Answer ALL SIX questions in Section A and THREE questions from Section B.

The numbers in square brackets in the right-hand margin indicate the provisional maximum credit per section of a question.

Section A

[Part marks]

1. (a) State the formal definition of the derivative of a function f(x). [2]

Answer:

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

(b) Using the formal definition of the derivative, calculate from first principles the derivative of $f(x) = x^{1/4}$ at x = 2.

Answer:

$$\sqrt[4]{2}/8$$

2. (a) State and derive de Moivre's theorem.

[3]

Answer: See lecture notes

(b) Determine all the solutions of the equation $z^5 = 4 - 4i$, in polar form. [5]

Answer:

$$z_0 = \sqrt{2}e^{-\pi i/20}, z_1 = \sqrt{2}e^{7\pi i/20}, z_2 = \sqrt{2}e^{3\pi i/4}, z_3 = \sqrt{2}e^{-17\pi i/20}, z_4 = \sqrt{2}e^{-9\pi i/20}$$

3. (a) Given a function y = f(x), state the condition for a point x_0 to be stationary. [2] **Answer:** x_0 is solution to the equation

$$\frac{df}{dx} = 0$$

(b) Given a function y = f(x), state the criteria to determine the nature of a stationary point. [2]

Answer: See lecture notes.

(c) Find the stationary point(s) of $f(x) = 3x^6$ and discuss its (their) nature. **Answer:** Stationary point at $x_0 = 0$. Its nature is strictly speaking undetermined using the criteria discussed in the lectures (sufficient for full marks) but by inspection of the function, it must be a minimum (f(x)) increases on either side of the stationary point).

4. (a) Write the general expression for the Maclaurin expansion of a function y = f(x).

Answer:

$$f(x) = f(0) + \sum_{n=1}^{\infty} \frac{1}{n!} \left. \frac{d^n f}{dx^n} \right|_{x=0} x^n$$

(b) Determine the Maclaurin expansion up to the second order of the following functions: [4]

(i) $f(x) = \sin x + \cos x;$

$$(ii) \quad g(x) = \frac{e^x}{x - 1} \ .$$

Answer:

(i)
$$f(x) = 1 + x - \frac{1}{2}x^2 + \dots$$

(ii)
$$g(x) = -1 - 2x - \frac{5}{2}x^2 + \dots$$

5. Calculate the following limits:

[6]

[3]

(i)
$$\lim_{x \to +\infty} \frac{2x^2 + 1}{4x^2 + 3x + 1}$$
;

(ii)
$$\lim_{x \to \pi/2} \frac{\cos x}{x^2 - \pi^2/4}$$
.

Answer:

$$(i)$$
 $\frac{1}{2}$

$$(ii)$$
 $-\frac{1}{\pi}$

6. (a) For the geometric series, $S_N = a + ar + ar^2 + ... + ar^{N-1}$, sum the series to derive an expression for S_N .

Answer:

$$S_N = a \frac{1 - r^N}{1 - r}$$

(b) Determine whether the following series converges or not:

 $\sum_{n=1}^{\infty} \frac{2n}{5^n} \ .$

Answer: Series converges

Section B

7. (a) Express the vector $\underline{v} = 3\underline{i} - 3\underline{j} + 2\underline{k}$ in the form $\underline{v} = a\underline{r}_1 + b\underline{r}_2 + c\underline{r}_3$, where the vectors $\underline{r}_1, \underline{r}_2, \underline{r}_3$ are given as

$$\begin{split} \underline{r}_1 &= 3\underline{i} - 2\underline{j} - \underline{k} \ , \\ \underline{r}_2 &= \underline{i} + 2\underline{j} - 3\underline{k} \ , \\ \underline{r}_3 &= 2\underline{i} - \underline{j} + 4\underline{k} \ . \end{split}$$

Answer: Vector \underline{v} can be expressed as above with

$$a = \frac{7}{8}$$
, $b = -\frac{17}{40}$, $c = \frac{2}{5}$

(b) Two vectors \underline{a} and \underline{b} have direction cosines $(1/\sqrt{2}, 1/\sqrt{2}, 0)$ and $(0, \sqrt{3}/2, -1/2)$, respectively. Find the direction cosines of a third vector \underline{c} that is perpendicular to both \underline{a} and \underline{b} .

Answer:

$$c_x = \frac{-1}{\sqrt{5}}, \quad c_y = \frac{1}{\sqrt{5}}, \quad c_z = \frac{1}{\sqrt{15}}$$

(c) The angle between two planes is defined as the angle formed by the respective vectors normal to the planes.

Given the two planes defined by

$$a_1x + b_1y + c_1z + d_1 = 0$$

and

$$a_2x + b_2y + c_2z + d_2 = 0 ,$$

with a_1 , b_1 , c_1 , d_1 , a_2 , b_2 , c_2 , d_2 real parameters, determine:

- i. The angle between the two planes as a function of the parameters defining the planes. [6]
- ii. The condition for the two planes to be parallel, expressed as a condition [6] for the parameters defining the two planes.

Answer:

(i)
$$\theta = \arccos\left(\frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}}\right)$$

(ii) e.g. $(a_1b_2 - b_1a_2)^2 + (a_1c_2 - c_1a_2)^2 + (b_1c_2 - c_1b_2)^2 = 0$

8. (a) Consider a function y = f(x). Give a geometrical interpretation of the derivative of the function at a point x_0 , and provide a relevant sketch.

[2]

Answer: The derivative gives the slope of the tangent to the function at the point $x = x_0$. For a sketch, see lecture notes.

(b) Find the acute angles between the curves

$$y = 8x^2$$

and

$$y = 8x^3$$

at their points of intersection.

[5]

Answer: There are two points of intersections, $x_0 = 0$ and $x_1 = 1$, and the acute angle θ_i between the functions at these points is given by $\theta_0 = 0$ and $\tan \theta_1 = \frac{8}{385}$, respectively.

(c) Consider a circle around the origin defined by the equation

$$x^2 + y^2 = 25$$
.

- i. Determine the slope of the tangent to the above circle at a given point (x_0, y_0) on the circle.
- (x_0, y_0) on the circle. ii. Find the value x_i where such a tangent intersects with the x-axis of the [4]
- coordinate system. Express x_i as a function of x_0 . Answer:

$$(i) \quad \frac{dy}{dx}\Big|_{x_0, y_0} = -\frac{x_0}{y_0}$$

$$(ii) \quad x_i = \frac{25}{x_0}$$

(d) Determine the derivative of $\sec^{-1} x$.

[6]

Answer:

$$\frac{df}{dx} = \frac{1}{x\sqrt{x^2 - 1}}$$

[6]

9. (a) Using $e^{i\theta} = \cos \theta + i \sin \theta$, express $\cos \theta$ and $\sin \theta$ in terms of exponentials. [3]

Answer:

$$\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}), \quad \sin \theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$$

(b) Write down the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials. Using these and the relationships derived in (a), express $\sinh(ix)$ in terms of $\sin x$ and $\cosh(ix)$ in terms of $\cos x$.

Answer:

$$\cosh x = \frac{1}{2}(e^x + e^{-x}), \quad \sinh x = \frac{1}{2}(e^x - e^{-x})$$

$$\cosh(ix) = \cos x, \quad \sinh(ix) = i\sin x$$

(c) Express $\cosh(x+iy)$ in the form u+iv, where x, y, u and v are all real, and show that

$$|\cosh(x+iy)|^2 = \sinh^2 x + \cos^2 y.$$

Answer:

$$\cosh(x+iy) = \cosh x \cos y + i \sinh x \sin y$$

Derivations not shown as answers.

(d) Show that $y = (\cosh^{-1} x)^2$ satisfies the equation

$$(x^2 - 1)\frac{d^2y}{dx^2} + x\frac{dy}{dx} = 2.$$

Answer: Derivations not shown as answers.

10. (a) A linear wave propagating in the x-direction can be expressed using the complex function [5]

$$f(x,t) = Ae^{i(kx - \omega t)} .$$

Here, the amplitude A, the wave number k and the angular frequency ω are real constants whereas t denotes time. Show that this function satisfies the equation

$$\frac{\partial^2 f}{\partial x^2} = \frac{k^2}{\omega^2} \frac{\partial^2 f}{\partial t^2} \,.$$

Answer: Derivations not shown as answers.

(b) If V = xf(u) and $u = \frac{y}{x}$ show that

$$x^{2} \frac{\partial^{2} V}{\partial x^{2}} + 2xy \frac{\partial^{2} V}{\partial x \partial y} + y^{2} \frac{\partial^{2} V}{\partial y^{2}} = 0.$$

Answer: Derivations not shown as answers.

(c) A vector field is given by $\underline{F} = -y\underline{i} + x\underline{j} + x^2\underline{k}$. In addition, a path C is defined by a counter-clockwise circular helix around the positive z axis starting at $\underline{r}_A = 2\underline{i}$ and ending at $\underline{r}_B = 2\underline{i} + 4\underline{k}$ (see figure below). As it goes from \underline{r}_A to \underline{r}_B , the helix makes two full cycles around the z axis. Write down a parametrisation of the path and determine the line integral

$$I = \int_C \underline{F} \cdot d\underline{r} \,.$$

Answer: Parametrisation

$$\underline{r}(t) = (2\cos t)\underline{i} + (2\sin t)\underline{j} + (t/\pi)\underline{k}$$
 with $t_A = 0$, $t_B = 4\pi$

Integral

$$I = 8(2\pi + 1)$$

Figure 1: Helical path described in question 10 (c).

[Part marks]

11. (a) The distribution of speeds, v, for the molecules of an ideal gas is given by $(v \ge 0)$

$$f(v) = 4\pi \left[\frac{M}{2\pi RT} \right]^{\frac{3}{2}} v^2 \exp \left[-\frac{Mv^2}{2RT} \right] ,$$

where M, R and T are constants. Determine the average speed v_a .

Note: The distribution f(v) is properly normalised, i.e. $\int_0^\infty f(v)dv = 1$.

Answer:

$$v_a = 4\sqrt{\frac{RT}{2\pi M}}$$

(b) A cylinder of radius r and height h is constructed such that its volume is minimised while satisfying the condition [6]

$$\left(\frac{\pi}{2r}\right)^2 + \left(\frac{\pi}{h}\right)^2 = \text{constant}.$$

Find the relationship between r and h for such a condition.

Answer:

$$\frac{h}{r} = 2\sqrt{2}$$

(c) Determine by any means the definite integral

$$I(\alpha) = \int_0^\infty \frac{\ln(1 + \alpha^2 x^2)}{1 + x^2} dx$$
,

[8]

where $\alpha \geq 0$ is a parameter.

Answer:

$$I(\alpha) = \pi \ln(\alpha + 1)$$

PHAS1245/2016 END OF PAPER