第2节 同角三角函数基本关系(★★)

内容提要

1. 同角三角函数基本关系
$$\begin{cases} \sin^2\alpha + \cos^2\alpha = 1 \\ \tan\alpha = \frac{\sin\alpha}{\cos\alpha} \end{cases}$$
 主要用于 $\sin\alpha$, $\cos\alpha$, $\tan\alpha$ 三者的知一求二,特别注意由

 $\sin^2\alpha = 1 - \cos^2\alpha$ 或 $\cos^2\alpha = 1 - \sin^2\alpha$ 求 $\sin\alpha$, $\cos\alpha$, 开平方时需根据角 α 所在的象限决定取正还是取负. 注:在小题中,我们常用"三角形法"快速完成 $\sin\alpha$, $\cos\alpha$, $\tan\alpha$ 三者的知一求二.

例如,已知 $\sin \alpha = \frac{3}{5}(\frac{\pi}{2} < \alpha < \pi)$,求 $\cos \alpha$ 和 $\tan \alpha$.

可先画一个三边长分别为3,4,5的直角三角形,如图,

由图可先确定值
$$\cos \alpha = \frac{ \text{邻边}}{ \text{斜边}} = \frac{4}{5}$$
, $\tan \alpha = \frac{ \text{对边}}{ \text{邻边}} = \frac{3}{4}$,

再根据
$$\alpha$$
的象限确定符号,因为 $\frac{\pi}{2} < \alpha < \pi$,所以 $\cos \alpha = -\frac{4}{5}$, $\tan \alpha = -\frac{3}{4}$.

- 2. $\sin \alpha$, $\cos \alpha$ 的和、差、积的转化:
- ① $(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha = 1 + 2\sin \alpha \cos \alpha = 1 + \sin 2\alpha$;
- $(\sin \alpha \cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha 2\sin \alpha \cos \alpha = 1 2\sin \alpha \cos \alpha = 1 \sin 2\alpha ;$
- $(\sin\alpha + \cos\alpha)^2 + (\sin\alpha \cos\alpha)^2 = 2.$
- 3. $\sin \alpha$, $\cos \alpha$ 的齐次分式化正切:

①计算
$$\frac{A\sin\alpha + B\cos\alpha}{C\sin\alpha + D\cos\alpha}$$
, 可上下同除以 $\cos\alpha$, 化为 $\frac{A\tan\alpha + B}{C\tan\alpha + D}$;

②计算
$$A\sin^2\alpha + B\sin\alpha\cos\alpha + C\cos^2\alpha$$
,可先凑分母,化为 $\frac{A\sin^2\alpha + B\sin\alpha\cos\alpha + C\cos^2\alpha}{\sin^2\alpha + \cos^2\alpha}$,再上下同除

以
$$\cos^2 \alpha$$
,化为 $\frac{A \tan^2 \alpha + B \tan \alpha + C}{\tan^2 \alpha + 1}$.

典型例题

类型 I: $\sin \alpha$, $\cos \alpha$, $\tan \alpha$ 的相互转换

【例 1】已知 $\tan \alpha = \frac{1}{2}$,且 α 是第三象限的角,则 $\cos \alpha =$ ____.

解析: 本题可以将 $\tan \alpha = \frac{1}{2}$ 与 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$ 和 $\sin^2 \alpha + \cos^2 \alpha = 1$ 联立解方程组,但用内容提要 1 中的 "三角

形法"可更快地求出答案,

根据
$$\tan \alpha = \frac{1}{2}$$
 画出如图所示的直角三角形,由图可知 $\cos \alpha = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$,

又 α 是第三象限的角,所以 $\cos \alpha < 0$,故 $\cos \alpha = -\frac{2\sqrt{5}}{5}$.

答案: $-\frac{2\sqrt{5}}{5}$

【变式 1】设
$$\cos \alpha = k(k \in \mathbf{R})$$
, $\alpha \in (\pi, \frac{3\pi}{2})$,则 $\sin \alpha = \underline{\hspace{1cm}}$. (用 k 表示)

解析: $\cos \alpha$ 的值是字母,但仍可用"三角形法",画三角形时将带字母的边长加绝对值即可,

根据 $\cos \alpha = k$ 画出如图所示的直角三角形,由图可知 $\sin \alpha = \sqrt{1 - k^2}$,

又 $\alpha \in (\pi, \frac{3\pi}{2})$,所以 $\sin \alpha < 0$,故 $\sin \alpha = -\sqrt{1-k^2}$.

