

模拟集成电路设计

中科大

微电子学院

黄鲁、程林

教材与参考书

教材: Design of Analog CMOS Integrated Circuits

中文版:模拟CMOS集成电路设计

[美] 毕查德.拉扎维(Behzad Razavi)著,陈贵灿 等译

西安交通大学出版社, 2018 (第2版, V2) 或 2003 (V1)

或英文版:模拟CMOS集成电路设计(第2版)

[美] Behzad Razavi 著, 清华大学出版社, 2018

参考书:模拟集成电路的分析与设计(第4版)

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

【美】PAUL R. GRAY等著 , 张晓林 等译

高等教育出版社, 2005 (特点: 三极管)

课程内容章节与课时安排

第1章 模拟IC设计绪论	2课时
第2章 MOS器件物理基础(17、18)	10课时
第3章 单级放大器	8课时
第4章 差动放大器	4课时
第5章 电流镜与偏置技术	4课时
第6章 放大器的频率特性	8课时
第7章 器件噪声	6课时
第8章 负反馈	6课时
第9章 运算放大器	6课时
第10章 稳定性与频率补偿	4课时

第1章 模拟集成电路设计绪论

- 模拟电路的重要性
- 常用的模拟集成电路
- 模拟CMOS集成电路设计的重要性
- 模拟电路设计特点
- 模拟电路设计EDA工具
- 集成电路产业常识

一、模拟电路的重要性

- 信号检测与处理
 - 各种理化传感器输出模拟信号; 模拟信号调理(放大、滤波)后进行ADC。
- ●高速数字信号传输接口电路、驱动电路
- 数字电路时钟和射频电路本振: PLL锁相环、MIXer
- 稳压电源: bandgap、LDO、DC-DC
- 各类存储器
- $lackbox{lack}$

二、常用的模拟集成电路

- 运算放大器(高增益、高输入与低输出阻抗、大输出摆幅,通用)
- 仪表放大器(低噪声、高输入阻抗,测量微弱信号)
- 专用放大器(如隔离、可变增益放大器、比较器等)
- 功率放大器(小功率才可用CMOS)
- 电源管理集成电路、DC-DC
- AC-DC、开关电源控制器
- LDO (low dropout regulator低压差线性稳压器)
- LED(发光二极管)驱动器、LCD(液晶)驱动器
- 电动机/马达控制器
- 串行/解串器 serdes (高速)
- 串行通信总线接口芯片
- 以太网接口集成电路

绝大多数可用CMOS集成电路

常用的模拟集成电路(续)

- ADC, DAC
- DDR SDRAM存储器接口
- 接口转换(电平、并串)集成电路
- 标清视频传输接口
- 高清多媒体接口集成电路HDMI (high-definition multimedia interface)
- 控制器局域网总线
- 电子系统内部集成总线
- 高频调谐器
- 数字电视广播调制解调
- 蜂窝移动通信集成电路
- 音频编解码器
- 视频编解码器
- 电力线通信
- 无源光纤网络和电缆调制解调器

基于模拟信号的射频集成电路

- LNA低噪声放大器
- 混频器
- 振荡器
- 射频功率放大器
- 双工器
- 滤波器
- RFID射频识别标签

构成无线网络、导航、蓝牙、zigbee、无线收发机芯片中的重要模块。

传感器模拟输出信号的调理电路

主要包括:

- MEMS微机电系统器件、磁强计
- MEMS系统惯性器件
- CMOS图像传感器
- 红外传感器
- 指纹识别芯片
- 电阻/电容/电感/压电/温度/压力/霍尔/传感器
- MEMS系统惯性器件
- 射频微机电开关
- 电荷耦合器件CCD
- 触控芯片
- 微流控/微通道芯片(生医)
- 生物微机电集成电路

三、模拟CMOS集成电路设计的重要性

- 与VLSI(数字IC)芯片工艺发展相适应 CMOS成本低、功耗小,VLSI采用CMOS工艺。 大多数IC内部包含模拟电路,如: PLL(片内高速时钟或本振)、 电源管理模块、高速接口等。
- 数模混合电路芯片,如: CMOS图像传感器、存储器、ADC等。
- 很多电子系统性能极限由模拟电路决定: 如高速ADC、低频微弱信号放大器、高速接口等, 以及射频系统前端的信号处理电路(LNA/MAX/VGA)。

模拟电路与数字电路进行集成的优点

- 提高系统可靠性,
- 减小模拟信号与数字电路接口通路的寄生电容和寄生电感,大幅度降低高频和高速信号接口功耗,
- 改善信号互联电学性能,
- 减小系统制造成本,
- 缩小系统尺寸。

2020/12/30

11

模拟电路与数字电路的性能比较

模拟电路优点(反之是数字电路的缺点)

- ◆功耗低:无同步CLOCK(对于非电容开关电路)
- ◆速度快: 无需延时
- ◆不易失效

模拟电路缺点(反之是数字电路的优点)

- ◆性能易受各种噪声影响
- ◆性能对工艺、电源、温度等鲁棒性较差

四、模拟集成电路设计特点

电路设计以人工为主

- ①根据设计指标,人工设计或选择电路结构(因结构与性能指标相关,可能需进行多次);
 - ②人工方法大致确定工作点(尤其是电压);
- ③借助EDA仿真工具和工艺器件模型,设计优化器件尺寸参数;

