Quiz 2: Differentiation

Question 1 1 / 1 pts

Suppose $y=tanh(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$, where $z=2x_1-3x_2,\ x_1=t^2,\ x_2=2t$. Use the chain rule to determine which of the following is $rac{d\ y}{d\ t}$:

 $A: -4y^2$

B: $(1-y^2)(4t-6)$

C: $-4(1-y^2)$

D: $(4t-3)(1-y^2)$

0 A

B

0 C

0 D

$$y=tanh(z)$$
 , $y^{'}=1-y^{2}$ $rac{dy}{dt}=rac{dy}{dz}rac{dz}{dx}=(1-y^{2})(4t-6)$

Let $\sigma(z) = \frac{1}{1 + e^{-z}}, \ \sigma(z) = 0.6., \ ext{what is the derivative } \sigma'(z)$?

A: 0.24

B: -0.24

C: 0.6

D: 0.16

A

○ B

0 C

0 D

$$\sigma(z)=rac{1}{1+e^{-z}}$$
 , $\sigma^{'}(z)=\sigma(z)(1-\sigma(z))=0.6*(1-0.6)=0.24$

Question 3

1 / 1 pts

Let $C=(\sigma(z)-y)^2,\ \sigma(z)=\frac{1}{1+e^{-z}},\ z=w_1x_1-w_2x_2+b.$ At some point of your model training, you have $\ \sigma(z)=0.8,\ y=1,\ x_1=-2,\ x_2=1.$ What is the gradient of $\frac{\partial C}{\partial w_2}$?

0.32

0.064

0.16

0.128

Question 4

1 / 1 pts

Let $C=(\sigma(z)-y)^2,\ \sigma(z)=\frac{1}{1+e^{-z}},\ z=w_1x_1-w_2x_2+b.$ At some point of your model training, you have $\ \sigma(z)=0.8,\ y=1,\ x_1=-2,\ x_2=1.$ We would like to minimize C by adjusting w_1 and w_2 . Which of the following is correct?

A: w_1 should be increased

B: w_2 should be increased

C: w_1 should be decreased

D: w_2 should be decreased

A

В

✓ C

✓ D

Like Q3,

$$rac{\partial C}{\partial w_2}=0.064$$
 , and $rac{\partial C}{\partial w_1}=0.128$

And the method we update w is:

$$w = w - \alpha \frac{\partial C}{\partial w}$$

So: both w_1 and w_2 should be decreased.

Let $L=-[y*\ln\hat{y}+(1-y)*ln(1-\hat{y})], \hat{y}=\sigma(z)=rac{1}{1+e^{-z}}$, what is $rac{dL}{dz}$?

A:
$$-\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}}$$

B:
$$-\frac{y \, \sigma'(z)}{\hat{y}} + \frac{(1-y) \, \sigma'(z)}{1-\hat{y}}$$

C:
$$-y\left(1-\sigma(z)\right)+\left(1-y\right)\sigma(z)$$

D:
$$\hat{y}-y$$

□ A

✓ B

✓ C

✓ D

$$rac{dL}{dz} = -(rac{y}{\hat{y}} - rac{1-y}{1-\hat{y}})(\hat{y}(1-\hat{y}))$$

which is equal to B.

$$= -y(1-\hat{y}) + \hat{y}(1-y)$$

which is equal to C.

$$=\hat{y}-y$$

which is equal to D.

$$f=(y-z)^2, z=2x_1+3x_2^2+1, y=5, x_1=-2, x_2=1.~[rac{\partial f}{\partial y},rac{\partial f}{\partial z},rac{\partial f}{\partial x_1},rac{\partial f}{\partial x_2}]=?$$

A

○ B

0 C

0 D

$$z = 2x_1 + 3x_2^2 + 1 = 0$$

$$rac{\partial f}{\partial y}=2(y-z)=10$$

$$\frac{\partial f}{\partial z} = 2(z - y) = -10$$

$$\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x_1} = -10 * 2 = -20$$

$$\frac{\partial f}{\partial x_2} = \frac{\partial f}{\partial z} \frac{\partial z}{\partial x_2} = -10 * 6 = -60$$

$$l = (y-z)^T(y-z), ext{where } z = Wx+b, x \in R^8, W \in R^{3 imes 8}, z, y, b \in R^3$$

What is $rac{\partial z_2}{\partial W_{12}}$? Note $z_2=W_{2,:}x$, and $W_{2,:}$ is the 2nd row of W .

