SLC0607 - Cálculo 1

A Derivada

Introdução

Do ponto de vista geométrico, a noção de derivada é a de tangência. Ao passo que na visão análitica, a derivada é entendida como taxa de variação. Por exemplo, a velocidade e a aceleração são exemplos de derivada. A velocidade é a taxa de variação do espaço com relação ao tempo e a aceleração é a taxa de variação da velocidade com relação ao tempo.

O Conceito de Derivada

Dada uma função y = f(X) definida numa vizinhança de um ponto x_0 , o que vem a ser a reta tangente ao gráfico de f no ponto $(x_0, f(x_0))$?

Tomemos a reta secante ao gráfico de f passando pelos pontos (x, f(x)) e $(x_0, f(x_0))$ e deixemos o ponto (x, f(x)) deslizar ao longo do gráfico de f, tendendo a $(x_0, f(x_0))$. Veja as Figuras 1. Neste processo,a secante pode tender a uma posição limite, isto é, uma reta limite. Se isto de fato ocorrer, dizemos que o gráfico de y = f(x) tem uma reta tangente no ponto $(x_0, f(x_0))$.

Figure: 1. A reta tangente ao gráfico de y = f(x) como limite de secantes

Tomemos uma reta secante pelos pontos (x, f(x)) e $(x_0, f(x_0))$ e consideremos seu coeficiente angular

$$m(x)=\frac{f(x)-f(x_0)}{x-x_0}.$$

O significado de existir a reta tangente (não vertical) ao gráfico de y = f(x) no ponto $(x_0, f(x_0))$ é que exista o limite dos coeficientes angulares, com $x \to x_0$, isto é, que exista $m_0 \in \mathbb{R}$ tal que

$$\lim_{x\to x_0} m(x) = m_0,$$

ou seja,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = m_0.$$

Segundo a definição a seguir, o coefiente angular m_0 nada mais é do que a derivada de f em x_0 .

Definição 1. Dada $f: A \to \mathbb{R}$, $A \subset \mathbb{R}$, uma função e dado $x_0 \in A$ um ponto de acumulação de A, dizemos que f é diferenciável ou derivável em x_0 se existe o limite

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$
 (1)

Neste caso, o número real $f'(x_0)$ é chamado *derivada* de f em x_0 . Às vezes é conveniente escrever (1) na forma:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Definição 2. Dizemos que $f: A \to \mathbb{R}$ é diferenciável no conjunto A, ou simplesmente diferenciável, se f for diferenciável em todo ponto de acumulação $x \in A$.

As notações mais comuns de derivada de y = f(x) são

$$f'$$
, y' , $\frac{df}{dx}$, $\frac{dy}{dx}$

e, quando for preciso especificar o ponto x_0 onde a derivada é calculada,

$$f'(x_0), \quad y'(x_0), \quad \frac{df}{dx}(x_0), \quad \frac{dy}{dx}\Big|_{x=x_0}.$$

A notação $\frac{dy}{dx}$ é devido a Leibniz. A notação f'(x) é atribuída a Lagrange. Quando a variável independente representa o tempo, também se usa para a derivada de y=f(t) a notação \dot{y} , atribuída a Newton.

1. Se f(x) = C (constante), então f'(x) = 0 para todo $x \in \mathbb{R}$. De fato,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{C - C}{h} = \lim_{h \to 0} \frac{0}{h} = 0.$$

2. Se f(x) = x, então f'(x) = 1 para todo $x \in \mathbb{R}$. De fato,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x+h-x}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

3. Se $f(x) = x^2$, então f'(1) = 2. De fato,

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

4. Se $f(x) = x^2$, então f'(x) = 2x para todo $x \in \mathbb{R}$. De fato,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
$$= \lim_{h \to 0} (2x+h) = 2x.$$

5. Generalizando os itens (2) e (4), para todo $x \in \mathbb{R}$,

$$(x^n)' = nx^{n-1}, \quad n = 1, 2, \dots$$

De fato, usando o desenvolvimento do binômio,

$$(x^{n})' = \lim_{h \to 0} \frac{(x+h)^{n} - x^{n}}{h}$$

$$= \lim_{h \to 0} \frac{x^{n} + \binom{n}{1} x^{n-1} h + \binom{n}{2} x^{n-2} h^{2} + \dots + h^{n} - x^{n}}{h}$$

$$= \lim_{h \to 0} \left[\binom{n}{1} x^{n-1} + \binom{n}{2} x^{n-1} h + \dots + h^{n-1} \right]$$

$$= \binom{n}{1} x^{n-1}$$

$$= nx^{n-1},$$

para todo $x \in \mathbb{R}$.

6. Se $f(x) = \frac{1}{x}$, então $f'(3) = -\frac{1}{9}$. De fato,

$$f'(3) = \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3}$$
$$= \lim_{x \to 3} \frac{\frac{3 - x}{3x}}{x - 3} = \lim_{x \to 3} \frac{-1}{3x} = -\frac{1}{9}.$$

Mais geral, se $f(x) = \frac{1}{x}$, então $f'(x) = -\frac{1}{x^2}$ para todo $x \neq 0$. De fato,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$
$$= \lim_{h \to 0} \frac{\frac{-h}{(x+h)x}}{h} = \lim_{h \to 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2}.$$

7. $\cos' x = -\sin x$ para todo $x \in \mathbb{R}$. De fato,

$$\cos' x = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \lim_{h \to 0} \left[\cos x \frac{\cos h - 1}{h} - \sin x \frac{\sin h}{h} \right]$$

Usando o Primeiro Limite Fundamental, temos

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = 0 \quad \text{e} \quad \lim_{h \to 0} \frac{\sin h}{h} = 1$$

e, portanto,

$$\cos' x = \lim_{h \to 0} \left[\cos x \frac{\cos h - 1}{h} - \sin x \frac{\sin h}{h} \right] = -\sin x.$$

8. $\sin' x = \cos x$ para todo $x \in \mathbb{R}$.

A demonstração do item (8) é análoga à do item (7) e é deixada como exercício.

Definição 3. Sendo y = f(x) derivável em x_0 , a reta tangente ao seu gráfico em (x_0, y_0) , $y_0 = f(x_0)$), é a reta

$$y - y_0 = f'(x_0)(x - x_0).$$

Se o gráfico de uma função f tem reta tangente r num ponto $P=(x_0,y_0),\ y_0=f(x_0))$, então a reta n passando por P, perpendicular a r, é chamada reta normal ao gráfico de f em P.

Se o coeficiente angular de r é $m_0 \neq 0$ (portanto r não é horizontal), o coeficiente angular da reta n é

$$m_1 = -\frac{1}{m_0} = -\frac{1}{f'(x_0)},$$

pois, $\tan \theta_n = -\cot \theta$ (veja Figura 2). Portanto, a equação da reta normal ao gráfico de f no ponto $P = (x_0, y_0)$ é

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0).$$

Figure: 2. $m_1 = \tan \theta_n = -\cot \theta = -1/f'(x_0)$.

Exemplo 9. Como a derivada de $f(x) = x^3$ em x = 1 é 3, a equação da reta tangente ao gráfico de $f(x) = x^3$ no ponto (1,1) é

$$y-1=3(x-1)$$
, ou seja, $3x-y-2=0$,

e da reta tangente no mesmo ponto é

$$y-1=-\frac{1}{3}(x-1)$$
, ou seja, $x+3y-4=0$.

Exemplo 10. A função f(x) = |x| não é derivável em x = 0. De fato,

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = \begin{cases} 1 & \text{se } x > 0 \\ -1 & \text{se } x < 0 \end{cases}$$

Assim,

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = 1 \quad \text{e} \quad \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = -1$$

logo, $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ não existe. Portanto, f(x)=|x| não é derivável em x=0. Como f'(0) não existe, o gráfico de f(x)=|x| não admite reta tangente em (0,f(0)).

Exemplo 11. A função $f(x) = \sqrt{x}$ não é derivável em x = 0. De fato,

$$\frac{f(x)-f(0)}{x-0}=\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}$$

Assim,

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{1}{\sqrt{x}} = \infty.$$

logo, $\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}$ não existe. Portanto, $f(x)=\sqrt{x}$ não é derivável em x=0.

Definição 4. Seja $f:(a,b)\to\mathbb{R}$ contínua em x_0 . Se ocorrer

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=\pm\infty,$$

dizemos que o gráfico de uma função f tem reta tangente vertical no ponto $(x_0, f(x_0))$. Por exemplo, o gráfico da função $f(x) = \sqrt{x}$ tem uma tangente vertical no ponto (0,0).

Observação 1. Nas considerações sobre tangente vertical, foi suposto que a função f era contínua em $x_0 \in (a, b)$. Para a função

$$f(x) = \begin{cases} \frac{x}{|x|} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

tem-se

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{1}{|x|} = \infty,$$

mas não se diz que o gráfico de f tem uma tangente vertical em (0,0).

Diferenciabilidade e Continuidade

Proposição 1. Se uma função é diferenciável em um ponto x_0 , então f é contínua em x_0 .

Demonstração.

$$\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) = f'(x_0) \cdot 0 = 0,$$

implicando $\lim_{x \to x_0} f(x) = f(x_0)$, ou seja, f é contínua em x_0 .

Observamos que a reciproca da Proposição 1 não é válida. De fato, a função f(x) = |x| é contínua em no ponto x = 0, mas não é diferenciável nesse ponto como mostra o Exemplo 10.

Derivadas Laterais

Definição 5. Se $x_0 \in A$ é ponto de acumulação à esquerda para A e existe o limite

$$f'(x_0-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0},$$

diz-se que o número $f'(x_0-)$ é a derivada lateral à esquerda de f em x_0 .

Se $x_0 \in A$ é ponto de acumulação à direita para A e existe o limite

$$f'(x_0+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0},$$

diz-se que o número $f'(x_0+)$ é a derivada lateral à direita de f em x_0 .

Proposição 2. $x_0 \in A$ é ponto de acumulação à direita e à esquerda para A, então $f:A \to \mathbb{R}$ é diferenciável em um ponto x_0 se e somente se suas derivadas laterais em x_0 existem e coincidem. Neste caso, $f(x_0) = f'(x_0-) = f'(x_0+)$.

Exemplo 12. A função $f(x) = \min\{x^2, x^4\}$ é contínua (exercício), mas não é diferenciável nos pontos 1 e -1. De fato, primeiramente note que

$$f(x) = \begin{cases} x^4 & \text{se } |x| \le 1\\ x^2 & \text{se } |x| > 1 \end{cases}$$

Donde,

$$f'(1-) = 4 \neq 2 = f'(1+)$$

е

$$f'((-1)-) = -2 \neq -4 = f'((-1)+).$$

Exemplo 13. Este é um exemplo interessante em que a função é contínua, mas não diferenciável, num ponto e não existe as derivadas laterais no ponto em questão.

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

A função f é contínua em x=0 e as derivadas lateriais $f'(0\pm)$, que seriam dadas pelos limites

$$\lim_{x \to 0^{\pm}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{\pm}} \sin \frac{1}{x},$$

não existem. Observe que a reta secante por (x, f(x)) e (0,0) não tende a uma reta limite quando $x \to 0$. Ela fica oscilando entre as posições das retas y = x e y = -x.

Exemplo 14. A função

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

é diferenciável em x = 0 e f'(0) = 0. De fato,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(1/x)}{x} = \lim_{x \to 0} x \sin(1/x) = 0.$$

Portanto, a reta y=0 é a reta tangente ao gráfico de f no ponto (0,0).

