SUBSETS OF PRODUCTS OF POSITIVE DENSITY ON VAN DER WAERDEN SETS

KONSTANTINOS TYROS

ABSTRACT. We prove that for every sequence $(m_q)_q$ of positive integers and for every real $0 < \delta \leqslant 1$ there is a sequence $(n_q)_q$ of positive integers such that for every $D \subseteq \bigcup_k \prod_{q=0}^{k-1} [n_q]$ satisfying

$$\frac{\left|D\cap\prod_{q=0}^{k-1}[n_q]\right|}{\prod_{q=0}^{k-1}n_q}\geqslant\delta$$

for every k in a van der Waerden set, there is a sequence $(J_q)_q$, where J_q is an arithmetic progression of length m_q contained in $[n_q]$ for all q, such that $\prod_{q=0}^{k-1} J_q \subseteq D$ for every k in a van der Waerden set. Moreover, working in an abstract setting, we obtain J_q to be any configuration of natural numbers that can be found in an arbitrary set of positive density.

1. Introduction

In [TT] a density version of a Ramsey theoretic result [DLT, To] has been established. In particular it was shown that for every positive real ε and every sequence $(m_q)_q$ of positive integers there exists a sequence $(n_q)_q$ of positive integers with the following property. For every infinite subset L of the positive integers and every sequence $(D_\ell)_{\ell\in L}$ such that D_ℓ is a subset of $\prod_{q=0}^{\ell-1}\{1,...,n_q\}$ of density at least ε for all $\ell\in L$, there exist a sequence $(I_q)_q$ and infinite subset L' of L such that I_q is a subset of $\{1,...,n_q\}$ of cardinality m_q for all non-negative integers q and the set $\prod_{q=0}^{\ell-1} I_q$ is a subset of D_ℓ for all $\ell\in L'$.

In the present paper we provide a strengthening of this result which is optimal in several aspects. Firstly, we show that the set L' can be chosen to be a van der Waerden set provided that L itself is a van der Waerden set (this is, clearly, a necessary condition). Moreover, the sets I_q can be endowed with additional structure. For instance, each I_q can be chosen to be an arithmetic or a polynomial progression. The construction of the sequence $(I_q)_q$ is effective avoiding, in particular, compactness arguments as in [TT].

In order to state our result we need to introduce some pieces of notation. By \mathbb{N} we denote the set of the non-negative integers; \mathbb{N}_+ stands for the set of all positive integers. For every set X by $X^{<\mathbb{N}}$ we denote the set of all finite sequences in X. The empty sequence is denoted by \emptyset and is included in $X^{<\mathbb{N}}$. For every positive

Key words: Density, Ramsey theory, finite sets, van der Waerden sets.

integer k by [k] we denote the set $\{1,...,k\}$. By convention, [0] stands for the empty

Let Y be a (possibly infinite) set. If X is a nonempty finite subset of Y and A is an arbitrary subset of Y, then the density of A relative to X, denoted by $dens_X(A)$, is the quantity defined by

(1)
$$\operatorname{dens}_{X}(A) = \frac{|A \cap X|}{|X|}.$$

Recall that a subset of \mathbb{N}_+ is called a var der Waerden set if it contains arbitrarily long arithmetic progressions. We will also need the following slight variant of the standard notion of a density regular family (see, e.g., [Mc1, Mc2]).

Definition 1. A family \mathcal{F} of nonempty finite subsets of \mathbb{N}_+ is called uniformly density regular if for every $0 < \varepsilon \le 1$ there exists an integer n_0 such that for every interval I of \mathbb{N}_+ of length at least n_0 and every subset A of I with $\operatorname{dens}_I(A) \geqslant \varepsilon$, the set A contains an element of \mathcal{F} . The least such n_0 will be denoted by $B(\mathcal{F}, \varepsilon)$. Finally, the set of all uniformly density regular families will be denoted by \mathcal{R} .

There are several examples of uniformly regular families. The simplest one is the set of all subsets of the positive integers with exactly k elements where k is a fixed positive integer. By the famous Szemerédi Theorem [Sz], the set AP_k of all arithmetic progressions of length k is also a uniformly regular family; see [G] for the best known upper bounds for the numbers $B(AP_k, \varepsilon)$. Moreover, for every choice of polynomials $p_1, ..., p_k$ taking integer values on the integers and zero on zero, the family $\{a+p_1(n),...,a+p_k(n)\}: a\in\mathbb{Z} \text{ and } n\in\mathbb{Z}\}$ is uniformly density regular. This is a consequence of the work of V. Bergelson and A. Leibman [BL]. More examples of uniform density regular families can be found in [FW, BM].

We are now ready to state our main result.

Theorem 2. Let $0 < \delta \leq 1$. Then there exists a map $V_{\delta} : \mathcal{R}^{<\mathbb{N}} \times \mathbb{N}_{+}^{<\mathbb{N}} \to \mathbb{N}$ with the following property. For every sequence $(n_q)_q$ of positive integers, every sequence $(\mathcal{F}_q)_q$ of uniformly regular families, every var der Waerden set L and every sequence $(D_k)_{k\in L}$ such that

- (a) $n_0 \geqslant V_{\delta}(\mathcal{F}_0, \emptyset)$,
- (b) $n_q \geqslant V_{\delta}((\mathcal{F}_p)_{p=0}^q, (n_p)_{p=0}^{q-1})$ for all positive integers q and (c) D_{ℓ} is a subset of $\prod_{q=0}^{\ell-1} [n_q]$ of density at least δ for all $\ell \in L$

there exist a sequence $(I_q)_q$ and a van der Waerden subset L' of L such that

- (i) I_q is an element of \mathcal{F}_q contained in $[n_q]$ for all $q \in \mathbb{N}$ and
- (ii) $\prod_{q=0}^{\ell-1} I_q \subseteq D_\ell$ for all $\ell \in L'$.

The definition of the map V_{δ} is based on an auxiliary map T that we will define in Section 3. The proof of Theorem 2 as well as the definition of the map V_{δ} are given in Section 4.

2. Correlation of measurable events on arithmetic progressions.

Recall the following two classical combinatorial results due to B. L. van der Waerden [vW] and E. Szemerédi [Sz] respectively.

Theorem 3. For every r, k positive integers, there exists a positive integer n_0 such that for every $n \ge n_0$ and every coloring of [n] into r many colors, one of the colors contains an arithmetic progression of length k. The least such n_0 will be denoted by W(k, r).

