

#### Institution

Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa

#### Degree

Bachelor's degree in Aerospace Vehicle Engineering

#### Student

Armen Baghdasaryan

#### Director

Luis Manuel Pérez Llera

## Title of the Project

Design of an Unmanned Aerial Vehicle with a Mass-Actuated Control System

#### REPORT ATTACHMENT

Call: Autumn 2019 (Extraordinary)

Date: September 29

## Introduction

The aim of this attachment is to provide complementary results and resources achieved during the project development, including plots, tables, scripts and calculations.

## Contents

| $\mathbf{A}$ | AERODY | <b>NAMICS</b> |
|--------------|--------|---------------|
|              |        |               |

| <b>A.1</b> | Introduction                       | 1         |
|------------|------------------------------------|-----------|
| <b>A.2</b> | XFLR5 Design and Simulation        | 2         |
| <b>A.3</b> | Numerical Simulation by CFD        | 8         |
|            | A.3.1Simulation parameters         | 8         |
|            | A.3.2Simulation results            | 10        |
| В          | PROPULSION                         | 19        |
| B.1        | Introduction                       | 20        |
| <b>B.2</b> | Blade Element Method               | 21        |
|            | B.2.1BEM without inflow factors    | 22        |
|            | B.2.2BEM with inflow factors       | 29        |
|            | B.2.3BEM with inflow factors: Code | 36        |
| C S        | SYSTEMS                            | 41        |
| C.1        | Introduction                       | 42        |
| C.2        | Optional cameras and sensors       | 43        |
|            | C.2.1HD cameras                    | 43        |
|            | C.2.2Thermal sensors               | 47        |
| <b>D</b> ] | PERFORMANCE AND FLIGHT MECHANICS   | 51        |
| D.1        | Introduction                       | <b>52</b> |
|            | D.1.1Inertia Tensor Variation      | 53        |

|       | D.1.2Conclusion                | 56 |
|-------|--------------------------------|----|
| D.2   | Flight Control Algorithm: Code | 57 |
| E F   | REFERENCES                     | 64 |
| Bibli | ography                        | 65 |

# List of Figures

| A.1. Eppler186 Cl – Alpha graph for different Reynolds values, obtained from XFLR5 | 2  |
|------------------------------------------------------------------------------------|----|
| A.2. Eppler186 Cd – Alpha graph for different Reynolds values, obtained from XFLR5 | 2  |
| A.3. Eppler186 Cm – Alpha graph for different Reynolds values, obtained from XFLR5 | 3  |
| A.4. Geometric design of the flying wing                                           | 3  |
| A.5. CL – Alpha graph of the Flying wing                                           | 4  |
| A.6. CD – Alpha graph of the Flying wing                                           | 5  |
| A.7. CM – Alpha graph of the Flying wing                                           | 6  |
| A.8. CL distribution for Alpha = $4^{\circ}$                                       | 6  |
| A.9. Flying wing at static analysis and pitching moment. at alpha $4^{\circ}$      | 7  |
| A.10.Wing Lift Coefficient for $\alpha=1^{\circ}$                                  | 10 |
| A.11.Wing Drag Coefficient for $\alpha=1^{\circ}$                                  | 10 |
| A.12.Wing Pitch moment Coefficient for $\alpha = 1^{\circ}$                        | 11 |
| A.13.Wing Lift Coefficient for $\alpha = 4^{\circ}$                                | 11 |
| A.14. Wing Drag Coefficient for $\alpha=4^{\circ}$                                 | 12 |
| A.15.Wing Pitch moment Coefficient for $\alpha = 4^{\circ}$                        | 12 |
| A.16.Lift coefficient vs AoA                                                       | 14 |
| A.17.Drag coefficient vs AoA                                                       | 15 |
| A.18.Pitch moment coefficient vs AoA                                               | 16 |
| A.19.Lift to Drag ratio vs AoA                                                     | 17 |
| A.20.Miscellaneous: Pressure distribution map                                      | 18 |
| A.21.Miscellaneous: Path lines colored by relative velocity (particle tracking)    | 18 |
| B.1. Force and speed components on a blade element                                 | 21 |
| B.2. Blade element scheme                                                          | 21 |
| B.3. Streamtube diagram                                                            | 29 |
| B.4. Propeller geometry: chord and twist distributions                             | 31 |
| B.5. Inflow factors distribution for cruise flight                                 | 31 |
| R 6 Inflow factors error distribution for cruise flight                            | 39 |

| B.7. Angle of attack distribution for cruise flight                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B.8. Thrust and torque distribution for cruise flight                                                                                                                |
| B.9. Inflow factors distribution for take-off                                                                                                                        |
| B.10.Inflow factors error distribution for take-off $\dots \dots $   |
| B.11.<br>Angle of attack distribution for take-off $\dots \dots $    |
| B.12. Thrust and torque distribution for take-off                                                                                                                    |
|                                                                                                                                                                      |
| C.1. Sony FCB-H11 HD Camera [35]                                                                                                                                     |
| C.2. Sony FCB-EX1020 HD Camera [35]                                                                                                                                  |
| C.3. Panasonic GP-MH310 HD Camera [36]                                                                                                                               |
| C.4. Hitachi DI-SC120R HD Camera [37] $\ \ldots \ $                                          |
| C.5. FLIR Tau 2 thermal sensor [38]                                                                                                                                  |
| C.6. FLIR Tau SWIR thermal sensor [38]                                                                                                                               |
| C.7. NanoCore 640M 5000978-2 thermal sensor [41] $\dots \dots \dots$ |
| C.8. DRS Tamarisk 640 thermal sensor [39]                                                                                                                            |

## List of Tables

| A.1. | Domain Extents                                           | 8  |
|------|----------------------------------------------------------|----|
| A.2. | Volume statistics                                        | 8  |
| A.3. | Meshing size for each zone                               | 9  |
| A.4. | Boundary conditions for all the elements                 | 9  |
| A.5. | Aerodynamic coefficients obtained from Fluent Simulation | 13 |
| B.1. | BEM without inflow factors, Take-off                     | 25 |
| B.2. | BEM without inflow factors, Cruise Flight                | 27 |
| C.1. | Sony FCB-H11 Specifications [35]                         | 43 |
| C.2. | Sony FCB-EX1020 Specifications [35]                      | 44 |
| C.3. | Panasonic GP-MH310 Specifications [36]                   | 45 |
| C.4. | Hitachi DI-SC120R Specifications [37]                    | 46 |
| C.5. | FLIR Tau 2 Specifications [38]                           | 47 |
| C.6. | FLIR Tau SWIR Specifications [38]                        | 48 |
| C.7. | NanoCore 640 M Specifications [41]                       | 49 |
| C.8. | DRS Tamarisk 640 Specifications [39]                     | 50 |
| D.1. | $I$ vs $Y_{CG}$ at $X_{CG} = 0.390m$                     | 53 |
| D.2. | $I$ vs $Y_{CG}$ at $X_{CG} = 0.395m$                     | 54 |
| D.3. | $I$ vs $Y_{CG}$ at $X_{CG} = 0.400m$                     | 54 |
| D.4. | $I$ vs $Y_{CG}$ at $X_{CG} = 0.405m$                     | 55 |
| D.5. | $I$ vs $Y_{CG}$ at $X_{CG} = 0.410m$                     | 55 |

# Part A AERODYNAMICS

# Introduction

The aim of this chapter is to provide additional plots and figures obtained from simulations done with XFLR5 and Ansys CFD software.

## XFLR5 Design and Simulation



Figure A.1.: Eppler186 Cl – Alpha graph for different Reynolds values, obtained from XFLR5



Figure A.2.: Eppler 186 Cd – Alpha graph for different Reynolds values, obtained from XFLR 5  $\,$ 



 $Figure\ A.3.:\ Eppler 186\ Cm-Alpha\ graph\ for\ different\ Reynolds\ values,\ obtained\ from\ XFLR 5$ 



Figure A.4.: Geometric design of the flying wing



Figure A.5.: CL – Alpha graph of the Flying wing



Figure A.6.: CD – Alpha graph of the Flying wing



Figure A.7.: CM – Alpha graph of the Flying wing



Figure A.8.: CL distribution for Alpha =  $4^{\rm o}$ 



Figure A.9.: Flying wing at static analysis and pitching moment. at alpha  $4^{\rm o}$ 

## Numerical Simulation by CFD

### A.3.1 Simulation parameters

| Axis         | Minimum (m) | Maximum (m) |
|--------------|-------------|-------------|
| X-coordinate | -1.13118    | 2.827659    |
| Y-coordinate | -3.439945   | 3.439945    |
| Z-coordinate | -1.024849   | 1.078300    |

Table A.1.: Domain Extents

| Minimum Volume $(m^3)$    | Maximum Volume $(m^3)$   | Total Volume $(m^3)$ |
|---------------------------|--------------------------|----------------------|
| $2.430786 \cdot 10^{-13}$ | $8.733648 \cdot 10^{-3}$ | 5.476718·10          |

Table A.2.: Volume statistics

#### The face area statistics are:

- $\bullet\,$  The Minimum Face Area is  $4.854192\cdot 10^{-9}m^2$
- $\bullet$  The Maximum Face Area is  $1.084398\cdot 10^{-1}m^2$

| Zone        | Elements                             |  |  |  |
|-------------|--------------------------------------|--|--|--|
| 1           | 25604 triangular wall faces          |  |  |  |
| 2           | 1864131 triangular interior faces    |  |  |  |
| 3           | 939390 tetrahedral cells             |  |  |  |
| 6           | 326 triangular wall faces            |  |  |  |
| 7           | 316 triangular velocity-inlet faces  |  |  |  |
| 8           | 304 triangular pressure-outlet faces |  |  |  |
| 9           | 636 triangular wall faces            |  |  |  |
| 10          | 666 triangular wall faces            |  |  |  |
| 11          | 1446 triangular wall faces           |  |  |  |
| Total nodes | 164202 nodes                         |  |  |  |
| Total faces | 1893429 faces                        |  |  |  |
| Total cells | 939390 cells                         |  |  |  |

Table A.3.: Meshing size for each zone

#### Mesh Quality:

- Orthogonal Quality ranges from 0 to 1, where values close to 0 correspond to low quality.
- The Minimum Orthogonal Quality is  $1.41843 \cdot 10^{-1}$
- $\bullet$  The Maximum Aspect Ratio is  $3.70990 \cdot 10$

| Element name  | Type /Condition | Parameters                                    |
|---------------|-----------------|-----------------------------------------------|
| Wall_right    | Wall            | Static Pressure                               |
| Wall_left     | Wall            | Static Pressure                               |
| Frontal_inlet | Velocity inlet  | Airspeed (16m/s) by components                |
| Back_outlet   | Pressure outlet | Pressure and velocity as output               |
| Top_wall      | Wall            | Static Pressure                               |
| Bottom_wall   | Wall            | Static Pressure                               |
| Wall-solid    | Body            | Null normal velocity component to the surface |

Table A.4.: Boundary conditions for all the elements

### A.3.2 Simulation results



Figure A.10.: Wing Lift Coefficient for  $\alpha=1^{\circ}$ 



Figure A.11.: Wing Drag Coefficient for  $\alpha=1^{\circ}$ 



Figure A.12.: Wing Pitch moment Coefficient for  $\alpha=1^\circ$ 



Figure A.13.: Wing Lift Coefficient for  $\alpha=4^{\circ}$ 



Figure A.14.: Wing Drag Coefficient for  $\alpha=4^{\circ}$ 



Figure A.15.: Wing Pitch moment Coefficient for  $\alpha=4^\circ$ 

| $\alpha(deg)$ | $C_L$   | $C_D$  | $C_M$   |  |  |
|---------------|---------|--------|---------|--|--|
| -10           | -0.5759 | 0.1054 | 0.8800  |  |  |
| -9            | -0.6128 | 0.0867 | 0.8211  |  |  |
| -8            | -0.6228 | 0.0703 | 0.7517  |  |  |
| -7            | -0.5668 | 0.0560 | 0.6814  |  |  |
| -6            | -0.4905 | 0.0455 | 0.6351  |  |  |
| -5            | -0.4077 | 0.0345 | 0.6015  |  |  |
| -4            | -0.3271 | 0.0204 | 0.5662  |  |  |
| -3            | -0.2430 | 0.0130 | 0.5155  |  |  |
| -2            | -0.1623 | 0.0111 | 0.4814  |  |  |
| -1            | -0.0680 | 0.0082 | 0.4164  |  |  |
| 0             | 0.0215  | 0.0079 | 0.3458  |  |  |
| 1             | 0.1068  | 0.0084 | 0.2998  |  |  |
| 2             | 0.1872  | 0.0088 | 0.2598  |  |  |
| 3             | 0.2697  | 0.0108 | 0.1998  |  |  |
| 4             | 0.3691  | 0.0145 | 0.1401  |  |  |
| 5             | 0.4501  | 0.0191 | 0.0818  |  |  |
| 6             | 0.5382  | 0.0257 | 0.0350  |  |  |
| 7             | 0.6181  | 0.0357 | -0.0006 |  |  |
| 8             | 0.6988  | 0.0441 | -0.0256 |  |  |
| 9             | 0.7777  | 0.0529 | -0.0506 |  |  |
| 10            | 0.8577  | 0.0621 | -0.0756 |  |  |
| 11            | 0.9298  | 0.0702 | -0.1006 |  |  |
| 12            | 0.9981  | 0.0800 | -0.1256 |  |  |
| 13            | 1.0577  | 0.0930 | -0.1506 |  |  |
| 14            | 1.0930  | 0.1101 | -0.1756 |  |  |
| 15            | 1.0658  | 0.1307 | -0.1986 |  |  |
| 16            | 1.0010  | 0.1475 | -0.2304 |  |  |
| 17            | 0.9260  | 0.1671 | -0.2669 |  |  |

Table A.5.: Aerodynamic coefficients obtained from Fluent Simulation



Figure A.16.: Lift coefficient vs AoA



Figure A.17.: Drag coefficient vs AoA



Figure A.18.: Pitch moment coefficient vs AoA  $\,$ 



Figure A.19.: Lift to Drag ratio vs AoA



Figure A.20.: Miscellaneous: Pressure distribution map



Figure A.21.: Miscellaneous: Path lines colored by relative velocity (particle tracking)

# Part B PROPULSION

## Introduction

This chapter provides more details regarding the blade element method calculations as an extension of what has already been explained in the project Report.

## Blade Element Method



Figure B.1.: Force and speed components on a blade element



Figure B.2.: Blade element scheme

Considering  $\theta(r)$  as the twist distribution along the propeller radius and the speed components as shown in the previous figure, where  $v_0$  is the **axial flow at propeller disk** and  $v_2$  is the **angular flow**, the angle of attack of each blade element can be written as:

$$\alpha(r) = \theta(r) - \phi(r) = \theta(r) - \arctan\left(\frac{v_0}{v_2}\right)$$
 (B.2.1)

It is important to note that:

- 2D study is considered, so the induced velocity components are neglected along the blade radius
- for each blade, the angle of attack is measured regarding the airfoil zero lift line

Therefore, for a given **twist distribution**  $\theta(r)$ , the local angle of attack for each blade can be calculated, and from the airfoil polar graphs the corresponding  $c_l$  and  $c_d$  values can be found. Then, for each blade element, the total lift and drag forces can be determined, which should be projected on the axial and tangential axis, to determine thrust and torque components:

$$\Delta T = \Delta L \cos \phi - \Delta D \sin \phi \tag{B.2.2}$$

$$\frac{\Delta Q}{r} = \Delta L \sin \phi + \Delta D \cos \phi \tag{B.2.3}$$

where:

$$\Delta L = c_l \cdot \frac{1}{2} \cdot \rho \cdot v_1^2 \cdot c \cdot dr \tag{B.2.4}$$

and

$$\Delta D = c_d \cdot \frac{1}{2} \cdot \rho \cdot {v_1}^2 \cdot c \cdot dr \tag{B.2.5}$$

where

$$v_1 = \sqrt{v_0^2 + v_2^2} \tag{B.2.6}$$

Considering that the propeller has two blades:

$$\Delta T = \frac{1}{2}\rho v_1^2 c(c_l \cos \phi - c_d \sin \phi) dr \cdot 2$$
(B.2.7)

$$\Delta Q = \frac{1}{2}\rho v_1^2 c(c_d \cos \phi + c_l \sin \phi) r \cdot dr \cdot 2$$
 (B.2.8)

Therefore, the design steps would be defined as:

- definition of the twist distribution  $\theta(r)$
- discretization of the blade into N elements along the radius
- calculation of the angle of attack of each blade element  $\alpha(r)$
- determination of  $c_l$  and  $c_d$  for each blade element
- determination of the local drag and lift, and then, local thrust and torque

#### B.2.1 BEM without inflow factors

At this section, the axial flow at propeller disk  $v_0$  and the angular flow  $v_2$  are calculated neglecting the inflow factors. Therefore, the axial flow can be considered approximately equal to the aircraft advance speed and the angular flow can be calculated considering only the blade rotation.

$$v_0 = u_\infty$$

$$v_2 = \omega \cdot r$$

$$v_1 = \sqrt{v_0^2 + v_2^2} = \sqrt{u_\infty^2 + \omega \cdot r^2}$$

According to [7] and Alfred Gessow studies (1948), the ideal twist can be calculated as:

$$\theta(r) = \frac{\theta_{tip}}{r} \tag{B.2.9}$$

Actually, the state of the art of the aircraft propellers suggests that the ideal theoretical twist is almost identical to the optimal twist, based on the wind tunnel analysis [7]. Furthermore, the Eppler E63 airfoil has been selected for the blade design, which is one of the most used airfoils for medium size propellers. The next calculations will be done for take-off, since it is when the propulsive efficiency seems to be the lowest according to the previous chapter. For the next calculations, 6000 RPM will be considered. The blade tip angular flow is calculated with the next equation, for take-off and cruise flight:

$$v_{1tip_{t-o}} = \sqrt{u_{\infty}^2 + \omega \cdot R_d^2} = \sqrt{9.84^2 + \left(6000 \cdot \frac{2\pi}{60} \cdot 0.2\right)^2} = 126.05 \ [m/s]$$

$$\phi_{tip_{t-o}} = \arcsin \frac{u_{\infty}}{v_1} \to \phi_{tip} = 4.48^{\circ}$$

and

$$v_{1tip_{cr}} = \sqrt{u_{\infty}^2 + \omega \cdot R_d^2} = \sqrt{16^2 + \left(6000 \cdot \frac{2\pi}{60} \cdot 0.2\right)^2} = 126.7 \ [m/s]$$

$$\phi_{tip_{cr}} = \arcsin \frac{u_{\infty}}{v_1} \to \phi_{tip} = 7.25^{\circ}$$

