Maypa Mex Manusone 231 - 338 Tadinesa OTBETOB Nº Orbetter 1 359 2. - 32 3. 0,75 4. 683 6. 40,75 7. - 42,25 8, 6 9 19109 10, 0,59 11. 324053 12. 92

$$A_{ij} = -101$$
 $A_{13} = -70$
 $A_{14} = 0$

(3)
$$Q = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

$$Q_{*}^{T} = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & -4 \\ -2 & 4 & 2 \end{pmatrix}$$

$$A_{11} = I \qquad A_{21} = -2$$

$$A_{12} = 4 \qquad A_{22} = 0$$

$$A_{13} = -2 \qquad A_{23} = 4$$

$$Q_{*} = \begin{pmatrix} 1 & 4 & -1 \\ -1 & 0 & 4 \\ 3 & -4 & 2 \end{pmatrix}$$

$$det(Q) = 8$$

$$A_{31} = 3$$
 $A_{31} = -4$
 $A_{33} = 2$

$$Q = \begin{pmatrix} \frac{1}{8} & -\frac{1}{8} & \frac{3}{8} \\ \frac{1}{8} & 0 & \frac{4}{8} \\ -\frac{1}{8} & \frac{4}{8} & \frac{2}{8} \end{pmatrix}$$

$$Sum(Q) = 0, 48$$

$$\begin{pmatrix} \frac{1}{8} & -\frac{1}{8} & \frac{3}{8} \\ -\frac{1}{8} & \frac{2}{8} & \frac{3}{8} \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{8} & -\frac{2}{8} & \frac{3}{8} \\ -\frac{1}{8} & \frac{2}{8} & \frac{2}{8} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{1}{8} & -\frac{1}{8} & \frac{3}{8} & \frac{4}{8} \\ -\frac{1}{2} & \frac{1}{8} & \frac{2}{8} & \frac{2}{8} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{1}{8} & -\frac{1}{8} & \frac{1}{8} & \frac{2}{8} & \frac{2}{8} & \frac{2}{8} & \frac{2}{8} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$Q = \begin{pmatrix} \frac{1}{8} & -\frac{1}{8} & \frac{1}{8} & \frac{2}{8} & \frac{2}{$$

 $\bar{a} = a_{*} \cdot \bar{n} + a_{g} \cdot \bar{s} + a_{z} \cdot \bar{p} = a_{*}(3\bar{i} - 2\bar{j} + \bar{k}) + a_{g}(-\bar{i} + \bar{j} - 2\bar{k}) + a_{z}(2\bar{i} + \bar{j} - 3\bar{k}) =$ $= 36\bar{i} - 6\bar{j} + 5\bar{k}$

 $\begin{cases} 3 a_{m} - a_{s} + 2 a_{p} = 36 & \left(\frac{3}{3} - 1 \frac{2}{3} \frac{1}{3} \frac{3}{6} \right) \\ -2 a_{m} + a_{s} + a_{p} = -6 & \left(-\frac{1}{2} \frac{1}{3} \frac{1}{6} \right) \\ a_{m} - 2 a_{s} - 3 a_{p} = 5 & \left(\frac{1}{3} - \frac{1}{3} \frac{1}{3} \frac{3}{6} \right) \end{cases}$

 $\Delta = 8$ $\alpha_{n} = \frac{207}{8}$ $\alpha_{s} = -\frac{257}{8}$ $\alpha_{s} = \frac{257}{8}$ $\alpha_{p} = \frac{98}{8}$ $\alpha_{p} = \frac{98}{8}$

1 = 98 Sam(am, as, ap) = 6/OrBet

9 $|\vec{m}| = 36$ $|a|^2 = |3\vec{m}|^2 + |\vec{s}|^2 - |\vec{s}| = 35$ $-2 \cdot |3\vec{m}| - |\vec{s}| \cdot \cos \varphi = |\vec{m}| \cdot |\vec{s}| = 60^\circ$ $= 9 \cdot 36^2 + 35^2 - 2 \cdot 3 \cdot 36 \cdot |\vec{m}| = 3\vec{m} - \vec{s}$ $\cdot 35 \cdot \frac{1}{2} = 9109$ $|\vec{a}| = \frac{2}{|\vec{a}|} = \frac{2}{|\vec{a}|} = \frac{\sqrt{9109}}{|\vec{0}|} = \sqrt{9109}$

(a)
$$A(36;-1;2)$$
 $B(3;36;2)$
 $C(4;1;36)$
 $Cos \varphi = ?$
 $BA = (33;-37;0)$
 $BC = (4;-35;37)$
 $BC = (4;-35;37)$
 $BC = \sqrt{2}$
 $BA, BC = \sqrt{2}$
 $Cos \varphi = \sqrt{2}$

$$\begin{split} & \left| \left[(\bar{p} - 2\bar{q}) \cdot (3\bar{p} - \bar{q}) \right] \right| = \left| \left[\bar{p} \cdot 3\bar{p} \right] - \left[2\bar{q} \cdot 3\bar{p} \right] - \\ & - \left[\bar{p} \cdot 4\bar{q} \right] + \left[2\bar{q} \cdot \bar{q} \right] \right| = \left| -6\bar{q} \cdot \bar{p} \right] + \left[\bar{q} \cdot \bar{p} \right] \right|^{2} \\ & = 5\left[\bar{p} \cdot \bar{q} \right] = 5\left[\bar{p} \right] \cdot \left[\bar{q} \right] \cdot \sin \hat{g} = 5 \cdot 36 \cdot 36 \cdot \\ & - \frac{\sqrt{3}}{2} = 3240 \int 3 //Orget \end{split}$$

(D) $\overline{a} \in 36; -1; \overline{6}$) $\overline{b} (2; 4; -2)$ $\overline{c} (3; 0; 1)$ $\overline{c} (3; 0; 1)$ $\overline{d} (3; 0; 1)$

92 # 0 => restronmanaprior

 $V = |(\bar{a}, \bar{b}, \bar{c})| = 92 //0$ Ther $\det \geq 0 \Rightarrow odp$. replyed Tpoure