

Princípio: Começa num ponto interior e "espalha-se" como se fosse líquido. Funciona em regiões com buracos.

Fronteira não completamente fechada → pode originar erro durante a execução

Evitam-se os erros se a leitura pointColor(x,y) fornecer o valor correspondente a ContourColor no caso do ponto se encontrar fora do ecrã.

- Cimitade ao interior da região

// apelo recursivo aos 4 vizinhos floodfill(x+1,y); floodfill(x-1,y); floodfill(x,y+1);
floodfill(x,y-1);

Aplicação: para substituir uma cor por outra Problemas: consumo de stack (pilha) Solução:

- Evitar declarar variáveis locais
- Não passar a cor de preenchimento como parâmetro Notar que agora não existe o problema da fronteira incompleta.

· Por Anolise de Contorne (boundary algorithm)

Princípio: trabalha linha a linha e apenas coloca na pilha alguns "pontos de partida".

- 1. Parte de um ponto inicial, situado no interior, que começa por ser colocado na pilha.
- 2. Se pilha vazia, então termina,

senão retira um ponto da pilha.

- 3. A partir desse ponto preenche na horizontal, para a direita e, em seguida, para a esquerda até encontrar o contorno. Toma nota das extremidades Xleft e Xright.
- Na linha imediatamente abaixo procura, entre Xleft e Xright, os novos pontos de partida. Estes pontos são colocados na pilha.
- 5. Idem 4, para a linha imediatamente acima.
- 6. Salta para 2.

Ponto inicial

Ponto de partida:

- 1 Pixel de região que possui à sua direita um pixel de contorno
 2 Pixel de região na coordenada XRight

Exercício
5. Seja um polígono definido pela sucessão de vértices {(1,6), (6,2), (6,6)} a ser preenchido
pelo algoritmo da lista de pontos de fronteira ordenados.
a) Apresente o resultado dos dois passos iniciais do algoritmo, quando aplicado ao polígono em questão.
 b) Explique como se efetua o preenchimento do polígono, com base nos resultados da
alínea anterior. (Exame de 20 de Junho de 2002)
Seja um polígono fechado, definido pela sucessão de vértices seguinte, a ser preenchido pelo algoritmo da Lista de Arestas Activas.
 {(5, 1), (2, 4), (4, 6), (9, 6), (11, 4), (8, 1), (8, 4), (6, 2), (5, 3)}
a)- Mostre qual é o conteúdo da tabela de arestas inicial.
 b)- Mostre qual é o estado da lista de arestas activas AEL nas linhas de varrimento 2, 3 e 4, logo após a inserção das novas arestas respectivas.
(Exame de 13 de Julho de 2002)