Latent Dirichlet Allocation (LDA) for Topic Modeling

PSTAT 226 Project Presentation

Presenter: Sina Miran

Outline

- 1. Introduction
- 2. Model Definition
- 3. Parameter Estimation and Inference
- 4. Example Output and Simulation
- 5. References

1.Introduction

As more information becomes available, it becomes more difficult to find and discover what we need.

We need tools to help us organize, search and understand these vast amount of information.

Topic modeling provides methods for automatically organizing, understanding, searching, and summarizing large electronic archives:

- 1. Discover the hidden themes in the collection
- 2. Annotate the documents according to these themes
- 3. Use annotations to organize, summarize, search, and form predictions

1.Introduction

Today, the large collection of data calls for unsupervised probabilistic models.

Example Applications:

1. Summarizing Collections of Images

SKY WATER TREE MOUNTAIN PEOPLE

FISH WATER OCEAN TREE CORAL

SCOTLAND WATER FLOWER HILLS TREE

PEOPLE MARKET PATTERN TEXTILE DISPLAY

2. Evolution of Pervasive Topics by Time

Some Assumptions:

- We have a set of documents $D_1, D_2, ..., D_D$.
- Each document is just a collection of words or a "bag of words". Thus, the order of the words and the grammatical role of the words (subject, object, verbs, ...) are **not** considered in the model.
- Words like am/is/are/of/a/the/but/... can be eliminated from the documents as a preprocessing step since they don't carry any information about the "topics".
- In fact, we can eliminate words that occur in at least %80 ~ %90 of the documents!
- Each document is composed of N "important" or "effective" words, and we want K topics.

- Each topic is a distribution over words
- Each document is a mixture of corpus-wide topics
- Each word is drawn from one of these topics
- We only observe the words within the documents and the other structure are hidden variables.

Our goal is to **infer** or **estimate** the hidden variables, i.e. computing their distribution conditioned on the documents. $\longrightarrow p(topics, proportions, assignments | documents)$

- Nodes are RVs; edges indicate dependence.
- Shaded nodes are observed, and unshaded nodes are hidden.
- Plates indicate replicated variables.

$$p(\beta, \theta, \mathbf{z}, \mathbf{w}) = \left(\prod_{i=1}^{K} p(\beta_i | \eta)\right) \left(\prod_{d=1}^{D} p(\theta_d | \alpha) \prod_{n=1}^{N} p(z_{d,n} | \theta_d) p(w_{d,n} | \beta_{1:K}, z_{d,n})\right)$$

- 1) Draw each topic $\beta_i \sim Dir(\eta)$ for i = 1, ..., K
- 2) For each document:

First, Draw topic proportions $\theta_d \sim Dir(\alpha)$

For each word within the document:

- a) Draw $Z_{d,n} \sim Multi(\theta_d)$
- b) Draw $W_{d,n} \sim Multi(\beta_{z_{d,n}})$

This joint distribution defines a posterior $p(\theta, z, \beta \mid w)$.

From a collection of documents we have to infer:

- 1. Per-word topic assignment $z_{d,n}$.
- 2. Per-document topic proportions θ_d .
- 3. Per-corpus topic distributions β_k .

Then use posterior expectations ($E\{\beta|w\}$ for the corpus, $E\{\theta_d|w\}$ for each document) to perform the task at hand: information retrieval, document similarity, exploration, and others.

Formal definition of the model:

$$p(\beta, \theta, z, w) = \left(\prod_{i=1}^{K} p(\beta_i | \eta)\right) \left(\prod_{d=1}^{D} p(\theta_d | \alpha) \prod_{n=1}^{N} p(z_{d,n} | \theta_d) p(w_{d,n} | \beta_{1:K}, z_{d,n})\right)$$

$$(\beta_d|\eta) \sim Dir(\beta)$$

$$(\theta_d | \alpha) \sim Dir(\alpha)$$

$$Z_{d,n} \sim Multi(\theta_d)$$

$$W_{d,n} \sim Multi(\beta_{Z_{d,n}})$$

$$p(z_{d,n}|\theta_d) = \theta_{d,z_{d,n}}$$

$$p(w_{d,n}|z_{d,n},\beta_{1:K}) = \beta_{z_{d,n},w_{d,n}}$$

		Word prob	probabilities for each topic		
	opics				
	Ĺ				

Review of Multinomial and Dirichlet distributions:

1. Multinomial:

$$P(X_1 = x_1, ..., X_K = x_K) = \frac{n!}{x_1! \dots x_K!} p_1^{x_1} \dots p_K^{x_K} \qquad X_i \in \{0, ..., n\} \qquad \sum_{i=1}^K X_i = n$$

2. Dirichlet: Good for modeling a distribution over distributions

$$p(\theta|\alpha) = \frac{\Gamma(\sum_{i=1}^{K} \alpha_i)}{\prod_{i=1}^{K} \Gamma(\alpha_i)} \theta_1^{\alpha_1 - 1} \dots \theta_K^{\alpha_K - 1} \qquad \alpha = k - dimensional \ vector \qquad \alpha_i > 0$$

variable θ can take values in the (k-1) simplex: $\theta_i > 0$ and $\sum_{i=1}^{K} \theta_i = 1$

Role of parameter
$$\vec{\alpha} = (\alpha_1, ..., \alpha_K)$$
:
$$E\{\theta_i | \alpha\} = \frac{\alpha_i}{\sum \alpha_i}$$

Note that here we are working with symmetric (exchangeable) Dirichlet distributions meaning $\alpha_1=\cdots=\alpha_K$

As mentioned earlier, from a set of N_d documents and the observed words within each document, we want to infer the posterior distribution $p(\theta, z, \beta \mid w)$ (Bayesian Inference)

There are many approximate posterior inference algorithms for this! We will briefly review Gibbs sampling here as an example.

