现代数学基础从书 9.5

模李超代数

张永正 対文徳 著

现代数学基础丛书 93

模李超代数

张永正 刘文德 著

哈尔滨师范大学优秀专著出版基金资助

科学出版社

内 容 简 介

本书主要讨论 Cartan 型模李超代数, 其中包括作者近年来在模李超代数方向上的研究成果, 书中构造了四类 Cartan 型模李超代数, 讨论了李超代数的结合型与深度 1 的 Z - 阶化李超代数, 介绍了形式向量场上的两类无限维的 Cartan 型李超代数.

本书可作为数学系、计算机系的研究生读物,也可供相关专业的大学生、研究生、教师以及有关的科技工作者参考.

图书在版编目(CIP)数据

模李超代数/张永正,刘文德著.—北京:科学出版社,2004 (现代数学基础丛书;93)

ISBN 7-03-014009-5

I.模… II.①张… ②刘… III. 李代数 IV. O152. 5 中国版本图书馆 CIP 数据核字(2004)第 075889 号

> 责任编辑: 吕 虹 张 扬/责任校对: 钟 洋 责任印制: 钱玉芬/封面设计: 陈 敬

新华虫座 社 出版

北京东黄城极北街16号 邮政编码:100717 http://www.sciencep.com **漆路印刷喷胀责任公司**印刷

科学出版社发行 各地新华书店经销

2004年9月第一版

开本: B5(720×1000)

2004年9月第一次印刷 印张: 12 3/4 印数: 1—3 000 字数: 234 000

定价: 29,00元

(如有印装质量问题, 我社负责调换 (环伟))

《现代数学基础丛书》编委会

主编:杨乐

副主编: 姜伯驹 李大潜 马志明

编 委: (以姓氏笔画为序)

王启华 王诗宬 冯克勤 朱熹平

严加安 张伟平 张继平 陈木法

陈志明 陈叔平 洪家兴 袁亚湘

葛力明 程崇庆

《现代数学基础丛书》序

对于数学研究与培养青年数学人才而言,书籍与期刊起着特殊重要的作用.许多成就卓越的数学家在青年时代都曾钻研或参考过一些优秀书籍,从中汲取营养,获得教益.

20世纪70年代后期,我国的数学研究与数学书刊的出版由于文化大革命的浩劫已经破坏与中断了十余年,而在这期间国际上数学研究却在迅猛地发展着.1978年以后,我国青年学子重新获得了学习、钻研与深造的机会.当时他们的参考书籍大多还是50年代甚至更早期的著述.据此,科学出版社陆续推出了多套数学丛书,其中《纯粹数学与应用数学专著》丛书与《现代数学基础丛书》更为突出,前者出版约40卷,后者则逾80卷.它们质量甚高,影响颇大,对我国数学研究、交流与人才培养发挥了显著效用.

《现代数学基础丛书》的宗旨是面向大学数学专业的高年级学生、研究生以及青年学者,针对一些重要的数学领域与研究方向,作较系统的介绍.既注意该领域的基础知识,又反映其新发展,力求深入浅出,简明扼要,注重创新

近年来,数学在各门科学、高新技术、经济、管理等方面取得了更加广泛与深入的应用,还形成了一些交叉学科.我们希望这套丛书的内容由基础数学拓展到应用数学、计算数学以及数学交叉学科的各个领域.

这套丛书得到了许多数学家长期的大力支持,编辑人员也为其付出了艰辛的劳动.它获得了广大读者的喜爱.我们诚挚地希望大家更加关心与支持它的发展,使它越办越好,为我国数学研究与教育水平的进一步提高作出贡献.

杨乐

2003年8月

前言

在物理学中,为了建立相对论的费米子与玻色子的统一理论,1974 年 Wess 和 Zumino 提出了超对称性,将普通时空满足的 Poincarè 李代数(即非齐次 Lorentz 代数)扩充为超 Poincarè 代数.于是将有限个具有不同内部量子数的玻色子与费米子放在李超代数的一个不可约表示中,从此关于李超代数的研究有了迅速的发展.从数学的角度来看,在非模的李超代数(即特征零的域上的李超代数)的研究中,具有里程碑意义的结果当属 V.G.Kac 于 1977 年完成的特征零代数闭域上有限维单李超代数的分类.现在,非模李超代数的研究已经取得了相当系统的结果.于是自然地考虑到模李超代数(即素特征域上的李超代数)的情况.但是,由于基础域的特征数不同,非模李超代数的主要研究方法不能转移到模李超代数.因此不能相仿于非模的情形研究模李超代数.

我们知道,自从 1968 年 A.I.Kostrikin 的文章发表以后,模李代数(即素特征域上的李代数)的研究有了长足的发展. 经过多位数学家几十年的共同努力,特别是 H. Strade 的杰出工作,最终于 1989 年完成了特征数大于 7 的代数闭域上单的有限维李代数的分类. 至今,模李代数已经有了丰富的理论. 尽管模李代数与模李超代数有很大的差异,但是模李代数的理论为模李超代数的研究提供了考虑问题的方法和途径,从而我们进行了模李超代数的某些研究工作. 本书主要反映了作者近年来在模李超代数方向上的研究成果.

目前模李超代数的研究仍处在前期的发展阶段, 研究结果较少, 尚无模李超代数的专门书籍. 现根据我们的工作撰写了这本书. 因为非模的李超代数与模李超代数的差别在于 Cartan 型代数, 所以本书主要讨论 Cartan 型模李超代数.

本书共分六章. 第一章首先介绍了本书所需要的基本概念.然后通过刻画除幂代数与外代数的张量积的特殊导子,构作了四类有限维 Cartan 型模李超代数. 它们的 \mathbb{Z}_2 -阶化是不相容的,在非模的情形不存在这样的有限维 Cartan 型李超代数.

第二章证明了四类有限维 Cartan 型模李超代数的单性. 进而分别确定了它们的导子超代数.

第三章构造了任一李超代数到 W 型李超代数的同态,从而得到了任一单李超代数均同构于 W 型李超代数的一个子代数. 进而,本章证明了四类 Cartan 型模李超代数的滤过不变性,于是得出定义它们的整数 m, n 与 m 元整数组 \underline{t} 是内蕴的.

第四章讨论了有限维李超代数的结合型. 首先讨论了单李超代数的结合型,进而刻画了单的 Z-阶化李超代数的结合型, 之后确定了 Cartan 型模李超代数的结合型, 并且证明了有限维李超代数的任一表示的迹型必为偶的结合型.

第五章证明了深度 1 的 Z - 阶化李超代数的嵌入定理. 利用嵌入定理, 通过旗的方法确定了底部分别为一般与特殊线性李超代数的具有可迁 Z - 阶化的模李超代数.

第六章讨论了深度 1 的 Z-阶化模李超代数的表示,首先将沈光字的混合积的方法推广到李超代数. 从而构造了 W, S 与 H 型李超代数的阶化模,并且给出了 H 型李超代数的阶化模为不可约模的一个充分条件. 讨论了 V. G. Kac 在 1998年分类无限维的线性紧致单李超代数中的两个重要的例子: 形式向量场的一般与特殊李超代数. 目的是使读者看到 ad-拟幂零元在 Z-阶化李超代数研究中的作用.

由于有限维的单的非模李超代数的分类早已解决, 所以, 有限维的单的模李超代数的分类就成为重要的研究课题. 我们希望本书构造的四类有限维 Cartan型模李超代数、嵌入定理以及利用底部确定 Z-阶化模李超代数等结果能为有限维模李超代数的分类起到抛砖引玉的作用. 除了分类问题之外, 模李超代数的表示也有许多重要问题需要解决. 我们知道限制李超代数是满足特定条件的模李超代数. 限制李超代数的结构、分类与表示也都有相当大的研究空间. 我们还希望本书能够成为研究以上诸问题人员的有益的参考书.

最后, 作者对哈尔滨师范大学优秀专著出版基金为本书的资助表示感谢.

作 者 2004年6月

目录

第一	章	Cartan 型模李超代数的构作	1
§ 1	基	本概念	1
§ 2	Ca	artan 型模李超代数的构作	8
第二	章	单性与导子超代数	26
§ 1	单	性	26
§ 2	导	子超代数的 Z -阶化····································	30
§ 3	W	与 S 的导子超代数 ·······	35
§ 4	\mathbf{H}	的导子超代数	48
§ 5	K	的导子超代数	62
第三	章	同态实现与不变滤过	72
§ 1	同	态实现	72
§ 2	W	与 S 的 自然滤过	83
§3	H	的自然滤过	92
§ 4	K	的不可缩滤过	100
第四	章	李超代数的结合型 ·····	108
§1	单	李超代数的结合型	108
§2	单	Z-阶化李超代数的结合型······	112
§3	Ca	artan 型模李超代数的非退化结合型	118
第五	章	深度 1 的 Z - 阶化李超代数	126
§ 1	嵌	入定理	126
§2	利	用底部确定 W 型与 S 型李超代数	138
第六	第六章 阶化模		
§ 1	混	合积	159
§2	\mathbf{H}	(m, n, <u>t</u>)的阶化模····································	164
Ų.	, -	式向量场的一般与特殊李超代数	171
	参考文献 ····································		
索	引…	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	188
		* * *	
《现代数学基础丛书》出版书目			

第一章 Cartan 型模李超代数的构作

§1 基本概念

本节主要介绍基本概念. 在本节中, 基域 Γ 的特征数可以是任意的. 我们知道, 域 Γ 上的线性空间 A 称作 Γ 上的代数, 如果除了数乘和 A 的加法运算外, A 还有一个乘法运算 (用 xy 表示 x 与 y 的乘积, $\forall x, y \in A$), 并且满足以下条件:

- 1) x(y+z) = xy + xz, (y+z)x = yx + zx,
- 2) $\lambda(xy) = (\lambda x)y = x(\lambda y), \ \forall x, y, z \in A, \ \forall \lambda \in \mathbb{F}.$

如果代数 $A \in \mathbb{F}$ 上的有限维线性空间,则称 $A \to \mathbb{F}$ 上的有限维代数.

如果代数 A 的乘法满足结合律, 则称 A 为结合代数; 如果代数 A 的乘法满足交换律, 则称 A 为交换代数.

如果代数 A 的乘法满足以下条件:

- 1) $x^2 = 0, \ \forall x \in A$
- 2) x(yz) + y(zx) + z(xy) = 0, $\forall x, y, z \in A$, (Jacobi 等式), 则称 A 为李代数.

在本书中, Z, N 与 N₀ 分别表示整数集、正整数集与非负整数集, Z₂ = { $\overline{0}$, $\overline{1}$ } 表示整数模 2 的剩余类环. 设 A 是 \mathbb{F} 上代数, 并且 A 还是 Z₂- 阶化线性空间, 即 A 可分解为子空间的直和: $A = A_{\overline{0}} \oplus A_{\overline{1}}$. 如果 $A_{\theta}A_{\mu} \subseteq A_{\theta+\mu}$, $\forall \theta, \mu \in \mathbb{Z}_2$, 则称 A 是 \mathbb{F} 上的超代数. 同样, 若超代数 A 的乘法适合结合律, 则称 A 为结合超代数.

若T是 \mathbb{F} 上的线性空间V的子集,则本书用 $\operatorname{span}_{\mathbb{F}}T$ 表示由T 张成的V的子空间.

例 1.1 设 $\Lambda(n)$ 是由变元 x_1, \dots, x_n 生成的有 1 的 \mathbb{F} 上的结合代数, 且满足关系式: $x_ix_j = -x_jx_i$, 其中 $i,j = 1,2,\dots,n$, 则称 $\Lambda(n)$ 是具有 n 个变元 x_1,\dots,x_n 的 \mathbb{F} 上的外代数. 令

$$\Lambda(n)_{\overline{0}} = \operatorname{span}_{F} \{1, x_{i_{1}}, \cdots, x_{i_{r}} \mid 1 \leq i_{1}, \cdots, i_{r} \leq n, 2 \leq r \leq n, r$$
是偽数},
$$\Lambda(n)_{\overline{1}} = \operatorname{span}_{F} \{x_{i_{1}}, \cdots, x_{i_{r}} \mid 1 \leq i_{1}, \cdots, i_{r} \leq n, 1 \leq r \leq n, r$$
是奇数},

则 $\Lambda(n) = \Lambda(n)_{\overline{0}} \oplus \Lambda(n)_{\overline{1}}$ 是 \mathbb{F} 上的结合超代数, 并称如上的 \mathbb{Z}_{2} - 阶化为 $\Lambda(n)$ 的自然 \mathbb{Z}_{2} - 阶化.

设 $A = A_0 \oplus A_1$ 是超代数, 若 $x \in A_\theta$, 其中 $\theta \in \mathbb{Z}_2$, 则称 x 是次数 θ 的 \mathbb{Z}_2 - 齐次元素, 并记 $d(x) = \theta$. 在本书中, 若 d(x) 出现在超代数的某个表达式中, 则约定 x 是 \mathbb{Z}_2 - 齐次元素. 当然, 此表达式可按超代数的性质扩张到超代数的任意元素上 (扩张后的表达式的形状可能有所改变). 我们用 hg(A) 表示超代数 $A(\mathfrak{g} \mathbb{Z}_2$ - 阶化线性空间 A) 的所有 \mathbb{Z}_2 - 齐次元素的集合. 显然 $hg(A) = A_0 \cup A_1$.

定义 1.2 设 $L = L_{\overline{0}} \oplus L_{\overline{1}}$ 是 F 上的超代数, 它的乘法运算用 [,]表示. 如果

$$[x, y] = -(-1)^{d(x)d(y)}[y, x], \quad \forall x, y \in hg(L),$$

$$(-1)^{d(z)d(x)}[x, [y, z]] + (-1)^{d(x)d(y)}[y, [z, x]]$$

$$+(-1)^{d(y)d(z)}[z, [x, y]] = 0, \quad \forall x, y, z \in hg(L),$$

$$(1.1)$$

则称 L 是 F 上的李超代数.

我们称 (1.2) 式为阶化 Jacobi 等式. 由于李超代数是超代数,故[,]运算是双线性的.

在定义 1.2 中, 若 $L_T = 0$, 则 L 就是李代数. 因此, 如不特别声明, 我们总设 $L_T \neq 0$. 下面我们证明, 以上定义中的 (1.2) 式可由下式代替:

$$[x, [y, z]] = [[x, y], z] + (-1)^{d(x)d(y)}[y, [x, z]], \quad \forall x, y \in hg(L), \quad z \in L.$$
 (1.3)

事实上, 若 (1.3) 式成立, 设 $z \in hg(L)$, 将 (1.3) 式两边同乘以 $(-1)^{d(z)d(x)}$, 利用 (1.1) 式,即可得到 (1.2) 式. 反之, 若 (1.2) 式成立, 将 (1.2) 式两端同乘以 $(-1)^{d(z)d(x)}$, 利用 (1.1) 式同样可知 (1.3) 式对任意 $x,y,z \in hg(L)$ 成立. 任取 $z \in L$, 可设 $z = z_0 + z_1$, 其中 $z_0 \in L_{\overline{0}}, z_1 \in L_{\overline{1}}$, 则有

$$\begin{aligned} [x,[y,z]] &= [x,[y,z_0+z_1]] = [x,[y,z_0]] + [x,[y,z_1]] \\ &= [[x,y],z_0] + (-1)^{\operatorname{d}(x)\operatorname{d}(y)}[y,[x,z_0]] \\ &+ [[x,y],z_1] + (-1)^{\operatorname{d}(x)\operatorname{d}(y)}[y,[x,z_1]] \\ &= [[x,y],z] + (-1)^{\operatorname{d}(x)\operatorname{d}(y)}[y,[x,z]]. \end{aligned}$$

所以, 对任意 $\vec{x}, y \in hg(L), z \in L, (1.3)$ 式均成立.

 \mathcal{U} H, K 是李超代数 L 的子空间, 令

$$[H,K] = \operatorname{span}_{\mathbb{F}}\{[x,y] \mid x \in H, y \in K\}.$$

显然, $[H,K] = \{\sum_i [x_i,y_i] \mid x_i \in H, y_i \in K\}$, 这里 $\sum_i [x_i,y_i]$ 表示有限个 $[x_i,y_i]$ 之和. 设 H,K,I 是 L 的子空间, 利用 (1.3) 与 (1.1) 式可得

$$[H, [K, I]] \subseteq [[H, K], I] + [K, [H, I]]$$

$$= [I, [H, K]] + [K, [I, H]]. \tag{1.4}$$

定义 1.3 设 $L = L_{\overline{0}} \oplus L_{\overline{1}}$ 是 手超代数, H 是 L 的子空间, 令 $H_{\theta} = H \cap L_{\theta}$, $\forall \theta \in \mathbb{Z}_2$. 若 $H = H_{\overline{0}} \oplus H_{\overline{1}}$, 则称 H 是 L 的 \mathbb{Z}_2 - 阶化子空间.

引理 1.4 以下命题成立.

1) 设 H 是李超代数 $L=L_{\overline{0}}\oplus L_{\overline{1}}$ 的子空间, 则 H 是 L 的 \mathbb{Z}_2 - 阶化子空间当且仅当 H 中任一元素 x 均可表为 $x=x_{\overline{0}}+x_{\overline{1}}$, 其中 $x_{\theta}\in H_{\theta}$, $\theta\in\mathbb{Z}_2$.

2) 若 H,K 是李超代数 $L=L_{\overline{0}}\oplus L_{\overline{1}}$ 的 \mathbb{Z}_2 - 阶化子空间,则 H+K, $H\cap K$ 与 [H,K] 也是 L 的 \mathbb{Z}_2 - 阶化子空间.

证明 由 Z₂- 阶化子空间的定义可直接推得 1). 下面证 2).

任取 $x + y \in H + K$, 其中 $x \in H$, $y \in K$. 因为 H 是 \mathbb{Z}_{2} - 阶化子空间, 故可设 $x = x_{\overline{0}} + x_{\overline{1}}$, 其中 $x_{\theta} \in H_{\theta}$, $\theta \in \mathbb{Z}_{2}$. 同理可设 $y = y_{\overline{0}} + y_{\overline{1}}$, 其中 $y_{\theta} \in K_{\theta}$, $\forall \theta \in \mathbb{Z}_{2}$. 则

$$x + y = (x_{\overline{0}} + y_{\overline{0}}) + (x_{\overline{1}} + y_{\overline{1}}).$$

因为 $x_{\theta} + y_{\theta} \in H_{\theta} + K_{\theta} = H \cap L_{\theta} + K \cap L_{\theta} \subseteq (H + K) \cap L_{\theta} = (H + K)_{\theta}, \forall \theta \in \mathbb{Z}_2, 所以,$ 由 1) 知 H + K 是 L 的 \mathbb{Z}_2 - 阶化子空间.

任取 $x \in H \cap K$, 则 $x \in H$. 因 H 是 \mathbb{Z}_2 - 阶化的, 故可设 $x = x_{\overline{0}} + x_{\overline{1}}$, 其中 $x_{\theta} \in H_{\theta}$, $\forall \theta \in \mathbb{Z}_2$. 由 $x \in K$, 同理可设 $x = x_{\overline{0}}' + x_{\overline{1}}'$, 其中 $x_{\theta}' \in K_{\theta}$. 因为 x 在 $L_{\overline{0}} \oplus L_{\overline{1}}$ 中的分解式是惟一的, 所以 $x_{\theta} = x_{\theta}'$, $\forall \theta \in \mathbb{Z}_2$. 因此

$$x_{ heta} = x_{ heta}' \in H_{ heta} \cap K_{ heta} = (H \cap L_{ heta}) \cap (K \cap L_{ heta}) = (H \cap K) \cap L_{ heta}$$

$$= (H \cap K)_{ heta}, \quad \forall \theta \in \mathbb{Z}_2.$$

由 1) 知 $H \cap K$ 是 L 的 \mathbb{Z}_{2} 阶化子空间.

任取 $x \in [H, K]$, 则 $x = \sum_{i} [x_{i}, y_{i}]$, 这里 $x_{i} \in H$, $y_{i} \in K$. 因为 H 是 \mathbb{Z}_{2} - 阶化的, 故可设 $x_{i} = x_{i0} + x_{i1}$, 其中 $x_{i\theta} \in H_{\theta}$, $\forall \theta \in \mathbb{Z}_{2}$. 同理可设 $y_{i} = y_{i0} + y_{i1}$, 其中 $y_{i\theta} \in K_{\theta}$, $\forall \theta \in \mathbb{Z}_{2}$. 于是

$$\begin{split} x &= \sum_{i} [x_{i\overline{0}} + x_{i\overline{1}} \;,\; y_{i\overline{0}} + y_{i\overline{1}}] \\ &= \sum_{i} ([x_{i\overline{0}} \;,\; y_{i\overline{0}}] + [x_{i\overline{1}} \;,\; y_{i\overline{1}}]) + \sum_{i} ([x_{i\overline{0}},\; y_{i\overline{1}}] + [x_{i\overline{1}} \;,\; y_{i\overline{0}}]). \end{split}$$

显然

$$\begin{split} &\sum_{i} ([x_{i\overline{0}} \ , \ y_{i\overline{0}}] + [x_{i\overline{1}} \ , \ y_{i\overline{1}}]) \in [H,K] \cap L_{\overline{0}} = [H,K]_{\overline{0}}, \\ &\sum_{i} ([x_{i\overline{0}}, \ y_{i\overline{1}}] + [x_{i\overline{1}} \ , \ y_{i\overline{0}}]) \in [H,K]_{\overline{1}}. \end{split}$$

由 1) 知, [H, K] 是 L 的 Z₂- 阶化子空间. □

若 H 是 L 的 \mathbb{Z}_2 - 阶化子空间, 并且 H 关于 L 的方括号运算是封闭的, 则称 H 是 L 的子代数. 设 I 是 L 的 \mathbb{Z}_2 - 阶化子空间, 如果对任意 $x \in I$, $y \in L$. 均有 $[x,y] \in I$, 则称 I 是 L 的理想.

我们的定义要求子代数与理想必为 L 的 \mathbb{Z}_2 - 阶化子空间,以下的引理指出了这一要求的理由。

引理 1.5 设 I 是李超代数 L 的理想,则 $L/I := \{x + I \mid x \in L\}$ 关于 L 的诱导的加法与数乘是一个 \mathbb{Z}_2 - 阶化线性空间,进而 L 的 [,] 运算诱导了 L/I 的一个 [,] 运算,使得 L/I 是一个李超代数.

证明 我们记 $\overline{L} = L/I$. L 的加法与数乘自然地诱导了 \overline{L} 的加法与数乘运算, 使得 \overline{L} 是一个线性空间. 设 $\overline{L}_{\theta} = \{x + I \mid x \in L_{\theta}\}, \forall \theta \in \mathbb{Z}_2$. 显然 $\overline{L} = \overline{L}_{\overline{0}} + \overline{L}_{\overline{1}}$. 令

$$0 \neq x + I \in \overline{L}_{\overline{0}}, \quad 0 \neq y + I \in \overline{L}_{\overline{1}},$$

则有

$$x \in L_{\overline{0}} \backslash I, \quad y \in L_{\overline{1}} \backslash I.$$
 (1.5)

 $E_{x+I=y+I}$,则 $x+(-y) \in I$. 因为 I 是 L 的 \mathbb{Z}_2 - 阶化子空间, 所以 $x \in I \cap L_{\overline{0}}$, $-y \in I \cap L_{\overline{1}}$. 此与 (1.5) 式矛盾, 于是 $x+I \neq y+I$, 因此 $\overline{L_0} \cap \overline{L_1} = 0$, 从而 $\overline{L} = \overline{L_0} \oplus \overline{L_1}$. 这就证明了 \overline{L} 是 \mathbb{Z}_2 - 阶化线性空间.

易见 L 的 [,] 运算自然地诱导了 \overline{L} 的 [,] 运算, 使得 \overline{L} 是一个李超代数. 口我们称李超代数 L/I 为 L 对理想 I 的商代数.

设 I 与 J 是李超代数 L 的理想, 则 I 与 J 是 L 的 \mathbb{Z}_2 - 阶化子空间. 由引理 1.4 知 $[I,J] = [I,J]_{\overline{0}} \oplus [I,J]_{\overline{1}}$ 是 L 的 \mathbb{Z}_2 - 阶化子空间. 利用阶化 Jacobi 等式可以证明 [I,J] 还是 L 的理想. 特别地, [L,L] 是 L 的理想, 当然它是 L 的子代数. 借用李代数与群论的语言, 称 [L,L] 为 L 的换位子代数.

定义 1.6 若李超代数 L 只有平凡理想,并且 $[L,L] \neq 0$,则称 L 是单李超代数. 定义 1.6 中的条件 $[L,L] \neq 0$ 使得零李超代数与一维交换李超代数不是单李超代数.

 $\mathcal{U} A = A_0 \oplus A_1$ 与 $A' = A'_0 \oplus A'_1$ 是超代数, $\phi: A \to A'$ 是线性映射. 若 $\phi(A_\theta) \subseteq A'_\theta$, $\forall \theta \in \mathbb{Z}_2$, 则称 ϕ 是偶的线性映射. 若偶的线性映射 ϕ 还满足: $\phi(xy) = \phi(x)\phi(y)$, $\forall x, y \in A$, 则称 ϕ 是 A 到 A' 的同态映射. 如果 ϕ 是 A 到 A' 的满的同态映射, 我们称 A' 是 A 的同态象, 或称 A 与 A' 同态, 记为 $A \sim A'$. 若同态映射 ϕ 是双射, 则称 ϕ 是同构映射, 此时称 A 与 A' 同构, 记为 $A \cong A'$. 易见, 同构关系是一个等价关系. 此外, A 到 A 自身的同构映射称为 A 的自同构. 当然, 以上同态与同构的概念适合于李超代数, 但是需要将代数的乘法写成方括号的形式. 李代数的同态与同构定理对李超代数仍然成立.

- 1) 若 $\phi: L \to L'$ 是李超代数的同态映射, 则 $\ker \phi := \{x \in L \mid \phi(x) = 0\}$ 是 L 的理想, 并且 $L/\ker \phi \cong \operatorname{Im}\phi$.
- 2) 若 I 与 J 是李超代数 L 的理想, 使得 $I \subseteq J$, 则 J/I 是 L/I 的理想, 并且 (L/I)/(J/I) 自然同构于 L/J.
 - 3) 若 I 与 J 是李超代数 L 的理想,则 (I+J)/J 同构于 I/(I∩J).

例 1.7 设 $A = A_T \oplus A_T$ 是结合超代数, 在 A 上定义双线性的方括号乘法, 使得

$$[x,y] = xy - (-1)^{\operatorname{\mathbf{d}}(x)\operatorname{\mathbf{d}}(y)}yx, \qquad \forall x,y \in \operatorname{hg}(A).$$

直接验证可知, 关于此方括号乘法, A 是一个李超代数, 称它为与结合代数 A 关联的李超代数, 记为 A^- .

例 1.8 设 $V = V_0 \oplus V_1$ 是城 \mathbb{F} 上的 \mathbb{Z}_2 - 阶化空间, $\operatorname{End}(V)$ 是 V 的所有线性变换 构成的线性空间. 任取 $\theta \in \mathbb{Z}_2$, 令

$$\operatorname{End}_{\theta}(V) = \{ x \in \operatorname{End}(V) \mid x(V_{\mu}) \subseteq V_{\mu+\theta}, \forall \mu \in \mathbb{Z}_2 \}.$$

易见, $\operatorname{End}(V) = \operatorname{End}_{\overline{0}}(V) \oplus \operatorname{End}_{\overline{1}}(V)$. 于是, 关于线性变换的乘法, $\operatorname{End}(V)$ 是一个结合超代数. 由例 1.7 知, $\operatorname{End}(V)^-$ 是季超代数. 我们简记 $\operatorname{End}(V)^-$ 为 $\operatorname{pl}(V)$. 于是 $\operatorname{pl}_{\overline{0}}(V) \oplus \operatorname{pl}_{\overline{1}}(V)$, 其中 $\operatorname{pl}_{\theta}(V) = \operatorname{End}_{\theta}(V)$, $\forall \theta \in \mathbb{Z}_2$. 因为 $\operatorname{pl}(V)$ 在季超代数中的作用与 $\operatorname{gl}(V)$ 在季代数中的作用相仿, 所以称 $\operatorname{pl}(V)$ 为 V 的一般线性季超代数.

定义 1.9 设 $L = L_0 \oplus L_7$ 是 \mathbb{F} 上的李超代数, $V = V_0 + V_1$ 是 \mathbb{F} 上的 \mathbb{Z}_2 - 阶化线性空间. 则称李超代数的同态映射 $\rho: L \to \mathrm{pl}(V)$ 为 L 在 V 上的一个表示.

定义 1.10 设 $L = L_{\overline{0}} \oplus L_{\overline{1}}$ 是 F 上的李超代数, $V = V_{\overline{0}} \oplus V_{\overline{1}}$ 是 F 上的 \mathbb{Z}_2 - 阶化线性空间. 若 V 被赋予一个运算 $L \times V \to V$, 使得 $\{x,v\} \mapsto xv$, $\forall x \in L$, $v \in V$, 且满足:

- 1) $(\lambda x + \eta y)v = \lambda(xv) + \eta(yv)$, $\forall \lambda, \eta \in \mathbb{F}, x, y \in L, v \in V$,
- 2) $x(\lambda v + \eta w) = \lambda(xv) + \eta(xw), \quad \forall \lambda, \eta \in \mathbb{F}, \ x \in L, \ v, w \in V,$
- 3) 若 $x \in L_{\theta}$, $v \in V_{\mu}$, 其中 $\theta, \mu \in \mathbb{Z}_2$, 则 $xv \in V_{\theta+\mu}$,
- 4) $[x,y]v = x(yv) (-1)^{d(x)d(y)}y(xv), \forall x,y \in hg(L), v \in V,$ 則称 V 是一个 L- 模.

设 ρ 是 L 在 V 上的一个表示. 令 $xv := \rho(x)(v)$, $\forall x \in L$, $\forall v \in V$. 直接验证可知, 如上定义的乘法使得 V 是一个 L- 模, 称之为表示 ρ 提供的 L- 模. 反之, 给出一个 L- 模 V, 可定义映射 $\rho: L \to \mathrm{pl}(V)$, 使得 $\rho(x)(v) := xv$, $\forall x \in L$, $v \in V$, 则 ρ 是 L 在 V 上的一个表示. 因此, 李超代数的表示的研究可以转化为李超代数的模的研究, 反之亦然.

例 1.11 设 L 是李超代数, $x \in L$, 令 $\operatorname{ad} x(z) = [x, z]$, $\forall z \in L$. 易见 $\operatorname{ad} x \in \operatorname{pl}(L)$. 设 $\operatorname{ad} : L \to \operatorname{pl}(L)$ 是映射, 使得 $x \mapsto \operatorname{ad} x$, $\forall x \in L$. 显然 ad 是偶的线性映射. 利用 $\operatorname{d}(\operatorname{ad} x) = \operatorname{d}(x)$, $\operatorname{d}(\operatorname{ad} y) = \operatorname{d}(y)$ 以及 (1.3) 式可得

$$[\operatorname{ad} x,\operatorname{ad} y](z)=\operatorname{ad}[x,y](z),\quad \forall x,y\in \operatorname{hg}(L),\quad \forall z\in L,$$

于是 ad[x,y] = [ad x, ad y], $\forall x,y \in L$. 所以 $ad \ \mathcal{L} \ L \ L \ L \ \mathcal{L}$ 表示, 称 $ad \ \mathcal{H} \ L \$ 的伴随表示.

定义 1.12 设 $A = A_{\overline{0}} \oplus A_{\overline{1}}$ 是 F 上的超代数, $D \in pl_{\theta}(A)$, 其中 $\theta \in \mathbb{Z}_2$. 如果

$$D(xy) = D(x)y \oplus (-1)^{\theta d(x)} x D(y), \quad \forall x \in \operatorname{hg}(A), \quad \forall y \in A,$$

则称 D 是 A 的次数为 θ 的齐次导子.

令 $Der_{\theta}(A)$ 为 A 的所有次数为 θ 的齐次导子的集合, 这里 $\theta \in \mathbb{Z}_2$. 定义

$$\operatorname{Der}(A) := \operatorname{Der}_{\overline{0}}(A) \oplus \operatorname{Der}_{\overline{1}}(A).$$

可以证明, Der(A) 是 pl(A) 的子代数. 称李超代数 Der(A) 为 A 的导子超代数, 并 称 Der(A) 的元素为 A 的导子.

例 1.13 设 L 是李超代数, $x \in L_{\theta}$, 其中 $\theta \in \mathbb{Z}_2$. 利用 (1.3) 式可知, $\operatorname{ad} x \in \operatorname{Der}_{\theta}(L)$, 我们称 $\operatorname{ad} x$ 为 L 的内导子.

定义 1.14 设 $A = A_{\overline{0}} \oplus A_{\overline{1}}$ 是超代数. 若 $A = \bigoplus_{i \in \mathbb{Z}} A_i$, 其中 A_i 是 A 的 \mathbb{Z}_2 - 阶化子空间, 并且 $A_i A_j \subseteq A_{i+j}$, $\forall i, j \in \mathbb{Z}$, 则称 A 是 \mathbb{Z} - 阶化超代数. 若 $A_{\overline{0}} = \bigoplus_{i \in \mathbb{Z}} A_{2i}$, $A_{\overline{1}} = \bigoplus_{i \in \mathbb{Z}} A_{2i+1}$, 则称 A 的 \mathbb{Z} - 阶化与 \mathbb{Z}_2 - 阶化是相容的.

显然, 若 zd(x) = i, zd(y) = j, 其中 $x, y \in A$, 则 zd(xy) = i + j.

若李超代数 $L = \bigoplus_{i \in \mathbb{Z}} L_i$ 是 \mathbb{Z} - 阶化的, 则 L_0 是 L 的子代数. 由 $[L_0, L_i] \subseteq L_i$ 知, L_i 是 L_0 - 模, 其中 $i \in \mathbb{Z}$.

 $\mathcal{L} = \bigoplus_{i \in \mathbb{Z}} L_i \, \mathbb{Z}_i$ 阶化李超代数.

- 1) 若对任意 $i \in \mathbb{N}_0$, 均有 $\{x \in L_i \mid [x, L_{-1}] = 0\} = 0$, 则称 L 在此 \mathbb{Z} 阶化之下是可迁的, 或简称 L 是可迁的.
- 2) 若 L_{0} 模 L_{-1} 是不可约的,则称 L 在此 \mathbb{Z} 阶化之下是不可约的,或简称 L 是不可约的.

命题 1.16 设 $L=\oplus_{i\geq -1}L_i$ 是 Z- 阶化李超代数, 并且 $L_{-1}\neq 0$. 若 L 是单李超代数, 则

- 1) L是可迁的,
- 2) L 是不可约的,
- 3) $[L_{-1}, L_1] = L_0$.

证明 设 I 是 L 的 \mathbb{Z}_{2} 阶化子空间, 使得

$$[L_0, I] \subseteq I, \quad [L_{-1}, I] \subseteq I.$$
 (1.6)

 $\Leftrightarrow L^+ = \bigoplus_{i\geq 1} L_i$. 显然

$$[L_0, L^+] \subseteq L^+.$$
 (1.7)

对任意 $n \in \mathbb{N}_0$, 置

$$I^n = [L^+, [L^+, \cdots, [L^+, I] \cdots]]$$
 (# $n \uparrow L^+$).

设 $\tilde{I} = \sum_{n\geq 0} I^n$. 由引理 1.4 的 2) 可推得, \tilde{I} 是 L 的 \mathbb{Z}_2 - 阶化子空间, 显然

$$[L^+, \widetilde{I}] \subseteq \widetilde{I}. \tag{1.8}$$

我们对 n 用归纳法证明

$$[L_0, I^n] \subseteq \widetilde{I}, \quad \forall n \in \mathbb{N}_0.$$
 (1.9)

当 n=0 时,由 (1.6) 式知, $[L_0,I^0]=[L_0,I]\subseteq I\subseteq \widetilde{I}$.假设 $[L_0,I^{n-1}]\subseteq \widetilde{I}$,利用 (1.4), (1.7)~(1.9) 式知

$$[L_0, I^n] = [L_0, [L^+, I^{n-1}]]$$

$$\subseteq [[L_0, L^+], I^{n-1}] + [L^+, [L_0, I^{n-1}]]$$

$$\subseteq [L^+, I^{n-1}] + [L^+, \widetilde{I}]$$

$$\subseteq I^n + \widetilde{I}$$

$$= \widetilde{I},$$

归纳法完成. 相仿地, 利用 (1.4), $(1.6)\sim(1.9)$ 式, 对 n 用归纳法可证得 $[L_{-1},I^n]\subseteq \tilde{I}$, $\forall n\in\mathbb{N}_0$. 所以

$$[L_0, \widetilde{I}] \subseteq \widetilde{I}, \quad [L_{-1}, \widetilde{I}] \subseteq \widetilde{I}.$$
 (1.10)

由 (1.8) 与 (1.10) 式知, Ĩ 是 L 的理想.

1) $\diamondsuit I = \{x \in \bigoplus_{i \geq 0} L_i \mid [x, L_{-1}] = 0\}.$

显然 I 是 L 的子空间, 设 $L_{(0)} = \bigoplus_{i \geq 0} L_i$. 由引理 1.4 知, $L_{(0)}$ 是 L 的 \mathbb{Z}_2 - 阶化子空间. 任取 $x \in I$, 则 $x \in L_{(0)}$. 故 $x = x_{\overline{0}} + x_{\overline{1}}$, 其中 $x_{\theta} \in (L_{(0)})_{\theta} \subseteq L_{\theta}$, $\forall \theta \in \mathbb{Z}_2$. 由 $x \in I$ 知 $[x, L_{-1}] = 0$. 故

$$[x_{\overline{0}}+x_{\overline{1}},(L_{-1})_{\theta}]=0,\ \forall \theta\in\mathbb{Z}_{2}.$$

于是 $[x_{\overline{0}},(L_{-1})_{\theta}]=0$, $\forall \theta \in \mathbb{Z}_{2}$. 因 L_{-1} 是 \mathbb{Z}_{2} - 阶化的, 所以 $[x_{\overline{0}},L_{-1}]=0$. 因此 $x_{\overline{0}}\in I$, 故 $x_{\overline{0}}\in I\cap L_{\overline{0}}=I_{\overline{0}}$. 同理 $x_{\overline{1}}\in I_{\overline{1}}$. 由引理 1.4, I 是 L 的 \mathbb{Z}_{2} - 阶化子空间.

由 (1.4) 式知, \mathbb{Z}_2 - 阶化子空间 I 适合 (1.6) 式. 由 (a) 知 \tilde{I} 是 L 的理想. 因为 $I \subseteq L_{(0)}$, 所以 $\tilde{I} \subseteq L_{(0)}$. 因此 \tilde{I} 是 L 的真理想. 由于 L 是单李超代数, 因而 $\tilde{I} = 0$. 于是对任意 $i \in \mathbb{N}_0$, 有

$$\{x\in L_i\mid [x,L_{-1}]=0\}\subseteq \widetilde{I}=0.$$

这就证明了 L 是可迁的.

- 2) 设 $I \neq L_0$ 模 L_{-1} 的非零子模. 则 $I \neq L$ 的 \mathbb{Z}_2 阶化子空间, 并且满足 (1.6) 式. 由 (a) 知 $\tilde{I} \neq L$ 的理想. 因为 $I \neq 0$, 故 $\tilde{I} \neq 0$. 由于 L 是单的, 所以 $\tilde{I} = L$. 由 \tilde{I} 的 定义知 $\tilde{I} \subseteq I \oplus L_{(0)}$, 从而 $L \subseteq I \oplus L_{(0)}$. 这就迫使 $I = L_{-1}$. 因此 L 是不可约的.
- 3) 设 $J = L_{-1} \oplus [L_{-1}, L_1] \oplus L^+$. 由引理 1.4 知, $J \neq L$ 的 \mathbb{Z}_2 阶化子空间. 易见 $[L_{-1}, J] \subseteq J$, $[L^+, J] \subseteq J$. 利用 (1.4) 式知, $[L_0, J] \subseteq J$. 所以 $[L, J] \subseteq J$, 于是 $J \neq L$ 的理想. 因为 L 是单的, 故 J = L. 这就迫使 $[L_{-1}, L_1] = L_0$.

定义 1.17 设 $L=L_0\oplus L_1$ 是城 $\mathbb F$ 上的李超代数, U 是 $\mathbb F$ 上的结合超代数. 设 $i:L\to U^-$ 是李超代数的同态. 若对 $\mathbb F$ 上任意结合超代数 A 与任意李超代数的

同态 $f: L \to A^-$,都存在惟一的结合超代数的同态 $\bar{f}: U \to A$,使得 $f = \bar{f}i$,那么我们称 (U,i) 为李超代数 L 的泛包络代数,通常简称 U 为 L 的泛包络代数.

我们可构造 $L = L_0 \oplus L_1$ 的泛包络代数如下: 设 $T(L) = \bigoplus_{r \geq 0} T^r(L)$ 是 \mathbb{Z}_{2^r} 阶化空间 L 的张量代数, 其中 $T^r(L) = L \otimes L \otimes \cdots \otimes L$ ($r \cap L$). L 的 \mathbb{Z}_{2^r} 阶化诱导了 T(L) 的一个 \mathbb{Z}_{2^r} 阶化, 使得 T(L) 是一个结合超代数. 令 R 是由所有形如

$$[x,y]-x\otimes y+(-1)^{\operatorname{d}(x)\operatorname{d}(y)}y\otimes x,\quad x,y\in\operatorname{hg}(L),$$

的元素生成的 T(L) 的理想. 置 U = T(L)/R. 显然, 自然映射 $L \to U$ 诱导了李超代数的同态 $i: L \to U^-$, 则 (U,i) 是 L 的泛包络代数. 所以李超代数 L 的泛包络代数是存在的. 由定义 1.17 知, 在同构的意义下, L 的泛包络代数是惟一的.

文献 [46] 证明了李超代数 L 的泛包络代数 U 的基元素定理, 也称为 PBW 定理, 下面叙述这个定理.

PBW 定理 设 $L = L_{\overline{0}} \oplus L_{\overline{1}}$ 是域 \mathbb{F} 上的李超代数, x_1, \dots, x_m 是 $L_{\overline{0}}$ 的 \mathbb{F} - 基底, y_1, \dots, y_n 是 $L_{\overline{1}}$ 的 \mathbb{F} - 基底. 设 U 是 L 的泛包络代数, 则所有形如

$$x_1^{k_1}\cdots x_m^{k_m}y_{i_1}\cdots y_{i_t}$$

的元素构成了 U 的 \mathbb{F} - 基底, 其中 $k_i \geq 0$, $i = 1, \dots, m, 1 \leq i_1 < \dots < i_t \leq n$.

§2 Cartan 型模李超代数的构作 [106]

为定义 Cartan 型模李超代数, 我们需要外代数的导子超代数的自由基. 为此, 我们确定外代数的导子超代数. 首先叙述 \mathbb{F} 上自由代数的定义. 考察用字母 $\xi_1, \xi_2, \dots, \xi_n$ 作成的一切形式元

$$\xi_{i_1}\xi_{i_2}\cdots\xi_{i_m}, \quad \forall m\in\mathbb{N}, \quad 1\leq i_1,i_2,\cdots,i_m\leq n.$$
 (2.1)

设 $\tilde{\Lambda}(n)$ 是以这些形式元为基底张成的 \mathbb{F} 上的线性空间. 在 $\tilde{\Lambda}(n)$ 的基底 (2.1) 上规 定如下的乘法表

$$(\xi_{i_1}\xi_{i_2}\cdots\xi_{i_m})(\xi_{j_1}\xi_{j_2}\cdots\xi_{j_k})=\xi_{i_1}\xi_{i_2}\cdots\xi_{i_m}\xi_{j_1}\xi_{j_2}\cdots\xi_{j_k}.$$

这样, 利用基底 (2.1) 乘法表可以定义 $\tilde{\Lambda}(n)$ 的一个关于加法分配的乘法, 使得 $\tilde{\Lambda}(n)$ 是城 \mathbb{F} 上的结合代数. 我们称 $\tilde{\Lambda}(n)$ 为非交换未定元 ξ_1,ξ_2,\cdots,ξ_n 生成的自由代数.

显然, $d(\xi_i) = \overline{1}$ $(i = 1, 2, \dots, n)$ 定义了 $\widetilde{\Lambda}(n)$ 的一个 \mathbb{Z}_2 - 阶化, 使得 $\widetilde{\Lambda}(n)$ 是一个结合超代数. 设

$$S = \{\xi_i \xi_j + \xi_j \xi_i \mid i, j = 1, 2, \dots, n\}.$$

显然 $S \subseteq \widetilde{\Lambda}(n)_{\overline{0}} \subseteq hg(\widetilde{\Lambda}(n))$. 设 I 是由 S 生成的 $\widetilde{\Lambda}(n)$ 的理想.

引理 2.1 设 $Q \in \text{hg}(\widetilde{\Lambda}(n))$, 则 $Q\xi_j - (-1)^{\text{d}(Q)}\xi_j Q \in I$, 其中 $j = 1, 2, \dots, n$.

证明 1) 先证 Q 是 $\tilde{\Lambda}(n)$ 的单项式的情形. 设 $Q = \xi_{i_1}\xi_{i_2}\cdots\xi_{i_k}$. 对 k 用归纳法证明引理结论成立. 当 k = 1 时结论显然成立. 假设对 k = 1 结论成立. 设 $Q_1 = \xi_{i_1}\xi_{i_2}\cdots\xi_{i_{k-1}}$, 则 $Q = Q_1\xi_{i_k}$ 由归纳假设,

$$\begin{split} Q\xi_{j} - (-1)^{d(Q)}\xi_{j}Q \\ &= Q_{1}\xi_{i_{k}}\xi_{j} - (-1)^{d(Q)}\xi_{j}Q_{1}\xi_{i_{k}} \\ &= -Q_{1}\xi_{j}\xi_{i_{k}} + Q_{1}(\xi_{j}\xi_{i_{k}} + \xi_{i_{k}}\xi_{j}) + (-1)^{d(Q_{1})}\xi_{j}Q_{1}\xi_{i_{k}} \\ &= -(Q_{1}\xi_{j} - (-1)^{d(Q_{1})}\xi_{j}Q_{1})\xi_{i_{k}} + Q_{1}(\xi_{j}\xi_{i_{k}} + \xi_{i_{k}}\xi_{j}) \in I, \end{split}$$

所以结论对 k 也成立.

2) 设 $Q = \sum_{i=1}^t y_i$, 其中 y_i 是 $\tilde{\Lambda}(n)$ 的单项式, 并且 $d(y_1) = d(y_2) = \cdots = d(y_k)$. 由 1) 知

$$Q\xi_{j} - (-1)^{d(Q)}\xi_{j}Q = \left(\sum_{i=1}^{t} y_{i}\right)\xi_{j} - (-1)^{d(Q)}\xi_{j}\left(\sum_{i=1}^{t} y_{i}\right)$$

$$= \sum_{i=1}^{t} (y_{i}\xi_{j} - (-1)^{d(y_{i})}\xi_{j}y_{i}) \in I. \quad \Box$$

设 $\Lambda(n) = \widetilde{\Lambda}(n)/I$. 令 $x_i = \xi_i + I \in \widetilde{\Lambda}(n)/I$, $i = 1, \dots, n$. 易见 $\Lambda(n)$ 就是由 x_1, x_2, \dots , x_n 生成的外代数.

引理 2.2 以下命题成立.

- 1) 任取 $z_1, z_2, \dots, z_n \in \widetilde{\Lambda}(n)_{\theta}$, 其中 $\theta \in \mathbb{Z}_2$, 则存在 $\widetilde{D} \in \mathrm{Der}_{\theta+1}(\widetilde{\Lambda}(n))$, 使得 $\widetilde{D}(\xi_i) = z_i$, $i = 1, \dots, n$.
- 2) 任取 $y_1, y_2, \dots, y_n \in \Lambda(n)_{\theta}$, 其中 $\theta \in \mathbb{Z}_2$, 则存在 $D \in \mathrm{Der}_{\theta+\overline{1}}(\Lambda(n))$, 使得 $D(x_i) = y_i$, $i = 1, \dots, n$.
- 3) 任取 $y_1, y_2, \dots, y_n \in \Lambda(n)$, 则存在 $D \in \mathrm{Der}(\Lambda(n))$, 使得 $D(x_i) = y_i, i = 1, \dots, n$. 证明 1) 设 $\tilde{\Lambda}(n)_1 = \mathbb{F}\xi_1 + \mathbb{F}\xi_2 + \dots + \mathbb{F}\xi_n \subseteq \tilde{\Lambda}(n)$. 显然, 存在线性映射 $\tilde{D}: \tilde{\Lambda}(n)_1 \to \tilde{\Lambda}(n)_{\theta}$, 使得 $\tilde{D}(\xi_i) = z_i, i = 1, \dots, n$. 因为 $\tilde{\Lambda}(n)$ 是由 $\xi_1, \xi_2, \dots, \xi_n$ 生成的自由代数, 所以 \tilde{D} 可以自然地扩张为 $\mathrm{Der}(\tilde{\Lambda}(n))$ 的元素. 由于 $\tilde{\Lambda}(n)_1 \subseteq \tilde{\Lambda}(n)_1$, 故 $\tilde{D} \in \mathrm{Der}_{\theta+1}(\tilde{\Lambda}(n))$.
- 2) 令 $\phi: \widetilde{\Lambda}(n) \to \widetilde{\Lambda}(n)/I$ 是超代数的自然同态. 则存在 $h_1, h_2, \dots, h_n \in \widetilde{\Lambda}(n)$, 使得 $\phi(h_i) = y_i, i = 1, \dots, n$. 因为 ϕ 是偶的线性映射, 所以 $h_i \in \widetilde{\Lambda}(n)_{\theta}, i = 1, \dots, n$. 由 1) 知, 存在 $\widetilde{D} \in \operatorname{Der}_{\theta+1}(\widetilde{\Lambda}(n))$, 使得 $\widetilde{D}(\xi_i) = h_i, i = 1, \dots, n$. 由引理 2.1,

$$\widetilde{D}(\xi_{i}\xi_{j} + \xi_{j}\xi_{i})
= \widetilde{D}(\xi_{i})\xi_{j} + (-1)^{\theta+\overline{1}}\xi_{i}\widetilde{D}(\xi_{j}) + \widetilde{D}(\xi_{j})\xi_{i} + (-1)^{\theta+\overline{1}}\xi_{j}\widetilde{D}(\xi_{i})
= (\widetilde{D}(\xi_{i})\xi_{j} - (-1)^{\theta}\xi_{j}\widetilde{D}(\xi_{i})) + (\widetilde{D}(\xi_{j})\xi_{i} - (-1)^{\theta}\xi_{i}\widetilde{D}(\xi_{j})) \in I.$$

于是 $\tilde{D}(I)\subseteq I$. 故 $\phi \tilde{D}(I)=0$, 即 $I\subseteq \ker \phi \tilde{D}$. 所以存在线性映射 $D:\Lambda(n)\to \Lambda(n)$, 使得下图

$$\tilde{\Lambda}(n) \xrightarrow{\phi \tilde{D}} \Lambda(n)$$
 $\Lambda(n)$

是交換的, 即 $\phi \tilde{D} = D\phi$. 因此

$$D(x_i) = D(\xi_i + I) = D\phi(\xi_i) = \phi \widetilde{D}(\xi_i) = \phi(h_i) = y_i, \quad i = 1, \dots, n.$$

由于 $x_i \in \Lambda(n)_{\overline{1}}, y_i \in \Lambda(n)_{\theta}, i = 1, \dots, n,$ 所以 $D \in \operatorname{pl}_{\theta+\overline{1}}(\Lambda(n)).$

任取 $x, y \in hg(\Lambda(n))$, 则存在 $x', y' \in hg(\widetilde{\Lambda}(n))$, 使得 $\phi(x') = x$, $\phi(y') = y$. 于是

$$\begin{split} D(xy) &= D(\phi(x')\phi(y')) = D\phi(x'y') = \phi \widetilde{D}(x'y') \\ &= \phi(\widetilde{D}(x')y' + (-1)^{(\theta+\overline{1})d(x')}x'\widetilde{D}(y')) \\ &= \phi \widetilde{D}(x')\phi(y') + (-1)^{(\theta+\overline{1})d(x)}\phi(x')\phi\widetilde{D}(y') \\ &= D\phi(x')\phi(y') + (-1)^{(\theta+\overline{1})d(x)}\phi(x')D\phi(y') \\ &= D(x)y + (-1)^{(\theta+\overline{1})}xD(y). \end{split}$$

所以 $D \in \mathrm{Der}_{\theta+\overline{1}}(\Lambda(n))$.

3) 设 $y_i = y_{i0} + y_{i1}$, 其中 $y_{i0} \in \Lambda(n)_{\overline{0}}$, $y_{i1} \in \Lambda(n)_{\overline{1}}$, $i = 1, \dots, n$. 由 2) 知存在 $D' \in \mathrm{Der}_{\overline{0}}(\Lambda(n))$, $D'' \in \mathrm{Der}_{\overline{1}}(\Lambda(n))$, 使得

$$D'(x_i) = y_{i1}, \quad D''(x_i) = y_{i0}, \qquad i = 1, \dots, n.$$

令 D = D' + D'', 则 $D \in Der(\Lambda(n))$. 易见 $D(x_i) = y_i, i = 1, \dots, n$.

由引理 2.2 的 2) 知, 存在 $\partial_i \in \operatorname{Der}_{\overline{1}}(\Lambda(n))$, $i = 1, \dots, n$. 使得 $\partial_i(x_j) = \delta_{ij}$, $j = 1, \dots, n$. 令 $D \in \operatorname{Der}(\Lambda(n))$. 设 $D(x_j) = y_j$, $j = 1, \dots, n$. 显然 $\sum_{i=1}^n y_i \partial_i \in \operatorname{Der}(\Lambda(n))$. 另一方面, 由于 $\{x_i \mid j = 1, \dots, n\}$ 生成了 $\Lambda(n)$, 以及

$$\left(\sum_{i=1}^n y_i \partial_i\right)(x_j) = \sum_{i=1}^n y_i \partial_i(x_j) = y_j, \qquad j = 1, \cdots, n,$$

所以 $D = \sum_{i=1}^{n} y_i \partial_i$. 于是我们证明了以下命题.

命題 2.3
$$\operatorname{Der}(\Lambda(n)) = \left\{ \sum_{i=1}^n y_i \partial_i \mid y_i \in \Lambda(n), \quad i = 1, \dots, n. \right\}.$$

我们在上节给出了李超代数上的模的定义. 类似地, 可定义结合超代数 A 上的模 V, 这只需将定义 1.10 中的 4) 改为 (xy)v=x(y(v)), $\forall x,y\in hg(A)$, $\forall v\in V$. 于是 $Der(\Lambda(n))$ 是一个 $\Lambda(n)$ - 模. 设 $\sum_{i=1}^n y_i\partial_i\in Der(\Lambda(n))$. 若 $\sum_{i=1}^n y_i\partial_i=0$, 则可推得 $y_i=0$, $i=1,\cdots,n$. 再由命题 2.3 知, $\partial_1,\partial_2,\cdots,\partial_n$ 是 $Der(\Lambda(n))$ 的一个自由 $\Lambda(n)$ -基, 并且称 $\partial_1,\partial_2,\cdots,\partial_n$ 为 $\Lambda(n)$ 的特殊导子.

我们称素特征域上的李超代数为模李超代数. 下面构作四类 Cartan 型模李超代数. 设 F 是特征数 p > 2 的域 (因为 p = 2 时, F 上的李超代数就是 $\mathbb{Z}_{2^{-}}$ 阶化李代数,

所以我们不考虑 p=2 的情形). 以下总是用 p 表示基域 \mathbb{F} 的特征数, 仍然用 \mathbb{N} 与 \mathbb{N}_0 分别表示正整数集与非负整数集. 设 $m,n\in\mathbb{N}\setminus\{1\}$. 若 $r,t\in\mathbb{N}_0$, 令 $\binom{r}{i}$ 表示二项式系数 $\frac{r!}{(r-1)!t!}$. 若 r< t, 约定 $\binom{r}{i}=0$. 设 $\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_m)\in\mathbb{N}_0^m$, 令 $|\alpha|=\sum_{i=1}^m\alpha_i$. 设 $\beta=(\beta_1,\beta_2,\cdots,\beta_m)\in\mathbb{N}_0^m$, 定义 $\alpha+\beta=(\alpha_1+\beta_1,\alpha_2+\beta_2,\cdots,\alpha_m+\beta_m)$, $\binom{\alpha}{\beta}=\prod_{i=1}^m\binom{\alpha_i}{\beta_i}$, $\alpha\leq\beta\Longleftrightarrow\alpha_i\leq\beta_i,\ i=1,2,\cdots,m$. 设 U(m) 是具有生成元集 $\{x^{(\alpha)}\mid\alpha\in\mathbb{N}_0^m\}$ 的 \mathbb{F} 上的除幂代数, 则 U(m) 中有以下运算公式:

$$x^{(\alpha)}x^{(\beta)} = {\alpha + \beta \choose \alpha}x^{(\alpha+\beta)}, \quad \forall \alpha, \beta \in \mathbb{N}_0^m$$
 (2.2)

置 $\varepsilon_i = (\delta_{i1}, \delta_{i2}, \dots, \delta_{im})$, 其中 δ_{ij} 为 Kronecker 符号.

简记 $x^{(\varepsilon_i)}$ 为 x_i ,这里 $1 \le i \le m$. 我们用 $\Lambda(n)$ 表示具有 n 个不定元 x_{m+1}, x_{m+2}, \cdots , x_s 的外代数, 其中 s = m + n. 令 $\Lambda(m,n) = U(m) \otimes \Lambda(n)$. 则 U(m) 的平凡的 \mathbb{Z}_2 - 阶化与 $\Lambda(n)$ 的自然的 \mathbb{Z}_2 - 阶化诱导了 $\Lambda(m,n)$ 的一个 \mathbb{Z}_2 - 阶化:

$$\Lambda(m,n)_{\overline{0}} = \mathcal{U}(m) \otimes \Lambda(n)_{\overline{0}}, \qquad \Lambda(m,n)_{\overline{1}} = \mathcal{U}(m) \otimes \Lambda(n)_{\overline{1}},$$

从而 $\Lambda(m,n)$ 是一个结合超代数.

设 $f \in U(m), g \in \Lambda(n)$, 简记 $\Lambda(m,n)$ 中的元素 $f \otimes g$ 为 fg. 于是在 $\Lambda(m,n)$ 中, 除了 (2.2) 式外, 还有以下运算公式:

$$x_ix_j=-x_jx_i, \qquad i,j=m+1,\cdots,s.$$
 $x^{(\alpha)}x_j=x_jx^{(\alpha)}, \quad orall lpha\in \mathbb{N}_0^m, \ j=m+1,\cdots,s.$

对 $k=1,\cdots,n$, 定义

$$B_k = \{\langle i_1, i_2, \cdots, i_k \rangle \mid m+1 \leq i_1 < i_2 < \cdots < i_k \leq s \}.$$

设 $B(n) = \bigcup_{i=0}^{n} B_{k}$, 其中 $B_{0} = \emptyset$. 若 $u = \langle i_{1}, i_{2}, \dots, i_{k} \rangle \in B_{k}$, 则令 |u| = k, $\{u\} = \{i_{1}, i_{2}, \dots, i_{k}\}$ 与 $x^{u} = x_{i_{1}}x_{i_{2}} \cdots x_{i_{k}}$. 约定 $|\emptyset| = 0$, $x^{\emptyset} = 1$. 则 $\{x^{(\alpha)}x^{u} \mid \alpha \in \mathbb{N}_{0}^{m}, u \in B(n)\}$ 构成了 $\Lambda(m, n)$ 的一个 \mathbb{F} - 基底.

为简便, 令 $Y_0 = \{1, 2, \dots, m\}, Y_1 = \{m+1, \dots, s\}, Y = Y_0 \cup Y_1.$

引理 2.4 设 D_1, D_2, \cdots, D_s 是 $\Lambda(m, n)$ 的线性变换, 并且满足

$$\mathrm{D}_i(x^{(lpha)}x^u) = egin{cases} x^{(lpha-arepsilon_i)}x^u, & orall \ i \in Y_0, \ x^{(lpha)}\partial_i(x^u), & orall \ i \in Y_1, \end{cases}$$

其中 ∂_i 是 $\Lambda(n)$ 的特殊导子, $\forall i \in Y_1$.则 $D_i \in \mathrm{Der}_{\overline{0}}(\Lambda(m,n))$, $\forall i \in Y_0$; $D_i \in \mathrm{Der}_{\overline{1}}(\Lambda(m,n))$, $\forall i \in Y_1$.

证明 对任意 $\alpha, \beta \in \mathbb{N}_0^m$, 任意 $u, v \in B(n)$, 利用等式

$$\begin{pmatrix} \alpha + \beta \\ \alpha \end{pmatrix} = \begin{pmatrix} \alpha + \beta - \varepsilon_i \\ \alpha - \varepsilon_i \end{pmatrix} + \begin{pmatrix} \alpha + \beta - \varepsilon_i \\ \alpha \end{pmatrix}, \quad \forall i \in Y_0,$$

可证得

$$D_i((x^{(\alpha)}x^u)(x^{(\beta)}x^v)) = (D_i(x^{(\alpha)}x^u))(x^{(\beta)}x^v) + (x^{(\alpha)}x^u)(D_i(x^{(\beta)}x^v)).$$

所以 $D_i \in \mathrm{Der}_{\overline{0}}(\Lambda(m,n)), \ \forall i \in Y_0.$

类似地, 利用 $\partial_i(x^ux^v) = (\partial_i(x^u))x^v + (-1)^{d(x^u)}x^u(\partial_i(x^v)), \forall i \in Y_1, 以及 d(x^u) = d(x^{(\alpha)}x^u)$ 可推得 $D_i \in \operatorname{Der}_{\overline{1}}(\Lambda(m,n)), \forall i \in Y_1.$

同样, 我们称 D_1, D_2, \dots, D_s 为 $\Lambda(m, n)$ 的特殊导子. 由引理 2.4 知, $d(D_i) = \tau(i)$, 这里

$$au(i) := \left\{ egin{array}{ll} \overline{0}, & orall \ i \in Y_0, \ \overline{1}, & orall \ i \in Y_1. \end{array}
ight.$$

若 $f \in \Lambda(m,n)_{\theta}$, $D \in \mathrm{Der}_{\mu}(\Lambda(m,n))$, 其中 $\theta, \mu \in \mathbb{Z}_2$, 令

$$(fD)(g) := fD(g), \quad \forall g \in \Lambda(m,n).$$

直接验证可知, $fD \in Der_{\theta+\mu}(\Lambda(m,n))$.

引理 2.5 1) 设 $f,g \in \Lambda(m,n), D,E \in \text{Der}(\Lambda(m,n)), 则$

$$[fD, gE] = fD(g)E - (-1)^{d(fD)d(gE)}gE(f)D + (-1)^{d(D)d(g)}fg[D, E].$$

2) $[D_i, D_j] = 0, \quad \forall i, j \in Y$.

证明 1) 任取 $h \in \Lambda(m,n)$, 则有

$$\begin{split} [fD,gE](h) &= (fD)((gE)(h)) - (-1)^{\operatorname{d}(fD)\operatorname{d}(gE)}(gE)((fD)(h)) \\ &= (fD(g))(E(h)) + (-1)^{\operatorname{d}(fD)\operatorname{d}(g)}g(fD)(E(h)) \\ &- (-1)^{\operatorname{d}(fD)\operatorname{d}(gE)}gE(f)(D(h)) \\ &- (-1)^{\operatorname{d}(fD)\operatorname{d}(gE) + \operatorname{d}(gE)\operatorname{d}(f)}f(gE)(D(h)) \\ &= (fD(g)E)(h) - (-1)^{\operatorname{d}(fD)\operatorname{d}(gE)}(gE(f)D)(h) \\ &+ (-1)^{\operatorname{d}(D)\operatorname{d}(g)}(fgD)(E(h)) \\ &- (-1)^{\operatorname{d}(D)\operatorname{d}(gE)}(fgE)(D(h)) \\ &= (fD(g)E)(h) - (-1)^{\operatorname{d}(fD)\operatorname{d}(gE)}(gE(f)D)(h) \\ &+ (-1)^{\operatorname{d}(D)\operatorname{d}(g)}fg[D,E](h). \end{split}$$

于是可知引理的 1) 成立.

2) 任取 $\Lambda(m,n)$ 的一个基元素 $x^{(\alpha)}x^{u}$, 其中 $\alpha \in \mathbb{N}_{0}^{m}$, $u \in B(n)$. 若 $i,j \in Y_{0}$, 或 者 $i \in Y_{0}$, $j \in Y_{1}$, 由 (2.3) 式可推得

$$\begin{split} [\mathbf{D}_i, \mathbf{D}_j](x^{(\alpha)}x^u) = &(\mathbf{D}_i \mathbf{D}_j - \mathbf{D}_j \mathbf{D}_i)(x^{(\alpha)}x^u) \\ = &\mathbf{D}_i \mathbf{D}_j(x^{(\alpha)}x^u) - \mathbf{D}_j \mathbf{D}_i(x^{(\alpha)}x^u) = 0. \end{split}$$

设 i,j ∈ Y₁. 若 i ∉ {u} 或者 j ∉ {u}, 显然

$$(\partial_i\partial_j+\partial_j\partial_i)(x^u)=0.$$

若 $\{i,j\}\subseteq\{u\}$, 不妨设 $x^u=x^vx_ix^wx_jx^q$, 其中 $v,w,q\in B(n)$ ($\{v\},\{w\},\{q\}$ 中可以有空 集 \emptyset). 则

$$(\partial_i \partial_j + \partial_j \partial_i)(x^u) = \partial_i \partial_j (x^u) + \partial_j \partial_i (x^u)$$

$$= (-1)^{|v|+1+|w|+|v|} x^v x^w x^q + (-1)^{|v|+|w|+|v|} x^v x^w x^q$$

$$= 0.$$

于是, 对 $i, j \in Y_1$,

$$egin{aligned} [\mathrm{D}_i,\mathrm{D}_j](x^{(lpha)}x^u) &= (\mathrm{D}_i\mathrm{D}_j+\mathrm{D}_j\mathrm{D}_i)(x^{(lpha)}x^u) \ &= x^{(lpha)}(\partial_i\partial_j+\partial_j\partial_i)(x^u) \ &= 0. \end{aligned}$$

综上知 $[D_i, D_j] = 0.$ □

 $\diamondsuit W(m,n) = \{ \sum_{i=1}^{s} f_i D_i \mid f_i \in \Lambda(m,n), \ \forall i \in Y \}.$

命题 2.6 W(m,n) 是 $Der(\Lambda(m,n))$ 的子代数.

证明 由引理 2.4 知 $D_i \in Der(\Lambda(m,n))$, 其中 $i \in Y$. 于是 $f_iD_i \in Der(\Lambda(m,n))$, 故 $W(m,n) \subseteq Der(\Lambda(m,n))$. 显然 W(m,n) 是 $Der(\Lambda(m,n))$ 的子空间. 任取 $\sum_{i \in Y} f_iD_i \in W(m,n)$, 可设 $f_i = f_{i\bar{0}} + f_{i\bar{1}}$, 其中 $f_{i\theta} \in \Lambda(m,n)_{\theta}$, $\theta \in \mathbb{Z}_2$. 则有

$$\sum_{i \in Y} f_i \mathbf{D}_i = \sum_{i \in Y} (f_{i\overline{0}} + f_{i\overline{1}}) \mathbf{D}_i$$
$$= \sum_{i \in Y} f_{i\overline{0}} \mathbf{D}_i + \sum_{i \in Y} f_{i\overline{1}} \mathbf{D}_i$$
$$= y + z,$$

其中

$$egin{aligned} y &= \sum_{i \in Y_0} f_{i\overline{0}} \mathrm{D}_i + \sum_{i \in Y_1} f_{i\overline{1}} \mathrm{D}_i \in \mathrm{W}(m,n) \cap \mathrm{Der}_{\overline{0}}(\Lambda(m,n)), \ z &= \sum_{i \in Y_1} f_{i\overline{0}} \mathrm{D}_i + \sum_{i \in Y_0} f_{i\overline{1}} \mathrm{D}_i \in \mathrm{W}(m,n) \cap \mathrm{Der}_{\overline{1}}(\Lambda(m,n)). \end{aligned}$$

所以 W(m,n) 是 $Der(\Lambda(m,n))$ 的 \mathbb{Z}_2 - 阶化子空间.

设 $\sum_{i=1}^s f_i D_i \in W(m,n)_{\theta}$, $\sum_{j=1}^s g_j D_j \in W(m,n)_{\mu}$, 其中 $\theta, \mu \in \mathbb{Z}_2$. 由引理 2.5 的 1) 与 2), 有

$$\left[\sum_{i=1}^{n} f_{i} \mathbf{D}_{i}, \sum_{j=1}^{s} g_{j} \mathbf{D}_{j}\right]$$

$$= \sum_{i,j=1}^{s} f_{i} \mathbf{D}_{i}(g_{j}) \mathbf{D}_{j} - (-1)^{\theta \mu} \sum_{i,j=1}^{s} g_{j} \mathbf{D}_{j}(f_{i}) \mathbf{D}_{i} \in \mathbf{W}(m, n).$$
(2.4)

任取 $t_1, t_2 \in Y$, 定义线性映射 $D_{t_1t_2}:\Lambda(m,n) \to W(m,n)$, 使得对任意 $f \in hg(\Lambda(m,n))$,

$$D_{t_1t_2}(f) = \sum_{i=1}^{2} f_{t_i} D_{t_i}, \qquad (2.5)$$

其中

$$f_{t_1} = -(-1)^{d(f)(\tau(t_1) + \tau(t_2))} D_{t_2}(f),$$
 (2.6)

$$f_{t_2} = (-1)^{\tau(t_1)\tau(t_2)} \mathbf{D}_{t_1}(f).$$
 (2.7)

易见,

$$d(f_{t_1}) = d(f) + \tau(t_2), \ d(f_{t_2}) = d(f) + \tau(t_1),$$

$$d(D_{t_1t_2}) = \tau(t_1) + \tau(t_2).$$

引理 2.7 $\sum_{i=1}^{2} (-1)^{\tau(t_i)d(f_{t_i})} D_{t_i}(f_{t_i}) = 0.$

证明 利用 (2.6) 与 (2.7) 式可得

$$\sum_{i=1}^{2} (-1)^{\tau(t_{i})d(f_{t_{i}})} D_{t_{i}}(f_{t_{i}})$$

$$= (-1)^{\tau(t_{1})d(f_{t_{1}})} D_{t_{1}}(-(-1)^{d(f)(\tau(t_{1})+\tau(t_{2}))} D_{t_{2}}(f))$$

$$+ (-1)^{\tau(t_{2})d(f_{t_{2}})} D_{t_{2}}((-1)^{\tau(t_{1})\tau(t_{2})} D_{t_{1}}(f))$$

$$= -(-1)^{\tau(t_{1})\tau(t_{2})+d(f)\tau(t_{2})} D_{t_{1}} D_{t_{2}}(f) + (-1)^{\tau(t_{2})d(f)} D_{t_{2}} D_{t_{1}}(f)$$

$$= -(-1)^{d(f)\tau(t_{2})} D_{t_{2}} D_{t_{1}}(f) + (-1)^{\tau(t_{2})d(f)} D_{t_{2}} D_{t_{1}}(f)$$

$$= 0 \qquad \square$$

定义

$$S(m,n) := \operatorname{span}_{\mathbb{F}} \{ D_{t_1t_2}(f) \mid t_1, t_2 \in Y, \ f \in \operatorname{hg}(\Lambda(m,n)) \}.$$

因为 $f \in \text{hg}(\Lambda(m,n))$, $D_{t_1t_2}$ 是 \mathbb{Z}_{2^-} 齐次线性映射, 所以 S(m,n) 是 W(m,n) 的 \mathbb{Z}_{2^-} 阶化子空间.

引理 2.8 差

$$D_{t_1t_2}(f) = \sum_{i=1}^2 f_{t_i} D_{t_i} \in S(m, n)_{\theta}, D_{\tau_1\tau_2}(g) = \sum_{j=1}^2 g_{\tau_j} D_{\tau_j} \in S(m, n)_{\mu},$$

其中 $\theta, \mu \in \mathbb{Z}_2$, 则

$$[\mathbf{D}_{t_1t_2}(f), \mathbf{D}_{r_1r_2}(g)] = \sum_{i,j=1}^{2} (-1)^{\tau(t_i)(\mathsf{d}(f_{t_i}) + \tau(r_j))} \mathbf{D}_{t_ir_j}(f_{t_i}g_{r_j}).$$

证明 由引理 2.7 知, $\sum_{i=1}^{2} (-1)^{\tau(t_i)d(f_{t_i})} D_{t_i}(f_{t_i}) = 0$. 所以

$$\begin{split} &\sum_{i,j=1}^{2} (-1)^{\tau(t_i)d(f_{t_i})} \mathbf{D}_{t_i}(f_{t_i}) g_{r_j} \mathbf{D}_{r_j} \\ &= \sum_{j=1}^{2} \left(\sum_{i=1}^{2} (-1)^{\tau(t_i)d(f_{t_i})} \mathbf{D}_{t_i}(f_{t_i}) \right) g_{r_j} \mathbf{D}_{r_j} = 0. \end{split}$$

同理知

$$\sum_{i,j=1}^{2} (-1)^{\tau(r_{j})d(g_{r_{j}})} D_{r_{j}}(g_{r_{j}}) f_{t_{i}} D_{t_{i}} = 0.$$

于是

$$\left[\sum_{i=1}^{2} f_{t_{i}} D_{t_{i}}, \sum_{j=1}^{2} g_{r_{j}} D_{r_{j}}\right]$$

$$= \sum_{i,j=1}^{2} f_{t_{i}} D_{t_{i}}(g_{r_{j}}) D_{r_{j}} - (-1)^{\theta \mu} \sum_{i,j=1}^{2} g_{r_{j}} D_{r_{j}}(f_{t_{i}}) D_{t_{i}}$$

$$= \sum_{i,j=1}^{2} \left(f_{t_{i}} D_{t_{i}}(g_{r_{j}}) D_{r_{j}} + (-1)^{r(t_{i})d(f_{t_{i}})} D_{t_{i}}(f_{t_{i}}) g_{r_{j}} D_{r_{j}}\right)$$

$$- (-1)^{\theta \mu} \sum_{i,j=1}^{2} \left(g_{r_{j}} D_{r_{j}}(f_{t_{i}}) D_{t_{i}} + (-1)^{r(r_{j})d(g_{r_{j}})} D_{r_{j}}(g_{r_{j}}) f_{t_{i}} D_{t_{i}}\right)$$

$$= \sum_{i,j=1}^{2} (-1)^{r(t_{i})d(f_{t_{i}})} D_{t_{i}}(f_{t_{i}}g_{r_{j}}) D_{r_{j}}$$

$$- (-1)^{\theta \mu} \sum_{i,j=1}^{2} (-1)^{r(r_{j})d(g_{r_{j}})} D_{r_{j}}(g_{r_{j}}f_{t_{i}}) D_{t_{i}}$$

$$= \sum_{i,j=1}^{2} (-1)^{r(t_{i})(d(f_{t_{i}}) + r(r_{j}))} [(-1)^{r(t_{i})r(r_{j})} D_{t_{i}}(f_{t_{i}}g_{r_{j}}) D_{r_{j}}$$

$$- (-1)^{n} D_{r_{j}}(f_{t_{i}}g_{r_{j}}) D_{t_{i}}],$$
(2.8)

其中

$$\eta = \theta \mu + \tau(r_j) d(g_{r_j}) + \tau(t_i) d(f_{t_i}) + \tau(t_i) \tau(r_j) + d(f_{t_i}) d(g_{r_j}). \tag{2.9}$$

易见

$$\theta = d(f_{t_i}) + \tau(t_i), \quad \mu = d(g_{r_i}) + \tau(r_i).$$
 (2.10)

将 (2.10) 式代入 (2.9) 式得

$$\eta = (d(f_{t_i}) + d(g_{r_j}))(\tau(t_i) + \tau(r_j)) = d(f_{t_i}g_{r_j})(\tau(t_i) + \tau(r_j)).$$

于是,由(2.8)式得

$$\left[\sum_{i=1}^{2} f_{t_{i}} D_{t_{i}}, \sum_{j=1}^{2} g_{r_{j}} D_{r_{j}}\right] = \sum_{i,j=1}^{2} (-1)^{\tau(t_{i})(d(f_{t_{i}}) + \tau(r_{j}))} D_{t_{i}r_{j}}(f_{t_{i}}g_{r_{j}}).$$

由引理 2.8 立即可得以下命题.

命题 2.9 S(m,n) 是 W(m,n) 的无限维于代数; 特别地, S(m,n) 是李超代数. 下面定义李超代数 H(m,n), 这里要求 m 为偶数. 设 m=2k. 令

$$i' = egin{cases} i + k, & \railde{A} & 1 \leq i \leq k \ i - k, & \railde{A} & k < i \leq 2k \ i, & \railde{A} & 2k < i \leq s, \end{cases}$$

$$\sigma(i) = \begin{cases} 1, & \text{若 } 1 \le i \le k \\ -1, & \text{若 } k < i \le 2k \\ 1, & \text{若 } 2k < i \le s. \end{cases}$$
 (2.12)

定义线性映射 $D_H: \Lambda(m,n) \to W(m,n)$, 使得对任意 $f \in hg(\Lambda(m,n))$, $D_H(f) = \sum_{i=1}^s f_i D_i$, 其中

$$f_i = \sigma(i')(-1)^{\tau(i')d(f)} D_{i'}(f), \quad \forall i \in Y.$$
 (2.13)

显然, $d(f_i) = d(f) + \tau(i') = d(f) + \tau(i)$, $\forall i \in Y$. 利用 (2.13) 式可直接推得

$$D_{i}(f_{j'}) = (-1)^{\tau(i)\tau(j) + (\tau(i) + \tau(j))d(f)} \sigma(i)\sigma(j)D_{j}(f_{i'}), \qquad (2.14)$$

其中 $i, j \in Y$. 令

$$\mathrm{H}(m,n)=\mathrm{span}_{\mathrm{F}}\{\mathrm{D}_{\mathrm{H}}(f)\mid f\in \mathrm{hg}(\Lambda(m,n))\}.$$

易见 DH 是偶的线性映射, 又因为 $f \in hg(\Lambda(m,n))$, 所以 H(m,n) 是 W(m,n) 的 \mathbb{Z}_{2-} 阶 化子空间.

引理 2.10 若

$$\mathrm{D}_{\mathrm{H}}(f) = \sum_{i=1}^s f_i \mathrm{D}_i \in \mathrm{H}(m,n)_{\theta}, \ \mathrm{D}_{\mathrm{H}}(g) = \sum_{j=1}^s g_j \mathrm{D}_j \in \mathrm{H}(m,n)_{\mu},$$

其中 $\theta, \mu \in \mathbb{Z}_2$,则 $[D_H(f), D_H(g)] = D_H(h)$,这里 $h = \sum_{i=1}^s \sigma(i)(-1)^{\tau(i)\mu} f_i g_{i'}$.

证明 由 (2.4) 式知,

$$[D_{\mathrm{H}}(f), D_{\mathrm{H}}(g)] = \left[\sum_{i=1}^{s} f_{i} D_{i}, \sum_{j=1}^{s} g_{j} D_{j}\right] = \sum_{j=1}^{s} q_{j} D_{j},$$

其中

$$q_j = \sum_{i=1}^s (f_i \mathbf{D}_i(g_j) - (-1)^{\theta \mu} g_i \mathbf{D}_i(f_j)), \ \forall j \in Y.$$

运用 (2.14) 式, 我们有

$$\begin{split} q_{j} &= \sum_{i=1}^{s} f_{i} D_{i}(g_{j}) - (-1)^{\theta \mu} \sum_{i=1}^{s} g_{i} D_{i}(f_{j}) \\ &= \sum_{i=1}^{s} (-1)^{\tau(i)\tau(j') + (\tau(i) + \tau(j'))\mu} \sigma(i)\sigma(j') f_{i} D_{j'}(g_{i'}) \\ &- (-1)^{\theta \mu} \sum_{i=1}^{s} (-1)^{\tau(i)\tau(j') + (\tau(i) + \tau(j'))\theta} \sigma(i)\sigma(j') g_{i} D_{j'}(f_{i'}) \\ &= \sum_{i=1}^{s} (-1)^{\tau(i)\tau(j') + (\tau(i) + \tau(j'))\mu} \sigma(i)\sigma(j') f_{i} D_{j'}(g_{i'}) \\ &- \sum_{i=1}^{s} (-1)^{\tau(j')(\theta + \mu) + \tau(i')\mu + \tau(i)\tau(i')} \sigma(i)\sigma(j') D_{j'}(f_{i'}) g_{i} \\ &= \sum_{i=1}^{s} (-1)^{\tau(i)\tau(j') + (\tau(i) + \tau(j'))\mu} \sigma(i)\sigma(j') f_{i} D_{j'}(g_{i'}) \\ &+ \sum_{i=1}^{s} (-1)^{\tau(j')(\theta + \mu) + \tau(i)\mu} \sigma(i)\sigma(j') D_{j'}(f_{i}) g_{i'} \\ &= \sigma(j')(-1)^{\tau(j')(\theta + \mu)} D_{j'} \left(\sum_{i=1}^{s} \sigma(i)(-1)^{\tau(i)\mu} f_{i} g_{i'} \right) \\ &= \sigma(j')(-1)^{\tau(j')(\theta + \mu)} D_{j'}(h). \end{split}$$

因为 $D_H(h) = \sum_{j=1}^s h_j D_j$, 其中

$$h_j = \sigma(j')(-1)^{\tau(j')d(h)}D_{j'}(h) = \sigma(j')(-1)^{\tau(j')(\theta+\mu)}D_{j'}(h),$$

所以 $q_j = h_j, \ \forall j \in Y$. 因此 $[D_H(f), D_H(g)] = D_H(h)$.

由引理 2.10 可得以下命题.

引理 2.11 H(m,n) 是 W(m,n) 的无限维子代数.

最后, 我们定义李超代数 K(m,n), 这里要求 m 是奇数. 设 m=2k+1. 令 $J=Y\setminus\{m\}$, 对任意 $i\in J$, i' 与 $\sigma(i)$ 的定义分别如 (2.11) 与 (2.12) 式.

设 $\tilde{D}_k: \Lambda(m,n) \to W(m,n)$ 是线性映射, 使得对任意 $f \in hg(\Lambda(m,n))$,

$$\widetilde{\mathbf{D}}_k(f) = \sum_{i=1}^s f_i \mathbf{D}_i,$$

其中

$$f_i = (-1)^{\tau(i)d(f)} (x_i D_m(f) + \sigma(i') D_{i'}(f)), \ \forall i \in J,$$
 (2.15)

$$f_m \approx 2f - \sum_{i \in J} x_i D_i(f). \tag{2.16}$$

令

$$G_i = D_i + \sigma(i)x_{i'}D_m, \ \forall i \in J, \quad G_m = 2D_m.$$
 (2.17)

由引理 2.5 知, 对任意 $i,j \in J$, 有

$$[G_{i}, G_{j}] = [D_{i} + \sigma(i)x_{i'}D_{m}, D_{j} + \sigma(j)x_{j'}D_{m}]$$

$$= [D_{i}, \sigma(j)x_{j'}D_{m}] + [\sigma(i)x_{i'}D_{m}, D_{j}]$$

$$= \delta_{ij'}\sigma(j)D_{m} - \delta_{i'j}\sigma(i)D_{m}$$

$$= 2\delta_{ij'}\sigma(j)D_{m}$$

$$= \delta_{ij'}\sigma(j)G_{m}, \qquad (2.18)$$

$$[G_{m}, G_{j}] = 0, \quad \forall j \in J.$$

由(2.17)式,直接验证可知,对任意 j ∈ J,有

$$\begin{split} \left(\sum_{i \in J} \sigma(i') (-1)^{\tau(i')d(f)} G_{i'}(f) G_i + f G_m \right) (x_j) \\ &= \sum_{i \in J} \sigma(i') (-1)^{\tau(i')d(f)} (\mathbf{D}_{i'}(f) + \sigma(i') x_i \mathbf{D}_m(f)) (\mathbf{D}_i + \sigma(i) x_{i'} \mathbf{D}_m) (x_j) \\ &= \sigma(j') (-1)^{\tau(j')d(f)} (\mathbf{D}_{j'}(f) + \sigma(j') x_j \mathbf{D}_m(f)) \\ &= (-1)^{\tau(j')d(f)} (\sigma(j') \mathbf{D}_{j'}(f) + x_j \mathbf{D}_m(f)) \\ &= \widetilde{\mathbf{D}}_k(f)(x_j); \end{split}$$

并且

$$\begin{split} \left(\sum_{i \in J} \sigma(i') (-1)^{\tau(i') \operatorname{d}(f)} G_{i'}(f) G_i + f G_m \right) (x_m) \\ &= \sum_{i \in J} \sigma(i') (-1)^{\tau(i') \operatorname{d}(f)} (\operatorname{D}_{i'}(f) + \sigma(i') x_i \operatorname{D}_m(f)) \sigma(i) x_{i'} + 2f \\ &= \sum_{i \in J} \sigma(i') \sigma(i) (-1)^{\tau(i') \operatorname{d}(f)} \operatorname{D}_{i'}(f) x_{i'} + \sum_{i \in J} \sigma(i) (-1)^{\tau(i') \operatorname{d}(f)} x_i \operatorname{D}_m(f) x_{i'} + 2f \\ &= \sum_{i \in J} \sigma(i') \sigma(i) (-1)^{\tau(i')} x_{i'} \operatorname{D}_{i'}(f) + \sum_{i \in J} \sigma(i) x_i x_{i'} \operatorname{D}_m(f) + 2f \\ &= -\sum_{i \in J} x_i \operatorname{D}_i(f) + 2f \\ &= \widetilde{\operatorname{D}}_k(f) (x_m). \end{split}$$

于是可得

$$\widetilde{\mathbf{D}}_k(f) = \sum_{i \in J} \sigma(i')(-1)^{\tau(i')\mathbf{d}(f)} G_{i'}(f) G_i + f G_m. \tag{2.20}$$

引理 2.12 设 $f \in \Lambda(m,n)_{\theta}$, $g \in \Lambda(m,n)_{\mu}$, 其中 $\theta, \mu \in \mathbb{Z}_2$, 则

$$[\widetilde{\mathrm{D}}_{m{k}}(f),\ \widetilde{\mathrm{D}}_{m{k}}(g)] = \widetilde{\mathrm{D}}_{m{k}}(\langle f,\ g
angle),$$

其中 $\langle f, g \rangle = \widetilde{\mathbf{D}}_{k}(f)(g) - G_{m}(f)(g)$.

证明 设 $\widetilde{\mathbf{D}}_k(f) = \sum_{i=1}^s f_i G_i, \ \widetilde{\mathbf{D}}_k(g) = \sum_{i=1}^s g_i G_i.$ 由 (2.20) 式可得

$$f_i = \sigma(i')(-1)^{\theta \tau(i')} G_{i'}(f), \quad \forall i \in J, \ f_m = f,$$
 (2.21)

$$g_i = \sigma(i')(-1)^{\mu\tau(i')}G_{i'}(g), \quad \forall i \in J, \ g_m = g.$$
 (2.22)

由 (2.17) 式知, $d(G_i) = \tau(i)$, $\forall i \in Y$, 所以

$$d(f_i) = \theta + \tau(i), \quad d(g_i) = \mu + \tau(i), \quad \forall i \in Y.$$
 (2.23)

若 i, j ∈ J, 由 (2.21) 与 (2.18) 式知

$$G_{i}(f_{j}) = G_{i}(\sigma(j')(-1)^{\theta\tau(j')}G_{j'}(f))$$

$$= \sigma(j')(-1)^{\theta\tau(j')}([G_{i}, G_{j'}](f) + (-1)^{\tau(i)\tau(j')}G_{j'}G_{i}(f))$$

$$= \sigma(j')\sigma(i)(-1)^{(\theta+\tau(i))\tau(j')+\theta\tau(i)}G_{j'}(f_{i'}) + \delta_{ij}(-1)^{\theta\tau(j')}G_{m}(f).$$
(2.24)

同理知

$$G_i(g_j) = \sigma(j')\sigma(i)(-1)^{(\mu+\tau(i))\tau(j')+\mu\tau(i)}G_{j'}(g_{i'}) + \delta_{ij}(-1)^{\mu\tau(j')}G_m(g). \tag{2.25}$$

由引理 2.5 与 (2.23)~(2.25) 式, 可算得

$$[\widetilde{\mathbf{D}}_k(f),\ \widetilde{\mathbf{D}}_k(g)] = \left[\sum_{i=1}^s f_i G_i,\ \sum_{i=1}^s g_i G_i\right] = \sum_{j \in J} h_j G_j + h_m G_m,$$

其中

$$h_{j} = \sum_{i \in J} f_{i}G_{i}(g_{j}) - (-1)^{\theta \mu} \sum_{i \in J} g_{i}G_{i}(f_{j}) + f_{m}G_{m}(g_{j})$$

$$-(-1)^{\theta \mu} g_{m}G_{m}(f_{j})$$

$$= \sum_{i \in J} \sigma(j')\sigma(i)(-1)^{\mu\tau(j')+\tau(i)\tau(j')+\mu\tau(i)} f_{i}G_{j'}(g_{i'})$$

$$-(-1)^{\theta \mu} \sum_{i \in J} \sigma(j')\sigma(i)(-1)^{\mu\tau(j')+\tau(i)\tau(j')+\theta\tau(i)} g_{i}G_{j'}(f_{i'})$$

$$+(-1)^{\mu\tau(j')} f_{j}G_{m}(g) - (-1)^{\theta \mu+\theta\tau(j')} g_{j}G_{m}(f)$$

$$+fG_{m}(g_{j}) - (-1)^{\theta \mu} gG_{m}(f_{j})$$

$$= \sigma(j')(-1)^{\tau(j')\mu} \sum_{i \in J} \sigma(i)(-1)^{\tau(i)\tau(j')+\mu\tau(i)} f_{i}G_{j'}(g_{i'})$$

$$-\sigma(j')(-1)^{\theta \mu+\theta\tau(j')} \sum_{i \in J} \sigma(i')(-1)^{\tau(i')\tau(j')+\theta\tau(i')} g_{i'}G_{j'}(f_{i})$$

$$+ \sigma(j')(-1)^{\mu\tau(j')+\theta\tau(j')}G_{j'}(f)G_{m}(g)$$

$$- \sigma(j')(-1)^{\theta\mu+(\theta+\mu)\tau(j')}G_{j'}(g)G_{m}(f) + fG_{m}(g_{j})$$

$$- (-1)^{\theta\mu}gG_{m}(f_{j})$$

$$= \sigma(j')(-1)^{\tau(j')(\theta+\mu)} \sum_{i \in J} \sigma(i)(-1)^{\mu\tau(i)+\tau(j')(\theta+\tau(i))} f_{i}G_{j'}(g_{i'})$$

$$+ \sigma(j')(-1)^{\tau(j')(\theta+\mu)} \sum_{i \in J} \sigma(i)(-1)^{\mu\tau(i)}G_{j'}(f_{i})g_{i'}$$

$$+ \sigma(j')(-1)^{\tau(j')(\theta+\mu)} G_{j'}(f)G_{m}(g_{i})$$

$$- \sigma(j')(-1)^{\tau(j')(\theta+\mu)+\tau(j')\theta}G_{m}(f)G_{j'}(g)$$

$$+ fG_{m}(\sigma(j')(-1)^{\mu\tau(j')}G_{j'}(g))$$

$$- (-1)^{\theta\mu}gG_{m}(\sigma(j')(-1)^{\theta\tau(j')}G_{j'}(f))$$

$$= \sigma(j')(-1)^{\tau(j')(\theta+\mu)} \sum_{i \in J} \sigma(i)(-1)^{\mu\tau(i)}G_{j'}(f_{i}g_{i'})$$

$$+ \sigma(j')(-1)^{\tau(j')(\theta+\mu)} G_{j'}(fG_{m}(g) - G_{m}(f)g)$$

$$= \sigma(j')(-1)^{\tau(j')(\theta+\mu)} G_{j'}\left(\sum_{i \in J} \sigma(i)(-1)^{\mu\tau(i)}f_{i}g_{i'}$$

$$+ f_{m}G_{m}(g) - G_{m}(f)g\right)$$

$$= \sigma(j')(-1)^{\tau(j')(\theta+\mu)} G_{j'}\left(\sum_{i \in J} f_{i}G_{i}(g) + f_{m}G_{m}(g) - G_{m}(f)g\right)$$

$$= \sigma(j')(-1)^{\tau(j')(\theta+\mu)} G_{j'}\left(\sum_{i \in J} f_{i}G_{i}(g) + f_{m}G_{m}(g) - G_{m}(f)g\right)$$

$$= \sigma(j')(-1)^{\tau(j')(\theta+\mu)} G_{j'}\left(\sum_{i \in J} f_{i}G_{i}(g) + f_{m}G_{m}(g) - G_{m}(f)g\right)$$

$$= \sigma(j')(-1)^{\tau(j')(\theta+\mu)} G_{j'}\left(\sum_{i \in J} f_{i}G_{i}(g) + f_{m}G_{m}(g) - G_{m}(f)g\right)$$

$$= \sigma(j')(-1)^{\tau(j')(\theta+\mu)} G_{j'}\left(\sum_{i \in J} f_{i}G_{i}(g) + f_{m}G_{m}(g) - G_{m}(f)g\right)$$

由 (2.20) 式知, h_j 等于 $\tilde{D}_k(\langle f,g\rangle)$ 中 G_j 的系数, 这里 $j\in J$. 由引理 2.5 与 (2.18)~(2.23) 式, 有

$$h_{m} = \sum_{i \in J} f_{i}G_{i}(g) - (-1)^{\theta \mu} \sum_{i \in J} g_{i}G_{i}(f) + fG_{m}(g)$$

$$-(-1)^{\theta \mu} gG_{m}(f) + \sum_{i \in J} \sigma(i')(-1)^{\tau(i)(\mu + \tau(i'))} f_{i}g_{i'}$$

$$= \sum_{i \in J} \sigma(i)(-1)^{\mu \tau(i)} f_{i}g_{i'} - (-1)^{\theta \mu} \sum_{i \in J} \sigma(i)(-1)^{\theta \tau(i)} g_{i}f_{i'}$$

$$+ fG_{m}(g) - (-1)^{\theta \mu} gG_{m}(f) + \sum_{i \in J} \sigma(i')(-1)^{\tau(i)(\mu + \tau(i'))} f_{i}g_{i'}$$

$$= -(-1)^{\theta \mu} \sum_{i \in J} \sigma(i)(-1)^{\theta \tau(i)} g_{i}f_{i'} + fG_{m}(g) - (-1)^{\theta \mu} gG_{m}(f)$$

$$= -(-1)^{\theta \mu} \sum_{i \in J} \sigma(i')(-1)^{\mu \tau(i')} G_{i'}(g)G_{i}(f) + fG_{m}(g) - G_{m}(f)g$$

$$= \sum_{i \in J} \sigma(i)(-1)^{\tau(i')\theta} G_{i}(f)G_{i'}(g) + fG_{m}(g) - G_{m}(f)g$$

$$= \sum_{i \in J} \sigma(i')(-1)^{\tau(i)\theta} G_{i'}(f) G_i(g) + f G_m(g) - G_m(f) g$$

$$= \widetilde{D}_k(f)(g) - G_m(f) g$$

$$= \langle f, g \rangle$$

$$= \widetilde{D}_k(\langle f, g \rangle) \oplus G_m 的 系数.$$

这就证明了 $[\widetilde{\mathbf{D}}_k(f),\ \widetilde{\mathbf{D}}_k(g)] = \widetilde{\mathbf{D}}_k(\langle f,\ g \rangle).$

由引理 2.12, 直接得出以下命题.

命题 2.13 K(m,n) 是 W(m,n) 的无限维子代数.

我们称 W(m,n), S(m,n), H(m,n), 和 K(m,n) 为无限维 Cartan 型模李超代数. 设

$$\Lambda(m,n)_i = \operatorname{span}_{\mathbf{F}} \left\{ x^{(\alpha)} x^u \mid \alpha \in \mathbb{N}_0^m, \ u \in B(n), \ |\alpha| + |u| = i \right\}.$$

显然 $\Lambda(m,n) = \bigoplus_{i>0} \Lambda(m,n)_i$ 是 Z- 阶化的结合超代数. 设

$$\underline{t} = (t_1, t_2, \dots, t_m) \in \mathbb{N}^m, \ \pi_i = p^{t_i} - 1, \ \forall i \in Y_0.$$

这里 p 总表示基域 F 的特征数. 令

$$A(m,\underline{t}) = \left\{ lpha = (lpha_1,\cdots,lpha_m) \in \mathbb{N}_0^m \mid 0 \leq lpha_i \leq \pi_i, \ i \in Y_0
ight\},$$

$$\Lambda(m,n,\underline{t}) = \operatorname{span}_{\mathbb{F}} \left\{ x^{(lpha)} x^u \mid lpha \in A(m,\underline{t}), \ u \in B(n)
ight\}.$$

命題 2.14 设 $\alpha, \beta \in A(m, \underline{t})$, 其中 $\alpha = (\alpha_1, \dots, \alpha_m)$, $\beta = (\beta_1, \dots, \beta_m)$. 若 $\alpha + \beta \notin A(m, \underline{t})$, 則 $\binom{\alpha+\beta}{\alpha} = 0$.

证明 因为 $\alpha + \beta \notin A(m,\underline{t})$, 所以存在 $i \in Y_0$, 使得 $\alpha_i + \beta_i > \pi_i$. 由于 $\alpha,\beta \in A(m,\underline{t})$, 所以 $\alpha_i,\beta_i \leq \pi_i < p^{t_i}$.

设 X_1 与 X_2 是域 \mathbb{F} 上的未定元. 在二元多项式 $(X_1 + X_2)^{\alpha_i + \beta_i}$ 的展开式中, 项 $X_1^{\beta_i} X_2^{\alpha_i}$ 的系数是 $\binom{\alpha_i + \beta_i}{\alpha_i}$. 由于 $\alpha_i + \beta_i - p^{t_i} < \beta_i$ 和 $\alpha_i + \beta_i - p^{t_i} < \alpha_i$, 所以在 $(X_1 + X_2)^{\alpha_i + \beta_i - p^{t_i}} \left(X_1^{p^{t_i}} + X_2^{p^{t_i}}\right)$ 的展开式中, 项 $X_1^{\beta_i} X_2^{\alpha_i}$ 的系数是零. 由于

$$(X_1 + X_2)^{\alpha_i + \beta_i} = (X_1 + X_2)^{\alpha_i + \beta_i - p^{t_i}} (X_1 + X_2)^{p^{t_i}}$$
$$= (X_1 + X_2)^{\alpha_i + \beta_i - p^{t_i}} (X_1^{p^{t_i}} + X_2^{p^{t_i}}),$$

所以 $\binom{\alpha_i+\beta_i}{\alpha_i}=0$. 于是 $\binom{\alpha+\beta}{\alpha}=0$.

推论 2.15 $\Lambda(m,n,\underline{t})$ 是 $\Lambda(m,n)$ 的有限维于代数.

令 $\Lambda(m,n,\underline{t})_i = \Lambda(m,n)_i \cap \Lambda(m,n,\underline{t})$. 则 $\Lambda(m,n,\underline{t}) = \bigoplus_{i=0}^{\xi} \Lambda(m,n,\underline{t})_i$ 是 Z- 阶化超代数, 其中 $\xi := \sum_{i=1}^{n} \pi_i + n$. 令

$$W(m, n, \underline{t}) = \left\{ \sum_{i=1}^{s} f_i D_i \mid f_i \in \Lambda(m, n, \underline{t}), \forall i \in Y \right\}.$$

由 (2.4) 式与推论 2.15 知, $W(m,n,\underline{t})$ 是 W(m,n) 的有限维子代数. 设

$$S(m, n, \underline{t}) = \operatorname{span}_{\mathbf{F}} \{ D_{ij}(f) \mid i, j \in Y, f \in \Lambda(m, n, \underline{t}) \},$$

 $\overline{H}(m,n,\underline{t}) = \{D_H(f) \mid f \in \Lambda(m,n,\underline{t})\},$ 其中 m = 2k 是偶数.

 $\overline{\mathrm{K}}(m,n,\underline{t}) = \{\widetilde{\mathrm{D}}_k(f) \mid f \in \Lambda(m,n,\underline{t})\},$ 其中 m = 2k+1是奇数.

由引理 2.8, 2.10, 2.12 与推论 2.15 知, $S(m, n, \underline{t})$, $\overline{H}(m, n, \underline{t})$ 与 $\overline{K}(m, n, \underline{t})$ 是 $W(m, n, \underline{t})$ 的子代数.

下面考察 $\overline{H}(m,n,\underline{t})$ 的换位子代数. 由 (2.13) 式知,

$$D_{H}(f) = \sum_{i=1}^{s} \sigma(i)(-1)^{\tau(i)d(f)} D_{i}(f) D_{i'}. \qquad (2.26)$$

由引理 2.10 可推得

$$\left[D_{H}(f), D_{H}(g)\right] = D_{H}\left(\sum_{i=1}^{s} \sigma(i)(-1)^{\tau(i)d(f)}D_{i}(f)D_{i'}(g)\right). \tag{2.27}$$

令

$$\mathrm{H}(m,n,\underline{t}) = \left\{ \mathrm{D}_{\mathrm{H}}(f) \mid f \in igoplus_{i=0}^{\xi-1} \Lambda(m,n,\underline{t})_i
ight\}.$$

置 $\pi := (\pi_1, \pi_2, \dots, \pi_m) \in A(m, \underline{t}), E := (m+1, m+2, \dots, s) \in B(n).$ 则 $\Lambda(m, n, \underline{t})_{\xi} = \mathbb{F}x^{(\pi)}x^E$.

命題 2.16 设 $L = \overline{H}(m, n, \underline{t})$, 则 $[L, L] = H(m, n, \underline{t})$.

证明 设 $D_H(x^{(\alpha)}x^u), D_H(x^{(\beta)}x^v) \in L$. 由 (2.27) 式知

$$\begin{split} & \left[\mathrm{D_H} \big(x^{(\alpha)} x^u \big), \mathrm{D_H} \big(x^{(\beta)} x^v \big) \right] \\ &= \mathrm{D_H} \left(\sum_{i=1}^s \sigma(i) (-1)^{\tau(i) \mathrm{d}(x^u)} \mathrm{D}_i (x^{(\alpha)} x^u) \mathrm{D}_{i'} (x^{(\beta)} x^v) \right) \\ &= \mathrm{D_H} \left(\sum_{i=1}^m \sigma(i) \mathrm{D}_i (x^{(\alpha)}) x^u \mathrm{D}_{i'} (x^{(\beta)}) x^v \right) \\ &+ \mathrm{D_H} \left(\sum_{i=m+1}^s (-1)^{\mathrm{d}(x^u)} x^{(\alpha)} \partial_i (x^u) x^{(\beta)} \partial_i (x^v) \right). \end{split}$$

因为 $\partial_i(x^u)\partial_i(x^v) \notin \mathbb{F}x^E$, 所以

$$\mathrm{D}_{\mathrm{H}}\left(\sum_{i=m+1}^{\mathfrak{s}}(-1)^{\mathrm{d}(x^{u})}x^{(\alpha)}\partial_{i}(x^{u})x^{(\beta)}\partial_{i}(x^{v})\right)\in\mathrm{D}_{\mathrm{H}}\left(\bigoplus_{i=0}^{\xi-1}\Lambda(m,n,\underline{t})_{i}\right).$$

易见

$$\mathrm{D_H}\left(\sum_{i=1}^m \sigma(i)\mathrm{D}_i(x^{(\alpha)})x^u\mathrm{D}_{i'}(x^{(\beta)})x^v\right)$$

$$= \sum_{i=1}^{m} \sigma(i) \binom{\alpha + \beta - \varepsilon_{i} - \varepsilon_{i'}}{\alpha - \varepsilon_{i}} D_{H}(x^{(\alpha + \beta - \varepsilon_{i} - \varepsilon_{i'})}) x^{u} x^{v}$$

$$= \sum_{i=1}^{k} \left[\binom{\alpha + \beta - \varepsilon_{i} - \varepsilon_{i'}}{\alpha - \varepsilon_{i}} - \binom{\alpha + \beta - \varepsilon_{i} - \varepsilon_{i'}}{\alpha - \varepsilon_{i'}} \right] D_{H}(x^{(\alpha + \beta - \varepsilon_{i} - \varepsilon_{i'})}) x^{u} x^{v}.$$

利用同余式

$$\begin{pmatrix} \pi \\ \gamma \end{pmatrix} \equiv (-1)^{|\gamma|} \pmod{p}, \quad 这里 \quad 0 \le \gamma \le \pi,$$

可知, 若 $\alpha + \beta - \varepsilon_i - \varepsilon_{i'} = \pi$, 则

$$\begin{pmatrix} \alpha + \beta + \varepsilon_i - \varepsilon_{i'} \\ \alpha - \varepsilon_i \end{pmatrix} - \begin{pmatrix} \alpha + \beta - \varepsilon_i - \varepsilon_{i'} \\ \alpha - \varepsilon_{i'} \end{pmatrix} = (-1)^{|\alpha - \varepsilon_i|} - (-1)^{|\alpha - \varepsilon_{i'}|} = 0.$$

所以

$$\mathrm{D_H}\left(\sum_{i=1}^s \sigma(i)\mathrm{D}_i(x^{(\alpha)})x^u\mathrm{D}_{i'}(x^{(\beta)})x^v\right) \in \mathrm{D_H}\left(\bigoplus_{i=0}^{\xi-1}\Lambda(m,n,\underline{t})_i\right).$$

于是 $[L,L] \subseteq H(m,n,\underline{t})$.

