NOTES ON THE THEORY OF D-MODULES

YAOZE ZOU

This is not a self-contained note. It should be used as a supplement for the book [Kas03]. We fill the detail and prove some propositions whose proof are omitted in the book. We also try to understand some complicated material by considering some examples of Weyl algebra.

Notations

X: complex manifold (or smooth variety)

 \mathcal{O}_X : sheaf of holomorphic functions on X (or regular functions on X)

 \mathcal{D}_X : sheaf of ring of differential operators on X

 Θ_X : sheaf of vector fields on X

1. Linear PDEs

In the chapter 6 of [Cou95], we learned how to build the associated *D*-modules for a system of PDEs that has polynomial solutions. We extend this idea to more general PDEs:

$$\sum_{j=1}^{p} P_{ij}(x,\partial)u_{j} = 0, \ i = 1, \dots q,$$

where $P_{ij}(x,\partial) = \sum a_{\alpha}(x)\partial^{\alpha}$ are the linear partial differential operators.

Let D be the ring of linear differential operators and $P: D^{\oplus q} \to D^{\oplus p}$ given by

$$(Q_1, \dots, Q_q) \mapsto (\sum_{i=1}^q Q_i P_{i1}, \dots, \sum_{i=1}^q Q_i P_{ip}).$$

The cokernel $M = D^{\oplus p}/\text{Im } P$ is the D-module corresponding to the system of PDEs. In particular, if $D = D(K[x_1, \ldots, x_n]) = K[x, \partial] = A_n$ and $P : A_n \to A_n$ by $Q \mapsto \sum QP_i$, then

$$M = A_n / \sum A_n P_i.$$

Let F be the space where we want to find solutions. We regard F as a left D-module. Then

$$\mathcal{H}om_D(D^{\oplus p}, F) = \bigoplus \mathcal{H}om_D(D, F) = F^{\oplus p} = \{(u_1, \dots u_p) : u_1, \dots, u_p \in F\}.$$

Consider the finite presentation of M,

$$D^{\oplus q} \to D^{\oplus p} \to M \to 0.$$

By the left exactness of $\mathcal{H}om_D$,

$$0 \to \mathcal{H}om_D(M, F) \to \mathcal{H}om_D(D^{\oplus p}, F) \xrightarrow{\bar{P}} \mathcal{H}om_D(D^{\oplus q}, F).$$

Thus,

$$\mathcal{H}om_D(M,F) = \text{Ker } \bar{P} = \{(u_1, \dots, u_p) \in F^{\oplus p} : \sum_i P_{ij} u_i = 0\}.$$

Remark. The map \bar{P} can be viewed as P by the following correspondences

$$\mathcal{H}om_D(D^{\oplus p}, F) \longrightarrow \mathcal{H}om_D(D^{\oplus q}, F)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$F^{\oplus p} \longrightarrow F^{\oplus q}$$

Hence, the solution space of the system of linear PDEs is $\mathcal{H}om_D(M, F)$.

2. The Category of D-modules

This section correspond to chapter 1 of [Kas03]. The goal is to prove the equivalence between the category $\operatorname{Mod}(\mathcal{D}_X)$ of left \mathcal{D}_X -modules and the category $\operatorname{Mod}(\mathcal{D}_X^{\operatorname{op}})$ of right \mathcal{D}_X -modules.

Let \mathcal{F}, \mathcal{G} be \mathcal{O}_X -modules.

Definition 2.1. A \mathbb{C} -linear sheaf homomorphism $f: \mathcal{F} \to \mathcal{G}$ is called a differential homomorphism if for each $s \in \mathcal{F}$ there exists finitely many $P_j \in \mathcal{D}_X$ and $v_j \in \mathcal{G}$ such that

$$f(as) = \sum_{j} P_j(a)v_j$$

for all $a \in \mathcal{O}_X$.

Let $\mathcal{D}iff(\mathcal{F},\mathcal{G})$ be the sheaf of differential homomorphisms from \mathcal{F} to \mathcal{G} . Note that $\mathcal{D}_X = \mathcal{D}iff(\mathcal{O}_X, \mathcal{O}_X)$.

