Contents	6.19 Circle Cover
1 Basic 1.1 vimrc 1.2 Debug Macro 1.3 Increase Stack 1.4 Pragma Optimization 1.5 IO Optimization	=
2 Data Structure 2.1 Dark Magic 2.2 Link-Cut Tree 2.3 LiChao Segment Tree 2.4 Treap 2.5 Linear Basis 2.6 Binary Search On Segment Tree	7.7 Lexico Smallest Rotation 2 7.8 Main Lorentz 2 7.9 BWT 2 7.10 Palindromic Tree 2 8 Misc 2 8.1 Theorems 2 2
3 Graph 3.1 2-SAT (SCC) . 3.2 BCC 3.3 Round Square Tree 3.4 Centroid Decomposition 3.5 Directed Minimum Spanning Tree 3.6 Dominator Tree 3.7 Edge Coloring 3.8 Lowbit Decomposition 3.9 Manhattan Minimum Spanning Tree 3.10 MaxClique 3.11 MaxClique 3.11 MaxCliqueDyn 3.12 Minimum Mean Cycle 3.13 Mo's Algorithm on Tree 3.14 Virtual Tree	4 8.1.2 Kirchhoff's Theorem 2 4 8.1.3 Tutte's Matrix 2 4 8.1.4 Cayley's Formula 2 4 8.1.5 Erdős-Gallai theorem 2 4 8.1.6 Havel-Hakimi algorithm 2 5 8.1.7 Euler's planar graph formula 2 5 8.1.8 Pick's theorem 2 5 8.1.9 Matroid Intersection 2 6 8.2 Bitset LCS 2 6 8.3 Prefix Substring LCS 2 6 8.4 Convex ID/ID DP 2 7 8.5 Convex Hull Optimization 2 7 8.6 Josephus Problem 2 7 8.7 Tree Knapsack 2 8 8.8 N Queens Problem 2 8 8.8 N Queens Problem 2 8 9 Stable Marriage 2
4 Matching & Flow 4.1 Bipartite Matching 4.2 Dijkstra Cost Flow 4.3 Dinic 4.4 Construct VC 4.5 Flow Models 4.6 Concret Graph Matching	8 1 Basic 9 1.1 vimrc
4.6 General Graph Matching 4.7 Global Min-Cut 4.8 GomoryHu Tree 4.9 Kuhn Munkres 4.10 Minimum Cost Circulation 4.11 Minimum Cost Maximum Flow 4.12 Maximum Weight Graph Matching	mouse=a "encoding=utf-8 ls=2 syn on colo desert filetype indent on
5.1 Common Bounds 5.1.1 Partition function 5.1.2 Divisor function 5.1.3 Factorial 5.1.4 Binom Coef 5.2 Strling Number	DCKISEKI -Wall -Wextra -Wshadow -Wfatal-errors - Wconversion -fsanitize=address,undefined -g && echo success <cr> map <f9> <esc>:w<cr>:!g++ "%" -o "%<" -02 -std=c++17 && echo success<cr> map <f10> <esc>:!./"%<"<cr></cr></esc></f10></cr></cr></esc></f9></cr>
5.5 axtyy-gut 5.6 Berlekamp Massey 5.5 Charateristic Polynomial 5.6 Chinese Remainder 5.7 De-Bruijn 5.8 DiscreteLog 5.9 Extended Euler 5.10 Extended FloorSum 5.11 Fast Fourier Transform 5.12 FloorSum 5.13 FWT 5.14 Miller Rabin 5.15 NTT 5.16 Partition Number 5.17 Pi Count (Linear Sieve) 5.18 Pollard Rho 5.19 Polynomial Operations 5.20 Quadratic residue 5.21 Simplex 5.22 Simplex Construction	<pre>#ifdef KISEKI #define safe cerr<<pretty_function\< td=""></pretty_function\<></pre>
6 Geometry 6.1 Basic Geometry 6.2 Segment & Line Intersection 6.3 2D Convex Hull 6.4 3D Convex Hull 6.5 2D Farthest Pair 6.6 kD Closest Pair (3D ver.) 6.7 Simulated Annealing 6.8 Half Plane Intersection 6.9 Minkowski Sum	<pre>18</pre>
6.10 Circle Class 6.11 Intersection of line and Circle 6.12 Intersection of Polygon and Circle 6.13 Point & Hulls Tangent 6.14 Convex Hulls Tangent 6.15 Tangent line of Two Circle 6.16 Minimum Covering Circle 6.17 KDTree (Nearest Point) 6.18 Rotating Sweep Line	19 1.3 Increase Stack 19

1.4 Pragma Optimization

```
#pragma GCC optimize("Ofast, no-stack-protector")
#pragma GCC optimize("no-math-errno,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4")
#pragma GCC target("popent,abm,mmx,avx,tune=native")
__builtin_ia32_ldmxcsr(__builtin_ia32_stmxcsr()|0x8000)
```

1.5 IO Optimization

```
static inline int gc() {
constexpr int B = 1<<20;</pre>
static char buf[B], *p, *q;
if(p == q \&\&
  (q=(p=buf)+fread(buf,1,B,stdin)) == buf)
 return EOF;
return *p++;
template < typename T >
static inline bool gn( T &x ) {
int c = gc(); T sgn = 1; x = 0;
while(('0'>c||c>'9') && c!=EOF && c!='-') c = gc();
if(c == '-') sgn = -1, c = gc();
if(c == EOF) return false;
while('0'<=c&c<='9') x = x*10 + c - '0', c = gc();
return x *= sgn, true;
```

2 Data Structure

2.1 Dark Magic

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/priority_queue.hpp>
using namespace __gnu_pbds;
// heap tags: paring/binary/binomial/rc_binomial/thin
template<typename T>
using pbds_heap=__gnu_pbds::prioity_queue<T,less<T>, \
                  pairing_heap_tag>;
// pbds_heap::point_iterator
  x = pq.push(10); pq.modify(x, 87); a.join(b);
// tree tags: rb_tree_tag/ov_tree_tag/splay_tree_tag
template<typename T>
using ordered_set = tree<T, null_type, less<T>,
   rb_tree_tag, tree_order_statistics_node_update>;
  find_by_order, order_of_key
// hash tables: cc_hash_table/gp_hash_table
```

2.2 Link-Cut Tree

```
template <typename Val, typename SVal> class LCT {
struct node
 int pa, ch[2];
 bool rev;
 Val v, prod, rprod;
 SVal sv, sub, vir;
 node(): pa{0}, ch{0, 0}, rev{false}, v{}, prod{},
    rprod{}, sv{}, sub{}, vir{} {};
#define cur o[u]
#define lc cur.ch[0]
#define rc cur.ch[1]
vector<node> o;
bool is_root(int u) const {
 return o[cur.pa].ch[0]!=u && o[cur.pa].ch[1]!=u;
bool is_rch(int u) const {
 return o[cur.pa].ch[1] == u && !is_root(u);
void down(int u) {
  if (not cur.rev) return;
 if (lc) set_rev(lc);
 if (rc) set_rev(rc);
 cur.rev = false;
void up(int u) {
 cur.prod = o[lc].prod * cur.v * o[rc].prod;
 cur.rprod = o[rc].rprod * cur.v * o[lc].rprod;
 cur.sub = cur.vir + o[lc].sub + o[rc].sub + cur.sv;
}
void set_rev(int u) {
 swap(lc, rc);
 swap(cur.prod, cur.rprod);
 cur.rev ^= 1;
}
```

```
void rotate(int u) {
 int f=cur.pa, g=o[f].pa, l=is_rch(u);
if (cur.ch[l ^ 1]) o[cur.ch[l ^ 1]].pa = f;
  if (not is_root(f)) o[g].ch[is_rch(f)] = u;
  o[f].ch[l] = cur.ch[l ^ 1];
  cur.ch[l ^ 1] = f;
  cur.pa = g, o[f].pa = u;
 up(f);
 void splay(int u) {
  vector<int> stk = {u};
  while (not is_root(stk.back()))
  stk.push_back(o[stk.back()].pa);
  while (not stk.empty()) {
   down(stk.back());
   stk.pop_back();
  for (int f = cur.pa; not is_root(u); f = cur.pa) {
   if(!is_root(f))rotate(is_rch(u)==is_rch(f)?f:u);
   rotate(u);
 up(u);
 void access(int x) {
  for (int u = x, last = 0; u; u = cur.pa) {
  splay(u);
   cur.vir = cur.vir + o[rc].sub - o[last].sub;
   rc = last; up(last = u);
  }
  splay(x);
 int find_root(int u) {
  int la = 0;
  for (access(u); u; u = lc) down(la = u);
  return la;
 void split(int x, int y) {change_root(x);access(y);}
 void change_root(int u) { access(u); set_rev(u); }
public:
 LCT(int n = 0) : o(n + 1) {}
 int add(const Val &v = {}) {
 o.push_back(v);
 return int(o.size()) - 2;
 int add(Val &&v) {
 o.emplace_back(move(v));
  return int(o.size()) - 2;
 void set_val(int u, const Val &v) {
  splay(++u); cur.v = v; up(u);
 void set_sval(int u, const SVal &v) {
 splay(++u); cur.sv = v; up(u);
 Val query(int x, int y) {
 split(++x, ++y); return o[y].prod;
 SVal subtree(int p, int u) {
 change_root(++p); access(++u);
  return cur.vir + cur.sv;
 bool connected(int u, int v) {
  return find_root(++u) == find_root(++v); }
 void link(int x, int y) {
  change_root(++x); access(++y);
 o[y].vir = o[y].vir + o[x].sub;
 up(o[x].pa = y);
void cut(int x, int y) {
  split(++x, ++y);
  o[y].ch[0] = o[x].pa = 0; up(y);
#undef cur
#undef lc
#undef rc
```

2.3 LiChao Segment Tree

```
struct L {
 int m, k, id;
 L(): id(-1) {}
L(int a, int b, int c) : m(a), k(b), id(c) {}
```

```
int at(int x) { return m * x + k; }
class LiChao {
private:
int n; vector<L> nodes;
static int lc(int x) { return 2 * x + 1; }
 static int rc(int x) { return 2 * x + 2; }
void insert(int l, int r, int id, L ln) {
  int m = (l + r) >> 1;
 if (nodes[id].id == -1) {
  nodes[id] = ln;
  return:
 }
 bool atLeft = nodes[id].at(l) < ln.at(l);</pre>
 if (nodes[id].at(m) < ln.at(m)) {</pre>
  atLeft ^= 1;
   swap(nodes[id], ln);
 if (r - l == 1) return;
  if (atLeft) insert(l, m, lc(id), ln);
 else insert(m, r, rc(id), ln);
 int query(int l, int r, int id, int x) {
 int ret = 0, m = (l + r) >> 1;
 if (nodes[id].id != -1)
  ret = nodes[id].at(x);
 if (r - l == 1) return ret;
 if (x < m) return max(ret, query(l, m, lc(id), x));</pre>
  return max(ret, query(m, r, rc(id), x));
public:
LiChao(int n_{-}): n(n_{-}), nodes(n * 4) {}
void insert(L ln) { insert(0, n, 0, ln); }
int query(int x) { return query(0, n, 0, x); }
```

2.4 Treap

```
namespace Treap{
 #define sz(x)((x)?((x)->size):0)
 struct node{
  int size;
 uint32_t pri;
  node *lc, *rc, *pa;
  node():size(0),pri(rand()),lc(0),rc(0),pa(0){}
  void pull() {
   size = 1; pa = nullptr;
   if ( lc ) { size += lc->size; lc->pa = this; }
   if ( rc ) { size += rc->size; rc->pa = this; }
  }
 };
 node* merge( node* L, node* R ) {
 if ( not L or not R ) return L ? L : R;
if ( L->pri > R->pri ) {
   L->rc = merge( L->rc, R ); L->pull();
   return L;
  } else {
   R->lc = merge( L, R->lc ); R->pull();
   return R;
 void split_by_size( node*rt,int k,node*&L,node*&R ) {
  if ( not rt ) L = R = nullptr;
  else if( sz( rt->lc ) + 1 <= k ) {
   split_by_size( rt->rc,k-sz(rt->lc)-1,L->rc,R );
   L->pull();
  } else {
   R = rt;
   split_by_size( rt->lc, k, L, R->lc );
   R->pull();
  }
 } // sz(L) == k
 int getRank(node *o) { // 1-base
  int r = sz(o->lc) + 1;
  for (;o->pa != nullptr; o = o->pa)
   if (o->pa->rc == o) r += sz(o->pa->lc) + 1;
  return r;
 #undef sz
}
```

2.5 Linear Basis

```
template <int BITS, typename S = int> struct Basis {
  static constexpr auto MIN = numeric_limits<S>::min();
  array<pair<uint64_t, S>, BITS> b;
  Basis() { b.fill({0, MIN}); }
 void add(uint64_t x, S p) {
  for (int i = BITS-1; i>=0; i--) if ((x >> i) & 1) {
    if (b[i].first == 0) return b[i]={x, p}, void();
    if (b[i].second < p)</pre>
     swap(b[i].first, x), swap(b[i].second, p);
    x ^= b[i].first;
  }
 optional<uint64_t> query_kth(uint64_t v, uint64_t k){
   vector<pair<uint64_t, int>> o;
   for (int i = 0; i < BITS; i++)</pre>
    if (b[i].first) o.emplace_back(b[i].first, i);
   if (k >= (1ULL << o.size())) return {};</pre>
   for (int i = int(o.size()) - 1; i >= 0; i--)
    if ((k >> i & 1) ^ (v >> o[i].second & 1))
     v ^= o[i].first;
   return v;
  Basis filter(S l) {
  Basis res = *this;
for (int i = 0; i < BITS; i++)</pre>
    if (res.b[i].second < l) res.b[i] = {0, MIN};</pre>
   return res:
};
```

2.6 Binary Search On Segment Tree

```
// find_first = x \rightarrow minimal x s.t. check([a, x))
// find_last = x \rightarrow maximal x s.t. check([x, b))
template <typename C>
int find_first(int l, const C &check) {
 if (l >= n) return n + 1;
 l += sz;
 for (int i = height; i > 0; i--)
  propagate(l >> i);
 Monoid sum = identity;
 do {
  while ((l & 1) == 0) l >>= 1;
  if (check(f(sum, data[l]))) {
   while (l < sz) {</pre>
    propagate(l);
    l <<= 1;
    auto nxt = f(sum, data[l]);
    if (not check(nxt)) {
     sum = nxt;
     l++;
    }
   return l + 1 - sz;
  sum = f(sum, data[l++]);
 } while ((l & -l) != l);
 return n + 1;
template <typename C>
int find_last(int r, const C &check) {
 if (r <= 0) return -1;
 r += sz;
 for (int i = height; i > 0; i--)
  propagate((r - 1) >> i);
 Monoid sum = identity;
 do {
  while (r > 1 and (r & 1)) r >>= 1;
  if (check(f(data[r], sum))) {
   while (r < sz) {</pre>
    propagate(r);
    r = (r << 1) + 1;
    auto nxt = f(data[r], sum);
    if (not check(nxt)) {
     sum = nxt;
     r--;
    }
   return r - sz;
```

```
sum = f(data[r], sum);
} while ((r & -r) != r);
return -1;
}
```

3 Graph

3.1 2-SAT (SCC)

```
class TwoSat{
private:
int n;
vector<vector<int>> rG,G,sccs;
vector<int> ord,idx;
vector<bool> vis,result;
void dfs(int u){
 vis[u]=true;
 for(int v:G[u])
  if(!vis[v]) dfs(v);
 ord.push_back(u);
void rdfs(int u){
 vis[u]=false;idx[u]=sccs.size()-1;
  sccs.back().push_back(u);
 for(int v:rG[u])
   if(vis[v])rdfs(v);
public:
void init(int n_){
 G.clear();G.resize(n=n_);
  rG.clear();rG.resize(n);
  sccs.clear();ord.clear();
 idx.resize(n);result.resize(n);
void add_edge(int u,int v){
 G[u].push_back(v);rG[v].push_back(u);
void orr(int x,int y){
 if ((x^y)==1)return;
 add_edge(x^1,y); add_edge(y^1,x);
bool solve(){
 vis.clear();vis.resize(n);
 for(int i=0;i<n;++i)</pre>
   if(not vis[i])dfs(i);
 reverse(ord.begin(),ord.end());
  for (int u:ord){
  if(!vis[u])continue;
  sccs.push_back(vector<int>());
   rdfs(u);
  for(int i=0;i<n;i+=2)</pre>
   if(idx[i]==idx[i+1])
   return false;
  vector<bool> c(sccs.size());
  for(size_t i=0;i<sccs.size();++i){</pre>
   for(auto sij : sccs[i]){
    result[sij]=c[i];
    c[idx[sij^1]]=!c[i];
  }
 return true;
bool get(int x){return result[x];}
int get_id(int x){return idx[x];}
int count(){return sccs.size();}
} sat2;
```

3.2 BCC

```
class BCC {
private:
  int n, ecnt;
  vector<vector<pair<int, int>>> g;
  vector<int> dfn, low;
  vector<bool> ap, bridge;
  void dfs(int u, int f) {
    dfn[u] = low[u] = dfn[f] + 1;
    int ch = 0;
  for (auto [v, t] : g[u]) if (v != f) {
    if (dfn[v]) {
       low[u] = min(low[u], dfn[v]);
    } else {
```

```
++ch, dfs(v, u);
    low[u] = min(low[u], low[v]);
    if (low[v] > dfn[u])
     bridge[t] = true;
    if (low[v] >= dfn[u])
     ap[u] = true;
 ap[u] &= (ch != 1 or u != f);
}
public:
 void init(int n_) {
  g.assign(n = n_, vector<pair<int, int>>());
  low.assign(n, ecnt = 0);
 dfn.assign(n, 0);
 ap.assign(n, false);
 void add_edge(int u, int v) {
 g[u].emplace_back(v, ecnt);
 g[v].emplace_back(u, ecnt++);
 void solve() {
 bridge.assign(ecnt, false);
 for (int i = 0; i < n; ++i)
   if (not dfn[i]) dfs(i, i);
 bool is_ap(int x) { return ap[x]; }
bool is_bridge(int x) { return bridge[x]; }
```

3.3 Round Square Tree

