ICS663: Pattern Recognition

Department of Information and Computer Sciences University of Hawai`i at Manoa

Kyungim Baek

ICS663 (Fall 2015)

ICS663 (Fall 2015)

Previously...

- Bayes decision rule
 - Minimize the overall risk: $R = \int R(\alpha(\mathbf{x}) \mid \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$

$$\alpha(\mathbf{x}) = \operatorname*{arg\,min}_{1 \leq i \leq a} R(\alpha_i | \mathbf{x}) \quad \text{where} \quad R(\alpha_i | \mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$

- Minimize the probability of error (i.e. minimum error rate)
 - The zero-one loss function: $\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases} \quad i, j = 1, ..., c$ $R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) P(\omega_j \mid \mathbf{x})$

$$= \sum_{j \neq i} P(\omega_j \mid \mathbf{x})$$
$$= 1 - P(\omega_i \mid \mathbf{x})$$

• Decide ω_i if $P(\omega_i | \mathbf{x}) > P(\omega_i | \mathbf{x}) \quad \forall j \neq i$

ICS663 (Fall 2015)

Announcement

- Homework assignment #1
 - Due: Monday September 21, by 5:00 PM
- Project proposal
 - Due: Wednesday September 23, by 5:00 PM

Previously...

- A function employed for differentiating/discriminating between classes
 - Pattern classifiers can be represented by set of discriminant functions, $g_i(\mathbf{x})$, i = 1,..., c
 - Decision rule:

Assign a feature vector \mathbf{x} to class i if: $g_i(\mathbf{x}) > g_i(\mathbf{x}) \quad \forall j \neq l$

- Bayes Classifier
 - $-g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$: general case (minimum conditional risk)
 - $-g_i(\mathbf{x}) = P(\boldsymbol{\omega}_i | \mathbf{x})$: minimum-error-rate (max. posterior) $g_i(\mathbf{x}) = p(\mathbf{x} | \boldsymbol{\omega}_i)P(\boldsymbol{\omega}_i)$
 - $g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \boldsymbol{\omega}_i) + \ln P(\boldsymbol{\omega}_i)$ (In: natural logarithm)

ICS663 (Fall 2015)

Lecture 4

- The Normal Density
- Discriminant Functions for the Normal Density
 - Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$
 - Case 2: $\Sigma_i = \Sigma$

ICS663 (Fall 2015)

ICS663 (Fall 2015)

Central Limit Theorem

- The aggregate effect of a large number of independent random disturbances produces a Gaussian distribution
 - Many patterns can be viewed as some ideal or prototype pattern corrupted by a large number of random process → Gaussian is often a good model for the actual probability distribution

The Normal Density

- Why normal (Gaussian) density?
 - Density which is analytically tractable
 - An appropriate model for an important situation, the case where the feature vector \mathbf{x} for a given class ω_i are continuous-valued, randomly corrupted versions of a single typical or prototype vector μ_i
- The normal (Gaussian) distribution is completely described by its mean μ and variance σ^2 (or standard deviation σ

ICS663 (Fall 2015)

Univariate Density

 $p(x) \sim N(\mu, \sigma^2)$: x is distributed normally with mean μ and variance σ^2 .

ICS663 (Fall 2015)

Multivariate Density

• Multivariate normal density in *d*-dimensions is: $p(\mathbf{x}) \sim N(\mathbf{\mu}, \mathbf{\Sigma})$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right]$$

where:

$$\mathbf{x} = (x_1, x_2, \dots, x_d)^t$$

$$\mathbf{\mu} = (\mu_1, \mu_2, \dots, \mu_d)^t = E[\mathbf{x}] = \int_{-\infty}^{\infty} \mathbf{x} p(\mathbf{x}) d\mathbf{x}$$

$$\mathbf{\Sigma}_{d \times d} = E[(\mathbf{x} - \mathbf{\mu})(\mathbf{x} - \mathbf{\mu})^t] = \int_{-\infty}^{\infty} (\mathbf{x} - \mathbf{\mu})(\mathbf{x} - \mathbf{\mu})^t p(\mathbf{x}) d\mathbf{x}$$

$$\Sigma_{d\times d} = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t] = \int_{-\infty}^{\infty} (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t p(\mathbf{x}) d\mathbf{x}$$

ICS663 (Fall 2015)

