James Ruse Agricultural High School - Trial HSC 2002 - Mathematics

QUESTION 1

(a) Find the exact value of $\sin\left(\frac{\pi}{4}\right)$.

2

l

2

2

2

3

2

3

2

- (b) 1500 identical sheets of paper are laid on top of each other to form a pile of sheets 12cm high. Find the thickness of an individual sheet of paper.
 Give your answer in millimeters.
- (c) Factorise $2p^2 + p 6$.
- (d) Solve $2\cos\theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$.
- (e) Simplify $\frac{3}{x+1} \frac{2}{x^2+1}$.
- (f) Evaluate $\int_{0}^{4} y \sqrt{y} dy$

QUESTION 2 (START A NEW PAGE)

(a) Differentiate with respect to x:

$$(i) \qquad x^4 = \frac{3}{x},$$

$$(ii) = \log_e (7 - 3x).$$

- (b) Find the equation of the tangent to $y = \sqrt{x+3}$ at the point (1,2).
- (c) (i) The lines y = 2x and x + 2y = 20 meet at point A. Find the coordinates of A.
 - (ii) The line x + 2y = 20 meets the x-axis at the point B and M is the midpoint of AB. Find the coordinates of the points B and M.
 - (iii) Given that O is the origin, show that ΔOAM is isosceles.

QUESTION 3 (START A NEW PAGE)

(a) The gradient of a curve y = f(x) is given by $f'(x) = \frac{2x^2 + 1}{x}$. Find the equation of the curve if it passes through the point (1,3).

1

4

2

3

2

4

3

- (b) An arc PQ has length 12cm and is drawn on the circumference of a circle with radius8cm. Find
 - (i) the size of the angle subtended at the center of the circle by the arc PQ,
 - (ii) the length of the chord PQ, correct to 2 decimal places.
- (c) (i) Sketch the parabola $y = x^2 4x 12$, clearly showing its intercepts with the coordinate axes and the coordinates of its vertex.
 - (ii) Hence, or otherwise, solve $x^2 4x 12 \ge 0$.

QUESTION 4 (START A NEW PAGE)

- (a) Given the parabola $y = \frac{1}{2}x^2 + 3x + 1$,
 - (i) Express the equation in the form $(x-h)^2 = 4a(y-k)$, where a, h and k are constants.
 - (ii) Write down the coordinates of the focus of this parabola.
- (b) ABCD is a parallelogram. ΔAPB and ΔBQC are equilateral. (see diagram)
 - (i) Prove that $\triangle ABQ = \triangle PBC$.
 - (ii) Find the size of the acute angle between AQ and PC.(Give reasons)

QUESTION 5 (START A NEW PAGE)

- (a) The 4th term of an Arithmetic Progression is 30 and its 10th term is 54. Find
 - (i) the common difference and the first term,
 - (ii) the sum of the first 20 terms.
- (b) An object, initially at rest at the origin, moves in a straight line with velocity $v ms^{-1}$ so that v = 4t(5-t) where t is the time clapsed in seconds. Find
 - (i) the acceleration of the object at the end of the third second,
 - (ii) an expression for the displacement x metres of the particle in terms of t,
 - (iii) the position of the particle when it again comes to rest.

QUESTION 6 (START A NEW PAGE)

- (a) $\triangle ABC$ is right-angled at B and DE is perpendicular to AC (see diagram)
 - (i) Prove that $\triangle ABC$ and $\triangle CDE$ are similar.
 - (ii) Prove that $BC \times CE = AC \times CD$
 - (iii) Prove that: $DE^2 = AD \times DC - BE \times EC$

4

2

2

3

3

- (b) (i) Sketch the parabola $y = x^2 4x$ and the line y = 2x. Clearly show their points of intersection.
 - (ii) Find the area bounded by the above curves.

QUESTION 7 (START A NEW PAGE)

- (a) Water flows into and out of a tank at a rate (in littes/hour) given by $R = 2\pi \sin \pi t$. If the tank is initially empty at 10am, find:
 - (i) The first time (after 10am) when the tank is filling at its greatest rate.
 - (ii) An expression for the volume (V litres) of water in the tank after t hours.

ļ

3

2

2

3

3

1

5

- (iii) The maximum volume of water in the tank.
- (b) Given the curve $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, x > 0.
 - (i) Find the coordinates of any stationary points and determine their nature.
 - (ii) Find the coordinates of any points of inflexion.
 - (iii) Sketch the curve showing all stationary points and inflexion points.

