9.1 习题

张志聪

2024年12月1日

9.1.1

 $\overline{X} = \overline{Y}$ 等价于 $\overline{X} \subseteq \overline{Y}, \overline{Y} \subseteq \overline{X}$ 。

 $\bullet \ \overline{X} \subseteq \overline{Y} \circ$

任意 $x \in \overline{X}$, 因为 x 是附着点,所以对任意 $\epsilon > 0$,都存在 $y \in X$ 使 得 $|x-y| \le \epsilon$ 。

由题设 $X\subseteq Y$ 可知, $y\in Y$,于是由定义 9.1.8 (附着点) 可得,x 也是 \overline{Y} 的附着点,即 $x\in \overline{Y}$ 。

由 x 的任意性可知 $\overline{X} \subseteq \overline{Y}$ 。

• $\overline{Y} \subseteq \overline{X}_{\circ}$

任意 $x\in \overline{Y}$,因为 x 是附着点,所以对任意 $\frac{1}{2}\epsilon>0$,都存在 $y\in Y$ 使得 $|x-y|\le \frac{1}{2}\epsilon$ 。

由题设 $Y\subseteq \overline{X}$ 可知, $y\in \overline{X}$, 所以 y 是 X 的附着点, 于是存在 $y_x\in X$ 使得 $|y-y_x|\leq \frac{1}{2}\epsilon$ 。

于是由命题 4.3.7 (c) 可知 $|x-y_x| \le \epsilon$,所以 x 也是 X 的附着点。 由 x 的任意性可知 $\overline{Y} \subseteq \overline{X}$ 。

9.1.2

• $X \subseteq \overline{X}_{\circ}$

任意 $x \in X$, 对于任意的 $\epsilon > 0$, 有 $|x - x| \le \epsilon$, 所以 x 是 X 的附着 点。

由 x 的任意性可知 $X \subseteq \overline{X}$ 。

- $\overline{X \cup Y} = \overline{X} \cup \overline{Y}_{\circ}$
 - $\circ \ \overline{X \cup Y} \subseteq \overline{X} \cup \overline{Y} \circ$

任意 $x \in \overline{X \cup Y}$,因为 x 是附着点,所以对任意 $\epsilon > 0$,都存在 $y \in X \cup Y$ 使得 $|x - y| \le \epsilon$ 。

如果 $y \in X$ 则由定义 9.1.8 (附着点)可得, x 也是 X 的附着点。如果 $y \in Y$ 则由定义 9.1.8 (附着点)可得, x 也是 Y 的附着点。综上 $x \in \overline{X} \cup \overline{Y}$ 。

 $\circ \ \overline{X} \cup \overline{Y} \subset \overline{X \cup Y} \circ$

任意 $x \in \overline{X} \cup \overline{Y}$,于是要么 $x \in \overline{X}$,要么 $x \in \overline{Y}$ (或者两个皆成立)。

以 $x \in \overline{X}$ 为例,因为 $x \in X$ 的附着点,所以对任意 $\epsilon > 0$,存在 $y \in X$ 使得 $|x - y| \le \epsilon$ 。

因为 $y \in X \cup Y$ 则由定义 9.1.8 (附着点)可得, x 也是 $X \cup Y$ 的 附着点。

同理, $x \in \overline{Y}$ 时也成立。

综上 $x \in \overline{X \cup Y}$ 。

• $\overline{X \cap Y} \subset \overline{X} \cap \overline{Y}$ o

任意 $x \in \overline{X \cap Y}$,因为 x 是 $X \cap Y$ 的附着点,所以对任意的 $\epsilon > 0$,存在 $y \in X \cap Y$,使得 $|x - y| \le \epsilon$ 。

因为 $y \in X \cap Y$,所以 $y \in X$ 且 $y \in Y$,则由定义 9.1.8(附着点)可得 $x \in X$ 的附着点且是 Y 的附着点,即 $x \in \overline{X} \cap \overline{Y}$

• 如果 $X \subseteq Y$, 那么 $\overline{X} \subseteq \overline{Y}$.

