Ejercicio 3.16

• El resultado de la monitorización de la actividad de una aplicación informática que está siendo ejecutada dentro de un servidor dedicado a streaming de vídeo se muestra a continuación (nótese que hay información no disponible). Como información adicional, el perfil de llamadas indica que todos los procedimientos son llamados únicamente desde el programa principal main (que solo se ejecuta una vez y cuyo tiempo propio de ejecución se puede despreciar), excepto ordena, que solo es llamado desde el procedimiento procesa.

% time	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
XX	XX	1,8	XX	225	225	ordena
XX	XX	XX	2	900	XX	procesa
XX	XX	1,4	4	350	350	invierte
XX	XX	XX	4	175	XX	almacena

a) Complete la información no disponible en la tabla (marcada como "xx"). ¿Cuánto tiempo de CPU consume la aplicación?

Paso 1: Intentamos obtener el Grafo de Llamadas

... todos los procedimientos son llamados únicamente desde el programa principal main (que solo se ejecuta una vez y cuyo tiempo propio de ejecución se puede despreciar), excepto ordena, que solo es llamado desde el procedimiento procesa.

calls	self ms/call	total ms/call	name
XX	225	225	ordena
2	900	XX	procesa
4	350	350	invierte
4	175	XX	almacena

Paso 2: Empezamos a rellenar la tabla

$$self\ seconds = calls\ * \frac{self\ ms/call}{1000\ ms/s} \longrightarrow calls = \frac{self\ seconds}{\frac{self\ ms/call}{1000\ ms/s}}$$

% time	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
XX	XX	1,8	1,8/0,225 = 8	225	225	ordena
XX	XX	1,8	2	900	XX	procesa
XX	XX	1,4	4	350	350	invierte
XX	XX	0,7	4	175	XX	almacena

Paso 3: Ya podemos completar el Grafo de Llamadas

Paso 4: Continuamos rellenando la tabla: cumulative s

• Cumulative seconds de una función: La suma acumulada de los segundos consumidos (CPU) por el código propio de dicha función y por el de las funciones que aparecen encima de ella en la tabla.

% time	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
XX	1,8	1,8	8	225	225	ordena
XX	1,8+1,8=3,6	1,8	2	900	XX	procesa
XX	1,8+1,8+1,4 = 5,0	1,4	4	350	350	invierte
XX	1,8+1,8+1,4+0,7 = 5,7	0,7	4	175	XX	almacena

La aplicación consume 5,7s de CPU

Paso 5: Continuamos rellenando la tabla: %time

- % **time:** Tanto por ciento del tiempo total de CPU del programa que usa el código propio de la función(código propio es el que pertenece a la función y no a las funciones a las que llama).
 - En nuestro caso: tiempo total de CPU del programa = 5,7s.

% time	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
$\left(\frac{1,8}{5,7}\right) * 100 = 31,6$	1,8	1,8	8	225	225	ordena
$\left(\frac{1,8}{5,7}\right) * 100 = 31,6$	3,6	1,8	2	900	XX	procesa
$\left(\frac{1,4}{5,7}\right) * 100 = 24,6$	5,0	1,4	4	350	350	invierte
$\left(\frac{0,7}{5,7}\right) * 100 = 12,3$	5,7	0,7	4	175	XX	almacena

Paso 6: Acabamos la tabla: total ms/call

• Total s/call: tiempo (CPU) medio de ejecución de cada llamada a la función (contando tanto el tiempo del código propio como el de las funciones a las que llama).

• En nuestro caso, se expresa en ms en lugar de en segundos.

2	cumulative seconds	self seconds	calls	self ms/call	total ms/call	name
	1,8	1,8	8	225	225	ordena
	3,6	1,8	2	900	(1800)	procesa
	5,0	1,4	4	350	350	invierte
	5,7	0,7	4	175	175	almacena

$$\frac{total\ ms}{call}(procesa) = \frac{self\ ms}{call}(procesa) + 4*\frac{total\ ms}{call}(ordena) = 900ms + 4*225ms = 1800ms$$

Ejercicio 3.16, apartado b)

b) Determine la ganancia en velocidad (speedup) que se obtendría si reemplazamos el procedimiento ordena por otro 3 veces más rápido. Exprese esa ganancia en velocidad también como tanto por ciento de mejora.

$$S = \frac{vm}{vo} = \frac{To}{Tm} = \frac{5,7}{4,5} = 1,27$$

El % de mejora obtenido sería: (S - 1) * 100 = 27%

Otra forma (Ley de Amdahl):
$$S = \frac{1}{1 - f + \frac{f}{k}} = \frac{1}{1 - 0.316 + \frac{0.316}{3}} = 1.27$$