(1)

Mock Test Number: 000

 N is an integer and N>2, at most how many integers among N=2, N+3, N+4, N+5, N+6 and N+7 are prime integers?

A. I B. 3 C. 2

Answer: C

By hit and trual method, we get no. of prime numbers in that range = 2.

2. If 3y+x>2 and x+2y≤3, what can be said about the value of y?

A. y=-1 B. y>-1

C. Y<-1 D. Y=1

Answer: B

37+772 n+ay<3 7172-34 n<3-24 172-34 and 163-24 2-34 (163-24 2-34 (3-24

3. If the price of an item is decreased by 10% and then increased by 10%, the net effect on price of the item is:

A. A decreased of 99%

C. A decreased of 1% ∨

B. No change

D. An increased of 1

Answer: C

N = -10%, $\gamma = 10\%$.

Overall change = $N + \gamma + \frac{N\gamma}{100}$ $= -10 + 10 + \frac{(-100)}{100}$ = -1%

1 | Page

- 4. What is the sum of all even integers between 99 and 301?
 - A. 40000
 - B. 20000

C. 40400 D. 20200

Answer: D

$$\eta = 0.00$$
 feaths
 $a = 15t$ term
 $l = 1.00t$ term
 $l = 1.00t$ term
 $n = 1.00t$
 $sum = 1.00t$ $n = 1.00t$

5. There are 20 balls which are red, blue or green. If 7 balls are green and the sum of red balls and green balls is less than 13, at most how many red balls are there?

C. 6

D. 7

Answer: B

6. If n is the sum of two consecutive odd integers and less than 100, what is the greatest possibility of n?

A. 98

B. 94

C. 96 D. 99

Answer: C

7.	There are 4 boxes colored red, yellow, green and blue. If two boxes are selected, how many
	combinations are there for at least one green box or one red box to be selected?

Answer: D

Total ways of selecting a boxes out of 4 is
$$^{4}C_{a}=6$$
.

INOW the no. of ways of selecting two boxes where more of the green on ned box included is only 1 way.

If we subtract this no from total ways, we get $\frac{5}{4}$ ways.

8.
$$X^2 \le 1/100$$
, and $x \le 0$ what is the tightest range in which x can lie?

A.
$$-1/10 < x < 0$$

B. $-1 < x < 0$

D.
$$-1/10 < x$$

Answer: A

$$n^2 < \frac{1}{100} \Rightarrow n < \pm \frac{1}{10}$$

 $-\frac{1}{10} < n < \frac{1}{10}$, $n < 0$
Combining bolb, $-\frac{1}{10} < n < 0$

9. All faces of a cube with an eight-meter edge are painted red. If the cube is cut into smaller cubes with a two-meter edge, how many of the two-meter cubes have paint on exactly one face?

B. 36

D. 48

Answer: A

Exactly One stole.

$$\begin{array}{rcl}
Lcp &=& \frac{6(\alpha - ax)^{2}}{\pi^{2}} & \alpha = 8 \\
\pi^{2} & \pi = 2
\end{array}$$

$$= \frac{6(8 - 4)^{2}}{4}$$

$$= \frac{6x4x4}{4} = 24$$

3 | Page

	* 3, A(1)=1, A(2)	=1, calculate S(1000), where S	(1000) is the st	um of the f	irst 1000 terms.
A. 2			C.			
B. 1			D.			
Answer: B /(1)≈1	1 Alal=1 2 Lycle ('s dve Herem = 1	A(3)=0	A(4)=-1	4(5)=-1	A [6] =	٥
The same	e cycle is	repeated	so sum	of any	21.1	
consecut	eve "term = 1	0 ·				
. Lst	996 Herry =	0				
Sung	of thousand	1 = 1 + 1 + 0	-1 = 🛴			
11. If $x^2 - 16 \ge 0$, w						
A4 > x > 4 $B4 > x < 4$		n the Wester Southwest for the		$-4 \le x \le 4$		
B4 > x< 4			D.	$4 \le x$		
Answer: A						
3	(3)16					
7	174					
(A	n <-4					
y	>x >4					
12. Two cyclists be	gin training on an	oval racecours	e at the same tin	ne. The profes	sional cycl	ist completes
each lap in 4 mi	nutes; the novice	takes 6 minutes	to complete ea	ch lap. How m	any minut	es after the
	cyclists pass at ex-	actly the same s			2	
A. 10				0. 14		
B. 8 Answer: D			11	0. 12		
LCM	(6min, 4m					
= 12 n	i'n	10.00				
LCM give	s the min	imom tim	e requir	ced to r	neet	the.
cyclist fo	pin 18 the mpin 17 [St fing	e at the	. Steveting	g point.		
13. M, N, O and P a		dividuals; M is	the daughter of			
A. M is the o				. If C is the gr	anddau⊴ht	er of C and M
B. If B is the	daughter of N, t	hen M and		are sisters		
B are sist	er L		D	. P and N are	brothers 4	5-900
Answer: B					n N	1 -10
					M. 0	P
41Page L	ratus Educar	ion Corni	e e a billire	D and to a man ear f	na ta	n acces

