

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2009(1)

MEMORANDUM

Marks: 150

This memorandum consists of 14 pages.

1.1.1	x(x-1) = 30	
1.1.1	$x^2 - x = 30$	
	$x^2 - x - 30 = 0$	✓ simplification
	(x-6)(x+5) = 0	✓ factors
	x = 6 or $x = -5$	
		✓ answers (3)
1.1.2	$3x^2 - 5x + 1 = 0$	
	$x = \frac{-(-5) \pm \sqrt{25 - 4(3)(1)}}{2(3)}$	✓ substitution
	$=\frac{5\pm\sqrt{13}}{6}$	✓ 13
	x = 1,4 or $x = 0,2$	\checkmark values of x (4)
1.1.3	$-9x^2 + 15x - 4 < 0$	
	$9x^2 - 15x + 4 > 0$	✓ standard form
	(3x-4)(3x-1) > 0	✓ factors
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ test
	$x < \frac{1}{3}$ or $x > \frac{4}{3}$	✓ answer (4)
1.2	Substitute $x = y + 3$ in (2) $(y+3)^2 - y(y+3) - 2y^2 - 7 = 0$	✓ substitution
	$y^2 + 6y + 9 - y^2 - 3y - 2y^2 - 7 = 0$	
	$2y^2 - 3y - 2 = 0$	✓ standard form
	(2y+1)(y-2) = 0	✓ factors
	$y = -\frac{1}{2}$ or $y = 2$	✓ y values
		$\checkmark x$ values
	$x = 2\frac{1}{2} \text{ or } x = 5$	(5)
	OR	

	$y = x-3$ $x^{2} - x(x-3) - 2(x-3)^{2} - 7 = 0$ $x^{2} - x^{2} + 3x - 2(x^{2} - 6x + 9) - 7 = 0$ $0 = 2x^{2} - 15x + 25$ $0 = (2x - 5)(x - 5)$ $x = 2\frac{1}{2} \text{ or } x = 5$ $y = -\frac{1}{2} \text{ or } y = 2$	✓ substitution ✓ standard form ✓ factors ✓ x values ✓ y values
1.3	$ \frac{10^{\frac{2009}{2}}}{10^{\frac{2011}{2}} - 10^{\frac{2007}{2}}} $ $ = \frac{10^{\frac{2009}{2}}}{10^{\frac{2007}{2}}} $ $ = \frac{10}{99} $ OR	$\checkmark \text{convert to indices}$ $\checkmark \text{removing } 10^{\frac{2007}{2}}$ $\checkmark \text{ answer}$ (3)
1.4	$ \frac{10^{1005}\sqrt{10}}{10^{1005}\sqrt{10} - 10^{1003}\sqrt{10}} $ $ = \frac{10^{1004}\sqrt{10}}{\sqrt{10}(10^{1005} - 10^{1003})} $ $ = \frac{10^{1004}}{10^{1003}(100 - 1)} $ $ = \frac{10}{99} $ $ (1 + \sqrt{2x^2})^2 - \sqrt{8x^2} $	
	$ \begin{aligned} &(1 + \sqrt{2x^2}) - \sqrt{8x} \\ &= 1 + 2\sqrt{2x^2} + 2x^2 - \sqrt{4} \cdot \sqrt{2x^2} \\ &= 1 + 2\sqrt{2x^2} + 2x^2 - 2\sqrt{2x^2} \\ &= 1 + 2x^2 \end{aligned} $	✓ expansion ✓ simplification ✓ answer (3) – 1 if $\sqrt{x^2} = x$ [22]

2.1.1	$T_n = 4n + 1$	✓ ✓ ✓ Answer only
		(3)
	OR	
		(A D
	$T_n = 5 + (n-1)(4)$	✓ AP ✓ formula and
	=4n+1	substitution
		✓ answer
		(3)
2.1.2	$T_n = 5(25)^{n-1}$	✓ GP
	$=5^{2n-1}$	✓ answer
	= 3	(2)
2.2	The sequence is $1; 1+d; 1+2d; 1+3d;$ (AP)	
2.2	and 1; r ; r^2 ; r^3 ; (GP)	
	, , , , , , , , , , , , , , , , , , , ,	
	$\therefore 1 + d = r \qquad \text{and} \qquad d = r - 1$	$\checkmark 1 + d = r$ $\checkmark 1 + 2d = r^2$
	But $1+2d=r^2$	$\checkmark 1 + 2d = r^2$
	$r^2 = 1 + 2d$	
	$1 + 2(r - 1) = r^{2} (1 + d)^{2} = 1 + 2d$	
	$r^2 - 2r + 1 = 0$ OR $1 + 2d + d^2 = 1 + 2d$	✓ r=1
	$(r-1)^2 = 0 d^2 = 0$	$\checkmark d = 0$
	r = 1 $d = 0$	
	r=1	✓reason
	d = 0	(5)
	∴ the one and only such sequence is 1; 1; 1;	
	Nomsa is correct.	[10]