Proposition 2.2. There is an isomorphism

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) \xrightarrow{\sim} \mathcal{D}iff(\mathcal{F},\mathcal{G}).$$

To prove Corollary 1.4, we first state a well-known theorem.

Lemma 2.3. (Adjoint Associativity) Let R and S be rings and A_R , RB_S , C_S ,-bimodules. Then there is an isomorphism of abelian groups

$$\alpha: \mathcal{H}om_S(A \otimes_R B, C) \xrightarrow{\sim} \mathcal{H}om_R(A, \mathcal{H}om_S(B, C)),$$

defined for each $f: A \otimes_R B \to C$ by

$$((\alpha f)(a))(b) = f(a \otimes b).$$

Proof. See [Hun89].

Corollary 2.4 (Corollary 1.4).

$$\mathcal{H}om_{\mathcal{D}_{X}^{op}}(\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}, \mathcal{G} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}) \simeq \mathcal{D}iff(\mathcal{F}, \mathcal{G}).$$

Proof. It suffices to show that

$$\mathcal{H}om_{\mathcal{D}_{X}^{op}}(\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}, \mathcal{G} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}) \simeq \mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{G} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}).$$

Since the right \mathcal{D}_X -modules induces left D_X^{op} -modules,

$$\mathcal{H}om_{\mathcal{D}_{X}^{op}}(\mathcal{D}_{X},\mathcal{G}\otimes_{\mathcal{O}_{X}}\mathcal{D}_{X})\simeq\mathcal{H}om_{\mathcal{D}_{X}}(\mathcal{D}_{X},\mathcal{G}\otimes_{\mathcal{O}_{X}}\mathcal{D}_{X}).$$

By the adjoint associativity,

$$\mathcal{H}om_{\mathcal{D}_{X}^{op}}(\mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}, \mathcal{G} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}) \simeq \mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{H}om_{\mathcal{D}_{X}^{op}}(\mathcal{D}_{X}, \mathcal{G} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}))$$

$$\simeq \mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{H}om_{\mathcal{D}_{X}}(\mathcal{D}_{X}, \mathcal{G} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}))$$

$$\simeq \mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{G} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X})$$

We talk about the invertible modules. The references are [Eis95] §11.3 and [Ati94] Chapter 9.

Definition 2.5. Let R be a ring and I be an R-module. Then I is invertible if I is finitely generated and locally free of rank 1; that is, for all prime ideals \mathfrak{p} of R, $I_{\mathfrak{p}} \cong R_{\mathfrak{p}}$.

Definition 2.6. Let S be the set of non zero-divisors, and $K(R) = S^{-1}R$ be the total quotient ring of R. An R-submodule I of K(R) is a fractional ideal if there exists $r \in R$ such that $rI \subset R$.

Theorem 2.7. ([Eis95] Theorem 11.6) Let R be a noetherian ring.

- (a) If I is an R-module, then I is invertible iff the natural map $\mu: I^* \otimes I \to R$ is an isomorphism.
- (b) Every invertible module is isomorphic to a fractional ideal of R. Every invertible fractional ideal contains a nonzerodivisor of R.
- (c) If $I, J \subset K(R)$ are invertible modules, then the natural maps $I \otimes J \to IJ$, taking $s \otimes t$ to st, and $I^{-1}J \to \operatorname{Hom}_R(I,J)$, taking $t \in I^{-1}J$ to $\varphi_t : I \to J$ defined by $\varphi_t(a) = ta$, are isomorphisms. In particular, $I^{-1} \cong I^*$.

There are some remarks about Theorem 11.6 in [Eis95]. First, every invertible module is a fractional ideal. Let $I^{-1} = \{s \in K(R) : sI \subset R\}$. Then invertibility is a "dual" property; that is, if I is invertible then so is I^{-1} . To see that $I^{-1} \cong I^* = \mathcal{H}om_R(I, R)$, notice that

$$I^{-1} \cong I^{-1} \otimes R \cong I^{-1}R \cong \mathcal{H}om_R(I,R).$$

As an application in [Kas03] page 9, let $R = \mathcal{O}, I = \mathcal{L}$. Then $\mathcal{L}^{\otimes -1} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X) = \mathcal{L}^*$ is invetible. By the theorem above, $\mathcal{L}^{\otimes -1} \otimes_{\mathcal{O}_X} \mathcal{L} \cong \mathcal{O}_X$.

