Лабораторная работа по "Информатике" №6

Терновский И.Е, Р3111 02.12.2021

2^0	2^1	2^2	2^3	2^4	2^5	2^6	27
28	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}	2^{14}	2^{15}
2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}	2^{23}
2^{24}	2^{25}	2^{26}	2^{27}	2^{28}	2^{29}	2^{30}	2^{31}
2^{32}	2^{33}	2^{34}	2^{35}	2^{36}	2^{37}	2^{38}	2^{39}
2^{40}	2^{41}	2^{42}	2^{43}	2^{44}	2^{45}	2^{46}	2^{47}
2^{48}	2^{49}	2^{50}	2^{51}	2^{52}	2^{53}	2^{54}	2^{55}
2^{56}	2^{57}	2^{58}	2^{59}	2^{60}	2^{61}	2^{62}	2^{63}

Рис. 1.

число зерен в формуле Евклида определяется выражением 2^n-1 . Если это число простое, то, умножив его на число в предыдущей клетке, то есть на 2^{n-1} , получим совершенное число. (см. рис. 1).

Простые числа ряда 2^n-1 называют числами Мерсена по имени французского математика XVII века, занимавшегося их изучением *). На

*) См. также «Квант», 1971, №8, с. 3.

рисунке 1 закрашены те клетки, в которых после вычитания 1 получаются числа Мерсенна. Таких клеток на доске 9 - им соответствуют первые девять совершенных чисел.

Совершенные числа обладают рядом таинственных и вместе с тем замечательных свойств. Например, все совершенные числа «треугольные». Это означает, что если взять, допустим, шарики в количестве, равном совершенному числу, то их можно расположить так, что они образуют равносторонний треугольник.

Иначе говоря, каждое совершенное число есть сумма вида $1+2+3+4+\ldots+n$

Также легко можно заметить, что каждое совершенное число, за исключением 6, есть частичная сумма ряда из кубов нечетных чисел $1^3 + 3^3 + 5^3 + \dots$

А вот еще одно свойство совершенных чисел: сумма обратных значений делителей совершенного числа, включая и само число как делитель, всегда равны 2. Так,для числа 28 имеем

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{7} + \frac{1}{14} + \frac{1}{28} = 2.$$

До сегодняшнего дня остаются без ответа два важных вопроса: существует ли нечетное совершенное число? До сих пор не найдено ни одного нечетного совершенного числа, но вместе с тем и не доказано, что такого числа не существует. Ответ на второй вопрос зависит от того, является ли ряд простых чисел Мерсенна бесконечным, так как каждое простое число этого ряда приводит к совершенному числу. Было замечено, что при подстановке первых четырех чисел Мерсенна (3, 7, 31, 127) вместо п в формулу $2^n - 1$ снова получаются числа Марсенна.

$$F = \pi v^2 \frac{\rho \rho_0}{\rho - \rho_0} r^2$$

И

$$v = \sqrt{\frac{F}{\pi r^2} \frac{\rho - \rho_0}{\rho \rho_0}}$$

И.Ш. Слабодецкий