Math 15910: Problem Set 4

Underland, Jake

2021-08-09

Contents

Exercise 1	1
Exercise 2 Problem 1.8.31	2 2
Exercise 3	3
Exercise 4	3
Exercise 5 Problem 1.6.2	4
Exercise 6 Problem 1.6.14	4
Exercise 7	5
Exercise 8 Problem 1.6.15	5 5

Exercise 1

Show that if A and B are countably infinite sets, then there exists a bijection between their power sets P(A) and P(B).

Since A and B are countably infinite, there exist bijective functions $f:A\to\mathbb{N},\ g:B\to\mathbb{N}$. Then, $g^{-1}\circ f$ is a bijective function between A and B. Thus, we know that A and B are bijective. Let us denote $h:A\to B$ to be an arbitrary bijection. Now think of the function $q:P(A)\to P(B)$ which takes any element of P(A), $\{a_1,a_2,...a_n\}\subseteq A$, and returns $\{h(a_1),h(a_2),...,h(a_n)\}=\{b_1,b_2,...,b_n\}\subseteq B$.

Take $\{a_1,...,a_n\},\{a_1',...,a_n'\}\in P(A).$ If,

$$\begin{split} q(\{a_1,a_2,...,a_n\}) &= q(\{a_1',a_2',...,a_n'\}) \\ \Longrightarrow \{h(a_1),h(a_2),...,h(a_n)\}) &= \{h(a_1'),h(a_2'),...,h(a_n')\} \end{split}$$

From the definition of equality of sets, and without loss of generality,

$$h(a_1) = h(a'_1), h(a_2) = h(a'_2)..., h(a_n) = h(a'_n)$$

Since h is bijective,

$$\implies \{h^{-1}(h(a_1)), h^{-1}(h(a_2)), ..., h^{-1}(h(a_n))\}) = \{h^{-1}(h(a_1')), h^{-1}(h(a_2')), ..., h^{-1}(h(a_n'))\} \\ \implies \{a_1, a_2, ..., a_n\} = \{a_1', a_2', ..., a_n'\}$$

From the definition of equality of sets, and without loss of generality,

$$a_1 = a'_1, a_2 = a'_2..., a_n = a'_n$$

Thus, q is injective.

Now, take $\{b_1,\ldots,b_n\}\in P(B)$. We want $\{a_1,\ldots,a_n\}\in P(A)$ such that $q(\{a_1,\ldots,a_n\})=\{b_1,\ldots,b_n\}$.

$$\begin{split} q(\{a_1,...,a_n\}) &= \{b_1,...,b_n\} \\ \Longrightarrow & \{h(a_1),...,h(a_n)\}) = \{b_1,...,b_n\} \\ \Longrightarrow & \{a_1,...,a_n\} = \{h^{-1}(b_1),...,h^{-1}(b_n)\} \end{split}$$

Thus, given $\{b_1, \dots, b_n\} \in P(B), \ q(\{h^{-1}(b_1), \dots, h^{-1}(b_n)\}) = \{b_1, \dots, b_n\}.$ Hence, q is surjective.

It follows that q is bijective. With this, we have shown that there exists a bijection between P(A) and P(B) given two countably infinite sets A and B.

Exercise 2

Problem 1.8.31

Suppose that A is a non-empty set. Show that P(A) is in one to one correspondence with the set of all functions from A to $\{0,1\}$

For every subset $X \subseteq A$, we define a function $f_X : X \to \{0,1\}$ such that for every $a \in A$,

$$f_X(a) = \begin{cases} 1, \text{ if } a \in X \\ 0, \text{ if } a \notin X \end{cases}$$

Now, we define the function $F: P(A) \to \{f | f: A \to \{0,1\}\}$ that takes a subset $B \in P(A)$ and returns f_B from the set of functions $\{f | f: A \to \{0,1\}\}$.

Suppose $B, C \subseteq A$ and F(B) = F(C). Then,

$$f_B = f_C$$

$$\implies f_B(a) = f_C(a) \text{ for every } a \in A$$

Since $B, C \subseteq A$, there does not exist any element within them that is not also in A. If $f_B(a) = f_C(a) = 1$, then $a \in B, C$. If $f_B(a) = f_C(a) = 0$, then $a \notin B, C$. By the definition of set equality, B = C. Thus, F is injective.

Now, for every $f_X \in \{f|f: A \to \{0,1\}\}$ there exists $X \subseteq A$ such that $F(X) = f_X$.

$$F(X) = f_X$$

$$\implies X = \{a \in A | f_X(a) = 1\}$$

Thus, we have that for every $f_X \in \{f|f: A \to \{0,1\}\}, F(\{a \in A|f_X(a)=1\}) = f_X$, and F is surjective.

It follows that F is bijective, and P(A) is in one to one correspondence with the set of all functions from A to $\{0,1\}$.

Exercise 3

Prove that a union $\bigcup_{n\in\mathbb{N}}A_n$ where sets A_n have the cardinality of the set of real numbers, has the cardinality of the set of real numbers.

