Sat Solver Optimisations

Anatoly Weinstein

January 3, 2024

This document contains research into optimisations of CNF-SAT problems.

1 Definitions

Boolean Function. A boolean function $f: V \subseteq Variables \to \{\bot, \top\}$ with truthy sets $P \subseteq \mathcal{P}(Variables)$ yields \top (truthy) if $V \in P$, else yields \bot (falsy).

Boolean Satisfyability Equation. We define a boolean formula by the following context-free grammar with start variable S, a given variable set $Variable = \{x_i : i \in [n-1]\}$ of n variables and a set of binary operations $Operation = \{\cdot, +, \oplus, ...\}$ and an assigned boolean function $f_{Operation} : \mathcal{P} \subseteq \{L, R\} \rightarrow \{\bot, \top\}$, where L and R is the truthiness of left and right respectively.

$$\begin{array}{ccc} S & \rightarrow & (S) \\ S & \rightarrow & S \ Operation \ S \\ S & \rightarrow & \neg S \\ S & \rightarrow & Variable \end{array}$$

The boolean equation is satisfied with interpretation P, if there is an interpretation X with $f_{SAT}(X) = \top$.

CNF Unmixed conjunctive normal form. We define a boolean formula in conjunctive normal form by the following context- free grammar with start variable S and a given variable set $Variable = \{x_i : i \in [n-1]\}$ of n variables.

 $S \rightarrow (Disjunction) \text{ Short: } \mathbf{S} : \{D\}$ $S \rightarrow S \cdot (Disjunction)$ $Disjunction \rightarrow Literal \text{ Short: } \mathbf{D} : \{X\}$ $Disjunction \rightarrow Disjunction + Literal$ $Literal \rightarrow Variable \text{ Short: } \mathbf{L} : x_i$ $Literal \rightarrow \neg Variable$

The notation $(a+\overline{b})\cdot(b+\overline{c}+\overline{d})\cdot(\overline{a}+\overline{c})$ will be used as type "set of literal sets" $\{\{a,\neg b\},\{b,\neg c,\neg d\},\{\neg a,\neg b\}\}$ in this paper.

2 Transformation Techniques

U-SAT Unmixed conjunctive normal form. Given a CNF-SAT formula, we call it unmixed, if every disjunction consists of either positive or negated literals.

A polynomial time reduction $SAT \leq_p U - SAT$ for an equation $S_E \to U_E$ would be:

 $\forall D \in S$:

TODO De Morgan

3-CNF-SAT Three-literals conjunctive normal form. Given a CNF-SAT formula, we call it n - SAT, if every disjunction consists of exactly n-literals.

TODO Proof

U3-SAT Three-literals unmixed conjunctive normal form. Given a CNF-SAT formula, we call it U3-SAT, if it is unmixed and every disjunction consists of exactly 3-literals.

TODO

3 Optimisation Techniques

Zugzwang. Common Literals. If a disjunction consists of one literal, the value of this literal is fixed.

$$S = X \cdot A(X) \rightarrow (f_{SAT}(Y) \Rightarrow X \in Y)$$

Contradiction. Contradictional Disjunctions.

A formula with contradictional disjunctions is not satisfiable.

$$\forall A: X \cdot \neg X \cdot A(X) = \bot$$

Common Contradicting Literals. Disjunction with common contradictional part.

$$(A+B)\cdot (\neg A+C)\cdot X=(AC+B\overline{A})\cdot X$$

Common Literals. Disjunction with common positive part.

$$(A+B)\cdot (A+C)\cdot X = (A+BC)\cdot X$$

Common Literals and Contradictional Part. Disjunction with positive and negative common parts.

$$(A+B+C)\cdot (A+\neg B+D)\cdot X = (A+BD+C\overline{B})\cdot X$$

Connected Component. Two independent sets of variables. If there exists two sets of variables A and B, such that $\forall a \in A, b \in B \not\equiv D : a \in D \land b \in D$, then you can create two equations as following and solve them independently with reduced variable count.

$$\forall V \in \{A,B\}: S_V = \{d \in D \ \forall \ l \in d: \ l \in V\}$$

 3×3 Combination. Brute-Force.

$$(a+b+c) \cdot (a+d+e)$$

$$=a+bd+be+cd+ce$$

$$=a+(b+c) \cdot (d+e)$$

4 CNF-SAT Optimisation

TODO 3-CNF-SAT equations

All equal. $D \cdot D = D$

If two disjunctions are equal, remove the second one.

One off. $(a + b + c) \cdot (a + b + d)$

If two disjunctions differ in only one letter, the following can be said:

$$(a+b+c)\cdot(a+b+d)$$
$$= a+b+c\cdot d$$

Opposing Literal. $(a + D_1) \cdot (\overline{a} + D_2)$

Add the following