FCC RADIO TEST REPORT FCC ID:2AEB5M691

Product: Tablet PC

Trade Name: AOC

Model Number: M691

Serial Model: N/A

Report No.: ISOT15031102R1

Prepared for

AOC

8F-3, No. 166, Jian 1st Rd., Zhonghe Dist., New Taipei City 23511, Taiwan

Prepared by

Shenzhen ISOTek Standards Technical Services Co.,Ltd. 13/F, HuaFengRui Building, XinHu Rd., XiXiang, Bao'an District,Shenzhen,China

Tel.: +86-755- 23087378 Fax.: +86-755-23087278 Http://www.ISOTek.com.cn

Page 2 of 65 Report No.: ISOT15031102R1

TEST RESULT CERTIFICATION

Applicant's name: AOC

Address 8F-3, No. 166, Jian 1st Rd., Zhonghe Dist., New Taipei City

23511, Taiwan

Manufacture's Name..... AOC

Address 8F-3, No. 166, Jian 1st Rd., Zhonghe Dist., New Taipei City

23511, Taiwan

Product description

Product name Tablet PC

Model and/or type reference : M691

Serial Model: N/A

Standards FCC Part15.247: 01 Oct. 2014

Test procedure ANSI C63.4-2009

This device described above has been tested by Shenzhen ISOTek, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen ISOTek, this document may be altered or revised by Shenzhen ISOTek, personal only, and shall be noted in the revision of the document.

Date of Test

Date of Issue 14 Mar. 2015

Test Result..... Pass

Compiled by: Approved by:

Lisa Huang/ Project Engineer

Lisa hung

Richard Chen/ Manager

Zichard chan

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	9
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	9
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTEI	D 10
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	11
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3 . EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	13
3.1.2 TEST PROCEDURE 3.1.3 DEVIATION FROM TEST STANDARD	14 14
3.1.4 TEST SETUP	14
3.1.5 EUT OPERATING CONDITIONS	14
3.1.6 TEST RESULTS	15
3.2 RADIATED EMISSION MEASUREMENT	17 17
3.2.1 RADIATED EMISSION LIMITS 3.2.2 TEST PROCEDURE	17 18
3.2.3 DEVIATION FROM TEST STANDARD	18
3.2.4 TEST SETUP	19
3.2.5 EUT OPERATING CONDITIONS	20 21
3.2.6 TEST RESULTS (BELOW 30 MHZ) 3.2.7 TEST RESULTS (BETWEEN 30M - 1000 MHZ)	21 22
3.2.8 TEST RESULTS (ABOVE 1000 MHZ)	24
4 . NUMBER OF HOPPING CHANNEL	25
4.1 APPLIED PROCEDURES / LIMIT	25
4.1.1 TEST PROCEDURE	25
4.1.2 DEVIATION FROM STANDARD 4.1.3 TEST SETUP	25 25
4.1.4 EUT OPERATION CONDITIONS	25 25
4.1.5 TEST RESULTS	26
5 . AVERAGE TIME OF OCCUPANCY	27
5.1 APPLIED PROCEDURES / LIMIT	27

Table of Contents Page 5.1.1 TEST PROCEDURE 27 **5.1.2 DEVIATION FROM STANDARD** 27 **5.1.3 TEST SETUP** 28 **5.1.4 EUT OPERATION CONDITIONS** 28 **5.1.5 TEST RESULTS** 29 6. HOPPING CHANNEL SEPARATION MEASUREMENT 35 **6.1 APPLIED PROCEDURES / LIMIT** 35 6.1.1 TEST PROCEDURE 35 **6.1.2 DEVIATION FROM STANDARD** 35 6.1.3 TEST SETUP 35 **6.1.4 EUT OPERATION CONDITIONS** 35 6.1.5 TEST RESULTS 36 7. BANDWIDTH TEST 42 7.1 APPLIED PROCEDURES / LIMIT 42 7.1.1 TEST PROCEDURE 42 7.1.2 DEVIATION FROM STANDARD 42 7.1.3 TEST SETUP 42 7.1.4 EUT OPERATION CONDITIONS 42 7.1.5 TEST RESULTS 43 8. PEAK OUTPUT POWER TEST 49 **8.1 APPLIED PROCEDURES / LIMIT** 49 **8.1.1 TEST PROCEDURE** 49 **8.1.2 DEVIATION FROM STANDARD** 49 8.1.3 TEST SETUP 49 8.1.4 EUT OPERATION CONDITIONS 49 8.1.5 TEST RESULTS 50 9.100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE 56 9.1 DEVIATION FROM STANDARD 56 9.2 TEST SETUP 56 9.3 EUT OPERATION CONDITIONS 56 9.4 TEST RESULTS 57 10. ANTENNA REQUIREMENT 65 **10.1 STANDARD REQUIREMENT** 65 **10.2 EUT ANTENNA** 65

