CURRENT: September 1977 (1 bar)

<u>.</u>	et)
Standard State Pressure = $p^* = 0.1$ MPa	S ₁ (ref)
ressure	
State P	
ndard	
Sta	
15 K	
ce Temperature = T, = 298.15 K	
e = T,	
peratu	
Ē	
Ē	

A _r = 32.06 Sulfur (S)	Sulfur (S)							<u>r)</u> S
	Enthalpy Ro	eference Te	mperature	Enthalpy Reference Temperature = T_r = 298.15 K 1·K ⁻¹ mol ⁻¹		Standard State Pressure		p* = 0.1 MF
	7.K	ಚ	S - [G	-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_t)$	Δ'H.	₽ <i>G</i>	log Kr
Scale of 1968	0 00 0	0. 12.770 19.368	0. 12.522 23.637	1NFINITE 49.744 34.038	-4 412 -3.722 -2.080	ರೆರೆಂ	000	000
d S ₆ (g). In our	298.15	22.698	32.056	32.056	0.	်ဝံ	i ဝ	ö
	300		32.196	32.056	0.042	ď	ó	ó
	368.300	24.246 24.773	37.015 38.103	32.540 32.540	1.648 2.049	ALPH	ALPHA <> BETA TRANSITION	
	388.360	25 167 31.058	39.427	32.861	2.550	BETA	<> LIQUID TRANSITION	
	400		44.793	33.195	4.639	ö	ó	ö
	432.020	53.808	47.431	34.151	5.737	C, LAME	LAMBDA MAXIMUM TRANSITION	M
	200		53.532	36.398	8.567	ö	ó	
	86	34,308	60.078	39,825	12.152	ರ ರ	00	ರ ರ
	882.117	31.665	72.624	46.143 48.467	18.710 21.310	o. Liquid	Щ	
	882.117	18.454	133.077	48.467 50.152	74.636 74.967		FUGACITY - 1 bar	-
	0001	18.638	135.403	58.581	76.823	ó	Ö	ó
	<u>88</u>	18.792	137.187	65.647	78.694 80.581	ರ ರ	ರ ರ	ರ ರ
	888	19.25	141.773	76.903 81.486 85.550	82.484 84.402 86.335	ರರ	ಶರಣ	d d c
	909	19.556	144.364	89.187	88.283	ံ ဝံ	ပ် ဝ	ံ ဝံ
	0 28	19.697	145.554	92.468 95.449	90.246	ં ં	ರ ರ	o o
	2000	19.956	147.759	98.174 100.679	94212	ರರ	i oʻ oʻ	66
	2100	20.176	149.768	102.993	98.226	ರ	00	o c
	388	20.364	151.612	107.142	102.280	jo	000	óóó
	2005	20.526	153,316	110.769	106.370	ಶರ	ರ ರ	ರರ
	2600	20.589	154.123	112.421	108.426	o c	o c	o o
	2800 2800	20.707	155.653	115.455	112.555		i o o	600
	3000	20.813	157.085	118.183	116.708	o c	o	o c
	3200	20.898	158.431	120.657	120.879	် ဝံ	တ်ဝ	တ်ဝ
	3400	20.983	159.701	122.916	125.067	d o c	ಶ ಲ ಲ	jojo
	3600	21.065	160.902	124.994	129.272	i o	ö	ö
	3800	21.106	161.480 162.044	125.972	131,380	ರ ರ	ರ ರ	ರ ರ
	96. 96. 96. 96.	21.194 21.240	162.594 163.131	127.822 128.698	135.610	ರ ರ	ರ ರ	ರ ರ
	4200	21.337	164.169	130,362	141.989	oʻo	ರ	o c
	999	21.558	166.120	133.388	150.567	o o	.	တ်ဝ
	90S	21.810	167.928	136.080	159.240	ರರ	ာ်ငံ	ೆರೆ
	2500	21.948	168.786	137,321	163.615	ರ	o' c	o c
	2800	222	170.423	139.628	172.452	်ဝင်	5000	600
	3	8(577	<u> </u>	141.733	181.400	j	ತ	3

368.3 K crystal, alpha 388.36 K crystal, beta 882.117 K liquid 882.117 K ideal diatomic gas (see below) 0 to 368.3 to 388.36 to above

REFERENCE STATE

Sulfur (S)

The normal boiling point of sulfur at 1 am, 717,824 K, is a secondary standard on the International Practical Temperature Scale The vapor composition at this temperature is a mixture of several sulfur species, the predominant species being S₁(g), S₇(g), and S₈(g reference state for sulfur, we have arbitrarily chosen 0.5 S₁(g) to be the gas phase species.

Sulfur (S)

PREVIOUS: September 1977 (1 atm)

S₁(cr)

Standard State Pressure = p = 0.1 MPa

Enthalpy Reference Temperature = T, = 298.15 K

 $\Delta_t H^{\circ}(0 \text{ K}) = 0.247 \text{ kJ} \cdot \text{mol}^{-1}$ Δ_tH°(298.15 K) = 0.360 kJ·mol⁻¹ $\Delta_{\text{trg}}H^{\circ} = 0.4004 \pm 0.0029 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{\text{frg}}H^{\circ} = 1.721 \pm 0.008 \text{ kJ} \cdot \text{mol}^{-1}$

'-K-'mol

-0.041 -0.012 -0.012 -0.003

0.157

0.313 0360 0.361

35.054 33.028 33.028 33.316 33.523

C, LAMBDA MAXIMUM —
TRANSITION

-2.162 -2.162 -2.127

24.242 24.421 29.066 33.028

198,300

۰8

INFINITE -0.11

log Kr

 $H^{\bullet}-H^{\bullet}(T_{\bullet})$

S -(G--H(T,))7

ئ

-0.007 -0.036 -0.068 -0.129 -0.179

0.050 0.310 0.653 1.481 2.397 3.335

--- CIUOLI ---

-- BETA <-

0.043 1.237 1.237 1.687 2.188 2.482 3.776 5.120 5.120 5.120 1.955

33.794

33.172 36.849 38.103 39.427

20.154 21.736 23.225 23.276 24.114 24.713 24.167 24.167 25.167 25.167 25.397 25.397 25.393 26.393 26

200 250 298.15 300 350 368.300 450 450 450 600 600 800

-2.428 -3.087 -3.838 -4.153 -4.136

33.969 34.830 35.812 37.957 40.189

43.222 43.222 46.052

- ALPHA <---> BETA

0.068 0.00

4		
	•	
1	٤	
٠		
	ì	

CURRENT September 1977

	2006	
(0/ 14.	2	(1)

CRYST,

Sulfur, Monoclinic (S)

<u>.</u>		
$S^{(298.15 \text{ K})} = 33.028 \pm 0.050 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$	$T_{\rm tr} = 368.3 \pm 0.3 {\rm K} (\alpha - \beta)$	$T_{\text{tus}} = 388.36 \pm 0.1 \text{K (B-1)}$

Enthalpy of Formation

The enthalpy formation of monoclinic sulfus at 298.15 K is calculated from that of orthorhombic sulfur by adding $\Delta_{uu}H^a$ and the difference is enthalpy, H°(368.3)-H°(298.15 K), between orthorhombic and monoclinic sulfur.

