Unidad III: Aproximación de funciones.

José Luis Ramírez B.

January 17, 2025

1 Introducción

- 2 Interpolación
 - ullet Taylor
 - Lagrange

• En este tema se da una posible respuesta a una situación

bastante natural en el ámbito científico.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y junto con los modelos previos con que se cuente, se pueden tomar muestras experimentales.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y junto con los modelos previos con que se cuente, se pueden tomar muestras experimentales.
- Se tiene una serie de datos a partir de mediciones sobre el mismo.

- En este tema se da una posible respuesta a una situación bastante natural en el ámbito científico.
- Se Investiga un fenómeno que se está desarrollando, se desea estudiarlo, y junto con los modelos previos con que se cuente, se pueden tomar muestras experimentales.
- Se tiene una serie de datos a partir de mediciones sobre el mismo.
- Se desea extraer información de esos datos.

Esencialmente podemos tratarlo con:

Esencialmente podemos tratarlo con:

• Técnicas estadísticas (que continuarán observando el fenómeno de un modo discreto, es decir, sobre ese conjunto finito de mediciones).

Esencialmente podemos tratarlo con:

- Técnicas estadísticas (que continuarán observando el fenómeno de un modo discreto, es decir, sobre ese conjunto finito de mediciones).
- o bien "intentando recrear/reconstruir el fenómeno en su totalidad" (en un dominio continuo de espacio, tiempo o cualquier otra magnitud), con la función que represente "lo mejor posible" esos datos.

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

• Interpolación: cálculo de funciones que pasan ("interpolan" es el término matemático) exactamente por los puntos dados.

Las técnicas que utilizan funciones continuas y se consideran en este curso son de dos tipos:

- Interpolación: cálculo de funciones que pasan ("interpolan" es el término matemático) exactamente por los puntos dados.
- Curvas de ajuste: cálculo de funciones aproximadas a los datos que tenemos (en algún sentido, para cierta distancia)

Polinomio de grado n:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq 0)$$

Polinomio de grado n:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 (a_n \neq 0)$$

Teorema:

Si p_n es un polinomio de grado $n \ge 1$, entonces $p_n(x) = 0$ tiene al menos una raíz (posiblemente compleja).

Teorema:

Sea p_n un polinomio de grado $n \ge 1$, entonces existen constantes x_1, x_2, \ldots, x_k , posiblemente complejas, y enteros positivos m_1, m_2, \ldots, m_k , tales que $m_1 + m_2 + \ldots + m_k = n$ verificando:

$$p_n(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}$$

Teorema:

Sea p_n un polinomio de grado $n \ge 1$, entonces existen constantes x_1, x_2, \ldots, x_k , posiblemente complejas, y enteros positivos m_1, m_2, \ldots, m_k , tales que $m_1 + m_2 + \ldots + m_k = n$ verificando:

$$p_n(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}$$

Teorema:

Sean p_n y q_n dos polinomios de grado menor o igual que n. Si existen x_1, x_2, \ldots, x_k , con k > n, números distintos tales que $p_n(x_i) = q_n(x_i)$, $i = 1, \ldots, k$, entonces $p_n(x) = q_n(x)$ para todo x.

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 b_{k+1}$ $k = n - 2, \dots, 1, 0, -1$

entonces:
$$p_n(x_0) = b_{-1}$$

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Se necesitan menos operaciones para evaluarlo en un punto x_0 si se escribe:

$$p_n(x) = a_0 + x(a_1 + x(\cdots(a_{n-2} + x(a_{n-1} + xa_n))\cdots))$$

Algoritmo de Horner para evaluar $p_n(x_0)$

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 b_{k+1}$ $k = n - 2, \dots, 1, 0, -1$

entonces: $p_n(x_0) = b_{-1}$

Además, si se llama

$$q_{n-1}(x) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \dots + b_1x + b_0$$

se tiene que:

$$p_n(x) = (x - x_0)q_{n-1}(x) + b_{-1}$$

y por lo tanto

$$p_n'(x_0) = q_{n-1}(x_0)$$

¿Por qué es Importante el Algoritmo de Horner?

• Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.
- Derivadas: Permite obtener información sobre la derivada del polinomio en el mismo punto.

- Eficiencia: Es más eficiente que calcular las potencias de x_0 y multiplicar por los coeficientes de forma individual (se usa menos memoria y tiempo de cómputo).
- Estabilidad: Reduce errores de redondeo en cálculos numéricos.
- Derivadas: Permite obtener información sobre la derivada del polinomio en el mismo punto.
- División Sintética: Está relacionado con el método de división sintética para polinomios, lo que lo hace muy útil en el campo del álgebra y el análisis numérico.

En Resumen:

- El algoritmo de Horner es una herramienta poderosa para evaluar polinomios y también para obtener información sobre su derivada.
- Es un método eficiente, estable y muy utilizado en diversos campos de las matemáticas y la informática.

Tenemos el polinomio:

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

Y queremos evaluarlo en $x_0 = 2$ y también calcular $p'_3(2)$.

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

• Inicialización: $b_2 = a_3 = 2$ (coeficiente de x^3)

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

- Inicialización: $b_2 = a_3 = 2$ (coeficiente de x^3)
- Iteración: $b_1 = a_2 + x_0 \cdot b_2 = -3 + 2 \cdot 2 = 1$ (coefficiente de x^2) $b_0 = a_1 + x_0 \cdot b_1 = 4 + 2 \cdot 1 = 6$ (coeficiente de x^1) $b_{-1} = a_0 + x_0 \cdot b_0 = -1 + 2 \cdot 6 = 11$ (término independiente)

1. Aplicación del Algoritmo de Horner para $p_3(2)$ Recordemos que el algoritmo es:

$$b_{n-1} = a_n$$

 $b_k = a_{k+1} + x_0 \cdot b_{k+1}$ para $k = n-2, ..., 1, 0, -1$
 $p_n(x_0) = b_{-1}$

 Inicialización: $b_2 = a_3 = 2$ (coeficiente de x^3)

• Iteración:

$$b_1 = a_2 + x_0 \cdot b_2 = -3 + 2 \cdot 2 = 1$$
 (coeficiente de x^2)
 $b_0 = a_1 + x_0 \cdot b_1 = 4 + 2 \cdot 1 = 6$ (coeficiente de x^1)
 $b_{-1} = a_0 + x_0 \cdot b_0 = -1 + 2 \cdot 6 = 11$ (término independiente)

 Resultado: $p_3(2) = b_{-1} = 11$

2. Obtención del Polinomio Cociente $q_2(x)$ Con los valores de b que obtuvimos (excepto b_{-1}), podemos formar el polinomio cociente de grado 2:

$$q_2(x) = b_2 x^2 + b_1 x + b_0 = 2x^2 + 1x + 6$$

2. Obtención del Polinomio Cociente $q_2(x)$ Con los valores de b que obtuvimos (excepto b_{-1}), podemos formar el polinomio cociente de grado 2:

$$q_2(x) = b_2 x^2 + b_1 x + b_0 = 2x^2 + 1x + 6$$

3. Relación entre $p_3(x)$, $q_2(x)$ y b_{-1} El polinomio $p_3(x)$ se puede expresar como: $p_3(x) = (x - x_0) \cdot q_2(x) + b_{-1}$

$$p_3(x) = (x - x_0) \cdot q_2(x) + b_{-1}$$

$$p_3(x) = (x - 2) \cdot (2x^2 + x + 6) + 11$$

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p'_3(2)$ Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$ Llamemos a los nuevos coeficientes c_i :

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_3'(2)$

Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$

Llamemos a los nuevos coeficientes c_i :

• Inicialización: $c_1 = b_2 = 2$

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_2'(2)$

Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0 = 2$. Los coeficientes de $q_2(x)$ son: $b_2 = 2$, $b_1 = 1$, $b_0 = 6$

Llamemos a los nuevos coeficientes c_i :

