Package 'BayesBP'

October 12, 2022

2 BP2D

	gen_data	8
	$M \ \dots $	9
	PD_BPbasis	9
	PD_BPFhat	10
	PD_Credible_interval	11
	Rhat	11
	scale_to_01	12
	simulated_data_1	12
	simulated_data_2	13
	write.BP	13
	write.BPtable	14
Index		15

bin

Binomial function

Numeric($0 \le x \le 1$).

Description

Binomial function

Usage

```
bin(n, i, x)
```

Arguments

```
\begin{array}{ll} n & & Integer. \\ \\ i & & Integer(i < n). \end{array}
```

Examples

Х

```
bin(5,3,.5)
```

BP2D

Bayesian estimation using two dimensions Bernstein polynomial

Description

This function runs Metropolis-Hasting algorithm which is given setting prior and data. This algorithm starts storing coefficients when it runs halfway, so we use second halves of coefficients compute Rhat to check convergence.

BP2D 3

Usage

```
BP2D(
  prior,
  ages,
 years,
 disease,
  population,
  Iterations = 2e+05,
  n_{chain} = 5,
  n_{cluster} = 1,
  nn = 2,
  interval = 100,
 RJC = 0.35,
  seed = TRUE,
  set = 1,
  double = 4
)
```

Arguments

prior prior=(n0,alpha,L) where alpha is a Poisson parameter,n0 is upper bound of al-

pha L can be every number which is bigger than one.

ages Range of ages.

years Range of years.

disease Disease matrix.

population Population matrix.

Iterations Iterations of chain.

n_chain Number of Markov chain.

n_cluster This parameter means number of cores, five cores is recommended.(default:

n_cluster=1).

nn The parameter nn is lower bound of alpha.

interval Each hundreds save one coefficient.

RJC Control parameter for transfer dimension.

seed Set seed yes or not.

set Choose seed.(defaults:set=1)

double If R.hat >1.1 then double the iterations of times.

Value

This function will return Bayesian estimate of incidence, Stored parameters, posterior mean, posterior max and table.

Fhat Bayesian estimate of incidence.

chain Bayesian estimate of posterior p-value mean.

4 BP2D

maxchain Bayesian estimate of posterior p-value max. store_coefficients

Two dimensional Bernstein coefficients.

output When M-H algorithm ends, contruct the table which contains norm, mean of

Fhat, maximum of Fhat, R.hat, iterations, P-value and elasped time.

References

Li-Chu Chien, Yuh-Jenn Wu, Chao A. Hsiung, Lu-Hai Wang, I-Shou Chang (2015). Smoothed Lexis Diagrams With Applications to Lung and Breast Cancer Trends in Taiwan, Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1000-1012, September.

See Also

Other Bayesain estimate: BP2D_coef(), BP2D_table()

Examples

```
# ----- #
library(BayesBP)
ages<-35:85
years<-1988:2007
prior < -c(10,5,2)
data(simulated_data_1)
disease<-simulated_data_1$disease
population<-simulated_data_1$population</pre>
result<-BP2D(prior, ages, years, disease, population)
# Bernstein basis
basis<-BPbasis(ages, years, 10)</pre>
pdbasis1<-PD_BPbasis(ages, years, 10, by = 1)</pre>
pdbasis2<-PD_BPbasis(ages, years, 10, by = 2)
# Bernstein polynomial
coef<-result$store_coefficients$chain_1[[1]]</pre>
BPFhat(coef,ages,years,basis)
PD_BPFhat(coef,ages,years,pdbasis1,by = 1)
PD_BPFhat(coef,ages,years,pdbasis2,by = 2)
# Credible interval
Credible_interval(result)
PD_Credible_interval(result,by = 1)
PD_Credible_interval(result,by = 2)
# ----- #
# Given four prior set
ages<-35:85
years<-1988:2007
data(simulated_data_2)
disease<-simulated_data_2$disease
population<-simulated_data_2$population</pre>
p < -expand.grid(n0=c(10,20),alpha=c(5,10),LL=c(2,4))
prior_set<-p[p$n0==p$alpha*2,]</pre>
```

BP2D_coef 5

BP2D_coef

Getting coefficeint from BP2D result.

Description

This function will return coefficient and length of each set of coefficient.

Usage

```
BP2D_coef(result)
```

Arguments

result

This is output of BP2D.

Value

Coefficients table.

See Also

Other Bayesain estimate: BP2D_table(), BP2D()

BP2D_table

Table and Criterion.

Description

If you give more groups of prior, you can use this function to get the table and T criterion.

Usage

```
BP2D_table(results_list)
```

Arguments

results_list A vector of characters.

BPbasis

Value

Table and criterion T.

See Also

Other Bayesain estimate: BP2D_coef(), BP2D()

BPbasis

Bernstein polynomial basis.

Description

This function build two dimensional Bernstein polynomial basis.

Usage

```
BPbasis(ages, years, n0, N = 1)
```

Arguments

ages Range of ages.
years Range of years.

n0 Upper bound of possion random variable.N Lower bound of possion random variable.

Value

Bernstein basis.

See Also

Other Bernstein basis: PD_BPbasis()

Examples

```
ages <- 35:85
years <- 1988:2007
list.basis <- BPbasis(ages,years,10)
list.basis</pre>
```

BPFhat 7

BPFhat

Two dimensional Bernstein polynomial

Description

Given Bernstein polynomial coefficients to compute Fhat.

Usage

```
BPFhat(coef, ages, years, basis)
```

Arguments

coef Bernstein polynomial coefficients.

ages Range of ages. years Range of years.

basis Bernstein polynomial basis.

Value

This function return outer Bernstein polynomial using coefficients.

See Also

Other outer Bernstein polynomial: PD_BPFhat()

Examples

```
coef <- runif(9)
ages <- 35:85
years <- 1988:2007
list.basis <- BPbasis(ages,years,10)
BPFhat(coef,ages,years,list.basis)</pre>
```

Credible_interval

Credible interval.

Description

Builing two dimensional Bernstein polynomial credible interval.

Usage

```
Credible_interval(result, n_cluster = 1, alpha = 0.05)
```

gen_data

Arguments

result This is output of BP2D.

alpha Level of significance.

Value

Bayesian credible interval with level of significance.

References

L.H. Chien, T.J. Tseng, C.H. Chen, H.F. Jiang, F.Y. Tsai, T.W. Liu, C.A. Hsiung, I.S. Chang Comparison of annual percentage change in breast cancer incidence rate between Taiwan and the United States-A smoothed Lexis diagram approach.

See Also

Other Credible interval: PD_Credible_interval()

gen_data Generated data

Description

Generated data

Usage

```
gen_data(ages, years, FT, M)
```

Arguments

ages Ages. years Years.

FT Rate function.

M Population function.

M

М

Risky population function

Description

Risky population function

Usage

```
M(x, y)
```

Arguments

x Numeric.y Numeric.

PD_BPbasis

Partial differential Bernstein polynomial basis.

Description

This function build two dimensional Bernstein polynomial basis.

Usage

```
PD_BPbasis(ages, years, n0, N = 1, by = 1)
```

Arguments

ages Range of ages.
years Range of years.

n0 Upper bound of possion random variable.N Lower bound of possion random variable.

by 1: partial differential by ages; 2: partial differential by years.

Value

Partial differential Bernstein basis.

See Also

Other Bernstein basis: BPbasis()

10 PD_BPFhat

Examples

```
ages <- 35:85
years <- 1988:2007
pdbasis <- PD_BPbasis(ages,years,10,by = 1)
pdbasis</pre>
```

PD_BPFhat

Two dimensional Bernstein polynomial

Description

Given Bernstein polynomial coefficients to compute Fhat.

Usage

```
PD_BPFhat(coef, ages, years, pdbasis, by = 1)
```

Arguments

coef Bernstein polynomial coefficients.

ages Range of ages. years Range of years.

pdbasis Partial differential Bernstein polynomial basis.

by 1: partial differential by ages; 2: partial differential by years.

Value

Partial differential Bernstein polynomial given coefficients.

