Київський національний університет імені Тараса Шевченка

Факультет комп'ютерних наук та кібернетики

ЛАБОРАТОРНА РОБОТА №1 З курсу "Комп'ютерне моделювання" Варіант 7

Виконав:

Студент 3 курсу, групи MI-32 Спеціальності "Комп'ютерні науки" Статнік Михайло Михайлович

Завдання 7

Постановка задачі

Побудувати таблиці функції Лобачевського $F(x) = -\int\limits_0^x ln(cos(t))dt$ з 2

правильними значущими цифрами на проміжку $[0;\pi/2]$ з кроком $\pi/36$, побудувати графік функції. Використати формулу середніх прямокутників, правило Рунге.

Теоретичні відомості

Формула середніх прямокутників. Якщо у формулі Ньютона-Котеса відкритого типу взяти один вузол $\frac{a+b}{2}$, отримаємо формулу середніх прямокутників

$$\int_{a}^{b} f(x)dx \approx (b-a)f\left(\frac{a+b}{2}\right),\,$$

з оцінкою залишкового члена

$$|R(f)| \leqslant \frac{M_2(b-a)^3}{24}.$$

Складена формула з оцінкою залишкового члена:

$$\int_{a}^{b} f(x)dx \approx h\left(f(x_{\frac{1}{2}}) + f(x_{\frac{3}{2}}) + \dots + f(x_{n-\frac{1}{2}})\right),\tag{9}$$

$$|R(f)| \le \frac{M_2(b-a)h^2}{24}.$$
 (10)

Враховуючи зауваження про симетричне розташування вузлів, алгебраїчний степінь точності квадратурної формули дорівнює 1. Порядок точності складеної формули середніх прямокутників – 2, а на одному проміжку – 3.

Обчислення інтеграла із заданою точністю. Алгоритм обчислення інтеграла з заданою точністю ε за допомогою правила Рунге:

- 1) Наближено обчислюємо інтеграл з кроками h та $\frac{h}{2}$, оцінюємо похибку за формулою (16).
- 2) Якщо $\frac{\left|I_{\frac{h}{2}}-I_{h}\right|}{2^{p}-1}>\varepsilon$, то наближено обчислюємо інтеграл з кроком $\frac{h}{4}$ і обчислюємо похибку $|I-I_{\frac{h}{4}}|$.
- 3) Процес обчислення інтеграла $I_{\frac{h}{2^i}},\ i=1,2,...,n,$ з двічі меншим кроком продовжуємо, поки не виконається умова $\frac{\left|I_{\frac{h}{2^n}}-I_{\frac{h}{2^{n-1}}}\right|}{2^p-1}\leqslant \varepsilon.$
- 4) Тоді $I \approx I_{\frac{h}{2^n}}$ з точністю ε .

Обрахунки

В нашому випадку р = 2 (Порядок точності складеної формули середніх прямокутників). Тож форма в 3 пункті набуває вигляду

$$\frac{\left|I_{\frac{h}{2^n}}-I_{\frac{h}{2^{n-1}}}\right|}{3}$$

Графік функції

Результати роботи програми

a: 0

b: 1.57079632679490 h: 0.0872664625997165

precision: 2

The function under integral: -log(cos(x))

0.000: 0.0e+00

0.087: 1.1e-4

0.175: 8.9e-4

0.262: 3.0e-3

0.349: 7.2e-3

0.436: 1.4e-2

0.524: 2.5e-2

0.611: 3.9e-2

0.698: 6.0e-2

0.785: 8.6e-2

0.873: 1.2e-1

0.960: 1.6e-1

1.047: 2.2e-1

1.134: 2.8e-1

1.222: 3.7e-1

1.309: 4.7e-1

1.396: 6.1e-1

1.484: 7.9e-1

1.571: 9.8e-1

Завдання 20

Постановка задачі

Наближено обчислити інтеграл $I=\int\limits_0^1 \frac{e^x}{\sqrt{x}} dx$ методом Канторовича.

Використати квадратурну формулу правих прямокутників

Теоретичні відомості

Метод виділення особливостей (Канторовича) знов використовує представлення інтеграла у вигляді суми:

$$I = \int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx + \int_{a}^{b} (f(x) - g(x))dx,$$

де функція g(x) має таку ж особливість, як f(x); функція (f(x)-g(x)) – достатньо гладка: $(f(x)-g(x))\in C_{[a;b]}^{(m)},\, m\geqslant 1$. Розглянемо метод для інтегралів вигляду

$$I = \int_{a}^{b} \frac{\varphi(x)}{(x - x_0)^{\alpha}} dx$$

з особливою точкою $x_0 \in [a; b], \ \alpha \in (0; 1).$

$$\varphi(x) = \sum_{k=0}^{m} \frac{\varphi^{(k)}(x_0)}{k!} (x - x_0)^k + \Psi(x) = P_m(x) + \Psi(x) \Rightarrow$$

$$\Psi(x) = \varphi(x) - \sum_{k=0}^{m} \frac{\varphi^{(k)}(x_0)}{k!} (x - x_0)^k;$$

$$I = \int_{a}^{b} \frac{\varphi(x)}{(x - x_{0})^{\alpha}} dx = \int_{a}^{b} \frac{P_{m}(x) + \Psi(x)}{(x - x_{0})^{\alpha}} dx =$$

$$= \int_{a}^{b} \frac{1}{(x - x_{0})^{\alpha}} \left(\sum_{k=0}^{m} \frac{\varphi^{(k)}(x_{0})}{k!} (x - x_{0})^{k} + \Psi(x) \right) dx =$$

$$= \sum_{k=0}^{m} \frac{\varphi^{(k)}(x_0)}{k!} \int_{a}^{b} (x - x_0)^{k - \alpha} dx + \int_{a}^{b} \frac{\Psi(x)}{(x - x_0)^{\alpha}} dx =$$

$$= \sum_{k=0}^{m} \frac{\varphi^{(k)}(x_0)}{k!(k+1-\alpha)} \left((b - x_0)^{k+1-\alpha} - (a - x_0)^{k+1-\alpha} \right) +$$

$$+ \int_{a}^{b} \frac{\Psi(x)}{(x - x_0)^{\alpha}} dx = I_1 + I_2.$$

Отже, інтеграл I_1 обчислюється аналітично, а інтеграл I_2 – наближено, наприклад, за допомогою квадратурних формул.

Формула правих прямокутників будується аналогічно попередньому випадку, тільки замість лівого вузла береться правий:

$$\int_{a}^{b} f(x)dx \approx (b-a)f(b),$$

оцінка залишкового члена квадратурної формули:

$$|R(f)| \leqslant \frac{M_1(b-a)^2}{2}.$$

Складена формула з оцінкою залишкового члена мають вигляд:

$$\int_{a}^{b} f(x)dx \approx h(f(x_1) + f(x_2) + \dots + f(x_n)),$$
$$|R(f)| \leq \frac{M_1(b-a)h}{2}.$$

Алгебраїчний степінь точності квадратурної формули правих прямокутників, так саме як і лівих, дорівнює 0, порядок точності складеної формули — 1, а формули по одному проміжку — 2.

Обрахунки

$$I=\int\limits_0^1 rac{e^x}{\sqrt{x}} dx$$
, I - невласний інтеграл II роду: $f(0)=+\infty$

$$x_0 = 0, \alpha = 0.5, \varphi(x) = e^x$$

Розкладемо $\varphi(x)$ в ряд Тейлора до x^4 :

$$\varphi(x) = e^x = P_4(x) + \Psi(x)$$

$$P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$

$$\Psi(x) = e^{x} - 1 - x - \frac{x^{2}}{2} - \frac{x^{3}}{6} - \frac{x^{4}}{24}$$

$$I = \int_{0}^{1} \frac{P_{4}(x)}{\sqrt{x}} dx + \int_{0}^{1} \frac{\Psi(x)}{\sqrt{x}} dx = I_{1} + I_{2}$$

Інтеграл I_1 проінтегруємо аналітично, I_2 наближено обчислимо методом

Правих Прямокутників з кроком h = 0.1

$$I_1 = \frac{\sqrt{x}(35x^4 + 180x^3 + 756x^2 + 2520x + 7560)}}{3780} \big|_0^1 = 2.9235$$

 $I_2 = 0.002155$ (код для розрахунку на гітхабі, посилання в кінці звіту)

$$I = I_1 + I_2 = 2.9235 + 0.0022 = 2.9257$$

Завдання 33

Постановка задачі

Наближено обчислити інтеграл $I=\int\limits_{2}^{\infty} \frac{1}{1+x^3} dx$ за допомогою методу

обрізання границь з точністю $\epsilon=0.005$. Використати метод середніх прямокутників, правило Рунге.

Теоретичні відомості

 $Memod\ oбрізання\ границь.$ Невласний інтеграл І роду вигляду $\int\limits_a^{+\infty} f(x) dx$ можна представити у вигляді суми:

$$I = \int_{a}^{+\infty} f(x)dx = \int_{a}^{A} f(x)dx + \int_{A}^{+\infty} f(x)dx$$
 (33)

Величину A, наприклад, вибирають таким чином, щоб виконувалась умова

$$\left| \int_{A}^{+\infty} f(x) dx \right| \leqslant \frac{\varepsilon}{2},$$

тоді інтеграл $\int_{a}^{A} f(x)dx$ також обчислюють з точністю $\frac{\varepsilon}{2}$.

*Теоретичні відомості щодо середніх прямокутників і правила Рунгу надавалися в 1 завданні

Обрахунки

$$\varepsilon = 0.005$$

$$I = \int_{2}^{\infty} \frac{1}{1+x^{3}} dx = \int_{2}^{A} \frac{1}{1+x^{3}} dx + \int_{A}^{\infty} \frac{1}{1+x^{3}} dx$$

$$\int_{A}^{\infty} \frac{1}{1+x^{3}} dx < \int_{A}^{\infty} \frac{1}{1+x^{2}} dx = \arctan(x) \Big|_{A}^{\infty} = \frac{\pi}{2} - \arctan(A)$$

$$\frac{\pi}{2} - arctan(A) < 0.0025 => A \approx 500$$

Тепер обрахуємо інтеграл
$$I=\int\limits_{2}^{500} \frac{1}{1+x^3} dx$$
 методом середніх

прямокутників і правилом Рунге з $\epsilon_1 = \frac{\epsilon}{2} = 0.0025$

 $I \approx 0.113497$ (код для розрахунку на гітхабі, посилання в кінці звіту)

Код Програми

https://github.com/Miha-s/computer modeling lab1