• Inicialización:

$$c_1 = b_2 = 2$$

• Iteración:

$$c_0 = b_1 + x_0 \cdot c_1 = 1 + 2 \cdot 2 = 5$$

 $c_{-1} = b_0 + x_0 \cdot c_0 = 6 + 2 \cdot 5 = 16$

4. Aplicación del Algoritmo de Horner a $q_2(x)$ para obtener $q_2(2) = p_3'(2)$

Aplicando el algoritmo de Horner para evaluar el polinomio $q_2(x)$ en $x_0=2$. Los coeficientes de $q_2(x)$ son: $b_2=2$, $b_1 = 1, b_0 = 6$

Llamemos a los nuevos coeficientes c_i :

Inicialización:

$$c_1 = b_2 = 2$$

• Iteración:

$$c_0 = b_1 + x_0 \cdot c_1 = 1 + 2 \cdot 2 = 5$$

 $c_{-1} = b_0 + x_0 \cdot c_0 = 6 + 2 \cdot 5 = 16$

 Resultado: $q_2(2) = c_{-1} = 16$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

5. Derivada $p_3'(2)$ Se tiene que $p_3'(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

5. Derivada $p_3'(2)$ Se tiene que $p_3'(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

•
$$q_2(x) = 2x^2 + x + 6$$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

•
$$q_2(x) = 2x^2 + x + 6$$

•
$$p_3(x) = (x-2) * (2x^2 + x + 6) + 11$$

5. Derivada $p'_3(2)$ Se tiene que $p'_3(2) = q_2(2) = 16$

•
$$p_3(2) = 11$$

•
$$q_2(x) = 2x^2 + x + 6$$

•
$$p_3(x) = (x-2)*(2x^2+x+6)+11$$

•
$$p_3'(2) = q_2(2) = 16$$

Comprobación de la Derivada

Derivando el polinomio $p_3(x)$ y evaluándolo en x=2.

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

$$p_3'(x) = 6x^2 - 6x + 4$$

Comprobación de la Derivada

Derivando el polinomio $p_3(x)$ y evaluándolo en x=2.

$$p_3(x) = 2x^3 - 3x^2 + 4x - 1$$

$$p_3'(x) = 6x^2 - 6x + 4$$

Evaluando en x = 2:

$$p_3'(2) = 6(2^2) - 6(2) + 4 = 6(4) - 12 + 4 = 24 - 12 + 4 = 16$$

Problema de interpolación de Taylor

Dados un entero n no negativo, un punto $x_0 \in \mathbb{R}$ y los valores $f(x_0), f'(x_0), \ldots, f^{(n)}(x_0)$ de una función y sus n primeras derivadas en x_0 , encontrar un polinomio P(x) de grado $\leq n$ tal que

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

Problema de interpolación de Taylor

Dados un entero n no negativo, un punto $x_0 \in \mathbb{R}$ y los valores $f(x_0), f'(x_0), \ldots, f^{(n)}(x_0)$ de una función y sus n primeras derivadas en x_0 , encontrar un polinomio P(x) de grado $\leq n$ tal que

$$P(x_0) = f(x_0), P'(x_0) = f'(x_0), \dots, P^{(n)}(x_0) = f^{(n)}(x_0).$$

Teorema:

El problema de interpolación de Taylor tiene solución única, que se denomina polinomio de Taylor de grado $\leq n$ de la función f en el punto x_0 :

$$P(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + \dots + f^{(n)}(x_0)\frac{(x - x_0)^n}{n!}$$

Teorema:

Para n > 1 sea f(x) una función n veces derivable en x_0 . El polinomio de Taylor P(x) verifica que:

$$\lim_{x \to x_0} \frac{f(x) - P(x)}{(x - x_0)^n} = 0$$

con la notación o pequeña de Landau $f(x) - P(x) = o((x - x_0)^n)$ para $x \to x_0$. Además, P(x) es el único polinomio de grado $\leq n$ con esta propiedad.