```
int N, M, cnt;
std::vector<int> G[maxn], T[maxn * 2];
int dfn[maxn], low[maxn], dfc;
int stk[maxn], tp;
void Tarjan(int u) {
low[u] = dfn[u] = ++dfc;
 stk[++tp] = u;
 for (int v : G[u]) {
  if (!dfn[v]) {
   Tarjan(v);
   low[u] = std::min(low[u], low[v]);
   if (low[v] == dfn[u]) {
    ++cnt;
    for (int x = 0; x != v; --tp) {
     x = stk[tp];
     T[cnt].push_back(x);
     T[x].push_back(cnt);
    T[cnt].push_back(u);
    T[u].push_back(cnt);
  } else
   low[u] = std::min(low[u], dfn[v]);
}
int main() { // ...
cnt = N;
 for (int u = 1; u <= N; ++u)
  if (!dfn[u]) Tarjan(u), --tp;
```

3.4 Centroid Decomposition

```
struct Centroid {
  vector<vector<int64_t>> Dist;
  vector<int> Pa, Dep;
  vector<int64_t> Sub, Sub2;
  vector<int> Cnt, Cnt2;
  vector<int> vis, sz, mx, tmp
  void DfsSz(int x) {
    vis[x] = true; sz[x] = 1; mx[x] = 0;
    for (auto [u, w] : g[x]) {
        if (vis[u]) continue;
        DfsSz(u);
        sz[x] += sz[u];
        mx[x] = max(mx[x], sz[u]);
    }
    tmp.push_back(x);
}
```

```
void DfsDist(int x, int64_t D = 0) {
  Dist[x].push_back(D); vis[x] = true;
  for (auto [u, w] : g[x])
   if (not vis[u]) DfsDist(u, D + w);
 void DfsCen(int x, int D = 0, int p = -1) {
  tmp.clear(); DfsSz(x);
  int M = tmp.size();
  int C = -1;
  for (int u : tmp) {
  if (max(M - sz[u], mx[u]) * 2 <= M) C = u;</pre>
   vis[u] = false;
  DfsDist(C);
  for (int u : tmp) vis[u] = false;
  Pa[C] = p; vis[C] = true; Dep[C] = D;
  for (auto [u, w] : g[C])
   if (not vis[u]) DfsCen(u, D + 1, C);
 Centroid(int N, vector<vector<pair<int,int>>> g)
  : Sub(N), Sub2(N), Cnt(N), Cnt2(N), Dist(N),
  Pa(N), Dep(N), vis(N), sz(N), mx(N)
  { DfsCen(0); }
 void Mark(int v) {
  int x = v, z = -1;
for (int i = Dep[v]; i >= 0; --i) {
   Sub[x] += Dist[v][i]; Cnt[x]++;
   if (z != -1) {
    Sub2[z] += Dist[v][i];
    Cnt2[z]++;
   z = x; x = Pa[x];
  }
 int64_t Query(int v) {
  int64_t res = 0;
  int x = v, z = -1;
  for (int i = Dep[v]; i >= 0; --i) {
   res += Sub[x] + 1LL * Cnt[x] * Dist[v][i];
   if (z != -1) res-=Sub2[z]+1LL*Cnt2[z]*Dist[v][i];
   z = x; x = Pa[x];
  return res;
};
```

3.5 Directed Minimum Spanning Tree

```
struct Edge { int u, v, w; };
struct DirectedMST { // find maximum
 int solve(vector<Edge> E, int root, int n) {
  int ans = 0;
  while (true) {
   // find best in edge
   vector<int> in(n, -inf), prv(n, -1);
   for (auto e : E)
    if (e.u != e.v && e.w > in[e.v]) {
     in[e.v] = e.w;
     prv[e.v] = e.u;
   in[root] = 0; prv[root] = -1;
   for (int i = 0; i < n; i++)
if (in[i] == -inf) return -inf;</pre>
   // find cycle
   int tot = 0;
   vector<int> id(n, -1), vis(n, -1);
   for (int i = 0; i < n; i++) {</pre>
    ans += in[i];
    for (int x = i; x != -1 && id[x] == -1; x = prv[x])
     if (vis[x] == i) {
      for (int y = prv[x]; y != x; y = prv[y])
       id[y] = tot;
      id[x] = tot++;
      break;
     vis[x] = i;
    }
   if (!tot) return ans;
   for (int i = 0; i < n; i++)</pre>
    if (id[i] == -1) id[i] = tot++;
   for (auto &e : E) {
```

```
if (id[e.u] != id[e.v]) e.w -= in[e.v];
    e.u = id[e.u], e.v = id[e.v];
}
n = tot; root = id[root];
}
}
DMST;
```

3.6 Dominator Tree

```
namespace dominator {
vector<int> g[maxn], r[maxn], rdom[maxn];
int dfn[maxn], rev[maxn], fa[maxn], sdom[maxn];
int dom[maxn], val[maxn], rp[maxn], tk;
void init(int n) {
 // vertices are numbered from 0 to n - 1
 fill(dfn, dfn + n, -1);fill(rev, rev + n, -1);
 fill(fa, fa + n, -1); fill(val, val + n, -1);
 fill(sdom, sdom + n, -1);fill(rp, rp + n, -1);
 fill(dom, dom + n, -1); tk = 0;
 for (int i = 0; i < n; ++i) {</pre>
  g[i].clear(); r[i].clear(); rdom[i].clear();
 }
void add_edge(int x, int y) { g[x].push_back(y); }
void dfs(int x) {
 rev[dfn[x] = tk] = x;
 fa[tk] = sdom[tk] = val[tk] = tk; tk ++;
 for (int u : g[x]) {
 if (dfn[u] == -1) dfs(u), rp[dfn[u]] = dfn[x];
  r[dfn[u]].push_back(dfn[x]);
}
void merge(int x, int y) { fa[x] = y; }
int find(int x, int c = 0) {
 if (fa[x] == x) return c ? -1 : x;
 int p = find(fa[x], 1);
 if (p == -1) return c ? fa[x] : val[x];
 if (sdom[val[x]]>sdom[val[fa[x]]]) val[x]=val[fa[x]];
fa[x] = p;
return c ? p : val[x];
vector<int> build(int s, int n) {
// return the father of each node in the dominator tree
// p[i] = -2 \text{ if i is unreachable from s}
 dfs(s);
 for (int i = tk - 1; i >= 0; --i) {
  for (int u:r[i]) sdom[i]=min(sdom[i],sdom[find(u)]);
  if (i) rdom[sdom[i]].push_back(i);
  for (int &u : rdom[i]) {
   int p = find(u);
   if (sdom[p] == i) dom[u] = i;
   else dom[u] = p;
  if (i) merge(i, rp[i]);
 vector<int> p(n, -2); p[s] = -1;
 for (int i = 1; i < tk; ++i)</pre>
  if (sdom[i] != dom[i]) dom[i] = dom[dom[i]];
 for (int i = 1; i < tk; ++i) p[rev[i]] = rev[dom[i]];</pre>
```

3.7 Edge Coloring

```
// max(d_u) + 1 edge coloring, time: O(NM)
int C[kN][kN], G[kN][kN]; // 1-based, G: ans
void clear(int N) {
 for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j++)</pre>
    C[i][j] = G[i][j] = 0;
void solve(vector<pair<int, int>> &E, int N) {
 int X[kN] = {}, a;
 auto update = [&](int u) {
 for (X[u] = 1; C[u][X[u]]; X[u]++);
 auto color = [&](int u, int v, int c) {
  int p = G[u][v];
 G[u][v] = G[v][u] = c;
 C[u][c] = v, C[v][c] = u;
 C[u][p] = C[v][p] = 0;
  if (p) X[u] = X[v] = p;
  else update(u), update(v);
```

```
return p;
auto flip = [&](int u, int c1, int c2) {
 int p = C[u][c1];
 swap(C[u][c1], C[u][c2]);
 if (p) G[u][p] = G[p][u] = c2;
 if (!C[u][c1]) X[u] = c1;
 if (!C[u][c2]) X[u] = c2;
};
for (int i = 1; i <= N; i++) X[i] = 1;</pre>
for (int t = 0; t < E.size(); t++) {</pre>
 auto [u, v] = E[t];
 int v0 = v, c = X[u], c0 = c, d;
 vector<pair<int, int>> L; int vst[kN] = {};
 while (!G[u][v0]) {
  L.emplace_back(v, d = X[v]);
  if (!C[v][c]) for(a=L.size()-1;a>=0;a--)
    c = color(u, L[a].first, c);
  else if(!C[u][d])for(a=L.size()-1;a>=0;a--)
    color(u, L[a].first, L[a].second);
  else if (vst[d]) break;
  else vst[d] = 1, v = C[u][d];
 if (!G[u][v0]) {
  for (; v; v = flip(v, c, d), swap(c, d));
  if (C[u][c0]) { a = int(L.size()) - 1;
   while (--a >= 0 && L[a].second != c);
   for(;a>=0;a--)color(u,L[a].first,L[a].second);
  } else t--;
}
```

3.8 Lowbit Decomposition

```
class LBD {
int timer, chains;
vector<vector<int>> G;
vector<int> tl, tr, chain, head, dep, pa;
 // chains : number of chain
// tl, tr[u] : subtree interval in the seq. of u
// head[i] : head of the chain i
 // chian[u] : chain id of the chain u is on
void predfs(int u, int f) {
 dep[u] = dep[pa[u] = f] + 1;
  for (int v : G[u]) if (v != f) {
  predfs(v, u):
   if (lowbit(chain[u]) < lowbit(chain[v]))</pre>
   chain[u] = chain[v];
 if (chain[u] == 0) chain[u] = ++chains;
void dfschain(int u, int f) {
 tl[u] = timer++;
 if (head[chain[u]] == -1)
  head[chain[u]] = u;
  for (int v : G[u])
  if (v != f and chain[v] == chain[u])
    dfschain(v, u);
  for (int v : G[u])
   if (v != f and chain[v] != chain[u])
    dfschain(v, u);
  tr[u] = timer;
public:
LBD(\textbf{int}\ n)\ :\ timer(0),\ chains(0),\ G(n),\ tl(n),\ tr(n),
chain(n), head(n, -1), dep(n), pa(n) {}
void add_edge(int u, int v) {
 G[u].push_back(v); G[v].push_back(u);
void decompose() { predfs(0, 0); dfschain(0, 0); }
PII get_subtree(int u) { return {tl[u], tr[u]}; }
vector<PII> get_path(int u, int v) {
 vector<PII> res;
while (chain[u] != chain[v]) {
   if (dep[head[chain[u]]] < dep[head[chain[v]]])</pre>
    swap(u, v);
   int s = head[chain[u]];
   res.emplace_back(tl[s], tl[u] + 1);
  u = pa[s];
  if (dep[u] < dep[v]) swap(u, v);</pre>
```

```
res.emplace_back(tl[v], tl[u] + 1);
return res;
}
};
```

3.9 Manhattan Minimum Spanning Tree

```
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
 vi id(sz(ps));
 iota(all(id), 0);
 vector<array<int, 3>> edges;
 rep(k, 0, 4) {
  sort(all(id), [&](int i, int j) {
   return (ps[i] - ps[j]).x < (ps[j] - ps[i]).y;</pre>
  });
  map<int, int> sweep;
  for (int i : id) {
   for (auto it = sweep.lower_bound(-ps[i].y);
      it != sweep.end(); sweep.erase(it++)) {
    int j = it->second;
    P d = ps[i] - ps[j];
    if (d.y > d.x) break;
    edges.push_back({d.y + d.x, i, j});
   sweep[-ps[i].y] = i;
  for (P &p : ps)
   if (k \& 1) p.x = -p.x;
   else swap(p.x, p.y);
 return edges; // [{w, i, j}, ...]
}
```

3.10 MaxClique

```
// contain a self loop u to u, than u won't in clique
template < size_t MAXN >
class MaxClique{
private:
 using bits = bitset< MAXN >;
 bits popped, G[ MAXN ], ans;
 size_t deg[ MAXN ], deo[ MAXN ], n;
 void sort_by_degree() {
  popped.reset();
  for ( size_t i = 0 ; i < n ; ++ i )</pre>
    deg[ i ] = G[ i ].count();
  for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
    size_t mi = MAXN, id = 0;
    for ( size_t j = 0 ; j < n ; ++ j )
  if ( not popped[ j ] and deg[ j ] < mi )</pre>
        mi = deg[ id = j ];
    popped[ deo[ i ] = id ] = 1;
    for( size_t u = G[ i ]._Find_first() ;
     u < n ; u = G[i]._Find_next(u))
      -- deg[ u ];
 void BK( bits R, bits P, bits X ) {
  if (R.count()+P.count() <= ans.count()) return;</pre>
  if ( not P.count() and not X.count() ) {
   if ( R.count() > ans.count() ) ans = R;
   return;
  /* greedily chosse max degree as pivot
  bits cur = P | X; size_t pivot = 0, sz = 0;
  for ( size_t u = cur._Find_first() ;
   u < n; u = cur.\_Find\_next(u)
    if ( deg[ u ] > sz ) sz = deg[ pivot = u ];
  cur = P & ( ~G[ pivot ] );
  */ // or simply choose first
  bits cur = P & (~G[ ( P | X )._Find_first() ]);
  for ( size_t u = cur._Find_first()
   u < n ; u = cur._Find_next( u ) ) {</pre>
   if ( R[ u ] ) continue;
   R[u] = 1;
   BK(R, P \& G[u], X \& G[u]);
   R[u] = P[u] = 0, X[u] = 1;
public:
 void init( size_t n_ ) {
  n = n_{;}
  for ( size_t i = 0 ; i < n ; ++ i )</pre>
```

```
G[ i ].reset();
  ans.reset();
 void add_edges( int u, bits S ) { G[ u ] = S; }
void add_edge( int u, int v ) {
  G[u][v] = G[v][u] = 1;
 int solve() {
  sort_by_degree(); // or simply iota( deo... )
  for ( size_t i = 0 ; i < n ; ++ i )</pre>
   deg[ i ] = G[ i ].count();
  bits pob, nob = 0; pob.set();
  for (size_t i=n; i<MAXN; ++i) pob[i] = 0;</pre>
  for ( size_t i = 0 ; i < n ; ++ i ) {</pre>
   size_t v = deo[ i ];
   bits tmp; tmp[ v ] = 1;
   BK( tmp, pob & G[ v ], nob & G[ v ] );
pob[ v ] = 0, nob[ v ] = 1;
  return static_cast< int >( ans.count() );
};
      MaxCliqueDyn
3.11
```

```
constexpr int kN = 150;
struct MaxClique { // Maximum Clique
bitset<kN> a[kN], cs[kN];
int ans, sol[kN], q, cur[kN], d[kN], n;
void init(int _n) {
 n = _n, ans = q = 0;
 for (int i = 0; i < n; i++) a[i].reset();</pre>
void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
void csort(vector<int> &r, vector<int> &c) {
 int mx = 1, km = max(ans - q + 1, 1), t = 0,
   m = int(r.size());
 cs[1].reset(); cs[2].reset();
 for (int i = 0; i < m; i++) {</pre>
  int p = r[i], k = 1;
  while ((cs[k] & a[p]).count()) k++;
  if (k > mx) cs[++mx + 1].reset();
  cs[k][p] = 1;
  if (k < km) r[t++] = p;
 c.resize(m);
 if (t) c[t - 1] = 0;
 for (int k = km; k <= mx; k++) {</pre>
  for (int p = int(cs[k]._Find_first());
      p < kN; p = int(cs[k]._Find_next(p))) {</pre>
    r[t] = p; c[t++] = k;
  }
 }
}
void dfs(vector<int> &r, vector<int> &c, int l,
 bitset<kN> mask) {
 while (!r.empty()) {
  int p = r.back(); r.pop_back();
  mask[p] = 0;
   if (q + c.back() <= ans) return;</pre>
  cur[q++] = p;
  vector<int> nr, nc;
  bitset<kN> nmask = mask & a[p];
  for (int i : r)
   if (a[p][i]) nr.push_back(i);
   if (!nr.empty()) {
   if (1 < 4) {
     for (int i : nr)
     d[i] = int((a[i] & nmask).count());
     sort(nr.begin(), nr.end(),
      [&](int x, int y) {
       return d[x] > d[y];
      });
   csort(nr, nc); dfs(nr, nc, l + 1, nmask);
  } else if (q > ans) {
   ans = q; copy(cur, cur + q, sol);
   c.pop_back(); q--;
 }
int solve(bitset<kN> mask) { // vertex mask
 vector<int> r, c;
```

```
for (int i = 0; i < n; i++)
   if (mask[i]) r.push_back(i);
   for (int i = 0; i < n; i++)
    d[i] = int((a[i] & mask).count());
   sort(r.begin(), r.end(),
      [&](int i, int j) { return d[i] > d[j]; });
   csort(r, c);
   dfs(r, c, 1, mask);
   return ans; // sol[0 ~ ans-1]
   }
} graph;
```

3.12 Minimum Mean Cycle

