ecuación (5.5.2) se satisface. Esto contradice la independencia lineal de los vectores  $\mathbf{u}_i$ . Así, m < n.

## Teorema 5.5.4

Sea H un subespacio de un espacio vectorial de dimensión finita V. Entonces H tiene dimensión finita Y.

$$\dim H \le \dim V \tag{5.5.6}$$



## Demostración

Sea dim V=n. Cualquier conjunto de vectores linealmente independientes en H es también linealmente independiente en V. Por el teorema 5.5.3, cualquier conjunto linealmente independiente en H puede contener a lo más n vectores. Si  $H=\{0\}$ , entonces dim H=0. Si dim  $H\neq\{0\}$ , sea  $\mathbf{v}_1\neq\mathbf{0}$  un vector en H y  $H_1=\mathrm{gen}\ \{\mathbf{v}_1\}$ . Si  $H_1=H$ , dim H=1 y la prueba queda completa. De lo contrario, elija a  $\mathbf{v}_2\in H$  tal que  $\mathbf{v}_2\notin H_1$  y sea  $H_2=\mathrm{gen}\ \{\mathbf{v}_1,\mathbf{v}_2\}$ , y así sucesivamente. Continuamos hasta encontrar vectores linealmente independientes  $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k$  tales que  $H=\mathrm{gen}\ \{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k\}$ . El proceso tiene que terminar porque se pueden encontrar a lo más n vectores linealmente independientes en H. Entonces  $H=k\leq n$ .

El teorema 5.5.4 tiene algunas consecuencias interesantes. Presentaremos dos de ellas.



## EJEMPLO 5.5.8 C[0, 1] y C<sup>1</sup>[0, 1] tienen dimensión infinita

Sea P[0, 1] el conjunto de polinomios definido en el intervalo [0, 1]. Entonces  $P[0, 1] \subset C[0, 1]$ . Si la dimensión de C[0, 1] fuera finita, entonces P[0, 1] también tendría dimensión finita. Pero según el ejemplo 5.5.7, no es así. Por lo tanto, C[0, 1] tiene dimensión infinita. De manera similar, como  $P[0, 1] \subset C^1[0, 1]$  (ya que todo polinomio es diferenciable), también se tiene que la dimensión de  $C^1[0, 1]$  es infinita.

En términos generales,

Cualquier espacio vectorial que contiene un subespacio de dimensión infinita es de dimensión infinita.

## **EJEMPLO 5.5.9** Los subespacios de $\mathbb{R}^3$

Se puede usar el teorema 5.5.4 para encontrar *todos* los subespacios de  $\mathbb{R}^3$ . Sea H un subespacio de  $\mathbb{R}^3$ . Existen cuatro posibilidades:  $H = \{0\}$ , dim H = 1, dim H = 2 y dim H = 3. Si dim H = 3, entonces H contiene una base de tres vectores linealmente independientes  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$  en  $\mathbb{R}^3$ . Pero entonces  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$  también forman una base para  $\mathbb{R}^3$ , y así,  $H = \text{gen } \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \mathbb{R}^3$ . Por lo tanto, la única manera de obtener un subespacio *propio* de  $\mathbb{R}^3$  es teniendo dim H = 1 o dim H = 2. Si dim H = 1, entonces H tiene una base que consiste en un vector  $\mathbf{v} = (a, b, c)$ . Sea  $\mathbf{x}$  en H. Entonces  $\mathbf{x} = t(a, b, c)$  para algún número real t [puesto que (a, b, c) genera a H]. Si  $\mathbf{x} = (x, y, z)$ , esto significa que  $\mathbf{x} = at$ ,  $\mathbf{y} = bt$ ,  $\mathbf{z} = ct$ . Pero ésta es la ecuación de una recta en  $\mathbb{R}^3$  que pasa por el origen con la dirección del vector (a, b, c).