PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-259140

(43) Date of publication of application: 11.11.1987

(51)Int.Cl.

G06F 9/36 G06F 12/02

(21)Application number : 61-101910

(71)Applicant: OKI ELECTRIC IND CO LTD

(22)Date of filing:

06.05.1986

(72)Inventor: IIDA MASAO

JIYUFUKU TOSHIO

MORI GIICHI NOMURA AKIRA

(54) ADDRESS GENERATING CIRCUIT

(57)Abstract:

PURPOSE: To obtain an address generating circuit that can decrease the number of instruction steps produced by the generation of addresses, by deciding with control whether the code extension of an offset address supplied to an adder should be carried out or not. CONSTITUTION: When an index operation filed IDX is equal to '00', the address qualification data (i) is held as it is in a selection field IX24 and an offset address A is outputted as it is to the contents of a generated address. Then the address value AD2 with which the codes of the address A are infinite is outputted to an output terminal 22. When the field IDX is equal to '01', an adder 23 is set under an inhibition mode with the input of the address A. Thus the adder 23 performs an addition (i+AD2) and outputs it. Then the adder 23 is set under a code extension mode with IDX=10 and regards the address A as a number having a code. Thus the code is extended up to the bit length equal to (i) and the adder 23 performs an addition (i+A=i+AS.AD1) and

18×	1 X - A 4	星成76138	AUGMA L
0 0	((BA)	a a Lu,	
0'1	\$ (in (a) \$	LA AD	15 February
10	(CITIT)		D. Garage
1,100	AS ACCEPTA	165 4370	D 777,00

outputs it. When IDX=11 is satisfied, the same addition as that carried out in a mode of IDX=10 is performed and outputted via a selector 26. At the same time, the addition is set again to the field IX24 via a selector 25 for the updating of indexes.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

⑲ 日本国特許庁(JP)

10 特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭62-259140

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和62年(1987)11月11日

G 06 F 9/36 12/02 320

7361-5B 6711-5B

審査請求 未請求 発明の数 1 (全4頁)

49発明の名称

アドレス生成回路

创特 餌 昭61-101910

23出 昭61(1986)5月6日

四発明 老 飯 勿発 眀 者 寿

政 雄 利 夫 東京都港区虎ノ門1丁目7番12号 東京都港区虎ノ門1丁目7番12号

沖電気工業株式会社内

勿発 明 者 森 蕤

東京都港区虎ノ門1丁目7番12号

沖電気工業株式会社内 沖電気工業株式会社内 沖電気工業株式会社内

⑫発 明 者

野 村

B

福

彭 東京都港区虎ノ門1丁目7番12号 沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

仍出 殂 人 20代 理

弁理士 山本 惠一

1. 発明の名称

アドレス生成回路

2. 特許請求の範囲

1 チップ信号処理プロセッサにおいて、

インデックス操作命令で指定される修飾設定ア ドレスを一時記憶するインデックスレジスタと、

該インデックスレジスタからの出力と演算命令 で指定されるオフセットアドレスとを加算する加 算器と、

該加算器に入力される前記オフセットアドレス の符号拡張を行なうか否か制御する制御回路とを 具備することを特徴とするアドレス生成回路。

3. 発明の詳細な説明

(産業上の利用分野)

本発明はアドレス生成回路に関し、更に詳細に は1チップ信号処理プロセッサのメモリ・アドレ スの生成回路におけるインデックス修飾を用いて アドレスを生成する方式に関する。

(従来の技術)

従来、インデックス修飾を用いたアドレス生成 方式は情報処理学会編「新版 情報処理ハンドブッ ク」, 第17編3章(3), 昭和57年7月20日発行 オ ーム社 P.793~794に開示されている。以下、従 来の方式を図面に基づいて説明する。

第5回は、従来のアドレス生成回路を示す回路 図である。周図において、10は命令で指定される オフセット・アドレス(A)を入力する入力端子、 11は命令で指定される修飾設定アドレス(i)を入 カする入力端子、12は生成されたアドレス・デー タが出力される出力増子、13はインデックス・レ ジスタ(以下、IXと略す)、14は2入力の加算器 (以下、ADDと略す)である。

次に、第5回を用いて従来例の動作を説明する。 先ず、インデッグス操作命令により修飾設定ア ドレス(1)を入力端子11を介してIX13に設定し ておく。次に、例えば波弥命令によりオフセット・ アドレス(A)を入力端子10を介して指定すると、 アドレス生成回路はADD14においてIX13のデ ータ(i)を加算して、その結果のアドレス·デー

