

Maximizing SIMD Resource Utilization in GPGPUs with SIMD Lane Permutation

Minsoo Rhu and Mattan Erez

The University of Texas at Austin Electrical and Computer Engineering Department

Introduction

- SIMD-based GPU Architectures
 - Suffers from low SIMD efficiency when application contains highly irregular control flow
 - Compaction-based architectures have recently gained high interest as a way of minimizing the waste in SIMD units
 - Problem: applicability of compaction limited to highly divergent applications, despite its design overhead
- Main contribution of this paper
 - Analysis on the cause of limited effectiveness of compaction
 - Concentration of active threads to particular SIMD lanes
 - Static/deterministic permutation of thread assignment to SIMD units to enhance the effectiveness of compaction
 - Improve SIMD utilization and performance
 - Widen the applicability of compaction schemes

Outline

- GPU and SIMD compaction background
- Aligned divergence and compactability
- SLP SIMD Lane Permutation
- Evaluation

Graphic Processing Units (GPUs)

- General-purpose many-core accelerators
 - Supports non-graphics APIs (e.g. CUDA, OpenCL)
- Scalar frontend (fetch & decode) + parallel backend
 - Amortizes the cost of frontend and control

CUDA exposes hierarchy of data-parallel threads

- SPMD model: single kernel executed by all threads
- Kernel / Thread-block
 - Multiple thread-blocks (concurrent-thread-arrays(CTAs)) compose a kernel

CUDA exposes hierarchy of data-parallel threads

- SPMD model: single kernel executed by all threads
- Kernel / Thread-block / Warp / Thread
 - Multiple warps compose a thread-block
 - Multiple threads (32) compose a warp

A warp is scheduled as a batch of threads

Assumption: width of SIMD lanes matches warp size (i.e. 32 SIMD lanes)

NZ

CUDA exposes hierarchy of data-parallel threads

- SPMD model: single kernel executed by all threads
- Kernel / Thread-block / Warp / Thread
 - Multiple warps compose a thread-block
 - Multiple threads (32) compose a warp
- : Thread-ID 0, 32, 64 ... execute in physical lane #0
- : Thread-ID 2, 34, 66 ... execute in physical lane #2

GPUs have HW support for conditional branches

- Control divergence: threads in warp branch differently
 - a.k.a. Branch Divergence
 - Stack-based divergence/reconvergence model
 - Active bitmasks (or predicate bitmasks):
 - Bitmasks for both true/false paths dynamically derived
 - Allows subset of a warp to commit results

(a)Example Control Flow Graph
1: Active, 0: Inactive

Time

Challenge: Underutilization of SIMD units

- Number of active threads in a warp decreases every time control diverges
- Active area of research
 - Thread block compaction [Fung'11]
 - Larger warps [Narasiman'11]

(a) Example Control Flow Graph

(b) Execution flow

 \bigcirc

Threads (lanes) masked out from execution, remaining idle.

- Dynamically compact warps within a thread-block
 - Synchronize all warps at conditional-branches and reconvergence points
 - Threads with <u>different</u> home SIMD lanes compacted together

: [0,1... A,B] refers to <u>active</u> thread-IDs executing in that basic block : [-] refers to *inactive* threads, masked out from execution

(a) Example control flow graph

(b) Execution flow without compaction

- Dynamically **compact** warps within a **thread-block**
 - Synchronize all warps at conditional-branches and reconvergence points
 - Threads with <u>different</u> home SIMD lanes compacted together

: [0,1... A,B] refers to active thread-IDs executing in that basic block -] refers to inactive threads, masked out from execution

(a) Example control flow graph

(b) Execution flow without compaction

- Dynamically compact warps within a thread-block
 - Synchronize all warps at conditional-branches and reconvergence points
 - Threads with <u>different</u> home SIMD lanes compacted together

: [0,1... A,B] refers to <u>active</u> thread-IDs executing in that basic block : [-] refers to <u>inactive</u> threads, masked out from execution

- Dynamically compact warps within a thread-block
 - Synchronize all warps at conditional-branches and reconvergence points
 - Threads with <u>different</u> home SIMD lanes compacted together

: [0,1... A,B] refers to <u>active</u> thread-IDs executing in that basic block

: [-] refers to $\underline{inactive}$ threads, masked out from execution

(a) Example control flow graph

(b) Execution flow without compaction

(c) Execution flow with compaction

TBC as-is

Average SIMD lanes occupied for execution

- No_TBC: Baseline architecture without compaction

TBC : baseline compaction mechanism

TBC as-is

- Average SIMD lanes occupied for execution
 - No_TBC : Baseline architecture without compaction

Outline

- GPU and SIMD compaction background
- Branch compactability and aligned divergence
- SLP SIMD Lane Permutation
- Evaluation

