algoritmo explora diferentes regiões do espaço de soluções. Essa abordagem pode resultar em soluções de custo maior, mas aumenta a diversidade e a chance de escapar de mínimos locais.

3.3 Algoritmo Reativo

O algoritmo reativo integra as estratégias gulosa e randomizada de forma adaptativa. Durante a execução, os parâmetros de escolha (por exemplo, a probabilidade de adotar a estratégia gulosa) são ajustados com base no desempenho observado. Assim, o método busca combinar a eficiência do guloso com a capacidade exploratória do randomizado, embora com um custo computacional adicional.

3.4 Estrutura e Modularidade do Código

O código, desenvolvido no arquivo grafo.cpp, foi organizado em módulos, cada um dedicado a uma das estratégias. Essa modularização facilita a manutenção e futuras extensões, permitindo que cada abordagem seja testada e aprimorada de forma isolada.

3.5 Gerenciamento de Memória

Foram utilizadas estruturas dinâmicas (como listas ligadas e vetores) para a representação dos grafos, garantindo a alocação e liberação eficientes de memória, especialmente em instâncias de grande porte.

3.6 Abordagem Orientada a Objetos e Clareza

A implementação segue os princípios da programação orientada a objetos, com classes bem definidas para representar vértices, arestas e clusters. Comentários detalhados (compatíveis com Doxygen) foram inseridos para facilitar a compreensão e a documentação do código.

4 Análise de Tempo de Execução entre Lista e Matriz

Para avaliar a eficiência das estruturas de dados, realizou-se uma comparação entre a representação por matriz de adjacência e por lista de adjacência, utilizando como exemplo a Instância 1. Os resultados obtidos foram:

4.1 Matriz de Adjacência

- Guloso: custo total = 7044, tempo de execução = 0.19 s.
- Randomizado: custo total = 50042, tempo de execução = 0,19 s.
- Reativo: custo total = 7044, tempo de execução = 3,66 s.

4.2 Lista de Adjacência

- Guloso: custo total = 7044, tempo de execução = 0.14 s.
- Randomizado: custo total = 51503, tempo de execução = 0.13 s.
- Reativo: custo total = 7044, tempo de execução = 2,22 s.

Figura 1: Comparação do custo total médio entre os algoritmos.

Figura 2: Comparação do tempo médio de execução entre os algoritmos.

4.3 Discussão

Observa-se que a utilização da lista de adjacência resulta em uma redução notável no tempo de execução, especialmente para o algoritmo reativo. Isso se deve à eficiência na manipulação de grafos esparsos, onde o acesso direto às arestas é mais otimizado em uma estrutura dinâmica do que em uma matriz de adjacência.

5 Análise de Resultado com Teste de Hipótese entre os Métodos

Nesta seção são apresentados os resultados experimentais obtidos para cada instância, o resumo estatístico e os testes de hipótese realizados sobre o custo total das arestas e o tempo

de execução.

5.1 Resultados por Instância

Instância 1

Tabela 1: Resultados para a Instância 1

Algoritmo	Custo Total Arestas	Tempo (s)
Guloso	7044	0,19
Randomizado	50042	$0,\!19$
Reativo	7044	3,66

Instância 2

Tabela 2: Resultados para a Instância 2

Algoritmo	Custo Total Arestas	Tempo (s)	
Guloso	1274	$0,\!28$	
Randomizado	25625	$0,\!25$	
Reativo	1274	$5,\!11$	

Instância 3

Tabela 3: Resultados para a Instância 3

1				
Algoritmo	Custo Total Arestas	Tempo (s)		
Guloso	33309	0,38		
Randomizado	151881	0,36		
Reativo	33309	$7{,}14$		

Instância 4

Tabela 4: Resultados para a Instância 4

Algoritmo	Custo Total Arestas	Tempo (s)
Guloso	5970	0,49
Randomizado	74692	$0,\!50$
Reativo	5970	$9,\!25$

Instância 5

Tabela 5: Resultados para a Instância 5

Tabela 6. Resultates para a Histaireia 9				
Algoritmo	Custo Total Arestas	Tempo (s)		
Guloso	8054	0,63		
Randomizado	88887	0,62		
Reativo	8054	11,79		

Instância 6

Tabela 6: Resultados para a Instância 6

Algoritmo	Custo Total Arestas	Tempo (s)
Guloso	8730	0,24
Randomizado Reativo	61104 8730	0,24 $4,43$

