Useful information on stellar parameter estimation

Mingjie Jian Stockholm University 2024-07-15 @ABDEC 2024

Bugs are all around our life

- When encounter any error/bug using pysme/pymoog/etc:
 - Ask bing/google/chatgpt about it.
 - Find out whether it is a bug in your code or the package.
 - Your code: fix it yourself
 - Bug in the package
 - Is there any way to bypass it?
 - Is there any replacement?
 - Ask me in Wechat / raise an issue in Github / send me an email / call me
 - Some problems about pymoog in read the docs · Issue #75 · MingjieJian/pymoog (github.com)
 - Problem description + minimum code block + full error message

pymoog doc update

- In "Guide for each driver" page:
 - weedout, abfind, blends, cog pages are updates (with workable example)
 - other pages: under construction.

Stellar parameters and abundances measurement -- never a simple task

The take-home-message

Spectral sensitivity to paras

 The top three parameters which affect the spectra the most:

$$T_{\rm eff} = 5000 \pm 100 \,\mathrm{K}$$

$$\log g = 4.0 \pm 0.1$$

$$[Fe/H] = 0.0 \pm 0.1$$

To make this task more complex

Let's go to infrared.

Line-depth ratio (LDR) method

- Spectral lines have different reaction to $T_{\rm eff}$ change.
- Low EP line is sensitive to $T_{\rm eff}$ while high EP line is not.
- LDR = $\frac{d_{\text{low}}}{d_{\text{high}}}$ -> T_{eff} indicator
- Empirical, easy to calibrate/use;
- Can achieve high precision (~10K).

Line-depth ratio (LDR) method

- Well developed in the optical but not in the NIR.
- Line depths are also altered by other parameters
 - $\log g$, [Fe/H]

LDR: gravity effect

 Whether most of the atoms are in neutral or ionized states determines the line log g sensitivity.

• Use line pairs with similar ionization energy, or calibrate the relations for dwarfs, giants and supergiants separately.

The LDR-Teff relations in the NIR

- a. Taniguchi+2018, 10-30K, solar-metal stars only;
- b. Jian+2020 , 10-30K, solar-metal stars only;
- c. Jian+in prep, ~20K;
- d. Fukue+2015, ~60K, solar-metal stars only;
- e. Jian+2019, 30-90K;

Measuring $\log g$

Ionization balance

- Ionized lines are sensitive to log g
- X I and X II should gives consistent [X/Fe] in a log g.

• LDR

- Use X I and X II line pairs
- Precision: 50 K and 0.2 dex

Measuring $V_{\rm micro}$ and [M/H]: MPFIT

Takeda (1995), inside pymoog

• $V_{
m micro}$ is degenerated with [Fe/H]

Useful resources

- Telluric line correction
 - Welcome to TelFit's documentation!
 TelFit 1.3.0 documentation

- Continuum normalization
 - AFS (<u>Xu+2019</u>)

Further reading

Link to the book

Normal
Theory
NLTE
(also other books)

Dictionary Wikipedia Bible

Link to the book