Heat Capacity and Entropy

Experimentally determined heat capacity vlaues for monoclinie (β) sulfur have been reported by Eastman and McGavock (6483–376.16 K), West (368-388 K),² and Montgomery (12.41-386.83 K),³ The thermochemical functions tabulated by Hultgren et al.¹ are based on work of Eastman and McGavock¹ and West.²

We adopt the heat capacity values tabulated (in 10 K increments) by Montgomery.³ The heat capacity values above $T_{in} = 388.36$ K are obtained by linear extrapolation of the tabulated heat capacity values.³ above 360 K. Using $S^{2}(10 \text{ K}) = 0.063 \text{ cal·K}^{-1} \cdot \text{mol}^{-1}$ and integrating the heat capacity values, we calculate $S^{2}(298.15 \text{ K}) = 7.893 \text{ cal·K}^{-1} \cdot \text{mol}^{-1}$. The $S^{2}(10)$ value contains a contribution of $0.007 \text{ cal·K}^{-1} \cdot \text{mol}^{-1}$ which is needed to make $S(S, cr, \beta, T) = S(S, cr, \alpha, T) + \Delta_{uv}H^{\gamma}T_{uv}$. Since both forms of sulfur are perfectly ordered crystals at 0 K, the S(0, K) value should be zero, by definition. The contribution of 0.007 cal· K^{-1} -mol⁻¹ is arbitrarily added at 10 K although it could appear in any temperature region at or below 368.3 K. Part of this entropy may be in the region of the lambda anomaly at 198.3 K. This contribution is comparable to the uncertainty expected from this adiabatic calorimeter.

Phase Data

The α-β transition at 368.3 K is discussed on the orthorhombic sulfur table. The heat capacity data of Montgomery did not support the

transition at 374 K reported by West,

Montgomery reported a \(\) anomaly in the heat capacity of monoclinic sulfur with a peak at 198.3 K. The entropy change in the lambda anomaly was 0.052 ± 0.005 cal·K⁻¹·mol⁻¹, this was interpreted as due to the disordering of the structure of monoclinic sulfur on heating. Fusion Data

The melting of sulfur has been studied by many workers. An excellent review by Meyer's summarizes these studies. In addition, Hultgren et al. 4 tabulated numerous enthalpy of melting determinations. We adopt the results obtained by Montgomery' via adiabatic calorimetry. $T_{tm} = 388.36 \pm 0.02$ K and $\Delta_{tm}H^{\circ} = 0.4128 \pm 0.0006$ kcal mol⁻¹. The only other precise study reported in the literature is that of West² who obtained \$\Delta_{\text{tu}}H^{\circ}=0.41051 \pm 0.0005 kcal·mol^{-1}\$ by adiabatic calorimetry.

E. D. Eastman and W. C. McGavock, J. Am. Chem. Soc. 59, 145 (1937).

²E. D. West, J. Am. Chem. Soc. 81, 29 (1959).

R. L. Montgomery, Ph.D. Dissertation, Oklahoma State University, 1976 [Diss. Abst. 76-09730].

'R. Hultgren et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals Park, Ohio,

JANAF Thermochemical Tables: S(cr, α), 9-30-77.

⁶B. Meyer, Chem. Rev. 76, 367 (1976).
⁷R. L. Montogomery, Science 184, 562 (1974).

Sulfur, Monoclinic (S)

PREVIOUS:

CURRENT: September 1977

Sulfur, Orthorhombic (S)

CRYSTAL(a)

S_I(cr)

Standard State Pressure = p = 0.1 MPa

Enthalpy Reference Temperature = T, = 298.15 K

Ar = 32.06 Sulfur, Orthorhombic (S)

J·K-'mol-'

log K

H.-H.(T.)

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_i)]T$

ť

ΤÆ

NFINITE

ರರದರ ರ ರರ

ರರದರ ರ ರರ

2.722 2.080 1.061 o.

49.744 34.038 32.422 32.056

0. 12.522 23.637 28.179 32.056

0. 12.770 19.368 21.297 22.698

32,056 32.540

32.196 37.015

22.744 24.246

300 350 368,300

-0.011 -0.047 -0.084 -0.154 -0.210

0.088 0.406 0.809 1.764 2.812 3.887

-2212 -2867 -3.548 4 136 680 883 4 680

0.042 1.208 1.648 2.427 3.698 5.019 7.816 10.818

32.975 33.818 34.780 36.886 39.082 41.284

24.895 25.920 26.945 28.995 31.045

8 8 8 8 8 8 8

39.044 42.035 44.819 49.913 54.537 58.816

 $S^{(298.15 \text{ K})} = 32.056 \pm 0.050 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Δ_tH°(0 K) = 0 kJ·mol⁻¹ $\Delta_t H^{\circ}(298.15 \text{ K}) = 0 \text{ kJ·mol}^{-1}$ $\Delta_{trr} H^{\circ} = 0.4004 \pm 0.0029 \text{ kJ·mol}^{-1}$

Experimentally determined heat capacity vlaues for orthorhombic (a) sulfur have been reported by Nemst, 23-202 K), Eastman and We adopt the heat capacity values tabulated (in 10 K increments) by Montgomery. Using S'(10) = 0.036 cal·K-1-mol-1 and integrating 360.99 K), and Paukov. The thermochemical functions tabulated by Hultgren et al. are based primarily on the work of Eastman and McGavock2 and unpublished work of Finke,5 the latter presumably being the preliminary results of Mongomery.6 The tentative values McGavock, 2 12.68-365.60 K), West, 2981-368 K), Mal'tsev and Demidenko, 53-305 K), Finke, 12-432 K), Montgomery, 12.34 reported by CODATA* for \$5'(298.15 K) and H*(298.15 K)-H*(0 K) are based on Eastman and McGavock, Montgomery, and Paukov. Heat Capacity and Entropy $\Gamma_{\rm tr} = 368.3 \pm 0.3 \, \text{K} \, (\alpha - \beta)$ Enthalpy of Formation Zero by definition.

The various heat capacity studies are in reasonably good agreement. The values recommended by Eastman and McGavock,² West,³ and Mal'tsev and Demidenko⁴ agree with Montgomery⁶ to within 0.5% except for the ranges 15-50 K² and 53-80 K.³ The smoothed value at 190 K reported by Mal'tsev and Demidenko⁴ is undoubtedly a typographical error. The selected values of Hultgren et al. ² agree within 0.5% the heat capacity values, we calculate $S'(298.15 \text{ K}) = 7.661 \text{ cal·K}^{-1} \text{ mol}^{-1}$, in agreement with CODATA. The heat capacity values above $T_{\text{Im}} = 368.3 \text{ K}$ are obtained by linear extrapolation of the tabulated values above 340 K. with the data of Montgomery⁶ except below 35 K.

studies. We adopt the results obtained by Montgomery⁶ via adiabatic calorimetry: $T_m = 368.3 \pm 0.3$ K and $\Delta_m H^0 = 0.0957 \pm 0.0007$ kcal-mol⁻¹. The only other precise study reported in the literature is that of West³ who obtained $\Delta_m H^0 = 0.0960 \pm 0.0005$ kcal-mol⁻¹ by adiabatic calorimetry. Other drop calorimetric^{11,12} and vapor pressure^{13,14} studies are much less precise with an uncertainty of ± 5 cal-mol⁻¹ The orthorhomic-monoclinic $(\alpha-\beta)$ phase change has been studied by many workers. An excellent review by Meyer¹⁰ summarizes these

Sublimation Data

Since the reference state of sulfur involves $0.5 \, S_2(g)$ rather than S(g), we define the enthalpy of sublimation (at 298.15 K) of orthorhombic sulfur as the process $S(cr, \alpha) = 0.5 \, S_2(g)$. Thus the enthalpy of sublimation of orthorhombic sulfur is one-half the enthalpy of formation of 54g). Since the dominant gaseous sulfur species at room temperature is actually S_t(g), the enthalpy of sublimation to the equilibrium gas is significantly smaller.

References

W. Nernst, Ann. Physik. 36, 395 (1911).

²E. D. Eastman and W. C. McGavock, J. Am. Chem. Soc. 59, 145 (1937). E. D. West, J. Am. Chem. Soc. 81, 29 (1959).

⁴A. K. Mal'tsev and A. F. Demidenko, Tr. Mosk. Khim.-Tekhnol. Inst., No. 51, 136 (1967).
³H. L. Finke, U. S. Bureau of Mines, Unpublished Work, Quoted in reference.

⁶R. L. Montgomery, Ph.D. Dissertation, Oklahoma State University, (1976) ⁷I. E. Paukov, to be published, 1977; mentioned in reference. R. Hultgren et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals Park, Ohio, (1973)

ICUS-CODATA Task Group Key Values for Thermodynamics, CODATA Special Report 4, (March, 1977)

¹⁰B. Meyer, Chem. Rev. 76, 367 (1976).
 ¹¹P. Mondain-Monval, Bull. Soc. Chim. France 39, 1349 (1926).
 ¹²J. N. Bronsted, Z. Physik. Chem. 55, 371 (1906).
 ¹³M. Thackray, Nature 203, 1278 (1964); J. Chem. Eng. Data 15, 495 (1970).
 ¹⁴K. Neumann, Z. Physik. Chem. A171, 416 (1934).

Sulfur, Orthorhombic (S)

S₁(I)

CURRENT September 1977

A. = 32.06 Sulfur (S)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [1.854] \text{ kJ·mol}^{-}$ $\Delta_{tr} H^{\circ} = 0 \text{ kJ·mol}^{-}$

Δ_{tm}H° = 1 7272 ± 0.0025 kJ·mol

LIQUID

Enthalpy of Formation F. = 432.02 ± 0.2 K T_{fre} = 388.36 ± 0.2 K

S°(298 15 K) = [36.825] J·K⁻¹·mol⁻¹

Sulfur (S)

The enthalpy of formation of liquid sulfur at 298.15 K is calculated from that of monoclinic sulfur by adding \$\Delta_{\text{tu}}H^{\text{\gamma}}\$ and the difference is enthalpy, H°(388.6 K)-H°(298 15 K), between the monoclinic crystal and the liquid.

Heat Capacity and Entropy

depolymerization of S₂ molecules. We adopt the tabulated heat capacity values of Montgomery' up to 434 K and those of West' above 434 K. The heat capacity is assumed to be constant at 7.568 cal·K⁻¹-mol⁻¹ above 810 K. Below T_m = 388.36 K, the heat capacity values are obtained by linear extrapolation using the slope of the values in the region Tm to 420 K. The entropy at 298.15 K is calculated in a manner analogous The adopted heat capacity values are based on the studies by Montgomery,* 05.79-433.31 K) and West (373-678 K).2 Liquid sulfu undergoes a second order transition with a maximum reported at 432.02 ± 0.20 Kl and 432.25 ± 0.30 Kl, this has been attributed to the to that used for the enthalpy of formation.

Vaporization Data

The normal boiling point of sulfur, T_{var}(1 atm) = 717.834 K is a secondary reference on the International Practical Temperature Scale of 1968. At this temperature, equilibrium sulfur vapor contains monomeric and several polymeric sulfur species: 5.kg) and S(g) predominate

above 1000 K while S₆(g), S₇(g) and S₁(g) dominate at T₁₄₀.

Since our reference state for sulfur is arbitrarily defined to involve 0.5 S₇(g) as the vapor species, we calculate the arbitrary normal boiling point, T₁₄₀(1 bat), for the process S(f) = 0.5 S₇(g). The brackets are used to indicate the arbitrary nature of this value. Since we only consider S₇(g) in this vaporization, note that the boiling point is considerably different from the secondary reference IPTS value. If all n-mers of sulfur are considered in the vaporization process, then a normal boiling point (1 atm) is closely reproduced.

¹R. L. Monigomery, Ph.D Dissertation, Oklahoma State University, (1976).
²E. D. West, J. Am. Chem. Soc. 81, 29 (1959).
³B. Meyer, Chem. Rev. 76, 367 (1976).

7			J·K-1mol-1	J·K -1mol -1 - 270.13 R	4	Standard State Pressure = $p^- = 0.1 \text{ MPg}$ k F-mol ⁻¹	Fressure = p	. = 0.1 MP2
7	тÆ	ប	S{G	$-[G^{\bullet}-H^{\bullet}(T_{i})]T$	$H^{\bullet}-H^{\bullet}(T_t)$	Δ _t H•	₽'Q•	log Kr
.9	250 00 250 00 250 00							
-	298.15	22.531	36.825	36.825	ó	1.854	0.432	~000
	300	22.707	36,965	36.826	0.042	1854	0.473	-0.074
	320	27.434	40.821	37.120	1.295	1.941	0.8	-0.027
	388.360	31.058	43.859	37.635	2.417	۲	dinori <>	•
	400	32,162	44.793	37.829	2 785	o	,	o
	432.020	53.829	47 431	38.442	3.884	CIAMRE	AMBDA MAYIMIN	
_	432.020	53.808	47.431	38.442	3.884	, 	RANSTION	
جا ح	420	43.046	49.308	38,840	4.711	c	Ç	c
-	200	37.986	53,532	40.106	6.713	Ö	o	ó
	8	34,308	60.078	42.915	10.298	o	C	
_	8	32.681	65.241	45.748	13.645	ó	i c	ċ
	00 80 80	31.699	69.530	48.460	16.856	o.	ó	ó
	882,117	31.665	72.624	50.568	19.456 -	FUGA	CITY - 1 bar	1 1 1 1 1
_	006	31.665	73.260	51.012	20.023	-53,090	6201	-0.063
	1000	31.665	76.596	53.407	23.189	-51.780	7.028	-0.367
-0	81	31.665	79.614	55.654	26.356	-50.485	12.846	-0.610
_	1700	31.665	82,369	27.767	29.522	-49.205	18 546	-0.807
4	300	31.665	84.904	59.758	32.689	-47 941	24 141	02.60-
	-	31.665	87.250	61.639	35.855	-46.693	29.639	-1108
	200	31.665	89.435	63.420	39.021	-45 460	35 0.48	330

