CHAPTER 22- MISCELLANEOUS

EE24BTECH11021 - Eshan Ray

Section-B [JEEMain/AIEEE]

[JEE - M2014]

61. The statement $\sim (p \leftrightarrow \sim q)$ is:

a) a tautology

c) 6

	 b) a fallacy c) equivalent to p ↔ q d) equivalent to ~ p ↔ q 	
	Let A and B be two sets containing four and two sets respectively. Then the number of subsets of $A \times A$ least three elements is:	B, each having at [JEE – M2015]
	a) 275 b) 510 c) 219 d) 256	
	The negation of $\sim s \lor (\sim r \land s)$ is equivalent to:	[JEE - M2015]
05.	a) $s \lor (r \lor \sim s)$	[022 102015]
	b) $s \wedge r$	
	c) $s \wedge \sim r$	
	d) $s \wedge (r \wedge \sim s)$	
64.	The mean of the data set comprising of 16 observations is 16. If one of the observation valued 16 is new observations valued 3, 4 and 5 are added to the data, then the mean of the resultant data, is:	deleted and three $[JEE - M2015]$
	a) 15.8 b) 14.0	
	c) 16.8	
	d) 16.0	
65.	If $f(x) + 2f\left(\frac{1}{x}\right) = 3x, x \neq 0$ and	
	$S = \{x \mid R : f(x) = f(-x)\}; \text{ then S:}$	[JEE - M2016]
	a) contains exactly two elements.	
	b) contains more than two elements.	
	c) is an empty set.	
	d) contains exactly one element.	
66.	The Boolean Expression	
	$(p \land \sim q) \lor q \lor (\sim p \land q)$ is equivalent to:	[JEE-M2016]
	a) $p \cup q$	
	b) $p \lor \sim q$	
	c) $\sim p \wedge q$	
	d) $p \cup q$	[
67.	If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true?	[JEE-M2016]
	a) $3a^2 - 34a + 91 = 0$	
	b) $3a^2 - 23a + 44 = 0$	
	c) $3a^2 - 26a + 55 = 0$ d) $3a^2 - 32a + 84 = 0$	
60		on the noth ha
00.	A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point A observes that the angle of elevation of the top of the pillar is 30. After walking for the 10 minutes fro direction, at a point B , he observes that the angle of elevation of the top of the pillar is 60. Then the time by him, from B to reach the pillar, is:	m A in the same
	a) 20 b) 5	
	U) J	

d) 10 69. The following statement

 $(p \rightarrow q) \rightarrow [(\sim p \rightarrow q) \rightarrow q]$ is: [JEE - M2017]

- a) a fallacy
- b) a tautology
- c) equivalent to $\sim p \rightarrow q$
- d) equivalent to $p \rightarrow \sim q$

70. $\sum_{i=1}^{9} (x_i - 5) = 9$ and $\sum_{i=1}^{9} (x_i - 5)^2 = 45$, then the standard deviation of the 9 items x_1, x_2, \dots, x_9 is: [JEE - M2018]

- a) 4
- b) 2
- c) 3
- d) 9

71. The Boolean Expression

[JEE - M2018] $\sim (p \lor q) \lor (\sim p \land q)$ is equivalent to:

- a) p
- b) q
- c) $\sim q$
- d) $\sim p$

72. Let $S = \{x \in R : x \ge 0\}$ and

$$2|\sqrt{x}-3| + \sqrt{x}(\sqrt{x}-6) + 6 = 0$$
. Then S: [JEE – M2018]

- a) contains exactly one element.
- b) contains exactly two elements.
- c) contains exactly four elements.
- d) is an empty set.

73. If the Boolean expression

 $(p \oplus q) \land (\sim p \odot q)$ is equivalent to

 $p \land q$, where $\oplus, \odot \in \{\land, \lor\}$ then the ordered pair (\oplus, \odot) is: [JEE - M2019 - 9JAN]

- a) (\vee, \wedge)
- b) (\lor, \lor)
- c) (\land, \lor)
- $d) (\wedge, \wedge)$

74. 5 students of a class have an average height 150 cm and variance 18 cm². A new student, whose height is 156 cm joined them. The variance $(incm^2)$ of the height of these six students is: [JEE - M2019 - 9JAN]

- a) 16
- b) 22
- c) 20
- d) 18

75. If the standard deviation of the numbers -1,0,1,k is $\sqrt{5}$ where k>0, then k is equal to: [JEE – M2019 – 9April]

- a) $2\sqrt{6}$
- b) $2\sqrt{\frac{10}{3}}$
- c) $4\sqrt{\frac{5}{3}}$

76. For any two statements p and q, the negative of the expression $p \lor (\sim p \land q)$ is: [JEEM2019 - 9April]

- a) $\sim p \wedge \sim q$
- b) $p \wedge q$
- c) $p \leftrightarrow q$
- d) $\sim p \lor \sim q$