CSI2532 - Tutorial 9 - Normalization

Overview

The intent of today's tutorial is to give you hands up experience with functional dependencies (FD) and normalization.

Dependency rules

Reflexive rule	Augmentation rule	Transitivity rule
if $\beta \subseteq \alpha$,	if $\alpha \rightarrow \beta$,	if $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$,
then $\alpha \rightarrow \beta$	then $\gamma \alpha \rightarrow \gamma \beta$	then $\alpha \rightarrow \gamma$

Derived rules

Union rule	Decomposition rule	Pseudo-transitivity rule
if $\alpha \rightarrow \beta$, $\alpha \rightarrow \gamma$,	if $\alpha \rightarrow \beta \gamma$,	if $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$,
then $\alpha \rightarrow \beta \gamma$	then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$	then $\alpha \gamma \rightarrow \delta$

Use the rules above to prove a dependency holds. Or find a counter example here there is ambiguity so that α could not uniquely identify β .

Reflexive

rule

if
$$\beta \subseteq \alpha$$
,

then
$$\alpha \rightarrow \beta$$

Augmentation rule

if
$$\alpha \rightarrow \beta$$
,

then
$$\gamma \alpha \rightarrow \gamma \beta$$

Transitivity rule

if
$$\alpha \rightarrow \beta$$
 and $\beta \rightarrow \gamma$
then $\alpha \rightarrow \gamma$

Union rule

if
$$\alpha \rightarrow \beta$$
, $\alpha \rightarrow \gamma$

then
$$\alpha \rightarrow \beta \gamma$$

Decomposition rule

if
$$\alpha \rightarrow \beta \gamma$$

then
$$\alpha \rightarrow \beta$$
 and $\alpha \rightarrow \gamma$

Pseudo-transitivity rule

if
$$\alpha \rightarrow \beta$$
 and $\gamma \beta \rightarrow \delta$

then
$$\alpha \gamma \rightarrow \delta$$

Super Key

A super key in one where $K \rightarrow R$. To prove that you need to show K's closure K+ includes all relations (K+ = R).

Test superkey K

Test
$$\alpha = K$$

Check *α*+ → R

Candidate Key

A candidate key is a minimized super key. So there should be no $\alpha \in K$ where $\alpha + = R$.

Test α candidate K

Test $\alpha+\to K$ $\exists \ \beta\subset\alpha \ \text{test} \ ! \ \beta+\to R$ $\alpha \ \text{size n, and} \ \beta \ \text{size n-1}$

 α + (Closure of attribute set)

To calculate α + run through all functional dependencies $\beta \rightarrow \gamma$, if $\alpha \subseteq \beta$ then add γ to a+

calc... α+

```
\alpha+:=\alpha
do {
foreach (\beta \rightarrow \gamma \text{ in } F) {
  if (\beta \subseteq \alpha+) {
   \alpha+\cup\gamma
  }
}
while (changes to \alpha+);
```

F+ (closure of all functional dependencies)

Here is the original algorithm we learned for calculating F+.

calc... F+

```
F+:= F

do {

foreach (f in F+) {

F+ ∪ apply(reflexivity, f);

F+ ∪ apply(augmentation, f);

}

foreach (f1, f2 in F+) {

F+ ∪ apply(transitivity, f1, f2);

}

while (changes to F+);
```

But, we can instead use $\alpha+$. Calculate the $\alpha+$ for every combination. Create all combinations of X \rightarrow Y.

The official algorithm is

```
∃ γ⊆R find γ+
∃ S⊆γ+ output FD γ⊆
```

Compute F+

 $\mathbf{R} = (A, B, C)$

 $F = \{A \rightarrow B, B \rightarrow C\}$

$$\emptyset$$
+ = \emptyset so $\emptyset \rightarrow \emptyset$

$$(A)+ = A$$
 $(B)+ = B$ $(C)+= C$
= AB = BC

$$(AB)+=AB$$
 $(AC)+=AC$ $(BC)+=BC$ $(ABC)+=ABC$
= ABC = ABC

Compute F+

 $\mathbf{R} = (A, B, C)$

 $F = \{A \rightarrow B, B \rightarrow C\}$

```
\emptyset \rightarrow \emptyset
A\rightarrow\emptyset, A\rightarrow A, A\rightarrow B, A\rightarrow C, A\rightarrow AB, A\rightarrow AC, A\rightarrow BC, A\rightarrow ABC
B\rightarrow\emptyset, B\rightarrow B, B\rightarrow C, B\rightarrow BC
C→Ø, C→C
```

