

Nous innovons pour votre réussite!

COURS

TRANSFERTS THERMIQUES

Chapitre 2 Conductivité thermique

FILIÈRE CYCLE INGENIEUR SESSION 55

Sommaire

- Conductivité
 - gaz
 - théorie cinétique
 - relations empiriques
 - liquides et solides
- Loi de Fourier

Profil transitoire de Température

Loi de Fourier: interprétation macroscopique

$$\frac{Q}{A} = k \frac{(T_1 - T_0)}{Y} = -k \frac{T_0 - T_1}{Y - 0}$$

Loi de Fourier

$$q_y = -k \frac{dT}{dy}$$

Loi de Fourier, q est un vecteur, il a donc une grandeur et une orientation.

Ici, c'est un milieu isotrope, où k est le même pour les 3 orientations. Ce n'est pas toujours le cas, exemple: le bois.

$$q_{x} = -k \frac{\partial T}{\partial x}$$

$$q_{y} = -k \frac{\partial T}{\partial y}$$

$$q_{z} = -k \frac{\partial T}{\partial z}$$

Loi de Fourier, formulation vectorielle

Exemple simple, calcul de la conductivité thermique

Par la loi de Fourier:

$$\frac{Q}{A} = -k \frac{T_1 - T_0}{\Delta Y}$$

$$\frac{10}{0.1} = -k \frac{20 - 10}{0.01}$$

$$k = \frac{0.01 \cdot 10}{0.1 \cdot 10} = 0.1 \frac{W}{m \cdot k}$$

Deux nombres importants:

$$\alpha = \frac{k}{\rho \, \hat{C}_p}$$

$$\Pr = \frac{\hat{C}_p \mu}{k}$$

Flux de chaleur, conduction

Flux de chaleur, conduction

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Fig. 9.2-1. Reduced thermal conductivity for monatomic substances as a function of the reduced temperature and pressure [E. J. Owens and G. Thodos, AIChE Journal, 3, 454–461 (1957)]. A large-scale version of this chart may be found in O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles Charts, 2nd edition, Wiley, New York (1960).

On connaît la conductivité k d'un gaz en un point, et on connaît les propriétés critiques T_c et P_c . On évalue alors sur le graphique la valeur de k_R sur le graphe et ensuite la valeur de k_C sera évaluée en faisant simplement $k_C = k/k_R$. Par la suite il sera facile de déterminer la conductivité en tout autre point.

Fig. 9.2-1. Reduced thermal conductivity for monatomic substances as a function of the reduced temperature and pressure [E. J. Owens and G. Thodos, AIChE Journal, 3, 454–461 (1957)]. A large-scale version of this chart may be found in O. A. Hougen, K. M. Watson, and R. A. Ragatz, Chemical Process Principles Charts, 2nd edition, Wiley, New York (1960).

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Exemple: Estimer la conductivité thermique de l'éthane à 100.7°F et 191.1 atm à partir de la valeur expérimentale k=0.0159 Btu/hr.ft.F à 100.7°F et 1 atm. Données T_c=32.4°C et P_c=48.2atm

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Exemple: Estimer la conductivité thermique de l'éthane à 100.7°F et 191.1 atm à partir de la valeur expérimentale k=0.0159 Btu/hr.ft.F à 100.7°F et 1 atm. Données T_c=32.4°C et P_c=48.2atm

Réponse: Une valeur mesurée de κ est connue. On calcule T_r et P_r dans les conditions de la valeur mesurée.

$$T_r = \frac{100.7}{1.8 * 32.4 + 32} = 1.115$$
 $P_r = \frac{1}{48.2} = 0.021$

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Fig. 9.2-1. Reduced thermal conductivity for monatomic substances as a function of the reduced temperature and pressure [E. J. Owens and G. Thodos, *AIChE Journal*, 3, 454–461 (1957)]. A large-scale version of this chart may be found in O. A. Hougen, K. M. Watson, and R. A. Ragatz, *Chemical Process Principles Charts*, 2nd edition, Wiley, New York (1960).

$$T_r = 1.115$$
 $P_r = 0.021$

À partir du graphe, on a $k_r=0.36$

$$\kappa_c = \frac{\kappa}{\kappa_r} = \frac{0.0159}{0.36} = 0.0442 \frac{Btu}{hr.ft.F}$$

