Regelungstechnik 2

FS 24 Prof. Dr. Lukas Ortmann

Autoren: Authors

Version: 1.0.20240323

 $\underline{https:/\!/github.com/P4ntomime/regelungstechnik-2}$

Inhaltsverzeichnis

	Regelkreise aus LTI-Systemen (S. 105)	2	3	Stabilität - Nyquistkriterium (S. 126)	
	1.1 Steuerung	2		3.1 Stabilität im Nyquist-Diagramm	
	1.2 Regelung	2		3.2 Vereinfachtes Nyquistkriterium (S. 127-128)	
	1.3 Stabilität eines Systems mit Rückkopplung	2		3.3 Stabilitätsreserven	
	, 11 0	-		3.4 Stabilitätsreserven im Nyquistdiagramm (S. 129)	4
Frequenzgang (S. 114)		2		3.5 Nyquistdiagramme mit MatLab	4
	2.1 Frequenzgang G(j omega) als komplexe Zahl	2		3.6 Vorgehen: Nyquistdiagramme zeichnen	4
	2.2 Frequenzgang der Grundglieder	2	١.,	D 71 1 1D	
	2.3 Darstellung mit Zeigern	2	4	Dezibel dB	•
	2.4 Bestimmung des Frequenzgangs aus DGL	2		4.1 Umrechnung Verstärkungsfaktor – Dezibel dB	
	2.5 Serieschaltung von LZI-Systemen			4.2 dB–Umrechnungstabelle	•
	2.6 Parallelschaltung von LZI-Systemen	3	5	Bode-Diagramm	
	2.7 Kreisschaltung (Gegenkopplung) von LZI-Systemen	3		5.1 Vorgehen: Bode-Diagramm zeichnen	4
	2.8 Frequenzgang – Übertragungsfunktion (UTF)	3		5.2 Stabilität im Bodediagramm	

1 Regelkreise aus LTI-Systemen (s. 105)

1.1 Steuerung

Eine Steuerung besitzt **keine Rückkopplung** und ist somit ein **offener Regelkreis**

$$y = \underbrace{KL \cdot r}_{\text{Sensitivität}} + \underbrace{K \cdot z}_{\text{Störung}}$$

1.2 Regelung

Eine regelung besitzt eine Gegenkopplung

$$y = KH \cdot (r - y) + K \cdot z$$

$$y = \underbrace{\frac{KH}{1 + KH} \cdot r}_{\text{Sensitivität}} + \underbrace{\frac{K}{1 + KH} \cdot z}_{\text{Störungsunterdrückung}}$$

1.2.1 Störungsunterdrückung (S. 106)

Ein Regler ist vorteilhaft, um Störungen zu unterdrücken, denn für die Verstärkung der Störung z gilt:

$$\lim_{H\to\infty}\frac{K}{1+KH}\cdot z=0$$

- \Rightarrow Hat der Regler eine grosse Verstärkung H, so wird die Störung z unterdrückt
- → Bei einer Steuerung wird die Störung nicht unterdrückt

1.2.2 Sensitivität (Empfindlichkeit) (S. 106)

Für die Sensitivität eines Reglers gilt:

$$\lim_{H\to\infty}\frac{KH}{1+KH}\cdot r=1$$

- \Rightarrow Hat der Regler eine grosse Verstärkung H, so ist $y \approx r$ (Ausgang \approx Sollwert)
- \Rightarrow Bei einer Steuerung muss $H = \frac{1}{L}$ sein, damit $y \approx r$

1.2.3 Stabilitätsproblem (S. 109-110)

Sobald ein offener Regelkreis (Steuerung) geschlossen wird, muss darauf geachtet werden, dass das System stabil ist.

1.3 Stabilität eines Systems mit Rückkopplung

(asymp.) stabil Verstärkung |V| < 1

System schwingt nicht

grenzstabil Verstärkung V = -1 instabil Verstärkung |V| > 1

System schwingt mit konstanter Ampl.

Verstärkung |V| > 1 System schwingt mit zunehmender Ampl.

