

Institut Mines-Telecom

Electronique des Systèmes d'aqcuisition

Chadi Jabbour

Amplification

Outline

Amplificateur différentiel et opérationnel

Amplificateur différentiel

Amplification différentielle

Dans une amplification différentielle, l'information est codée dans la différence entre 2 signaux (V_e^+ et $-V_e^-$) et non pas dans la valeur absolue d'un signal

Amplificateur différentiel

La sortie de l'amplificateur est donnée par :

$$V_s = A^+ V_e^+ - A^- V_e^-$$

En posant l'entrée en mode commun $V_{ec}=\frac{V_e^++V_e^-}{2}$ et l'entrée différentielle $V_{ed}=V_e^+-V_e^-$, V_s devient :

$$V_s = A_d \cdot V_{ed} + A_c \cdot V_{ec}$$

où A_d est le gain différentiel et A_c le gain de mode commun avec

$$A_d = \frac{A^+ + A^-}{2}$$
 et $A_c = A^+ - A^-$

En prenant $A^+ = A^- = A$, nous aurons un gain différentiel Ad = A et un gain de mode commun A_c nul.

Amplificateur Différentiel: + and -

Avantages:

- Réjection du bruit ambiant
- Réduction des harmoniques paires
- Doublement de la dynamique

Désavantages:

- Augmentation de la complexité et de la consommation d'énergie
- Gestion du mode commun

Amplificateur différentiel

L'utilisation des structures différentielles, malgré quelques petits défauts, reste la norme en pratique.

Amplificateur opérationnel

Propriété:	Cas idéal
Gain différentiel	infini
Impédance d'entrée	infinie
Impédance de sortie	nulle
Bande passante	infinie
Courants d'entrée	nul
Offset	nul
Offset	nui

Montage à base d'AOP

- L'utilisation la plus courante des AOP est en boucle fermée
- Son gain et ses impédances d'entrée infinis permettent de créer une masse virtuelle à l'entrée -
- Son impédance de sortie nulle permet de réaliser les fonctions désirées sans se pré-occuper des étages suivants

11/41

Avril 2021

Outline

Introduction

Amplificateur différentiel et opérationnel

La contre-réaction

Marge de stabilité

La contre réaction

$$V_s(j\omega) = \frac{A(j\omega)}{1 + A(j\omega) \cdot R(j\omega)} V_e(j\omega)$$

On appelle taux de contre-réaction la quantité :

$$1 + A(j\omega) \cdot R(j\omega)$$

On peut aussi remarquer que si $A(j\omega) \cdot R(j\omega) >> 1$, $\implies H(j\omega) \simeq 1^{R(j\omega)}$

Augmentation de la bande passante

$$A(j\omega) = \frac{A_{DC}}{1 + j\frac{\omega}{\omega_c}}$$

avec A_{DC} le gain maximal de l'amplificateur et ω_c pulsation de coupure à 3 dB Le circuit bouclé a pour fonction de transfert :

$$H_{BF}(j\omega) = \frac{A(j\omega)}{1 + R \cdot A(j\omega)}$$

$$H_{BF} = \frac{A_{DC}}{1+j\frac{\omega}{\omega_c}}\frac{1}{1+R\frac{A_{DC}}{1+j\frac{\omega}{\omega_c}}} = \frac{A_{DC}}{1+R\cdot A_{DC}}\frac{1}{1+j\frac{\omega}{\omega_c(1+R\cdot A_{DC})}}$$

ou donc

$$H_{BF} = H_{BF-DC} \frac{1}{1 + j\frac{\omega}{\omega'_c}}$$
 $H_{BF-DC} = \frac{A_{DC}}{1 + R \cdot A_{DC}} \text{ et } \omega'_c = \omega_c \cdot (1 + R \cdot A_{DC})$

La pulsation de coupure de la fonction de transfert $A(j\omega)$ est multipliée par le taux de contre-réaction.

Diminution de la distorsion

Soit un amplificateur $A(j\omega)$ avec une distorsion parasite u.

Le signal parasite u' observé à la sortie du système bouclé est donné par

$$u' = u + A(j\omega) \cdot R \cdot u'$$

soit

$$u' = \frac{u}{1 + R \cdot A(j\omega)}$$

Pour un même signal de sortie, l'amplitude harmonique due à la non linéarité est réduite de la valeur du taux de contre-réaction.

Exercice 1

- 1. Calculer la fonction de transfert $F(p)=\frac{V_s}{V_e}$ en fonction de $a=1+\frac{R_2}{R_1}$ et $H=\frac{Z_1}{Z_1+Z_2}$
- 2. Exprimer dans le formalisme de Laplace Z_1 , Z_2 et H(p) en fonction de $\tau=RC$
- 3. Donner l'expression de la fonction de transfert F(p) en fonction de a et de τ .

