MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 - MARCH 2012 SOLUTION KEY

Team Round A) - continued

The strategy will be to:

Use elementary row operations on the matrix of coefficients $\begin{bmatrix} 1 & 7 & 5 \\ 2 & 9 & 4 \\ 6 & A & 3 \end{bmatrix}$ and convert it to a triangular

matrix where all the entries below the main diagonal are zero.

This square matrix will take on the form $\begin{bmatrix} 1 & 7 & 5 \\ 0 & a & b \\ 0 & 0 & c \end{bmatrix}$. In fact, we will tack on the constants from the

right side of the equation before we start the triangularization process and get a matrix of coefficients

for an **equivalent** system of equations, namely $\begin{bmatrix} 1 & 7 & 5 & n_1 \\ 0 & a & b & n_2 \\ 0 & 0 & c & n_3 \end{bmatrix} \Rightarrow \begin{cases} x + 7y + 5z = n_1 \\ ay + bz = n_2 \\ cz = n_3 \end{cases}$ which is easily

solved by **backtracking**. Substitute $z = \frac{n_3}{c}$ into the 2^{nd} equation to get y. Substitute both of these values into the 1^{st} equation to get x. This is a systematic process which is relatively easy to adapt to a computer algorithm and let the computer do the number crunching.

Details are in the addendum at the end of the solution key.

$$a^{4x} + a^{-4x} = (a^{2x} + a^{-2x})^2 - 2 = K^2 - 2$$

Thus, $J = \sqrt{K+2} + (K^2-2)$. Consequently, (k+2) must be a perfect square.

Examining K = 2, 7, 14, 23, ..., we get $(2^2 + 0), (7^2 + 1), (14^2 + 2), (23^2 + 3)...$. Continuing $34^2 + 4 < 2012$, but $47^2 + 5 = (50 - 3)^2 + 5 = 2500 - 300 + 9 + 5 = 2214 > 2012$. Thus, (K, J) = (47, 2214).