At cruise flight condition, the higher  $\phi$  for the same twist distribution will decrease the angle of attack. Therefore, for the calculation of the  $\theta_{tip}$ ,  $\phi_{tip_{cr}}$  will be considered as the reference value. Considering the Eppler E63 airfoil  $c_l/c_d$  vs  $\alpha$  graph for Reynolds numbers between 50,000 and 100,000, since the maximum Reynolds over the blade is around 77000, the optimal  $\alpha$  value is obtained, which is around  $\alpha_{opt} = 5^{\circ}$ . Therefore, the blade twist at the tip is:

$$\theta_{tip} = \alpha_{opt} + \phi_{tip} = 12.25^{\circ}$$

Then, the blade is divided into 100 elements. The twist distribution  $\theta(r)$  for 0.14m < r < 0.2m is calculated according to the ideal twist equation, while for 0 < r < 0.14m linear twist distribution is selected, which provides almost constant angle of attack distribution and values close to  $\alpha_{opt}$ . The next tables are generated, for both, take-off and cruise flight conditions:

| Element | r [m]  | $\frac{r}{r}$        | dr [m] | c [m]  | $V_0 [\mathrm{m/s}]$ | $V_2$ [m/s] | $V_1$ [m/s] | φ      | $\theta$ | $\alpha$ | $\alpha^{\circ}$ | $C_l$  | $C_d$  | $\Delta T$ | $\Delta Q$ |
|---------|--------|----------------------|--------|--------|----------------------|-------------|-------------|--------|----------|----------|------------------|--------|--------|------------|------------|
| 1       | 0.0134 | $\frac{R_d}{0.0672}$ | 0.0019 | 0.0450 | 9.84                 | 8.44        | 12.97       | 0.8617 | 1.1052   | 0.2436   | 13.96            | 2.2339 | 0.1991 |            |            |
| 2       | 0.0153 | 0.0766               | 0.0019 | 0.0429 | 9.84                 | 9.62        | 13.76       | 0.7966 | 1.0394   | 0.2428   | 13.91            | 2.2273 | 0.1982 |            |            |
| 3       | 0.0172 | 0.0859               | 0.0019 | 0.0427 | 9.84                 | 10.80       | 14.61       | 0.7390 | 0.9921   | 0.2531   | 14.50            | 2.3104 | 0.2101 |            |            |
| 4       | 0.0191 | 0.0953               | 0.0019 | 0.0424 | 9.84                 | 11.98       | 15.50       | 0.6877 | 0.9432   | 0.2555   | 14.64            | 2.3291 | 0.2127 |            |            |
| 5       | 0.0209 | 0.1047               | 0.0019 | 0.0422 | 9.84                 | 13.16       | 16.43       | 0.6422 | 0.8977   | 0.2554   | 14.64            | 2.3291 | 0.2127 |            |            |
| 6       | 0.0228 | 0.1141               | 0.0019 | 0.0419 | 9.84                 | 14.33       | 17.39       | 0.6016 | 0.8603   | 0.2587   | 14.82            | 2.3549 | 0.2164 |            |            |
| 7       | 0.0247 | 0.1234               | 0.0019 | 0.0417 | 9.84                 | 15.51       | 18.37       | 0.5653 | 0.8159   | 0.2506   | 14.36            | 2.2901 | 0.2072 |            |            |
| 8       | 0.0266 | 0.1328               | 0.0019 | 0.0414 | 9.84                 | 16.69       | 19.37       | 0.5327 | 0.7793   | 0.2466   | 14.13            | 2.2579 | 0.2026 |            |            |
| 9       | 0.0284 | 0.1422               | 0.0019 | 0.0412 | 9.84                 | 17.87       | 20.40       | 0.5034 | 0.7503   | 0.2469   | 14.15            | 2.2606 | 0.2029 |            |            |
| 10      | 0.0303 | 0.1516               | 0.0019 | 0.0409 | 9.84                 | 19.05       | 21.44       | 0.4769 | 0.7137   | 0.2368   | 13.57            | 2.1797 | 0.1914 |            |            |
| 11      | 0.0322 | 0.1609               | 0.0019 | 0.0407 | 9.84                 | 20.22       | 22.49       | 0.4528 | 0.6843   | 0.2315   | 13.26            | 2.1368 | 0.1853 |            |            |
| 12      | 0.0341 | 0.1703               | 0.0019 | 0.0404 | 9.84                 | 21.40       | 23.56       | 0.4309 | 0.6620   | 0.2310   | 13.24            | 2.1330 | 0.1847 |            |            |
| 13      | 0.0359 | 0.1797               | 0.0019 | 0.0401 | 9.84                 | 22.58       | 24.63       | 0.4110 | 0.6365   | 0.2255   | 12.92            | 2.0888 | 0.1784 |            |            |
| 14      | 0.0378 | 0.1891               | 0.0019 | 0.0399 | 9.84                 | 23.76       | 25.72       | 0.3927 | 0.6127   | 0.2200   | 12.61            | 2.0449 | 0.1721 |            |            |
| 15      | 0.0397 | 0.1984               | 0.0019 | 0.0396 | 9.84                 | 24.94       | 26.81       | 0.3758 | 0.5955   | 0.2196   | 12.58            | 2.0417 | 0.1717 |            |            |
| 16      | 0.0416 | 0.2078               | 0.0019 | 0.0394 | 9.84                 | 26.11       | 27.91       | 0.3603 | 0.5697   | 0.2093   | 11.99            | 1.9592 | 0.1599 | 0.0626     | 0.0012     |
| 17      | 0.0434 | 0.2172               | 0.0019 | 0.0391 | 9.84                 | 27.29       | 29.01       | 0.3460 | 0.5502   | 0.2042   | 11.70            | 1.9180 | 0.1540 | 0.0663     | 0.0013     |
| 18      | 0.0453 | 0.2266               | 0.0019 | 0.0389 | 9.84                 | 28.47       | 30.12       | 0.3328 | 0.5370   | 0.2042   | 11.70            | 1.9182 | 0.1540 | 0.0714     | 0.0014     |
| 19      | 0.0472 | 0.2359               | 0.0019 | 0.0386 | 9.84                 | 29.65       | 31.24       | 0.3204 | 0.5149   | 0.1944   | 11.14            | 1.8395 | 0.1428 | 0.0736     | 0.0015     |
| 20      | 0.0491 | 0.2453               | 0.0019 | 0.0384 | 9.84                 | 30.83       | 32.36       | 0.3090 | 0.4988   | 0.1898   | 10.87            | 1.8023 | 0.1375 | 0.0773     | 0.0015     |
| 21      | 0.0509 | 0.2547               | 0.0019 | 0.0381 | 9.84                 | 32.00       | 33.48       | 0.2983 | 0.4886   | 0.1903   | 10.90            | 1.8065 | 0.1381 | 0.0828     | 0.0017     |
| 22      | 0.0528 | 0.2641               | 0.0019 | 0.0379 | 9.84                 | 33.18       | 34.61       | 0.2883 | 0.4843   | 0.1960   | 11.23            | 1.8523 | 0.1446 | 0.0904     | 0.0018     |
| 23      | 0.0547 | 0.2734               | 0.0019 | 0.0376 | 9.84                 | 34.36       | 35.74       | 0.2789 | 0.4708   | 0.1919   | 10.99            | 1.8191 | 0.1399 | 0.0944     | 0.0019     |
| 24      | 0.0566 | 0.2828               | 0.0019 | 0.0374 | 9.84                 | 35.54       | 36.88       | 0.2701 | 0.4630   | 0.1929   | 11.05            | 1.8275 | 0.1411 | 0.1006     | 0.0021     |
| 25      | 0.0584 | 0.2922               | 0.0019 | 0.0371 | 9.84                 | 36.72       | 38.01       | 0.2618 | 0.4459   | 0.1841   | 10.55            | 1.7568 | 0.1310 | 0.1024     | 0.0021     |
| 26      | 0.0603 | 0.3016               | 0.0019 | 0.0369 | 9.84                 | 37.90       | 39.15       | 0.2541 | 0.4345   | 0.1805   | 10.34            | 1.7275 | 0.1268 | 0.1064     | 0.0022     |
| 27      | 0.0622 | 0.3109               | 0.0019 | 0.0366 | 9.84                 | 39.07       | 40.29       | 0.2467 | 0.4287   | 0.1820   | 10.43            | 1.7395 | 0.1285 | 0.1130     | 0.0023     |
| 28      | 0.0641 | 0.3203               | 0.0019 | 0.0364 | 9.84                 | 40.25       | 41.44       | 0.2398 | 0.4133   | 0.1736   | 9.95             | 1.6724 | 0.1189 | 0.1144     | 0.0024     |
| 29      | 0.0659 | 0.3297               | 0.0019 | 0.0361 | 9.84                 | 41.43       | 42.58       | 0.2332 | 0.4035   | 0.1704   | 9.76             | 1.6465 | 0.1152 | 0.1184     | 0.0024     |
| 30      | 0.0678 | 0.3391               | 0.0019 | 0.0358 | 9.84                 | 42.61       | 43.73       | 0.2270 | 0.3992   | 0.1723   | 9.87             | 1.6618 | 0.1174 | 0.1254     | 0.0026     |
| 31      | 0.0697 | 0.3484               | 0.0019 | 0.0356 | 9.84                 | 43.79       | 44.88       | 0.2211 | 0.3853   | 0.1643   | 9.41             | 1.5978 | 0.1083 | 0.1264     | 0.0026     |
| 32      | 0.0716 | 0.3578               | 0.0019 | 0.0353 | 9.84                 | 44.96       | 46.03       | 0.2154 | 0.4019   | 0.1864   | 10.68            | 1.7754 | 0.1336 | 0.1467     | 0.0031     |
| 33      | 0.0734 | 0.3672               | 0.0019 | 0.0351 | 9.84                 | 46.14       | 47.18       | 0.2101 | 0.3988   | 0.1887   | 10.81            | 1.7934 | 0.1362 | 0.1548     | 0.0033     |
| 34      | 0.0753 | 0.3766               | 0.0019 | 0.0348 | 9.84                 | 47.32       | 48.33       | 0.2050 | 0.3861   | 0.1810   | 10.37            | 1.7321 | 0.1274 | 0.1561     | 0.0034     |
| 35      | 0.0772 | 0.3859               | 0.0019 | 0.0346 | 9.84                 | 48.50       | 49.49       | 0.2002 | 0.3787   | 0.1785   | 10.23            | 1.7117 | 0.1245 | 0.1607     | 0.0035     |
| 36      | 0.0791 | 0.3953               | 0.0019 | 0.0343 | 9.84                 | 49.68       | 50.64       | 0.1956 | 0.3766   | 0.1810   | 10.37            | 1.7322 | 0.1275 | 0.1693     | 0.0037     |
| 37      | 0.0809 | 0.4047               | 0.0019 | 0.0341 | 9.84                 | 50.85       | 51.80       | 0.1911 | 0.3648   | 0.1737   | 9.95             | 1.6732 | 0.1190 | 0.1701     | 0.0037     |
| 38      | 0.0828 | 0.4141               | 0.0019 | 0.0338 | 9.84                 | 52.03       | 52.95       | 0.1869 | 0.3583   | 0.1714   | 9.82             | 1.6550 | 0.1164 | 0.1748     | 0.0038     |
| 39      | 0.0847 | 0.4234               | 0.0019 | 0.0336 | 9.84                 | 53.21       | 54.11       | 0.1829 | 0.3571   | 0.1742   | 9.98             | 1.6776 | 0.1197 | 0.1838     | 0.0040     |
| 40      | 0.0866 | 0.4328               | 0.0019 | 0.0333 | 9.84                 | 54.39       | 55.27       | 0.1790 | 0.3461   | 0.1671   | 9.58             | 1.6206 | 0.1115 | 0.1841     | 0.0040     |
| 41      | 0.0884 | 0.4422               | 0.0019 | 0.0331 | 9.84                 | 55.57       | 56.43       | 0.1753 | 0.3404   | 0.1651   | 9.46             | 1.6043 | 0.1092 | 0.1887     | 0.0041     |
| 42      | 0.0903 | 0.4516               | 0.0019 | 0.0328 | 9.84                 | 56.75       | 57.59       | 0.1717 | 0.3398   | 0.1681   | 9.63             | 1.6286 | 0.1127 | 0.1981     | 0.0044     |
| 43      | 0.0922 | 0.4609               | 0.0019 | 0.0326 | 9.84                 | 57.92       | 58.75       | 0.1683 | 0.3295   | 0.1612   | 9.24             | 1.5733 | 0.1048 | 0.1979     | 0.0044     |
| 44      | 0.0941 | 0.4703               | 0.0019 | 0.0323 | 9.84                 | 59.10       | 59.91       | 0.1650 | 0.3244   | 0.1594   | 9.13             | 1.5586 | 0.1027 | 0.2025     | 0.0045     |
| 45      | 0.0959 | 0.4797               | 0.0019 | 0.0320 | 9.84                 | 60.28       | 61.08       | 0.1618 | 0.3244   | 0.1626   | 9.32             | 1.5846 | 0.1064 | 0.2124     | 0.0047     |
| 46      | 0.0978 | 0.4891               | 0.0019 | 0.0318 | 9.84                 | 61.46       | 62.24       | 0.1588 | 0.3147   | 0.1559   | 8.93             | 1.5307 | 0.0987 | 0.2116     | 0.0047     |
| 47      | 0.0997 | 0.4984               | 0.0019 | 0.0315 | 9.84                 | 62.64       | 63.40       | 0.1558 | 0.3101   | 0.1543   | 8.84             | 1.5175 | 0.0968 | 0.2161     | 0.0048     |
| 48      | 0.1016 | 0.5078               | 0.0019 | 0.0313 | 9.84                 | 63.81       | 64.57       | 0.1530 | 0.3107   | 0.1577   | 9.03             | 1.5447 | 0.1007 | 0.2264     | 0.0051     |
| 49      | 0.1034 | 0.5172               | 0.0019 | 0.0310 | 9.84                 | 64.99       | 65.73       | 0.1503 | 0.3014   | 0.1511   | 8.66             | 1.4922 | 0.0932 | 0.2251     | 0.0050     |
| 50      | 0.1053 | 0.5266               | 0.0019 | 0.0308 | 9.84                 | 66.17       | 66.90       | 0.1476 | 0.2972   | 0.1496   | 8.57             | 1.4802 | 0.0915 | 0.2295     | 0.0051     |
| 51      | 0.1072 | 0.5359               | 0.0019 | 0.0305 | 9.84                 | 67.35       | 68.06       | 0.1451 | 0.2982   | 0.1532   | 8.78             | 1.5086 | 0.0955 | 0.2402     | 0.0054     |
| 52      | 0.1091 | 0.5453               | 0.0019 | 0.0303 | 9.84                 | 68.53       | 69.23       | 0.1426 | 0.2894   | 0.1468   | 8.41             | 1.4572 | 0.0882 | 0.2383     | 0.0054     |
| 53      | 0.1109 | 0.5547               | 0.0019 | 0.0300 | 9.84                 | 69.70       | 70.40       | 0.1402 | 0.2856   | 0.1454   | 8.33             | 1.4462 | 0.0866 | 0.2426     | 0.0055     |

