CS ASSIGNMENT
SURAT KUMAR YADAY
20220PH YO14

It To find the derivative of the function for) at x=15
1.5 2 2.5 3 3.5 4 f(n) 3.3 7 13.625 24 38.875 59
And $y_0 = 1.5$, $y_1 = 2$, $y_2 = 7.5$, $y_3 = 3$, $y_4 = 3.5$, $y_5 = 3$, $y_6 = 3.3$, $y_1 = 7$, $y_2 = 13.625$, $y_3 = 24$, $y_4 = 38.875$, $y_5 = 3.875$
From Newton's forward difference table:
N f(n) N D° D° D° 1.5 3.3 3.7 2.325 0.825 -0.075 0.075 2 7 6.625 3.75 0.75 0 2.5 13.625 10.375 4.5 0.275 3 24 14.845 5.25 3.5 38.875 20.125 4 59
$\frac{8 dt}{dn} = \frac{1}{h} \left(\frac{\Delta - \Delta^2}{2} + \frac{\Delta^3}{2} - \dots \right) \cdot f(n)$
Here, $dh = 0.9$ $\frac{dy}{dn} = \frac{1}{h} \left(\frac{\Delta}{1} - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \frac{\Delta^5}{5} \right) = 0.9$
$\frac{dy}{dx} = \frac{1}{0.5} \left(\frac{3.7}{1} - \frac{2.925}{2} + \frac{0.825}{3} - \frac{0.075}{4} + \frac{0.075}{5} \right)$

= 2 (2.54/625) = 5.0925

So, dy at n=1.5 is 5. 0925