Chapitre 2 : Jeux, stratégies, information

1 / 62

Situations d'interaction \leftrightarrow Jeux

- → Représentation sous forme de jeu
- → Analyse des interactions et de leurs conséquences

Situations d'interaction \leftrightarrow Jeux

- → Représentation sous forme de jeu
- → Analyse des interactions et de leurs conséquences

Situations d'interaction ↔ Jeux

- \rightarrow Représentation sous forme de jeu
- → Analyse des interactions et de leurs conséquences

Situations d'interaction ↔ Jeux

- \rightarrow Représentation sous forme de jeu
- → Analyse des interactions et de leurs conséquences

Sections:

- Définition et représentation des situations d'interaction
 - La forme normale d'un jeu
 - La forme extensive d'un jeu
- Représentation de l'information
- Oéfinition des stratégies
- Solutions et équilibres d'un jeu
 - Élimination des stratégies équivalentes
 - Élimination des stratégies dominées

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent;
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent;
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent;
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent;
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent;
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent;
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

Les éléments qui caractérisent les jeux non-coopératifs sont les suivants :

- un petit nombre d'agents (les joueurs) qui interagissent;
- les décisions de chaque agent influencent les gains des autres;
- la prise en compte de l'information dont chaque agent dispose au moment de prendre sa décision;
- la prise en compte du déroulement des décisions dans le temps (décisions simultanées ou séquentielles).

- Qui joue? → Ensemble des joueurs
- Quelles sont les actions disponibles pour chaque joueur? → Ensembles de stratégies
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu ? → Fonctions de gains

- Qui joue? → Ensemble des joueurs
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

- Qui joue? → Ensemble des joueurs
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

- Quelles sont les actions disponibles pour chaque joueur ! → Ensembles de stratégies
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

- Qui joue? → Ensemble des joueurs
- Quelles sont les actions disponibles pour chaque joueur? → Ensembles de stratégies
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

- Qui joue? → Ensemble des joueurs
- Quelles sont les actions disponibles pour chaque joueur? → Ensembles de stratégies
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

- Qui joue? → Ensemble des joueurs
- Quelles sont les actions disponibles pour chaque joueur? → Ensembles de stratégies
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

- Qui joue? → Ensemble des joueurs
- Quelles sont les actions disponibles pour chaque joueur? → Ensembles de stratégies
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

- Qui joue? → Ensemble des joueurs
- Quelles sont les actions disponibles pour chaque joueur? → Ensembles de stratégies
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

- Qui joue? → Ensemble des joueurs
- Quelles sont les actions disponibles pour chaque joueur? → Ensembles de stratégies
- Quelle est la valeur pour chaque joueur des différents résultats possibles du jeu? → Fonctions de gains

Définition

- *Un* ensemble *de n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur $i, i \in I$, un ensemble de stratégies $S_i \rightarrow$ toutes les stratégies possibles de ce joueur.
 - $S_i \subset S_i \to u$ ne strategie particuliere du joueur i. $S_i \subset S_i \to u$ ne strategie particuliere du joueur i. $S_i \subset S_i \to u$ ne strategie particuliere du joueur i.
- Chaque joueur i choisit une stratégie s_i → le résultat (ou profil de stratégies): s ≡ (s₁, s₂,...,s_n).
- Pour chaque joueur i, une fonction de gain, u_i → les préférences (VNM) du joueur i :

$$u_i: S = \underset{i \in I}{X} S_i \to \mathbb{R}$$

 $s \equiv (s_1, s_2, \dots, s_n) \mapsto u_i(s)$

Définition

- *Un* ensemble *de n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur $i, i \in I$, un ensemble de stratégies $S_i \rightarrow$ toutes les stratégies possibles de ce joueur.
 - $s_i \in S_i
 ightarrow$ une stratégie particulière du joueur i
 - $ightharpoonup Par conséquent, <math>S_i = \left\{ s_i^1, s_i^2, \dots, s_i^{k'} \right\}$ si k^i stratégies sont disponibles pour le joueur i.
- Chaque joueur i choisit une stratégie s_i → le résultat (ou profil de stratégies) : s ≡ (s₁, s₂,..., s_n).
- Pour chaque joueur i, une fonction de gain, u_i → les préférences (VNM) du joueur i :

$$s = (s_1, s_2, \dots, s_n) \mapsto u_i(s)$$

Définition

- *Un* ensemble *de n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur $i, i \in I$, un ensemble de stratégies $S_i \rightarrow$ toutes les stratégies possibles de ce joueur.
 - $s_i \in S_i
 ightarrow une stratégie particulière du joueur i$
 - \rightarrow Par conséquent, $S_i = \left\{ s_i^1, s_i^2, \dots, s_i^{k^i} \right\}$ si k^i stratégies sont disponibles pour le joueur i.
- Chaque joueur i choisit une stratégie s_i → le résultat (ou profil de stratégies) : s ≡ (s₁, s₂,..., s_n).
- Pour chaque joueur i, une fonction de gain, u_i → les préférences (VNM), du joueur i :

$$u_i: \quad S = \underset{i \in I}{X} S_i \to \mathbb{R}$$

$$S = (s_1, s_2, \dots, s_n) \mapsto u_i(s)$$

Définition

- *Un* ensemble *de n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur $i, i \in I$, un ensemble de stratégies $S_i \rightarrow$ toutes les stratégies possibles de ce joueur.
 - $s_i \in S_i \rightarrow$ une stratégie particulière du joueur i
 - \rightarrow Par conséquent, $S_i = \left\{ s_i^1, s_i^2, \dots, s_i^{k^i} \right\}$ si k^i stratégies sont disponibles pour le joueur i.
- Chaque joueur i choisit une stratégie s_i → le résultat (ou profil de stratégies) : s ≡ (s₁, s₂,..., s_n).
- Pour chaque joueur i, une fonction de gain, u_i → les préférences (VNM), du joueur i :

$$u_i: \quad S = \underset{i \in I}{X} S_i \to \mathbb{R}$$

$$S = (s_1, s_2, \dots, s_n) \mapsto u_i(s)$$

Définition

Un jeu en forme normale est décrit par les éléments suivants :

- *Un* ensemble *de n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur $i, i \in I$, un ensemble de stratégies $S_i \rightarrow$ toutes les stratégies possibles de ce joueur.
 - $s_i \in S_i \rightarrow$ une stratégie particulière du joueur i.
 - \rightarrow Par conséquent, $S_i = \left\{ s_i^1, s_i^2, \dots, s_i^{k^i} \right\}$ si k^i stratégies sont disponibles pour le joueur i.
- Chaque joueur i choisit une stratégie $s_i \rightarrow le$ résultat (ou profil de stratégies) : $s \equiv (s_1, s_2, \dots, s_n)$.
- Pour chaque joueur i, une fonction de gain, u_i → les préférences (VNM), du joueur i :

$$u_i: S = \underset{i \in I}{X} S_i \to \mathbb{R}$$

 $s \equiv (s_1, s_2, \ldots, s_n) \mapsto u_i(s)$.

Définition

- *Un* ensemble *de n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur $i, i \in I$, un ensemble de stratégies $S_i \rightarrow$ toutes les stratégies possibles de ce joueur.
 - $s_i \in S_i \rightarrow$ une stratégie particulière du joueur i.
 - \rightarrow Par conséquent, $S_i = \left\{ s_i^1, s_i^2, \dots, s_i^{k^i} \right\}$ si k^i stratégies sont disponibles pour le joueur i.
- Chaque joueur i choisit une stratégie $s_i \rightarrow le$ résultat (ou profil de stratégies) : $s \equiv (s_1, s_2, \dots, s_n)$.
- Pour chaque joueur i, une fonction de gain, u_i → les préférences (VNM) du joueur i :
 - $u_i: S = \underset{i \in I}{X} S_i \to \mathbb{R}$
 - $s \equiv (s_1, s_2, \ldots, s_n) \mapsto u_i(s)$

Définition

- *Un* ensemble *de n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur $i, i \in I$, un ensemble de stratégies $S_i \rightarrow$ toutes les stratégies possibles de ce joueur.
 - $s_i \in S_i \rightarrow$ une stratégie particulière du joueur i.
 - \rightarrow Par conséquent, $S_i = \left\{ s_i^1, s_i^2, \dots, s_i^{k^i} \right\}$ si k^i stratégies sont disponibles pour le joueur i.
- Chaque joueur i choisit une stratégie s_i → le résultat (ou profil de stratégies) : s ≡ (s₁, s₂,...,s_n).
- Pour chaque joueur i, une fonction de gain, $u_i \rightarrow les$ préférences (VNM) du joueur i:

$$u_i: S = \underset{i \in I}{X} S_i \to \mathbb{R}$$

 $s \equiv (s_1, s_2, \dots, s_n) \mapsto u_i(s)$

Définition

- *Un* ensemble *de n* joueurs : $I = \{1, 2, ..., n\}$.
- Pour chaque joueur $i, i \in I$, un ensemble de stratégies $S_i \rightarrow$ toutes les stratégies possibles de ce joueur.
 - $s_i \in S_i \rightarrow$ une stratégie particulière du joueur i.
 - \rightarrow Par conséquent, $S_i = \left\{ s_i^1, s_i^2, \dots, s_i^{k^i} \right\}$ si k^i stratégies sont disponibles pour le joueur i.
- Chaque joueur i choisit une stratégie s_i → le résultat (ou profil de stratégies) : s ≡ (s₁, s₂,...,s_n).
- Pour chaque joueur i, une fonction de gain, u_i → les préférences (VNM) du joueur i :

$$u_i: S = \underset{i \in I}{X} S_i \to \mathbb{R}$$

 $s \equiv (s_1, s_2, \dots, s_n) \mapsto u_i(s).$

La définition d'un jeu est souvent relative...

La définition d'un jeu est souvent relative...

EXEMPLE : Le dilemme du prisonnier I

- Deux individus : (Bonnie et Clyde)
- Deux stratégies :
 - nier d'avoir commis le vol (stratégie N)
 - ullet dénoncer son complice comme seul responsable (stratégie D)

EXEMPLE : Le dilemme du prisonnier I

- Deux individus : (Bonnie et Clyde)
- Deux stratégies :
 - nier d'avoir commis le vol (stratégie *N*)
 - dénoncer son complice comme seul responsable (stratégie *D*).

EXEMPLE : Le dilemme du prisonnier I

- Deux individus : (Bonnie et Clyde)
- Deux stratégies :
 - nier d'avoir commis le vol (stratégie N)
 - dénoncer son complice comme seul responsable (stratégie *D*).

EXEMPLE : Le dilemme du prisonnier I

- Deux individus : (Bonnie et Clyde)
- Deux stratégies :
 - nier d'avoir commis le vol (stratégie N)
 - dénoncer son complice comme seul responsable (stratégie *D*).

- Si Bonnie et Clyde dénoncent tous les deux, ils sont condamnés à 8 ans de prison.
- S'ils nient tous les deux, ils auront 1 année de prison du fait d'absences de preuves accablantes.
- Si un seul dénonce, il est relâché en récompense de sa coopération et l'autre est condamné à 10 ans de prison.

- Si Bonnie et Clyde dénoncent tous les deux, ils sont condamnés à 8 ans de prison.
- S'ils nient tous les deux, ils auront 1 année de prison du fait d'absence de preuves accablantes.
- Si un seul dénonce, il est relâché en récompense de sa coopération et l'autre est condamné à 10 ans de prison.

- Si Bonnie et Clyde dénoncent tous les deux, ils sont condamnés à 8 ans de prison.
- S'ils nient tous les deux, ils auront 1 année de prison du fait d'absence de preuves accablantes.
- Si un seul dénonce, il est relâché en récompense de sa coopération et l'autre est condamné à 10 ans de prison.

- Si Bonnie et Clyde dénoncent tous les deux, ils sont condamnés à 8 ans de prison.
- S'ils nient tous les deux, ils auront 1 année de prison du fait d'absence de preuves accablantes.
- Si un seul dénonce, il est relâché en récompense de sa coopération et l'autre est condamné à 10 ans de prison.

- Un jeu non-coopératif avec n = 2 joueurs, $I = \{1, 2\} = \{Bonnie, Clyde\}$
- L'ensemble de stratégies de chaque joueur : $S_1 = S_2 = \{N, D\}$
- 4 résultats possibles du jeu :

$$S = \left\{ \begin{array}{c} (s_1 = N, s_2 = N), (N, D), \\ (D, D), (D, N) \end{array} \right\}$$

- Un jeu non-coopératif avec n = 2 joueurs, $I = \{1, 2\} = \{Bonnie, Clyde\}$
- L'ensemble de stratégies de chaque joueur : $S_1 = S_2 = \{N, D\}$
- 4 résultats possibles du jeu :

$$S = \left\{ \begin{array}{c} \left(s_1 = N, s_2 = N\right), (N, D), \\ \left(D, D\right), (D, N) \end{array} \right\}$$

- Un jeu non-coopératif avec n = 2 joueurs, $I = \{1, 2\} = \{Bonnie, Clyde\}$
- L'ensemble de stratégies de chaque joueur : $S_1 = S_2 = \{N, D\}$
- 4 résultats possibles du jeu :

$$S = \left\{ \begin{array}{c} (s_1 = N, s_2 = N), (N, D), \\ (D, D), (D, N) \end{array} \right\}.$$

- Un jeu non-coopératif avec n = 2 joueurs, $I = \{1, 2\} = \{Bonnie, Clyde\}$
- L'ensemble de stratégies de chaque joueur : $S_1 = S_2 = \{N, D\}$
- 4 résultats possibles du jeu :

$$S = \left\{ \begin{array}{c} (s_1 = N, s_2 = N), (N, D), \\ (D, D), (D, N) \end{array} \right\}.$$

- Un jeu non-coopératif avec n = 2 joueurs, $I = \{1, 2\} = \{Bonnie, Clyde\}$
- L'ensemble de stratégies de chaque joueur : $S_1 = S_2 = \{N, D\}$
- 4 résultats possibles du jeu :

$$S = \left\{ \begin{array}{c} (s_1 = N, s_2 = N), (N, D), \\ (D, D), (D, N) \end{array} \right\}.$$

- Les deux nient : $u_1(N, N) = u_2(N, N) = -1$,
- Seule Bonnie (1) nie : $u_1(N, D) = -10$, $u_2(N, D) = 0$,
- Seul Clyde (2) nie : $u_1(D, N) = 0$, $u_2(D, N) = -10$,
- Les deux dénoncent : $u_1(D, D) = u_2(D, D) = -8$.

- Les deux nient : $u_1(N, N) = u_2(N, N) = -1$,
- Seule Bonnie (1) nie : $u_1(N, D) = -10$, $u_2(N, D) = 0$,
- Seul Clyde (2) nie : $u_1(D, N) = 0, u_2(D, N) = -10,$
- Les deux dénoncent : $u_1(D, D) = u_2(D, D) = -8$.

- Les deux nient : $u_1(N, N) = u_2(N, N) = -1$,
- Seule Bonnie (1) nie : $u_1(N, D) = -10$, $u_2(N, D) = 0$,
- Seul Clyde (2) nie : $u_1(D, N) = 0$, $u_2(D, N) = -10$,
- Les deux dénoncent : $u_1(D, D) = u_2(D, D) = -8$.

- Les deux nient : $u_1(N, N) = u_2(N, N) = -1$,
- Seule Bonnie (1) nie : $u_1(N, D) = -10$, $u_2(N, D) = 0$,
- Seul Clyde (2) nie : $u_1(D, N) = 0, u_2(D, N) = -10,$
- Les deux dénoncent : $u_1(D, D) = u_2(D, D) = -8$.

- Stratégies de Bonnie → lignes
- Stratégies de Clyde → colonnes

TAB.: Matrice - Dilemme du prisonnier

- Stratégies de Bonnie → lignes
- Stratégies de Clyde → colonnes

TAB.: Matrice - Dilemme du prisonnier

- Stratégies de Bonnie → lignes
- Stratégies de Clyde → colonnes

TAB.: Matrice - Dilemme du prisonnier

- Stratégies de Bonnie → lignes
- Stratégies de Clyde → colonnes

TAB.: Matrice - Dilemme du prisonnier

- Stratégies de Bonnie → lignes
- Stratégies de Clyde → colonnes

TAB.: Matrice - Dilemme du prisonnier

Donner pour chaque résultat les gains correspondants : vecteur (u_1, u_2) où le gain du joueur qui est en ligne (ici Bonnie) apparaît en première place.

	Clyde	
	\wedge	D
Bonnie	(-1,-1) (0,-10)	(-10,0) (-8,-8)

TAB.: Dilemme du prisonnier

Le vecteur de gains (-1, -1) correspond alors $(u_1(N, N), u_2(N, N))$

Donner pour chaque résultat les gains correspondants : vecteur (u_1, u_2) où le gain du joueur qui est en ligne (ici Bonnie) apparaît en première place.

		Clyde	
		N	D
Bonnie	Ν	(-1, -1)	(-10,0)
	D	(0, -10)	(-8, -8)

TAB.: Dilemme du prisonnier

Le vecteur de gains (-1, -1) correspond alors $(u_1(N, N), u_2(N, N))$

Donner pour chaque résultat les gains correspondants : vecteur (u_1, u_2) où le gain du joueur qui est en ligne (ici Bonnie) apparaît en première place.

		Clyde	
		N	D
Bonnie	Ν	(-1, -1)	(-10,0)
	D	(0, -10)	(-8, -8)

TAB.: Dilemme du prisonnier

Le vecteur de gains (-1, -1) correspond alors $(u_1(N, N), u_2(N, N))$

Donner pour chaque résultat les gains correspondants : vecteur (u_1, u_2) où le gain du joueur qui est en ligne (ici Bonnie) apparaît en première place.

		Clyde	
		N	D
Bonnie	Ν	(-1, -1)	(-10,0)
	D	(0, -10)	(-8, -8)

TAB.: Dilemme du prisonnier

Le vecteur de gains (-1,-1) correspond alors $(u_1(N,N),u_2(N,N))$

Remarques:

- Ne pas confondre la stratégie d'un joueur individuel s_i et le résultat s qui est une combinaison particulière des stratégies de tous les joueurs.
- En économie les stratégies sont souvent continues (alors les Si contient une infinité de stratégies)
- Les gains → des utilités ordinales et non des sommes monétaires (en organisation industrielle, les gains des firmes → leurs profits).

Remarques:

- Ne pas confondre la stratégie d'un joueur individuel s_i et le résultat s qui est une combinaison particulière des stratégies de tous les joueurs.
- En économie les stratégies sont souvent continues (alors les Sⁱ contient une infinité de stratégies)
- Les gains → des utilités ordinales et non des sommes monétaires (en organisation industrielle, les gains des firmes → leurs profits).

Remarques:

- Ne pas confondre la stratégie d'un joueur individuel s_i et le résultat s qui est une combinaison particulière des stratégies de tous les joueurs.
- En économie les stratégies sont souvent continues (alors les S' contient une infinité de stratégies)
- Les gains → des utilités ordinales et non des sommes monétaires (en organisation industrielle, les gains des firmes → leurs profits).

$\mathsf{Selten}(1975) \to \mathsf{la} \ \mathsf{forme} \ \mathsf{extensive} \ \mathsf{(l'arbre)} \ \mathsf{du} \ \mathsf{jeu}$

→ Représentation des jeux séquentiels où les décisions des joueurs sont prises à des moments différents et où chaque joueur peut être amené à jouer plusieurs fois.

$\mathsf{Selten}(1975) o \mathsf{la}$ forme extensive (l'arbre) du jeu

→ Représentation des jeux séquentiels

où les décisions des joueurs sont prises à des moments différents et où chaque joueur peut être amené à jouer plusieurs fois.

Selten(1975) \rightarrow la forme extensive (l'arbre) du jeu \rightarrow Représentation des **jeux séquentiels** où les décisions des joueurs sont prises à des moments différents et où chaque joueur peut être amené à jouer plusieurs fois.

où chaque joueur peut être amené à jouer plusieurs fois.

Définition

- Un ensemble de n ≥ 1 joueurs, indexés par i = 1, 2, ... n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- Un ensemble de n ≥ 1 joueurs, indexés par i = 1, 2, ... n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- Un ensemble de n ≥ 1 joueurs, indexés par $i=1,2,\ldots$ n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- Un ensemble de n ≥ 1 joueurs, indexés par $i=1,2,\ldots$ n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- Un ensemble de $n \ge 1$ joueurs, indexés par i = 1, 2, ... n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- ullet Un ensemble de n ≥ 1 joueurs, indexés par i $= 1,2,\ldots$ n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- Un ensemble de $n \ge 1$ joueurs, indexés par i = 1, 2, ... n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision.
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- Un ensemble de $n \ge 1$ joueurs, indexés par i = 1, 2, ... n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision.
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- Un ensemble de $n \ge 1$ joueurs, indexés par i = 1, 2, ... n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision.
- La spécification des gains de chaque joueur à chaque noeud terminal.

Définition

- Un ensemble de $n \ge 1$ joueurs, indexés par i = 1, 2, ... n.
- Pour chaque noeud de décision, le nom du joueur qui a le droit de choisir une stratégie à ce noeud.
- Pour chaque joueur i, la spécification de l'ensemble des actions permises à chaque noeud où il est susceptible de prendre une décision.
- La spécification des gains de chaque joueur à chaque noeud terminal.