| 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Element | r [m]  | $\frac{r}{R_d}$ | dr [m] | c [m]  | $V_0$ [m/s] | $V_2$ [m/s] | $V_1$ [m/s] | φ      | $\theta$ | $\alpha$ | $lpha^{\circ}$ | $C_l$  | $C_d$  | $\Delta T$ | $\Delta Q$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-----------------|--------|--------|-------------|-------------|-------------|--------|----------|----------|----------------|--------|--------|------------|------------|
| 55         0.1147         0.7549         0.009         0.0269         0.7849         0.7249         0.1249         0.1249         0.1249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249         0.0249                                                                                                                                                                                                                             | 54      | . ,    |                 |        | . ,    | 9.84        | . , ,       | . , ,       | 0.1379 | 0.2870   | 0.1491   | 8.54           |        |        | 0.2537     | -          |
| 6.0         0.1101         0.1104         0.1104         0.1004         0.0004         0.0004         0.7004         0.1104         0.1004         0.0004         0.0004         0.0004         0.1004         0.1004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004         0.0004 <td></td>                                                           |         |        |                 |        |        |             |             |             |        |          |          |                |        |        |            |            |
| 67         1114         0.1041         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049         0.0049                                                                                                                                                                                                                              |         |        |                 |        |        |             |             |             |        |          |          |                |        |        |            |            |
| 68         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |                 |        |        |             |             |             |        |          |          |                |        |        |            |            |
| 69         1,122         0.101         0.001         0.001         0.003         0.984         0.754         0.754         0.124         0.134         0.003         0.003         0.984         0.754         0.754         0.124         0.136         0.003         0.003         0.984         0.754         0.124         0.124         0.136         0.003         0.003         0.984         0.754         0.003         0.004         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.                                                                                                                                                                                                                                                           |         |        |                 |        |        |             |             |             |        |          |          |                |        |        |            | _          |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |                 |        |        |             |             |             |        |          |          |                |        |        |            | _          |
| 61         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |        |                 |        |        |             |             |             |        |          |          |                |        |        |            |            |
| 64         0.1278         0.6391         0.0091         0.0279         0.9484         0.019         0.0279         0.0284         0.019         0.0279         0.0284         0.019         0.0284         0.019         0.0284         0.009         0.0284         0.009         0.0284         0.009         0.0284         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009                                                                                                                                                                                                                                                        |         |        |                 |        |        |             |             |             |        |          |          |                |        |        |            | _          |
| 64         0.127         0.644         0.004         0.075         0.974         0.984         0.8240         0.8240         0.2540         0.2540         0.2540         0.2540         0.2540         0.2540         0.2540         0.2540         0.2540         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.007         0.004         0.004         0.006         0.006         0.006         0.008         0.009         0.007         0.004         0.820         0.850         0.850         0.101         0.201         0.007         0.004         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.0000         0.000         0.000         0.000                                                                                                                                                                                                                                                          |         |        |                 |        |        |             |             |             | 0.1219 |          |          |                |        |        |            | _          |
| 64         64         65         65         80.78         80.79         90.79         90.74         90.84         90.83         90.84         90.83         90.84         90.83         90.84         90.83         90.84         90.83         90.84         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80         90.80                                                                                                                                                                                                                                                                 |         |        |                 |        |        |             |             |             |        |          |          |                |        |        |            |            |
| 66         61         63         6.76         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000 <td></td> <td></td> <td>0.6578</td> <td>0.0019</td> <td></td> <td>9.84</td> <td>82.66</td> <td></td> <td>0.1185</td> <td></td> <td></td> <td>7.60</td> <td></td> <td></td> <td></td> <td>_</td>                                                               |         |        | 0.6578          | 0.0019 |        | 9.84        | 82.66       |             | 0.1185 |          |          | 7.60           |        |        |            | _          |
| 67         8.137         8.085         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.                                                                                                                                                                                                                                                           | 65      | 0.1334 | 0.6672          | 0.0019 | 0.0270 | 9.84        | 83.84       | 84.42       | 0.1168 | 0.2486   | 0.1317   | 7.55           | 1.3367 | 0.0710 | 0.2914     | 0.0067     |
| 67         8.137         8.085         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.009         0.                                                                                                                                                                                                                                                           |         |        |                 | 0.0019 |        |             |             |             |        |          |          |                |        |        |            |            |
| 64         0.1449         0.7047         0.009         0.2069         9.844         98.55         9.810         0.1298         0.1731         0.1608         0.1636         0.1331         0.2037         0.1431         0.9349         0.1940         1.090         1.0350         0.0135         0.0135         0.0140         0.1461         0.7248         0.009         0.0245         9.844         9.0919         9.0240         0.1050         0.1050         0.1303         0.0303         0.0130         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101         0.0101                                                                                                                                                                                                                                   | 67      | 0.1372 | 0.6859          | 0.0019 | 0.0265 | 9.84        | 86.20       | 86.76       | 0.1137 | 0.2435   | 0.1299   | 7.44           | 1.3217 | 0.0688 | 0.2988     | 0.0069     |
| 70         81         80         80         80         80         90         100         90         100         1040         1030         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040         1040                                                                                                                                                                                                                                                                                                            | 68      | 0.1391 | 0.6953          | 0.0019 | 0.0262 | 9.84        | 87.38       | 87.93       | 0.1121 | 0.2411   | 0.1290   | 7.39           | 1.3145 | 0.0678 | 0.3024     | 0.0069     |
| 71         0.1447         0.7234         0.010         0.0255         9.84         9.90         9.946         0.1065         0.1865         0.166         0.7328         0.010         0.0252         9.84         9.20         9.24         0.1065         0.1865         0.185         1.062         1.064         0.1323         0.4327         0.1017           73         0.1446         0.7232         0.009         0.024         9.84         9.44         9.44         9.44         1.020         0.1821         1.035         1.742         0.1527         0.1437         0.0171         0.172         0.152         0.7609         0.024         9.84         9.68         9.68         0.020         0.1276         0.1762         0.173         0.1437         0.0101         0.0171         0.1762         0.176         0.1762         0.163         0.1209         0.4417         0.0101         0.1776         0.1762         0.163         0.1637         0.0179         0.0176         0.7776         0.1762         0.163         0.1637         0.0179         0.0209         0.021         0.948         0.0101         0.0209         0.021         0.948         0.020         0.020         0.021         0.020         0.022         0.022         0.0                                                                                                                                                                                                                                                          | 69      | 0.1409 | 0.7047          | 0.0019 | 0.0260 | 9.84        | 88.55       | 89.10       | 0.1107 | 0.2838   | 0.1731   | 9.92           | 1.6684 | 0.1183 | 0.3896     | 0.0101     |
| 72         81466         8.7282         8.0019         0.0252         9.94         9.929         9.9281         0.1048         0.1483         0.1462         0.019         0.2262         9.84         9.327         9.378         0.1051         0.2881         0.1363         0.1361         0.1297         0.4347         0.1017               74             0.1533             0.7516             0.0019             0.024             9.84             9.628             0.1036             0.1845             1.022             1.013             1.012             0.1437             0.1017               75             0.1549             0.7797             0.019             0.928             9.948             9.029             9.84             0.1029             0.772             0.016             0.120             0.014             0.016             0.019             0.020             9.94             9.098             9.020             0.141             9.089             0.161             9.089             0.161             0.162             0.019             0.022             9.94             10.02             0.024             0.022             9.94             10.02             0.024             0.024             0.024             0.024             0.024             0.024             0.12                                                                                                                                                                                         | 70      | 0.1428 | 0.7141          | 0.0019 | 0.0257 | 9.84        | 89.73       | 90.27       | 0.1092 | 0.2994   | 0.1902   | 10.90          | 1.8056 | 0.1379 | 0.4284     | 0.0115     |
| 73         0.1484         0.7422         0.0019         0.0250         9.9.4         99.27         93.78         0.1050         0.1881         0.1496         0.1530         0.1530         0.7516         0.0019         0.0247         9.84         9.9.44         9.9.60         0.038         0.2856         0.1807         0.1832         0.1202         0.1203         0.1316         0.0019         0.0245         9.9.44         9.9.60         9.7.30         0.1013         0.1764         0.102         1.113         0.1245         0.4385         0.0118           76         0.1541         0.7030         0.0019         0.0232         9.9.44         9.9.60         9.9.30         0.0101         0.1740         0.160         1.600         0.0117         0.0117         0.0118         0.0117         0.0141         0.010         0.020         0.0117         0.0119         0.0141         0.010         0.010         0.0117         0.0141         0.010         0.0101         0.0117         0.0141         0.010         0.0117         0.0141         0.011         0.0141         0.011         0.0141         0.011         0.0141         0.011         0.0141         0.011         0.011         0.011         0.011         0.011         0.011 <t< td=""><td>71</td><td>0.1447</td><td>0.7234</td><td>0.0019</td><td>0.0255</td><td>9.84</td><td>90.91</td><td>91.44</td><td>0.1078</td><td>0.2955</td><td>0.1877</td><td>10.76</td><td>1.7858</td><td>0.1351</td><td>0.4306</td><td>0.0116</td></t<> | 71      | 0.1447 | 0.7234          | 0.0019 | 0.0255 | 9.84        | 90.91       | 91.44       | 0.1078 | 0.2955   | 0.1877   | 10.76          | 1.7858 | 0.1351 | 0.4306     | 0.0116     |
| 74         0.1503         0.7516         0.0019         0.0247         9.84         9.448         9.496         0.1038         0.1285         0.132         0.1732         0.1732         0.0219         0.0245         9.84         9.562         9.613         0.1025         0.1801         0.1732         0.1733         0.1213         0.1245         0.4385         0.1171           76         0.1541         0.7703         0.0019         0.0242         9.84         9.988         9.847         0.001         0.1720         0.1761         0.1603         0.1201         0.1414         0.1019           78         0.1579         0.7801         0.0019         0.0237         9.944         19.03         10.002         0.0210         0.1702         0.1702         1.600         0.1171         0.4417         0.0101           79         0.1587         0.7801         0.0019         0.0234         1.943         10.03         10.020         0.2762         0.1610         0.0234         0.1418         0.0010         0.0210         0.0214         0.0010         0.0221         0.0010         0.0223         0.0014         0.0120         0.0010         0.0221         0.0010         0.0023         0.0014         0.0021         0.0023 <td>72</td> <td>0.1466</td> <td>0.7328</td> <td>0.0019</td> <td>0.0252</td> <td>9.84</td> <td>92.09</td> <td>92.61</td> <td>0.1065</td> <td>0.2918</td> <td>0.1853</td> <td>10.62</td> <td>1.7664</td> <td>0.1323</td> <td>0.4327</td> <td>0.0116</td>             | 72      | 0.1466 | 0.7328          | 0.0019 | 0.0252 | 9.84        | 92.09       | 92.61       | 0.1065 | 0.2918   | 0.1853   | 10.62          | 1.7664 | 0.1323 | 0.4327     | 0.0116     |
| 75         0.1522         0.7609         0.0019         0.0245         9.84         95.62         96.13         0.1255         0.2810         0.1784         1.022         1.7113         0.1245         0.4385         0.0119           76         0.1541         0.7703         0.0019         0.0242         9.84         96.80         97.30         0.1013         0.776         0.162         1.01         1.6938         0.120         0.4401         0.0119           78         0.1559         0.7797         0.0019         0.0237         9.84         99.16         99.44         0.0999         0.2710         0.170         9.86         1.6600         0.1141         0.4432         0.010           79         0.1577         0.784         0.0019         0.0232         9.84         100.33         10.082         0.078         0.0160         0.720         1.6143         0.4448         0.0120           80         0.1613         0.8787         0.0019         0.0223         9.84         103.57         104.33         0.0956         0.661         0.162         9.1         1.5972         0.4480         0.0121           81         0.1633         0.8255         0.0019         0.0222         9.84                                                                                                                                                                                                                                                                                                        | 73      | 0.1484 | 0.7422          | 0.0019 | 0.0250 | 9.84        | 93.27       | 93.78       | 0.1051 | 0.2881   | 0.1830   | 10.48          | 1.7476 | 0.1297 | 0.4347     | 0.0117     |
| 76         0.1541         0.7703         0.0199         0.0242         9.84         96.80         97.30         0.1013         0.2776         0.1015         0.1797         0.0199         0.0239         9.84         97.98         98.47         0.1010         0.2742         0.1741         9.98         1.6767         0.1195         0.4417         0.0119           78         0.1578         0.7791         0.019         0.0237         9.84         99.16         99.64         0.0989         0.2710         0.740         0.6430         0.1141         0.4432         0.0120           80         0.1616         0.8778         0.019         0.0232         9.84         101.51         101.99         0.0966         0.6477         0.160         9.53         1.629         0.1448         0.0120           81         0.1616         0.8779         0.0019         0.0227         9.84         102.69         103.16         0.0557         0.1616         9.52         1.6124         0.1130         0.4401         0.0121           81         0.1623         0.8269         0.0019         0.0227         9.84         105.69         105.31         0.035         0.1624         9.529         0.1624         9.41         0.527 <td>74</td> <td>0.1503</td> <td>0.7516</td> <td>0.0019</td> <td>0.0247</td> <td>9.84</td> <td>94.44</td> <td>94.96</td> <td>0.1038</td> <td>0.2845</td> <td>0.1807</td> <td>10.35</td> <td>1.7292</td> <td>0.1270</td> <td>0.4367</td> <td>0.0117</td>                              | 74      | 0.1503 | 0.7516          | 0.0019 | 0.0247 | 9.84        | 94.44       | 94.96       | 0.1038 | 0.2845   | 0.1807   | 10.35          | 1.7292 | 0.1270 | 0.4367     | 0.0117     |
| 77         0.1559         0.7797         0.0019         0.0239         9.84         97.98         99.47         0.1001         0.2742         0.1741         9.98         1.6767         0.1195         0.4417         0.0191           78         0.1578         0.7891         0.0019         0.0237         9.84         99.16         99.64         0.0989         0.2710         0.720         9.86         1.6600         0.1171         0.4432         0.0120           80         0.1597         0.7894         0.019         0.0232         9.84         101.51         101.99         0.066         0.2647         0.1680         9.63         1.6279         0.126         0.4458         0.0120           81         0.1634         0.8172         0.0019         0.0229         9.84         105.99         103.16         0.0955         0.6166         0.952         1.6124         0.1103         0.4470         0.0121           81         0.1634         0.8276         0.0019         0.0222         9.84         105.39         106.33         0.052         1.5120         0.0412         9.84         105.29         106.33         0.052         1.5160         0.0122         0.0122         9.84         106.29         1.058<                                                                                                                                                                                                                                                                                  | 75      | 0.1522 | 0.7609          | 0.0019 | 0.0245 | 9.84        | 95.62       | 96.13       | 0.1025 | 0.2810   | 0.1784   | 10.22          | 1.7113 | 0.1245 | 0.4385     | 0.0118     |
| 78         0.1578         0.7891         0.0019         0.0237         9.84         99.16         9.964         0.0899         0.2710         0.1720         9.86         1.6600         0.1171         0.4432         0.0120           79         0.1597         0.7984         0.0019         0.0234         9.84         100.33         100.82         0.0978         0.2678         0.1700         9.74         1.6438         0.1146         0.4446         0.0120           80         0.1616         0.8078         0.019         0.0232         9.84         101.50         101.99         0.0966         0.2647         0.1680         9.63         1.6279         0.1126         0.4458         0.021           81         0.1631         0.8266         0.0019         0.0224         9.84         105.05         105.15         0.0934         0.2587         0.1642         9.41         1.5972         0.1082         0.4480         0.0121           84         0.1619         0.8453         0.019         0.0224         9.84         105.05         105.51         0.094         0.2529         0.1660         9.20         1.5679         0.1040         0.4480         0.0121           85         0.1799         0.8547 <td>76</td> <td>0.1541</td> <td>0.7703</td> <td>0.0019</td> <td>0.0242</td> <td>9.84</td> <td>96.80</td> <td>97.30</td> <td>0.1013</td> <td>0.2776</td> <td>0.1762</td> <td>10.10</td> <td>1.6938</td> <td>0.1220</td> <td>0.4401</td> <td>0.0119</td>                                       | 76      | 0.1541 | 0.7703          | 0.0019 | 0.0242 | 9.84        | 96.80       | 97.30       | 0.1013 | 0.2776   | 0.1762   | 10.10          | 1.6938 | 0.1220 | 0.4401     | 0.0119     |
| 79         0.1597         0.7984         0.0019         0.0234         9.84         100.33         100.82         0.978         0.2678         0.1700         9.74         1.6438         0.1148         0.4446         0.0120           80         0.1616         0.8078         0.0019         0.0232         9.84         101.51         101.99         0.0966         0.2647         0.1680         9.63         1.6279         0.1126         0.4458         0.0120           81         0.1634         0.8172         0.0019         0.0229         9.84         102.69         103.16         0.0955         0.2616         0.1661         9.52         1.6124         0.1103         0.4470         0.0121           82         0.1653         0.8266         0.0019         0.0224         9.84         105.05         105.51         0.0934         0.2587         0.1642         9.41         0.010         0.4489         0.0121           84         0.1691         0.8453         0.0019         0.0222         9.84         106.23         106.68         0.0944         0.2529         0.1666         9.20         1.5537         0.1040         0.4449         0.0122           85         0.1709         0.8547         0.019<                                                                                                                                                                                                                                                                                          | 77      | 0.1559 | 0.7797          | 0.0019 | 0.0239 | 9.84        | 97.98       | 98.47       | 0.1001 | 0.2742   | 0.1741   | 9.98           | 1.6767 | 0.1195 | 0.4417     | 0.0119     |
| 80         0.1616         0.8078         0.0019         0.0232         9.84         101.51         101.99         0.0966         0.2647         0.1634         1.6279         0.1264         0.4458         0.0120           81         0.1634         0.8172         0.0019         0.0229         9.84         102.69         103.16         0.0955         0.2616         0.1661         9.52         1.6124         0.1103         0.4470         0.0121           82         0.1653         0.8266         0.0019         0.0224         9.84         105.05         105.51         0.0934         0.2587         0.1642         9.54         0.0161         0.433         0.019         0.0222         9.84         105.05         105.51         0.0934         0.2529         0.1666         9.20         1.5679         0.1040         0.4489         0.012           84         0.1691         0.8453         0.0019         0.0212         9.84         106.23         106.68         0.0944         0.2529         0.1666         9.20         1.5679         0.1040         0.4497         0.0122           85         0.1709         0.8547         0.0019         0.0212         9.84         108.58         109.03         0.0944 <t< td=""><td>78</td><td>0.1578</td><td>0.7891</td><td>0.0019</td><td>0.0237</td><td>9.84</td><td>99.16</td><td>99.64</td><td>0.0989</td><td>0.2710</td><td>0.1720</td><td>9.86</td><td>1.6600</td><td>0.1171</td><td>0.4432</td><td>0.0120</td></t<>                                   | 78      | 0.1578 | 0.7891          | 0.0019 | 0.0237 | 9.84        | 99.16       | 99.64       | 0.0989 | 0.2710   | 0.1720   | 9.86           | 1.6600 | 0.1171 | 0.4432     | 0.0120     |
| 81         0.1634         0.8172         0.0019         0.0229         9.84         102.69         103.16         0.0955         0.2616         0.1661         9.52         1.6124         0.1103         0.4470         0.0121           82         0.1653         0.8266         0.0019         0.0227         9.84         103.87         104.33         0.0945         0.2587         0.1642         9.41         1.5972         0.1082         0.4480         0.0121           83         0.1672         0.8359         0.0019         0.0222         9.84         105.05         105.51         0.0934         0.2558         0.1642         9.30         1.5874         0.010         0.4497         0.0122           84         0.1691         0.8453         0.0019         0.0212         9.84         106.23         106.68         0.0924         0.2529         0.1606         9.20         1.5679         0.1040         0.4497         0.0122           85         0.1708         0.8641         0.0019         0.0217         9.84         108.28         109.03         0.0944         0.2422         0.1531         8.1         1.5130         0.000         0.4515         0.0122           86         0.1764         0.8828<                                                                                                                                                                                                                                                                                          | 79      | 0.1597 | 0.7984          | 0.0019 | 0.0234 | 9.84        | 100.33      | 100.82      | 0.0978 | 0.2678   | 0.1700   | 9.74           | 1.6438 | 0.1148 | 0.4446     | 0.0120     |