QUESTION 3

3.1	-1, 2, 5	✓ all three terms	
			(1)
3.2	$S_n = -1 + 2 + 5 + 8 + $ to 100 terms	✓ AP	
	$S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$S_{100} = \frac{100}{2} [2(-1) + (100 - 1)(3)]$	$\checkmark n = 100$ \checkmark substitution	
	=50[-2+297]	✓ answer	
	=14 750		(4)
	OR		[5]

Please turn over

$S_n = -1 + 2 + 5 + 8 + $ to 100 terms	
$\mathbf{S}_{\mathbf{n}} = \frac{n}{2} \big[T_1 + T_{99} \big]$	
$S_{100} = \frac{100}{2} \left[-1 + 296 \right]$	
= 50[295]	
=14 750	

QUESTION 4

4.1	The first differences are $1; -1; -3; -5; \dots$	✓ pattern
	These form a linear pattern $T_n = 1 + (n-1)(-2)$ $= 3 - 2n$	✓✓ answer (3)
4.2	Between the 35^{th} and 36^{th} terms of the quadratic sequence lies the 35^{th} first difference $= 3 - 2(35)$ $= -67$	✓ substitution of 35 ✓ answer
4.3	Second difference of terms is -2 . $T_n = an^2 + bn + c$ $a = -1$. $3a + b = 1 \Rightarrow -3 + b = 1$ $b = 4$ $a + b + c = -3 \Rightarrow -1 + 4 + c = -3$ $c = -6$ $T_n = -n^2 + 4n - 6$ OR Second difference of terms is -2 . $T_n = an^2 + bn + c$ $a = -1$. $T_0 = -6 = c$ $T_n = -n^2 + bn - 6$ $-3 = -(1)^2 + (1)b - 6$ $b = 4$ $T_n = -n^2 + 4n - 6$ OR	

Copyright reserved

		2a = -2	
		a = -1	
		3a+b=1	
		3(-1) + b = 1	
		b = 4	
		a+b+c=-3	
		(-1) + (4) + c = -3	
		c = -6	
		$T_n = -n^2 + 4n - 6$	
4.	.4	Maximum value of T_n is $\frac{4(-1)(-6)-4^2}{4(-1)} = -2$	✓ max value – 2
		The maximum value is negative and hence the sequence can not have any positive terms as the function is maximum valued	✓ explanation (2)
		OR	
		$-n^2 + 4n - 6$	
		$=-(n-2)^2+4-6$	✓ max value – 2
		$=-(n-2)^2-2$	✓ explanation (2)
		The function has a maximum-value of -2 and therefore the pattern	(2)
		will never have positive values.	[11]

5.1	First year: 150		
	Second year: $150 + 18 = 168$		
	Third year: $168 + \frac{8}{9}(18) = 184$		
	Growth = $18\left(\frac{8}{9}\right)^{n-2}$ after <i>n</i> years	✓ general terms	
	17^{th} year growth is $18\left(\frac{8}{9}\right)^{17-2} = 3,08 \text{ cm}$	✓ answer	(2)
5.2	Height after 10 years		
	$= 150 + \frac{18\left(1 - \left(\frac{8}{9}\right)^9\right)}{1 - \frac{8}{1 $	\checkmark <i>n</i> = 9 \checkmark substitution	
	9	,	
	= 150 + 105,8768146	✓ answer	(3)
	= 255,88 cm		

5.3	Max height = 150 + sum to infinity	✓ statement	
	$= 150 + \frac{18}{1 - \frac{8}{9}}$ $= 150 \text{ cm} + 162 \text{ cm}$ $= 312 \text{ cm}$	✓ substitution ✓ max height	(3)
	The tree will never reach a height of more than 312 cm.		[8]