任意 $x \in \overline{X}$, 因为 x 是 X 的附着点, 所以对任意的 $\epsilon > 0$, 存在 $y \in X$, 使得 $|x - y| \le \epsilon$ 。

因为 $X \subseteq Y$,所以 $y \in Y$ 则由定义 9.1.8(附着点)可得 x 也是 Y 的 附着点,即 $x \in \overline{Y}$ 。

9.1.3

• № 的闭包是 №。

由引理 9.1.11 可得 $\mathbb{N} \subseteq \overline{\mathbb{N}}$ 。

现在证明附着于 № 的点只能是 № 的元素。

假设实数 $x \in \mathbb{N}$ 的附着点且 $x \notin \mathbb{N}$,由命题 5.4.12(有理数对实数的界定)与命题 4.4.1(由有理数确定的整数散布)可得,存在唯一的整数 n 使得 n < x < n+1(即: x 在两个自然数之间)。

设 $\epsilon = \frac{1}{2}min(x-n,n+1-x)$,此时不存在 $y \in \mathbb{N}$ 使得 $|x-y| \le \epsilon$,与 x 是附着点矛盾。

• ℤ的闭包是 ℤ。

由引理 9.1.11 可得 $\mathbb{Z} \subseteq \overline{\mathbb{Z}}$ 。

现在证明附着于 Z 的点只能是 Z 的元素。

证明过程与 № 一致,这里不做赘述。

• ℚ的闭包是 ℝ。

即任意实数 x 都是 $\mathbb Q$ 的附着点。对任意 $\epsilon > 0$,取 $y = x + \epsilon$,由命题 5.4.14 可知,存在有理数 $q \in \mathbb Q$ 使得 x < q < y,此时 $|x - q| \le \epsilon$ 。

• ℝ的闭包是 ℝ。

由引理 9.1.11 可得 $\mathbb{R} \subset \overline{\mathbb{R}}$ 。

而有定义 9.1.8 可知,不存在 ℝ 外的附着点,否则不满足定义了。

Ø的闭包是 Ø。

因为 Ø 中没有元素, 也就没有 $x \in R$ 能够满足定义 9.1.8 (附着点) 的 定义。

9.1.4

$$X := [0, 1)$$

$$Y := (1, 2]$$

此时,

$$\overline{X\cap Y}=\varnothing$$

$$\overline{X} \cap \overline{Y} = \{1\}$$

9.1.5

• **⇒**

任意 $\alpha \in \overline{X}$, 对任意的正自然数 n, 设 X_n 表示集合

$$X_n := \{x \in X, |x - \alpha| \le 1/n\}$$

由于 α 是附着点,所以 X_n 是非空集合。

利用选择公理,能够找到一个序列 $(a_n)_{n=1}^{\infty}$ 使得 $a_n \in X_n$ 对所有的 $n \geq 1$ 均成立。

以上构造的序列 $(a_n)_{n=1}^{\infty}$ 是收敛于 x 且每一个元素都属于 X。

• =

对任意 $\epsilon>0$, 由 $(a_n)_{n=0}^{\infty}$ 收敛于 x 可知, 存在 N 使得 $n\geq N$ 时,

$$|a_n - x| \le \epsilon$$

因为序列中的完全是由 X 中的元素构成的,于是可得 x 是附着点。

9.1.6

说明 1. 这里所说的闭集,应该是和定义 9.1.15 对应的,所以应该是 $\overline{\overline{X}}=\overline{X}$

• \overline{X} 是闭集(即 $\overline{\overline{X}} = \overline{X}$) 由引理 9.1.11 可知 $\overline{X} \subseteq \overline{\overline{X}}$,现在需要证明 $\overline{\overline{X}} \subseteq \overline{X}$ 。 设任意 $x'' \in \overline{\overline{X}}$,对任意 $\epsilon > 0$,都存在 $y' \in \overline{X}$,使得

$$|x'' - y'| \le \frac{1}{2}\epsilon$$

因为 y' 也是 X 的附着点, 所以存在 $y \in X$ 使得

$$|y - y'| \le \frac{1}{2}\epsilon$$

于是由命题 4.3.7 (c) 可知,

$$|x'' - y| \le \epsilon$$

所以 x'' 也是 X 的附着点,即 $x'' \in \overline{X}$ 。

• 换个表达方式: $X \subseteq Y, \overline{Y} = Y$, 那么 $\overline{X} \subseteq Y$ (即: $\overline{X} \subseteq \overline{Y}$)。 任意 $x \in \overline{X}$, 所以对于任意 $\epsilon > 0$, 都存在 $y \in Y$ 使得

$$|x - y| \le \epsilon$$

因为 $X \subseteq Y$,于是 $y \in Y$,所以 x 也是 Y 的附着点,即 $x \in \overline{Y}$ 。

9.1.7

设

$$X:=X_1\cup X_2\cup \cdots \cup X_n=\bigcup_{i\in\{1,2,\ldots,n\}}X_i$$

换句话说,要证明 $\overline{X} = X$ 。

由引理 9.1.11 可知, $X\subseteq \overline{X}$,接下来我们需要证明 $\overline{X}\subseteq X$ 。 任意 $x\in \overline{X}$,对任意 $\epsilon>0$,都存在 $y\in X$ 使得

$$|x - y| \le \epsilon$$

因为 $y \in X$,由公理 3.11 (并集) 可知存在 X_i 使得 $y \in X_i$,于是 $x \in \overline{X_i}$,由题设可知 $X_i = \overline{X_i}$,所以 $x \in X_i$,于是 $x \in X$ 。