| 82         0.1653         0.8266         0.0019         0.0227         9.84         103.87         104.33         0.0945         0.2587         0.1642         9.41         1.5972         0.1082         0.4480         0.0121           83         0.1672         0.8359         0.0019         0.0224         9.84         105.05         105.51         0.0934         0.2528         0.1624         9.30         1.5874         0.1061         0.4489         0.0121           84         0.1691         0.8547         0.0019         0.0219         9.84         106.23         106.68         0.0924         0.2529         0.1606         9.20         1.5679         0.1040         0.4497         0.0122           85         0.1709         0.8547         0.0019         0.0217         9.84         107.40         107.85         0.0914         0.2474         0.1571         9.00         1.5339         0.1000         0.4510         0.0122           86         0.1747         0.8734         0.0019         0.0212         9.84         110.94         111.37         0.0885         0.1521         8.81         1.5130         0.0961         0.4518         0.0122           88         0.1766         0.8828         0.00                                                                                                                                                                                                                                                                                          | 80      | 0.1616 | 0.8078          | 0.0019 | 0.0232 | 9.84        | 101.51      | 101.99      | 0.0966 | 0.2647   | 0.1680   | 9.63           | 1.6279 | 0.1126 | 0.4458     | 0.0120     |
| 83         0.1672         0.8359         0.0019         0.0224         9.84         105.05         105.51         0.0934         0.2558         0.1624         9.30         1.5824         0.1061         0.4489         0.0121           84         0.1691         0.8453         0.0019         0.0222         9.84         106.23         106.68         0.0924         0.2529         0.1606         9.20         1.5679         0.1040         0.4497         0.0122           85         0.1709         0.8547         0.0019         0.0217         9.84         107.40         107.85         0.0944         0.2529         0.1588         9.10         1.5537         0.1020         0.4504         0.0122           86         0.1747         0.8734         0.0019         0.0214         9.84         1109.76         110.20         0.0894         0.2448         0.1554         8.90         1.5263         0.0980         0.4515         0.0122           88         0.1766         0.8828         0.0019         0.0212         9.84         111.29         111.372         0.0855         0.2226         0.1537         8.81         1.5130         0.0961         0.4518         0.0122           89         0.1784         0.                                                                                                                                                                                                                                                                                          | 81      | 0.1634 | 0.8172          | 0.0019 | 0.0229 | 9.84        | 102.69      | 103.16      | 0.0955 | 0.2616   | 0.1661   | 9.52           | 1.6124 | 0.1103 | 0.4470     | 0.0121     |
| 84         0.1691         0.8453         0.0019         0.0222         9.84         106.23         106.68         0.0924         0.2529         0.1606         9.20         1.5679         0.1040         0.4497         0.0122           85         0.1709         0.8547         0.0019         0.0219         9.84         107.40         107.85         0.0914         0.2502         0.1588         9.10         1.5537         0.1020         0.4504         0.0122           86         0.1728         0.8641         0.0019         0.0217         9.84         108.58         109.03         0.094         0.2474         0.1571         9.00         1.5399         0.1000         0.4510         0.0122           87         0.1747         0.8734         0.019         0.0212         9.84         110.94         111.37         0.0884         0.1537         8.81         1.5130         0.0961         0.4518         0.0122           88         0.1764         0.8822         0.019         0.0209         9.84         112.12         112.55         0.0875         0.2336         0.1521         8.71         1.5000         0.0431         0.4520         0.0122           90         0.1803         0.9016         0.0019<                                                                                                                                                                                                                                                                                          | 82      | 0.1653 | 0.8266          | 0.0019 | 0.0227 | 9.84        | 103.87      | 104.33      | 0.0945 | 0.2587   | 0.1642   | 9.41           | 1.5972 | 0.1082 | 0.4480     | 0.0121     |
| 85         0.1709         0.8547         0.0019         0.0219         9.84         107.40         107.85         0.0914         0.2502         0.1588         9.10         1.5537         0.1020         0.4504         0.0122           86         0.1728         0.8641         0.0019         0.0217         9.84         108.58         109.03         0.0904         0.2444         0.1571         9.00         1.5399         0.1000         0.4510         0.0122           87         0.1747         0.8734         0.0019         0.0214         9.84         109.76         110.20         0.0894         0.2448         0.1554         8.90         1.5263         0.0980         0.4515         0.0122           88         0.1766         0.8828         0.0019         0.0212         9.84         110.94         111.37         0.0885         0.4222         0.1537         8.81         1.5130         0.0961         0.4518         0.0122           89         0.1784         0.8922         0.0019         0.0207         9.84         113.29         113.72         0.0866         0.2371         0.1505         8.62         1.4873         0.092         0.4522         0.0122           91         0.1822         0.919                                                                                                                                                                                                                                                                                          | 83      | 0.1672 | 0.8359          | 0.0019 | 0.0224 | 9.84        | 105.05      | 105.51      | 0.0934 | 0.2558   | 0.1624   | 9.30           | 1.5824 | 0.1061 | 0.4489     | 0.0121     |
| 86         0.1728         0.8641         0.0019         0.0217         9.84         108.58         109.03         0.0904         0.2474         0.1571         9.00         1.5399         0.1000         0.4510         0.0122           87         0.1747         0.8734         0.0019         0.0214         9.84         109.76         110.20         0.0894         0.2448         0.1554         8.90         1.563         0.0980         0.4515         0.0122           88         0.1766         0.8828         0.0019         0.0202         9.84         110.94         111.37         0.0885         0.2422         0.1537         8.81         1.5130         0.0961         0.4518         0.0122           89         0.1784         0.8922         0.0019         0.0209         9.84         112.12         112.55         0.0875         0.2366         0.1521         8.71         1.5000         0.0943         0.4522         0.0122           90         0.1803         0.9016         0.0019         0.0207         9.84         114.47         114.89         0.0857         0.2347         0.1490         8.53         1.4748         0.0907         0.4521         0.0122           92         0.1841         0.920                                                                                                                                                                                                                                                                                          | 84      | 0.1691 | 0.8453          | 0.0019 | 0.0222 | 9.84        | 106.23      | 106.68      | 0.0924 | 0.2529   | 0.1606   | 9.20           | 1.5679 | 0.1040 | 0.4497     | 0.0122     |
| 87         0.1747         0.8734         0.0019         0.0214         9.84         109.76         110.20         0.0894         0.2448         0.1554         8.90         1.5263         0.0980         0.4515         0.0122           88         0.1766         0.8828         0.0019         0.0212         9.84         110.94         111.37         0.0885         0.2422         0.1537         8.81         1.5130         0.0961         0.4518         0.0122           89         0.1784         0.8922         0.0019         0.0209         9.84         112.12         112.55         0.0875         0.2396         0.1521         8.71         1.5000         0.0943         0.4520         0.0122           90         0.1803         0.9016         0.0019         0.0207         9.84         113.29         113.72         0.0866         0.2371         0.1505         8.62         1.4873         0.0925         0.4522         0.0122           91         0.1822         0.9109         0.0019         0.984         114.47         114.89         0.0857         0.2347         0.1490         8.53         1.4748         0.0907         0.4521         0.0122           92         0.1841         0.9203         0.0                                                                                                                                                                                                                                                                                          | 85      | 0.1709 | 0.8547          | 0.0019 | 0.0219 | 9.84        | 107.40      | 107.85      | 0.0914 | 0.2502   | 0.1588   | 9.10           | 1.5537 | 0.1020 | 0.4504     | 0.0122     |
| 88         0.1766         0.8828         0.0019         0.0212         9.84         110.94         111.37         0.0885         0.2422         0.1537         8.81         1.5130         0.0961         0.4518         0.0122           89         0.1784         0.8922         0.0019         0.0209         9.84         112.12         112.55         0.0875         0.2396         0.1521         8.71         1.5000         0.0943         0.4520         0.0122           90         0.1803         0.9016         0.0019         0.0207         9.84         113.29         113.72         0.0866         0.2371         0.1505         8.62         1.4873         0.0925         0.4522         0.0122           91         0.1822         0.9109         0.0019         0.0204         9.84         114.47         114.89         0.0857         0.2347         0.1490         8.53         1.4748         0.0907         0.4521         0.0122           92         0.1841         0.9203         0.0019         0.0202         9.84         116.83         117.24         0.0849         0.2323         0.1474         8.45         1.4626         0.0889         0.4520         0.0122           94         0.1879         0.93                                                                                                                                                                                                                                                                                          | 86      | 0.1728 | 0.8641          | 0.0019 | 0.0217 | 9.84        | 108.58      | 109.03      | 0.0904 | 0.2474   | 0.1571   | 9.00           | 1.5399 | 0.1000 | 0.4510     | 0.0122     |
| 89         0.1784         0.8922         0.0019         0.0209         9.84         112.12         112.55         0.0875         0.2396         0.1521         8.71         1.5000         0.0943         0.4520         0.0122           90         0.1803         0.9016         0.0019         0.0207         9.84         113.29         113.72         0.0866         0.2371         0.1505         8.62         1.4873         0.0925         0.4522         0.0122           91         0.1822         0.9109         0.0019         0.0204         9.84         114.47         114.89         0.0857         0.2347         0.1490         8.53         1.4748         0.0907         0.4521         0.0122           92         0.1841         0.9203         0.0019         0.0202         9.84         115.65         116.07         0.0849         0.2303         0.1474         8.45         1.4626         0.0889         0.4520         0.0122           93         0.1859         0.9297         0.0019         0.0199         9.84         118.01         118.42         0.0832         0.2277         0.1445         8.28         1.4390         0.0856         0.4514         0.0122           95         0.1897         0.94                                                                                                                                                                                                                                                                                          | 87      | 0.1747 | 0.8734          | 0.0019 | 0.0214 | 9.84        | 109.76      | 110.20      | 0.0894 | 0.2448   | 0.1554   | 8.90           | 1.5263 | 0.0980 | 0.4515     | 0.0122     |
| 90         0.1803         0.9016         0.0019         0.0207         9.84         113.29         113.72         0.0866         0.2371         0.1505         8.62         1.4873         0.0925         0.4522         0.0122           91         0.1822         0.9109         0.0019         0.0204         9.84         114.47         114.89         0.0857         0.2347         0.1490         8.53         1.4748         0.0907         0.4521         0.0122           92         0.1841         0.9203         0.0019         0.0202         9.84         115.65         116.07         0.0849         0.2323         0.1474         8.45         1.4626         0.0889         0.4520         0.0122           93         0.1859         0.9297         0.0019         0.0199         9.84         116.83         117.24         0.0840         0.2300         0.1459         8.36         1.4507         0.0872         0.4518         0.0122           94         0.1878         0.9391         0.0019         0.0194         9.84         119.18         119.59         0.0824         0.2257         0.1445         8.28         1.4390         0.0856         0.4514         0.0122           95         0.1897         0.94                                                                                                                                                                                                                                                                                          | 88      | 0.1766 | 0.8828          | 0.0019 | 0.0212 | 9.84        | 110.94      | 111.37      | 0.0885 | 0.2422   | 0.1537   | 8.81           | 1.5130 | 0.0961 | 0.4518     | 0.0122     |
| 91         0.1822         0.9109         0.0019         0.0204         9.84         114.47         114.89         0.0857         0.2347         0.1490         8.53         1.4748         0.0907         0.4521         0.0122           92         0.1841         0.9203         0.0019         0.0202         9.84         115.65         116.07         0.0849         0.2323         0.1474         8.45         1.4626         0.0889         0.4520         0.0122           93         0.1859         0.9297         0.0019         0.0199         9.84         116.83         117.24         0.0840         0.2300         0.1459         8.36         1.4507         0.0872         0.4518         0.0122           94         0.1878         0.9391         0.0019         0.0196         9.84         118.01         118.42         0.0832         0.2277         0.1445         8.28         1.4390         0.0856         0.4514         0.0122           95         0.1897         0.9484         0.0194         9.84         119.18         119.59         0.0824         0.2254         0.1431         8.20         1.4275         0.0839         0.4514         0.0121           96         0.1916         0.9578         0.00                                                                                                                                                                                                                                                                                          | 89      | 0.1784 | 0.8922          | 0.0019 | 0.0209 | 9.84        | 112.12      | 112.55      | 0.0875 | 0.2396   | 0.1521   | 8.71           | 1.5000 | 0.0943 | 0.4520     | 0.0122     |
| 92         0.1841         0.9203         0.0019         0.0202         9.84         115.65         116.07         0.0849         0.2323         0.1474         8.45         1.4626         0.0889         0.4520         0.0122           93         0.1859         0.9297         0.0019         0.0199         9.84         116.83         117.24         0.0840         0.2300         0.1459         8.36         1.4507         0.0872         0.4518         0.0122           94         0.1878         0.9391         0.0019         0.0196         9.84         118.01         118.42         0.0832         0.2277         0.1445         8.28         1.4390         0.0856         0.4514         0.0122           95         0.1897         0.9484         0.0019         0.0194         9.84         119.18         119.59         0.0824         0.2254         0.1431         8.20         1.4275         0.0839         0.4509         0.0121           96         0.1916         0.9578         0.0019         0.0191         9.84         120.36         120.76         0.0816         0.2232         0.1416         8.12         1.4162         0.0823         0.4503         0.0121           98         0.1934         0.96                                                                                                                                                                                                                                                                                          | 90      | 0.1803 | 0.9016          | 0.0019 | 0.0207 | 9.84        | 113.29      | 113.72      | 0.0866 | 0.2371   | 0.1505   | 8.62           | 1.4873 | 0.0925 | 0.4522     | 0.0122     |
| 93         0.1859         0.9297         0.0019         0.0199         9.84         116.83         117.24         0.0840         0.2300         0.1459         8.36         1.4507         0.0872         0.4518         0.0122           94         0.1878         0.9391         0.0019         0.0196         9.84         118.01         118.42         0.0832         0.2277         0.1445         8.28         1.4390         0.0856         0.4514         0.0122           95         0.1897         0.9484         0.0019         0.0194         9.84         119.18         119.59         0.0824         0.2254         0.1431         8.20         1.4275         0.0839         0.4509         0.0121           96         0.1916         0.9578         0.0019         0.0191         9.84         120.36         120.76         0.0816         0.2232         0.1416         8.12         1.4162         0.0823         0.4503         0.0121           97         0.1934         0.9672         0.0019         0.0189         9.84         121.54         121.94         0.0808         0.2211         0.1403         8.04         1.4052         0.0807         0.4486         0.0121           98         0.1953         0.97                                                                                                                                                                                                                                                                                          | 91      | 0.1822 | 0.9109          | 0.0019 | 0.0204 | 9.84        | 114.47      | 114.89      | 0.0857 | 0.2347   | 0.1490   | 8.53           | 1.4748 | 0.0907 | 0.4521     | 0.0122     |
| 94         0.1878         0.9391         0.0019         0.0196         9.84         118.01         118.42         0.0832         0.2277         0.1445         8.28         1.4390         0.0856         0.4514         0.0122           95         0.1897         0.9484         0.0019         0.0194         9.84         119.18         119.59         0.0824         0.2254         0.1431         8.20         1.4275         0.0839         0.4509         0.0121           96         0.1916         0.9578         0.0019         0.0191         9.84         120.36         120.76         0.0816         0.2232         0.1416         8.12         1.4162         0.0823         0.4503         0.0121           97         0.1934         0.9672         0.0019         0.0189         9.84         121.54         121.94         0.0808         0.2211         0.1403         8.04         1.4052         0.0807         0.4496         0.0121           98         0.1953         0.9766         0.0019         0.0186         9.84         122.72         123.11         0.0800         0.2189         0.1389         7.96         1.3943         0.0792         0.4487         0.0121           99         0.1972         0.98                                                                                                                                                                                                                                                                                          | 92      | 0.1841 | 0.9203          | 0.0019 | 0.0202 | 9.84        | 115.65      | 116.07      | 0.0849 | 0.2323   | 0.1474   | 8.45           | 1.4626 | 0.0889 | 0.4520     | 0.0122     |
| 95         0.1897         0.9484         0.0019         0.0194         9.84         119.18         119.59         0.0824         0.2254         0.1431         8.20         1.4275         0.0839         0.4509         0.0121           96         0.1916         0.9578         0.0019         0.0191         9.84         120.36         120.76         0.0816         0.2232         0.1416         8.12         1.4162         0.0823         0.4503         0.0121           97         0.1934         0.9672         0.0019         0.0189         9.84         121.54         121.94         0.0808         0.2211         0.1403         8.04         1.4052         0.0807         0.4496         0.0121           98         0.1953         0.9766         0.0019         0.0186         9.84         122.72         123.11         0.0800         0.2189         0.1389         7.96         1.3943         0.0792         0.4487         0.0121           99         0.1972         0.9859         0.0019         0.0184         9.84         123.90         124.29         0.0793         0.2169         0.1376         7.88         1.3837         0.0777         0.4476         0.0120           100         0.1991         0.9                                                                                                                                                                                                                                                                                          | 93      | 0.1859 | 0.9297          | 0.0019 | 0.0199 | 9.84        | 116.83      | 117.24      | 0.0840 | 0.2300   | 0.1459   | 8.36           | 1.4507 | 0.0872 | 0.4518     | 0.0122     |
| 96         0.1916         0.9578         0.0019         0.0191         9.84         120.36         120.76         0.0816         0.2232         0.1416         8.12         1.4162         0.0823         0.4503         0.0121           97         0.1934         0.9672         0.0019         0.0189         9.84         121.54         121.94         0.0808         0.2211         0.1403         8.04         1.4052         0.0807         0.4496         0.0121           98         0.1953         0.9766         0.0019         0.0186         9.84         122.72         123.11         0.0800         0.2189         0.1389         7.96         1.3943         0.0792         0.4487         0.0121           99         0.1972         0.9859         0.0019         0.0184         9.84         123.90         124.29         0.0793         0.2169         0.1376         7.88         1.3837         0.0777         0.4478         0.0120           100         0.1991         0.9953         0.0019         0.0181         9.84         125.07         125.46         0.0785         0.2148         0.1363         7.81         1.3733         0.0762         0.4467         0.0120                                                                                                                                                                                                                                                                                                                                  | 94      | 0.1878 | 0.9391          | 0.0019 | 0.0196 | 9.84        | 118.01      | 118.42      | 0.0832 | 0.2277   | 0.1445   | 8.28           | 1.4390 | 0.0856 | 0.4514     | 0.0122     |
| 97         0.1934         0.9672         0.0019         0.0189         9.84         121.54         121.94         0.0808         0.2211         0.1403         8.04         1.4052         0.0807         0.4496         0.0121           98         0.1953         0.9766         0.0019         0.0186         9.84         122.72         123.11         0.0800         0.2189         0.1389         7.96         1.3943         0.0792         0.4487         0.0121           99         0.1972         0.9859         0.0019         0.0184         9.84         123.90         124.29         0.0793         0.2169         0.1376         7.88         1.3837         0.0777         0.4478         0.0120           100         0.1991         0.9953         0.0019         0.0181         9.84         125.07         125.46         0.0785         0.2148         0.1363         7.81         1.3733         0.0762         0.4467         0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95      | 0.1897 | 0.9484          | 0.0019 | 0.0194 | 9.84        | 119.18      | 119.59      | 0.0824 | 0.2254   | 0.1431   | 8.20           | 1.4275 | 0.0839 | 0.4509     | 0.0121     |
| 98         0.1953         0.9766         0.0019         0.0186         9.84         122.72         123.11         0.0800         0.2189         0.1389         7.96         1.3943         0.0792         0.4487         0.0121           99         0.1972         0.9859         0.0019         0.0184         9.84         123.90         124.29         0.0793         0.2169         0.1376         7.88         1.3837         0.0777         0.4478         0.0120           100         0.1991         0.9953         0.0019         0.0181         9.84         125.07         125.46         0.0785         0.2148         0.1363         7.81         1.3733         0.0762         0.4467         0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96      | 0.1916 | 0.9578          | 0.0019 | 0.0191 | 9.84        | 120.36      | 120.76      | 0.0816 | 0.2232   | 0.1416   | 8.12           | 1.4162 | 0.0823 | 0.4503     | 0.0121     |
| 99 0.1972 0.9859 0.0019 0.0184 9.84 123.90 124.29 0.0793 0.2169 0.1376 7.88 1.3837 0.0777 0.4478 0.0120 100 0.1991 0.9953 0.0019 0.0181 9.84 125.07 125.46 0.0785 0.2148 0.1363 7.81 1.3733 0.0762 0.4467 0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97      | 0.1934 | 0.9672          | 0.0019 | 0.0189 | 9.84        | 121.54      | 121.94      | 0.0808 | 0.2211   | 0.1403   | 8.04           | 1.4052 | 0.0807 | 0.4496     | 0.0121     |
| 100         0.1991         0.9953         0.0019         0.0181         9.84         125.07         125.46         0.0785         0.2148         0.1363         7.81         1.3733         0.0762         0.4467         0.0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 98      | 0.1953 | 0.9766          | 0.0019 | 0.0186 | 9.84        | 122.72      | 123.11      | 0.0800 | 0.2189   | 0.1389   | 7.96           | 1.3943 | 0.0792 | 0.4487     | 0.0121     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99      | 0.1972 | 0.9859          | 0.0019 | 0.0184 | 9.84        | 123.90      | 124.29      | 0.0793 | 0.2169   | 0.1376   | 7.88           | 1.3837 | 0.0777 | 0.4478     | 0.0120     |
| Total 24.2364 0.6048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100     | 0.1991 | 0.9953          | 0.0019 | 0.0181 | 9.84        | 125.07      | 125.46      | 0.0785 | 0.2148   | 0.1363   | 7.81           | 1.3733 | 0.0762 | 0.4467     | 0.0120     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |        |                 |        |        |             |             |             |        |          |          |                |        | Total  | 24.2364    | 0.6048     |