6.1	$\frac{1}{2}x^2 = -\frac{1}{x+1} + 1$	✓ equating
	$x^{2}(x+1) = -2 + 2(x+1)$	
	$x^3 + x^2 = -2 + 2x + 2$	
	$x^3 + x^2 - 2x = 0$	✓ standard form ✓ factorisation
	$x(x^2+x-2)=0$	v ractorisation
	x(x+2)(x-1) = 0	
	x = 0 or $x = -2$ or $x = 1$	✓ answer ✓ answer P(-2; 2)
	P(-2;2)	
	$Q\left(1;\frac{1}{2}\right)$	\checkmark answer Q $\left(1; \frac{1}{2}\right)$
		(6)
6.2	For $m > 0$, the equation of the axis of symmetry is $y = x + c$.	✓ gradient
	$ \begin{aligned} 1 &= (-1) + c \\ c &= 2 \end{aligned} $	
	$C = \mathcal{L}$	
	Therefore the equation is $y = h(x) = x + 2$.	✓ answer (2)
6.3	The equation of the inverse of <i>h</i> is $x = y + 2$	✓interchange x and y
	$\therefore y = x - 2$	✓ answer
6.4	$g(x) = -\frac{1}{x+1} + 1 = \frac{-1+x+1}{x+1} = \frac{x}{x+1}$	\checkmark simplification of $g(x)$
	1	
	$LHS = \frac{x}{x+1} + \frac{\frac{1}{x}}{\frac{1}{x}+1} = \frac{x}{x+1} + \frac{1}{x+1} = \frac{x+1}{x+1} = 1$	✓ simplification of LHS
	$RHS = \left(\frac{-x}{1-x}\right)\left(\frac{x-1}{(x-1)+1}\right) = \frac{(1-x)x}{(1-x)x} = 1$	✓ simplification of RHS
	LHS = RHS	(3) [13]

7.1	$y \in [-3;3]$	✓ answer	
		(1	1)
7.2	x-value is 7.37° to the left of 90°	✓ method	
	B(82,63°; 0,38)	✓ <i>x</i> -value	
		✓ y-value	
		(.)	3)
7.3	David 360°	✓✓ answer	
	$Period = \frac{360^{\circ}}{3}$		2)
	= 120°		
7.4	$x = -180^{\circ}$	✓ ✓ answer	
			2)
		[8	8]

QUESTION 8

8.1	x > 0	✓ answer
	OR	(1)
	$x \in (0; \infty)$	
8.2	$y = 2^{-x}$	✓ answer
		(1)
8.3	y = 0	✓ answer
		(1)
8.4.1	Reflect the graph of <i>f</i> over the <i>x</i> -axis	✓ answer
		(1)
8.4.2	Reflect the graph of f over the line $y = x$.	✓ ✓ answer
	Then shift the graph down 5 units	✓ answer
		(3)
8.5	$\log_2 x < 3$	
	$-\log_2 x > -3$	✓ multiplication by
	$-\log_2 x > -3$ $f(x) > -3$	- 1
	$0 < x < 8$ or $x \in (0; 8)$	✓ ✓ answer
		(3)
		[10]

NSC – Memorandum

DoE/November 2009(1)

QUESTION 9

9.1			
	$A = P(1-i)^n$		
	$15000 = 24000(1 - 0.18)^n$	✓ substitution	
	$0,625 = (0,82)^n$	✓ simplification	
	$n = \log 0,625$	/ 1: ./: C1	
	$n = \frac{\log 0,625}{\log 0,82}$	✓application of logs	
	= 2,37 years	✓ answer	
0.2.1		(4)	
9.2.1	$130000\left(1+\frac{0.18}{12}\right)^2$	✓✓ substitution ✓ answer	
		(3)	
	$= 130000 (1,015)^2$ P. 133.030.25		
9.2.2a	= R 133 929,25	✓ calculation of A	
J.2.2u	$133929,25 = \frac{x[1 - (1,015)^{-54}]}{0,015}$	culculation of 71	
	$2008,93875 = x[1 - (1,015)^{-54}]$	✓ substitution	
	R3636,36 = x		
	113030,30 = 1	✓ answer	
		(3)	
9.2.2b	$Total = 3636,36 \times 54$	✓answer (1)	
	= R196363,66	(122 222	
9.2.3	$130000 = \frac{x[1 - (1,015)^{-54}]}{0,015}$	✓ 130 000 ✓ substitution	
		v substitution	
	$1950 = x[1 - (1,015)^{-54}]$		
	R3529,68 = x	✓ answer	
	T-4-1 P 2520 (9 : 54	✓ total	
	Total payments = $R 3529,68 \times 54$ = $R 190 602,72$	(4)	
9.2.4	R196 363,66 – R190 602,72	✓ answer	
	=R5 760,96	(1)	
		[16]	

10.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ method	
	$= \lim_{h \to 0} \frac{-2(x+h)^2 + 3 - (-2x^2 + 3)}{h}$	✓ substitution	
	$= \lim_{h \to 0} \frac{-2x^2 - 4xh - 2h^2 + 3 + 2x^2 - 3}{h}$	✓ simplification	
	$=\lim_{h\to 0}\frac{h(-4x-2h)}{h}$	✓ simplification	
	$= \lim_{h \to 0} (-4x - 2h)$ $= -4x$	✓ answer	(5)
10.2	$y = x^2 - \frac{1}{2x^3}$		
	$y = x^2 - \frac{1}{2}x^{-3}$		
	$\frac{dy}{dx} = 2x + \frac{3}{2}x^{-4}$		
	$\frac{dy}{dx} = 2x + \frac{3}{2x^4}$	√√ answer	(2)
			[7]

