Colle PCSI 15: matrices

January 24, 2018

Colle 1

RIONDET Baptiste (16): bien pour AB nilpotente. Petite erreur dans la formule du binôme de Newton.

ROMAND Erwyn (17): ne se souvient pas bien de Bernouilli pour les rééls, mais fait l'analogie matrice/réel.

Exercice 1.

- Montrer que le produit et la somme de deux matrices nilpotentes qui commutent sont nilpotentes. Contre exemple si les matrices ne commutent pas?
- Mq si A et B commutent alors $A^n B^n = (A B)(A^{n-1} + A^{n-2}B + ... + B^{n-1})$.
- Soit $M \in \mathcal{M}_{n,n}$ nilpotente: $M^p = 0, p \in \mathbb{N}^*$. Montrer que I_n M est inversible et déterminer son inverse.

Colle 2

PERRET Emeline (15): oublie l'initialisation de la récurrence. TB sinon. VENNE Loris (16): petite erreur de signe dans l'inverse d'une matrice 2×2 . TB sinon.

Exercice 2.
$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}^n$$
?

Exercice 3. Calculer A^{10} , où:

$$A = \begin{pmatrix} -1 & 0 \\ 3 & 2 \end{pmatrix}$$

Colle 3

Oliver Killan (12): a la bonne idée de calculer les 1ères puissances et conjecturer le résultat. un peu lent.

Antonin VERJUS (12): a la bonne idée de calculer les 1ères puissances et conjecturer le résultat. un peu lent.

Exercice 1. Calculer A^n , où:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$