Table B.1.: BEM without inflow factors, Take-off

| Element | r [m]  | $\frac{r}{D}$  | dr [m] | c [m]  | V <sub>0</sub> [m/s] | $V_2$ [m/s] | $V_1$ [m/s] | φ      | $\theta$ | α      | $\alpha^{\circ}$ | $C_l$  | $C_d$  | $\Delta T$ | $\Delta Q$ |
|---------|--------|----------------|--------|--------|----------------------|-------------|-------------|--------|----------|--------|------------------|--------|--------|------------|------------|
| 1       | 0.0134 | $R_d = 0.0672$ | 0.0019 | 0.0450 | 16.00                | 8.44        | 18.09       | 1.0852 | 1.1052   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0026     | 0.0001     |
| 2       | 0.0151 | 0.0766         | 0.0019 | 0.0429 | 16.00                | 9.62        | 18.67       | 1.0294 | 1.0394   | 0.0100 | 0.57             | 0.3602 | 0.0685 | 0.0020     | 0.0001     |
| 3       | 0.0172 | 0.0859         | 0.0019 | 0.0427 | 16.00                | 10.80       | 19.30       | 0.9771 | 0.9921   | 0.0150 | 0.86             | 0.4003 | 0.0628 | 0.0022     | 0.0001     |
| 4       | 0.0191 | 0.0953         | 0.0019 | 0.0424 | 16.00                | 11.98       | 19.99       | 0.9282 | 0.9432   | 0.0150 | 0.86             | 0.4003 | 0.0628 | 0.0037     | 0.0001     |
| 5       | 0.0209 | 0.1047         | 0.0019 | 0.0422 | 16.00                | 13.16       | 20.71       | 0.8827 | 0.8977   | 0.0150 | 0.86             | 0.4003 | 0.0628 | 0.0043     | 0.0002     |
| 6       | 0.0228 | 0.1141         | 0.0019 | 0.0419 | 16.00                | 14.33       | 21.48       | 0.8403 | 0.8603   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0056     | 0.0002     |
| 7       | 0.0247 | 0.1234         | 0.0019 | 0.0417 | 16.00                | 15.51       | 22.28       | 0.8009 | 0.8159   | 0.0150 | 0.86             | 0.4003 | 0.0628 | 0.0056     | 0.0002     |
| 8       | 0.0266 | 0.1328         | 0.0019 | 0.0414 | 16.00                | 16.69       | 23.12       | 0.7643 | 0.7793   | 0.0150 | 0.86             | 0.4003 | 0.0628 | 0.0062     | 0.0002     |
| 9       | 0.0284 | 0.1422         | 0.0019 | 0.0412 | 16.00                | 17.87       | 23.98       | 0.7303 | 0.7503   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0079     | 0.0003     |
| 10      | 0.0303 | 0.1516         | 0.0019 | 0.0409 | 16.00                | 19.05       | 24.87       | 0.6987 | 0.7137   | 0.0150 | 0.86             | 0.4003 | 0.0628 | 0.0077     | 0.0003     |
| 11      | 0.0322 | 0.1609         | 0.0019 | 0.0407 | 16.00                | 20.22       | 25.79       | 0.6693 | 0.6843   | 0.0150 | 0.86             | 0.4003 | 0.0628 | 0.0085     | 0.0003     |
| 12      | 0.0341 | 0.1703         | 0.0019 | 0.0404 | 16.00                | 21.40       | 26.72       | 0.6420 | 0.6620   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0106     | 0.0003     |
| 13      | 0.0359 | 0.1797         | 0.0019 | 0.0401 | 16.00                | 22.58       | 27.67       | 0.6165 | 0.6365   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0115     | 0.0004     |
| 14      | 0.0378 | 0.1891         | 0.0019 | 0.0399 | 16.00                | 23.76       | 28.64       | 0.5927 | 0.6127   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0115     | 0.0004     |
| 15      | 0.0397 | 0.1984         | 0.0019 | 0.0396 | 16.00                | 24.94       | 29.63       | 0.5705 | 0.5955   | 0.0250 | 1.43             | 0.4805 | 0.0514 | 0.0125     | 0.0005     |
| 16      | 0.0337 | 0.2078         | 0.0019 | 0.0394 | 16.00                | 26.11       | 30.63       | 0.5497 | 0.5697   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0131     | 0.0005     |
| 17      | 0.0416 | 0.2078         | 0.0019 | 0.0394 | 16.00                | 27.29       | 31.64       | 0.5497 | 0.5502   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0147     | 0.0005     |
| 18      | 0.0454 | 0.2172         | 0.0019 | 0.0391 | 16.00                | 28.47       | 32.66       | 0.5302 | 0.5370   | 0.0250 | 1.13             | 0.4404 | 0.0514 | 0.0138     | 0.0003     |
| 19      | 0.0453 | 0.2359         | 0.0019 | 0.0386 | 16.00                | 29.65       | 33.69       | 0.3120 | 0.5370   | 0.0230 | 1.15             | 0.4404 | 0.0514 | 0.0188     | 0.0006     |
| 20      | 0.0412 | 0.2453         | 0.0019 | 0.0384 | 16.00                | 30.83       | 34.73       | 0.4788 | 0.4988   | 0.0200 | 1.15             | 0.4404 | 0.0571 | 0.0102     | 0.0007     |
| 21      | 0.0509 | 0.2547         | 0.0019 | 0.0381 | 16.00                | 32.00       | 35.78       | 0.4636 | 0.4886   | 0.0250 | 1.43             | 0.4805 | 0.0514 | 0.0228     | 0.0007     |
| 22      | 0.0528 | 0.2641         | 0.0019 | 0.0379 | 16.00                | 33.18       | 36.84       | 0.4493 | 0.4843   | 0.0250 | 2.01             | 0.5607 | 0.0314 | 0.0228     | 0.0007     |
| 23      | 0.0528 | 0.2041         | 0.0019 | 0.0379 | 16.00                | 34.36       | 37.90       | 0.4493 | 0.4643   | 0.0350 | 2.01             | 0.5607 | 0.0399 | 0.0288     | 0.0009     |
| 24      | 0.0547 | 0.2734         | 0.0019 | 0.0374 | 16.00                | 35.54       | 38.97       | 0.4330 | 0.4708   | 0.0330 | 2.01             | 0.6009 | 0.0399 | 0.0303     | 0.0009     |
| 25      | 0.0584 | 0.2922         | 0.0019 | 0.0374 | 16.00                | 36.72       | 40.05       | 0.4230 | 0.4459   | 0.0400 | 2.23             | 0.5607 | 0.0342 | 0.0341     | 0.0010     |
| 26      | 0.0603 | 0.3016         | 0.0019 | 0.0371 | 16.00                | 37.90       | 41.13       | 0.3995 | 0.4345   | 0.0350 | 2.01             | 0.5607 | 0.0399 | 0.0359     | 0.0010     |
| 27      | 0.0622 | 0.3109         | 0.0019 | 0.0366 | 16.00                | 39.07       | 42.22       | 0.3887 | 0.4343   | 0.0400 | 2.01             | 0.6009 | 0.0333 | 0.0333     | 0.0011     |
| 28      | 0.0641 | 0.3203         | 0.0019 | 0.0364 | 16.00                | 40.25       | 43.32       | 0.3783 | 0.4237   | 0.0400 | 2.23             | 0.5607 | 0.0342 | 0.0397     | 0.0012     |
| 29      | 0.0659 | 0.3297         | 0.0019 | 0.0361 | 16.00                | 41.43       | 44.41       | 0.3685 | 0.4133   | 0.0350 | 2.01             | 0.5607 | 0.0399 | 0.0337     | 0.0012     |
| 30      | 0.0678 | 0.3391         | 0.0019 | 0.0351 | 16.00                | 42.61       | 45.51       | 0.3592 | 0.4033   | 0.0400 | 2.01             | 0.6009 | 0.0333 | 0.0410     | 0.0013     |
| 31      | 0.0697 | 0.3484         | 0.0019 | 0.0356 | 16.00                | 43.79       | 46.62       | 0.3503 | 0.3853   | 0.0400 | 2.23             | 0.5607 | 0.0342 | 0.0456     | 0.0014     |
| 32      | 0.0037 | 0.3578         | 0.0019 | 0.0353 | 16.00                | 44.96       | 47.73       | 0.3419 | 0.4019   | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.0660     | 0.0014     |
| 33      | 0.0710 | 0.3672         | 0.0019 | 0.0353 | 16.00                | 46.14       | 48.84       | 0.3338 | 0.4013   | 0.0650 | 3.72             | 0.8014 | 0.0055 | 0.0726     | 0.0019     |
| 34      | 0.0753 | 0.3766         | 0.0019 | 0.0331 | 16.00                | 47.32       | 49.95       | 0.3361 | 0.3861   | 0.0600 | 3.44             | 0.7613 | 0.0033 | 0.0720     | 0.0019     |
| 35      | 0.0772 | 0.3859         | 0.0019 | 0.0346 | 16.00                | 48.50       | 51.07       | 0.3187 | 0.3787   | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.0745     | 0.0020     |
| 36      | 0.0772 | 0.3953         | 0.0019 | 0.0343 | 16.00                | 49.68       | 52.19       | 0.3116 | 0.3766   | 0.0650 | 3.72             | 0.8014 | 0.0055 | 0.0817     | 0.0020     |
| 37      | 0.0809 | 0.4047         | 0.0019 | 0.0341 | 16.00                | 50.85       | 53.31       | 0.3048 | 0.3648   | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.0804     | 0.0021     |
| 38      | 0.0828 | 0.4047         | 0.0019 | 0.0341 | 16.00                | 52.03       | 54.44       | 0.3048 | 0.3583   | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.0834     | 0.0022     |
| 39      | 0.0847 | 0.4141         | 0.0019 | 0.0336 | 16.00                | 53.21       | 55.56       | 0.2933 | 0.3571   | 0.0650 | 3.72             | 0.7013 | 0.0112 | 0.0034     | 0.0022     |
| 40      | 0.0847 | 0.4234         | 0.0019 | 0.0333 | 16.00                | 54.39       | 56.69       | 0.2921 | 0.3371   | 0.0600 | 3.44             | 0.7613 | 0.0033 | 0.0912     | 0.0024     |
| 41      | 0.0884 | 0.4328         | 0.0019 | 0.0333 | 16.00                | 55.57       | 57.82       | 0.2804 | 0.3404   | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.0994     | 0.0024     |
| 42      | 0.0903 | 0.4422         | 0.0019 | 0.0331 | 16.00                | 56.75       | 58.96       | 0.2748 | 0.3404   | 0.0650 | 3.72             | 0.8014 | 0.0055 | 0.1008     | 0.0025     |
| 43      | 0.0903 | 0.4609         | 0.0019 | 0.0326 | 16.00                | 57.92       | 60.09       | 0.2748 | 0.3295   | 0.0600 | 3.44             | 0.8014 | 0.0055 | 0.1008     | 0.0026     |
| 44      | 0.0922 | 0.4703         | 0.0019 | 0.0320 | 16.00                | 59.10       | 61.23       | 0.2644 | 0.3244   | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.0987     | 0.0027     |
| 45      | 0.0941 | 0.4703         | 0.0019 | 0.0323 | 16.00                | 60.28       | 62.37       | 0.2594 | 0.3244   | 0.0650 | 3.72             | 0.7013 | 0.0112 | 0.1018     | 0.0027     |
| 46      | 0.0939 | 0.4891         | 0.0019 | 0.0320 | 16.00                | 61.46       | 63.51       | 0.2594 | 0.3244   | 0.0600 | 3.44             | 0.7613 | 0.0033 | 0.1107     | 0.0029     |
| 47      | 0.0978 | 0.4984         | 0.0019 | 0.0315 | 16.00                | 62.64       | 64.65       | 0.2547 | 0.3147   | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1031     | 0.0029     |
| 48      | 0.1016 | 0.4984         | 0.0019 | 0.0313 | 16.00                | 63.81       | 65.79       | 0.2301 | 0.3101   | 0.0650 | 3.72             | 0.7013 | 0.0112 | 0.1112     | 0.0030     |
| 48      | 0.1016 | 0.5078         | 0.0019 | 0.0313 | 16.00                | 64.99       | 66.93       | 0.2457 | 0.3107   | 0.0600 | 3.12             | 0.8014 | 0.0055 | 0.1207     | 0.0032     |
| 50      | 0.1054 | 0.5172         | 0.0019 | 0.0310 | 16.00                | 66.17       | 68.08       | 0.2414 | 0.3014   | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1176     | 0.0032     |
| 51      | 0.1055 | 0.5250         | 0.0019 | 0.0305 | 16.00                | 67.35       | 69.22       | 0.2372 | 0.2972   | 0.0650 | 3.72             | 0.7013 | 0.0112 | 0.1208     | 0.0034     |
| 52      | 0.1072 | 0.5359         | 0.0019 | 0.0303 | 16.00                | 68.53       | 70.37       | 0.2332 | 0.2982   | 0.0600 | 3.44             | 0.8014 | 0.0055 | 0.1308     | 0.0034     |
|         |        |                | 0.0019 |        |                      |             |             |        |          |        | 3.44             |        |        | 0.1272     |            |
| 53      | 0.1109 | 0.5547         | 0.0019 | 0.0300 | 16.00                | 69.70       | 71.52       | 0.2256 | 0.2856   | 0.0600 | J.44             | 0.7613 | 0.0112 | 0.1504     | 0.0035     |

| Element | r [m]  | $\frac{r}{R_d}$      | dr [m] | c [m]  | $V_0 [\mathrm{m/s}]$ | $V_2$ [m/s] | $V_1$ [m/s] | φ      | θ      | α      | $\alpha^{\circ}$ | $C_l$  | $C_d$  | $\Delta T$ | $\Delta Q$ |
|---------|--------|----------------------|--------|--------|----------------------|-------------|-------------|--------|--------|--------|------------------|--------|--------|------------|------------|
| 54      | 0.1128 | $\frac{R_d}{0.5641}$ | 0.0019 | 0.0298 | 16.00                | 70.88       | 72.67       | 0.2220 | 0.2870 | 0.0650 | 3.72             | 0.8014 | 0.0055 | 0.1409     | 0.0037     |
| 55      | 0.1147 | 0.5734               | 0.0019 | 0.0295 | 16.00                | 72.06       | 73.82       | 0.2185 | 0.2785 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1368     | 0.0037     |
| 56      | 0.1166 | 0.5828               | 0.0019 | 0.0293 | 16.00                | 73.24       | 74.97       | 0.2151 | 0.2751 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1400     | 0.0038     |
| 57      | 0.1184 | 0.5922               | 0.0019 | 0.0290 | 16.00                | 74.42       | 76.12       | 0.2118 | 0.2768 | 0.0650 | 3.72             | 0.8014 | 0.0055 | 0.1510     | 0.0040     |
| 58      | 0.1203 | 0.6016               | 0.0019 | 0.0288 | 16.00                | 75.59       | 77.27       | 0.2086 | 0.2686 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1464     | 0.0040     |
| 59      | 0.1222 | 0.6109               | 0.0019 | 0.0285 | 16.00                | 76.77       | 78.42       | 0.2055 | 0.2655 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1496     | 0.0041     |
| 60      | 0.1241 | 0.6203               | 0.0019 | 0.0283 | 16.00                | 77.95       | 79.58       | 0.2024 | 0.2674 | 0.0650 | 3.72             | 0.8014 | 0.0055 | 0.1611     | 0.0042     |
| 61      | 0.1259 | 0.6297               | 0.0019 | 0.0280 | 16.00                | 79.13       | 80.73       | 0.1995 | 0.2595 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1559     | 0.0043     |
| 62      | 0.1278 | 0.6391               | 0.0019 | 0.0277 | 16.00                | 80.31       | 81.89       | 0.1967 | 0.2567 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1590     | 0.0044     |
| 63      | 0.1297 | 0.6484               | 0.0019 | 0.0275 | 16.00                | 81.49       | 83.04       | 0.1939 | 0.2589 | 0.0650 | 3.72             | 0.8014 | 0.0055 | 0.1710     | 0.0045     |
| 64      | 0.1316 | 0.6578               | 0.0019 | 0.0272 | 16.00                | 82.66       | 84.20       | 0.1912 | 0.2512 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1653     | 0.0045     |
| 65      | 0.1334 | 0.6672               | 0.0019 | 0.0270 | 16.00                | 83.84       | 85.35       | 0.1886 | 0.2486 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1684     | 0.0046     |
| 66      | 0.1353 | 0.6766               | 0.0019 | 0.0267 | 16.00                | 85.02       | 86.51       | 0.1860 | 0.2510 | 0.0650 | 3.72             | 0.8014 | 0.0055 | 0.1807     | 0.0048     |
| 67      | 0.1372 | 0.6859               | 0.0019 | 0.0265 | 16.00                | 86.20       | 87.67       | 0.1835 | 0.2435 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1745     | 0.0048     |
| 68      | 0.1391 | 0.6953               | 0.0019 | 0.0262 | 16.00                | 87.38       | 88.83       | 0.1811 | 0.2411 | 0.0600 | 3.44             | 0.7613 | 0.0112 | 0.1775     | 0.0049     |
| 69      | 0.1409 | 0.7047               | 0.0019 | 0.0260 | 16.00                | 88.55       | 89.99       | 0.1788 | 0.2838 | 0.1050 | 6.02             | 1.1222 | 0.0403 | 0.2650     | 0.0081     |
| 70      | 0.1428 | 0.7141               | 0.0019 | 0.0257 | 16.00                | 89.73       | 91.15       | 0.1765 | 0.2994 | 0.1230 | 7.05             | 1.2663 | 0.0609 | 0.3033     | 0.0099     |
| 71      | 0.1447 | 0.7234               | 0.0019 | 0.0255 | 16.00                | 90.91       | 92.31       | 0.1742 | 0.2955 | 0.1213 | 6.95             | 1.2532 | 0.0590 | 0.3050     | 0.0099     |
| 72      | 0.1466 | 0.7328               | 0.0019 | 0.0252 | 16.00                | 92.09       | 93.47       | 0.1720 | 0.2918 | 0.1197 | 6.86             | 1.2404 | 0.0572 | 0.3067     | 0.0100     |
| 73      | 0.1484 | 0.7422               | 0.0019 | 0.0250 | 16.00                | 93.27       | 94.63       | 0.1699 | 0.2881 | 0.1182 | 6.77             | 1.2279 | 0.0554 | 0.3083     | 0.0100     |
| 74      | 0.1503 | 0.7516               | 0.0019 | 0.0247 | 16.00                | 94.44       | 95.79       | 0.1678 | 0.2845 | 0.1167 | 6.68             | 1.2158 | 0.0537 | 0.3098     | 0.0100     |
| 75      | 0.1522 | 0.7609               | 0.0019 | 0.0245 | 16.00                | 95.62       | 96.95       | 0.1658 | 0.2810 | 0.1152 | 6.60             | 1.2039 | 0.0520 | 0.3112     | 0.0100     |
| 76      | 0.1541 | 0.7703               | 0.0019 | 0.0242 | 16.00                | 96.80       | 98.11       | 0.1638 | 0.2776 | 0.1137 | 6.52             | 1.1924 | 0.0503 | 0.3126     | 0.0101     |
| 77      | 0.1559 | 0.7797               | 0.0019 | 0.0239 | 16.00                | 97.98       | 99.28       | 0.1619 | 0.2742 | 0.1123 | 6.44             | 1.1812 | 0.0487 | 0.3139     | 0.0101     |
| 78      | 0.1578 | 0.7891               | 0.0019 | 0.0237 | 16.00                | 99.16       | 100.44      | 0.1600 | 0.2710 | 0.1110 | 6.36             | 1.1702 | 0.0472 | 0.3151     | 0.0101     |
| 79      | 0.1597 | 0.7984               | 0.0019 | 0.0234 | 16.00                | 100.33      | 101.60      | 0.1581 | 0.2678 | 0.1096 | 6.28             | 1.1595 | 0.0456 | 0.3162     | 0.0101     |
| 80      | 0.1616 | 0.8078               | 0.0019 | 0.0232 | 16.00                | 101.51      | 102.77      | 0.1563 | 0.2647 | 0.1083 | 6.21             | 1.1490 | 0.0441 | 0.3173     | 0.0101     |
| 81      | 0.1634 | 0.8172               | 0.0019 | 0.0229 | 16.00                | 102.69      | 103.93      | 0.1546 | 0.2616 | 0.1071 | 6.13             | 1.1388 | 0.0427 | 0.3183     | 0.0101     |
| 82      | 0.1653 | 0.8266               | 0.0019 | 0.0227 | 16.00                | 103.87      | 105.09      | 0.1528 | 0.2587 | 0.1058 | 6.06             | 1.1289 | 0.0413 | 0.3192     | 0.0101     |
| 83      | 0.1672 | 0.8359               | 0.0019 | 0.0224 | 16.00                | 105.05      | 106.26      | 0.1512 | 0.2558 | 0.1046 | 5.99             | 1.1191 | 0.0399 | 0.3200     | 0.0101     |
| 84      | 0.1691 | 0.8453               | 0.0019 | 0.0222 | 16.00                | 106.23      | 107.42      | 0.1495 | 0.2529 | 0.1034 | 5.93             | 1.1096 | 0.0385 | 0.3208     | 0.0101     |
| 85      | 0.1709 | 0.8547               | 0.0019 | 0.0219 | 16.00                | 107.40      | 108.59      | 0.1479 | 0.2502 | 0.1023 | 5.86             | 1.1003 | 0.0372 | 0.3215     | 0.0101     |
| 86      | 0.1728 | 0.8641               | 0.0019 | 0.0217 | 16.00                | 108.58      | 109.75      | 0.1463 | 0.2474 | 0.1011 | 5.79             | 1.0913 | 0.0359 | 0.3221     | 0.0101     |
| 87      | 0.1747 | 0.8734               | 0.0019 | 0.0214 | 16.00                | 109.76      | 110.92      | 0.1448 | 0.2448 | 0.1000 | 5.73             | 1.0824 | 0.0346 | 0.3226     | 0.0101     |
| 88      | 0.1766 | 0.8828               | 0.0019 | 0.0212 | 16.00                | 110.94      | 112.09      | 0.1432 | 0.2422 | 0.0989 | 5.67             | 1.0737 | 0.0334 | 0.3230     | 0.0100     |
| 89      | 0.1784 | 0.8922               | 0.0019 | 0.0209 | 16.00                | 112.12      | 113.25      | 0.1418 | 0.2396 | 0.0979 | 5.61             | 1.0652 | 0.0322 | 0.3234     | 0.0100     |
| 90      | 0.1803 | 0.9016               | 0.0019 | 0.0207 | 16.00                | 113.29      | 114.42      | 0.1403 | 0.2371 | 0.0968 | 5.55             | 1.0569 | 0.0310 | 0.3237     | 0.0100     |
| 91      | 0.1822 | 0.9109               | 0.0019 | 0.0204 | 16.00                | 114.47      | 115.58      | 0.1389 | 0.2347 | 0.0958 | 5.49             | 1.0487 | 0.0298 | 0.3239     | 0.0100     |
| 92      | 0.1841 | 0.9203               | 0.0019 | 0.0202 | 16.00                | 115.65      | 116.75      | 0.1375 | 0.2323 | 0.0948 | 5.43             | 1.0407 | 0.0287 | 0.3240     | 0.0099     |
| 93      | 0.1859 | 0.9297               | 0.0019 | 0.0199 | 16.00                | 116.83      | 117.92      | 0.1361 | 0.2300 | 0.0939 | 5.38             | 1.0329 | 0.0276 | 0.3240     | 0.0099     |
| 94      | 0.1878 | 0.9391               | 0.0019 | 0.0196 | 16.00                | 118.01      | 119.09      | 0.1348 | 0.2277 | 0.0929 | 5.32             | 1.0253 | 0.0265 | 0.3239     | 0.0099     |
| 95      | 0.1897 | 0.9484               | 0.0019 | 0.0194 | 16.00                | 119.18      | 120.25      | 0.1334 | 0.2254 | 0.0920 | 5.27             | 1.0178 | 0.0254 | 0.3238     | 0.0098     |
| 96      | 0.1916 | 0.9578               | 0.0019 | 0.0191 | 16.00                | 120.36      | 121.42      | 0.1322 | 0.2232 | 0.0911 | 5.22             | 1.0105 | 0.0244 | 0.3235     | 0.0098     |
| 97      | 0.1934 | 0.9672               | 0.0019 | 0.0189 | 16.00                | 121.54      | 122.59      | 0.1309 | 0.2211 | 0.0902 | 5.17             | 1.0033 | 0.0233 | 0.3232     | 0.0097     |
| 98      | 0.1953 | 0.9766               | 0.0019 | 0.0186 | 16.00                | 122.72      | 123.76      | 0.1296 | 0.2189 | 0.0893 | 5.12             | 0.9962 | 0.0223 | 0.3228     | 0.0097     |
| 99      | 0.1972 | 0.9859               | 0.0019 | 0.0184 | 16.00                | 123.90      | 124.93      | 0.1284 | 0.2169 | 0.0884 | 5.07             | 0.9893 | 0.0213 | 0.3223     | 0.0096     |
| 100     | 0.1991 | 0.9953               | 0.0019 | 0.0181 | 16.00                | 125.07      | 126.09      | 0.1272 | 0.2148 | 0.0876 | 5.02             | 0.9825 | 0.0204 | 0.3217     | 0.0095     |
|         |        |                      |        |        |                      |             |             |        |        |        |                  |        | Total  | 15.2872    | 0.4584     |

