# Learning Cooperative Solution Concepts From Voting Behavior

A Case Study on the Israeli Parliament

Lu Wei

Department of Computer Science National University of Singapore

Jan 2020



## Outline

Introduction

Methodology

Hedonic Game Stability Models Top Responsive Games Bottom Responsive Games Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion

Conclusion

# Background

- ► Coalition formation games:
  - ► Mostly theoretical analysis
  - ► Most models require full information on player preference
  - ► Lack of large dataset with ground truth
- ► Clustering & community detection:
  - ► Data-driven analysis
  - Missing strategic behavior modelling

#### Data

- ► Israeli parliament (the Knesset) voting data
- ► Available since March 2017
- $\blacktriangleright$  Contains 147 parliament members' votes on over 7500 bills in  $\sim$  4 years
- ► Ground truth clusters: political party affiliations
  - ► 10 parties aligned along a left-right axis
  - Ideological agreement among the government (right) and the opposition (left) parties respectively

# Probably Approximately Correct (PAC) Stability

Given m observations of formed coalitions  $S_1, \ldots, S_m$  sampled i.i.d. from some distribution  $\mathcal{D}$ , and the cardinal valuations of players in  $S_j$   $(v_i(S_j))_{i\in S}$ 

Local loss given a coalition structure  $\pi$  and a coalition  $S \subseteq N$ :

$$\lambda(\pi, S) = \begin{cases} 1 & \text{if } \forall i \in S : v_i(S) > v_i(\pi(i)) \\ 0 & \text{otherwise.} \end{cases}$$

The expected loss of  $\pi$  w.r.t.  $\mathcal{D}$ :

$$L_{\mathcal{D}}(\pi) = \Pr_{S \sim \mathcal{D}} \left[ \lambda(\pi, S) = 1 \right]$$

#### A PAC stabilizing algorithm:

- ▶ input: a set of i.i.d. samples  $S_1, ..., S_m \sim \mathcal{D}^m$
- output: a coalition structure  $\pi^*$  with the following guarantee:  $\Pr_{(S_1,\ldots,S_m)\sim\mathcal{D}^m}[L_{\mathcal{D}}(\pi^*)\geq \varepsilon]<\delta$
- ► The number of samples needed m grows linearly in the number of players, and polynomially in  $\frac{1}{\varepsilon}$  and  $\log \frac{1}{\delta}$

## Research Questions

- ► Can we use hedonic games to model real-world collaborative activities?
- ► How well does the outcome compare to ground truth?
- ► How well does the outcome compare to that of canonical clustering and community detection models?

Game Theoretic Models

- ► Assumes hedonic preferences
  - ► Top responsive
  - ► Bottom responsive
  - ► Boolean

#### Game Theoretic Models

- Assumes hedonic preferences
  - ▶ Top responsive
  - ▶ Bottom responsive
  - ► Boolean
- ► Two approaches:
  - ► Full-information models: construct complete preference profile, then derive core stable solution
  - ► PAC models: learn a probably stable solution directly from partial preference relations

#### Game Theoretic Models

- Assumes hedonic preferences
  - ► Top responsive
  - Bottom responsive
  - ► Boolean
- ► Two approaches:
  - Full-information models: construct complete preference profile, then derive core stable solution
  - ► PAC models: learn a probably stable solution directly from partial preference relations
    - ► Simulate i.i.d.: sampling with replacement 3/4 of all bills
    - ► Repeat 50 times to check consistency of solution between runs
    - Select the "centroid" to represent model output: partition with minimum sum of information distance from other 49 partitions

#### Comparisons

- ► Comparison machine learning models:
  - K-Means
  - Stochastic Block Model
- ► Comparing every hedonic & ML model output partition to ground truth party affiliations
  - ► Quantitatively: information theoretic measures
  - ► Qualitatively: political analysis

# How different are two partitions, quantitatively? Objectives

We want a measure that...

