Sympy_SolveRiccati_first_agent_target

October 3, 2021

0.1 Symbolic solution to the 2 by 2 Ricatti equation: targeting first agent

James Yu, 2 October 2021

The goal of this notebook is to construct an analytical solution to the algebraic matrix Ricatti equation of:

$$K_{ss} = \delta A' (K_{ss} - K_{ss}B(B'K_{ss}B + \frac{R}{\delta})^{-1}B'K_{ss})A + Q$$

We start by solving in the simple case where $\delta = 1$, R = 0 and $Q = I_n$ where n = 2 for now. We set this up as follows:

- [2]: K1, K2, K3, a11, a12, a2 = symbols("K1 K2 K3 a11 a12 a2")

 K = Matrix(([[K1, K2], [K2, K3]]))
 Q = eye(2)
 A = Matrix(([[a11, a12], [0.5, 0.5]]))
 B = Matrix(([[1 a11 a12], [0]]))
 K
- $\begin{bmatrix} \mathbf{2} \end{bmatrix} : \begin{bmatrix} K_1 & K_2 \\ K_2 & K_3 \end{bmatrix}$
- [3]: A
- [3]: $\begin{bmatrix} a_{11} & a_{12} \\ 0.5 & 0.5 \end{bmatrix}$
- [4]: B
- $\begin{bmatrix} -a_{11} a_{12} + 1 \\ 0 \end{bmatrix}$

If we plug these into the equation directly, we obtain:

[5]:
$$K_{sol} = simplify(A.T *(K - (K*B*(B.T * K * B).inv() * B.T * K)) * A + Q) K_{sol}$$

[5]:

$$\begin{bmatrix} 0.25K_3 + 1.0 - \frac{0.25K_2^2}{K_1} & 0.25K_3 - \frac{0.25K_2^2}{K_1} \\ 0.25K_3 - \frac{0.25K_2^2}{K_1} & 0.25K_3 + 1.0 - \frac{0.25K_2^2}{K_1} \end{bmatrix}$$

Indeed both diagonals of this matrix are identical.

Not only that, but K_{ss} is a uniform matrix plus I_2 .

This leads to a system of one equation in one unknown.

- [6]: K1_expr = simplify(expand(K_sol[0, 0]).subs(K3, K1))
 K1_expr
- [6]: $0.25K_1 + 1.0 \frac{0.25K_2^2}{K_1}$
- [7]: K2_expr = simplify(expand(K_sol[1, 0]).subs(K3, K1))
 K2_expr
- [7]: $0.25K_1 \frac{0.25K_2^2}{K_1}$

This indicates that $K_1 = K_2 + 1$.

- [8]: K2_expr = K2_expr.subs(K1, K2 + 1)
 K2_expr
- [8]: $-\frac{0.25K_2^2}{K_2+1} + 0.25K_2 + 0.25$
- [9]: K2_solved = solve(K2_expr K2, K2)
 K2_solved
- [9]: [-0.809016994374947, 0.309016994374947]

Suppose we take the positive solution.

So then we get:

- [14]: K2_sol = K2_solved[1]
 K1_sol = K2_sol + 1
 K_sol = Matrix(([[K1_sol, K2_sol], [K2_sol, K1_sol]]))
 simplify(K_sol)
- $\begin{bmatrix} 1.30901699437495 & 0.309016994374947 \\ 0.309016994374947 & 1.30901699437495 \end{bmatrix}$
- $\begin{bmatrix} \frac{1.71352549156242a_{11}^2 + 3.42705098312484a_{11}a_{12} 3.42705098312484a_{11} + 1.71352549156242a_{12}^2 3.42705098312484a_{12} + 1.71352549156242}{1.30901699437495a_{11}^2 + 2.61803398874989a_{11}a_{12} 2.61803398874989a_{11} + 1.30901699437495a_{12}^2 2.61803398874989a_{12} + 1.30901699437495a_{12}^2 2.61803398874989a_{12} + 1.30901699437495a_{12}^2 2.61803398874989a_{11} + 1.30901699437495a_{12}^2 2.61803398874989a_{12} + 1.30901699437495a_{12}^2 2.61803398874989a_{11} + 1.30901699437495a_{12}^2 2.61803398874989a_{12} + 1.30901699437495a_{12}^2 2.61803398874989a_{11} + 1.30901699437495a_{12}^2 2.61803398874989a_{12} + 1.30901699437495a_{12}^2 2.61803398874989a_{12}^2 2.61803398874989a_{12}^2 2.61803398874989a_{12}^2 2.61803398874989a_{12}^2 2.61803398874989a_{12}^2 2.61803398874989a_{12}^2 2.6$

- [16]: factor(K_sol_maybe[0,0])
 [16]: 1.30901699437495
- [17]: factor(K_sol_maybe[1,0])
- [17]: 0.309016994374947

factor() factors polynomials and this indicates that the $\texttt{K_sol_maybe}$ matrix is equal to the numerical matrix we obtained. This would seem to indicate that, for the given A and B, the solution is a single numeric matrix independent of A or B.

This is of course a result of the fact that the symbolic matrix on line 5 is not a function of A, meaning it is some sort of constant.