Подпоследовательности

Опр: 1. Если задана последовательность $\{a_n\}$ и последовательность возрастающих номеров $n_1 < n_2 < n_3 < \ldots < n_k < n_{k+1} < \ldots$ - натуральные числа, то последовательность $\{a_{n_k}\}$ называется подпоследовательностью последовательностью последовательность $\{a_n\}$.

Примеры

 $a_n\colon 1,2,3,1,2,3,1,2,3,\ldots$; $n_k=2k\Rightarrow a_{n_k}\colon 2,1,3,\ldots$ - подпоследовательность. $n_1=2,a_{n_1}=2;n_2=1,a_{n_2}=1;\ldots$ - не будет подпоследовательностью.

 a_n : 1, 1, 1, 5, 5, 5, . . . ; a_{n_k} : 5, 5, 1, 5, 5, . . . - не будет подпоследовательностью.

Теорема 1. Если последовательность a_n сходится к a, то всякая ее подпоследовательность a_{n_k} будет сходится к a.

- □ Докажем сначала вспомогательное утверждение:
 - (1) $n_k \ge k$ по индукции: k=1 верно, так как n_1 натуральное. Предположим, что для k верно, докажем для k+1: значем, что $n_{k+1} > n_k \ge k \Rightarrow$ так как числа натуральные, то $n_{k+1} \ge n_k + 1 \ge k+1$.
 - (2) Тогда по опр.: $\forall \varepsilon > 0, \ \exists \ N \colon \forall n > N, \ |a_n a| < \varepsilon.$ Пусть k > N, тогда $n_k \ge k > N \Rightarrow |a_{n_k} a| < \varepsilon.$

Теорема 2. (Больцано): Если последовательность a_n - ограничена, то в ней есть сходящаяся подпоследовательность.

Рис. 1: Идея доказательства

- Пусть $a_n \in [\alpha_1, \beta_1], \ l = \beta_1 \alpha_1$ (так, как a_n ограниченно). Делим отрезок $[\alpha_1, \beta_1]$ пополам и берем в качестве отрезка $[\alpha_2, \beta_2]$ ту половину в которой бесконечно много членов последовательности a_n . Замечаем, что $\beta_2 \alpha_2 = \frac{l}{2}$. Продолжая построение, получаем последовательность вложенных отрезков: $[\alpha_1, \beta_1] \supset [\alpha_2, \beta_2] \supset \ldots \supset [\alpha_k, \beta_k] \supset \ldots$ таких, что:
 - 1) в каждом $[\alpha_k, \beta_k]$ бесконечно много членов последовательности a_n ;
 - 2) $\beta_k \alpha_k = \frac{l}{2^{k-1}} \xrightarrow[k \to \infty]{} 0;$

 $\forall k$ находим $a_{n_k} \in [\alpha_k, \beta_k]$ так, что $n_1 < n_2 < \dots$ - это возможно по 1)-ому свойству отрезков.

По теореме о вложенных отрезках существует $c\in\bigcap_k[\alpha_k,\beta_k]$. Так как $a_{n_k}\in[\alpha_k,\beta_k]$ и $c\in[\alpha_k,\beta_k]$, то

$$|a_{n_k}-c| \leq \frac{l}{2^{k-1}} \to 0$$
, то есть $a_{n_k} \to c$.

Опр: 2. Предел подпоследовательности называется частичным пределом.

Задача: описать множество частичных подпределов.

Теорема 3. Пусть a_n - ограниченная последовательность. Тогда:

- (1) Последовательность $M_n = \sup_{k>n} a_k$ не возрастает, ограничена и сходится к некоторому числу M;
- (2) Последовательность $m_n = \inf_{k>n} a_k$ не убывает, ограничена и сходится к некоторому числу m;
- (3) M и m частичные пределы последовательности a_n и \forall частичный предел лежит в отрезке [m, M];

Пример: a_n : 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . ; все подпоследовательности которые к чему-то сходятся? Множество частичных пределов $\{1, 2, 3\}$. Самый большой - 3, самый маленький - 1.

- \square a_n ограниченная последовательность, тогда:
 - (1) Покажем, что $M_n \ge M_{n+1}$: $M_n = \sup\{a_{n+1}, a_{n+2}, \dots\}$, $M_{n+1} = \sup\{a_{n+2}, a_{n+3}, \dots\}$. Ясно, что $\{a_{n+1}, a_{n+2}, \dots\} \supset \{a_{n+2}, a_{n+3}, \dots\} \Rightarrow$ так как M_n верхняя грань для $\{a_{n+1}, a_{n+2}, \dots\}$, то M_n верхняя грань для $\{a_{n+2}, a_{n+3}, \dots\}$. Следовательно $M_n \ge M_{n+1}$.

Так как a_n - ограничена, то и M_n - ограничена. Тогда по теореме Вейрштрасса существует предел $\lim_{n\to\infty} M_n = M$.