Regras de Derivação

Proposição. Se f e g são duas funções diferenciáveis em x, então f+g, fg e, se $g(x) \neq 0$, f/g também diferenciáveis em x. Nesses casos, valem as segintes fórmulas:

1.
$$[f(x) + g(x)]' = f'(x) + g'(x)$$
,

2.
$$[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)$$
,

3.
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$
.

Demonstração de 1. Exercício.

Demonstração de 2. Subtraindo-se e somando-se o termo f(x)g(x+h) ao numerador do quociente abaixo temos

$$[f(x)g(x)]' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{[f(x+h) - f(x)]g(x+h) + f(x)[g(x+h) - g(x)]}{h}$$

$$= \lim_{h \to 0} \left[\frac{[f(x+h) - f(x)]}{h} g(x+h) + f(x) \frac{[g(x+h) - g(x)]}{h} \right]$$

$$= f'(x)g(x) + f(x)g'(x),$$

onde na última igualdade usamos $\lim_{h\to 0} g(x+h) = g(x)$, pois g é contínua em x visto que g é diferenciável em x.

Demonstração de 3. Subtraindo-se e somando-se o termo g(x)f(x) ao numerador do quociente abaixo temos

$$\left[\frac{f(x)}{g(x)}\right]' = \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{g(x)f(x+h) - f(x)g(x+h)}{g(x+h)g(x)h}$$

$$= \lim_{h \to 0} \frac{\frac{g(x)f(x+h) - g(x)f(x) + g(x)f(x) - f(x)g(x+h)}{g(x+h)g(x)h}$$

$$= \lim_{h \to 0} \frac{\frac{g(x)[f(x+h) - g(x)] - f(x)[g(x+h) - g(x)]}{g(x+h)g(x)h}$$

$$= \lim_{h \to 0} \frac{\frac{g(x)[f(x+h) - f(x)] - f(x)[g(x+h) - g(x)]}{g(x+h)g(x)}$$

$$= \lim_{h \to 0} \frac{\frac{f'(x)g(x) - f(x)g'(x)}{h}$$

$$= \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

- (1) $(x^3 \cos x)' = 3x^2 \cos x x^3 \sin x$, $\forall x \in \mathbb{R}$. De fato, $(x^3 \cos x)' = (x^3)' \cos x + x^3 (\cos x)' = 3x^2 \cos x - x^3 \sin x$.
- (2) $(1/x)' = -1/x^2, \ \forall x \in \mathbb{R}, x \neq 0$. De fato,

$$\left(\frac{1}{x}\right)' = \frac{1'x - 1.x'}{x^2} = -\frac{1}{x^2}.$$

(3) Mais geralmente, se u é diferenciável e $u(x) \neq 0$, os mesmos cálculos de (2) levam à fórmula:

$$\left(\frac{1}{u(x)}\right)' = -\frac{u'(x)}{[u(x)]^2}.$$

Se tivermos $u(x) = x^n$, $n \in \mathbb{N}$, esta fórmula fornece

$$\left(\frac{1}{x^n}\right)' = -\frac{nx^{n-1}}{x^{2n}} = -nx^{-n-1}.$$

O que mostra que a regra de derivação $(x^n)' = nx^{n-1}$ vale inclusive para expoentes inteiros negativos,

(4) $(\tan x)' = \sec^2 x$. De fato,

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)'\cos - \sin x(\cos x)'}{\cos^2 x}$$
$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x.$$

- (5) Seguindo os mesmos passos de (4), $(\cot x)' = -\csc^2 x$.
- (6) $(\sec x)' = \sec x \tan x$. De fato,

$$(\sec x)' = \left(\frac{1}{\cos x}\right) = -\frac{(\cos x)'}{[\cos x]^2} = \frac{\sin x}{\cos^2 x} = \sec x \tan x.$$

(7) Analogamente, $(\csc x)' = -\csc x \cot x$.

(8) Se f_i , $i=1,2,\ldots,n$, $n\geq 2$, são funções diferenciáveis, então

$$[f_{1}(x)f_{2}(x)\dots f_{n}(x)]' = f'_{1}(x)f_{2}(x)\dots f_{n}(x) + f_{1}(x)f'_{2}(x)\dots f_{n}(x)$$

$$\vdots$$

$$+ f_{1}(x)f_{2}(x)\dots f'_{n}(x)$$

(9) Em particular, se $f_i(x) = u(x)$ para i = 1, ..., n, obtém-se a fórmula

$$[u^n(x)]' = nu^{n-1}(x)u'(x).$$

Regra da Cadeia

Exemplo. Considere um ponto se movendo no plano xy sobre a curva $y=\cos x$ tal que a sua abscissa é dada em cada instante t por $x=\phi(t)=t^3+2t+1$. Assim, a abscissa x é crescente com o tempo enquanto a ordenada y descreve um movimento oscilatório regido pela lei $y=\cos(\phi(t))=\cos(t^3+2t+1)$. Qual é a velocidade v(t) da ordenada y num instante t?

Figure: 3. Ponto movendo-se na curva $y = \cos x$

Como $v(t)=\frac{dy}{dt}$, precisamos calcular a derivada da composição do cosseno com a função $\phi(t)=t^3+2t+1$. Isto é, queremos a derivada da função $\cos\phi(t)$. A proposição a seguir trata dessa questão de uma forma geral.

Proposição (Regra da Cadeia). Seja y = f(x) diferenciável em x_0 e z = g(y) diferenciável em $y_0 = f(x_0)$, então z = g(f(x)) é diferenciável em x_0 , ou seja, a composta $g \circ f$ é diferenciável em x_0 , e

$$[g(f(x))]'_{x=x_0} = g'(f(x_0))f'(x_0).$$
 (2)

Observação. Na notação de Leibniz, a equação (2) pode ser escrita:

$$\frac{dz}{dx} = \frac{dz}{dv}\frac{dy}{dx}.$$

Demonstração. Defina a função auxiliar h por

$$h(y) = \begin{cases} \frac{g(y) - g(y_0)}{y - y_0} - g'(y_0), & \text{se } y \neq y_0 \\ 0, & \text{se } y = y_0. \end{cases}$$

Assim, $g(y) - g(y_0) = [h(y) + g'(y_0)](y - y_0).$

Usando que y = f(x) e $y_0 = f(x_0)$, temos

$$g(f(x)) - g(f(x_0)) = [h(f(x)) + g'(y_0)](f(x) - f(x_0)).$$

Dividindo por $x - x_0$, temos

$$\frac{g(f(x)) - g(f(x_0))}{x - x_0} = \left[h(f(x)) + g'(y_0)\right] \frac{f(x) - f(x_0)}{x - x_0}.$$

Fazendo $x \to x_0$, temos $f(x) \to f(x_0) = y_0$. Como $\lim_{x \to x_0} h(f(x)) = \lim_{y \to y_0} h(y) = h(y_0) = 0$, temos

$$[g(f(x))]'_{x=x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} [h(f(x)) + g'(y_0)] \frac{f(x) - f(x_0)}{x - x_0} = g'(y_0)f'(x_0).$$

$$(1) \ (\sqrt{x^2+1})' = \frac{x}{\sqrt{x^2+1}} \ \mathsf{para} \ \mathsf{todo} \ x \in \mathbb{R}.$$

De fato, sejam

$$y = (x^2 + 1)^{1/2}$$
 e $u = x^2 + 1$.

Assim, $y = u^{1/2}$ e

$$\frac{dy}{du} = (1/2)u^{-1/2} \quad \text{e} \quad \frac{du}{dx} = 2x$$

Pela regra da cadeia,

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = (1/2)u^{-1/2}2x = \frac{x}{\sqrt{x^2 + 1}}.$$

(2) Se
$$y = (2x + 1)^3$$
 então $y'(0) = 6$.
De fato, se $u = 2x + 1$, vem $y = u^3$, $\frac{dy}{du} = 3u^2$, $\frac{du}{dx} = 2$ e $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = 3u^2 2 = 3(2x + 1)^2 2 = 6(2x + 1)^2$.
Donde, $\left[\frac{dy}{dx}\right]_{x=0} = 6$.

(3) Dada
$$y = [1 + \sin(x^2 - x)]^2$$
, calcule $\frac{dy}{dx}$.

Fazendo

$$u = 1 + \sin v$$
 e $v = x^2 - x$,

temos

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}
= \frac{dy}{du} \frac{du}{dv} \frac{dv}{dx}
= 2u \cos v(2x - 1)
= 2[1 + \sin v] \cos(x^2 - x)(2x - 1)
= 2[1 + \sin(x^2 - x)] \cos(x^2 - x)(2x - 1)
= [2\cos(x^2 - x) + \sin 2(x^2 - x)](2x - 1).$$

Velocidade

A velocidade instantânea, como taxa de variação do espaço em relação ao tempo, pode ser vista como uma derivada segundo a definição:

Definição. Se a equação de um movimento retílineo é x = s(t), onde s é uma função diferenciável da variável tempo t, a velocidade média de x entre as posições $s(t_0)$ e s(t) é

$$w(t)=\frac{s(t)-s(t_0)}{t-t_0}.$$

A velocidade instantânea em t_0 é o limite da velocidade média w(t), com $t \to t_0$,

$$v(t_0) = \lim_{t \to t_0} \frac{s(t) - s(t_0)}{t - t_0} = s'(t_0).$$

(1) Um objeto desliza num plano inclinado de modo que a distância que ele percorre em t segundos é s(t) metros, onde $s(t)=t^2+1/2$. Qual a sua velocidade depois de 2 segundos? Em que instante ele tem uma velocidade de 7 metros por segundo?

A velocidade num instante $t \in v(t) = s'(t) = 2t$. Assim, a velocidade no instante $t = 2 \in v(2) = 4$ m/s. A velocidade será 7 m/s quando t satisfizer v(t) = 2t = 7, isto é, t = 7/2 segundos. Neste momento, o objeto terá percorrido $s(7/2) = (7/2)^2 + 1/2 = 12,75$ metros.

(2) Um projétil é lançado verticalmente para cima a partir do chão com uma velocidade de 30 m/s. A altura h(t) atingida em t segundos é dada por $h(t) = 30t - 5t^2$. Quando e com velocidade o projétil atinge o chão?

O projétil atingirá o chão no instante t>0 tal que $h(t)=30t-5t^2=0$, ou seja, t=6 segundos. A velocidade num instante t é v(t)=s'(t)=30-10t. Assim, a velocidade no instante t=6 é v(6)=-30 m/s.

Exemplos

(3) Num certo momento, a profundidade da água de um reservatório é 28 metros. Suponha que, por razões de consumo, o nível baixe de modo que depois de t horas a profundidade é $h(t)=28-t^2/4$ metros. Queremos saber com que velocidade o nível estará baixando no momento em a profundidade é 24 metros.

O instante t em que a profundidade é 24 metros é dado por

$$24 = 28 - t^2/4,$$

portanto, t=4 horas. Como a velocidade com que o nível baixa é h'(t)=-t/2, a velocidade procurada é h'(4)=-2 m/h.