Gibbs Sampling for Bayesian Inference:

Denote ϕ as the collection of model parameters and X as the observed data. For Bayesian Inference:

$$p(\phi|X) = \frac{p(X|\phi)p(\phi)}{p(X)} = \frac{p(X|\phi)p(\phi)}{\int p(X|\phi)p(\phi)d\phi}$$

Computing the integral in the denominator is impractical ———— Gibbs Sampling

Simple Gibbs Sampling:

Suppose you wish to sample θ_1 , $\theta_2 \sim p(\theta_1, \theta_2)$ but cannot use direct simulation or some other methods.

But, you can sample from $p(\theta_1|\theta_2)$ and $p(\theta_2|\theta_1)$. Then you can use Gibbs sampling.

Algorithm:

- 1. Initialize $(\theta_1^{(0)}, \theta_2^{(0)})$
- 2. Repeat the following steps consecutively to compute $(\theta_1^{(j)}, \theta_2^{(j)})$:
 - a) Sample $\theta_1^{(j)} \sim p\left(\theta_1 \middle| \theta_2^{(j-1)}\right)$
 - b) Sample $\theta_2^{(j)} \sim p\left(\theta_2 \middle| \theta_1^{(j)}\right)$

3. Parameter Estimation and Inference

Theorem:
$$\theta^{(j)} = \left(\theta_1^{(j)}, \theta_2^{(j)}\right)^T$$
 converges in distribution to $\theta = (\theta_1, \theta_2)^T \sim p(\theta_1, \theta_2)$

Example: Bivariate Normal
$$\theta \sim N_2(0,\Sigma)$$
 where $\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$

We can show that $\theta_1 | \theta_2 \sim N(\rho \theta_2, 1 - \rho^2)$ and $\theta_2 | \theta_1 \sim N(\rho \theta_1, 1 - \rho^2)$

Applying this technique to estimating $p(\theta, z|w, \beta)$, we can form a simple Gibbs sampler:

- 1. $p(\theta|z_{1:N}, w_{1:N}) = Dir(\alpha + n(z_{1:N}))$ where n() is a vector of the count of each topic (this is because of the choice of conjugate priors!)
- 2. $p(z_i|z_{-i}, \theta, w_{1:N}) \propto p(z_i|\theta)p(w_i|\beta_{1:K}, z_i)$

We have assumed $\beta_{1:K}$ is fixed in the above iterations!!! We can use a more complex Gibbs sampling to infer $\beta_{1:K}$ as well, or we can use other more efficient methods like the mean-field variational inference!

Now you have samples from the inferred posterior distribution for Bayesian Inference! Enjoy!

4.Example Output and Simulation

Text Mining package in R ── library("tm")

Topic Models library in R ── library("topicmodels")

We can perform preprocessing steps using function tm_map in the tm package such as removing unimportant words (stopwords, ...)

LDA function in the "topicmodels" package can fit the LDA model for a specific number of topics K.

R > LDA(x, k, method = "VEM", control = NULL, model = NULL, ...)

4. Example Output and Simulation

Data: Collection of Science from 1990-2000

17K documents

11M words

20K unique terms (redundant words removed)

Model: 100-topic LDA model using variational inference

Seeking Life's Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—How many genes does an organism need to survive? Last week at the genome meeting here,* two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today's organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. The other researcher mapped genes

other researcher mapped genes. In other researcher mapped genes in a simple parasite and estimated that for this organism, 800 genes are plenty to do the job—but that anything short of 100 wouldn't be enough.

Although the numbers don't match precisely, those predictions

* Genome Mapping and Sequenc-

May 8 to 12.

ing, Cold Spring Harbor, New York,

[&]quot;are not all that far apart," especially in comparison to the 75,000 genes in the human genome, notes Siv Andersson of Uppsala University in Sweden, who arrived at the 800 number. But coming up with a consensus answer may be more than just a genetic numbers game, particularly as more and more genomes are completely mapped and sequenced. "It may be a way of organizing any newly sequenced genome," explains Arcady Mushegian, a computational molecular biologist at the National Center for Biotechnology Information (NCBI) in Bethesda, Maryland. Comparing an

SCIENCE • VOL. 272 • 24 MAY 1996

Most probable words in four of the topics:

Topic 1 Topic 2 Topic 4 Topic 3 evolution human disease computer models evolutionary host genome Probability dna species bacteria information diseases data genetic organisms life resistance computers genes bacterial sequence origin system biology network gene new molecular groups strains systems sequencing phylogenetic control model living infectious parallel map information malaria methods diversity genetics parasite networks group mapping parasites software new project united two new tuberculosis simulations sequences common

5.References

[1] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." the Journal of machine Learning research 3 (2003): 993-1022.

[2] Homepage of David Blei, Associate Professor of Computer Science at Princeton University: http://www.cs.princeton.edu/~blei/topicmodeling.html

[3] Video Lectures of David Blei on videolectures.net:

http://videolectures.net/mlssoguk_blei_tm/

Questions?!