УТВЕРЖДАЮ

Дo	ОЛЖНОСТЬ	
		_ ФИО
"	"	2018 г.

Пояснительная записка № 001

Этап 1. Тестовый базис для тестирования ПО

НИР «Get3DModel»

(Тестовый базис)

Н. Новгород 2018

Реферат

Пояснительная записка 001, страниц 11, источник 1.

КЛЮЧЕВЫЕ СЛОВА: тестовый базис, эталон, Get3DModel.

В пояснительной записке в рамках проекта НИР «Get3DModel» представлен тестовый базис для анализа работы ПО:

- тривиальные примеры;
- комбинированные (сложные) примеры;
- эталоны для тривиальных примеров и метрики для сложных примеров;
- код нарезки фрагментов исходных данных (картинок);
- файлы формата .camera;

А также параметры оценки выходных данных:

- суммарная ошибка;
- максимальная ошибка;
- заполняемость;
- равномерность распределения точек;
- время выполнения;

Оглавление

Термины и определения	4
1 Тривиальные примеры	
2 Комбинированные (сложные) примеры	5
3 Файлы формата .camera	6
4 Схема оценки выходных данных	6
5 Нарезка фрагментов	8
Список используемых источников	11

Термины и определения

- *Get3DModel* разрабатываемый в рамках текущей НИР ([1]) программный модуль реконструкции 3D модели поверхности микроскопического объекта по серии изображений;
- *Тривиальные примеры* примеры входных данных; набор изображений одинакового размера (формат .png размером не больше 1К), полученный микросъемкой одного и того же объекта с разной высоты;
- Комбинированные (сложные) примеры примеры входных данных; набор изображений одинакового размера (формат .png размером не больше 4К), полученный микросъемкой одного и того же объекта с разной высоты, содержащие в себе комбинации сложных для анализа фрагментов (блики, размытость, затемнения и тд.);
- Ошибка модуль разности высот соответствующих точек из эталонной и полученной моделей;

1 Тривиальные примеры

Картинки формата .png размером не более 1К.

Образцы:

Эталоны:

Файлы формата .dat, содержащие матрицу размера, соответствующего входной картинке, где номера строк/столбцов матрицы – координаты точек, ячейки матрицы – высоты соответствующих точек.

2 Комбинированные (сложные) примеры

Картинки формата .png размером не более 4K

Образец:

Эталон:

В данном примере требований к точности нет, однако, результаты оценки выходной модели по этому тесту должны быть отражены в отчёте в отдельной таблице.

Метрики, предоставленные Заказчиком

3 Файлы формата .camera

параметры оптической системы, при помощи которой были получены изображения поверхности микроскопического объекта (фокусное расстояние, наблюдаемая ширина в фокусе, коэффициент для вычисления абсолютной высоты фокуса);

4 Схема оценки выходных данных

При условии, что ограничения по времени и по заполнению точек выполняются, оценка производится по следующим параметрам (по убыванию значимости для Заказчика):

• Суммарная ошибка (Ошибка – модуль разности высот соответствующих точек из эталонной и полученной моделей);

Математическое описание параметра:

Пусть $R_{S_t*N_t}$ и $M_{S_t*N_t}$ — матрицы t — ого тестового набора, содержащие высоты точек эталонной и полученной моделей соответственно, тогда r_{ij} и m_{ij} — элементы эталонной и полученной матриц соответственно, где r и m — высоты точек c координатами i, j. (r,m \in Z; (i, j) \in { G_t }, где G_t — множество точек t-ого тестового набора, для которых r_{ij} $_t$ > 0 (высота точки положительна), $t = \overline{1,p}$, где p — количество тестовых наборов, S_t х N_t — размеры картинки t — ого тестового набора).