- ▶ has strong mathematical foundation: information theoretic measures
- ▶ is intuitive: satisfing metric property
  - ► non-negativity
  - symmetry
  - ► triangle inequality

# How different are two partitions, quantitatively?



Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables X and Y

- ► Entropy:  $H(\pi) = -\sum_{j=1}^{J} \frac{|S_j|}{|N|} \log \frac{|S_j|}{|N|}$
- ► Conditional entropy:  $H(\pi|\pi') = -\sum_{j=1}^{J} \sum_{k=1}^{K} \frac{|S_j \cap S_k'|}{|N|} \log \frac{|S_j \cap S_k'|/|N|}{|S_k|/|N|}$
- Mutual Information (MI):  $I(\pi, \pi') = H(\pi) H(\pi|\pi')$
- ► Variation of Information (VI):  $VI(\pi, \pi') = H(\pi) + H(\pi') - 2I(\pi, \pi')$ , metric!

# How different are two partitions, quantitatively?

#### Baseline Values



Doint List Yesh Atid The Sewish Home Yisrael Beiteinu

The Knesset partition baseline VI values

All-in-One partition of the Knesset

# How different are two partitions, quantitatively?

Additional Measure: AMI

Adjusted Mutual Information (AMI):

$$AMI(\pi, \pi') = \frac{I(\pi, \pi') - E(I(\pi, \pi'))}{\max(H(\pi), H(\pi')) - E(I(\pi, \pi'))}$$

► Adjusted for chance

► Normalized: [0,1]

► Not metric

Good for detecting "bad" (very different) partitions:

|            | Ajusted Mutual Information |
|------------|----------------------------|
| Singletons | 3e-14                      |
| All-in-One | -5e-16                     |
| Randome 10 | 0.007                      |

The Knesset partition baseline AMIs

**Definitions** 

Idea: for every player, the value of a coalition depends on the most preferred subset of players

- ► Choice sets:
  - $Ch(i, S) = \{S' \subseteq S : (i \in S') \land (S' \succeq_i S'' \forall S'' \subseteq S)\}$ When |Ch(i, S)| = 1, the unique choice set is ch(i, S)
- ▶ A *top responsive* preference profile requires that for any player  $i \in N$ , and any coalition that may contain player i:  $S, T \in \mathcal{N}_i$ :
  - 1. |Ch(i, S)| = 1.
  - 2. if  $ch(i, S) \succ_i ch(i, T)$  then  $S \succ_i T$
  - 3. if ch(i, S) = ch(i, T) and  $S \subset T$  then  $S \succ_i T$

Example

## Example 1

Consider a game of three players with the following choice sets:  $ch(1,\{1,2,3\}) = ch(1,\{1,2\}) = \{1,2\}, ch(1,\{1,3\}) = \{1,3\}, ch(1,\{1\}) = \{1\}$   $ch(2,\{1,2,3\}) = ch(2,\{2,3\}) = \{2,3\}, ch(2,\{1,2\}) = \{1,2\}, ch(2,\{2\}) = \{2\}$   $ch(3,\{1,2,3\}) = ch(3,\{1,3\}) = \{1,3\}, ch(3,\{1,2\}) = \{1,2\}, ch(3,\{3\}) = \{3\}$ 

Then the resulting preference profile is top responsive:

```
player 1: \{1,2\} \succ_1 \{1,2,3\} \succ_1 \{1,3\} \succ_1 \{1\} player 2: \{2,3\} \succ_2 \{1,2,3\} \succ_2 \{1,2\} \succ_2 \{2\} player 3: \{1,3\} \succ_3 \{1,2,3\} \succ_3 \{2,3\} \succ_3 \{3\}
```

Core Finding Algorithms - Full Information

## **Algorithm 1** Top Covering Algorithm

**Input:** A hedonic game satisfying top responsiveness.

```
1: R^1 \leftarrow N; \pi \leftarrow \emptyset.
```

2: **for** 
$$k = 1$$
 to  $|N|$  **do**

3: Select 
$$S^k$$

4: 
$$\pi \leftarrow \pi \cup \{S^k\} \text{ and } R^{k+1} \leftarrow R^k \setminus S^k$$

