

www.vishay.com

Vishay Beyschlag

Professional Wide Terminal Thin Film Chip Resistors

MCW AT Professional Wide Terminal Resistors are the perfect choice for most fields of modern professional power measurement electronics where reliability, stability, power dissipation, and robust design is of major concern.

Besides extremely high power ratings, the MCW AT is characterized by extraordinary temperature cycling robustness, verified through extensive testing. Typical applications include power electronics in automotive and industrial appliances.

FEATURES

- Rated dissipation P₈₅ up to 1 W
- Superior temperature cycling robustness

Operating temperature up to 175 °C for 1000 h

- AEC-Q200 qualified
- Advanced sulfur resistance verified according to ASTM B 809
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

- Automotive
- Industrial
- · High power and high temperature applications
- Replacement for larger case sizes

TECHNICAL SPECIFICATIONS		
DESCRIPTION	MCW 0406 AT	MCW 0612 AT
Imperial size	0406	0612
Metric size code	RR1016M	RR1632M
Resistance range	1 Ω to 100 k Ω	1 Ω to 100 kΩ
Resistance tolerance	± 0.5 %; ± 1 %	± 0.5 %; ± 1 %
Temperature coefficient	± 25 ppm/K; ± 50 ppm/K	± 25 ppm/K; ± 50 ppm/K
Rated dissipation P ₈₅ ⁽¹⁾	0.3 W	1.0 W
Operating voltage, U _{max.} AC _{RMS} /DC	50 V	75 V
Permissible film temperature, $g_{\text{F max.}}^{(1)}$	175 °C	175 °C
Operating temperature range (1)	-55 °C to 175 °C	-55 °C to 175 °C
Permissible voltage against ambient (insulation):		
1 min; <i>U</i> _{ins}	75 V	100 V
Failure rate: FIT _{observed}	≤ 0.1 x	: 10 ⁻⁹ /h

Note

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

⁽¹⁾ Please refer to APPLICATION INFORMATION, see below

www.vishay.com

Vishay Beyschlag

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION						
OPERATION MODE	OPERATION MODE		POWER	ADVANCED TEMPERATURE		
		P ₇₀	P ₇₀	P ₈₅		
Rated dissipation	MCW 0406 AT	0.2 W	0.25 W	0.3 W		
	MCW 0612 AT	0.5 W 0.75 W		1.0 W		
Operating temperature ra	Operating temperature range		-55 °C to 155 °C	-55 °C to 175 °C		
Permissible film temperat	ure, g_{Fmax} .	125 °C	155 °C	175 °C		
	MCW 0406 AT	1 Ω to 100 kΩ	1 Ω to 100 kΩ	1 Ω to 100 kΩ		
Max. resistance change	MCW 0612 AT	1 Ω to 100 kΩ	1 Ω to 100 kΩ	1 Ω to 100 kΩ		
at rated dissipation for resistance range, $ \Delta R/R $, after:	1000 h	≤ 0.1 %	≤ 0.2 %	≤ 0.4 %		
	8000 h	≤ 0.2 %	≤ 0.4 %	-		
	225 000 h	≤ 0.6 %	-	-		

Note

The presented operation modes do not refer to different types of resistors, but actually show examples of different loads, that lead to
different film temperatures and different achievable load-life stability (drift) of the resistance value. A suitable low thermal resistance of the
circuit board assembly must be safeguarded in order to maintain the film temperature of the resistors within the specified limits. Please
consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for
information on the general nature of thermal resistance

The resistance value is influenced by the resistance of the terminations. The exact resistance value of the soldered part on the PCB may deviate depending on e.g. solder quantity, pad layout, and soldering method. The resistance value of the unmounted part can be verified for resistors < 10 Ω by a 4-point probe on the top side terminations as shown below.

DIMENSIONS FOR 4-POINT PROBE					
TYPE / SIZE	X (μm) Y (μm)				
MCW 0406 AT	870	600			
MCW 0612 AT	1300	1240			

Vishay Beyschlag

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE							
TYPE / SIZE	TCR	TOLERANCE	RESISTANCE	E-SERIES			
MCW 0406 AT	± 50 ppm/K	± 1 %	1 O to 100 kO	E24; E96			
WICW 0400 AT	± 25 ppm/K	± 0.5 %	- 1 Ω to 100 kΩ	E24; E192			
MCW 0612 AT	± 50 ppm/K	± 1 %	1 Ω to 100 kΩ	E24; E96			
IVICVV UU IZ AT	± 25 ppm/K	± 0.5 %	1 22 to 100 K22	E24; E192			

PACKAGING							
TYPE / SIZE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	PITCH	PACKAGING DIMENSIONS	
MCW 0406 AT	P5	5000	Tape and reel cardboard			Ø 180 mm / 7"	
WICW 0406 AT	PW	20 000 tape acc. IEC 60286-3, 8 mm		4 mm	Ø 330 mm / 13"		
MCW 0612 AT	P5	5000	Type 1a			Ø 180 mm / 7"	

Note

Products can be ordered using either the PART NUMBER or PRODUCT DESCRIPTION

www.vishay.com

Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set instructions established for reproducibility. A homogeneous film of special metal alloy is deposited on a high grade ceramic substrate (Al₂O₃) and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly cutting a meander groove in the resistive layer without damaging the ceramics. The resistor elements are covered by a unique protective coating designed for electrical. mechanical and climatic protection. The terminations receive a final pure matte tin on nickel plating.

