

2º Grado Informática Estructura de Computadores 28 Enero 2013

Examen Test (3.0p)

Todas las preguntas son de elección simple sobre 4 alternativas. Cada respuesta vale 3/30 si es correcta, 0 si está en blanco o claramente tachada, -1/30 si es errónea. Anotar las respuestas (a, b, c o d) en la siguiente tabla.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
d	d	b	b	C	đ	a	a	d	Ь	d	d	a	a	С	a	С	a	b	b	С	b	d	Q	C	C	р	q	Ω_{ω}	a

Examen de Prácticas (4.0p)

Todas las preguntas son de elección simple sobre 4 alternativas. Cada respuesta vale 4/20 si es correcta, 0 si está en blanco o claramente tachada, -1.33.../20 si es errónea. Anotar las respuestas (a, b, c o d) en la siguiente tabla.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	a	В	C	a	С	C	D,	d	0	b	C	d	a	C	d	b	b	d	a

Examen de Problemas (3.0p)

1. Bucles while (0.5 puntos).

```
A.
    int fun_a(unsigned x) {
        int val = 0;
        while (x) {
            val ^= x;
            x >>= 1;
        }
        return val & 0x1;
    }
}
```

- B. Calcula la paridad de x (devuelve 1 si hay nº impar de 1s, 0 si par)
- **2.** Representación y acceso a estructuras (0.5 puntos).

A. struct P1 { int i; char c; int j; char d; };

Î	c	j	d	total	alineamiento
			1.7		

B. struct P2 { int i; char c; char d; int j; };

i	c	d	İ	total	alineamiento
0	4	5	8	12	4

C. struct P3 { short w[3]; char c[3]; };

экомиционация	мисиосиосиосиосиосиосиосиосиосиосиосиосио	************************	
W	c	total	alineamiento
0	6	10	2

D. struct P4 { short w[3]; char *c[3]; };

9/DIGBNIDHUSWIDHUSWICK	MENINGNONNENDROP	CONTROL STATEMENT AND	
W	c	total	alineamiento
0	- 8	20	4

E. struct P5 { struct P1 a[2]; struct P2 *p };

a	р	total	alineamiento
0	32	36	4

3. Unidad de control (0.3 puntos).

La UC puede controlar simultáneamente n+k señales de control, aunque la unidad de procesamiento tiene un total de $n*2^m + k$ señales de control (si todos los 2^m códigos de cada uno de los n campos codificados son válidos) Ver dibujo adjunto

4. Unidad de control (0.2 puntos).

Ahorro ninguno, se gastan 160 bits más. 340x16 < (340x8 + 180x16) = (170 + 180) x 16 = 350 x 16 340x16 < 350x16, se gastan 10x16 bits más **Ver dibujo adjunto**

5. Entrada/Salida (0.5 puntos).

210perif x 4puertos = 840 puertos = 0x348 Si empiezan desde el final, 0x2000 - 0x0348 = 0x1cb8 E/S ocuparía 0x1cb8 ... 0x1fff Si pregunta M máxima, 0x0000 ... 0x1cb7 = 8K - 840 = 7352 palabras **Ver dibujo adjunto**

6. Diseño del sistema de memoria (0.5 puntos).

ROM $0x0000-0x1fff = 2^{13}=8K$ pal = 8Kx16. En módulos de 4Kx4 x $(2x4) \rightarrow 8$ módulos SRAM $0xC000-0xefff = 3x2^{12}=12K$ pal = 12Kx16. En m.de 4Kx8 x $(3x2) \rightarrow 6$ módulos Todos los módulos conectados a A11...A0, decodificación con A15...A12 (1^{er} dígito hex) **Ver dibujo adjunto**

7. Memoria cache (0.5 puntos).

A. Directa: 20 = 7 + 8 + 5. etiqueta+marco+palabra. 2^{13} pal/cach / 2^{5} pal/bloq = 2^{8} bloq/cache

B. Asociativa: 20 = 15 + 5. etiqueta +palabra.

C. Asociativa Conjuntos 4vías: 20 = 9 + 6 + 5. etiqueta+conjnt+palabra. 2^8 bloq/cach / 2^2 blq/conj = 2^6 conj/cache

D. Sectores de 4palabras: 20 = 13 + 2 + 5. etiqueta+bloque+palabra. $4 = 2^2$ bloq/sector

Ver dibujo adjunto