5: **if** 
$$R^{k+1} = \emptyset$$
 **then**

6: return 
$$\pi$$

9: **return** 
$$\pi$$

Let 
$$C^{1}(i, S) = ch(i, S)$$
  $C^{t+1}(i, S) = \bigcup_{j \in C^{t}(i, S)} ch(j, S)$ 

The connected component of i with respect to S:  $CC(i,S) = C^{|N|}(i,S)$ Step 3: select  $i \in R^k$  such that  $|CC(i,R^k)| \le |CC(j,R^k)|$  for each  $j \in R^k$ ; and  $S^k \leftarrow CC(i,R^k)$ 

#### Core Finding Algorithms - PAC

#### Algorithm 2 PAC Top Covering Algorithm

27: return π

```
Input: \varepsilon, \delta, set S of m = (2n^4 + 2n^3) \lceil \frac{1}{\varepsilon} \log \frac{2n^3}{\delta} \rceil samples from D
 1: R^1 \leftarrow N, \pi \leftarrow \emptyset
 2: ω ← \[ 2n^2 \frac{1}{5} \log \frac{2n^3}{5} \]
 3: for k = 1 to |N| do
           S' \leftarrow take and remove \omega samples from S
           S' \leftarrow \{T : T \in S', T \subseteq R^k\}
           for i \in R^k do
                 if i \notin \bigcup_{X \in S'} X then
                      B_{i,k} \leftarrow \{i\}
 9:
                 else
                      B_{i,k} \in \arg \max_{T \in S'} v_i(T)
                      B_{i,k} \leftarrow \bigcap_{\{T \in S': ch(i,T) = ch(i,B_{i,k})\}}
12:
                 end if
13-
           end for
           for j = 1, \dots, |R^k| do
14:
                 S'' \leftarrow \text{take and remove } \omega \text{ samples from } S
15:
                S'' \leftarrow \{T : T \in S'', T \subseteq R^k\}
16.
                 for i \in \mathbb{R}^k do
17:
                      B_{i,k} \leftarrow B_{i,k} \cap \bigcap_{T \in S'': ch(i,T) = ch(i,B,r)} T.
19:
                 end for
20.
           end for
           Select S^k
21:
           \pi \leftarrow \pi \cup \{S^k\}; and R^{k+1} \leftarrow R^k \setminus S^k
           if B^{k+1} = \emptyset then
23:
                 return \pi
24:
           end if
26: end for
```

- ► Steps 1-3, 21-27: the same structure as Algorithm 1
- Steps 4-20: approximate player preferences from sample observations of coalitions formed
- ▶ Original [2] Step 21: select  $i \in R^k$  such that  $|CC(i, R^k)| \le |CC(j, R^k)|$  for each  $j \in R^k$ ; and  $S^k \leftarrow CC(i, R^k)$
- ▶ Improved Step 21: select the largest Strongly Connected Component (SCC) in the graph induced by  $R^k$  as vertices and directed edges E,  $(i,j) \in E$  if  $j \in ch(i,R^k)$  for all  $j \in R^k$ ; and  $S^k \leftarrow SCC(R^k)$

Imporoved Core Finding Algorithm - PAC

- correctness proof hiteboarding, proof by picture
- running time improvements:
  - ▶ each iteration: from finding smallest CC's  $\mathcal{O}(|V|(|V|+|E|))$  to finding the largest SCC's  $\mathcal{O}(|V|+|E|)$
  - removing more players in the earlier iterations also reduces the amount of computation required for the later iterations

# Top Responsive Games - Handcrafted Value Function

Let  $S_f$  be the set of members who voted "for" and  $S_a$  be the set of members who voted "against".  $S_p = S_f \cup S_a$ .

$$v_i(S) = \begin{cases} 1 + \frac{1}{|S|} + \frac{|S_p|}{|N|}, & \text{if } S \text{ is the winning majority} \\ 0, & \text{otherwise} \end{cases}$$
 (1)

- ► A winning coalition is always worth more than a losing coalition
- ▶  $\frac{1}{|S|}$  reflects that a win is more valuable when achieved with fewer members
- ► The participation term  $\frac{|S_p|}{|N|}$  gives a win more value when there are more effective votes for a given bill
- ► Assign all unobserved coalition the value of zero

# Top Responsive Games - Handcrafted Value Function

Let  $S_f$  be the set of members who voted "for" and  $S_a$  be the set of members who voted "against".  $S_p = S_f \cup S_a$ .

$$v_i(S) = \begin{cases} 1 + \frac{1}{|S|} + \frac{|S_p|}{|N|}, & \text{if } S \text{ is the winning majority} \\ 0, & \text{otherwise} \end{cases}$$
 (1)

- ► Core stable partition: apply Algorithm 1 with partial reference profile as input
- ► PAC stable partition: apply improved Algorithm 2, sampling with replacement to make up for insufficient samples

# Top Responsive Games - Appreciation of Friends

Let  $G_i$  be player i's set of friends, and  $B_i$  the set of enemies.  $G_i \cup B_i \cup i = N$  and  $G_i \cap B_i = \emptyset$ . A preference profile  $P^f$  is based on appreciation of friends if for all player  $i \in N$ ,  $S \succeq_i T$  if and only if

- 1.  $|S \cap G_i| > |T \cap G_i|$  or
- 2.  $|S \cap G_i| = |T \cap G_i|$  and  $|S \cap B_i| \le |T \cap B_i|$
- ► Friends: anyone whose votes agreed with the given player's more often than they disagreed
- Agreed votes are only counted if the given player voted "for" or "against"
- ► Disagreed votes:
  - 1. Narrow disagreement (general friends): the other player's vote is different from mine, and is either "for" or "against"
  - Broad disagreement (selective friends): the other player's vote is different from mine

# Top Responsive Games - Appreciation of Friends

Examples

### Example 2

Given 3 players and 3 bills, their votes are as follow:

|        | player 1  | player 2 | player 3  |
|--------|-----------|----------|-----------|
| bill A | for       | for      | against   |
| bill B | abstained | for      | abstained |
| bill C | abstained | against  | abstained |

#### General friends preference profile:

player 1:  $\{1,2\} \succ_1 \{1,2,3\} \succ_1 \{1\} \succ_1 \{1,3\}$ 

player 2:  $\{1,2\} \succ_2 \{1,2,3\} \succ_2 \{2\} \succ_2 \{2,3\}$ 

player 3:  $\{3\} \succ_3 \{1,3\} \sim \{2,3\} \succ_3 \{1,2,3\}$ 

#### **Selective friends** preference profile:

player 1:  $\{1,2\} \succ_1 \{1,2,3\} \succ_1 \{1\} \succ_1 \{1,3\}$ 

player 2:  $\{2\} \succ_2 \{1,2\} \sim \{2,3\} \succ_2 \{1,2,3\}$ 

player 3:  $\{3\} \succ_3 \{1,3\} \sim \{2,3\} \succ_3 \{1,2,3\}$ 

Idea: for every player, the value of a coalition depends on the absence of the least preferred subset of players

► Avoid sets:

$$Av(i,S) = \{S' \subseteq S : (i \in S') \land (S' \leq_i S'' \forall S'' \subseteq S)\}$$

- ► A *bottom responsive* preference profile requires:
  - 1. if for all  $S' \in Av(i, S)$   $T' \in Av(i, T)$ ,  $S' \succ_i T'$  then  $S \succ_i T$
  - 2. if  $Av(i, S) \cap Av(i, T) \neq \emptyset$  and  $|S| \geq |T|$  then  $S \succeq_i T$

# Bottom Responsive Games - Aversion to Enemies

A preference profile  $P^e$  is based on aversion to enemies if for every player  $i \in N$ ,  $S \succeq_i T$  if and only if

