Note that

- 1. $0 \in A$ and $1 \in A$ because they are rational.
- 2. $[0,1]\cap \mathbb{Q}\subset A$ as A contains every rational number in [0,1].

Suppose $\exists x \in [0,1] \notin A$. Then, $x \in A^C$. As A is closed, A^C is open.

Hence, \exists open rectangle $R=(a,b)\subset A^C$. WLOG, assume $0\leq a< b\leq 1$. By the density of \mathbb{Q} , $\exists y\in R\cap \mathbb{Q}\subset [0,1]\cap \mathbb{Q}\subset A$. But also, $y\in R\subset A^C$, which contradicts $y\in A$; hence, there cannot exist $x\in [0,1]\notin A$ so $[0,1]\subset A$.