Дельта-метод и его некоторые применения в статистике

Вирко Елизавета Петровна, гр. 422

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент В. В. Некруткин Рецензент: исследователь Е. А. Советкин

Санкт-Петербург 2019г.

Одномерная модель линейной регрессии с фиксированными регрессорами

Модель:

при
$$i=1,\ldots,n$$
 $y_i=ax_i+b+\varepsilon_i$,

- x_i известные постоянные числа ("регрессоры"),
- ε_i независимые одинаково распределенные случайные величины, $\mathbf{E}\, \varepsilon_i = 0, \mathbf{D}\, \varepsilon_i = \sigma^2$,
- y_i результаты наблюдений.

Применение МНК приводит к оценкам

$$\widehat{a}_n = \frac{\text{cov}_n}{\overline{s}_{xn}^2}, \quad \widehat{b}_n = \overline{y}_n - \widehat{a}_n \overline{x}_n, \quad \widehat{\sigma}_n^2 = \overline{s}_{yn}^2 - \widehat{a}_n^2 (\overline{s}_{xn}^2)^2.$$

Некоторые свойства:

- ullet $\widehat{a}_n,\widehat{b}_n,(n-2)\widehat{\sigma}_n^2/n$ несмещенные ([Ивченко, Медведев, 2010]).
- Если $\varepsilon_i \sim \mathrm{N}(0,\sigma^2)$, то $\widehat{\sigma}_n^2$ не зависит от $(\widehat{a}_n,\widehat{b}_n)^\mathrm{T}$ и известны распределения $(\widehat{a}_n,\widehat{b}_n)^\mathrm{T},\,\widehat{\sigma}_n^2$.

Одномерная модель линейной регрессии с условными математическими ожиданиями

Обычно имеем дело с повторной независимой выборкой.

Модель: пусть x,y — случайные величины с конечными вторыми моментами, $\mathrm{D}x=\sigma_x^2>0$, такие, что $\mathrm{E}(y\,|\,x)=ax+b$. Тогда

$$a = \frac{\operatorname{cov}(x, y)}{\sigma_x^2}, \quad b = \operatorname{E} y - a \operatorname{E} x, \quad \sigma^2 = \sigma_y^2 - \operatorname{cov}^2(x, y) / \sigma_x^2.$$

 $(x_1,y_1)^{\rm T},\ldots,(x_n,y_n)^{\rm T}$ — повторная независимая выборка из $(x,y)^{\rm T}$. Оценки параметров формально совпадают с полученными для модели с фиксированными регрессорами.

Некоторые свойства:

- ullet $\widehat{a}_n,\widehat{b}_n$ несмещенные ([Демиденко, 1981]).
- Если $\mathrm{E}(\varepsilon^2\,|\,x)=\mathrm{const}$, то $\mathrm{E}\,\widehat{\sigma}_n^2=n\sigma^2/(n-2)$, известно асимптотическое распределение $(\widehat{a}_n,\widehat{b}_n)^\mathrm{T}$.

Проверка гипотезы b=0. Стандартный критерий

На предыдущих двух моделях регрессии основан стандартный критерий.

Нулевая гипотеза: H_0 : b=0. Статистика:

$$au_{
m std} = \sqrt{n}\, \widehat{b}_n \, / \, \widehat{\sigma}_{
m std}, \quad$$
 где $\widehat{\sigma}_{
m std} = rac{n}{n-2} \, rac{\widehat{\sigma}_n^2}{\overline{s}_{xn}^2} \, \overline{(x^2)}_n.$

Распределение статистики при b = 0:

- x_i фиксированы, $\varepsilon_i \sim \mathrm{N}(0,\sigma^2)$. Тогда $\mathcal{L}(\tau_{\mathsf{std}}) = t(n-2)$ ([Rao et al., 2007], [Ивченко, Медведев, 2010]).
- ullet $\mathrm{E}(y\,|\,x)=ax+b$ и $\mathrm{E}((y-ax-b)^2\,|\,x)=\mathrm{const.}$ Тогда $\mathcal{L}(au_{\mathsf{std}})\Rightarrow \mathrm{N}(0,1)$ [Демиденко, 1981].
- ullet (x,y) $^{
 m T}$ имеет невырожденное гауссовское распределение. Тогда $\mathcal{L}(au_{\sf std}) = t(n-2).$

Согласно этим распределениям строится критерий, называемый стандартным. Именно он реализован в пакетах STATISTICA, SPSS, STATGRAPHICS и stats для языка R.

