Revisão de Probabilidade e Estatística

Aula 1 - Parte 1

Aishameriane Schmidt

PPGECO/UFSC

Fevereiro de 2019.

Aisha? Caixa? Baixa?

► Mestranda do PPGECO/UFSC (2017-2019)

Aisha? Caixa? Baixa?

- ► Mestranda do PPGECO/UFSC (2017-2019)
 - ► Aluna de Econometria I em 2016-1
 - Mascote Monitora de Econometria Bayesiana em 2018-1

Aisha? Caixa? Baixa?

- ► Mestranda do PPGECO/UFSC (2017-2019)
 - Aluna de Econometria I em 2016-1
 - Mascote Monitora de Econometria Bayesiana em 2018-1
- ▶ Graduanda em Economia na UDESC (2015-2019)

Aisha? Caixa? Baixa?

- ▶ Mestranda do PPGECO/UFSC (2017-2019)
 - Aluna de Econometria I em 2016-1
 - Mascote Monitora de Econometria Bayesiana em 2018-1
- ► Graduanda em Economia na UDESC (2015-2019)
- ► Bacharel em Estatística pela UFRGS (2004-2009)

- ► As aulas serão no LabMec no prédio C do CSE/UFSC. Terça, quinta e sexta as aulas serão das 13:30 às 18h (podendo acabar um pouco antes). Na segunda feira começamos às 15:45 e na quarta feira encerramos às 15:30.
 - Pipi-break no meio da tarde, conforme demanda preferencialmente antes/depois do intervalo das aulas da graduação.

- ► As aulas serão no LabMec no prédio C do CSE/UFSC. Terça, quinta e sexta as aulas serão das 13:30 às 18h (podendo acabar um pouco antes). Na segunda feira começamos às 15:45 e na quarta feira encerramos às 15:30.
 - Pipi-break no meio da tarde, conforme demanda preferencialmente antes/depois do intervalo das aulas da graduação.
- Aulas expositivas com bastante espaço para interação;
 - ► Slides + quadro.
 - Conteúdos de probabilidade e estatística voltados para utilizar o livro do Davidson e Mackinnon em Econometria I (exceto álgebra linear) - a bibliografia utilizada é bem diversa.
 - Notas de aula e slides serão disponibilizados no github (acompanhe pelas datas a versão):
 - https://github.com/aishameriane/msc-economics/tree/master/revisao-prob.

- ► As aulas serão no LabMec no prédio C do CSE/UFSC. Terça, quinta e sexta as aulas serão das 13:30 às 18h (podendo acabar um pouco antes). Na segunda feira começamos às 15:45 e na quarta feira encerramos às 15:30.
 - Pipi-break no meio da tarde, conforme demanda preferencialmente antes/depois do intervalo das aulas da graduação.
- Aulas expositivas com bastante espaço para interação;
 - ► Slides + quadro.
 - Conteúdos de probabilidade e estatística voltados para utilizar o livro do Davidson e Mackinnon em Econometria I (exceto álgebra linear) - a bibliografia utilizada é bem diversa.
 - Notas de aula e slides serão disponibilizados no github (acompanhe pelas datas a versão):
 - https://github.com/aishameriane/msc-economics/tree/master/revisao-prob.
- ► É uma revisão relembrar é viver!
 - ► Mas, se estiver **muito** repetitivo, melhor usar seu tempo de outra forma.

- ► As aulas serão no LabMec no prédio C do CSE/UFSC. Terça, quinta e sexta as aulas serão das 13:30 às 18h (podendo acabar um pouco antes). Na segunda feira começamos às 15:45 e na quarta feira encerramos às 15:30.
 - Pipi-break no meio da tarde, conforme demanda preferencialmente antes/depois do intervalo das aulas da graduação.
- Aulas expositivas com bastante espaço para interação;
 - ► Slides + quadro.
 - Conteúdos de probabilidade e estatística voltados para utilizar o livro do Davidson e Mackinnon em Econometria I (exceto álgebra linear) - a bibliografia utilizada é bem diversa.
 - Notas de aula e slides serão disponibilizados no github (acompanhe pelas datas a versão):
 - https://github.com/aishameriane/msc-economics/tree/master/revisao-prob.
- ► É uma revisão relembrar é viver!
 - ► Mas, se estiver **muito** repetitivo, melhor usar seu tempo de outra forma.
 - Em geral, a Aisha não pressupõe que as pessoas saibam as coisas isso pode tornar o processo meio maçante.

- ► As aulas serão no LabMec no prédio C do CSE/UFSC. Terça, quinta e sexta as aulas serão das 13:30 às 18h (podendo acabar um pouco antes). Na segunda feira começamos às 15:45 e na quarta feira encerramos às 15:30.
 - Pipi-break no meio da tarde, conforme demanda preferencialmente antes/depois do intervalo das aulas da graduação.
- ► Aulas expositivas com bastante espaço para interação;
 - ► Slides + quadro.
 - Conteúdos de probabilidade e estatística voltados para utilizar o livro do Davidson e Mackinnon em Econometria I (exceto álgebra linear) - a bibliografia utilizada é bem diversa.
 - Notas de aula e slides serão disponibilizados no github (acompanhe pelas datas a versão):
 - https://github.com/aishameriane/msc-economics/tree/master/revisao-prob.
- ► É uma revisão relembrar é viver!
 - ► Mas, se estiver **muito** repetitivo, melhor usar seu tempo de outra forma.
 - Em geral, a Aisha não pressupõe que as pessoas saibam as coisas isso pode tornar o processo meio maçante.
- O programa das aulas foi feito baseado nas orientações do professor de Econometria I.

