

Lecture 7
Security Tools

What we will cover today

- Security
 - O What are we talking about?
 - Mechanisms
 - Encryption
 - A few application specifics
- Legal requirements and considerations
 - o Privacy, Accuracy, Intrusion
- Some scary thoughts...

System security controls

- Against what?
 - Unauthorised access
 - Unauthorised use
 - Accidental damage
 - Malicious damage

External and internal access control

- Login control IDs and passwords
- Access control rights, flags, options, etc.
- Terminal restrictions
 - O User to terminal
 - Activity to terminal
- Time restrictions
- Lockouts & alarms

Information structure

- How will the information be accessed?
- How will the information be used?
- Back to basic design:
 - o Workgroups
 - Systems Analysis
 - o Workflows
- Design directory structures with security in mind.

Access permissions

- The System Supervisor
- Backdoor entry
- User groups/classes
- Equivalences

Rights

- Hierarchies of rights
- Rights profiles
 - System rights
 - o Personal rights
 - o Group rights
 - o Directory rights
 - o File rights

Flags/Attributes:

- What are flags and attributes?
- Common types of attribute:
 - o search
 - o read
 - o write/modify
 - o create

- o delete
- o execute
- o parent
- o change attributes

Security problems and solutions

- Causes of system security breaches
 - Misrepresentation
 - Illicit capture of information
 - o Viruses
- The fundamental issues
 - Authentication
 - Secure transmission
 - Encryption
 - Management

Authentication

- Who are you? Logins
- Who did you say you were?
 - PIN authentication
 - Token authentication
 - Subverting authentication
 - Assumptions of honesty
 - Sniffing
 - Vulnerability of unencrypted systems
- Advanced systems
 - o Distributed Security Systems

Kerberos

- Developed at MIT for network security
- Allows client to "prove" identity to a server, and vice-versa, across an insecure network
- Uses strong cryptography
 - O Based on temporary cryptographic key exchange
 - Handled by use of Tickets
 - TGTs and TGSs

Tickets

- TGT Ticket Granting Ticket
 - O When a user first authenticates, the Key Distribution Centre (KDC) gives a TGT encrypted with the user's password
- TGS Ticket Granting Service
 - O When the user wants to use a Kerberised service, the TGT allows the user to talk to the TGS which verifies ID with the TGT and issues a new, specific ticket for the requested service

Tickets

- This approach, whilst seemingly complicated, has two big benefits:
 - O The user only has to authenticate once (doesn't have to keep re-entering password more convenient and less chance of capture)
 - O If a ticket is compromised the risk window is limited as it expires with the ticket.
- For a "simple" © explanation of protocol: web.mit.edu/kerberos/www/dialogue.html

TLS (SSL)

- Transport Layer Security
 - o Development of SSL (Secure Sockets Layer)
 - HTTPS uses HTTP + TLS/SSL
- Focused on Web security
- Idea to provide security at the Transport layer
- Authenticates workstation rather than user
- A less secure/complete solution?

Cryptography

- Cryptography is a Greek word:
 - o Crypto: Secret
 - o Graphy: Writing
 - O To send messages that are only readable by the expected recipient.

- The key concept
 - Encryption to encode
 - Decryption to decode
- Symmetric and Asymmetric keys

Some terminology

- Cryptography: Transform the messages and communication into a protected form
- Cryptanalysis: Try to break the code and understand the message
- Plaintext: The original message
- Ciphertext: Transformed message
- Encryption: Transforming plaintext to ciphertext
- Decryption: Transforming ciphertext to plaintext

Cipher vs Code

- Cryptography uses cipher rather than code.
 - O A cipher is a character-for-character or bit-for-bit transformation (without linguistic structure)
 - A code replaces one word with another word or symbol
- Example
 - o A cipher: attack → DWWDFN
 - o A code: antitank weapon → tortoise killer

Traditional Encryption

- Substitution Cipher: replaces each letter by another one. It preserves the order of the plaintext symbols but disguises them.
- Transposition Cipher: reorders the letters but does not disguise them.

Substitution Cipher (1)

- Caesar Cipher: replace each letter by another one which is 3 letters away.
 - o Replace A by D, B by E and ...