タ(A + i)を出力端子12に出力する。そして、このアドレス・データ出力 A + i = X の値で図示していないメモリのアドレスを指定する。

特に、信号処理プロセッサでは、通常、データ形式として2進数で2の補数表現を採用しており、I X13のデータ(i)と命令指定のオフセット・アドレス(A)との加算を符号付数で行っていた。これは、メモリのアドレス指定が修飾設定アドレス(i)に対して、プラス方向へ歩進する操作i+α(α:定数)とマイナス方向へ歩進するiーαとが2の補数演算の特徴により、同じ命令額長のアドレス・データで同一の加算処理となるためであった。

(発明が解決しようとする問題点)

しかしながら、上記従来の回路構成では、限られた命令都長の中で、オフセット・アドレス・データまたはインデックス修飾データとに割当てられた語長に対して、符号ピットが1ピット分必要となる。このため、一回の命令操作で生成できるアドレス値の絶対値の範囲が狭くなり、アドレス生

データ値を加算して1チップ信号処理プロセッサのメモリ・アドレスを生成する。ここで、制御回路により加算器に入力されるオフセットアドレスの符号拡張を行なう符号拡張モードに加算器が設定され、またはオフセットアドレスの符号拡張を禁止する禁止モードに加算器が設定されることにより、2種類の生成アドレス値の範囲を退択的に使用できる。

したがって、本発明は前記問題点を解決でき、 アドレス生成に伴なう命令ステップ数を低減できるアドレス生成回路を提供できる。

(実施例)

以下、本発明の一実施例を図面に基づいて説明する。

第1回は、本発明の一実施例を示す回路図である。同図において、20は命令で指定されるオフセット・アドレス(A)を入力する入力端子、21は命令で指定される修飾収定アドレス(i)を入力する入力端子、22は生成されたアドレス・データが出力される出力端子、23はm=8ビットの2入力の

成の命令ステップが増え、プログラム規模が大きくなると共に、処理時間が増えるという問題点があった。

本発明はこれらの問題点を解決するためのもので、命令語長の中のアドレス生成用ビット幅を最大限に利用できるインデックス修飾のアドレス生成回路を提供することを目的とする。

(問題点を解決するための手段)

本発明は前記問題点を解決するために、1チップ信号処理プロセッサにおいて、インデックス操作命令で指定される修飾設定アドレスを一時記憶するインデックスレジスタと、このインデックスレジスタからの出力と演算命令で指定されるオフセットアドレスとを加算する加算器と、この加算器に入力されるオフセットアドレスの符号拡張を行なうか否か制御する制御回路とを具備している。

(作用)

以上のような構成を有する本発明によれば、インデックスレジスタの出力に対して、加算器において演算命令で指定されるオフセットアドレスの

A D D 、 24は I X 、 25,26は 2 入力 1 出力のセレクタ(以下、 S E L と略す)、 27はオフセット・アドレス(A)の符号ビット拡張禁止ゲート、 28は符号ビット拡張禁止ゲート 27の動作設定端子である。

また、第2回は1チップ信号処理プロセッサのマイクロ命令の内部構成を示す図である。同図において、TYP1,TYP2はタイプ・フィールド、IXはインデックス・レジスタの選択フィールド、iはアドレスの修飾設定データ(m ピット)、IDXはインデックス操作フィールド、Aはオフセット・アドレスのフィールド(n ピット)、ADェはAの内部構成のデータビット、ASは1ピットの符号ビット、ADュはn-1ビットのデータビットである。なお、m>nの大小関係にある

次に、本実施例の動作を説明する。

先ず、第2図(a)のインデックス操作命令を用いて、第1図のIX24にアドレス修飾データiを設定し、次に、第2図(b)の演算命令を用いて、オフセット・アドレスAを入力端子21を介してADD23に入力して、アドレス生成演算を行ない、

出力端子22に生成データを出力する処理を行なう。 この時の、ADD23の演算指定やSEL25,26 の動作指定について、第3回を用いて説明する。 第3回は、本実施例における2ビットのIDXと 生成アドレス内容の関係を示す図であり、該イン デックス操作フィールドIDXの指定により選択 できる4級の状態を示す。

IDX=00の時では、インデックス操作命令で設定したアドレス修飾データiは、第1図のIX24にそのまま保持されて、生成アドレス内容には、オフセット・アドレスAをそのまま出力するように、第1図のSEL26が切替わる。この結果、出力端子22には、Aを符号無数とみなしたアドレス値AD。が出力される。