Page 5 of 65 Report No.: ISOT15031102R1

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	Peak Output Power	PASS			
15.247(c)	Radiated Spurious Emission	PASS			
15.247(a)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.205	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

Page 6 of 65 Report No.: ISOT15031102R1

1.1 TEST FACILITY

All the tests were performed at:

Shenzhen Huance Wei Testing Lab at 10th Floor West Logistics Information Center Build, Shenzhen, China

Shenzhen Huance Wei Testing Lab, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration **369037**, Nov 07, 2016.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

Page 7 of 65 Report No.: ISOT15031102R1

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Tablet PC			
Trade Name	AOC			
Model Name	M691			
Serial Model	N/A	N/A		
Model Difference	N/A			
	The EUT is a Tablet PC			
	Operation Frequency:	2402~2480 MHz		
	Modulation Type:	BT(1Mbps): GFSK		
		BT EDR(2Mbps): π /4-DQPSK		
		BT EDR(3Mbps): 8-DPSK		
	Bit Rate of Transmitter	1Mbps/2Mbps/3Mbps		
Product Description	Number Of Channel	79 CH		
	Antenna Designation:	Please see Note 3.		
	Output	BT(1Mbps): 5.464dBm		
	Power(Conducted):	BT EDR(2Mbps):5.604dBm		
		BT EDR(3Mbps):5.745dBm		
Channel List	Please refer to the Note	2.		
Adontor	Model:XHY050150UUC	H, Input: 100-240V~,50/60Hz		
Adapter	Output: 5.0V===, 1.5A			
Battery	DC3.7V, 2800mAh			
Connecting I/O Port(s)	Please refer to the User's Manual			
Software version :	Android 4.2.2			
Hardware version :	MOLY.WR8.W1315.MD	.WG.MP.V35.P2		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

	Channel List				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3. Table for Filed Antenna

Ant	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	N/A	FPCB Antenna	N/A	1.0	BT Antenna

Page 9 of 65 Report No.: ISOT15031102R1

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00
Mode 2	CH39
Mode 3	CH78
Mode 4	normal link

For Conducted Emission		
Final Test Mode	Description	
Mode 4	normal link	

For Radiated Emission			
Final Test Mode	Description		
Mode 1	CH00		
Mode 2	CH39		
Mode 3	CH78		

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) All 3-axis of the EUT have been investigated and only worst case(Y)reported.

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Test software Version	Test program: Broadcom		
Frequency	2402 MHz 2441 MHz 2480 MHz		
Parameters(1/2/3Mbps)			

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

E-1 EUT

Conducted Emission Test

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Tablet PC	N/A	M691	N/A	EUT
E-2	Adapter	N/A	XHY050150UUCH	N/A	
E-3	earphone	N/A	2678	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	80cm	
C-2	NO	NO	120cm	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibratio n period
1	Spectrum Analyzer	Aglient	E4446A	US44300451	2014.07.06	2015.07.05	1 year
2	EMI Test Receiver	R&S	ESCI	101165	2014.06.07	2015.06.06	1 year
3	Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168 - 438	2014.07.06	2015.07.05	1 year
4	Horn Antenna	Schwarzbeck	BBHA 9170	9170-182	2014.07.06	2015.07.05	1 year
5	Amplifier	Schwarzbeck	BBV9743	9743 - 019	2014.07.06	2015.07.05	1 year
6	Loop Antenna	ARA	PLA-1030/B	1029	2014.06.08	2015.06.07	1 year

Conduction Test equipment

	Kind of		Type No	Serial No.	Lost calibration	Calibrated until	Calibra
Item	Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated until	tion period
1	LISN	messtec	AN3019	NO.1	Jul. 06, 2014	Jul. 05, 2015	1 year
2	LISN	SCHWARZBE CK	NNLK 8129	8126466	Jul. 06, 2014	Jul. 05, 2015	1 year
3	Pulse Limiter	SCHWARZBE CK	VTSD9596F	9618	Jul. 06, 2014	Jul. 05, 2015	1 year
4	EMI Test Receiver	R&S	ESCI	100843	Jul. 06, 2014	Jul. 05, 2015	1 year
5	Switch	Schwarzbeck	CX - 210	100196	Jul. 06, 2014	Jul. 05, 2015	1 year

Page 13 of 65 Report No.: ISOT15031102R1

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Class A	(dBuV)	Class B	(dBuV)	Ctandard
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average	Standard
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	73.00	60.00	56.00	46.00	CISPR
5.0 -30.0	73.00	60.00	60.00	50.00	CISPR

0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

EUT:	Tablet PC	Model Name :	M691
Temperature:	26 ℃	Relative Humidity:	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	DC 5.0V from adapter AC 120V/60Hz	Test Mode:	Mode 4

Page 15 of 65

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Damark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1780	43.98	10.37	54.35	64.57	-10.22	QP
0.1780	33.77	10.37	44.14	54.57	-10.43	AVG
0.2460	37.74	10.43	48.17	61.89	-13.72	QP
0.2460	21.77	10.43	32.20	51.89	-19.69	AVG
1.0020	24.05	10.45	34.50	56.00	-21.50	QP
1.0020	13.19	10.45	23.64	46.00	-22.36	AVG
2.9700	28.93	10.45	39.38	56.00	-16.62	QP
2.9700	22.95	10.45	33.40	46.00	-12.60	AVG
7.2779	28.70	10.68	39.38	60.00	-20.62	QP
7.2779	19.47	10.68	30.15	50.00	-19.85	AVG
24.1259	29.26	10.77	40.03	60.00	-19.97	QP
24.1259	22.14	10.77	32.91	50.00	-17.09	AVG

Remark

^{2.} Factor = Insertion Loss + Cable Loss.

^{1.} All readings are Quasi-Peak and Average values.

EUT:	Tablet PC	Model Name :	M691
Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5.0V from adapter AC 120V/60Hz	Test Mode :	Mode 4

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demont
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1779	42.35	10.44	52.79	64.58	-11.79	QP
0.1779	33.22	10.44	43.66	54.58	-10.92	AVG
0.2540	36.12	10.43	46.55	61.62	-15.07	QP
0.2540	20.52	10.43	30.95	51.62	-20.67	AVG
0.6099	27.54	10.41	37.95	56.00	-18.05	QP
0.6099	19.97	10.41	30.38	46.00	-15.62	AVG
2.8980	27.01	10.44	37.45	56.00	-18.55	QP
2.8980	18.74	10.44	29.18	46.00	-16.82	AVG
7.1619	28.48	10.68	39.16	60.00	-20.84	QP
7.1619	19.93	10.68	30.61	50.00	-19.39	AVG
23.4460	28.40	10.73	39.13	60.00	-20.87	QP
23.4460	20.89	10.73	31.62	50.00	-18.38	AVG

Remark

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Class A (dBuV/m) (at 3M)		Class B (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	PEAK	AVERAGE	
Above 1000	80	60	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	1 MHz / 1 MHz for Dook 1 MHz / 10Hz for Average
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (BELOW 30 MHZ)

EUT:	Tablet PC	Model Name :	M691
Temperature :	20 ℃	Relative Humidity:	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
		-1		Р