反之, 设 $D_H(x^{(\alpha)}x^u) \in H(m,n,\underline{t})$, 则 $(\alpha,u) \neq (\pi,E)$. 若 $\alpha \neq \pi$, 则存在 $i \in Y_0$, 使 得 $D_H(x^{(\alpha+\epsilon_i)}x^u) \in \overline{H}(m,n,\underline{t})$. 于是

$$\mathrm{D_H}(x^{(\alpha)}x^u) = \sigma(i) \Big[\mathrm{D_H}(x^{(\alpha+\varepsilon_i)}x^u), \mathrm{D_H}(x_{i'}) \Big] \in [L,L].$$

若 $u \neq E$, 则存在 $i \in Y_1$, 使得 $0 \neq D_H(x^{(\alpha)}x_ix^u) \in \overline{H}(m,n,\underline{t})$. 则

$$D_{H}(x^{(\alpha)}x^{u}) = -\left[D_{H}(x_{i}), D_{H}(x^{(\alpha)}x_{i}x^{u})\right] \in [L, L].$$

所以 $H(m,n,\underline{t})\subseteq [L,L];$ 因此 $[L,L]=H(m,n,\underline{t}).$

下面我们给出 $\overline{K}(m,n,\underline{t})$ 的另一种表述方法. 我们将线性映射 \widetilde{D}_k 在 $\Lambda(m,n,\underline{t})$ 上的限制仍记为 \widetilde{D}_k , 即

$$\widetilde{\mathbf{D}}_k : \Lambda(m, n, \underline{t}) \longrightarrow \overline{\mathbf{K}}(m, n, \underline{t}).$$

设 $f \in \ker \widetilde{\mathcal{D}}_k$, 由 (2.15) 式知

$$(-1)^{\tau(i)\operatorname{d}(f)} \left(x_i \operatorname{D}_m(f) + \sigma(i') \operatorname{D}_{i'}(f)\right) = 0, \quad \forall i \in J.$$

所以

$$D_i(f) = -\sigma(i)x_{i'}D_m(f), \quad \forall i \in J.$$

由 (2.16) 式知, $2f - \sum_{i \in J} x_i D_i(f) = 0$, 于是

$$f = \frac{1}{2} \sum_{i \in J} x_i D_i(f) = -\frac{1}{2} \sum_{i \in J} \sigma(i) x_i x_{i'} D_m(f) = 0.$$

因此 $\ker \tilde{D}_k = 0$, 故 \tilde{D}_k 是单射.

在 $\Lambda(m,n,t)$ 中定义 [,] 运算, 使得对任意的 $f,g \in \Lambda(m,n,t)$, 有

$$[f,g] = \widetilde{\mathbf{D}}_k(f)(g) - G_m(f)g. \tag{2.28}$$

由引理 2.12 知

$$\widetilde{\mathbf{D}}_{k}([f,g]) = \left[\widetilde{\mathbf{D}}_{k}(f), \widetilde{\mathbf{D}}_{k}(g)\right]. \tag{2.29}$$

注意到 \widetilde{D}_k 是单射, 于是可推得 $\Lambda(m,n,\underline{t})$ 的 $[\,\,,\,\,]$ 运算满足 (1.1) 与 (1.2) 式, 从 而 $\Lambda(m,n,\underline{t})$ 是一个李超代数. 由 (2.29) 式知, 作为李超代数, $\Lambda(m,n,\underline{t})\cong \overline{K}(m,n,\underline{t})$. 我们将 $\Lambda(m,n,\underline{t})$ 关于 (2.28) 式定义的李超代数仍记为 $\overline{K}(m,n,\underline{t})$. 由 (2.20) 与 (2.17) 式可知, 对 $f,g\in \overline{K}(m,n,\underline{t})$,

$$|f,g| = \sum_{i \in J} \sigma(i')(-1)^{\tau(i')d(f)} D_{i'}(f) D_{i}(g)$$

$$+ \sum_{i \in J} \sigma(i')(-1)^{\tau(i')d(f)} \sigma(i) D_{i'}(f) x_{i'} D_{m}(g) + 2f D_{m}(g)$$

$$+ \sum_{i \in J} \sigma(i')(-1)^{\tau(i')} \sigma(i') x_{i} D_{m}(f) D_{i}(g) - 2D_{m}(f) g$$

$$+ \sum_{i \in J} \sigma(i')(-1)^{\tau(i')d(f)} \sigma(i') \sigma(i) x_{i} D_{m}(f) x_{i'} D_{m}(g)$$

$$= \left(2f - \sum_{i \in J} x_{i} D_{i}(f)\right) D_{m}(g)$$

$$- (-1)^{d(f)d(g)} \left(2g - \sum_{i \in J} x_{i} D_{i}(g)\right) D_{m}(f)$$

$$+ \sum_{i \in J} \sigma(i)(-1)^{\tau(i)d(f)} D_{i}(f) D_{i'}(g). \tag{2.30}$$

命題 2.17 设 $K(m,n,\underline{t})=[L,L]$, 其中 $L=\overline{K}(m,n,\underline{t})$. 若 $n-m-3\not\equiv 0\pmod p$, 则 $K(m,n,\underline{t})=L$. 若 $n-m-3\equiv 0\pmod p$, 则 $K(m,n,\underline{t})=\bigoplus_{i=0}^{\xi-1}\Lambda(m,n,\underline{t})_i$.

证明 若 $\alpha_m \neq \pi_m$, 则 $x^{(\alpha+\epsilon_m)}x^u \in L$, $\forall u \in B(n)$. 于是 $2x^{(\alpha)}x^u = \left[1, x^{(\alpha+\epsilon_m)}x^u\right] \in K(m, n, \underline{t})$. 因为 $\operatorname{char}\mathbb{F} \neq 2$, 所以 $x^{(\alpha)}x^u \in K(m, n, \underline{t})$. 若有某个 $j \in Y_0 \setminus \{m\}$, 使得 $\alpha_j \neq \pi_j$, 则 $x^{(\alpha+\epsilon_j)}x^u \in L$, $\forall u \in B(n)$. 故

$$\sigma(j')x^{(\alpha)}x^{u} = \left[x_{j'}, x^{(\alpha+\varepsilon_{j})}x^{u}\right] - \left(\alpha_{j'}+1\right)x^{(\alpha+\varepsilon_{j}+\varepsilon_{j'}-\varepsilon_{m})}x^{u} \in K(m, n, \underline{t}).$$

老 $u \neq E$, 则存在 $j \in Y_1$, 使得 $x_i x^u \neq 0$. 因此

$$(-1)^{\operatorname{d}(x_jx^u)}x^{(\alpha)}x^u = \left[x_j, x^{(\alpha)}x_jx^u\right] \in \mathrm{K}(m, n, \underline{t}).$$

综上知, $\bigoplus_{i=0}^{\xi-1} \Lambda(m,n,\underline{t})_i \subseteq \mathrm{K}(m,n,\underline{t})$.

若 $n-m-3\not\equiv 0\pmod p$, 则由

$$(n-m-3)x^{(\pi)}x^E = \left[x_m, x^{(\pi)}x^E\right] \in K(m, n, \underline{t})$$

知, $K(m, n, \underline{t}) = L = \overline{K}(m, n, \underline{t}).$

若 $n-m-3\equiv 0\pmod p$, 任取 $x^{(\alpha)}x^u$, $x^{(\beta)}x^v\in L$, 由 (2.30) 式知, $\left[x^{(\alpha)}x^u,\ x^{(\beta)}x^v\right]=\eta+\rho$, 其中

$$\eta = \left(2x^{(\alpha)}x^{u} - \sum_{i \in J} x_{i} D_{i} \left(x^{(\alpha)}x^{u}\right)\right) D_{m}\left(x^{(\beta)}x^{v}\right)
- (-1)^{d(x^{u})d(x^{v})} \left(2x^{(\beta)}x^{v} - \sum_{i \in J} x_{i} D_{i} \left(x^{(\beta)}x^{v}\right) D_{m} \left(x^{(\alpha)}x^{u}\right)\right)
\rho = \sum_{i \in J} \sigma(i)(-1)^{\tau(i)d(x^{u})} D_{i}\left(x^{(\alpha)}x^{u}\right) D_{i'}\left(x^{(\beta)}x^{v}\right).$$

由引理 2.16 的证明知, $\rho \in \bigoplus_{i=0}^{t-1} \Lambda(m,n,t)_i$. 直接计算知

$$egin{aligned} \eta &= \left(2 - \sum_{i=1}^{m-1} lpha_i - |u|
ight) inom{lpha + eta - arepsilon_m}{lpha} x^{(lpha + eta - arepsilon_m)} x^{(lpha + eta - arepsilon_m)} x^u x^v \ &- \left(2 - \sum_{i=1}^{m-1} eta_i - |v|
ight) inom{lpha + eta - arepsilon_m}{eta} x^{(lpha + eta - arepsilon_m)} x^{(lpha + eta - arepsilon_m)} x^u x^v. \end{aligned}$$

若 $x^{(\alpha+\beta-\epsilon_m)}x^{\mu}x^{\nu} = \lambda x^{(\pi)}x^{E}$, 其中 $0 \neq \lambda \in \mathbb{F}$, 则 $\alpha + \beta - \epsilon_m = \pi$, |u| + |v| = n. 因 为 $|\alpha| + |\beta| = |\alpha + \beta| = |\pi + \epsilon_m|$ 是奇数, 所以 $(-1)^{|\beta|} = -(-1)^{|\alpha|}$. 再利用同余式

$$\begin{pmatrix} \pi \\ \alpha \end{pmatrix} \equiv (-1)^{|\alpha|} \pmod{p}, \quad \begin{pmatrix} \pi \\ \beta \end{pmatrix} \equiv (-1)^{|\beta|} \pmod{p}$$

可推得

$$\eta = \left(4 - \sum_{i=1}^{m-1} \pi_i - n\right) (-1)^{\alpha} x^{(\pi)} x^u x^v = -(n - m - 3)(-1)^{|\alpha|} x^{(\pi)} x^u x^v.$$

由 $n-m-3\equiv 0\pmod p$ 知 $\eta=0$,所以 $x^{(\pi)}x^E\notin K(m,n,\underline{t})$. 于是可得 $K(m,n,\underline{t})=\bigoplus_{i=0}^{\xi-1}\Lambda(m,n,\underline{t})_i$.

我们称 $W(m,n,\underline{t}), S(m,n,\underline{t}), H(m,n,\underline{t})$ 与 $K(m,n,\underline{t})$ 为有限维 Cartan 型模李超代数.

第二章 单性与导子超代数

在第一章, 我们定义了四类有限维 Cartan 型李超代数. 我们将在本章证明它们是单李超代数. 进而确定它们的导子超代数. 在本章中, 我们设基域 \mathbb{F} 的特征数 p 大于 3.

§1 单 性 [106]

本节讨论四类 Cartan 型模李超代数的单性.

引理 1.1 设 $G = \bigoplus_{i \geq -1} G_i$ 是 \mathbb{Z} - 阶化李超代数, 并且 $G_{-1} \neq 0$. 设 I 是 G 的非零理想. 若 G 是可迁的与不可约的, 则 $G_{-1} \subseteq I$.

证明 由第一章引理 1.4 的 2) 知, $I \cap G_{-1}$ 是 G 的 $\mathbb{Z}_{2^{-}}$ 阶化子空间. 从而 $I \cap G_{-1}$ 是 G_{-1} 的 $\mathbb{Z}_{2^{-}}$ 阶化子空间. 从而 $I \cap G_{-1}$ 是 G_{-1} 的 $G_{0^{-}}$ 子模. 因为 G 是不可约的, 所以 $I \cap G_{-1} = 0$ 或者 $I \cap G_{-1} = G_{-1}$.

令 $\overline{G}_i = \bigoplus_{j=-1}^i G_j$, $\forall i \geq -1$. 若 $I \cap G_{-1} = 0$, 则存在极小的非负整数 n, 使得 $I \cap \overline{G}_n \neq 0$. 任取 $I \cap \overline{G}_n$ 的一个非零元素 x, 可设 $x = \sum_{i=-1}^n x_i$, 其中 $x_i \in G_i$. 由 $I \cap \overline{G}_{n-1} = 0$ 知 $x_n \neq 0$. 因为 $[x,G_{-1}] \subseteq \overline{G}_{n-1}$ 与 $[x,G_{-1}] \subseteq I$, 所以 $[x,G_{-1}] \subseteq I \cap \overline{G}_{n-1} = 0$. 因此 $[\sum_{i=-1}^n x_i,G_{-1}] = 0$. 于是 $\sum_{i=0}^n [x_i,G_{-1}] = 0$. 由此得 $[x_i,G_{-1}] = 0$, $i = 0,1,\cdots,n$. 特别地, $[x_n,G_{-1}] = 0$. 此与 G 的可迁性矛盾, 所以 $I \cap G_{-1} \neq 0$. 故 $I \cap G_{-1} = G_{-1}$, 从而 $G_{-1} \subseteq I$.

在本节中, 我们用 W,S,H 与 K 分别表示有限维 Cartan 型模李超代数 W(m,n,\underline{t}), $S(m,n,\underline{t})$, $H(m,n,\underline{t})$ 与 $K(m,n,\underline{t})$, 这里 $m,n\in\mathbb{N}\setminus\{1\}$. 利用第一章 $\S 2$ 的结果, 分别验证可知, W,S,H 与 K 有如下的 Z- 阶化,使得它们是 Z- 阶化李超代数: $W=\bigoplus_{i=-1}^{g-1}W_i$, 其中 $\xi:=\sum_{i=1}^{m}\pi_i+n_i$

$$\mathbf{W}_{i} = \operatorname{span}_{\mathbf{F}} \{ x^{(\alpha)} x^{u} \mathbf{D}_{j} \big| |\alpha| + |u| = i + 1, \ j \in Y \}.$$

 $S = \bigoplus_{i=-1}^{\xi-2} S_i$,其中

$$S_i = \operatorname{span}_{\mathbb{F}} \{ D_{ij}(x^{(\alpha)}x^u) | |\alpha| + |u| = i+2, \ i, j \in Y \}.$$

 $H = \bigoplus_{i=-3}^{\xi-3} H_i$,其中

$$H_i = \mathrm{span}_{\mathbb{F}} \{ \mathrm{D}_{\mathbb{H}}(x^{(\alpha)}x^u) | |\alpha| + |u| = i + 2 \}.$$

 $K = \bigoplus_{i=-2}^{\lambda} K_i$,其中

$$K_i = \operatorname{span}_{\mathbb{F}}\{x^{(\alpha)}x^u \big| |\alpha| + \alpha_m + |u| = i + 2\}.$$

若 $n-m-3 \not\equiv 0 \pmod{p}$, 则 $\lambda = \xi + \pi_m - 2$; 若 $n-m-3 \equiv 0 \pmod{p}$, 则 $\lambda = \xi + \pi_m - 3$.

易见 $W_{-1} = S_{-1} = H_{-1} = \operatorname{span}_{\mathbb{F}}\{D_i \mid i \in Y\}; K_{-2} = \mathbb{F}1, K_{-1} = \operatorname{span}_{\mathbb{F}}\{x_i \mid i \in Y \setminus \{m\}\}.$

命题 1.2 W 是单李超代数.

证明 任取 $D = \sum_{i=1}^{s} f_i D_i \in W_k$, 其中 $k \in \mathbb{N}_0$. 若 $[D, W_{-1}] = 0$, 则

$$\left[\sum_{i=1}^s f_i \mathbf{D}_i, \mathbf{D}_j\right] = -\sum_{i=1}^s (-1)^{(\tau(i)+\mathbf{d}(f_i))\tau(j)} \mathbf{D}_j(f_i) \mathbf{D}_i = 0.$$

故 $D_j(f_i) = 0$, $\forall j \in Y$. 于是 $f_i \in \Lambda(m, n, \underline{t})_0 \cap \Lambda(m, n, \underline{t})_{k+1} = 0$, $\forall i \in Y$, 所以 D = 0, 因此 W 是可迁的.

令 M 是 W_{0} - 模 W_{-1} 的非零子模. 设 $0 \neq \sum_{i=1}^{s} a_{i}D_{i} \in M$, 其中 $a_{i} \in \mathbb{F}$. 又 设 $a_{j} \neq 0$, 则 $[x_{j}D_{j}, \sum_{i=1}^{s} a_{i}D_{i}] = -a_{j}D_{j} \in M$. 所以 $D_{j} \in M$. 任取 $i \in Y$, 则 $[x_{j}D_{i}, D_{j}] = -(-1)^{(\tau(j)+\tau(i))\tau(j)}D_{i} \in M$. 故 $D_{i} \in M$, $\forall i \in Y$, 从而 $M = W_{-1}$. 所以 W 是不可约的.

设 I 是 W 的任一非零理想, 由引理 1.1 知, $W_{-1} \subseteq I$. 于是 $D_i \subseteq I$, $\forall i \in Y$.

(i) 设 $x^{(\alpha)}x^{u}D_{j} \in \mathbb{W}$, 其中 $j \in Y$, $(\alpha, u) \neq (\pi, E)$, $E = (m+1, m+2, \dots, s)$. 设 $\alpha = (\alpha_{1}, \dots, \alpha_{m})$, $u = (i_{1}, \dots, i_{t})$. 令 $\beta_{i} = \pi + \alpha_{i}$, $\forall i \in Y_{0}$. 设 $v = (j_{1}, \dots, j_{t}) \in B(n)$, 使 得 $\{u\} \cup \{v\} = Y_{1}, \{u\} \cap \{v\} = \emptyset$. 则

$$x^{(\alpha)}x^{u}D_{j} = \lambda \left(\prod_{i=1}^{m} (\operatorname{ad}D_{i})^{\beta_{i}}\right) \left(\prod_{i=1}^{t} \operatorname{ad}D_{j_{i}}\right) \left(x^{(\pi)}x^{E}D_{j}\right),$$

其中 $\lambda=1$ 或 -1. 因为 $W_{-1}\subseteq I$, 所以上式右边为 I 中元素. 故 $x^{(\alpha)}x^{u}D_{j}\in I$.

(ii) 由 (i) 知, $x^{(\pi-e_1)}x^E D_j \in I$, $\forall j \in Y \setminus \{1\}$. 所以

$$x^{(\pi)}x^E\mathbf{D}_j = \left[x^{(2e_1)}\mathbf{D}_1, \ x^{(\pi-e_1)}x^E\mathbf{D}_j\right] \in I.$$

设 $k \in Y \setminus \{1\}$, 则

$$x^{(\pi)}x^E\mathbf{D}_1 = \left[x^{(\pi)}x^E\mathbf{D}_k, \ x_k\mathbf{D}_1\right] \in I.$$

所以 I = W. 因此 W 是单李超代数. \Box

为方便,我们先给出下一个命题所需要的运算等式. 由第一章引理 2.8 知

$$D_{ij}(f) = (-1)^{\tau(i)\tau(j)}D_i(f)D_j - (-1)^{(\tau(i)+\tau(j))d(f)}D_j(f)D_i,$$
 (1.1)

其中 $i, j \in Y$. 由 (1.1) 式、第一章 (2.4) 式与等式 $D_k D_l = (-1)^{r(k)r(l)} D_l D_k$, 可推得

$$\left[\mathbf{D}_{k}, \mathbf{D}_{ij}(f)\right] = (-1)^{\tau(k)\tau(i)} \mathbf{D}_{ij}(\mathbf{D}_{k}(f)), \quad \forall k, i, j \in Y.$$

$$(1.2)$$

命題 1.3 S是单李超代数.

证明 任取 $D = D_{ij}(f) \in S_k$, 其中 $k \in \mathbb{N}_0$, 则 $f \in \Lambda(m, n, \underline{t})_{k+2}$. 若 $[D, S_{-1}] = 0$, 则 $[S_{-1}, D] = 0$. 故 $[D_l, D_{ij}(f)] = 0$, $\forall l \in Y$. 由 (1.2) 式知, $D_{ij}(D_l(f)) = 0$, $\forall i \in Y$. 于 是 $D_l(f) \in \Lambda(m, n, \underline{t})_0$, $\forall l \in Y$. 由此得 $f \in \Lambda(m, n, \underline{t})_1 \cap \Lambda(m, n, \underline{t})_{k+2} = 0$, 随之, D = 0. 因此, S 是可迁的.

设 M 是 S_{0} 模 S_{-1} 的非零子模. 设 $\sum_{i=1}^{r} a_{i}D_{i}$ 是 M 中任一个非零元素, 其中 $a_{i} \in F$. 可设 $a_{j} \neq 0$. 令 $i, r \in Y \setminus \{j\}$, 并且 $i \neq r$, 则 $x_{j}D_{i} = (-1)^{\tau(r)\tau(i)}D_{ri}(x_{r}x_{j}) \in S_{0}$. 由于

$$\left[x_j \mathbf{D}_i, \sum_{i=1}^s a_i \mathbf{D}_i\right] = -(-1)^{\tau(j)(\tau(j) + \tau(i))} a_j \mathbf{D}_i \in M,$$

所以 $D_i \in M$. 任取 $k \in Y \setminus \{i\}$, 则 $x_i D_k \in S_0$. 于是 $[x_i D_k, D_i] \in M$. 由此知 $D_k \in M$, 从 而 $M = S_{-1}$. 故 S 是不可约的.

设 I 是 S 的任一个非零理想, 欲证 I = S.

(a) 任取 $\alpha = (\alpha_1, \dots, \alpha_m) \in A(m, \underline{t})$ 与 $u = (i_1, \dots, i_t) \in B(n)$,并且 $(\alpha, u) \neq (\pi, E)$. 令 $\beta_i = \pi - \alpha_i$, $\forall i \in Y_0$. 设 $v = \langle j_1, \dots, j_t \rangle \in B(n)$,使得 $\{u\} \cup \{v\} = Y_1, \{u\} \cap \{v\} = \emptyset$. 利用 (1.2) 式可算得

$$\mathrm{D}_{ij}\Big(x^{(\alpha)}x^u\Big) = \lambda\left(\prod_{i=1}^m (\mathrm{ad}\mathrm{D}_i)^{\beta_i}\right)\left(\prod_{i=1}^t \mathrm{ad}\mathrm{D}_{j_i}\right)\left(\mathrm{D}_{ij}\big(x^{(\pi)}x^E\big)\right).$$

由引理 1.1 知 $D_{ij}(x^{(\alpha)}x^u) \in I$.

(b) 我们证明 $D_{ij}(x^{(\pi)}x^E) \in I, \forall i, j \in Y$.

若 $i, j \in Y_1$, 则有

$$(1+\delta_{ij})\mathrm{D}_{ij}(x^{(\pi)}x^E) = \left[\mathrm{D}_{1i}(x^{(2\varepsilon_1)}x_i), \ \mathrm{D}_{ij}(x^{(\pi-\varepsilon_1)}x^E)\right].$$

由 (a) 知, 上式右端为 I 中元素, 所以 $D_{ij}(x^{(\pi)}x^E) \in I$. 因为

$$\mathbf{D}_{ji}\big(x^{(\pi)}x^E\big) = -(-1)^{\tau(i)\tau(j)+n(\tau(i)+\tau(j))}\mathbf{D}_{ij}\big(x^{(\pi)}x^E\big),$$

所以 $D_{ji}(x^{(\pi)}x^E) \in I$.

若 $i, j \in Y_0$, 取 $k \in Y_1$, 则

$$\mathrm{D}_{ij}\big(x^{(\pi)}x^E\big) = -\Big[\mathrm{D}_{ji}\big(x^{(2\varepsilon_j)}x_k\big), \mathrm{D}_{kj}\big(x^{(\pi-\varepsilon_j)}x^E\big)\Big] \in I.$$

相仿可证得, 当 $i \in Y_0, j \in Y_1$, 也有 $D_{ij}(x^{(\pi)}x^E) \in I$.

综合 (a) 与 (b) 知, I = S. 故 S 是单李超代数. □

下面考察李超代数 H. 利用第一章 (2.26) 式, 可得到 H 中的如下等式

$$[D_j, D_H(f)] = D_H(D_j(f)), \quad \forall j \in Y.$$
 (1.3)

命题 1.4 H是单李超代数.

证明 相仿于命题 1.3 中 S 的可迁性与不可约性的证明, 可以证得 Z- 阶化李超代数 H 也是可迁的与不可约的. 设 I 是 H 的任一非零理想. 我们知道, $H = \bigoplus_{i=1}^{L-3} H_i$.

(i) 若 $i < \xi - 3$, 任取 $D_H(x^{(\alpha)}x^{u}) \in H_i$, 则存在 $j \in Y_0$ 使得 $D(x^{(\alpha+\epsilon_j)}x^{u}) \in H$, 或者 存在 $j \in Y_1$ 使得 $0 \neq D_H(x^{(\alpha)}x_jx^{u}) \in H$. 对于前一情形, 由 (1.3) 式与引理 1.1 知

$$D_H(x^{(\alpha)}x^u) = \left[D_j, \ D_H(x^{(\alpha+\varepsilon_j)}x^u)\right] \in I;$$

对于后一情形,则有

$$D_{H}(x^{(\alpha)}x^{u}) = \left[D_{j}, D_{H}(x^{(\alpha)}x_{j}x^{u})\right] \in I.$$

于是可知, $\bigoplus_{i=1}^{k-4}$, $H_i \subseteq I$.

(ii) 若 $u \in B(n)$, $i \in \{u\}$, 我们定义 $u - \langle i \rangle = w \in B(n)$, 使得 $\{w\} = \{u\} \setminus \{i\}$. 则

$$egin{aligned} & \mathrm{H}_{\xi-3} \, = \, \mathrm{span}_{\mathbf{F}} ig\{ \mathrm{D}_{\mathbf{H}} ig(x^{(lpha)} x^u ig) \mid |lpha| + |u| = \xi - 1 ig\} \ & = \, \mathrm{span}_{\mathbf{F}} ig\{ \mathrm{D}_{\mathbf{H}} ig(x^{(\pi-arepsilon_j)} x^E ig), \, \, \mathrm{D}_{\mathbf{H}} ig(x^{(\pi)} x^{E-(k)} ig) \mid j \in Y_0, \, \, k \in Y_1 ig\}. \end{aligned}$$

直接计算知

$$-\sigma(j)\mathrm{D}_{\mathrm{H}}\big(x^{(\pi-\epsilon_{j})}x^{E}\big)=\Big[\mathrm{D}_{\mathrm{H}}\big(x^{(\epsilon_{j}+2\epsilon_{j'})}\big),\ \mathrm{D}_{\mathrm{H}}\big(x^{(\pi-\epsilon_{j}-\epsilon_{j'})}x^{E}\big)\Big].$$

因此,由(i)知, $D_H(x^{(\pi-e_j)}x^E) \in I, \forall j \in Y_0.$

取 $l,j \in Y_0, l \neq j$. 则对任意 $k \in Y_1$, 有

$$D_{H}(x^{(\pi)}x^{E-\langle k \rangle}) = \left[D_{H}(x_{j}x_{l}x_{k}), D_{H}(x^{(\pi-\epsilon_{j}-\epsilon_{l})}x^{E})\right].$$

由 (i) 知, $D_H(x^{(\pi)}x^{E-(k)}) \in I$. 于是 $H_{\xi-3} \subseteq I$. 由 (i) 与 (ii) 知, I = H. 所以 H 是单李超 代数.

命题 1.5 K是单李超代数.

证明 设 I 是李超代数 K 的任一非零理想. 取 $f \in I$, $f \neq 0$. 可设

$$f = f_0 x^{(k \epsilon_m)} + f_1 x^{(k \epsilon_m - \epsilon_m)} + \dots + f_{k-1} x^{(\epsilon_m)} + f_k$$

其中 $f_0 \neq 0$, 并且 $D_m(f_i) = 0$, $i = 0, 1, \dots, k$.

由于 $2^k f_0 = (ad1)^k (f) \in I$, 故 $f_0 \in I$. 任取 $j \in Y_0$, 则有

$$\mathrm{ad}x_{j'}(f_0) = (-1)^{\tau(j')\mathrm{d}(f)}\sigma(j')\mathrm{D}_j(f) \in I.$$

连续用 $adx_{j'}$ 作用于 f_0 , 则可获得 $g_0 \in I$, $g_0 \neq 0$, 并且 $D_m(g_0) = 0$, $D_j(g_0) = 0$, $j \in Y_0$. 任取 $j \in Y_1$, 用 adx_j 作用于 g_0 , 则可得到 $h_0 \in I$, $h_0 \neq 0$, 并且 $D_j(h_0) = 0$, $j \in Y$. 由此可得 $1 \in I$.

任取 $j \in Y$, 因为 $[1, x_m x_j] \in I$, 故 $2x_j \in I$, 于是 $x_j \in I$. 由 $[1, x^{(2\varepsilon_m)}] \in I$, 可得 $x_m \in I$. 任取 $x^{(\alpha)}x^u \in K$, 若 $u \neq E$, 则可设 $j \in Y_1 \setminus \{u\}$. 于是 $x_j x^u \neq 0$, 并且

$$[x_j, x^{(\alpha)}x_jx^u] = -x^{(\alpha)}x^u \in I,$$

从而 $x^{(\alpha)}x^u \in I$.

设 u = E. 若 $\alpha_m < \pi_m - 1$, 则

$$2x^{(\alpha)}x^E = \left[1, \ x^{(\alpha+\epsilon_m)}x^E\right] \in I.$$

因此 $x^{(\alpha)}x^u \in I$. 设 $\alpha_m = \pi_m - 1$, 如果有 $j \in Y_0$, 使得 $\alpha_j < \pi_j$, 则 $x^{(\alpha + \epsilon_m)}x^E \in K$, 于是

$$x^{(\alpha)}x^{E} = 2^{-1}[1, x^{(\alpha+\epsilon_{m})}x^{E}] \in I;$$

$$\begin{aligned} \left[x_m, \ x^{(\alpha)}x^E\right] &= \left[x_m, \ x^{(\pi-\varepsilon_m)}x^E\right] \\ &= 2x_m x^{(\pi-2\varepsilon_m)}x^E - \left(2x^{(\pi-\varepsilon_m)}x^E - \sum_{i \in Y \setminus \{m\}} x_i D_i (x^{(\pi-\varepsilon_m)}x^E)\right) \\ &= (m-n-5)x^{(\pi-\varepsilon_m)}x^E \\ &= -2x^{(\pi-\varepsilon_m)}x^E, \end{aligned}$$

知 $x^{(\pi-\epsilon_m)}x^E \in I$, 因此 I = K.

若 $n-m-3 \not\equiv 0 \pmod{p}$, 则 $x^{(\pi)}x^E \in K$. 于是 $x^{(\pi-\epsilon_m)}x^E = 2^{-1}[1, x^{(\pi)}x^E] \in I$. 由

$$[x_m, x^{(\pi)}x^E] = (n-m-3)x^{(\pi)}x^E$$

可知, $x^{(\pi)}x^E \in I$, 因此也有 I = K. 综上知 K 是单李超代数.

§2 导子超代数的 Z- 阶化

我们先回忆导子的定义. 设 L 是李超代数, $D \in pl_{\theta}(L)$, 其中 $\theta \in \mathbb{Z}_2$. 若对 $x \in hg(L)$, $y \in L$, 则有

$$D([x,y]) = [D(x),y] + (-1)^{\theta d(x)}[x,D(y)],$$

那么, 我们称 D 是 L 的 \mathbb{Z}_2 - 次数为 θ 的导子. 令 $\mathrm{Der}_{\theta}(L)$ 表示 L 的所有的 \mathbb{Z}_2 - 次数 为 θ 的导子的集合, 则称李超代数

$$\operatorname{Der}(L) = \operatorname{Der}_{\overline{0}}(L) \oplus \operatorname{Der}_{\overline{1}}(L)$$

为 L 的导子超代数, 称 Der(L) 中的元素为 L 的超导子, 简称为 L 的导子.

本节仍用 W, S, H 与 K 分别表示李超代数 W(m, n, \underline{t}), S(m, n, \underline{t}), H(m, n, \underline{t}) 与 K(m, n, \underline{t}), 并且设 m, n > 1. 本节将讨论 W, S 与 H 的导子超代数的 Z- 阶化及其相关性质. 令 L 表示李超代数 W, S 或 H. 由 §1 知, $L = \bigoplus_{i=-1}^{\lambda} L_i$ 是 Z- 阶化李超代数. 当 L = W, S 与 H 时, λ 分别为 $\xi - 1$, $\xi - 2$ 与 $\xi - 3$. 设 $t \in \mathbb{Z}$, 令

$$\operatorname{Der}_{t}(L) := \{ \phi \in \operatorname{Der}(L) | \phi(L_{i}) \subseteq L_{t+i}, \forall i \in \mathbb{Z} \}.$$

引理 2.1 $\operatorname{Der}(L) = \bigoplus_{t \in \mathbb{Z}} \operatorname{Der}_{t}(L)$. 从而, $\operatorname{Der}(L)$ 是 \mathbb{Z} - 阶化李超代数.

证明 易见 $[\operatorname{Der}_t(L), \operatorname{Der}_k(L)] \subseteq \operatorname{Der}_{t+k}(L), t, k \in \mathbb{Z}.$ 所以我们只证 $\operatorname{Der}(L) = \bigoplus_{t \in \mathbb{Z}} \operatorname{Der}_t(L).$ 显然 $\bigoplus_{t \in \mathbb{Z}} \operatorname{Der}_t(L) \subseteq \operatorname{Der}(L),$ 下面证明反包含关系成立.

设 $-1 \le i \le \lambda$. 令 $\operatorname{pr}_i: L \to L$ 是投影映射, 使得对任意 $x = x_{-1} + x_0 + \cdots + x_{\lambda}$, 其中 $x_j \in L_j$, 均有 $\operatorname{pr}_i(x) = x_i$. 显然, 恒等映射 $\operatorname{id} = \sum_{i=-1}^{\lambda} \operatorname{pr}_i$. 任取 $\phi \in \operatorname{Der}(L)$, 则有

$$\phi = \left(\sum_{i=-1}^{\lambda} \operatorname{pr}_{i}\right) \phi \left(\sum_{j=-1}^{\lambda} \operatorname{pr}_{j}\right) = \sum_{i,j=-1}^{\lambda} (\operatorname{pr}_{i}) \phi(\operatorname{pr}_{j}).$$

易见

$$(\operatorname{pr}_i)\phi(\operatorname{pr}_j)\in\operatorname{pl}_{i-j}(L):=\{\phi\in\operatorname{pl}(L)|\phi(L_k)\subseteq L_{i-j+k},\forall k\in\mathbb{Z}\},$$

所以 $\phi \in \bigoplus_{t \in \mathbb{Z}} \operatorname{pl}_t(L)$. 于是

$$Der(L) \subseteq \bigoplus_{t \in \mathbb{Z}} pl_t(L). \tag{2.1}$$

任取 $\phi \in \text{Der}(L)$. 由 (??) 式可设 $\phi = \sum_{t \in \mathbb{Z}} \phi_t$, 其中 $\phi_t \in \text{pl}_t(L)$. 设 x, y 是 L 中的 \mathbb{Z} - 齐次元素, 则有

$$\begin{split} &\sum_{t \in \mathbb{Z}} \phi_t([x, y]) \\ &= \left(\sum_{t \in \mathbb{Z}} \phi_t\right) ([x, y]) \\ &= \phi([x, y]) \\ &= [\phi(x), y] + (-1)^{\mathbf{d}(\phi)\mathbf{d}(x)} [x, \phi(y)] \\ &= \left[\sum_{t \in \mathbb{Z}} \phi_t(x), y\right] + (-1)^{\mathbf{d}(\phi)\mathbf{d}(x)} \left[x, \sum_{t \in \mathbb{Z}} \phi_t(y)\right] \\ &= \sum_{t \in \mathbb{Z}} \left([\phi_t(x), y] + (-1)^{\mathbf{d}(\phi_t)\mathbf{d}(x)} [x, \phi_t(y)] \right). \end{split}$$

所以

$$\phi_t([x,y]) = [\phi_t(x),y] + (-1)^{d(\phi_t)d(x)}[x,\phi_t(y)].$$

于是 $\phi_t \in \operatorname{Der}(L) \cap \operatorname{pl}_t(L) = \operatorname{Der}_t(L)$. 因此 $\phi \in \bigoplus_{t \in \mathbb{Z}} \operatorname{Der}_t(L)$. 这就证明了 $\operatorname{Der}(L) \subseteq \bigoplus_{t \in \mathbb{Z}} \operatorname{Der}_t(L)$.

因为 L 是有限维的, 故 Der(L) 也是有限维的. 因此非零的 $Der_t(L)$ 也只能是有限个. 故存在非负整数 r 与 q, 使得 $Der(L) = \bigoplus_{t=-r}^q Der_t(L)$.

由于 Der(L) 是 \mathbb{Z} - 阶化的李超代数, 所以欲确定 Der(L), 只需确定出每个 \mathbb{Z}_2 - 阶化空间 $Der_t(L)$.

引理 2.2 设 $x \in L_{\delta}, y \in L, \phi \in \text{hg}(\text{Der}(L))$. 若 $r = p^t$, 使得 $(\text{ad } x)^r = \text{ad } y$, 則 $\phi(y) = (\text{ad } x)^{r-1}\phi(x)$.

证明 任取 $z \in L$, 直接验证可知 $[\phi, \operatorname{ad} y](z) = \operatorname{ad} \phi(y)(z)$, 所以 $\operatorname{ad} \phi(y) = [\phi, \operatorname{ad} y]$. 因此有

$$\operatorname{ad} \phi(y) = [\phi, \operatorname{ad} y] = [\phi, (\operatorname{ad} x)^{\tau}]$$

$$= [(\operatorname{ad} x)^{r}, \phi]$$

$$= [\operatorname{ad} x, [\operatorname{ad} x, \cdots, [\operatorname{ad} x, \phi] \cdots]]$$

$$r \uparrow$$

$$= [\operatorname{ad} x, \cdots, [\operatorname{ad} x, \operatorname{ad} \phi(x)] \cdots]$$

$$r - 1 \uparrow$$

$$= \operatorname{ad} [x, \cdots, [x, \phi(x)] \cdots]$$

$$= \operatorname{ad} ((\operatorname{ad} x)^{r-1} \phi(x)).$$

因为 L 是单李超代数, 所以 L 的中心是零. 因此 $\phi(y) = (\operatorname{ad} x)^{r-1}\phi(x)$.

定义 2.3 设 $f \in \Lambda(m, n, \underline{t})$. 当 $i \in Y_0$ 时, 若 $D_i^{\pi_i}(f) = 0$, 则称 $f \not\in x_i$ - 截头的; 当 $i \in Y_1$ 时, 若 $D_i(f) = 0$, 则称 $f \not\in x_{i-}$ 截头的.

任取 $i \in Y$, 令 $\eta_i : \Lambda(m, n, \underline{t}) \to \Lambda(m, n, \underline{t})$ 是线性映射, 使得

$$\eta_i(x^{(lpha)}x^u) := egin{cases} x^{(lpha+arepsilon_i)}x^u, & extbf{若} i \in Y_0, \ x^{(lpha)}x_ix^u, & extbf{若} i \in Y_1. \end{cases}$$

当 $\alpha + \epsilon_i \notin A(m, t)$ 时, 约定 $x^{(\alpha + \epsilon_i)} = 0$. 以下引理是显然的.

引理 2.4 以下结论成立.

(i) 若 $g \in \Lambda(m, n, t)$ 是 x_i - 截头的, 其中 $i \in Y$, 则 $D_i \eta_i(g) = g$.

$$(ii)D_i\eta_i = (-1)^{\tau(i)\tau(j)}\eta_iD_i$$
, 这里 $i \neq j$, $i, j \in Y$.

命题 2.5 设 $g_1, g_2, \dots, g_k \in \Lambda(m, n, \underline{t})$. 如果 g_i 是 x_i - 截头的, $i = 1, \dots, k$, 并且 $D_i(g_j) = (-1)^{\tau(i)\tau(j)}D_j(g_i)$, $1 \leq i, j \leq k$, 则存在 $g \in \Lambda(m, n, \underline{t})$, 使得 $D_i(g) = g_i$, $i = 1, \dots, k$.

证明 对 k 用归纳法证明命题成立. 若 k = 1, 令 $g = \eta_1(g_1)$, 由引理 2.4 的 (i) 知, $D_1(g) = D_1\eta_1(g_1) = g_1$, 故此时命题成立.

假设 $k \geq 2$, 并且对 k-1 命题结论成立. 则存在 $f \in \Lambda(m,n,\underline{t})$, 使得 $D_i(f) = g_i$, $i = 1, \dots, k-1$. 令 $g := f + \eta_k(g_k - D_k(f))$. 由引理 2.4 的 (ii), 有

$$\begin{aligned} \mathbf{D}_{i}(g) &= g_{i} + \mathbf{D}_{i} \eta_{k} \big(g_{k} - \mathbf{D}_{k}(f) \big) \\ &= g_{i} + (-1)^{\tau(k)\tau(i)} \eta_{k} \big(\mathbf{D}_{i}(g_{k}) - \mathbf{D}_{i} \mathbf{D}_{k}(f) \big) \\ &= g_{i} + (-1)^{\tau(k)\tau(i)} \eta_{k} \big((-1)^{\tau(i)\tau(k)} \mathbf{D}_{k}(g_{i}) - (-1)^{\tau(i)\tau(k)} \mathbf{D}_{k} \mathbf{D}_{i}(f) \big) \\ &= g_{i}, \end{aligned}$$

其中 $i=1,\dots,k-1$. 因为 $g_k-D_k(f)$ 是 x_k - 截头的, 由引理 2.4 的 (i) 知

$$D_k(g) = D_k \Big(f + \eta_k \big(g_k - D_k(f) \big) \Big)$$
$$= D_k(f) + D_k \eta_k \big(g_k - D_k(f) \big)$$

$$= D_k(f) + g_k - D_k(f) = g_k.$$

归纳法完成. 口

为证下一个命题, 我们需要用到 W_{-1} 在 W 中的中心化子 $C_W(W_{-1}) := \{x \in W \mid [x,W_{-1}] = 0\}$. 我们断言 $C_W(W_{-1}) = W_{-1}$. 事实上, $W_{-1} \subseteq C_W(W_{-1})$ 是显然的. 反之, 任取 $y \in C_W(W_{-1})$, 设 $y = \sum_{i=1}^s f_i D_i$. 由 $[y,W_{-1}] = [W_{-1},y]$, 可得 $[D_k,\sum_{i=1}^s f_i D_i] = 0$, $\forall k \in Y$. 所以 $D_k(f_i) = 0$, $\forall k, i \in Y$, 故 $f_i \in \mathbb{F}$, $\forall i \in Y$, 因此 $y \in W_{-1}$. 于是, $C_W(W_{-1}) \subseteq W_{-1}$, 我们的断言成立.

命題 2.6 设 $\phi \in \operatorname{Der}_t(L), t \geq 0$,则存在 $y \in \operatorname{Nor}_W(L) := \{x \in W \mid [x, L] \subseteq L\}$,使 $\phi = \operatorname{ad} y|_L$.

证明 分以下几步证明本命题.

1) 设 $\phi(D_k) = \sum_{i=1}^s f_{ik}D_i, \forall k \in Y.$ 因为 $\phi([D_k, D_l]) = 0$, 所以

$$[\phi(\mathbf{D}_k),\mathbf{D}_l]+(-1)^{\mathbf{d}(\phi)\tau(k)}[\mathbf{D}_k,\phi(\mathbf{D}_l)]=0.$$

因此

$$\left[\sum_{i=1}^{s} f_{ik} \mathbf{D}_{i}, \mathbf{D}_{l}\right] + (-1)^{\mathbf{d}(\phi)\tau(k)} \left[\mathbf{D}_{k}, \sum_{i=1}^{s} f_{il} \mathbf{D}_{i}\right] = 0.$$

于是

$$\sum_{i=1}^{s} \left((-1)^{\operatorname{d}(\phi)\tau(k)} \operatorname{D}_{k}(f_{il}) - (-1)^{\left(\operatorname{d}(f_{ik}) + \tau(i)\right)\tau(l)} \operatorname{D}_{l}(f_{ik}) \right) \operatorname{D}_{i} = 0.$$

易见

$$d(\phi) + \tau(k) = d(f_{ik}) + \tau(i).$$
 (2.2)

所以

$$(-1)^{\mathrm{d}(\phi)\tau(k)}\mathrm{D}_k(f_{il}) - (-1)^{(\mathrm{d}(\phi)+\tau(k))\tau(\hat{l})}\mathrm{D}_l(f_{ik}) = 0.$$

于是

$$D_{k}((-1)^{d(\phi)\tau(l)}f_{il}) = (-1)^{\tau(k)\tau(l)}D_{l}((-1)^{d(\phi)\tau(k)}f_{ik}).$$
(2.3)

设 $k \in Y_0$, 则 $(\text{ad } D_k)^{\pi_k+1} = 0$. 由引理 2.2 知, $(\text{ad } D_k)^{\pi_k}(\phi(D_k)) = 0$, 所以 $(\text{ad } D_k)^{\pi_k}(\sum_{i=1}^s f_{ik}D_i) = 0$. 从而 $\sum_{i=1}^s D_k^{\pi_k}(f_{ik})D_i = 0$. 故 $D_k^{\pi_k}(f_{ik}) = 0$, $\forall i \in Y$, 即 f_{ik} 是 x_{k-1} 截头的, $\forall k \in Y_0$. 设 $k \in Y_1$, 用 k 代替 (2.3) 式中的 l, 可推得 $D_k(f_{ik}) = 0$, $\forall i \in Y$. 于 是 f_{ik} 是 x_{k-1} 截头的, $\forall k \in Y_1$. 由命题 2.5 知, 存在 $g_i \in \Lambda(m,n,\underline{t})$, 使得

$$D_k(g_i) = (-1)^{d(\phi)\tau(k)} f_{ik}, \quad \forall i, k \in Y.$$
(2.4)

2) 由 (2.4) 式知, $d(g_i) + \tau(k) = d(f_{ik})$. 再由 (2.2) 式知 $d(\phi) = d(g_i) + \tau(i)$, $\forall i \in Y$. 令 $z = -\sum_{i=1}^{s} g_i D_i$. 由 (2.4) 式知

$$[z, \mathbf{D}_k] = -\left[\sum_{i=1}^s g_i \mathbf{D}_i, \mathbf{D}_k\right] = \sum_{i=1}^s (-1)^{\left(\mathbf{d}(g_i) + \tau(i)\right)\tau(k)} \mathbf{D}_k(g_i) \mathbf{D}_i$$

$$=\sum_{i=1}^{s}(-1)^{\operatorname{d}(\phi)\tau(k)}\operatorname{D}_{k}(g_{i})\operatorname{D}_{i}=\sum_{i=1}^{s}f_{ik}\operatorname{D}_{i}=\phi(\operatorname{D}_{k}),\quad\forall k\in Y.$$

因为 $z \in W = \bigoplus_{i=-1}^{\xi} W_i$, 故可设 $z = \sum_{i=-1}^{\xi} z_i$, 其中 $z_i \in W_i$. 因为 $zd(\phi(D_k)) = zd(\phi) + zd(D_k) = t - 1$ (见第一章定义 1.15), 所以 $\phi(D_k) \in L_{t-1} \subseteq W_{t-1}$. 由于

$$\phi(\mathbf{D}_k) = [z, \mathbf{D}_k] = \sum_{i=-1}^{\xi} [z_i, \mathbf{D}_k], \quad \forall k \in Y,$$

所以 $\phi(D_k) = [z_t, D_k], \ \forall k \in Y. \ \diamondsuit \ y = z_t, \ \emptyset \ \phi(D_k) = \operatorname{ad} y(D_k), \ \forall k \in Y. \ \diamondsuit \ \psi = \phi - \operatorname{ad} y,$ 则 $\psi(L_{-1}) = 0$. 显然 $\psi(L_j) \subseteq W_{t+j}$, 其中 $j \ge -1$.

3) 下面对 j 用归纳法证明 $\psi(L_j) = 0, j \ge -1$.

由 2) 知 $\psi(L_{-1}) = 0$. 设 $j \geq 0$. 显然 $[L_{-1}, L_j] \subseteq L_{j-1}$. 由归纳假设知, $\psi([L_{-1}, L_j]) = \psi(L_{j-1}) = 0$. 于是 $[L_{-1}, \psi(L_j)] = 0$, 即 $[W_{-1}, \psi(L_j)] = 0$. 从而有 $\psi(L_j) \subseteq C_W(W_{-1})$. 因为 $C_W(W_{-1}) = W_{-1}$, 所以 $\psi(L_j) \subseteq W_{-1}$. 故 $\psi(L_j) \subseteq W_{-1} \cap W_{t+j}$. 由 $t+j \geq 0$ 知 $\psi(L_j) = 0$. 归纳法完成.

由 3) 知 $\psi(L)=0$. 随之有 $(\phi-\operatorname{ad}y)(L)=0$. 所以 $\phi=\operatorname{ad}y|_L$.

引理 2.7 今 $\phi \in \text{Der}(L), y \in L$. 设 $[y, D_i] = y_i, \forall i \in Y$. 如果 $\phi(D_i) = \phi(y_i) = 0, \forall i \in Y, 则 <math>\phi(y) \in L_{-1}$.

证明 设 $\phi(y) = \sum_{k=1}^{s} f_k D_k$,其中 $f_k \in \Lambda(m, n, \underline{t})$. 由已知, $\phi([y, D_i]) = \phi(y_i) = 0$,所以

$$[\phi(y), \mathbf{D}_i] + (-1)^{\mathbf{d}(\phi)\mathbf{d}(y)}[y, \phi(\mathbf{D}_i)] = 0.$$

由于 $\phi(D_i) = 0$, 故 $[\phi(y), D_i] = 0$. 于是 $[\sum_{k=1}^s f_k D_k, D_i] = 0$. 由此可得 $D_i(f_k) = 0$, $\forall i \in Y$. 故 $f_k \in \mathbb{F}$, $\forall k \in Y$; 因此 $\phi(y) \in L_{-1}$.

引理 2.8 今 $\phi \in \operatorname{Der}_t(L)$, 其中 $t \in \mathbb{Z}$. 设 $\phi(L_j) = 0$, 其中 $j = -1, 0, \dots, k$, $k \ge -1$. $k + t \ge -1$, 则 $\phi = 0$.

证明 设 $j \ge k$. 对 j 用归纳法证明 $\phi(L_j) = 0$. 由已知 $\phi(L_k) = 0$. 令 j > k. 任 取 $y \in L_j$. 设 $[y, D_i] = y_i, \forall i \in Y$, 则 $y_i \in L_{j-1}$. 由归纳假设 $\phi(y_i) = 0, \forall i \in Y$. 由于 $\phi(D_i) = 0, \forall i \in Y$, 由引理 2.7 可推得 $\phi(y) \in L_{-1}$. 因为 $j + t > k + t \ge -1$, 所以 $\phi(y) \in L_{-1} \cap L_{j+t} = 0$, 从而 $\phi(L_j) = 0$. 归纳法完成. 由于 $\phi(L_j) = 0, j \ge -1$, 所以 $\phi(L) = 0$. 这就证明了 $\phi = 0$.

我们知道 $Der(L) = Der_{\overline{0}}(L) \oplus Der_{\overline{1}}(L)$, 这里 L = W, S 或 H. 若 $i \in Y_0$, 则 ad $D_i \in Der_{\overline{0}}(L)$. 所以

$$(\text{ ad }D_i)([x,y]) = [(\text{ ad }D_i)(x),y] + [x,(\text{ ad }D_i)(y)],$$

其中 $x,y \in L$. 设 k 是正整数, 由 Leibniz 公式, 有

$$(\text{ ad }D_i)^k([x,y]) = \sum_{j=0}^k \binom{k}{j} [(\text{ ad }D_i)^{k-j}(x), (\text{ ad }D_i)^j(y)]$$
 (2.5)

者 $k = p^r$, 由 (2.5) 式知

$$(\text{ ad } D_i)^{p^r}([x,y]) = [(\text{ ad } D_i)^{p^r}(x),y] + [x,(\text{ ad } D_i)^{p^r}(y)],$$

所以 $(\operatorname{ad} D_i)^{p^r} \in \operatorname{Der}_{\overline{0}}(L)$.

如果 $r \ge t_i$, 任取 $\Lambda(m,n,t)$ 的元素 $x^{(\alpha)}x^{\mu}$, 则有

$$(\operatorname{ad} D_i)^{p^r}(x^{(\alpha)}x^uD_j) = (D_i^{p^r}(x^{(\alpha)}x^u))D_j = 0, \quad \forall j \in Y.$$

因此 $(ad D_i)^{p^r} = 0$. 于是有以下命题.

命題 2.9 设 $i \in Y_0$, r 是任意的正整数. 則 $(\operatorname{ad} D_i)^{p^r} \in \operatorname{Der}_{\overline{0}}(L)$; 若 $r \geq t_i$, 則 $(\operatorname{ad} D_i)^{p^r} = 0$.

§3 W与S的导子超代数 [79]

在本节中, 我们将确定 W 与 S 的导子超代数. 首先讨论李超代数 W 的导子超代数. 由命题 2.6 我们立即可得以下命题.

命题 3.1 若 $t \ge 0$, 则 $Der_t(W) = ad W_t$.

命题 3.2 $\operatorname{Der}_{-1}(W) = \operatorname{ad} W_{-1}$.

证明 设 $\phi \in \text{Der}_{-1}(W)$, 则 $\phi(W_0) \subseteq W_{-1}$. 故可设 $\phi(x_iD_j) = \sum_{r=1}^s a_r D_r$, 其中 $a_r \in \mathbb{F}$. 设 $k, l \in Y \setminus \{i, j\}$, 并且 $\phi(x_kD_l) = \sum_{t=1}^s b_t D_t$. 将 ϕ 作用于等式 $[x_iD_j, x_kD_l] = 0$, 可得 $a_k = 0$. 故 $\phi(x_iD_j) = a_iD_i + a_jD_j$. 同理可知 $\phi(x_iD_k) = d_iD_i + d_kD_k$, $\phi(x_kD_j) = h_kD_k + h_jD_j$, 其中 $d_i, d_k, h_k, h_j \in \mathbb{F}$. 将 ϕ 作用于等式 $[x_iD_k, x_kD_j] = x_iD_j$, $i \neq j$, 可得 $a_i = 0$. 故 $\phi(x_iD_j) = a_jD_j$, $a_j \in \mathbb{F}$. 特别地,可设 $\phi(x_iD_{i+1}) = c_iD_{i+1}$, $i = 1, 2, \cdots, s - 1$, $c_i \in \mathbb{F}$, $\phi(x_sD_1) = c_sD_1$. 令 $\psi = \phi - \sum_{i=1}^s c_i \text{ ad } D_i$, 则

$$\psi(x_i D_{i+1}) = \psi(x_s D_1) = 0, \quad i = 1, 2, \dots, s-1.$$

设 $\psi(x_iD_i) = \sum_{l=1}^s r_lD_l$,将 ψ 作用于等式 $[x_iD_i, x_iD_j] = x_iD_j$,其中 $i \neq j$,可得 $r_l = 0$, $\forall l \in Y$. 故 $\psi(x_iD_i) = 0$, $\forall i \in Y$. 因为 W_0 是由 $\{x_iD_{i+1}, x_sD_1 \mid i = 1, 2, \dots, s-1\} \cup \{x_iD_i \mid i \in Y\}$ 生成的,所以 $\psi(W_0) = 0$. 由引理 2.8 知 $\psi = 0$,故 $\phi \in \operatorname{ad} W_{-1}$.

命題 3.3 设 $T = \{x^{(k\varepsilon_i)}D_j \mid 0 \le k \le \pi_i, i \in Y_0, j \in Y\}, M = \{x_iD_j \mid i \in Y_1, j \in Y\}. 则 <math>T \cup M$ 生成 W.

证明 设 $T \cup M$ 生成的 W 的子代数为 Q.

1) 我们证明 $x^{(\pi)}D_1 \in Q$. 为此, 对 t 用归纳法证明 $x^{(\pi_1\epsilon_1+\cdots+\pi_t\epsilon_t)}D_1 \in Q$. 当 t=1 时, $x^{(\pi_1\epsilon_1)}D_1 \in T \subseteq Q$. 设 t>1. 假设 $x^{(\pi_1\epsilon_1+\cdots+\pi_t-1\epsilon_{t-1})}D_1 \in Q$. 因为

$$x^{(\pi_t \varepsilon_t)} x_1 \mathbf{D}_1 = [x^{(\pi_t \varepsilon_t)} \mathbf{D}_1, x^{(2\varepsilon_1)} \mathbf{D}_1] \in Q,$$

所以

$$x^{(\pi_1\varepsilon_1+\cdots+\pi_t\varepsilon_t)}\mathbf{D}_1=2^{-1}[x^{(\pi_1\varepsilon_1+\cdots+\pi_{t-1}\varepsilon_{t-1})}\mathbf{D}_1,x^{(\pi_t\varepsilon_t)}x_1\mathbf{D}_1]\in Q.$$

这就完成了归纳法, 于是可得 $x^{(\pi)}D_1 \in Q$.

2) 欲证 $x^E D_1 \in Q$. 为此, 对 k 用归纳法证明 $x_{m+1} \cdots x_{m+k} D_1 \in Q$. 当 k = 1 时, $x_{m+1} D_1 \in M \subseteq Q$. 设 k > 1. 假设 $x_{m+1} \cdots x_{m+k-1} D_1 \in Q$. 因为

$$x_1x_{m+k}D_1 = [x_{m+k}D_1, x^{(2e_1)}D_1] \in Q,$$

所以

$$x_{m+1}\cdots x_{m+k}D_1 = [x_{m+1}\cdots x_{m+k-1}D_1, x_1x_{m+k}D_1] \in Q.$$

归纳法完成, 于是可知 $x^E D_1 \in Q$.

3) 我们证明 $x^{(\pi)}x^ED_j \in Q$, $\forall j \in Y$. 对任意 $j \in Y_0$, 由 2) 知, $x_1x^ED_j = [x^ED_1, x^{(2e_1)}D_j]$ $\in Q$. 若 $j \in Y_0 \setminus \{1\}$, 由 1) 知, $x^{(\pi)}x^ED_j = [x^{(\pi)}D_1, x_1x^ED_j] \in Q$. 显然 $x^{(\pi)}x^ED_1 = 2^{-1}[x^{(\pi)}D_1, x_1x^ED_1] \in Q$. 任取 $j \in Y_1$, 则有

$$x^{(\pi)}x^E\mathbf{D}_j = [x^{(\pi)}x^E\mathbf{D}_1, x_1\mathbf{D}_j] \in Q.$$

4) 对 $t = (|\pi| + |E|) - (|\alpha| + |u|)$ 用归纳法证明 $x^{(\alpha)}x^{u}D_{j} \in Q$, 其中 $j \in Y$.

若 t=0, 由 3) 知 $x^{(\pi)}x^ED_j\in Q$. 设 $t\geq 1$. 若 $|\alpha|<|\pi|$, 则存在 $k\in Y_0$, 使 得 $x^{(\alpha+\epsilon_k)}x^u\in\Lambda(m,n,\underline{t})$. 由归纳假设知 $x^{(\alpha+\epsilon_k)}x^uD_j\in Q$. 从而

$$x^{(\alpha)}x^{u}D_{j} = [D_{k}, x^{(\alpha+\varepsilon_{k})}x^{u}D_{j}] \in Q.$$

若 $|\alpha| = |\pi|$, 则 |u| < |E|. 故存在 $k \in Y_1$, 使得 $x_k x^u \neq 0$. 由归纳假设知 $x^{(\alpha)} x_k x^u D_j \in Q$, 所以

$$x^{(\alpha)}x^{u}\mathbf{D}_{j} = [\mathbf{D}_{k}, x^{(\alpha)}x_{k}x^{u}\mathbf{D}_{j}] \in Q.$$

归纳法完成. 由 4) 知 Q = W, 即 $T \cup M$ 生成 W.

引理 3.4 设 $\phi \in \operatorname{Der}_{-t}(W), t > 1.$ 若 $\phi(x^{(t\varepsilon_i)}D_j) = 0, \forall i \in Y_0, j \in Y, 则 \phi = 0.$

证明 若 $k \leq t-1$, 则 $-t+(k-1) \leq -2$. 于是 $\phi(x^{(ke_i)}D_j) \in W_{-t+(k-1)}$ = 0. 由已知, $\phi(x^{(te_i)}D_j) = 0$. 设 k > t. 对 k 用归纳法证明 $\phi(x^{(ke_i)}D_j) = 0$. 由归纳假设 $\phi(x^{((k-1)e_i)}D_j) = 0$. 显然 $\phi(D_l) = 0$, $\forall l \in Y$. 因为

$$[x^{(k\epsilon_i)}\mathbf{D}_j,\mathbf{D}_l] = -\delta_{li}(-1)^{\tau(j)\tau(l)}x^{((k-1)\epsilon_i)}\mathbf{D}_j,$$

所以,由引理 2.7 知 $\phi(x^{(ke_i)}D_j) \in W_{-1}$. 因 k > t, 故 -t + (k-1) > -1. 于是 $\phi(x^{(ke_i)}D_j) \in W_{-1} \cap W_{-t+(k-1)} = 0$, $\forall i \in Y_0, j \in Y$. 显然 $\phi(x_iD_j) \in W_{-t} = 0$, $\forall i, j \in Y$. 由命题 3.3 知 $\phi(W) = 0$, 从而 $\phi = 0$.

命题 3.5 设 t>1. 若不存在正整数 k, 使得 $t=p^k$, 则 $Der_{-t}(W)=0$.

证明 设 $\phi \in Der_{-t}(W)$, 欲证 $\phi = 0$. 我们分以下两种情形讨论.

(i) $t \not\equiv 0 \pmod p$. 易见 $\phi(x^{(t\varepsilon_i)}D_j) \in W_{-1}$, 故可设 $\phi(x^{(t\varepsilon_i)}D_j) = \sum_{i=1}^s a_i D_i$, 其中 $a_i \in \mathbb{F}$. 显然 $\phi(W_0) \subseteq W_{-t} = 0$. 任取 $k \in Y \setminus \{j\}$. 将 ϕ 作用于等式 $[x^{(t\varepsilon_i)}D_j, x_k D_{m+1}] = 0$, 可知 $a_k = 0$. 于是 $\phi(x^{(t\varepsilon_i)}D_j) = a_j D_j$, $a_j \in \mathbb{F}$.

若 $i \neq j$, 将 ϕ 作用于等式 $[x^{(t\epsilon_i)}D_j, x_iD_i] = -tx^{(t\epsilon_i)}D_j$, 可得 $-ta_jD_j = 0$. 故 $a_j = 0$, 从而 $\phi(x^{(t\epsilon_i)}D_j) = 0$.

若 i = j, 将 ϕ 作用于等式 $[x^{(t\varepsilon_j)}D_j, x_jD_j] = (1+t)x^{(t\varepsilon_j)}D_j$, 可得 $ta_jD_j = 0$. 故 $a_j = 0$, 从而 $\phi(x^{(t\varepsilon_j)}D_j) = 0$. 由引理 3.4 知 $\phi = 0$.

(ii) $t \equiv 0 \pmod{p}$. 将 t 写成 p-adic 数的形式 $t = \sum_{i=1}^r \alpha_i p^i$, 其中 $\alpha_r \neq 0$. 因为 t 不是 p 的正整数幂, 所以, 若 $\alpha_1 = \cdots = \alpha_{r-1} = 0$, 则 $\alpha_r > 1$. 从而可知

$$\binom{t}{p^r} \not\equiv 0 \pmod{p}, \qquad \binom{t}{p^r-1} \equiv 0 \pmod{p}.$$

考察 Z- 次数知 $\phi(x^{((t-p^r)e_i)}D_i) = \phi(x^{((p^r+1)e_i)}D_j) = 0$. 当 $i \neq j$ 时, 将 ϕ 作用于等式

$$\left[x^{((t-p^r)\varepsilon_i)}\mathbf{D}_i,x^{((p^r+1)\varepsilon_i)}\mathbf{D}_j\right] = \binom{t}{p^r}x^{(t\varepsilon_i)}\mathbf{D}_j,$$

可知 $\phi(x^{(i\epsilon_i)}D_j) = 0$. 当 i = j 时, 同理将 ϕ 作用于等式

$$\begin{split} \left[x^{((t-p^r+1)\epsilon_j)}\mathbf{D}_j, x^{(p^r\epsilon_j)}\mathbf{D}_j\right] &= \left[\begin{pmatrix} t \\ p^r - 1 \end{pmatrix} - \begin{pmatrix} t \\ p^r \end{pmatrix}\right] x^{(t\epsilon_j)}\mathbf{D}_j \\ &= -\begin{pmatrix} t \\ p^r \end{pmatrix} x^{(t\epsilon_j)}\mathbf{D}_j, \end{split}$$

可知 $\phi(x^{(t\epsilon_j)}\mathbf{D}_j)=0$. 由引理 3.4 知 $\phi=0$.

命题 3.6 设 $t=p^r$, 其中 r>0. 则

$$\operatorname{Der}_{-t}(W) = \operatorname{span}_{\mathbb{P}} \{ (\operatorname{ad} D_i)^t \mid i \in Y_0 \}.$$

证明 设 $\phi \in \operatorname{Der}_{-t}(W)$. 由于 $\operatorname{zd}(\phi(x^{(t\varepsilon_i)}D_i)) = (-t) + (t-1) = -1$, 故可设 $\phi(x^{(t\varepsilon_i)}D_i)$ = $\sum_{l=1}^{s} a_{il}D_l$, 其中 $i \in Y_0$, $a_{il} \in F$. 令 $j \in Y \setminus \{i\}$. 将 ϕ 作用于等式 $[x^{(t\varepsilon_i)}D_i, x_jD_j] = 0$, 可得 $a_{ij} = 0$. 于是有 $\phi(x^{(t\varepsilon_i)}D_i) = a_{ii}D_i$, $\forall i \in Y_0$. 令 $\psi = \phi - \sum_{i=1}^{m} a_{ii}(\operatorname{ad}D_i)^t$, 则 $\psi(x^{(t\varepsilon_i)}D_i) = 0$, $\forall i \in Y_0$. 利用等式 $x^{(t\varepsilon_i)}D_j = [x^{(t\varepsilon_i)}D_i, x_iD_j]$, 可得 $\psi(x^{(t\varepsilon_i)}D_j) = 0$, 其中 $j \in Y \setminus \{i\}$. 由引理 3.4 知 $\psi = 0$, 于是 $\phi = \sum_{i=1}^{m} a_{ii}(\operatorname{ad}D_i)^t \in \operatorname{span}_{\mathbb{F}}\{(\operatorname{ad}D_i)^t \mid i \in Y_0\}$.

由命题 3.1, 3.2, 3.5, 3.6 与命题 2.9 可得以下定理.

定理 3.7 $\operatorname{Der}(W) = \operatorname{ad} W \oplus \operatorname{span}_{\mathbb{F}} \{ (\operatorname{ad} D_i)^{p^{k_i}} \mid i \in Y_0, 1 \leq k_i < t_i \}.$

下面讨论 S 的导子超代数. 首先定义线性映射 div: W $\rightarrow \Lambda(m, n, \underline{t})$, 使得 div (fD_i) := $(-1)^{d(f)_r(i)}D_i(f)$, $\forall f \in \text{hg}(\Lambda(m, n, \underline{t}))$, $\forall i \in Y$. 我们称 div 为发散映射.

引理 3.8 设 $D \in W_{\theta}, H \in W_{\mu},$ 其中 $\theta, \mu \in \mathbb{Z}_2$. 则

$$\operatorname{div}([D,H]) = D(\operatorname{div}H) - (-1)^{\theta\mu}H(\operatorname{div}D). \tag{3.1}$$

证明 因为 div 是线性映射, 所以不妨设 $D = fD_i$, $H = gD_j$. 于是 $d(f) = \theta + \tau(i)$, $d(g) = \mu + \tau(j)$. 直接计算, 则有

$$\begin{split} &\operatorname{div}([f\mathrm{D}_{i},g\mathrm{D}_{j}]) \\ &= \operatorname{div}(f\mathrm{D}_{i}(g)\mathrm{D}_{j} - (-1)^{\theta\mu}g\mathrm{D}_{j}(f)\mathrm{D}_{i}) \\ &= (-1)^{\tau(j)(\theta+\mu+\tau(j))}\mathrm{D}_{j}(f\mathrm{D}_{i}(g)) - (-1)^{\theta\mu+\tau(i)(\mu+\theta+\tau(i))}\mathrm{D}_{i}(g\mathrm{D}_{j}(f)) \\ &= (-1)^{\tau(j)\theta+\tau(j)\mu+\tau(j)}\mathrm{D}_{j}(f)\mathrm{D}_{i}(g) + (-1)^{\tau(j)\mu+\tau(j)+\tau(j)\tau(i)}f\mathrm{D}_{j}\mathrm{D}_{i}(g) \\ &- (-1)^{\theta\mu+\tau(i)(\mu+\theta+\tau(i))}\mathrm{D}_{i}(g)\mathrm{D}_{j}(f) \\ &- (-1)^{\theta\mu+\tau(i)\theta+\tau(i)+\tau(i)\tau(j)}g\mathrm{D}_{i}\mathrm{D}_{j}(f) \\ &= (-1)^{\tau(j)\theta+\tau(j)\mu+\tau(j)}\mathrm{D}_{j}(f)\mathrm{D}_{i}(g) + (-1)^{\tau(j)\mu+\tau(j)}f\mathrm{D}_{i}\mathrm{D}_{j}(g) \\ &- (-1)^{\mu\tau(j)+\tau(j)+\tau(j)\theta}\mathrm{D}_{j}(f)\mathrm{D}_{i}(g) - (-1)^{\theta\mu+\tau(i)\theta+\tau(i)}g\mathrm{D}_{j}\mathrm{D}_{i}(f) \\ &= f\mathrm{D}_{i}((-1)^{\tau(j)\mu+\tau(j)}\mathrm{D}_{j}(g)) - (-1)^{\theta\mu}g\mathrm{D}_{j}((-1)^{\tau(i)\theta+\tau(i)}\mathrm{D}_{i}(f)) \\ &= f\mathrm{D}_{i}(\operatorname{div}(g\mathrm{D}_{j})) - (-1)^{\theta\mu}g\mathrm{D}_{j}(\operatorname{div}(f\mathrm{D}_{i})) \\ &= D(\operatorname{div}H) - (-1)^{\theta\mu}H(\operatorname{div}D). \quad \Box \end{split}$$

令 S = {D ∈ W | divD = 0}. 由引理 3.8 知, S 是 W 的子代数.

引理 3.9 (1) S 是李超代数 B 的理想.

(2)
$$\overline{S} = S(m, n; \underline{t}) \oplus \sum_{i \in Y_0} \mathbb{F} \cdot x^{(\pi - \pi_i E_i)} x^E D_i$$
.

证明 (1) 由第一章引理 2.5 的 2) 知, 对任意 $f \in hg(\Lambda(m,n,\underline{t}))$, 有

$$\begin{aligned} \operatorname{div}(\mathbf{D}_{ij}(f)) &= \operatorname{div}\left((-1)^{\tau(i)\tau(j)}\mathbf{D}_{i}(f)\mathbf{D}_{j} - (-1)^{\operatorname{d}(f)(\tau(i)+\tau(j))}\mathbf{D}_{j}(f)\mathbf{D}_{i}\right) \\ &= (-1)^{\operatorname{d}(f)\tau(j)}\left(\mathbf{D}_{j}\mathbf{D}_{i}(f) - (-1)^{\tau(i)\tau(j)}\mathbf{D}_{i}\mathbf{D}_{j}(f)\right) \\ &= (-1)^{\operatorname{d}(f)\tau(j)}[\mathbf{D}_{j},\mathbf{D}_{i}](f) \\ &= 0. \end{aligned}$$

所以 D_{ij}(f) ∈ S, 从而 S ⊆ S.

设 $fD_i, gD_j \in \overline{S}$, 其中 $f, g \in hg(\Lambda(m, n, \underline{t}))$, 则 $D_i(f) = 0$, $D_j(g) = 0$. 从而

$$\begin{split} \mathbf{D}_{ij}(fg) \\ &= (-1)^{\tau(i)\tau(j)} \mathbf{D}_{i}(fg) \mathbf{D}_{j} - (-1)^{\mathbf{d}(fg)(\tau(i)+\tau(j))} \mathbf{D}_{j}(fg) \mathbf{D}_{i} \\ &= (-1)^{\tau(i)(\tau(j)+\mathbf{d}(f))} f(\mathbf{D}_{i}(g)) \mathbf{D}_{j} - (-1)^{\mathbf{d}(fg)(\tau(i)+\tau(j))} (\mathbf{D}_{j}(f)) g \mathbf{D}_{i} \\ &= (-1)^{\tau(i)(\tau(j)+\mathbf{d}(f))} \left(f(\mathbf{D}_{i}(g)) \mathbf{D}_{j} - (-1)^{\mathbf{d}(f\mathbf{D}_{i})\mathbf{d}(g\mathbf{D}_{j})} g(\mathbf{D}_{j}(f)) \mathbf{D}_{i} \right) \\ &= (-1)^{\tau(i)(\tau(j)+\mathbf{d}(f))} [f\mathbf{D}_{i}, g\mathbf{D}_{j}]. \end{split}$$

所以

$$[f\mathbf{D}_i,g\mathbf{D}_j]=(-1)^{\tau(i)(\tau(j)+\mathbf{d}(f))}\mathbf{D}_{ij}(fg).$$

于是可知 $[S, S] \subseteq S$. 因为 $S \subseteq S$, 所以 $[S, S] \subseteq S$. 这就证明了 S 是 S 的理想.

(2) 🔷

$$V = S(m, n; \underline{t}) + \sum_{i \in Y_0} \mathbb{F} \cdot x^{(\pi - \pi_i e_i)} x^E D_i.$$

首先我们将证明 $V = \overline{S}(m, n; \underline{t})$. 显然, $V \subseteq \overline{S}$. 为了证明 $\overline{S} \subseteq V$, 我们做以下准备工作. (a) 若 $k \in Y_0$ 且 $\alpha_k = 0$, 或 $k \in Y_1$ 且 $k \notin \{u\}$, 则 $x^{(\alpha)}x^uD_k \in V$.

先考虑 $k \in Y_0$ 且 $\alpha_k = 0$ 的情形. 若对每个 $i \neq k$ 和 u = E, 有 $\alpha_i = \pi_i$, 则 $x^{(\alpha)}x^u D_k = x^{(\pi - \pi_k e_k)}x^E D_k \in V$. 否则, 存在 $i \in Y_0$, 满足 $i \neq k$ 及 $\alpha_i < \pi_i$, 或存在 $j \in Y_1$, 满足 $j \notin \{u\}$. 随之,

$$x^{(\alpha)}x^{u}\mathbf{D}_{k}=\mathbf{D}_{ik}\left(x^{(\alpha+\epsilon_{i})}x^{u}\right)\in V$$

或

$$x^{(\alpha)}x^{u}D_{k}=D_{jk}\left(x^{(\alpha)}x^{u+\langle j\rangle}\right)\in V.$$

再考虑 k ∈ Y₁ 且 k ∉ {u} 的情形. 由 D_{kk} 的定义, 我们有

$$x^{(\alpha)}x^{u}D_{k} = -\frac{1}{2}D_{kk}\left(x^{(\alpha)}x^{u+\langle k\rangle}\right) \in V.$$

(b) 对 k ∈ Y₀ ∪ Y₁, 我们断言:

$$x^{(\alpha)}x^{u}\mathbf{D}_{k} \equiv (-1)^{\tau(k)d(x^{u})}\mathbf{D}_{k}\left(x^{(\alpha+\varepsilon_{i})}x^{u}\right)\mathbf{D}_{i} \pmod{V},$$

这里 $i \in Y_0$, 使得 $\alpha_i < \pi_i$; 以及

$$x^{(\alpha)}x^{u}D_{k} \equiv (-1)^{\tau(k)+\left(\tau(k)+\overline{1}\right)d(x^{u+\langle j\rangle})}D_{k}\left(x^{(\alpha)}x^{u+\langle j\rangle}\right)D_{j} \pmod{V},$$

这里 $j \in Y_1$ 且 $j \notin \{u\}$.

事实上, 上面的断言是下面两等式的直接结果:

$$D_{ki}\left(x^{(\alpha+\epsilon_i)}x^u\right) = D_k\left(x^{(\alpha+\epsilon_i)}x^u\right)D_i$$

$$-(-1)^{\tau(k)d(x^u)}x^{(\alpha)}x^uD_k;$$

$$D_{kj}\left(x^{(\alpha)}x^{u+\langle j\rangle}\right) = (-1)^{\tau(k)}D_k\left(x^{(\alpha)}x^{u+\langle j\rangle}\right)D_j$$

$$-(-1)^{\left(\tau(k)+\overline{1}\right)d(x^{u+\langle j\rangle})}x^{(\alpha)}x^uD_k.$$

现在设

$$D = \sum_{k=1}^{q} \sum_{\substack{\alpha \in A(m;\underline{t}) \\ u \in B(n)}} \gamma(\alpha, u, i_k) x^{(\alpha)} x^{u} D_{i_k} \in \overline{S}(m, n; \underline{t}),$$

这里 $\gamma(\alpha, u, i_k) \in \mathbb{F}$, $\alpha \in A(m; \underline{t})$, $u \in B(n)$. 我们将对 q 用归纳法证明 $D \in V$. 若 q = 1, $D = \sum \gamma(\alpha, u, i_1) x^{(\alpha)} x^u D_{i_1}$, 则

$$0 = \operatorname{div}(D) = \sum_{\alpha, u} (-1)^{\tau(i_1)\operatorname{d}(x^u)} \gamma\left(\alpha, u, i_1\right) \operatorname{D}_{i_1}\left(x^{(\alpha)}x^u\right).$$

所以, 当 $i_1 \in Y_0$ 且 $\alpha_{i_1} \geq \varepsilon_i$ 时, 或 $i_1 \in Y_1$ 且 $i_1 \in \{u\}$ 时, $\gamma(\alpha, u, i_1) = 0$. 故由 (a) 知 $D \in V$.

设 $q \ge 2$. 由 (a) 我们可以假设

$$D = \sum_{\substack{i_k \in Y_0 \\ \epsilon_{i_k} \leq \alpha \leq \pi}} \gamma \left(\alpha, u, i_k\right) x^{(\alpha)} x^u D_{i_k} + \sum_{\substack{i_k \in Y_1 \\ i_k \in \{u\}}} \gamma \left(\alpha, u, i_k\right) x^{(\alpha)} x^u D_{i_k}.$$

$$D \equiv \sum_{\substack{i_q \neq i_k \in Y_0 \cup Y_1 \\ \alpha_{i_q} < \pi_{i_q}}} (-1)^{\tau(i_k)d(x^u)} \gamma(\alpha, u, i_k) D_{i_k} \left(x^{(\alpha + \epsilon_{i_q})} x^u\right) D_{i_q}$$

$$+ \sum_{\substack{\epsilon_{i_q} \leq \alpha \leq \pi \\ \alpha_{i_q} = \pi_{i_q}}} \gamma(\alpha, u, i_q) x^{(\alpha)} x^u D_{i_q}$$

$$+ \sum_{\substack{i_q \neq i_k \in Y_0 \cup Y_1 \\ \alpha_{i_q} = \pi_{i_q}}} \gamma(\alpha, u, i_k) x^{(\alpha)} x^u D_{i_k} \pmod{V}.$$

置

$$E_{1} = \sum_{\substack{i_{q} \neq i_{k} \in Y_{0} \cup Y_{1} \\ \alpha_{i_{q}} < \pi_{i_{q}}}} (-1)^{\tau(i_{k})d(x^{u})} \gamma(\alpha, u, i_{k}) D_{i_{k}} \left(x^{(\alpha + \epsilon_{i_{q}})}x^{u}\right) D_{i_{q}}$$

$$+ \sum_{\epsilon_{i_{q}} \leq \alpha \leq \pi} \gamma(\alpha, u, i_{q}) x^{(\alpha)} x^{u} D_{i_{q}},$$

$$E_{2} = \sum_{\substack{i_{q} \neq i_{k} \in Y_{0} \cup Y_{1} \\ \alpha_{i_{q}} = \pi_{i_{q}}}} \gamma(\alpha, u, i_{k}) x^{(\alpha)} x^{u} D_{i_{k}}.$$

那么 $\operatorname{div}(E_1) + \operatorname{div}(E_2) = \operatorname{div}(D) = 0$, 这里

$$\begin{aligned} \operatorname{div}\left(E_{1}\right) &= \sum_{\substack{i_{q} \neq i_{k} \in Y_{0} \cup Y_{1} \\ \alpha_{i_{q}} < \pi_{i_{q}}}} \left(-1\right)^{\tau(i_{k})\operatorname{d}(x^{u}) + \tau\left(i_{q}\right)\operatorname{d}(x^{u})} \gamma\left(\alpha, u, i_{k}\right) \operatorname{D}_{i_{k}}\left(x^{(\alpha)}x^{u}\right) \\ &+ \sum_{\epsilon_{i_{q}} \leq \alpha \leq \pi} \gamma\left(\alpha, u, i_{q}\right) x^{\left(\alpha - \epsilon_{i_{q}}\right)}x^{u}, \\ \operatorname{div}\left(E_{2}\right) &= \sum_{\substack{i_{1} \neq i_{1} \in Y_{0} \cup Y_{1}}} \left(-1\right)^{\tau(i_{k})\operatorname{d}(x^{u})} \gamma\left(\alpha, u, i_{k}\right) \operatorname{D}_{i_{k}}\left(x^{(\alpha)}x^{u}\right). \end{aligned}$$

注意 div (E_1) 中 x_q 的指数小于 π_{i_q} , 而 div (E_2) 中相应的指数等于 π_{i_q} . 因此, div (E_1) = div (E_2) = 0. 由归纳假设, 有 E_1 , $E_2 \in V$, 从而 $D \in V$.

对于 $i_q \in Y_1$ 的情形, 我们略去同样的讨论. 因而有 V = S. 下面我们证明:

$$V = S\left(m, n; \underline{t}
ight) + \sum_{i \in Y_0} \mathbb{F} \cdot x^{(\pi - \pi_i arepsilon_i)} x^E \mathrm{D}_i$$

是直和 设

$$\sum_{\alpha,u,i,j} \gamma\left(\alpha,u,i,j\right) \mathbf{D}_{ij} \left(x^{(\alpha)} x^{u}\right) + \sum_{i \in Y_{0}} \gamma\left(i\right) x^{(\pi-\pi_{i} \epsilon_{i})} x^{E} \mathbf{D}_{i} = 0,$$

这里 $\gamma(\alpha, u, i, j) \in \mathbb{F}$, $\gamma(i) \in \mathbb{F}$. 注意 $D_{ii} = 0$, 对任意 $i \in Y_0$. 上面的等式两边分别作用 在 x_i 上, 其中 $l \in Y_0$, 则有

$$\gamma\left(l\right)x^{(\pi-\pi_{l}\varepsilon_{l})}x^{E}\in\sum_{i\in Y_{0},i\neq l}\mathbf{F}\cdot x^{(\alpha-\varepsilon_{i})}x^{u}+\sum_{j\in Y_{1}}\mathbf{F}\cdot x^{(\alpha)}x^{u-\langle j\rangle}.$$

随之, 对任意 $l \in Y_0$, 有 $\gamma(l) = 0$. 这便证明了直和. \square

为计算方便,下面的引理列出 5 中的几个运算公式,

引理 3.10 下列公式成立:

1)
$$D_{ii}(f) = 0, \forall i \in Y_0;$$
 $D_{ii}(f) = -2D_i(f)D_i, \forall i \in Y_1;$ $D_{ji} = -(-1)^{d(f)(\tau(i) + \tau(j)) + \tau(i)\tau(j)}D_{ij}(f), \forall i, j \in Y.$

2)
$$[D_k, D_{ij}(f)] = (-1)^{\tau(k)\tau(i)} D_{ij}(D_k(f)), \forall k, i, j \in Y.$$

$$3) \quad [\mathrm{D}_{ij}(f), \mathrm{D}_{kl}(g)]$$

$$= (-1)^{\tau(i)\tau(k)+\tau(j)(\tau(i)+d(f))+(\tau(k)+\tau(l))d(f)} D_{ik}(D_{j}(f)D_{l}(g))$$

$$-(-1)^{\tau(j)\tau(k)+\tau(j)d(f)+(\tau(k)+\tau(l))d(g)} D_{jk}(D_{i}(f)D_{l}(g))$$

$$-(-1)^{\tau(i)\tau(l)+\tau(j)(\tau(i)+d(f))+\tau(k)\tau(l)} D_{il}(D_{j}(f)D_{k}(g))$$

$$+(-1)^{\tau(j)\tau(l)+\tau(j)d(f)+\tau(k)\tau(l)} D_{jl}(D_{i}(f)D_{l}(g)).$$

证明 利用 (1.1) 式直接验证可得 1) 中各等式. 2) 中的等式就是 §1 的 (1.2) 式. 利用 (1.1) 式与第一章引理 2.8(令第一章引理 2.8 中的 t_1, t_2, r_1 与 r_2 分别为 i, j, k 与 l), 直接计算可得 3). \square

引理 3.11 设 $h_k = x_k D_k$, $k \in Y$, 则 $h_k \in Nor_W(S)$.

证明 只需证对任意 $D_{ij}(x^{(\alpha)}x^{u})$, 均有 $[h_k, D_{ij}(x^{(\alpha)}x^{u})] \in S$. 我们分情况讨论.

(a) $k \in Y_0$. 若 $i, j \in Y_0$, 则

$$\begin{aligned} [h_k, \mathrm{D}_{ij}(x^{(\alpha)}x^u)] \\ &= [x_k \mathrm{D}_k, x^{(\alpha-\epsilon_i)}x^u \mathrm{D}_j] - [x_k \mathrm{D}_k, x^{(\alpha-\epsilon_j)}x^u \mathrm{D}_i] \\ &= (\alpha_k - \delta_{kj} - \delta_{ki})x^{(\alpha-\epsilon_i)}x^u \mathrm{D}_j - (\alpha_k - \delta_{ki} - \delta_{kj})x^{(\alpha-\epsilon_j)}x^u \mathrm{D}_i \\ &= (\alpha_k - \delta_{kj} - \delta_{ki})\mathrm{D}_{ij}(x^{(\alpha)}x^u) \in \mathrm{S}. \end{aligned}$$

 $若 i, j \in Y_1$, 则可算得

$$[h_k, \mathrm{D}_{ij}(x^{(\alpha)}x^u)] = -2\alpha_k \mathrm{D}_{ij}(x^{(\alpha)}x^u) \in S.$$

 $若 i \in Y_0, j \in Y_1, 则$

$$[h_k, \mathrm{D}_{ij}(x^{(\alpha)}x^u)] = (\alpha_k - \delta_{ki})\mathrm{D}_{ij}(x^{(\alpha)}x^u) \in \mathrm{S}.$$

若 $i \in Y_1, j \in Y_0$, 由引理 3.10 的 1) 知

$$[h_k, \mathbf{D}_{ij}(x^{(\alpha)}x^u)] = \lambda[h_k, \mathbf{D}_{ji}(x^{(\alpha)}x^u)] \in S,$$

其中 $\lambda = 1$ 或 -1.

(b) $k \in Y_1$, 并且 $k \notin \{i, j\}$. 若 $k \in \{u\}$, 我们断言 $x_k D_k(D_i(x^{(\alpha)}x^u)) = D_i(x^{(\alpha)}x^u)$ 事实上, 当 $i \in Y_0$ 时, 有

$$\begin{aligned} x_k \mathrm{D}_k(\mathrm{D}_i(x^{(\alpha)}x^u)) &= x_k \mathrm{D}_k(x^{(\alpha-\varepsilon_i)}x^u) = x^{(\alpha-\varepsilon_i)}(x_k \mathrm{D}_k)(x^u) \\ &= x^{(\alpha-\varepsilon_i)}x^u = \mathrm{D}_i(x^{(\alpha)}x^u). \end{aligned}$$

当 $i \in Y_1$ 时, 因为 $i \neq k$, 故

$$\begin{split} x_k \mathrm{D}_k(\mathrm{D}_i(x^{(\alpha)}x^u)) &= x_k \mathrm{D}_k(x^{(\alpha)}\partial_i(x^u)) = x^{(\alpha)}(x_k \mathrm{D}_k)(\partial_i(x^u)) \\ &= x^{(\alpha)}\partial_i(x^u) = \mathrm{D}_i(x^{(\alpha)}x^u). \end{split}$$

所以断言成立. 同理知 $x_k D_k(D_j(x^{(\alpha)}x^u)) = D_j(x^{(\alpha)}x^u)$. 因此

$$\begin{split} [h_k, \mathbf{D}_{ij}(x^{(\alpha)}x^u)] \\ &= (-1)^{\tau(i)\tau(j)}(x_k\mathbf{D}_k)(\mathbf{D}_i(x^{(\alpha)}x^u))\mathbf{D}_j \\ &- (-1)^{(\tau(i)+\tau(j))\mathbf{d}(x^u)}(x_k\mathbf{D}_k)(\mathbf{D}_j(x^{(\alpha)}x^u))\mathbf{D}_i \\ &= (-1)^{\tau(i)\tau(j)}\mathbf{D}_i(x^{(\alpha)}x^u)\mathbf{D}_j - (-1)^{(\tau(i)+\tau(j))\mathbf{d}(x^u)}\mathbf{D}_j(x^{(\alpha)}x^u)\mathbf{D}_i \\ &= \mathbf{D}_{ij}(x^{(\alpha)}x^u) \in \mathbf{S}. \end{split}$$

若 $k \notin \{u\}$, 则 $[h_k, D_{ij}(x^{(\alpha)}x^u)] = 0 \in S$.

(c)
$$k \in Y_1, k = i, k \neq j$$
. \square

$$\begin{aligned} [h_k, \mathbf{D}_{kj}(x^{(\alpha)}x^u)] \\ &= (-1)^{(\tau(k)+\tau(j))d(x^u)} \mathbf{D}_j(x^{(\alpha)}x^u) \mathbf{D}_k \\ &= -\mathbf{D}_{kj}(x^{(\alpha)}x^u) \in \mathbf{S}. \end{aligned}$$

(d) $k \in Y_1, k \neq i, k = j$. \mathbb{N}

$$[h_k, \mathbf{D}_{ik}(x^{(\alpha)}x^u)] = \lambda[h_k, \mathbf{D}_{ki}(x^{(\alpha)}x^u)] \in \mathbf{S},$$

其中 $\lambda = 1$ 或 -1.

综上知 $h_k \in Norw(S)$. □

命题 3.12 设 $t \ge 0$. 今 $T = \sum_{k=1}^{s} Fh_k$, 其中 $h_k = x_k D_k$. 则 $Der_t(S) = ad(\overline{S} + T)_t$.

证明 由引理 3.9 知, S 是 \overline{S} 的理想. 由引理 3.11 知 $T \subseteq Norw(S)$, 故 ad $(\overline{S} + T) \subseteq Der(S)$, 从而 ad $(\overline{S} + T)_t \subseteq Der_t(S)$.

任取 $\phi \in \operatorname{Der}_{t}(S)$, 由命题 2.6 知存在 $y \in \operatorname{Norw}(S)$, 使得 $\phi = \operatorname{ad} y$. 因为 $D_{i} \in S$, $\forall i \in Y$, 所以 $[D_{i}, y] \in S \subseteq \overline{S}$, 从而 $\operatorname{div}([D_{i}, y]) = 0$. 显然 $\operatorname{div}(D_{i}) = 0$, 于是由 引理 3.8 可得 $D_{i}(\operatorname{div}(y)) = 0$, $\forall i \in Y$. 故 $\operatorname{div}(y) \in \mathbb{F}$. 随之有 $\operatorname{div}(y - \operatorname{div}(y)h_{1}) = 0$, 所以 $y - \operatorname{div}(y)h_{1} \in \overline{S}$. 于是 $y \in \overline{S} + T$. 因此 $\phi \in \operatorname{ad}(\overline{S} + T)$. 这就得到 $\operatorname{Der}_{t}(S) \subseteq \operatorname{ad}(\overline{S} + T)_{t}$. 故 $\operatorname{Der}_{t}(S) = \operatorname{ad}(\overline{S} + T)_{t}$.

命題 3.13 $\operatorname{Der}_{-1}(S) = \operatorname{ad} S_{-1}$.

证明 显然 ad S_1 ⊆ Der_1(S). 设 φ ∈ Der_1(S). 我们知道

$$S_0 = \operatorname{span}_{\mathbb{F}} \{ D_{ij}(x^{(\alpha)}x^u) \mid i, j \in Y, |\alpha| + |u| = 2 \}.$$

易知 $S_0 = \operatorname{span}_{\mathbb{P}} \{A_{ij}, x_i D_j \mid i, j \in Y, i \neq j\},$ 其中

$$A_{ij} = x_i \mathbf{D}_i - (-1)^{\tau(i) + \tau(j)} x_j \mathbf{D}_j.$$

- (i) 因为 $zd(\phi) = -1$, 所以 $\phi(S_0) \subseteq S_{-1}$. 故可设 $\phi(A_{ij}) = \sum_{l=1}^s a_l D_l$, 其中 $a_l \in \mathbb{F}$. 设 $\phi(A_{jh}) = \sum_{k=1}^s b_k D_k$, 其中 $h \neq i, j, b_k \in \mathbb{F}$. 将 ϕ 作用于等式 $[A_{ij}, A_{jh}] = 0$, 可 得 $a_h = 0$. 于是 $\phi(A_{ij}) = a_i D_i + a_j D_j$, 其中 $a_i, a_j \in \mathbb{F}$.
- (ii) 可设 $\phi(x_iD_j) = \sum_{k=1}^{s} c_k D_k, c_k \in \mathbb{F}$. 应用 ϕ 于等式 $[A_{ij}, x_iD_j] = (1+(-1)^{\tau(i)+\tau(j)})$ x_iD_j , 利用 (i) 可推得 $c_k = 0$, 其中 $k \neq i, j$. 于是 $\phi(x_iD_j) = c_iD_i + c_jD_j$. 设 $l \notin \{i, j\}$. 由 (i), 可设 $\phi(A_{li}) = a_lD_l + a_iD_i$. 将 ϕ 作用于等式

$$[A_{li}, x_i \mathbf{D}_j] = -(-1)^{\tau(l)+\tau(i)} x_i \mathbf{D}_j,$$

可推得 $c_i = 0$. 故 $\phi(x_i D_j) = c_j D_j, c_j \in F$. 从而可设 $\phi(x_i D_{i+1}) = r_i D_{i+1}, r_i \in F, i = 1, \dots, s-1, \phi(x_s D_1) = r_s D_1, r_s \in F$.

命題 3.14 设 $T = \{D_{ij}(x^{(ke_j)}) \mid k \leq \pi_j, i \in Y, j \in Y_0\}, M = \{D_{ij}(x_ks_l) \mid i, j, k, l \in Y\}. 则 <math>T \cup M$ 生成 S.

证明 设 Q 是由 $T \cup M$ 生成的 S 的子代数. 我们分以下几步证明本命题.

(i) 对 t 用归纳法证明 $D_{t-1} t(x^{(n_1 \epsilon_1 + \cdots + n_t \epsilon_t)}) \in Q$, 其中 $t \in Y_0$. 先考察 t = 2 的情形. 设 $k, l \in Y_1, k \neq l$, 则有

$$\begin{split} & \mathbf{D_{1\,2}}(x^{(2\varepsilon_1)}x_k) = [\mathbf{D_{1\,2}}(x^{(3\varepsilon_1)}), \mathbf{D_{l\,1}}(x_kx_l)] \in Q, \\ & \mathbf{D_{1\,k}}(x^{((\pi_1-1)\varepsilon_1)}x_k) = -[\mathbf{D_{1\,k}}(x^{(\pi_1\varepsilon_1)}), \mathbf{D_{1\,l}}(x_lx_k)] \in Q, \end{split}$$

$$D_{12}(x^{(\pi_{1}\epsilon_{1})}x_{k}) = \{D_{12}(x^{(2\epsilon_{1})}x_{k}), D_{1k}(x^{((\pi_{1}-1)\epsilon_{1})}x_{k})\} \in Q,$$

$$D_{2k}(x^{((\pi_{1}-1)\epsilon_{1}+(\pi_{2}-1)\epsilon_{2})}x_{k}) = -[D_{12}(x^{(\pi_{1}\epsilon_{1})}x_{k}), D_{k2}(x^{(\pi_{2}\epsilon_{2})})] \in Q,$$

$$D_{2k}(x^{(2\epsilon_{2})}x_{k}) = -[D_{2k}(x^{(3\epsilon_{2})}), D_{2l}(x_{l}x_{k})] \in Q,$$

$$D_{2k}(x^{((\pi_{1}-1)\epsilon_{1}+\pi_{2}\epsilon_{2})}x_{k}) = -[D_{2k}(x^{((\pi_{1}-1)\epsilon_{1}+(\pi_{2}-1)\epsilon_{2})}x_{k}), D_{2k}(x^{(2\epsilon_{2})}x_{k})] \in Q;$$

$$(3.2)$$

同理有

$$D_{1k}(x^{(\pi_1\varepsilon_1+(\pi_2-1)\varepsilon_2)}x_k) \in Q.$$
 (3.3)

此外,

$$D_{12}(x^{(2\varepsilon_{2}+\varepsilon_{1})}) = -[D_{12}(x^{(3\varepsilon_{2})}), D_{12}(x^{(2\varepsilon_{1})})] \in Q,$$

$$D_{12}(x^{(\pi_{1}\varepsilon_{1}+\varepsilon_{2})}) = [D_{12}(x^{(\pi_{1}\varepsilon_{1})}), D_{12}(x^{(2\varepsilon_{2}+\varepsilon_{1})})] \in Q,$$

$$D_{k1}(x^{((\pi_{2}-1)\varepsilon_{2})}x_{k}) = -[D_{12}(x^{(\pi_{2}\varepsilon_{2})}), D_{k2}(x^{(\varepsilon_{2})}x_{k})] + D_{12}(x^{(\pi_{2}\varepsilon_{2})}) \in Q,$$

$$D_{12}(x^{((\pi_{1}-1)\varepsilon_{1}+\pi_{2}\varepsilon_{2})}) = [D_{12}(x^{(\pi_{1}\varepsilon_{1}+\varepsilon_{2})}), D_{k1}(x^{((\pi_{2}-1)\varepsilon_{2})}x_{k})] \in Q,$$

$$D_{1k}(x^{(2\varepsilon_{1})}x_{k}) = [D_{1k}(x^{(3\varepsilon_{1})}), D_{1l}(x_{l}x_{k})] \in Q.$$
(3.5)

由 (3.2), (3.3), (3.4), (3.5) 式可得

$$\begin{split} \mathrm{D}_{1\,2}(x^{(\pi_1\varepsilon_1+\pi_2\varepsilon_2)}) &= -\mathrm{D}_{2\,1}(x^{(\pi_1\varepsilon_1+\pi_2\varepsilon_2)}) \\ &= [\mathrm{D}_{1\,2}(x^{((\pi_1-1)\varepsilon_1+\pi_2\varepsilon_2)}x_k), \mathrm{D}_{1\,k}(x^{(2\varepsilon_1)}x_k)] \\ &- \mathrm{D}_{1\,k}(x^{(\pi_1\varepsilon_1+(\pi_2-1)\varepsilon_2)}x_k) - \mathrm{D}_{2\,k}(x^{((\pi_1-1)\varepsilon_1+\pi_2\varepsilon_2)}x_k) \in Q. \end{split}$$

故 t=2 时结论成立.

假设 t=i 时结论成立, 即 $D_{i-1}i(x^{(\delta)}) \in Q$, 其中 $\delta=\pi_1\varepsilon_1+\cdots+\pi_i\varepsilon_i$. 因为

$$\mathbf{D}_{i-1\ i}(x^{(\pi_{i-1}\varepsilon_{i-1}+\varepsilon_i)}) = -[\mathbf{D}_{i-1\ i+1}(x^{(\pi_{i+1}\varepsilon_{i+1})}), \mathbf{D}_{i\ i+1}(x^{(2\varepsilon_{i+1}+\varepsilon_i)})] \in Q,$$

所以

$$\mathbf{D}_{i-1 \ i}(x^{(\delta-\varepsilon_{i-1}+\pi_{i+1}\varepsilon_{i+1})}) = -[\mathbf{D}_{i-1 \ i}(x^{(\delta)}), \mathbf{D}_{i-1 \ i}(x^{(\pi_{i+1}\varepsilon_{i+1}+\varepsilon_{i})})] \in Q.$$

于是

$$\mathbf{D}_{i\ i+1}(x^{(\delta+\pi_{i+1}\varepsilon_{i+1})}) = [\mathbf{D}_{i-1\ i}(x^{(\delta-\varepsilon_{i+1}+\pi_{i+1}\varepsilon_{i+1})}), \mathbf{D}_{i-1\ i+1}(x^{(3\varepsilon_{i-1})})] \in Q.$$

归纳法完成. 从而可得 $D_{m-1m}(x^{(\pi)}) \in Q$.

 \mathcal{O}_{σ} 是 $\{1,2,\cdots,m\}$ 的任一个置换, 同理知

$$\mathbf{D}_{\sigma(m+1)\;\sigma(m)}(x^{(\pi_{\sigma(1)}\varepsilon_{\sigma(1)}+\cdots+\pi_{\sigma(m)}\varepsilon_{\sigma(m)})})\in Q.$$

显然 $\pi_{\sigma(1)}\varepsilon_{\sigma(1)} + \cdots + \pi_{\sigma(m)}\varepsilon_{\sigma(m)} = \pi$, 从而可知 $D_{ij}(x^{(\pi)}) \in Q$, $\forall i, j \in Y_0$.

(ii) 对 t 用归纳法证明 $D_{ri}(x^{(\pi)}x_{m+1}x_{m+2}\cdots x_t) \in Q$, 其中 $r \in Y_1, i \in Y_0, t \in Y_1$.

设 $k \in Y_1 \setminus \{r\}, j \in Y_0 \setminus \{i\}, 则有$

$$D_{r,i}(x^{(2e_i)}x_k) = [D_{r,i}(x^{(3e_i)}), D_{i,j}(x_kx_j)] \in Q;$$

同理有 $D_{r,j}(x^{(2\epsilon_j)}x_k) \in Q$. 由 (i) 知

$$D_{r,i}(x^{(\pi)}x_k) = [D_{j,i}(x^{(\pi)}), D_{r,j}(x^{(2\epsilon_j)}x_k)] \in Q,$$

从而

$$egin{aligned} & \mathbf{D}_{r|k}(x^{(\pi)}x_k) = -[\mathbf{D}_{r|i}(x^{(\pi)}x_k), \mathbf{D}_{k|i}(x^{(2arepsilon_i)}x_k)] \in Q, \\ & \mathbf{D}_{r|i}(x^{(\pi)}x_{m+1}) = [\mathbf{D}_{r|k}(x^{(\pi)}x_k), \mathbf{D}_{i|k}(x_{m+1}x_k)] \in Q. \end{aligned}$$

所以当 t = m + 1 时结论成立. 假设 t = k 时结论成立, 即 $D_{r,i}(x^{(\pi)}x_{m+1}\cdots x_k) \in Q$, 其中 $r \in Y_1, i \in Y_0$. 取 $j \in Y_0 \setminus \{i\}, l \in Y_1 \setminus \{k+1\}$, 则

$$egin{aligned} & \mathbf{D}_{i\;i}(x^{(2arepsilon_i)}x_{k+1}) = [\mathbf{D}_{i\;j}(x^{(3arepsilon_i)}), \mathbf{D}_{l\;i}(x_lx_{k+1})] \in Q, \\ & \mathbf{D}_{i\;j}(x_ix_jx_{k+1}) = [\mathbf{D}_{l\;i}(x_jx_l), \mathbf{D}_{j\;i}(x^{(2arepsilon_i)}x_{k+1})] \in Q. \end{aligned}$$

由归纳假设知

$$D_{r,i}(x^{(\pi)}x_{m+1}\cdots x_kx_{k+1}) = -[D_{r,i}(x^{(\pi)}x_{m+1}\cdots x_k), D_{i,j}(x_ix_jx_{k+1})] \in Q.$$

归纳法完成. 由此可得 $D_{ri}(x^{(\pi)}x^E) \in Q, \forall r \in Y_1, \forall i \in Y_0$. 任取 $l \in Y_1 \setminus \{r\}$, 则

$$\begin{split} & \mathrm{D}_{r\,i}(x^{(\pi)}x^E) = -[\mathrm{D}_{r\,i}(x^{(\pi)}x^E), \mathrm{D}_{r\,i}(x_ix_r)] \in Q, \\ & \mathrm{D}_{r\,r}(x^{(\pi)}x^E) = -[\mathrm{D}_{r\,i}(x^{(\pi)}x^E), \mathrm{D}_{r\,i}(x_ix_l)] \in Q, \end{split}$$

其中 $i \in Y_0, r \in Y_1$. 任取 $i, j \in Y_0$, 则

$$\mathbf{D}_{i|j}(x^{(\pi)}x^E) = [\mathbf{D}_{r|i}(x^{(\pi)}x^E), \mathbf{D}_{j|l}(x_lx_r)] \in Q,$$

其中 $r, l \in Y_1$. 综上, 我们证明了 $D_{l,k}(x^{(\pi)}x^E) \in Q, \forall l, k \in Y$.

(iii) 我们对 $t = (|\pi| + |E|) - (|\alpha| + |u|)$ 用归纳法证明 $D_{ij}(x^{(\alpha)}x^u) \in Q$, 其中 $\alpha \in A(m,\underline{t}), u \in B(n)$. 当 t = 0 时, 由 (ii) 知结论成立. 设 $t \geq 1$. 若 $|\alpha| < |\pi|$, 则存在 $k \in Y_0$, 使得 $x^{(\alpha+\epsilon_k)}x^u \in \Lambda(m,n,\underline{t})$. 由归纳假设知 $D_{ij}(x^{(\alpha+\epsilon_k)}x^u) \in Q$, 从而 $D_{ij}(x^{(\alpha)}x^u) = [D_k,D_{ij}(x^{(\alpha+\epsilon_k)}x^u)] \in Q$.

者 $\alpha = \pi$, 由 $t \ge 1$ 知 |u| < |E|. 故存在 $k \in Y_1$, 使得 $x_k x^u \ne 0$. 由归纳假设知

$$\mathrm{D}_{i,j}(x^{(lpha)}x^u) = (-1)^{\tau(k) au(i)}[\mathrm{D}_k,\mathrm{D}_{i,j}(x^{(lpha)}x_kx^u)] \in Q.$$

归纳法完成.由(ii)知 Q = S. □

引理 3.15 设 $\phi \in \text{Der}_{-t}(S)$, 其中 t > 1. 若 $\phi(D_{ij}(x^{((t+1)s_j)})) = 0, \forall j \in Y_0, i \in Y$, 則 $\phi = 0$.

证明 若 $k \leq t$, 考察 \mathbb{Z} - 次数知 $\phi(D_{ij}(x^{(k\epsilon_j)})) = 0$. 由已知, $\phi(D_{ij}(x^{((t+1)\epsilon_j)})) = 0$. 设 k > t + 1. 对 k 用归纳法证明 $\phi(D_{ij}(x^{(k\epsilon_j)})) = 0$. 假设 $\phi(D_{ij}(x^{(k-1)\epsilon_j)})) = 0$. 因为

$$[\mathbf{D}_l, \mathbf{D}_{ij}(x^{(k\varepsilon_j)})] = (-1)^{\tau(l)\tau(i)} \delta_{jl} \mathbf{D}_{ij}(x^{((k-1)\varepsilon_j)}), \quad \forall l \in Y,$$

所以,由引理 2.7 知 $\phi(D_{ij}(x^{(k\varepsilon_j)})) \in S_{-1}$. 又因为 $\phi(D_{ij}(x^{(k\varepsilon_j)})) \in S_{k-2-t}$, 并且 k-2-t > -1, 所以 $\phi(D_{ij}(x^{(k\varepsilon_j)})) = 0$, $\forall j \in Y_0, \forall i \in Y$. 显然 $\phi(D_{ij}(x_kx_l)) \in S_{-t} = 0$. 由命题 3.14 知 $\phi(S) = 0$. 故 $\phi = 0$.

命题 3.16 设 t > 1. 若不存在正整数 k, 使得 $t = p^k$, 则 $Der_{-t}(S) = 0$.

证明 设 $\phi \in Der_{-t}(S)$. 分以下两种情况讨论.

(i) $t \not\equiv 0 \pmod{p}$. 因为 $\phi(S_{t-1}) \subseteq S_{-1}$, 故可设 $\phi(D_{ij}(x^{((t+1)\varepsilon_j)})) = \sum_{l=1}^s a_l D_l$, 其中 $a_l \in \mathbb{F}, i \in Y, j \in Y_0$.

者 $k \neq i$, 将 ϕ 作用于等式 $[D_{ij}(x^{((t+1)\epsilon_j)}), D_{ji}(x_jx_k)] = 0$, 可得 $a_k = 0$. 从而

$$\phi(\mathbf{D}_{ij}(\mathbf{x}^{((t+1)\varepsilon_j)}) = a_i \mathbf{D}_i. \tag{3.6}$$

若 i ∈ Y₀, 则

$$[D_{ij}(x^{((t+1)\varepsilon_j)}), D_{ij}(x_j x_i)] = -(t+1)D_{ij}(x^{((t+1)\varepsilon_j)}).$$
(3.7)

 $若 i \in Y_1$, 则

$$[D_{ij}(x^{((t+1)\varepsilon_j)}), D_{ij}(x_j x_i)]$$

$$= -(t+1)D_{ij}(x^{((t+1)\varepsilon_j)}) + D_{ii}(x^{(t\varepsilon_j)} x_i)$$

$$= -(t-1)D_{ij}(x^{((t+1)\varepsilon_j)}).$$
(3.8)

将 φ 作用于 (3.7) 式, 利用 (3.6) 式可得

$$[a_i \mathbf{D}_i, x_j \mathbf{D}_j - x_i \mathbf{D}_i] = -(t+1)a_i \mathbf{D}_i.$$

于是有 $ta_iD_i = 0$. 将 ϕ 作用于 (3.8) 式, 利用 (3.6) 式也可得 $ta_iD_i = 0$, 从而 $a_i = 0, \forall i \in Y$. 故 $\phi(D_{ij}(x^{((t+1)\varepsilon_j)}) = 0, \forall i \in Y$. 由引理 3.15 知 $\phi = 0$.

(ii) $t \equiv 0 \pmod{p}$. 将 t 写成 p-adic 数的形式 $t = \sum_{i=1}^{r} a_i p^i$, 其中 $a_r \neq 0$. 由已知, 若 $a_1 = \cdots = a_{r-1} = 0$, 则 $a_r > 1$. 从而可知

$$\binom{t}{p^r} \not\equiv 0 \pmod{p}, \quad \binom{t}{p^r-1} \equiv 0 \pmod{p}.$$

故

$$egin{pmatrix} t \ p^r \end{pmatrix} = egin{pmatrix} t \ p^r \end{pmatrix} + egin{pmatrix} t \ p^r - 1 \end{pmatrix}
ot\equiv 0 \pmod{p}.$$

显然 $t-p^r+2 < t-1$, $p^r+1 < t+1$. 考察 Z- 次数知 $\phi(D_{ij}(x^{((t-p^r+2)\epsilon_j)})) = \phi(D_{ij}(x^{(p^r\epsilon_j)}x_i)) = 0$, 其中 $j \in Y_0, i \in Y$. 将 ϕ 作用于等式

$$[\mathbf{D}_{ij}(x^{((t-p^r+2)\varepsilon_j)}),\mathbf{D}_{ij}(x^{(p^r\varepsilon_j)}x_i)] = -\binom{t+1}{p^r}\mathbf{D}_{ij}(x^{((t+1)\varepsilon_j)}),$$

可知 $\phi(D_{ij}(x^{((t+1)\varepsilon_j)})=0, \forall j\in Y_0,\ i\in Y_i$ 由引理 3.15 知 $\phi=0$.

命题 3.17 设 $t=p^r$, 其中 r>0. 则

$$\operatorname{Der}_{-t}(S) = \operatorname{span}_{F} \{ (\operatorname{ad} D_{i})^{t} \mid i \in Y_{0} \}.$$

证明 设 $\phi \in \operatorname{Der}_{-t}(S)$,则 $\operatorname{zd}(\phi(\operatorname{D}_{ij}(x^{(t\varepsilon_j)}x_i)) = -t + (t-1) = -1$. 故可设 $\phi(\operatorname{D}_{ij}(x^{(t\varepsilon_j)}x_i)) = \sum_{l=1}^s b_l \operatorname{D}_l$, 其中 $b_l \in \mathbb{F}, j \in Y_0, i \in Y$. 因为 $t \equiv 0 \pmod p$, 所以

$$[D_{ij}(x^{(t\varepsilon_j)}x_i), D_{ij}(x_jx_i)] = D_{ij}(x^{(t\varepsilon_j)}x_i) + tD_{ij}(x^{(t\varepsilon_j)})$$

$$= D_{ij}(x^{(t\varepsilon_j)}x_i), \qquad (3.9)$$

其中 $j \in Y_0, i \in Y$. 应用 ϕ 于 (3.9) 式, 可得 $b_i = 0$, 其中 $l \neq j, i$. 则

$$\phi(\mathbf{D}_{ij}(x^{(t\varepsilon_j)}x_i)) = b_i\mathbf{D}_i + b_j\mathbf{D}_j. \tag{3.10}$$

 $\mathcal{Q}(\mathbf{D}_{ij}(x^{((t+1)\epsilon_j)}) = \sum_{l=1}^s a_l \mathbf{D}_l$. 应用 ϕ 于等式

$$[D_{ij}(x^{((t+1)\varepsilon_j)}), D_{ji}(x_jx_k)] = 0, \ k \neq i,$$

可得 $a_l = 0$, 其中 $l \neq i$. 因而

$$\phi(\mathbf{D}_{ij}(x^{((t+1)\varepsilon_j)})) = a_i \mathbf{D}_i, i \in Y.$$
(3.11)

$$[\mathbf{D}_{ij}(x^{(i\epsilon_j)}x_i), \mathbf{D}_{ij}(x^{(2\epsilon_j)})] = \mathbf{D}_{ij}(x^{((t+1)\epsilon_j)}),$$

并利用 (3.10) 与 (3.11) 式可得 $a_i = -b_j$.

设 $l \neq i$. 由 (5.11) 式可得 $\phi(D_{lj}(x^{((t+1)\epsilon_j)})) = c_l D_l$, 其中 $c_l \in \mathbb{F}$. 将 ϕ 作用于等式

$$[\mathbf{D}_{ij}(x^{(t\epsilon_j)}x_i),\mathbf{D}_{jl}(x^{(2\epsilon_j)})] = -\mathbf{D}_{lj}(x^{((t+1)\epsilon_j)}),$$

则可得 $c_i = -b_j$. 综上, 我们证明了对任意 $j \in Y_0$, 存在 $b_j \in \mathbb{F}$, 使得对任意 $l \in Y \setminus \{j\}$, 均有

$$\phi(\mathcal{D}_{lj}(x^{((t+1)\epsilon_j)})) = -b_j \mathcal{D}_l.$$

令 $\psi = \phi - \sum_{j=1}^{m} b_j (\operatorname{ad} D_j)^t$, 则 $\psi(D_{lk}(x^{\{(t+1)\varepsilon_k\}})) = 0$, 其中 $k \in Y_0, l \in Y$. 由引理 3.15 知 $\psi = 0$. 故 $\phi = \sum_{j=1}^{m} b_j (\operatorname{ad} D_j)^t \in \operatorname{span}_{\mathbf{F}}\{(\operatorname{ad} D_j)^t \mid j \in Y_0\}$.

由命题 3.12, 3.13, 3.16, 3.17 与命题 2.9 可得以下定理.

定理 3.18 $\operatorname{Der}(S) = \operatorname{ad}(\overline{S} + T) \oplus \operatorname{span}_{F} \{ (\operatorname{ad} D_{i})^{p^{k_{i}}} \mid i \in Y_{0}, 1 \leq k_{i} \leq t_{i} - 1 \}.$

§4 H 的导子超代数

我们讨论李超代数 H 的导子超代数, 这里 H = H(m,n,t), 并且 m = 2r 是偶数. 由 §1 节知 H = $\bigoplus_{i=-1}^{\xi-3}$ H, 是 Z- 阶化李超代数.

设 $\theta \in \mathbb{Z}_2$. 令

$$\begin{split} \widetilde{\mathbf{H}}(m,n,\underline{t})_{\theta} &= \left\{ \sum_{i=1}^{s} f_{i} \mathbf{D}_{i} \in \mathbf{W} \mid \mathbf{D}_{i}(f_{j}) \right. \\ &= (-1)^{\tau(i)\tau(j) + (\tau(i) + \tau(j))\theta} \sigma(i)\sigma(j) \mathbf{D}_{j}(f_{i}), \forall i, j \in Y \right\}, \end{split}$$

其中 i' 与 σ(i) 分别按第一章 (2.11) 与 (2.12) 式定义. 令

$$\widetilde{\mathrm{H}}(m,n,\underline{t}) = \widetilde{\mathrm{H}}(m,n,\underline{t})_{\overline{0}} \oplus \widetilde{\mathrm{H}}(m,n,\underline{t})_{\overline{1}}.$$

通常我们简记 $\tilde{H}(m,n,\underline{t})$ 为 \tilde{H} .

引理 4.1 设 $\sum_{i=1}^{s} f_i D_i \in \widetilde{H}_{\theta}$, $\sum_{j=1}^{s} g_j D_j \in \widetilde{H}_{\mu}$, 其中 $\theta, \mu \in \mathbb{Z}_2$. 则

$$\left[\sum_{i=1}^s f_i \mathbf{D}_i, \sum_{j=1}^s g_j \mathbf{D}_j\right] = \mathbf{D}_{\mathbf{H}}(h),$$

其中 $h = \sum_{i=1}^{s} \sigma(i)(-1)^{\tau(i)\mu} f_i g_{i'}$.

证明 由已知,对任意的 $i, j \in Y$, 有

$$D_{i}(f_{j'}) = (-1)^{\tau(i)\tau(j) + (\tau(i) + \tau(j))\theta} \sigma(i)\sigma(j)D_{j}(f_{i'}),$$

$$D_{i}(g_{j'}) = (-1)^{\tau(i)\tau(j) + (\tau(i) + \tau(j))\mu} \sigma(i)\sigma(j)D_{j}(g_{i'}).$$
(4.1)

于是,完全仿照第一章引理 2.10 的证明即可证得本引理. □

引理 4.2 以下命题成立:

- 1) H 是 W 的子代数.
- 2) $H \subseteq \widetilde{H}$.
- 3) H是 H 的理想.

证明 1) 此为引理 4.1 的直接结果.

- 2) 任取 $D_H(f) \in H_\theta$, 其中 $\theta \in \mathbb{Z}_2$. 设 $D_H(f) = \sum_{i=1}^s f_i D_i$, 则 $f_i = \sigma(i')(-1)^{\tau(i')\theta} D_{i'}(f)$. 直接验证可知, $\{f_i \mid i \in Y\}$ 满足 (4.1) 式, 故 $\sum_{i=1}^s f_i D_i \in \widetilde{H}_\theta$, 即 $D_H(f) \in \widetilde{H}_\theta$, 所以 $H_\theta \subseteq \widetilde{H}_\theta$. 于是 $H \subseteq \widetilde{H}$.
 - 3) 由 2) 与 1) 知, [H, H] ⊆ [H, H] ⊆ H. 故 H 是 H 的理想. □

设 R 是域 F 上有 1 的结合代数, 则 R 是环, 并可设 $F \subseteq R$. 令 $R(2r,\underline{t})$ 是 R 上具有生成元 $\{x^{(\alpha)} \mid \alpha \in A(2r,\underline{t})\}$ 的除幂代数. 于是

$$R(2r,t) = \operatorname{span}_R \{ x^{(lpha)} \mid lpha \in A(m,\underline{t}) \}.$$

仍设 $Y_0 = \{1, 2, \dots, 2r\}$, 其中 2r = m. 令 $D_i \in Der(R(2r, \underline{t}))$, 使得 $D_i(x^{(\alpha)}) = x^{(\alpha - \epsilon_i)}$, $\forall i \in Y_0$.

引理 4.3 设 $f_i \in R(2r,\underline{t})$, $i \in Y_0$. 若 f_i 是 $x_{i'}$ - 裁头的, $\forall i \in Y_0$, 并且 $D_i(f_{j'}) = \sigma(i)\sigma(j)D_j(f_{i'})$, $\forall i \in Y_0$, 则存在 $f \in R(2r,\underline{t})$, 使得 $D_i(f) = \sigma(i)f_{i'}$, $\forall i \in Y_0$.

证明 对r用归纳法证明本引理.设r=1.由已知, $D_1(f_{2'})=-D_2(f_{1'})$,即 $D_1(f_1)=-D_2(f_2)$.可设

$$D_1(f_1) = -D_2(f_2) = \sum_{i_1, i_2 \geq 0} a_{i_1 i_2} x^{(i_1 \epsilon_1 + i_2 \epsilon_2)},$$

其中 $a_{i_1i_2} \in R$. 又设

$$f_1 = \sum_{i_1, i_2 \ge 0} a_{i_1 i_2} x^{((i_1+1)\varepsilon_1 + i_2 \varepsilon_2)} + \sum_{j \ge 0} b_j x^{(j\varepsilon_2)}, \quad b_j \in R,$$

$$f_2 = -\sum_{i_1, i_2 \ge 0} a_{i_1 i_2} x^{(i_1\varepsilon_1 + (i_2+1)\varepsilon_2)} + \sum_{j \ge 0} c_j x^{(j\varepsilon_1)}, \quad c_j \in R.$$

令

$$f = -\sum_{i_1,i_2 \geq 0} a_{i_1i_2} x^{((i_1+1)\epsilon_1+(i_2+1)\epsilon_2)} + \sum_{j \geq 0} c_j x^{((j+1)\epsilon_1)} - \sum_{j \geq 0} b_j x^{((j+1)\epsilon_2)}.$$

因为 f_i 是 $x_{i'}$ - 截头的, 其中 i = 1, 2, 所以上式右边的后两项仍属于 $R(2, \underline{t})$, 从而 $f \in R(2, \underline{t})$. 易见 $D_1(f) = f_2 = \sigma(1)f_{1'}$, $D_2(f) = -f_1 = \sigma(2)f_{2'}$. 于是当 r = 1 时, 引理成立.

假设对 r-1, 引理成立. 我们可记 $R(2r,\underline{t})=R'(2(r-1),\underline{t}')$, 其中 $\underline{t}'=(t_1,\dots,t_{r-1},t_{r+1},\dots,t_{2r-1})$, $R'=R(2,\underline{t}'')$, $\underline{t}''=(t_r,t_{2r})$. 由归纳假设, 存在 $f_0\in R'(2(r-1),\underline{t}')$, 使得 $D_i(f_0)=\sigma(i)f_{i'}$, 其中 $i\in Y_0\setminus\{r,2r\}$. 于是有

$$\begin{aligned} \mathbf{D}_r(f_i) &= \mathbf{D}_r(\sigma(i')\mathbf{D}_{i'}(f_0)) = \mathbf{D}_r\mathbf{D}_{i'}(\sigma(i')f_0) \\ &= \mathbf{D}_{i'}\mathbf{D}_r(\sigma(i')f_0) \quad , \ \forall i \in Y_0 \setminus \{r, 2r\}. \end{aligned}$$

由已知、有

$$\begin{aligned} \mathbf{D}_r(f_i) = & \mathbf{D}_r(f_{(i')'}) = \sigma(r)\sigma(i')\mathbf{D}_{i'}(f_{r'}) \\ = & \sigma(r)\sigma(i')\mathbf{D}_{i'}(f_{2r}), \end{aligned}$$

所以 $\sigma(r)\sigma(i')D_{i'}(f_{2r}) = D_{i'}D_r(\sigma(i')f_0)$. 于是

$$D_{i'}(D_r(f_0) - \sigma(r)f_{2r}) = 0, \quad \forall i' \in Y_0 \setminus \{r, 2r\}. \tag{4.2}$$

设 $g = D_r(f_0) - \sigma(r)f_{2r}$. 由 (4.2) 式知 $g \in R'$. 设 $g' = D_{2r}(f_0) - \sigma(2r)f_r$, 同理可推 得 $g' \in R'$. 进而有

$$egin{aligned} & \mathrm{D}_r(g') = \mathrm{D}_r \mathrm{D}_{2r}(f_0) - \sigma(2r) \mathrm{D}_r(f_r), \ & \mathrm{D}_{2r}(g) = \mathrm{D}_{2r} \mathrm{D}_r(f_0) - \sigma(r) \mathrm{D}_{2r}(f_{2r}). \end{aligned}$$

由已知, $D_r(f_r) = \sigma(r)\sigma(r')D_{r'}(f_{r'}) = -D_{2r}(f_{2r})$, 所以 $D_r(g') = D_{2r}(g)$. 于是 $D_r(-g') = -D_{2r}(g)$. 因为当 m = 2 时引理成立, 所以存在 $h \in R'$, 使得 $D_r(h) = g$, $D_{2r}(h) = g'$.

令 $f = f_0 - h$, 则有

$$egin{aligned} & \mathrm{D}_i(f) = \mathrm{D}_i(f_0) = \sigma(i) f_{i'}, \quad i \in Y_0 \backslash \{r, 2r\}, \ & \mathrm{D}_r(f) = \mathrm{D}_r(f_0) - \mathrm{D}_r(h) = \mathrm{D}_r(f_0) - g = \sigma(r) f_{2r} = \sigma(r) f_{r'}, \ & \mathrm{D}_{2r}(f) = \mathrm{D}_{2r}(f_0) - \mathrm{D}_{2r}(h) = \mathrm{D}_{2r}(f_0) - g' = \sigma(2r) f_r = \sigma(2r) f_{(2r)'}. \end{aligned}$$

归纳法完成. 引理得证. 口

引理 4.4 设 $m=2r, m \leq k \leq s$, 其中 s=m+n. 令 $f_i \in \Lambda(m,n,\underline{t})_{\theta}$, 这里 $\theta \in \mathbb{Z}_2, i=1,2,\cdots,k$. 假设 f_i 是 $x_{i'}$ - 截头的, 并且

$$D_{i}(f_{j'}) = (-1)^{r(i)r(j) + (r(i) + r(j))\theta} \sigma(i)\sigma(j)D_{j}(f_{i'}), \tag{4.3}$$

 $i, j = 1, 2, \dots, k$. 那么, 存在 $f \in \Lambda(m, n, \underline{t})_{\theta}$, 使得

$$D_i(f) = \sigma(i)(-1)^{\tau(i)\theta}f_{i'}$$
, $i = 1, 2, \dots, k$.

证明 对 k 用归纳法. 由引理 4.3 知, 当 k=m 时本引理结论正确. 设 k>m. 假设对 k-1, 引理结论成立, 即存在 $g \in \Lambda(m,n,\underline{t})_{\theta}$, 使得 $D_i(g) = \sigma(i)(-1)^{r(i)\theta}f_{i'}$, $i=1,2,\cdots,k-1$. 则

$$D_{k}(f_{i}) = D_{k}(\sigma(i')(-1)^{\tau(i')\theta}D_{i'}(g))$$

$$= D_{k}D_{i'}(\sigma(i')(-1)^{\tau(i')\theta}g)$$

$$= (-1)^{\tau(i')}D_{i'}D_{k}(\sigma(i')(-1)^{\tau(i')\theta}g)$$

$$= D_{i'}D_{k}(\sigma(i')(-1)^{\tau(i')+\tau(i')\theta}g). \tag{4.4}$$

由已知,

$$D_k(f_i) = (-1)^{\tau(k)\tau(i') + (\tau(k) + \tau(i'))\theta} \sigma(k)\sigma(i')D_{i'}(f_k). \tag{4.5}$$

由 (4.4) 与 (4.5) 式知

$$D_{i'}D_k(\sigma(i')(-1)^{\tau(i')+\tau(i')\theta}g) = (-1)^{\tau(k)\tau(i')+(\tau(k)+\tau(i'))\theta}\sigma(k)\sigma(i')D_{i'}(f_k).$$

于是 $D_{i'}D_k(g) = (-1)^{\theta}D_{i'}(f_k)$. 故 $D_{i'}(D_k(g) - (-1)^{\theta}f_k) = 0$, $i' = 1, 2, \dots, k-1$. 因此, 可设 $D_k(g) - (-1)^{\theta}f_k = ax_k + b$, 这里 a = b 满足条件: $D_{i'}(a) = D_{i'}(b)$, $i = 1, 2, \dots, k$.

由已知, f_k 是 $x_{k'}$ 截头的. 因为 k' = k, 故 f_k 是 $x_{k'}$ 截头的. 于是 $D_k(g) - (-1)^{\theta} f_k$ 是 $x_{k'}$ 截头的, 从而 a = 0. 因此 $D_k(g) = (-1)^{\theta} f_k + b$, 并且 $D_i(b) = 0$, $i = 1, 2, \dots, k$. 令 $f = g - bx_k$, 则

$$\mathrm{D}_{i}(f) = \mathrm{D}_{i}(g) = \sigma(i)(-1)^{\tau(i)\theta}f_{i'}, \quad i = 1, 2, \cdots, k-1,$$
 $\mathrm{D}_{k}(f) = \mathrm{D}_{k}(g) - b = (-1)^{\theta}f_{k} = \sigma(k)(-1)^{\tau(k)\theta}f_{k'}.$

归纳法完成,引理得证. □

在第一章 §2 节中, 我们定义了 $\overline{H}(m,n,t)$. 我们知道

$$\overline{\mathrm{H}}(m,n,\underline{t}) = \mathrm{H}(m,n,\underline{t}) \oplus \mathbb{F}\mathrm{D}_{\mathrm{H}}(x^{(\pi)}x^{E}).$$

直接验证可知 $D_H(x^{(\pi)}x^E) \in \widetilde{H}(m,n,\underline{t})$, 故 $\overline{H}(m,n,\underline{t}) \subseteq \widetilde{H}(m,n,\underline{t})$.

引理 4.5 $\widetilde{\mathrm{H}}(m,n,\underline{t})=\mathrm{H}(m,n,\underline{t}+\underline{1})\cap\mathrm{W}(m,n,\underline{t})$, 其中 $\underline{1}=(1,1,\cdots,1)$.

证明 显然 $H(m,n,\underline{t+1}) \subseteq H(m,n)$. 所以

$$egin{aligned} &\mathrm{H}(m,n,\underline{t}+\underline{1})\cap\mathrm{W}(m,n,\underline{t})\subseteq\mathrm{H}(m,n)\cap\mathrm{W}(m,n,\underline{t}) \ &=\widetilde{\mathrm{H}}(m,n,\underline{t})\subseteq\widetilde{\mathrm{H}}(m,n,\underline{t}). \end{aligned}$$

反之, 任取 $y \in \widetilde{H}(m,n,\underline{t})$, 则 $y \in W(m,n,\underline{t})$. 设 $y = \sum_{i=1}^{s} f_{i}D_{i}$, 则 $f_{i} \in \Lambda(m,n,\underline{t})$, $\forall i \in Y$. 对任意 $i \in Y_{0}$, 显然 f_{i} 作为 $\Lambda(m,n,\underline{t}+\underline{1})$ 的元素是 $x_{i'}$ - 截头的. 由 $y \in \widetilde{H}(m,n,\underline{t})$ 知, 对任意 $i \in Y_{1}$, 有 $D_{i}(f_{i}) = -D_{i'}(f_{i'}) = -D_{i}(f_{i})$, 故 $D_{i}(f_{i}) = 0$. 所以 f_{i} 是 $x_{i'}$ - 截头的, $\forall i \in Y_{1}$. 因为 $y \in \widetilde{H}(m,n,\underline{t})$, 故 $\{f_{i} \mid i \in Y\}$ 满足 (4.3) 式 ((4.3) 式中的 k 取为 s). 由引理 4.4 知, 存在 $f \in \Lambda(m,n,\underline{t})$, 使得 $f_{i} = \sigma(i')(-1)^{\tau(i')\theta}D_{i'}(f)$, $\forall i \in Y$. 所以

$$y = \sum_{i=1}^{s} \sigma(i)(-1)^{\tau(i)\theta} \mathrm{D}_i(f) \mathrm{D}_{i'} = \mathrm{D}_{\mathrm{H}}(f) \in \mathrm{H}(m,n,\underline{t}+\underline{1}).$$

故 $\widetilde{H}(m, n, \underline{t}) \subseteq H(m, n, \underline{t} + \underline{1}) \cap W(m, n, \underline{t})$. 从而

$$\widetilde{\mathrm{H}}(m,n,\underline{t})=\mathrm{H}(m,n,\underline{t}+\underline{1})\cap\mathrm{W}(m,n,\underline{t}).$$

引理 4.6 我们有予空间直和分解:

$$\widetilde{\mathrm{H}}(m,n,\underline{t}) = \mathrm{H}(m,n,\underline{t}) \oplus \mathrm{FD}_{\mathrm{H}}(x^{(\pi)}x^E) \oplus \sum_{i=1}^m \mathrm{FD}_{\mathrm{H}}(x^{(p^{t_i}e_i)}).$$

证明 由引理 4.5, 只需证

$$egin{aligned} & \mathrm{H}(m,n,\underline{t}+\underline{1})\cap\mathrm{W}(m,n,\underline{t}) \ & = \mathrm{H}(m,n,\underline{t})\oplus\mathrm{FD}_{\mathrm{H}}(x^{(\pi)}x^E)\oplus\sum_{i=1}^m\mathrm{FD}_{\mathrm{H}}(x^{(p^{t_i}\varepsilon_i)}). \end{aligned}$$

事实上," \supseteq " 是显然的. 反之, 任取 $D_H(x^{(\alpha)}x^u) \in H(m,n,\underline{t+1}) \cap W(m,n,\underline{t})$, 则 $D_H(x^{(\alpha)}x^u) \in W(m,n,\underline{t})$. 故

$$\sum_{i=1}^{s} \sigma(i) (-1)^{\tau(i) \operatorname{d}(x^u)} x^{(\alpha - \varepsilon_i)} x^u \operatorname{D}_{i'} \in \operatorname{W}(m, n, \underline{t}).$$

所以 $x^{(\alpha-\varepsilon_i)}x^u \in \Lambda(m,n,\underline{t}), \forall i \in Y_0$. 因为 $D_H(x^{(\alpha)}x^u) \in H(m,n,\underline{t}+\underline{1}),$ 故 $x^{(\alpha)}x^u \in \Lambda(m,n,\underline{t}+\underline{1})$. 这就迫使 $x^{(\alpha)}x^u \in \Lambda(m,n,\underline{t})$ 或者 $x^{(\alpha)}x^u = x^{(p^t,\varepsilon_i)}, i \in Y_0$. 所以

$$\mathrm{D_H}(x^{(\alpha)}x^u) \in \mathrm{H}(m,n,\underline{t}) \oplus \mathrm{FD_H}(x^{(\pi)}x^E) \oplus \sum_{i=1}^m \mathrm{FD_H}(x^{(p^{t_i}\varepsilon_i)}).$$

故 "⊆" 成立. 引理得证. □

命题 4.7 若 t > 0, 则 $Der_t(H) \subseteq ad \widetilde{H}_t$.

证明 因为 H 是 H 的理想, 故 $\operatorname{ad} H_i \subseteq \operatorname{Der}_t(H)$. 设 $\phi \in \operatorname{Der}_t(H)$. 由命题 2.6 知, 存在 $y \in \operatorname{Norw}(H)$ 使得 $\phi = \operatorname{ad} y|_{H}$. 考察 Z- 次数知 $y \in \operatorname{W}_t$. 设 $y = \sum_{j=1}^{s} g_j \operatorname{D}_j$. 由 $[\operatorname{D}_i, y] \in \operatorname{H}$, 可设 $[\operatorname{D}_i, y] = \operatorname{D}_H(f_i)$, 其中 $i \in Y$, $f_i \in \Lambda(m, n, \underline{t})$. 因为

$$\left[\mathbf{D}_i, \sum_{j=1}^s g_j \mathbf{D}_j\right] = \sum_{j=1}^s \sigma(j) (-1)^{\tau(j)d(f_i)} \mathbf{D}_j(f_i) \mathbf{D}_{j'},$$

所以 $D_i(g_{j'}) = \sigma(j)(-1)^{\tau(j)d(f_i)}D_j(f_i)$. 故

$$D_{j}(f_{i}) = \sigma(j)(-1)^{\tau(j)d(f_{i})}D_{i}(g_{j'}), \quad i, j \in Y.$$
(4.6)

由 $[D_i, y] = D_H(f_i)$ 以及 (1.3) 式知

$$[D_j, [D_i, y]] = [D_j, D_H(f_i)] = D_H(D_j(f_i)).$$

同理,由 $[D_j,y] = D_H(f_j)$ 知, $[D_i,[D_j,y]] = D_H(D_i(f_j))$. 因为 $[D_i,[D_j,y]] = (-1)^{\tau(i)\tau(j)}[D_j,[D_i,y]]$,所以 $D_H(D_i(f_j)) = (-1)^{\tau(i)\tau(j)}D_H(D_j(f_i))$. 由于 $\ker D_H = \mathbb{F}$,因此

$$\mathbf{D}_{i}(f_{j}) - (-1)^{\tau(i)\tau(j)} \mathbf{D}_{j}(f_{i}) \in \mathbb{F}, \quad \forall i, j \in Y.$$

$$(4.7)$$

将 (4.6) 式代入 (4.7) 式得

$$h := (-1)^{\tau(i)\operatorname{d}(f_j)}\sigma(i)\operatorname{D}_j(g_{i'}) - (-1)^{\tau(i)\tau(j)+\tau(j)\operatorname{d}(f_i)}\sigma(j)\operatorname{D}_i(g_{j'}) \in \mathbb{F}.$$

因为 $g_i \in \Lambda(m, n, \underline{t})_{t+1}, \forall i \in Y$, 并且 t > 0, 所以 zd(h) = t > 0. 由于 $h \in \mathbb{F}$, 并且 \mathbb{F} 中非零元的 \mathbb{Z} - 次数为零, 故 h = 0. 从而

$$(-1)^{\tau(i)d(f_j)}\sigma(i)D_j(g_{i'}) = (-1)^{\tau(i)\tau(j)+\tau(j)d(f_i)}\sigma(j)D_i(g_{j'}).$$

将 $d(f_i) = \tau(i) + d(y)$ 代入上式, 可得

$$\mathbf{D}_i(g_{j'}) = (-1)^{\tau(i)\tau(j) + (\tau(i) + \tau(j))\mathbf{d}(y)} \sigma(i)\sigma(j) \mathbf{D}_j(g_{i'}), \quad \forall i,j \in Y.$$

所以 $y \in \widetilde{H}$. 因为 $y \in W_t$, 所以 $y \in \widetilde{H}_t$.

引理 4.8 设 $h = \sum_{i=1}^{s} x_i D_i$. 则对任意 $y \in W_t$, 均有 [h, y] = ty.

证明 设 $x^{(\alpha)}x^{u}D_{i} \in W_{t}$,则 $|\alpha| + |u| = t + 1$. 若 $i \in Y_{0}$,则

$$[x_i \mathbf{D}_i, x^{(\alpha)} x^u \mathbf{D}_j] = (\alpha_i - \delta_{ij}) x^{(\alpha)} x^u \mathbf{D}_j.$$

若 $i \in \{u\}$, 则 $[x_i D_i, x^{(\alpha)} x^u D_j] = (1 - \delta_{ij}) x^{(\alpha)} x^u D_j$. 若 $i \in Y_1 \setminus \{u\}$, 则 $[x_i D_i, x^{(\alpha)} x^u D_j] = -\delta_{ij} x^{(\alpha)} x^u D_j$. 于是

$$[h, x^{(lpha)}x^u\mathrm{D}_j] = \left[\sum_{i=1}^s x_i\mathrm{D}_i, x^{(lpha)}x^u\mathrm{D}_j
ight]$$

$$= \sum_{i=1}^{s} [x_i \mathbf{D}_i, x^{(\alpha)} x^u \mathbf{D}_j]$$

$$= (\alpha_1 + \dots + \alpha_m + |u| - 1) x^{(\alpha)} x^u \mathbf{D}_j$$

$$= (|\alpha| + |u| - 1) x^{(\alpha)} x^u \mathbf{D}_j$$

$$= t x^{(\alpha)} x^u \mathbf{D}_j.$$

因为 W_t 中任一元素 y 都是 $\{x^{(\alpha)}x^{\mu}D_j \mid |\alpha| + |\mu| = t+1, j \in Y\}$ 中元素的 F- 线性组合, 从而可知 [h,y] = ty. \square

对任意 $y \in L_t$, 其中 L = W,S 或 H, 因为 $L_t \subseteq W_t$, 所以 $y \in W_t$. 由引理 4.8, $[h,y] = ty \in L_t$. 我们称 adh 为 L 的次数 导子.

引理 4.9 设 $y = \sum_{i,j=1}^s a_{ij} x_i D_j \in Nor_W(H)$, 其中 $a_{ij} \in \mathbb{F}$.

1) 若 $d(y) = \overline{0}$, 则

$$a_{i'j'} = -\sigma(i)\sigma(j)a_{ji}, \quad i,j \in Y, \quad i \neq j,$$
 $a_{ii} = a_{jj}, \quad i,j \in Y_1.$

2) 若 $d(y) = \overline{1}$, 则

$$a_{i'j} = \sigma(i)a_{ji}, \quad i \in Y_0, \quad j \in Y.$$

证明 显然 y 也可表为 $\sum_{k,l=1}^s a_{kl}x_k D_l$. 因为 $y \in Norw(H)$, 所以 $[y,H] \subseteq H \subseteq \widetilde{H}$.

1) 设 $d(y) = \vec{0}$. 任取 $i \in Y_0$, 则

$$[y, D_{H}(x^{(2\varepsilon_{i})})] = \left[\sum_{k,l=1}^{s} a_{kl}x_{k}D_{l}, \sigma(i)x_{i}D_{i'}\right]$$

$$= \left(\sum_{k=1}^{s} \sigma(i)a_{ki}x_{k}\right)D_{i'} - \sum_{l=1}^{s} \sigma(i)a_{i'l}x_{i}D_{l} \in \widetilde{H}. \tag{4.8}$$

设 $j \in Y \setminus \{i\}$. 因为 \widetilde{H} 的元素满足 (4.1) 式, 故有

$$\mathrm{D}_i(-\sigma(i)a_{i'j'}x_i) = \sigma(i)\sigma(j)\mathrm{D}_j\left(\sum_{k=1}^s\sigma(i)a_{ki}x_k - \sigma(i)a_{i'i'}x_i
ight).$$

从而推得

$$a_{ji} = -\sigma(i)\sigma(j)a_{i'j'}, \quad i \in Y_0, \quad j \in Y \setminus \{i\}.$$

设 $i,j \in Y_1, i \neq j$. 则

$$\begin{aligned} [y, \mathbf{D}_{\mathbf{H}}(x_i x_j)] &= \left[\sum_{k,l=1}^s a_{kl} x_k \mathbf{D}_l, x_j \mathbf{D}_i - x_i \mathbf{D}_j \right] \\ &= \left(\sum_{k=1}^s a_{kj} x_k \right) \mathbf{D}_i - \left(\sum_{k=1}^s a_{ki} x_k \right) \mathbf{D}_j \end{aligned}$$

$$-\sum_{l=1}^{s} a_{il}x_{j}D_{l} + \sum_{l=1}^{s} a_{jl}x_{i}D_{l} \in \widetilde{H}.$$

$$(4.9)$$

由 (4.1) 式, 同理有

$$D_i \left(-\sum_{k=1}^s a_{ki} x_k - a_{ij} x_j + a_{jj} x_i \right)$$

$$= (-1)^{\tau(i)\tau(j)} D_j \left(\sum_{k=1}^s a_{kj} x_k - a_{ii} x_j + a_{ji} x_i \right)$$

于是可推得

$$a_{ii}=a_{jj}, \quad i,j\in Y_1, \quad i\neq j.$$

由 (4.1) 式可知, $D_i(f_i) = 0, i \in Y_1$. 在 (4.9) 式中, $f_i = \sum_{k=1}^s a_{kj}x_k - a_{ii}x_j + a_{ji}x_i$. 由 $D_i(f_i) = 0$ 可得 $a_{ij} = -a_{ji}$, 即

$$a_{i'j'} = -\sigma(i)\sigma(j)a_{ji}, \quad i,j \in Y_1, \quad i \neq j.$$

2) 设 $d(y) = \overline{1}$, 即 $d(\sum_{k,l=1}^{n} a_{kl}x_k D_l) = \overline{1}$. 对 $i \in Y_0$ 与 $j \in Y_1$, (4.8) 式仍然成立. 由 (4.1) 式可知

$$D_i(-\sigma(i)a_{i'j}x_i) = -\sigma(i)D_j\left(\sum_{k=1}^s \sigma(i)a_{ki}x_k - \sigma(i)a_{i'j}x_i\right).$$

于是可知

$$a_{i'j} = \sigma(i)a_{ji}, \quad i \in Y_0, \quad j \in Y_1.$$

引理 4.10 设 $y = \sum_{i=1}^{m} a_{ii}x_{i}D_{i} + \sum_{i=m+1}^{s} ax_{i}D_{i} \in Nor_{W}(H)$, 其中 a_{ii} , $a \in \mathbb{F}$. 则存 $a_{i} \in H_{0}$, 使得 y - z = ah, 这里 $h = \sum_{i=1}^{s} x_{i}D_{i}$.

证明 设 $b_i = a_{ii} - a$, $i = 1, \dots, m$. 则

$$y = \sum_{i=1}^{m} a_{ii}x_{i}D_{i} + \sum_{i=m+1}^{s} ax_{i}D_{i}$$

$$= \sum_{i=1}^{s} ax_{i}D_{i} + \sum_{i=1}^{m} b_{i}x_{i}D_{i}$$

$$= ah + \sum_{i=1}^{m} b_{i}x_{i}D_{i}$$

$$= ah + \sum_{i=1}^{r} (-b_{i'})(x_{i}D_{i} - x_{i'}D_{i'}) + \sum_{i=1}^{r} (b_{i'} + b_{i})x_{i}D_{i}.$$

设 $z = \sum_{i=1}^{r} (-b_{i'})(x_i \mathbf{D}_i - x_{i'} \mathbf{D}_{i'})$. 则

$$z = \sum_{i=1}^r (-b_{i'})\sigma(i')\mathrm{D}_{\mathrm{H}}(x_ix_{i'}) \in \mathrm{H}_0.$$

设 $c_i = b_{i'} + b_i$. 则 $y = ah + \sum_{i=1}^r c_i x_i D_i + z$. 因为 $y, z \in Norw(H)$, 由引理 4.8, $ah \in Norw(H)$, 所以 $\sum_{i=1}^r c_i x_i D_i \in Norw(H)$. 因此

$$\left[\sum_{i=1}^r c_i x_i D_i, D_H(x_l x_k)\right] \in H \subseteq \widetilde{H},$$

其中 $1 \le l < k \le r$. 直接计算知

$$\left[\sum_{i=1}^r c_i x_i D_i, D_H(x_l x_k)\right] = c_k x_k D_{l'} + c_l x_l D_{k'} \in \widetilde{H}.$$

由 (4.1) 式知

$$\mathrm{D}_k(c_kx_k)=\sigma(k)\sigma(l)\mathrm{D}_l(c_lx_l).$$

于是可得 $c_k = c_1$. 所以 $c_1 = c_2 = \cdots = c_r$. 令 $c = c_1$, 则

$$y = \sum_{i=1}^{r} (a+c)x_i D_i + \sum_{i=r+1}^{s} ax_i D_i + z,$$

并且

$$\sum_{i=1}^{r} (a+c)x_i \mathbf{D}_i + \sum_{i=r+1}^{s} ax_i \mathbf{D}_i \in \text{Norw}(\mathbf{H}).$$

所以

$$\left[\sum_{i=1}^r (a+c)x_i \mathbf{D}_i + \sum_{i=r+1}^s a_i \mathbf{D}_i, \mathbf{D}_{\mathbf{H}}(x_1 x_s)\right] = -cx_1 \mathbf{D}_s \in \mathbf{H} \subseteq \widetilde{\mathbf{H}}.$$

由 (4.1) 式知 c=0. 于是 y=ah+z, 即 y-z=ah.

证明 由引理 3.6 与引理 4.8 知, $\operatorname{ad}(\widetilde{H}_0 + \mathbb{F}h) \subseteq \operatorname{Der}_0(H)$. 反之, 设 $\phi \in \operatorname{Der}_0(H)$. 由命题 2.6 知, 存在 $y \in \operatorname{Norw}(H)$ 使得 $\phi = \operatorname{ad} y|_{H}$. 因为 $\operatorname{zd}(\phi) = 0$, 所以 $y \in W_0$. 于是可设 $y = \sum_{i,j=1}^{s} a_{ij} x_i D_j$, 其中 $a_{ij} \in \mathbb{F}$. 易见

$$y = \sum_{i=1}^{s} a_{ii} x_i D_i + 2^{-1} \sum_{1 \le i \ne j \le s} (a_{ij} x_i D_j + a_{j'i'} x_{j'} D_{i'}).$$

由引理 4.9 的 1) 知, 当 $1 \le i,j \le m$ 或者 $m < i,j \le s$ 时, $a_{j'i'} = -\sigma(i)\sigma(j)a_{ij}$. 所以

$$egin{aligned} a_{ij}x_i\mathrm{D}_j + a_{j'i'}x_{j'}\mathrm{D}_{i'} &= a_{ij}(x_i\mathrm{D}_j - \sigma(i)\sigma(j)x_{j'}\mathrm{D}_{i'}) \ &= a_{ij}\sigma(j')\mathrm{D}_\mathrm{H}(x_{j'}x_i) \in \mathrm{H}_0 \subseteq \widetilde{\mathrm{H}}_0. \end{aligned}$$

由引理 4.9 的 2) 知, 当 $i \in Y_0, j \in Y_1$ 时, $a_{ji'} = \sigma(i)a_{ij}$. 故

$$\begin{aligned} a_{ij}x_i\mathrm{D}_j + a_{j'i'}x_{j'}\mathrm{D}_{i'} &= a_{ij}x_i\mathrm{D}_j + a_{ji'}x_j\mathrm{D}_{i'} \\ &= a_{ij}(x_i\mathrm{D}_j + \sigma(i)x_j\mathrm{D}_{i'}) = a_{ij}\mathrm{D}_{\mathrm{H}}(x_ix_j) \in \mathrm{H}_0 \subseteq \widetilde{\mathrm{H}}_0. \end{aligned}$$

同理当 $i \in Y_1, j \in Y_0$ 时,

$$a_{ij}x_i\mathbf{D}_j + a_{j'i'}x_{j'}\mathbf{D}_{i'} \in \mathbf{H}_0 \subseteq \widetilde{\mathbf{H}}_0.$$

于是我们证明了

$$\eta := 2^{-1} \sum_{1 \leq i \neq j \leq s} (a_{ij} x_i \mathcal{D}_j - a_{j'i'} x_{j'} \mathcal{D}_{i'}) \in \widetilde{\mathcal{H}}_0.$$

因为 $\eta \in \widetilde{H} \subseteq Nor_W(H), y \in Nor_W(H), 所以$

$$\sum_{i=1}^{s} a_{ii} x_i \mathrm{D}_i = y - \eta \in \mathrm{Norw}(\mathrm{H}).$$

由引理 4.9 的 1) 知, $a_{ij} = a_{jj}$, $i, j \in Y_1$. 所以

$$\sum_{i=1}^s a_{ii}x_i D_i = \sum_{i=1}^m a_{ii}x_i D_i + \sum_{i=m+1}^s ax_i D_i.$$

由引理 4.10 知, 存在 z ∈ H₀ ⊆ H
0 (重)

$$\sum_{i=1}^s a_{ii} x_i D_i - z = ah,$$

故 $\sum_{i=1}^{s} a_{ii}x_i D_i = z + ah$. 于是

$$y=z+ah+\eta=(z+\eta)+ah\in \widetilde{\mathrm{H}}_0+\mathbb{F}h.$$

所以 $\phi = \operatorname{ad} y \big|_{H} \in \operatorname{ad} (\widetilde{H} + \mathbb{F}h)$. 因此 $\operatorname{Der}_{0}(H) = \operatorname{ad} (\widetilde{H} + \mathbb{F}h)$. 引理 4.12 设 $\phi \in \operatorname{Der}_{-1}(H)$. 若 $i, j \in Y_{0}$, 则

$$\phi(\mathrm{D}_{\mathrm{H}}(x_ix_j)) = a_i\mathrm{D}_i + a_{i'}\mathrm{D}_{i'} + a_j\mathrm{D}_j + a_{j'}\mathrm{D}_{j'},$$

其中 $a_i, a_{i'}, a_j, a_{j'} \in \mathbb{F}$. 若 $i \in Y_0, j \in Y_1$, 则

$$\phi(\mathbf{D_H}(x_ix_j)) = a_i\mathbf{D}_i + a_{i'}\mathbf{D}_{i'} + a_j\mathbf{D}_j,$$

其中 $a_i, a_{i'}, a_j \in \mathbb{F}$.

证明 我们仅证 $i,j \in Y_0$ 的情形. 对 $i \in Y_0$, $j \in Y_1$ 的情形, 证明是相仿的. 由 n > 1 知 $\{i,j,i',j'\} \neq Y$, 并且 $|\{i,j,i',j'\}| \leq s - 2$. 因为 $\phi(D_H(x_ix_j)) \in H_{-1}$, 故可设 $\phi(D_H(x_ix_j)) = \sum_{h=1}^s a_h D_h$, 其中 $a_h \in F$.

任取 $k,l \in Y \setminus \{i,j,i',j'\}$, 并且 $k \neq l$. 可设

$$\phi(\mathrm{D_H}(x_kx_l)) = \sum_{t=1}^s b_t \mathrm{D}_t,$$

其中 bt ∈ F. 将 φ 作用于等式

$$[\mathrm{D}_{\mathrm{H}}(x_ix_j),\mathrm{D}_{\mathrm{H}}(x_kx_l)]=0,$$

则有

$$\left[\sum_{i=1}^s a_h \mathbf{D}_h, \mathbf{D}_H(x_k x_l)\right] + (-1)^{\mathsf{d}(\phi)(\tau(i) + \tau(j))} \left[\mathbf{D}_H(x_i x_j), \sum_{t=1}^s b_t \mathbf{D}_t\right] = 0.$$

于是可推得 $\lambda_1 a_i D_{k'} + \lambda_2 a_k D_{l'} + \lambda_3 b_j D_{i'} + \lambda_4 b_i D_{j'} = 0$, 其中 $\lambda_i = 1$ 或 -1, i = 1, 2, 3, 4. 于是 $\lambda_1 a_i = \lambda_2 a_k = 0$. 故 $a_i = a_k = 0$. 所以

$$\phi(\mathrm{D}_{\mathrm{H}}(x_ix_j))=a_i\mathrm{D}_i+a_{i'}\mathrm{D}_{i'}+a_j\mathrm{D}_j+a_{j'}\mathrm{D}_{j'}.\qquad \Box$$

引理 4.13 设 $\phi \in \text{Der}_{-1}(H)$, 并且 $d(\phi) = \overline{0}$. 则存在 $a_1, a_2, \dots, a_m \in \mathbb{F}$, 使得

- 1) $\phi(D_{\mathbf{H}}(\mathbf{x}^{(2\epsilon_i)}) = a_{i'}D_{i'}, i \in Y_0,$
- 2) $\phi(\mathrm{D}_{\mathrm{H}}(x_k x_i)) = \sigma(i')a_{i'}\mathrm{D}_k, \ i \in Y_0, k \in Y_1,$
- 3) $\phi = \sum_{j=1}^m \sigma(j) a_{j'} (\text{ ad } D_j).$

证明 1) 由引理 4.12 知, 存在 $a_1, \dots, a_m, c_1, \dots, c_m \in \mathbb{F}$, 使得

$$\phi(D_{H}(x^{(2\epsilon_{i})})) = 2^{-1}\phi(D_{H}(x_{i}x_{i})) = c_{i}D_{i} + a_{i'}D_{i'},$$

其中 $i = 1, 2, \dots, m$. 设 $k \in Y_1$. 由引理 4.12 知,

$$\phi(\mathbf{D}_{\mathbf{H}}(x_k x_i)) = b_i \mathbf{D}_i + b_{i'} \mathbf{D}_{i'} + b_k \mathbf{D}_k,$$

其中 $b_i, b_{i'}, b_k \in \mathbb{F}$. 因为 $d(\phi) = \overline{0}$, 所以 $\phi(D_H(x_k x_i)) \in H_{\overline{1}}$. 故 $b_i = b_{i'} = 0$. 于是

$$\phi(\mathbf{D}_{\mathbf{H}}(x_k x_i)) = b_k \mathbf{D}_k. \tag{4.10}$$

将φ作用于等式

$$[\mathrm{D}_{\mathrm{H}}(x^{(2\epsilon_i)}),\mathrm{D}_{\mathrm{H}}(x_kx_i)]=0$$

可得

$$[c_i\mathbf{D}_i+a_{i'}\mathbf{D}_{i'},-x_i\mathbf{D}_k+\sigma(i)x_k\mathbf{D}_i]+[\sigma(i)x_i\mathbf{D}_{i'},b_k\mathbf{D}_k]=0.$$

从而可推得 $-c_iD_k=0$. 所以 $c_i=0$. 故

$$\phi(\mathbf{D}_{\mathbf{H}}(\mathbf{x}^{(2\boldsymbol{e}_i)}) = a_{i'}\mathbf{D}_{i'}, \quad a_{i'} \in \mathbb{F}, \quad i \in Y_0.$$

2) 由 1) 知 $\phi(D_H(x^{(2\epsilon_{i'})})) = a_i D_i, i \in Y_0$. 将 ϕ 作用于等式

$$\mathrm{D_H}(x_ix_{i'}) = \sigma(i)[\mathrm{D_H}(x^{(2\epsilon_i)}), \mathrm{D_H}(x^{(2\epsilon_{i'})})],$$

可推得

$$\phi(D_{H}(x_{i}x_{i'})) = -a_{i}D_{i'} - a_{i'}D_{i}, \quad i \in Y_{0}.$$
(4.11)

将φ作用于等式

$$[D_{\mathrm{H}}(x_i x_{i'}), D_{\mathrm{H}}(x_k x_i)] = \sigma(i')D_{\mathrm{H}}(x_k x_i),$$

利用 (4.11) 与 (4.10) 式可得:

$$[-a_i\mathbf{D}_{i'}-a_{i'}\mathbf{D}_i,-x_i\mathbf{D}_k+\sigma(i)x_k\mathbf{D}_i]+[\sigma(i)x_i\mathbf{D}_{i'}+\sigma(i')x_i\mathbf{D}_i,b_k\mathbf{D}_k]=\sigma(i')b_k\mathbf{D}_k.$$

于是 $a_{i'}D_k = \sigma(i')b_kD_k$. 所以 $b_k = \sigma(i')a_{i'}$. 因而有

$$\phi(\mathbf{D}_{\mathbf{H}}(x_k x_i)) = \sigma(i')a_{i'}\mathbf{D}_k, \quad i \in Y_0, \quad k \in Y_1.$$

3) 令 $\psi = \phi - \sum_{j=1}^m \sigma(j) a_{j'} (\text{ad } \mathbf{D}_j)$. 由 1) 知

$$egin{aligned} \psi(\mathrm{D_H}(x^{(2arepsilon_i)})) &= \phi(\mathrm{D_H}(x^{(2arepsilon_i)})) - \sum_{j=1}^m \sigma(j) a_{j'} \ \mathrm{ad} \ \mathrm{D_j}(\mathrm{D_H}(x^{(2arepsilon_j)})) \ &= a_{i'} \mathrm{D}_{i'} - \sigma(i) a_{i'} \mathrm{D_H}(x_i) = 0, \quad i \in Y_0. \end{aligned}$$

由 2) 知

$$egin{aligned} \psi(\mathrm{D}_{\mathrm{H}}(x_kx_i)) &= \phi(\mathrm{D}_{\mathrm{H}}(x_kx_i)) - \sum_{j=1}^m \sigma(j)a_{j'} \ \mathrm{ad} \ \mathrm{D}_j(\mathrm{D}_{\mathrm{H}}(x_kx_i)) \ &= \sigma(i')a_{i'}\mathrm{D}_k - \sigma(i)a_{i'}\mathrm{D}_{\mathrm{H}}(x_k) = 0, \quad k \in Y_1, \quad i \in Y_0. \end{aligned}$$

因为

$$D_{H}(x_{i}x_{j}) = -[D_{H}(x_{k}x_{i}), D_{H}(x_{k}x_{j})], \quad i, j \in Y_{0}, \quad k \in Y_{1},$$

$$D_{H}(x_{k}x_{l}) = \sigma(i)[D_{H}(x_{k}x_{i}), D_{H}(x_{k}x_{i'})], \quad k, l \in Y_{1}, \quad i \in Y_{0},$$

所以 $\{D_H(x^{(2e_i)}), D_H(x_kx_i) \mid i \in Y_0, k \in Y_1\}$ 生成子代数 H_0 . 故 $\psi(H_0) = 0$. 显然 $\psi(H_{-1}) = 0$. 由引理 2.8 知 $\psi = 0$. 故 $\phi = \sum_{i=1}^m \sigma(j) a_{j'} (\text{ad } D_j)$.

引理 4.14 设 $\phi \in \ker_{-1}(H)$, 并且 $d(\phi) = \overline{1}$.

1) 对任意 $k \in Y_1$, 存在 $a_k \in \mathbb{F}$, 使得

$$\phi(\mathrm{D}_{\mathrm{H}}(x_kx_i))=\sigma(i)a_k\mathrm{D}_{i'},\quad i\in Y_0.$$

2) $\phi = \sum_{j=m+1}^{s} a_{j} (\text{ ad } D_{j}).$

证明 1) 因为 $d(\phi) = I$, 所以 $\phi(D_H(x_ix_j)) \in H_{\overline{1}}$, 其中 $i, j \in Y_0$. 由引理 4.12 知 $\phi(D_H(x_ix_j)) \in H_{\overline{0}}$, 所以 $\phi(D_H(x_ix_j)) = 0$, $i, j \in Y_0$. 特别地

$$\phi(\mathrm{D_H}(x_i x_{i'})) = 0,$$
 $\phi(\mathrm{D_H}(x^{(2m{\epsilon}_i)})) = 2^{-1}\phi(\mathrm{D_H}(x_i x_i)) = 0,$

其中 i ∈ Y₀. 由引理 4.12 知

$$\phi(\mathbf{D}_{\mathbf{H}}(x_k x_i)) = b_i \mathbf{D}_i + b_{i'} \mathbf{D}_{i'} + b_k \mathbf{D}_k, \quad k \in Y_1, \quad i \in Y_0.$$

因为 $d(\phi) = I$, 所以 $b_k = 0$. 故 $\phi(D_H(x_k x_i)) = b_i D_i + b_{i'} D_{i'}$. 同理可设 $\phi(D_H(x_k x_{i'})) = c_i D_i + c_{i'} D_{i'}$, 其中 $c_i, c_{i'} \in \mathbb{F}$. 将 ϕ 作用于等式

$$[D_{H}(x_{k}x_{i}), D_{H}(x_{k}x_{i'})] = -D_{H}(x_{i}x_{i'}), k \in Y_{1}, i \in Y_{0},$$

则有

$$egin{aligned} &[b_i \mathrm{D}_i + b_{i'} \mathrm{D}_{i'}, -x_{i'} \mathrm{D}_k + \sigma(i') x_k \mathrm{D}_i] \ &+ (-1)^{\mathrm{d}(\phi)} [\sigma(i) x_k \mathrm{D}_{i'} - x_i \mathrm{D}_k, c_i \mathrm{D}_i + c_{i'} \mathrm{D}_{i'}] = 0. \end{aligned}$$

于是可得 $-b_{i'}D_k - c_iD_k = 0$, 所以 $c_i = -b_{i'}$. 因此

$$\phi(\mathrm{D}_{\mathrm{H}}(x_kx_{i'})) = -b_{i'}\mathrm{D}_i + c_{i'}\mathrm{D}_{i'}, \quad k \in Y_1, \quad i \in Y_0.$$

将φ作用于等式

$$[D_{H}(x^{(2\varepsilon_{i})}), D_{H}(x_{k}x_{i'})] = \sigma(i)D_{H}(x_{k}x_{i}), \quad k \in Y_{1}, \quad i \in Y_{0},$$

则有

$$[\sigma(i)x_i\mathrm{D}_{i'},-b_{i'}\mathrm{D}_i+c_{i'}\mathrm{D}_{i'}]=\sigma(i)(b_i\mathrm{D}_i+b_{i'}\mathrm{D}_{i'}).$$

于是 $\sigma(i)b_{i'}D_{i'} = \sigma(i)b_{i}D_{i+}\sigma(i)b_{i'}D_{i'}$. 所以 $\sigma(i)b_{i}D_{i} = 0$; 随之, $b_{i} = 0$. 因此 $\phi(D_{H}(x_{k}x_{i})) = b_{i'}D_{i'}$. 令 $a_{k} = \sigma(i)b_{i'}$, 则

$$\phi(\mathrm{D}_{\mathrm{H}}(x_kx_i))=\sigma(i)a_k\mathrm{D}_{i'},\quad k\in Y_1,\quad i\in Y_0.$$

2) 令
$$\psi = \phi - \sum_{j=m+1}^{s} a_j (\text{ad } D_j), 则由 1) 知$$

$$egin{aligned} \psi(\mathrm{D_H}(x^{(2arepsilon_i)})) &= \phi(\mathrm{D_H}(x^{(2arepsilon_i)})) - \sum_{j=m+1}^s a_j (\operatorname{ad} \mathrm{D}_j) (\mathrm{D_H}(x^{(2arepsilon_i)})) \ &= 0, \ \psi(\mathrm{D_H}(x_k x_i)) &= \phi(\mathrm{D_H}(x_k x_i)) - \sum_{j=m+1}^s a_j (\operatorname{ad} \mathrm{D}_j) (\mathrm{D_H}(x_k x_i)) \ &= \sigma(i) a_k \mathrm{D}_{i'} - a_k \mathrm{D_H}(x_i) \ &= 0. \end{aligned}$$

因为 $\{D_H(x^{(2\epsilon_i)}), D_H(x_kx_i) \mid i \in Y_0, k \in Y_1\}$ 生成 $H_0(见引理 4.13$ 的证明), 所以 $\psi(H_0) = 0$. 显然 $\psi(H_{-1}) = 0$. 由引理 2.8 知 $\psi = 0$. 这就证明了 $\phi = \sum_{j=m+1}^s a_j (\operatorname{ad} D_j)$. \square 命題 4.15 $\operatorname{Der}_{-1}(H) = \operatorname{ad} \widetilde{H}_{-1}$.

证明 因为 $\widetilde{H} \supseteq H_{-1} = W_{-1}$,所以 $\widetilde{H}_{-1} = H_{-1} = W_{-1} = \operatorname{span}_{\mathbb{F}}\{D_i \mid i \in Y\}$. 设 $\phi \in \operatorname{Der}_{-1}(H)$. 显然 $\phi = \phi_0 + \phi_1$,其中 $\phi_0, \phi_1 \in \operatorname{Der}_{-1}(H)$,并且 $d(\phi_0) = \overline{0}, d(\phi_1) = \overline{1}$. 由引理 4.13 的 3) 与 4.14 的 2) 知, $\phi_0, \phi_1 \in \operatorname{ad}\widetilde{H}_{-1}$. 所以 $\phi \in \operatorname{ad}\widetilde{H}_{-1}$. 于是 $\operatorname{Der}_{-1}(H) \subseteq \operatorname{ad}\widetilde{H}_{-1}$. 因此 $\operatorname{Der}_{-1}(H) = \operatorname{ad}\widetilde{H}_{-1}$.

引理 4.16 设 $T = \{D_H(x^{(k\epsilon_i)}) \mid 1 \le k \le \pi_i, i \in Y_0\} \cup H_0$, 则 T 生成 H.

证明 设 Q 是 T 生成的 H 的子代数. 任取 $D_H(x^{(\alpha)}x^u) \in H$. 设 $t = |\alpha| + |u|$. 我们对 t 用归纳法证明 $D_H(x^{(\alpha)}x^u) \in Q$.

由已知 $D_H(x_i) \in Q$, $\forall i \in Y_0$. 因为 $D_H(x_j x_{i'}) \in H_0 \subseteq Q$, 所以 $D_H(x_j) = \sigma(i)[D_H(x_i)$, $D_H(x_j x_{i'})] \in Q$, $\forall j \in Y_1$. 于是当 t = 1 时结论成立. 由 $H_0 \subseteq T$ 知, t = 2 时结论也成立. 令 $t \geq 3$.

假设 $D_H(x^{(\beta)}x^v) \in Q$, 其中 $|\beta| + |v| < t$. 设 $|\alpha| + |u| = t$, 往证 $D_H(x^{(\alpha)}x^u) \in Q$. 对于 $i \in Y_0, j \in Y_1$, 我们有

$$D_{H}(x^{(2\varepsilon_{i})}x_{j}) = \sigma(i)[D_{H}(x^{(3\varepsilon_{i})}), D_{H}(x_{i'}x_{j})] \in Q,$$

$$D_{H}(x_{i}x_{k}x_{j}) = -(-1)^{r(k)}\sigma(i)[D_{H}(x^{(2\varepsilon_{i})}x_{j}), D_{H}(x_{i'}x_{k})] \in Q,$$
(4.12)

其中 $k \in Y$.

$$D_{H}(x_{k}x_{j}x_{l}) = \sigma(i)[D_{H}(x_{i}x_{k}x_{j}), D_{H}(x_{l}x_{i'})] \in Q, \qquad (4.13)$$

其中 $k, j, l \in Y_1$.

$$D_{H}(x^{(k_i\varepsilon_i)}x_j) = \sigma(i')[D_{H}(x_{i'}x_j), D_{H}(x^{(k_i\varepsilon_i+\varepsilon_i)})] \in Q, \tag{4.14}$$

其中 $k_i < \pi_i$.

我们分三种情形证明 $D_H(x^{(\alpha)}x^u) \in Q$.

(i) |u| = n. 由李超代数 H 的定义知 $(\alpha, u) \neq (\pi, E)$, 所以 $\alpha \neq \pi$. 可设 $\alpha_i < \pi_i$. 由 归纳假设与 (4.12) 式知

$$\begin{split} \mathrm{D_{H}}(x^{(\alpha)}x^{u}) &= \mathrm{D_{H}}(x^{(\alpha)}x^{E}) \\ &= \sigma(i)[\mathrm{D_{H}}(x^{(\alpha+\varepsilon_{i})})x_{m+1}\cdots x_{s-2}), \mathrm{D_{H}}(x_{i'}x_{s-1}x_{s})] \in Q. \end{split}$$

(ii) $2 \le |u| < n$. 则存在 $k \in Y_1$, 使得 $x_k x^u \ne 0$. 可设 $x^u = x_{i_1} \cdots x_{i_k}$. 由归纳假设与 (4.13) 式知

$$D_{\mathbf{H}}(x^{(\alpha)}x^{u}) = -(-1)^{|u|}[D_{\mathbf{H}}(x^{(\alpha)}x_{k}x_{i_{1}}\cdots x_{i_{t-2}}), D_{\mathbf{H}}(x_{k}x_{i_{t-1}}x_{i_{t}})] \in Q.$$

(iii) $|u| \le 1$. 由 t > 2 知 $|\alpha| \ge 2$. 若存在 $i \in Y_0$, 使得 $\alpha_i \ge 2$, 由归纳假设与 (4.14) 式知

$$\mathbf{D_H}(x^{(\alpha)}x^u) = -(-1)^{|u|}[\mathbf{D_H}(x^{(\alpha-\alpha_i\varepsilon_i)}x_jx^u), \mathbf{D_H}(x^{(\alpha_i\varepsilon_i)}x_j)] \in Q,$$

其中 $j \in Y_1$. 若对任意 $i \in Y_0$, 均有 $\alpha_i = 1$. 由于 $\alpha \ge 2$, 可设 $\alpha_i = \alpha_k = 1$. 由归纳假设与 (4.12) 式知

$$\mathrm{D_H}(x^{(\alpha)}x^u) = -(-1)^{|u|}[\mathrm{D_H}(x^{(\alpha-\varepsilon_i-\varepsilon_k)}x_jx^u),\mathrm{D_H}(x_ix_kx_j)] \in Q.$$

归纳法完成. 于是证明了 $H \subseteq Q$, 故 Q = H.

引理 4.17 设 $\phi \in \text{Der}_{-t}(H)$, 其中 t > 1. 如果 $\phi(D_H(x^{((t+1)\varepsilon_i)})) = 0$, $\forall i \in Y_0$, 则 $\phi = 0$.

证明 $E_k \leq t$, 由于

$$zd(\phi(D_H(x^{(k\varepsilon_i)}))) \le -t + k - 2 \le -2,$$

故 $\phi(D_H(x^{(k\varepsilon_i)})) = 0$, $\forall i \in Y_0$. 设 $k \ge t+1$. 我们对 k 用归纳法证明 $\phi(D_H(x^{(k\varepsilon_i)})) = 0$. 由已知, 当 k = t+1 时结论成立. 令 k > t+1, 假设 $\phi(D_H(x^{(k-1)\varepsilon_i)})) = 0$. 因为

$$[\mathbf{D}_j, \mathbf{D}_{\mathbf{H}}(x^{(k\varepsilon_i)})] = \delta_{ij}\mathbf{D}_{\mathbf{H}}(x^{((k-1)\varepsilon_i)}), \quad \forall j \in Y,$$

所以, 由引理 2.7 知 $\phi(D_H(x^{(k\epsilon_i)})) \in H_{-1}$. 于是

$$\phi(\mathbf{D}_{\mathbf{H}}(x^{(k\varepsilon_i)})) \in \mathbf{H}_{-t+k-2} \cap \mathbf{H}_{-1} = 0.$$

归纳法完成. 从而对任意 $k \ge 1$, 有 $\phi(D_H(x^{(k\epsilon_i)})) = 0$, $\forall i \in Y_0$. 由于 $zd(\phi) = -t < -1$, 故 $\phi(H_0) = 0$. 由引理 4.16 知 $\phi = 0$.

命题 4.18 设 t>1, 并且 t 不是 p 的正整数次方幂, 则 $Der_{-t}(H)=0$.

证明 $\diamondsuit \phi \in Der_{-t}(H)$. 考察 \mathbb{Z} - 次数, 可设

$$\phi(\mathrm{D}_{\mathrm{H}}(x^{((t+1)\varepsilon_{\ell})})) = \sum_{l=1}^{s} a_{l} \mathrm{D}_{l}, \quad i \in Y_{0}, \quad a_{l} \in \mathbb{F}.$$

将φ作用于等式

$$[D_{H}(x^{((t+1)\epsilon_{i})}), D_{H}(x_{j}x_{k})] = 0, \quad j \in Y_{0}, \quad j \neq i, \quad k \in Y_{1},$$

则可推得 $a_l = 0$, $\forall l \in Y \setminus \{i'\}$. 故 $\phi(\mathbf{D_H}(x^{((t+1)e_i)})) = a_{i'}\mathbf{D}_{i'}$.

若 $t \neq 0 \pmod{p}$, 将 ϕ 作用于等式

$$[\mathrm{D_H}(x^{((t+1)arepsilon_i)}),\mathrm{D_H}(x_ix_{i'})]=(t+1)\sigma(i)\mathrm{D_H}(x^{((t+1)arepsilon_i)}),$$

则可得 $a_{i'} = 0$. 故 $\phi(D_H(x^{((t+1)\varepsilon_i)})) = 0$. 由引理 4.17 知 $\phi = 0$.

若 $t \equiv 0 \pmod{p}$, 令 $t = \sum_{i=1}^k b_i p^i$ 是 t 的 p-adic 数的形式, 其中 $b_k \neq 0$. 设 $q = p^k$, 则 $\binom{t+1}{q} \not\equiv 0 \pmod{p}$. 考察 \mathbb{Z} - 次数知

$$\phi(\mathbf{D_H}(x^{((t-q+2)\epsilon_i)})) = \phi(\mathbf{D_H}(x^{(q\epsilon_i+\epsilon_{i'})})) = 0.$$

应用φ于等式

$$[\mathbf{D_H}(x^{((t-q+2)\epsilon_i)}),\mathbf{D_H}(x^{(q\epsilon_i+\epsilon_{i'})})] = \sigma(i) \binom{t+1}{q} \mathbf{D_H}(x^{((t+1)\epsilon_i)}),$$

则可获得 $\phi(D_H(x^{((t+1)\epsilon_i)})) = 0$. 由引理 4.17 知 $\phi = 0$.

命题 4.19 设 $t=p^k$, 其中 $k \in \mathbb{N}$, 则

$$\operatorname{Der}_{-t}(H) = \operatorname{span}_{\mathbf{F}} \{ (\operatorname{ad} D_i)^t \mid i \in Y_0 \}.$$

证明 设 $\phi \in \text{Der}_{-t}(H)$. 由命题 4.18 的前部分证明知 $\phi(D_H(x^{((t+1)\varepsilon_i)})) = a_{i'}D_{i'}$, $\forall i \in Y_0$. 于是可得

$$\left(\phi - \sum_{j=1}^m \sigma(j) a_{j'} (\operatorname{ad} D_j)^t\right) (D_H(x^{((t+1)\varepsilon_i)})) = 0.$$

由引理 4.17 知

$$\phi = \sum_{j=1}^m \sigma(j) a_{j'} (\operatorname{ad} \mathbf{D}_j)^t \in \operatorname{span}_{\mathbf{F}} \{ (\operatorname{ad} \mathbf{D}_i)^t \mid i \in Y_0 \},$$

命题得证. □

定理 4.20 $\operatorname{Der}(H) = \operatorname{ad}(\widetilde{H} + \mathbb{F}h) \oplus \operatorname{span}_{\mathbb{F}}\{(\operatorname{ad} D_i)^{p^{k_i}} \mid i \in Y_0, 1 \leq k_i \leq t_i - 1\}.$ 证明 由命题 4.7, 4.11, 4.18, 4.19 与命题 2.9 可直接得到本定理. \square

§5 K 的导子超代数 [84]

我们在本节确定李超代数 $K = K(m, n, \underline{t})$ 的导子超代数, 这里 m = 2r + 1 是奇数, $r \ge 1$. 由 §1 节知, $K = \bigoplus_{i \ge -2}^{\lambda} K_i$ 是 Z. 阶化李超代数, 其中

$$\mathbf{K}_i = \mathrm{span}_{\mathbf{F}} \{ x^{(\alpha)} x^u \mid i = \|\alpha\| + |u| - 2 \}, \quad \|\alpha\| := |\alpha| + \alpha_m.$$

当 $n-m-3 \not\equiv 0 \pmod p$ 时, $\lambda = ||\pi|| + n-2$; 当 $n-m-3 \equiv 0 \pmod p$ 时, $\lambda = ||\pi|| + n-3$. 由于 K 是 Z- 阶化的, 所以 $Der(K) = \bigoplus_{t \in \mathbb{Z}} Der_t(K)$ 是 Z- 阶化李超代数, 其中

$$\mathrm{Der}_{t}(\mathrm{K}) = \{ \phi \in \mathrm{Der}(\mathrm{K}) \mid \phi(\mathrm{K}_{i}) \subseteq \mathrm{K}_{t+i}, \forall i \in \mathbb{Z} \}.$$

在本节中, Y, Y₀ 与 Y₁ 仍如 §1 所定义. 令 J₀ = {1, · · · , m-1}, $J = J_0 \cup Y_1$. 对 $i \in J$, i'与 $\sigma(i)$ 分别如第一章 (2.11) 与 (2.12) 式所定义. 当 $i \in Y$ 时, $\tau(i)$ 如第一章 §2 所定义. K 中的 [,] 运算已由第一章 (2.30) 式给出.

引理 5.1 设 $\phi \in \text{Der}(K), f \in K$. 设 $[f, x_i] = b_i, \forall i \in J$. 若 $\phi(x_i) = \phi(b_i) = 0, \forall i \in J$, 则 $\phi(f) \in K_{-2}$.

证明 由 $[f,x_i]=b_i$ 知

$$[\phi(f),x_i]+(-1)^{\operatorname{d}(\phi)\operatorname{d}(f)}[f,\phi(x_i)]=0,\quad \forall i\in J.$$

由上式与 $\phi(x_i) = 0$ 知, $[\phi(f), x_i] = 0$, $\forall i \in J$. 易见

$$[\phi(f), 1] = [\phi(f), [x_1, x_{1'}]]$$

$$= [[\phi(f), x_1], x_{1'}] + [x_1, [\phi(f), x_{1'}]] = 0.$$

于是 $D_m(\phi(f)) = [\phi(f), 1] = 0$. 进而由第一章 (2.30) 式可算得

$$\begin{aligned} [\phi(f), x_i] &= \sum_{j \in J} \sigma(j) (-1)^{d(\phi(f))\tau(j)} D_j(\phi(f)) D_{j'}(x_i) \\ &= (-1)^{d(\phi(f))\tau(i')} D_{i'}(\phi(f)), \ \forall i \in J. \end{aligned}$$

由 $[\phi(f), x_i] = 0$ 知 $D_{i'}(\phi(f)) = 0$, $\forall i \in J$. 因此 $\phi(f) \in K_{-2}$.

引理 5.2 设 $\phi \in \text{Der }_t(K), t \in \mathbb{Z}$, 并且 $\phi(K_j) = 0$, $j = -2, -1, \dots, k$. 若 $k + t \ge -2$, 则 $\phi = 0$.

利用引理 5.1, 与引理 2.8 的证明相仿, 可证得本引理.

引理 5.3 设 $f_i \in \Lambda(m, n, \underline{t}), \forall i \in Y, 并且$

$$D_i(f_j) = (-1)^{\tau(i)\tau(j)} D_j(f_i), \quad \forall i, j \in Y.$$

則

- 1) f_i 是 x_{i-} 截头的, $\forall i \in Y_1$.
- 2) 设 $i \in Y_0$, 则 f_i 是 x_i 截头的当且仅当 f_i 中不含有项 $cx^{(\pi_i \varepsilon_i)}$, 其中 $0 \neq c \in \mathbb{F}$. 证明 1) 由已知, $D_i(f_i) = -D_i(f_i)$, 其中 $i \in Y_1$, 故 $D_i(f_i) = 0$ 所以 f_i 是 x_i 截头的, $\forall i \in Y_1$.
- 2) 设 $i \in Y_0$. 若 f_i 含有项 $cx^{(\pi_i \varepsilon_i)}$, 其中 $0 \neq c \in \mathbb{F}$, 易见 $D_i^{\pi_i}(f_i) \neq 0$. 故 f_i 不是 x_i 截头的. 反之, 若 f_i 不是 x_i 截头的, 则可设 $f_i = x^{(\pi_i \varepsilon_i)}g + h$, 其中 $g, h \in \Lambda(m, n, \underline{t})$, 并且 $D_i(g) = 0$, $D_i^{\pi_i}(h) = 0$. 任取 $j \in Y \setminus \{i\}$, 由已知

$$D_i(f_j) = D_j(f_i) = x^{(\pi_i \epsilon_i)} D_j(g) + D_j(h).$$

由于 $D_i(f_j)$ 与 $D_j(h)$ 都是 x_i - 截头的,因此由上式知 $x^{(\pi_i \varepsilon_i)}D_j(g)$ 是 x_i - 截头的,故 $D_j(g) = 0$, $\forall j \in Y \setminus \{i\}$. 又因为 $D_i(g) = 0$,所以 $g \in \mathbb{F}$. 设 g = c,则 $f_i = cx^{(\pi_i \varepsilon_i)} + h$. 由于 f_i 不是 x_i - 截头的,故 $D_i^{\pi_i}(f_i) \neq 0$,于是 $c \neq 0$. 因此 f_i 中含有项 $cx^{(\pi_i \varepsilon_i)}$.

引理 5.4. 设 $\phi \in \text{Der}(K)$. 今 $f_m = 2^{-1}\phi(1)$,

$$f_i = -(-1)^{\tau(i)\mathbf{d}(\phi)}\sigma(i)\phi(x_{i'}) + \sigma(i)x_{i'}f_m, \quad \forall i \in J.$$

則 $D_i(f_j) = (-1)^{\tau(i)\tau(j)} D_j(f_i), \ \forall i, j \in Y.$

证明 由已知得

$$\phi(1) = 2f_m, \tag{5.1}$$

$$\phi(x_{i'}) = (-1)^{\tau(i)d(\phi)} x_{i'} f_m - (-1)^{\tau(i)d(\phi)} \sigma(i) f_i, \quad \forall i \in J.$$
 (5.2)

 $\mathbf{H}[1,x_{i'}]=0$ 知

$$[\phi(1), x_{i'}] + [1, \phi(x_{i'})] = 0. \tag{5.3}$$

将 (5.1) 与 (5.2) 式代入 (5.3) 式, 可算得

$$D_i(f_m) = D_m(f_i) = (-1)^{\tau(i)\tau(m)} D_m(f_i).$$
 (5.4)

设 $i,j \in J$, 并且 $j \neq i'$. 按第一章公式 (2.30) 可算得

$$\begin{aligned} &[\phi(x_{i'}), x_{j'}] \\ &= [(-1)^{\tau(i)d(\phi)} x_{i'} f_m - (-1)^{\tau(i)d(\phi)} \sigma(i) f_i, x_{j'}] \\ &= -(-1)^{d(\phi)\tau(i')+\tau(i')\tau(j')+d(\phi)\tau(j')} x_{j'} D_m(x_{i'} f_m) \\ &+ (-1)^{d(\phi)\tau(i')+\tau(j)\tau(i')+\tau(j)d(\phi)} \sigma(j) D_j(x_{i'} f_m) \\ &+ (-1)^{\tau(i)d(\phi)+d(f_i)\tau(j')} \sigma(i) x_{j'} D_m(f_i) \\ &- (-1)^{\tau(i)d(\phi)+\tau(j)d(f_i)} \sigma(i) \sigma(j) D_j(f_i). \end{aligned}$$
(5.5)

同样可算得

$$(-1)^{d(\phi)\tau(i')}[x_{i'},\phi(x_{j'})]$$

$$= (-1)^{d(\phi)\tau(i')}[x_{i'},(-1)^{\tau(j)d(\phi)}x_{j'}f_m - (-1)^{\tau(j)d(\phi)}\sigma(j)f_j]$$

$$= (-1)^{d(\phi)\tau(i)+d(\phi)\tau(j')}x_{i'}D_m(x_{j'}f_m)$$

$$+(-1)^{d(\phi)\tau(i')+d(\phi)\tau(j')+\tau(i')}\sigma(i')D_i(x_{j'}f_m)$$

$$-(-1)^{d(\phi)\tau(i')+d(\phi)\tau(j')}\sigma(j)x_{i'}D_m(f_j)$$

$$-(-1)^{d(\phi)\tau(i')+d(\phi)\tau(j)+\tau(i)}\sigma(j)\sigma(i')D_i(f_j). \tag{5.6}$$

由于 $d(f_i) = d(\phi) + \tau(i')$, $D_i(f_m) = D_m(f_i)$ 以及

$$\sigma(i) + (-1)^{\tau(i')}\sigma(i') = 0, \ \forall i \in J,$$

所以

$$(-1)^{\tau(i)d(\phi)+d(f_{i})\tau(j')}\sigma(i)x_{j'}D_{m}(f_{i})$$

$$+(-1)^{d(\phi)\tau(i')+d(\phi)\tau(j')+\tau(i')}\sigma(i')D_{i}(x_{j'}f_{m})$$

$$=(-1)^{\tau(i)d(\phi)+d(\phi)\tau(j')+\tau(i')\tau(j')}(\sigma(i)+(-1)^{\tau(i)}\sigma(i'))x_{j'}D_{m}(f_{i})$$

$$=0.$$
(5.7)

同理可得

$$(-1)^{d(\phi)\tau(i')+\tau(j)\tau(i')+\tau(j)d(\phi)}\sigma(j)D_{j}(x_{i}f_{m})$$

$$-(-1)^{d(\phi)\tau(i')+d(\phi)\tau(j)}\sigma(j)x_{i'}D_{m}(f_{j}) = 0,$$

$$(-1)^{d(\phi)\tau(i)+\tau(i')\tau(j')+d(\phi)\tau(j')}x_{j'}D_{m}(x_{i'}f_{m})$$

$$(5.8)$$

$$-(-1)^{d(\phi)\tau(i)+d(\phi)\tau(j')}x_{i'}D_m(x_{j'}f_m) = 0.$$
 (5.9)

因为

$$[\phi(x_{i'}), x_{j'}] + (-1)^{d(\phi)\tau(i')}[x_{i'}, \phi(x_{j'})] = \phi[x_{i'}, x_{j'}] = 0, \tag{5.10}$$

所以,由(5.5)~(5.10)式可得

$$-(-1)^{\tau(i)d(\phi)+\tau(j)d(f_i)}\sigma(i)\sigma(j)D_j(f_i)$$
$$-(-1)^{d(\phi)\tau(i')+d(\phi)\tau(j)+\tau(i')}\sigma(j)\sigma(i')D_i(f_j)=0.$$

于是 $(\sigma(i) - (-1)^{\tau(i)}\sigma(i'))((-1)^{\tau(j)\tau(i)}D_j(f_i) - D_i(f_j)) = 0$. 所以

$$D_{i}(f_{j}) = (-1)^{\tau(i)\tau(j)}D_{j}(f_{i}), \quad i, j \in J, \quad j \neq i'.$$
(5.11)

因为 $[x_i, x_{i'}] = (-1)^{\tau(i)} \sigma(i)1$, 所以

$$[\phi(x_i), x_{i'}] + (-1)^{d(\phi)\tau(i)}[x_i, \phi(x_{i'})] = (-1)^{\tau(i)}\sigma(i)\phi(1).$$

利用上式与(5.1),(5.2),(5.4),(5.11)式可推得

$$D_i(f_{i'}) = (-1)^{\tau(i)\tau(i')}D_i(f_i), \quad \forall i \in J.$$

$$(5.12)$$

由 (5.4), (5.11) 与 (5.12) 知引理成立.

引理 5.5 设 $\phi \in \text{Der}(K)$. 则存在 $f \in \Lambda(m,n,\underline{t})$, 使得 $(\phi - \text{ad } f)(K_j) = 0$, 其中 j = -2, -1

证明令

$$f_m = 2^{-1}\phi(1),$$

$$f_i = (-1)^{\tau(i)\operatorname{d}(\phi)}\sigma(i)\phi(x_{i'}) + \sigma(i)x_{i'}f_m, \quad \forall i \in J.$$

由引理 5.4 知, $D_i(f_j) = (-1)^{\tau(i)\tau(j)}D_j(f_i)$, $\forall i, j \in Y$. 由引理 5.3 的 1) 知, f_i 是 x_i - 截头 的, $\forall i \in Y_1$. 因为 $[x_m, 1] = -2$, 所以

$$[\phi(x_m), 1] + [x_m, \phi(1)] = -2\phi(1).$$

将 $\phi(1) = 2f_m$ 代入上式可算得

$$2x_m D_m(f_m) = D_m(\phi(x_m)) + \sum_{i \in J} x_i D_i(f_m).$$
 (5.13)

由于 f_m 是 x_m - 截头的, 故 (5.13) 式中的右端不含项 $cx^{(\pi_m \varepsilon_m)}$, 其中 $0 \neq c \in \mathbb{F}$. 因此 (5.13) 的左端也不含项 $cx^{(\pi_m \varepsilon_m)}$, 从而知 f_m 不含项 $cx^{(\pi_m \varepsilon_m)}$. 由引理 5.3 的 2) 知, f_m 是 x_m - 截头的. 相仿地, 将 ϕ 作用于等式 $[x_{i'}, x_m] = x_{i'}$, 再利用 (5.4) 与 (5.11) 式以

及引理 5.3 的 2), 则可知 f_i 是 x_{i-} 截头的, $\forall i \in J_0$ 由命题 2.5 知, 存在 $f \in \Lambda(m, n, \underline{t})$, 使得

$$f_i = D_i(f), \quad \forall i \in Y.$$
 (5.14)

由 (5.1), (5.2) 与 (5.14) 式, 直接验证可知

$$(\phi - \operatorname{ad} f)(1) = 0, \qquad (\phi - \operatorname{ad} f)(x_i) = 0, \quad \forall i \in J.$$

于是 $(\phi - \text{ad } f)(\mathbf{K}_j) = 0$, 其中 j = -2, -1.

命题 5.6 设 ϕ ∈ Der $\iota(K)$, $t \ge -1$. 则存在 $f \in \Lambda(m, n, \underline{t})$, 使得 $\phi = \operatorname{ad} f$.

证明 由引理 5.5 知, 存在 $f \in \Lambda(m, n, \underline{t})$, 使得 $(\phi - \text{ad } f)(K_j) = 0$, j = -2, -1. 因为 $t \ge -1$, 所以由引理 5.2 知, $\phi - \text{ad } f = 0$. 于是 $\phi = \text{ad } f$.

命题 5.7 $\operatorname{Der}_{-2}(K) = \operatorname{ad} K_{-2}$, $\operatorname{Der}_{-3}(K) = 0$.

证明 设 $\phi \in \text{Der}_{-2}(K)$, 则 $\phi(K_j) = 0$, j = -2, -1. 因 $zd(x_m) = 0$, 故可设 $\phi(x_m) = c$, 其中 $c \in \mathbb{F}$. 令 $\psi = \phi - 2^{-1}$ ad 1, 则 $\psi(K_j) = 0$, j = -2, -1, 并且 $\psi(x_m) = 0$. 任取 $i, j \in J$. 因为 $\psi(x_i x_j) \in K_{-2}$, 故可设 $\psi(x_i x_j) = a1$, $a \in \mathbb{F}$. 将 ψ 作用于等式 $[x_i x_j, x_m] = 0$, 可得 $[a1, x_m] = 0$. 因此 a1 = 0. 于是 $\psi(x_i x_j) = 0$, 故 $\psi(K_0) = 0$. 由引 理 5.2 知 $\psi = 0$, 所以 $\phi \in \text{ad } K_{-2}$.

设 $\phi \in \text{Der}_{-3}(K)$, 则 $\phi(K_j) = 0$, j = -2, -1, 0. 可设 $\phi(x_m x_i) = c1$, 其中 $i \in J, c \in \mathbb{F}$. 将 ϕ 作用于等式 $[x_m, x_m x_i] = x_m x_i$, 可推得 -2c1 = c1. 因为 $char \mathbb{F} = p > 3$, 所以 c1 = 0. 因此 $\phi(x_m x_i) = 0$, $\forall i \in J$. 同理可证得 $\phi(x_i x_j x_k) = 0$, 其中 $i, j, k \in J$. 所以 $\phi(K_{-1}) = 0$. 由引理 5.2 知 $\phi = 0$.

引理 5.8 设 $T = \{x^{(k_i \epsilon_i)} \mid i \in Y_0, 0 \le k_i \le \pi_i\}, M = \{x_i \mid i \in Y_1\}.$ 则 $T \cup M$ 生成 K.

证明 设 $T \cup M$ 生成的 K 的子代数为 Q. 我们先讨论 $n-m-3 \not\equiv 0 \pmod p$ 的情形.

1) 对 k 用归纳法证明 $\prod_{i=1}^k x_{m+i} \in Q$. 显然当 k=1 时结论成立. 假设当 $l \le k-1$ 时, $\prod_{i=1}^l x_{m+i} \in Q$. 因为 $x_{m+k}x_m = [x_{m+k}, x^{(2\epsilon_m)}] \in Q$, 所以

$$\left[\prod_{i=1}^{k-1} x_{m+i}, x_{m+k} x_m\right] = (3-k) \prod_{i=1}^k x_{m+i} \in Q.$$

者 $3-k\not\equiv 0\pmod p$, 则 $\prod_{i=1}^k x_{m+i}\in Q$. 设 $3-k\equiv 0\pmod p$. 因为

$$x_{m+k-1}x_{m+k}x_m = [x_{m+k-1}, [x_{m+k}, x^{(3\epsilon_m)}]] \in Q,$$

所以

$$\left[\prod_{i=1}^{k-2} x_{m+i}, x_{m+k-1} x_{m+k} x_m\right] = (4-k) \prod_{i=1}^k x_{m+i} \in Q.$$

由于 $4-k \not\equiv 0 \pmod{p}$, 故 $\prod_{i=1}^k x_{m+i} \in Q$. 归纳法完成. 特别地, 我们证明了 $x^E = \prod_{i=1}^n x_{m+i} \in Q$.

2) $x^{(\pi-e_m)} \in Q$. 我们首先对 k 用归纳法证明 $x^{(\pi_1e_1+\cdots+\pi_ke_k)}x_{m+1} \in Q$, 其中 k < m. 由于 $x_mx_{m+1} = [x_{m+1}, x^{(2e_m)}] \in Q$, 所以

$$3x^{(\pi_1e_1)}x_{m+1} = [x^{(\pi_1e_1)}, x_mx_{m+1}] \in Q.$$

因 char $\mathbb{F} = p > 3$,故 $x^{(\pi_1 \epsilon_1)} x_{m+1} \in Q$. 因此当 k = 1 时结论成立. 假设 $x^{(\pi_1 \epsilon_1 + \dots + \pi_{k-1} \epsilon_{k-1})} x_{m+1} \in Q$. 因为

$$x_{1'}x_{m+2} = [x_{1'}, x_mx_{m+2}] \in Q,$$

所以

$$egin{aligned} x^{((\pi_1-1)arepsilon_1+\pi_2arepsilon_2+\cdots+\pi_{k-1}arepsilon_{k-1})} x_{m+1} x_{m+2} \ &= [x^{(\pi_1arepsilon_1+\cdots+\pi_{k-1}arepsilon_{k-1})}, x_{1'} x_{m+2}] \in Q. \end{aligned}$$

由
$$[x^{(\pi_k \varepsilon_k)}, x_m x_{m+1}] = 3x^{(\pi_k \varepsilon_k)} x_{m+1}$$
 知, $x^{(\pi_k \varepsilon_k)} x_{m+1} \in Q$. 因此

$$\begin{split} x^{((\pi_1-1)\varepsilon_1+\pi_2\varepsilon_2+\cdots+\pi_k\varepsilon_k)}x_{m+2} \\ &= [x^{((\pi_1-1)\varepsilon_1+\pi_2\varepsilon_2+\cdots+\pi_{k-1}\varepsilon_{k-1})}x_{m+1}x_{m+2}, x^{(\pi_k\varepsilon_k)}x_{m+1}] \in Q. \end{split}$$

因为

$$x^{(2\varepsilon_1)}x_{m+1} = [x^{(3\varepsilon_1)}, [x_{1'}, x_mx_{m+1}]] \in Q,$$

所以

$$x_1x_{m+1}x_{m+2}=[x^{(2\epsilon_1)}x_{m+1},x_{1'}x_{m+2}]\in Q.$$

因而有

$$egin{aligned} x^{(\pi_1 \epsilon_1 + \cdots + \pi_k \epsilon_k)} x_{m+1} \ &= [x^{((\pi_1 - 1)\epsilon_1 + \pi_2 \epsilon_2 + \cdots + \pi_k \epsilon_k)} x_{m+2}, x_1 x_{m+1} x_{m+2}] \in Q. \end{aligned}$$

归纳法完成. 从而可得 $x^{(\pi_1\varepsilon_1+\cdots+\pi_{m-1}\varepsilon_{m-1})}x_{m+1}\in Q$. 因为

$$x^{((\pi_m-1)\varepsilon_m)}x_{m+1} = [x_{m+1}, x^{(\pi_m\varepsilon_m)}] \in Q,$$

所以

$$x^{(\pi-\varepsilon_m)} = [x^{(\pi_1\varepsilon_1 + \dots + \pi_{m-1}\varepsilon_{m-1})}x_{m+1}, x^{((\pi_m-1)\varepsilon_m)}x_{m+1}] \in Q.$$

3)
$$x^{(\pi)}x^{E} \in Q$$
. 由 1) 知

$$(2-n)x^{(2\varepsilon_m)}x^E = [x^E, x^{(3\varepsilon_m)}] \in Q.$$

若 $2-n \not\equiv 0 \pmod{p}$, 则 $x^{(2\epsilon_m)}x^E \in Q$. 若 $2-n \equiv 0 \pmod{p}$, 由 1) 知

$$x^{(2\epsilon_m)}x^E = (3-n)x^{(2\epsilon_m)}x^E = \left[\prod_{i=1}^{n-1} x_{m+i}, [x_s, x^{(4\epsilon_m)}]\right] \in Q.$$

由 2) 知 $(n-m-3)x^{(\pi)}x^E=[x^{(\pi-\varepsilon_m)},x^{(2\varepsilon_m)}x^E]\in Q$. 因为 $n-m-3\not\equiv 0\pmod p$, 所以 $x^{(\pi)}x^E\in Q$.

4) 我们对 $l = (\sum_{i=1}^m \pi_i + n) - (|\alpha| + |u|)$ 用归纳法证明 $x^{(\alpha)}x^u \in Q$. 当 l = 0 时, $x^{(\alpha)}x^u = x^{(\pi)}x^E$. 由 3) 知 $x^{(\alpha)}x^u \in Q$.

令 l > 0. 假设对 l - 1 结论成立. 设 $x^{(\alpha)}x^u \in K$, 并且 $(\sum_{i=1}^m \pi_i + n) - (|\alpha| + |u|) = l$. 若 |u| < n, 则存在 $k \in Y_1$ 使得 $x_k x^u \neq 0$. 由归纳假设 $x^{(\alpha)}x_k x^u \in Q$, 所以 $x^{(\alpha)}x^u = -[x_k, x^{(\alpha)}x_k x^u] \in Q$. 设 |u| = n. 由 l > 0 知存在 $i \in Y_0$, 使得 $x^{(\alpha+\epsilon_i)}x^u \in K$. 由归纳假设知 $x^{(\alpha+\epsilon_i)}x^u \in Q$. 如果 i = m, 则

$$x^{(\alpha)}x^u = [1, x^{(\alpha+\varepsilon_m)}x^u] \in Q.$$

如果 $i \neq m$, 由归纳假设 $x_{i'}x^{(\alpha+\varepsilon_i-\varepsilon_m)}x^u \in Q$. 于是

$$x^{(\alpha)}x^{u} = \sigma(i')[x_{i'}, x^{(\alpha+\varepsilon_i)}x^{u}] + \sigma(i')x_{i'}x^{(\alpha+\varepsilon_i-\varepsilon_m)}x^{u} \in Q.$$

归纳法完成. 于是我们证明了 Q = K.

设 $n-m-3\equiv 0\pmod p$. 由 2) 知 $x^{(n-\epsilon_m)}\in Q$, 从而

$$x^{(\pi-\pi_1 arepsilon_1-arepsilon_m)}=-(\operatorname{ad} x_{1'})^{\pi_{1'}}(x^{(\pi-arepsilon_m)})\in Q.$$

由 3) 知 $x^{(2\epsilon_m)}x^E \in Q$. 于是

$$(n-m-2)x^{(\pi-\pi_1\varepsilon_1)}x^E = [x^{(\pi-\pi_1\varepsilon_1-\varepsilon_m)}, x^{(2\varepsilon_m)}x^E] \in Q.$$

因为 $n-m-3\equiv 0\pmod{p}$,故 $x^{(\pi-\pi_1\varepsilon_1)}x^E\in Q$. 任取 $k\in Y_1$. 由于 $x_mx_k=[x_k,x^{(2\varepsilon_m)}]\in Q$, 所以 $x^{(\pi_1\varepsilon_1)}x_k=3^{-1}[x^{(\pi_1\varepsilon_1)},x_mx_k]\in Q$. 令

$$E_k = \langle m+1, \cdots, k-1, k+1, \cdots, s \rangle \in B_{n-1} \subseteq B(n).$$

则有

$$x^{(\pi)}x^{E_k} = (-1)^k [x^{(\pi_1\varepsilon_1)}x_k, x^{(\pi-\pi_1\varepsilon_1)}x^E] \in Q,$$
 (5.15)

$$x^{(\pi-\epsilon_m)}x^E = [x_k, x^{(\pi)}x^{E_k}] \in Q.$$
 (5.16)

任取 $i \in Y_0$, 则 $x_{i'}x_k = [x_{i'}, x_m x_k] \in Q$. 从而

$$x^{(\pi-\varepsilon_i)}x^E = \sigma(i)(-1)^{n-k}[x^{(\pi)}x^{E_k}, x_{i'}x_k] \in Q.$$
 (5.17)

由 (5.15), (5.16) 与 (5.17) 式知, 当 $|\beta| + |\nu| = \sum_{i=1}^{m} \pi_i + n - 1$ 时, $x^{(\beta)} x^{\nu} \in Q$. 仿 4), 对 $l = (\sum_{i=1}^{m} \pi_i + n - 1) - (|\alpha| + |u|)$ 用归纳法, 可证得 $x^{(\alpha)} x^{\nu} \in Q$. 从而 Q = K.

引理 5.9 设 $\phi \in \text{Der}_{-t}(K), t > 3$. 若 $\phi(x^{(t\varepsilon_i)}) = 0$, $\forall i \in J_0$, 则 $\phi(x^{(k\varepsilon_i)}) = 0$, $\forall k \in \mathbb{N}, \forall i \in J_0$.

证明 因为 $x^{\{te_i\}} \in K_{t-2}$, 故 $\phi(x^{\{ke_i\}}) = 0$, 其中 $0 \le k < t$. 由已知 $\phi(x^{\{te_i\}}) = 0$. 我们对 k 用归纳法证明, 当 k > t 时 $\phi(x^{\{te_i\}}) = 0$. 因为

$$[x^{(k\varepsilon_i)}, x_j] = \delta_{i'j}\sigma(i)x^{((k-1)\varepsilon_i)}, \quad \forall j \in J,$$

并且由归纳假设知 $\phi(x^{((k-1)e_i)}) = 0$,所以 $[x^{(ke_i)}, x_j] = 0$, $\forall j \in J$. 由引理 5.1 知 $\phi(x^{(ke_i)}) \in K_{-2}$. 因此 $\phi(x^{(ke_i)}) \in K_{-2-t} = 0$.

引理 5.10 设 $\phi \in \text{Der}_{-t}(K), t > 3.$ 若 $\phi(x^{(l\varepsilon_m)}) = \phi(x^{((l-1)\varepsilon_m)}) = 0$, 则 $\phi(x^{(l\varepsilon_m)}x_i) = 0$, $i \in J$.

证明 先证 $i \in J_0$ 的情形. 若 t > 4, 则 $\phi(x_m x_i x_{i'}) = 0$. 若 t = 4, 可设 $\phi(x_m x_i x_{i'}) = c_i 1$, 其中 $c_i \in \mathbb{F}$. 将 ϕ 作用于等式

$$[x_m x_i x_{i'}, x_m] = -2x_m x_i x_{i'}$$

可推得 $c_i=0$. 故也有 $\phi(x_mx_ix_{i'})=0$. 若 $2-l\not\equiv 0\pmod p$, 将 ϕ 作用于等式

$$[x^{(l\varepsilon_m)}, x_m x_i] = (2-l)x^{(l\varepsilon_m)}x_i,$$

可知 $\phi(x^{(le_m)}x_i)=0$. 若 $2-l\equiv 0\pmod p$, 将 ϕ 作用于

$$[x^{((l-1)\varepsilon_m)}, x_m x_i] = (3-l)x^{((l-1)\varepsilon_m)} x_i,$$

可知 $\phi(x^{\{(l-1)\varepsilon_m\}}x_i)=0$. 利用 $[x^{(l\varepsilon_m)},x_mx_ix_{i'}]=x^{(l\varepsilon_m)}x_ix_{i'}$,可得

$$\phi(x^{(l\varepsilon_m)}x_ix_{i'})=0.$$

因为

$$\{x^{(l\varepsilon_m)}x_ix_{i'},x_i\} + [x^{((l-1)\varepsilon_m)}x_i,x_mx_ix_{i'}] = \sigma(i')(1-l)x^{(l\varepsilon_m)}x_i,$$

并且 $1-l\equiv -1\pmod p$, 所以 $\phi(x^{(larepsilon_m)}x_i)=0$.

设 $i \in Y_1$. 任取 $j \in J_0$, 由上面的结论知, $\phi(x^{(l\varepsilon_m)}x_j) = 0$. 利用 $[x^{(l\varepsilon_m)}x_j, x_jx_i] = \sigma(j)x^{(l\varepsilon_m)}x_i$, 可得 $\phi(x^{(l\varepsilon_m)}x_i) = 0$.

引理 5.11 设 $\phi \in \text{Der}_{-t}(K), t > 3$. 令 $l = [\frac{t}{2}]$ 表示 $\frac{t}{2}$ 的整数部分. 若 $\phi(x^{(le_m)}) = 0$, 则 $\phi(x^{(ke_m)}) = 0$, $\forall k \in \mathbb{N}$.

证明 若 k < l, 则 2k < t. 于是

$$zd(\phi(x^{(k\varepsilon_m)})) = -t + 2k - 2 < -t + t - 2 = -2.$$

故 $\phi(x^{(k\varepsilon_m)}) = 0$. 设 $k \ge l$. 则 $2k - t \ge 2l - t \ge -1$. 我们对 k 用归纳法证明 $\phi(x^{(k\varepsilon_m)}) = 0$. 假设当 $r \le k$ 时, $\phi(x^{(r\varepsilon_m)}) = 0$. 由引理 5.10 知 $\phi(x^{(k\varepsilon_m)}x_i) = 0$, $\forall i \in J$. 因为 $[x^{((k+1)\varepsilon_m)}, x_i] = -x^{(k\varepsilon_m)}x_i$, $\forall i \in J$, 所以由引理 5.1 知 $\phi(x^{((k+1)\varepsilon_m)}) \in K_{-2} \cap K_{2k-t} = 0$.

推论 5.12 设 $\phi \in \text{Der}_{-t}(K), t > 3$ 并且 t 是奇数, 则 $\phi(x^{(k\varepsilon_m)}) = 0$, $\forall k \in \mathbb{N}$. 证明 设 $l = [\frac{t}{2}]$. 因为

$$zd(\phi(x^{(l\varepsilon_m)})) = (2l-2) - t = (t-1-2) - t = -3,$$

所以 $\phi(x^{(l\varepsilon_m)}) = 0$. 由引理 5.11 知 $\phi(x^{(k\varepsilon_m)}) = 0$, $\forall k \in \mathbb{Z}$.

命题 5.13 设 t > 3. 若 $t \not\equiv 0 \pmod{p}$, 则 $\text{Der}_{-t}(k) = 0$.

证明 设 $\phi \in \text{Der}_{-t}(K)$. 任取 $i \in J_0$. 因为 $\phi(x^{(t\varepsilon_i)}) \in K_{-2}$, 故可设 $\phi(x^{(t\varepsilon_i)}) = c_i 1$, 其中 $c_i \in \mathbb{F}$. 将 ϕ 作用于等式 $[x^{(t\varepsilon_i)}, x_m] = (2-t)x^{(t\varepsilon_m)}$, 则有 $-t(c_i 1) = 0$. 因为 $t \neq 0$ (mod p), 所以 $c_i = 0$. 于是 $\phi(x^{(t\varepsilon_i)}) = 0$, $\forall i \in J_0$. 由引理 5.9 知 $\phi(x^{(k\varepsilon_i)}) = 0$, $\forall k \in \mathbb{N}$, $\forall i \in J_0$.

若 t 是奇数, 由推论 5.12 知 $\phi(x^{(k\varepsilon_m)}) = 0$, $\forall k \in \mathbb{N}$.

若 t 是偶数, 设 $l=\frac{t}{2}$, 则 $\phi(x^{(l\varepsilon_m)})\in K_{-2}$. 设 $\phi(x^{(l\varepsilon_m)})=a1$, 其中 $a\in \mathbb{F}$. 将 ϕ 作用于等式

$$[x^{(l\varepsilon_m)},x_m]=(2-t)x^{(l\varepsilon_m)}$$

可得 a=0. 故 $\phi(x^{(l\varepsilon_m)})=0$. 由引理 5.11 知 $\phi(x^{(k\varepsilon_m)})=0$, $\forall k\in\mathbb{N}$. 因为 t>3, 故 $\phi(x_i)=0$, $\forall i\in Y_1$. 由引理 5.8 知 $\phi=0$.

命题 5.14 设 t > 3, $t \equiv 0 \pmod{p}$. 若不存在 $v \in \mathbb{N}$, 使得 $t = p^v$ 或 $t = p^{2v}$, 则 $\text{Der}_{-t}(K) = 0$.

证明 将 t 写成 p-adic 数的形式: $t = \sum_{i=1}^{v} a_i p^i$, 其中 $a_v \neq 0$. 设 $\phi \in \text{Der }_{-t}(K)$. 易见 $\phi(x^{((t-p^v-1)\varepsilon_i)}) \in K_{-p^v-3} = 0$, $\phi(x_{i'}x^{(p^v\varepsilon_i)}) \in K_{p^v-1-t}$, 其中 $i \in J_0$. 因为 $t \neq p^v$ 并且 $t \equiv 0 \pmod{p}$, 所以 $p^v - 1 - t < -2$. 因此 $\phi(x_{i'}x^{(p^v\varepsilon_i)}) = 0$, $\forall i \in J_0$. 由等式

$$[x^{((t-p^v+1)\varepsilon_i)},x_{i'}x^{(p^v\varepsilon_i)}] = \sigma(i) \binom{t}{p^v} x^{(t\varepsilon_i)}$$

与 $\binom{t}{p^v} \not\equiv 0 \pmod{p}$, 可推得 $\phi(x^{(t\varepsilon_i)}) = 0$. 由引理 5.9 知 $\phi(x^{(k\varepsilon_i)}) = 0$, $\forall k \in \mathbb{N}, \forall i \in J_0$. 若 t 是奇数, 由推论 5.12 知 $\phi(x^{(k\varepsilon_m)}) = 0$, $\forall k \in \mathbb{N}$.

若 t 是偶数, 设 $l = \frac{t}{2}$. 令 $l = \sum_{i=0}^{v} a_i p^i$ 是 l 的 p-adic 数的形式. 若 $a_0 \neq 0$, 则 $p \nmid l$, 于是可知 $p \nmid t$. 此与 $t \equiv 0 \pmod{p}$ 矛盾. 故 $a_0 = 0$, 因而 $l = \sum_{i=1}^{v} a_i p^i$.

易见 $\phi(x^{((l-p^v+1)\varepsilon_m)}) \in K_{-2p^v} = 0$, $\phi(x^{(p^v\varepsilon_m)}) \in K_{2p^v-2l-2}$. 因为 $t \neq 2p^v$, 所以 $l \neq p^v$. 于是 $2p^v - 2l - 2 < -2$, 因此 $\phi(x^{(p^v\varepsilon_m)}) = 0$. 由于

$$[x^{((l-p^v+1)\varepsilon_m)},x^{(p^v\varepsilon_m)}]=2\Bigg[\binom{l}{p^v-1}-\binom{l}{p^v}\Bigg]x^{(l\varepsilon_m)}$$

以及 $\binom{l}{p^v} \not\equiv 0 \pmod{p}$, $\binom{l}{p^v-1} \equiv 0 \pmod{p}$, 于是可得 $\phi(x^{(l\varepsilon_m)}) = 0$. 由引理 5.11 知 $\phi(x^{(k\varepsilon_m)}) = 0$, $\forall k \in \mathbb{N}$. 显然 $\phi(x_i) = 0$, $\forall i \in Y_1$. 由引理 5.8 知 $\phi = 0$.

命題 5.15 1) 若 $t = p^r$, v > 0, 则

$$\mathrm{Der}_{-t}(\mathrm{K})=\mathrm{span}_{\mathbf{F}}\big\{\mathrm{D}_{i}^{p^{u}}\mid i\in J_{0}\big\}.$$

2) 若 $t = p^{2v}$, v > 0, 则

$$\operatorname{Der}_{-t}(K) = \operatorname{span}_{\mathbf{F}} \{ \operatorname{D}_{m}^{p^{t}} \}.$$

证明 1) 设 $\phi \in \text{Der}_{-t}(K)$, 其中 $t = p^{v}$. 考察 \mathbb{Z} - 次数知 $\phi(x^{(te_{i})}) = c_{i}1$, 其中 $c_{i} \in \mathbb{F}, i \in J_{0}$. 令 $\psi = \phi - \sum_{i=1}^{m-1} c_{i} D_{i}^{t}$, 则 $\psi(x^{(te_{j})}) = 0$, $\forall j \in J_{0}$. 由引理 5.9 知 $\psi(x^{(k\epsilon_{j})}) = 0$, $\forall k \in \mathbb{N}$. 由推论 5.12 知 $\psi(x^{(k\epsilon_{m})}) = 0$, $\forall k \in \mathbb{N}$. 显然 $\psi(x_{i}) = 0$, $\forall i \in Y_{1}$. 由引理 5.8 知 $\psi = 0$. 故 $\phi = \sum_{i=1}^{m-1} c_{i} D_{i}^{t} \in \text{span}_{\mathbb{F}} \{ D_{i}^{p^{v}} \mid i \in J_{0} \}$.

2) 设 $\phi \in \text{Der}_{-t}(K)$, 其中 $t = 2p^{v}$. 又设 $l = \frac{t}{2}$. 考察 \mathbb{Z} - 次数知 $\phi(x^{(k\varepsilon_m)}) = c1$, 其中 $c \in \mathbb{F}$. 令 $\psi = \phi - cD_m^l$, 则 $\psi(x^{(l\varepsilon_m)}) = 0$. 由引理 5.10 知 $\psi(x^{(k\varepsilon_m)}) = 0$, $\forall k \in \mathbb{N}$.

考察 Z- 次数知 $\psi(x^{((l+1)\epsilon_i)}) = \psi(x_{i'}x^{(l\epsilon_i)}) = 0$, 其中 $i \in J_0$. 因为

$$[x^{((l+1)\varepsilon_i)}, x_i x^{(l\varepsilon_i)}] = \sigma(i) \begin{pmatrix} t \\ p^v \end{pmatrix} x^{(t\varepsilon_i)},$$

并且 $\binom{t}{p^{\nu}} \not\equiv 0 \pmod{p}$, 所以 $\psi(x^{(t\varepsilon_i)}) = 0$. 由引理 5.9 知 $\psi(x^{(k\varepsilon_m)}) = 0$, $\forall k \in \mathbb{N}$. 由引理 5.8 知 $\psi = 0$. 所以 $\phi = cD_m^l \in \operatorname{span}_{\mathbb{F}} \{D_m^{p^{\nu}}\}$.

$$\mathrm{Der}\left(\mathrm{K}\right) = \mathrm{ad}\,\mathrm{K} \oplus \mathrm{span}_{\mathbf{F}} \big\{ \mathrm{D}_{i}^{p^{v_{i}}} \ \big| \ i \in Y_{0}, 1 \leq v_{i} \leq t_{i} - 1 \big\}.$$

由命题 5.6, 5.7, 5.13, 5.14 与 5.15 即可得到本定理. **定理 5.17** 若 $n-m-3 \equiv 0 \pmod{p}$, 则

$$\mathrm{Der}\left(\mathbf{K}\right) = \mathrm{ad}\,\mathbf{K} \oplus \mathrm{span}_{\mathbf{F}} \big\{ \, \mathrm{ad}\,(x^{(\pi)}x^E) \big\} \oplus \mathrm{span}_{\mathbf{F}} \big\{ \mathbf{D}_i^{p^{v_i}} \,\, \big| \,\, i \in Y_0, 1 \leq v_i \leq t_i - 1 \big\}.$$

证明 由命题 5.6 知, 若 $\phi \in \operatorname{Der}_{t}(K)$, t > -1, 则 $\phi \in \operatorname{ad}(\Lambda(m, n, \underline{t})) = \operatorname{ad}K \oplus \operatorname{span}_{\mathbf{F}}\{\operatorname{ad}(x^{(\pi)}x^{E})\}$. 直接验证可知, $\operatorname{ad}(x^{(\pi)}x^{E})(K) \subseteq K$. 于是由 5.7, 5.13, 5.14 与 5.15 即可证得本定理. \square

第三章 同态实现与不变滤过

§1 同态实现

在本节中, 我们构造了任一李超代数到 W 型李超代数的同态, 从而将文献 [56] 的相应的李代数的方法与某些结果推广到李超代数.

本节总设 F 是特征数不为 2 的任一域. 令 $A = A_0 \oplus A_1$ 是 F 上的一个结合超代数, 并且仍用 A^- 表示与结合超代数 A 关联的李超代数 (见第一章例 1.7).

显然,对于平凡的 \mathbb{Z}_2 - 阶化 (即 \mathbb{I} - 成分为零的 \mathbb{Z}_2 - 阶化), 域 \mathbb{F} 是一个结合超代数. 设 $L = L_0 \oplus L_1$ 是 \mathbb{F} 上的一个李超代数, U(L) 是 L 的泛包络代数, 则李超代数的平凡同态 $L \to \mathbb{F}$ 可以惟一地扩张为结合超代数的同态 $\varepsilon: U(L) \to \mathbb{F}$. U(L) 的 \mathbb{Z}_2 - 阶化 诱导了 $U(L) \otimes U(L)$ 的一个 \mathbb{Z}_2 - 阶化, 使得 $U(L) \otimes U(L)$ 是一个结合超代数, 其乘法运算由下式定义:

$$(x_1 \otimes x_2)(y_1 \otimes y_2) := (-1)^{d(x_2)d(y_1)} x_1 y_1 \otimes x_2 y_2$$

 $x_2, y_1 \in \text{hg}(U(L)), x_1, y_2 \in U(L)$. 易见, 映射

$$L \longrightarrow (U(L) \otimes U(L))^{-},$$
 $z \longmapsto z \otimes 1 + 1 \otimes z$

是李超代数的同态. 利用 U(L) 的泛性可知, 存在惟一的结合超代数的同态 $\Delta:$ $U(L) \to U(L) \otimes U(L)$, 使得 $\Delta(z) = z \otimes 1 + 1 \otimes z$, $\forall z \in L$.

乘法映射 $u': U(L) \times U(L) \rightarrow U(L)$ 诱导了一个线性映射 $u: U(L) \otimes U(L) \rightarrow U(L)$, 使得 $u(x \otimes y) = xy$, $\forall x, y \in U(L)$. 则, $\varepsilon u: U(L) \otimes U(L) \rightarrow \mathbb{F}$ 是一个结合超代数的同态. 因为

$$\varepsilon u \Delta(z) = \varepsilon u(z \otimes 1 + 1 \otimes z) = \varepsilon(2z) = 0 = \varepsilon(z), \quad \forall z \in L,$$

所以我们有 $\varepsilon u\Delta(x) = \varepsilon(x), \ \forall x \in U(L)$.

设 $L_{(0)}$ 是 L 的子代数, 使得 $\Delta(R) \subseteq R \otimes R$, 这里 R 是 $L_{(0)}$ 的泛包络代数. 则 U(L) 是自由的左 R- 模. 令 $\{u_i\}_{i \in \Lambda}$ 是 U(L) 的一个 R- 基底. 定义

$$U_R^{(*)} = \{ f \in \text{Hom}_{\mathbb{F}}(U(L), \mathbb{F}) \mid Q有有限个i \in \Lambda, 使得 $f(u_i) \neq 0 \}.$$$

设

$$U_R^* = \operatorname{span}_{\mathbf{F}} \{ f \in U_R^{(*)} \mid f(rx) = (-1)^{\operatorname{d}(f)\operatorname{d}(r)} \varepsilon(r) f(x) \},$$

其中 $r \in R$, $x \in U(L)$. 任取 $f,g \in U_R^*$, 我们定义线性映射 $f \otimes g : U(L) \otimes U(L) \to \mathbb{F}$, 使

$$(f\otimes g)(x\otimes y)=(-1)^{\mathrm{d}(g)\mathrm{d}(x)}f(x)g(x),\quad x,y\in U(L).$$

引理 1.1 $(f \otimes g)\Delta \in U_R^*$, $\forall f,g \in U_R^*$. 证明 设 $r \in R$. 由于 $\Delta(R) \subseteq R \otimes R$, 故可设

$$\Delta(r) = \sum_j r_j \otimes r_j',$$

其中 $r_i, r_i' \in R$. 则

$$\varepsilon(r) = \varepsilon u \Delta(r) = \sum_{i} \varepsilon(r_{i}) \varepsilon(r'_{j}).$$

任取 $x \in U(L)$. 设 $\Delta(x) = \sum_i x_i \otimes x_i'$, 其中 $x_i, x_i' \in U(L)$, 则有

$$(f \otimes g)\Delta(rx) = (f \otimes g)\{\Delta(r)\Delta(x)\}$$

$$= (f \otimes g)\left(\left(\sum_{j} r_{j} \otimes r'_{j}\right)\left(\sum_{i} x_{i} \otimes x'_{i}\right)\right)$$

$$= \sum_{i,j} (-1)^{d(r'_{j})d(x_{i})} (f \otimes g)(r_{j}x_{i} \otimes r'_{j}x'_{i})$$

$$= \sum_{i,j} (-1)^{d(r'_{j})d(x_{i})+d(g)(d(r_{j})+d(x_{i}))} f(r_{j}x_{i})g(r'_{j}x'_{i})$$

$$= \sum_{i,j} (-1)^{\theta} \varepsilon(r_{j})f(x_{i})\varepsilon(r'_{j})g(x'_{i})$$

$$= \sum_{i,j} (-1)^{\theta} \varepsilon(r_{j})\varepsilon(r'_{j})f(x_{i})g(x'_{i}), \qquad (1.1)$$

其中 $\theta = (-1)^{d(r_j)d(x_i)-d(g)(d(r_j)+d(x_i))+d(f)d(r_j)+d(g)d(r_j')}$. 若 $d(r_j') = \overline{0}$, 显然有

$$\varepsilon(r'_j) = (-1)^{(\mathbf{d}(f) + \mathbf{d}(x_i))\mathbf{d}(r'_j)} \varepsilon(r'_j). \tag{1.2}$$

者 $d(r_j') = \overline{1}$, 则 $\varepsilon(r_j') = 0$. 于是 (1.2) 式仍成立. 将 (1.2) 式代入 (1.1) 式, 则有

$$(f \otimes g)\Delta(rx) = \sum_{i,j} (-1)^{\theta + (\operatorname{d}(f) + \operatorname{d}(x_i))\operatorname{d}(r'_j)} \varepsilon(r_j) \varepsilon(r'_j) f(x_i) g(x'_i)$$

$$= \sum_{i,j} (-1)^{(\operatorname{d}(g) + \operatorname{d}(f))\operatorname{d}(r) + \operatorname{d}(g)\operatorname{d}(x_i)} \varepsilon(r_j) \varepsilon(r'_j) f(x_i) g(x'_i)$$

$$= (-1)^{(\operatorname{d}(f) + \operatorname{d}(g))\operatorname{d}(r)} \left(\sum_j \varepsilon(r_j) \varepsilon(r'_j) \right) (f \otimes g) \left(\sum_i x_i \otimes x'_i \right)$$

$$= (-1)^{(\operatorname{d}(f) + \operatorname{d}(g))\operatorname{d}(r)} \varepsilon(r) (f \otimes g) \Delta(x).$$

所以 $(f \otimes g) \Delta \in U_R^*$. \square

利用引理 1.1, 我们可以给 U_R 定义一个乘法:

$$fg:=(f\otimes g)\Delta,\;f,g\in U_R^*,$$

则 Uk 是一个超代数.

设 $x \in U(L), f \in U_R^*$. 我们定义线性映射 $x \cdot f : U(L) \to F$, 使得

$$(x \cdot f)(y) = (-1)^{d(x)(d(f)+d(y))} f(yx), y \in U(L).$$

直接验证可知 $x \cdot f \in U_R^*$, 并且线性映射

$$\phi: U(L) \longrightarrow \operatorname{End}_{\mathbf{F}}(U_R^*)$$

$$x \longmapsto \phi_x$$

是结合超代数的同态, 这里 $\phi_x(f) := x \cdot f$, $\forall f \in U_R^*$.

引理 1.2 设 ϕ 是如上定义的线性映射,则 $\phi(L) \subseteq \mathrm{Der}(U_R^\bullet)$,并且 $\phi|_L:L\to \mathrm{Der}(U_R^\bullet)$ 是李超代数的同态.

证明 设 $z \in L$, $f, g \in U_R^*$, $x \in U(L)$. 设

$$\Delta(x) = \sum_i x_i \otimes x_i', \ x_i, x_i' \in U(L).$$

则有

$$\begin{aligned} &\phi_{x}(fg)(x) \\ &= (-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(g)+\mathrm{d}(x)\right)}(fg)(xz) \\ &= (-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(g)+\mathrm{d}(x)\right)}(f\otimes g)\Delta(xz) \\ &= (-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(g)+\mathrm{d}(x)\right)}(f\otimes g)\left(\left(\sum_{i}x_{i}\otimes x_{i}'\right)(z\otimes 1+1\otimes z)\right) \\ &= \sum_{i}(-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(g)+\mathrm{d}(x)\right)+\mathrm{d}(x_{i}')\mathrm{d}(z)}(f\otimes g)(x_{i}z\otimes x_{i}') \\ &+ \sum_{i}(-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(g)+\mathrm{d}(x)\right)}(f\otimes g)(x_{i}\otimes x_{i}'z) \\ &= \sum_{i}(-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(x)\right)+\mathrm{d}(x_{i}')\mathrm{d}(z)+\mathrm{d}(g)\mathrm{d}(x_{i})}f(x_{i}z)g(x_{i}') \\ &+ \sum_{i}(-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(x)\right)+\mathrm{d}(g)\mathrm{d}(x_{i})}f(x_{i})g(x_{i}'z) \\ &= \sum_{i}(-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(x)\right)+\mathrm{d}(g)\mathrm{d}(x_{i})+\mathrm{d}(z)\mathrm{d}(x_{i}')}(z\cdot f(x_{i}))g(x_{i}') \\ &+ \sum_{i}(-1)^{\mathrm{d}(z)\left(\mathrm{d}(f)+\mathrm{d}(x)\right)+\mathrm{d}(g)\mathrm{d}(x_{i})+\mathrm{d}(z)\mathrm{d}(x_{i}')}f(x_{i})(z\cdot g(x_{i}')) \\ &= \sum_{i}(-1)^{\mathrm{d}(g)\mathrm{d}(x_{i})}(\phi_{z}(f)(x_{i}))g(x_{i}') \\ &+ \sum_{i}(-1)^{\mathrm{d}(g)\mathrm{d}(x_{i})}(\phi_{z}(f)(x_{i}))g(x_{i}') \\ &+ \sum_{i}(-1)^{\mathrm{d}(z)\mathrm{d}(f)+\mathrm{d}(z)\mathrm{d}(x)+\mathrm{d}(g)\mathrm{d}(x_{i})+\mathrm{d}(z)\mathrm{d}(x_{i}')}f(x_{i})\phi_{z}(g)(x_{i}') \\ &= \sum_{i}(\phi_{z}(f)\otimes g)(x_{i}\otimes x_{i}') + \sum_{i}(-1)^{\mathrm{d}(z)\mathrm{d}(f)}(f\otimes \phi_{z}(g))(x_{i}\otimes x_{i}') \end{aligned}$$

$$= (\phi_z(f) \otimes g) \Delta(x) + (-1)^{\mathbf{d}(z)\mathbf{d}(f)} (f \otimes \phi_z(g)) \Delta(x)$$
$$= (\phi_z(f)g)(x) + (-1)^{\mathbf{d}(z)\mathbf{d}(f)} (f\phi_z(g))x.$$

所以 $\phi_z(fg) = \phi_z(f)g + (-1)^{d(\phi_z)d(f)}f\phi_z(g)$. 因此 $\phi_z \in \text{Der}(U_R^*)$, 即 $\phi(z) \in \text{Der}(U_R^*)$, $\forall z \in L$. 故 $\phi(L) \subseteq \text{Der}(U_R^*)$. 因为 $\phi: U(L) \to \text{End}_F(U_R^*)$ 是结合超代数的同态, 所以 $\phi|_L: L \to \text{Der}(U_R^*)$ 是李超代数的同态.

设 L(0) 是李超代数 L 的子代数, 并且

$$\dim(L/L_{(0)})_{\overline{0}} = m, \ \dim(L/L_{(0)})_{\overline{1}} = n.$$

我们可设

$$L = L_{(0)} \oplus \mathbb{F}e_1 \oplus \cdots \oplus \mathbb{F}e_m \oplus \mathbb{F}e_{m+1} \oplus \cdots \oplus \mathbb{F}e_s,$$

其中 $s=m+n,\ e_1,\cdots,e_m\in L_{\overline{0}},\ e_{m+1},\cdots,e_s\in L_{\overline{1}}.$ 设 $U(L_{(0)})$ 是李超代数 $L_{(0)}$ 的泛包络代数,为简便,记 $R=U(L_{(0)})$. 若 $\beta=(\beta_1,\beta_2,\cdots,\beta_m)\in\mathbb{N}^m_0$,则令 $e^{(\beta)}=e_1^{\beta_1}e_2^{\beta_2}\cdots e_m^{\beta_m}$,于是 $e^{(\beta)}\in U(L)$. 设 $v=\langle i_1,i_2,\cdots,i_k\rangle\in B(n)$,这里 B(n) 如第一章 §2 节所定义,则 $\{v\}=\{i_1,i_2,\cdots,i_k\},\ |v|=k.$ 令 $e^v=e_{i_1}e_{i_2}\cdots e_{i_k}$,则 $e^v\in U(L)$. 由李超代数的 PBW 定理知 $\{e^{(\beta)}e^v\mid\beta\in\mathbb{N}^m_0,v\in B(n)\}$ 是左 R- 模 U(L) 的一个 R- 基底. 任取 $\alpha\in\mathbb{N}^m_0,\ u\in B(n)$,定义线性映射 $x^{(\alpha)}x^u:U(L)\to\mathbb{F}$,使得

$$x^{(\alpha)}x^{u}(re^{(\beta)}e^{v})=(-1)^{\operatorname{d}(r)|u|}arepsilon(r)\delta(lpha,eta)\delta(u,v),$$

其中 $r \in R$, $\delta(x)$ 是 Kronecker 符号函数. 由定义知, 若 $(\beta,v) \neq (\alpha,u)$, 则 $x^{(\alpha)}x^{u}(e^{(\alpha)}e^{u}) = 0$. 所以 $d(x^{(\alpha)}x^{u}) = d(e^{(\alpha)}e^{u}) = d(e^{u}) = |u| \in \mathbb{Z}_{2}$.

引理 1.3 1) 设 $\alpha \in \mathbb{N}_0^m$, $u \in B(n)$. 则如上定义的线性映射 $x^{(\alpha)}x^u$ 是 U_R^* 中的元素.

2) $\{x^{(\alpha)}x^u \mid \alpha \in \mathbb{N}_0^m, u \in B(n)\}$ 是 U_R^* 的一个 \mathbb{F} - 基底.

证明 1) 由李超代数的 PBW 定理知, U(L) 的标准基元素可表为 $re^{(\beta)}e^{v}$ 的形式, 其中 $r \in R$, $\beta \in \mathbb{N}_0^m$, $v \in B(n)$. 简记 $x^{(\alpha)}x^u$ 为 f. 任取 $r' \in R$, 则有

$$\begin{split} &f(r'(re^{(\beta)}e^{v}))\\ &= f((r'r)e^{(\beta)}e^{v})\\ &= x^{(\alpha)}x^{u}((r'r)e^{(\beta)}e^{v})\\ &= (-1)^{\operatorname{d}(r'r)|u|}\varepsilon(r'r)\delta(\alpha,\beta)\delta(u,v)\\ &= (-1)^{\operatorname{d}(r')|u|}\varepsilon(r')((-1)^{\operatorname{d}(r)|u|}\varepsilon(r)\delta(\alpha,\beta)\delta(u,v))\\ &= (-1)^{\operatorname{d}(r')|u|}\varepsilon(r')\big(x^{(\alpha)}x^{u}(re^{(\beta)}e^{v})\big)\\ &= (-1)^{\operatorname{d}(r')\operatorname{d}(f)}\varepsilon(r')f(re^{(\beta)}e^{v}). \end{split}$$

所以 $f \in U_R^{\bullet}$.

2) 设 $g \in \text{hg}(U_R^*)$. 欲证 $g = \sum_{\alpha,u} g(e^{(\alpha)}e^u)x^{(\alpha)}x^u$. 任取 U(L) 的一个基元素 $re^{(\beta)}e^v$, 其中 $r \in R$, $\beta \in \mathbb{N}_0^m$, $v \in B(n)$. 则有

$$\sum_{\alpha,u} g(e^{(\alpha)}e^{u})x^{(\alpha)}x^{u}(re^{(\beta)}e^{v})$$

$$= g(e^{(\beta)}e^{v})(-1)^{d(r)|v|}\varepsilon(r)$$

$$= (-1)^{d(r)|v|}\varepsilon(r)g(e^{(\beta)}e^{v}). \tag{1.3}$$

若 $g(e^{(\beta)}e^{\nu})=0$,由 (1.3)式,则有

$$\begin{split} \sum_{\alpha,u} g(e^{(\alpha)}e^u) x^{(\alpha)} x^u (re^{(\beta)}e^v) \\ &= 0 = (-1)^{\operatorname{d}(r)\operatorname{d}(g)} \varepsilon(r) g(e^{(\beta)}e^v) = g(re^{(\beta)}e^v). \end{split}$$

若 $g(e^{\{\beta\}}e^{v}) \neq 0$, 则 $g(e^{\{\beta\}}e^{v}) \in \mathbb{F}_{\overline{0}}$, 故 $d(g(e^{\{\beta\}}e^{v})) = \overline{0}$. 于是 $d(g) + d(e^{\{\beta\}}e^{v}) = \overline{0}$. 所 以 $d(g) = d(e^{\{\beta\}}e^{v}) = d(e^{v}) = \overline{|v|}$. 由 (1.3) 式, 有

$$\begin{split} \sum_{\alpha,u} g(e^{(\alpha)}e^{u})x^{(\alpha)}x^{u}(re^{(\beta)}e^{v}) \\ &= (-1)^{d(r)d(g)}\varepsilon(r)g(e^{(\beta)}e^{v}) = g(re^{(\beta)}e^{v}). \end{split}$$

所以 $g = \sum_{\alpha,u} g(e^{(\alpha)}e^{u})x^{(\alpha)}x^{u}$. 易见 $\{x^{(\alpha)}x^{u} \mid \alpha \in \mathbb{N}_{0}^{m}, u \in B(n)\}$ 是 \mathbb{F} - 线性无关的, 所以 $\{x^{(\alpha)}x^{u} \mid \alpha \in \mathbb{N}_{0}^{m}, u \in B(n)\}$ 是 U_{R}^{*} 的一个 \mathbb{F} - 基底. \square

引理 1.4 $\hat{\mathcal{A}} \alpha \in \mathbb{N}_0^m$,则 $\Delta(e^{(\alpha)}) = \sum_{0 \le \beta \le \alpha} {\alpha \choose \beta} e^{(\beta)} \otimes e^{(\alpha-\beta)}$. 证明 设 $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$,则有

$$\begin{split} \Delta(e^{(\alpha)}) &= \Delta \left(\prod_{j=1}^{m} e_{j}^{\alpha_{j}} \right) = \prod_{j=1}^{m} (\Delta e_{j})^{\alpha_{j}} \\ &= \prod_{j=1}^{m} (e_{j} \otimes 1 + 1 \otimes e_{j})^{\alpha_{j}} \\ &= (e_{1} \otimes 1 + 1 \otimes e_{1})^{\alpha_{1}} \cdots (e_{m} \otimes 1 + 1 \otimes e_{m})^{\alpha_{m}} \\ &= \left(\sum_{0 \leq \beta_{1} \leq \alpha_{1}} {\alpha_{1} \choose \beta_{1}} (e_{1} \otimes 1)^{\beta_{1}} (1 \otimes e_{1})^{\alpha_{1} - \beta_{1}} \right) \cdots \\ &\left(\sum_{0 \leq \beta_{m} \leq \alpha_{m}} {\alpha_{m} \choose \beta_{m}} (e_{m} \otimes 1)^{\beta_{1}} (1 \otimes e_{m})^{\alpha_{1} - \beta_{1}} \right) \cdots \\ &= \sum_{0 \leq \beta \leq \alpha} \left(\prod_{j=1}^{m} {\alpha_{j} \choose \beta_{j}} (e_{j} \otimes 1)^{\beta_{j}} (1 \otimes e_{j})^{\alpha_{j} - \beta_{j}} \right) \\ &= \sum_{0 \leq \beta \leq \alpha} \left(\prod_{j=1}^{m} {\alpha_{j} \choose \beta_{j}} (e_{j}^{\beta_{j}} \otimes e_{j}^{\alpha_{j} - \beta_{j}}) \right) \\ &= \sum_{0 \leq \beta \leq \alpha} {\alpha \choose \beta} e^{(\beta)} \otimes e^{(\alpha - \beta)}. \quad \Box \end{split}$$

设 $u,v \in B(n)$. 若 $\{u\} \cap \{v\} = \emptyset$, 则定义 $u+v=w \in B(n)$, 使得 $\{w\} = \{u\} \cup \{v\}$. 设 $u,v \in B(n)$. 若 $\{v\} \subseteq \{u\}$, 则记 $v \le u$. 约定 $\emptyset \le u$, $\forall u \in B(n)$. 如果 $v \le u$, 我们定义 $u-v=w \in B(n)$, 使得 $\{w\} = \{u\} \setminus \{v\}$. 若 u=v, 约定 $u-v=\phi$.

显然, 若 u + v = w, 则 v + u = w, 并且 u = w - v.

令 $Y_1 = \{m+1, m+2, \dots, s\}$, 其中s = m+n. 设 $u_1, u_2, \dots, u_k \in Y_1$ 并且 u_1, u_2, \dots, u_k 互不相同, 这里 $k \leq n$. 则称 $u_1u_2 \dots u_k$ 为一个排列. 若 $u_1 < u_2 < \dots < u_k$, 则称排列 u_1, u_2, \dots, u_k 为正规排列. 如果排列 $u_1u_2 \dots u_k$ 经过 r 次相邻数字的对换可化为正规排列, 则定义 $sgn(u_1u_2 \dots u_k) = (-1)^r$. 易见 $sgn(u_1u_2 \dots u_k)$ 是由排列 $u_1u_2 \dots u_k$ 惟一确定的.

定义 1.5 设 $v = \langle v_1, v_2, \dots, v_t \rangle \in B(n), u = \langle u_1, u_2, \dots, u_k \rangle \in B(n), 并且 \{u\} \cap \{v\} = \emptyset. 则称 <math>\operatorname{sgn}(v_1 \dots v_t u_1 \dots u_k)$ 为 v 与 u 的反序符号, 并且记为 $\operatorname{sgn}(v, u)$.

引理 1.6 若 $u \in B(n)$, 则 $\Delta(e^u) = \sum_{v \le u} \operatorname{sgn}(v, u - v)e^v \otimes e^{u - v}$.

证明 对 |u| 用归纳法. 当 |u|=1 时, 可设 $e^u=e_i$, 其中 $i \in Y_1$. 则

$$egin{aligned} \Delta(e^u) &= \Delta(e_i) = e_i \otimes 1 + 1 \otimes e_i \ &= \mathrm{sgn}(\varnothing, u) e^\varnothing \otimes e^u + \mathrm{sgn}(u, \varnothing) e^u \otimes e^\varnothing \ &= \sum_{u \leq u} \mathrm{sgn}(v, u - v) e^v \otimes e^{u - v}, \end{aligned}$$

故 |u| = 1 时引理结论成立. 假设当 |v| = r - 1 时, 引理结论对 v 成立. 设 $u = \langle u_1, u_2, \cdots, u_r \rangle$. 令 $u' = u - \langle u_r \rangle$, 则有

$$\{v \in B(n) \mid v \le u\} = \{v \in B(n) \mid v \le u'\} \cup \{v + \langle u_r \rangle \mid v \le u'\}. \tag{1.4}$$

由归纳假设知

$$\Delta(e^{u'}) = \sum_{v \le u'} \operatorname{sgn}(v, u' - v) e^v \otimes e^{u' - v}.$$

所以

$$\begin{split} \Delta(e^u) &= \Delta(e^{u'})\Delta(e_{u_r}) \\ &= \left(\sum_{v \leq u'} \operatorname{sgn}(v, u' - v)e^v \otimes e^{u' - v}\right) \left(1 \otimes e_{u_r} + e_{u_r} \otimes 1\right) \\ &= \sum_{v \leq u'} \operatorname{sgn}(v, u' - v)e^v \otimes e^{u' - v}e_{u_r} \\ &+ \sum_{v \leq u'} \operatorname{sgn}(v, u' - v)(-1)^{|u' - v|}e^v e_{u_r} \otimes e^{u' - v} \\ &= \sum_{v \leq u'} \operatorname{sgn}(v, u - v)e^v \otimes e^u \\ &+ \sum_{v \leq u'} \operatorname{sgn}(v + \langle u_r \rangle, u - (v + \langle u_r \rangle))e^{v + \langle u_r \rangle} \otimes e^{u - \langle v + \langle u_r \rangle)}. \end{split}$$

利用 (1.4) 式可得

$$\Delta(e^u) = \sum_{v \leq u} \operatorname{sgn}(v, u - v)e^v \otimes e^{u - v}.$$

由引理 1.4 与 1.6 立即可得以下等式:

$$\Delta(e^{(\alpha)}e^{u}) = \Delta(e^{(\alpha)})\Delta(e^{u})$$

$$= \sum_{0 < \beta < \alpha, \ v < u} {\alpha \choose \beta} \operatorname{sgn}(v, u - v)e^{(\beta)}e^{v} \otimes e^{(\alpha - \beta)}e^{u - v}. \tag{1.5}$$

我们仍简记 $x^{(e_i)}$ 为 x_i , $i \in Y_0$. 若 $u = \langle i \rangle$, $i \in Y_1$, 也简记 x^u 为 x_i .

定理 1.7 超代数 U_R^* 同构于结合超代数 $\Lambda(m,n)$.

证明 令 $i, j \in Y_1$, i < j. 设 $\alpha \in \mathbb{N}_0^m$, $u \in B(n)$, 并且 $\alpha \neq 0$. 任取 $r \in R$, 由 (1.5) 式 知

$$x_i x_j ig(r e^{(lpha)} e^uig) = arepsilon(r) x_i x_j ig(e^{(lpha)} e^uig) = arepsilon(r) ig(x_i \otimes x_jig) \Delta ig(e^{(lpha)} e^uig) \ = \sum_{\substack{0 \leq eta \leq lpha \ v \leq u}} arepsilon(r) igg(lpha ig) ext{sgn}(v, u - v) (-1)^{|v|} x_i ig(e^{(eta)} e^vig) x_j ig(e^{(lpha - eta)} e^{u - v}ig).$$

因为 β 与 $\alpha - \beta$ 至少有一个不为零, 故 $x_i(e^{(\beta)}e^v)$ 与 $x_j(e^{(\alpha-\beta)}e^{u-v})$ 至少有一个是零, 所以 $x_ix_j(re^{(\alpha)}e^u) = 0$. 同理 $x_jx_i(re^{(\alpha)}e^u) = 0$. 因此

$$x_i x_j (re^{(\alpha)} e^u) = -x_j x_i (re^{(\alpha)} e^u). \tag{1.6}$$

任取 $u \in B(n)$, 由引理 1.6 知

$$egin{aligned} x_i x_jig(re^uig) &= arepsilon(r) x_i x_j(e^uig) \ &= arepsilon(r) (x_i \otimes x_j) \Deltaig(e^uig) \ &= \sum_{v \leq u} arepsilon(r) \mathrm{sgn}(v,u-v) (-1)^{|v|} x_i ig(e^vig) x_j ig(e^{u-v}ig) \ &= egin{cases} 0, & u
eq \langle i,j
angle, \ arepsilon(r), & u = \langle i,j
angle. \end{cases}$$

同理可推得

$$x_j x_i(re^u) = egin{cases} 0, & u
eq \langle i,j
angle, \ -arepsilon(r), & u = \langle i,j
angle. \end{cases}$$

所以

$$x_i x_j (re^u) = -x_j x_i (re^u). \tag{1.7}$$

由 (1.6) 与 (1.7) 式知, $x_ix_j = -x_jx_i$, $i, j \in Y_1$, i < j. 类似地, 我们可证得

$$x^{(\alpha)}x_i=x_ix^{(\alpha)}, \qquad \alpha\in\mathbb{N}_0^m,\ i\in Y_1;$$

$$x^{(lpha)}x^{(eta)} = inom{lpha+eta}{lpha}x^{(lpha+eta)}, \qquad lpha,eta\in\mathbb{N}_0^m.$$

因此 $U_R^* \cong \Lambda(m,n)$.

由定理 1.7, 我们可以将 U_R^* 等同于 $\Lambda(m,n)$. 于是有

$$\mathrm{W}(m,n) = \left\{ \sum_{i=1}^s f_i \mathrm{D}_i \; \middle|\; f_i \in U_R^\star, \; orall i \in Y
ight\},$$

其中 D_i ∈ Der(U_R), 并且满足第一章 (2.3) 式. 令

$$\mathcal{L}_{\theta} = \left\{ D \in \text{Der}_{\theta}(U_{R}^{*}) \mid D \text{ 满足下面的 } (1.8) \text{ 式} \right\},$$

$$D(x^{(\alpha)}x^{u}) = \sum_{i=1}^{m} (-1)^{\theta|u|} x^{(\alpha-\varepsilon_{i})} x^{u} D(x^{(\varepsilon_{i})})$$

$$+ \sum_{i=m+1}^{s} (-1)^{(\theta+\overline{1})(|u|-1)} x^{(\alpha)} \partial_{i}(x^{u}) D(x_{i}), \tag{1.8}$$

其中 $\theta \in \mathbb{Z}_2$.

引理 1.8 $W(m,n)_{\theta} = \mathcal{L}_{\theta}, \forall \theta \in \mathbb{Z}_2.$

证明 若 $D \in \mathcal{L}_{\theta}$,由 (1.8)式与第一章 (2.3)式可推得

$$D(x^{(\alpha)}x^u) = \left(\sum_{i=1}^m D(x_i)D_i + \sum_{i=m+1}^s D(x_i)D_i\right) (x^{(\alpha)}x^u).$$

所以

$$D = \sum_{i=1}^m D(x_i) D_i + \sum_{i=m+1}^s D(x_i) D_i \in W(m,n)_{\theta}.$$

反之, 设 $fD_i \in W(m,n)_\theta$, 其中 $f \in U_R^*$, $\theta \in \mathbb{Z}_2$. 若 $i \in Y_1$, 则 $d(f) = \theta + \overline{1}$. 利用第一章 (2.3) 式可得

$$f\mathrm{D}_iig(x^{(oldsymbol{lpha})}x^uig)=(-1)^{(oldsymbol{ heta}+\overline{1})(|oldsymbol{u}|-1)}x^{(oldsymbol{lpha})}\partial_iig(x^uig)(f\mathrm{D}_iig)ig(x_iig).$$

因为 $(fD_i)(x_j) = 0$, $\forall j \in Y_0$. 所以, 由等式 (1.8) 知 $fD_i \in \mathcal{L}_\theta$. 若 $i \in Y_1$, 同理可得 $fD_i \in \mathcal{L}_\theta$. 因此 $W(m,n)_\theta = \mathcal{L}_\theta$, $\forall \theta \in \mathbb{Z}_2$.

设 t 是任意正整数, $i \in Y_0$, $y \in L$. 我们定义

$$\phi_y^t := \phi_y\Big(x^{(t\epsilon_i)}\Big) - x^{(t\epsilon_i - \epsilon_i)}\phi_y(x_i).$$

若 j ∈ Y₁, 由 (1.5) 式可得

$$\begin{split} \phi_{e_j}^t \left(e^{(\alpha)} e^u \right) \\ &= \left(\phi_{e_j} \left(x^{(t \epsilon_i)} \right) \right) \left(e^{(\alpha)} e^u \right) - \left(x^{((t-1)e_i)} \phi_{e_j} (x_i) \right) \left(e^{(\alpha)} e^u \right) \\ &= \left(e_j \cdot x^{(t \epsilon_i)} \right) \left(e^{(\alpha)} e^u \right) - \left(x^{((t-1)\epsilon_i)} \otimes \left(e_j \cdot x_i \right) \right) \Delta \left(e^{(\alpha)} e^u \right) \end{split}$$

$$= (-1)^{|u|} x^{(t\varepsilon_i)} \left(e^{(\alpha)} e^u e_j \right)$$

$$- \sum_{\substack{0 \le \beta \le \alpha \\ v \le u}} \binom{\alpha}{\beta} \operatorname{sgn}(v, u - v) \left(x^{((t-1)\varepsilon_i)} \left(e^{\beta} e^v \right) \right) \left(x_i \left(e^{(\alpha-\beta)} e^{u-v} e_j \right) \right)$$

$$= 0.$$

于是

$$\phi_{e_i}^t = 0, \quad \forall j \in Y_1, \ \forall t \in \mathbb{N}.$$
 (1.9)

引理 1.9 设 $t \geq 2$. 若 $\phi_z^{t-1} = 0$, $\forall z \in L$, 则

$$y_1 \cdot \phi_{y_2}^t - (-1)^{d(y_1)d(y_2)} y_2 \cdot \phi_{y_1}^t = \phi_{[y_1, y_2]}^t, \quad \forall y_1, y_2 \in L.$$
 (1.10)

证明 由
$$\phi_z^{t-1} = 0$$
 知, $\phi_z\left(x^{((t-1)\varepsilon_i)}\right) = x^{((t-2)\varepsilon_i)}\phi_z(x_i)$. 于是
$$z \cdot x^{((t-1)\varepsilon_i)} = x^{((t-2)\varepsilon_i)}(z \cdot x_i), \quad \forall z \in L. \tag{1.11}$$

利用 (1.11) 式以及 $\phi_{\nu_1}, \phi_{\nu_2} \in \text{Der}(U_R^*)$ 可得

$$y_{1} \cdot \phi_{y_{2}}^{t} - (-1)^{\operatorname{d}(y_{1})\operatorname{d}(y_{2})} y_{2} \cdot \phi_{y_{1}}^{t}$$

$$= y_{1} \cdot \left(y_{2} \cdot x^{(t\varepsilon_{i})} - x^{((t-1)\varepsilon_{i})}(y_{2} \cdot x_{i})\right)$$

$$- (-1)^{\operatorname{d}(y_{1})\operatorname{d}(y_{2})} y_{2} \cdot \left(y_{1} \cdot x^{(t\varepsilon_{i})} - x^{((t-1)\varepsilon_{i})}(y_{1} \cdot x_{i})\right)$$

$$= [y_{1}, y_{2}] \cdot x^{(t\varepsilon_{i})} - y_{1} \cdot \left(x^{((t-1)\varepsilon_{i})}(y_{2} \cdot x_{i})\right)$$

$$+ (-1)^{\operatorname{d}(y_{1})\operatorname{d}(y_{2})} y_{2} \cdot \left(x^{((t-1)\varepsilon_{i})}(y_{1} \cdot x_{i})\right)$$

$$= [y_{1}, y_{2}] \cdot x^{(t\varepsilon_{i})} - \left(y_{1} \cdot x^{((t-1)\varepsilon_{i})}\right)(y_{2} \cdot x_{i}) - x^{((t-1)\varepsilon_{i})}(y_{1} \cdot y_{2} \cdot x_{i})$$

$$+ (-1)^{\operatorname{d}(y_{1})\operatorname{d}(y_{2})} \left(y_{2} \cdot x^{((t-1)\varepsilon_{i})}\right)(y_{1} \cdot x_{i})$$

$$+ (-1)^{\operatorname{d}(y_{1})\operatorname{d}(y_{2})} x^{((t-1)\varepsilon_{i})} \left(y_{2} \cdot y_{1} \cdot x_{i}\right)$$

$$= [y_{1}, y_{2}] \cdot x^{(t\varepsilon_{i})} - x^{((t-2)\varepsilon_{i})} (y_{1} \cdot x_{i})(y_{2} \cdot x_{i})$$

$$- x^{((t-1)\varepsilon_{i})} \left([y_{1}, y_{2}] \cdot x_{i}\right) + (-1)^{\operatorname{d}(y_{1})\operatorname{d}(y_{2})} x^{((t-2)\varepsilon_{i})}(y_{2} \cdot x_{i})$$

$$= [y_{1}, y_{2}] \cdot x^{(t\varepsilon_{i})} - x^{((t-1)\varepsilon_{i})} \left([y_{1}, y_{2}] \cdot x_{i}\right)$$

$$= [y_{1}, y_{2}] \cdot x^{(t\varepsilon_{i})} - x^{((t-1)\varepsilon_{i})} \left([y_{1}, y_{2}] \cdot x_{i}\right)$$

$$= \phi_{[y_{1}, y_{2}]}^{t}, \quad \forall y_{1}, y_{2} \in L. \quad \Box$$

$$\Leftrightarrow U_{(k)} = \operatorname{span}_{\mathbb{F}} \left\{ \prod_{j=1}^{l} x_{j} \mid x_{j} \in L, \ l \leq k \right\}. \, \mathbb{M}$$

$$U_{(0)} \subseteq U_{(1)} \subseteq U_{(2)} \subseteq \cdots$$

是 U(L) 的子空间的升链. 任取 $x \in U(L)$, 易见, 存在 $i \in \mathbb{N}_0$, 使得 $x \in U_{(i)}$. 若 $\phi_y^t(U_{(r-1)}) = 0$, $\forall y \in L$, 任取 $y_1, \dots, y_r \in L$, 利用关系式

$$y_{j-1}y_j = [y_{j-1}, y_j] + (-1)^{\mathbf{d}(y_{j-1})\mathbf{d}(y_j)}y_jy_{j-1}, \quad j = 2, \dots, r$$

我们可以推得以下等式:

$$\phi_y^t(y_1 \cdots y_i \cdots y_r) = (-1)^{\mathbf{d}(y_i) (\mathbf{d}(y_1) + \cdots + \mathbf{d}(y_{i-1}))} \phi_y^t(y_i y_1 \cdots y_{i-1} y_{i+1} \cdots y_r), \qquad (1.12)$$

其中 $2 \le i \le r$;

$$\phi_y^t(y_1 \cdots y_i \cdots y_r) = (-1)^{d(y_i)(d(y_{i+1}) + \cdots + d(y_r))} \phi_y^t(y_1 \cdots y_{i-1} y_{i+1} \cdots y_r y_i), \qquad (1.13)$$

其中 $1 \le i \le r-1$.

引理 1.10 设 $t \geq 2$. 如果 $\phi_y^t = 0$ 以及 $\phi_y^t(U_{(k-2)}) = 0$, $\forall y \in L$, 则

$$\phi_{y_1}^t(y_2y_3\cdots y_k)=(-1)^{d(y_1)d(y_2)}\phi_{y_2}^t(y_1y_3\cdots y_k),$$

其中 $y_i \in L$, $i = 1, 2, \dots, k$.

证明 利用等式 (1.10) 与 $\phi_{[y_1,y_2]}^t(U_{(k-2)}) = 0$, 可得

$$y_2 \cdot \phi_{y_1}^t(y_3 \cdots y_k) = (-1)^{d(y_1)d(y_2)} y_1 \cdot \phi_{y_2}^t(y_3 \cdots y_k). \tag{1.14}$$

利用 (1.13), (1.14) 与 (1.10) 式, 有

$$\phi_{y_1}^t(y_2y_3\cdots y_k) = (-1)^{d(y_2)\left(d(y_3)+\cdots+d(y_k)\right)}\phi_{y_1}^t(y_3\cdots y_ky_2)
= (-1)^{d(y_2)d(y_1)}y_2\cdot\phi_{y_1}^t(y_3\cdots y_k)
= y_1\cdot\phi_{y_2}(y_3\cdots y_k)
= (-1)^{d(y_1)\left(d(y_3)+\cdots+d(y_k)\right)}\phi_{y_2}^t(y_3\cdots y_ky_1)
= (-1)^{d(y_1)d(y_2)}\phi_{y_2}^t(y_1y_3\cdots y_k). \quad \Box$$

引理 1.11 $\phi_y^t=0, \ \forall y\in L, \ \forall t\in \mathbb{N}.$

证明 由 (1.3) 式与 (1.9) 式, 我们只需证明 $\phi_y^t = 0$, 其中 $y \in L_{(0)} \cup \{e_l \mid l \in Y_0\}$. 下面 对 t 用归纳法证明 $\phi_y^t = 0$. 显然 $\phi_y^1 = 0$. 假设 $\phi_y^{t-1} = 0$. 我们对 k 归纳证明 $\phi_y^t(U_{(k)}) = 0$. 假设 $\phi_y^t(U_{(k-1)}) = 0$.

(i) 设 $y \in L_{(0)}$, $e^{(\alpha)}e^{u} \in U_{(k)}$. 若 $\alpha \neq 0$, 我们令 $i = \min\{j \in Y_0 \mid \alpha_j \neq 0\}$. 由引理 1.10 与 $\varepsilon(y) = 0$ 可得

$$\phi_y^t\big(e^{(\alpha)}e^u\big)=\phi_{e_i}^t\Big(ye^{(\alpha-e_i)}e^u\Big)=\varepsilon(y)\phi_{e_i}^t\Big(e^{(\alpha-e_i)}e^u\Big)=0.$$

若 $\alpha = 0$, 则 $\phi_y^t(e^u) = \phi_{e_{u_1}}^t(ye^{u-(u_1)}) = 0$. 所以 $\phi_y^t(U_k) = 0$.

(ii) 设 $y = e_l$, 其中 $l \in Y_0$. 令 $e^{(\alpha)}e^u \in U_{(k)}$. 若 $u \neq \emptyset$, 由 (1.12) 式, 引理 1.10 与 (1.9) 式可得

$$\phi_{e_{i}}^{t}\left(e^{(\alpha)}e^{u}\right)=\phi_{e_{i}}^{t}\left(e_{u_{1}}e^{(\alpha)}e^{u-(u_{1})}\right)=\phi_{e_{u_{1}}}^{t}\left(e_{i}e^{(\alpha)}e^{u-(u_{1})}\right)=0.$$

如果 $u = \emptyset$, 由于 $\phi_{e_i}^t(1) = 0$, 故可设 $\alpha \neq 0$. 令

$$r = \max\{i \in Y_0 \mid \alpha_i \neq 0\}, \quad j = \max\{r, l\}, \quad \beta = \alpha + \varepsilon_l - \varepsilon_j.$$

若 j=l, 则 $\phi_{e_l}^t(e^{(\alpha)})=\phi_{e_j}^t(e^{(\beta)})$. 若 j=r, 由 (1.12) 式, 引理 1.10 与 (1.13) 式可得

$$egin{aligned} \phi_{e_l}^t ig(e^{(lpha)}ig) &= \phi_{e_l}^t ig(e_r e^{(lpha-arepsilon_r)}ig) \ &= \phi_{e_r}^t ig(e_l e^{(lpha-arepsilon_r)}ig) \ &= \phi_{e_r}^t ig(e^{(lpha+arepsilon_l-arepsilon_r)}ig) \ &= \phi_{e_l}^t ig(e^{(eta)}ig). \end{aligned}$$

所以

$$\begin{split} \phi_{e_i}^t \big(e^{(\alpha)} \big) &= \phi_{e_j}^t \big(e^{(\beta)} \big) \\ &= \big(e_j \cdot x^{(t\varepsilon_i)} \big) \big(e^{(\beta)} \big) - \big(x^{((t-1)\varepsilon_i)} \otimes (e_j \cdot x_i) \big) \Delta \big(e^{(\beta)} \big) \\ &= \delta(t\varepsilon_i, \beta + \varepsilon_j) - \sum_{0 \leq \gamma \leq \beta} \binom{\beta}{\gamma} \delta(t\varepsilon_i - \varepsilon_i, \ \gamma) \delta(\varepsilon_i, \ \beta - \gamma + \varepsilon_j), \end{split}$$

其中 $\delta(,)$ 是 Kronecker 符号函数. 若 $i \neq j$, 则上式为零.

设 i = j. 若 $\beta \neq t\varepsilon_i - \varepsilon_i$, 则 $\delta(t\varepsilon_i, \beta + \varepsilon_i) = 0$. 易见, $\delta(t\varepsilon_i - \varepsilon_i, \gamma)$ 与 $\delta(\varepsilon_i, \beta - \gamma + \varepsilon_i)$ 至少有一个是零. 所以 $\phi_{\varepsilon_i}^t(e^{(\alpha)}) = 0$. 若 $\beta = t\varepsilon_i - \varepsilon_i$, 则

$$\delta(tarepsilon_i,\;eta+arepsilon_i)=1=\sum_{0\leq\gamma\leqeta}inom{eta}{\gamma}\delta(tarepsilon_i-arepsilon_i,\;\gamma)\delta(arepsilon_i,\;eta-\gamma+arepsilon_i).$$

于是 $\phi_{e_t}^t(e^{(\alpha)}) = 0$, 从而 $\phi_{e_t}^t(U_k) = 0$.

由(i)与(ii),归纳法完成,引理得证. □

定理 1.12 设 $L_{(0)}$ 是李超代数 L 的子代数, 并且 dim $(L/L_{(0)})_{\overline{0}} = m$, dim $(L/L_{(0)})_{\overline{1}} = n$. 则存在李超代数的同态 $\phi: L \to W(m,n)$, 使得 ker $(\phi) \subseteq L_{(0)}$. 特别地, 若 $L_{(0)}$ 不包含 L 的任何非零理想, 则 L 同构于 W(m,n) 的一个子代数.

证明 由已知,可将 L 表为

$$L = L_{(0)} \oplus \mathbb{F}e_1 \oplus \cdots \oplus \mathbb{F}e_m \oplus \mathbb{F}e_{m+1} \oplus \cdots \oplus \mathbb{F}e_s, \tag{1.15}$$

其中 $s=m+n,\ e_1,\cdots,e_m\in L_{\overline{0}},\ e_{m+1},\cdots,e_s\in L_{\overline{1}}.$ 令 $R=U(L_{(0)}),\ \phi:L\longrightarrow \mathrm{Der}(U_R^*)$ 为引理 1.2 中定义的李超代数的同态. 任取 $y\in L_{\theta}$, 其中 $\theta\in\mathbb{Z}_2$, 则 $\mathrm{d}(\phi_y)=\theta$. 下面证明 $\phi_y\in\mathrm{W}(m,n)_{\theta}$.

设 $\alpha \in \mathbb{N}_0^m$, $u = \langle u_1, \dots, u_r \rangle \in B(n)$. 由引理 1.11 知

$$\phi_y(x^{(\alpha_i e_i)}) = x^{((\alpha_i - 1)e_i)} \phi_y(x_i).$$

则有

$$\phi_y \left(x^{(\alpha)} x^u \right)$$

$$\begin{split} &= \left(\phi_{y}\left(\prod_{k=1}^{m} x^{(\alpha_{k}\epsilon_{k})}\right)\right) x^{u} + x^{(\alpha)} \left(\phi_{y}\left(\prod_{k=1}^{r} x_{u_{k}}\right)\right) \\ &= \sum_{i=1}^{m} \left(\prod_{k=1}^{i-1} x^{(\alpha_{k}\epsilon_{k})}\right) \phi_{y}(x^{(\alpha_{i}\epsilon_{i})}) \left(\prod_{k=i+1}^{m} x^{(\alpha_{k}\epsilon_{k})}\right) x^{u} \\ &+ \sum_{i=1}^{r} (-1)^{\theta(i-1)} x^{(\alpha)} \left(\prod_{k=1}^{i-1} x_{u_{k}}\right) \phi_{y}(x_{u_{i}}) \left(\prod_{k=i+1}^{r} x_{u_{k}}\right) \\ &= \sum_{i=1}^{m} (-1)^{\theta|u|} x^{(\alpha-\epsilon_{i})} x^{u} \phi_{y}(x_{i}) \\ &+ \sum_{i=1}^{r} (-1)^{\theta(i-1)+(\theta+\overline{1})(|u|-i)} x^{(\alpha)} \left(\prod_{k=1}^{i-1} x_{u_{k}}\right) \left(\prod_{k=i+1}^{r} x_{u_{k}}\right) \phi_{y}(x_{u_{i}}) \\ &= \sum_{i=1}^{m} (-1)^{\theta|u|} x^{(\alpha-\epsilon_{i})} x^{u} \phi_{y}(x_{i}) \\ &+ \sum_{i=1}^{r} (-1)^{(\theta+\overline{1})(|u|-1)} x^{(\alpha)} \partial_{i}(x^{u}) \phi_{y}(x_{u_{i}}) \\ &= \sum_{i=1}^{m} (-1)^{\theta|u|} x^{(\alpha-\epsilon_{i})} x^{u} \phi_{y}(x_{i}) \\ &+ \sum_{i=m+1}^{s} (-1)^{(\theta+\overline{1})(|u|+1)} x^{(\alpha)} \partial_{u_{i}}(x^{u}) \phi_{y}(x_{u_{i}}). \end{split}$$

所以 $\phi_y \in L_\theta$. 由引理 1.8, $\phi_y \in W(m,n)_\theta$, 故 $\phi(L) \subseteq W(m,n)$.

着 $y \in \ker \phi$, 则 $\phi_y = 0$. 所以 $x_i(y) = (\phi_y(x_i))(1) = 0$, 其中 $i \in Y_0$. 同理知, $x_i(y) = 0$, $\forall i \in Y_1$. 由 (1.15) 式可知 $y \in L_{(0)}$. 所以 $\ker \phi \subseteq L_{(0)}$.

§2 W与S的自然滤过

设 L = W 或 S. 在本节中, 我们将证明 L 的自然滤过是不变的; 进而给出并证明了 L 与 L' 同构的充要条件. 为此, 我们需要作一些准备.

设 V 是域 ℙ上的 Z₂- 阶化空间, 令

$$0 = V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V_t = V \tag{2.1}$$

是 V 的子空间的一个升链. 我们约定: 当 $n \ge t$ 时, $V_n = V$; 当 $n \le 0$ 时, $V_n = 0$. 任 取 $k \in \mathbb{Z}$, 令

$$M_k = \{ f \in \operatorname{pl}(V) \mid f(V_i) \subseteq V_{i+k}, \ \forall i \in \mathbb{Z} \}.$$

易见, 若 $k \le l$, 则 $M_k \subseteq M_l$. 并且 $M_{-t} = 0$, $M_{t-1} = \mathrm{pl}(V)$, $[M_{-1}, M_k] \subseteq M_{k-1}$, $\forall k \in \mathbb{Z}$.

设 S 是 pl(V) 的子集, 若存在 V 的形如 (2.1) 的子空间的升链, 使得 $f(V_i) \subseteq V_{i-1}$, $\forall f \in S$, $i = 1, \dots, t$, 则称 S 关于升链 (2.1) 是严格上三角的, 或简称 S 在 V 上是严格上三角的.

设 $S \neq pl(V)$ 的子集, 若对任意 $x,y \in S$, 均有 $[x,y] \in S$, 则称 $S \neq pl(V)$ 的一个李超子集. 显然此时 $span_{F}S \neq P$ 是一个李超代数. 若子集 $S \neq P$ 是严格上三角的, 则 $span_{F}S \neq P$ 亦然. 如果 pl(V) 的子集 $S \neq P$ 的每个元素都是 $V \neq P$ 的幂零线性变换, 则称 $S \neq P$ 是诣零的. 以下命题的证明方法取自于文献 [56] 对李代数的相应问题的证法.

命题 2.1 设 V 是 \mathbb{F} 上的 \mathbb{Z}_2 - 阶化空间, S 是 $\mathrm{pl}(V)$ 的一个李超子集. 若 S 是 诣 零的, 并且 $L:=\mathrm{span}_{\bullet}S$ 是有限维的, 则 L 在 V 上是严格三角的.

证明 我们分四步证明本命题.

(i) $\Diamond \Omega = \{R \subseteq S \mid R$ 是严格上三角的李超子集}. 则 Ω 包含一个极大元素.

显然 Ω 是一个部分序集,并且 Ω 非空. 若 $(R_i)_{i\in I}$ 是 Ω 的一个升链,则 $(\operatorname{span}_{\mathbb{F}}R_i)_{i\in I}$ 是 $\operatorname{pl}(V)$ 的子空间的一个升链. 因为 L 是有限维的,所以存在 $i_0 \in I$,使得 $\cup_{i\in I}(\operatorname{span}_{\mathbb{F}}R_i)$ $\subseteq \operatorname{span}_{\mathbb{F}}R_{i_0}$,从而 $\cup_{i\in I}R_i\subseteq \operatorname{span}_{\mathbb{F}}R_{i_0}$. 因为 $\operatorname{span}_{\mathbb{F}}R_{i_0}$ 是严格上三角的,从而 $\cup_{i\in I}R_i$ 是严格上三角的,于是 $\cup_{i\in I}R_i\in\Omega$. 故 Ω 的每个全序子集均有上界. 由 Zorn 引理知, Ω 有极大元素.

(ii) 设 $R \in \Omega$, $s \in S$. 若 $[s,r] \in R$, $\forall r \in R$, 则 $R \cup \{s\} \in \Omega$.

因为 R 是严格上三角的, 故有 V 的子空间升链 $0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_t = V$, 使 得 $r(V_i) \subseteq V_{i-1}$, $\forall r \in R$, $1 \le i \le t$. 令

$$W_0 = W, \quad W_{i+1} = \{v \in V \mid r(v) \in W_i, \quad \forall r \in R\}.$$

显然 $s(W_0) \subseteq W_0$. 假设 $s(W_i) \subseteq W_i$. 任取 $v \in W_{i+1}$, 则

$$r(s(v)) = [r, s](v) + (-1)^{\operatorname{d}(r)\operatorname{d}(s)} s(r(v)). \tag{2.2}$$

由 $[r,s] \in R$ 以及 W_{i+1} 的定义知 $[r,s](v) \in W_i$. 因为 $r(v) \in W_i$, $s(W_i) \subseteq W_i$, 故 $s(r(v)) \in W_i$. 由 (2.2) 式知, $r(s(v)) \in W_i$, 于是 $s(v) \in W_{i+1}$. 故 $s(W_{i+1}) \subseteq W_{i+1}$. 这就证明了 $s(W_i) \subseteq W_i$, $i = 0, 1, \dots, t+1$.

对:用归纳法容易证得

$$V_i \subseteq W_i, \ W_i \subseteq W_{i+1}, i=0,1,\cdots,t.$$

由已知, s 是幂零线性变换, 故可设 $s^k = 0$. 令

$$W_{ij} = s^{j}(W_{i}) + W_{i-1}, \ 1 \leq j \leq k, \ 1 \leq i \leq t.$$

干是有

$$W_{ij} = s^{j}(W_{i}) + W_{i-1} = s^{j-1}(s(W_{i})) + W_{i-1} \subseteq s^{j-1}(W_{i}) + W_{i-1} = W_{i,j-1},$$

$$W_{i+1,k} = s^{k}(W_{i+1}) + W_{i} = W_{i},$$

$$W_{i0} = s^{0}(W_{i}) + W_{i-1} = W_{i} + W_{i-1} = W_{i} = W_{i+1,k} \subseteq W_{i+1,k-1}.$$

$$(2.3)$$

所以我们有子空间的升链

$$0 = W_{1k} \subseteq W_{1k-1} \subseteq \cdots \subseteq W_{10} \subseteq W_{2k-1} \subseteq \cdots \subseteq W_{20}$$

$$\subseteq W_{3k-1} \subseteq \cdots \subseteq W_{t-1} \subseteq W_{t k-1} \subseteq \cdots \subseteq W_{t 0} = V. \tag{2.4}$$

易见

$$s(W_{ij-1}) = s(s^{j-1}(W_i) + W_{i-1}) = s^j(W_i) + s(W_{i-1})$$

 $\subseteq s^j(W_i) + W_{i-1} = W_{ij}, \quad i = 1, \dots, t, \quad j = k, k-1, \dots, 1.$

特别地, $s(W_{ik-1}) \subseteq W_{ik}$. 由 (2.3) 式知 $W_{i-10} = W_{ik}$, 所以

$$s(W_{ik-1})\subseteq W_{i-1}$$
, $i=2,\cdots,t$.

对任意 $r \in R$, 有

$$r(W_{i,j-1}) = r(s^{j-1}(W_i) + W_{i-1}) = r(s^{j-1}(W_i)) + r(W_{i-1}).$$

由于 $s(W_i) \subseteq W_i$, 故 $r(s^{j-1}(W_i)) \subseteq r(W_i) \subseteq W_{i-1}$. 又因为 $r(W_{i-1}) \subseteq W_{i-2}$, 所以

$$r(W_{i,j-1})\subseteq W_{i-1}+W_{i-2}=W_{i-1}\subseteq W_{ij}.$$

特别地, $r(W_{ik-1}) \subseteq W_{ik} = W_{i-1 \ 0}$. 于是我们证明了 $R \cup \{s\}$ 关于升链 (2.4) 是严格上三角的, 故 $R \cup \{s\} \in \Omega$.

(iii) 若 $R \in \Omega$, 并且 $R \neq S$, 则存在 $s \in S \setminus R$, 使得 $[s,r] \in R$, $\forall r \in R$.

由已知, 有 V 的子空间的升链 $0 = V_0 \subseteq V_1 \subseteq \cdots V_t = V$, 使得 $r(V_i) \subseteq V_{i-1}$, $\forall r \in R$, $i = 1, \dots, t$. 因为 $pl(V) = M_{t-1}$, 故 $R \cap M_{t-1} \neq S \cap M_{t-1}$. 由 $M_{-t} = 0$ 知 $R \cap M_{-t} = S \cap M_{-t}$. 令

$$i_0 = \min\{i \mid R \cap M_i \subsetneq S \cap M_i\}$$

显然 $-t < i \le t-1$. 设 $s \in (S \cap M_{i_0}) \setminus (R \cap M_{i_0})$, 则

$$[s,r] \in [M_{i_0},M_{-1}] \subseteq M_{i_0-1}$$
.

因为 S 是一个李超子集,并且 $r \in R \subseteq S$,所以 $[s,r] \in S$. 于是 $[s,r] \in S \cap M_{i_0-1} = R \cap M_{i_0-1}$,因此 $[s,r] \in R$.

(iv) 由 (i) 知 Ω 有极大元素. 设 R_0 是 Ω 的一个极大元素. 若 $R_0 \neq S$, 由 (iii) 知存在 $s \in S \setminus R_0$, 使得 $[s,r] \in R_0$, $\forall r \in R_0$. 由 (ii) 知 $R_0 \cup \{s\} \in \Omega$. 此与 R_0 是 Ω 的极大元素矛盾, 故 $R_0 = S$. 所以 S 是严格上三角的, 从而 $\operatorname{span}_{\mathbf{F}} S$ 是严格上三角的.

设 A 是城 \mathbb{F} 上的超代数, $\{A_{(k)} \mid k \in \mathbb{Z}\}$ 是 A 的 \mathbb{Z}_2 - 阶化子空间的集合. 若满足

- (a) 当 $k \leq l$ 时, $A_{(k)} \supseteq A_{(l)}$,
- (b) $A_{(k)}A_{(l)}\subseteq A_{(k+l)}, \quad \forall k,l\in\mathbb{Z},$

(c) $\bigcup_{k\in\mathbb{Z}}A_{(k)}=A$,

则称 $\{A_{(k)} \mid k \in \mathbb{Z}\}$ 是 A 的一个下降的滤过, 简称 $\{A_{(k)} \mid k \in \mathbb{Z}\}$ 为 A 的一个滤过, 或者称 A 有滤过结构 $\{A_{(k)} \mid k \in \mathbb{Z}\}$.

当我们称 $A = A_{(-r)} \supseteq A_{(-r+1)} \supseteq \cdots \supseteq A_{(t)} = 0$ 是超代数 A 的一个滤过时, 其中 $r, t \in \mathbb{N}_0$, 则我们约定: 若 $k \leq -r$, 则 $A_{(k)} = A$; 若 $k \geq t$, 则 $A_{(k)} = 0$.

下面我们设 charF = p > 2. 令 L = W 或 S, 其中 $W = W(m, n, \underline{t})$, S = $S(m, n, \underline{t})$. 由 第二章 §1 节知, $L = \bigoplus_{i=-1}^{\lambda} L_i$ 是 \mathbb{Z} - 阶化李超代数. 当 L = W 时, $\lambda = \xi - 1$; 当 L = S 时, $\lambda = \xi - 2$. 令 $L_{(j)} = \bigoplus_{i>j} L_i$, 则

$$L_{(-1)} \supseteq L_{(0)} \supseteq \cdots \supseteq L_{(\lambda)} \supseteq L_{(\lambda+1)} = 0 \tag{2.5}$$

是 L 的一个滤过. 称滤过 (2.5) 为 L 的自然滤过.

设 $y \in L$. 若 ady 是 L 的幂零线性变换, 则称 y 为 ad- 幂零元, 或称 y 是 ad- 幂零的. L 中所有的 ad- 幂零元的集合记为 nil(L). 因为 L 是 Z- 阶化的, 并且 L 是有限维的, 所以 $L_{-1} \subseteq nil(L)$, $L_{(1)} \subseteq nil(L)$.

令 $M_s(\mathbb{F})$ 表示 \mathbb{F} 上所有的 $s \times s$ 矩阵的集合. 若 $y = \sum_{i,j=1}^s a_{ij} x_i D_j \in L_0$, 其中 $a_{ij} \in \mathbb{F}$, 则令

$$\eta(y) := \left((-1)^{\tau(i) + \tau(i)\tau(j)} a_{ij} \right)_{s \times s} \in \mathrm{M}_s(\mathbb{F}).$$

引理 2.2 设 $y = \sum_{i,j=1}^{n} a_{ij} x_i D_j \in L_0$. 如果 $y \in ad$ - 幂零元, 则 $\eta(y)$ 是幂零件.

证明 因为 L 是 Z 阶化的, 所以 L_{-1} 是 L_{0} 模. 令 ρ 是 L_{0} 模 L_{-1} 所提供的表示, 则 $\rho(y) = \mathrm{ad}y$, $\forall y \in L_{0}$. 易见, $\rho(y)$ 在 L_{-1} 的基底 $\{D_{1}, D_{2}, \cdots, D_{s}\}$ 上的矩阵是 $A = -\left((-1)^{\tau(i)+\tau(i)\tau(j)}a_{ij}\right)_{s\times s}^{t}$ 于是 $\eta(y) = -A^{t}$, 这里 A^{t} 表示矩阵 A 的转置阵. 因为 y 是 ad- 幂零元, 所以 $\rho(y)$ 是幂零线性变换. 于是 A 是幂零阵, 从而 $\eta(y)$ 是幂零阵.

引理 2.3 设 $y = \sum_{i=k}^{\lambda} y_i \in L$, 其中 $y_i \in L_i$, $0 \le k \le \lambda$. 若 $y \in nil(L)$, 则 $y_k \in nil(L)$. 证明 设 $y = y_k + y'$, 其中 $y_k \in L_k$, $y' \in \bigoplus_{i=k+1}^{\lambda} L_i \subseteq L_{(k+1)}$. 因为 $y \in nil(L)$, 故可设 $(ady)^t = 0$. 任取 L 的一个 \mathbb{Z} - 齐次元素 z, 设 $z \in L_i$, 则 $(ady)^t(z) = 0$. 另一方面,

$$(ady)^{t}(z) = (ad(y_{k} + y'))^{t}(z) = (ady_{k})^{t}(z) + h,$$

从而 $(ady_k)^t(z) + h = 0$. 易见 $(ady_k)^t(z) \in L_{kt+i}$, $h \in L_{(kt+i+1)} = \bigoplus_{j \geq tk+i+1} L_j$, 所以 $(ady_k)^t(z) = 0$. 于是可知 $(ady_k)^t(L) = 0$, 故 $(ady_k)^t = 0$. 因此 $y_k \in nil(L)$.

设 E_{ij} 为 F 上的 $s \times s$ 矩阵, 它的 (i,j) 位置元素是 1, 其余位置元素是零. 显然有

$$E_{ij}E_{kl} = \delta_{jk}E_{il}. \tag{2.6}$$

若 $y = \sum_{i,j=1}^{s} a_{ij} x_i D_j \in L_0$,则

$$\eta(y) = \sum_{i,j=1}^{s} (-1)^{\tau(i)+\tau(i)\tau(j)} a_{ij} E_{ij}. \tag{2.7}$$

引理 2.4 设 $y = \sum_{i=-1}^{\lambda} y_i \in L$, 其中 $y_i \in L_i$. 如果 $y \in \Omega$, 则 $y_{-1} = 0$.

证明 设 $y_{-1} = \sum_{i=-1}^{\lambda} a_i D_i$, 其中 $a_i \in \mathbb{F}$. 假设 $y_{-1} \neq 0$, 可设 $a_j \neq 0$. 令 $k, l \in Y := \{1, 2, \dots, s\}$, 使得 i, j, k 是互不相同的. 设 $z = [y_{-1}, D_{kl}(x_k x_l x_j)]$, 由计算知

$$egin{aligned} z &= \left[\sum_{i=1}^{s} a_{i} \mathrm{D}_{i}, \; (-1)^{ au(k) au(l)} (x_{l} x_{j} \mathrm{D}_{l}) - (-1)^{(au(k)+ au(l))(au(j)+ au(i))} x_{k} x_{j} \mathrm{D}_{k}
ight] \ &= (-1)^{ au(k) au(l)} ig(a_{l} x_{j} \mathrm{D}_{l} + lpha a_{j} x_{l} \mathrm{D}_{l} + eta a_{k} x_{j} \mathrm{D}_{k} + \gamma a_{j} x_{k} \mathrm{D}_{k} ig), \end{aligned}$$

其中

$$\alpha = (-1)^{\tau(l)\tau(j)}, \ \beta = (-1)^{(\tau(k)+\tau(l))(\tau(k)+\tau(i))}, \ \gamma = (-1)^{\tau(k)+\tau(l)+\tau(l)\tau(j)}.$$

由 (2.6) 与 (2.7) 式, 可得

$$\eta(z)^{n} = (-1)^{n\tau(k)\tau(l)} (\alpha^{n} a_{j}^{n} E_{ll} + \gamma^{n} a_{j}^{n} E_{kk}
+ (-1)^{\tau(j)+\tau(j)\tau(l)} \alpha^{n-1} a_{l} a_{j}^{n-1} E_{jl}
+ (-1)^{\tau(j)+\tau(j)\tau(k)} \beta \gamma^{n-1} a_{k} a_{j}^{n-1} E_{jk}).$$

因为 $\alpha^n a_j^n \neq 0$, 所以 $\eta(z)^n \neq 0$, 故 $\eta(z)$ 不是幂零阵. 由引理 2.2 知, $[y, D_{kl}(x_k x_l x_j)] \notin nil(L)$, 于是 $y \notin \Omega$. 此与已知矛盾, 这就证明了 $y_{-1} = 0$.

引理 2.5 设 $y = \sum_{i=0}^{\lambda} y_i \in L$, 其中 $y_i \in L_i$. 若 $y \in \Omega$, 则 $y_0 = 0$.

证明 假设 $y_0 \neq 0$. 可设 $y_0 = \sum_{i,j=1}^s a_{ij} x_i D_j$, 其中 $a_{ij} \in \mathbb{F}$. 令

$$l = \min\{i \mid a_{ij} \neq 0, \ i, j \in Y\},\tag{2.8}$$

$$t = \min\{j \mid a_{ij} \neq 0, \ i, j \in Y\},\tag{2.9}$$

(i) l≤t的情形. 令

$$k = \max\{j \mid a_{lj} \neq 0, \ j \in Y\},\tag{2.10}$$

则 $a_{ik} \neq 0$. 显然 $t \leq k$. 由 $l \leq t$ 知 $l \leq k$. 所以我们有

$$y_0 = \sum_{j=t}^k a_{lj} x_l D_j + \sum_{i=l+1}^s \sum_{j=t}^s a_{ij} x_i D_j.$$

者 l = k, 由 $t \le k$ 知 $t \le l$. 因为 $l \le t$, 所以 t = l. 于是

$$y_0 = a_{ll}x_l D_l + \sum_{i=l+1}^s \sum_{j=t}^s a_{ij}x_i D_j.$$

从而

$$\eta(y_0) = a_{ll}E_{ll} + \sum_{i=l+1}^{g} \sum_{j=t}^{g} (-1)^{\tau(i)+\tau(i)\tau(j)} a_{ij}E_{ij} = \begin{bmatrix} A & 0 \\ B & C \end{bmatrix},$$

其中 $A \not\in l \times l$ 矩阵, 它的 (l,l) 位置元素是 $au \neq 0$, 其余位置的元素均为零. 故 A 不是幂零阵, 从而 $\eta(y_0)$ 就不是幂零阵. 由引理 2.2 知 $y_0 \notin \operatorname{nil}(L)$. 由引理 2.3 知 $y \notin \operatorname{nil}(L)$. 此与 $y \in \Omega$ 矛盾, 所以 l < k.

设 $h \in Y \setminus \{l, k\}$, 则

$$x_k \mathbf{D}_l = (-1)^{\tau(h)\tau(l)} \mathbf{D}_{hl}(x_h x_k) \in L.$$

令 $z = [y_0, x_k D_i]$, 直接计算知

$$z = a_{lk}x_l D_l + \sum_{i=l+1}^s a_{ik}x_i D_l - \sum_{j=t}^k (-1)^{(\tau(l)+\tau(j))(\tau(k)+\tau(l))} a_{lj}x_k D_j.$$

易见, $\eta(z)$ 是具有形状 $\begin{bmatrix} A & C \end{bmatrix}$ 的矩阵, 其中 $A = a_{lk}E_{ll}$ 是一个 $l \times l$ 矩阵, 它的 (l,l) 位置元素是 $a_{lk} \neq 0$, 其它元素都为零. 因此 A 不是幂零阵, 故 $\eta(z)$ 不是幂零阵, 所以 $z \notin \operatorname{nil}(L)$. 由引理 2.3 知 $[y_1x_kD_l] \notin \operatorname{nil}(L)$. 此与 $y \in \Omega$ 矛盾.

(ii) 设 t < l. 令 $k = \max\{i \mid a_{it} \neq 0, i \in Y\}, z = [y_0, x_t D_k]$. 仿 (i) 可证得 $\eta(z)$ 不是幂零阵, 于是 $y \notin \Omega$. 此为矛盾. 综上, 可知 $y_0 = 0$.

引理 2.6 1) 若 $x \in L_0 \cap \operatorname{nil}(L)$, $y \in L_{(1)}$, 则 $x + y \in \operatorname{nil}(L)$.

- 2) $x_i D_j \in nil(L)$, $\not = i, j \in Y, i \neq j$.
- 3) 设 $i, j, k \in Y$. 若 i, j, k 互异, 则 $ax_j D_k + bx_i D_k \in nil(L)$.

证明 1) 易见, $\{adx\} \cup adL_{(1)}$ 是 pl(L) 的李超子集. 由命题 2.1 知, $span_y(\{adx\} \cup adL_{(1)})$ 在 L 上是严格上三角的. 所以对任意 $y \in L_{(1)}$, adx + ady 是 L 的幂零线性变换, 即 ad(x+y) 是幂零的, 从而 $x+y \in nil(L)$.

- 2) 我们证明 $(adx_iD_j)^p = 0$. 不妨设 i < j.
- (a) 者 $j \le m$, 则 i < m. 者 $k \ne i$, 直接计算知

$$(\operatorname{ad} x_i \operatorname{D}_j)^p (x^{(\alpha)} x^u \operatorname{D}_k) = x_i^p x^{(\alpha - p\varepsilon_j)} x^u \operatorname{D}_k.$$

因为 $x_i^p = 0$, 所以 $(\operatorname{ad} x_i \operatorname{D}_j)^p (x^{(\alpha)} x^u \operatorname{D}_k) = 0$. 若 k = i, 则

$$(\mathrm{ad}x_i\mathrm{D}_j)^p(x^{(\alpha)}x^u\mathrm{D}_i)=x_i^px^{(\alpha-p\varepsilon_j)}x^u\mathrm{D}_i-px_i^{p-1}x^{(\alpha-(p-1)\varepsilon_j)}x^u\mathrm{D}_j=0.$$

(b) 若 j > m, 当 $k \neq i$ 时

$$(\mathrm{ad}x_i\mathrm{D}_j)^2(x^{(\alpha)}x^u\mathrm{D}_k)=0.$$

当 k=i 时, 直接计算可得

$$\begin{split} &(\mathrm{ad}x_i\mathrm{D}_j)^3(x^{(\alpha)}x^u\mathrm{D}_i)\\ &=-(-1)^{\tau(i)+\tau(j)+\overline{|u|}}\mathrm{ad}x_i\mathrm{D}_j\big(((-1)^i-1)x_ix^{(\alpha)}\partial_j(x^u)\mathrm{D}_j\big)=0. \end{split}$$

因为 p > 2, 所以 $(\operatorname{ad} x_i D_j)^p (x^{(\alpha)} x^u D_i) = 0$.

综合 (a) 与 (b) 知, $(adx_iD_j)^p(L) = 0$, 所以 $(adx_iD_j)^p = 0$. 于是 $x_iD_j \in nil(L)$.

3) 由 2) 与 $[x_jD_k, x_iD_k] = 0$ 知, $\{adx_jD_k, adx_iD_k\}$ 是 pl(L) 的一个李超子集. 由命题 2.1 知 $span_F\{adx_jD_k, adx_iD_k\}$ 在 L 上是严格上三角的, 故 $ad(ax_jD_k + bx_iD_k)$ 是幂零的, $\forall a,b \in F$, 所以 $ax_jD_k + bx_iD_k \in nil(L)$.

引理 2.7 着 i,j,k 互异, 则 $x_ix_iD_k \in \Omega$.

证明 $\mathcal{U} \in Y \setminus \{i, j, k\}$. 则

$$x_i x_j \mathbf{D}_k = (-1)^{\tau(l)\tau(k)} \mathbf{D}_{lk}(x_l x_i x_j) \in L_{(1)} \subseteq \text{nil}(L).$$

令 $y = \sum_{i=-1}^{r} y_i \in L$, 其中 $y_i \in L_i$. 设 $y_{-1} = \sum_{l=1}^{s} a_l D_l$, 其中 $a_l \in \mathbb{F}$, 则 $[x_i x_j D_k, y] = z_0 + z_1$, 其中 $z_0 \in L_0$, $z_1 \in L_{(1)}$. 进而

$$\begin{split} z_0 &= \left[x_i x_j \mathbf{D}_k, \sum_{l=1}^s a_l \mathbf{D}_l \right] \\ &= (-1)^{\tau(i)(\tau(i) + \tau(j) + \tau(k))} a_i x_j \mathbf{D}_k - (-1)^{\tau(j)(\tau(j) + \tau(k))} a_j x_i \mathbf{D}_k. \end{split}$$

由引理 2.6 的 3) 知, $z_0 \in L_0 \cap \text{nil}(L)$. 由引理 2.6 的 1) 知, $z_0 + z_1 \in \text{nil}(L)$, 所以 $x_i x_j D_k \in \Omega$.

 $\diamondsuit Q = \{ y \in \operatorname{nil}(L) \mid \operatorname{ad}y(\Omega) \subseteq \Omega \}.$

引理 2.8 $Q=L_{(1)}$.

证明 由 Ω 的定义知, $L_{(2)}\subseteq\Omega$. 由引理 2.4 与引理 2.5 知 $\Omega\subseteq L_{(1)}$. 所以

$$[L_{(1)},\Omega]\subseteq [L_{(1)},L_{(1)}]\subseteq L_{(2)}\subseteq \Omega,$$

因而 $L_{(1)} \subseteq Q$.

下面证明 $Q \subseteq L_{(1)}$. 令 $y \in Q$, 可设 $y = \sum_{i=-1}^{r} y_i$, 其中 $y_i \in L_i$. 假设 $y_{-1} = \sum_{i=1}^{s} a_i D_i \neq 0$, 可设 $a_i \neq 0$. 令 $z = x_i x_j D_k$, 其中 $j,k \in Y \setminus \{i\}$, $j \neq k$. 由引理 2.7 知 $z \in \Omega$. 设 $[y,z] = h_0 + h_1$, 其中 $h_0 = [y_{-1},z] \in L_0$, $h_1 \in L_{(1)}$. 由于 $a_i \neq 0$, 所以

$$h_0 = a_i x_j \mathbf{D}_k + (-1)^{\tau(i)\tau(j)} a_j x_i \mathbf{D}_k \neq 0.$$

由引理 2.5 知 $h_0 + h_1 \notin \Omega$. 此与 $y \in Q$ 矛盾, 所以 $y_{-1} = 0$.

假设 $y_0 \neq 0$. 可设 $y_0 = \sum_{i,j=1}^s a_{ij} x_i D_j$. 令 l = t 分别如 (2.8) 与 (2.9) 式所定义. 我们可设 $l \leq t$ ($t \leq l$ 的情形证明相仿). 设 k 如 (2.10) 式所定义. 相仿于引理 2.5 的 前部分证明可得 l < k. 任取 $h \in Y \setminus \{l, k, t\}$, 令 $z_1 = x_k x_h D_l$. 由引理 2.7 知 $z_1 \in \Omega$. 设 $[y, z_1] = g_1 + g_2$, 其中 $g_1 = [y_0, z_1] \in L_1$, $g_2 \in L_{(2)}$. 由计算知

$$\begin{split} g_1 = & a_{lk} x_l x_h \mathbf{D}_l + \sum_{i=l+1}^{s} (-1)^{\tau(k)\tau(h)} a_{ih} x_i x_k \mathbf{D}_l \\ & - \sum_{i=t}^{k} (-1)^{(\tau(l)+\tau(j))(\tau(k)+\tau(h)+\tau(l))} a_{lj} x_k x_h \mathbf{D}_j. \end{split}$$

(若 h < t, 上面等式中的 $a_{ih} = 0$, 其中 $i = l, l + 1, \dots, s$). 则有

$$[D_h, g_1] = (-1)^{\tau(l)\tau(h)} a_{lk} x_l D_l + \sum_{i=l+1}^{s} (-1)^{\tau(i)\tau(h)} a_{ih} x_i D_l + (-1)^{\tau(k)\tau(h)} a_{hh} x_k D_l + (-1)^{(\tau(l)+\tau(j))(\tau(k)+\tau(h)+\tau(l))} a_{lj} x_k D_j$$

由 (2.7) 式可得,矩阵 $\eta([D_h,g_1])$ 具有形状 $[\frac{A}{B},0]$,其中 $A=(-1)^{\tau(l)\tau(h)}a_{lk}E_{ll}$ 是 $l\times l$ 矩阵,它的 (l,l) 位置是 $a_{lk}\neq 0$,而其余位置是零.所以 A 不是幂零阵,从而 $\eta([D_h,g_1])$ 不是幂零阵,故 $[D_h,g_1]\notin \mathrm{nil}(L)$.由引理 2.3 知 $[D_h,g_1+g_2]\notin \mathrm{nil}(L)$,故 $g_1+g_2\notin \Omega$.此与 $g\in Q$ 矛盾,这就证明了 $g_0=0$.于是 $g\in L_{(1)}$ 并且 $g=L_{(1)}$.

引理 2.9 以下结论成立:

1)
$$L_{(0)} = \{x \in L \mid [x, L_{(1)}] \subseteq L_{(1)}\}.$$
 (2.11)

2)
$$L_{(i)} = \{x \in L_{(i-1)} \mid [x, L] \subseteq L_{(i-1)}\}, i \ge 1.$$
 (2.12)

证明 1) 设 $T = \{x \in L \mid [x, L_{(1)}] \subseteq L_{(1)}\}$. 由 $[L_{(0)}, L_{(1)}] \subseteq L_{(1)}$ 知, $L_{(0)} \subseteq T$.

反之, 设 $y \in T$. 可设 $y = \sum_{i=-1}^{\lambda} y_i$, 其中 $y_i \in L_i$. 设 $y_{-1} = \sum_{l=1}^{s} a_l D_l$. 任取 $i \in Y$, 由引理 2.7 知 $x_i x_j D_k \in \Omega$, 其中 $j, k \in Y \setminus \{i\}$, $j \neq k$. 因为 $y \in T$, $x_i x_j D_k \in L_{(1)}$, 所以 $[y, x_i x_j D_k] \in L_{(1)}$. 于是 $[y_{-1}, x_i x_j D_k] = 0$, 从而

$$a_i x_j \mathbf{D}_k + (-1)^{\tau(j)(\tau(i)+\tau(j))} a_j x_i \mathbf{D}_k = 0.$$

故 $a_i = 0$, $\forall i \in Y$. 因此 $y_{-1} = 0$, 从而 $y \in L_{(0)}$, 那么 $T \subseteq L_{(0)}$. 所以 $L_{(0)} = T$.

2) 设 $M = \{x \in L_{(i-1)} \mid [x,L] \subseteq L_{(i-1)}\}$. 显然 $L_{(i)} \subseteq L_{(i-1)}$. 因为 $[L_{(i)},L] = [L_{(i)},L_{(-1)}] \subseteq L_{(i-1)}$, 所以 $L_{(i)} \subseteq M$.

反之,任取 $y \in M$,则 $y \in L_{(i-1)}$. 故可设 $y = \sum_{j=i-1}^{\lambda} y_j$,其中 $y_j \in L_j$. 令 $y_{i-1} = \sum a_{\alpha u l} x^{(\alpha)} x^u D_l$,其中 $a_{\alpha u l} \in \mathbb{F}$. 若 $\alpha \neq 0$,可设 $\alpha_k \neq 0$,因 $y \in M$,故 $[y, L_{-1}] \subseteq L_{(i-1)}$. 于是 $[y_{i-1}, L_{-1}] = 0$,从而 $[D_k, y_{i-1}] = 0$. 进而可得: 当 $\alpha \neq 0$ 时, $a_{\alpha u l} = 0$. 若 $\alpha = 0$,则 $u \neq \emptyset$. 同理可推得 $a_{\alpha u l} = 0$. 这就证明了 $y_{i-1} = 0$. 所以 $y \in L_{(i)}$. 因此 $M \subseteq L_{(i)}$,故 $L_{(i)} = M$.

定理 2.10 W 与 S 的自然滤过是不变的.

证明 显然 $L_{(-1)}$ 在 L 的自同构下是不变的. 因为 Ω 与 Q 在 L 的自同构下不变, 所以, 由引理 2.8 知 $L_{(1)}$ 是不变的. 由引理 2.9 知, 当 $i \ge 0$ 时, $L_{(i)}$ 也是不变的.

令 $G_i = L_{(i)}/L_{(i+1)}$, 其中 $-1 \le i \le \lambda$, 则 G_i 是 \mathbb{Z}_{2^-} 阶化空间. 设 $G := \bigoplus_{i=-1}^{\lambda} G_i$, 则 G 是 \mathbb{Z}_{2^-} 阶化空间. 设 $x + L_{(i+1)} \in G_i$, $y + L_{(j+1)} \in G_j$, 定义

$$\left[x+L_{(i+1)},y+L_{(j+1)}\right]:=\left[x,y\right]+L_{(i+j+1)}.$$

易知, 此定义是有意义的. 于是通过线性扩张, 使得 G 有一个 [,] 运算, 容易验证, 关于这个 [,] 运算, G 是一个李超代数. 称 G 是由 L 的自然滤过诱导的李超代数.

引理 2.11 $G \cong L$.

证明 $\phi \circ L \longrightarrow G$ 是线性映射, 使得

$$\phi(x) = x + L_{(i+1)}, \quad \text{i.t.} x \in L_{(i)} \setminus L_{(i+1)}.$$

直接验证可知, ø 是李超代数的满同态.

设 $y \in \ker \phi$. 若 $y \neq 0$, 则存在 i $(i \geq -1)$, 使得 $y \in L_{(i)} \setminus L_{(i+1)}$. 由 $\phi(y) = 0$ 知 $y + L_{(i+1)} = 0$, 所以 $y \in L_{(i+1)}$. 此为矛盾, 故 y = 0. 于是 $\ker \phi = 0$, 因而 ϕ 是单同态, 从而 ϕ 是同构.

由 φ 的定义知,

$$\phi(L_i) = \{x + L_{(i+1)} \mid x \in L_i\} = \{x + L_{(i+1)} \mid x \in L_{(i)}\}$$

$$= L_{(i)} \setminus L_{(i+1)} = G_i, \quad i \ge -1.$$
(2.13)

设 m, n, m', n' 是大于 1 的正整数, $\underline{t} = (t_1, \dots, t_m) \in \mathbb{N}^m$, $\underline{t'} = (t'_1, \dots, t'_{m'}) \in \mathbb{N}^{m'}$. 我们简记 $L(m, n, \underline{t})$ 与 $L(m', n', \underline{t'})$ 分别为 L 与 L', 其中 $L = \mathbb{W}$ 或 S. 与 L 中 Ω , Q 的 定义相同, 我们也在 L' 中同样定义 Ω' 与 Q'.

命题 2.12 设 $L \cong L'$. 今 σ 是 L 到 L' 的同构映射,则 $\sigma(L_{(i)}) = L'_{(i)}, \forall i \geq -1$.

证明 显然 $\sigma(L_{(-1)}) = L'_{(-1)}$,并且 $\sigma(\operatorname{nil}(L)) = \operatorname{nil}(L')$. 于是可推得 $\sigma(\Omega) = \Omega'$,从 而 $\sigma(Q) = Q'$. 由引理 2.8 知, $Q = L_{(1)}$, $Q' = L'_{(1)}$,故 $\sigma(L_{(1)}) = L'_{(1)}$. 由引理 2.9 可推 得 $\sigma(L_{(i)}) = L'_{(i)}$, $\forall i \geq 0$.

引理 2.13 设 $L \cong L'$, σ 是 L 到 L' 的同构映射. 令 G 与 G' 分别为 L 与 L' 的自然滤过诱导的 \mathbb{Z} - 阶化李超代数, 则 σ 诱导了一个 G 到 G' 的同构映射 $\widetilde{\sigma}$, 使 得 $\widetilde{\sigma}(G_i) = G'_i$, $\forall i \geq -1$.

证明 定义线性映射 $\tilde{\sigma}: G \longrightarrow G'$, 使得

$$\widetilde{\sigma}(x+L_{(i+1)})=\sigma(x)+L'_{(i+1)},$$

其中 $x + L_{(i+1)} \in G_i$. 利用引理 2.12 可知, $\tilde{\sigma}$ 是合理定义的, 并且

$$egin{aligned} \widetilde{\sigma}ig([x+L_{(i+1)},\ y+L_{(j+1)}]ig) &= \sigma([x,y]) + L'_{(i+j+1)} \ &= [\sigma(x),\sigma(y)] + L'_{(i+j+1)} \ &= [\sigma(x)+L'_{(i+1)},\sigma(y)+L'_{(j+1)}] \ &= [\widetilde{\sigma}(x+L_{(i+1)}),\widetilde{\sigma}(y+L_{(j+1)})]. \end{aligned}$$

故 $\tilde{\sigma}$ 是李超代数的同态. 显然 $\tilde{\sigma}(G_i) = G'_i, \forall i \geq -1$, 从而是满同态.

令 $y \in \ker \tilde{\sigma}$, 则 $y \in G$. 故可设 $y = \sum_{i=-1}^{\lambda} y_i$, 其中 $y_i \in G_i$. 因为 $G_i = L_{(i)}/L_{(i+1)}$, 所以可设 $y_i = z_i + L_{(i+1)}$, 其中 $z_i \in L_{(i)}$, 于是 $\tilde{\sigma}(y_i) = \sigma(z_i) + L'_{(i+1)}$. 因为 $\tilde{\sigma}(y) = 0$, 所以 $\sum_{i=-1}^{\lambda} \tilde{\sigma}(y_i) = 0$, 从而 $\tilde{\sigma}(y_i) = 0$. 那么 $\sigma(z_i) + L'_{(i+1)} = 0$, 于是 $\sigma(z_i) \in L'_{(i+1)}$. 由 引理 2.12 知 $z_i \in \sigma^{-1}(L'_{(i+1)}) = L_{(i+1)}$, 所以 $y_i = z_i + L_{(i+1)} = 0$, 其中 $-1 \le i \le \lambda$. 因此 y = 0. 故 $\ker \tilde{\sigma} = 0$, 即 $\tilde{\sigma}$ 是单同态, 从而 $\tilde{\sigma}$ 是同构映射.

当 n=0 时, $W(m,0,\underline{t})$ 与 $S(m,0,\underline{t})$ 分别为 Cartan 型李代数 $W(m,\underline{t})$ 与 $S(m,\underline{t})$. 我们也记为 $L(m,\underline{t})$, 其中 L=W或 S. 我们仍用 $L(m,n,\underline{t})$ 表示 $W(m,n,\underline{t})$ 或 $S(m,n,\underline{t})$. 回忆 $Y_0:=\{1,2,\cdots,m\}$.

定理 2.14 $L(m,n,\underline{t})\cong L(m',n',\underline{t'})$ 当且仅当 $m=m',\ n=n',\ t_i=\tau(t_i'),$ 其中 $i\in Y_0,\ \tau$ 是 Y_0 的一个置换.

证明 充分性是显然的,下证必要性. 我们仍简记 L(m,n,t) 与 L(m',n',t') 为 L 与 L'. 令 G 与 G' 分别是 L 与 L' 的自然滤过诱导的 Z 阶化李超代数,并设 $\phi:G \longrightarrow L$ 是引理 2.11 中定义的同构映射. 同理, 我们也有同构映射 $\phi':G' \longrightarrow L'$. 由 (2.13) 式 与引理 2.12 知

$$\phi(L_i) = G_i, \ \phi'(L_i') = G_i', \ \widetilde{\sigma}(G_i) = G_i', \ \forall i \in -1.$$

$$\psi(L_i) = (\phi')^{-1} \widetilde{\sigma} \phi(L_i) = (\phi')^{-1} \widetilde{\sigma}(G_i) = (\phi')^{-1} (G_i') = L_i'.$$

因为 ψ 是同构映射, 所以 $\psi(L_{\overline{0}}) = L'_{\overline{0}}, \ \psi(L_{\overline{1}}) = L'_{\overline{1}}, \$ 于是

$$\psi(L_i \cap L_{\overline{0}}) = L_i' \cap L_{\overline{0}}', \ \psi(L_i \cap L_{\overline{1}}) = L_i' \cap L_{\overline{1}}', \ \forall i \geq -1.$$

特别地, $\psi(L_{-1}\cap L_{\overline{0}})=L'_{-1}\cap L'_{\overline{0}}$, 从而 $\dim(L_{-1}\cap L_{\overline{0}})=\dim(L'_{-1}\cap L'_{\overline{0}})$. 于是 m=m'. 同理知 $\dim(L_{-1}\cap L_{\overline{1}})=\dim(L'_{-1}\cap L'_{\overline{1}})$, 所以 n=n'. 令

$$Q_i = \{x \in L_i \cap L_{\overline{0}} \mid \operatorname{ad}x(L_{-1} \cap L_{\overline{1}}) = 0\}, \ i \ge -1, \tag{2.14}$$

$$Q_i' = \{x \in L_i' \cap L_0' \mid \operatorname{ad} x(L_{-1}' \cap L_1') = 0\}, \ i \ge -1, \tag{2.15}$$

则 $Q_i = L(m,\underline{t})_i$, $Q_i' = L(m,\underline{t}')_i$. 设 $Q = \sum_{i \geq -1} Q_i$, $Q_i' = \sum_{i \geq -1} Q_i'$, 则 $Q = L(m,\underline{t})$, $Q_i' = L(m,\underline{t}')$. 由 (2.14) 与 (2.15) 式知 $\psi(Q_i) = Q_i'$, $\forall i \geq -1$, 从而 $\psi(Q) = Q_i'$, 于是 $L(m,\underline{t}) \cong L(m,\underline{t}')$. 由李代数的结果知 (见文献 [26] 与 [61]), 存在 Y_0 的置换 τ , 使得 $t_i = \tau(t_i')$, $\forall i \in Y_0$. 必要性得证.

§3 H的自然滤过

在本节中, 我们将证明 H 的自然滤过是不变的; 进而得到了两个 H 型李超代数 同构的充要条件.

我们仍设 $H = H(m, n, \underline{t})$, $\widetilde{H} = \widetilde{H}(m, n, \underline{t})$, 其中 m = 2r 是偶数. 由第二章 §1 节知, $H = \bigoplus_{i=-1}^{\xi-3} H_i$ 是 Z- 阶化李超代数. 令 $H_{(j)} = \bigoplus_{i>j} H_i$, 则

$$H=H_{(-1)}\supseteq H_{(0)}\supseteq\cdots\supseteq H_{(\xi-3)}\supseteq H_{(\xi-2)}=0$$

是 H 的一个下降的滤过, 称之为 H 的自然滤过.

由第二章引理 4.2 知, H 是 H 的理想, 由第二章引理 4.6 知

$$\widetilde{\mathbf{H}} = \mathbf{H} \oplus \mathbb{F}(\mathbf{D}_{\mathbf{H}}(x^{(\pi)}x^{E})) \oplus \sum_{i=1}^{m} \mathbb{F}(\mathbf{D}_{\mathbf{H}}(x^{(p^{t_{i}}\varepsilon_{i})})), \tag{3.1}$$

从而 $\tilde{H} = \bigoplus_{i=-1}^{\xi-2} \tilde{H}_i$ 也是 Z- 阶化李超代数, 其中 $\tilde{H}_i = \tilde{H} \cap W_i$. 由 (3.1) 式知 $H_i \subseteq \tilde{H}_i$, $\forall i \geq -1$.

若 L 是有限维 \mathbb{Z} - 阶化李超代数, $y \in L$ - 我们用 $\lambda(y)$ 表示 y 的次数最小的非零 \mathbb{Z} - 齐次成分.

引理 3.1 设 $y_1, y_2, \dots, y_k \in L \setminus \{0\}$. 若 $\{y_i \mid i=1,\dots,k\}$ 是线性相关的,则 $\{\lambda(y_i) \mid i=1,\dots,k\}$ 也是线性相关的.

证明 因为 $\{y_i \mid i=1,\dots,k\}$ 是线性相关的, 所以存在不全为零的元素 $a_1,\dots,a_k \in \mathbb{F}$, 使得 $\sum_{i=1}^k a_i y_i = 0$. 不妨设 $a_1,\dots,a_l \neq 0$, $a_{l+1} = \dots = a_k = 0$, 其中 $1 \leq l \leq k$. 令

$$u = \min\{\operatorname{zd}(\lambda(y_i)) \mid i = 1, \cdots, l\}.$$

不失一般性,可设 $zd(\lambda(y_i)) = u$, $i = 1, \dots, t$; $zd(\lambda(y_j)) > u$, $j = t + 1, \dots, l$. 因为 $\sum_{i=1}^{l} a_i y_i = 0$, 所以 $\sum_{i=1}^{t} a_i \lambda(y_i) = 0$. 由于 $a_1, \dots, a_t \neq 0$, 故 $\{\lambda(y_i) \mid i = 1, \dots, k\}$ 是 线性相关的.

令 $\overline{\Lambda}(m,n,\underline{t}) = \Lambda(m,n,\underline{t}) \oplus \sum_{i=1}^{m} \mathbb{F}x^{(p^{t_i}\epsilon_i)}, 则 \overline{\Lambda}(m,n,\underline{t})$ 是 $\Lambda(m,n)$ 的 \mathbb{Z}_2 - 阶化子空间. 由 (3.1) 式知 $\widetilde{H} = D_H(\overline{\Lambda}(m,n,\underline{t}))$.

引理 3.2 设 $0 \neq a \in \overline{\Lambda}(m, n, \underline{t})$,则以下命题成立.

- 1) 若 $D_i(a) = 0$, 其中 $i \in Y_0$, 则 $ax^{(k\epsilon_i)} \neq 0$, $0 \leq k \leq \pi_i$.
- 2) 设 $T \subseteq Y_0$. 若 $D_i(a) = 0$, $\forall i \in T$, 则

$$a\left(\prod_{i\in T} x^{(k_ie_i)}\right) \neq 0, \ 0 \leq k_i \leq \pi_i, \ \forall i \in T.$$

3) 设 $T \subseteq Y_1$. 若 $D_i(a) = 0$, $\forall i \in T$, 则 $a(\prod_{i \in T} x_i) \neq 0$.

证明 1) 对 k 用归纳法. 当 k=0 时结论显然成立. 假设 $ax^{((k-1)\varepsilon_i)} \neq 0$, 其 中 $k \leq \pi_i$. 则

$$D_i(ax^{(k\varepsilon_i)}) = D_i(x^{(k\varepsilon_i)}a) = x^{((k-1)\varepsilon_i)}a + x^{(k\varepsilon_i)}D_i(a) = ax^{((k-1)\varepsilon_i)} \neq 0.$$

所以 $ax^{(k\epsilon_i)} \neq 0$.

2) 不妨设 $T = \{1, 2, \dots, l\}$, 其中 $l \leq m$. 对 l 用归纳法证明

$$a\left(\prod_{i=1}^l x^{(k_i e_i)}\right) \neq 0.$$

当 l=1 时,由 1) 知 $ax^{(k_1\varepsilon_1)} \neq 0$,其中 $0 \leq k_1 \leq \pi_1$.假设 $a\left(\prod_{i=1}^{l-1} x^{(k_i\varepsilon_i)}\right) \neq 0$.由已 知 $D_l(a)=0$,所以可知 $D_l\left(a\left(\prod_{i=1}^{l-1} x^{(k_i\varepsilon_i)}\right)\right)=0$.因此由 1) 式知

$$a\left(\prod_{i=1}^{l-1}x^{(k_i\varepsilon_i)}\right)x^{(k_l\varepsilon_l)}\neq 0,$$

即 $a(\prod_{i=1}^{l} x^{(k_i \epsilon_i)}) \neq 0$. 归纳法完成.

3) 的证明与 2) 相仿. 口

引理 3.3 设 $g_1, \dots, g_k \in \overline{\Lambda}(m, n, \underline{t})$. 若 $zd(\lambda(g_i)) \geq 1$, $i = 1, \dots, k$, 则 $\{g_i \mid i = 1, \dots, k\}$ 线性相关当且仅当 $\{D_H(g_i) \mid i = 1, \dots, k\}$ 线性相关.

证明 必要性显然. 利用 $zd(g_i) \ge 1$, $i = 1, \dots, k$, 以及 $ker D_H = \mathbb{F}1$, 即可证得充分性. \square

引理 3.4 设 $D_H(g) \in hg(\widetilde{H})$, 若 $D_H(g) \notin F1 \cup span_F\{D_H(x^{(\pi)}x^E)\}$, 则存在 $f \in \bigoplus_{i=2}^{\xi} \Lambda(m,n,\underline{t})$, 使符 $[D_H(g),D_H(f)] \neq 0$.

证明 设 $g = \sum_{\alpha,u} c_{\alpha u} x^{(\alpha)} x^{u}$, 其中 $c_{\alpha u} \in \mathbb{F}$. 令 $\Delta = \{(\alpha,u) | c_{\alpha u} \neq 0\}$.

假设存在 $(\alpha,u) \in \Delta$, 使得 $u \neq \emptyset$, $u \neq E$. 任取 $i \in \{u\}$, $j \in Y_1 \setminus \{u\}$, 其中 $Y_1 = \{m+1,\cdots,s\}$. 则

$$\begin{aligned} [\mathrm{D}_{\mathrm{H}}(g),\mathrm{D}_{\mathrm{H}}(x_{i}x_{j})] = &\mathrm{D}_{\mathrm{H}}\left(\sum_{(\alpha,u)\in\Delta} c_{\alpha u}(-1)^{\mathrm{d}(g)}x^{(\alpha)}\mathrm{D}_{i}(x^{u})x_{j}\right. \\ &\left. - \sum_{(\alpha,u)\in\Delta} c_{\alpha u}(-1)^{\mathrm{d}(g)}x^{(\alpha)}\mathrm{D}_{j}(x^{u})x_{i}\right) \neq 0. \end{aligned}$$

者对任意 $(\alpha, u) \in \Delta$, 均有 $u = \emptyset$ 或 u = E, 那么仅有以下两种情形.

(i) $g = \sum_{\alpha} k_{\alpha} x^{(\alpha)} + \sum_{\beta} l_{\beta} x^{(\beta)} x^{E}$, $k_{\alpha}, l_{\beta} \in \mathbb{F}$, $\Delta_{1} := \{\alpha \in \mathbb{N}_{o}^{m} \setminus \{0\} \mid k_{\alpha} \neq 0\} \neq \emptyset$. 取 $\alpha \in \Delta_{1}$, 可设 $\alpha_{i} \neq 0$, 其中 $i \in Y_{0}$. 对 $j \in Y_{1}$, 则有

$$egin{aligned} \left[\mathrm{D}_{\mathrm{H}}(g),\mathrm{D}_{\mathrm{H}}(x_ix_j)
ight] &= \mathrm{D}_{\mathrm{H}}\left(\sum_{lpha\in\Delta_1}k_lpha\sigma(i)x^{(lpha-e_i)}x_j
ight. \ &+ \left.\sum_eta l_eta x^{(eta)}\mathrm{D}_j(x^E)
ight)
eq 0. \end{aligned}$$

(ii) $g = \sum_{\alpha} l_{\alpha} x^{(\alpha)} x^{E}$, 其中 $l_{\alpha} \in \mathbb{F}$. 令 $\Delta_{2} = \{ \alpha \in \mathbb{N}_{o}^{m} \mid l_{\alpha} \neq 0 \}$. 若存在 $\alpha \in \Delta_{2}$ 与 $i \in Y_{0}$, 使得 $x^{(\alpha)} x_{i} \neq 0$, 取 $j \in Y_{1}$, 则有

$$[\mathrm{D_H}(g),\mathrm{D_H}(x_ix_j)]=\mathrm{D_H}\left(\sum_{lpha\in\Delta_2}l_lpha(-1)^{\mathrm{d}(g)}x^{(lpha)}x_i\mathrm{D}_j(x^E)
ight)
eq 0.$$

者对任意 $i \in Y_0$, 均有 $x^{(\alpha)}x_i = 0$, 则可设 $\alpha = (p^{l_1-1}, \dots, p^{l_m-1})$, 其中 $0 < l_i \le t_i$, $\forall i \in Y_0$. 因为 $D_H(g) \notin \operatorname{span}_F\{D_H(x^{(\pi)}x^E)\}$, 所以存在 $i \in Y_0$, 使得 $l_i < t_i$. 故

$$\begin{split} &[\mathrm{D_H}(g),\mathrm{D_H}(x^{(p^{l_i}\varepsilon_i+\varepsilon_i)})] \\ &= \mathrm{D_H}\left(\sum_{\alpha\in\Delta_2}k_\alpha\sigma(i')\binom{\alpha-\varepsilon_{i'}+p^{l_i}\varepsilon_i}{\alpha-\varepsilon_{i'}}\right)x^{(\alpha-\varepsilon_{i'}+p^{l_i}\varepsilon_i)}x^E\right) \neq 0. \end{split}$$

设 L 是 F 上的李超代数, $D \in Der(L)$, 令 I(D) = dim(Im(D)). 若 $T \subseteq Der(L)$, 定义 $I(T) := min\{I(D) \mid 0 \neq D \in T\}$.

定理 3.5 设 $T = \operatorname{ad}(\operatorname{hg}(\widetilde{H}))\Big|_{H}$, 則 I(T) = s, 并且 $I(\operatorname{ad} \operatorname{D}_{H}(g)) = s$ 当且仅当 $0 \neq \operatorname{D}_{H}(g) \in \operatorname{span}_{F}\{\operatorname{D}_{H}(x^{(\pi)}x^{E})\}.$

证明 对于 $y \in \text{hg}(\widetilde{H})$, 我们简记 $\text{ad } y \Big|_{H}$ 为 ad y. 直接计算知, 当 $|\alpha| + |u| \geq 2$ 时, $[D_{H}(x^{(\pi)}x^{E}), D_{H}(x^{(\alpha)}x^{u})] = 0$. 由引理 3.3 知, $\{[D_{H}(x^{(\pi)}x^{E}), D_{H}(x_{i})] \mid i \in Y\}$ 是线性无关的, 所以 $I(\text{ad }D_{H}(x^{(\pi)}x^{E})) = s$.

设 $D_H(g_0) \in hg(\tilde{H})$, 并且 $D_H(g_0) \notin span_F\{D_H(x^{(\pi)}x^E)\}$. 下面我们证明 $I(ad\ D_H(g_0)) > s$. 设 $\lambda(D_H(g_0)) = D_H(g)$. 由引理 3.1, 只需证明 $I(ad\ D_H(g)) > s$.

令 $V_{\overline{0}} = \operatorname{span}_{\mathbb{F}}\{D_{\mathbb{H}}(x_i) \mid i \in Y_0\}, \ V_{\overline{1}} = \operatorname{span}_{\mathbb{F}}\{D_{\mathbb{H}}(x_i) \mid i \in Y_1\}.$ 若 $D_{\mathbb{H}}(g) \in V_{\overline{0}}$, 则 $g = \sum_{j=1}^k c_{l_j} x_{l_j}$, 其中 $l_j \in Y_0$, $c_{l_j} \in \mathbb{F}$. 为简便, 不妨设 $g = \sum_{j=1}^k c_j x_j$, 其中 $0 \neq c_j \in \mathbb{F}$, $k \leq m$. 令

$$M = \{x^{(2\epsilon_{i'})} \mid i = 1, \dots, k\} \cup \{x^{(\epsilon_{i} + \epsilon_{i'})} \mid i \in Y_0 \setminus \{1', \dots, k'\}\}$$
$$\cup \{x_{1'}x_i \mid i \in Y_1\} \cup \{x^{(2\epsilon_{1'})}x_{m+1}\}.$$

由引理 3.3 知 $\{[D_H(g),D_H(f)]\mid f\in M\}$ 是线性无关的, 故 $I(\text{ad }D_H(g))>s.$

设 $D_H(g) \in V_{\overline{1}}$, 则 $g \in \operatorname{span}_{\mathbb{F}}\{x_i \mid i \in Y_1\}$. 不妨设 $g = \sum_{j=m+1}^t c_j x_j$, 其中 $0 \neq c_j \in \mathbb{F}$, $m+1 \leq t \leq s$. 令

$$M_1 = \{x_1x_i \mid i = m+1, \cdots, l\} \cup \{x_1x_{m+1}x_i \mid i = l+1, \cdots, s\}$$

$$\cup \{x^{(\varepsilon_1+\varepsilon_i)} \mid i \in Y_0\} \cup \{x^{(2\varepsilon_1+\varepsilon_2)}x_{m+1}\}.$$

則 $\{[D_H(g),D_H(f)]| f \in M_1\}$ 是线性无关的, 所以 $I(\text{ad }D_H(g)) > s$.

令 $D_H(g) \notin V_0 \cup V_1$. 因为 $D_H(g) \in hg(\widetilde{H})$, 所以 $D_H(g) \notin V_0 + V_1$. 于是 $zd(g) \geq 2$. 令

$$egin{aligned} R &= ig\{ i \in Y_0 \mid [\mathrm{D_H}(g), \mathrm{D_H}(x_i)] = 0 ig\}; \ R_1 &= ig\{ i \in Y_1 \mid [\mathrm{D_H}(g), \mathrm{D_H}(x_i)] = 0 ig\}; \ J_0 &= ig\{ i \in R \mid i' \in R ig\}. \end{aligned}$$

可设 $J_0 = \{i_1, i'_1, \dots, i_u, i'_u\}$. 设 $R_1 = \{j_1, \dots, j_h\}$, 并令 $J_1 = R \setminus J_0 = \{i_{u+1}, \dots, i_{u+t}\}$, $J_2 = \{i'_{u+1}, \dots, i'_{u+t}\}$, $\bar{J} = Y \setminus (R \cup R_1 \cup J_2)$. 因为

$$[\mathbf{D}_{\mathbf{H}}(g),\mathbf{D}_{\mathbf{H}}(x_j)] = \sigma(j')(-1)^{\tau(j')\mathbf{d}(g)}\mathbf{D}_{j'}(g),$$

所以

$$D_{j'}(g) = 0 \iff [D_H(g), D_H(x_j)] = 0.$$
 (3.2)

令 $x^{(\gamma)}=\prod_{k\in J_0}x^{(\gamma_k\epsilon_k)}$,其中 $\gamma_k=0,1,\cdots,p-1,\ \forall k\in J_0.$ 又设

任取 $l \in J_2$, $\beta_l \in \{2,3,\cdots,p-1\}$, 利用 (3.2) 式可算得

$$\begin{aligned} [\mathbf{D}_{\mathbf{H}}(g), \mathbf{D}_{\mathbf{H}}(x^{(\gamma)}x^{q}x^{(\beta_{l}\epsilon_{l})})] \\ &= \mathbf{D}_{\mathbf{H}}(\sigma(l')\mathbf{D}_{l'}(g)x^{(\gamma)}x^{q}x^{((\beta_{l}-1)\epsilon_{l})}). \end{aligned}$$
(3.3)

任取 $v \in \overline{J}$, 则有

$$[D_{H}(g), D_{H}(x_{v}x^{(\gamma)}x^{q})]$$

$$= D_{H}(\sigma(v')(-1)^{\tau(v')d(g)}D_{v'}(g)x^{(\gamma)}x^{q}).$$
(3.4)

易见 $R = J_0 \cup J_1$, $J_2 \cap R = \emptyset$. 因为 $J_2 \subseteq Y_0$, 所以 $J_2 \cap R_1 = \emptyset$. 于是 $[D_H(g), D_H(x_l)] \neq 0$, $\forall l \in J_2$. 由 (3.3) 式知 $D_{l'}(g) \neq 0$. 由引理 3.2 的 2) 知 $D_{l'}(g)x^{(\gamma)} \neq 0$. 由引理 3.2 的 3) 知 $D_{l'}(g)x^{(\gamma)}x^g \neq 0$. 再由引理 3.2 的 2) 知

$$D_{l'}(g)x^{(\gamma)}x^qx^{((\beta_l-1)\varepsilon_l)} \neq 0.$$
(3.5)

同理知

$$D_{v'}(g)x^{(\gamma)}x^q \neq 0. \tag{3.6}$$

易见 (3.5) 式与 (3.6) 式的所有的非零元素是线性无关的. 由引理 3.3 知, (3.3) 式与 (3.4) 式右端的所有元素也是线性无关的. 由于 $|J_0|=2u$, $|R_1|=h$, $|J_2|=t$, 所以形如 (3.3) 式右端的元素共有 $p^{2u}2^h(p-2)t$ 个. 同理, 形如 (3.4) 式右端的元素共有 $p^{2u}2^h(s-2u-2t-h)$ 个. 于是

$$I(\text{ ad }D_H(g)) \geq p^{2u}2^h(p-2)t + p^{2u}2^h(s-2u-2t-h)$$

 $\geq 2^{2u+h}(p-2)t + 2^{2u+h}(s-2u-2t-h)$
 $= 2^{2u+h}(p-4)t + 2^{2u+h}(s-(2u+h)).$

设 2u+h=0, 则 u=h=0. 若 t=0, 则 $R=R_1=\varnothing$. 所以 $[D_H(g),D_H(x_i)]\neq 0$, $\forall i\in Y$. 显然 $\{[D_H(g),D_H(x_i)]\mid i\in Y\}$ 是线性无关的. 由引理 3.4 知 $I(\text{ad }D_H(g))>s$. 若 t>0, 注意到 $\text{char}\mathbb{F}=p\geq 5$, 则有

$$I(\text{ ad }D_H(g)) \ge (p-4)t + s > s.$$

设 2u+h>0. 若 2u+h=s, 则 $R\cup R_1=Y$. 所以

$$[D_{\mathbf{H}}(g), D_{\mathbf{H}}(x_i)] = 0, \ \forall i \in Y.$$

于是 $D_{i'}(g) = 0$, $\forall i \in Y$, 从而 $g \in F1$. 此与 $zd(g) \geq 2$ 矛盾, 因此 0 < 2u + h < s, 即 $1 \leq 2u + h \leq s - 1$. 从而有

$$I(\text{ ad }\mathrm{D_H}(g)) \geq 2^{2u+h}(s-(2u+h)).$$

因为当 $1 \le x \le s-1$ 时, 函数 $2^{x}(s-x)$ 是增函数, 所以

$$I(\text{ ad }\mathbf{D_H}(g)) \ge 2(s-1) = 2s-2 > s.$$

引理 3.6 设 $f_i = g_i + h_i$, 其中 $f_i, g_i, h_i \in \overline{\Lambda}(m, n, \underline{t})$, $i = 1, 2, \dots, k$. 如果 $\{g_i \mid i = 1, 2, \dots, k\}$ 线性无关, 并且 $\operatorname{span}_{\mathbb{F}}\{g_i \mid i = 1, 2, \dots, k\} \cap \operatorname{span}_{\mathbb{F}}\{h_i \mid i = 1, 2, \dots, k\} = 0$, 那么 $\{f_i \mid i = 1, 2, \dots, k\}$ 线性无关.

证明 者 $\sum_{i=1}^{k} l_i f_i = 0$, 其中 $l_i \in \mathbb{F}$, 则 $\sum_{i=1}^{k} l_i g_i = -\sum_{i=1}^{k} l_i h_i$. 于是

$$\sum_{i=1}^k l_i g_i \in \operatorname{span}_{\mathbf{F}} \{g_i \mid i=1,\cdots,k\} \cap \operatorname{span}_{\mathbf{F}} \{h_i \mid i=1,\cdots,k\} = 0.$$

因为 $\{g_i \mid i=1,\cdots,k\}$ 线性无关, 所以 $l_i=0,\ i=1,\cdots,k$. 这就证明了 $\{f_i \mid i=1,\cdots,k\}$ 线性无关. \square

定理 3.7 I(hg(Der(H))) = s, 进而 I(D) = s 当且仅当 $0 \neq D \in span_{\mathbb{F}}\{ad D_H(x^{(\pi)}x^E)\}$, 其中 $D \in hg(Der(H))$.

证明 由定理 3.5 知 $I(\text{ad }D_H(x^{(\pi)}x^E)) = s$. 因此 $I(\text{hg}(\text{ Der }(H))) \leq s$. 令 $D \in \text{hg}(\text{ Der }(H))$, 并且 $I(D) \leq s$. 由第二章引理 4.20, 可设

$$D = \operatorname{ad} D_{\mathbf{H}}(g) + k\phi + \sum_{i=1}^{m} \sum_{j=1}^{t_i-1} c_{ij} (\operatorname{ad} D_i)^{p^j},$$

其中 $k, c_{ij} \in \mathbb{F}$, $D_H(g) \in hg(\widetilde{H})$, $\phi = ad h$. 下面证明 c_{ij} 与 k 均为零.

假设 $c_{ij} \neq 0$. 令 $r = \max\{j \mid c_{ij} \neq 0\}$. 设

$$G = \{ \alpha \in A(m,\underline{t}) \mid \alpha_l = p^r + 1, p^{t_i} - 1 \leq \alpha_i < p^{t_i}, i = 1, \dots, l - 1, l + 1, \dots, m \}.$$

$$D(D_{\mathbf{H}}(x^{(\alpha)}x^{\mathbf{u}})) = D_{\mathbf{H}}(c_{lr}x^{(\alpha-p^{r}\epsilon_{l})}x^{\mathbf{u}} + y),$$

其中 y 是某些 $x^{(\beta)}x^{\nu}$ 的 \mathbb{F} 线性组合, 并且 $\beta_i > 1$. 由引理 3.6 与引理 3.3 知

$$\{\mathrm{D_H}(c_{lr}x^{(\alpha-p^r\varepsilon_l)}x^u+y) \mid \alpha \in G, \ u \in B(n)\}$$

是线性无关的. 于是 $I(D) \ge (p-1)^{m-1}2^n > s$, 此与 $I(D) \le s$ 矛盾. 所以每个 c_{ij} 均为零, 因而

$$D = \operatorname{ad} \mathrm{D}_{\mathrm{H}}(g) + k\phi.$$

令 $\lambda(D_H(g)) = D_H(f)$, 这里 $\lambda(D_H(g))$ 仍表示 $D_H(g)$ 的次数最小的 \mathbb{Z} 齐次成分. 若 $zd(D_H(f)) = -1$, 则 $D_H(f) \in V_0 \cup V_1$, 并且

$$\lambda(\mathbf{D}(b)) = \lambda((\text{ad }\mathbf{D}_{\mathbf{H}}(f))(b)), \ \forall b \in \mathbf{H}. \tag{3.7}$$

由引理 3.5 知 $I(\text{ad }D_H(f)) > s$, 于是由 (3.7) 式可知 I(D) > s. 此为矛盾, 所以 $zd(D_H(f)) \ge 0$.

假设 $k \neq 0$. 若 $zd(D_H(f)) \geq 1$, 令

$$M_2 = \{D_H(x^{(\alpha)}x^u) \mid |\alpha| + |u| = 3\},$$

則 $\phi(b) = b$, $\forall b \in M_2$. 所以

$$\lambda(D(b)) = \lambda((\operatorname{ad} D_{H}(f))(b) + k\phi(b)) = k\phi(b) = kb, \ \forall b \in M_{2},$$

故 $\{\lambda(D(b)) \mid b \in M_2\}$ 是线性无关的. 因此 I(D) > s. 此为矛盾. 若 $zd(D_H(f)) = 0$, 则可设 $f = \sum_{l,k=1}^{s} a_{lk}(x_l x_k)$, 其中 $a_{lk} \in \mathbb{F}$. 令

$$egin{aligned} M_3 &= \left\{ \mathrm{D_H}\left(\prod_{i=1}^t x_{m+i}
ight) \mid t=1,\cdots,n
ight\} \ &\cup \left\{ \mathrm{D_H}(x^{(arepsilon_i+arepsilon_{i'})}x^E), \mathrm{D_H}(x^{(2arepsilon_i+2arepsilon_{i'})}x^E) \mid i=1,\cdots,r
ight\} \ &\cup \left\{ \mathrm{D_H}(x^{(3arepsilon_i+3arepsilon_{i'})}x^E)
ight\}, \end{aligned}$$

其中 r = 9. 直接计算知

$$\lambda(D(b)) = \left(ext{ ad } \mathrm{D_H} \left(\sum_{l,k=1}^s a_{lk}(x_l x_k)
ight) + k \phi
ight) (b)
eq 0, \ orall b \in M_3.$$

考察 $\lambda(D(b))$ 的 Z- 次数可知 $\{\lambda(D(b)) \mid b \in M_3\}$ 是线性无关的. 所以 I(D) > s, 亦为矛盾. 因此 k = 0. 那么 $D = \text{ad } D_H(g)$. 再由定理 3.5 可得 I(hg(Der (H))) = s, 并且

$$I(D) = s \iff D \in \operatorname{span}_{\mathbb{F}} \{ \operatorname{ad} \operatorname{D}_{\mathbb{H}}(x^{(\pi)}x^{E}) \}.$$

令 $m', n' \in \mathbb{N}$, m' = 2r', n' > 1. 设 $\underline{t'} = (t'_1, \dots, t'_{m'}) \in \mathbb{N}^{m'}$. 同样, 我们可定义李超代数 $\widetilde{H}(m', n', \underline{t'})$, $\overline{H}(m', n', \underline{t})$ 与 $H(m', n', \underline{t'})$. 令 $\pi' = (\pi'_1, \dots, \pi'_{m'})$, 其中 $\pi'_i = p^{t'_i} - 1$, $i = 1, \dots, m'$. 令 s' = m' + n', $E' = (m' + 1, \dots, m' + n')$.

命题 3.8 设 $H = H(m, n, \underline{t}), H' = H(m', n', \underline{t}').$ 令

$$egin{aligned} R &= \operatorname{span}_{\mathbf{F}} ig\{ \operatorname{D}_{\mathrm{H}}(x^{(lpha)}x^u) \in \operatorname{H} ig| |lpha| + |u| \geq 2 ig\}, \ R' &= \operatorname{span}_{\mathbf{F}} ig\{ \operatorname{D}_{\mathrm{H}}(x^{(lpha)}x^u) \in \operatorname{H}' ig| |lpha| + |u| \geq 2 ig\}. \end{aligned}$$

若 σ 是 H 到 H' 的同构映射,则 $\sigma(R) = R'$.

证明 易见,映射 $D\mapsto \sigma D\sigma^{-1}$, $\forall D\in Der(H)$, 是 Der(H) 到 Der(H') 的同构映射, 于是 $Der(H)\cong Der(H')$. 从而 I(hg(Der(H')))=I(hg(Der(H)))=s. 由定理 3.7 知

$$\sigma\big(\mathrm{span}_{\mathbf{F}}\{\;\mathrm{ad}\;\mathrm{D}_{\mathrm{H}}(x^{(\pi)}x^{E})\}\big)\sigma^{-1}=\mathrm{span}_{\mathbf{F}}\{\;\mathrm{ad}\;\mathrm{D}_{\mathrm{H}}(x^{(\pi')}x^{E'})\}.$$

直接验证知

$$R = \Big\{ y \in \mathcal{H} \; \big| \; \big(\operatorname{span}_{\mathbb{F}} \{ \; \operatorname{ad} \mathcal{D}_{\mathcal{H}}(x^{(\pi)}x^{E}) \} \big)(y) = 0 \Big\},$$

$$R' = \Big\{ y \in \operatorname{H}' \mid \big(\operatorname{span}_{\mathbf{F}} \{ \operatorname{ad} \operatorname{D}_{\operatorname{H}}(x^{(\pi')} x^{E'}) \} \big)(y) = 0 \Big\}.$$

则有

$$\begin{split} & \left(\mathrm{span}_{\mathtt{F}} \{ \ \mathrm{ad} \ \mathrm{D}_{\mathtt{H}}(x^{(\pi')}x^{E'}) \} \right) \left(\sigma(R) \right) \\ & = \sigma \left(\mathrm{span}_{\mathtt{F}} \{ \ \mathrm{ad} \ \mathrm{D}_{\mathtt{H}}(x^{(\pi)}x^{E}) \} \right) \sigma^{-1} \left(\sigma(R) \right) \\ & = \sigma \left(\mathrm{span}_{\mathtt{F}} \{ \ \mathrm{ad} \ \mathrm{D}_{\mathtt{H}}(x^{(\pi)}x^{E}) \} \right) (R) \\ & = \sigma \left(\left(\mathrm{span}_{\mathtt{F}} \{ \ \mathrm{ad} \ \mathrm{D}_{\mathtt{H}}(x^{(\pi)}x^{E}) \} \right) (R) \right) \\ & = \sigma(0) \\ & = 0, \end{split}$$

所以 $\sigma(R) \subseteq R'$. 同理 $\sigma^{-1}(R') \subseteq R$, 从而 $R' \subseteq \sigma(R)$. 因此 $\sigma(R) = R'$.

设 $H = H_{(-1)} \supseteq H_{(0)} \supseteq \cdots \supseteq H_{(\xi-3)} \supseteq H_{(\xi-2)} = 0$ 是 H 的自然滤过, 则 $H_{(0)} = R$. 相 仿于引理 2.9 的 2) 可证得

$$\mathbf{H}_{(i)} = \left\{ x \in \mathbf{H}_{(i-1)} \mid [x, \mathbf{H}] \subseteq \mathbf{H}_{(i-1)} \right\}, \ \forall i \ge 1.$$
 (3.8)

同理, 对 $H' = H(m', n', \underline{t}')$ 的自然滤过, 也有 $H'_{(0)} = R'$,

$$\mathbf{H}'_{(i)} = \left\{ x \in \mathbf{H}'_{(i-1)} \mid [x, \mathbf{H}'] \subseteq \mathbf{H}'_{(i-1)} \right\}, \ \forall i \ge 1.$$
 (3.8')

由命题 3.8, 等式 (3.8) 与等式 (3.8') 可得以下命题.

命题 3.9 若 σ 是 H 到 H' 的同构映射, 则 $\sigma(H_{(i)}) = H'_{(i)}, \forall i \geq -1$.

由命题 3.9 可得以下定理.

定理 3.10 H 的自然滤过是不变的.

定理 3.11 $H(m,n,\underline{t}) \cong H(m',n',\underline{t}')$ 当且仅当 m=m', n=n', 并且

$$\{\{t_1,t_{1'}\},\cdots,\{t_r,t_{r'}\}\}=\{\{t'_1,t'_{1'}\},\cdots,\{t'_r,t'_{r'}\}\}.$$

证明 充分性是显然的. 下面证明必要性. 仍设 $H = H(m,n,\underline{t})$, $H' = H(m',n',\underline{t'})$. 完全仿照引理 2.11, 2.13 与定理 2.14 的证明可知, 存在 H 到 H' 的同构映射 ψ , 使得 $\psi(H_i) = H'_i$, $\forall i \geq -1$. 于是 $\psi(H_{-1} \cap H_{\overline{0}}) = H'_{-1} \cap H'_{\overline{0}}$. 考察维数可知, m = m'. 由 $\psi(H_{-1} \cap H_{\overline{1}}) = H'_{-1} \cap H'_{\overline{1}}$ 可知, n = n'. 相仿于定理 2.14 的证明, 进而可得 $H(m,\underline{t}) \cong H(m,\underline{t'})$. 由李代数的结果知 (见文献 [16]),

$$\{\{t_1,t_{1'}\},\cdots,\{t_r,t_{r'}\}\}=\{\{t'_1,t'_{1'}\},\cdots,\{t'_r,t'_{r'}\}\}.$$

定理得证. 🗆

§4 K 的不可缩滤过

下面讨论李超代数 $K(m, n, \underline{t})$ 的滤过不变性, 其中 m = 2r+1 是奇数. 简记 $K(m, n, \underline{t})$ 为 K. 由第二章 §5 节知 $K = \bigoplus_{i=-2}^{\lambda} K_i$ 是 Z- 阶化李超代数, 其中

$$\mathbf{K}_{i} = \operatorname{span}_{\mathbf{F}} \{ x^{(\alpha)} x^{u} \mid i = \|\alpha\| + |u| - 2 \}.$$

令 $K_{(j)} = \bigoplus_{i \geq j} K_i$,则 $\{K_{(j)} \mid j \geq -2\}$ 是 K 的一个下降的滤过,并且 $K_{(\lambda+1)} = 0$. 这里,当 $n-m-3 \not\equiv 0 \pmod p$ 时, $\lambda = \|\pi\| + n - 2$;当 $n-m-3 \equiv 0 \pmod p$ 时, $\lambda = \|\pi\| + n - 3$. 沿用特征零域上无限维 K 型李代数的名称,我们称 K 的此滤过为不可缩滤过(noncontractable filtration).

引理 4.1 设 $f \in hg(K)$, $f \neq 0$. 若 $f \notin span_{\mathbb{F}}\{x^{(\pi)}x^{E}\}$, 则 K 中有基元素 y_1 与 y_2 , $zd(y_i) \geq 0$, i = 1, 2, 使得 $[f, y_1]$, $[f, y_2]$ 线性无关.

证明 1) 设 $D_t(f) = 0$, $\forall t \in Y_1$. 则 f 的每一项均为 $k_{\alpha}x^{(\alpha)}$ 的形式, 其中 $k_{\alpha} \in \mathbb{F}$. 于是 f 仅有以下两种情形.

(i) $zd(f) = ||\pi|| - 2$. 则 $f = ax^{(\pi)}$, 其中 $0 \neq a \in \mathbb{F}$. 不妨设 $f = x^{(\pi)}$. 我们有

$$z_1 := [f, x_1 x_{m+1}] = -x^{(\pi - \epsilon_1)} x_{m+1} \neq 0,$$

 $z_2 := [f, x_1 x_{m+1}] = x^{(\pi - \epsilon_1)} x_{m+1} \neq 0.$

显然 Z1, Z2 线性无关.

(ii) $zd(f) < ||\pi|| - 2$. 可设 $f = \sum_{\alpha \in \Delta} k_{\alpha} x^{(\alpha)}$, 其中 $\Delta \subseteq A(m,\underline{t})$, $k_{\alpha} \in \mathbb{F}$, 并且 $k_{\alpha} \neq 0$, $\forall \alpha \in \Delta$. 取 $i, j \in Y_1$, 并且 $i \neq j$. 设 $\lambda_{\alpha} = 2 - \sum_{i=1}^{m-1} \alpha_i$, 则有

$$egin{aligned} z_1 &:= [f,x_m] = \sum_{lpha \in \Delta} k_lpha (\lambda_lpha - 2lpha_m) x^{(lpha)}, \ z_2 &:= [f,x_m x_i] = \sum_{lpha \in \Delta} k_lpha (\lambda_lpha - lpha_m) x^{(lpha)} x_i, \end{aligned}$$

$$z_3 := [f, x_m x_i x_j] = \sum_{\alpha \in \Delta} k_{\alpha} \lambda_{\alpha} x^{(\alpha)} x_i x_j.$$

若存在 $\alpha \in \Delta$, 使得 $\alpha_m \neq 0$ (mod p), 则 $\lambda_\alpha - 2\alpha_m$, $\lambda_\alpha - \alpha_m$ 与 λ_α 中至少有两个整数不是 p 的倍数. 因此 z_1 , z_2 与 z_3 中至少有两个是非零的. 显然, z_1 , z_2 与 z_3 中非零元是线性无关的.

假设对任意 $\alpha \in \Delta$, 均有 $\alpha \equiv 0 \pmod p$. 若存在 $\alpha \in \Delta$, 使得 $\lambda_{\alpha} \not\equiv 0 \pmod p$, 显然此时 z_1, z_2 与 z_3 均不为零. 于是他们中任意两个都是线性无关的. 若对任意 $\alpha \in \Delta$, 均有 $\lambda_{\alpha} \equiv 0 \pmod p$, 任取 $\alpha \in \Delta$, 则存在 $i \in \{1, \dots, m-1\}$, 使得 $\alpha_i \not= 0$. 取 $j \in Y_1$, 则有

$$[f,x_mx_{i'}]=k_\alpha\sigma(i)x^{(\alpha-\epsilon_i)}x_m+\cdots\neq 0,$$

$$[f, x_{i'}x_j] = k_{\alpha}\sigma(i)x^{(\alpha-\epsilon_i)}x_j + \cdots \neq 0.$$

考察 Z- 次数知, $[f,x_mx_{i'}]$ 与 $[f,x_{i'}x_j]$ 是线性无关的.

- 2) 存在 $t \in Y_1$, 使得 $D_t(f) \neq 0$. 则 f 只有以下两种情形.
- (a) $D_i^{\pi_i}(f) \neq 0$, $\forall i \in Y_0$. 因为 f 是 \mathbb{Z} 齐次元素, 且 $f \notin \text{span}_{\mathbb{F}}\{x^{(\pi)}x^E\}$, 所以存在 $j \in Y_1$, 使得 $D_j(f) = 0$. 故可设 $f = x^{(\pi)}x^u + \cdots$, 其中 $u \neq \emptyset$, $u \neq E$, 并且 $j \notin \{u\}$. 则有

$$z_1 := [f, x_1 x_j] = -x^{(\pi - \epsilon_1)} x^u x_j + \cdots \neq 0,$$

 $z_2 := [f, x_1 x_j] = x^{(\pi - \epsilon_1)} x^u x_j + \cdots \neq 0.$

易见, z_1 中不含项 $ax^{(\pi-e_1)}x^ux_j$, 其中 $0 \neq a \in \mathbb{F}$, 所以 z_1, z_2 线性无关.

(b) 存在 $i \in Y_0$, 使得 $D_i^{\pi_i}(f) = 0$. 若 $D_j(f) \neq 0$, $\forall j \in Y_1$, 则可设 $f = x^{(\alpha)}x^E + \cdots$, 其中 $\alpha_i < \pi_i$. 于是存在 $k(0 \le k \le t_i)$, 使得 $x^{(\alpha)}x^{(p^k \epsilon_i)} \neq 0$. 则

$$z_1 := [f, x^{(p^k \epsilon_i)} x_{m+1}] = (-1)^n x^{(\alpha)} x^{(p^k \epsilon_i)} x^{E - (m+1)} + \dots \neq 0,$$

$$z_2 := [f, x^{(p^k \epsilon_i)} x_{m+2}] = (-1)^{n+1} x^{(\alpha)} x^{(p^k \epsilon_i)} x^{E - (m+2)} + \dots \neq 0.$$

易见, z1, z2 线性无关.

若存在 $j \in Y_1$, 使得 $D_j(f) = 0$, 则可设

$$f = x^{(\alpha)}x^{u} + \sum_{\beta,v} a_{\beta v}x^{(\beta)}x^{v},$$

其中 $a_{\beta v} \in \mathbb{F}$, $u \neq \emptyset$. 由 $D_j(f) = 0$ 知, $j \notin \{u\}$, $j \notin \{v\}$. 由 $D_i^{\pi_i}(f) = 0$ 知, α_i , $\beta_i < \pi_i$. 设 $l \in \{u\}$, 由定义 1.5 知,

$$\mathrm{D}_l(x^u) = \mathrm{sgn}(\langle l \rangle, \ u - \langle l \rangle) x^{u - \langle l \rangle}.$$

所以

$$z_1:=[f,x_lx_j]=(-1)^{|u|}\operatorname{sgn}(\langle l\rangle,\ u-\langle l\rangle)x^{(\alpha)}x^{u-\langle l\rangle}x_j+\cdots\neq 0.$$

由 $\alpha_i < \pi_i$ 知, 存在 $k \in \{0, 1, \dots, t_i - 1\}$, 使得 $x^{(\alpha)}x^{(p^k \epsilon_i)} \neq 0$. 则有

$$z_2:=[f,x^{(p^k\varepsilon_l)}x_l]=(-1)^{|u|}\mathrm{sgn}(\langle l\rangle,\,u-\langle l\rangle)x^{(\alpha)}x^{(p^k\varepsilon_l)}x^{u-\langle l\rangle}+\cdots\neq 0.$$

易见, z1, z2 线性无关. 引理得证. □

我们仍设 $J = Y \setminus \{m\}, J_0 = Y_0 \setminus \{m\}.$

引理 4.2 设 $n-m-3 \not\equiv 0 \pmod p$, $0 \not\equiv f \in \operatorname{span}_{\mathbb{F}}\{x^{(\pi)}x^E\}$. 则 $I(\operatorname{ad} f) = s+1$. 证明 设 $x^{(\alpha)}x^u \in K_0$, 并且 $x^{(\alpha)}x^u \not\equiv x_m$. 直接计算知 $[x^{(\pi)}x^E, x^{(\alpha)}x^u] = 0$. 因为

$$[x^{(\pi)}x^{E}, x_{m}] = -(n - m - 3)x^{(\pi)}x^{E} \neq 0,$$
 $[x^{(\pi)}x^{E}, x_{i}] = \sigma(i')x^{(\pi - \varepsilon_{i'})}x^{E} \neq 0, \ \forall i \in J_{0},$

$$egin{aligned} &[x^{(\pi)}x^E,1]=-2x^{(\pi-\epsilon_m)}x^E
eq 0, \ &[x^{(\pi)}x^E,x_i]=(-1)^n\mathrm{sgn}(\langle i
angle,\ E-\langle i
angle)x^{(\pi)}x^{E-\langle i
angle}
eq 0,\ orall i\in Y_1, \end{aligned}$$

所以 $I(\operatorname{ad}(x^{(\pi)}x^E)) = s+1$. 于是引理结论成立.

定理 4.3 设 $n-m-3 \not\equiv 0 \pmod{p}$, $f \in \text{hg}(K)$ 且 $f \notin \text{span}_{\mathbb{F}}\{x^{(n)}x^E\}$. 則 I(ad f) > s+1.

证明 由引理 3.1, 我们可用 $\lambda(f)$ 代替 f. 因此可设 f 是 Z- 齐次元素.

(i) 先证明 [f,1] = 0 的情形. 由 [f,1] = 0 知 $D_m(f) = 0$. 令

$$R = \{i \mid i \in J_0, [f, x_i] = 0\},$$
 $R_1 = \{i \mid i \in Y_1, [f, x_i] = 0\}.$

(a) 若 $R \cup R_1 = J$, 则 $D_i(f) = 0$, $\forall i \in J$. 又因为 $D_m(f) = 0$, 故可设 f = 1. 则有

$$[f, x^{(\alpha)}x^{u}] = [1, x^{(\alpha)}x^{u}] = 2x^{(\alpha-\epsilon_{m})}x^{u},$$

所以 $I(\operatorname{ad} f) \ge (p-1)p^{m-1}2^n > m+n+1=s+1.$

(b) 设 $R_1 = \emptyset$, $|R| \le 1$. 若 |R| = 0, 即 $R = \emptyset$, 则 $\{[f,x_i] \mid i \in J\}$ 是线性无关的. 若 |R| = 1, 可设 $R = \{l\}$, 则 $\{[f,x_i] \mid i \in J \setminus \{l\}\}$ 是线性无关的.

如果 $2f - \sum_{i \in J} x_i D_i(f) \neq 0$, 因为 $D_m(f) = 0$, 故

$$D_m\Big(f-\sum_{i\in I}x_iD_i(f)\Big)=0.$$

由引理 3.2 知

$$[f,x^{(k\varepsilon_m)}] = \Big(2f - \sum_{j\in J} x_i \mathrm{D}_i(f)\Big) x^{((k-1)\varepsilon_m)} \neq 0,$$

其中 $k=1,2,\cdots,p-1$. 若 $2f-\sum_{i\in J}x_i\mathrm{D}_i(f)=0$, 则对任意 $j\in Y_1$, 由 $R_1=\emptyset$ 知 $\mathrm{D}_i(f)\neq 0$. 由引理 3.2 知

$$[f,x^{(k\varepsilon_m)}x_j]=(-1)^{\operatorname{d}(f)}\operatorname{D}_j(f)x^{(k\varepsilon_m)}\neq 0,$$

其中 $k = 1, 2, \dots, p-1$. 于是

$$I(\text{ ad } f) \ge (s-2) + (p-1) \ge s-2+4 > s+1.$$

(c) 设 Ø \neq R \cup R₁ \neq J, 置 J' = { $i \in R \mid i' \in R$ }. 则可设 J' = { $i_1, i'_1, \dots, i_u, i'_u$ }. 令 $J_1 = R \setminus J' = \{i_{u+1}, \dots, i_{u+t}\}, R_1 = \{j_1, \dots, j_h\}.$ 设 $J_2 = \{i'_{u+1}, \dots, i'_{u+k}\}, \overline{J} = J \setminus (R \cup R_1 \cup J_2).$ 令

$$x^{(\gamma)} = \prod_{k \in J'} x^{(\gamma_k \varepsilon_k)}$$
 , $\gamma_k = 0, 1, \cdots, p-1,$ $x^q = \prod_{j \in R_1} x_j^{q_j}$, $q_j = 0, 1.$

对任意 $l \in J_2$, 任意 $\beta_l \in \{1, 2, \dots, p-1\}$, 有

$$[f, x^{(\gamma)} x^q x^{(\beta_l \epsilon_l)}] = \sigma(l') D_l(f) x^{(\gamma)} x^q x^{(\beta_l \epsilon_l - \epsilon_l)}; \tag{4.1}$$

对任意υ∈J、则有

$$[f, x^{(\gamma)} x^q x_v] = \sigma(v') (-1)^{\tau(v') d(f)} x^{(\gamma)} x^q$$
(4.2)

由引理 3.2, 相仿于定理 3.5 中相应的讨论知, (4.1) 与 (4.2) 式右边的元素不为零, 并且所有这些不为零的元素是线性无关的. 从而可得

$$I(\text{ ad } f) \geq p^{2u}2^h(p-1)t + p^{2u}2^h(s-1-2u-2t-h)$$

 $\geq p^{2u}2^h(s-1-2u-h+(p-3)t).$

设 2u+h>0. 若 t>0, 则由 $s\geq 4$ 可知

$$I(\operatorname{ad} f) \geq 2^{2u+h} (s-1-(2u+h)+(p-3)t)$$

$$= 2^{2u+h} (s-(2u+h)) + 2^{2u+h} ((p-3)t-1)$$

$$\geq 2(s-1) + 2 = 2s > s+1.$$

者 t=0, 由于 $s\geq 4$, 则有

$$I(\operatorname{ad} f) \geq p^{2u} 2^{h} (s - 1 - (2u + h))$$

$$= ((p - 2) + 2)^{2u} 2^{h} (s - 1 - (2u + h))$$

$$\geq (p - 2)^{2u} 2^{h} (s - 1 - (2u + h)) + 2^{2u + h} (s - 1 - (2u + h))$$

$$\geq 2 (2^{2u + h} (s - 1 - (2u + h)))$$

$$\geq 2 (2(s - 2)) = 4(s - 2) = s + (3s - 8) > s + 1.$$

设 2u+h=0, 则 u=h=0. 因为 $R \cup R_1 \neq \emptyset$, 所以 t>0. 若 t>1, 则 $I(\text{ad }f) \geq (s-1)+(p-3)t \geq s-1+4>s+1$. 若 t=1, 则 $R_1=\emptyset$, |R|=1. 由 (b) 知 I(ad f)>s+1.

(ii) $[f, 1] \neq 0$ 的情形. 设 $i \in Y_1$. 若 $[f, x_i] = 0$, 则

$$0 \neq [f, 1] = -[f, [x_i, x_i]]$$

= $-[f, x_i], x_i] - (-1)^{d(f)}[x_i, [f, x_i]] = 0.$

此为矛盾, 故 $[f,x_i] \neq 0$. 令 $R = \{i \in J_0 \mid [f,x_i] = 0\}$.

(a) $R \neq \emptyset$ 的情形. 设 $i \in R$. 若 $i' \in R$, 则有

$$\sigma(i)[f,1] = [f,[x_i,x_{i'}]]$$

= $[[f,x_i],x_{i'}] + [x_i,[f,x_{i'}]] = 0.$

此与 $[f,1] \neq 0$ 矛盾, 于是 $i' \notin R$. 不妨设 $R = \{1,2,\cdots,t\}$. 令 $J = \{i,i' \mid i = 1,\cdots,t\}$, $J_1 = Y \setminus J$. 令

$$G = \{k_1 \varepsilon_{1'} + \cdots + k_t \varepsilon_{t'} \mid 0 \leq k_i \leq p-1, \ i=1,\cdots,t\}.$$

任取 $g \in \operatorname{span}_{\mathbb{F}}\{x^{(\alpha)} \mid \alpha \in G\}$, 我们断言: 若 [f,g] = 0, 则 g = 0. 否则, 若 $g \neq 0$, 取 $g \in \operatorname{span}_{\mathbb{F}}\{x^{(\alpha)} \mid \alpha \in G\}$, 使得 [f,g] = 0, 并且 $\operatorname{zd}(g)$ 最小. 若 $\operatorname{zd}(g) = -2$, 可设 g = 1, 则 [f,1] = 0, 矛盾. 若 $\operatorname{zd}(g) > -2$, 则存在 $i \in \{1, \dots, t\}$, 使得 $\operatorname{D}_{i'}(g) \neq 0$. 于是

$$0 = [x_i, [f, g]] = [[x_i, f], g] + (-1)^{d(x_i)d(f)} [f, [x_i, g]]$$
$$= [f, [x_i, g]] = [f, \sigma(i)D_{i'}(g)].$$

所以 $[f, D_{i'}(g)] = 0$, 此与 zd(g) 的最小性矛盾, 因此断言成立. 易见 $[f, x_j] \neq 0$, $\forall j \in J_1$. 因为 $|G| = p^t$, $|J_1| = m + n - 1 - 2t$, 所以

$$I(ad f) \ge p^t + (m+n-1-2t)$$

 $\ge 1 + t(p-1) + (m+n-1-2t)$
 $= m+n+(p-3)t$
 $\ge m+n+2t > s+1.$

(b) 设 $R = \emptyset$, 则 $[f, x_i] \neq 0$, $\forall i \in J_0$. 由引理 4.1 知, 存在基元素 b_1 与 b_2 , $zd(b_j) \geq 0$, j = 1, 2, 使得 $[f, b_1]$ 与 $[f, b_2]$ 线性无关. 于是

$$\{[f,1],[f,x_i],[f,b_j] \mid i \in J, j=1,2\}$$

是线性无关的, 所以 I(adf) > s+1.

引理 4.4 设 $n-m-3 \not\equiv 0 \pmod p$, 并令 $T=\operatorname{span}_{\mathbb{F}}\{x^{(\pi)}x^E\}$. 则 $\operatorname{Nor}_{\mathbb{K}}(T)=\operatorname{K}_{(0)}$. 证明 任取 $x^{(\alpha)}x^u \in \operatorname{K}_{(0)}$, 则 $\|\alpha\|+|u|\geq 2$. 若 $x^{(\alpha)}x^u \not\equiv x_m$, 易见 $[x^{(\alpha)}x^u,x^{(\pi)}x^E]=0$ $\in T$. 又因为 $[x_m,x^{(\pi)}x^E]=(n-m-3)x^{(\pi)}x^E\in T$, 所以 $\operatorname{K}_{(0)}\subseteq\operatorname{Nor}_{\mathbb{K}}(T)$. 反之,若 $y\in\operatorname{Nor}_{\mathbb{K}}(T)$, 则可设 $y=y_{-2}+y_{-1}+y_0$, 其中 $y_{-2}\in\operatorname{K}_{-2}=\operatorname{F1}$, $y_{-1}\in\operatorname{K}_{-1}$, $y_0\in\operatorname{K}_{(0)}$. 由 $[y_{-2}+y_{-1}+y_0,x^{(\pi)}x^E]\in T$ 可推得 $y_{-2}=0$, $y_{-1}=0$, 所以 $y\in\operatorname{K}_{(0)}$, 于是 $\operatorname{Nor}_{\mathbb{K}}(T)\subseteq\operatorname{K}_{(0)}$. 因此 $\operatorname{Nor}_{\mathbb{K}}(T)=\operatorname{K}_{(0)}$.

设 $K' = K(m', n', \underline{t'})$. 令 $\pi' = (\pi'_1, \dots, \pi'_m)$, $E' = (m' + 1, \dots, m' + n')$, 并设 $T' = \operatorname{span}_{\mathbf{F}}\{x^{(\pi')}x^{E'}\}$. 由引理 4.4 知, $\operatorname{Nor}_{K'}(T') = K'_{(0)}$.

引理 4.5 设 $n-m-3 \neq 0 \pmod p$. 若 $\sigma \in K$ 到 K' 的 同 构映 射,则 $\sigma(K_{(0)}) = K'_{(0)}$. 证明 由 引理 4.2 与定理 4.3 知, $\sigma(T) = T'$. 因为

$$[x,T]\subseteq T\iff [\sigma(x),\sigma(T)]\subseteq \sigma(T),\ \forall x\in K,$$

所以,由引理 4.4 知

$$\sigma(\mathbf{K}_{(0)}) = \sigma(\mathbf{Nor}_{\mathbf{K}}(T)) = \sigma\{x \in \mathbf{K} \mid [x, T] \subseteq T\}$$

$$= \left\{ \sigma(x) \in \mathcal{K}' \mid [x, T] \subseteq T \right\} = \left\{ \sigma(x) \in \mathcal{K}' \mid [\sigma(x), T'] \subseteq T' \right\}$$
$$= \left\{ x \in \mathcal{K}' \mid [x, T'] \subseteq T' \right\} = \operatorname{Nor}_{\mathcal{K}'}(T') = \mathcal{K}'_{(0)}. \quad \Box$$

令 ρ : K₍₀₎ → pl(K/K₍₀₎) 是映射, 使得

$$\rho(x)(y + K_{(0)}) := [x, y] + K_{(0)}, \ \forall x \in K_{(0)}, \ \forall y \in K.$$

直接验证可知, p 是 K(0) 在空间 K/K(0) 上的一个表示.

引理 4.6 $K_{(-1)}/K_{(0)}$ 是 $\rho(K_{(0)})$ 的惟一的极小不变子空间 (这里的不变子空间为非常的不变子空间).

证明 显然 $K_{(-1)}/K_{(0)}$ 是 $\rho(K_{(0)})$ 的不变子空间. 设 M 是 $\rho(K_{(0)})$ 的一个不变子空间. 任取 $y + K_{(0)} \in M$, 可设 y = 1 + y', 其中 $y' \in K_{-1}$. 则

$$[x_ix_m, 1+y'] + \mathbf{K}_{(0)} \in M, \ \forall i \in J_0,$$

所以 $[x_ix_m, 1] + K_{(0)} \in M$. 于是 $x_i + K_{(0)} \in M$, $\forall i \in J_0$. 故 $K_{(-1)}/K_{(0)} \subseteq M$, 从 而 $K_{(-1)}/K_{(0)}$ 是 $\rho(K_{(0)})$ 的惟一的极小不变子空间. \square

引理 4.7 设 σ 是 K 到 K' 的同构映射. 若 $\sigma(K_{(0)}) = K'_{(0)}$, 则 $\sigma(K_{(-1)}) = K'_{(-1)}$.

证明 与 ρ 的定义相同,我们可定义 $K'_{(0)}$ 在空间 $K'/K'_{(0)}$ 上的表示 ρ' . 由引理 4.6 可知, $K'_{(-1)}/K'_{(0)}$ 是 $\rho'(K'_{(0)})$ 的惟一的极小不变子空间. 因为 $K_{(-1)}/K_{(0)}$ 是 $\rho(K_{(0)})$ 的极小不变子空间,所以 $\sigma(K_{(-1)})/\sigma(K_{(0)})$ 是 $\rho'(\sigma(K_{(0)}))$ 的极小不变子空间. 由已知, $\sigma(K_{(0)}) = K'_{(0)}$,故 $\sigma(K_{(-1)})/K'_{(0)}$ 是 $\rho'(K'_{(0)})$ 的极小不变子空间. 由惟一性知,

$$\sigma(K_{(-1)})/K'_{(0)} = K'_{(-1)}/K'_{(0)}$$
.

因为 $\sigma(K_{(-1)})\supseteq \sigma(K_{(0)})=K'_{(0)},$ 所以 $\sigma(K_{(-1)})=K'_{(-1)}.$

相仿于引理 2.9 的 2) 可证得以下等式:

$$K_{(i)} = \{x \in K_{(i-1)} \mid [x, K_{(-1)}] \subseteq K_{(i-1)}\}, \forall i \ge 1, \tag{4.3}$$

$$\mathbf{K}'_{(i)} = \left\{ x \in \mathbf{K}'_{(i-1)} \mid [x, \mathbf{K}'_{(-1)}] \subseteq \mathbf{K}'_{(i-1)} \right\}, \ \forall i \ge 1.$$
 (4.4)

由引理 4.5, 4.7 与等式 (4.3), (4.4) 可得以下命题.

命題 4.8 设 $n-m-3\not\equiv 0 \pmod p$. 若 σ 是 K 到 K' 的同构映射,则 $\sigma(K_{(i)})=K'_{(i)}, \forall i\geq -2$.

以下定理是命题 4.8 的直接结果.

定理 4.9 设 $n-m-3 \neq 0 \pmod{p}$, 则 K 的不可缩滤过是不变的.

设 $n-m-3\equiv 0\pmod p$. 令 $\overline{K}=K\oplus\operatorname{span}_p\{x^{(\pi)}x^E\}$. 由第一章引理 2.17 知, $K=[\overline{K},\overline{K}]$. 从而 K 是李超代数 \overline{K} 的理想. 特别地, $\operatorname{ad}(x^{(\pi)}x^E)(K)\subseteq K$.

命题 4.10 设 $n-m-3\equiv 0\pmod p$, 则 $I\Big(\log\big(\operatorname{Der}(K)\big)\Big)=s$. 设 $D\in \log\big(\operatorname{Der}(K)\big)$, 则 I(D)=s 当且仅当

$$0 \neq \mathbf{D} \in \operatorname{span}_{\mathbf{F}} \Big\{ \left. \operatorname{ad} \, (x^{(\pi)} x^E) \right|_{\mathbf{K}} \Big\}.$$

证明 利用 $\{x^{(\pi)}x^E, x_m\} = -(n-m-3)x^{(\pi)}x^E = 0$, 由引理 3.3 的证明可知: 若 $0 \neq D \in \operatorname{span}_{\mathbb{F}} \left\{ \operatorname{ad}(x^{(\pi)}x^E) \big|_{K} \right\}$, 则 I(D) = m+n=s. 于是 $I\left(\operatorname{hg}(\operatorname{Der}(K))\right) \leq s$. 令 $D \in \operatorname{hg}(\operatorname{Der}(K))$, 并且 $I(D) \leq s$. 由第二章定理 5.17, 可设

$$D = ad f + \sum_{i=1}^{m} \sum_{j=1}^{t_i-1} c_{ij} (ad D_i)^{p^j},$$

其中 $f \in \mathbb{R}$, $c_{ij} \in \mathbb{F}$. 下面用定理 3.7 的方法证明 $c_{ij} = 0$. 假设 $c_{ij} \neq 0$, 令 $r = \max\{j \mid c_{ij} \neq 0\}$. 设

$$G = \left\{ \alpha \in A(m,\underline{t}) \mid \alpha_l = p^r, \ p^{t_i-1} \leq \alpha_i \leq \pi_i, \ \forall i \in Y_0 \setminus \{l\} \right\}.$$

任取 $\alpha \in G$, 则

$$D(x^{(\alpha)}x^u) = c_{lr}x^{(\alpha-p^re_l)}x^u + y,$$

其中 y 是 $\{x^{(\beta)}x^{\nu} \mid \beta_i \neq 0\}$ 中某些元素的 F- 线性组合. 由引理 3.6 知

$$\left\{c_{lr}x^{(\alpha-p^r\varepsilon_l)}x^u+y\;\big|\;\alpha\in G,\;u\in B(n)\right\}$$

是线性无关的. 于是 $I(D) \ge (p-1)^{m-1}2^n > s$. 此与 $I(D) \le s$ 矛盾, 故 $c_{ij} = 0$. 因此 D = ad f, 其中 $f \in K$. 于是仿照定理 4.3 的证明知: 若 $f \notin \text{span}_{\mathbb{F}}\{x^{(\pi)}x^E\}$, 则 I(ad f) > s. 从而,I(D) = s 当且仅当 $0 \ne D \in \text{span}_{\mathbb{F}}\{\text{ad}(x^{(\pi)}x^E)|_{K}\}$.

引理 4.11 设 $n-m-3\equiv 0\pmod p$. 若 σ 是 K 到 K' 的同构映射, 则 $\sigma(K_{(0)})=K'_{(0)}.$

证明 设 $R = K_{(0)}$, $R' = K'_{(0)}$. 由 $n - m - 3 \equiv 0 \pmod{p}$ 可知, $[x^{(\pi)}x^E, x_m] = 0$. 于是可得以下等式

$$R = \Big\{ y \in \mathbf{K} \; ig| \; ig(\mathrm{span}_{\mathbf{F}} \{ x^{(\pi)} x^E \} ig) (y) = 0 \Big\},$$
 $R' = \Big\{ y \in \mathbf{K}' \; ig| \; ig(\mathrm{span}_{\mathbf{F}} \{ x^{(\pi')} x^{E'} \} ig) (y) = 0 \Big\}.$

利用命题 4.10, 相仿于命题 3.8 的证明, 可证得 $\sigma(R) = R'$, 即 $\sigma(K_{(0)}) = K'_{(0)}$. \square

命题 4.12 设 $n-m-3\equiv 0\pmod p$, σ 是 K 到 K' 的同构映射. 则 $\sigma(K_{(i)})=K'_{(i)},\ \forall i\geq -2.$

证明 由命题 4.11 知 $\sigma(K_{(0)}) = K'_{(0)}$. 于是由引理 4.7 知, $\sigma(K_{(-1)}) = K'_{(-1)}$. 因为 等式 (4.3) 与 (4.4) 在 $n-m-3\equiv 0 \pmod p$ 时也成立, 所以可得 $\sigma(K_{(i)}) = K'_{(i)}$, $\forall i \geq 1$.

以下定理是命题 4.12 的直接结果.

定理 4.13 设 $n-m-3\equiv 0 \pmod{p}$, 则 K 的不可缩滤过是不变的.

定理 4.14 $K(m,n,\underline{t}) \cong K(m',n',\underline{t}')$ 当且仅当 $m=m', n=n', t_m=t'_m$ 与

$$\{\{t_1,t_{1'}\},\cdots,\{t_r,t_{r'}\}\}=\{\{t'_1,t'_{1'}\},\cdots,\{t'_r,t'_{r'}\}\}. \tag{4.5}$$

证明 充分性是显然的. 利用命题 4.8 与 4.12, 相仿于定理 2.14 与定理 3.11 的证明, 可证得 m=m', n=n', 并且李代数 $K(m,\underline{t})$ 与 $K(m,\underline{t}')$ 同构. 由李代数的结果知 (见文献 [51]), 有 $t_m=t'_m$, 并且 (4.5) 式成立. \square

第四章 李超代数的结合型

我们知道, 特征零的有限维单李代数均具有非退化的结合型. 但对有限维单的模字代数和特征零的有限维单李超代数来说, 情况并非如此. 本章的目的是确定具有非退化结合型的单的有限维 Cartan 型模李超代数. 特别地, 我们将证明四类 Cartan 型模李代数均无非退化的迹型.

§1 单李超代数的结合型

在这一节里, 我们将讨论单李超代数的性质, 特别是与结合型有关的性质. 应说明的是, 我们只是选择了一些必要结论, 目的是在本章最后一节决定有限维 Cartan 型李超代数的结合型.

约定基域 ℙ的特征不等于 2, 所有的李超代数均是有限维的.

回忆单李超代数的定义: 一个李超代数 L 叫做单的, 如果 L 没有非平凡的 \mathbb{Z}_2 -阶化理想, 并且 $[L,L] \neq 0$.

根据定义, 单李超代数可能含有非平凡的非 Z₂- 阶化理想. 然而, 事实并非如此! 也就是说, 单李超代数不含任何非平凡的非 Z₂- 阶化的左、右理想 (不管是否为 Z₂- 阶化的). 为证明这一结论, 我们给出下面的引理.

引理 1.1 设 L 是 \mathbb{F} 上单李超代数, τ 是 L 的奇线性变换, 即 $\tau(L_{\theta}) \subset L_{\theta+\overline{1}}, \forall \theta \in \mathbb{Z}_2$. 如果

$$\tau([x,y]) = [x,\tau(y)], \ \forall x,y \in L, \tag{1.1}$$

則 $\tau = 0$.

证明 由于 τ 是齐次的, 所以 ker τ 是 L 的 \mathbb{Z}_2 - 阶化子空间. 由 (1.1) 式知, ker τ 是 L 的 \mathbb{Z}_2 - 阶化左理想, 从而是 \mathbb{Z}_2 - 阶化理想. 由 L 的单性, 知 $\tau=0$ 或 τ 是单射.

假定 τ 是单射,我们欲推出矛盾. 设 $x,y \in hg(L)$,且 d(x) = d(y). 由 (1.1) 式,容易得到

$$[\tau(x), \tau(y)] = -\tau^{2}([y, x]).$$
 (1.2)

注意 τ 是奇的, 并且 d(x) = d(y), 容易看出等式 (1.2) 总是一边关于 x, y 是对称的, 另一边是反对称的. 随之, $2\tau^2([y,x]) = 0$. 因为 $char \mathbb{F} \neq 2$, τ 是单的, 所以 [y,x] = 0. 这便证明了

$$[L_{\theta}, L_{\theta}] = 0, \ \forall \theta \in \mathbb{Z}_2. \tag{1.3}$$

由 (1.1) 式及 (1.3) 式, 并注意到 7 是奇的, 我们有

$$\tau\big([L_{\theta},L_{\theta+\overline{1}}]\big)\subset [L_{\theta},\tau(L_{\theta+\overline{1}})]\subset [L_{\theta},L_{\theta}]=0.$$

再次利用 τ 的单性, 得 $[L_{\theta}, L_{\theta+\overline{1}}] = 0$.

综上, 我们得到 [L,L]=0, 矛盾于 L 的单性.

注 从上面的证明可以看出,引理 1.1 对无限维单李超代数仍成立.

现在我们来证明前面提出的有趣结论,即

命题 1.2 单李超代数不含任何非平凡的左、右理想(无论是否为 ≥2- 阶化的).

证明 设 $L = L_0 \oplus L_1$ 是单李超代数, 定义线性变换

$$r:L \to L$$

使得

$$r(x) = (-1)^{d(x)}x, \ \forall x \in hg(L).$$

容易验证 r 是李超代数 L 的自同构. 利用 r 可以表示 L 的任意元素 g 的 β 齐次分量 $g_{\beta} = \frac{1}{2}(g + (-1)^{\beta}r(g))$. 由此可知下面的事实成立:

$$L$$
的子空间 V 是 \mathbb{Z}_{2} - 阶化的 $\iff r(V) \subset V$. (1.4)

假定 $I \neq L$ 的一个非平凡的左理想 (不要求是 \mathbb{Z}_2 - 阶化的, 下文同), 我们欲导出矛盾. 因为 $r \neq L$ 的自同构, 所以有

$$[L, r(I)] = [r(L), r(I)] = r([L, I]) = r(I).$$

这说明 r(I) 亦是 L 的左理想. 由此立知 $I + r(I), I \cap r(I)$ 亦是 L 的左理想. 进而, 利用事实 (1.4) 并注意到 $r^2 = 1$, 可知 $I + r(I), I \cap r(I)$ 是 \mathbb{Z}_2 - 阶化左理想, 从而是 \mathbb{Z}_2 - 阶化理想. 由 L 的单性, 有

$$I + r(I) = L, \quad I \cap r(I) = 0.$$
 (1.5)

断言

$$L_{\theta} = \{ y + (-1)^{\theta} r(y) \mid y \in I \}, \ \forall \theta \in \mathbb{Z}_{2}.$$
 (1.6)

这只需证明包含关系 " \subset ". 任取 $x \in L_{\theta}$. 依 (1.5) 式, 存在 $y \in I$, $z \in r(I)$, 使得 x = y + z. 注意 $x \in L_{\theta}$, 有

$$x = \frac{1}{2} (y + (-1)^{\theta} r(y)) + \frac{1}{2} (z + (-1)^{\theta} r(z)). \tag{1.7}$$

利用 $r^2 = 1$, 可知上式右边的 $\frac{1}{2}(z + (-1)^{\theta}r(z))$ 含于 (1.6) 式的右边. 故由 (1.7) 式立知 (1.6) 式成立.

利用 (1.5) 式, 有子空间直和 $L = I \oplus r(I)$. 因而可以定义线性变换

使得

$$\tau(y) = y, \ \tau(r(y)) = -r(y), \ \forall y \in I. \tag{1.8}$$

下面我们验证 ~ 满足引理 1.1 的条件. 由 (1.6) 式易见

$$\tau(L_{\overline{0}})=L_{\overline{1}},\ \tau(L_{\overline{1}})=L_{\overline{0}},$$

即 τ 是奇的. 另方面, 为验证 (1.1) 式, 任取 $x,y \in L$. 根据 (1.5) 式, 可设 $y = y_1 + y_2$, 其中 $y_1 \in I$, $y_2 \in r(I)$. 注意到 I 和 r(I) 是左理想, 由 τ 的定义有

$$egin{array}{lll} au \left([x,y]
ight) &= au \left([x,y_1] + [x,y_2]
ight) \ &= [x,y_1] - [x,y_2] \ &= [x,y_1-y_2] \ &= [x, au (y)]. \end{array}$$

这就说明 τ 满足引理 1.1 的条件, 故有 $\tau = 0$. 这矛盾于 $\tau^2 = 1$.

对于右理想的情形,可作同样处理. □

现在我们讨论李超代数的结合型. 设 $L \neq \mathbb{F}$ 上李超代数, $\lambda: L \times L \to \mathbb{F}$ 是双线性的. 如果

(1) A 是超对称的,即

$$\lambda(x,y) = (-1)^{\operatorname{d}(x)\operatorname{d}(y)}\lambda(y,x), \ orall x,y \in \operatorname{hg}(L);$$

(2) A 是不变的, 即

$$\lambdaig([x,y],zig)=\lambdaig(x,[y,z]ig),\ \forall x,y\in L,$$

则称 λ 是 L 上的一个结合型.

在单李超代数的情形,我们将在下面命题中证明, 定义中(2) 蕴涵(1).

李超代数 L 上一个双线性型 λ 称为偶的, 如果 $\lambda(L_{\theta}, L_{\theta+\overline{1}}) = 0$, 对任意 $\theta \in \mathbb{Z}_2$; λ 称为奇的, 如果 $\lambda(L_{\theta}, L_{\theta}) = 0$, 对任意 $\theta \in \mathbb{Z}_2$.

命题 1.3 设 L 是单李超代数, 下面的结论成立.

- 1) L上的不变双线性型均是超对称的.
- 2) L 上的结合型或者是非退化的, 或者是 0.
- 3) L 上的结合型或者全是偶的, 或者全是奇的.
- 4) 若 F 是代数闭城, 则 L 上的所有结合型互成比例.

证明 1) 设 λ 是 L 上不变双线性型. 对任意 $x,y,z \in hg(L)$, 有

$$\lambda(x,[y,z]) = \lambda([x,y],z)$$

$$= -(-1)^{d(x)d(y)}\lambda([y,x],z)$$

$$= (-1)^{d(x)d(y)} \lambda(y, [x, z])$$

$$= (-1)^{d(x)d(y)} (-1)^{d(x)d(x)} \lambda(y, [z, x])$$

$$= (-1)^{d(x)(d(y)+d(z))} \lambda([y, z], x).$$

由 L 的单性, 有 [L,L]=L. 故上式说明 λ 是超对称的.

2) 设 A 是 L 上的一个结合型. 令

$$rad(L) = \{ y \in L \mid \lambda(x,y) = 0, \ \forall x \in L \}.$$

由 λ 的不变性, 易知 rad(L) 是 L 的左理想 (未必是 \mathbb{Z}_2 - 阶化的). 由命题 1.2, 知 rad(L) = 0 或 rad(L) = L; 即, 或者 λ 是非退化的, 或者 λ = 0.

3) 设 λ 是 L 上结合型, 则 $\lambda = \lambda_0 + \lambda_1$, 这里

$$\begin{split} \lambda_{\overline{0}}\big|_{L_{\theta}\times L_{\theta}} &= \lambda\big|_{L_{\theta}\times L_{\theta}}, \ \lambda_{\overline{0}}\big|_{L_{\theta}\times L_{\theta+\overline{1}}} = 0, \ \forall \theta \in \mathbb{Z}_{2}; \\ \lambda_{\overline{1}}\big|_{L_{\theta}\times L_{\theta}} &= 0, \ \lambda_{\overline{1}}\big|_{L_{\theta}\times L_{\theta+\overline{1}}} = \lambda\big|_{L_{\theta}\times L_{\theta+\overline{1}}}, \ \forall \theta \in \mathbb{Z}_{2}. \end{split}$$

显然, λ_0 , λ_T 仍是 L 上结合型, 且 λ_0 是偶的, λ_T 是奇的.

若 $\lambda_{\overline{0}}=0$, 结论已成立. 假设 $\lambda_{\overline{0}}\neq 0$, 由 2) 知 $\lambda_{\overline{0}}$ 是非退化的. 所以 $L^*=\{\lambda_{\overline{0}}(\cdot,y)\mid y\in L\}$. 注意 $\lambda_{\overline{1}}(\cdot,y)\in L^*$, $y\in L$. 容易验证, 存在惟一一个 L 的线性变换 $\tau:L\to L$, 使得

$$\lambda_{\overline{1}}(x,y) = \lambda_{\overline{0}}(x,\tau(y)), \ \forall x,y \in L.$$
 (1.9)

我们来验证 τ 满足引理 1.1 的条件. 设 $y \in L_{\theta}$, $\theta \in \mathbb{Z}_2$. 对任意 $x \in L_{\theta}$, 由 (1.9) 式并注意到 $\lambda_{\overline{1}}$ 是奇的, 有

$$\lambda_{\overline{0}}(x, au(y)) = \lambda_{\overline{1}}(x, y) = 0, \ \forall x \in L_{\theta}.$$

因 λ_0 是偶的,并且非退化,所以上式蕴涵 $\tau(y) \in L_{\theta+1}$. 故 $\tau(L_{\theta}) \subset L_{\theta+1}$,即 τ 是奇线性变换.

另方面, 对任意 $x, y, z \in L$, 由 (1.9) 式, 有

$$egin{aligned} \lambda_{\overline{0}}ig(x, au([y,z])ig) &= \lambda_{\overline{1}}ig(x,[y,z]) \ &= \lambda_{\overline{1}}ig([x,y],zig) \ &= \lambda_{\overline{0}}ig([x,y], au(z)ig) \ &= \lambda_{\overline{0}}ig(x,[y, au(z)]ig). \end{aligned}$$

注意到 λ_0 是非退化的, 由 x 的任意性可知

$$\tau([y,z]) = [y,\tau(z)], \ \forall y,z \in L.$$

这就证明了 τ 满足引理 1.1 的条件, 故 $\tau=0$. 由 (1.9) 式, 得 $\lambda_{\overline{1}}=0$. 这就完成了 3) 的证明.

4) 设 λ, λ' 是 L 上两个非平凡的结合型. 由 1) 知 λ, λ' 均是非退化的. 仿照 3) 的证明知, 存在惟一的线性变换 $\tau: L \to L$, 使得

$$\lambda(x,y) = \lambda'(x,\tau(y)), \ \forall x,y \in L.$$
 (1.10)

设 k 是 τ 的一个特征根 (注意 \mathbb{F} 是代数闭的), z 是相应的特征向量. 由 (1.10) 式, 有

$$\lambda(x,z)=\lambda'(x,kz)=(k\lambda')(x,z),\ \forall x\in L.$$

注意到 $z \neq 0$,上式说明结合型 $\lambda - k\lambda'$ 是退化的. 由 1),立知 $\lambda - k\lambda' = 0$,即 $\lambda = k\lambda'$.

在特征零的情形,有限维单李代数均有非退化的结合型,但对李超代数来说,情形并非如此.这是有限维单李超代数分类问题的最主要困难.在特征 p(p>0) 的情形,我们知道,某些单李代数不具有非退化的结合型;我们将在本章的最后一节证明,对单李超代数情况也是如此.

命题 1.3 的 4) 说明,对代数闭域上有限维单李超代数来说,只需构造出一个非退化结合型就够了(在存在的情况下). 命题 1.3 的 3) 告诉我们,考察单李超代数的结合型时,可将问题简化为只考虑偶或奇的结合型. 然而,在实际工作中,往往无需这般.

§2 单 Z- 阶化李超代数的结合型

在本节中, 我们约定 L 是代数闭域 \mathbb{F} 上的有限维李超代数, char $\mathbb{F} \neq 2$. 我们将研究单 \mathbb{Z} 阶化李超代数 L 的结合型 (参见 [46], [60]). 关于阶化李代数的结合型的工作, 请参见文献 [1] 与 [13].

我们需要一个有关 Z- 阶化空间的引理.

引理 2.1 设 V, W 是 F 上有限维 \mathbb{Z} - 阶化空间. 则 $Hom_F(V, W)$ 具有 \mathbb{Z} - 阶化结构

$$\operatorname{Hom}_{\mathbf{F}}(V, W) = \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathbf{F}}(V, W)_{i}, \tag{2.1}$$

其中

$$\operatorname{Hom}_{\mathbb{F}}(V,W)_i = \left\{ f \in \operatorname{Hom}_{\mathbb{F}}(V,W) \mid f(V_j) \subset W_{j+i}, \ \forall j \in \mathbb{Z} \right\}.$$

证明 先证明 $\operatorname{Hom}_{\mathbf{F}}(V,W)\subseteq \sum_{i\in\mathbb{Z}}\operatorname{Hom}_{\mathbf{F}}(V,W)_i$. 设 pr_i 是 $V(\mathbf{g}\ W)$ 在 $V_i(\mathbf{g}\ W_i)$ 上的投影, $i\in\mathbb{Z}$. 注意 V 与 W 是有限维的, 易知 $V(\mathbf{g}\ W)$ 的恒同映射可以写成有限和 $\operatorname{id}=\sum_{i\in\mathbb{Z}}\operatorname{pr}_i$. 任取 $f\in\operatorname{Hom}_{\mathbf{F}}(V,W)$, 则有

$$f = \mathrm{id}_W \circ f \circ \mathrm{id}_V = \sum_{i,j \in \mathbf{Z}} \mathrm{pr}_i \circ f \circ \mathrm{pr}_j.$$

对任意 $v \in V_k, k \in \mathbb{Z}$, 我们有

$$\operatorname{pr}_i \circ f \circ \operatorname{pr}_i(v) = \delta_{j,k} \operatorname{pr}_i \big(f(v) \big) \in W_{i+(k-j)} = W_{k+(i-j)},$$

所以 $\operatorname{pr}_i \circ f \circ \operatorname{pr}_j \in \operatorname{Hom}_{\mathbf{F}}(V, W)_{i-j}$. 故 "⊆" 成立. 反包关系及 (2.1) 式右边的直和都是显然的. □

推论 2.2 设 L 是 Z- 阶化李超代数,则 L^* 有子空间直和分解 $L^*=\bigoplus_{i\in Z}(L^*)_i$,其中

$$(L^*)_i = \{ \varphi \in L^* \mid \varphi(x) = 0, \ \forall x \in L_j, \ j \neq -i \}.$$

证明 F 具有平凡的 \mathbb{Z} 阶化: $\mathbb{F}_0 = \mathbb{F}$; $\mathbb{F}_i = 0$, $0 \neq i \in \mathbb{Z}$. 由命题 2.1, 有

$$egin{align} (L^*)_i &= \{arphi \in L^* \mid arphi(L_j) \subset \mathbb{F}_{i+j}, \ orall j \in \mathbb{Z} \} \ &= \{arphi \in L^* \mid arphi(x) = 0, \ orall x \in L_j, \ j
eq -i \}. \end{split}$$

注: 若 V, W 是 L- 模, 则 Hom_F(V, W) 具有模同构

$$(x \cdot f)(v) := x \cdot f(v) - (-1)^{\operatorname{\mathbf{d}}(x)\operatorname{\mathbf{d}}(f)} f(x \cdot v),$$

其中 $f \in hg(Hom_F(V, W))$, $x \in hg(L)$, $v \in V$. 进一步, 若 V, W 是 L 的 \mathbb{Z} - 阶化模 (定义 请参见 [46]), 则 (2.1) 式给出 $Hom_F(V, W)$ 的一个 \mathbb{Z} - 阶化模结构. 对推论 2.2, 也有相应的结论. 但在这里, 我们不想在此方面展开讨论.

命题 2.3 设 $L=\bigoplus_{i=-r}^s L_i$ 是有限维单 \mathbb{Z} - 阶化李超代数, $\lambda \neq 0$ 是 L 上一个结合型. 那么

- 1) $\lambda(L_i,L_j)=0$, $\not\equiv i+j\neq s-r$.
- 2) $\lambda: L_i \times L_{s-r-i} \to \mathbb{F}$ 是非退化的, $-r \leq i \leq s$.

证明 1) 由命题 1.3 的 2) 知, λ 是非退化的. 定义映射 $\varphi: L \to L^*$, 使得

$$\varphi(x)(y) = \lambda(x,y), \ \forall x,y \in L.$$

显然 φ 是线性的. 因为 $\ker \varphi = \operatorname{rad}(\lambda) = 0$, 所以 φ 是单射. 根据推论 2.2, L^* 具有 \mathbb{Z} -阶化. 再由引理 2.1, φ 可分解为 $\varphi = \sum_{i \in \mathbb{Z}} \varphi_i$, 其中 $\varphi_i \in \operatorname{Hom}_{\mathbb{F}}(L, L^*)_i$. 下面我们来证明: $\ker \varphi_i$ 是 L 的右理想 (未必是 \mathbb{Z}_2 - 阶化的), $j \in \mathbb{Z}$. 由 φ 的定义及 λ 的不变性, 有

$$\varphi([x,y])(z) = \varphi(x)([y,z]), \ \forall x,y,z \in \mathrm{zhg}(L),$$

这里, $\operatorname{zhg}(L) := \bigcup_{i=-r}^{s} L_i$. 从而,

$$\sum_i arphi_iig([x,y]ig)(z) = \sum_i arphi(x)ig([y,z]ig).$$

随之,

$$\varphi_j([x,y])(z) = \varphi_j(x)([y,z]), \ \forall j \in \mathbb{Z}.$$
 (2.2)

因 φ_j 是 \mathbb{Z} 齐次的, 所以 $\ker \varphi_j$ 是 L 的 \mathbb{Z} 阶化子空间. 若 V 是 \mathbb{Z} 阶化空间, 我们用 $\operatorname{zhg}(V)$ 表示 V 中的 \mathbb{Z} 齐次元素的集合. 在 (2.2) 式中令 $x \in \operatorname{zhg}(\ker \varphi_j)$, 则有

$$arphi_j([x,y])(z)=0, \ orall x\in \operatorname{zhg}(\ker arphi_j), \ orall y,z\in \operatorname{zhg}(L).$$

由此立得

$$\varphi_j([x,y]) = 0, \ \forall x \in \operatorname{zhg}(\ker \varphi_j), \ y \in \operatorname{zhg}(L).$$

进而,

$$\varphi_j([x,b]) = 0, \ \forall x \in \operatorname{zhg}(\ker \varphi_j), \ b \in L.$$
 (2.3)

任取 $a \in \ker \varphi_j$, 因 $\ker \varphi_j$ 是 L 的 \mathbb{Z} 阶化子空间, 所以有 $a = \sum_i a_i$, 其中 $a_i \in L_i \cap \ker(\varphi_j)$. 再由 (2.3) 式, 可得

$$\varphi_j([a,b]) = 0, \ \forall a \in \ker \varphi_j, \ b \in L.$$

故 $[a,b] \in \ker \varphi_j$, $\forall a \in \ker \varphi_j$, $b \in L$. 从而 $\ker \varphi_j$ 是 L 的右理想 (未必是 \mathbb{Z}_2 - 阶化的).

因 φ 是线性空间同构, 所以它必有非零的 \mathbb{Z} - 齐次分量. 设 $\varphi_j \neq 0$, 则 ker φ_j 是 L 的真右理想 (未必是 \mathbb{Z}_2 - 阶化的). 由命题 1.2, 知 ker $\varphi_j = 0$, 即 φ_j 是单的. 随之, 有 $\varphi_j(L_{-r}) \neq 0$, $\varphi_j(L_s) \neq 0$. 因为 $L^* = \bigoplus_{i=-s}^r (L^*)_i$, 所以 $-s \leq j-r$, $j+s \leq r$. 这样, 必有 j=r-s. 故 $\varphi = \varphi_{r-s}$.

任取 $x \in L_i$, $i \in \mathbb{Z}$. 则 $\varphi(x) = \varphi_{r-s}(x) \in (L^*)_{i+r-s}$. 注意 \mathbb{F} 的 \mathbb{Z} - 阶化是平凡的. 所以, 对任意 $y \in L_j$, 有

$$\lambda(x,y) = \varphi(x)(y) = 0$$
, 若 $i + j \neq s - r$.

2) 注意 λ 是非退化的, 由 1) 立知 2) 成立 □

我们知道李超代数 L 的偶部分 L_0 是李代数. 设 H 是 L_0 的幂零子代数. 在 L 的件随表示下,将 L 视为 H- 模. 由李代数理论, L 关于 H 具有权空间分解. 为了完整,我们做一简要回顾.

设 H 是 \mathbb{F} 上幂零李代数, $\rho: H \to \mathfrak{gl}(V)$ 是 H 的一个有限维表示. 设 $\alpha: H \to \mathbb{F}$ 是一个映射. 置

$$V_{lpha} = \left\{v \in V \mid \exists n(h,v) \in \mathbb{N} : \left(
ho(h) - lpha(h)\mathrm{id}_V
ight)^{n(h,v)}(v) = 0, \ orall h \in H
ight\}.$$

若 $V_{\alpha} \neq 0$, 则称 $\alpha: H \to \mathbb{F}$ 是表示 $\rho($ 或模 V) 的一个权, V_{α} 称为权 α 的权空间. 我们陈述大家熟知的 Zassenhaus 定理, 它的证明可以从任何一本李代数书中查到 (例如文献 [56]).

引理 2.4 (Zassenhaus) 设 H 是代数闭域 $\mathbb F$ 上的幂零李代数, $\rho: H \to \mathrm{gl}(V)$ 是 H 的一个有限维表示. 那么 V 是其权空间的直和 $V = \bigoplus_{\alpha \in \Delta} V_{\alpha}$.

命题 2.5 设 L 是 \mathbb{F} 上有限维李超代数, H 是 $L_{\overline{0}}$ 的一个幂季(李)子代数. 设 L 关于 H 的权空间分解为 $L=\bigoplus_{\alpha\in\Delta}L_{\alpha}$. 若 $\lambda:L\times L\to\mathbb{F}$ 是结合型, 则下列结论成立.

- 1) $\lambda(L_{\alpha}, L_{\beta}) = 0$, 若 $\alpha + \beta \neq \theta$, 其中 $\alpha, \beta \in \Delta$, θ 是奪权.
- 2) 若 λ 是非退化的, 则 λ : $L_{\alpha} \times L_{-\alpha} \to F$ 是非退化的, $\forall \alpha \in \Delta$.

证明 1) 首先证明特殊情形 $\lambda(L_{\alpha}, L_{\theta}) = 0$, 对任意 $\alpha \neq \theta$. 注意, $\alpha \neq 0$ 确保存在 $h \in H$, 使得 $\alpha(h) \neq 0$. 由 L_{α} 的定义, 存在 $k \in \mathbb{N}$ 使得 $(\operatorname{ad} h - \alpha(h)\operatorname{id}_{L})^{k}(L_{\alpha}) = 0$. 所以 ad h 在 L_{α} 上的限制是可逆的线性变换. 同样, 由 L_{θ} 的定义, 存在 $l \in \mathbb{N}$, 使得 $(\operatorname{ad} h)^{l}(L_{\theta}) = 0$. 现在任取 $x \in L_{\alpha}$, 由 $\operatorname{ad} h|_{L_{\alpha}}$ 的可逆性, 必存在 $y \in L_{\alpha}$, 使得 $(\operatorname{ad} h)^{l}(y) = x$. 注意 $x \in H \subset L_{\overline{0}}$, 我们有

$$\lambda(x,L_{ heta}) = \lambdaig((\operatorname{ad} h)^l(y),L_{ heta}ig) = (-1)^l\lambdaig(y,(\operatorname{ad} h)^l(L_{ heta})ig) = 0.$$

现在考虑一般情形. 不失一般性, 设 $\alpha \neq \theta$. 在上一段, 我们已证明存在 $h \in H$, 使 $adh|_{L_{\alpha}}$ 是可逆的, 因而必有 $HL_{\alpha} = L_{\alpha}$. 利用已证明的特殊情形, 并注意 $H \subset L_{\theta}$, 有

$$\lambda(L_{\alpha}, L_{eta}) = \lambda([H, L_{lpha}], L_{eta}) = \lambda(H, [L_{lpha}, L_{eta}])$$
 $\subset \lambda(L_{eta}, L_{lpha + eta}) = 0,$

其中 $\alpha + \beta \neq \theta$.

2) 设 $x \in L_{\alpha}$, $\lambda(x, L_{-\alpha}) = 0$. 由 1) 知 $\lambda(x, L) = 0$. 因 λ 非退化, 所以 x = 0. 这就证明了 $\lambda|_{L_{\alpha} \times L_{-\alpha}}$ 是非退化的.

综合命题 2.3 与命题 2.5, 我们有下面更加细致的结果.

定理 2.6 设 $L=\bigoplus_{i=-r}^s L_i$ 是有限维单 Z. 阶化季超代数, H 是 $L_0\cap L_0$ 的幂 零(李)子代数, L 关于 H 的权空间分解为 $L=\bigoplus_{\alpha\in\Delta} L_\alpha$. 若 $\lambda\neq0$ 是 L 上的一个结合型, 则下列结论成立.

- (1) $\lambda(L_i, L_j) = 0$, 若 $i + j \neq s r$; $\lambda \big|_{L_k \times L_{s-r-k}}$ 非退化并且 $\dim_{\mathbb{F}} L_k = \dim_{\mathbb{F}} L_{s-r-k}$, 这里 $-r \leq k \leq s$.
- 证明 (1) 的前两个结论就是命题 2.3. 既然 λ 在 $L_k \times L_{s-r-k}$ 上非退化, 由线性代数的理论知 $\dim_{\mathbb{F}} L_k = \dim_{\mathbb{F}} L_{s-r-k}$.
 - (2) 这是 (1) 与命题 2.5 的直接结果. □

设 $L = \bigoplus_{i=-r}^{s} L_i$ 是 \mathbb{Z} - 阶化李超代数. 置 $L^- = \bigoplus_{i=-r}^{-1} L_i$, $L^+ = \bigoplus_{i=1}^{s} L$. 由 PBW 定理, $U(L) = U(L^-)U(L_0)U(L^+)$. 由 U(L) 的泛性, 存在惟一的表示 $\rho: U(L) \to \operatorname{pl}(L)$, 使得 $\rho(x) = \operatorname{ad} x$, 对任意 $x \in L$. 将相应的结合代数 U(L)- 模 L 的模作用记做 "·". 显然 $U(L) \cdot L_s = U(L^-) \cdot L_s$ 是 L 的一个左理想.

当我们判定单 Z- 阶化李超代数上的一个超对称双线性型是否为不变的,下面的命题将起到简化问题的作用.

命题 2.7 设 $L = \bigoplus_{i=-r}^{s} L_i$ 是有限维单 \mathbb{Z} - 阶化李超代数. 假设 $\lambda: L \times L \to \mathbb{F}$ 是一个超对称双线性型, 并且满足下列条件:

(a) λ 是 L^- - 不变的, 即

$$\lambda([x,y],z) = \lambda(x,[y,z]), \ \forall x,z \in L, \ y \in L^-;$$

- (b) $\lambda \big|_{L_i \times L_n} = 0$, $\forall i > -r$;
- (c) $\lambda|_{L_{-a}\times L_{a}}$ 是 L_{0} 不变的, 即

$$\lambda([x,y],z) = \lambda(x,[y,z]), \ \forall x \in L_{-r}, \ y \in L_0, \ z \in L_s.$$

那么 λ 是L上的结合型.

证明 置

$$M := \operatorname{span}_{\mathbb{F}} \{ y \in \operatorname{hg}(L) \mid \lambda([x,y],z) = \lambda(x,[y,z]), \ \forall x,z \in L \}.$$

显然, $M \stackrel{\cdot}{=} L$ 的 $\mathbb{Z}_{2^{-}}$ 阶化子空间. 下面我们证明 $M \stackrel{\cdot}{=} L$ 的子代数. 因为 $M \stackrel{\cdot}{=} \mathbb{Z}_{2^{-}}$ 阶化子空间, 所以只需验证 M 对其齐次元素的李乘是封闭的. 任取 $a,b \in hg(M)$, $x,z \in hg(L)$, 则有

$$\begin{split} \lambda\Big(\big[x,[a,b]\big],z\Big) \\ &= \lambda\Big(\big[[x,a],b\big] + (-1)^{\mathrm{d}(x)\mathrm{d}(a)}\big[a,[x,b]\big],z\Big) \\ &= \lambda\Big(\big[[x,a],b\big],z\Big) + (-1)^{\mathrm{d}(x)\mathrm{d}(a)}(-1)(-1)^{\mathrm{d}(a)(\mathrm{d}(x)+\mathrm{d}(b))}\lambda\Big(\big[[x,b],a\big],z\Big) \\ &= \lambda\Big(\big[[x,a],b\big],z\Big) - (-1)^{\mathrm{d}(a)\mathrm{d}(b)}\lambda\Big(\big[[x,b],a\big],z\Big) \\ &= \lambda\Big(x,\big[a,[b,z]\big]\Big) - (-1)^{\mathrm{d}(a)\mathrm{d}(b)}\lambda\Big(x,\big[b,[a,z]\big]\Big) \\ &= \lambda\Big(x,\big[[a,b],z\big]\Big). \end{split}$$

故 $[a,b] \in M$. 这就证明了 $M \stackrel{\cdot}{=} L$ 的子代数.

由 (a) 知, $L^- \subset M$, 从而 $M \neq L^-$ 模, 进而是 $U(L^-)$ 模. 下面我们证明 $L_a \subseteq M$. 不失一般性, 只需验证:

$$\lambda([x,y],z) = \lambda(x,[y,z]), \ \forall x \in \operatorname{hg}(L_i), y \in \operatorname{hg}(L_s), z \in \operatorname{hg}(L_j). \tag{2.4}$$

情形 1. i = 0 或 j = 0. 先讨论 i = 0 的情况. 若 $j \ge 0$, 由 (b) 知 (2.4) 式的左、右 两端均为 0; 若 $j \le 0$, 则有

$$\begin{split} \lambda\big([x,y],z\big) \\ &= (-1)^{(d(x)+d(y))d(z)}\lambda\big(z,[x,y]\big) \\ &= (-1)^{(d(x)+d(y))d(z)}\lambda\big([z,x],y\big) \quad (利用 \ (b) \ 和 \ (c)) \\ &= (-1)^{(d(x)+d(y))d(z)}(-1)(-1)^{d(z)d(x)}\lambda\big([x,z],y\big) \\ &= (-1)^{(d(x)+d(y))d(z)}(-1)(-1)^{d(z)d(x)}\lambda\big(x,[z,y]\big) \quad (利用 \ (a)) \end{split}$$

$$=\lambda\big(x,[y,z]\big),$$

所以 (2.4) 式亦成立.

再讨论 j=0 的情况. 利用上面讨论的结果, 有

$$\begin{split} \lambda \big(x, [y, z] \big) \\ &= (-1)^{\operatorname{d}(x)(\operatorname{d}(y) + \operatorname{d}(z))} \lambda \big([y, z], x \big) \\ &= (-1)^{\operatorname{d}(x)(\operatorname{d}(y) + \operatorname{d}(z))} (-1) (-1)^{\operatorname{d}(y)\operatorname{d}(z)} \lambda \big([z, y], x \big) \\ &= (-1)^{\operatorname{d}(x)(\operatorname{d}(y) + \operatorname{d}(z))} (-1) (-1)^{\operatorname{d}(y)\operatorname{d}(z)} \lambda \big(z, [y, x] \big) \\ &= (-1)^{\operatorname{d}(x)(\operatorname{d}(y) + \operatorname{d}(z))} \\ &= (-1)^{\operatorname{d}(x)(\operatorname{d}(y) + \operatorname{d}(z))} \\ &= (-1)(-1)^{\operatorname{d}(y)\operatorname{d}(z)} (-1) (-1)^{\operatorname{d}(y)\operatorname{d}(x)} (-1)^{\operatorname{d}(z)(\operatorname{d}(x) + \operatorname{d}(y))} \lambda \big([x, y], z \big) \\ &= \lambda \big([x, y], z \big). \end{split}$$

故此时 (2.4) 式成立.

情形 2. i > 0, j > 0. 此时, [x, y] = [y, z] = 0, 所以 (2.4) 式成立.

情形 3. i > 0, j < 0 或 i < 0, j > 0. 我们只验证前一情况,另一情况可同样验证. 因 i > 0, 所以 [x,y] = 0, 故 (2.4) 式的左边为 0. 注意 d([x,z]) > -r, 由 (b) 有 $\lambda([x,z],y) = 0$, 因而 (2.4) 式的右边为

$$\lambda(x,[y,z]) = -(-1)^{d(y)d(z)}\lambda(x,[z,y])$$

$$= -(-1)^{d(y)d(z)}\lambda([x,z],y) \quad (利用 (a))$$

$$= 0.$$

故 (2.4) 式成立

情形 4. i < 0, j < 0. 利用 (a), 有

$$egin{aligned} \lambdaig([x,y],zig) \ &= -(-1)^{\mathrm{d}(x)\mathrm{d}(y)}\lambdaig([y,x],zig) \ &= -(-1)^{\mathrm{d}(x)\mathrm{d}(y)}\lambdaig(y,[x,z]ig) \ &= -(-1)^{\mathrm{d}(x)\mathrm{d}(y)}(-1)(-1)^{\mathrm{d}(x)\mathrm{d}(z)}\lambdaig(y,[z,x]ig) \ &= (-1)^{\mathrm{d}(x)(\mathrm{d}(y)+\mathrm{d}(z))}\lambdaig([y,z],xig) \ &= \lambdaig(x,[y,z]ig). \end{aligned}$$

所以 (2.4) 式成立.

综上, 我们证明了 $L_s\subseteq M$. 因为 L 是单的, 由此命题前面的讨论及命题 1.2 知 $L=U(L^-)\cdot L_s$. 注意到 M 是 $U(L^-)$ - 模, 知 $L\subseteq M$. 这便完成了命题的证明. \square

§3 Cartan 型模李超代数的非退化结合型

在这一节, 我们将完全确定具有非退化结合型的 Cartan 型模李超代数 (参见 [13], [60]). 仍将 $X(m,n,\underline{t})$ 简记为 X, 这里 X=W,S,H 或 K, 并且使用记号 $Y_0=\{1,\cdots,m\}$, $Y_1=\{m+1,\cdots,m+n\}$, $Y=Y_0\cup Y_1$. 回忆我们的约定: $m\geq 1, n\geq 2$, char $\mathbb{F}=p>2$. 本节约定基域 \mathbb{F} 是代数闭的.

对于 $i \in Y$, 令 $h_i = x_i D_i$. 显然 $T := \sum_{i \in Y} \mathbb{F} h_i$ 是 $W_{\overline{0}}$ 的 Abel 子代数. 所以我们可以考虑 W 关于 T 的权空间分解 $W = \bigoplus_{\gamma \in \Delta} W_{\gamma}$.

下文中我们将使用如下符号: 设 P 是一个命题, 若 P 是真的, 则令 $\delta_P = 1$; 否则令 $\delta_P = 0$.

引理 3.1 设 $\alpha \in A(m,\underline{t}), u \in B(n), i, j \in Y$. 则

$$[h_i, x^{(\alpha)}x^u D_j] = (\delta_{i \in Y_0}\alpha_i + \delta_{i \in \{u\}} - \delta_{ij})x^{(\alpha)}x^u D_j.$$

证明 当 $i \in Y_0$ 时,有

$$[h_i, x^{(\alpha)}x^uD_j] = (\alpha_i - \delta_{ij})x^{(\alpha)}x^uD_j;$$

$$[h_i, x^{(\alpha)}x^u D_j] = (\delta_{i \in \{u\}} - \delta_{ij})x^{(\alpha)}x^u D_j.$$

故引理成立. □

權论 3.2 在 W 的标准 \mathbb{F} - 基 $\{x^{(\alpha)}x^{u}D_{j} \mid \alpha \in A(m,\underline{t}), u \in B(n), j \in Y\}$ 下, T 中元 \mathbb{R} (通过伴随表示)对角地作用在 W 上.

证明 任取 $h \in T$, 设 $h = \sum_{i \in Y} k_i h_i$. 由引理 3.1. 易见每个基向量 $x^{(a)}x^u D_j$ 均为 adh 的特征向量. \square

命题 3.3 设 W 对 T 的权空间分解为 W = ⊕_{$\gamma \in \Lambda$} W $_{\gamma}$. 则零权 θ 的权空间为

$$\mathbf{W}_{\theta} = \sum_{j \in Y_0} \sum_{\substack{\alpha \equiv e_j \\ (\text{mod } p)}} \mathbb{F} x^{(\alpha)} \mathbf{D}_j + \sum_{j \in Y_1} \sum_{\substack{\alpha \equiv 0 \\ (\text{mod } p)}} \mathbb{F} x^{(\alpha)} x_j \mathbf{D}_j, \tag{3.1}$$

这里, 记 $\alpha \equiv \beta \pmod{p}$ 当且仅当 $\alpha_i \equiv \beta_i \pmod{p}$, 对任意 $i \in Y_0$.

证明 由 Wø的定义,直接验证可知(3.1)式的右边含于左边.

任取 $\sum_{\alpha,u,j} c_{\alpha,u,j} x^{(\alpha)} x^{u} D_{j} \in W_{\theta}$, 其中 $c_{\alpha,u,j} \in \mathbb{F}$. 若某个 $c_{\alpha,u,j} \neq 0$, 由推论 3.2 及 W_{θ} 的定义, 必有 $x^{(\alpha)} x^{u} D_{j} \in W_{\theta}$. 现在我们只需证明 $x^{(\alpha)} x^{u} D_{j}$ 含于 (3.1) 的右边即可. 利用引理 3.1 及 W_{θ} 的定义, 我们有

$$\delta_{i \in Y_0} \alpha_i + \delta_{i \in \{u\}} - \delta_{ij} \equiv 0 \pmod{p}, \ \forall i \in Y.$$
 (3.2)

者 j ∈ Y₀, 则对任意 i ∈ Y₀, 由 (3.2) 式有

$$\alpha_i \equiv \delta_{ij} \pmod{p}, \ \forall i \in Y_0; \tag{3.3}$$

以及

$$\delta_{i \in \{u\}} \equiv \delta_{ij} \equiv 0 \pmod{p}, \ \forall i \in Y_1. \tag{3.4}$$

(3.3) 式蕴涵 $\alpha \equiv \varepsilon_i \pmod{p}$. (3.4) 式蕴涵 $i \notin \{u\}$, 对任意 $i \in Y_1$; 亦即 $u = \emptyset$. 故在 $j \in Y_0$ 的情形下, $x^{(\alpha)}x^uD_j$ 含于 (3.1) 式右边第一个加项中.

现在考虑 $j \in Y_1$ 的情形. 由 (3.2) 式有

$$\alpha_i \equiv \delta_{ij} \equiv 0 \pmod{p}, \ \forall i \in Y_0;$$
 (3.5)

以及

$$\delta_{i \in \{u\}} \equiv \delta_{ij} \pmod{p}, \ \forall i \in Y_1. \tag{3.6}$$

(3.5) 式蕴涵 $\alpha \equiv 0 \pmod{p}$. (3.6) 式蕴涵 u = (j). 因此 $x^{(a)}x^{u}D_{j}$ 含于 (3.2) 式右边的 第二个加项中.

这就完成了命题的证明. □

回忆我们的约定: $m \ge 1, n \ge 2$, $char \mathbb{F} = p > 2$; $\xi := \sum_{i \in Y_0} p^{t_i} - m + n$.

定理 3.4 $W(m,n,\underline{t})$ 没有非退化的结合型.

证明 考虑 W 的 Z- 阶化 W = $\sum_{i=-1}^{\xi-1} W_i$. 下面证明: dim $W_0 \cap W_\theta \neq \dim W_{\xi-2} \cap W_\theta$, 这里 θ 是 W 关于 T 的零权. 事实上, 容易知道

$$W_{\xi-2} = \operatorname{span}_{\mathbb{F}} \{ x^{(\pi-\epsilon_i)} x^E D_j \mid i \in Y_0, j \in Y \}$$

$$\cup \{ x^{(\pi)} x^{E-\langle i \rangle} D_j \mid i \in Y_1, j \in Y \},$$

而 $\pi - \varepsilon_i \equiv -\underline{1} - \varepsilon_i \pmod{p}, i \in Y_0; \pi \equiv -\underline{1} \pmod{p}$. 与 (3.1) 式比较, 可知

$$\mathbf{W}_{\mathcal{E}-2}\cap\mathbf{W}_{\theta}=0.$$

但是,显然 $x_1D_1 \in W_0 \cap W_\theta$,所以 $\dim W_0 \cap W_\theta \neq \dim W_{\xi-2} \cap W_\theta$. 由定理 2.6 的 (2) 知, W 没有非退化的结合型. \Box

同样地,我们来证明下面的定理.

定理 3.5 $S(m,n,\underline{t})$ 没有非退化的结合型.

证明 我们知道 $S = \sum_{i=1}^{\xi-2} S_i$, 其中

$$\mathbf{S}_{\boldsymbol{\xi}-\mathbf{2}} = \operatorname{span}_{\mathbf{F}}\{\mathbf{D}_{ij}(\boldsymbol{x}^{(\pi)}\boldsymbol{x}^E) \mid i,j \in Y\}.$$

直接验证 (注意 charF = p > 2) 可知 dim $S_{\xi-2} = \frac{s(s-1)}{2} + n$. 显然 dim $S_{-1} = s$. 由 $n \ge 2$, 知 dim $S_{\xi-2} \ne \dim S_{-1}$. 再由定理 2.6 的 (1), 知 S 没有非退化的结合型. \square

定义 $c_{\ell}: \Lambda(m,n,\underline{t}) \to \mathbb{F}$, 使得

$$c_{m{\xi}}\left(\sum_{m{lpha},m{u}}c_{m{lpha},m{u}}x^{(m{lpha})}x^{m{u}}
ight)=c_{\pi,E},$$

其中 $c_{\alpha,u} \in \mathbb{F}$. 显然 c_{ξ} 是线性的.

定理 3.6 H(m,n,t) 具有非退化的结合型

$$\lambda(\mathrm{D_H}(a),\mathrm{D_H}(b))=c_{\xi}(ab), \tag{3.7}$$

其中 $a,b \in \bigoplus_{i=0}^{\xi-1} \Lambda(m,n,\underline{t})_i$.

证明 注意到 ker $D_H = \mathbb{F}$, 易知 (3.7) 式定义了函数 $\lambda: H \times H \to \mathbb{F}$. 显然 λ 是双线性的. 因为 $\Lambda(m,n,\underline{t})$ 的乘法是超交换的, 所以 λ 是超对称的. 下面证明 λ 的不变性. 我们知道, 对任意 $a,b \in \Lambda(m,n,\underline{t})$, 有

$$[\mathrm{D_H}(a),\mathrm{D_H}(b)] = \mathrm{D_H} ig(\mathrm{D_H}(a)(b)ig) \in \mathrm{H} = \mathrm{D_H} \left(\sum_{i=0}^{\xi-1} \Lambda(m,n,\underline{t})_i
ight).$$

由于 $\ker D_H = \mathbb{F}$, 由上式可知 $D_H(a)(b) \in \sum_{i=0}^{\xi-1} \Lambda(m, n, \underline{t})$. 故

$$c_{\xi}ig(\mathrm{D}_{\mathrm{H}}(a)(b)ig)=0,\, orall a,b\in \Lambda(m,n,\underline{t}).$$

任取 $a,b,c \in \sum_{i=0}^{\xi-1} \Lambda(m,n,\underline{t})_i$, 直接计算, 并利用 (3.8) 式, 有

$$\begin{split} \lambda \big([\mathrm{D}_{\mathrm{H}}(b), \mathrm{D}_{\mathrm{H}}(a)], \mathrm{D}_{\mathrm{H}}(c) \big) + (-1)^{\mathrm{d}(a)\mathrm{d}(b)} \lambda \big(\mathrm{D}_{\mathrm{H}}(a), [\mathrm{D}_{\mathrm{H}}(b), \mathrm{D}_{\mathrm{H}}(c)] \big) \\ &= \lambda \Big(\mathrm{D}_{\mathrm{H}} \big(\mathrm{D}_{\mathrm{H}}(b)(a) \big), \mathrm{D}_{\mathrm{H}}(c) \Big) + (-1)^{\mathrm{d}(a)\mathrm{d}(b)} \lambda \Big(\mathrm{D}_{\mathrm{H}}(a), \mathrm{D}_{\mathrm{H}} \big(\mathrm{D}_{\mathrm{H}}(b)(c) \big) \Big) \\ &= c_{\xi} \Big(\big(\mathrm{D}_{\mathrm{H}}(b)(a) \big) c \Big) + (-1)^{\mathrm{d}(a)\mathrm{d}(b)} c_{\xi} \Big(a \big(\mathrm{D}_{\mathrm{H}}(b)(c) \big) \Big) \\ &= c_{\xi} \Big(\big(\mathrm{D}_{\mathrm{H}}(b)(a) \big) (c) + (-1)^{\mathrm{d}(a)\mathrm{d}(b)} a \big(\mathrm{D}_{\mathrm{H}}(b)(c) \big) \Big) \\ &= c_{\xi} \Big(\mathrm{D}_{\mathrm{H}}(b)(ac) \Big) \qquad (注意 \ \mathrm{D}_{\mathrm{H}}(b) \not\in \Lambda(m, n, \underline{t}) \ \text{的导子} \big) \\ &= 0. \end{split}$$

故 $\lambda([D_H(a),D_H(b)],D_H(c)) = \lambda(D_H(a),[D_H(b),D_H(c)])$,不变性得证.

显然 λ 是非平凡的, 由命题 1.3 的 (2) 知 λ 是非退化的. □

推论 3.7 当 n 是偶数时, $H(m,n,\underline{t})$ 上非退化结合型均是偶的; 当 n 是奇数时, $H(m,n,\underline{t})$ 上非退化结合型均是奇的.

证明 由定理 3.6, (3.7) 式给出了 H 上一个非退化结合型 λ . 由 c_{ξ} 的定义, 知 λ 是偶 (奇) 的当且仅当 n 是偶 (奇) 的. 再由命题 1.3 的 (3), 便知本推论成立. \Box

现在我们讨论 K(m,n,t) 的结合型. 回忆 (见第一章 §2 节)

$$\mathrm{K}(m,n,\underline{t}) = egin{cases} \Lambda(m,n,\underline{t}) & n-m-3 \not\equiv 0 \pmod p \ \bigoplus_{i=0}^{\xi-1} \Lambda(m,n,\underline{t}) & n-m-3 \equiv 0 \pmod p, \end{cases}$$

其李超代数乘法为 (见第一章 (2.28) 式):

$$[f,g] = \widetilde{\mathbf{D}}_{\mathbf{K}}(f)(g) - 2\mathbf{D}_{m}(f)g, f,g \in \mathbf{K}, \tag{3.9}$$

这里

$$\widetilde{\mathbf{D}}_{\mathbf{K}}(f) = \sum_{i \in Y \setminus m} (-1)^{\tau(i)d(f)} (x_i \mathbf{D}_m(f) + \sigma(i') \mathbf{D}_{i'}(f)) \mathbf{D}_i$$

$$+ \left(2f - \sum_{i \in Y \setminus m} x_i \mathbf{D}_i(f)\right) \mathbf{D}_m, \quad f \in \mathrm{hg}(\mathbf{K}).$$

我们知道, K(m,n,t) 具有不可缩 Z- 阶化结构:

$$\mathrm{K}(m,n,\underline{t}) = \bigoplus_{i=-2}^{\mu} \mathrm{K}(m,n,\underline{t})_i,$$

其中

$$K(m, n, \underline{t})_i = \operatorname{span}_{\mathbf{F}} \{ x^{(\alpha)} x^u | |\alpha| + |u| + \alpha_m = i + 2 \}. \tag{3.10}$$

这里, 当 $n-m-3\not\equiv 0\pmod p$ 时, $\mu=\xi+\pi_m-2$; 当 $n-m-3\equiv 0\pmod p$ 时, $\mu=\xi+\pi_m-3$.

显然,由(3.10)式可知

$$K(m, n, \underline{t})_{-2} = \mathbb{F} \cdot 1, \tag{3.11}$$

$$K(m, n, \underline{t})_{-1} = \operatorname{span}_{\mathbb{F}} \{ x_i \mid i \in Y \setminus m \}, \tag{3.12}$$

$$K(m, n, \underline{t})_0 = \operatorname{span}_{\mathbf{F}} \{x_m, x_i x_j \mid i, j \in Y \setminus m\}. \tag{3.13}$$

当 $n-m-3\not\equiv 0 \pmod{p}$ 时,

$$K(m, n, \underline{t})_{\xi + \pi_m - 2} = \mathbb{F} \cdot x^{(\pi)} x^{\underline{E}}. \tag{3.14}$$

定理 3.8 $K(m,n,\underline{t})$ 具有非退化的结合型当且仅当 $m-n-5\equiv 0\pmod{p}$.

证明 假设 K 具有一个非退化的结合型 λ . 若 $n-m-3\equiv 0\pmod p$, 由 (3.10) 式 易见 dim $K_{\xi+\pi m-3}>1$; 再由 (3.11) 式知

$$\dim K_{-2} \neq \dim K_{\xi+\pi_m-3}.$$

由定理 2.6 的 (1), 这矛盾于 K 具有非退化的结合型. 故 $n-m-3 \neq 0$ (mod p). 由 (3.11), (3.14) 式及定理 2.6 的 (1), 知

$$\lambda(1, x^{(\pi)}x^E) \neq 0.$$
 (3.15)

利用 (3.9) 式计算, 有

$$[x_m, x^{(\pi)}x^E] = (n-m-3)x^{(\pi)}x^E.$$
 (3.16)

注意到 $[1,x_m]=2$, 我们有

$$2\lambda(1, x^{(\pi)}x^{E})$$

$$= \lambda(2, x^{(\pi)}x^{E})$$

$$= \lambda([1, x_{m}], x^{(\pi)}x^{E})$$

$$= \lambda(1, [x_{m}, x^{(\pi)}x^{E}])$$

$$= \lambda(1, (n - m - 3)x^{(\pi)}x^{E})$$

$$= (n - m - 3)\lambda(1, x^{(\pi)}x^{E}).$$

由 (3.15) 式及上式, 有 $n-m-5 \equiv 0 \pmod{p}$.

反之, 设 $n-m-5\equiv 0\pmod p$. 既然 p>2, 此时有 $m+n-3\not\equiv 0\pmod p$. 故 $K=\Lambda(m,n,\underline{t})$. 定义函数

$$\lambda: \mathbf{K} \times \mathbf{K} \to \mathbb{F}, \ \lambda(a,b) = c_{\xi}(ab).$$

显然, λ 是超对称双线性的. 下面验证 λ 满足命题 2.7 的三个条件.

先验证 (c). 注意 $n-m-5\equiv 0\pmod p$, 并利用 (3.16) 式, 我们有

$$\lambda([1, x_m], x^{(\pi)} x^E) - \lambda(1, [x_m, x^{(\pi)} x^E])
= \lambda(2, x^{(\pi)} x^E) - \lambda(1, (n - m - 3) x^{(\pi)} x^E)
= -(n - m - 5) \lambda(1, x^{(\pi)} x^E)
= 0.$$
(3.17)

对于 $i, j \in Y \setminus m$, 由 DK 的定义易见 $D_K(x_i x_j) \in \operatorname{span}_{\mathbb{F}} \{x_k D_l \mid k \neq l, k, l \in Y\}$. 由此可知

$$c_{\xi}\left(\mathrm{D}_{\mathrm{K}}(x_{i}x_{j})\big(\Lambda(m,n,\underline{t})\big)\right)=0,\ i,j\in Y\backslash m. \tag{3.18}$$

所以

$$\lambda \big(1,[x_ix_j,x^{(\pi)}x^E]\big) = c_\xi \big(\mathbf{D_K}(x_ix_j)(x^{(\pi)}x^E)\big) = 0.$$

另方面, 显然 $\lambda([1,x_ix_j],x^{(\pi)}x^E) = \lambda(0,x^{(\pi)}x^E) = 0$. 所以, 当然有

$$\lambda([1, x_i x_j], x^{(\pi)} x^E) = \lambda(1, [x_i x_j, x^{(\pi)} x^E]), i, j \in Y \setminus m.$$
 (3.19)

综合 (3.17) 与 (3.19) 式知 (c) 成立.

再验证 (a). 注意 (3.12) 式, 对任意 $i \in Y \setminus m$, $b,c \in \Lambda(m,n,\underline{t})$, 我们有

$$\begin{split} \lambda \big([x_i, b], c \big) + (-1)^{\operatorname{d}(x_i)\operatorname{d}(b)} \lambda \big(b, [x_i, c] \big) \\ &= \lambda \big(\widetilde{\operatorname{D}}_{\mathsf{K}}(x_i)(b), c \big) + (-1)^{\operatorname{d}(x_i)\operatorname{d}(b)} \lambda \big(b, \widetilde{\operatorname{D}}_{\mathsf{K}}(x_i)c \big) \\ &= c_{\xi} \big(\widetilde{\operatorname{D}}_{\mathsf{K}}(x_i)(bc) \big) \\ &= 0. \end{split}$$

故 λ 是 K_{-1} - 不变的. 同理可验证 λ 也是 K_{-2} - 不变的. 因此, 命题 2.7 中的 (1) 成立. 最后, 由 (3.10) 式及 λ 的定义, 易知 (b) 亦成立. 由命题 2.7, λ 是 K 上一个结合型. 显然, $\lambda \neq 0$. 由 K 的单性, 知 λ 是非退化的.

推论 3.9 设 $n-m-3\equiv 5\pmod p$. 若 n 是偶数,则 $K(m,n,\underline{t})$ 的非退化结合型均是偶的;若 n 是奇数,则 $K(m,n,\underline{t})$ 的非退化结合型均是奇的.

证明 仿照推论 3.7 的证明, 易证本推论.

在本节的最后, 我们将讨论 Cartan 型模李超代数的迹型与 Killing 型. 我们先做一些准备工作, 然后给出有限维单的 Z- 阶化李超代数具有非退化的迹型的必要条件 (参见 [97]). 最后, 得出关于 Cartan 型模李超代数的相应结论.

设 $V = V_0 + V_1$ 是有限维 \mathbb{Z} - 阶化空间, pl(V) 是 V 上的一般线性李超代数. 令 γ : $V \to V$ 是线性变换, 满足

$$\gamma(x) = (-1)^{\theta} x, \quad x \in V_{\theta}, \ \theta \in \mathbb{Z}_2.$$

在 pl(V) 上定义线性函数 $str: pl(V) \rightarrow \mathbb{F}$, 使得

$$str(A) = tr(\gamma A), \ \forall A \in pl(V),$$

称 str 为超速, 亦称 str(A) 为 A 的超速.

设 dim $V_0 = m$, dim V_1 . 设 v_1, \dots, v_m 是 V_0 的一个基, v_{m+1}, \dots, v_{m+n} 是 V_1 的一个基, 我们称 $v_1, \dots, v_m, v_{m+1}, \dots, v_{m+n}$ 为 V 的一个齐次基. 在此基下, V 的线性变换 $A \in \operatorname{pl}(V)$ 的矩阵可以惟一地写成形式 $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$, 这里 A_{11} 是 $m \times m$ 矩阵, A_{22} 是 $n \times n$ 矩阵, A_{12} 是 $m \times n$ 矩阵, A_{21} 是 $n \times m$ 矩阵. 显然 $\operatorname{pl}(V)$ 中偶元素在此基下的矩阵具有形状 $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ $\in \operatorname{pl}(m,n)$, 则

$$str(A) = tr(A_{11}) - tr(A_{22}).$$

 $\mathfrak{P} : L \to \mathrm{pl}(V)$ 是李超代数 L 的一个有限维表示. 定义

$$k_{m{
ho}}: L imes L
ightarrow \mathbb{F}, \quad k_{m{
ho}}(x,y) = \mathrm{str}(
ho(x)
ho(y)), \quad orall x,y \in L.$$

称 k_o 为 L 的一个关于表示 ρ 的运型, 简称为 L 的一个运型.

命题 3.10 设 ρ 是李超代数 L 的一个有限维表示, 则速型 $k_{\rho}(x,y)=\mathrm{str}\big(\rho(x)\rho(y)\big)$ 是 L 上的偶结合型.

证明 显然 k_{ρ} 是双线性的. 注意 $\operatorname{pl}(V)_{\overline{1}}$ 中矩阵均具有形状 $A = \begin{bmatrix} A_{21} & A_{12} \end{bmatrix} \in \operatorname{pl}(m,n)$, 易知 k_{ρ} 是偶的. 下面证明 k_{ρ} 是超对称的. 若 $x,y \in L_{\overline{0}}$, 则 $\rho(x),\rho(y) \in \operatorname{pl}(V)_{\overline{0}}$, 从而 $k_{\rho}(x,y) = k_{\rho}(y,x)$. 若 $x \in L_{\overline{0}}, y \in L_{\overline{1}}$, 既然 k_{ρ} 是偶的, 有 $k_{\rho}(x,y) = 0 = k_{\rho}(y,x)$. 设 $x,y \in L_{\overline{1}}$, 则 $\rho(x),\rho(y) \in \operatorname{pl}(V)_{\overline{1}}$. 因而可设 $\rho(x) = \begin{bmatrix} 0 & M \\ N & Q \end{bmatrix},\rho(y) = \begin{bmatrix} 0 & 0 \\ 0 & N & Q \end{bmatrix}$. 显然 $\rho(x)\rho(y) = \begin{bmatrix} MQ & 0 \\ 0 & NP \end{bmatrix},\rho(y)\rho(x) = \begin{bmatrix} PN & 0 \\ 0 & QM \end{bmatrix}$. 随之, $k_{\rho}(x,y) = \operatorname{tr}(MQ) = \begin{bmatrix} 0 & M \\ 0 & NP \end{bmatrix}$

 $\operatorname{tr}(NP),\ k_{\rho}(y,x)=\operatorname{tr}(PN)-\operatorname{tr}(QM).$ 故 $k_{\rho}(x,y)=k_{\rho}(y,x).$ 综上, 便证明了 k_{ρ} 是超对称的.

最后我们来证明 k_a 的不变性. 对任意 $x,y,z \in hg(L)$, 容易验证:

$$\begin{split} [\rho(y), \rho(x)\rho(z)] \\ &= [\rho(y), \rho(x)]\rho(z) + (-1)^{d(x)d(y)}\rho(x)[\rho(y), \rho(z)] \\ &= \rho([y, z])\rho(z) + (-1)^{d(x)d(y)}\rho(x)\rho([y, z]). \end{split} \tag{3.20}$$

另方面, 由 k_ρ 的超对称性, $str([\rho(y), \rho(x)\rho(z)]) = 0$. 故由 (3.20) 式得

$$k_{
ho}ig([y,x],zig) + (-1)^{\operatorname{d}(x)\operatorname{d}(y)}k_{
ho}ig(x,[y,z]ig) = \operatorname{str}ig([
ho(y),
ho(x)
ho(z)]ig).$$

故 k_o 是不变的. 综上, k_o 是 L 上偶结合型. 口设 V 是域 $\mathbb F$ 上向量空间, $f \in \operatorname{End}_{\mathbb F}(V)$. 定义

$$V_0(f) := \{ v \in V \mid \exists k \in \mathbb{N} : f^k(v) = 0 \}.$$

引理 3.11 设 V 是 \mathbb{F} 上向量空间, $x,y \in \text{End}_{\mathbb{F}}(V)$. 若存在 $n \in \mathbb{N}$, 使得 $(\text{ad}x)^n(y) = 0$, 则 $V_0(f(x))$ 在 y 下不变, 其中 f 是 \mathbb{F} 上任意一个多项式.

证明 见文献 [56] 的引理 1.4.2.

引理 3.12 设 $\rho: L \to \mathrm{pl}(V)$ 是李超代数 L 的有限维表示, $x \in L_0$ 是 L 的 ad- 幂 零元, $y \in [L, L] \cap L_0$, 且满足 [x, y] = 0. 则 $\mathrm{str}(\rho(x)\rho(y)) = 0$.

证明 注意 F 是代数闭域. V 关于 $\rho(x)$ 具有权空间分解 $V=\bigoplus_{\alpha\in\Delta}V_{\alpha}$. 因为 x 是 ad-幂零的, 由上面的引理知 V_{α} 是 L-不变的; 即 $\rho(y)(V_{\alpha})\subset V_{\alpha}$, 对任意 $y\in L$, $\alpha\in\Delta$. 因为 [x,y]=0 且 $x,y\in L_0$, 易知 $\rho(x)$ 与 $\rho(y)$ 是可交换线性变换, 因而可以同时化为上三角形. 注意 $\rho(x)|_{V_{\alpha}}$ 仅有特征根 α , 我们有

$$\operatorname{str} \bigl(\rho(x) \big|_{V_{\boldsymbol{\alpha}}} \circ \rho(y) \big|_{V_{\boldsymbol{\alpha}}} \bigr) = \operatorname{astr} \bigl(\rho(y) \big|_{V_{\boldsymbol{\alpha}}} \bigr).$$

由 $y \in [L, L]$ 知, $\rho(y) \in [\mathrm{pl}(V), \mathrm{pl}(V)]$. 由迹型的超对称性 (命题 3.10) 知 $\mathrm{str}(\rho(y)|_{V_{\alpha}}) = 0$. 由 α 的任意性, 有 $\mathrm{str}(\rho(x)\rho(y)) = 0$.

命題 3.13 设 $L=\sum_{i=-r}^q L_i$ 是城 $\mathbb P$ 上有限维单 $\mathbb Z$ - 阶化 李超代数,且 $L_0\cap L_{\overline 0}\neq 0$. 若 L 具有一个非退化的速型 k_ρ ,则 r=q.

证明 注意代数闭域必为无限域. 由文献 [56] 的引理 1.4.7, $L_0 \cap L_0$ 具有 Cartan 子代数. 设 $H \not = L_0 \cap L_0$ 的一个 Cartan 子代数. 令

$$\overline{H} = \{ x \in L_{\overline{0}} \mid \forall h \in H, \exists n(h) \in \mathbb{N} : (\operatorname{ad}h)^{n(h)}(x) = 0 \}.$$
(3.21)

由文献 [56] 的定理 3.2.3 知 H 是 L_0 的 Z- 阶化 Cartan 型子代数, 即 $H = \sum_{i=-r}^q H \cap L_i \cap L_0$, 并且 $H_0 = H$. 设 L 关于 H 的权空间分解为 $L = \bigoplus_{\alpha \in \Delta} L_\alpha$. 由定理 2.6 的 (2)

知 $k_\rho: L_i \cap L_\alpha \times L_{q-r-i} \cap L_{-\alpha} \to \mathbb{F}$ 是非退化的. 注意, 由命题 3.10, k_ρ 是偶的. 由此立 知

$$k_{\rho}: L_{i} \cap L_{\alpha} \cap L_{\overline{0}} \times L_{q-r-i} \cap L_{-\alpha} \cap L_{\overline{0}} \to \mathbf{F}$$

$$(3.22)$$

是非退化的. 由线性代数理论, 这蕴涵

$$\dim L_i \cap L_{\alpha} \cap L_{\overline{0}} = \dim L_{q-r-i} \cap L_{-\alpha} \cap L_{\overline{0}}.$$

因为 H 为 $L_{\overline{0}} \cap L_{0}$ 的 Cartan 子代数, 所以 $H \neq 0$ 并且 $H = L_{\theta} \cap L_{0} \cap L_{\overline{0}}$.

在上式中取 $i = q - r, \alpha = \theta(零权)$,则有 $\dim L_{q-r} \cap L_{\theta} \cap L_{\overline{0}} = \dim L_0 \cap L_{\theta} \cap L_{\overline{0}} \neq 0$. 由 (3.21) 式知 $\overline{H} \supset L_{\overline{0}} \cap L_{\theta}$,故有

$$\overline{H}_{q-r} = \overline{H} \cap L_{q-r} \cap L_{\overline{0}} \supset L_{q-r} \cap L_{\theta} \cap L_{\overline{0}} \neq 0.$$

注意 $\overline{H}_0 = H$, 知 \overline{H}_{q-r} 是 H- 不变的. 因为 \overline{H} 是幂零的, 所以对每个 $y \in H \subset \overline{H}$, ady 均是 \overline{H}_{q-r} 的幂零线性变换. 由 Engel 定理, 存在 $0 \neq x \in \overline{H}_{q-r}$, 使得

$$[y,x]=(\mathrm{ad}y)(x)=0,\quad \forall y\in H.$$

由 L 的单性, 知 $y \in L^{(1)}$. 假设 $q \neq r$. 由 $x \in \overline{H}_{q-r} = \overline{H} \cap L_{q-r} \cap L_{\overline{0}}$, 便知 x 是 ad- 幂零的. 从而由引理 3.12 可知

$$k_{\rho}(x,y) = 0, \quad y \in H.$$
 (3.23)

注意 $H = L_0 \cap L_0 \cap L_\theta$. 这样, (3.23) 式蕴涵

$$k_{\theta}: L_{\theta-r}\cap L_{\theta}\cap L_{\overline{0}} imes L_{0}\cap L_{\theta}\cap L_{\overline{0}} o \mathbb{F}$$

是退化的. 然而, 我们已经知道 (3.22) 是非退化的, 矛盾. 故必有 q=r. □ 回忆我们的约定: $m \ge 1$, $n \ge 2$, $p \ge 3$.

定理 3.14 Cartan 型模李超代数 $X(m,n,\underline{t})$ 没有非退化的迹型; 特别地, $X(m,n,\underline{t})$ 没非退化的 Killing 型.

证明 由定理 3.4 与 3.5 知 W,S 没有非退化迹型; 由命题 3.13, 容易知道 H 和 K 亦没有非退化的迹型. 既然关于伴随表示的迹型就是 Killing 型, 后一个结论当然成立. □

第五章 深度 1 的 Z- 阶化李超代数

我们知道, 深度 1 的 \mathbb{Z} 阶化李代数在李代数的结构与分类中占有重要的地位. 文献 [31] 与 [88] 给出了深度 1 的可迁的 \mathbb{Z} - 阶化李代数的嵌入定理. 文献 [31] 完成了底部满足一定条件的深度 1 的有限维 \mathbb{Z} - 阶化的模李代数的嵌入定理. 文献 [27] 与 [46] 给出了特征零域有限维的具有相容 \mathbb{Z} - 阶化的可迁李超代数的嵌入定理. 在本章的 \S 1 节中, 我们证明了深度 1 的可迁李超代数 \mathbb{G} 的嵌入定理, 这里 \mathbb{G} 的 \mathbb{Z} - 阶化可以是不相容的, \mathbb{G} 的基域的特征数仅要求不为 2. 实际上, 当基域的特征数为 2 时, 李超代数就是李代数. 在本章的 \S 2 节中, 我们利用嵌入定理, 分别确定出底部的零次成分为一般线性李超代数与特殊线性李超代数的深度 1 的可迁的 \mathbb{Z} - 阶化李超代数.

§1 嵌入定理

我们称 \mathbb{Z} - 阶化李超代数 $G = \bigoplus_{i \geq -1} G_i$ - 为深度 1 的 \mathbb{Z} - 阶化李超代数,并且称 $G_{-1} \oplus G_0$ 为 G- 的底部. 若对任意 $i \in \mathbb{N}_0$,总有

$$\{x \in G_i \mid [x, G_{-1}] = 0\} = 0,$$

则称 G 是可迁的. 由第一章命题 1.15 知, 若 G 是深度 1 的 Z 阶化的单李超代数, 则 G 是可迁的. 本节将证明深度 1 的可迁的 Z 阶化李超代数可嵌入到 W(m,n) 中.

$$x \otimes y - (-1)^{\operatorname{d}(x)\operatorname{d}(y)}y \otimes x, \ x,y \in G_{-1},$$

的元素生成的 $T(G_{-1})$ 的理想. 置 $\Omega = T(G_{-1})/J$. 则有超李代数的同构: $\Omega \cong S(V_0) \otimes \Lambda(V_1)$, 其中 $S(V_0)$ 是空间 V_0 的对称代数, $\Lambda(V_1)$ 是空间 V_1 的外代数. 我们称 Ω 为超 对称代数. 设 x_1, \dots, x_m 是空间 V_0 的基底, $\xi_{m+1}, \dots, \xi_{m+n}$ 是 V_1 的基底. 则 $S(V_0)$ 同构于 m 个未定元 x_1, \dots, x_m 的多项式代数 $F[x_1, \dots, x_m]$. 于是

$$\Omega \cong \mathbb{F}[x_1,\cdots,x_m]\otimes \Lambda(V_1).$$

我们简记 Nö 为 A(m). 设 $\alpha = (\alpha_1, \dots, \alpha_m) \in A(m)$, 记 $\mathbf{F}[x_1, \dots, x_m]$ 中的单项式 $x_1^{\alpha_1} \dots x_m^{\alpha_m}$ 为 x^{α} . 设 s = m+n. 按第一章 §2 的方式, 将 $\Lambda(V_1)$ 中的元素 $\xi_{u_1}\xi_{u_2}\dots\xi_{u_k}$ 记为 ξ^{u} , 其中 $u = \langle u_1, u_2, \dots, u_k \rangle \in B(n)$, 并且简记 Ω 中的元素 $f \otimes \xi$ 为 $f \xi$, 其

中 $f \in \mathbb{F}[x_1, \dots, x_m]$, $\xi \in \Lambda(V_1)$. 显然 $\{x^{\alpha}\xi^{u} \mid \alpha \in A(m), u \in B(n)\}$ 构成了 Ω 的一个 \mathbb{F} -基底.

 $T(G_{-1})$ 的 \mathbb{Z}_2 - 阶化与 \mathbb{Z} - 阶化分别诱导了 Ω 的 \mathbb{Z}_2 - 阶化与 \mathbb{Z} - 阶化,使得 $\Omega = \bigoplus_{i>0} \Omega_i$ 是 \mathbb{Z} - 阶化超代数,其中 $\Omega_i = \operatorname{span}_p\{x^\alpha \xi^\alpha \mid |\alpha| + |\alpha| = i\}$. 显然 $G_{-1} = \Omega_1$.

设 r > 0. 令 $K_r(G_{-1})$ 为 $r \land G_{-1}$ 的积 $G_{-1} \times \cdots \times G_{-1}$. 约定 $K_0(G_{-1}) = \mathbb{F}1$. 令 $K(G_{-1}) = \bigoplus_{r>0} K_r(G_{-1})$. 设 $y \in G$, 定义空间 $K(G_{-1})$ 到 G 的线性映射 ϕ_y , 使得

$$\phi_y(z_1,\cdots,z_r):=(\operatorname{ad} z_1)\cdots(\operatorname{ad} z_r)(y),$$

其中 $(z_1, \dots, z_r) \in K_r(G_{-1})$. 因 ϕ_y 在每个 $K_r(G_{-1})$ 上均为 r- 重线性映射, 其中 $r \geq 0$, 故 ϕ_y 诱导了 $T(G_{-1})$ 到 G 的线性映射 ψ_y , 使得

$$\psi_y(z_1\otimes\cdots\otimes z_r)=(\text{ ad }z_1)\cdots(\text{ ad }z_r)(y).$$

对r用归纳法易证 $\psi_y(J \cap \mathbf{T}^r(G_{-1})) = 0, r \geq 0.$ 故 ψ_y 诱导了 Ω 到 G 的线性映射 $\mu(y)$, 使得

$$\mu(y)(x^{\alpha}\xi^{u}) = (\operatorname{ad} x_{1})^{\alpha_{1}} \cdots (\operatorname{ad} x_{m})^{\alpha_{m}} (\operatorname{ad} \xi_{u_{1}}) \cdots (\operatorname{ad} \xi_{u_{k}})(y), \tag{1.1}$$

其中 $\alpha = (\alpha_1, \dots, \alpha_m) \in A(m), u = \langle u_1, \dots, u_k \rangle \in B(n)$. 我们约定 $\mu(y)(1) = y$.

设 $u,v \in B(n)$. 若 $\{v\} \cap \{u\} = \emptyset$, 由第三章定义 1.5 知 $\xi^v \xi^u = \operatorname{sgn}(v,u) \xi^{v+u}$. 若 $t \in Y_1 := \{m+1,\cdots,s\}$, 则令

$$I(t) = \{v \in B(n) \mid \min\{v\} = t\} = \{v \in B(n) \mid v_1 = t\}.$$

若 $u \in B(n)$, 则令 $T(u) = \{v \in B(n) \mid v \le u\}$, 这里 $v \le u$ 仍定义为 $\{v\} \subseteq \{u\}$.

引理 1.1 设 $u = \langle u_1, \cdots, u_k \rangle \in B(n), v \in T(u) \cap I(u_1)$. 则

$$sgn(v - \langle u_1 \rangle, u - v) = sgn(v, u - v), \tag{1.2}$$

若 $v \in T(u - \langle u_1 \rangle)$,则

$$(-1)^{|v|}\operatorname{sgn}(v,u-\langle u_1\rangle-v)=\operatorname{sgn}(v,u-v), \tag{1.3}$$

 $(-1)^{|u-\langle u_1\rangle-v|+|v|+1}\operatorname{sgn}(v,u-\langle u_1\rangle-v)$

$$= (-1)^{|u-v|} \operatorname{sgn}(v, u-v). \tag{1.4}$$

证明 我们仅证 (1.4) 式. 因为 $v \in T(u - \langle u_1 \rangle)$, 故可设 $v = \langle u_{i_1}, \dots, u_{i_r} \rangle$, 其中 $i_1, \dots, i_r \in \{2, \dots, k\}$. 设 $u - \langle u_1 \rangle - v = \langle u_{t_1}, \dots, u_{t_j} \rangle$, 其中 j = k - 1 - r. 则 $u - v = \langle u_1, u_{t_1}, \dots, u_{t_j} \rangle$.

因为
$$|u - \langle u_1 \rangle - v| + |v| + 1 = k$$
, 所以

$$(-1)^{|u-\langle u_1 \rangle - v| + |v| + 1} \operatorname{sgn}(v, u - \langle u_1 \rangle - v)$$

= $(-1)^k \operatorname{sgn}(\langle u_{i_1}, \cdots, u_{i_r} \rangle, \langle u_{t_1}, \cdots, u_{t_j} \rangle)$

$$= (-1)^{k} \operatorname{sgn}(\langle u_{1}, u_{i_{1}}, \cdots, u_{i_{r}} \rangle, \langle u_{t_{1}}, \cdots, u_{t_{j}} \rangle)$$

$$= (-1)^{k+r} \operatorname{sgn}(\langle u_{i_{1}}, \cdots, u_{i_{r}} \rangle, \langle u_{1}, u_{t_{1}}, \cdots, u_{t_{j}} \rangle)$$

$$= (-1)^{k-r} \operatorname{sgn}(v, u - v)$$

$$= (-1)^{|u-v|} \operatorname{sgn}(v, u - v). \quad \Box$$

者 q=0 或 1, $v \in T(u-\langle u_1 \rangle)=T(u)\backslash I(u_1)$. 由 (1.3) 与 (1.4) 知

$$(-1)^{q|u-v|} \operatorname{sgn}(v, u - \langle u_1 \rangle - v)$$

$$= (-1)^{q|u-v|} \operatorname{sgn}(v, u - v). \tag{1.5}$$

若 $\alpha \in A(m)$, 则令 $R(\alpha) = \{\beta \in A(m) \mid \beta \leq \alpha\}$.

引理 1.2 设 $y,y' \in G$, $d(y) = \overline{q}$, 其中 $q \in \{0,1\}$. 对任意 $\alpha \in A(m)$, $u \in B(n)$, 有

$$\mu([y,y'])(x^{\alpha}\xi^{u}) = \sum_{\beta \in R(\alpha), v \in T(u)} (-1)^{q|u-v|} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

$$\cdot \operatorname{sgn}(v, u-v) \left[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha-\beta}\xi^{u-v}) \right]. \tag{1.6}$$

证明 对 $|\alpha|$ 用归纳法证明 (1.6) 式. 当 $|\alpha| = 0$ 时, 需证等式

$$\mu([y, y'])(\xi^{u}) = \sum_{v \in T(u)} (-1)^{q|u-v|} \cdot \operatorname{sgn}(v, u - v) [\mu(y)(\xi^{v}), \mu(y')(\xi^{u-v})]. \tag{1.7}$$

我们对 |u| 用归纳法证明 (1.7) 式. 由 $\mu(y)$ 的定义知,

$$\mu([y,y'])(1) = [y,y'] = [\mu(y)(1),\mu(y')(1)].$$

所以当 |u|=0 时,(1.7) 式成立. 设 |u|=k+1, 则可设 $u=\langle u_1,\cdots,u_{k+1}\rangle$. 由归纳假设 (注意到 $d(\mu(y))=d(y)$), 有

$$\mu([y, y'])(\xi^{u})$$

$$= [\xi_{u_{1}}, \mu([y, y'])(\xi^{u-\langle u_{1}\rangle})]$$

$$= \left[\xi_{u_{1}}, \sum_{v \in T(u-\langle u_{1}\rangle)} (-1)^{q|u-\langle u_{1}\rangle-v|} \operatorname{sgn}(v, u - \langle u_{1}\rangle - v)\right]$$

$$\cdot \left[\mu(y)(\xi^{v}), \mu(y')(\xi^{u-\langle u_{1}\rangle-v|})\right]$$

$$= \sum_{v \in T(u-\langle u_{1}\rangle)} (-1)^{q|u-\langle u_{1}\rangle-v|} \operatorname{sgn}(v, u - \langle u_{1}\rangle - v)$$

$$\cdot \left[\xi_{u_{1}}, \left[\mu(y)(\xi^{v}), \mu(y')(\xi^{u-\langle u_{1}\rangle-v|})\right]\right]$$

$$\begin{split} &= \sum_{v \in T(u - \langle u_1 \rangle)} (-1)^{q|u - \langle u_1 \rangle - v|} \operatorname{sgn}(v, u - \langle u_1 \rangle - v) \\ &\cdot \left[\mu(y) (\xi^{v + \langle u_1 \rangle}), \mu(y') (\xi^{u - \langle u_1 \rangle - v}) \right] \\ &+ \sum_{v \in T(u - \langle u_1 \rangle)} (-1)^{q|u - \langle u_1 \rangle - v| + |v| + q} \operatorname{sgn}(v, u - \langle u_1 \rangle - v) \\ &\cdot \left[\mu(y) (\xi^v), \mu(y') (\xi^{u - v}) \right] \\ &= \sum_{v \in T(u) \cap I(u_1)} (-1)^{q|u - \langle u_1 \rangle} \operatorname{sgn}(v - \langle u_1 \rangle, u - v) \\ &\cdot \left[\mu(y) (\xi^v), \mu(y') (\xi^{u - v}) \right] \\ &+ \sum_{v \in T(u) \setminus I(u_1)} (-1)^{q|u - \langle u_1 \rangle - v| + |v| + q} \operatorname{sgn}(v, u - \langle u_1 \rangle - v) \\ &\cdot \left[\mu(y) (\xi^v), \mu(y') (\xi^{u - v}) \right]. \end{split}$$

将 (1.2) 与 (1.5) 式代入上式, 即可得到 (1.7) 式.

假设当 $|\alpha| = k$ 时,(1.6) 式成立. 令 $|\alpha| = k+1$. 设

$$j = \min\{i \mid \alpha_i \neq 0\}, \ A(m)_j = \{\beta \in A(m) \mid \beta_j \neq 0\}.$$

由归纳假设知

$$\begin{split} &\mu[y,y'](x^{\alpha}\xi^{u}) \\ &= \left[x_{j},\mu[y,y'](x^{\alpha-\varepsilon_{j}}\xi^{u})\right] \\ &= \left[x_{j},\sum_{\beta\in R(\alpha-\varepsilon_{j}),v\in T(u)}(-1)^{q|u-v|}\binom{\alpha-\varepsilon_{j}}{\beta}\operatorname{sgn}(v,u-v) \right. \\ &\cdot \left[\mu(y)(x^{\beta}x^{v}),\mu(y')(x^{\alpha-\varepsilon_{j}-\beta}\xi^{u-v})\right] \\ &= \sum_{\beta\in R(\alpha-\varepsilon_{j}),v\in T(u)}(-1)^{q|u-v|}\binom{\alpha-\varepsilon_{j}}{\beta}\operatorname{sgn}(v,u-v) \\ &\cdot \left[x_{j},\left[\mu(y)(x^{\beta}x^{v}),\mu(y')x^{\alpha-\varepsilon_{j}-\beta}\xi^{u-v}\right]\right] \\ &= \sum_{\beta\in R(\alpha-\varepsilon_{j}),v\in T(u)}(-1)^{q|u-v|}\binom{\alpha-\varepsilon_{j}}{\beta}\operatorname{sgn}(v,u-v) \\ &\cdot \left[\mu(y)(x^{\beta+\varepsilon_{j}}\xi^{v}),\mu(y')(x^{\alpha-\varepsilon_{j}-\beta}\xi^{u-v})\right] \\ &+ \sum_{\beta\in R(\alpha-\varepsilon_{j}),v\in T(u)}(-1)^{q|u-v|}\binom{\alpha-\varepsilon_{j}}{\beta}\operatorname{sgn}(v,u-v) \\ &\cdot \left[\mu(y)(x^{\beta}\xi^{v}),\mu(y')(x^{\alpha-\beta}\xi^{u-v})\right] \\ &= \sum_{\beta\in R(\alpha)\cap A(m)_{j},v\in T(u)}(-1)^{q|u-v|}\binom{\alpha-\varepsilon_{j}}{\beta-\varepsilon_{j}}\operatorname{sgn}(v,u-v) \end{split}$$

$$\begin{split} & \cdot \left[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha-\beta}\xi^{u-v})\right] \\ & + \sum_{\beta \in R(\alpha-\varepsilon_{j}), v \in T(u)} (-1)^{q|u-v|} \binom{\alpha-\varepsilon_{j}}{\beta} \operatorname{sgn}(v, u-v) \\ & \cdot \left[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha-\beta}\xi^{u-v})\right] \\ & = \sum_{\beta \in R(\alpha) \setminus R(\alpha-\varepsilon_{j}), v \in T(u)} (-1)^{q|u-v|} \binom{\alpha-\varepsilon_{j}}{\beta-\varepsilon_{j}} \operatorname{sgn}(v, u-v) \\ & \cdot \left[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha-\beta}\xi^{u-v})\right] \\ & + \sum_{\beta \in R(\alpha-\varepsilon_{j}) \cap A(m)_{j}, v \in T(u)} (-1)^{q|u-v|} \left[\binom{\alpha-\varepsilon_{j}}{\beta-\varepsilon_{j}} + \binom{\alpha-\varepsilon_{j}}{\beta}\right] \\ & \cdot \operatorname{sgn}(v, u-v) \left[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha-\beta}\xi^{u-v})\right] \\ & + \sum_{\beta \in R(\alpha-\varepsilon_{j}) \setminus A(m)_{j}, v \in T(u)} (-1)^{q|u-v|} \binom{\alpha-\varepsilon_{j}}{\beta} \operatorname{sgn}(v, u-v) \\ & \cdot \left[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha-\beta}\xi^{u-v})\right]. \end{split}$$

易见, 若 $\beta \in R(\alpha) \setminus R(\alpha - \varepsilon_j)$, 则 $\binom{\alpha - \varepsilon_j}{\beta - \varepsilon_j} = \binom{\alpha}{\beta}$; 若 $\beta \in R(\alpha - \varepsilon_j) \cap A(m)_j$, 则 $\binom{\alpha - \varepsilon_j}{\beta - \varepsilon_j} + \binom{\alpha - \varepsilon_j}{\beta} = \binom{\alpha}{\beta}$; 若 $\beta \in R(\alpha - \varepsilon_j) \setminus A(m)_j$, 则 $\binom{\alpha - \varepsilon_j}{\beta} = \binom{\alpha}{\beta}$. 于是上式的右端与 (1.6) 式的右端相同, 引理得证. \square

设 $y \in G_r$, $y' \in G$, $x^{\beta}\xi^{\nu} \in \Omega_{r+1}$, $x^{\alpha}\xi^{\mu} \in \Omega$, 则有 $\mu(y)(x^{\beta}\xi^{\nu}) \in G_{-1}$. 故可设 $\mu(y)(x^{\beta}\xi^{\nu}) = \sum_{i=1}^{m} a_i x_i + \sum_{i=m+1}^{s} b_i \xi_i$, 其中 $a_i, b_i \in \mathbb{F}$. 由 (1.1) 式知

$$[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha}\xi^{u})]$$

$$= \operatorname{ad} (\mu(y)(x^{\beta}\xi^{v})) (\mu(y')(x^{\alpha}\xi^{u}))$$

$$= \operatorname{ad} \left(\sum_{i=1}^{m} a_{i}x_{i} + \sum_{i=m+1}^{s} b_{i}\xi_{i} \right) (\mu(y')(x^{\alpha}\xi^{u}))$$

$$= \mu(y') \left(\left(\sum_{i=1}^{m} a_{i}x_{i} + \sum_{i=m+1}^{s} b_{i}\xi_{i} \right) x^{\alpha}\xi^{u} \right)$$

$$= \mu(y') \left(\mu(y)(x^{\beta}\xi^{v})x^{\alpha}\xi^{u} \right). \tag{1.8}$$

设 $r \geq -1$, 则 μ 诱导了线性映射 $\mu_r: G_r \to \operatorname{Hom}(\Omega_{r+1}, G_{-1})$, 使得 $\mu_r(y) = \mu(y)$, $\forall y \in G_r$.

引理 1.3 着 $G = \bigoplus_{r \geq -1} G_r$ 是可迁的 Z- 阶化李超代数, 则 μ_r 是单射, $\forall r \geq -1$. 证明 因为 μ_r 是线性映射, 所以只需证明 $\ker(\mu_r) = 0$. 对 r 用归纳法. 当 r = -1 时, 任取 $y \in \ker(\mu_{-1})$, 则 $\mu_{-1}(y) = 0$. 于是 $y = \mu_{-1}(y)(1) = 0$, 因此 $\ker(\mu_{-1}) = 0$.

假设 $\ker(\mu_{r-1}) = 0$. 令 $y \in \ker(\mu_r)$, 则 $y \in G_r$ 并且 $\mu_r(y) = 0$. 故 $[x_j, y] \in G_{r-1}$, $\forall j \in G_r$

 Y_0 . 任取 $x^{\alpha}\xi^{u}\in\Omega_r$, 其中 $\alpha=(\alpha_1,\cdots,\alpha_m),\ u=\langle u_1,\cdots,u_k\rangle$. 则

$$\begin{aligned} \mu_{r-1}\big([x_j,y]\big)(x^{\alpha}\xi^u) \\ &= \left(\prod_{i=1}^m (\operatorname{ad} x_i)^{\alpha_i}\right) \left(\prod_{i=1}^k \operatorname{ad} \xi_{u_i}\right) ([x_j,y]) \\ &= \mu_r(y)(x^{\alpha+\varepsilon_j}\xi^u) \\ &= 0, \end{aligned}$$

所以 $[x_j,y] \in \ker(\mu_{r-1})$. 由归纳假设 $[x_j,y] = 0$, $\forall j \in Y_0$. 同理 $[\xi_j,y] = 0$, $\forall j \in Y_1$, 从而 $[G_{-1},y] = 0$. 因为 G 是可迁的, 所以 y = 0. 故 $\ker(\mu_r) = 0$, 于是 μ_r 是单射. □ 对于 $\alpha \in A(m)$, $u \in B(n)$, $r \in \mathbb{N}_0$, 令

$$M(lpha,u,r)=ig\{(eta,v)\ ig|\ eta\in R(lpha),\ v\in T(u),\ |eta|+|v|=rig\}$$

引理 1.4 设 $y \in G_r$, $y' \in G_s$, 并且 $d(y) = \overline{q}$, $d(y') = \overline{t}$, 其中 $q, t \in \{0, 1\}$. 令 $x^{\alpha} \xi^{u} \in \Omega_{r+s+1}$, 則

$$\mu_{r+s}([y,y'])(x^{\alpha}\xi^{u})$$

$$= \sum_{(\beta,v)\in M(\alpha,u,r+1)} (-1)^{q|u-v|} {\alpha \choose \beta} \operatorname{sgn}(v,u-v)\mu(y')$$

$$\cdot \left((\mu(y)(x^{\beta}\xi^{v}))x^{\alpha-\beta}\xi^{u-v} \right)$$

$$- \sum_{(\beta,v)\in M(\alpha,u,s+1)} (-1)^{qt+t|u-v|} {\alpha \choose \beta} \operatorname{sgn}(v,u-v)\mu(y)$$

$$\cdot \left((\mu(y')(x^{\beta}\xi^{v}))x^{\alpha-\beta}\xi^{u-v} \right). \tag{1.9}$$

证明 若 $|\beta|+|v|>r+1$, 则 $\mu(y)(x^{\beta}\xi^{v})=0$. 若 $|\beta|+|v|< r$, 则 $\mu(y')(x^{\alpha-\beta}\xi^{u-v})=0$, 其中 $\beta \leq \alpha$, $v \leq u$. 由引理 1.2 与 (1.8) 式知

$$\mu_{r+s}([y,y'])(x^{\alpha}\xi^{u}) = \mu([y,y'])(x^{\alpha}\xi^{u})$$

$$= \sum_{(\beta,v)\in M(\alpha,u,r+1)} (-1)^{q|u-v|} {\alpha \choose \beta} \operatorname{sgn}(v,u-v)\mu(y')$$

$$\cdot \left((\mu(y)(x^{\beta}\xi^{v}))x^{\alpha-\beta}\xi^{u-v} \right)$$

$$+ \sum_{(\beta,v)\in M(\alpha,u,r)} (-1)^{q|u-v|} {\alpha \choose \beta} \operatorname{sgn}(v,u-v)$$

$$\cdot \left[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha-\beta}\xi^{u-v}) \right]. \tag{1.10}$$

考察 (1.10) 的右端第二个加项,则有

$$\sum_{(\beta,v)\in M(\alpha,u,r)} (-1)^{q|u-v|} \binom{\alpha}{\beta} \operatorname{sgn}(v,u-v)$$

$$\cdot \left[\mu(y)(x^{\beta}\xi^{v}), \mu(y')(x^{\alpha-\beta}\xi^{u-v})\right] = -\sum_{(\beta,v)\in M(\alpha,u,r)} (-1)^{q|u-v|+(q+|v|)(t+|u+v|)} \binom{\alpha}{\beta} \operatorname{sgn}(v,u-v)
\cdot \left[\mu(y')(x^{(\alpha-\beta)}\xi^{u-v}), \mu(y)(x^{\beta}\xi^{v})\right] = -\sum_{(\beta,v)\in M(\alpha,u,r)} (-1)^{qt+t|v|+|v||u-v|} \binom{\alpha}{\beta} \operatorname{sgn}(v,u-v)\mu(y)
\cdot \left(\left(\mu(y')(x^{\alpha-\beta}\xi^{u-v})\right)x^{\beta}\xi^{v}\right) = -\sum_{(\beta,v)\in M(\alpha,u,s+1)} (-1)^{qt+t|u-v|+|u-v||v|} \binom{\alpha}{\beta} \operatorname{sgn}(u-v,v)\mu(y)
\cdot \left(\left(\mu(y')(x^{\beta}\xi^{v})\right)x^{\alpha-\beta}\xi^{u-v}\right) = -\sum_{(\beta,v)\in M(\alpha,u,s+1)} (-1)^{qt+t|u-v|} \binom{\alpha}{\beta} \operatorname{sgn}(v,u-v)\mu(y)
\cdot \left(\left(\mu(y')(x^{\beta}\xi^{v})\right)x^{\alpha-\beta}\xi^{u-v}\right). \tag{1.11}$$

将 (1.11) 式代入 (1.10) 式, 即得到 (1.9) 式. 引理得证.

令 $\operatorname{Hom}_f(\Omega,G_{-1})=\bigoplus_{r\geq 0}\operatorname{Hom}(\Omega_r,G_{-1})$, 这里 $\bigoplus_{r\geq 0}\operatorname{Hom}(\Omega_r,G_{-1})$ 的每个元素都是取自有限多个 $\operatorname{Hom}(\Omega_r,G_{-1})$ 的元素之和. 则 $\operatorname{Hom}_f(\Omega,G_{-1})$ 是 $\operatorname{Hom}(\Omega,G_{-1})$ 的一个无限维 Z - 阶化子空间, 并且 Ω 与 G_{-1} 的 Z_2 - 阶化诱导了空间 $\operatorname{Hom}_f(\Omega,G_{-1})$ 的一个 Z_2 - 阶化. 令 $\sigma\in\operatorname{Hom}(\Omega_{r+1},G_{-1})$, $\tau\in\operatorname{Hom}(\Omega_{s+1},G_{-1})$, 并且 $\operatorname{d}(\sigma)=\overline{q}$, $\operatorname{d}(\tau)=\overline{t}$, $q,t\in\{0,1\}$. 定义 $[\sigma,\tau]\in\operatorname{Hom}(\Omega_{r+s+1},G_{-1})$, 使得对任意 $x^\alpha\xi^\alpha\in\Omega_{r+s+1}$, 有

$$[\sigma, \tau](x^{\alpha} \xi^{u})$$

$$= \sum_{(\beta, v) \in M(\alpha, u, r+1)} (-1)^{qt+q|u-v|} {\alpha \choose \beta} \operatorname{sgn}(v, u-v)$$

$$\cdot \tau \left(\sigma(x^{\beta} \xi^{v}) x^{\alpha-\beta} \xi^{u-v}\right)$$

$$- \sum_{(\beta, v) \in M(\alpha, u, s+1)} (-1)^{t|u-v|} \operatorname{sgn}(v, u-v)$$

$$\cdot \sigma \left(\tau(x^{\beta} \xi^{v}) x^{\alpha-\beta} \xi^{u-v}\right). \tag{1.12}$$

对 $r \geq -1$, 定义线性映射 $\tilde{\mu}_r : G_r \to \operatorname{Hom}(\Omega_{r+1}, G_{-1})$, 使得 $\tilde{\mu}_r(y) = (-1)^{\frac{1}{2}q(q+1)}\mu_r(y)$, 其中 $q \in \{0,1\}$, 并且 $d(y) = \overline{q}$.

设 $\tilde{\mu}: G \to \operatorname{Hom}_f(\Omega, G_{-1})$ 是由族 $\{\tilde{\mu}_r \mid r \geq -1\}$ 定义的线性映射, 即 $\tilde{\mu}|_{G_r} = \tilde{\mu}_r$, $\forall r \geq -1$. 由引理 1.3 知 μ_r 是单射, 所以 $\tilde{\mu}_r$ 是单射. 因为 G 与 $\operatorname{Hom}_f(\Omega, G_{-1})$ 都是 \mathbb{Z} - 阶化的, 所以 $\tilde{\mu}$ 是单射.

引理 1.5 设 $y,y'\in G$,则 $\widetilde{\mu}\big([y,y']\big)=[\widetilde{\mu}(y),\widetilde{\mu}(y')].$

证明 因为 $\tilde{\mu}$ 是线性映射, 故可设 y 与 y' 关于 \mathbb{Z}_2 - 阶化与 \mathbb{Z} - 阶化都是齐次的. 设 $y \in G_r$, $y' \in G_s$, $d(y) = \bar{q}$, $d(y') = \bar{t}$, 其中 $r,s \geq -1$, $q,t \in \{0,1\}$. 由引理 1.4 与 (1.12) 式知

$$\mu_{\tau+s}([y,y']) = (-1)^{qt}[\mu_{\tau}(y),\mu_{s}(y')].$$

因此

$$\widetilde{\mu}([y,y']) = \widetilde{\mu}_{r+s}([y,y'])
= (-1)^{\frac{1}{2}(q+t)(q+t+1)} \mu_{r+s}([y,y'])
= (-1)^{\frac{1}{2}(q+t)(q+t+1)+qt} [\mu_r(y), \mu_s(y')]
= (-1)^{(q+t)(q+t+1)} [\widetilde{\mu}_r(y), \widetilde{\mu}_s(y')]
= [\widetilde{\mu}_r(y), \widetilde{\mu}_s(y')]
= [\widetilde{\mu}(y), \widetilde{\mu}_s(y')]. \quad \square$$

因为 $[G_{-1},G_{-1}]=0$, 所以 G_{-1} 是 Abel 李超代数. 于是 Ω/J 是 G_{-1} 的泛包络代数. 取 $R=\mathbb{F}$. 由第三章 §1 节知

$$U_R^* = U_R^{(*)} = \operatorname{Hom}_f(\Omega, \mathbf{F}),$$

并且 U_R^* 是一个结合超代数. 简记 U_R^* 为 U^* , 即 $U^* = \operatorname{Hom}_f(\Omega, \mathbb{F})$. 由第三章引理 1.3 知, $\{x^{(\alpha)}x^u \mid \alpha \in A(m), u \in B(n)\}$ 是 U^* 的一个 \mathbb{F} - 基底, 其中 $x^{(\alpha)}x^u \in \operatorname{Hom}_f(\Omega, \mathbb{F})$, 使 得对任意 $x^{\beta}\xi^{\nu} \in \Omega$, 有

$$x^{(\alpha)}x^{u}(ax^{\beta}\xi^{v}) = (-1)^{d(a)}\varepsilon(a)\delta(\alpha,\beta)\delta(u,v)$$

= $a\delta(\alpha,\beta)\delta(u,v)$,

这里 $a \in R = \mathbb{F}$, $\delta(,)$ 是 Kronecker 符号函数. 由第三章定理 1.7 知, $U^* \cong \Lambda(m, n)$, 从 而 $U^* = \bigoplus_{r>0} U_r^*$ 是 \mathbb{Z} - 阶化超代数, 其中

$$U_r^* = \operatorname{span}_{\mathbb{F}} \{ x^{\{\alpha\}} x^u \mid |\alpha| + |u| = r \}.$$

设 $r \ge -1$. 定义线性映射 $\eta_r: U_{r+1}^* \otimes G_{-1} \to \text{Hom}(\Omega_{r+1}, G_{-1})$, 使得

$$\eta_r(x^{(\alpha)}x^u \otimes y)(x^{\beta}\xi^v) := (-1)^{(|u|+q)q}\delta(\alpha,\beta)\delta(u,v)y, \qquad (1.13)$$

其中 $q \in \{0,1\}$, 并且 $\bar{q} = d(y)$. 考察维数知, η_r 是有限维 \mathbb{Z}_2 - 阶化空间的同构映射. 于是族 $\{\eta_r \mid r \geq -1\}$ 定义了 \mathbb{Z} - 阶化线性空间的同构映射

$$\eta: U^* \otimes G_{-1} \to \operatorname{Hom}_f(\Omega, G_{-1}),$$

使得 $\eta|_{U_{r+1}^*\otimes G_{-1}}=\eta_r,\ \forall r\geq -1.$ 设 D_i 是 U^* 的线性变换, $\forall i\in Y$, 且满足

$$D_{i}(x^{(\alpha)}x^{u}) := \begin{cases} x^{(\alpha-\varepsilon_{i})}x^{u}, & i \in Y_{0}, \\ \operatorname{sgn}(\langle i \rangle, u - \langle i \rangle)x^{(\alpha)}x^{u-\langle i \rangle}, & i \in Y_{1}. \end{cases}$$
(1.14)

若 $j \in Y_0$, 则令 $\lambda(j) = 0$, $z_j = x_j$; 若 $j \in Y_1$, 则令 $\lambda(j) = 1$, $z_j = \xi_j$. 在空间 $U^* \otimes G_{-1}$ 中定义双线性运算 [,], 使得

$$\langle x^{(\alpha)} x^{u} \otimes z_{i}, x^{(\beta)} x^{v} \otimes z_{j} \rangle = x^{(\alpha)} x^{u} \langle D_{i}(x^{(\beta)} x^{v}) \rangle \otimes z_{j}$$

$$= (-1)^{\left(|u| + \lambda(i)\right)\left(|v| + \lambda(j)\right)} x^{(\beta)} x^{v} \langle D_{j}(x^{(\alpha)} x^{u}) \rangle \otimes z_{i}, \ \forall i, j \in Y.$$

$$(1.15)$$

号理 1.6 $\eta([x^{(\alpha)}x^u\otimes z_i,x^{(\beta)}x^v\otimes z_j])=[\eta(x^{(\alpha)}x^u\otimes z_i),\eta(x^{(\beta)}x^v\otimes z_j)], 其中 x^{(\alpha)}x^u\in U_{r+1}^*, x^{(\beta)}x^v\in U_{s+1}^*, i,j\in Y.$

证明 我们仅证 $i \in Y_0$, $j \in Y_1$ 的情形. 对 i, j 为其余情形, 证明是相仿的. 由 (1.12) 与 (1.13) 式, 有

$$[\eta(x^{(\alpha)}x^{u}\otimes x_{i}),\eta(x^{(\beta)}x^{v}\otimes \xi_{j})](x^{\gamma}\xi^{w})$$

$$=\sum_{(\rho,e)\in M(\gamma,w,r+1)}(-1)^{|u|(|v|+1)+|u||w-e|}\binom{\gamma}{\rho}\operatorname{sgn}(e,w-e)$$

$$\cdot\eta(x^{(\beta)}x^{v}\otimes \xi_{j})\left((\eta(x^{(\alpha)}x^{u}\otimes x_{i})(x^{\rho}\xi^{e}))x^{\gamma-\rho}\xi^{w-e}\right)$$

$$-\sum_{(\rho,e)\in M(\gamma,w,s+1)}(-1)^{(|v|+1)|w-e|}\binom{\gamma}{\rho}\operatorname{sgn}(e,w-e)$$

$$\cdot\eta(x^{(\alpha)}x^{u}\otimes x_{i})\left((\eta(x^{(\beta)}x^{v}\otimes \xi_{j})(x^{\rho}\xi^{e}))x^{\gamma-\rho}\xi^{w-e}\right)$$

$$=\sum_{(\rho,e)\in M(\gamma,w,r+1)}(-1)^{|u|(|v|+1)+|u||w-e|}\binom{\gamma}{\rho}\operatorname{sgn}(e,w-e)$$

$$\cdot\eta(x^{(\beta)}x^{v}\otimes \xi_{j})(\delta(\alpha,\rho)\delta(u,e)x^{\gamma-\rho+e_{i}}\xi^{w-e})$$

$$-\sum_{(\rho,e)\in M(\gamma,w,s+1)}(-1)^{(|v|+1)|w-e|+|v|+1}\binom{\gamma}{\rho}\operatorname{sgn}(e,w-e)$$

$$\cdot\eta(x^{(\alpha)}x^{u}\otimes x_{i})(\delta(\beta,\rho)\delta(u,e)x^{\gamma-\rho}\xi_{j}\xi^{w-e})$$

$$=(-1)^{|u|(|v|+1)+|u||w-u|}\binom{\gamma}{\alpha}\operatorname{sgn}(u,w-u)$$

$$\cdot\eta(x^{(\beta)}x^{v}\otimes \xi_{j})(x^{\gamma-\alpha+e_{i}}\xi^{w-u})$$

$$-(-1)^{(|v|+1)|w-v|+|v|+1}\binom{\gamma}{\beta}\operatorname{sgn}(v,w-v)\operatorname{sgn}(\langle j\rangle,w-v)$$

$$\cdot\eta(x^{(\alpha)}x^{u}\otimes x_{i})(x^{\gamma-\beta}\xi^{w-v-\langle j\rangle})$$

$$=(-1)^{|u|(|v|+1)+|u||w-u|+|v|+1}\binom{\gamma}{\alpha}\operatorname{sgn}(u,w-u)$$

$$\cdot\delta(\beta,\gamma-\alpha+\varepsilon_{i})\delta(v,w-v)\xi_{j}$$

$$-(-1)^{(|v|+1)|w-v|+|v|+1}\binom{\gamma}{\beta}\operatorname{sgn}(v,w-v)\operatorname{sgn}(\langle j\rangle,w-v)$$

$$\begin{split} & \cdot \delta(\alpha, \gamma - \beta) \delta(u, w - v - \langle j \rangle) x_{i} \\ = & (-1)^{|u| + |v| + 1} \binom{\gamma}{\alpha} \operatorname{sgn}(u, v) \delta(\beta, \gamma - \alpha + \varepsilon_{i}) \delta(v, w - u) \xi_{j} \\ & - (-1)^{(|v| + 1)|u - \langle j \rangle| + |v| + 1} \binom{\gamma}{\beta} \operatorname{sgn}(v, u - \langle j \rangle) \\ & \cdot \operatorname{sgn}(\langle j \rangle, u - \langle j \rangle) \delta(\alpha + \beta, \gamma) \delta(u - \langle j \rangle, w - v) x_{i} \\ = & (-1)^{|u| + |v| + 1} \binom{\alpha + \beta - \varepsilon_{i}}{\alpha} \operatorname{sgn}(u, v) \delta(\alpha + \beta - \varepsilon_{i}, \gamma) \delta(u + v, w) \xi_{j} \\ & - (-1)^{|u|(|v| + 1)} \binom{\alpha + \beta}{\beta} \operatorname{sgn}(\langle j \rangle, u - \langle j \rangle) \\ & \cdot \operatorname{sgn}(v, u - \langle j \rangle) \delta(\alpha + \beta, \gamma) \delta(u + v - \langle j \rangle, w) x_{i}. \end{split}$$

由 (1.15) 与 (1.13) 式,有

$$\eta([x^{(\alpha)}x^{u} \otimes x_{i}, x^{(\beta)}x^{v} \otimes \xi_{j}])(x^{\gamma}\xi^{w})$$

$$=\eta(x^{(\alpha)}x^{u}x^{(\beta-\epsilon_{i})}x^{v} \otimes \xi_{j})(x^{\gamma}\xi^{w})$$

$$-(-1)^{|u|(|v|-1)}\operatorname{sgn}(\langle j\rangle, u - \langle j\rangle)\eta(x^{(\beta)}x^{v}x^{(\alpha)}x^{u-\langle j\rangle} \otimes x_{i})(x^{\gamma}\xi^{w})$$

$$=\binom{\alpha+\beta-\epsilon_{i}}{\alpha}\operatorname{sgn}(u,v)\eta(x^{(\alpha+\beta-\epsilon_{i})}x^{u+v} \otimes \xi_{j})(x^{\gamma}\xi^{w})$$

$$-(-1)^{|u|(|v|-1)}\binom{\alpha+\beta}{\beta}\operatorname{sgn}(\langle j\rangle, u - \langle j\rangle)$$

$$\cdot \operatorname{sgn}(v, u - \langle j\rangle)\eta(x^{(\alpha+\beta)}x^{v+u-\langle j\rangle} \otimes x_{i})(x^{\gamma}\xi^{w})$$

$$=(-1)^{|u|+|v|+1}\binom{\alpha+\beta-\epsilon_{i}}{\alpha}\operatorname{sgn}(u,v)\delta(\alpha+\beta-\epsilon_{i},\gamma)\delta(u+v,w)\xi_{j}$$

$$-(-1)^{|u|(|v|+1)}\binom{\alpha+\beta}{\beta}\operatorname{sgn}(\langle j\rangle, u - \langle j\rangle)$$

$$\cdot \operatorname{sgn}(v, u - \langle j\rangle)\delta(\alpha+\beta,\gamma)\delta(u+v - \langle j\rangle, w)x_{i},$$

所以

$$\eta\big([x^{(\alpha)}x^u\otimes x_i,x^{(\beta)}x^v\otimes \xi_j]\big)=[\eta(x^{(\alpha)}x^u\otimes x_i),\eta(x^{(\beta)}x^v\otimes \xi_j)].$$

引理得证. □

由第一章 §2 节知,

$$\mathbf{W}(m,n) = \operatorname{span}_{\mathbf{F}}\{x^{(\alpha)}x^{u}\mathbf{D}_{i} \mid \alpha \in A(m), \ u \in B(n), \ i \in Y\}.$$

定义线性映射 $g: U^* \otimes G_{-1} \to W(m,n)$, 使得 $g(x^{(\alpha)}x^u \otimes z_i) := x^{(\alpha)}x^u D_i$. 易见, g 是线

性空间的同构. 利用 (1.15) 式, 直接验证可知

$$g([x^{(\alpha)}x^u \otimes z_i, x^{(\beta)}x^v \otimes z_j]) = [g(x^{(\alpha)}x^u \otimes z_i), g(x^{(\beta)}x^v \otimes z_j)]. \tag{1.16}$$

定理 1.7 设 char $\mathbb{F} \neq 2$. 今 $G = \bigoplus_{i \geq -1} G_i$ 是 \mathbb{F} 上的可迁的 \mathbb{Z} - 阶化李超代数. 设 dim $(G_{-1} \cap G_{\overline{0}}) = m$, dim $(G_{-1} \cap G_{\overline{1}}) = n$, 则存在 G 到李超代数 W(m,n) 的保持 \mathbb{Z} - 阶化的单同态 ϕ , 使得 $\phi(G_{-1}) = W(m,n)_{-1}$.

证明 因为 W(m,n) 是李超代数, 所以由 (1.16) 式知, (1.15) 式定义的方括号运算使得 $U^* \otimes G_{-1}$ 是李超代数, 并且 g 是 $U^* \otimes G_{-1}$ 到 W(m,n) 的同构映射. 易见 (1.12) 式定义的运算 [,] 可以线性扩充到 $Hom_f(\Omega,G_{-1})$ 上. 由于 $U^* \otimes G_{-1}$ 是李超代数, 于是由引理 1.6 知, $Hom_f(\Omega,G_{-1})$ 关于它的运算 [,] 是一个李超代数, 并且 η 是 $U^* \otimes G_{-1}$ 到 $Hom_f(\Omega,G_{-1})$ 的同构映射. 从而 η^{-1} 是 $Hom_f(\Omega,G_{-1})$ 到 $U^* \otimes G_{-1}$ 的同构映射. 由引理 1.5 知, $\widetilde{\mu}$ 是 G 到李超代数 $Hom_f(\Omega,G_{-1})$ 的单同态. 因此 $\phi:=g\eta^{-1}\widetilde{\mu}$ 是 G 到 W(m,n) 的单同态.

显然 $\{z_i \mid i \in Y\}$ 是 G_{-1} 的 \mathbb{F} - 基底. 由 $\widetilde{\mu}$ 与 η 的定义知, $\widetilde{\mu}(z_i) = \eta(z_i)$, 于 是 $\eta^{-1}\widetilde{\mu}(z_i) = z_i$. 故 $\phi(z_i) = g\eta^{-1}\widetilde{\mu}(z_i) = g(z_i) = D_i$, $\forall i \in Y$. 从而可知 $\phi(G_{-1}) = W(m,n)_{-1}$.

若 $G = \bigoplus_{i \geq -1} G_i$ 的 \mathbb{Z} - 阶化与 \mathbb{Z}_2 - 阶化是相容的, 则 $G_{-1} = G_{-1} \cap G_{\overline{1}} = V_i$. 所以 $V_0 = 0$, 故 m = 0. 由定理 1.7 知, 存在 G 到 W(0,n) 的单同态 ϕ , 使得 $\phi(G_{-1}) = W(0,n)_{-1}$. 因为 W(0,n) 就是第一章 §2 节中定义的李超代数 W(n), 所以有以下推论.

推论 1.8 设 charF \neq 2. 令 $G = \bigoplus_{i \geq -1} G_i$ 是 F 上可迁的 Z- 阶化李超代数, dim $G_{-1} = n$. 若 G 的 Z- 阶化与 Z₂- 阶化是相容的,则 G 可嵌入到有限维李超代数 W(n) 中.

下面我们给出定理 1.7 在限制李超代数上的一个应用,为此需要给出以下几个概念. 以下本节总设 charF = p > 2. 文献 [24] 给出了限制李代数的定义:

定义 1.9 设 L 是城 \mathbb{F} 上的李代数. 若存在 L 到自身的映射 [p], 使得 $a \mapsto a^{[p]}$, $\forall a \in L$, 并且满足

- (1) ad $a^{[p]} = (\operatorname{ad} a)^p$, $\forall a \in L$,
- (2) $(ka)^{[p]} = k^p a^{[p]}, \ \forall k \in \mathbb{F}, \ \forall a \in L,$
- (3) $(a+b)^{[p]} = a^{[p]} + b^{[p]} + \sum_{i=1}^{p} s_i(a,b), \forall a,b \in L.$

其中 $is_i(a,b)$ 是 $(ad(a\lambda+b)^{p-1})(a)$ 中 λ^{i-1} 的系数, 则称 (L,[p]) 是限制李代数, 简称 L 是限制李代数.

设 H 是限制李代数 (L,[p]) 的子代数. 若对任意 $x \in H$, 均有 $x^{[p]} \in H$, 则称 H 是 L 的限制子代数. 显然, L 的限制子代数 H 也是限制李代数.

设 ρ 是限制李代数 L 在空间 V 上的表示, 如果 $\rho(x^{[p]}) = \rho(x)^p$, $\forall x \in L$, 则称 ρ 是 L 的一个限制表示.

下面的限制李超代数的定义是由文献 [42] 给出的.

定义 1.10 设 $L = L_0 \oplus L_1$ 是城 F 上的李超代数. 若 L_0 是限制李代数, 并且 L_0 -模 L_1 所提供的表示是限制表示, 则称 L 是限制李超代数.

例 1.11 设 $A = A_{\overline{1}} \oplus A_{\overline{1}}$ 是 F 上的结合超代数. 由第一章例 1.7知 A^{-} 是一个李超代数. 作为线性空间, A 与 A^{-} 相同, 并且 $(A^{-})_{\overline{0}}$ 与 $A_{\overline{0}}$ 相同, $(A^{-})_{\overline{1}}$ 与 $A_{\overline{1}}$ 相同. 任取 $x \in A^{-}$, 令 $x^{[p]} := x^{p}$ (这里 x^{p} 表示 p 个 x 在结合代数 A 中的乘积). 直接验证可知(或见文献 [24] 的 188 页), $(A^{-})_{\overline{0}}$ 是限制李代数. 任取 $x \in (A^{-})_{\overline{0}}$, $y \in (A^{-})_{\overline{1}}$, 则有

$$(\operatorname{ad} x)^p(y) = \sum_{i=0}^p (-1)^{p-i} \binom{p}{i} x^i y x^{p-i} = x^p y - y x^p = \operatorname{ad} x^p(y).$$
 (1.17)

所以 $(adx)^p = adx^p = adx^{[p]}$. 于是 $(A^-)_{\overline{0}}$ 在 $(A^-)_{\overline{1}}$ 上的表示是限制表示,所以 A^- 是限制李超代数.

特别地, 若 V 是任一个 \mathbb{Z}_2 - 阶化空间, 由于 $\operatorname{pl}(V) = (\operatorname{End}(V))^-$, 所以 $\operatorname{pl}(V)$ 是限 制李超代数.

引理 1.12 若 $A = A_{\overline{1}} \oplus A_{\overline{1}}$ 是城 F 上的结合超代数. 则 Der(A) 是限制李超代数.

证明 易见, Der(A) 是 pl(A) 的子代数, 所以 $Der_{\overline{0}}(A)$ 是李代数, 并且它是 $pl_{\overline{0}}(A)$ 的子代数. 因为 $pl(A) = (End(A))^{-}$, 由例 1.11 知, pl(A) 是限制李超代数. 并且 $D^{[p]} = D^{p}$, $\forall D \in pl(A)$, 特别地, $pl_{\overline{0}}(A)$ 是限制李代数. 任取 $D \in Der_{\overline{0}}(A)$. 由 Leibniz 公式知,

$$D^p(ab)=\sum_{i=0}^pinom{p}{i}(D^ia)(D^{p-i}b)=(D^pa)b+a(D^pb),\ orall a,b\in A.$$

因此 $D^p \in \operatorname{Der}_{\overline{0}}(A)$. 于是 $\operatorname{Der}_{\overline{0}}(A)$ 是 $\operatorname{pl}_{\overline{0}}(A)$ 的限制子代数, 从而 $\operatorname{Der}_{\overline{0}}(A)$ 是限制字代数.

任取 $D \in \operatorname{Der}_{\overline{0}}(A)$, $E \in \operatorname{Der}_{\overline{1}}(A)$. 由 (1.17) 式知,

$$(\operatorname{ad} D)^{p}(E) = \operatorname{ad} D^{p}(E).$$

所以 $(ad D)^p = ad D^p$, 故 $Der_{\overline{0}}(A)$ 在 $Der_{\overline{1}}(A)$ 上的表示是限制表示. 因此 Der(A) 是限制李超代数. \Box

命题 1.13 W(m, n, 1) 是限制手超代数, 其中 $1 = (1, 1, \dots, 1)$.

证明 由引理 1.12 知, Der $(\Lambda(m,n,\underline{1}))$ 是限制李超代数. 下面证明 $W(m,n,\underline{1}) = Der (\Lambda(m,n,\underline{1}))$.

显然, $W(m,n,\underline{1})\subseteq Der(\Lambda(m,n,\underline{1}))$. 设 $D\in Der_{\theta}(\Lambda(m,n,\underline{1}))$, 其中 $\theta\in\mathbb{Z}_2$. 断言 $D=\sum_{i\in Y}D(x_i)D_i$. 事实上, $D(x_i)=(\sum_{i\in Y}D(x_i)D_i)(x_i)$; 另一方面, $\Lambda(m,n,\underline{1})$ 可由 x_1,\cdots,x_s 生成. 由于导子由它在代数的生成元上的作用所惟一决定, 所以断言成立, 从而 $Der(\Lambda(m,n,\underline{1}))\subseteq W(m,n,\underline{1})$. 于是 $Der(\Lambda(m,n,\underline{1}))=W(m,n,\underline{1})$. 这就证明了 $W(m,n,\underline{1})$ 是限制李超代数.

引理 1.14 1) $W(m,n)_{-1} \oplus W(m,n)_1$ 生成的 W(m,n) 的子代数包含 $W(m,n,\underline{1})$.

2) 设 $G = \bigoplus_{i \geq -1} G_i$ 是 Z- 阶化的限制李超代数, 若 $x \in G_{-1} \cap G_{\overline{0}}$, 则 $(ad x)^p = 0$. 证明 1) 利用 p > 2 可推得 $W(m,n)_{-1} = W(m,n,\underline{1})_{-1}$ 与 $W(m,n)_1 = W(m,n,\underline{1})_1$. 对 r 用归纳法, 直接验证可知

$$[\mathbf{W}(m,n,\underline{1})_r,\mathbf{W}(m,n,\underline{1})_1]=\mathbf{W}(m,n,\underline{1})_{r+1}.$$

从而可推得 1).

2) 设 $x \in G_{-1} \cap G_0$. 因为 G 是限制李超代数, 所以 G_0 是限制李代数, 并且 G_0 模 G_1 所提供的表示是限制的, 从而 $(\operatorname{ad} x)^p = \operatorname{ad} x^{[p]}$. 因为 $x^{[p]} \in G$, 所以 $\operatorname{ad} x^{[p]}$ 的 最小 Z- 齐次成分的 Z- 次数 ≥ -1 . 若 $(\operatorname{ad} x)^p \neq 0$, 则 $(\operatorname{ad} x)^p$ 的 Z- 次数是 -p. 此 与 $(\operatorname{ad} x)^p = \operatorname{ad} x^{[p]}$ 矛盾, 所以 $(\operatorname{ad} x)^p = 0$.

定理 1.15 设 char $\mathbb{F} = p > 2$. 令 $G = \bigoplus_{i \geq -1} G_i$ 是 \mathbb{F} 上的可迁的 \mathbb{Z} - 阶化限制 李超代数. 设 dim $(G_{-1} \cap G_{\overline{0}}) = m$, dim $(G_{-1} \cap G_{\overline{1}}) = n$. 若 dim $G_1 = s\binom{s}{2} + sm$, 其中 s = m + n, 则 $G \cong W(m, n, \underline{1})$.

证明 由定理 1.7, 可设 G 是 W(m,n) 的子代数, 并且 $G_{-1} = W(m,n)_{-1}$, $G_1 \subseteq W(m,n)$. 考察维数知, $G_1 = W(m,n)_1$. 由引理 1.14 的 1) 知, $G \supseteq W(m,n,\underline{1})$. 若存在 $E \in G$ 使得 $E \notin W(m,n,\underline{1})$, 由于 $G \subseteq W(m,n,\underline{1})$, 则可设 $E = \sum_{i=1}^n f_i D_i$, 其中 $f_i \in \Lambda(m,n)$, 并且有某个 $f_i \notin \Lambda(m,n,\underline{1})$. 于是存在 $f_i \in Y_0$, 使得 $D_f^p(f_i) \neq 0$. 从而可知 $(\operatorname{ad} D_f)^p(E) \neq 0$; 特别地, $(\operatorname{ad} D_f)^p \neq 0$. 此与引理 1.14 的 2) 矛盾, 所以 $G = W(m,n,\underline{1})$.

推论 1.16 设 $G = \bigoplus_{i \geq -1} G_i$ 是具有相容 \mathbb{Z} - 阶化的可迁的限制李超代数. 令 $\dim G_{-1} = n$. 若 $\dim G_1 = n\binom{n}{2}$, 则 G 同构于李超代数 W(n).

证明 由推论 1.8, 在同构的意义下, 可设 G 是 W(n) 的子代数, 并且 $G_{-1} = W(n)_{-1}$, $G_1 \subseteq W(n)_1$. 因为 $\dim G_{-1} = n\binom{n}{2} = \dim W(n)_1$, 所以 $G_1 = W(n)_1$. 又因为 $W(n)_{-1} \cup W(n)_1$ 生成 W(n), 所以 G = W(n).

§2 利用底部确定 W 型与 S 型李超代数

在本节中,我们利用上节的嵌入定理,确定出底部的零次成分为一般线性李超代数与特殊线性李超代数的深度 1 的 \mathbb{Z} 阶化李超代数.本节总设 charF = p > 3,在定理 2.12 中,我们还设 F 是代数闭域.首先叙述文献 [31] 给出的除幂代数的定义.

设 V 是域 \mathbb{F} 上的 m 维线性空间. V 上的除幂代数 $\mathcal{U}(V)$ 是具有生成元集 $\{x^{(h)} \mid x \in V, h \in \mathbb{N}_0\}$ 与以下定义关系的 \mathbb{F} - 代数:

$$(x+y)^{(h)} = \sum_{i=0}^{h} x^{(i)} y^{(h-i)}, \qquad (ax)^{(h)} = a^h x^{(h)},$$

$$x^{(h)}x^{(k)} = {h+k \choose h}x^{(h+k)}, \qquad x^{(h)}y^{(k)} = y^{(k)}x^{(h)},$$
 $x^{(0)} = 1,$

其中 $x,y \in V$, $a \in \mathbb{F}$, $h,k \in \mathbb{N}_0$. 设 x_1, \dots, x_m 是 V 的基底. 由以上的定义关系可知, U(V) 是一个交换代数, 并且 U(V) 的任一元素可表为以下形式:

$$\sum a_{\alpha_1\cdots\alpha_m}x_1^{(\alpha_1)}\cdots x_m^{(\alpha_m)},$$

其中 $\alpha_1, \dots, \alpha_m \in \mathbb{N}_0$, $a_{\alpha_1 \dots \alpha_m} \in \mathbb{F}$. 我们简记 $\mathcal{U}(V)$ 中元素 $x_1^{(\alpha_1)} \dots x_m^{(\alpha_m)}$ 为 $x^{(\alpha)}$, 其中 $\alpha = (\alpha_1, \dots, \alpha_m)$. 于是 $x_i^{(k)} = x^{(k\epsilon_i)}$, $k \in \mathbb{N}_0$. 仍记 $x_i^{(1)} = x^{(\epsilon_i)}$ 为 x_i , $i \in Y_0$. 令 $\beta = (\beta_1, \dots, \beta_m) \in \mathbb{N}_0^m$, 则 $x^{(\beta)} \in \mathcal{U}(V)$. 显然

$$x^{(\alpha)}x^{(\beta)} = x_1^{(\alpha_1)} \cdots x_m^{(\alpha_m)}x_1^{(\beta_1)} \cdots x_m^{(\beta_m)} = {\alpha+\beta \choose \alpha}x^{(\alpha+\beta)}$$

所以 u(V) 就是第一章 §2 节中定义的除幂代数 u(m). 在本节中, 我们不用 u(m), 而是用 u(V) 表示 V 上的除幂代数, 目的是以后将在 V 上附加有用的条件.

我们仍用 $\Lambda(n)$ 表示具有 n 个生成元 x_{m+1}, \dots, x_s 的外代数, 其中 s=m+n. 令 $\Lambda(V,n)=U(V)\otimes \Lambda(n)$, 则 $\Lambda(V,n)=\Lambda(m,n)$. 同样, 我们有

$$egin{aligned} & \mathbf{W}(V,n) = \left\{\sum_{i=1}^s f_i \mathbf{D}_i \ \middle| \ f_i \in \Lambda(V,n), \ i \in Y
ight\} = \mathbf{W}(m,n), \\ & \mathbf{S}(V,n) = \operatorname{span}_{\mathbf{F}} \left\{ \mathbf{D}_{ij}(f) \ \middle| \ f \in \Lambda(V,n), \ i,j \in Y \right\} = \mathbf{S}(m,n), \\ & \overline{\mathbf{S}}(V,n) := \left\{ y \in \mathbf{W}(V,n) \ \middle| \ \operatorname{div}(y) = 0 \right\}, \end{aligned}$$

其中 div: $W(V,n) \rightarrow \Lambda(V,n)$ 是线性映射, 使得

$$\operatorname{div}(f\mathrm{D}_i) = (-1)^{\operatorname{d}(f)\tau(i)}\mathrm{D}_i(f), \quad \forall f \in \operatorname{hg}\big(\Lambda(V,n)\big), \ \forall i \in Y.$$

引理 2.1 $S(V,n) = \overline{S}(V,n)$.

证明 由第二章引理 3.9 的证明知, $\operatorname{div}(D_{ij}(f))=0$, $\forall i,j\in Y,\,f\in\Lambda(V,n)$, 所以 $\operatorname{S}(V,n)\subseteq\overline{\operatorname{S}}(V,n)$.

设 $y \in \overline{S}(V, n)$, 分以下两个步骤证明 $y \in S(V, n)$.

(i) $y = f D_m$. 可设 $f = \sum_{\alpha,u} a_{\alpha u} x^{(\alpha)} x^u$, 其中 $\alpha \in \mathbb{N}_0^m, u \in B(n), a_{\alpha u} \in \mathbb{F}$. 因为 $\operatorname{div}(y) = 0$, 所以

$$\sum_{\alpha,u} a_{\alpha u} x^{(\alpha - \varepsilon_m)} x^u = 0. \tag{2.1}$$

令 $R(m) = \{\alpha \in \mathbb{N}_0^m \mid \alpha_m = 0\}$. 若 $\alpha \in \mathbb{N}_0^m \setminus R(m)$, 由 (2.1) 式可知 $a_{\alpha u} = 0$, 所以

$$y = \sum_{\alpha \in R(m), u \in B(n)} a_{\alpha u} x^{(\alpha)} x^{u} D_{m}$$

$$= \sum_{\alpha \in R(m), u \in B(n)} a_{\alpha u} \mathcal{D}_{1m}(x^{(\alpha+\varepsilon_1)}x^u) \in \mathcal{S}(V, n).$$

(ii)
$$y = \sum_{i=1}^{s} \sum_{\alpha,u} a_{\alpha u}^{i} x^{(\alpha)} x^{u} D_{i}, \quad a_{\alpha u}^{i} \in \mathbf{F}.$$
 (2.2)

$$x^{(\alpha)}x^{u}D_{i} = D_{mi}(x^{(\alpha+\epsilon_{m})}x^{u}) + x^{(\alpha+\epsilon_{m}-\epsilon_{i})}x^{u}D_{m}.$$
 (2.3)

若 $i \in Y_1$, 由 $D_i(x^{(u)}) = \operatorname{sgn}(\langle i \rangle, u - \langle i \rangle) x^{u - \langle i \rangle}$ 可知

$$x^{(\alpha)}x^{u}D_{i} = (-1)^{|u|}\operatorname{sgn}(\langle i\rangle, u - \langle i\rangle)x^{(\alpha+\epsilon_{m})}x^{u-\langle i\rangle}D_{m} + D_{m}(x^{(\alpha+\epsilon_{m})}x^{u}).$$

$$(2.4)$$

由 (2.2), (2.3) 与 (2.4) 式可得 $y = fD_m + z$, 其中 $f \in \Lambda(V,n)$, $z \in S(V,n)$. 由 (i) 知 $fD_m \in S(V,n)$, 因此 $y \in S(V,n)$. 所以 $S'(V,n) \subseteq S(V,n)$.

引理 2.2 设 $y \in W(V,n)_k$, 其中 $k \geq 1$. 若 $[D_j,y] \in S(V,n)_{k-1}$, $\forall j \in Y$, 则 $y \in S(V,n)_k$.

证明 设 $y = \sum_{i=1}^s f_i D_i$. 因为 $[D_j, y] \in S(V, n)_{k-1} \subseteq \overline{S}(V, n)$, 所以 $\operatorname{div}([D_j, y]) = 0$, $\forall j \in Y$. 于是

$$\sum_{i=1}^{s} (-1)^{\left(\operatorname{d}(f_{i})+\tau(j)\right)\tau(i)} \operatorname{D}_{i} \operatorname{D}_{j}(f_{i}) = 0.$$

所以

$$D_j\left(\sum_{i=1}^s (-1)^{d(f_i)\tau(i)}D_i(f_i)\right)=0.$$

因此 $D_j(\operatorname{div}(y)) = 0, \ \forall j \in Y.$ 故 $\operatorname{div}(y) \in \Lambda(V,n)_0 \cap \Lambda(V,n)_1 = 0.$ 于是

$$y \in \overline{S}(V, n) \cap W(V, n)_k = \overline{S}(V, n)_k = S(V, n)_k.$$

设 $h = \sum_{i=1}^s x_i D_i$, $\widetilde{W} = \{fh \mid f \in \Lambda(V, n)\}$, $\widetilde{W}_1 = \widetilde{W} \cap W(V, n)$. 引理 2.3 1) $[\widetilde{W}_1, \widetilde{W}_1] = 0$.

2) \widetilde{W}_1 是不可约的 $X(V,n)_0$ - 模, 其中 $X=W,\widetilde{W}$ 或 S.

证明 易见 $\{x_k h \mid k \in Y\}$ 是 \widetilde{W}_1 的 F- 基底.

1) 由第一章引理 2.5 的 1) 知

$$[x_k h, x_l h] = x_k h(x_l) h - (-1)^{\tau(k)\tau(l)} x_l h(x_k) h$$
$$= x_k x_l h - (-1)^{\tau(k)\tau(l)} x_l x_k h = 0,$$

所以 $[\widetilde{\mathbf{W}}_1,\widetilde{\mathbf{W}}_1] = 0$.

2) 设 $x_i D_i \in W(V, n)_0$. 则

$$[x_i \mathbf{D}_l, x_l h] = \sum_{k=1}^{s} [x_i \mathbf{D}_l, x_l x_k \mathbf{D}_k]$$

$$= \sum_{k=1}^{s} x_i x_k \mathbf{D}_k + (-1)^{\tau(l)} x_i x_l \mathbf{D}_l - (-1)^{\left(\tau(i) + \tau(l)\right)\tau(l)} x_l \mathbf{D}_l \mathbf{D}_l$$

$$= \sum_{k=1}^{s} x_i x_k \mathbf{D}_k = x_i h \in \widetilde{\mathbf{W}}_1.$$

若 j ≠ l, 则

$$[x_i\mathrm{D}_j,x_lh]=\left[x_i\mathrm{D}_j,\sum_{k=1}^sx_lx_k\mathrm{D}_k
ight]=0\ \in\widetilde{\mathrm{W}}_1.$$

所以 \widetilde{W}_1 是W(V,n)-模,从而 \widetilde{W}_1 也是 $\overline{S}(V,n)$ -模与S(V,n)-模.

设 $M \neq S(V,n)_0$ - 模 \widetilde{W}_1 的非零子模, $\sum_{k=1}^s a_k(x_k h)$ 是 M 的非零元, 其中 $a_k \in \mathbb{F}$. 不妨设 $a_i \neq 0$. 设 $i \in Y \setminus \{l\}$, 则 $x_i D_l \in S(V,n)_0$, 并且

$$[x_i\mathrm{D}_l,\sum_{k=1}^s a_k(x_kh)]=a_lx_ih\ \in M.$$

所以 $x_ih \in M$, $\forall i \in Y \setminus \{l\}$. 又因为 $[x_lD_i, x_ih] = x_lh \in M$, 所以 M 包含 \widetilde{W}_1 的 \mathbb{F} - 基底, 故 $M = \widetilde{W}_1$. 这就证明了 \widetilde{W}_1 是不可约的 S(V, n)- 模, 从而 \widetilde{W}_1 也是不可约的 $\overline{S}(V, n)$ - 模与不可约的 W(V, n)- 模.

引理 2.4 设 $L = \bigoplus_{i \geq -1} L_i$ 是 W(V,n) 的 Z- 阶化子代数, 并且 $L_1 \neq 0$. 今 $I = \{a_{ilj}x_ix_lD_j \mid i,l,j \in Y, j \notin \{i,l\}, a_{ilj} \in \mathbb{F}\}$. 若 $L_1 \cap I = \{0\}$, 并且 $L_i \subseteq S(V,n)_i$, i = -1,0, 則 $L_1 = \widetilde{W}_1$.

证明 设 $y = \sum_{k=1}^s f_k D_k$ 是 L_1 的 \mathbb{Z}_2 - 齐次元素. 令 $i \in Y_0$, $j \in Y_0 \setminus \{i\}$, 则 $x_i D_j \in \overline{S}(V,n)_0 = S(V,n)_0 \subseteq L_0$. 再由 $y \in L_1$ 知 $(\operatorname{ad} x_i D_j)^3(y) \in L_1$, 于是

$$(\operatorname{ad} x_i \operatorname{D}_j)^3(y) = -3(\operatorname{D}_j^2(f_i))x_ix_i\operatorname{D}_j \in L_1 \cap I.$$

由已知 $L_1 \cap I = \{0\}$, 所以 $D_j^2(f_i) = 0$. 令 $j \in Y_0$, $i \in Y_1$, 取 $l \in Y_0 \setminus \{j\}$, 则 $D_j^2(f_l) = 0$. 于是

$$(\operatorname{ad} x_l \mathrm{D}_j)^2 (\operatorname{ad} x_i \mathrm{D}_j)(y) = -(-1)^{\operatorname{d}(y)} 2 (\mathrm{D}_j^2(f_i)) x_l x_l \mathrm{D}_j \in L_1 \cap I = \{0\}.$$

因此 $D_j^2(f_i)=0$.

若 $j \in Y_1$, 显然 $D_j^2(f_i) = 0$. 综上, 我们有

$$D_j^2(f_i) = 0, i, j \in Y, i \neq j.$$
 (2.5)

设 $i,j,l \in Y$, 并且 i,j,l 互不相同. 若 $i \in Y_1$, 取 $h \in Y \setminus \{i,j,l\}$, 由计算知

$$\begin{split} \left[x_h \mathbf{D}_j, \left[x_i \mathbf{D}_l, \left[x_i \mathbf{D}_j, y\right]\right]\right] \\ &= -(-1)^{\left(\tau(i) + \tau(j)\right) \mathbf{d} \cdot \left(y\right) + \left(\tau(h) + \tau(j)\right) \tau(i)} \left(\mathbf{D}_j \mathbf{D}_l(f_i)\right) x_i x_h \mathbf{D}_j \in L_1 \cap I = \{0\}, \end{split}$$

所以 $D_jD_l(f_i)=0$. 设 $i\in Y_0$. 若 $j\in Y_0$, 利用 $D_j^2(f_i)=0$, 则可算得

$$\Big[x_i\mathrm{D}_j, ig[x_i\mathrm{D}_j, ig[x_i\mathrm{D}_j, yig]ig]\Big] = -2ig(\mathrm{D}_j\mathrm{D}_l(f_i)ig)x_ix_i\mathrm{D}_j \ \in L_1\cap I = \{0\}.$$

所以

$$D_{j}D_{l}(f_{i}) = 0, \quad i, j \in Y_{0}, \ l \in Y \setminus \{i, j\}.$$
 (2.6)

若 $j, l \in Y_1$, 取 $h \in Y_0 \setminus \{i\}$, 由 (2.6) 式知 $D_h D_l(f_i) = 0$, $D_h D_j(f_i) = 0$, 于是可得

$$\left[x_i\mathrm{D}_h,\left[x_i\mathrm{D}_l,\left[x_i\mathrm{D}_j,y\right]\right]\right]=\left(\mathrm{D}_j\mathrm{D}_l(f_i)\right)x_ix_i\mathrm{D}_h\ \in L_1\cap I=\{0\}.$$

所以 $D_jD_l(f_i)=0$. 综上知, 若 i,j,l 互异, 则

$$D_j D_l(f_i) = 0. (2.7)$$

由 (2.5) 与 (2.7) 式可知, f_i 中不含有形如 ax_jx_j 与 bx_jx_l 的项, 其中 $a,b \in \mathbb{F}$, $j,l \neq i$. 于是可设

$$f_i = \left(\sum_{r=1}^s a_{ir} x_r\right) x_i, \quad \forall i \in Y,$$

其中 $a_{ir} \in \mathbb{F}$. 因而 $y = \sum_{k=1}^{s} f_k D_k = \sum_{k=1}^{s} \left(\sum_{r=1}^{s} a_{kr} x_r \right) x_k D_k = y_0 + y_1$, 这里

$$y_0 = \sum_{k=1}^s \left(\sum_{r=1}^m a_{kr} x_r\right) x_k \mathrm{D}_k \in L_1 \cap L_{\overline{0}},$$
 $y_1 = \sum_{k=1}^s \left(\sum_{r=m+1}^s a_{kr} x_r\right) x_k \mathrm{D}_k \in L_1 \cap L_{\overline{1}}.$

因为 y 是 \mathbb{Z}_{2} - 齐次元素, 故 $y = y_0$ 或者 $y = y_1$.

若 $y = y_0$, 取 $i, j \in Y_0$, $i \neq j$. 由计算知

$$egin{align} (\operatorname{ad} x_i \mathrm{D}_j)^2(y_0) &= (\operatorname{ad} x_i \mathrm{D}_j)^2 \left(\sum_{k=1}^s \sum_{r=1}^m a_{kr} x_r x_k \mathrm{D}_k
ight) \ &= 2(a_{jj} - a_{ij}) x_i x_i \mathrm{D}_j \ \in L_1 \cap I = \{0\}. \end{split}$$

所以

$$a_{jj} = a_{ij}, \qquad i, j \in Y_0, \ i \neq j.$$
 (2.8)

任取 $j \in Y_0$, $i \in Y_1$. 设 $l \in Y_0 \setminus \{j\}$, 则有

$$egin{align} ig[x_i {
m D}_j, [x_i {
m D}_j, y]ig] &= (2a_{jj} - a_{ij} - a_{lj})x_i x_l {
m D}_j \ &= (a_{jj} - a_{ij})x_i x_l {
m D}_j \ \in L_1 \cap I = \{0\}. \end{gathered}$$

于是

$$a_{jj} = a_{ij}, j \in Y_0, i \in Y_1.$$
 (2.9)

由 (2.8) 与 (2.9) 式可得

$$y = y_0 = \sum_{k=1}^s \left(\sum_{r=1}^m a_{kr}x_r\right) x_k D_k = \sum_{i=1}^s \left(\sum_{j=1}^m a_{ij}x_j\right) x_i D_i$$
 $= \sum_{i=1}^s \left(\sum_{j=1}^m a_{jj}x_j\right) x_i D_i = \left(\sum_{j=1}^m a_{jj}x_j\right) h \in \widetilde{W}_1.$

者 $y = y_1$, 任取 $j \in Y_1$, $i \in Y \setminus \{j\}$, 则可算得

$$[x_iD_j, [x_1D_j, y_1]] = (a_{1j} - a_{ij})x_1x_iD_j \in L_1 \cap I = \{0\}.$$

因此

$$a_{1j} = a_{ij}, \quad j \in Y_1, \ i \in Y \setminus \{j\}.$$
 (2.10)

由 (2.10) 式可得

$$y = y_{1} = \sum_{k=1}^{s} \sum_{r=m+1}^{s} a_{kr} x_{r} x_{k} D_{k}$$

$$= \sum_{i=1}^{s} \sum_{j=m+1}^{s} a_{ij} x_{j} x_{i} D_{i}$$

$$= \sum_{i=1}^{s} \sum_{j=m+1}^{s} a_{1j} x_{j} x_{i} D_{i}$$

$$= \sum_{i=1}^{s} \left(\sum_{j=m+1}^{s} a_{1j} x_{j} \right) x_{i} D_{i}$$

$$= \left(\sum_{j=m+1}^{s} a_{1j} x_{j} \right) h \in \widetilde{W}_{1}.$$

于是 $L_1 \subseteq \widetilde{W}_1$. 故 L_1 是 \widetilde{W}_1 的非零的 $S(V,n)_0$ - 子模. 由引理 2.3 知 \widetilde{W}_1 是不可约的 $S(V,n)_0$ - 模, 所以 $L_1=\widetilde{W}_1$. \square

引理 2.5 设 $L=\bigoplus_{i\geq -1}L_i$ 是 W(V,n) 的 Z- 阶化子代数, 并且 $L_i=X(V,n)_i$, 其中 X=W 或 S, i=-1,0. 设 $0\neq x_rx_tD_k\in L_1$, 这里 $k\notin\{r,t\}$. 则以下结论成立:

- 1) 存在 $l \in Y_0, l \neq k$, 使得 $x_i^{(2)} D_k \in L_1$.
- 2) $x_i^{(2)}D_j \in L_1$, $\forall i \in Y_0, j \in Y \setminus \{i\}$.
- 3) $S(V,n)_1 \subseteq L_1$.
- 4) 若 X = S, 则 $L_1 = S(V, n)_1$.
- 5) 若 X = W, 则 $L_1 = S(V,n)_1$ 或 $W(V,n)_1$.

证明 1) 若 r = t, 因 $x_r x_t D_k \neq 0$, 所以 $r = t \leq m$. 则 $x_r^{(2)} D_k = 2^{-1} x_r x_t D_k \in L_1$. 若 $r \neq t$, 当 $r \in Y_0$ 时,

$$x_r^{(2)}\mathrm{D}_k = 2^{-1}[x_r\mathrm{D}_t, x_rx_t\mathrm{D}_k] \in L_1.$$

当 $r, t \in Y_1$ 时, 取 $l \in Y_0, l \neq k$, 则

$$x_l^{(2)}\mathrm{D}_k = 2^{-1}ig[x_l\mathrm{D}_{ au}, [x_l\mathrm{D}_{t}, x_rx_t\mathrm{D}_{k}]ig] \in L_1.$$

2) 由 1) 知 $x_l^{(2)}D_k \in L_1$, 其中 $l \in Y_0$, $l \neq k$.

