Replication Algorithm for Variance Swap Pricing

Anurag Srivastava (anurag.srivastava@riskcare.com)

July 17, 2023

1 Summary

The document describes the details of pricing a swap based on a replication-portfolio comprising of a log-contract and a stock or future position. The replication determines the price based on the volatilities across the skew while maintaining a constant dollar gamma for the portfolio. The main inputs to the model are

- 1. Stock prices or Futures Prices
- 2. Call options with strikes above and below a certain threshold close to the initial stock price S_0
- 3. Put options with strikes above and below a certain threshold close to the initial futures price F_0 . The stochastic volatility models are currently out of scope for the current document.

2 Black Scholes Model

The basic idea for pricing is to construct a portfolio of European options weighted as the inverse strike squared gives a constant exposure to volatility. Notice that at each hedging interval, the PNL is given as follows for gamma Γ_i , the return R_i of the underlying, the variance σ^2 and the time-step size δt

$$\frac{1}{2} \sum_{i} \Gamma_i S_i^2 (R_i^2 - \sigma^2 \delta t)$$

Notice also that $\theta = -\frac{1}{2}\Gamma S^2\sigma^2$. A portfolio proportional to $\frac{1}{S_i}$ would evidently keep a constant second-derivative i.e. gamma $\Gamma\left(\propto\frac{1}{S_i^2}\right)$. More generally, we can say that the payoff alnS + bS + c would have a constant Γ . A variance swap can thus be replicated with a log contract with options which are then delta-hedged. The following expression summarise how a combination of puts and calls approximates the payoff alnS + bS + c (with price of underlying S_T at time T).

$$\int_0^{S_0} \frac{(K - S_T)^+}{K^2} dK + \int_{S_0}^{\infty} \frac{(S_T - K)^+}{K^2} dK = \frac{S_T}{S_0} - \ln(\frac{S_T}{S_0})$$
 (1)

The replication can also be derived in terms of Stock prices using Black-Scholes assumptions (see Section 2.2).

2.1 Futures-based replication

We now discuss how the replication summarised with Equation 1 can be performed using futures prices F_t (at time t) and F_0 . As discussed in [1, 2], the average variance over time $\frac{1}{T} \int_0^T \sigma_t dt$ can be written as

$$\frac{1}{T} \int_0^T \sigma_t dt = \frac{2}{T} (\log(\frac{F_0}{F_t}) + \frac{F_t}{F_0} - 1) - \frac{2}{T} \int_0^T (\frac{1}{F_0} - \frac{1}{F_t}) dF_t \tag{2}$$

The first-term can be replicated by taking a static position in a contract that pays $\frac{2}{T}(log(\frac{F_0}{F_t}) + \frac{F_t}{F_0} - 1)$ and the second-term can be replicated by a continuously rebalanced futures position. As detailed in [2], this can be performed using calls and puts with a position $\frac{1}{K^2}$ using the following expression

$$log(\frac{F_0}{F_T}) + \frac{F_T}{F_0} - 1) = \int_0^{F_0} \frac{(K - F_T)^+}{K^2} dK + \int_{F_0}^{\infty} \frac{(F_T - K)^+}{K^2} dK$$

Plugging this in Equation 2, we have

$$\frac{1}{T} \int_0^T \sigma_t dt = \frac{2}{T} \left(\int_0^{F_0} \frac{(K - F_T)^+}{K^2} dK + \int_{F_0}^{\infty} \frac{(F_T - K)^+}{K^2} dK \right) - \frac{2}{T} \int_0^T \left(\frac{1}{F_0} - \frac{1}{F_t} \right) dF_t$$

The Black-Scholes assumptions allow us to replicate a variance swap by holding $\frac{1}{F_t} - \frac{1}{F_0}$ unites of futures at t and a set of calls and puts spread across futures price F_0 . The forward cost of this portfolio is can be written as follows

$$K_{VAR}^{2} = \frac{2e^{rT}}{T} \left(\int_{0}^{F_{0}} \frac{P_{0}(K)}{K^{2}} dK + \int_{F_{0}}^{\infty} \frac{C_{0}(K)}{K^{2}} dK \right)$$

Assuming a set of equally spaced strikes $K_0,...,K_r,K_{r+1},...,K_n$ where $K_0,K_1,...,K_r$ are strikes for puts and $K_{r+1},K_{r+2},...,K_n$ are strikes for calls. Since the options are equally-spaced we have $\Delta_K = K_{i+1}-K_i$ for all $i \in [1,n-1]$. The replication portfolio that approximates $\int_0^{F_0} \frac{P_0(K)}{K^2} dK + \int_{F_0}^{\infty} \frac{C_0(K)}{K^2} dK$ is

$$\sum_{i=0}^{r} \frac{\Delta_{K} P(K_{i})}{K_{i}^{2}} + \sum_{i=r+1}^{n} \frac{\Delta_{K} C(K_{i})}{K_{i}^{2}}$$

For a given variance notional exposure N_{var} , one must hold $\frac{2\Delta_K N_{var}}{TK^2}$ of each of option.

