Introduction

Scarcity, Work, and Choice Economics

Dr. Kumar Aniket

UCL

Lecture 3

Technological change

•00

Context

- *Unit 1:* Labour is work.
- *Unit* 2: Labour is an input in the production of goods and services.
- *Unit 3:* New technologies raise the productivity of labour leading to higher per-hour wage.
 - How would technological progress affect living standards across the world?
 - How would technological progress affect the individual's choice between free time and consumption?

Free time and Living Standards

Living standards have greatly increased since 1870 but some countries still work more than others.

Free time and Living Standards

How people across countries choose between consumption and working hours (free time)

EXAMPLE: GRADES AND STUDY HOURS

What is the production function of grade?

Student choose how many hours to study

Grade increases if number of hours studied increases.

Grade increase with better environment.

	High study time	Low study time
Good environment	3.63 (11 students)	3.43 (31 students)
Poor environment	3.36 (31 students)	3.17 (11 students)

Source: Plant et. al. (Contemporary Educational Psychology, 2005).

PRODUCTION FUNCTION

Production functions: inputs (*hours*) \rightarrow outputs (*grade*)

GRADE PRODUCTION

Average product of hours worked = $\frac{50 \text{ (final Grade)}}{4 \text{ (hours worked)}}$

GRADE PRODUCTION FUNCTION

Average product of hours worked = $\frac{80 \text{ (final Grade)}}{8 \text{ (hours worked)}}$

AVERAGE PRODUCT CALCULATION

Average product is vertical distance (*grade*) divided by horizontal distance (*hours*).

			Change
Hours worked	4	10	+6
Final grade	50	80	+30
Average product	12.5	8	-4.5
	$=\frac{50}{4}$	$=\frac{80}{10}$	

What does the slope of the production function signify?

WHAT PRODUCTION FUNCTIONS TELL US?

Average product: Average output per unit of input Marginal product: Change in output if input changes by a very small amount

DIMINISHING MARGINAL PRODUCT

Diminishing marginal product:

Studying becomes less productive, the more you study.

General Principle: As more inputs are used, output increases by less and less *at the margin*.

FEASIBLE PRODUCTION FRONTIER

Feasible production frontier is the maximum output achievable with given amount of input.

Marginal rate of transformation is the slope of the feasible frontier.

Technological change

OPPORTUNITY COST

Opportunity cost of an action what you have to give up to take the action.

Uber driver:

Opportunity cost of taking a lunch break is the expected fare lost

Take a lunch break if value it more than expected loss of fare. Better to take it during the non-peak period.

OPPORTUNITY COST

Young parents with a baby:

Opportunity cost of leisure is cost of baby sitter.

Choose leisure if value of leisure greater than cost of baby sitter.

Students deciding on University:

Opportunity cost of pursing a degree is lost earning and experience forgone.

Pursue a degree if value of degree greater than expected loss of earnings.

CHOICE FROM DEMAND PERSPECTIVE

Indifference Curves

Indifference curves: all combinations of goods that give the same utility.

Marginal rate of substitution (MRS) is the slope of the indifference curve and represents the tradeoffs an individual faces.

CHOICE AND CONSTRAINT

Stage 1: Choice: trade-off between leisure and number of hours of worked Constraint: 24 hours per day Stage 2: Choice: trade-off between different types of consumption goods i.e., food, travel, entertainments ... *Constraint: income,* which is determined by the *number of hours of* worked

In effect, it is a choice between *leisure* and *consumption goods*

Utility-maximising choice: where the trade off on the demand side (MRS) *equals* the tradeoff on the supply side (MRT)

$$MRS = MRT$$

CONSTRAINED CHOICE

		Choice	Slope of
MRS	Marginal rate of substitution	choose between desired consumption goods	indifference curve
MRT	Marginal rate of transformation	choose between hours worked and leisure	feasible frontier

If you worked for a fixed hourly wage, then your income gives you a simple budget constraint.

Budget constraints are the feasible frontiers for consumption choices

The optimal choice is where the *slope of the indifference curve* equals the *slope of the budget constraint*, i.e., the wage

TWO IMPORTANT EFFECTS

If wage increases, there are two distinct effects

1. If you work the same hours, your income increases

You are richer and *buy more of everything including leisure*.

What would you do if you won a lottery? Buy things and go on holiday?

- 2. The cost of leisure increases
 - ... the *opportunity cost of leisure* is lost wage earning, which has increased

Buy less of leisure?

... it is more *costly for Uber drivers* to take a lunch break during peak hours.

Income effect: a wage increase gives more income per hour worked. *Budget constraint shifts out.*

Incentive to buy more of everything $(A \rightarrow B)$ including leisure. *More money to spend on everything.*

SUBSTITUTION EFFECT

Substitution effect: a wage increase raises the opportunity cost of free time or leisure. *Budget constraint steeper.*

Incentive to reduce leisure and work more $(A \rightarrow D)$.

Leisure became more expensive

INCOME AND SUBSTITUTION EFFECT

Introduction

INCOME AND SUBSTITUTION EFFECT

	Income effect	substitution effect	Overall Effect
Leisure	more	less	ambiguous
Consumption	more	more	more
	$A \rightarrow C$	$C \rightarrow D$	

WORKING HOURS: DIFFERENCES OVER TIME

Income and substitution effects can explain trends in working hours

US: Income effect dominated substitution effect.

Both consumption and free time increased.

CROSS-COUNTRY DIFFERENCES IN WORKING HOURS

Difference in wages and trade-offs between consumption and leisure

Other explanations?

Differences in culture (norms), politics (legal limits on hours), social norm and preferences (e.g. 'Keeping up with the Joneses').

SUMMARY

Simple model of *decision-making under scarcity*

Indifference curves represent preferences Feasible frontier represents constraint on choices *Utility-maximising* choice where MRS = MRT

Explain effect of technological progress on labour choices with a model

Net effect = Income effect + Substitution effect