We know that there is a bijection between (0,1) and \mathbb{R} , so (0,1) has the same cardinality as \mathbb{R} . In the last homework, I showed that there exists a bijection $f:[0,1)\to(0,1)$, defined as

$$f(x) = \begin{cases} \frac{n+1}{n+2} & \text{if } x = \frac{n}{n+1} & \text{for } n \in \mathbb{N}_0 \\ x & \text{for all other } x \in [0,1) \end{cases}$$

Thus, [0,1) has the same cardinality as the set of real numbers. Similarly, we can define functions for [0,1), [1,2), ..., [n-1,n) that take the form

$$f_n(x) = \begin{cases} \frac{m+1}{m+2} \text{ if } x = n-1 + \frac{m}{m+1} \text{ for } m \in \mathbb{N}_0 \\ x - n + 1 \text{ for all other } x \in [n-1,n) \end{cases}$$

which are all bijections with (0,1), and thus have equal cardinality to the set of real numbers. Since each A_n has the cardinality of the set of real numbers, and the sets [0,1),[1,2),...,[n-1,n) also have the same cardinality, there exists a bijection between A_n and [n-1,n). We now show that there is an injection from $\bigcup_{n\in\mathbb{N}}A_n$ to [0,n) and an injection from [0,n) to A_n .

Since for all A_i for $1 \leq i \leq n$, A_i is bijective with [i-1,i), there exists an injection in this direction. If all A_i are mutually disjoint, they would each have an injection from A_i to [i-1,i), and thus the union $\cup_{n\in\mathbb{N}}A_n$ will inject to [0,n), which is the union of all [i,i-1). If the sets are not mutually disjoint, then each $a\in \cup_{n\in\mathbb{N}}A_n$ will inject to the [i,i-1) corresponding to the first A_i in which a appears. It is clear that this is an injection, and thus there is an injection from $\cup_{n\in\mathbb{N}}A_n$ to [0,n).

Next, since [0,1) is bijective to A_1 , there exists an interjection from [0,1) to A_1 . Then, by multiplying all elements in [0,1) by n, we can create an injection from [0,n) to A_1 . Since $A_1 \in \bigcup_{n \in \mathbb{N}} A_n$, it follows that there exists an injection from [0,n) to A_n .

Since there is an injection from $\bigcup_{n\in\mathbb{N}}A_n$ to [0,n) and an injection from [0,n) to A_n , we can invoke the Schroeder-Bernstein theorem to conclude that there exists a bijection between $\bigcup_{n\in\mathbb{N}}A_n$ and [0,n). It is easy to see that there exists a bijective function $f:[0,1)\to[0,n)$ such that

$$f(x) = nx$$

It is trivial to prove that this function is bijective. Thus, we know that [0, n) has the same cardinality as \mathbb{R} . From here, we can conclude that a union $\cup_{n\in\mathbb{N}}A_n$ where sets A_n have the cardinality of the set of real numbers, has the cardinality of the set of real numbers.

Exercise 4

Prove that the set of irrational numbers has the same cardinality as the set of real numbers.

Consider the function

$$f(x) = \begin{cases} \arctan x \text{ when } \arctan x \in \mathbb{R} \setminus \mathbb{Q} \\ \arctan x + 10\sqrt{2} \text{ when } \arctan x \in \mathbb{Q} \end{cases}$$

Given $x \in \mathbb{R}$, this function produces an irrational number, so this function is well defined.

Now, take $x_1, x_2 \in \mathbb{R}$. Suppose $f(x_1) = f(x_2)$. Then, either $\arctan x_1$ and $\arctan x_2$ are both rational or both irrational. If x_1 was rational and x_2 was irrational, then $\arctan x_1 + 10\sqrt{2} \neq \arctan x_2$ since the maximum possible value of $\arctan x$ is $\frac{\pi}{2}$ and the minimum is $-\frac{\pi}{2}$, making $\arctan x_1 + 10\sqrt{2} > \arctan x_2$.

When $\arctan x_1$ and $\arctan x_2$ are both rational,

$$f(x_1) = f(x_2)$$

$$\Rightarrow \arctan x_1 + 10\sqrt{2} = \arctan x_2 + 10\sqrt{2}$$
$$\Rightarrow \arctan x_1 = \arctan x_2$$
$$\Rightarrow \tan(\arctan x_1) = \tan(\arctan x_2)$$
$$\Rightarrow x_1 = x_2$$

When $\arctan x_1$ and $\arctan x_2$ are both rational,

$$\begin{split} f(x_1) &= f(x_2) \\ \implies \arctan x_1 &= \arctan x_2 \\ \implies \tan(\arctan x_1) &= \tan(\arctan x_2) \\ \implies x_1 &= x_2 \end{split}$$

Thus, f is an interjection. Since $\mathbb{R}\setminus\mathbb{Q}\subseteq\mathbb{R}$, it is trivial to prove that there exists an injection $g:\mathbb{R}\setminus\mathbb{Q}\to\mathbb{R}$ (the identity function would be such an injection).