A: x_1

B: x_2

C: 0

D: x

0 A

ОВ

C

0 D

$$z_1 = w_{11}x_1 + w_{12}x_2 + \ldots + w_{18}x_8$$

$$z_2 = w_{21}x_1 + w_{22}x_2 + \ldots + w_{28}x_8$$

$$z_3 = w_{31}x_1 + w_{32}x_2 + \ldots + w_{38}x_8$$

You don't need to use w_{12} when you calculate z_2 . So $rac{\partial z_2}{\partial w_{12}}=0$.

Question 8	1 / 1 pts
$l = (y-z)^T (y-z), ext{where } z = Wx + b, x \in R^8, W \in R^{3 imes 8}, z, y, b \in R^3$	
What is the dimension/size of the Jacobian matrix $\frac{\partial z}{\partial W}$?	

(3, 8)

(3, 3)

(3,3,3)

(3,3,8)

Question 9 1 / 1 pts

Which of the statements about Backpropagation algorithm are correct?

A. Backpropagation tunes the parameters for a neural network and returns the best parameter values

- B. Backpropagation calculates gradients based on the derivative chain rule
- C. To calculate gradients, a feedforward step is needed to compute the output and the total loss using the current parameter values, and then a backpropagation step is carried out to estimate the impact of each weight or bias parameter on the total loss.
- D. The goal of backpropagation is to compute the partial derivatives $\partial C/\partial w$ and $\partial C/\partial b$ of the cost function C with respect to any weight w or bias b in the network

A

✓ B

✓ C

✓ D

Let $z_2=f_1(w_1z_1+b_1), z_3=f_2(w_2z_2+b_2), z_4=f_3(w_3z_3+b_3), L=(y-z_4)^2$, where $f_1,f_2, ext{ and } f_3 ext{ are functions. Let}$

$$y-z_4=0.25, f_1^{'}=rac{df_1(x)}{dx}=0.6, f_2^{'}=rac{df_2(x)}{dx}=0.5, f_3^{'}=rac{df_3(x)}{dx}=0.1,$$

$$z_1 = 0.25, z_2 = 0.2, z_3 = 0.1$$

$$w_1 = 0.1, w_2 = -0.3, w_3 = 0.2$$

Which of the statements are correct:

- A. The gradient $rac{dz_4}{dw_2}=0.02$
- B. The gradient $rac{dz_4}{dz_2} = -0.003$
- C. The gradient $\frac{dL}{dw_1} = -2*0.25*0.1*0.2*0.5*(-0.3)*0.6*0.25$, which is quite small, i.e. vanishing gradient.
- D. Regarding the absolute values of gradients, $|\frac{dL}{dw_3}| < |\frac{dL}{dw_2}|$ and $|\frac{dL}{dw_3}| < |\frac{dL}{dw_1}|$

A

✓ B

✓ C

D

$$\frac{dz_4}{dw_2} = 0.1 * 0.2 * 0.5 * 0.2 = 0.002$$

$$\frac{dz_4}{dz_2} = 0.1 * 0.2 * 0.5 * (-0.3) = -0.003$$

$$\frac{dL}{dw_3} = -2 * 0.25 * 0.1 * 0.1 = -0.005$$

$$\frac{dL}{dv_2} = -2 * 0.25 * 0.1 * 0.2 * 0.5 * 0.2 = -0.001$$

$$\frac{dL}{dw_1} = -2*0.25*0.1*0.2*0.5*(-0.3)*0.6*0.25 = 0.000225$$