- Most (or all) of SIMD lanes <u>already</u> occupied
 - Compaction inherently impossible

Acti	Active Threads	
\mathbf{W}_0	0123	
W_1		
\mathbf{W}_2	89AB	
W ₃		

Active Threads	
\mathbf{W}_{0}	0123
W_1	4567
\mathbf{W}_2	89AB
W ₃	CD

- Most (or all) of SIMD lanes <u>already</u> occupied
 - Compaction inherently impossible

Active Threads	
\mathbf{W}_{0}	0123
W_1	
\mathbf{W}_2	89AB
W ₃	

Active Threads	
\mathbf{W}_{0}	0123
W_1	4567
\mathbf{W}_2	89AB
W ₃	CD

- Most (or all) of SIMD lanes <u>already</u> occupied
 - Compaction inherently impossible

Active Threads	
0123	
89AB	

Active Threads	
\mathbf{W}_0	012-
W_1	456-
W_2	89A-
W ₃	CDE-
113 SDE	

Active Threads	
\mathbf{W}_{0}	0123
$ V_1 $	4567
\mathbf{W}_2	89AB
\mathbf{W}_3	CD

- Active threads <u>aligned (clustered)</u> on certain lanes
 - Compaction theoretically feasible, if crossbars can distribute operands across different SIMD lanes

Active Threads	
\mathbf{W}_{0}	0
W_1	4
\mathbf{W}_2	8
W ₃	C

- Most (or all) of SIMD lanes <u>already</u> occupied
 - Compaction inherently impossible

Active Threads	
0123	
89AB	

Active Threads	
\mathbf{W}_0	012-
W_1	456-
\mathbf{W}_2	89A-
\mathbf{W}_3	CDE-

Active Threads	
\mathbf{W}_{0}	0123
$ V_1 $	4567
\mathbf{W}_2	89AB
W ₃	CD

- Active threads <u>aligned (clustered) on cortain lanes</u>
 - Compaction the Aligned Divergence! ute operands across unrerent simplications

Active Threads		
	\mathbf{W}_0	0
	W_1	4
	W_2	8
	W ₃	C

Acti	Active Threads						
\mathbf{W}_{0}	0-2-						
W_1	4-6-						
\mathbf{W}_2	8-A-						
W ₃	C-E-						

Aligned divergence - (1)

- Case 1: Branch condition depends on data array
 - Each thread references different element of the array
 - Unlikely to cause aligned divergence

Code #1) Branch depending on data arrays

```
// Code snippet from the kernel of BFS benchmark
// g_graph_visited and g_graph_edges are data array parameters.

int tid = blockIdx.x*MAX_THREADS_PER_BLOCK + threadIdx.x;

...

int id = g_graph_edges[...];

if(!g_graph_visited[id])

{
...
}
```


Aligned divergence - (1)

- Case 1: Branch condition depends on data array
 - Each thread references different element of the array
 - Unlikely to cause aligned divergence

Aligned divergence - (2)

- Case 2: Branch cond. depends on **programmatic** value
 - Indices of thread-ID, warp-ID, CTA-ID, width/height of CTA
 - Scalar input parameters to the kernel, constants
 - Threads sharing home SIMD lane likely to reference same value

```
Code #2) Programmatic branch causing only the 1st half of the warp active
```

```
// Code snippet from the kernel of BACKP benchmark
// CTA is a (8 × 16) 2-D array of threads.

int tx = threadIdx.x;

int ty = threadIdx.y;

...

for (int i=1; i<=__log2f(HEIGHT); i++) {
   int power_two = __powf(2,i);

if( ty % power_two == 0 ) {...}

...

if( ty % power_two == 0 ) {...}

...

}</pre>
```


Aligned divergence - (2)

10 11

- Case 2: Branch cond. depends on **programmatic** value
 - Indices of thread-ID, warp-ID, CTA-ID, width/height of CTA
 - Scalar input parameters to the kernel, constants
 - Threads sharing home SIMD lane likely to reference same value

```
Code #2) Programmatic branch causing only the 1st half of the warp active

// Code snippet from the kernel of BACKP benchmark
// CTA is a (8 × 16) 2-D array of threads.

int tx = threadIdx.x;
int ty = threadIdx.y;
...
for (int i=1; i<=__log2f(HEIGHT); i++){
  int power_two = __powf(2,i);

// P-Branches</pre>
```


Compaction Rate of P-/D-Branches (with TBC)

 Definition: Fraction of <u>compactable</u> paths among all paths generated by divergent branches

Branch categorization done with GPUOcelot using Taint-analysis (detailed in paper)

Compaction Rate of P-/D-Branches (with TBC)

 Definition: Fraction of <u>compactable</u> paths among all paths generated by divergent branches

Ideal: TBC with crossbar

Higher is better

D-branch compacts well with TBC P-branch not so much compared to Ideal

Ideal: TBC with crossbar

Higher is better

TBC with Crossbar (Ideal Compaction)

Average SIMD lanes occupied for execution

Significant opportunities to enhance SIMD efficiency with P-branches.

tion) ecution

But crossbars are expensive!

