Fundamentals of Pure Mathematics 2015-16 Analysis Problems for weeks 1-2.

Suggested problems for the Analysis workshop in week 2: 12, 13, 14. If time permits, any of the following: 15, 16, 18, 19.

Mathematical Logic

- 1. Decide whether the following statements are true or false. Prove the true ones and give counterexamples for the false ones. Here *x* denotes a real number.
 - (a) $x > 1 \Rightarrow x^2 > 1$;
 - (b) $x^2 > 1 \Rightarrow x > 1$;
 - (c) $x^2 < 1 \Rightarrow x < 1$;
 - (d) $x < 1 \Rightarrow x^2 < 1$.

Solution:

- (a) True. If x > 1 then $x^2 1 = (x+1)(x-1)$ is the product of two positive reals, therefore it is positive.
- (b) False. Counterexample: x = -2.
- (c) True. If $x^2 \le 1$ then $\sqrt{x^2} \le 1$, i.e. $|x| \le 1$, therefore $x \le 1$.
- (d) False. Counterexample: x = -2.
- 2. Let *P* and *Q* be mathematical statements (e.g. x > 1). The converse of the statement $P \Rightarrow Q$ is the statement $Q \Rightarrow P$. The contrapositive of $P \Rightarrow Q$ is $(not \ Q) \Rightarrow (not \ P)$. If an implication is true, is its converse necessarily true? What about its contrapositive?

Solution: If an implication is true, its converse is not necessarily true. See for example (a) and (b) in Problem 1 above.

The contrapositive of an implication is equivalent to the implication itself; they are both true or both false (Liebeck, Chapter 1).

3. Decide whether each of the following statements is True or False.

4 is even \Rightarrow 7 is prime;

4 is even \Rightarrow 6 is prime;

4 is odd \Rightarrow 7 is prime;

4 is odd \Rightarrow 6 is prime.

Solution:

The truth table for \Rightarrow is:

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Therefore, the statement

4 is even \Rightarrow 6 is prime

is False, the rest of them are True.

- 4. Decide whether each of the following statements is True or False.
 - (i) For all real numbers x, there exists a real number y such that x + y > 0.
 - (ii) There exists a real number x such that for all real numbers y, x + y > 0.

Solution:

- (i) True. Given any real number x, set y = -x + 1 to find x + y = 1 > 0.
- (ii) False. We argue by contradiction. Suppose the statement is true, i.e. suppose that there is an $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}$ we have x + y > 0. Set y = -x 1. Then x + y = -1 < 0; contradiction.
- 5. Write down the negations of the statements in Problem 4.

Solution: The negation of a statement of the form

$$\forall x \ p(x)$$

is

$$\exists x \ \overline{p(x)},$$

where $\overline{p(x)}$ is denotes *not* p(x), the negation of p(x).

For example, the negation of the statement $\forall x \, x^2 > 1$ is $\exists x \, x^2 \leq 1$.

The negation of a statement of the form

$$\exists x \ p(x)$$

is

$$\forall x \ \overline{p(x)}.$$

For example, the negation of the statement $\exists x \ x > 0$ is $\forall x \ x \le 0$.

Combining these two cases we see that the negation of a statement of the form

$$\forall x \exists y \ p(x,y)$$

is

$$\exists x \ \overline{\exists y \ p(x,y)}$$

which is the same as

$$\exists x \ \forall y \ \overline{p(x,y)}.$$

Similarly, the negation of a statement of the form

$$\exists x \ \forall y \ p(x,y)$$

is

$$\forall x \ \overline{\forall y \ p(x,y)}$$

which is the same as

$$\forall x \exists y \ \overline{p(x,y)}.$$

The negation of statement (i) is: there exists a real number x such that for all real numbers y we have $x + y \le 0$.

The negation of statement (ii) is: for all real numbers x there exists a real number y such that $x + y \le 0$.

Real Numbers (Wade, Chapter 1)

6. (Triangle Inequalities) Prove that for all real numbers a, b we have

$$||a| - |b|| \le |a - b| \le |a| + |b|$$
 (1)

and

$$||a| - |b|| \le |a + b| \le |a| + |b|.$$
 (2)

Solution: Recall first that for all real numbers x we have $x \le |x|$. We first prove

$$|a-b| \le |a| + |b|. \tag{3}$$

If $a \ge b$ then $|a-b| = a-b = a+(-b) \le |a|+|-b| = |a|+|b|$. The proof in the case $a \le b$ is similar (or simply observe that (3) is symmetric with respect to a and b).

Next we prove

$$||a| - |b|| \le |a - b|. \tag{4}$$

This follows easily from (3). Indeed, if $|a| \ge |b|$ then (4) is the same as

$$|a| - |b| \le |a - b|,$$

which is the same as

$$|a| \le |b| + |a - b|.$$

To prove the last inequality simply write a as (a-b)+b and apply (3):

$$|a| = |(a-b) + b| \le |a-b| + |b|.$$

If $|b| \le |a|$ the proof is similar (or just change the roles of a and b). This completes the proof of (1). Changing b to -b in (1) gives (2).

7. ([Wade], Exercise 1.2.3) For $x \in \mathbb{R}$ we define x^+ and x^- as follows:

$$x^{+} = \begin{cases} x, & \text{if } x \ge 0 \\ 0, & \text{if } x < 0 \end{cases}, \ x^{-} = \begin{cases} 0, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}.$$

 x^+ and x^- are known as the positive and negative parts of x respectively. Prove that:

(a) $x^+ \ge 0$ and $x^- \ge 0$ (NB: both the positive part and the negative part are ≥ 0),

- (b) $x = x^+ x^-$ (as a consequence, every real number can be written as the difference of two non-negative real numbers),
- (c) $|x| = x^+ + x^-$.
- (d) $x^+ = \frac{|x| + x}{2}$ and $x^- = \frac{|x| x}{2}$.

Solution:

- (a) If $x \ge 0$ then $x^+ = x \ge 0$ and $x^- = 0 \ge 0$. If x < 0 then $x^+ = 0 \ge 0$ and $x^- = -x > 0$. Therefore in all cases both x^+ and x^- are $x^+ \ge 0$.
- (b) If $x \ge 0$ then $x^+ x^- = x 0 = x$. If x < 0 then $x^+ x^- = 0 (-x) = x$.
- (c) If $x \ge 0$ then $x^+ + x^- = x + 0 = x = |x|$. If x < 0 then $x^+ + x^- = 0 + (-x) = -x = |x|$.
- (d) We have shown above that $|x| = x^+ + x^-$ and $x = x^+ x^-$. Adding them together gives $|x| + x = 2x^+$, therefore $x^+ = \frac{|x| + x}{2}$. Subtracting them gives $|x| x = 2x^-$, therefore $x^- = \frac{|x| x}{2}$.
- 8. (Bernoulli's inequality) Let $a \ge 0$. Prove that for all $n \in \mathbb{N}$ we have

$$(1+a)^n > 1 + na. \tag{5}$$

(Hint 1: Induction. Hint 2: Binomial Theorem.)

Solution 1. We use induction on n. For n = 1 inequality (5) is trivially true. If (5) is true for some $n \in \mathbb{N}$ then it's true for n + 1 as well because

$$(1+a)^{n+1} = (1+a)^n (1+a) \ge (1+na)(1+a) = 1+a+na+na^2 \ge 1+(n+1)a.$$

Solution 2. We use the binomial theorem.

$$(1+a)^n = 1 + na + \frac{n(n-1)}{2}a^2 + \dots + na^{n-1} + a^n \ge 1 + na.$$

Things to think about:

True or False? $3^n > n^3$ eventually for all $n \in \mathbb{N}$. (Hint: 3 = 1 + 2).

9. Find all real numbers x such that |x-1| < |x+1|.

Hint: Inequalities like the one above can be solved in various ways (e.g squaring both sides) and we have seen quite a few of them in PPS. There is a very easy solution

using distances. The distance on the real line between two real numbers a and b is |a-b|. The inequality |x-1| < |x+1| says that the distance of x from 1 is smaller than the distance of x from -1 (draw a picture). In other words, x is closer to 1 than to -1. Therefore, ...

Solution: The inequality |x-1| < |x+1| says that the distance of x from 1 is smaller than the distance of x from -1. In other words, x is closer to 1 than to -1. This is true if and only if x > 0.

Things to thing about:

- 1. Which complex numbers z satisfy |z-1| < |z+1|?
- 2. Let a,b be two real numbers with $a \neq b$. Which real numbers x satisfy |x-a| < |x-b|?
- 10. Let $a, b \in \mathbb{R}$, a < b. Let $c = \frac{a+b}{2}$ and $R = \frac{b-a}{2}$. We call c the *center* of the interval (a,b) and R the *radius* of (a,b).
 - (a) Prove that

$$(a,b) = (c-R,c+R) .$$

(b) Prove that a real number x belongs to (a,b) if and only if its distance from the center c is strictly smaller than the radius R, i.e.

$$x \in (a,b) \iff |x-c| < R$$
.

