

Vishay Semiconductors

Optocoupler, Phototransistor Output

DESCRIPTION

The 4N25V, 4N25GV, 4N35V, 4N35GV series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 6-lead plastic dual inline package.

VDE STANDARDS

These couplers perform safety functions according to the following equipment standards:

DIN EN 60747-5-5 (VDE 0884)

Optocoupler for electrical safety requirements

IEC 60950

Office machines (applied for reinforced isolation for mains voltage $\leq 400 \ V_{RMS})$

VDE 0804

Telecommunication apparatus and data processing

IEC 60065

Safety for mains-operated electronic and related household apparatus

FEATURES

• Rated isolation voltage (RMS includes DC) $V_{IOWM} = 600 V_{RMS} (848 V peak)$

Rated recurring peak voltage (repetitive)
 V_{IORM} = 600 V_{RMS}

- Thickness through insulation ≥ 0.4 mm
- Creepage current resistance according to VDE 0303/ IEC 60112 comparative tracking index: CTI ≥ 275
- Rated impulse voltage (transient overvoltage)
 V_{IOTM} = 6 kV peak
- Isolation test voltage (partial discharge test voltage) $V_{pd} = 1.6 \text{ kV}$
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Switch-mode power supplies
- · Line receiver
- Computer peripheral interface
- · Microprocessor system interface
- Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):
 - for appl. class I IV at mains voltage ≤ 300 V
 - for appl. class I III at mains voltage ≤ 600 V according to DIN EN 60747-5-5

AGENCY APPROVALS

- UL1577, file no. E52744, double protection
- BSI: BS EN 41003, BS EN 60065 (BS 415), pending
- DIN EN 60747-5-5 (VDE 0884)
- FIMKO (SETI): EN 60950, certificate no. FI25155

ORDER INFORMATION (1)	
PART	REMARKS
4N25GV	CTR > 20 % wide lead spacing, DIP-6
4N35GV	CTR > 100 % wide lead spacing, DIP-6
4N25V	CTR > 20 %, DIP-6
4N35V	CTR > 100 %, DIP-6

Note

(1) G = leadform 10.16 mm; G is not marked on the body.

4N25V, 4N25GV, 4N35V, 4N35GV

Vishay Semiconductors Optocoupler, Phototransistor Output

ABSOLUTE MAXIMUM RATINGS (1)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT	•						
Reverse voltage		V_{R}	5	V			
Forward current		I _F	60	mA			
Forward surge current	t _p ≤ 10 μs	I _{FSM}	3	Α			
Power dissipation		P _{diss}	70	mW			
Junction temperature		T _j	125	°C			
OUTPUT	•						
Collector emitter voltage		V _{CEO}	32	V			
Emitter collector voltage		V _{ECO}	7	V			
Collector current		Ic	50	mA			
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA			
Power dissipation		P _{diss}	70	mW			
Junction temperature		T _j	125	°C			
COUPLER							
Isolation test voltage (RMS)		V _{ISO}	5000	V _{RMS}			
Total power dissipation		P _{tot}	200	mW			
Ambient temperature range		T _{amb}	- 55 to + 100	°C			
Storage temperature range		T _{stg}	- 55 to + 125	°C			
Soldering temperature (2)	2 mm from case, t ≤ 10 s	T _{sld}	260	°C			

Notes

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

⁽²⁾ Refer to wave profile for soldering conditions for through hole devices.

ELECTRICAL CHARACTERISTICS (1)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT							
Forward voltage	I _F = 50 mA	V _F		1.2	1.4	V	
Junction capacitance	V _R = 0 V, f = 1 MHz	C _j		50		pF	
OUTPUT							
Collector emitter voltage	I _C = 1 mA	V _{CEO}	32			V	
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V	
	$V_{CE} = 10 \text{ V}, I_F = 0,$ $T_{amb} = 100 ^{\circ}\text{C}$	I _{CEO}			50	nA	
Collector emitter leakage current	V _{CE} = 30 V, I _F = 0, T _{amb} = 100 °C	I _{CEO}			500	nA	
COUPLER							
Collector emitter saturation voltage	$I_F = 50 \text{ mA}, I_C = 2 \text{ mA}$	V _{CEsat}			0.3	V	
Cut-off frequency	V_{CE} = 5 V, I_F = 10 mA, R_L = 100 Ω	f _c		110		kHz	
Coupling capacitance	f = 1 MHz	C _k		1		pF	

Note

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

 $^{^{(1)}}$ T_{amb} = 25 $^{\circ}$ C, unless otherwise specified.

⁽¹⁾ T_{amb} = 25 °C, unless otherwise specified.