- ► As aulas serão no LabMec no prédio C do CSE/UFSC. Terça, quinta e sexta as aulas serão das 13:30 às 18h (podendo acabar um pouco antes). Na segunda feira começamos às 15:45 e na quarta feira encerramos às 15:30.
 - Pipi-break no meio da tarde, conforme demanda preferencialmente antes/depois do intervalo das aulas da graduação.
- ► Aulas expositivas com bastante espaço para interação;
 - ► Slides + quadro.
 - Conteúdos de probabilidade e estatística voltados para utilizar o livro do Davidson e Mackinnon em Econometria I (exceto álgebra linear) - a bibliografia utilizada é bem diversa.
 - Notas de aula e slides serão disponibilizados no github (acompanhe pelas datas a versão):

https://github.com/aishameriane/msc-economics/tree/master/revisao-prob.

- ▶ É uma revisão relembrar é viver!
 - ► Mas, se estiver **muito** repetitivo, melhor usar seu tempo de outra forma.
 - Em geral, a Aisha não pressupõe que as pessoas saibam as coisas isso pode tornar o processo meio maçante.
- O programa das aulas foi feito baseado nas orientações do professor de Econometria I.

Você sabe fazer alguma coisa? Passe o conhecimento adiante!

Programa

O que iremos ver?

- ▶ Probabilidade:
 - Conjuntos, definições básicas de probabilidade e probabilidade de eventos;
 - Definição e caracterização de variáveis aleatórias;
- ► Introdução à Estatística.

Programa

Aula 1

- Teoria dos conjuntos: Revisão dos principais resultados de teoria dos conjuntos.
- 2. Definições de probabilidade: axiomática, frequentista e subjetiva.
- 3. Probabilidade de eventos.
- 4. Independência de eventos, probabilidade condicional e teorema de Bayes. Possivelmente fica para amanhã

Estatística pra quê?

Motivação

Estatística pra quê?

Motivação

Motivação

Probabilidade VS Estatística

- Probabilidade é uma área da matemática;
 - Embora não seja exata pois lida com incertezas, uma vez definido um espaço de probabilidade, os resultados possíveis são todos bem estabelecidos.

Motivação

Probabilidade VS Estatística

- Probabilidade é uma área da matemática;
 - Embora não seja exata pois lida com incertezas, uma vez definido um espaço de probabilidade, os resultados possíveis são todos bem estabelecidos.
- ► A estatística utiliza a probabilidade como uma **ferramenta**:
 - É similar aos engenheiros, físicos e demais profissões que utilizam cálculo.
- Para falar de estatística, necessariamente haverá uma população.
 - ► E, muito possivelmente, uma ou mais **amostras**.

Motivação

Probabilidade VS Estatística

- Probabilidade é uma área da matemática;
 - Embora não seja exata pois lida com incertezas, uma vez definido um espaço de probabilidade, os resultados possíveis são todos bem estabelecidos.
- ► A estatística utiliza a probabilidade como uma **ferramenta**:
 - É similar aos engenheiros, físicos e demais profissões que utilizam cálculo.
- ► Para falar de estatística, necessariamente haverá uma população.
 - ► E, muito possivelmente, uma ou mais **amostras**.

Você pode até tentar "fazer" estatística sem conhecer probabilidade, mas será igual uma pessoa que quer construir um prédio sem saber nada de engenharia civil.

Como estudar formalmente um conteúdo?

O que está por vir

A estrutura das aulas será muito similar, independente do assunto (probabilidade/estatística) - é como uma receita de bolo:

- São apresentadas as definições e axiomas;
 - Definição é aquilo que descreve um conceito;
 - Axioma é uma verdade geral, não precisa de demonstração.

Como estudar formalmente um conteúdo?

O que está por vir

A estrutura das aulas será muito similar, independente do assunto (probabilidade/estatística) - é como uma receita de bolo:

- São apresentadas as definições e axiomas;
 - Definição é aquilo que descreve um conceito;
 - Axioma é uma verdade geral, não precisa de demonstração.
- ► A partir disso, podemos construir e provar **proposições**, **lemas**, **teoremas** e **corolários**.

Como estudar formalmente um conteúdo?

O que está por vir

A estrutura das aulas será muito similar, independente do assunto (probabilidade/estatística) - é como uma receita de bolo:

- São apresentadas as definições e axiomas;
 - Definição é aquilo que descreve um conceito;
 - Axioma é uma verdade geral, não precisa de demonstração.
- ► A partir disso, podemos construir e provar **proposições**, **lemas**, **teoremas** e **corolários**.
 - Para fazer uma demonstração, precisamos de uma hipótese (aquilo que assumimos como verdadeiro) e uma tese (aquilo que desejamos provar e que decorre da hipótese, das definições e dos axiomas);
 - Existem diferentes estratégias de demonstração. Para uma introdução, recomenda-se a leitura de [Velleman, 2006].

Definição

Um **conjunto** (ou coleção) é formado por objetos (que são os seus **elementos**). [Lima, 1982]

Definição

Um **conjunto** (ou coleção) é formado por objetos (que são os seus **elementos**). [Lima, 1982]

- A relação básica entre um conjunto e seus elementos é a relação de pertinência.
- ► Quando *x* (objeto) é um elemento do conjunto *A*:
 - ► Dizemos "x pertence a A" e denotamos por $x \in A$.
- Caso contrário, diremos que "x não pertence a A" e denotaremos por x ∉ A.

Definição

Um **conjunto** (ou coleção) é formado por objetos (que são os seus **elementos**). [Lima, 1982]

- A relação básica entre um conjunto e seus elementos é a relação de pertinência.
- ► Quando *x* (objeto) é um elemento do conjunto *A*:
 - ► Dizemos "x pertence a A" e denotamos por $x \in A$.
- Caso contrário, diremos que "x não pertence a A" e denotaremos por x ∉ A.

Atenção

Não confundir \in (pertence) com \subset (contido)!

Definição

Um **conjunto** (ou coleção) é formado por objetos (que são os seus **elementos**). [Lima, 1982]

- A relação básica entre um conjunto e seus elementos é a relação de pertinência.
- ► Quando *x* (objeto) é um elemento do conjunto *A*:
 - ► Dizemos "x pertence a A" e denotamos por $x \in A$.
- Caso contrário, diremos que "x não pertence a A" e denotaremos por x ∉ A.

Atenção

Não confundir \in (pertence) com \subset (contido)!

O primeiro diz respeito a **elementos**, enquanto que o segundo refere-se a **conjuntos**!

- Um conjunto fica bem especificado (definido) quando há uma regra clara que permita avaliar se um elemento qualquer pertence ou não ao conjunto.
 - O uso de regras auxilia a escrever o conjunto sem precisar enumerar todos seus elementos.

- Um conjunto fica bem especificado (definido) quando há uma regra clara que permita avaliar se um elemento qualquer pertence ou não ao conjunto.
 - O uso de regras auxilia a escrever o conjunto sem precisar enumerar todos seus elementos.
- **Exemplo:** A propriedade *P* define totalmente o conjunto *A*
 - ► Se um objeto x atende P, então $x \in A$.
 - Caso contrário, x ∉ A.

- Um conjunto fica bem especificado (definido) quando há uma regra clara que permita avaliar se um elemento qualquer pertence ou não ao conjunto.
 - O uso de regras auxilia a escrever o conjunto sem precisar enumerar todos seus elementos.
- **Exemplo:** A propriedade *P* define totalmente o conjunto *A*
 - ► Se um objeto x atende P, então $x \in A$.
 - Caso contrário, x ∉ A.

 $A = \{x : x \text{ tem a propriedade } P\}$

- Um conjunto fica bem especificado (definido) quando há uma regra clara que permita avaliar se um elemento qualquer pertence ou não ao conjunto.
 - O uso de regras auxilia a escrever o conjunto sem precisar enumerar todos seus elementos.
- **Exemplo:** A propriedade *P* define totalmente o conjunto *A*
 - ► Se um objeto x atende P, então $x \in A$.
 - Caso contrário, x ∉ A.

 $A = \{x : x \text{ tem a propriedade } P\}$

► Se queremos nos referir a um conjunto *B* ⊂ *A* (significa que *B* é subconjunto de *A* ou, equivalentemente, *B* está contido em *A*), podemos escrever:

 $B = \{x \in A : x \text{ tem a propriedade } P\}$

- Um conjunto fica bem especificado (definido) quando há uma regra clara que permita avaliar se um elemento qualquer pertence ou não ao conjunto.
 - O uso de regras auxilia a escrever o conjunto sem precisar enumerar todos seus elementos.
- **Exemplo:** A propriedade *P* define totalmente o conjunto *A*
 - ► Se um objeto x atende P, então $x \in A$.
 - Caso contrário, x ∉ A.

$$A = \{x : x \text{ tem a propriedade } P\}$$

► Se queremos nos referir a um conjunto *B* ⊂ *A* (significa que *B* é subconjunto de *A* ou, equivalentemente, *B* está contido em *A*), podemos escrever:

$$B = \{x \in A : x \text{ tem a propriedade } P\}$$

$$B = \{x \in \mathbb{R} : x > 10\}$$

- Se A e B forem conjuntos, podemos compará-los através da relação de "inclusão" (⊂).
 - Dizemos que B é subconjunto de A se todo elemento de B também*
 é elemento de A e denotamos por B ⊂ A.

- ► Se A e B forem conjuntos, podemos compará-los através da relação de "inclusão" (⊂).
 - Dizemos que B é subconjunto de A se todo elemento de B também*
 é elemento de A e denotamos por B ⊂ A.
 - Sinônimos: B é parte de A, B está incluído em A ou ainda B está contido em A.

- Se A e B forem conjuntos, podemos compará-los através da relação de "inclusão" (⊂).
 - Dizemos que B é subconjunto de A se todo elemento de B também* é elemento de A e denotamos por B ⊂ A.
 - Sinônimos: B é parte de A, B está incluído em A ou ainda B está contido em A.
- Em alguns livros encontramos as seguintes notações:
 - B ⊂ A para indicar que B está contido em A (mas não é igual),

- Se A e B forem conjuntos, podemos compará-los através da relação de "inclusão" (⊂).
 - Dizemos que B é subconjunto de A se todo elemento de B também* é elemento de A e denotamos por B ⊂ A.
 - Sinônimos: B é parte de A, B está incluído em A ou ainda B está contido em A.
- ► Em alguns livros encontramos as seguintes **notações**:
 - B ⊂ A para indicar que B está contido em A (mas não é igual),
 - ► $B \subseteq A$ para indicar que B está contido e pode ser igual a A,

- Se A e B forem conjuntos, podemos compará-los através da relação de "inclusão" (⊂).
 - Dizemos que B é subconjunto de A se todo elemento de B também* é elemento de A e denotamos por B ⊂ A.
 - Sinônimos: B é parte de A, B está incluído em A ou ainda B está contido em A.
- ► Em alguns livros encontramos as seguintes **notações**:
 - B ⊂ A para indicar que B está contido em A (mas não é igual),
 - ▶ $B \subseteq A$ para indicar que B está contido e pode ser igual a A,
 - ► $B \subseteq A$ para indicar B está contido mas não é igual a A.