Laylor

Problema de interpolación de Taylor

• Error del polinomio interpolador de Taylor

• Error del polinomio interpolador de Taylor

Teorema:

Sean x y x_0 dos números reales distintos y f(x) una función con n derivadas continuas en un intervalo conteniendo a x y x_0 , en el que también existe $f^{(n+1)}$. Entonces existe un punto ξ entre x y x_0 tal que:

$$f(x) - P(x) = f^{(n+1)}(\xi) \frac{(x-x_0)^{n+1}}{(n+1)!}$$

Colorario:

Además de las hipótesis del teorema supongase que para cada t entre x y x_0 se verifica que $|f^{(n+1)}(t)| \leq K_{n+1}$ constante, entonces:

$$|f(x) - P(x)| \le \frac{|x - x_0|^{(n+1)} K_{n+1}}{(n+1)!}$$

A continuación se muestran las gráficas de la función $f(x) = \sin(x)$ y de su polinomio de Taylor de orden 1 al 9 en el cero. Se puede comprobar que la aproximación es más exacta a medida que se aumenta el orden.

El hecho de que la función seno y su polinomio de Taylor se parezcan tanto como se quiera, con sólo aumentar el grado del polinomio lo suficiente, no es algo que le ocurra a todas las funciones. Para la función arctan la situación no es tan buena:

- Se desea aproximar la función $f(x) = e^x$ mediante el polinomio de Taylor centrado en $x_0 = 0$ de orden 5 y hallar el error obtenido en la estimación para x = 1.5
- El polinomio de Taylor de grado 5 viene dada por la siguiente expresión

$$P_5(x) = 1 + 1(x - 0) + \frac{1}{2!}(x - 0)^2 + \frac{1}{3!}(x - 0)^3 + \frac{1}{4!}(x - 0)^4 + \frac{1}{5!}(x - 0)^5$$
$$P_5(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \frac{1}{4!}(x - 0)^4 + \frac{1}{5!}x^5$$

Con la expresión del residuo se calcula el error de Truncamiento:

$$R_5(x) = \frac{f^{(6)}(\xi)}{6!}(x - x_0)^6 = \frac{f^{(6)}(\xi)}{6!}x^6 = \frac{e^{\xi}}{6!}x^6$$
$$R_5(x) = \frac{e^{\xi}}{6!}x^6$$

• Ahora, vamos a aproximar $f(1.5) = e^{1.5}$ usando $P_5(1.5)$:

$$P_5(1.5) = 1 + 1.5 + \frac{(1.5)^2}{2} + \frac{(1.5)^3}{6} + \frac{(1.5)^4}{24} + \frac{(1.5)^5}{120}$$

• Ahora, vamos a aproximar $f(1.5) = e^{1.5}$ usando $P_5(1.5)$:

$$P_5(1.5) = 1 + 1.5 + \frac{(1.5)^2}{2} + \frac{(1.5)^3}{6} + \frac{(1.5)^4}{24} + \frac{(1.5)^5}{120}$$

• Obtenemos:

$$P_5(1.5) \approx 4.462$$

• Ahora, vamos a aproximar $f(1.5) = e^{1.5}$ usando $P_5(1.5)$: $P_5(1.5) = 1 + 1.5 + \frac{(1.5)^2}{2} + \frac{(1.5)^3}{6} + \frac{(1.5)^4}{24} + \frac{(1.5)^5}{120}$

• Obtenemos: $P_5(1.5) \approx 4.462$

• Cálculo del error en x=1.5El error en la aproximación de Taylor está dado por el término del resto. La forma del resto para el polinomio de Taylor de orden n es:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

• En nuestro caso, n = 5, x = 1.5, $x_0 = 0$, y la derivada de orden 6 (o cualquiera) de e^x es e^x . Por lo tanto:

$$R_5(1.5) = \frac{e^{\xi} \cdot (1.5 - 0)^6}{6!}$$

$$R_5(1.5) = \frac{e^{\xi} \cdot 1.5^6}{720}$$

Donde ξ es un número entre 0 y 1.5.

• En nuestro caso, n = 5, x = 1.5, $x_0 = 0$, y la derivada de orden 6 (o cualquiera) de e^x es e^x . Por lo tanto:

$$R_5(1.5) = \frac{e^{\xi} \cdot (1.5 - 0)^6}{6!}$$

$$R_5(1.5) = \frac{e^{\xi} \cdot 1.5^6}{720}$$

Donde ξ es un número entre 0 y 1.5.

