

Выпускная квалификационная работа

по курсу «Data Science»

Тема: Прогнозирование конечных свойств новых материалов (композиционных материалов)

Слушатель: Степанова Василиса Валерьевна

Разведочный анализ данных

Прочность при растяжении, МПа

Потребление смолы, г/м2 1023.0000

Шаг нашивки

Угол нашивки, град

Плотность нашивки

Объединила датасеты и изучила описательную статистику с добавлением медианы.

Проверила типы данных признаков

	Соотношение матрица-наполнитель	1023.0000	2.9304	0.9132	0.3894	2.3179	2.9069	3.5527	
	Плотность, кг/м3	1023.0000	1975.7349	73.7292	1731.7646	1924.1555	1977.6217	2021.3744	
	модуль упругости, ГПа	1023.0000	739.9232	330.2316	2.4369	500.0475	739.6643	961.8125	
1	Количество отвердителя, м.%	1023.0000	110.5708	28.2959	17.7403	92.4435	110.5648	129.7304	
	Содержание эпоксидных групп,%_2	1023.0000	22.2444	2.4063	14.2550	20.6080	22.2307	23.9619	
	Температура вспышки, С_2	1023.0000	285.8822	40.9433	100.0000	259.0665	285.8968	313.0021	
	Поверхностная плотность, г/м2	1023.0000	482.7318	281.3147	0.6037	266.8166	451.8644	693.2250	
M	одуль упругости при растяжении, ГПа	1023.0000	73.3286	3.1190	64.0541	71.2450	73.2688	75.3566	

2466.9228

218.4231

44.2522

6.8992

57.1539

mean

std

485.6280

59.7359

45.0158

2.5635

12.3510

min

1036.8566

33.8030

0.0000

0.0000

0.0000

25%

2135.8504 2459.5245

219.1989

0.0000

6.9161

57.3419

179.6275

0.0000

5.0800

49.7992

50%

75%

2767.1931

257.4817

90.0000

8.5863

64.9450

max

5.5917

2207.7735

1911.5365

198.9532

33.0000

413.2734

1399.5424

82.6821

3848.4367

414.5906

90.0000

14.4405

103.9889

median

2.9069

1977.6217

739,6643

110.5648

22.2307

285.8968

451.8644

73.2688

2459.5245

219,1989

0.0000

6.9161

57.3419

count

1023.0000

1023.0000

1023.0000

1023.0000

Data	columns (total 13 columns):							
#	Column	Non-Null Count	Dtype					
0	Соотношение матрица-наполнитель	1023 non-null	float64					
1	Плотность, кг/м3	1023 non-null	float64					
2	модуль упругости, ГПа	1023 non-null	float64					
3	Количество отвердителя, м.%	1023 non-null	float64					
4	Содержание эпоксидных групп,%_2	1023 non-null	float64					
5	Температура вспышки, С_2	1023 non-null	float64					
6	Поверхностная плотность, г/м2	1023 non-null	float64					
7	Модуль упругости при растяжении, ГПа	1023 non-null	float64					
8	Прочность при растяжении, МПа	1023 non-null	float64					
9	Потребление смолы, г/м2	1023 non-null	float64					
10	Угол нашивки, град	1023 non-null	int64					
11	Шаг нашивки	1023 non-null	float64					
12	Плотность нашивки	1023 non-null	float64					
dtype	dtypes: float64(12), int64(1)							

Проверила датасет на наличие:

- Пропусков
- Дубликатов 0
- **Уникальных** значений

1014 Соотношение матрица-наполнитель Плотность, кг/м3 1013 модуль упругости, ГПа 1020 Количество отвердителя, м.% 1005 Содержание эпоксидных групп,% 2 1004 Температура вспышки, С 2 1003 Поверхностная плотность, г/м2 1004 Модуль упругости при растяжении, ГПа 1004 1004 Прочность при растяжении, МПа Потребление смолы, г/м2 1003 Угол нашивки, град 989 Шаг нашивки Плотность нашивки 988

Разведочный анализ данных

4 Построила попарные графики рассеяния

Построила графики распределения переменных и "ящики с усами"

200 250 300 Температура вспышки, С 2

Разведочный анализ данных

1.00

- 0.75

- 0.50

0.25

- 0.00

- -0.25

-0.50

-0.75

Построенные модели

- Линейная регрессия
- Лассо (LASSO) регрессия
- Гребневая (Ridge) регрессия
- Метод опорных векторов для регрессии
- Метод k-ближайших соседей
- Деревья решений
- Случайный лес
- Градиентный бустинг
- Многослойный персептрон
- Нейронная сеть