Table B.2.: BEM without inflow factors, Cruise Flight

• For take-off, the total thrust and torque can be calculated, considering two-blade propeller:

$$T = 2 \cdot \Delta T = 48.5 \ N$$

$$Q = 2 \cdot \Delta Q = 1.2 \ N \ m$$

At this point, the thrust and torque coefficients can be calculated:

$$C_T = \frac{T}{\rho n^2 D_d^4} = 0.1546$$

$$C_Q = \frac{Q}{\rho n^2 D_d^5} = 0.0096$$
(B.2.10)

Then, the propeller efficiency can be calculated:

$$\eta_{prop} = \frac{J C_T}{2\pi C_Q} \tag{B.2.11}$$

where the advance ratio is defined as:

$$J = \frac{u_{\infty}}{nD_d} = \frac{V_{T-O}}{nD_d} = 0.2460$$

$$\eta_{prop_{T-O}} = \frac{J}{2\pi} \frac{C_T}{C_Q} = 0.63$$

$$C_p = \frac{C_T \cdot J}{\eta_{prop}} = 0.0604$$
(B.2.12)

• The previous steps have been repeated for **cruise flight** conditions

$$T = 2 \cdot \Delta T = 30.6 \ N$$

$$Q = 2 \cdot \Delta Q = 0.92 \ N \ m$$

$$C_T = \frac{T}{\rho n^2 D_d^4} = 0.0985$$

$$C_Q = \frac{Q}{\rho n^2 D_d^{5}} = 0.0074$$

$$J_{cr} = \frac{V_{cr}}{nD_d} = 0.4$$

$$\eta_{prop_{cruise}} = \frac{J~C_T}{2\pi~C_Q} = 0.85$$

$$C_p = \frac{C_T \cdot J}{\eta_{prop}} = 0.0464$$

#### B.2.2 BEM with inflow factors

The complexity of the study begins when calculating the local angle of attack, which involves the flow components  $v_0$  and  $v_2$  at propeller disk.



Figure B.3.: Streamtube diagram

From the Bernoulli equation and Conservation of momentum, the next equations can be found:

$$T = \rho A_d \cdot 2(u_e - u_\infty) = \pi R_d^2 \rho \ u_d(u_e - u_\infty)$$
 (B.2.13)

which can be generalized for each blade element

$$\Delta T = \rho \ 2\pi r dr \ v_0 (u_e - u_\infty) \tag{B.2.14}$$

and

$$u_d = v_0 = \frac{u_\infty + u_e}{2} \tag{B.2.15}$$

which can also be written as:

$$u_e = 2v_0 - u_\infty \tag{B.2.16}$$

For a streamtube, the axial flow and angular flow velocities can be considered of the form:

$$v_0 = u_\infty + a \cdot u_\infty \tag{B.2.17}$$

$$v_2 = \omega r - b \cdot \omega r \tag{B.2.18}$$

where a is the axial inflow factor and b is the angular inflow factor

Therefore,  $u_e$  can be rewritten as:

$$u_e = 2v_0 - u_\infty = u_\infty + 2a \cdot u_\infty = u_\infty (1 + 2a)$$
 (B.2.19)

Therefore, the thrust and angular momentum equations for each blade element can be written as:

$$\Delta T = 2\pi r \ dr \ \rho \ u_{\infty}(1+a)(u_{\infty}(1+2a) - u_{\infty}) = 4\pi r \rho u_{\infty}^{2}(1+a)a \ dr$$
 (B.2.20)

and

$$\Delta Q = 2\pi r \rho u_{\infty} (1+a)(2b\omega r)r \quad dr = 4\pi r^3 \rho \ u_{\infty} (1+a)b\omega \ dr \tag{B.2.21}$$

Summarizing all the previous steps and considering two-blade propeller, the next system of equations is obtained:

$$\begin{cases}
\Delta T = \rho v_1^2 c(c_l \cos \phi - c_d \sin \phi) dr \\
\Delta Q = \rho v_1^2 c(c_d \cos \phi + c_l \sin \phi) r \cdot dr \\
v_1 = \sqrt{v_0^2 + v_2^2} \\
\alpha = \theta - \arctan\left(\frac{v_0}{v_2}\right) \\
\Delta T = 4\pi r \rho u_\infty^2 (1+a) a \ dr \\
\Delta Q = 4\pi r^3 \rho u_\infty (1+a) b\omega \ dr
\end{cases}$$
(B.2.22)

The system can be resolved with an iterative method, supposing initial values for the inflow factors a and b. Then, through the [eq.41] and [eq.42] the velocity components  $v_0$  and  $v_2$  can be calculated. This will allow the calculation of  $v_1$ , and  $\alpha$ . Then,  $\Delta T$  and  $\Delta Q$  can be calculated. To end the iterative process, [eq.44] and [eq.45] can be used to calculate more accurate values of the inflow factors  $\bf{a}$  and  $\bf{b}$ . The process should be repeated until the desired tolerance is achieved.

After the accurate inflow parameters are obtained,  $\Delta T$  and  $\Delta Q$  can be calculated, and then, the total thrust and torque can be obtained from the next equations:

$$T = \sum_{n=1}^{N} \Delta T$$

$$Q = \sum_{n=1}^{N} \Delta Q$$
(B.2.23)

Then, thrust and torque coefficients can be found.

The twist distribution from the previous chapter will be used, since it provides reasonably acceptable angle of attack distribution for cruise flight and for take-off. The calculation is done by a script written in Python, following the next algorithm:

- introduction of twist (exponential function) and chord distribution (linear function)
- introduction of the number of blade elements

- $\bullet$  introduction of initial inflow parameters  ${\bf a}$  and  ${\bf b}$
- introduction of the advance speed, RPM and the desired tolerance
- Step 1. Calculate  $v_0$  and  $v_2$  for each element
- Step 2. Calculate  $v_1$ ,  $\phi$  and  $\alpha$  for each element
- Step 3. Calculate  $\Delta T$  and  $\Delta Q$  for each element
- Step 4. Calculate **a** and **b** for each element using  $\Delta T$  and  $\Delta Q$  values
- Step 5. Iterate the process until for each element the desired tolerance is met for a and b.

The script can be found attached in the "Extras" folder. At first, it has been used for cruise flight condition, where  $u_{\infty} = 16 \ [m/s]$ , and it and has shown total convergence. The results are illustrated in the following figures.



Figure B.4.: Propeller geometry: chord and twist distributions



Figure B.5.: Inflow factors distribution for cruise flight



Figure B.6.: Inflow factors error distribution for cruise flight



Figure B.7.: Angle of attack distribution for cruise flight



Figure B.8.: Thrust and torque distribution for cruise flight

The script also provided the next values for cruise flight:

• Advance ratio: J = 0.4

• Thrust coefficient:  $C_t = 0.12530$ 

• Torque coefficient:  $C_q = 0.01202$ 

• Efficiency:  $\eta_p = 0.6634$ 

• Power coefficient:  $C_p = 0.0756$ 

Then, the script has been used for the take-off condition, where  $u_{\infty}$  is considered to be 9.84 [m/s], and it has also shown total convergence. The results are illustrated in the following figures.



Figure B.9.: Inflow factors distribution for take-off



Figure B.10.: Inflow factors error distribution for take-off



Figure B.11.: Angle of attack distribution for take-off



Figure B.12.: Thrust and torque distribution for take-off

The script also provided the next values, for take-off:

• Advance ratio: J = 0.246

• Thrust coefficient:  $C_t = 0.15586$ 

• Torque coefficient:  $C_q = 0.01284$ 

• Efficiency:  $\eta_p = 0.4751$ 

• Power coefficient:  $C_p = 0.0807$ 

The final conclusion is, that, the selected twist distribution provides almost constant angle of attack distribution, which is one of the design requirements. Also, it seems that the total thrust generated at take-off fulfills the requirement, which has been calculated in the previous chapter. At this point, since the propeller geometry has been defined, there are two ways to proceed for the propeller selection.

- The first option would be to create a prototype and analyze, experimentally, obtaining the efficiency and thrust coefficients.
- The second option, which is the one selected according to the project scope, consists of searching a similar model. Then, the experimental data will be obtained from the manufacturer.

#### B.2.3 BEM with inflow factors: Code

```
2 BACHELOR OF SCIENCE THESIS
3 UNIVERSITAT POLITECNICA DE CATALUNYA
 4 Bachelor's Degree In Aerospace Vehicle Engineering
6 Student: Armen Baghdasaryan
7 Director: Luis Manuel Perez Llera
8 Project:
9 Design of an Unmanned Aerial Vehicle with a Mass-Actuated Control System
10
  --- Blade Element Method with Inflow Factors : Propeller Design -----
15 import math
16 import matplotlib.pyplot as plt
17 a = float(input('Enter initial inflow factor A value: '))
b = float(input('Enter initial inflow factor B value: '))
radImput = float(input('Enter propeller Radius in meters: '))
20 n = int(input('Enter blade elements number: '))
epsilon = float(input('Enter desired tolerance: '))
omegaRPM = float(6000)
24 omegaRPS = float(omegaRPM/60)
omegaRADS = float((omegaRPM/60)*2*math.pi) #rad/s
velAdv = float(9.84)
dr = (radImput-0.0125)/n
_{28} Rho = float(1.225)
30 #Propeller Geometry
31 \text{ rad_i} = [1]*n
32 \text{ rad_i\_dimless} = [1]*n
33 chord = [1]*n
34 thetai = [1]*n
35 thetaDeg = [1]*n
37 #Inflow parameters
38 inflowAi = [1]*n
```

```
39 inflowBi = [1]*n
40 inflowAinew = [1]*n
41 inflowBinew = [1]*n
42 discriminflow = [1]*n
44 epsilonAi = [1]*n
45 | epsilonBi = [1]*n
_{46} contador = [0]*n
47 velAxial = [1]*n
48 velTan = [1]*n
49 velTotal = [1]*n
50 phi = [1]*n
52 alpha = [1]*n
alphaDeg = [1]*n
55 CL = [1]*n
56 | CD = [1]*n
57 \text{ clm} = 0.16
58 clk = 0.3
59 \text{ cd}_A = 0.000405555
60 \text{ cd_B} = -0.00333333
61 cd_C = 0.025
64 incrTi = [1]*n
65 incrQi = [1]*n
4 #Geometry of each blade element
68 for i in range(n):
     rad_i[i] = 0.0125 + dr*(i + 0.5) # element radial position
69
     rad_i_dimless[i] = rad_i[i] / radImput
     thetai[i] = 0.11*rad_i[i]**(-0.6) # twist distribution
     thetaDeg[i] = thetai[i]*57.29578
      chord[i] = 0.0451 - 0.1356*rad_i[i]  # chord distribution
_{76} # Assign initial "a" and "b" inflow factors for each blade element
77 for i in range(n):
      inflowAi[i] = a
      inflowBi[i] = b
   inflowAinew[i] = a
```

```
inflowBinew[i] = b
82
  for i in range(n):
83
       while epsilonAi[i] > epsilon or epsilonBi[i] > epsilon :
84
           #SO ----- initialize inflow factors
           inflowAi[i] = (inflowAinew[i] + inflowAi[i])/2
           inflowBi[i] = (inflowBinew[i] + inflowBi[i])/2
88
           #S1 ----- calculate velocity components according to inflow factors
89
           velAxial[i] = velAdv*(1 + inflowAi[i])
90
           velTan[i] = omegaRADS*rad_i[i]*(1 - inflowBi[i])
           #S2 ----- calculate alpha according to velocity components
           velTotal[i] = math.sqrt(velAxial[i]*velAxial[i] + velTan[i]*velTan[i])
94
           phi[i] = math.atan(( velAxial[i])/velTan[i])
95
           alpha[i] = thetai[i] - phi[i]
96
           alphaDeg[i] = alpha[i] *57.29578
97
98
           #S3 ----- calculate incrThrust and incrTorque
           CL[i] = clm*alphaDeg[i] + clk
100
           CD[i] = cd_A*alphaDeg[i]*alphaDeg[i] + cd_B*alphaDeg[i] + cd_C
101
           coeff = Rho*velTotal[i]*velTotal[i]*chord[i]*dr
           incrTi[i] = coeff*(CL[i]*math.cos(phi[i]) - CD[i]*math.sin(phi[i]))
103
           incrQi[i] = coeff
104
                       *rad_i[i]*(CD[i]*math.cos(phi[i]) + CL[i]*math.sin(phi[i]))
105
           \#S4 ----- calculate inflow factors A and B
           discriminflow[i] =
108
               abs(1 + ((incrTi[i])/(Rho*math.pi*rad_i[i]*dr*velAdv*velAdv)))
109
           #solution of eq a^2+a+k=0
           inflowAinew[i] = float((math.sqrt(discriminflow[i]) - 1)/2)
           inflowBinew[i] = float((incrQi[i])/(4*math.pi*rad_i[i]*rad_i[i]*rad_i[i]
                           *Rho*velAdv*(1 + inflowAinew[i])*omegaRADS*dr))
114
           epsilonAi[i] = abs(inflowAinew[i] - inflowAi[i])
115
           epsilonBi[i] = abs(inflowBinew[i] - inflowBi[i])
           contador[i] += 1
117
118
120 plt.xlabel('Radius [m]')
plt.ylabel('Chord [m]')
plt.title('Chord distribution')
```

```
plt.plot(rad_i, chord)
plt.axis([0, 0.2, 0, 0.06])
125 plt.grid()
126 plt.show()
127
plt.xlabel('Radius [m]')
plt.ylabel('Thorsion [deg]')
plt.title('Thorsion distribution')
plt.plot(rad_i, thetaDeg)
132 plt.axis([0, 0.2, 0, 90])
133 plt.grid()
134 plt.show()
plt.xlabel('Radius [m]')
plt.ylabel('Angle of attack [deg]')
plt.title('Angle of attack distribution')
plt.plot(rad_i, alphaDeg)
140 plt.axis([0, 0.2, 0, 15])
141 plt.grid()
142 plt.show()
143
144
plt.xlabel('Radius [m]')
plt.ylabel('Axial inflow factor error')
plt.title('Axial inflow factor error distribution')
plt.plot(rad_i, epsilonAi)
plt.axis([0, 0.2, 0, 0.00005])
plt.grid()
plt.show()
plt.xlabel('Radius [m]')
plt.ylabel('Angular inflow factor error')
plt.title('Angular inflow factor error distribution')
plt.plot(rad_i, epsilonBi)
plt.axis([0, 0.2, 0, 0.00005])
plt.grid()
plt.show()
plt.xlabel('Radius [m]')
plt.ylabel('Axial inflow factor "a"')
plt.title('Axial inflow factor distribution')
164 plt.plot(rad_i, inflowAinew)
```

```
165 plt.axis([0, 0.2, 0, 1.4])
166 plt.grid()
167 plt.show()
plt.xlabel('Radius [m]')
plt.ylabel('Angular inflow factor "b"')
plt.title('Angular inflow factor distribution')
plt.plot(rad_i, inflowBinew)
plt.axis([0, 0.2, 0, 0.8])
174 plt.grid()
  plt.show()
plt.xlabel('Radius [m]')
plt.ylabel('Thrust [N]')
plt.title('Thrust distribution')
180 plt.plot(rad_i, incrTi)
181 plt.axis([0, 0.2, 0, 1.4])
182 plt.grid()
  plt.show()
184
plt.xlabel('Radius [m]')
186 plt.ylabel('Torque [Nm]')
plt.title('Torque distribution')
188 plt.plot(rad_i, incrQi)
189 plt.axis([0, 0.2, 0, 0.08])
190 plt.grid()
191 plt.show()
192
193 vartotalT = sum(incrTi)
194 vartotalQ = sum(incrQi)
varJ = float(velAdv/(omegaRPS*2*radImput))
196 varCt = float(vartotalT/(Rho*omegaRPS*omegaRPS*(2*radImput)**4))
197 varCq = float(vartotalQ/(Rho*omegaRPS*omegaRPS*(2*radImput)**5))
198 varEff = float(varJ*varCt/(2*math.pi*varCq))
varCp = float(varJ*varCt/(varEff))
200
201 print('Advance ratio J', varJ,)
202 print('Thrust coefficient Ct', varCt,)
203 print('Torque coefficient Cq', varCq,)
204 print('Efficiency', varEff,)
print('Power coefficient Cp', varCp,)
```

# Part C

# Introduction

Since one of the main features of the designed vehicle is mapping, a list of some optional cameras and thermal sensors under 250 grams is included.

