LISTA DE EXERCÍCIO

1. A fórmula para calcular a área de uma circunferência é: $area = \pi \cdot raio^2$. Considerando para este problema que $\pi = 3.14159$:

Efetue o cálculo da área, elevando o valor de raio ao quadrado e multiplicando por $\boldsymbol{\pi}.$

R:

2. Leia dois valores inteiros. A seguir, calcule o produto entre estes dois valores e atribua esta operação à variável PROD. A seguir mostre a variável PROD com mensagem correspondente.

Entrada

O arquivo de entrada contém 2 valores inteiros.

Saída

Imprima a mensagem "PROD" e a variável PROD conforme exemplo abaixo, com um espaço em branco antes e depois da igualdade.

Exemplos de Entrada	Exemplos de Saída
3	PROD = 27
9	
	PROD = -300
10	
0	PROD = 0
9	

R:

3. Leia 3 valores, no caso, variáveis A, B e C, que são as três notas de um aluno. A seguir, calcule a média do aluno, sabendo que a nota A tem peso 2, a nota B tem peso 3 e a nota C tem peso 5. Considere que cada nota pode ir de 0 até 10.0, sempre com uma casa decimal.

Entrada

O arquivo de entrada contém 3 valores com uma casa decimal, de dupla precisão (double).

Imprima a mensagem "MEDIA" e a média do aluno conforme exemplo abaixo, com 1 dígito após o ponto decimal e com um espaço em branco antes e depois da igualdade

Exemplos de Entrada	Exemplos de Saída
5.0	MEDIA = 6.3
6.0	
7.0	
5.0	MEDIA = 9.0
10.0	
10.0	
10.0	MEDIA = 7.5
10.0	
5.0	

R:

4. Escreva um programa que leia o número de um funcionário, seu número de horas trabalhadas, o valor que recebe por hora e calcula o salário desse funcionário. A seguir, mostre o número e o salário do funcionário, com duas casas decimais.

Entrada

O arquivo de entrada contém 2 números inteiros e 1 número com duas casas decimais, representando o número, quantidade de horas trabalhadas e o valor que o funcionário recebe por hora trabalhada, respectivamente.

Saída

Imprima o número e o salário do funcionário, conforme exemplo fornecido, com um espaço em branco antes e depois da igualdade. No caso do salário, também deve haver um espaço em branco após o \$.

Exemplos de Entrada	Exemplos de Saída
25	NUMBER = 25
100	SALARY = U\$ 550.00
5.50	
1	NUMBER = 1
200	SALARY = U\$ 4100.00
20.50	
6	NUMBER = 6
145	SALARY = U\$ 2254.75
15.55	

R:

5. Neste problema, deve-se ler o código de uma peça 1, o número de peças 1, o valor unitário de cada peça 1, o código de uma peça 2, o número de peças 2 e o valor unitário de cada peça 2. Após, calcule e mostre o valor a ser pago.

Entrada

O arquivo de entrada contém duas linhas de dados. Em cada linha haverá 3 valores, respectivamente dois inteiros e um valor com 2 casas decimais.

Saída

A saída deverá ser uma mensagem conforme o exemplo fornecido abaixo, lembrando de deixar um espaço após os dois pontos e um espaço após o "R\$". O valor deverá ser apresentado com 2 casas após o ponto.

Exemplos de Entrada	Exemplos de Saída
12 1 5.30 16 2 5.10	VALOR A PAGAR: R\$ 15.50
13 2 15.30 161 4 5.20	VALOR A PAGAR: R\$ 51.40
1 1 15.10 2 1 15.10	VALOR A PAGAR: R\$ 30.20

- 6. Escreva um programa que leia três valores com ponto flutuante de dupla precisão: A, B e C. Em seguida, calcule e mostre:
 - a) a área do triângulo retângulo que tem A por base e C por altura.
 - b) a área do círculo de raio C. (pi = 3.14159)
 - c) a área do trapézio que tem A e B por bases e C por altura.
 - d) a área do quadrado que tem lado B.
 - e) a área do retângulo que tem lados A e B.

R:

7. Faça um programa que leia três valores e apresente o maior dos três valores lidos seguido da mensagem "é o maior". Utilize a fórmula:

```
MaiorAB = \frac{(a+b+abs(a-b))}{2}
```

Obs.: a fórmula apenas calcula o maior entre os dois primeiros (a e b). Um segundo passo, portanto é necessário para chegar no resultado esperado.

Entrada

O arquivo de entrada contém três valores inteiros.

Saída

Imprima o maior dos três valores seguido por um espaço e a mensagem "eh o maior".

Exemplos de Entrada	Exemplos de Saída
7 14 106	106 eh o maior
217 14 6	217 eh o maior

R:

8. Leia os quatro valores correspondentes aos eixos x e y de dois pontos quaisquer no plano, p1(x1, y1) e p2(x2, y2) e calcule a distância entre eles, segundo a fórmula:

Distância =
$$\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

Entrada

O arquivo de entrada contém duas linhas de dados. A primeira linha contém dois valores de ponto flutuante: x1 y1 e a segunda linha contém dois valores de ponto flutuante x2 y2.

Saída

Calcule e imprima o valor da distância segundo a fórmula fornecida.

Exemplo de Entrada	Exemplo de Saída
1.0 7.0	4.4721
5.0 9.0	
-2.5 0.4	16.1484
12.1 7.3	
2.5 -0.4	16.4575
-12.2 7.0	

```
import Text.Printf ( printf )
```

9. Leia um valor inteiro N. Este valor será a quantidade de valores que serão lidos em seguida. Para cada valor lido, mostre uma mensagem em inglês dizendo se este valor lido é par (EVEN), ímpar (ODD), positivo (POSITIVE) ou negativo (NEGATIVE). No caso do valor ser igual a zero (0), embora a descrição correta seja (EVEN NULL), pois por definição zero é par, seu programa deverá imprimir apenas NULL.

Exemplo de Entrada	Exemplo de Saída
4	ODD NEGATIVE
-5	NULL
0	ODD POSITIVE
3	EVEN NEGATIVE
-4	

```
import Text.Printf
-- rem - retorna a divisão inteira dos argumentos
-- abs - retorna um valor absoluto de um número
isPositive :: Int -> String
isPositive n = if (n >= 0) then "POSITIVE" else "NEGATIVE"
isOdd :: Int -> String
isOdd n = if (rem (abs(n)) 2 == 1) then "EVEN " else "ODD "
myodd :: Integer -> Bool
myodd n = rem (abs(n)) 2 == 1
main :: IO ()
main = do a <- readLn :: IO Int
           if (a /= 0) then print((isOdd a) ++ (isPositive a)) else
print("NULL")
          b <- readLn :: IO Int
           if (b /= 0) then print((isOdd b) ++ (isPositive b)) else
print("NULL")
          c <- readLn :: IO Int
           if (c /= 0) then print((isOdd c) ++ (isPositive c)) else
print("NULL")
```

```
d <- readLn :: IO Int
    if (d /= 0) then print((isOdd d) ++ (isPositive d)) else
print("NULL")</pre>
```

10. Leia 6 valores. Em seguida, mostre quantos destes valores digitados foram positivos. Na próxima linha, deve-se mostrar a média de todos os valores positivos digitados.

```
module Main where
import Text.Printf
letPositive :: Double -> Double
letPositive n = if n >=0 then n else 0
sumArr :: [Double] -> Double
sumArr[] = 0
sumArr (a:x) = a + sumArr x
main :: IO ()
main = do a <- readLn :: IO Double
          b <- readLn :: IO Double
          c <- readLn :: IO Double
          d <- readLn :: IO Double
          e <- readLn :: IO Double
          f <- readLn :: IO Double
          let allPositives = map letPositive [a, b, c, d, e, f]
          print(sumArr allPositives)
          print $ sumArr allPositives / 6
```