

Performance comparison between a distributed particle swarm algorithm and a centralised algorithm

Ciarán O'Loughlin - C13358011 -September 2021

Technical University Dublin MSc in Advanced Software Development – TU060

Motivation & Research Question

Research Question:

• "At what point are performance gains in running a particle swarm optimisation algorithm in a distributed environment outweighed by the time lost in network communications between multiple swarms?"

Motivation for this Dissertation:

Discover the potential upper limit for PSO algorithms running on a singular machine.

Aim of the dissertation:

Generate results set of distributed and centralised PSO with increasing numbers of particles/Swarms

Cross compare the two, determine if there is an OTP(optimisation tipping point) where distributed is more time efficient than centralised.

Literature Review & Background

- PSO is a population-based search algorithm and is initialized with a population of random solutions, called particles.
- Particles are then arranged into a "swarm".
- PSO is commonly used in search and optimisation problems. Plenty of research utilizing it in robotics/ real world applications, not just simulations.

- PSO update formula has 4 elements, social, cognitive, inertia and a random element
- Literature has a focus on various off shoots of PSO, dPSO, AGLDPSO etc. to solve specific problems
- Gap in Literature around distributed vs centralised.

Design & Methodology

- Build two algorithm implementations
- Generate both results set
- Benchmark results between two results sets.
- Self build data aggregation/loader. Excelused to examine results.

Implementation

- Algorithm initializes x swarms with y particles.
- Particles move according to PSO formula.
- Current position is tested against specific fitness function.
- If current position is better than last position, global best for that swarm is updated.
- Iterations continue until Gbest value is "settled" across all swarms

Implementation

- Java used for algorithm implementations.
- Deployed to a container in the cloud. In centralised implementation all swarms run on a single container. In distributed each swarm runs on a separate container. Digital ocean used as the cloud provider.
- Testing performed using postman/newman, with NodeJS used to aggregate results.
- Fitness functions tested:
 - Beales Function
 - Booths Function
 - Easoms Function

Results & analysis

- 3 Fitness functions tested, with swarms ranging from 1-10, and particles ranging from 100,000-1,000,000
- Distributed implementation has a better TTS across all FF's at the 500,000 particle mark.
- At 1,000,000 particles
 - Beale's function -145%.
 - Booth's function 152%
 - Easom's function 123%.

Beale TTS Comparison Chart

Results & analysis

100,000 Particles

	TTS - 2 Swarms	TTS - 4 Swarms	TTS - 8 Swarms	TTS - 10 Swarms
Beale -Centralised	4205	3842	4775	4417
Beale -Distribributed	5291	5630	7153	7860
Booths -Centralised	2910	3243	3634	2805
Booths -Distribributed	4331	4846	6197	7541
Easom -Centralised	2364	2297	2313	2388
Easom -Distribributed	3551	3287	3925	4385

1,000,000 Particles

	TTS - 2 Swarms	TTS - 4 Swarms	TTS - 8 Swarms	TTS - 10 Swarms
Beale -Centralised	112258	119800	112751	160899
Beale -Distribributed	56502	48906	49696	51248
Booths -Centralised	102709	103364	102856	131270
Booths -Distribributed	48322	39878	36861	49330
Easom -Centralised	50887	51263	52918	78160
Easom -Distribributed	29327	23923	24623	26300

Contributions and Impact

- Validated Hypothesis and proved that there is a point where a distributed implementation is more time efficient than a centralised implementation.
- OTP found to be around 500,000 particles for multiple optimisation functions.
- Where this could have the most impact is for within a more practical experiment of a PSO, where very high levels of particles are required, possibly leaning towards more of a simulation problem than an optimisation problem.

Future work

Adapting the implementation types to different Adapting languages/frameworks Adding additional optimisation/search problems to test Adding with. Upgrading the container to have additional RAM/CPU Upgrading power and retest to see changes in the OTP. Utilising different stopping criteria to test solution diversity Utilising between Centralised/Distributed.