Covariance Matrix

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^t]$$

- The diagonal terms σ_{ii} , of Σ are the variance of the values from the mean
- The off-diagonal term σ_{ii} is the covariance of elements iand j. This may be positive (if they vary together) or negative
- Σ is always symmetric and positive semidefinite
- Statistical independence: If x_i and x_i are statistically independent, then $\sigma_{ii} = 0$. If $\sigma_{ii} = 0$ for all $i \neq j$, then $p(\mathbf{x})$ reduces to the product of the univariate normal densities for the components of x

Multivariate Density

- The multivariate normal density is completely specified by d+d(d+1)/2parameters
- $p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} \boldsymbol{\mu})^t \Sigma^{-1} (\mathbf{x} \boldsymbol{\mu}) \right]$

- In the figure right:
 - Center of the cluster is determined by the mean vector
 - Shape of the cluster is determined by the covariance matrix
 - Loci of points of constant density are hyperellipsoids for which the quadratic form $(\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$ (squared Mahalanobis distance from x to μ) is

The principal axes of these hyperellipsoids

are given by the eigenvectors of Σ

Mahalanobis Distance

- The distance between two multi-dimensional points scaled by the statistical variation in each component of the point
- Example on the right:
 - \mathbf{x} is closer to μ_2 than μ_1 in terms of Euclidian distance
 - **x** is closer to μ_1 than μ_2 in terms of Mahalanobis distance

ICS663 (Fall 2015)

Discriminant Functions and Normal Density

- If the likelihood probabilities are normally distributed, then a number of simplification can be made
 - Most important: discriminant functions can be simplified
 - The decision boundaries will have shapes and positions depending upon the prior probabilities, the means and the covariances of the distributions in questions

ICS663 (Fall 2015)

13

15

Discriminant Functions for the Normal Density

- Three distinct cases:
 - 1. Features are statistically independent and each feature has the same variance σ^2 (i.e. $\Sigma_i = \sigma^2 I$)
 - 2. Covariance matrices are arbitrary, but equal to each other for all classes (i.e. $\Sigma_i = \Sigma$)
 - 3. Covariance matrices are arbitrary, and different for each class (i.e. Σ_i = arbitrary)
- Note: the covariance matrix Σ is a symmetric, square matrix whose elements are the covariance σ_{ij} (covariance of x_i and x_i)

ICS663 (Fall 2015)

Discriminant Functions for the Normal Density

Discriminant function for the minimum-error-rate classification

$$g_i(\mathbf{x}) = \ln p(\mathbf{x} \mid \omega_i) + \ln P(\omega_i)$$

• Case of multivariate normal, $p(\mathbf{x} \mid \omega_i) \sim N(\mu_i, \Sigma_i)$:

$$p(\mathbf{x} \mid \omega_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^t \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) \right]$$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln \left|\boldsymbol{\Sigma}_i\right| + \ln P(\omega_i)$$

ICS663 (Fall 2015)

1.4

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

- Statistically independent features having the same variance σ^2
- Samples create equal-size hyperspherical clusters of pattern categories in the feature space
- Cluster for class k is being centered about the mean vector μ_k
- Decision boundary is a generalized hyperplane
- Linear discriminant functions

ICS663 (Fall 2015)

$$\Sigma_i = \sigma^2 \mathbf{I}$$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \boldsymbol{\Sigma}_i \right| + \ln P(\omega_i)$$

independent of i

• Minimum distance classifier: if prior probabilities are identical for all classes, then the input pattern sample should be classified into the class minimizing the Euclidean distance to its mean

ICS663 (Fall 2015)

17

19

$\Sigma_i = \sigma^2 \mathbf{I}$: Linear Discriminant Function

 $g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} \left[\mathbf{x}' \mathbf{x} - 2\boldsymbol{\mu}_i' \mathbf{x} + \boldsymbol{\mu}_i' \boldsymbol{\mu}_i \right] + \ln P(\omega_i)$

 $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$ (linear discriminant function)

where $\mathbf{w}_i = \frac{\mathbf{\mu}_i}{\sigma^2}$; $w_{i0} = -\frac{1}{2\sigma^2}\mathbf{\mu}_i'\mathbf{\mu}_i + \ln P(\omega_i)$

 $(w_{i0}$ is called the threshold or bias for the *i*th category!)