IDX=01の場合は、インデックス操作命令で設定したアドレス修飾データiは第1図のIX 24に保持され、演算命令でオフセット・アドレス Aを第1図の入力端子20に入力すると、ADD23 は符号拡張禁止ゲート27が禁止モードに設定されて、Aを符号無数AD2とみなして、i+AD2の

n = 6ビットの場合であり、インデックス操作命 令で指定できる修飾設定アドレス(i)の範囲は10 進数表示で0≤i≤255となり、オフセット・アド レスAの範囲は符号無数として0 < A < 63, 符号 付数として $-32 \le A \le 31$ となる。このため、これ らのアドレス・データ値を用いて、アクセスでき るメモリアドレスの範囲を考えると、i=63に対 しては、本実施例における加算器モードの状態を 示す第4図(a)(b)のようになる。従って、第4図 (b)の符号付加算では修飾設定アドレス(i)を基 準として前後に64°の範囲でアドレッシングを行 なう場合に有利であり、第4図(a)の符号無加算 では修飾設定アドレス(i)を基準として、アドレ スの増加方向に64世の範囲でアドレッシングを行 なう場合に有利となる。これは、いずれも、一回 のメモリ・アクセスに対して、インデックス操作 命令と演算命令の2ステップまたはインデックス・ レジスタ設定後では演算命令の1ステップでアド レス生成が行なえる。

尚、上記実施例では、符号拡張の禁止時のビッ

加算処理を行なう。この加算結果が、SEL26を介して出力端子22に出力される。

IDX=10の場合には、インデックス操作命令で設定したアドレス修飾データiは第1図のIX24に保持されて、演算命令でオフセット・アドレスAが第1図の入力端子20に入力すると、ADD23は、符号拡張操止ゲート27が符号拡張モードに設定されてAを符号付数とみなして、iと等しくなるビット展mまで符号拡張を行なって、i+A=i+AS・AD1(ただし、AS・AD1はAの符号付数表示である)の加算を行なう。この加算結果が、SEL26を介して出力端子22に出力される。

I D X = 11の場合には、 I D X = 10と同様の加算処理を行なった後、さらに、 A D D 23の出力が S E L 26を介して出力端子22へ出力すると同時に、 S E L 25を介して再び I X 24に設定してインデックス更新を行なう。

次に、上記の符号無加算と符号付加算の相違に ついて説明すると、本実施例ではm=8ピット。

トを"0"に固定したが、"1"に固定すれば、インデックス修飾アドレスに対して、減算側のみのアドレッシング・モードとすることも可能である。

(発明の効果)

以上説明したように、本発明によれば、演算命令で指定するオフセット・アドレスのデータの値を加算する処理を符号付加算モードと符号無加算モードとの2種類により施し、生成アドレス値の範囲を2種選択できることにより、アドレス生成に伴う命令ステップ数を低減できるアドレス生成回路を提供できる。

4. 図面の簡単な説明

第1回は本発明の一実施例を示す回路図、第2 図は1チップ信号処理プロセッサのマイクロ命令の内部構成を示す図、第3回は本実施例におけるIDXと生成アドレス内容の関係を示す図、第4 図は本実施例における加算器モードの状態を示す 図、第5回は従来のアドレス生成回路を示す回路 20,21 ... 入力端子、 22 ... 出力端子、

23…加算器、

24…インデックス・レジスタ、

25,26…セレクタ、

27…符号ピット拡張禁止ゲート、

28…動作設定端子。

特許出願人

神 電 気 工 漿 株 式 会 社 特許出願代理人

弁理士 山本 恵 —

20,21: 人刀端子

27: 符号: 小城摄景山小

22: 出力端子

28:動作設度端子

本癸明 9 一变轮例 8 示《回路图

第 1 図

第 2 図

10X	(IX)a内容	生成アドレス内容		ADD901
00	i [保持]	00	A D ₂	
01	([IE 16]	Å +:	A D ₂) 诗号短加算
10	(日本特)	. i +	AS - AD.	符号村加算
1.1	(IX)+ AS·AD; ((克 新)	i +	AS AD	符号付加其

本实施例 ratta IOX と生成アド以内容。例 係図

第 3 図

本实施例 K的时间加算器之十9 状题图

第 4 図

10,11:入力端子

12:出力端子

従来のアドル生成回路の国路图

第 5 図