2 AIRMAir motion

2.1 AIRM Configuration data

► Configuration Data

Name	Mode	Coded Limits	Display Limits	Resolution	Unit	
NC_PORT_NR	-	O 2H	02	1	-	
Number of port flap sensors						
NC_PORTPWM	-	O 2H	02	1	-	
Number of port flap actuators						

► General Information

The following describes the general rules for determination of the configuration data.

► Global Configuration Data:

Here are listed the configuration data, which can be used in other aggregates:

Configuration Item	Range	Value	Comment
NC_PORT_NR 🛂	02	1 [-]	
Number of port flap sensors	O 2H	Ox1	
NC_PORTPWM ☑	02	1 [-]	
Number of port flap actuators	O 2H	Ox1	

2.2 Port flap variables

▶ Data Definition

Name	Mode	Coded Limits	Display Limits	Resolution	Unit	
FAC_PORT_DEAC [NC_PORT_NR]	O/V	O FFFFH	O 0.999984741211	15.2588e-6	-	
Actual position	on (Feedback	c) of port flaps (flap	closed = 1)			
FAC_PORT_DEAC_MV	O/V	O FFFFH	O O.999984741211	15.2588e-6	-	
Averaç	ge of FAC_PC	DRT_DEAC[NC_PORT_	NR]			
STATE_EL_FAC_MVB_PORT	O/V	O FH	O 15	1	-	
State of the a	actual sensoi	position(feedback) c	of port flap			
STATE_EL_MVB_PORT	O/V	O FH	0 15	1	-	
State	of the setpo	oint position of port fla	эр			
STATE_MVB_PORT_AV	O/V	O FFFFH	0 655.35	0.01	%	
Intake manifold runner actual value						
STATE_MVB_PORT_SP	O/V	O FFFFH	0 655.35	0.01	%	
Intake	manifold ru	nner commanded va	llue			

► Input Data

LV_PORT_DEAC	NC_FID_PORT_FB_EL	NC_PORT_NR	V_PORT_1
{p. 1073}		{p. 1065}	{p. 1061}
V_PORT_2 {p. 1061}	V_PORT_AD_CLOSE [NC_PORT_NR] {p. 1087}	V_PORT_AD_OPEN [NC_PORT_NR] {p. 1087}	

► Calibration Data

Name	Mode	Coded Limits	Display Limits	Resolution	Unit
C_CRLC_FAC_PORT_DEAC_MV	V	O FFH	0 0.99609375	0.00390625	-
Correlation	n constant fo	or FAC_PORT_DEAC_N	//V filter		
C_FAC_PORT_DEAC_SUB	V	O FFFFH	O O.999984741211	15.2588e-6	-
li di	nitialisation o	of FAC_PORT_DEAC			
C_V_PORT_BOL_HYS	V	O 3FFH	0 4.9951171875	0.00488281	V
	Hysteresis o	f V_PORT_AD_BOL			
C_V_PORT_TOL_HYS	V	O 3FFH	0 4.9951171875	0.00488281	V
H	Hysteresis of	V_PORT_AD_OPEN			

► Import actions:

 ${\bf ACTION_FARM_GetPermission}({\bf IN}~< {\tt PRM_FID}>,~{\bf OUT}~< {\tt PRM_LV_PRMS}>)$

▶ General Information

For engines with more than one port flap, it is necessary to calculate for each bank separate input values (FAC_PORT_DEAC[i]), according to the number of port flaps (NC_PORT_NR). The quantity of the actual position (V_PORT_1, V_PORT_2; feedback signal of potis) is the input for the FAC_PORT_DEAC[i] (O..1) calculation. In case of more than one port flap the average of FAC_PORT_DEAC[i], which is named FAC_PORT_DEAC_MV is used for further calculations in the ECU. The values 0 and 1 point out the full closed or full opened fort flap position.

The measured voltages at the potis are V_PORT_1, V_PORT_2. These voltages are adapted to the rising and falling characteristic of the port flaps in the function "Standard analog inputs". With the two adapted limitation stop voltages (V_PORT_AD_OPEN/CLOSE), V_PORT_1, V_PORT_2 is transferred into FAC_PORT_DEAC[i]. If V_PORT_1, V_PORT_2 is within the two applicated hysteresis C_V_PORT_BOL_HYS and C_V_PORT_TOL_HYS, FAC_PORT_DEAC[i] is set to 0 or 1.

To adapt the model closer to the reality during a switch of the flaps, a PT 1 filter imitate the delay. Definition of port flap numbers:

For engines with one port flap, V_PORT_1 value is used for the FAC_PORT_DEAC calculation. Furthermore the FAC_PORT_DEAC_MV value is the same as FAC_PORT_DEAC_1. For engines with two port flaps (NC_PORT_NR = 2) two calculation bows of FAC_PORT_DEAC_1/_2 (i=2) are necessary.

Application Conditions

Initialisation: RST
Activation: always
Deactivation: never
Recurrence: 10MS

► Function Description

Figure 2.2.1: AIRM_M4O55

2.2.1 Initialization

2.2.1.1 Calculation of initialization

The variables are initialized at LV_IGK = 0 - -> 1

Figure 2.2.2: AIRM_M4O55/INI/CLC_INI

2.2.2 Recurrence 10 ms

Figure 2.2.3: AIRM_M4O55/OPM_1OMS

2.2.2.1 For-Loop for calculation of FAC_PORT_DEAC

2.2.2.1.1 Calculation of FAC_PORT_DEAC

Calculation of FAC_PORT_DEAC[i] with falling characteristic.

If an port flap error is pendig, regardless which port flap (lv_err_port_temp = 1), the calculation of FAC_PORT_DEAC is executed depending on port flap setpoint

Figure 2.2.4: AIRM_M4055/OPM_10MS/FLP_FAC_PORT_DEAC/CLC_FAC_PORT_DEAC

2.2.2.2 Calculation of FAC_PORT_DEAC_MV

Figure 2.2.5: AIRM_M4055/OPM_10MS/CLC_FAC_PORT_DEAC_MV

2.2.2.3 State of port flaps

Check if there is a error present in the exhaust flap or if the flap is opened or closed.

Figure 2.2.6:

2.2.2.4 State of intake manifold

Figure 2.2.7: AIRM_M4O55/OPM_1OMS/STATE_MVB_PORT

2.3 Port flap position set point actuation signal processing

▶ Data Definition

Name	Mode	Coded Limits	Display Limits	Resolution	Unit			
LV_PORT_CMB_CH_ACT	V	O 1H	O1	1	-			
Multi pulse operation is active while catalyst heating for port set point								
LV_PORT_CMB_OPP_1_NOT	V	O 1H	O1	1	-			
Multi pulse ope	ration is avail	able except OPP 1 for	port set point					
LV_PORT_CMB_SCAV_REQ	V	O 1H	O1	1	-			
Scave	enging reque	st active for port set p	oint					
LV_PORT_DEAC	O/V	O 1H	O1	1	-			
Setpoint	of port flap (1	= port closed, O = por	t open)					
LV_PORT_DEAC_RAW_BAS	V	O 1H	O1	1	-			
Temp	orary value	of basis port flap setpo	oint					
LV_PORT_DEAC_RAW_DYN	V	O 1H	O1	1	-			
Tempo	rary value of	dynamic port flap set	point					
LV_PORT_DEAC_RAW_SCAV	V	O 1H	O1	1	-			
Tempora	ry value of so	cavenching port flap s	setpoint					
MAF_STK_SP_TQI_TMP	V	O FFFFH	O 2778	0.04238956	mg/stk			
mass	air flow setpo	int for torque interver	ntion					
MAP_SP_GRD_PORT_DYN	V	O FFFFH	0 5434	0.08291752	hPa			
MAP set	point gradien	t for dynamic determ	ination					
N_32_TMP	V	O FFH	O 8160	32	rpm			
Engine s	peed with hy	steresis for port flap s	etpoint					
N_GRD_MMV_PORT_SCAV	V	80 7FH	-40964064	32	rpm/s			
The mov	ring mean va	lue of engine speed g	radient					
T_PORT_SCAV	V	O 3FFH	0 10.23	0.01	S			
The time	e to active the	e port during the scav	enging					
T_PORT_SCAV_INI	V	O 3FFH	0 10.23	0.01	S			
		time of T_PORT_SCA						
T_PORT_SP_DYN_ACT	V	O FFFFH	0 655.35	0.01	S			
Actua	l time port fla	p dynamic determina						
T_PORT_SP_DYN_MAX	V	O FFFFH	0 655.35	0.01	S			
		namic set point deterr						
T_PRED_PORT_SCAV	V	O 3FFH	0 10.23	0.01	S			
The predicted time to	reach the m	aximum N threshold f	for activating of port					