- A classifier that uses linear discriminant functions is called a "linear machine"
- The decision surfaces for a linear machine are pieces of hyperplanes defined by: q_i(x) = q_i(x)

ICS663 (Fall 2015)

$$\Sigma_i = \sigma^2 \mathbf{I}$$

- Minimum distance classifier adapts a Template Matching approach
 - The mean μ_k for each class k is assigned during training
 - For each new pattern sample, extract the feature vector and compute its Euclidean distance to class mean. Then, classify sample into the class minimizing this distance

$\Sigma_i = \sigma^2 \mathbf{I}$: Decision Surfaces

• $g_i(\mathbf{x}) = g_i(\mathbf{x})$

$$\begin{split} & \frac{\mu_{i}^{t}}{\sigma^{2}} \mathbf{x} - \frac{1}{2\sigma^{2}} \mu_{i}^{t} \mu_{i} + \ln P(\omega_{i}) = \frac{\mu_{j}^{t}}{\sigma^{2}} \mathbf{x} - \frac{1}{2\sigma^{2}} \mu_{j}^{t} \mu_{j} + \ln P(\omega_{j}) \\ & \frac{1}{\sigma^{2}} (\mu_{i} - \mu_{j})^{t} \mathbf{x} - \frac{1}{2\sigma^{2}} (\mu_{i}^{t} \mu_{i} - \mu_{j}^{t} \mu_{j}) + \ln P(\omega_{i}) - \ln P(\omega_{j}) = 0 \\ & (\mu_{i} - \mu_{j})^{t} \mathbf{x} - \frac{1}{2} (\mu_{i}^{t} \mu_{i} - \mu_{j}^{t} \mu_{j}) + \sigma^{2} \ln \frac{P(\omega_{i})}{P(\omega_{j})} = 0 \\ & (\mu_{i} - \mu_{j})^{t} \mathbf{x} - \frac{1}{2} (\mu_{i} - \mu_{j})^{t} (\mu_{i} + \mu_{j}) + \frac{\sigma^{2} (\mu_{i} - \mu_{j})^{t} (\mu_{i} - \mu_{j})}{(\mu_{i} - \mu_{j})^{t} (\mu_{i} - \mu_{j})} \ln \frac{P(\omega_{i})}{P(\omega_{j})} = 0 \end{split}$$

$$(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})' \left[\mathbf{x} - \left(\frac{1}{2} (\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{j}) - \frac{\sigma^{2} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})}{\left\| \boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j} \right\|^{2}} \ln \frac{P(\boldsymbol{\omega}_{i})}{P(\boldsymbol{\omega}_{j})} \right) \right] = 0$$

ICS663 (Fall 2015)

$\Sigma_i = \sigma^2 \mathbf{I}$: Decision Surfaces

• The hyperplane separating R_i and R_i:

$$\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0$$

where $\mathbf{w} = \mu_i - \mu_i$ and

$$\mathbf{x}_0 = \frac{1}{2}(\mathbf{\mu}_i + \mathbf{\mu}_j) - \frac{\sigma^2}{\left\|\mathbf{\mu}_i - \mathbf{\mu}_j\right\|^2} \ln \frac{P(\omega_i)}{P(\omega_j)} (\mathbf{\mu}_i - \mathbf{\mu}_j)$$

• Decision surface is a hyperplane passing through the point \mathbf{x}_0 and always orthogonal to the line linking the means!

if
$$P(\omega_i) = P(\omega_j)$$
 then $x_0 = \frac{1}{2}(\mu_i + \mu_j)$

ICS663 (Fall 2015)

Case 2: $\Sigma_i = \Sigma$

- Covariance of all classes are identical but arbitrary
- Features create hyperellipsoidal clusters of equal size and shape
- Decision boundary is a generalized hyperplane
- Linear discriminant functions

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln \left| \boldsymbol{\Sigma}_i \right| + \ln P(\omega_i)$$

independent of i

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu}_i)^t \Sigma^{-1}(\mathbf{x} - \mathbf{\mu}_i) + \ln P(\omega_i)$$

ICS663 (Fall 2015)

$\Sigma_i = \sigma^2 \mathbf{I}$: Decision Surfaces

$\Sigma_i = \Sigma$: Linear Discriminant Function

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{\mu}_i)^t \Sigma^{-1}(\mathbf{x} - \mathbf{\mu}_i) + \ln P(\omega_i)$$

• Minimum distance classifier: if prior probabilities are identical for all classes, then the input pattern sample should be classified into the class minimizing the Mahalanobis distance to its mean

 $g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$ (linear discriminant function)

where
$$\mathbf{w}_i = \mathbf{\Sigma}^{-1} \mathbf{\mu}_i$$
; $w_{i0} = -\frac{1}{2} \mathbf{\mu}_i^t \mathbf{\Sigma}^{-1} \mathbf{\mu}_i + \ln P(\omega_i)$