Sulfur (S)

PREVIOUS: December 1965

								_												
¥ ,	ಠಠಠ	oʻ (o o				d	- 1		ö	ರ ರ ರ	ŀ	-0.063	0.50	-0.807	-1.106 -1.220				ptember 1977
} '	ರರರ	o .	oʻ (ರ ರ	RANSITION	c> LIQUID	KANSTITON 0.	BDA MAXIM	KANSILION 0.	o	ರ ರ	0. ACTIV = 1 har	1.079	17 846	18.546	35.048				CURRENT: September 1977
Ę '	ರರರ	o o	oʻ ʻ	ರ ರ	ALPHA	BETA	c			o	ರ ರ	O.	-53.090	-50.485	-49.205 -47.941	46.693 45.460				
(*) u_ u	-4.412 -3.722 -2.080	-1.061	· 0	0.042	1.648	2.550	4.639	5.737	5.737 6.564	8.567	12.152	21.310	71.877	20.00	31.376	37.709 40.875				
M(*) = 01-	INFINITE 49.744 34.038	32.422	32.056	32.056 32.337	32.540 32.540	32.861	32.861	34 151	34.720	36.398	39.825 43.099	46.143	48.952	53 060	\$6.222 \$8.332	62.185				
<u>)</u> , '			32.056	32.196 35.789	37.015 38.103	39.427	44.793	47.431	47.431	53.532	60.078	77 674	73,260	26,514	82.369	87.250 89.435				
، د	0. 12.770 19.368	21.297	22.698	22.744 23.870	24.773	25.167	31.062	53.808	53.806 43.046	37.986	34,308	31.693	31.665	31.665	33.56	31.665				
¥ '	°88	82	298.15	88	368.300	388.360	388,360	432.020	432.020	200	86	800	88	991	388	0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00				PREVIOUS:
		0 0 1252 49744 -3722 0 0 0 19368 -2.080 0 0	0 0 0 NEINTE –4412 0 0 0 0 1252 49.744 –3.722 0 0 0 0 0 12.532 340.38 –2.080 0 0 0 0 2 12.97 28.179 32.422 –1.061 0 0 0	0 0 0 NFINTE -4412 0 0 0 0 12.52 49.744 -3.722 0 0 0 0 0 12.53 49.744 -3.722 0 0 0 0 0 12.297 28.179 32.422 -1.061 0 0 0 0 0 15.2698 32.056 32.056 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 12.770 12.52 49.744 -3.722 0. 0. 0. 0. 15.774 -3.722 0. 0. 0. 0. 15.774 -3.722 0. 0. 0. 0. 0. 12.57 34.038 -2.086 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 12.770 12.52 49.744 -3.772 0 0 0 0 12.770 12.52 49.744 -3.772 0 0 0 12.770 12.52 49.744 -3.772 0 0 0 12.770 12.52 49.744 -3.772 0 0 0 0 0 12.770 12.52 49.744 -3.772 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,270 1,252 1,414 1,245 1,00 1,0	1,270 1,252 1,411 1,241 1,01	0 12.770 12.52 49.744 -3.722 0 0 0 0 12.770 12.52 49.744 -3.722 0 0 0 0 0 12.770 12.52 49.744 -3.722 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1270 1252 49.74 -3.72 0 0 0 0 1270 1252 49.74 -3.72 0 0 0 0 1270 1252 49.74 -3.72 0 0 0 0 0 1270 1252 49.74 -3.72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 12.770 12.522 49.7444.412 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 1270 1252 49.744 -4412 0 0 0 0 1270 1252 49.744 -3722 0 0 0 0 1270 12523 34.038 -2.080 0 0 0 0 0 0 0 0 0	Columbia Columbia	National Processing	1,270 1,252 4,744 1,245 1,24	1,270 1,252 4,744 1,252 0 0 0 0 1,270 1,252 3,4038 2,405 0 0 0 0 0 0 0 0 1,270 1,252 3,4038 2,4038 -2,609 0 0 0 0 0 0 0 0 0	1270 0 0 0 0 0 0 0 0 0

CRYSTAL(α−β)-LIQUID

368.3 K crystal, alpha 388.36 K crystal, beta 388.36 K liquid

2 2

Refer to the individual tables for details.

ulfur (S)

S₁(g)

CURRENT: September 1982 (1 bar)

Sulfur (S)

IDEAL GAS

IP(S, g) = 83558.0 \pm 1 cm⁻¹ S°(298.15 K) = 167.828 \pm 0.035 J·K⁻¹·mol⁻¹

L-mol-1 K-mol

A. = 32.06 Sulfur (S)

$\Delta_t H^0(298.15 \text{ K}) = 2$	tts	1 50	3	-	2	_
	Electronic Levels and Quantum Weights State ¢., cm ⁻¹ &	0.00	396.09	573.65	9238.58	22179.99
	Electron State	³ P ₂	<u>ئ</u>	ď,	ζ	s,

Enthalpy of Formation

The enthalpy of formation is based on the dissociation energy for S4g) as recommended by CODATA.1 The adopted value for D4H %

g. 298.15 K) is calculated using D6(S₂) = 35216.4 ± 2.5 cm⁻¹(421.282 ± 0.03 kJ·mol⁻¹) from the study of Ricks and Barrow.² The selected dissociation energy, obtained from precise spectrospeopic measurements, is supported by additional studies on thermochem ical cycles, ³ photoionization.² and torsion-effusion measurements.³ Earlier measurements have been reviewed by Herzberg, ⁷ Gaydon, Brewer, and Drowart and Goldfinger.

