

Software Engineering I CS-382

- Lecture 9
- What we will cover: (Details of Analysis Modeling)
 - Chapter 8 Sections 8.4 and 8.7 in Pressman
 - Goal is to understand the methods and tools available from Object Oriented Analysis for analysis modeling

Analysis Modeling via Object-Oriented Analysis

- Must be understood to develop the class and data elements of the analysis model
- Key concepts:
 - Classes and objects
 - Attributes and operations
 - Encapsulation and instantiation
 - Inheritance/Aggregation

Object Oriented Analysis

- The book states: Object-oriented thinking begins with the definition of a **class**, often defined as:
 - template
 - generalized description
 - "blueprint" ... describing a collection of similar items
 - They then state that "Once a class of items is defined, a specific instance of the class can be identified"
 - This is a little backwards from an analysis point of view

5

Object Oriented Analysis II

- In reality OO thinking starts with the idea of an OBJECT
 - An object in a system is an entity that knows some things (has some **data**) and does some things (has **functionality**)
 - A **Class** is then a **generalization** of the object when multiple similar objects are identified in the system

More on Objects

- "An object represents an individual, identifiable item, unit, or entity, either real or abstract with a well defined role in the problem." Wilkinson
 - Objects (and their classes) should represent tangible or visible things, roles, events, or concepts within the system.
 - An object is more than just data and functions bound together
 - Each object has a set of essential and unique static attributes
 - The *state* of an object is the values of these at any time.

9

More on Objects II

■ It is the definition of the set of objects and a description of how they interact to satisfy a system's goals that comprise the class model.

Class-Based Modeling Thru OOA

- Object Oriented Methods view a system as a collection of these objects that communicate to each other thru messages
 - These messages request the various other objects to perform some function or task

11

Steps to Class-Based Modeling Thru OOA

- 1. Identify **classes** by examining the problem statement
 - We will show a CRC-based method for making this a little easier
- 2. Identify the **attributes** of each class
- 3. Identify **operations** that manipulate the attributes
- 4. Later define **inheritances** and **aggregations** of these classes.
- 5. Also later on define **associations** of the classes based on how they collaborate to accomplish the required functionality

Steps to Defining Candidate Classes

- 1. Some people advocate writing a 2-3 paragraph system synopsis
 - Use the various models as inputs
 - This story provides good abstraction to identify key themes
- 2. Define several **major themes** that identify the central issues of the system
- 3. Search for Candidate objects that support these themes
 - Next slides give good search strategies

13

Steps to Defining Candidate Classes II

- 4. Check that these candidates represent key concepts or things
- 5. Look for additional objects in required supporting mechanisms
- 6. Develop good names
- 7. Organize them in varying ways to identify additional abstraction

Search Strategies for Objects

- Good Object candidates often represent:
 - The work the system performs
 - Things directly affected by or connected to the application
 - Information that flows thru the software
 - Decision making, control, and coordination activities
 - Structures and groups of other lower level objects
 - Representations of real-world things the system needs to know something about

15

Using Class Stereotypes

- It can also help thinking in terms of some common *stereotypes* of objects to get ideas
- Some candidate stereotypes include:
 - *Entity classes*, also called *model* or *business* classes, are extracted directly from the statement of the problem.
 - Boundary (or Interface) classes are used to create the interface (e.g., interactive screen or printed reports) that the user sees and interacts with as the software is used.
 - *Controller classes* manage a "unit of work" [UML03] from start to finish.

Using Class Stereotypes II

- More candidate stereotypes include:
 - *Coordinator classes* synchronize work of various other classes.
 - *Information holder classes* are method-less classes that hold data (database type applications have these).
 - Service Provider classes tend to calculate, compute and figure data.
 - *Structurer classes* tend to sort and organize objects into meaningful order.

17

A Simpler Set of Stereotypes

Actor Classes:

Organizations

Business Classes:

- Places
- Things
- Concepts
- Events

Report Classes:

- Printed
- Electronic

18

Another Search Strategy for Objects

- 1. Look for anything that interacts with the system or is a part of the system
- 2. Ask if there is a customer
 - if there is then they are an object
- 3. Follow the money
 - The source of money is usually a customer (See 2) and the things or services that the money procures are good candidate

19

Another Search Strategy for Objects II

- 4. A Report is an object
 - Any report generated by a system is a good candidate object
 - Reports request information from other objects (collaboration)
- 5. A User display screen is an object

Additional Sources of Possible Objects and Classes

- *External entities* (e.g., other systems, devices, people) that produce or consume information to be used by a computer-based system.
- *Things* (e.g, reports, displays, letters, signals) that are part of the information domain for the problem.
- *Occurrences or events* (e.g., a property transfer or the completion of a series of robot movements) that occur within the context of system operation.
- *Roles* (e.g., manager, engineer, salesperson) played by people who interact with the system.

Additional Sources of Possible Objects and Classes II

- *Organizational units* (e.g., division, group, team) that are relevant to an application.
- *Places* (e.g., manufacturing floor or loading dock) that establish the context of the problem and the overall function of the system.
- *Structures* (e.g., sensors, four-wheeled vehicles, or computers) that define a class of objects or related classes of objects.

In-class Practice Finding Classes

- For Safehome try to identify 5 classes and state where they come from
- For the traction control system identify 5 classes and state where they come from

23

For Next Class

- Continue to Study Chapter 8; Pressman (Analysis Modeling)
 - We will cover CRC cards for defining some of the details of our classes