COMP 353 Databases

Design Theory for Relational Databases
Functional Dependencies
Schema Refinement (Decomposition)
Normal Forms

Functional Dependencies (FDs)

- A functional dependency (FD) is a kind of constraint
- Suppose **R** is a relation schema and $X,Y \subseteq R$.

A FD on \mathbf{R} is a statement of the form $\mathbf{X} \to \mathbf{Y}$, which asserts: "For every "legal/valid" instance \mathbf{r} of \mathbf{R} , and for all pairs of tuples t1 and t2 in \mathbf{r} , if t1 and t2 **agree** on the values in \mathbf{X} , then t1 and t2 **agree** also on the values in \mathbf{Y} ."

In symbols: \forall t1,t2 \in **r**: t1[**X**] = t2[**X**] \rightarrow t1[**Y**] = t2[**Y**].

- We read X → Y as:
 X (functionally) determines Y (or Y is determined by X)
- We say that the FD: $X \rightarrow Y$ is *relevant* to R if $X \cup Y \subseteq R$.

Functional Dependencies

- Consider the relation schema:
 Star (name, SIN, street, city, postalCode, phone)
- Since we know the semantics of this relation from the design phase, we can answer the following question:
 - What are the functional dependencies on Star?
- Note that in general, FDs on a relation R may not be determined based on a given instance of R!

Functional Dependencies

- Consider the relation:Movie (title, year, length, filmType)
- What are the FD's on the Movie relation?
 We use the semantics of this relation to answer.

Keys

- The concept of FD generalizez the concept of key. How?
 - Let $X \subseteq R$. Then X is a key of R iff $X \rightarrow R$
- X is a (candidate) key of R (or a key, for short) if
 - **1.** $X \rightarrow R$. That is, attributes in X functionally determine **all** the attributes of R
 - 2. No proper subset of **X** is key, i.e., a candidate key must be **minimal**
- Is {title, year, filmType} a key for relation Movie?
- A set of attributes that contains a key is called a superkey (that is, a superset of a key)
 - Note that every key is a superkey, but not vice versa

Functional Dependencies

■ X → Y is called a functional dependency because, in principle, there is a function that takes a list of values, one for each attribute in X, and returns at most one value (i.e., a *unique* value or no value at all) for the attributes in Y

Functional Dependencies

Consider the relation:

Movie (title, year, length, filmType, studioName, starName)

What are the functional dependencies?

```
{title, year} → length

{title, year} → filmType

{title, year} → studioName
```

→ {title, year} → {length, filmType, studioName}

Note: {title, year} → starName does not hold

■ What is the key of the Movie relation?

Trivial FD's

- An FD $X \rightarrow Y$ is said to be **trivial** if $Y \subseteq X$.
 - For example: {title, year} → title is a trivial FD
- Otherwise, the FD is called nontrivial
 - For example: {title, year} → length is a nontrivial FD

Functional Dependencies

Why are we interested in functional dependencies?

Redundancy Problem

- Redundancy a "piece" of information is unnecessarily repeated in different tuples in a relation
- Recall that *redundancy* is the main source of problems:
 - Storage waste
 - Some information stored repeatedly
 - Update anomalies
 - If a copy of such information is updated, an inconsistency may arise unless all its copies are updated
 - Insertion anomalies
 - Unless we allow nulls, it may not be possible to store some information unless we have all the information to store
 - Deletion anomalies
 - Deleting some information may results in loosing some other information 10 (which we don't want to loose)

Is this a good design for relation R?

Name	SSN	Phone	
Fred	123-321-99	(201) 555-1234	
Fred	123-321-99	(201) 572-4312	
Joe	909-438-44	(908) 464-0028	
Mary	938-401-54	(201) 555-1234	

The only FD on R is: SSN→Name

Therefore, the only key of R is: **{SSN, Phone}**

What about this design, replacing R with R1 and R2?

R1	SSN	Name	
	123-321-99 909-438-44 938-401-54	Fred Joe Mary	
R2	SSN	Phone	D = {R1(SSN, Name),
	123-321-99	(201) 555-1234	R2(<u>SSN</u> , Phone)}
	123-321-99	(201) 572-4312	FD's on R1 and R2?
	909-438-44	(908) 464-0028	
	938-401-54	(201) 555-1234	

Another Example

 Suppose each star has a representing firm and each firm has one spokes person)

Relation Schema:

Star (Name, Address, RepresentingFirm, SpokesPerson)

RepresentingFirm

SpokesPerson

Relation Instance:

Name	Address	RepresentingFirm	SpokesPerson
Carrie Fisher	123 Maple	Star One	Joe Smith
Harrison Ford	789 Palm rd.	Star One	Joe Smith
Mark Hamill	456 Oak rd.	Movies & Co	Mary Johns

Redundancy Problem

What is the role of FDs in detecting redundancy?