Optocoupler, Phototransistor Output Vishay Semiconductors

CURRENT TRANSFER RATIO								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
		4N25V	CTR	20	100		## WIT % % % % % % % % %	
I _C /I _F	V _{CF} = 10 V, I _F = 10 mA	4N25GV	CTR	CTR 20 100		70		
	V _{CE} = 10 V, I _F = 10 IIIA	4N35V	CTR	100	150	50	0/	
		4N35GV	CTR	100	150		76	
	$V_{CE} = 10 \text{ V}, I_F = 10 \text{ mA}, T_{amb} = 100 \text{ °C}$	4N35V	CTR	40			%	
	T _{amb} = 100 °C	4N35GV	CTR	40			/0	

MAXIMUM SAFETY RATINGS (1)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward current		I _F			130	mA		
OUTPUT	OUTPUT							
Power dissipation		P _{diss}			265	mW		
COUPLER								
Rated impulse voltage		V _{IOTM}			6	kV		
Safety temperature		T _{si}			150	°C		

Note

⁽¹⁾ According to DIN EN 60747-5-5 (see figure 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

INSULATION RATED PARAMETERS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	1600			V	
Partial discharge test voltage - lot test (sample test)	$t_{Tr} = 60 \text{ s}, t_{test} = 10 \text{ s},$	V_{IOTM}	6000			V	
	(see figure 2)	V_{pd}	1400			V	
Insulation resistance	V _{IO} = 500 V	R _{IO}	10 ¹²			Ω	
	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	10 ¹¹			Ω	
	V _{IO} = 500 V, T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹			Ω	

Fig. 1 - Derating Diagram

Fig. 2 - Test Pulse Diagram for Sample Test according to DIN EN 60747-; IEC 60747

4N25V, 4N25GV, 4N35V, 4N35GV

Vishay Semiconductors Optocoupler, Phototransistor Output

SWITCHING CHA	ARACTERISTICS						
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Delay time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega,$	4N25V 4N25GV	t _d		4		μs
(see figure 3)	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$	4N35V 4N35GV	t _d		2.5		μs
Rise time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega,$	4N25V 4N25GV	t _r		7		μs
(see figure 3)	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$	4N35V 4N35GV	t _r		3		μs
Fall time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega,$	4N25V 4N25GV	t _f		6.7		μs
(see figure 3)	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$	4N35V 4N35GV	t _f		4.2		μs
Storage time	$V_S = 5 \text{ V}, I_C = 5\text{mA}, R_L = 100 \Omega,$	4N25V 4N25GV	t _s		0.3		μs
(see figure 3)	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$	4N35V 4N35GV	t _s		0.3		μs
Turn-on time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega,$	4N25V 4N25GV	t _{on}		11		μs
(see figure 3)	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$	4N35V 4N35GV	t _{on}			10	μs
Turn-off time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega,$	4N25V 4N25GV	t _{off}		7		μs
(see figure 3)	$V_S = 5 \text{ V}, I_C = 2 \text{ mA}, R_L = 100 \Omega,$	4N35V 4N35GV	t _{off}			10	μs
Turn-on time	V 5VI 10 mA D 11/0	4N25V 4N25GV	t _{on}		25		μs
(see figure 4)	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega,$	4N35V 4N35GV	t _{on}		9		μs
Turn-off time	V = 5 V I = 10 mA P = 1 k0	4N25V 4N25GV	t _{off}		42.5		μs
(see figure 4)	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega,$	4N35V 4N35GV	t _{off}		25		μs

Fig. 4 - Test Circuit, Saturated Operation

Optocoupler, Phototransistor Output Vishay Semiconductors

Fig. 5 - Switching Times

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

Fig. 6 - Total Power Dissipation vs. Ambient Temperature

Fig. 7 - Forward Current vs. Forward Voltage

Fig. 8 - Relative Current Transfer Ratio vs.
Ambient Temperature

Fig. 9 - Collector Dark Current vs. Ambient Temperature

Vishay Semiconductors Optocoupler, Phototransistor Output

Fig. 10 - Collector Base Current vs. Forward Current

Fig. 11 - Collector Current vs. Forward Current

Fig. 12 - Collector Current vs. Collector Emitter Voltage

Fig. 13 - Collector Emitter Saturation Voltage vs. Collector Current

Fig. 14 - DC Current Gain vs. Collector Current

Fig. 15 - Current Transfer Ratio vs. Forward Current

Optocoupler, Phototransistor Output Vishay Semiconductors

Fig. 16 - Turn-on/off Time vs. Forward Current

Fig. 17 - Turn-on/off Time vs. Collector Current

PACKAGE DIMENSIONS in millimeters **DIP-6**

DIP-6, 400 mil

PACKAGE MARKING

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08