- 1.  $|S \cap B_i| < |T \cap B_i|$  or
- 2.  $|S \cap B_i| = |T \cap B_i|$  and  $|S \cap G_i| \ge |T \cap G_i|$

It is a proper subclass of bottom responsive games

- ► Friends: anyone whose votes agreed with the given player's more often than they disagreed
- Agreed votes are only counted if the given player voted "for" or "against"
- ► Disagreed votes:
  - 1. Narrow disagreement (general friends/selective enemies): the other player's vote is different from mine, and is either "for" or "against"
  - 2. Broad disagreement (selective friends/general enemies): the other player's vote is different from mine

# Top Responsive Games - Aversion to Enemies

#### Examples

#### Example 3

Given 3 players and 3 bills, their votes are as follow:

|                  | player 1  | player 2 | player 3  |
|------------------|-----------|----------|-----------|
| bill A           | for       | for      | against   |
| bill B           | abstained | for      | abstained |
| bill C abstained |           | against  | abstained |

#### **General friends / selective enemies** preference profile:

player 1: 
$$\{1,2\} \succ_1 \{1\} \succ_1 \{1,2,3\} \succ_1 \{1,3\}$$

player 2: 
$$\{1,2\} \succ_2 \{2\} \succ_2 \{1,2,3\} \succ_2 \{2,3\}$$

player 3: 
$$\{3\} \succ_3 \{1,3\} \sim \{2,3\} \succ_3 \{1,2,3\}$$

## **Selective friends / general enemies** preference profile:

player 1: 
$$\{1,2\} \succ_1 \{1\} \succ_1 \{1,2,3\} \succ_1 \{1,3\}$$

player 2: 
$$\{2\} \succ_2 \{1,2\} \sim \{2,3\} \succ_2 \{1,2,3\}$$

player 3: 
$$\{3\} \succ_3 \{1,3\} \sim \{2,3\} \succ_3 \{1,2,3\}$$

# **Bottom Responsive Games**

Core Finding Algorithms - Full Information

## **Algorithm 3** Bottom Responsive Game Core Finding Algorithm

```
Input: A bottom responsive game
 1: S \leftarrow N: \pi \leftarrow \emptyset.
 2: while S \neq \emptyset do
            Set \Gamma \leftarrow \{S\}
 3:
            Set \Phi \leftarrow \{X \in \Gamma | \{i\} \in Av(i, X) \text{ for each } i \in X\}
 4:
      while \Phi = \emptyset do
 5:
                  \Gamma \leftarrow \bigcup \bigcup \{X \setminus \{j\} | j \in Y \text{ for some } Y \in Av(i, X)\}
 6:
                          X \in \Gamma i \in X
                  \Phi \leftarrow \{X \in \Gamma | \{i\} \in Av(i, X) \text{ for each } i \in X\}
 7:
            end while
 8:
```

Select a coalition  $X \in \Phi$ 

Set  $\pi \leftarrow \pi \cup \{X\}$  and  $S \leftarrow S \setminus X$ 

11: end while

9:

10:

12: **return**  $\pi$ 

# **Bottom Responsive Games**

Core Finding Algorithms - PAC

- ► Same structure as Algorithm 3
- ightharpoonup Approximate player preferences Av(i, X) from samples
  - ► Find friends from each set of sample coalitions
  - ► Take intersection of friend sets as "true friends"
  - Let each player's avoid set be players outside the "true friends" set

Idea: a player either likes to be a member of a coalition or hates it

- ► A player is indifferent among all satisfactory coalitions, same for unsatisfactory coalitions
- Strictly prefers any satisfactory coalition over any unsatisfactory coalition
- ► Within each bill, "for" and "against" groups each forms a satisfactory coalition
- Assume unobserved coalitions as unsatisfactory

Examples

### Example 4

Given a parliament with 3 players and 3 bills, their votes are as follow:

|        | player 1  | player 2 | player 3 |
|--------|-----------|----------|----------|
| bill A | for       | against  | for      |
| bill B | abstained | for      | for      |
| bill C | for       | against  | against  |