Solution: We have $c - R = \frac{a+b}{2} - \frac{b-a}{2} = a$ and $c + R = \frac{a+b}{2} + \frac{b-a}{2} = b$, therefore (a,b) = (c-R,c+R). For all real numbers x we have

$$\begin{aligned} x \in (a,b) &\iff x \in (c-R,c+R) &\iff c-R < x < c+R \\ &\iff -R < x-c < R &\iff |x-c| < R. \end{aligned}$$

Things to think about:

True or False? $x \notin (a,b)$ iff the distance of x from the center of the interval is > the radius.

11. Let $a, b \in \mathbb{R}$ with a < b. Is there a smallest open interval that contains the closed interval [a, b]? Prove your claim.

Solution: No there isn't. If (c,d) is an open interval that contains the closed interval [a,b], then $a,b \in (c,d)$ (draw a picture), therefore c < a and b < d. If we set $c' = \frac{c+a}{2}$ and $d' = \frac{b+d}{2}$ then $(c,d) \supseteq (c',d') \supseteq [a,b]$, i.e. (c',d') is a strictly smaller open interval than the one we started with and it still contains the closed interval [a,b].

12. Fill in the following table.

(You are not asked for proofs in this problem. Drawing pictures helps.)

A	max A	$\sup A$	$\min A$	$\inf A$
(-1,1)	doesn't exist	1	doesn't exist	-1
[-1, 1]				
$[1,\sqrt{2})$				
$\{x \in (1, \sqrt{2}] : x \text{ is irrational}\}$				
$\left(-\sqrt{7},\sqrt{7}\right)\cap\mathbb{Q}$				
$(0,1) \cup (2,3]$				

Solution:

A	max A	$\sup A$	$\min A$	$\inf A$
(-1,1)	does not exist	1	does not exist	-1
[-1, 1]	1	1	-1	-1
$[1,\sqrt{2})$	does not exist	$\sqrt{2}$	1	1
$\{x \in (1, \sqrt{2}] : x \text{ is irrational}\}$	$\sqrt{2}$	$\sqrt{2}$	does not exist	1
$\left(-\sqrt{7},\sqrt{7}\right)\cap\mathbb{Q}$	does not exist	$\sqrt{7}$	does not exist	$-\sqrt{7}$
$(0,1) \cup (2,3]$	3	3	does not exist	0

- 13. In each of the following cases give a proof if the statement is true or a counterexample if the statement is false.
 - (a) If *A* is a non-empty bounded subset of \mathbb{R} and *x* is a real number between $\inf A$ and $\sup A$ then $x \in A$.
 - (b) If A and B are bounded non-empty subsets of \mathbb{R} such that $\inf A = \inf B$ and $\sup A = \sup B$ then A = B.

Solution:

- (a) False. Counterexample: Let $A = \{1,3\}$, x = 2. Then $\inf A = 1$, $\sup A = 3$, x is between $\inf A$ and $\sup A$ but $x \notin A$.
- (b) False. Counterexample: Let $A = \{1,2,3\}$, $B = \{1,3\}$. Then $\inf A = \inf B = 1$, $\sup A = \sup B = 3$ but $A \neq B$.

Things to think about:

The examples in this problem show that a set does not always consist of everything between its infimum and supremum. Can you think of any examples of sets A that do contain all reals between $\inf A$ and $\sup A$?

14. Let $A = \left\{ a \in \mathbb{R} : a^2 > 5 \text{ and } a \text{ is a positive irrational} \right\}$. Prove that A is non-empty, bounded below, and that $\inf A = \sqrt{5}$.

(This problem is on Assignment 2. The solution will be posted here later.)

15. Let

$$A = \left\{ \frac{n^2}{n^2 + 1} : n \in \mathbb{N} \right\} = \left\{ \frac{1}{2}, \frac{4}{5}, \frac{9}{10}, \dots \right\}.$$

Prove that $\sup A = 1$.

Solution 1 Every element of A is smaller than 1, therefore 1 is an upper bound of A.

It remains to show that 1 is the least (i.e. smallest) upper bound of A. It is enough to show that any real number M < 1 is not an upper bound of A.

