

Predicting Air Quality in Milan

Dan Herweg

May 2019

The Air Quality in Milan is over 80% predictable using ensemble models and 5 variables, 4 of which are weather Summary

- Milan struggles with air quality, an important health issue. Decision makers could benefit from being able to predict the Air Quality Index on an hourly basis
- Using sensor data for weather and traffic to predict the index, it has been found that the AQI is over 80% predictable, mostly using weather variables. They are:
 - Atmospheric Pressure
 - Wind Speed
 - Temperature
 - Relative Humidity
 - Traffic
- The random forest and bagging model were most accurate, but the bagging model presented fewer large errors and should be preferred
- Data collection should continue, and the model should be retrained regularly to overcome initial weaknesses in analysis

Contents

- Background
 - I. Motivation
 - II. Methodology
- II. Data
 - I. Feature Construction
 - II. Data Exploration
- III. Model
 - I. Train/Test Split
 - II. Predicting AQI
 - **III.** Feature Selection
 - IV. Final Model
- IV. Conclusion
- V. Recommendation

I. Background

- I. Motivation
- II. Methodology

Milan has poor air quality Motivation

Milan has second worst smog in Europe – WHO

A report by the World Health
Organization has placed Milan just
behind Turin and just before Naples
as the three European cities with
the worst levels of atmospheric
pollution.

Article based on WHO report using 2016 data

Poor air quality affects citizens' health

Motivation

A "Pyramid of Effects" from Air Pollution

Fine particles can enter deep into the lungs and enter the blood stream. **Health impacts from particles include:**

- Premature death
- Non-fatal heart attacks
- Aggravated asthma

US Environmental Protection Agency

Predicting AQI could help decision makers introduce interventions that are predicted to manage air quality in real time improving citizens' health

I. Background

- I. Motivation
- II. Methodology

We will take sensor data from weather and traffic to predict AQI using machine learning methods, selecting on accuracy Methodology

 First, data from weather stations, pollution sensors, and traffic gates will be cleaned and explored. The Air Quality Index target variable will be constructed

 Next, the numerical and categorical AQI will be computed directly and by first predicting pollutants

 The best features will be selected and the best model will be chosen based on accuracy in predicting the categorical AQI

II. Data

- I. Feature Construction
- **II.** Data Exploration

Data had to be extracted from files generated by sensors, cleaned and merged

Feature Construction

Milan Sensor Locations

- The data had three main sources
 - Weather Sensors
 - Traffic Gates
 - Pollution Sensors (used to calculate AQI)
- Sensors measuring the same data were averaged
- Temporal data was added based on the timestamp

The quantity of initial features was very large **Feature Construction**

vveather reatures	maine realures
Wind Direction	Total Traffic Count
Wind Speed	Count by:
Temperature	-Vehicle Type
Relative Humidity	-Fuel Type

Global Radiation

Atmospheric Pressure

Net Radiation

Precipitation

Temporal Features

Traffic Features

Time of Day

Weekend/Weekday

-Vehicle Length

-Emissions Standard

-Presence of a Diesel

Particulate Filter

Pollutant Features

Weather Features

(For prediction/imputation of AQI components and calculation of AQI only)

PM10*

PM2.5

Ammonia

Benzene

Ozone*

Sulphur Dioxide

Total Nitrogen*

*AQI Component

Missing data was an issue

Feature Construction

Sensor Data Quality

White Areas = Missing Data

Pollution Sensors

Some sensors only had daily data

Some sensors had random periods of missing data

 Values for missing data were imputed using random forest on the type of data that had missing values

MADAS

Time

Noisy data was an issue

Feature Construction

Noisy time series data with potential for measurement errors was smoothed

Some features were constructed by grouping raw data

Feature Construction

 The vehicle length categories were selected by visually inspecting the distribution to identify a "small" mode, a "medium" mode, and a "large" tail

- A time of day variable was constructed by grouping hours as the following:
 - Morning: 5-11am
 - Mid day = 11am-3pm
 - Evening = 3-8pm
 - Night = 8pm-5am

AQI had to be calculated and then transformed to a classifier to serve as the target variables Feature Construction

The AQI numerical calculation:

$$I_{IQA} = \frac{I_{PM10} + \max(I_{NO2}, I_{O3})}{2}$$

Categorical classification of AQI values:

Valori dell'indice	Cromatismi	Qualità dell'aria
< 50		Buona
50-99	<u> </u>	Accettabile
100-149	<u> </u>	Mediocre
150-199	•	Scadente
> 200		Pessima

Air Quality Index score and class distribution

Feature Construction

II. Data

- **Feature Construction**
- **II.** Data Exploration
 - I. Univariate
 - II. Multivariate

Temperature had a normal distribution and declined into year end Data Exploration - Univariate

TER in DATA SCIENCE for COMPLEX ECONOMIC SYSTEMS

Wind speed was very right skewed, with high peaks

Data Exploration - Univariate

Traffic had daily and weekly patterns and a distribution with multiple peaks

Data Exploration - Univariate

TER in DATA SCIENCE for COMPLEX ECONOMIC SYSTEMS

Within traffic, different vehicle types had distinct behaviors

Data Exploration - Univariate

Freight Vehicles

Pronounced weekend troughsvs. less visible weekends

Right skewed distribution vs. multi-modal distribution

People Vehicles

Benzine, a pollutant not in the AQI calculation, looked similar to the AQI over time