To get $\mathcal{D}iff(\Omega_X, \Omega_X) = \Omega_X \otimes_{\mathcal{O}_X} \mathcal{D}_X \otimes_{\mathcal{O}_X} \Omega_X^{\otimes -1}$ in [Kas03] Proposition 1.10, we use Corollary 2.4 and hence

$$\begin{split} \mathcal{D}iff(\Omega_{X},\Omega_{X}) &= \mathcal{H}om_{\mathcal{D}_{X}^{op}}(\Omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}, \Omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}) \\ &= \mathcal{H}om_{\mathcal{O}_{X}}(\Omega_{X}, \mathcal{H}om_{\mathcal{D}_{X}^{op}}(\mathcal{D}_{X}, \Omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X})) \\ &= \mathcal{H}om_{\mathcal{O}_{X}}(\Omega_{X}, \Omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}) \\ &= \Omega_{X} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{\otimes -1} \end{split}$$

3. Coherent Modules

Definition 3.1. Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{M} be a sheaf of \mathcal{O}_X -module. We say that \mathcal{M} is of finite type if for each $x \in X$ there exists an open neighborhood U such that $\mathcal{M}|_U$ is generated by finitely many sections. i.e. there is a surjective morphism $\mathcal{O}_X^n \to \mathcal{M}|_U$ for some n.

Definition 3.2. We say that \mathcal{M} is a coherent \mathcal{O}_X -module if the following conditions hold:

(1) \mathcal{M} is of finite type

(2) for every open $U \subset X$ and every finite collection $s_i \in \mathcal{M}(U), i = 1, ..., n$, the kernel of the map $\mathcal{O}_X^n \to \mathcal{M}|_U$ is of finite type.

Let \mathcal{F} be a sheaf on X. The support of $s \in \mathcal{F}(U)$ is defined to be $\{P \in U \mid s_P \neq 0\}$, where s_P is the germ of s in the stalk \mathcal{F}_P . We can show that $\operatorname{Supp}(s)$ is a closed subset of U. For an element m in a module \mathcal{M} , we have $\operatorname{Supp}(m) = V(\operatorname{Ann} m)$. (See [Har77])

Let \mathcal{F} be a coherent \mathcal{O}_X -module and Z is a closed analytic subset of a manifold X. Since $\operatorname{Supp}(m) = V(\operatorname{Ann} m)$, we can see that $\Gamma_Z(\mathcal{F}) = \{u \in \mathcal{F} : \operatorname{Supp}(u) \subset Z\}$ is a finitely generated submodule and hence is coherent.

4. Cotangent Bundles

Let

$$F_m(\mathcal{D}_X) = \{ P \in \mathcal{D}_X : P = \sum_{\substack{|\alpha| \le m \\ \alpha \in \mathbb{Z}_{>0}^n}} a_{\alpha}(x) \partial_x^{\alpha} \}$$

where $|\alpha| = \alpha_1 + \ldots + \alpha_n$. Then $\{F_m\}$ is the *order filtration* of \mathcal{D}_X . It gives rise to the graded ring

$$\operatorname{Gr}^F(\mathcal{D}_X) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Gr}_n^F(\mathcal{D}_X)$$

where

$$\operatorname{Gr}_n^F(\mathcal{D}_X) = F_n(\mathcal{D}_X)/F_{n-1}(\mathcal{D}_X).$$

