Algorithmen und Datenstrukturen Klausur WS 2014/15

Angewandte Informatik Bachelor

Name	
Matrikelnummer	

Aufgabe 1	AVL-Baum	14	
Aufgabe 2	Algorithmus von Floyd	22	
Aufgabe 3	Tiefensuchbaum	12	
Aufgabe 4	Flüsse in Netzwerke	12	
Summe		60	

Aufgabe 1 AVL-Baum (14 Punkte)

a) Fügen Sie in einem <u>leeren nicht-balanzierten binären Suchbaum</u> nacheinander die Zahlen 5, 4, 3, 2, 1 ein. Fügen Sie dieselbe Zahlenfolge in einem <u>leeren AVL-Baum ein</u>.

b) Geben Sie den Aufwand im schlechtesten Fall für das Einfügen in einem nicht-balanzierten Baum und für das Einfügen in einen AVL-Baum mit jeweils n Zahlen an (O-Notation).

c) Löschen Sie in folgendem AVL-Baum die Zahl 30 und dann die Zahl 10. Geben Sie die notwendigen Rotationsoperationen an.

d) Welche der angegebenen Datenstrukturen unterstützt effizient die Suche von Elementen, die in einem Intervall [a,b] liegen: binäre Suche in einem sortierten Feld, AVL-Baum, Feld mit Heap-Ordnung, Hashverfahren.

Aufgabe 2 Algorithmus von Floyd (22 Punkte)

a) Berechnen Sie für folgenden gerichteten Graphen mit dem Algorithmus von Floyd für alle Knotenpaare einen günstigsten Weg. Es müssen sowohl die <u>Distanzmatrizen D^k</u> als auch die <u>Vorgängermatrizen P^k</u> berechnet werden (siehe nächste Seite). Es genügt, wenn Sie in P nur die geänderten Werte eintragen.

b) Was sind die Kosten für den günstigsten Weg von Knoten 2 nach Knoten 3? Geben Sie an, wie sich der kürzeste Weg aus der Vorgängermatrix P⁴ ergibt.

c) Was ist ein negativer Zyklus und wieso sind negative Zyklen nicht erlaubt?

d) Wie muss der Algorithmus von Floyd erweitert werden um negative Zyklen zu erkennen?

```
for (int k = 0; k < n; k++) {
    // Berechne D<sup>k</sup>:
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        if (D[i][j] > D[i][k] + D[k][j]) {
            D[i][j] = D[i][k] + D[k][j];
            P[i][j] = P[k][j];
    }
}
```

D^{-1}						P^{-1}				
0	∞	4	-2	8		-	-	0	0	-
3	0	8	2	8		1	1	-	1	-
8	4	0	8	- 3		-	2	-	-	2
∞	∞	4	0	0		-	1	3	-	3
3	-1	∞	∞	0		4	4	-	-	-
D^0					_	\mathbf{P}^0				
D°]	P°				
\mathbf{D}^{1}	Τ	Π	ı		1	\mathbf{P}^1		•		Ī
D^2						\mathbf{p}^2				
D^2]	P^2				
D^2						P ²				
D ²						P ²				
D^2						P ²				
D ²						P ²				
D^2 D^3						P ²				
						P ³				
D ³										
D ³						P ³				
D ³						P ³				
D ³						P ³				

Aufgabe 3 Tiefensuchbaum (12 Punkte)

Gegeben sei folgender ungerichteter Graph:

- a) Geben Sie alle Artikulationspunkte an.
- b) Geben Sie den Tiefensuchbaum für diesen Graph mit Wurzel 1 an. Betrachten Sie die Nachbarn eines Knotens in der durch die Knotennummerierung gegebenen Reihenfolge. Berücksichtigen Sie, dass der Tiefensuchbaum auch sogenannte Rückwärtskanten enthält.

C) Warum sind die in a) angegebenen Knoten Artikulationspunkte? Argumentieren Sie über die Charakterisierung von Artikulationspunkten (APen) in einem Tiefensuchbaum (TSB).

Aufgabe 4 Flüsse in Netzwerke (12 Punkte)

Im folgenden Graphen ist jede Kante mit ihrer Kapazität markiert. Bestimmen Sie mit dem Algorithmus von Ford-Fulkerson einen maximalen Fluss von der Quelle q zur Senke s. Wählen Sie immer den Weg von q nach s mit größter Flusserweiterung und zeichnen Sie ihn ein.

Aktueller Fluss

q S

Residualgraph:

