# Машинное обучение

Лекция 7 Композиции алгоритмов. Бэггинг.

Михаил Гущин

mhushchyn@hse.ru



#### Эволюция решающих деревьев



Решающие деревья



Случайный лес решающих деревьев





## Классификаторы



#### Задача

#### Нам дано:

- Набор данных X, y
- Несколько классификаторов

#### Наши задачи:

- Как улучшить прогнозы классификаторов?
- Можно ли объединить разные классификаторы в одну модель?







## Бэггинг (bagging)



#### Подвыборки

Как создать разные подвыборки имеющихся данных?

Два наиболее популярных способа:

- Случайная подвыборка без повторений (train-test split)
  - Случайным образом выбираем объекты из всей выборки
  - Размер подвыборки меньше самой выборки
- Бутстрап
  - Случайная подвыборка с повторениями
  - Размер подвыборки совпадает с размером всей выборки

## Случайная подвыборка

#### **Splitting Data for Machine Learning**



### Бутстрап (bootstrap)



© BY

This work by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

### Алгоритм бэггинга

- ightharpoonup Дана выборка данных X, y
- ▶ Для k = 1 ... K:
  - Методом **бутстрапа** генерируем подвыборку  $X^{(k)}$ ,  $y^{(k)}$
  - Обучаем модель классификации или регрессии  $b_k(x)$  на  $X^{(k)}$ ,  $y^{(k)}$
- Собираем композицию моделей:

$$\widehat{y}(x) = \frac{1}{K} \sum_{k=1}^{K} b_k(x)$$







Источник: https://inria.github.io/scikit-learn-mooc/python\_scripts/ensemble\_bagging.html



## Случайный лес (random forest)



## Алгоритм случайного леса

- ightharpoonup Дана выборка данных  $X \in R^{(n \times d)}$ ,  $y^n$
- ▶ Для k = 1 ... K:
  - Методом **бутстрапа** генерируем подвыборку  $X^{(k)}$ ,  $y^{(k)}$
  - Обучаем решающее дерево классификации или регрессии  $b_k(x)$  на  $X^{(k)}$ ,  $y^{(k)}$
  - При каждом разбиении дерева выбирается m случаных признаков из d.
    Оптимальное разбиение ищется только среди них.
- Собираем композицию моделей:

$$\hat{y}(x) = \frac{1}{K} \sum_{k=1}^{K} b_k(x)$$



### Бутстрап (bootstrap)



This work by Sebastian Raschka is licensed under a Creative Commons Attribution 4.0 International License.

## Out-of-Bag (OOB) ошибка

- Строим деревья на бутстрап подвыборках
- Объекты, которые не попали в подвыборку, можно использовать для тестирования дерева
- ightharpoonup Для каждого объекта  $x_i$  можно найти деревья, которые были обучены без него, и посчитать по их прогнозам Out-of-Bag ошибку:

$$OOB = \sum L(y_i, \frac{1}{\sum_{k=1}^{K} [x_i \notin X^{(k)}]} \sum_{k=1}^{K} [x_i \notin X^{(k)}] b_k(x_i))$$

где L(y, z) – функция потерь или метрика качества

#### Важные замечания

- Бэггинг можно применять для любых алгоритмов
- Лучше всего он работает на слабых моделях
- Как правило, в композиции объединяют переобученные модели



#### Вопросы

- Почему композиции алгоритмов работают?
- Почему прогноз композиции лучше, чем прогнозы отдельных моделей?
- Почему используют переобученные модели?

#### Задача

- Рассмотрим задачу регрессии с функцией потерь MSE
- ightharpoonup Пусть ответ y(x) для заданного x некоторая случайная величина:

$$y(x) = f(x) + \epsilon$$

- где  $\epsilon \sim N(0, \sigma^2)$
- ightharpoonup Обозначим прогноз нашей модели a(x)
- ightharpoonup Посчитаем мат. ожидание ошибки прогноза для заданного x:

$$Error = E[(a(x) - y(x))^{2}]$$

#### Расчет ошибки

$$Error = E\left[\left(a(x) - y(x)\right)^{2}\right] =$$

$$= E[(a(x) - f(x) - \epsilon + E[a(x)] - E[a(x)])^{2}] =$$

$$= E[(a(x) - E[a(x)])^{2}] + (E[a(x)] - f(x))^{2} + \sigma^{2} =$$

 $= Variance + Bias^2 + Noise$ 

## Bias-Variance decomposition

- ▶ Variance (разброс) разброс ответов обученных алгоритмов относительно среднего ответа.
- Bias (смещение) отклонение среднего ответа алгоритма от идеального ответа
- Noise (шум) шум в данных







## Переобучение



#### Polynomial models of different degrees fit on random data







Источник: https://allenkunle.me/bias-variance-decomposition

## Эффект регуляризации

► Большой коэффициент регуляризации приводит к росту bias и снижению variance

 Маленький коэффициент регуляризации приводит к снижению bias и росту variance



#### Композиции алгоритмов

$$Error = E[(a(x) - E[a(x)])^{2}] + (E[a(x)] - f(x))^{2} + \sigma^{2}$$

- ightharpoonup Пусть a(x) композиция алгоритмов
- ► Тогда  $a(x) \approx E[a(x)]$
- Тогда ошибка для композиции:

$$Error \approx \mathbf{0} + (\mathbf{E}[\mathbf{a}(\mathbf{x})] - \mathbf{f}(\mathbf{x}))^2 + \sigma^2$$



## Blending



Layer 1 Layer 2

Источник: https://www.codeproject.com/Tips/4354591/Step-by-Step-Guide-to-Implement-Machine-Learning-5

## Stacking



Layer 1

Источник: https://www.codeproject.com/Tips/4354591/Step-by-Step-Guide-to-Implement-Machine-Learning-5

# Заключение

#### Вопросы

- ► Что такое композиция алгоритмов машинного обучения? Покажите, что в предположении некоррелированных ошибок базовых алгоритмов, ошибка композиции будет в N раз меньше, чем средняя ошибка базовых алгоритмов, где N число базовых алгоритмов.
- Что такое бэггинг? Что такое случайный лес? Что такое out-of-bag ошибка, для чего она используется?