Note that $\operatorname{Gr}^F(\mathcal{D}_X) = \bigoplus_{\alpha} \mathcal{O}_X \partial_x^{\alpha}$ is a sheaf of commutative algebra over \mathcal{O}_X . Take a coordinate system (x_1, \ldots, x_n) . We introduce the symbols

$$\xi_i = \frac{\partial}{\partial x_i} \mod F_0(\mathcal{D}_X) = \mathcal{O}_X.$$

i.e. $\xi_i - \frac{\partial}{\partial x_i}$ is a holomorphic function. Denote by Θ_X the sheaf of vector fields on X. With local coordinates, $\Theta_X = \bigoplus_{i=1}^n \mathcal{O}_X \frac{\partial}{\partial x_i}$. Then, there is an isomorphism

$$\operatorname{Sym}_{\mathcal{O}_X}(\Theta_X) \xrightarrow{\sim} \mathcal{O}_X \otimes \mathbb{C}[\xi_1, \dots, \xi_n] = \mathcal{O}_X[\xi_1, \dots, \xi_n]$$

by $\frac{\partial}{\partial x_i} \to \xi_i$. Similarly, we can identify $\operatorname{Gr}^F(\mathcal{D}_X)$ with $\mathcal{O}_X[\xi_1,\ldots,\xi_n]$. We have thus obtained the following theorem.

Theorem 4.1. There is an isomorphism of graded rings

$$\operatorname{Sym}_{\mathcal{O}_X}(\Theta_X) \xrightarrow{\sim} \operatorname{Gr}^F(\mathcal{D}_X).$$

Consider the the ring homomorphisms

$$\sigma_m: F_m(\mathcal{D}_X) \to \mathrm{Gr}_m^F(\mathcal{D}_X) \subset \mathrm{Gr}^F(\mathcal{D}_X) \simeq \mathcal{O}_X[\xi_1, \dots, \xi_n]$$

given by

$$\sigma_m(P) = \sum_{|\alpha|=m} a_{\alpha} \xi^{\alpha} \in \operatorname{Sym}_{\mathcal{O}_X}^m(\Theta_X).$$

The image $\sigma_m(P)$ is call the *principal symbol* of P.

Let $\pi: T^*X \to X$ be the cotangent bundle. It induces a map $\mathcal{O}_{T^*X} \to \pi_* \mathcal{O}_{T^*X}$. We may regard ξ_1, \ldots, ξ_n as a coordinate system of T_x^*X . (see [THT07]) Indeed, if $\theta_x = \sum_j \xi_j dx^j \big|_x \in T_x^*X$, then

$$\xi_i(\theta_x) = \theta_x \left(\frac{\partial}{\partial x_i}\right) = \sum_j \xi_j dx^j \bigg|_x \left(\frac{\partial}{\partial x_i}\right) = \xi_i.$$

These ξ_1, \ldots, ξ_n gives the natural chart $(\pi^{-1}(U), \{\xi_i\})$ of T^*X . Hence, we have a canonical identification

$$\pi_* \mathcal{O}_{T^*X}(V) = \mathcal{O}_{T^*X}(\pi^{-1}(V)) \simeq \mathcal{O}_X[\xi_1, \dots, \xi_n]$$

as \mathcal{O}_X -algebras. Thus, we have the proved the following

Corollary 4.2. There exists isomorphisms of \mathcal{O}_X -algebras

$$\operatorname{Gr}^F(\mathcal{D}_X) \simeq \pi_* \mathcal{O}_{T^*X} \simeq \operatorname{Sym}_{\mathcal{O}_X}(\Theta_X).$$

Thus, for all $P \in F_m(\mathcal{D}_X)$ we can associate to it a regular function $\sigma_m(P)$ defined on the cotangent bundle T^*X .

Let $P \in F_{m_1}(\mathcal{D}_X)$, $Q \in F_{m_2}(\mathcal{D}_X)$. Then, $[P,Q] \in F_{m_1+m_2-1}(\mathcal{D}_X)$. This induces a map $\operatorname{Gr}_{m_1}^F(\mathcal{D}_X) \times \operatorname{Gr}_{m_2}^F(\mathcal{D}_X) \to \operatorname{Gr}_{m_1+m_2-1}^F(\mathcal{D}_X)$.

Given functions $f(x,\xi)$ and $g(x,\xi)$, set

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial \xi_i} \frac{\partial g}{\partial x_i} - \frac{\partial g}{\partial \xi_i} \frac{\partial f}{\partial x_i} \right).$$

Then,

$$\sigma_{m_1+m_2-1}([P,Q]) = \{\sigma_{m_1}(P), \sigma_{m_2}(Q)\}.$$

Let $p \in T^*X$ be a point. be Let ω_X be a 1-form (i.e. a section of $T^*(T^*X)$) on T^*X defined by $\omega_X(p) = \pi_X^*\omega_p$, where ω_p is a 1-form (i.e. a section of T^*X) at the point $\pi(p) \in X$. In local coordinates,

$$\omega_X = \sum_i \xi_i dx_i.$$

At every point f, the 2-form $\theta_X = d\omega_X$ gives an anti-symmetric bilinear form on $T_p(T^*X)$. This is nondegenerate. Let $H: T_p(T^*X) \xrightarrow{\sim} T_p(T^*X)$ be given by the paring

$$\langle \theta_X, v \wedge H(\eta) \rangle = \langle \eta, v \rangle$$

for $v \in T_p(T^*X), \eta \in T_p^*(T^*X)$. In local coordinates,

$$d\xi_i \xrightarrow{H} \frac{\partial}{\partial x_i}$$
$$dx_i \xrightarrow{H} -\frac{\partial}{\partial \xi_i}$$

In particular, $H_f = H(df)$ is a vector field on T^*X , which is called the Hamiltonian of f.

Definition 4.3. For functions f, g on T^*X , $\{f, g\} = H_f(g)$ is called the *Poisson bracket* of f and g.

Definition 4.4. Let X be a manifold, and θ be a closed 2-form on X that gives a nondegenerate anti-symmetric bilinear form on T_pX for every p. A tuple (X, θ) is called a *symplectic manifold*.

For example, (T^*X, θ_X) is a symplectic manifold. If X is the affine space \mathbb{C}^n , then $T^*X = \mathbb{C}^{2n}$. Let

$$\Omega = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}.$$

Given $u, v \in \mathbb{C}^{2n}$, define

$$\omega(u, v) = u\Omega v^t.$$

This is called the standard symplectic structure.

5. Characteristic Varieties

Definition 5.1. Let M be an R-module. The support of M is

$$Supp(M) = \{ \mathfrak{p} \in Spec(R) : M_{\mathfrak{p}} \neq 0 \}$$
$$= \{ \mathfrak{p} \in Spec(R) : \mathfrak{p} \supset Ann(M) \}$$

Lemma 5.2. If M is a finitely generated R-module, then

$$\operatorname{Supp}(M) = V(\operatorname{Ann}(M))$$

Let $\{F_m(\mathcal{M})\}\$ be a coherent filtration of a coherent \mathcal{D}_X -module \mathcal{M} . Set

$$\operatorname{Gr}^F(\mathcal{M}) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Gr}_n^F(\mathcal{M})$$

where

$$\operatorname{Gr}_n^F(\mathcal{D}_X) = F_n(\mathcal{M})/F_{n-1}(\mathcal{M}).$$

Then, $\operatorname{Gr}^F(\mathcal{M})$ is $\operatorname{Gr}^F(\mathcal{D}_X)$ -module.

Denote

$$\widetilde{\operatorname{Gr}^F}\mathcal{M} = \mathcal{O}_{T^*X} \otimes_{\pi^{-1}\operatorname{Gr}^F} \mathcal{D}_X \pi^{-1}\operatorname{Gr}^F \mathcal{M}.$$

This is an \mathcal{O}_{T^*X} -module. i.e. $\widetilde{}$ is an exact functor from $\operatorname{Mod}(\operatorname{Gr}^F(\mathcal{D}_X))$ to $\operatorname{Mod}(\mathcal{O}_{T^*X})$. Hence, we can define a variety in T^*X .