Exemplos

(4) Podemos agora resolver o exemplo que motivou a regra da cadeia: Considere um ponto se movendo no plano xy sobre a curva $y=\cos x$ tal que a sua abscissa é dada em cada instante t por $x=\phi(t)=t^3+2t+1$. Assim, a abscissa x é crescente com o tempo enquanto a ordenada y descreve um movimento oscilatório regido pela lei $y=\cos(\phi(t))=\cos(t^3+2t+1)$. Qual é a velocidade v(t) da ordenada y num instante t?

$$v(t) = \left[\cos(t^3 + 2t + 1)\right]' = -\sin(t^3 + 2t + 1)(3t^2 + 2).$$

Exemplos

(5) A extremidade de uma mola está engastada em uma parede e à sua outra extremidade está preso um corpo de massa m, de dimensões tão pequenas que pode ser identificado a um ponto, apoiado sobre um plano horizontal. A partir da posição de equilíbrio do sistema, isto é quando a abscissa do corpo é x = 0, comprime-se ou distende-se a mola até uma posição da de equilíbrio e solta-se, Considerando-se que a superfície é lisa a ponto de se desprezar o atrito e que não há dissipação de energia pela mola, o corpo realiza um movimento oscilatório, de modo que sua abscissa x(t) em cada instante t é dado por

$$x(t) = r\cos(\omega t - \delta),$$

onde r, δ e ω são constantes positivas chamadas, resp., amplitude, fase e frequência do movimento. Calculemos a velocidade do corpo em cada instante t e determinemos os instantes em que o módulo da velocidade é máximo.

Se $h(t) = \omega t - \delta$, pela regra da cadeia, obtemos que a velocidade, v(t) = x'(t), em cada instante t é dada por

$$v(t) = (r\cosh(t))' = -rh'(t)\sin h(t) = -r\omega\sin(\omega t - \delta).$$

Assim, o módulo da velocidade será máximo quando

$$\sin(\omega t - \delta) = \pm 1,$$

ou seja, quando

$$t=rac{1}{\omega}\left(\delta+rac{\pi}{2}+k\pi
ight), \quad k=0,\pm 1,\pm 2,\ldots$$

Nesses instantes, x(t) = 0, ou seja, o módulo da velocidade será máximo quando o corpo passar pela posição de equilíbrio do sistema ao realizar o movimento oscilatório.

Derivada da Função Inversa

Motivação geométrica. Seja f uma função contínua e invertível num intervalo I. O gráfico de f^{-1} é

$$G(f^{-1}) = \left\{ \left(f^{-1}(y), y \right) \mid y \in f(I) \right\} \tag{3}$$

Dessa forma os gráficos G(f) de f e $G(f^{-1})$ de f^{-1} são o mesmo subconjunto do plano xy, pois se $y \in f(I)$ tem-se que y = f(x) com $x \in I$. Substituindo em (3), temos

$$G(f^{-1}) = \{ (f^{-1}(y), y) \mid y \in f(I) \} = \{ (x, f(x)) \mid x \in I \} = G(f).$$

Portanto, se f é diferenciável em $x_0 \in I$, com $f'(x_0) \neq 0$ e se $y = f(x_0)$, então existe a reta t tangente a G(f) em (x_0, y_0) . Logo a reta tangente a $G(f^{-1})$ em (y_0, x_0) existe e é a própria t.

Figure: 4. $(f^{-1})'(y_0) = \tan \phi = \cot \theta = \frac{1}{f'(x_0)}$

Mas a declividade de t como tangente a $G(f^{-1})$ é tan ϕ , onde ϕ é o ãngulo que ela faz com o eixo y, enquanto como tangente a G(y) é tan θ , onde θ é ângulo que ela faz com o eixo x, veja Figura 4. Como tan $\phi = \cot \theta$, temos

$$(f^{-1})'(y_0) = \tan \phi = \cot \theta = \frac{1}{f'(x_0)}$$

Proposição. Se f é uma função contínua e estritamente crescente (ou estritamente decrescente) num intervalo I derivável num ponto $x_0 \in I$, com $f'(x_0) \neq 0$, então a função inversa f^{-1} é derivável em $y_0 = f(x_0)$ e

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$
(4)

Observação 1. Em termos da notação de Leibniz, a relação (4) fica

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}.$$

Demonstração. Como f^{-1} também é contínua, temos $x \to x_0$ se e somente se $y \to y_0$. Logo,

$$(f^{-1})'(y_0) = \lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}.$$

Observação 2. A condição $f'(x_0) \neq 0$ é essencial para a validade dessa proposição. De fato, seja $f(x) = x^3$ para todo $x \in \mathbb{R}$. A função f é estritamente crescente e contínua em \mathbb{R} e derivável em \mathbb{R} . Mas $f'(x) = 3x^2$ é zero para x = 0. A função inversa f^{-1} é definida por $f^{-1}(y) = \sqrt[3]{y}$, a qual **não** é derivável para y = 0.

Exemplo 1. Seja $g:(0,\infty)\to\mathbb{R}$ a função definida por $g(y)=\sqrt{y}$. É fácil ver que g é a inversa da função $f:(0,\infty)\to\mathbb{R}$ definida por $f(x)=x^2$. Como f é contínua, estritamente crescente e $f'(x)=2x\neq 0$ para todo $x\in(0,\infty)$, segue da proposição anterior que g é diferenciável no intervalo $(0,\infty)$ e para todo $y\in(0,\infty)$

$$\left(y^{\frac{1}{2}}\right)' = g'(y) = \frac{1}{f'(g(y))} = \frac{1}{2g(y)} = \frac{1}{2\sqrt{y}} = \frac{1}{2}y^{\frac{1}{2}-1}$$

Exemplo 2 (generalização do Exemplo 1). Seja n um inteiro positivo par e seja $g:(0,\infty)\to\mathbb{R}$ a função definida por $g(y)=\sqrt[n]{y}$. É fácil ver que g é a inversa da função $f:(0,\infty)\to\mathbb{R}$ definida por $f(x)=x^n$. Como f é contínua, estritamente crescente e $f'(x)=nx^{n-1}\neq 0$ para todo $x\in(0,\infty)$, segue da proposição anterior que g é diferenciável no intervalo $(0,\infty)$ e para todo $y\in(0,\infty)$

$$\left(y^{\frac{1}{n}}\right)' = g'(y) = \frac{1}{f'(g(y))} = \frac{1}{ng(y)^{n-1}} = \frac{1}{n\sqrt[n]{y^{n-1}}} = \frac{1}{n}y^{\frac{1}{n}-1}$$

Exemplo 3. Seja $g: \mathbb{R} \to \mathbb{R}$ a função definida por $g(y) = \sqrt[3]{y}$. É fácil ver que g é a inversa da função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$. Como f é contínua, estritamente crescente e $f'(x) = 3x^2 \neq 0$ para todo $x \neq 0$, segue da proposição anterior que g é diferenciável para $y \neq 0$ e

$$\left(y^{\frac{1}{3}}\right)' = g'(y) = \frac{1}{f'(g(y))} = \frac{1}{3g(y)^2} = \frac{1}{3\sqrt[3]{y^2}} = \frac{1}{3}y^{\frac{1}{3}-1}$$

Exemplo 4 (generalização do Exemplo 3). Seja n um inteiro positivo ímpar e seja $g: \mathbb{R} \to \mathbb{R}$ a função definida por $g(y) = \sqrt[n]{y}$. É fácil ver que g é a inversa da função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^n$. Como f é contínua, estritamente crescente e $f'(x) = nx^{n-1} \neq 0$ para todo $x \neq 0$, segue da proposição anterior que g é diferenciável para $y \neq 0$ e

$$\left(y^{\frac{1}{n}}\right)' = g'(y) = \frac{1}{f'(g(y))} = \frac{1}{ng(y)^{n-1}} = \frac{1}{n\sqrt[n]{y^{n-1}}} = \frac{1}{n}y^{\frac{1}{n}-1}$$

Exemplo 5. Para um número racional r = m/n vale a fórmula

$$(x^r)' = rx^{r-1}.$$

Se r=m/n, supomos x>0 para n par, ou $x\in\mathbb{R}\setminus\{0\}$ para n ímpar. De fato, seja $u(x)=x^{1/n}$. Então

$$x^r = x^{m/n} = [x^{1/n}]^m = [u(x)]^m.$$

Pela regra da cadeia,

$$(x^r)' = m[u(x)]^{m-1}u'(x) = m[x^{1/n}]^{m-1}\frac{1}{n}x^{\frac{1}{n}-1} = \frac{m}{n}x^{\frac{m}{n}-1} = rx^{r-1}.$$

Exemplo 6 (Funções trigonmétricas inversas).

(a) $y = \arcsin x$. Para entender arcsin como uma função é preciso restringir o contradomínio. É usual tomá-lo como $(-\pi/2,\pi/2)$. Assim, temos uma função estritamente crescente, inversa de $x = \sin y$. Logo

$$\frac{d}{dx}\arcsin x = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}.$$

(b) $y = \arccos x$. Neste caso é usual tomar $(0, \pi)$ como contradomínio e (-1,1) como domínio. Assim, temos uma função estritamente decrescente, inversa de $x = \cos y$. Logo

$$\frac{d}{dx} \arccos x = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{-\sin y} = \frac{-1}{\sqrt{1 - \cos^2 y}} = \frac{-1}{\sqrt{1 - x^2}}.$$

(c) $y = \arctan x$. Tomando $(-\pi/2, \pi/2)$ como contradomínio e \mathbb{R} como domínio, temos uma função estritamente decrescente, inversa de $x = \tan y$. Logo

$$\frac{d}{dx}\arctan x = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}.$$

Exercício. Preencha os detalhes dos seguintes exemplos:

(a)
$$\frac{d}{dx}\mathrm{arccot}\,x=\frac{-1}{1+x^2},\quad x\in(0,\pi).$$

(b)
$$\frac{d}{dx}\mathrm{arcsec}\,x=\frac{1}{|x|\sqrt{x^2-1}},\quad x\in\mathbb{R}\setminus[-1,1].$$

(c)
$$\frac{d}{dx}\mathrm{arccsc}\,x=\frac{-1}{|x|\sqrt{x^2-1}},\quad x\in\mathbb{R}\setminus[-1,1].$$

Derivadas de Ordem Superior

Se $f:A\to\mathbb{R}$ é diferenciável, fica definida a função

$$f': A \longrightarrow \mathbb{R}$$

 $x \longmapsto f'(x)$

Definição. Uma função $f:A\to\mathbb{R}$ se diz duas vezes diferenciável se a função f' é diferenciável em A. Neste caso, a derivada de f' em $x\in A$ é chamada derivada segunda, ou derivada de ordem dois de f em x e é denotada por f''(x), ou ainda por

$$f^{(2)}(x), \quad \frac{d^2y}{dx^2}, \quad \frac{d^2}{dx^2}f(x).$$

Exemplo. Se $f(x) = x^2 + \sin x$, então f''(0) = 2. De fato,

$$f'(x) = 2x + \cos x,$$

$$f''(x) = 2 - \sin x,$$

donde f''(0) = 2.

Definição. Para $n \geq 3$ um inteiro, suponhamos que esteja definida o que vem a ser uma função (n-1) vezes diferenciável, $f:A\to\mathbb{R}$, com derivada de ordem (n-1) denotada por $f^{(n-1)}$. Diz-se que f é n vezes diferenciável em A se $f^{(n-1)}$ é diferenciável em A. Neste caso,

$$f^{(n)}(x) = [f^{(n-1)}]'(x).$$

é a chamada derivada de ordem n de f. Também se usam as seguintes notações para a derivada de ordem n de f:

$$\frac{d^n y}{dx^n}$$
, $\frac{d^n}{dx^n} f(x)$.

