EQUILÍBRIO IÔNICO

EQUILÍBRIO IÔNICO

Adição de ácido ou base a uma solução tampão

PROFESSOR: THÉ

LICÃO: 111

Os próximos três exemplos mostram o que ocorre com o pH de um tampão quando se adiciona um pouco de ácido ou um pouco de base

EXEMPLO - 1

Qual o pH final de uma solução tampão formada por $\mathbf{HAc}(0,1\mathbf{M})$ e $\mathbf{NaAc}(0,1\mathbf{M})$ quando 100 mL dessa solução recebe 1 mL de $\mathbf{HCl}(0,1\mathbf{M})$.

$$K(HAc = 2.10^{-5})$$

RESOLUÇÃO

1) Calcular o pH do tampão antes da adição do ácido

$HAc \rightleftharpoons H^+ + Ac^-$				
ı	0,1	0	0	
R	-x	+x	+x	
F	(0,1- x)	х	(x+0,1)	

$$NaAc \rightarrow Na^{+} + Ac^{-}$$

0,1 0,1 0,1

$$Ka = \frac{\begin{bmatrix} H^{+} \end{bmatrix} \begin{bmatrix} Ac^{-} \end{bmatrix}}{\begin{bmatrix} HAc \end{bmatrix}} \rightarrow Ka = \frac{\begin{bmatrix} H^{+} \end{bmatrix} \begin{bmatrix} SaI \end{bmatrix}}{\begin{bmatrix} Acido \end{bmatrix}}$$

$$2.10^{-5} = \frac{(\mathbf{x})(0,1)}{(0,1)} \to \mathbf{x} = 2.10^{-5} : \ \boxed{\mathbf{pH} = 4,7}$$

2) Cálculo das quantidades misturadas

Note que o volume sofre pouquíssima variação. Para simplificar podemos considerar o volume final igual a 100mL

$$HCI \begin{cases} V = 1mL \\ \mathbf{m} = 0,1 \text{ mol } / L \end{cases}$$

$$n=\mathbf{m} \cdot \mathbf{V}$$
 $\therefore n=(0,1)(1) \rightarrow \boxed{n=0,1 \text{ mmol}}$

$$Ac^{-}\begin{cases} V = 100 \, mL \\ \mathbf{m} = 0.1 \, mol/L \end{cases}$$

$$n = \mathbf{M} \cdot \mathbf{V}$$
 : $n = (0,1)(100) \rightarrow \boxed{n = 10 \text{ mmol}}$

3) Reação que ocorre

$HAc \rightleftharpoons H^+ + Ac^-$			
1	10	0,1	10
R	+0,1 ← −0,1		-0,1
F	10,1	-	9,9

OBS.: No início, já existe uma quantidade de $\mathbf{H}^+ \left(\mathbf{10}^{-4,7} \right)$,

porém estamos interessados na reação que teoricamente vai ocorrer com o acetato.

Concentrações finais:

$$HAc\left\{ \mathbf{M} = \frac{10,1}{101} \right\} = 0,1 \text{ mol/L}$$

$$Ac^{-}\left\{\mathbf{M} = \frac{9,9}{101}\right\} = 0,098 \text{ mol/L}$$

$$\mathbf{Ka} = \frac{\mathbf{H}^{+} \mathbf{Ac}^{-}}{\mathbf{[HAc]}}$$

$$2.10^{-5} = \frac{\left[\mathbf{H}^{+}\right](0,098)}{(0,1)}$$

$$[H^{+}] = 2,04.10^{-5} \rightarrow [pH = 4,69]$$

EXEMPLO - 2

Qual o pH final de uma solução formada por 100 mL do tampão da questão anterior quando a ele se adiciona 1,0 mL de NaOH (0,1M)

RESOLUÇÃO

1) Dados já conhecidos

►N° de mols

$$\begin{cases}
\mathsf{HAc} = 10 \; \mathsf{mmol} \\
\mathsf{Ac}^- = 10 \; \mathsf{mmol}
\end{cases}$$
►K(HAc) = 2.10⁻⁵