(a) \hat{A} $i \neq k$, j = k, 因 $x_i^{(2)} D_k \in L_1$, 故可设 $i \neq l$, 所以

$$x_i^{(2)} \mathbf{D}_k = 2^{-1} (\operatorname{ad} x_i \mathbf{D}_l)^2 (x_i^{(2)} \mathbf{D}_k) \in L_1.$$

若 $l \neq k, j \neq k, 则 x_i^{(2)} D_j = [x_i^{(2)} D_k, x_k D_j] \in L_1.$

(b) 者
$$i = k, j \neq l, 则 x_l^{(2)} D_i = x_l^{(2)} D_k \in L_1, 所以 x_l^{(2)} D_j = [x_l^{(2)} D_i, x_i D_j] \in L_1.$$
 因此

$$x_i^{(2)}\mathbf{D}_j = 2^{-1} [x_i\mathbf{D}_l, [x_i\mathbf{D}_l, x_l^{(2)}\mathbf{D}_j]] \in L_1.$$

若 i = k, j = l, 则 $x_i^{(2)} D_i = x_l^{(2)} D_k \in L_1$. 设 $h \in Y \setminus \{i, j\}$, 则

$$x_j^{(2)}\mathrm{D}_h = [x_j^{(2)}\mathrm{D}_i, x_i\mathrm{D}_h] \in L_1.$$

所以

$$x_i^{(2)} \mathbf{D}_h = 2^{-1} (\operatorname{ad} x_i \mathbf{D}_j)^2 (x_j^{(2)} \mathbf{D}_h) \in L_1.$$

于是 $x_i^{(2)}D_i = [x_i^{(2)}D_h, x_hD_j] \in L_1$.

3) 只需证明 $D_{ij}(x^{(\alpha)}x^u) \in L_T$, 其中 $|\alpha| + |u| = 3$, $i, j \in Y$.

若 $i,j \in Y_1$, 要证明 $D_{ij}(x_ix_jx_k)$, $D_{ij}(x_ix_kx_l)$, $D_{ij}(x_jx_kx_l)$, $D_{ii}(x_ix_kx_l)$, $D_{jj}(x_jx_kx_l) \in L_1$, 其中 $k,l \notin \{i,j\}$. 今 $r \in Y_0$, $r \neq k$. 由 2) 知 $x_ix_rD_j = [x_iD_r, x_r^{(2)}D_j] \in L_1$, 则

$$x_ix_k\mathbf{D}_j=(-1)^{\tau(k)\tau(i)}[x_k\mathbf{D}_r,x_ix_r\mathbf{D}_j]\in L_1.$$

所以

$$egin{aligned} & \mathrm{D}_{ij}(x_ix_jx_k) = -[x_j\mathrm{D}_i, x_ix_k\mathrm{D}_j] \in L_1, \ & \mathrm{D}_{ij}(x_ix_kx_l) = -(-1)^{ au(k) au(l)}[x_l\mathrm{D}_i, x_ix_k\mathrm{D}_j] \in L_1, \ & \mathrm{D}_{ii}(x_ix_kx_l) = -2[x_j\mathrm{D}_i, \mathrm{D}_{ij}(x_ix_kx_l)] \in L_1. \end{aligned}$$

类似可得 $D_{ij}(x_jx_kx_l) \in L_1$, $D_{jj}(x_ix_kx_l) \in L_1$.

对 i 与 j 的其它情形, 证明是相似的.

- 4) 因为 $L_i = S(V,n)_i$, i = -1,0, 所以, 由引理 2.2 可知 $L_1 \subseteq S(V,n)_1$. 由 3) 知 $L_1 = S(V,n)_1$.
- 5) 由 3) 知 $S(V,n)_1 \subseteq L_1$. 设 $S(V,n)_1 \neq L_1$, 并令 $y \in L_1 \setminus S(V,n)_1$, 则 $div(y) \neq 0$. 设 $div(y) = \sum_{i=1}^{s} \beta_i x_i$, 其中 $\beta_i \in \mathbb{F}$. 令 $z_j = \left(\sum_{i=1}^{s} \beta_i x_j x_i\right) D_j$, $\forall j \in Y$, 则 $div(y-z_j) = 0$. 所以 $y-z_j \in S(V,n)_1 \subseteq L_1$. 因此 $z_j \in L_1$, $\forall j \in Y_0$. 设 β_i 是 $\beta_1,\beta_2,\cdots,\beta_s$ 中第一个非零元素.

(a) 若
$$t \in Y_0$$
,则 $z_t = \left(\sum_{i=t}^s \beta_i x_t x_i\right) D_t$. 由引理 2.1 知
$$\sum_{i=t}^s \beta_i x_k x_i D_t \in S(V,n)_1 \subseteq L_1, \qquad k \in Y \setminus \{t\},$$

所以

$$eta_t x_k x_t \mathrm{D}_t = [x_k \mathrm{D}_t, z_t] - \sum_{i=t+1}^s eta_i x_k x_i \mathrm{D}_t \in L_1.$$

因此 $x_t x_k D_t \in L_1$, $\forall k \in Y \setminus \{t\}$. 于是

$$x_t^{(2)}\mathrm{D}_t = (2\beta_t)^{-1}\left(z_t + \left(\sum_{k=t+1}^s \beta_k x_t x_k\right)\mathrm{D}_t\right) \in L_1.$$

易见

$$\left\{x_t^2 \mathbf{D}_t + \mathbf{S}(V, n)_1, x_t x_k \mathbf{D}_t + \mathbf{S}(V, n)_1 \mid k \in Y \setminus \{t\}\right\}$$

是 $W(V,n)_1/S(V,n)_1$ 的基底. 由此可推得 $L_1 = W(V,n)_1$.

(b) 若
$$t \in Y_1$$
, 则 $z_j = \left(\sum_{i=t}^s \beta_i x_j x_i\right) D_j \in L_1$, $\forall j \in Y_0$. 因此

$$x_j x_t \mathbf{D}_j = \beta_t^{-1}[x_t \mathbf{D}_t, z_j] \in L_1, \quad \forall j \in Y_0.$$

所以

$$egin{aligned} x_2x_1{
m D}_2 &= [x_1{
m D}_t, x_2x_t{
m D}_2] \in L_1, \ & \ x_1x_t{
m D}_1 &= [x_l{
m D}_t, x_1x_t{
m D}_1] \in L_1, \quad l \notin \{t,1\}. \end{aligned}$$

易见

$$\{x_2x_1\mathrm{D}_2+\mathrm{S}(V,n)_1,x_1x_l\mathrm{D}_1+\mathrm{S}(V,n)_1\mid l=2,\cdots,s\}$$

构成了 $W(V,n)_1/S(V,n)_1$ 的一个基底, 于是可推得 $L_1 = W(V,n)_1$. 口由引理 2.4 与 2.5 可得以下引理.

引理 2.6 设 $L = \bigoplus_{i>-1} L_i$ 是 W(V,n) 的 \mathbb{Z} - 阶化于代数, $L_i \neq 0$.

- 1) 若 $L_i = W(V, n)_i$, i = -1, 0, 则 $L_1 = \widetilde{W}_1$, $S(V, n)_1$ 或者 $W(V, n)_1$.
- 2) 若 $L_i = S(V, n)_i$, i = -1, 0, 则 $L_1 = \widetilde{W}_1$ 或者 $S(V, n)_1$.

令 V_{-1} 是 F 上的 Abel 李超代数, 则 [x,y] = 0, $\forall x,y \in V_{-1}$. 设 $V_0 = \operatorname{pl}(V_{-1})$ 是 \mathbb{Z}_2 - 阶化空间 V_{-1} 的一般线性李超代数, 则 $V_{-1} \oplus V_0$ 是 \mathbb{Z} - 阶化的李超代数, 它的李运算在 V_i 上的限制与 V_i 的李运算相同, i = -1,0, 并且 [f,x] = f(x), $\forall f \in V_0$, $x \in V_{-1}$. 令 $V_0 = \operatorname{spl}(V_{-1})$ 是 V_{-1} 的特殊线性李超代数. 同理 $V_{-1} \oplus V_0$ 是一个 \mathbb{Z} - 阶化李超代数,

定理 2.7 设 charF = p > 3. 令 $L = \bigoplus_{i \ge -1} L_i$ 是 F 上的可迁的 Z- 阶化李超代数. 设 dim $L_{-1} < \infty$, $L_1 \ne 0$, $L_2 = 0$.

- 1) 若 L 的底部 $L_{-1} \oplus L_0$ 同构于李超代数 $L_{-1} \oplus \operatorname{pl}(L_{-1})$, 则 L 同构于 $\operatorname{W}(V,n)$ 的子代数 $\operatorname{W}(V,n)_{-1} \oplus \operatorname{W}(V,n)_0 \oplus \widetilde{\operatorname{W}}_1$.
- 2) 若 L 的底部 $L_{-1} \oplus L_0$ 同构于李超代数 $L_{-1} \oplus \operatorname{spl}(L_{-1})$, 则 L 同构于 W(V,n) 的子代数 $S(V,n)_{-1} \oplus S(V,n)_0 \oplus \widetilde{W}_1$.

证明 1) 由定理 1.7 知, 存在李超代数的嵌入 $\varphi: L \to W(V,n)$, 使得 $\varphi(L_{-1}) = W(V,n)_{-1}$. 所以我们可设 L 是 W(V,n) 的 \mathbb{Z} - 阶化子代数, 并且 $L_{-1} = W(V,n)_{-1}$. 由 引理 2.6 的 1) 可推得 $L_1 = \widetilde{W}_1$, $S(V,n)_1$ 或 $W(V,n)_i$. 若 $L_1 = S(V,n)_1$ 或 $W(V,n)_1$, 则 可推得 $L_2 \neq 0$. 此与定理的假设矛盾, 因此 $L_1 = \widetilde{W}_1$. 由定理 2.3 知 $[\widetilde{W}_1,\widetilde{W}_1] = 0$. 显然 $[L_3,L_{-1}] \subseteq L_2 = 0$. 因为 L 是可迁的, 故 $L_3 = 0$. 对 i 用归纳法可知 $L_i = 0$, $\forall i \geq 2$, 所以 $L \cong W(V,n)_{-1} \oplus W(V,n)_0 \oplus \widetilde{W}_1$.

相仿地,利用定理 1.7 与引理 2.6 的 2),则可证得本定理的 2). □ 下面我们用旗的方法表出有限维 Cartan 型模李超代数.

为 V 的一个旗, 其中 $V_{g-1} \neq 0$. 设 $U(\mathcal{F})$ 是由

$$\{x^{(p^i)} \mid x \in V_i, i = 0, 1, \cdots, q-1\}$$

 $\mathcal{F}: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{a-1} \supset V_a = 0$

生成的 U(V) 的子代数. 若 $x \in V_i \setminus V_{i+1}$, 则 $0 \neq x^{(k)} \in U(\mathcal{F})$, 其中 $0 \leq k < p^{i+1}$, 并且 $x^{(p^{i+1})} = 0$. 我们称 i+1 为 x 的高度, 记为 h(x) = i+1. 将 V_{q-1} 的基底依次 扩充为 $V_{q-1}, V_{q-3}, \dots, V_0 = V$ 的基底 $\{x_1, x_2, \dots, x_m\}$, 称它为相应与旗 \mathcal{F} 的基底. 设 $t_i = h(x_i)$, 其中 $i \in Y_0 = \{1, \dots, m\}$. 令

$$A(\mathcal{F}) = \{\alpha \in \mathbb{N}_0^m \mid 0 \leq \alpha_i < p^{t_i}, \ i \in Y_0\}.$$

仍记 $x_1^{(\alpha_1)}x_2^{(\alpha_2)}\cdots x_m^{(\alpha_m)}$ 为 $x^{(\alpha)}$,于是 $\{x^{(\alpha)}\mid \alpha\in A(\mathcal{F})\}$ 构成了 $\mathcal{U}(\mathcal{F})$ 的一个基底. 设 x_{m+1},\cdots,x_s 是外代数 $\Lambda(n)$ 的基底. 令

$$\Lambda(\mathcal{F},n) = \operatorname{span}_{\mathbb{F}} \{ f\xi \mid f \in \mathcal{U}(\mathcal{F}), \ \xi \in \Lambda(n) \},$$

则 $\Lambda(\mathcal{F},n)$ 是 $\Lambda(V,n)$ 的有限维的 \mathbb{Z} - 阶化子代数, 并且 $\{x^{(\alpha)}x^{u}\mid \alpha\in A(\mathcal{F}),\ u\in B(n)\}$ 是 $\Lambda(\mathcal{F},n)$ 的一个基底. 令

$$egin{aligned} & \mathrm{W}(\mathcal{F},n) = \left\{ \sum_{i=1}^s f_i \mathrm{D}_i \;\middle|\; f_i \in \Lambda(\mathcal{F},n)
ight\}, \ & \overline{\mathrm{S}}(\mathcal{F},n) = \overline{\mathrm{S}}(V,n) \cap \mathrm{W}(\mathcal{F},n), \ & \mathrm{S}(\mathcal{F},n) = \mathrm{span}_{\mathbf{F}} \{ \mathrm{D}_{ij}(f) \;\middle|\; f \in \Lambda(\mathcal{F},n), \quad i,j \in Y \}, \end{aligned}$$

其中 D_i 与 D_{ij} 分别如第一章 (2.3) 式与第二章 (1.1) 式所定义. 显然,如上取定相应于旗 \mathcal{F} 的基底后, $\Lambda(\mathcal{F},n)$ 就是结合超代数 $\Lambda(m,n,\underline{t})$. 所以 $W(\mathcal{F},n)$, $\overline{S}(\mathcal{F},n)$, 与 $S(\mathcal{F},n)$ 就分别为 $W(m,n,\underline{t})$, $\overline{S}(m,n,\underline{t})$, 与 $S(m,n,\underline{t})$. 以下总设 x_{m+1},\cdots,x_n 为外代数 $\Lambda(n)$ 的基底. 令

$$X'(\mathcal{F},n)_l := \sum_{i=1}^{l-1} [X(\mathcal{F},n)_i, X(\mathcal{F},n)_{l-i}], \quad l > 1,$$

其中 X = W 或 S.

引理 2.8 设 $\mathcal{F}: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{q-1} \supset V_q = 0$ 是 V 的一个旗, x_1, \cdots, x_m 为 V 的相应于旗 \mathcal{F} 的基底.

- 1) 设 $x^{(\alpha)}x^{u}D_{i} \in W(\mathcal{F}, n)_{l}, l > 1$. 若 $|u| \geq 1$, 则 $x^{(\alpha)}x^{u}D_{i} \in W'(\mathcal{F}, n)_{l}$.
- 2) 若 $l \neq p^t 1$, $\forall t \in \mathbb{N}$, 则 $W(\mathcal{F}, n)_l = W'(\mathcal{F}, n)_l$.
- 3) 设 $l = p^t 1$, $\widetilde{V}_t = \{x_1, \cdots, x_m\} \cap V_t$. 則

$$egin{aligned} & \mathrm{W}(\mathcal{F},n)_l = \mathrm{W}'(\mathcal{F},n)_l + \mathrm{span}_{\mathbb{F}} ig\{ x_j^{(p^t)} \mathrm{D}_i \mid x_j \in \widetilde{V}_t, \ i \in Y ig\} \ &= \mathrm{W}'(\mathcal{F},n)_l + \mathrm{span}_{\mathbb{F}} ig\{ x_j^{(p^t)} \mathrm{D}_i \mid x \in V_t, \ i \in Y ig\} \end{aligned}$$

(着 t > q, 约定 $V_{q+1} = V_{q+2} = \cdots = V_r = 0$).

证明 我们分以下两种情形证明 1).

(a) $i \in Y_0$. 若 |u| > 1, 取 $k \in \{u\}$, 则有

$$[x^{(\alpha)}x_k\mathrm{D}_k,x^u\mathrm{D}_i]=\mathrm{sgn}(\langle k\rangle,u-\langle k\rangle)x^{(\alpha)}x^u\mathrm{D}_i\in\mathrm{W}'(\mathcal{F},n)_l.$$

|u|=1, 则可设 $x^u=x_k, k\in Y_1$. 当 $\alpha_i\not\equiv 1\pmod p$ 时, 则有

$$[x^{(\alpha)}\mathbf{D}_i, x_ix_k\mathbf{D}_i] = (1 - \alpha_i)x^{(\alpha)}x_k\mathbf{D}_i.$$

所以 $x^{(\alpha)}x_kD_i \in W'(\mathcal{F},n)_i$. 当 $\alpha \equiv 1 \pmod{p}$ 时, 则

$$[x^{(\alpha-\epsilon_i)}x_k\mathbf{D}_k, x_ix_k\mathbf{D}_i] = x^{(\alpha)}x_k\mathbf{D}_i \in \mathbf{W}'(\mathcal{F}, n)_l.$$

(b) $i \in Y_1$. 若 $|\alpha| > 1$, 取 $j \in Y_0$, 于是

$$[x^{(\boldsymbol{lpha})}\mathrm{D}_i,x_ix^u\mathrm{D}_i]=x^{(\boldsymbol{lpha})}x^u\mathrm{D}_i\in\mathrm{W}'(\mathcal{F},n)_t.$$

者 $|\alpha|=1$, 则可设 $x^{(\alpha)}=x_j$, $j \in Y_0$. 当 $i \notin \{u\}$ 时,

$$[x^u\mathrm{D}_i,x^{(2e_j)}\mathrm{D}_i]=x_ix^u\mathrm{D}_i\in\mathrm{W}'(\mathcal{F},n)_l.$$

当 $i \in \{u\}$ 时,

$$[x_j x^{u - \langle i \rangle} \mathrm{D}_j, x_j x_i \mathrm{D}_i] = \mathrm{sgn}(u - \langle i \rangle, \langle i \rangle) x_j x^u \mathrm{D}_i \in \mathrm{W}'(\mathcal{F}, n)_l.$$

$$[x^{u-\langle i\rangle}\mathrm{D}_j,x_jx_i\mathrm{D}_i]=\mathrm{sgn}(u-\langle i\rangle,\langle i\rangle)x^u\mathrm{D}_i\in\mathrm{W}'(\mathcal{F},n)_l;$$

当 $i \notin \{u\}$ 时, 取 $k \in \{u\}$, 则

$$[x^{u-\langle k \rangle} \mathbf{D}_i, x_k x_i \mathbf{D}_i] = \operatorname{sgn}(u - \langle k \rangle, \langle k \rangle) x^u \mathbf{D}_i \in \mathbf{W}'(\mathcal{F}, n)_l.$$

2) 设 l ≠ p^t - 1, ∀t ∈ N. 令 x^(α)x^uD_i ∈ W(F,n)_l. 若 |u| ≥ 1, 由 1) 知 x^(α)x^uD_i ∈ W'(F,n)_l. 下面证明 |u| = 0 时, x^(α)x^uD_i ∈ W'(F,n)_l, 即 x^(α)D_i ∈ W'(F,n)_l. 我们分以下情形讨论.

(i) $i \in Y_0$, $\alpha_i = 0$. 若存在 $j \in Y_0 \setminus \{i\}$, 使得 $\alpha_j \neq 0 \pmod{p}$, 则 $[x^{(\alpha - \epsilon_j)}D_j, x^{(2\epsilon_j)}D_i] = \alpha_j x^{(\alpha)}D_i$. 所以 $x^{(\alpha)}D_i \in W'(\mathcal{F}, n)_i$. 设对任意 $j \in Y_0 \setminus \{i\}$, 均有 $\alpha_j \equiv 0 \pmod{p}$. 若存在 $j, k \in Y_0 \setminus \{i\}$, 使得 $\alpha_j \neq 0$, $\alpha_k \neq 0$, 则

$$[x^{(\alpha-\alpha_j\varepsilon_j)}\mathbf{D}_j,x^{((\alpha_j+1)\varepsilon_j)}\mathbf{D}_i]=x^{(\alpha)}\mathbf{D}_i\in \mathbf{W}'(\mathcal{F},n)_l.$$

若只有一个 $j \in Y_0 \setminus \{i\}$, 使得 $\alpha_j \neq 0$, 设 $\alpha_j = \sum_{h=1}^r a_h p^h$ 是 α_j 的 P-Adic 形式. 因为 $|\alpha| \neq p^t$, $\forall t \in \mathbb{N}$, 所以 $\binom{\alpha_j}{p^t} \not \equiv 0 \pmod p$. 取 $k \in Y_1$, 则有

$$[x^{(\alpha-p^r\varepsilon_j)}\mathbf{D}_k,x^{(p^r\varepsilon_j)}x_k\mathbf{D}_i] = \binom{\alpha_j}{p^r}x^{(\alpha)}\mathbf{D}_i,$$

故 $x^{(\alpha)}\mathbf{D}_i \in \mathbf{W}'(\mathcal{F},n)_l$.

(ii) $i \in Y_0$, $\alpha_i \neq 0$. 若 $|\alpha - \alpha_i \varepsilon_i| \geq 2$, 取 $k \in Y_1$, 则

$$[x^{(\alpha-\alpha_i\varepsilon_i)}\mathbf{D}_k,x^{(\alpha_i\varepsilon_i)}x_k\mathbf{D}_i]=x^{(\alpha)}\mathbf{D}_i\in\mathbf{W}'(\mathcal{F},n)_l.$$

若 $|\alpha - \alpha_i \varepsilon_i| = 1$, 由于 $|\alpha| \ge 3$, 应有 $\alpha_i \ge 2$. 设 $k \in Y_1$, 则

$$[x^{(\alpha_i \varepsilon_i)} \mathbf{D}_k, x^{(\alpha - \alpha_i \varepsilon_i)} x_k \mathbf{D}_i] = x^{(\alpha)} \mathbf{D}_i \in \mathbf{W}'(\mathcal{F}, n)_l.$$

设 $|\alpha - \alpha_i \varepsilon_i| = 0$, 即 $\alpha = \alpha_i \varepsilon_i$. 若 $\alpha \neq 0 \pmod{p}$, 取 $k \in Y_1, l \in Y \setminus \{k, i\}$. 由计算知

$$[x^{((\alpha_i-1)\varepsilon_i)}\mathbf{D}_k,x_ix_k\mathbf{D}_i] - (\alpha_i-1)[x^{((\alpha_i-1)\varepsilon_i)}\mathbf{D}_l,x_lx_k\mathbf{D}_k] = \alpha_ix^{(\alpha_i}\mathbf{D}_i,$$

故 $x^{(\alpha)}D_i \in W'(\mathcal{F}, n)_i$. 若 $\alpha_i \equiv 0 \pmod{p}$, 可设 $\alpha_i = \sum_{h=1}^r a_h p^h$ 为 α_i 的 p-adic 形式, 则 $\binom{\alpha_i}{p^r} \not\equiv 0 \pmod{p}$, $\binom{\alpha_i}{p^r-1} \not\equiv 0 \pmod{p}$. 因而

$$[x^{((lpha_i-p^r+1)arepsilon_i)}\mathrm{D}_i,x^{(p^rarepsilon_i)}\mathrm{D}_i]=\left[egin{pmatrix}lpha_i\p^r-1\end{pmatrix}-egin{pmatrix}lpha_i\p^r\end{pmatrix}
ight]x^{(lpha)}\mathrm{D}_i.$$

所以 $x^{(\alpha)}\mathbf{D}_i\in \mathrm{W}'(\mathcal{F},n)_{\ell}$.

综上, 我们证明了 $W(\mathcal{F},n)_l \subseteq W'(\mathcal{F},n)_l$. 显然 $W'(\mathcal{F},n)_l \subseteq W(\mathcal{F},n)_l$, 所以 $W(\mathcal{F},n)_l = W'(\mathcal{F},n)_l$.

3) 设 $x^{(\alpha)}x^{u}D_{i}$ 是 W(\mathcal{F}, n)! 的任一基元素. 若 $|u| \geq 1$, 由 1) 知 $x^{(\alpha)}x^{u}D_{i} \in W'(\mathcal{F}, n)$!. 设 |u| = 0. 由 $l = p^{t} - 1$ 知 $|\alpha| = p^{t}$. 若 $\alpha \neq p^{t}\varepsilon_{j}$, $\forall j \in Y_{0}$, 仿 2) 可证得 $x^{(\alpha)}D_{i} \in W'(\mathcal{F}, n)$!. 所以

$$\begin{split} \mathbf{W}(\mathcal{F},n)_{l} &= \mathbf{W}'(\mathcal{F},n)_{l} + \operatorname{span}_{\mathbf{F}} \big\{ x^{(p^{t}\varepsilon_{j})} \mathbf{D}_{i} \bigm| j \in Y_{0}, \ i \in Y \big\} \\ &= \mathbf{W}'(\mathcal{F},n)_{l} + \operatorname{span}_{\mathbf{F}} \big\{ x_{j}^{(p^{t})} \mathbf{D}_{i} \bigm| j \in Y_{0}, \ i \in Y \big\} \\ &= \mathbf{W}'(\mathcal{F},n)_{l} + \operatorname{span}_{\mathbf{F}} \big\{ x_{j}^{(p^{t})} \mathbf{D}_{i} \bigm| x_{j} \in V_{t}, \ i \in Y \big\}. \end{split}$$

设 $\tilde{V}_t = \{x_{j_1}, x_{j_2}, \dots, x_{j_k}\}$, 则 \tilde{V}_t 是 V_t 的一个基底. 任取 $x \in V_t$, 可设 $x = \sum_{r=1}^k a_r x_{j_r}$, 其中 $a_r \in \mathbb{F}$. 由本节开始的除幂代数的定义可推得

$$x^{(p^t)} = \sum_{r=1}^k a_r^{p^t} x_{j_r}^{(p^t)} + y,$$

其中 y 是形如 $ax_{j_1}^{(l_1)}x_{j_2}^{(l_2)}\cdots x_{j_k}^{(l_k)}$ 的元素之和, $a\in \mathbb{F}$, $l_i< p^t$, $i=1,\cdots,k$. 于是

$$ax_{j_1}^{(l_1)}x_{j_2}^{(l_2)}\cdots x_{j_k}^{(l_k)}\mathbf{D}_i=ax^{(l_1\varepsilon_1+\cdots+l_k\varepsilon_k)}\mathbf{D}_i\in \mathbf{W}'(\mathcal{F},n)_l,$$

所以 $yD_i \in W'(\mathcal{F}, n)_l$. 因为 $x^{(p^i)}D_i = yD_i + \sum_{r=1}^k a_r^{p^i} x_{j_r}^{(p^i)} D_i$, 所以

$$\mathrm{W}(\mathcal{F},n)_l = \mathrm{W}'(\mathcal{F},n)_l + \mathrm{span}_{\mathbf{F}} ig\{ x^{(p^t)} \mathrm{D}_i \; ig| \; x \in V_t, \; i \in Y ig\}. \hspace{1cm} \square$$

引理 2.9 设 $\mathcal{F}: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{q-1} \supset V_q = 0$ 是 V 的一个狭, $\{x_1, \cdots, x_m\}$ 是 V 的相应于读 \mathcal{F} 的基底. 令 $\tilde{V}_t = \{x_1, \cdots, x_m\} \cap V_t$. 设 $D_{ij}(x^{(\alpha)}x^u) \in S(\mathcal{F}, n)_t$, 其中 t > 1. 若不存在 $t \in \mathbb{N}$, 使得 $x^{(\alpha)}x^u \in \{x_r^{(p^t)}x_k \mid x_r \in \tilde{V}_t, k \in Y\}$, 则 $D_{ij}(x^{(\alpha)}x^u) \in S'(\mathcal{F}, n)_t$.

证明 设 $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}_0^m$, $\diamondsuit \mathbb{N}(\alpha) = \{i \in Y_0 \mid \alpha_i \neq 0\}$. 约定 $\lambda = 1$ 或 -1.

(i) 设 $D_{ij}(x^{(\alpha)}x^u) \in S(\mathcal{F}, n)_l$, l > 1. 我们证明当 $|u| \ge 2$ 时, $D_{ij}(x^{(\alpha)}x^u) \in S'(\mathcal{F}, n)_l$.

者 $|\alpha|=1$, 则 $|u|\geq 3$. 不妨设 $i\in \mathbb{N}(\alpha)\cup\{u\}$ (若 $j\in\mathbb{N}(\alpha)\cup\{u\}$, 证明是相仿的). 当 $i\in\mathbb{N}(\alpha)$ 时, $x^{(\alpha)}=x_i$. 设 $k\in\{u\}$, $k\neq j$. 利用第二章引理 3.10 的 3), 可算得

$$D_{ij}(x_ix^u) = \lambda[D_{ik}(x^u), D_{ij}(x^{(2\epsilon_i)}x_k)] \in S'(\mathcal{F}, n)_l.$$

当 $i \in \{u\}$ 时,设 $\alpha = \varepsilon_r, r \in Y_0$. 若 i = j,取 $k \in \{u\}, h \in \{u\} \setminus \{i, k\},$ 则

$$\mathrm{D}_{ii}(x_rx^u)=2^{-1}\lambda[\mathrm{D}_{ii}(x_rx^{u-\langle k\rangle}),\mathrm{D}_{hi}(x_hx_kx_i)]\in\mathrm{S}'(\mathcal{F},n)_l.$$

设 $i \neq j$. 若 $j \neq r$, 则

$$\mathrm{D}_{ij}(x_rx^u) = \lambda[\mathrm{D}_{ir}(x_rx^{u-\langle i\rangle}),\mathrm{D}_{jr}(x^{(2\varepsilon_r)}x_i)] \in \mathrm{S}'(\mathcal{F},n)_l.$$

若 j = r, 取 $k \in \{u\}\setminus\{i\}, h \in Y\setminus\{i,j,k\}$, 则

$$\mathrm{D}_{ij}(x_rx^u)=\lambda[\mathrm{D}_{ih}(x_rx_hx_k),\mathrm{D}_{rk}(x^u)]\in\mathrm{S}'(\mathcal{F},n)_l.$$

设 $|\alpha| > 1$. 不妨设 $i \in \mathbb{N}(\alpha) \cup \{u\}$.

(a) $i \in \mathbb{N}(\alpha)$ 的情形. 若 $j \in Y \setminus \mathbb{N}(\alpha)$, 取 $k \in Y_1$, $k \neq j$. 令 $r \in Y_0 \setminus \{i\}$. 则

$$\mathrm{D}_{ij}(x^{(\alpha)}x^u) = \lambda[\mathrm{D}_{ir}(x_rx^u),\mathrm{D}_{jk}(x^{(\alpha)}x_k)] \in \mathrm{S}'(\mathcal{F},n)_l.$$

若 $j \in \mathbb{N}(\alpha)$ 并且 $\alpha_i \not\equiv 0 \pmod{p}$, 取 $k \in \{u\}$, 则

$$\lambda \alpha_i \mathbf{D}_{ij}(x^{(\alpha)}x^u) = [\mathbf{D}_{ik}(x^{(\alpha)}x_k), \mathbf{D}_{ji}(x_ix^u)] \in \mathbf{S}'(\mathcal{F}, n)_l.$$

所以 $D_{ij}(x^{(\alpha)}x^u) \in S'(\mathcal{F}, n)_l$. 若 $j \in \mathbb{N}(\alpha)$, $\alpha_i \equiv 0 \pmod{p}$, 取 $k \in \{u\}$, $r \in Y_1 \setminus \{k\}$, 则

$$\mathbf{D}_{ij}(x^{(\alpha)}x^u) = \lambda[\mathbf{D}_{jk}(x^{(\alpha_ie_i)}x^u), \mathbf{D}_{ir}(x^{(\alpha-\alpha_ie_i)}x_rx_k)] \in \mathbf{S}'(\mathcal{F}, n)_l.$$

(b) $i \in \{u\}$ 的情形. 若 $j \notin \{u\}$, 取 $k \in Y_1 \setminus \{i\}$, $r \in Y_0$, 则

$$\mathrm{D}_{ij}(x^{(\alpha)}x^u) = \lambda[\mathrm{D}_{ik}(x^{(\alpha)}x_k), \mathrm{D}_{j\tau}(x_\tau x^u)] \in \mathrm{S}'(\mathcal{F}, n)_l.$$

若 $j \in \{u\}$, 当 $|u| \le 3$ 时, 取 $r \in Y_0$, $k \in Y_1 \setminus \{i, j\}$, 则有

$$\mathbf{D}_{ij}(x^{(\alpha)}x^u) = \lambda[\mathbf{D}_{ir}(x_rx^{u-\langle i\rangle}), \mathbf{D}_{ik}(x^{(\alpha)}x_ix_k)] \in \mathbf{S}'(\mathcal{F}, n)_l.$$

当 |u|=2 时, 因为 $i,j\in\{u\}$, 故可设 $x^u=x_ix_j$. 如果 $|\mathbb{N}(\alpha)|\neq m$, 则取 $h\in Y_0\backslash\mathbb{N}(\alpha)$, 于是

$$\lambda \mathrm{D}_{ih}(x^{(\alpha)}x_hx_i) = [\mathrm{D}_{ih}(x^{(2\varepsilon_h)}x_i), \mathrm{D}_{ih}(x^{(\alpha)}x_i)] \in \mathrm{S}'(\mathcal{F},n)_l.$$

取 $k \in Y_1 \setminus \{i\}$, 则

$$[\mathrm{D}_{ik}(x^{(\alpha)}x_k),\mathrm{D}_{jh}(x_ix_jx_h)] = \lambda \mathrm{D}_{ih}(x^{(\alpha)}x_hx_i) + \mu \mathrm{D}_{ij}(x^{(\alpha)}x_ix_j),$$

这里 $\mu = 1$ 或 -1. 因为 $\lambda D_{ih}(x^{(\alpha)}x_hx_i) \in S'(\mathcal{F}, n)_l$, 所以 $D_{ij}(x^{(\alpha)}x^u) = D_{ij}(x^{(\alpha)}x_ix_j) \in S'(\mathcal{F}, n)_l$. 如果 $|\mathbb{N}(\alpha)| = m$, 取 $r \in Y_0$, $t \in Y_1 \setminus \{i, j\}$, $h \in Y_0 \setminus \{r\}$, 则有

$$\mathbf{D}_{ij}(x^{(\alpha)}x_ix_j) = \lambda[\mathbf{D}_{it}(x^{(\alpha-\alpha_r\epsilon_r)}x_jx_t), \mathbf{D}_{jh}(x^{(\alpha_r\epsilon_r)}x_ix_h)] \in \mathbf{S}'(\mathcal{F},n)_l.$$

- (ii) 设 $D_{ij}(x^{(\alpha)}x_k) \in S(\mathcal{F}, n)_l$, 其中 $k \in Y$, 并且不存在 $t \in \mathbb{N}$, 使得 $x^{(\alpha)} \in \{x_r^{(p^t)} \mid x_r \in \tilde{V}_t\}$. 下面证明 $D_{ij}(x^{(\alpha)}x_k) \in S'(\mathcal{F}, n)_l$.
- (a) $i \in \mathbb{N}(\alpha)$ 的情形 (若 $j \in \mathbb{N}(\alpha)$, 证明是相仿的). 如果 $|\mathbb{N}(\alpha)| > 1$ 并且 $\alpha_i \geq 2$, 取 $h \in Y \setminus \{i, j\}, r \in Y_1, r \neq k$, 则有

$$\mathrm{D}_{ij}(x^{(\alpha)}x_k) = \lambda[\mathrm{D}_{ir}(x^{(\alpha-\alpha_l\varepsilon_i)}x_kx_r), \mathrm{D}_{jh}(x^{(\alpha_i\varepsilon_i)}x_h)] \in \mathrm{S}'(\mathcal{F},n)_l.$$

如果 $|N(\alpha)| > 1$, 并且 $\alpha_i = 1$, 取 $r \in Y_1$, $h \in Y \setminus \{i, j, k\}$, 则有

$$D_{ij}(x^{(\alpha)}x_k) = \lambda[D_{ir}(x^{(\alpha-\epsilon_i)}x_r), D_{jh}(x_ix_kx_h)] \in S'(\mathcal{F}, n)_l.$$

如果 $|\mathbb{N}(\alpha)| = 1$, 则 $D_{ij}(x^{(\alpha)}x_k) = D_{ij}(x^{(\alpha_i \epsilon_i)}x_k)$. 我们分以下两种情况讨论.

(a)-① 设 $\alpha_i \not\equiv 0 \pmod{p}$. 若 $i,k \in Y_0$ 或者 $j,k \in Y_1$, 则有

$$[D_{ij}(x_ix_kx_j),D_{ij}(x^{(\alpha_i\varepsilon_i)})] = \lambda\alpha_iD_{ij}(x^{(\alpha_i\varepsilon_i)}x_k).$$

于是 $D_{ij}(x^{(\alpha)}x_k) \in S'(\mathcal{F}, n)_l$. 若 $j \in Y_0, k \in Y_1$, 则

$$[\mathbf{D}_{ji}(x^{((\alpha_i-1)\epsilon_i)}x_j), \mathbf{D}_{ji}(x^{(2\epsilon_i)}x_k)] = \lambda \alpha_i \mathbf{D}_{ij}(x^{(\alpha_i\epsilon_i)}x_k),$$

故 $D_{ij}(x^{(\alpha)}x_k) \in S'(\mathcal{F}, n)_l$. 若 $j \in Y_1, k \in Y_0$, 取 $h, q \in Y \setminus \{k, j\}$, 则

$$\begin{split} \mathrm{D}_{kj}(x^{((\alpha_i-2)\varepsilon_i)}x^{(2\varepsilon_k)}) &= [\mathrm{D}_{kh}(x^{((\alpha_i-2)\varepsilon_i)}x_h), \mathrm{D}_{qj}(x^{(2\varepsilon_k)}x_q)] \in \mathrm{S}'(\mathcal{F},n)_l, \\ &\left[\mathrm{D}_{ki}(x^{((\alpha_i-1)\varepsilon_l)}x_k), \mathrm{D}_{kj}(x^{(2\varepsilon_k)}x_i)\right] \\ &= \lambda \alpha_i \mathrm{D}_{ij}(x^{(\alpha_i\varepsilon_i)}x_k) + \mathrm{D}_{kj}(x^{((\alpha_i-2)\varepsilon_i)}x^{(2\varepsilon_k)}) \in \mathrm{S}'(\mathcal{F},n)_l. \end{split}$$

由以上两式可推得 $D_{ij}(x^{(\alpha_i \epsilon_i)} x_k) = D_{ij}(x^{(\alpha)} x_k) \in S'(\mathcal{F}, n)_i$.

(a)-② 设 $\alpha_i \equiv 0 \pmod{p}$. 令 $\alpha_i = \sum_{l=1}^{\nu} k_l p^l$ 为 α_i 的 p-adic 形式, 其中 $k_\nu \neq 0$. 由已知 $x^{(\alpha)} \neq x_i^{(p^\nu)}$, 所以 $\alpha_i - p^\nu > 0$ 并且 $\binom{\alpha_i}{p^\nu} \neq 0 \pmod{p}$. 取 $r \in Y \setminus \{i, j, k\}$, 则有

$$\lambdainom{lpha_i}{p^v} \mathrm{D}_{ij}(x^{(lpha)}x_k) = [\mathrm{D}_{ij}(x^{((p^v+1)arepsilon_i)}), \mathrm{D}_{ir}(x^{((lpha_i-p^v)arepsilon_i)}x_kx_r)] \in \mathrm{S}'(\mathcal{F},n)_l.$$

所以 $D_{ij}(x^{(\alpha)}x_k) \in S'(\mathcal{F}, n)_l$.

- (b) 若 $i,j \notin \mathbb{N}(\alpha)$, 则可设 k=j 或者 k=i (否则 $D_{ij}(x^{(\alpha)}x_k)=0$). 不妨设 k=j. 分别考虑 $|\mathbb{N}(\alpha)|>1$ 与 $\mathbb{N}(\alpha)=1$ 的情形, 相仿于 (a) 可证得 $D_{ij}(x^{(\alpha)}x_j)\in S'(\mathcal{F},n)_l$.
- (iii) 设 $D_{ij}(x^{(\alpha)}) \in S(\mathcal{F}, n)_l$, 并且不存在 $t \in \mathbb{N}$, 使得 $x^{(\alpha)} \in \{x_r^{(p^t)} \mid x_r \in \widetilde{V}_t, k \in Y\}$, 我们证明 $D_{ij}(x^{(\alpha)}) \in S'(\mathcal{F}, n)_l$.

若有某个 $\alpha_k \not\equiv 0 \pmod{p}$, 则 $D_{ij}(x^{(\alpha)}) = \alpha_k D_{ij}(x^{(\alpha)}x_k)$. 由 (ii) 知, 此时 $D_{ij}(x^{(\alpha)}) \in S'(\mathcal{F}, n)_l$.

设 $\alpha_k \equiv 0 \pmod{p}$, $\forall k \in Y_0$. 若 $\mathbb{N}(\alpha) = 1$, 则可设 $\alpha_i \neq 0$ 或者 $\alpha_j \neq 0$ (否则 $D_{ij}(x^{(\alpha)}) = 0$). 不妨设 $\alpha_j \neq 0$. 若 $l = p^t - 2$, 其中 $t \in \mathbb{N}$, 取 $k \in Y_1$, $k \neq j$, 则

$$\begin{aligned} \mathbf{D}_{ij}(x^{(\alpha)}) &= \mathbf{D}_{ij}(x^{(p^t e_j)}) = -\mathbf{D}_{ik}(x^{((p^t - 1)e_j)}x_k) \\ &= \lambda[\mathbf{D}_{ik}(x_j x_i x_k), \mathbf{D}_{ik}(x^{((p^t - 2)e_j)}x_k)] \in \mathbf{S}'(\mathcal{F}, n)_l. \end{aligned}$$

若 $l \neq p^t - 2$, 则 $l + 2 \neq p^t$. 若 $l + 2 \not\equiv 0 \pmod{p}$, 由 (ii) 知

$$\mathrm{D}_{ij}(x^{((l+2)\varepsilon_j)}x_j) = (l+2)\mathrm{D}_{ij}(x^{((l+1)\varepsilon_j)}) \in \mathrm{S}'(\mathcal{F},n)_l.$$

若 $l+2\equiv 0\pmod p$, 设 $l+2=\sum_{t=1}^v a_t p^t$ 是 l+2 的 p-adic 形式. 则 $\binom{l+2}{p^v}\not\equiv 0\pmod p$, 并且

$$\binom{l+2}{p^v} \mathrm{D}_{ij}(x^{((l+2)\varepsilon_j)}) = [\mathrm{D}_{ij}(x^{((l+2-p^v)\varepsilon_j)}), \mathrm{D}_{ij}(x^{(p^v\varepsilon_j)}x_i)] \in \mathrm{S}'(\mathcal{F}, n)_l.$$

于是 $D_{ij}(x^{((l+2)\varepsilon_j)}) \in S'(\mathcal{F}, n)_l$.

若 $|N(\alpha)| > 1$, 可设 $i \in N(\alpha)$. 取 $k \in Y_1$, 由 $\alpha_i \ge p$ 以及 $|\alpha - \alpha_i \varepsilon_i| \ge p$ 知

$$D_{ij}(x^{(\alpha)}) = \lambda[D_{ik}(x^{(\alpha-\alpha_i\varepsilon_i)}x_k), D_{kj}(x^{(\alpha_i\varepsilon_i)}x_k)] \in S'(\mathcal{F}, n)_l. \quad \Box$$

推论 2.10 旗 厂 与 花 的定义如引理 2.9. 下面的命题成立:

- 1) 若不存在 $t \in \mathbb{N}$, 使得 $l = p^t 1$, 则 $S(\mathcal{F}, n)_l = S'(\mathcal{F}, n)_l$.
- 2) 若 $l = p^t 1$, 则

$$\begin{split} \mathrm{S}(\mathcal{F},n)_l &= \mathrm{S}'(\mathcal{F},n)_l + \mathrm{span}_{\mathbf{F}} \big\{ \mathrm{D}_{ij}(x_r^{(p^t)}x_k) \bigm| x_r \in \widetilde{V}_t, \ i,j,k \in Y \big\} \\ &= \mathrm{S}'(\mathcal{F},n)_l + \mathrm{span}_{\mathbf{F}} \big\{ \mathrm{D}_{ij}(x^{(p^t)}x_k) \bigm| x \in V_t, \ i,j,k \in Y \big\}. \end{split}$$

证明 显然 $S'(\mathcal{F},n)_i \subseteq S(\mathcal{F},n)_i$. 应用引理 2.9 可得本推论 (2) 中后一个等号的证明相仿于引理 2.8 的 3)). \square

设 牙 是 V 的一个旗. 令

$$X(\mathcal{F},n)_{l}^{-1} = \{ y \in W(V,n)_{l} \mid [y,X(V,n)_{-1}] \subseteq X(\mathcal{F},n)_{l-1} \},$$

其中 X = W 或者 \overline{S} .

引理 2.11 设 $\mathcal{F}: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{q-1} \supset V_q = 0$ 是 V 的一个旗, $X = \mathbf{W}$ 或者 \overline{S} .

- 1) 若 $l \neq p^t 1$, $\forall t \in \mathbb{N}$, 則 $X(\mathcal{F}, n)_t^{-1} = X(\mathcal{F}, n)_t$.
- 2) 若 $l = p^t 1$, 则 $X(\mathcal{F}, n)_t^{-1} = X(\mathcal{F}_1, n)_t$, 其中 $\mathcal{F}_1 : V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{t-1} = V_t' \supseteq V_{t+1}' = 0$ 是通过旗 \mathcal{F} 构作的旗(若 t > q, 则令 $V_{q+1} = \cdots = V_{t-1} = V_t' = V_{t+1}' = 0$).

证明 我们仅证明本引理的 2). 1) 的证明与 2) 相仿, 并且稍有简单. 易见, 若 $l=p^t-1$, 则 $\Lambda(\mathcal{F},n)_l=\Lambda(\mathcal{F}_1,n)_l$.

- (i) X = W 的情形.
- (a) 令 y 是 $W(\mathcal{F}, n)_{l}^{-1}$ 的一个元素. 设 $y = \sum_{i=1}^{s} f_{i}D_{i}$, 其中 $f_{i} \in \Lambda(V, n)$. 因为 $[y, W(V, n)_{-1}] \subseteq W(\mathcal{F}, n)_{l-1}$, 所以

$$D_j(f_i) \in \Lambda(\mathcal{F}, n), \quad \forall i, j \in Y.$$
 (2.11)

假设某个 $f_i \notin \Lambda(\mathcal{F}_1, n)$, 可设 $f_i = \sum_{\alpha, u} k_{\alpha u} x^{(\alpha)} x^u$, 其中 $0 \neq k_{\alpha u} \in \mathbb{F}$. 于是 f_i 的某项 $k_{\alpha u} x^{(\alpha)} x^u \notin \Lambda(\mathcal{F}_1, n)_{i+1}$. 若 |u| > 0, 取 $k \in \{u\}$, 则

$$D_k(x^{(\alpha)}x^u) = \operatorname{sgn}(\langle k \rangle, u - \langle k \rangle)x^{(\alpha)}x^{u - \langle k \rangle} \notin \Lambda(\mathcal{F}_1, n)_l.$$

由 (2.11) 式可知 $D_k(x^{(\alpha)}x^u) \in \Lambda(\mathcal{F},n)_l$, 此与 $\Lambda(\mathcal{F},n)_l = \Lambda(\mathcal{F}_1,n)_l$ 矛盾.

设 |u| = 0. 则 f_i 的某项为 $kx^{(\alpha)}$, 其中 $0 \neq k \in \mathbb{F}$, 并且 $x^{(\alpha)} \notin \Lambda(\mathcal{F}_1, n)_{l+1}$. 因 为 $y \in W(V, n)_l$, 所以 $|\alpha| = l + 1 = p^t$. 由 $x^{(\alpha)} \notin \Lambda(\mathcal{F}_1, n)$ 知, 存在 $j \in Y_0$ 使得 $x_j \in V_r \setminus V_{r+1}$ 并且 $\alpha_j \geq p^{r+1}$, 其中 r < t-1. 若 $|\mathbb{N}(\alpha)| > 1$, 则可设 $\alpha_k \neq 0$, 这里 $k \neq j$. 于

是 $D_k(x^{(\alpha)}) = x^{(\alpha-\varepsilon_k)} \notin \Lambda(\mathcal{F}, n)$, 此与 (2.11) 式矛盾. 若 $|N(\alpha)| = 1$, 可设 $\alpha = \alpha_j \varepsilon_j$. 那 么 $\alpha_j = l+1 = p^t$. 因为 t > r+1, 所以

$$D_j(x^{(\alpha)}) = x^{((p^t-1)\epsilon_j)} \notin \Lambda(\mathcal{F}, n),$$

也与 (2.11) 式矛盾. 这就证明了 $f_i \in \Lambda(\mathcal{F}_1,n)$, $\forall i \in Y$. 于是 $y \in W(\mathcal{F}_1,n)_i$. 因此 $W(\mathcal{F}_1,n)_i^{-1} \subseteq W(\mathcal{F}_1,n)_i$.

(b) 设 $y = \sum_{i=1}^{s} f_i D_i \in W(\mathcal{F}_1, n)_l$. 我们证明 $y \in W(\mathcal{F}, n)_l^{-1}$.

设 $f_i = \sum_{\alpha,u} k_{\alpha u} x^{(\alpha)} x^u$, 其中 $0 \neq k_{\alpha u} \in \mathbb{F}$. 则只需证明 $D_j(x^{(\alpha)} x^u) \in \Lambda(\mathcal{F}, n)_l$, $\forall j \in Y$, 这里 $k_{\alpha u} x^{(\alpha)} x^u$ 是 f_i 的任一非零项.

因为 $y \in W(\mathcal{F}_1, n)_l$, 所以 $x^{(\alpha)}x^u \in \Lambda(\mathcal{F}_1, n)_{l+1}$. 若 $|u| \geq 1$, 则 $|\alpha| < l+1 = p^l$, 因此 $x^{(\alpha)}x^u \in \Lambda(\mathcal{F}, n)_{l+1}$. 于是 $D_j(x^{(\alpha)}x^u) \in \Lambda(\mathcal{F}, n)_l$, $\forall j \in Y$. 若 |u| = 0, 当 $|\mathbb{N}(\alpha)| > 1$ 时, $x^{(\alpha)} \in \Lambda(\mathcal{F}, n)_{l+1}$, 所以 $D_j(x^{(\alpha)}) \in \Lambda(\mathcal{F}, n)_l$. 当 $|\mathbb{N}(\alpha)| = 1$ 时, 可设 $\alpha = p^t \varepsilon_k$, 其中 $k \in Y_0$. 易见此时也有 $D_j(x^{(\alpha)}) \in \Lambda(\mathcal{F}, n)_l$, 所以 $W(\mathcal{F}_1, n)_l \subseteq W(\mathcal{F}, n)_l^{-1}$.

由 (a) 与 (b) 知 $W(\mathcal{F}, n)_i^{-1} = W(\mathcal{F}_1, n)_i$.

(ii) X = S 的情形. 由 (i) 知

$$\overline{\mathbf{S}}(\mathcal{F},n)_l^{-1} \subseteq \mathbf{W}(\mathcal{F},n)_l^{-1} = \mathbf{W}(\mathcal{F}_1,n)_l.$$

若 $y \in \overline{S}(\mathcal{F}_1,n)_l^{-1}$,则 $y \in W(V,n)_l$ 并且 $[D_j,y] \in \overline{S}(\mathcal{F},n) \subseteq \overline{S}(V,n)$, $\forall j \in Y$. 由引理 2.2 知

$$y \in \overline{\mathbb{S}}(V, n) \cap \mathbb{W}(\mathcal{F}_1, n)_l = \overline{\mathbb{S}}(\mathcal{F}_1, n)_l$$

所以 $\overline{S}(\mathcal{F},n)_l^{-1} \subseteq \overline{S}(\mathcal{F}_1,n)_l$.

设 $y = \sum_{i=1}^{s} f_i D_i \in \overline{S}(\mathcal{F}_1, n)_i^{-1}, \ \mathbb{M} \ [D_j, y] \in \overline{S}(\mathcal{F}_1, n)_{i-1}. \ \mathbb{D}$ 因此 $D_j(f_i) \in \Lambda(\mathcal{F}_1, n)_i, \ \forall i, j \in Y.$ 设 $D_j(f_i) = \sum_{\alpha, u} k_{\alpha u} x^{(\alpha)} x^u.$ 相仿于 (i) 中 (b) 的证明, 我们可证得 $D_j(f_i) \in \Lambda(\mathcal{F}, n)_i$. 于是

$$[D_j, y] \in W(\mathcal{F}, n)_{l-1} \cap \overline{S}(V, n) = \overline{S}(\mathcal{F}, n)_{l-1}.$$

所以 $y \in \overline{S}(\mathcal{F}, n)_l^{-1}$, 从而 $\overline{S}(\mathcal{F}_1, n)_l^{-1} \subseteq \overline{S}(\mathcal{F}, n)_l^{-1}$. 那么

$$\overline{S}(\mathcal{F}_1,n)_l \subseteq \overline{S}(\mathcal{F}_1,n)_l^{-1} \subseteq \overline{S}(\mathcal{F},n)_l^{-1}$$
.

故 $\overline{\mathbf{S}}(\mathcal{F},n)_i^{-1} = \overline{\mathbf{S}}(\mathcal{F}_1,n).$

定理 2.12 设 \mathbb{F} 是特征数 p>3 的代数闭域。令 $L=\bigoplus_{i\geq -1}L_i$ 是 \mathbb{F} 上的有限维的 \mathbb{Z} - 阶化的单李超代数,并且 $L_2\neq 0$. 设 $V=L_{-1}\cap L_{\overline{0}}$, $\dim(L_{-1}\cap L_{\overline{1}})=n$.

- 1) 若 L 的底部 $L_{-1} \oplus L_0$ 同构于李超代数 $L_{-1} \oplus \operatorname{pl}(L_{-1})$, 则存在 V 的旗 \mathcal{F} , 使得 $L \cong W(\mathcal{F}, n)$.
- 2) 若 L 的底部 $L_{-1} \oplus L_0$ 同构于李超代数 $L_{-1} \oplus \operatorname{spl}(L_{-1})$, 则存在 V 的旗 \mathcal{F} , 使得 $L \cong S(\mathcal{F}, n)$.

证明 因为 L 是单李超代数, 所以由第一章命题 1.15 知 L 是可迁的. 于是由定理 1.7 知, 存在李超代数的嵌入 $\varphi: L \to W(V,n)$, 使得 $\varphi(L_{-1}) = W(V,n)_{-1}$. 故可设 L 是 W(V,n) 的子代数, 并且 $L_{-1} = W(V,n)_{-1} = S(V,n)_{-1}$.

- 1) 由已知 $L_0 \cong \operatorname{pl}(L_{-1})$. 因为 $\operatorname{pl}(L_{-1}) \cong \operatorname{W}(V,n)_0$, 所以由引理 2.6 与 $L_2 \neq 0$ 知, L_0 与 L_1 只有以下两种情形: (i) $L_i \cong \operatorname{W}(V,n)_i$, i=0,1. (ii) $L_0 \cong \operatorname{W}(V,n)_0$, $L_1 = \operatorname{S}(V,n)_1$.
- (i) $L_i \cong W(V, n)_i$ 的情形, i = 0, 1. 不妨设 $L_i = W(V, n)_i$, i = 0, 1. 我们对 i 用归纳 法证明存在 V 的旗 \mathcal{F} , 使得 $L_i = W(\mathcal{F}, n)_i$, $\forall i \geq 1$.

设 $\mathcal{F}_0: V = V_0 \supset V_1 = 0$. 由 char $\mathbb{F} = p > 3$ 知,

$$W(\mathcal{F}_0, n)_i = W(V, n)_i = L_i, \quad i = -1, 0, 1.$$

令 l > 1, 假设对任意 i < l, 存在 V 的旗

$$\mathcal{F}: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{h-1} \supset V_h = 0$$

使得 $L_i = W(\mathcal{F}, n)_i$. 显然存在 $t \in \mathbb{N}$, 使得 $p^{t-1} \le l < p^t$. 若 $t \le h$, 则令 $V_t = V_{t+1} = \cdots = V_h = 0$. 若 t > h, 则令 $V_h = V_{h+1} = \cdots = V_t = 0$. 于是我们得到旗

$$\mathcal{F}_1: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{t-1} \supseteq V_t = 0.$$

易知 W(\mathcal{F}_1, n)_i = W(\mathcal{F}, n)_i, $\forall i < l$.

(a) 若 $l \neq p^t - 1$, 由引理 2.8 的 2) 与归纳假设可推得

$$W(\mathcal{F}_1,n)_l = W'(\mathcal{F}_1,n)_l = \sum_{i=1}^{l-1} [L_i,L_{l-i}] \subseteq L_l.$$

令 $L_i^{-1} = \{y \in W(V,n)_i \mid [y,L_{-1}] \subseteq L_{i-1}\}$. 由归纳假设与引理 2.11 的 1) 知

$$L_l \subseteq L_l^{-1} = W(\mathcal{F}_1, n)_l^{-1} = W(\mathcal{F}_1, n)_l$$

所以 $L_l = W(\mathcal{F}_1, n)_l$.

(b) 若 $l = p^t - 1$, 通过延长旗 \mathcal{F}_1 , 构作如下的旗

$$\mathcal{F}_2: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{t-1} = V'_t \supseteq V'_{t+1} = 0.$$

易见, 对任意 i < l, 均有 $W(\mathcal{F}_2, n)_i = W(\mathcal{F}_1, n)_i$. 于是

$$W'(\mathcal{F}_2, n)_l = W'(\mathcal{F}_1, n)_l = L'_l,$$
 (2.12)

其中 $L'_i := \sum_{i=1}^{l-1} [L_i, L_{l-i}]$. 显然 $L'_i \subseteq L_i$. 由归纳假设与引理 2.11 的 2), 可得

$$L_l \subseteq L_l^{-1} = W(\mathcal{F}_1, n)_l^{-1} = W(\mathcal{F}_2, n)_l.$$
 (2.13)

由引理 2.8 的 3) 与 (2.12) 式可得

$$W(\mathcal{F}_{2}, n)_{l} = W'(\mathcal{F}_{2}, n)_{l} + \operatorname{span}_{\mathbb{F}} \{ x^{(p^{t})} D_{i} \mid x \in V'_{i}, i \in Y \}$$

$$= L'_{l} + \operatorname{span}_{\mathbb{F}} \{ x^{(p^{t})} D_{i} \mid x \in V'_{i}, i \in Y \}. \tag{2.14}$$

 $\diamondsuit Q = \operatorname{span}_{\mathbb{F}}\{x \in V'_t \mid x^{(p^t)}D_i + L'_i \in L_l/L'_l, \ i \in Y\}.$ 设

$$R = \operatorname{span}_{\mathbb{F}} \left\{ x^{(p^i)} \mathbf{D}_i + L'_i \mid x \in Q, \ i \in Y \right\}.$$

显然 $R \subseteq L_l/L_l'$.

任取 $z + L'_i \in L_l \setminus L'_i$, 其中 $z \in L_l \subseteq W(\mathcal{F}_2, n)_l$. 由 (2.13) 与 (2.14) 式, 可设 $z = \sum_{i=1}^{s} h_i D_i$, 其中

$$h_i = b_1 f_{i_1}^{(p^t)} + \dots + b_k f_{i_k}^{(p^t)}, \quad f_{i_1}, \dots, f_{i_k} \in V'_t, \ b_1, \dots, b_k \in \mathbb{F}.$$

因为 F 是代数闭域, 所以可设

$$h_i \mathbf{D}_i = (g_{i_1} + \cdots + g_{i_k})^{(p^t)} \mathbf{D}_i + h_i' \mathbf{D}_i,$$

这里 h'_i 是形如 $af_{i_1}^{(l_1)}\cdots f_{i_k}^{(l_k)}$ 的元素之和,其中 $a\in \mathbb{F}$, $l_i< p^t$, $i=1,\cdots,k$. 从而 $h_i\mathrm{D}_i\in \mathrm{W}'(\mathcal{F}_2,n)_l=L'_l$. 设 $g_i=g_{i_1}+\cdots+g_{i_k}$,则 $h_i\mathrm{D}_i+L'_l=g_i^{(p^t)}\mathrm{D}_i+L'_l$. 于是

$$z + L'_t = \sum_{i=1}^s g_i^{(p^t)} \mathbf{D}_i + L'_t, \qquad \sharp \mathbf{P} g_i \in V'_t.$$

设 $\{x_1, \dots, x_m\}$ 是 V 的相应于旗 \mathcal{F}_1 的基底. 易见 $\{x_1, \dots, x_m\}$ 也是相应于旗 \mathcal{F}_2 的基底. 于是 $V'_t \cap \{x_1, \dots, x_m\}$ 是 V'_t 的基底. 不妨设 $\{x_1, \dots, x_v\} = V'_t \cap \{x_1, \dots, x_m\}$. 因为 $g_i \in V'_t$, 故可设 $g_i = \sum_{r=1}^v a_r x_r, a_r \in \mathbb{F}$, 从而

$$g_i^{(p^t)} = \left(\sum_{r=1}^v a_{ir} x_r\right)^{(p^t)} = \sum_{r=1}^v a_{ir}^{p^t} x_r^{(p^t)} + h_i,$$

其中 h, 的各项均不含因子 $x_r^{(p^t)}$, $r=1,\cdots,v$. 随之,

$$\mathrm{D}_{j}(g_{i}^{(p^{t})}) = egin{cases} a_{ij}^{p^{t}}x_{j}^{(p^{t}-1)} + \mathrm{D}_{j}(h_{i}), & j \in \{1,\cdots,v\}, \ 0, & j \in Y \setminus \{1,\cdots,v\}. \end{cases}$$

所以 $D_j(g_i^{(p^i)})D_i \in W'(\mathcal{F}_2, n)_l$. 故对任意 $k \in Y$, 有

$$x_k \mathbf{D}_j(g_i^{(p^t)}) \mathbf{D}_i \in \mathbf{W}'(\mathcal{F}_2, n)_l. \tag{2.15}$$

因为 L_l/L_l' 是 L_0 - 模, 所以对任意 $k,j \in Y$, 有

ad
$$(x_k \mathbf{D}_i)(z + L'_i) \in L_l/L'_l$$
.

由 (2.15) 式知

$$\begin{aligned} \operatorname{ad}\left(x_{k} D_{j}\right) &(z + L'_{l}) = \left[x_{k} D_{j}, z\right] + L'_{l} \\ &= \left[x_{k} D_{j}, \sum_{i=1}^{s} g_{i}^{(p^{t})} D_{i}\right] + L'_{l} \\ &= \sum_{i=1}^{s} x_{k} D_{j} (g_{i}^{(p^{t})}) D_{i} - \lambda g_{k}^{(p^{t})} D_{j} + L'_{l} \\ &= -\lambda g_{k}^{(p^{t})} D_{j} + L'_{l}. \end{aligned}$$

其中 $\lambda = 1$ 或 -1. 于是 $g_k^{(p^t)}D_j + L_i' \in L_l/L_i'$, $\forall j \in Y$. 因此 $g_k \in Q$, $\forall k \in Y$, 从 而 $g_k^{(p^t)}D_k + L_i' \in R$. 所以

$$z + L'_{l} = \sum_{i=1}^{s} g_{i}^{(p^{t})} D_{i} + L'_{l} = \sum_{k=1}^{s} g_{k}^{(p^{t})} D_{k} + L'_{l}$$
$$= \sum_{k=1}^{s} (g_{k}^{(p^{t})} D_{k} + L'_{l}) \in R.$$

于是 $L_l/L_l' \subseteq R$. 则

$$L_l/L_l'=R=\operatorname{span}_{\mathbf{F}}\{x^{(p^t)}\mathrm{D}_i+L_l' \mid x\in Q,\; i\in Y\}$$

从而可推得

$$L_{i} = L'_{i} + \operatorname{span}_{\mathbf{F}} \{ x^{(p^{t})} D_{i} \mid x \in Q, \ i \in Y \}.$$
 (2.16)

今

$$\mathcal{F}_3: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{t-1} \supseteq V_t'' \supseteq V_{t+1}'' = 0,$$

其中 $V_t'' = Q$. 易见 $L_i = W(\mathcal{F}_2, n)_i = W(\mathcal{F}_3, n)_i$, $\forall i < l$, 于是 $L'_l = W'(\mathcal{F}_3, n)_l$. 由 (2.16) 式知

$$L_l = \mathrm{W}'(\mathcal{F}_3, n)_l + \mathrm{span}_\mathrm{F}\{x^{(p^t)}\mathrm{D}_i \mid x \in V_t'', \ i \in Y\}.$$

由引理 2.8 的 3) 知 $L_i = W(\mathcal{F}_3, n)_i$, 归纳法完成. 这就证明了存在 V 的一个旗 \mathcal{F} , 使得 $L = W(\mathcal{F}, n)$.

以下我们先证明定理的 2). 最后再证明 1) 中的情形 (ii) 不能发生.

2) 由巳知 $L_0 \cong \operatorname{spl}(L_{-1})$. 由引理 2.6 的 2) 与 $L_2 \neq 0$ 知, $L_1 \cong \operatorname{S}(V,n)_1$. 由于 $\operatorname{spl}(L_{-1}) \cong \operatorname{S}(V,n)_0$, 所以不妨设 $L_0 = \operatorname{S}(V,n)_0$, $L_1 = \operatorname{S}(V,n)_1$. 下面对 i 用归纳法, 证明存在 V 的旗 \mathcal{F} , 使得

$$S(\mathcal{F}, n)_i \subseteq L_i \subseteq \overline{S}(\mathcal{F}, n)_i, \quad \forall i \ge 1.$$
 (2.17)

我们仅概述归纳过程,细节证明留给读者. 假设存在 V 的旗

$$\mathcal{F}_1: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{h-1} \supseteq V_h = 0,$$

使得 $S(\mathcal{F}_1,n)_i \subseteq L_i \subseteq \overline{S}(\mathcal{F},n)_i$, $\forall i < l$. 可设 $p^{t-1} \leq l < p^t$, 其中 $t \in \mathbb{N}$. 若 $t \leq h$, 则令 $V_t = \cdots = V_h = 0$. 若 t > h, 则令 $V_h = \cdots = V_t = 0$. 于是可得旗

$$\mathcal{F}_2: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{t-1} \supseteq V_t = 0.$$

易见 $S(\mathcal{F}_2,n)_i \subseteq L_i \subseteq \overline{S}(\mathcal{F}_2,n)_i$, $\forall i < l$. 由第二章引理 3.9 的证明知 $[\overline{S},\overline{S}] \subseteq S$, 故对 V 的任意旗 \mathcal{F} , 则有 $[\overline{S}(\mathcal{F},n),\overline{S}(\mathcal{F},n)] \subseteq S(\mathcal{F},n)$. 于是可得 $S'(\mathcal{F}_2,n)_i = \overline{S}'(\mathcal{F}_2,n)_i$, 从而可知 $L'_i = S(\mathcal{F}_2,n)_i$.

(a) 若 $l \neq p^i - 1$, 由归纳假设与推论 2.10 的 1) 知

$$L_l\supseteq L_l'=\mathrm{S}'(\mathcal{F}_2,n)_l=\mathrm{S}(\mathcal{F}_2,n)_l.$$

由引理 2.11 的 1) 知

$$L_l \subseteq L_l^{-1} \subseteq \overline{\mathbb{S}}(\mathcal{F}_2, n)_l^{-1} = \overline{\mathbb{S}}(\mathcal{F}_2, n)_l$$

所以

$$S(\mathcal{F}_2, n)_l \subseteq L_l \subseteq \overline{S}(\mathcal{F}_2, n)_l$$
.

(b) 若 $l = p^t - 1$, 通过延长旗 \mathcal{F}_2 , 构作如下的旗

$$\mathcal{F}_3: V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{t-1} = V'_t \supseteq V'_{t+1} = 0.$$

利用归纳假设与引理 2.11 的 2), 可得

$$S'(\mathcal{F}_3,n)_l = S'(\mathcal{F}_2,n)_l = L'_l \subseteq L_l \subseteq L_l^{-1} \subseteq \overline{S}(\mathcal{F}_2,n)_l^{-1} = \overline{S}(\mathcal{F}_3,n)_l,$$

特别地, $L_l \subseteq \overline{S}(\mathcal{F}_3, n)_l$. 由推论 2.10 知

$$S(\mathcal{F}_3, n)_l = S'(\mathcal{F}_3, n)_l + span_{\mathbf{F}} \{D_{ij}(x^{(p^t)}x_k) \mid x \in V'_t, i, j, k \in Y\}.$$

令

$$egin{aligned} Q &= \mathrm{span}_{\mathbf{F}} \{ x \in V_t' \mid \mathrm{D}_{ij}(x^{(p^t)}x_k) + L_t' \in L_t/L_t', \ i,j,k \in Y \}, \ R &= \mathrm{span}_{\mathbf{F}} \{ \mathrm{D}_{ij}(x^{(p^t)}x_k) + L_t' \mid x \in Q, \ i,j,k \in Y \}. \end{aligned}$$

仿 1) 中的 (b) 可证得 $L_l/L'_l = R$, 进而可得 $L_l = L'_l + M$, 这里 $M = \operatorname{span}_{\mathbf{F}}\{\mathbf{D}_{ij}(x^{(p^t)}x_k) \mid x \in Q, i, j, k \in Y\}$. 令

$$\mathcal{F}_4: V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{t-1} \supseteq V_t'' \supseteq V_{t+1}'' = 0,$$

其中 $V_i'' = Q_i$ 则有

$$S'(\mathcal{F}_4,n)_l+M\subseteq L'_l+M\subseteq \overline{S}'(\mathcal{F}_4,n)_l+M.$$

于是

$$S(\mathcal{F}_4, n)_l \subseteq L_l \subseteq \overline{S}(\mathcal{F}_4, n)_l$$
.

归纳法完成. 于是 (2.17) 式成立.

假设存在 $i \in \mathbb{N}$ 使得 (2.17) 式中的 $S(\mathcal{F},n)_i \neq L_i$, 即 $S(\mathcal{F},n)_i \subsetneq L_i$. 因为 $S(\mathcal{F},n)$ 是 $\overline{S}(\mathcal{F},n)$ 的理想, 所以由 (2.17) 式知, $S(\mathcal{F},n)$ 是 L 的真理想, 此与 L 是单李超代数矛盾. 于是 $L = S(\mathcal{F},n)$.

最后我们说明, 若 $L = \bigoplus_{i \geq -1} L_i$ 满足定理的条件, 则情形 (ii) 不能发生. 否则, $L_0 = W(V, n)_0$, $L_1 = S(V, n)_1$. 令 $\overline{L}_{-1} = S(V, n)_{-1}$, $\overline{L}_0 = S(V, n)_0$, $\overline{L}_i = L_i$, $\forall i > 0$. 设 $\overline{L} = \bigoplus_{i \geq -1} \overline{L}_i$, 则 \overline{L} 是 L 的 Z- 阶化子代数. 由 2) 知, 存在旗 F, 使得

$$S(\mathcal{F}, n) \subseteq \overline{L} \subseteq \overline{S}(\mathcal{F}, n).$$
 (2.18)

令 $S^*(\mathcal{F},n) = \overline{S}(\mathcal{F},n) + W(V,n)_0$. 若 $D \in W(V,n)_0 = W(\mathcal{F},n)_0$, $E \in \overline{S}(\mathcal{F},n)_i$, $\forall i \geq -1$, 由 第二章引理 3.8 知, $\operatorname{div}([D,E]) = 0$, 则有

$$[\mathrm{D},E]\in \overline{\mathrm{S}}(V,n)_i\cap \mathrm{W}(\mathcal{F},n)_i=\overline{\mathrm{S}}(\mathcal{F},n)_i.$$

于是可知 $S^*(\mathcal{F},n)$ 是 W(V,n) 的子代数, $\overline{S}(\mathcal{F},n)$ 是 $S^*(\mathcal{F},n)$ 的理想. 由 (2.18) 式可知

$$S(\mathcal{F},n)\subseteq \overline{L}+W(V,n)_0\subseteq \overline{S}(\mathcal{F},n)+W(V,n)_0$$

所以

$$S(\mathcal{F}, n) \subseteq L \subseteq S^*(\mathcal{F}, n). \tag{2.19}$$

注意 $S(\mathcal{F},n) = \overline{S}(\mathcal{F},n)^{(1)}$,于是可推得 $S(\mathcal{F},n)$ 是 $S^*(\mathcal{F},n)$ 的理想. 由 (2.19) 式知 $S(\mathcal{F},n)$ 是 L 的理想. 因为 $L_0 \neq S(\mathcal{F},n)_0$,故 $S(\mathcal{F},n)$ 是 L 的真理想, 此与 L 的单性矛盾. 所以情形 (ii) 不能发生. 定理得证.

第六章 阶 化 模

本章将文献 [88] 中的混合积推广到 Cartan 型模李超代数, 从而实现了 Cartan 型李超代数的阶化模. 进而讨论了 Cartan 型单李超代数 H(m,n,t) 的阶化模. 本章的最后一节将文献 [81] 中的 ad- 幂零元的方法推广到李超代数, 从而证明了两类特征零域上无限维 Cartan 型李超代数的自然滤过是不变的, 进而证明了它们的自同构都是由其底代数的自同构诱导的.

§1 混 合 积

设 \mathbb{F} 是特征数 p > 2 的域, $V = V_0 \oplus V_1$ 是 \mathbb{F} 上的 \mathbb{Z}_2 - 阶化空间. 令 dim $V_0 = m$, dim $V_1 = n$. 设 pl(V) 是 \mathbb{F} 上一般线性李超代数. 令 e_1, \dots, e_m 是 V_0 的基底, e_{m+1}, \dots, e_s 是 V_1 的基底, 其中 s = m + n. 置

$$pl_{\overline{0}}(m,n) = \{ \begin{bmatrix} A & B \\ 0 & B \end{bmatrix} | A 是 F 上 m \times m 阵, D 是 F 上 n \times n 阵 \},$$
 $pl_{\overline{1}}(m,n) = \{ \begin{bmatrix} A & B \\ 0 & B \end{bmatrix} | B 是 F 上 m \times n 阵, C 是 F 上 n \times m 阵 \},$

则 $pl(m,n) = pl_{\overline{0}}(m,n) \oplus pl_{\overline{1}}(m,n)$ 是与 pl(V) 同构的李超代数. 令

$$\overline{\mathrm{pl}}(m,n,\underline{t}) = \Lambda(m,n,\underline{t}) \otimes \mathrm{pl}(m,n).$$

在 $\overline{pl}(m,n,\underline{t})$ 中如下定义[,]运算:

$$[a \otimes x, b \otimes y] = (-1)^{\operatorname{d}(x)\operatorname{d}(b)}ab \otimes [x, y], \tag{1.1}$$

其中 $a,b \in \Lambda(m,n,\underline{t}), x,y \in pl(m,n), 则 pl(m,n,\underline{t})$ 是一个李超代数. 若 $A \in W(m,n,\underline{t}),$ 则令 $A \otimes 1 \in End(\overline{pl}(m,n,\underline{t})),$ 使得

$$(A \otimes 1)(a \otimes x) = A(a) \otimes x, \quad a \in \Lambda(m, n, \underline{t}), \ x \in pl(m, n). \tag{1.2}$$

令 $P \in \text{pl}_{\overline{0}}(m,n)$, 并且 P 是可逆阵. 设 $A = \sum_{i=1}^{s} f_{i}D_{i} \in W(m,n,\underline{t})_{\theta}$, 其中 $\theta \in \mathbb{Z}_{2}$. 令

$$\tilde{A} = \sum_{k,j=1}^{s} (-1)^{(k,\theta,j)} D_k(f_j) \otimes P^{-1} E_{kj} P,$$
(1.3)

其中 $(k, \theta, j) = \tau(k)(\theta + \tau(j)) + \tau(j)$, E_{ij} 是 $s \times s$ 矩阵, 它的 (i, l) 位置元素是 $\delta_{ki}\delta_{jl}$. 则 $\widetilde{A} \in \overline{\mathrm{pl}}_{\theta}(m, n, \underline{t})$. 因为 $\mathrm{d}(E_{ki}) = \tau(k) + \tau(j)$, $\forall k, j \in Y = \{1, 2, \dots, s\}$, 所以

$$[E_{kj}, E_{il}] = \delta_{ji} E_{kl} - (-1)^{(\tau(k) + \tau(j))(\tau(i) + \tau(l))} \delta_{kl} E_{ij}.$$

命题 1.1 设 C = [A, B], 其中 $A \in W(m, n, \underline{t})_{\theta}$, $B \in W(m, n, \underline{t})_{\mu}$, $\theta, \mu \in \mathbb{Z}_2$. 則

$$\widetilde{C} = [\widetilde{A}, \widetilde{B}] + (A \otimes 1)(\widetilde{B}) - (-1)^{\theta \mu} (B \otimes 1)(\widetilde{A}).$$

证明 设 $A = \sum_{i=1}^{s} f_i D_i$, $B = \sum_{j=1}^{s} g_j D_j$. 则 $d(g_j) = \mu + \tau(j)$, $\forall j \in Y$. 由等式 (1.1) 可得

$$\begin{aligned} [\mathbf{D}_{k}(f_{j}) \otimes P^{-1}E_{kj}P, \mathbf{D}_{i}(g_{l}) \otimes P^{-1}E_{il}P] \\ &= (-1)^{(\tau(k)+\tau(j))(\tau(i)+\mu+\tau(l))}\mathbf{D}_{k}(f_{j})\mathbf{D}_{i}(g_{l}) \otimes P^{-1}[E_{kj}, E_{il}]P. \end{aligned}$$

则有

$$\begin{split} & [\widetilde{A}, \widetilde{B}] \\ &= \left[\sum_{k,j} (-1)^{(k,\theta,j)} \mathrm{D}_{k}(f_{j}) \otimes P^{-1} E_{kj} P, \sum_{i,l} (-1)^{(i,\mu,l)} \mathrm{D}_{i}(g_{l}) \otimes P^{-1} E_{il} P \right] \\ &= \sum_{k,j,i,l} (-1)^{(k,\theta,j)+(i,\mu,l)} [\mathrm{D}_{k}(f_{j}) \otimes P^{-1} E_{kj} P, \, \mathrm{D}_{i}(g_{l}) \otimes P^{-1} E_{il} P] \\ &= \sum_{k,j,i,l} (-1)^{(k,\theta,j)+(i,\mu,l)+(\tau(k)+\tau(j))(\tau(i)+\mu+\tau(l))} \mathrm{D}_{k}(f_{j}) \mathrm{D}_{i}(g_{l}) \\ &\otimes P^{-1} [E_{kj}, E_{il}] P \\ &= \sum_{k,j,i,l} (-1)^{(k,\theta,j)+(i,\mu,l)+(\tau(k)+\tau(j))(\tau(i)+\mu+\tau(l))} \mathrm{D}_{k}(f_{j}) \mathrm{D}_{l}(g_{l}) \\ &\otimes P^{-1} (\delta_{ji} E_{kl} - (-1)^{(\tau(k)+\tau(j))(\tau(i)+\tau(l))} \delta_{kl} E_{ij}) P \\ &= \sum_{k,i,l} (-1)^{(k,\theta+\mu,i)} \mathrm{D}_{k}(f_{i}) \mathrm{D}_{i}(g_{l}) \otimes P^{-1} E_{kl} P \\ &- \sum_{k,j,i} (-1)^{(k,\theta+\mu,j)+(i,\mu,k)+\mu(\tau(k)+\tau(j)))} \mathrm{D}_{k}(f_{j}) \mathrm{D}_{i}(g_{k}) \otimes P^{-1} E_{ij} P \\ &= \sum_{k,i,l} (-1)^{(k,\theta+\mu,j)+\theta\mu} \mathrm{D}_{k}(g_{k}) \mathrm{D}_{k}(f_{j}) \otimes P^{-1} E_{kj} P \\ &- \sum_{k,j,i} (-1)^{(k,\theta+\mu,j)+\theta\mu} \mathrm{D}_{k}(g_{k}) \mathrm{D}_{k}(f_{j}) \otimes P^{-1} E_{kj} P \\ &= \sum_{k,i,j} (-1)^{(k,\theta+\mu,j)+\theta\mu} \mathrm{D}_{k}(g_{l}) \mathrm{D}_{l}(f_{j}) \otimes P^{-1} E_{kj} P \\ &= \sum_{k,l,j} (-1)^{(k,\theta+\mu,j)+\theta\mu} \mathrm{D}_{k}(g_{l}) \mathrm{D}_{l}(f_{j}) \otimes P^{-1} E_{kj} P \\ &= \sum_{k,l,j} (-1)^{(k,\theta+\mu,j)+\theta\mu} \mathrm{D}_{k}(g_{l}) \mathrm{D}_{l}(f_{j}) \otimes P^{-1} E_{kj} P \\ &= \sum_{k,l,j} (-1)^{(k,\theta+\mu,j)+\theta\mu} \mathrm{D}_{k}(g_{l}) \mathrm{D}_{l}(f_{j}) \otimes P^{-1} E_{kj} P \end{cases}$$

直接计算知, $[A, B] = \sum_{j=1}^{s} q_j D_j$, 其中

$$q_j = \sum_{l=1}^{\theta} \left(f_l \mathcal{D}_l(g_j) - (-1)^{\theta \mu} g_l \mathcal{D}_l(f_j) \right).$$

所以

$$D_{k}(q_{j}) = \sum_{l=1}^{s} D_{k}(f_{l}D_{l}(g_{j})) - (-1)^{\theta \mu} \sum_{l=1}^{s} D_{k}(g_{l}D_{l}(f_{j}))$$

$$= \sum_{l=1}^{s} (D_{k}(f_{l})D_{l}(g_{j}) - (-1)^{\theta \mu}D_{k}(g_{l})D_{l}(f_{j}))$$

$$+ \sum_{l=1}^{s} ((-1)^{\tau(k)(\theta + \tau(l))} f_{l}D_{k}D_{l}(g_{j})$$

$$- (-1)^{\theta \mu + \tau(k)(\mu + \tau(l))} g_{l}D_{k}D_{l}(f_{j})). \tag{1.5}$$

由 (1.5) 式可得

$$\widetilde{C} = \sum_{k,j} (-1)^{(k,\theta+\mu,j)} D_k(q_j) \otimes P^{-1} E_{kj} P$$

$$= \sum_{k,j,l} (-1)^{(k,\theta+\mu,j)} (D_k(f_l) D_l(g_j)$$

$$- (-1)^{\theta\mu} D_k(g_l) D_l(f_j) \otimes P^{-1} E_{kj} P$$

$$+ \sum_{k,j,l} (-1)^{(k,\mu,j)+\tau(k)\tau(l)} f_l D_k D_l(g_j) \otimes P^{-1} E_{kj} P$$

$$- \sum_{k,j,l} (-1)^{(k,\theta,j)+\tau(k)\tau(l)+\theta\mu} g_l D_k D_l(f_j) \otimes P^{-1} E_{kj} P. \tag{1.6}$$

由计算知

$$(A \otimes 1)(\widetilde{B}) = \left(\left(\sum_{l=1}^{s} f_{l} \mathbf{D}_{l} \right) \otimes 1 \right) \left(\sum_{k,j} (-1)^{(k,\mu,j)} \mathbf{D}_{k}(g_{j}) \otimes P^{-1} E_{kj} P \right)$$

$$= \sum_{k,j,l} (-1)^{(k,\mu,j)+\tau(k)\tau(l)} f_{l} \mathbf{D}_{k} \mathbf{D}_{l}(g_{j}) \otimes P^{-1} E_{ij} P, \qquad (1.7)$$

$$(B \otimes 1)(\widetilde{A}) = \sum_{k,j} (-1)^{(k,\alpha,j)+\tau(k)\tau(l)} g_{l} \mathbf{D}_{k} \mathbf{D}_{l}(f_{j}) \otimes P^{-1} E_{kj} P. \qquad (1.8)$$

由 (1.6), (1.4), (1.7) 与 (1.8) 式即可得

$$\widetilde{C} = [\widetilde{A}, \widetilde{B}] + (A \otimes 1)(\widetilde{B}) - (-1)^{\theta \mu}(B \otimes 1)(\widetilde{A}).$$

命题得证. 🗆

设 \mathcal{L} 是 pl(m,n) 的子代数, $P \in pl_{\overline{0}}(m,n)$, 并且 P 是可逆阵. 令 $\mathcal{L}(P) = \{P^{-1}QP \mid Q \in \mathcal{L}\}$, 则 $\mathcal{L}(P)$ 是 pl(m,n) 的子代数. 若 $\theta \in \mathbb{Z}_2$, 令

$$\Omega_{\theta} = \{A \in \mathbb{W}(m,n,\underline{t})_{\theta} \mid \widetilde{A} \in \Lambda(m,n,\underline{t}) \otimes \mathcal{L}(P)\}.$$

 $\mathcal{L}(P)$. 由命题 1.1 知 $[A,B] \in \Omega$, 故 Ω 是 W(m,n,t) 的子代数. 仿文献 [88], 我们称 Ω 为 \mathcal{L} 在 W(m,n,t) 中的 P- 伸张. 若 P 是单位阵, 则称 Ω 为 \mathcal{L} 在 W(m,n,t) 中的伸张.

易见, $W(m,n,\underline{t})$ 就是 pl(m,n) 在 $W(m,n,\underline{t})$ 中的伸张.

设 $Q = \begin{bmatrix} B & C \\ D & H \end{bmatrix} \in pl(m,n)$, 其中 B 是 $m \times m$ 阵, H 是 $n \times n$ 阵. 由第四章 §3 节知, str(Q) = tr(B) - tr(H). 令

$$\mathrm{spl}(m,n) = \{Q \in \mathrm{pl}(m,n) \mid \mathrm{str}(Q) = 0\},\$$

则 $\operatorname{spl}(m,n)$ 是 $\operatorname{pl}(m,n)$ 的子代数. 显然李超代数 $\operatorname{spl}(m,n)$ 同构于李超代数 $\operatorname{spl}(V)$, 其中 $V = V_0 \oplus V_1$, $\dim V_0 = m$, $\dim V_1 = n$.

命題 1.2 $\overline{S}(m,n,\underline{t})$ 是 $\mathrm{spl}(m,n)$ 在 $W(m,n,\underline{t})$ 中的伸张.

证明 设 $\Omega = \Omega_{\overline{0}} \oplus \Omega_{\overline{1}}$ 是 $\mathrm{spl}(m,n)$ 在 $\mathrm{W}(m,n,\underline{t})$ 中的伸张. 令 $A = \sum_{i=1}^s f_i \mathrm{D}_i \in \mathrm{W}(m,n,\underline{t})_{\theta}$, 其中 $\theta \in \mathbb{Z}_2$, 则

$$A \in \Omega_{m{ heta}} \Longleftrightarrow \sum_{k,j=1}^s (-1)^{(k, heta,j)} \mathrm{D}_k(f_j) \otimes E_{kj} \in \Lambda(m,n,\underline{t}) \otimes \mathrm{spl}(m,n).$$

若 $k \neq j$, 则 $E_{kj} \in \operatorname{spl}(m,n)$. 所以

$$A \in \Omega_{\theta} \iff \sum_{k=1}^{s} (-1)^{\tau(k)\theta} \mathcal{D}_{k}(f_{k}) \otimes E_{kk} \in \Lambda(m, n, \underline{t}) \otimes \mathrm{spl}(m, n). \tag{1.9}$$

因为 $E_{11} - (-1)^{\tau(k)} E_{kk} \in \mathrm{spl}(m,n)$, 所以

$$(-1)^{\tau(k)\theta+\tau(k)}E_{11}-(-1)^{\tau(k)\theta}E_{kk}$$

$$=(-1)^{\tau(k)\theta+\tau(k)}(E_{11}-(-1)^{\tau(k)}E_{kk})\in \mathrm{spl}(m,n),$$

其中 $k=2,3,\cdots,s$. 由 (1.9) 式知

$$A \in \Omega_{\theta} \iff \sum_{k=1}^{s} (-1)^{\tau(k)\theta} \mathcal{D}_{k}(f_{k}) \otimes E_{kk}$$

$$+ \sum_{k=2}^{s} \mathcal{D}_{k}(f_{k}) \otimes ((-1)^{\tau(k)\theta + \tau(k)} E_{11} - (-1)^{\tau(k)\theta} E_{kk})$$

$$\in \Lambda(m, n, \underline{t}) \otimes \operatorname{spl}(m, n)$$

$$\iff \left(\sum_{k=1}^{s} (-1)^{\tau(k)\theta + \tau(k)} \mathcal{D}_{k}(f_{k})\right) \otimes E_{11} \in \Lambda(m, n, \underline{t}) \otimes \operatorname{spl}(m, n).$$

因为 E₁₁ ∉ spl(m,n), 所以

$$A \in \Omega_{ heta} \iff \sum_{k=1}^{s} (-1)^{\tau(k)\theta + \tau(k)} \mathrm{D}_{k}(f_{k}) = 0$$
 $\iff A \in \overline{\mathrm{S}}(m, n, \underline{t})_{\theta}, \quad \forall \theta \in \mathbb{Z}_{2}.$

因此 $\Omega = \overline{S}(m, n, t)$.

设 $\mathcal{L}(P)$ 是前面所定义的 $\mathrm{pl}(m,n)$ 的子代数, ρ 是 $\mathcal{L}(P)$ 在 $\mathbb{Z}_{2^{-}}$ 阶化空间 V 上的表示, 则 ρ 可扩张为 $\Lambda(m,n,\underline{t})\otimes\mathcal{L}(P)$ 在 $\Lambda(m,n,\underline{t})\otimes V$ 上的表示 ρ_1 , 使得

$$\rho_1(a \otimes x)(b \otimes v) = (-1)^{d(x)d(b)}ab \otimes \rho(x)v, \qquad (1.10)$$

其中 $a,b \in \Lambda(m,n,\underline{t}), x \in \mathcal{L}, v \in V$.

定理 1.3 设 \mathcal{L} 是 $\mathcal{D}(m,n)$ 的子代数, $P \in \text{pl}_{\overline{0}}(m,n)$ 是可逆阵, Ω 是 \mathcal{L} 在 $W(m,n,\underline{t})$ 中的 P- 伸张. 今 ρ 是 $\mathcal{L}(P)$ 在 \mathbb{Z}_2 - 阶化空间 V 上的表示. 则

$$\widetilde{\rho}(A) := \rho_1(\widetilde{A}) + A \otimes 1, \quad A \in \Omega,$$

定义了 Ω 在 \mathbb{Z}_2 - 阶化空间 $\Lambda(m,n,\underline{t})\otimes V$ 上的一个表示, 这里 ρ_1 的定义如 (1.10) 式. 证明 设 $A\in\Omega_{\theta}, B\in\Omega_{\mu}$, 其中 $\theta,\mu\in\mathbb{Z}_2$. 任取 $f\in\Lambda(m,n,\underline{t}), v\in V$, 则

$$\begin{split} [\rho_1(\widetilde{A}), B \otimes 1](f \otimes v) \\ &= \rho_1(\widetilde{A})(B(f) \otimes v) - (-1)^{\theta \mu}(B \otimes 1)\rho_1(\widetilde{A})(f \otimes v). \end{split}$$

由 (1.2) 式知

$$\begin{split} \rho_1(\widetilde{A})\big(B(f)\otimes v\big) - (-1)^{\theta\mu}(B\otimes 1)\rho_1(\widetilde{A})(f\otimes v) \\ = -(-1)^{\theta\mu}\rho_1\big((B\otimes 1)(\widetilde{A})\big)(f\otimes v). \end{split}$$

于是

$$[
ho_1(\widetilde{A}), B\otimes 1] = -(-1)^{\theta\mu}
ho_1((B\otimes 1)(\widetilde{A})).$$

同理可推得

$$[A\otimes 1,
ho_1(\widetilde{B})] =
ho_1ig((A\otimes 1)(\widetilde{B})ig).$$

于是有

$$\begin{split} & [\widetilde{\rho}(A), \widetilde{\rho}(B)] \\ = & [\rho_1(\widetilde{A}) + A \otimes 1, \rho_1(\widetilde{B}) + B \otimes 1] \\ = & [\rho_1(\widetilde{A}), \rho_1(\widetilde{B})] + [\rho_1(\widetilde{A}), B \otimes 1] \\ & + [A \otimes 1, \rho_1(\widetilde{B})] + [A \otimes 1, B \otimes 1] \\ & + [A \otimes 1, \rho_1(\widetilde{B})] + [A \otimes 1, B \otimes 1] \\ = & \rho_1([\widetilde{A}, \widetilde{B}]) - (-1)^{\theta \mu} \rho_1((B \otimes 1)(\widetilde{A})) \\ & + \rho_1((A \otimes 1)(\widetilde{B})) + [A, B] \otimes 1. \end{split}$$

设 C = [A, B]. 由命题 1.1 知

$$[\widetilde{
ho}(A),\widetilde{
ho}(B)]=
ho_1(\widetilde{C})+[A,B]\otimes 1=\widetilde{
ho}ig([A,B]ig),$$

所以 $\tilde{\rho}$ 是 $\Lambda(m,n,\underline{t}) \otimes V$ 上的一个表示. \Box

定理 1.3 中定义的表示 $\tilde{\rho}$ 使得 $\Lambda(m,n,\underline{t}) \otimes V$ 是一个 Ω - 模, 记这个 Ω - 模为 \tilde{V} , 并称 \tilde{V} 是 $\Lambda(m,n,\underline{t})$ 与模 V 的混合积. 设 $i \in \mathbb{N}_0$. 令

$$\widetilde{V}_i = \operatorname{span}_{\mathbb{F}} \{ f \otimes v \mid f \in \Lambda(m, n, \underline{t})_i, \ v \in V \}, \tag{1.11}$$

则 $\tilde{V} = \bigoplus_{i=0}^{\xi} \tilde{V}_i$, 其中 $\xi = \sum_{i=1}^{m} \pi_i + n$. 当 $i > \xi$ 时, 约定 $\tilde{V}_i = 0$. 直接验证可知, $\tilde{\rho}(\Omega_i)(\tilde{V}_j) \subseteq \tilde{V}_{i+j}$, $\forall i,j \in \mathbb{N}_0$. 于是我们称 \tilde{V} 为 Z- 阶化的 Ω - 模. 因为 $\mathrm{pl}(m,n)$ 与 $\mathrm{spl}(m,n)$ 在 $\mathrm{W}(m,n,\underline{t})$ 中的伸张分别为 $\mathrm{W}(m,n,\underline{t})$ 与 $\overline{\mathrm{S}}(m,n,\underline{t})$, 所以定理 1.3 有以下推论.

推论 1.4 1) 若 V 是 pl(m,n)- 模, 则混合积 \tilde{V} 是 \mathbb{Z} - 阶化的 $W(m,n,\underline{t})$ - 模.

2) 若 V 是 spl(m,n)- 模, 则混合积 \widetilde{V} 是 \mathbb{Z} - 阶化的 $\overline{S}(m,n,\underline{t})$ - 模, 从而也是 \mathbb{Z} - 阶化的 $S(m,n,\underline{t})$ - 模.

$\S 2$ H(m, n, t) 的阶化模

在本节中, 我们设 \mathbb{F} 是特征数 p>2 的代数闭域. 令 m=2r 是正偶数. 设 $G=\left[-I_{r} \right]$, 其中 I_{r} 是 r 阶单位阵. 令

$$\mathcal{L} = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \text{pl}(m, n) \; \middle| \; A^{t}G + GA = 0, \; B^{t}G + C = 0, \; D^{t} + D = 0 \right\}. \tag{2.1}$$

直接验证可知, \mathcal{L} 是 pl(m,n) 的子代数. 令

其中 i' 与 $\sigma(i)$ 的定义见第一章 (2.11) 与 (2.12) 式. 由 (2.1) 式可知, $Y_1 \cup Y_2 \cup Y_3$ 是 \mathcal{L} 的基底. 任取 $T \in \mathcal{L}$, 则 T 可表为 $\sum_{1 \leq i \leq j \leq a} l_{ij} T_{ij}$, 其中 $l_{ij} \in \mathbb{F}$,

$$T_{ij} = E_{ij'} + \sigma(i)\sigma(j)(-1)^{\tau(i)\tau(j)+\tau(i)+\tau(j)}E_{ji'}.$$

令 $\psi: H(m, n, \underline{t})_0 \to \mathcal{L}$ 是线性映射, 使得 $\psi(D_H(x_i x_j)) = \sigma(j)(-1)^{\tau(j)}T_{ij}$, 其中 $1 \le i \le j \le s$. 容易验证 ψ 是李超代数的同构映射, 所以 $\mathcal{L} \cong H(m, n, \underline{t})_0$.

以下总设 n=2q 是正偶数. 令

$$P_{n} = \begin{bmatrix} I_{q} & \frac{1}{2}I_{q} \\ -\mu I_{q} & \frac{\mu}{2}I_{q} \end{bmatrix}, \qquad (2.2)$$

其中 $\mu \in \mathbb{F}$ 并且 $\mu^2 = -1$. 设 $M = P_n^t P_n$, 则 $M = \begin{bmatrix} 0 & I_q \\ I_q & 0 \end{bmatrix}$. 置 $P = \begin{bmatrix} I_m & 0 \\ 0 & P_n \end{bmatrix}$. 令 $\mathcal{L}(P) = \{P^{-1}EP \mid E \in \mathcal{L}\}$, 则 $\mathcal{L}(P)$ 是 $\mathrm{pl}(m,n)$ 的子代数, 并且 $\mathcal{L}(P) \cong \mathcal{L} \cong \mathrm{H}(m,n,\underline{t})_0$. 利

用 (2.1) 式可推得

$$\begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \in \mathcal{L}(P)$$

$$\iff P \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} P^{-1} \in \mathcal{L}$$

$$\iff \begin{bmatrix} I_m & 0 \\ 0 & P_n \end{bmatrix} \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \begin{bmatrix} I_m \\ P_n^{-1} \end{bmatrix} \in \mathcal{L}$$

$$\iff A_1^t G + GA_1 = 0, \ B_1^t G + MC_1 = 0, \ D^t M + MD_1 = 0.$$

我们称 $\mathcal{L}(P)$ 是辛 - 正交李超代数. 以下总设 $P = \begin{bmatrix} I_0 & 0 \\ 0 & P_n \end{bmatrix}$.

 $1 \le i \le j \le s$

引理 2.1 $\widetilde{H}(m,n,\underline{t})$ 是 \mathcal{L} 在 $W(m,n,\underline{t})$ 中的 P- 伸张.

证明 令 Ω 是 \mathcal{L} 在 $W(m,n,\underline{t})$ 的 P- 伸张. 设 $A=\sum_{i=1}^s f_i D_i \in W(m,n,\underline{t})_{\theta}$, 其中 $\theta \in \mathbb{Z}_2$, 则

$$A \in \Omega_{\theta} \iff \widetilde{A} \in \Lambda(m, n, \underline{t}) \otimes \mathcal{L}(P)$$

$$\iff \sum_{i,j=1}^{s} (-1)^{\tau(i)\tau(j)+\tau(i)\theta} \mathbb{D}_{i}(f_{j}) \otimes P^{-1}E_{ij}P$$

$$\in \Lambda(m, n, \underline{t}) \otimes \mathcal{L}(P)$$

$$\iff \sum_{i,j=1}^{s} (-1)^{\tau(i)\tau(j)+\tau(i)\theta} \mathbb{D}_{i}(f_{j}) \otimes E_{ij}$$

$$\in \Lambda(m, n, \underline{t}) \otimes \mathcal{L}$$

$$\iff \sum_{i,j=1}^{s} (-1)^{\tau(i)\tau(j')+\tau(i)\theta} \mathbb{D}_{i}(f_{j'}) \otimes E_{ij'}$$

$$\in \Lambda(m, n, \underline{t}) \otimes \mathcal{L}$$

$$\iff \sum_{i,j=1}^{s} (-1)^{\tau(i)\tau(i')+\tau(i')\theta} \mathbb{D}_{i}(f_{j'}) \otimes E_{ij'}$$

$$\in \Lambda(m, n, \underline{t}) \otimes \mathcal{L}$$

$$\iff \sum_{1 \leq i \leq j \leq s} ((-1)^{\tau(i)\tau(j')+\tau(i')\theta} \mathbb{D}_{i}(f_{j'}) \otimes E_{ij'}$$

$$+ (-1)^{\tau(j)\tau(i')+\tau(i')+\tau(j')\theta} \mathbb{D}_{j}(f_{i'}) \otimes E_{ji'}) \in \Lambda(m, n, \underline{t}) \otimes \mathcal{L}$$

$$\iff \sum_{1 \leq i \leq j \leq s} ((-1)^{\tau(i)\tau(j')+\tau(j')\tau(i)\theta} \mathbb{D}_{i}(f_{j'})$$

$$\otimes (E_{ij'} + \sigma(i)\sigma(j)(-1)^{\tau(i)\tau(j)+\tau(i)+\tau(i)\theta} \mathbb{D}_{j}(f_{i'}))$$

$$\otimes \sigma(i)\sigma(j)(-1)^{\tau(i)\theta+\tau(i)} E_{ji'}) \in \Lambda(m, n, \underline{t}) \otimes \mathcal{L}.$$

$$\bowtie \mathcal{B} \not\ni E_{ij'} + \sigma(i)\sigma(j)(-1)^{\tau(i)\tau(j)+\tau(i)+\tau(i)\theta} \mathbb{D}_{j}(f_{i'}))$$

$$\otimes \sigma(i)\sigma(j)(-1)^{\tau(i)\theta+\tau(i)}E_{ji'}\in \Lambda(m,n,\underline{t})\otimes \mathcal{L}.$$

当 $1 \le i \le j \le s$ 时, $E_{ii'} \notin \mathcal{L}$, 所以

$$A \in \Omega_{\theta} \iff -\operatorname{D}_{i}(f_{j'}) + \sigma(i)\sigma(j)(-1)^{\tau(i)\tau(j)+(\tau(i)\tau(j))\theta}\operatorname{D}_{j}(f_{i'}) = 0$$
$$\iff A = \sum_{i=1}^{s} f_{i}\operatorname{D}_{i} \in \widetilde{\operatorname{H}}(m, n, \underline{t})_{\theta}.$$

故 $\Omega = \widetilde{\mathbf{H}}(m, n, \underline{t})$.

设 V 是 $\mathcal{L}(P)$ - 模. 由引理 2.1 与定理 1.3 知, $\tilde{V}=\Lambda(m,n,\underline{t})\otimes V$ 是 $\tilde{\mathrm{H}}(m,n,\underline{t})$ - 模. 令

$$\overline{\mathrm{H}}(m,n,\underline{t})=\mathrm{span}_{\mathbf{F}}\{\mathrm{D}_{\mathrm{H}}(f)\mid f\in\Lambda(m,n,\underline{t})\}.$$

由第一章 §2 知 $\overline{H}(m,n,\underline{t})$ 是 $W(m,n,\underline{t})$ 的子代数. 我们简记 $H(m,n,\underline{t})$, $\overline{H}(m,n,\underline{t})$ 与 $\widetilde{H}(m,n,\underline{t})$ 分别为 H, \overline{H} 与 \widetilde{H} . 易见 $H \subseteq \overline{H} \subseteq \widetilde{H}$. 由 §1 知, $\widetilde{V} = \bigoplus_{i=0}^{t} \widetilde{V}_i$ 是 \mathbb{Z} - 阶化的 \widetilde{H} - 模, 其中 \widetilde{V}_i 如 (1.11) 式所定义. 于是 \widetilde{V} 也是 \mathbb{Z} - 阶化的 \overline{H} - 模与 H- 模, 从 而 $\widetilde{V}_0 = 1 \otimes V_0$ 是 H_0 - 模. 我们知道, $\mathcal{L}(P) \cong H_0$. 由 (1.3) 式与定理 1.3 可推得 $\mathcal{L}(P)$ - 模 V 同构于 H_0 - 模 $1 \otimes V$.

引理 2.2 设 V 是非平凡的不可约的 $\mathcal{L}(P)$ - 模, \overline{V}_X 是 \widetilde{V} 的惟一的不可约 X- 子模, 其中 $X=\Pi$ 或 H. 则

- (a) \overline{V}_X 包含 \widetilde{V}_0 .
- (b) V_{ϵ} 是非平凡的不可约 X_{0} 模.
- (c) 若 \tilde{V}' 是 \tilde{V} 的 X- 子模, 并且 $x^{(\pi)}x^E \otimes v \in \tilde{V}'$, 其中 $0 \neq v \in V$, 则 $\tilde{V}' = \tilde{V}$.
- (d) 若 $U(\overline{H})\tilde{V}_0 = \tilde{V}$, 则 $U(H)\tilde{V}_0 = \tilde{V}$, 其中 $U(\overline{H})$ 与 U(H) 分别是 \overline{H} 与 H 的泛包络代数.

证明 显然, 若 $i \le \xi - 3$, 则 $X_i = H_i$, 其中 X = H 或 H.

