Calculus I Lecture 25 Volumes of Solids of Revolution

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

Volumes

Volumes by Cylindrical Shells

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work.

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein.

Volumes 5/18

Volumes

Volumes of solids are found/defined via integration.

Volumes 6/18

• How do we find the volume of a solid *S*?

Volumes 6/18

- How do we find the volume of a solid S?
- Let P_x be the plane perpendicular to the x-axis and passing through the point x.

• The intersection of P_x with S is called a

- cross-section.
- Let A(x) be the area of this cross-section.

Volumes 6/18

Approx. volume of slab: $A(x^*)\Delta x$

Approx. volume of S:

$$V \approx \sum_{i=1}^n A(x_i^*) \Delta x$$

Exact volume of S:

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x$$

• How do we find the volume of a solid S?

- Let P_x be the plane perpendicular to the x-axis and passing through the point x.
- The intersection of P_x with S is called a cross-section.
- Let A(x) be the area of this cross-section.
- Consider the part of S between two planes P_{x_1} and P_{x_2} .
- Approximate this part of S:
- Pick a sample point x^* between x_1 and x_2 . Use a solid that has the same constant cross-sectional area $A(x^*)$ between x_1 and x_2 .
- Let Δx be the distance from x_1 to x_2 .

Volumes 7/18

Definition (Volume)

Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane P_x is a continuous function A(x), then the volume of S is

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_a^b A(x) dx$$

Volumes 8/18

Example

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

Volumes 8/18

Example

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is A(x) =

Volumes 8/18

Example

Find the volume of the solid obtained by rotating about the *x*-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

- The cross-sections of this solid are all circles.
- The circular cross-section through the point (x,0) has radius \sqrt{x} .
- The area of the cross-section is A(x) =
- The volume of a single approximating section is $A(x)\Delta x$.
- The x coords. of the solid are between 0 and 1, so its volume is

$$V = \int_0^1 A(x) dx = \int_0^1 \pi x \, dx$$
$$= \left[\pi \frac{x^2}{2} \right]_0^1 = \frac{\pi}{2} .$$

Volumes 9/18

Example (Typical Cross-Section is a Washer)

Find the volume of the solid obtained by rotating about the *x*-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1.

Volumes 9/18

Example (Typical Cross-Section is a Washer)

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. Cross-section: washer, center: (x, 0). Area: A(x)= Area outer disk – Area inner disk Inner disk radius: x, area: πx^2 . Outer disk radius: $x^2 + 1$, area: $\pi (x^2 + 1)^2$.

Volumes 9/18

Example (Typical Cross-Section is a Washer)

Find the volume of the solid obtained by rotating about the x-axis the region bounded by $y = x^2 + 1$, y = x, x = 0, and x = 1. Cross-section: washer, center: (x, 0). Area: A(x) = Area outer disk – Area inner disk Inner disk radius: x, area: πx^2 . Outer disk radius: $x^2 + 1$, area: $\pi(x^2 + 1)^2$. $V = \int_{0}^{1} A(x) dx = \int_{0}^{1} \left(\pi(x^{2} + 1)^{2} - \pi x^{2} \right) dx$ $=\pi \int_0^1 (x^4 + x^2 + 1) dx$ $=\pi \left[\frac{x^5}{5} + \frac{x^3}{3} + x \right]_0^1$ $=\pi \left(\frac{1}{5} + \frac{1}{3} + 1 \right) = \frac{23}{15}\pi$

Volumes 10/18

Example (Rotation About a Line Parallel to the *x*-axis)

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

Volumes 10/18

Example (Rotation About a Line Parallel to the *x*-axis)

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

Cross-section: a circle centered at (x, 1),

radius: $(-x^2 + 2x + 1) - 1$,

area: $A(x) = \pi ((-x^2 + 2x + 1) - 1)^2 = \pi (-x^2 + 2x)^2$.

Volumes 10/18

Example (Rotation About a Line Parallel to the *x*-axis)

Find the volume of the solid obtained by rotating about the line y = 1 the region bounded by $y = -x^2 + 2x + 1$ and y = 1.

Cross-section: a circle centered at (x, 1),

radius: $(-x^2 + 2x + 1) - 1$,

area:
$$A(x) = \pi ((-x^2 + 2x + 1) - 1)^2 = \pi (-x^2 + 2x)^2$$
.

$$V = \int_0^2 A(x) dx = \int_0^2 \pi \left(-x^2 + 2x \right)^2 dx$$

$$= \pi \int_0^2 \left(x^4 - 4x^3 + 4x^2 \right) dx$$

$$= \pi \left[\frac{x^5}{5} - x^4 + \frac{4x^3}{3} \right]_0^2$$

$$= \pi \left(\frac{2^5}{5} - 2^4 + 4 \cdot \frac{2^3}{3} \right)$$

$$= \pi \left(\frac{32}{5} - 16 + \frac{32}{3} \right) = \frac{16}{15} \pi.$$

- ... the *x*-axis.
- Approximate the volume using circular cylinders with radius 2x² - x³ and height Δx.
- $V = \int_0^2 \pi (2x^2 x^3)^2 dx$.
- We understand the problem.

- ... the y-axis.
- Approx. with washers: need inner rad. x_i & outer rad. x_o.

- ... the *x*-axis.
- Approximate the volume using circular cylinders with radius 2x² - x³ and height Δx.
- $V = \int_0^2 \pi (2x^2 x^3)^2 dx$.
- We understand the problem.

- ... the y-axis.
- Approx. with washers: need inner rad. x_i & outer rad. x_o.

- ... the *x*-axis.
- Approximate the volume using circular cylinders with radius 2x² - x³ and height Δx.
- $V = \int_0^2 \pi (2x^2 x^3)^2 dx$.
- We understand the problem.