The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. This includes full screening for the elimination of products with potential risk of early field failures (feasible for $R \ge 10 \Omega$). Only accepted products are laid directly into the paper tape in accordance with IEC 60286-3 Type 1a (1).

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using reflow or vapor phase as shown in IEC 61760-1 (1).

The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

The resistors are RoHS compliant; the pure matte tin plating provides compatibility with lead (Pb)-free lead-containing soldering processes. Solderability is specified for 2 years after production or regualification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein (2)
- The Global Automotive Declarable Substance List (GADSL) (3)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) (4) for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishav.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc?49037.

APPROVALS

Where applicable the resistors are tested within the IECQ-CECC Quality Assessment System for Electronic Components to the detail specification EN 140401-801 which refers to EN 60115-1, EN 60115-8 and the variety of environmental test procedures of the IEC 60068 (1) series. The detail specification refers to the climatic categories 55/125/56, which relates to the "standard operation mode" of this datasheet. The MCW AT Professional is AEC-Q200 qualified.

Vishav Beyschlag "Approval has achieved Manufacturer" in accordance with IECQ 03-1. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IECQ 03-3-1 is granted for the Vishay BEYSCHLAG manufacturing process.

RELATED PRODUCTS

For an alternative range of TCR and tolerance see the datasheet:

Precision Wide Terminal Thin Film Chip Resistors (www.vishav.com/doc?28847)

Notes

- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents
- (2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474
- The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org
- (4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table

www.vishay.com

Vishay Beyschlag

FUNCTIONAL PERFORMANCE

Derating - Standard Mode

Derating - Power Mode

Derating - Advanced Temperature Mode

For the permissible resistance change in each operation mode please refer to table MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION, above

www.vishay.com

Vishay Beyschlag

Single Pulse

Maximum pulse load, single pulse; applicable if $\bar{P} \to 0$ and n \leq 1000 and $\hat{U} \leq \hat{U}_{\text{max}}$; for permissible resistance change \pm (0.25 % R + 0.05 Ω)

Continuous Pulse

Maximum pulse load, continuous pulses; applicable if $\bar{P} \leq P\left(\vartheta_{\rm amb}\right)$ and $\hat{U} \leq \hat{U}_{\rm max}$; for permissible resistance change $\pm \left(0.25~\%~R + 0.05~\Omega\right)$

Pulse Voltage

Maximum pulse voltage, single and continuous pulses; applicable if $\hat{P} \leq \hat{P}_{\text{max}}$; for permissible resistance change \pm (0.25 % R + 0.05 Ω)

Vishay Beyschlag

TESTS AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8 (successor of EN 140400), sectional specification

EN 140401-801, detail specification

IEC 60068-2-xx, test methods

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-801. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included.

The testing also covers most of the requirements specified by EIA/ECA-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).

The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified.

EN 60115-1 CLAUSE	IEC 60068-2 (1) TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (△R)
			Stability for product types:	
			MCW 0406 AT	1 Ω to 100 k Ω
			MCW 0612 AT	1 Ω to 100 k Ω
4.5	-	Resistance		± 1 % R; ± 0.5 % R
4.8	-	Temperature coefficient	At (20 / -55 / 20) °C and (20 / 155 / 20) °C	± 50 ppm/K; ± 25 ppm/K
4.25.1 -	Endurance at 70 °C: standard operation mode		$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off; 70 °C; 1000 h 70 °C; 8000 h	± (0.1 % R + 0.05 Ω) ± (0.2 % R + 0.05 Ω)
	Endurance at 70 °C: power operation mode	$U = \sqrt{P_{70}} \times R$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off; 70 °C; 1000 h 70 °C; 8000 h	± (0.2 % R + 0.05 Ω) ± (0.4 % R + 0.05 Ω)	
		Endurance at 85 °C: advanced temperature operation mode	$U = \sqrt{P_{85} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; 1.5 h on; 0.5 h off; 85 °C; 1000 h	± (0.4 % R + 0.05 Ω)
		Endurance at	125 °C; 1000 h	$\pm (0.15 \% R + 0.02 \Omega)$
4.25.3	-	upper category temperature	155 °C; 1000 h	$\pm (0.3 \% R + 0.05 \Omega)$
		3 7 7 17 27 2	175 °C; 1000 h	$\pm (0.5 \% R + 0.05 \Omega)$
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	$\pm (0.1 \% R + 0.05 \Omega)$
4.37	67 (Cy)	Damp heat, steady state, accelerated: standard operation mode	(85 ± 2) °C (85 ± 5) % RH $U = \sqrt{0.1 \times P_{70} \times R}$; $U \le 0.3 \times U_{\text{max}}$; 1000 h	± (0.5 % R + 0.05 Ω)

