Ф3

value	0
0	frequency 3
1	Q Q
2	3
3	1

So the average Courting rate is 1.2

The probability the next Counting is 2 en $P(X=3) = e \underbrace{9}_{X} = e \underbrace{(1-2)}_{2!}$

=0-301

P2

on the nest 1250 Proton 2 proton 1 proton 1 when they collide proton2> protons have the same masses => m1 = m2 $V_{cm} = V_i \frac{m_i + V_2 m_2}{m_i + m_n} = \frac{V_i m_i}{2m_i} = \frac{U_i}{2}$ when need to prove that $\vec{V_1} \cdot \vec{V_2} = 0$ V, -V= V, x V2 x + V2y V2y

$$V_{1}x = \frac{1}{2}V_{1}\cos\theta + \frac{1}{2}V_{1}\cos\theta = \frac{1}{2}V_{1}\cos\theta + \frac{1}{2}V_{1}$$

 $V_{1}y = \frac{1}{2}V_{1}\sin\theta + \frac{1}{2}V_{1}\sin\theta = \frac{1}{2}V_{1}\sin\theta$

$$V_{2X} = \frac{1}{2}V_{1}\cos(T-\Theta) + \frac{1}{2}v_{2}\cos 0 = \frac{-1}{2}V_{1}\cos 0 + \frac{1}{2}v_{2}$$
 $V_{2Y} = \frac{1}{2}V_{1}\sin(T-\Theta) + \frac{1}{2}v_{1}\sin 0 = \frac{-1}{2}v_{2}\sin 0$

So
$$\overrightarrow{V_1} \cdot \overrightarrow{V_2} = \overrightarrow{V_1} \times \overrightarrow{V_2} \times + \overrightarrow{V_1} \times \overrightarrow{V_1} \times \overrightarrow{V_2} \times + \overrightarrow{V_1} \times \overrightarrow{V_1} \times \overrightarrow{V_2} \times + \overrightarrow{V_1} \times \overrightarrow{V_1} \times \overrightarrow{V_1} \times \overrightarrow{V_2} \times + \overrightarrow{V_1} \times \overrightarrow{V_1} \times \overrightarrow{V_2} \times + \overrightarrow{V_1} \times \overrightarrow{V$$