- Consider the relation scheme R(A, B, C)
 - Suppose no (nontrivial) FD holds on R
 - There is no redundancy in any instance r of R.
 - Now suppose FD: A → B holds on R
 - If several tuples have the same A value
 they must all have the same B value; otherwise this FD is violated
- Presence of some FDs in a relation suggests possibility of redundancy

Implications of FDs and Reasoning

Consider relation R(A, B,C) with the set of FDs:
F = {A→B, B→C}

- We can deduce from F that A→C also holds on R. How? Apply the definition...
- To detect possible data redundancy, is it necessary to consider "all" the FDs (implicit and explicit)?
 - As shown above, there might be some additional hidden (nontrivial) FDs "implied" by a given set of FD's

Implications of FDs

- Defn: If a relation instance r satisfies every FD in a given set F of FD's, then we say that r satisfies F.
 - In this case, we also say that **r** is a *legal/valid instance*.
- Given $\langle R, F \rangle$, we say that **F** implies a FD **X** \rightarrow **Y**, if every instance **r** of **R** that satisfies **F** also satisfies **X** \rightarrow **Y**.
 - Formally, we express this as: $F \models X \rightarrow Y$. We may also say that $X \rightarrow Y$ follows from F.
- To show F ⊭ X → Y, we may give a counterexample, i.e., an instance r of R that satisfies F but not X → Y.

FDs Implication (Cont'd)

■ Consider $\mathbf{R}(A_1, A_2, A_3, A_4, A_5)$ with FDs:

$$F = \{ A_1 \rightarrow A_2, A_2 \rightarrow A_3, A_2A_3 \rightarrow A_4, A_2A_3A_4 \rightarrow A_5 \}$$

Prove that $\mathbf{F} \not\models A_5 \rightarrow A_1$

Solution method: Provide a counter-example; give a relation instance r of R that satisfies every FD in \mathbf{F} but not $A_5 \to A_1$

A desired instance r of R:

Closure of a set F of FDs

- Defn: The closure of F, denoted by F⁺, is the set of every FD: X→ Y that is implied by F.
- How can we determine **F**⁺?
 - Clearly, F⁺ includes F and possibly some more FDs
 - To answer the question we need to *reason* about FDs

Equivalence of two sets of FD's

- Let **R** be a relation schema, and **S**, **T** be sets of FDs on **R**.
- Defn: we say S covers T (S ⊨T) if for every instance r of R, whenever r satisfies (every FD in) S, r also satisfies T.
- Defn: T and S are equivalent (S ≡ T) iff S ⊨T and T ⊨ S.
- Note: F and F⁺ are equivalent.

$$S = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$$

$$T = \{A \rightarrow B, B \rightarrow C\}$$

We can show that $S \equiv T$.

Armstrong's Axioms [1974]

- R is a relation schema, and X, Y, Z are subsets of R.
- Reflexivity
 - If $Y \subseteq X$, then $X \rightarrow Y$ (trivial FDs)
- Augmentation
 - If $X \rightarrow Y$, then $XZ \rightarrow YZ$, for every Z
- Transitivity
 - If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- These are **sound** and **complete** inference rules for FDs

Additional rules / axioms

Other useful rules that follow from Armstrong Axioms: Suppose **X**, **Y**, **Z**, and **W** are sets of attributes.

- Union (Combining) Rule
 - If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Decomposition (Splitting) Rule
 - If $X \longrightarrow YZ$, then $X \longrightarrow Y$ and $X \longrightarrow Z$
- Pseudotransitivity Rule
 - If $X \longrightarrow Y$ and $WY \longrightarrow Z$, then $XW \longrightarrow Z$

Example – Discovering hidden FD's

- Consider $R = \{A, B, C, G, H, I\}$ with the FDs: $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- Using Armstrong's rules, we can derive more FDs
 - Since $A \rightarrow B$ and $B \rightarrow H$, then $A \rightarrow H$, by transitivity
 - Since $CG \rightarrow H$ and $CG \rightarrow I$, then $CG \rightarrow HI$, by union
 - Since A → C then AG → CG, by augmentation
 Now, since AG → CG and CG → I, then AG → I, by transitivity (and in a similar way, we get F ⊨ AG → H)
 - Many trivial dependencies can be derived(!) by augmentation

Implication Problem

- \blacksquare Given a set **F** of FDs, does **X** \longrightarrow **Y** follow from **F**?
- In other words: is $X \rightarrow Y$ in the closure of F?

