NIH Workshop on Cloud-Based Platforms Interoperability

Interoperability between Kids First & Undiagnosed Diseases Network (UDN) Data via dbGaP/SRA

Valerie Cotton & Allison Heath

Use Case: Enable researchers to easily co-analyze data from Kids First & the Undiagnosed Disease Network in the cloud to leverage large-scale pediatric cohorts from Kids First to resolve variants of unknown significance in UDN cases.

Kids First: The goal of Kids First is to help researchers uncover new insights into the biology of childhood cancer and structural birth defects.

UDN: The Undiagnosed Diseases Network (UDN) is an initiative to facilitate the diagnosis of conditions that have eluded diagnosis through the coordinated action of leading clinical and research centers.

UDN & Pediatric Genomics

18%

OF PARTICIPANTS WHO UNDERWENT GENOME SEQUENCING HAVE AT LEAST ONE DIAGNOSIS MADE THROUGH SEQUENCING

GENOME SEQUENCING

1,142 participants (716 children and 426 adults) have undergone genome sequencing. Many of these participants had non-diagnostic exome sequencing prior to enrollment in the UDN. The most common symptom category for participants undergoing genome sequencing is neurology (51%), followed by multiple congenital anomalies (9%).

- Data access provided by: <u>dbGaP Authorized Access</u>
- Release Date: September 27, 2021
- Embargo Release Date: September 27, 2021
- Data Use Certification Requirements (DUC)
- Public Posting of Genomic Summary Results: Allowed
- Use Restrictions

Consent group Is IRB required?		Data Access Committee	Number of participants	
General Research Use 🥹	No	National Human Genome Research Institute (nhgridac@mail.nih.gov)	4239	

Scientific Narrative (specific use case)

...To address the challenge of VUS's, we have developed a pipeline to assess variants found on clinical sequencing using biobank cohorts with linked phenotyped data.

Our pipeline creates a <u>phenotype risk score (PheRS)</u> of the proband based on their clinical presentation described in human phenotype ontology terms (HPO). We then apply the PheRS to the biobank cohort, such that individuals with many overlapping features have a high PheRS, and those with no or few overlapping features have a low score. We then identify variant matched individuals present in the biobank cohort, and test if the variant matched individuals have unexpectedly elevated phenotype risk scores.

We have been using this pipeline to analyze **Undiagnosed Disease Network (UDN)** patients, using a biobank cohort called BioVU... We believe that expanding our search for variant matched individuals to a large cohort like **Kids First** would enable us better interpret candidate variants for unsolved UDN cases.....

Lisa Bastarache

Overview of Standards Used

4,000+ genomes

Up to 24,000 genomes

Solution Matrix

	Kids First Data Resource	NLM/NCBI	Analysis Tools
Genomic data	CAVATICA already integrated with the Kids First/Gen3 DRS server. RAS Milestone 3 is underway.	Connect CAVATICA to dbGaP DRS server, using RAS v1.1 Passports - Requires BAMs in S3 storage (US East1 to avoid egress)	Variant calling and searching across UDN & Kids First to identity variants of unknown significance (VUSs) underlying undiagnosed conditions and "matched" cases in Kids First
Phenotypic data	CAVATICA is building a FHIR client to ingest from the Kids First FHIR-based data service	dbGaP on FHIR is in development. FHIR & RAS integration will be needed for controlled-access phenotypes	PheRS to compare phenotypes of individuals with the same/similar VUSs

Collaboration Matrix

	Kids First Data Resource	NLM/NCBI	Tester/User
Genomic data	Michele Mattioni & Jack DiGiovanna & Adam Resnick	Kurt Rodarmer & Yuriy Skripchenko	Yuankun Zhu & Anne Deslattes Mays
Phenotypic data	Allison Heath & Robert Carroll	Liz Amos & Mike Feolo	Lisa Bastarache

Genomic Data Interoperability

Goal: Enable a user to Access the UDN genomic data via DRS, using RAS Passport

Accessing UDN data on NCBI DRS service

CAVATICA: RAS Connection

Anna	port files via the BioData (Catalyst DRS server. Learn more.	
DRS Endpoint	Account	Expires	
drs://ga4gh-api.sb.biodatacatalyst.nhlbi.nih.g	ov mmattioni	Oct. 23, 2021 14:04	⊘ Reconnect •••
Cancer Genomics Cloud Powered by Seve	nt to import files via the C	Tancer Genomics Cloud DRS server.	earn more.
DRS Endpoint	Account	Expires	€ Reconnect
drs://cgc-ga4gh-api.sbgenomics.com	mmattioni	Oct. 23, 2021 14:05	Reconnect
Connect with the NCBI DF	RS Server		

Seven Bridges
 identified solution to
 add a **new "card"** in
 the Account DataSets
 configuration tab

- 1. Use NCBI Run Selector to obtain a manifest which contains SRA Runs
- 2. Use the IDX service to obtain the DRS links connected with the SRA Runs
 - Note: The DRS Links are offered in bundles, which Seven Bridges needs to build support for
 - At the moment Seven Bridges extract the bundles, and then obtains the DRS pointer to the file
- 3. Import the DRS File into Cavatica

Draft Approach for UDN Data Findability

The dataset will be findable/searchable as a CAVATICA Public Project (dbGaP approval still required). The DRS file would be built into the Project.

