

Advanced Diamond Technology

The CVD diamond booklet

available at: www.diamond-materials.com/download

Advanced Diamond Technology

Content

1.	General properties of diamond	3
2.	Optical Properties	5 8 9 10
3.	Thermal Properties Thermal conductivity Thermal conductivity vs. T Specific heat vs. T Thermal expansion Thermal specifications of Diamond Materials	14 15 16
4.	Mechanical Properties Vickers-Hardness Mechanical specifications of <i>Diamond Materials</i>	19
5.	Examples of CVD diamond applications	21
6.	Useful formula	24
	Bowing of a circular disk under pressure Thickness requirements	
Co	ntact Diamond Materials	25

Page 1

Advanced Diamond Technology

Page 2

Advanced Diamond Technology

CVD Diamond wafers prepared by Microwave Plasma CVD: boron doped disk (blue), optical grade diamond, mechanical grade, unpolished disk

Advanced Diamond Technology

1. General properties of diamond

The most important properties of CVD diamond are the

- unsurpassed hardness
- extremely high thermal conductivity (>1800 W/mK, five times that of copper)
- broad band optical transparency
- extremely chemically inert:
 Not affected by any acid or other chemicals
- Graphitization only at very high temperatures (T > 700°C in an oxygen containing and 1500°C in an inert atmosphere)

Page 4

Advanced Diamond Technology

Property	Value
Vickers hardness*	10,000 kg/mm ²
Young's modulus*	1050 GPa
Poisson's ratio	0.1
Density	3.515 g/cm ³
Atom density*	1.77×10 ²³ 1/cm ³
Thermal expansion coefficient	1.0×10 ⁻⁶ /K @300K
Sound velocity*	17,500 m/s
Friction coefficient	0.1
Specific heat @ 20°C	0.502 J/gK
Debye temperature*	1860±10K
Bandgap	5.45 eV
Resistivity	10 ¹³ - 10 ¹⁶ □cm

^{*}highest value of all solid materials

Advanced Diamond Technology

2. Optical Properties

Optical transparency

Optical transparency of CVD diamond In the UV, Visible, IR and far IR

The spectrum has not been corrected for reflection losses

Absorption coefficient at 10.6 µm

Absorption coefficient of CVD diamond as measured by laser calorimetry.

Advanced Diamond Technology

Refractive index: n vs. λ

The spectral variation of n is described by the Sellmeier equation:¹

$$n = \sqrt{\frac{0.3306x^2}{x^2 - 175^2 nm^2} + \frac{4.3356x^2}{x^2 - 106^2 nm^2} + 1}$$

where x is the wavelength in nm

-

¹ Peter, F. (1923), Z Phys, 15, pp 358–368

Advanced Diamond Technology

Refractive index: nd vs. T

Variation of *nd* with temperature
—— Patterson et al.²
—— our data
measured at 633 nm wavelength

-

² M.J. Pattersonet et al., Electrochem. Soc. Proc. 95-4, 503 (1995)

Refractive index: Thermal coefficient

Thermal coefficient of the refractive index

- Measured by laser refraction of a diamond prism
- Measured with laser interferometry
- △ Fontanella et al.³

³ J. Fontanella et al., Appl. Opt. **16**, 2949 (1977)

Advanced Diamond Technology

X-ray absorption

X-ray absorption coefficient of various materials. Data from http://www.photcoef.com

Advanced Diamond Technology

THz dielectric properties

data from Peter Uhd Jepsen, University of Freiburg

Page 12

Advanced Diamond Technology

Optical specifications of Diamond Materials

The core competences of *Diamond Materials* include the manufacturing of high purity CVD diamond disks with properties approaching those of perfect natural diamond crystals.

Property	Value
Transmission	225nm to far IR , > 70% @ 10μm
Refractive index	2.38 @ 10µm, 2.41 @ 500nm
Absorption coefficient	≤ 0.10 cm ⁻¹ @ 10µm
Bandgap	5.45 eV
Tensile strength (0.5mm thick)	
Nucleation surface in tension	600 MPa
Growth surface in tension	400 MPa
Loss tangent (tanδ @140 GHz)	< 2.0×10 ⁻⁵
Dielectric constant	5.7

Properties of optical grade CVD-diamond by Diamond Materials

Advanced Diamond Technology

Surface finish, optical coatings and mounting

Property	Value	
Dimensions		
Thickness	10 - 2000 μm	
Diameter	up to 100 mm	
Surface finish		
Shape	flat, spherical (convex & concave)	
Roughness	< 5 nm*	
Flatness	1 fringe/cm*	
Wedge	0 – 1°*	
Antireflection Coatings (visible and infrared)		
Spec. Transmission at 10.6 µm	>98.6 %	
Wavefront distortion		
< 4 fringes at 633 nm over 30 mm*		
Mounting		
Diamond windows mounted e.g. in UHV flanges (bakeable at 250°C, vacuum tight $< 10^{-10}$ mbar l/s)*		

^{*}specifications available upon request

Advanced Diamond Technology

3. Thermal Properties

Thermal conductivity

The thermal conductivity of diamond in comparison to other materials.