1.3.1 Berechnung Grenzstabilität (S. 111)

Für Grenzstabilität muss für die Verstärkung des Systems gelten: V = -1

Beispiel: Grenzstabilität System aus I-Glied und Totzeitglied

Es muss gelten: y(t) = -e(t) unter der Annahme, dass $e(t) = A \cdot \cos(\omega t)$

$$x(t) = K \cdot \int_{0}^{t} e(\tau) d\tau + x_{0} = K \cdot \int_{0}^{t} A \cdot \cos(\omega \tau) d\tau + x_{0} = K \frac{A}{\omega} \sin(\omega \tau) \Big|_{0}^{t} + x_{0}$$
$$= \frac{KA}{\omega} \sin(\omega t) + \underbrace{x_{0}}_{0}$$

$$y(t) = x(t-T_t) = \frac{KA}{\omega} \sin(\omega(t-T_t)) = \frac{KA}{\omega} \cos\left(\omega(t-T_t) - \frac{\pi}{2}\right)$$

Koeffizientenvergleich:

$$\frac{KA}{\omega}\cos\left(\omega t - \omega T_t - \frac{\pi}{2}\right) = -A\cos(\omega t) = \underbrace{A \cdot \cos(\omega t - \pi)}_{-e(t)}$$

- \Rightarrow Wenn der Regler die Verstärkung K hat ist das System grenzstabil und das System schwingt für alle Zeit mit der Frequenz ω
- → Die Verstärkung K muss vermieden werden!

2 Frequenzgang (S. 114)

Wird ein Sinus-Signal u(t) in ein LZI-System gegeben, so ist das Ausgangssignal y(t) wieder sinusförmig. Dabei ändern sich meist die **Amplitude** und die **Phase**. Die **Frequenz** hingegen bleibt **gleich**.

Die Amplitude und die Frequenz des Ausgangssignals (bzw. deren Änderung) kann aller dings frequenzabhängig sein!

2.0.1 Transiente

Die Transiente beschreibt den Vorgang, bis der eingeschwungene Zustand (**steady state**) erreicht ist. In der Praxis betrachtet man häufig $t = 5\tau$ als Ende des Einschwingvorgangs

→ Uns interessiert nur der der steady state!

2.0.2 Darstellung des Frequenzgangs

Der Frequenzgang kann mittels folgenden Diagrammen dargestellt werden:

- Nyquist-Plot (Ortskurve)
- Bode-Plot
- Zeiger-Diagramm

2.1 Frequenzgang $G(j\omega)$ als komplexe Zahl (s. 116)

$$G(j\omega) = |G(j\omega)| \cdot e^{j\angle G(j\omega)} = \frac{B}{A} \cdot e^{j\varphi}$$

2.2 Frequenzgang der Grundglieder

P-Glied	I-Glied	PT ₁ -Glied	T_t -Glied
\longrightarrow^K	$ \stackrel{K}{\longrightarrow}$	$\longrightarrow^{K} T$	$T_t \ (\geq 0!)$
y(t) = Ku(t)	$\dot{y}(t) = Ku(t)$	$ T\dot{y}(t) + y(t) = Ku(t)$	$y(t) = u(t - T_t)$
$G(j\omega) = K$	$G(j\omega) = \frac{K}{j\omega}$	$G(j\omega) = \frac{K}{1 + j\omega T}$	$G(j\omega) = e^{-j\omega T_t}$
$ G = K$ $\angle G = 0$	$ G = \frac{K}{\omega}$ $\angle G = -\frac{\pi}{2}$	$ G = \frac{K}{\sqrt{1 + (\omega T)^2}}$ $\angle G = -\arctan(\omega T)$	$ G = 1$ $\angle G = -\omega T_t$
Im K Re	$\begin{array}{c} \text{Im} \\ \\ \omega \rightarrow \infty \\ \\ \omega = 0 \end{array}$ Re	$\begin{array}{c c} & \text{Im} & \\ & \omega = 0 \\ K & \\ K & \\ \text{Re} & \\ \text{Halbkreis} & \end{array}$	$\begin{array}{c} \text{Im} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

→ Zusammengesetzte Grundglieder: siehe Skript S. 204-208

2.3 Darstellung mit Zeigern

Im Frequenzbereich kann ein Signal **bei einer bestimmten Frequenz** als Zeigerdiagramm dargestellt werden. Dabei wird das Signal y(t) als Zeiger \underline{Y} zur Zeit t=0 dargestellt, welcher anschliessend mit Frequenz $\omega=2\pi f$ rotiert. Das zeitliche Signal y(t) entspricht dem **Realteil** von y(t)

2.3.1 Komplexe Amplitude *Y*

$$\underline{y}(t) = B \cdot [\cos(\omega t + \varphi) + j \sin(\omega t + \varphi)]$$

$$= B \cdot e^{j(\omega t + \varphi)} = B \cdot e^{j\varphi} \cdot e^{j\omega t}$$

$$= Y \cdot e^{j\omega t}$$

Die in der Gleichung vorkommenden Grössen sind definiert als

|y(t)| = B Maximale Amplitude des Ausgangssignals

Re(y(t)) = y(t) Ausgangssignal (zeitlich)

 $y(0) = \underline{Y}$ Anfangszeiger (komplexe Amplitude)

2.3.2 Ableitung / Integral im Frequenzbereich

$$\underline{\dot{y}}(t) = \underline{Y} \cdot j\omega \cdot e^{j\omega t}$$

$$\int y(t) \, \mathrm{d}t = \frac{\underline{Y}}{j\omega} \cdot e^{j\omega t}$$

2.4 Bestimmung des Frequenzgangs aus DGL

- 1. DGL des Systems in Frequenzbereich transformieren
- **2.** Geeignet umformen: $G(j\omega) = \frac{Y}{II}$
- **3.** Falls gewünscht: Amplitude $|G(j\omega)|$ und Phase φ bestimmen

Beispiel: PT₁ Glied

$$T\dot{y} + y(t) = Ku(t) \quad \xrightarrow{\text{Frequenzbereich}} \quad T \cdot j\omega \cdot \underline{Y} + \underline{Y} = [j\omega T + 1] \cdot \underline{Y} = K\underline{U}$$

$$\frac{\underline{Y}}{\underline{U}} = \frac{K}{j\omega T + 1} = G(j\omega)$$

$$|G(j\omega)| = \frac{|\underline{Y}|}{|\underline{U}|} = \frac{K}{\sqrt{(\omega T)^2 + 1^2}} \qquad \varphi = \frac{K}{1 + (\omega T)^2} - j\frac{K\omega T}{1 + (\omega T)^2} + \pi$$

2.4.1 Allgemeiner Fall

2.5 Serieschaltung von LZI-Systemen

2.6 Parallelschaltung von LZI-Systemen

$$| \underline{\underline{Y}} = \underline{\underline{Y}}_1 + \underline{\underline{Y}}_2 = G_1(j\omega) \cdot \underline{\underline{U}} + G_2(j\omega) \cdot \underline{\underline{U}} = \underbrace{(G_1(j\omega) + G_2(j\omega))}_{G(j\omega)} \cdot \underline{\underline{U}}$$

$$G_1 + G_2 = \text{Re}\{G_1\} + \text{Re}\{G_2\} + j(\text{Im}\{G_1\} + \text{Im}\{G_2\})$$

2.7 Kreisschaltung (Gegenkopplung) von LZI-Systemen

$$\underline{\underline{Y} = \underbrace{\frac{G_1(j\omega)}{1 + G_1(j\omega) \cdot G_2(j\omega)} \cdot \underline{U}}_{G(j\omega)} \cdot \underline{U}}$$

→ Anwendung von Mason Regel (SigSys)

2.7.1 Vorgehen Frequenzgang ermitteln

- 1. Gleichung zum Blockdiagramm aufstellen
- 2. Nach Y umformen

2.8 Frequenzgang – Übertragungsfunktion (UTF)

Der Frequenzgang $G(j\omega)$ und du Übertragungsfunktion G(s) mit $s = \sigma + j\omega$ hängen folgendermassen zusammen:

$$G(j\omega) = G(s)|_{s=j\omega}$$

2.8.1 Übersicht Darstellungsformen

3 Stabilität - Nyquistkriterium (s. 126)

Die Stabilität eines Regelkreises kann mit dem Nyquistkriterium viel einfacher betrachtet werden. Dafür wird der Frequenzgang $G_0(j\omega)$ des offenen Regelkreises betrachtet. Ausserdem gibt das Nyquistkriterium an, wie robust ein Regelkreis ist.

Frequenzgang des offenen Regelkreises

$$G_0(j\omega) = \frac{\underline{Y}}{\underline{E}}$$

Beispiel: Kreisschaltung mit mehreren Blöcken

Folgendes System besitzt ein Eingangssignal R und vier Ausgangssignale Y Es sollen der Frequenzgang des offenen Regelkreises $G_0(j\omega)$, sowie ausgewählte UTFs des Systems beschrieben werden.

$$G_0(j\omega) = G_1(j\omega) \cdot G_2(j\omega) \cdot G_3(j\omega)$$

$$\underline{\underline{Y}}_{3}$$

$$\frac{\underline{Y}_{1}}{\underline{R}} = \frac{1}{1 + G_{1}(j\omega) \cdot G_{2}(j\omega) \cdot G_{3}(j\omega)}$$

$$\frac{\underline{Y}_3}{\underline{R}} = \frac{G_1(j\omega) \cdot G_2(j\omega)}{1 + G_1(j\omega) \cdot G_2(j\omega) \cdot G_3(j\omega)}$$

Hinweis: Die Stabilität des Systems ist unabhängig von der Reihenfolge der Teilsysteme $G_i(j\omega)$, da die Stabilität durch den Nenner (bzw. die Polstellen) beschrieben wird.

3.1 Stabilität im Nyquist-Diagramm

Gedankenexperiment: Ein offener Regelkreis mit $G_0(j\omega)$ (gemäss Abschnitt 3) um eine veränderbare Verstärkung K ergänzt.

3.1.1 Stabilität

Wähle $K = K_0$, sodass sich die Ortskurve immer innerhalb des Einheitskreises befindet.

- Befindet sich die Ortskurve eines Systems immer innerhalb des Einheitskreises, so ist der offene Regelkreis stabil.
 - → Daraus folgt, dass auch der geschlossene Regelkreis stabil sein muss.
- Führungsübertragungsfunktion für $K \ll K_0$:

$$G_f(j\omega) = \frac{K \cdot G_0(j\omega)}{1 + K \cdot G_0(j\omega)} \approx K \cdot G_0(j\omega)$$

3.1.2 Grenzstabilität

Wähle $K = K_{krit} > K_0$, sodass die Ortskurve den Punkt –1 schneidet.

- Ortskurve des offenen Regelkreises $G_0(j\omega)$ verläuft durch den Punkt –1,
- Die Frequenz ω_{π} , für die $G_0(j\omega_{\pi})=-1=e^{-\pi}$ heisst **kritische Frequenz**. Mit dieser kritischen Frequenz schwingt das System.
- kritischen Frequenz schwingt uas System.

 Die Führungsübertragungsfunktion $G_f(j\omega) = \frac{K \cdot G_0(j\omega)}{1+K \cdot G_0(j\omega)}$ wird bei der kritischen Frequenz zu $G_f(j\omega_\pi) = \frac{-1}{1-1} = -\infty$ \Longrightarrow Grenzstabilität

3.1.3 Instabilität

Wähle $K > K_{krit}$

- Ortskurve verläuft nicht mehr durch den Punkt −1
- · Das System ist instabil

3.2 Vereinfachtes Nyquistkriterium (S. 127-128)

Idee: Informationen über den offenen Regelkreis verwenden, um die Stabillität des geschlossenen Regelkreises zu beurteilen

3.2.1 Vereinfachtes Nyquistkriterium

- Gemäss Abschnitt 3 wird $G_0 = \prod_i G_i$ gebildet aus den seriegeschalteten Teilsystemen des offenen Regelkreises (\Rightarrow Produkt aller G_i im Feedback-Loop)
- G₀ muss dabei einem **Prozess mit Ausgleich (stabilen Prozess)** entsprechen; zusätzlich dürfen noch einer oder zwei Integratoren seriegeschaltet sein Mit Polen formuliert: Bei G_0 sind maximal zwei Pole bei Null erlaubt; alle weiteren Pole müssen in der linken Halbebene liegen
- Damit der geschlossene Regelkreis stabil ist, muss der kritische Punkt -1 links der Nyquistkurve von G_0 liegen, wenn diese in Richtung zunehmender Frequenz durchlaufen wird ($\omega = 0...\infty$) \Rightarrow 'links der Kurve': Man befindet sich **auf der** Kurve und 'schaut' nach links und muss den Punkt -1 'sehen'

Beispiel: Ortskurven stabiler Systeme (S. 128)

Achtung: Damit die Stabilität der gezeigten Systeme beurteilt werden kann, muss sichergestellt werden, dass auch die ersten beiden Punkte des vereinfachten Nyquistkriteriums eingehalten werden!

3.3 Stabilitätsreserven

Wir möchten nicht nur Stabilität, sondern auch eine gewisse Stabilitätsreserve, um z.B. auch bei einem ungenau modellierten Prozess oder einer sich ändernden Regelstrecke noch einen stabilen Regelkreis zu gewährleisten.

- Auch ein stabiler Regelkreis kann sehr lange (ein)schwingen
- Stabilität / Grenzstabilität / Instabilität sind defnierte Bereiche
 - Es gibt nicht 'ein wenig stabil', 'ziemlich stabil', 'stabiler als...', 'instabiler als'
- Allenfalls: Ein Regelkreis ist stabiler als ein anderer. Gemeint ist:
 - Ein Regelkreis ist besser gedämpft / schneller (eingeschwungen)
 - Ein Regelkreis ist robust er ist trotz gewissen Widerigkeiten im Regelkreis - Ein Regelkreis bleibt stabil, auch wenn die Regelstrecke leicht ändert

3.4 Stabilitätsreserven im Nyquistdiagramm (s. 129)

$$\boxed{ \Phi_{RES} = \arctan \left(\frac{\operatorname{Re} \left\{ G_0(j\omega_D) \right\}}{\operatorname{Im} \left\{ G_0(j\omega_D) \right\}} \right) }$$

$$\boxed{\frac{1}{K_{RES}} = \left| G_0(j\omega_\pi) \right|}$$

Ein System ist stabil, wenn eine der folgenden Bedingungen erfüllt ist:

- $\omega_{\pi} > \omega_{D}$
- $G_0(j\omega_D) = e^{-j\varphi}$ mit $0 < \varphi < \pi$
- $0 > G_0(j\omega_{\pi}) > -1$
- Durchtrittsfrequenz ω_D

Frequenz, bei der die Kurve den Einheitskreis durchquert: $|G_0(j\omega_D) = 1|$

- \Rightarrow Phasenreserve Φ_{RES}
- Phasenschnittfrequenz ω_{π}

Frequenz, bei der die Kurve die reelle Achse durchquert: Im $\{G_0(j\omega_\pi)\}=0$

 \rightarrow Verstärkungsreserve K_{RES}

3.4.1 Verstärkungsreserve K_{RES}

Die Verstärkungsreserve K_{RES} liefert direkt den Toleranzwert für den Fall, dass die Modellunsicherheit des offenen Regelkreises bei der Verstärkung liegt.

Der Abstand zur Ursprung bei der Phasenschnittfrequenz ω_{π} entspricht $\frac{1}{K_{RES}}$ \Rightarrow Wenn anstatt dem Nominalfrequenzgang $G_0(j\omega)$ tatsächlich $K_{RES} \cdot C_0(j\omega)$ vorliegt, wird der Regelkreis grenzstabil!

3.4.2 Phasenreserve Φ_{RES}

Die Phasenreserve Φ_{RES} liefert einen Toleranzwert für den Fall, dass die **Modellunsicher**heit des offenen Regelkreises bei der Totzeit liegt.