• Para maximizar el error, tomamos el mayor valor posible de e^{ξ} en el intervalo [0, 1.5]. Este valor es cuando c=1.5. Por lo tanto

$$R_5(1.5) = e^{1.5} \cdot \frac{(1.5)^6}{720} \approx 0.0708$$

• Cálculo del Valor Real y el Error Exacto

- Cálculo del Valor Real y el Error Exacto
- El valor real de $e^{1.5}$ es aproximadamente 4.481689.

- Cálculo del Valor Real y el Error Exacto
- El valor real de $e^{1.5}$ es aproximadamente 4.481689.
- El error exacto es:

Error =
$$|e^{1.5} - P_5(1.5)|$$

Error = $|4.481689 - 4.462|$
Error = 0.019689

Interpolación

• Nos centraremos ahora en el problema de obtener, a partir de una tabla de parejas (x, f(x)) definida en un cierto intervalo [a, b], el valor de la función para cualquier x perteneciente a dicho intervalo.

Interpolación

- Nos centraremos ahora en el problema de obtener, a partir de una tabla de parejas (x, f(x)) definida en un cierto intervalo [a, b], el valor de la función para cualquier x perteneciente a dicho intervalo.
- Supongamos que se dispone de las siguientes parejas de datos:

x	x_0	x_1	x_2	• • •	x_n
\mathbf{y}	y_0	y_1	y_2		y_n

• El objetivo es hallar una función continua lo más sencilla posible tal que:

$$\widetilde{f}(x_k) = y_k = f(x_k) \quad \forall k = 0, \dots, n$$

en donde x_k y $f(x_k)$ son datos conocidos.

• El objetivo es hallar una función continua lo más sencilla posible tal que:

$$\widetilde{f}(x_k) = y_k = f(x_k) \quad \forall k = 0, \dots, n$$

en donde x_k y $f(x_k)$ son datos conocidos.

• Se dice entonces que la función $\widetilde{f}(x)$, es una función interpolante de los datos representados en la tabla.

• El objetivo es hallar una función continua lo más sencilla posible tal que:

$$\widetilde{f}(x_k) = y_k = f(x_k) \quad \forall k = 0, \dots, n$$

en donde x_k y $f(x_k)$ son datos conocidos.

• Se dice entonces que la función $\widetilde{f}(x)$, es una función interpolante de los datos representados en la tabla.

Observación:

En general, trabajaremos con f = polinomios de grado $\leq n$

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

polinomio algebraico

Figure: Datos de iterpolación y curva interpolante.

Teorema de Weierstrass:

Sea f continua sobre [a,b], dado $\varepsilon > 0 \quad \exists P(x)$ polinomio tal que $|f(x) - P(x)| < \varepsilon \quad \forall x \in [a,b]$.

• Si se escribe $P(x) = a_0 + a_1 x + \cdots + a_n x^n$. Así, P(x) será solución del problema si, y sólo si, el S.E.L:

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

admite solución.

• Si se escribe $P(x) = a_0 + a_1 x + \cdots + a_n x^n$. Así, P(x) será solución del problema si, y sólo si, el S.E.L:

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ 1 & x_2 & x_2^2 & \cdots & x_2^n \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

admite solución.

• que se denomina sistema cuadrado de Vandermonde. La matriz A del sistema se denomina matriz de Vandermonde y es no-singular si los puntos x_0, x_1, \ldots, x_n son diferentes. Esta matriz es mal condicionada a medida que n aumenta.

• Llamando A a la matriz de coeficientes del sistema; se tiene que el problema de interpolación admite una única solución si, y sólo si, los nodos de interpolación son distintos. Para ello basta con probar que $\det(A) = \prod_{i>j} (x_i - x_j)$ y, por lo tanto, $\det(A) \neq 0 \Leftrightarrow x_i \neq x_j$.

