

AUSTRALIAN MATHEMATICS COMPETITION WARM-UP PAPER SENIOR 7

©2009 Australian Mathematics Trust

Questions 1 - 4, 3 marks each					
1. If 3^{x+1}	= 81 then x equals				
(A) 1	(B) 2	(C) 3	(D) 4	(E) 5	
$2. \ \frac{m}{m-n}$	$+\frac{n}{n-m}$ is equal to				
(A) n^2	$-m^2$ (B) $2mn$	(C) $\frac{mn + m^2 + n^2}{m^2 - n^2}$	$\frac{^2m^2}{}$ (D) 1	(E) $m-n$	
delivere	3. George lives in a street with 12 houses. Every day he gets more letters than a delivered to any other home. Today 57 letters were delivered to his street. The number of letters delivered to George must have been at least				
(A) 3	(B) 4	(C) 5	(D) 6	(E) 7	
	$= \frac{1}{1+x} \text{ then } f(f(x)) \text{ i}$		1	2+x	
(A) $\frac{1}{(1-1)^2}$	$\frac{1}{(1+x)^2}$ (B) $\frac{1+x}{2+x}$	$\frac{c}{c}$ (C) 1	(D) $\frac{1}{2+x}$	$(E) \frac{2+x}{1+x}$	
Questions 5 - 8, 4 marks each					

5.	A mushroom farmer has sent an order of 70 kg of mushrooms to the markets in
	standard cases. If he had used larger cases, each capable of holding 2 kg more, he
	would have used 4 fewer cases. The capacity of the standard case, in kilograms, is

(.	A) 2	(B) 5	(C) 7	(D) 10	(E) 14

Senior 7 Page 2

	Semon 7 rage 2				
6.	A golf ball is hit onto a circular green of radius 12 m. Assuming that all landing positions are equally likely, what is the probability that it lands less than 1 m from the hole (which is at least one metre from the edge of the green)?				
	(A) $\frac{1}{12}$	(B) $\frac{7}{12}$	(C) $\frac{11}{42}$	(D) $\frac{1}{24}$	(E) $\frac{1}{144}$
7.	7. The average of n numbers is k . When another number x is added to the set, to average increases by 1. The value of x is			to the set, the	
	(A) $k + n + 1$	(B) $k + 1$	(C) n	(D) $k+n$	$(E) \frac{n(k+1)}{n+1}$

8. A circle of radius 1 unit has an equilateral triangle PQR inscribed in it.

The points S and T are points on the circle such that QRST is a rectangle.

The area, in square units, of the rectangle is

(A) 3 (B)
$$\frac{3}{2}$$
 (C) 2 (D) $\frac{\sqrt{3}}{2}$ (E) $\sqrt{3}$

Questions 9 - 10, 5 marks each

9. How many ways are there of choosing 3 different numbers in increasing order from $\{1, 2, 3, ..., 10\}$ so that no two of the numbers are consecutive?

10. A rectangle is cut by segments parallel to its sides into a hexagon and an octagon as shown in the diagram (not drawn to scale).

The lengths of the sides of the octagon are 1, 2, 3, 4, 5, 6, 7 and 8 units in some order. The maximum area, in square units, of the hexagon is

(A) 24	(B) 27	(C) 30	(D) 33	(E) 36
\ /	\ /	\ /	\ /	\ /