الگوریتم های تقریبی (جلسه ی هفتم)

فرنام منصوري

Yo IV October

۱ اثبات مسئله ی درخت اشتاینر از جلسه ی قبل

صورت مسئله این بود که یک راس r داشتیم و هر یال یک هزینه داشت میخواستیم با کم ترین هزینه تعدادی یال انتخاب کنیم که با آن ها از s به مجموعه ی دلخواه از که قبلا داده شده از راس ها بتوان رسید. در جلسه ی قبل LP و دوگان آن را برای مسئله نوشتیم. :صورت مسئله ی دوگان

$$\max \sum_{s \in A} z_s$$

$$\forall e : \sum_{S: e \in \delta(S)} z_s \le c_e$$

$$z_s \ge 0$$

و گفتیم که اول به ازای تمام مجموعه های تک عضوی مقدار z_s را در هر لحظه به مقدار ثابتی اضافه میکنیم تا اینکه دو تا از مجموعه ها مجموعه ها مجموعه یال هایمان اضافه میکنیم بعد دو مجموعه ای که مانع ادامه ی کار شدن را با هم merge می کنیم

$$\sum_{e} x_e c_e = \sum_{e} \sum_{S: e \in \delta(S)} z_s x_e = \sum_{S \in A} z_s \left(\sum_{e \in \delta(S)} x_e \right) \tag{1}$$

حالا مقدار z_s مقدار رود z_s منظر بگیرید فرض کنید مقادیر z_s ها با سرعت z_s بر ثانیه در حال افزایش است و سیگمای دوم هم در عبارت به معنی تعداد یال های متصل به یک راس است در نتیجه در اول این مقدار به اندازه ی مجموع درجات گراف ضرب در z_s میشود و چون درخت است میشود z_s و هر لحظه که یک یال اضافه می شود و در واقع دو تا راس merge می شوند و به عبارت اگر z_s تا راس مانده باشد z_s تا راس مانده باشد z_s در حال اضافه شدن اند پس به z_s هر ثانیه z_s ها ضفر اند پس هر دو صفر اند پس در آخر z_s می شود و در آول هم همه ی z_s ها ضفر اند پس هر دو صفر اند پس در آخر z_s می شود و در آول هم همه ی z_s تر است

$$\sum_{e} x_{e} c_{e} = \sum_{e} \sum_{S: e \in \delta(S)} z_{s} x_{e} = \sum_{S \in A} z_{s} (\sum_{e \in \delta(S)} x_{e}) \le 2 \sum_{s} z_{s} = 2 z_{D}^{*} = 2 z_{LP}^{*} \le 2 * OPT \tag{Y}$$

۱ مسئله ی مکان یاب تجهیزات بدون ظرفیت

۱.۲ صورت مسئله

یکسری تچهیزات داریم و یکسری آدم، هزینه ی خرید تجهیزات i ام f_i است و هزینه ی استفاده از تجهیزات i ام برای فرد i است. میخواهیم یک تعدادی از تجهیزات را بخریم طوری که مجموع هزینه تجهیزات و مجموع هزینه ی تجهیز کردن افراد از تجهیزاتی که هزینه اش مینیمم است کمینه شود. از طرفی می دانیم که نامساوی مثلثی برقرار است، یعنی در واقع برای تجهیزات i, j و آدم های i, i, i می نامساوی مثلثی برقرار است، یعنی در واقع برای تجهیزات i

۲.۲ راه حل

اول IP را مینویسیم:

$$\begin{aligned} \min \sum_{i} f_{i}y_{i} + \sum_{i \neq j} c_{ij}x_{ij} \\ subject \ to \qquad & \sum_{i \in F} x_{ij} = 1, \qquad \forall j \in D \\ x_{ij} \leq y_{i}, & \forall i \in F, j \in D \\ x_{ij} \in \{0,1\} & \forall i \in F, j \in D \\ y_{i} \in \{0,1\} & \forall i \in F \end{aligned}$$

حال تبديل به LP ميكنيم:

$$\begin{aligned} \min \sum_{i} f_{i} y_{i} + \sum_{i \neq j} c_{ij} x_{ij} \\ subject \ to & \sum_{i \in F} x_{ij} = 1, \qquad \forall j \in D \\ x_{ij} \leq y_{i}, & \forall i \in F, j \in D \\ 0 \leq x_{ij} & \forall i \in F, j \in D \\ 0 \leq y_{i} & \forall i \in F \end{aligned}$$

