

Luiz Alves

Projeto de Data Science Análise Preditiva Preço/Noite de aluguel por temporada

O que é o projeto?

Tenho um imóvel para locar por temporada, mas qual preço cobrar por diária?

Será que o valor que estou cobrando por diária está acima ou abaixo do praticado pelo mercado? Quando se tem um imóvel por temporada para alugar sempre há essas dúvidas.

E se houvesse uma forma ou um aplicativo que me dissesse qual o melhor a preço por noite?

Esse é o objeto desse projeto.

Desenvolver um **modelo de predição** que verifique qual o melhor preço possível para locação de imóvel casa/apartamento.

O locatório só terá que informar algumas características e aplicação indicará qual o preço ideal a ser locado.

Metodologia

Coleta dos Dados

Web-Scrapping

Anúncios

Limpeza dos Dados

Análise Exploratória

Machine Learning

- Feature Engineering
- Data Preparation
- Modelagem

Deploy

Serviço de calculadora de aluguel disponível na web.

Coleta dos dados: web-scrapping

Seleção dos pontos de interesse no anúncio

Munícipios: Santos, São Vicente, Guarujá, Bertioga, Praia Grande, Mongaguá, Itanhaém e Peruíbe).

Coleta dos dados: web-scrapping

Como é o processo...

Ao final do processo, todos os arquivos foram concatenados formando a base de dados.

7675 linhas 19 colunas

3 meses de coletas

Foi programada a coleta com Check-in as sextasfeiras e Check-out aos domingo por um período de três meses.

Web-scrapping

```
# 2 opções de URL
urlperuibe = 'https://www.airbnb.com.br/s/Peru%C3%ADbe-~-SP/homes?tab_id=home_tab&r
url=urlperuibe
# Para enganar o site, permutaremos entre 2 opções de assinaturas de browser.
userAgents=[
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Headles
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) AppleWebKit/605.1.15 (KHTML, l
doc = requests.get(url.format(npagina=1), headers={"User-agent": userAgents[1]})
analizador = BeautifulSoup(doc.content, 'html.parser')
imoveis = analizador.find_all('div', class_="_gig1e7")
```



```
# em rows quardo uma lista temporária de dicts de dados capturados, 1 dict por imóvel
imoveis =[]
for pagina in imoveis:
   #print("Estou aqui: " + url.format(npagina=pagina))
   # pega a página do site pela internet
   for i in pages:
       doc = requests.get(i, headers={"User-agent": userAgents[1]})
       # analiza o HTML
       analizador = BeautifulSoup(doc.content, 'html.parser')
       # extrai somente a lista de imóveis (em HTML) usando o seletor descoberto no código da págin
       imoveis = analizador.find_all('div', class_="_gig1e7")
       for unidade in imoveis:
           uni={}
           # extrai dado por dado segundo seus seletores...
                                                                                         Amostra
           # id:
           for link in unidade.select("a"):
                                                                                     da função de
               rooms = link.get('href')
               rooms = rooms.split('?')
                                                                                     extração em
               uni['id'] = rooms[0].replace('/rooms/', ' ').strip()
               #quarto:
               rooms = rooms[1].split('&')
                                                                                           massa
               #check-in:
               uni['check-in'] = rooms[1].replace('check_in=', ' ').strip()
               #check-out:
               uni['check-out'] = rooms[2].replace('check_out=', ' ').strip()
           # titulo 1:
           uni['titulo'] = unidade.find("div",class =" tmwq9g").find("div",class =" 1jzvdu8")
                           .find("div",class_="_1tanv1h").find("div",class_="_b14dlit")
                           .contents[0].strip()
           # titulo 2:
           uni['titulo_2'] = unidade.find("div",class_="_tmwq9g").find("div",class_="_bzh51kq")
                               .contents[0].strip()
           # atributo 1:
               uni['atributo_1'] = unidade.find("div",class_="_kqh460").contents[0].strip()
           except (IndexError, ValueError, AttributeError):
               continue
           # atributo 2:
               uni['atributo_2'] = unidade.find("div",class_="_kqh460").contents[2].strip()
           except (IndexError, ValueError, AttributeError):
               continue
```


O processo de limpeza foi divido em **03 etapas.**

Primeira Limpeza de dados

- Renomear colunas
- Eliminar linhas duplicadas De 7675 para 5262 (Removidas 2413)
- Verificar inconsistências (datas erradas)
- Colunas constantes

Apenas números nas variáveis numéricas. Replace atributo_1 atributo_2 atributo_3 atributo_4 hóspedes 2 quartos 2 camas 1 banheiro hóspedes 2 quartos 2 camas 1 banheiro 3 2 2 1 hóspedes 3 2 quartos 2 camas 1 banheiro 3 2 2 1 hóspedes 3 2 quartos 2 camas 1 banheiro

titulo Condomínio inteiro em Gonzaga Apartamento inteiro em Gonzaga Condomínio inteiro em Gonzaga Condomínio inteiro em Gonzaga

Segunda Limpeza de dados

Por algum motivo os valores de preço vieram com erros a partir do Scrapping.

