Analysis and Design of Ciphers for the IoT

October 4th, 2016

Workgroup Symmetric Cryptography UbiCrypt – Horst Görtz Institute Ruhr University Bochum

Friedrich Wiemer

RUB

Progress

■ Started my PhD

Progress

- Started my PhD
-

Questions?

Thank you for your attention!

Mainboard & Questionmark Images: flickr

Progress

 High-Speed Implementation of bcrypt Password Search using Special-Purpose Hardware

(Wiemer, Zimmermann: ReConfig 2014)

 High-Speed Implementation of bcrypt Password Search using Special-Purpose Hardware

(Wiemer, Zimmermann: ReConfig 2014)

Parallel Implementation of BDD enumeration for LWE

(Kirshanova, May, Wiemer: ACNS 2016)

 High-Speed Implementation of bcrypt Password Search using Special-Purpose Hardware

(Wiemer, Zimmermann: ReConfig 2014)

- Parallel Implementation of BDD enumeration for LWE (Kirshanova, May, Wiemer: ACNS 2016)
- Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers

(Kranz, Leander, Wiemer: in submission)

 High-Speed Implementation of bcrypt Password Search using Special-Purpose Hardware

(Wiemer, Zimmermann: ReConfig 2014)

- Parallel Implementation of BDD enumeration for LWE (Kirshanova, May, Wiemer: ACNS 2016)
- Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers

(Kranz, Leander, Wiemer: in submission)

- Future
 - Read more paper and do more research
 - Cross-Disciplinary Project and Research Visit
 - Basically: enjoy my PhD ⊜

Linear Cryptanalysis

See Thorsten's slides.

See Thorsten's slides.

Fourier Coefficient for Key-Alternating Function

$$\widehat{F}_k(\alpha,\gamma) \coloneqq \sum_{\beta \in \mathbb{F}_2^n} (-1)^{\langle \beta,k \rangle} \widehat{F}(\alpha,\gamma) = \sum_{\beta \in \mathbb{F}_2^n \atop x \in \mathbb{F}_2^n} (-1)^{\langle \alpha,x \rangle + \langle \beta,k \rangle + \langle \gamma,F(x) \rangle}$$

See Thorsten's slides.

Fourier Coefficient for Key-Alternating Function

$$\widehat{F}_k(\alpha,\gamma) \coloneqq \sum_{\beta \in \mathbb{F}_2^n} (-1)^{\langle \beta,k \rangle} \widehat{F}(\alpha,\gamma) = \sum_{\beta \in \mathbb{F}_2^n \atop x \in \mathbb{F}_2^n} (-1)^{\langle \alpha,x \rangle + \langle \beta,k \rangle + \langle \gamma,F(x) \rangle}$$

But:

- How to (efficiently?) compute the Fourier Coefficient?
- How does the key dependency influence our cipher's security?
- How does the key schedule influence the Fourier Coefficient?

RUB

Computing the Fourier Coefficient

Experimentally

Correct way:

- Choose α and γ .
- For all possible β and
 For all possible keys and
 For all possible plaintexts
 - Either increase or decrease the Fourier Coefficient's sum

Computing the Fourier Coefficient

Experimentally

Correct way:

- Choose α and γ .
- For all possible β and
 For all possible keys and
 For all possible plaintexts
 - Either increase or decrease the Fourier Coefficient's sum

Not feasible for real world ciphers. Thus approximate:

- Choose α and γ .
- For many β and For many keys and For many plaintexts
 - Either increase or decrease the Fourier Coefficient's sum

RUB

Computing the Fourier Coefficient

Ohkuma's Observation

RUB

Experiments with PRESENT

Different S-boxes and Constant Round Keys

Experiments with PRESENT

Resulting Fourier Coefficient Distributions

Experiments with PRESENT

Tchebysheff's Bound

Key Influence

Standard PRESENT

Wrap Up

Design Consequences

We cannot hope to prove better results for generic SPN's than Tchebysheff's bound.

Design Consequences

We cannot hope to prove better results for generic SPN's than Tchebysheff's bound.

Thank you for your attention!

Any quesions?

