Qiskit Camp Asia 2019

Quantum Global Public Goods Implementation on Qiskit

Team #17: Qash-equilibrium
Arthur Strauss
Shaimay Shah
Vivien Vandaele

Coach: Bryce Fuller

Equal preservation of GPG: A universal call to action protect the planet.

- Motivation: use quantum technologies to tackle SDGs.
- Assimilation of SDGs as Global Public Goods (GPG); a good which <u>cannot be replaced</u> with any other good, and that <u>no one can be theoretically excluded from</u>.

If a nation is able to enjoy the benefit of the GPG without paying for it, we end up at the free-rider problem.

<u>Can we...</u> efficiently combine quantum protocols with Game Theory to address free riding countries in international environmental agreements?

Prisoner's dilemma

		Country 2	
		cooperation	non- cooperation
Country 1	cooperation	(-1; -1)	(-10; 0)
	non- cooperation	(0; -10)	(-5; -5)

Implementation of Quantum strategies:

Each country may apply arbitrary unitaries (n countries)

of GHZ state)

Quantum advantage: Individual strategies now correlated

What to do with the output?

- Sampling circuit ouput -> returns a global mixed strategy
- Possibility to estimate each country's payoff
- Plug this state in cost function defined by given constraints on the problem

Iterate classically on all possible quantum strategies

• Once cost function is evaluated, iterate over all quantum strategies to find an optimal distribution of payoffs.

Goal: minimize cost function value

How can we define it?

- To preserve the Public Good: potential need to symmetrize efforts, the payoff should be the same amount for everyone
- Each country should have a positive payoff

$$\boldsymbol{\theta} \in \mathbb{R}^{3N}$$

Quantum strategy advantage over best classical one

- New optimum found using quantum strategy.
- Since minimum values are negative, absolute values are considered here

Further possibilities of improvement

Enhancing this approach with Quantum
Meta-Learning

Defining better cost function and payoff matrix

Modifying the entanglement type to study more complicated dynamics

References

- o http://vixra.org/pdf/1911.0151v1.pdf
- https://arxiv.org/pdf/quant-ph/0301013.pdf
- http://documents.worldbank.org/curated/en/480391468764142631/pdf/multi0page.p
 df

Modeling efficiently the problem : Building Payoff matrix

Critical to perform realistic optimization, it should put constraints linked to real social and political issues over each countries :

Example of GHG emissions:

One should consider:

- abatement costs for each country
- Cost of potential damages linked to failure of containing climate change impacts
- Etc...