

School of Computer Science and IT Department of Master of Computer Applications Jain Knowledge Campus

#44/4 District Fund Road Jayanagar 9th Block Behind Big Bazaar, Bengaluru, Karnataka

Title	Advanced Software Engineering
Code	18MCA303
Hrs / Week	03
Credits	03

Course Objectives:

- Defining software process.
- Explaining processes modelled, process patterns, strengths and weaknesses.
- Classify agile software development.
- Understanding Principles Guide Software Engineering Practice
- Explain Elements of Requirements Model
- Defining Quality, Review Techniques
- Classifying Software Quality Assurance, Software Testing Strategies
- Explaining Software Configuration Management
- Defining Management Spectrum, Project Estimation, Project Scheduling
- Explaining Risk Management, Risk Mitigation, Monitoring, And Management
- Project Maintenance and Reengineering, Project Process Improvement
- Emerging Trends in Software Engineering

Course Outcomes:

On successful completion of the module students will be able to:

- Understand Software Process.
- Understand processes modelled, process patterns, strengths and weaknesses?
- Classify agile software development.
- Understand Principles Guide Software Engineering Practice
- Understand Elements of Requirements Model, Quality, Review Techniques
- Understand Software Quality Assurance, Software Testing Strategies
- Explain Software Configuration Management
- Define Management Spectrum
- Understand Project Estimation, Project Scheduling
- Explain Risk Management, Risk Mitigation, Monitoring, And Management
- Do Project Maintenance and Reengineering, Project Process Improvement
- Work on Emerging Trends in Software Engineering

Module -1 9 Hrs

Software Process

Software and Software Engineering ,The Nature of Software, The Unique Nature of WebApps, Software Engineering, The Software Process, Software Engineering Practice, Software Myths, PROCESS MODELS: A Generic Process Model, Process Assessment and Improvement, Prescriptive Process Models, Specialized Process Models, The Unified Process, Personal and Team Process Models, Process Technology, Product and Process, Agile Development: What is Agility?, Agility and the Cost of Change, What is an Agile Process?, Other Agile Process Models, A Tool Set for the Agile Process.

Software and Software Engineering

Software engineering stands for the term is made of **two** words, Software and Engineering.

Software is more than just a program code. A program is an executable code, which serves some computational purpose. Software is considered to be collection of executable programming code, associated libraries and documentations. Software, when made for a specific requirement is called **software product.**

Engineering on the other hand, is all about developing products, using well-defined, scientific principles and methods.

Software engineering is an engineering branch associated with development of software product using well-defined scientific principles, methods and procedures. The outcome of software engineering is an efficient and reliable software product.

Definitions

IEEE defines software engineering as:

- (1) The application of a systematic, disciplined, quantifiable approach to the development, operation and maintenance of software; that is, the application of engineering to software.
- (2) The study of approaches as in the above statement.

Fritz Bauer, a German computer scientist, defines software engineering as:

Software engineering is the establishment and use of sound engineering principles in order to obtain economically software that is reliable and work efficiently on real machines.

The Nature of Software

Software takes Dual role of Software. It is a **Product** and at the same time a **Vehicle for delivering a product**.

Software delivers the most important product of our time is called **information**

Defining Software

Software is defined as

- 1. **Instructions**: Programs that when executed provide desired function, features, and performance
- 2. **Data structures**: Enable the programs to adequately manipulate information
- 3. **Documents**: Descriptive information in both hard copy and virtual forms that describes the operation and use of the programs.

Characteristics of software

Software has characteristics that are considerably different than those of hardware:

1) Software is developed or engineered, it is not manufactured in the Classical Sense.

Although some similarities exist between software development and hardware manufacture, the two activities are fundamentally different. In both the activities, high quality is achieved through good design, but the manufacturing phase for hardware can introduce quality problems that are nonexistent or easily corrected for software. Both the activities are dependent on people, but the relationship between people is totally varying. These two activities require the construction of a "product" but the approaches are different. Software costs are concentrated in engineering which means that software projects cannot be managed as if they were manufacturing.

2) Software doesn't "Wear Out"

The following figure shows the relationship between failure rate and time. Consider the failure rate as a function of time for hardware. The relationship is called **the bathtub curve**, indicates that hardware exhibits relatively high failure rates early in its life, defects are corrected and the failure rate drops to a steady-state level for some period of time. As time passes, however, the failure rate rises again as hardware components suffer from the cumulative effects of dust, vibration, abuse, temperature extremes, and many other environmental maladies. So,

stated simply, the hardware begins to wear out. Software is not susceptible to the environmental maladies that cause **hardware to wear out**

Fig: FAILURE CURVE FOR HARDWARE

Fig: FAILURE CURVE FOR SOFTWARE

3) Although the industry is moving toward component-based construction, most software continues to be custom built

A software component should be designed and implemented so that it can be reused in many different programs. Modern reusable components encapsulate both data and the processing that is applied to the data, enabling the software engineer to create new applications from reusable parts

Software Application Domains

Seven Broad Categories of software are challenges for software engineers

System software : A collection of programs written to service other programs. Some system software (e.g., compilers, editors, and file management utilities)

Application software : Stand-alone programs that solve a specific business need. Application software is used to control business functions in real time (e.g., point-of-sale transaction processing, real-time manufacturing process control).

Engineering/scientific software: It has been characterized by "number crunching" algorithms. Applications range from astronomy to volcanology, from automotive stress analysis to space shuttle orbital dynamics, and from molecular biology to automated manufacturing.

Embedded software: It resides within a product or system and is used to implement and control features and functions for the end user and for the system itself. Embedded software can perform limited and esoteric functions (e.g., key pad control for a microwave oven) or provide significant function and control capability (e.g., digital functions in an automobile such as fuel control, dashboard displays, and braking systems).

Product-line software : Designed to provide a specific capability for use by many different customers. Product-line software can focus on a limited and esoteric marketplace (e.g., inventory control products) or address mass consumer markets (e.g., word processing, spreadsheets, computer graphics, multimedia, entertainment, database management, and personal and business financial applications).

Web applications: These Applications called "WebApps," this network-centric software category spans a wide array of applications. In their simplest form, WebApps can be little more than a set of linked hypertext files that present information using text and limited graphics.

.Artificial intelligence software: These makes use of non numerical algorithms to solve complex problems that are not amenable to computation or straightforward analysis. Applications within this area include robotics, expert systems, pattern recognition (image and voice), artificial neural networks, theorem proving, and game playing.

New Software Challenges

- ➤ Open-world computing: Creating software to allow machines of all sizes to communicate with each other across vast networks (Distributed computing—wireless networks)
- Netsourcing: Architecting simple and sophisticated applications that benefit targeted end-user markets worldwide (the Web as a computing engine)
- ➤ Open Source : Distributing source code for computing applications so customers can make local modifications easily and reliably ("free" source code open to the computing community)

Legacy Software

- Legacy software is older programs that are developed decades ago.
- The quality of legacy software is poor because it has inextensible design, convoluted code, poor and nonexistent documentation, test cases and results that are not achieved.

As time passes legacy systems evolve due to following reasons:

- The software must be adapted to meet the needs of new computing environment or technology.
- The software must be enhanced to implement new business requirements.
- The software must be extended to make it interoperable with more modern systems or database
- The software must be re-architected to make it viable within a network environment.

Unique Nature of Web Apps

In the early days of the World Wide Web, websites consisted of little more than a set of linked hypertext files that presented information using text and limited graphics. As time passed, the augmentation of HTML by development tools (e.g., XML, Java) enabled Web engineers to provide computing capability along with informational content. Web-based systems and applications (WebApps) were born. Today, WebApps have evolved into sophisticated computing tools that not only provide stand-alone function to the end user, but also have been integrated with corporate databases and business applications.

WebApps are one of a number of distinct software categories. Web-based systems and applications "involve a mixture between print publishing and software development, between marketing and computing, between internal communications and external relations, and between art and technology."

The following attributes are encountered in the vast majority of WebApps.

- **Network intensiveness.** A WebApp resides on a network and must serve the needs of a diverse community of clients. The network may enable worldwide access and communication (i.e., the Internet) or more limited access and communication (e.g., a corporate Intranet).
- Concurrency. A large number of users may access the WebApp at one time. In many cases, the patterns of usage among end users will vary greatly.
- **Unpredictable load.** The number of users of the WebApp may vary by orders of magnitude from day to day. One hundred users may show up on Monday; 10,000 may use the system on Thursday.
- **Performance.** If a WebApp user must wait too long, he or she may decide to go elsewhere.
- **Availability.** Although expectation of 100 percent availability is un reasonable, users of popular WebApps often demand access on a 24/7/365 basis
- **Data driven.** The primary function of many WebApps is to use hypermedia to present text, graphics, audio, and video content to the end user. In addition, WebApps are commonly used to access information that exists on databases that are not an integral part of the Web-based environment (e.g., e-commerce or financial applications).
- Content sensitive. The quality and aesthetic nature of content remains an important determinant of the quality of a WebApp.
- **Continuous evolution.** Unlike conventional application software that evolves over a series of planned, chronologically spaced releases, Web applications evolve continuously.
- Immediacy. Although *immediacy*—the compelling need to get software to market quickly—is a characteristic of many application domains, WebApps often exhibit a time-to-market that can be a matter of a few days or weeks.

- Security. Because WebApps are available via network access, it is difficult, if not impossible, to limit the population of end users who may access the application. In order to protect sensitive content and provide secure modes
- **Aesthetics**. An undeniable part of the appeal of a WebApp is its look and feel. When an application has been designed to market or sell products or ideas, aesthetics may have as much to do with success as technical design.

Software Engineering - A Layered Technology

In order to build software that is ready to meet the challenges of the twenty-first century, you must recognize a few simple realities

- Problem should be understood before software solution is developed
- Design is a pivotal Software Engineering activity
- Software should exhibit high quality
- Software should be maintainable

These simple realities lead to one conclusion. Software in all of its forms and across all of its application domains should be **engineered**.

Software Engineering:

Fritz Bauer defined as:

Software engineering is the establishment and use of sound engineering principles in order to obtain economically software that is reliable and works efficiently on real machines.

IEEE has developed a more comprehensive definition as:

- 1) Software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software.
- 2) The study approaches as in (1)

Software Engineering is a **layered technology**. Software Engineering encompasses a **Process, Methods** for managing and engineering software and **tools**.

The following Figure represents Software engineering Layers

Fig: Software Engineering-A layered technology

Software engineering is a layered technology. Referring to above Figure, any engineering approach must rest on an organizational commitment to **quality**.

The bedrock that supports software engineering is a quality focus.

The foundation for software engineering is the *process* layer. The software engineering process is the glue that holds the technology layers together and enables rational and timely development of computer software. **Process** defines a **framework** that must be established for effective delivery of software engineering technology.

Software engineering *methods* provide the technical **how-to's** for building software. **Methods** encompass a broad array of tasks that include communication, requirements analysis, design modeling, program construction, testing, and support.

Software engineering *tools* provide **automated or semi automated** support for the process and the methods. When tools are integrated so that information created by one tool can be used by another, a system for the support of software development, called *computer-aided software engineering*, is established.

The Software Process

A *process* is a collection of **activities**, **actions**, **and tasks** that are performed when some work product is to be created.

An *activity* strives to achieve a broad objective (e.g., communication with stakeholders) and is applied regardless of the application domain, size of the project, complexity of the effort, or degree of rigor with which software engineering is to be applied.

An *action* encompasses a set of tasks that produce a major work product (e.g., an architectural design model).

A *task* focuses on a small, but well-defined objective (e.g., conducting a unit test) that produces a tangible outcome.

A *process framework* establishes the foundation for a complete software engineering process by identifying a small number of *framework activities* that are applicable to all software projects, regardless of their size or complexity. In addition, the process framework encompasses a set of *umbrella activities* that are applicable across the entire software process.

A generic process framework for software engineering encompasses five activities:

- Communication. Before any technical work can commence, it is critically important to communicate and collaborate with the customer. The intent is to understand stakeholders objectives for the project and to gather requirements that help define software features and functions.
- **Planning.** Any complicated journey can be simplified if a map exists. A software project is a complicated journey, and the planning activity creates a "map" that helps guide the team as it makes the journey. The map—called a *software project plan*—defines the software engineering work by describing the technical tasks to be conducted, the risks that are likely, the resources that will be required, the work products to be produced, and a work schedule.
- **Modeling.** Creation of models to help developers and customers understand the requires and software design
- **Construction.** This activity combines code generation and the testing that is required to uncover errors in the code.
- **Deployment.** The software is delivered to the customer who evaluates the delivered product and provides feedback based on the evaluation.

These **five** generic framework activities can be used during the development of small, simple programs, the creation of large Web applications, and for the engineering of large, complex computer-based systems.

Software engineering process framework activities are complemented by a number of Umbrella Activities. In general, umbrella activities are applied throughout a software project and help a software team manage and control progress, quality, change, and risk. Typical umbrella activities include:

- **Software project tracking and control**—allows the software team to assess progress against the project plan and take any necessary action to maintain the schedule.
- **Risk management**—assesses risks that may affect the outcome of the project or the quality of the product.
- **Software quality assurance**—defines and conducts the activities required to ensure software quality.
- **Technical reviews**—assesses software engineering work products in an effort to uncover and remove errors before they are propagated to the next activity.
- **Measurement**—defines and collects process, project, and product measures that assist the team in delivering software that meets stakeholders needs; can be used in conjunction with all other framework and umbrella activities.
- **Software configuration management**—manages the effects of change throughout the software process.
- **Reusability management**—defines criteria for work product reuse and establishes mechanisms to achieve reusable components.
- Work product preparation and production—encompasses the activities required to create work products such as models, documents, logs, forms, and lists.