Theorem 4. For every $0 < \varepsilon \le 1$ and every positive integer k there exists a positive integer n_0 such that for every $n \ge n_0$ and every A subset of [n] of density at least ε , the set A contains an arithmetic progression of length k. The least such n_0 will be denoted by $S(k, \varepsilon)$.

Theorem 3 has the following easy consequence, essentially stating that the collection of all van der Waerden sets forms a coideal on \mathbb{N}_+ .

Fact 5. One of the colors of a finite coloring of a van der Waerden set is a van der Waerden set.

We proceed to define some numerical invariants. For every $0<\eta\leqslant 1$ and every integer $k\geqslant 2$ we set

(2)
$$\theta_1(k,\eta) = (\eta/2) \cdot {\binom{S(k,\eta/2)}{2}}^{-1},$$

while for every $0 < \eta \le 1$ we set

(3)
$$\theta_1(1,\eta) = \eta.$$

We will need the following lemma.

Lemma 6. Let $0 < \eta \le 1$ and k be a positive integer. Then for every integer n with $n \ge S(k, \eta/2)$ and every family $(A_i)_{i=1}^n$ of measurable events in a probability space (Ω, Σ, μ) such that $\mu(A_i) \ge \eta$ for all $i \in [n]$ there exists an arithmetic progression P of length k contained in [n] such that

(4)
$$\mu\Big(\bigcap_{i\in P}A_i\Big)\geqslant \theta_1(k,\eta).$$

Proof. For k=1 the result is immediate. Thus, let as assume that $k \geq 2$. Fix $n \geq S(k, \eta/2)$ and a family $(A_i)_{i=1}^n$ of measurable events in a probability space (Ω, Σ, μ) satisfying $\mu(A_i) \geq \eta$ for all $i \in [n]$. We set $n_0 = S(k, \eta/2)$ and

(5)
$$A = \{(i, x) \in [n_0] \times \Omega : x \in A_i\}.$$

Clearly, the product probability measure $\operatorname{dens}_{[n_0]} \otimes \mu$ of A is at least η . For every $x \in \Omega$ let

(6)
$$A^{x} = \{i \in [n_0] : (i, x) \in A\}.$$

By Fubini Theorem, setting

(7)
$$C = \left\{ x \in \Omega : \operatorname{dens}_{[n_0]}(A^x) \geqslant \frac{\eta}{2} \right\},$$

we have that $C \in \Sigma$ and $\mu(C) \geqslant \frac{\eta}{2}$. By Theorem 4 and the choice of n_0 , for every $x \in C$ there exists an arithmetic progression P_x of length k contained in A^x . Observe that for every $x \in C$ we have

$$(8) x \in \bigcap_{i \in P_x} A_i.$$

There are at most $\binom{n_0}{2}$ many arithmetic progressions of length k contained in $[n_0]$. Therefore, there exist an arithmetic progression P of length k contained in $[n_0]$ and a measurable subset C' of C with

(9)
$$\mu(C') \geqslant \mu(C) \cdot \left(\frac{S(k, \eta/2)}{2}\right)^{-1} \stackrel{(2)}{\geqslant} \theta_1(k, \eta)$$

and such that $P_x = P$ for all $x \in C'$. Invoking (8) we see that $C' \subseteq \cap_{i \in P} A_i$. Hence $\mu(\cap_{i \in P} A_i) \geqslant \mu(C') \stackrel{(9)}{\geqslant} \theta_1(k, \eta)$ and the proof is completed.

We will also need a variant of Lemma 6 which is stated in the more general context of uniformly density regular families. To state it we need, first, to introduce some further invariants. Specifically, for every $0 < \eta \leqslant 1$ and every uniformly density regular family $\mathcal F$ we set

(10) $M(\mathcal{F}, \eta) = \max \left\{ |\{F \in \mathcal{F} : F \subseteq I\}| : I \text{ is an interval of length } B(\mathcal{F}, \eta) \right\}$ and we define

(11)
$$\theta_2(\mathcal{F}, \eta) = \frac{\eta}{4 \cdot M(\mathcal{F}, \eta/4)}.$$

Lemma 7. Let $0 < \eta \le 1$ and \mathcal{F} be a uniformly density regular family. Also let n be an integer with $n \ge (2/\varepsilon) \cdot B(\mathcal{F}, \varepsilon/4)$ and (Ω, Σ, μ) be a probability space. Finally let A be a subset of $[n] \times \Omega$ with $(\operatorname{dens}_{[n]} \otimes \mu)(A) \ge \eta$. Then there exists an element F of \mathcal{F} such that, setting $\widetilde{A} = \{x \in \Omega : (i, x) \in A \text{ for all } i \in F\}$, we have

(12)
$$\mu(\widetilde{A}) \geqslant \theta_2(\mathcal{F}, \eta).$$

Proof. We set $n_0 = B(\mathcal{F}, \eta/4)$. First we pick a subinterval I of [n] of length n_0 such that

$$(13) \qquad (\operatorname{dens}_{I} \otimes \mu) (A \cap (I \times \Omega)) \geqslant \eta/2$$

as follows. We set $\ell = \lfloor n/n_0 \rfloor$ and we pick $I_1, ..., I_\ell$ disjoint subintervals of [n] each of length n_0 . We set $J = \bigcup_{j=1}^{\ell} I_j$. By the assumptions on n, we have that $\operatorname{dens}_{[n]}([n] \setminus J) < \eta/2$. Consequently, since $I_1, ..., I_\ell$ are of the same length, we have that

(14)
$$\frac{\eta}{2} \leqslant (\operatorname{dens}_{J} \otimes \mu) (A \cap (J \times \Omega)) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\operatorname{dens}_{I_{j}} \otimes \mu) (A \cap (I_{j} \times \Omega)).$$

Hence for some $j_0 \in [\ell]$ we have that $(\operatorname{dens}_{I_{j_0}} \otimes \mu) (A \cap (I_{j_0} \times \Omega)) \geqslant \eta/2$. Let $I = I_{j_0}$. For every $i \in I$ we set

$$(15) A_i = \{x \in \Omega : (i, x) \in A\}$$

and for every $x \in \Omega$ we set

(16)
$$A^{x} = \{ i \in I : (i, x) \in A \}.$$

By (13) and Fubini Theorem, we have that the set

(17)
$$C = \left\{ x \in \Omega : \operatorname{dens}_{I}(A^{x}) \geqslant \eta/4 \right\}$$

is a measurable event of probability at least $\eta/4$. Since I is of length $B(\mathcal{F}, \eta/4)$, for every $x \in C$ we have that there exists an element F_x of \mathcal{F} contained in A^x . Let us observe that for every $x \in C$, by the definition of the set A^x , we have that

$$(18) x \in \bigcap_{i \in F_x} A_i.$$

Since I contains at most $M(\mathcal{F}, \eta/4)$ elements of \mathcal{F} , we have that there exist an element F of \mathcal{F} contained in I and a measurable subset C' of C such that

