Ronish Shrestha

19707

Calculus-I

Q.no.1) 1. Plot each following group of functions in one graph respectively by Excel, covering the appropriate domain of x and y.

a.
$$y = ex$$
, $y = e - x$, $y = 8x$, $y = 8 - x$

b.
$$y = 0.9x$$
, $y = 0.6x$, $y = 0.3x$, $y = 0.1x$

Solution:

Q.No.2) Given f(x) = 10x, prove that $\frac{f(x+h) - f(x)}{h} = 10^x (\frac{10^h - 1}{h})$ and verify it by the plot in Excel.

ANSWER:

Given we have, $f(x) = 10^x$

Then,
$$f(x + h) = 10^{x+h} = 10^x$$
. 10^h

Now,
$$f(x + h) - f(x) = 10^x \cdot 10^h - 10^x$$

Or, $f(x + h) - f(x) = 10^x (10^h - 1)$

Dividing the equation by h on both sides, we get,

$$\frac{f(x+h)-f(x)}{h} = 10^{x} (\frac{10^{h}-1}{h})$$

Hence, we have proved the equation.

Q.No.3). Compare the functions f(x) = x5 and g(x) = 5x by plotting curve in Excel and which function grows more rapidly when x is large? And prove it mathematically.

Graph of f(x)

Graph of g(x)

From the graph we can observe that, $g(x) = 5 ^ x$ grows faster than $f(x) = x ^ 5$ when x is large.

For small values of xxx, $f(x)=x^5$ grows more gradually.

As x increases, $g(x)=5^x$ overtakes and grows significantly faster than f(x)f(x)f(x), especially when x is large.

Mathematical calculation:

$$f(x) = x^5$$
:

Here, when x value, the value of f(x) function increases rapidly.

• Limit of $f(x) = x^5$ as x approaches infinity:

$$\lim_{x\to\infty} (x\to\infty) x^5 = \infty$$

• Limit of $g(x) = 5^x$ as x approaches infinity:

$$\lim (x \rightarrow \infty) 5^x = \infty$$

However, we can further compare the growth rates by calculating the ratio of the functions for large values of x. For example, let's consider x = 100: $f(100) = 100^5 = 10,000,000,000$ $g(100) = 5^100 = 7.8886091 \times 10^69$

Both limits are infinite, indicating that both functions grow without bound as x approaches infinity. However, we can observe that the exponential function $g(x) = 5^x$ grows much more rapidly compared to the polynomial function $f(x) = x^5$. Thus, mathematically, $g(x) = 5^x$ grows more rapidly than $f(x) = x^5$ when x is large.

Step 1: Consider the ratio of $g(x)=5^x$ and $f(x)=x^5$:

$$\lim_{x o\infty}rac{g(x)}{f(x)}=\lim_{x o\infty}rac{5^x}{x^5}$$

Step 2: Apply L'Hopital's Rule:

This is an indeterminate form of $\frac{\infty}{\infty}$, so we can apply L'Hopital's Rule multiple times by differentiating the numerator and denominator:

• Differentiate the numerator 5^x repeatedly:

$$\frac{d}{dx}5^x = 5^x \ln(5)$$

• Differentiate the denominator x^5 repeatedly:

$$rac{d}{dx}x^5 = 5x^4, \quad rac{d}{dx}5x^4 = 20x^3, \quad \dots, rac{d}{dx}120x = 120$$

After several applications of L'Hopital's Rule, the limit will approach:

$$\lim_{x o\infty}rac{5^x}{x^5}=\infty$$

Conclusion, Since the limit tends to infinity, this means that $g(x) = 5^x$ grows much faster than $f(x) = x^5$ for large x

Q.No.4)

Plot the function $f(x) = \frac{1 - e^{1/x}}{1 + e^{1/x}}$ in Excel. And then prove that f(x) is an odd function.

A function is odd if:

$$f(-x) = -f(x)$$

The given function is:

$$f(x) = \frac{1 - e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}}$$

We know,

$$f(-x) = \frac{1 - e^{-\frac{1}{x}}}{1 + e^{-\frac{1}{x}}}$$

Multiplying numerator and denominator by $e^{\frac{1}{x}}$, we get,

$$f(-x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}$$

$$f(-x) = -\frac{1-e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}} = -f(x)$$

Hence, f(-x) = -f(x) proved.

Plot:

Here, we can see that f(-x) = -f(x) for the given x-values that supports the odd symmetry of the function. Therefore, f(x) is an od function.

Q.No.5) For the parametrized function $f(x) = 1 / (1 + a * e ^ bx)$

a. where a > 0. How does the graph change when b changes by showing a group of curves by Excel?

b. How does it change when changes in Excel?

Solution:

a) in this the value of b is changing.

b) b is fixed but a value is changing.

Number 5	b)												
x	b	1/(1+ae^bx)	a	100%	•	-	-	-	-	-	-	-	-
-4.9	1.5	1	21	90%									
-4.8	1.5	1	21	80%									
-4.7	1.5	1	21	70%									
-4.6	1.5	1	21	60%									
-4.5	1.5	1	21	50%									
-4.4	1.5	1	21	30%									
-4.3	1.5	1	21	20%									
-4.2	1.5	1	21	10%									
-4.1	1.5	1	21	0%	•	-	-	•	//1 /	(hur)	_	-	-
-4	1.5	1	21		1	2	3	4	/(1+ae ²	·DX) =	——а 7	8	9

Q.no.6)

If $g(x) = x^6 + x^4$, $x \ge 0$, find $g^{-1}(x)$ expression. And that, plot y = g(x), y = x, and $y = g^{-1}(x)$ in one graph by **Excel**

Solution:

Unfortunately, finding an explicit algebraic expression for g $^{\wedge}$ -1 is not possible. y $^{\wedge}$ 6+y $^{\wedge}$ 4-x=0

Q.no.7)

When a camera flash goes off, the batteries immediately begin to recharge the flash's capacitor, which stores electric charge given by $Q(t) = Q0(1 - e^{-t/a})$ (The maximum charge capacity is Q0 and t is measured in seconds.)

- a. Find the inverse of this function and explain its meaning.
- b. How long does it take to recharge the capacitor to 90% of capacity if a = 2 showing in the plot by Excel?

Solution:

The given function is:

$$Q(t) = Q_0(1 - e^{-\frac{t}{\alpha}})$$

or,
$$\frac{Q(t)}{Q_0} = (1 - e^{-\frac{t}{\alpha}})$$

or,
$$e^{-\frac{t}{\alpha}} = 1 - \frac{Q(t)}{Q_0}$$

Now, take natural logarithm on both sides,

$$\ln(e^{-\frac{t}{\alpha}}) = \ln(1 - \frac{Q(t)}{Q_0})$$

$$-\frac{t}{\alpha} = \ln(1 - \frac{Q(t)}{Q_0})$$

$$t = - \alpha . \ln(1 - \frac{Q(t)}{Q_0})$$

The inverse function $t = -\alpha$. $\ln(1 - \frac{Q(t)}{Q_0})$ gives us the time it takes for the capacitor to reach a certain charge Q, given the constant α and the maximum charge Q0.

b) Time to reach 90% capacity when α =2.

At 90% capacity,
$$Q(t) = 0.9*Q_0$$

$$t = -2 * \ln(1 - \frac{0.9 * Q_0}{Q_0})$$

$$t = -2*ln(1-0.9)$$

$$t = -2.\ln(0.1)$$

$$ln(0.1) \sim -2.3026$$

So,
$$t = -2.(-2.3026)$$

$$t=4.6052$$
 seconds

So, it takes 4,61 seconds to recharge the capacitor to 90% of its capacity.