Одномерная модель линейной регресии с линейной аппроксимацией в $\mathbb{L}^2(d\mathrm{P})$. Постановка задачи

Проблемы:

- При каких еще условиях стандартный критерий применим (асимптотически точен)?
- Что делать, если стандартный критерий не применим?

Чтобы ответить на эти вопросы — более общая модель регрессии — линейная аппроксимация в $\mathbb{L}^2(d\mathrm{P})$. Снова повторная независимая выборка. Параметры и их МНК оценки те же, что в модели с УМО. Но без условия $\mathrm{E}(y\,|\,x)=ax+b$.

Задача:

- Найти условия применимости стандартного критерия в случае линейной аппроксимации в $\mathbb{L}^2(d\mathrm{P})$.
- Построить критерии, применимые в более общей ситуации.

Общее утверждение (Дельта-метод)

Обозначим
$$x^* = (x - Ex)/\sigma_x$$
, $\varepsilon = y - ax - b$.

Предложение

Пусть $(x,y)^{\mathrm{T}}$ обладает конечными четвертыми моментами, распределение x непрерывно. Тогда $\mathcal{L}\Big(\sqrt{n}\big((\widehat{a}_n,\widehat{b}_n,\widehat{\sigma}_n^2)^{\mathrm{T}}-(a,b,\sigma^2)^{\mathrm{T}}\big)\Big)\Rightarrow \mathrm{N}(\mathbf{0},\Sigma)$, где Σ имеет вид

$$\frac{1}{\sigma_x^2}\begin{pmatrix} \mathrm{D}(\varepsilon x^*) & \mathrm{E}(\varepsilon^2 x^*)\sigma_x - \mathrm{E}x\mathrm{D}(\varepsilon x^*) & \mathrm{E}(\varepsilon^3 x^*)\sigma_x \\ \mathrm{E}(\varepsilon^2 x^*)\sigma_x - \mathrm{E}x\mathrm{D}(\varepsilon x^*) & \mathrm{D}(\varepsilon(\sigma_x - x^*\mathrm{E}x)) & \sigma_x^2\mathrm{E}\varepsilon^3 - \mathrm{E}(\varepsilon^3 x^*)\sigma_x \\ \mathrm{E}(\varepsilon^3 x^*)\sigma_x & \sigma_x^2\mathrm{E}\varepsilon^3 - \mathrm{E}(\varepsilon^3 x^*)\sigma_x & \sigma_x^2\mathrm{D}(\varepsilon^2) \end{pmatrix}.$$

Следствие

Пусть $\mathrm{E}(\varepsilon^2\,|\,x) = \mathrm{const.}$ Тогда распределение $\sqrt{n}(\widehat{a}_n,\widehat{b}_n)^\mathrm{T}$ совпадает с известным для модели с УМО: $\mathcal{L}\Big(\sqrt{n}\big((\widehat{a}_n,\widehat{b}_n)^\mathrm{T} - (a,b)^\mathrm{T}\big)\Big) \Rightarrow \mathrm{N}(\mathbf{0},\Sigma)$, где

$$\Sigma = \frac{\sigma^2}{\sigma_x^2} \begin{pmatrix} 1 & -\operatorname{E} x \\ -\operatorname{E} x & \operatorname{E} x^2 \end{pmatrix}.$$

Проверка гипотезы b=0. Два критерия

Гипотеза H_0 : b = 0. Обозначим $\sigma_b^2 = D((y - ax - b)(Ex^2 - xEx))/\sigma_x^4$.