QUEST	QUESTION 11				
11.1	$0 = -x^3 + x^2 + 8x - 12$	✓ = 0			
	$x^3 - x^2 - 8x + 12 = 0$	\checkmark factor $(x-2)$			
	$(x-2)(x^2+x-6)=0$	$\checkmark \text{ factor } (x^2 + x - 6)$			
	(x-2)(x-2)(x+3) = 0	✓ factors			
	x = 2 or x = -3				
	intercepts are $(2;0)$ and $(-3;0)$	✓ answers (5)			
11.2	$f'(x) = -3x^2 + 2x + 8$	$\checkmark f'(x) = -3x^2 + 2x + 8$			
	$3x^2 - 2x - 8 = 0$	$\checkmark f'(x) = 0$			
	(x-2)(3x+4) = 0	✓ factors			
		✓ answers			
	$x = 2 \text{ or } x = -\frac{4}{3}$	- answers			
	turning points are (2; 0) and $\left(-\frac{4}{3}; -\frac{500}{27}\right)$	✓ answers			
	,	(5)			
11.3	OR (2;0) and (-1,33;-18,52)				
	2-				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	-4 -9 -2 -1 0 1 2 3 4				
	-4-				
	-6-				
	_8+ /				
	-10-				
	-12-				
	-/4-	✓ shape			
	-16-	✓ intercepts			
	-18-	✓ turning Pts (3)			
	$\left(-\frac{4}{3}; -\frac{500}{27}\right)$	(3)			
11 4	, , ,	T			
11.4	f''(x) = 0 $6x - 2 = 0$	✓ method			
	1	✓ answer			
	$x = \frac{1}{3}$	(2)			
	OR				
	$2-\frac{4}{}$				
	$x = \frac{2 - \frac{4}{3}}{2}$				
	1				
	$x = \frac{1}{3}$				
11.5	$(2; -3)$ and $\left(-\frac{4}{3}; -\frac{581}{27}\right)$ OR $(2; -3)$ and $\left(-1,33; -21,52\right)$	✓✓ each answer			
	(2, -3) and $(3, -21,32)$	(2) [17]			
	<u> </u>	[1/]			

Copyright reserved

12.1	$s(0) = 5(0)^3 - 65(0)^2 + 200(0) + 100$	$\checkmark t = 0$
	= 100 metres	✓ answer
	100 medes	(2)
12.2	$s(t) = 5t^3 - 65t^2 + 200t + 100$	
	$s'(t) = 15t^2 - 130t + 200$	$\checkmark s'(t) = 15t^2 - 130t + 200$
	$s'(4) = 15(4)^2 - 130(4) + 200$	✓ substitution
	= -80 metres per minute	✓ answer
	-	(3)
12.3	The height car of the car above sea level is decreasing at 80	✓ speed 80 metres per
	metres per minute and the car is travelling downwards hence it is	minute ✓ down
	a negative rate of change.	(2)
12.4	~!(4) 154 ² 1204 + 200	(2)
12.7	$s'(t) = 15t^2 - 130t + 200$	$\checkmark s''(t) = 120t - 520$
	s''(t) = 30t - 130	✓ = 0
	130 = 30t.	✓ answer
	t = 4.33 minutes	(3)
		,
	OR	[10]
	(400) (0 (00)	
	t = -(-130)/2(30)	
	t = 4.33 minutes	

13.1	$x + 3y \le 18$	✓✓ answer
13.1	$x + y \le 8$	✓✓ answer
	$2x + y \le 14$	✓✓ answer
		✓ answer
	$x, y \ge 0$	(7)
13.2	P = 30x + 40y	√√ answer
		(2)
13.3	$y = -\frac{3}{4}x + \frac{P}{40}$	✓✓ answer
	$y = -\frac{1}{4}x + \frac{1}{40}$	(2)
	13+	
	12+	
	11+	
	10-	
	$ _{\mathbf{m}} \rightarrow$	
	MCT	
	Number of units of product B	
	nits	
	of the state of th	
	-1 1 2 3 4 5 6 7 8 9 19 11 12 13 14 15 16 17 18	
	Number of units of product A	
	Maximum at (3; 5)	
13.4	-2 < m < -1	√√answer
		(2)
		[13]

TOTAL: 150

Number of units of product A