Xoliancking

- change of variables in polytope $V_i = e^{ui}$, $\alpha = (\alpha_1, -, \alpha_n)$, $e \times p(\alpha_1 u_1 + ... + \alpha_n u_n)$ - $\times_i^{m_1} - ... \times_n^{m_n} = e \times p(\vec{m} \cdot \vec{n})$ - equation becomes $\sum C_X e^{\vec{N} \cdot \vec{N}} = 0$ - count Solins inside ball tad. $R \subseteq R^h$ $\#(f_1 = ... = f_n = 0)$ - $\alpha v \alpha_1$, it out with $C_X \sim C_X \sim C_X$ - it seems this is a good approxi-