9.1.8

设

$$X := \bigcap_{\alpha \in I} X_{\alpha}$$

换句话说,要证明 $\overline{X} = X$ 。

由引理 9.1.11 可知, $X \subseteq \overline{X}$,接下来我们需要证明 $\overline{X} \subseteq X$ 。 任意 $x \in \overline{X}$,对任意 $\epsilon > 0$,都存在 $y \in X$ 使得

$$|x-y| < \epsilon$$

因为 $y \in X$,由式(3.4)可知对任意 X_{α} 都有 $y \in X_{\alpha}$,于是 $x \in \overline{X_{\alpha}}$,由题设可知 $X_{\alpha} = \overline{X_{\alpha}}$,再次由式(3.4)可知 $x \in X$ 。

9.1.9

⇒

任意 $x \in \overline{X}$, 对任意 $\epsilon > 0$, 都有存在 $y \in X$ 使得

$$|x - y| \le \epsilon$$

即 $W_x := \{y : y \in X, |x - y| \le \epsilon\}$ 是非空集;

- $\circ W_x \setminus \{x\} \neq \emptyset$,则 x 也是 $X \setminus \{x\}$ 的附着点,所以 x 是极限点。
- 。 $W_x \setminus \{x\} = \emptyset$,可知 $x \in X$,且因为 $W_x \setminus \{x\}$ 是空集,所以任意 $y \in X \setminus \{x\}$ 都满足 $|x y| > \epsilon$ (特别地 $X \setminus \{x\} = \emptyset$ 空虚的成立),所以 $x \in X$ 的孤立点。

• =

观察定义,如果 x 是 X 的极限点,无法说明 $x \in X$,如果是孤立点却能保证 $x \in X$ (定义 9.1.18 孤立点是按蕴含关系定义的,应该是表述的不准确应是当且仅当的关系,否则无法推出 $x \in X$),而根据引理 9.1.11 可知 $X \subseteq \overline{X}$,所以孤立点肯定是附着点。

接下来要对极限点进行说明。按照定义 9.1.18 可知,X 的任意极限点 $x \in X \setminus \{x\}$ 的附着点,因为 $X \setminus \{x\} \subseteq X$,所以 $x \in X$ 的附着点。

说明 2. 错误推论: X 是实直线的一个子集,对于任意实数 x,要么是 X 的极限点,要么是 X 的孤立点。

按照定义 9.1.8 可知, 一个实数 x 要么是 X 的附着点, 要么不是。 习题 9.1.9 中已经证明, 当 x 是附着点,则 x 要么是 X 的极限点, 要么是孤立点。

当 x 不是附着点,则 $x \notin X$ (否则肯定是附着点),按照定义 9.1.18 可知 x 不会是孤立点; x 也不会极限点,因为 $X \setminus \{x\} = X$ (因为 $x \notin X$),所以如果是极限点,则是附着点(习题 9.1.10 的反推),与假设矛盾。至此可知,此时的 x 既不是孤立点也不是极限点。

9.1.10

• ⇒ X 是有界的,按照定义 9.1.22 可知,存在某个实数 M > 0 使得 $X \subset [-M, M]$,即任意 $x \in X$ 都满足 $|x| \le M$,那么由定义 5.5.1 (上界) 可知 M 是 X 的一个上界,由定理 5.5.9 (最小上界的存在性) 可知 $\sup(X)$ 是存在,且由定义 5.5.5 (最小上界) 可知 $\sup(X) \le M$;同理可得最大下界 $\inf(X)$ 且 $-M \le \inf(X)$;

又因为 $inf(X) \le sup(X)$ 可得(可以直接通过定义证明,但不能直接使用引理 6.4.13,因为实数子集可能不是至多可数的)

$$-M \le inf(X) \le sup(X) \le M$$

• \Leftarrow 设 M := max(|inf(X)|, |sup(X)|),有最小上界的定义可知,对任 意 $x \in X$ 都有

$$-M \le inf(X) \le x \le sup(X) \le M$$

所以 $X \subset [-M, M]$, 由此可知 X 是有界的。

9.1.11

反证法,假设 \overline{X} 不是有界的。

因为 X 是有界,那么存在 M>0 使得 $X\subset [-M,M]$,即任意 $x\in X$ 都满足 $-M\leq x\leq M$;

