10/531114 JC12 Rac'd PCT/PTC 11 APR 2005

SEQUENCE PROTOCOL

```
<110> Institut für Technologie de Kohlenhydrate – Zuckerinstitut e.V.
<120> Method and microorganism for the production of D-mannitol
<130> 7123
<140>
<141>
<160> 3
<170> PatentIn Ver. 2.1
<210> 1
<211> 1422
<212> DNA
<213> Zymomonas mobilis
<400> 1
atgagttctg aaagtagtca gggtctagtc acgcgactag ccctaatcgc tgctataggc 60
ggcttgcttt tcggttacga ttcagcggtt atcgctgcaa tcggtacacc ggttgatatc 120
cattttattq cccctcqtca cctqtctqct acqqctqcqq cttccctttc tqqqatqqtc 180
gttgttgctg ttttggtcgg ttgtgttacc ggttctttgc tgtctggctg gattggtatt 240
cgcttcggtc gtcgcggcgg attgttgatg agttccattt gtttcgtcgc cgccggtttt 300
qqtqctqcqt taaccqaaaa attatttqqa accqqtqqtt cqqctttaca aattttttqc 360
tttttccqqt ttcttqccqq tttaggtatc ggtgtcgttt caaccttgac cccaacctat 420
attgctgaaa ttcgtccgcc agacaaacgt ggtcagatgg tttctggtca gcagatggcc 480
attqtqacqq qtqctttaac cqqttatatc tttacctqqt tactqqctca tttcqqttct 540
atcgattggg ttaatgccag tggttggtgc tggtctccgg cttcagaagg cctgatcggt 600
attgccttct tattgctgct gttaaccgca ccggatacgc cgcattggtt ggtgatgaag 660
ggacgtcatt ccgaggctag caaaatcctt gctcgtctgg aaccgcaagc cgatcctaat 720
ctgacgattc aaaagattaa agctggcttt gataaagcca tggacaaaag cagcgcaggt 780
ttgtttgctt ttggtatcac cgttgttttt gccggtgtat ccgttgctgc cttccagcag 840
ttagtcggta ttaacgccgt gctgtattat gcaccgcaga tgttccagaa tttaggtttt 900
qqaqctqata cggcattatt gcagaccatc tctatcggtg ttgtgaactt catcttcacc 960
atgattgctt cccgtgttgt tgaccgcttc ggccgtaaac ctctgcttat ttggggtgct 1020
ctcggtatgg ctgcaatgat ggctgtttta ggctgctgtt tctggttcaa agtcggtggt 1080
gttttgcctt tggcttctgt gcttctttat attgcagtct ttggtatgtc atggggccct 1140
gtctgctggg ttgttctgtc agaaatgttc ccgagttcca tcaagggcgc agctatgcct 1200
atcqctqtta ccqqacaatq qttaqctaat atcttqqtta acttcctqtt taagqttqcc 1260
```

gatggttete cagcattgaa teagaettte aaceaeggtt teteetatet egttttegea 1320 geattaagta tettaggtgg ettgattgtt getegetteg tgeeggaaac caaaggtegg 1380 ageetggatg aaategagga gatgtggege teecagaagt ag 1422

