

Objectives

- Can we successfully predict whether or not future flights are going to be delayed? By how long?
- What features influences whether or not a flight is going to be delayed?
- Empower consumers to make more informed decisions when buying flight tickets
- Data comes from Kaggle and Bureau of Transportation Statistics
 - 2018 2023 US domestic flights (including US territories)
 - 39M rows, 61 features
 - We sample 100,000 rows and use 28 features

Top 10 Airlines in America

How long are we waiting?

How long are we <u>actually</u> waiting?

When are we waiting?

Correlation of Numeric Features

Performance Metrics

Classification

- Recall: percentage of positive classifications correctly defined
 - Most important for value proposition
- Switched to F1 due to poor precision

Regression

- Mean-Squared Error: penalize larger errors to achieve high precision
- R2 score: conveys proportion of variance in delays that is conveyed by our features

Logistic Regression

59.59%

Training Accuracy

64.19%

Training Recall

24.91%

Training Precision

58.73%

Testing Accuracy

63.66%

Testing Recall

24.35%

Random Forest

66.96%

Training Accuracy

67.95%

Training Recall

30.44%

Training Precision

63.80%

Testing Accuracy

57.53%

Testing Recall

26.12%

Optimized Logistic Regression

59.56%

Training Accuracy

58.66%

Testing Accuracy

64.23%

Training Recall

63.66%

Testing Recall

24.90%

Training Precision

24.31%

Random Forest

74.03%

Training Accuracy

76.52%

Training Recall

38.29%

Training Precision

65.93%

Testing Accuracy

53.48%

Testing Recall

26.81%

Feature Importance

- Hour of scheduled flight departure and arrival
- Day of the year

Linear Regression

Training

MSE: 1299.71

R2: 0.04

Test

MSE: 1299.71

R2: 0.04

Optimized Linear Regression

Training

MSE: 1317.68

R2: 0.04

Test

MSE: 1317.68

R2: 0.04

Random Forest + Bayes Search

Training MSE: 1263.55

Training R2: 0.08

Test MSE: 1263.55

Test R2: 0.05

Implications and Insights

- Most important factors
 - Time of day
 - Day of the year
 - Airline
- These three factors are already major factors individuals consider when purchasing a plane ticket.
 - Information from our model can supplement what we already know.

Limitations and Future Work

- Could not utilize entire dataset
 - Required us to sample small fraction
- Limited number of features
 - Even after encoding

- Classifier for "Cancelled" flights
- Address overfitting in Random Forest
- Add more features:
 - Airline controversy
 - Make/model of the plane:Boeing vs Airbus
 - Ticket price
 - Number of seats sold

Reflections and Challenges

- Limited feature availability for our model
 - Even after encoding and feature engineering, our model effectively used airline, flight date, and airport location
- Should've spent more time on the EDA to identify more features
- Good practice of reviewing the entire course intimately
- Enjoyed data visualization

Thanks!