Instância 7

Tabela 7: Resultados para a Instância 7

Algoritmo	Custo Total Arestas	Tempo (s)
Guloso	8179	0,30
Randomizado	40695	0,31
Reativo	8179	5,94

Instância 8

Tabela 8: Resultados para a Instância 8

Algoritmo	Custo Total Arestas	Tempo (s)
Guloso	4	0,42
Randomizado	121	$0,\!42$
Reativo	4	8,02

9

Instância 9

Tabela 9: Resultados para a Instância 9

Algoritmo	Custo Total Arestas	Tempo (s)
Guloso	22001	0,57
Randomizado	157410	0,54
Reativo	22001	10,85

Instância 10

Tabela 10: Resultados para a Instância 10

Algoritmo (Custo Total Arestas	Tempo (s)
Guloso Randomizado Reativo	1831 46015 1831	0,72 0,67 13,26

5.2 Resumo Estatístico

Para uma visão global, calcularam-se a média (μ) e o desvio padrão (σ) dos resultados considerando as dez instâncias:

Tabela 11: Resumo Estatístico dos Resultados

Métrica	Guloso	Randomizado	Reativo
Custo Total Arestas	9639.6 ± 9809	69647.2 ± 48463 0.41 ± 0.158	9639.6 ± 9809
Tempo (s)	0.422 ± 0.168		7.945 ± 3.27

5.3 Testes de Hipótese

Para avaliar a significância dos resultados, foram realizados os seguintes testes:

• Custo Total Arestas:

- Guloso vs. Randomizado: p < 0,001 (diferença significativa).
- Guloso vs. Reativo: p = 1, 0 (sem diferença significativa).
- Randomizado vs. Reativo: p < 0,001 (diferença significativa).

• Tempo de Execução:

- Guloso vs. Reativo: p < 0,001 (diferença significativa).
- Randomizado vs. Reativo: p < 0,001 (diferença significativa).
- Guloso vs. Randomizado: p=1,0 (sem diferença significativa).

5.4 Visualização dos Resultados

As Figuras 3 e 4 ilustram, respectivamente, a comparação do custo total médio e do tempo médio de execução entre os algoritmos.

Figura 3: Comparação do custo total médio entre os algoritmos.

Figura 4: Comparação do tempo médio de execução entre os algoritmos.

5.5 Discussão

Observa-se que:

- Os algoritmos **Guloso** e **Reativo** obtiveram, para todas as instâncias, o mesmo custo total (por exemplo, 7044 na Instância 1 e 1274 na Instância 2), demonstrando que o método reativo, apesar de sua complexidade, alcança soluções equivalentes em termos de custo.
- O algoritmo **Randomizado** apresentou custos significativamente superiores, evidenciando a variabilidade introduzida pela aleatoriedade.
- Em termos de tempo de execução, os métodos guloso e randomizado tiveram desempenho muito semelhante (média em torno de 0,41 s), enquanto o reativo demonstrou

tempos elevados (média de aproximadamente 7,95 s), o que pode comprometer sua utilização em cenários que exijam respostas rápidas.

6 Conclusões

6.1 Desempenho dos Algoritmos

- Custo Total: Os algoritmos Guloso e Reativo apresentaram desempenho equivalente, enquanto o Randomizado obteve soluções de custo significativamente maiores.
- Tempo de Execução: Embora o método reativo garanta a mesma qualidade de solução que o guloso, seu tempo de execução é muito superior, o que o torna menos adequado para aplicações em tempo real.

6.2 Contribuições do Trabalho

Este estudo contribui para a compreensão das vantagens e limitações das abordagens heurísticas aplicadas à AGMG, destacando:

- A importância da escolha da estrutura de dados (lista de adjacência versus matriz de adjacência) para a eficiência computacional.
- A viabilidade de métodos híbridos (reativo) que combinam a eficiência do algoritmo guloso com a diversidade exploratória do randomizado.

6.3 Considerações Finais

Os resultados demonstram que, para o problema da Árvore Geradora Mínima Generalizada, a escolha do algoritmo deve considerar o equilíbrio entre a qualidade da solução e o tempo de execução. Embora o algoritmo reativo ofereça robustez ao combinar estratégias, seu alto custo computacional sugere que, em cenários onde a rapidez é essencial, o método guloso pode ser a alternativa mais apropriada.