

泛函分析

作者: M0ngo1

邮箱: kelicheng@mail.ustc.edu.cn

时间: 2025年10月2日

目录

第1章 预备知识																		1
1.1 度量空间 .	 	 	 															1

前言

本文是笔者修读25 秋廖班泛函分析课程时所做的课程笔记。虽然廖老师提供了课程讲义,但其中部分内容会作为作业并省略,且部分证明仅提供思路,故笔者在其基础上进行了补充,(而且讲义单调,只有黑色和白色)由于笔者才疏学浅,难免会有一些纰漏,欢迎大家通过邮箱与我联系交流:kelicheng@mail.ustc.edu.cn

第1章 预备知识

1.1 度量空间

定义 1.1 (度量空间)

称 (X,d) 为一度量空间,如果满足:

① 正定: $d(x,y) \ge 0$, 且 $d(x,y) = 0 \iff x = y$

② 对称: $d(x,y) = d(y,x) \ \forall x,y \in X$

③ 三角不等式: $d(x,y) \le d(x,z) + d(z,y) \quad \forall x,y,z \in X$

这里 X 是非空集合, d 是 $X \times X \to \mathbb{R}$ 的一个函数, 并被称为 X 上的一个度量或距离。

注 在没有歧义的情况下, (X,d) 可简记为 X。

例子 1.1 对欧式空间 \mathbb{R}^n , 有如下几种度量:

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

$$d_2(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^2\right)^{\frac{1}{2}}$$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

例子 1.2 类似的,可在复空间进行定义:d(z,w) = |z-w|

例子 1.3 对空间 $C[a,b] := \{f : [a,b] \to \mathbb{C}$ 连续 $\}$,可定义如下度量:

$$d_{sup}(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|$$

下面验证确为一个度量:

① $d_{sup}(f,g) \ge 0$ 显然,且 $d_{sup}(f,g) = sup_{t \in [a,b]}|f(t) - g(t)| = 0 \iff f(t) = g(t), \forall t \in [a,b] \iff f = g;$

$$\mathfrak{D}d_{sup}(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)| = \sup_{t \in [a,b]} |g(t) - f(t)| = d_{sup}(g,f);$$

定义 1.2 (度量子空间)

给定度量空间 (X,d), \forall 非空集合 $S\subset X$, $(S,d|_S)$ 构成一个度量空间, 称其为 (X,d) 的**度量子空间**。

例子 1.4 ℚ 是 ℝ 的度量子空间。

例子 1.5 $P[a,b] := \{P : [a,b] \to \mathbb{C}, \ p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0\}, \ \text{则 } P[a,b] \in C[a,b]$ 的度量子空间。

定义 1.3 (乘积空间)

给定度量空间 (X_1,d_1) 与 (X_2,d_2) ,有笛卡尔积 $X_1 \times X_2 := \{(x_1,x_2): x_1 \in X_1, x_2 \in X_2\}$,则可在 $X_1 \times X_2$ 上定义度量: $d((x_1,x_2),(x_1',x_2')) = d_1(x_1,x_1') + d_2(x_2,x_2')$,则称 $(X_1 \times X_2,d)$ 为 $X_1 \times X_2$ 的**乘积空间**。

注 在乘积空间上定义的度量并不唯一,还可定义如下度量: $d' = max(d_1, d_2)$ 和 $d'' = \sqrt{d_1^2 + d_2^2}$ 等。

 $\dot{\mathbf{L}}$ 更一般的,可以定义由可数个度量空间生成的乘积空间 ($\prod_{i=1}^{\infty} X_i, d$),并将度量定义为:

$$d((x_i)_{i\geq 1}, (x_i')_{i\geq 1}) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i, x_i')}{1 + d_i(x_i, x_i')}$$

下面验证 d 确为一个度量: 将 $((x_i)_{i\geq 1}, (x_i')_{i\geq 1})$ 简记为 $((x_i), (x_i'))$

①
$$d \ge 0$$
 是显然的,且 $d = 0 \iff \frac{1}{2^i} \frac{d_i(x_i, x_i')}{1 + d_i(x_i, x_i')} = 0, \forall i \iff d_i(x_i, x_i') = 0, \forall i \iff (x_i) = (x_i')$

$$\mathfrak{D}d((x_i),(x_i')) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i,x_i')}{1+d_i(x_i,x_i')} = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i',x_i)}{1+d_i(x_i',x_i)} = d((x_i'),(x_i))$$

③ 欲验证该度量的三角不等式,只需验证 $\frac{x}{1+x} + \frac{y}{1+y} \ge \frac{z}{1+z}$,其中 $z \le x+y$ $x,y,z \ge 0$

$$z \le x + y \Rightarrow \frac{z}{1+z} \le \frac{x+y}{1+x+y} = \frac{x}{1+x+y} + \frac{y}{1+x+y} \le \frac{x}{1+x} + \frac{y}{1+y}$$