(2) Покажем, что $m_n \leq m_{n+1}$: $m_n = \inf\{a_{n+1}, a_{n+2}, \dots\}$, $m_{n+1} = \inf\{a_{n+2}, a_{n+3}, \dots\}$. Ясно, что $\{a_{n+1}, a_{n+2}, \dots\} \supset \{a_{n+2}, a_{n+3}, \dots\} \Rightarrow$ так как m_n - нижняя грань для $\{a_{n+1}, a_{n+2}, \dots\}$, то m_n - нижняя грань для $\{a_{n+2}, a_{n+3}, \dots\}$. Следовательно $m_n \leq m_{n+1}$.

Так как a_n - ограничена, то и m_n - ограничена. Тогда по теореме Вейрштрасса существует предел $\lim_n m_n = m$.

(3) Докажем, что M - частичный предел: надо предъявить подпоследовательность $a_{n_k} \colon a_{n_k} \to M$.

$$n_1 \colon 0 \le M_1 - a_{n_1} < 1, \ M_1 - 1$$
 - не верхняя грань для $\{a_2, a_3, \dots\} \Rightarrow \exists \ a_{n_1} \in \{a_2, a_3, \dots\} \colon M_1 \ge a_{n_1} > M_1 - 1.$

$$n_2 \colon 0 \le M_{n_1} - a_{n_2} < \frac{1}{2}, \ n_2 > n_1, \ n_2 \ge n_1 + 1, \ M_{n_1} - \frac{1}{2}$$
 - не верхняя грань для $\{a_{n_1+1}, a_{n_1+2}, \dots\} \Rightarrow \exists \ a_{n_2} \in \{a_{n_1+1}, a_{n_1+2}, \dots\} \colon M_{n_1} - \frac{1}{2} < a_{n_2} \le M_{n_1}.$

Если уже построено n_k , то n_{k+1} : $0 \le M_{n_k} - a_{n_{k+1}} < \frac{1}{k+1}$ и $n_{k+1} > n_k$. Получаем подпоследовательность a_{n_k} , где $M_{n_{k-1}} - \frac{1}{k} \le a_{n_k} \le M_{n_k}$. M_{n_k} - подпоследовательность в M_n и $M_{n_k} \xrightarrow[k \to \infty]{} M$, $M_{n_{k-1}} - \frac{1}{k} \xrightarrow[k \to \infty]{} M$, так как $M_n \xrightarrow[n \to \infty]{} M \Rightarrow a_{n_k} \xrightarrow[k \to \infty]{} M$.

Для m - упражнение.

Покажем, что если произвольная подпоследовательность $a_{n_k} \to a$, то $a \in [m, M]$. По определению $m_{n_{k-1}} \le a_{n_k} \le M_{n_{k-1}}, \ M_{n_{k-1}} \to M, \ m_{n_{k-1}} \to m, \ a_{n_k} \to a$. По правилу перехода к пределу в неравенствах получим: $m \le a \le M$. Значит всякий частичный предел лежит в этих границах.

Опр: 3. Число $\lim_{n\to\infty}\sup a_k$ называется верхним пределом последовательности a_n . Это самый большой из частичных пределов. Обозначение: $\overline{\lim} a_n$.

Опр: 4. Число $\lim_{n\to\infty}\inf_{k>n}a_k$ называется нижним пределом последовательности a_n . Это самый маленький из частичных пределов. Обозначение: $\lim_{n\to\infty}a_n$.

Следствие 1. Пусть a_n - ограниченная последовательность. a_n сходится $\Leftrightarrow \overline{\lim}_{n \to \infty} a_n = \underline{\lim}_{n \to \infty} a_n$. В случае сходимости, верхний и нижний предел равны пределу последовательности.

 (\Rightarrow) очевидно: если всякая последовательность сходится, то и всякая её подпоследовательность сходится и совпадает с пределом последовательности.

 $(\Leftarrow)\inf_{k>n-1}a_k\leq a_n\leq \sup_{k>n-1}a_k$, где по определению $\inf_{k>n-1}a_k o \varliminf_{n\to\infty}a_n=\varlimsup_{n\to\infty}a_n\leftarrow \sup_{k>n-1}a_k\Rightarrow a_n$ - сходится по теореме о двух полицейских.

Упр. 1. Построить последовательность множество частичных пределов которой - это [0,1]. (Указание: эта последовательность - известна).

Пример: Последовательность

$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots + \frac{1}{n^2}$$

не убывает и она меньше 2 (можно доказать по индукции). Тогда по теореме Вейрштрасса $\exists \lim_{n \to \infty} a_n = \sup a_n$. Но найти руками этот предел пока нет возможности.

Последовательность

$$a_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n-1} \frac{1}{n}$$

у нее тоже сложно найти предел. Как понять сходится или нет? Она не монотонна, поэтому теорему Вейрштрасса не получится применить.

Можно ли сказать: сходится ли последовательность, не находя к чему она сходится? Можно, используя условие Коши.

Опр: 5. Последовательность a_n фундаментальна или удовлетворяет условию Коши, если

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n, m > N, |a_n - a_m| < \varepsilon$$