Class clsPVTGas

Initial production GOR corrected to separator conditions (Rollins-McCain) Function FctRsPbCor(GORp As Double, SpegO As Double, SpegG As Double, Psep As Double, Tsep As Double) As Double Input: GORp Initial production GOR (m3/m3) SpegO Oil gravity (non-dimensional) SpegG Gas gravity (non-dimensional) Psep Separator pressure (bar) Tsep Separator temperature (°C) Return: Corrected production GOR (m3/m3); 0 - No solution Gas compresibility factor (Standing-Katz method) Function FctZ Stand(Pr As Double, Tr As Double, GamaG As Double) As Double Input: Pr Pressure (bar) Tr Temperature (°C) GamaG Gas gravity (non-dimensional) Gas compresibility factor (non-dimensional); 0 - No solution Return: Gas compresibility factor (Brill-Beggs method) Function FctZ BB(Pr As Double, Tr As Double, Ppc As Double, Tpc As Double) As Double Input: Pressure (bar) Pr Temperature (°C) Tr Pseudo critical pressure (bar) Ppc Pseudo critical temperature (°C) Tpc Gas compresibility factor (non-dimensional); 0 - No solution Return: Gas compresibility factor (Hall-Yarborough method) Function FctZ HY(Pr As Double, Tr As Double, Ppc As Double, Tpc As Double) As Double Input: Pr Pressure (bar) Temperature (°C) Tr Pseudo critical pressure (bar) Ppc Pseudo critical temperature (°C) Return: Gas compresibility factor (non-dimensional); 0 - No solution Gas viscosity (mPas) - Gas composition is unknown Function FctVisG(Tr As Double, Pr As Double, GamaG As Double) As Double Input: Tr Temperature (°C) Pr Pressure (bar) GamaG Gas gravity Return: Gas viscosity (mPas); 0 - No solution Gas viscosity (with correction for acid gases N2, CO2 and H2S) Function FctVisGcor(Tr As Double, Pr As Double, GamaG As Double, Ppc As Double, Tpc As Double, N2cor As Double, CO2cor As Double, H2Scor As Double) As Double Tr Temperature (°C) Input: Pr Pressure (bar) GamaG Gas gravity (non-dimensional) Pseudo critical pressure (bar) Ppc Pseudo critical temperature (°C) Tpc N2cor N2 corrected (non-dimensional)

CO2cor CO2 corrected (non-dimensional) H2Scor H2S corrected (non-dimensional) Gas viscosity (mPas); 0 - No solution

Return:

Gas formation volume factor

Function FctBg(Tr As Double, Pr As Double, Z As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

Z Gas compresibility (non-dimensional)

Return: Gas formation volume factor (m3/m3); 0 - No solution

Gas density

Function FctDenG(Tr As Double, Pr As Double, Z As Double, GamaG As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

Z Gas compresibility factor (non-dimensional)

GamaG Gas gravity (non-dimensional)
Gas density(kg/m3); 0 - No solution

Remarks: Gas composition is unknown

Pseudo critical pressure

Return:

Function FctPpc(GamaG As Double) As Double

Input: GamaG Gas gravity (non-dimensional)
Return: Pseudo critical pressure; 0 - No solution

Pseudo critical temperature

Function FctTpc(GamaG As Double) As Double

Input: GamaG Gas gravity (non-dimensional)

Return: Pseudo critical temperature; 0 - No solution

Pseudo reduced pressure

Function FctPpr(Pr As Double, Ppc As Double) As Double

Input: Pr Pressure (bar)

Ppc Pseudo critical pressure (bar)

Return: Pseudo reduced pressure; 0 - No solution

Pseudo reduced temperature

Function FctTpr(Tr As Double, Tpc As Double) As Double

Input: Tr Temperature (°C)

Tpc Pseudo critical temperature (°C)

Return: Pseudo reduced temperature; 0 - No solution

Gas molecular weight

Function FctMwtG(GamaG As Double) As Double

Input: GamaG Oil gravity (non-dimensional)

