## **Statistics Practice Questions**

*Try to do these questions by hand or using a calculator (no computers).* 

1. (From 2014 Exam) After fitting a regression line to some data, the following residual plot is obtained.



Write down an appropriate polynomial model for the data.

- 2. (a) Show that the linear square regression line passes through  $(\bar{x}, \bar{y})$ .
  - (b) Does appending  $(\bar{x}, \bar{y})$  to the data change the regression line? Does it change  $r^2$ ?
- 3. (From 2015 Exam) In simple linear regression:
  - (a) Express  $r^2$  in terms of only SSR and SST. Does your formula also hold in the case of multiple linear regression?
  - (b) Express F in terms of only SSE, SSR and n (where n is the number of data points).
  - (c) How is SSE related to SSR and SST?
  - (d) Using your answers to parts (a)–(c), express F in terms of only  $r^2$  and n.
- 4. To derive the relation SST = SSE + SSR for simple linear regression, we need the following identity; prove it.

$$\sum_{i=1}^{n} (y_i - \hat{y}_i) (\hat{y}_i - \bar{y}) = 0.$$

Hint: write  $\hat{y}_i$  in terms of  $\hat{\beta}_1$ , but not of  $\hat{\beta}_0$ .

- 5. A statistician transforms the data points  $(x_i, y_i)$  into  $(x_i', y_i')$ , where  $x_i' = ax_i + b$  and  $y_i' = cy_i + d$ .
  - (a) If she computes the least square regression line for  $(x'_i, y'_i)$ , how will the correlation coefficient and the slope relate to those of the regression line for  $(x_i, y_i)$ ?
  - (b) Using (a), prove that the regression line for standardized data (see Week 10 Lecture 2) is  $\hat{y}' = rx'$ .
- 6. (From 2015 Exam) The weekly attendance numbers of an unpopular statistics course are recorded below.

| Week | Attendance |  |  |  |  |  |
|------|------------|--|--|--|--|--|
| 1    | 69         |  |  |  |  |  |
| 2    | 63         |  |  |  |  |  |
| 3    | 55         |  |  |  |  |  |
| 4    | 57         |  |  |  |  |  |
| 5    | 60         |  |  |  |  |  |
| 6    | 44         |  |  |  |  |  |

- (a) Test if the attendance numbers are uniformly distributed, using  $\alpha = 0.05$  and  $\chi^2_{5.0.95} = 11.071$ .
- (b) Find the least square regression line for Attendance vs Week.

Note: practice doing this question on a calculator.

- 7. The 95% confidence interval for  $\beta_1$  in a simple linear regression is [0.09366, 0.3274]. Also, MSE = 3183 and  $s_x$  = 67.50. Estimate the sample size.
- 8. Is it possible for  $r^2 < 0$ ? What about adjusted  $r^2$ ?
- 9. (From 2015 Exam) A political party predicts that it will get 60% of all votes in the next election. Based on a poll of 100 voters, only 48 showed support for the party. We wish to test if the party's prediction is consistent with this, using  $\alpha = 0.05$ .
  - (a) We can view this as a problem involving inference for a proportion. Test for  $H_0$ : p = 0.6, by computing the two-sided p-value of  $\hat{p} = 0.48$ .
  - (b) Alternatively, we can solve this problem using a chi-squared test. Namely, the expected number of supporters (respectively, non-supporters) is 60 (respectively, 40), while the observed number is 48 (respectively, 52). Compute the  $\chi^2$  statistic.
  - (c) What is the p-value of the  $\chi^2$  statistic you found in part (b)?
- 10. (From 2016 Exam) For single factor ANOVA, if all the group sizes are the same  $(n_1 = n_2 = \cdots n_k = n)$ , then F may be expressed simply as

$$F = c(k, n) \frac{\sum_{i=1}^{k} (\bar{y}_i - \bar{\bar{y}})^2}{\sum_{i=1}^{k} s_i^2},$$

where c(k, n) is a function of k and n; find it.

- 11. (a) Is *F* in single factor ANOVA affected by the units of the data?
  - (b) Is  $F_B$  in two-factor ANOVA always the same as F in the corresponding single factor ANOVA (obtained by ignoring factor A)? (You may experiment in *Excel* for this part.)
  - (c) If  $f_{2,5,0.95} = 5.786$ , find  $f_{5,2,0.05}$ .
- 12. Other topics to revise: maximum likelihood, sign test, bootstrap/permutation test.

Also try the *Excel* file; the first 4 problems can be done using a calculator; the remaining problems are more involved.

Go through all problems from lectures, recitations and homework assignments.

**Table A.3** Standard Normal Curve Areas  $\Phi(z) = P(Z \le z)$  (cont.)

Standard normal density function

Shaded area =  $\Phi(z)$ 

| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0,6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0,4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0,6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0,8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9278 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1,7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0,9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2,0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0,9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
| 3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993 |
| 3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995 |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998 |
|     |        | 1      |        |        |        |        |        |        |        |        |