Math 5102 – Linear Algebra– Fall 2024 w/Professor Penera

Paul Carmody Homework #3 – NONE

Page 54: 4, 5, 7, 13, 14, 15, 16, 26

- 4. Do the polynomials $x^3 2x^2 + 1$, $4x^2 x + 3$, and 3x 2 generate $P_3(\mathbb{R})$?
- 5. Is $\{(1,4,-6),(1,5,8),(2,1,1),(0,1,0)\}$ a linearly independent subset of \mathbb{R}^3 ? Justify your answer.
- 7. The vectors $u_1=(2,-3,1), u_2=(1,4,-2), u_3=(-8,12,-4), u_4=(1,37,-17), \text{ and } u_5=(-3,-5,8) \text{ generate } \mathbb{R}^3.$ Find a subset of the set $\{u_1,u_2,u_3,u_4,u_5\}$ that is a basis for \mathbb{R}^3 .
- 13. The set of solutions to the system of linear equations

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 3x_2 + x_3 = 0$$

is a subspace of \mathbb{R}^3 . Find abasis for this subspace.

14. Find bases for the following subspaces of F^5 .

$$W_1 = \{(a_1, a_2, a_3, a_4, a_5) \in F^5 : a_1 - a_3 - a_4 = 0\}$$

and

$$W_2 = \{(a_1, a_2, a_3, a_4, a_5) \in F^5 : a_2 = a_3 = a_4 \text{ and } a_1 + a_5 = 0\}$$

What are the dimensions of W_1 and W_2

- 15. The set of all $n \times n$ matrices having trace equal to zero is a subspace W of $M_{n \times n}(F)$ (see Example 4 of Sections 1.3). find a basis for W. What is the dimension of W?
- 16. The set of all upper triangular $n \times n$ matrices is a subspace W of $M_{n \times n}(F)$ (See Exercise 12 of Section 1.3). Find a basis for W. What is the dimension of W?
- 26. Let V, W, and Z be as in Exercise 21 of Section 1.2. If V and W are vector spaces over F of dimensions m and n, determine the dimension of Z.