SMART GRID

PROGRAMMEER THEORIE

ANTIPROTEINE

ANASTASIJA MARKOVIC, SARA MORCY, SLIEM EL ELA

Universiteit van Amsterdam Minor Programmeren

Universiteit van Amsterdam

18 JUNI, 2020

How are we going to present?

TABLE OF CONTENTS

- 1. Recap of our case
- 2. State Space
- 3. Algorithms & Results
- 4. Comparison of Results
- 5. Conclusion
- 6. Q & A

GOAL PROJECT

INTRODUCTION OF THE PROBLEM

- Houses produce energy (e.g green energy)
 - ► More energy than they use!
 - We want to store this extra energy.
- This energy is stored in batteries.

Questions:

- Given the locations of: the houses and the batteries
 - What is the cheapest way to connect them? (Because cables cost money!)
- Follow-up question 1: Where to put the batteries?
- Follow-up question 2: How many batteries can we use?

CONSTRAINTS

Take into consideration:

- Houses have a maximum output energy
- Batteries have a maximum capacity
 - ► Rule for batteries: The maximum output of the houses counted up may not exceed the battery capacity.

- Batteries should not be connected to each other. Also not through a house.
- A house should not be connected to more batteries.
- Each house needs a unique cable to be connected to the battery.
- More cables can be positioned over the same grid segment

STATE SPACE

UPPER BOUND ON STATE SPACE

State Space

The upper bound on the amount of states in the state space is

$$\underbrace{\begin{pmatrix} 50+50 \\ 50 \end{pmatrix}}_{\text{Amount of ways to connect house to battery}} \cdot \underbrace{5}_{\text{amount batteries}} \right)^{150} = 2.65 \cdot 10^{4455}$$

UPPER BOUND ON TOTAL PRICE

Information:

- 5 batteries, each 5000
- cable price = length cable .9

Lower bound price

Lower bound price:

$$price = 5 \cdot 5000 + 1 \cdot 9 \cdot 150 = 26,350$$

Lower bound price

Upper bound price:

$$price = 5 \cdot 5000 + 100 \cdot 9 \cdot 150 = 160,000$$

ALGORITHMS

ALGORITHMS - RANDOM

Random Algorithm

- for house in list of houses:
 - find a random battery (that satisfies the constraints)
 - ► generate random cable

ALGORITHMS - RANDOM RESULTS

ALGORITHMS

- Greedy + Swap:
 - ► Greedy House
 - Greedy Battery
- Greedy optimization + Swap:
 - ► Greedy House
 - Greedy Battery

ALGORITHMS - GREEDY

Greedy House

- for house in houses:
 - ► look for closest available battery
 - connect

ALGORITHMS - GREEDY HOUSE RESULTS

ALGORITHMS - GREEDY BATTERY

Greedy Battery

- for battery in batteries:
 - ► Make list of houses that are closest
 - Connect all possible starting from close houses

ALGORITHMS - GREEDY BATTERY RESULTS

GREEDY ALGORITHM PROBLEM

- No guarantee that all houses will be connected!
- Solution: Swap houses at the end + other optimizations to the algorithm itself!

ALGORITHM - GREEDY

Greedy House Optimization

- **for house in houses:** ← order matters!, 150! possibilities
 - ► look for closest available battery
 - connect

ALGORITHMS - GREEDY

Greedy Battery

- **for battery in batteries**: $\leftarrow 5! = 120$ combinations
 - ► Make list of houses that are closest
 - Connect all possible starting from close houses

ALGORITHMS - SIMULATED ANNEALING

- Greedy with respect to what....
- Make a new score function!
- New heuristic

$$score = w_1 \cdot manhattan + w_2 \cdot house-output$$

■ Want to find $score(w_1, w_2)$ function such that total cost is lowest

ALGORITHMS - SIMULATED ANNEALING RESULTS

ALGORITHMS - CLUSTERING ALGORITHM

Clustering Pseudo Code

- Create initial solution with **greedy house** algorithm
- Reposition the batteries to the means of their collection of connected houses
- If new location = house, change location slightly
- Find new config with **greedy house** and if new price is worse, repeat
- Repeat until difference is small

ALGORITHMS - CLUSTERING ALGORITHM RESULTS

RESULTS

COMPARISON OF RESULTS

District 2

COMPARISON OF RESULTS

District 1

CONCLUSION

CONCLUSION

- Goal: Understand and explore smart grid problem
- Method: Optimize and build on algorithms to optimize price
- General approach
- Unconventional Heuristics: Combine them!
- No "one size fits all" solution

THANK YOU FOR ATTENDING!