- Se A e B forem conjuntos, podemos compará-los através da relação de "inclusão" (⊂).
 - Dizemos que B é subconjunto de A se todo elemento de B também*
 é elemento de A e denotamos por B ⊂ A.
 - Sinônimos: B é parte de A, B está incluído em A ou ainda B está contido em A.
- ► Em alguns livros encontramos as seguintes **notações**:
 - B ⊂ A para indicar que B está contido em A (mas não é igual),
 - ► $B \subseteq A$ para indicar que B está contido e pode ser igual a A,
 - B ⊆ A para indicar B está contido mas não é igual a A.
- Iremos utilizar B ⊂ A como "B está contido em A e eles podem ser iguais".

O vazio que nos habita Ø

Quando não há elemento de A que satisfaça P, o conjunto B não tem nenhum elemento e é denominado *conjunto vazio* (\emptyset).

O vazio que nos habita Ø

Quando não há elemento de A que satisfaça P, o conjunto B não tem nenhum elemento e é denominado *conjunto vazio* (\emptyset) .

Definição

Definimos Ø da seguinte forma:

$$\forall x,x\notin\emptyset$$

O vazio que nos habita Ø

Quando não há elemento de A que satisfaça P, o conjunto B não tem nenhum elemento e é denominado *conjunto vazio* (\emptyset) .

Definição

Definimos Ø da seguinte forma:

$$\forall x, x \notin \emptyset$$

(lê-se: qualquer que seja x, x não percence ao vazio)

O vazio que nos habita Ø

Quando não há elemento de A que satisfaça P, o conjunto B não tem nenhum elemento e é denominado *conjunto vazio* (\emptyset) .

Definição

Definimos Ø da seguinte forma:

 $\forall x, x \notin \emptyset$

(lê-se: qualquer que seja x, x não percence ao vazio)

Observação: ∀ significa "para todo" e ∃ significa "existe". Eles são chamados de quantificador universal e quantificador existencial e são extremamente importantes na linguagem matemática. Além de [Velleman, 2006], recomenda-se a aula 3 do material disponível em

https://ldrv.ms/f/s!AlHDLj_70jaL4xES4gUq_N_2gzga.

O vazio \emptyset e o vazio $\{\emptyset\}$

Uma coisa importante a se notar é que existe diferença entre \emptyset e $\{\emptyset\}$. O primeiro é o conjunto vazio, o segundo é um conjunto cujo único elemento é o conjunto vazio. Para entender melhor a diferença, considere o seguinte exercício:

Exercício 1: Analise se são verdadeiras ou falsas as seguintes sentenças:

- **1.** ∅ ∈ ∅.
- **2.** $\emptyset \in \{\emptyset\}.$
- **3.** $\{\emptyset\} \in \emptyset$.
- **4.** $\emptyset \subset \emptyset$.
- **5.** $\emptyset \subset \{\emptyset\}$.
- **6.** $\{\emptyset\} \subset \emptyset$.

O vazio 0 e o vazio 0

Note que:

- ▶ Ø é o conjunto vazio (não contém elementos);
- ► {∅} é o conjunto cujo único elemento é o vazio.
- **1.** $\emptyset \in \emptyset$ "O elemento vazio pertence ao conjunto vazio"
- **2.** $\emptyset \in \{\emptyset\}$ "O vazio é elemento do conjunto que só contém o vazio"
- **3.** {∅} ∈ ∅ "O conjunto cujo único elemento é o vazio é elemento do conjunto vazio"
- **4.** ∅ ⊂ ∅ "O conjunto vazio está contido no conjunto vazio"
- ∅ ⊂ {∅} "O conjunto que contém o vazio está contido no conjunto cujo único elemento é o vazio"
- **6.** {∅} ⊂ ∅ "O conjunto cujo único elemento é o vazio está contido no vazio"

O vazio \emptyset e o vazio $\{\emptyset\}$

1. $\emptyset \in \emptyset$ - "O elemento vazio pertence ao conjunto vazio"

O vazio 0 e o vazio (0)

∅ ∈ ∅ - "O elemento vazio pertence ao conjunto vazio"
 Falsa pois o conjunto vazio não tem nenhum elemento.

- ∅ ∈ ∅ "O elemento vazio pertence ao conjunto vazio"
 Falsa pois o conjunto vazio não tem nenhum elemento.
- **2.** $\emptyset \in \{\emptyset\}$ "O vazio é elemento do conjunto que só contém o vazio"

- ∅ ∈ ∅ "O elemento vazio pertence ao conjunto vazio"
 Falsa pois o conjunto vazio não tem nenhum elemento.
- 2. $\emptyset \in \{\emptyset\}$ "O vazio é elemento do conjunto que só contém o vazio" **Verdadeira** - no lado esquerdo estamos listando todos os elementos do conjunto à direita, que neste caso só contém o vazio.