QUESTION 8 (START A NEW PAGE)

- (a) Prove that the line with equation $y = \rho x + (1 2p^2)$ is a tangent to the parabola $x^2 = 8(y 1)$ for all values of p.
 - (ii) Find the angle between the tangents drawn to $x^2 = 8(y-1)$ from the point (0,-7).
- (b) (i) If $f(x) = \sin^2 x$, find f'(x).
 - (ii) The area bounded by the curve $y = \sin x + \cos x$ and the x-axis for $0 \le x \le 2\pi$ is rotated one revolution about the x-axis. Find the volume of the solid formed.

QUESTION 9 (START A NEW PAGE)

- (a) In a hat are six red and four green discs. Two discs are chosen at random from the hat one disc before the other without replacing the first disc that was chosen.
 - (i) Draw a probability tree diagram for the above information.

Find the probability that:

- (ii) two red dises are chosen,
- (iii) the second disc chosen is green,
- (iv) at least one green is chosen.
- (b) Figure 1 shows the end view of a small rectangular aquarium filled with water to a depth of 1 metre. The end of the tank has dimensions 2m by 1.5m. Figure 2 shows the same aquarium with the base tilted 30° to the horizontal.

Figure 1

Figure 2

2

]

3

- (i) Show that the length $SB = \frac{\sqrt{3} 1}{\sqrt{3}}$.
- (ii) Find the height of R above the horizontal.

QUESTION 10 (START A NEW PAGE)

- (a) The number (N) of bacteria in a colony after t minutes is given by the formula $N = 200e^{kt}$. If the population grows to 5000 in 40 minutes, find
 - (i) the exact value of k_s
 - (ii) the number of bacteria in the colony at the end of 1 hour.
- (b) The velocity of a train increases from 0 to V at a constant rate a. The velocity then remains constant at V for a certain time. After this time the velocity decreases to 0 at a constant rate b. Given that the total distance travelled by the train is s and the time for the journey is T,
 - (i) Draw a velocity-time graph for the above information,
 - (ii) Show that the time (7) for the journey is given by $T = \frac{s}{V} + \frac{1}{2}V\left(\frac{1}{a} + \frac{1}{b}\right)$.
 - (iii) When a, b and s are fixed, find the speed that will minimize the time for the journey.

THIS IS THE END OF THE EXAMINATION PAPER

QUESTION !

(e)
$$\frac{3(x-1)-2}{(x-1)(x+1)} = \frac{3x-5}{x^2-1}$$

$$(\frac{5}{5}) \int_{1}^{3} y^{\frac{1}{2}} dy = \left(\frac{2}{5}y^{\frac{5}{2}}\right)^{\frac{1}{2}}$$

$$= \frac{2}{5}\left(\frac{45^{2}-15^{2}}{32-1}\right)$$

$$= \frac{2}{5}\left(\frac{32-1}{5}\right)$$

$$= \frac{62}{5}$$

QUESTION 2

$$(a)(i) \quad y = x^{4} - 3x^{-1}$$
$$y' = 4x^{3} + 3x^{-2}$$
$$= 4x^{3} + \frac{3}{x^{2}}$$

(ii)
$$y' = \frac{-3}{7-3*}$$

(b)
$$y = (x+3)^{k}$$

 $y' = \pm (x+3)^{k}$
 $= \frac{1}{2\sqrt{x+3}}$

when
$$x = 1$$
, $y' = \frac{1}{2\sqrt{y}}$

$$= \frac{1}{4}$$

Tanget:
$$y-2=\frac{1}{2}(x-1)$$

 $4y-8=x-1$

$$x = 4$$
 $y = 8$
 $A = (4,8)$

(ii) at $B, y = 0$: $x = 20$
 $B = (20,0)$
 $M(\frac{20+0}{2}, 0+8) = M(12, 4)$

(iii) $OA = \sqrt{u^2 + 8^2}$
 $= \sqrt{80}$
 $PM = \sqrt{(-8)^2 + 4^2}$
 $= \sqrt{80}$
 $= \sqrt{60}$
 $= \sqrt$

QUESTION 3

(a)
$$f(x) = 2x + 1/x$$

 $f(x) = x^2 + 4x + c$
 $at(1/3) = 1 + 4/1 + c$

$$(c) = (x-6)(x+2)$$

$$x-int: (-2,0), (6,0)$$

QUESTION 4

(a) (i)
$$x^{2}-6x = 2y-2$$

 $x^{2}-6x+9 = 2y\Theta7$
 $(x-3)^{2} = 2(y+32)$
 $(x-3)^{2} = 4(t)(y+32)$
(ii) $-focus(3,4)$
 $(3,-3)$

(b) (i) In A ABR & APBC

AB = PB (equal moles of equilated AAPB)

BR = BC (equal moles of equilated ABRC)

ABR = PBC (both 600+ ABC all angles of equilated theoryte we 600)

(ii) Let BPC = 0

(ii) Let BPC = 0

(BAQ = 0 (corresponding angles
en congruent triongles)

Let AB & PC meet at S.