Fig.: Un exemple à deux joueurs

Le problème d'entrée d'une firme sur le marché d'un monopole

- L'entrant (E) doit choisir entre Entrer ou Ne pas entrer.
- \bigcirc S'il entre, la firme installée $(I) \rightarrow$
 - Combattre en cassant les pris ou
 Coopérer avec lui, de manière à créer un mentant de la company de la

Le problème d'entrée d'une firme sur le marché d'un monopole

- ① L'entrant (E) doit choisir entre Entrer ou Ne pas entrer.
- ② S'il entre, la firme installée (1)

Le problème d'entrée d'une firme sur le marché d'un monopole

- **1** L'entrant (*E*) doit choisir entre *Entrer* ou *Ne pas entrer*.
- **2** S'il entre, la firme installée $(I) \rightarrow$
 - Combattre en cassant les prix ou
 - Coopérer avec lui, de manière à créer un monopole joint.

Le problème d'entrée d'une firme sur le marché d'un monopole

- **1** L'entrant (*E*) doit choisir entre *Entrer* ou *Ne pas entrer*.
- **2** S'il entre, la firme installée $(I) \rightarrow$
 - Combattre en cassant les prix ou
 - Coopérer avec lui, de manière à créer un monopole joint.

Le problème d'entrée d'une firme sur le marché d'un monopole

- **1** L'entrant (*E*) doit choisir entre *Entrer* ou *Ne pas entrer*.
- 2 S'il entre, la firme installée $(I) \rightarrow$
 - Combattre en cassant les prix ou
 - Coopérer avec lui, de manière à créer un monopole joint.

Le problème d'entrée d'une firme sur le marché d'un monopole

- **1** L'entrant (*E*) doit choisir entre *Entrer* ou *Ne pas entrer*.
- $oldsymbol{2}$ S'il entre, la firme installée (I)
 ightarrow
 - Combattre en cassant les prix ou
 - Coopérer avec lui, de manière à créer un monopole joint.

Le problème d'entrée d'une firme sur le marché d'un monopole

- **1** L'entrant (*E*) doit choisir entre *Entrer* ou *Ne pas entrer*.
- $oldsymbol{2}$ S'il entre, la firme installée (I)
 ightarrow
 - Combattre en cassant les prix ou
 - Coopérer avec lui, de manière à créer un monopole joint.

Le problème d'entrée d'une firme sur le marché d'un monopole

- ① L'entrant (E) doit choisir entre Entrer ou Ne pas entrer.
- $oldsymbol{2}$ S'il entre, la firme installée (I)
 ightarrow
 - Combattre en cassant les prix ou
 - Coopérer avec lui, de manière à créer un monopole joint.

FIG.: Le Jeu de l'Entrée l

Sections:

- Définition et représentation des situations d'interaction
 - La forme normale d'un jeu
 - La forme extensive d'un jeu
- Représentation de l'information
- Oéfinition des stratégies
- Solutions et équilibres d'un jeι
 - Élimination des stratégies équivalentes
 - Élimination des stratégies dominées

Un joueur \rightarrow ne connaît pas les choix effectués par les joueurs qui ont joué avant lui.

→II ne connaît pas parfaitement le noeud auquel il se situe.

Si, à un moment donné, il ne peut distinguer deux noeuds \rightarrow ces deux noeuds appartiennent au même **ensemble d'information.**

Un joueur \rightarrow ne connaît pas les choix effectués par les joueurs qui ont joué avant lui.

→II ne connaît pas parfaitement le noeud auquel il se situe.

Si, à un moment donné, il ne peut distinguer deux noeuds \rightarrow ces deux noeuds appartiennent au même **ensemble d'information.**

Un joueur \rightarrow ne connaît pas les choix effectués par les joueurs qui ont joué avant lui.

- →II ne connaît pas parfaitement le noeud auquel il se situe.
- Si, à un moment donné, il ne peut distinguer deux noeuds → ces deux noeuds appartiennent au même ensemble d'information.

Un joueur \rightarrow ne connaît pas les choix effectués par les joueurs qui ont joué avant lui.

- →II ne connaît pas parfaitement le noeud auquel il se situe.
- Si, à un moment donné, il ne peut distinguer deux noeuds \rightarrow ces deux noeuds appartiennent au même **ensemble d'information.**

Définition

À chaque étape d'un jeu en forme extensive, on appelle un **ensemble d'information** (h_i) la collection de tous les noeuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose. Chaque noeud contenu dans h_i contient alors exactement le même ensemble d'actions localement disponibles. On note par H_i l'ensemble des ensembles d'information du joueur i.

Définition

À chaque étape d'un jeu en forme extensive, on appelle un **ensemble d'information** (h_i) la collection de tous les noeuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose. Chaque noeud contenu dans h_i contient alors exactement le même ensemble d'actions localement disponibles. On note par H_i l'ensemble des ensembles d'information du joueur i.

Définition

À chaque étape d'un jeu en forme extensive, on appelle un **ensemble d'information** (h_i) la collection de tous les noeuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose. Chaque noeud contenu dans h_i contient alors exactement le même ensemble d'actions localement disponibles. On note par H_i l'ensemble des ensembles d'information du joueur i.

Définition

À chaque étape d'un jeu en forme extensive, on appelle un **ensemble d'information** (h_i) la collection de tous les noeuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose. Chaque noeud contenu dans h_i contient alors exactement le même ensemble d'actions localement disponibles. On note par H_i l'ensemble des ensembles d'information du joueur i.

Définition

À chaque étape d'un jeu en forme extensive, on appelle un **ensemble d'information** (h_i) la collection de tous les noeuds que le joueur qui doit jouer à cette étape (i) ne peut distinguer, compte tenu de l'information dont il dispose. Chaque noeud contenu dans h_i contient alors exactement le même ensemble d'actions localement disponibles. On note par H_i l'ensemble des ensembles d'information du joueur i.

Définition

Un jeu en forme extensive est

- ① un jeu avec information imparfaite si au moins un ensemble d'information contient plus d'un noeud;
- un jeu avec information parfaite si chaque ensemble d'information est réduit à un seul noeud

Définition

Un jeu en forme extensive est

- un jeu avec information imparfaite si au moins un ensemble d'information contient plus d'un noeud;
- un jeu avec information parfaite si chaque ensemble d'information est réduit à un seul noeud

Définition

Un jeu en forme extensive est

- un jeu avec information imparfaite si au moins un ensemble d'information contient plus d'un noeud;
- un jeu avec information parfaite si chaque ensemble d'information est réduit à un seul noeud

Définition

Un jeu en forme extensive est

- un jeu avec information imparfaite si au moins un ensemble d'information contient plus d'un noeud;
- **1** un jeu avec **information parfaite** si chaque ensemble d'information est réduit à un seul noeud.

Définition

Dans un jeu avec information imparfaite, chaque stratégie d'un joueur doit préciser une action à choisir pour chaque ensemble d'information de ce joueur.

Jeux avec information parfaite \rightarrow on retrouve définition initiale de la stratégie car :

Définition

Dans un jeu avec information imparfaite, chaque **stratégie** d'un joueur doit préciser une action à choisir pour chaque ensemble d'information de ce joueur.

Jeux avec information parfaite \rightarrow on retrouve définition initiale de la stratégie car :

Définition

Dans un jeu avec information imparfaite, chaque **stratégie** d'un joueur doit préciser une action à choisir pour chaque ensemble d'information de ce joueur.

Jeux avec information parfaite \rightarrow on retrouve définition initiale de la stratégie car :

Définition

Dans un jeu avec information imparfaite, chaque **stratégie** d'un joueur doit préciser une action à choisir pour chaque ensemble d'information de ce joueur.

Jeux avec information parfaite \rightarrow on retrouve définition initiale de la stratégie car :

Définition

Dans un jeu avec information imparfaite, chaque **stratégie** d'un joueur doit préciser une action à choisir pour chaque ensemble d'information de ce joueur.

Jeux avec information parfaite \rightarrow on retrouve définition initiale de la stratégie car :

Définition

Un jeu est à **information incomplète** si au moins un des joueurs ne connaît pas parfaitement la structure du jeu. Dans le cas contraire, il est à information complète.

Définition

Un jeu est à **information incomplète** si au moins un des joueurs ne connaît pas parfaitement la structure du jeu. Dans le cas contraire, il est à information complète.

Définition

Un jeu est à **information incomplète** si au moins un des joueurs ne connaît pas parfaitement la structure du jeu. Dans le cas contraire, il est à information complète.

Définition

Un jeu est à **information incomplète** si au moins un des joueurs ne connaît pas parfaitement la structure du jeu. Dans le cas contraire, il est à information complète.

Sections:

- Définition et représentation des situations d'interaction
 - La forme normale d'un jeu
 - La forme extensive d'un jeu
- Représentation de l'information
- Oéfinition des stratégies
- Solutions et équilibres d'un jeu
 - Élimination des stratégies équivalentes
 - Élimination des stratégies dominées

Généralisation.

Une *stratégie* d'un joueur → spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer

S'il joue à plusieurs tours du jeu \rightarrow une action pour chacun des tours Un *profil de stratégies* (résultat) \rightarrow spécification d'un déroulement complet du jeu en précisant une stratégie par joueur.

Généralisation.

Une stratégie d'un joueur \rightarrow spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer

S'il joue à plusieurs tours du jeu \rightarrow une action pour chacun des tours Un *profil de stratégies* (résultat) \rightarrow spécification d'un déroulement complet du jeu en précisant une stratégie par joueur.

Généralisation.

Une stratégie d'un joueur \rightarrow spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer

S'il joue à plusieurs tours du jeu \rightarrow une action pour chacun des tours

Un *profil de stratégies* (résultat) → spécification d'un déroulement complet du jeu en précisant une stratégie par joueur.

Généralisation.

Une strat'egie d'un joueur \to spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer

S'il joue à plusieurs tours du jeu \rightarrow une action pour chacun des tours Un *profil de stratégies* (résultat) \rightarrow spécification d'un déroulement complet du jeu en précisant une stratégie par joueur.

Généralisation.

Une stratégie d'un joueur \rightarrow spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer

S'il joue à plusieurs tours du jeu \rightarrow une action pour chacun des tours Un *profil de stratégies* (résultat) \rightarrow spécification d'un déroulement complet du jeu en précisant une stratégie par joueur.

Généralisation.

Une stratégie d'un joueur \rightarrow spécification d'une action pour ce joueur chaque fois qu'il est susceptible de jouer

S'il joue à plusieurs tours du jeu \rightarrow une action pour chacun des tours Un *profil de stratégies* (résultat) \rightarrow spécification d'un déroulement complet du jeu en précisant une stratégie par joueur.

Exemple : Le jeu de l'entrée II

FIG.: Le jeu de l'entrée II

Est-ce { Non} peut constituer une stratégie de E?

