Inteligencia Artificial

Guía y Resolución para un cubo de

Rubik 3x3

Objetivo del programa

Servir de material de apoyo y práctica para un speedcuber o futuro speedcuber que quiera aprender el método Fridrich.

Metodo Fridrich

El método Fridrich es un algoritmo para solucionar el cubo de Rubik a nivel Experto. Está compuesto de 119 secuencias diferentes, agrupadas en tres metodos: F2L, OLL, PLL.

<u>F2L (First two Layers):</u> Consiste en colocar las esquinas y aristas de los niveles inferior y medio a la vez (42 algoritmos)

<u>OLL (Orientation Last Layer):</u> Consiste en orientar la ultima cara consiguiendo que quede de un solo color, se busca girar las aristas y esquinas que no apunten a la cara superior (57 algoritmos)

<u>PLL (Permutation Last Layer):</u> Consiste en ordenar las esquinas y aristas de la cara superior de manera que se resuelva finalmente el cubo, se puede decir que se pivotan entre ellas (21 algoritmos)

Modo de uso

El programa consiste en tres algoritmos: e, top, end, que hacen referencia a esquina, capa superior y último paso, respectivamente.

e(A,B,C,D).

- \rightarrow A = cara de la esquina blanca a colocar (pegatina blanca)
- → B = posición de la esquina blanca a colocar (pegatina blanca)
- \hookrightarrow C = cara de la arista frontal
- \hookrightarrow D = posicion de la arista frontal

Ej.: e(**r,1,f,2**).

Posiciones: 1 2 3 4 5 6 7 8 9

<u>Nota:</u> las piezas deben estar en cualquier posición de la cara superior o en la esquina frontal derecha para poder ser procesadas por el algoritmo

Las zonas **azules** representan donde $\mathbf{S}\mathbf{I}$ deben estar las dos piezas del algoritmo, en las **rojas \mathbf{NO}** deben estar

top(A,B,C,D,E,F,G,H,I).

A-I = cara de la pegatina amarilla correspondiente.

Ej.: top(t,b,t, l,t,r, t,f,t).

end(A,B,C,D,E,F,G,H,I,J,K,L).

A-L = color de los laterales

Ej.: end(**v,r,a, r,a,v, n,n,n a,v,r**). (3)

Estructura del Programa

- El programa empieza con un metodo **help**, que actua como breve guía del mismo.
- A continuación el metodo e(A,B,C,D) se transforma en **esquina**(A,B,C,D,L,Acc), en el cual se imprime la respuesta correcta a cada disposición del cubo. Se desarrolló también un método **girar_U(C,N,C1,N1)**, que emula el giro U, para no depender de una única posición del cubo.
 - El modo de giro en U consiste en:

$$r \rightarrow b \rightarrow l \rightarrow r$$

$$\blacksquare \quad 1 \rightarrow 3 \rightarrow 9 \rightarrow 7 \rightarrow 1$$

$$2 \rightarrow 6 \rightarrow 8 \rightarrow 4 \rightarrow 2$$

- El método accW(Acc) imprime el giro correspondiente realizado en el paso anterior
 - \circ Acc = 0 → no imprime nada
 - \circ Acc = 1 \rightarrow "U+"
 - $Acc = 2 \rightarrow "U2+"$
 - \circ Acc = 3 \rightarrow "U'+"

- Posteriormente se encuentran una serie de métodos que están aún en desarrollo para poder ampliar la zona en la que es usable el método e()
- El método **top()**, sigue la estructura del método e(), imprimiendo la respuesta correspondiente a la disposición dada y aplicando giros en U, para eliminar la limitación de la posición dada por el usuario.
- Finalmente el método end(), al igual que los otros responde sergún la disposición dada por el usuario, y elimina la condición de la posición rotando el cubo con el metodo girar en U.

Notación

Los **movimientos** del cubo de rubik utilizan las letras U (Up), D (Down), L (Left), R (Right), B (Back), F (Front), M (Middle), E (Equator) y S (Standing).

Todos los movimientos se giran en el sentido de las agujas del reloj, simulando que estuvieramos de frente a ellos. Los movimientos pueden tener la particula "'" (prima) delante de ellos, que significa mover en sentido inverso a las agujas del reloj.

Del mismo modo si el movimiento está en minusculas, implica realizar el movimiento y mover además la cara central correspondiente

También se puede rotar el cubo en su totalidad con los movimientos x, y, z que rotan en cubo simulando que agarraramos en eje con la mano derecha y rotaramos en el sentido de las agujas del reloj.

X apunta a la derecha

Y apunta hacia arriba

Z apunta hacia nosotros

Web de referencia: https://ruwix.com/widget/notation/

Terminología

<u>Speedcuber:</u> Se trata de una persona que resuelve el cubo de rubik de manera consciente en un corto espacio de tiempo, generalmente se suele considerar a aquellas personas que resuelven el cubo en menos de 20 segundos.

<u>Arista:</u> Ficha situada en medio de otras dos en las filas no centrales del cubo, tiene dos colores.

Esquina: Ficha situada en una esquina del cubo de rubik, tiene tres colores.

<u>Centro:</u> Ficha central de cada cara del cubo de rubik, tiene un color.