CAVATICA I	Projects ▼ Data ▼	Public Apps Pu	blic Projects	Developer ▼	Controlled project	
		Public Projects				
Project Name	Location	Created By	Created	i On	Actions	
UDN AWS (us-east-1)		cavatica	Jul. 26,	2021 9:44	Copy project	
Data Interoperability	AWS (us-east-1)	sevenbridges	Jun. 24,	2021 11:27	Copy project .	
OpenPBTA Open Access	AWS (us-east-1)	cavatica	Feb. 3,	2021 11:39	Copy project .	
kf-references [REFERENCES] [KIDS FIRST] [KFDRC]	AWS (us-east-1)	kfdrc-harmonizatio	on Sep. 2,	2020 16:24	Copy project	

Variant Identification

- For functional equivalence, call UDN variants using Kids First workflows
- Use <u>Kids First Portal variant search</u> to identify datasets of interest → Apply for those datasets in dbGaP
- Use Kids First VCFs to identify variant matched individuals
- Run PheRS

Variant	Туре	dbSnp	Consequences	CLINVAR	Studies	Participants
<u>chrX:g.48792004del</u>	deletion		• frameshift_variant <u>GATA1</u> G126X		1	1 / 4843
chrX:g.48794116del	deletion	550	• frameshift_variant <u>GATA1</u> G397X	277	1	1 / 4843
chrX:g.48791978C>A	SNV	1622	 missense_variant GATA1 Q119K 	-22	1	1 / 4843
chrX:g.48792194C>T	SNV	<u>rs140561920</u>	• missense_variant GATA1 R191C	<u>Benign</u>	1	4 / 4843

Solution Matrix

	Kids First Data	NLM/NCBI	Analysis Tools
	Resource	IVEW/IVODI	Analysis roots
Genomic data	CAVATICA already integrated with the Kids First/Gen3 DRS server. RAS Milestone 3 is underway.	Connect CAVATICA to dbGaP DRS server, using RAS v1.1 Passports - Requires BAMs in S3 storage (US East1 to avoid egress)	Variant calling and searching across UDN & Kids First to identity variants of unknown significance (VUSs) underlying undiagnosed conditions and "matched" cases in Kids First
Phenotypic data	CAVATICA is building a FHIR client to ingest from the Kids First FHIR-based data service	dbGaP on FHIR is in development. FHIR & RAS integration will be needed for controlled-access phenotypes	PheRS to compare phenotypes of individuals with the same/similar VUSs

PheRS pipeline

- R-based tool creates a phenotype risk score (PheRS) of the proband based on their clinical presentation described in human phenotype ontology terms (HPO).
 - **√** Kids First already maps phenotypes to HPO
- Apply PheRS to the cohort, such that individuals with many overlapping features have a high PheRS, and those with no or few overlapping features have a low score.
- Identify variant matched individuals and test if they have unexpectedly elevated phenotype risk scores
- Make available to the community and path for utilization/comparision with other work like <u>LIRICAL</u>

Proband phenotype

Clinical symptoms and physical findings

GROWTH PARAMETERS

Failure to thrive

CARDIOVASCULAR

Patent ductus arteriosus

GASTROINTESTINAL

Elevated hepatic transaminase

Gastroesophageal reflux

GENITOURINARY

Hydrocele testis

BEHAVIOR, COGNITION AND DEVELOPMENT

Global developmental delay

Delayed speech and language development

DIGESTIVE SYSTEM

Hepatomegaly

METABOLISM/HOMEOSTASIS

Recurrent hypoglycemia Neonatal hypoglycemia

Candidate variants

Heterozygous	Variants						
Gene	Chr Position rs#	Change	Effect	Proband	Mother (Unaff)	Father (Unaff)	
	chr6	$A \rightarrow T$					
COL9A1 NM 001851.4	70991091	c.876+2T>A	c.876+2T>A splice donor 10.9>2.7 G → A c.1234G>A missense p.Gly412Arg T → C c.2238A>G missense p.lle746Met G → C	•0	00	•0	
1414_001051.4	rs149830493		10.572.7		(Unaff)		
	chr7	$G \rightarrow A$	$G \rightarrow A$				
ELN NM_000501	73470684	c.1234G>A	missense	•0	00	•0	
W-5	rs375116795	p.Gly412Arg					
0.00	chr18	T → C					
PIGN NM_012327	59757754	c.2238A>G	missense	•0	00	•0	
022027	rs200658159	p.lle746Met			(Unaff) oo oo oo		
	chr15	$G \rightarrow C$					
POLG	89872002	c.1084C>G	missense	•0	00	•0	
NM_002693.2	rs763248358	p.Leu362Val					
	chr3	C → T					
RFT1 NM 052859.3	53140879	c.782G>A	missense	•0	•0	00	
INIT_032033.3	rs374781452	p.Arg261Gln					

Observed Phenotypes

27	3878
0	1480
0	1328
41	957
15	431
7	355
25	341
80	327
0	303
0	278
8	266
1	196
53	190
0	90
0	59
0	41
0	26
0	24
0	18
0	10
0	9
	0 0 41 15 7 25 80 0 0 8 1 1 53 0 0 0

Driving Tool / Service Layers: General

Driving Tool / Service Layers: Use Case

Concrete Progress on Each Step

Concrete Progress on Each Step

NCPI Phenotype Translation Tool

Generates list or table of available HPO terms from KF and UDN Phenotypic pipeline/analysis often a different "modality" than genomic pipeline/analysis - statistical analysis from a database. What current cloud workspace tooling fits best here? Do we need to be able to support additional capabilities?

Phenotype-based Pipeline

Generate PheRS for all participants A, B, C

Transform

Automated Pipeline

Concrete Progress on Each Step

Phenotype-based Pipeline

Generate PheRS for all participants A, B, C

Automated Pipeline

May be the most well-defined? Happens in a R Studio or Jupyter notebook environment?

Combining Genomic and Phenotypic Pipeline Results

Do "variant matched individuals have unexpectedly elevated phenotype risk scores"?

Scientific Analysis

Doors to New Capabilities

EHR Systems /
Research
Warehouses

High-throughput phenotyping for Marfan Syndrome

MARFAN SYNDROME — HEAD & NECK Eyes	HPO	-> Phecodes
- Retinal detachment	→ HP:0000541 —	[361] Retinal detachment & defects
- Iris hypoplasia	→ HP:0001083	[753.1] Congenital cataract & lens anomalies
CARDIOVASCULAR		
Heart		
- Aortic regurgitation	→ HP:0001653	[394.2] Mitral valve disease
Vascular		
- Aortic root dilatation—	→ HP:0002616	[442.1] Aortic aneurysm
- Aortic dissection	→ HP:0002647	[442.1] Aortic alleurysin
SKELETAL Limbs		
- Joint hypermobility————	→ HP:0001382 —	[728.2] Laxity of ligament or hypermobility
CHEST		[],
Ribs Sternum Clavicles & Scapulae		
- Pectus excavatum	→ HP:0000767	[756.21] Pectus excavatum
RESPIRATORY		
Lung		
- Pneumothorax	→ HP:0002107 —	[506] Empyema and pneumothorax

Phenotype Risk Score (PheRS) for Marfan Syndrome

You can differentiate a cohort diagnosed with Marfan syndrome using **only the features** of the disease

Variant Summary

	ALL					ADU	LTS		PEDS			
	ном		н	ET	ном		HET		ном		HET	
SNP	nHOM	zHOM	nHET	zHET	nHOM_A	zHOM_A	nHET_A	zHET_A	nHOM_P	zHOM_P	nHET_P	zHET_P
PLOD1 p.Arg512Cys (cHET) exm15796	2	1.52	287	0.08	1	1.58	236	0.11	1	0.90	51	0.05
SAMD9 p.Tyr896His (HET) exm634380	1	þ.44	68	0.11	1	0.43	60	0.15	o	NA	8	0.07
MCOLN1 p.Thr261Met (HET) exm1416067	1	0.31	222	0.00	o	NA	181	0.04	1	0.06	41	0.06
VPS13B p.Lys1129Arg (cHET) exm712265	1	0.58	319	0.05	0	NA	273	0.05	1	0.26	46	-0.05
EDNRB p.Val260Phe (HET) exm1073577	0	NA	100	-0.09	0	NA	89	0.13	o	NA	11	0.40
FLNB p.Ala1341Gly (HET) exm326265	o	NA	22	þ.47	o	NA	18	p .35	o	NA	4	0.41
CARD11 p.lle544Leu (HET) exm600786	0	NA	176	0.05	0	NA	153	-0.03	o	NA	23	þ .36
EHMT1 p.Ala369Thr (cHET) exm804322	o	NA	3	0.23	0	NA	3	0.27	0	NA	o	NA
EHMT1 p.Ala369Thr (HET) exm804322	o	NA	3	0.23	0	NA	3	0.27	o	NA	0	NA

MCOLN1 P.THR261MET IS NOT LIKELY TO CAUSE PROBANDS PHENOTYPE

Back up notes about DRS