(19)
$$\mu(C') \geqslant \frac{\mu(C)}{M(\mathcal{F}, \eta/4)} \stackrel{(11)}{\geqslant} \theta_2(\mathcal{F}, \eta)$$

and $F_x = F$ for all $x \in C'$. Invoking (18) we have that $C' \subset \cap_{i \in F} A_i$. Setting \widetilde{A} as in the statement, we clearly have that the intersection $\cap_{i \in F} A_i$ is subset of \widetilde{A} . Thus $\mu(\widetilde{A}) \geqslant \mu(\cap_{i \in F} A_i) \geqslant \mu(C') \stackrel{(18)}{\geqslant} \theta_2(\mathcal{F}, \eta)$ as desired.

Before we proceed let us introduce some additional notation. Let (Ω, Σ, μ) be a probability space and B be a measurable event of positive probability. For every $A \in \Sigma$ we set

(20)
$$\mu_B(A) = \frac{\mu(A \cap B)}{\mu(B)}.$$

We have the following elementary fact.

Fact 8. Let $0 < \eta, \theta \le 1$. Also let (Ω, Σ, μ) be a probability space and A, B be two measurable events such that $\mu(A) \ge \eta$ and $\mu(B) \ge \theta$. If $\mu_B(A) \le \eta/2$ then $\mu(\Omega \setminus B) \ge \eta/2$ and $\mu_{\Omega \setminus B}(A) \ge \eta + \eta\theta/2$.

Proof. Assuming that $\mu_B(A) \leq \eta/2$ we have the following. First we observe that

(21)
$$\mu(\Omega \setminus B) \geqslant \mu(A \setminus B) = \mu(A) - \mu(A \cap B) \geqslant \mu(A) - \mu_B(A) \geqslant \eta/2.$$

Since

(22)
$$\eta \leqslant \mu(A) = \mu(\Omega \setminus B) \cdot \mu_{\Omega \setminus B}(A) + \mu(B) \cdot \mu_{B}(A) \leqslant (1 - \mu(B)) \cdot \mu_{\Omega \setminus B}(A) + (\eta/2) \cdot \mu(B),$$

we have that

(23)
$$\mu_{\Omega \setminus B}(A) \geqslant \eta \cdot \frac{1 - \mu(B)/2}{1 - \mu(B)} = \eta \cdot \left(1 + \frac{\mu(B)/2}{1 - \mu(B)}\right)$$
$$\geqslant \eta + \eta \cdot \mu(B)/2 \geqslant \eta + \eta\theta/2$$

as desired.

Lemma 9. Let $0 < \eta \le 1$ and k be a positive integer. Also let L be a van der Waerden set and $(A_{\ell})_{\ell \in L}$ be a family of measurable events in a probability space (Ω, Σ, μ) such that $\mu(A_{\ell}) \ge \eta$ for all $\ell \in L$. Then there exist an arithmetic progression P of length k contained in L, a van der Waerden subset L' of L and a subset B of $\cap_{i \in P} A_i$ such that

(24)
$$\mu(B) \geqslant \left(\frac{\eta}{2}\right)^{\left\lfloor \frac{2}{\eta \cdot \theta_1(k,\eta)} \right\rfloor - 1} \theta_1(k,\eta)$$

and $\mu_B(A_\ell) \geqslant \eta/2$, for all $\ell \in L'$. Moreover, the set B belongs to the algebra generated by the family $\{A_\ell : \ell \in L \text{ and } \ell \leqslant \max R\}$.

Proof. We set $L_0 = L$ and $\Omega_0 = \Omega$. We pick a positive integer s_0 with $s_0 \leq \lfloor \frac{2}{\eta \cdot \theta_1(k,\eta)} \rfloor$ and we construct by induction $L_1, ..., L_{s_0}$ and $P_1, ..., P_{s_0}$ such that setting inductively $B_t = (\cap_{i \in P_t} A_i) \cap \Omega_{t-1}$ and $\Omega_t = \Omega_{t-1} \setminus B_t$ for all $t = 1, ..., s_0$, we have that the following are satisfied.

- (i) For every $t = 1, ..., s_0$ we have that L_t is a van der Waerden subset of L_{t-1} .
- (ii) For every $t = 1, ..., s_0$ we have that P_t is an arithmetic progression of length k contained in L_{t-1} .
- (iii) For every $t = 0, ..., s_0 1$ we have $\mu(\Omega_t) \geqslant (\eta/2)^t$.
- (iv) For every $t = 1, ..., s_0$ we have $\mu_{\Omega_{t-1}}(B_t) \ge \theta_1(k, \eta)$.
- (v) For every $t = 0, ..., s_0 1$ we have $\mu_{\Omega_t}(A_\ell) \geqslant \eta + t \cdot \eta \cdot \theta_1(k, \eta)/2$ for all $\ell \in L_t$.
- (vi) For every $t=1,...,s_0-1$ we have that $\mu_{B_t}(A_\ell)<\eta/2$ for all $\ell\in L_t$.
- (vii) $\mu_{B_{s_0}}(A_\ell) \geqslant \eta/2$ for all $\ell \in L_{s_0}$.

Assume that for some $s < \lfloor \frac{2}{\eta \cdot \theta_1(k,\eta)} \rfloor$ we have constructed $(L_t)_{t=0}^s$ and if $s \geqslant 1$, $(P_t)_{t=1}^s$, satisfying (i)-(vi) above. Let $(\Omega_t)_{t=0}^s$ be as defined above. By the inductive assumption (i), we have that L_s is a van der Waerden set and therefore we may pick an arithmetic progression P of length $S(k,\eta/2)$ contained in L_s . By the inductive assumption (v) and Lemma 6 there exists an arithmetic progression P_{s+1} of length k contained in P such that

$$\mu_{\Omega_s}(B_{s+1}) \geqslant \theta_1(k,\eta),$$

where $B_{s+1} = (\bigcap_{i \in P_{s+1}} A_i) \cap \Omega_s$. By Fact 5 we pass to a van der Waerden subset L_{s+1} of L_s such that either

- (a) $\mu_{B_{s+1}}(A_{\ell}) \geqslant \eta/2$, for all $\ell \in L_{s+1}$, or
- (b) $\mu_{B_{s+1}}(A_{\ell}) < \eta/2$, for all $\ell \in L_{s+1}$.