Definition 5.3. The characteristic variety of a coherent \mathcal{D}_X -module \mathcal{M} is

$$Ch(\mathcal{M}) = \operatorname{Supp}(\widetilde{\operatorname{Gr}^F \mathcal{M}}) = \operatorname{Supp}(\mathcal{O}_{T^*X} \otimes_{\pi^{-1}\operatorname{Gr}^F \mathcal{D}_X} \pi^{-1}\operatorname{Gr}^F \mathcal{M}).$$

Theorem 2.6 on [Kas03] implies this definition is valid. Denote

$$J_{\mathcal{M}} = \sqrt{\operatorname{Ann}_{\mathcal{O}_X}(\widetilde{\operatorname{Gr}^F \mathcal{M}})}.$$

By the lemma above,

$$\widetilde{\operatorname{Supp}(\operatorname{Gr}^F \mathcal{M})} = V(\operatorname{Ann}(\widetilde{\operatorname{Gr}^F \mathcal{M}})) = V(J_{\mathcal{M}}) \subset T^*X.$$

If U is an open set of X, then

$$\operatorname{Ch}(\mathcal{M}) \cap T^*U = \operatorname{Supp}(\mathcal{O}_{T^*U} \otimes_{\pi^{-1}\operatorname{Gr}^F \mathcal{D}_U} \pi^{-1}\operatorname{Gr}^F \mathcal{M}|_U)$$
$$= V(J_{\mathcal{M}(U)})$$
$$= \{ p \in T^*U : f(p) = 0 \text{ for all } f \in J_{\mathcal{M}(U)} \}.$$

Clearly, $Ch(\mathcal{M})$ is a closed subset.

If X is affine space \mathbb{A}^n , then

$$J_{\mathcal{M}} = \sqrt{\operatorname{Ann}(\mathcal{O}_{T^*X} \otimes_{\mathcal{O}_{T^*X}} \pi^{-1} \operatorname{Gr}^F(\mathcal{M}))} = \sqrt{\operatorname{Ann}_{\operatorname{Gr}^F \mathcal{D}_X}(\operatorname{Gr}^F(\mathcal{M}))} \subset T^*X = \mathbb{A}^{2n}.$$

Note that $\operatorname{Gr}^F \mathcal{D}_X = \operatorname{Gr}^F A_n \simeq k[y_1, \dots, y_{2n}]$. (See [Cou95])

We can further write

$$\operatorname{Ch}(\mathcal{M}) \cap T^*U = \bigcup_{\mathfrak{p} \in \operatorname{Supp}(\mathcal{M}(U))} \{ p \in T^*U : f(p) = 0 \text{ for all } f \in \mathfrak{p} \}.$$

Then,

$$\pi(\operatorname{Ch}(\mathcal{M})) = \bigcup_{\mathfrak{p} \in \operatorname{Supp}(\mathcal{M}(U))} \{ \pi(p) \in T^*U : f(p) = 0 \text{ for all } f \in \mathfrak{p} \}.$$

Thus, we obtain the following properties of $Ch(\mathcal{M})$.

Proposition 5.4. (Proposition 2.8)

$$\operatorname{Supp}(\mathcal{M}) = \pi(\operatorname{Ch}(\mathcal{M})).$$

Lemma 5.5. If J is a homogeneous ideal of a graded ring R, then \sqrt{J} is also homogeneous.

Proof. Let $a \in \sqrt{J}$, then $a^n \in J$ for some n. Write $a = a_0 + \cdots + a_s$. Then, $a^n = (a_0 + \cdots + a_s)^n \in J$. Clearly, $a_s^n \in J$ i.e. $a_s \in \sqrt{J}$. Thus, $a' = a - a_s \in \sqrt{J}$. Apply the same process to a'. By induction, $a_i \in \sqrt{J}$ for all i.

By the lemma, $J_{\mathcal{M}}$ is an homogeneous ideal. Thus, $\mathrm{Ch}(\mathcal{M})$ is a homogeneous closed set.

6. Involutivity

Suppose that a \mathcal{D}_X -module \mathcal{M} is generated by a single element u. Let $\mathcal{I} = \operatorname{Ann}(u) = \{P \in \mathcal{D}_X : Pu = 0\}$. Then $\mathcal{M} \simeq \mathcal{D}_X/\mathcal{I}$.

