

IIC1253 — Matemáticas Discretas — 1' 2020

# TAREA 3

Publicación: Viernes 17 de abril.

Entrega: Jueves 23 de abril hasta las 23:59 horas.

#### Indicaciones

- Debe entregar una solución para cada pregunta (sin importar si esta en blanco).
- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

#### Pregunta 1

Como vimos en clases, los operadores de conjuntos se definen a partir de los conectivos en lógica proposicional. Para esta pregunta deberán crear nuevos operadores sobre teoría de conjuntos usando formulas en esta lógica.

- 1. Dado dos conjuntos A y B se define el operador de conjuntos A\*B tal que para todo x se tiene que  $x \in A*B$  sí, y sólo sí,  $x \in A \leftrightarrow x \in B$ . Defina el operador A\*B sólo utilizando los operadores de unión, intersección y complemento de teoría de conjuntos. Luego demuestre que su definición es equivalente al operador A\*B.
- 2. Dado un operador n-ario en lógica proposicional  $C(p_1,...,p_n)$  donde  $p_1,...,p_n$  son variables proposicionales, podemos definir un operador n-ario entre conjuntos  $R_C(A_1,...,A_n)$  tal que, para todo x, se tiene que  $x \in R_C(A_1,...,A_n)$  sí, y solo sí,  $C(x \in A_1,...,x \in A_n)$  es verdadero. Por ejemplo, para nuestro operador A\*B el operador en lógica proposicional es  $C(p_1,p_2):=p_1 \leftrightarrow p_2$  y tenemos que la definición de A\*B es que  $x \in R_C(A,B)$  sí, y solo sí,  $C(x \in A,x \in B):=x \in A \leftrightarrow x \in B$  es verdadero. Otro ejemplo, es el el operador de lógica proposicional  $C^{\rightarrow}(p_1,p_2)=p_1 \rightarrow p_2$ . Este operador define el operador  $R_{C\rightarrow}(A,B)$  tal que  $x \in R_{C\rightarrow}(A,B)$  sí, y solo sí,  $x \in A \rightarrow x \in B$ . De hecho, es fácil ver que este operador  $R_{C\rightarrow}(A,B)$  se puede definir con los operadores unión y complemento como  $R_{C\rightarrow}(A,B)=A^c\cup B$ .

Demuestre que para cualquier operador  $C(p_1,...,p_n)$  en lógica proposicional, su operador respectivo  $R_C$  para conjuntos se puede definir sólo utilizando los operadores de unión, intersección y complemento.

### Pregunta 2

Sea  $A = \{1, ..., n\}$  un conjunto con n-elementos distintos con  $n \ge 1$ . Un conjunto  $\mathcal{I}$  se dice que es un conjunto de intersecciones sobre A si (1) todo elemento a en  $\mathcal{I}$  es un subconjunto de A ( $\forall a \in \mathcal{I}. a \subseteq A$ ) y (2) para todo par de elementos a y b de  $\mathcal{I}$ , la intersección entre a y b es no-vacía ( $\forall a \in \mathcal{I}. \forall b \in \mathcal{I}. a \cap b \ne \emptyset$ ). Por ejemplo, si  $A = \{1, 2, 3\}$  entonces  $\mathcal{I} = \{\{1, 2\}, \{2, 3\}, \{1, 3\}\}$  es un conjunto de intersecciones sobre A.

- 1. Para el conjunto  $B = \{1, 2, 3, 4\}$ , encuentre un conjunto  $\mathcal{I}$  que sea un conjunto de intersecciones sobre B y que tenga el máximo tamaño posible de entre todos los conjuntos de intersecciones sobre B, esto es, para todo conjunto de intersecciones  $\mathcal{I}'$  sobre B se debe cumplir que  $|\mathcal{I}'| \leq |\mathcal{I}|$ . Demuestre que el conjunto encontrado satisface dicha propiedad.
- 2. Demuestre que para todo conjunto  $A = \{1, ..., n\}$  se tiene que existe un conjunto de intersecciones sobre A de tamaño  $2^{n-1}$ .
- 3. Demuestre que para todo conjunto  $A = \{1, ..., n\}$  no existe un conjunto de intersecciones sobre A de tamaño mayor estricto que  $2^{n-1}$ .

**Hint:** Considere el conjunto  $X = \{\{B, A \setminus B\} \mid B \subseteq A\}$ . ¿Cuál es la cardinalidad de X?

## Evaluación y puntajes de la tarea

Cada item de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.