U.S.N.					

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU JAN / FEB - 2021 Semester End Main Examinations

Programme: B.E.

Branch: Electronics and Communication Engineering
Course Code: 19EC5PCCT1
Course: Communication Theory -1

Semester: V
Duration: 3 hrs.
Max Marks: 100
Date: 28.01.2021

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may suitably assumed.

UNIT - I

- 1. a) State and explain three properties of autocorrelation function 07
 - Consider a composite wave obtained by adding a non-coherent carrier $A_c \cos(2\pi f_c t + \Phi)$ to a DSBSC wave $\cos(2\pi f_c t) m(t)$. This composite wave is applied to an ideal envelope detector. Find the resulting detector output. Evaluate this output for

i)
$$\Phi=0$$
 ii) $\Phi\neq 0$ & $m(t)$ | « $A_c/2$

- c) Explain the following 06
 - i. Random Variable
 - ii. Random Process
 - iii. mean

OR

- 2. a) Discuss the working principle of diode switching modulator. Write down the relevant equations, waveforms and spectrum
 - b) Show that $P_t = P_c(1 + \frac{\mu^2}{2})$ for Standard AM
 - e) Evaluate mean and variance of a random variable X which is uniformly distributed

UNIT - II

- 3. a) Derive an expression for SSB modulated wave for which upper side band is retained.
 - b) State and prove the properties of Hilbert Transform 06
 - c) Show that VSB modulated wave can be demodulated by using envelope detector.

UNIT – III

4.	a)	Analyze a suitable oscillator circuit to generate frequency modulated wave	10
		whose instantaneous frequency is proportional to the amplitude of	
		message m(t). What are its disadvantages? Explain how to overcome this?	
	b)	Explain the FM demodulation using frequency discriminator.	10
		OR	
5.	a)	Show that the bandwidth of WBFM is infinity and specify the amplitude	10
		of carrier and sidebands.	
	b)	Explain with neat diagram demodulation of FM using PLL	10
		UNIT - IV	
6.	a)	Explain Thermal noise and Shot noise	04
	b)	Show that Figure of Merit (FOM) of DSBSC receiver is unity	08
	c)	Explain pre-emphasis and de-emphasis in FM receiver	08
		UNIT - V	
7.	a)	Define Digital Communication. With neat block diagram explain the	06
		principle of digital communication system.	
	b)	State and prove the sampling theorem for low pass signal	08
	c)	The signal $g(t) = 10\cos(20\pi t)\cos(200\pi t)$ is sampled at the rate of 250	06
		samples per second.	
		(i) Determine the spectrum of the resulting sampled signal. (ii) Specify the	
		cutoff frequency of the ideal reconstruction filter so as to recover g(t) from	
		its sampled version (iii) What is the Nyquist rate for g(t)?	