10. In a sequence of integers, A(n) = A(n-1) - A(n-2), where A(n) is the nth term in the sequence, n is an

14. In the adjoining diagram, ABCD and EFGH are squares of side 1 unit such that they intersect in a square of diagonal length (CE) = ½. The total area covered by the squares is

 A. Cannot be found from the information

B. 1

Answer: C
$$CE = V_a$$
, $CJ = \frac{1}{2} \left(\frac{1}{\sqrt{a}} \right) = \frac{1}{2\sqrt{2}}$

- = 1+1-1-= 15/8
- 15. There are 10 stepping stones numbered 1 to 10 as shown at the side. A fly jumps from the first stone as follows: Every minute it jumps to the 4th stone from where it started that is from 1st it would go to 5th it would go to 9th and from 9th it would go to 3rd etc. Where would the fly be at the 60th minute if it starts at 1?

C. 3 D. 4

Answer: B

Standing with the 1st he will be again at 1st step.

5 | Page

16. What is the reminder when $6^{17} + 17^6$ is divided by 7? B 6 Answer: C 62=1 mod 7 [62=36, divided by 7 gives reminder 1] 62x8 = 18 mod 7 dike wise $\Rightarrow 6^{16} = 1 \mod 7 \text{ [all even power also} \qquad 17^2 = 2 \mod 7$ $9^{1} \text{ Ves } 1 \mod 7 \text{ } \Rightarrow 17^{2 \times 3} = 2^3 \mod 7$ > (6 16) * 6 = 1 * 6 mod 7 => 17 6 = 8 mod 7 (Scimplify & i's eige) 50 176 = 1 mod 7-Then [617+176)/7-=> ((6 mod 7) + (1 mod 1))/7 = (16+1) mod +)/7 = (7 mod 7)/4 Hence the tempinder 150. +3 ×7 + 5=75 in base 10. What is the sum of the base 7 numbers 1234 and 6543 in base 7? C. 10111 B. 11110 D. 11011 Answer: B + (6543)7 18. The sequences $\{A_n\}$ is defined by $A_1=2$ and $A_{n+1}=A_n+2n$. What is the value of A_{100} ? A. 9902 C. 10100

B. 9900

D. 9904

Answer: A

$$A_1 = 2$$
 $A_2 = A_1 + 2 \times 1 \Rightarrow A_3 = 4$
 $A_3 = 4 + 2 \times 2 = 8$
 $A_4 = 8 + 2 \times 3 = 14$
By observation,
 $A_1 = (1)^2 - (-1)$ $A_2 = 2^2 - 0$ $A_3 = 3^2 - 1$ $A_4 = 4^2 - 2$
 $A_{100} = 100^2 - 98 = \boxed{9902}$

6 Page

19. Find the number of rectangles in the adjoining figure(a square is also considered a rectangle):

A. 864

B. 3276

C. 1638

D. None of these

Answer: C

13 Veretical line.

7 Horizontal line.
No. of rectangles =
$$13C_2 \times ^7C_2$$
= $\frac{13 \times 12}{2} \times \frac{7 \times 6}{2} = 78 \times 31 = 1638$
3. C and D go for a picnic. When A stands on a weighing machine, B also clin

20. A, B. C and D go for a picnic. When A stands on a weighing machine, B also climbs on, and the weight shown was 132kg. When B stands, C also climbs on, and the machine shoes 130kg. Similarly the weight of C and D is found as 102 kg and that of B and D is 116kg. What is D's weight?

A. 58kg

B. 78kg

C. 44kg

D. None of these

Answer: C

At B = 13 2
B+C = 13 0
C+D = 102
$$\int$$
 B+C+2D = 218
B+D = 116 \Rightarrow 130+ aD = 218
 \Rightarrow 2D = 88 \Rightarrow D=44K9

21. ROY is now 4 years older than Erik and half of that amount older than Iris. If in 2 years, Roy will be twice as old as Erik, then in 2 years what would be Roy's age multiplied by Iris's age?