Data Exploration - Univariate

However Ozone, a component of the AQI, showed a different pattern Data Exploration - Univariate

MASTER in DATA SCIENCE for COMPLEX ECONOMIC SYSTEMS

II. Data

- I. Feature Construction
- **II.** Data Exploration
 - I. Univariate
 - II. Multivariate

Pollutants are very correlated except ozone

Pollutants are very correlated except ozone

Weather data is not very correlated except the two radiation measures

Weather data is not very correlated except the two radiation measures

Traffic data is more correlated, and all positively correlated Data Exploration - Multivariate

Traffic Correlation Heat Map

Traffic data is more correlated, and all positively correlated Data Exploration - Multivariate

 The correlation of the number of Euro 5 emissions designated vehicles and the number of medium length vehicles rounds to 1!

III. Model

- I. Train/Test Split
- II. Predicting AQI
- **III. Feature Selection**
- IV. Best Model

Data limitations forced tradeoffs in choosing train and test sets Train/Test Split

- We do not have a lot of data
- The data ends in the end of December, an unrepresentative period
 - Intuitively, traffic patterns are expected to be anomalous
 - Technically, the target variable distribution is unbalanced
 - There is a secular decrease in temperatures and not a full year of data to compare the whole cycle
- Since a sequential train/test split may not be feasible at this time, a stratified sampling technique was used to split the data
 - As more data is collected, this should be revisited to reduce dependence between the training and testing set, especially when using smoothed data
 - A validation set could be added to account for the number of models used

The distributions of the classes in the train and test sets

Train/Test Split

The distributions of the classes in the train and test sets

Train/Test Split

III. Model

- I. Train/Test Split
- II. Predicting AQI
- **III. Feature Selection**
- IV. Final Model

A naïve result serves as a benchmark Predicting AQI

Guessing the average AQI gave a mean squared error of 5,070

Guessing the modal AQI class "Acceptable" yielded an accuracy of 39%

Regressing each variable on AQI yielded better MSE than the naïve model by construction

Predicting AQI

Single linear regressions did not improve accuracy over the naïve model

Predicting AQI

Multiple regression methods further reduced MSE vs. SLR. The best model predicted individual pollutants to compute AQI Predicting AQI

Predicting individual pollutants increased accuracy to 47% Predicting AQI

Ensemble classification algorithms were most accurate, with bagging at 84%, gradient boosting at 80% and random forest at 76% Predicting AQI

III. Model

- I. Train/Test Split
- II. Predicting AQI
- **III. Feature Selection**
- IV. Final Model

Several methods that have been used can inform our final choice of variables

Feature Selection

- Embedded methods: Random Forest Feature Importance
 - RF was by far the better model so this will be weighted more heavily

Penalization methods: Lasso Coefficients

Random forest rates wind speed, atmospheric pressure, and temperature as the most important features

Feature Selection

Global Radiation
was highly
correlated with Net
Radiation, had the
highest MSE in solo
linear regression,
and universally rates
below Net
Radiation, so we will
drop it

Lasso coefficients also indicate wind speed is most important Feature Selection

Weekend is surprisingly high here even though it was ranked very low in feature importance. It is also the only temporal variable. It will be included in the final analysis

III. Model

- I. Train/Test Split
- II. Predicting AQI
- **III. Feature Selection**
- **IV. Final Model**

Using a set of 10 features only improves accuracy from 84% to 86%, but parsimony is enhanced

Weekend is still not considered important by the random forest model

The model can halve its features to 5 with only a small decrease in accuracy

There is no great disparity in the importance of the remaining features

Random forest has 82% accuracy, misses by 2+ classes 1.4%, and missed by 3 classes 0.7%

Bagging also has accuracy of 82%, misses by 2+ classes 2.4% of the time, but does not miss by 3 or more classes Final Model

IV. Conclusion

The Air Quality Index is over 80% predictable on an hourly basis using mostly weather variables and ensemble classifiers

 Only one traffic variable was included in the final model, and it was about as important as each of the four weather variables present

Ensemble models are better at predicting air quality from weather and traffic

 This does not rule out that variables like the number of hybrid vehicles and diesel particulate filters could be valuable to air quality long term

V. Recommendation

Decision makers should use a bagging model based on a set of 5 variables to predict the AQI in Milan

Recommendation

- Bagging has accuracy of nearly double that of more interpretable models using linear regression, and the incidence of large errors is less than random forest
 - Large overestimates of air quality might be more beneficial to avoid. A
 recommendation to go outside when air quality is Bad could be more harmful to
 health, for example
- Few variables reduces data requirements and makes clear what is important to the model in the absence of interpretable estimators
- The five variables are
 - Atmospheric Pressure
 - Wind Speed
 - Temperature
 - Relative Humidity
 - Traffic

Data collection should continue, and the model should be retrained regularly to overcome initial weaknesses in analysis

Recommendation

A sequential train/test set was not practical due to small amounts of data, this
approach will need to be retested to see if it is robust going forward

 The model will also need to be revisited with data for other seasons, since it has only considered November and December

 Finally, since many models have been tested, more data should allow a training, testing and validation split of the data to prevent overfitting to the test data