- ... the y-axis.
- Approx. with washers: need inner rad. x_i & outer rad. x_o.

- ... the x-axis.
- Approximate the volume using circular cylinders with radius 2x² – x³ and height Δx.
- $V = \int_0^2 \pi (2x^2 x^3)^2 dx$.
- We understand the problem.

- ... the y-axis.
- Approx. with washers: need inner rad. x_i & outer rad. x_o.
- x_i and x_o: solutions to cubic:
 -x³ + 2x² y = 0. Solving for x requires lots of algebra.
- We show a simpler technique.

- Consider the solid obtained by rotating around the *y*-axis the region bounded above by $y = 2x^2 x^3$ and below by the *x*-axis.
- Approximate this solid by nested cylindrical shells.
- Cylindrical shells are solids obtained by taking a cylinder and removing from its center another cylinder of equal height but smaller radius.

- Consider a cylindrical shell with:
- outer radius r₂,
- inner radius r₁,
- height h.
- $V_{\text{shell}} = V_{\text{outer cyl.}} V_{\text{inner cyl.}} = \pi r_2^2 h \pi r_1^2 h = \pi (r_2 r_1)(r_2 + r_1)h.$
- Let $\Delta r = r_2 r_1$.
- Let $r = \frac{r_2 + r_1}{2}$.
- Then $V_{\text{shell}} = 2\pi r h \Delta r$.

Consider a solid obtained by rotating the region under f(x) around the y axis.

Consider a solid obtained by rotating the region under f(x) around the y axis. Approximate the volume by cylindrical shells. Select the height of an individual shell to be f(r) (r=average outer & inner radius). $V_{\text{shell}} = 2\pi r h \Delta r = 2\pi r f(r) \Delta r$.

Suppose there are n cyclindrical shells and let x_1, \ldots, x_n be the averages of outer and inner radii. The shell volume sum is:

$$V_{\text{approx}} = \sum_{i=1}^{n} 2\pi x_i f(x_i) \Delta x.$$

Take the limit as the number of shells goes to ∞ to get

$$V = \lim_{n \to \infty} V_{\text{approx}} = \lim_{n \to \infty} \sum_{i=1}^{n} 2\pi x_i f(x_i) \Delta x = \int_a^b 2\pi x f(x) dx.$$

The endpoints of integration are the endpoints of the rotated region.

Definition (Volume by Cylindrical Shells)

The volume of the solid obtained by rotating around the *y*-axis the region under the curve y = f(x) from *a* to *b* is

$$V = \int_a^b 2\pi x f(x) dx.$$

Example

Find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = 2x^2 - x^3$ and the *x*-axis.

Example

Find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = 2x^2 - x^3$ and the *x*-axis.

Example

Find the volume of the solid obtained by rotating about the *y*-axis the region bounded by $y = 2x^2 - x^3$ and the *x*-axis.

Cylindrical shell: outer radius x; height: $2x^2 - x^3$; circumference: $2\pi x$; infinitesimal volume: $2\pi x(2x^2 - x^3)dx$.

$$V = \int_0^2 (2\pi x)(2x^2 - x^3) dx = 2\pi \int_0^2 (2x^3 - x^4) dx$$
$$= 2\pi \left[\frac{x^4}{2} - \frac{x^5}{5} \right]_0^2 = 2\pi \left(\frac{2^4}{2} - \frac{2^5}{5} \right) = 2\pi \left(8 - \frac{32}{5} \right) = \frac{16}{5}\pi.$$

Example (Rotated About a Line Other Than the *y*-axis)

Find the volume obtained by rotating about the line x = 1 the region to the right of x = 1 bounded by $y = x^3 - 3x^2 + 2x$ and the x-axis.

Example (Rotated About a Line Other Than the *y*-axis)

Find the volume obtained by rotating about the line x = 1 the region to the right of x = 1 bounded by $y = x^3 - 3x^2 + 2x$ and the x-axis.

Example (Rotated About a Line Other Than the *y*-axis)

Find the volume obtained by rotating about the line x = 1 the region to the right of x = 1 bounded by $y = x^3 - 3x^2 + 2x$ and the x-axis. Cylindrical shell: outer radius x - 1; height:

$$|x^3 - 3x^2 + 2x| = -(x^3 - 3x^2 + 2x)$$
; circumference: $2\pi(x - 1)$; infinitesimal volume: $2\pi(x - 1)(-x^3 + 3x^2 - 2x)dx$.

$$V = \int_{1}^{2} 2\pi (x - 1)(-x^{3} + 3x^{2} - 2x) dx$$

$$= 2\pi \int_{1}^{2} (-x^{4} + 4x^{3} - 5x^{2} + 2x) dx$$

$$= 2\pi \left[-\frac{x^{5}}{5} + x^{4} - \frac{5x^{3}}{3} + x^{2} \right]_{1}^{2}$$

$$= 2\pi \left(\left(-\frac{2^{5}}{5} + 2^{4} - \frac{5}{3} \cdot 2^{3} + 2^{2} \right) - \left(-\frac{1^{5}}{5} + 1^{4} - \frac{5}{3} \cdot 1^{3} + 1^{2} \right) \right) = \frac{4}{15}\pi.$$

	Rotate about	
	a horizontal line	a vertical line
y is a	Cross-sections	Cylindrical shells
function of x	$\int \cdot dx$	$\int \cdot dx$
x is a	Cylindrical shells	Cross-sections
function of y	$\int \cdot dy$	$\int \cdot dy$

- $\int dx$ means integrate with respect to x.
- $\int dy$ means integrate with respect to y.
- Some equations express y as a function of x and x as a function of y. In such cases, you may use either method.