Outline

Introduction

Amplificateur différentiel et opérationne

La contre-réaction

Marge de stabilité

Exemple suiveur

Pour un amplificateur opérationnel avec

$$A(p) = \frac{V_s}{V^+ - V^-}$$

On a

$$V_s = A(p)(V_e - V_s)$$

On en déduit que la fonction de transfert du montage peut exprimée par

$$H_{BF}(p) = \frac{V_s(p)}{V_e(p)} = \frac{A(p)}{1 + A(p)}$$

Exemple suiveur - Architecture AOP

Etude de la stabilité

Pour que le système soit stable, il faut que les pôles de $H_{BF}(p)$ aient des parties réelles négatives.

Calculons leur expression, pour l'implémentation 1 étage:

$$p = -\frac{A_{DC} + 1}{\tau}$$

Et pour l'amplificateur 2 étages¹

$$p_{1,2} = rac{-(au_1 + au_2) \pm j\sqrt{-\Delta}}{2 au_1 au_2}$$
 avec $\Delta = (au_1 + au_2)^2 - 4 au_1 au_2A_{DC}^1A_{DC}^2$

stabilité

On constate que le système est stable pour les 2 cas de figures avec des poles à partie réelle négative

¹Sous certaines conditions pour τ_i et le gain

Simulation premier cas

$$au_1 = au_2 = au = 1 ext{ et } A_{DC}^1 = A_{DC}^2 = A_{DC} = 30 ext{ dB}$$

On constate que le suiveur quand on utilise un amplificateur 2 étages souffre d'un dépassement oscillatoire très important

Simulation deuxième cas

$$au_1=500 au_2= au=1$$
 et $A_{DC}^1=A_{DC}^2=A_{DC}=30$ dB

On constate que pour cette configuration, l'amplificateur 2 étages permet d'obtenir une convergence plus rapide

26/41

Analyse du résultat

Pour le cas, $\tau_1=\tau_2=\tau=1$, les poles sont donnés par

$$p_{1,2} = -1 \pm 31.4j$$

Pour le deuxième cas, avec $\tau_1 = 500\tau_2 = \tau = 1$, on obtient:

$$p_{1,2} = -250.5 \pm 6166j$$

On peut constater que la partie réelle est largement supérieure en valeur absolue dans la deuxième configuration, ceci se traduit ainsi par une marge de stabilité plus importante.

Stabilité en boucle fermée

Une analyse de la stabilité en boucle fermée est longue, on préfère réaliser l'analyse en boucle ouverte

Stabilité

Le système est instable s'il existe une pulsation ω_0 tel que $A(j\omega_0) \cdot R(j\omega_0) = 1$

Analyse en boucle ouverte

- On court-circuite l'entrée du système à la masse
- ▶ On ouvre la boucle dans un point de notre choix
- ▶ On injecte le signal d'entrée V_{e-BO} en aval du point d'ouverture et on relève le signal de sortie V_{s-BO} en amont.
- Le gain de boucle ouverte est donnée par:

$$H_{BO}(j\omega) = -\frac{V_{s-BO}(j\omega)}{V_{e-BO}(j\omega)} = A(j\omega) \cdot R(j\omega)$$

Marge de phase- calcul

Le gain en boucle ouverte peut être exprimé sous la forme suivante

$$H_{BO}(j\omega) = |H_{BO}(\omega)| e^{j\Phi(\omega)}$$

L'instabilité arrive quand $\mid H_{BO}(\omega) \mid = 1$ et $\Phi(\omega) = -\pi$

 \mid $H_{BO}(\omega)\mid=1$ correspond à la pulsation transitoire $\omega_{T}=2\pi f_{T}$

Pour garantir la stabilité, il faut donc $\Phi(\omega_T) < -\pi$ et plus, on est loin de ce point, plus le système est stable

La marge de Phase

$$MP = \Phi(\omega_T) + \pi$$

Marge de Phase - graphiquement

Réponse pour différentes valeurs de MP

Marge de Phase

On vise une marge de phase supérieure à 45° en pratique pour assurer un bonne convergence

Exercice 2

- 1. Exprimer la fonction de transfert $H_o = V_s/V_e$ pour un AOP idéal.
- 2. Exprimer la fonction de transfert pour un AOP réel avec avec $A(p) = \frac{A_o}{(1+\tau_1 p)(1+\tau_2 p)}$
- 3. Tracer les diagrammes de Bode asymptotique et réels du gain en BO
- 4. Donner la condition pour assurer une marge de phase suffisante $MP \geq \pi/4$

33/41