Introduce a filtration by

$$F_m(\mathcal{M}) = F_m(\mathcal{D}_X)u$$
$$F_m(\mathcal{I}) = \mathcal{I} \cap F_m(\mathcal{D}_X).$$

Then $\operatorname{Gr}^F \mathcal{M} = \operatorname{Gr}^F \mathcal{D}_X / \operatorname{Gr}^F \mathcal{I}$. Since $\sigma_m(P) \in \operatorname{Ann}(\operatorname{Gr}^F \mathcal{M})$ for $P \in F_m(\mathcal{I})$, we have

$$\operatorname{Ch}(\mathcal{M}) = \{ p \in T^*X : \sigma_m(P)(p) = 0 \text{ for all } m \text{ and for all } P \in F_m(\mathcal{I}) \}.$$

If $\mathcal{I} = \sum \mathcal{D}_X P_j$ with $P_j \in F_{m_j}(\mathcal{D}_X)$, then

$$\operatorname{Ch}(\mathcal{M}) \subset \bigcap_{j} \sigma_{m_j}(P_j)^{-1}(0).$$

The equality does not hold in general.

Definition 6.1. The generators $\{P_i\}$ is an involutive system of generators of \mathcal{I} if

$$\operatorname{Gr}^F \mathcal{I} = \sum (\operatorname{Gr}^F \mathcal{D}_X) \sigma_{m_j}(P_j).$$

Lemma 2.1 of [Kas03] gives a characterization of this definition.

In general, we have the following definition.

Definition 6.2. A closed subset V of T^*X is involutive if its defining ideal

$$I_V = \{ a \in \mathcal{O}_{T^*X} : a|_V = 0 \}$$

satisfies $\{I_V, I_V\} \subset I_V$.

If $\mathcal{M} = \mathcal{D}_X/\mathcal{I}$, then $\operatorname{Ch}(\mathcal{M}) = \{p \in T^*X : a(p) = 0 \text{ for all } a \in \operatorname{Gr}^F \mathcal{I}\}$. Conversely, suppose that $\operatorname{Gr}^F \mathcal{I} = \{a \in \operatorname{Gr}^F \mathcal{D}_X : a|_{\operatorname{Ch}(\mathcal{M})} = 0\}$. Let $a, b \in \operatorname{Gr}^F \mathcal{I}$ and $A, B \in \mathcal{I}$ be such that $\sigma(A) = a, \sigma(B) = b$. Here σ apply to \mathcal{I} by apply σ_m to the graded pieces. Since $[A, B] \in \mathcal{I}$, we have

$$\{a, b\} = \sigma([A, B])$$

vanishing on $Ch(\mathcal{M})$. Hence, $Ch(\mathcal{M})$ is an involutive variety.

Generally, we have the following theorem.

Theorem 6.3. If \mathcal{M} is a coherent \mathcal{D}_X -module, then $Ch(\mathcal{M})$ is involutive.

In chapter 11 of the book [Cou95], the involutive subspaces are the ones that contain their skew-complement. Then the proposition 2.4 gives an equivalent condition as above definition. i.e. an affine variety V in \mathbb{C}^{2n} is involutive if and only if its ideal I_V is closed for the Poisson bracket.

References

- [Ati94] M. Atiyah. Introduction To Commutative Algebra. Addison-Wesley series in mathematics. Avalon Publishing, 1994.
- [Cou95] S.C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge University Press, 1995.
- [Eis95] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Graduate texts in mathematics. Springer-Verlag, 1995.
- [Har77] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
- [Hun89] T.W. Hungerford. Algebra. Graduate Texts in Mathematics. Springer New York, 1989.
- [Kas03] M. Kashiwara. D-modules and Microlocal Calculus. Iwanami series in modern mathematics. American Mathematical Society, 2003.
- [THT07] K. Takeuchi, R. Hotta, and T. Tanisaki. *D-Modules, Perverse Sheaves, and Representation Theory*. Progress in Mathematics. Birkhäuser Boston, 2007.