Return: Gas molecular weight (g/mol); 0 - No solution

Condensate molecular weight

Function FctMwtC(GamaC As Double) As Double

Input: GamaC Condensate relative density

Return: Condensate molecular weight (g/mol); 0 - No solution

Class clsPVTOil

Oil molecular weight

Function FctMwtO(GamaO As Double) As Double

Input: GamaO Oil gravity (non-dimensional)

Return: Oil molecular weight (g/mol); 0 - No solution

Bubble-point pressure (Standing method) (1)

Function FctPrPb_Stand(Tr As Double, GamaO As Double, RsPbCor As Double,

GamaG As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

RsPbCorInitial production GOR corrected to separator conditions (m3/m3)

GamaG Gas gravity (non-dimensional)

Return: Bubble-point pressure (bar); 0 - No solution

Bubble-point pressure (Vasquez-Beggs method) (2)

Function FctPrPb_VasBegg(Tr As Double, GamaO As Double, RsPbCor As Double, GamaG As Double,

Tsep As Double, Psep As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

RsPbCorInitial production GOR corrected to separator conditions (m3/m3)

GamaG Gas gravity (non-dimensional)
Tsep Separator temperature (°C)
Psep Separator pressure (bar)

Return: Bubble-point pressure (bar); 0 - No solution

Bubble-point pressure (Glaso method) (3)

Function FctPrPb Glaso(Tr As Double, GamaO As Double, RsPbCor As Double,

GamaG As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

RsPbCorInitial production GOR corrected to separator conditions (m3/m3)

GamaG Gas gravity (non-dimensional)

Return: Bubble-point pressure (bar); 0 - No solution

Bubble-point pressure (MECO method) (4)

Function FctPrPb_Meco(Tr As Double, GamaO As Double, RsPbCor As Double,

GamaG As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

RsPbCorInitial production GOR corrected to separator conditions (m3/m3)

GamaG Gas gravity (non-dimensional)

Return: Bubble-point pressure (bar); 0 - No solution

Bubble-point pressure (Kartoatmadjo-Schmidt method) (5)

Function FctPrPb_KartoSchm(Tr As Double, GamaO As Double, RsPbCor As Double, GamaG As Double,

Tsep As Double, Psep As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

RsPbCorInitial production GOR corrected to separator conditions (m3/m3)

GamaG Gas gravity (non-dimensional)
Tsep Separator temperature (°C)
Psep Separator pressure (bar)

Return: Bubble-point pressure (bar); 0 - No solution

Bubble-point pressure (Petrosky-Farshad method) (6)

Function FctPrPb PetroFar(Tr As Double, GamaO As Double, RsPbCor As Double,

GamaG As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

RsPbCorInitial production GOR corrected to separator conditions (m3/m3)

GamaG Gas gravity (non-dimensional)

Return: Bubble-point pressure (bar); 0 - No solution

Bubble-point pressure (Lasater method) (7)

Function FctPrPb_Lasater(Tr As Double, GamaO As Double, RsPb As Double, GamaG As Double,

MwtO As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

RsPb Solution gas at bubble-point pressure (m3/m3)

GamaG Gas gravity (non-dimensional)
Mwt0 Oil molecular weight (g/mol)

Return: Bubble-point pressure (bar); 0 - No solution

Solution gas (Standing method) (1)

Function FctRs_Stand(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

Pb As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)
Pb Bubble-point pressure (bar)

Return: Solution gas (m3/m3); 0 - No solution

Solution gas (Vasquez-Beggs method) (2)

Function FctRs VasBegg(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

Pb As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)
Pb Bubble-point pressure (bar)

Return: Solution gas (m3/m3); 0 - No solution

Solution gas (Glaso method) (3)

Function FctRs_Glaso(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

Pb As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)
Pb Bubble-point pressure (bar)
Solution gas (m2/m2): 0 No solution

Return: Solution gas (m3/m3); 0 - No solution

Solution gas (MECO method) (4)