O era para ser 1022.0 está como 1.022

Dado este erro foi necessário criar uma função que filtrasse os valores que estão errados aplicasse a correção nessas linhas.

As variáveis que tiveram esse erro foram Preço/noite e Preço com taxa.

Função de correção

```
def corrigir_monetario(df, name='name'):
    """
    Correção de valores float incorretos 1.0 para 1000.0
    df = Dataframe
    name= Nome da variável
    """

    filter_1 = df.loc[(df[name] < 10.0), :].index
    df['New_name'] = df.iloc[filter_1][name] * 1000
    value = df[name]
    df['New_name'] = df['New_name'].fillna(value)
    df = df.drop(name, axis=1)
    df.rename(columns = {'New_name': name}, inplace=True)
    return df</pre>
```

```
df_test_funccion = corrigir_monetario(df_test_funccion, name='Preço/Noite')
```

```
{\tt df\_test\_funccion = corrigir\_monetario(df\_test\_funccion, name='Preço \ com \ taxas')}
```


Terceira Limpeza de dados

- Linhas e colunas duplicadas
- Colunas constantes
- Ajustes dos tipos (int, float, objeto, datetime)

Dummies para variáveis categóricas

Plus 1	Plus 2	Plus 3	Plus 4	Vista para 0 mar	Piscina	Lava- Iouças	Wi- Fi	Café da Manhã	Máquina de Lavar	Estacionamento gratuito	Academia	Jacuzzi	Secadora	Entrada/saída para esquis	Cozinha
Ar- condicionado	Piscina	Cozinha	Estacionamento gratuito	0	1	0	1	0	0	0	0	0	0	0	1
Wi-Fi	Cozinha	Permitido animais	Elevador												
Wi-Fi	Ar- condicionado	Cozinha	Estacionamento gratuito	0	1	0	1	0	0	0	0	0	0	0	1
				0	0	0	1	0	1	1	0	0	0	0	1

Criar Dummies

```
def create dummies(df):
    # Dummies das colunas Plus
    plus1 = df['Plus 1'].unique()
    plus2 = df['Plus 2'].unique()
    plus3 = df['Plus 3'].unique()
    plus4 = df['Plus 3'].unique()
    fullplus = plus1.tolist() + plus2.tolist() + plus3.tolist() + plus4.tolist()
    fullplus = set(fullplus)
    def word in columns(df, word):
        if word in df['Plus 1'] or word in df['Plus 2'] or word in df['Plus 3'] or word in df['Plus 4']:
            return 1
        else:
            return 0
    count = 0
    for word in fullplus:
        df[f'{word}'] = df.apply(word_in_columns, axis=1, args= (word, ))
        count += 1
    # Dummies para Superhost
    Superhost = df['Superhost'].unique()
    def host_in_columns(df, word):
        if word in df['Superhost']:
            return 1
        else:
            return 0
    count = 0
    for word in Superhost:
        df[f'{word}'] = df.apply(word_in_columns, axis=1, args= (word, ))
        count += 1
    #Drop das colunas
    df = df.drop(columns=['Plus 1' , 'Plus 2', 'Plus 3', 'Plus 4', 'Superhost'])
    return df
df_train = create_dummies(df_train)
```


Terceira Limpeza de dados

df_train['Número B	anheiros'].value_counts()
1	2674
2	764
3	191
1 e meio	189
1 privado	171
2 e meio	93
4	29
3 e meio	28
1 compartilhado	18
5 e meio	16
5	9
2 compartilhados	7
4 e meio	6
9	4
6 e meio	4
5	4
1 compartilhado e	meio 2
Name: Número Banhe	iros, dtype: int64

Em alguns imóveis observou que existem banheiros compartilhados.

Se aplicarmos uma função que retirasse o texto, perderíamos essa informação. A solução neste caso foi criar uma nova coluna informando se há banheiro compartilhado no imóvel através de uma função.

```
def banheiro_transformation(df):
    # Pega o qualquer texto após o espaço.
    df['Banheiro Compartilhado'] = df['Número Banheiros'].str.contains('\\ ', regex=True)

# Pega o primeiro digito numérico
    df['Número Banheiros'] = df['Número Banheiros'].str[0:1]
    df['Número Banheiros'] = df['Número Banheiros'].str.strip()
    return df
```

```
df_train = banheiro_transformation(df_train)
```


Terceira Limpeza de dados

Valores Atípicos: Há quartos em que não 0 camas e 0 Banheiros

Investigando o número de camas.

```
# Invetigando o número de camas.

df_train['Número Camas'].value_counts()

2     1195
3     833
1     825
4     581
5     214
6     192
7     126
8     68
9     65
10     34
0     22
11     19
16     15
12     12
15     8
Name: Número Camas, dtype: int64
```

Podemos supor que se há quartos, há camas?

```
# Supondo que se há quarto é possivel que haja cama.
len(df_train.loc[(df_train['Número Camas'] == 0 & (df_train['Número Quartos'] >=1))])
22
```

Entretanto, Existe a possibilidade do locatário alugar o imóvel por temporada sem disponibilizar uma cama. O cliente pode levar uma cama inflável por exemplo.

