

Liberté Égalité Fraternité

CONCOURS INTERNE POUR L'ACCES AU CORPS DES INGENIEURS DE L'INDUSTRIE ET DES MINES

SESSION 2021

EPREUVE ECRITE D'ADMISSIBILITE N° 2 DU 1^{ER} JUIN 2021

COMPOSITION SUR UN SUJET DE MATHEMATIQUES

(Durée: 4 heures - Coefficient: 1)

REMARQUES IMPORTANTES:

- Les copies doivent être rigoureusement anonymes et ne comporter aucun signe distinctif ni signature, même fictive, sous peine de nullité.
- Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.
- Le candidat s'assurera, à l'aide de la pagination, qu'il détient un sujet complet (le sujet comporte **3 pages**)
- La calculatrice n'est pas autorisée

SEULS PEUVENT ETRE AUTORISES A PARTICIPER A L'EPREUVE D'ADMISSION LES CANDIDATS QUI, APRES DELIBERATION DU JURY, OBTIENNENT A L'ISSUE DES EPREUVES D'ADMISSIBILITE UNE NOTE SUPERIEURE A 10/20 DANS CHACUNE DES 4 EPREUVES

Épreuve de mathématiques

Les problèmes sont indépendants; les candidats veilleront à bien numéroter les réponses aux questions sur la copie. La calculatrice n'est pas autorisée pour cette épreuve.

Problème 1

L'objet de ce problème est la construction d'approximations numériques de π . 1. Pour tout entier naturel n on note S_n la somme partielle d'ordre n de la série $\sum_{n\geqslant 0}\frac{(-1)^n}{2n+1}$, c'est-à-dire

$$S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}.$$

1.1 Montrer que pour tout $k \in \mathbb{N}$ l'intégrale

$$\int_0^1 x^{2k} \, dx$$

existe et la calculer.

1.2 Démontrer que, pour tout $n \in \mathbb{N}$, on a

$$S_n = \int_0^1 \frac{dx}{1+x^2} + (-1)^n \int_0^1 \frac{x^{2(n+1)}}{1+x^2} dx$$

 $\underline{1.3}$ En déduire que la série $\sum_{n\geqslant 0} \frac{(-1)^n}{2n+1}$ est convergente, préciser sa somme et montrer que, pour tout $n\in\mathbb{N}$,

$$\left| \sum_{k=n+1}^{\infty} \frac{(-1)^k}{2k+1} \right| \leqslant \frac{1}{2n+3}.$$

 $\underline{1.4}$ Soit $\varepsilon > 0$. Combien de termes de la série $4\sum_{n\geqslant 0}\frac{(-1)^n}{2n+1}$ est-il suffisant de calculer pour obtenir une approximation de π à ε près ? Donner la valeur numérique pour $\varepsilon = 10^{-2}$.

2. Formule de Machin

- $\underline{2.1}$ Soient a et b deux réels tels que $\cos a$, $\cos b$ et $\cos(a+b)$ soient non nuls. Exprimer $\tan(a+b)$ en fonction de $\tan a$ et $\tan b$.
- $\underline{2.2}$ On pose $a=\arctan\frac{1}{5}$ et $b=\arctan\frac{1}{239}$. Calculer $\tan(4a-b)$ et en déduire la valeur de 4a-b.
- 2.3 Rappeler le développement en série entière de $x \mapsto \frac{1}{1+x}$ et préciser son rayon de convergence. En déduire celui de Arctan ainsi que son rayon de convergence.
- $\underline{2.4}$ Déduire des questions 2.2 et 2.3 une série numérique dont π est la somme. Que penser de la vitesse de convergence de cette série par rapport à celle obtenue à la question 1.4?

Problème 2

Soient n un entier naturel non nul, et E un espace euclidien de dimension n muni d'une base orthonormée $\mathcal{B} = (e_1, \ldots, e_n)$. L'algèbre des matrices carrées de taille n à coefficients dans un corps \mathbb{K} est notée $\mathcal{M}_n(\mathbb{K})$.