► Input Data

GEAR	IDX_CMB_MOD_CUR	IDX_CMB_MOD_REQ	LV_ACT_PORT_DEAC_EXT_ADJ
{p. 25859}	{p. 1721}	{p. 1745}	{p. 12373}
LV_CH	LV_ENG_LST_ST_STST	LV_ES	LV_PORT_AD_ACT
{p. 10962}	{p. 8499}	{p. 7530}	{p. 1087}
LV_PORT_AD_REQ_OPEN	LV_PORT_DEAC_EXT_ADJ	LV_ST	MAF_STK_SP_TQI
{p. 1087}	{p. 12374}	{p. 7530}	{p. 25371}
MAP_SP	N_32	N_GRD	NC_IDX_CH_2
{p. 13894}	{p. 8079}	{p. 8079}	{p. 1660}

NC_IDX_CH_2_S_1	NC_IDX_CH_3_S_2	NC_IDX_CH_MPI_2_S	NC_IDX_CH_SA_2_S_1
{p. 1660}	{p. 1660}	{p. 1660}	{p. 1660}
NC_IDX_CH_SA_3_S_1	NC_IDX_CH_SA_MPI_2	NC_IDX_CH_SA_MPI_3_S_1	NC_IDX_OPP_2
{p. 1660}	{p. 1661}	{p. 1661}	{p. 1662}
NC_IDX_OPP_2_S_1	NC_IDX_OPP_3_HOMS_S	NC_IDX_OPP_MPI_2	NC_IDX_OPP_MPI_2_S
{p. 1662}	{p. 1663}	{p. 1663}	{p. 1663}
NC_IDX_OPP_MPI_3	NC_IDX_OPP_MPI_3_S_1	NC_IDX_OPP_MPI_4_S_2	NC_IDX_SCAV_OPP_1
{p. 1663}	{p. 1663}	{p. 1663}	{p. 23089}
NC_IDX_SCAV_OPP_2	NC_IDX_SCAV_OPP_2_S_1	NC_IDX_SCAV_OPP_3_HOMS_S	PV_AV
{p. 23089}	{p. 23089}	{p. 23089}	{p. 4450}
T_AST	TCO	TCO_ST	TIA_IM
{p. 8436}	{p. 8846}	{p. 8846}	{p. 1143}

► Calibration Data

Name	Mode	Coded Limits	Display Limits	Resolution	Unit
C_CRLC_N_GRD_MMV_PORT_SCAV	V	O FFH	0 0.99609375	0.00390625	-
Filter co	onstant for N	N_GRD_MMV_PORT_S	CAV		
C_MAF_SP_TQI_MIN_PORT_SCAV	V	O FFFFH	0 2778	0.04238956	mg/stk
Minimum threshold of engine load setpoint for sv	witching bet	ween dynamic or sca	avenching setpoint re	garding MAF_STI	K_SP_TQI
		input			
C_N_THD_PORT_SCAV	V	80 7FH	-40964064	32	rpm
Maxi	mum N thre	shold to active the po	ort		
C_NR_BUF_MAP_SP_GRD_PORT_DYN	V	O AH	O 1O	1	-
Buff	er number (gradient port dynami	С		
C_PORT_DEAC_MAN	V	O 1H	O1	1	-
V	alue for mar	nual port flap control			
C_PORT_DEAC_SUB	V	O 1H	O1	1	-
Initi	ialisation val	ue of port flap contro	ol .		
C_PV_THD_STST	V	O 3FFH	0 99.90234375	0.09765625	%
	Pedal thres	hold for stop start			
C_T_AST_MIN_PORT	V	O FFFFH	0 6553.5	O.1	S
Minimum tin	ne after starf	t to enable the port fl	ap control		
C_T_MAX_PORT_SP_DYN	V	O FFFFH	0 655.35	0.01	S
Maximu	m time of p	ort flaps open on dyr	namic		
C_T_MIN_PORT_SP_DYN	V	O FFFFH	0 655.35	0.01	S
Minimu	m time of po	ort flaps open on dyn	amic		
C_TIA_PORT_HYS	V	O FEH	-48 142.5	0.75	°C
Intake a	air temperatı	ure hysteresis for por	t flap		
C_TIA_PORT_SCAV_ENA	V	O FEH	-48 142.5	0.75	°C
TIA-threshold for	release of s	cavenging set point	determination		
C_TIA_PORT_SCAV_ENA_HYS	V	O FEH	-48 142.5	0.75	°C
TIA-threshold-hystere	sis for releas	e of scavenging set p	point determination		
ID_FAC_PORT_TCO	V	O 1H	O1	1	-
LDP_TCO_FAC_PORT_TCO	4	O FEH	-48 142.5	0.75	°C
Co	rrection map	o of port flap setpoint	t		
ID_IDX_GEAR_PORT	V	O 1H	O1	1	-
LDPM_GEAR_PORT_1_AIRM	8	O FFH	0 255	1	-

Name	Mode	Codod Limita	Dicplay Limits	Posolution	Heit
		Coded Limits of port set point for C	Display Limits	Resolution	Unit
ID IDX GEAR PORT OPP 1 NOT	V	O 1H	O1	1	_
LDPM_GEAR_PORT_1_AIRM	8	O FFH	0 255	1	_
		port set point outside		'	
ID PORT SP	V	O 1H	01	1	-
LDPM N 32 PORT SP	10	O FFH	0 8160	32	rpm
LDPM MAF STK SP TQI PORT SP	10	O FFFFH	0 2778	0.04238956	mg/stk
	Set point r	map for port flap			3
ID_PORT_SP_CH	V	O 1H	O1	1	-
LDPM_N_32_PORT_SP_CH	10	O FFH	0 8160	32	rpm
LDPM_MAF_STK_SP_TQI_PORT_SP_CH	10	O FFFFH	0 2778	0.04238956	mg/stk
Set point fo	r port flap w	hile catalyst heating	for OPP 1		
ID_PORT_SP_CMB_CH	V	O 1H	O1	1	-
LDPM_N_32_PORT_SP_CH	10	O FFH	0 8160	32	rpm
LDPM_MAF_STK_SP_TQI_PORT_SP_CH	10	O FFFFH	O 2778	0.04238956	mg/stk
Set point for p	ort flap whil	e catalyst heating ou	tside OPP 1		
ID_PORT_SP_GEAR	V	O 1H	O1	1	-
LDPM_N_32_PORT_SP	10	O FFH	0 8160	32	rpm
LDPM_MAF_STK_SP_TQI_PORT_SP	10	O FFFFH	O 2778	0.04238956	mg/stk
Set poir	it map for po	ort flap depending on	gear		
ID_PORT_SP_GEAR_OPP_1_NOT	V	O 1H	O1	1	-
LDPM_N_32_PORT_SP	10	O FFH	0 8160	32	rpm
LDPM_MAF_STK_SP_TQI_PORT_SP	10	O FFFFH	0 2778	0.04238956	mg/stk
		depending on gear o			
ID_PORT_SP_GEAR_TIA	V	O 1H	O1	1	-
LDPM_N_32_PORT_SP	10	O FFH	0 8160	32	rpm
LDPM_MAF_STK_SP_TQI_PORT_SP	10	O FFFFH	0 2778	0.04238956	mg/stk
Set point for port flap de				4	
ID_PORT_SP_GEAR_TIA_OPP_NOT	V 10	O 1H	01	1	-
LDPM_N_32_PORT_SP LDPM MAF STK SP TQI PORT SP	10	O FFH	0 8160	32	rpm
Set point for port flap deport	10	O FFFFH	O 2778	0.04238956	mg/stk
ID PORT SP OPP 1 NOT	V	O 1H	01	1	_
LDPM_N_32_PORT_SP	10	O FFH	0 8160	32	rpm
LDPM_MAF_STK_SP_TQI_PORT_SP	10	O FFFFH	0 2778	0.04238956	mg/stk
		or port flap while OPP		0.0 1200500	rrig, sax
ID_TCO_PORT_SP	V	0 1H	O1	1	-
LDPM_N_32_PORT_SP	10	O FFH	0 8160	32	rpm
LDPM_MAF_STK_SP_TQI_PORT_SP	10	O FFFFH	0 2778	0.04238956	mg/stk
	nt map for po	ort flap incase of cold	start		
ID_TCO_ST_PORT_ENA	V	O 1H	O1	1	-
LDP_ID_TCO_PORT_ENA	4	O FEH	-48 142.5	0.75	°C
LDP_ID_TCO_ST_PORT_ENA	4	O FEH	-48 142.5	0.75	°C
Enable basic setpoir	it determina	tion at definite TCO/T	CO_ST thresholds		
ID_TIA_PORT_SP	V	O FEH	-48 142.5	0.75	°C
LDPM_GEAR_PORT_1_AIRM	8	O FFH	0 255	1	-

