Formalization of Requirements for CPS and NTSS

Anonymous Author

1 Requirement Formalization

```
Autopilot:
R1.4.1:
Textual:
Steady state roll commands shall be tracked within 1 degree.
Formalisation:
(forall tc in [ 1 , T ]:
  ( Tk(tc) != Tk(tc-1) ) implies
  ( exists t2 in [ tc , T ]:
forall t in [ t2 , T ]:
Phi(t) - PhiRef(t) <= 1
))));
R1.6:
Textual:
The maximum roll angle (Phi) allowed shall be 30 deg \pm1-10%
Formalisation:
G{0,T} (-33 <= Phi <= 33)
R12.1:
Textual:
When the autopilot is enabled, the aircraft altitude should reach the desired altitude
within 500 seconds in calm air
Formalisation:
AP\_Eng = 1 \Rightarrow F(G(alt - ALT\_Ref \Rightarrow 0.0))
Finite State Machine:
R.1:
Textual:
Exceeding sensor Limits shall latch an autopilot pullup when the pilot
is not in control (not Standby) and the system is Supported without failures (not Apfail).
Formalisation:
G\{0,T\} (not standby and not apfail and supported and limits ==> pullup )
```

```
Non Linear Guidance:
R.6:
Textual:
The change in the magnitude of the output over one frame of execution with T sample period
shall not exceed the quantity of the combined velocity of the target plus the velocity
of the vehicle multiplied by T
Regulator:
R7:
Textual:
The Inner Loop Pitch Regulator Shall not command transient changes in angular roll
acceleration greater than 50 deg/sec2/sec
Formalisation:
G{0,T} (mcvdt_cmd_fcs_dps2(t) - mcvdt_cmd_fcs_dps2(t-1) <= 0.5)
Tustin:
R1:
Textual:
When Reset is True and the Initial Condition (ic) is bounded by the provided Top and
Bottom Limits (BL <= ic <= TL),
the Output (yout) shall equal the Initial Condition (ic).
Formalisation:
G\{0,T\} (( Reset = 1 and Ic <= tl and Ic >= bl => yout = Ic ) and
( Reset = 1 and Ic <= tl and tl >= bl \Rightarrow yout = tl ) and
( Reset = 1 and Ic \leq bl and tl \geq bl \Rightarrow yout = bl ) and
                                   tl < bl => yout = bl )
( Reset = 1 and
                    Ic <= bl and</pre>
R2:
Textual:
The Output (yout) shall be bounded by the provided Top and Bottom limits (TL and BL)
Formalisation:
G(0,T) (TL>=BL) => (BL<=yout and yout<=TL) and (TL<BL) => (TL<=yout and yout<=BL)
R4a:
Textual:
Over a 10 second computational duration at an execution frequency of 10 hz, the Output
should equal the sine of time t, \sin, where time is defined as a vector from 0 to 10
```

Over a 10 second computational duration at an execution frequency of 10 hz, the Output should equal the sine of time t, sin, where time is defined as a vector from 0 to 10 by increments of 0.1 seconds within a \pm 0.1 tolerance for an input equal to the cosine of time t, cos, with the sample delta time T = 0.1 seconds when in normal mode of operation. Formalisation:

R4b:

Textual:

Over a 10 second computational duration at an execution frequency of 10 hz, the Output should equal the sine of time t, sin,where time is defined as a vector from 0 to 10 by increments of 0.1 seconds within a \pm 0.1 tolerance for an input equal to the cosine of time t, cos, with the sample delta time T = 0.1 seconds when in normal mode of operation. Formalisation:

NTSS:

Textual:

Good network connectivity should be maintained even when high traffic flows through different priority classes.

Formalization:

2 Input Specification for CPS and NTSS

Table 1: Input Specification for CPS and NTSS

Subject: TU1TU9		
Input Name	Type	Range
Xin	Double	[-20,20]
TL	Double	[-10,10]
BL	Double	[-10,10]
IC	Double	[-20,20]

Subject: NLG		
Input Name	Type	Range
$\overline{X_{targ}}$	Double	[-100,100]
X_v	Double	[-100,100]
V_v	Double	[-100,100]
V_{targ}	Double	[-100,100]
r	Double	[0,100]

Subject: REG		
Input Name	Type	Range
beta_adc_deg	Double	[0,5]
vtas_adc_kts	Double	[0,5]
lev_md_fos_dps	Double	[0,5]
hdg_des_deg	Double	[0,5]
mev_emd_fes_dps	Double	[0,5]
alt_des_ft	Double	[0,5]
nev_cmd_fcs_dps	Double	[0,5]
xev_cmd_fcs_fps	Double	[0,5]
airspeed_des_fps	Double	[0,5]
hcv_cmd_fcs_fps	Double	[0,5]
lcv_fcs_dps	Double	[0,5]
mcv_fcs_dps	Double	[0,5]
ncv_fcs_dps	Double	[0,5]
dcv_fcs_fps	Double	[0,5]
zcv_cmd_fcs_fps	Double	[0,5]
betadot	Double	[0,5]

Subject: FSM		
Input Name	Type	Range
standby	Boolean	$\{0,1\}$
apfail	Boolean	$\{0,1\}$
supported	Boolean	$\{0,1\}$
limits	Boolean	$\{0,1\}$

Subject: AP1AP3		
Input Name	Type	Range
AP Eng	Boolean	{0,1}
HDG Mode	Boolean	$\{0,1\}$
ALT Mode	Boolean	$\{0,1\}$
HDG Ref	Double	[-180,180]
Turn knob	Double	[0,45]
ALT Ref	Double	[0,1000]
Pitch wheel	Double	[-30,30]
Throttle	Double	[0,1]

Subject: NTSS		
Input Name	Type	Range
Class0	Integer	$[0, \text{thresh}_0]$
Class1	Integer	$[0, \text{thresh}_1]$
Class2	Integer	$[0, \text{thresh}_2]$
Class3	Integer	$[0, \text{thresh}_3]$
Class4	Integer	$[0, \text{thresh}_4]$
Class5	Integer	$[0, \text{thresh}_5]$
Class6	Integer	$[0, \text{thresh}_6]$
Class7	Integer	$[0, \text{thresh}_7]$