Tabla 4.1 Transformadas de Laplace

Transformada de Laplace	Función del tiempo	Descripción de la función del tiempo
		Impulso unitario
		Función escalón unitario
81		Función escalón unitario retrasada
$\frac{e^{-st}}{s}$ $\frac{1}{s}$ $\frac{1}{s^2}$ $\frac{1}{s^2 + a}$ $\frac{1}{(s+a)^2}$ $\frac{2}{(s+a)^3}$		
<u>s</u>		Pulso rectangular de duración T
1,2	t	Función rampa de pendiente unitaria
1	$\frac{t^2}{2}$	
1_	e ^{-ar}	Decaimiento exponencial
<u>+ a</u>		2000
$\frac{1}{(s+a)^2}$	te ^{ar}	
$\frac{2}{(s+a)^3}$	$t^2 e^{-ut}$	
$\frac{a}{c(s+a)}$	} − e * r	Crecimiento exponencial
		·
$\frac{a}{(s+a)}$	$t - \frac{(1 - e^{-x^2})}{a}$	
$\frac{a^2}{s(s+a)^2}$	$1 - e^{-at} - at e^{-at}$	
$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	2
$(s+a)^2$		
$\frac{1}{(s+a)(s+b)}$	$\frac{e^{-st} - e^{-ts}}{b - a}$	
$\frac{ab}{s(s+a)(s+b)}$	$1 - \frac{b}{b-a} e^{-ac} + \frac{a}{b-a} e^{-bc}$ $\frac{e^{-ac}}{(b-a)(c-a)} + \frac{e^{-bc}}{(c-a)(a-b)} + \frac{e^{-cc}}{(a-c)(b-c)}$	
$\frac{1}{(s+a)(s+b)(s+c)}$	e^{-at} e^{-bt} e^{-ct}	
	(b-a)(c-a) $(c-a)(a-b)$ $(a-c)(b-c)$	
$\frac{\omega}{\sigma^2 + \omega^2}$	sen @t	Onda senoidal
$s^2 + \omega^2$	cosωt	Onda cosenoidal
$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-at} \operatorname{sen} \omega t$	Onda senoidal amortiguada
$\frac{s+a}{(s+a)^2+\omega^2}$	e ^{-at} cosωt	Onda cosenoidal amortiguada
$(s+a)^2 + \omega^2$	•	
$\frac{\omega}{s(s^2+\omega^2)}$	$1-\cos\omega t$	
$\frac{\omega^2}{s(s^2 + \omega^2)}$ $\frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}$	$\frac{\omega}{\sqrt{(1-\xi^2)}} e^{-\xi\omega t} \operatorname{sen}\left[\omega\sqrt{(1-\xi^2)t}\right]$	
$\frac{\omega^2}{s(s^2 + 2\zeta\omega s + \omega^2)}$	$1 - \frac{1}{\sqrt{(1-\xi^2)}} e^{-\xi\omega t} \operatorname{sen} \left[\omega \sqrt{(1-\xi^2)t + \phi}\right]$	
$\cos \zeta < 1$	$\cos \xi = \cos \phi$	