ICS663 (Fall 2015)

$\Sigma_i = \Sigma$: Decision Surfaces

• The resulting decision boundaries are hyperplanes $\mathbf{w}^t(\mathbf{x} - \mathbf{x}_0) = 0$ where $\mathbf{w} = \mathbf{\Sigma}^{-1}(\mathbf{\mu}_i - \mathbf{\mu}_i)$ and

$$\mathbf{x}_0 = \frac{1}{2} (\mathbf{\mu}_i + \mathbf{\mu}_j) - \frac{1}{(\mathbf{\mu}_i - \mathbf{\mu}_j)^t \mathbf{\Sigma}^{-1} (\mathbf{\mu}_i - \mathbf{\mu}_j)} \ln \frac{P(\omega_i)}{P(\omega_j)} (\mathbf{\mu}_i - \mathbf{\mu}_j)$$

- The hyperplane separating R_i and R_j is generally not orthogonal to the line between the means!
- However, the hyperplane does intersect the line between the means at the point x₀

ICS663 (Fall 2015)

$\Sigma_i = \Sigma$: Example

• Samples:

$$\omega_1$$
: $(1,2)^t$, $(3,1)^t$, $(5,2)^t$, $(3,3)^t$
 ω_2 : $(6,6)^t$, $(8,5)^t$, $(10,6)^t$, $(8,7)^t$

• Compute sample mean and covariance for each class:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \qquad \Sigma = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{x}_{i} - \boldsymbol{\mu}) (\mathbf{x}_{i} - \boldsymbol{\mu})^{t}$$

$$\mu_{1} = \frac{1}{4} \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 5 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} \right) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \quad \Sigma_{1} = \begin{pmatrix} 8/3 & 0 \\ 0 & 2/3 \end{pmatrix}$$

$$\mu_{2} = \frac{1}{4} \left(\begin{pmatrix} 6 \\ 6 \end{pmatrix} + \begin{pmatrix} 8 \\ 5 \end{pmatrix} + \begin{pmatrix} 10 \\ 6 \end{pmatrix} + \begin{pmatrix} 8 \\ 7 \end{pmatrix} \right) = \begin{pmatrix} 8 \\ 6 \end{pmatrix}, \quad \Sigma_{2} = \begin{pmatrix} 8/3 & 0 \\ 0 & 2/3 \end{pmatrix}$$

 $\sum_{i} = \sum: Decision Surfaces$ $\sum_{i} \frac{1}{R_{i}} = \sum_{i} \frac{1}{R_{i}} \sum_{i} \frac{1}{R_$

$\Sigma_i = \Sigma$: Example (cont'd)

• Discriminant function:

$$\begin{split} g_{12}(\mathbf{x}) &= g_1(\mathbf{x}) - g_2(\mathbf{x}) \\ &= \left(\boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 \right) \right) \mathbf{x} + \left(\ln P(\omega_1) - \ln P(\omega_2) - \frac{1}{2} \boldsymbol{\mu}_1^t \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_2^t \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 \right) \\ &= \left(\begin{pmatrix} 3/8 & 0 \\ 0 & 3/2 \end{pmatrix} \begin{pmatrix} 3-8 \\ 2-6 \end{pmatrix} \right)^t \mathbf{x} \\ &+ \left(\ln P(\omega_1) - \ln P(\omega_2) - \frac{1}{2} \begin{pmatrix} 3 & 2 \begin{pmatrix} 3/8 & 0 \\ 0 & 3/2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 8 & 6 \begin{pmatrix} 3/8 & 0 \\ 0 & 3/2 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \right) \\ &= \left(-15/8 & -6 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \left(\ln P(\omega_1) - \ln P(\omega_2) + 34.3125 \right) \\ &= -(15/8) x_1 - 6 x_2 + \left(\ln P(\omega_1) - \ln P(\omega_2) + 34.3125 \right) \end{split}$$

$\Sigma_i = \Sigma$: Example (cont'd)

• Decision boundaries: $g_{12}(\mathbf{x}) = 0$

$$-P(\omega_1) = 0.5, P(\omega_2) = 0.5$$
: $5x_1 + 16x_2 - 91.5 = 0$

$$-P(\omega_1) = 0.8$$
, $P(\omega_2) = 0.2$: $5x_1 + 16x_2 - 95.197 = 0$

$$-P(\omega_1) = 0.2$$
, $P(\omega_2) = 0.8$: $5x_1 + 16x_2 - 87.803 = 0$

