1.2 Polyhedra and basic convex geometry

1.2.1 Basic notions

Definition 1.4: Half-space & hyperplane

A half-space in \mathbb{R}^n is a set of the form $\{x \in \mathbb{R}^n : a^\top x \leq \beta\}$ for $a \in \mathbb{R}^n \setminus \{0\}$ and $\beta \in \mathbb{R}$. Moreover, $\{x \in \mathbb{R}^n : a^\top x = \beta\}$ is called a hyperplane.

Definition 1.5: Polyhedron & polytope

A polyhedron $P \subseteq \mathbb{R}^n$ is a finite intersection of half-spaces. Moreover, a bounded polyhedron is called a polytope.

polyhedron

Definition 1.6: Redundancy

A linear inequality or equality of an inequality description of a polyhedron is called *redundant* if removing it from the description does not change the polyhedron.

Example 1.7: Redundant constraints

The picture below shows a polytope with two redundant constraints, highlighted in red.

$$0 \le X_1 \le 1$$

$$0 \le X_2 \le 1$$

$$2 \times_7 \le 2$$

Definition 1.8: Dimension of a polyhedron

The dimension $\dim(P)$ of a polyhedron $P\subseteq\mathbb{R}^n$ is the dimension of a smallest-dimensional affine subspace containing P, i.e.,

$$\dim(P) := \min\{k \in \mathbb{Z}_{>0} \colon \exists A \in \mathbb{R}^{n \times n} \text{ with } \operatorname{rank}(A) = n - k \& Ax = Ay \ \forall x, y \in P\} \ .$$

In particular, P is called *full-dimensional* if $\dim(P) = n$.

P is 1-dimensional polytope in 2-dimensional space

2-dimensional polyhedron in 3 dimensions

Definition 1.9: Supporting hyperplane

Let $P \subseteq \mathbb{R}^n$ be a polyhedron. A hyperplane $H = \{x \in \mathbb{R}^n \colon a^\top x = \beta\}$ is called P-supporting—or simply supporting, if P is clear from context—if $P \cap H \neq \emptyset$ and P is contained in one of the two half-spaces defined by H, i.e., either $P \subseteq \{x \in \mathbb{R}^n \colon a^\top x \leq \beta\}$ or $P \subseteq \{x \in \mathbb{R}^n \colon a^\top x \geq \beta\}$.

Example 1.10

The figure below shows a 2-dimensional polytope with two supporting hyperplanes.

Definition 1.11: Face, vertex, edge, and facet

Let $P \subseteq \mathbb{R}^n$ be a non-empty polyhedron.

- (i) A face of P is either P itself or the intersection of P with a supporting hyperplane.
- (ii) A vertex of P is a 0-dimensional face of P.
- (iii) An edge of P is a 1-dimensional face of P.
- (iv) A facet of P is a $(\dim(P) 1)$ -dimensional face of P.

The empty polyhedron has only one face, which is the empty set. We denote by vertices(P) the set of all vertices of P.

Example 1.12

Below is a cube with three of its faces highlighted in red: a vertex, an edge, and a facet.

Proposition 1.13

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\} \subseteq \mathbb{R}^n$ be a non-empty polyhedron with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, and let $F \subseteq P$. Then the following statements are equivalent.

- (i) F is a face of P.
- (ii) $\exists c \in \mathbb{R}^n$ such that $\delta := \max\{c^\top x \colon x \in P\}$ is finite and $F = \{x \in P \colon c^\top x = \delta\}$.
- (iii) $F = \{x \in P : Ax = b\} \neq \emptyset$ for a subsystem $Ax \leq b$ of $Ax \leq b$.

We show

(i)
$$C = (ij) c = (ij) c = (ij)$$

(ii) <=(i)

F face of
$$P = \sum_{n=1}^{\infty} F = P_n d_{\infty} \in \mathbb{R}^n : a^{T_{\infty}} = \beta \int_{\mathbb{R}^n} d^{T_{\infty}} d^{T_{\infty}} = \beta \int_{\mathbb{R}^n} d^{T_{\infty}} = \beta \int_{\mathbb$$

&x EIR" : aTx = By is supporting hyperplane

-> P C {xeR": a"x < p}

> max { aTX i XEP] = B

and F are its maximizers.

 $f_{(i)}(c=f_{(i)})$

We need property that $\delta = \max \{c^{T}x : x \in P\}$ being finite implies $\exists x \in P$ with $c^{T}x = \delta$.

=) $F := \{x \in P : cTx = 8\}$ is non-empty.

See proldem sets

$$\begin{pmatrix} a_1^T \\ a_2^t \\ \vdots \\ a_m^T \end{pmatrix} \times \leq \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$A \qquad b$$

Choose numbering such that, for some k ∈ {0,..., m}, we have $a_i^T x = b_i \quad \forall x \in F \quad \forall i \in [k],$

and for all other constraints, i.e., with row indices i \ \kt1,..., ms, this does not hold.

will show
$$F = \left(\times \in P : \alpha_{i}^{T} \times = b_{i} \quad \forall i \in [E] \right) \Rightarrow (iii)$$

7 ZEF S.f. atz < b; Yie akar, m)

Proof of claim

otherwise: For each iedkti, ..., my } == EF with atz; < b;

Choose z = 1 m·k \ \frac{m}{2};

 $c^{T} = \frac{1}{m-k} \sum_{i=k+1}^{m} c^{T} = \frac{1}{8} = \frac{1}{m-k} \sum_{j=k+1}^{m} \frac{1}{a_{i}^{T} + 2j} \leq b_{i}$ $c^{T} = \frac{1}{m-k} \sum_{j=k+1}^{m} c^{T} = \frac{1}{2} \sum_{j=k+1}^{m} c^{T} = \frac{1}{2}$

Moreover, if iE dker, ..., m) => at= < b;.

 \Rightarrow $a_i^T \geq \langle b_i \rangle$.