Pesando nesta linha, vamos optar por não alterar e/ou remover estes imóveis.

No caso de haver 0 banheiros podemos considerar como sendo banheiro compartilhado.

Valores Atípicos: Número de quartos com a nomenclatura estúdio foi considerado como 01 dormitório..

Frequências nos dados

Santos/SP

1 quarto

1 Banheiro

25 comentários

Capacidade 4 a 6

2 camas

Avaliação + 4,75 (1 – 5)

R\$ 100 e R\$ 200 (1 diária sem taxa)

Histogramas

```
col_cat.remove('Localização')
for colunas in col_num + col_cat + Target:
    plt.figure(figsize=(6, 4))
    plt.hist(df_train[colunas])

plt.title(f'Histograma de {colunas}', fontsize=12, fontweight='bold')
    plt.xlabel(f'Valores de {colunas}')
    plt.ylabel(f'Frequência')

#plt.savefig(f'../img/hist_{colunas}.png')

plt.show()
```


Matriz de Correlação

Na matriz de correlação podemos verificar o quão correlacionadas estão as variáveis numéricas com relação ao target (Preço/Noite).

É possível afirmar estatisticamente que há correção positiva entre:

Número Hóspedes, Quartos, Camas, Banheiros, Comentários e Avaliações.

Gráfico da Matriz de Correlação

```
# Matriz de Correlação

correlação = df_train[col_num + Target].corr()
plt.figure(figsize=(8,6))
sns.heatmap(correlação, cmap="YlGnBu", annot=True)
plt.savefig(f'../img/matriz_correlação.png')
plt.show()
```

Teste de Correlação - Spearman

Teste de Hipóteses

H1. Imóveis com maior número de atributos (número de Hospedes, Quartos, Camas e banheiro) possuem maior preço/noite maior?

Graficamente e pelo teste t-Student podemos afirmar que quanto maior o tamanho do imóvel maior o preço/noite


```
atributos = ['Número Hóspedes', 'Número Quartos', 'Número Camas', 'Número Banheiros']
Target = ['Preço/Noite']
```

Gráfico BoxPlot:

Teste t-Student

```
def teste t(df, features, target='0', alpha=0.05):
    Teste T-Student
    df = DataFrame
   fearures = List of columns to be tested
   target = 'Target'
   alpha = significance index. Default is 0.05
    import scipy
   for colunas in features:
        true target = df.loc[df[colunas] == 1, [target]]
       false_target = df.loc[df[colunas]==0, [target]]
        teste_T_result = scipy.stats.ttest_ind(true_target, false_target, equal_var=False)
        if teste T result[1] < alpha:
            print(f'{colunas}: ')
            print(f'{teste T result}')
            print(f'Não')
            print('-'*30)
        else:
            print(f'{colunas}: ')
            print(f'{teste_T_result}')
            print(f'Sim - 0 preço é maior')
            print('-'*30)
```

teste_t(df_train, atributos, target='Preço/Noite')

Teste de Hipóteses

H2. Imóveis com comodidades tem o preço/noite maior?

Teste Gráfico e Estatístico t-Student

Impactam no preço:

Estacionamento gratuito, máquina de lavar, secadora, vista para águas, entrada/saída para esquis, novo preço mais baixo e Raridade

Academia, Ar-condicionado, cozinha, elevador, permitido animais, piscina, self- Check-In, Vista para o mar, wi-fi, café da manhã, Jacuzzi, lareira interna e lava-louças.

Código

Gráfico BoxPlot:

Teste t-Student

```
def teste_t(df, features, target='0', alpha=0.05):
    Teste T-Student
    df = DataFrame
   fearures = List of columns to be tested
   target = 'Target'
   alpha = significance index. Default is 0.05
    import scipy
    for colunas in features:
        true target = df.loc[df[colunas] == 1, [target]]
       false target = df.loc[df[colunas]==0, [target]]
        teste T result = scipy.stats.ttest ind(true target, false target, equal var=False)
        if teste T result[1] < alpha:
            print(f'{colunas}: ')
            print(f'{teste T result}')
            print(f'Não')
            print('-'*30)
        else:
            print(f'{colunas}: ')
            print(f'{teste T result}')
            print(f'Sim - 0 preço é maior')
            print('-'*30)
```

teste_t(df_train, atributos, target='Preço/Noite')

Teste de Hipóteses

H3. Existe correlação entre a localização e o Preço/Noite?

É possível observar o preço/noite tende a ser menor em locais com maior concentração de imóveis disponíveis.

Ou seja, quanto maior a oferta menor o preço.