Exemple : Le jeu de l'entrée II

FIG.: Le jeu de l'entrée II

Est-ce $\{Non\}$ peut constituer une stratégie de E?

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

Or, chaque stratégie \rightarrow une action **chaque fois que** le joueur est susceptible de jouer.

Pour E: en E_0 , mais aussi en E_1

Exemple : $(Non / E_0, Produire / E_1)$

Exemple de profil de stratégie :
$$\underbrace{(Non / E_0, Produire / E_1)}_{SE}, \underbrace{Non / I}_{SI}$$

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

Or, chaque stratégie \rightarrow une action **chaque fois que** le joueur est susceptible de jouer.

Pour E: en E_0 , mais aussi en E_1

Exemple : $(Non / E_0, Produire / E_1)$

Exemple de profil de stratégie :
$$\underbrace{(Non / E_0, Produire / E_1)}_{SE}, \underbrace{Non / I}_{SI}$$

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

Or, chaque stratégie \rightarrow une action **chaque fois que** le joueur est susceptible de jouer.

Pour E: en E_0 , mais aussi en E_1

Exemple : $(Non / E_0, Produire / E_1)$

Exemple de profil de stratégie : $(Non / E_0, Produire / E_1), Non / I$

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

Or, chaque stratégie \rightarrow une action **chaque fois que** le joueur est susceptible de jouer.

Exemple : $(Non / E_0, Produire / E_1)$ Exemple de profil de stratégie : $(Non / E_0, Produire / E_1), Non / I$ S_E

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

Or, chaque stratégie \rightarrow une action **chaque fois que** le joueur est susceptible de jouer.

Pour E: en E_0 , mais aussi en E_1

Exemple : $(Non / E_0, Produire / E_1)$

Exemple de profil de stratégie :
$$(Non / E_0, Produire / E_1), Nouve (Non / E_1, Produire / E_1), Nouve (Non / E_1, Produire / E_1), Nouve (Non / E_1, Produire / E_1), Nouve (Nouve (Non / E_1, Produire / E_1, Produire / E_1), Nouve (Nouve (Nouve$$

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

Or, chaque stratégie \rightarrow une action **chaque fois que** le joueur est susceptible de jouer.

Pour E: en E_0 , mais aussi en E_1

Exemple : (Non $/E_0$, Produire $/E_1$)

Exemple de profil de stratégie :
$$(Non / E_0, Produce)$$

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

Or, chaque stratégie \rightarrow une action **chaque fois que** le joueur est susceptible de jouer.

Pour E: en E_0 , mais aussi en E_1

Exemple : (Non $/E_0$, Produire $/E_1$)

Exemple de profil de stratégie :
$$\underbrace{(Non / E_0, Produire / E_1)}_{s_E}, \underbrace{Non / I}_{s_I}$$

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E₁.

Or, chaque stratégie → une action **chaque fois que** le joueur est susceptible de jouer.

Pour E: en E_0 , mais aussi en E_1

Exemple : (Non $/E_0$, Produire $/E_1$)

Exemple de profil de stratégie :
$$\underbrace{\left(\underbrace{Non \ /E_0, Produire \ /E_1} \right)}_{s_E}, \underbrace{\underbrace{Non \ /I}}_{s_I}$$
.

Cette stratégie ne spécifie pas ce que E fait à son ensemble d'information E_1 .

Or, chaque stratégie \rightarrow une action **chaque fois que** le joueur est susceptible de jouer.

Pour E: en E_0 , mais aussi en E_1

Exemple : (Non $/E_0$, Produire $/E_1$)

Exemple de profil de stratégie : $(\underbrace{Non / E_0, Produire / E_1}), \underbrace{Non / I}$.

Deux raisons à cela

- ullet Couvrir les possibilités d'erreur (de la firme E en E_0).
- Permettre le test de l'optimalité des actions : l'optimalité de Non $/E_0$ dépendra du résultat qu'on pourrait obtenir avec Installer $/E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

Deux raisons à cela :

- Couvrir les possibilités d'erreur (de la firme E en E_0);
- Permettre le test de l'optimalité des actions : l'optimalité de Non $/E_0$ dépendra du résultat qu'on pourrait obtenir avec Installer $/E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

Deux raisons à cela :

- Couvrir les possibilités d'erreur (de la firme E en E_0);
- Permettre le test de l'optimalité des actions : l'optimalité de Non $/E_0$ dépendra du résultat qu'on pourrait obtenir avec Installer $/E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

Deux raisons à cela :

- Couvrir les possibilités d'erreur (de la firme E en E_0);
- Permettre le test de l'optimalité des actions : l'optimalité de Non $/E_0$ dépendra du résultat qu'on pourrait obtenir avec Installer $/E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

Deux raisons à cela :

- Couvrir les possibilités d'erreur (de la firme E en E_0);
- Permettre le test de l'optimalité des actions : l'optimalité de Non / E_0 dépendra du résultat qu'on pourrait obtenir avec $Installer / E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

Deux raisons à cela :

- Couvrir les possibilités d'erreur (de la firme E en E_0);
- Permettre le test de l'optimalité des actions : l'optimalité de Non / E_0 dépendra du résultat qu'on pourrait obtenir avec $Installer / E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

Pourquoi préciser $Produire \ / E_1$ et $Non \ / I$ tandis que le jeu s'arrête après $Non \ / E_0$?

Deux raisons à cela :

- Couvrir les possibilités d'erreur (de la firme E en E_0);
- Permettre le test de l'optimalité des actions : l'optimalité de Non $/E_0$ dépendra du résultat qu'on pourrait obtenir avec Installer $/E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

→ car il ne peut distinguer ces deux sommets.

Pourquoi préciser $Produire \ / E_1$ et $Non \ / I$ tandis que le jeu s'arrête après $Non \ / E_0$?

Deux raisons à cela :

- Couvrir les possibilités d'erreur (de la firme E en E_0);
- Permettre le test de l'optimalité des actions : l'optimalité de Non $/E_0$ dépendra du résultat qu'on pourrait obtenir avec Installer $/E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

→ car il ne peut distinguer ces deux sommets.

Pourquoi préciser $Produire / E_1$ et Non / I tandis que le jeu s'arrête après Non / E_0 ?

Deux raisons à cela :

- Couvrir les possibilités d'erreur (de la firme E en E_0);
- Permettre le test de l'optimalité des actions : l'optimalité de Non $/E_0$ dépendra du résultat qu'on pourrait obtenir avec Installer $/E_0$ et ce gain dépendra du choix en E_0 mais aussi en E_1 .

Remarque : Ensemble $E_1 \rightarrow$ une seule action pour E, même s'il joue à deux sommets.

→ car il ne peut distinguer ces deux sommets.

Profil ((Non $/E_0$, Produire $/E_1$), Non /I) \rightarrow noeud terminal \rightarrow Gains : (0,100).

Mais,

les stratégies ne sont pas toujours composées d'actions **pures** (*stratégies pures*).

Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

 \rightarrow au tennis : 60% de coups droits et 40% de revers

Profil ((Non $/E_0$, Produire $/E_1$), Non /I) \rightarrow noeud terminal \rightarrow Gains : (0, 100).

Mais

les stratégies ne sont pas toujours composées d'actions **pures** (*stratégies pures*).

Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

 \rightarrow au tennis : 60% de coups droits et 40% de revers

Profil ((Non $/E_0$, Produire $/E_1$), Non /I) \rightarrow noeud terminal \rightarrow Gains : (0, 100).

Mais

les stratégies ne sont pas toujours composées d'actions **pures** (*stratégies pures*).

Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

 \rightarrow au tennis : 60% de coups droits et 40% de revers

Profil ((Non $/E_0$, Produire $/E_1$), Non /I) \rightarrow noeud terminal \rightarrow Gains : (0, 100). Mais,

les stratégies ne sont pas toujours composées d'actions **pures** (*stratégies pures*).

Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

 \rightarrow au tennis : 60% de coups droits et 40% de revers

Profil ((Non $/E_0$, Produire $/E_1$), Non /I) \rightarrow noeud terminal \rightarrow Gains : (0, 100). Mais,

les stratégies ne sont pas toujours composées d'actions **pures** (*stratégies pures*).

Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

 \rightarrow au tennis : 60% de coups droits et 40% de revers

Profil ((Non $/E_0$, Produire $/E_1$), Non /I) \to noeud terminal \to Gains : (0, 100).

Mais,

les stratégies ne sont pas toujours composées d'actions **pures** (*stratégies pures*).

Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

ightarrow au tennis : 60% de coups droits et 40% de revers

Profil ((Non $/E_0$, Produire $/E_1$), Non /I) \to noeud terminal \to Gains : (0, 100).

Mais,

les stratégies ne sont pas toujours composées d'actions **pures** (*stratégies pures*).

Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

 \rightarrow au tennis : 60% de coups droits et 40% de revers.

Profil ((Non $/E_0$, Produire $/E_1$), Non /I) \to noeud terminal \to Gains : (0, 100).

Mais,

les stratégies ne sont pas toujours composées d'actions **pures** (*stratégies pures*).

Parfois l'agent peut aussi utiliser une composition aléatoire d'actions (de stratégies pures)

 \rightarrow au tennis : 60% de coups droits et 40% de revers.

Une **stratégie pure** du joueur i est un plan d'actions qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer. On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Définition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définies ur l'ensemble de stratégies pures du joueur i. On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Une **stratégie pure** du joueur i est un plan d'actions qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer. On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Définition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i. On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Une **stratégie pure** du joueur i est un plan d'actions qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer. On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Définition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i défini sur l'ensemble de stratégies pures du joueur i. On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Une **stratégie pure** du joueur i est un plan d'actions qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer. On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Définition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i. On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Une **stratégie pure** du joueur i est un plan d'actions qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer. On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Définition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i. On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Une **stratégie pure** du joueur i est un plan d'actions qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer. On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Définition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i. On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Une **stratégie pure** du joueur i est un plan d'actions qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer. On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Définition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i. On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Une **stratégie pure** du joueur i est un plan d'actions qui prescrit une action de ce joueur pour chaque fois qu'il est susceptible de jouer. On note par S_i l'ensemble des stratégies pures du joueur i et par $s_i \in S_i$ une stratégie pure de ce joueur.

Définition

Une **stratégie mixte** du joueur i est une mesure de probabilités p_i définie sur l'ensemble de stratégies pures du joueur i. On note P_i l'ensemble des stratégies mixtes du joueur i. $p_i \in P_i$ correspond donc à une stratégie mixte du joueur i.

Stratégies dans un jeu en forme extensive :

Définition

Stratégies dans un jeu en forme extensive :

Définition

Stratégies dans un jeu en forme extensive :

Définition

Stratégies dans un jeu en forme extensive :

Définition

Définition

Définition

Définition

Définition

Définition

Définition

Une stratégie comportementale du joueur i est un vecteur de stratégies locales de ce joueur, contenant une stratégie comportementale par ensemble d'information de ce joueur. On la note par π_i et Π_i est l'ensemble des stratégies comportementales du joueur i.