À 100.7^{0} F(T_r=1.115) et 191.9atm(P_r=3.98), On lit à partir du graphe k_r=2.07

$$\kappa = \kappa_r \kappa_c = 2.07 * 0.0442 = 0.0914 \frac{Btu}{hr.ft.F}$$

Méthodes empiriques: utilisation du graphe 9.2-1 de BSL

Exemple1: Estimer la conductivité thermique de l'éthane à T=190 °F et P= 100 atm à partir des valeurs expérimentales k = 0.0159 Btu/hr. ft .F à 1 atm et 153°F. Données $T_c=32.4$ °C et $P_c=48.2$ atm

Exemple2: Calculez la conductivité thermique du tétrachlorométhane CCl₄ (liquide saturé) à 45 degrés C à partir des valeurs expérimentales k=0.09929 W/m.k à 300K Données T_c=556.4K, P_c=45 atm

DÉTERMINATION DE LA CONDUCTIVITÉ THERMIQUE DES GAZES

Gazes, liquide et solide: différence

Théorie cinétique

Méthode basée sur la théorie moléculaire. On considère alors le gaz comme constitué d'un grand nombre de particules. <u>Les propriétés macroscopiques (densité, viscosité, pression, etc...) sont alors la conséquence du comportement microscopique des gaz.</u>

Attention!!! Les particules subissent uniquement des collisions élastiques

Collision élastiques

$$\frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2 = \frac{1}{2}mv_1^{'2} + \frac{1}{2}mv_2^{'2}$$

Contrairement aux collision inélastiques, l'énergie cinétique est conservée dans le cas des collision élastiques.

- Concept relativement simple
- Molécules en mouvement aléatoire constant
- Se frappent les unes aux autres
- Échanges du momentum et de l'énergie

Lors d'un passage vers une région + froide

- -Transporte l'énergie cinétique
- Par collision avec les molécules de + faible énergie

Théorie cinétique des gazs

$$\overline{u} = \sqrt{\frac{8k_BT}{\pi m}} \quad \frac{1}{2}m\overline{u}^2 = \frac{3}{2}k_BT$$

$$\tilde{C}_{v} = \frac{3}{2}R$$

Libre parcours moyen $\lambda = \frac{1}{\sqrt{2\pi}d^2n}$

Les molécules atteignant n'importe quel plan dans le gaz ont eu, en moyenne, leur dernière collision à une distance a du plan, où $a = \frac{2}{3}\lambda$

DÉTERMINATION DE LA CONDUCTIVITÉ THERMIQUE DES GAZES

Propriété: conductivité (collisions de sphères rigides)

$$k = \frac{1}{2}nk_B\overline{u}\lambda = \frac{1}{3}\rho\tilde{C}_v\overline{u}\lambda \qquad k = \frac{1}{d^2}\sqrt{\frac{k_B^3T}{\pi^3m}}$$

Amélioration du modèle de collisions: attraction-répulsion sur une courte distance. (Lennard-Jones)

