Week 12 Artificial Intelligence (Al) for Investments

Lesson 1: Classification Algorithms: Logit/Probit Regression

Introduction

- Limited dependent variable modeling: background and motivation
- OLS approach: linear probability models (LPMs)
- Issues with LPM models
- Introduction to logit/probit models
- Understanding logit function

Introduction

- Thresholding
- Confusion/classification Matrix
- Receiver operator characteristic (ROC) curve
- Parameter interpretation
- Summary and concluding remarks

Background and Motivation

Limited Dependent Variable/Qualitative Response Regression

Discrete choice variables, limited dependent variables, or qualitative response variables are not suitable for modeling through linear regression models

Consider the following questions

- Why do firms choose to list their stocks on NSE vs. BSE?
- Why do some stocks pay dividends and others do not?
- What factors affect large corporate borrowers to default?
- What factors affect choices of internal vs. external financing?

Limited Dependent Variable/Qualitative Response Regression

Credit default scoring (classification problem)

Linear Probability Model (LPM)

Linear Probability Model (LPM)

- In such models, the dependent variable is Yes/No or 1/0 kind of variable
- First, we will examine a simple linear regression approach to deal with such models: linear probability model (LPM)
- This is the most simple approach to deal with binary dependent variables
- It is based on the assumption that the probability of an event (P_i) is linearly related to a set of explanatory variables, $x_{1i}, x_{2i}, ..., x_{ki}$
- $P_i = p(y_i = 1) = \beta_1 + \beta_2 x_2 + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i, i = 1, \dots, N$

Linear Probability Model (LPM)

In such models, the actual probabilities cannot be observed, so your estimates (or dependent variables) would be 0s and 1s

 Consider the relationship between the size of a company "i" and its ability to pay dividends

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

where X_i = market capitalization of the firm, and Y_i =1 if the dividend is paid and 0 if the dividend is not paid.

Linear Probability Model (LPM)

In such models, the actual probabilities cannot be observed, so your estimates (or dependent variables) would be 0s and 1s

- This is called linear probability model. The conditional expectation of Y_i given X_i , i.e., $E(Y_i|X_i)$, can be interpreted that the event will occur given X_i : that is, $P(Y_i = 1|X_i)$
- $E(Y_i|X_i) = \beta_1 + \beta_2 X_i$ (assuming $E(u_i) = 0$)

Summary

Issues with LPM

Non-normality and heteroscedasticity of error terms

• Y_i has the following distribution

$$E(Y_i|X_i) = 0 \times (1-P_i) + 1 \times (P_i) = P_i$$

- This kind of model has a number of econometric issues
- What is the nature of errors: $u_i = Y_i \beta_1 \beta_2 X_i$?

Y_i	Probability	
0	1 – <i>P</i> _i	
1	P_i	
Total	1	

	Uį	Probability
When $Y_i = 1$	$1 - \beta_1 - \beta_2 X_i$	P_i
When $Y_i = 0$	$-\beta_1 - \beta_2 X_i$	$(1 - P_i)$

Non-normality and heteroscedasticity of error terms

- u_i is not normally distributed; although in large samples, it is not a problem
- u_i s are heteroscedastic, i.e., they vary with Y_i

Yi	Probability	
0	1 – <i>P</i> _i	
1	P_i	
Total	1	

	Uį	Probability
When $Y_i = 1$	$1-\beta_1-\beta_2X_i$	Pi
When $Y_i = 0$	$-\beta_1 - \beta_2 X_i$	$(1 - P_i)$

Nonfulfillment of $0 \le E(Y_i \mid X) \le 1$

- $Y_i = -0.3 + 0.012X_i$; where X_i is in million dollars
- For every \$1 million increase in size, the probability that the firm will pay dividend increases by 1.2%
- However, for X < \$25 million and X > \$88
 million, the probabilities are less than 0 and
 more than 1

Nonfulfillment of $0 \le E(Y_i \mid X) \le 1$

- What to do: set all negative as 0 and a those greater than 1 as 1?
- Implausible to suggest that small firms will never pay dividend and large firms will always pay dividends