- ∅ ∈ ∅ "O elemento vazio pertence ao conjunto vazio"
 Falsa pois o conjunto vazio não tem nenhum elemento.
- 2. ∅ ∈ {∅} "O vazio é elemento do conjunto que só contém o vazio" Verdadeira - no lado esquerdo estamos listando todos os elementos do conjunto à direita, que neste caso só contém o vazio.
- **3.** {∅} ∈ ∅ "O conjunto cujo único elemento é o vazio é elemento do conjunto vazio"

O vazio 0 e o vazio (0)

- ∅ ∈ ∅ "O elemento vazio pertence ao conjunto vazio"
 Falsa pois o conjunto vazio não tem nenhum elemento.
- 2. ∅ ∈ {∅} "O vazio é elemento do conjunto que só contém o vazio" Verdadeira - no lado esquerdo estamos listando todos os elementos do conjunto à direita, que neste caso só contém o vazio.
- **3.** {∅} ∈ ∅ "O conjunto cujo único elemento é o vazio é elemento do conjunto vazio"

Falsa - pela definição do conjunto vazio, sabemos que ele não contém elemento.

O vazio 0 e o vazio (0)

4. $\emptyset \subset \emptyset$ - "O conjunto vazio está contido no conjunto vazio"

O vazio 0 e o vazio (0)

4. ∅ ⊂ ∅ - "O conjunto vazio está contido no conjunto vazio"
Verdadeira pois todo conjunto contém o conjunto vazio (dizemos que é verdadeira por vacuidade).

- 4. Ø < Ø "O conjunto vazio está contido no conjunto vazio"</p>
 Verdadeira pois todo conjunto contém o conjunto vazio (dizemos que é verdadeira por vacuidade).
- ∅ ⊂ {∅} "O conjunto que contém o vazio está contido no conjunto cujo único elemento é o vazio"

O vazio \emptyset e o vazio $\{\emptyset\}$

- ∅ ⊂ ∅ "O conjunto vazio está contido no conjunto vazio"
 Verdadeira pois todo conjunto contém o conjunto vazio (dizemos que é verdadeira por vacuidade).
- ∅ ⊂ {∅} "O conjunto que contém o vazio está contido no conjunto cujo único elemento é o vazio"

Verdadeira pois quando comparamos dois conjuntos, precisamos verificar se os elementos de um estão contidos no outro. Como o lado esquerdo não contém elementos, significa, por vacuidade, que todo elemento pertence ao conjunto do lado direito.

O vazio \emptyset e o vazio $\{\emptyset\}$

- ∅ ⊂ ∅ "O conjunto vazio está contido no conjunto vazio"
 Verdadeira pois todo conjunto contém o conjunto vazio (dizemos que é verdadeira por vacuidade).
- ∅ ⊂ {∅} "O conjunto que contém o vazio está contido no conjunto cujo único elemento é o vazio"
 - **Verdadeira** pois quando comparamos dois conjuntos, precisamos verificar se os elementos de um estão contidos no outro. Como o lado esquerdo não contém elementos, significa, por vacuidade, que todo elemento pertence ao conjunto do lado direito.
- **6.** {∅} ⊂ ∅ "O conjunto cujo único elemento é o vazio está contido no vazio"

- ∅ ⊂ ∅ "O conjunto vazio está contido no conjunto vazio"
 Verdadeira pois todo conjunto contém o conjunto vazio (dizemos que é verdadeira por vacuidade).
- ∅ ⊂ {∅} "O conjunto que contém o vazio está contido no conjunto cujo único elemento é o vazio"
 - **Verdadeira** pois quando comparamos dois conjuntos, precisamos verificar se os elementos de um estão contidos no outro. Como o lado esquerdo não contém elementos, significa, por vacuidade, que todo elemento pertence ao conjunto do lado direito.
- **6.** {∅} ⊂ ∅ "O conjunto cujo único elemento é o vazio está contido no vazio"
 - **Falsa**, pois o conjunto do lado esquerdo contém um elemento, enquanto que o conjunto do lado direito não tem elemento, por definição. O único subconjunto do vazio é ele próprio, isto é, $\emptyset \subset \emptyset$.

O conjunto das partes $\mathscr{P}(\cdot)$

▶ Dado um conjunto A quiquer, podemos definir o conjunto formado pelas partes de A, que é denotado por $\mathcal{P}(A)$.

O conjunto das partes $\mathscr{P}(\cdot)$

- ▶ Dado um conjunto A quiquer, podemos definir o conjunto formado pelas partes de A, que é denotado por $\mathcal{P}(A)$.
 - ► Se $B \subset A$, então $B \in \mathcal{P}(A)$.

O conjunto das partes $\mathscr{P}(\cdot)$

- ▶ Dado um conjunto A quiquer, podemos definir o conjunto formado pelas partes de A, que é denotado por $\mathcal{P}(A)$.
 - ▶ Se $B \subset A$, então $B \in \mathcal{P}(A)$.
- ▶ $\mathscr{P}(A) \neq \emptyset$ por quê?

O conjunto das partes $\mathscr{P}(\cdot)$

- ▶ Dado um conjunto A quiquer, podemos definir o conjunto formado pelas partes de A, que é denotado por $\mathcal{P}(A)$.
 - ▶ Se $B \subset A$, então $B \in \mathcal{P}(A)$.
- ▶ $\mathscr{P}(A) \neq \emptyset$ por quê?
 - ▶ Note que $\emptyset \in \mathscr{P}(A)$ e $A \in \mathscr{P}(A)$.

