Duale Hochschule Baden-Württemberg

Logik und Algebra

4. Übungsblatt

1. Aufgabe: Auf \mathbb{N}^2 sei die folgende Relation R gegeben:

$$(a_1, a_2) R (b_1, b_2) \Leftrightarrow a_1b_2 - a_2b_1 \ge 0$$

Untersuchen Sie die Relation auf ihre Eigenschaften.

2. Aufgabe: Gegeben sind die folgenden Relationen auf der Menge $\{a,b,c\}$ mit drei Elementen:

$$R_1 = \{(a, a), (b, b), (c, c)\}$$

$$R_2 = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$$

$$R_3 = \{(a, a), (b, b), (b, c), (c, c)\}$$

$$R_4 = \{(a, a), (a, b), (b, b), (b, c), (c, c)\}$$

$$R_5 = \{(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)\}$$

$$R_5 = \{(a,a), (a,b), (a,c), (b,b), (b,c), (c,c)\}$$

$$R_6 = \{(a,a), (a,c), (b,a), (b,b), (b,c), (c,a), (c,c)\}$$

- (a) Sind die Relationen Ordnungen, und wenn ja, was für welche?
- (b) Gibt es minimale, maximale, kleinste oder größte Elemente?
- 3. Aufgabe: Die Menge $Z_n=\{0,\dots,n-1\}$ bezeichnet die Menge der Zahlen von 0 bis n-1. Gegeben sind die Funktionen f und g:

$$\begin{split} f: &Z_4 \to Z_5, & x \mapsto x+1 \\ g: &Z_5 \to Z_4, & x \mapsto \left\{ \begin{array}{ll} 0\,, & \text{wenn } x=0 \\ x-1\,, & \text{wenn } x \neq 0 \end{array} \right. \end{split}$$

Untersuchen Sie f, g, $f \circ g$ und $g \circ f$ auf Injektivität, Surjektivität und Bijektivität.

- 4. Aufgabe: Gegeben seien die folgenden Permutationen in S_7 in Zyklusschreibweise: (146)(23), (17)(23)(45) und (23456). Bestimmen Sie die drei Umkehrpermutationen und alle neun Verkettungen dieser Permutationen in einer Verknüpfungstabelle.
- 5. Aufgabe: Auf \mathbb{R}^2 sei die folgende Verknüpfung definiert:

$$(a,b) * (c,d) = (ac, ad + bc)$$

- (a) Ist * kommutativ und/oder assoziativ?
- (b) Gibt es ein Tupel (e, f), so dass für alle (u, v) gilt, dass (e, f) * (u, v) = (u, v)?

Lösung 3. Übungsblatt

Lösung 1:

(a) $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$:

Gegeben ist: $x \in (A \times C) \cup (B \times D)$

Zu zeigen ist: $x \in (A \cup B) \times (C \cup D)$

- **1. Fall:** Ist $x \in A \times C$, so gibt es ein $a \in A$ und ein $c \in C$, so dass x = (a, c). Da $a \in A \subseteq A \cup B$ und $c \in C \subseteq C \cup D$ ist, ist $x = (a, c) \in (A \cup B) \times (C \cup D)$.
- **2. Fall:** Ist $x \in B \times D$, so gibt es ein $b \in B$ und ein $d \in D$, so dass x = (b, d). Da $b \in B \subseteq A \cup B$ und $d \in D \subseteq C \cup D$ ist, ist $x = (b, d) \in (A \cup B) \times (C \cup D)$.

Da dies für alle $x \in (A \times C) \cup (B \times D)$ gilt, folgt $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$.

(b) Da wie gerade bewiesen $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$, kann es nur ein $x \in (A \cup B) \times (C \cup D)$ geben, für das $x \not\in (A \times C) \cup (B \times D)$ ist. Seien nun A und B, sowie C und D paarweise disjunkt, und alle nichtleer. Dann wähle $a \in A$ und $d \in D$, für die nach Annahme $a \not\in B$ und $d \not\in C$ gelten. Dann ist $a \in A \cup B$ und $d \in C \cup D$ und damit $x = (a,d) \in (A \cup B) \times (C \cup D)$. Nach Konstruktion ist $(a,d) \not\in A \times C$, da $d \not\in C$ und auch $(a,d) \not\in B \times D$, da $a \not\in B$. Damit ist $x = (a,d) \not\in (A \times C) \cup (B \times D)$ und damit kann die Gleichheit nicht gelten.

Oder ein ganz explizites Gegenbeispiel: $A=C=\{1\}$, $B=D=\{2\}$. Dann ist

$$(A \cup B) \times (C \cup D) = \{1,2\} \times \{1,2\} = \{(1,1),(1,2),(2,1),(2,2)\},\$$

aber

$$(A \times C) \cup (B \times D) = (\{1\} \times \{1\}) \cup (\{2\} \times \{2\}) = \{(1,1)\} \cup \{(2,2)\} = \{(1,1),(2,2)\}.$$

Also sind die Mengen nicht gleich, denn beispielsweise x=(1,2) oder x=(2,1) finden sich in der ersten aber nicht in der zweiten Menge.

Lösung 2: Beweis der Aussage $\forall n \in \mathbb{N}_0 : (|M| = n \Rightarrow |\mathcal{P}(M)| = 2^n)$ durch vollständige Induktion:

Induktionsstart n=0: Ist |M|=0, so ist $M=\emptyset$ und $\mathcal{P}(M)=\{\emptyset\}$, also $|\mathcal{P}(M)|=1=2^0$. Induktionsschritt $n\to n+1$:

Gegeben ist: Für eine Menge K mit |K| = n gilt $|\mathcal{P}(K)| = 2^n$.

Zu zeigen ist: Für eine Menge M mit |M| = n + 1 gilt $|\mathcal{P}(M)| = 2^{n+1}$.

Sei $a \in M$ beliebig, und sei $K = M \setminus \{a\}$. Dann ist |K| = n und $|\mathcal{P}(K)| = 2^n$. Sei nun $\mathcal{K}_1 = \mathcal{P}(K)$ und

$$\mathcal{K}_2 = \{ A \cup \{ a \} : A \in \mathcal{K}_1 \}$$

und $\mathcal{M}=\mathcal{K}_1\cup\mathcal{K}_2$. Nach Prämisse ist $|\mathcal{K}_1|=2^n$ und nach Konstruktion $|\mathcal{K}_2|=2^n$. Außerdem ist $\mathcal{K}_1\cap\mathcal{K}_2=\emptyset$, da a nach Konstruktion in keiner Menge von \mathcal{K}_1 vorkommt, hingegen in jeder Menge von \mathcal{K}_2 . Damit ist

$$|\mathcal{M}| = |\mathcal{K}_1| + |\mathcal{K}_2| = 2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$$
.

Es verbleibt zu zeigen, dass $\mathcal{P}(M) = \mathcal{M}$:

 $\mathcal{P}(M) \subseteq \mathcal{M} : \mathsf{Sei}\ B \in \mathcal{P}(M).$

- **1. Fall:** Ist $a \notin B$, so ist $B \subseteq K$ und damit $B \in \mathcal{P}(K) = \mathcal{K}_1 \subset \mathcal{M}$.
- **2. Fall:** Ist $a \in B$, so ist $B \setminus \{a\} \subseteq K$ und damit $B \setminus \{a\} \in \mathcal{P}(K) = \mathcal{K}_1$. Damit ist nach Konstruktion $B \in \mathcal{K}_2 \subset \mathcal{M}$.

 $\mathcal{M} \subseteq \mathcal{P}(M)$: Sei $B \in \mathcal{M}$.

- **1. Fall:** Ist $B \in \mathcal{K}_1$, so ist $B \subseteq K \subset M$, also ist $B \in \mathcal{P}(M)$.
- **2. Fall:** Ist $B \in \mathcal{K}_2$, so ist $B \setminus \{a\} \subseteq K$ und $B \subseteq M$, also ist $B \in \mathcal{P}(M)$.

Damit ist $\mathcal{P}(M) = \mathcal{M}$ und damit $|\mathcal{P}(M)| = 2^{n+1}$.

Damit gilt die Aussage für alle $n \in \mathbb{N}_0$.

Lösung 3: Eigenschaften der Relation R über der Menge $M = \{1, 2, 3, 4, 5\}$:

$$R = \{ (1,3), (2,4), (2,2), (3,1), (4,2), (2,5), (4,5) \}$$

Symmetrie: Die Relation R ist nicht symmetrisch, da $(2,5) \in R$, aber $(5,2) \notin R$.

Antisymmetrie: Die Relation R ist nicht antisymmetrisch, da $(1,3) \in R$ und $(3,1) \in R$ mit $1 \neq 3$.

Reflexivität: Die Relation R ist nicht reflexiv, da $(1,1) \notin R$.

Transitivität: Die Relation R ist nicht transitiv, da $(1,3) \in R$ und $(3,1) \in R$, aber nicht $(1,1) \in R$.

Linearität: Die Relation R ist nicht linear, denn es ist $(1,2) \notin R$ und $(2,1) \notin R$.

Lösung 4: Gegeben sei die Relation R über der Menge $M = \{a, b, c, d, e\}$:

$$R = \{ (a, a), (a, d), (b, b), (b, e), (c, c), (d, a), (d, d), (e, b), (e, e) \}$$

(a) R ist Äquivalenzrelation, denn

Reflexivität: Es ist $\{(a,a),(b,b),(c,c),(d,d),(e,e)\}\subseteq R.$

Symmetrie: Folgende Tupel sind $(x,y) \in R$ oder $(y,x) \in R$:

$$(a,d) \in R$$
 und $(d,a) \in R$. $\sqrt{\ }$

$$(b,e) \in R$$
 und $(e,b) \in R$. $\sqrt{}$

Transitivität: Seien $x \neq y$, $y \neq z$ und $z \neq x$.

So einen Fall gibt es nicht, die sonstigen sind oben schon aufgeführt.

(b) Ungerichteter Graph der Relation R:

(c) Die Quotientenmenge M/R ist die Menge der Äquivalenzklassen von R:

$$M/R = \{ [a]_R, [b]_R, [c]_R \} = \{ \{a, d\}, \{b, e\}, \{c\} \}.$$

Lösung 5: Auf $M = [-2\pi, 2\pi]$ ist die Relation \sim definiert durch:

$$x \sim y \iff \sin(x) = \sin(y)$$
.

(a) Es ist eine Äquivalenzrelation, da:

Reflexivität: Sei $x \in [-2\pi, 2\pi]$, dann ist $\sin(x) = \sin(x)$, also gilt $x \sim x$.

Symmetrie: Seien $x,y \in [-2\pi,2\pi]$ mit $x \sim y$, also $\sin(x) = \sin(y)$. Dann ist auch $\sin(y) = \sin(x)$ und damit $y \sim x$.

Transitivität: Seien $x,y,z\in[-2\pi,2\pi]$ mit $x\sim y$ und $y\sim z$. Dann ist $\sin(x)=\sin(y)$ und $\sin(y)=\sin(z)$, also auch $\sin(x)=\sin(z)$, also gilt $x\sim z$.

(b) Für alle Elemente $x \in [0]_{\sim}$ gilt: $\sin(x) = \sin(0) = 0$. Allgemein gilt dies in den reellen Zahlen für alle $x = k\pi$, $k \in \mathbb{Z}$. In M verbleiben $k \in \{-2, -1, 0, 1, 2\}$, also ist

$$[0]_{\sim} = \{-2\pi, -\pi, 0, \pi, 2\pi\}.$$

(c) Die Sinusfunktion durchläuft in $[-\frac{\pi}{2}, \frac{\pi}{2}]$ alle möglichen Werte in [-1, 1], damit kann die Quotientenmenge so geschrieben werden:

$$M/_{\sim} = \{ [x]_{\sim} | x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \}$$