If (a) occurs, then we set $s_0 = s+1$ and the inductive construction is complete. Let us assume that (b) holds. Then invoking (25) and (v) of the inductive assumptions, by Fact 8, we have that

(26)
$$\mu_{\Omega_{s+1}}(A_{\ell}) \geqslant \eta + (s+1) \cdot \eta \cdot \theta_1(k,\eta)/2$$

for all $\ell \in L_{s+1}$, where $\Omega_{s+1} = \Omega_s \setminus B_{s+1}$. Moreover, by Fact 8 and the inductive assumptions (iii) and (v) we have that $\mu(\Omega_{s+1}) \geqslant (\eta/2) \cdot \mu(\Omega_s) \geqslant (\eta/2)^{s+1}$. The inductive step of the construction is complete. Finally, let as point out that if $s = \lfloor \frac{2}{\eta \cdot \theta_1(k,\eta)} \rfloor - 1$, then (a) has to occur. Indeed, assuming that (b) occurs then by (26) we would have that the relative probability of A_ℓ inside Ω_{s+1} exceeds 1.

Hence, setting $L' = L_{s_0}$, $P = P_{s_0}$ and $B = B_{s_0}$, we have that L' is a van der Waerden subset of L and P is an arithmetic progression of length k contained in L. Moreover, we have that $B = (\bigcap_{i \in P} A_i) \cap \Omega_{s_0-1} \subseteq \bigcap_{i \in P} A_i$ and

(27)
$$\mu(B) = \mu(B_{s_0}) = \mu_{\Omega_{s_0-1}}(B_{s_0}) \cdot \mu(\Omega_{s_0-1}) \overset{\text{(iv),(iii)}}{\geqslant} \theta_1(k,\eta) \cdot (\eta/2)^{s_0-1}$$
$$\geqslant \theta_1(k,\eta) \cdot (\eta/2)^{\left\lfloor \frac{2}{\eta \cdot \theta_1(k,\eta)} \right\rfloor - 1}.$$

By (vii), we have that $\mu_B(A_\ell) \geqslant \eta/2$, for all $\ell \in L'$. Finally, it is immediate that the set B, by its definition, belongs to the algebra generated by the family $\{A_\ell : \ell \in L \text{ and } \ell \leqslant \max R\}$ as desired.

3. The auxiliary map T

As we have already mentioned the definition of the map V_{δ} makes use of an auxiliary map T. Recall that by \mathcal{R} we denote the set of all uniformly regular families (see Definition 1). We define the map $T: \mathcal{R}^{<\mathbb{N}} \times \mathbb{R}_+ \to \mathbb{N}$, where by \mathbb{R}_+ we denote the set of all positive reals, as follows. Let q be a non-negative integer and $((\mathcal{F}_p)_{p=0}^q, \varepsilon)$ be an element of $\mathcal{R}^{<\mathbb{N}} \times \mathbb{R}_+$. We inductively define $(\varepsilon_p)_{p=0}^q$ by setting

(28)
$$\varepsilon_0 = \varepsilon \text{ and } \varepsilon_{n+1} = \theta_2(\mathcal{F}_n, \varepsilon_n)$$

for all p = 0, ..., q - 1. Finally we set

(29)
$$T((\mathcal{F}_p)_{p=0}^q, \varepsilon) = \left\lceil \frac{2}{\varepsilon_q} \cdot B(\mathcal{F}_q, \varepsilon_q/4) \right\rceil.$$

We then extend T on $\mathcal{R}^{\leq \mathbb{N}} \times \mathbb{R}_+$ arbitrarily. Let us observe, for later use, that if q is positive then

(30)
$$T((\mathcal{F}_p)_{p=0}^q, \varepsilon) = T((\mathcal{F}_p)_{p=1}^q, \theta_2(\mathcal{F}_0, \varepsilon)).$$

Although the following notation is quite standard in the literature, we include it below for clarity.

Notation 1. Let $q_0 < q_1 < q_2$ be non-negative integers and $(n_q)_q$ be a sequence of positive integers. Also let $x \in \prod_{p=q_0}^{q_1-1}[n_p]$ and $y \in \prod_{p=q_1}^{q_2-1}[n_p]$. By $x^{\smallfrown}y$ we denote the concatenation of the sequences x, y, i.e. the sequence $z \in \prod_{p=q_0}^{q_2-1}[n_p]$ satisfying

z(p) = x(p) for all $p = q_0, ..., q_1 - 1$ and z(p) = y(p) for all $p = q_1, ..., q_2 - 1$. Moreover, for $A \subseteq \prod_{p=q_0}^{q_1-1} [n_p]$ and $B \subseteq \prod_{p=q_1}^{q_2-1} [n_p]$ we set

$$(31) x^B = \{x^y : y \in B\}$$

and

$$A^{\hat{}}B = \bigcup_{x \in A} x^{\hat{}}B.$$

The main property of the map T that we are interested in is described by the following lemma. Similar results to this one have already been considered (see [E, ES, GRS]).

Lemma 10. Let $0 < \varepsilon \le 1$ and q be a non-negative integer. Also set $\mathcal{F}_0, ..., \mathcal{F}_q$ be uniformly regular families and $n_0, ..., n_q$ be integers such that $n_p \ge T((\mathcal{F}_s)_{s=0}^p, \varepsilon)$ for all p = 0, ..., q. Finally, let D be a subset of $\prod_{p=0}^q [n_p]$ of density at least ε . Then there exists a sequence $(I_p)_{p=0}^q$ such that

- (i) I_p is an element of \mathcal{F}_p contained in $[n_p]$ for all p = 0, ..., q and
- (ii) $\prod_{n=0}^{q} I_p$ is subset of D.

Proof. We proceed by induction on q. First let us observe that for q = 0 we have that $T((\mathcal{F}_0), \varepsilon) \geqslant B(\mathcal{F}_0, \varepsilon)$ and therefore the result follows immediately by the definition the number $B(\mathcal{F}_0, \varepsilon)$.

Assume that the statement holds for some q. Fix a real ε with $0 < \varepsilon \leqslant 1$, uniformly density regular families $\mathcal{F}_0, ..., \mathcal{F}_{q+1}$ and integers $n_0, ..., n_{q+1}$ satisfying $n_p \geqslant T\left(\left(\mathcal{F}_s\right)_{s=0}^p, \varepsilon\right)$ for all p=0, ..., q+1. Finally, let D be a subset of $\prod_{p=0}^{q+1} [n_p]$ of density at least ε . We set $\Omega = \prod_{p=1}^{q+1} [n_p]$. Observe that $\prod_{p=0}^{q+1} [n_p] = [n_0] \times \Omega$ and that the probability measures dens $\prod_{p=0}^{q+1} [n_p]$ and dens $n_0 \otimes \text{dens}_{\Omega}$ are equal. Thus

 $(\operatorname{dens}_{n_0} \otimes \operatorname{dens}_{\Omega})(D) \geqslant \varepsilon$. Since $n_0 \geqslant T((\mathcal{F}_0), \varepsilon) \stackrel{(29)}{=} (2/\varepsilon) \cdot B(\mathcal{F}_0, \varepsilon/4)$, by Lemma 7, there exists an element I_0 of \mathcal{F}_0 such that setting $\widetilde{D} = \{x \in \Omega : (i, x) \in D \text{ for all } i \in I_0\}$, we have that

(33)
$$\mu(\widetilde{D}) \geqslant \theta_2(\mathcal{F}_0, \varepsilon).$$

By the definition of \widetilde{D} , it is immediate that

$$(34) I_0 \widetilde{D} \subseteq D.$$

Also notice that for every p = 1, ..., q + 1,

(35)
$$n_p \geqslant T((\mathcal{F}_s)_{s=0}^p, \varepsilon) \stackrel{(30)}{=} T((\mathcal{F}_s)_{s=1}^p, \theta_2(\mathcal{F}_0, \varepsilon)).$$

By (33), (35) and the inductive assumption we have that there exists a sequence $(I_p)_{p=1}^{q+1}$ such that

- (a) I_p is an element of \mathcal{F}_p contained in $[n_p]$ for all p=1,...,q+1 and
- (b) $\prod_{p=1}^{q+1} I_p$ is subset of \widetilde{D} .

By (b) and (34), we have that $\prod_{p=0}^{q+1} I_p \subset I_0 \widetilde{D} \subseteq D$ and the proof is complete. \square

Definition 11. Let $0 < \varepsilon \le 1$ and r be a non-negative integer. Also let L be a van der Waerden set and $(n_q)_q$ be a sequence of positive integers. We will say that a sequence $(D_\ell)_{\ell \in L}$ is $(r, \varepsilon, (n_q)_q)$ -dense if for every $\ell \in L$ with $\ell > r$ we have that D_{ℓ} is a subset of $\prod_{p=r}^{\ell-1} [n_p]$ of density at least ε .

For every $0 < \varepsilon \le 1$ and every positive integer k we define

(36)
$$\theta_3(k,\varepsilon) = \frac{1}{2} \cdot \left(\frac{\varepsilon}{2}\right)^{\left\lfloor \frac{2}{\varepsilon \cdot \theta_1(k,\varepsilon)} \right\rfloor} \cdot \theta_1(k,\varepsilon).$$

Finally, for every non-negative integer n and every sequence x of length at least n(finite or infinite), by $R_n(x)$ we denote the initial segment of x of length n.

Lemma 12. Let $0 < \varepsilon \le 1$, r be a non-negative integer and k be a positive integer. Also let $(\mathcal{F}_q)_q$ be a sequence of uniformly density regular families and $(n_a)_a$ be a sequence of positive integers such that $n_q \ge T((\mathcal{F}_p)_{p=r}^q, \theta_3(k, \varepsilon))$, for all $q \ge r$. Finally, let L be a van der Waerden set and $(D_{\ell})_{\ell \in L}$ be $(r, \varepsilon, (n_q)_q)$ -dense. Then there exist an arithmetic progression P of length k inside L, a van der Waerden subset L' of L, a finite sequence $(I_p)_{p=r}^{r'-1}$ and an $(r', \varepsilon', (n_q)_q)$ -dense sequence $(\widetilde{D}_\ell)_{\ell \in L'}$, where $r' = \max P$ and $\varepsilon' = \varepsilon \cdot 2^{-(\prod_{p=r}^{r'-1} n_p + 2)}$, satisfying the following.

- (i) For every p = r, ..., r' 1, the set I_p is an element of \mathcal{F}_p contained in $[n_p]$.
- (ii) $r < \min P$.
- (iii) For every $q \in P$, the set $\prod_{p=r}^{q-1} I_p$ is a subset of D_q . (iv) For every $\ell \in L'$, the set $(\prod_{p=r}^{r'-1} I_p) \cap \widetilde{D}_{\ell}$ is a subset of D_{ℓ} .

Proof. Passing to a final segment of L, if it is necessary, we may assume that $r < \min L$. Let $\Omega = \prod_{p=r}^{\infty} [n_p]$ and μ be the Lebesgue (probability) measure on Ω . Also let for every $\ell \in L$, $A_{\ell} = \{x \in \Omega : R_{\ell-r}(x) \in D_{\ell}\}$. By Lemma 9 applied for " $\eta = \varepsilon$ ", there exist an arithmetic progression P of length k contained in L, a van der Waerden subset L'' of L and a subset \widehat{B} of $\bigcap_{i \in P} A_i$ such that

(37)
$$\mu(\widehat{B}) \geqslant \left(\frac{\varepsilon}{2}\right)^{\left\lfloor \frac{2}{\varepsilon \cdot \theta_1(k,\varepsilon)} \right\rfloor - 1} \theta_1(k,\varepsilon),$$

for every $\ell \in L''$ we have $\mu_{\widehat{R}}(A_{\ell}) \geqslant \varepsilon/2$ and the set B belongs to the algebra generated by the family $\{A_{\ell} : \ell \in L \text{ and } \ell \leq \max P\}$. Thus, setting $r' = \max P$, there exists a subset B of $\prod_{p=r}^{r'-1} [n_p]$ such that

(38)
$$\operatorname{dens}_{\prod_{p=r}^{r'-1}[n_p]}(B) = \mu(\widehat{B}) \stackrel{(37)}{\geqslant} \left(\frac{\varepsilon}{2}\right)^{\left\lfloor \frac{2}{\varepsilon \cdot \theta_1(k,\varepsilon)} \right\rfloor - 1} \theta_1(k,\varepsilon),$$

for every $\ell \in L''$, setting $B_{\ell} = \{x \in \prod_{p=r}^{\ell-1} [n_p] : R_{r'-r}(x) \in B\}$, we have

(39)
$$\operatorname{dens}_{B_{\ell}}(D_{\ell}) \geqslant \varepsilon/2$$

and

$$(40) R_{a-r}(x) \in D_a$$

for all $q \in P$ and $x \in B$. Passing to a final subset L'', if it is necessary, we may assume that $\min L'' > r'$.