Exemplo. Se $f(x) = x^4 - 5x^2 + 3$, f tem derivadas de todas as ordem e

$$f'(x) = 4x^3 - 10x,$$

$$f''(x) = 12x^2 - 10,$$

$$f^{(3)}(x) = 24x,$$

$$f^{(n)}(x) = 0, \quad n = 5, 6, \dots$$

Exemplo. Voltando ao exemplo do sistema massa-mola dado na seção da Regra da Cadeia, lembremos que a aceleração é a variação da velocidade, isto é, em cada instante t, a aceleração do corpo é

$$a(t)=v'(t)=x''(t).$$

Assim,

$$a(t) = [r\cos(\omega t + \delta)]'' = -r\omega^2\cos(\omega t + \delta).$$

Observe que quando o módulo da velocidade é máximo a aceleração é nula.

Definição. Uma função $f:A\to\mathbb{R}$ é chamada de classe C^n , denota-se $f\in C^n$, $n\geq 1$ inteiro, se f é n vezes diferenciável e a derivada $f^{(n)}$ é uma função contínua. Se f possui derivadas de todas as ordens, diz se que f é de classe C^∞ e denota-se $f\in C^\infty$. A notação $f\in C'0$ indica que a função f é contínua.

Exemplos.

- (1) Se P(x) é um polinômio, então $P \in C^{\infty}$.
- (2) Se $f(x) = \sin x$ e $g(x) = \cos x$, então $f, g \in C^{\infty}$. De fato, suas derivadas de qualquer ordem são $\pm \sin x$ ou $\pm \cos x$.
- (3) Se f(x) = |x|, então $f \in C^0$, mas $f \notin C^1$.
- (4) Se f(x) = x|x|, então $f \in C^1$, mas $f \notin C^2$. De fato, $f(x) = x^2$ se $x \ge 0$ e $f(x) = -x^2$ se $x \le 0$. Assim,

$$f'(x) = \begin{cases} 2x & \text{se } x \ge 0 \\ -2x & \text{se } x \le 0 \end{cases}$$

Portanto, f'(x) = 2|x| que é contínua, mas não é diferenciável. Portanto, $f \in C^1$, mas $f \notin C^2$.

(5) Seja a função f dada por

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

sua derivada é

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

Vemos que f é diferenciável, mas $f \notin C^1$ porque f' não é contínua.

Derivadas de funções definidas implicitamente

A maioria das funções que lidamos até agora foi da forma y=f(x), em que y se expressa diretamente, ou explicitamente, em termos de x. Por exemplo, $y=\cos x$. Por outro lado, acontece com frequência que y é definida como uma função de x por meio de uma equação

$$F(x,y) = 0. (5)$$

Nesse caso, dizemos que a equação (5) define y como uma ou mais funções implícitas de x.

Exemplo. A equação $x^2 + y^2 = 25$ determina implicitamente duas funções de x, que podem ser escritas explicitamente como

$$y = \sqrt{25 - x^2}$$
 ou $y = -\sqrt{25 - x^2}$

para $-5 \le x \le 5$.

Quando y é definido implicitamente como função de x, nem sempre se pode explicitar a função, isto é, tirar y em função de x como fizemos no exemplo acima. Por exemplo, a equação

$$\cos(xy) - y = 0 \tag{6}$$

está satisfeita com x=0 e y=1. Além disso, pode-se provar que (6) define y como uma função de x, para x numa vizinhança de 0. Isto é, existem uma vizinhança U de 0 e uma função $g:U\to\mathbb{R}$ de modo que y=g(x) e

$$cos(xg(x)) - g(x) = 0, \quad \forall x \in U,$$

sem que se apresente uma expressão explícita para g.

É muito surpreendente podermos, muitas vezes, calcularmos a derivada dy/dx de uma função implícita sem resolver (explicitar) primeiro a dada equação para y. Iniciamos o processo derivando com relação a x a equação dada e admitindo que y como uma função diferenciável de x sempre que aparecer. Assim, por exemplo, se aparecer y^3 , o termo y^3 é tratdo como o cubo de uma função de x e sua derivada com relação a x é pela regra da cadeia dada por

$$\frac{d}{dx}y^3 = 3y^2 \frac{dy}{dx}.$$

Para completar o processo, resolvemos a equação resultante para dy/dx como a incógnita. Esse método chama-se derivação implícita.

Exemplo. Da equação $x^2 + y^2 = 25$, obtemos

$$2x + 2y \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{x}{y}$$
 desde que $y \neq 0$.

Isso nos dá o resultado correto para qualquer das duas funções implícitas em que estamos pensando. Logo, no ponto (4,3) da curva dada por $x^2 + y^2 = 25$, o valor de dy/dx é -4/3 e em (4-,3) o seu valor é 4/3.

Exemplo. Notando que a equação $\cos(xy) - y = 0$ está satisfeita com x = 0 e y = 1, ou seja, para o par (0,1), admitamos que ela define y como função diferenciável de x para x numa vizinhança de 0, calculemos y' pelo métoda da derivada implicita:

$$0 = 0' = (\cos(xy) - y)' = -(xy)'\sin(xy) - y' = -(y + xy')\sin(xy) - y'$$

Logo

$$y' = -\frac{y\sin xy}{x\sin xy + 1}$$

No ponto x=0, y=1 e então $y'(0)=-\sin 0/1=0$.

Máximos e mínimos relativos

Definição. Seja f uma função definida num intervalo 1.

▶ Diz-se que $x_0 \in I$ é ponto de máximo relativo ou local de f, se existe uma vizinhança V de x_0 tal que

$$f(x) \leq f(x_0), \quad \forall x \in V \cap I.$$

Neste caso, $f(x_0)$ é chamado valor máximo relativo ou local.

▶ Diz-se que $x_0 \in I$ é ponto de mínimo relativo ou local de f, se existe uma vizinhança V de x_0 tal que

$$f(x) \ge f(x_0), \quad \forall x \in V \cap I.$$

Neste caso, $f(x_0)$ é chamado valor mínimo relativo ou local.

Exemplo 1. O gráfico de $f(x) = x^3 - 3x$ está representado na Figura 6. A função $f(x) = x^3 - 3x$ tem um ponto de máximo relativo em $x_0 = -1$ com valor máximo 2 um ponto de mínimo relativo em x = 1 com valor mínimo -2.

Figure: 6. Pontos de máximo e de mínimo relativos

Definição. Os pontos de máximo ou de mínimo relativos de uma função f são chamados pontos extremos de f.

Proposição. Se $f: I \to \mathbb{R}$ for diferenciável no intervalo aberto I e $c \in I$ for um ponto extremo de f, então f'(c) = 0.

Demonstração. Suponha que c é um ponto de máximo relativo de f. Para |h| suficientemente pequeno,

$$\frac{f(c+h)-f(c)}{h} \geq 0, \quad \text{se } h < 0,$$
$$\frac{f(c+h)-f(c)}{h} \leq 0, \quad \text{se } h > 0,$$

Como f é diferenciável, temos

$$0 \le \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} = f'(c) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \le 0.$$

Logo,
$$f'(c) = 0$$
.

Observação 1. A última proposição não vale se o intervalo I não for aberto. De fato, se $f:[1,2]\to\mathbb{R}$ é dada por f(x)=x. Os pontos $x_0=1$ e $x_1=2$ são respectivamente mínimo e máximo de f, mas $f'(1)=f'(2)=1\neq 0$.

Observação 2. A recíproca da última proposição é falsa. De fato, se $f:(-1,1)\to\mathbb{R}$ é dada por $f(x)=x^3$, temos f'(0)=0, mas $x_0=0$ não é ponto extremo de f.

Teorema de Rolle. Seja $f:[a,b] \to \mathbb{R}$, a < b, contínua em [a,b] e diferenciável em (a,b) com f(a) = f(b). Então, existe $c \in (a,b)$ tal que f'(c) = 0.

O Teorema de Rolle tem a seguinte interpretação dinâmica: "Se num movimento retilíneo, um ponto retorna à posição inicial, então há um instante em que sua velocidade é nula."

Figure: 7. Teorema de Rolle

Demonstração. Como f é contínua no intervalo fechado e limitado [a,b], a função f assume seus valores máximo e mínimo M e m respectivamente. Se ambos os valores M e m são assumidos nos extremos de [a,b], como f(a)=f(b), segue que m=M. Logo, f é constante, donde f'(x)=0 para todo $x\in(a,b)$. Assim, qualquer $c\in(a,b)$ nos serve. A outra possibilidade é a de que pelo menos um dos extremos M ou m seja assumido em um ponto $c\in(a,b)$. Pela proposição anterior, f'(c)=0.

Exemplo 1. A função $f(x) = \sqrt{1-x^2}$ definida em [-1,1], satisfaz as hipóteses no Teorema de Rolle. A semicircunferência superior de raio 1 e centro na origem é o gráfico de f. Observe que f não é diferenciável em [-1,1]. Sua derivada $f'(x) = -x/\sqrt{1-x^2}$, se anula no ponto x=0.

Observação. Um ponto importante sobre o Teorema de Rolle é que a diferenciabilidade da função f é essencial. Se f não é diferenciável, mesmo em um único ponto, o resultado pode não ser válido. Por exemplo, a função f(x) = |x| - 1 é contínua em [-1,1] e f(-1) = 0 = f(1), mas $f'(c) \neq 0$ para qualquer $c \in (-1,1)$.

Definição. Seja I um intervalo aberto. Diz-se que $c \in I$ é um ponto crítico de $f: I \to \mathbb{R}$ se f'(c) = 0 ou se f'(c) não existe.

Exemplo 1. A função $f(x)=x^3-3x$ tem exatamente dois pontos críticos e estes estão no intervalo $(-\sqrt{3},\sqrt{3})$. De fato, f é diferenciável, logo seus pontos críticos são só aqueles c tais que f'(c)=0. Como $f(-\sqrt{3})=f(0)=0$, o Teorema de Rolle garante que existe $c_1\in (-\sqrt{3},0)$ tal que $f'(c_1)=0$. Como $f(0)=f(\sqrt{3})=0$, o Teorema de Rolle garante que existe $c_2\in (0,\sqrt{3})$ tal que $f'(c_2)=0$. Esses são os únicos pontos críticos de f, pois f'(x) é um polinômio de segundo grau e como tal pode ter no máximo duas raízes. Resolvendo a equação f'(x)=0, obtemos $c_1=-1$ e $c_2=1$.

Exemplo 2. O ponto c=0 é o único ponto crítico da função f(x)=|x|-1 no intervalo [-1,1], porque f não é diferenciável em c=0 e $f'(x)\neq 0$ para $x\neq 0$.

Teorema do Valor Médio

Teorema do Valor Médio. Se f é uma função contínua em [a, b] e diferenciável em (a, b), então existe $c \in (a, b)$ tal que

$$f(b) - f(a) = f'(c)(b - a).$$

O Teorema do Valor Médio pode ser reformulado como:

Se f é uma função contínua em [a,b] e diferenciável em (a,b), então existe $c \in (a,b)$ tal que a reta tangente ao gráfico de f em (c,f(c)) é paralela à reta por (a,f(a)) e (b,f(b)).

O Teorema do Valor Médio tem a seguinte interpretação dinâmica:

Num movimento retilíneo há um instante em que a velocidade instantânea é igual a velocidade média.