因为 \overline{X} 不是有界的,那么对任意实数 $M+\epsilon,\epsilon>0$,存在 $x\in\overline{X}$, $x>M+\epsilon$ 或 $x<-M-\epsilon$,这里以 $x>M+\epsilon$ 为例;

因为 $x \in X$ 的附着点,都存在 $y \in X$ 使得

$$|x - y| \le \epsilon$$

$$\Rightarrow$$

$$y - \epsilon \le x \le y + \epsilon$$

因为 $y \in X$, 所以 $-M \le y \le M$, 于是可得

$$-M - \epsilon \le x \le M + \epsilon$$

这与 $x > M + \epsilon$ 矛盾。

9.1.12

• 有限个;

不妨设集合个数为 $n,n \in \mathbb{N}$,设每个有界子集的找到 M 分别为 M_1,M_2,\ldots,M_n ,那么定义 $M:=\max(M_1,M_2,\ldots,M_n)$ (对 n 进行归纳,就可以确定该 M 是可以得到的,参照引理 5.1.14 的证明),可证并集 $X \subset [-M,M]$ (证明略)

• 无限个;

说明 3. 这里无法使用归纳原理进行证明,因为实数子集可能不是至多可数的。

反证法, 假设并集 X 不是有界的。

那么,存在 $x \in X$ 大于任意实数;由公理 3.11 (并集)可知,存在某个子集 $S \in X$ 使得 $x \in S$,由题设子集 S 是由上界的,即存在 M 使得 $S \subset [-M, M]$,所以 -M < x < M;存在矛盾。

9.1.13

• $(a) \Rightarrow (b)$

由题设(a)X 是有界的可知,序列 $(a_n)_{n=0}^{\infty}$ 是有界序列,利用定理 6.6.8 可知, $(a_n)_{n=0}^{\infty}$ 至少有一个收敛的子序列 $(a_{n_j})_{j=0}^{\infty}$,不妨设子序 列收敛于 L。

由引理 9.1.14 可知, $L \not\in X$ 的一个附着点, 由题设 (a) X 是闭的可知, 任意附着点 $x \in X$, 所以 $L \in X$

• $(b) \Rightarrow (a)$

由题设(b)和推论 9.1.17 可知, X 是闭的。

反证法,假设 X 不是有界的,那么,对任意的正自然数 n,设 X_n 表示集合

$$X_n := \{ x \in X : |x| > n \}$$

是非空的。利用选择公理,能够找到一个序列 $(a_n)_{n=0}^{\infty}$ 使得 $a_n \in X_n$ 对所有的 $n \geq 1$ 均成立(特别的, a_0 可以任取 X 中的元素)。设序列 $(a_n)_{n=0}^{\infty}$ 的任意子序列为 $(a_{n_j})_{j=0}^{\infty}$,由定义 6.6.1 (子序列) 可知 $n_j \geq j$,于是 j > 0 时 $|a_{n_j}| > j$,可得子序列是无界的,所以该子序列发散,与题设矛盾。

9.1.14

证明框架:

设有限子集为 X,因为是有限集,所以肯定是有界的(可以通过元素个数 n 进行归纳,这里不做赘述)。

X 有界且 X 是有限集,可得满足定理 9.1.24 (b) 前置条件,于是可得 X 是闭的。

9.1.15

• *S* 是 *E* 的附着点。

反证法, 假设 S 不是 E 的附着点, 即存在 $\epsilon > 0$, 使得

$$|S - y| > \epsilon$$

对所有的 $y \in E$ 均成立。

由上式可得,如果 $y > S + \epsilon$,则 S 不是上界,这与 S 是 E 的最小上界矛盾;如果 $y < S - \epsilon$,则 $S - \epsilon$ 也是上界且比 S 小,这与 S 是 E 的最小下界矛盾。

• $S \in \mathbb{R} \setminus E$ 的附着点。

由集合公理可得,一个实数 x 要么属于 E 要么属于 $\mathbb{R}\setminus E$ 。 反证法,假设 S 不是 $\mathbb{R}\setminus E$ 的附着点,即存在 $\epsilon>0$,使得

$$|S - y| > \epsilon$$

对所有的 $y \in \mathbb{R} \setminus E$ 均成立。

由上式可得,如果 $y > S + \epsilon$,那么存在实数 $x \in (S, S + \epsilon]$ 则既不属于 E 也属于 $\mathbb{R} \setminus E$,与事实矛盾;同理如果 $y < S - \epsilon$,那么存在实数 $x \in [S - \epsilon, S)$ 则既不属于 E 也属于 $\mathbb{R} \setminus E$,与事实矛盾;