SENTIMENT ANALYSIS OF ELECTRONIC PRODUCTS IN

Lazada

FINAL PROJECT GROUP 2

Meet Our Teams

Members:

Denis Irham Bashir Ammar Hakim

Mentor:

Azizur Rachman

TABLE OF CONTENTS

INTRODUCTION

Backgorund – Goals – Benefits – Tools- Timeline

METHODOLOGYData Understanding - Data

Data Understanding – Data Preprocessing - EDA – NLP - Modelling

CONCLUSION

Evaluation - Confusion

Evaluation – Conlusion -Literature

Introduction - Background

NUMBER OF ONLINE SHOPPERS IN INDONESIA (in millions)

As the E-commerce markets in Indonesia is getting bigger every year, product feedbacks play the bigger roles in increasing the revenue of the sellers. This can be caused by the change behavior of consumer to **compare** products that they want to buy first from the **reviews** and prioritize the **services** they get from the seller. Hence, the sentiment analysis is needed to monitor and find the particular **aspects** of product from the reviews that people are expressing in positive, neutral, or negative way.

Introduction - Goals

Model

Build a sentiment analysis model that can interpret customer feedbacks by defining the feedback in some of the aspects.

Insights

Provide insights of what features of product and services that needed to tailored to meet their customer needs.

Benefits

1

A reference for sentiment analysis in other e-commerce or social media 2

Applicable for the recommendation system in e-commerce

3

Improve customer services of the product

4

Increase sales revenue

5

Develop quality products

6

Improve crisis management

Timeline

Tools

Jupyter Notebook

Pandas

Matplotlib

matpl tlib

Scikit-Learn

NLTK

Sastrawi

Workflow

Workflow

Data Understanding

Explore and understanding variables of the dataset

Data Preprocessing

Preparing the dataset for analysis and modelling

Exploratory Data Analysis

- •Making the visualisation of the dataset to gain business understanding
- •Investigate the shape of the dataset and number of samples

Text Preprocessing

- Cleaning the dataset by handling the null values
- •Handle the text dataset by the process of NLP

Modelling

Selecting the machine learning method suited with the dataset

Evaluation

- Predict the test dataset
- Evaluating the model with performance metrics

Data Understanding

Lazada Indonesian Reviews

Product reviews from Lazada Indonesia based on 5 categories.
The dataset were divided into 2 items:

- 20191002-items.csv
- 20191002-reviews.csv

Source: https://www.kaggle.com/grikomsn/lazada-indonesian-reviews?select=categories.txt

beli-laptop

beli-smart-tv

shop-televisidigital

jual-flashdrives

beli-harddiskeksternal

Dataset Lazada Indonesian Reviews

20191002-items.csv

Column Names	Definition	Data Type
itemid	ld of item	Int64
category	Category in e-commerce	Object
name	Title of the item	Object
brandname	Brand name of item	Object
url	Link to buy the item	Object
price	Price of item	Int64
averagerating	Average rating of item	Int64
totalreviews	Total Reviews of item	Int64
retrieveddate	Date of last calculation	Object

Dataset Lazada Indonesian Reviews

20191002-reviews.csv

Column Names	Definition	Data Type
itemID	Id of item	int64
category	Category in e-commerce	object
name	Title of the item	object
rating	Rating by user	int64
originalRating	-	float64
reviewTitle	Title of review	object
reviewContent	Content of review	object
likeCount	Total Likes	int64
upVotes	Total upVotes	int64
downVotes	Total downvotes	int64
helpful	1 : Condition is helpful 0: Condition isnt helpful	bool
relevanceScore	Relevance score	float64
boughtDate	Date of transaction	object
clientType	Type of application	object
retrievedDate	Date of calculation	object

Data Preprocessing

Merge Dataset

Join two dataset with keys itemId and category resulting in 203787 rows x 22 columns. Eventhough its not related to the NLP, but it can be used for EDA

df =pd.merge(data, data I, how="inner",on=["itemId",'category'])

Handling Missing Values

Drop the missing values in reviewContent for sentiment analysis

df=df[df['reviewContent'].notna()]

brandName price

category

... rating

reviewContent

Data Preprocessing

Handling Outliers

 There were some outliers in the price distribution, so we choose to investigate more about it and found the review was full of joke in rangeof price >Rp 40.000.000

df.reviewContent[df.price==df.price.max()]

Reviews

SEBUT SAJA MAWAR

"Akhirnya kebeli juga berkat jual GINJAL keponakan"

SEBUT SAJA BUDI

"Barang nya udh dtg,pesen tadi ehh nyampe nya kemaren,sekarang dipake cuma buat alas tenis meja,thxx..."

