Explaining Results of Path Queries on Graphs: Single-Path Results for Context-Free Path Queries

Jelle Hellings

Department of Computer Science, University of California, Davis, Davis, CA 95616-8562, USA

Edge-labeled graphs and queries

Edge-labeled graphs and queries

Edge-labeled graphs and queries

Path queries: Expressing queries via formal languages

- ► Simple queries represent graph navigation via a path.
- ► Capture this navigation via the path labeling.
- Express the labeling of interest via a formal language
 E.g., regular languages or context-free languages.

Path queries: Expressing queries via formal languages

- ► Simple queries represent graph navigation via a path.
- Capture this navigation via the path labeling.
- Express the labeling of interest via a formal language E.g., regular languages or context-free languages.

This work: Context-free path queries

A grammar $\mathscr{C} = (\mathcal{N}, \Sigma, \mathcal{P})$ is

- \triangleright a set of non-terminals \mathcal{N} ;
- ightharpoonup a set of alphabet symbols Σ ; and
- ▶ a set of production rules \mathcal{P} of the form $A \mapsto \sigma$ or $A \mapsto B$ c.

Example: The context-free grammar for indirectFriendOf := friendOf⁺ $\mathcal{N} = \{A\}, \Sigma = \{\text{friendOf}\}, \text{ and } \mathcal{P} = \{A \rightarrow \text{friendOf}, A \rightarrow A A\}.$

Problem: Alice wants to contact Eve via friends

indirectFriendOf

Problem: Alice wants to contact Eve via friends

Problem: Alice wants to contact Eve via friends

Problem: Alice wants to contact Eve via friends

The single-path semantics

The evaluation single $(q|_{\mathfrak{G}})$ of path query q specified by language \mathcal{L} on graph \mathfrak{G} yields single $(q|_{\mathfrak{G}}) = \{m\pi n \mid \pi \text{ is a shortest path in } \mathfrak{G} \text{ such that } \operatorname{trace}(\pi) \in \mathcal{L}\}.$

indirectFriendOf

The single-path semantics

The evaluation single($q|_{\mathfrak{G}}$) of path query q specified by language \mathcal{L} on graph \mathfrak{G} yields $\operatorname{single}(q|_{\mathfrak{G}}) = \{m\pi n \mid \pi \text{ is a shortest path in } \mathfrak{G} \text{ such that } \operatorname{trace}(\pi) \in \mathcal{L}\}.$

indirectFriendOf evaluates to single-path

Alice friendOf Bob friendOf Alice Alice friendOf Carol

Alice friendOf Bob friendOf Eve

• •

Representing the paths of interest

- Edge-labeled graphs are *finite automata*.
- ▶ The traces of paths from one node to another represent a *regular language*.

Representing the paths of interest

- Edge-labeled graphs are *finite automata*.
- ► The traces of paths from one node to another represent a *regular language*.

Lemma (Bar-Hillel et al.)

Let $\mathscr{C} = (\mathcal{N}, \Sigma, \mathcal{P})$ be a grammar, let $\mathfrak{G} = (\mathcal{V}, \Sigma, \delta)$ be a graph, let $A \in \mathcal{N}$, and let $m, n \in \mathcal{V}$. The language $\mathcal{L}(\mathscr{C}; A) \cap \mathcal{L}(\mathfrak{G}; m, n)$ can be represented by a grammar.

Representing the paths of interest

- Edge-labeled graphs are *finite automata*.
- ► The traces of paths from one node to another represent a *regular language*.

Lemma (Bar-Hillel et al.)

Let $\mathscr{C} = (\mathcal{N}, \Sigma, \mathcal{P})$ be a grammar, let $\mathfrak{G} = (\mathcal{V}, \Sigma, \delta)$ be a graph, let $A \in \mathcal{N}$, and let $m, n \in \mathcal{V}$. The language $\mathcal{L}(\mathscr{C}; A) \cap \mathcal{L}(\mathfrak{G}; m, n)$ can be represented by a grammar.

- Mismatch: many paths have the same trace!
- ► Solution: combine encoding of grammar and graph via *annotated grammar*.

indirectFriendOf := $\{A \rightarrow friendOf, A \rightarrow AA\}.$

indirectFriendOf := $\{A \rightarrow friendOf, A \rightarrow AA\}.$

Annotated grammar $\mathscr{C}|_{\mathfrak{G}} = (\mathcal{N}|_{\mathfrak{G}}, \Sigma, \mathcal{P}|_{\mathfrak{G}})$ with

- $ightharpoonup \mathcal{N}|_{\mathfrak{G}} = \{A|_{mn} \mid m, n \in \{A, B, C, D, E\}\} \cup \{A|_{Fn} \mid n \in \{A, B, C, D, E\}\}; \text{ and}$
- $\triangleright \mathcal{P}|_{\mathfrak{G}} = P_{\Sigma} \cup P_{\mathcal{N}}$ with
 - ▶ $P_{\Sigma} = \{A|_{mn} \mapsto \sigma \mid (m, \sigma, n) \in \delta \land (A \mapsto \sigma) \in \mathcal{P}\};$ and
 - $P_{\mathcal{N}} = \{ A|_{mn} \mapsto B|_{mo} C|_{on} \mid (A \mapsto B C) \in \mathcal{P} \}.$

indirectFriendOf := $\{A \rightarrow friendOf, A \rightarrow AA\}.$

Annotated grammar $\mathscr{C}|_{\mathfrak{G}} = (\mathcal{N}|_{\mathfrak{G}}, \Sigma, \mathcal{P}|_{\mathfrak{G}})$ with

- $ightharpoonup \mathcal{N}|_{\mathfrak{G}} = \{A|_{mn} \mid m, n \in \{A, B, C, D, E\}\} \cup \{A|_{Fn} \mid n \in \{A, B, C, D, E\}\}; \text{ and}$
- $\triangleright \mathcal{P}|_{\mathfrak{G}} = P_{\Sigma} \cup P_{\mathcal{N}}$ with
 - ▶ $P_{\Sigma} = \{A|_{mn} \mapsto \sigma \mid (m, \sigma, n) \in \delta \land (A \mapsto \sigma) \in \mathcal{P}\};$ and
 - $P_{\mathcal{N}} = \{ A|_{mn} \mapsto B|_{mo} \ C|_{on} \mid (A \mapsto B \ C) \in \mathcal{P} \}.$

Deriving a path from Alice to Eve

AliceEve

indirectFriendOf := $\{A \rightarrow friendOf, A \rightarrow AA\}.$

Annotated grammar $\mathscr{C}|_{\mathfrak{G}} = (\mathcal{N}|_{\mathfrak{G}}, \Sigma, \mathcal{P}|_{\mathfrak{G}})$ with

- $\mathcal{N}|_{\mathfrak{G}} = \{A|_{mn} \mid m, n \in \{A, B, C, D, E\}\} \cup \{A|_{Fn} \mid n \in \{A, B, C, D, E\}\}; \text{ and }$
- $\triangleright \mathcal{P}|_{\mathfrak{G}} = P_{\Sigma} \cup P_{\mathcal{N}}$ with
 - ▶ $P_{\Sigma} = \{A|_{mn} \mapsto \sigma \mid (m, \sigma, n) \in \delta \land (A \mapsto \sigma) \in \mathcal{P}\};$ and
 - $P_{\mathcal{N}} = \{ A|_{mn} \mapsto B|_{mo} C|_{on} \mid (A \mapsto B C) \in \mathcal{P} \}.$

Deriving a path from Alice to Eve

A | AliceCarol A | CarolEve

indirectFriendOf := $\{A \rightarrow friendOf, A \rightarrow AA\}.$

Annotated grammar $\mathscr{C}|_{\mathfrak{G}} = (\mathcal{N}|_{\mathfrak{G}}, \Sigma, \mathcal{P}|_{\mathfrak{G}})$ with

- $ightharpoonup \mathcal{N}|_{\mathfrak{G}} = \{A|_{mn} \mid m, n \in \{A, B, C, D, E\}\} \cup \{A|_{Fn} \mid n \in \{A, B, C, D, E\}\}; \text{ and}$
- $\triangleright \mathcal{P}|_{\mathfrak{G}} = P_{\Sigma} \cup P_{\mathcal{N}}$ with
 - ▶ $P_{\Sigma} = \{A|_{mn} \mapsto \sigma \mid (m, \sigma, n) \in \delta \land (A \mapsto \sigma) \in \mathcal{P}\};$ and
 - $P_{\mathcal{N}} = \{ A|_{mn} \mapsto B|_{mo} \ C|_{on} \mid (A \mapsto B \ C) \in \mathcal{P} \}.$