Higher is better

Outline

- GPU and SIMD compaction background
- Branch compactability and aligned divergence
- SLP <u>SIMD Lane Permutation</u>
- Evaluation

ME

SIMD Lane Permutation (SLP)

 Motivation: Permute home SIMD lanes from their sequentially assigned location to alleviate aligned divergence

(b) XOR warps with odd WID by 1

(c) Flip warps with odd WID

(d) Rotate *all* warps by WID

(e) Rotate warps with
 odd WID by 1

(f) XOR all warps by bit-reverse of WID

Pitfalls of Randomly Permuting Lanes

- Observation: Many P-branches invoke <u>up to half of lanes active</u> after divergence
- Compaction fails unless active threads permuted <u>exactly to the</u> <u>other half</u> of (vacant) lanes

Active Threads						
\mathbf{W}_0	0123					
$\overline{\mathtt{W}}_1$	89AB					
\mathbf{W}_2	GHIJ					
W ₃	OPQR					

Observation: P-branches frequently exhibit highly skewed,

predictable concentration of active lanes

Intuition : Distribute active threads across SIMD lanes <u>evenly</u>

in a <u>balanced</u> manner

Lane-ID	0	1	2	3	4	5	6	7
	000	001	010	011	100	101	110	111
For WO	0	1	2	3	4	5	6	7
For W1	0	1	2	3	4	5	6	7
For W2	0	1	2	3	4	5	6	7
For W3	0	1	2	3	4	5	6	7
For W4	0	1	2	3	4	5	6	7
For W5	0	1	2	3	4	5	6	7
For W6	0	1	2	3	4	5	6	7
For W7	0	1	2	3	4	5	6	7

Observation: P-branches frequently exhibit highly <u>skewed</u>,

predictable concentration of active lanes

Intuition : Distribute active threads across SIMD lanes <u>evenly</u>

in a <u>balanced</u> manner

Lane-ID	0	1	2	3	4	5	6	7	
	000	001	010	011	100	101	110	111	
For WO	0	1	2	3	4	5	6	7	
For W1	0	1	2	3	4	5	6	7	
For W2	0	1	2	3	4	5	6	7	
For W3	0	1	2	3	4	5	6	7_	
For W4	Baseline: assigned lane-IDs based								
For W5	on <u>sequential</u> assignment								
For W6	0	1	2	3	4	5	6	7	
For W7	0	1	2	3	4	5	6	7	

Observation: P-branches frequently exhibit highly skewed,

<u>predictable</u> concentration of active lanes

Intuition : Distribute active threads across SIMD lanes <u>evenly</u>

in a <u>balanced</u> manner

Tano-ID	0	1	2	3	4	5	6	7
Lane-ID	000	001	010	011	100	101	110	111
For WO	0	1	2	3	4	5	6	7
For W1	0	1	2	3	4	5	6	7
For W2	0	1	2	3	4	5	6	7
For W3	0	1	2	3	4	5	6	7
For W4	0	1	2	3	4	5	6	7
For W5	0	1	2	3	4	5	6	7
For W6	0	1	2	3	4	5	6	7
For W7	0	1	2	3	4	5	6	7

- Observation: P-branches frequently exhibit highly skewed.
 - < Balanced permutation algorithm >
- Intuiti- Even-ID warps: XOR lane-ID by (Warp-ID >> 1)
 - Odd-ID warps: XOR lane-ID by ~(Warp-ID >> 1)

 Lane-ID	0	1	2	3	4	5	6	7
	000	001	010	011	100	101	110	111
For WO	0	1	2	3	4	5	6	7
For W1	0	1	2	3	4	5	6	7
For W2	0	1	2	3	4	5	6	7
For W3	0	1	2	3	4	5	6	7
For W4	0	1	2	3	4	5	6	7
For W5	0	1	2	3	4	5	6	7
For W6	0	1	2	3	4	5	6	7
For W7	0	1	2	3	4	5	6	7

- Observation: P-branches frequently exhibit highly skewed.
 - < Balanced permutation algorithm >
- Intuiti- Even-ID warps: XOR lane-ID by (Warp-ID >> 1)
 - Odd-ID warps: XOR lane-ID by ~(Warp-ID >> 1)