A. 28 B. 48 C. 50D. 52

Answer: B

$$R = F + Y \longrightarrow A$$

$$R = I + 2 \longrightarrow B$$

$$R + 2 = 2 (F + 2) \longrightarrow C$$

$$\Rightarrow F + 6 = 2F + Y$$

$$\Rightarrow F = 2$$

$$R = 6 (R + 2) = 8$$

$$I = Y (I + 2) = \frac{6}{Y_S}$$

7 | Page

22	X, Y, Z and W	are integers.	The expression X-Y-Z is even and the expression	Y-Z-W is odd. If X is
	even what mus	st be true?		

A. W must be odd

B. Y-Z must be odd

C. W must be odd

Answer: C

23. Given the following information, which option must be true?

I. A occurs only if either B or C occurs

II. B occurs only if both D and E occur

III. F occurs only if C does not occur

IV. G occurs only if both A and F occur

A. A occurs whenever F occurs

B. F never occurs

C. G does not occur if D does not occur

D. None of these

Answer: C

24. Mr. And Mrs. Smith has invited 9 of their friends and their Spouses for a party at the Waikiki Beach Resort. They

Stand for a group photograph. If Mr. Smith never stands next to Mrs. Smith (as he says they are always together otherwise), how many ways the group can be arranged in a row for the photograph?

A. 201

B. 19! + 18!

Answer: C Total photo if Mr 2 Mrs Smrth Stand together = 1120

No. of Couple =
$$\frac{12}{12} = \frac{12}{3} = \frac{12}{5} = \frac{18+1}{6} \times \frac{12}{7} = \frac{19}{7} \times \frac{12}{7}$$

... No. of photos not together = 120 - 119 x 2

= 18 x 119.

25. Tim and Élan are 90km away from one another. They are starting to move towards each other simultaneously, Tim at a speed of 10 km/hr and Élan at a speed of 5 km/hr. If every hour they double their speeds,

What is the distanced that Tim will pass until he meets Elan.

8 | Page

A. 45km B. 60km

C. 30km D. 80km

Answer: B

 In a rectangular coordinate system, what is the area of triangle whose vertices have the coordinates(4, 0),(6,0) and (6,-3)

C. 7.5

Answer: A

27. A drawer holds 4 red hats and 4 blue hats. What is the probability of getting exactly three red hats or exactly three blue hats when taking out 4 hats randomly out of the drawer and immediately returning every hat to the drawer before taking out of the next?

C. 1/4

Answer: A

$$\begin{array}{lll} R & R & R & B \\ \hline on & Prechabilety & = \left[\frac{4c_1 \times 4c_1 \times 4c_1 \times 4c_1}{8c_1 \times 8c_1 \times 8c_1 \times 8c_1} \right] \times 4 \\ B & B & R & (Red Hat) & = \left(\frac{1}{2} \right)^4 \times 4 & = \frac{1}{4} \\ \hline Prechability (Blue Hat) & = \frac{1}{4} \\ \hline Total Prechability & = \frac{1}{4} + \frac{1}{4} & = \frac{1}{2} \end{array}.$$

9 | Page

C. Statement Y alone is enough to get the answer

D. None of these

Answer:

32. Given the following information, who is youngest?

C is younger than A; A is taller than B C is younger than D C is older than B; B is taller than C: A is older than D

A. D В. В C. C D. A.

Answer: B

33. Given the following information, which option must be true?

- 1 A occurs only if either B or C occurs
- 11. B occurs only if both D and E occurs
- III. F occurs only if C does not occurs
- IV. G occurs only if both A and F occurs

A. A occurs whenever F occurs

C. G does not occur if D does not occur

B. F never occurs

D. None of these

Answer: C

swer: C (the Through Options.

34. If $P(X) = ax^4 + bx3 + cx2 + dx + e$ has roots at x = 1, 2, 3 and 4, and P(O) = 48, what is P(5)? C. 0 A. 48 D. 50 B. 24

Answer: A

Rook are 1, 2, 3, 4.

$$a(n-1)(n-2)(n-3)(n-4) = p(n)$$

Comparing 150 two,

 $a[n^4 - 10n^3 + 35n^2 - 50n + 24]$
 $= an^4 + bn^3 + cn^2 + 4n + e$
 $p(0) = 48$
 $a \times 24 = 48 \Rightarrow a = 2$.

 $2n^4 - 20n^3 + 70n^2 - 100n + 48 = p(n) [p(5) = 48]$

35. How many workers does factory W employ? Consider the following two statements to get the answer.

(X) 220 workers at W install batteries, and 300 Workers knit socks.

(Y) Every worker of W either installs batteries or knits socks, or both.

 Statement X alone is enough to get the answer

B. Statement X and Y are together not enough to get the answer, and additional data is needed

C. Statement Y alone is enough to get the answer

 Both statements X and Y are needed to get the answer

Answer:

