1

- 1. (0.5 pts) Enunciau la condició necessària i suficient per tal que una matriu tingui inversa.
- 2. (0.5 pts) Determinau el valor de a pel qual la matriu

$$A = \left(\begin{array}{ccc} a & 0 & 3\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{array}\right)$$

és invertible.

- 3. (1 pt) Calculau la inversa per a = -1.
- **2** (2 pts) Calculau l'angle que formen els vectors \vec{a} i \vec{b} sabent que $||\vec{a}|| = 3$, $||\vec{b}|| = 5$ i $||\vec{a} + \vec{b}|| = 7$.
- 3 (2.5 pts) Justifica quins dels següents conjunts de l'espai vectorial donat són subespais vectorials. D'aquells que, en efecte siguin subespais vectorials, dóna una base i la dimensió dels mateixos. Justifica totes les respostes.
 - 1. Els vectors de \mathbb{R}^n els coeficients dels quals són nombres enters (és a dir de \mathbb{Z}).
 - 2. Els vectors del pla \mathbb{R}^2 situats sobre l'eix OX.
 - 3. Els vectors del pla \mathbb{R}^2 situats bé sobre l'eix OX o bé sobre l'eix OY.
 - 4. Els vectors de \mathbb{R}^n tals que la seva primera i darrera coordenades són iguals.
 - 5. Els vectors de \mathbb{R}^n tal que les seves coordenades senars són 0.
 - 6. Els vectors de \mathbb{R}^n tal que totes les seves coordenades senars són iguals.
 - 7. Els vectors del pla \mathbb{R}^2 que tenen el seu origen i l'extrem sobre una recta qualssevol del pla.
 - 8. Els vectors de l'espai \mathbb{R}^3 els extrems dels quals no es troben sobre una recta donada.
 - 9. Els vectors del pla amb els extrems sobre el primer quadrant.
 - 10. Les matrius simètriques amb coeficients reals dins l'espai $M_{n\times n}(\mathbb{R})$
- 4 Sigui E un \mathbb{R} -espai vectorial de dimensió 4 amb base $B = \{u_1, u_2, u_3, u_4\}$. Es defineixen els vectors

$$v_1 = 2u_1 + u_2 - u_3$$
 $v_2 = 2u_1 + u_3 + 2u_4$ $v_3 = u_1 + u_2 - u_3$ $v_4 = -u_1 + 2u_3 + 3u_4$

- 1. (0.75 pt) Demostrau que $B' = \{v_1, v_2, v_3, v_4\}$ és una base de E.
- 2. (1.5 pt) Trobau les coordenades del vectors u_1, u_2, u_3, u_4 en la base B'.
- 3. (1.25 pt) El vector $\vec{x} \in \mathbb{R}^4$ té coordenades (1, 2, 0, 1) en la base B. Calcula'n les coordenades en la base B'.