(In symbols, does $F = X \rightarrow Y$ hold, or is

$$X \rightarrow Y \in F^+$$
 true?

- How to answer this question?
 - Compute the closure of F & check if it includes X→Y
- What is the problem with this approach?
 - Computing F⁺ is expensive! Is there a better solution?

Closure of a Set of Attributes

- Given $\langle R, F \rangle$; Let $X \subseteq R$.
 - The closure of X under F is the set of all attributes Y in R that are determined by X. This yields $X \to Y$, i.e., every valid instance of R (that satisfies F) also satisfies $X \to Y$
 - We denote the closure of a set of attributes X under F by X⁺_F
 - When F is known, we simply write X⁺ (and omit F)
 - Closure of {A1, A2, ..., A_n} is denoted {A1, A2, ..., A_n}⁺
 - Note that $X \subseteq X^+$, for any set X of attributes (because $X \to X$)

Computing the Closure of Attributes

- Given a set F of FD's and a set X of attributes, how to compute the closure of X w.r.t. F?
 - Starting with set X⁺=X, we repeatedly expand X⁺ by adding the RHS Z for every FD: W→Z in F, if the LHD W is already in X⁺.
 - This process terminates when X⁺ could not be expanded further.
 - This process is expressed as an algorithm in the next slide.

An Algorithm to Compute X⁺ under F

```
X + ← X (initialization step)
repeat
for each FD W → Z in F do:
    if W ⊆ X+ then
        X + ← X + ∪ Z  // add Z to the result
until X+ does not change
```

Complexity? In the worst case, how many times the "repeat" statement may be executed?

Examples

- Consider a relation schema $R = \{ A, B, C, D, E, H \}$ with the FD's $F = \{ AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CH \rightarrow B \}$
- Suppose X={A,B}. Compute X+
- Execution result at each iteration:
 - Initially, **X**⁺ = {**A**, **B**}
 - Using $AB \rightarrow C$, we get $X^+ = \{A, B, C\}$
 - Using $BC \rightarrow AD$, we get $X^+ = \{A, B, C, D\}$
 - Using $D \rightarrow E$, we get $X^+ = \{A, B, C, D, E\}$
 - No more change to X⁺ is possible.
 - \rightarrow X⁺ = {A, B}⁺ = {A, B, C, D, E}
- Does the order in which FD's appear in F affects the computation?

Implication Problem Revisited

- Given a set of FD's F, does an FD: X → Y follow from F?
 - That is, is FD $X \rightarrow Y$ in F^+ ?
- To answer this, we can compute **X**⁺ under **F**, and check if **Y** is in **X**⁺ or not
 - If yes, then the answer is positive! ($F \models X \rightarrow Y \odot$)
 - Otherwise, it is negative (F ≠ X → Y ⊗)

Example

- Consider <R,F> where R = { A, B, C, D, E, H } and F = { AB → C, BC → AD, D → E, CH → B }
- Does $AB \rightarrow D$ follow from F?
- Two steps:
 - 1. Compute $\{A, B\}^+ = \{A, B, C, D, E\}$
 - 2. Check if $D \in \{A,B\}^+$
 - So, here we conclude that AB → D is implied by F

Example

- Consider a relation schema $R = \{ A, B, C, D, E, H \}$ with FDs: $F = \{ AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CH \rightarrow B \}$
- True/False: Does $\mathbf{D} \rightarrow \mathbf{A}$ follow from \mathbf{F} ?
- Two steps:
 - 1. Compute $X^+ = \{D\}^+ = \{D, E\}$
 - 2. Check if $A \in X^+$
 - Since A ∉ {D, E}, the answer is NO, i.e., F ⊭ D → A

Closures and Keys

- Consider a case where X⁺ includes all the attributes of a relation R
 - → Clearly, **X** is a (super) **key** of **R**
 - → To check if **X** is a candidate key of **R**, we should check 2 things:
 - 1. If X^+ is a superkey R, i.e., when $X^+ = R$, and
 - 2. If no proper subset of **X** is a key, i.e., $\forall A \in X$: $(X \{A\})^+ \neq R$
- To find the keys of a relation, we can use the algorithm on slide 26
- This would be exponential in the number of attributes! Can do better?
- Knowledge about keys is essential to understand "Normal forms."