Name	Mode	Coded Limits	Display Limits	Resolution	Unit		
Intake air temperature map for port flap							
IP_MAF_SP_TQI_PORT_HYS	V	O FFFFH	O 2778	0.04238956	mg/stk		
LDP_N_32_PORT_HYS	6	O FFH	0 8160	32	rpm		
Engir	e load hyste	eresis to switch port f	lap				
IP_MAP_SP_GRD_PORT_DYN_ACT	V	O FFFFH	0 5434	0.08291752	-		
LDPM_N_32_PORT_SP	10	O FFH	0 8160	32	rpm		
LDPM_MAP_SP_GRD_PORT_DYN	10	O FFFFH	0 5434	0.08291752	hPa		
Set point for port fla	ap while dyn	amic mode active re	garding gradient				
IP_MAP_SP_GRD_PORT_DYN_DEAC	V	O FFFFH	0 5434	0.08291752	-		
LDPM_N_32_PORT_SP	10	O FFH	0 8160	32	rpm		
LDPM_MAP_SP_GRD_PORT_DYN	10	O FFFFH	0 5434	0.08291752	hPa		
Set point for port flap dea	ctivation wh	ile dynamic mode ac	tive regarding gradie	nt			
IP_N_32_PORT_HYS	V	O FFH	0 8160	32	rpm		
LDP_MAF_STK_SP_TQI_PORT_HYS	6	O FFFFH	0 2778	0.04238956	mg/stk		
Engine	e speed hyst	eresis to switch port	flap				
IP_T_DLY_PORT_SCAV	V	O 3FFH	0 10.23	0.01	S		
LDP_TIA_IP_T_DLY_SCAV_DEAC_PORT	6	O FEH	-48 142.5	0.75	°C		
The po	rt scavengin	g time depending or	ı TIA				
IP_T_DLY_SCAV_DEAC_PORT	V	O 3FFH	0 10.23	0.01	S		
LDP_TIA_IP_T_DLY_SCAV_DEAC_PORT	6	O FEH	-48 142.5	0.75	°C		
Maximum time for scavenging active							
LC_PORT_DEAC_MAN_ACT	V	O 1H	O1	1	-		
Activation bit for manual port flap control; default value = 0							

► Import actions:

ACTION_INFR_SetPortDeac(IN < PRM_PORT_DEAC>)

► General Information

Due to different reasons - for example to improve the lean burn ability of a spark ignition engine - it is possible to deactivate one of the two intake ports of each cylinder. With one of the intake ports deactivated the swirl or tumble rate is higher than for both ports active.

Depending on engine operating point, engine temperature, double injection active or inactive and catalyst heating active or inactive the set point of the port flap is calculated. The port flap is vacuum-controlled. In case of no vacuum the port flap (inlet port) is closed. For that reason a continuous adjustment of the port flap is not possible.

Depending on the port flap set point or the adaptation request the control of the port flap is executed as described:

LV_PORT_DEAC = 1 port flap (inlet port) closed LV_PORT_DEAC = 0 port flap (inlet port) open

If LV_PORT_DEAC = 1 the port flap is closed (default position) and the power stage must be inactive. If LV_PORT_DEAC = 0 the port flap is open and the power stage must be active.

In case of a port flap error the calculation of FAC_PORT_DEAC is executed depending on port flap set point.

► Application Conditions

Initialisation: RST, IGKON

Activation: always

Deactivation: never

Recurrence: 10MS

► Function Description

Figure 2.3.1: PORT flap set point selection overview

2.3.1 Initialization

2.3.1.1 Calculation of initialization

The variables are initialized at reset and LV_IGK = 0 - -> 1

Figure 2.3.2:

2.3.2 Calculation 10 ms

Figure 2.3.3: AIRM M9022/OPM 10MS

2.3.2.1 Operating state detection

Figure 2.3.4: AIRM_M9022/OPM_10MS/OPP_STATE

2.3.2.2 Basic set point determination

In the basic set point determination the calculation of the set point is done depending on the gear, TIA_IM, N32 and MAF_SP. There is a general activation condition for the output value depending on the value of

expressed authorisation are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved. Copyright ©Continental AG. Transmittal, reproduction, dissemination and/or editing of this document as well as utilisation of its contents and communication thereof to others without

TCO. Further the switching between the different modes of calculation depends on the operating state of the engine.

To avoid toggling of the port flap, in the basic set point determination a hysteresis for the input variables of the maps is implemented.

For cold start's it is possible to set the flap via IP_TCP_PORT_SP to a definite position.

Figure 2.3.5: AIRM_ISPCLO/OPM_1OMS/BAS_SP_DET

2.3.2.3 Dynamic set point determination

The dynamic set point determination should prevent drivability problems due to switching of the port flaps and the engine load changes with high gradients.

Dynamics is recognized over MAP_SP_GRD_PORT DYN and the flaps are opened fro a certain time.

After a stationary point is achieved, the port flaps should be from the normal hazard maps.

Figure 2.3.6: AIRM_M9O22/OPM_1OMS/DYN_SP_DET

2.3.2.4 Set point determination for scavenging

For scavenging mode at low engine speeds and high loads the port flap must be set to open state (LV_PORT_DEAC=0). If scavenging is requested the control of LV_PORT_DEAC is switched to this set point calculation. Therefore basic and dynamic set point determination have no effect in case of scavenging request.

The scavenging mode could be also released over a TIA_IM-threshold (over a temperature threshold the mixture should not be influence via a open flap).

Figure 2.3.7: AIRM_M9022/OPM_10MS/SCAV_REQ

2.3.2.4.1 Calculation of the activating time of port flap during scavenging

The predicted time to reach the maximum engine speed threshold for activating of port is calculated regarding the moving mean value of engine speed gradient and the engine speed.

The initialization time of T_PORT_SCAV is obtain from the port scavenging time map depending on intake air temperature at throttle.

Figure 2.3.8: Calculation of the activating time of port flap during scavenging

2.3.2.5 Final set point calculation

The final set point LV_PORT_DEAC is calculated depending on the engine state (e.g. engine stopped), external and adaptation requests and time elapsed after engine start.

Figure 2.3.9: AIRM ISPCLO/OPM 10MS/PORT DEAC CALC

2.3.2.5.1 Start Stop system

In case of Start Stop the deactivation of the port flap should be aborted via PV threshold to avoid a noticeable jump in torque.

Figure 2.3.10: AIRM_ISPCLO/OPM_10MS/PORT_DEAC_CALC/START_STOP_PORT_DEAC_RAW

2.4 Port flap adaptation

▶ Data Definition

Name	Mode	Coded Limits	Display Limits	Resolution	Unit			
LV_PORT_AD_ACT	O/V	O 1H	O1	1	-			
Logical variable for activation the adaptation of port flap								
LV_PORT_AD_REQ_OPEN	O/V	O 1H	O1	1	-			
Logical va	ariable for re	quest to open the PC	PRT-flap					
LV_PORT_AD_VLD [NC_PORT_NR]	O/V/S	O 1H	O1	1	-			
Logical variable for '	'adaptation \	alues valid and adap	tation successful"					
PORT_AD_ERR_CTR	V	O FFH	0 255	1	-			
C	ounter for fa	iled port adaptation						
STATE_EL_MVB_AD_PORT	O/V	O FH	O 15	1	-			
St	ate of the ac	laptation of port flap						
STATE_PORT_AD	0	OH 1H 2H 3H 4H 5H	PORT_AD_WAIT PORT_AD_BOL PORT_AD_TOL PORT_AD_PLAUS PORT_AD_ERR PORT_AD_OK					
	State of P	ORT-Adaptation						
T_HLD_PORT_AD	V	O FFH	O 1O.2	0.04	S			
Time to hold the PORT fla	ap in a define	ed end position befor	re adaptation is starte	d				
T_PORT_AD	V	O FFH	O 1O.2	0.04	S			
	Time of P	ORT- adaptation						
V_PORT_AD_CLOSE [NC_PORT_NR]	O/V/S	O 3FFH	0 4.9951171875	0.00488281	V			
Saved value of	of V_PORT_	i adaptation for close	ed port flap					
V_PORT_AD_OPEN [NC_PORT_NR]	O/V/S	O 3FFH	0 4.9951171875	0.00488281	V			
Saved value	of V_PORT	_i adaptation for ope	n port flap					
V_PORT_CLOSE [NC_PORT_NR]	O/V	O 3FFH	0 4.9951171875	0.00488281	V			
	d value of \	/_PORT_i for closed p	ort flap					
V_PORT_OPEN [NC_PORT_NR]	O/V	O 3FFH	0 4.9951171875	0.00488281	V			
Measured value of V_PORT_i for open port flap								

