

Word-Representable Temporal Graphs Duncan Adamson 20 March 2025

- Word-representable graphs are a class of graphs that can be represented by a word.
- These generalise several fundamental classes of graphs, including circle graphs, three-colourable graphs, and comparability graphs.
- Every word can be used to represent a graph, but not every graph can be represented by a word.
- A graph may have multiple word representations.

- Given a word
 w = w₁w₂...w_n, we make
 the graph G(w) = (V, E)
 based on the alphabet and
 subsequences of w.
- We create the vertex set V
 as V = {v_x | x ∈ alph(w)}
- Let π_{x,y}(w) denote the subsequence of w containing every instance of the symbols x and y.
- $(v_x, v_y) \in E$ iff $\pi_{x,y}(w) \in \{(xy)^k, (yx)^k, y(xy)^k, x(yx)^k\}$.

w = 138729607493541283076850194562

- Given a word $w = w_1 w_2 \dots w_n$, we make the graph G(w) = (V, E)based on the alphabet and **subsequences** of w.
- We create the vertex set V as $V = \{v_x \mid x \in alph(w)\}$
- Let $\pi_{x,y}(w)$ denote the subsequence of w containing every instance of the symbols x and y.
- $(v_x, v_y) \in E$ iff $\pi_{x,y}(w) \in$ $\{(xy)^k, (yx)^k, y(xy)^k, x(yx)^k\}.$

 $\pi(w)_{6.9} = 96$

- Given a word $w = w_1 w_2 \dots w_n$, we make the graph G(w) = (V, E)based on the alphabet and **subsequences** of w.
- We create the vertex set V as $V = \{v_x \mid x \in alph(w)\}$
- Let $\pi_{x,y}(w)$ denote the subsequence of w containing every instance of the symbols x and y.
- $(v_x, v_y) \in E$ iff $\pi_{x,y}(w) \in$ $\{(xy)^k, (yx)^k, y(xy)^k, x(yx)^k\}.$

Temporal Graphs

- A temporal graph is a generalisation of (static) graphs when, rather than one single set of edges, there is an ordered sequence of edge sets.
- By convention:

$$\mathcal{G} = (V, E_1, E_2, \dots, E_T)$$

where:

- V is the set of vertices.
- $E_i \subseteq V \times V$ is a set of edges.
- We call each set of edges a time step, and the number of sets as the lifetime of the graph.
- An edge e is **active** in timestep i iff $e \in E_i$.
- The underlying graph is the static graph

$$U(\mathcal{G}) = \left(V, \bigcup_{\substack{i \in [1,T] \\ \text{Duncan Adamson}}} E_i\right).$$

Temporal Graph Example

$G = (\{v_1, v_2, v_3, v_4, v_5\}, E_1, E_2, E_3, E_4, E_5)$

Underlying Graph

 $E_3 = (v_1, v_3), (v_2, v_3), (v_3, v_4), (v_3, v_5)$

 $E_1 = (v_1, v_2), (v_1, v_3), (v_1, v_4), (v_1, v_5)$

 $E_4 = (v_1, v_4), (v_2, v_4), (v_3, v_4), (v_4, v_5)$

 $E_2 = (v_1, v_2), (v_2, v_3), (v_2, v_4), (v_2, v_5)$

 $E_5 = (v_1, v_5), (v_2, v_5), (v_3, v_5), (v_4, v_5)$

Word-Representable Temporal Graphs

Duncan Adamson

Word-Representable Temporal Graphs

- In order to generalise word-representable graphs to temporal graphs, we need to represent different timesteps in a "reasonable" way.
- This means, being able represent a wide class of graphs in each timestep, while still being a compact representation of the temporal graph.

Word-Representable Temporal Graphs

- Given a word $w = w_1 w_2 \dots w_n$, we construct the temporal graph $\mathcal{G}(w) = (V, E_1, E_2, \dots, E_T)$ with the underlying graph $\mathcal{G}(w)$ (i.e., the static graph represented by w).
- To determine the timesteps, we split w into a set of factors (timestep words) $u_1, u_2, \dots u_T$ such that $w = u_1 u_2 \dots u_T$.
- u_1 is defined as $w[1, i_1]$, where i_1 satisfies $|\operatorname{alph}(w[1, i_1])| = i_1$ and $w[i_1 + 1] \in \operatorname{alph}(w[1, i_1])$.
 - Informally, $i_1 + 1$ is the index of the first repeated symbol in w.
- Now, let $i_{t-1} = |u_1 u_2 \dots u_{t-1}|$. The index i_t is the value such that $|\operatorname{alph}(w[i_{t-1}+1,i_t])| = i_t i_{t-1}$ and $w[i_t+1] \in \operatorname{alph}(w[i_{t-1}+1,i_t])$.
 - Informally, $i_t + 1$ is the index of the first repeated symbol in the suffix of w, $w[i_{t-1} + 1, n]$.
- u_t is then set to $w[i_{t-1}+1, i_t]$.

Word-Representable Temporal Graphs

- Let $w = u_1 u_2 \dots u_T$ as in the previous slide.
- Let G(w) = (V, E) be the static graph represented by w, and $G(w) = (V, E_1, E_2, \dots, E_T)$ the temporal graph represented by w.
- We set the edge set E_t to $\{(v_i, v_j) \in E \mid i \in alph(u_t) \text{ or } j \in alph(u_t)\}.$
 - Informally, E_t contains every edge incident to some vertex in the factor u_t.

123145653465

123145653465

123145653465

123145653465

123145653465

Why are we interested in these graphs?

- In many networks, a node is either active or inactive (a phone is on or off, a server is connected or disconnected).
- When active, we can assume, in a simple model, that all connections are available.
- Word-representable temporal graphs provide a subclass of such graphs that can be represented in a **compact manner**.

Temporal Walks

- A temporal walk is the temporal analogue of a walk in a static graph.
- A temporal walk on the temporal graph \mathcal{G} is an ordered sequence of edges, e_1, e_2, \ldots, e_k , and timesteps t_1, t_2, \ldots, t_k such that:
 - e_1, e_2, \ldots, e_k form a walk in $U(\mathcal{G})$, and,
 - *e*; is active in timestep *t*;.
 - $1 < t_1 < t_2 < \cdots < t_k < T$
- Given an agent following a temporal walk, if there is some timestep t that does not appear in the sequence of timesteps, we say the agent is waiting.

Problems on Temporal Graphs

- Most algorithmic work on temporal graphs focuses on questions of reachability and exploration.
- **Reachability:** Given a temporal graph G and pair of vertices v_i, v_i , does there exist a temporal walk from v_i to v_i ?
 - Optimisation Variant: What is the earliest an agent starting at v_i can reach v_i?
- **Exploration:** Given a temporal graph \mathcal{G} , does there exist a temporal walk visiting every vertex at least once?
 - Optimisation Variant: What is the earliest an agent starting at v_i can visit every vertex in the graph?

Always Connected Graphs

- A temporal graph is *Always Connected* if every timestep contains only a single connected-component.
- A word-representable temporal graph is always connected if the corresponding temporal graph is always connected.
- It is known that any always connected temporal graph with n vertices and a lifespan of at least n^2 can be explored, and that this bound is tight.

Exploring Always Connected Temporal Graphs

Theorem

Let $w \in \Sigma^*$ be a word representing an always connected temporal graph $\mathcal{G}(w) = (V, E_1, E_2, \dots, E_T)$ with a minimum degree of δ and $T > 2\delta\sigma$. Then, there exists a temporal walk exploring \mathcal{G} .

Outline

High Level Idea:

- We find a walk exploring the underlying graph.
- A Eulerian tour of a spanning tree gives such a walk of length at most 2n - 1.

Problem:

 Transforming this into a temporal walk requires these edges to be active in order.

Lemma (Informal)

Given any
$$t \in [1, T - \delta]$$
, $E = \bigcup_{d \in [\delta]} E_{t+d}$.

Sketch

- Let $w = u_1 u_2 \dots u_T$, $\mathcal{G}(w) = (V, E_1, E_2, \dots, E_T)$, and $\mathcal{G}(w) = (V, E)$.
- To be always connected, there needs to be, for every vertex $v_i \in V$ and $t \in [1, T]$, some $v_j \in V$ s.t. $(v_i, v_j) \in E_t$.
 - By extension, $\{j \in [1, \sigma] \mid i = j \text{ or } (v_i, v_i) \in E\} \cap \text{alph}(u_t) \neq \emptyset$,
- As $(v_i, v_j) \in E$ iff i and j alternate, then, for every $t \in [1, T deg(v_i) 1]$, $i \in alph(u_t u_{t+1} \dots u_{t+deg(v_i)+1})$.
 - Informally, the letter i has to appear at least once every deg(v_i) timesteps.

Sketch (part 2)

- Now, if (v_i, v_j) ∈ E, then, if i appears at least once every deg(v_i) timesteps, then j must also appear at least once every deg(v_i) consecutive timesteps words.
- Similarly, if j appears at least once every deg(v_i) timesteps, then i must also appear at least once every deg(v_j) consecutive timestep words.
- So, *i* appears at least once every $min(deg(v_i), deg(v_j))$ timestep words.
- In general, i appears at least once every

$$\min \left(deg(v_i), \min_{v_j \in N(v_i)} (deg(v_j)) \right)$$

consecutive timestep words.

Sketch (part 3)

- Extrapolating out, if $(v_i, v_j) \in E$, and j appears in every d consecutive timestep words, then i appears (at least once) in every d consecutive timestep words.
- So, if there exists a path between v_i and v_k , and k appears in every d' consecutive timestep words, i appears (at least once) in every d' consecutive timestep words.
- Hence, every symbol is active at least once every $\delta+1$ timesteps.
- By extension, each edge is active at least once every δ timesteps.

Connected Graphs

Theorem

Let $w \in \Sigma^*$ be a word representing a connected temporal graph $\mathcal{G}(w) = (V, E_1, E_2, \dots, E_T)$ with a diameter of d and $T \ge 2d\sigma$. Then, there exists a temporal walk exploring \mathcal{G} .

Theorem

Given some number of vertices σ and diameter $d < \sigma$, there exists a word w representing a connected graph requiring $d\sigma/2$ timesteps to explore.

Next Steps

- Is the $O(\delta \sigma)$ algorithm asymptotically optimal for exploring word-representable always connected temporal graphs?
- Is the $2d\sigma$ bound for exploring word-representable connected temporal graph tight?
- What kind of graphs can be represented at each timestep?
- Thank you for listening!