 $AB\rightarrow\varnothing$, $AB\rightarrow A$, $AB\rightarrow B$, $AB\rightarrow C$, $AB\rightarrow AB$, $AB\rightarrow AC$, $AB\rightarrow BC$, $AB\rightarrow ABC$

 $AC \rightarrow \emptyset$, $AC \rightarrow A$, $AC \rightarrow B$, $AC \rightarrow C$, $AC \rightarrow AB$, $AC \rightarrow AC$, $AC \rightarrow BC$, $AC \rightarrow ABC$

 $BC \rightarrow \emptyset$, $BC \rightarrow B$, $BC \rightarrow C$, $BC \rightarrow BC$

 $ABC \rightarrow \emptyset$, $ABC \rightarrow A$, $ABC \rightarrow B$, $ABC \rightarrow C$, $ABC \rightarrow AB$, $ABC \rightarrow AC$, $ABC \rightarrow BC$, $ABC \rightarrow ABC$

BCNF Test

then the relation is NOT BCNF. The official rule is $\alpha = K$ for R

3NF Test

If not BCNF, then if you a relation $\alpha \to \beta$ where an attribute in β (but not α , aka $\beta - \alpha$) is not in K (any candidate key) then it is not 3NF. The official rule is $\forall A \in \beta - \alpha$: $A \subseteq K$

$$\forall A \in \beta$$
- α : $A \subseteq K$

3NF

Canonical Cover

Continue until Fc does not change.

- 1. Apply the union rule
- 2. Remove any extraneous attribute when looking at all $\alpha \rightarrow \beta$

Canonical Cover

```
Fc := F

do {

foreach (f1, f2 in Fc) {

    // \alpha1 \rightarrow \beta1 and \alpha1 \rightarrow \beta2

    // into \alpha1 \rightarrow \beta1 \beta2

    reduce(union, f1, f2);
}

foreach (\alpha \rightarrow \beta in Fc) {

    if with Fc find extraneous A in \alpha or \beta {

        delete(A, \alpha \rightarrow \beta)
    }
}

while (changes to Fc);
```

Based on extraneous tests

Testing for extraneous A in $\alpha \rightarrow \beta$

Remove "left"

Remove "right"

$$\gamma = \alpha - \{A\}$$
Check if $\gamma \rightarrow \beta$
(Check $\beta \subseteq \gamma + \beta$)

$$F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$$
Check $A \in \alpha + \text{under } F'$

Extraneous A in α

After you remove the attribute, try to provide the *stronger* functional dependency still exists.

Consider

```
R=(A, B, C, D)
F={
    AB+C,
    A+D,
    D+C
}
```

Can we (safely) remove "B" in AB → C?

We need to prove that $A \rightarrow C$ can be derived from the other functional dependencies.

YES we can (using the rules). As A \rightarrow D and D \rightarrow C so A \rightarrow C. So "B" is extraneous. OR YES (calculating using α + using F). (A)+ = ADC so yes A \rightarrow C.

Extraneous A in β

After you remove the attribute, try to show you can recreate the stronger functional dependency

based on the now weaker one.

Consider

```
R=(A, B, C, D)
F={
   AB→CD,
   A→C
}
```

Can we (safely) remove "C" in AB→CD?

We need to prove that using only AB→D (a weaker claim) can we get back to our stronger claim of AB→CD.

YES we can (using rules). Using A→C we augment it to AB→C, and then union that with the (weaker) AB→D we get back to AB→CD.

OR YES (calculating β + using F'). Compute (AB)+=ABCD from F' = {AB \rightarrow D, A \rightarrow C} which contains AB \rightarrow CD so "C" is extraneous.

BCNF Decomposition

```
result := {R};

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF)

then begin

let \alpha \to \beta be a nontrivial functional dependency that

holds on R_i such that \alpha \to R_i is not in F^+,

and \alpha \cap \beta = \emptyset;

result := (result -R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Note: each R_i is in BCNF, and decomposition is lossless-join.

For the relation that fails BCNF

For example,

Decompose R on $\alpha \rightarrow \beta$ in_dep(ID, name, salary, $R2 = R - (\beta - \alpha)$ instructors (ID, dept name, building, name, budget dept_name, salary) $R1 = \alpha \cup \beta$ dept (dept_name, building, budget)

Q1a: Testing Normal Forms

Consider the following relation and functional dependencies.

```
R=(A,B,C,D)
F=\{
AB \rightarrow C,
C \rightarrow D,
D \rightarrow A
}
```

- a. List all candidate keys of R.
- b. Is R in 3NF? BCNF?

Solution

a) Calculate candidate keys

Let's find all super keys by calculating α +.

Start with all n=1 keys

α	α+	Candidate key?
Α	Α	
В	В	
С	CDA	
D	DA	

No keys yet, so let's test all n=2 keys

α	α+	Candidate key?
AB	ABCD	yes
AC	ACD	
AD	AD	
ВС	BCDA	yes
BD	BDAC	yes
CD	CDA	

Lets test all n=3 keys. Write out all combinations to avoid missing one by accident, but we can ignore any with AB, BC and CD.

α	α+	Superkey?
ABC	N/A	Ignore due to "AB"
ABD	N/A	Ignore due to "AB"
ACD	N/A	Ignore due to "CD"
BCD	N/A	Ignore due to "BC"

We can also ignore n=4, as it's not a minimized key.

The candidate keys are

- AB
- BC
- BD

b1) Test for BCNF

Before we calculate F+, let's look at F to find any that break BCNF.

We have a functional dependency $C \rightarrow D$, but C is not equal to {AB, BC, BD}, same for D \rightarrow A. So R is not BCNF.

b2) Test for 3NF

Same as above, but now testing our additional 3NF rule.

For AB \rightarrow C we see that C \subseteq BC For C \rightarrow D we see that D \subseteq BD For D \rightarrow A we see that A \subseteq AB

For a complete test we should look at all of F+, but as we know that every attribute in α is part of a candidate key, so we know that YES this relation is 3NF.

Q1b: Testing Normal Forms

Consider the following relation and functional dependencies.

```
R=(A,B,C,D)
F=\{
A \rightarrow B,
B \rightarrow C,
C \rightarrow D,
D \rightarrow A
}
```

- a. List all candidate keys of R.
- b. Is R in 3NF? BCNF?

Solution

a) Calculate candidate keys

Let's find all super keys by calculating α +.

Start with all n=1 keys

α	α+	Candidate key?
Α	ABCD	yes
В	BCDA	yes
С	CDAB	yes
D	DABC	yes

b) Test for BCNF

All attributes are candidate keys, so we can calculating as any n+1 would include an attribute that is already a superkey. CNF. Any BCNF is also 3NF, so yes it is 3NF.

Q1c: Testing Normal Forms

Consider the following relation and functional dependencies.

```
S=(A,B,C,D)
F=\{
B \rightarrow C,
C \rightarrow A,
C \rightarrow D
}
```

- a. List all candidate keys of R.
- b. Is R in 3NF? BCNF?

Solution

a) Calculate candidate keys

The candidate key is

B

b) Test for BCNF / 3NF

Q1d: Testing Normal Forms

Consider the following relation and functional dependencies.

```
R=(A,B,C,D)
F=\{
ABC \rightarrow D,
D \rightarrow A
\}
```

- a. List all candidate keys of R.
- b. Is R in 3NF? BCNF?

Solution

a) Calculate candidate keys

The candidate keys are

- ABC
- BCD

b) Test for BCNF / 3NF

NO to BCNF, YES to 3NF

Q1e: Testing Normal Forms

Consider the following relation and functional dependencies.

```
R=(A,B,C,D)
F=\{
A \rightarrow C,
B \rightarrow D
}
```

a. List all candidate keys of R.

Solution

a) Calculate candidate keys

The candidate keys are

AB

b) Test for BCNF / 3NF

Not BCNF, not 3NF

Q2a: Testing Functional Dependency

Consider the following relation and functional dependencies.

```
R=(A,B,C,D,E,F)
F=\{
AB \rightarrow C,
BC \rightarrow AD,
D \rightarrow E,
CF \rightarrow B
}
```

Does AB → D hold? If so, show a formal proof; otherwise, give a counterexample.

Solution

Yes, AB → D holds.

```
AB → B (reflexivity)
AB → BC (union of AB → B and AB → C)
AB → AD (transitive AB → BC and BC → AD)
AB → D (decomposition into AB -> A and AB -> D)
```

OU

```
(AB)+ = ABCDE
AB \rightarrow D
```

Q2b: Testing Functional Dependency

Consider the following relation and functional dependencies.

```
R=(A,B,C)
F=\{
AB \rightarrow C
\}
```

Does A → C hold? If so, show a formal proof; otherwise, give a counterexample.

Solution

No.

Here we see that YES AB → C, but ! A → C as we have 1 can return 98 OR 99.

A	В	С
1	1	98
1	2	99

Q2c: Testing Functional Dependency

Consider the following relation and functional dependencies.

```
R=(A,B,C)
F=\{
AB \rightarrow C
\}
```

Does B → C hold? If so, show a formal proof; otherwise, give a counterexample.

Solution

No.

Here we see that YES AB → C, but ! A → C as we have 1 can return 98 OR 99.

A	В	С
1	1	98
2	1	99

Q2d: Testing Functional Dependency

Consider the following relation and functional dependencies.

```
R=(A,B,C)
F=\{
AB \rightarrow C
\}
```

Does A → C OR B → C hold? If so, show a formal proof; otherwise, give a counterexample.

Solution

No.

Here we see that YES AB → C, but

- A → C does not hold as A = 2 returns C = 98 or 99
- B → C does not hold as B = 1 returns C = 97 or 98

A	В	С
1	1	97
2	1	98
2	2	99

Q3: Canonical Cover

Compute a canonical cover for

```
F=\{ \\ B \rightarrow A, \\ D \rightarrow A, \\ AB \rightarrow D \\ \}
```

Solution

```
Fc = { B → A, D → A, AB → D }

--- (loop)

= NO CHANGE from union

> Check "B" extraneous in AB → D (so show A → D in F)... (A)+ = A, so > Check "A" extraneous in AB → D (so show B → D in F)... (B)+ = BAI = { B → A, D → A, B → D }

--- (loop)

= { B → AD, D → A } APPLY UNION

> Check "D" extraneous in B → AD. Check (B)+ in {B → A, D → A}, (B)+

> Check "A" extraneous in B → AD. Check (B)+ in {B → D, D → A}, (B)+

= { B → D, D → A }

--- (loop)

= NO CHANGE from union

= No extraneous attributes left

= { B → D, D → A }
```

Q4: BCNF Decomposition

Produce a BCNF decomposition of R.

```
R = ABCDEFGH
F = \{
ABH \rightarrow C,
A \rightarrow DE,
BGH \rightarrow F,
F \rightarrow ADH,
BH \rightarrow GE
\}
```

Solution

For BCNF you need only find a FD where $\alpha \mathrel{!=} K$

Let us start with n=1, just check those FDs with one attribute.

α	α+	Candidate key?
Α	ADE	no
F	FADH	no

So A → DE breaks BCNF.

```
R1 = (A \cup DE) = ADE

R2 = (ABCDEFGH - DE) = ABCFGH
```

Let's decompose into F1, F2. Remove all attributes not in the new relations, make sure those FDs are valid decompositions, if not, then remove them.

```
F1 = \{ A \rightarrow \emptyset \checkmark, A \rightarrow DE \checkmark, \emptyset \rightarrow \emptyset \checkmark, \emptyset \rightarrow AD x, \emptyset \rightarrow E x \} = \{ A \rightarrow DE \}
F2 = \{ ABH \rightarrow C \checkmark, A \rightarrow \emptyset \checkmark, BGH \rightarrow F \checkmark, F \rightarrow AH ?, BH \rightarrow G ? \} = \{ ABH \rightarrow C, BGH \rightarrow F, F \rightarrow AH, BH \rightarrow G \}
```

We know $F \rightarrow AH$ based on decomposition ($F \rightarrow ADH$ implies $F \rightarrow AH$). We also know $BH \rightarrow G$ based on decomposition ($BH \rightarrow GE$ implies $BH \rightarrow G$).

Now R1 is BCNF as $\alpha = A = K$.

Let's retest R2 based on the decomposed FDs

α	α+	Candidate key?
F	FAH	no

So F → AH breaks BCNF in R2. Let's decompose R2.

```
R2a = (F \cup AH) = AFH

R2b = (ABCFGH - AH) = BCFG
```

Let's decompose into F2a, F2b.

```
F2a = \{ AH \rightarrow \emptyset \checkmark, H \rightarrow F ?, F \rightarrow AH \checkmark, H \rightarrow G ? \} = \{ F \rightarrow AH \}
F2b = \{ B \rightarrow C ?, B \rightarrow F ?, F \rightarrow \emptyset \checkmark, B \rightarrow G ? \} = \{ \}
```

Let's us consider (B)+ = B, so none of the B → implications hold. Both R2a and R2b are BCNF so

we are done.

 $R1 = \underline{A}DE$ $R2a = \underline{F}AH$

R2b = BCFG