► Input Data

LV_PORT_AD_EXT_REQ	LV_ST_END	N_32	NC_FID_PORT_AD_ACT
{p. 23187}	{p. 7530}	{p. 8079}	
NC_FID_PORT_AD_VLD	PQ	TCO	V_PORT_1
	{p. 13895}	{p. 8846}	{p. 1061}
V_PORT_2	VB_MMV		
{p. 1061}	{p. 24055}		

▶ Calibration Data

Name	Mode	Coded Limits	Display Limits	Resolution	Unit				
C_CRLC_V_PORT	V	O FFH	0 0.99609375	0.00390625	-				
Correlation constant for adaptation value evaluation									
C_N_MAX_PORT_AD	V	O FFH	0 8160	32	rpm				
Maximum	engine spe	ed for adaptation of p	ort flap						
C_N_MIN_PORT_AD	V	O FFH	0 8160	32	rpm				
Minimum	engine spee	ed for adaptation of p	ort flap						
C_PORT_AD_ERR_CTR_MAX	V	O FFH	0 255	1	-				
Maximum number of failed	d portflap ad	aptation before enter	ing PORT_AD_ERR-St	ate					
C_PQ_MAX_PORT_AD	V	O FFFFH	O O.999984741211	15.2588e-6	-				
Maxi	mum PQ for	adaptation of port fla	эр						
C_T_HLD_PORT_AD	V	O FFH	O 1O.2	0.04	S				
Time to ho	ld PORT pos	ition before adaptatio	on starts						
C_T_PORT_AD	V	O FFH	O 10.2	0.04	S				
Time of	of adaptation	n mean value calculat	ion						
C_TCO_MIN_PORT_AD	V	O FEH	-48 142.5	0.75	°C				
Minimum coo	olant temper	rature for adaptation (of port flap						
C_V_PORT_AD_CLOSE_HYS	V	O 3FFH	0 4.9951171875	0.00488281	V				
Hysteresis on C_V_P	ORT_CLOSE	_I_INI to detect a valid	adaptation value						
C_V_PORT_AD_OPEN_HYS	V	O 3FFH	0 4.9951171875	0.00488281	V				
Hysteresis on C_V_F	ORT_OPEN_	I_INI to detect a valid	adaptation value						
C_V_PORT_CLOSE_INI	V	O 3FFH	0 4.9951171875	0.00488281	V				
Default val	ue for port p	oti output for closed	port flap						
C_V_PORT_OPEN_INI	V	O 3FFH	0 4.9951171875	0.00488281	V				
Default va	lue for port p	ooti output for open p	·						
C_VB_MIN_PORT_AD	V	O FFH	0 25.8984375	0.1015625	V				
Minimum	battery volta	ge for adaptation of p	oort flap						

► Import actions:

ACTION_FARM_GetPermission(IN < PRM_FID>, OUT < PRM_LV_PRMS>)

General Information

The delivered voltage from the PORT-poti indicates the degree of the port flap position. Because of the electrical and the mechanical tolerances, the lower and higher stop of the poti must be adapted once. The learned values are stored as "non-volatile".

Description:

If no PORT adaptation was fulfilled for the whole engine life or the adaptation values were lost (LV_PORT_AD_ VLD[i] = 0) the values $V_PORT_AD_CLOSE/OPEN_i$ are set to default values. Otherwise these values are stored in the non volatile memory of the ECU and are valid till the next adaptation was successful.

While adaptation is active and STATE_PORT_AD = PORT_AD_BOL LV_PORT_AD_REQ_OPEN is set to 0 (port flap is closed). After a calibratable hold time (C_T_HLD_PORT_AD) V_PORT_CLOSE[i] is calculated as an average of V_PORT_1, V_PORT_2 (starting with V_PORT_AD_CLOSE[i]) for C_T_PORT_AD seconds.

Then the port flap is open (STATE_PORT_AD = PORT_AD_TOL) (LV_PORT_AD_REQ_OPEN is set to 1) and after the same hold time $V_PORT_OPEN[i]$ is calculated as an average of V_PORT_1 , V_PORT_2 (starting with V_PORT_1 AD_OPEN[i]) for $C_T_PORT_1$ seconds.

If these values $V_PORT_CLOSE[i]$ and $V_PORT_OPEN[i]$ are within a valid range, these values are copied into $V_PORT_AD_CLOSE/OPEN_i$ and saved (together with $LV_PORT_AD_VLD[i]$) in the non volatile memory of the ECU.

For VR or R engines, which are using only one port flap, the value of V_PORT_1, V_PORT_2 is set to 1 (V_PORT_1).

with LV_IGK = $0 \rightarrow 1$ or reset

Remark: LV ERR PORT[i] (i: meaning: number of actuators)

output data (i: meaning: number of ports)

The adaptation has to be calculated immediately before adaptation diagnosis.

STATE EL MVB AD PORT shows the state of the adaptation of flap:

- O: adaptation is running
- 1: adaptation finished, system is ok
- 2: adaptation finished, system is not ok
- 3: adaptation canceled, because the prerequisites are not met
- 4: adaptation canceled because of external request
- 5: adaptation is not started

► Application Conditions

```
Initialisation:
```

```
PORT\_AD\_ERR\_CTR = 0
Ιf
          at least one port adaptation took successfully place
          for whole engine life
    and
          no checksum error was detected
    and
              V PORT 1, V PORT 2
                                        V PORT AD CLOSE[i]
C V PORT AD CLOSE HYS
    Then LV_PORT_AD_VLD[i] = 1
                                      ; adaptation values available
    Else
         LV_PORT_AD_VLD[i] = 0
                                      ; no adaptation values are
                                       available
Endif
      Ιf
         LV_PORT_AD_VLD[i]
                                      1
    Then
         V_PORT_OPEN[i]
                                      V_PORT_AD_OPEN[i]
          V_PORT_CLOSE[i]
                                      V_PORT_AD_CLOSE[i]
          STATE_PORT_AD
                                      PORT_AD_OK
          STATE EL MVB AD PORT =
                                      5
                                           ; adaptation is not
started
    Else V_PORT_AD_OPEN[i] = C_V_PORT_OPEN_INI ;never a
          successful adaptation fulfilled, no adaptation values
          available
          V_PORT_OPEN[i]
                                = C_V_PORT_OPEN_INI
                                = C_V_PORT_CLOSE_INI
          V_PORT_AD_CLOSE[i]
          V_PORT_CLOSE[i]
                                = C_V_PORT_CLOSE_INI
          STATE_PORT_AD
                                = PORT_AD_WAIT
```

Activation of adaptation: external request

STATE_EL_MVB_AD_PORT = 5

Endif

LV_PORT_AD_REQ_OPEN

; adaptation is not started

If $LV_PORT_AD_EXT_REQ = 0 \rightarrow 1$ and $STATE_PORT_AD \neq PORT_AD_ERR$

Then LV_PORT_AD_VLD[i] = 0 ;both set to 0

 $PORT_AD_ERR_CTR = 0$

STATE_PORT_AD = PORT_AD_WAIT

STATE_EL_MVB_AD_PORT = 5 ;adaptation is not

started

Endif

Activation: all engine operating states

Recurrence: 40 ms

▶ Function Description

Activation of adaptation:

```
Ιf
         LV_PORT_AD_VLD[i] = 0 ; LV_PORT_AD_VLD_1 = 0 OR LV_PORT_AD_VLD_2 = 0
and
         ACTION FARM GetPermission(IN<NC FID PORT AD VLD>)
and
         STATE_PORT_AD \( \neq \) PORT_AD_ERR
Then
         Ιf
               PQ < C_PQ_MAX_PORT_AD
         and
               LV\_ST\_END = 1
         and
               N_32 < C_N_MAX_PORT_AD
         and
               N_32 \ge C_N_MIN_PORT_AD
         and
               TCO > C_TCO_MIN_PORT_AD
         and
               VB_MMV > C_VB_MIN_PORT_AD
         and
               ACTION_FARM_GetPermission(IN<NC_FID_PORT_AD_ACT>)
               LV_PORT_AD_EXT_REQ \neq 1 -> 0
         and
         Then
               LV_PORT_AD_ACT = 1
               Τf
                      STATE_PORT_AD = PORT_AD_WAIT
               Then
                     STATE_PORT_AD = PORT_AD_BOL
                      STATE_EL_MVB_AD_PORT = 0 ;adaptation is running
                      T_HLD_PORT_AD is initialised with C_T_HLD_PORT_AD
                      T_PORT_AD is initialised with C_T_PORT_AD
               Endif
         Else
                Ιf
                      LV_PORT_AD_EXT_REQ = 1 -> 0
               Then STATE_EL_MVB_AD_PORT = 4 ; adaptation canceled
               because of external request
               Endif
               LV_PORT_AD_ACT = 0
               PORT_AD_ERR_CTR = 0
               STATE_PORT_AD = PORT_AD_WAIT
         Endif
Else
         LV_PORT_AD_ACT = 0
         STATE_EL_MVB_AD_PORT = 3 ;adaptation canceled, because
         the prerequisites are not met
Endif
```