Статистика критерия: $\tau_n=\sqrt{n}\widehat{b}_n/\widehat{\sigma}_{0n}$, где $\widehat{\sigma}_{0n}^2\xrightarrow{\mathrm{P}_{\mathrm{H}_0}}\sigma_0^2$ и $\mathrm{P}(\widehat{\sigma}_{0n}>0)=1.$

Критерий

Пусть $\alpha \in (0,1)$. Критерий отвергает H_0 , если $|\tau_n| \ge C_{1-\alpha/2}$, где $C_{1-\alpha/2}$ — квантиль $\mathrm{N}(0,1)$ уровня $1-\alpha/2$.

Два критерия: если (общий критерий)

$$\widehat{\sigma}_{0n} = \widehat{\sigma}_{\text{gen}}^2 = \frac{1}{n\overline{s}_{xn}^4} \sum_{i=1}^n \left((y_i - \widehat{a}_n x_i - \widehat{b}_n) (\overline{x_n^2} - x_i \overline{x}_n) \right)^2,$$

или (модифицированный критерий)

$$\widehat{\sigma}_{0n} = \widehat{\sigma}_{\mathsf{mod}}^2 = \frac{1}{n\overline{s}_{xn}^4} \sum_{i=1}^n \left((y_i - \widehat{a}_n x_i) (\overline{x_n^2} - x_i \overline{x}_n) \right)^2,$$

тогда $\mathcal{L}(\tau_n) \stackrel{H_0}{\Longrightarrow} \mathrm{N}(0,1).$

Оба критерия асимптотически точны и состоятельны против альтернативы $H_{b^*}\colon b=b^* \neq 0.$

О применимости стандартного критерия

Положим

$$\sigma_{0,\mathsf{std}}^2 = \frac{1}{\sigma^2 \sigma_x^2 \, \mathbf{E} \, x^2} \, \mathbf{D} \left((y - ax - b) (\mathbf{E} \, x^2 - x \, \mathbf{E} \, x) \right).$$

Утверждение

Пусть x,y имеют конечные четвертые моменты, распределение x непрерывно. Стандартный критерий асимптотически точен тогда и только тогда, когда $\sigma_{0.std}^2=1$.

Следствие

- 1. Стандартный критерий асимптотически точен тогда и только тогда, когда $(y-ax-b)^2$ и $(x-\operatorname{E} x)^2$ некоррелированы.
- 2. В частности, это выполняется, если $\mathrm{E}((y-ax-b)^2\,|\,x)=\mathrm{const}$ или если $\mathrm{E}\,x=0$.

Ошибки первого рода. Равномерное распределение в эллипсе

$$E(y|x) = ax + b$$
, $E((y - ax - b)^2|x) \neq const$, $b = 0$.

- а) ${\bf E}x=0,\;\sigma_{0,{\sf std}}^2=1$: стандартный критерий асимптотически точен,
- 6) ${\rm E}x=2$, $\sigma_{0,{
 m std}}^2 pprox 0.85^2$: стандартный критерий асимптотически консервативен.

Рис.: Оценки вероятностей ошибок первого рода для равномерного распределения в эллипсе. $n=50\,(50)\,1000,\,\alpha=0.05.$

Поведение общего и модифицированного критериев при сдвигах

Пусть $\mathbf{E}\,x=\mathbf{E}\,y=0$, тогда b=0. Для $c\neq 0$ положим $x'=x+c,\ y'=y+ac.$ Тогда b'=0. Зафиксируем n и $(x_1,y_1)^{\mathrm{T}},\dots,(x_n,y_n)^{\mathrm{T}}$, и рассмотрим статистики критериев, построенные по $(x_1',y_1')^{\mathrm{T}},\dots,(x_n',y_n')^{\mathrm{T}}$ как функции от $c=\mathbf{E}x'$.

