MAS115 Calculus I 2007-2008

Problem sheet for exercise class 10

Four-leaved rose

Spiral

Limaçon

Circle

Cardioid

Lemniscate

Parabola

Lemniscate

Problem 1: Match each of the eight graphs with one of the following equations.

a.
$$r = \cos 2\theta$$
,

b.
$$r\cos\theta = 1$$
.

b.
$$r \cos \theta = 1$$
, **c.** $r = \frac{6}{1 - 2 \cos \theta}$,

$$\mathbf{d.} \quad r = \sin 2\theta \ .$$

e.
$$r = \theta$$

$$\mathbf{f.} \quad r^2 = \cos 2\theta \;,$$

g.
$$r = 1 + \cos \theta$$

$$\mathbf{h} = x - 1 \sin \theta$$

d.
$$r = \sin 2\theta$$
, e. $r = \theta$, f. $r^2 = \cos 2\theta$, g. $r = 1 + \cos \theta$, h. $r = 1 - \sin \theta$, i. $r = \frac{2}{1 - \cos \theta}$, j. $r^2 = \sin 2\theta$, k. $r = -\sin \theta$, l. $r = 2\cos \theta + 1$.

$$j. \quad r^2 = \sin 2\theta \ ,$$

$$\mathbf{k}$$
, $r = -\sin\theta$

1.
$$r = 2\cos\theta + 1$$

Problem 2: Show that the equations $x = r \cos \theta$, $y = r \sin \theta$ transform the polar equation

$$r = \frac{k}{1 + e\cos\theta}$$

into the Cartesian equation

$$(1 - e^2)x^2 + y^2 + 2kex - k^2 = 0.$$

Problem 3: Find polar equations for the following four circles. Sketch each circle in the coordinate plane and label it with both its Cartesian and polar equations.

- **a.** $x^2 + y^2 + 5y = 0$, **b.** $x^2 + y^2 2y = 0$, **c.** $x^2 + y^2 3x = 0$, **d.** $x^2 + y^2 + 4x = 0$.

Extra: Show that if you roll a circle of radius a about another circle of radius a in the polar coordinate plane, the original point of contact P will trace a cardioid. (Hint: start by showing that $\angle OBC$ and $\angle PAD$ are equal to each other.)

Problem 1:

rose: d; spiral: e; limaçon: l; lemniscate: f; circle: k; cardioid: h; parabola: i; lemniscate (diagonal): j.

Problem 2:

$$\begin{split} r &= \frac{k}{1 + e \cos \theta} \ \Rightarrow \ r + e r \cos \theta = k \ \Rightarrow \ \sqrt{x^2 + y^2} + e x = k \ \Rightarrow \ \sqrt{x^2 + y^2} = k - e x \ \Rightarrow \ x^2 + y^2 \\ &= k^2 - 2 k e x + e^2 x^2 \ \Rightarrow \ x^2 - e^2 x^2 + y^2 + 2 k e x - k^2 = 0 \ \Rightarrow \ (1 - e^2) \, x^2 + y^2 + 2 k e x - k^2 = 0 \end{split}$$

Problem 3:

a.
$$x^2 + y^2 + 5y = 0 \implies x^2 + \left(y + \frac{5}{2}\right)^2 = \frac{25}{4} \implies C = \left(0, -\frac{5}{2}\right)$$
 and $a = \frac{5}{2}$; $r^2 + 5r \sin \theta = 0 \implies r = -5 \sin \theta$

b.
$$x^2 + y^2 - 2y = 0 \implies x^2 + (y - 1)^2 = 1 \implies C = (0, 1)$$
 and $a = 1$; $r^2 - 2r \sin \theta = 0 \implies r = 2 \sin \theta$

c.
$$x^2 + y^2 - 3x = 0 \Rightarrow (x - \frac{3}{2})^2 + y^2 = \frac{9}{4} \Rightarrow C = (\frac{3}{2}, 0)$$
 and $a = \frac{3}{2}$; $r^2 - 3r \cos \theta = 0 \Rightarrow r = 3 \cos \theta$

d.
$$x^2 + y^2 + 4x = 0 \Rightarrow (x+2)^2 + y^2 = 4 \Rightarrow C = (-2, 0)$$
 and $a = 2$; $r^2 + 4r \cos \theta = 0 \Rightarrow r = -4 \cos \theta$

Problem 4:

Arc PT = Arc TO since each is the same distance rolled. Now Arc PT = $a(\angle TAP)$ and Arc TO = $a(\angle TBO)$ $\Rightarrow \angle TAP = \angle TBO$. Since AP = a = BO we have that $\triangle ADP$ is congruent to $\triangle BCO \Rightarrow CO = DP \Rightarrow OP$ is parallel to $AB \Rightarrow \angle TBO = \angle TAP = \theta$. Then OPDC is a square $\Rightarrow r = CD = AB - AD - CB = AB - 2CB$ $\Rightarrow r = 2a - 2a \cos \theta = 2a(1 - \cos \theta)$, which is the polar equation of a cardioid.