Assignment 1

1. You are given a transaction data shown below from a fast food restaurant. For simplicity, we assign the meal items short names [M1-M5]. For all the min_sup=2/9 and min_conf=7/9. Apply Apriori and identify all k-frequent itemsets. Find all the strong association rules and note their confidence. Construct an FP-tree for the below dataset.

Meal Item	List of Items
Order 1	{M1, M2, M5}
Order 2	{M2, M4}
Order 3	{M2, M3}
Order 4	{M1, M2, M4}
Order 5	{M1, M3}
Order 6	{M2, M3}
Order 7	{M1, M3}
Order 8	{M1, M2, M3, M5}
Order 9	{M1, M2, M3}

2. Define maximal and closed frequent itemset. Identify the above from the database:

Transaction ID	Items
T1	{A, C, T, W}
T2	{C, D, W}
T3	{A, C, T, W}
T4	{A, C, D, W}
T5	{A, C, D, T, W}
T6	{ C, D, T }

3. Consider the database d shown in the table below. Consider min_sup =60% and min_conf=80%. Apply Apriori and identify all k-frequent itemsets. Find all the strong association rules and note their confidence. Construct an FP-tree for the below dataset.

TID	Items
T100	{M, O, N, K, E, Y}
T200	{D, O, N, K, E, Y }
T300	{M, A, K, E}
T400	{M, U, C, K, Y}
T500	{C, O, O, K, I,E}

4. Consider the transaction database as follows and indicate closed and maximal frequent item sets

TID	Items
1	{A, B, C}
2	{A, B, C, D}
3	{B, C, E}
4	{A, C, D, E}
5	{D, E}

5. Draw the decision tree for the following dataset:

Color	Туре	Doors	Tires	Class
Red	SUV	2	Whitewall	+
Blue	Minivan	4	Whitewall	-
Green	Car	4	Whitewall	-
Red	Minivan	4	Blackwall	-
Green	Car	2	Blackwall	+
Green	SUV	4	Blackwall	-
Blue	SUV	2	Blackwall	-
Blue	Car	2	Whitewall	+
Red	SUV	2	Blackwall	-
Blue	Car	4	Blackwall	-

6. Construct a decision tree for the following data:

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no