UTN - 1° Recuperatorio 2° Parcial **Sistemas Operativos** 18/07/2018

Nombre y Apellido: Curso:

TEORÍA					PRÁCTICA			NOTA
1	2	3	4	5	1	2	3	

TEORÍA: Responda brevemente las siguientes preguntas. Justifique.

- 1. VoF
 - En caso de tener un archivo original, dos hardlinks y un softlink al mismo utilizaremos en total 4 inodos.
 - b. En caso de utilizar asignación de direcciones en tiempo de compilación no podemos usar memoria
- 2. Indique un caso en el que sería útil realizar una e/s asíncrona. ¿Cómo implementaría una e/s síncrona no bloqueante?
- 3. Si en un sistema tenemos 3 procesos en ejecución ¿cuántas tablas de página habrá en memoria si utilizamos la TP convencional o TP invertida? En caso de tener que acceder a una DL: NRO PAG | OFFSET, ¿cuál sería la forma lógica 1D03h que referencia su página 3. Ambas referencias muestran donde actualmente se encuentra el de realizarlo en cada caso?
- En caso de tener archivos que normalmente sólo ocupan dos bloques de datos. ¿Cuál sería la diferencia a nivel A continuación, se detalla las próximas referencias a memoria que cada proceso realizará: accesos para acceder al 2do bloque si se utiliza UFS o FAT?
- ¿Para qué sirve una ACL (access control list)? ¿Cree que sería útil en una partición de SWAP?

PRÁCTICA: Resuelva los siguientes ejercicios justificando las conclusiones obtenidas.

Ejercicio 1

Se muestra a continuación el resultado de correr ls -l en el dir /Users/me/so/test

Inodo	Permisos	Referencias	Name	Última modificación	Bloques
4	- rwxrw-r	3	carlitos	2018-07-10 22:12:22.212	150
8	Irwxrwxrwx	1	luis -> miguel	2018-06-10 22:12:22.212	1
9	drwxrwxw	2	the_dir	2018-07-10 23:12:22.212	10
4	-rwxrw-r	3	miguel	2018-07-10 22:12:22.212	150

Si se sabe que se logra direccionar toda la partición de 2TiB Responda justificando:

- a. ¿A través de cuántos lugares podría acceder al contenido de "carlitos"?
- b. ¿Si uno crea un hardlink sobre el inodo 9 se incrementarían las referencias en 1?
- 2. ¿Qué configuración de inodo podría tener si se sabe que se puede leer todo el "the_dir" con 10 accesos a bloques de disco y "miguel" con 153 accesos a bloques de disco?
- ¿Cuál es el tamaño del archivo "luis"?

Nota (*): la dirección/ptr es potencia de 2

Ejercicio 2

Considere una computadora que está utilizando un Sistema Operativo que gestiona la memoria mediante paginación bajo demanda, con asignación fija y reemplazo local, cuyo direccionamiento es de 14 bits. Actualmente se encuentran cargados en memoria dos procesos como se muestra en la siguiente tabla:

Proceso	Página	Frame	Bits	
PA	5	0	UM	
PB	3	1	М	
PA	0	2	М	
PA	4	3	U	
PB	5	4	UM	
PB	1	5	М	
PA	7	6	UM	
PA	3	7	U	

Se conoce del proceso A la dirección lógica 2930h que referencia su página 5 y del proceso B la dirección puntero de cada proceso.

Proceso A: OA34h (E) - 3810h (L) - 07AEh (E) - 990Ah (E) - D61Bh (E).

Proceso B: 90A2h (E) - 8A10h (E) - 28A3h (L)

- a) Indique la cantidad de bits para número de página y el desplazamiento para cada proceso.
- b) Indique el estado de las páginas en memoria luego de cada referencia, así como también los page faults producidos y las páginas que fueron escrita a disco para cada proceso utilizando algoritmo clock modificado de reemplazo.

Nota: U= bit de uso. M= bit Modificado. L= Lectura. E = Escritura.

Ejercicio 3

Un disco rígido tiene 4 cabezales y 32 sectores por pistas. Los sectores son de 1KiB y el disco tiene una capacidad de 128MiB. El brazo del disco acaba de leer el cilindro 50 y anteriormente el 43, el tiempo búsqueda (Seek Time) entre cilindros es de 2ms

Dada la siguiente tabla que contiene los pedidos:

Cilindros	100	60	80	102	100	100	10	10
Instante	Oms	Oms	10ms	20ms	50ms	60ms	110ms	115ms

Indique el orden de atención de los pedidos y el tiempo búsqueda para los siguientes algoritmos:

a) N-STEP-SCAN (N = 3)

b) C-SCAN

Condiciones de aprobación: 3 preguntas correctamente respondidas y 1.5 ejercicios correctamente resueltos.