A Figura 8 mostra que o ponto c não necessariamente é único.

Figure: 8. Teorema do Valor Médio

$$g(x) = f(x) - [K(x - a) + f(a)].$$

Figure: 9. Teorema do Valor Médio

Note que

$$g(x) = f(x) - [K(x - a) + f(a)].$$

é uma função contínua em [a,b], diferenciável em (a,b) e g(a)=g(b)=0. Pelo Teorema de Rolle, existe $c\in(a,b)$ tal que

$$g'(c) = f'(c) - K = 0.$$

Portanto,
$$f'(c) = K$$
, isto é, $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Exemplo. Se f; $[0,1] \to \mathbb{R}$ é diferenciável, f(0) = 0 e $f'(x) \le C$ para todo $x \in (0,1)$, então $f(1) \le C$.

De fato, pelo teorema do valor médio, existe $c \in (0,1)$ tal que

$$f(1) - f(0) = f'(c)(1-0),$$

ou seja,
$$f(1) = f'(c) \leq C$$
.

Pensando na variável independente como o tempo, este exemplo diz que se a velocidade de um carro não supera $C \, \text{km/h}$, após uma hora ele não estará a mais de $C \, \text{km}$ do ponto de partida.

Corolário 1. Se f é uma função contínua em [a,b], diferenciável em (a,b) e f'(x) > 0 para todo $x \in (a,b)$, então f é estritamente crescente em [a,b].

Demonstração. Suponhamos $x_1 < x_2$ com $x_1, x_2 \in [a, b]$. Pelo Teorema do Valor Médio, existe $c \in (x_1, x_2)$ tal que

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1).$$

Como f'(c) > 0, tem-se $f(x_1) < f(x_2)$.

O Corolário 1 tem uma versão para funções estritamente decrescente.

Uma demonstração análoga leva também à seguinte versão para monotonicidade não estrita: "Se f é uma função contínua em [a,b], diferenciável em (a,b) e $f'(x) \geq 0$ para todo $x \in (a,b)$, então f é crescente em [a,b]."

Corolário 2. Se f é uma função contínua em [a, b], diferenciável em (a, b) e f'(x) = 0 para todo $x \in (a, b)$, então f é constante.

Demonstração. Seja K = f(a). Dado $x \in (a, b]$, pelo Teorema do Valor Médio, existe $c \in (a, x)$ tal que

$$f(x) - K = f(x) - f(a) = f'(c)(x - a) = 0,$$

logo f(x) = K.

Observação. É essencial que o domínio de f seja um intervalo no Corolário 2. De fato, a função f(x) = x/|x|, $x \in \mathbb{R} \setminus \{0\}$, tem derivada nula, mas f não é constante.

Corolário 3. Se f e g são contínuas em [a,b], diferenciáveis em (a,b) e f'(x)=g'(x) para todo $x\in(a,b)$, então existe uma constante C tal que f=g+C.

Demonstração. Se h = f - g, então h é contínua em [a, b], diferenciável em (a, b) e h'(x) = 0 para todo $x \in (a, b)$. Pelo Corolário 2, h(x) = C para todo $x \in [a, b]$, isto é, f = g + C.

Teorema de Cauchy. Se f e g são contínuas em [a,b] e diferenciáveis em (a,b), então existe $c \in (a,b)$ tal que

$$[f(b) - f(a)]g'(c) = [g(b) - g(a)]f'(c).$$

Demonstração. Seja

$$r(x) = [f(b) - f(a)]g(x) = [g(b) - g(a)]f(x).$$

Logo r é uma função contínua em [a,b], diferenciável em (a,b) e

$$r(a) = f(b)g(a) - g(b)f(a) = r(b).$$

Pelo Teorema de Rolle, existe $c \in (a,b)$ tal que r'(c)=0, ou seja,

$$[f(b) - f(a)]g'(c) - [g(b) - g(a)]f'(c).$$

Notemos que o Teorema do Valor Médio é o caso especial do Teorema de Cauchy em que g(x) = x.

Regra de L'Hôpital

Teorema (Regra de L'Hôpital). Sejam f e g funções diferenciáveis em (a,b), exceto eventualmente em $c \in (a,b)$, com $g'(x) \neq 0$, para $x \neq c$, e

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \in \mathbb{R} \cup \{-\infty, \infty\}. \tag{7}$$

Se

$$\lim_{x \to c} f(x) = 0 \quad \text{e} \quad \lim_{x \to c} g(x) = 0 \tag{8}$$

ou

$$\lim_{x \to c} f(x) = \infty \quad \text{e} \quad \lim_{x \to c} g(x) = \infty, \tag{9}$$

então

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} = L. \tag{10}$$

Demonstração. Provaremos apenas o caso (8) que é mais simples. Como f(c) e g(c) não influem no limite (7), podemos admitir f(c) = g(c) = 0, ou seja, as funções f e g são contínuas em c, portanto, são contínuas em (a,b). Para todo $x \in (c,b)$, o Teorema de Cauchy assegura a existência de s, com c < s < b, tal que

$$\frac{f(x)-f(c)}{g(x)-g(c)}-\frac{f'(s)}{g'(s)},$$

ou seja,

$$\frac{f(x)}{g(x)} = \frac{f'(s)}{g'(s)},$$

e, como $s \rightarrow c^+$ quando $x \rightarrow c^+$, temos

$$\lim_{x \to c^{+}} \frac{f(x)}{g(x)} = \lim_{x \to c^{+}} \frac{f'(s)}{g'(s)} = \lim_{s \to c^{+}} \frac{f'(s)}{g'(s)} = L.$$

A prova do limite à esqeurda é análoga.

Observação. A regra de L'Hôpital vale também para os casos $c=\pm\infty$, como se pode verificar fazendo a mudança de variável y=1/x. Por exemplo, se f e g estão definidas na semireta (a,∞) , a>0, e as condições (7)-(9) estão satisfeitas com $c=\infty$, temos

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{y\to 0^+}\frac{f(1/y)}{g(1/y)}.$$

As funções $\phi(y)=f(1/y)$ e $\psi(y)=g(1/y)$ estão definidas em (0,1/a), são diferenciáveis e $\phi'(y)=-\frac{-1}{y^2}g'(1/y)\neq 0$ em (0,1/a). As condições (8) em f e g implicam que ϕ e ψ satisfazem as condições (7). A mesma conclusão com referência a (9). Portanto, pela Regra de L'Hôpital,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{y \to 0^+} \frac{\phi(y)}{\psi(y)} = \lim_{y \to 0^+} \frac{\phi'(y)}{\psi'(y)} = \lim_{y \to 0^+} \frac{f'(1/y)}{g'(1/y)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Exemplo 1. Na função $h(x) = \frac{1 - \cos x}{x^2}$, definida para $x \neq 0$, faça $f(x) = 1 - \cos x$ e $g(x) = x^2$ e observe que ela satisfazem as hipóteses (8) da Regra de L'Hôpital. Logo,

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x},$$

pois este último limite existe e vale 1/2 (uma consequência do primeiro limite fundamental, ou mesmo utilizando a Regra de L'Hôpital pois $\sin x$ e 2x satisfazem as hipóteses (8)). Daí,

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}.$$

Exemplo 2. $\lim_{x\to\pi/2^-}\frac{4\tan x}{1+\sec x}$ leva à indeterminação $\frac{\infty}{\infty}$. Aplicando a Regra de L'Hôpital,

$$\lim_{x \to \pi/2^{-}} \frac{4 \tan x}{1 + \sec x} = \lim_{x \to \pi/2^{-}} \frac{4 \sec x}{\tan x} = \lim_{x \to \pi/2^{-}} \frac{4}{\sin x} = 4.$$

Exemplo 3. $\lim_{x\to 0} \frac{\sin x - x}{x^3}$ leva à indeterminação $\frac{0}{0}$. Aplicando a Regra de L'Hôpital,

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{\cos x - 1}{3x^2} = \lim_{x \to 0} \frac{-\sin x}{6x} = -\frac{1}{6}.$$

Exemplo 4.
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin x}\right)$$
 leva à indeterminação $\infty - \infty$.

Observando que

$$\frac{1}{x^2} - \frac{1}{\sin x} = \frac{1}{x^2} \left(1 - \frac{x^2}{\sin x} \right)$$

e que

$$\lim_{x \to 0} \frac{1}{x^2} = \infty \qquad \text{e} \qquad \lim_{x \to 0} \frac{x^2}{\sin x} = \lim_{x \to 0} \frac{2x}{\cos x} = 0,$$

segue que

$$\lim_{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin x} \right) = \lim_{x \to 0} \frac{1}{x^2} \left(1 - \frac{x^2}{\sin x} \right) = \infty \cdot 1 = \infty.$$

Exemplo 5. $\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$ também leva à indeterminação $\infty - \infty$. Observamos que

$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right) = \lim_{x\to 0} \frac{\sin x - x}{x\sin x},$$

leva à indeterminação $\frac{0}{0}$. Aplicando a Regra de L'Hôpital duas vezes, obtemos

$$\lim_{x \to 0} \frac{\sin x - x}{x \sin x} = \lim_{x \to 0} \frac{\cos x - 1}{\sin x + x \cos x}$$
$$= \lim_{x \to 0} \frac{-\sin x}{\cos x + \cos x - x \sin x}$$
$$= 0.$$

Funções Convexas e Pontos de Inflexão

As funções convexas estão relacionadas ao conceito de conjunto convexo. Por isso vamos definir o que vem a ser um subconjunto convexo do plano.

Definição. Dados pois pontos P, Q do palno $xy, P = (p_1, p_2)$ e $Q = (q_1, q_2)$, o segmento PQ é o conjunto dos pontos X tais que

$$X = (1 - \lambda)P + \lambda Q, \quad 0 \le \lambda \le 1.$$

Em coordenadas, se X = (x, y), então

$$(x,y) = ((1-\lambda)p_1 + \lambda q_1, (1-\lambda)p_2 + \lambda q_2), \quad 0 \le \lambda \le 1.$$

Definição. Um subconunto C do plano xy é convexo se, para quaisquer pontos $P, Q \in C$, o segmento PQ está contido em C.

Exemplo 1. Um semiplano é o conjunto S dos pontos (x,y) tais que $ax + by \ge c$, para alguma terna de números reais a, b e c com $(a,b) \ne (0,0)$. Todo semiplano é um conjunto convexo.

De fato, sejam $P=(p_1,p_2)$ e $Q=(q_1,q_2)$ do semiplano S, isto é, $ap_1+bp_2\geq c$ e $aq_1+bq_2\geq c$. Seja $X=(x,y)\in PQ$,

$$(x,y) = ((1-\lambda)p_1 + \lambda q_1, (1-\lambda)p_2 + \lambda q_2), \quad 0 \le \lambda \le 1.$$

Como λ e $1-\lambda$ são não negativos,

$$ax + by = a((1 - \lambda)p_1 + \lambda q_1) + b((1 - \lambda)p_2 + \lambda q_2)$$

= $(1 - \lambda)(ap_1 + bp_2) + \lambda(aq_1 + bq_2)$
 $\geq (1 - \lambda)c + \lambda c$
= c .

Ou seja, $X \in S$. Assim, o segmento PQ está contido no semiplano S, logo S é convexo.

