박상윤 Resume

Contact

• Mail: gogildong007@gmail.com

• linkedin: www.linkedin.com /in/sangyun-park

Education

건국대학교 기계공학과학사, 서울, 대한민국 (2009. 3. ~ 2016. 8.)

UCLA CVIB AI 인턴십 캘리포니아, LA, 미국 (2025년 3월 ~ 2025년 5월)

Professional Summary

산업 자동화, 로봇 프로그래밍, AI 구현 분야에서 폭넓은 경험을 쌓은 고도로 숙련된 로봇 공학 및 AI 엔지니어. AI 기반 비전 시스템 및 다중 에이전트 대화형 AI 솔루션 개발을 전문으로 합니다. 뛰어난 커뮤니케이션 및 리더십 능력과 함께 강력한 분석 및 문제 해결 능력을 보여줍니다.

▼ Multi-Agent Al System

Project Overview

의료 영상 분석을 자동화하고 지능적이고 사용자 친화적인 인터페이스를 제공하기 위해 OpenManus 프레임워크를 활용한 LLM 기반 자율 에이전트 시스템을 개발했습니다. 이 시스템은 전문 의료 영상 도구인 SimpleMind를 통합하여 복잡한 분석 작업을 간소화합니다. 주요 목표는 의료 전문가의 영상 데이터 분석 효율성을 높이고 진단 프로세스를 지원하는 것입니다.

Technical Architecture

The system consists of several key components:

1. Core Agent Types

- OpenManus Agent: OpenManus 프레임워크를 활용하는 중앙 자율 에이전트입니다. 자연어 요청을 처리하고, 분석 단계를 계획하며, 도구 상호 작용을 관리합니다. Qwen/QwQ-32B(또는 사용되는 특정 모델)와 같은 LLM으로 구동.
- SimpleMind: 이미지 분할, 분류, 특징 추출 등을 위한 다양한 알고리즘을 제공하는 외부의 포괄적인 의료 이미지 분석 플랫폼.

2. Key Technologies

- Al Agent Framework: OpenManus
- 대규모 언어 모델(LLM): Qwen/QwQ-32B
- Medical Imaging Al Tool: SimpleMind
- Data Handling: DICOM 형식 처리(주로 SimpleMind) 및 분석 결과물 처리 (JSON, CSV, 이미지 파일)
- **Prompt Engineering**: LLM이 의료 분석 요청을 정확하게 해석하고 SimpleMind 를 위한 파라미터를 생성하기 위한 특정 프롬프트 제작.

3. 세부 사항

- LLM에서 생성된 자연어 또는 파라미터를 SimpleMind 호환 명령 또는 API 호출로 변환하는 로직을 구현
- 보안을 위한 샌드박스 환경에서 SimpleMind 실행

• LLM이 다양한 요청을 SimpleMindTool의 정확한 매개변수로 변환할 수 있도록 프롬프트를 설계.

4. Results and Impact

- Natural Language Interface: 자연어를 사용하여 복잡한 이미지 분석을 요청할 수 있도록 지원.
- Automation of Analysis Workflows: 이미지 전처리, SimpleMind를 통한 특정 분석 알고리즘 적용, 결과 추출을 포함한 프로세스를 자동화.

5. Learnings and Insights

- Domain-Specific Prompt Engineering: 의료 이미징 도메인에 맞춘 프롬프트 를 제작.
- Complex System Integration & Debugging: LLM, 에이전트 프레임워크, 외부 전문 도구, Sandbox 등 여러 요소로 이루어진 시스템 빌딩.
- Agent-Tool Orchestration: 에이전트와 외부 툴 간의 협업을 통해 최적의 결과 도출.

▼ Robot Tool Image Detection

1. **Problem definition**: 산업에서 사용되는 로봇과 관련된 도구 및 다양한 장비를 완벽하게 구분하기 위해서는 안전 프로세스가 필요

2. 데이터 분석

3. 모델 아키텍처 - YOLOv5

4. Training setup

• Input: 3480 × 2160 × 3

• Moel: YOLOv5

Output: 3480 × 2160 × 2

• Loss function: YOLO loss

• Epoch: 300

Optimizer: Stochastic gradient descent (SGD)

Learning rate : adaptive

Total data set: 500

Train	Validation	Test
300	100	100

5. 결과

· mAP change according to Model size

metrics/mAP_0.5:0.95

• mAP change according to Batch size

▼ 경력

▼ 현대로템(학부과제)

연구 엔지니어 - 차량 동역학 분석 (2016년 8월 - 2016년 11월)

- 철도 차량 동역학에 대한 복잡한 수학적 모델을 분석
- 차량 성능 매개변수 평가를 위해 통계적 방법 적용
- 데이터 분석 및 시각화를 위한 기술 컴퓨팅 도구 활용
- 동적 거동 모델 검증을 위한 대규모 데이터 세트 활용

▼ ABB KOREA

프로젝트 엔지니어 - 산업 로봇 및 자동화 (2017 - 2019)

디스플레이 제조 프로젝트

LG디스플레이 베트남 디스플레이 라인 (2017.12 - 2018.06)

- 제조 공정 자동화를 위한 산업용 로봇 프로그래밍 및 통합 구축
- 복잡한 자동화 시스템에 대한 체계적인 문제 해결 접근 방식 구현
- 실시간 제어 시스템 및 센서 데이터 작업

LG디스플레이 E61, E62 로더 & 언로더 (2018.05 - 2019.03)

- 정밀한 제어가 필요한 LCD 자동화 시스템 구성
- 여러 센서 및 제어 시스템 통합
- 성능 데이터를 기반으로 시스템 파라미터 최적화

협동 로봇 구현

삼성 R&D 프로젝트 (2018.04 - 2018.11)

- 협동로봇이 작업자와 함께 안전하게 작업할 수 있도록 프로그래밍
- 센서 기반 안전 시스템 구현
- 작업 요구사항에 따른 로봇 이동 패턴 개발 및 최적화

제조 자동화 프로젝트

기아차 신형 R엔진 제조라인 (2018.11 - 2019.03)

- 엔진 블록 생산을 위한 제조 공정 자동화 구현
- 자재 취급 및 품질 관리를 위한 통합 로봇 시스템 구축
- 복잡한 제조 작업을 위한 논리적 시퀀스 프로그래밍

창원 LG 가전 팔레타이징 (2019.01~2019.03)

- 자동화된 팔레타이징 솔루션 설계 및 구현
- 효율적인 제품 취급을 위한 로봇 동선 최적화
- 기존 생산 라인과 통합 제어 시스템 구축

▼ 관련 기술 시연

- 복잡한 시스템 통합
- 수학적 모델링 및 분석
- 실시간 제어 시스템
- 공정 최적화
- 기술적 문제 해결
- 데이터 기반 의사 결정
- 체계적인 문제 해결
- 프로그래밍 및 로직 구현