

Espacios Tangentes

El concepto abstracto de curva en \mathbb{R}^2 y variedad en \mathbb{R}^n

Joaquín González Cervantes

joaquin@yandex.com

17 de noviembre de 2016

¿De qué trata?

- Definir el concepto general de curva en \mathbb{R}^2 y su espacio tangente.
- Una breve introducción al concepto de subvariedad y su espacio tangente.
- Demostrar que el espacio tangente a una k-subvariedad es k-dimensional.

Estrategia

- Empezar con curvas suaves parametrizadas en \mathbb{R}^2 y calcular su espacio tangente.
- Generalizar la definición de curva en \mathbb{R}^2 .
- Con nuestra nueva definición, determinar el espacio tangente.
- Teorema de la función implícita para funciones F(x, y) = 0.
- Conectar lo anterior con el concepto de curva en \mathbb{R}^n .

Surge el vector

Hamilton (1843)

Grassmann (1844)

Caracol de Pascal

El caracol de Pascal es la curva parametrizada

$$c(t) = ((1 + 2\cos t)\cos t, (1 + 2\cos t)\sin t), \quad t \in \mathbb{F}$$

El vector tangente es

$$c'(t) = (-\sin t - 4\cos t\sin t, \cos t + 4\cos^2 t - 2)$$

En particular,

$$c'(\pi/4) = (-\frac{\sqrt{2}}{2} - 2, \frac{\sqrt{2}}{2})$$

Caracol de Pascal

Teorema de la función implícita