模拟IC设计流程

IC设计基础: 器件模型

- 器件模型参数的完备性和准确性, PDK (process design kits) 工艺设计文件包。
- 器件模型参数是测量的统计结果!
- 器件模型有频率、温度、电流密度等参数范围限制,
- 器件模型和参数与具体工艺线相关
- 现代工艺(制程)器件有大量非理想效应,手工只能计算模拟电路的工作点等重要参数,误差较大。
- 学习模拟CMOS IC设计的主要目的:
 选择电路结构(分析工作原理),
 提高参数优化效率(有针对性改进电路参数),
 把握正确仿真方法和查验仿真结果正确性!
 后端(版图)设计基础知识。

工艺选择

由系统性能(功耗、速度、噪声)和成本(面积、建模和建库、掩模与制作工艺)确定。

量产芯片工艺特征尺寸: 1960年25微米,。。。。 1um, 0.8um 0.6/0.5um, 0.35um, 0.25um, 0.18um, 0.13/0.11um, 90nm, 65nm, 45/40nm, 32/28nm, 22nm, 14nm, 10nm, 7nm, 5nm

速度限制:

- 1.最佳射频或模拟信号频率<工艺特征频率fr/10,(理论极限fT)
- 2.数字时钟频率<fr/>fr/100,系统时钟频率可能被FIFO速度限制。 式中 fr=gm(跨导)/(2PI*Cgs)为工艺特征频率

模拟IC设计困难原因

- 电路结构和工作点参数基于人工设计或查验
- 速度、功耗、增益、精度、电源电压等相互制约
- 多种非理想效应的影响
- 建模的精确性、工艺局限性
- 衬底噪声和串扰影响难以分析
- 需要进行鲁棒性设计(克服PVT变化):

电路结构、参数和版图设计应使工艺误差(随机工艺角、差分失配)、工作温度变化、电源电压对信号处理的影响弱化。

- ▶ 先进工艺更难进行模拟IC设计:
- ①非理想(高阶)效应更加严重;
- ②电源电压降低,阈值不是等比例降低,结构选择受限。
- ▶ 高频(射频)电路流片难以保证与仿真性能一致;
- ➤ CMOS不适合输出**线性**大功率信号。

五、模拟IC设计主流EDA工具

- ●前端电路设计(工具Cadence Virtuoso)
- ●仿真器:
- (1) Synopsys HSPICE(simulation program with intergrated circuits emphasis, SPICE起源于1970年代美国加州伯克利)
 - (2) Cadence Spectre, 具有图形化和RF(射频)特性仿真。

必须设置合理的输入信号、清楚了解所需要的结果, 才能进行有意义仿真!

- 后端设计: 版图设计(工具 Virtuoso)与验证
- 物理验证 (Cadence Assura, Mentor Calibre)
 DRC: 设计规则检查, LVS: 版图与原理图比较检查。
- 后仿post simulation: 版图寄生参数提取后仿真(工具 Mentor Calibre或Cadence QRC)。

后端设计(版图编辑+物理验证)术语

▶ 设计检查

- - 设计规则检查, Design Rules Check, DRC
- – 电气规则检查, Electrical Rules Check, ERC
- _ 版图线路图对比, Layout Versus Schematic, LVS
- _ 天线效应检查, Antenna Effect
- - 金属密度检查, Metal Density, 加dummy和开槽
- _ 大功率芯片要进行热分析
- 物理效应分析 (酌情)
- - 寄生参数提取, Parasitic Extraction, PEX
- _ 信号完整性, Signal Integrity, SI
- - 串扰, Crosstalk
- - IR电压降,IR Drop
- – 电迁移, Electromigration, EM

名词注释

- ◆ CMOS: Complementary Metal Oxide Semiconductors, 互补 金属氧化物半导体 (PMOS+NMOS)
- ◆ SOC: System on Chip, 片上系统,含有嵌入式CPU
- ◆ ASIC: Application Specific Integrated Circuit, 专用集成电路
- ◆ IP核: intellectual property core知识产权,经验证的可重用模块,分为软核(代码)、硬核(版图)与固核(含软件)
- ◆EDA: 电子设计自动化软件
- Foundry: 代工厂, 依据设计者提供的GDSII (geometry data standard)格式版图文件进行流片
- ◆ICC: IC C(Common, Center),为实验性流片提供Foundry工艺库、模型和IO PAD(不保证正确性)
- ◆MPW: Multi-Projects wafer,实验,省钱,40~50片样片, 完成数字单元库版图merge、DRC、工艺确认、某些封装。

六、集成电路产业常识

半导体市场与集成电路市场

半导体市场

集成电路市场

2015年数据

IC产业链

集成电路产业链示意图

》集成电路产业/产值地域图

(单位: 亿美元)

中国大陆IC产业现状

进出口情况:贸易逆差极为严重

CMOS相关主要代工厂foundry

● 国内:

- 上海中芯国际SMIC (CMOS 0.35~22nm),
- 上海宏力GSMC (CMOS 0.25~90nm),
- 武汉新芯 (40nm flash)、
- 上海华宏NEC(flash、0.13um BCD、锗硅BiCMOS),
- 无锡上华(0.5~0.11um BCD)。。。

● 境外和中国台湾:

台湾TSMC(台积电),

新加坡Global Foundry,

台湾UMC(联华),

STM (意法半导体),

欧洲AMS (奥地利微电子)

对选修本课程的要求

- 1. 认真听课,掌握基础知识和基本概念;
- 2. 及时看书,对照课堂PPT/PDF复习;
- 3. 自己做作业,至少弄懂解题方法。