O conjunto das partes $\mathscr{P}(\cdot)$

- ▶ Dado um conjunto A quiquer, podemos definir o conjunto formado pelas partes de A, que é denotado por $\mathcal{P}(A)$.
 - ▶ Se $B \subset A$, então $B \in \mathcal{P}(A)$.
- ▶ $\mathscr{P}(A) \neq \emptyset$ por quê?
 - ▶ Note que $\emptyset \in \mathscr{P}(A)$ e $A \in \mathscr{P}(A)$.

Exemplo:

$$A = \{a, b, c\}$$

Quem é $\mathcal{P}(A)$?

O conjunto das partes $\mathscr{P}(\cdot)$

- ▶ Dado um conjunto A quiquer, podemos definir o conjunto formado pelas partes de A, que é denotado por $\mathcal{P}(A)$.
 - ▶ Se $B \subset A$, então $B \in \mathcal{P}(A)$.
- ▶ $\mathscr{P}(A) \neq \emptyset$ por quê?
 - ▶ Note que $\emptyset \in \mathscr{P}(A)$ e $A \in \mathscr{P}(A)$.

Exemplo:

$$A = \{a, b, c\}$$

Quem é $\mathcal{P}(A)$?

$$\mathscr{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Vamos preencher o vazio...

- Eventos são objetos de interesse na probabilidade e, como vamos ver, eles tem uma correspondência com teoria dos conjuntos.
- Experimentos que ao serem repetidos sob as mesmas condições não produzem os mesmos resultados são chamados de experimentos aleatórios.
 - Como só nos ocuparemos deles, toda vez que aparecer um experimento, estamos falando de um experimento aleatório.

Definição

O conjunto de todos os possíveis resultados de um experimento particular é chamado de Espaço Amostral e é denotado por Ω . Este conjunto pode ser: enumerável, finito ou infinito, se houver uma bijeção $f:\Omega\to\mathbb{N}$ ou ainda, pode ser não enumerável (por exemplo, no caso de $\Omega=\mathbb{R}$).

Vamos preencher o vazio...

Figura: Representação de experimento, espaço amostral e lei de probabilidade.

Espaços amostrais

Exemplo 1: Espaço amostral do lançamento de uma moeda

Imagine que você faz o experimento de lançar uma moeda. Considere que *K* significa que o resultado foi cara e *C* significa que o resultado foi coroa.

Então, $\Omega = \{K, C\}$ é o espaço amostral do experimento.

Espaços amostrais

Exemplo 1: Espaço amostral do lançamento de uma moeda

Imagine que você faz o experimento de lançar uma moeda. Considere que K significa que o resultado foi cara e C significa que o resultado foi coroa.

Então, $\Omega = \{K, C\}$ é o espaço amostral do experimento.

Exemplo 2: Espaço amostral do tempo até uma lâmpada queimar Considere agora o seguinte experimento: você observa uma lâmpada e está interessado no tempo, em minutos, até a lâmpada queimar*. Então, $\Omega = [0, +\infty)$.

21/33

Definição

Um *evento* é qualquer coleção de possíveis resultados de um experimento, isto é, qualquer subconjunto de Ω (incluindo o próprio Ω) é um evento.

Definição

Um *evento* é qualquer coleção de possíveis resultados de um experimento, isto é, qualquer subconjunto de Ω (incluindo o próprio Ω) é um evento.

Definição

Relação entre eventos

$$A \subset B \iff x \in A \Rightarrow x \in B$$
 (1)

Definição

Um *evento* é qualquer coleção de possíveis resultados de um experimento, isto é, qualquer subconjunto de Ω (incluindo o próprio Ω) é um evento.

Definição

Relação entre eventos

$$A \subset B \iff x \in A \Rightarrow x \in B$$
 (1)

$$A = B \iff A \subset B \quad e \quad B \subset A \tag{2}$$

Operações entre eventos

Definição

União de dois eventos

A união de dois eventos A e B, representada por $A \cup B$, é o conjunto de elementos que percentem a A, B ou ambos:

Operações entre eventos

Definição

União de dois eventos

A união de dois eventos A e B, representada por $A \cup B$, é o conjunto de elementos que percentem a A, B ou ambos:

$$A \cup B = \{x : x \in A \quad ou \quad x \in B\}$$
 (3)

Operações entre eventos

Definição

União de dois eventos

A união de dois eventos A e B, representada por $A \cup B$, é o conjunto de elementos que percentem a A, B ou ambos:

$$A \cup B = \{x : x \in A \quad ou \quad x \in B\}$$
 (3)

De maneira mais geral, seja $(A_n)_{n\in\mathbb{N}}$ uma sequência de conjuntos. $x\in\Omega$ é um elemento da união de $(A_n)_{n\in\mathbb{N}}$, denotada por $\cup_{n\in\mathbb{N}}A_n$, se e somente se existe um $n\in\mathbb{N}$ tal que $x\in A_n$. Isto é,

Operações entre eventos

Definição

União de dois eventos

A união de dois eventos A e B, representada por $A \cup B$, é o conjunto de elementos que percentem a A, B ou ambos:

$$A \cup B = \{x : x \in A \quad ou \quad x \in B\}$$
 (3)