```
/* minimum mean cycle O(VE) */
struct MMC{
#define FZ(n) memset((n),0,sizeof(n))
#define E 101010
#define V 1021
#define inf 1e9
 struct Edge { int v,u; double c; };
 int n, m, prv[V][V], prve[V][V], vst[V];
 Edge e[E];
 vector<int> edgeID, cycle, rho;
 double d[V][V];
 void init( int _n ) { n = _n; m = 0; }
 // WARNING: TYPE matters
 void add_edge( int vi , int ui , double ci )
 { e[ m ++ ] = { vi , ui , ci }; }
 void bellman_ford() {
  for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {</pre>
   fill(d[i+1], d[i+1]+n, inf);
   for(int j=0; j<m; j++) {</pre>
    int v = e[j].v, u = e[j].u;
    if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
     d[i+1][u] = d[i][v]+e[j].c;
     prv[i+1][u] = v;
     prve[i+1][u] = j;
  }
 double solve(){
  // returns inf if no cycle, mmc otherwise
  double mmc=inf;
  int st = -1;
  bellman_ford();
  for(int i=0; i<n; i++) {</pre>
   double avg=-inf;
   for(int k=0; k<n; k++) {</pre>
    if(d[n][i]<inf-eps)</pre>
     avg=max(avg,(d[n][i]-d[k][i])/(n-k));
    else avg=max(avg,inf);
   if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
  FZ(vst);edgeID.clear();cycle.clear();rho.clear();
  for (int i=n; !vst[st]; st=prv[i--][st]) {
   vst[st]++;
   edgeID.PB(prve[i][st]);
   rho.PB(st);
  while (vst[st] != 2) {
   int v = rho.back(); rho.pop_back();
   cycle.PB(v);
   vst[v]++;
  reverse(ALL(edgeID));
  edgeID.resize(SZ(cycle));
  return mmc:
 }
} mmc;
```

3.13 Mo's Algorithm on Tree

```
dfs u:
  push u
  iterate subtree
  push u
Let P = LCA(u, v) with St(u)<=St(v)
if (P == u) query[St(u), St(v)]
else query[Ed(u), St(v)], query[St(P), St(P)]</pre>
```

3.14 Virtual Tree

```
vector<pair<int, int>> build(vector<int> vs, int r) {
vector<pair<int, int>> res;
sort(vs.begin(), vs.end(), [](int i, int j) {
  return dfn[i] < dfn[j]; });</pre>
 vector<int> s = {r};
for (int v : vs) if (v != r) {
 if (int o = lca(v, s.back()); o != s.back()) {
  while (s.size() >= 2) {
    if (dfn[s[s.size() - 2]] < dfn[o]) break;</pre>
    res.emplace_back(s[s.size() - 2], s.back());
    s.pop_back();
   if (s.back() != o) {
    res.emplace_back(o, s.back());
    s.back() = o;
 }
  s.push_back(v);
for (size_t i = 1; i < s.size(); ++i)</pre>
 res.emplace_back(s[i - 1], s[i]);
 return res; // (x, y): x->y
```

4 Matching & Flow

4.1 Bipartite Matching

```
struct BipartiteMatching {
 vector<int> X[N];
 int fX[N], fY[N], n;
 bitset<N> vis;
 bool dfs(int x) {
  for (auto i : X[x]) if (not vis[i]) {
   vis[i] = true;
   if (fY[i] == -1 || dfs(fY[i])) {
    fY[fX[x] = i] = x;
    return true:
   }
  return false;
 void init(int n_, int m) {
  fill_n(X, n = n_, vector<int>());
  memset(fX, -1, sizeof(int) * n);
  memset(fY, -1, sizeof(int) * m);
 void add_edge(int x, int y) { X[x].push_back(y); }
 int solve() { // return how many pair matched
  int cnt = 0;
  for (int i = 0; i < n; i++) {
   vis.reset();
   cnt += dfs(i);
  return cnt;
};
```

4.2 Dijkstra Cost Flow

```
// kN = #(vertices)
// MCMF.{Init, AddEdge, MincostMaxflow}
// MincostMaxflow(source, sink, flow_limit, &cost)
// => flow
using Pii = pair<int, int>;
constexpr int kInf = 0x3f3f3f3f, kN = 500;
struct Edge {
 int to, rev, cost, flow;
struct MCMF { // 0-based
int n{}, m{}, s{}, t{};
vector<Edge> graph[kN];
// Larger range for relabeling
 int64_t dis[kN] = {}, h[kN] = {};
int p[kN] = {};
void Init(int nn) {
 n = nn;
 for (int i = 0; i < n; i++) graph[i].clear();</pre>
void AddEdge(int u, int v, int f, int c) {
 graph[u].push_back({v,
   static_cast<int>(graph[v].size()), c, f});
```

```
graph[v].push_back(
   {u, static_cast<int>(graph[u].size()) - 1,
    -c, 0});
 bool Dijkstra(int &max_flow, int64_t &cost) {
  priority_queue<Pii, vector<Pii>, greater<>> pq;
  fill_n(dis, n, kInf);
  dis[s] = 0;
  pq.emplace(0, s);
  while (!pq.empty()) {
   auto u = pq.top();
   pq.pop();
   int v = u.second;
   if (dis[v] < u.first) continue;</pre>
   for (auto &e : graph[v]) {
    auto new_dis =
     dis[v] + e.cost + h[v] - h[e.to];
    if (e.flow > 0 && dis[e.to] > new_dis) {
     dis[e.to] = new_dis;
     p[e.to] = e.rev;
     pq.emplace(dis[e.to], e.to);
  if (dis[t] == kInf) return false;
  for (int i = 0; i < n; i++) h[i] += dis[i];</pre>
  int d = max_flow;
  for (int u = t; u != s;
     u = graph[u][p[u]].to) {
   auto &e = graph[u][p[u]];
   d = min(d, graph[e.to][e.rev].flow);
  max_flow -= d;
  cost += int64_t(d) * h[t];
  for (int u = t; u != s;
     u = graph[u][p[u]].to) {
   auto &e = graph[u][p[u]];
   e.flow += d;
   graph[e.to][e.rev].flow -= d;
  return true;
 int MincostMaxflow(
  int ss, int tt, int max_flow, int64_t &cost) {
  this->s = ss, this->t = tt;
  cost = 0;
  fill_n(h, n, 0);
  auto orig_max_flow = max_flow;
  while (Dijkstra(max_flow, cost) && max_flow) {}
  return orig_max_flow - max_flow;
};
```

4.3 Dinic

```
template <typename Cap = int64_t>
class Dinic{
private:
  struct E{
    int to, rev;
    Cap cap;
  int n, st, ed;
  vector<vector<E>> G;
  vector<int> lv, idx;
  bool BFS(){
    lv.assign(n, -1);
    queue<int> bfs;
    bfs.push(st); lv[st] = 0;
    while (not bfs.empty()){
      int u = bfs.front(); bfs.pop();
      for (auto e: G[u]) {
        if (e.cap <= 0 or lv[e.to]!=-1) continue;</pre>
        bfs.push(e.to); lv[e.to] = lv[u] + 1;
      }
    return lv[ed] != -1;
  Cap DFS(int u, Cap f){
    if (u == ed) return f;
    Cap ret = 0;
    for(int &i = idx[u]; i < int(G[u].size()); ++i) {</pre>
      auto &e = G[u][i];
```

```
if (e.cap <= 0 or lv[e.to]!=lv[u]+1) continue;</pre>
       Cap nf = DFS(e.to, min(f, e.cap));
ret += nf; e.cap -= nf; f -= nf;
       G[e.to][e.rev].cap += nf;
       if (f == 0) return ret:
     if (ret == 0) lv[u] = -1;
     return ret;
public:
  void init(int n_) { G.assign(n = n_, vector<E>()); }
  void add_edge(int u, int v, Cap c){
    G[u].push_back({v, int(G[v].size()), c});
G[v].push_back({u, int(G[u].size())-1, 0});
  Cap max_flow(int st_, int ed_){
     st = st_, ed = ed_; Cap ret = 0;
    while (BFS()) {
       idx.assign(n, 0);
       Cap f = DFS(st, numeric_limits<Cap>::max());
       ret += f;
       if (f == 0) break;
     return ret;
  }
};
```

4.4 Construct VC

```
vi cover(vector<vi>& g, int n, int m) {
  vi match(m, −1);
  int res = dfsMatching(g, match);
 vector<bool> lfound(n, true), seen(m);
for (int it : match) if (it != -1) lfound[it] = false
  vi q, cover;
  rep(i,0,n) if (lfound[i]) q.push_back(i);
  while (!q.empty()) {
    int i = q.back(); q.pop_back();
    lfound[i] = 1;
    for (int e : g[i]) if (!seen[e] && match[e] != -1)
      seen[e] = true;
      q.push_back(match[e]);
  rep(i,0,n) if (!lfound[i]) cover.push_back(i);
  rep(i,0,m) if (seen[i]) cover.push_back(n+i);
  assert(sz(cover) == res);
  return cover;
```

Flow Models

- · Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.

 - 2. For each edge (x,y,l,u), connect $x\to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower
 - 4. If in(v) > 0, connect $S \to v$ with capacity in(v), otherwise, con- $\text{nect } v \to T \text{ with capacity } -in(v).$
 - To maximize, connect t
 ightarrow s with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer
 - To minimize, let f be the maximum flow from S to T. Connect $t\,\rightarrow\,s$ with capacity ∞ and let the flow from S to Tbe f'. If $f+f'\neq \sum_{v\in V, in(v)>0}in(v)$, there's no solution. Otherwise, f' is the answer.
 - 5. The solution of each edge e is $l_e + f_e$, where f_e corresponds to the flow of edge e on the graph.
- Construct minimum vertex cover from maximum matching M on bipartite graph (X, Y)
 - 1. Redirect every edge: $y \to x$ if $(x, y) \in M$, $x \to y$ otherwise.
 - 2. DFS from unmatched vertices in X.
 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - 1. Consruct super source S and sink T
 - 2. For each edge (x, y, c), connect $x \to y$ with (cost, cap) = (c, 1) if c>0, otherwise connect y o x with (cost, cap)=(-c,1)
 - 3. For each edge with c<0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1
 - 4. For each vertex v with d(v)>0, connect S o v with (cost,cap)=0(0, d(v))

- 5. For each vertex v with d(v) < 0, connect v \rightarrow T with (cost, cap) = (0, -d(v))
- 6. Flow from S to T, the answer is the cost of the flow C+K
- · Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$
 - 2. Construct a max flow model, let K be the sum of all weights
 - 3. Connect source $s \to v, v \in G$ with capacity K
 - 4. For each edge (u, v, w) in G, connect $u \to v$ and $v \to u$ with
 - 5. For $v \in {\it G}$, connect it with sink $v \to t$ with capacity K + 2T $\left(\sum_{e \in E(v)} w(e)\right) - 2w(v)$
 - 6. T is a valid answer if the maximum flow f < K|V|
- · Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \rightarrow v'$ with
 - weight w(u,v). 2. Connect v o v' with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - Find the minimum weight perfect matching on G'.
- Project selection problem
 - 1. If $p_v\,>\,0$, create edge (s,v) with capacity p_v ; otherwise, create
 - edge (v,t) with capacity $-p_v$. 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v.
 - 3. The mincut is equivalent to the maximum profit of a subset of

namespace matching {

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity c_y .
- 2. Create edge (x,y) with capacity c_{xy} . 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

4.6 General Graph Matching

```
int fa[kN], pre[kN], match[kN], s[kN], v[kN];
vector<int> g[kN];
queue<int> q;
void Init(int n) {
 for (int i = 0; i <= n; ++i) match[i] = pre[i] = n;
for (int i = 0; i < n; ++i) g[i].clear();</pre>
void AddEdge(int u, int v) {
 g[u].push_back(v);
 g[v].push_back(u);
int Find(int u) {
 return u == fa[u] ? u : fa[u] = Find(fa[u]);
int LCA(int x, int y, int n) {
 static int tk = 0; tk++
 x = Find(x), y = Find(y);
 for (; ; swap(x, y)) {
  if (x != n) {
   if (v[x] == tk) return x;
   v[x] = tk;
   x = Find(pre[match[x]]);
void Blossom(int x, int y, int l) {
 while (Find(x) != l) {
  pre[x] = y, y = match[x];
  if (s[y] == 1) q.push(y), s[y] = 0;
  if (fa[x] == x) fa[x] = l;
  if (fa[y] == y) fa[y] = l;
  x = pre[y];
 }
bool Bfs(int r, int n) {
 for (int i = 0; i <= n; ++i) fa[i] = i, s[i] = -1;
 while (!q.empty()) q.pop();
 q.push(r);
 s[r] = 0;
 while (!q.empty()) {
  int x = q.front(); q.pop();
  for (int u : g[x]) {
   if (s[u] == -1) {
    pre[u] = x, s[u] = 1;
    if (match[u] == n) {
```

```
for (int a = u, b = x, last; b != n; a = last, b =
     pre[a])
      last = match[b], match[b] = a, match[a] = b;
     return true;
    q.push(match[u]);
    s[match[u]] = 0;
  } else if (!s[u] && Find(u) != Find(x)) {
   int l = LCA(u, x, n);
Blossom(x, u, l);
    Blossom(u, x, l);
  }
 }
}
return false;
int Solve(int n) {
int res = 0;
for (int x = 0; x < n; ++x) {
 if (match[x] == n) res += Bfs(x, n);
return res;
}}
```

4.7 Global Min-Cut

```
const int maxn = 500 + 5;
int w[maxn][maxn], g[maxn];
bool v[maxn], del[maxn];
void add_edge(int x, int y, int c) {
w[x][y] += c; w[y][x] += c;
pair<int, int> phase(int n) {
memset(v, false, sizeof(v));
memset(g, 0, sizeof(g));
int s = -1, t = -1;
while (true) {
 int c = -1;
 for (int i = 0; i < n; ++i) {</pre>
  if (del[i] || v[i]) continue;
  if (c == -1 || g[i] > g[c]) c = i;
 if (c == -1) break;
 v[s = t, t = c] = true;
 for (int i = 0; i < n; ++i) {</pre>
  if (del[i] || v[i]) continue;
  g[i] += w[c][i];
 }
return make_pair(s, t);
int mincut(int n) {
int cut = 1e9:
memset(del, false, sizeof(del));
for (int i = 0; i < n - 1; ++i) {</pre>
 int s, t; tie(s, t) = phase(n);
 del[t] = true; cut = min(cut, g[t]);
 for (int j = 0; j < n; ++j) {</pre>
  w[s][j] += w[t][j]; w[j][s] += w[j][t];
 }
}
return cut;
```

4.8 GomoryHu Tree

```
int g[maxn];
vector<edge> GomoryHu(int n){
  vector<edge> rt;
  for(int i=1;i<=n;++i)g[i]=1;
  for(int i=2;i<=n;++i){
    int t=g[i];
    flow.reset(); // clear flows on all edge
    rt.push_back({i,t,flow(i,t)});
    flow.walk(i); // bfs points that connected to i (use
        edges not fully flow)
    for(int j=i+1;j<=n;++j){
        if(g[j]==t && flow.connect(j))g[j]=i; // check if i
        can reach j
    }
}
return rt;
}</pre>
```

4.9 Kuhn Munkres

```
class KM {
private:
 static constexpr lld INF = 1LL << 60;</pre>
  vector<lld> hl,hr,slk;
  vector<int> fl,fr,pre,qu;
  vector<vector<lld>> w;
  vector<bool> vl,vr;
  int n, ql, qr;
  bool check(int x) {
   if (vl[x] = true, fl[x] != -1)
   return vr[qu[qr++] = fl[x]] = true;
   while (x != -1) swap(x, fr[fl[x] = pre[x]]);
  return false;
  void bfs(int s) {
  fill(slk.begin(), slk.end(), INF);
  fill(vl.begin(), vl.end(), false);
fill(vr.begin(), vr.end(), false);
  ql = qr = \bar{0};
   vr[qu[qr++] = s] = true;
   while (true) {
    lld d;
    while (ql < qr) {</pre>
     for (int x = 0, y = qu[ql++]; x < n; ++x) {
      if(!vl[x]&&slk[x]>=(d=hl[x]+hr[y]-w[x][y])){
       if (pre[x] = y, d) slk[x] = d;
       else if (!check(x)) return;
     }
    }
    d = INF;
   for (int x = 0; x < n; ++x)
     if (!vl[x] && d > slk[x]) d = slk[x];
    for (int x = 0; x < n; ++x) {
    if (vl[x]) hl[x] += d;
     else slk[x] -= d;
     if (vr[x]) hr[x] -= d;
    for (int x = 0; x < n; ++x)
     if (!vl[x] && !slk[x] && !check(x)) return;
public:
 void init( int n_ ) {
  qu.resize(n = n_);
   fl.assign(n, -1); fr.assign(n, -1);
  hr.assign(n, 0); hl.resize(n);
  w.assign(n, vector<lld>(n));
  slk.resize(n); pre.resize(n);
  vl.resize(n); vr.resize(n);
  void set_edge( int u, int v, lld x ) {w[u][v] = x;}
  lld solve() {
  for (int i = 0; i < n; ++i)</pre>
   hl[i] = *max_element(w[i].begin(), w[i].end());
   for (int i = 0; i < n; ++i) bfs(i);</pre>
  lld res = 0:
  for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
  return res;
 }
} km;
```

4.10 Minimum Cost Circulation

```
struct Edge { int to, cap, rev, cost; };
vector<Edge> g[kN];
int dist[kN], pv[kN], ed[kN];
bool mark[kN];
int NegativeCycle(int n) {
 memset(mark, false, sizeof(mark));
memset(dist, 0, sizeof(dist));
 int upd = -1;
 for (int i = 0; i <= n; ++i) {
  for (int j = 0; j < n; ++j) {</pre>
   int idx = 0;
   for (auto &e : g[j]) {
    if(e.cap > 0 && dist[e.to] > dist[j] + e.cost){
     dist[e.to] = dist[j] + e.cost;
     pv[e.to] = j, ed[e.to] = idx;
     if (i == n) {
      upd = j;
```