A	В	С	D	ш	F	G	Ξ	_	7	K	٦	M	N	0	P	Q	R	S	Т	J	٧	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- Example:
 - o Plaintext: attack
 - o Ciphertext: dwwdfn

Substitution Cipher (2)

- Shift Cipher: replace each letter by another one which is n letters away.
 - o n can be maximum 26

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

- \blacksquare Example: n=5
 - o Plaintext: attack
 - o Ciphertext: fyyfhp

Substitution Cipher (3)

 Mapped Cipher: a designated replacement for each letter (MY MADE-UP NAME)

Plaintext	а	b	С	d	е	f	g	h	ï	j	k		m	n	0	р	q	r	s	t	u	V	w	х	у	Z
Ciphertext	Q	W	Е	R	H	Y	כ	-	0	Ρ	Α	S	D	F	G	Η	J	K	L	Z	X	С	V	В	N	M

- Example :
 - o Plaintext: attack
 - o Ciphertext: QZZQEA

Substitution Cipher (4)

 Vigenere Cipher: Using a key to find the substitution cipher, which is not always the same for one exact plaintext

Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

Example :

- O Plaintext: attack at the dawn on the front line of the enemy
- o Key: ORANGE
- o Ciphertext:?

Substitution Cipher (4)

Vigenere Cipher: encrypt

Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

- Plaintext: attack at the dawn on the
- Key: ORANGE
- Ciphertext: OKTNIO OK TUK HONN BT XVV

а	t	t	а	С	k	а	t	t	h	е	d	а	w	n	0	n	t	h	е	
0	R	Α	Ν	G	Е	0	R	Α	Ζ	G	Е	0	R	Α	Ν	G	П	0	R	
0	K	Т	Ν	1	0	0	K	Т	U	K	Н	0	N	Ν	В	Т	X	٧	V	

Substitution Cipher (5)

Vigenere Cipher: decrypts

Α	В	С	D	ш	F	G	Н	I	J	K	Ь	М	N	0	Р	Ø	R	S	Т	U	V	W	X	Υ	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
•				1										1		1	1		- 1	ı				1	
Α	В	C	D	Е	F	G	Н		J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X	Υ	Z

- Ciphertext: OKTNIO OK TUK HONN BT XVV
- Key: ORANGE
- Plaintext: attack at the dawn on the

0	K	Т	N	=	0	0	K	Т	U	K	Н	0	N	N	В	Т	X	٧	V	
0	R	Α	Ν	G	Е	0	R	Α	Ζ	G	Е	0	R	Α	Ν	G	П	0	R	
а	t	t	а	С	k	а	t	t	h	е	d	а	w	n	0	n	t	h	е	

Different Types of Substitution Cipher (1)

- Monoalphabetic Cipher: The general system of symbol-for-symbol substitution. One plaintext letter is always the same ciphertext letter.
- Makes it weak to break, the basic attack takes advantage of the statistical properties of natural languages, in English:
 - O The most common letter is e, followed by t, o, a, n, i, etc.
 - O The most common two-letter combinations, or digrams, are
- th, in, er, re, and an.
 - O The most common three-letter combinations, or trigrams, are the, ing, and, and ion.

Different Types of Substitution Cipher (2)

- Poly-alphabetic Cipher: Different symbols substitution for different positions of the same plaintext letter/symbol. One plaintext letter can become different ciphertext letters.
- Uses a text based key and modulo arithmetic to perform the encryption

Transposition Cipher (1)

 Columnar Transposition Cipher: keyed by a word or phrase not containing any repeated letters.

Example:

O Plaintext: attack at the down on the front line of the enemy

o Key: ORANGE

o Ciphertext:?

Key	0	R	Α	N	G	ш
Order of columns	5	6	1	4	3	2

Transposition Cipher (2)

- Columnar Transposition Cipher: encrypt:
 - O Plaintext: attack at the dawn on the front line of the enemy

17			г						_	
Key	0	R		Α	N		G		Е	
Order of columns	5	6		1	4		3		2	
	а	t		t	а		C		k	
	а	t		t	h		е		d	
	а	w		n	0		n		t	
	h	е		f	r		0		n	
	t	_		i	n		е		0	
	f	t		h	е		е		n	
	е	m		у	а		b		С	
aaahtfe (5)	Ų .							1	kdtı	nonc (2)
ttw	eltm(† 6)				1	ce	n	oeeb	(3)
	`	flhy (1)		♥ ah	ıc	rne	a	(4)	

- 1. ttnflhy
- 2. kdtnonc
- 3. cenoeeb
- 4. ahornea
- 5. aaahtfe
- 6. ttweltm

NOTE: to avoid giving any information about the key remove the spaces from ciphertext.