 \Rightarrow Wenn anstatt dem Nominalfrequenzgang $G_0(j\omega)$ tatsächlich $G_0(j\omega) \cdot e^{-j\omega T_t}$ vorliegt, wird der Regelkreis grenzstabil!

Der Zusammenhang zwischen Phasendrehung und Totzeit ist

$$T_t = \frac{\Phi_{RES}}{\omega_D}$$
 wobei $[\Phi_{RES}] = \text{rad}$

Beispiel: Einfluss von Stabilitätsreserven auf Nyquistdiagramm

Mitte: Verstärkungsreserve streckt Kurve vom Ursprung aus

Rechts: Phasenreserve dreht jeden Punkt der Kurve um verschiedene Winkel $\omega \cdot T_t$ um den Ursprung

3.4.3 Faustregeln für Reserven (S. 131)

Hinweis: Es besteht eine Kopplung zwischen den beiden Effekten!

- Phasenreserve von $\Phi_{RES} = 40^{\circ} \dots 70^{\circ}$
- Verstärkungsreserve von $K_{RES} > 4 (\approx 12 \,\mathrm{dB})$

3.5 Nyquistdiagramme mit MatLab

3.6 Vorgehen: Nyquistdiagramme zeichnen

- Werte für $G(\omega = 0)$ und $G(\omega = \infty)$ berechnen
- Anzahl j im Zähler **plus** Anzahl j im Nenner entspricht Anzahl Quadranten, welche zwischen $\omega = 0$ und $\omega = \infty$ durchlaufen werden
- Pollstellen: $|G(j\omega)| \downarrow$; $\angle G(j\omega) \downarrow \Rightarrow$ Bewegung im Uhrzeigersinn \Rightarrow Bei den Nullstellen ist $\angle G(j\omega) = \pm 45^{\circ}$
- Nullstellen: $|G(j\omega)| \uparrow$; $\angle G(j\omega) \uparrow$; \Rightarrow Bewegung im Gegenuhrzeigersinn
- Frequenzen der Pol- bzw. Nullstellen berechnen

4 Dezibel dB

4.1 Umrechnung Verstärkungsfaktor - Dezibel dB

$$|K|_{\mathrm{dB}} = 20 \,\mathrm{dB} \cdot \log_{10} |K| \quad \Leftrightarrow \quad |K| = 10^{\left(\frac{|K|_{\mathrm{dB}}}{20 \,\mathrm{dB}}\right)}$$

Hinweis: Die Betragsstrichte nur Notation! |K| kann sehr wohl negativ sein!

4.1.1 Rechenregeln

Multiplikation → Addition

$$|K_1 \cdot K_2|_{\mathrm{dB}} = |K_1|_{\mathrm{dB}} + |K_2|_{\mathrm{dB}}$$

• Division ⇒ Subtraktion

$$\left| \frac{K_1}{K_2} \right|_{\text{dB}} = |K_1|_{\text{dB}} - |K_2|_{\text{dB}}$$

• Kehrwert → Negatives Vorzeichen

$$\left|\frac{1}{K_1}\right|_{dB} = |1|_{dB} - |K_1|_{dB} = -|K_1|_{dB}$$

4.2 dB-Umrechnungstabelle

Faktor [1]	Dezibel dB	Faktor [1]	Dezibel d
100	40	2	6
10	20	$\sqrt{2}$	3
1	0	$\frac{1}{\sqrt{2}}$	-3
0.1	-20	$\frac{1}{2}$	-6
0.01	-40	2	

5 Bode-Diagramm

Das Bode-Diagramm ist eine weitere Variante, den Frequenzgang $G(j\omega)$ grafisch darzustellen. Die Darstellung beinhaltet zwei Graphen.

- Amplitudengang $|G(j\omega)|$ in Dezibel dB
- Phasengang $\angle G(j\omega)$ in Grad $^{\circ}$
- Die Frequenzachse ist **logarithmisch** mit $\log_{10}(\omega)$
- Ein Bodediagramm kann in ein Nyquistdiagramm umgezeichnet werden, aber nicht umgekehrt!

