CS & IT

ENGINERING

Algorithms

Greedy Method

DPP

(Discussion Notes)

By-Rohit Chauhan Sir

TOPICS TO BE COVERED

01 Question

02 Discussion

Q.1

Consider the following statements

S₁: Given a weighted directed graph with the distinct weight, the shortest path among any two vertices will be unique.

S₂: A minimum spanning tree can contain negative edges. [MC

Choose the correct statements.

which of the following statement 18/981 Tru?

A. Only S₁ is true

B. Only S₂ is true

C. Both S₁ and S₂ are true

D. neither S₁ nor S₂ is true

Suppose k5 is a complete graph with weights being 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, and P be the value of maximum possible weight of minimum spanning tree of K5 graph. Then value of P will be _____

Consider the following instances of the job for-scheduling problem with deadlines (Note: every Job takes one unit time)

Job	J_1	J_2	J_3	J_4	J_5	J ₆	J ₇
Deadline	1	3	4	3	2	1	2
Profit	3	5	20	18	1	(6)	30

Consider the following instantons of the job for-scheduling problem with deadlines (Note: every Job takes one unit time)

What is the manimum profit?

[NAT]

1 2 3 4 Job-3

Profit = 20+18+30+6

Let's suppose, we want to merge some sorted files where the number of records in each file is given below. (15, 18, 20, 21, 24, 28, 30, 32, 35, 40, 45, 50) then what is the minimum number of comparisons required to merge the following files? [MCQ]

В. 1225

D. 1255

$$(10_{1}11) = 10$$

 $(15_{1}11) = 11$
 $(15_{1}16) = 15$

$$u + 4 - 1 = 7$$

Q.6

Greedy algorithm fails to give an optimal solution to which of the following problems?

- (p) Travelling salesman problem
- (q) Job scheduling with deadlines and penalty
- (r) Shortest path algorithm
- (s) optimal merge pattern
- (t) Huffman encoding

p, q, r

p, q, r, s, t

В.

r, s, t

D.

All of the above

