Lagrangian density

$$\gamma \, \mathcal{B}_{\alpha} \, \mathcal{B}^{\alpha} + \mathcal{B}^{\alpha} \, \mathcal{J}_{\alpha} + \beta \, \partial_{\alpha} \mathcal{B}^{\alpha} \, \partial_{\beta} \mathcal{B}^{\beta} + \alpha \, \partial_{\beta} \mathcal{B}_{\alpha} \, \partial^{\beta} \mathcal{B}^{\alpha}$$

(No source constraints)

$$\mathcal{J}_{0^{+}}^{\#1} + \frac{1}{\gamma + (\alpha + \beta) k^{2}}$$

$$\mathcal{B}_{1}^{\#1}_{\alpha}$$

$$\mathcal{B}_{1}^{\#1} \dagger^{\alpha} \gamma + \alpha k^{2}$$

$$\mathcal{J}_{1}^{\sharp 1}{}_{\alpha}$$

$$\mathcal{J}_{1}^{\sharp 1} + \alpha \boxed{\frac{1}{\gamma + \alpha k^{2}}}$$

nitarity conditions

Jnitarity is demonstrably impossible

		e mass:	ations:	sidue:	e particle
Even	0	$-\frac{\gamma}{\alpha+\beta} > 0$	1	$\frac{1}{\alpha+\beta} > 0$	le

(No massless particles)