Paper Review: Open-book Video Captioning with Retrieve-Copy-Generate Network

Velda Vania Vision Language Intelligence Lab - Sejong University 31.08.2022

Contents

- Motivation
- Main Contribution
- Proposed Method
 - Overview
 - Retrieve-Copy-Generate (RCG) Network
 - Video-to-Text Retriever (VTR)
 - Copy-mechanism Caption Generator
- Results
- Conclusion

Motivation

- Most existing works have some drawbacks:
 - The caption generation process lacks appropriate guidance since the video is the only source of input which resulting in the generations of more generic sentences
 - Knowledge domain of model is fixed after training and cannot be expanded unless retraining the model

Motivation

- To address these issues, instead of performing video captioning (VC) task directly, the author propose to convert it into two stages:
 - First, perform video-text retrieval (VTR) to search sentences relevant to given video from text corpus
 - Then, the retrieval sentences are used as extra guidance for caption generation
- During inference, the generator can generate words based on video content or directly copy expressions from retrieved sentences

Fig 1. Comparison of existing methods and the author's method

Main Contribution

- Propose to solve the video captioning task with open-book paradigm, which generates captions under the guidance of video-content-retrieval sentences
- Introduce novel Retrieve-Copy-Generate / RCG
 - Improved cross modal retrieval is utilized to provide hints for generator
 - Copy-mechanism generator is proposed for dynamical copying and better generation
- Extensive experiments show that the proposed approach achieves state-of-the-art results in VATEX and competitive performance on MSR-VTT

Proposed Methods - Overview

Fig 2. Overview of the proposed RCG Network for Open-book Video Captioning

Proposed Methods - Overview

Fig 2. Overview of the proposed Retrieve-Copy-Generate (RCG) Network for Open-book Video Captioning

The Bi-encoders

architecture is

leveraged to efficiently and

effectively

achieve the

cross-modal

retrieval

Proposed Methods - Overview

Fig 2. Overview of the proposed Retrieve-Copy-Generate (RCG) Network for Open-book Video Captioning

Proposed Methods - RCG Network

- Consists of two components :
 - Video-to-text retriever
 - Retrieves top k semantically similar sentences z according to video x
 - Copy-mechanism generator
 - Conditioned on the retrieved sentence, the original visual information and previous generated tokens to generate the current target token
 - Formally, the conditional probability of producing caption are defined as:

Represents the confidence of whether the generator can copy words directly from retrieval sentences or not

η: VTR's parameter

Θ: copy-mechanism's parameter

z_i: retrieved sentence

x: video visual information

t: time step

y_t: generated token at t

Proposed Methods - RCG Network - VTR

- Major function : find the top-k most similar sentences z given video x in a massive retrieval corpus
 - The corpus contains the whole sentences of training set
 - During training and testing, the sentences are retrieved only from the corpus of training set
 - o In addition, sentences belonging to own video are excluded
- VTR applies bi-encoder architecture:
 - Text encoder: maps all sentences in corpus into vectors
 - Visual encoder: maps video x into vectors
- VTR is pre-trained using contrastive learning
 - Each positive video-retrieved sentence pair (x+,z+) should be closer than any other negative video-retrieved sentence pairs (x+,z-) and (x-,z+) in a mini batch

Proposed Methods - RCG Network - VTR

• Thus, given video x, the probability of retrieved sentence z_i is estimated as:

$$p_{\eta}(z_i|x) = \operatorname{softmax}(\operatorname{sim}(x, z_i)), \ z_i \in \{z_1, \cdots, z_{topk}\}.$$

$$e_x = rac{Agg(x_m) + Agg(x_a)}{2} \hspace{1cm} sim(x,z_i) = rac{e_{z_i}.\,e_x}{||e_{z_i}||\,||e_x||}$$

z: retrieved sentence

x : video

topk: number of most relevant sentences of x

 x_m : motion features of video x x_a : appearance features of video x

Agg(.): aggregation function

 e_{z_i} : embedding of z_i

Proposed Methods - RCG Network - Copy-mechanism Caption Generator

 In generation process, the words of multiple sentences are copied adaptively where the proportion of copy word or generate the word is adjusted according to the context

- Consists of two components :
 - Hierarchical Caption Decoder
 - The attention LSTM focus on different visual features according to the current hidden state to achieve the visual context
 - The language LSTM aggregate the current state and visual context to generate the probability distribution of the fixed vocabulary p_{voc} at each time step