PSA = 0°+60° (exterior angle

of DPSB equals sum of opposite

entirer angle, PBS = 60°)

Let All or PC meet of T

.: PTA = 60° (exterer angle of MATT

equals some of opposite interior angles)

.: Age of angle = 60°

QUESTIONS

(a)
$$T_{4} = a + 3d \Rightarrow a + 3d = 3c - C$$
 $T_{70} = a + 9d \Rightarrow a + 9d = 5c - C$

(a) $C = 0$: $C = 2c$
 $C = 0$: $C = 2c$

= 30 - 12 = 18

: Commond diff = 4 | first term = 18

(ii) $S_{2a} = \frac{\pi}{L} (2a + (n - v)d)$ = 10(36 + 19(4))= 1/20

(b)(i) $V = 20t - 4t^2$ a = 20 - 8twhen t = 3, a = 20 - 2x $= -4 \text{ ms}^{-2}$. 05%) cont

(ii)
$$x = 10t^2 - 4t^3 + c$$

when $t = 0$, $x = 0$ is $c = 0$
 $x = 10t^2 - \frac{1}{2}t^3$
(iii) when $v = 0$, $4t(s - t) = 0$
 $t = 0.5$
when $t = 5$, $x = 10(5)^2 - \frac{1}{2}(5)^3$
 $= 83\frac{4}{3}$ m.

QUESTION 6

(a)(i) La ABC & DEDC

ABC = EDC (Lott 90°)

ACB = ECD (common)

: BABCM DEDC (equiangular)

(ii)
$$\frac{BC}{DC} = \frac{AC}{EC}$$
 (ratio of covernment)

BCXEC = ACXDC

(iii)
$$AC = AD + DC$$

$$BC = BE + EC$$

$$(BE + EC) EC = (AD + DC) DC$$

$$BE \cdot EC + EC^{2} = AD \cdot DC + DC^{2}$$

$$EC^{2} - DC^{2} = AD \cdot DC - BE \cdot EC$$

$$ED^{2} = AD \cdot DC - BE \cdot EC$$

$$(Amce EC^{2} - DC^{2} = ED^{2} \text{ by Pylog}.$$
Theorem)

$$y = 2n y = x^{2} - 4n$$

$$x^{2} - 6x = 0$$

$$x(x - 6) = 0$$

$$x = 0.6$$

$$x = 0.6$$

$$x = 6.9 = 12 (6,12)$$

$$(11) A = \int_{0.5}^{6} 2n - (x^{2} - 8x) dn$$

$$= \int_{0.5}^{6} 6x - x^{2} dn$$

$$= \int_{0.5}^{6} 6x - x^{2} dn$$

$$= \int_{0.5}^{6} 3x^{2} - \frac{1}{3}x^{3} dn$$

$$= 3/6 u^{2}$$

QUESTION 7

(a) (i) $R = 2\pi \sin \pi t$ $\max R$ when $\pi t = \pi k$ t = k t =

(b)(i)
$$y = x^{1/2} + x^{-1/2}$$

$$y' = 4x^{-1/2} - 4x^{-3/2}$$

$$= \frac{1}{2\sqrt{x}} - \frac{1}{2\pi\sqrt{x}}$$

$$\int_{a}^{b} x \, 5 + af \, pf \, y' = 0$$

$$= \frac{1}{2\sqrt{x}} - \frac{1}{2\pi\sqrt{x}} = 0$$

Q7 (cent)

$$2\pi \pi = 2\pi$$

$$2\pi (\pi - 1) = 0$$

$$\mu = / (\pi > 0)$$

$$\omega = / (\pi > 0)$$

$$\omega = \pi + 3\pi$$

$$\psi'' = -\frac{1}{4}\pi + \frac{3}{4}\pi$$

when n=/, y"= - + + =

... concerc up ilreal man to.