<210> 2

<211> 1146

<212> DNA

<213> Leuconostoc pseudomesenteroides

<400> 2

ttaatattct atcacatggt ctactcccct tactaaaata aatgtgataa acgtttgact 60 ttatcttgtt aaaggtttac cattgtcctc gtaagttaat ttaatcacaa agtaaaaagg 120 agaacaaaca tggaagcact tgtgttaact ggtacaaaaa aattagaggt tgaaaacatt 180 gaacaacctg aggtaaagcc gaatgaagtg ttgattcata cagcattcgc tggtatttgc 240 ggtactgatc acgetttgta tgeeggtett cetggeteag eegatgetgt geeaccaate 300 gttttggggc atgaaaattc tggtgttgta gctgaaattg gttctgatgt tacaaacgtt 360 gcggtgggtg atcgtgtcac aattgatccc aatatttact gtggtcaatg caagtattgc 420 cgtacagcac gtccagagct ttgcgaaaac ttgtctgcag ttggtgtaac acgcaatggt 480 ggctttgaag aatactttac tgcgcccgca tcagttgttt accaaattcc agataatgtt 540 tcacttaagt cagctgccgt ggttgagccg atttcatgtg ctgttcacgg tattcaactt 600 cttaaagtga caccatacca aaaggcatta gttattggtg acggcttcat gggtgaactc 660 tttgttcaaa ttctgcaagc ttatggcatt caccaagtcg acttggctgg tattgttcct 720 gaaaagcttg ctatgaacaa agaaaagttc ggcgtgaaaa atacgtacaa tacaaaagat 780 ggcgacaaaa ttcccgaagg cacttacgat gttgttgttg aagcagttgg cctaccacag 840 acacaagaag ccgcaattga agcctcagct cgtggcgctc aggttttgat gtttggtgtt 900 ggcggtcccg acgcaaagtt ccaaatgaac acttacgaag tcttccaaaa gcaattgacg 960 attcaaggat catttatcaa tccaaacgca tttgaagact cattggcatt gttatcatca 1020 ggcaagttag acgtcgaatc gctaatgtca cacgaattag attaccagac tgttgatgac 1080 tttgtgaatg gcaagttagg tgtcgtttca aaggcagtcg ttaaggttgg tggcgaagag 1140 1146 gcataa

<210> 3

<211> 1206

<212> DNA

<213> Mycobacterium vaccae N10

<400> 3

atggcaaagg	tcctgtgcgt	tctttacgat	gatccggtcg	acggctaccc	gaagacctat	60
gcccgcgacg	atcttccgaa	gatcgaccac	tatccgggcg	gccagatctt	gccgacgccg	120
aaggccatcg	acttcacgcc	cgggcagttg	ctcggctccg	tctccggcga	gctcggcctg	180
cgcgaatatc	tcgaatccaa	cggccacacc	ctggtcgtga	cctccgacaa	ggacggcccc	240
gactcggtgt	tcgagcgcga	gctggtcgat	gcggatgtcg	tcatctccca	gcccttctgg	300
ccggcctatc	tgacgcccga	gcgcatcgcc	aaggccaaga	acctgaagct	cgcgctcacc	360
gccggcatcg	gttccgacca	cgtcgatctt	cagtcggcta	tcgaccgcaa	cgtcaccgtg	420
gcggaagtca	cctactgcaa	ctcgatcagc	gtcgccgagc	atgtggtgat	gatgatcctg	480
tcgctggtgc	gcaactatct	gccctcgcac	gaatgggcgc	ggaagggcgg	ctggaacatc	540
gccgactgcg	tctcccacgc	ctacgacctc	gaggcgatgc	atgtcggcac	cgtggccgcc	600
ggccgcatcg	gtctcgcggt	gctgcgccgt	ctggcgccgt	tcgacgtgca	cctgcactac	660
accgaccgtc	accgcctgcc	ggaatcggtc	gagaaggagc	tcaacctcac	ctggcacgcg	720
acccgcgagg	acatgtatcc	ggtttgcgac	gtggtgacgc	tgaactgccc	gctgcacccc	780
gaaaccgagc	acatgatcaa	tgacgagacg	ctgaagctgt	tcaagcgtgg	cgcctacatc	840
gtcaacaccg	cccgcggcaa	gctgtgcgac	cgcgatgccg	tggcacgtgc	gctcgaatcc	900
ggccggctgg	ccggctatgc	cggcgacgtg	tggttcccgc	agccggcgcc	gaaggaccac	960
ccctggcgga	cgatgcccta	taacggcatg	accccgcaca	tctccggcac	cacgctgacc	1020
gcgcaggcgc	gttatgcggc	gggcacccgc	gagatcctgg	agtgcttctt	cgagggccgt	1080
ccgatccgcg	acgaatacct	catcgtgcag	ggcggcgctc	ttgccggcac	cggcgcgcat	1140
tcctactcga	agggcaatgc	caccggcggt	tcggaagagg	ccgccaagtt	caagaaggcg	1200
gtctga						1206

SEQUENCE No. 1

ATGAGTTCTGAAAGTAGTCAGGGTCTAGTCACGCGACTAGCCCTAATCGCTGCTA TAGGCGGCTTGCTTTTCGGTTACGATTCAGCGGTTATCGCTGCAATCGGTACACC GGTTGATATCCATTTTATTGCCCCTCGTCACCTGTCTGCTACGGCTGCGGCTTCC CTTTCTGGCATGGTCGTTGTTGCTGTTTTGGTCGGTTGTGTTACCGGTTCTTTGC TGTCTGGCTGGATTGGTATTCGCTTCGGTCGTCGCGGCGGATTGTTGATGAGTTC CATTTGTTTCGTCGCCGCCGGTTTTGGTGCTGCGTTAACCGAAAAATTATTTGGA ACCGGTGGTTCGGCTTTACAAATTTTTTGCTTTTTCCGGTTTCTTGCCGGTTTAG GTATCGGTGTCGTTTCAACCTTGACCCCAACCTATATTGCTGAAATTCGTCCGCC 10 AGACAAACGTGGTCAGATGGTTTCTGGTCAGCAGATGGCCATTGTGACGGGTGCT TTAACCGGTTATATCTTTACCTGGTTACTGGCTCATTTCGGTTCTATCGATTGGG TTAATGCCAGTGGTTGGTGCTGGTCTCCGGCTTCAGAAGGCCTGATCGGTATTGC GGACGTCATTCCGAGGCTAGCAAAATCCTTGCTCGTCTGGAACCGCAAGCCGATC CTAATCTGACGATTCAAAAGATTAAAGCTGGCTTTGATAAAGCCATGGACAAAAG CAGCGCAGGTTTGTTTGCTTTTGGTATCACCGTTGTTTTTTGCCGGTGTATCCGTT GCTGCCTTCCAGCAGTTAGTCGGTATTAACGCCGTGCTGTATTATGCACCGCAGA TGTTCCAGAATTTAGGTTTTGGAGCTGATACGGCATTATTGCAGACCATCTCTAT CGGTGTTGTGAACTTCATCTTCACCATGATTGCTTCCCGTGTTGTTGACCGCTTC 20 GGCCGTAAACCTCTGCTTATTTGGGGTGCTCTCGGTATGGCTGCAATGATGGCTG TTTTAGGCTGCTGTTTCTGGTTCAAAGTCGGTGGTGTTTTGCCTTTGGCTTCTGT GCTTCTTTATATTGCAGTCTTTGGTATGTCATGGGGCCCTGTCTGCTGGGTTGTT CTGTCAGAAATGTTCCCGAGTTCCATCAAGGGCGCAGCTATGCCTATCGCTGTTA $\tt CCGGACAATGGTTAGCTAATATCTTGGTTAACTTCCTGTTTAAGGTTGCCGATGG$ TTCTCCAGCATTGAATCAGACTTTCAACCACGGTTTCTCCTATCTCGTTTTCGCA GCATTAAGTATCTTAGGTGGCTTGATTGTTGCTCGCTTCGTGCCGGAAACCAAAG GTCGGAGCCTGGATGAAATCGAGGAGATGTGGCGCTCCCAGAAGTAG

SEQUENCE No. 2

ATGGAAGCACTTCTGTTAACTGGTACAAAAAATTAGAGGTTGAAAACATTGAAC AACCTGAGGTAAAGCCGAATGAAGTGTTGATTCATACAGCATTCGCTGGTATTTG CGGTACTGATCACGCTTTGTATGCCGGTCTTCCTGGCTCAGCCGATGCTGTGCCA CCAATCGTTTTGGGGCATGAAAATTCTGGTGTTGTAGCTGAAATTGGTTCTGATG 10 TTACAAACGTTGCGGTGGTGATCGTGTCACAATTGATCCCAATATTTACTGGG TCAATGCAAGTATTGCCGTACAGCACGTCCAGAGCTTTGCGAAAACTTGTCTGCA GTTGGTGTAACACGCAATGGTGGCTTTGAAGAATACTTTACTGCGCCCGCATCAG TTGTTTACCAAATTCCAGATAATGTTTCACTTAAGTCAGCTGCCGTGGTTGAGCC GATTTCATGTGCTGTTCACGGTATTCAACTTCTTAAAGTGACACCATACCAAAAG GCATTAGTTATTGGTGACGCTTCATGGGTGAACTCTTTGTTCAAATTCTGCAAG CTTATGGCATTCACCAAGTCGACTTGGCTGGTATTGTTCCTGAAAAGCTTGCTAT ATTCCCGAAGGCACTTACGATGTTGTTGTTGAAGCAGTTGGCCTACCACAGACAC <u>AAGAAGCCGCAATTGAAGCCTCAGCTCGTGGCGCTCAGGTTTTGATGTTTGGTGT</u> 20 TGGCGGTCCCGACGCAAAGTTCCAAATGAACACTTACGAAGTCTTCCAAAAGCAA TTGACGATTCAAGGATCATTTATCAATCCAAACGCATTTGAAGACTCATTGGCAT TGTTATCATCAGGCAAGTTAGACGTCGAATCGCTAATGTCACACGAATTAGATTA CCAGACTGTTGATGACTTTGTGAATGGCAAGTTAGGTGTCGTTTCAAAGGCAGTC 25 GTTAAGGTTGGTGGCGAAGAGGCATAA

SEQUENCE No. 3

atggcaaaggtcctgtgcgttctttacgatgatccggtcgacggctacccgaagacctatgcccgcgacgatcttccgaa gatcgaccactatccgggcggccagatcttgccgacgccgaaggccatcgacttcacgcccgggcagitgctcggctccgtctccggcgagctcggcctgcgcgaatatctcgaatccaacggccacaccctggtcgtgacctccgacaaggacggccccgactcggtgttcgagcgcgagctggtcgatgcggatgtcgtcatctcccagecettetggeeggeetatetgaegeeegagegeategeeaaggeeaagaacctgaagetegegeteacegeeggeateggtteegaceacgtegatett-10 cagtcggctatcgaccgcaacgtcaccgtggcggaagtcacctactgcaactcgatcagcgtcgccgagcatgtggtgatgatgatcctg tcgctggtgcgcaactatctgccctcgcacgaatgggcgcggaagggcggctggaacatcgccgactgcgtctcccacgcctacgacctcgaggcgatgcatgtcgg-15 caccgtggccgccggccgcateggtetegeggtgetgegeegtetggegeegttegaegtgeacetgeactacaccgaccgtcaccgcctgccggaatcggtcgagaaggagctcaacctcacetggcaegegaecegegaggaeatgtateeggtttgegaegtggtgaegetgaactgcccgctgcaccccgaaaccgagcacatgatcaatgacgagacgct-20 caagctgtgcgaccgcgatgccgtggcacgtgcgctcgaatccggccggctggccggctatgccggcgacgtgtggttcccgcageeggegeegaaggaceaccetggeggaegatgeectataaeggeatgaccccgcacatctccggcaccacgctgaccgcgcaggcgcgttatgcggcgggcaccegegagatectggagtgettettegagggeegteegateegegaegaa-25 tacctcatcgtgcagggcgcgctcttgccggcaccggcgcgcattcctactcgaagggcaatgccaccggcggttcggaagaggccgccaagttcaa-

gaaggcggtctga