Data Preprocessing

Handling Outliers

 So we choose to remove the product that has the range of price > Rp 40.000.000

df = df[df.price < 40000000] sns.boxplot(df.price)

From this

To this

Data preprocessing

Label 0

Set Samples

We reduce the amount of dataset that will used for modelling to shorten the computer processing. The dataset became an imbalance so we set the sample to be equal in amount that is 5000

```
s1=df[df.label==1].sample(5000, replace=True) s2=df[df.label==0].sample(5000, replace=True)
```

data=pd.concat([s1,s2])

row

COI	1000	
1	183583	
1	20204	

col

	col	row
1	1	5000
0	1	5000

Data preprocessing

Set label

We set the satisfaction rate to be positive and negative. The positive label will be filled with 5 and 4 in rating and negative will be the rest.

```
label=[]
for index, row in df.iterrows():
    if row['rating']==5:
        label.append(I)
    elif row['rating']==4:
        label.append(I)
    else:
        label.append(0)
df['label']=label
df.head()
```


Data preprocessing

IMPORTANCE OF RATINGS & REVIEWS

Based on Lazada's data, products with 10 or more 4-5-star ratings have: 72 Y

more traffic 18x more sales

Traffic of product with and without Reviews

No. Ratings & Reviews

Impact on Traffic

1-9 = 5x

10-19 = 14x

>=20 = 29x

Your product reviews have a big influence on your customer's purchasing decision. The more reviews your products have, the more traffic you gain.

Remember: For every orders you received, ask your customers for their ratings and reviews to get more traffic.

- Positive Seller Rating
 - Get higher rank on Lazada's SEO
 - Chance to participated on event and campaign held by Lazada
 - Chance to join priority program
- Increase GMV of SKU
- 10 rejections = 1 bad review

Based on Lazada's data, products with 10 or more
4-5-star ratings have: 23x more & more traffic sales

- Positive Seller Rating
 - Get higher rank on Lazada's SEO
 - Chance to participated on event and campaign held by Lazada
 - Chance to join priority program
- Increase GMV(Gross Merchant Values) of SKU(Stock Keeping Unit)
- 10 rejections = 1 bad review

Category

Most of the categories exists in the dataset were 'beli-harddisk-eksternal'. But it does'nt reflect the item in the dataset because there were many seller use the unrelated categories too.

Brand
There were 235 brands in the dataset and the best seller brand is SanDisk

COOCA LED TV 40 INCH

[GRATIS ONGKIR] – FULL HD PANEL -SLIM

3952 units sold

COOCA LED TV 24 INCH

[GRATIS ONGKIR] –HD PANEL- SLIM

3540 units sold

Text Preprocessing

Tokenization Symbol and Stop Word Removal Stemming Bag of Words Weighting

Text Preprocessing

Tokenization

Splitting sentence into words.

import re
df.reviewContent=df.reviewContent.apply(lambda x: re.split(r'\s+', x))

Example:

```
['barang bagus banget',
'barang rusak, packing buruk banget',
'barang oke, tapi pengiriman buruk banget',
'packing rapi, pengiriman cepat dan aman']
```



```
[['barang', 'bagus', 'banget'],
['barang', 'rusak', ',', 'packing', 'buruk', 'banget'],
['barang', 'oke,', 'tapi', 'pengiriman', 'buruk', 'banget'],
['packing', 'rapi', ',', 'pengiriman', 'cepat', 'dan', 'aman']]
```

Text Preprocessing

Remove unimportant text

We removed some unwanted text that unrelated to the sentiment analysis and summarizing the text.

Remove punctuation and numbers

```
df.reviewContent = df.reviewContent.apply(lambda x: x.lower())
df.reviewContent = df.reviewContent.apply(lambda x: re.sub(r'([^a-z\s]+)',",x))
```

Remove Stopwords

```
from nltk.corpus import stopwords
from string import punctuation
stop_words=stopwords.words("indonesian")+list(punctuation)
df.reviewContent=df.reviewContent.apply(lambda x: [w for w in x if not w in stop_words])
df.reviewContent=df.reviewContent.apply(lambda x: str(' '.join(x)))
```

Example:

'Paket sudah sampai, sudah dicoba dan berfungsi dengan baik, semoga awet dan tidak ada kendala.'

Paket sampai, dicoba berfungsi baik, semoga awet kendala.'

Text Preprocessing

Stemming

Reducing the affixes and suffixes to get the root of words.

from Sastrawi.Stemmer.StemmerFactory import StemmerFactory
factory = StemmerFactory()
stemmer = factory.create_stemmer()
df.reviewContent=df.reviewContent.apply(lambda x:stemmer.stem(x))

Example:

'Paket sudah sampai, sudah dicoba dan berfungsi dengan baik, semoga awet dan tidak ada kendala.'