I ano ID	0	1	2	3	4	5	6	7
Lane-id	000	001	010	011	100	101	110	111
XOR-000	0	1	2	3	4	5	6	7
XOR-111	7	6	5	4	3	2	1	0
XOR-001	1	0	3	2	5	4	7	6
XOR-110	6	7	4	5	2	3	0	1
XOR-010	2	3	0	1	6	7	4	5
XOR-101	5	4	7	6	1	0	3	2
XOR-011	3	2	1	0	7	6	5	4
XOR-100	4	5	6	7	0	1	2	3
	XOR-111 XOR-001 XOR-110 XOR-010 XOR-101 XOR-011	Lane-ID 000 XOR-000 0 XOR-111 7 XOR-001 1 XOR-110 6 XOR-010 2 XOR-101 5 XOR-011 3	Lane-ID 000 001 XOR-000 0 1 XOR-111 7 6 XOR-001 1 0 XOR-110 6 7 XOR-010 2 3 XOR-101 5 4 XOR-011 3 2	Lane-ID 000 001 010 XOR-000 0 1 2 XOR-111 7 6 5 XOR-001 1 0 3 XOR-110 6 7 4 XOR-010 2 3 0 XOR-101 5 4 7 XOR-011 3 2 1	Lane-ID 000 001 010 011 XOR-000 0 1 2 3 XOR-111 7 6 5 4 XOR-001 1 0 3 2 XOR-110 6 7 4 5 XOR-010 2 3 0 1 XOR-101 5 4 7 6 XOR-011 3 2 1 0	Lane-ID 000 001 010 011 100 XOR-000 0 1 2 3 4 XOR-111 7 6 5 4 3 XOR-001 1 0 3 2 5 XOR-110 6 7 4 5 2 XOR-010 2 3 0 1 6 XOR-101 5 4 7 6 1 XOR-011 3 2 1 0 7	Lane-1D 000 001 010 011 100 101 XOR-000 0 1 2 3 4 5 XOR-111 7 6 5 4 3 2 XOR-001 1 0 3 2 5 4 XOR-110 6 7 4 5 2 3 XOR-010 2 3 0 1 6 7 XOR-101 5 4 7 6 1 0 XOR-011 3 2 1 0 7 6	Lane-ID 000 001 010 011 100 101 110 XOR-000 0 1 2 3 4 5 6 XOR-111 7 6 5 4 3 2 1 XOR-001 1 0 3 2 5 4 7 XOR-110 6 7 4 5 2 3 0 XOR-010 2 3 0 1 6 7 4 XOR-101 5 4 7 6 1 0 3 XOR-011 3 2 1 0 7 6 5

Outline

- GPU and SIMD compaction background
- Branch compactability and aligned divergence
- SLP SIMD Lane Permutation
- Evaluation

Simulation Environment

- GPUOcelot (r1865) based on TBC
 - Branch categorization
 - Compaction rate
 - SIMD lane utilization
- GPGPU-Sim (v2.1) based on TBC + CAPRI*
 - Performance study
 - Similar to QuadroFX-5800
 - uArch configurations detailed in paper
- Workloads
 - Chosen from CUDA-SDK(v3.0), Rodinia, Parboil, etc

Compaction Rate

- Definition: Fraction of <u>compactable</u> paths among all paths generated by divergent branches
- SLP: significantly improves P-branch compaction rate

Compaction Rate

- Definition: Fraction of <u>compactable</u> paths among all paths generated by divergent branches
- SLP: significantly improves P-branch compaction rate

Compaction Rate

• De - P-branches
TBC: average 3.2%
Odd_Even: average 28.9%
Balanced: average 71.5%

Ideal: average 72.7%

- D-branches

TBC: average <u>42.5%</u>

Odd_Even: average 45.2% Balanced: average 59.3%

Ideal: average <u>68.5%</u>

Average SIMD Lane Utilization

- Definition: average number of SIMD lanes actually executing and committing results
- Compaction rate doesn't tell '<u>how effectively</u>' warps are reduced

Average SIMD Lane Utilization

- Definition: average number of SIMD lanes actually executing
 - TBC: lowest utilization due to un-compacted P-branches
 - SLP:

Odd_Even: average 2.1% (max 18%) increase over TBC

Balanced: average 7.1% (max 34%) increase over TBC

Speedup

- Baseline: No compaction
- TBC+CAPRI only effective for 'irregular' applications
- SLP widens the range of applications that benefit from compaction techniques
 - 7.1% (max 34%) improvements on top of TBC+CAPRI

Conclusions

- Effectiveness of previous compactions limited to highly irregular applications
 - Only effective for D-branches
 - Non-compactable P-branches
- SLP enables instrumenting such lost opportunities
 - Requires simple re-mapping of thread-IDs to Lane-ID
 - Enhance compaction rate and SIMD utilization
- Throughput improvements
 - 7.1% (max 34%) improvements on top of TBC+CAPRI