Chapter 2: Instructions: Language of the Computer 2.4. Signed and Unsigned Numbers

Arquitetura e Organização de Computadores

- Base de um sistema numérico:
 - Quantidade de algarismos disponíveis para representar todos os números
 - Hexadecimal: 16 algarismos
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Decimal: 10 algarismos
 - -0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Octal: 8 algarismos
 - -0, 1, 2, 3, 4, 5, 6, 7
 - Binário: 2 algarismos
 - -0, 1
- Questão 01: Computadores trabalham com base 2. Por quê?

- Bit menos significativo:
 - É o mais à "direita", cujo expoente é 0 (zero)
- Bit mais significativo:
 - É o mais à "esquerda", cujo expoente é i
- Em geral, em qualquer base, o valor do i-ésimo algarismo:
 - d_i x baseⁱ
 - i aumenta da direita para esquerda, começando com 0 (zero)
- Em um número com **n** algarismos e base **b**:
 - Total de números: bⁿ
 - Amplitude: de 0 até bⁿ 1

$$x = \sum_{i=n-1}^{0} x_i \times b^i = x_{n-1} \times b^{n-1} + x_{n-2} \times b^{n-2} + \dots + x_1 \times b^1 + x_0 \times b^0$$

- Quando trabalhamos com bases diferentes, costumamos colocar um número subscrito que indica a base. Por exemplo:
 - -1011_{2}
 - -1011_{8}
 - -1011_{10}
 - -1011_{16}
- Questão 02: Calcule o valor em decimal dos números acima.
- Transformação entre bases:
 - Algumas podem ser feitas diretamente (não todas)
 - Na dúvida, transforme para base decimal e, só depois, para a base desejada

• Em RISC-V, com palavras de 32 bits, temos:

- A representação numérica em base binária que vimos até agora é perfeita para números positivos e para o zero. Mas e os números negativos?
- Questão 03: como os números negativos podem ser representados em base binária?

- Solução inicial: usar um bit <u>extra</u> para representar o sinal
 - Esse bit extra é chamado de SINAL-MAGNITUDE
- Problemas com o bit de sinal:
 - Onde colocar?
 - 1100110
 - 1001101
 - Hardware para realizar somas é mais complicado, pois uma soma pode resultar em números positivos ou negativos
 - Teremos 2 representações para o número 0 (zero), um zero positivo e um zero negativo:
 - 1000000
 - 00000001

- Solução escolhida: complemento de dois
 - Não usar um bit extra
 - Usar o bit mais significativo, chamado de SINAL:
 - Se for 0: o número é positivo
 - Se for 1: o número é negativo

```
00000000 00000000 00000000 00000010 two
01111111 11111111 11111111 111111101_{\rm two} = 2,147,483,645_{\rm ten} 011111111 11111111 11111111 11111110_{\rm two} = 2,147,483,646_{\rm ten} 01111111 11111111 11111111 11111111_{\rm two} = 2,147,483,646_{\rm ten} 01111111 11111111 11111111 11111111_{\rm two} = 2,147,483,647_{\rm ten} 10000000 00000000 00000000 00000000_{\rm two} = -2,147,483,648_{\rm ten} 10000000 0000000 00000000 00000001_{\rm two} = -2,147,483,647_{\rm ten} 10000000 0000000 00000000 00000001_{\rm two} = -2,147,483,646_{\rm ten}
```

- Cuidados ao usar complemento de dois
 - O menor número "positivo" é zero:
 - 0000000 0000000 0000000 00000000
 - O maior número positivo $(2^{31} 1)$ é 2.147.483.647:
 - 01111111 11111111 11111111 11111111
 - O menor número negativo (-2³¹) é -2.147.483.648:
 - 10000000 00000000 00000000 00000000
 - O maior número negativo (-2º) é -1:
 - 11111111 11111111 11111111 11111111
 - Um dos números negativos não tem correspondente positivo:
 - -2.147.483.648
- É complicado mas, por incrível que pareça, isso simplifica o hardware
- Amplitude: (-2ⁿ⁻¹) até (2ⁿ⁻¹ 1)