Exemplo 2. O conjunto $C=\{(x,y)\mid 0\leq x,\ y\leq 1,\ xy=0\}$ não é convexo. De fato, considere os pontos P=(1,0) e Q=(0,1). Ambos pertencem a C, mas o ponto $X=(1-\lambda)P+\lambda Q$ do segmento PQ, com $\lambda=1/2$, é X=(1/2,1/2) que não pertence a C. Portanto o segmento PQ não está contido em C.

Exemplo 3. Qualquer interseção de conjuntos convexos do palno é um conjunto convexo.

Exemplo 4. Toda região triangular, bem como os polígonos regulares, é um conjunto convexo, uma vez que esses conjuntos são interseções de semiplanos.

Exemplo 5. O disco $D = \{(x,y) \mid \sqrt{x^2 + y^2} \le \delta\}$, $\delta > 0$, é convexo, pois $D = \bigcap_{p \in C} \Gamma_p$, onde C é a circunferência de equação $x^2 + y^2 = \delta^2$ e Γ_p é o semiplano definido pela reta tangente a C em p contendo o disco D.

Definição. Seja $f:I\to\mathbb{R}$, onde $I\subset\mathbb{R}$ é um intervalo. Diz-se que f é convexa se o conjunto

$$A = \left\{ (x, y) \in \mathbb{R}^2 \mid x \in I, \ y \ge f(x) \right\}$$

é convexo.

Figure: 10. Uma função convexa e uma não convexa

Exemplo. A função $f(x) = \max\{-2x + 5, x/2, x - 2\}$, definida em [-1, 7] é um exemplo de função convexa.

Figure: 11. $f(x) = \max\{-2x + 5, x/2, x - 2\}, x \in [-1, 7]$

A função f é convexa, pois o conjunto

$$A = \{(x, y) \in \mathbb{R}^2 \mid x \in [-1, 7], \ y \ge f(x)\}$$

é a interseção dos seguintes semiplanos:

$$\begin{split} &\Gamma_{1} = \{(x,y) \in \mathbb{R}^{2} \mid x \geq -1\}, \\ &\Gamma_{2} = \{(x,y) \in \mathbb{R}^{2} \mid x \leq 7\}, \\ &\Gamma_{3} = \{(x,y) \in \mathbb{R}^{2} \mid y \geq -2x + 5\}, \\ &\Gamma_{4} = \{(x,y) \in \mathbb{R}^{2} \mid y \geq x/2\}, \\ &\Gamma_{5} = \{(x,y) \in \mathbb{R}^{2} \mid y \geq x - 2\}. \end{split}$$

Funções Convexas Diferenciáveis

Se $f:I\to\mathbb{R}$ for uma função diferenciável num intervalo I, o fato dela ser convexa significa que as retas tangentes a seu gráfico estão sempre abaixo dele. Mais ainda, o coeficiente angular da reta tangente cresce quando a abscissa do ponto de tangência cresce. Veja Figura 12.

Figure: 12. Retas tangentes ao gráfico de uma função convexa

Explorando a diferenciabilidade, a proposição a seguir apresenta duas caracterização das funções convexas.

Proposição (Caracterização das funções convexas). Se $f:I\to\mathbb{R}$ é uma função diferenciável no intervalo I, então as seguintes são equivalentes.

- 1. f é convexa.
- 2. A derivada f' é uma função crescente em I.
- 3. Para todos $c, x \in I \Rightarrow f(x) \ge f(c) + f'(c)(x c)$.

A proposição a seguir é um corolário desta proposição.

Proposição. Se $f: I \to \mathbb{R}$ é uma função duas vezes diferenciável no intervalo I e se f''(x) > 0 para todo $x \in I$, então f é convexa.

Demonstração. Como f''(x) > 0 em I, a função f' é crescente. Pela proposição anterior, f é convexa.

Exemplo. A função $f(x) = x^2$ é convexa em qualquer intervalo, pois f''(x) = 2 > 0 em qualquer intervalo.

Definição. Se I é um intervalo, uma função $f:I\to\mathbb{R}$ é côncava se -f é convexa.

Todas os resultados das funções convexas têm um análogo para as funções côncavas. Observamos que convexidade e concavidade não são características complementares. Por exemplo, a função $f(x)=x^3$ não é côncava nem convexa no intervalo [-1,1]. As funções f(x)=ax+b são côncavas e convexas ao mesmo tempo.

Definição. Dados um intervalo $I\subset\mathbb{R}$ e $f:I\to\mathbb{R}$ contínua, diz-se que f é estritamente convexa se é convexa e seu gráfico não contém segmentos de reta. Analogamente, uma função contínua f é estritamente côncava se é côncava e seu gráfico não contém segmentos de reta.

Exemplo. A função $f(x) = x^2$ é estritamente convexa em qualquer intervalo.

Observação. Se f é diferenciável em um intervalo I, f é estritamente convexa se a derivada f' é estritamente crescente. Um exemplo disso é a função $f(x) = x^2$ em qualquer intervalo.

Definição. Diz-se que $c \in (a,b)$ é ponto de inflexão de uma função contínua $f:(a,b) \to \mathbb{R}$, se existir $\delta > 0$ tal que f é estritamente convexa em $(c-\delta,c]$ e estritamente côncava em $[c,c+\delta)$ ou vice-versa.

Exemplo. O ponto 0 é um ponto de inflexão da função $f(x)=x^3$ em qualquer intervalo aberto contendo 0. De fato, $f'(x)=3x^2$ é estritamente decrescente em $(-\delta,0]$ e estritamentemente crescente em $[0,\delta)$, para $\delta>0$ suficientemente pequeno. Logo f é estritamente côncava em $(-\delta,0]$ e estritamentemente convexa em $[0,\delta)$,

Exemplo. Se $f(x) = x^{2n+1}$, n = 1, 2, ..., então 0 é o único ponto de inflexão de f.

Proposição. Sejam I um intervalo aberto e $f: I \to \mathbb{R}$ de classe C^2 . Se $c \in I$ é um ponto de inflexão de f, então f''(c) = 0.

Demonstração. Suponha por contradição que $f''(c) \neq 0$. Sem perda de generalidade, suponha que f''(c) > 0. Como f'' é contínua, o Teorema de Conservação de Sinal implica a existência de um intervalo $(c-\delta,c+\delta)$ onde f'' é positiva. Logo f' é estritamente crescente em $(c-\delta,c+\delta)$ e, portanto f é estritamente convexa em $(c-\delta,c+\delta)$, contrariando que c é um ponto de inflexão.

Observação. A recíproca desta proposição é falsa. Para ver isso, considere a função $f(x) = x^4$ definida num intervalo aberto contendo 0. Tem-se, f''(0) = 0, mas c = 0 não é ponto de inflexão. Na verdade, f é estritamente convexa pois $f'(x) = 4x^3$ é estritamente crescente.

Resumindo: Dada uma função f, os pontos c onde f''(c) = 0 ou não existe f''(c) são candidatos a ponto de inflexão de f.

Exemplo. Se $f(x) = \sqrt[3]{x}$, então $f''(x) = -2x^{-5/2}/9 \neq 0$ para todo $x \neq 0$. Neste f''(x) > 0 para todo x < 0 e f''(x) < 0 para todo x > 0. Ainda que f''(0) não exista, podemos afirmar que 0 é o único ponto de inflexão de f, pois f é estritamente convexa para x < 0 e estritamente côncava para x > 0.

A próxima proposição fornece uma informação adicional sobre pontos de inflexão.

Proposição. Sejam I um intervalo aberto e $f:I\to\mathbb{R}$ uma função de classe C^3 . Se $c\in I$ é tal que f''(c)=0 e $f^{(3)}(c)\neq 0$, então c é um ponto de inflexão de f.

Demonstração. Suponhamos que $f^{(3)}(c)>0$. Como $f^{(3)}$ é contínua, o Teorema de Conservação de Sinal implica a existência de um intervalo $(c-\delta,c+\delta)$ onde $f^{(3)}$ é positiva. Logo f'' é estritamente crescente em $(c-\delta,c+\delta)$. Da hipótese que f''(c)=0 decorre então que f''(x)<0 para $x\in(c-\delta,c)$ e f''(x)>0 para $x\in(c,c+\delta)$. Assim, f é estritamente côncava em $(c-\delta,c)$ e estritamente convexa em $(c,c+\delta)$. Portanto c é um ponto de inflexão de f.

Exemplo. Um dos pontos de inflexão de $f(x) = \cos x$ é $x = \pi/2$. De fato,

$$f''(\pi/2) = -\cos(\pi/2) = 0$$
 e $f^{(3)}(\pi/2) = \sin(\pi/2) = 1 \neq 0$.

Portanto, segue desta última proposição que $\pi/2$ é um ponto de inflexão de f.

Exemplo. Para a função $f(x) = x^3 - 6x^2 + 9x + 30$, determine os intervalos onde f é convexa e os intervalos onde f é côncava. Liste todos os pontos de inflexão de f.

Resolução.

$$f'(x) = 3x^2 - 12x + 9$$
, $f''(x) = 6x - 12 = 6(x - 2)$.

Intervalo	Sinal de $f''(x)$	Conclusão
$(-\infty,2)$	_	f é côncava
$(2,\infty)$	+	f é convexa

c=2 é o único ponto de inflexão de f.

Máximos e Mínimos

Teorema (Teste da derivada primeira). Seja $f: A \to \mathbb{R}$ uma função diferenciável em $[a,b] \subset A$, exceto eventualmente em um ponto $c \in (a,b)$, onde é contínua.

- 1. Se f'(x) > 0 para $x \in (a, c)$, e f'(x) < 0 para $x \in (c, b)$, então c é um ponto de máximo local de f.
- 2. Se f'(x) < 0 para $x \in (a, c)$, e f'(x) > 0 para $x \in (c, b)$, então c é um ponto de mínimo local de f.

Demonstração.

- 1. Pelo Corolário 1 do Teorema do Valor Médio, f é estritamente crescente em [a,c] e estritamente decrescente em [c,b]. Assim, f(x) < f(c) para $x \in [a,c)$ ou $x \in (c,b]$. Logo c é um ponto de máximo.
- 2. A demonstração do item 2 é análoga.

Exemplo. Se $f(x) = \sqrt{|x|}$, segue do item 2 que 0 é um ponto de mínimo de f. De fato, se x < 0, então $f(x) = \sqrt{-x}$ e a regra da cadeia implica $f'(x) = -1/[2\sqrt{-x}] < 0$. Se x > 0, então $f(x) = \sqrt{x}$ e $f'(x) = 1/[2\sqrt{x}] > 0$.

Figure: 13. $y = \sqrt{|x|}$

O teorema a seguir é o critério mais frequente no estudo de máximos e mínimos de funções de classe C^2 .

Teorema (Teste da derivada segunda). Seja f uma função de classe C^2 num intervalo aberto (a,b). Seja $c \in (a,b)$ tal que f'(c) = 0.

- 1. Se f''(c) > 0, então c é um ponto de mínimo local de f.
- 2. Se f''(c) < 0, então c é um ponto de máximo local de f.

Demonstração. Se f''(c) > 0, sendo f de classe C^2 , a função f'' é contínua e, portanto o Teorema da Conservação do Sinal garante que f'' é positiva em $(c - \delta, c + \delta)$ para algum $\delta > 0$. Logo é convexa em $(c - \delta, c + \delta)$. Pela Proposição (Caracterização das funções convexas),

$$f(x) \ge f(c) + f'(c)(x - c) = f(c) \quad \forall x \in (c - \delta, c + \delta),$$

implicando que c é um ponto de mínimo local de f e a prova do item 1 está competa. A prova do item 2 é análoga.