Ciphertext: ttnflhykdtnonccenoeebahorneaaaahtfettweltm

Transposition Cipher (3)

- Columnar Transposition Cipher: decrypt:
 - O Ciphertext: ttnflhykdtnonccenoeebahorneaaaahtfettweltm
 - o Key: ORANGE à 6
 - Number of characters in Ciphertext= 42
 - o Number of chars in each column = 42/6 = 7
 - Ciphertext: ttnflhy / kdtnonc / cenoeeb / ahornea / aaahtfe / ttweltm
 - O Look at the key to identify the sequence of each section:
 - \bullet O(5) R(6) A(1) N(4) G(3) E(2)

Transposition Cipher (4)

Columnar Transposition Cipher: decrypt:

Key	0	R	Α	N	G	Е
Order of columns	5	6	1	4	3	2
	а	t	t	а	С	k
	а	t	t	h	е	d
	а	W	n	0	n	t
	h	е	f	r	0	n
	t	_	i	n	е	0
	f	t	h	е	е	n
	е	m	у	а	b	С

Plaintext: attackatthedawnonthefrontlineoftheene myabc

Attack at the dawn on the front line of the enemy abc.

Two Fundamental Cryptographic Principles

- Redundancy: all encrypted messages must contain some redundancy, that is, information not needed to understand the message.
 - Cryptographic principle 1: Messages must contain some redundancy
- Freshness: measures must be taken to ensure that each message received can be verified as being fresh, that is, sent very recently.
 - O Cryptographic principle 2: Some method is needed to foil replay attacks

Modern Encryption

- The same basic ideas as traditional cryptography (transposition and substitution) but Different emphasis.
- Traditionally, cryptographers have used simple algorithms, emphasis on the key.
- Nowadays, the objective is to make the encryption algorithm too complex and involuted to be impossible to break without the key.

Symmetric Key

- Symmetric Key: use the same key for encryption and decryption
 - O Stream Cipher: plaintext is substituted or transpositioned bit-by-bit or byte-by-byte into ciphertext
 - O Block Cipher: a block of plaintext is substituted or transpositioned into cipher text.

 Key exchange is the shortcoming of this method.

Asymmetric Key (1)

- Asymmetric Key: the encryption and decryption keys were so different that the decryption key could not feasibly be derived from the encryption key. (Also known as public key/ private key)
- Three requirements:
- -D(E(P)) = P.
 - It is exceedingly difficult to deduce D from E.
 - o E cannot be broken by a chosen plaintext attack.

Asymmetric Key (2)

- A key-pair to encrypt by any sender and decrypt by the specific receiver. They are mathematically linked together.
- Public key: Everyone knows it and uses it for encryption.
- Private key: It is a private and secret key to be used for decryption.

Digital Signature

- Digital Signature: is a proof of ownership of a public key. Issued by Certification Authorities.
 - O Authentication: Only authorised entities can decrypt the message
 - o Integrity: The message is not altered or changed.
 - O Non-repudiation: It is clear who the sender is and they can't deny or change the message.

Pretty Good Privacy...

- The concept of two-key encryption
 - O Single Secret keys vs Public and Private keys
 - o RSA (Rivest-Shamir-Adelman)
 - To multiply two huge prime numbers is easy...
 - To find two prime factors is not!
 - Security levels and crackability
- In practice, effective basic security and authentication combined

Viruses

- Already addressed
- Viruses in the real world
 - o A new form of terrorism?

Cyber warfare

Stuxnet: Anatomy of a Computer Virus

- An infographic dissecting the nature and ramifications of Stuxnet, the first weapon made entirely out of code.
- http://vimeo.com/25118844
- This was produced for Australian TV program HungryBeast on Australia's ABC1
- CBS 60 minutes
 - o http://www.youtube.com/watch?v=kw--zLJT3ak
- Further Developments
 - http://www.securityweek.com/first-stuxnet-victimsunmasked-research

Hacking and Cracking

- An old form of terrorism!
- Often more low-tech than high-tech
- High-tech approaches spottable
- Loopholes
- Another people problem
- Spoofing
- Anonymous mailers
- No such thing as a secure system

Firewalls

- Protection by isolation
- The firewall concept
- Proxy service
- 2-way control
- Net nannys
- What about internal threats?

