

Taller #6

1. Considere el siguiente algoritmo:

Algoritmo de Dijkstra

Input: Un grafo o digrafo ponderado G con pesos no negativos. w(u, v) es el peso de la arista (u, v), sea $w(u, v) = \infty$ si $(u, v) \notin E(G)$.

Output: L(v) la distancia mínima de u a v, para todo $v \in V(G)$.

Iteración:

1.
$$S = \{u\}$$

2.
$$L(u) = 0$$

3. Para todos los vértices $v \neq u$:

a.
$$L(v) = w(u, v)$$

4. Hasta que S = V(G) o $L(v) = \infty \ \forall \ v \notin S$:

a. Seleccione un vértice $x \notin S$ con L(x) mínimo.

b.
$$S = S \cup \{x\}$$

c. Para todo $v \notin S$:

1.
$$L(v) = \min\{L(v), L(x) + w(x, v)\}\$$

5.
$$d(u, v) = L(v), \forall v \in V(G)$$

- a. ¿Cuál es la diferencia en el criterio de finalización de este algoritmo con respecto al algoritmo de Dijkstra trabajado en clase?
- b. Use este algoritmo para encontrar la distancia mínima del vértice a a todos los demás vértices.

2. Considere la siguiente tabla de frecuencias:

		T 64 .	
Carácter	Frecuencia	Carácter	Frecuencia
A	8	I	4
D	16	О	8
E	8	R	2
F	8	S	2
G	4	Т	4

- a. Construya un código de Huffman y codifique la cadena $\it TEORÍADEGRAFOS.$
- b. Verifique si la entropía es igual a la longitud esperada.
- 3. Escriba los recorridos pre orden, in orden y post orden para el siguiente árbol:

