Lab2A - Introduction to PyTorch

Tensor (torch.tensor) is the data structure used in PyTorch to build a deep learning system. Tensors are similar to NumPy's ndarrays, with the addition being that Tensors can also be used on a GPU to accelerate computing.

Objectives:

In this lab, you learn how to

- Create tensors in PyTorch
- · Perform mathematical operation on tensors
- Convert between PyTorch tensor and Numpy array
- Reshape a PyTorch tensor
- · Transfer tensor to and from GPU

Table of Content:

- 1. Creating tensors
- 2. Tensor operations
- 3. Indexing
- 4. Reshaping tensors
- 5. CUDA Tensors
- 6. Exercise

Reference:

• <u>PyTorch Official Tutorial: What is PyTorch (https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py)</u>

1. Creating tensors

```
In [ ]: 1 import torch
```

Construct a 5x3 matrix, uninitialized

Construct a tensor filled with random numbers from a uniform distribution on the interval [0, 1).

Construct a tensor filled with random numbers from a normal distribution with mean 0 and variance 1.

Construct a matrix filled with zeros and of dtype long

```
1 x = torch.zeros(5, 3, dtype=torch.long)
In [ ]:
          2 print(x)
        tensor([[0, 0, 0],
                 [0, 0, 0],
                 [0, 0, 0],
                 [0, 0, 0],
                 [0, 0, 0]])
In [ ]:
          1 \times = torch.ones(5, 3)
          2 print(x)
        tensor([[1., 1., 1.],
                 [1., 1., 1.],
                 [1., 1., 1.],
                 [1., 1., 1.],
                 [1., 1., 1.]])
```

2. Tensor Operations

Size of tensors

Addition

There are multiple syntaxes for operations.

Addition: syntax 1

```
In [ ]:
          1 \times = torch.rand(3, 2)
          2 print('x:\n', x)
          y = torch.rand(3, 2)
          4 print('y:\n', y)
          6 z = x + y
          7 print('x+y:\n', z)
        х:
         tensor([[0.3215, 0.2230],
                [0.2855, 0.1580],
                [0.3406, 0.8168]])
        у:
         tensor([[0.8634, 0.2672],
                [0.2046, 0.7790],
                [0.7036, 0.6863]])
        x+y:
         tensor([[1.1849, 0.4902],
                [0.4901, 0.9369],
                [1.0442, 1.5032]])
        Addition: syntax 2
In [ ]:
          1 z = torch.add(x, y)
          2 print('x+y:\n', z)
        x+y:
         tensor([[1.1849, 0.4902],
                [0.4901, 0.9369],
                [1.0442, 1.5032]])
```

Addition: syntax 3 (in-place)

• Any operation that mutates a tensor in-place is post-fixed with an _ . For example: x.copy_(y) , x.t_() , will change x .

```
In [ ]:
        1 print('x\n', x)
          2 print('y\n', y)
         tensor([[0.3215, 0.2230],
                [0.2855, 0.1580],
                [0.3406, 0.8168]])
        У
         tensor([[0.8634, 0.2672],
                [0.2046, 0.7790],
                [0.7036, 0.6863]])
In [ ]:
          1 y.add_(x)
          2 print(y)
        tensor([[1.1849, 0.4902],
                [0.4901, 0.9369],
                [1.0442, 1.5032]])
```

Multiplication

Different from numpy which uses mainly dot to perform different types of matrix multiplication, PyTorch uses different commands for vector-vector multiplication (dot), matrix-vector multiplication (mw) and matrix-matrix multiplication (mm)

dot

mν

3. Indexing

You can use standard Numpy-like indexing with Torch

```
1 # accessing columns 2 and 3
         2 print(x[:, 2:4])
        tensor([[57, 48],
                [57, 32],
                [21, 68],
                [96, 71],
                [15, 6]])
In [ ]:
         1 # accessing row 1
         2 print(x[1,:])
        tensor([63, 7, 57, 32, 77, 44, 44, 71, 77, 32])
In [ ]:|
         1 # accessing rows 2 and 3
         2 print(x[2:4,:])
        tensor([[77, 60, 21, 68, 2, 13, 64, 74, 55, 33],
                [99, 74, 96, 71, 99, 25, 8, 77, 60, 70]])
```

4. Reshaping Tensors

Tensor.reshape

Returns a tensor with the same data and number of elements as self but with the specified shape.

```
1 # Reshape from (2, 4) to (8, 1)
2 y = x.reshape(8, -1)
          3 print('y:\n', y)
         у:
          tensor([[15],
                  [97],
                  [63],
                  [37],
                  [45],
                  [41],
                  [4],
                  [97]])
In [ ]:
          1 # Reshape from (2, 4) to (4, 2)
          z = x.reshape(4, 2)
          3 print('z:\n', z)
         z:
          tensor([[15, 97],
                 [63, 37],
                  [45, 41],
                  [ 4, 97]])
```

This method returns a **view** if shape is compatible with the current shape. Else, it may return a **copy**. This allows it to work with both <u>contiguous and non-contiguous (https://stackoverflow.com/questions/26998223/what-is-the-difference-between-contiguous-and-non-contiguous-arrays/26999092#26999092) data.</u>

In the examples above, we create a view since the shapes of reshaped tensors y and z are compatible with the original tensor x. Note that after a change is performed on x, then the changes will occur to both y and z.

The following code confirms that y and z are indeed **views** of x. Any changes to x will be observed in y and z as well.

```
In []: 1 \times [0,0] = -3
         3 print('x:\n', x)
         4 print('y:\n', y)
          5 print('z:\n', z)
        х:
         tensor([[-3, 97, 63, 37],
                [45, 41, 4, 97]])
        у:
         tensor([[-3],
                [97],
                [63],
                [37],
                [45],
                [41],
                [4],
                [97]])
        z:
         tensor([[-3, 97],
                [63, 37],
                [45, 41],
                [ 4, 97]])
```

Tensor.view

Tensor.view always returns a **view** of the original tensor with the new shape, i.e., it will share the underlying data with the original tensor.

```
In []: 1 x = torch.randint(0, 100, (2, 4))
2 print('x:\n', x)

x:
    tensor([[ 6, 94,  0, 65],
        [24, 59, 71, 69]])
```

```
1 # Convert from (2, 4) to (8, 1)
 y = x.view(8, -1)
 3 print('y:\n', y)
у:
tensor([[ 6],
       [94],
       [ 0],
       [65],
       [24],
       [59],
       [71],
       [69]])
1 # Convert from (2, 4) to (4, 2)
 z = x.view(4, 2)
 3 print('z:\n', z)
z:
tensor([[ 6, 94],
       [ 0, 65],
       [24, 59],
       [71, 69]])
```

Similar to the numpy's reshape function, pytorch's view returns a reference of the original matrix albeit in a different shape

5. CUDA Tensors

Creating tensor in the GPU

Creating tensor in the cpu explicitly (default)

Transfering tensor from cpu to gpu

Transfer using the .cuda() command.

Transfer using the .to() command

[0.0991, 0.8726],

[0.5617, 0.5138]], device='cuda:0')

Transfering tensor from gpu to cpu

Transfer using the .cpu() command.

Transfer using the .to() command.

Exercise

Question 1. The following code is used to preprocess a batch data for Logistic Regression.

1.1 Create a random tensor X_ori using the normal distribution of shape (4, 16, 16, 3). The tensor represent m=4 color image samples, each having a resolution of (16, 16) Expected ans: Shape of X_ori: torch.Size([4, 16, 16, 3])

```
In []: 1 ...
2 print('Shape of X_ori:', X_ori.shape)
```

1.2 Reshape X_ori into a shape of (4, 16*16*3). Then transpose the result to get a tensor of shape (768, 4) where each column represents a sample. Save the result as X.

Expected ans:

```
Shape of X: torch.Size([768, 4])
```

```
In []: 1 ...
2 print('Shape of X:', X.shape)
```

1.3 Check if a GPU is available in the system. If yes, transfer the tensor X to the GPU. Then, verify if X has really been loaded into the GPU (X.is_cuda) and print out the device ID of the GPU (X.get_device()).

Expected ans:

X is loaded to GPU: 0

Question 2.

2.1 Create the tensor $\, A \,$. Ensure that the datatype for $\, A \,$ is $\,$ float32 :

```
A = [[3, 2, 4, 6], [2, 4, 2, 2], [5, 1, 2, 1]]
```

2.2 Extract the 2nd row from A. (Expected ans: tensor([2., 4., 2., 2.]))

```
In [ ]: 1 print(...)
```

2.3 Extract the 3rd column from A. (Expected ans: tensor([4., 2., 2.]))

```
In [ ]: 1 print(...)
```

2.4 Write the code to extract the following sub-block (rows 1 to 2 and columns 1 to 2) from A.

```
tensor([[4., 2.], [1., 2.]])
```

```
In [ ]: 1 print(...)
```

2.5 Compute the mean of all columns.

Expected ans:

```
tensor([3.7500, 2.5000, 2.2500], dtype=torch.float64)
```

```
In [ ]: 1 print(...)
```

2.6 Repeat question 2.5, but this time retain the original dimensions such that the output has a shape of (3,1)

Expected ans:

```
In [ ]: 1 print(...)
```

--- END OF LAB02A ---