Due: Feb 1, 2024

1. **Nursing Home Utilization** data for the following questions. this exercise involves data filename "WiscNorsingHome" Frees page 59.

You will need to read a .csv file into R by read.csv(file,header=TRUE) for this questions.

You decide to examine the relationship between total patient years (LOGTPY) and the number of beds (LOGNUMBED), both in natural logarithmic units, using cost-report year 2001 data.

You are asked to perform below in both excel workbook and verify with R

- (a) Estimation of coefficients, β_0, β_1
 - 1. Calculate the 2×2 matrix, $\mathbf{x}^T \mathbf{x}$, $(\mathbf{x}^T \mathbf{x})^{-1}$ and $\mathbf{x}^T \mathbf{y}$
 - 2. Calculate the 2×1 estimate $\hat{\beta}$
- (b) Calculate the diagonal element of the hat matrix \mathbf{H} , h_{ii} .
 - 1. Calculate the inverse of 2×2 matrix, $\mathbf{x}^T \mathbf{x}$
 - 2. Calculate $\mathbf{x}_i^T \left(\mathbf{x}^T \mathbf{x} \right)^{-1} \mathbf{x}_i$, where \mathbf{x}_i^T is ith row of \mathbf{x} , $(1, x_i)$.
- (c) Calculate the fitted value $\hat{\mathbf{y}}$
- (d) Calculate R^2 , adjusted R^2 , F-stat, p-value, and the mean squared error (MSE) s^2 .
- (e) Calculate the standard residual vector **r**
 - 1. Calculate the residuals e_i
 - 2. Calculate the standard residual $r_i = \frac{e_i}{s\sqrt{1-h_{ii}}}$.
- (f) You are asking to accessing the effectiveness of predictor, LOGNUMBED. Also compute the corresponding p-value.
 - 1. Hypothesis testing: $\mathcal{H}_0: \beta_1 = 0$ versus $\mathcal{H}_1: \beta_1 \neq 0$ at the 5% levels of significance using a t-statistic.
 - 2. Compute the p-value, what is your assessment of the estimate $\hat{\beta}_1$?
 - 3. Provide a 95% confidence internal (CI) corresponding to the point estimate for β_1 .
 - 4. Provide a 99% CI corresponding to the point estimate for β_1 .
- (g) At a specified number of beds estimate $x_* = 100$, do these things:
 - 1. Find the predicted value of LOGTPY.
 - 2. Obtain the 95% prediction interval.
- (h) (**Perform in R**) Fit the basic linear model using LOGTPY as response variable and LOGNUMBED as explanatory variable. Compare results with what you calculate above.