- Como saber qual número estamos querendo dizer quando usamos complemento de dois?
 - Igual antes, mas usando base negativa no bit mais significativo, e bases positivos no resto:

$$x = (x_{n-1} \times -b^{n-1}) + \left(\sum_{i=n-2}^{0} x_i \times b^i\right)$$
$$= (x_{n-1} \times -b^{n-1}) + (x_{n-2} \times b^{n-2} + x_{n-3} \times b^{n-3} + \dots + x_1 \times b^1 + x_0 \times b^0)$$

- Questão 04: que números são esses? (é para ralar mesmo...)
 - -10000000 111111111 10101010 01010101₂
 - 11111111 11111111 11111111 11111100₂
 - $-10101010 10101010 10101010 10101010_{2}$

- Números sem sinal:
 - Unsigned
- Números com sinal:
 - Signed
- O RISC-V tem duas instruções para tratar essas diferenças:
 - 1bu (load byte unsigned)
 - Preenche à esquerda com zeros
 - 1b (load byte)
 - Mantém tudo corretamente com o sinal
- Endereçamento de memória não tem números negativos

Algumas linguagens de programação são explícitas (C):

Data Types	Memory Size	Range
char	1 byte	-128 to 127
signed char	1 byte	-128 to 127
unsigned char	1 byte	0 to 255
short	2 byte	-32,768 to 32,767
signed short	2 byte	-32,768 to 32,767
unsigned short	2 byte	0 to 65,535
int	2 byte	-32,768 to 32,767
signed int	2 byte	-32,768 to 32,767
unsigned int	2 byte	0 to 65,535
short int	2 byte	-32,768 to 32,767
signed short int	2 byte	-32,768 to 32,767
unsigned short int	2 byte	0 to 65,535
long int	4 byte	-2,147,483,648 to 2,147,483,647
signed long int	4 byte	-2,147,483,648 to 2,147,483,647
unsigned long int	4 byte	0 to 4,294,967,295
float	4 byte	
double	8 byte	
long double	10 byte	

- Questão 05: represente os seguintes números em complemento de dois, com palavras binárias de 8 bits
 - -12_{10}
 - -25_{10}
 - -77_{10}
 - -120_{10}
- Tem algum macete?
 - Claro, tem 2! Já vamos ver, primeiro você tem que roer o osso...

- "1º Macete" para trabalhar com complemento de dois:
 - Considere uma palavra de 4 bits, com sinal:
 - Considere um número qualquer: 0111₂
 - Faça a <u>inversão</u> de todos bits: 1000₂
 - Faça a soma desses números: 0111_2 $+ 1000_2$ $= 1111_2$
 - Agora perceba: $1111_2 = -1_{10}!$ Então:

$$x + \overline{x} = -1$$
$$x + \overline{x} + 1 = 0$$
$$\overline{x} + 1 = -x$$

• Questão 06: Transforme 2_{10} em 2_2 , usando palavra de 32 bits. Depois ache a representação em complemento de dois do número -2_{10} . Ao final, faça uma verificação de que tudo está correndo, achando a representação binária (em 32 bits) do número $-(-2_{10})$.

- "2º Macete" para trabalhar com complemento de dois:
 - Como estender um número com n bits para um maior?
 - Basta pegar o bit de sinal e replicar até preencher!
 - Exemplo: -2₁₀

```
Palavra com 16 bits: 11111111 11111110
```

Palavra com 32 bits: _____ 11111111 1111110

Palavra com 32 bits: 11111111 11111111 11111111 11111110

Você entendeu?

- Questão 07: Calcule o seguinte:
 - a) Qual é o valor decimal deste número em complemento de dois (palavra com 64 bits)?

b) Se o número binário acima fosse um número unsigned de 64 bits, qual seu valor decimal?

Observações

- Existem outras formas de representar números negativos, mas não são muito usadas e não vamos ver
 - Complemento de um
 - Notação enviesada
- Até agora só vimos a representação de números inteiros.
 Números de ponto flutuante (com vírgula) são outros quinhentos...
- Se você estiver com dúvidas em transformações de bases, treine! É importante que, pelo menos, você saiba transformar entre binário, decimal e hexadecimal.

Hora de Esfriar a Cabeça!