$$k = 1.9891 \times 10^{-4} \frac{\sqrt{T/M}}{\sigma^2 \Omega_k}$$
 Cal cm⁻¹

$$T[K] \qquad \sigma[A^0]$$

Table E.1 Lennard-Jones (6-12) Potential Parameters and Critical Properties

		Lennard-Jones parameters			Critical properties ^(A)				
Substance	Molecular Weight M	(Å)	e/k (K)	Ref.	T _r (K)	p _c (atm)	\tilde{V}_c (cm ³ /g-mole)	(g/cm·s×10°)	$\frac{k_c}{(\text{cal/cm} \cdot \text{s} \cdot \text{K} \times 10^6)}$
Light elements:									
H ₂	2.016	2.915	38.0	a	33.3	12.80	65.0	34.7	-
He	4.003	2.576	10.2	a	5.26	2.26	57.8	25.4	
Noble gases:									
Ne	20.183	2.789	35.7	a	44.5	26.9	41.7	156.	79.2
Ar	39.948	3.432	122.4	ь	150.7	48.0	75.2	264.	71.0
Kr	83.80	3.675	170.0	ь	209.4	54.3	92.2	396.	49.4
Xe	131.30	4.009	234.7	ь	289.8	58.0	118.8	490.	40.2
Simple polyato	mic gases:								
Air	28.97	3.617	97.0	a	132.1	36.4	86.6	193.	90.8
N ₂	28.01	3.667	99.8	ь	126.2	33.5	90.1	180.	86.8
O ₂	32.00	3.433	113.	a	154.4	49.7	74.4	250.	105.3
co	28.01	3.590	110.	a	132.9	34.5	93.1	190.	86.5
CO ₂	44.01	3.996	190.	a	304.2	72.8	94.1	343.	122.
NO	30.01	3.470	119.	a	180.	64.	57.	258.	118.2
N ₂ O	44.01	3.879	220.	a	309.7	71.7	96.3	332.	131.
SO ₂	64.06	4.026	363.	c	430.7	77.8	122.	411.	98.6
F ₂	38.00	3.653	112.	a	_		_	_	_
Cl ₂	70.91	4.115	357.	a	417.	76.1	124.	420.	97.0
Br ₂	159.82	4.268	520.	a	584.	102.	144.	-	
I ₂	253.81	4.982	550.	a	800.	_	_	_	_
Hydrocarbons:									
CH ₄	16.04	3.780	154.	ь	191.1	45.8	98.7	159.	158.
CH≕CH	26.04	4.114	212.	d	308.7	61.6	112.9	237.	_
CH2=CH2	28.05	4.228	216.	ь	282.4	50.0	124.	215.	-
C₂H _a	30.07	4.388	232.	ь	305.4	48.2	148.	210.	203.
CH ₂ C==CH	40.06	4.742	261.	ď	394.8	_	_	_	_
CH ₁ CH=CH ₂	42.08	4.766	275.	ь	365.0	45.5	181.	233.	_
C ₃ H ₈	44.10	4.934	273.	ь	369.8	41.9	200.	228.	_
$n-C_4H_{10}$	58.12	5.604	304.	ь	425.2	37.5	255.	239.	_

Paramètres de Lennard-Jones pour quelques gazes

Table E.2 Collision Integrals for Use with the Lennard-Jones (6–12) Potential for the Prediction of Transport Properties of Gases at Low Densities^{a,b,c}

	$\Omega_{\mu} = \Omega_{k}$			$\Omega_{\mu} = \Omega_{k}$	
$\kappa T/\varepsilon$	(for viscosity	$\Omega_{\mathfrak{D},AB}$	$\kappa T/\varepsilon$	(for viscosity	$\Omega_{\mathfrak{T},AB}$
or	and thermal	(for	or	and thermal	(for
$\kappa T/arepsilon_{AB}$	conductivity)	diffusivity)	KT/ε_{AB}	conductivity)	diffusivity)
0.30	2.840	2.649	2.7	1.0691	0.9782
0.35	2.676	2.468	2.8	1.0583	0.9682
0.40	2.531	2.314	2.9	1.0482	0.9588
0.45	2.401	2.182	3.0	1.0388	0.9500
0.50	2.284	2.066	3.1	1.0300	0.9418
0.55	2.178	1.965	3.2	1.0217	0.9340
0.60	2.084	1.877	3.3	1.0139	0.9267
0.65	1.999	1.799	3.4	1.0066	0.9197
0.70	1.922	1.729	3.5	0.9996	0.9131
0.75	1.853	1.667	3.6	0.9931	0.9068
0.80	1.790	1.612	3.7	0.9868	0.9008
0.85	1.734	1.562	3.8	0.9809	0.8952
0.90	1.682	1.517	3.9	0.9753	0.8897
0.95	1.636	1.477	4.0	0.9699	0.8845
1.00	1.593	1.440	4.1	0.9647	0.8796
1.05	1.554	1.406	4.2	0.9598	0.8748
1.10	1.518	1.375	4.3	0.9551	0.8703
1.15	1.485	1.347	4.4	0.9506	0.8659
1.20	1.455	1.320	4.5	0.9462	0.8617
1.25	1.427	1.296	4.6	0.9420	0.8576
1.30	1.401	1.274	4.7	0.9380	0.8537
1.35	1.377	1.253	4.8	0.9341	0.8499
1.40	1.355	1.234	4.9	0.9304	0.8463
1.45	1.334	1.216	5.0	0.9268	0.8428
1.50	1.315	1.199	6.0	0.8962	0.8129