Soit l'application linéaire ℓ définie par

$$\forall i \in \{1, ..., n-1\}, \quad \ell(e_i) = e_{i+1} \quad \text{et} \quad \ell(e_n) = e_1.$$

<u>1.</u>

- 1.1 Expliciter la matrice A de ℓ dans la base \mathcal{B} .
- 1.2 Justifier que ℓ est une isométrie; en déduire que A est inversible et préciser son inverse ainsi que son déterminant.
- 2. Pour $k \in \{0, \ldots, n-1\}$, on pose $\omega_k = e^{2ik\pi/n}$ et U_k la matrice colonne dont les coefficients sont les puissances successives de ω_k , depuis ω_k^0 jusque ω_k^{n-1} .
- $\underline{2.1}$ Montrer que U_k est vecteur propre de la matrice A associé à une valeur propre que l'on précisera.
- $\underline{2.2}$ En déduire que A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$. Préciser son polynôme caractéristique, la relation de diagonalisation, une matrice diagonale et la matrice de passage associée.
 - 2.3 À quelle condition A est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?

Problème 3

Soient r un entier supérieur ou égal à 1 et $p \in]0;1[$ fixés.

On considère une succession d'épreuves aléatoires indépendantes pour lesquelles deux issues sont possibles : succès (de probabilité p) ou échec (de probabilité 1-p).

Ces épreuves aléatoires sont répétées (sans limite du nombre de tentatives) jusqu'à l'obtention du $r^{\text{ème}}$ succès. On note X la variable aléatoire indiquant le nombre d'épreuves qui ont été nécessaires à la réalisation de cette condition.

<u>1.</u>

- 1.1 Déterminer la loi de probabilité de X.
- 1.2 Montrer que l'espérance et la variance de X existent et les calculer.
- <u>2.</u> On suppose dans cette question que r=1. Une fois l'expérience précédente réalisée (et donc la valeur de X déterminée), on recommence X fois l'épreuve et on note Y la variable aléatoire indiquant le nombre de succès au cours de cette seconde série d'épreuves.
- <u>2.1</u> Soit n une valeur possible de X; déterminer la loi conditionnelle de Y sachant l'événement $\{X = n\}$, c'est-à-dire, pour toute valeur possible k de Y, la probabilité

$$\mathbb{P}\left(\{Y=k\}|\{X=n\}\right).$$

- 2.2 En déduire la loi de probabilité de Y.
- 2.3 Montrer que l'espérance de Y existe et la calculer.
- <u>3.</u> On revient au cas général où $r \in \mathbb{N}^*$; Y a la même signification qu'à la question 2. Sans chercher à déterminer la loi de Y, montrer que cette variable aléatoire admet une espérance et la calculer.

Problème 4

Un modèle d'évolution de populations animales relie le nombre d'individus y(t) en fonction du temps t à la variation y'(t) de ce nombre et aboutit à une équation différentielle non linéaire du type

 $y'(t) = a y(t) - b\sqrt{y(t)} \qquad (E)$

où a et b sont deux réels positifs. On étudie ce problème pour $t \in \mathbb{R}_+$.

L'objet de ce problème est de résoudre l'équation (E) à l'aide d'un changement d'inconnue et de comprendre l'évolution finale de la population en fonction du nombre d'individus initial $y(0) = y_0 \in \mathbb{R}_+$.

- <u>1.</u> À quelle condition, portant sur y_0 , le nombre d'individus reste-t-il constant au cours du temps?
- 2. On suppose que y est une fonction strictement positive sur un intervalle I.
- 2.1 Montrer que y est solution de (E) si et seulement si la fonction $z = \sqrt{y}$ est solution strictement positive sur I d'une équation différentielle linéaire (E') que l'on précisera.
 - 2.2 Résoudre (E') et préciser le signe des ses solutions.
- 2.3 En déduire la forme générale des solutions de (E) avec leur intervalle de définition, puis parmi ces solutions celle vérifiant $y(0) = y_0$.
- <u>3.</u> Préciser, en fonction des réels y_0 , a et b, l'évolution de la population au fil du temps. Indiquer lorsqu'il y a lieu le temps au bout duquel la population étudiée s'éteint.