Distribuição de frequência de localização

Gráfico Histograma:

```
# Usando o transformador de Frequency Encounder.
cfce = CountFrequencyEncoder(encoding_method='frequency', variables=['Localização'])
df_train_transf = cfce.fit_transform(df_train)

#Gráfico:
plt.figure(figsize=(8,6))
df_train_transf['Localização'].hist()
plt.show()
```

Teste de Correlação:

```
# vamos testar estatísticamente:
cor, p = stats.spearmanr(df_train_transf['Localização'],df_train_transf['Preço/Noite'])
if p <= 0.5:
    print(f'p-value: {p}, correlation: {cor}')
    print(f'Existe correlação.')
else:
    print(f'p-value: {p}, correlation: {cor}')
    print(f'Não há correlação.')

p-value: 4.3741112668780545e-08, correlation: -0.08426624393023412
Existe correlação.</pre>
```

Correlação:

```
# H3: Existe Correlação entre a localização e o Preço/Noite?
local = ['Localização', 'Preço/Noite']
correlacao_local = df_train_transf[local].corr()['Preço/Noite']
correlacao_local
```


Teste de Hipóteses

H4. Qual o comportamento dos preços/noite ao longo da coleta?

É possível notar uma queda acentuada no dia 02/04 - motivo - Feriado Sexta-feira Santa. Porém, não é possível afirmar este comportamento durante o ano todo.

Todavia, é possível afirmar que, sendo a data de check-In coincidindo no mesmo dia do feriado temos uma redução de preço médio.

Gráfico linhas 1:

Gráfico linhas 2:

```
plt.figure(figsize=(16, 4))
#faz o plot da linha
plt.plot(df_preco_medio['Check-In'],
        df preco medio['Mean'],
        'o-',
        label='Média')
plt.plot(df preco medio['Check-In'],
        df preco medio['Desvio'],
        '0--',
        label='Desvio')
# Adiciona títulos
plt.title(
    'Gráfico da média e desvio-padrão Preço/Noite no período',
   fontsize=15,
   fontweight='bold')
plt.xlabel('Check-In')
plt.ylabel('Valor de Preço/Noite (R$)')
plt.legend()
plt.savefig(f'../img/media preço noite por periodo.png')
plt.show()
```


Teste de Hipóteses

H5. Há clusters ou outliers?

Pelo método de clusterização DBSCAN, Podemos perceber que não há grupos nesse conjunto de dados.

2.1066622572159717 25

Knee Point e Gráfico de Cluster DBSCAN:

```
X = df_train.drop({'ID', 'Check-In', 'Check-Out'}, axis=1)
cfce = CountFrequencyEncoder(encoding_method='frequency', variables=['Localização'])
pipe = Pipeline(steps=[('scaler', MinMaxScaler())])
X = cfce.fit transform(X)
X = pipe.fit_transform(X)
# DBSCAN
nearest_neighbors = NearestNeighbors(n_neighbors=11)
neighbors = nearest_neighbors.fit(X)
distances, indices = neighbors.kneighbors(X)
distances = np.sort(distances[:,10], axis=0)
i = np.arange(len(distances))
knee = KneeLocator(i, distances, S=1, curve='convex', direction='increasing', interp method='polynomial')
fig = plt.figure(figsize=(5, 5))
knee.plot knee()
plt.xlabel("Points")
plt.ylabel("Distance")
plt.show()
print(distances[knee.knee])
#Gráfico
db = DBSCAN(eps=distances[knee.knee], min samples=11).fit(X)
labels = db.labels
fig = plt.figure(figsize=(10, 10))
sns.scatterplot(X[:,0], X[:,1], hue=["cluster={}".format(x) for x in labels])
plt.show()
```


Feature Engineering

A partir da Análise Exploratória de Dados (EDA), serão criadas novas features para explicar este modelo.

- Transformar o Check-in em dia, mês e ano.
- Há Alta demanda de locais disponíveis naquele local?
- É feriado no dia do check-In?
- Há feriado na semana do check-In?
- **)** É outlier?

Criar coluna Demanda:

df_train = eng_create_demand(df_train)

Criar coluna é feriado

```
df feriados = pd.read csv('../data/feriados nacionais 2021.csv', sep=';')
def eng_create_is_holiday(df , df_feriados):
    Create new column called É feriado.
    df = Dataframe
    df feriados = Dafaframe contendo uma lista de feriados nacionais
    .....
    #import da tabela feriado
    df_feriados = df_feriados.drop('evento', axis=1)
    df_feriados.replace({'feriado nacional' : '1', 'ponto facultativo': '1'}, inplace=True)
    df_feriados.rename(columns={'status': 'É_feriado'}, inplace=True)
    df_feriados.rename(columns={'data': 'Check-In' }, inplace=True)
    df_feriados['Check-In'] = pd.to_datetime(df_feriados['Check-In'], format ='%Y-%m-%d')
    # Vamos juntar as duas tabelas Preço Médio e Feriados
    df = df.merge(df feriados, left_on='Check-In', right_on='Check-In', how='left')
    #preenche os nulos com 0
    df = df.fillna(0)
    return df
df train = eng_create_is_holiday(df_train, df_feriados)
```

