Building Locomotion Policies Using Online Reinforcement Learning

Group 12: Jared Buchanan, Steven Tran, Donald Dean Advisor: Michael Yip, Ph.D - Computer Science and Engineering

Background: Snake Robotics

Problem Statement

How do we control a complex robot optimally without an explicit dynamical model?

Reinforcement Learning (RL)

State (s): variables describing the current system's orientation, location, speed, etc.

Action (a): something the agent does to move to the next state.

Policy $(\pi(s) = a)$: a mapping of states to actions to be taken.

State-Action Space: all possible combinations of state and actions.

Reward Function: a user-defined function that provides a scalar feedback informing the agent how good an action choice was.

RL Goal: find policy that maximizes cumulative reward.

Curse of Dimensionality

- As you add more dimensions to your state representation, there is a combinatorial increase in you state-action space size.
- Computation becomes combinatorially more difficult as well.
- $10^1 > 10^2 > 10^3 > \dots$

Design Criteria + Decision Matrix

Design Criteria

- Low Dependency and User Input
- High Quality Locomotion Policy Output
- Low Convergence and Runtime
- Low Software Development Cost

Decision Matrix

	Dependency on user input	Quality of the locomotion policy	Time to converge to near optimal policy	Computation power needed to run in real time	Development Cost	Total
Weights	0.2	0.4	0.15	0.15	0.1	1
Policy Iteration (Model-based)	5	7	7	10	6	6.95
Q-learning (Model-free)	10	7	9	8	10	8.35
Hard coded Algorithm	0	2	3	10	2	2.95

Final Solution (part 1)

Q-Learning: model-free RL technique

```
Initialize Q(s, a) arbitrarily
Repeat (for each episode):
   Initialize s
   Repeat (for each step of episode):
       Choose a from s using policy derived from Q (e.g., \varepsilon-greedy)
       Take action a, observe r, s'
       Q(s, a) \leftarrow Q(s, a) + \alpha \left[ r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]
       s \leftarrow s':
   until s is terminal
```

Final Solution (part 2)

Incremental Feature Dependency Discovery (iFDD)

$$Q(s, a) = \sum_{i} x_i \Phi_i(s, a)$$

W = weight

 Φ = binary feature

Snake Model and State-Action Representation

Number of Joints	State-Action Space Size Calculation	State-Action Space Size (i.e # state-action combos)
N	(7)^N * (10)^3 * (3)^N	-
2	(7)^2 * (10)^3 * (3)^2	441,000
3	(7)^3 * (10)^3 * (3)^3	9,261,000
4	(7)^4 * (10)^3 * (3)^4	194,481,000

Software Implementation

Software: physics environment and C# scripting

Results: Q-Learning w/ IFDD vs. Random Policy

Results: IFDD improves Q-Learning

Results: Curse of Dimensionality

Conclusion

- Q-learning with IFDD algorithm produced a policy that learns from experience.
- Can be applied to any jointed robotic model
- Feasibility test and pre-training method
- Limitations:
 - curse of dimensionality
 - Tractability
 - Environment
 - Tasks

Future Directions

- Deep Q-Learning
- Neural Networks
- Test hyperparameters such as discount rate, learning rate, and relevance threshold
- Increase the number of joints
- Test different robotic configurations

Cost of Project

Item	Cost (relevant information)	
Personal Laptop	Free (through existing ownership)	
Unity	Free	
Labor	\$7500 (250 hours at \$30 per hour)	

Cost of Next Phase

Item	Cost	
Labor	\$7500 (250 hours at \$30 per hour)	
Amazon Cloud Reserved Server	\$1600 (16 servers for 50 hours at \$2 per hour)	
Luxury Highrise Apartment	\$12000 (3 months at \$4000/month)	

Thank You

Special thanks to UCSD Bioengineering, UCSD Computer Science and Engineering, Dr. Bruce Wheeler, Dr. Michael Yip, Teryn Johnson, and Ismael Munoz!

UC San Diego