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

3.2.7 TEST RESULTS (BETWEEN 30M - 1000 MHZ)

EUT:	Tablet PC	Model Name :	M691
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	TX
Test Voltage :	DC 3.7V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
V	44.2752	22.06	12.16	34.22	40.00	-5.78	QP
V	48.5016	22.28	11.06	33.34	40.00	-6.66	QP
V	111.7380	13.13	10.32	23.45	43.50	-20.05	QP
V	177.5092	12.94	10.61	23.55	43.50	-19.95	QP
V	278.0668	27.93	13.90	41.83	46.00	-4.17	QP
V	845.0878	8.07	27.25	35.32	46.00	-10.68	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.0000	6.61	19.43	26.04	40.00	-13.96	peak
Н	126.3285	6.40	11.97	18.37	43.50	-25.13	peak
Н	189.0741	11.06	10.70	21.76	43.50	-21.74	peak
Н	282.9852	25.50	13.95	39.45	46.00	-6.55	peak
Н	562.6624	14.61	21.61	36.22	46.00	-9.78	peak
Н	845.0878	10.57	27.25	37.82	46.00	-8.18	peak

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

3.2.8 TEST RESULTS (ABOVE 1000 MHZ)

EUT:	Tablet PC	Model Name :	M691
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	TX
Test Mode :	DC 3.7V		

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remar	Commont
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	k	Comment
		Low Ch	annel (2402 MHz)-A	Above 1G			
4804.214	59.59	-3.64	55.95	74.00	-18.05	Pk	Vertical
4804.214	41.82	-3.64	38.18	54.00	-15.82	AV	Vertical
7206.086	52.73	-0.95	51.78	74.00	-22.22	Pk	Vertical
7206.086	37.77	-0.95	36.82	54.00	-17.18	AV	Vertical
4804.284	59.93	-3.64	56.29	74.00	-17.71	Pk	Horizontal
4804.284	41.74	-3.64	38.10	54.00	-15.90	AV	Horizontal
7206.198	54.42	-0.95	53.47	74.00	-20.53	Pk	Horizontal
7206.198	37.69	-0.95	36.74	54.00	-17.26	AV	Horizontal
		Mid Cha	annel (2441 MHz)- <i>A</i>	Above 1G	ı	1 1	
4882.125	60.35	-3.68	56.67	74.00	-17.33	Pk	Vertical
4882.125	40.82	-3.68	37.14	54.00	-16.86	AV	Vertical
7323.306	56.82	-0.82	56.00	74.00	-18.00	Pk	Vertical
7323.306	41.63	-0.82	40.81	54.00	-13.19	AV	Vertical
4882.247	59.35	-3.68	55.67	74.00	-18.33	Pk	Horizontal
4882.247	40.49	-3.68	36.81	54.00	-17.19	AV	Horizontal
7323.095	56.72	-0.82	55.90	74.00	-18.10	Pk	Horizontal
7323.095	40.93	-0.82	40.11	54.00	-13.89	AV	Horizontal
	I	High Ch	annel (2480 MHz)-	Above 1G	T		
4960.247	59.72	-3.59	56.13	74.00	-17.87	Pk	Vertical
4960.247	42.88	-3.59	39.29	54.00	-14.71	AV	Vertical
7440.304	54.19	-0.68	53.51	74.00	-20.49	Pk	Vertical
7440.304	38.43	-0.68	37.75	54.00	-16.25	AV	Vertical
4960.248	58.55	-3.59	54.96	74.00	-19.04	Pk	Horizontal
4960.248	40.72	-3.59	37.13	54.00	-16.87	AV	Horizontal
7440.055	54.09	-0.68	53.41	74.00	-20.59	Pk	Horizontal
7440.055	37.92	-0.68	37.24	54.00	-16.76	AV	Horizontal

Note: Mode 3Mbps is the worst mode.