É feriado na semana

```
def eng_create_holiday_week(df , df_feriados):
   Create new column called Semana de feriado.
    df = Dataframe
    df_feriados = Dafaframe contendo uma lista de feriados nacionais
    #import da tabela feriado
    df feriados = df feriados.drop({'evento', 'status'}, axis=1)
    df feriados.rename(columns={'data': 'Check-In' }, inplace=True)
    df feriados['Check-In'] = pd.to datetime(df feriados['Check-In'], format ='%Y-%m-%d')
    df feriados['Semana de Feriado'] = df feriados['Check-In'].dt.week
    # Vamos juntar as duas tabelas Preço Médio e Feriados
    df = df.merge(df feriados, left on='Check-In', right on='Check-In', how='left')
    #preenche os nulos com 0
    df = df.fillna(int(0))
    return df
df_train = eng_create_holiday_week(df_train, df_feriados)
```


Feature Selection

Teste Estatístico

```
'Número Hóspedes',
                     ['Localização',
'Número Quartos',
                       'Academia'.
'Número Camas',
                       'Ar-condicionado',
                       'Cozinha',
'Número Banheiros',
                       'Elevador',
'Avaliação',
                       'Estacionamento gratuito',
'Número Comentários'
                       'Máquina de Lavar',
'Taxa',
                       'Permitido animais',
'Dia',
                       'Piscina',
'Mes'l
                       'Secadora',
                       'Self check-In',
                       'Wi-Fi',
                       'Café da Manhã'.
                       'Entrada/saída para esquis',
                       'Jacuzzi',
                       'Lareira interna'.
                       'Lava-loucas',
                       'Banheiro Compartilhado',
                       'Vista',
                       'Demanda',
                       'É feriado',
                       'Semana_do_ano',
                       'Semana de Feriado']
```

RFEVC

```
['Localização',
'Número Hóspedes',
'Número Quartos',
'Número Camas',
'Número Banheiros',
'Avaliação',
'Número Comentários',
'Piscina',
'Lava-loucas',
'Wi-Fi',
'Café da Manhã',
'Máquina de Lavar',
'Estacionamento gratuito',
'Academia',
'Jacuzzi',
'Secadora',
'Entrada/saída para esquis',
'Cozinha',
'Permitido animais',
'Lareira interna',
'Ar-condicionado',
'Self check-In',
'Elevador',
'Novo preco mais baixo',
'Raridade',
'Banheiro Compartilhado',
'Taxa',
'Vista',
'Demanda',
'É feriado',
'É outilier',
'Mes',
'Dia',
'Semana_do_ano',
'Semana de Feriado'l
```

Boruta

['Localização',
'Número Hóspedes',
'Número Quartos',
'Número Camas',
'Número Banheiros',
'Avaliação',
'Número Comentários',
'Piscina',
'Academia',
'Jacuzzi',
'Secadora',
'Permitido animais',
'Taxa',
'Mes',
'Semana_do_ano']

Multicolinearidade Teste V-Cramer

	feature	VIF
7	Avaliação	24.386740
2	Número Quartos	18.434627
5	Mes	15.014006
3	Número Banheiros	14.024909
6	Número Hóspedes	12.705066
1	Número Camas	6.224634
4	Taxa	4.763461
0	Número Comentários	2.031651

	feature	VIF
5	Número Hóspedes	10.565242
2	Número Banheiros	8.419417
1	Número Camas	5.918743
4	Mes	5.793528
3	Taxa	4.267290
0	Número Comentários	1.933112

Teste de Correlação

Teste QUI-Quadrado

```
def teste_chi2_(df, Target='Target', features_cat=features_cat, aplha=0.05):
    Chi2 test
    df = DataFrame
    Target = Target string
    features = List of categorical features
    aplha = indice of significance
    Return a list of variable which has passed for Chi2 test
    from scipy.stats import chi2 contingency
    p values cat features = {}
    for col in features cat:
        # Cria tabela de contingencia
        df cross = pd.crosstab(df[col], df[Target])
        # Aplica o teste e extrai o p-valor
        p_value = scipy.stats.chi2_contingency(df_cross)[1]
        # Armazena coluna e p-valor em um dict
        p values cat features[col] = p value
    p values cat features = pd.Series(p values cat features)
    filter cat features = p values cat features[p values cat features < aplha].index.tolist()
    return filter cat features
chi2 = teste chi2 (df train, Target = 'Preço/Noite', features cat=features cat)
```


Teste RFECV

Boruta

```
def teste_boruta(X_train, y_train):
    Boruta Test - Return features which was aproved
    X train = Dataframe with all features to be tested and not target
   y train = Target
    Return a list of varibales which has passed for the test
    from boruta import BorutaPy
    from sklearn.ensemble import RandomForestRegressor
    # -1 indica para o python usar todo o processador
    boruta selector = BorutaPy(RandomForestRegressor(n jobs = -1, max depth = 5),
                   n estimators = 50, max iter=100, random state = 0)
    boruta selector.fit(np.array(X train), np.array(y train))
    boruta selector.support
    boruta selector.support weak
    features boruta = X train.loc[:, boruta selector.support ].columns.tolist()
    return features boruta
boruta = teste boruta(X train copy, y train)
```


Features que passaram pelos testes

```
def feature results(correlation, chi2, rfe, boruta):
    Return a list which has passed for three testes
    correlation = set of result from corrrelation teste
    chi2 = set of features which has passed from chi2 teste
    rfe = set of features which has passed from rfe teste
    boruta = set of features which has passed from boruta teste
    # Junção dos testes de correlação e Chi2
    statistic test = correlation + chi2
    # Interserção entre testes estatísticos e RFE
    statistic test rfe = list(set(statistic test).intersection(set(rfe)))
    # Interserção entre testes estatísticos e boruta
    statistic_test_boruta = list(set(statistic_test).intersection(set(boruta)))
    # Interserção entre rfe e boruta
    rfe boruta = list(set(rfe).intersection(set(boruta)))
    # Quem passou no primeiro que também passou no boruta
    feature selection = set(statistic test rfe) &
                        set(statistic test boruta) &
                        set(rfe boruta)
    return feature selection
feature results(correlation, chi2, rfe, boruta)
```

Teste de Multicolinearidade

Data preparation

Umas das premissas da Regressão é que o Target precisa seguir uma curva normal e para isso precisamos testar a normalidade dele. O método gráfico do QQ-Plot e o teste estatístico do Shapiro Wilk indicam se é necessária uma transformação.

É possível verificar que os dados não são uma normal.

Agora os dados estão mais próximos de uma normal.

QQ-Plot

```
y = df_train['Preço/Noite']
# qq plot
qqplot(y, line='s')
plt.show()
```

Teste Shapiro Wilk

```
def shapiro_test(df, alpha=0.05):
    """
    Shapiro Wilk test
    df = Dataframe
    alpha = indice of significancy. Default is 0.05
    """
    stat, p = scipy.stats.shapiro(df)
    print('p-valor: p=%.3f' % (p))
    # interpret
    alpha = alpha
    if p > alpha:
        print('Parece ser normalmente distribuiída. Não rejeitamos H0')
    else:
        print('NÃO parece ser normalmente distribuiída. Rejeitamos H0')
    return stat, p
shapiro_test(df_train)
```

Transformação Box Cos

```
transformed_y, lambda_found = scipy.stats.boxcox(y)
print(f'Melhor lambda: {lambda_found}')
Melhor lambda: -0.4897796628352117

# qq plot
qqplot(transformed_y, line='s')
plt.show()
```


Data preparation

Divisão em Treino e Teste

Pipeline

Escolha dos modelos de regressão

Ajuste de escala das variáveis:

Numéricas: RobustScaler

Categóricas: FrequencyEnconder

A métrica utilizada para escolha do modelo será o **negativo do MAE** com **Validação cruzada** 5 folds.

Os três modelos com a métrica mais próximas de zero serão escolhidos.

O que eu quero resolver?

Neste projeto, queremos resolver um problema de regressão. Assim, temos que encontrar a melhor equação que correlacione as variáveis (características do imóvel) que expliquem o preço/noite de aluguel do imóvel do Airbnb.

Modelos de Machine Learning

Regressão Linear

Decision Tree
Random Forest

LGBM Regressor

VM KNN

Escolha dos modelos

Negativo Erro Médio Absoluto (MAE)

Sendo uma métrica de erro, quando mais próxima de zero melhor.

^{*} Embora LGBM Regressor tenha resultado em uma ótima performance é possível observar Overfitting.

Pipeline

Escolha dos modelos – Cross Validation

```
def cv_scores(estimator, X, y, cv=5, scoring='neg_mean_absolute_error'):
    Cros Validation
   estimatior = create pipe funccion with model and transformation
    X = X
   y = target
   scoring = score of model. Default is neg mean absolute error for Regression Models
   cv = Default is 5 fold. Stratified K Fold is also possible.
   Print the score from train and test of modeling
   cv scores = cross validate(estimator=estimator,
                               X = X
                                y = y
                                scoring =scoring,
                                CV = CV,
                                return train score=True)
   print(f'{scoring} no Treino: {np.mean(cv scores["train score"]):.4f}')
   print(f'{scoring} no Teste: {np.mean(cv scores["test score"]):.4f}')
```

Aplicação das funções

```
pipe_LR = create_pipe(LinearRegression(), pre_processor)

cv_scores(pipe_LR, X_train, y_train, scoring='neg_mean_absolute_error')
```


Otimização dos modelos

Grid de hiperparâmetros

KNN Regressor

Decision Tree

criterion: ['mae'],

max_depth: range(1, 11),

min_samples_split: range(2, 41, 5),

min_samples_leaf: range(2, 21, 2),

Random Forest

n_estimators: [10, 25, 50, 75, 100, 150],
criterion: ['mae'],
max_depth: range(1, 11),
min_samples_split: range(2, 41, 5),
min_samples_leaf: range(2, 21, 2),
max_features: ['auto', 'sqrt', 'log2'],

Overfitting.