Définition

Une stratégie comportementale du joueur i est un vecteur de stratégies locales de ce joueur, contenant une stratégie comportementale par ensemble d'information de ce joueur. On la note par π_i et Π_i est l'ensemble des stratégies comportementales du joueur i.

Définition

Une **stratégie comportementale** du joueur i est un vecteur de stratégies locales de ce joueur, contenant une stratégie comportementale par ensemble d'information de ce joueur. On la note par π_i et Π_i est l'ensemble des stratégies comportementales du joueur i.

Définition

Une **stratégie comportementale** du joueur i est un vecteur de stratégies locales de ce joueur, contenant une stratégie comportementale par ensemble d'information de ce joueur. On la note par π_i et Π_i est l'ensemble des stratégies comportementales du joueur i.

- stratégies pures (tout jeu);
- stratégies mixtes (tout jeu);
- stratégies locales (forme extensive);
- stratégies comportementales (forme extensive).

- stratégies pures (tout jeu);
- stratégies mixtes (tout jeu);
- stratégies locales (forme extensive);
- stratégies comportementales (forme extensive).

- stratégies pures (tout jeu);
- stratégies mixtes (tout jeu);
- stratégies locales (forme extensive);
- stratégies comportementales (forme extensive).

- stratégies pures (tout jeu);
- stratégies mixtes (tout jeu);
- stratégies locales (forme extensive);
- stratégies comportementales (forme extensive).

Les ensembles de stratégies des deux joueurs :

 $E \rightarrow$ deux ensembles d'information (E_0 et E_1) Stratégies \rightarrow une action en E_0 et une autre en E_1

$$S_{E} = \frac{\{(Installer/E_{0}, Produire/E_{1}), (Installer/E_{0}, Non/E_{1}), (Non/E_{0}, Non/E_{1}), (Non/E_{0}, Non/E_{1})\}}{(Non/E_{0}, Produire/E_{1}), (Non/E_{0}, Non/E_{1})\}}$$

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

Les ensembles de stratégies des deux joueurs : $E \rightarrow \text{deux}$ ensembles d'information (E_0 et E_1)

Stratégies ightarrow une action en E_0 et une autre en E_1 :

$$S_{E} = \begin{cases} (Installer/E_{0}, Produire/E_{1}), (Installer/E_{0}, Non/E_{1}) \\ (Non/E_{0}, Produire/E_{1}), (Non/E_{0}, Non/E_{1}) \end{cases}$$

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

Les ensembles de stratégies des deux joueurs : $E \rightarrow \text{deux}$ ensembles d'information (E_0 et E_1)

Stratégies ightarrow une action en E_0 et une autre en E_1 :

$$S_{E} = \begin{cases} (Installer/E_{0}, Produire/E_{1}), (Installer/E_{0}, Non/E_{1}) \\ (Non/E_{0}, Produire/E_{1}), (Non/E_{0}, Non/E_{1}) \end{cases}$$

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

Les ensembles de stratégies des deux joueurs : $E \to \text{deux}$ ensembles d'information $(E_0 \text{ et } E_1)$ Stratégies $\to \text{ une action en } E_0 \text{ et une autre en } E_1$:

$$S_{E} = \frac{\{(Installer/E_{0}, Produire/E_{1}), (Installer/E_{0}, Non/E_{1})\}}{(Non/E_{0}, Produire/E_{1}), (Non/E_{0}, Non/E_{1})\}}$$

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

Les ensembles de stratégies des deux joueurs : $E \to \text{deux}$ ensembles d'information $(E_0 \text{ et } E_1)$ Stratégies $\to \text{ une action en } E_0 \text{ et une autre en } E_1$:

$$S_{E} = \begin{cases} (Installer/E_{0}, Produire/E_{1}), (Installer/E_{0}, Non/E_{1}), \\ (Non/E_{0}, Produire/E_{1}), (Non/E_{0}, Non/E_{1}) \end{cases}$$

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

Les ensembles de stratégies des deux joueurs : $E \to \text{deux}$ ensembles d'information $(E_0 \text{ et } E_1)$ Stratégies \to une action en E_0 et une autre en E_1 :

$$S_{E} = \begin{array}{c} \{(\textit{Installer}/E_{0}, \textit{Produire}/E_{1}), (\textit{Installer}/E_{0}, \textit{Non}/E_{1}), \\ (\textit{Non}/E_{0}, \textit{Produire}/E_{1}), (\textit{Non}/E_{0}, \textit{Non}/E_{1})\} \end{array}$$

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

Les ensembles de stratégies des deux joueurs : $E \to \text{deux}$ ensembles d'information $(E_0 \text{ et } E_1)$ Stratégies $\to \text{ une action en } E_0 \text{ et une autre en } E_1$:

$$S_{E} = \begin{array}{c} \{(\textit{Installer}/E_{0}, \textit{Produire}/E_{1}), (\textit{Installer}/E_{0}, \textit{Non}/E_{1}), \\ (\textit{Non}/E_{0}, \textit{Produire}/E_{1}), (\textit{Non}/E_{0}, \textit{Non}/E_{1})\} \end{array}$$

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

Les ensembles de stratégies des deux joueurs : $E \to \text{deux}$ ensembles d'information $(E_0 \text{ et } E_1)$ Stratégies $\to \text{ une action en } E_0 \text{ et une autre en } E_1$:

$$S_{E} = \begin{array}{c} \{ (\textit{Installer}/E_{0}, \textit{Produire}/E_{1}) \,, (\textit{Installer}/E_{0}, \textit{Non}/E_{1}) \,, \\ (\textit{Non}/E_{0}, \textit{Produire}/E_{1}) \,, (\textit{Non}/E_{0}, \textit{Non}/E_{1}) \} \end{array}$$

$$S_I = \{Augmenter/I, Non/I\} = \{Augmenter, Non\}$$

\rightarrow La forme normale de ce jeu :

		l	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
Е	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

Les gains $(-50, 40) \rightarrow u_E$ ((Installer, Produire), Augmenter) = -50 et u_I ((Installer, Produire), Augmenter) = 40.

\rightarrow La forme normale de ce jeu :

		I	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

Les gains $(-50, 40) \rightarrow u_E$ ((Installer, Produire), Augmenter) = -50 et u_I ((Installer, Produire), Augmenter) = 40.

\rightarrow La forme normale de ce jeu :

		l	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

Les gains $(-50, 40) \rightarrow u_E$ ((Installer, Produire), Augmenter) = -50 et u_I ((Installer, Produire), Augmenter) = 40.

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

Un exemple de stratégie mixte, p_E est

$$p_{E}$$
 (Installer/E₀, Produire/E₁) = $\frac{1}{5}$;
 p_{E} (Installer/E₀, Non/E₁) = $\frac{3}{5}$;
 p_{E} (Non/E₀, Produire/E₁) = $\frac{1}{5}$;
 p_{E} (Non/E₀, Non/E₁) = 0

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

Un exemple de stratégie mixte, p_E est

$$p_{E}\left(Installer/E_{0}, Produire/E_{1}\right) = \frac{1}{5};$$
 $p_{E}\left(Installer/E_{0}, Non/E_{1}\right) = \frac{3}{5};$
 $p_{E}\left(Non/E_{0}, Produire/E_{1}\right) = \frac{1}{5};$
 $p_{E}\left(Non/E_{0}, Non/E_{1}\right) = 0$

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

$$p_{E}\left(Installer/E_{0}, Produire/E_{1}
ight) = rac{1}{5};$$
 $p_{E}\left(Installer/E_{0}, Non/E_{1}
ight) = rac{3}{5};$
 $p_{E}\left(Non/E_{0}, Produire/E_{1}
ight) = rac{1}{5};$
 $p_{E}\left(Non/E_{0}, Non/E_{1}
ight) = 0$

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

$$p_{E}\left(Installer/E_{0}, Produire/E_{1}\right) = \frac{1}{5};$$
 $p_{E}\left(Installer/E_{0}, Non/E_{1}\right) = \frac{3}{5};$
 $p_{E}\left(Non/E_{0}, Produire/E_{1}\right) = \frac{1}{5};$
 $p_{E}\left(Non/E_{0}, Non/E_{1}\right) = 0$

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

$$p_{E}(Installer/E_{0}, Produire/E_{1}) = \frac{1}{5};$$

$$p_{E}(Installer/E_{0}, Non/E_{1}) = \frac{3}{5};$$

$$p_{E}(Non/E_{0}, Produire/E_{1}) = \frac{1}{5};$$

$$p_{E}(Non/E_{0}, Non/E_{1}) = 0$$

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

$$p_{E} (Installer/E_{0}, Produire/E_{1}) = \frac{1}{5};$$

$$p_{E} (Installer/E_{0}, Non/E_{1}) = \frac{3}{5};$$

$$p_{E} (Non/E_{0}, Produire/E_{1}) = \frac{1}{5};$$

$$p_{E} (Non/E_{0}, Non/E_{1}) = 0$$

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

$$p_{E} (Installer/E_{0}, Produire/E_{1}) = \frac{1}{5};$$

$$p_{E} (Installer/E_{0}, Non/E_{1}) = \frac{3}{5};$$

$$p_{E} (Non/E_{0}, Produire/E_{1}) = \frac{1}{5};$$

$$p_{E} (Non/E_{0}, Non/E_{1}) = 0$$

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

$$p_{E}\left(Installer/E_{0}, Produire/E_{1}\right) = \frac{1}{5};$$

$$p_{E}\left(Installer/E_{0}, Non/E_{1}\right) = \frac{3}{5};$$

$$p_{E}\left(Non/E_{0}, Produire/E_{1}\right) = \frac{1}{5};$$

$$p_{E}\left(Non/E_{0}, Non/E_{1}\right) = 0$$

Définition correcte des stratégies \rightarrow représentation sous forme normale de tout jeu sous forme extensive.

Une stratégie mixte du joueur E va assigner des probabilités à chacune de ses stratégies pures : $p_E(s) \in [0,1]$ avec

$$\sum_{s \in S_E} p_E(s) = 1 \tag{1}$$

$$p_{E}\left(Installer/E_{0}, Produire/E_{1}\right) = \frac{1}{5};$$

$$p_{E}\left(Installer/E_{0}, Non/E_{1}\right) = \frac{3}{5};$$

$$p_{E}\left(Non/E_{0}, Produire/E_{1}\right) = \frac{1}{5};$$

$$p_{E}\left(Non/E_{0}, Non/E_{1}\right) = 0$$

Autre exemple de stratégie mixte :

$$p_E$$
 (Installer/ E_0 , Produire/ E_1) = 1

ightarrow la stratégie pure (Installer/ E_0 , Produire/ E_1) Stratégies pures = stratégies mixtes dégénérées. Autre exemple de stratégie mixte :

$$p_E$$
 (Installer/ E_0 , Produire/ E_1) = 1

 \rightarrow la stratégie pure (Installer/ E_0 , Produire/ E_1)

Stratégies pures = stratégies mixtes dégénérées.

Autre exemple de stratégie mixte :

$$p_E$$
 (Installer/ E_0 , Produire/ E_1) = 1

 \rightarrow la stratégie pure (Installer/ E_0 , Produire/ E_1) Stratégies pures = stratégies mixtes dégénérées.

- → tirer au hasard une des stratégies pures en respectant la distribution de probabilités spécifiée par la stratégie mixte,
- → comme si le joueur jetait un dé au début du jeu pour choisir ses actions effectives,
- → ce dé étant pipé de manière à respecter les probabilités de la stratégie mixte utilisée).

- ightarrow tirer au hasard une des stratégies pures en respectant la distribution de probabilités spécifiée par la stratégie mixte,
- ightarrow comme si le joueur jetait un dé au début du jeu pour choisir ses actions effectives,
- ightarrow ce dé étant pipé de manière à respecter les probabilités de la stratégie mixte utilisée).

- \rightarrow tirer au hasard une des stratégies pures en respectant la distribution de probabilités spécifiée par la stratégie mixte,
- \rightarrow comme si le joueur jetait un dé au début du jeu pour choisir ses actions effectives,
- \rightarrow ce dé étant pipé de manière à respecter les probabilités de la stratégie mixte utilisée).

- \rightarrow tirer au hasard une des stratégies pures en respectant la distribution de probabilités spécifiée par la stratégie mixte,
- ightarrow comme si le joueur jetait un dé au début du jeu pour choisir ses actions effectives.
- \rightarrow ce dé étant pipé de manière à respecter les probabilités de la stratégie mixte utilisée).

FIG.: Faut-il toujours mixer?...

[KB] Sections 2.1 et 2.2 pour les distributions de probabilités.

Stratégies locales du joueur i à l'ensemble d'information $h:\pi_{ih}\left(s_{i}\right)\in\left[0,1\right]$

avec

$$\sum_{s_i \in h} \pi_{ih}\left(s_i\right) = 1 \tag{2}$$

Pour le joueur E, le profil de stratégies locales

en
$$E_0:\pi_{EE_0}$$
 (Installer) $=\frac{1}{2},\;\pi_{EE_0}$ (Non) $=\frac{1}{2}$
en $E_1:\pi_{EE_1}$ (Produire) $=\frac{1}{4},\;\pi_{EE_1}$ (Non) $=\frac{3}{4}$

→ une stratégie comportementale.

Stratégies locales du joueur i à l'ensemble d'information $h:\pi_{ih}\left(s_{i}\right)\in\left[0,1\right]$ avec

$$\sum_{s_i \in h} \pi_{ih}\left(s_i\right) = 1 \tag{2}$$

Pour le joueur E, le profil de stratégies locales

en
$$E_0: \pi_{EE_0}(Installer) = \frac{1}{2}, \ \pi_{EE_0}(Non) = \frac{1}{2}$$

en $E_1: \pi_{EE_1}(Produire) = \frac{1}{4}, \ \pi_{EE_1}(Non) = \frac{3}{2}$

→ une stratégie comportementale.

Stratégies locales du joueur i à l'ensemble d'information $h: \pi_{ih}(s_i) \in [0,1]$ avec

$$\sum_{s_i \in h} \pi_{ih}\left(s_i\right) = 1 \tag{2}$$

Pour le joueur E, le profil de stratégies locales

en
$$E_0$$
: π_{EE_0} (Installer) = $\frac{1}{2}$, π_{EE_0} (Non) = $\frac{1}{2}$
en E_1 : π_{EE_1} (Produire) = $\frac{1}{4}$, π_{EE_1} (Non) = $\frac{3}{4}$

→ une stratégie comportementale.

Stratégies locales du joueur i à l'ensemble d'information $h:\pi_{ih}\left(s_{i}\right)\in\left[0,1\right]$ avec

$$\sum_{s_i \in h} \pi_{ih}\left(s_i\right) = 1 \tag{2}$$

Pour le joueur E, le profil de stratégies locales

en
$$E_0$$
: π_{EE_0} (Installer) = $\frac{1}{2}$, π_{EE_0} (Non) = $\frac{1}{2}$
en E_1 : π_{EE_1} (Produire) = $\frac{1}{4}$, π_{EE_1} (Non) = $\frac{3}{4}$

ightarrow une stratégie comportementale.

Stratégies locales du joueur i à l'ensemble d'information $h:\pi_{ih}\left(s_{i}\right)\in\left[0,1\right]$ avec

$$\sum_{s_i \in h} \pi_{ih}\left(s_i\right) = 1 \tag{2}$$

Pour le joueur E, le profil de stratégies locales

en
$$E_0$$
: π_{EE_0} (Installer) = $\frac{1}{2}$, π_{EE_0} (Non) = $\frac{1}{2}$
en E_1 : π_{EE_1} (Produire) = $\frac{1}{4}$, π_{EE_1} (Non) = $\frac{3}{4}$

 \rightarrow une stratégie comportementale.

Stratégie comportementale \rightarrow une distribution de probabilités (stratégie locale) par ensemble d'information du joueur.

- → Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.
- \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.
- Jouer une stratégie $mixte \rightarrow jouer$ une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.
- Jouer une stratégie comportementale \rightarrow suivre le déroulement temporel du jeu \rightarrow tirage au sort à chacun des ensembles d'information, une fois que cet ensemble est atteint.

Stratégie comportementale \rightarrow une distribution de probabilités (stratégie locale) par ensemble d'information du joueur.

 \rightarrow Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

 \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.

Jouer une stratégie mixte \rightarrow jouer une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.

Jouer une stratégie comportementale \rightarrow suivre le déroulement temporel du jeu \rightarrow tirage au sort à chacun des ensembles d'information, une fois que cet ensemble est atteint.

Stratégie comportementale → une distribution de probabilités (stratégie locale) par ensemble d'information du joueur.

 \rightarrow Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

 \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.

Jouer une stratégie mixte \rightarrow jouer une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.

Jouer une stratégie comportementale \rightarrow suivre le déroulement temporel du jeu \rightarrow tirage au sort à chacun des ensembles d'information, une fois que cet ensemble est atteint.

 \rightarrow Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

 \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.

Jouer une stratégie mixte \rightarrow jouer une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.

ightarrow Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

 \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.

Jouer une stratégie mixte \rightarrow jouer une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.

 \rightarrow Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

 \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.

Jouer une stratégie mixte \rightarrow jouer une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.

 \rightarrow Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

 \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.

Jouer une stratégie mixte \rightarrow jouer une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.

 \rightarrow Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

 \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.

Jouer une stratégie mixte \rightarrow jouer une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.

 \rightarrow Les probabilités sur l'ensemble d'actions élémentaires contenues dans cet ensemble d'information.

 \neq Stratégies mixtes \rightarrow probabilités sur l'ensemble des stratégies pures du joueur \rightarrow sur le déroulement total du jeu pour ce joueur.

Jouer une stratégie mixte \rightarrow jouer une seule fois, quand chaque joueur fait son tirage au sort, au début du jeu.

- généralisation des stratégies pures
- adaptation à certaines situations où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine;
- qualités techniques : convexité et compacité des ensembles de stratégies.

Les stratégies mixtes projettent l'ensemble de stratégies pures sur l'intervalle [0,1] et donc sur un ensemble fermé et borné (donc compact) Leur construction comme une combinaison convexe \rightarrow la convexité.

→ Importance quand on s interessera a l'existence des solutions pour les jeux.

- généralisation des stratégies pures;
- adaptation à certaines situations où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine;
- qualités techniques : convexité et compacité des ensembles de stratégies.

Les stratégies mixtes projettent l'ensemble de stratégies pures sur l'intervalle [0,1] et donc sur un ensemble fermé et borné (donc compact) Leur construction comme une combinaison convexe \rightarrow la convexité.

→ Importance quand on s'intéressera à l'existence des solutions pour les jeux.

[GU] pages 41-47.

- généralisation des stratégies pures;
- adaptation à certaines situations où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine;
- qualités techniques : convexité et compacité des ensembles de stratégies.

Les stratégies mixtes projettent l'ensemble de stratégies pures sur l'intervalle [0,1] et donc sur un ensemble fermé et borné (donc compact) Leur construction comme une combinaison convexe \rightarrow la convexité.

ightarrow importance quand on s interessera a Lexistence des solutions pour les jeux. $_{-}$

- généralisation des stratégies pures;
- adaptation à certaines situations où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine;
- qualités techniques : convexité et compacité des ensembles de stratégies.

- généralisation des stratégies pures;
- adaptation à certaines situations où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine;
- qualités techniques : convexité et compacité des ensembles de stratégies.

- généralisation des stratégies pures;
- adaptation à certaines situations où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine;
- qualités techniques : convexité et compacité des ensembles de stratégies.

Les stratégies mixtes projettent l'ensemble de stratégies pures sur l'intervalle [0,1] et donc sur un ensemble fermé et borné (donc compact)

→ Importance quand on s'intéressera à l'existence des solutions pour les ieux

- généralisation des stratégies pures;
- adaptation à certaines situations où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine;
- qualités techniques : convexité et compacité des ensembles de stratégies.

Les stratégies mixtes projettent l'ensemble de stratégies pures sur l'intervalle [0,1] et donc sur un ensemble fermé et borné (donc compact) Leur construction comme une combinaison convexe \rightarrow la convexité.

 \rightarrow Importance quand on s'intéressera à l'existence des solutions pour les jeux.

- généralisation des stratégies pures;
- adaptation à certaines situations où il n'est pas optimal pour un joueur de s'engager à une action unique de manière certaine;
- qualités techniques : convexité et compacité des ensembles de stratégies.

Les stratégies mixtes projettent l'ensemble de stratégies pures sur l'intervalle [0,1] et donc sur un ensemble fermé et borné (donc compact) Leur construction comme une combinaison convexe \rightarrow la convexité.

 \rightarrow Importance quand on s'intéressera à l'existence des solutions pour les jeux.

Sections:

- Définition et représentation des situations d'interaction
 - La forme normale d'un jeu
 - La forme extensive d'un jeu
- 2 Représentation de l'information
- 3 Définition des stratégies
- Solutions et équilibres d'un jeu
 - Élimination des stratégies équivalentes
 - Élimination des stratégies dominées

Résultats possibles du jeu \rightarrow solutions du jeu \leftarrow résultats d'équilibre.

Notation

Considérons le profil de stratégies qui contient les stratégies de tous les joueurs **sauf** le joueur i. Nous pouvons alors le noter de la manière suivante :

$$s_{-i} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_n), \quad s_{-i} \in \underset{j \neq i}{X} S_j$$

Le profil de stratégies complet s correspond alors à $s=(s_i,s_{-i})$

Résultats possibles du jeu \rightarrow solutions du jeu \leftarrow résultats d'équilibre.

