Gil Michael E. Regalado BS-ECE IV

CVSL Activity

Cascode Voltage Switch Logic or differential cascode voltage switch logic improves switching times of logic circuits by employing positive feedback.

In this exercise we consider the implementation of, $Z=\overline{A}+BC$. This will produce a differential opposite of $\overline{Z}=\overline{\overline{A}+BC}$. The following figure shows the circuit diagram. A SPICE script will be created and simulated using 0.18u architecture with 1.8V VDD and logic High.

It has the following truth table.

А	В	С	Z	Z!
0	0	0	1	0
1	0	0	0	1
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	1	0
1	1	1	1	0

The following is the spice script:

```
CVSL
.PARAM LMIN=0.18u
.PARAM WFACTOR=1.5
.PARAM WMIN='LMIN*WFACTOR'
.lib "C:\synopsys\rf018.1" TT
.global vdd
.option post
Cout z Z 0 100f
Cout_!z Z! 0 100f
Vdd vdd 0 1.8
Vin a in a 0 pulse (1.8 0 1.0p 0 0 200n 400n)
Vin_b in_b 0 pulse (1.8 0 1.0p 0 0 400n 800n)
Vin_c in_c 0 pulse (1.8 0 1.0p 0 0 800n 1600n)
Vin_!a in_!a 0 pulse (0 1.8 1.0p 0 0 200n 400n)
Vin_!b in_!b 0 pulse (0 1.8 1.0p 0 0 400n 800n)
Vin !c in !c 0 pulse (0 1.8 1.0p 0 0 800n 1600n)
X_cvsl in_a in_b in_c in_!a in_!b in_!c Z Z! cvsl
.subckt cvsl in_a in_b in_c in_!a in_!b in_!c Z Z!
   MN1 Z! in b
                 K 0
                          nch l=LMIN w='WMIN*2'
   MN2 Z! in_!a
                          nch l=LMIN w=WMIN
                  0
                      0
                          nch l=LMIN w='WMIN*2'
                  0 0
   MN3 K in c
   MN4 J in !b
                  0 0
                          nch l=LMIN w=WMIN
   MN5 Z in_a
                  J
                          nch l=LMIN w='WMIN*2'
   MN6 J in_!c
                  0
                          nch l=LMIN w=WMIN
   MP1 Z Z!
                  vdd vdd pch l=LMIN w='WMIN*1'
   MP2 Z! Z
                  vdd vdd pch l=LMIN w='WMIN*1'
.ends
.op
.tran 1p 1600n
.end
```

Using Cosmoscope the simulation results are shown:

If we Zoon a little bit we can see the transition of the logic from 0 to 1.8V

We have determined that the response time for this logic circuit is around:

$$805.79n - 800.4n = 5.39n$$