Adaptation algorithm (this is a sequence of actions to do in this order):

Adaptation of lower stop:

```
If STATE_PORT_AD = PORT_AD_BOL
Then     LV_PORT_AD_REQ_OPEN = 0    ;PORT closed
     timer T_HLD_PORT_AD is decremented

Endif
If     timer T_HLD_PORT_AD = 0    ;enough time in closed position
Then     timer T_PORT_AD is decremented
Endif
```



```
Ιf
         T_PORT_AD > 0
                                  ; adaptation value calculation active
Then
         LV\_PORT\_AD\_VLD[i] = 0 ; calculation has only to be done if
   Ιf
                                   ; adaptation is not vld for that port
          \label{eq:vport_close}    \text{V_PORT\_CLOSE[i]}_{N-1} \; \bullet \; \text{(1 - C\_CRLC\_V\_PORT)} \; + \\ 
                                                 V_PORT_1,
                                                                  V_PORT_2_N
                                               C_CRLC_V_PORT
   Endif
Else
         STATE_PORT_AD = PORT_AD_TOL
                                                T_HLD_PORT_AD is initialised with
C_T_HLD_PORT_AD
          T_PORT_AD is initialised with C_T_PORT_AD
          ; adaptation of lower stop finished, switch to next adaptation step
Endif
Adaptation of upper stop:
          STATE_PORT_AD = PORT_AD_TOL
         LV_PORT_AD_REQ_OPEN = 1
Then
                                                ;switching to PORT open
          timer T_HLD_PORT_AD is decremented
Endif
Τf
          timer T_{HLD_PORT_AD} = 0
                                                ; enough time in open position
Then
          timer T_PORT_AD is decremented
Endif
Τf
          T_PORT_AD
                          > 0
                                          ; adaptation value calculation active
Then
   Ιf
         LV_PORT_AD_VLD[i] = 0
                                          ; calculation has only to be done if
                                          ; adaptation is not vld for that port
   Then V_{PORT_OPEN[i]_N} = V_{PORT_OPEN[i]_{N-1}} \cdot (1 - C_{CRLC_V_PORT}) +
                                            V_PORT_1,
                                                            V_PORT_2_N
                                          C_CRLC_V_PORT
   Endif
Else
          STATE_PORT_AD = PORT_AD_PLAUS
                                                   ; adaptation of upper
          stop finished, switch to next adaptation step
          LV_PORT_AD_REQ_OPEN = 0
Endif
Plausibility check:
Ιf
       STATE_PORT_AD = PORT_AD_PLAUS
                     ; following determination has to be done separately for
                      ; PORT 1 and PORT 2
Then
       Ιf
       LV_PORT_AD_VLD[i] = 0
       And
        |V_PORT_CLOSE[i] - C_V_PORT_CLOSE_INI| \leq C_V_PORT_AD_CLOSE_HYS
       And
           V_PORT_OPEN[i] - C_V_PORT_OPEN_INI | \leq C_V_PORT_AD_OPEN_HYS
               V_PORT_AD_CLOSE[i] = V_PORT_CLOSE[i] ;new adaptation value to
       Then
               V_PORT_AD_OPEN[i]
                                     = V_PORT_OPEN[i] be saved in EEPROM
               LV_PORT_AD_VLD[i] = 1
                                                  ; adaptation values are valid;
               {\tt STATE\_EL\_MVB\_AD\_PORT = 1 \ ;} adaptation \ finished, \ system \ is \ ok
       Endif
       Ιf
              LV_PORT_AD_VLD[i] = 0
                                           ; LV\_PORT\_AD\_VLD\_1 = 0 OR
                                          ; LV_PORT_AD_VLD_2 = 0
       Then
                         PORT_AD_ERR_CTR > C_PORT_AD_ERR_CTR_MAX
             Ιf
                         STATE_PORT_AD = PORT_AD_ERR
             Then
                         STATE_EL_MVB_AD_PORT = 2 ; adaptation finished,
                         system is not ok
```


Else PORT_AD_ERR_CTR = PORT_AD_ERR_CTR $_{n-1}$ + 1 STATE_PORT_AD = PORT_AD_WAIT

Endif

Else STATE_PORT_AD = PORT_AD_OK ; adaptation finished and ok.

STATE_EL_MVB_AD_PORT = 1 ; adaptation finished, system is ok

Endif

Endif

Adaptation finished:

IF STATE_PORT_AD_i = PORT_AD_OK

or STATE_PORT_AD_i = PORT_AD_ERR

Then LV_PORT_AD_ACT = 0

Endif

2.5 Port flap actuator diagnosis

▶ Data Definition

Name	Mode	Coded Limits	Display Limits	Resolution	Unit			
LF_STATE_DGO_PORT_MEC_DOWN [NC_PORT_NR]	O/V	O FFFFH	O 65535	1	-			
State diag	nosis of for	port flap PORT_MEC_I	DOWN					
LF_STATE_DGO_PORT_MEC_DOWN_OVER [NC_PORT_NR]	O/V	O FFFFH	O 65535	1	-			
State diagno:	sis of for por	t flap PORT_MEC_DO	WN_OVER					
LF_STATE_DGO_PORT_MEC_UP [NC_PORT_NR]	O/V	O FFFFH	0 65535	1	-			
State di	agnosis of fo	or port flap PORT_ME	C_UP					
LF_STATE_DGO_PORT_MEC_UP_OVER [NC_PORT_NR]	O/V	O FFFFH	O 65535	1	-			
State diagr	nosis of for p	ort flap PORT_MEC_U	P_OVER					
LV_V_PORT_MEM [NC_PORT_NR]	O/V	O 1H	O1	1	-			
Memory value	e status flag	for overtravel port-flap	o diagnosis					
T_PORT_DIAG_MEC_DOWN [NC_PORT_NR]	O/V	O FFFFH	0 2621.4	0.04	S			
Timer for	port-flap ha	s not reached its lowe	er stop					
T_PORT_DIAG_MEC_DOWN_OVER [NC_PORT_NR]	O/V	O FFFFH	0 2621.4	0.04	S			
Timer for port-flap has r	eached its st	op for port-flap overt	ravel down diagnosis					
T_PORT_DIAG_MEC_UP [NC_PORT_NR]	O/V	O FFFFH	0 2621.4	0.04	S			
Timer for	port-flap has	s not reached its uppe	er stop					
T_PORT_DIAG_MEC_UP_OVER [NC_PORT_NR]	O/V	O FFFFH	0 2621.4	0.04	S			
Timer for port-flap has	reached its	stop for port-flap ove	rtravel up diagnosis					
V_PORT_MEM [NC_PORT_NR]	O/V	O 3FFH	0 4.9951171875	0.00488281	V			
Memory value for port-flap overtravel diagnosis								

▶ Input Data

C_V_PORT_AD_CLOSE_HYS {p. 1088}	C_V_PORT_AD_OPEN_HYS {p. 1088}	LC_PORT_AD_DIAG_ENA	LV_IGK {p. 24082}
LV_IS {p. 7530}	LV_PL {p. 7530}	LV_PORT_AD_ACT {p. 1087}	LV_PORT_AD_VLD [NC_PORT_NR] {p. 1087}
LV_PORT_DEAC {p. 1073}	LV_ST {p. 7530}	LV_ST_END {p. 7530}	NC_FID_ERR_PORT_FB_EL_H [NC_PORT_NR]
NC_FID_ERR_PORT_FB_EL_L [NC_PORT_NR]	NC_FID_ERR_PORT_MEC_ DOWN [NC_PORT_NR]	NC_FID_ERR_PORT_MEC_ DOWN_OVER [NC_PORT_NR]	NC_FID_ERR_PORT_MEC_UP [NC_PORT_NR]
NC_FID_ERR_PORT_MEC_UP_ OVER [NC_PORT_NR]	NC_PORT_NR {p. 1065}	STATE_PORT_AD {p. 1087}	T_AST {p. 8436}
TCO {p. 8846}	TIA_IM {p. 1143}	V_PORT_1 {p. 1061}	V_PORT_1_RAW {p. 1061}
V_PORT_2 {p. 1061}	V_PORT_2_RAW {p. 1061}	V_PORT_AD_CLOSE [NC_PORT_NR] {p. 1087}	V_PORT_AD_OPEN [NC_PORT_NR] {p. 1087}