Fix M < 1. To prove that M is not an upper bound of A it is enough to find an element of A larger than M. If $M \le 0$ then every element of A is larger than M. Assume M > 0. (1)

By the Archimedean property of the reals there exists a natural number n such that $n > \sqrt{\frac{M}{1-M}}$. Squaring both sides and rearranging we find $\frac{n^2}{n^2+1} > M$. The number $\frac{n^2}{n^2+1}$ is an element of A larger than M, as required.

Solution 2 Every element of *A* is smaller than 1, therefore 1 is an upper bound of *A*.

Since $\sup A$ is the smallest upper bound we have $\sup A \le 1$. We wish to show that $\sup A = 1$.

We argue by contradiction. Suppose that $\sup A < 1$. Since $\frac{1}{2} \in A$ we have $\frac{1}{2} \le \sup A$, therefore $\sup A > 0$.

(reminder: do not hand in rough work).

Rough work: The elements of A are of the form $\frac{n^2}{n^2+1}$, so we need an n such that $M<\frac{n^2}{n^2+1}$. Cross-multiplying and rearranging we find $M< n^2(1-M)$, and dividing by the positive number 1-M we find $n^2>\frac{M}{1-M}$, which is the same as $n>\sqrt{\frac{M}{1-M}}$. Now back to the formal proof.

By the Archimedean property of the reals there exists a natural number n such that $n > \sqrt{\frac{\sup A}{1 - \sup A}}$ (the quantity under the root is positive thanks to $0 < \sup A < 1$). Squaring both sides and rearranging we find $\frac{n^2}{n^2 + 1} > \sup A$. We have discovered an element of A larger than $\sup A$; contradiction.

16. ([Wade], Exercise 1.3.4) Let A be a non-empty bounded below subset of \mathbb{R} . Prove that the infimum of A is unique.

Solution: We argue by contradiction. Suppose that A has more than one infima. Take two of them and call them m and m'. Since m is a lower bound and m' is a greatest lower bound we have $m \le m'$. Since m' is a lower bound and m is a greatest lower bound we have $m' \le m$. Therefore m = m'.

17. ([Wade], Exercise 1.3.8) Let A, B be two non-empty bounded above subsets of \mathbb{R} . Show that $A \cup B$ is non-empty and bounded above and that

$$\sup(A \cup B) = \max\{\sup A, \sup B\}. \tag{6}$$

Solution:

Since *A* is non-empty there exists an element $a_0 \in A$. Then $a_0 \in A \cup B$, therefore $A \cup B$ is a non-empty set.

Next we show that $A \cup B$ is bounded above. Since the sets A and B are bounded above there exist real numbers M and M' such that for all $a \in A$ we have $a \le M$, and for all $b \in B$ we have $b \le M'$. If x is any element of $A \cup B$ then $x \in A$ or $x \in B$. If $x \in A$ then $x \le M$. If $x \in B$ then $x \le M'$. In either case we can say that $x \le \max\{M, M'\}$. We have shown that $A \cup B$ is bounded above and that $\max\{M, M'\}$ is an upper bound.

It remains to prove (6). First, we apply the result in the last paragraph with two specific upper bounds M and M', namely $M = \sup A$ and $M' = \sup B$. We have shown above that $\max\{M, M'\}$ is an upper bound of $A \cup B$, and since the smallest upper bound of $A \cup B$ is $\sup(A \cup B)$, we have

$$\sup(A \cup B) \le \max\{M, M'\} = \max\{\sup A, \sup B\}.$$

Next, $A \subseteq A \cup B$, therefore (monotone property of the supremum, [Wade], Theorem 1.21)

$$\sup A \leq \sup (A \cup B)$$
.

Similarly,

$$\sup B \leq \sup (A \cup B)$$
.

Now $\max\{\sup A, \sup B\}$ is one of $\sup A$ and $\sup B$, therefore

$$\max\{\sup A, \sup B\} \le \sup(A \cup B)$$
.

This completes the proof of (6).

18. (Approximation property for infima, [Wade], Exercise 1.3.6a) Let A be a non-empty bounded below subset of \mathbb{R} . Prove that for every $\varepsilon > 0$ there exists an $a \in A$ such that $\inf A < a < \inf A + \varepsilon$.

Remark: $\inf A + \varepsilon$ is just an Analyst's way of denoting an arbitrary point on the real line to the right of $\inf A$. The use of the Greek letter ε indicates that only small values of it are of any real interest, but observe that we are not actually assuming that ε is small in any way. The approximation property says: between $\inf A$ and any point to its right we can always find an element of A.