#### Boolean preference profile:

player 1: 
$$\{1,3\} \sim \{1\} \succ_1 \{1,2\} \sim \{1,2,3\}$$
 player 2:  $\{2\} \sim \{2,3\} \succ_2 \{1,2\} \sim \{1,2,3\}$  player 3:  $\{1,3\} \sim \{2,3\} \succ_3 \{3\} \sim \{1,2,3\}$ 

Core Finding Algorithms - Full Information

#### Algorithm 4 Boolean Hedonic Game Core Finding Algorithm

Input: A Boolean hedonic game

- 1:  $N' \leftarrow N$ ;  $\pi \leftarrow \emptyset$ .
- 2: while  $N' \neq \emptyset$  do
- 3: Find  $S \subset N'$  where all players in S find S satisfactory, and the size of S is the largest if there are multiple such coalitions.
- 4:  $\pi \leftarrow \pi \cup \{S\}$  and  $N' \leftarrow N' \setminus S$
- 5: end while
- 6: return  $\pi$ 
  - Symmetry in preference profile implies the bill with the broadest support/disapproval also yields the largest coalition
  - Symmetry further implies largest cross-party coalition will be part of the output partition
  - Selecting any satisfactory coalition (not necessarily the largest) in Step 3 maintains core stability
  - ► Our implementation: replace largest with median-sized coalition

Core Finding Algorithms - PAC

- ► Same as Algorithm 4
- ► Only difference: the input is satisfactory coalitions derived from sample bills
- ► The output is consistent with the observed samples, therefore PAC stable [1]

# k-Means Clustering

k-means clustering[3] divides a given set of samples  $x_1, \dots, x_n$  into k disjoint sets C, each described by the mean  $\mu_j$  of the samples in the cluster; it produces a partition minimizing the *within-cluster* sum-of-squares (WCSS):

$$\sum_{i=1}^{n} \min_{\mu_j \in C} (||x_i - \mu_j||^2)$$

- ► General purpose
- ► Only need to find the best *k*
- ► Runs fast
- Assumes similar sized clusters

# k-Means Clustering

Model Construction

#### Distance between points

- ► Each politician correspond to a point
- ► Each bill acts as a feature
- ► A "for" vote takes value of 1, "against" -1, others 0

#### Finding the best k

► Elbow method:

$$k = 10$$

► Average silhouette:

$$k = 2$$



#### Stochastic Block Model

- ► A benchmark model in community detection
- ► Models dataset as a graph: parliament members as nodes, same/different votes as edge weights
- Assumes nodes in the same block shares same probability of being connected to other nodes
- ► Using Bayesian inference to find a partition that maximizes the likelihood of the observed network

#### Stochastic Block Model

#### Modeling Edge Weights

- Positive edge weight: the number of times a pair of politicians voted together, either "for" or "against" a bill.
- ► Modeled as a geometric distribution



- ► Possibly negative edge weight: the difference between the number of times their votes agree and the number of times their votes disagree
- ► Modeled as a normal distribution



# Variability among PAC Partitions

| Model             | Partition Size Mean (SD) | CV   |
|-------------------|--------------------------|------|
| Value Function    | 87 (0)                   | 0    |
| General Friends   | 13 (1.29)                | 0.10 |
| Selective Friends | 20 (1.83)                | 0.09 |
| Selective Enemies | 10 (0)                   | 0    |
| General Enemies   | 34 (0.84)                | 0.02 |
| Boolean           | 85 (16.92)               | 0.2  |

PAC model partition size statistics across 50 runs per model

| Model             | Pairwise AMI Mean (Min) | CV   |
|-------------------|-------------------------|------|
| Value Function    | 1 (1)                   | 0    |
| General Friends   | 0.78 (0.6)              | 0.09 |
| Selective Friends | 0.84 (0.66)             | 0.08 |
| Selective Enemies | 0.99 (0.97)             | 0.01 |
| General Enemies   | 0.97 (0.93)             | 0.01 |
| Boolean           | 0.18 (-0.06)            | 0.86 |