## Optional cameras and sensors

#### C.2.1 HD cameras

#### • Sony FCB-H11

A very popular product due to its small form factor, weight and great image quality. According to the manufacturer, it extends application possibilities by incorporating a new Day/Night function that enables the camera to capture high-quality color images during the day. Also, it has a Picture Freeze Function which enables to capture a still image while the camera is panning, tilting, zooming, focusing, initializing the lens, or performing preset operations. Some of the specifications are listed below:



Figure C.1.: Sony FCB-H11 HD Camera [35]

| Parameter                | Value                              |
|--------------------------|------------------------------------|
| Weight                   | 120 g                              |
| Width                    | 47 mm                              |
| Height                   | 43 mm                              |
| Lens Diameter            | $27~\mathrm{mm}$                   |
| Aperture Control         | 16 steps                           |
| Camera Operation Switch  | Zoom TELE/ Zoom WIDE               |
| Focusing System          | Auto Focus Mode, Manual Focus Mode |
| Electronic Shutter Speed | 1 ms                               |
| Lens                     | x 10 Zoom                          |
| Sensor Type              | 1/3 type CMOS                      |
| Signal System            | HD: 1080i/59.94                    |

Table C.1.: Sony FCB-H11 Specifications [35]

#### • Sony FCB-EX1020

Described by the manufacturer as a color block camera which offers excellent picture quality, superb flexibility, and easy operation in a variety of applications ranging from surveillance to traffic monitoring. In Progressive Scan mode, the video signal is processed by progressive scan to achieve clear images without any flickering effect. The camera has high sensitivity, which is enough for use in video security. It also offers an enhanced noise reduction and color enhancement.



Figure C.2.: Sony FCB-EX1020 HD Camera [35]

| Parameter                | Value                                  |
|--------------------------|----------------------------------------|
| Weight                   | 230 g                                  |
| Width                    | 50 mm                                  |
| Height                   | 57 mm                                  |
| Lens Diameter            | 38 mm                                  |
| Aperture Control         | 16 steps                               |
| Camera Operation Switch  | Zoom TELE/ Zoom WIDE                   |
| Focusing System          | Auto Focus, Infinity Mode, Manual Mode |
| Electronic Shutter Speed | 1 ms                                   |
| Lens                     | x 36 Zoom                              |
| Sensor Type              | 1/4 type PS CCD                        |
| Signal System            | PAL (Interlaced-PsF mode)              |

Table C.2.: Sony FCB-EX1020 Specifications [35]

#### • Panasonic GP-MH310

Described by the manufacturer as a Single Chip Full HD Module Camera, it outstanding HD resolution and superior color performance at the right price, and the right size for a wide variety of medical and industrial applications. With outstanding performance, the camera delivers native 1080p/60p resolution, plus multi-format capability in a compact and lightweight camera module.



Figure C.3.: Panasonic GP-MH310 HD Camera [36]

| Parameter                | Value                                  |
|--------------------------|----------------------------------------|
| Weight                   | 180 g                                  |
| Width                    | 43.7 mm                                |
| Height                   | 44.2 mm                                |
| Lens Diameter            | 33 mm                                  |
| Aperture Control         | 16 steps                               |
| Camera Operation Switch  | Zoom TELE/ Zoom WIDE                   |
| Focusing System          | Auto Focus, Infinity Mode, Manual Mode |
| Electronic Shutter Speed | 1 ms                                   |
| Lens                     | x 16 Zoom                              |
| Sensor Type              | 1/2.5 type MOS                         |
| Signal System            | NTSC / PAL                             |

Table C.3.: Panasonic GP-MH310 Specifications [36]

#### • Hitachi DI-SC120R

According to the manufacturer, the DI-SC120R is a compact chassis-type camera delivering unparalleled low light performance for video applications seeking HD digital video output. The 1/3-inch color CCD sensor makes it suitable for surveillance, traffic, low vision, in car video or telepresence applications.



Figure C.4.: Hitachi DI-SC120R HD Camera [37]

| Parameter                | Value                                  |
|--------------------------|----------------------------------------|
| Weight                   | 240 g                                  |
| Width                    | 50 mm                                  |
| Height                   | 60 mm                                  |
| Lens Diameter            | 43 mm                                  |
| Aperture Control         | 20 steps                               |
| Camera Operation Switch  | Zoom TELE/ Zoom WIDE                   |
| Focusing System          | Auto Focus, Infinity Mode, Manual Mode |
| Electronic Shutter Speed | $1~\mathrm{ms}$                        |
| Lens                     | x 30 Zoom                              |
| Sensor Type              | 1/3 type                               |
| Signal System            | YUV422                                 |

Table C.4.: Hitachi DI-SC120R Specifications [37]

#### C.2.2 Thermal sensors

#### • FLIR Tau 2

According to the manufacturers description, FLIR Tau 2 is a family of longwave thermal imaging cameras, with unmatched set of features, making them well-suited for demanding applications, such as unmanned vehicles (UVs), thermal weapon sights, and handheld imagers. Improved electronics now give Tau 2 even more capabilities, including radiometry, increased sensitivity, a 60Hz frame rate, and powerful image processing modes that dramatically improve detail and contrast.



Figure C.5.: FLIR Tau 2 thermal sensor [38]

| Parameter               | Value                     |  |  |
|-------------------------|---------------------------|--|--|
| Weight                  | 71 g - 200 g              |  |  |
| Width                   | 19 mm - 62 mm             |  |  |
| Height                  | 19 mm - 62 mm             |  |  |
| Lens Diameter           | 29 mm - 61 mm             |  |  |
| Focal ratio             | f/1.0                     |  |  |
| Spectral Band           | $7.5$ - $13.5~\mu m$      |  |  |
| Pixel Pitch             | 17 μm                     |  |  |
| Zoom Type               | Digital                   |  |  |
| System Type             | Longwave Infrared         |  |  |
| Analog Video            | NTSC / PAL                |  |  |
| Analog Video Frame rate | $30/60~\mathrm{Hz}$       |  |  |
| Digital Video           | 8-bit / 14-bit LVDS/ CMOS |  |  |

Table C.5.: FLIR Tau 2 Specifications [38]

#### • FLIR Tau SWIR

FLIR Tau SWIR is a size, weight and power optimized termal sensor camera. Described by the manufacturer as a short-wave infrared camera, it is designed for a variety of OEM applications, including hyperspectral instrumentation, electrooptical payloads, counterfeit detection, and portable applications. The Tau SWIR provides outstanding image quality and performance over a wide range of imaging and light level conditions. Tau SWIR incorporates the FLIR high resolution  $640 \times 512$  ISC1202 Indium Gallium Arsenide (InGaAs) 15-micron pitch focal plane array (FPA) and includes several advanced camera controls features.



Figure C.6.: FLIR Tau SWIR thermal sensor [38]

| Parameter              | Value                |
|------------------------|----------------------|
| Weight                 | 81 g                 |
| Width                  | 38 mm                |
| Height                 | 38 mm                |
| Lens Diameter          | 25 mm                |
| Focal ratio            | f/1.0                |
| Spectral Band          | $0.7$ - $1.7~\mu m$  |
| Pixel Pitch            | $15~\mu m$           |
| Zoom Type              | Digital              |
| System Type            | Shortwave Infrared   |
| Analog Video           | NTSC / PAL           |
| Analog Video Frequency | $60/120~\mathrm{Hz}$ |
| Digital Video          | 14-bit CMOS          |

Table C.6.: FLIR Tau SWIR Specifications [38]

#### • NanoCore 640M 5000978-3

A small size, light weight, and low power thermal sensor, which offers two channels of digital video operating simultaneously. Also, according to the manufacturer, it includes electronics for the control off video formats and input power.



Figure C.7.: NanoCore 640M 5000978-2 thermal sensor [41]

| Parameter              | Value                  |
|------------------------|------------------------|
| Weight                 | 233 g                  |
| Width                  | 55 mm                  |
| Height                 | 55 mm                  |
| Lens Diameter          | 60 mm                  |
| Focal ratio            | f/1.2                  |
| Spectral Band          | 8 - 14 μm              |
| Pixel Pitch            | $17~\mu m$             |
| Zoom Type              | Digital                |
| System Type            | Longwave Infrared      |
| Analog Video           | NTSC                   |
| Analog Video Frequency | 30 Hz                  |
| Digital Video          | 8/16/24-bit CameraLink |

Table C.7.: NanoCore 640 M Specifications [41]

#### • DRS Tamarisk 640

The Tamarisk 640 provides high performance while maintaining a small size, low weight, and minimal power consumption. It uses uncooled, highly sensitive Vanadium Oxide detector, incorporating patented absorber technology to capture infrared energy in the 8 to 14  $\mu m$  spectrum. This high-performance core is enhanced with dynamic range, pixel saturation logic, multi-mode Image Contrast Enhancement and 24-bit RGB color.



Figure C.8.: DRS Tamarisk 640 thermal sensor [39]

| Parameter              | Value                 |
|------------------------|-----------------------|
| Weight                 | 230 g                 |
| Width                  | 50 mm                 |
| Height                 | 47 mm                 |
| Lens Diameter          | 35 mm                 |
| Focal ratio            | f/1.2                 |
| Spectral Band          | 8 - 14 μm             |
| Pixel Pitch            | $17~\mu m$            |
| Zoom Type              | Digital               |
| System Type            | Longwave Infrared     |
| Analog Video           | NTSC / PAL            |
| Analog Video Frequency | $25/30~\mathrm{Hz}$   |
| Digital Video          | 14-bit / 8-bit LVCMOS |

Table C.8.: DRS Tamarisk 640 Specifications [39]

# Part D

# PERFORMANCE AND FLIGHT MECHANICS

# Introduction

The aim of this chapter is to explain the methodology followed to populate the inertia tensor variation spreadsheets. As explained in the project Report, each component of the inertia matrix has been calculated based on this data. Additionally, the flight control algorithm code has been provided, which has been used for the simulation.

#### D.1.1 Inertia Tensor Variation

The objective has been to determine the inertia matrix variation as a function of the center of gravity location.

$$I_i = f_i(x_s, y_s)$$

where  $x_s$  and  $y_s$  are the coordinates of the center of gravity.

The following steps have been applied:

- Prepare the CAD prototype, including weight distribution.
- Create a new table for each  $X_{CG}$ , where  $X_{CG1} = 0.390m$ ,  $X_{CG2} = 0.395m$ ,  $X_{CG3} = 0.400m$ ,  $X_{CG4} = 0.405m$ ,  $X_{CG5} = 0.410m$ .
- For each  $X_{CG}$  populate the tables with inertia measurements provided by CATIA V5, changing the  $Y_{CG}$ .

Then, the following five tables have been obtained. As explained in the project Report, each component of the Inertia matrix has been analyzed individually.

| $X_{CG} = 0.390m$ |       |       |       |          |          |          |
|-------------------|-------|-------|-------|----------|----------|----------|
| $Y_{CG}$          | $I_x$ | $I_y$ | $I_z$ | $I_{xy}$ | $I_{xz}$ | $I_{yz}$ |
| 0.000             | 0.354 | 0.151 | 0.498 | 0        | -0.023   | 0        |
| 0.015             | 0.355 | 0.151 | 0.499 | 8.61E-04 | -0.023   | 1.14E-04 |
| 0.030             | 0.36  | 0.151 | 0.504 | 0.0015   | -0.023   | 2.28E-04 |
| 0.045             | 0.368 | 0.151 | 0.512 | 0.0025   | -0.023   | 3.43E-04 |
| 0.060             | 0.378 | 0.151 | 0.522 | 0.003    | -0.023   | 4.57E-04 |
| 0.075             | 0.392 | 0.151 | 0.536 | 0.004    | -0.023   | 5.72E-04 |
| 0.090             | 0.409 | 0.151 | 0.553 | 0.005    | -0.023   | 6.86E-04 |
| 0.105             | 0.429 | 0.151 | 0.573 | 0.006    | -0.023   | 8.01E-04 |
| 0.120             | 0.451 | 0.151 | 0.595 | 0.007    | -0.023   | 9.15E-04 |
| 0.141             | 0.481 | 0.151 | 0.625 | 0.008    | -0.023   | 0.001    |

Table D.1.: I vs  $Y_{CG}$  at  $X_{CG} = 0.390m$ 

| $X_{CG} = 0.395m$ |       |       |       |          |          |          |
|-------------------|-------|-------|-------|----------|----------|----------|
| $Y_{CG}$          | $I_x$ | $I_y$ | $I_z$ | $I_{xy}$ | $I_{xz}$ | $I_{yz}$ |
| 0.000             | 0.354 | 0.139 | 0.486 | 0        | -0.021   | 0        |
| 0.015             | 0.355 | 0.139 | 0.487 | 0.001    | -0.021   | 1.58E-04 |
| 0.030             | 0.36  | 0.139 | 0.492 | 0.002    | -0.021   | 3.16E-04 |
| 0.045             | 0.368 | 0.139 | 0.5   | 0.003    | -0.021   | 4.76E-04 |
| 0.060             | 0.378 | 0.139 | 0.51  | 0.005    | -0.021   | 6.33E-04 |
| 0.075             | 0.392 | 0.139 | 0.524 | 0.006    | -0.021   | 7.91E-04 |
| 0.090             | 0.409 | 0.139 | 0.541 | 0.007    | -0.021   | 9.50E-04 |
| 0.105             | 0.429 | 0.139 | 0.561 | 0.008    | -0.021   | 0.0011   |
| 0.120             | 0.451 | 0.139 | 0.584 | 0.009    | -0.021   | 0.0012   |
| 0.141             | 0.481 | 0.139 | 0.613 | 0.011    | -0.021   | 0.0013   |

Table D.2.: I vs  $Y_{CG}$  at  $X_{CG} = 0.395m$ 

|          | $X_{CG} = 0.400m$ |       |       |          |          |          |  |
|----------|-------------------|-------|-------|----------|----------|----------|--|
| $Y_{CG}$ | $I_x$             | $I_y$ | $I_z$ | $I_{xy}$ | $I_{xz}$ | $I_{yz}$ |  |
| 0.000    | 0.354             | 0.128 | 0.476 | 0        | -0.019   | 0        |  |
| 0.015    | 0.355             | 0.128 | 0.477 | 0.001    | -0.019   | 2.02E-04 |  |
| 0.030    | 0.36              | 0.128 | 0.482 | 0.003    | -0.019   | 4.04E-04 |  |
| 0.045    | 0.368             | 0.128 | 0.489 | 0.004    | -0.019   | 6.06E-04 |  |
| 0.060    | 0.378             | 0.128 | 0.5   | 0.006    | -0.019   | 8.09E-04 |  |
| 0.075    | 0.392             | 0.128 | 0.514 | 0.007    | -0.019   | 0.001    |  |
| 0.090    | 0.409             | 0.128 | 0.53  | 0.009    | -0.019   | 0.0013   |  |
| 0.105    | 0.429             | 0.128 | 0.55  | 0.01     | -0.019   | 0.0016   |  |
| 0.120    | 0.451             | 0.128 | 0.573 | 0.012    | -0.019   | 0.0019   |  |
| 0.141    | 0.481             | 0.128 | 0.603 | 0.013    | -0.019   | 0.0022   |  |

Table D.3.: I vs  $Y_{CG}$  at  $X_{CG} = 0.400m$ 

| $X_{CG} = 0.405m$ |       |       |       |          |          |          |
|-------------------|-------|-------|-------|----------|----------|----------|
| $Y_{CG}$          | $I_x$ | $I_y$ | $I_z$ | $I_{xy}$ | $I_{xz}$ | $I_{yz}$ |
| 0.000             | 0.354 | 0.119 | 0.467 | 0        | -0.018   | 0        |
| 0.015             | 0.355 | 0.119 | 0.468 | 0.0018   | -0.018   | 2.46E-04 |
| 0.030             | 0.36  | 0.119 | 0.473 | 0.0034   | -0.018   | 4.92E-04 |
| 0.045             | 0.368 | 0.119 | 0.48  | 0.005    | -0.018   | 7.38E-04 |
| 0.060             | 0.378 | 0.119 | 0.491 | 0.007    | -0.018   | 9.84E-04 |
| 0.075             | 0.392 | 0.119 | 0.505 | 0.009    | -0.018   | 0.0012   |
| 0.090             | 0.409 | 0.119 | 0.522 | 0.01     | -0.018   | 0.0015   |
| 0.105             | 0.429 | 0.119 | 0.541 | 0.012    | -0.018   | 0.0018   |
| 0.120             | 0.451 | 0.119 | 0.564 | 0.014    | -0.018   | 0.0022   |
| 0.141             | 0.481 | 0.119 | 0.594 | 0.016    | -0.018   | 0.0025   |

Table D.4.: I vs  $Y_{CG}$  at  $X_{CG} = 0.405m$ 

| $X_{CG} = 0.410m$ |       |       |       |          |          |          |
|-------------------|-------|-------|-------|----------|----------|----------|
| $Y_{CG}$          | $I_x$ | $I_y$ | $I_z$ | $I_{xy}$ | $I_{xz}$ | $I_{yz}$ |
| 0.000             | 0.354 | 0.111 | 0.459 | 0        | -0.017   | 0        |
| 0.015             | 0.355 | 0.111 | 0.46  | 0.002    | -0.017   | 2.94E-04 |
| 0.030             | 0.36  | 0.111 | 0.465 | 0.004    | -0.017   | 5.88E-04 |
| 0.045             | 0.368 | 0.111 | 0.472 | 0.006    | -0.017   | 8.82E-04 |
| 0.060             | 0.378 | 0.111 | 0.483 | 0.008    | -0.017   | 0.0011   |
| 0.075             | 0.392 | 0.111 | 0.497 | 0.01     | -0.017   | 0.0013   |
| 0.090             | 0.409 | 0.111 | 0.514 | 0.012    | -0.017   | 0.0017   |
| 0.105             | 0.429 | 0.111 | 0.534 | 0.014    | -0.017   | 0.002    |
| 0.120             | 0.451 | 0.111 | 0.556 | 0.016    | -0.017   | 0.0024   |
| 0.141             | 0.481 | 0.111 | 0.586 | 0.019    | -0.017   | 0.0027   |