Лемма

1. Статистика общего критерия при $|c| o \infty$ имеет вид

$$-\sqrt{n}\operatorname{sgn}(c)(\widehat{a}_n-a)/\widehat{\theta}+\operatorname{O}(1/|c|),$$

где

$$\widehat{\theta} = \frac{1}{\sqrt{n}\overline{s}_{xn}^2} \left(\sum_{i=1}^n (y_i - \widehat{a}_n x_i - \widehat{b}_n)^2 (\overline{x}_n - x_i)^2 \right)^{1/2}.$$

2. Статистика модифицированного критерия при $|c| o \infty$ имеет вид

$$-\sqrt{n}\overline{s}_{xn}/c + O(1/c^2).$$

Ошибки первого рода. Влияние сдвига

$$\begin{aligned} \mathbf{E}(y|x) &= ax + b, \ \mathbf{E}((y - ax - b)^2|x) \neq \text{const}, \ b = 0. \\ \mathcal{L}(\tau_{\mathsf{std}}) &\Rightarrow \mathbf{N}(0, \Delta^2), \quad \Delta^2 = 2/3 + \mathbf{O}(1/c^2), |c| \to \infty. \end{aligned}$$

Рис.: Оценки вероятностей ошибок первого рода для равномерного распределения в эллипсе с различными сдвигами $c=\mathrm{E}\,x=-7\,(0.5)\,7$ при фиксированном объеме выборки $n=300,\,\alpha=0.05.$

Двумерная линейная регрессия. Три модели

- $y_i = a_1 x_{i1} + a_2 x_{i2} + b + \varepsilon_i$, x_{i1}, x_{i2} фиксированы, ε_i i.i.d., $\operatorname{E} \varepsilon_i = 0$, $\operatorname{D} \varepsilon_i = \sigma^2$. $(\widehat{a}_{1n}, \widehat{a}_{2n}, \widehat{b}_n, \widehat{\sigma}_n^2)^{\operatorname{T}}$ оценки МНК.
- x_1, x_2, y случайные величины, $\mathrm{E}(y \,|\, x_1, x_2) = a_1 x_1 + a_2 x_2 + b$, $(x_{11}, x_{12}, y_1)^\mathrm{T}, \dots, (x_{n1}, x_{n2}, y_n)^\mathrm{T}$ повторная независимая выборка, оценки МНК формально те же.

Свойства первых двух моделей переносятся с одномерного случая.

• Снова повторная независимая выборка, отказ от $\mathrm{E}(y\,|\,x_1,x_2)=a_1x_1+a_2x_2+b$, параметры и оценки те же.

Проверка гипотезы $c_1a_1 + c_2a_2 = 0$. Стандартный критерий

Гипотеза H_0 : $c_1a_1+c_2a_2=0$, где c_1,c_2 — фиксированные числа, не равные 0 одновременно.

Для обычно используемых моделей строится **стандартный критерий**.

Он точен, если

- ullet x_{i1}, x_{i2} фиксированы, $arepsilon_i \sim \mathrm{N}(0, \sigma^2)$ ([Ивченко, Медведев, 2010]),
- ullet $(x_1, x_2, y)^{
 m T}$ имеет невырожденное гауссовское распределение.

Асимптотически точен, если

$$ullet$$
 $\mathrm{E}(y\,|\,x_1,x_2)=a_1x_1+a_2x_2+b,$ $\mathrm{E}((y-a_1x_1-a_2x_2-b)^2\,|\,x_1,x_2)=\mathrm{const}$ ([Демиденко, 1981]).

Аналогично одномерному случаю интересно провести анализ применимости стандартного критерия в случае линейной аппроксимации в $\mathbb{L}^2(d\mathrm{P})$, а также построить другие критерии.

Проверка гипотезы $c_1a_1+c_2a_2=0$. Два критерия

Гипотеза H_0 : $c_1a_1 + c_2a_2 = 0$.

В работе доказывается вариант ЦПТ для $\sqrt{n} \big((\widehat{a}_{1n}, \widehat{a}_{2n})^{\mathrm{T}} - (a_1, a_2)^{\mathrm{T}} \big)$. Он применяется к построению критериев для проверки этой гипотезы.

Статистика критерия: $\tau_n = \sqrt{n}(c_1\widehat{a}_{1n} + c_2\widehat{a}_{2n})/\widehat{\sigma}_{0n}$, где $\widehat{\sigma}_{0n}^2$ — состоятельная оценка соответствующей асимптотической дисперсии (снова ЦПТ, но при выполнении H_0).

Как и ранее, получаем две оценки — общую (выборочную оценку) и модифицированную (состоятельную, только если верна H_0), а также два соответствующий критерия.

В обоих случаях $\mathcal{L}(\tau_n) \stackrel{H_0}{\Longrightarrow} \mathrm{N}(0,1)$, и оба критерия асимптотически точны и состоятельны против альтернативы $H_c\colon c_1a_1+c_2a_2=c \neq 0$.

Применимость стандартного критерия

Пусть x_1, x_2, y имеют конечные четвертые моменты, распределение $(x_1, x_2)^{\mathrm{T}}$ непрерывно.

Явно выписывается необходимое и достаточное условие применимости стандартного критерия, оно состоит в равенстве единице определенной величины $\sigma_{0.\mathrm{std}}^2$.

Оно выполняется, если $E((y - a_1x_1 - a_2x_2 - b)^2 \mid x_1, x_2) = const.$

Гипотеза $H_0\colon a_1=a_2$. Ошибки первого рода

Равномерное распределение в шаре.

$$\mathrm{E}(y\,|\,x_1,x_2)=a_1x_1+a_2x_2+b, \ \mathrm{E}((y-a_1x_1-a_2x_2-b)^2\,|\,x_1,x_2)
eq \mathrm{const},\, a_1=a_2, \ \sigma_{0,\mathrm{std}}^2=5/7$$
: стандартный критерий не применим.

Рис.: Оценки вероятностей ошибок первого рода, $n=50\,(50)\,1000,~\alpha=0.05$ для равномерного распределения в шаре.

Заключение

- Найдены асимптотические распределения оценок метода наименьших квадратов для одномерной и двумерной регрессии.
- На основе этих распределений построено по два асимптотически точных и состоятельных критерия для проверки гипотез H_0 : b=0 (в одномерном случае), H_0 : $c_1a_1+c_2a_2=0$ (в двумерном случае), изучены некоторые свойства этих критериев.
- Полученные критерии были сравнены при помощи вычислительных экспериментов между собой и с критериями, обычно применяемыми при проверке таких гипотез.
- Найдены условия применимости стандартных критериев при отказе от предположений модели с УМО.

Дельта-метод

При нахождении асимптотического распределения в общем случае использовался "дельта-метод" [Shao Jun, 1999].

Теорема

сходимость

Пусть η_n — последовательность d-мерных векторов, $U \subset \mathbb{R}^d$ — открытое, $u \mathbf{a} \in U$. Предположим, что отображение $f = (f_1, \ldots, f_k)^\mathrm{T} \colon U \to \mathbb{R}^k$ является дифференцируемым в точке \mathbf{a} . Обозначим $\Delta f_i \in \mathbb{R}^d$ — градиент функции f_i и положим $\Delta f_i = (\Delta f_1 : \ldots : \Delta f_k)$. Пусть для некоторой последовательности $c_n \to +\infty$, $n \to \infty$ имеет место

$$\mathcal{L}(c_n(\boldsymbol{\eta}_n - \boldsymbol{a})) \Rightarrow \mathrm{N}(\boldsymbol{0}, \Sigma).$$

Пусть, к тому же, $\mathrm{P}(\pmb{\eta}_n \in U) = 1$. Тогда при $n \to \infty$

$$\mathcal{L}ig(c_n(f(m{\eta}_n)-f(m{a}))ig)\Rightarrow \mathrm{N}(m{0},\Sigma_f),$$
 где $\Sigma_f=\Delta_f^{\mathrm{T}}(m{a})\,\Sigma\,\Delta_f(m{a}).$