Lab #5 - Machine Language Basics

Name: 2 aul Hai Section/Time:

Recall the two Assembly Instructions, A and C:

The A-instruction @value Syntax: Where value is either: a non-negative decimal constant or a symbol referring to such a constant (later) Semantics: · Sets the A register to value · Side effect: RAM[A] becomes the selected RAM register

THE	The C-mstruction		
J 4			

Semantics:

- · Compute the value of comp
- · Stores the result in dest;
- If the Boolean expression (comp jump θ) is true, jumps to execute the instruction stored in ROM[A].

Example: Effect:

· Sets the A register to 21

@21

· RAM[21] becomes the selected RAM register

Translate the following into Assembly Instructions:

1) Set RAM[0] to 3 Set RAM[1] to 5 Set RAM[2] to 1 Set RAM[3] to -1	@3 D = A @0 M = D @5 D = A @1 M = D @2 M = 1 @3 M = -1
<pre>2) Set RAM[0] to 2 Set RAM[1] to 3 Set RAM[2] = RAM[0] + RAM[1]</pre>	01 03 00 D=A D=A D=D+M 00 01 01 M=D M=D M=D
3) Set D to A - 1	D= A-1
4) Set both A and D to A + 1	AD = A+1
5) Set D to 19	Ø19 D= A

CS220 L5

03220	LJ
6) Set both A and D to A + D	AD = A+D
7) Set RAM[5034] to D - 1	Ø 5034 H= D-1
8) Set RAM[543] to 171	0171 D=# 0543 M=D
9) Increment RAM[7] by 1 and store result in D	Ø7 HD= M+I
10) Increment RAM [12] by 3 and store result in D	@3 D=A Ø12 MD=M+D
<pre>11) // Convert the following Java code to assembly int i = 5; i++; i+=2; i-=3;</pre>	05 D=A 0i H=D M=H+1 02 D=A 0i M=H+D 03 D=A 0i H=H-D
<pre>12) // Convert the following Java code to assembly int i = 5; int j = 10; int k = i - j;</pre>	05 0j D=A D=D-M Oi

Translate the following tasks into Assembly Instructions

Translate the following tasks into Asse	-
1) sum = 0	esum H=0
2) j = j + 1	Øj М=H+I
3) q = sum + 12 - j	012 D=A Osum D=D+H Oj D=D-H Oa H=D
<pre>4) // Declare that arr=100 and n =10 int n = 10; int[] arr = new int[n]; arr[3] = -1</pre>	©10
5) // Assume that j has already been declared arr[j] = 0	Oj D=H Oavv A=M+D H=0
6) arr[j] = 17	

Lab #5 - Machine Language Jumps

Translate the following instructions into Assembly Instructions

1) goto 50	056 0; JHP
2)if D==0 goto 112	OII2 D; JEQ
3)if D<9 goto 507 D -9 40	09 D=0-A 0507 D;ILE
4) if RAM[12]>0 goto 50	0 12 D=M 0 50 D; JGT
5) if sum>0 goto END	OSUM D=M OENB D; IGT
6) if x[i]<=0 goto NEXT	

CS220 L5

Lab #5 - Machine Language Loops

Translate the following instructions into Assembly Instructions

```
05
1)
int n = 5;
                             D = A
for (int i=1;i<=n;i++) {}
                             00
                             M=0
  1-NL=0
                             (FOR)
                             Oi
                             M=I
                             H=G
                             BN
                             D=D-H
                             CENDFOR
                             DIJLE
                             Oi
                             M=M+1
                             OFOR
                             OIJMP
                             (ENDFOR)
                             Osum
                             M=0
int sum = 0;
                             05
int n = 5;
for (int i=1;i<=n;i++) {
                             D=A
 sum += i;
                             On
                             M=D
                             (FOR)
                             Oi
                             M=1
                             D=M
                             On
                             M-G=G
                             GENEFOR
                             D; JLE
                             Oi
                             M = \mathcal{T}
                             OSUM
                             M=H+D
                             o i
                             H=H+1
                             @ FOR
                             o; JMP
                             (ENDFOR)
```

CS220 L5

