Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Учебно-исследовательская работа №2

по дисциплине

«Моделирование»

Выполнил: Батаргин Егор Александрович

Группа: Р3332

ITMO.ID: 335189

Оглавление

Цель работы	. 3
Задание	
Система 1. Исходные данные	
Система 1. Схема перехода состояний	
Система 1. Матрица интенсивностей переход	
Система 1. Таблица стационарных вероятностей	. 6
Система 2. Исходные данные	. 6
Система 2. Схематичное представление:	. 7
Система 2. Схема перехода состояний	

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования

простейших моделей - систем массового обслуживания (СМО) с однородным потоком заявок.

Задание

Разработка и расчет марковских моделей одно- и многоканальных СМО с однородным потоком заявок и выбор наилучшего варианта построения СМО в соответствии с заданным критерием эффективности. В процессе исследований для расчета характеристик функционирования СМО используется программа МАRK.

Система 1. Исходные данные

Вариант	Систе	ема 1
3	П	EH
	2	3/0

Вариант	Систе	ма 2
4	П	EH
	2 (E2)	1/0

Номер	Интенсивность	Ср. длит.	Вероятность занятия приб		я прибора
варианта	потока	обслуживания			
	λ, 1/c	b, c	П1	П2	П3
32	0,7	8	0,85	0,1	0,05

P1 =
$$\lambda * \Pi1 = 0.7 * 0.85 = 0,595$$

P2 = $\lambda * (\Pi2 + \Pi3) = 0.7 * 0.15 = 0.105$
 $\mu = 1/b = 1/8 = 0.125$

Схематичное представление Системы1

Система 1. Схема перехода состояний

Система 1. Матрица интенсивностей переходов

Список элементов		0	1	2	3	4	5	6	7	8	9
матрицы	0	0	P1	P2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Имя Значение	1	I	1	0.0000	P1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
P1 0.5950 P2 0.1050	2	I	0.0000	2	P1	P2	0.0000	0.0000	0.0000	0.0000	0.0000
I 0.1050	3	0.0000	I	I	3	0.0000	P1	0.0000	0.0000	0.0000	0.0000
	4	0.0000	0.0000	I	0.0000	4	P1	P2	0.0000	0.0000	0.0000
	5	0.0000	0.0000	0.0000	I	I	5	0.0000	P1	0.0000	0.0000
	6	0.0000	0.0000	0.0000	0.0000	I	0.0000	6	P1	P2	0.0000
	7	0.0000	0.0000	0.0000	0.0000	0.0000	I	I	7	0.0000	P1
	8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	I	0.0000	8	P2
	9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	I	T.	9

Система 1. Таблица стационарных вероятностей

Chelema	1. Taomi
p0	0.0013
p1	0.0030
p2	0.0043
р3	0.0111
p4	0.0164
p5	0.0400
p6	0.0645
p7	0.1398
p8	0.2724
p9	0.4471

Система 1. Результаты и вычислительные формулы

Характеристика	Прибор	Расчетная формула	Результат
Нагрузка	П1	$y1 = \lambda * P1/\mu$	0.588
, rai pyona	П2	$y2 = \lambda * P2/\mu$	3.332
	Сумм.	y = y1 + y2	3.92
		p1 = p1 + p3 + p4 + p5 + p6 + p7 + p8 +	
Загрузка	П1	p9	1.3543
	Π2	p2 = p2 + p4 + p6 + p8 + p9	0.8047
	Сумм.	p = p1 + p2	2.159
		l1 = p3 + p6 + p5*2 + p8 * 2 + p7 * 3 + p9	
Длина очереди	П1	* 3	3.1811
	Π2	12 = 0	0
	Сумм.	L = l1 + l2	3.1811
Число заявок		m1 = p1 + p4 + 2*p3 + 2*p6 + 3*p5 + 3*	
	П1	p8 + 4 * p7 + 4 * p9	4.5354

	П2	m2 = p2 + p4 + p6 + p8 + p9	0.8047
	Сумм.	M = m1 + m2	5.3401
Вероятность потери	П1	p1 = p7 + p9	0.5869
	П2	p2 = p2 + p4 + p6 + p8 + p9	0.8047
	Сумм.	p = P1 * pi1 + P2 * pi2	0.540421
Производительность	П1	ly1 = λ * P1 * (1 - p1)	0.03036285
	П2	ly2 = λ * P2 * (1 - p2)	0.08134245
	Сумм.	ly = ly1 + ly2	0.1117053
Время ожидания	П1	w1 = l1/ly1	104.7694798
	П2	w2 = l2/ly2	0
	Сумм.	w = ly1 * w1/ly + ly2 * w2/ly	28.47761028
Время пребывания	П1	u1 = m1/ly1	149.3733296
	П2	u2 = m2/ly2	9.89274358
	Сумм.	u = M/ly	47.80525185

Система 2. Исходные данные

Вариант	Систе	ема 2
4	П	EH
	2 (E2)	1/0

Номер варианта	Интенсивность потока	Ср. длит. обслуживания	Вероятно	сть заняти	я прибора
	λ, 1/c	b, c	П1	П2	П3
32	0,7	8	0,85	0,1	0,05

