Math 115B Homework #4

Nathan Solomon

February 28, 2025

Problem 0.1.
Problem 0.2.
Problem 0.3.
Problem 0.4.
(a)
(b)
Problem 0.5.
Problem 0.6.
Problem 0.7.
(a)
(b)
(c)
Problem 0.8.
(a)
(b)

Math 115B: Linear Algebra

Homework 4

Due: Thursday, February 6 at 11:59 PT

- All answers should be accompanied with a full proof as justification unless otherwise stated.
- Homeworks should be submitted through Gradescope, which can be found on the course Canvas (Bruin Learn) page.
- As always, you are welcome and encouraged to collaborate on this assignment with other students in this course! However, answers must be submitted in your own words.
- Unless otherwise stated k denotes an arbitrary field and all vector spaces are over k.
- You are welcome to use results of previous problems on later problems, even if you do not solve the previous parts.
- 1. $(\frac{-}{15})$ Assume V is a finite dimensional vector space and $W_1 \subseteq V$ and $W_2 \subseteq V$ are subspaces of V. Prove directly (i.e. without citing Theorem 5.9 in our textbook) that $V = W_1 \oplus W_2$ (which in class we defined to mean that any $\vec{v} \in V$ can be written as $\vec{v} = \vec{w}_1 + \vec{w}_2$ for some $\vec{w}_1 \in W_1$ and $\vec{w}_2 \in W_2$ in one and only one way) if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$.
- 2. $(\frac{-}{10})$ Let V be a finite-dimensional vector space with a basis \mathcal{B} , and let $\mathcal{B}_1, \mathcal{B}_2, ..., \mathcal{B}_m$ be a partition of \mathcal{B} (that is, $\mathcal{B}_1, \mathcal{B}_2, ..., \mathcal{B}_m$ are subsets of \mathcal{B} such that $\mathcal{B} = \bigcup_{i=1}^m \mathcal{B}_i$ and $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$ if i and j are distinct elements in $\{1, 2, ..., m\}$.) Prove that $V = \bigoplus_{i=1}^m \operatorname{span}(\mathcal{B}_i)$. (This is the correction to the equivalence of (e) in Theorem 5.9 in our textbook. You are welcome to cite the equivalence of (a)-(c) as part of your argument.)
- 3. $(\frac{-}{10})$ Let T be a linear operator on a finite-dimensional vector space V. Prove that T is diagonalizable if and only if V is the direct sum of *one-dimensional* T-invariant subspaces. (Hint: Use the fact that T is diagonalizable if and only if V is the direct sum of its eigenspaces.)
- 4. $\left(\frac{-}{5+10}\right)$ Let V be a finite dimensional vector space.

Definition: If W_1, W_2 be subspaces of V such that $V = W_1 \oplus W_2$, then we say that a linear endomorphism T of V is a *projection onto* W_1 *along* W_2 if, whenever $\vec{v} = \vec{v}_1 + \vec{v}_2$ for some $\vec{v}_1 \in W_1$ and $\vec{v}_2 \in W_2$, then $T(\vec{v}) = \vec{v}_1$. We also say that T is a *projection* if it a projection onto a subspace W_1 of V along some subspace W_2 of V such that $V = W_1 \oplus W_2$.

- (a) Assume T is a projection onto W_1 along W_2 . Show that the range of T is W_1 and the kernel of T is W_2 .
- (b) Prove that a linear endomorphism $T:V\to V$ is a projection if and only if $T=T^2$.

5. $(\frac{-}{15})$ Let $n \in \mathbb{Z}^{>0}$ and let $A \in k^{n \times n}$ be the matrix

$$A = \begin{pmatrix} 1 & 2 & \cdots & n \\ n+1 & n+2 & \cdots & 2n \\ \vdots & \vdots & & \vdots \\ n^2-n+1 & n^2-n+2 & \cdots & n^2 \end{pmatrix}.$$

Compute the characteristic polynomial of A. (Hint: first show that A has rank 2 and that

span
$$\left\{\begin{pmatrix}1\\1\\\vdots\\1\end{pmatrix},\begin{pmatrix}1\\2\\\vdots\\n\end{pmatrix}\right\}$$
 is L_A -invariant.)

- 6. $(\frac{-}{10})$ Assume $T:V\to V$ is some invertible linear endomorphism of an inner product space. Show that T^* is invertible and moreover $(T^*)^{-1}=(T^{-1})^*$. (Here, T^* is the *adjoint* or *conjugatge transpose*, not the transpose.)
- 7. $(\frac{-}{5*3})$ For each of the following inner product spaces V and linear operators T on V, evaluate the adjoint of T at the given vector in V.

(a)
$$V = \mathbb{R}^2, T\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a + 2b \\ a - 3b \end{pmatrix}, \vec{v} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

(b)
$$V = \mathbb{C}^2, T(\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}) = \begin{pmatrix} 2z_1 + iz_2 \\ (1-i)z_1 \end{pmatrix}, \vec{v} = \begin{pmatrix} 3-i \\ 1+2i \end{pmatrix}$$

- (c) $V=\mathbb{R}[x]_{\leq 1}$ with the inner product $\langle f,g\rangle=\int_{-1}^1f(x)g(x)dx, T(f)=f'+3f, \vec{v}=4-2x$
- 8. $(\frac{-}{5+5})$ Let T be a linear endomorphism (operator) on an inner product space V. We say any linear operator $U:V\to V$ is *self adjoint* if V is its own conjugate transpose.
 - (a) Let $U_1 = T + T^*$ and $U_2 = TT^*$. Prove that U_1 and U_2 are self adjoint, that is, U_1 is its own adjoint and that U_2 is its own adjoint.
 - (b) Assume T is a linear endomorphism of an inner product space V. Prove that T preserves lengths of all vectors if and only if it preserves all inner products. More precisely, prove that $||T(\vec{v})|| = ||\vec{v}||$ for all $\vec{v} \in V$ if and only if $\langle T(\vec{v}), T(\vec{w}) \rangle = \langle \vec{v}, \vec{w} \rangle$ for all $\vec{v}, \vec{w} \in V$.