Attributes for Comparing Process Models

- Overall flow and level of interdependencies among tasks
- Degree to which work tasks are defined within each framework activity
- Degree to which work products are identified and required
- Manner in which quality assurance activities are applied
- Manner in which project tracking and control activities are applied
- Overall degree of detail and rigor of process description
- Degree to which stakeholders are involved in the project
- Level of autonomy given to project team
- Degree to which team organization and roles are prescribed

The Software Engineering Practice

The Essence of Practice

- Understand the problem (communication and analysis)
- Plan a solution (software design)
- Carry out the plan (code generation)
- Examine the result for accuracy (testing and quality assurance)

Understand the Problem

- Who are the stakeholders?
- What functions and features are required to solve the problem?
- Is it possible to create smaller problems that are easier to understand?
- Can a graphic analysis model be created?

Plan the Solution

- Have you seen similar problems before?
- Has a similar problem been solved?
- Can readily solvable sub problems be defined?
- Can a design model be created?

Carry Out the Plan

- Does solution conform to the plan?
- Is each solution component provably correct?

Examine the Result

- Is it possible to test each component part of the solution?
- Does the solution produce results that conform to the data, functions, and features required?

Software General Principles

The dictionary defines the word *principle* as "an important underlying law or assumption required in a system of thought."

David Hooker has Proposed **seven** principles that focus on software Engineering practice.

The First Principle: The Reason It All Exists

A software system exists for one reason: to provide value to its users.

The Second Principle: KISS (Keep It Simple, Stupid!)

Software design is not a haphazard process. There are many factors to consider in any design effort. *All design should be as simple as possible, but no simpler*.

The Third Principle: Maintain the Vision

A clear vision is essential to the success of a software project. Without one, a project almost unfailingly ends up being "of two [or more] minds" about itself.

The Fourth Principle: What You Produce, Others Will Consume

Always specify, design, and implement knowing someone else will have to understand what you are doing.

The Fifth Principle: Be Open to the Future

A system with a long lifetime has more value. Never design yourself into a corner. Before beginning a software project, be sure the software has a business purpose and that users perceive value in it.

The Sixth Principle: Plan Ahead for Reuse

Reuse saves time and effort. Planning ahead for reuse reduces the cost and increases the value of both the reusable components and the systems into which they are incorporated.

The Seventh principle: Think!

Placing clear, complete thought before action almost always produces better results. When you think about something, you are more likely to do it right.

Software Myths

Software Myths- beliefs about software and the process used to build it - can be traced to the earliest days of computing. Myths have a number of attributes that have made them insidious. For instance, myths appear to be reasonable statements of fact, they have an intuitive feel, and they are often promulgated by experienced practitioners who "know the score"

Management Myths:

Managers with software responsibility, like managers in most disciplines, are often under pressure to maintain budgets, keep schedules from slipping, and improve quality. Like a drowning person who grasps at a straw, a software manager often grasps at belief in a software myth.

Myth: We already have a book that's full of standards and procedures for building software. Won't that provide my people with everything they need to know? **Reality:**

- The book of standards may very well exist, but is it used?
- Are software practitioners aware of its existence?
- Does it reflect modern software engineering practice?
- Is it complete?
- Is it adaptable?

• Is it streamlined to improve time to delivery while still maintaining a focus on Quality? In many cases, the answer to these entire question is NO.

Myth: If we get behind schedule, we can add more programmers and catch up

Reality: Software development is not a mechanistic process like manufacturing. "Adding people to a late software project makes it later." At first, this statement may seem counterintuitive. However, as new people are added, people who were working must spend time educating the newcomers, thereby reducing the amount of time spent on productive development effort

Myth: If we decide to outsource the software project to a third party, I can just relax and let that firm build it.

Reality: If an organization does not understand how to manage and control software project internally, it will invariably struggle when it out sources software project.

Customer Myths

A customer who requests computer software may be a person at the next desk, a technical group down the hall, the marketing /sales department, or an outside company that has requested software under contract. In many cases, the customer believes myths about software because software managers and practitioners do little to correct misinformation. Myths led to false expectations and ultimately, dissatisfaction with the developers.

Myth: A general statement of objectives is sufficient to begin writing programs - we can fill in details later.

Reality: Although a comprehensive and stable statement of requirements is not always possible, an ambiguous statement of objectives is a recipe for disaster. Unambiguous requirements are developed only through effective and continuous communication between customer and developer.

Myth: Project requirements continually change, but change can be easily accommodated because software is flexible.

Reality: It's true that software requirement change, but the impact of change varies with the time at which it is introduced. When requirement changes are requested early, cost impact is relatively small. However, as time passes, cost impact grows rapidly – resources have been committed, a design framework has been established, and change can cause upheaval that requires additional resources and major design modification.

Practitioner's myths.

Myths that are still believed by software practitioners have been fostered by 50 years of programming culture. During the early days of software, programming was viewed as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that "the sooner you begin 'writing code', the longer it'll take you to get done." Industry data indicate that between 60 and 80 percent of all effort expended on software will be expended after it is delivered to the customer for the first time.

Myth: Until I get the program "running" I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied from the inception of a project—the *formal technical review*. Software reviews are a "quality filter" that have been found to be more effective than testing for finding certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a *software configuration* that includes many elements. Documentation provides a foundation for successful engineering and, more important, guidance for software support.

Myth: Software engineering will make us create voluminous and unnecessary documentation and will invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating quality. Better quality leads to reduced rework. And reduced rework results in faster delivery times. Many software professionals recognize the fallacy of the myths just described. Regrettably, habitual attitudes and methods foster poor management and technical practices, even when reality dictates a better approach. Recognition of software realities is the first step toward formulation of practical solutions for software engineering.

PROCESS MODELS

A GENERIC PROCESS MODEL

The software process is represented schematically in following figure. Each framework activity is populated by a set of software engineering actions. Each software engineering action is defined by a *task set* that identifies the work tasks that are to be completed, the work products that will be produced, the quality assurance points that will be required, and the milestones that will be used to indicate progress.

A generic process framework defines five framework activities—communication, planning, modeling, construction, and deployment.

In addition, a set of umbrella activities **project tracking and control, risk management, quality assurance, configuration management, technical reviews, and others** are applied throughout the process.

This aspect is called *process flow*. It describes how the framework activities and the actions and tasks that occur within each framework activity are organized with respect to sequence and time and is illustrated in following figure

A generic process framework for software engineering A *linear process flow* executes each of the **five** framework activities in sequence, beginning with communication and culminating with deployment.

An *iterative process flow* repeats one or more of the activities before proceeding to the next. An *evolutionary process flow* executes the activities in a "circular" manner. Each circuit through the five activities leads to a more complete version of the software. A *parallel process flow* executes one or more activities in parallel with other activities (e.g., modeling for one aspect of the software might be executed in parallel with construction of another aspect of the software).

Defining a Framework Activity

A software team would need significantly more information before it could properly execute any one of these activities as part of the software process. Therefore, you are faced with a key question: What actions are appropriate for a framework activity, given the nature of the problem to be solved, the characteristics of the people doing the work, and the stakeholders who are sponsoring the project?

Identifying a Task Set

Different projects demand different task sets. The software team chooses the task set based on problem and project characteristics. A task set defines the actual work to be done to accomplish the objectives of a software engineering action.

Process Patterns

A *process pattern* describes a process-related problem that is encountered during software engineering work, identifies the environment in which the problem has been encountered, and suggests one or more proven solutions to the problem. Stated in more general terms, a process pattern provides you with a template —a consistent method for describing problem solutions within the context of the software process.

Patterns can be defined at any level of abstraction. a pattern might be used to describe a **problem (and solution)** associated with a complete **process model** (e.g., prototyping). In other situations, patterns can be used to describe a problem (and solution) associated with a **framework activity** (e.g., **planning**) or an **action** within a framework activity (e.g., project estimating).

Ambler has proposed a template for describing a process pattern:

Pattern Name. The pattern is given a meaningful name describing it within the context of the software process (e.g., **TechnicalReviews**).

Forces. The environment in which the pattern is encountered and the issues that make the problem visible and may affect its solution.

Type. The pattern type is specified. Ambler suggests **three** types:

- 1. Stage pattern—defines a problem associated with a framework activity for the process. Since a framework activity encompasses multiple actions and work tasks, a stage pattern incorporates multiple task patterns (see the following) that are relevant to the stage (framework activity). An example of a stage pattern might be Establishing Communication. This pattern would incorporate the task pattern Requirements Gathering and others.
- **2.** *Task pattern*—defines a problem associated with a software engineering action or work task and relevant to successful software engineering practice (e.g., Requirements Gathering is a task pattern).
- 3. *Phase pattern*—define the sequence of framework activities that occurs within the process, even when the overall flow of activities is iterative in nature. An example of a phase pattern might be **Spira lModel** or **Prototyping**.

Initial context. Describes the conditions under which the pattern applies. Prior to the initiation of the pattern:

- (1) What organizational or team-related activities have already occurred?
- (2) What is the entry state for the process?
- (3) What software engineering information or project information already exists?

Problem. The specific problem to be solved by the pattern.

Solution. Describes how to implement the pattern successfully. It also describes how software engineering information or project information that is available before the initiation of the pattern is transformed as a consequence of the successful execution of the pattern.

Resulting Context. Describes the conditions that will result once the pattern has been successfully implemented. Upon completion of the pattern:

- (1) What organizational or team-related activities must have occurred?
- (2) What is the exit state for the process?
- (3) What software engineering information or project information has been developed?

Related Patterns. Provide a list of all process patterns that are directly related to this one. This may be represented as a hierarchy or in some other diagrammatic form.

Known Uses and Examples. Indicate the specific instances in which the pattern is applicable.

Process patterns provide an effective mechanism for addressing problems associated with any software process. The patterns enable you to develop a hierarchical process description that begins at a high level of abstraction (a phase pattern).

PROCESS ASSESSMENT AND IMPROVEMENT

Assessment attempts to understand the current state of the software process with the intent of improving it.

A number of different approaches to **software process assessment and improvement** have been proposed over the past few decades.

Standard CMMI Assessment Method for Process Improvement (SCAMPI)—provides a five step process assessment model that incorporates five phases: initiating, diagnosing, establishing, acting, and learning. The SCAMPI method uses the SEI CMMI as the basis for assessment.

CMM-Based Appraisal for Internal Process Improvement (CBA IPI)— provides a diagnostic technique for assessing the relative maturity of a software organization; uses the SEI CMM as the basis for the assessment.

SPICE (ISO/IEC15504)—a standard that defines a set of requirements for software process assessment. The intent of the standard is to assist organizations in developing an objective evaluation of the efficacy of any defined software process.

ISO 9001:2000 for Software—a generic standard that applies to any organization that wants to improve the overall quality of the products, systems, or services that it provides. Therefore, the standard is directly applicable to software organizations and companies.

PRESCRIPTIVE PROCESS MODELS

Prescriptive process models were originally proposed to bring order to the chaos of software development. Prescriptive process models define a prescribed set of process elements and a predictable process work flow. "prescriptive" because they prescribe a set of process elements—framework activities, software engineering actions, tasks, work products, quality assurance, and change control mechanisms for each project.

The Waterfall Model

The *waterfall model*, sometimes called the *classic life cycle*, suggests a systematic, sequential approach to software development that begins with customer specification of requirements and progresses through **planning**, **modeling**, **construction**, **and deployment**.

The waterfall model

A variation in the representation of the waterfall model is called the *V-model*. Represented in following figure. The V-model depicts the relationship of quality assurance actions to the actions associated with communication, modeling, and early construction activities.

The V-model

As a software team moves down the left side of the V, basic problem requirements are refined into progressively more detailed and technical representations of the problem and its solution. Once code has been generated, the team moves up the right side of the V, essentially performing a series of tests that validate each of the models created as the team moved down the left side. The V-model provides a way of visualizing how verification and validation actions are applied to earlier engineering work.

The waterfall model is the oldest paradigm for software engineering. The problems that are sometimes encountered when the waterfall model is applied are:

- 1. Real projects rarely follow the sequential flow that the model proposes. Although the linear model can accommodate iteration, it does so indirectly. As a result, changes can cause confusion as the project team proceeds.
- 2 It is often difficult for the customer to state all requirements explicitly. The waterfall model requires this and has difficulty accommodating the natural uncertainty that exists at the beginning of many projects.
- **3.** The customer must have patience. A working version of the program(s) will not be available until late in the project time span.

This model is suitable when ever limited number of new development efforts and when requirements are well defined and reasonably stable.

Incremental Process Models

The incremental model delivers a series of releases, called increments, that provide progressively more functionality for the customer as each increment is delivered.

The *incremental* model combines elements of linear and parallel process flows discussed in Section 1.7. The incremental model applies linear sequences in a staggered fashion as calendar time progresses. Each linear sequence produces deliverable "increments" of the software in a manner that is similar to the increments produced by an evolutionary process flow.

For example, word-processing software developed using the incremental paradigm might deliver basic file management, editing, and document production functions in the first increment; more sophisticated editing and document production capabilities in the second increment; spelling and grammar checking in the third increment; and advanced page layout capability in the fourth increment.

When an incremental model is used, the first increment is often a *core product*. That is, basic requirements are addressed but many supplementary features remain undelivered. The core product is used by the customer. As a result of use and/or evaluation, a plan is developed for the next increment. The plan addresses the modification of the core product to better meet the needs of the customer and the delivery of additional features and functionality. This process is repeated following the delivery of each increment, until the complete product is produced.

Incremental development is particularly useful when **staffing is unavailable** for a complete implementation by the business deadline that has been established for the project. Early increments can be implemented with fewer people. If the core product is well received, then additional staff (if required) can be added to implement the next increment. In addition, increments can be planned to manage technical risks.

Fig: Incremental Model

Evolutionary Process Models

Evolutionary models are **iterative**. They are characterized in a manner that enables you to develop increasingly more complete versions of the software with each iteration. There are **two** common evolutionary process models.

Prototyping Model: Often, a customer defines a set of general objectives for software, but does not identify detailed requirements for functions and features. In other cases, the developer may be unsure of the efficiency of an algorithm, the adaptability of an operating system, or the form that human-machine interaction should take. In these, and many other situations, a **prototyping paradigm** may offer the best approach.

Although prototyping can be used as a stand-alone process model, it is more commonly used as a technique that can be implemented within the context of any one of the process models. The prototyping paradigm begins with **communication**. You meet with other stakeholders to define the overall objectives for the software, identify whatever requirements are known, and outline areas where further definition is mandatory. A prototyping iteration is planned **quickly**, and **modeling** (in the form of a "quick design") occurs. A **quick design** focuses on a representation of those aspects of the software that will be visible to end users.

Fig: prototyping paradigm

The quick design leads to the **construction of a prototype**. The prototype is deployed and evaluated by stakeholders, who provide feedback that is used to further refine requirements.

Iteration occurs as the prototype is tuned to satisfy the needs of various stakeholders, while at the same time enabling you to better understand what needs to be done.

The prototype serves as a mechanism for identifying software requirements. If a working prototype is to be built, you can make use of existing program fragments or apply tools that enable working programs to be generated quickly. The prototype can serve as "the first system." Prototyping can be **problematic** for the following reasons:

- 1. Stakeholders see what appears to be a working version of the software, unaware that the prototype is held together haphazardly, unaware that in the rush to get it working you haven't considered overall software quality or long-term maintainability.
- 2 As a software engineer, you often make implementation compromises in order to get a prototype working quickly. An inappropriate operating system or programming language may be used simply because it is available and known; an inefficient algorithm may be implemented simply to demonstrate capability.

Although problems can occur, prototyping can be an **effective paradigm** for software engineering.

The Spiral Model: Originally proposed by **Barry Boehm**, the spiral model is an evolutionary software process model that couples the iterative nature of prototyping with the controlled and systematic aspects of the waterfall model. It provides the potential for rapid development of increasingly more complete versions of the software. Boehm describes the model in the following manner

The spiral development model is a **risk-driven process model** generator that is used to **guide multi-stakeholder concurrent engineering** of software intensive systems. It has **two** main distinguishing features. One is a *cyclic approach* for incrementally growing a system's degree of definition and implementation while decreasing its degree of risk. The other is a set of *anchor point milestones* for ensuring stakeholder commitment to feasible and mutually satisfactory system solutions.

Using the spiral model, software is developed in a series of evolutionary releases. During early iterations, the release might be a model or prototype. During later iterations, increasingly more complete versions of the engineered system are produced.

Fig: The Spiral Model

A spiral model is divided into a set of **framework activities** defined by the software engineering team. As this evolutionary process begins, the software team performs activities that are implied by a circuit around the spiral in a **clockwise** direction, beginning at the **center**. Risk is considered as each revolution is made. *Anchor point milestones* are a combination of work products and conditions that are attained along the path of the spiral are noted for each evolutionary pass.

The first circuit around the spiral might result in the development of a **product** specification; subsequent passes around the spiral might be used to develop a **prototype** and then progressively more sophisticated versions of the software. Each pass through the planning region results in adjustments to the project plan.

The spiral model can be adapted to apply throughout the life of the computer software. Therefore, the first circuit around the spiral might represent a "concept development project" that starts at the core of the spiral and continues for multiple iterations until concept development is complete. The new product will evolve through a number of iterations around the spiral. Later, a circuit around the spiral might be used to represent a "product enhancement project."

The spiral model is a **realistic approach** to the development of **large-scale systems** and software. Because software evolves as the process progresses, the developer and customer better understand and react to risks at each evolutionary level. It maintains the systematic stepwise approach suggested by the classic life cycle but incorporates it into an iterative framework that more realistically reflects the real world.

Concurrent Models

The concurrent development model, sometimes called **concurrent engineering**, allows a software team to represent iterative and concurrent elements of any of the process models. The concurrent model is often more appropriate for product engineering projects where different engineering teams are involved.

These models provides a schematic representation of one software engineering activity within the **modeling** activity using a concurrent modeling approach. The activity **modeling** may be in any one of the states noted at any given time. Similarly, other activities, actions, or tasks (e.g., **communication** or **construction**) can be represented in an analogous manner.

Fig: Concurrent development model

All software engineering activities exist concurrently but reside in different states. Concurrent modeling defines a series of events that will trigger transitions from state to state for

each of the software engineering activities, actions, or tasks. This generates the event *analysis* model correction, which will trigger the requirements analysis action from the **done** state into the **awaiting changes** state.

Concurrent modeling is applicable to all types of software development and provides an accurate picture of the current state of a project. Each activity, action, or task on the network exists simultaneously with other activities, actions, or tasks. Events generated at one point in the process network trigger transitions among the states.

SPECIALIZED PROCESS MODELS

Component-Based Development

The *component-based development model* incorporates many of the characteristics of the spiral model. It is evolutionary in nature, demanding an iterative approach to the creation of software. However, the component-based development model constructs applications from **prepackaged** software components.

Modeling and construction activities begin with the identification of **candidate components.** These components can be designed as either conventional software modules or object-oriented classes or packages of classes. Regardless of the technology that is used to create the components, the component-based development model incorporates the following steps

- 1. Available component-based products are researched and evaluated for the application domain in question.
- 2 Component integration issues are considered.
- **3.** A software architecture is designed to accommodate the components.
- **4.** Components are integrated into the architecture.
- **5** Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to software reuse, and reusability provides software engineers with a number of measurable benefits.

The Formal Methods Model

The *formal methods model* encompasses a set of activities that leads to formal mathematical specification of computer software. Formal methods enable you to specify, develop, and verify a computer-based system by applying a rigorous, mathematical notation. A variation on this approach, called *clean room software engineering*.

When formal methods are used during development, they provide a mechanism for eliminating many of the problems that are difficult to overcome using other software engineering paradigms. **Ambiguity, incompleteness, and inconsistency** can be discovered and corrected more easily, but through the application of mathematical analysis.

When formal methods are used during design, they serve as a basis for program verification and therefore enable you to discover and correct errors that might otherwise go undetected. Although not a mainstream approach, the formal methods model offers the promise of **defect-free software**.

Draw Backs:

- The development of formal models is currently quite time consuming and expensive.
- Because few software developers have the necessary background to apply formal methods, extensive training is required.
- It is difficult to use the models as a communication mechanism for Technically unsophisticated customers.

Aspect-Oriented Software Development

AOSD defines "aspects" that express customer concerns that cut across multiple system functions, features, and information. When concerns cut across multiple system functions, features, and information, they are often referred to as *crosscutting concerns*. *Aspectual requirements* define those crosscutting concerns that have an impact across the software architecture.

Aspect-oriented software development (AOSD), often referred to as aspect-oriented programming (AOP), is a relatively new software engineering paradigm that provides a process and methodological approach for **defining**, **specifying**, **designing**, **and constructing** aspects."

Grundy provides further discussion of aspects in the context of what he calls *aspect-oriented component engineering* (AOCE):

AOCE uses a concept of horizontal slices through vertically-decomposed software components, called "aspects," to characterize cross-cutting functional and non-functional properties of components.

THE UNIFIED PROCESS

Unified process (UP) is an architecture-centric, use-case driven, iterative and incremental development process. UP is also referred to as the **unified software development process**.

The Unified Process is an attempt to draw on the best features and characteristics of traditional software process models, but characterize them in a way that implements many of the best principles of **agile software development.** The Unified Process recognizes the importance of **customer communication** and streamlined methods for describing the customer's view of a system. It emphasizes the important role of software architecture and "helps the architect focus on the right goals, such as understandability, reliance to future changes, and reuse". It suggests a process flow that is iterative and incremental, providing the evolutionary feel that is essential in modern software development.

A Brief History

During the early 1990s James Rumbaugh, Grady Booch, and Ivar Jacobson began working on a "unified method" that would combine the best features of each of their individual object-oriented analysis and design methods and adopt additional features proposed by other experts in object-oriented modeling. The result was **UML—a unified modeling language** that contains a robust notation for the modeling and development of object-oriented systems. They developed the **Unified Process**, a framework for object-oriented software engineering using **UML**.

Phases of the Unified Process

This process divides the development process into **five** phases:

- Inception
- Elaboration
- Conception
- Transition
- Production

The *inception phase* of the UP encompasses both customer communication and planning activities. By collaborating with stakeholders, business requirements for the software are identified; a rough architecture for the system is proposed; and a plan for the iterative, incremental nature of the ensuing project is developed.

The *elaboration phase* encompasses the communication and modeling activities of the generic process model. Elaboration refines and expands the preliminary use cases that were developed as part of the inception phase and expands the architectural representation to include **five different views** of the software—the use case model, the requirements model, the design model, the implementation model, and the deployment model. Elaboration creates an "executable architectural baseline" that represents a "first cut" executable system.

The *construction phase* of the UP is identical to the construction activity defined for the generic software process. Using the architectural model as input, the construction phase develops or acquires the software components that will make each use case operational for end users. To accomplish this, requirements and design models that were started during the elaboration phase are completed to reflect the final version of the software increment. All necessary and required features and functions for the software increment (i.e., the release) are then implemented in **source code**.

The *transition phase* of the UP encompasses the latter stages of the generic construction activity and the first part of the generic deployment (delivery and feedback) activity. Software is given to end users for **beta testing and user feedback** reports both defects and necessary changes. At the conclusion of the transition phase, the software increment becomes a usable software release.

The *production phase* of the UP coincides with the deployment activity of the generic process. During this phase, the ongoing use of the software is monitored, support for the operating environment (infrastructure) is provided, and defect reports and requests for changes are submitted and evaluated. It is likely that at the same time the construction, transition, and production phases are being conducted, work may have already begun on the next software increment. This means that the **five UP phases** do not occur in a sequence, but rather with staggered concurrency.

PERSONAL AND TEAM PROCESS MODELS

The best software process is one that is close to the people who will be doing the work. Watts Humphrey proposed two process models. Models - "Personal Software Process (PSP)" and "Team Software Process (TSP)." Both require hard work, training, and coordination, but both are achievable.

Personal Software Process (PSP)

The *Personal Software Process* (PSP) emphasizes personal measurement of both the work product that is produced and the resultant quality of the work product. In addition PSP makes the practitioner responsible for project planning and empowers the practitioner to control the quality of all software work products that are developed. The PSP model defines **five** framework activities:

- **Planning.** This activity isolates requirements and develops both size and resource estimates. In addition, defects estimate (the number of defects projected for the work) is made. All metrics are recorded on worksheets or templates. Finally, development tasks are identified and a project schedule is created.
- **High-level design.** External specifications for each component to be constructed are developed and a component design is created. Prototypes are built when uncertainty exists. All issues are recorded and tracked.

- **High-level design review.** Formal verification methods are applied to uncover errors in the design. Metrics are maintained for all important tasks and work results.
- Development. The component-level design is refined and reviewed. Code is generated, reviewed, compiled, and tested. Metrics are maintained for all important tasks and work results.
- **Postmortem.** Using the measures and metrics collected, the effectiveness of the process is determined. Measures and metrics should provide guidance for modifying the process to improve its effectiveness.

PSP stresses the need to identify errors early and, just as important, to understand the types of errors that you are likely to make. PSP represents a disciplined, metrics-based approach to software engineering that may lead to culture shock for many practitioners.

Team Software Process (TSP)

Watts Humphrey extended the lessons learned from the introduction of PSP and proposed a *Team Software Process* (TSP). The goal of TSP is to build a "self directed" project team that organizes itself to produce high-quality software.

Humphrey defines the following objectives for TSP:

- Build self-directed teams that plan and track their work, establish goals, and own their processes and plans. These can be pure software teams or integrated product teams (IPTs) of 3 to about 20 engineers.
- Show managers how to coach and motivate their teams and how to help them sustain peak performance.
- Accelerate software process improvement by making CMM23 Level 5 behavior normal and expected.
- Provide improvement guidance to high-maturity organizations.
- Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objectives; defines roles and responsibilities for each team member; tracks quantitative project data (about productivity and quality); identifies a team process that is appropriate for the project and a strategy for implementing the process; defines local standards that are applicable to the team's software engineering work; continually assesses risk and reacts to it; and tracks, manages, and reports project status.

TSP defines the following framework activities: **project launch**, **high-level design**, **implementation**, **integration and test**, and **postmortem**. TSP makes use of a wide variety of scripts, forms, and standards that serve to guide team members in their work. "Scripts" define specific process activities (i.e., project launch, design, implementation, integration and system testing, postmortem) and other more detailed work functions (e.g., development planning, requirements development, software configuration management, unit test) that are part of the team process.

PROCESS TECHNOLOGY

Process technology tools allow a software organization to build an automated model of the process framework, task sets, and umbrella activities. The model, normally represented as a network, can then be analyzed to determine typical workflow and examine alternative process structures that might lead to reduced development time or cost.

Once an acceptable process has been created, other process technology tools can be used to allocate, monitor, and even control all software engineering activities, actions, and tasks defined as part of the process model. Each member of a software team can use such tools to develop a checklist of work tasks to be performed, work products to be produced, and quality assurance activities to be conducted. The process technology tool can also be used to coordinate the use of other software engineering tools that are appropriate for a particular work task.

PRODUCT AND PROCESS

The **Product** is *what* we're actually building. What's our solution to the problem at hand? Half of engineering is making sure you're building the right product and have the ability to actually build it. For software engineers, that means coming up with a software solution and being able to code it up properly.

The hidden side of engineering is the **Process**, which means *how* we're actually building our product. Products don't just result from a single all-night coding session -- we need to make sure we're following a process that lets us create that Product in the most efficient and effective way possible.

AGILE DEVELOPMENT

WHAT IS AGILITY?

Agile is a software development methodology to build software incrementally using short iterations of 1 to 4 weeks so that the development process is aligned with the changing business needs.

An agile team is a nimble team able to appropriately respond to changes. Change is what software development is very much about. Changes in the software being built, changes to the team members, changes because of new technology, changes of all kinds that may have an impact on the product they build or the project that creates the product. Support for changes should be built-in everything we do in software, something we embrace because it is the heart and soul of software. An agile team recognizes that software is developed by individuals working in teams and that the skills of these people, their ability to collaborate is at the core for the success of the project.

AGILITY AND THE COST OF CHANGE

An agile process reduces the cost of change because software is released in increments and change can be better controlled within an increment.

Agility argue that a well-designed agile process "flattens" the cost of change curve shown in following figure, allowing a software team to accommodate changes late in a software project without dramatic cost and time impact. When incremental delivery is coupled with other agile practices such as continuous unit testing and pair programming, the cost of making a change is attenuated. Although debate about the degree to which the cost curve flattens is ongoing, there is evidence to suggest that a significant reduction in the cost of change can be achieved.

AGILE PROCESS

Any agile software process is characterized in a manner that addresses a number of key assumptions about the majority of software projects:

- 1. It is difficult to predict in advance which software requirements will persist and which will change. It is equally difficult to predict how customer priorities will change as the project proceeds.
- 2 For many types of software, design and construction are interleaved. That is, both activities should be performed in tandem so that design models are proven as they are created. It is difficult to predict how much design is necessary before construction is used to prove the design.
- 3. Analysis, design, construction, and testing are not as predictable

Agility Principles

Agility principles for those who want to achieve agility:

- 1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
- 2 Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.
- **3.** Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
- 4. Business people and developers must work together daily throughout the project.
- **5** Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
- **6** The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
- 7. Working software is the primary measure of progress.
- **8** Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.
- 9. Continuous attention to technical excellence and good design enhances agility.
- 10. Simplicity—the art of maximizing the amount of work not done—is essential.
- 11. The best architectures, requirements, and designs emerge from self– organizing teams.
- 12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Human Factors

Agile development focuses on the talents and skills of individuals, molding the process to specific people and teams." The key point in this statement is that *the process molds to the needs* of the people and team

- Competence. In an agile development context, "competence" encompasses innate talent, specific software-related skills, and overall knowledge of the process that the team has chosen to apply. Skill and knowledge of process can and should be taught to all people who serve as agile team members.
- Common focus. Although members of the agile team may perform different tasks and bring different skills to the project, all should be focused on one goal—to deliver a working software increment to the customer within the time promised. To achieve this goal, the team will also focus on continual adaptations (small and large) that will make the process fit the needs of the team.
- Collaboration. Software engineering (regardless of process) is about assessing, analyzing, and using information that is communicated to the software team; creating information that will help all stakeholders understand the work of the team; and building information (computer software and relevant databases) that provides business value for the customer. To accomplish these tasks, team members must collaborate—with one another and all other stakeholders.
- **Decision-making ability.** Any good software team (including agile teams) must be allowed the freedom to control its own destiny. This implies that the team is given autonomy—decision-making authority for both technical and project issues.
- □ **Fuzzy problem-solving ability.** Software managers must recognize that the agile team will continually have to deal with ambiguity and will continually be buffeted by change.
- Mutual trust and respect. The agile team must become what DeMarco and Lister call a "jelled" team. A jelled team exhibits the trust and respect that are necessary to make them "so strongly knit that the whole is greater than the sum of the parts."
- Self-organization. In the context of agile development, self-organization implies three things: (1) the agile team organizes itself for the work to be done, (2) the team organizes the process to best accommodate its local environment, (3) the team organizes the work

schedule to best achieve delivery of the software increment. Self-organization has a number of technical benefits, but more importantly, it serves to improve collaboration and boost team morale.

EXTREME PROGRAMMING (XP)

Extreme Programming (XP), the most widely used approach to agile software development, emphasizes business results first and takes an incremental, get-something-started approach to building the product, using continual testing and revision.

XP Values

Beck defines a set of **five** *values* that establish a foundation for all work performed as part of XP—**communication**, **simplicity**, **feedback**, **courage**, **and respect**. Each of these values is used as a driver for specific XP **activities**, **actions**, **and tasks**.

In order to achieve effective *communication* between software engineers and other stakeholders, XP emphasizes close, yet informal collaboration between customers and developers, the establishment of effective metaphors3 for communicating important concepts, continuous feedback, and the avoidance of voluminous documentation as a communication medium.

To achieve *simplicity*, XP restricts developers to design only for immediate needs, rather than consider future needs. The intent is to create a simple design that can be easily implemented in code). If the design must be improved, it can be *refactored* at a later time.

Feedback is derived from three sources: the implemented software itself, the customer, and other software team members. By designing and implementing an effective testing strategy the software provides the agile team with feedback. XP makes use of the **unit test** as its primary testing tactic. As each class is developed, the team develops a unit test to exercise each operation according to its specified functionality.

Beck argues that strict adherence to certain XP practices demands *courage*. A better word might be *discipline*. An agile XP team must have the discipline (courage) to design for today, recognizing that future requirements may change dramatically, thereby demanding substantial rework of the design and implemented code.

By following each of these values, the agile team inculcates *respect* among it members, between other stakeholders and team members, and indirectly, for the software itself. As they

achieve successful delivery of software increments, the team develops growing respect for the XP process.

The XP Process

Extreme Programming uses an object-oriented approach as its preferred development paradigm and encompasses a set of rules and practices that occur within the context of four framework activities: planning, design, coding, and testing. Following figure illustrates the XP process and notes some of the key ideas and tasks that are associated with each framework activity.

Fig: The Extreme Programming process

Key XP activities are

- **Planning.** The planning activity (also called *the planning game*) begins with *listening*—a requirements gathering activity that enables the technical members of the XP team to understand the business context for the software and to get a broad feel for required output and major features and functionality.
- **Design.** XP design rigorously follows the KIS (keep it simple) principle. A simple design is always preferred over a more complex representation. In addition, the design provides

implementation guidance for a story as it is written—nothing less, nothing more. The design of extra functionality If a difficult design problem is encountered as part of the design of a story, XP recommends the immediate creation of an operational prototype of that portion of the design. Called a *spike solution*, the design prototype is implemented and evaluated. XP encourages *refactoring*—a construction technique that is also a method for design optimization.

Fowler describes refactoring in the following manner: Refactoring is the process of changing a software system in such a way that it does not alter the external behavior of the code yet improves the internal structure. It is a disciplined way to clean up code [that minimizes the chances of introducing bugs].

• **Coding.** After stories are developed and preliminary design work is done, the team does *not* move to code, but rather develops a series of unit tests that will exercise each of the stories that is to be included in the current release Once the code is complete, it can be unit-tested immediately, thereby providing instantaneous feedback to the developers.

A key concept during the coding activity is *pair programming*. XP recommends that two people work together at one computer workstation to create code for a story. This provides a mechanism for real time problem solving (two heads are often better than one) and real-time quality assurance.

• **Testing.** The creation of unit tests before coding commences is a key element of the XP approach. The unit tests that are created should be implemented using a framework that enables them to be automated. This encourages a regression testing strategy whenever code is modified. As the individual unit tests are organized into a "universal testing suite" integration and validation testing of the system can occur on a daily basis. This provides the XP team with a continual indication of progress and also can raise warning flags early if things go awry. Wells states: "Fixing small problems every few hours takes less time than fixing huge problems just before the deadline."

XP *acceptance tests*, also called *customer tests*, are specified by the customer and focus on overall system features and functionality that are visible and reviewable by the customer. Acceptance tests are derived from user stories that have been implemented as part of a software release.

Industrial XP

Joshua Kerievsky describes *Industrial Extreme Programming* (IXP) in the following manner: "IXP is an organic evolution of XP. It is imbued with XP's minimalist, customer-centric, test-driven spirit. IXP differs most from the original XP in its greater inclusion of management, its expanded role for customers, and its upgraded technical practices." IXP incorporates six new practices that are designed to help ensure that an XP project works successfully for significant projects within a large organization.

- Readiness assessment. Prior to the initiation of an IXP project, the organization should conduct a readiness assessment. The assessment ascertains whether (1) an appropriate development environment exists to support IXP, (2) the team will be populated by the proper set of stakeholders, (3) the organization has a distinct quality program and supports continuous improvement, (4) the organizational culture will support the new values of an agile team, and (5) the broader project community will be populated appropriately.
- Project community. Classic XP suggests that the right people be used to populate the agile team to ensure success. The implication is that people on the team must be well-trained, adaptable and skilled, and have the proper temperament to contribute to a self-organizing team. When XP is to be applied for a significant project in a large organization, the concept of the "team" should morph into that of a *community*. A community may have a technologist and customers who are central to the success of a project as well as many other stakeholders (e.g., legal staff, quality auditors, manufacturing or sales types) who "are often at the periphery of an IXP project yet they may play important roles on the project". In IXP, the community members and their roles should be explicitly defined and mechanisms for communication and coordination between community members should be established.
- **Project chartering.** The IXP team assesses the project itself to determine whether an appropriate business justification for the project exists and whether the project will further the overall goals and objectives of the organization. Chartering also examines the context of the project to determine how it complements, extends, or replaces existing systems or processes.

- **Test-driven management.** An IXP project requires measurable criteria for assessing the state of the project and the progress that has been made to date. Test-driven management establishes a series of measurable "destinations" and then defines mechanisms for determining whether or not these destinations have been reached.
- **Retrospectives.** An IXP team conducts a specialized technical review after a software increment is delivered. Called a *retrospective*, the review examines "issues, events, and lessons-learned" across a software increment and/or the entire software release. The intent is to improve the IXP process.
- Continuous learning. Because learning is a vital part of continuous process improvement, members of the XP team are encouraged (and possibly, incented) to learn new methods and techniques that can lead to a higher quality product.

OTHER AGILE PROCESS MODELS

Other agile process models have been proposed and are in use across the industry.

Among the most common are:

- Adaptive Software Development (ASD)
- Scrum
- Dynamic Systems Development Method (DSDM)
- Crystal
- Feature Drive Development (FDD)
- Lean Software Development (LSD)
- Agile Modeling (AM)
- Agile Unified Process (AUP)

Adaptive Software Development (ASD)

Adaptive Software Development (ASD) has been proposed by Jim Highsmith as a technique for building complex software and systems. The philosophical underpinnings of ASD focus on human collaboration and team self-organization.

High smith argues that an agile, adaptive development approach based on collaboration is "as much a source of *order* in our complex interactions as discipline and engineering." He defines an ASD "life cycle" that incorporates three phases, speculation, collaboration, and learning.

Fig: Adaptive software development

During *speculation*, the project is initiated and *adaptive cycle planning* is conducted. Adaptive cycle planning uses project initiation information—the customer's mission statement, project constraints (e.g., delivery dates or user descriptions), and basic requirements—to define the set of release cycles (software increments) that will be required for the project.

Motivated people use *collaboration* in a way that multiplies their talent and creative output beyond their absolute numbers. This approach is a recurring theme in all agile methods. But collaboration is not easy. It encompasses communication and teamwork, but it also emphasizes individualism, because individual creativity plays an important role in collaborative thinking. It is, above all, a matter of trust. People working together must trust one another to (1) criticize without animosity, (2) assist without resentment, (3) work as hard as or harder than they do, (4) have the skill set to contribute to the work at hand, and (5) communicate problems or concerns in a way that leads to effective action.

As members of an ASD team begin to develop the components that are part of an adaptive cycle, the emphasis is on "learning" as much as it is on progress toward a completed cycle.

ASD teams learn in **three** ways: **focus groups, technical reviews**, **and project postmortems**. ASD's overall emphasis on the dynamics of self-organizing teams, interpersonal collaboration, and individual and team learning yield software project teams that have a much higher likelihood of success.

Scrum

Scrum is an agile software development method that was conceived by Jeff Sutherland and his development team in the early 1990s. Scrum principles are consistent with the agile manifesto and are used to guide development activities within a process that incorporates the following framework activities: requirements, analysis, design, evolution, and delivery. Within each framework activity, work tasks occur within a process pattern called a *sprint*. The work conducted within a sprint is adapted to the problem at hand and is defined and often modified in real time by the Scrum team. The overall flow of the Scrum process is illustrated in following figure

Scrum emphasizes the use of a set of software process patterns that have proven effective for projects with tight timelines, changing requirements, and business criticality. Each of these process patterns defines a set of development actions:

- **Backlog**—a prioritized list of project requirements or features that provide business value for the customer. Items can be added to the backlog at any time. The product manager assesses the backlog and updates priorities as required.
- *Sprints*—consist of work units that are required to achieve a requirement defined in the backlog that must be fit into a predefined time-box (typically 30 days). Changes (e.g., backlog work items) are not introduced during the sprint. Hence, the sprint allows team members to work in a short-term, but stable environment.
- *Scrum meetings*—are short (typically 15 minutes) meetings held daily by the Scrum team. Three key questions are asked and answered by all team members
 - What did you do since the last team meeting?
 - What obstacles are you encountering?
 - What do you plan to accomplish by the next team meeting?

A team leader, called a *Scrum master*, leads the meeting and assesses the responses from each person. The Scrum meeting helps the team to uncover potential problems as early as possible. Also, these daily meetings lead to "knowledge socialization"

• **Demos**—deliver the software increment to the customer so that functionality that has been implemented can be demonstrated and evaluated by the customer. It is important to note that the demo may not contain all planned functionality, but rather those functions that can be delivered within the time-box that was established.

Dynamic Systems Development Method (DSDM)

The Dynamic Systems Development Method (DSDM) is an agile software development approach that "provides a framework for building and maintaining systems which meet tight time constraints through the use of incremental prototyping in a controlled project environment" The DSDM philosophy is borrowed from a modified version of the Pareto principle—80 percent of an application can be delivered in 20 percent of the time. It would take to deliver the complete (100 percent) application. DSDM is an iterative software process in which each iteration follows the 80 percent rule. That is, only enough work is required for each increment to

facilitate movement to the next increment. The remaining detail can be completed later when more business requirements are known or changes have been requested and accommodated. The *DSDM life cycle* that defines **three** different iterative cycles, preceded by **two** additional life cycle activities:

- *Feasibility study*—establishes the basic business requirements and constraints associated with the application to be built and then assesses whether the application is a viable candidate for the DSDM process
- **Business study**—establishes the functional and information requirements that will allow the application to provide business value; also, defines the basic application architecture and identifies the maintainability requirements for the application.
- *Functional model iteration*—produces a set of incremental prototypes that demonstrate functionality for the customer.
- **Design and build iteration**—revisits prototypes built during **functional model iteration** to ensure that each has been engineered in a manner that will enable it to provide operational business value for end users. In some cases, **functional model iteration** and **design and build iteration** occur concurrently.
- *Implementation*—places the latest software increment into the operational environment. It should be noted that (1) the increment may not be 100 percent complete or (2) changes may be requested as the increment is put into place. In either case, DSDM development work continues by returning to the functional model iteration activity.

Crystal

Alistair Cockburn and Jim Highsmith created the *Crystal family of agile methods* in order to achieve a software development approach that puts a premium on "maneuverability" during what Cockburn characterizes as "a resource limited, cooperative game of invention and communication, with a primary goal of delivering useful, working software and a secondary goal of setting up for the next game"

The Crystal family is actually a set of example agile processes that have been proven effective for different types of projects. The intent is to allow agile teams to select the member of the crystal family that is most appropriate for their project and environment.

Feature Driven Development (FDD)

Feature Driven Development (FDD) was originally conceived by Peter Coad and his colleagues as a practical process model for object-oriented software engineering. Stephen Palmer and John Felsing have extended and improvedCoad's work, describing an adaptive, agile process that can be applied to moderately sized and larger software projects.

Like other agile approaches, FDD adopts a philosophy that (1) emphasizes collaboration among people on an FDD team; (2) manages problem and project complexity using feature-based decomposition followed by the integration of software increments, and (3) communication of technical detail using verbal, graphical, and text-based means.

FDD emphasizes software quality assurance activities by encouraging an incremental development strategy, the use of design and code inspections, the application of software quality assurance audits, the collection of metrics, and the use of patterns (for analysis, design, and construction).

In the context of FDD, a *feature* "is a client-valued function that can be implemented in two weeks or less" The emphasis on the definition of features provides the following benefits:

- Because features are small blocks of deliverable functionality, users can describe them
 more easily; understand how they relate to one another more readily; and better review
 them for ambiguity, error, or omissions.
- Features can be organized into a hierarchical business-related grouping.
- Since a feature is the FDD deliverable software increment, the team develops operational features every two weeks.
- Because features are small, their design and code representations are easier to inspect effectively.
- Project planning, scheduling, and tracking are driven by the feature hierarchy, rather than an arbitrarily adopted software engineering task set.

Coad and his colleagues suggest the following template for defining a feature:

<action> the <result> <by for of to> a(n) <object> where an <object> is "a person, place, or thing

Fig: Feature Driven Development (FDD)

FDD provides greater emphasis on project management guidelines and techniques than many other agile methods. FDD defines six milestones during the design and implementation of a feature: "design walkthrough, design, design inspection, code, code inspection, promote to build"

Lean Software Development (LSD)

Lean Software Development (LSD) has adapted the principles of lean manufacturing to the world of software engineering. The lean principles that inspire the LSD process can be summarized as eliminate waste, build quality in, create knowledge, defer commitment, deliver fast, respect people, and optimize the whole. Each of these principles can be adapted to the software process.

Agile Modeling (AM)

Agile Modeling (AM) is a practice-based methodology for effective modeling and documentation of software-based systems. Simply put, Agile Modeling (AM) is a collection of values, principles, and practices for modeling software that can be applied on a software development project in an effective and light-weight manner. Agile models are more effective than traditional models because they are just barely good, they don't have to be perfect.

Agile modeling adopts all of the values that are consistent with the agile manifesto. The agile modeling philosophy recognizes that an agile team must have the courage to make decisions that may cause it to reject a design and refactor. The team must also have the humility

to recognize that technologists do not have all the answers and that business experts and other stakeholders should be respected and embraced.

Agile Modeling suggests a wide array of "core" and "supplementary" modeling principles, those that make AM unique are:

- Model with a purpose. A developer who uses AM should have a specific goal in mind before creating the model. Once the goal for the model is identified, the type of notation to be used and level of detail required will be more obvious.
- Use multiple models. There are many different models and notations that can be used to describe software. Only a small subset is essential for most projects. AM suggests that to provide needed insight, each model should present a different aspect of the system and only those models that provide value to their intended audience should be used.
- Travel light. As software engineering work proceeds, keep only those models that will provide long-term value and jettison the rest. Every work product that is kept must be maintained as changes occur. This represents work that slows the team down. Ambler notes that "Every time you decide to keep a model you trade-off agility for the convenience of having that information available to your team in an abstract manner
- Content is more important than representation. Modeling should impart information to its intended audience. A syntactically perfect model that imparts little useful content is not as valuable as a model with flawed notation that nevertheless provides valuable content for its audience.
- Know the models and the tools you use to create them. Understand the strengths and weaknesses of each model and the tools that are used to create it.
- Adapt locally. The modeling approach should be adapted to the needs of the agile team.
 Agile Unified Process (AUP)

The *Agile Unified Process* (AUP) adopts a "serial in the large" and "iterative in the small" philosophy for building computer-based systems. By adopting the classic UP phased activities—inception, elaboration, construction, and transition—AUP provides a serial overlay that enables a team to visualize the overall process flow for a software project. However, within each of the activities, the team iterates to achieve agility and to deliver meaningful software increments to end users as rapidly as possible. Each AUP iteration addresses the following activities.

• *Modeling*. UML representations of the business and problem domains are created.

- Implementation. Models are translated into source code.
- *Testing*. Like XP, the team designs and executes a series of tests to uncover errors and ensure that the source code meets its requirements.
- *Deployment.* Like the generic process activity deployment in this context focuses on the delivery of a software increment and the acquisition of feedback from end users.
- Configuration and project management. In the context of AUP, configuration management addresses change management, risk management, and the control of any persistent work products that are produced by the team. Project management tracks and controls the progress of the team and coordinates team activities.
- *Environment management*. Environment management coordinates a process infrastructure that includes standards, tools, and other support technology available to the team.

MODULE-II

Module -2 9 Hrs

Project Management Principles

Principles that guide practice: Software Engineering Knowledge, Core Principles, Principles That Guide Each Framework Activity (topics are like sentences), Understanding Requirements: Requirements Engineering, Establishing the Groundwork, Eliciting Requirements, Developing Use Cases, Building the Requirements Model, Negotiating Requirements, Validating Requirements, **Requirements Modeling:** SCENARIOS, INFORMATION AND ANALYSIS CLASSES: Requirements Analysis, Scenario-Based Modeling, UML Models That Supplement the Use Case, Data Modeling Concepts, Class-Based Modeling.

Project Management Principles

REQUIREMENTS ENGINEERING

Requirements analysis, also called requirements engineering, is the process of determining user expectations for a new or modified product. Requirements engineering is a major software engineering action that begins during the communication activity and continues into the modeling activity. It must be adapted to the needs of the process, the project, the product, and the people doing the work. Requirements engineering builds a bridge to design and construction.

Requirements engineering provides the appropriate mechanism for understanding what the customer wants, analyzing need, assessing feasibility, negotiating a reasonable solution, specifying the solution unambiguously, validating the specification, and managing the requirements as they are transformed into an operational system. It encompasses **seven** distinct tasks: **inception**, **elicitation**, **elaboration**, **negotiation**, **specification**, **validation**, and **management**.

Inception: It establish a basic understanding of the problem, the people who want a solution, the nature of the solution that is desired, and the effectiveness of preliminary communication and collaboration between the other stakeholders and the software team.

Elicitation: In this stage, proper information is extracted to prepare to document the requirements. It certainly seems simple enough—ask the customer, the users, and others what the objectives for the system or product are, what is to be accomplished, how the system or product

fits into the needs of the business, and finally, how the system or product is to be used on a day-to-day basis.

- **Problems of scope.** The boundary of the system is ill-defined or the customers/users specify unnecessary technical detail that may confuse, rather than clarify, overall system objectives.
- **Problems of understanding.** The customers/users are not completely sure of what is needed, have a poor understanding of the capabilities and limitations of their computing environment, don't have a full understanding of the problem domain, have trouble communicating needs to the system engineer, omit information that is believed to be "obvious," specify requirements that conflict with the needs of other customers/users, or specify requirements that are ambiguous or un testable.
- **Problems of volatility.** The requirements change over time.

Elaboration: The information obtained from the customer during inception and elicitation is expanded and refined during elaboration. This task focuses on developing a refined requirements model that identifies various aspects of software function, behavior, and information. Elaboration is driven by the creation and refinement of user scenarios that describe **how** the end user (and other actors) will interact with the system.

Negotiation: To negotiate the requirements of a system to be developed, it is necessary to identify conflicts and to resolve those conflicts. You have to reconcile these conflicts through a process of negotiation. Customers, users, and other stakeholders are asked to rank requirements and then discuss conflicts in priority. Using an iterative approach that prioritizes requirements, assesses their cost and risk, and addresses internal conflicts, requirements are eliminated, combined, and/or modified so that each party achieves some measure of satisfaction.

Specification: The term *specification* means **different things to different people**. A specification can be a written document, a set of graphical models, a formal mathematical model, a collection of usage scenarios, a prototype, or any combination of these.

Validation: The work products produced as a consequence of requirements engineering are assessed for quality during a validation step. Requirements validation examines the specification to ensure that all software requirements have been stated unambiguously; that inconsistencies,

omissions, and errors have been detected and corrected; and that the work products conform to the standards established for the process, the project, and the product.

The primary requirements validation mechanism is the **technical review**. The review team that validates requirements includes software engineers, customers, users, and other stakeholders who examine the specification looking for errors in content or interpretation, areas where clarification may be required, missing information, inconsistencies, conflicting requirements, or unrealistic requirements.

Requirements management. Requirements for computer-based systems change, and the desire to change requirements persists throughout the life of the system. Requirements management is a set of activities that help the project team identify, control, and track requirements and changes to requirements at any time as the project proceeds. Many of these activities are identical to the software configuration management (SCM) techniques.

ESTABLISHING THE GROUNDWORK

Identifying Stakeholders

A *stakeholder* is anyone who has a direct interest in or benefits from the system that is to be developed. At inception, you should create a list of people who will contribute input as requirements are elicited..

Recognizing Multiple Viewpoints

Because many different stakeholders exist, the requirements of the system will be explored from many different points of view. The information from multiple viewpoints is collected, emerging requirements may be inconsistent or may conflict with one another.

Working toward Collaboration

The job of a requirements engineer is to identify areas of commonality and areas of conflict or inconsistency. It is, of course, the latter category that presents a challenge. Collaboration does not necessarily mean that requirements are defined by committee. In many cases, stakeholders collaborate by providing their view of requirements, but a strong "project champion" (e.g., a business manager or a senior technologist) may make the final decision about which requirements make the cut.

Asking the First Questions

Questions asked at the inception of the project should be "**context free**". The first set of context-free questions focuses on the customer and other stakeholders, the overall project goals and benefits. For example, you might ask:

- Who is behind the request for this work?
- Who will use the solution?
- What will be the economic benefit of a successful solution?
- Is there another source for the solution that you need?

These questions help to identify all stakeholders who will have interest in the software to be built. In addition, the questions identify the measurable benefit of a successful implementation and possible alternatives to custom software development.

The next set of questions enables you to gain a better understanding of the problem and allows the customer to voice his or her perceptions about a solution:

- How would you characterize "good" output that would be generated by a successful solution?
- What problem(s) will this solution address?
- Can you show me (or describe) the business environment in which the solution will be used?
- Will special performance issues or constraints affect the way the solution is approached? The final set of questions focuses on the effectiveness of the communication activity itself.

 Gause and Weinberg call these "meta-questions" and propose the following list:
 - Are you the right person to answer these questions? Are your answers
 - "official"?
 - Are my questions relevant to the problem that you have?
 - Am I asking too many questions?
 - Can anyone else provide additional information?
 - Should I be asking you anything else?

These questions will help to "break the ice" and initiate the communication that is essential to successful elicitation. But a question-and-answer meeting format is not an approach that has been overwhelmingly successful.

ELICITING REQUIREMENTS

Requirements elicitation (also called *requirements gathering*) combines elements of problem solving, elaboration, negotiation, and specification

Collaborative Requirements Gathering

Many different approaches to collaborative requirements gathering have been proposed. Each makes use of a slightly different scenario, but all apply some variation on the following basic guidelines:

- Meetings are conducted and attended by both software engineers and other stakeholders.
- Rules for preparation and participation are established.
- An agenda is suggested that is formal enough to cover all important points but informal enough to encourage the free flow of ideas.
- A "facilitator" (can be a customer, a developer, or an outsider) controls the meeting.
- A "definition mechanism" (can be work sheets, flip charts, or wall stickers or
- an electronic bulletin board, chat room, or virtual forum) is used.

The goal is to identify the problem, propose elements of the solution, negotiate different approaches, and specify a preliminary set of solution requirements in an atmosphere that is conducive to the accomplishment of the goal.

During inception basic questions and answers establish the scope of the problem and the overall perception of a solution. Out of these initial meetings, the developer and customers write a **one- or two-page "product request.**"

A meeting place, time, and date are selected; a facilitator is chosen; and attendees from the software team and other stakeholder organizations are invited to participate. The product request is distributed to all attendees before the meeting date.

While reviewing the product request in the days before the meeting, each attendee is asked to make a list of objects that are part of the environment that surrounds the system, other objects that are to be produced by the system, and objects that are used by the system to perform its functions. In addition, each attendee is asked to make another list of services that manipulate or interact with the objects. Finally, lists of constraints (e.g., cost, size, business rules) and performance criteria (e.g., speed, accuracy) are also developed. The attendees are informed that the lists are not expected to be exhaustive but are expected to reflect each person's perception of the system.

The lists of objects can be pinned to the walls of the room using large sheets of paper, stuck to the walls using adhesive-backed sheets, or written on a wall board. After individual lists are presented in one topic area, the group creates a combined list by eliminating redundant entries, adding any new ideas that come up during the discussion, but not deleting anything.

Quality Function Deployment

Quality function deployment (QFD) is a quality management technique that translates the needs of the customer into technical requirements for software. QFD "concentrates on maximizing customer satisfaction from the software engineering process". To accomplish this, QFD emphasizes an understanding of what is valuable to the customer and then deploys these values throughout the engineering process.

QFD identifies three types of requirements:

- Normal requirements. The objectives and goals that are stated for a product or system during meetings with the customer. If these requirements are present, the customer is satisfied. Examples of normal requirements might be requested types of graphical displays, specific system functions, and defined levels of performance.
- Expected requirements. These requirements are implicit to the product or system and may be so fundamental that the customer does not explicitly state them. Their absence will be a cause for significant dissatisfaction.
- Exciting requirements. These features go beyond the customer's expectations and prove to be very satisfying when present.

Although QFD concepts can be applied across the entire software process, QFD uses customer interviews and observation, surveys, and examination of historical data as raw data for the requirements gathering activity. These data are then translated into a table of requirements—called the *customer voice table*—that is reviewed with the customer and other stakeholders.

Usage Scenarios

As requirements are gathered, an overall vision of system functions and features begins to materialize. However, it is difficult to move into more technical software engineering activities until you understand how these functions and features will be used by different classes of end users. To accomplish this, developers and users can create a set of scenarios that identify a thread of usage for the system to be constructed. The scenarios, often called *use cases*, provide a description of how the system will be used.

Elicitation Work Products

The work products produced as a consequence of requirements elicitation will vary depending on the size of the system or product to be built. For most systems, the work products include

- A statement of need and feasibility.
- A bounded statement of scope for the system or product.
- A list of customers, users, and other stakeholders who participated in requirements elicitation.
- A description of the system's technical environment.
- A list of requirements and the domain constraints that apply to each.
- A set of usage scenarios that provide insight into the use of the system or product under different operating conditions.
- Any prototypes developed to better define requirements.

Each of these work products is reviewed by all people who have participated in requirements elicitation.

DEVELOPING USE CASES

Use cases are defined from an actor's point of view. An actor is a role that people (users) or devices play as they interact with the software.

The first step in writing a use case is to define the set of "actors" that will be involved in the story. *Actors* are the different people (or devices) that use the system or product within the context of the function and behavior that is to be described.

Actors represent the roles that people (or devices) play as the system operates. Defined somewhat more formally, an actor is anything that communicates with the system or product and that is external to the system itself. Every actor has one or more goals when using the system. It is important to note that an actor and an end user are not necessarily the same thing. A typical user may play a number of different roles when using a system, whereas an actor represents a class of external entities (often, but not always, people) that play just one role in the context of the use case. Different people may play the role of each actor.

Because requirements elicitation is an evolutionary activity, not all actors are identified during the first iteration. It is possible to identify **primary actors** during the first iteration and **secondary actors** as more is learned about the system.

Primary actors interact to achieve required system function and derive the intended benefit from the system. *Secondary actors* support the system so that primary actors can do their work. Once actors have been identified, use cases can be developed.

Jacobson suggests a number of questions that should be answered by a use case:

- Who is the primary actor, the secondary actor(s)?
- What are the actor's goals?
- What preconditions should exist before the story begins?
- What main tasks or functions are performed by the actor?
- What exceptions might be considered as the story is described?
- What variations in the actor's interaction are possible?
- What system information will the actor acquire, produce, or change?
- Will the actor have to inform the system about changes in the external environment?
- What information does the actor desire from the system?
- Does the actor wish to be informed about unexpected changes?

The basic use case presents a high-level story that describes the interaction between the actor and the system.

BUILDING THE REQUIREMENTS MODEL

The intent of the analysis model is to provide a description of the required informational, functional, and behavioral domains for a computer-based system. The model changes dynamically as you learn more about the system to be built, and other stakeholders understand more about what they really require..

Elements of the Requirements Model

The specific elements of the requirements model are dictated by the analysis modeling method that is to be used. However, a set of generic elements is common to most requirements models.

- **Scenario-based elements.** The system is described from the user's point of view using a scenario-based approach.
- Class-based elements. Each usage scenario implies a set of objects that are manipulated as an actor interacts with the system. These objects are categorized into classes—a collection of things that have similar attributes and common behaviors.

- **Behavioral elements.** The behavior of a computer-based system can have a profound effect on the design that is chosen and the implementation approach that is applied. Therefore, the requirements model must provide modeling elements that depict behavior.
- Flow-oriented elements. Information is transformed as it flows through a computer-based system. The system accepts input in a variety of forms, applies functions to transform it, and produces output in a variety of forms.

Analysis Patterns

Analysis patterns suggest solutions (e.g., a class, a function, a behavior) within the application domain that can be reused when modeling many applications.

Geyer-Schulz and Hahsler suggest two benefits that can be associated with the use of analysis patterns:

First, analysis patterns speed up the development of abstract analysis models that capture the main requirements of the concrete problem by providing reusable analysis models with examples as well as a description of advantages and limitations.

Second, analysis patterns facilitate the transformation of the analysis model into a design model by suggesting design patterns and reliable solutions for common problems.

Analysis patterns are integrated into the analysis model by reference to the pattern name.

NEGOTIATING REQUIREMENTS

The intent of negotiation is to develop a project plan that meets stakeholder needs while at the same time reflecting the real-world constraints (e.g., time, people, budget) that have been placed on the software team. The best negotiations strive for a "win-win" result. That is, stakeholders win by getting the system or product that satisfies the majority of their needs and you win by working to realistic and achievable budgets and deadlines.

Boehm defines a set of negotiation activities at the beginning of each software process iteration. Rather than a single customer communication activity, the following activities are defined:

- 1. Identification of the system or subsystem's key stakeholders.
- **2.** Determination of the stakeholders' "win conditions."
- **3.** Negotiation of the stakeholders' win conditions to reconcile them into a set of win-win conditions for all concerned.

Successful completion of these initial steps achieves a win-win result, which becomes the key criterion for proceeding to subsequent software engineering activities.

VALIDATING REQUIREMENTS

As each element of the requirements model is created, it is examined for inconsistency, omissions, and ambiguity. The requirements represented by the model are prioritized by the stakeholders and grouped within requirements packages that will be implemented as software increments.

A review of the requirements model addresses the following questions:

- Is each requirement consistent with the overall objectives for the system/product?
- Have all requirements been specified at the proper level of abstraction? That is, do some requirements provide a level of technical detail that is inappropriate at this stage?
- Is the requirement really necessary or does it represent an add-on feature that may not be essential to the objective of the system?
- Is each requirement bounded and unambiguous?
- Does each requirement have attribution? That is, is a source (generally, a specific individual) noted for each requirement?
- Do any requirements conflict with other requirements?
- Is each requirement achievable in the technical environment that will house the system or product?
- Is each requirement testable, once implemented?
- Does the requirements model properly reflect the information, function, and behavior of the system to be built?
- Has the requirements model been "partitioned" in a way that exposes progressively more detailed information about the system?
- Have requirements patterns been used to simplify the requirements model?
- Have all patterns been properly validated? Are all patterns consistent with customer requirements?

These and other questions should be asked and answered to ensure that the requirements model is an accurate reflection of stakeholder needs and that it provides a solid foundation for design.

REQUIREMENTS MODELING: SCENARIOS, INFORMATION, AND ANALYSIS CLASSES REQUIREMENTS ANALYSIS

Requirements analysis results in the specification of software's operational characteristics, indicates software's interface with other system elements, and establishes constraints that software must meet. Requirements analysis allows you to elaborate on basic requirements established during the inception, elicitation, and negotiation tasks that are part of requirements engineering.

The requirements modeling action results in one or more of the following types of models:

- Scenario-based models of requirements from the point of view of various system "actors"
- Data models that depict the information domain for the problem
- *Class-oriented models* that represent object-oriented classes (attributes and operations) and the manner in which classes collaborate to achieve system requirements
- *Flow-oriented models* that represent the functional elements of the system and how they transform data as it moves through the system
- **Behavioral models** that depict how the software behaves as a consequence of external "events"

These models provide a software designer with information that can be translated to architectural, interface, and component-level designs. Finally, the requirements model provides the developer and the customer with the means to assess quality once software is built.

Throughout requirements modeling, primary focus is on *what*, **not** *how*. What user interaction occurs in a particular circumstance, what objects does the system manipulate, what functions must the system perform, what behaviors does the system exhibit, what interfaces are defined, and what constraints apply?

Fig: The requirements model as a bridge between the system description and the design model

The requirements model must achieve three primary objectives:

- (1) To describe what the customer requires,
- (2) to establish a basis for the creation of a software design, and
- (3) to define a set of requirements that can be validated once the software is built.

The analysis model bridges the gap between a system-level description that describes overall system or business functionality as it is achieved by applying software, hardware, data, human, and other system elements and a software design that describes the software's application architecture, user interface, and component-level structure.

Analysis Rules of Thumb

Arlow and Neustadt suggest a number of worthwhile rules of thumb that should be followed when creating the analysis model:

- The model should focus on requirements that are visible within the problem or business domain. The level of abstraction should be relatively high.
- Each element of the requirements model should add to an overall understanding of software requirements and provide insight into the information domain, function, and behavior of the system.
- Delay consideration of infrastructure and other nonfunctional models until design.

 That is, a database may be required, but the classes necessary to implement it, the functions required to access it, and the behavior that will be exhibited as it is used should be considered only after problem domain analysis has been completed.

- *Minimize coupling throughout the system*. It is important to represent relationships between classes and functions. However, if the level of "interconnectedness" is extremely high, effort should be made to reduce it.
- Be certain that the requirements model provides value to all stakeholders. Each constituency has its own use for the model
- *Keep the model as simple as it can be.* Don't create additional diagrams when they add no new information. Don't use complex notational forms, when a simple list will do.

Domain Analysis

Domain analysis doesn't look at a specific application, but rather at the domain in which the application resides.

The "specific application domain" can range from avionics to banking, from multimedia video games to software embedded within medical devices. The goal of domain analysis is straightforward: to identify common problem solving elements that are applicable to all applications within the domain, to find or create those analysis classes and/or analysis patterns that are broadly applicable so that they may be reused.

Requirements Modeling Approaches

One view of requirements modeling, called *structured analysis*, considers data and the processes that transform the data as separate entities. Data objects are modeled in a way that defines their *attributes and relationships*.

A second approach to analysis modeling, called *object-oriented analysis*, focuses on the definition of classes and the manner in which they collaborate with one another to effect customer requirements. UML and the Unified Process are predominantly object oriented.

Each element of the requirements model is represented in following figure presents the problem from a different point of view.

Scenario-based elements depict how the user interacts with the system and the specific sequence of activities that occur as the software is used.

Class-based elements model the objects that the system will manipulate, the operations that will be applied to the objects to effect the manipulation, relationships between the objects, and the collaborations that occur between the classes that are defined.

Fig: Elements of the analysis model

Behavioral elements depict how external events change the state of the system or the classes that reside within it. Finally,

Flow-oriented elements represent the system as an information transform, depicting how data objects are transformed as they flow through various system functions.

SCENARIO-BASED MODELING

Scenario-based elements depict how the user interacts with the system and the specific sequence of activities that occur as the software is used.

Creating a Preliminary Use Case

Alistair Cockburn characterizes a use case as a "contract for behavior", the "contract" defines the way in which an actor uses a computer-based system to accomplish some goal. In essence, a use case captures the interactions that occur between producers and consumers of information and the system itself.

A use case describes a specific usage scenario in straightforward language from the point of view of a defined actor. These are the questions that must be answered if use cases are to provide value as a requirements modeling tool. (1) what to write about, (2) how much to write about it, (3) how detailed to make your description, and (4) how to organize the description?

To begin developing a set of use cases, list the functions or activities performed by a specific actor.

Refining a Preliminary Use Case

Each step in the primary scenario is evaluated by asking the following questions:

- Can the actor take some other action at this point?
- Is it possible that the actor will encounter some error condition at this point? If so, what might it be?
- Is it possible that the actor will encounter some other behavior at this point (e.g., behavior that is invoked by some event outside the actor's control)? If so, what might it be?

Cockburn recommends using a "brainstorming" session to derive a reasonably complete set of exceptions for each use case. In addition to the **three** generic questions suggested earlier in this section, the following issues should also be explored:

- Are there cases in which some "validation function" occurs during this use case? This implies that validation function is invoked and a potential error condition might occur.
- Are there cases in which a supporting function (or actor) will fail to respond appropriately? For example, a user action awaits a response but the function that is to respond times out.
- Can poor system performance result in unexpected or improper user actions? For example, a Web-based interface responds too slowly, resulting in a user making multiple selects on a processing button. These selects queue inappropriately and ultimately generate an error condition.

Writing a Formal Use Case

The typical outline for formal use cases can be in following manner

- The *goal in context* identifies the overall scope of the use case.
- The *precondition* describes what is known to be true before the use case is initiated.
- The *trigger* identifies the event or condition that "gets the use case started"
- The *scenario* lists the specific actions that are required by the actor and the appropriate system responses.
- *Exceptions* identify the situations uncovered as the preliminary use case is refined Additional headings may or may not be included and are reasonably self-explanatory.

Every modeling notation has limitations, and the use case is no exception. A use case focuses on functional and behavioral requirements and is generally inappropriate for nonfunctional requirements

However, scenario-based modeling is appropriate for a significant majority of all situations that you will encounter as a software engineer.

Fig: Simple Use Case Diagram

UML MODELS THAT SUPPLEMENT THE USE CASE

Developing an Activity Diagram

The UML activity diagram supplements the use case by providing a graphical representation of the flow of interaction within a specific scenario. Similar to the flowchart, an activity diagram uses rounded rectangles to imply a specific system function, arrows to represent flow through the system, decision diamonds to depict a branching decision (each arrow emanating from the diamond is labeled), and solid horizontal lines to indicate that parallel activities are occurring. i.e A UML activity diagram represents the actions and decisions that occur as some function is performed.

Fig: Activity Diagram for ATM

Swimlane Diagrams

The UML *swimlane diagram* is a useful variation of the activity diagram and allows you to represent the flow of activities described by the use case and at the same time indicate which actor or analysis class has responsibility for the action described by an activity rectangle. Responsibilities are represented as parallel segments that divide the diagram vertically, like the lanes in a swimming pool.

The following figure represents swimlane diagram for ATM

Fig: swimlane diagram for ATM

DATA MODELING CONCEPTS

Data modeling is the process of documenting a complex software system design as an easily understood diagram, using text and symbols to represent the way data needs to flow. The diagram can be used as a blueprint for the construction of new software or for re-engineering a legacy application. The most widely used data Model by the Software engineers is **Entity-Relationship Diagram** (**ERD**), it addresses the issues and represents all data objects that are entered, stored, transformed, and produced within an application.

Data Objects

A *data object* is a representation of composite information that must be understood by software. A data object can be an **external entity** (e.g., anything that produces or consumes information), **a thing** (e.g., a report or a display), **an occurrence** (e.g., a telephone call) or **event** (e.g., an alarm), **a role** (e.g., salesperson), **an organizational unit** (e.g., accounting department), **a place** (e.g., a warehouse), **or a structure** (e.g., a file).

For example, a **person** or a **car** can be viewed as a data object in the sense that either can be defined in terms of a set of attributes. The description of the data object incorporates the data object and all of its attributes.

A data object encapsulates data only—there is no reference within a data object to operations that act on the data. Therefore, the data object can be represented as a table as shown in following table. The headings in the table reflect attributes of the object.

Fig: Tabular representation of data objects

Data Attributes

Data attributes define the properties of a data object and take on one of **three** different characteristics. They can be used to (1) name an instance of the data object, (2) describe the instance, or (3) make reference to another instance in another table.

Relationships

Data objects are connected to one another in different ways. Consider the two data objects, **person** and **car**. These objects can be represented using the following simple notation and relationships are 1) A person *owns* a car, 2) A person *is insured to drive* a car

Fig: Relationships between data objects

CLASS-BASED MODELING

Class-based modeling represents the objects that the system will manipulate, the operations that will be applied to the objects to effect the manipulation, relationships between the objects, and the collaborations that occur between the classes that are defined. The elements of a class-based model include classes and objects, attributes, operations, class responsibility-collaborator (CRC) models, collaboration diagrams, and packages.

Identifying Analysis Classes

We can begin to identify classes by examining the usage scenarios developed as part of the requirements model and performing a "grammatical parse" on the use cases developed for the system to be built.

Analysis classes manifest themselves in one of the following ways:

- *External entities* (e.g., other systems, devices, people) that produce or consume information to be used by a computer-based system.
- *Things* (e.g., reports, displays, letters, signals) that are part of the information domain for the problem.
- *Occurrences or events* (e.g., a property transfer or the completion of a series of robot movements) that occur within the context of system operation.
- *Roles* (e.g., manager, engineer, salesperson) played by people who interact with the system.
- Organizational units (e.g., division, group, team) that are relevant to an application.
- *Places* (e.g., manufacturing floor or loading dock) that establish the context of the problem and the overall function of the system.
- *Structures* (e.g., sensors, four-wheeled vehicles, or computers) that define a class of objects or related classes of objects.

Coad and Yourdon suggest **six** selection characteristics that should be used as you consider each potential class for inclusion in the **analysis model**:

- **1.** *Retained information*. The potential class will be useful during analysis only if information about it must be remembered so that the system can function.
- **2.** *Needed services*. The potential class must have a set of identifiable operations that can change the value of its attributes in some way.
- **3.** *Multiple attributes*. During requirement analysis, the focus should be on "major" information; a class with a single attribute may, in fact, be useful during design, but is probably better represented as an attribute of another class during the analysis activity.
- **4.** *Common attributes.* A set of attributes can be defined for the potential class and these attributes apply to all instances of the class.
- **5.** *Common operations*. A set of operations can be defined for the potential class and these operations apply to all instances of the class.
- **6.** *Essential requirements*. External entities that appear in the problem space and produce or consume information essential to the operation of any solution for the system will almost always be defined as classes in the requirements model.

.2 Specifying Attributes

Attributes describe a class that has been selected for inclusion in the requirements model. In essence, it is the attributes that define the class—that clarify what is meant by the class in the context of the problem space.

To develop a meaningful set of attributes for an analysis class, you should study each use case and select those "things" that reasonably "belong" to the class.

Defining Operations

Operations define the behavior of an object. Although many different types of operations exist, they can generally be divided into four broad categories: (1) operations that manipulate data in some way (e.g., adding, deleting, reformatting, selecting), (2) operations that perform a computation, (3) operations that inquire about the state of an object, and (4) operations that monitor an object for the occurrence of a controlling event.

Fig: Class diagram for the system class

Class-Responsibility-Collaborator (CRC) Modeling

Class-responsibility-collaborator (CRC) modeling provides a simple means for identifying and organizing the classes that are relevant to system or product requirements.

Ambler describes CRC modeling in the following way:

A CRC model is really a collection of standard **index cards** that represent classes. The cards are divided into **three** sections. Along the top of the card you write the name of the class. In the body of the card you list the class responsibilities on the **left** and the collaborators on the **right**.

The CRC model may make use of actual or virtual index cards. The intent is to develop an organized representation of classes. *Responsibilities* are the attributes and operations that are relevant for the class. i.e., a responsibility is "anything the class knows or does" *Collaborators* are those classes that are required to provide a class with the information needed to complete a responsibility. In general, a *collaboration* implies either a request for information or a request for some action. A simple CRC index card is illustrated in following figure.

坩╌	Class: FloorPlan	
+	Description	
H	Responsibility:	Collaborator:
Ш	Defines floor plan name/type	
Ш	Manages floor plan positioning	
Ш	Scales floor plan for display	
Ш	Scales floor plan for display	
Ш	Incorporates walls, doors, and windows	Wall
Ш	Shows position of video cameras	Camera
IJ١		
뀍		
	1	

Fig: A CRC model index card

Classes: The taxonomy of class types can be extended by considering the following categories:

• *Entity classes*, also called *model* or *business* classes, are extracted directly from the statement of the problem. These classes typically represent things that are to be stored in a database and persist throughout the duration of the application.

- **Boundary classes** are used to create the interface that the user sees and interacts with as the software is used. Boundary classes are designed with the responsibility of managing the way entity objects are represented to users.
- Controller classes manage a "unit of work" from start to finish. That is, controller classes can be designed to manage (1) the creation or update of entity objects, (2) the instantiation of boundary objects as they obtain information from entity objects, (3) complex communication between sets of objects, (4) validation of data communicated between objects or between the user and the application. In general, controller classes are not considered until the design activity has begun.

Responsibilities: Wirfs-Brock and her colleagues suggest five guidelines for allocating responsibilities to classes:

- 1. System intelligence should be distributed across classes to best address the needs of the problem. Every application encompasses a certain degree of intelligence; that is, what the system knows and what it can do.
- 2. Each responsibility should be stated as generally as possible. This guideline implies that general responsibilities should reside high in the class hierarchy
- **3.** Information and the behavior related to it should reside within the same class. This achieves the object-oriented principle called *encapsulation*. Data and the processes that manipulate the data should be packaged as a cohesive unit.
- 4. Information about one thing should be localized with a single class, not distributed across multiple classes. A single class should take on the responsibility for storing and manipulating a specific type of information. This responsibility should not, in general, be shared across a number of classes. If information is distributed, software becomes more difficult to maintain and more challenging to test.
- 5. Responsibilities should be shared among related classes, when appropriate. There are many cases in which a variety of related objects must all exhibit the same behavior at the same time.

Collaborations. Classes fulfill their responsibilities in one of two ways:

- 1. A class can use its own operations to manipulate its own attributes, thereby fulfilling a particular responsibility, or
- **2.** A class can collaborate with other classes.

When a complete CRC model has been developed, stakeholders can review the model using the following approach:

- 1. All participants in the review (of the CRC model) are given a subset of the CRC model index cards. Cards that collaborate should be separated (i.e., no reviewer should have two cards that collaborate).
- **2.** All use-case scenarios (and corresponding use-case diagrams) should be organized into categories.
- 3. The review leader reads the use case deliberately. As the review leader comes to a named object, she passes a token to the person holding the corresponding class index card.
- **4.** When the token is passed, the holder of the card is asked to describe the responsibilities noted on the card. The group determines whether one (or more) of the responsibilities satisfies the use-case requirement.
- 5. If the responsibilities and collaborations noted on the index cards cannot accommodate the use case, modifications are made to the cards. This may include the definition of new classes (and corresponding CRC index cards) or the specification of new or revised responsibilities or collaborations on existing cards.

Associations and Dependencies

An *association* defines a relationship between classes. An association may be further defined by indicating *multiplicity*. **Multiplicity** defines how many of one class are related to how many of another class.

A client-server relationship exists between two analysis classes. In such cases, a client class depends on the server class in some way and a *dependency relationship* is established. Dependencies are defined by a **stereotype**. A *stereotype* is an "extensibility mechanism" within UML that allows you to define a special modeling element whose semantics are custom defined. In UML. Stereotypes are represented in double angle brackets (e.g., <<stereotype>>>).

Fig: Multiplicity

Fig: Dependencies

Analysis Packages

An important part of analysis modeling is categorization. That is, various elements of the analysis model (e.g., use cases, analysis classes) are categorized in a manner that packages them as a grouping—called an *analysis package*—that is given a representative name.

Fig: Packages

Requirements Modeling (Flow, Behavior, Patterns and WEBAPPS)

REQUIREMENTS MODELING STRATEGIES

One view of requirements modeling, called *structured analysis*,. Data objects are modeled in a way that defines their attributes and relationships. Processes that manipulate data objects are modeled in a manner that shows how they transform data as data objects flow through the system.

A second approach to analysis modeled, called *object-oriented analysis*, focuses on the definition of classes and the manner in which they collaborate with one another to effect customer requirements.

FLOW-ORIENTED MODELING

Flow-oriented modeling is perceived as an outdated technique by some software engineers, it continues to be one of the most widely used requirements analysis notations in use today. The *data flow diagram* (DFD) is the representation of Flow-oriented modeling. The purpose of data flow diagrams is to provide a semantic bridge between users and systems developers."

The DFD takes an input-process-output view of a system. That is, data objects flow into the software, are transformed by processing elements, and resultant data objects flow out of the software. Data objects are represented by labeled **arrows**, and transformations are represented by **circles (also called bubbles).** The DFD is presented in a hierarchical fashion. That is, the first data flow model (sometimes called a level **0 DFD or** *context diagram*) represents the system as a whole. Subsequent data flow diagrams refine the context diagram, providing increasing detail with each subsequent level.

Fig: Context-level DFD for the Safe Home security function

Creating a Data Flow Model

The data flow diagram enables you to develop models of the information domain and functional domain. As the DFD is refined into greater levels of detail, you perform an implicit functional decomposition of the system. At the same time, the DFD refinement results in a corresponding refinement of data as it moves through the processes that embody the application.

A few simple guidelines can aid immeasurably during the derivation of a data flow diagram:

- (1) The level 0 data flow diagram should depict the software/system as a single bubble;
- (2) Primary input and output should be carefully noted;
- (3) Refinement should begin by isolating candidate processes, data objects, and data stores to be represented at the next level;
- (4) All arrows and bubbles should be labeled with meaningful names;
- (5) Information flow continuity must be maintained from level to level,2 and
- (6) One bubble at a time should be refined. There is a natural tendency to overcomplicate the data flow diagram.

A level 0 DFD for the security function is shown in above figure. The primary *external entities* (boxes) produce information for use by the system and consume information generated by the system. The labeled arrows represent data objects or data object hierarchies.

The **level 0** DFD must now be expanded into a **level 1** data flow model. you should apply a "grammatical parse" to the use case narrative that describes the context-level bubble. That is, isolate all nouns (and noun phrases) and verbs (and verb phrases). *The grammatical parse is not*

foolproof, but it can provide you with an excellent jump start, if you're struggling to define data objects and the transforms that operate on them.

The processes represented at **DFD level 1** can be further refined into **lower levels**. The refinement of DFDs continues until each bubble performs a simple function. That is, until the process represented by the bubble performs a function that would be easily implemented as a program component. a concept, Cohesion can be used to assess the processing focus of a given function. i.e refine DFDs until each bubble is "**single-minded**."

Fig: Level 1 DFD for SafeHome security function

Fig: Level 2 DFD that refines the monitor sensors process

Creating a Control Flow Model

The data model and the data flow diagram are all that is necessary to obtain meaningful insight into software requirements. The following guidelines are suggested for creating a Control Flow Model

- List all sensors that are "read" by the software.
- List all interrupt conditions.
- List all "switches" that are actuated by an operator.
- List all data conditions.
- Recalling the noun/verb parse that was applied to the processing narrative, review all "control items" as possible control specification inputs/outputs.
- Describe the behavior of a system by identifying its states, identify how each state is reached, and define the transitions between states.
- Focus on possible omissions—a very common error in specifying control;

The Control Specification

A control specification (CSPEC) represents the behavior of the system in **two** different ways. The CSPEC contains a state diagram that is a sequential specification of behavior. It can also contain a program activation table—a combinatorial specification of behavior. The following figure depicts a preliminary state diagram for the level 1 control flow model for *SafeHome*. The diagram indicates how the system responds to events as it traverses the four states defined at this level. By reviewing the state diagram, we can determine the behavior of the system and, more important, ascertain whether there are "holes" in the specified behavior.

The CSPEC describes the behavior of the system, but it gives us no information about the inner working of the processes that are activated as a result of this behavior.

Fig: State diagram for SafeHome security function

The Process Specification

The *process specification* (PSPEC) is used to describe all flow model processes that appear at the final level of refinement. The content of the process specification can include narrative text, a program design language (PDL) description of the process algorithm,

mathematical equations, tables, or UML activity diagrams. By providing a PSPEC to accompany each bubble in the flow model, you can create a "mini-spec" that serves as a guide for design of the software component that will implement the bubble.

CREATING A BEHAVIORAL MODEL

The *behavioral model* indicates how software will respond to external events or stimuli. To create the model, you should perform the following steps:

- 1. Evaluate all use cases to fully understand the sequence of interaction within the system.
- **2.** Identify events that drive the interaction sequence and understand how these events relate to specific objects.
- **3.** Create a sequence for each use case.
- **4.** Build a state diagram for the system.
- **5.** Review the behavioral model to verify accuracy and consistency.

Identifying Events with the Use Case

The use case represents a sequence of activities that involves actors and the system. In general, an event occurs whenever the system and an actor exchange information. A use case is examined for points of information exchange. To illustrate, we reconsider the use case for a portion of the *SafeHome* security function. The homeowner uses the keypad to key in a four-digit password. The password is compared with the valid password stored in the system. If the password is incorrect, the control panel will beep once and reset itself for additional input. If the password is correct, the control panel awaits further action.

The underlined portions of the use case scenario indicate events. An actor should be identified for each event; the information that is exchanged should be noted, and any conditions or constraints should be listed. Once all events have been identified, they are allocated to the objects involved. Objects can be responsible for generating events .

State Representations

In the context of behavioral modeling, two different characterizations of states must be considered: (1) the state of each class as the system performs its function and (2) the state of the system as observed from the outside as the system performs its Function **Two** different behavioral representations are discussed in the paragraphs that follow. The **first** indicates how

an individual class changes state based on external events and the **second** shows the behavior of the software as a function of time.

State diagrams for analysis classes. One component of a behavioral model is a UML state diagram that represents active states for each class and the events (triggers) that cause changes between these active states. The following figure illustrates a state diagram for the **ControlPanel** object in the *SafeHome* security function. Each arrow shown in figure represents a transition from one active state of an object to another. The labels shown for each arrow represent the event that triggers the transition

Fig: State diagram for the Control Panel class

Sequence diagrams. The second type of behavioral representation, called a *sequence diagram* in UML, indicates how events cause transitions from object to object. Once events have been identified by examining a use case, the modeler creates a sequence diagram—a representation of how events cause flow from one object to another as a function of time. In essence, the sequence diagram is a shorthand version of the use case. It represents key classes and the events that cause behavior to flow from class to class.

Fig: Sequence diagram (partial) for the SafeHome security function

PATTERNS FOR REQUIREMENTS MODELING

Software patterns are a mechanism for capturing domain knowledge in a way that allows it to be reapplied when a new problem is encountered. In some cases, the domain knowledge is applied to a new problem within the same application domain. The domain knowledge captured by a pattern can be applied by analogy to a completely different application domain.

The pattern can be reused when performing requirements modeling for an application within a domain. Analysis patterns are stored in a repository so that members of the software team can use search facilities to find and reuse them. Once an appropriate pattern is selected, it is integrated into the requirements model by reference to the pattern name.

Discovering Analysis Patterns

The requirements model is comprised of a wide variety of elements: **scenario-based (use cases)**, **data-oriented (the data model)**, **class-based**, **flow-oriented**, **and behavioral**. Each of these elements examines the problem from a different perspective, and each provides an opportunity to discover patterns that may occur throughout an application domain, or by analogy, across different application domains.

The most basic element in the description of a requirements model is the **use case**. Use cases may serve as the basis for discovering one or more analysis patterns.

A *semantic analysis pattern* (SAP) "is a pattern that describes a small set of coherent use cases that together describe a basic generic application"

REQUIREMENTS MODELING FOR WEBAPPS

Requirements analysis does take time, but solving the wrong problem takes even more time.

How Much Analysis Is Enough?

The degree to which requirements modeling for WebApps is emphasized depends on the following factors:

- Size and complexity of WebApp increment.
- Number of stakeholders
- Size of the WebApp team.
- Degree to which members of the WebApp team have worked together
- Degree to which the organization's success is directly dependent on the success of the design of a specific part of the WebApp.

It only demands an analysis of those requirements that affect only that part of the WebApp.

Requirements Modeling Input

The requirements model provides a detailed indication of the true structure of the problem and provides insight into the shape of the solution. Requirements analysis refines this understanding by providing additional interpretation. As the problem structure is delineated as part of the requirements model.

Requirements Modeling Output

Requirements analysis provides a disciplined mechanism for representing and evaluating WebApp content and function, the modes of interaction that users will encounter, and the environment and infrastructure in which the WebApp resides. Each of these characteristics can be represented as a set of models that allow the WebApp requirements to be analyzed in a structured manner. While the specific models depend largely upon the nature of the WebApp, there are **five** main classes of models:

- Content model—identifies the full spectrum of content to be provided by the WebApp. Content includes text, graphics and images, video, and audio data.
- Interaction model—describes the manner in which users interact with the WebApp.

- Functional model—defines the operations that will be applied to WebApp content and describes other processing functions that are independent of content but necessary to the end user.
- Navigation model—defines the overall navigation strategy for the WebApp.
- Configuration model—describes the environment and infrastructure in which the WebApp resides.

4. Content. Model for WebApps

The content model contains structural elements that provide an important view of content requirements for a WebApp. These structural elements encompass content objects and all analysis classes, user-visible entities that are created or manipulated as a user interacts with the Content can be developed prior to the implementation of the WebApp, while the WebApp is being built, or long after the WebApp is operational.

A content object might be a textual description of a product, an article describing a news event, an action photograph taken at a sporting event, a user's response on a discussion forum, an animated representation of a corporate logo, a short video of a speech, or an audio overlay for a collection of presentation slides. The content objects might be stored as separate files, embedded directly into Web pages, or obtained dynamically from a database. Content objects can be determined directly from use cases by examining the scenario description for direct and indirect references to content. The content model must be capable of describing the content object Component.

Interaction Model for WebApps

Interaction model that can be composed of one or more of the following elements: (1) use cases, (2) sequence diagrams, (3) state diagrams, 16 and/or (4) user interface prototypes.

Functional Model for WebApps

The *functional model* addresses two processing elements of the WebApp, each representing a different level of procedural abstraction: (1) user-observable functionality that is delivered by the WebApp to end users, and (2) the operations contained within analysis classes that implement behaviors associated with the class.

User-observable functionality encompasses any processing functions that are initiated directly by the user.

Configuration Models for WebApps

The configuration model is nothing more than a list of server-side and client-side attributes. However, for more complex WebApps, a variety of configuration complexities may have an impact on analysis and design. The UML deployment diagram can be used in situations in which complex configuration architectures must be considered.

Navigation Modeling

Navigation modeling considers how each user category will navigate from one WebApp element (e.g., content object) to another. The mechanics of navigation are defined as part of design. At this stage, you should focus on overall navigation requirements. The following questions should be considered:

- Should certain elements be easier to reach than others? What is the priority for presentation?
- Should certain elements be emphasized to force users to navigate in their direction?
- How should navigation errors be handled?
- Should navigation to related groups of elements be given priority over navigation to a specific element?
- Should navigation be accomplished via links, via search-based access, or by some other means?
- Should certain elements be presented to users based on the context of previous navigation actions?
- Should a navigation log be maintained for users?
- Should a full navigation map or menu be available at every point in a user's interaction?
- Should navigation design be driven by the most commonly expected user behaviors or by the perceived importance of the defined WebApp elements?
- Can a user "store" his previous navigation through the WebApp to expedite future usage?
- For which user category should optimal navigation be designed?
- How should links external to the WebApp be handled? Overlaying the existing browser window? As a new browser window? As a separate frame?

These and many other questions should be asked and answered as part of navigation analysis.

Text Books:

 Roger.S.Pressman: Software Engineering-A Practitioners approach, 7th Edition, McGraw-Hill, 2007

Reference Books:

- 1. Ian Sommerville: Software Engineering, 8th Edition, Person Education Ltd., 2007.
- 2. Pfleeger: Software Engineering Theory and Practice, 2nd Edition, Pearson Education, 2001.
- 3. Waman S Jawadekar: Software Engineering Principles and Practice, Tata McGraw Hill,2004

Website:

- 1. https://www.tutorialspoint.com/software engineering/
- 2. https://www.geeksforgeeks.org/software-engineering/
- 3. https://www.learnhowtobecome.org/computer-careers/software-engineering/
- 4. https://www.level-up.one/devops-pdf-book/