Function FctRs MECO(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

Pb As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)
Pb Bubble-point pressure (bar)

Return: Solution gas (m3/m3); 0 - No solution

Solution gas (Kartoatmadjo-Schmidt method) (5)

Function FctRs_KartoSchm(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

Pb As Double, Tsep As Double, Psep As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)
Pb Bubble-point pressure (bar)
Tsep Separator temperature (°C)
Psep Separator pressure (bar)

Return: Solution gas (m3/m3); 0 - No solution

Solution gas (Petrosky-Farshad method) (6)

Function FctRs_PetroFar(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

Pb As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)
Pb Bubble-point pressure (bar)

Return: Solution gas (m3/m3); 0 - No solution

Solution gas (Lasater method) (7)

Function FctRs_Lasater(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

MwtO As Double, Pb As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)
MwtO Oil molecular weight (g/mol)
Pb Bubble-point pressure (bar)

Return: Solution gas (m3/m3); 0 - No solution

Dead oil viscosity (Beggs-Robinson method) (1)

Function FctVisOd_BeggRob(Tr As Double, GamaO As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

Return: Dead oil viscosity (mPas); 0 - No solution

Dead oil voscosity (Beal method) (2)

Function FctVisOd_Beal(Tr As Double, GamaO As Double) As Double

Input: Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

Return: Dead oil viscosity (mPas); 0 - No solution

```
Oil voscosity (Beggs-Robinson method) (1)
```

Function FctVisO_BeggRob(Pr As Double, Pb As Double, Rs As Double, RsPb As Double,

VisOd As Double) As Double

Input: Pr Pressure (bar)

Pb Bubble-point pressure (bar)

Rs Solution gas (m3/m3)

RsPb Solution gas at bubble-point pressure (m3/m3)

VisOd Dead oil viscosity (mPas)

Return: Oil viscosity (mPas); 0 - No solution

Oil viscosity (Chew-Connaly method) (2)

Function FctVisO_ChewCon(Rs As Double, VisOd As Double) As Double

Input: Rs Solution gas (m3/m3)

VisOd Dead oil viscosity (mPas)

Return: Oil viscosity (mPas); 0 - No solution

Oil isothermal compressibility

Function FctCmpO(Tr As Double, Pr As Double, Rs As Double, GamaO As Double,

GamaG As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

Rs Solution gas (m3/m3)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)

Return: Oil isothermal compressibility (1/bar); 0.00001 - In case of an error

Oil formation volume factor (Standing method) (1)

Function FctBo Stand(Pr As Double, Pb As Double, Tr As Double, GamaO As Double,

GamaG As Double) As Double

Input: Pr Pressure (bar)

Pb Bubblepoint pressure (bar)

Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)

Return: Oil formation volume factor (m3/m3); 0 - No solution

Oil formation volume factor (Vasquez-Beggs method) (2)

Function FctBo_VasBegg(Pr As Double, Pb As Double, Tr As Double, GamaO As Double,

GamaG As Double) As Double

Input: Pr Pressure (bar)

Pb Bubblepoint pressure (bar)

Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)

GamaG Gas gravity (non-dimensional)

Return: Oil formation volume factor (m3/m3); 0 - No solution

Oil formation volume factor (Glaso method) (3)

Function fctBo Glaso(Pr As Double, Pb As Double, Tr As Double, GamaO As Double,

GamaG As Double) As Double

Input: Pr Pressure (bar)

Pb Bubblepoint pressure (bar)

Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)

Return: Oil formation volume factor (m3/m3); 0 - No solution

```
Oil formation volume factor (MECO method) (4)
```

Function FctBo MECO(Pr As Double, Pb As Double, Tr As Double, GamaO As Double,

GamaG As Double) As Double

Input: Pr Pressure (bar)

Pb Bubblepoint pressure (bar)

Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)

Return: Oil formation volume factor (m3/m3); 0 - No solution

Oil formation volume factor (Kartoatmadjo-Schmidt method) (5)