(ii) g'' = 0 $\frac{-1}{2\pi \sqrt{\pi}} + \frac{3}{4\pi^2 \sqrt{\pi}} = 0$

$$u^{L} \int x - 3x \int k = 0$$

$$u \int k (x - 3) = 0$$

$$u = 3 \qquad (u > 0)$$

· ~		3	- -
y ⁱⁱ	γν >•	0	120

Since curve is cts dw /4x44 &

concerning changes then there is an

in floring pt when n = 3 n = 3, $y = 13 + \frac{1}{53}$ = 413

QUESTION 8 (a)(i) x=8y-8 — @ y=px+(1-2p2) -@ sul & into 0 2 = 8px+8(1-2p2)-8 = 8px - 16px 2 - 8px + 16p = =0 quadratic has only one solution of 4=0 4% line well be a foregent to parabola 1= (-8p) -4(18p) = 54p - 64p ~ 20 In all p I have in fangent to poststale (1) if forgets pass thou (9-7) -7 = /-2p2 20 = 8 $\frac{1}{2}$ /5/upe = 2-: Mape of forgato one ±2. : angle (0) between fargent 1 an x xxis is given by fam 0=2 JO = 63°26' caugh between years & tengent = 90-0 . angle between tangento = 53°08' (b) (i) f(x) = 25 mx cox (ii) V = 11 J (sin + con) dn = 1 f Sin m + com n + 2 sinn con dy

$$= \pi \int_{0}^{2\pi} 1^{+} 2\sin x \cos x \, dx$$

$$= \pi \int_{0}^{2\pi} 1^{+} 2\sin x \cos x \, dx$$

$$= \pi \int_{0}^{2\pi} x + \sin^{2} x \int_{0}^{2\pi}$$

$$= \pi \int_{0}^{2\pi} (2\pi + 0) - (0 + 0)^{\frac{3}{2}}$$

$$= 2\pi^{2} + \alpha^{3}$$

(iii)
$$P(244 G) = P(RG) + P(GG)$$

= $\frac{6}{10} \times \frac{4}{9} + \frac{4}{10} \times \frac{3}{9}$
= $\frac{2}{5}$

$$\frac{XA}{\lambda} = \frac{1}{2}am3a'$$

$$AX = \frac{2}{3}\sqrt{33}$$

Also over ARSB = over APQB = 2

Let SB = x (= Rx pure xRSB 13 4

partlely over) $(-\frac{1}{2}(2)(x+3/53+x) = 2$ $2x + \frac{2}{53} = 2$ $x = 1 - \frac{1}{53}$ $x = \sqrt{3} - 1 = 5B$.

(ii)
$$\frac{\text{kinght}}{RA} = \frac{1}{53} \frac{1}{53}$$

$$h = \frac{\sqrt{3} + 1}{\sqrt{3}} \times \frac{\sqrt{3}}{2}$$

$$\text{hught}} = \frac{\sqrt{3} + 1}{2}$$

QUESTION 10 (a)(i) $5000 = 200e^{40k}$ $25 = e^{40k}$ $40k = \ln 25$ $k = \ln 25/40$ (ii) t = 60 N = 200e= 250000

$$OA = PM = V$$

$$OM = BC = V$$

$$OM = A$$

$$OM = V/A$$

$$OM =$$

AMONG OABC = VT .

April y OABC = GRENDOPM + tryggum OPDC + Over ANRC

$$= \frac{1}{2}V_{A}^{2} + S + \frac{1}{2}V_{B}^{2}.$$

$$\therefore VT = \frac{V^{2} + \frac{V^{2}}{2b} + S}{2b}$$

$$T = \frac{S}{V} + \frac{V}{2a} + \frac{V}{2b}$$

(iii)
$$\frac{dT}{dv} = \frac{-s}{v^2} + \frac{1}{2} \left(\frac{1}{a^2} + \frac{1}{b^2} \right)$$

for max/pen dl = 0

$$\frac{S}{V^2} = \frac{b+a}{5\pi b}$$

$$\frac{2abc}{a+6} = V$$

$$V = \sqrt{\frac{2abs}{a+6}} \qquad (V > a)$$

$$\frac{d^2T}{dy^2} = \frac{25}{V^3}$$

$$>0 \text{ since } V>0$$

concave up in local mum to !

If since the function of T 11 cts

Le v > 0 & there is only one to which is a local men to their it

which is a local men to their it

when the absolute mum to.

speed = \[\frac{2abs}{atb} = \]

<u>--</u>=-