4. NUMBER OF HOPPING CHANNEL

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS

Spectrum Parameters	Setting			
Attenuation	Auto			
Span Frequency = the frequency band of operation				
RB	RBW=100kHz			
VB	$VBW \ge RBW$			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

4.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100kHz, VBW=300kHz, Sweep time = Auto.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1015 hPa	Test Voltage :	DC 3.7V
Test Mode :	Hopping Mode		

Page 27 of 65 Report No.: ISOT15031102R1

5. AVERAGE TIME OF OCCUPANCY

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

5.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. A Period Time = (channel number)*0.4

 - DH1 Time Slot: Reading * (1600/2)*31.6/(channel number)
 DH3 Time Slot: Reading * (1600/4)*31.6/(channel number)
 DH5 Time Slot: Reading * (1600/6)*31.6/(channel number)

5.1.2 DEVIATION FROM STANDARD

No deviation.

Page 28 of 65 Report No.: ISOT15031102R1

	1 age 20 01 00	1. (C) 1.
5.1.3 TEST SETUR	<u> </u>	
EUT		SPECTRUM
		ANALYZER
5.1.4 EUT OPERA	TION CONDITIONS	
The EUT tested sys	stem was configured as the statements of is specified in the follows during the testi	f 2.4 Unless otherwise a special
operating condition	is specified in the follows during the testil	ng.

5.1.5 TEST RESULTS

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH5 ,2DH5,3DH5		

Data Packet Frequency		Pulse Duration	Dwell Time	Limits
		(ms)	(s)	(s)
DH5	2441 MHz	2.90	0.31	0.4
2DH5	2441 MHz	2.92	0.31	0.4
3DH5	2441 MHz	2.92	0.31	0.4

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH3,2DH3,3DH3		

Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
		(ms)	(s)	(s)
DH3	2441 MHz	1.65	0.26	0.4
2DH3	2441 MHz	1.67	0.27	0.4
3DH3	2441 MHz	1.66	0.27	0.4

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH39-DH1,2DH1,3DH1		

Data Packet	Frequency	Pulse Duration	Dwell Time	Limits
		(ms)	(s)	(s)
DH1	2441 MHz	0.39	0.12	0.4
2DH1	2441 MHz	0.41	0.13	0.4
3DH1	2441 MHz	0.41	0.13	0.4

6. HOPPING CHANNEL SEPARATION MEASUREMENT

6.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RB	30 kHz (Channel Separation)	
VB	100 kHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

6.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.1.5 TEST RESULTS

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /CH78 (1Mbps Mode)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.000	Complies
2441 MHz	1.003	Complies
2480 MHz	1.003	Complies

Ch. Separation Limits: > 20dB bandwidth

EUT:	Tablet PC	Model Name :	M691
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /CH78 (2Mbps Mode)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.000	Complies
2441 MHz	1.000	Complies
2480 MHz	1.000	Complies

Ch. Separation Limits: >2/3 of 20dB bandwidth

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /CH78 (3Mbps Mode)		

Frequency	Ch. Separation (MHz)	Result
2402 MHz	1.000	Complies
2441 MHz	1.000	Complies
2480 MHz	1.000	Complies

Ch. Separation Limits: >2/3 of 20dB bandwidth

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247 (a)(1)	Bandwidth	(20dB bandwidth)	2400-2483.5	PASS

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RB	30 kHz	
VB	100 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

7.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

7.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.1.5 TEST RESULTS

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78(1Mbps)		

Frequency	20dB Bandwidth (kHz)	Result
2402 MHz	932.353	PASS
2441 MHz	884.878	PASS
2480 MHz	885.634	PASS

EUT:	Tablet PC	Model Name :	M691
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78 (2Mbps)		

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.252	PASS
2441 MHz	1.251	PASS
2480 MHz	1.249	PASS

EUT:	Tablet PC	Model Name :	M691
Temperature:	25 ℃	Relative Humidity:	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00 / CH39 /C78 (3Mbps)		

Frequency	20dB Bandwidth (MHz)	Result
2402 MHz	1.263	PASS
2441 MHz	1.259	PASS
2480 MHz	1.261	PASS

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (b)(i)	Peak Output Power	0.125w or 1W	2400-2483.5	PASS

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 TEST RESULTS

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00/ CH39 /CH78 (1M/2M/3Mbps Mode)		

1Mbps				
Test Channel	Frequency (MHz)	Peak Output Power (dBm)	LIMIT (dBm)	
CH00	2402	4.18	30	
CH39	2441	4.65	30	
CH78	2480	4.79	30	
2Mbps				
CH00	2402	4.12	20.96	
CH39	2441	4.37	20.96	
CH78	2480	4.51	20.96	
3Mbps				
CH00	2402	4.28	20.96	
CH39	2441	4.77	20.96	
CH78	2480	4.85	20.96	

Page 56 of 65 Report No.: ISOT15031102R1

9. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

9.1 DEVIATION FROM STANDARD

No deviation.