► Calibration Data

Name	Mode	Coded Limits	Display Limits	Resolution	Unit	
C_T_AST_MIN_PORT_DIAG	V	O FFFFH	0 6553.5	O.1	S	
minimum time after start to activate port-flap mechanical diagnosis						
C_T_PORT_DIAG_MEC_DOWN	V	O FFFFH	0 2621.4	0.04	S	
timer fo	r mechanica	ıl port-flap diagnosis d	down			
C_T_PORT_DIAG_MEC_DOWN_OVER	V	O FFFFH	0 2621.4	0.04	S	
timer fo	or port-flap c	vertravel down diagr	nosis			
C_T_PORT_DIAG_MEC_UP	V	O FFFFH	0 2621.4	0.04	S	
timer f	or mechanic	cal port-flap diagnosis	up			
C_T_PORT_DIAG_MEC_UP_OVER	V	O FFFFH	0 2621.4	0.04	S	
timer	for port-flap	overtravel up diagno	osis			
C_TCO_MIN_DIAG_PORT_MEC_OVER	V	O FEH	-48 142.5	0.75	°C	
minimum threshold	l of intake ai	r temperature for ove	rtravel diagnosis			
C_TIA_MIN_DIAG_PORT_MEC_OVER	V	O FEH	-48 142.5	0.75	°C	
minimum threshol	d of coolant	temperature for over	travel diagnosis			
C_V_PORT_DIF_UP_DOWN_OVER	V	O 3FFH	0 4.9951171875	0.00488281	V	
Apllication of	lifference for	port-flap overtravel	diagnosis			
C_V_PORT_DOWN_OVER	V	O 3FFH	0 4.9951171875	0.00488281	V	
port-flap poti val	ue to detect	a mechanical overtra	avel symptom			
C_V_PORT_MAX_DIAG	V	O 3FFH	0 4.9951171875	0.00488281	V	
maximum	port-flap pot	i value for electrical d	iagnosis			
C_V_PORT_MIN_DIAG	V	O 3FFH	0 4.9951171875	0.00488281	V	
minimum _l	oort-flap poti	value for electrical d	iagnosis			

▶ Configuration Data

Name	Mode	Coded Limits	Display Limits	Resolution	Unit
NC_IDX_ERR_PORT_AD [NC_PORT_NR]	V	O FFFFH	0 65535	1	-
Failure i	ndex for diag	gnostic instance POR	T_AD		
NC_IDX_ERR_PORT_FB_EL_H [NC_PORT_NR]	V	O FFFFH	0 65535	1	-
Failure inde	ex for diagno	ostic instance PORT_F	B_EL_H		
NC_IDX_ERR_PORT_FB_EL_L [NC_PORT_NR]	V	O FFFFH	0 65535	1	-
Failure ind	ex for diagno	ostic instance PORT_F	B_EL_L		
NC_IDX_ERR_PORT_MEC_DOWN [NC_PORT_NR]	V	O FFFFH	0 65535	1	-
Failure index	for diagnos	tic instance PORT_ME	C_DOWN		
NC_IDX_ERR_PORT_MEC_DOWN_OVER [NC_PORT_NR]	V	O FFFFH	O 65535	1	-
Failure index for	diagnostic i	nstance PORT_MEC_[DOWN_OVER		
NC_IDX_ERR_PORT_MEC_UP [NC_PORT_NR]	V	O FFFFH	0 65535	1	-
Failure ind	ex for diagno	ostic instance PORT_N	MEC_UP		
NC_IDX_ERR_PORT_MEC_UP_OVER [NC_PORT_NR]	V	O FFFFH	0 65535	1	-
Failure index f	or diagnosti	c instance PORT_MEC	C_UP_OVER		

▶ Action Definitions

ACTION_AIRM_ResetDiagPortMecDn(IN <prm_state_ini>, IN <prm_nr_conf>)</prm_nr_conf></prm_state_ini>								
Action to erase or restart the diagnostics								
Parameter Type Hex.Limits Phys.Limits Resol. Unit								
PRM_STATE_INI	IN	OH 1H	CLR REST	-	-			
Type of initialization	on to manag	ge splitting of diagnos	tic initialization					
PRM_NR_CONF	IN	O FFH	0 255	1	-			
Additional	Configuration	on Information for the	e action					

ACTION_AIRM_ResetDiagPortMecUp(IN <prm_state_ini>, IN <prm_nr_conf>)</prm_nr_conf></prm_state_ini>								
Action to erase or restart the diagnostics								
Parameter	Type	Hex.Limits	Phys.Limits	Resol.	Unit			
PRM_STATE_INI	IN	OH 1H	CLR REST	-	-			
Type of initialization	n to manag	ge splitting of diagnos	tic initialization					
PRM_NR_CONF	IN	O FFH	O 255	1	-			
Additional	Configuration	on Information for the	e action					

ACTION_AIRM_ResetDiagPortMeDnO(IN < PRM_STATE_INI>, IN < PRM_NR_CONF>)								
Action to erase or restart the diagnostics								
Parameter Type Hex.Limits Phys.Limits Resol. Unit								
PRM_STATE_INI	IN	OH 1H	CLR REST	-	-			
Type of initialization	on to manag	ge splitting of diagnos	tic initialization					
PRM_NR_CONF	IN	O FFH	O 255	1	-			
Additional	Configuration	on Information for the	e action					

ACTION_AIRM_ResetDiagPortMeUpO(IN < PRM_STATE_INI>, IN < PRM_NR_CONF>)									
Action to erase or restart the diagnostics									
Parameter	Type	Hex.Limits	Phys.Limits	Resol.	Unit				
PRM_STATE_INI	IN	OH 1H	CLR REST	-	-				
Type of initializat	ion to manag	ge splitting of diagnos	tic initialization						
PRM_NR_CONF	IN	O FFH	O 255	1	-				
Additiona	al Configurati	on Information for the	e action						

► Import actions:

ACTION_ERRM_ResultDiag(IN <PRM_IDX_ERR>, IN <PRM_STATE_DGO>, OUT <PRM_STATE_FIL>)

ACTION_FARM_GetPermission(IN <PRM_FID>, OUT <PRM_LV_PRMS>)

► General Information

Error treatment

Diagnostic Identif	ier	Diagnostic	initialization function		NR_CONF	CARB class	OBD DTC
			tion				
PORT_MEC_DOWN	I_OVER_i	ACTION_AI	RM_ResetDiagPortMeDnC)	1NC_ PORT_NR	CC	
			Port flap overtravel dia	agnosis		•	
Definition of the be	ehavior of the ini	tialization					
ERR-Flag			Reset at ECU Reset	reset at K	ey ON	Latch erro	r on fail
			YES	YES		NO	
ABC	ABC-class	5	MAX-INC after	No Reset	at NEWDC	Init on Cor	ndition Loss
			Failure				
	ABC		NO	NO		NO	
Description of the	implementation						
	prestore	FRF	RBM				
	NO		NO				
Diagnostic Identif	ier	Diagnostic	initialization function		NR_CONF	CARB class	OBD DTO
			Diagnostic descrip				
PORT_MEC_UP_OV	′ER_i	ACTION_AI	RM_ResetDiagPortMeUpC		1NC_ PORT_NR	CC	
			Port flap overtravel dia	agnosis			
Definition of the be	ehavior of the ini	tialization					
ERR-Flag			Reset at ECU Reset	reset at K	ey ON	Latch error on fail	
			YES	YES		NO	
ABC	ABC-class MAX-INC after No Reset at NEWDC Failure		at NEWDC	Init on Condition L			
			Failure				
	ABC		NO	NO		NO	
Description of the			1				
	prestore	FRF	RBM	_			
	NO	1	NO		1	1	T
Diagnostic Identif	ier	-	initialization function		NR_CONF	CARB class	OBD DTC
PORT_FB_EL_H_i		UNUSED			UNUSED	CC	
Definition of the be	ehavior of the ini	tialization					
ERR-Flag	chavior of the im	tidiization	Reset at ECU Reset	reset at K	ev ON	Latch erro	r on fail
Erriting			YES	YES		NO	TOTTU
ABC	ABC-class	5	MAX-INC after		at NEWDC		ndition Loss
			Failure				
D	NO-FIL		NO	NO		NO	
Description of the	<u> </u>		DDM				
	prestore NO	T K F	RBM NO	_			
Diagnostic Identif		Diagnostic	initialization function		NR_CONF	CARB class	OBD DTO
PORT_FB_EL_L_i	ICI	UNUSED	. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		UNUSED	CARB Class	OBDIDIC
I ONI_FD_EL_L		UNUSED			UNUSED		
	ehavior of the ini	tialization					
Definition of the be	ī		Reset at ECU Reset	reset at K	ey ON	Latch erro	r on fail
Definition of the be							
ERR-Flag			YES	YES		NO	
	ABC-class	5			at NEWDC		ndition Loss