For every ℓ in L'' we have the following. For each element y in $\prod_{p=r'}^{\ell-1}[n_p]$ we define $\Gamma_y = \{z \in B : z ^ y \in D_\ell\}$. By (39) and Fubini's Theorem, we have that the set $D'_\ell = \{y \in \prod_{p=r'}^{\ell-1}[n_p] : \operatorname{dens}_B(\Gamma_y) \geqslant \varepsilon/4\}$ is of density at least $\varepsilon/4$ inside $\prod_{p=r'}^{\ell-1}[n_p]$. Since Γ_y is subset of B and therefore subset of $\prod_{p=r}^{r'-1}[n_p]$, we have that there exist a subset Γ_ℓ of B and a subset \widetilde{D}_ℓ of D'_ℓ of density at least $(\varepsilon/4) \cdot 2^{-\prod_{p=r}^{r'-1}n_p}$ inside $\prod_{p=r}^{r'-1}[n_p]$ such that $\Gamma_y = \Gamma_\ell$ for all y in \widetilde{D}_ℓ . Let as observe that by the choice of Γ_ℓ and D'_ℓ we have that

(41)
$$\Gamma_{\ell} \widetilde{D}_{\ell} \subseteq D_{\ell} \text{ and } \operatorname{dens}_{B}(\Gamma_{\ell}) \geqslant \varepsilon/4.$$

By Fact 5 there exist a subset Γ of B and a van der Waerden subset L' of L'', such that $\Gamma_{\ell} = \Gamma$ for all $\ell \in L'$. Clearly, $(\widetilde{D}_{\ell})_{\ell \in L'}$ is $(r', \varepsilon', (n_q)_q)$ -dense, where ε' is defined in the statement of the lemma. By (36), (38) and (41) we have

(42)
$$\operatorname{dens}_{\prod_{p=r}^{r'-1}[n_p]}(\Gamma) = \operatorname{dens}_B(\Gamma) \cdot \operatorname{dens}_{\prod_{p=r}^{r'-1}[n_p]}(B) \geqslant \theta_3(k, \varepsilon).$$

Moreover, by (41), we have that

$$(43) \Gamma^{\widehat{D}}_{\ell} \subseteq D_{\ell}$$

for all $\ell \in L'$. Since for every q = r, ..., r' - 1 we have that $n_q \ge T((\mathcal{F}_p)_{p=r}^q, \theta_3(k, \varepsilon))$, by (42) and Lemma 10 there exists a sequence $(I_p)_{p=r}^{r'-1}$ such that

- (a) I_p is an element of \mathcal{F}_p contained in $[n_p]$ for all p=r,...,r'-1 and
- (b) $\prod_{p=r}^{r'-1} I_p$ is subset of Γ .

Since $\prod_{p=r}^{r'-1} I_p \subseteq \Gamma \subseteq B$, by (40) we have that $\prod_{p=r}^{q-1} I_p$ is subset of D_q for all $q \in P$. By (b) and (43) we have that $\prod_{p=r}^{r'-1} I_p \cap \widetilde{D}_\ell$ is subset of D_ℓ for all $\ell \in L'$ and the proof is complete.

4. Definition of the map V_δ and the proof of Theorem 2

Let us recall that by \mathcal{R} we denote the set of all uniformly density regular families. For the sequel, let us adopt for following convection. For a sequence of positive integers $(n_q)_q$ and r a non-negative integer, we consider $(n_p)_{p=r}^{r-1}$ to be the empty sequence and $\prod_{p=r}^{r-1} n_p$ to be equal to zero. Fix some real δ with $0 < \delta \le 1$. We define the map $V_\delta : \mathcal{R}^{<\mathbb{N}} \times \mathbb{N}_{p=0}^{<\mathbb{N}} \to \mathbb{N}$ as follows. For every non-negative integer q, every finite sequence $(n_p)_{p=0}^{q-1}$ of positive integers and every finite sequence $(\mathcal{F}_p)_{p=0}^q$ of uniformly density regular families we set

$$(44) V_{\delta}((\mathcal{F}_p)_{p=0}^q, (n_p)_{p=0}^{q-1}) = \max_{0 \leqslant r \leqslant q} T((\mathcal{F}_p)_{p=r}^q, \theta_3(r+1, \delta \cdot 2^{-(\prod_{p=0}^{r-1} n_p + 2r)}))$$

Proof of Theorem 2. Let $(n_q)_q$ be a sequence of positive integers, $(\mathcal{F}_q)_q$ be a sequence of uniformly regular families, L be a var der Waerden set and $(D_\ell)_{\ell \in L}$ be

 $(0, \delta, (n_a)_a)$ -dense such that

$$(45) n_q \geqslant V_{\delta}\left((\mathcal{F}_p)_{p=0}^q, (n_p)_{p=0}^{q-1}\right)$$

for every non-negative integer q. We set $L_0 = L$, $r_0 = 0$ and $(D_\ell^0)_{\ell \in L_0} = (D_\ell)_{\ell \in L}$. We inductively construct a sequence of arithmetic progressions $(P_n)_{n=1}^{\infty}$ contained in L, a decreasing sequence of van der Waerden sets $(L_n)_n$, a sequence $((I_q)_{q=r_{n-1}}^{r_n-1})_{n=1}^{\infty}$ where $r_n = \max P_n$ for all positive integers n and a sequence $((D_\ell^n)_{\ell \in L_n})_n$ such that for every non-negative integer n we have the following:

- (i) $r_n < \min P_{n+1}$.
- (ii) $(D_{\ell}^n)_{\ell \in L_n}$ is $(r_n, \delta \cdot 2^{-(\prod_{p=0}^{r_n-1} n_p + 2r_n)}, (n_q)_q)$ -dense.
- (iii) If n is positive, then I_p is an element of \mathcal{F}_p contained in $[n_p]$ for every $p = r_{n-1}, ..., r_n - 1.$
- (iv) if n is positive, then P_n is an arithmetic progression of length $r_{n-1}+1$ contained in L_{n-1} such that $\prod_{p=0}^{q-1} I_q \subseteq D_q$ for every $q \in P_n$. (v) $(\prod_{p=0}^{r_n-1} I_p) \cap D_\ell^n \subseteq D_\ell$ for all $\ell \in L_n$, under the convection $\prod_{p=0}^{-1} I_p = \{\emptyset\}$.