答案: $-\sqrt{1-k^2}$

【变式 2】已知
$$\frac{\pi}{2} < \theta < \frac{3\pi}{2}$$
, $2\sin\theta = 1 - \cos\theta$,则 $\tan\theta =$ ()

(A)
$$0 或 -\frac{4}{3}$$

(B)
$$-\frac{4}{3}$$

$$(C) -\frac{\sqrt{7}}{4}$$

(A)
$$0 \vec{\otimes} -\frac{4}{3}$$
 (B) $-\frac{4}{3}$ (C) $-\frac{\sqrt{7}}{4}$ (D) $-\frac{\sqrt{7}}{4} \vec{\otimes} 0$

解析: 给了一个 $\sin\theta$ 和 $\cos\theta$ 的方程,可结合 $\sin^2\theta + \cos^2\theta = 1$ 求出 $\sin\theta$ 和 $\cos\theta$,再求 $\tan\theta$,

由
$$\begin{cases} 2\sin\theta = 1 - \cos\theta \\ \sin^2\theta + \cos^2\theta = 1 \end{cases}$$
解得: $\sin\theta = 0$, $\cos\theta = 1$ 或 $\sin\theta = \frac{4}{5}$, $\cos\theta = -\frac{3}{5}$,

又
$$\frac{\pi}{2}$$
< θ < $\frac{3\pi}{2}$, 所以 $\cos\theta$ < 0 , 从而 $\sin\theta$ = $\frac{4}{5}$, $\cos\theta$ = $-\frac{3}{5}$, 故 $\tan\theta$ = $\frac{\sin\theta}{\cos\theta}$ = $-\frac{4}{3}$.

答案: B

【例 2】已知
$$\tan \alpha = \frac{2\cos \alpha}{2-\sin \alpha}$$
,则 $\sin \alpha =$ _____.

解析:要求的是 $\sin \alpha$,故将所给等式切化弦,

由题意,
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{2\cos \alpha}{2-\sin \alpha}$$
, 所以 $2\sin \alpha - \sin^2 \alpha = 2\cos^2 \alpha$ ①,

观察发现若将 $\cos^2\alpha$ 换成 $1-\sin^2\alpha$,即可化同名,解出 $\sin\alpha$,

因为 $\cos^2 \alpha = 1 - \sin^2 \alpha$,代入①整理得: $\sin^2 \alpha + 2\sin \alpha - 2 = 0$,

所以
$$(\sin \alpha + 1)^2 = 3$$
,解得: $\sin \alpha = \sqrt{3} - 1$ 或 $-\sqrt{3} - 1$ (舍去).

答案: √3-1

【变式】若
$$\tan \alpha = \cos \alpha$$
,则 $\frac{1}{\sin \alpha} + \cos^4 \alpha =$ _____.

解析: 先将已知的等式切化弦, $\tan \alpha = \cos \alpha \Rightarrow \frac{\sin \alpha}{\cos \alpha} = \cos \alpha \Rightarrow \sin \alpha = \cos^2 \alpha$ ①,

将右侧的 $\cos^2 \alpha$ 换成 $1-\sin^2 \alpha$ 即可化同名,解出 $\sin \alpha$,

又 $\cos^2 \alpha = 1 - \sin^2 \alpha$,代入①可得 $\sin \alpha = 1 - \sin^2 \alpha$,解得: $\sin \alpha = \frac{\sqrt{5} - 1}{2}$ 或 $-\frac{\sqrt{5} + 1}{2}$ (舍去),

既然有了 $\sin \alpha$,那么可将 $\frac{1}{\sin \alpha} + \cos^4 \alpha$ 中的 $\cos^4 \alpha$ 也化为 $\sin \alpha$,可用式①来化,

$$\frac{1}{\sin \alpha} + \cos^4 \alpha = \frac{1}{\sin \alpha} + \sin^2 \alpha = \frac{2}{\sqrt{5} - 1} + (\frac{\sqrt{5} - 1}{2})^2 = \frac{\sqrt{5} + 1}{2} + \frac{3 - \sqrt{5}}{2} = 2.$$

答案: 2

【总结】等式 $\sin^2 \alpha + \cos^2 \alpha = 1$ 沟通了正余弦, $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$ 沟通了弦与切.