Diminishing utility of R^2 as a goodness of fit measure

- All the Y values will be on a line Y = 0 or Y = 1
- The conventional LPM is not expected to fit well with such observations, except those cases where all the observations are scattered closely around points A and B
- Both logit and probit approaches are able to overcome the limitation of LPM that it produces values less than 0 and more than 1

Introduction to Logit Model

The logit (and probit) approaches overcome the limitations of the regression model by transforming to a function so that fitted values are bounded within (0,1) interval

- The fitted function looks like an S-shape curve
- The logistic function for a random variable z is: $F(z_i) = \frac{(e^{z_i})}{(1+e^{z_i})} = \frac{1}{(1+e^{-z_i})}$

The logit (and probit) approaches overcome the limitations of the regression model by transforming to a function so that fitted values are bounded within (0,1) interval

- Here F is the cumulative logistic distribution
- The final logit model: $P_i(y_i = 1) = \frac{1}{(1+e^{-(\beta_1+\beta_2x_{2i}+\beta_3x_{3i}+\cdots+\beta_kx_{ki}+u_i)})}$

$$P_i(y_i = 1) = \frac{1}{(1 + e^{-(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i)})}$$

- Model asymptotically touches 0 (z → ¬∞) and 1 (z→∞)
- Is this model linear? Hence, not amenable to OLS estimation
- The model would predict that the probability, e.g., probability of bank loan default (dependent variable = y)

$$P_i(y_i = 1) = \frac{1}{(1 + e^{-(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i)})}$$

- P(y = 1), then P(y = 0) = 1 P(y = 1)
- Here independent variables are x_{2i} , x_{3i} , x_{4i} , x_{5i} , and so on
- This is essentially a non-linear transformation of the model to produce consistent probability results

Understanding the Logit Function

$$P_i(y_i = 1) = \frac{1}{(1 + e^{-(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i)})}$$

• Here extremely low and negative values of the linear function $\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \cdots + \beta_k x_{ki}$ would predict No dividend (or non-default cases) with a high probability or $P_i(y_i = 0)$

$$P_i(y_i = 1) = \frac{1}{(1 + e^{-(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i)})}$$

• Extremely high and positive values of the linear function $\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \cdots + \beta_k x_{ki}$ would predict dividend payment (or default cases) with high probability or $P_i(y_i = 1)$

$$P_i(y_i = 1) = \frac{1}{(1 + e^{-(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i)})}$$

- This can also be expressed in the form of Odds
- Odds = $\frac{P(y=1)}{P(y=0)};$
- Odds > 1 if y = 1 is more likely
- Odds < 1 if y = 0 is more likely

$$P_i(y_i = 1) = \frac{1}{(1 + e^{-(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i)})}$$

- If we substitute the logit function in Odds equation, then
- Odds = $\exp^{(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i)}$ or
- $\ln(\text{Odds}) = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i$
- The higher this logit (or ln(Odds)) form, the higher the probability for $P_i(y_i = 1)$

Thresholding

The outcome of the regression model is a probability

- In real life, you would want to make a binary prediction, e.g., default or no default
- For this, we may consider a threshold value "t"
- If P(Default = 1) >= t, then predict a default case
- If P(Default = 0) < t, then predict a non-default case

What value should we select for "t"? What kind of error do you prefer?

- Given a t value, one can make two types of errors: (1) predict default, but the actual outcome is non-default: false positive; and (2) predict non-default, but the actual outcome is default: false negative
- A large threshold (e.g., t = 0.8) will have a very small probability of predicting defaulters and, at the same time, a high probability of predicting cases as non-defaulters

What value should we select for "t"? What kind of error do you prefer?

- A small threshold (e.g., t = 0.1) will have a very large probability of predicting defaulters and, at the same time, a small probability of predicting cases as non-defaulters
- An aggressive bank would like to have high t values to increase the possibility of converting a loan

What value should we select for "t"? What kind of error do you prefer?

- A more conservative bank may choose a very low t value to select those loan applications with a very low probability of default
- In the absence of any threshold, t = 0.5 is the correct value to pick

Classification Matrix

Selecting a Threshold: Confusion/Classification Matrix

	Predicted = 0 (Non-Default)	Predicted = 1 (Default)
Actual = 0	True Negatives (TN)	False Positives (FP)
Actual = 1	False Negatives (FN)	True Positives (TP)

Let us compute two outcome measures to determine what kind of errors we are making

• Sensitivity =
$$\frac{TP}{TP+FN}$$
 = TP rate

• Specificity =
$$\frac{TN}{TN+FP}$$
 = TN rate

Selecting a Threshold: Confusion/Classification Matrix

Let us compute two outcome measures to determine what kind of errors we are making

• Sensitivity =
$$\frac{TP}{TP+FN}$$
 = TP rate

• Specificity =
$$\frac{TN}{TN+FP}$$
 = TN rate

- A model with higher t will have lower sensitivity and higher specificity
- A model with lower t will have higher sensitivity and lower specificity

Selecting a Threshold: Confusion/Classification Matrix

- Overall accuracy = $\frac{(TN+TP)}{N}$, where N = number of observations
- Overall error rate = $\frac{(FP+FN)}{N}$
- False negative error rate $=\frac{FN}{(TP+FN)}$
- False positive error rate $=\frac{FP}{(TN+FP)}$

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Receiver Operating Characteristic (ROC) Curve

Receiver Operator Characteristic (ROC) Curve

- True positivity (TP) rate on the y-axis,
 i.e., the proportion of default correctly predicted
- False positive on the x-axis, i.e., the proportion non-default incorrectly predicted as default cases
- The curve shows how these two measures vary with different threshold values

Receiver Operator Characteristic (ROC) Curve

- For t = 1, TP = 0, and FP = 0 → will not be able to predict any default cases but correctly predict all the non-default cases
- For t = 0, TP = 1, and FP = 1 → will be able to correctly predict all the default cases but incorrectly predict all the nondefault cases
- As we move from t = 1 to t = 0, different combinations of TP and FP are obtained

Receiver Operator Characteristic (ROC) Curve

- ROC curve captures all the complete threshold behavior
- High threshold: high specificity and low sensitivity
- Low threshold: low specificity and high sensitivity
- Thus, it is a tradeoff between cost in failing to detect default cases vs. incorrectly considering non-default cases as defaulters

Receiver Operator Characteristic (ROC) Curve

- A 100% score area under the curve will indicate complete accuracy, i.e., all the observations are correctly identified
 TP = 1 and FP = 0
- A 50% score will indicate random guessing, that is, half TP = 0.5 and TN = 0.5 (FP = 0.5)

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Parameter Interpretation

Unlike LPM, it is incorrect to state that 1 unit increase in x_{2i} will cause $100^*\beta_2\%$ increase in the probability of $y_i = 1$

- For logit model, we calculate $\frac{dP_i}{dx_{2i}}$; this works out to $\beta_2 F(x_{2i})(1 F(x_{2i}))$ for the logit model
- So, a 1-unit increase in x_{2i} will increase the probability of y_i = 1 by $\beta_2 F(x_{2i})(1 F(x_{2i}))$
- Usually, these marginal/incremental impacts are evaluated at mean values

Example:
$$P_i(y_i = 1) = \frac{1}{(1 + e^{-(\beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i)})}$$

•
$$F(z_i) = \widehat{P}_i = \frac{1}{(1 + e^{-(0.1 + 0.3x_{2i} - 0.6x_{3i} + 0.9x_{4i})})}$$
;

•
$$\beta_1 = 0.1$$
; $\beta_2 = 0.3$; $\beta_3 = -0.6$; $\beta_4 = 0.9$

- What is $F(z_i)$? Given $\bar{x}_2 = 1.6$, $\bar{x}_3 = 0.20$, and $\bar{x}_4 = 0.10$?
- Marginal effects of $x_{2i} = \beta_2 F(x_{2i})(1 F(x_{2i}))$