Notice first that for n = 0 the properties (i)-(v) are satisfied. Assume that for some non-negative integer n we have constructed $(L_m)_{m=0}^n$, $((D_\ell^m)_{\ell \in L_m})_{m=0}^n$ and if $n \ge 1$ we have constructed $(P_m)_{m=1}^n$ and $((I_q)_{q=r_{m-1}}^{r_m-1})_{m=1}^n$ satisfying (i)-(v). Then for every integer q with $q \ge r_n$ we have that

(46)
$$n_{q} \stackrel{(45)}{\geqslant} V_{\delta} ((\mathcal{F}_{p})_{p=0}^{q}, (n_{p})_{p=0}^{q-1}) \\ \stackrel{(44)}{\geqslant} T ((\mathcal{F}_{p})_{p=r_{n}}^{q}, \theta_{3}(r_{n}+1, \delta \cdot 2^{-(\prod_{p=0}^{r_{n}-1} n_{p}+2r_{n})})).$$

By (46) and the inductive assumption (ii), we have that the assumptions of Lemma 12 for " $\varepsilon = \delta \cdot 2^{-(\prod_{p=0}^{r_n-1} n_p + 2r_n)}$ ", " $k = r_n + 1$ ", " $r = r_n$ ", " $L = L_n$ " and " $(D_\ell)_{\ell \in L} = 1$ " $(D_\ell^n)_{\ell \in L_n}$ " are satisfied. Hence there exist an arithmetic progression P_{n+1} of length r_n+1 inside L_n , a van der Waerden subset L_{n+1} of L_n , a finite sequence $(I_p)_{p=r_n}^{r_{n+1}-1}$ and an $(r_{n+1}, \varepsilon', (n_q)_q)$ -dense sequence $(D_\ell^{n+1})_{\ell \in L_{n+1}}$, where $r_{n+1} = \max P_{n+1}$ and

$$(47) \qquad \varepsilon' = \delta \cdot 2^{-(\prod_{p=0}^{r_n-1} n_p + 2r_n)} \cdot 2^{-(\prod_{p=r_n}^{r_{n+1}-1} n_p + 2)} \geqslant \delta \cdot 2^{-(\prod_{p=0}^{r_{n+1}-1} n_p + 2r_{n+1})}.$$

satisfying the following.

- (a) For all $p = r_n, ..., r_{n+1} 1$, the set I_p is an element of \mathcal{F}_p contained in $[n_p]$.
- (b) $r_n < \min P_{n+1}$.
- (c) For every $q \in P_{n+1}$, the set $\prod_{p=r_n}^{q-1} I_p$ is a subset of D_q^n . (d) For every $\ell \in L_{n+1}$, the set $(\prod_{p=r_n}^{r_{n+1}-1} I_p) \cap D_\ell^{n+1}$ is a subset of D_ℓ^n .

By (c) and the inductive assumption (v) we have for every $q \in P_{n+1}$ that the set $\prod_{p=0}^{q-1} I_p$ is a subset of D_q . By (d) and the inductive assumption (v) we have for every $\ell \in L_{n+1}$ that the set $(\prod_{p=r_n}^{r_{n+1}-1} I_p) \cap D_\ell^{n+1}$ is a subset of D_ℓ . The proof of the inductive step is complete.

We set $L' = \bigcup_{n=1}^{\infty} P_n$. Moreover, observe that r_n tends to infinity as n tends to infinity. Thus L' is a van der Waerden set. It is straightforward that L' and $(I_q)_q$ satisfy the conclusion of the Theorem.

5. Bounds for the Map V_{δ} .

In this section, we are interested in bounds for the map V_{δ} . For every positive integer m, we denote by $\mathcal{F}_{[m]}$ the family of all subsets of the positive integers with m elements. It is immediate that

(48)
$$B(\mathcal{F}_{\lceil m \rceil}, \varepsilon) = \lceil m/\varepsilon \rceil.$$

We set

(49)
$$\mathcal{R}_c = \{ \mathcal{F}_{[m]} : m \text{ is a positive integer} \}.$$

We will also need the following remark.

Remark 1. Let \mathcal{R}' be a subfamily of \mathcal{R} and $T': \mathcal{R}'^{<\mathbb{N}} \times \mathbb{R}_+ \to \mathbb{N}$ be a map satisfying the conclusion of Lemma 10 for $\mathcal{F}_0, ..., \mathcal{F}_q$ from \mathcal{R}' . Also let $V'_{\delta}: \mathcal{R}^{<\mathbb{N}} \times \mathbb{N}_+^{<\mathbb{N}} \to \mathbb{N}$ be the map defined as in (44) using T' instead of T. Then one can check that V'_{δ} satisfies the conclusion of Theorem 2 under the restriction that each \mathcal{F}_q is chosen from \mathcal{R}' .

We define $T': \mathcal{R}_c^{<\mathbb{N}} \times \mathbb{R}_+ \to \mathbb{N}$, setting $T'\big((\mathcal{F}_{[m_p]})_{p=0}^q, \varepsilon\big) = T_\varepsilon\big((\mathcal{F}_{[m_p]})_{p=0}^q\big)$ for every choice of non-negative integer q, positive integers $m_0, ..., m_q$ and real ε with $0 < \varepsilon \leqslant 1$, where T_ε is defined in equation (3) from [TT]. We also define $V'_\delta: \mathcal{R}^{<\mathbb{N}} \times \mathbb{N}_+^{<\mathbb{N}} \to \mathbb{N}$ as in (44) using T' instead of T. Lemma 3 from [TT] yields that T' satisfies the conclusion of Lemma 10. Hence by Remark 1 we have that V'_δ satisfies the conclusion of Theorem 2. For the sequel we fix a sequence $(m_q)_q$ of integers and a real δ satisfying the following.

