

Mass Shootings in America

Teresa Gerhold, Josh Anderson, Nick O'Neill, Merzia Cutlerywala

Basic Details

Datasets:

- Stanford_MSA_Database contains data about mass shootings in America from 1966 to 2016.
- NYTimes API contains various metadata about every news article from 1966 to 2016 containing the keyword "mass shooting."

Significant data fields:

- City/state, date, fatalities, injured, venue, mental health history, possible motive, type of weapon, number of weapons, shooter name/age/race/gender, fate of the shooter, cause of death, and latitude and longitude of where the shooting occurred.
 - Average shooter age
 - Class
 - Count (Article Count)
- Dimensions post cleaning:
 - Stanford_MSA 325 observations of 40 variables

Data Cleaning

- Mutate to aggregate similar factors
 - Shooter race
 - Fate of the shooter at the scene
 - Type of gun
 - Shooter's cause of death
 - Type of place
 - Targeted victims
 - Possible motive
- Mutate to correct column types

- Select to remove description columns CaseID, Description, Possible Motive
 Detailed, History of Mental Illness Detailed,
 Date Detailed, Targeted Victims Detailed,
 Type of Gun Detailed, Notes, Data Source 1
 to 7
- Replaced NAs for numeric values with mean
- Corrected column types in the NYTimes news dataset
- Inner_join Stanford_MSA_Database and NYTimes API

Summary Stats

Variable <fctr></fctr>	mean <dbl></dbl>	sd <dbl></dbl>	max <dbl></dbl>	min <dbl></dbl>
Total Number of Victims	7.904615	9.451312	102	3
Total Number of Fatalities	4.036923	4.814317	50	0
Shooter Age	31.824462	11.755356	70	12
Total Guns	1.704615	1.085316	10	0
Number of Shooters	1.104615	1.104615	4	1

Summary Plots - Histogram based on city

Summary Plots - Victims by Type of Gun

Summary Plots - Bar plot of top 10 states by # of shootings

Summary Plots - Line Charts

Summary Plots- Location and Number of Victims

Observations so far ...

- What parts of America have higher severity shootings
- The type of guns impact the number of victims
- How many people are at risk in a given mass shooting

Predictive models used

(reate love not WAR

 ElasticNet - what predictors cause the severity of a mass shooting

Minloss Plot

- Optimal alpha is alpha = 0 because that's where cross validated loss is minimized
- Should be ridge instead

Ridge Diagnostics

Training:

RMSE - 7.158553 MAE - 3.723099 R2 - 0.5912334

Testing:

RMSE - 5.9811 MAE - 4.034448 R2 - 0.178672

Factors more likely to lead to more victims

	1
(Intercept)	7.993782
StateColorado	7.545096
StateConnecticut	5.486067
Place.TypeMilitary facility	5.118114
Possible.MotiveGeneralRace	3.687715
Military.ExperienceNo	8.570086

Factors that would likely have fewer total victims

	1
StateAlaska	-1.558130
StateIowa	-4.747437
StateNew Jersey	-1.880130
StateNorth Carolina	-1.848597
StateOhio	-1.788287
StateTennessee	-1.586375
StateUtah	-2.263871
StateWisconsin	-1.546384
Place.TypePark/Wilderness	-1.605217

Predictive models used

 RandomForest - compare the performance metrics to see which model is better

Random Forest Diagnostics

Ntree = 275 Mtry = 6 Type = regression

Training:

RMSE - 2.7437 MAE - 1.451888 R2 - 0.9475252

Testing:

RMSE - 15.21373 MAE - 6.124129 R2 - 0.2661599

Random Forest Diagnostics - mtry

```
mtry OOBError
1 1 36.14507
6 6 36.00280
24 24 40.82990
```


- mean depth of first split on the variable,
- number of trees in which the root is split on the variable,
- the total number of nodes in the forest that split on that variable

- with the additional information on the p-value based on a binomial distribution of the number of nodes split on the variable
- (i.e. if a variable is significant it means that the variable is used for splitting more often than would be the case if the selection was random).

Predictive models used

 K-means - similar characteristics in the different clusters could help us classify the different types of mass shootings that occur

Selecting Variables

- Limited the data to only numeric variables
- Noticed that some of variables shown in the random forest were either insignificant or caused a lot of variance
 - Number of Automatic
 - Number of Semi Auto
 - Number of Shotguns
 - Count
- Variables Used
 - Number of shooters
 - Total Number of Victims
 - Average Age


```
* Among all indices:

* 6 proposed 2 as the best number of clusters

* 12 proposed 3 as the best number of clusters

* 1 proposed 5 as the best number of clusters

* 1 proposed 6 as the best number of clusters

* 1 proposed 11 as the best number of clusters

* 1 proposed 12 as the best number of clusters

* 1 proposed 14 as the best number of clusters

* 1 proposed 15 as the best number of clusters

* According to the majority rule, the best number of clusters is 3
```

Selecting K

 Used NbClust and Silhouette to find number of cluster

K-means clustering with 3 clusters of sizes 67, 141, 117

Cluster means:

Total.Number.of.Victims Number.of.shooters Average.Shooter.Age

1	8.492537	1.000000	49.14925
2	5.326241	1.063830	33.41489

10.675214 1.213675 19.98675

- Even though a majority of the shooters are around
 30 years of age that demographic seems to have significantly less victims then the other cases.
- Cluster 3 has very high variability with having a larger number of the outliers potentially skewing the number to be larger
- Despite the potential skew the average seems to generally be larger for cluster 3

Business and practical management

- Mass shootings have become a major problem in the United States
- Useful for organizations to track information on students, employees, etc. to be aware of how many people are at risk in a given situation and what factors they could change to reduce that number
- While not being able to predict whether a shooting will happen or the severity accurately, we have found variables that clearly have a significant impact if a shooting were to occur.
- Addressing these factors can limit the people at risk in a mass shooting:
 - State
 - Place Type

- Possible Motive
- Relationship to Incident Location

Thank you!