类型 II: $\sin \alpha + \cos \alpha$, $\sin \alpha - \cos \alpha = \sin \alpha \cos \alpha$

【例 3】已知
$$\alpha \in (0,\pi)$$
, $\sin \alpha + \cos \alpha = \frac{\sqrt{3}}{3}$,则 $\sin 2\alpha = _____$; $\cos 2\alpha = _____$.

解析: 若像例 1 的变式 2 那样会发现计算较复杂,故用内容提要 2 的式子沟通 $\sin\alpha + \cos\alpha$ 与所求的量,

由内容提要 2,
$$(\sin\alpha + \cos\alpha)^2 = 1 + \sin 2\alpha$$
 , 所以 $\sin 2\alpha = (\sin\alpha + \cos\alpha)^2 - 1 = -\frac{2}{3}$ ①,

接下来若用 $\cos^2 2\alpha = 1 - \sin^2 2\alpha \, \bar{x} \cos 2\alpha$,则开根时正负不好判断,

故用 $\cos 2\alpha = (\cos \alpha - \sin \alpha)(\cos \alpha + \sin \alpha)$ 来算,下面先求 $\cos \alpha - \sin \alpha$, 需判断其正负,

由①知 $\sin 2\alpha = 2\sin \alpha \cos \alpha < 0$, 结合 $\alpha \in (0,\pi)$ 可得 $\sin \alpha > 0$, $\cos \alpha < 0$, 所以 $\cos \alpha - \sin \alpha < 0$,

又
$$(\cos \alpha - \sin \alpha)^2 = 1 - \sin 2\alpha = 1 - (-\frac{2}{3}) = \frac{5}{3}$$
,所以 $\cos \alpha - \sin \alpha = -\frac{\sqrt{15}}{3}$,

故
$$\cos 2\alpha = (\cos \alpha - \sin \alpha)(\cos \alpha + \sin \alpha) = -\frac{\sqrt{15}}{3} \times \frac{\sqrt{3}}{3} = -\frac{\sqrt{5}}{3}$$
.

答案:
$$-\frac{2}{3}$$
; $-\frac{\sqrt{5}}{3}$

【反思】已知 $\sin \alpha \pm \cos \alpha$ 的值,可将其平方,求得 $\sin 2\alpha$ 的值,并由该值的正负来分析 α 的范围.

【变式】 $\exists x \in [0, \frac{\pi}{3}]$,则函数 $y = \sin x + \cos x - 2\sin x \cos x$ 的最大值为()

(A) 1 (B)
$$\sqrt{2}$$
 (C) 2 (D) $\sqrt{2}+1$

解析: 借助 $(\sin x + \cos x)^2 = 1 + 2\sin x \cos x$, 将 $\sin x + \cos x$ 换元, 可转化为二次函数求区间最值,

设 $t = \sin x + \cos x$,则 $t = \sqrt{2}\sin(x + \frac{\pi}{4})$,换元后,应研究新元的取值范围,

设
$$u = x + \frac{\pi}{4}$$
,则 $t = \sqrt{2}\sin u$,当 $x \in [0, \frac{\pi}{3}]$ 时, $u = x + \frac{\pi}{4} \in [\frac{\pi}{4}, \frac{7\pi}{12}]$,

函数 $t = \sqrt{2} \sin u$ 的部分图象如图所示,由图可知 $t \in [1, \sqrt{2}]$,

又 $t^2 = (\sin x + \cos x)^2 = 1 + 2\sin x \cos x$,所以 $2\sin x \cos x = t^2 - 1$,故 $y = t - (t^2 - 1) = -t^2 + t + 1$,

因为二次函数 $y=-t^2+t+1$ 在 $[1,\sqrt{2}]$ 上 \(\simega\),所以当 t=1时,y 取得最大值 1.

