Tables

1.1	The span and sample sizes of the National Longitudinal Surveys	page 2
2.1	Least-squares estimates of elasticity of Minnesota farm production	
	function based on alternative assumptions	17
2.2	Characteristics of firms grouped on the basis of the firm constant	17
2.3	Wage equations (dependent variable: log wage)	30
2.4	Covariance tests for homogeneity	47
3.1	Simulation results for the biases of the MLEs for dynamic	
	random-effects models	82
3.2	Various estimates of the parameters of Balestra and Nerlove's	
	demand-for-gas model (3.4.24) from the pooled sample, 1957–1962.	84
3.3	Monte Carlo design	92
3.4	Bias of estimators ($T = 5$ and $N = 50$)	92
3.5	Root mean square error ($T = 5$ and $N = 50$)	93
3.6	GMM with many IVs	93
3.7	Simple IV	94
3.8	Fully fledged MLE	94
3.9	Asymptotic properties of the likelihood based estimator and methods of	
	moment estimator for dynamic models	95
6.1	Average values of β for the fixed-effects probit model	176
6.2	Monte Carlo results for first-order Markov process	188
6.3	Estimates of employment models for women aged 45–59 in 1968	196
6.4	Comparisons of employment models using run data: Women aged 45–59	
	in 1968	199
6.5	Estimates of brand choices using various approaches (standard errors in	
	parentheses)	201
6.6	Maximum-likelihood estimators of dynamic model with random effects	202
6.7	Maximum-likelihood estimators of dynamic model with fixed effects	
	(bandwidth parameter = 8)	203
7.1	Parameter estimates of the earnings-function structural model with and	
	without a correction for attrition	228
7.2	Estimation results for the budget share equations without correction for	
	selection (standard errors in parentheses)	242
7.3	Estimation results for the budget share equations using panel data	
	models taking selection into account (standard errors in parentheses)	243
7.4	Estimates of AR(1) coefficients of log real annual earnings (in thousands)	248

xvi List of Tables

8.1	Total number of active firms, defaults/bankruptcies, and other exits for	
	each year over the sample period 1991–2011	259
10.1	Simulation results for β_1 and β_2 of DGP 1	320
10.2	Simulation results for β_1 and β_2 of DGP 2	321
10.3	Simulation results for ρ and β of DGP 4	322
10.4a	Average number of factors selected during replications for case 1 with	
	three factors	335
10.4b	Percentage of correctly estimating the number of factors for Case 1 with	
	three factors	336
10.5a	Average number of factors selected during replications for case 3 with	
	three factors	337
10.5t	Percentage of correctly estimating the number of factors for Case 3 with	
	three factors	338
11.1	Common correlated effects estimation	359
12.1	AICC selected model using data for the period 1993Q1-2003Q4	374
12.2	Treatment effect for economic integration 2004Q1–2008Q1 based on	
	AICC selected model	375
12.3	AIC selected model using data for the period 1993Q1–2003Q4	376
12.4	AIC – Treatment effect for economic integration 2004Q1–2008Q1 based	
	on AIC selected model	377
12.5	Comparison of the actual and counterfactual cigarette consumption	379
12.6	Comparison of the actual and counterfactual personal healthcare expenditures	381
13.1	Long-haul regression coefficients	412
	Bias of the short-run coefficient $\bar{\gamma}$ short-run coefficients, bias	417
13.3	Individual firm regressions (percentage of firms with significant	
	coefficients)regression coefficients!individual firm regressionsindividual	
	firm regression coefficients	419
13.4	Coefficient heterogeneity: slope estimates at first and third quartiles	
	across a sample of 561 firmscoefficient heterogeneity heterogeneity! coefficients	420
13.5	Variable intercept estimation of models for less- and more	
	capital-intensive firmsvariable intercept model!capital-intensive	
	firmscapital-intensive firms!variable intercept model	420
13.6	Estimation of mixed fixed- and random-coefficient models for less- and	
	more-capital-intensive firmsmixed fixed and random coefficient	
	models!capital-intensive firm estimationscapital-intensive firms!mixed	
	fixed and random coefficient estimation	421
13.7	Prediction Comparison of Fixed-Coefficients and Mixed Fixed and	
	Random-Coefficients Models for Less- and	
	More-Capital-Intensivefixed-coefficient model!prediction comparision,	
	mixed fixed and random-coefficients models Firmsmixed fixed and	
	random coefficient models!fixed-coefficient comparisons,	
	capital-intensive firmsfixed-coefficient models!mixed fixed and random	
	model comparisons, capital-intensive firmscapital-intensive	
	firms!fixed-coefficient vs. mixed fixed and random coefficient	
	comparisons (Recursive Predictive Density)	422
	Estimation results of b_1 and b_2 for (14.3.21)	451
	Estimation results of b_1 and b_2 for (14.3.23)	451
14.3	Estimation of β_x for the effects of 401(k) eligibility on net financial assets	452

	List of Tables	xvii
14.4	Estimation of β_x for the effects of unemployment insurance bonus on	
	unemployment duration	452
14.5	Root-mean-square prediction error of log kilowatt-hours	
	(one-period-ahead forecast)	462
14.6	Root-mean-square prediction error of log kilowatts	
	(one-period-ahead forecast)	462
14.7	Least squares estimation of aggregate money demand function	463
14.8	Random-coefficient estimates of Japan prefecture money demand equation	463
14.9	Error sum of squares (ESS) and predicted error sum of squares (PES) for	
	disaggregate and aggregate data	464