Números de vizinhos resultou em 1, ou seja, ele mesmo.

Scores: MAE

Treino: 0.0114

Teste: 0.0113

Scores: MAE

Treino: 0.0107

Teste:0.0099

Grid Search param_grid_RF = { 'model__n_estimators': [10, 25, 50, 75, 100, 150], 'model criterion' : ['mae'], 'model max depth' : range(1, 11), 'model__min_samples_split' : range(2, 41, 5), 'model min samples leaf' : range(2, 21, 2), 'model max features': ['auto', 'sqrt', 'log2'], random search RF = RandomizedSearchCV(estimator=pipe RF, param_distributions=param_grid_RF, scoring='neg mean absolute error', random state=123, cv=5, n jobs=-1, verbose=1, n_iter=250) random_search_RF.fit(X_train_, y_train_) Fitting 5 folds for each of 250 candidates, totalling 1250 fits

Modelagem

Random Forest Regressor

.fit.predict

```
best_RF.fit(X_train_, y_train_)
Pipeline(steps=[('scaler', RobustScaler()),
                                                                                       Melhores
                'model',
                RandomForestRegressor(criterion='mae', max depth=10,
                                                                                       parâmetros
                                     min_samples_leaf=2, min_samples_split=7,
                                     random state=123))])
result_RF = best_RF.predict(X_test_)
                                                                                       Inversa BoxCos
diaria_RF = scipy.special.inv_boxcox(result_RF, lambda_found)
np.round(diaria RF, 2)
                                                                                       Predições
array([182.99, 156.62, 186.74, 233.1 , 210.69, 318.06, 324.34, 204.67,
      221.8 , 162.33, 183.75, 248.75, 176.51, 160.72, 173.05, 576.65,
      144.09, 217.85, 191. , 194.84, 169.71, 175.54, 195.89, 185.37,
      231.16, 216.73, 185.06, 202.39, 190.41, 465.21, 320.84, 241.34,
MODEL_OUTPUT_PATH = '../models'
                                                                                       Salva a predição
MODEL OUPUT NAME = 'model_v0.pkl'
                                                                                       em .pickle
pickle.dump(best_RF, open(os.path.join(MODEL_OUTPUT_PATH, MODEL_OUPUT_NAME ), 'wb'))
```


Random Forest

Erro Médio Quadrático (MSE) 6474.15

Erro Médio Absoluto (MAE)
50,45

% Erro Médio Absoluto (MAPE) 19,13%

Para modelos de precificação considerando base interna a performance está em torno de 5% e 10%.

Todavia, considerando uma base pequena com 4209 observações obteve uma ótima performance.

Métricas

```
# Erro médio Quadratico
mse = np.mean((y__test - previsao_preco_noite)**2)
print(f'MSE: {round(mse, 2)}')

# Erro Médio Absoluto
mae = np.mean(abs(y__test - previsao_preco_noite))
print(f'MAE: {round(mae, 2)}')

# Porcentagem do Erro médio Absoluto
mape = 100*np.mean(abs(y__test - previsao_preco_noite)/ y__test)
print(f'MAPE: {round(mape, 2)}')
```


Interpretação do modelo

Random Forest Regressor


```
import shap
X_importance = df_train.drop('Preço/Noite', axis=1)
explainer = shap.Explainer(best_RF.predict, X_importance)
shap_values = explainer(X_importance)
shap.summary_plot(shap_values, X_importance)
```

Utilizando a biblioteca SHAP para análise.

Podemos observar as features que mais explicam o modelo.

Deploy

Neste projeto não houve a criação de um banco de dados. Então os dados informados pelo usuário são direcionados a uma classe de formulário.

- Definição de classe do formulário
- Modelo .pickle
- Estância de um objeto framework Flask

build.py

Modelo treinado

```
# Import do modelo:
MODEL_NAME = 'model_v0.pkl'
MODEL_PATH = '../models'
model = pickle.load(open(os.path.join(MODEL_PATH, MODEL_NAME), 'rb')) =
```

```
#Instancia um objeto do flask
app = Flask( name , template folder='template')
app.config['SECRET_KEY'] = 'minha_senha'
@app.route('/', methods=['GET', 'POST'])
def landing page():
    forms = my form()
    global resultado
    resultado = {}
    if forms.validate on submit():
        dicio = {
        'Localização': forms.localizacao.data,
        'Check-In': forms.check_in.data,
        'Número Banheiros': forms.n banheiros.data,
        'Número Camas': forms.n_camas.data,
        'Número Comentários': forms.n_comentarios.data,
        'Número Hóspedes': forms.n hospedes.data,
        'Taxa': forms.taxas.data,
        'Jacuzzi': forms.jacuzzi.data,
        'Academia': forms.academia.data,
        'Secadora': forms.secadora.data,
        'Localização': forms.localizacao.data,
        'Piscina': forms.piscina.data,
        'Permitido animais': forms.permitido_animais.data
        df = pd.DataFrame(data=dicio, index=[0])
       df = create_dates(df, date='Check-In') #feature Engineering criar mês e semana do ano
        df = tranform frequency(df) #feature Engineering - transforming Frequency
     previsao = model.predict(df)
        lambda found = -0.4897796628352117 #Valor de lambda para conversão box-cox
       previsao = scipy.special.inv_boxcox(previsao, lambda_found) # Retransformação do valor de lambda
       preco noite = np.round(previsao, 2)
       preco_noite = preco_noite.tolist()
       resultado['Diaria'] = preco noite
       print(resultado)
    else:
        print(forms.errors)
                                                                                         Predição
   return render template('home.html', form=forms, resultado=resultado)
if name ==' main ':
    port = int(os.environ.get("PORT", 5000))
   app.run(host='0.0.0.0', port=port) #Não utlizar host='0.0.0.0' para rodar na máquina.
```

