Libraries, directory and data

```
In [ ]:
```

#change directory
%cd /content/drive/MyDrive/Business Analyst course/Statistics and Descriptive Analytics/
Basic Statistics

/content/drive/MyDrive/Business Analyst course/Statistics and Descriptive Analytics/Basic Statistics

```
In [ ]:
```

```
#Libraries
import pandas as pd
import seaborn as sns
```

In []:

```
#load the dataset
df = pd.read_csv("Baseball.csv")
df.head()
```

Out[]:

	Team	League	Year	RS	RA	W	OBP	SLG	BA	Playoffs	RankSeason	RankPlayoffs	G	OOBP	OSLG
0	ARI	NL	2012	734	688	81	0.328	0.418	0.259	0	NaN	NaN	162	0.317	0.415
1	ATL	NL	2012	700	600	94	0.320	0.389	0.247	1	4.0	5.0	162	0.306	0.378
2	BAL	AL	2012	712	705	93	0.311	0.417	0.247	1	5.0	4.0	162	0.315	0.403
3	BOS	AL	2012	734	806	69	0.315	0.415	0.260	0	NaN	NaN	162	0.331	0.428
4	СНС	NL	2012	613	759	61	0.302	0.378	0.240	0	NaN	NaN	162	0.335	0.424

Mean

Out[]:

In []:

729.0

```
In []:
#Mean of Runs Scored (RS)
df.RS.mean()
Out[]:
715.0819805194806
In []:
#Mean of Runs Scored (RS) by the Arizona team (ARI)
df.loc[df.Team == "ARI"].RS.mean()
Out[]:
742.2
In []:
#Mean of Runs Scored (RS) by the Arizona team (ARI) since 2005
```

df.loc[(df.Team == "ARI") & (df.Year > 2005)].RS.mean()

```
#Question: What is the mean of Runs Allowed (RA) by the Chicago team (CHC)
# until 2007
df.loc[(df.Team == "CHC") & (df.Year < 2007)].RA.mean()

Out[]:
728.170731707317</pre>
Median
In []:
```

```
#Median and Mean of Wins (W)
print(df.W.mean())
df.W.median()
80.90422077922078
Out[]:
81.0
In [ ]:
#Question: what is the median of Wins of the Baltimore Team (BAL) until 2000
df.loc[(df.Team == "BAL") & (df.Year <= 2000)].W.median()</pre>
Out[]:
89.0
Mode
In [ ]:
# Mode, Median and Mean of OBP
print(df.OBP.mean())
print(df.OBP.median())
df.OBP.mode()
0.32633116883116886
0.326
Out[]:
   0.322
dtype: float64
```

```
In []:
#Question: Mode of OBP during the Year 2010
df.loc[df.Year == 2010].OBP.mode()
Out[]:
```

Correlation

0 0.332 dtype: float64

```
In []:
#pick variables
df_correlation = df[["RS", "RA", "W"]]
df_correlation.head(1)
```

```
Out[]:
```

```
RS RA W
0 734 688 81
```

In []:

```
#Correlation matrix df_correlation.corr()
```

Out[]:

		RS	RA	W
R	S	1.000000	0.380139	0.511745
R	Α	0.380139	1.000000	-0.532394
١	W	0.511745	-0.532394	1.000000

In []:

Out[]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fb5c0586790>

In []:

```
#challenge: correlation matrix between OBP, SLG and BA. Do as well a heatmap
# with 2 parameters changed
df_correlation2 = df[['OBP', 'SLG', 'BA']]
df_correlation2.corr()
```

Out[]:

```
        OBP
        SLG
        BA

        OBP
        1.000000
        0.790910
        0.851958

        SLG
        0.790910
        1.000000
        0.790481

        BA
        0.851958
        0.790481
        1.000000
```

In []:

```
fmt = '.1g',
center = 0.7,
cmap = 'rocket',
linewidths = 2,
linecolor = 'yellow')
```

Out[]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fb5bd79c8d0>

Standard Deviation

```
In [ ]:
```

```
#Standard Deviation
print(df.00BP.mean())
df.00BP.std()
```

0.3322642857142857

Out[]:

0.015295316041389943

In []:

```
#Question: what is the standard deviation of BA
print(df.BA.mean())
df.BA.std()
```

0.25927272727272727

Out[]:

0.012907228928000314