A (Very) Short Introduction to R for Wet Lab Scientists

Kieran O'Neill

What is R, and Why Should I Use It?

RStudio

R Basics

Installing Packages

Loading in Files

Basic Statistical Tests

Basic Plots

Credits

What is R, and Why Should I Use It?

The Basics

R is a versatile, open source programming language that was specifically designed for data analysis. As such R is extremely useful both for statistics and data science. Inspired by the programming language S.

- Open source software under GPL.
- Superior (if not just comparable) to commercial alternatives. R has over 5,000 user contributed packages at this time. It's widely used both in academia and industry.
- Available on all platforms.
- Large and growing community of peers.
- Bioconductor: largest (and arguably the best) free collection of software for biological data analysis anywhere.

Why Not Just Use Excel, FlowJo, GraphPad, etc?

1. Reproducibility

- Its really important that you know what you did.
- ▶ More journals/grants/etc. are also requiring this.
- ▶ The best way to know what you did is to provide all the code.
- GUI software makes this difficult
- If you keep a lab notebook, why not do the same thing with your analysis?
- 2. Flexibility, capabilities and pretty pictures
 - R can handle much larger data sets, much faster, and much more easily than Excel.
 - Huge range of statistical tests, biological data types, etc.
 - Plotting in R is far more sophisticated than any available GUI.

Proof of What I Mean By Pretty Pictures:

Figure 1: Gerstung et al (2015) Nature Communications (CC-BY)

RStudio

Set up a new project

- ► Click 'file', then 'New project'
- ▶ Click 'New directory'm then 'Empy Project', then pick a directory
- ▶ With the project set up, click 'file', then 'new' (or ctrl+shift+n)
- Click 'File', 'Save' (ctrl+s)
- ► Save the file as something meaningful, like lecture1_examples.R

Note: for Mac users, where I say 'ctrl', use your weird Mac control key instead.

Quick overview of RStudio

-Figure of interface

Working between the script and console

*Type the following into the console, and press enter:

```
print("Hello")
## [1] "Hello"
```

- Now type it into the file window, and with the cursor on that line, press ctrl+enter
- Messing around in the console is fun.
- ▶ But it's better to keep your work in a file which you save often.

R Basics

Objects

You can assign values to objects:

```
some_number <- 5
some_number + 3

## [1] 8

some_number ^ 3

## [1] 125</pre>
```

Take a look in your environment window in RStudio. You can also see what objects are defined using the ls() command:

```
ls()
## [1] "some_number"
```

Basic Data Types

You can find out the type of an object using typeof():

```
typeof(some_number)

## [1] "double"

some_text <- "To be or not to be"

typeof(some_text)

## [1] "character"</pre>
```

Numeric vs Character

```
some_number + 5

## [1] 10

some_text + 5
```

Error in some_text + 5: non-numeric argument to binary operator

More Complex Data Types

Data frames, vectors

Installing Packages

CRAN

Bioconductor

Loading in Files

The Iris Data Set

Loading in CSV

Loading in from Excel?

Basic Statistical Tests

Fisher's T Test

Examining the Results

Basic Plots

Scatter Plot

Box Plots

▶ Don't use dynamite plots!!

Beeswarm Plots

Other Plotting Packages

Credits

Course Developers

- ► Kieran O'Neill
- Eva Yap
- Alice Zhu (for next session)

Much material was reused from Software Carpentry's Bootcamp workshops and from Andy Teucher's short R course, both under the terms of the Creative Commons Attribution License.