Solution 1 Among all lower bounds of A, inf A is the largest. The number $\inf A + \varepsilon$ is larger than $\inf A$ therefore it is not a lower bound of A, therefore there exists $a \in A$ such that $a < \inf A + \varepsilon$. On the other hand, $\inf A \le a$ simply because $\inf A$ is a lower bound of A and a is an element of A.

Solution 2 We wish to show there is an element of A in the interval $[\inf A, \inf A + \varepsilon)$. We argue by contradiction. Suppose that there are no elements of A in $[\inf A, \inf A + \varepsilon)$. There are no elements of A in the $(-\infty, \inf A)$ either, because $\inf A$ is a lower bound of A. It follows that all elements of A are in $[\inf A + \varepsilon, +\infty)$, which implies that $\inf A + \varepsilon$ is a lower bound of A. We have discovered a lower bound of A larger than its infimum; contradiction.

- 19. Let *A* and *B* be non-empty subsets of \mathbb{R} such that for every $a \in A$ and $b \in B$ we have a < b.
 - (a) Show that $\sup A \leq \inf B$.
 - (b) Give an example with $\sup A < \inf B$ and an example with $\sup A = \inf B$.
 - (c) If, moreover, for every $\varepsilon > 0$ there exist $a \in A$ and $b \in B$ such that $b a < \varepsilon$, then $\sup A = \inf B$.

(This Problem is related to *Dedekind cuts*. You can learn more about this topic in [Hardy]).

Solution:

(a) Before we start with the proof, a comment on Notation:

We are going to need the approximation property for suprema and infima. Wade uses the following notation:

- Let A be non-empty bounded above. For every $\varepsilon > 0$ there is an $a \in A$ such that $\sup A - \varepsilon < a \le \sup A$.

$$\begin{array}{c|c}
 & a \\
\hline
 & sup A - \varepsilon & sup A
\end{array}$$

- Let A be non-empty bounded below. For every $\varepsilon > 0$ there is an $a \in A$ such that $\inf A \leq a < \inf A + \varepsilon$.

$$\frac{b}{\inf B \quad \inf B + \varepsilon}$$

We'll use Wade's notation in the first proof below.

We observed in class that these can be rephrased as follows:

- Let A be non-empty bounded above. For every $x < \sup A$ there is an $a \in A$ such that $x < a \le \sup A$.

- Let $A \subseteq \mathbb{R}$ be non-empty bounded below. For every $x > \inf A$ there is an $a \in A$ such that $\inf A \le a < x$.

$$b$$
inf B
 X

We'll use this notation in the second proof below. It results in a much shorter argument.

<u>Proof 1:</u> We argue by contradiction. Suppose $\inf B < \sup A$. Pick an ε such that

$$0 < \varepsilon < \frac{1}{2} \left(\sup A - \inf B \right), \tag{7}$$

for example $\varepsilon = \frac{1}{4} (\sup A - \inf B)$. Then

$$\inf B + \varepsilon < \sup A - \varepsilon.$$
 (8)

By the approximation property of suprema there exists an $a \in A$ such that

$$\sup A - \varepsilon < a \le \sup A. \tag{9}$$

By the approximation property of infima there exists $b \in B$ such that

$$\inf B \le b < \inf B + \varepsilon. \tag{10}$$

It follows that b < a; contradiction.

<u>Proof 2:</u> We argue by contradiction. Suppose $\inf B < \sup A$. Fix any number x_0 with $\inf B < x_0 < \sup A$. By the approximation property of infima the interval $(\inf B, x_0)$ contains at least one element b of B. By the approximation property of suprema the interval $(x_0, \sup A)$ contains at least one element a of A. But now $b < x_0$ and $x_0 < a$, therefore b < a contradicting one of our hypothesis.

$$\inf B$$
 b x_0 a $\sup A$

Proof 3: (This proof uses material from Chapter 2)

There exists a sequence $(a_n)_{n\in\mathbb{N}}$ of elements of A such that $a_n \to \sup A$. There exists a sequence $(b_n)_{n\in\mathbb{N}}$ of elements of B such that $b_n \to \inf B$. By hypothesis, $a_n \le b_n$ for all n. Therefore, $\lim_{n\to\infty} a_n \le \lim_{n\to\infty} b_n$, i.e. $\sup A \le \inf B$.