例子 1.6 在整数格点乘积空间 \mathbb{Z}^d 上,可以定义度量 $d_{\mathbb{Z}^d}(x,y) = \sum_{i=1}^d |x_i - y_i|$

定义 1.4 (开集、闭集)

在度量空间 (X,d) 中,定义 $B(x,r) = \{y \in X : d(x,y) < r\}$ (开球), $\bar{B}(x,r) = \{y \in X : d(x,y) \le r\}$ (闭球)。

称 $U \subset X$ 是**开集**,若 $\forall x \in U, \exists r > 0$ s.t. $B(x,r) \subset U$ 。称 F 是**闭集**,若 F^c 是开集。

例子 1.7 显然有 B(x,r) 是开集, $\bar{B}(x,r)$ 是闭集。

命题 1.1 (开集族的性质)

记 $\tau = \{U \subset X : U\mathcal{H}\}, \, \mathcal{U}\tau$ 满足如下三条性质:

 $\oplus \phi, X \in \tau$

 $2 \cup_{i \in I} U_i \in \tau$

 $\Im \cap_{i=1}^n U_i \in \tau$

定义 1.5 (内部、闭包)

给定度量空间 (X,d) 以及 $S \subset X$

称含于 S 的最大开集为 S 的内部,记作 $S^{\circ} = \bigcup_{\pi \notin U \subset S} U$

称包含 S 的最小闭集为 S 的闭包,记作 $\bar{S} = \bigcap_{B \notin F \cap S} F$

注 对一般的度量空间, $\bar{B}(x,r)$ 不一定等于 $\overline{B(x,r)}$

反例: 考虑离散度量空间 (X,d), $X = \{a,b\}$, 并将其上度量定义为:

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

则有 $B(a,1)=\{a\},\ \overline{B(a,1)}=\{a\},\ \bar{B}(a,1)=\{a,b\}$

但是一定有 $\overline{B(a,1)} \subset \overline{B}(a,1)$,这是因为闭球一定是包含开球的一个闭集,尽管它不一定是最小。

定义 1.6 (序列收敛)

给定度量空间 (X,d) 和序列 $\{x_n\}_{n\geq 1}\subset X$,称序列 $\{x_n\}_{n\geq 1}$ 收敛,若 $\exists x\in X,\ s.t. \lim_{n\to\infty}d(x_n,x)=0$ 也即: $\forall \epsilon>0, \exists N\in\mathbb{N},\ s.t.\ d(x_n,x)<\epsilon,\ \forall n>N$

并记作: $\lim_{n\to\infty} x_n = x$

注 序列的极限唯一: 若不然, 设有两个不等的极限 x 和 y, 则有 $0 \le d(x,y) \le d(x,x_n) + d(x_n,y) \to 0$, $as n \to \infty$, 从而由正定性知: x = y, 即极限唯一

命题 1.2 (闭集的刻画)

给定度量空间 $(X,d), F \subset X$, 则 TFAE:

1.F 是闭集

2. 若 $\{x_n\}_{n\geq 1}\subset F$ 且 $\lim_{n\to\infty}x_n=x\in X$,则 $x\in F$

证明 $1. \to 2.: \{x_n\}_{n \ge 1} \subset F \perp \lim_{n \to \infty} x_n = x$ 若 $x \notin F$, 即 $x \in F^c \Rightarrow \exists r > 0$, s.t. $B(x,r) \subset F^c \Rightarrow B(x,r) \cap F = \phi$ 但 $x_n \in B(x,r), \forall n$ 充分大,且 $x_n \in F$,即 $x_n \in B(x,r) \cap F$,矛盾!

 $2. \to 1.:$ 只需证明 $U := F^c$ 是开集 $\forall x \in U, \ \,$ 欲证 $\exists \delta > 0 \ \, s.t. B(x,\delta) \subset U$ 若不然, $\forall n \in \mathbb{N}, B(x,\frac{1}{n}) \cap F \neq \phi$ 取 $x_n \in B(x,\frac{1}{n}) \cap F \Rightarrow \{x_n\}_{n \geq 1} \subset F, \ \,$ 且 $d(x_n,x) < \frac{1}{n}, \forall n \in \mathbb{N} \Rightarrow x_n \to x \in F, \ \,$ 矛盾!

推论 1.1

给定度量空间 (X,d), $S \subset X$, TFAE:

 $1.x \in \bar{S}$

 $2.\forall \epsilon > 0, B(x, \epsilon) \cap S \neq \phi$

 $3.\exists \{x_n\} \subset S, \ s.t. \lim_{n\to\infty} x_n = x$

证明留作习题。