Exemplo 1. Temos agora os elementos necessários para justificar a descrição do gráfico da função $f(x) = x^3 - 3x$ dada no Exemplo 1 de Máximos e Mínimos Relativos. Veja Figura 14.

Como f é de classe C^2 em \mathbb{R} e $x=\pm 1$ são as raízes de $f'(x)=3x^2-3$, concluímos que $c=\pm 1$ são os únicos pontos críticos de f. Além disso, f''(1)=6>0 e f''(-1)=-6<0. Pelo teste da derivada segunda, o ponto -1 é máximo local e 1 é um ponto mínimo local de f. Os valores extremos são f(-1)=2 e f(-1)=-2. Notemos que f''(x)=6x=0 se e somente se x=0. Como f''(x)<0 para x<0 e f''(x)>0 para x>0, f é estritamente côncava em $(-\infty,0)$ e estritamente convexa em $(0,\infty)$ e portanto x=0 é o único ponto de inflexão de f.

Figure: 14. f'(1) = 0, f''(1) > 0, f'(-1) = 0, f''(-1) < 0

Exemplo 2. A orla marítima de uma região é retilínea e tem a direção norte e sul. Um homem está np mar, num barco em frente a um ponto O da praia, a dois quilômetros de O. Sabe-se que sua velocidade remando é 3/5 de sua sua velocidade correndo. Se ele deseja ir a um ponto, seis quilômetros ao norte de O, determine a trajetória a ser seguida para fazê-lo em tempo mínimo.

Figure: 15.

Resolução. Como o problema não depende do valor das velocidades, mas da razão entre elas, podemos supor que a velocidade do homem correndo é v=1. Logo sua velocidade remando é 3/5. Pela Figura 15, o tempo T_{AC} para ir do ponto A=(2,0) ao ponto C=(0,y) satisfaz a equação

$$\frac{3}{5}T_{AC} = \sqrt{2^2 + y^2}$$

e o tempo para ir do ponto de C ao ponto desejado B=(0,6) satisfaz

$$T_{CB}=6-y$$
.

Portanto o tempo gasto no percurso é

$$T(y) = T_{AC} + T_{CB} = \frac{5}{3}\sqrt{2^2 + y^2} + 6 - y, \quad y \in [0, 6],$$

e o problema é determinar os pontos de mínimo da função T. Como T é contínua e [0,6] é fechado e limitado, o Teorema de Weiestrass garante a existência dos pontos de mínimo da função T, resta apenas localizá-los. Como o Teste da derivada segunda só se aplicada para intervalos abertos, consideremos $y \in (0,6)$ e deixemos para analisar os casos y=0 e y=6 separadamente. Sendo

$$T'(y) = \frac{5y}{3\sqrt{4+y^2}} - 1,$$

$$T'(y) = 0 \iff 5y = 3\sqrt{4 + y^2}.$$

A unica raiz dessa equação é $\overline{y} = 3/2$.Como para todo y,

$$T''(y) = \frac{5}{3\sqrt{4+y^2}} \left(1 - \frac{y^2}{4+y^2}\right) > 0,$$

concluímos que $\overline{y}=3/2$ é o único ponto de mínimo em (0,6) e o correspondente valor é T(3/2)=26/3.

Como T(0) = 28/3 > T(3/2) e $T(6) = 10\sqrt{10}/3 > 10 > T(3/2)$, temos que $\overline{y} = 3/2$ é o único ponto de mínimo em [0,6]. Assim, a trajetória procurada é a indicada na Figura 15 com C a 3/2 quilômetros ao norte do ponto O.

Exemplo 3. Determine o triângulo isósceles de área máxima inscrito em uma circunferência de raio R.

Figure: 16.

Resolução. Consideremos um trângulo isósceles *ABC* inscrito numa circunferência de raio R e centro O. A área do triângulo é A=xy, onde $x\in (0,2R]$ e $y\in (0,2R]$. Do triângulo retângulo ODC, temos

$$(x-R)^2 + (y/2)^2 = R^2$$
,

portanto $y = 2\sqrt{2Rx - x^2}$. Assim,

$$A(x) = x\sqrt{2Rx - x^2}, \quad x \in (0, 2R),$$

Para se obter a área máxima impõe-se

$$A'(x) = \frac{3Rx - 2x^2}{\sqrt{2Rx - 2x^2}} = \frac{(3R - 2x)x}{\sqrt{2Rx - x^2}}.$$

Ou seja, x=3R/2 é o único ponto crítico de A em (0,2R). Como A'(x)<0 em (0,3R/2) e A'(x)>0 em (3R/2,2R), pelo Teste da derivada primeira, x=3R/2 é ponto de máximo. Sua área é $A(3R/2)=3\sqrt{3}R^2/4$. Substituindo x=3R/2, a base do triângulo $y=\sqrt{3}R$ e pelo Teorema de Pitágoras, $z=\sqrt{3}R$. Portanto, o triângulo procurado é equilátero.

Esboço do gráfico de funções

- O estudo do sinal da derivada de uma função permite determinar os intervalos onde ela é decrescente ou decrescente.
- O sinal da derivada segunda determina onde ela é convexa ou côncava epor consequência pode definir seus pontos de inflexão.
- A existência dos limites em $\pm\infty$ determina assíntotas horizontais e os limites infinitos caracterizam comportamentos especiais da função.
- Se, além disso, conhecermos as raízes, os pontos extremos e os valores extremos da função, temos um conjunto de informação que em geral permitem fazer um bom esboço do gráfico da função.

Exemplo 1. Esboce o gráfico da função $f(x) = \frac{x}{1 + x^2}$.

- (a) f é ímpar, portanto, basta analisar para $x \in [0, \infty)$.
- (b) f é contínua em $(0,\infty)$ e positiva em $[0,\infty)$.
- (c) $f'(x) = \frac{1-x^2}{(1+x^2)^2}$, portanto, f'(x) > 0 para $x \in (0,1)$ e f'(x) < 0 para $x \in (1,\infty)$. Assim, f é crescente em (0,1) e decrescente em $(1,\infty)$. Pelo teste da derivada primeira, x=1 é um ponto de máximo global e f(1) = 1/2 é um valor máximo.
- (d) Como f(0) = 0 e f'(0) = 1, a reta diagonal y = x é tangente ao gráfico de f no ponto (0, f(0)).
- (e) $\lim_{x\to\infty} \frac{x}{1+x^2} = 0$, logo a reta y=0 é uma assíntota horizontal.
- (f) $f''(x) = \frac{2x(x^2-3)}{(1+x^2)^3}$, portanto, $f''(\sqrt{3}) = 0$, f''(x) < 0 para $x \in (0,\sqrt{3})$ e f''(x) > 0 para $x \in (\sqrt{3},\infty)$. Assim, $x = \sqrt{3}$ é um ponto de inflexão, sendo f é côncava em $(0,\sqrt{3})$ e convexa em $(\sqrt{3},\infty)$. O ponto x=0 também é um ponto de inflexão porque f é ímpar.

Exemplo 1. Esboce o gráfico da função $f(x) = \frac{x}{\sqrt[3]{x^2 - 1}}$.

- (a) f é ímpar, portanto, basta analisar para $x \in [0, \infty)$.
- (b) $\lim_{x\to 1^-}\frac{x}{\sqrt[3]{x^2-1}}=-\infty$ e $\lim_{x\to 1^+}\frac{x}{\sqrt[3]{x^2-1}}=\infty$, portanto x=1 é uma assíntota vertical.
- (c) $\lim_{x \to \infty} \frac{x}{\sqrt[3]{x^2 1}} = \infty.$
- (d) $f'(x) = \frac{x^2-3}{3\sqrt[3]{(x^2-1)^4}}$, portanto, f'(x) > 0 para $x \in (\sqrt{3}, \infty)$ e f'(x) < 0 para $x \in (0,1) \cup (1,\sqrt{3})$. Assim, f é decrescente em $(0,1) \cup (1,\sqrt{3})$ e crescente em $(\sqrt{3},\infty)$. Pelo teste da derivada primeira, $x = \sqrt{3}$ é um ponto de mínimo relativo.
- (e) $f''(x) = \frac{2x(9-x^2)}{9\sqrt[3]{(x^2-1)^7}}$, portanto, f''(x) < 0 para $x \in (0,1) \cup (3,\infty)$ e f''(x) > 0 para $x \in (1,3)$. Assim, x=1 e x=3 são pontos de inflexão, sendo f é côncava em $(0,1) \cup (3,\infty)$ e convexa em (1,3). O ponto x=0 também é um ponto de inflexão porque f é ímpar.

Figure: 18. $f(x) = \frac{x}{\sqrt[3]{x^2 - 1}}$. Que aspecto geométrico relevante esse desenho preciso esconde?

Aproximação Linear e Diferencial

Questão. Dada uma função $f:I\to\mathbb{R}$ definida num intervalo aberto I e diferenciável num ponto $a\in I$, determinar a melhor aproximação linear de f numa vizinhança de a.

Solução.

Uma condição necessária para uma função linear L seja uma aproximação de f numa vizinhaça de a é que L(a) = f(a). Assim, L(x) = f(a) + k(x - a), onde $k \in \mathbb{R}$ é uma constante.

Um incremento Δx da variável x em a produz um incremento Δy da variável y em f(a). Assim, nosso procedimento consiste em aproximar $f(a+\Delta x)$ por $L(a+\Delta x)=f(a)+k\Delta x$.

Ao fazer essa aproximação, o erro absoluto E é

$$E = |f(a + \Delta x) - (f(a) + k\Delta x)|$$

A melhor aproximação linear L(x) = f(a) + k(x - a) na vizinhança de a é a que produz o menor erro relativo:

$$E_r := \frac{E}{|\Delta x|},$$

para Δx pequeno.

Ou seja, é a que produz um erro relativo E_r que tende para zero quando Δx tende para zero,

$$\lim_{\Delta x \to 0} \frac{E}{|\Delta x|} = 0 \iff \lim_{\Delta x \to 0} \left| \frac{f(a + \Delta x) - (f(a) + k \Delta x)}{\Delta x} \right| = 0,$$

ou seja,

$$\lim_{\Delta x \to 0} \left| \frac{f(a + \Delta x) - f(a)}{\Delta x} - k \right| = 0.$$

Assim,

$$k = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = f'(a).$$

Em outras palavras, a melhor aproximação linear de f numa vizinhança de a é L(x) = f(a) + f'(a)(x - a). Assim, a melhor aproximação linear produz a melhor aproximação

$$\Delta y = f(a + \Delta x) - f(a) \approx f'(a)\Delta x.$$

Diferencial

Definição. A diferencial de f em a é a função linear df(a) definida por $df(a)(\Delta x) = f'(a)\Delta x$. Indicando por dy o incremento de y calculado pela diferencial, temos

$$dy = f'(a)\Delta x$$
.

Denotando o incremento Δx por dx, tem-se

$$dy = f'(a)dx$$
.

Dessa forma, o incremento $\Delta y = f(a + \Delta x) - f(a)$ é aproximando pelo incremento linear dy, isto é,

$$f(a+dx)\approx f(a)+f'(a)dx.$$

A Figura 20 corresponde à Figura 19 com a melhor aproximação, a diferencial de f em a no lugar da função kdx.