P1 =
$$\lambda * \Pi 1 = 0.7 * 0.85 = 0,595$$

P2 = $\lambda * (\Pi 2 + \Pi 3) = 0.7 * 0.15 = 0.105$
 $\mu = 1/b = 1/8 = 0.125$

Система 2. Схематичное представление:

По данной схеме можно увидеть, как устроен первый прибор. В первом приборе есть 2 фазы обработки заявки. И 2-я фаза может быть выполнена тогда, когда выполнена 1-я фаза. Таким образом $\mu=\mu_{\, \varphi 1}+\mu_{\, \varphi 2}$. Однако известно, что $\mu_{\, \varphi 1}$ и $\mu_{\, \varphi 2}$ должны быть равны. Значит делаем вывод, что

$$\mu_{\phi 1} = \mu_{\phi 2} = \frac{\mu}{2} = \frac{0.125}{2} = 0.0625$$

Система 2. Схема перехода состояний

Система 2. Матрица интенсивностей перехода

Список элементов			0	1	2	3	4	5	6	7	8	9
1	иатрицы	0	0	P1	0.0000	P2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Имя	Значение	1	m1	1	P1	0.0000	P1	0.0000	P2	0.0000	0.0000	0.0000
m m1	0.1250 0.0625	2	0.0000	m1	2	0.0000	0.0000	P1	0.0000	P2	0.0000	0.0000
m2	0.0625	3	m	0.0000	0.0000	3	0.0000	0.0000	P1	0.0000	0.0000	0.0000
P1 P2	0.5950 0.1050	4	0.0000	m1	0.0000	0.0000	4	P1	0.0000	0.0000	P2	0.0000
-2	0.1030	5	0.0000	0.0000	m1	0.0000	m2	5	0.0000	0.0000	0.0000	P2
		6	0.0000	0.0000	0.0000	m1	0.0000	0.0000	6	P1	P1	0.0000
		7	0.0000	0.0000	m2	0.0000	0.0000	0.0000	m2	7	0.0000	P1
		8	0.0000	0.0000	0.0000	0.0000	m	0.0000	m	0.0000	8	P1
		9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	m	m2	9

Где $m=\mu,\, m1=\mu_{\varphi 1},\, m2=\mu_{\varphi 2}$

Система 2. Таблица стационарных вероятностей

p0	0.004
p1	0.0020
p2	0.0206

р3	0.0012
p4	0.0200
p5	0.1051
p6	0.0130
p7	0.1268
p8	0.0598
p9	0.6510

Система 2. Результаты и вычислительные формулы

Характеристика	Прибор	Расчетная формула	Результат
Нагрузка	П1	y1 = λ * P1/m	0.588
	П2	y2 = λ * P2/m	3.332
	Сумм.	y = y1 + y2	3.92
	П1	p1 = 1 - (p0 + p3)	0.9948
Загрузка		p2 = p3 + p6 + p7 + p8 +	
	П2	p9	0.8518
	Сумм.	p = p1 + p2	1.8466
Длина очереди	П1	l1 = p4 + p5 + p8 + p9	0.8359
	Π2	12 = 0	0
	Сумм.	L = l1 + l2	0.8359
		m1 = p1 + p2 + p4 + p5 +	
	П1	p6 + p7 + p8 +p9	0.9983
Число заявок		m2 = p3 + p6 + p7 + p8	
	П2	+ p9	0.8518
	Сумм.	M = m1 + m2	1.8501
Вероятность потери	П1	pi1 = p4 + p5 + p8 + p9	0.8359
		pi2 =p3 + p6 + p7 + p8 +	
	Π2	p9	0.8518
	Сумм.	pi = P1 * pi1 + P2 * pi2	0.5945905
	П1	ly1 = λ * P1 * (1 - pi1)	0.01206135
Производительность			
	П2	$ly2 = \lambda * P2 * (1 - pi2)$	0.0617253
	Сумм.	ly = ly1 + ly2	0.07378665
	П1	w1 = l1/ly1	69.30401655
Время ожидания	Π2	w2 = l2/ly2	0
		w = ly1 * w1/ly + ly2 *	
	Сумм.	w2/ly	11.32860755
Время пребывания	П1	u1 = m1/ly1	82.76851265
	Π2	u2 = m2/ly2	13.79985192
	Сумм.	u = M/ly	25.07364137

Сравнительный анализ систем

На основе графика лучше системой я бы выбрал систему 2, так как она обладает меньшим временим ожидания заявок и их пребыванием. Так же система 1 обладает большей нагрузкой и длиной очереди, что говорит о её неэффективности. Почему это плохо:

- Система с высокой нагрузкой менее устойчива к увеличению потока заявок. Даже небольшое увеличение интенсивности заявок может привести к перегрузке.
- Это увеличивает вероятность образования очередей и, как следствие, ухудшает качество обслуживания.

• Большая очередь приводит к увеличению времени ожидания для заявок. Пользователи системы (например, клиенты) могут быть недовольны длительным временем ожидания.

Таким образом, система 2 является наилучшей.