Rapport de Synthèse – Réseaux et Systèmes Distribués

Mohamed Reda Hamdi / Abdelmoiz Bensbai

Table des matières

1	Résumé du Semestre (Travaux Pratiques)		
	1.1 Routage Statique et Dynamique	2	
	1.2 Services Réseau sous Linux		
	1.3 Projet Réseau Universitaire	2	
2	Systèmes Centralisés vs Distribués	3	
3	Caractéristiques des Systèmes Distribués		
4	Middleware et RPC		
5	Sérialisation et Désérialisation		
6	Docker et Conteneurisation		
7	Architecture Réseau – Projet Clusters		
8	Conclusion	5	

1 Résumé du Semestre (Travaux Pratiques)

1.1 Routage Statique et Dynamique

- Routage statique : routes configurées manuellement, adapté aux petits réseaux.
- RIP (Routing Information Protocol) : mise à jour périodique par distance, facile à configurer.
- OSPF (Open Shortest Path First): routage par état de liens, adapté aux grands réseaux.

1.2 Services Réseau sous Linux

- DHCP Server / Relay : configuration de l'attribution dynamique d'IP.
- DNS (BIND): configuration des zones directes et inverses, tests avec dig/nslookup.
- Serveur Web (Apache) : configuration de site virtuel, accès à distance.

1.3 Projet Réseau Universitaire

- Architecture multi-bâtiment avec VLANs : profs, étudiants, visiteurs.
- **Sécurité réseau** : ACL, sécurité de ports.
- **OSPF** pour l'interconnexion.

2 Systèmes Centralisés vs Distribués

- **Centralisé** : système unique, une seule unité centrale.
- **Distribué** : plusieurs composants répartis, accès local/distant, plus fiable et évolutif.

3 Caractéristiques des Systèmes Distribués

- **Transparence** : l'utilisateur ignore l'emplacement réel des données.
- Ouverture : basé sur des standards d'interopérabilité.
- **Tolérance aux pannes** : le système continue en cas de défaillance.
- Concurrence : accès simultané aux ressources.
- Migration/Translation : déplacement transparent des ressources.

4 Middleware et RPC

Middleware

- Masque l'hétérogénéité des composants.
- Types : messagerie, base de données, serveur d'application.

Architecture Client-Serveur et RPC

- Client demande, serveur répond.
- Communication via **messages** : requête \rightarrow réponse.
- RPC : appel distant de procédure comme s'il était local.

Fonctionnement de RPC

- 1. Déclaration des méthodes et paramètres.
- 2. Sérialisation des paramètres (transfert).
- 3. Stub client et squelette serveur.
- 4. Exécution distante et retour de résultat.

Limitations de RPC

- Communication synchrone.
- Paramètres passés par valeur.
- Localisation fixe du serveur.

5 Sérialisation et Désérialisation

- **Sérialisation**: conversion d'un objet pour transmission/réseau.
- **Désérialisation**: reconstitution d'objet depuis un flux.

6 Docker et Conteneurisation

Définition

Docker permet de créer, déployer et gérer des applications dans des conteneurs légers et portables.

Avantages

- Isolation des applications.
- Portabilité sur tous les environnements.
- Optimisation des ressources.
- Intégration dans les pipelines CI/CD.

Composants Docker

- Docker Engine, Docker CLI
- Images, conteneurs, Docker Hub
- Docker Compose

Commandes Docker Utiles

- docker ps, docker run <image>, docker stop <id>
- docker build -t mon_image ., docker-compose up
- docker exec -it <id> bash

7 Architecture Réseau – Projet Clusters

Topologie

- Routeur principal + switch central
- 3 Clusters indépendants (chaque cluster avec 3 machines)

Adresses IP des machines

Cluster 0: 192.168.1.1 à 1.3
Cluster 1: 192.168.2.1 à 2.3
Cluster 2: 192.168.3.1 à 3.3

Table de Routage Exemple

Destination	Masque	Passerelle	Interface
192.168.1.0	255.255.255.0	-	Fa0/1
192.168.2.0	255.255.255.0	192.168.1.1	Fa0/2
192.168.3.0	255.255.255.0	192.168.1.1	Fa0/3

8 Conclusion

Ce rapport présente l'ensemble des connaissances acquises : du routage au déploiement d'applications conteneurisées, en passant par les systèmes distribués, l'architecture client-serveur, et la virtualisation. Il fournit une base solide pour des projets professionnels dans le domaine des systèmes informatiques modernes.