

# Component-based Approach in Multivariate and Hierarchical Forecasting

Yangzhuoran Fin Yang Rob J. Hyndman George Athanasopoulos Anastasios Panagiotelis

# What people do



#### What we do



## **Australian tourism data**

- Australia comprises seven states and territories which can be divided into 76 regions
  - For example, Melbourne, Sydney, East Coast

# **Visitor nights**

The total number of nights spent by Australians away from home recorded monthly

# **Total and Region**



# **Melbourne and Sydney**



# Intuition

#### **Observation**

1. Better signal-noise ratio in the linear combination.

# Intuition

#### **Observation**

- 1. Better signal-noise ratio in the linear combination.
- 2. Similar patterns are shared in different series.

# Intuition

#### **Observation**

- 1. Better signal-noise ratio in the linear combination.
- 2. Similar patterns are shared in different series.

# One step further

Finding components that have better signal-noise ratio:

- 1. Easy to forecast;
- 2. Capturing the common signals;
- 3. Improving forecast of original series.

#### Literature

# Factor model (Bai and Ng, 2008)

- Linear transformation
- VAR models

# Dynamic Factor Machine Learning (DFML, De Stefani and Bontempi, 2021)

- Nonlinear transformations with an inherent two-way mapping
  - Autoencoder
- Machine learning forecast methods

#### **Our differences**

- Allowing nonlinear transformations
- Allowing transformations without an inverse function
- Mappings between forecasts of the components and forecasts of the original series
- Arbitrary forecast models

#### **Overview**



# **Overview**



# 1. Components: Linear

Taking the first q linear combinations

$$\mathbf{Y}_{T \times kk \times q} = \mathbf{C}_{T \times q},$$

where  $\boldsymbol{C}$  is the first q components,  $\boldsymbol{W}$  is the weighting matrix.

#### **Principal Component Analysis (PCA)**

Finding the weights matrix so that the resulting components **maximise variance**:

$$egin{aligned} \widehat{m{w}}_s = & rgmax ||m{Y}m{w}||_2, \quad s=1,\ldots,q \ & ext{subject to } m{Y}m{w}_s \perp \{m{Y}m{w}_1,\ldots,m{Y}m{w}_{s-1}\}\,, \end{aligned}$$

where **Y** is centred and  $||\cdot||_2$  denotes the L2 norm.

#### Forecastable Component (ForeC)

Forecastable components (Goerg, 2013) maximise **forecastability**  $\Omega(\cdot)$ , finding linear combinations with **most regular patterns**:

$$\begin{split} \widehat{\mathbf{w}}_s = & \underset{\mathbf{w} \in \mathbb{R}^k \times 1}{\operatorname{argmax}} \left( \Omega(\mathbf{Y}\mathbf{w}) \right), \quad s = 1, \dots, q \\ & \text{subject to } \mathbf{Y}\mathbf{w}_s \perp \left\{ \mathbf{Y}\mathbf{w}_1, \dots, \mathbf{Y}\mathbf{w}_{s-1} \right\}, \end{split}$$

and

$$\Omega\left(\mathbf{y}_{t}\right)=\mathbf{1}-H\left(\mathbf{y}_{t}\right),$$

where  $H(y_t)$  is The Shannon entropy (Shannon, 1948) of the spectral density of  $y_t$ 

# 1. Component: Nonlinear

# **Manifold learning**

Nonlinear dimension reduction that preserves the distances between points (relative locations of points) on a manifold

- Isomap, Laplacian Eigenmaps
- No back-transformation methods available

# 2. Forecast model

## **Arbitrary choice of forecast models**

- ARIMA
- Exponential smoothing
- Dynamic regression models
- Machine learning methods
- etc

# 3. Back-transformation

- Construct a training set
  - Bootstrap to increase the sample size
  - Expanding window to cover more sample values
  - Redo Component Extraction and Component Forecast on each bootstrapped set
- Fit a back-transformation model using the above as the sample

# **Construct Training Set**



# **Bootstrap**

## Bergmeir et al. (2016)

- Box Cox Transformation
  - Stabilising variance
- Seasonal and Trend decomposition using Loess (STL)
  - Separating series into trend, seasonality and the stationary remainder
- Moving Block Bootstrap (MBB)
  - Bootstrapping stationary remainder
- Adding back trend and seasonality. Inverting Box Cox transformation.

# **STL Decomposition**



# MMB on the remainder



# **Overview**



# **Construct Training Set**



# **Back-transformation Model**

- $\hat{\boldsymbol{C}}_h^B$ : h-step-ahead forecasts of components from different bootstraps at different lags
- **Y**<sup>B</sup>: the corresponding "real" values of the original series from bootstraps
- $\hat{c}_{T+h}$ : h-step-ahead forecasts of components of the original series
- $\hat{\mathbf{y}}_{T+h}$ : h-step-ahead forecasts of the original series
- **S**: collection of seasonal dummies corresponding to  $\hat{\boldsymbol{C}}_h^{\mathrm{B}}$
- **s**<sub>T+h</sub>: seasonal dummies at time T + h

$$\mathbf{x} = \begin{bmatrix} \hat{\boldsymbol{c}}_h^{\mathsf{B}} & \boldsymbol{s} \end{bmatrix}$$

# **Back-transformation Model**

$$\hat{\boldsymbol{y}}_{T+h} = f(\hat{\boldsymbol{c}}_{T+h}, \boldsymbol{s}_{T+h})$$

## **Discounted Least Squares (DLS)**

$$\hat{m{y}}_{T+h} = \hat{m{B}}' egin{bmatrix} \hat{m{c}}_{T+h} \ m{s}_{T+h} \end{bmatrix}$$

$$\hat{\mathbf{B}} = (\mathbf{X}'\mathbf{U}\mathbf{X})^{-1}\mathbf{X}'\mathbf{U}\mathbf{Y}^{\mathsf{B}},$$