Индивидуальная оценка теста:

$$\sum_{(i,j)\in G_t} |r_{ij_t} - m_{ij_t}|$$

Средняя оценка тестового набора:

$$\frac{\sum_{t=1}^{p} (\sum_{(i,j) \in G_t} |r_{ij_t} - m_{ij_t}|)}{p}$$

• Максимальная ошибка

Индивидуальная оценка теста:

$$\max_{(i,j)\in G_t}|r_{ij}-m_{ij}|$$

Нормированная оценка:

$$\frac{\max_{(i,j)\in G_t}|r_{ij_t}-m_{ij_t}|}{\max_{r_{sn_t}}-\min_{r_{sn_t}}},$$

где $s=\overline{1,S}$, $n=\overline{1,N}$, знаменатель дроби - разность между максимальной и минимальной высотами эталона соответствующего t - ого теста.

Максимальная ошибка тестового набора:

$$\frac{\sum_{t=1}^{p} \frac{\max(i,j) \in G_t | r_{ij} - m_{ij}|}{\max r_{sn} - \min r_{sn}}}{p},$$

где $s=\overline{1,S}$, $n=\overline{1,N}$, и p- количество тестовых наборов.

• Заполняемость

Математическое описание параметра:

Пусть D — множество точек полученной модели, для которых соответствующие высоты больше нуля $(m_{ij}>0)$, D \in $\{SxN\}$.

Тогда заполняемость вычисляется по формуле:

$$\frac{D}{S \cdot N}$$

• Равномерность распределения точек

Математическое описание параметра:

Точки восстанавливаемых объектов, высоты которых найдены алгоритмом, должны быть равномерно распределены по исследуемой области. Для этого необходимо вычислить вектор:

$$V = (v_{1_t}, v_{2_t}, \dots, v_{l_t})$$
, где

l – количество уровней равномерного распределения;

t – количество тестовых наборов;

Координата вектора:

$$v_{{
m i}_{\it t}}=rac{{\it fact}_{\it i_{\it t}}}{{\it real}_{\it i_{\it t}}}$$
 , $i=\overline{1,l}$, где

 $fact_{it}$ – количество областей і-ого уровня, содержащих хотя бы одну точку с найденной высотой.

 $real_{i_t}$ – количество областей і-ого уровня, на которые делим изображение.

Поэтому исходя из параметра равномерности необходимо выполнение следующего условия:

Индивидуальная оценка теста:

$$\frac{\sum_{i=1}^{l} v_{i_t}}{l} * 100 \ge R$$

Среднее распределение для всех тестовых наборов высчитывается по формуле:

$$\frac{\sum_{t=1}^{p} \frac{\sum_{i=1}^{t} v_{i_t}}{l} * 100}{p}$$

• Время выполнения

Высчитывается время выполнения одного теста. Для оценки алгоритма необходима общая оценка времени выполнения всех тестов. В связи с этим, применяется нормировка времени.

Математическое описание параметра:

Пусть t_i – время выполнения і-го теста (і = $\overline{1,p}$, где р – количество тестовых наборов);

 n_i – число картинок і- го теста;

 $m_i * s_i$ – количество точек картинки i – го теста.

Индивидуальная оценка теста:

$$\frac{t_i}{m_i \cdot s_i \cdot n_i}$$

Средняя оценка тестового набора:

$$\frac{\sum_{i=1}^{p} \frac{t_i}{m_i \cdot s_i \cdot n_i}}{p}$$

Результаты будут представлены в виде итоговой таблицы, в которой будут отражены сведения по каждому тесту отдельно, а также нормированные сведения по всем тестам.

5 Нарезка фрагментов

Запуск программы происходит в файле формата .bat, файл содержит:

- название программы;
- формат файлов;
- координаты левого верхнего угла (сначала горизонтальная, затем вертикальная);
- размер вырезаемого изображения; Пример:

cutpng.exe png 200 100 500 300

Список используемых источников

1. Техническое задание на научно-исследовательскую работу «Реконструкция 3D модели поверхности микроскопического объекта по серии изображений), Нижний Новгород, 2018.