- (i) $0 < \delta \le 1$ and
- (ii) $m_q \geqslant 2$ for every non-negative integer q.

We define a maps $f_c: \mathbb{N} \to \mathbb{N}$ inductively as follows. We set

(50)
$$f_c(0) = V'_{\delta}((\mathcal{F}_{[m_0]}), \emptyset)$$
 and $f_c(q+1) = V'_{\delta}((\mathcal{F}_{[m_p]})^{q+1}_{p=0}, (f_c(p))^q_{p=0})$

for all q = 0, 1, ... In particular, we are interested in the rate of growth of the map f_c . We will need the following inequalities. By Lemma 14 of [TT] we have that

(51)
$$T'\left(\left(\mathcal{F}_{[m_p]}\right)_{p=0}^q, \varepsilon\right) \leqslant A_2\left(5\log_2(1/\varepsilon)\prod_{p=0}^q m_p\right)$$

for every non-negative integer q and every $0 < \varepsilon \le \delta/2$, where $A_2(x) = 2^x$ for every real x. Moreover, by Theorem 18.2 of [G] we have that

(52)
$$S(k,\varepsilon) \leq A_2^{(3)}(\log_2(1/\varepsilon)A_2^{(2)}(k+9)),$$

for all positive integers k and all reals ε with $0 < \varepsilon \leqslant 1$.

Proposition 13. We have that $f_c(q) \leq A_2^{(1+6q)} \left(5\left((2/\delta^2\right)+1\right) \log_2(2/\delta) m_0 + \sum_{p=1}^q m_p\right)$, for every non-negative integer q.

Proof. By (2) and (52), for every positive integer k and every $0 < \varepsilon \le 1$ we have

(53)
$$\theta_{1}(k,\varepsilon) \geq \varepsilon \cdot [A_{2}^{(3)}(\log_{2}(2/\varepsilon)A_{2}^{(2)}(k+9))]^{-2}$$
$$\geq A_{2}(\log_{2}(1/\varepsilon))^{-1} \cdot A_{2}^{(2)}(1+A_{2}(\log_{2}(2/\varepsilon)\cdot A_{2}^{(2)}(k+9)))^{-1}$$
$$\geq A_{2}^{(2)}(1+A_{2}(\log_{2}(2/\varepsilon)\cdot A_{2}^{(2)}(k+9)))^{-1}$$

and therefore invoking (36) we have that

$$\theta_{3}(k,\varepsilon) \geqslant A_{2} \left(1 + (2/\varepsilon) \log_{2}(2/\varepsilon) A_{2}^{(2)} \left(1 + A_{2} \left(\log_{2}(2/\varepsilon) \cdot A_{2}^{(2)}(k+9) \right) \right) \right)^{-1}$$

$$(54) \qquad \qquad \cdot A_{2}^{(2)} \left(1 + A_{2} \left(\log_{2}(2/\varepsilon) \cdot A_{2}^{(2)}(k+9) \right) \right)^{-1}$$

$$\geqslant A_{2}^{(3)} \left(3 + A_{2} \left(\log_{2}(2/\varepsilon) A_{2}^{(2)}(k+9) \right) \right)^{-1} .$$

By (44) and (50), for every positive integer q, we have that

$$f_{c}(q) \leqslant T'\left(\left(\mathcal{F}_{[m_{p}]}\right)_{p=0}^{q}, \theta_{3}(q+1, \delta \cdot 2^{-(\prod_{p=0}^{q-1} f_{c}(p)+2q)})\right)$$

$$\leqslant A_{2}\left(5A_{2}^{(2)}\left(3+A_{2}\left(\log_{2}(2/\varepsilon)A_{2}^{(2)}(k+9)\right)\right)\prod_{p=0}^{q} m_{p}\right)$$

$$\leqslant A_{2}^{(6)}\left(\log_{2}(2/\delta)+\prod_{p=0}^{q-1} f_{c}(p)+2q+m_{q}\right).$$

By (3) and (36), we have that $\theta_3(1,\varepsilon) \ge (\varepsilon/2)^{(2/\varepsilon^2)+1}$, for all $0 < \varepsilon \le 1$. Thus by (44), (50) and (51), we have that

(56)
$$f_c(0) = T'((\mathcal{F}_{[m_0]}), \theta_3(1, \delta)) \leqslant A_2(5 \log_2(2/\delta)(2/\delta^2 + 1)m_0).$$

By inequalities (55), (56) and using induction on q, the result follows.

References

- [BL] V. Bergelson, A. Leibman, *Polynomial extensions of van der Waerden's and Szemerédi's theorems*. J. Amer. Math. Soc. 9 (1996), no. 3, 725–753.
- [BM] V. Bergelson and R. McCutcheon, An ergodic IP polynomial Szemerdi theorem, Mem. Amer. Math. Soc. 146 (2000), no. 695, viii+106 pp.
- [DLT] C. A. Di Prisco, J. Llopis, and S. Todorcevic. *Parametrized partitions of products of finite sets*. Combinatorica, 24(2):209–232, 2004.
- [E] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964). 183–190.
- [ES] P. Erdős, J. Spencer, Probabilistic methods in combinatorics, Academic Press.
- [FW] N. Frantzikinakis and M. Wierdl, A Hardy field extension of Szemerédi's theorem. Adv. Math. 222 (2009), no. 1, 1–43.
- [G] W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588.
- [GRS] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey theory. John Wiley & Sons Inc., New York, second edition, 1990.

- [Mc1] McCutcheon, R. A variant of the density Hales-Jewett theorem. Bull. Lond. Math. Soc. 42 (2010), no. 6, 974–980.
- [Mc2] R. McCutcheon, Elemental methods in ergodic Ramsey theory, Lecture Notes in Mathematics, 1722, Springer-Verlag, Berlin, 1999.
- [Sz] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetica, 27 (1975), 199–245.
- [To] S. Todorcevic, Introduction to Ramsey Spaces, Annals of Math. Studies, No. 174, Princeton University Press 2010.
- [TT] S. Todorcevic and K. Tyros, Subsets of products of finite sets of positive upper density, J. Combin. Theory Ser. A, 120 no. 1 (2013), 183–193.
- $[\mathrm{vW}]\,$ B. L. van der Waerden, Beweis einer Baudetscen Vermuting, Nieuw Arch. Wisk., 15 (1927), 212–216.

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Canada, M5S $2\mathrm{E}4$

 $E ext{-}mail\ address: ktyros@math.toronto.edu}$