Description of the imple	ementation							
	prestore F	RF	RBM					
	NO		NO					
Diagnostic Identifier		Diagnostic ini	itialization function		NR_CONF	CARB class	OBD DTC	
PORT_AD_i		UNUSED			UNUSED	CC		
Definition of the behavi	or of the init	ialization						
ERR-Flag			Reset at ECU Reset	reset at Key	y ON	Latch error	on fail	
			YES	YES		NO		
ABC	ABC-class		MAX-INC after	No Reset at	t NEWDC	Init on Cond	dition Loss	
			Failure					
	NO-FIL		NO	NO		NO		
Description of the imple	ementation		_					
	prestore F	RF	RBM					
	NO		NO					
Diagnostic Identifier		Diagnostic ini	itialization function		NR_CONF	CARB class	OBD DTC	
PORT_MEC_DOWN_i	_MEC_DOWN_i ACTION_AIRN		l_ResetDiagPortMecDn		1NC_ PORT_NR	CC		
Definition of the behavi	or of the init	ialization						
ERR-Flag			Reset at ECU Reset	reset at Key ON		Latch error	on fail	
			YES	YES		NO		
ABC	ABC-class		MAX-INC after Failure	No Reset at NEWDC		Init on Cond	dition Loss	
	ABC		NO	NO		NO		
Description of the imple	ementation							
	prestore F	RF	RBM					
	NO		NO					
Diagnostic Identifier		Diagnostic ini	itialization function		NR_CONF	CARB class	OBD DTC	
PORT_MEC_UP_i		ACTION_AIRM	1_ResetDiagPortMecUp		1NC_ PORT_NR	CC		
Definition of the behavi	or of the init	ialization						
ERR-Flag			Reset at ECU Reset	reset at Key	y ON	Latch error	on fail	
			YES	YES		NO		
ABC	ABC-class	·		No Reset at NEWDC		Init on Cond	Init on Condition Loss	
	ABC		NO	NO		NO		
Description of the imple	ementation					-		
	prestore F	RF	RBM					
	NO		NO	î		I		

General information

This functionality serves several diagnosis for an on/off Port-flap with a feed-back potentiometer and adaptation.

For diagnosis the adaptation, the switching time and the electrical value of the feed back potentiometer can be used.

For Systems with two Port flaps (NC_PORT_NR = 2) "[i]" stands for Port flap No. 1 or 2, whereas "[i]" is always "[i]" for NC_PORT_NR = 1.

► Application Conditions

Initialisation: RST, IGKON

Activation: always

Deactivation: never

Recurrence: 40MS

► Function Description

Figure 2.5.1:

2.5.1 Initialization

2.5.1.1 Initialization at RST

Figure 2.5.2:

2.5.1.2 Initialization at IGKON

Figure 2.5.3:

2.5.2 Operation mode (OPM)

Figure 2.5.4:

2.5.2.1 For iterator subsystem

Figure 2.5.5:

2.5.2.1.1 AIRM diagnosis

Figure 2.5.6:

2.5.2.1.1.1 Diagnosis of port-flap adaptation

The diagnosis of adaptation (see chapter "adaptation of an port flap with closed default position").

Figure 2.5.7:

2.5.2.1.1.2 Electrical diagnosis of port-flap feed-back

The feed-back value of the potentiometer can be observed if it is within sense full electrical range.

Figure 2.5.8:

2.5.2.1.1.2.1 Short cut to battery

Figure 2.5.9:

2.5.2.1.1.2.2 Short cut to ground or open loop

Figure 2.5.10:

2.5.2.1.1.3 Port flap stuck check

Usually the port flap switches from open to closed and reverse in a very short time. If the pneumatic system is not o.k. or the port-flap has too much friction or even stuck, the switching time becomes too long or the port does not switch at all. This leads to a failure entry with symptom "mechanical failure", "upper stop not reached" or "lower stop not reached".

Figure 2.5.11:

2.5.2.1.1.3.1 Mechanical failure - Upper stop not reached

Figure 2.5.12:

2.5.2.1.1.3.1.1 CHK_MEC_UP

Figure 2.5.13:

2.5.2.1.1.3.1.1.1 Condition active and not yet de-bounced

Figure 2.5.14:

2.5.2.1.1.3.1.1.1 SET T_PORT_DIAG_MEC_DOWN

Figure 2.5.15:

2.5.2.1.1.3.1.1.2 Calculate T_PORT_DIAG_MEC_UP

Figure 2.5.16:

2.5.2.1.1.3.2 Mechanical failure - Lower stop not reached

Figure 2.5.17:

2.5.2.1.1.3.2.1 CHK_MEC_DOWN

Figure 2.5.18:

2.5.2.1.1.3.2.1.1 Condition active and not yet de-bounced

Figure 2.5.19:

2.5.2.1.1.3.2.1.1.1 Set T_PORT_DIAG_MEC_UP

Figure 2.5.20:

2.5.2.1.1.3.2.1.1.2 Calculate T_PORT_DIAG_MEC_DOWN

Figure 2.5.21:

2.5.2.1.1.4 Port flap over-travel diagnosis

Figure 2.5.22:

2.5.2.1.1.4.1 Over-travel check lower stop

Figure 2.5.23:

2.5.2.1.1.4.1.1 Condition active and not yet de-bounced

Figure 2.5.24:

2.5.2.1.1.4.1.1.1 Diagnostic status: condition valid with or without symptom

Figure 2.5.25:

2.5.2.1.1.4.1.2 Invalid condition

Figure 2.5.26:

2.5.2.1.1.4.2 Over-travel check upper stop

Figure 2.5.27:

2.5.2.1.1.4.2.1 Valid condition

Figure 2.5.28:

2.5.2.1.1.4.2.1.1 Diagnostic status: condition valid with or without symptom

Figure 2.5.29:

2.5.2.1.1.4.2.2 Invalid condition

Figure 2.5.30:

2.5.3 CLR_RST

Figure 2.5.31:

2.5.3.1 ACTION_AIRM_ResetDiagPortMecDn

Figure 2.5.32:

2.5.3.1.1 PortMecDown diagnosis information in case of failure memory clear (CLR) or new driving cycle (RST)

Figure 2.5.33:

2.5.3.1.1.1 RST

Figure 2.5.34:

2.5.3.1.1.2 CLR

Figure 2.5.35:

2.5.3.2 ACTION_AIRM_ResetDiagPortMecUp

Figure 2.5.36:

2.5.3.2.1 PortMecUp diagnosis information in case of failure memory clear (CLR) or new driving cycle (RST)

Figure 2.5.37:

2.5.3.2.1.1 RST

Figure 2.5.38:

2.5.3.2.1.2 CLR

Figure 2.5.39:

2.5.3.3 ACTION_AIRM_ResetDiagPortMeDnO

Figure 2.5.40:

2.5.3.3.1 PortMecDownOver diagnosis information in case of failure memory clear (CLR) or new driving cycle (RST)

Figure 2.5.41:

2.5.3.3.1.1 RST

Figure 2.5.42:

2.5.3.3.1.2 CLR

Figure 2.5.43:

2.5.3.4 ACTION_AIRM_ResetDiagPortMeUpO

Figure 2.5.44:

2.5.3.4.1 PortMecUpOver diagnosis information in case of failure memory clear (CLR) or new driving cycle (RST)

Figure 2.5.45:

2.5.3.4.1.1 RST

Figure 2.5.46:

2.5.3.4.1.2 CLR

Figure 2.5.47:

2.6 Port flap power stage diagnosis

► Input Data

LV_INH_DIAG_PORT_OC	LV_INH_DIAG_PORT_SCG	LV_INH_DIAG_PORT_SCP
{p. 1130}	{p. 1130}	{p. 1130}

► Configuration Data

Name	Mode	Coded Limits	Display Limits	Resolution	Unit	
NC_IDX_ERR_PORT_OC	-	O FFFFH	O 65535	1	-	
Failure i	ndex for diag	gnostic instance POR	T_OC			
NC_IDX_ERR_PORT_SCG	-	O FFFFH	0 65535	1	-	
Failure ir	ndex for diag	nostic instance PORT	r_scg			
NC_IDX_ERR_PORT_SCP	-	O FFFFH	0 65535	1	-	
Failure index for diagnostic instance PORT_SCP						