>pH do tampão inicial = 4,7

> Volume final = 100 + 1 = 101 mL

2) Número de mols de 1 mL de NaOH (0,1 M)

$$n=\mathbf{m} \cdot \mathbf{V}$$
 $\therefore \mathbf{n} = (0,1)(1) \rightarrow \boxed{\mathbf{n} = 0,1 \text{ mmol}}$

3) Reação Química

$HAc + NaOH \rightleftharpoons NaAc + H_2O$				
ı	10	0,1	10	-
R	-0,1	-0,1	0,1	0,1
F	9,9	0	10,1	-

4) Concentrações finais

HAc
$$\rightarrow \boxed{m = \frac{n}{V}} = \frac{9.9}{101} = 0.098 \text{ mol/L}$$

$$Ac^{-} \rightarrow \boxed{m = \frac{n}{V}} = \frac{10,1}{101} = 0,1 \text{ mol/L}$$

5) Novo pH do tampão

$$\mathbf{K_a} = \frac{\left[\mathbf{H}^+\right] \left[\mathbf{A}\mathbf{c}^-\right]}{\left[\mathbf{H}\mathbf{A}\mathbf{c}\right]}$$

$$2.10^{-5} = \frac{\left[H^{+}\right](0,1)}{(0.098)} \therefore \left[H^{+}\right] = 1,96.10^{-5} \rightarrow \boxed{pH = 4,71}$$

EXEMPLO - 3

Que massa de NaOH (sólido) deve ser adicionada a 1,0L de ácido acético (HAc)0,5M para se obter uma solução de pH=4.

$$NaOH = 40 g/mol Ka(HAc) = 2.10^{-5}$$

RESOLUÇÃO

1) Ionização do ácido

$$HAc \rightleftharpoons H^+ + Ac^-$$

Considerações

Como o ácido é fraco $(\alpha \le 5\%)$ considera-se que todas as moléculas estão na forma associada (HAc).

Reação do ácido com a base

O ácido reage com a base formando acetato de sódio.

$$\mathsf{HAc} + \boxed{1\,\mathsf{NaOH}} \, o \boxed{1\,\mathsf{NaAc}} + \mathsf{HOH}$$

Note que 1 mol de NaOH forma 1 mol de acetato de sódio, um sal que se dissocia completamente, liberando o acetato que passa então a fazer parte do equilíbrio do ácido.

$$NaAc \rightarrow Na^{+} + Ac^{-}$$
 $HAc \rightleftharpoons H^{+} + Ac^{-}$

2) Número de mols de HAc

$$HAc \begin{cases} V = 1,0 L \\ \mathbf{m} = 0,5 \text{ mol/L} \end{cases}$$

$$n = M \cdot V$$
 : $n = (0,5)(1,0) \rightarrow n = 0,5 \text{ mol}$

3) Concentração $\begin{bmatrix} \mathbf{H}^+ \end{bmatrix}$ desejada

$$\begin{bmatrix} \mathbf{H}^+ \end{bmatrix} = 10^{-\mathbf{pH}} \longrightarrow \begin{bmatrix} \mathbf{H}^+ \end{bmatrix} = 10^{-4} \, \mathbf{mol/L}$$

4) Equilíbrio

HAc \rightleftharpoons H ⁺ + Ac ⁻ Ka=2.10 ⁻⁵				
1	0,5	-	0	
R	-x	-	х	
F	0,5- x	10^{-4}	х	

$$Ka = \frac{\left[H^{+}\right]\left[Ac^{-}\right]}{\left[HAc\right]}$$

$$2.10^{-5} = \frac{\left(10^{-4}\right) \left[Ac^{-}\right]}{\left[HAc\right]}$$

$$\frac{2.10^{-5}}{10^{-4}} = \frac{\left[Ac^{-}\right]}{\left[HAc\right]}$$

$$\left[\mathbf{Ac}^{-}\right] = 2.10^{-1} \left[\mathbf{HAc}\right] \rightarrow \left[\mathbf{Ac}^{-}\right] = 0,2 \left[\mathbf{HAc}\right]$$

Para se obter pH=4 a concentração de acetato deve ser 20% da concentração de ácido acético.