- (a) 不失一般性, 可设 $x^{(\alpha)}x^u \otimes v \in \overline{V}_X$, 其中 $\alpha = (\alpha_1, \dots, \alpha_m)$, $u = \langle i_1, \dots, i_r \rangle$. 显然 $D_i = \sigma(i')(-1)^{\tau(i')}D_H(x_{i'}) \in X$, 其中 $i \in Y = \{1, \dots, s\}$. 则 $1 \otimes v = \lambda D_1^{\alpha_1} \cdots D_m^{\alpha_m}D_{i_1} \cdots D_{i_r}(x^{(\alpha)}x^u \otimes v) \in \overline{V}_X$, 其中 $\lambda = 1$ 或 -1. 因为 V 是不可约的 $\mathcal{L}(P)$ 模, 所以 $1 \otimes V$ 是不可约的 X_0 模. 则 $\widetilde{V}_0 = 1 \otimes V = U(X_0)(1 \otimes v) \subseteq \overline{V}_X$, 其中 $U(X_0)$ 是 X_0 的泛包络代数.
- (b) 显然, $\tilde{V}_{\xi} = x^{(\pi)}x^{E} \otimes V$. 因为模 V 是非平凡的, 所以 \tilde{V}_{ξ} 是非平凡的 X_{0} 模. 令 $x^{(\pi)}x^{E} \otimes V'$ 是 \tilde{V}_{ξ} 的非零真子模, 则 $V' \neq 0$. 从而 $1 \otimes V'$ 是 $1 \otimes V$ 的 X_{0} 真子模, 所以 V' 是 V 的非零的 $\mathcal{L}(P)$ 真子模. 此与 V 的不可约性矛盾.
 - (c) 因为 V_{ℓ} 是不可约的 X_{0} 模, 所以

$$U(X_0)(x^{(\pi)}x^E\otimes v)=x^{(\pi)}x^E\otimes V\subseteq \widetilde{V}'.$$

任取 $\alpha \in A(m,\underline{t}), u \in B(n)$. 设 $(\beta_1,\cdots,\beta_m)=\pi-\alpha$. 令 $w=\langle j_1,\cdots,j_k\rangle \in B(n)$ 使 得 $\{w\}=Y_1\setminus\{u\}$. 则

$$x^{(\alpha)}x^u\otimes V=\mathbf{D}_1^{\beta_1}\cdots\mathbf{D}_m^{\beta_m}\mathbf{D}_{j_1}\cdots\mathbf{D}_{j_k}(x^{(\pi)}x^E\otimes V)\subseteq \widetilde{V}',$$

所以 $\tilde{V}' = \tilde{V}$.

(d) 令 $R = \mathbb{F}(D_{H}(x^{(\pi)}x^{E}))$,则 $\overline{H} = H + R$,并且 $D_{H}(x^{(\pi)}x^{E}) \in \overline{H}_{\xi-2}$. 设 $U(R)^{0}$ 是 R 生成的 U(R) 的理想,则 $U(R)^{0}\widetilde{V} \subseteq V_{R} := \bigoplus_{i \geq \xi-2} \widetilde{V}_{i}$. 易见 $D_{H}(x^{(\pi)}x^{E})V_{R} \subseteq \bigoplus_{i \geq 2(\xi-2)} \widetilde{V}_{i} = 0$,并且 $\widetilde{V} = U(\widetilde{H})\widetilde{V}_{0} = U(H)\widetilde{V}_{0} + V_{R}$.

假设 $U(H)\tilde{V}_0 \neq \tilde{V}$, 则 $U(H)\tilde{V}_0$ 是 \tilde{V} 的真子模. 我们断言 $(U(H)\tilde{V}_0)\cap \tilde{V}_{\xi}=0$. 否则, 存在 $0 \neq w \in (U(H)\tilde{V}_0)\cap \tilde{V}_{\xi}$. 因为 $w \in \tilde{V}_{\xi}$, 所以可设 $w = x^{(\pi)}x^E \otimes v$. 则 $x^{(\pi)}x^E \otimes v \in U(H)\tilde{V}_0$. 显然 $U(H)\tilde{V}_0$ 是 \tilde{V} 的一个 H- 子模. 由 (c) 知 $U(H)\tilde{V}_0 = \tilde{V}$, 所以 $U(H)\tilde{V}_0$ 不是 \tilde{V} 的真子模, 此为矛盾. 因此 $(U(H)\tilde{V}_0)\cap \tilde{V}_{\xi}=0$.

由 (b) 知 \tilde{V}_{ξ} 是非平凡的 H_{0} - 模, 从而存在 $x \in H_{0}$, $w \in \tilde{V}_{\xi}$, 使得 $xw \neq 0$. 因为 $(U(H)\tilde{V}_{0}) \cap \tilde{V}_{\xi} = 0$, 所以 $xw \notin U(H)\tilde{V}_{0}$. 于是 H- 模 $V' := \tilde{V}/U(H)\tilde{V}_{0}$ 是非平凡的. 易见

$$V' = \widetilde{V}/U(H)\widetilde{V}_0 = (U(H)\widetilde{V}_0 + V_R)/U(H)\widetilde{V}_0 = V_R/U(H)\widetilde{V}_0.$$

因此

$$D_H(x^{(\pi)}x^E)V' = D_H(x^{(\pi)}x^E)V_R/U(H)\widetilde{V}_0 = 0.$$

令 η 是 Π - 模 V' 所提供的表示, 则 $D_H(x^{(\pi)}x^E) \in \ker \eta$. 由于 Π 的任何真理想 均不包含 $D_H(x^{(\pi)}x^E)$, 所以 $\ker \eta = \Pi$. 从而 Π - 模 V' 是平凡的. 此亦为矛盾, 所以 $U(H)\tilde{V}_0 = \tilde{V}$.

命题 2.3 设 V 是不可约的 $\mathcal{L}(P)$ - 模, 则 \widetilde{V} 是不可约的 H- 模当且仅当 \widetilde{V} 是不可约的 H- 模.

证明 充分性是显然的 下面证明必要性

设 \tilde{V} 是不可约的 \tilde{H} - 模. 因为 $U(\tilde{H})\tilde{V}_0$ 是一个非零的 \tilde{H} - 子模, 所以 $U(\tilde{H})\tilde{V}_0 = \tilde{V}$. 令 \tilde{V}_H 是 \tilde{V} 的惟一的不可约的 H- 子模. 由引理 2.2 的 (a) 知, $\tilde{V}_H \supseteq \tilde{V}_0$, 从而 $\tilde{V}_H \supseteq \tilde{V}_0$ 以(H) \tilde{V}_0 . 由引理 2.2 的 (d) 知, $U(H)\tilde{V}_0 = U(\tilde{H})\tilde{V}_0 = \tilde{V}$, 所以 $\tilde{V}_H \supseteq \tilde{V}$, 故 $\tilde{V}_H = \tilde{V}$. 这就证明了 \tilde{V} 是不可约的 H- 模. \Box

以下总设 V 是具有首权 λ 的不可约 L(P)- 模, 并且记 \tilde{V} 为 $\tilde{V}(\lambda)$. 我们讨论怎样的 λ 可使 $\tilde{V}(\lambda)$ 是不可约的 H- 模. 若 $1 \le i \le q = \frac{\alpha}{2}$, 则令 $i^{v} = i + q$. 设

$$\mathcal{H} = \operatorname{span}_{\mathbf{F}}\{h_i \mid i=1,\cdots,r,m+1,m+2,\cdots,m+q\},$$

其中

$$h_i = E_{ii} - E_{i+1 \ i+1} - E_{i'i'} + E_{(i+1)'(i+1)'}, \qquad i = 1, \cdots, r-1,$$
 $h_r = E_{rr} - E_{m+1 \ m+1} - E_{r'r'} + E_{m+1' \ m+1''},$

$$h_{m+i} = E_{m+i \ m+i} - E_{m+i+1 \ m+i+1} - E_{m+i^v} + i^v + i^v + 1 + i^{v+1} + i^{v+1}, \qquad i = 1, \cdots, q-1,$$
 $h_{m+q} = E_{m+q-1 \ m+q-1} + E_{m+q \ m+q} - E_{m+q^v-1 \ m+q^v-1} - E_{m+q^v \ m+q^v}.$

我们称 \mathcal{H} 为 $\mathcal{L}(P)$ 的标准 Cartan 子代数.

 $\diamondsuit \Lambda_1, \Lambda_2 \cdots, \Lambda_s$ 是空间 $\mathrm{span}_{\mathbb{F}}\{E_{11}, E_{22}, \cdots, E_{ss}\}$ 的线性函数, 使得 $\Lambda_i(E_{jj}) = \delta_{ij}$, $i, j = 1, 2, \cdots, s$. 则 $\mathcal{L}(P)$ 关于 \mathcal{H} 的单根系 是

$$\{\Lambda_i - \Lambda_{i+1}, i = 1, \dots, r; \quad \Lambda_r - \Lambda_{m-1};$$

$$\Lambda_{m+i} - \Lambda_{m+i+1}, i = 1, \dots, q-1; \quad \Lambda_{m+q-1} + \Lambda_{m+q}\}.$$

L(P) 关于 H 的基本权是

$$\lambda_i = \sum_{j=1}^i \Lambda_j, \qquad i = 1, \cdots, r,$$
 $\lambda_{m+i} = \sum_{j=1}^r \Lambda_j + \sum_{j=1}^i \Lambda_{m+j}, \qquad i = 1, 2, \cdots, q-2,$
 $\lambda_{m+q-1} = \frac{1}{2} \left(\sum_{j=1}^r \Lambda_j + \sum_{j=1}^{q-1} \Lambda_{m+j} - \Lambda_{m+q} \right),$
 $\lambda_{m+q} = \frac{1}{2} \left(\sum_{j=1}^r \Lambda_j + \sum_{j=1}^q \Lambda_{m+j} \right).$

则 $\lambda_i(h_j) = \delta_{ij}$, $i,j = 1,2,\cdots,r,m+1,m+2,\cdots,m+q$. 直接计算可知以下等式成立.

$$P^{-1}(E_{11}-E_{1'1'})P=E_{11}-E_{1'1'}, (2.3)$$

$$P^{-1}(E_{m+i\ m+i^{v}}-E_{m+i^{v}\ m+i})P=-\mu(E_{m+i\ m+i}-E_{m+i^{v}\ m+i^{v}}), \qquad (2.4)$$

$$P^{-1}(E_{1\ m+i}-E_{m+i\ 1'})P$$

$$=(E_{1 m+i}-E_{m+i^{\nu_{1'}}})+\frac{1}{2}(E_{1 m+i^{\nu}}-E_{m+i^{\gamma}}), \qquad (2.5)$$

$$P^{-1}(E_{1'|m+i''}+E_{m+i''1})P$$

$$= -\mu(E_{1'm+i} + E_{m+i'1}) + \frac{\mu}{2}(E_{1'm+i'} + E_{m+i1}), \qquad (2.6)$$

$$P^{-1}(E_{1\;m+i^v}-E_{m+i^v1'})P$$

$$=\frac{\mu}{2}(E_{1\ m+i^{\nu}}-E_{m+i\ l'})-\mu(E_{l\ m+i}-E_{m+i^{\nu}l'}), \qquad (2.7)$$

$$P^{-1}(E_{1'|m+i}+E_{m+i|1})P$$

$$= (E_{1' m+i} + E_{m+i''1}) + \frac{1}{2} (E_{1' m+i''} + E_{m+i'1}). \tag{2.8}$$

定理 2.4 设 V 是具有非季首权 λ 的有限维不可约的 $\mathcal{L}(P)$ - 模, n 是正偶数. 若 λ 不是基本权 λ_j , $j=1,\cdots,r$, 则 $\widetilde{V}(\lambda)$ 是不可约的 $H(m,n,\underline{t})$ - 模.

证明 由命题 2.3, 只需证明当 λ 不是基本权 λ_j 时, $\tilde{V}(\lambda)$ 是不可约的 $\Pi(m,n,\underline{t})$ -模. 设 V 是 $\tilde{V}(\lambda)$ 的惟一的不可约的 $\Pi(m,n,\underline{t})$ - 子模, ρ 为 $\mathcal{L}(P)$ - 模 V 所提供的表示.

令 $\lambda = \sum_{k=1}^r s_k \lambda_k + \sum_{k=1}^q s_{m+k} \Lambda_{m+k}$, 其中 s_k , $s_{m+k} \in \mathbb{F}$. 设 V_λ 是首权 λ 的权向量. 因为 $\lambda \neq \lambda_j$, $j = 1, \dots, r$, 所以 λ 只能是以下三种情况之一: $\sum_{k=1}^r s_k \Lambda_k \neq \lambda_j$ $(j = 1, \dots, r)$ 并且 $\sum_{k=1}^r s_k \Lambda_k \neq 0$; $\lambda = \lambda_j + \sum_{k=1}^q s_{m+k} \Lambda_{m+k}$, 其中 $1 \leq j \leq r$, 并且某个 $s_{m+k} \neq 0$; $\lambda = \sum_{k=1}^q s_{m+k} \Lambda_{m+k}$, 其中某个 $s_{m+k} \neq 0$.

(i) $\sum_{k=1}^{r} s_k \Lambda_k \neq \lambda_j$ $(j=1,\cdots,r)$ 并且 $\sum_{k=1}^{r} s_k \Lambda_k \neq 0$. 令 $w = \tilde{\rho}(D_H(x^{(\pi)}x^E))(1\otimes v_\lambda)$. 由引理 2.2 知 $1\otimes v_\lambda \in \overline{V}$, 所以 $w \in \overline{V}$. 利用 (1.3) 式与命题 1.1, 直接计算可得

$$\begin{split} w &= \sum_{k=1}^{m} \sum_{j=1}^{m} \sigma(j) x^{(\pi - \varepsilon_{j} - \varepsilon_{k})} x^{E} \otimes \rho(P^{-1}E_{kj'}P) v_{\lambda} \\ &+ \sum_{k=m+1}^{s} \sum_{j=1}^{m} \sigma(j) (-1)^{k-m-1} x^{(\pi - \varepsilon_{j})} x^{E-(k)} \otimes \rho(P^{-1}E_{kj'}P) v_{\lambda} \\ &+ \sum_{k=1}^{m} \sum_{j=m+1}^{s} (-1)^{j-m} x^{(\pi - \varepsilon_{k})} x^{E-(j)} \otimes \rho(P^{-1}E_{kj}P) v_{\lambda} \\ &+ \sum_{k=m+1}^{j} \sum_{j=m+1}^{s} (-1)^{j+k} x^{(\pi)} x^{E-(k)-(j)} \otimes \rho(P^{-1}E_{kj}P) v_{\lambda} \\ &+ \sum_{k=m+1}^{s} \sum_{j=m+1}^{s} (-1)^{j+k-1} x^{(\pi)} x^{E-(j)-(k)} \otimes \rho(P^{-1}E_{kj}P) v_{\lambda}. \end{split}$$

显然, 当 $i,j \leq m$ 时, $P^{-1}E_{ij}P = E_{ij}$. 令 $\overline{h}_i = E_{ii} - E_{i'i'}$, 其中 $i = 1, \dots, r$. 设 $i \in \{1,\dots,r\}$. 由计算知

$$\widetilde{
ho}ig(\mathrm{D}_{\mathrm{H}}(x^{(2arepsilon_i+2arepsilon_{i'})})ig)(w)=x^{(\pi)}x^{E}\otimesig((\lambda(\overline{h}_i))^2-\lambda(\overline{h}_i)ig)v_{\lambda} \ =(s_i^2-s_i)x^{(\pi)}x^{E}\otimes v_{\lambda}.$$

若 $s_i \neq 0, 1$, 则 $s_i^2 - s_i \neq 0$. 所以 $x^{(\pi)}x^E \otimes v_\lambda \in \overline{V}$. 由引理 2.2 的 (c) 知, $\overline{V} = \widetilde{V}(\lambda)$, 从 而 $\widetilde{V}(\lambda)$ 是不可约的. 若所有的 s_k 均为 0 或 1, 其中 $k = 1, \dots, r$, 因为 $\sum_{k=1}^r s_k \Lambda_k \neq \lambda_j$, 所以存在 $k, l \in \{1, \dots, r\}$, 使得 k < l, $s_k = 0$ 与 $s_l = 1$. 于是

$$\widetilde{\rho}(\mathrm{D}_{\mathrm{H}}(x_k x_{k'} x_l x_{l'}))(w) = 2x^{(\pi)} x^E \otimes v_{\lambda}.$$

所以 $x^{(\pi)}x^E \otimes v_\lambda \in \overline{V}$, 从而 $\widetilde{V}(\lambda)$ 是不可约的.

(ii) $\lambda = \lambda_j + \sum_{k=1}^q s_{m+k} \Lambda_{m+k}$ 或 $\lambda = \sum_{k=1}^q s_{m+k} \Lambda_{m+k}$,并且有某个 $s_{m+i} \neq 0$. 因为 s_1 只能为 0 或 1,所以 $s_{m+i}(s_1+1) \neq 0$. 由计算知

$$\widetilde{
ho}ig(\mathrm{D}_{\mathrm{H}}(x_1x_{1'}x_{m+i}x_{m+iv})ig)(w)$$

$$=\rho_{1}\left(-x_{m+i}x_{m+i^{v}}\otimes P^{-1}(E_{11}-E_{1'1'})P\right)$$

$$-x_{1'}x_{m+i^{v}}\otimes P^{-1}(E_{1\,m+i}-E_{m+i\,1'})P$$

$$+x_{1'}x_{m+i}\otimes P^{-1}(E_{1\,m+i^{v}}-E_{m+i^{v}1'})P$$

$$-x_{1}x_{m+i^{v}}\otimes P^{-1}(E_{m+i\,1}+E_{1'\,m+i})P$$

$$+x_{1}x_{m+i}\otimes P^{-1}(E_{m+i\,1}+E_{1'\,m+i^{v}})P$$

$$-x_{1}x_{1'}\otimes P^{-1}(E_{m+i\,m+i^{v}}-E_{m+i^{v}\,m+i})P)(w)$$

$$=x^{(\pi)}x^{E}\otimes\rho(P^{-1}(E_{11}-E_{1'1'})P)\rho(P^{-1}(E_{m+i\,m+i^{v}}-E_{m+i^{v}\,m+i})P)v_{\lambda}$$

$$-x^{(\pi)}x^{E}\otimes\rho(P^{-1}(E_{1\,m+i^{v}}-E_{m+i^{v}1'})P)\rho(P^{-1}(E_{1'\,m+i^{v}}+E_{m+i^{v}1}P)v_{\lambda}$$

$$+x^{(\pi)}x^{E}\otimes\rho(P^{-1}(E_{1\,m+i^{v}}-E_{m+i^{v}1'})P)\rho(P^{-1}(E_{1'\,m+i^{v}}+E_{m+i^{v}1})P)v_{\lambda}$$

$$-x^{(\pi)}x^{E}\otimes\rho(P^{-1}(E_{1'\,m+i^{v}}+E_{m+i^{v}1'})P)\rho(P^{-1}(E_{1\,m+i^{v}}+E_{m+i^{v}1'})P)v_{\lambda}$$

$$+x^{(\pi)}x^{E}\otimes\rho(P^{-1}(E_{1'\,m+i^{v}}+E_{m+i^{v}1})P)\rho(P^{-1}(E_{1\,m+i^{v}}+E_{m+i^{v}1})P)v_{\lambda}$$

$$+x^{(\pi)}x^{E}\otimes\rho(P^{-1}(E_{1'\,m+i^{v}}+E_{m+i^{v}1})P)\rho(P^{-1}(E_{1\,m+i^{v}}-E_{m+i^{v}1})P)v_{\lambda}$$

$$+x^{(\pi)}x^{E}\otimes\rho(P^{-1}(E_{m+i^{v}m+i^{v}}-E_{m+i^{v}m+i})P)\rho(P^{-1}(E_{1\,1}-E_{1'1'})P)v_{\lambda}.$$
(2.9)

因为 $E_{1\,m+i^v} - E_{m+i\,1'}$ 与 $E_{1\,m+i} - E_{m+i^v\,1'}$ 分别是属于正根 $\Lambda_1 + \Lambda_{m+i}$ 与 $\Lambda_1 - \Lambda_{m+i}$ 的根向量, 所以

$$(E_{1 m+iv} - E_{m+i'})v_{\lambda} = (E_{1 m+i} - E_{m+i''})v_{\lambda} = 0.$$
 (2.10)

将 (2.3)~(2.8) 与 (2.10) 式代入到 (2.9) 式的右边,则可得

$$\begin{split} \widetilde{\rho}\big(\mathrm{D}_{\mathrm{H}}(x_{1}x_{1'}x_{m+i}x_{m+iv})\big)(w) \\ &= -2\mu x^{(\pi)}x^{E} \otimes \rho(E_{m+i|m+i} - E_{m+ivm+iv})\rho(E_{11} - E_{1'1'})v_{\lambda} \\ &- \mu x^{(\pi)}x^{E} \otimes \rho(E_{1|m+i} - E_{m+iv1'})\rho(E_{1'|m+iv} + E_{m+i|1})v_{\lambda} \\ &+ \mu x^{(\pi)}x^{E} \otimes \rho(E_{1|m+iv} - E_{m+i|1'})\rho(E_{1'|m+i} + E_{m+iv1})v_{\lambda}. \end{split}$$

易见

$$\rho(E_{1\ m+i} - E_{m+i^{v}1'})\rho(E_{1'\ m+i^{v}} + E_{m+i\ 1})v_{\lambda}$$

$$= \rho([E_{1\ m+i} - E_{m+i^{v}1'}, E_{1'\ m+i^{v}} + E_{m+i\ 1}])v_{\lambda}$$

$$= \rho([E_{1\ m+i}, E_{1'\ m+i^{v}}] + [E_{1\ m+i}, E_{m+i\ 1}]$$

$$- [E_{m+i^{v}1'}, E_{1'\ m+i^{v}}] - [E_{m+i^{v}1'}, E_{m+i\ 1}])v_{\lambda}$$

$$= \rho(E_{11} + E_{m+i\ m+i} - E_{m+i^{v}m+i^{v}} - E_{1'1'})v_{\lambda}$$

$$= (s_{1} + s_{m+i})v_{\lambda}.$$

同理可得

$$\rho(E_{1\ m+iv}-E_{m+i\ 1'})\rho(E_{1'\ m+i}+E_{m+iv\ 1})v_{\lambda}=(s_1-s_{m+i})v_{\lambda}.$$

所以我们有

$$egin{aligned} &\widetilde{
ho}ig(\mathrm{D}_{\mathbf{H}}(x_{1}x_{1'}x_{m+i}x_{m+iv}) ig)(w) \ &= -2\mu x^{(\pi)}x^{E}\otimes s_{m+i}s_{1}v_{\lambda} - \mu x^{(\pi)}x^{E}\otimes (s_{1}+s_{m+i})v_{\lambda} \ &+ \mu x^{(\pi)}x^{E}\otimes (s_{1}-s_{m+i})v_{\lambda} \ &= -2\mu s_{m+2}(s_{1}+1)x^{(\pi)}x^{E}\otimes v_{\lambda}. \end{aligned}$$

因为 $\mu s_{m+1}(s_1+1) \neq 0$, 所以 $x^{(\pi)}x^E \otimes v_\lambda \in \overline{V}$. 由引理 2.2 的 (c) 知, $\overline{V} = \tilde{V}(\lambda)$. 于是可知 $\tilde{V}(\lambda)$ 是不可约的 $\Pi(m,n,\underline{t})$ - 模, 从而 $\tilde{V}(\lambda)$ 是不可约的 $\Pi(m,n,\underline{t})$ - 模. 定理得证.

当 n=2q+1 是奇数时, 用

$$P_{n} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & I_{q} & \frac{1}{2}I_{q} \\ 0 & -\mu I_{q} & \frac{\mu}{2}I_{q} \end{bmatrix}$$

代替 (2.1) 式中的 P_n , 于是可用 n=2q 时的方法讨论 $\tilde{V}(\lambda)$ 的不可约性.

§3 形式向量场的一般与特殊李超代数

我们知道, 文献 [29] 完成了特征零域上的无限维线性紧致单李超代数的分类. 本节讨论了其中两类重要的无限维 Cartan 型李超代数 〒 与 B 的不变子代数、自然滤过与自同构.

本节总设 F 是特征数为零的域。令 $P(m) = \mathbb{F}[[x_1, \cdots, x_m]]$ 为 F 上 m 个变元的形式幂级数环。若 $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_m) \in \mathbb{N}_0^m$,则简记 P(m) 中的单项式 $x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_m^{\alpha_m}$ 为 $x^{(\alpha)}$. 仍设 $\Lambda(n)$ 为 F 上 n 个变元 x_{m+1}, \cdots, x_s 的外代数,其中 s = m+n. 令 $\overline{\Lambda}(m,n) = P(m) \otimes \Lambda(n)$,则 $\overline{\Lambda}(m,n)$ 是非交换的线性紧致拓扑超代数, $\{(\overline{\Lambda}_1)^k\}_{k \geq 1}$ 构成了零点的基本邻域系,其中 $\overline{\Lambda}_1$ 是由 $\{x_1, \cdots, x_s\}$ 生成的 $\overline{\Lambda}(m,n)$ 的理想. 为简便,我们记 $\overline{\Lambda}(m,n)$ 为 u. 本节仍设 $m,n \geq 2$. 若 $f \in P(m)$, $g \in \Lambda(n)$, 我们也简记 u 中的元素 $f \otimes g$ 为 fg.

若 $i \in \mathbb{N}_0$, 则令 $U_{[i]} = \operatorname{span}_{\mathbb{F}}\{x^{(\alpha)}x^u \mid |\alpha| + |u| = i\}$. 于是 $U_{[i]}$ 是 U 的有限维子空间, 并且 $U_{[i]}U_{[j]} \subseteq U_{[i+j]}$, $\forall i,j \in \mathbb{N}_0$. 任取 $y \in U$, 则 y 可惟一地表为 $y = \sum_{i=0}^{\infty} y_i$, 其中 $y_i \in U_{[i]}$. 因为拓扑代数 U 的加法是连续的, 所以这里允许无限个非零元素 x_i 的和. 于是 $U = \sum_{i \geq 0} U_{[i]}$ 是 \mathbb{Z} - 阶化超代数 (若 i < 0, 则约定 $U_{[i]} = 0$). 令 $U_j = \sum_{i \geq j} U_{[i]}$,则 $\{U\}_{i \geq 0}$ 给出了 U 的一个滤过结构. 容易证明, $U_j = (\overline{\Lambda}_1)^j$, $j \in \mathbb{N}_0$.

设 $\frac{\partial}{\partial x_i}$ 是对变元 x_i 的连续超导于, $i \in Y = \{1, \dots, s\}$. 我们简记 $\frac{\partial}{\partial x_i}$ 为 ∂_i . 令 derU 是 U 的所有连续超导子构成的李超代数. 令

$$\overline{\mathrm{W}}(m,n) = \left\{ \sum_{i=1}^{s} f_i \partial_i \;\middle|\; f_i \in \mathcal{U}, \; i \in Y \right\},$$

则 $\overline{W}(m,n)$ 是 derU 的无限维子代数. 由几何意义, 仿文献 [29] 称 $\overline{W}(m,n)$ 为形式向量场的一般李超代数(general Lie superalgebra of formal vectorfields). 我们简记 $\overline{W}(m,n)$ 为 \overline{W} . 令

$$\overline{\mathbf{W}}_{[i]} = \operatorname{span}_{\mathbf{F}} \{ f \partial_j \mid f \in \mathcal{U}_{[i+1]}, \ i = 1, \cdots, s \},$$

则 $\overline{W} = \sum_{i \geq -1} \overline{W}_{[i]}$ 是单的 \mathbb{Z} 阶化李超代数. 设 $\overline{W}_i = \sum_{i \geq j} \overline{W}_{[i]}$, 则 $\{\overline{W}_i\}_{i \geq -1}$ 给出了 \overline{W} 的一个滤过,称之为自然滤过. 进而 \overline{W} 是一个线性紧致拓扑李超代数, $\{\overline{W}_i\}_{i \geq -1}$ 是零点的基本邻域系.

若 $D = \sum_{i=1}^{s} f_i D_i \in \overline{W}$, 则 div $D = \sum_{i=1}^{s} (-1)^{r(i)d(f_i)} \partial_i(f_i)$. 设 $\overline{S}(m,n) = \{D \in \overline{W} \mid \text{div } D = 0\}$, 则 $\overline{S}(m,n)$ 是 \overline{W} 的单子代数,称之为形式向量场的特殊李超代数,并简记 $\overline{S}(m,n)$ 为 \overline{S} . 设

$$D_{ij}(f) = (-1)^{\tau(i)\tau(j)}\partial_i(f)\partial_j - (-1)^{(\tau(i)+\tau(j))d(f)}\partial_j(f)\partial_i, \quad \forall i,j \in Y.$$

由第五章引理 2.1 可知

$$\overline{S} = \operatorname{span}_{\mathbf{F}} \{ \operatorname{D}_{ij}(f) \mid f \in \mathcal{U}, \ i, j \in Y \}.$$

易见 \overline{W} 的 \mathbb{Z} 阶化诱导了 \overline{S} 的一个 \mathbb{Z} 阶化, 使得 $\overline{S} = \sum_{i \geq -1} \overline{S}_{[i]}$ 是一个 \mathbb{Z} 阶化李超代数, 其中

$$\overline{\mathbf{S}}_{[i]} = \operatorname{span}_{\mathbf{F}} \{ \mathbf{D}_{kl}(f) \mid f \in \mathcal{U}_{[i+2]}, \ k, l \in Y \},$$

并且 \overline{S} 继承了 \overline{W} 的滤过结构与拓扑结构,从而 \overline{S} 也是线性紧致拓扑李超代数. 在本节中,L 表示李超代数 \overline{W} 或 \overline{S} , 则 $L = L_{\overline{S}} \oplus L_{\overline{I}}$. 设 $\theta \in \mathbb{Z}_2$, 若 $L = \overline{W}$, 则

$$L_{\theta} = \operatorname{span}_{\mathbb{F}} \{ f \partial_j \mid f \in \mathcal{U}, \ i \in Y, \ d(f) + \tau(j) = \theta \}.$$

若 $L = \overline{S}$,则

$$L_{\theta} = \operatorname{span}_{\mathbb{F}} \{ \operatorname{D}_{ij}(f) \mid f \in \mathcal{U}, \ i, j \in Y, \ \operatorname{d}(f) + \tau(i) + \tau(j) = \theta \}.$$

引理 3.1 设 $0 \neq D \in L_{[-1]} \cap L_{\overline{0}}$,则 $D(\mathcal{U}_{[i]}) = \mathcal{U}_{[i-1]}$, $\forall i \in \mathbb{N}$. 从而 $D(\mathcal{U}) = \mathcal{U}$.

证明 可设 $D = \sum_{j=1}^{m} c_j \partial_j$, 其中 $c_j \in F$. 因 $D \neq 0$, 所以 c_1, \ldots, c_m 不全为零. 令 $d_{1j} = c_j$, $\forall j \in Y_0$. 则存在 $d_{ij} \in F$, 其中 $i, j = 2, \ldots, m$, 使得 $[d_{ij}]_{1 \leq i, j \leq m}$ 是 m 阶可逆矩阵. 显然 $[1,0,\ldots,0][d_{ij}] = [c_1,c_2,\ldots,c_m]$. 设 $[a_{ij}] = [d_{ij}]^{-1}$, 则 $[c_1,c_2,\ldots,c_m][a_{ij}] = [1,0,\ldots,0]$.

 \diamondsuit $y_j = \sum_{i=1}^m a_{ij}x_i, \forall j \in Y_0; y_j = x_j, \forall j \in Y_1. 则$

$$D(y_1) = \sum_{i=1}^m c_i a_{i1} = 1, \ D(y_j) = 0, \ j = 2, \dots, m,$$
 (3.1)

并且 $x_j = \sum_{i=1}^m d_{ij}y_i$, $\forall j \in Y_0$; $x_j = y_j$, $\forall j \in Y_1$. 若 $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}_0^m$, $u = (i_1, \ldots, i_k) \in B(n)$, 仍记

$$y^{(\alpha)}y^u = y_1^{\alpha_1} \dots y_m^{\alpha_m} y_{i_1} \dots y_{i_k},$$
 (3.2)

则对任意 $j \in \mathbb{N}_0$,有 $U_{[j]} = \operatorname{span}_{\mathbb{F}}\{y^{(\alpha)}y^u \mid \alpha \in \mathbb{N}_0^m, u \in B(n), |\alpha| + |u| = j\}$. 设 $y^{(\alpha)}y^u \in U_{[i-1]}$. 因为 $\alpha_1 \in \mathbb{N}_0$, char $\mathbb{F} = 0$,所以 $\alpha_1 + 1 \neq 0$. 显然 $(\alpha_1 + 1)^{-1}y_1y^{(\alpha)}y^u \in U_{[i]}$. 由 (3.1) 式知, $D((\alpha_1 + 1)^{-1}y_1y^{(\alpha)}y^u) = y^{(\alpha)}y^u$. 于是可推得 $D(U_{[i]}) \supseteq U_{[i-1]}$. 因为 $D \in L_{[-1]}$,所以 $D(U_{[i]}) \subseteq U_{[i-1]}$. 因此 $D(U_{[i]}) = U_{[i-1]}$, $\forall i \in \mathbb{N}$. 任取 $z = \sum_{i=0}^{\infty} z_i \in U$,其中 $z_i \in U_{[i]}$. 因为 $U_{[i]} = D(U_{[i+1]})$,故可设 $z_i = D(h_{i+1})$,其中 $h_{i+1} \in U_{[i+1]}$, $\forall i \in \mathbb{N}$. 因 D 是连续的,故 $z = \sum_{i=0}^{\infty} D(h_{i+1}) = D(\sum_{i=0}^{\infty} h_{i+1}) \in D(U)$. 于是 U = D(U).

引理 3.2 设 $0 \neq D \in L_{[-1]} \cap L_{\overline{0}}$, 则 $[D, L_{[i]}] = L_{[i-1]}$, $\forall i \in \mathbb{N}_0$.

证明 显然 $[D, L_{[i]}] \subseteq L_{[i-1]}$. 若 $L = \overline{W}$, 设 fD_j 是 $L_{[i-1]}$ 的任一基元素, 则 $f \in U_{[i]}$. 由引理 3.1, 存在 $g \in U_{[i+1]}$, 使得 D(g) = f. 显然 $g\partial_j \in L_{[i]}$, 并且 $[D, g\partial_j] = f\partial_j$, 于 是 $L_{[i-1]} \subseteq [D, L_{[i]}]$. 若 $L = \overline{S}$, 设 $D_{kl}(f) \in L_{[i-1]}$. 由等式 $[D, D_{kl}(f)] = D_{kl}(Df)$ 以及引理 3.1, 同理推得 $L_{[i-1]} \subseteq [D, L_{[i]}]$. 引理得证.

设 $D \in L$. 若 $D \neq 0$, 易见, 存在 $i \in \mathbb{N}$, 使得 $D \notin L_i$, 故 $\bigcap_{i=0}^{\infty} L_i = 0$.

引理 3.3 设 $0 \neq D \in (L_{-1} \cap L_{\overline{0}}) \setminus L_0$, 则 [D, L] = L.

证明 设 $D = \sum_{i=-1}^{\infty} D_i$, 其中 $D_i \in L_{[i]}$. 设 $E = \sum_{i=-1}^{\infty} E_i$ 是 L 的任一元素, 其中 $E_i \in L_{[i]}$. 由引理 3.2, 我们可归纳地取得 $G_j \in L_{[j]}, \forall j \in \mathbb{N}_0$, 使得

$$[D_{-1},G_0]=E_{-1},\ \ [D_{-1},G_j]=E_{j-1}-\sum_{i=0}^{j-1}[D_i,G_{j-1-i}],\ orall\ j\in \mathbb{N}.$$

任取 l ∈ No, 则有

(i)
$$\left[D_{-1}, \sum_{j=0}^{l} G_{j} \right] = \left[D_{-1}, G_{0} \right] + \sum_{j=1}^{l-1} \left[G_{-1}, G_{j} \right]$$

$$= E_{-1} + \sum_{i=1}^{l} \left(E_{j-1} - \sum_{i=0}^{j-1} \left[D_{i}, G_{j-1-i} \right] \right)$$

$$= \sum_{j=1}^{l-1} E_{j} - \sum_{j=1}^{l} \sum_{i=0}^{j} \left[D_{i}, G_{j-1-i} \right] = \sum_{j=-1}^{l-1} E_{j} - \sum_{j=0}^{l-1} \sum_{i=0}^{j} \left[D_{i}, G_{j-i} \right]$$

$$= \sum_{j=-1}^{l-1} E_{j} - \sum_{0 \le i+j \le l-1} \left[D_{i}, G_{j} \right].$$

(ii)
$$\left[\sum_{i=0}^{\infty} D_{i}, \sum_{j=0}^{l} G_{j}\right] = \left[\sum_{i=0}^{l-1} D_{i}, \sum_{j=0}^{l} G_{j}\right] + \left[\sum_{i=l}^{\infty} D_{i}, \sum_{j=0}^{l} G_{j}\right]$$
$$= \sum_{i,j=0}^{l-1} [D_{i}, G_{j}] + \sum_{i=0}^{l-1} [D_{i}, G_{l}] + \left[\sum_{i=l}^{\infty} D_{i}, \sum_{j=0}^{l} G_{j}\right]$$
$$= \sum_{0 \le i+j \le l-1} [D_{i}, G_{j}] + B,$$

其中 $B \in L_i = \bigcap_{i=0}^l L_i$. 由 (i) 与 (ii) 知

$$\left[D, \sum_{j=0}^{l} G_j\right] = \left[D_{-1}, \sum_{j=0}^{l} G_j\right] + \left[\sum_{i=0}^{\infty} D_i, \sum_{j=0}^{l} G_j\right] = \sum_{j=-1}^{l-1} E_j + B.$$

所以,我们有 $[D, \sum_{j=0}^{l} G_j] \equiv \sum_{j=-1}^{l-1} E_j \pmod{\bigcap_{i=0}^{l} L_i}$. 设 $G = \sum_{j=0}^{\infty} G_j$, 则 $[D, G] = [D, \sum_{j=0}^{\infty} G_j] \equiv \sum_{j=0}^{\infty} E_j \pmod{\bigcap_{i=0}^{\infty} L_i}$. 由 $\bigcap_{i=0}^{\infty} L_i = 0$ 知,[D, G] = E, 于是 $L \subseteq [D, L]$. 故 [D, L] = L.

设 $D \in L$. 我们知道, 若存在正整数 n, 使得 $(adD)^n = 0$, 则 D 称为 L 的 ad- 幂零元. 下面给出 ad- 拟幂零元的定义.

定义 3.4 设 $D \in L$, 若对任意 $n \in \mathbb{N}$, 存在 $\lambda_n \in \mathbb{N}$, 使得对任意 $t > \lambda_n$, 均有 $(adD)^t(L) \subseteq L_n$, 则称 $D \not\in L$ 的 ad - 拟幂零元.

显然 ad - 幂零元是 ad - 拟幂零元; 特别地, 对任意 $i \in Y_1$, ∂_i 是 L 的 ad - 拟幂零元.

设 T 是 L 的子集. 令 $qn_L(T) = \{D \in T \mid D$ 是 L 的 ad - 拟幂零元}. 我们简记 $qn_L(T)$ 为 qn(T). 令 Qn(T) 为 qn(T) 生成的 L 的子代数. 由定义可直接推得 $L_1 \subseteq qn(L)$.

引理 3.5 $\operatorname{qn}(L_{\overline{0}}) \subseteq L_0 \cap L_{\overline{0}}$.

证明 设 $D \in qn(L_{\overline{0}})$. 可设 $D = D_{-1} + D_0$, 其中 $D_{-1} \in L_{[-1]} \cap L_{\overline{0}}$, $D_0 \in L_0 \cap L_{\overline{0}}$. 若 $D_{-1} \neq 0$, 由引理 3.3 知 $D \notin qn(L)$. 此为矛盾, 故 $D_{-1} = 0$. 所以 $D \in L_0 \cap L_{\overline{0}}$.

引理 3.6 设 $D=D_0+D_1\in\operatorname{qn}(L_0)$, 其中 $D_0\in L_{[0]},D_1\in L_1$. 则 $D_0\in\operatorname{qn}(L_{[0]})$.

证明 假设 $D_0 \notin \operatorname{qn}(L_{[0]})$, 则存在 $n \in \mathbb{N}$, 使得对任意 $\lambda \in \mathbb{N}$, 总有一个大于 λ 的正整数 t 与 L 中的一个元素 E, 满足 $(\operatorname{ad} D_0)^t(E) \notin L_n$. 可设 $E \in L_{[i]}$ 是 \mathbb{Z} - 齐次元素. 由

$$(\operatorname{ad} D)^{t}(E) \equiv (\operatorname{ad} D_{0})^{t}(E) \pmod{L_{i+1}}$$

可推得 $(adD)^t(E) \notin L_n$. 因此 D 不是 ad- 拟幂零元, 此为矛盾. \Box

引理 3.7 下列结论成立:

- (i) $\operatorname{Qn}(L_{\overline{0}}) = \operatorname{Qn}(L_{[0]} \cap L_{\overline{0}}) + L_1 \cap L_{\overline{0}};$
- (ii) $\operatorname{Qn}(L_{\overline{0}}) \subseteq L_0 \cap L_{\overline{0}}$.

证明 (i) 由 $L_1 \subseteq \operatorname{qn}(L)$ 知, $L_1 \cap L_{\overline{0}} \subseteq \operatorname{qn}(L_{\overline{0}}) \subseteq \operatorname{Qn}(L_{\overline{0}})$. 所以 $\operatorname{Qn}(L_{[0]} \cap L_{\overline{0}}) + L_1 \cap L_{\overline{0}} \subseteq \operatorname{Qn}(L_{\overline{0}})$. 反之,设 $D \in \operatorname{qn}(L_{\overline{0}})$, 由引理 3.5 知, $D \in L_0 \cap L_{\overline{0}}$. 置 $D = D_0 + D_1$, 其中 $D_0 \in L_{[0]} \cap L_{\overline{0}}$, $D_1 \in L_1 \cap L_{\overline{0}}$. 由引理 3.6 知, $D_0 \in \operatorname{qn}(L_{[0]} \cap L_{\overline{0}}) \subseteq \operatorname{Qn}(L_{[0]} \cap L_{\overline{0}})$, 则

$$D = D_0 + D_1 \in \operatorname{Qn}(L_{\{0\}} \cap L_{\overline{0}}) + L_1 \cap L_{\overline{0}}.$$

因此

$$\operatorname{qn}(L_{\overline{0}}) \subseteq \operatorname{Qn}(L_{[0]} \cap L_{\overline{0}}) + L_1 \cap L_{\overline{0}}. \tag{3.3}$$

因为 (3.3) 式右端是 $L_{\overline{0}}$ 的子代数, 所以 $Qn(L_{\overline{0}}) \subseteq Qn(L_{[0]} \cap L_{\overline{0}}) + L_1 \cap L_{\overline{0}}$. 于是 (i) 得证. 利用 (i) 可直接推得 (ii).

引理 3.8 设 $i, j \in Y, i \neq j$. 则 $x_i \partial_i \in qn(L)$.

证明 取 $r \in Y \setminus \{i, j\}$, 则 $x_i \partial_j = (-1)^{r(r)r(j)} D_{rj}(x_r x_i)$, 从而 $x_i \partial_j \in L$. 因为 $\operatorname{qn}_{\overline{W}}(L) \subseteq \operatorname{qn}_L(L) = \operatorname{qn}(L)$, 所以只需证明 $x_i \partial_j \in \operatorname{qn}_{\overline{W}}(L)$. 不妨设i < j. 任取 $n \in \mathbb{N}$, 置 $\lambda_n = n+1$. 任取 $t > \lambda_n$, 往证 $(\operatorname{ad} x_i \partial_j)^t(\overline{W}) \subseteq \overline{W}_n$. 任取 $E = x^{(\alpha)} x^u \partial_k \in \overline{W}$, 其中 $\alpha \in \mathbb{N}_0^m, u \in B(n), k \in Y$. 可设 $E \in \overline{W}_{[t]}$. 若 $t \geq n$, 由 $x_i \partial_j \in \overline{W}_{[0]}$ 知, $(\operatorname{ad} x_i \partial_j)^t(E) \in \overline{W}_{[t]} \subseteq \overline{W}_n$. 若t < n, 由 $t \in \overline{W}_{[t]}$ 知t = n+1. 由t > n+1 知, t > n+1 犯, t >

① $j \in Y_0$. 若 $k \neq i$, 则 $(\operatorname{ad}(x_i\partial_j))^t(E) = x_i^t\partial_j^t(x^{(\alpha)})x^u = 0$. 若 k = i, 则 $(\operatorname{ad}(x_i\partial_j))^t(E) = x_i^t\partial_j^t(x^{(\alpha)})x^u\partial_i - tx^{t-1}\partial_i^{t-1}(x^{(\alpha)})x^u\partial_j = 0$.

② $j \in Y_1$. 此时 $\partial_j^2(x^u) = 0$. 因为 t > n+1, 故 $t \ge 3$. 若 $k \ne i$, 则

$$(\operatorname{ad}(x_i\partial_j))^t(E) = (\operatorname{ad}(x_i\partial_j))^{t-2}(x_i^2x^{(\alpha)}\partial_j^2(x^u)\partial_k) = 0.$$

若 k=i, 则 $(\operatorname{ad}(x_i\partial_j))^t(E)=l(\operatorname{ad}(x_i\partial_j))^{t-3}(x_i^2x^{(\alpha)}\partial_j^2(x^u)\partial_j)=0$, 其中 l=1 或 -1. 综上 知 $(\operatorname{ad}(x_i\partial_j))^t(x^{(\alpha)}x^uD_k)\in \overline{W}_n$. 任取 $f_k\in U$, 可设 $f_k=\sum_{\alpha,u}c_{\alpha,u}x^{(\alpha)}x^u$ (可以是无限和), 其中 $c_{\alpha,u}\in \mathbb{F}$. 因为 $(\operatorname{ad}(x_i\partial_j))^t$ 是连续的, 故

$$(\operatorname{ad}(x_i\partial_j))^t(f_kD_k) = \sum_{\alpha,u} (\operatorname{ad}(x_i\partial_j))^t(c_{\alpha,u}x^{(\alpha)}x^uD_k) \in \overline{W}_n.$$

由 $\overline{W} = \{\sum_{k \in Y} f_k D_k \mid f_k \in U\}$ 知, $(\operatorname{ad}(x_i \partial_j))^t(\overline{W}) \subseteq \overline{W}_n$. 因此 $x_i \partial_j \in \operatorname{qn}_{\overline{W}}(L)$. 口 设 ρ 是 $L_{[0]}$ 一模 $L_{[-1]}$ 所提供的表示。设 $D = \sum_{i,j=1}^s a_{ij} x_i \partial_j \in L_{[0]}$,其中 $a_{ij} \in \mathbb{F}$,则 $\rho(D) = \operatorname{ad} D$ 在 $L_{[-1]}$ 的基底 $\{\partial_1, \partial_2, \dots, \partial_s\}$ 上的矩阵是

$$A = [-(-1)^{\tau(i) + \tau(i)\tau(j)} a_{ij}]^t.$$

若 $\rho(D)$ 不是幂零阵, 由定义 1 知 $D \notin qn(L)$. 以下我们将 $\rho(D)$ 等同于它的矩阵 A. 直接验证可知

$$\rho(\overline{W}_{[0]} \cap \overline{W}_{\overline{0}}) = \operatorname{pl}(m, n)_{\overline{0}}, \ \rho(\overline{S}_{[0]} \cap \overline{S}_{\overline{0}}) = \operatorname{spl}(m, n)_{\overline{0}}, \tag{3.4}$$

其中 pl(m,n) 与 spl(m,n) 分别为 \mathbb{F} 上 m+n 阶矩阵的一般线性李超代数与特殊线性李超代数.

引理 3.9 下列结论成立:

- (i) $\rho(\operatorname{qn}(L_{[0]}\cap L_{\overline{0}}))\subseteq\operatorname{spl}(m,n)_{\overline{0}};$
- (ii) $\rho(\operatorname{Qn}(L_{[0]}\cap L_{\overline{0}}))=\operatorname{spl}(m,n)_{\overline{0}}$.

证明 (i) 设 $D \in qn(L_{[0]} \cap L_{\overline{0}})$, n 是任一正整数, 则有正整数 t, 使得 $(adD)^t(L) \subseteq L_n$. 特别地, $(adD)^t(L_{[-1]}) \subseteq L_n$. 因为 $D \in L_{[0]}$, 所以 $(adD)^t(L_{[-1]}) \subseteq L_{[-1]} \cap L_n = 0$. 于是 $(\rho(D))^t = 0$, 即 $\rho(D)$ 是幂零阵. 因 $D \in L_{[0]} \cap L_{\overline{0}}$, 故 $\rho(D) = diag(A_1, A_2)$. 从而 A_1 与 A_2 分别是 m 阶与 n 阶幂零阵, 所以 $tr(A_1) = tr(A_2) = 0$. 故 $str(\rho(D)) = 0$. 因此 $\rho(D) \in spl(m,n)_{\overline{0}}$.

(ii) 令 $R = \{x_i \partial_j | i, j \in Y, i \neq j, \tau(i) = \tau(j)\}$, 则 $R \subseteq L_{[0]} \cap L_{\overline{0}}$. 由引理 $3.8, R \subseteq qn(L_{[0]} \cap L_{\overline{0}})$, 所以 $\rho(R) \subseteq \rho(qn(L_{[0]} \cap L_{\overline{0}}))$. 因为 $\rho(R) \subseteq R$ spl $(m, n)_{\overline{0}}$, 所以 spl $(m, n)_{\overline{0}} \subseteq \rho(qn(L_{[0]} \cap L_{\overline{0}}))$. 由 (i) 知 $\rho(qn(L_{[0]} \cap L_{\overline{0}})) \subseteq spl(m, n)_{\overline{0}}$, 所以 (ii) 成立.

命题 3.10 $L_0 \cap L_{\overline{0}}$ 是 L 的不变子代数.

证明 设 $R = \operatorname{pl}(m, n)_{\overline{0}}$ 或 $\operatorname{spl}(m, n)_{\overline{0}}$,则 $[R, \operatorname{spl}(m, n)_{\overline{0}}] = \operatorname{spl}(m, n)_{\overline{0}}$. 由引理 3.9 (ii) 与 (3.4) 式知

$$[\rho(L_{[0]}\cap L_{\overline{0}}),\rho(\operatorname{Qn}(L_{[0]}\cap L_{\overline{0}}))]=\rho(\operatorname{Qn}(L_{[0]}\cap L_{\overline{0}}))).$$

因为 ρ 是忠实的, 所以 $[L_{[0]}\cap L_{\overline{0}}, \operatorname{Qn}(L_{[0]}\cap L_{\overline{0}})] = \operatorname{Qn}(L_{[0]}\cap L_{\overline{0}})$. 由引理 3.7 (i) 可得:

$$egin{aligned} [L_0 \cap L_{\overline{0}} \ , \operatorname{Qn}(L_{\overline{0}})] &= [L_0 \cap L_{\overline{0}} + L_1 \cap L_{\overline{0}} \ , \operatorname{Qn}(L_{[0]} \cap L_{\overline{0}}) + L_1 \cap L_{\overline{0}}] \ \\ &\subseteq [L_{[0]} \cap L_{\overline{0}} \ , \operatorname{Qn}(L_{[0]} \cap L_{\overline{0}})] + L_1 \cap L_{\overline{0}} \ \\ &\subseteq \operatorname{Qn}(L_{[0]} \cap L_{\overline{0}}) + L_1 \cap L_{\overline{0}} = \operatorname{Qn}(L_{\overline{0}}), \end{aligned}$$

所以 $L_0 \cap L_{\overline{0}} \subseteq \operatorname{Nor}_{L_{\overline{0}}}(\operatorname{Qn}(L_{\overline{0}}))$. 反之,设 $D \in \operatorname{Nor}_{L_{\overline{0}}}(\operatorname{Qn}(L_{\overline{0}}))$,则 $D \in L_{\overline{0}}$. 令 $D = D_{-1} + D_0$,其中 $D_{-1} \in L_{[-1]} \cap L_{\overline{0}}$, $D_0 \in L_0 \cap L_{\overline{0}}$. 可设 $D_{-1} = \sum_{k=1}^m a_k \partial_k$, $a_k \in \mathbb{F}$. 对任意 $k \in Y_0$,取 $j_k \in Y_0 \setminus \{k\}$. 由引理 3.8, $x_k \partial_{j_k} \in \operatorname{qn}(L_{\overline{0}}) \subseteq \operatorname{Qn}(L_{\overline{0}})$,则 $[D, x_k \partial_{j_k}] \in \operatorname{Qn}(L_{\overline{0}})$. 由引理 3.7 (ii) 知 $[D, x_k \partial_{j_k}] \in L_0 \cap L_{\overline{0}}$. 因为 $[D, x_k \partial_{j_k}] = a_k \partial_{j_k} + [D_0, x_k \partial_{j_k}]$,所以 $a_k = 0, \forall k \in Y_0$. 于是 $D_{-1} = 0$,这样 $D = D_0 \in L_0 \cap L_{\overline{0}}$. 这就证明了 $\operatorname{Nor}_{L_{\overline{0}}}(\operatorname{Qn}(L_{\overline{0}})) \subseteq L_0 \cap L_{\overline{0}}$. 因

命题 3.11 $L_1 \cap L_0$ 是 L 的不变子代数.

证明 设 $T = qn(L_0 \cap L_{\overline{0}})$, $\Omega = \{D \in T \mid [D, L_0 \cap L_{\overline{0}}] \subseteq T\}$. 由命题 3.10 知 Ω 是 L 的不变子集, 我们往证 $L_1 \cap L_{\overline{0}} = \Omega$. 由 $L_1 \subseteq qn(L)$ 知,

$$[L_1\cap L_{\overline{0}},L_0\cap L_{\overline{0}}]\subseteq L_1\cap L_{\overline{0}}\subseteq (L_0\cap L_{\overline{0}})\cap \operatorname{qn}(L)=\operatorname{qn}(L_0\cap L_{\overline{0}})=\mathcal{T},$$

因此 $L_1 \cap L_{\overline{0}} \subseteq \Omega$. 反之,令 $D \in \Omega$. 可设 $D = D_0 + D_1$, 其中 $D_0 \in L_{[0]} \cap L_{\overline{0}}$, $D_1 \in L_1 \cap L_{\overline{0}}$, 则 $D_0 = D'_0 + D''_0$, 其中 $D'_0 = \sum_{i,i \in Y_0} a_{ij} x_i \partial_j$, $D''_0 = \sum_{i,j \in Y_1} a_{ij} x_i \partial_j$.

假设 $D_0' \neq 0$. 令 $l = \min\{i \mid a_{ij} \neq 0, i, j \in Y_0\}, t = \min\{j \mid a_{ij} \neq 0, i, j \in Y_0\}.$

(i) $l \le t$ 的情形. 令 $k = \max\{j \mid a_{lj} \ne 0, j \in Y_0\}$. 显然 $l \le t \le k$, $a_{lk} \ne 0$. 若 l = k, 则 l = t = k, 于是

$$D_0' = a_{il}x_l\partial_l + \sum_{i=l+1}^m \sum_{j=l}^m a_{ij}x_i\partial_j.$$

所以, $\rho(D_0') = -(a_{il}E_{il} + \sum_{i=l+1}^{m} \sum_{j=l}^{m} a_{ij}E_{ji})$, 其中 E_{ji} 是 s 阶阵, 它的 (k,l) 位置元素 是 $\delta_{jk}\delta_{il}$, $\forall j,i \in Y$. 对任意 $n \in \mathbb{N}$, 利用等式 $E_{ij}E_{kl} = \delta_{jk}E_{il}$ 可算得, 矩阵 $(\rho(D_0'))^n$ 具有形状: $(-1)^n a_{il}^n E_{il} + \sum_{i=l+1}^{m} \sum_{j=l}^{m} b_{ji}E_{ji}$, 其中 $b_{ji} \in \mathbb{F}$. 由 $a_{il} \neq 0$ 知 $\rho(D_0')$ 不是幂零 阵. 因为 $\rho(D_0) = \operatorname{diag}(\rho(D_0'), \rho(D_0''))$, 所以 $\rho(D_0)$ 不是幂零阵. 由引理 3.6, $D \notin \operatorname{qn}(L)$,

此与 $D \in T$ 矛盾. 若 l < k, 则

$$D_0 = \sum_{j=t}^{k} a_{lj} x_l \partial_j + \sum_{i=l+1}^{m} \sum_{j=t}^{m} a_{ij} x_i \partial_j + D_0''.$$

令 $E = [D_0, x_k \partial_l]$, 则可算得

$$E = a_{lk}x_lD_l - \sum_{i=l}^k a_{lj}x_k\partial_j + \sum_{i=l+1}^m a_{ik}x_i\partial_l.$$

由于 $a_{lk} \neq 0$, 同理可算得 $\rho(E)$ 不是幂零阵. 故 $E \notin qn(L)$. 由 $[D, x_k \partial_l] = E + [D_1, x_k \partial_l]$ 以及引理 3.6 知, $[D, x_k \partial_l] \notin qn(L)$. 所以 $D \notin \Omega$, 此为矛盾.

(ii) l > t 的情形. 令 $r = \max\{i \mid a_{it} \neq 0, i \in Y_0\}$. 则 $t < l \le r \le m$, 并且

$$D_0' = \sum_{i=l}^m \sum_{j=t}^m a_{ij} x_i \partial_j = \sum_{i=l}^r a_{it} x_i \partial_t + \sum_{i=l}^m \sum_{j=t+1}^m a_{ij} x_i \partial_j.$$

令 $H = [D_0, x_t \partial_r]$, 则 $H = -a_{rt}x_t\partial_t + \sum_{i=1}^r a_{it}x_i\partial_r - \sum_{j=i+1}^m a_{rj}x_t\partial_j$. 由于 $a_{ri} \neq 0$, 同理 可推得 $\rho(H)$ 不是幂零阵. 因此 $H \notin \operatorname{qn}(L)$. 由 $[D, x_t\partial_r] = H + [D_1, x_t\partial_r]$ 以及引理 3.6, 可得 $D \notin \Omega$, 亦为矛盾.

假设 $D_0' = 0$, $D_0' \neq 0$, 相仿于前面证明, 也可推得矛盾. 这就证明了 $D_0 = 0$. 于是 $D = D_1 \in L_1 \cap L_{\overline{0}}$. 所以 $\Omega \subseteq L_1 \cap L_{\overline{0}}$. 故 $L_1 \cap L_{\overline{0}} = \Omega$, 从而 $L_1 \cap L_{\overline{0}}$ 是不变的.

引理 3.12 $[L_{\mathsf{T}}, L_1 \cap L_{\mathsf{T}}] = L_0 \cap L_{\mathsf{T}}.$

证明 显然 $[L_{\overline{1}}, L_1 \cap L_{\overline{0}}] \subseteq L_0 \cap L_{\overline{1}}$, 下面证明反包含关系。我们讨论 $L = \overline{S}$ 的情形。任取 $D \in \overline{S}_0 \cap \overline{S}_{\overline{1}}$, 则可设 $D = \sum_{i,j \in Y} a_{ij} D_{ij}(f_{ij})$, 其中 $D_{ij}(f_{ij}) \in \overline{S}_0 \cap \overline{S}_{\overline{1}}$. 我们往证 $D \in [\overline{S}_{\overline{1}}, \overline{S}_1 \cap \overline{S}_{\overline{0}}]$, 只需证 $D_{ij}(f_{ij}) \in [\overline{S}_{\overline{1}}, \overline{S}_1 \cap \overline{S}_{\overline{0}}]$. 设 $f_{ij} = \sum_{\alpha,u} a_{\alpha,u} x^{(\alpha)} x^u$ (可以是无限和), $a_{\alpha,u} \in \mathbb{F}$. 因为 D_i, D_j 是连续的,故线性映射 $D_{ij}: U \to \overline{S}$ 是连续的,所以 $D_{ij}(f_{ij}) = \sum_{\alpha,u} a_{\alpha,u} D_{ij}(x^{(\alpha)} x^u)$. 于是归结为证明 $D_{ij}(x^{(\alpha)} x^u) \in [\overline{S}_{\overline{1}}, \overline{S}_1 \cap \overline{S}_{\overline{0}}]$, 其中 $|\alpha| + |u| > 1$. 若 $\{u\} \neq Y_1$, 取 $k \in Y_1 \setminus \{u\}$, 则 $D_{ij}(x^{(\alpha)} x^u) = [\partial_k, D_{ij}(x^{(\alpha)} x_k x^u)] \in [\overline{S}_{\overline{1}}, \overline{S}_1 \cap \overline{S}_{\overline{0}}]$. 设 $\{u\} = Y_1$. 若 $i \in Y_0, j \in Y_1$, 取 $l \in Y_0 \setminus \{i\}$, 则有

$$D_{ij}(x^{(\alpha)}x^u) = [D_{li}(x_lx_j), D_{ij}(x_ix^{(\alpha)}\partial_j(x^u))] \in [\overline{S}_{\overline{1}}, \overline{S}_1 \cap \overline{S}_{\overline{0}}].$$

若 $i, j \in Y_1$, 取 $k, l \in Y_0, k \neq l$. 则有

$$D_{ij}(x^{(\alpha)}x^u) = [D_{li}(x_lx_j), D_{kj}(x_kx^{(\alpha)}\partial_j(x^u))] \in [\overline{S}_{\overline{1}}, \overline{S}_1 \cap \overline{S}_{\overline{0}}].$$

$$D_{ij}(x^{(\alpha)}x^u) = [D_{ji}(x_jx_k), D_{ij}(x_ix^{(\alpha)}\partial_k(x^u))] \in [\overline{S_{\overline{1}}}, \overline{S}_{\overline{1}} \cap \overline{S}_{\overline{0}}].$$

当 L = W 时, 证明相仿, 并且稍有简单, 我们略去证明. □ 定理 3.13 L 的自然滤过是不变的.

证明 由命题 3.11 知 $L_1 \cap L_{\overline{0}}$ 是不变的, 所以 $[L_{\overline{1}}, L_1 \cap L_{\overline{0}}]$ 是不变的. 由引理 3.12, $L_0 \cap L_{\overline{1}}$ 是不变的. 由命题 3.10 知 $L_0 \cap L_{\overline{0}}$ 是不变的, 所以 $L_0 = L_0 \cap L_{\overline{1}} + L_0 \cap L_{\overline{0}}$ 是不变的. 因为 $L_i = \{x \in L | \{x, L\} \subseteq L_{i-1}\}, i \ge 1$, 所以 L_i 是不变的, $\forall i \ge -1$.

下面我讨论 L 的自同构与它的底代数 U 的自同构的关系.

引理 3.14 设 AutL 是 L 的自同构群. 任取 $\phi \in AutL$, 则

- (i) o 是连续自同构;
- (ii) 存在 $L_{[-1]}$ 的基底 $\{E_1,\ldots,E_s\}$, 使得 $\phi(\partial_i)\equiv E_i\pmod{L_0}$.

证明 (i) 由定理 3.13 知, 对任意 $i \ge -1$, 有 $\phi(L_i) \subseteq L_i$, 故 $L_i \subseteq \phi^{-1}(L_i)$. 由 $\phi^{-1} \in AutL$ 知 $\phi^{-1}(L_i) \subseteq L_i$, 所以 $\phi^{-1}(L_i) = L_i$. 因此 ϕ 是连续的.

(ii) 由定理 3.13, ϕ 诱导了空间 L/L_0 的自同构 ψ , 使得 $\psi(D+L_0) = \phi(D) + L_0$, $\forall D \in L$. 因为 $\{\partial_i + L_0 | i \in Y\}$ 是 L/L_0 的 \mathbb{F} - 基底, 所以 $\{\phi(\partial_i) + L_0 | i \in Y\}$ 是 L/L_0 的 \mathbb{F} - 基底. 由 $L = L_{[-1]} \oplus L_0$ 知, 存在 $E_i \in L_{[-1]}$, 使得 $\phi(\partial_i) + L_0 = E_i + L_0$, $\forall i \in Y$. 显然 $\{E_i \mid i \in Y\}$ 是 $L_{[-1]}$ 的 \mathbb{F} - 基底, 并且 $\phi(\partial_i) \equiv E_i \pmod{L_0}$, $\forall i \in Y$.

命题 3.15 设 $\phi, \psi \in \text{Aut}L$. 若 $\phi|_{L_{l-1}} = \psi|_{L_{l-1}}$, 则 $\phi = \psi$.

证明 我们对 i 用归纳法证明 $\phi|_{L_{[i]}} = \psi|_{L_{[i]}}, \forall i \geq -1$. 设 $D \in L_{[k]},$ 这里 $k \geq 0$. 令 $h = \phi(D) - \psi(D)$. 由已知 $\phi(\partial_i) = \psi(\partial_i)$, 故

$$[h,\psi(\partial_i)]=[\phi(D)-\psi(D),\psi(\partial_i)]=\phi([D,\partial_i])-\psi([D,\partial_i]).$$

由归纳假设有 $\phi([D,\partial_i]) = \psi([D,\partial_i])$, 所以 $[h,\psi(\partial_i)] = 0$, $\forall i \in Y$. 由引理 3.14, 存在 $L_{[-1]}$ 的 \mathbb{F} - 基底 $\{E_1,\ldots,E_s\}$, 使得 $\psi(\partial_i) = E_i + z_i$, 其中 $z_i \in L_0$, $\forall i \in Y$. 故 $[h,E_i + z_i] = 0$, $\forall i \in Y$. 设 $E_i = \sum_{l \in Y} a_{il}\partial_l$, $a_{il} \in \mathbb{F}$, 则 $\sum_{l \in Y} a_{il}[h,\partial_l] = [h,-z_i]$, $\forall i \in Y$. 因为 $\{E_i\}$ 与 $\{\partial_i\}$ 都是 $L_{[-1]}$ 的 \mathbb{F} - 基底, 故 $\det[a_{il}] \neq 0$. 于是

$$[h, \partial_l] = [h, u_l], \ \forall \ l \in Y. \tag{3.5}$$

由 $z_i \in L_0$ 知 $u_i \in L_0$. 因为 $D \in L_0$, 所以由定理 3.13 知 $h = \phi(D) - \psi(D) \in L_0$. 设 $h = \sum_{j=0}^t h_j$, 其中 $h_j \in L_{[j]}$. 利用 (3.5) 式与 $u_i \in L_0$ 可推得 $[h, \partial_i] \in L_0$, 于是 $[h_0, \partial_i] \in L_0 \cap L_{[-1]} = 0$, $\forall l \in Y$. 所以 $h_0 \in L_{[-1]}$, 从而 $h_0 \in L_{[-1]} \cap L_{[0]} = 0$, 并且 $h = \sum_{j=1}^t h_j$. 同理再由 (3.5) 式可得 $h_j = 0$, $j = 1, \dots, t$, 故 $\phi(D) - \psi(D) = h = 0$, 所以 $\phi|_{L_{[k]}} = \psi|_{L_{[k]}}$. 由引理 3.14 知 ϕ 与 ψ 是连续的, 故 $\phi = \psi$.

若 X 是 U 的子集, 则令 $M_s(X)$ 表示 X 上所有 s 阶矩阵的集合. 显然 $U = \mathbb{F} \oplus U_1$. 令 pr 表示 U 到 \mathbb{F} 上的投影. 对任意 $y \in U$, 以下总设 $\overline{y} = pr(y)$. 若 $A = [a_{ij}] \in M_s(U)$, 则令 $\overline{A} = [\overline{a}_{ij}]$. 仍记 $P(m) = \mathbb{F}[[x_1, \cdots, x_m]]$, 则 $P(m) \subset U$. 设 $P(m)_1 = \{y \in P(m) \mid pr(y) = 0\}$.

引理 3.16 以下诸结论成立.

- (i) 设 $y \in U$, 若 $\overline{y} \neq 0$, 則 y 是可逆元.
- (ii) 设 $A = \overline{A} + B$, 其中 $B \in M_s(P(m)_1)$. 若 $\overline{A} \in F$ 上可逆阵, 則 A 是可逆阵.

- (iii) 设 $T = \operatorname{span}_{\mathbb{F}}\{x^{(\alpha)}x^u \mid \exists i \in Y : \partial_i(x^u) \neq 0\}$. 若 $C \in M_s(T)$, 则 I + C 是可逆降.
- (iv) 设 $A \in M_s(U)$, 则 \overline{A} 是可逆阵当且仅当 A 是可逆阵.

证明 (i) 若 $\overline{y} \neq 0$, 可设 y = k + a, 其中 $0 \neq k \in \mathbb{F}$, $a \in \mathcal{U}_1$. 令 $z = k^{-1} (\sum_{i=0}^{\infty} (-1)^i a_1^i)$, 其中 $a_1 = k^{-1}a$, 则 yz = zy = 1.

- (ii) 因为 P(m) 是交换环, 所以 det A 有意义. 由已知, $\overline{\det A} = \det \overline{A} \neq 0$, 由 (i) 知 det A 是可逆元, 故 A 是可逆阵.
- (iii) 因为 T 中任意 n+1 个元素之积均为零, 所以 C 是幂零阵. 于是 I+C 是可逆阵.
- (iv) 设 \overline{A} 是可逆阵. 显然 $A = \overline{A} + B + C$, 其中 $B \in M_s(P(m)_1)$, $C \in M_s(T)$. 由 (ii) 知 $\overline{A} + B$ 是可逆阵, 设 D 是它的逆阵. 因为 $C \in M_s(T)$, 故 $CD \in M_s(T)$. 由 (iii) 知 I + CD 是可逆阵. 设 E 是 I + CD 的逆阵. 令 H = DE, 则

$$AH = ADE = (\overline{A} + B + C)DE$$
$$= ((\overline{A} + B)D + CD)E = (I + CD)E = I.$$

同理 HA = I. 故 A 是可逆阵. 必要性得证. 利用 $\overline{AB} = \overline{AB}$ 即可证得充分性. □ 设 Aut U 为 U 的所有连续自同构的群.

引理 3.17 设 $\phi \in \text{Aut } \mathcal{U}, E_i = \phi(\partial_i), \ \forall \ i \in Y.$ 则 $\{E_i \mid i \in Y\}$ 是 \mathcal{U} - 模 \overline{W} 的自由 基.

证明 设 $E_i = \sum_{j \in Y} c_{ij} \partial_j$, 其中 $c_{ij} \in U$, $i \in Y$, 则 $c_{ij} = \overline{c}_{ij} + c'_{ij}$, 其中 $\overline{c}_{ij} \in F$, $c'_{ij} \in U_1$. 若 $\det(\overline{c}_{ij}) = 0$, 则存在不全为零的元素 $a_1, \ldots, a_s \in F$, 使得 $\sum_{i \in Y} a_i \overline{c}_{ij} = 0$, $\forall j \in Y$. 所 以 $\sum_{i \in Y} a_i c_{ij} \in U_1$, $\forall j \in Y$. 显然 $\sum_{i \in Y} a_i \partial_i \notin L_0$. 但是

$$\phi(\sum_{i \in Y} a_i \partial_i) = \sum_{i \in Y} a_i E_i = \sum_{i \in Y} a_i \left(\sum_{i \in Y} c_{ij} \partial_j\right) = \sum_{i \in Y} \left(\sum_{i \in Y} a_i c_{ij}\right) \partial_j \in L_0.$$

此与定理 3.13 矛盾, 所以 $\det(\bar{c}_{ij}) \neq 0$. 由引理 3.16 (iv) 知 $[c_{ij}]$ 是可逆阵. 设 $[d_{ij}] = [c_{ij}]^{-1}$, 则 $\partial_i = \sum_{j \in Y} d_{ij} E_j$. 利用 $\{\partial_i \mid i \in Y\}$ 是 \overline{W} 的自由基以及 $[d_{ij}]$ 是可逆阵可推 得 $\{E_i \mid i \in Y\}$ 也是 \overline{W} 的自由基.

引理 3.18 设 $\{y_j \mid j \in Y\} \subseteq \mathcal{U}_1$. 若 $[\partial_i(y_j)]$ 是可逆阵, 则存在 $\sigma \in \text{Aut } \mathcal{U}$, 使 $\sigma(x_i) = y_i, i \in Y$.

证明 令 $\sigma(x^{(\alpha)}x^{u}) = y^{(\alpha)}y^{u}$, 其中 $y^{(\alpha)}y^{u}$ 如 (3.2) 式所定义, 则 σ 可扩充为 U 的连续自同态. 显然 $\sigma(x_{i}) = y_{i}, \forall i \in Y$. 因为 $y_{j} \in U_{1}, \forall j \in Y$, 所以 $\sigma(U_{i}) \subseteq U_{i}$. 于是 σ 诱导了线性空间 U_{i}/U_{i+1} 的自同态 $\sigma_{i}, \forall i \in \mathbb{N}$.

设 $a_{ij} = \overline{\partial_i(y_j)}$, $y_j = y_j' + y_j''$, 其中 $y_j' \in \mathcal{U}_{[1]}$, $y_j'' \in \mathcal{U}_{2}$, 则 $\partial_i(y_j') = \overline{\partial_i(y_j)} = a_{ij}$, 从 而 $y_j' = \sum_{i \in Y} a_{ij}x_i$, $\forall j \in Y$. 由 $[\partial_i(y_j)]$ 是可逆阵及引理 3.16 (iv) 知 $[a_{ij}]$ 是 F 上的可逆阵. 设 $[c_{ij}] = [a_{ij}]^{-1}$, 则有

$$x_j = \sum_{i \in Y} c_{ij} y_i' = \sum_{i \in Y} c_{ij} (y_i - y_i'') = \sigma \left(\sum_{i \in Y} c_{ij} x_i \right) - \sum_{i \in Y} c_{ij} y_i''.$$

 $\mathcal{U}_{i} h_{j} = \sum_{i \in Y} c_{ij} x_{i}$,由上式知 $\sigma(h_{j}) = x_{j} + z_{j}$,其中 $z_{j} \in \mathcal{U}_{2}$, $\forall j \in Y$. 任取 $x^{(\alpha)} x^{u} = (\prod_{j=1}^{m} x_{j}^{\alpha_{j}})(\prod_{t=1}^{k} x_{i_{t}}) \in \mathcal{U}_{i}$. 令 $h = (\prod_{j=1}^{m} h_{j}^{\alpha_{j}})(\prod_{t=1}^{k} h_{i_{t}})$,则 $h \in \mathcal{U}_{i}$. 易见

$$\sigma(h) = \left(\prod_{j=1}^m (x_j + z_j)^{\alpha_j}\right) \left(\prod_{t=1}^k (x_{i_t} + z_{i_t})\right) = x^{(\alpha)}x^u + z,$$

其中 $z \in U_{i+1}$. 故 $\sigma_i(h + U_{i+1}) = x^{(\alpha)}x^{\alpha} + U_{i+1}$. 所以 σ_i 是满射, $\forall i \in Y$. 因为 U_i/U_{i+1} 是有限维的, 故 σ_i 是双射, $\forall i \in Y$.

令 $y \in \text{ker}\sigma$, 可设 $y \in \mathcal{U}_i$. 由 $\sigma(y) = 0$ 知 $\sigma_i(y + \mathcal{U}_{i+1}) = 0$. 因 σ_i 是单的, 故 $y \in \mathcal{U}_{i+1}$. 所以 $\text{ker}\sigma \subseteq \bigcap_{j=i}^{\infty} \mathcal{U}_j = 0$, 于是 σ 是单的. 任取 $x \in \mathcal{U}$, 则 $x = a + x_1$, 其中 $a \in \mathbb{F}$, $x_1 \in \mathcal{U}_1$. 因 σ_1 是满的, 故存在 $y_1 \in \mathcal{U}_1$, 使得 $\sigma_1(y_1 + \mathcal{U}_2) = x_1 + \mathcal{U}_2$, 因而 $x_2 := x_1 - \sigma(y_1) \in \mathcal{U}_2$. 因为每个 σ_i 都是满的, 所以可归纳地取到 y_i 与 x_{i+1} , 使得 $x_{i+1} := x_i - \sigma(y_i) \in \mathcal{U}_{i+1}$, 其中 $i \in \mathbb{N}$, $y_i \in \mathcal{U}_i$. 设 $y = a + \sum_{i=1}^{\infty} y_i$. 因 σ 是连续的, 所以

$$\sigma(y) = \sigma(a) + \sum_{i=1}^{\infty} \sigma(y_i) = a + \sum_{i=1}^{\infty} (x_i - x_{i+1}) = a + x_1 = x.$$

因此 σ 是满的, 于是 $\sigma \in Aut U$. 引理得证.

设 $\sigma \in \text{Aut } U$, 则 σ 诱导了 der U 的一个连续自同构 $\tilde{\sigma} : D \mapsto \sigma D \sigma^{-1}$, $\forall D \in \text{der} U$. 若 $\tilde{\sigma}(L) \subseteq L$, 则称 σ 关于 L 是可许的. 令 Aut(U, L) 是所有关于 L 可许的 U 的连续自同构的集合, 则 Aut(U, L) 是 Aut U 的子半群.

定理 3.19 $Aut(U,L)\cong AutL$. 从而 Aut(U,L) 是群, 并且 L 的每个自同构都是由 U 的连续自同构所诱导的.

证明 设 ψ : Aut(U,L) \rightarrow AutL, 使得 $\psi(\sigma) = \tilde{\sigma}|_{L}$, 则 ψ 是半群的同态。我们先证 ψ 是满的。任取 $\phi \in$ AutL. 对任意 $j \in Y$, 存在 $k_j \in Y$, 使得 $x_j \partial_{k_j} \in L$. 设 $E_i = \phi(\partial_i), \forall i \in Y$. 由引理 3.17 可设 $\phi(x_j \partial_{k_j}) = \sum_{t \in Y} a_{jt} E_t$. 由定理 3.13 知 $a_{jt} \in U_1$. 因为 $[E_i, E_t] = \phi[\partial_i, \partial_t] = 0$, 所以

$$egin{aligned} \delta_{ij}E_{k_j} =& \phi(\delta_{ij}\partial_{k_j}) = \phi([\partial_i,x_j\partial_{k_j}]) \ =& \left[E_i,\sum_{t\in Y}a_{jt}E_t
ight] = \sum_{t\in Y}E_i(a_{jt})E_t. \end{aligned}$$

由引理 3.17 知 $E_i(a_{jk_j}) = \delta_{ij}$. 设 $y_j = a_{jk_j}$, 则 $y_j \in U_1$, 并且 $E_i(y_j) = \delta_{ij}$. 设 $E_i = \sum_{j \in Y} c_{ij} \partial_j$, 则有矩阵等式 $[c_{ij}][\partial_i(y_j)] = [E_i(y_j)] = I$. 于是 $[\overline{c_{ij}}][\overline{\partial_i(y_j)}] = I$, 故 $[\overline{\partial_i(y_j)}]$ 是 \mathbb{F} 上可逆阵. 由引理 3.16 (iv) 知 $[\partial_i(y_j)]$ 是可逆阵, 由引理 3.18 知存在 $\sigma \in \mathrm{Aut}\ U$, 使得 $\sigma(x_j) = y_j, \forall j \in Y$. 于是

$$\widetilde{\sigma}(\partial_i)(y_j) = \sigma \partial_i \sigma^{-1}(y_j) \approx \sigma \partial_i(x_j)$$

$$= \delta_{ij} = E_i(y_j) = \phi(\partial_i)(y_j), \quad \forall i, j \in Y...$$

因为 $\sigma \in \text{Aut } \mathcal{U}$, 所以 $\{y_j \mid j \in Y\}$ 是 \mathcal{U} 的生成系. 于是 $\widetilde{\sigma}(\partial_i) = \phi(\partial_i)$, $\forall i \in Y$, 故 $\widetilde{\sigma}|_{L_{[-1]}} = \phi|_{L_{[-1]}}$. 由命题 3.15 知 $\widetilde{\sigma}|_{L=\phi}$, 所以 $\psi(\sigma) = \phi$. 因此 ψ 是满射.

设 $\sigma \in \operatorname{Aut}(\mathcal{U}, L)$. 若 $\tilde{\sigma} \mid_{L} = \operatorname{id}_{L}$, 则 $\tilde{\sigma}(\partial_{j}) = \partial_{j}$, $\forall j \in Y$. 所以 $\sigma \partial_{j}(x_{i}) = \partial_{j}\sigma(x_{i})$, 于 是 $\partial_{j}\sigma(x_{i}) = \delta_{ij}$, $\forall i, j \in Y$. 因此 $\sigma(x_{i}) = x_{i}$, $\forall i \in Y$. 由 $\{x_{i} \mid i \in Y\}$ 是生成系并且 σ 连续, 故 $\sigma = \operatorname{id}_{\mathcal{U}}$. 所以 ψ 是单射. 这就证明了 ψ 是同构映射.

利用 $\overline{W} = \operatorname{der} U$ 可推得 $\operatorname{Aut}(U, \overline{W}) = \operatorname{Aut} U$. 则有 **推论 3.20** $\operatorname{Aut} \overline{W} \cong \operatorname{Aut} U$.

参 考 文 献

- [1] N. B. Backhouse. The Killing form for graded Lie algebras. J. Math. Phys., 1997(18): 239~244
- [2] G. M. Benkart and J. M. Osborn. Representations of rank one Lie algebras of characteristic p. Lie algebras and Related Topics (Lecture Notes in Mathematics, Vol. 933), New York: Springer-Verlag, 1982, 1~37
- [3] R. J. Blatter, Induced and produced representations of Lie algebra. Trans. Amer. Math. Soc., 1969(144): 457~474
- [4] R. E. Block and R. L. Wilson. On filtered Lie algebras and divided power algebras. Comm. Algebra, 1975(3): 571~589
- [5] R. E. Block and R. L. Wilson. The simple Lie p-algebras of rank 2. Ann. Math., 1982, 2(115): $93\sim168$
- [6] R. E. Block and R. L. Wilson. The restricted simple Lie algebras are of classical or Cartan type. Proc. Nat. Acad. Sci. U. S. A., 1984, 5271~5274
- [7] R. E. Block and R. L. Wilson. Classification of the restricted simple Lie algebras. J. Algebra, 1988(114): 115~259
- [8] R. E. Block and H. Zassenhaus. The Lie algebras with a non-degenerate trace form. Illinois J. Math., 1964(8): 543~549
- [9] M. J. Celousov. Derivations of Lie algebras of Cartan type. Izv. Vysš. Učebn. Zaved.
 Mathematika, 1970(98): 126~134[Russian]
- [10] E. Celeghini and P. P. Kulish. Twist deformation of rank one Lie superalgebras. J. Phys., A: Math. Gen., 1998(31): 79~84
- [11] A. Eldugue. Lie superalgebras with semisimple even part. J. Algebra, 1996(183): $649{\sim}663$
- [12] J. B. Ermolaev. Simple graded Lie algebras. Soviet Math. (Izv. VUZ), 1980, 24(5): 93~98
- [13] R. Farnsteiner. The associative forms of the graded Cartan type Lie algebras. Trans. Amer. Math. Soc., 1986(295): 417~427
- [14] R. Farnsteiner. Dual space derivations and $H^2(L, F)$ of modular Lie algebras. Canad. J. Math., 1987(39): $1078\sim1106$
- [15] R. Farnsteiner. Central extensions and invariant forms of graded Lie algebras. Algebras, Groups Gem. 1986(3): 431~451
- [16] Fei, Q. Y. On new simple Lie algebras of Shen Guangyu. Chin. Ann. Math., 1989, 10(4): 448~457
- [17] A. N. Grishkov. Irreducible representations of modular Lie algebras. Math. Notes, 1981(30): 496~499

- [18] I. Hayashi. Embedding and existence theorems of infinite Lie algebra. J. Math. Soc. Japan, 1970(22): $1\sim14$
- [19] R. R. Holmes. Simple restricted module for restricted contact Lie algebras. Proc. Amer. Math. Soc., 1992, 166(2): 329~337
- [20] G. P. hochschild. Representations of restricted Lie algebras of characteristic p. Proc. Amer. Math. Soc., 1954(5): 603~605
- [21] Hu, N. H. The graded modules for graded contact Cartan algebras. Comm. Algebra, 1994, 22(11): 4475~4497
- [22] Hu, N. H. Irreducible constituents of graded modules for graded contact Lie algebras of Cartan type. Comm. Algebra, 1994, 22(14): 5951~5971
- [23] J. E. Humphreys. Introduction to Lie Alegebras and Representation Theory. Springer-Verlay. New York, 1972
- [24] N. Jacobson. Lie Algebras. New York, 1962
- [25] Jiang, C. B. and Meng, D. J. Vertex representations for the v+1 toroidal Lie algebra of type B_{ℓ} . J. Algebra, 2001(246): $564\sim593$
- [26] V. G. Kac. Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated. Math. USSR-Izv, 1974(8): 801~835 (Errata 1976(10): 1339)
- [27] V. G. Kac. Lie superalgebras. Adv. Math., 1977(26): 8~96
- [28] V. G. Kac. Representations of classical Lie superalgebras. Lecture Notes in Mathematic, 1977(676): 579~626
- [29] V. G. Kac. Classification of infinite-dimensional simple linearly compact Lie superalgebras. Advances in Math., 1998(139): $1\sim55$
- [30] N. A. Koreshkov. On the irreducible representations of a Lie algebra W_2 . Soviet math. (Izv. VUZ), 1980(24): $44\sim52$
- [31] A. I. Kostrikin and I. R. Shafarevic. Graded Lie algebras of finite characteristic. Math. USSR-Izv., 1969(3): 237~304
- [32] M. I. Kuznetsov. Graded Lie algebras with zero component containing a sum of commuting ideals. Mat. Sb. (N.S.), 1981, 116(158): 568~578
- [33] C. Lee. Contruction of modules for Lie superalgebras of type C. J. Algebra, 1995(176): $249\sim264$
- [34] D. A. Leites. New Lie superalgbras and mechanics. Dokl. Akad. Nauk. SSSR, 1977, 236(4): 804~807. English translation: Soviet Math. Dakl., 1977, 18(5): 1277~1280
- [35] D. A. Leites. Automorphisms and real forms of simple Lie superalgebras of formal vector fields. Problem in group theory and homological algebra, 1983(139): 126~128
- [36] Liu, W. D. Zhang, Y. Z. and Wang, X. L. The derivation algebra of the Cartan-type Lie superalgebra HO. J. Algebra, 2004(273): 176~205
- [37] Liu, W. D. and Zhang, Y. Z. Infinite-dimensional modular odd hamiltonian Lie super-algebras. Comm. Algebra, 2004, 32(6): 2341~2357

- [38] Meng, D. J. Some results on complete Lie algebras. Comm. Algebra, 1994(22): $5457 \sim 5507$
- [39] J. Milnor and J. Moore. On the structure of Hopf algebras. Ann. Math., 1965(81): $211\sim264$
- [40] I. M. Musson. On the center of enveloping algebra of a classical simple Lie superalgebra. J. Algebra, 1997(193): 75~101
- [41] B. R. McDonld. Linear Algebra over Commutative Rings. Pure Appl. Math., New York: Dekker, 1984
- [42] V. M. Petrogradski. Identities in the enveloping algebras for modular Lie superalgebras. J. Algebra, 1992(145): $1\sim21$
- [43] A. N. Panov. Irreducible representations of the Lie algebras sl(n) over a field of positive characteristic. Mat. Sb., 1985(128): $21\sim34$ [Russian]
- [44] A. A. Premet. Algebraic groups associated with Lie p-algebras of Cartan type. Math. USSR-Sb., 1985(50): 85~97
- [45] R. Ree. On generalized Witt algebras. Trans. Amer. Math. Soc., 1956(83): 510~546
- [46] M. Scheunert. Theory of Lie superalgebras. Lecture Notes in Math. Springer-Verlay, 1979, 716
- [47] G. B. Seligman. Modular Lie algebras. Springer-Verlag. Berlin, Heidelberg and New York, 1967
- [48] H. Shakibi. Composition factors of the Kac module for the Lie superalgebras sl(3/3) and sl(r/r). Comm. Algebra, 1993(9): 3099~3126
- [49] H. Shakibi. Infinite and finite dimensional representations of the Lie superalgebra sl(m/n). Comm. Algebra, 1994(3): 951~967
- [50] H. Shakibi. A character formula for infinite dimensional representations of type 1 Lie superalgebras sl(m/n) and C(2). Comm. Algebra, 1995(7): 2429~2452
- [51] Shen, G. Y. An intrinsic property of Lie algebra $K(m, \underline{n})$. Chin. Ann. Math., 1981(2): $105\sim115$
- [52] Shen, G. Y. On Lie algebras associated with nodal noncommutative Jordan algebras. Acta Math. Sinica, 1986, 2(1): 14~24
- [53] Shen, G. Y. Graded modules of graded Lie algebras of Cartan type. (III)-Irreducible modules. Chin. Ann. Math., 1988 9(4): 404~417
- [54] Shu, B. The generalized representations of graded Lie algebras of Cartan type. J. Algebra, 1997(194): 157~177
- [55] Shu, B. Generalized restricted Lie algebras and representations of the Zassenhaus algebra. J. Algebra, 1998(204): 549~572
- [56] H. Strade and R. Farnsteiner. Modular Lie Algebras and Their Representations. Marcel Dekker Textbooks and Monographs: New York, 1988

- [57] H. Strade. The classification of the simple modular Lie algebras: IV. Determining the associated graded algebra. Ann. Math., 1993(138): $1\sim59$
- [58] Su, Y. C. Classification of finite dimensional modules of the Lie superalgebra sl(2/1). Comm. Algebra, 1992(20): 3259 \sim 3278
- [59] Su, Y. C. Derivation and structure of the Lie algebras of Xu type. Manuscripta Math., 2001(105): 483 \sim 500
- [60] Wang, Y. and Zhang, Y. Z. The associative forms of the graded Cartan type Lie superalgebras. Chinese Adv. Math., 2000, 29(1): 65~70
- [61] R. L. Wilson. Classification of generalized Witt algebras over algebraically closed fields. Trans. Amer. Math. Soc., 1971(153), 191~210
- [62] R. L. Wilson. Automorphisms of graded Lie algebras of Cartan type. Comm. Algebra, 1975(3), 591~613
- [63] R. L. Wilson. A structural characterization of the simple Lie algebras of generalized Cartan type over fields of prime characteristic. J. Algebra, 1976(40): 418~465
- [64] R. L. Wilson. Classification of the restricted simple Lie algebras with toral Cartan subalgebras. J. Algebra, 1983(83): 531~570
- [65] D. J. Winter. Symmetric Lie algebras. J. Algebra, 1985(97): 130~165
- [66] D. J. Winter. Generalized classical Albert-Zassenhaus algebras. J. Algebra, 1985(97): 180~200
- [67] H. Zassenhaus. On the Cartan subalgebra of a Lie algebra. Linear Algebra Appl., 1983(52): $745\sim761$
- [68] E. I. Zelmanov. Lie algebra with finite gradations. Math. USSR–Sb. 1985(52): $347\sim385$
- [69] Zhao, K. M. Representations of the Virasoro Algebra. J. Algebra, 1995(176): 882~907
- [70] Zhao, K. M. Isomorphisms between generalized Cartan type W Lie algebras in characteristic zero. Canadian J. Math, 1998(50): 210~224
- [71] Zhang, Y. Z. Lie Algebra $K(m, \mu_j, \underline{m})$ of Cartan type of characteristic p=2. Chin. Ann. Math., 1992, 13(3): 315~326
- [72] Zhang, Y. Z. and Wang, Y. On the algebra Σ over characteristic two of Shen Guangyu. Acta Math. Scientia, 1996(16): $117\sim125$
- [73] Zhang, Y. Z. and Nan, J. Z. Finite dimensional Lie superalgebras $W(m, n, \underline{t})$ and $S(m, n, \underline{t})$. Chin. Adv. Math., 1998, 27(3): 240~246
- [74] Zhang, Y. Z. and Fu, H. C. and Solomon A. I. Intermediate coherent-phase (PB) states of radiation fields and their nonclassical properties. Physics Letters A, 1999(263): 257~262
- [75] Zhang, Y. Z. Z-Graded Lie superalgebras with depth one over fields of prime characteristic. Acta Math. Sinica, 2002, 18(4): 687~700
- [76] Zhang, Y. Z. and Fu, H. C. Finite-dimensional Hamiltonian Lie superalgebras. Comm. Algebra, 2002, 30(6): 2651~2673

- [77] Zhang, Y. Z. and Shen, G. Y. Embedding theorem of filtered Lie superalgebras. Acta Math. Scientia, 2001, 21(3): 401~411
- [78] Zhang, Y. Z. and Liu, W. D. The general and special superalgebras of formal vector-fields. Science in China, Ser. A Math., 2004, 47(2): 272~283
- [79] Zhang, Q. C. and Zhang, Y. Z. Derivation algebras of the modular Lie superalgebras W and S of Cartan type. Acta Math. Scientia, 2000, 20(1): 137~144
- [80] Zhu, L. S. and Meng, D. J. The classification of complete Lie algebras with low dimensions. Alg. Colloquium, 1997(4): $95\sim109$
- [81] 金宁. 无限维 Cartan 型李代数的 ad- 幂零元、拟幂零元与不变滤过. 中国科学, A 辑, 1992, 22(7): 687~704
- [82] 卢才辉. 带有非退化不变双线性型的有限维可解李代数. 数学学报, 1991, 34(1): 121~132
- [83] 林磊. 素特征李代数概述. 数学进展, 1995, 24(1): 28~38
- [84] 马凤敏, 张庆成. K 型模李超代数的导子代数. 数学杂志, 2000, 20(4): 431~435
- [85] 孟道骥. 复半单李代数引论. 北京: 北京大学出版社, 1998
- [86] 孟道骥, 朱林生, 姜翠波. 完备李代数. 北京: 科学出版社, 2001
- [87] 邱森. 李代数的上同调群概述. 数学进展, 1990, 19(4): 411~424
- [88] 沈光宇. 阶化 Cartan 型李代数的阶化模 (I)- 模的混合积. 中国科学, A 辑, 1986, 29(3): 255~264
- [89] 沈光宇. 阶化 Cartan 型李代数的阶化模 (II)- 模的混合积. 中国科学, A 辑, 1986, 29(5): 449~457
- [90] 舒斌. 交换环上限制 Cartan 型李代数的 Sandwich 子代数与自同构. 数学年刊, 1997, 18(A, 4): 433~436
- [91] 舒斌. Cartan 型李代数的自同构群. 数学年刊, 1999, 20(A, 1): 47~52
- [92] 孙洪洲, 韩其智. 李超代数综述. 物理学进展, 1983, 3(1): 81~125
- [93] 孙洪洲, 韩其智, 李代数、李超代数及在物理中的应用, 北京: 北京大学出版社, 1999
- [94] 万哲先, 李代数. 北京: 科学出版社, 1978
- [95] 万哲先. Kac-Moody 代數导引. 北京: 科学出版社, 2002
- [96] 王颖, 张永正. 限制李超代数的新定义. 科学通报, 1999, 44(8): 807~813
- [97] 王颖, 孙大烈. 具有非退化迹型的 Z- 阶化李超代数. 数学杂志, 1999, 19(4): 397~400
- [98] 薛连永. 关于特征 2 的 Cartan 型 p- 代数的过滤和不变性. 东北数学, 1986, 2(2): 150~163
- [99] 严志达. 实半单李代教. 天津: 南开大学出版社, 1998
- [100] 姚光同, 张永正. 一般域上无限矩阵李代数的 y- 型李子代数. 数学年刊, 2000, 21(A, 4): 387~394
- [101] 张永正. 特征 p = 2 的无限维 Cartan 型李代数 K(m). 数学年刊, 1994, 15(A, 3): 345~351
- [102] 张永正. 小特征的有限维 Cartan 型李代数的滤过. 数学年刊, 1995, 16(A,6): 729~735
- [103] 张永正. Cartan 型 Z- 阶化李超代数 W(n) 与 S(n) 的阶化模. 科学通报, 1995, 40(20): 1829~1932

- [104] 张永正. Cartan 型李超代数 H(n) 的 Z- 阶化模. 科学通报, 1996, 41(7): 589~592
- [105] 张永正, 林磊. 特征 p=2 的非交错的无限维哈米尔顿代数. 纯粹数学与应用数学, 1996, 12(1): $118\sim121$
- [106] 张永正. 素特征域上有限维的 Cartan 型李超代数. 科学通报, 1997, 42(6): 676~679
- [107] 张永正. 无限维 Cartan 型李超代数的模的混合积. 数学年刊, 1997, 18(A, 6): 725~742
- [108] 张永正, 沈光宇. Z- 阶化李超代数的嵌入定理. 中国科学, A 辑, 1998, 28(6): 500~507
- [109] 张永正, 王颖, 张庆成. 模李超代数研究的若于进展. 数学进展, 2002, 31(6): 495~502

索引

A~E		模	5
_9	_	内导子	6
表示	5	拟幂零元	174
标准 Cartan 子代教	168	偶的线性映射	4
不可缩滤过	100	偶(奇)的双线性映射	110
不可约李超代数	6		
超代数	1	P~T	
超对称代数	126	旗	146
超对称双线性型	110		162, 162
超迹	123	伸张	•
除幂代数	11, 138	特殊导子	10, 12
次数导子	53	特殊线性李超代数	145, 175
单根系	168	投影映射	31
导子	6	U∼Z	
导子超代数	6		
F∼Ĵ		限制表示	136
		限制李代数	136
发散映射	37	限制李超代数	137
泛包络代数	8	形式幂级数环	171
换位子代数	4	形式向量场的一般 (特殊)	
混合积	164	李超代数	172
基本权	168	辛 - 正交李超代数	165
结合超代数	1	一般线性李超代数	5
结合型	110	张量代数	126
迹型	123	正規排列	77
		自然滤过	86
K∼O		自由代数	8
可迁的2-阶化李超代数	6	其 他	
可许自同构	180		
李超代数	2	Cartan 型模李超代数	21, 25
理想	3	Killing 型	125
连续自同构	178	Z-阶化李超代数	6
濾过	86	Z ₂ -阶化空间	1

《现代数学基础丛书》出版书目

(按出版时间排序)

- 1 数理逻辑基础(上册) 1981.1 胡世华、陆钟万 著
- 2 紧黎曼曲面引论 1981.3 伍鸿熙、吕以辇、陈志华 著
- 3 组合论(上册) 1981.10 柯召、魏万迪 著
- 4 数理统计引论 1981.11 陈希孺 著
- 5 多元统计分析引论 1982.6 张尧庭、方开泰 著
- 6 概率论基础 1982.8 严士健、王隽骧、刘秀芳 著
- 7 数理逻辑基础(下册) 1982.8 胡世华、陆钟万 著
- 8 有限群构造(上册) 1982.11 张远达 著
- 9 有限群构造(下册) 1982.12 张远达 著
- 10 环与代数 1983.3 刘绍学 著
- 11 测度论基础 1983.9 朱成熹 著
- 12 分析概率论 1984.4 胡迪鹤 著
- 13 巴拿赫空间引论 1984.8 定光桂 著
- 14 微分方程定性理论 1985.5 张芷芬、丁同仁、黄文灶、董镇喜 著
- 15 傅里叶积分算子理论及其应用 1985.9 仇庆久等 编
- 16 辛几何引论 1986.3 J. 柯歇尔、邹异明 著
- 17 概率论基础和随机过程 1986.6 王寿仁 著
- 18 算子代数 1986.6 李炳仁 著
- 19 线性偏微分算子引论(上册) 1986.8 齐民友 著
- 20 实用微分几何引论 1986.11 苏步青等 著
- 21 微分动力系统原理 1987.2 张筑生 著
- 22 线性代数群表示导论(上册) 1987.2 曹锡华等 著
- 23 模型论基础 1987.8 王世强 著
- 24 递归论 1987.11 莫绍揆 著
- 25 有限群导引(上册) 1987.12 徐明曜 著
- 26 组合论(下册) 1987.12 柯召、魏万迪 著
- 27 拟共形映射及其在黎曼曲面论中的应用 1988.1 李忠 著
- 28 代数体函数与常微分方程 1988.2 何育赞 著
- 29 同调代数 1988.2 周伯壎 著
- 30 近代调和分析方法及其应用 1988.6 韩永生 著

- 31 带有时滞的动力系统的稳定性 1989.10 秦元勋等 编著
- 32 代数拓扑与示性类 1989.11 马德森著 吴英青、段海鲍译
- 33 非线性发展方程 1989.12 李大潜、陈韵梅 著
- 34 反应扩散方程引论 1990.2 叶其孝等 著
- 35 仿微分算子引论 1990.2 陈恕行等 编
- 36 公理集合论导引 1991.1 张锦文 著
- 37 解析数论基础 1991.2 潘承洞等 著
- 38 拓扑群引论 1991.3 黎景辉、冯绪宁 著
- 39 二阶椭圆型方程与椭圆型方程组 1991.4 陈亚浙、吴兰成 著
- 40 黎曼曲面 1991.4 吕以辇、张学莲 著
- 41 线性偏微分算子引论(下册) 1992.1 齐民友 著
- 42 复变函数逼近论 1992.3 沈燮昌 著
- 43 Banach 代数 1992.11 李炳仁 著
- 44 随机点过程及其应用 1992.12 邓永录等 著
- 45 丢番图逼近引论 1993.4 朱尧辰等 著
- 46 线性微分方程的非线性扰动 1994.2 徐登洲 马如云 著
- 47 广义哈密顿系统理论及其应用 1994.12 李继彬、赵晓华、刘正荣 著
- 48 线性整数规划的数学基础 1995.2 马仲蕃 著
- 49 单复变函数论中的几个论题 1995.8 庄圻泰 著
- 50 复解析动力系统 1995.10 呂以辇 著
- 51 组合矩阵论 1996.3 柳柏濂 著
- 52 Banach 空间中的非线性逼近理论 1997.5 徐士英、李冲、杨文善 著
- 53 有限典型群子空间轨道生成的格 1997.6 万哲先、霍元极 著
- 54 实分析导论 1998.2 丁传松等 著
- 55 对称性分岔理论基础 1998.3 唐云 著
- 56 Gel' fond-Baker 方法在丢番图方程中的应用 1998.10 乐茂华 著
- 57 半群的 S-系理论 1999.2 刘仲奎 著
- 58 有限群导引(下册) 1999.5 徐明曜等 著
- 59 随机模型的密度演化方法 1999.6 史定华 著
- 60 非线性偏微分复方程 1999.6 闻国椿 著
- 61 复合算子理论 1999.8 徐宪民 著
- 62 离散鞅及其应用 1999.9 史及民 编著
- 63 调和分析及其在偏微分方程中的应用 1999.10 苗长兴 著
- 64 惯性流形与近似惯性流形 2000.1 戴正德、郭柏灵 著
- 65 数学规划导论 2000.6 徐增堃 著

- 66 拓扑空间中的反例 2000.6 汪林、杨富春 编著
- 67 拓扑空间论 2000.7 高国士 著
- 68 非经典数理逻辑与近似推理 2000.9 王国俊 著
- 69 序半群引论 2001.1 谢祥云 著
- 70 动力系统的定性与分支理论 2001.2 罗定军、张祥、董梅芳 编著
- 71 随机分析学基础(第二版) 2001.3 黄志远 著
- 72 非线性动力系统分析引论 2001.9 盛昭瀚、马军海 著
- 73 高斯过程的样本轨道性质 2001.11 林正炎、陆传荣、张立新 著
- 74 数组合地图论 2001.11 刘彦佩 著
- 75 光滑映射的奇点理论 2002.1 李养成 蓍
- 76 动力系统的周期解与分支理论 2002.4 韩茂安 著
- 77 神经动力学模型方法和应用 2002.4 阮炯、顾凡及、蔡志杰 编著
- 78 同调论——代数拓扑之一 2002.7 沈信耀 著
- 79 金兹堡-朗道方程 2002.8 郭柏灵等 著
- 80 排队论基础 2002.10 孙荣恒、李建平 著
- 81 算子代数上线性映射引论 2002.12 侯晋川、崔建莲 著
- 82 微分方法中的变分方法 2003.2 陆文端 著
- 83 周期小波及其应用 2003.3 彭思龙、李登峰、谌秋辉 著
- 84 集值分析 2003.8 李雷 吴从炘 著
- 85 数理逻辑引论与归结原理 2003.8 王国俊 著
- 86 强偏差定理与分析方法 2003.8 刘文 著
- 87 椭圆与抛物型方程引论 2003.9 伍卓群、尹景学
- 88 有限典型群子空间轨道生成的格(第二版) 2003.10 万哲先、霍元极 著
- 89 调和分析及其在偏微分方程中的应用(第二版) 2004.3 苗长兴 著
- 90 稳定性和单纯性理论 2004.6 史念东 著
- 91 发展方程数值计算方法 2004.6 黄明游 编著
- 92 传染病动力学的数学建模与研究 2004.8 马知恩 周义仓 王稳地 靳 祯 著
- 93 模李超代数 2004.9 张永正 刘文德 著