De maneira mais geral, seja $(A_n)_{n\in\mathbb{N}}$ uma sequência de conjuntos. $x\in\Omega$ é um elemento da união de $(A_n)_{n\in\mathbb{N}}$, denotada por $\cup_{n\in\mathbb{N}}A_n$, se e somente se existe um $n\in\mathbb{N}$ tal que $x\in A_n$. Isto é,

$$\bigcup_{n\in\mathbb{N}}A_n=\{x\in\Omega: \mathbf{existe}\ n\in\mathbb{N}\ \mathrm{tal}\ \mathrm{que}\ x\in A_n\}$$

Operações entre eventos

Definição

Interseção de dois eventos

A interseção de dois eventos A e B, representada por $A \cap B$, é o conjunto de elementos que percentem a A e, ao mesmo tempo, B:

Operações entre eventos

Definição

Interseção de dois eventos

A interseção de dois eventos A e B, representada por $A \cap B$, é o conjunto de elementos que percentem a A e, ao mesmo tempo, B:

$$A \cap B = \{x : x \in A \quad e \quad x \in B\} \tag{4}$$

Dizemos ainda que A e B são conjuntos disjuntos se, e somente se, $A \cap B = \emptyset$.

Operações entre eventos

Definição

Interseção de dois eventos

A interseção de dois eventos A e B, representada por $A \cap B$, é o conjunto de elementos que percentem a A e, ao mesmo tempo, B:

$$A \cap B = \{x : x \in A \quad e \quad x \in B\} \tag{4}$$

Dizemos ainda que A e B são conjuntos disjuntos se, e somente se, $A \cap B = \emptyset$.

De maneira mais geral, seja $(A_n)_{n\in\mathbb{N}}$ uma sequência de conjuntos. $x\in\Omega$ é um elemento da interseção de $(A_n)_{n\in\mathbb{N}}$, denotada por $\cap_{n\in\mathbb{N}}A_n$, se e somente se para todo $n\in\mathbb{N}$, $x\in A_n$. Isto é,

Operações entre eventos

Definição

Interseção de dois eventos

A interseção de dois eventos A e B, representada por $A \cap B$, é o conjunto de elementos que percentem a A e, ao mesmo tempo, B:

$$A \cap B = \{x : x \in A \quad e \quad x \in B\} \tag{4}$$

Dizemos ainda que A e B são conjuntos disjuntos se, e somente se, $A \cap B = \emptyset$.

De maneira mais geral, seja $(A_n)_{n\in\mathbb{N}}$ uma sequência de conjuntos. $x\in\Omega$ é um elemento da interseção de $(A_n)_{n\in\mathbb{N}}$, denotada por $\cap_{n\in\mathbb{N}}A_n$, se e somente se para todo $n\in\mathbb{N}$, $x\in A_n$. Isto é,

$$\bigcap_{n\in\mathbb{N}}A_n=\{x\in\Omega: \mathbf{para\ todo\ }n\in\mathbb{N},x\in A_n\}$$

24/33

Complementar

Definição

Complementar de um evento

Seja A um conjunto. x é um elemento de A^c se e somente se $x \notin A$. Isto é, o complemento de A é definido formalmente como

$$A^c=\{x\in\Omega:x\notin A\}.$$

Complementar

Definição

Complementar de um evento

Seja A um conjunto. x é um elemento de A^c se e somente se $x \notin A$. Isto é, o complemento de A é definido formalmente como

$$A^c = \{x \in \Omega : x \notin A\}.$$

Exemplo

Complementar do espaço amostral

O complementar do espaço amostral (Ω) é o conjunto vazio, \emptyset , pois:

- ► Como o conjunto \emptyset não possui elementos, $\forall \omega \in \Omega$ temos que $\omega \notin \emptyset$;
- Uma vez que Ø não possui elementos, não há elemento de Ø que pertença a Ω (dizemos que isso ocorre por vacuidade).

Complementar

Definição

Complementar de um evento

Seja A um conjunto. x é um elemento de A^c se e somente se $x \notin A$. Isto é, o complemento de A é definido formalmente como

$$A^c = \{x \in \Omega : x \notin A\}.$$

Exemplo

Complementar do espaço amostral

O complementar do espaço amostral (Ω) é o conjunto vazio, \emptyset , pois:

- ► Como o conjunto \emptyset não possui elementos, $\forall \omega \in \Omega$ temos que $\omega \notin \emptyset$;
- Uma vez que Ø não possui elementos, não há elemento de Ø que pertença a Ω (dizemos que isso ocorre por vacuidade).

Atenção: Também por vacuidade temos que $\emptyset \subset \Omega$.

Álgebra e σ -álgebra

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

- ► Vamos considerar agora uma classe de eventos (ou subconjuntos) de Ω que iremos chamar de \mathscr{F} .
- \mathscr{F} será chamada de **álgebra de subconjuntos de** Ω se:
 - **1.** $\Omega \in \mathscr{F}$;

- ► Vamos considerar agora uma classe de eventos (ou subconjuntos) de Ω que iremos chamar de \mathscr{F} .
- F será chamada de álgebra de subconjuntos de Ω se:
 - **1.** $\Omega \in \mathscr{F}$;
 - **2.** Para qualquer $A \in \mathscr{F}$ temos $A^c \in \mathscr{F}$ (\mathscr{F} é fechada por complementação);

- ► Vamos considerar agora uma classe de eventos (ou subconjuntos) de Ω que iremos chamar de \mathscr{F} .
- F será chamada de álgebra de subconjuntos de Ω se:
 - **1.** $\Omega \in \mathscr{F}$;
 - **2.** Para qualquer $A \in \mathscr{F}$ temos $A^c \in \mathscr{F}$ (\mathscr{F} é fechada por complementação);
 - **3.** Para $A, B \in \mathcal{F}$, vale que $A \cup B \in \mathcal{F}$ (\mathcal{F} é fechada por uniões finitas dos seus elementos).