Notation

Considérons le profil de stratégies qui contient les stratégies de tous les joueurs sauf le joueur i. Nous pouvons alors le noter de la manière suivante :

$$s_{-i} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_n), \quad s_{-i} \in \underset{j \neq i}{X} S_j$$

Le profil de stratégies complet s correspond alors à $s = (s_i, s_{-i})$.

Résultats possibles du jeu \rightarrow solutions du jeu \leftarrow résultats d'équilibre.

Notation

Considérons le profil de stratégies qui contient les stratégies de tous les joueurs sauf le joueur i. Nous pouvons alors le noter de la manière suivante :

$$s_{-i} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_n), \quad s_{-i} \in \underset{j \neq i}{X} S_j$$

Le profil de stratégies complet s correspond alors à $s = (s_i, s_{-i})$.

Résultats possibles du jeu \rightarrow solutions du jeu \leftarrow résultats d'équilibre.

Notation

Considérons le profil de stratégies qui contient les stratégies de tous les joueurs **sauf** le joueur i. Nous pouvons alors le noter de la manière suivante :

$$s_{-i} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_n), \quad s_{-i} \in \underset{j \neq i}{X} S_j$$

Le profil de stratégies complet s correspond alors à $s=(s_i,s_{-i})$.

Résultats possibles du jeu \rightarrow solutions du jeu \leftarrow résultats d'équilibre.

Notation

Considérons le profil de stratégies qui contient les stratégies de tous les joueurs **sauf** le joueur i. Nous pouvons alors le noter de la manière suivante :

$$s_{-i} = (s_1, s_2, \dots, s_{i-1}, s_{i+1}, \dots, s_n), \quad s_{-i} \in \underset{j \neq i}{X} S_j$$

Le profil de stratégies complet s correspond alors à $s = (s_i, s_{-i})$.

Avant de chercher les équilibres d'un jeu (partie suivante)

- → essayer de simplifier ce jeu **en éliminant** des stratégies redondantes et/ou des stratégies ouvertement inférieures à d'autres.
- → Simplification du jeu, voire sa résolution.
- → Mais, réduction de l'information qu'on représente dans le jeu.

Avant de chercher les équilibres d'un jeu (partie suivante)

- \rightarrow essayer de simplifier ce jeu **en éliminant** des stratégies redondantes et/ou des stratégies ouvertement inférieures à d'autres.
- → Simplification du jeu, voire sa résolution.
- → Mais, réduction de l'information qu'on représente dans le jeu.

Avant de chercher les équilibres d'un jeu (partie suivante)

- → essayer de simplifier ce jeu **en éliminant** des stratégies redondantes et/ou des stratégies ouvertement inférieures à d'autres.
- → Simplification du jeu, voire sa résolution.
- → Mais, réduction de l'information qu'on représente dans le jeu.

Première idée : éliminer certaines des stratégies qui semblent redondantes — *Stratégies équivalentes*

Définition

Deux stratégies s_i et s_i' sont équivalentes si et seulement si, pour tout profil de stratégies donné des autres joueurs, tous les joueurs obtiennent la même utilité quand i joue s_i ou s_i'

$$\forall j \in I, \forall s_{-i} \in S_{-i}, \quad u_j\left(s_i, s_{-i}\right) = u_j\left(s_i', s_{-i}\right)$$

Première idée : éliminer certaines des stratégies qui semblent redondantes — *Stratégies équivalentes*

Définition

Deux stratégies s_i et s_i' sont équivalentes si et seulement si, pour tout profil de stratégies donné des autres joueurs, tous les joueurs obtiennent la même utilité quand i joue s_i ou s_i'

$$\forall j \in I, \forall s_{-i} \in S_{-i}, \quad u_j(s_i, s_{-i}) = u_j(s'_i, s_{-i})$$

Première idée : éliminer certaines des stratégies qui semblent redondantes— *Stratégies équivalentes*

Définition

Deux stratégies s_i et s_i' sont **équivalentes** si et seulement si, **pour tout profil de stratégies donné des autres joueurs**, tous les joueurs obtiennent la même utilité quand i joue s_i ou s_i'

$$\forall j \in I, \forall s_{-i} \in S_{-i}, \quad u_j(s_i, s_{-i}) = u_j(s'_i, s_{-i}).$$

Première idée : éliminer certaines des stratégies qui semblent redondantes— *Stratégies équivalentes*

Définition

Deux stratégies s_i et s_i' sont **équivalentes** si et seulement si, **pour tout profil de stratégies donné des autres joueurs**, tous les joueurs obtiennent la même utilité quand i joue s_i ou s_i'

$$\forall j \in I, \forall s_{-i} \in S_{-i}, \quad u_j(s_i, s_{-i}) = u_j(s'_i, s_{-i}).$$

Première idée : éliminer certaines des stratégies qui semblent redondantes — *Stratégies équivalentes*

Définition

Deux stratégies s_i et s_i' sont **équivalentes** si et seulement si, **pour tout profil de stratégies donné des autres joueurs**, tous les joueurs obtiennent la même utilité quand i joue s_i ou s_i'

$$\forall j \in I, \forall s_{-i} \in S_{-i}, \quad u_j(s_i, s_{-i}) = u_j(s'_i, s_{-i}).$$

Première idée : éliminer certaines des stratégies qui semblent redondantes — *Stratégies équivalentes*

Définition

Deux stratégies s_i et s_i' sont **équivalentes** si et seulement si, **pour tout profil de stratégies donné des autres joueurs**, tous les joueurs obtiennent la même utilité quand i joue s_i ou s_i'

$$\forall j \in I, \forall s_{-i} \in S_{-i}, \quad u_j(s_i, s_{-i}) = u_j(s'_i, s_{-i}).$$

Définition

La forme normale réduite d'un jeu s'obtient à partir de la forme normale initiale en remplaçant toutes les stratégies d'une classe d'équivalence par une seule stratégie.

		I	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

Toutes les stratégies du joueur E qui contiennent l'action Non/E_0 sont équivalentes.

car ces stratégies terminent le jeu

Remplacer $(Non/E_0, Produire/E_1)$ et $(Non/E_0, Non/E_1)$ par (Non/E_0) \rightarrow la forme normale réduite du jeu.

		I	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

Toutes les stratégies du joueur E qui contiennent l'action Non/E_0 sont équivalentes.

car ces stratégies terminent le jeu

Remplacer $(Non/E_0, Produire/E_1)$ et $(Non/E_0, Non/E_1)$ par (Non/E_0) \rightarrow la forme normale réduite du jeu.

		ı	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

Toutes les stratégies du joueur E qui contiennent l'action Non/E_0 sont équivalentes.

car ces stratégies terminent le jeu

Remplacer $(Non/E_0, Produire/E_1)$ et $(Non/E_0, Non/E_1)$ par (Non/E_0)

→ la forme normale réduite du jeu

		I	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

Toutes les stratégies du joueur E qui contiennent l'action Non/E_0 sont équivalentes.

car ces stratégies terminent le jeu

Remplacer $(Non/E_0, Produire/E_1)$ et $(Non/E_0, Non/E_1)$ par (Non/E_0) \rightarrow la forme normale réduite du jeu.

		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	(Non/E_0)	(0, 100)	(0, 100)

TAB.: Elimination des stratégies équivalentes

		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	(Non/E_0)	(0, 100)	(0, 100)

TAB.: Elimination des stratégies équivalentes

Mais

		l	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
Е	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	(Non/E_0)	(0, 100)	(0, 100)

TAB.: Elimination des stratégies équivalentes

Mais

Élimination \rightarrow perte des choix possibles du joueur E en E_1 , entre *Produire* et *Non*, et des *erreurs* qui peuvent accompagner ces choix (qui pourraient par exemple indiquer que E n'est pas très rationnel).

Autre simplification possible \rightarrow se baser sur une évaluation des stratégies.

		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	(Non/E_0)	(0, 100)	(0, 100)

TAB.: Elimination des stratégies équivalentes

Mais

Élimination \rightarrow perte des choix possibles du joueur E en E_1 , entre *Produire* et *Non*, et des *erreurs* qui peuvent accompagner ces choix (qui pourraient par exemple indiquer que E n'est pas très rationnel).

Autre simplification possible \rightarrow se baser sur une évaluation des stratégies.

		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	(Non/E_0)	(0, 100)	(0, 100)

TAB.: Elimination des stratégies équivalentes

Mais

Élimination \rightarrow perte des choix possibles du joueur E en E_1 , entre *Produire* et *Non*, et des *erreurs* qui peuvent accompagner ces choix (qui pourraient par exemple indiquer que E n'est pas très rationnel).

Autre simplification possible \rightarrow se baser sur une évaluation des stratégies.

Stratégies dominées

Certaines stratégies \rightarrow globalement plus mauvaises que d'autres.

Alors, jamais choisies par des joueurs rationnels.

→ Elimination pour réduire le jeu

Stratégies dominées

Certaines stratégies \rightarrow globalement plus mauvaises que d'autres.

Alors, jamais choisies par des joueurs rationnels.

→ Elimination pour réduire le jeu

Stratégies dominées

Certaines stratégies \rightarrow globalement plus mauvaises que d'autres.

Alors, jamais choisies par des joueurs rationnels.