توجه کنید که اگر شرط کوچک تر از ۱ را نمینوشتیم در جواب مسئله تاثیر داشت، حال مسئله ی dual را مینویسینم:

$$\begin{aligned} \max \sum_{j \in D} v_j \\ subject \ to \qquad & \sum_{j \in D} w_{ij} = f_i, \qquad \forall i \in F \\ v_j - w_{ij} \leq c_{ij}, \qquad \forall i \in F, j \in D \\ w_{ij} \geq 0, \qquad \forall i \in F, j \in D \end{aligned}$$

۱.۲.۲ مرحله ی یک

اول (x^*, y^*) جواب D را حل میکنیم و سپس (v^*, w^*) جواب D را حل میکنیم

۲.۲.۲ مرحله ي دوم

اگر 0>0 باشد، $v_i-w_{ij}=c_{ij}$ در نتیجه $v_i-v_{ij}>0$ در نتیجه این نتیجه میرسیم که اگر $v_i>0$ را تعریف کنیم تمام $v_i-w_{ij}=c_{ij}$ هایی که $v_i-w_{ij}>0$ را $v_i>0$ را که مجموعه مثل $v_i>0$ از تجهیزات داشته باشیم که به ازای هر $v_i>0$ با $v_i>0$ اشتراک داشته باشد، کافیست یکی از $v_i>0$ های بزرگتر ازصفر در $v_i>0$ را که مجموعه مثل $v_i>0$ از تجهیزات داشته باشیم که به ازای هر $v_i>0$ به ازای هر $v_i>0$ با $v_i>0$ استراک داشته باشد، کافیست یکی از $v_i>0$ های بزرگتر ازصفر در که یک در نظر گیریم.

$$\sum c_{ij}x_{ij} > \sum_{j} v_j = z_D^* = OPT \tag{7}$$

و فقط کافیست خوبیS بگیریم که جمع اول خوب شود

۳.۲.۲ مرحله ی سوم

فرض کنید که مجموعه ی تجهیزات را به چند قسمت تقسیم کردیم که هر قسمت N(j) برای یک j باشد و یک سری تجهیزات هم درون هیچ یک از این مجموعه ها نباشد اسم این مجموعه ها f_{ik} می نامیم و کم هزینه ترین تجهیزات را در مجموعه ی j ام را j می نامیم و ک

$$f_{i_k} = f_{i_k} \sum_{i \in F} x_{ij}^* = \sum_{i \in F_k} f_{i_k} x_{ij}^* \le \sum_{i \in F_k} f_i x_{ij}^* \le \sum_{i \in F_k} f_i y_i^* \tag{(Y)}$$

در نتیجه:

$$\sum_{i} f_{i_k} = \sum_{i \in F} f_i y_i^* \le Z_{LP}^* = OPT \tag{(2)}$$

۴.۲.۲ الگوريتم

را پیدا کن
$$(v^*, w^*)$$
 و (x^*, y^*) .۱

$$C o D$$
 .Y

$$while \, C
eq \oslash \, .$$
 . $ag{7}$

$$k \to k + 1$$
 (1)

$$argmin_{j \in D^*} v_i^* = j_k \ (\boldsymbol{\cdot} \boldsymbol{\cdot})$$

$$C = C - j_k - N^2(j_k)$$
 (7)

$$O=i_k|i_k=mini\in N(j_k)$$
 برابر است با ۴. جواب برابر است با

۵.۲.۲ اثبات الگوريتم

و برای هر j ای که به صورت j_k ها نیست اولین F_k ای که در آن همسایه که در نظر بگیرید ، یک همسایه در j_k مثل j_k داریم و:

$$c_{i_k j} \le c_{sj} + csj_k + xi_k j_k \le v^* j + 2v^* j_k \le 3 * v^* j$$
(9)

 $c_{ij_k} < v_{j_k}^*$ اگر هم \mathbf{j} به صورت j_k باشد هم بدیهتا

$$\sum_{i_k \in O, j \in D} c_{i_k j} = \sum_{i_k \in O, j_k} c_{i_k j_k} + \sum_{i_k \in O, j \neq j_k} c_{i_k j} \le \sum_{j_k} v_{j_k}^* + \sum_{j \neq j_k} 3 * v_j^* = \sum_{j \in D} v_j^* = 3 * OPT \tag{V}$$

از جمع عبارت ۵ که در مرحله ی π به دست آوردیم و عبارت بالا به دست نتیجه می رسیم که

$$\sum y_i + \sum c_{ij} \le OPT + 3 * OPT = 4 * OPT \tag{(A)}$$

پس الگوريتم -4تقريب است