- (b) Let $A = \{1,2,3\}$ and $B = \{4,5,6\}$. Then every element of A is smaller than every element of B and $\sup A = 3 < 4 = \inf B$.
 - Let A = (0,1) and B = (1,2). Then every element of A is smaller than every element of B and $\sup A = 1 = \inf B$.
- (c) We argue by contradiction. Suppose that $\sup A < \inf B$. Let $\varepsilon = \inf B \sup A$. Then $\varepsilon > 0$ but there are no $a \in A$, $b \in B$ with $b a < \varepsilon$. This is because all $a \in A$ are $\le \sup A$ and all $b \in B$ are $\ge \inf B$, therefore $b a \ge \inf B \sup A = \varepsilon$.

20. ([Wade], Exercise 1.6.6a) Suppose that $n \in \mathbb{N}$ and $\phi : \{1, 2, ..., n\} \to \{1, 2, ..., n\}$. Prove that if ϕ is 1-1 then ϕ is onto.

Solution: We prove the claim by induction on n. If n = 1 then $\phi(1) = 1$ and we are done as such ϕ is onto.

Assume that we have established the result for n = k. We want to show that it holds for n = k+1. Assume therefore that $\phi: \{1,2,\ldots,k,k+1\} \to \{1,2,\ldots,k,k+1\}$ is 1-1. We shall consider 2 cases. If $\phi(k+1) = k+1$ it follows that $\phi: \{1,2,\ldots,k\} \to \{1,2,\ldots,k\}$ and is 1-1 as the original map was. Now we can apply the induction hypothesis and get that $\phi: \{1,2,\ldots,k\} \to \{1,2,\ldots,k\}$ is onto and hence $\phi: \{1,2,\ldots,k,k+1\} \to \{1,2,\ldots,k,k+1\}$ is also onto as $\phi(k+1) = k+1$.

The second possibility is that $\phi(k+1) = j < k+1$. Consider then a new map $\psi: \{1, 2, ..., k\} \rightarrow \{1, 2, ..., k\}$ defined as follows:

$$\psi(i) = \phi(i)$$
, provided $\phi(i) < j$, $\psi(i) = \phi(i) - 1$, provided $\phi(i) > j$.

Clearly, ψ must be 1-1 since ϕ was. Also

$$\psi: \{1, 2, \dots, k\} \to \{1, 2, \dots, k\}$$

and hence by the induction assumption ψ is onto. It follows that

$$\phi: \{1, 2, \dots, k\} \to \{1, 2, \dots, j-1, j+1, \dots, k, k+1\}$$

is also onto. As $\phi(k+1) = j$ it must follows that the original map $\phi: \{1, 2, ..., k, k+1\} \rightarrow \{1, 2, ..., k, k+1\}$ is also onto.

21. ([Wade], Exercise 1.6.7) A number $x_0 \in \mathbb{R}$ is called *algebraic* if it is a root of a polynomial

$$P(x) = a_n x^n + \dots + a_1 x + a_0$$
, where $a_i \in \mathbb{Z}$ and $a_n \neq 0$.

A number $x_0 \in \mathbb{R}$ is called *transcendental* if x_0 is not algebraic.

- (a) Prove that if $n \in \mathbb{N}$ and $q \in Q$ then n^q is algebraic.
- (b) Prove that for each $n \in \mathbb{N}$ the collection of algebraic numbers of degree n is countable.
- (c) Prove that the collection of transcendental numbers is uncountable.

Solution:

(a) Let q = a/b and $a, b \in \mathbb{Z}$, b > 0. If a > 0 then the equation

$$x^b - n^a = 0$$

has one of the roots n^q and hence this number is algebraic. If a < 0 the the equation

$$n^{-a}x^b - 1 = 0$$

works.

- (b) Each polynomial $P(x) = a_n x^n + \dots + a_1 x + a_0$ has at most n real roots. The set of all (n+1)-tuples $(a_n, a_{n-1}, \dots, a_1, a_0)$, where all a_i are integers, is countable as it is a cartesian product of countable sets. Hence there are countably many different polynomials P(x) of degree n with integer coefficients and each has at most n real roots. From this it follows that the set of their roots is also countable.
- (c) If the set of transcendental numbers were countable then \mathbb{R} would also be countable as a union of two countable sets is also countable. It follows that the set of transcendental numbers must be uncountable.

References

[Hardy] G. H. Hardy, A course of Pure Mathematics.

[Wade] William R. Wade, Introduction to Analysis, 4th ed., Pearson New International Edition.