→ Élimination pour réduire le jeu

La stratégie p_i du joueur i est **strictement dominée** par la stratégie p'_i si et seulement si, quelque soit le comportement des autres joueurs, le joueur i obtient avec pi une utilité strictement inférieure à celle obtenue avec p'_i

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$$

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) \le u_i(p'_i, p_{-i})$$

et $\exists p_{-i} \in P_{-i} \mid u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$

La stratégie p_i du joueur i est **strictement dominée** par la stratégie p'_i si et seulement si, quelque soit le comportement des autres joueurs, le joueur i obtient avec pi une utilité strictement inférieure à celle obtenue avec p'_i

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$$

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) \le u_i(p'_i, p_{-i})$$

et $\exists p_{-i} \in P_{-i} \mid u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$

La stratégie p_i du joueur i est strictement dominée par la stratégie p_i' si et seulement si, quelque soit le comportement des autres joueurs, le joueur i obtient avec p_i une utilité strictement inférieure à celle obtenue avec p_i'

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$$

La stratégie p_i est faiblement dominée par p_i' si l'inégalité est faible pour toutes les stratégies des autres joueurs et qu'il existe au moins un profil de stratégies des autres joueurs pour lequel l'utilité avec p_i est strictement inférieure à celle avec p_i'

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) \le u_i(p'_i, p_{-i})$$

et $\exists p_{-i} \in P_{-i} \mid u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$

La stratégie p_i du joueur i est strictement dominée par la stratégie p_i' si et seulement si, quelque soit le comportement des autres joueurs, le joueur i obtient avec p_i une utilité strictement inférieure à celle obtenue avec p_i'

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$$

La stratégie p_i est faiblement dominée par p_i' si l'inégalité est faible pour toutes les stratégies des autres joueurs et qu'il existe au moins un profil de stratégies des autres joueurs pour lequel l'utilité avec p_i est strictement inférieure à celle avec p_i'

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) \le u_i(p'_i, p_{-i})$$

et $\exists p_{-i} \in P_{-i} \mid u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$

La stratégie p_i du joueur i est strictement dominée par la stratégie p'_i si et seulement si, quelque soit le comportement des autres joueurs, le joueur i obtient avec p_i une utilité strictement inférieure à celle obtenue avec p'_i

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$$

La stratégie p_i est faiblement dominée par p_i' si l'inégalité est faible pour toutes les stratégies des autres joueurs et qu'il existe au moins un profil de stratégies des autres joueurs pour lequel l'utilité avec p_i est strictement inférieure à celle avec p_i'

$$\forall p_{-i} \in P_{-i}, \ u_i(p_i, p_{-i}) \le u_i(p'_i, p_{-i})$$

et $\exists p_{-i} \in P_{-i} \mid u_i(p_i, p_{-i}) < u_i(p'_i, p_{-i})$

Reprise de l'exemple

		I	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

La stratégie (Installer/ E_0 , Non/ E_1) est strictement dominée par $(Non/E_0, Produire/E_1)$ et par $(Non/E_0, Non/E_1)$.

Reprise de l'exemple

		ı	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

La stratégie ($Installer/E_0$, Non/E_1) est strictement dominée par (Non/E_0 , $Produire/E_1$) et par (Non/E_0 , Non/E_1).

- \rightarrow E ne devrait jamais choisir la stratégie (Installer/ E_0 , Non/ E_1) en présence des stratégies (Non/ E_0 , Produire/ E_1) ou (Non/ E_0 , Non/ E_1).
- ightarrow On peut donc éliminer $(\mathit{Installer}/E_0,\mathit{Non}/E_1)
 ightarrow \mathsf{Jeu}$ réduit.

Reprise de l'exemple

		ı	
		Augmenter	Non
	$(Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
E	$(Installer/E_0, Non/E_1)$	(-10, 120)	(-10, 100)
	$(Non/E_0, Produire/E_1)$	(0, 100)	(0, 100)
	$(Non/E_0, Non/E_1)$	(0, 100)	(0, 100)

TAB.: La forme normale du jeu de l'Entrée II

La stratégie ($Installer/E_0$, Non/E_1) est strictement dominée par (Non/E_0 , $Produire/E_1$) et par (Non/E_0 , Non/E_1).

- \rightarrow E ne devrait jamais choisir la stratégie (Installer/ E_0 , Non/ E_1) en présence des stratégies (Non/ E_0 , Produire/ E_1) ou (Non/ E_0 , Non/ E_1).
- \rightarrow On peut donc éliminer (Installer/ E_0 , Non/ E_1) \rightarrow Jeu réduit.

		I	
		Augmenter	Non
E (/	$nstaller/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
	(Non/E_0)	(0, 100)	(0, 100)

TAB.: Le jeu réduit

- \rightarrow Nous ne pouvons encore prédire les résultats effectifs du jeu car la stratégie *Augmenter* de *I* n'est que **faiblement dominée** par sa stratégie *N* (égalité si *E* joue (Non/E_0))
- \rightarrow on ne peut être sûr que I choisira Non en présence de Augmenter.

	I	
	Augmenter	Non
E (Installer/ E_0 , Produire/ E_1)	(-50, 40)	(50, 60)
(Non/E_0)	(0, 100)	(0, 100)

TAB.: Le jeu réduit

- \rightarrow Nous ne pouvons encore prédire les résultats effectifs du jeu car la stratégie *Augmenter* de *I* n'est que **faiblement dominée** par sa stratégie *N* (égalité si *E* joue (Non/E_0))
- → on ne peut être sûr que / choisira *Non* en présence de *Augmenter*.

		ı	
		Augmenter	Non
E (/	$Installer/E_0, Produire/E_1)$	(-50, 40)	(50, 60)
	(Non/E_0)	(0, 100)	(0, 100)

TAB.: Le jeu réduit

 \rightarrow Nous ne pouvons encore prédire les résultats effectifs du jeu car la stratégie *Augmenter* de *I* n'est que **faiblement dominée** par sa stratégie *N* (égalité si *E* joue (Non/E_0))

 \rightarrow on ne peut être sûr que I choisira Non en présence de Augmenter.

	1	
	Augmenter	Non
E (Installer/ E_0 , Produire/ E_1)	(-50, 40)	(50, 60)
(Non/E_0)	(0, 100)	(0, 100)

TAB.: Le jeu réduit

- \rightarrow Nous ne pouvons encore prédire les résultats effectifs du jeu car la stratégie *Augmenter* de *I* n'est que **faiblement dominée** par sa stratégie *N* (égalité si *E* joue (Non/E_0))
- \rightarrow on ne peut être sûr que *I* choisira *Non* en présence de *Augmenter*.

		Clyde	
		N D	
Bonnie	Ν	(-1, -1)	(-10,0)
	D	(0, -10)	(-8, -8)

- $\rightarrow N$ est strictement dominé par D pour les deux joueurs.
- ightarrow Élimination des stratégies strictement dominées ightarrow la solution :(D,D)
- ightarrow Unicité ightarrow une prédiction assez claire et intuitive sur le résultat possible du jeu.

		Clyde	
		N	D
Bonnie	Ν	(-1, -1)	(-10,0)
	D	(0, -10)	(-8, -8)

- $\rightarrow N$ est strictement dominé par D pour les deux joueurs.
- ightarrow Élimination des stratégies strictement dominées ightarrow la solution : (D,D)
- ightarrow Unicité ightarrow une prédiction assez claire et intuitive sur le résultat possible du jeu.

		Clyde	
		N	D
Bonnie	Ν	(-1, -1)	(-10,0)
	D	(0, -10)	(-8, -8)

- $\rightarrow N$ est strictement dominé par D pour les deux joueurs.
- \rightarrow Élimination des stratégies strictement dominées \rightarrow la solution : (D, D).
- ightarrow Unicité ightarrow une prédiction assez claire et intuitive sur le résultat possible du jeu.

		Clyde	
		N	D
Bonnie	Ν	(-1, -1)	(-10,0)
	D	(0, -10)	(-8, -8)

- $\rightarrow N$ est strictement dominé par D pour les deux joueurs.
- \rightarrow Élimination des stratégies strictement dominées \rightarrow la solution : (D, D).
- \rightarrow Unicité \rightarrow une prédiction assez claire et intuitive sur le résultat possible du jeu.

		Clyde	
		N	D
Bonnie	Ν	(-1, -1)	(-10,0)
	D	(0, -10)	(-8, -8)

- $\rightarrow N$ est strictement dominé par D pour les deux joueurs.
- \rightarrow Élimination des stratégies strictement dominées \rightarrow la solution : (D, D).
- \rightarrow Unicité \rightarrow une prédiction assez claire et intuitive sur le résultat possible du jeu.

Paul et Jacqueline \rightarrow organiser leur soirée.

Le choix entre

- ullet aller \dot{a} un match de football (F)
- aller à l'opéra (O).

- Jacqueline a une préférence pour le football ettence
- Paul pour l'opéra..
- → Forme normale du jeu.

Paul et Jacqueline → organiser leur soirée.

- Le choix entre :
 - aller à un match de football (F);
 - aller à l'opéra (O).

- Jacqueline a une préférence pour le football et
- Paul pour l'opéra...
- → Forme normale du jeu.

Paul et Jacqueline → organiser leur soirée.

Le choix entre :

- aller à un match de football (F);
- aller à l'opéra (O).

- Jacqueline a une préférence pour le football et
- Paul pour l'opéra...
- → Forme normale du jeu.

Paul et Jacqueline → organiser leur soirée.

Le choix entre :

- aller à un match de football (F);
- aller à l'opéra (O).

- Jacqueline a une préférence pour le football et
- Paul pour l'opéra...
- → Forme normale du jeu.

Paul et Jacqueline \rightarrow organiser leur soirée.

Le choix entre :

- aller à un match de football (F);
- aller à l'opéra (O).

Ce qui compte avant tout, c'est d'être ensemble.

Mais

- Jacqueline a une préférence pour le football et
- Paul pour l'opéra.
- → Forme normale du jeu.

Paul et Jacqueline → organiser leur soirée.

Le choix entre :

- aller à un match de football (F);
- aller à l'opéra (O).

- Jacqueline a une préférence pour le football et
- Paul pour l'opéra...
- → Forme normale du jeu.

Paul et Jacqueline → organiser leur soirée.

Le choix entre :

- aller à un match de football (F);
- aller à l'opéra (O).

- Jacqueline a une préférence pour le football et
- Paul pour l'opéra...
- → Forme normale du jeu.

Paul et Jacqueline → organiser leur soirée.

Le choix entre :

- aller à un match de football (F);
- aller à l'opéra (O).

- Jacqueline a une préférence pour le football et
- Paul pour l'opéra...
- → Forme normale du jeu.

Paul et Jacqueline → organiser leur soirée.

Le choix entre :

- aller à un match de football (F);
- aller à l'opéra (O).

- Jacqueline a une préférence pour le football et
- Paul pour l'opéra...
- \rightarrow Forme normale du jeu.

		Jacqueline	
		0	F
Paul	0	(2,1)	(0,0)
	F	(0,0)	(1, 2)

TAB.: La bataille des sexes

- → Un jeu de coordination.
- → Absence de stratégies dominées
- ightarrow Nécessité d'introduire d'autres concepts d'équilibre.

		Jacqueline	
		0	F
Paul	0	(2,1)	(0,0)
	F	(0,0)	(1, 2)

TAB.: La bataille des sexes

- → Un jeu de coordination.
- ightarrow Absence de stratégies dominées
- → Nécessité d'introduire d'autres concepts d'équilibre

		Jacqueline	
		0	F
Paul	0	(2,1) $(0,0)$	(0,0)
	F	(0,0)	(1, 2)

TAB.: La bataille des sexes

- → Un jeu de coordination.
- $\rightarrow \mbox{Absence de stratégies dominées}.$
- → Nécessité d'introduire d'autres concepts d'équilibre

		Jacqueline	
		0	F
Paul	0	(2,1) $(0,0)$	(0,0)
	F	(0,0)	(1, 2)

TAB.: La bataille des sexes

- → Un jeu de coordination.
- $\rightarrow \mbox{Absence de stratégies dominées}.$
- → Nécessité d'introduire d'autres concepts d'équilibre.

Partie II Les jeux non-coopératifs avec information complète