Fixed-point iteration method

The idea of the fixed point iteration methods is to first reformulate a equation to an equivalent fixed point problem:

$$f(x) = 0 \iff x = g(x)$$

and then to use the iteration: with an initial guess x_0 chosen, compute a sequence

$$x_{n+1} = g(x_n), n \ge 0$$

in the hope that x_n converges to root of f.

Fixed point iteration method

Algorithm:

Given an equation f(x) = 0

Step 1: Convert f(x) = 0 into the form x = g(x)

Step2: Let the initial guess be x_0

Calculate

$$x_{n+1} = g(x_n) = 0,1,2...$$

Convert the given equation in the form x = g(x)

Examples

$$x^{2} - 1 = 0$$
 can be written as
 $x = 1 / x$ (i.e., $g(x) = 1 / x$)
 $x = x^{2} + x - 1$ (i.e., $g(x) = x^{2} + x - 1$)
 $x^{2} + x - 2 = 0$ can be written as
 $x = 2 - x^{2}$ (i.e., $g(x) = 2 - x^{2}$)
 $x = \operatorname{sqrt}(2 - x)$ (i.e., $g(x) = \operatorname{sqrt}(2 - x)$)

Condition for Convergence:

If g(x) and g'(x) are continuous on an interval J about their root s of the equation x = g(x), and if |g'(x)| < 1 for all x in the interval J then the fixed point iterative process $x_{n+1} = g(x_n)$, n = 0, 1, 2, ..., will converge to the root x = s for any initial approximation x_0 belongs to the interval J.

Example 1: Use fixed point method to find a root of the equation x^4 -x-10 = 0 (with initial approximations $x_0 = 2$).

Solution:
$$f(x) = x^4-x-10 = 0$$

 $x = 10 / (x^3-1)$
 $g(x) = 10 / (x^3-1)$

Calculate:

$$x_{n+1} = g(x_n) = 10 / (x_n^3 - 1)$$

Iteration	X _n
0	2
1	1.429
2	5.214
3	0.071
4	-10.004
5	-9.978E-3
6	-10
7	-9.978E-3
8	-10

So the iterative process with g(x) gone into an infinite loop without converging.

Example 2: Use fixed point method to find a root of the equation x^4 -x-10 = 0 (with initial approximations x_0 = 2). (correct to 5 decimal places)

Solution:
$$f(x) = x^4-x-10 = 0$$

 $x = (x + 10)^{1/4}$
 $g(x) = (x + 10)^{1/4}$

Calculate:

$$x_{n+1} = g(x_n) = (x_n + 10)^{1/4}$$

Iteration	X _n
0	2
1	1.861
2	1.8558
3	1.85559
4	1.85558
5	1.85558

First five decimal places have been stabilized; hence 1.85558 is the real root correct to five decimal places.

Example 3: Use fixed point method to find a root of the equation x^4 -x-10 = 0 (with initial

approximations $x_0 = 1.8$). (Do 6 iteration)

Solution: $f(x) = x^4 - x - 10 = 0$

$$x = (x+10)^{1/2}/x$$

 $g(x) = (x+10)^{1/2}/x$

Calculate:

$$x_{n+1} = g(x_n) = (x_n + 10)^{1/2} / x_n$$

1.8
1.9084
1.80825
1.90035
1.81529
1.89355
1.82129
1.8555

It's clear from the example 1, 2 and 3:

Ex1, the iterative process does not converge for any initial approximation

Ex2, the iterative process converges very quickly to the root

Ex3, the iterative process converges but very slowly.

Exercise Problems:

- 1. Find the root of the equation $\cos(x) xe^x = 0$ using fixed point iteration method. (with initial guess $x_0=2$) (Hint: Do 38 iteration with $g(x)=\cos(x)/e^x$)
- 2. Apply fixed point iteration method to find a root of the equation $xe^x = 1$ correct to three decimal places.
- 3. Apply fixed point iteration method to find a root of the equation x- $\sin(x)$ -1/2 =0 correct to three decimal places. (with initial guess x_0 = 2)

•

If $f(x) = x^2 - x - 2$, then fixed points of each of functions

•
$$g(x) = x^2 - 2$$

•
$$g(x) = \sqrt{x+2}$$

•
$$g(x) = 1 + 2/x$$

•
$$g(x) = \frac{x^2 + 2}{2x - 1}$$

are solutions to equation f(x) = 0

Apply fixed point iteration method to the above function for each g with initial guess x_0 = 1.8. (Do 5 iteration)