答案: A

【反思】看到 $\sin x \pm \cos x$ 和 $\sin x \cos x$ 出现在一个式子中,想到将 $\sin x \pm \cos x$ 换元成t,并将其平方,可将 $\sin x \cos x$ 也用t表示.

类型III: $\sin \alpha \, \cos \alpha \,$ 的齐次分式化正切

【例 4】已知
$$\tan \alpha = 2$$
,则 $\frac{\sin \alpha - 4\cos \alpha}{5\sin \alpha + 2\cos \alpha} =$ ______.

解析: 已知正切,若先求 $\sin \alpha$ 和 $\cos \alpha$,则需讨论 α 在第一象限还是第三象限,较为繁琐,而我们要求值的式子是关于 $\sin \alpha$ 和 $\cos \alpha$ 的一次齐次分式,可上下同除以 $\cos \alpha$ 直接化正切来计算,

由题意,
$$\frac{\sin\alpha - 4\cos\alpha}{5\sin\alpha + 2\cos\alpha} = \frac{\tan\alpha - 4}{5\tan\alpha + 2} = \frac{2 - 4}{5 \times 2 + 2} = -\frac{1}{6}.$$

【**反思**】关于 $\sin \alpha$ 和 $\cos \alpha$ 的一次齐次分式,可上下同除以 $\cos \alpha$ 化正切;从后面的几道题我们还会看到,只要是关于 $\sin \alpha$ 和 $\cos \alpha$ 齐次分式,都可以化正切.

答案: $-\frac{1}{6}$

【变式 1】已知 $\sin \alpha + 2\cos \alpha = 0$,则 $2\sin \alpha \cos \alpha - \cos^2 \alpha$ 的值是_____.

解析: 要求值的式子不是分式,但我们可以把它看成分母为 1 的分式 $\frac{2\sin\alpha\cos\alpha-\cos^2\alpha}{1}$,并将 1 代换成

 $\sin^2 \alpha + \cos^2 \alpha$,这样就转化成了二次齐次分式,可上下同除以 $\cos^2 \alpha$ 化正切,

$$\sin \alpha + 2\cos \alpha = 0 \Rightarrow \tan \alpha = -2, \quad \text{MU} \quad 2\sin \alpha \cos \alpha - \cos^2 \alpha = \frac{2\sin \alpha \cos \alpha - \cos^2 \alpha}{\sin^2 \alpha + \cos^2 \alpha} = \frac{2\tan \alpha - 1}{\tan^2 \alpha + 1} = -1.$$

答案: -1

【变式 2】 若
$$\alpha \in (\frac{\pi}{2}, \pi)$$
, $2\sin \alpha + \cos \alpha = \frac{3\sqrt{5}}{5}$,则 $\tan \alpha = ($

(A) -2 (B) 2 (C) $\frac{2}{11}$ (D) $-\frac{2}{11}$

解法 1: 给出了 $\sin \alpha$ 和 $\cos \alpha$ 的一个方程,可结合 $\sin^2 \alpha + \cos^2 \alpha = 1$ 求出 $\sin \alpha$ 和 $\cos \alpha$,再求 $\tan \alpha$,

曲 $2\sin\alpha + \cos\alpha = \frac{3\sqrt{5}}{5}$ 可得 $\cos\alpha = \frac{3\sqrt{5}}{5} - 2\sin\alpha$,代入 $\sin^2\alpha + \cos^2\alpha = 1$ 得: $\sin^2\alpha + (\frac{3\sqrt{5}}{5} - 2\sin\alpha)^2 = 1$,

整理得: $25\sin^2\alpha - 12\sqrt{5}\sin\alpha + 4 = 0$,解得: $\sin\alpha = \frac{2\sqrt{5}}{25}$ 或 $\frac{2\sqrt{5}}{5}$,

当 $\sin \alpha = \frac{2\sqrt{5}}{25}$ 时, $\cos \alpha = \frac{3\sqrt{5}}{5} - 2\sin \alpha = \frac{11\sqrt{5}}{25}$, 因为 $\alpha \in (\frac{\pi}{2}, \pi)$, 所以 $\cos \alpha < 0$, 矛盾;

当 $\sin \alpha = \frac{2\sqrt{5}}{5}$ 时, $\cos \alpha = \frac{3\sqrt{5}}{5} - 2\sin \alpha = -\frac{\sqrt{5}}{5}$,所以 $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -2$.

