Espacios contraíbles

Rafael Villarroel

2021-02-11 15:00 -0500

- Sea X un espacio topológico. Decimos que X es contraíble si es homotópico al espacio de un punto.
- Un espacio *convexo* es contraíble. [Un espacio $X \subseteq \mathbb{R}^n$ es convexo si para todos $x_1, x_2 \in X$ y $t \in [0, 1]$ se tiene que $(1-t)x_1+tx_2 \in X$. Sea $x_0 \in X$. Definamos $D\colon X\times I\to X$ como $D(x,t)=(1-t)x+tx_0$. Entonces D es un retracto fuerte por deformación de X en $\{x_0\}$.]

Rafael Villarroel Espacios contraíbles 2021-02-11 15:00 -0500

cualquier función continua $f: S^n \to X$ se puede extender a una función $F: B^{n+1} \to X$.