Hence, we can invoke the Schroeder-Bernstein theorem to conclude that there exists a bijection between the set of irrational numbers and the set of real numbers, and that they have the same cardinality.

Exercise 5

Problem 1.6.2

Let \mathcal{R} be a relation on X that satisfies

- (a.) For all $a \in X$, $(a, a) \in \mathcal{R}$, and
- (b.) for $a, b, c \in X$, if $(a, b), (b, c) \in \mathcal{R}$, then $(c, a) \in \mathcal{R}$

From the assumption (a.), we already have reflexivity. Now, take $(a, b) \in \mathcal{R}$. From (a.), we have $(b, b) \in \mathcal{R}$. From (b.), if $(a, b) \in \mathcal{R}$, we can say

$$(a,b),(b,b) \in \mathcal{R}$$

 $\implies (b,a) \in \mathcal{R}$

Thus, we obtain symmetry. With symmetry, it can be easily shown from (b.) that

$$(a,b),(b,c)\in\mathcal{R}\implies(c,a)\in\mathcal{R}$$

 $(c,a)\in\mathcal{R}\implies(a,c)\in\mathcal{R}$

Thus,

$$(a,b),(b,c)\in\mathcal{R}\implies(a,c)\in\mathcal{R}$$

Therefore, we have established reflexivity, symmetry, and transitivity in \mathcal{R} , and have proven that \mathcal{R} is an equivalence relation.

Exercise 6

Problem 1.6.14

Take a set X and break it up into pairwise disjoint non-empty subsets whose union is all of X. Then, for $a, b \in X$, define $a \sim b$ if a and b are in the same subset. Prove that this is an equivalence relation

We denote these subsets as Y_i . Suppose $a \in Y_a$. Then, since $a \in Y_a$, $a \sim a$ and we have reflexivity. If $a \sim b$, then $a,b \in Y_a$. However, this would also imply $b \sim a$. Thus, we have symmetry. If $a \sim b$, then $a,b \in Y_a$. Furthermore, if $b \sim c$, then $b,c \in Y_b$. However, since Y_i 's are pairwise disjoint, it follows from $b \in Y_a$, $b \in Y_b$ that $Y_a = Y_b$. thus, $a,c \in Y_a$ and $a \sim c$. From here, we have transitivity. Thus, the above is an equivalence relation.

Exercise 7

Let A be a set, and P(A) its power set. For $x, y \in P(A)$ let $x \sim y$ if x and y have the same cardinality. Prove that \sim is an equivalence relation.

Compute the equivalence classes when $A = \{1, 2, 3\}$.

Take $x \in P(A)$. Then, since |x| = |x|, $x \sim x$. Thus, \sim has reflexivity. For $x, y \in P(A)$, if $x \sim y$, then |x| = |y|. If $y \sim x$, then |y| = |x|. Thus, $x \sim y \implies y \sim x$. Hence, we have symmetry. If $x \sim y$, then |x| = |y|. Furthermore, if $y \sim z$, then |y| = |z|. It follows that |x| = |z|, and $x \sim z$. From here, we have transitivity. Thus, the above is an equivalence relation.

The equivalence classes for when $A = \{1, 2, 3\}$ are as follows:

- $\{x \in P(A) | |x| = 0\} = \{\emptyset\}$
- $\{x \in P(A) | |x| = 1\} = \{\{1\}, \{2\}, \{3\}\}\$
- $\{x \in P(A) | |x| = 2\} = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}\$
- $\{x \in P(A) | |x| = 3\} = \{\{1, 2, 3\}\}\$

Exercise 8

Problem 1.6.15

We consider the set $F = \{\{a,b\} | a, b \in \mathbb{Z} \text{ and } b \neq 0\}$. For $(a,b), (c,d) \in F$, we define $(a,b) \sim (c,d)$ if ad = bc. Thus, for instance, $(2,3) \sim (8,12) \sim (-6,-9)$. Show that \sim is an equivalence relation on F

Take $(x,y) \in F$. Then, it is obvious that xy = xy, so $(x,y) \sim (x,y)$. So, \sim is reflexive. Now, take $(x_1,y_1),(x_2,y_2) \in F$.

$$(x_1, y_1) \sim (x_2, y_2) \implies x_1 y_2 = x_2 y_1$$

Since equality = is an equivalence relation,

$$\implies x_2y_1 = x_1y_2 \implies (x_2, y_2) \sim (x_1, y_1)$$

Hence, we have symmetry. Assume $(x,y) \sim (q,r)$ and hence xr = yq. Furthermore, assume $(q,r) \sim (s,t)$ and hence qt = rs. Then,

$$xr = yq$$

$$\implies xr * t = yq * t$$

$$\implies xrt = yqt$$

From qt = rs,

$$\implies xrt = yrs$$

Since $r \neq 0$,

$$\implies xt = ys$$

$$\implies (x,y) \sim (s,t)$$

From here, we have $(x,y) \sim (q,r), (q,r) \sim (s,t) \implies (x,y) \sim (s,t)$. Thus, \sim is transitive, and is an equivalence relation.