Билет 10. Принцип максимума для уравнения теплопроводности. Теоремы единственности и устойчивости для смешанной задачи для уравнения теплопроводности. Общее решение уравнения Лапласа в полярных координатах.

1 Принцип максимума для уравнения теплопроводности. Теоремы единственности и устойчивости для смешанной задачи для уравнения теплопроводности.

1.1 Принцип максимума для уравнения теплопроводности.

Рассмотрим множество $Q_T = \{(x,t): (0;l) \times (0;T]\}$. Обозначим $\Gamma = \overline{Q_T} \setminus Q_T$.

Теорема. (принцип максимума) Пусть $u(x,t) \in C[\overline{Q_T}], u_t, u_{xx} \in C[Q_t]$ и $u_t = a^2 u_{xx}$. Тогда

$$\max_{\overline{Q_T}} u(x,t) = \max_{\Gamma} u(x,t)$$

$$\min_{\overline{O_T}} u(x,t) = \min_{\Gamma} u(x,t)$$

Доказательство. \triangleleft Сначала докажем утверждение для max. Предположим противное: пусть $\max_{\Gamma} u(x,t) = M$ и \exists точка $(x_0,t_0) \in Q_T$ такая, что $u(x_0,t_0) = M + \varepsilon$, $\varepsilon > 0$.

Тогда введем v(x,t):

$$v(x,t) = u(x,t) - \frac{\varepsilon}{2T}(t-t_0) \tag{1}$$

Очевидно, что $v(x_0,t_0)=u(x_0,t_0)=M+\varepsilon$. Так как $|\frac{\varepsilon}{2T}(t-t_0)|\leq \frac{\varepsilon}{2}$ при $t\in [0,T]$, то:

$$\max_{\Gamma} v(x,t) = \max_{\Gamma} \{u(x,t) - \frac{\varepsilon}{2T}(t-t_0)\} \leqslant M + \frac{\varepsilon}{2}$$

Отсюда следует, что \exists точка $(x_1,t_1) \in Q_T$, в которой v(x,t) достигает максимума. Тогда по необходимому условию максимума дважды дифференцируемой функции получаем:

$$\begin{cases} v_t(x_1, t_1) \geqslant 0 \\ v_{xx}(x_1, t_1) \leqslant 0 \end{cases} \tag{2}$$

Продифференцируем (1) отдельно один раз по t и отдельно два раза по x. Получим:

$$v_t(x,t) = u_t(x,t) - \frac{\varepsilon}{2T} \tag{3}$$

$$v_{xx}(x,t) = u_{xx}(x,t)$$

Из полученных равенств и системы (2) следует, что:

$$u_t(x_1, t_1) = v_T(x_1, t_1) + \frac{\varepsilon}{2T} > 0 \geqslant a^2 v_{xx}(x_1, t_1) = a^2 u_{xx}(x_1, t_1)$$

 $(B\ (3)\ neperecut \ \frac{\varepsilon}{2T} > 0.\$ Из $(2)\ cnedyem,\ что\ v_t(x_1,t_1) \ge v_{xx}(x_1,t_1).\$ Во все выражения подставили $(x_1,t_1).$ Домножили на $a^2>0$ производные по $x,\$ что не влияет на знак выражения.)

Получим $u_t(x_1,t_1)>a^2u_{xx}(x_1,t_1)$, что противоречит уравнению теплопроводности. Первое утверждение доказано.

Второе утверждение доказывается аналогично заменой $\omega(x,t)=-u(x,t)$ и рассмотрением первого утверждения для $\omega(x,t)$

Теорема доказана. ⊳

.2 Теорема единственности решения смешанной задачи для уравнения теплопроводности.

Смешанная задача для уравнения теплопроводности:

$$\begin{cases} u_t(x,t) = a^2 u_{xx}(x,t), \ 0 \leqslant x \leqslant l, 0 < t \leqslant T \\ u(0,t) = \mu_1(t) \\ u(l,t) = \mu_2(t) \\ u(x,0) = \phi(x) \end{cases}$$
(4)

 $\forall T > 0$. В общем случае $T = +\infty$

Теорема. $(e\partial u n cm e n ho cm u)$ Пусть $u_1(x,t), u_2(x,t)$ являются решениями одной и той же задачи (4) и $u_i(x,t) \in C[\overline{Q_T}]$ и $(u_i)_t'(x,t), (u_i)_{xx}''(x,t) \in C[Q_T], \ \forall T>0, i=1,2.$ Тогда $u_1(x,t)\equiv u_2(x,t).$

Доказательство. \triangleleft Введем функцию $v(x,t)=u_1(x,t)-u_2(x,t)$ такую, что $v(x,t)\in C[\overline{Q_T}], v_t,v_{xx}\in C[Q_t]$. Она является решением краевой задачи:

$$\begin{cases} v_t(x,t) = a^2 u_{xx}(x,t), \ 0 \leqslant x \leqslant l, 0 < t \leqslant T \\ v(0,t) = 0 \\ v(l,t) = 0 \\ v(x,0) = 0 \end{cases}$$

Для v(x,t) выполнены все условия принципа максимума. Тогда:

$$\begin{cases} \underset{\overline{Q_T}}{max} \ v(x,t) = \underset{\Gamma}{max} \ v(x,t) = 0 \\ \underset{\overline{Q_T}}{min} \ v(x,t) = \underset{\Gamma}{min} \ v(x,t) = 0 \end{cases} \Rightarrow v(x,t) \equiv 0 \Rightarrow u_1(x,t) \equiv u_2(x,t)$$

Теорема доказана. ⊳

3 Теорема устойчивости решения смешанной задачи для уравнения теплопроводности

Лемма. Если $u_1(x,t), u_2(x,t)$ такие, что $u_i(x,t) \in C[\overline{Q_T}]$ и $(u_i)_t'(x,t), (u_i)_{xx}''(x,t) \in C[Q_T], \ \forall T>0, i=1,2$ и являются решениями разных задач (4), причем все граничные условия задачи для $u_1(x,t)$ больше или равны граничным условиям задачи для $u_2(x,t)$, то $u_1(x,t) \geqslant u_2(x,t)$ в $\overline{Q_T}$.

Доказательство. \triangleleft Введем функцию $v(x,t)=u_1(x,t)-u_2(x,t)$ такую, что $v(x,t)\in C[\overline{Q_T}], v_t,v_{xx}\in C[Q_t]$. Она является решением краевой задачи:

$$\begin{cases} v_t(x,t) = a^2 u_{xx}(x,t), \ 0 \leqslant x \leqslant l, 0 < t \leqslant T \\ v(0,t) \geqslant 0 \\ v(l,t) \geqslant 0 \\ v(x,0) \geqslant 0 \end{cases}$$

Для v(x,t) выполнены все условия принципа максимума. Тогда:

$$\min_{\overline{Q_T}} v(x,t) = \min_{\Gamma} v(x,t) \geqslant 0 \Rightarrow u_1(x,t) \geqslant u_2(x,t), \ \forall (x,y) \in \overline{Q_T}$$

Лемма доказана. ⊳

Теорема. (устойчивости) Если $u_1(x,t), u_2(x,t)$ такие, что $u_i(x,t) \in C[\overline{Q_T}]$ и $(u_i)_t'(x,t), (u_i)_{xx}''(x,t) \in C[Q_T], \ \forall T > 0, i = 1, 2$ и являются решениями разных задач (4), причем все граничные условия двух задач различаются по модулю $< \varepsilon \ (|u_1(0,t)-u_2(0,t)| \leqslant \varepsilon$ и так для каждого граничного условия), то

$$\max_{\overline{Q_T}} |u_1(x,t) - u_2(x,t)| \leqslant \varepsilon$$

Доказательство. \triangleleft Введем функцию $v(x,t)=u_1(x,t)-u_2(x,t)$ такую, что $v(x,t)\in C[\overline{Q_T}], v_t,v_{xx}\in C[Q_t]$. Тогда $v_t(x,t)=a^2v_{xx}(x,t)$ и для нее выполняются все условия принципа максимума. Получим:

$$\max_{\overline{\Gamma}} |v(x,t)| \leqslant \varepsilon$$

То есть $-\varepsilon \geqslant v(x,t) \leqslant \varepsilon$ на Γ (границе Q_T). Применив лемму к парам функций $(-\varepsilon,v(x,t))$ и $(v(x,t),\varepsilon)$, получим:

$$-\varepsilon \geqslant u_1(x,t) - u_2(x,t) \leqslant \varepsilon \ \forall (x,y) \in \overline{Q_T}$$

Теорема доказана. ⊳

Полученное утверждение означает, что из близости исходных данных следует близость полученных решений.

2 Общее решение уравнения Лапласа в полярных координатах.

Уравнение Лапласа: $\Delta u = 0 \Leftrightarrow \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial u}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2} = 0$ (оператор Лапласа для полярных координат) Функция $u(r,\phi)$ ищется в виде: $\sum_{n=0}^{\infty} R_n(r) \Phi_n(\phi)$ Подставим R(r) и $\Phi(\phi)$ в оператор Лапсласа для полярных координат:

$$\frac{1}{r}\frac{d}{dr}(r\frac{dR}{dr})\Phi + \frac{1}{r^2}R\frac{d^2\Phi}{d\phi^2} = 0 \mid :\Phi \implies \frac{r(rR')'}{R} + \frac{\Phi''}{\Phi} = 0$$

Решаем два уравнения для $R_n(r)$ и $\Phi_n(\phi)$. Не забыть про n=0. В итоге получим общее решение для $u(r,\phi)$:

$$u(r,\phi) = a_0 + b_0 \ln r + \sum_{n=1}^{\infty} r^n (a_n \cos n\phi + b_n \sin n\phi) + \sum_{n=1}^{\infty} \frac{1}{r^n} (c_n \cos n\phi + d_n \sin n\phi)$$