Deriving a path from Alice to Eve

A | AliceCarol A | CarolDan A | DanEve

indirectFriendOf := $\{A \rightarrow friendOf, A \rightarrow AA\}.$

Annotated grammar $\mathscr{C}|_{\mathfrak{G}} = (\mathcal{N}|_{\mathfrak{G}}, \Sigma, \mathcal{P}|_{\mathfrak{G}})$ with

- $\mathcal{N}|_{\mathfrak{G}} = \{A|_{mn} \mid m, n \in \{A, B, C, D, E\}\} \cup \{A|_{Fn} \mid n \in \{A, B, C, D, E\}\}; \text{ and }$
- $\triangleright \mathcal{P}|_{\mathfrak{G}} = P_{\Sigma} \cup P_{\mathcal{N}}$ with
 - $P_{\Sigma} = \{A|_{mn} \mapsto \sigma \mid (m, \sigma, n) \in \delta \land (A \mapsto \sigma) \in P\};$ and
 - $P_{\mathcal{N}} = \{ A|_{mn} \mapsto B|_{mo} c|_{on} \mid (A \mapsto B c) \in \mathcal{P} \}.$

Deriving a path from Alice to Eve

Alice friendOf Carol friendOf Dan friendOf Eve

Shortest string in a grammar

$\textbf{Algorithm} \ \mathsf{MinimizeSet}(\mathscr{C} = (\mathcal{N}, \Sigma, \mathcal{P})) \text{:}$

```
1: \mathcal{P}', cost := empty mapping, empty mapping.
 2: new is a min-priority queue.
 3: for all (A \mapsto \sigma) \in \mathcal{P} do
        if A ∉ cost then
             cost[A], \mathcal{P}'[A] := 1, (A \mapsto \sigma).
            add A to new with priority 1.
 7: while new \neq 0 do
        Take A with minimum priority in new.
        Remove A from new.
 9:
        for all (c \mapsto A B) \in \mathcal{P} with B \in cost do
10:
             PRODUCE(C \mapsto A B).
11:
        for all (c \mapsto B A) \in \mathcal{P} with B \in cost do
12:
             PRODUCE(C \mapsto B A).
13:
14: return \{\mathcal{P}'[A] \mid A \in \mathcal{P}'\}.
```

Algorithm PRODUCE(D \mapsto E F):

```
    if D ∉ cost then
    cost[D] := cost[E] + cost[F].
    P'[D] := D → E F.
    Add D to new with priority cost[E] + cost[F].
    else if cost[D] > cost[E] + cost[F] then
    cost[D] := cost[E] + cost[F].
    P'[D] := D → E F.
    Lower priority of D ∈ new to cost[E] + cost[F].
```

Theorem

MINIMIZESET(&) yields a minimizing set of production rules in

$$O(|\mathcal{N}|(|\mathcal{N}|\log|\mathcal{N}|+|\mathcal{P}|)).$$

Evaluating single-path semantics

$$\mathsf{MinimizeSetGG}(\mathscr{C} = (\mathcal{N}, \Sigma, \mathcal{P}), \mathfrak{G} = (\mathcal{V}, \Sigma, \delta))$$

- 1. Use MinimizeSet on an annotated grammar.
- 2. Improvement: derive annotated grammar in-place.
- 3. Derive shortest paths from the resulting production rules.

Theorem

 $\label{eq:minimizing} \mbox{MinimizeSetGG}(\mathscr{C}, \mathfrak{G}) \mbox{ yields a minimizing set of production rules in}$

$$O(|\mathcal{N}||\mathcal{V}|^2(|\mathcal{N}||\mathcal{V}|^2\log(|\mathcal{N}||\mathcal{V}|^2)+|\mathcal{P}|(|\mathcal{V}|^3+|\delta|)).$$

Cost of the single-path semantics

Grammars: Bounded vs. unbounded

Grammars: Unambiguous vs. ambiguous

Conclusion

Efficient answering path queries with shortest paths is possible.

Future Work

- ► Goal-oriented algorithms.
- ► High-performance and scalable algorithms.
- ▶ Optimizations for simple grammars (e.g., LL(1), LR(1)).

https://jhellings.nl/