- Llamando A a la matriz de coeficientes del sistema; se tiene que el problema de interpolación admite una única solución si, y sólo si, los nodos de interpolación son distintos. Para ello basta con probar que $\det(A) = \prod_{i>j} (x_i x_j)$ y, por lo tanto, $\det(A) \neq 0 \Leftrightarrow x_i \neq x_j$.
- El método de Lagrange para interpolación polinomial resulta de resolver este sistema para obtener los coeficientes pero lo hace de una forma más sencilla y sistemática.

Para calcular el polinomio interpolador P(x) asociado a una tabla de datos (x_i, y_i) con i = 0, ..., n se puede plantear una simplificación previa: se construyen polinomios $l_i(x)$ de grado n que valgan 1 en el nodo x_i y 0 en el resto.

$$l_i(x_k) = \delta_{ik} = \begin{cases} 1 & \text{si} \quad i = k \\ 0 & \text{si} \quad i \neq k \end{cases}$$

Para calcular el polinomio interpolador P(x) asociado a una tabla de datos (x_i, y_i) con $i = 0, \dots, n$ se puede plantear una simplificación previa: se construyen polinomios $l_i(x)$ de grado n que valgan 1 en el nodo x_i y 0 en el resto.

$$l_i(x_k) = \delta_{ik} = \begin{cases} 1 & \text{si } i = k \\ 0 & \text{si } i \neq k \end{cases}$$

Si se escribe el polinomio factorizado para que tenga en cada nodo x_i (con $j \neq i$) una raíz, el candidato es:

$$(x-x_0)(x-x_1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n) = \prod_{j=0, j\neq i}^n (x-x_j)$$

Lo único que no se consigue es que en x_i valga 1, para ello hay que "normalizar" la función anterior.

Lo único que no se consigue es que en x_i valga 1, para ello hay que "normalizar" la función anterior.

Así, finalmente la fórmula de interpolación de Lagrange es:

$$P(x) = \sum_{k=0}^{n} y_k l_k(x), \quad l_k(x) = \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}, k = 0, \dots, n$$

Los polinomios $l_k(x)$ reciben el nombre de polinomios de Lagrange.

Teorema:

Sean x_0, x_1, \ldots, x_n , n+1 números diferentes, y sea f una función tal que sus valores se obtengan a partir de los números dados $(f(x_0), f(x_1), \ldots, f(x_n))$, entonces existe un único polinomio $p_n(x)$ de grado n, que cumple con la propiedad

$$f(x_k) = p_n(x_k)$$
 para cada $k = 0, 1, \dots, n$

y este polinomio está dado por la siguiente expresión

$$p_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + \dots + f(x_n)L_n(x) = \sum_{k=0}^n f(x_k)L_k(x)$$

Demostración:

• Se tiene que

$$p_n(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + \cdots + L_n(x)f(x_n)$$
 ya que $L_k(x)$ son polinomios de grado menor o igual a n esto implica que $p(x)$ es un polinomio de grado menor o igual a n .

Demostración:

- Se tiene que
 - $p_n(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + \cdots + L_n(x)f(x_n)$ ya que $L_k(x)$ son polinomios de grado menor o igual a n esto implica que p(x) es un polinomio de grado menor o igual a n.
- Además

$$L_k(x_k) = 1$$
, $L_k(x_j) = 0$ si $j \neq k$
 $\Rightarrow p_n(x_k) = 0 + 0 + \dots + f(x_k) + \dots + 0 = f(x_k) \quad \forall k = 0, 1, \dots$

• La unicidad puede demostrarse como sigue:

• Supongase que $p_n(x)$ y $q_n(x)$ son dos polinomios de grado $\leq n$ que interpolan a f(x) en los n+1 puntos distintos x_k , $k=0,\ldots,n$, es decir

$$p_n(x_k) = q_n(x_k) = f(x_k), \qquad k = 0, 1 \dots, n$$

Entonces, $r_n(x) = p_n(x) - q_n(x)$ es un polinomio de grado $\leq n$ con n+1 raices x_0, x_1, \ldots, x_n . Pero cualquier polinomio de grado n con un número de raices mayor a n debe ser constante e igual a cero. Por lo tanto $r_n(x) \equiv 0, \forall x, y$ en consecuencia $p_n(x) = q_n(x), \forall x \in [a, b]$.