

Agenda

- Transmission Control Protocol
- Orientado à conexão

- a. Apresentação de três vias (3-way handshake)
- Trata-se de um exemplo de comutação de circuito?

TCP

Serviço full-duplex

Congestionamento

- Sempre ponto a ponto
- Buffer de transmissão e recepção
- Tamanho máximo do segmento (MSS)

Evolução

Fluxo controlado

- Fluxo de bytes ordenado e confiável
- Protocolo com paralelismo

Princípios

Congestionamento

Evolução

Identificadores

- O número de sequência para um segmento é o número do primeiro byte do segmento
- O número de reconhecimento remete ao próximo segmento esperado
- O que fazer quando se recebe um segmento fora de ordem?
- Qual o primeiro número de sequência?

Congestionamento

TCP

Estimativa de RTT

- O TCP apresenta um mecanismo de controle de temporização/retransmissão
- Qual a referência para a definição do tempo de temporização?
- Cada segmento enviado deve ter seu próprio temporizador?

Estimativa de

RTT_estimado = $(1 - \alpha)$ * RTT_estimado + α*amostra_RTT

Evolução

- Média móvel exponencialmente ponderada (MMEP)
- Geralmente, $\alpha = 0.125$
- Amostras mais antigas são menos relevantes

Variação de RTT

- variacao_RTT = (1 β)* variacao_RTT + β*(amostra_RTT RTT_estimado)
 - a. MMEP

- b. Geralmente, $\beta = 0.25$
- c. Porque é relevante conhecer a variação?

Estimativa e variação

Temporização de retransmissão

Como definir o timeout?

- a. timeout = RTT_estimado + 4*variacao_RTT
- A RFC 6298 recomenda o valor inicial de 1 segundo

Transferência confiável de dados

- Um serviço confiável é criado sobre o IP
- Existe paralelismo no envio de segmentos
- Acks cumulativos

Congestionamento

Temporizador único para retransmissões

Congestionamento

TCP

Tempo

TCP

Retransmissões Hospedeiro A Hospedeiro B **TCP** Seq≈92, 8 bytes de dados Seg≈100, 20 bytes de dados temporização-Seg=92 8 bytes de dados temporização-

Tempo

Retransmissões Hospedeiro A **TCP**

Retransmissões

TCP	Evento no Receptor	Ação do Receptor TCP
	chegada de segmento em ordem sem lacunas, anteriores já reconhecidos	ACK retardado. Espera até 500ms pelo próx. segmento. Se não chegar segmento, envia ACK
	chegada de segmento em ordem sem lacunas, um ACK retardado pendente	envia imediatamente um único ACK cumulativo
	chegada de segmento fora de ordem, com no. de seq. maior que esperado -> lacuna	envia ACK duplicado, indicando no. de seq.do próximo byte esperado
	chegada de segmento que preenche a lacuna parcial ou completamente	ACK imediato se segmento começa no início da lacuna

Retransmissão rápida

- O intervalo do temporizador é frequentemente bastante longo
- Detecta segmentos perdidos através de ACKs duplicados
- Se o transmissor receber 3 ACKs para o mesmo segmento, uma retransmissão rápida é realizada
 - a. Em que situação isso acontece?

Retransmissão rápida

Controle de fluxo

Evolução

- É um serviço de compatibilização de velocidade entre remetente e destinatário
- Controle de fluxo != Controle de congestionamento
- Associado à janela de recepção do destinatário
- O que fazer quando a janela de recepção é zero?

Controle de fluxo

Congestionamento

Gerenciamento da conexão TCP

Congestionamento

Gerenciamento da conexão TCP

Gerenciamento da conexão TCP

Estados do cliente

Estados do servidor

Princípios de controle de congestionamento

Princípios

Informalmente: "muitas fontes enviando dados acima da capacidade da rede de tratá-los"

Evolução

- Sintomas:
 - perda de pacotes (saturação de buffers nos a. roteadores)
 - b. longos atrasos (enfileiramento nos buffers dos roteadores)
- Um dos 10 problemas mais importantes em redes

Princípios

Existem duas abordagens gerais para controle de congestionamento

Evolução

- Controle de congestionamento fim a a. fim
- Controle de congestionamento b. assistido pela rede

- O TCP limita a taxa de cada remetente em função do congestionamento de rede percebido
- Como essa taxa é limitada?
- Como esse congestionamento é percebido?
- Que algoritmo deve ser utilizado para modificar a taxa de acordo com o congestionamento?

- A janela de congestionamento é uma variável do remetente que monitora o congestionamento
 - A quantidade de dados não reconhecidos deve ser o mínimo entre janelas de congestionamento e de recepção
 - Por simplificação, a janela de recepção é considerada infinita para o estudo do controle de congestionamento
- Taxa de envio = cwnd/RTT

- O TCP é autorregulado
- Alguns princípios são seguidos
 - a. Um segmento perdido implica na redução da taxa
 - Quando um reconhecimento acontece, a taxa pode aumentar
 - c. Busca por largura de banda

Algoritmo de congestionamento TCP

- Partida lenta
- Contenção de congestionamento
- Recuperação rápida
 - a. Apenas recomendada

Partida lenta

- Inicializado com 1 MSS (+1 a cada ACK)
- Em que momento esse crescimento exponencial é interrompido?
 - a. Em caso de timeout, a janela é reiniciada
 - i. ssthresh = cwnd/2
 - ii. Se a cwnd for igual ao ssthresh, inicia o modo de prevenção de congestionamento
 - iii. Para 3 ACKs duplicados, se inicia o estado de recuperação rápida

Partida lenta

Prevenção de congestionamento

- Nesse caso, em vez de duplicar o tamanho da janela, ele é aumentado de 1 MSS
- Em caso de temporização, ocorre o mesmo que na partida lenta
- No caso de 3 ACKs duplicados, a janela é reduzida à metade
 - a. ssthresh = cwnd/2 + número de ACKs
 - o. Entra no estado de recuperação rápida

Recuperação rápida

- O valor de cwnd é aumentado em 1 MSS para cada ACK duplicado recebido no segmento perdido
- Em caso de timeout, ocorre o mesmo que na partida lenta
- A recuperação rápida é recomendada
- TCP Tahoe X TCP Reno

Tahoe x Reno

TCP CUBIC

- Bastante utilizado atualmente
 - a. Versão padrão do Linux

Evolução

 Trata-se de uma versão menos conservadora que o Reno do ponto de vista do controle de congestionamento

TCP CUBIC

Realiza a fase de prevenção de congestionamento de maneira mais "agressiva"

Evolução

Desacelera à medida que se aproxima do limite superior estimado

Notificação explícita de congestionamento

- ECN (Explicit Congestion Notification)
- O TCP é adaptado para entender bits de sinalização oriundos da camada de rede
 - a. Não são gerados pacotes adicionais
- O congestionamento é identificado antes das perdas

Controle baseado em atrasos

- TCP Vegas propõe um controle de congestionamento baseado em atrasos
- A vazão mínima é definida e ajustes são feitos mediante comparação
 - a. "manter o cano cheio, mas não mais do que cheio"

Equidade

- O controle de congestionamento TCP implica, idealmente, em uma divisão igualitária da largura de banda
 - a. Equidade com UDP
 - b. Equidade com conexões paralelas

Evolução da camada de transporte

Evolução

- Existem inúmeras versões do TCP
 - a. Formato do segmento
 - b. Luta igualitária pela largura de banda

QUIC

- Quick UDP Internet Connections (RFC 9000)
- Mais de 7% do tráfego da Internet em 2017 o utilizava
 - a. Cerca de 9% atualmente
 - b. Em 2020, a META (então Facebook) anunciou que 75% do seu tráfego utilizava o QUIC
- Um protocolo da camada de transporte com funcionalidades antes realizadas na camada de aplicação
 - a. Utilizado com o HTTP/3 (RFC 9114)

QUIC

- Orientado para conexão e seguro
- Trata de fluxos
- Transferência confiável
 - a. Controle de congestionamento
 - b. Amigável ao TCP

Kahoot