```
while(!mark[upd])mark[upd]=1,upd=pv[upd];
     return upd:
    }
    idx++:
  }
 }
return -1;
int Solve(int n) {
int rt = -1, ans = 0;
while ((rt = NegativeCycle(n)) >= 0) {
 memset(mark, false, sizeof(mark));
 vector<pair<int, int>> cyc;
 while (!mark[rt]) {
  cyc.emplace_back(pv[rt], ed[rt]);
  mark[rt] = true;
  rt = pv[rt];
 reverse(cyc.begin(), cyc.end());
 int cap = kInf;
 for (auto &i : cyc) {
  auto &e = g[i.first][i.second];
  cap = min(cap, e.cap);
 for (auto &i : cyc) {
  auto &e = g[i.first][i.second];
  e.cap -= cap;
  g[e.to][e.rev].cap += cap;
  ans += e.cost * cap;
 }
return ans;
```

4.11 Minimum Cost Maximum Flow

```
class MiniCostMaxiFlow{
using Cap = int; using Wei = int64_t;
using PCW = pair<Cap,Wei>;
static constexpr Cap INF_CAP = 1 << 30;</pre>
static constexpr Wei INF_WEI = 1LL<<60;</pre>
private:
struct Edge{
 int to, back;
 Cap cap; Wei wei;
 Edge() {}
 Edge(int a,int b, Cap c, Wei d):
   to(a),back(b),cap(c),wei(d) {}
};
int ori, edd;
vector<vector<Edge>> G;
vector<int> fa, wh;
vector<bool> inq;
vector<Wei> dis;
PCW SPFA(){
 fill(inq.begin(),inq.end(),false);
 fill(dis.begin(),dis.end(),INF_WEI);
  queue<int> qq; qq.push(ori);
 dis[ori] = 0;
 while(not qq.empty()){
  int u=qq.front();qq.pop();
   inq[u] = false;
  for(int i=0;i<SZ(G[u]);++i){</pre>
    Edge e=G[u][i];
    int v=e.to; Wei d=e.wei;
   if(e.cap<=0||dis[v]<=dis[u]+d)
     continue;
   dis[v] = dis[u] + d;
    fa[v] = u, wh[v] = i;
   if (ing[v]) continue;
    qq.push(v);
    inq[v] = true;
  }
 if(dis[edd]==INF_WEI) return {-1, -1};
 Cap mw=INF_CAP;
 for(int i=edd;i!=ori;i=fa[i])
  mw=min(mw,G[fa[i]][wh[i]].cap);
 for (int i=edd;i!=ori;i=fa[i]){
  auto &eg=G[fa[i]][wh[i]];
  eg.cap -= mw;
```

```
G[eg.to][eg.back].cap+=mw;
  return {mw, dis[edd]};
 }
public:
 void init(int n){
  G.clear();G.resize(n);
  fa.resize(n);wh.resize(n);
  inq.resize(n); dis.resize(n);
 void add_edge(int st, int ed, Cap c, Wei w){
  G[st].emplace_back(ed,SZ(G[ed]),c,w);
 G[ed].emplace_back(st,SZ(G[st])-1,0,-w);
 PCW solve(int a, int b){
  ori = a, edd = b;
  Cap cc=0; Wei ww=0;
  while(true){
  PCW ret=SPFA();
   if(ret.first==-1) break;
   cc+=ret.first;
   ww+=ret.first * ret.second;
  return {cc,ww};
}
} mcmf;
```

```
4.12 Maximum Weight Graph Matching
struct WeightGraph {
 static const int inf = INT_MAX;
 static const int maxn = 514;
 struct edge {
  int u, v, w;
  edge(){}
  edge(int u, int v, int w): u(u), v(v), w(w) {}
 int n, n_x;
 edge g[maxn * 2][maxn * 2];
 int lab[maxn * 2];
 int match[maxn * 2], slack[maxn * 2], st[maxn * 2], pa
    [maxn * 2]:
 int flo_from[maxn * 2][maxn + 1], S[maxn * 2], vis[
    maxn * 2];
 vector<int> flo[maxn * 2];
 queue<int> q;
 int e_delta(const edge &e) { return lab[e.u] + lab[e.v
 ] - g[e.u][e.v].w * 2; }
void update_slack(int u, int x) { if (!slack[x] ||
    e_delta(g[u][x]) < e_delta(g[slack[x]][x])) slack[x</pre>
    ] = u; }
 void set_slack(int x) {
  slack[x] = 0;
  for (int u = 1; u <= n; ++u)</pre>
   if (g[u][x].w > 0 && st[u] != x && S[st[u]] == 0)
    update_slack(u, x);
 void q_push(int x) {
  if (x \le n) q.push(x);
  else for (size_t i = 0; i < flo[x].size(); i++)</pre>
    q_push(flo[x][i]);
 void set_st(int x, int b) {
  st[x] = b;
  if (x > n) for (size_t i = 0; i < flo[x].size(); ++i)</pre>
     set_st(flo[x][i], b);
 int get_pr(int b, int xr) {
  int pr = find(flo[b].begin(), flo[b].end(), xr) - flo
    [b].begin();
  if (pr % 2 == 1) {
   reverse(flo[b].begin() + 1, flo[b].end());
   return (int)flo[b].size() - pr;
  return pr;
 void set_match(int u, int v) {
  match[u] = g[u][v].v;
  if (u <= n) return;</pre>
  edge e = g[u][v];
  int xr = flo_from[u][e.u], pr = get_pr(u, xr);
  for (int i = 0; i < pr; ++i) set_match(flo[u][i], flo</pre>
    [u][i ^ 1]);
```

```
set match(xr, v);
 rotate(flo[u].begin(), flo[u].begin() + pr, flo[u].
   end());
void augment(int u, int v) {
 for (; ; ) {
  int xnv = st[match[u]];
  set_match(u, v);
  if (!xnv) return;
 set_match(xnv, st[pa[xnv]]);
 u = st[pa[xnv]], v = xnv;
}
int get_lca(int u, int v) {
static int t = 0;
 for (++t; u || v; swap(u, v)) {
  if (u == 0) continue;
 if (vis[u] == t) return u;
 vis[u] = t;
  u = st[match[u]];
  if (u) u = st[pa[u]];
 }
void add_blossom(int u, int lca, int v) {
 int b = n + 1;
while (b <= n_x && st[b]) ++b;</pre>
 if (b > n_x) ++n_x;
 lab[b] = 0, S[b] = 0;
match[b] = match[lca];
 flo[b].clear();
 flo[b].push_back(lca);
 for (int x = u, y; x != lca; x = st[pa[y]])
 flo[b].push_back(x), flo[b].push_back(y = st[match[x
   ]]), q_push(y);
 reverse(flo[b].begin() + 1, flo[b].end());
 for (int x = v, y; x != lca; x = st[pa[y]])
 flo[b].push_back(x), flo[b].push_back(y = st[match[x
   ]]), q_push(y);
 set_st(b, b);
 for (int x = 1; x \le n_x; ++x) g[b][x].w = g[x][b].w
 for (int x = 1; x <= n; ++x) flo_from[b][x] = 0;</pre>
 for (size_t i = 0; i < flo[b].size(); ++i) {</pre>
  int xs = flo[b][i];
  for (int x = 1; x <= n_x; ++x)
   if (g[b][x].w == 0 || e_delta(g[xs][x]) < e_delta(g</pre>
   [b][x]))
    g[b][x] = g[xs][x], g[x][b] = g[x][xs];
  for (int x = 1; x \le n; ++x)
  if (flo_from[xs][x]) flo_from[b][x] = xs;
set_slack(b);
void expand_blossom(int b) {
for (size_t i = 0; i < flo[b].size(); ++i)</pre>
  set_st(flo[b][i], flo[b][i]);
 int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b,
 for (int i = 0; i < pr; i += 2) {</pre>
 int xs = flo[b][i], xns = flo[b][i + 1];
  pa[xs] = g[xns][xs].u;
  S[xs] = 1, S[xns] = 0;
 slack[xs] = 0, set_slack(xns);
  q_push(xns);
 S[xr] = 1, pa[xr] = pa[b];
 for (size_t i = pr + 1; i < flo[b].size(); ++i) {
  int xs = flo[b][i];</pre>
 S[xs] = -1, set_slack(xs);
st[b] = 0;
bool on_found_edge(const edge &e) {
int u = st[e.u], v = st[e.v];
 if (S[v] == -1) {
 pa[v] = e.u, S[v] = 1;
  int nu = st[match[v]];
  slack[v] = slack[nu] = 0;
 S[nu] = 0, q_push(nu);
 } else if (S[v] == 0) {
  int lca = get_lca(u, v);
```

```
if (!lca) return augment(u,v), augment(v,u), true;
  else add_blossom(u, lca, v);
 }
 return false;
bool matching() {
 memset(S + 1, -1, sizeof(int) * n_x);
 memset(slack + 1, 0, sizeof(int) * n_x);
 q = queue<int>();
 for (int x = 1; x <= n_x; ++x)</pre>
  if (st[x] == x && !match[x]) pa[x] = 0, S[x] = 0,
   q_push(x);
 if (q.empty()) return false;
 for (; ; ) {
  while (q.size()) {
   int u = q.front(); q.pop();
   if (S[st[u]] == 1) continue;
   for (int v = 1; v \le n; ++v)
    if (g[u][v].w > 0 && st[u] != st[v]) {
     if (e_delta(g[u][v]) == 0) {
      if (on_found_edge(g[u][v])) return true;
     } else update_slack(u, st[v]);
  int d = inf;
  for (int b = n + 1; b <= n_x; ++b)</pre>
   if (st[b] == b && S[b] == 1) d = min(d, lab[b] / 2)
  for (int x = 1; x <= n_x; ++x)
   if (st[x] == x && slack[x]) {
    if (S[x] == -1) d = min(d, e_delta(g[slack[x]][x])
    else if (S[x] == 0) d = min(d, e_delta(g[slack[x
   ]][x]) / 2);
  for (int u = 1; u <= n; ++u) {
   if (S[st[u]] == 0) {
    if (lab[u] <= d) return 0;</pre>
    lab[u] -= d;
   } else if (S[st[u]] == 1) lab[u] += d;
  for (int b = n + 1; b <= n_x; ++b)
   if (st[b] == b) {
    if (S[st[b]] == 0) lab[b] += d * 2;
    else if (S[st[b]] == 1) lab[b] -= d * 2;
  q = queue<int>();
  for (int x = 1; x <= n_x; ++x)
   if (st[x] == x && slack[x] && st[slack[x]] != x &&
   e_delta(g[slack[x]][x]) == 0)
    if (on_found_edge(g[slack[x]][x])) return true;
  for (int b = n + 1; b <= n_x; ++b)
if (st[b] == b && S[b] == 1 && lab[b] == 0)</pre>
   expand_blossom(b);
 return false;
pair<long long, int> solve() {
  memset(match + 1, 0, sizeof(int) * n);
 n x = n;
 int n_matches = 0;
 long long tot_weight = 0;
 for (int u = 0; u <= n; ++u) st[u] = u, flo[u].clear
   ();
 int w_max = 0;
 for (int u = 1; u <= n; ++u)</pre>
  for (int v = 1; v <= n; ++v) {</pre>
   flo_from[u][v] = (u == v ? u : 0);
   w_max = max(w_max, g[u][v].w);
 for (int u = 1; u <= n; ++u) lab[u] = w_max;</pre>
 while (matching()) ++n_matches;
 for (int u = 1; u <= n; ++u)</pre>
  if (match[u] && match[u] < u)</pre>
   tot_weight += g[u][match[u]].w;
 return make_pair(tot_weight, n_matches);
void add_edge(int ui, int vi, int wi) { g[ui][vi].w =
   g[vi][ui].w = wi; }
void init(int _n) {
 n = _n;
 for (int u = 1; u <= n; ++u)</pre>
```

```
for (int v = 1; v <= n; ++v)</pre>
   g[u][v] = edge(u, v, 0);
}
```

5 Math

Common Bounds

5.1.1 Partition function

$$\begin{split} p(0) &= 1, \; p(n) = \sum_{k \in \mathbb{Z} \backslash \{0\}} (-1)^{k+1} p(n-k(3k-1)/2) \\ \\ &p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n}) \\ \\ &\frac{n}{p(n)} \; \mid \; 01234567892050100 \\ \\ &\frac{n}{p(n)} \; \mid \; 11235711152230627 \sim 2e5 \sim 2e8 \end{split}$$

5.1.2 Divisor function

n	100	1e3	1e6	1e9	1e12	1e15	1e18
$\max_{i \leq n} (d(i))$	12	32	240	1344	6720	26880	103680

5.1.3 Factorial

	123							10	
n!	126	24 12	0 720	5040	3 403	20 362	880 36	52880	0
n	11	12	2 1	3	14	15	16	17	
n!	4.0e'	7 4.8	e8 6.2	e9 8.	7e10 1	.3e12 2	2.1e13 3	.6e14	
n	20	25	30	40	50	100	150		171 IL_MAX
n!	2e18	2e25	3e32	8e47	3e64	9e157	6e262	>DB	L_MAX

5.1.4 Binom Coef

Strling Number

5.2.1 First Kind

 $S_1(n,k)$ counts the number of permutations of n elements with k disjoint cvcles.

$$S_1(n,k) = (n-1) \cdot S_1(n-1,k) + S_1(n-1,k-1)$$

$$x(x+1) \dots (x+n-1) = \sum_{k=0}^n S_1(n,k) x^k$$

$$g(x) = x(x+1) \dots (x+n-1) = \sum_{k=0}^n a_k x^k$$

$$\Rightarrow g(x+n) = \sum_{k=0}^n \frac{b_k}{(n-k)!} x^{n-k},$$

$$b_k = \sum_{i=0}^k ((n-i)! a_{n-i}) \cdot (\frac{n^{k-i}}{(k-i)!})$$

5.2.2 Second Kind

 $S_2(n,k)$ counts the number of ways to partition a set of n elements into knonempty sets.

$$S_2(n,k) = S_2(n-1,k-1) + k \cdot S_2(n-1,k)$$

$$S_2(n,k) = \sum_{i=0}^k \binom{k}{i} i^n (-1)^{k-i} = \sum_{i=0}^k \frac{(-1)^i}{i!} \cdot \frac{(k-i)^n}{(k-i)!}$$

ax+by=gcd

```
// ax+ny = 1, ax+ny == ax == 1 \ (mod \ n)
void exgcd(lld x,lld y,lld &g,lld &a,lld &b) {
if (y == 0) g=x,a=1,b=0;
else exgcd(y,x\%y,g,b,a),b=(x/y)*a;
```

Berlekamp Massey

```
template <typename T>
vector<T> BerlekampMassey(const vector<T> &output) {
 vector<T> d(output.size() + 1), me, he;
 for (size_t f = 0, i = 1; i <= output.size(); ++i) {</pre>
  for (size_t j = 0; j < me.size(); ++j)
d[i] += output[i - j - 2] * me[j];</pre>
  if ((d[i] -= output[i - 1]) == 0) continue;
  if (me.empty()) {
   me.resize(f = i);
   continue;
  vector<T> o(i - f - 1);
  T k = -d[i] / d[f]; o.push_back(-k);
  for (T x : he) o.push_back(x * k);
  if (o.size() < me.size()) o.resize(me.size());</pre>
  for (size_t j = 0; j < me.size(); ++j) o[j] += me[j];</pre>
  if (i-f+he.size() >= me.size()) he = me, f = i;
 return me;
```

5.5 Charateristic Polynomial

```
vector<vector<int>> Hessenberg(const vector<vector<int</pre>
    >> &A) {
 int N = A.size();
 vector<vector<int>> H = A;
 for (int i = 0; i < N - 2; ++i) {
  if (!H[i + 1][i]) {
   for (int j = i + 2; j < N; ++j) {
    if (H[j][i]) {
     for (int k = i; k < N; ++k) swap(H[i + 1][k], H[j</pre>
     for (int k = 0; k < N; ++k) swap(H[k][i + 1], H[k</pre>
    ][j]);
     break:
   }
  if (!H[i + 1][i]) continue;
  int val = fpow(H[i + 1][i], kP - 2);
for (int j = i + 2; j < N; ++j) {</pre>
   int coef = 1LL * val * H[j][i] % kP;
   for (int k = i; k < N; ++k) H[j][k] = (H[j][k] + 1LL
      * H[i + 1][k] * (kP - coef)) % kP;</pre>
   for (int k = 0; k < N; ++k) H[k][i + 1] = (H[k][i +
    1] + 1LL * H[k][j] * coef) % kP;
 return H;
vector<int> CharacteristicPoly(const vector<vector<int</pre>
    >> &A) {
 int N = A.size();
 auto H = Hessenberg(A);
 for (int i = 0; i < N; ++i) {</pre>
  for (int j = 0; j < N; ++j) H[i][j] = kP - H[i][j];
 vector<vector<int>>> P(N + 1, vector<int>(N + 1));
 P[0][0] = 1;
 for (int i = 1; i <= N; ++i) {</pre>
  P[i][0] = 0;
  for (int j = 1; j <= i; ++j) P[i][j] = P[i - 1][j -
    1];
  int val = 1;
  for (int j = i - 1; j >= 0; --j) {
   int coef = 1LL * val * H[j][i - 1] % kP;
   for (int k = 0; k <= j; ++k) P[i][k] = (P[i][k] + 1
    LL * P[j][k] * coef) % kP;
   if (j) val = 1LL * val * (kP - H[j][j - 1]) % kP;
 if (N & 1) {
  for (int i = 0; i <= N; ++i) P[N][i] = kP - P[N][i];</pre>
 return P[N];
```

5.6 Chinese Remainder

```
x = a1 % m1
x = a2 % m2
g = gcd(m1, m2)
assert((a1-a2)%g==0)
[p, q] = exgcd(m2/g, m1/g)
return a2+m2*(p*(a1-a2)/g)
// 0 <= x < lcm(m1, m2)</pre>
```

5.7 De-Bruijn

```
int res[maxn], aux[maxn], sz;
void db(int t, int p, int n, int k) {
if (t > n) {
  if (n % p == 0)
   for (int i = 1; i <= p; ++i)</pre>
    res[sz++] = aux[i];
} else {
 aux[t] = aux[t - p];
 db(t + 1, p, n, k);
for (int i = aux[t - p] + 1; i < k; ++i) {
  aux[t] = i;
  db(t + 1, t, n, k);
}
int de_bruijn(int k, int n) {
// return cyclic string of len k^n s.t. every string
 // of len n using k char appears as a substring.
if (k == 1) {
 res[0] = 0;
  return 1;
for (int i = 0; i < k * n; i++) aux[i] = 0;</pre>
db(1, 1, n, k);
 return sz;
```

5.8 DiscreteLog

```
template<typename Int>
Int BSGS(Int x, Int y, Int M) {
  // x^? \setminus equiv y \pmod{M}
  Int t = 1, c = 0, g = 1;
  for (Int M_ = M; M_ > 0; M_ >>= 1)
    g = g * x % M;
  for (g = gcd(g, M); t % g != 0; ++c) {
    if (t == y) return c;
    t = t * x % M;
  if (y % g != 0) return -1;
  t /= g, y /= g, M /= g;
  Int h = 0, gs = 1;

for (; h * h < M; ++h) gs = gs * x % M;
  unordered_map<Int, Int> bs;
  for (Int s = 0; s < h; bs[y] = ++s)
   y = y * x % M;
  for (Int s = 0; s < M; s += h) {</pre>
    t = t * gs % M;
    if (bs.count(t)) return c + s + h - bs[t];
  return -1;
}
```

5.9 Extended Euler

```
a^b \equiv \begin{cases} a^{(b \mod \varphi(m)) + \varphi(m)} & \text{if } (a,m) \neq 1 \land b \geq \varphi(m) \\ a^b \mod \varphi(m) & \text{otherwise} \end{cases} \pmod m
```

5.10 ExtendedFloorSum

```
\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ +g(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1) \\ -h(c, c-b-1, a, m-1)), & \text{otherwise} \end{cases} \end{split}
```

```
\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ + \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \end{cases} \\ 0, & n < 0 \vee a = 0 \\ -2f(c, c - b - 1, a, m - 1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}
```

```
5.11 Fast Fourier Transform
const int mod = 1000000007;
const int M1 = 985661441; // G = 3
const int M2 = 998244353;
const int M3 = 1004535809;
int superBigCRT(int64_t A, int64_t B, int64_t C) {
  static_assert (M1 <= M2 && M2 <= M3);
  constexpr int64_t r12 = modpow(M1, M2-2, M2);
  constexpr int64_t r13 = modpow(M1, M3-2, M3);
  constexpr int64_t r23 = modpow(M2, M3-2, M3);
  constexpr int64_t M1M2 = 1LL \star M1 \star M2 % mod;
  B = (B - A + M2) * r12 % M2;

C = (C - A + M3) * r13 % M3;
  C = (C - B + M3) * r23 % M3;
  return (A + B * M1 + C * M1M2) % mod;
\textbf{namespace} \ \ \textbf{fft} \ \ \{
using VI = vector<int>;
using VL = vector<long long>;
const double pi = acos(-1);
cplx omega[maxn + 1];
void prefft() {
 for (int i = 0; i <= maxn; i++)</pre>
  omega[i] = cplx(cos(2 * pi * j / maxn),
     sin(2 * pi * j / maxn));
void fft(vector<cplx> &v, int n) {
 int z = __builtin_ctz(n) - 1;
for (int i = 0; i < n; ++i) {</pre>
  int x = 0, j = 0;
  for (;(1 << j) < n;++j) x^=(i >> j & 1) << (z - j);
  if (x > i) swap(v[x], v[i]);
 for (int s = 2; s <= n; s <<= 1) {
  int z = s >> 1;
  for (int i = 0; i < n; i += s) {</pre>
   for (int k = 0; k < z; ++k) {
    cplx x = v[i + z + k] * omega[maxn / s * k];
    v[i + z + k] = v[i + k] - x;
    v[i + k] = v[i + k] + x;
void ifft(vector<cplx> &v, int n) {
 fft(v, n); reverse(v.begin() + 1, v.end());
 for (int i=0;i<n;++i) v[i] = v[i] * cplx(1. / n, 0);</pre>
VL convolution(const VI &a, const VI &b) {
 // Should be able to handle N <= 10^5, C <= 10^4
 int sz = 1;
 while (sz < a.size() + b.size() - 1) sz <<= 1;</pre>
 vector<cplx> v(sz);
 for (int i = 0; i < sz; ++i) {
  double re = i < a.size() ? a[i] : 0;
  double im = i < b.size() ? b[i] : 0;
  v[i] = cplx(re, im);
 fft(v, sz);
 for (int i = 0; i <= sz / 2; ++i) {</pre>
  int j = (sz - i) & (sz - 1);
  cplx x = (v[i] + v[j].conj()) * (v[i] - v[j].conj())
  * cplx(0, -0.25);
if (j != i) v[j] = (v[j] + v[i].conj()) * (v[j] - v[i
    ].conj()) * cplx(0, -0.25);
  v[i] = x;
 }
```

ifft(v, sz);

VL c(sz);

```
National Taiwan University - ckiseki
 for (int i = 0; i < sz; ++i) c[i] = round(v[i].re);</pre>
                                                              * x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */
                                                            void fwt(int x[], int N, bool inv = false) {
return c:
                                                              for (int d = 1; d < N; d <<= 1) {</pre>
VI convolution_mod(const VI &a, const VI &b, int p) {
                                                                 for (int s = 0, d2 = d * 2; s < N; s += d2)
                                                                   for (int i = s, j = s + d; i < s + d; i++, j++) {
int sz = 1:
while (sz + 1 < a.size() + b.size()) sz <<= 1;</pre>
                                                                     int ta = x[i], tb = x[j];
vector<cplx> fa(sz), fb(sz);
                                                                     x[i] = modadd(ta, tb);
for (int i = 0; i < (int)a.size(); ++i)</pre>
  fa[i] = cplx(a[i] & ((1 << 15) - 1), a[i] >> 15);
for (int i = 0; i < (int)b.size(); ++i)</pre>
 fb[i] = cplx(b[i] & ((1 << 15) - 1), b[i] >> 15);
 fft(fa, sz), fft(fb, sz);
double r = 0.25 / sz;
 cplx r2(0, -1), r3(r, 0), r4(0, -r), r5(0, 1);
for (int i = 0; i <= (sz >> 1); ++i) {
  int j = (sz - i) & (sz - 1);
  cplx a1 = (fa[i] + fa[j].conj());
 cplx a2 = (fa[i] - fa[j].conj()) * r2;
 cplx b1 = (fb[i] + fb[j].conj()) * r3;
  cplx b2 = (fb[i] - fb[j].conj()) * r4;
                                                              while (t--) {
 if (i != j) {
  cplx c1 = (fa[j] + fa[i].conj());
   cplx c2 = (fa[j] - fa[i].conj()) * r2;
                                                               a = a2;
   cplx d1 = (fb[j] + fb[i].conj()) * r3;
                                                              }
   cplx d2 = (fb[j] - fb[i].conj()) * r4;
                                                              return a != 1;
   fa[i] = c1 * d1 + c2 * d2 * r5;
  fb[i] = c1 * d2 + c2 * d1;
  fa[j] = a1 * b1 + a2 * b2 * r5;
  fb[j] = a1 * b2 + a2 * b1;
                                                             for (llu m:
fft(fa, sz), fft(fb, sz);
vector<int> res(sz);
for (int i = 0; i < sz; ++i) {</pre>
                                                               return false:
 long long a = round(fa[i].re), b = round(fb[i].re),
                                                             return true;
       c = round(fa[i].im);
 res[i] = (a+((b \% p) << 15)+((c \% p) << 30)) \% p;
}
                                                            5.15 NTT
return res;
}}
                                                            struct NTT {
5.12 FloorSum
// @param n `n < 2^32`
                                                             NTT () {
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b)/m) mod 2^64
llu floor_sum_unsigned(llu n, llu m, llu a, llu b) {
                                                                roots[i] = 1;
llu ans = 0;
while (true) {
  if (a >= m) {
  ans += n * (n - 1) / 2 * (a / m); a %= m;
                                                              }
  if (b >= m) {
  ans += n * (b / m); b \% = m;
  llu y_max = a * n + b;
 if (y_max < m) break;</pre>
 // y_max < m * (n + 1)
 // floor(y_max / m) <= n
 n = (llu)(y_max / m), b = (llu)(y_max % m);
 swap(m, a);
}
return ans;
lld floor_sum(lld n, lld m, lld a, lld b) {
 llu ans = 0;
                                                                }
if (a < 0) {
                                                               }
 llu a2 = (a \% m + m) \% m;
 ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
                                                              if (inv) {
 a = a2;
if (b < 0) {
 llu b2 = (b \% m + m) \% m;
 ans -= 1ULL * n * ((b2 - b) / m);
                                                              }
 b = b2;
                                                             }
return ans + floor_sum_unsigned(n, m, a, b);
5.13 FWT
                                                            int b = sqrt(n);
/* or convolution:
* x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
```

* and convolution:

x[j] = modsub(ta, tb); if (inv) for (int i = 0, invn = modinv(N); i < N; i</pre> x[i] = modmul(x[i], invn); 5.14 Miller Rabin bool isprime(llu x) { static auto witn = [](llu a, llu u, llu n, int t) { if (!a) return false; llu a2 = mmul(a, a, n);if (a2 == 1 && a != 1 && a != n - 1) return true; if (x < 2) return false;</pre> **if** (!(x & 1)) **return** x == 2; int t = __builtin_ctzll(x - 1); llu odd = (x - 1) >> t;{2, 325, 9375, 28178, 450775, 9780504, 1795265022}) if (witn(mpow(m % x, odd, x), odd, x, t)) template <int mod, int G, int maxn> static_assert (maxn == (maxn & -maxn)); int roots[maxn]; int r = modpow(G, (mod - 1) / maxn); for (int i = maxn >> 1; i; i >>= 1) { for (int j = 1; j < i; j++)</pre> roots[i + j] = modmul(roots[i + j - 1], r); r = modmul(r, r);// n must be 2^k , and $0 \le F[i] \le mod$ void operator()(int F[], int n, bool inv = false) { for (int i = 0, j = 0; i < n; i++) {</pre> if (i < j) swap(F[i], F[j]);</pre> for (int k = n>>1; (j^=k) < k; k>>=1); for (int s = 1; s < n; s *= 2) { for (int i = 0; i < n; i += s * 2) { for (int j = 0; j < s; j++) {</pre> **int** a = F[i+j]; int b = modmul(F[i+j+s], roots[s+j]); F[i+j] = modadd(a, b); // a + bF[i+j+s] = modsub(a, b); // a - bint invn = modinv(n); for (int i = 0; i < n; i++)</pre> F[i] = modmul(F[i], invn); reverse(F + 1, F + n); NTT<2013265921, 31, 1048576> ntt; 5.16 Partition Number ans[0] = tmp[0] = 1;for (int i = 1; i <= b; i++) {

```
for (int rep = 0; rep < 2; rep++)
for (int j = i; j <= n - i * i; j++)</pre>
   modadd(tmp[j], tmp[j-i]);
for (int j = i * i; j <= n; j++)
modadd(ans[j], tmp[j - i * i]);</pre>
```

Pi Count (Linear Sieve)

```
static constexpr int N = 1000000 + 5;
lld pi[N];
vector<int> primes;
bool sieved[N];
lld cube_root(lld x){
lld s=cbrt(x-static_cast<long double>(0.1));
while(s*s*s <= x) ++s;
return s-1;
lld square_root(lld x){
lld s=sqrt(x-static_cast<long double>(0.1));
while(s*s <= x) ++s;
return s-1;
void init(){
primes.reserve(N);
primes.push_back(1);
for(int i=2;i<N;i++) {</pre>
 if(!sieved[i]) primes.push_back(i);
 pi[i] = !sieved[i] + pi[i-1];
 for(int p: primes) if(p > 1) {
   if(p * i >= N) break;
   sieved[p * i] = true;
   if(p % i == 0) break;
 }
}
lld phi(lld m, lld n) {
static constexpr int MM = 80000, NN = 500;
 static lld val[MM][NN];
if(m<MM&&n<NN&&val[m][n])return val[m][n]-1;</pre>
if(n == 0) return m;
 if(primes[n] >= m) return 1;
lld ret = phi(m,n-1)-phi(m/primes[n],n-1);
if(m<MM&&n<NN) val[m][n] = ret+1;</pre>
return ret;
lld pi_count(lld);
lld P2(lld m, lld n) {
lld sm = square_root(m), ret = 0;
for(lld i = n+1;primes[i]<=sm;i++)</pre>
 ret+=pi_count(m/primes[i])-pi_count(primes[i])+1;
return ret;
lld pi_count(lld m) {
if(m < N) return pi[m];</pre>
lld n = pi_count(cube_root(m));
return phi(m, n) + n - 1 - P2(m, n);
```

5.18 Pollard Rho

```
// does not work when n is prime
// return any non-trivial factor
llu pollard_rho(llu n) {
static auto f = [](llu x, llu k, llu m) {
    return add(k, mul(x, x, m), m); };
if (!(n & 1)) return 2;
mt19937 rnd(120821011);
while (true) {
 llu y = 2, yy = y, x = rnd() % n, t = 1;
 for (llu sz = 2; t == 1; sz <<= 1, y = yy) {
  for (llu i = 0; t == 1 && i < sz; ++i) {</pre>
   yy = f(yy, x, n);
    t = gcd(yy > y ? yy - y : y - yy, n);
  }
  if (t != 1 && t != n) return t;
```

Polynomial Operations 5.19

```
using V = vector<int>;
#define fi(l, r) for (int i = int(l); i < int(r); ++i)
```

```
template <int mod, int G, int maxn> struct Poly : V {
static uint32_t n2k(uint32_t n) {
 if (n <= 1) return 1;
 return 1u << (32 - __builtin_clz(n - 1));</pre>
static NTT<mod,G,maxn> ntt; // coefficients in [0, P)
explicit Poly(int n = 1) : V(n) {}
Poly(const V &v) : V(v) {}
Poly(const Poly &p, size_t n) : V(n) {
 copy_n(p.data(), min(p.size(), n), data());
Poly &irev() { return reverse(data(), data() + size())
    , *this; }
Poly &isz(int sz) { return resize(sz), *this; }
Poly &iadd(const Poly &rhs) { // n() == rhs.n()
 fi(0, size())(*this)[i] = modadd((*this)[i], rhs[i]);
 return *this;
Poly &imul(int k) {
 fi(0, size())(*this)[i] = modmul((*this)[i], k);
 return *this;
Poly Mul(const Poly &rhs) const {
 const int sz = n2k(size() + rhs.size() - 1);
 Poly X(*this, sz), Y(rhs, sz);
ntt(X.data(), sz), ntt(Y.data(), sz);
 fi(0, sz) X[i] = modmul(X[i], Y[i]);
 ntt(X.data(), sz, true);
 return X.isz(size() + rhs.size() - 1);
Poly Inv() const { // coef[0] != 0
 if (size() == 1) return V{modinv(*begin())};
 const int sz = n2k(size() * 2);
 Poly X = Poly(*this, (size() + 1) / 2).Inv().isz(sz),
     Y(*this, sz);
 ntt(X.data(), sz), ntt(Y.data(), sz);
 fi(0, sz) X[i] = modmul(X[i], modsub(2, modmul(X[i],
    Y[i])));
 ntt(X.data(), sz, true);
 return X.isz(size());
Poly Sqrt() const { // coef[0] \in [1, mod)^2
 if (size() == 1) return V{QuadraticResidue((*this))
    [0], mod)};
 Poly X = Poly(*this, (size() + 1) / 2).Sqrt().isz(
    size());
 return X.iadd(Mul(X.Inv()).isz(size())).imul(mod / 2
    + 1);
pair<Poly, Poly> DivMod(const Poly &rhs) const {
 if (size() < rhs.size()) return {V{0}, *this};</pre>
 const int sz = size() - rhs.size() + 1;
 Poly X(rhs); X.irev().isz(sz);
 Poly Y(*this); Y.irev().isz(sz);
 Poly Q = Y.Mul(X.Inv()).isz(sz).irev();
 X = rhs.Mul(Q), Y = *this;
 fi(0, size()) Y[i] = modsub(Y[i], X[i]);
 return {Q, Y.isz(max<int>(1, rhs.size() - 1))};
Poly Dx() const {
 Poly ret(size() - 1);
 fi(0, ret.size()) ret[i] = modmul(i + 1, (*this)[i +
   17):
 return ret.isz(max<int>(1, ret.size()));
Poly Sx() const {
 Poly ret(size() + 1);
 fi(0, size()) ret[i + 1] = modmul(modinv(i + 1), (*
    this)[i]);
 return ret;
Poly Ln() const { // coef[0] == 1
 return Dx().Mul(Inv()).Sx().isz(size());
Poly Exp() const { // coef[0] == 0
 if (size() == 1) return V{1};
 Poly X = Poly(*this, (size() + 1) / 2).Exp().isz(size)
    ());
 Poly Y = X.Ln(); Y[0] = mod - 1;
 fi(0, size()) Y[i] = modsub((*this)[i], Y[i]);
 return X.Mul(Y).isz(size());
```

```
Poly Pow(const string &K) const {
 int nz = 0;
 while (nz < size() && !(*this)[nz]) ++nz;</pre>
  int nk = 0, nk2 = 0;
  for (char c : K) {
  nk = (nk * 10 + c - '0') \% mod;
  nk2 = nk2 * 10 + c - '0';
  if (nk2 * nz >= size())
    return Poly(size());
  nk2 %= mod - 1;
  if (!nk && !nk2) return Poly(V{1}, size());
 Poly X = V(data() + nz, data() + size() - nz * (nk2 - nz)
     1));
  int x0 = X[0];
  return X.imul(modinv(x0)).Ln().imul(nk).Exp().imul(
    modpow(x0, nk2)).irev().isz(size()).irev();
Poly InvMod(int L) { // (to evaluate linear recursion)
 Poly R{1, 0}; // *this * R \mod x^L = 1 (*this[0] ==
  for (int level = 0; (1 << level) < L; ++level) {</pre>
  Poly 0 = R.Mul(Poly(data(), min<int>(2 << level,
    size())));
   Poly Q(2 << level); Q[0] = 1;
   for (int j = (1 << level); j < (2 << level); ++j)</pre>
    Q[j] = modsub(mod, O[j]);
   R = R.Mul(Q).isz(4 << level);</pre>
 }
  return R.isz(L);
static int LinearRecursion(const V &a, const V &c,
    int64_t n) { // a_n = \sum c_j a_(n-j)}
  const int k = (int)a.size();
  assert((int)c.size() == k + 1);
  Poly C(k + 1), W(\{1\}, k), M = \{0, 1\};
  fi(1, k + 1) C[k - i] = modsub(mod, c[i]);
 C[k] = 1;
 while (n) {
  if (n % 2) W = W.Mul(M).DivMod(C).second;
  n /= 2, M = M.Mul(M).DivMod(C).second;
 int ret = 0;
  fi(0, k) ret = modadd(ret, modmul(W[i], a[i]));
  return ret:
};
#undef fi
using Poly_t = Poly<998244353, 3, 1 << 20>;
template <> decltype(Poly_t::ntt) Poly_t::ntt = {};
5.20 Quadratic residue
struct S {
 int MOD, w;
 int64_t x, y;
S(int m, int w_=-1, int64_t x_=1, int64_t y_=0)
  : MOD(m), w(w_{-}), x(x_{-}), y(y_{-}) {}
S operator*(const S &rhs) const {
 int w_ = w;
 if (w_ == -1) w_ = rhs.w;
 assert(w_! = -1 and w_! = rhs.w);
  return { MOD, w_,
  (x * rhs.x + y * rhs.y % MOD * w) % MOD,
   (x * rhs.y + y * rhs.x) % MOD };
int get_root(int n, int P) {
  if (P == 2 or n == 0) return n;
 if (qpow(n, (P - 1) / 2, P) != 1) return -1;
 auto check = [&](int x) {
    return qpow(x, (P - 1) / 2, P); };
 if (check(n) == P-1) return -1;
 int64_t a; int w; mt19937 rnd(7122);
 do { a = rnd() % P;
   w = ((a * a - n) \% P + P) \% P;
  } while (check(w) != P - 1);
  return qpow(S(P, w, a, 1), (P + 1) / 2).x;
```

5.21 Simplex

```
namespace simplex {
// maximize c^Tx under Ax <= B
```

```
// return VD(n, -inf) if the solution doesn't exist
// return VD(n, +inf) if the solution is unbounded
using VD = vector<double>;
using VVD = vector<vector<double>>;
const double eps = 1e-9;
const double inf = 1e+9;
int n, m;
VVD d;
vector<int> p, q;
void pivot(int r, int s) {
 double inv = 1.0 / d[r][s];
 for (int i = 0; i < m + 2; ++i)
  for (int j = 0; j < n + 2; ++j)
if (i != r && j != s)</pre>
    d[i][j] -= d[r][j] * d[i][s] * inv;
 for(int i=0;i<m+2;++i) if (i != r) d[i][s] *= -inv;
for(int j=0;j<n+2;++j) if (j != s) d[r][j] *= +inv;</pre>
 d[r][s] = inv; swap(p[r], q[s]);
bool phase(int z) {
 int x = m + z;
 while (true) {
  int s = -1;
  for (int i = 0; i <= n; ++i) {</pre>
   if (!z && q[i] == -1) continue;
   if (s == -1 || d[x][i] < d[x][s]) s = i;
  if (d[x][s] > -eps) return true;
  int r = -1;
for (int i = 0; i < m; ++i) {</pre>
   if (d[i][s] < eps) continue;</pre>
   if (r == -1 || \
    d[i][n+1]/d[i][s] < d[r][n+1]/d[r][s]) r = i;
  if (r == -1) return false;
  pivot(r, s);
VD solve(const VVD &a, const VD &b, const VD &c) {
 m = b.size(), n = c.size();
 d = VVD(m + 2, VD(n + 2));
 for (int i = 0; i < m; ++i)
  for (int j = 0; j < n; ++j) d[i][j] = a[i][j];</pre>
 p.resize(m), q.resize(n + 1);
 for (int i = 0; i < m; ++i)</pre>
  p[i] = n + i, d[i][n] = -1, d[i][n + 1] = b[i];
 for (int i = 0; i < n; ++i) q[i] = i,d[m][i] = -c[i];</pre>
 q[n] = -1, d[m + 1][n] = 1;
 int r = 0;
 for (int i = 1; i < m; ++i)
  if (d[i][n + 1] < d[r][n + 1]) r = i;</pre>
 if (d[r][n + 1] < -eps) {</pre>
  pivot(r, n);
  if (!phase(1) || d[m + 1][n + 1] < -eps)
   return VD(n, -inf);
  for (int i = 0; i < m; ++i) if (p[i] == -1) {
   int s = min_element(d[i].begin(), d[i].end() - 1)
        - d[i].begin();
   pivot(i, s);
  }
 if (!phase(0)) return VD(n, inf);
 VD x(n);
 for (int i = 0; i < m; ++i)</pre>
  if (p[i] < n) x[p[i]] = d[i][n + 1];</pre>
 return x;
}}
```

5.22 Simplex Construction

Standard form: maximize $\sum_{1 \leq i \leq n} c_i x_i$ such that for all $1~\leq~j~\leq~m$, $\sum_{1 \le i \le n} A_{ji} x_i \le b_j$ and $x_i \ge 0$ for all $1 \le i \le n$.

- 1. In case of minimization, let $c_i' = -c_i$
- 2. $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j \rightarrow \sum_{1 \le i \le n} -A_{ji} x_i \le -b_j$
- $3. \sum_{1 < i < n} A_{ji} x_i = b_j$
 - $\sum_{1 \le i \le n} A_{ji} x_i \le b_j$
 - $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

6 Geometry

6.1 Basic Geometry

```
#define IM imag
#define RE real
using lld = int64_t;
using llf = long double;
using PT = std::complex<lld>;
using PTF = std::complex<llf>;
using P = PT;
auto toPTF(PT p) { return PTF{RE(p), IM(p)}; }
int sgn(lld x) \{ return (x > 0) - (x < 0); \}
lld dot(P a, P b) { return RE(conj(a) * b); }
lld cross(P a, P b) { return IM(conj(a) * b); }
int ori(P a, P b, P c) {
return sgn(cross(b - a, c - a));
bool operator<(const P &a, const P &b) {</pre>
return RE(a) != RE(b) ? RE(a) < RE(b) : IM(a) < IM(b);</pre>
int quad(P p) {
return (IM(p) == 0) // use sgn for PTF
 ? (RE(p) < 0 ? 3 : 1) : (IM(p) < 0 ? 0 : 2);
int argCmp(P a, P b) {
   // -1 / 0 / 1 <-> < / == / > (atan2)
 int qa = quad(a), qb = quad(b);
if (qa != qb) return sgn(qa - qb);
return sgn(cross(b, a));
template <typename V> llf area(const V & pt) {
lld ret = 0;
for (int i = 1; i + 1 < (int)pt.size(); i++)</pre>
 ret += cross(pt[i] - pt[0], pt[i+1] - pt[0]);
return ret / 2.0;
P rot90(P p) { return P{-IM(p), RE(p)}; }
PTF project(PTF p, PTF q) { // p onto q
return dot(p, q) * q / dot(q, q);
llf FMOD(llf x) {
if (x < -PI) x += PI * 2;
if (x > PI) x -= PI * 2;
return x;
```

6.2 Segment & Line Intersection

```
struct Segment { // closed segment
PT st, dir; // represent st + t*dir for 0<=t<=1
Segment(PT s, PT e) : st(s), dir(e - s) {}
static bool valid(lld p, lld q) {
  // is there t s.t. 0 <= t <= 1 && qt == p ?
 if (q < 0) q = -q, p = -p;
  return 0 <= p && p <= q;
vector<PT> ends() const { return { st, st + dir }; }
template <typename T> bool isInter(T A, PT P) {
if (A.dir == PT(0)) return P == A.st; // BE CAREFUL
return cross(P - A.st, A.dir) == 0 &&
 T::valid(dot(P - A.st, A.dir), norm(A.dir));
template <typename U, typename V>
bool isInter(U A, V B) {
  if (cross(A.dir, B.dir) == 0) { // BE CAREFUL
 bool res = false;
 for (PT P: A.ends()) res |= isInter(B, P);
 for (PT P: B.ends()) res |= isInter(A, P);
 return res;
PT D = B.st - A.st;
lld C = cross(A.dir, B.dir);
return U::valid(cross(D, B.dir), C) &&
 V::valid(cross(D, A.dir), C);
struct Line {
PT st, ed, dir;
Line (PT s, PT e)
 : st(s), ed(e), dir(e - s) {}
PTF intersect(const Line &A, const Line &B) {
llf t = cross(B.st - A.st, B.dir) /
```

```
llf(cross(A.dir, B.dir));
return toPTF(A.st) + PTF(t) * toPTF(A.dir);
}
```

6.3 2D Convex Hull

6.4 3D Convex Hull

```
// return the faces with pt indexes
int flag[MXN][MXN];
struct Point{
 ld x,y,z;
 Point operator * (const ld &b) const {
 return (Point) {x*b,y*b,z*b};}
Point operator * (const Point &b) const {
  return(Point) {y*b.z-b.y*z,z*b.x-b.z*x,x*b.y-b.x*y};
 7
Point ver(Point a, Point b, Point c) {
return (b - a) * (c - a);]
vector<Face> convex_hull_3D(const vector<Point> pt) {
 int n = SZ(pt), ftop = 0;
 REP(i,n) REP(j,n) flag[i][j] = 0;
 vector<Face> now;
 now.emplace_back(0,1,2);
 now.emplace_back(2,1,0);
 for (int i=3; i<n; i++){</pre>
  ftop++; vector<Face> next;
  REP(j, SZ(now)) {
  Face& f=now[j]; int ff = 0;
   ld d=(pt[i]-pt[f.a]).dot(
     ver(pt[f.a], pt[f.b], pt[f.c]));
   if (d <= 0) next.push_back(f);</pre>
   if (d > 0) ff=ftop;
   else if (d < 0) ff=-ftop;</pre>
   flag[f.a][f.b]=flag[f.b][f.c]=flag[f.c][f.a]=ff;
  REP(j, SZ(now)) {
  Face& f=now[j];
   if (flag[f.a][f.b] > 0 &&
     flag[f.a][f.b] != flag[f.b][f.a])
    next.emplace_back(f.a,f.b,i);
   if (flag[f.b][f.c] > 0 &&
     flag[f.b][f.c] != flag[f.c][f.b])
    next.emplace_back(f.b,f.c,i);
   if (flag[f.c][f.a] > 0 &&
     flag[f.c][f.a] != flag[f.a][f.c])
    next.emplace_back(f.c,f.a,i);
  now=next;
 }
 return now;
```

6.5 2D Farthest Pair

```
// stk is from convex hull
n = (int)(stk.size());
int pos = 1, ans = 0; stk.push_back(stk[0]);
for(int i=0;i<n;i++) {
  while(abs(cross(stk[i+1]-stk[i],
    stk[(pos+1)%n]-stk[i])) >
    abs(cross(stk[i+1]-stk[i],
    stk[pos]-stk[i]))) pos = (pos+1)%n;
  ans = max({ans, dis(stk[i], stk[pos]),
    dis(stk[i+1], stk[pos]));
}
```

6.6 kD Closest Pair (3D ver.)

```
llf solve(vector<P> v) {
shuffle(v.begin(), v.end(), mt19937());
unordered_map<lld, unordered_map<lld,</pre>
 unordered_map<lld, int>>> m;
llf d = dis(v[0], v[1]);
auto Idx = [\&d] (llf x) \rightarrow lld {
  return round(x * 2 / d) + 0.1; };
auto rebuild_m = [&m, &v, &Idx](int k) {
 m.clear();
  for (int i = 0; i < k; ++i)</pre>
  m[Idx(v[i].x)][Idx(v[i].y)]
    [Idx(v[i].z)] = i;
}; rebuild_m(2);
for (size_t i = 2; i < v.size(); ++i) {
  const lld kx = Idx(v[i].x), ky = Idx(v[i].y),</pre>
     kz = Idx(v[i].z); bool found = false;
  for (int dx = -2; dx \le 2; ++dx) {
   const lld nx = dx + kx;
   if (m.find(nx) == m.end()) continue;
   auto& mm = m[nx];
   for (int dy = -2; dy <= 2; ++dy) {
    const lld ny = dy + ky;
    if (mm.find(ny) == mm.end()) continue;
    auto& mmm = mm[ny];
    for (int dz = -2; dz <= 2; ++dz) {
     const lld nz = dz + kz;
     if (mmm.find(nz) == mmm.end()) continue;
     const int p = mmm[nz];
     if (dis(v[p], v[i]) < d) {</pre>
      d = dis(v[p], v[i]);
      found = true;
     }
    }
  }
  if (found) rebuild_m(i + 1);
  else m[kx][ky][kz] = i;
return d;
```

6.7 Simulated Annealing

```
llf anneal() {
 mt19937 rnd_engine( seed );
 uniform_real_distribution< llf > rnd( 0, 1 );
 const llf dT = 0.001;
   / Argument p
 llf S_cur = calc( p ), S_best = S_cur;
for ( llf T = 2000 ; T > EPS ; T -= dT ) {
  // Modify p to p_prime
  const llf S_prime = calc( p_prime );
  const llf delta_c = S_prime - S_cur;
  llf prob = min( ( llf ) 1, exp( -delta_c / T ) );
  if ( rnd( rnd_engine ) <= prob )</pre>
   S_cur = S_prime, p = p_prime;
  if ( S_prime < S_best ) // find min</pre>
   S_best = S_prime, p_best = p_prime;
 return S_best;
}
```

6.8 Half Plane Intersection

```
// cross(pt-line.st, line.dir)<=0 <-> pt in half plane
bool operator<(const Line &lhs, const Line &rhs) {</pre>
 if (int cmp = argCmp(lhs.dir, rhs.dir))
    return cmp == -1;
 return ori(lhs.st, lhs.ed, rhs.st) < 0;</pre>
// intersect function is in "Segment Intersect"
llf HPI(vector<Line> &lines) {
 sort(lines.begin(), lines.end());
 deque<Line> que;
 deque<PTF> pt;
  que.push_back(lines[0]);
  for (int i = 1; i < (int)lines.size(); i++) {</pre>
   if (argCmp(lines[i].dir, lines[i-1].dir) == 0)
     continue;
#define POP(L, R) \
   while (pt.size() > 0 \
```

```
&& ori(L.st, L.ed, pt.back()) < 0) \
      pt.pop_back(), que.pop_back(); \
    while (pt.size() > 0 \
      && ori(R.st, R.ed, pt.front()) < 0) \
      pt.pop_front(), que.pop_front();
    POP(lines[i], lines[i]);
    pt.push_back(intersect(que.back(), lines[i]));
    que.push_back(lines[i]);
 POP(que.front(), que.back())
if (que.size() <= 1 ||</pre>
    argCmp(que.front().dir, que.back().dir) == 0)
    return 0;
  pt.push_back(intersect(que.front(), que.back()));
  return area(pt);
6.9 Minkowski Sum
vector<pll> Minkowski(vector<pll> A, vector<pll> B) {
 hull(A), hull(B);
 vector<pll> C(1, A[0] + B[0]), s1, s2;
 for(int i = 0; i < SZ(A); ++i)</pre>
  s1.pb(A[(i + 1) % SZ(A)] - A[i]);
 for(int i = 0; i < SZ(B); i++)
s2.pb(B[(i + 1) % SZ(B)] - B[i]);</pre>
```

for(int p1 = 0, p2 = 0; p1 < SZ(A) || p2 < SZ(B);)

|| (p1 < SZ(A) && cross(s1[p1], s2[p2]) >= 0))

6.10 Circle Class

return hull(C), C;

C.pb(C.back() + s1[p1++]);

C.pb(C.back() + s2[p2++]);

if (p2 >= SZ(B)

else

```
struct Circle { PTF o; llf r; };
vector<llf> intersectAngle(Circle A, Circle B) {
PTF dir = B.o - A.o; llf d2 = norm(dir);
 if (norm(A.r - B.r) >= d2) // norm(x) := |x|^2
 if (A.r < B.r) return {-PI, PI}; // A in B</pre>
  else return {}; // B in A
 if (norm(A.r + B.r) <= d2) return {};</pre>
 llf dis = abs(dir), theta = arg(dir);
 llf phi = acos((A.r * A.r + d2 - B.r * B.r) /
   (2 * A.r * dis));
 llf L = FMOD(theta - phi), R = FMOD(theta + phi);
 return { L, R };
vector<PTF> intersectPoint(Circle a, Circle b) {
 llf d = abs(a.o - b.o);
 if (d >= b.r+a.r || d <= abs(b.r-a.r)) return {};</pre>
 llf dt = (b.r*b.r - a.r*a.r)/d, d1 = (d+dt)/2;
 PTF dir = (a.o - b.o) / d;
 PTF u = dir*d1 + b.o;
PTF v = rot90(dir) * sqrt(max<llf>(0, b.r*b.r-d1*d1));
 return \{u + v, u - v\};
```

6.11 Intersection of line and Circle

