DeepDCF

QiangWang

November 21, 2016

1 Discriminative Correlation Filters

1.1 DSST

(PCA-HOG+Gray)+DCF+Scale Esimation

key word: circular correlation, Parserval's identity, dense feature

1.1.1 Derivation

patch: $x_1, ..., x_t$

label: $y_1, ..., y_t$

filter: w_t test patch: z

$$\epsilon = \sum_{j=1}^{t} \|w_t \star x_j - y_j\|^2 = \sum_{j=1}^{t} \|\overline{W}_t \odot X_j - Y_j\|^2$$

$$W_t = \frac{\sum_{j=1}^{t} \overline{Y}_j \odot X_j}{\sum_{j=1}^{t} X_j \odot \overline{X}_j}$$

$$y = \mathfrak{F}^{-1} \left(\overline{W}_t \odot Z \right) = \mathfrak{F}^{-1} \left(\frac{\sum_{j=1}^{t} \overline{X}_j \odot Y_j \odot Z}{\sum_{j=1}^{t} \overline{X}_j \odot X_j} \right)$$

This is a little different between ${
m MOSSE}[1]$ and this Derivation. No regularization term.

References

- [1] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. Visual object tracking using adaptive correlation filters. In *Computer Vision and Pattern Recognition (CVPR)*, 2010 IEEE Conference on, pages 2544–2550. IEEE, 2010.
- [2] Martin Danelljan, Gustav Häger, Fahad Khan, and Michael Felsberg. Accurate scale estimation for robust visual tracking. In *British Machine Vision Conference*, *Nottingham*, *September 1-5*, *2014*. BMVA Press, 2014.