Partiel - Architecture des Ordinateurs

Mardi 10 Mai 2011 Documents de cours autorisés. Calculatrices interdites. **Durée 2 heures**

Tous les résultats doivent être justifiés.

1 Exercices (6 points)

- 1. (1 point) Donnez la représentation en base 3 des entiers suivants : 9_{10} , 45_{10} .
- 2. (1 point) Donnez la représentation complément à 2 sur 8 bits des entiers -64_{10} et 118_{10} .
- 3. (2 points) Soit la représentation demi précision sur 16 bits :

S (Signe)	E (Exposant)	P (Pseudomantisse)
1 bit	5 bits	10 bits

Convertissez le décimal 31.91 dans cette représentation (en utilisant si nécessaire l'arrondi au plus près).

- 4. (2 points) En utilisant les règles de l'algèbre de Boole simplifiez les expressions suivantes (précisez la règle utilisée) :
 - $-B + A.\overline{B} + \overline{A}.\overline{B}$
 - $-A.B + B.C + \overline{A}.B.\overline{C}$

2 Codeur 2/5 (6 points)

La table ci-dessous associe chaque chiffre entre 0 et 9 avec sa représentation en code 2 parmi 5 :

binaire $(I_3I_2I_1I_0)$	$2/5 (O_4O_3O_2O_1O_0)$			
0 (0000)	01100	_		
1 (0001)	11000			
2(0010)	10100	binaire		code 2/5
3 (0011)	10010			04 0
4(0100)	01010	0 — I3 1 — I2	Codeur	03 1
5 (0101)	00110	1 - 11		02 0 01 0
6(0110)	10001	- 10		00 1
7 (0111)	01001			
8 (1000)	00101			
9 (1001)	00011			

On souhaite réaliser un circuit codeur. Celui-ci disposera de quatre entrées (I_0, I_1, I_2, I_3) et de cinq sorties $(O_0, O_1, O_2, O_3, O_4)$. Lorsque l'on présente un nombre binaire sur les entrées, le circuit codeur produira le code 2 parmi 5 correspondant sur les sorties. Par exemple, sur la figure ci-dessus on présente le chiffre 7 sur les entrées. Si une valeur > 9 est présentée sur l'entrée, le comportement de la sortie n'est pas spécifié.

Soit $o_j(I_3,I_2,I_1,I_0)$ la fonction booléene qui calcule la valeur de O_j en fonction des entrées.

1. (1 point) Écrivez o_4 sous la forme :

$$o_4 = \sum m(a_1, a_2, \dots) + \sum d(b_1, b_2, \dots)$$

où les a_i sont les minterms et les b_j sont les « don't care ».

- 2. (3 points) Simplifiez la fonction o₄ en utilisant la méthode de Quine-Mc Cluskey.
- 3. On donne $o_0=I_3+I_1.I_2$. Proposez un schéma du circuit qui réalise la fonction o_0 :
 - (1 point) en utilisant uniquement des portes OU et NON;
 - (1 point) en utilisant uniquement des portes NAND.

3 Logique Séquentielle (8 points)

3.1 Compteur (4 points)

On souhaite réaliser un compteur qui produit la séquence suivante de manière cyclique :

Le compteur sera muni d'une entrée pour horloge et de deux sorties.

On notera Q_1Q_0 l'état courant du compteur et $Q_1^+Q_0^+$ l'état suivant du compteur. Par exemple lorsque $Q_1Q_0=00$ alors $Q_1^+Q_0^+=10$.

- 1. (0.5 point) Dressez une table de vérité pour les signaux Q_1, Q_0, Q_1^+, Q_0^+ .
- 2. (1 points) Donnez une expression minimale booléene pour $Q_0^+(Q_1,Q_0)$ et $Q_1^+(Q_1,Q_0)$.
- 3. (1.5 point) Réalisez le circuit du compteur en utilisant des portes logiques et des bascules D.
- 4. (1 point) On dispose maintenant d'une entrée reset RST. On souhaite mettre le compteur à 01 lorsque RST = 1. Comment modifier le circuit précédent pour rajouter cette fonctionnalité?

3.2 Chronogramme (2 points)

Soit le circuit suivant composé d'une bascule D et d'une bascule T:

Lors de la mise sous tension du circuit A et B valent 0. Tracez le chronogramme des signaux A,B,D_A et T_B sur une période.

3.3 Diviseur d'horloge (2 points)

Proposez un circuit composé de bascule(s) D qui génère le signal S à partir de l'entrée horloge CLK.