Como o volume é de um litro então a relação entre o número de mols é a mesma que a da concentração

5) Cálculo do número de acetato no equilíbrio (que é igual ao do acetato de sódio)

$$\begin{bmatrix} Ac^{-} \\ x = 0.2 & (0.5 - x) \end{bmatrix}$$

$$x = 0.1 - 0.2 x$$

$$x + 0.2x = 0.1$$

$$1.2x = 0.1$$

$$x = \frac{0.1}{1.2} = \boxed{0.083 \text{ mol}}$$

6) Substituindo x por 0,083

	HAc ⇌	\mathbf{H}^{+}	+ Ac ⁻	$Ka = 2.10^{-5}$
ı	0,5	•	0	
R	-0,083	-	0,083	
F	0,5-0,083		0,083	

7) O acetato (\mathbf{Ac}^{-}) vem do NaAc que vem da reação:

$${\sf HAc} + {\sf NaOH} \rightarrow {\sf NaAc} + {\sf H}_2{\sf O}$$
 ,

8) Massa de NaOH

$$\begin{bmatrix}
\mathbf{n} = \frac{\mathbf{m}}{\mathbf{M}} & (\mathbf{M} = 40 \text{ g/mol}) \\
0,083 = \frac{\mathbf{m}}{40} & \therefore & \mathbf{m} = 3,32\mathbf{g}
\end{bmatrix}$$

RESUMO

Um tampão em geral é mais eficaz em um pH no qual a concentração do sal (base conjugada) é igual à concentração do ácido (ácido conjugado)

$$\underbrace{ \begin{array}{c} \textbf{HA} \\ \text{\'acido} \\ \text{conjugado} \end{array}} \underset{\textbf{conjugada}}{\rightleftharpoons} \mathbf{H}^{+} \ + \underbrace{\mathbf{A}^{-}}_{\text{base}}$$

$$\mathbf{Ka} = \frac{\begin{bmatrix} \mathbf{H}^+ \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix}}{\begin{bmatrix} \mathbf{HA} \end{bmatrix}} \therefore \begin{bmatrix} \mathbf{Ka} = \begin{bmatrix} \mathbf{A}^- \end{bmatrix} \end{bmatrix} \text{ ou } \begin{bmatrix} \mathbf{pKa} = \begin{bmatrix} \mathbf{H}^+ \end{bmatrix} \end{bmatrix}$$

É possível, contudo, determinar várias quantidades do sal e do ácido para se obter uma solução tampão com um

Para resolução de problemas desse tipo, deve-se ter em mente:

1) O ácido do tampão é sempre fraco, então considerase que suas moléculas estão completamente associadas (não-dissociadas)

$$\begin{array}{ccccc} & & & & \\ & & & \\ & 100\% & & & \\ & associado & & \\ & (ac.\ conjugado) & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ &$$

2) A concentração $\left[\mathbf{H}^{^{+}}\right]$ é obtida pelo pH sugerido no problema

$$\boxed{ \left[\mathbf{H}^{+} \right] = 10^{-\mathbf{pH}}}$$

3) O sal formado está na proporção estequiométrica da reação do ácido com a base.

$$\mathsf{HA} \, + 1 ... \, \mathsf{OH}^- \, \rightarrow \, 1 ... \, \mathsf{A}^- \, + \mathsf{HOH}$$

Proporção estequiométrica dessa reação.

4) Estabelecer a proporção entre ácido conjugada e a base conjugada no equilíbrio do ácido.

$$\underbrace{\mathsf{HA}}_{(\text{ác. conjugado})} \iff \mathsf{H}^+ + \underbrace{\mathsf{A}^-}_{(\text{base conjugada})}$$

$$\mathbf{Ka} = \frac{\left[\mathbf{H}^{+}\right] \left[\mathbf{A}^{-}\right]}{\left[\mathbf{HA}\right]}$$