Greedy Florist

You and $K-1\$ friends want to buy $N\$ flowers. Each flower $f_i\$ has some cost $c_i\$. The florist is greedy and wants to maximize his number of new customers, so he increases the sale price of flowers for repeat customers; more precisely, if a customer has already purchased $x\$ flowers, price $f_i\$ is $f_i\$ if $f_i\$ if $f_i\$ in the florist is $f_i\$ for $f_i\$ is $f_i\$ in the flowers of the flowers of $f_i\$ is $f_i\$ in the flowers of $f_i\$ in the flowers of $f_i\$ is $f_i\$ in the flowers of $f_i\$ in

Find and print the minimum cost for your group to purchase \$N\$ flowers.

Note: You can purchase the flowers in any order.

Input Format

The first line contains two integers, \$N\$ (number of flowers to purchase) and \$K\$ (the size of your group of friends, including you).

The second line contains N space-separated positive integers describing the cost ($c_{0}, c_{1}, ..., c_{N-2}, c_{N-1}$) for each flower f is .

Constraints

- \$1 \le N, K \le 100\$
- \$1 \leg c i \leg 10^6\$
- \$answer \lt 2^{31}\$
- \$0 \leq i \leq N-1\$

Output Format

Print the minimum cost for buying \$N\$ flowers.

Sample Input 0

3 3 2 5 6

Sample Output 0

13

Sample Input 1

3 2 2 5 6

Sample Output 1

15

Explanation

Sample Case 0:

There are \$3\$ flowers and \$3\$ people in your group. Each person buys one flower and the sum of prices

paid is \$13\$ dollars, so we print \$13\$.

Sample Case 1:

There are \$3\$ flowers and \$2\$ people in your group. The first person purchases \$2\$ flowers, f_0 and f_1 , in order of decreasing price; this means they buy the more expensive flower first at price $P_{f_1} = (0+1) \times 5 = 5 \setminus 1$ dollars and the less expensive flower second at price $P_{f_0} = (1+1) \times 2 = 4 \setminus 1$ dollars. The second person buys the most expensive flower at price $P_{f_2} = (0+1) \times 6 = 6 \setminus 1$ dollars. We print the sum of these purchases (\$5 + 4+6\$), which is \$15\$.