

Exploiting DCIs for Visualisations in Astrophysics: VisIVO Science Gateway and VisIVO Mobile

Eva Sciacca

eva.sciacca@oact.inaf.it

VisIVO Team – Team Leader Ugo Becciani INAF- Astrophysical Observatory of Catania

Motivations

 Several TBs are often generated by modern cosmological simulations and large-scale astrophysical observations are stored in archives. Such large data volumes pose significant challenges in terms of data analysis, storage and access; a critical step forward in understanding, interpreting and verifying their intrinsic characteristics can be achieved trough visualization.

> DCIs access

 Multiple users need to share visualization experiences, by interacting simultaneously with astrophysical datasets giving feedback on what other participants are doing/seeing.

Collaborative environment

- The reproduction of specific visualization results is a challenging task as selecting suitable visualization parameters may not be a straightforward process.
 - ➤ Workflow-driven application

Outline

- Background
 - Visualisation and Analysis Tools
- VisIVO Science Gateway
 - Portlets and workflows
- VisIVO Mobile
- A Case Study: Muon particles visualisation
- Supplementary Material

Outline

- Background
 - Visualisation and Analysis Tools
- VisIVO Science Gateway
 - Portlets and workflows
- VisIVO Mobile
- A Case Study: Muon particles visualisation
- Supplementary Material

VisIVO Tools

- Multidimensional Data Exploration →
 - Discovery of unknown data characteristics
 - Searching for:
 - Outliers
 - Characteristic regions
 - Special properties
- Large astrophysical datasets as well as any other multidimensional tabular data from other communities.

VisIVO is designed to deal with large datasets. It supports many types of data formats:

• HDF5, VOTables, Binary Tables, Ascii, csv, fits...

VisIVODesktop

VisIVOServer

--fformat votable /home/user/ demo/vizier.xml

.....

--x x --y y --z z --color --colortable

--colorscalar scalar0 --glyphs sphere

Linux Mac Windows

VisIVO Science Gateway

VisIVOMobile

VisIVO C/C++ Library

Closely integrated, complementary and independent!

VisIVO Core Tools

https://sourceforge.net/projects/visivoserver

Navigation -- Zoom -- Palette -- Algorithms -- Data selection -- Picker op.

Outline

- Background
 - Visualisation and Analysis Tools
- VisIVO Science Gateway
 - Portlets and workflows
- VisIVO Mobile
- A Case Study: Muon particles visualisation
- Supplementary Material

VisIVO Gateway

 The VisIVO Science Gateway is designed as a workflow enabled grid portal that is wrapped around WS-PGRADE/ gUSE providing visualization and data management services to the scientific community.

 The gateway offers role-based authorization modules and supports login with user name and password.
 Standard User uses Workflow developed by a

Standard User uses Workflow developed by a "workflow developer" via a web GUI.

Architecture

Infrastructures

- 2 X Server Intel Xeon 3060 2.4 GHz, Dual-Core, 2 GB RAM Total storage: 23 TB
- Server Intel Xeon 3050 2.13 GHz, Dual-Core, 2 GB RAM Total storage: 8 TB
- Hybrid system cpu-GPU, N 2: Intel(R) Xeon(R) CPU E5620
 @ 2.40GHz, 24 GB RAM DDR3-1333 NVIDIA TESLA C2070, 448
 cuda core + 6 GBRam
- Trigrid Cluster AMD Dual Opteron 280 2.4 GHz, 14 Blades with 4 cores with 8 GB RAM / Blade (52 CPU core) - Total storage: 3.7 TB (lsf)
- COMETA grid gLite nodes ~1500 CPU/core (250 hosted at INAF-OACT) AMD Dual Opteron 280 2.4 GHz (jdl) Total storage: 8 TB

Portlets...

IIN/AIF

Panoramio Movie

and workflows

UNICORE

Unicore

ARC

PBS

BOINC

GEMLCA

GAE

Local

Gbac

CloudBroker

DCI-Bridge

Manager

g ite

GT-4

Outline

- Background
 - Visualisation and Analysis Tools
- VisIVO Science Gateway
 - Portlets and workflows
- VisIVO Mobile
- A Case Study: Muon particles visualisation
- Supplementary Material

VisIVO Mobile

INAF 🔵 I

VisIVO Mobile

- Navigate through the data produced on the VisIVO Science Gateway: view produced images and scientific movies;
- Interactive 3D view of the dataset;
- Submit existing workflows;

VisIVO Mobile

- Navigate through the data produced on the VisIVO Science Gateway: view produced images and scientific movies;
- Interactive 3D view of the dataset;
- Submit existing workflows;
- Create new workflows using the graph editor

A short demo

http://visivo.oact.inaf.it:8080

Outline

- Background
 - Visualisation and Analysis Tools
- VisIVO Science Gateway
 - Portlets and workflows
- VisIVO Mobile
- A Case Study: Muon particles visualisation
- Supplementary Material

Muons Analysis

Prototype → muon track deviation

The Project: Exploring the container content searching for nuclear material (uranium, plutonium)

Compute: coordinates and deviation angle that the muon track has when high-Z material element is in the path.

Muon Analysis

- <u>Input</u>: data file containing the coordinates on the muon tracker planes (4 planes, 6 x 3 meters).
- Main processing steps:
 - ➤ POCA (Point of Closest Approach) algorithm to obtain the VBT containing the scattering deflection of cosmic radiations.
 - ➤ Noise filtering.
 - > 3D Cloud-in-Cell (CIC) smoothing algorithm to obtain a volume dataset.
- Output: images and movies of the filtered and unfiltered datasets.

Results

Workflow

Input Dataset

Dataset Processing

Portlet Interface

Muon Portal Workflow	₽-+×
Select the Muon Portal simulation files to Upload	
Local Upload Remote Upload	
Select data	
muon.ascii	
Select the visualization parameters	
Resolution X Res: Y Res: Z Res: Voxel Dimension:	
600 300 10	
Theta Threshold: 60	
Submit	

Isosurface Images

Filtered Dataset

Panoramic Movies

Filtered Dataset

Un-Filtered Dataset

Tomographic Images

Un-Filtered Dataset

Outline

- Background
 - Visualisation and Analysis Tools
- VisIVO Science Gateway
 - Portlets and workflows
- VisIVO Mobile
- A Case Study: Muon particles visualisation
- Supplementary Material

Supplementary Material

- SCI-BUS Project: http://www.sci-bus.eu
- Er-Flow Project: http://www.erflow.eu
- WSPgrade/gUse: http://www.guse.hu
- VisIVO Science Gateway: http://visivo.oact.inaf.it:8080
- Scientific Visualization:
 - ✓ Will Schroeder, Ken Martin, and Bill Lorensen Visualization Toolkit: An Object-Oriented Approach to 3D Graphics.
 - ✓ Kitware, Inc.
 VTK User's Guide