Proposed Methods - RCG Network - Copy-mechanism Caption Generator

- Dynamic Multi-pointers Module
 - An improved version of Pointer-Networks where the module output word probability distribution p_{ret} corresponding on each retrieved sentence
 - Since, not all the words in retrieved sentence are valid, the model decide to copy or generate the word dynamically based on probability.
 - The probability of copying words p_{copy} from each retrieved sentence are determined by the semantic context of retrieved sentence and the decoder state

Proposed Methods - RCG Network - Copy-mechanism Caption Generator

• In summary, the generation probability distribution p_{θ} is :

$$p_{\theta} = (1 - p_{copy})p_{voc} + p_{copy}p_{ret}$$

 p_{copy} : copy probability

 p_{ret} : dynamic words in retrieved sentences

 p_{voc} : probability distribution of fixed vocabulary

• Thus, the training goal is to minimize the negative log-likelihood of each target word \mathbf{y}_{t} :

$$\mathcal{L}_{gen} = -\sum_{t=1}^{T} log \sum_{i=1}^{topk} oldsymbol{p_{\eta}}(oldsymbol{z_i}) oldsymbol{p_{ heta,i}}(y_t)$$

 $p_{\scriptscriptstyle{\Theta}}$: generation probability distribution

 ρ_η : probability similarities of the retrieved sentences

z_i: retrieved sentences index i

t:timestep

y_t: target word

Results

Quantitative results on MSR-VTT and VATEX dataset

Dataset	Method	Ref.	CIDEr	BLEU-4	Rouge-L	Meteor
MSR- VTT	POS-CG[28]	ICCV19	48.7	42.0	61.6	28.2
	POS-VCT[13]	ICCV19	49.1	42.3	62.8	29.7
	SAAT[37]	CVPR20	49.1	40.5	60.9	28.2
	+RL		51.0	39.9	61.2	27.7
	STG-KD[22]	CVPR20	47.1	40.5	60.9	28.3
	PMI-CAP[3]	ECCV20	49.4	42.1	-	28.7
	+Audio		50.6	43.9	1.5	29.5
	ORG-TRL[36]	CVPR20	50.9	43.6	62.1	28.8
	Baseline	Ours	49.8	42.2	61.2	28.2
	+FixRet	Ours	52.3	43.1	61.9	29.0
	+TrainRet	Ours	52.9	42.8	61.7	29.3
VATEX	VATEX[29]	ICCV19	45.6	28.7	47.2	21.9
	ORG-TRL[36]	CVPR20	49.7	32.1	48.9	22.2
	NSA[8]	CVPR20	57.1	31.0	49.0	22.7
	Baseline	Ours	49.2	31.3	48.5	21.9
	+FixRet	Ours	56.8	33.4	50.1	23.6
	+TrainRet	Ours	57.5	33.9	50.2	23.7

Results

Qualitative results on VATEX dataset

Ground -Truth	1-A man is scube diving in the ocean while exploring sea creatures 2-A woman is scube diving deep in the red sea with someone else 3-A woman is under water with her breathing apparatus on			
Retrieved Sentences	1- Two scubs divers swim beneath the surface of ocean water 0.627 2- Scubs divers are visible swimming under the water of the ocean 0.616 3- Scubs divers are shown at the bottom of the water and breathing out of their masks 0.613			
Baseline	a person is scuba diving in the ocean with a lot of fish			
RCG	scuba divers are swimming at the base of the water and breathing out of their masks			

Ground -Truth	1-A man is shown rolling a ball at another person, the person kicks the ball back 2-A man throws a ball to a boy, who kicks it back to the man, who catches it 3-a man wearing blue throws a red ball to a boy		
Retrieved Sentences	1- A man and a boy are outside playing carcle while another child looks on 0.536 2- A group of people are playing catch with a ball in a park 0.532 3- A family together in the park as they toss each other a baseball and catch it having fun 0.521		
Baseline	a group of people are playing a game of frisbee in a park		
RCG	a man standing on the grass playing catch with a ball and a child looks him		

- The attention weights and similarities between the video of top-3 retrieved sentences are shown.
- The baseline model can generate some correct words and wrong words. Compared with it, RCG can generate more diverse captions by copying the expressions from retrieved sentences.

Conclusion

- This paper introduce new paradigm in video captioning domain
 - Model generates caption under the prompts of video-content relevant sentences which is not limited to the video itself
- Extensive experiments on several datasets show the effectiveness and promising of the proposed paradigm in video captioning task
- In addition, the authors' result and ablation study show that it is practical to copy knowledge not limited to retrieved sentences, e.g video subtitles for better generation

Thank You