Figure: 20. A differential dy = f'(a)dx

Exemplo 1. Seja $y = x^2$. Relacione Δy com dy.

Resolução.

$$\frac{dy}{dx} = \left(x^2\right)^2 = 2x.$$

A diferencial de $y = x^2$ é

$$dy = 2xdx$$
.

Por outro lado,

$$\Delta y = (y + dx)^2 - x^2 = 2xdx - (dx)^2.$$

Portanto

$$\Delta y - dy = (dx)^2.$$

Observe que, quanto menor for dx, mais próximo está dy de Δy .

Exemplo 2. O volume de uma esfera de raio $x \in V(x) = 4\pi x^3/3$. Estimemos o volume da esfera de raio 12,05 cm considerando-se em torno de x = 12 cm, tomando dx = 0,05 cm como incremento.

Resolução. Usaremos a aproximação linear

$$V(12,05) \approx V(12) + V'(12)dx.$$

Sendo
$$V'(x)=4\pi x^2$$
 e $dx=0,05$, temos

$$V(12,05) \approx V(12) + V'(12)dx = 4\pi(12)^3/3 + 4\pi(12)^2(0,05).$$

Ou seja, $V(12,05) \approx 2332,8\pi \text{ cm}^3$.

Exemplo 3. Uma caixa cúbica tem a aresta de x=4cm, com erro máximo de 0,05 cm. Estimemos o erro máximo no volume V da caixa.

Resolução. Usaremos a aproximação $\Delta V \approx dV$. Sendo $V(x)=x^3$, onde x é a medida da aresta, dV=V'(x)dX para x=4 e $dx=\pm 0,05$. Ou seja,

$$\Delta V \approx dV = V'(4)(\pm 0,05) = 3(4)2(\pm 0,05) = \pm 2,4.$$

Portanto $E \approx |dV| = 2,4$ cm³ é o erro máximo no volume.

COMENTÁRIO. Embora o erro possa parecer muito grande, uma ideia melhor é dada pelo erro relativo:

$$\frac{\Delta V}{V} \approx \frac{dV}{V} = \frac{3x^2 dx}{x^3} = 3\frac{dx}{x},$$

ou seja o erro relativo no volume é cercade três vezes o erro relativo na aresta. No exemplo, o erro relativo na aresta é dx/x=0.05/4=0.0125 e produz um erro relativo de cerca de 0.0375 no volume. Os erros em termos percentuais são de 1.25% na aresta e 3.75% no volume.

Exemplo 4. Quando o sangue flui ao longo de uma vaso sanguíneo, o fluxo F (o volume de sangue por unidade de tempo passando por um dado ponto) é proporcional à quarta potência do raio r do vaso:

$$F = kr^4$$
.

Isso é conhecido como a Lei de Poiseuille (1830). Uma artéria parcialmente obstruída pode ser alargada por uma operação chamada angioplastia, na qual um cateter do tipo balão é inflado dentro da artéria a fim de aumentá-la e restaurar o fluxo normal do sangue. Mostre que a variação relativa em F é quatro vezes a variação relativa em r. Como um aumento de 5% no raio afeta o fluxo de sangue?

Solução. As diferenciais de r e F estão relacionadas pela equação $dF=F'(r)dr=4kr^3dr$. A variação relativa em F é aproximadamente

$$\frac{dF}{F} = \frac{4kr^3dr}{kr^4} = 4\frac{dr}{r}.$$

Assim, um aumento de 5% no raio resultará em 20% de aumento no fluxo.

Fórmula de Taylor

Se f é diferenciável em a, a diferencial de f em a fornece uma aproximação por um polinômio de ordem 1 em x-a dado por

$$P_1(x) = f(a) + f'(a)(x-a)$$

com

$$P_1(a) = f(a), P'_1(a) = f'(a),$$

mas $P_1''(a) = 0$ e, em geral, não coincide com f''(a), quando esta existe.

Se f for diferenciável até ordem 2 em a, podemos aproximar f por um polinômio de ordem 2 em x-a tal que

$$P_2(a) = f(a), \quad P_2'(a) = f'(a), \quad P_2''(a) = f''(a).$$

Impondo essas considerações a

$$P_2(x) = a_0 + a_1(x - a) + a_2(x - 2)^2,$$

concluímos que P2 é

$$P_2(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2$$

Em geral, para qualquer $n = 1, 2, 3, \ldots$, se f tiver todas as derivadas até ordem n em a, o polinômio em x - a, de ordem n, coincidindo com f em a, juntamente com suas derivadas até ordem n é da forma

$$P_n(x) = f(a) + f^{(1)}(a)(x-a) + \cdots + \frac{1}{n!}f^{(n)}(a)(x-a)^n$$

O polinômio P_n , $n=1,2,\ldots$, é chamado Polinômio de Taylor de ordem n de f em torno de a.

Exemplo 1. Encontre os polinômios de Taylor de $f(x) = \cos x$ em torno de 0.

O cosseno e suas derivadas são

$$f(x) = \cos x \qquad f^{(1)}(x) = -\sin x f^{(2)}(x) = -\cos x \qquad f^{(3)}(x) = \sin x f^{(4)}(x) = \cos x \qquad f^{(5)}(x) = -\sin x \vdots \qquad \vdots f^{(2n)}(x) = (-1)^n \cos x \qquad f^{(2n+1)}(x) = (-1)^{n+1} \sin x$$

Em x = 0, os cossenos são 1 e os senos são 0, assim

$$f^{(2n)}(0) = (-1)^n, \qquad f^{(2n+1)}(0) = 0 \quad (n = 1, 2, 3, ...)$$

Como $f^{(2n+1)}(0) = 0$, os polinômios de Taylor de ordem 2n e 2n + 1 são idênticos:

$$P_{2n}(x) = P_{2n+1}(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$$

Figure: 21. Polinômios de Taylor de $f(x) = \cos x$

Sejam $f \in C^{n+1}$ num intervalo aberto I e $a \in I$. Ao aproximarmos f por seu polinômio de Taylor P_n , o correspondente erro $E_n(x) = f(x) - P_n(x)$, para x numa vizinhança V(a) de a satisfaz

$$f(x) = P_n(x) + E_n(x).$$

Vamos estimar $E_n(x)$. Temos $E_n \in C^{n+1}$ e para $x \in V(a)$, temos

$$E_n(a) = E'_n(a) = \dots = E_n^{(n)}(a) = 0$$
 e $E_n^{(n+1)}(x) = f^{(n+1)}(x)$

Definindo $h(x) = (x - a)^{n+1}$, observamos

$$h(a) = h'(a) = \cdots = h^{(n)}(a) = 0$$
 e $h^{(n+1)}(x) = (n+1)!$

Como $E_n(a) = h(a) = 0$, temos

$$\frac{E_n(x)}{h(x)} = \frac{E_n(x) - E_n(a)}{h(x) - h(a)}, \quad x \neq a,$$

e pelo Teorema de Cauchy, existe σ_1 entre x e a tal que

$$[E_n(x) - E_n(a)] h'(\sigma_1) = [h(x) - h(a)] E'_n(\sigma_1).$$

Portanto,

$$\frac{E_n(x)}{h(x)} = \frac{E'_n(\sigma_1)}{h'(\sigma_1)}.$$

Como $E'_n(a) = h'(a) = 0$, temos

$$\frac{E'_n(\sigma_1)}{h'(\sigma_1)} = \frac{E'_n(\sigma_1) - E'_n(a)}{h'(\sigma_1) - h'(a)}.$$

Pelo Teorema de Cauchy, existe σ_2 entre σ_1 e a, logo entre x e a, tal que

$$\frac{E_n(x)}{h(x)} = \frac{E_n''(\sigma_2)}{h''(\sigma_2)}.$$

Procedendo assim sucessivamente chegamos por fim à existência de um σ entre x e a tal que

$$\frac{E_n(x)}{h(x)} = \frac{E_n^{(n+1)}(\sigma)}{h^{(n+1)}(\sigma)}.$$

Substituindo

$$h(x) = (x-a)^{n+1}, \quad h^{(n+1)}(x) = (n+1, E_n^{(n+1)}(x) = f^{(n+1)}(x),$$

obtemos

$$E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\sigma) (x-a)^{n+1}.$$

Como V(a) é aberto e $a \in V(a)$, existe $\delta > 0$ tal que $J = [a - \delta, a + \delta] \subset V(a)$. Como $f^{(n+1)}$ é contínua e J é um intervalo fechado e limitado, pelo Teorema de Weierstrass existe uma constante L_n tal que $|f^{(n+1)}(x)| \leq L_n$ para todo $x \in J$. Assim,

$$|E_n(x)| \leq \frac{1}{(n+1)!} L_n |x-a|^{n+1},$$

portanto,

$$\lim_{x\to a}\frac{E_n(x)}{(x-a)^n}=0.$$

O significado desse limite é que o erro $E_n(x)$ tende a zero quando $x \to a$ mais rapidamente que $(x-a)^n$.

Fórmula de Taylor

A discussão precedente é a demonstração do seguinte teorema:

Teorema (Fórmula de Taylor). Suponhamos que $f: I \to \mathbb{R}$ seja uma função de C^{n+1} num intervalo aberto I e seja $a \in I$. Então existe uma vizinha V de a tal que, para todo $x \in V$,

$$f(x) = P_n(x) + E_n(x), \tag{11}$$

onde

$$P_n(x) = f(a) + f^{(1)}(a)(x-a) + \cdots + \frac{1}{n!}f^{(n)}(a)(x-a)^n$$

е

$$E_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\sigma) (x-a)^{n+1}$$

para algum σ entre x e a.

A identidade (11) é conhecida como Fórmula de Taylor com resto de Lagrange, e $E_n(x)$ é chamado de resto de Lagrange.

Exemplo 2. Vamos estimar $\cos 61^{\circ}$ usando o polinômio de Taylor de $f(x) = \cos x$ de ordem 2 em torno de $\pi/3$.

Sendo $f(x) = \cos x$, temos

$$f\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad f'\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}, \quad f''\left(\frac{\pi}{3}\right) = -\frac{1}{2},$$

o polinômio da Taylor P_2 em torno de $\pi/3$ é

$$P_2(x) = \frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{3} \right) - \frac{(1/2)}{2} \left(x - \frac{\pi}{3} \right)^2.$$

Fazendo $x=\pi/3+\pi/180$, que corresponde a 61° , obtemos a estimativa

$$\cos 61^{\circ} \approx P_2(\pi/3 + \pi/180) = \frac{1}{2} - \frac{\sqrt{3}}{2} \left(\frac{\pi}{180}\right) - \frac{1}{4} \left(\frac{\pi}{180}\right)^2 \approx 0,48480.$$

Além disso, como $f^{(3)}(x) = \sin x$, o resto de Lagrande é

$$E(x) = \frac{1}{3!}\sin(\sigma)\left(x - \frac{\pi}{3}\right)^3,$$

para algum σ entre $\pi/3$ e $\pi/3+\pi/180$. Como $x=\pi/3+\pi/180$ e $|\sin\sigma|\leq 1$, temos a seguinte estimativa do erro de Lagrange:

$$|E(61^\circ)| \leq \frac{1}{3!} \left(\frac{\pi}{180}\right)^3 < 10^{-6}.$$

Portanto, $\cos 61^{\circ} \approx 0,48480$, com precisão de cinco casas decimais.