2.60	1.0807	0.9890	100.0	0.5887	0.5180
2.50	1.0933	1.0006	75.0	0.6140	0.5415
2.40	1.107	1.013	50.0	0.6510	0.5763
2.30	1.122	1.027	40.0	0.6723	0.5964
2.20	1.138	1.042	35.0	0.6854	0.6088
2.10	1.156	1.058	30.0	0.7010	0.6235
2.00	1.176	1.075	25.0	0.7198	0.6414
1.95	1.186	1.085	20.0	0.7436	0.6640
1.90	1.198	1.095	18.0	0.7552	0.6751
1.85	1.209	1.105	16.0	0.7683	0.6878
1.80	1.222	1.117	14.0	0.7836	0.7025
1.75	1.235	1.128	12.0	0.8018	0.7202
1.70	1.249	1.141	10.0	0.8244	0.7422
1.65	1.264	1.154	9.0	0.8380	0.7555
1.60	1.280	1.168	8.0	0.8538	0.7711
1.55	1.297	1.183	7.0	0.8727	0.7898
1.50	1.315	1.199	6.0	0.8962	0.8129

Exemple: Calculer la conductivité thermique du Ne à 1atm et 373.2K.

La masse molaire de Ne est 20.183g/mol. Du table E.1 on trouve les paramètres de Lennard-Jones $\sigma = 2.789 \stackrel{\circ}{A}$ et $\frac{\varepsilon}{k} = 35.7K$ À T=373.2K , on a $kT/_{\varepsilon} = 373.2/_{35.7} = 10.45$

Du table E.2, on trouve
$$\Omega_k = 0.821$$
 , d'ou $\kappa = (1.9891 \times 10^{-4}) \frac{\sqrt{T/M}}{\sigma^2 \Omega_k}$
$$\kappa = (1.9891 \times 10^{-4}) \frac{\sqrt{373.2/20.183}}{(2.789)^2 (0.821)}$$

$$\kappa = 1.338 \times 10^{-4} \frac{cal}{cm.s.K}$$

Gaz polyatomique

① On détermine d'abord la viscosité par la méthode décrite au chapitre 1(transfert de quantité de mouvement), elle s'exprime en g/cm.s

$$\mu = 2.6693 \times 10^{-5} \frac{\sqrt{MT}}{\sigma^2 \Omega_{\mu}}$$

2 On utilise ensuite la relation approximée suivante (Eucken):

$$k = \left(\tilde{C}_p + \frac{5R}{4M}\right)\mu$$

Mélange de gazs

$$k_{mix} = \sum_{i=1}^{n} \frac{x_i k_i}{\sum_{i=1}^{n} x_j \Phi_{ij}}$$

$$\Phi_{ij} = \frac{1}{\sqrt{8}} \left(1 + \frac{M_i}{M_j} \right)^{-\frac{1}{2}} \left[1 + \left(\frac{\mu_i}{\mu_j} \right)^{\frac{1}{2}} \left(\frac{M_j}{M_i} \right)^{\frac{1}{4}} \right]^2$$

Mélange de gazs

Prédir la conductivité thermique des mélanges suivants à P= 1 atm et T= 293K à partir des des données des composantes pures à la même pression et température.

Species	α	Mole fraction x_{α}	Molecular weight M_{α}	$\mu_{\alpha} \times 10^{7}$ (g/cm·s)	$k_{\alpha} \times 10^{7}$ (cal/cm·s·K)
CO ₂	1	0.133	44.010	1462	383
O_2	2	0.039	32.000	2031	612
N ₂	3	0.828	28.016	1754	627

Détermination de la conductivité thermique

Questions de compréhension

- 1. Comparer les ordres de grandeurs de la conductivité thermique des gazs, liquides et solides
- 2. Sont les viscosités et les conductivités thermiques des gazs liés? Si oui, comment?
- 3. Quelle est la relation entre la chaleur spécifique molaire à volume et à pression constantes pour les gazs parfaits?

Problèmes (fortement) suggérés

- Chapitre 9 du Transport phenomena:
 - 9A1, 9A4, 9A11