```
vector<PTF> line_interCircle(const PTF &p1,
   const PTF &p2, const PTF &c, const double r) {
   PTF ft = p1 + project(c-p1, p2-p1), vec = p2-p1;
   llf dis = abs(c - ft);
   if (abs(dis - r) < eps) return {ft};
   if (dis > r) return {};
   vec = vec * sqrt(r * r - dis * dis) / abs(vec);
   return {ft + vec, ft - vec};
}
```

6.12 Intersection of Polygon and Circle

```
// Divides into multiple triangle, and sum up
// test by HDU2892
llf _area(PTF pa, PTF pb, llf r) {
  if (abs(pa) < abs(pb)) swap(pa, pb);
  if (abs(pb) < eps) return 0;
  llf S, h, theta;
  llf a = abs(pb), b = abs(pa), c = abs(pb - pa);
  llf cosB = dot(pb, pb - pa) / a / c, B = acos(cosB);
  llf cosC = dot(pa, pb) / a / b, C = acos(cosC);</pre>
```

```
if (a > r) {
 S = (C / 2) * r * r;
 h = a * b * sin(C) / c;
  if (h < r && B < PI / 2)
   S = (acos(h / r) * r * r - h * sqrt(r*r - h*h));
} else if (b > r) {
  theta = PI - B - asin(sin(B) / r * a);
 S = 0.5 * a*r * sin(theta) + (C - theta) / 2 * r*r;
} else
 S = 0.5 * sin(C) * a * b;
return S;
llf area_poly_circle(const vector<PTF> &poly,
  const PTF &0, const llf r) {
llf S = 0;
for (int i = 0, N = poly.size(); i < N; ++i)
S += _area(poly[i] - 0, poly[(i + 1) % N] - 0, r) *</pre>
     ori(0, poly[i], poly[(i + 1) % N]);
return fabs(S);
```

6.13 Point & Hulls Tangent

```
#define above(P, Vi, Vj) (ori(P, Vi, Vj) > 0) // true
    if Vi is above Vj
#define below(P, Vi, Vj) (ori(P, Vi, Vj) < 0) // true</pre>
    if Vi is below Vj
// Rtangent_PointPolyC(): binary search for convex
   polygon right tangent
   Input: P = a 2D point (exterior to the polygon)
        n = number of polygon vertices
        V = array of vertices for a 2D convex polygon
//
    with V[n] = V[0]
   Return: index "i" of rightmost tangent point V[i]
int Rtangent_PointPolyC(PT P, int n, PT *V) {
if (n == 1)
 return 0;
if (below(P, V[1], V[0]) && !above(P, V[n - 1], V[0]))
 return 0;
for (int a = 0, b = n;;) {
 int c = (a + b) / 2;
 int dnC = not above(P, V[c + 1], V[c]);
 if (dnC && !above(P, V[c - 1], V[c]))
  return c;
 if (above(P, V[a + 1], V[a])) {
  if (dnC || above(P, V[a], V[c]))
   b = c;
   else
   a = c;
 } else {
   if (!dnC || !below(P, V[a], V[c]))
   a = c;
  else
   b = c;
 }
}
// Ltangent_PointPolyC(): binary search for convex
    polygon left tangent
   Input: P = a \ 2D \ point \ (exterior \ to \ the \ polygon)
        n = number of polygon vertices
11
        V = array of vertices for a 2D convex polygon
//
    with V[n]=V[0]
// Return: index "i" of leftmost tangent point V[i]
int Ltangent_PointPolyC(PT P, int n, PT *V) {
if (n == 1)
 return 0:
if (above(P, V[n - 1], V[0]) && !below(P, V[1], V[0]))
 return 0;
for (int a = 0, b = n;;) {
 int c = (a + b) / 2;
 int dnC = below(P, V[c + 1], V[c]);
 if (!below(P, V[c - 1], V[c]) && !dnC)
  return c;
 if (below(P, V[a + 1], V[a])) {
  if (!dnC || below(P, V[a], V[c]))
   b = c;
  else
   a = c;
 } else {
```

```
if (dnC || !above(P, V[a], V[c]))
   a = c;
else
   b = c;
}
}
```

6.14 Convex Hulls Tangent

```
// RLtangent_PolyPolyC(): get the RL tangent between
    two convex polygons
    Input: m = number of vertices in polygon 1
        V = array of vertices for convex polygon 1 with
//
     V \lceil m \rceil = V \lceil 0 \rceil
        n = number of vertices in polygon 2
        W = array of vertices for convex polygon 2 with
//
     W[n]=W[0]
    Output: *t1 = index of tangent point V[t1] for
    polygon 1
        *t2 = index of tangent point W[t2] for polygon
void RLtangent_PolyPolyC(int m, PT *V, int n, PT *W,
    int *t1, int *t2) {
 int ix1, ix2; // search indices for polygons 1 and 2
 // first get the initial vertex on each polygon
 ix1 = Rtangent_PointPolyC(W[0], m, V); // right
    tangent from W[0] to V
 ix2 = Ltangent_PointPolyC(V[ix1], n, W); // left
    tangent from V[ix1] to W
 // ping-pong linear search until it stabilizes
 int done = false; // flag when done
 while (done == false) {
  done = true; // assume done until...
  while (ori(W[ix2], V[ix1], V[ix1 + 1]) <= 0) {</pre>
   ++ix1; // get Rtangent from W[ix2] to V
  while (ori(V[ix1], W[ix2], W[ix2 - 1]) >= 0) {
             // get Ltangent from V[ix1] to W
   --ix2;
   done = false; // not done if had to adjust this
  }
 }
 *t1 = ix1;
 *t2 = ix2;
 return;
```

6.15 Tangent line of Two Circle

```
vector<liine>
tanline(const Circle &c1, const Circle &c2, int sign1){
 // sign1 = 1 for outer tang, -1 for inter tang
 vector<Line> ret;
 if (norm(c1.o - c2.o) < eps) return ret;</pre>
 llf d = abs(c1.o - c2.o);
 PTF v = (c2.0 - c1.0) / d;
 llf c = (c1.r - sign1 * c2.r) / d;
 if (c * c > 1) return ret;
 llf h = sqrt(max < llf > (0, 1 - c * c));
 for (int sign2 : {1, -1}) {
  PTF n = c * v + sign2 * h * rot90(v);
  PTF p1 = c1.o + n \star c1.r;
  PTF p2 = c2.o + n * (c2.r * sign1);
  if (norm(p2 - p1) < eps)
   p2 = p1 + rot90(c2.o - c1.o);
  ret.push_back({p1, p2});
 return ret;
```

6.16 Minimum Covering Circle

```
template<typename P>
Circle getCircum(const P &a, const P &b, const P &c){
  Real a1 = a.x-b.x, b1 = a.y-b.y;
  Real c1 = (a.x+b.x)/2 * a1 + (a.y+b.y)/2 * b1;
  Real a2 = a.x-c.x, b2 = a.y-c.y;
  Real c2 = (a.x+c.x)/2 * a2 + (a.y+c.y)/2 * b2;
  Circle cc;
  cc.o.x = (c1*b2-b1*c2)/(a1*b2-b1*a2);
  cc.o.y = (a1*c2-c1*a2)/(a1*b2-b1*a2);
  cc.r = hypot(cc.o.x-a.x, cc.o.y-a.y);
```

if (d2 < md2 || (d2 == md2 && mID < r->id)) {

mID = r->id;md2 = d2;

```
return cc;
                                                                 // search order depends on split dim
                                                                 if ((r->f == 0 && x < r->x) ||
                                                                   (r->f == 1 \&\& y < r->y)) {
template<typename P>
Circle MinCircleCover(const vector<P>& pts){
                                                                  nearest(r\rightarrow L, x, y, mID, md2);
random_shuffle(pts.begin(), pts.end());
                                                                 nearest(r\rightarrow R, x, y, mID, md2);
 Circle c = { pts[0], 0 };
                                                                 } else {
for(int i=0;i<(int)pts.size();i++){</pre>
                                                                  nearest(r->R, x, y, mID, md2);
 if (dist(pts[i], c.o) <= c.r) continue;</pre>
                                                                  nearest(r->L, x, y, mID, md2);
 c = { pts[i], 0 };
for (int j = 0; j < i; j++) {</pre>
   if(dist(pts[j], c.o) <= c.r) continue;</pre>
                                                                int query(int x, int y) {
                                                                 int id = 1029384756;
  c.o = (pts[i] + pts[j]) / 2;
                                                                LL d2 = 102938475612345678LL;
   c.r = dist(pts[i], c.o);
  for (int k = 0; k < j; k++) {
                                                                nearest(root, x, y, id, d2);
   if (dist(pts[k], c.o) <= c.r) continue;</pre>
                                                                return id;
    c = getCircum(pts[i], pts[j], pts[k]);
                                                               }
                                                              } tree;
 }
                                                               6.18
                                                                     Rotating Sweep Line
}
                                                              void rotatingSweepLine(pair<int, int> a[], int n) {
return c;
                                                                vector<pair<int, int>> l;
                                                                l.reserve(n * (n - 1) / 2);
6.17
      KDTree (Nearest Point)
                                                                for (int i = 0; i < n; ++i)
const int MXN = 100005;
                                                                 for (int j = i + 1; j < n; ++j)</pre>
                                                                 l.emplace_back(i, j);
struct KDTree {
                                                                sort(l.begin(), l.end(), [&a](auto &u, auto &v){
struct Node {
                                                                 lld udx = a[u.first].first - a[u.second].first;
  int x,y,x1,y1,x2,y2;
 int id,f;
Node *L, *R;
                                                                 lld udy = a[u.first].second - a[u.second].second;
                                                                 lld vdx = a[v.first].first - a[v.second].first;
                                                                 lld vdy = a[v.first].second - a[v.second].second;
} tree[MXN], *root;
 int n;
                                                                 if (udx == 0 or vdx == 0) return not udx == 0;
LL dis2(int x1, int y1, int x2, int y2) {
                                                                 int s = sgn(udx * vdx);
 LL dx = x1-x2, dy = y1-y2;
                                                                 return udy * vdx * s < vdy * udx * s;</pre>
  return dx*dx+dy*dy;
                                                                });
                                                                vector<int> idx(n), p(n);
                                                                iota(idx.begin(), idx.end(), 0);
static bool cmpx(Node& a, Node& b){return a.x<b.x;}</pre>
 static bool cmpy(Node& a, Node& b){return a.y<b.y;}</pre>
                                                                sort(idx.begin(), idx.end(), [&a](int i, int j){
                                                                return a[i] < a[j]; });</pre>
void init(vector<pair<int,int>> ip) {
                                                                for (int i = 0; i < n; ++i) p[idx[i]] = i;</pre>
  n = ip.size();
 for (int i=0; i<n; i++) {</pre>
                                                                for (auto [i, j]: l) {
  tree[i].id = i;
                                                                 // do here
   tree[i].x = ip[i].first;
                                                                 swap(p[i], p[j]);
  tree[i].y = ip[i].second;
                                                                 idx[p[i]] = i, idx[p[j]] = j;
 }
                                                               }
 root = build_tree(0, n-1, 0);
                                                              }
                                                              6.19 Circle Cover
Node* build_tree(int L, int R, int d) {
  if (L>R) return nullptr;
                                                              const int N = 1021;
 int M = (L+R)/2; tree[M].f = d%2;
                                                              struct CircleCover {
  nth_element(tree+L,tree+M,tree+R+1,d%2?cmpy:cmpx);
                                                                int C;
  tree[M].x1 = tree[M].x2 = tree[M].x;
                                                                Cir c[N];
 tree[M].y1 = tree[M].y2 = tree[M].y;
                                                                bool g[N][N], overlap[N][N];
  tree[M].L = build_tree(L, M-1, d+1);
                                                                // Area[i] : area covered by at least i circles
                                                                double Area[ N ];
  if (tree[M].L) {
   tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
                                                                void init(int _C){ C = _C;}
   tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
                                                                struct Teve {
   tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
                                                                PTF p; double ang; int add;
   tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
                                                                 Teve() {}
                                                                 Teve(PTF _a, double _b, int _c):p(_a), ang(_b), add(
 tree[M].R = build_tree(M+1, R, d+1);
                                                                   c){}
  if (tree[M].R) {
                                                                 bool operator<(const Teve &a)const</pre>
  tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
                                                                 {return ang < a.ang;}
  tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
                                                                eve[N * 2];
                                                                // strict: x = 0, otherwise x = -1
                                                                bool disjuct(Cir &a, Cir &b, int x)
   tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
                                                                {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
bool contain(Cir &a, Cir &b, int x)
  }
  return tree+M;
                                                                {return sign(a.R - b.R - abs(a.0 - b.0)) > x;}
                                                                bool contain(int i, int j) {
int touch(Node* r, int x, int y, LL d2){
 LL dis = sqrt(d2)+1;
                                                                 /* c[j] is non-strictly in c[i]. */
 if (x<r->x1-dis || x>r->x2+dis ||
                                                                 return (sign(c[i].R - c[j].R) > 0 || (sign(c[i].R - c
   y<r->y1-dis || y>r->y2+dis)
                                                                   [j].R) == 0 \&\& i < j)) \&\& contain(c[i], c[j], -1);
   return 0;
  return 1;
                                                                void solve(){
                                                                 fill_n(Area, C + 2, 0);
                                                                for(int i = 0; i < C; ++i)
for(int j = 0; j < C; ++j)</pre>
void nearest(Node* r,int x,int y,int &mID,LL &md2) {
 if (!r || !touch(r, x, y, md2)) return;
  LL d2 = dis2(r->x, r->y, x, y);
                                                                   overlap[i][j] = contain(i, j);
                                                                 for(int i = 0; i < C; ++i)
for(int j = 0; j < C; ++j)</pre>
```

g[i][j] = !(overlap[i][j] || overlap[j][i] ||

```
disjuct(c[i], c[j], -1));
  for(int i = 0; i < C; ++i){</pre>
   int E = 0, cnt = 1;
   for(int j = 0; j < C; ++j)</pre>
    if(j != i && overlap[j][i])
     ++cnt;
   for(int j = 0; j < C; ++j)</pre>
    if(i != j && g[i][j]) {
     auto IP = intersectPoint(c[i], c[j]);
     PTF aa = IP[0], bb = IP[1];
llf A = arg(aa-c[i].0), B = arg(bb-c[i].0);
     eve[E++] = Teve(bb,B,1), eve[E++] = Teve(aa,A,-1);
     if(B > A) ++cnt;
   if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
   else{
    sort(eve, eve + E);
    eve[E] = eve[0];
    for(int j = 0; j < E; ++j){</pre>
     cnt += eve[j].add;
     Area[cnt] += cross(eve[j].p, eve[j + 1].p) \star .5;
     double theta = eve[j + 1].ang - eve[j].ang;
     if (theta < 0) theta += 2. * pi;
     Area[cnt]+=(theta-sin(theta))*c[i].R*c[i].R*.5;
   }
  }
};
```

7 Stringology

7.1 Hash

```
class Hash {
  private:
    static constexpr int P = 127, Q = 1051762951;
  vector<int> h, p;
  public:
    void init(const string &s){
      h.assign(s.size()+1, 0); p.resize(s.size()+1);
      for (size_t i = 0; i < s.size(); ++i)
          h[i + 1] = add(mul(h[i], P), s[i]);
      generate(p.begin(), p.end(),[x=1,y=1,this]()
          mutable{y=x;x=mul(x,P);return y;});
    }
    int query(int l, int r){ // 1-base (l, r]
      return sub(h[r], mul(h[l], p[r-l]));}
};</pre>
```

7.2 Suffix Array

```
namespace sfx {
bool _t[maxn * 2];
int hi[maxn], rev[maxn];
int _s[maxn * 2], sa[maxn * 2], _c[maxn * 2];
int x[maxn], _p[maxn], _q[maxn * 2];
// sa[i]: sa[i]-th suffix is the
// i-th lexigraphically smallest suffix.
// hi[i]: longest common prefix
// of suffix sa[i] and suffix sa[i - 1].
void pre(int *a, int *c, int n, int z) {
 memset(a, 0, sizeof(int) * n);
 memcpy(x, c, sizeof(int) * z);
void induce(int *a,int *c,int *s,bool *t,int n,int z){
 memcpy(x + 1, c, sizeof(int) * (z - 1));
 for (int i = 0; i < n; ++i)</pre>
  if (a[i] && !t[a[i] - 1])
   a[x[s[a[i] - 1]]++] = a[i] - 1;
 memcpy(x, c, sizeof(int) * z);
 for (int i = n - 1; i >= 0; --i)
if (a[i] && t[a[i] - 1])
   a[--x[s[a[i] - 1]]] = a[i] - 1;
void sais(int *s, int *a, int *p, int *q,
 bool *t, int *c, int n, int z) {
 bool uniq = t[n - 1] = true;
 int nn=0, nmxz=-1, *nsa = a+n, *ns=s+n, last=-1;
 memset(c, 0, sizeof(int) * z);
 for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;</pre>
 for (int i = 0; i < z - 1; ++i) c[i + 1] += c[i];</pre>
 if (uniq) {
```

