StuDocu.com

Homework 8 - November 17, 2016. Questions.

Intermediate Statistics (Carnegie Mellon University)

Homework 8 Due Thursday Nov 17 by 3:00

- 1. Let $X_1, \ldots, X_n \sim p$ where $X_i \in [0,1]$. Let \widehat{p} be the kernel density estimator with bandwidth h where $h \to 0$ as $n \to \infty$. In class, we showed that the bias of $\widehat{p}(x)$ is $O(h^2)$ for any $x \in (0,1)$. Show that the bias of $\widehat{p}(0)$ is C for some C>0. Hence, the bias is larger at the boundary.
- 2. (Density Estimation Using Orthogonal Series.) Let $X_1, \ldots, X_n \sim p$ where p is a density on [0,1]. Let ϕ_1,ϕ_2,\ldots , be an orthonormal series of functions. This means that

$$\int \phi_j^2(x)dx = 1 \text{ for all } j, \qquad \int \phi_j(x)\phi_k(x)dx = 0 \text{ for } j \neq k.$$

Assuming that $\int p^2(x)dx < \infty$, we can write $p(x) = \sum_{j=1}^{\infty} \beta_j \phi_j(x)$ where $\beta_j = \sum_{j=1}^{\infty} \beta_j \phi_j(x)$ $\int_0^1 \phi_j(x) p(x) dx$. Suppose that p satisfies the following smoothness condition:

$$\sum_{j=1}^{\infty} \beta_j^2 j^{2q} < \infty$$

for some q > 1/2. (This is called a Sobolev smoothness condition.) Define the following estimator:

$$\widehat{p}(x) = \sum_{j=1}^{k} \widehat{\beta}_{j} \phi_{j}(x)$$

where

$$\widehat{\beta}_j = \frac{1}{n} \sum_{i=1}^n \phi_j(X_i).$$

Show that

$$R(k) = \mathbb{E}\left[\int_{0}^{1} (\widehat{p}(x) - p(x))^{2} dx\right] \le \frac{C_{1}k}{n} + \frac{C_{2}}{k^{2q}}.$$

What is the optimal value k_* of k? What is $R(k_*)$?

- 3. Let $X_1, \ldots, X_n \sim P$ and let $\underline{\mu} = \mathbb{E}(X_i)$ and $\sigma^2 = V(X_i)$. Let X_1^*, \ldots, X_n^* denote a bootstrap sample and let $\overline{X}_n^* = \frac{1}{n} \sum_{i=1}^n X_i^*$. Find: $\mathbb{E}(\overline{X}_n^* | X_1, \ldots, X_n)$, $\mathbb{E}(\overline{X}_n^*)$, $\operatorname{Var}(\overline{X}_{n}^{*}|X_{1},\ldots,X_{n})$ and $\operatorname{Var}(\overline{X}_{n}^{*})$.
- 4. Let $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$. Let $\widehat{p} = \frac{1}{n} \sum_{i=1}^n X_i$. Let X_1^*, \ldots, X_n^* denote a bootstrap sample and let $\widehat{p}^* = \frac{1}{n} \sum_{i=1}^n X_i^*$.
 - (a) What is the exact distribution of $n\hat{p}^*$, conditional on X_1, \ldots, X_n ?
 - (b) Find an explicit expression for the bootstrap variance. That is, find $\operatorname{\sf Var}(\widehat{p}^*|X_1,\ldots,X_n)$.
 - (c) What is the asymptotic distribution of $\sqrt{n}(\hat{p}-p)$? What is the asymptotic distribution of $\sqrt{n}(\widehat{p}^* - \widehat{p}) \mid X_1, \dots, X_n$?

1