5.0.1 Logarithmische Frequenzachse

· Serieschaltung von Systemen

$$G(j\omega) = G_1(j\omega) \cdot G_2(j\omega)$$

Amplitudengang

$$|G(j\omega)| = |G_1(j\omega)| \cdot |G_2(j\omega)|$$

$$|G(j\omega)|_{\mathrm{dB}} = |G_1(j\omega)|_{\mathrm{dB}} + |G_2(j\omega)|_{\mathrm{dB}}$$

→ Grafisch multiplizieren wäre schwierig, grafisch addieren geht gut

Amplitudengang

$$\angle G(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega)$$

→ Die Phase muss nicht logarithmisch sein, wir haben schon eine Addition

5.1 Vorgehen: Bode-Diagramm zeichnen

Das Diagramm wird approximativ mit Geraden gezeichnet!

• Frequenzgang in folgende Form bringen:

$$G(j\omega) = K_0 \cdot (j\omega)^{\nu} \cdot \frac{(1 + T_{n0} \cdot j\omega) \cdot (1 + T_{n1} \cdot j\omega) \cdot \dots}{(1 + T_{p0} \cdot j\omega) \cdot (1 + T_{p1} \cdot j\omega) \cdot \dots} \cdot e^{-j\omega T_t}$$

- Für $\omega=0$ sind alle $(1+T\cdot j\omega)=1=0$ dB Für $\omega=\frac{1}{T}$ sind alle $(1+T\cdot j\omega)=1+j=\sqrt{2}\cdot e^{j\frac{\pi}{4}}=3$ dB $\angle 45^\circ$
- Frequenzen der Nullstellen berechnen: $\omega = \frac{1}{T_n}$
- Frequenzen der Polstellen berechnen: $\omega = \frac{1}{T_n}$
- Jede Nullstelle bewirkt
 - einen Knick um +20dB / Dekade nach oben im Amplitudengang
 - einen Phasenhub von +90° über 2 Dekaden → +45° beim Knick
- Jede Polstelle bewirkt
 - einen Knick um –20dB / Dekade nach unten im Amplitudengang
 - einen Phasenverlust von −90° über 2 Dekaden ⇒ −45° beim Knick
- Einzelne Faktoren einzeichnen → Wenn Faktor quadriert ist, zwei mal einzeichnen!
- Grafische Addition der Faktoren für gesamten Frequenzgang

Beispiel: Bode-Diagramm zeichnen

$$G(j\omega) = \frac{j\omega + 10}{(j\omega + 0.1)}$$
 Standardform $G(j\omega) = 100 \cdot \frac{(1 + 0.1 \ j\omega)}{(1 + 10 \ j\omega)}$

- $|K_0|_{\mathrm{dB}} = |100|_{\mathrm{dB}} = 40 \,\mathrm{dB} \implies \angle G(100) = 0^{\circ}$
- Nullstelle: $|1 + 0.1 j\omega|_{dB}$ \Rightarrow Knick bei $\omega = \frac{1}{0.1s} = 10 \frac{\text{rad}}{\text{s}}$
- Polstelle: $|1 + 10 j\omega|_{dB}$ \Rightarrow Knick bei $\omega = \frac{1}{10s} = 0.1 \frac{rad}{s}$

10-

• Endresultat: Grafische Addition der Teilresultate

<u>5.1.1 Inverse Frequenzgänge</u>

Das Bodediagramm des inversen Frequenzgangs $\frac{1}{G(j\omega)}$ entspricht dem an der 0 dB-Achse **gespiegelten** Bodediagramm des Frequenzgangs $G(j\omega)$

5.2 Stabilität im Bodediagramm

Analog zum Punkt -1 im Nyquistdiagramm kann die Stabilität auch im Bodediagramm beurteilt werden.

- Grenzstabilität: Amplitudengang bei 0 dB und Phasengang bei $-180\,^\circ$
- Instabilität: Amplitudengang > 0 dB
- **Stabilität**: Amplitudengang < 0 dB

5.2.1 Stabilitätsreserven