PAC Model Partition Pairwise AMI Statistics over 50 Runs per Model



AMI between model partition and party affiliations

Friends Models - Full Information



General friends model output

#### Full-information models

- ightharpoonup  $AMI_{friends} = 0$
- ► AMI<sub>selective friends</sub> = 0.293
- ► More friendly → more likely to have grand coalition as final partition
- Major drawback of the full-information friends models: sensitive to the definition of "friends"

#### Friends Models - PAC



PAC general friends model output

#### PAC models

- ► AMI<sub>PAC friends</sub> = 0.288
- ► AMI<sub>PAC selective friends</sub> = 0.283
- ► PAC models dampen their sensitivity to the definition of friends through sampling

#### Boolean Models



Boolean model output

#### Full-info model

- ightharpoonup  $AMI_{Boolean} = 0.077$
- ► Too many "stranded" singleton coalitions

#### PAC model

- ightharpoonup  $AMI_{PAC}$  Boolean = 0.194
- ► Slightly better performance
- ► But of limited representativeness due to high variability

#### Handcrafted Value Function Models



PAC value function model output



Value function model output

Handcrafted Value Function Models

#### Full-info model

- ightharpoonup AMI<sub>Value Fuction</sub> = 0.290
- ▶ Identified a government coalition and an opposition coalition
- ▶ Precense of Yisrael Beiteinu members in coalition 1 (opposition parties) not in line with reality

#### PAC model

- $ightharpoonup AMI_{PAC Value Fuction} = 0.144$
- ► Worst performing PAC model
- ► Many singleton coalitions
- ► Identified a government coalition
- Missing opposition coalition due to sampling more likely picking government majority bills — limitation of value function formulation

### SMB - Normal Edge Weights



SBM normal model output

- ightharpoonup  $AMI_{SBM normal} = 0.192$
- Many small coalitions
- Left-wing/right-wing grouping observed, but fails to distinguish the government from the opposition

#### Model Selection



AMI: higher means closer to ground truth



VI: lower means closer to ground truth

Selected Models

### PAC Models

- ► Selective Friends
- ► Selective Enemies
- ► Boolean

### Comparison ML Models

- ▶ 2-group *k*-means
- ► 10-group *k*-means
- ► SBM Geometric

### Criteria

- Coherence: separate coalition and opposition parties cleanly? (no mixed coalitions)
- ► Overal Structure: able to distinguish between the main government and opposition groups?
- ► Party Sub-groups: able to identify subgroups within parties?

| Model                    | Coherence | Structure | Sub-group |
|--------------------------|-----------|-----------|-----------|
| PAC Selective Friends    | ✓         | ✓         | Х         |
| PAC Selective Enemies    | ✓         | ✓         | X         |
| PAC Boolean              | ✓         | ✓         | X         |
| 2-group k-means          | ×         | ✓         | X         |
| 10-group <i>k</i> -means | ×         | ×         | X         |
| SBM Geometric            | Х         | X         | ×         |

### Conclusion

### Summary

- ► ML methods: do not consider players' preferences and strategic behavior
- ► Game theoretic research: mostly theoretical or prescriptive with simulated data
- ► This thesis: a "descriptive" study of hedonic game theoretical models using real-world data of scale, and with ground truth
  - ► PAC models are able to recover overall structure & more coherent than ML models
  - ► PAC approach result is more robust than full-info approach

### Future Research

- ► Apply PAC models on other parliaments, e.g. Dutch, Brazilian, US congress
- Apply other hedonic uncertainty models, e.g. Baysian core, on the Knesset dataset

# Bibliography I

- [1] Tushant Jha and Yair Zick. A Learning Framework for Distribution-Based Game-Theoretic Solution Concepts. 2019. arXiv: 1903.08322.
- [2] Jakub Sliwinski and Yair Zick. "Learning Hedonic Games". In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI). 2017, pp. 2730–2736.
- [3] Pang-Ning Tan et al. *Introduction to Data Mining (2Nd Edition)*. Pearson, 2018.