Table D.5.: I vs  $Y_{CG}$  at  $X_{CG} = 0.410m$ 

#### D.1.2 Conclusion

Throughout this chapter, different analysis have been done, and it is reasonable to summarize all the results together:

• Longitudinal stability control system

$$\begin{cases} \delta_x(t) = 0.09 \cdot t + 0.29 \\ 0.0m < \delta_x < 0.180m \\ X_{CG} = x_s = 390.3 + 0.1125 \cdot \delta_x \\ 0.390m < x_s < 0.410m \\ M\big|_{X_{CG} = x_s} = \frac{\rho u_\infty^2 S\bar{c}}{2} \Big( (0.4796 \cdot x_s - 0.1963) \alpha + (-0.3846 \cdot x_s + 0.1814) \Big) \end{cases}$$

• Lateral stability control system

$$\begin{cases} \delta_{y_{max}} = \pm 0.2(t - t_{acc}) \\ -0.365m < \delta_y < 0.365m \end{cases}$$

$$Y_{CG} = y_s = 0.3865 \cdot \delta_y$$

$$-0.141m < y_s < 0.141m$$

$$\Delta L|_{Y_{CG} = y_s} = \frac{\rho S u_{\infty}^2}{2b} (4.76\alpha + 0.0189) \cdot 1.2856y_s$$

• Inertia tensor components variation

$$\begin{cases} I_x = 5.9826 \cdot y_s^2 + 0.0819 \cdot y_s + 0.3528 \\ I_y = 28.571 \cdot x_s^2 - 24.857 \cdot x_s + 5.4996 \\ I_z = -1.904 \cdot x_s + 6.924 \cdot y_s^2 + 0.0204 \cdot y_s + 1.2716 \\ I_{xy} = \left(3.828 \cdot x_s - 1.4335\right) \cdot y_s \\ I_{xz} = -8.5714 \cdot x_s^2 + 7.1571 \cdot x_s - 1.5106 \\ I_{yz} = \left(-2066.7 \cdot x_s^3 + 2464.6 \cdot x_s^2 - 978.85 \cdot x + 129.49\right) \cdot y_s \end{cases}$$

## Flight Control Algorithm: Code

```
2 BACHELOR OF SCIENCE THESIS
3 UNIVERSITAT POLITECNICA DE CATALUNYA
Bachelor's Degree In Aerospace Vehicle Engineering
6 Student: Armen Baghdasaryan
7 Director: Luis Manuel Perez Llera
8 Project:
9 Design of an Unmanned Aerial Vehicle with a Mass-Actuated Control System
10
--- Flight Control Algorithm and Simulations ------
14
15 import numpy as np
16 import math
17 import matplotlib.pyplot as plt
19 dt = 0.05
20 | grav = 9.81
_{21} rho = 1.225
23 \text{ mass} = 4
25 \text{ wingArea} = 1.05
meanChord = 0.51
27 alphaCruise = 2.6
28 alphaStall = 15
29 velCruise = 16
30 velGustCruise = 15.7
31 iterations = list(range(12000))
32 time = []
33 alpha = []
34 alphaTrue = []
36 velHor = []
37 velVer = []
38 velAng = []
```

```
40 velHorWind = []
41 velVerWind = []
43 \times CG = []
44 LIFT = []
45 WEIGHT = []
47 \text{ accHor} = []
48 accVer = []
49 \text{ accAng} = []
51 height = []
53 windVerticalSpeed = []
54 windHorizontalSpeed = []
55 for i in iterations:
     time.append(dt*i)
56
      WEIGHT.append(mass*grav)
57
  for i in time:
      if (i >=50 \text{ and } i < 120):
          windVerticalSpeed.append(velGustCruise)
61
      else:
          windVerticalSpeed.append(0)
64
      windHorizontalSpeed.append(0)
  # ----- functions -----
  def calculateAlpha(alpha_init, vel_ang_init, acc_ang_init, dt):
      alpha_end = alpha_init + vel_ang_init*dt + 0.5*acc_ang_init*dt*dt
      return alpha_end
70
71
  def calculateSpeedHor(vel_hor_init, acc_hor, dt):
      vel_hor_end = vel_hor_init + acc_hor*dt
      return vel_hor_end
  def calculateSpeedVert(vel_ver_init, acc_ver, dt):
77
      vel_vert_end = vel_ver_init + acc_ver*dt
      return vel_vert_end
81 def calculateSpeedAng(vel_ang_init, acc_ang, dt):
```

```
vel_ang_end = vel_ang_init + acc_ang*dt
       return vel_ang_end
83
84
   def sumaF_hor(drag, thrust, mass):
85
       acc_hor = (thrust - drag)/mass
       return acc_hor
   def sumaF_ver(lift, weight, mass):
89
       acc_ver = (lift - weight)/mass
90
       return acc_ver
91
   def sumaMpitch(alphaDegrees, xcg, dynPress):
       alphaLocal = alphaDegrees
94
       if (alphaDegrees > 15):
95
               alphaLocal = 15
96
       moment = dynPress * wingArea * meanChord
97
                * ((0.48 * xcg - 0.20)*alphaLocal + (-0.39 * xcg + 0.20))
98
99
       Iyy = 28.60 * xcg * xcg + 24.90 * xcg + 5.50
       alpha_dot_dot = moment / Iyy
101
       return alpha_dot_dot
102
   def calculateLiftCoef(alphaDegrees):
104
       if (alphaDegrees > alphaStall or alphaDegrees < -8):
105
           return 0 #stall
106
       else:
           alphaRad = math.radians(alphaDegrees)
           cl = 4.76*alphaRad + 0.018
109
           return cl
  def calculateDragCoef(alphaDegrees):
113
       cd = 0.0004*alphaDegrees*alphaDegrees - 0.003*alphaDegrees + 0.025
114
115
       return cd
   def pushThrottle(alphaDegrees):
117
       if (alphaDegrees < alphaCruise):</pre>
118
           horSpeedConstant = 1
119
       elif(alphaDegrees > alphaStall):
120
           horSpeedConstant = 1
       else:
           horSpeedConstant = 1
123
```

```
return horSpeedConstant
  # ----- Controller functions -----
126
  def moveXCG(alphaDegrees):
127
      if (alphaDegrees < alphaCruise):</pre>
          xcg = 0.410
129
      elif(alphaDegrees > alphaStall):
130
          xcg = 0.390
      else:
132
          xcg = 0.400
133
134
      return xcg
136
137 # ----- t0 pre-definition -----
138 alpha.append(alphaCruise)
139 alphaTrue.append(alphaCruise)
140
141 velHor.append(velCruise)
142 velVer.append(0)
velAng.append(0)
144
145 accHor.append(0)
146 accVer.append(0)
  accAng.append(0)
147
148
149 height.append(150)
150 XCG.append(0.40)
151 LIFT.append(mass*grav)
152 # ----- t[i] routine -----
# Get previous step alpha, speeds, accelerations
154 # Calculate this state alpha and speeds due to time step (integration)
# Calculate this state accelerations (equilibrium)
156 # Append to global lists
  for i in range(1, len(time)):
      print("..... t = ", i, ' ......')
158
      alpha_prev = alpha[i-1]
159
      vel_ang_prev = velAng[i-1]
161
      vel_hor_prev = velHor[i-1]
162
      vel_vert_prev = velVer[i-1]
164
      acc_hor_prev = accHor[i-1]
165
```

```
acc_ver_prev = accVer[i-1]
166
       acc_ang_prev = accAng[i-1]
167
168
       vel_hor_this = calculateSpeedHor(vel_hor_prev, acc_hor_prev, dt)
169
       vel_vert_this = calculateSpeedVert(vel_vert_prev, acc_ver_prev, dt)
       vel_ang_this = calculateSpeedAng(vel_ang_prev, acc_ang_prev, dt)
171
       alpha_this = calculateAlpha(alpha_prev, vel_ang_prev, acc_ang_prev, dt)
172
173
174
       relVelHorizontal = windHorizontalSpeed[i]-vel_hor_this
175
       relVelVertical = windVerticalSpeed[i] - vel_vert_this
       trueAirSpeed = math.sqrt(
               relVelHorizontal*relVelHorizontal + relVelVertical*relVelVertical)
179
       dynamicPressure = 0.5 * rho * trueAirSpeed * trueAirSpeed
180
181
       alpha_gust_this = math.atan(-relVelVertical/relVelHorizontal)
182
       alpha_gust_this = math.degrees(alpha_gust_this)
183
       alpha_this_true = alpha_this + 1*alpha_gust_this
185
186
       # print(alpha_this, 'to....raddd ....', alpha_this_true)
187
       coefLift = calculateLiftCoef(alpha_this_true)
188
       coefDrag = calculateDragCoef(alpha_this_true)
189
       Lift = coefLift * dynamicPressure * wingArea
190
       Drag = coefDrag * dynamicPressure * wingArea
       horSpeedConstant = pushThrottle(alpha_this_true)
192
       Thrust = horSpeedConstant*Drag
193
       Weight = mass * grav
194
195
       acc_hor_this = sumaF_hor(Drag, Thrust, mass)
196
       acc_ver_this = sumaF_ver(Lift, Weight, mass)
197
       \# xcg = 0.374
199
       # xcg = moveXCG(alpha_this_true)
200
       if(vel_vert_this < 0):</pre>
201
           if(alpha_this_true >= alphaStall):
202
                vel_hor_this = 17
203
                xcg = 0.390
204
           elif (alpha_this_true < 0):</pre>
               vel_hor_this = 16
206
               xcg = 0.410
207
```

```
else:
208
                vel_hor_this = 16
209
                xcg = 0.405
210
       elif(vel_vert_this > 0):
211
           vel_hor_this = 15
           xcg = 0.390
213
       else:
214
           vel_hor_this = 16
215
           xcg = 0.400
216
217
       XCG.append(0.400)
218
       acc_ang_this = sumaMpitch(alpha_this_true, xcg, dynamicPressure)
       height_this = height[i-1] + vel_vert_prev*dt + 0.5 * acc_ver_prev * dt * dt
220
221
       alpha.append(alpha_this)
222
       alphaTrue.append(alpha_this_true)
224
       velHor.append(vel_hor_this)
225
       velVer.append(vel_vert_this)
226
       velAng.append(vel_ang_this)
227
228
       accHor.append(acc_hor_this)
229
       accVer.append(acc_ver_this)
230
       accAng.append(acc_ang_this)
231
232
       height.append(height_this)
       LIFT.append(Lift)
234
   windSeries = np.array(windVerticalSpeed)
235
236
237 fig1 = plt.figure()
238 ax1 = fig1.add_subplot(1, 1, 1)
239 ax2 = ax1.twinx()
240 ax1.plot(time, height, 'r-')
   ax2.plot(time, windSeries, 'b-')
242
243 ax1.grid(color='grey', linestyle='-', linewidth=0.5)
244 ax1.set_ylim([-10,200])
245 ax2.set_ylim([0,20])
   ax1.set_xlim([0,600])
248 ax1.set_xlabel('Time [s]')
249 ax1.set_ylabel('Flight Altitude [m]', color='red')
```

```
ax2.set_ylabel('Wind Vertical Gust [m/s]', color='blue')
251
252 fig2 = plt.figure()
253 ax3 = fig2.add_subplot(1, 1, 1)
254 ax4 = ax3.twinx()
255
256 ax3.plot(time, alphaDeg, 'r-')
  ax4.plot(time, windSeries, 'b-')
258
  ax3.grid(color='grey', linestyle='-', linewidth=0.5)
260 ax3.set_ylim([-50,50])
261 ax4.set_ylim([0,20])
262 ax3.set_xlim([0,600])
263 ax3.set_xlabel('Time [s]')
ax3.set_ylabel('Angle of Attack [deg]', color='red')
265 ax4.set_ylabel('Wind Vertical Gust [m/s]', color='blue')
266
267
268 fig3 = plt.figure()
269 ax5 = fig3.add_subplot(1, 1, 1)
270 ax6 = ax5.twinx()
271
272
273 ax5.plot(time, XCG, 'r-')
  ax6.plot(time, windSeries, 'b-')
ax5.grid(color='grey', linestyle='-', linewidth=0.5)
277 ax5.set_ylim([0.380,0.42])
278 ax6.set_ylim([0,20])
279 ax5.set_xlim([0,600])
280 ax5.set_xlabel('Time [s]')
281 ax5.set_ylabel('CoG-X position [m]', color='red')
282 ax6.set_ylabel('Wind Vertical Gust [m/s]', color='blue')
283
284 plt.show()
```

# Part E REFERENCES

### **Bibliography**

- [1] Nickel, K., Wohlfahrt, M. Tailless Aircraft in Theory and Practice, Amer Inst of Aeronautics, (September 1, 1994), AIAA Education Series, Book
- [2] Guglielmo, J., Selig, M. Spanwise Variations in Profile Drag for Airfoils at Low Reynolds Numbers, University of Illinois at Urbana-Champaign, (July-August, 1996), Journal of Aircraft, Vol. 33, No. 4,
- [3] Ira Abbott, H., Albert Von Doenhoff, E. *Theory of wing sections*, Dover Publications, Inc. New York, (1959), Dover, Book
- [4] V. I. Feodosiev. Resistencia de materiales Mir Publishers, Moscow, (1980), Book
- [5] Stephen P. Timoshenko and James M.Gere. Theory of Elastic Stability, Dover Publications, New York, (2009), Book
- [6] E. F. Bruhn. Analysis and Design of Flight Vehicle Structures, Jacobs Publications, USA, (1973), Book
- [7] Leishman, J. Gordon. Principles of Helicopter Aerodynamics Cambridge Cambridge Aerospace Series, 2000 Book
- [8] Sebastián, Franchini; Óscar, López Garcia. Introducción a la Ingeniería Aeroespacial Madrid Editorial Garceta, 2012 Book
- [9] Miguel Ángel, Gómez Tierno; Manuel, Pérez Cortés; César, Puentes Márquez.
  Mecánica del vuelo Madrid Editorial Garceta, 2012 Book
- [10] European Aviation Safety Agency *EASA*, European Union 2018, Organization Official Website. Retrieved from https://www.easa.europa.eu
- [11] Airfoil Tools. Airfoil database, 2018, Online Airfoil Database Retrieved from http://airfoiltools.com
- [12] Aerodynamics Tools. Aerodynamics database and Tools, 2018, Online Aerodynamics Database and Tools Retrieved from https://www.mh-aerotools.de/airfoils/
- [13] Wikipedia. Aircraft principal axis, 2019, Aircraft principal axis figure source Retrieved from https://en.wikipedia.org/wiki/Aircraft\_principal\_axes/

- [14] UIUC Airfoil Data Site. Airfoil database, UIUC Applied Aerodynamics Group 2018, University of Illinois at Urbana-Champaign, Dept of Aerospace Engineering Retrieved from https://m-selig.ae.illinois.edu/
- [15] Nostromo, LLC. Nostromo-Group, Spacir Designs 2018, Manufacturer's Official Website. Retrieved from http://nostromo-group.com/product-sets/uav-engineering-products/
- [16] Ministry of Defense of Republic of Armenia. *Engineering Department*, 2018, Official Website.
  - Retrieved from http://www.mil.am/en
- [17] Aeronautics. Aeronautics-Systems, AERONAUTICS 2015, Manufacturer's Official Website. Retrieved from:

  https://aeronautics-sys.com/home-page/page-systems/page-systems-orbiter-2-mini-uas/
- [18] C-Astral d.o.o. C-Astral, C-Astral 2017, Manufacturer's Official Website. Retrieved from http://www.c-astral.com/
- [19] Conyca S.L. Conyca, Geomax España 2018, Manufacturer's Official Website. Retrieved from http://www.conyca.es/
- [20] Primoco UAV SE. Primoco UAV Unmanned Aerial Vehicles and Systems, 2018, Manufacturer's Official Website. Retrieved from http://uav-stol.com/
- [21] Enics UAV JSC. Unmanned Aerial Vehicles, Target Systems, ACTIX studio 2018, Manufacturer's Official Website. Retrieved from http://www.enics.ru/
- [22] Leonardo SPA. Leonardo Aerospace, Defence and Security, Leonardo 2018, Manufacturer's Official Website. Retrieved from http://www.leonardocompany.com/en/-/falco
- [23] Military Technical Institute. *Military Technical Institute, Belgrad*, 2018, Manufacturer's Official Website. Retrieved from http://www.vti.mod.gov.rs
- [24] FeiyuTech. FeiyuTech, 2018, Manufacturer's Official Website. Retrieved from http://www.feiyu-tech.com/uav/
- [25] Toray Industries, INC. Toray, Japan 2018, Manufacturer's Official Website. Retrieved from https://www.toray.com/

[26] ASM Aerospace Specification Metals, Inc. Mars Parachutes, US 2018, Manufacturer's Official Website.

Retrieved from http://www.aerospacemetals.com/contact-aerospace-metals.html

[27] MonoKote MonoKote 2018, Manufacturer's Patent.
Retrieved from http://www.freepatentsonline.com/3388651.pdf and
Retrieved from http://www.monokote.com/

- [28] APC Propellers APC, 2018, Technical Data sheet from the manufacturer's Official Website. Retrieved from https://www.apcprop.com/files/PER3\_16x10E.dat
- [29] Eli Airborne Solutions *Eli Estonia*, 2019, Manufacturer's Official Website. Retrieved from http://www.uav.ee/
- [30] Hacker Motor GmbH *Hacker Motor*, 2019, Manufacturer's Official Website. Retrieved from https://www.hacker-motor-shop.com/
- [31] ArduPilot ArduPilot Developer, 2019, Manufacturer's Official Website.

  Retrieved from http://ardupilot.org/
- [32] Matek Systems *Matek Systems*, 2019, Manufacturer's Official Website. Retrieved from http://www.mateksys.com/
- [33] FlySky RC FlySky Systems, 2019, Manufacturer's Official Website. Retrieved from http://www.flyskyrc.com/
- [34] Advanced Microwave Products Advanced Microwave Products 2019, Manufacturer's Official Website.

Retrieved from https://www.advmw.com/

- [35] Sony Corporation Sony 2019, Manufacturer's Official Website. Retrieved from https://www.sony.com/
- [36] Panasonic Panasonic 2019, Manufacturer's Official Website. Retrieved from https://www.panasonic.com
- [37] Hitachi Ltd. *Hitachi* 2019, Manufacturer's Official Website. Retrieved from https://www.hitachi.com/
- [38] Flir Systems Inc. Flir 2019, Manufacturer's Official Website. Retrieved from https://www.flir.com/

- [39] Leonardo DRS Inc. Leonardo DRS 2019, Manufacturer's Official Website. Retrieved from http://www.drsinfrared.com/Home.aspx
- [40] North American Survival Systems NA Survival Systems 2019, Manufacturer's Official Website. Retrieved from https://northamericansurvivalsystems.com
- [41] L3 Technologies Inc. L3 Warrior Sensor Systems 2019, Manufacturer's Official Website. Retrieved from http://www.l3warriorsystems.com/ nanocore