2.2 Stocks-based replication

The Black-Scholes assumptions readily lead to a replication algorithm that is now described (see [3]). Notice first that $d(\log S_t) = (\mu - \frac{\sigma^2}{2})dt + \sigma dZ_t$ (for normal variable Z_t) leads to $\frac{1}{2}\sigma^2 dt = \frac{dS_t}{S_t} - d(\log S_t)$. This in turn implies that

$$\frac{1}{T} \int_{0}^{T} \sigma^{2} dt = \frac{2}{T} \left(\int_{0}^{T} \frac{dS_{t}}{S_{t}} - \log(\frac{S_{T}}{S_{0}}) \right)$$
 (3)

Using $E(\int_0^T \frac{dS_t}{S_t}) = rT$ and a boundary S_* between calls and puts, we make use of the following identity (see Derman)

$$\begin{split} log(\frac{S_T}{S_0}) &= log(\frac{S_*}{S_0}) + log(\frac{S_T}{S_*}) \\ &= log(\frac{S_*}{S_0}) - (\int_0^{S_*} \frac{(K - S_T)^+}{K^2} + \int_{S_*}^{\infty} \frac{(S_T - K)^+}{K^2} - \frac{S_T - S_*}{S_*}) \end{split}$$

The Equation 3 becomes

$$E(\int_{0}^{T} \sigma_{t}^{2} dt) = \frac{2}{T} (rT - (\frac{S_{0}}{S_{*}} e^{rT} - 1) - \log(\frac{S_{*}}{S_{0}}) + e^{rT} \int_{0}^{S_{*}} \frac{1}{K^{2}} P(K) dK + e^{rT} \int_{S_{*}}^{\infty} \frac{1}{K^{2}} C(K) dK$$

Notice that $K_{Var} \equiv E(\int_0^T \sigma_t^2 dt)$ is called the strike of the variance swap.. We can rewrite K_{var} as

$$K_{var} = \frac{2}{T}(rT - (\frac{S_0}{S_*}e^{rT} - 1) - log(\frac{S_*}{S_0})) + e^{rT}\Pi_{CP}$$

The term Π_{CP} is the following value of the portfolio of puts and calls where the weights of the portfolio are calculated using a recursive algorithm described in Section 2.2.1

$$\Pi_{CP} = \sum_{i} w(K_{ip}) P(S, K_{ip}) + \sum_{i} w(K_{ic}) C(S, K_{ic})$$
(4)

2.2.1 Algorithm to replicate Log-contract

With the portfolio in Equation 4, let's consider calls with strikes K_{1c}, K_{2c} etc. such that $S_* < K_{1c} < K_{2c} < ...$ and puts K_{1p}, K_{2p} etc. such that $S_* > K_{1c} > K_{2c}...$ - where S^* is the boundary between calls and puts. We can set this to initial value of the stock i.e. $S_* = S_0$.

Let's consider the strike K_0 at the boundary (reference) stock-price S_* . The weight associated with the option struck at K_0 would be set to

$$w_c(K_0) = \frac{f(K_{1c}) - f(K_0)}{K_{1c} - K_0}$$

Here, $f(S_T)$ is defined as

$$f(S_T) = \frac{2}{T} \left(\frac{S_T - S_*}{S_*} - \log(\frac{S_T}{S_*}) \right)$$

The (units) weights for calls in the portfolio are given by

$$w_c(K_{n,c}) = \frac{f(K_{n+1,c}) - f(K_{n,c})}{K_{n,c} - K_{n+1,c}} - \sum_{i=0}^{n-1} w_c(K_{i,c})$$

Similarly, we can obtain the weights associated with puts by first setting

$$w_p(K_0) = \frac{f(K_{1p}) - f(K_0)}{K_{1p} - K_0}$$

and then holding other weights of puts determined by

$$w_p(K_{n,p}) = \frac{f(K_{n+1,p}) - f(K_{n,p})}{K_{n,p} - K_{n+1,p}} - \sum_{i=0}^{n-1} w_p(K_{i,p})$$

2.3 Greeks

The greeks relevant for variance swaps can also be calculated using the dynamics of Equation 1.

References

- [1] P. Allen, S. Einchcomb, and N. Granger, "Variance swaps," London: JP Morgan (November), 2006.
- [2] P. Carr and D. Madan, "Towards a theory of volatility trading," Volatility: New estimation techniques for pricing derivatives, vol. 29, pp. 417–427, 1998.
- [3] K. Demeterfi, E. Derman, M. Kamal, and J. Zou, "More than you ever wanted to know about volatility swaps," Goldman Sachs quantitative strategies research notes, vol. 41, pp. 1–56, 1999.