Álgebra e σ -álgebra

- ► Vamos considerar agora uma classe de eventos (ou subconjuntos) de Ω que iremos chamar de \mathscr{F} .
- F será chamada de álgebra de subconjuntos de Ω se:
 - **1.** $\Omega \in \mathscr{F}$;
 - **2.** Para qualquer $A \in \mathscr{F}$ temos $A^c \in \mathscr{F}$ (\mathscr{F} é fechada por complementação);
 - **3.** Para $A, B \in \mathcal{F}$, vale que $A \cup B \in \mathcal{F}$ (\mathcal{F} é fechada por uniões finitas dos seus elementos).

Observação: É imediato ver que se valem (1) e (2), então (3) equivale a $P(A \cap B) \in \mathcal{F}$.

Álgebra e σ -álgebra

 \blacktriangleright A σ -álgebra é apenas um pouco mais geral do que a álgebra pois ela é fechada para uniões infinitas dos seus elementos.

- ightharpoonup A σ -álgebra é apenas um pouco mais geral do que a álgebra pois ela é fechada para uniões infinitas dos seus elementos.
- \mathscr{F} será chamada de σ -álgebra das partes de Ω se:
 - $\bullet \Omega \in \mathscr{F}$;

- A σ-álgebra é apenas um pouco mais geral do que a álgebra pois ela é fechada para uniões infinitas dos seus elementos.
- \mathscr{F} será chamada de σ -álgebra das partes de Ω se:
 - \bullet $\Omega \in \mathscr{F}$;
 - ▶ Para qualquer $A \in \mathcal{F}$ temos $A^c \in \mathcal{F}$;
 - ▶ Para $A_1, A_2, ... \in \mathscr{F}$, vale que $\bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$.

Exercícios (yay)

Prove as seguintes propriedades:

a. Comutatividade
$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$
b. Associatividade $A \cup (B \cup C) = (A \cup B) \cup C$
 $A \cap (B \cap C) = (A \cap B) \cap C$
c. Leis distributivas $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
d. Leis de De Morgan $A \cup B \cap C \cap B \cap C \cap C \cap C \cap C$

Exercícios (yay)

Mostre que $A = (A \cap B) \cup (A \cap B^c)$.

Observação: Este exercício é útil para conseguirmos escrever um conjunto como a união de conjuntos disjuntos.

Exercícios (yay)

Seja $\Omega = \{a, b, c, d\}.$

Será que $\mathscr{F} = \{\emptyset, \{a\}, \{b, c\}, \Omega\}$ é uma σ -álgebra de Ω ?

Exercícios (yay)

Considere A e B dois subconjuntos de Ω . A *diferença simétrica* entre A e B é o conjunto de todos elementos que estão em A ou em B mas que não estão em ambos.

- ► Escreva a diferença simétrica formalmente utilizando as operações de união, intersecção e/ou complementar.
- ► Mostre que a diferença simétrica entre A e B é igual à diferença simétrica entre A^c e B^c.

Teorema (Leis de De Morgan)

Seja $(A_n)_{n\in\mathbb{N}}$ uma sequência de subconjuntos de Ω . Então, para todo $n\in\mathbb{N}$,

- $\qquad \qquad \bullet \ \left(\cup_{i=1}^n A_i \right)^c = \cap_{i=1}^n A_i^c$
- $\qquad \qquad \left(\bigcap_{i=1}^n A_i \right)^c = \bigcup_{i=1}^n A_i^c$

Além disso,

- $(\cup_{i \in \mathbb{N}} A_i)^c = \cap_{i \in \mathbb{N}} A_i^c$
- $(\cap_{i\in\mathbb{N}}A_i)^c = \cup_{i\in\mathbb{N}}A_i^c$

Teorema (Leis de De Morgan)

Seja $(A_n)_{n\in\mathbb{N}}$ uma sequência de subconjuntos de Ω . Então, para todo $n\in\mathbb{N}$.

- $(\bigcup_{i=1}^n A_i)^c = \bigcap_{i=1}^n A_i^c$

Além disso,

- $(\cup_{i \in \mathbb{N}} A_i)^c = \cap_{i \in \mathbb{N}} A_i^c$
- $(\cap_{i \in \mathbb{N}} A_i)^c = \bigcup_{i \in \mathbb{N}} A_i^c$

Definição (Partição)

Seja $(A_n)_{n\in\mathbb{N}}$ uma sequência de conjuntos. Dizemos que $(A_n)_{n\in\mathbb{N}}$ particiona Ω se:

- ▶ para todo $i, j \in \mathbb{N}$ tal que $i \neq j$, A_i e A_i são disjuntos.
- $ightharpoonup \cup_{n\in\mathbb{N}}A_n=\Omega.$

Referências I

Lima, E. L. (1982).

Curso de analise: volume 1, volume 1. Instituto de Matematica Pura e Aplicada.

Velleman, D. J. (2006).

How to prove it: A structured approach. Cambridge University Press.