解法 2: 将已知的式子平方,左侧可化为关于 $\sin \alpha$ 和 $\cos \alpha$ 的二次齐次式,这种式子可直接化正切,

因为 $2\sin\alpha + \cos\alpha = \frac{3\sqrt{5}}{5}$,所以 $(2\sin\alpha + \cos\alpha)^2 = 4\sin^2\alpha + 4\sin\alpha\cos\alpha + \cos^2\alpha = \frac{9}{5}$,

所以 $\frac{4\tan^2\alpha + 4\tan\alpha + 1}{\tan^2\alpha + 1} = \frac{9}{5}$,解得: $\tan\alpha = \frac{2}{11}$ 或 -2,又 $\alpha \in (\frac{\pi}{2}, \pi)$,所以 $\tan\alpha < 0$,故 $\tan\alpha = -2$.

答案: A

【反思】已知 $A\sin\alpha + B\cos\alpha = C$ 这类式子,尽管可以和 $\sin^2\alpha + \cos^2\alpha = 1$ 联立求解 $\sin\alpha$ 和 $\cos\alpha$,但若数 字较复杂,则计算量大;通过平方,再化正切也是一个可以考虑的方向.

强化训练

- 1. $(2022 \cdot 海南海口模拟 \cdot ★) 已知 \cos\alpha = -\frac{4}{5}, 且 \sin\alpha < 0, 则 \tan\alpha = ()$

- (A) $\frac{3}{4}$ (B) $-\frac{3}{4}$ (C) $\frac{4}{3}$ (D) $-\frac{4}{3}$
- 2. $(2022 \cdot 江西南昌三模 \cdot ★★)若角 \alpha$ 的终边不在坐标轴上,且 $\sin \alpha + 2\cos \alpha = 2$,则 $\tan \alpha = ($)
- (A) $\frac{4}{3}$ (B) $\frac{3}{4}$ (C) $\frac{2}{3}$ (D) $\frac{3}{2}$

- 3. $(2022 \cdot 湖北模拟 \cdot \star \star)$ 已知 $2\sin\alpha\tan\alpha=3$,则 $\cos\alpha=$.

- 4. $(2022 \cdot 上海模拟 \cdot \star \star)$ 若 $\sin\theta = k\cos\theta$,则 $\sin\theta\cos\theta =$ ____. (用 k 表示)
- 5. $(2022 \cdot 湖南模拟 \cdot \star \star)$ 已知 $\sin \alpha + 2\cos \alpha = 0$,则 $\frac{\cos 2\alpha}{1-\sin 2\alpha} =$ ____.
- 6. $(2022 \cdot 四川模拟 \cdot \star \star)$ 已知 $\sin\theta = 2\cos\theta$,则 $\frac{\sin\theta + \cos\theta}{\sin\theta} + \sin^2\theta = ($)

- (A) $\frac{19}{5}$ (B) $\frac{16}{5}$ (C) $\frac{23}{10}$ (D) $\frac{17}{10}$
- 7. $(2018 \cdot 新课标 II 卷 \cdot \star \star \star \star)$ 已知 $\sin \alpha + \cos \beta = 1$, $\cos \alpha + \sin \beta = 0$, 则 $\sin(\alpha + \beta) =$ _____.

- 8. (★★★) (多选) 已知 $\alpha \in (0,\pi)$, $\sin \alpha + \cos \alpha = \frac{1}{5}$, 以下选项正确的是 ()

- (A) $\sin 2\alpha = \frac{24}{25}$ (B) $\sin \alpha \cos \alpha = \frac{7}{5}$ (C) $\cos 2\alpha = -\frac{7}{25}$ (D) $\sin^4 \alpha \cos^4 \alpha = -\frac{7}{25}$
- 9. $(2022 \cdot 湖北四校联考 \cdot \star \star \star \star \star)$ 若 $a(\sin x + \cos x) \le 2 + \sin x \cos x$ 对任意的 $x \in (0, \frac{\pi}{2})$ 恒成立,则实数 a 的最大值为_____.