Function FctBo_KartoSchm(Pr As Double, Pb As Double, Tr As Double, GamaO As Double, GamaG As Double, Tsep As Double, Psep As Double) As Double

Input: Pr Pressure (bar)

Pb Bubblepoint pressure (bar)

Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)
Tsep Separator temperature (°C)
Psep Separator pressure (bar)

Return: Oil formation volume factor (m3/m3); 0 - No solution

Oil formation volume factor (Petrosky-Farshad method) (6)

Function FctBo_PetroFar(Pr As Double, Pb As Double, Tr As Double, GamaO As Double,

GamaG As Double) As Double

Input: Pr Pressure (bar)

Pb Bubblepoint pressure (bar)

Tr Temperature (°C)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)

Return: Oil formation volume factor (m3/m3); 0 - No solution

Oil density

Function FctDenO(Pr As Double, Pb As Double, GamaO As Double, GamaG As Double, Rs As Double,

RsPb As Double, Bo As Double, BoPb As Double, Co As Double) As Double

Input: Pr Pressure (bar)

Pb Bubble-point pressure (bar)
GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)

Rs Solution gas (m3/m3)

RsPb Solution gas at bubble-point pressure (m3/m3)

Bo Oil formation volume factor (m3/m3)

BoPb Oil formation volume factor at bubble-point pressure (m3/m3)

Co Oil isothermal compressibility (1/bar)

Return: Oil density (kg/m3); 0 - No solution

Gas/Oil interfacial tension)

Function FctSigmaO(MwtO As Double, DenO As Double, DenG As Double) As Double

Input: Mwt0 Oil molecular weight (g/mol)

DenO Oil density (kg/m3)
DenG Gas density (kg/m3)

Return: Gas/Oil interfacial tension (mN/m); 0 - No solution

Total volume factor (General method) (1)

Function FctBt_Gen(Tr As Double, Pr As Double, Pb As Double, GamaO As Double, GamaG As Double,

Rs As Double, RsPb As Double, Bo As Double, Z As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

Pb Bubble-point pressure (bar) GamaO Oil gravity (non-dimensional) GamaG Gas gravity (non-dimensional)

Rs Solution gas (m3/m3)

RsPb Solution gas at bubble-point pressure (m3/m3)

Bo Oil formation volume factor (m3/m3)

Z Gas compresibility factor (non-dimensional)

Return: Total oil volume factor (m3/m3); 0 - No solution

Total volume factor (Glaso method) (2)

Function FctBt_Glaso(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

Rs As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)

Rs Solution gas (m3/m3)

Return: Total volume factor (m3/m3); 0 - No solution

Total formation volume factor (MECO method) (3)

Function fctBt_Meco(Tr As Double, Pr As Double, GamaO As Double, GamaG As Double,

Rs As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

GamaO Oil gravity (non-dimensional)
GamaG Gas gravity (non-dimensional)

Rs Solution gas (m3/m3)

Return: Total oil volume factor (m3/m3); 0 - No solution

Class clsPVTWater

Water formation volume factor

Function FctBw(Tr As Double, Pr As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)

Return: Water formation volume factor (m3/m3); 0 - No solution

Water isothermal compressibility (Brill-Beggs method)

Function FctCmpW(Tr As Double, Pr As Double) As Double

Input: Tr Temperature (°C)
Pr Pressure (bar)

Return: Water isothermal compressibility (1/bar); 0 - No solution

Water density

Function FctDenW(Sal As Double) As Double

Input: Sal Water salinity (%)

Return: Water density (kg/m3); 0 - No solution

Gas/Water interfacial tension

Function FctSigmaW(Pr As Double) As Double

Input: Pr Pressure (bar)

Return: Gas/Water interfacial tension (mN/m); 0 - No solution

Water viscosity

Function FctVisW(Tr As Double, Pr As Double, Sal As Double) As Double

Input: Tr Temperature (°C)

Pr Pressure (bar)
Sal Water salinity (%)

Return: Water viscosity (mPas); 0 - No solution