Métodos matemáticos para la ciencia e Ingeniería: Integración ecuación de Poisson en 2D para el potencial electrostático

Fernanda Pérez

27 de Octubre, 2015

1 Introducción

Se busca integrar la siguiente ecuación de Poisson en 2D para el potencial electrostático:

$$\nabla^2 V(x,y) = -\rho(x,y)$$

Dentro de una caja rectangular de dimensiones $10[cm] \times 15[cm]$, cumpliendo las siguientes condiciones:

- V=0 en el perímetro de la caja.
- En la línea y=-5.5, x=[-3:3], se tiene que:

 - 1) $\frac{dV}{dn}=1$, para y>-5.52) $\frac{dV}{dn}=-1$, para y<-5.5

Se especifica que la carga total dentro de letra (ver Figura 1) es:

$$Q = \int \rho(x, y) dx dy = 1[C]$$

Por lo tanto, la función $\rho(x,y)$ queda definida de la siguiente manera:

- $\rho(x,y) = 0$, para los (x,y) fuera de la letra (ver Figura 1).
- $\rho(x,y) = \frac{1}{15}$, para los (x,y) dentro de la letra (el área de la letra es $15cm^2$).

Figura 1: Caja de dimensiones $10[cm] \times 15[cm]$, con rectángulo interior centrado de $5[cm] \times 7[cm]$ donde se ubica la letra F con grosor de línea de 1[cm] con densidad constante dentro de ella. La línea roja es donde se aplica la condición de borde derivativa.

Se busca realizar la integración utilizando el método de sobre-relajación sucesiva con distintos w y h=0.2. Se pide estudiar cuántas iteraciones hacen falta para converger en cada caso. Se debe definir un criterio de convergencia.

2 Procedimiento

Se toma el sistema (i, j) partiendo de la esquina inferior izquierda de la caja. Se define una función $\rho(i, j, h)$ que toma (i, j) y el paso h = 0.2 y traslada al sistema (x, y) centrado en la caja, otorgándo el valor de $\rho(x, y)$.

2.1 Iteración

El método de sobre-relajación sucesiva nos dice que para los puntos lejos de la lídea donde ocurre la condición de borde derivatiba se cumple que:

$$V_{(i,j)_{next}} = (1 - \omega) \cdot V_{(i,j)} + \frac{\omega}{4} \cdot (V_{(i+1,j)} + V_{(i-1,j)_{next}} + V_{(i,j+1)} + V_{(i,j-1)_{next}} + h^2 \cdot \rho(i,j,h))$$
(1)

Donde V tiene como componentes una copia de las componentes de V_{next} antes de entrar a la iteración.

Por otro lado, para los puntos inmediatamente vecinos a la línea donde ocurre la condición de borde derivativa se cumple que:

$$V_{(i,j)_{next}} = (1 - \omega) \cdot V_{(i,j)} + \frac{\omega}{3} \cdot (V_{(i+1,j)} + V_{(i-1,j)_{next}} + V_{(i,j-1)_{next}} + h^2 \cdot \rho(i,j,h) + h \cdot a) \quad (2)$$

Los puntos de la línea de condición derivatiba cumple:

$$V_{(i,j)_{next}} = V_{(i,j-1)_{next}} + h \cdot a \tag{3}$$

Donde a=1 para las últimas dos ecuaciones.

2.2 Convergencia

Se considera que ha convergido si la diferencia absoluta máxima encontrada entre el V y V_{next} es menor a cierta tolerancia. Para este problema utilizaremos una tolerancia de 10^{-3} .

Como seguridad se agrega un *counter* que nos permite establecer la cantidad máxima de iteraciones que le permitimos dar a nuestro programa. Cantidad dentro de la cual puede lograr converger o no.

2.3 Casos estudiados

Se estudian los casos:

- $\omega_1 = 0.8$
- $\omega_2 = 1.0$
- $\omega_3 = 1.2$
- $\omega_4 = 1.4$
- $\omega_5 = 1.8$

3 Resultados

Resolviendo para los distintos ω utilizados, todos entre 1.0 y 1.8, se obtienen soluciones del potencial (cuando ya ha convergido) casi idénticas, por lo que se muestra sólo los resultados para el caso $\omega_2 = 1.0$, (Figura 1 y Figura 2).

La Tabla 1 muestra la diferencia de rapidez con que es posible alcanzar la convergencia para cada ω utilizado.

Figura 1: Solución en escala de colores y líneas de contorno del potencial electrostático en unidades de $\frac{erg}{C}$, usando $\omega_2 = 1.0$. Se utiliza sistema coordenado (i, j) partiendo desde la esquina inferior izquierda. Punto (x,y)=(0,0) está en el centro de la figura.

Figura 2: Solución en superficie 3D del potencial electrostático en unidades de $\frac{erg}{C}$, usando $\omega_2=1.0$.

ω	Iteraciones
0.8	993
1.0	781
1.2	600
1.4	439
1.8	2638

Tabla 1: Número de iteraciones necesarias para llegar a convergencia, para distintos valores de ω .

4 Conclusiones

Se obtiene la integral de la ecuación de Poisson en 2D utilizando el método de sobre-relajación sucesiva.

Utilizando distintos ω (entre 0.8 y 1.8), la solución a la que convergen es casi idéntica. Es decir, estos ω no alteran significativamente la solución del problema. Por otro lado, podemos notar que ω afecta a la rapidez con que se converge (número de iteración), siendo los ω más eficientes (rápidos) $\omega_3 = 1.2$ y $\omega_4 = 1.4$. Ambas ideas anteriormente mencionadas sobre ω son teóricamente esperadas.