

CORSO DI LAUREA TRIENNALE IN INGEGNERIA INDUSTRIALE

ANALISI DI PRESTAZIONI DI COMFORT DI DIVERSE STRATEGIE DI CONTROLLO DI SOSPENSIONE SEMI-ATTIVA

Relatore Prof. Giulio Panzani Studente Elia Bontempelli 201467

Co-relatore Prof. Giulia Giordano

ANNO ACCADEMICO 2020/2021

TIPI DI SOSPENSIONI

- Sospensioni passive:
 - caratteristiche sono determinate in fase di progettazione
 - movimento è determinato interamente dal profilo stradale
- Sospensioni attive:
 - costituite da un attuatore separato che esercita una forza indipendente sulle sospensioni
 - le elevati costi di produzione, necessitano una frequente manutenzione che può risultare problematica
- Sospensioni semi-attive:
 - costituite da ammortizzatori a smorzamento variabile
 - non è somministrata ulteriore energia meccanica al sistema
 - più economiche delle sospensioni attive

SOSPENSIONI SEMI-ATTIVE MAGNETOREOLOGICHE

- Sfruttano effetti magnetoreologici di alcuni fluidi (olio) → possono variare la propria viscosità in base all'azione di campi magnetici esterni
- Intensità del campo magnetico è controllata da un circuito elettromagnetico
- Vantaggi sospensioni MR:
 - Esercitano forze elevate anche a velocità basse
 - La variabile di controllo incide direttamente sulla forza

VANTAGGI SOSPENSIONI MR

Relazione forza sospensione - velocità

3000

- U_{MR} = man/4

- U_{MR} = man/2

- U_{MR} = m

Cambiando la variabile di controllo → cambia direttamente la forza della sospensione (la caratteristica rimane uguale)

CONTROLLO SOSPENSIONI SEMI-ATTIVE MR

- Controllo più immediato e meno complesso → si possono implementare leggi di controllo standard
 - Configurazione passiva
 - Legge lineare
 - Legge quadratica
 - ► Combinazione tra le due

$$u_{MR} = cost$$

$$u_{MR} = \frac{\tilde{f}_{max}}{2} + sgn(\dot{\tilde{z}})sat_{\frac{\tilde{f}_{max}}{2}}(\tilde{k}x),$$

$$u_{MR} = \frac{\tilde{f}_{max}}{2} + sgn(\dot{\hat{z}})sat_{\frac{\tilde{f}_{max}}{2}}(xP_xx^T),$$

$$u_{MR} = \frac{\tilde{f}_{max}}{2} + sgn(\dot{\tilde{z}})sat_{\frac{\tilde{f}_{max}}{2}}(\tilde{k}x + xP_xx^T).$$

MODELLO QUARTER CAR

$$\begin{cases} m_s \ddot{z}_s = -k\tilde{z} - f_d(\dot{\tilde{z}}) \\ m_s \ddot{z}_u = -k_t (z_u - z_r) + k\tilde{z} + f_d(\dot{\tilde{z}}), \end{cases}$$

IMPLEMENTAZIONE DEL MODELLO IN SIMULINK

- Sistema dinamico:
 - Input: z_r
 - Vettore delle variabili di stato: $\begin{bmatrix} \dot{z}_s & z_s & \dot{\tilde{z}} & \tilde{z} \end{bmatrix}^T$
 - Output: \ddot{z}_s
- Forza dello smorzatore MR: $f_d = c_{min} * (\dot{z_s} \dot{z_u}) + sat_{u_{MR}}(k_0(\dot{z_s} \dot{z_u})).$

INDICE DI PERFORMANCE J

$$J(\ddot{z}_s) = \left(\frac{1}{T} \int_0^T |\ddot{z}_s(\tau)|^2 d\tau\right)^{\frac{1}{2}}$$

 \rightarrow J deve essere minimo per avere prestazioni migliori

COME OTTIMIZZARE I PARAMETRI DELLE LEGGI DI CONTROLLO

$$u_{MR} = \frac{\tilde{f}_{max}}{2} + sgn(\dot{\tilde{z}})sat_{\frac{\tilde{f}_{max}}{2}}(\tilde{k}x + xP_{x}x^{T}).$$

$$\tilde{k} = [k_{1} \ k_{2} \ k_{3} \ k_{4}]^{T}$$

$$P_{x} = \begin{bmatrix} p_{1,1} & p_{1,2} & p_{1,3} & p_{1,4} \\ p_{2,1} & p_{2,2} & p_{2,3} & p_{2,4} \\ p_{3,1} & p_{3,2} & p_{3,3} & p_{3,4} \\ p_{4,1} & p_{4,2} & p_{4,3} & p_{4,4} \end{bmatrix}$$

- Dbiettivo: esplorare le potenzialità massime delle leggi di controllo → tecniche di ottimizzazione model-free:
 - Ottimizzazione bayesiana → evoluzione della random search → trova l'ottimo del sistema con un numero minimo di iterazioni

OTTIMIZZAZIONE BAYESIANA

- Progettata per ottimizzare modelli a scatola nera
- Tramite simulazioni è possibile raccogliere un insieme di misure:

$$J(\theta_1),J(\theta_2),\dots,J(\theta_N)$$

Funzione obiettivo è aggiornata dopo ogni iterazione sulla base delle osservazioni fatte

bayesopt

Implementazione in MATLAB

LEGGE DI CONTROLLO LINEARE

#iterazioni	k_1	k_2	k_3	k_4	J_{ottim} $\left[\frac{m}{s^2}\right]$	$J_{u_{MR}=0}$ $\left[\frac{m}{s^2}\right]$
100	4994.7	1256.1	-48964.9	-57686.1	1.0410	1.0854
100	4891.1	916	-42489	-52825	1.0600	1.1372
100	4882.6	-1068.2	-45049.1	-57644.7	1.0519	1.1044
100	4832.6	-1626.5	-37832.2	-52204.1	1.1003	1.1770
100	5112.3	-184.7	-46131.6	-56255.9	1.0662	1.1053
100	4836.7	1862.5	-39944.8	-51648.3	1.0578	1.1528
100	4778.6	1070.9	-48280.1	-55971.2	1.0671	1.1114
100	4965.8	416.8	-66707.4	-58684.9	1.0560	1.0860
100	4863.3	-1386.5	-43122.3	-56622.4	1.0697	1.1130
100	5027.5	-1568.5	-44443	-55609.9	1.0613	1.1144

▶ Parametro k_2 → non fondamentale per la legge di controllo

LEGGE DI CONTROLLO QUADRATICA

- Risultati non ottimi per quanto riguarda l'indice di performance \Rightarrow $J \approx 2.4 \text{ m/}_{S^2}$
- Sono stati aumentati i valori dei «bound» dei parametri
 - \rightarrow Valore della cifra di costo migliora: $J \approx 1.3~^m/_{s^2}$, ma è stato verificato che questo non accada all'aumentare indefinito dei guadagni K e P

3. Osservazioni finali

- Combinando legge lineare e quadratica non si ottengono miglioramenti importanti

- ▶ Legge lineare → migliore considerando l'intero campo di validità
- ▶ Legge quadratica → buona soluzione per basse frequenze
- E' stato utilizzato l'algoritmo di ottimizzazione bayesiana, ciò non esclude però che possano esserci delle tecniche migliori dell'ottimizzatore

VI RINGRAZIO PER L'ATTENZIONE!