▶ Action Definitions

ACTION_AIRM_ResetDiagPortOc(OUT <prm_state_ini>, OUT <prm_nr_conf>)</prm_nr_conf></prm_state_ini>					Mode: O	
Action to erase or restart the diagnostics						
Parameter Type Hex.Limits Phys.Limits Resol.						
PRM_STATE_INI	out	OH 1H	CLR REST	-	-	
Type of initialization (Clear: CLR; restart: REST)						
PRM_NR_CONF	out	O FFH	O 255	1	-	
Additiona	l configuration	on information for the	e action			

ACTION_AIRM_ResetDiagPortScg(OUT < PRM_STATE_INI >, OUT < PRM_NR_CONF >)					Mode: O	
Action to erase or restart the diagnostics						
Parameter Type Hex.Limits Phys.Limits Resol.						
PRM_STATE_INI	out	OH 1H	CLR REST	-	-	
Type of initialization (Clear: CLR; restart: REST)						
PRM_NR_CONF	out	O FFH	0 255	1	-	
Additiona	l configuration	on information for the	action			

ACTION_AIRM_ResetDiagPortScp(OUT <prm_state_ini>, OUT <prm_nr_conf>)</prm_nr_conf></prm_state_ini>					Mode: O	
Action to erase or restart the diagnostics						
Parameter Type Hex.Limits Phys.Limits Resol.						
PRM_STATE_INI	out	OH 1H	CLR REST	-	-	
Type of initialization (Clear: CLR; restart: REST)						
PRM_NR_CONF	out	O FFH	0 255	1	-	
Additional	configuration	on information for the	action			

► Import actions:

 $\textbf{ACTION_ERRM_ResultDiag}(\textbf{IN} < \texttt{PRM_IDX_ERR} >, \textbf{IN} < \texttt{PRM_STATE_DGO} >, \textbf{OUT} < \texttt{PRM_STATE_FIL} >)$

ACTION_FARM_GetPermission(IN <PRM_FID>, OUT <PRM_LV_PRMS>)

ACTION_INFR_GetDiagPortEI(OUT < PRM_ERR_DIAG>, OUT < PRM_CDN_DIAG>)

Error treatment

Diagnostic Identifier	Diagnostic initialization function	NR_CONF	CARB class	OBD DTC
PORT_SCP	ACTION_Air motion_ResetDiagPortScp	UNUSED	CC	

Diagnostic Identifier	Diagnostic initialization function	NR_CONF	CARB class	OBD DTC
PORT_SCG	ACTION_Air motion_ResetDiagPortScg	UNUSED	CC	

Diagnostic Identifier	Diagnostic initialization function	NR_CONF	CARB class	OBD DTC
PORT_OC	ACTION_Air motion_ResetDiagPortOc	UNUSED	CC	

▶ General Information

The on/off Port-flap pneumatic valve is driven by the ECU. The failure detection is done by ECU Hardware.

► Application Conditions

Activation: always

Deactivation: never

Recurrence: 100 ms

► Function Description

```
ERR_DIAG_PORT_EL = ACTION_INFR_GetDiagPortEl(OUT <PRM_ERR_DIAG>)
CDN_DIAG_PORT_EL = ACTION_INFR_GetDiagPortEl(OUT <PRM_CDN_DIAG>)
```

```
Short cut to plus detection of port flap power stage
if    LV_INH_DIAG_PORT_SCP == 0
```

if LV_INH_DIAG_PORT_SCP == 0
then

endif

ACTION_ERRM_ResultDiag(IN <NC_IDX_ERR_PORT_SCP>, IN <LF_STATE_DGO_PORT_SCP>, OUT <STATE_FIL>)

Short cut to ground detection of port flap power stage


```
if
      LV_INH_DIAG_PORT_SCG == 0
then
      if CDN_DIAG_PORT_EL.bit1 == 0
      LF_STATE_DGO_PORT_SCG = 0 (NO_CDN)
      elseif CDN DIAG PORT EL.bit1 == 1 and ERR DIAG PORT EL.bit1 == 1
            then LF_STATE_DGO_PORT_SCG = 3 (CDN + SYM)
            else LF_STATE_DGO_PORT_SCG = 1 (CDN + NO_SYM)
      endif
endif
ACTION_ERRM_ResultDiag(IN <NC_IDX_ERR_PORT_SCG>, IN <LF_STATE_DGO_PORT_SCG>, OUT
<STATE_FIL>)
Open load to plus detection of port flap power stage
if
      LV INH DIAG PORT OC == 0
then
      if CDN DIAG PORT EL.bit2 == 0
      LF_STATE_DGO_PORT_OC = 0 (NO_CDN)
                                              ERR_DIAG_PORT_EL.bit2 == 1
      elseif CDN_DIAG_PORT_EL.bit2 == 1
                                          and
            then LF_STATE_DGO_PORT_OC = 3 (CDN + SYM)
            else LF_STATE_DGO_PORT_OC = 1 (CDN + NO_SYM)
      endif
endif
ACTION_ERRM_ResultDiag(IN <NC_IDX_ERR_PORT_OC>, IN <LF_STATE_DGO_PORT_OC>, OUT
<STATE FIL>)
```

2.6.1 ACTION_AIRM_ResetDiagPortScp

Formula section:

2.6.2 ACTION AIRM ResetDiagPortScg

Formula section:

2.6.3 ACTION_AIRM_ResetDiagPortOc

Formula section:

2.7 Port flap power stage diagnosis (Appl. Inc.)

▶ Data Definition

Name	Mode	Coded Limits	Display Limits	Resolution	Unit	
LV_INH_DIAG_PORT_OC	0	O 1H	O1	1	-	
Inhibition cond	ition for open loa	ad detection of power	r stage diagnosis			
LV_INH_DIAG_PORT_SCG	0	O 1H	O1	1	-	
Inhibition condition	for short cut to g	ground detection of p	ower stage diagnosis			
LV_INH_DIAG_PORT_SCP	0	O 1H	O1	1	-	
Inhibition condition for short cut to plus detection of power stage diagnosis						

► Input Data

LV_CDN_VB_OBD1 {p. 24053}	LV_ES {p. 7530}	LV_IGK {p. 24082}	LV_PWR_RLY [NC_NR_PWR_RLY]
			{p. 24148}
LV_VAR_PORT {p. 24740}	NC_IDX_ENG_RLY {p. 23204}		

► Configuration Data

Name	Mode	Coded Limits	Display Limits	Resolution	Unit
NC_FID_ERR_PORT_OC	÷	O FFFFH	0 65535	1	-
	FARM Ident	cifier for PORT_OC			
NC_FID_ERR_PORT_SCG	÷	O FFFFH	0 65535	1	-
	Failure inde	ex for PORT_SCG			
NC_FID_ERR_PORT_SCP	-	O FFFFH	0 65535	1	-
	Failure inde	ex for PORT_SCP			

► Import actions:

ACTION_FARM_GetPermission(IN <PRM_FID>, OUT <PRM_LV_PRMS>)

► General Information

The diagnosis is inhibited if no port flaps is available, project specific conditions are not fulfilled or there is no permission to run the diagnostics (usually due to other errors).

Application Conditions

Initialisation: with LV_IGK = $0 \rightarrow 1$ and with reset and

with reset of failure memory
LV_INH_DIAG_PORT_SCP = 0
LV_INH_DIAG_PORT_SCG = 0
LV_INH_DIAG_PORT_OC = 0

endif

Activation: always

Deactivation: never

Recurrence: 100ms

► Function Description

```
if
      LV_IGK
                                  and
                                  and
      LV_VAR_PORT
                                  and
      LV_ES
      LV_CDN_VB_OBD1
                          1
                                  and
      (LV_PWR_RLY[0]
                       ==1 or
      #if NC_IDX_ENG_RLY ==2
      LV_PWR_RLY[1]
      #endif)
then
      if ACTION_FARM_GetPermission(NC_FID_ERR_PORT_SCP) == 1
            then LV_INH_DIAG_PORT_SCP
                                         = 0
                 LV_INH_DIAG_PORT_SCP
            else
      endif
      if ACTION_FARM_GetPermission(NC_FID_ERR_PORT_SCG) == 1
            then LV_INH_DIAG_PORT_SCG
            else LV_INH_DIAG_PORT_SCG
      endif
      if ACTION_FARM_GetPermission(NC_FID_ERR_PORT_OC)
            then LV_INH_DIAG_PORT_OC
            else LV_INH_DIAG_PORT_OC
      endif
else
      LV_INH_DIAG_PORT_SCP
      LV_INH_DIAG_PORT_SCG
                             = 1
```


LV_INH_DIAG_PORT_OC