ECE380 Digital Logic

Synchronous Sequential Circuits: Implementations using D-type, T-type and JK-type Flip-Flops

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-1

Counter design example

- Design a 2-bit counter that counts
 - in the sequence 0,1,2,3,0,... if a given control signal U=1, or
 - in the sequence 0,3,2,1,0,... if a given control signal U=0
- This represents a 2-bit binary up/down counter
 - An input U to control to count direction
 - A RESET input to reset the counter to the value zero
 - Two outputs (Z_1Z_0) representing the output (0-3)
 - Counter counts on positive edge transitions of a common clock signal
- Design this counter as a synchronous sequential machine using
 - D-type, T-type, JK-type flip-flops

Electrical & Computer Engineering

Counter state diagram

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-3

Counter state table

Present	Nex	Output	
state	U=0	U=1	$Z_1 \overset{\cdot}{Z}_0$
Α	D	В	00
В	Α	С	01
С	В	D	10
D	С	Α	11

Electrical & Computer Engineering

State-assigned state table

• Choosing a state assignment of A=00, B=01, C=10 and D=11 makes sense here because the outputs Z_1Z_0 become the outputs from the flip-flops directly

	Present	Next			
	state	U=0	U=1	Output Z_1Z_0	
	y_2y_1	Y_2Y_1	Y_2Y_1	—1—0	
Α	00	11	01	00	
В	01	00	10	01	
С	10	01	11	10	
D	11	10	00	11	

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-5

D-type flip-flop implementation

- When D flip-flops are used to implement an FSM, the next-state entries in the stateassigned state table correspond directly to the signals that must be applied to the D inputs
- Thus, K-maps for the D inputs can be derived directly from the state-assigned state table
- This will not be the case for the other types of flip-flops (T, JK)

Electrical & Computer Engineering

State table and next-state maps

	Present	Next	Next state				
	state	U=0	U=1	Output Z_1Z_0			
y ₂ y ₁		Y_2Y_1	Y_2Y_1	_1_0			
Α	00	11	01	00			
В	01	00	10	01			
С	10	01	11	10			
D	11	10	00	11			

01

11

$$Z_1 = y_2$$
 $Z_0 = y_1$

 $Y_2 = (y_2 \oplus y_1 \oplus u)'$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-7

Circuit diagram (D flip-flop)

Design using other flip-flop types

- For the T- or JK-type flip-flops, we must derive the desired inputs to the flip-flops
- Begin by constructing a transition table for the flip-flop type you wish to use
 - This table simply lists required inputs for a given change of state
- The transition table is used with the stateassigned state table to construct an excitation table
 - The excitation table lists the required flip-flop inputs that must be 'excited' to cause a transition to the next state

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-9

Transition tables

J	K	Q	Q+	Q	Q+	J	Κ		Т	Q	Q+		Q	Q+	Т
0	0	0	0	0	0	0	D		0	0	0		0	0	0
0	0	1	1	0	1	1	D		0	1	1		0	1	1
0	1	0	0	1	0	D	1		1	0	1		1	0	1
0	1	1	0	1	1	D	0		1	1	0		1	1	0
1	0	0	1	1K	tran	cit	ion					т	tra	ansit	ion
1	0	1	1	310	tab		1011					•		able	
1	1	0	1												
1	1	1	0	The transition table lists required flip-flop inputs to affect a specific change											

Electrical & Computer Engineering

T-type flip-flop implementation

Use entries from the transition table to derive the flip-flop inputs based on the state-assigned state table.

Q	Q+	T
0	0	0
0	1	1
1	0	1
1	1	0

excitation table

Present					
state	U=	=0	U=	Output Z_1Z_0	
y ₂ y ₁	Y_2Y_1	T_2T_1	Y ₂ Y ₁	T_2T_1	2120
00	11	11	01	01	00
01	00	01	10	11	01
10	01	11	11	01	10
11	10	01	00	11	11

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-11

Excitation table and K-maps

Present	Flip-flo		
state	U=0	U=1	Output Z_1Z_0
y ₂ y ₁	T_2T_1	T_2T_1	- 1 - 0
00	11	01	00
01	01	11	01
10	11	01	10
11	01	11	11

$$Z_1 = y_2 Z_0 = y_1$$

$$T_2 = y_1 u + y_1' u' = (y_1 \oplus u)'$$

Electrical & Computer Engineering

JK-type flip-flop implementation

- Use entries from the transition table to derive the flip-flop inputs based on the state-assigned state table
 - This must be done for each input (J and K) on each flip-flop

Present state	Next		
	U=0	U=1	Output Z_1Z_0
y_2y_1	Y_2Y_1	Y_2Y_1	1 0
00	11	01	00
01	00	10	01
10	01	11	10
11	10	00	11

Q	Q+	J	K
0	0	0	D
0	1	1	D
1	0	D	1
1	1	D	0

JK transition table

Electrical & Computer Engineering

JK-type flip-flop implementation

Q	Q+	J	
0	0	0	D
0	1	1	
1	0	D	
1	1	D	0

JK transition table

Present							
state		U=0			U=1	Output Z_1Z_0	
y_2y_1	Y_2Y_1	J_2K_2	J_1K_1	Y_2Y_1	J_2K_2	J_1K_1	1 0
00	11	1D	1D	01	0D	1D	00
01	00	0D	D1	10	1D	D1	01
10	01	D1	1D	11	D0	1D	10
11	10	D0	D1	00	D1	D1	11

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 28-15

Excitation table and K-maps

Present							
state	U=0				U=1	Output Z_1Z_0	
y ₂ y ₁	Y_2Y_1	J_2K_2	J_1K_1	Y_2Y_1	J_2K_2	J_1K_1	1 0
00	11	1D	1D	01	0D	1D	00
01	00	0D	D1	10	1D	D1	01
10	01	D1	1D	11	D0	1D	10
11	10	D0	D1	00	D1	D1	11

Electrical & Computer Engineering

Electrical & Computer Engineering