```
for (int i = 0; i < n; ++i) a[--c[s[i]]] = i;</pre>
  return:
 for (int i = n - 2; i >= 0; --i)
  t[i] = (s[i] = s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
 pre(a, c, n, z);
 for (int i = 1; i <= n - 1; ++i)
  if (t[i] && !t[i - 1])
   a[--x[s[i]]] = p[q[i] = nn++] = i;
 induce(a, c, s, t, n, z);
for (int i = 0; i < n; ++i) {</pre>
  if (a[i] && t[a[i]] && !t[a[i] - 1]) {
  bool neq = last < 0 || \</pre>
   memcmp(s + a[i], s + last,
(p[q[a[i]] + 1] - a[i]) * sizeof(int));
  ns[q[last = a[i]]] = nmxz += neq;
 sais(ns, nsa, p+nn, q+n, t+n, c+z, nn, nmxz+1);
 pre(a, c, n, z);
 for (int i = nn - 1; i >= 0; --i)
  a[--x[s[p[nsa[i]]]] = p[nsa[i]];
 induce(a, c, s, t, n, z);
void build(const string &s) {
 const int n = int(s.size());
 for (int i = 0; i < n; ++i) _s[i] = s[i];</pre>
 _s[n] = 0; // s shouldn't contain 0
 sais(_s, sa, _p, _q, _t, _c, n + 1, 256);
for(int i = 0; i < n; ++i) rev[sa[i] = sa[i+1]] = i;</pre>
 int ind = hi[0] = 0;
 for (int i = 0; i < n; ++i) {</pre>
  if (!rev[i]) {
   ind = 0;
   continue;
  while (i + ind < n && \
   s[i + ind] == s[sa[rev[i] - 1] + ind]) ++ind;
  hi[rev[i]] = ind ? ind-- : 0;
```

7.3 Suffix Automaton

void dp() {

```
struct SuffixAutomaton {
 struct node {
  int ch[K], len, fail, cnt, indeg;
  node(int L = 0) : ch{}, len(L), fail(0), cnt(0),
    indeg(0) {}
 } st[N];
 int root, last, tot;
 void extend(int c) {
  int cur = ++tot;
  st[cur] = node(st[last].len + 1);
  while (last && !st[last].ch[c]) {
    st[last].ch[c] = cur;
    last = st[last].fail;
  if (!last) {
    st[cur].fail = root;
   else {
    int q = st[last].ch[c];
    if (st[q].len == st[last].len + 1) {
      st[cur].fail = q;
    } else {
      int clone = ++tot;
      st[clone] = st[q];
      st[clone].len = st[last].len + 1;
      st[st[cur].fail = st[q].fail = clone].cnt = 0;
      while (last && st[last].ch[c] == q) {
        st[last].ch[c] = clone;
        last = st[last].fail;
      }
   }
 st[last = cur].cnt += 1;
 void init(const char* s) {
  root = last = tot = 1;
  st[root] = node(0);
  for (char c; c = *s; ++s) extend(c - 'a');
 int q[N];
```

```
for (int i = 1; i <= tot; i++) ++st[st[i].fail].indeg</pre>
  int head = 0, tail = 0;
  for (int i = 1; i <= tot; i++)</pre>
    if (st[i].indeg == 0) q[tail++] = i;
  while (head != tail) {
    int now = q[head++];
    if (int f = st[now].fail) {
      st[f].cnt += st[now].cnt;
      if (--st[f].indeg == 0) q[tail++] = f;
  }
 int run(const char* s) {
  int now = root;
  for (char c; c = *s; ++s) {
    if (!st[now].ch[c -= 'a']) return 0;
    now = st[now].ch[c];
  return st[now].cnt;
 }
|} SAM;
```

7.4 KMP

```
vector<int> kmp(const string &s) {
vector<int> f(s.size(), 0);
/* f[i] = length of the longest prefix
  (excluding s[0:i]) such that it coincides with the suffix of s[0:i] of the same length */
/* i + 1 - f[i] is the length of the
  smallest recurring period of s[0:i] */
int k = 0;
for (int i = 1; i < (int)s.size(); ++i) {</pre>
 while (k > 0 \&\& s[i] != s[k]) k = f[k - 1];
 if (s[i] == s[k]) ++k;
 f[i] = k;
return f;
vector<int> search(const string &s, const string &t) {
// return 0-indexed occurrence of t in s
vector<int> f = kmp(t), r;
for (int i = 0, k = 0; i < (int)s.size(); ++i) {</pre>
 while(k > 0 && (k==(int)t.size() || s[i]!=t[k]))
  k = f[k - 1];
 if (s[i] == t[k]) ++k;
  if (k == (int)t.size()) r.push_back(i-t.size()+1);
return res;
```

7.5 Z value

```
vector<int> Zalgo(const string &s) {
  vector<int> z(s.size(), s.size());
  for (int i = 1, l = 0, r = 0; i < z[0]; ++i) {
    int j = clamp(r - i, 0, z[i - l]);
    for (; i + j < z[0] and s[i + j] == s[j]; ++j);
    if (i + (z[i] = j) > r) r = i + z[l = i];
  }
  return z;
}
```

7.6 Manacher

```
int z[maxn];
int manacher(const string& s) {
    string t = ".";
    for(char c: s) t += c, t += '.';
    int l = 0, r = 0, ans = 0;
    for (int i = 1; i < t.length(); ++i) {
        z[i] = (r > i ? min(z[2 * l - i], r - i) : 1);
        while (i - z[i] >= 0 && i + z[i] < t.length()) {
        if(t[i - z[i]] == t[i + z[i]]) ++z[i];
        else break;
    }
    if (i + z[i] > r) r = i + z[i], l = i;
}
    for(int i=1;i<t.length();++i) ans = max(ans, z[i]-1);
    return ans;
}</pre>
```

7.7 Lexico Smallest Rotation

```
string mcp(string s) {
  int n = s.length();
  s += s; int i = 0, j = 1;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) k++;
    ((s[i + k] <= s[j + k]) ? j : i) += k + 1;
    j += (i == j);
  }
  return s.substr(i < n ? i : j, n);
}</pre>
```

7.8 Main Lorentz

```
vector<tuple<tuple<size_t, size_t, int, int>>> reps;
void find_repetitions(const string &s, int shift = 0) {
 if (s.size() <= 1)
 const size_t nu = s.size() / 2, nv = s.size() - nu;
 string u = s.substr(0, nu), v = s.substr(nu);
 string ru(u.rbegin(), u.rend());
 string rv(v.rbegin(), v.rend());
 find_repetitions(u, shift);
 find_repetitions(v, shift + nu);
 auto z1 = Zalgo(ru), z2 = Zalgo(v + '#' + u),
z3 = Zalgo(ru + '#' + rv), z4 = Zalgo(v);
 for (size_t cntr = 0; cntr < s.size(); cntr++) {</pre>
  size_t l; int k1, k2;
  if (cntr < nu) {</pre>
   l = nu - cntr
   k1 = l < z1.size() ? z1[l] : 0;</pre>
   k2 = n + 1 - l < z2.size() ? z2[n + 1 - l] : 0;
  } else {
   l = cntr - nu + 1;
   k1 = n + 1 - l < z3.size() ? z3[n + 1 - l] : 0;
   k2 = l < z4.size() ? z4[l] : 0;
  if (k1 + k2 >= 1)
   reps.emplace_back(cntr, l, k1, k2);
 }
}
```

7.9 BWT

```
struct BurrowsWheeler{
#define SIGMA 26
#define BASE 'a'
 vector<int> v[ SIGMA ];
 void BWT(char* ori, char* res){
  // make ori -> ori + ori
  // then build suffix array
 }
 void iBWT(char* ori, char* res){
  for( int i = 0 ; i < SIGMA ; i ++ )</pre>
   v[ i ].clear();
  int len = strlen( ori );
  for( int i = 0 ; i < len ; i ++ )</pre>
   v[ ori[i] - BASE ].push_back( i );
  vector<int> a;
  for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )</pre>
   for( auto j : v[ i ] ){
    a.push_back( j );
    ori[ ptr ++ ] = BASE + i;
  for( int i = 0 , ptr = 0 ; i < len ; i ++ ){</pre>
   res[ i ] = ori[ a[ ptr ] ];
   ptr = a[ ptr ];
  res[ len ] = 0;
} bwt;
```

7.10 Palindromic Tree

```
struct palindromic_tree{
    struct node{
    int next[26],f,len;
    int cnt,num,st,ed; // num = depth of fail link
    node(int l=0):f(0),len(l),cnt(0),num(0) {
        memset(next, 0, sizeof(next)); }
};
    vector<node> st;
    vector<char> s;
```

```
int last,n;
void init(){
 st.clear();s.clear();last=1; n=0;
 st.push_back(0);st.push_back(-1);
 st[0].f=1;s.push_back(-1); }
int getFail(int x){
 while(s[n-st[x].len-1]!=s[n])x=st[x].f;
 return x;}
void add(int c){
 s.push_back(c-='a'); ++n;
 int cur=getFail(last);
  if(!st[cur].next[c]){
  int now=st.size();
   st.push_back(st[cur].len+2);
  st[now].f=st[getFail(st[cur].f)].next[c];
  st[cur].next[c]=now;
  st[now].num=st[st[now].f].num+1;
 last=st[cur].next[c];
  ++st[last].cnt;}
void dpcnt() { // cnt = #occurence in whole str
 for (int i=st.size()-1; i >= 0; i--)
  st[st[i].f].cnt += st[i].cnt;
int size(){ return st.size()-2;}
} pt:
int main() {
string s; cin >> s; pt.init();
for (int i=0; i<SZ(s); i++) {</pre>
 int prvsz = pt.size(); pt.add(s[i]);
 if (prvsz != pt.size()) {
  int r = i, l = r - pt.st[pt.last].len + 1;
   // pal @ [l,r]: s.substr(l, r-l+1)
 }
return 0;
```

8 Misc

8.1 Theorems

8.1.1 Sherman-Morrison formula

$$\left(\boldsymbol{A} + \boldsymbol{u} \boldsymbol{v}^\mathsf{T} \right)^{-1} = \boldsymbol{A}^{-1} - \tfrac{\boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^\mathsf{T} \boldsymbol{A}^{-1}}{1 + \boldsymbol{v}^\mathsf{T} \boldsymbol{A}^{-1} \boldsymbol{u}}$$

8.1.2 Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where $L_{ii} = d(i)$, $L_{ij} = -c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

8.1.3 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij}=x_{ij}$ (x_{ij} is chosen uniform randomly) if i < j and $(i,j) \in E$, otherwise $d_{ij}=-d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

8.1.4 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there're $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

8.1.5 Erdős-Gallai theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$

holds for all $1 \le k \le n$.

8.1.6 Havel-Hakimi algorithm

find the vertex who has greatest degree unused, connect it with other greatest vertex.

8.1.7 Euler's planar graph formula

```
V - E + F = C + 1, E \le 3V - 6(?)
```

8.1.8 Pick's theorem

For simple polygon, when points are all integer, we have $A=\#\{\text{lattice points in the interior}\}+\frac{\#\{\text{lattice points on the boundary}\}}{2}-1$

8.1.9 Matroid Intersection

Given matroids $M_1=(G,I_1),M_2=(G,I_2),$ find maximum $S\in I_1\cap I_2.$ For each iteration, build the directed graph and find a shortest path from s to t.

```
\begin{array}{l} \cdot \ s \to x : S \sqcup \{x\} \in I_1 \\ \\ \cdot \ x \to t : S \sqcup \{x\} \in I_2 \\ \\ \cdot \ y \to x : S \setminus \{y\} \sqcup \{x\} \in I_1 \ (y \ \text{is in the unique circuit of} \ S \sqcup \{x\}) \\ \\ \cdot \ x \to y : S \setminus \{y\} \sqcup \{x\} \in I_2 \ (y \ \text{is in the unique circuit of} \ S \sqcup \{x\}) \end{array}
```

Alternate the path, and |S| will increase by 1. Let $R=\min(\mathrm{rank}(I_1),\mathrm{rank}(I_2)),N=|G|$. In each iteration, |E|=O(RN). For weighted case, assign weight -w(x) and w(x) to $x\in S$ and $x\notin S$, resp. Use Bellman-Ford to find the weighted shortest path. The maximum iteration of Bellman-Ford is 2R+1.

8.2 Bitset LCS

```
scanf("%d%d", &n, &m), u = n / 64 + 1;
for (int i = 1, c; i <= n; i++)
  scanf("%d", &c), p[c].set(i);
for (int i = 1, c; i <= m; i++) {
  scanf("%d", &c), (g = f) |= p[c];
  f.shiftLeftByOne(), f.set(0);
  ((f = g - f) ^= g) &= g;
}
printf("%d\n", f.count());</pre>
```

8.3 Prefix Substring LCS

```
void all_lcs(string s, string t) { // 0-base
vector<int> h(SZ(t));
iota(ALL(h), 0);
for (int a = 0; a < SZ(s); ++a) {
  int v = -1;
  for (int c = 0; c < SZ(t); ++c)
   if (s[a] == t[c] || h[c] < v)
      swap(h[c], v);
  // LCS(s[0, a], t[b, c]) =
  // c - b + 1 - sum([h[i] >= b] | i <= c)
  // h[i] might become -1 !!
}
</pre>
```

8.4 Convex 1D/1D DP

```
struct segment {
 int i, l, r
 segment() {}
 segment(int a, int b, int c): i(a), l(b), r(c) {}
inline lld f(int l, int r){return dp[l] + w(l+1, r);}
void solve() {
 dp[0] = 0;
 deque<segment> dq; dq.push_back(segment(0, 1, n));
 for (int i = 1; i <= n; ++i) {
  dp[i] = f(dq.front().i, i);
  while(dq.size()&&dq.front().r<i+1) dq.pop_front();</pre>
  dq.front().l = i + 1;
  segment seg = segment(i, i + 1, n);
  while (dq.size() &&
   f(i, dq.back().l)<f(dq.back().i, dq.back().l))</pre>
    dq.pop_back();
  if (dq.size()) {
   int d = 1 << 20, c = dq.back().l;</pre>
   while (d >>= 1) if (c + d <= dq.back().r)
if(f(i, c+d) > f(dq.back().i, c+d)) c += d;
   dq.back().r = c; seg.l = c + 1;
  if (seg.l <= n) dq.push_back(seg);</pre>
```

8.5 ConvexHull Optimization

```
struct L {
mutable int64_t a, b, p;
bool operator<(const L &r) const { return a < r.a; }</pre>
bool operator<(int64_t x) const { return p < x; }</pre>
struct DynamicHull : multiset<L, less<>>> {
static const int64_t kInf = 1e18;
bool Isect(iterator x, iterator y)
 auto Div = [](int64_t a, int64_t b) {
    return a / b - ((a ^ b) < 0 && a % b); }</pre>
  if (y == end()) { x->p = kInf; return false; }
 if (x->a == y->a) x->p = x->b > y->b ? kInf : -kInf;
 else x->p = Div(y->b - x->b, x->a - y->a);
 return x->p >= y->p;
void Insert(int64_t a, int64_t b) {
 auto z = insert({a, b, 0}), y = z++, x = y;
 while (Isect(y, z)) z = erase(z);
 if (x!=begin()&&Isect(--x,y)) Isect(x, y=erase(y));
 while ((y = x) != begin() && (--x)->p >= y->p)
  Isect(x, erase(y));
int64_t Query(int64_t x) {
 auto l = *lower_bound(x);
 return l.a * x + l.b;
};
```

8.6 Josephus Problem

```
// n people kill m for each turn
int f(int n, int m) {
  int s = 0;
  for (int i = 2; i <= n; i++)
    s = (s + m) % i;
  return s;
}
// died at kth
int kth(int n, int m, int k){
  if (m == 1) return n-1;
  for (k = k*m+m-1; k >= n; k = k-n+(k-n)/(m-1));
  return k;
}
```

8.7 Tree Knapsack

```
int dp[N][K]; PII obj[N];
vector<int> G[N];
void dfs(int u, int mx){
    for(int s: G[u]) {
        if(mx < obj[s].first) continue;
        for(int i=0;i<=mx-obj[s].FF;i++)
        dp[s][i] = dp[u][i];
        dfs(s, mx - obj[s].first);
        for(int i=obj[s].FF;i<=mx;i++)
        dp[u][i] = max(dp[u][i],
        dp[s][i - obj[s].FF] + obj[s].SS);
    }
}</pre>
```

8.8 N Queens Problem

```
vector< int > solve( int n ) {
 // no solution when n=2, 3
 vector< int > ret;
 if ( n % 6 == 2 ) {
  for ( int i = 2 ; i <= n ; i += 2 )
   ret.push_back( i );
 ret.push_back( 3 ); ret.push_back( 1 );
for ( int i = 7 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  ret.push_back( 5 );
 } else if ( n % 6 == 3 ) {
  for ( int i = 4 ; i <= n ; i += 2 )
   ret.push_back( i );
  ret.push_back( 2 );
  for ( int i = 5 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  ret.push_back( 1 ); ret.push_back( 3 );
 } else {
  for ( int i = 2 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  for ( int i = 1 ; i <= n ; i += 2 )
```

```
ret.push_back( i );
}
return ret;
}
```

8.9 Stable Marriage

```
1: Initialize m \in M and w \in W to free
 2: while \exists free man m who has a woman w to propose to do
        w \leftarrow first woman on m's list to whom m has not yet proposed
       if \exists some pair (m', w) then
5:
          if w prefers m to m' then
6:
              m' \leftarrow free
 7:
              (m,w) \gets \mathsf{engaged}
           end if
10:
           (m, w) \leftarrow \mathsf{engaged}
11:
       end if
12: end while
```

8.10 Binary Search On Fraction

```
struct Q {
ll p, q;
 Q go(Q b, ll d) { return {p + b.p*d, q + b.q*d}; }
bool pred(Q);
// returns smallest p/q in [lo, hi] such that
// pred(p/q) is true, and 0 <= p,q <= N
Q frac_bs(ll N) {
 Q lo{0, 1}, hi{1, 0};
 if (pred(lo)) return lo;
 assert(pred(hi));
 bool dir = 1, L = 1, H = 1;
 for (; L || H; dir = !dir) {
 ll len = 0, step = 1;
  for (int t = 0; t < 2 && (t ? step/=2 : step*=2);)</pre>
  if (Q mid = hi.go(lo, len + step);
     mid.p > N || mid.q > N || dir ^ pred(mid))
    t++;
   else len += step;
  swap(lo, hi = hi.go(lo, len));
  (dir ? L : H) = !!len;
 return dir ? hi : lo;
```