'Mereka Meniru-nirukannya.'

'paket sudah sampai sudah coba dan fungsi dengan baik moga awet dan tidak ada kendala' 'mereka tiru'

Text Preprocessing

Train Test Split
Split the dataset to be train and test dataset

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(dfr.reviewContent, dfr['label'], test_size=0.1, random_state=30)

Bag of Words

The bag-of-words model is a popular and simple feature extraction technique used when we work with text. It describes the occurrence of each word within a document.

 $from \ sklearn.feature_extraction.text \ import \ Count Vectorizer$

cv = CountVectorizer()
bog= cv.fit transform(dfr.reviewContent)

	col	row
X_train	1	9000
X_test	1	1000

9132	9000
9132	1000

Text Preprocessing

TF-IDF

Using TF-IDF to transform sentence into vector that can be applicable for machine learning model. In information retrieval, tf-idf, TF*IDF, or TFIDF, short for term frequency-inverse document frequency, is a numerical statistic that is intended to reflect how important a word is to a document in a collection or corpus.

from sklearn.feature_extraction.text import TfidfVectorizer

tf = TfidfVectorizer()

X_train = tf.fit_transform(X_train)

X_test = tf.transform(X_test)

	col	row
C_train	1	9000
C_test	1	1000

8631	9000
8631	1000

Examples of Bag of Words and TF-IDF

'barang rusak, packing buruk banget']

Text Preprocessing

Bag of Words

'barang bagus banget',

```
['bagus', 'banget', 'barang', 'buruk', 'packing', 'rusak']
[[1 1 1 0 0 0]
[0 1 1 1 1]]
```

TF-IDF

df =[

Text Preprocessing

Word Visualisation

For label 1

Text Preprocessing

- Word Visualisation
 - For label 0

cv = RepeatedStratifiedKFold(n_splits=2, n_repeats=3, random_state=1)

Modelling - Comparation

Decision Tree

AUC : 0.843

SVM

AUC : 0.888

Bagging

AUC : 0.871

Random Forest

AUC : 0.896

sns.heatmap(confusion_matrix(y_test, pred),annot=True,fmt='g')

Modelling – Confusion Matrix

Modelling – Classification Report

	precision	recall	f1-score	support
0	0.87	0.90	0.88	494
1	0.90	0.87	0.88	506
accuracy			0.88	1000
macro avg weighted avg	0.88 0.88	0.88 0.88	0.88 0.88	1000 1000

Modelling – RFC Performance

Random forest Classifier Algorithm with high interpretability and accuracy

Accuracy : 0.883 AUC : 0.896

Modelling – Feature Importances

RFC Feature Importances

Words	feature_ importances	Sum of Words
bagus	0.024868	1697
mantap	0.023659	494
cepat	0.018677	1130
kecewa	0.017781	823
barang	0.017632	4238
sesuai	0.014964	1345
gak	0.012157	758
kirim	0.012155	2212
lazada	0.011953	1645
awet	0.011398	484

Conclusion

Sentiment Analysis model has been created with RFC model with the biggest AUC (0,895)

There are 3 ways that you can implement to increase your ratings and reviews:

REMIND

Each customer only has 30 days to leave a review. Remind them via "Chat" or send an "invitation card" in your parcel.

Reward customer with vouchers for leaving a review.

Listen and understand your customers. **Respond** to both good and bad reviews.

Literature

- J. Wong, Natural Language Processing Workflow, 2020, (https://towardsdatascience.com/natural-language-processing-workflow-1dddf3a48ab5).
- B. Shetty, Natural Language Processing (NLP) for Machine Learning, 2018, (https://towardsdatascience.com/natural-language-processing-nlp-for-machine-learning-d44498845d5b).
- A. F. Zulfikar, Pengembangan Algoritma Stemming Bahasa Indonesia dengan Pendekatan Dictionary Base Stemming untuk Menentukan Kata Dasar dari Kata Yang Berimbuhan, Universitas Pamulang, 2017.
- https://sellercenter.lazada.com.ph/seller/helpcenter/ratings-reviews-11737.html?spm=a2a15.helpcenter-psc-article.articles-list.4.41a71da3t3hxJY
- https://sellercenter.lazada.co.id/seller/helpcenter/Apa-Yang-Dimaksud-Dengan-Positif-Seller-Rating-6070.html?spm=a2a14.helpcenter-psc-search.article.1.37cb475dS3IBs5
- https://sellercenter.lazada.co.id/seller/helpcenter/Apa-ltu-Bisnis-Analisis--6041.html?spm=a2a14.helpcenter-psc-article.articles-list.7.5b0f4af5qYllv4

THANKS

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