Vishay Beyschlag

EN 60115-1	IEC 60068-2 ⁽¹⁾ TEST	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE	
CLAUSE	METHOD	1201	THOOLDONE	(∆R)	
			Stability for product types:		
			MCW 0406 AT	1 Ω to 100 kΩ	
			MCW 0612 AT	1 Ω to 100 kΩ	
4.23		Climatic sequence: standard operation mode:			
4.23.2	2 (Bb)	dry heat	155 °C; 16 h		
4.23.3	30 (Db)	damp heat, cyclic	55 °C; 24 h; ≥ 90 % RH; 1 cycle		
4.23.4	1 (Ab)	cold	-55 °C; 2 h	$\pm (0.5 \% R + 0.05 \Omega)$	
4.23.5	13 (M)	low air pressure	8.5 kPa; 2 h; (25 ± 10) °C		
4.23.6	30 (Db)	damp heat, cyclic	55 °C; 24 h; > 90 % RH; 5 cycles		
4.23.7	-	DC load	$U = \sqrt{P_{70} \times R} \le U_{\text{max.}}$; 1 min		
-	1 (Ab)	Storage at low temperature	-55 °C; 2 h	± (0.1 % R + 0.01 Ω)	
		Rapid change of temperature	30 min at -55 °C and 30 min at 155 °C; 1000 cycles	± (0.25 % R + 0.05 Ω)	
4.19	14 (Na)	Extended rapid change of temperature	30 min at -40 °C and 30 min at 125 °C ⁽²⁾ ; MCW 0406 AT: 3000 cycles MCW 0612 AT: 1000 cycles	± (0.25 % R + 0.05 Ω) (≥ 50 % of initial shear force	
4.40		Short time overload: standard operation mode	$U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$;	± (0.1 % R + 0.01 Ω)	
4.13		Short time overload: power operation mode	whichever is the less severe; 5 s	± (0.25 % R + 0.05 Ω)	
4.38	-	Electro Static Discharge (Human Body Model)	IEC 61340-3-1 ⁽¹⁾ ; 3 pos. + 3 neg. (equivalent to MIL-STD-833, method 3015) MCW 0406 AT: 500 V MCW 0612 AT: 1000 V	± (0.5 % R + 0.05 Ω)	
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude ≤ 1.5 mm or ≤ 200 m/s²; 7.5 h	\pm (0.1 % R + 0.01 Ω) no visible damage	
			Solder bath method; SnPb40; non-activated flux (215 ± 3) °C; (3 ± 0.3) s	Good tinning (≥ 95 % covered no visible damage	
4.17	58 (Td)	Solderability	Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux; (235 ± 3) °C; (2 ± 0.2) s	Good tinning (≥ 95 % covered no visible damage	
4.18	58 (Td)	Resistance to soldering heat	Solder bath method; (260 \pm 5) °C; (10 \pm 1) s	\pm (0.1 % R + 0.02 Ω) no visible damage	
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol + 50 °C; method 2	No visible damage	
4.32	21 (Ue ₃)	Shear (adhesion)	RR1016M: 9N RR1632M: 45N	No visible damage	
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	± (0.1 % R + 0.01 Ω) no visible damage; no open circuit in bent positio	
4.7	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins}; (60 \pm 5) {\rm s}$	No flashover or breakdown	
4.35	-	Flammability	IEC 60695-11-5 (1) needle flame test; 10 s	No burning after 30 s	

(1) The quoted IEC standards are also released as EN standards with the same number and identical contents (2) Tested on a 4-layer printed circuit board with SAC micro alloy

Vishay Beyschlag

DIMENSIONS

DIMENSION	DIMENSIONS AND MASS						
TYPE / SIZE	H (mm)	L (mm)	W (mm)	W _T (mm)	T _t (mm)	T _b (mm)	MASS (mg)
MCW 0406 AT	0.3 ± 0.05	1.0 ± 0.15	1.5 ± 0.15	> 75 % of W	0.2 + 0.1 / - 0.15	0.2 ± 0.1	1.9
MCW 0612 AT	0.45 ± 0.15	1.6 ± 0.15	3.1 ± 0.15	> 75 % of W	0.25 ± 0.15	0.3 ± 0.15	9.0

SOLDER PAD DIMENSIONS

RECOMMENDED SOLDER PAD DIMENSIONS						
	REFLOW SOLDERING					
TYPE / SIZE	G (mm)	Y (mm)	X (mm)	Z (mm)		
MCW 0406 AT	0.35	0.55	1.75	1.45		
MCW 0612 AT	0.75	0.7	3.3	2.15		

Notes

- The given solder pad dimensions reflect the considerations for board design and assembly as outlined e. g. in standards IEC 61188-5-x (1), or in publication IPC-7351
- (1) The quoted IEC standards are also released as EN standards with the same number and identical contents

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.