See Also

Other outer Bernstein polynomial: BPFhat()

Examples

```
coef <- runif(9)
ages <- 35:85
years <- 1988:2007
pdbasis <- PD_BPbasis(ages,years,10,N=1,by=1)
PD_BPFhat(coef,ages,years,pdbasis,by=1)</pre>
```

PD_Credible_interval

11

PD_Credible_interval Credible interval.

Description

Builing two dimensional Bernstein polynomial credible interval.

Usage

```
PD_Credible_interval(result, n_cluster = 1, alpha = 0.05, by = 1)
```

Arguments

result This is output of BP2D.

n_cluster Muticores is remmended.(default:n_cluster=1)

alpha Level of significance.

by 1: partial differential by ages; 2: partial differential by years.

Value

Bayesian credible interval with level of significance.

References

L.H. Chien, T.J. Tseng, C.H. Chen, H.F. Jiang, F.Y. Tsai, T.W. Liu, C.A. Hsiung, I.S. Chang Comparison of annual percentage change in breast cancer incidence rate between Taiwan and the United States-A smoothed Lexis diagram approach.

See Also

Other Credible interval: Credible_interval()

Rhat Gelman Rubin statistics.

Description

Check Markov chains for convergence.

Usage

```
Rhat(M, burn.in = 0.5)
```

12 simulated_data_1

Arguments

M An n x m numeric matrix of Markov Chains.

burn.in The default value 0.5 means that the second halves of chains will be used to

compute.

Value

Gelman Rubin statistics.

References

Gelman A., Carlin J.B., Stern H.S., and Rubin D.B. (2004), Bayesian Data Analysis, Boca Raton, FL: Chapman & Hall/CRC.

scale_to_01

Scale to [0,1]

Description

```
Scale to [0,1]
```

Usage

```
scale_to_01(x)
```

Arguments

Χ

Vector.

Examples

```
scale_to_01(35:85)
(35:85-35)/(85-35)
scale_to_01(runif(10))
```

simulated_data_1

Generate simulated data 1

Description

Given rate function 1 generated data.

Usage

```
data(simulated_data_1)
```

simulated_data_2

Format

list of matrix

Examples

```
ages <- 35:85
years <- 1988:2007
FT1 <- function(x,y){0.00148*sin(0.5*pi*x*y)+0.00002}
simulated_data_1 <- gen_data(ages,years,FT1,M)</pre>
```

simulated_data_2

Generate simulated data 2

Description

Given rate function 2 generated data.

Usage

```
data(simulated_data_2)
```

Format

list of matrix

Examples

```
ages <- 35:85
years <- 1988:2007
FT2 <- function(x,y){0.00148*sin(0.5*pi*x*(y+0.2))+0.00002}
simulated_data_2 <- gen_data(ages,years,FT2,M)</pre>
```

write.BP

Write xlsx file

Description

This function will write result of BP2D to xlsx file.

Usage

```
write.BP(writedata, filename)
```

Arguments

writedata result of BP2D(character or list).

filename xlsx file name.

14 write.BPtable

write.BPtable

Write BPtalbe as xlsx file

Description

If your environment has some result of BP2D, then you can use this function to store BPTable.

Usage

```
write.BPtable(BPtable, filename)
```

Arguments

BPtable output of BP2D_table.

filename xlsx file name.

Index

```
* \ Bayesain \ estimate
                                                  write.BP, 13
    BP2D, 2
                                                  write.BPtable, 14
    BP2D_coef, 5
    BP2D_table, 5
* Bernstein basis
    BPbasis, 6
    PD_BPbasis, 9
* Credible interval
    Credible_interval, 7
    PD_Credible_interval, 11
* datasets
    gen_data, 8
    M, 9
    simulated_data_1, 12
    simulated_data_2, 13
* outer Bernstein polynomial
    BPFhat, 7
    PD_BPFhat, 10
bin, 2
BP2D, 2, 5, 6
BP2D_coef, 4, 5, 6
BP2D_table, 4, 5, 5
BPbasis, 6, 9
BPFhat, 7, 10
Credible_interval, 7, 11
gen_data, 8
M, 9
PD_BPbasis, 6, 9
PD_BPFhat, 7, 10
PD_Credible_interval, 8, 11
Rhat, 11
scale_to_01, 12
simulated_data_1, 12
simulated_data_2, 13
```