Модель для модуля упругости при растяжении

Сравнение моделей с параметрами по умолчанию

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.011479	-3.018468	-2.434764	-0.033263	-7.216742
LinearRegression	-0.022599	-3.034619	-2.453669	-0.033520	-7.222509
Ridge	-0.021050	-3.032391	-2.451847	-0.033495	-7.212702
Lasso	-0.011479	-3.018468	-2.434764	-0.033263	-7.216742
SVR	-0.050196	-3.073227	-2.486431	-0.033930	-7.562206
KNeighborsRegressor	-0.252309	-3.350693	-2.673319	-0.036522	-8.485262
DecisionTreeRegressor	-1.317465	-4.505732	-3.660577	-0.050026	-11.406496
RandomForestRegressor	-0.081437	-3.117793	-2.525298	-0.034499	-7.342254

Сравнение моделей с подобранными параметрами

RMSE

MAE

MAPE max_error

R2

Ridge(alpha=60, positive=True, solver='lbfgs')	-0.008194	-3.013781	-2.433792	-0.033249	-7.173646
Lasso(alpha=0.15)	-0.011479	-3.018468	-2.434764	-0.033263	-7.216742
\$VR(C=0.03)	-0.009769	-3.016089	-2.434354	-0.033249	-7.220076
KNeighborsRegressor(n_neighbors=29)	-0.033495	-3.050098	-2.470094	-0.033784	-7.219134
DecisionTreeRegressor(max_depth=1, max_features=1, random_state=3128, splitter='random')	-0.011451	-3.018141	-2.426078	-0.033145	-7.182651
RandomForestRegressor(bootstrap=False, criterion='absolute_error', max_depth=2, max_features=1, n_estimators=50, random_state=3128)	-0.011578	-3.018652	-2.438736	-0.033310	-7.189810

Модель для модуля упругости при растяжении

Модель для прочности при растяжении

Сравнение моделей с параметрами по умолчанию

	R2	RMSE	MAE	MAPE	max_error
DummyRegressor	-0.014754	-458.517408	-366.664655	-0.160630	-1095.981614
LinearRegression	-0.017429	-459.567129	-368.992333	-0.161357	-1121.299260
Ridge	-0.016246	-459.284035	-368.747797	-0.161270	-1119.398974
Lasso	-0.009446	-457.664727	-367.497218	-0.160752	-1112.987433
\$VR	-0.012648	-458.069725	-366.556719	-0.160477	-1093.217827
DecisionTreeRegressor	-1.101336	-648.893181	-524.028712	-0.223497	-1648.797617
Gradient Boosting Regressor	-0.121957	-482.055962	-389.345452	-0.169754	-1194.692003

Сравнение моделей с подобранными параметрами

	RZ	KMSE	MAE	MAPE	max_error
Ridge(alpha=60, random_state=3128, solver='sag')	-0.012026	-458.047100	-366.642494	-0.160565	-1094.747442
Lasso(alpha=5)	-0.008467	-457.198647	-366.086794	-0.160291	-1090.943083
SVR(C=0.2)	-0.012996	-458.138246	-366.569324	-0.160528	-1093.961228
DecisionTreeRegressor(max_depth=1, max_features=3, random_state=3128)	-0.020410	-459.733570	-365.998753	-0.160581	-1107.058869
GradientBoostingRegressor(loss='absolute_error', max_depth=1, max_features=11, n_estimators=50, random_state=3128)	-0.022204	-460.206446	-368.817375	-0.161594	-1105.850304

Модель для прочности при растяжении

	R2	RMSE	MAE	MAPE	max_error
Базовая модель	-0.001555	-439.676848	-350.354301	-0.151168	-1187.738138
Лучшая модель (модель Lasso)	-0.009342	-441.382723	-350.450799	-0.151207	-1179.461001

	R2	RMSE	MAE	MAPE	max_error
Прочность при растяжении, тренировочный	0.013067	-456.085754	-364.432618	-0.159590	-1266.944961
Прочность при растяжении, тестовый	-0.009342	-441 382723	-350 450799	-0 151207	-1179 461001

Модель для соотношения матрица-наполнитель

Модель MLPRegressor из библиотеки sklearn

MLPRegressor

MLPRegressor(early_stopping=True,
hidden_layer_sizes=(24, 24, 24, 24, 24, 24, 24), max_iter=5000,
random_state=3128, validation_fraction=0.3, verbose=True)

-2.260243

Соотношение матрица-наполнитель, тестовый 0.007322 -0.864914 -0.694770 -0.296923

Модель для соотношения матрица-наполнитель

Обучение Нейросети

Нейросеть с ранней остановкой

Нейросеть с Dropout-слоем

50

100

150

200

Модель для соотношения матрица-наполнитель

Нейросеть dropout -0.432122 -1.038864

-2.807533

Обучение Нейросети

250

Разработка приложения

Разработала приложение для прогнозирования соотношения матрицанаполнитель

Прогнозирование соотношения матрица-наполнитель

Спасибо за внимание!

do.bmstu.ru