#### Results

# **Performance Measure (cross-validation)**

$$\textit{mRMSSE} = \frac{1}{\textit{Mk}} \sum_{j}^{\textit{M}} \sum_{i}^{\textit{k}} \sqrt{\frac{(y_{T-j+h,i} - \hat{y}_{T-j,h,i})^2}{\frac{1}{T-j-\nu} \sum_{t=1+\nu}^{T-j} (y_{ti} - y_{t-\nu,i})^2}}.$$

# Multiple Comparisons with the Best (MCB)

Compare Average ranks of mRMSSE from independent simulation or cross-validations (Koning et al., 2005)

#### Forecast model

Automatically selected ExponenTial Smoothing (ETS) model using AICc

# **Australian tourism: PCA**



# **Conclusion**

- Generic method to forecast using lower dimensional components with arbitrary choices of components and forecast models
- Robust to the number of components
- PCA and ISOMAP are competitive in short-term forecasts
- Laplacian Eigenmaps show better performance in longer-term forecasts

# **Appendix**

# Isomap

- Construct Nearest Neighbour Graph
- Estimate the Geodesic distances (distances along a manifold)
- Apply Classical MDS
  - Input distances
  - Output coordinates in a lower dimension with similar distances

#### **Other Components**

Laplacian Eigenmaps, etc

# Isomap



# Isomap



# **Components Clustering**

#### **Problem**

- Some components do not have order.
  - e.g. ForeCA
- Components from the bootstraps should provide similar information about the future

# **Components Clustering: Before**



# **Components Clustering**

#### Solution: Feature-based clustering

- Calculate features from each component
  - Highly comparative time-series analysis: Fulcher and Jones (2017)
  - ► Talagala et al. (2023)
- Cluster the features
  - K-means with cannot-link constraints: COP kmeans Wagstaff et al. (2001)

# **Components Clustering: After**



# **Discounted Least Squares (DLS)**

$$\textit{u} = \delta (\mathbf{1} - \delta)^{\text{YearLag}}$$



# **Box Cox Transformation**

# Modified version of Bickel and Doksum (1981)

$$w_t = egin{cases} \log(y_t) & ext{if } \lambda = 0; \\ (\operatorname{sign}(y_t)|y_t|^{\lambda} - 1)/\lambda & ext{otherwise}, \end{cases}$$

#### **Reverse transformation**

$$y_t = egin{cases} \exp(\mathbf{w}_t) & \text{if } \lambda = \mathbf{0}; \\ \operatorname{sign}(\lambda \mathbf{w}_t + \mathbf{1}) |\lambda \mathbf{w}_t + \mathbf{1}|^{1/\lambda} & \text{otherwise.} \end{cases}$$

# **Box Cox Transformation**



## References i

- Jushan Bai and Serena Ng. Large dimensional factor analysis. *Foundations and Trends*® *in Econometrics*, 3(2):89–163, 2008. ISSN 1551-3076. doi: 10.1561/08000000002. URL http://dx.doi.org/10.1561/0800000002.
- Christoph Bergmeir, Rob J Hyndman, and José M Benítez. Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. International J Forecasting, 32(2):303–312, 1 April 2016. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2015.07.002. URL https://www.sciencedirect.com/science/article/pii/S0169207015001120.
- Peter J Bickel and Kjell A Doksum. An analysis of transformations revisited. J. American Statistical Association, 76(374):296–311, June 1981. ISSN 0162-1459, 1537-274X. doi: 10.1080/01621459.1981.10477649. URL https:

//www.tandfonline.com/doi/abs/10.1080/01621459.1981.10477649.

#### References ii

- Jacopo De Stefani and Gianluca Bontempi. Factor-Based framework for multivariate and multi-step-ahead forecasting of large scale time series. Frontiers in Big Data, 4:690267, 10 September 2021. ISSN 2624-909X. doi: 10.3389/fdata.2021.690267. URL http://dx.doi.org/10.3389/fdata.2021.690267.
- Ben D Fulcher and Nick S Jones. hctsa: A computational framework for automated Time-Series phenotyping using massive feature extraction. *Cell Systems*, 5(5):527–531.e3, 22 November 2017. ISSN 2405-4712. doi: 10.1016/j.cels.2017.10.001. URL http://dx.doi.org/10.1016/j.cels.2017.10.001.
- Georg Goerg. Forecastable component analysis. In *Proceedings of the 30th International Conference on Machine Learning*, pages 64–72, Atlanta, Georgia, 2013. URL http://proceedings.mlr.press/v28/goerg13.pdf.

#### References iii

- Alex J Koning, Philip Hans Franses, Michèle Hibon, and H O Stekler. The M3 competition: Statistical tests of the results. *International J. Forecasting*, 21 (3):397–409, 1 July 2005. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2004.10.003. URL https://www.sciencedirect.com/science/article/pii/S0169207004000810.
- C E Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):379–423, July 1948. ISSN 0005-8580. doi: 10.1002/j.1538-7305.1948.tb01338.x. URL http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.
- Thiyanga S Talagala, Rob J Hyndman, and George Athanasopoulos. Meta-learning how to forecast time series. *J Forecasting*, 2023. doi: 10.1002/for.2963. URL https://doi.org/10.1002/for.2963.
- Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means clustering with background knowledge. In Proceedings of the 18th International Conference on Machine Learning, pages 577–584, 2001. URL https://web.cse.msu.edu/~cse802/notes/ConstrainedKmeans.pdf.