

- Both ordinary least squares (OLS) and total least squares (TLS), as applied to estimate total capacity, seek to find \widehat{Q} such that $y \approx \widehat{Q}x$ using N-vectors of measured data \mathbf{x} and \mathbf{y} ($N \geq 1$)
- i th element (x_i, y_i) corresponds to data collected from a cell over time interval i $□ x_i$ is estimated change in state-of-charge over that interval
 - \Box y_i is net accumulated ampere hours passing through cell during that period
- Specifically,

$$x_i = z[k_{2,i}] - z[k_{1,i}] \qquad \text{for time interval } i$$

$$y_i = -\Delta t \sum_{k=k_{1,i}}^{k_{2,i}-1} \eta[k]i[k]$$

Dr. Gregory L. Plett

Iniversity of Colorado Colorado Spring

Battery State-of-Health (SOH) Estimation | Total-least-squares battery-cell capacity estimation

1 of 5

1.2.2: How to find the ordinary-least-squares solution as a benchmark

Major assumption of OLS

- OLS approach assumes that there is no error on x_i and models data as $y = Qx + \Delta y$, where Δy is a vector of measurement errors
- Error bars on data points meant to illustrate uncertainties, which are proportional to σ_{v_i}
- We assume that Δy comprises zero-mean Gaussian random variables, with known variances $\sigma_{y_i}^2$ (which are not necessarily equal to each other)
- OLS attempts to find an estimate \widehat{Q} of the true cell total capacity Q that minimizes sum of squared errors Δy_i

Dr. Gregory L. Plet

Iniversity of Colorado Colorado Springs

Battery State-of-Health (SOH) Estimation | Total-least-squares battery-cell capacity estimation

. ...

4.2.2: How to find the ordinary-least-squares solution as a benchmark

Cost function

- We generalize approach here slightly to allow for finding a \widehat{Q} that minimizes sum of *weighted* squared errors
 - □ Weighting takes into account uncertainty of specific measurement
- \blacksquare That is, we seek $\widehat{\mathcal{Q}}$ that minimizes weighted-least-squares (WLS) cost function

$$\chi_{\text{WLS}}^2 = \sum_{i=1}^{N} \frac{(y_i - Y_i)^2}{\sigma_{y_i}^2} = \sum_{i=1}^{N} \frac{(y_i - \widehat{Q}x_i)^2}{\sigma_{y_i}^2}$$

where Y_i is a point on the line $Y_i = \widehat{Q} x_i$ corresponding to measured data pair (x_i, y_i) , where y_i is assumed to have noise but x_i has no noise

Solution

- A number of solution approaches may be taken
- One that will serve us well is to differentiate cost function with respect to \widehat{Q} and solve for \widehat{Q} by setting partial derivative to zero

$$\frac{\partial \chi_{\text{WLS}}^2}{\partial \widehat{Q}} = -2 \sum_{i=1}^N \frac{x_i (y_i - \widehat{Q} x_i)}{\sigma_{y_i^2}} = 0$$

$$\widehat{Q} \sum_{i=1}^N \frac{x_i^2}{\sigma_{y_i}^2} = \sum_{i=1}^N \frac{x_i y_i}{\sigma_{y_i}^2}$$

$$\widehat{Q} = \sum_{i=1}^N \frac{x_i y_i}{\sigma_{y_i}^2} / \sum_{i=1}^N \frac{x_i^2}{\sigma_{y_i}^2}$$

Summary

- Have now defined and solved weighted ordinary-least-squares problem for estimating cell total capacity
- Desired to find \widehat{Q} to minimize $\chi^2_{\text{WLS}} = \sum_{i=1}^N (y_i Y_i)^2 / \sigma^2_{y_i}$
- Solution: Each time new data pair (x_i, y_i) available, compute

$$c_1 = \sum_{i=1}^{N} \frac{x_i^2}{\sigma_{y_i}^2}$$
 and $c_2 = \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_{y_i}^2}$

■ Then, $\widehat{Q} = c_2/c_1$

Dr. Gregory L. Plett University of Colorado Colorado Springs