Big Data

matplotlib

데이터 시각화란?

- 광범위하게 분산된 방대한 양의 자료를 한눈에 볼 수
 있도록 도표나 차트 등으로 정리하는 것
- 시각화를 통해 데이터의 특징을 쉽게 파악 할 수 있다
- 분석 결과를 상대방에게 효과적으로 전달가능하다

학습목표

- 1. 시각화 할 수 있는 차트의 종류를 안다.
- 2. matplotlib을 이용하여 시각화를 할 수 있다.

차트의 종류

scatter plot

bar chart

차트의 종류

pie chart

histogram

matplotlib

- Python에서 시각화 할 수 있는 대표적인 패키지
- pyplot과 pylab이란 sub패키지가 있다.

	pyplot	pylab
기능	시각화	시각화 + numpy
특징	비대화형 (간단한 정보만 입력해서 플롯이 된다.)	대화형 (비교적 많은 정보를 입력해 플롯을 요구한다.)

matplotlib 사용하기

import matplotlib.pyplot as plt

Line plot

- > y=[2,4,6]
- > plt.plot(y)
- > plt.show()

Line plot

- > x=[1,2,3]
- > y=[2,4,6]
- > plt.plot(x, y)
- > plt.show()

Line style

- > plt.plot(y, ls = '--')
 > plt.show()

Line style

Character	Description
' _ '	Solid line style
' '	Dashed line style
''	Dash-dot lint style
* * *	Dotted line style

Marker

- > plt.plot(y, marker = 'o')
- > plt.show()

matplotlib Python

Marker

Character	Description	Character	Description
	Point marker	11'	Tri_down marker
' o '	Circle marker	121	Tri_up marker
' V '	Triangle_down marker	'3'	Tri_left marker
'^'	Triangle_up marker	'4'	Tri_right marker
'<'	Triangle_left marker	* * *	Star marker
'>'	Triangle_right marker	'h','H'	Hexagon1,2 marker
's'	Square marker	' + '	Plus marker
' p '	Pentagon marker	' D '	Diamond marker
1 1	Vline marker		Hline marker

Line weight

- > plt.plot(y, lw = 5)
- > plt.show()

Line color

> plt.plot(y, color = 'r')

> plt.show()

Line color

plt.plot(y, markerfacecolor = 'm', markersize=10)

> plt.show()

Python

Line color

Character	Color	Character	Color
'b'	Blue	' m '	Magenta
' g '	Green	' y '	yellow
'r'	Red	'k'	Black
' c '	cyan	' w '	white

스타일 옵션들

스타일옵션종류	마커 종류정의	약자
color	선 색깔	С
linewidth	선 굵기	lw
linestyle	선 스타일	ls
marker	마커 종류	
markersize	마커 크기	ms
markeredgecolor	마커 선 색깔	mec
markeredgewidth	마커 선 굵기	mew
markerfacecolor	마커 내부 색깔	mfc

연습문제)

- > x = np.arange(7)> y = [1,4,5,8,9,5,3]

연습문제)

- \rightarrow x = np.arange(7)
- \rightarrow y = [1,4,5,8,9,5,3]
- \rightarrow plt.plot(x, y, ls = '--', lw=5, marker='o', ms=15, mec='g', mew=5, mfc='r')
- > plt.show()

그림 범위 지정

- plt.xlim(-2,10)plt.ylim(-5,12)

틱 설정

- plt.xticks([0,3,6])plt.yticks([1,5,9])

그리드

> plt.grid()

여러 개 플롯

- > x = [1,2,3,4]
- > y = [2,4,6,8]
- > z = [3,6,9,12]
- > plt.plot(x)
- > plt.plot(y)
- > plt.plot(z)
- > plt.show()

여러 개 플롯

- plt.plot(x)plt.plot(y)
- > plt.show()
- > plt.plot(z)
- > plt.show()

범례 표시

- > plt.plot(x, label = 'x')
- > plt.plot(y, label = 'y')
- > plt.plot(z, label = 'z')
- > plt.legend()
- > plt.show()

차트 옵션

plot 옵션	정의
xlim, ylim	x 축 범위, y축 범위
grid	격자눈금
legend	범례
xlabel, ylabel	x축 타이틀, y축 타이틀
title	그래프 제목
xticks, yticks	x축 눈금 조정, y축 눈금 조정

차트 한글 보이기

rc('font', family=font_name)

```
from matplotlib import font_manager, rc
font_name = font_manager.FontProperties(fname="c:/Windows/Fonts/malgun.ttf").get_name()
```

▶ 요일별 사망교통사고 시각화

➤ 데이터 로드

import pandas as pd

data = pd.read_csv("Traffic_Accident_2017.csv",encoding="euc-kr")

➤ 요일별 사고 건수 count

```
|temp = data["요일"].value_counts()
  2 y = temp[["월","화","수","목","금","토","일"]]
    У
월화수목금토
     603
     608
     565
     586
     603
     596
일
     504
Name: 요일, dtype: int64
```

➤ bar chart 그리기

```
x = range(7)
plt.bar(x,y)
plt.xticks(x,["월","화","수","목","금","토","일"])
plt.show()
```


➤ bar chart 그리기

```
x = range(7)
plt.bar(x,y)
plt.xticks(x,["월","화","수","목","금","토","일"])
plt.ylim(500,620)
plt.xlabel("요일")
plt.ylabel("사고 건수")
plt.title("요일별 사망교통사고 건수")
plt.show()
```


수고하셨습니다.