Example:
$$F(z_i) = \widehat{P}_i = \frac{1}{(1 + e^{-(0.1 + 0.3x_{2i} - 0.6x_{3i} + 0.9x_{4i})})} = \frac{1}{1 + e^{-0.55}} = 0.63$$

- Thus, a 1-unit increase in x_{2i} will increase the probability of y_i by 0.3*0.63*(1-0.63) = 0.07
- Similarly, for x_{3i} , -0.6*0.63*(1 0.63), and x_{4i} , 0.9*0.63*(1 0.63)
- Sometimes, these are also called marginal effects

Probit Model Maximum Likelihood Estimation (MLE) Goodness-of-Fit Measures

Probit Model

- The probit model uses cumulative normal distribution: $F(z_i) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_i} e^{-(z_i^2)/2} dz$
- Model asymptotically touches 0 ($z \rightarrow -\infty$) and 1 ($z \rightarrow \infty$)
- Marginal impact of unit change on an explanatory variable x_{2i} is given as $\beta_2 F(z_i)$, where β_2 is the parameter attached to x_{2i} ; $z_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \dots + \beta_k x_{ki} + u_i$
- Both logit and probit models give similar results; differences may occur when data is extremely imbalanced

Maximum Likelihood Estimation (MLE) of Logit/Probit Models

These are non-linear models, hence cannot be estimated with a simple OLS method

- They are estimated with MLE
- In MLE, parameters are chosen to maximize a log-likelihood function
- The log-likelihood function obtains the population estimates that maximize the joint probability of observed sample/sample estimates

Goodness-of-Fit Measures

Conventional R^2 and $adj. -R^2$ measures do not work well with these models

MLE aims to maximize the log-likelihood function (LLF) and do not minimize RSS

- (1) % of y_i values correctly predicted
- (2) % of y_i = 1 values correctly predicted + % of y_i = 0 values correctly predicted

Goodness-of-Fit Measures

Conventional R^2 and adj. $-R^2$ measures do not work well

(3) Pseudo – $R^2 = 1 - \frac{\text{LLF}}{\text{LLF}_0}$, where LLF is the maximized value of the log-likelihood function for the logit and probit models, and LLF0 is the value of the log-likelihood function for a restricted model

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

- Among supervised learning algorithms, classification algorithm is a very important tool employed in the finance domain for applications such as credit scoring of loan applications
- Classification algorithms are very often implemented through Logit/Probit class of models; these are very simple yet powerful models
- These models account for a number of shortcomings of linear probability models: (a) non-normality and heteroscedasticity of error terms; (b) values of the dependent variable (probability) exceeding the 0–1 range; and (c) diminishing utility of conventional measures of goodness-of-fit (e.g., R²)

- Limited dependent variable models (e.g., Logit model) employ cumulative probability functions (e.g., logistic function)
- These models, although non-linear, are very useful for modeling limited dependent variables that are probabilistic in nature
- In the case of the logit model, the logit function is essential the odds ratio
- Since the estimated variable is in the form of probabilities, the thresholding process is needed to convert these probabilities into limited outcomes (e.g., Yes/No)

- The conventional measures of goodness-of-fit (e.g., \mathbb{R}^2) are not very useful for such models
- These measures are evaluated on their ability to accurately classify observations correctly
- For such purposes, a confusion/classification matrix is often employed
- The receiver operator characteristic (ROC) curve provides another useful tool to examine the efficiency of these models, and also facilitates the selection of thresholding values

- Unlike simple linear models, the parameter estimates are interpreted in a different manner
- Marginal effects are computed to interpret the coefficients and their relationship with the dependent variable
- Other models (e.g., probit model) remain identical in all other aspects, except that a different cumulative probability function is considered (normal distribution in case of probit)
- Since the model is non-linear in nature, OLS cannot be employed for estimation; maximum likelihood method is often employed to estimate these models

Thanks!