Aplicação on-line

O usuário informa os itens e a aplicação retorna com o preço/noite.

Aluguel por temporada! Quanto cobrar? Não estipule valores ao acaso! Nosso sistema retorna a você o melhor preço por noite. Localização

Santos Data de Check-In 2021-05-15 Número de Banheiros Número de Camas Número de Hóspedes Número de Comentários 0 Taxa 60 Comodidades: Academia □ Jacuzzi □ Secadora Piscina ✓ Permitido Animais

> Melhor preço: R\$ 332.75

* Preço por noite de acordo com as características apresentadas

Organização do Projeto

airbnbsantos_extracao_24012

Pastas de projeto deploy ⊘ img @ models @ notebook **Notebooks** Dados Deploy Modelos 1-1 Coleta de Dados - Scraping Airbnb_Baixada_Santista_Full.ipynb data_scrapping airbnb_bertioga_fev model_v0.pkl models baixada_santista airbnb_bertioga_mar template 1-2 Coleta de Dados - Concate_All_Csv_By_Scrapping.ipynb ☑ calendario PC build airbnb_guaruja_fev 2-1 Limpeza de Dados - Primeira Limpeza.ipynb DATA_baixada_santista_raw airbnb_guaruja_mar model_v0.pkl 2-2 Limpeza de Dados - Segunda Limpeza.ipynb DATA_feature_selected airbnb_itanhaem_fev Procfile 2-3 Limpeza de Dados - Terceira Limpeza.ipynb Funções DATA_feature_selected_V2 airbnb_itanhaem_mar requirements 3 - EDA feat engineering.ipynb DATA_TEST airbnb_monguagua_fev PC _init_ 4 Feature selection.ipynb data_test_for_modeling airbnb_monguagua_mar cleaning errors from scrapping Modelagem e Métricas de Performance.ipynb DATA_train_cleaned airbnb_peruibe_fev data_cleaning Processamento_dados de Teste.ipynb DATA_train_eng airbnb_peruibe_mar feature_eng airbnb_praiagrande_fev feriados nacionais 2021 feature selection airbnb_praiagrande_mar PC scrapping airbnb_santos_abril_ scrapping_cleaning airbnb_santos_fevereiro airbnb_santos_marco_

import pandas as pd import numpy as np

Scrapping

from bs4 import BeautifulSoup import requests

Visualização

import matplotlib.pyplot as plt import seaborn as sns

Testes Estatísticos

import scipy from scipy.stats import stats import statsmodels.api as sm from statsmodels.graphics.gofplots import qqplot

Data Preparation

from feature engine.encoding import CountFrequencyEncoder from sklearn.preprocessing import MinMaxScaler from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline

Cluster

from sklearn.cluster import DBSCAN from sklearn.neighbors import NearestNeighbors from kneed import KneeLocator

Feature selection:

from sklearn.feature_selection import f_classif, chi2 from statsmodels.stats.outliers influence import variance inflation factor from scipy.stats import chi2_contingency from scipy.stats import pointbiserialr from boruta import BorutaPy from sklearn.feature selection import RFECV

Cross Validation

from sklearn.model selection import train test split, cross validate, RandomizedSearchCV from sklearn.model selection import cross val score

Modelos de Regressão

from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from lightgbm import LGBMRegressor

from sklearn.linear model import LinearRegression

Métricas

from sklearn.metrics import log loss

Feature Importance

import shap

Deploy do modelo

import pickle

import warnings warnings.filterwarnings("ignore")

Autor do Projeto

Luiz Alves

Data Science pela Digital House. Pós-graduado em Marketing e Propaganda e Graduado em Desenho Industrial – Design pela Universidade São Judas Tadeu (USJT).

□ luizn.mkt@gmail.com

in linkedin.com/in/luizn

GuitHub github.com/luizdatamkt

Projeto elaborado durante o curso de Data Science na Digital House. Supervisão dos professores Bruno Viera e Maurício Nascimento.

Participação dos colegas de turma: Caio Akira, Ivan Russeto e Vitor Bonde.