#### Error Control Codes



Course Code: CSC 3116 Course Title: Computer Networks

# Dept. of Computer Science Faculty of Science and Technology

| Lecturer No: | 11                                               | Week No: | 12 | Semester: | Summer 19-20 |
|--------------|--------------------------------------------------|----------|----|-----------|--------------|
| Lecturer:    | Md. Sakir Hossain, Email: sakir.Hossain@aiub.edu |          |    |           |              |





Introduction

- \* What if the transmitted bits get altered on the way?
  - Is there any technique to detect the error?

Yes, using Cyclic Redundancy Check (CRC)

- $\square$  CRC
  - In CRC, some redundant bits are sent in addition to the message bits.
  - $\triangleright$  The purpose of the redundant bits is to facilitate detecting error.
  - The redundant bits are called frame check sequence (FCS)

How is FCS generated?



Introduction....

- Strength of the CRC depends on the number of redundant bits (that is, FCS length)
- Longer FCS length results in better accuracy in detecting error
- ☐ Required two sequence
  - Message sequence, M
    - The desired data to be sent
    - Can be of any length
  - Pattern sequence, P
    - Known to both sender and receiver
    - If we want to use K bits FCS, we need a pattern bit sequence, P, of length K+1 bits.



#### **Generation of FCS**

- 1. Decide how many FCS bits, K, you are going to use.
- 2. Append K zeros at the end of the message bits to generate M+K bits long sequence S.
- 3. Select a K+1 bits long pattern sequence, P.
- 1. Divide the sequence S by the pattern sequence P to find the K bits of the remainder, R.
- 5. Remove the appended zeros from S and append the calculated remainder *R* Thus, the *N* bits message bits and *K* bits remainder constitutes the transmitting sequence, *T*.



Error detection at the receiver

- 1. At the destination, the received sequence, T', is divided by the same patter sequence, P.
- 2. If at this step there is no remainder, the data unit is assumed to be correct and is therefore accepted.
- 3. A remainder indicates that the data unit has been damaged on the way and therefore must be rejected.



Error detection at the receiver





Example 1

Generate FCS if the message polynomial and generator polynomial

are 
$$X^3 + X^2 + 1$$
 And  $X^3 + X + 1$ , respectively.

Let M(x) be the **message polynomial** 

Let P(x) be the generator polynomial (Pattern sequence

Let 
$$\underline{P(x)} = \underline{X^3 + X + 1}$$

Let 
$$M(x) = X^3 + X^2 + 1$$



- 2. Since P consists of 4 bits, append K=3 bits zeros ( 000) at the end of M, S=1101000
- 3. Divide S by P to get 3 bits remainder.



Example 1



110100

# Cyclic Redundancy Check....



Example 1



Since the remainder is zero, there is no error in the received sequence

Example 1



Suppose that the second bit (red) has altered from 1 to 0.



The nonzero remainder indicates an erroneous reception.

The frame will not be acknowledged. /

The sender will resend the frame.





Example 2

- Message M = 1010001101
- Pattern P = 110101Length of P = 6
- Append K=6-1=5 zeros at the end of M
- S=101000110100000
- Now divide S by P to find 5 bits remainder [1].

Example 2



- Transmitted sequence, *T*=1010001101<mark>01110</mark>
- At the receiving end, T is divided by P to see if the remainder is zero. The zero remainder indicates error free reception.



Example 1



Because there is no remainder, it is assumed that there have been no errors.

## Homework



1. Detect whether the received sequence 101110101 is error free if the pattern sequence is 1010.

#### Linear Block Code

Generator Matrix



Message, M:  $\checkmark$ 

k bits long

Redundant bits, Q: q bits long

Codeword length, N: k+q bits long

Generator matrix,  $G = [P_{k \times q}I_{k}]$ 

For k = 3 and q = 3,

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Then, it is a (n, k) = (6, 3) block code

$$P_{3\times3} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



#### Linear Block Code..

Codeword calculation



The codeword for the message [0 1 1] is

$$C = M \times G$$

$$C = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$Q \qquad M$$

#### Modulo-2 summation

$$0 \times 1 \oplus 0 \times 1 \oplus 1 \times 1 = 1$$

$$0 \times 1 \oplus 1 \times 1 \oplus 1 \times 0 = 1$$

$$0 \times 0 \oplus 1 \times 1 \oplus 1 \times 1 = 0$$

$$0 \times 1 \oplus 1 \times 0 \oplus 1 \times 0 = 0$$

$$0 \times 0 \oplus 1 \times 1 \oplus 1 \times 0 = 1$$

$$0 \times 0 \oplus 1 \times 0 \oplus 1 \times 1 = 1$$



#### Linear Block Code....



**Error-detection** 

#### Receiving end

Parity check matrix,

$$H = \begin{bmatrix} I_q & P_{k \times q}^T \end{bmatrix}$$

$$H = \begin{bmatrix} I_3 & P_{3 \times 3}^T \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$



 $P_{3\times3}^T$  is the transpose of  $P_{3\times3}$ 



#### Linear Block Code....

I dame



Error-detection....

Suppose that there is no error in the received sequence.

Hence the received sequence, r, is the same as the transmit sequence,  $\mathcal C$ .

$$r = C$$

$$r = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Syndrome,  $s = rH^T$ 

The all-zero syndrome indicates a correct reception!

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$H^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

#### Linear Block Code ....

Error-detection....



Suppose that there is an error in the received sequence.

The second bit (from left side) has altered from 1 to 0

$$r = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Syndrome,  $s = rH^T$ 

$$s = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0' & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

The non-zero syndrome indicates an erroneous reception!



#### Linear Block Code....



**Error-correction** 

#### How to correct the error?

- 1. Syndrome,  $s \neq \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
- 2. Locate the syndrome in  $H^T$
- 3. It is in second row
- 4. So, the second element in the received sequence,  $r = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$  is erroneous.
- 4. Alter the second bit from 0 to 1.
- 5. So the correct received sequence is [1 1 0 0 1 1].

Note: The given generator matrix enables correction of at most 1 bits.

$$H^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$



- (b) Find the parity-check matrix /
- (c) Find the syndrome for the received vector [ 1 1 0 1 0 1 0]. Is it a valid codeword?

#### References



[1] W. Stallings, *Data and Computer Communication*, 10<sup>th</sup> ed., Pearson Education, Inc., 2014, USA, pp. 194 - 196.

5)50

[2] B. Sklar, Digital Communications, 2<sup>nd</sup> ed., Prentice Hall. 2017, USA, pp. 328 - 345.

#### **Recommended Books**



- **1. Data Communications and Networking**, *B. A. Forouzan*, McGraw-Hill, Inc., Fourth Edition, 2007, USA.
- **2. Computer Networking: A Top-Down Approach**, *J. F., Kurose, K. W. Ross*, Pearson Education, Inc., Sixth Edition, USA.
- 3. Official Cert Guide CCNA 200-301, vol. 1, W. Odom, Cisco Press, First Edition, 2019, USA.
- **4. CCNA Routing and Switching**, *T. Lammle*, John Wily & Sons, Second Edition, 2016, USA.
- **5. TCP/IP Protocol Suite**, *B. A. Forouzan*, McGraw-Hill, Inc., Fourth Edition, 2009, USA.
- **6. Data and Computer Communication**, *W. Stallings*, Pearson Education, Inc., Tenth Education, 2013, USA.