ENG 4550 – Introduction to Control Systems Lab 4

Lab 4: SRV02 Position Control

Ramp Response Using PV
 Controller

What we will do in Lab 4

- 1. Simulation
- 2. Experimental test

Submission of next lab

1. Lab report (Lab 4)

 Finish your lab report according to the template in Section 2.5.2 and tips in Section 2.5.4.

II. RESULTS

Do not interpret or analyze the data in this section. Just provide the results.

- Response plot from step 8 in Section 2.3.2.1, Simulated PV controller with ramp input
- 2. Response plot from step 8 in Section 2.3.2.2, Ramp response of implemented PV controller
- Provide applicable data collected in this laboratory (from Table 2.1).

Submission of next lab

uni		OI HEALIAD			
	Section / Ques-	Description	Symbol	Value	Unit
	tion				
. 1	Question 4	Pre-Lab: Model Parameters			
V		Open-Loop Steady-State Gain	K		
		Open-Loop Time Constant	au		
,	Question 4	Pre-Lab: PV Gain Design			
$\sqrt{}$		Proportional gain	k_p		
		Velocity gain	k_v		
	Question 5	Pre-Lab: Control Gain Limits			
		Maximum proportional gain	$k_{p,max}$		
	Question 6	Pre-Lab: Ramp Steady-State Error			
		Steady-state error using PV	e_{ss}		
	Question 7	Pre-Lab: Integral Gain Design			
		Integral gain	k_i		
	2.3.1.1	Step Response Simulation			
		Peak time	t_p		
		Percent overshoot	PO		
		Steady-state error	e_{ss}		
	2.3.1.1	Filtered Step Response Using PV			
		Peak time	t_p		
		Percent overshoot	PO		
		Steady-state error	e_{ss}		
	2.3.1.2	Step Response Implementation			
		Peak time	t_p		
		Percent overshoot	PO		
		Steady-state error	e_{ss}		
1	2.3.2.1	Ramp Response Simulation with PV			
$\sqrt{}$		Steady-state error	e_{ss}		
	2.3.2.2	Ramp Response Implementation with			
1		PV			
V		Steady-state error	e_{ss}		
	2.3.3	Ramp Response Simulation with with			
		no steady-state error			
		Steady-state error	e_{ss}		
	2.3.3	Ramp Response Implementation with			
		with no steady-state error			
	I	0: 1 : :	I	I .	ı

Lab 4

- In 'ENG4550 control systems' on desktop, unzip 'Lab MatlabSimulin Software-20181001.zip' to a NEW DIRCTORY. All files you need in this Lab are in .../NEW DIRCTORY/Position Control (Labs 3-5)
- When complete,
 DELETE/REMOVE your files and
 the FOLDER you created.

Simulation

1. Configuring the SRV02 according to Section 2.4 in Workbook.

- In setup_srv02_exp02_pos.m, make sure CONTROL_TYPE is set to 'MANUAL'. Run setup_srv02_exp01_mdl.m.
- 2. Follow the steps in Section 2.3.2.1 Simulation.

Experimental test

1. Configuring the SRV02 according to Section 2.4 in Workbook.

- Setup q_srv02_pos.mdl: Double-click on the QUARC HIL
 Initialize block. Select the data acquisition device (q2_usb or q8_usb) you are using. Click on the **Defaults** and **OK** button.
- In setup_srv02_exp02_pos.m, make sure CONTROL_TYPE is set to 'MANUAL'. Run setup_srv02_exp01_mdl.m.
- 2. Follow the steps in Section 2.3.2.2 Implementing Ramp Response Using PV.
 - Before building the model (Step 6), click QUARC -> Set
 Default Options to avoid the possible target error.