Other considerations

- The Majors vs Little League
 - Industrial espionage
 - Technological dependency
 - Coverups and conspiracy
- Neverending problems of security
 - o The Ping of death
 - Software vulnerability
- No such thing as a secure system again!

Social Issues (1)

- Privacy & Freedom of speech:
 - O People have a right to privacy. However the nature of internet has made it easier for governments and bad actors to spy on citizens.
 - O It is also easier for citizens to use cryptography to prevent this spying.
 - O Real privacy means it is much harder for governments to spy on criminals of all stripes, but it is also harder to spy on journalists and political opponents.
 - Some governments restrict or forbid the use of cryptography

Social Issues (2)

- Privacy & Freedom of speech:
 - o Related to privacy is freedom of speech.
 - O Depending on the nature of a regime, governments want to limit their citizen's access to certain information.
 - O Cryptography allows people to hide their browsing habits and communications from governments.
 - O Though Cryptography is essential to many daily activities such as banking, healthcare communication and many more, it may cause obstacles to identify and monitor illegitimate activities.

Security Policies

- A security policy is essentially a document stating security goals, and which actions are required, which are permitted and which are allowed.
 - O Policies may apply to actions by a system, by management procedures, by employees, by system users.
 - O A complete security policy is a collection policies on specific security issues.
- Do not confuse a policy with an enforcement mechanism
 - O Every security policy statement should have a corresponding enforcement mechanism
 - O The enforcement mechanism may be a technology (e. g., a firewall), or a process (e. g., security audit)

Challenges in Security Policies

- Extremely difficult to develop
- Unique to each organization.
- No common format or process for developing one.
- Making it simple so everyone can understand and use it.
- Getting management consensus.
- How do you enforce it?

Basic Policy Requirements for Employees

Policies must:

- O Be implementable and enforecable
- Be concise and easy to understand
- Balance protection with productivity

■ Policies should:

- O State reasons why policies are needed
- O Describe what is covered by the policies
- o Define contacts and responsibilities
- O Discuss how violations will be handled

Basic Security Policy Process

- Identify what assets you need to protect
- Identify the vulnerabilities and threats to those assets
- Identify the risks of threats exploiting the vulnerabilities
- Establish countermeasures to mitigate the threats
 - Policies and procedures
 - Technical controls
 - Human controls
- Monitor compliance and effectiveness of controls (Metrics)
- Periodically review and update controls

Training and Awareness

- Once approved and disseminated throughout organization:
 - o Train and educate ALL employees
 - o Have everyone sign
 - o Begin enforcement immediately
- Accomplish non-personnel related actions
- Security personnel must constantly assess viability

Security Modules

Elements of a Comprehensive Security Program

- ✓ Have good passwords
- ✓ Use good updated antiviral products
- ✓ Use strong cryptography
- ✓ Proper use of firewalls and IDS
- ✓ Have a backup-system
- ✓ Audit and monitor systems and networks
- ✓ Test your security frequently
- ✓ Have training and awareness programs

ALL AS PART OF A SECURITY POLICY

Conclusions

- Information security costs but if not implemented there are many risks:
 - O Inability or impairment of a company's ability to perform its objectives.
 - o Inability to provide needed services to the public.
 - O Waste, loss, abuse or misappropriation of funds.
 - O Loss of credibility or embarrassment to your company.
 - O Company competition gain upper hand by stealing confidential information from your server.
 - O Decreased profit, and increase loss margin.
 - O Client trust relationship tarnished.

Conclusions

- Information security is not an easy task within an organization
 - It is a continuous process
 - Requires constant auditing
 - o Requires constant education

Information security is like a chain; it is only as strong as the weakest link

Sources of information

- Electronic Frontier Foundation www.eff.org
- FAS Information warfare and security www.fas.org/irp/wwwinfo.html
- Searchsecurity.com searchsecurity.techtarget.com
- Insecure.org www.insecure.org
- The War room www.warroom.com
- alt.conspiracy?:-) groups.google.com/forum/#!forum/alt.conspira⁵⁴

Useful reading

- http://www.pgpi.org/doc/pgpintro
 - O Very readable document from PGPI which explains not only PGP but all the fundamentals of cryptography in easy-to-understand language
- http://web.mit.edu/kerberos/www/dialogue. html
 - O As previously mentioned, a mock Euripidean dialogue which explains the fundamental reasoning and principles behind Kerberos and ticketing systems. Particularly recommended for classicists:-)

Questions?

