## Lecture 7

Wednesday, February 8, 2017

8:34 AM

Van Kampen thm: Suppose  $X=UA_{\alpha}$ , such that every  $A_{\alpha}$  is open, path connected and  $x_{\alpha}\in A_{\alpha}$ . If for any  $\alpha$  and  $\beta$ ,  $A_{\alpha}\cap A_{\beta}$  is path connected then

 $\Phi: \underset{\alpha}{+} \pi_{1}(A_{\alpha}, \chi_{o}) \longrightarrow^{\prod_{i}} (X, \chi_{o})$ 

IS surjective. Note that  $\Phi$  is the extension of the homo  $s \in \Pi_1(A_a, x_o) \longrightarrow \Pi_1(X, x_o)$  inclusion  $(A_a, x_o) \longrightarrow (X, x_o)$ 

If every  $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$  is path Connected, then ker  $\Phi$  is the normal subgroup generated by all elements of the form  $i_{\alpha\beta}(w) i_{\beta\alpha}(w)^{-1}$  for  $w \in \pi_1(A_{\alpha} \cap A_{\beta}, x_0)$ .



Special Cone If for all  $\alpha, \beta$ ,  $A_{\alpha} \cap A_{\beta}$  is simply connuted  $\Rightarrow \Phi : \star_{\alpha} \Pi_{1}(A_{\alpha}, \alpha_{0}) \longrightarrow \Pi_{1}(X, \alpha_{0})$  is an isomorphism.

$$EX : X = S'VS'$$

 $\begin{array}{lll} A_{p} = X - \{p\} \simeq S^{1} & \Rightarrow & \overline{\Pi_{1}(A_{p})} * \overline{\Pi_{1}(A_{q})} \longrightarrow \overline{\Pi_{1}(X)} \text{ isomorphism} \\ A_{q} = X - \{q\} \simeq S^{1} & \Rightarrow & \overline{\Pi_{1}(X)} \approx \overline{Z} * \overline{Z} \\ A_{p} \cap A_{q} \simeq \{x_{o}\} \ll \text{ simply connuted} & \sim \sim \overline{\Pi_{1}(X)} \approx \overline{Z} * \overline{Z} \end{array}$ 



Prop. Let  $(X, x_0) = V_{\alpha}(X_{\alpha}, x_{\alpha}) = \frac{\prod_{\alpha} X_{\alpha}}{(x_{\alpha} \times x_{\beta} : \text{any } \alpha \text{ and } \beta)}$ . If any  $X_{\alpha}$  contains a nbd

Ud of z which deform retraits on x then TI, (X, x , ) ~ \* TI, (X , x , 2 )