9.2 TEST SETUP

9.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.4 TEST RESULTS

EUT:	Tablet PC	Model Name :	M691
Temperature :	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH00/ CH78 (1M/2M/3Mbps Mode)		

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result			
	1Mbps Non-hopp	oing				
Left-band	50.19	20	Pass			
Right-band	61.04	20	Pass			
	2Mbps Non-hopp	ping				
Left-band	52.56	20	Pass			
Right-band	61.96	20	Pass			
3Mbps Non-hopping						
Left-band	55.71	20	Pass			
Right-band	59.20	20	Pass			
1Mbps hopping						
Left-band	51.60	20	Pass			
Right-band	59.91	20	Pass			
	2Mbps hopping	g				
Left-band	49.09	20	Pass			
Right-band	64.08	20	Pass			
	3Mbps hopping	g				
Left-band	58.69	20	Pass			
Right-band	64.85	20	Pass			

Radiated band edge:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Commont
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
			1Mbps(Non-FHSS)			
2390	56.72	-13.06	43.66	74	-30.34	peak	Vertical
2390	62.24	-13.06	49.18	74	-24.82	peak	Horizontal
2483.5	57.67	-12.78	44.89	74	-29.11	peak	Vertical
2483.5	56.52	-12.78	43.74	74	-30.26	peak	Horizontal
	2Mbps(Non-FHSS)						
2390	61.23	-13.06	48.17	74	-25.83	peak	Vertical
2390	59.85	-13.06	46.79	74	-27.21	peak	Horizontal
2483.5	64.65	-12.78	51.87	74	-22.13	peak	Vertical
2483.5	63.45	-12.78	50.67	74	-23.33	peak	Horizontal
			3Mbps(Non-FHSS)			
2390	60.46	-13.06	47.40	74	-26.60	peak	Vertical
2390	58.24	-13.06	45.18	74	-28.82	peak	Horizontal
2483.5	62.61	-12.78	49.83	74	-24.17	peak	Vertical
2483.5	63.44	-12.78	50.66	74	-23.34	peak	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Commont
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
			1Mbps(FHSS)				
2390	62.45	-13.06	49.39	74	-24.61	peak	Vertical
2390	59.56	-13.06	46.5	74	-27.50	peak	Horizontal
2483.5	63.61	-12.78	50.83	74	-23.17	peak	Vertical
2483.5	64.25	-12.78	51.47	74	-22.53	peak	Horizontal
	2Mbps(FHSS)						
2390	61.56	-13.06	48.5	74	-25.5	peak	Vertical
2390	61.14	-13.06	48.08	74	-25.92	peak	Horizontal
2483.5	59.67	-12.78	46.89	74	-27.11	peak	Vertical
2483.5	57.42	-12.78	44.64	74	-29.36	peak	Horizontal
			3Mbps(FHSS)				
2390	61.67	-13.06	48.61	74	-25.39	peak	Vertical
2390	60.21	-13.06	47.15	74	-26.85	peak	Horizontal
2483.5	57.35	-12.78	44.57	74	-29.43	peak	Vertical
2483.5	58.42	-12.78	45.64	74	-28.36	peak	Horizontal

Note: Refer to chapter 3.2 test method, When PK value is lower than the Average value limit, average didn't record.

NOTE: Hopping enabled and disabled have evaluated, and the wortest data was reported

Page 65 of 65 Report No.: ISOT15031102R1

10. ANTENNA REQUIREMENT
10.1 STANDARD REQUIREMENT
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.
10.2 EUT ANTENNA
The EUT antenna is permanent attached antenna. It comply with the standard requirement.
END OF REPORT