Instructions for "userinput_data.txt"

The "userinput_data.txt" is the text file where the users can input their data.

- 1. Line no. $1 \Rightarrow$ The iteration number where the simulation has to start. For a new simulation, this will be 1.
 - 2. Line no. $2 \Rightarrow \text{Total number of iterations}$
- 3. Line no. $3 \Rightarrow$ It indicates the iteration interval for which result file has to be written. If result file has to be written for every 5000 iteration, enter 5000.
 - 4. Line no. $4 \Rightarrow \text{Non-dimensional density} = \rho/\rho_{\infty}$
 - 5. Line no. $5 \Rightarrow (\rho * u)/(\rho_{\infty} * u_{\infty})$ where u represents velocity in x- direction
 - 6. Line no. $6 \Rightarrow (\rho * v)/(\rho_{\infty} * u_{\infty})$ where v represents velocity in y- direction
 - 7. Line no. $7 \Rightarrow (\rho * w)/(\rho_{\infty} * u_{\infty})$ where w represents velocity in z- direction
 - 8. Line no. 8 \Rightarrow Non-dimensional specific total energy = $E/(u_{\infty}^2)$
 - 9. Line no. $9 \Rightarrow$ Reynolds number
 - 10. Line no. $10 \Rightarrow Mach number$
 - 11. Line no. $11 \Rightarrow Prandtl$ number
 - 12. Line no. 12 \Rightarrow Time step size, Δt
 - 13. Line no. 13 \Rightarrow If periodic boundary conditions are present, give 1, else 0.

Instructions for gambit file

Follow the following instructions while creating mesh file from gambit

- 1. Name the .msh file as msh_gambitfile.txt
- 2. Name the .neu file as mesh_file.txt
- 3. Follow the below mentioned naming conventions for boundary surfaces:
- For wall surfaces perpendicular to x-direction, name them as flat_wall_nx1, flat_wall_nx2, and so on.
- For wall surfaces perpendicular to y-direction, name them as flat_wall_ny1, flat_wall_ny2, and so on.
- For wall surfaces perpendicular to z-direction, name them as flat_wall_nz1, flat_wall_nz2, and so on.
- For walls, which are curved, name them as curved_wall1, curved_wall2, and so on.
- For inflow surfaces perpendicular to x-direction, name them as flat_inflow_nx1, flat_inflow_nx2, and so on.

- For inflow surfaces perpendicular to y-direction, name them as flat_inflow_ny1, flat_inflow_ny2, and so on.
- For inflow surfaces perpendicular to z-direction, name them as flat_inflow_nz1, flat_inflow_nz2, and so on.
- For inflow surfaces, which are curved, name them as curved_inflow1, curved_inflow2, and so on.
- For outflow surfaces perpendicular to x-direction, name them as flat_outflow_nx1, flat_outflow_nx2, and so on.
- For outflow surfaces perpendicular to y-direction, name them as flat_outflow_ny1, flat_outflow_ny2, and so on.
- For outflow surfaces perpendicular to z-direction, name them as flat_outflow_nz1, flat_outflow_nz2, and so on.
- For outflow surfaces, which are curved, name them as curved_outflow1, curved_outflow2, and so on.
- For farfield surfaces perpendicular to x-direction, name them as flat_upper_nx1, flat_upper _nx2, and so on.
- For farfield surfaces perpendicular to y-direction, name them as flat_upper_ny1, flat_upper_ny2, and so on.
- For farfield surfaces perpendicular to z-direction, name them as flat_upper_nz1, flat_upper_nz2, and so on.
- For farfield surfaces, which are curved, name them as curved_upper 1, curved_upper 2, and so on.
- For periodic surfaces, name them as periodic1, periodic2, and so on.

Other general instructions

Instructions with regard to output files are given below

- 1. The convergence file is written as error.txt.
- 2. The result file is written as result_n.txt, where n indicates the iteration number. Line number 1 contains data corresponding to element no 1. Similarly, line number 2

contains data corresponding to element no 2, and so on. The first column corresponds to non-dimensional density $=\rho/\rho_{\infty}$, second column corresponds to $(\rho*u)/(\rho_{\infty}*u_{\infty})$, third column to $(\rho*v)/(\rho_{\infty}*u_{\infty})$, fourth column to $(\rho*w)/(\rho_{\infty}*u_{\infty})$, and the last one to non-dimensional specific total energy $=E/(u_{\infty}^2)$.

- 3. The result file in tecplot format is written as resultplt_n.plt, where n indicates the iteration number.
- 4. The details of back up recovery data is written in recovery.txt. Refer to this file and give the last written iteration number (Last written iteration number+1) as the start iteration while restarting the numerical simulation.