Advanced Diamond Technology

Thermal conductivity vs. T

Thermal conductivity of CVD diamond vs. temperature

Advanced Diamond Technology

Specific heat vs. T

Advanced Diamond Technology

Thermal expansion

Thermal expansion vs. temperature

- O High quality CVD diamond
- △ Medium quality CVD diamond
- X Values recommended by Slack⁴

_

⁴ G.A. Slack and S.F. Bartram, J. Appl. Phys. **46**, 89 (1975)

Advanced Diamond Technology

Thermal specifications of Diamond Materials

Optimized CVD-diamond as provided by *Diamond Materials* reaches a thermal conductivity of up to 2000 W/mK e.g. it exceeds that of copper by a factor of five. In contrast to metals, where heat is conducted by electrons, lattice vibrations are responsible for the high thermal conductivity of diamond.

Property	Value
Thermal conductivity	
@300 K	> 1200 W/mK* > 1500 W/mK* > 1800 W/mK*
Thermal expansion coefficient	
@300 K	$1.0 + - 0.1 \times 10^{-6} / K$
@700 K	$4.4 + - 0.1 \times 10^{-6} / K$
Specific heat @ 20°C	0.502 J/gK
Debye temperature	1860±10K

^{*} various thermal grades are available upon request

Advanced Diamond Technology

4. Mechanical Properties

Vickers-Hardness

Page 20

Advanced Diamond Technology

Mechanical specifications of Diamond Materials

CVD diamond manufactured by Diamond Materials exhibits an exceptional wear resistance and a low coefficient of friction. Highly demanding applications such as cutting tools, surgical knives and wear resistant components have been demonstrated.

Property	Value
Vickers hardness	10,000 kg/mm ²
Young's modulus	1050 GPa
Poisson's ratio	0.1
Thermal expansion coefficient	1.0×10 ⁻⁶ /K @300K
Tensile strength (0.5mm thick)	
Nucleation surface in tension	1100 MPa
Growth surface in tension	500 MPa
Density	3.515 g/cm ³

5. Examples of CVD diamond applications

CVD diamond window beam splitter for space application

CVD diamond UHV window

Page 22

Advanced Diamond Technology

Ultra-high precision diamond balls

CVD diamond laser windows for high-power CO₂ lasers

Page 23

Advanced Diamond Technology

CVD diamond wafers (80 mm Ø)

High-power X-ray window

Advanced Diamond Technology

6. Useful formula

Bowing of a circular disk under pressure⁵

$$w_{ss} = \Pr^4 \frac{5+\nu}{64S(1+\nu)} \quad w_{cl} = \Pr^4 \frac{1}{64S} \quad S = \frac{El^3}{12(1-\nu^2)}$$

where w = central deflection (ss = simply supported, cl = clamped), E = Young's modulus, L = thickness, P = pressure, v = Poisson ratio, r = radius

Thickness requirements⁶

For flat windows, the minimum thickness as determined by pressureinduced fracture is given by

$$L = 0.554 D \sqrt{\Delta p S_{sf} / \sigma_f}$$

where L = minimum thickness, σ_f = mechanical strength, Δp = pressure difference, D = diameter, S_{sf} = safety factor

Typically mechanical strength values are in the 2000-400 MPa range depending on thickness. As a rule of thumb the minimum thickness is 1.7 % of the free diameter (one bar pressure difference, $S_{sf} = 4$).

⁵ Warren C. Young, "Roark's Formulas for Stress & Strain", McGraw-Hill, New York (1989)

⁶ C.A. Klein, SPIE 1624, 475 (1992)

Page 25

Advanced Diamond Technology

Contact Diamond Materials

Contact persons: Dr. Christoph Wild

Dr. Eckhard Wörner

Internet: www.diamond-materials.com F-mail: contact@diamond-materials.com

Telefon: +49 (0)761 600 6554 Fax: +49 (0)761 600 6553

Address: Diamond Materials GmbH

> Hans-Bunte-Str. 19 79108 Freiburg

Germany

Images © Diamond Materials / Fraunhofer IAF

This booklet may be freely distributed provided that it is unaltered and that no charge is made and this

copyright notice is retained.