SIMULTANEOUS COMMUTATIVITY OF OPERATORS

KEITH CONRAD

Throughout this note, we work with linear operators on *complex* vector spaces, of finite dimension. Any such operator has an eigenvector, by the fundamental theorem of algebra.

Theorem 1. If A_1, \ldots, A_r are commuting linear operators, they have a common eigenvector.

Proof. We induct on r, the result being clear if r = 1 since we work over the complex numbers: every (complex) linear operator has an eigenvector.

Now assume $r \geq 2$.

Let A_r have an eigenvalue $\lambda \in \mathbf{C}$, and let

$$E_{\lambda} = \{v : A_r v = \lambda v\}$$

be the λ -eigenspace for A_r . For $v \in E_{\lambda}$, $A_r(A_i v) = A_i(A_r v) = A_i(\lambda v) = \lambda(A_i v)$, so $A_i v \in E_{\lambda}$. Thus each A_i restricts to a linear operator on E_{λ} .

Note $A_1|_{E_{\lambda}}, \ldots, A_{r-1}|_{E_{\lambda}}$ are r-1 commuting linear operators on the finite-dimensional space E_{λ} . By induction, they have a common eigenvector in E_{λ} . It is also an eigenvector for A_r . We're done.

Of course a common eigenvector for A_1, \ldots, A_r will not usually have a common eigenvalue.

Theorem 2. If A_1, \ldots, A_r are commuting linear operators, and each one is diagonalizable, they are simultaneously diagonalizable, i.e., there is a basis of simultaneous eigenvectors for the A_i .

Proof. This is essentially the same type of argument as in Theorem 1, but the stronger hypothesis (commutativity and individual diagonalizability) allows for a stronger conclusion (basis of simultaneous eigenvectors, not only one simultaneous eigenvector). The result is clear if r=1, so assume $r\geq 2$. Let E_{λ} be an eigenspace for A_r , so as before, $A_i(E_{\lambda})\subset E_{\lambda}$. By induction on r (this is the number of operators, not the dimension of the space), there is a basis for E_{λ} consisting of simultaneous eigenvectors for $A_1|_{E_{\lambda}}, \ldots, A_{r-1}|_{E_{\lambda}}$, and of course they are eigenvectors for $A_r|_{E_{\lambda}}$. Since λ was any eigenvalue for A_r , we see each eigenspace of A_r contains a basis of simultaneous eigenvectors for A_1, \ldots, A_r . By hypothesis, the whole space on which A_r acts is the direct sum of the eigenspaces for A_r , so we are done. \square

Note that Theorems 1 and 2 did not need the operators to be invertible.