Winsol - Aufbau der LOG Datei für UVR1611

(16 Eingänge, 13 Ausgänge(davon 4 mit PDR) und 2 Wärmemengenzähler)

	Tag	Stunde	Minute	Sekunde	Ausg. Byte	Ausg. Byte	Dz A1	Dz A2	Dz A6	Dz A7	T1	T2	 T15	T16
					1	2								
Größe	1	1	1	1	1	1	1	1	1	1	2	2	2	2
											low	low	low	low
Bem.					AAAAAAA	XXXAAAAA	EXXDDDDD	EXXDDDDD	EXXDDDDD	EXXDDDDD	vor	vor	vor	vor
											high	high	high	high
Kopf	V11	V1h	V21	V2h	V31	V3h	V41	V4h	AA	AA	AA00	AA00	AA00	AA00
Bsp.	1B	06	2C	1A	90	06	0B	1D	05	1E	8E00	3F02	9B01	E101
Dateiname:														
Y200207.log														

Wärmemengen-Reg.	Momentanleistung 1	kWh 1	MWh 1	Momentanleistung 2	kWh 2	MWh 2
1	4	2	2	4	2	2
 XXXXXWW	low vor high	low vor high	low vor high	low vor high	low vor high	low vor high
FF	AA00AA00	AA00	AA00	AA00AA00	AA00	AA00
01	00001B58	07D0	0034	00000000	0000	0000

A ... Ausgangszustand (von rechts nach links zu nummerieren), d.h. Bit0=A1, Bit7=A8,...

D ... Drehzahlstufe (0-30)

E ... Drehzahlregelung aktiv (0)

W ... Wärmemengenzähler aktiv (1) (Bit0 → Wärmemengenzähler_1, Bit1 → Wärmemengenzähler_2)

X ... nicht von Bedeutung

V1...Version LOG File Format - 01 02

V3...Version CAN232 - F0 0F

V2...Version Auswertesoftware - 01 03

V4...Version Regelung - 00 06 (UVR _ _)

-0007 (UVR 1611)

<u>Bsp.</u> Datum: 27.07.2002

Zeit: 06:44:26

Drehzahlstufen: Dz A1: 11; Dz A2: 29; Dz A6: 5; Dz A7: 30

A1-A13: A1: AUS, A2: AUS, A3: AUS, A4: AUS, A5: EIN, A6: AUS, A7: AUS, A8: EIN, A9: AUS, A10: EIN, A11: EIN, A12: AUS, A13: AUS

Temperaturen: T1: 14,2°C T2: 57,5°C T15: 41,1°C T16: 48,1°C

Leistung 1: 70kW

 KWh1:
 200kWh
 MWh1: 52MWh

 Leistung 2:
 -- KWh2: --

MWh2: --- (Wärmemengenzähler_2 nicht aktiv – siehe Wärmemengen-Reg.)

Monat und Jahr sind aus dem Dateinamen ersichtlich.

Größe/Datenrahmen: 59 Byte

. . .

Temperaturbytes bei der UVR1611:

Da bei der UVR1611 nicht nur Temperaturwerte übertragen werden können, wird mit den Bits 4,5 und 6 des High-Bytes die Einheit des gesendeten Wertes festgelegt. Das höchstwertigste Bit (Bit 7 des High-Byte) ist wie bei allen anderen Reglern das Vorzeichenbit, des übertragenen Wertes.

Zu beachten ist, dass bei der Rekonstruktion des gesendeten Wertes, bei einem negativen Vorzeichen, die Bits 4,5 und 6 gesetzt sein müssen um den richtigen negative Wert zu erhalten!! Bei einem positiven Temperaturwert, müssen diese drei Bits für eine korrekte Rekonstruktion 0 sein.

Datenbytes: Low-Byte T T T T T T T

High-Byte V E E E T T T T

T... Wert des Eingangsparameters V... Vorzeichenbit (1 \rightarrow neg. Wert)

E . . . Type des Parameters (Einheit des Wertes)

High - Byte	Zugehörigkeit des Wertes
x000 xxxx	Eingang unbenutzt
x001 xxxx	digital (High-Byte Bit7: 1=ein, 0=aus)
x010 xxxx	Temperatur (Auflösung: $^{1}/_{10}$ °C)
x011 xxxx	Volumenstrom (Auflösung: 4 /h)
x110 xxxx	Strahlung (Auflösung: 1 W/m ²)
x111 xxxx	Temperatur-Raumsensor (Auflösung: ¹ / ₁₀ °C)

Temperatur-Raumsensor: High-Byte V 1 1 1 x R R

R . . . Betriebsmodus des Raumsensors

x . . . unbenutztes Bit

High-Byte	Betriebsmodus des Raumsensors
V111 x 00 T	Zeit / Automatik-Betrieb
V111 x 01 T	Normal-Betrieb
V111 x 10 T	Absenk-Betrieb
V111 x 11 T	Standby-Betrieb

Т

Momentanleistung bei der UVR1611:

Die 3 höheren Bytes für die Momentanleistung ($Momentanleistung_x_low_high$, $Momentanleistung_x_high_low$ und $Momentanleistung_x_high_high$) beinhalten den Wert der momentanen Leistung mit einer Auflösung von $^{1}/_{10}$ kW.

Das niederwertigste Byte (*Momentanleistung_x_low_low*) liefert die Hundertstelkommastelle der Momentanleistung mit einer, aus reglerinternen Gründen angewandten, Kodierung.

Rekonstruktion der Hunderstelkommastelle: (Momentanleistung_x_low_low * 10) / 256

Rekonstruktion der Momentanleistung:

Leistung(in kW) = $[10*(65536*Byte_x_high_high + 256*Byte_x_high_low + Byte_x_low_high) + (Byte_x_low_low*10) / 256] / 100$

falls negatives Vorzeichen (höchstes Bit = 1 d.h. Byte x high high > 32767):

Leistung(in kW) = $[10*[(65536*Byte_x_high_high + 256*Byte_x_high_low + Byte_x_low_high) - 65536] - (Byte_x_low_low *10) / 256] / 100$