Heat Capacity and Entropy

The electronic levels for S(g) are given in the compilation by Moore. ^{10 II} Our calculations indicate that, except for the five levels lying below 23000 cm⁻¹, the inclusion of levels up to n = 10 has no effect on the termodynamic function to 6000 K. This is a result of the high energ of these levels; the fifthe excited state lies at 52623.88 cm⁻¹ above the ground state. Since the inclusion of these upper levels has no effect on the thermodynamic function (to 6000 K) we list only the lowest lying states ($\epsilon_i < 23000$ cm⁻¹). The reported uncertainty is S'(298.15 K)states and consideration of various cutoff procedures leads to calculational differences in the Gibbs energy function of ~0.4 J·K⁻¹-mol⁻¹ or is due to uncertainties in the relative atomic mass and the fundamental constants. Extension of these calculations above 6000 K may requi consideration of the higher excited states and utilization of proper fill and cutoff procedures. 12 In fact, the inclusion of these higher excite greater at temperatures in excess of 11500 K. The thermal functions at 298.15 K agree with CODATA recommendation except for two min differences. First, the entropy differs by 0.1094 J. K.-1 mol-1 because this table uses a standard state pressure of 1 bar, whereas the CODAT recommendations are based on 1 arm. Second, an entropy difference of 0.004 J.K.1. mol.1 arises due to the use of slightly different value for the fundamental constants

1. D. Cox, Chairman, ICSU-CODATA Task Group on Key Vlaues for Thermodynamics, J. Chem. Thermodyn. 10, 903 (1979).

M. Ricks and R. F. Barrow, Can. J. Phys. 47, 2423 (1969).
 Drowart and P. Goldfinger, Quart. Rev. 20, 545 (1966).
 Berkowitz and W. A. Chupka, J. Chem. Phys. 50, 4245 (1969).

⁵V. H. Dibeler and S. K. Liston, J. Chem. Phys. 49, 482 (1968).

P. Budinicks, R. Edwards, and P. G. Wahlbeck, J. Chem. Phys. 48, 2859 (1968).

G. Herzberg, "Spectra of Diatomic Molecules," 2nd ed., D. Van Nostrand Co., Inc., New York, (1963).

A. H. Gaydon, "Dissociation Energies and Spectra of Diatomic Molecules," 3rd ed., Chapman and Hall Ltd., London, (1968).

L. Brewer, J. Chem. Phys. 31, 1143 (1959).

B. Erwer, J. Chem. Phys. 31, 1143 (1959).

C. E. Moore, U.S. Nat. Bur. Stand., NSRDS-NBS 35, Volume I, 1970 [Reprint of NBS Circular 467, Volume I, (1949).

"C. E. Moore, U.S. Nat. Bur. Stand., NSRDS-NBS 34, 8pp. (1970).

¹²J. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-0048, (1978).

Enthalpy Reference Temperature = T, = 298.15 K	TK C; S	0 0. 0. 100 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	5 23.673	23.669	400 23.233 174.729 450 22.979 177.451 500 22.741 170.850	22.338	22.031 21.800	21.62 4 21.489	21.386	1300 21.249 200.745 1400 21.209 202.318 1500 21.186 203.781	21.178	21.184	21.234 21.276	21.327	21 452 21 523 21 598	21.676	21.837 21.919 21.900	22.078	2223	22,52	22.50		27.22 27.22	22.808 22.847 27.884	22.917	2234 284	23.021	23.0 4 0 23.057	23.02 23.08 23.08 23.08 23.08	23.105	71.5
ure = T, = 298.15 I	-[G-H'(T,)]/T	INFINITE 91 188.580 92 169.994 53 168.218			29 168.752 51 169.571 50 170.481		88 174.302 14 176.125			45 183.758 18 185.029 31 186.231												203.802 57 204.325 51 204.836									
	$H^{\bullet}-H^{\bullet}(T_{\iota})$	-6.657 -4.569 -2.320 -1.141	·o	0.044	2391 3546 4580	6.942	9.160	13.522	17.821	24.205 24.205 26.175	28.443	30.561 32.680	34.802 36.927	39.058 41.193	43.335 45.484 47.640	49.803	54.155 56.343	60.742	62.934 57.173	67.400 69.634	71.874 74.121	78.634 80.898	83.167 85.442	87.720 90.003 97.790	94580	99.169	103.769	106.072	112.991	117.610	175'511
Standard State Pressure = $p^* = 0.1 \text{ MPa}$	A.H.	274.735 276.133 276.740 276.899	276.980	276.982 276.995	274.732 273.962	271.770	270.641	215.535	216.106	216.579	217.140	217.295 217.438	217.570	217.812	218.035	218.358	218.579	218.931	219,005	219.313 219.447	219.583 219.721	219.862 220.003 220.146	220.289	220.575 220.716 528.055	220.993	22128	221.509	221.628	221.849 221.952 222.048	222.138	77777
e Pressure = 1	ΔG	249.789 249.789 249.031	236.500	236.248 229.458	222.757	197.436	185.138	162.055	150.109	132.020	119.886	113,803	101.611 95.505	89.392	71.152	58.755	46.470	28.012	15.687	9518 3346	-2.830 -9.011	-15.194 -21.382 -27.573	-33.768	-46.168 -52.373 -58.581	-64.792	-1233	-89.665	-95.890	-108.346 -114.577 -120.810	-127.044	135,251
0.1 MPa	log K,	INFINITE -137.427 -65.238 -50.779								-5.548 -4.926												0209 0286 0360		0.561							77

PREVIOUS: September 1977 (1 atm)

) <u>t</u> s
M, = 32.05945 Sulfur, Ion (S*)
IDEAL GAS
Sulfur, Ion (S*)

<u>5</u>

ard State Pressure = p = 0.1 MPa

Sulfur, Ion (S*)	IDEAL GAS		Mr = 32.05945 Sulfur, Ion (S')	σ L	n (S')		1 2000		
$IP(S, g) = 188200 \pm 100 \text{ cm}$ $C^{*}(S) = 15 \text{ K} = 163 677 + 0.03 1 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$			$\Delta_0 H^{-}(0 \text{ K}) = 12/4.311 \pm 0.4 \text{ kJ·mol}^{-}$ $\Delta_0 H^{-}(09815 \text{ K}) = [1282.2931 \text{ kJ·mol}^{-1}]$		NCIGUEIRE 10	J·K 'mol'	Latitatpy reference reinperature = 1; = 256.15 r		2
				7.K	೮	s[C	S* -{G*-H*(T,)}/T	$H^{\bullet}-H^{\bullet}(T_{i})$	$\Delta_i H$
	Electronic Levels and Onantum Weight	mum Weights		- 5	0.0	0.	INFINITE	-6.197	1274.3
	State Company and Com-1	Substantian Monte		88	20.786	155.328	182.108	-2.040	
		١٥		250	20.786	159.966	163.970	-1.001	
	4S _{3/2} 0.0	4		298.15	20.786	163.627	163.627	ó	1282.2
	² D _{3/2} 14853.0	4		300	20.786	163.756	163.628	0.038	1282.3
		9		320	20.786	166,960	163.881	1.078	1283.2
		•		8	20.786	169.736	164.443	2117	1281.5
		7		55	20.786	172.184	165.170	3.156	1282.0
		4		80	20.786	174.374	165.983	4.1%	1282.1

Enthalpy of Formation

the 1973 CODATA fundamental constants. Rosenstock et al. and Levin and Lias have summarized additional ionization and appearance potential data

 $L_0H^*(S^*, g_*, 298.15 \, K)$ is calculated from $A_0H^*(S, g_*, 0 \, K)$ by using IP(S) with JANAF¹ enthalpies, $H^*(0 \, K) - H^*(298.15 \, K)$, for S(g), S'(g), and e (ref). $L_0H^*(S \to S^* + e^-, 298.15 \, K)$ differs from a room temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. 4 $L_0H^*(298.15 \, K)$ should be changed by $-6.197 \, k$ 1·mol $^{-1}$ if it is to be used in the ion convention that excludes the enthalpy of the electron

Heat Capacity and Entropy

other than the ground state and the first four excited states; the next excited state is approximately 79000 cm⁻¹ above the ground state. Since inclusion of these excited states has no effect on the thermodynamic functions (to 6000 K), we list only the ground state and the first four excited states. The reported uncertainty in \$'(298.15 K) is due to uncertainties in the relative ionic mass and the fundamental constants. Extension of these calculations above 6000 K may require consideration of the excited states and use of different fill and cutoff procedures. summation in the partition function? has no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of all levels The information on electronic energy levels and quantum weights, given by Moore, 26 is incomplete because many theoretically predicted levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels and cutting off the

References

JANAF Thermochemical Tables: S(g), 9-30-82; e⁻(ref), 3-31-82.
 E. Moore, U. S. Nat. Bur. Stand, NSRDS-NBS-34, 8 pp. (1970).
 E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
 H. M. Rosenstock, K. Dratl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
 R. D. Levin and S. G. Lias, U. S. Nat. Bur. Stand, NSRDS-NBS-71, 634 pp. (1982).
 C. E. Moore, U. S. Nat. Bur. Stand, NSRDS-NBS-35, Volume 1, (1971) Reprinted from NBS Circular 467, Volume 1, 1949].
 R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-78-0960, Contract No. F44620-75-1-6048, (1978).

CURRENT September 1982 (1 bar) -103.645 -87.688 -75.711 -66.452 -9.293 -53.425 -48.526 -44.373 -40.807 2.047-2.047-1.047-1.047-2.765--6.494 -6.232 -5.980 -5.736 -5.501 -34.997 -32.598 -30.462 -28.547 -26.821 -25.256 -23.832 -22.529 -21.332 -20.230 -19.210 -18.265 -17.385 -16.565 -15.798 -15.080 -14.405 -13.770 -12.606 -12.606 -12.607 -11.564 -11.083 -10.626 -9.776 -215.299 -183.392 -159.456 -140.854 -125.973 log Kr 687.985 674.568 661.099 647.580 634.010 620.390 606.721 593.004 579.239 894.955 882.486 869.948 857.343 844.674 831.941 819.145 806.228 793.371 767.361 754.269 741.122 727.919 714.661 1071.987 1060.911 1049.706 1038.380 1026.939 1015.391 1003.741 991.994 980.153 968.223 956.208 944.111 931.935 919.682 907.354 1190.530 1175.108 1159.560 1144.969 1135.137 1125.075 1114.805 1104.347 1093.716 1082.926 ₽Ġ. 1291.469 1293.725 1296.000 1298.293 300.606 1302.939 1305.292 1307.665 1310.059 1314,905 1317,358 1319,830 1322,320 1248.131 1250.326 1252.509 1254.679 1256.839 1258.991 1261.135 1263.275 1265.410 1267.545 1269.679 1271.817 1273.960 1276.108 1280.432 1282.611 1284.802 1287.009 122.690 1233.500 1234.446 1232.347 1234.648 1239.204 1241.459 1243.698 <u>=</u> 8 . 21117 31156 4.156 4.157 5.151 81.479 83.884 86.315 88.772 91.253 93.761 96.294 98.852 101.434 104.042 106.674 109.329 111.708 117.432 196.398 196.930 197.451 197.461 198.460 198.930 199.430 199.430 199.430 199.430 175.611 176.950 177.416 180.555 181.639 182.671 183.656 184.599 185.503 186.369 187.203 188.005 188.778 189.525 190246 190944 191621 192277 192333 194136 195235 195235 195235 201.265 201.705 202.137 202.563 224.312 224.827 225.338 225.842 226.342 212.465 213.160 213.839 214.502 215.153 218.823 219.403 219.975 220.539 221.097 221.648 222.193 222.731 223.764 198.552 199.812 201.001 202.127 203.195 204.212 205.184 206.114 207.007 208.694 209.495 210.270 211.022 211.733 215.791 216.417 217.033 217.638 218.235 190.763 192.571 194.235 September 25.201 25.454 25.705 25.953 26.197 26.671 26.671 26.899 27.121 27.337 20.736 20.736 20.736 20.736 20.736 20.736 20.736 20.736 20.737 20 21.164 21.262 21.374 21.640 21.795 22.142 22.142 22.333 22.338 22222 22222 24222 24222 23.931 24.182 24.691 24.946 PREVIOUS: \$25,000 \$25,00

-15.685 -14.829 -13.898 -12.893

-36.912 -38.963 -41.020 -43.083 -45.153

9
S

Mr = 32.06055 Sulfur, lon (S-)

IDEAL GAS

 $EA(S, g) = 2.077120 \pm 0.000001 eV$

Sulfur, Ion (S⁻)

Standard State Pressure = p = 0.1 MPa 74.325 $\Delta_{r}H$ Z E $H^{\bullet}-H^{\bullet}(T_i)$ $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

log Kr

δģ

Emhalpy Reference Temperature = T, = 298.15 K ţ 3

0. 140.952 155.895 160.914

164.918

22.783

298.15

164.918

165.059 168.571 171.603 174.264 176.628

164.919 165.196 165.812 166.606 167.493

7.492 -0.760 -8.558 -14.889 -16.007

22.784 22.553 22.553 22.370 22.096 22.096 21.868 21.687 21.687 11.338 21.264 21.203 21.153

180.687 184.071 186.478 189.524 191.788 193.826 195.679 195.679 198.948

177.813 179.226 180.558 181.816 183.007

21.076 21.047 21.021

-16.956 -18.891 -20.843 -22.810 -24.791

28.207 30.313 32.417 34.518 36.617

20.999

184.138 185.233 186.237 187.215 188.151 189.047 189.907 190.734 191.530

6.6.51 4.6.53 4.6.53 4.6.53 4.6.53 6.6.53

-16.94 -17.716 -18.334 -18.807 -19.146 -19.357 -19.448 -19.425 -19.292

-7.568 -9.403 -11.261 -13.140 -15.039

-18.720 -18.289 -17.767 -17.156 -16.461

-26.785 -28.791 -30.807 -32.833 -34.869

38.714 40.809 42.904 44.997

201.767 203.044 204.362 205.459 207.482 208.457 208.457 210.279 211.133

20.963 20.949 20.936 20.924 20.914

211.953 212.742 213.501 214.234 214.942

193.037 193.753 194.445 195.114 195.764

20.897 20.897 20.883 20.883

25,444,45 25,454,45

49.180 51.270 53.359 55.448 57.536 61.710 61.710 63.796 65.882 67.968

-10.671 -9.459 -8.181 -6.841 -5.439

-47227 -49307 -51391 -53479 -55573 -55773 -55773 -60108

-3.976 -2.456 -0.879 0.754 2.441

70.053 72.138 74.222 76.307 78.391

196.393 197.005 197.599 198.177 198.739

20.871 20.866 20.862 20.858 20.850 20.844 20.844 20.841

215.627 216.289 217.534 217.534 218.736 219.317 220.414 220.942

20.834 20.834 20.832 20.830 20.828

221.959 221.959 222.928 223.396

199.287 199.820 200.341 200.849 201.344

201.829 202.302 202.765 203.218 203.661 223.854 224.301 224.301 225.509 225.500 226.602 226.803 227.197 227.197

204.095 204.520 204.937 205.345 205.746

80.474 82.558 84.641 86.724 88.807

90.890

-88.229 -70.355 -72.487 -76.767

-78.916 -81.070 -83.232 -85.399

4.181 5.973 7.816 9.708 11.648 13.637 15.672 17.753 19.880

-89.754 -91.943 -96.340 -98.550

206.139 206.525 206.904 207.276 207.642

20.819

0.155 0.174 0.174 0.230 0.249 0.266 0.266 0.301

100.767 105.224 107.464 109.711 CURRENT: September 1982 (1 bar)

111.709 113.790 115.871 117.952 208.354 208.354 208.701 209.043 PREVIOUS: September 1977 (1 atm)

Sulfur, Ion (S⁻)

 $\Delta_t H^{\circ}(0 \text{ K}) = 74.325 \pm 0.25 \text{ kJ} \cdot \text{mol}^{-1}$ Δ_tH°(298.15 K) = [70 180] kJ·mol⁻¹ $\Delta H^{3}(S^{2}, g, 0 \text{ K})$ is calculated from $\Delta H^{3}(S, g, 0 \text{ K})^{1}$ using the adopted electron affinity of EA(S) = 2.077120 \pm 0.00001 eV (200.4100 \pm 0.0001 kJ·mol⁻¹). This value, recommended by Hotop and Lineberger, is based on a tunable laser photodetachment threshold Electonic Levels and Quantum Weights e. cm 0.0 State توثو $S^{(298.15 \text{ K})} = 164.918 \pm 0.001 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Enthalpy of Formation

and e [ref). $\Delta H^2(S^- \to S + e^-$, 298.15 K) differs from a room-temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. 5 $\Delta H^4(298.15 \text{ K})$ should be changed by +6.197 kJ·mol⁻¹ if it is to be used in the ion study.3 Additional information on S^{*}(g) may be obtained in the critical discussions of Hotop and Lineberger, ²⁴ Rosenstock et al.³ and . g, 298.15 K) is obtained from A.H. (S, g, 0 K) by using EA(S) with JANAF¹ enthalpies, H'(0 K)-H'(298.15 K), for S⁻(g), S(g), Massey.

Heat Capacity and Entropy

convention that excludes the enthalpy of the electron

The ground state and the fine-structure separation (483.54 ± 0.01 cm⁻¹) for S⁻(g) has been experimentally determined; ³ a discussion of the relevant work is given by Hotop and Lineberger² and Massey. ⁶ Lacking any experimental evidence as to the stability of any excited states, we assume no stable excited states exist.

JANAF Thermochemical Tables: S(g), 9-30-82; e (ref), 3-31-82.

²H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 14, 731 (1985).
³R. D. Mead, K. R. Lykke and W. C. Lineberger, unpublished.
⁴H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).
⁵H. M. Rosenstock, K. Draxl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
⁶H. S. W. Massey, "Negative Ions", 3rd ed., Cambridge University Press, Cambridge, 741 pp. (1976).

CURRENT December 1971 (1 bar)

S₁Si₁(g)

-144.448

-28.528 -29.516

85.009 88.803 92.601

-153.291 -157.659 -161.992

-135.453

-23.645 -24.612 -25.584 -26.561 -27.543

66.095 69.870 73.649 77.432 81.219

2.2.58 2.2.2.40 2.2.2

-176.874

-170.041 -163.194 -156.331 -149.454

-422.570 -423.134 -423.694 -424.250 -424.800

38.549 38.758 38.880 39.013 39.320 39.493 39.681 39.884

111.657 115.484 119.319 123.161 127.011 130.871 134.741

135.660

114.876 107.926 100,965

427.897

62.226 70.248

-142.564

425.876 426.399 426.912 427.411

284.750

318.548 319,510

142.517 146.426 150.350 154.290 158.249

287.215

323.171

56555 55556

288.778

124,045

325.752 326.586 327.408

40.101 40.334 40.582 40.844 41.122

-87.014 -80.025

429.256 430.067

73.028

431.689

431.416

182.463 186.590 190.746 194.935

328.220 329.021 329.813

42.045

\$2500 \$2500

-166.293 -170.561 -174.799 -179.006

-35.462 -36.451 -37.436

104.020

96.403 00.209

Standard State Pressure = $p^* = 0.1$ MPa

-46.568 -18.683 -13.115 -9.531

log Kr

 $H^{\bullet}-H^{\bullet}(T_{\bullet})$

-9.417 -6.788 -4.839 -3.359 -2.193 -0.476 0.722 0.722 2.206 2.206

54.083 45.483 37.056 28.942

0.060 1.701 3.381 5.094

105.960

-3.075 1.534

-38.005

13.961 17.594 21.254 24.936

-54.712 -62.947 -71.108 -79.197 -87.214

36.302 35.428 34.507 33.538

28.634 32.346 36.068 39.800 43.539

-95.161 102.594 -11223 -121.651

31.451 -19.845 -20.783 -21.730

Silicon Sulfide (SiS)

PREVIOUS: December 1971 (1 atm)

Silicon Sulfide (SIS)	IDEAL GAS	M _r = 60.145	M, = 60.1455 Silicon Sulfide (SiS)	S) apılır	is)		
C4708 15 K) = 273 80 + 2 0 1.K ⁻¹ .mol ⁻¹		$\Delta_i H^0(0 \text{ K}) = 104.6 \pm 12.6 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_i H^0 \cap 08 + 15 \text{ K} \cdot \text{mol}^{-1}$		eference Te	emperature	Enthalpy Reference Temperature = T, = 298.15 K	×
			7/K	ະ	S• -[G	$S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]H$	Н
Electron	Electronic Levels and Quantum Weights State e., cm ⁻¹ 8,	rights	9889	0. 29.129 30.303	0. 190.877 211.317	1251.180 226.691	, , , ,
χ _ι χ	0	1-	298.15	32.332	223.799	223.799	
[a ³ Π] D ¹ Π	[24700] 35029	2 6	350	32,368	223.999	223.799	
[e ² ∑-] F	[35140] 37114	3 3 :		33.953 34.531 34.996	23,542 237,576 24,239	25.090 25.090 52.525 57.575	
1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	[37290] 41974		98	35.681	247.684	230.404	
= 740.34 cm ⁻¹	ωx = 2.544 cm ⁻¹	[1 b	888	36.478 36.722 36.908	258.072 262.383	236.080 238.767 241.376	- (1)
$B_e = 0.29930 \text{ cm}^{-1}$	α _c = 0.00145 cm ⁻¹	$r_e = 1.92932$	200	37.054	269.787	243.755	
Enthalpy of Formation Herzberg suggests a dissociation energy for SiS(g) of 6.6 eV. This result was derived from a spectroscopic analysis of the D–X and B–X	.6 eV. This result was deriw	ed from a spectroscopic analysis of the D-X and E-	×	37.271 37.355 37.427	275.995 278.761 281.340	248.251 250.332 252.315	101014
band systems by Barrow and Jevons, * Vago and Barrow, * and Barrow, * Robinson and Barrow * extended the work of Vago and Barrow * and	and Barrow.6 Robinson and	Barrow* extended the work of Vago and Barrow* an		37.491	283.758	254,205	``
arrived at a value of 147.4 ± 3.0 kcal·mol (6.39 eV). In this latter work, a graphical Birge-Sponer extrapolation was made using 28 vibrational levels of the Estate. The highest level is quite near the convergence limit and thus only a short extrapolation is necessary. The extrapolation is the convergence limit and thus only a short extrapolation is necessary. The extra convergence of the convergence limit and thus only a short extrapolation is necessary. The	In this latter work, a graph near the convergence limit	ucal Birge-Sponer extrapolation was made using and thus only a short extrapolation is necessary. The angle of ST av	2000	37.600 37.600 37.641	288.180 290.214	250.011 257.739 259.395	,,,,,,,
of maximum uncertainty of approximately 7 kcal·mol $^{-1}$. The products of the dissociation must be Si(2) and S(2) but it is not certain as to	he products of the dissociat	ion must be $Si(^3p)$ and $S(^3p)$ but it is not certain as		37.733	293.987	262.513	
which of the sublevels of the ¹ p states are involved. This leads to an uncertainty of ±1.2 kcal·mol ⁻¹ . The result is in agreement wit	leads to an uncertainty of	±1.2 kcal·mol ⁻¹ . The result is in agreement with both led to a value of 6.47 eV (140.2 kcal mol ⁻¹).	2200 2300	37.773 37.811	295.743 297.423	263.984 265.401	• (-
The value of the dissociation energy chosen is 147.4 ± 3.0 kcal·mol ⁻¹ , based on the work by Robinson and Barrow. Gaydon and	± 3.0 kcal·mol ⁻¹ , based or	the work by Robinson and Barrow. Gaydon! as		37.848 37.885	299.033 300.579	266.769 268.091	
Vedeneyev et al. 3 suggest a similar value, based on the work by Robinson and Barrow and others. This value is also consistent with the	ork by Robinson and Barro	was and others. This value is also consistent with the		37.922	302.065	269.369	
tabulated dissociation energies of Gaydon' as far as frends and Ph. The resulting enthalty of formation is $\Lambda H^{0}(0 K)$,	which might be expected in 25.01 + 3.00 kcal-mol ⁻¹	Gaydon' as far as trends which might be expected in the oxides, sulfides, and selenides of C, Si, Ge, Sn, formation is A.H. (0 K) = 2501 + 3.00 kcal·mol-1		37.998	304.878	271.806	
Rosenqvist and Tungesvirk ¹³ studied two reaction systems by a transportation method. By combining these two systems, the standard free	is by a transportation metho	d. By combining these two systems, the standard fr	3000	38.040 38.084	306.212	272.970 274 100	v.⊆
energy of the reaction 2 Si(s) + S ₂ (g) = 2 SiS(g) was calculated. Using JANAF values 14 for Si(s) and S ₂ (g), Δ_1G^0 (1 atm) values for SiS(g)	lated. Using JANAF values	for Si(s) and $S_2(g)$, $\Delta_i G$ (1 atm) values for SiS(38.132	308.752	275.197	22
a O k and 500 K are 27,052 Kcarmol - and 15,555 Kcarmol , respectively. These values are within the effortange of the values in this rabilition.	moi , respectively. Inese	vaines are within the enor range of the values in the		38.243	311.140	17.30	1=:
			3500	38,380	313.394	278.316	==
Heat Gapacity and Entropy The controconic constants connected for the natural at	hundances of Si and S are	from Hoeft 9 and 1 agernaist Nilheden and Rarma	3500	38.460 38.549	314,476	280.265	22
Herzberg ² tabulates the X ¹ Z ² , D ¹ II, and E states and con	nments on unresolved band	s at 16000-29000 cm ⁻¹ . The a ³ II state is predicted 1		38.648	316.560	282.121	
an interpolation of similar a ¹ II X ¹ 2* splittings in the sulfides and oxides of C, Ge, Sn. ^{10,11} The remaining states are deduced by a rotational	les and oxides of C, Ge, Sn	1011 The remaining states are deduced by a rotation		38.880	318.548	283.893	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The state of the state of the State of	in 177 and 18 of the second of the contract of		410			•

Enthalpy of Formation

Heat Capacity and Entropy

The spectroscopic constants, corrected for the natural abundances of Si and S, are from Hoeft, ⁹ and Lagerqvist, Nilheden, and Barrow.⁷ Herzberg¹ tabulates the X¹S⁺, D¹I, and E states and comments on unresolved bands at 16000–29000 cm⁻¹. The a³II state is predicted by an interpolation of similar a³II X¹S⁺ splittings in the sulfides and oxides of C, Ge, Sn.^{10,11} The remaining states are deduced by a rotational analysis of the E–X system of SiS⁻¹¹¹ is not known conclusively whether the F state is ¹II or ¹∆. The energy of the e and I states are upper bound estimates.

References

A. G. Gaydon, "Dissociation Energies and Spectra of Diatomic Molecules," 3rd ed., Chapman and Hall, Ltd., London, 330 pp. (1968).

G. Herzberg, "Spectra of Diatomic Molecules," 2nd Ed., D. Van Nostrand Company, New York, (1950).
V. I. Vedeneyev, L. V. Gurvich, V. N. Kondral'yev, V. A. Medvedev, and Ye. L. Frankevich, "Bond Energies, Ionization Potentials, and

Electron Affinities," St. Martin's Press, New York, (1966).

4. F. Barrow and W. Jevons, Proc. Roy. Soc. (London) 169, 45 (1938).
5. E. Vago and R. F. Barrow, Proc. Phys. Soc. (London) 58, 538 (1946).
6. R. F. Barrow, Proc. Phys. Soc. (London) 58, 606 (1946).
7. A. Lagerquist, G. Nilheden, and R. F. Barrow, Proc. Phys. Soc. (London) A65, 419 (1952).
8. J. Q. Robinson and R. F. Barrow, Proc. Phys. Soc. (London) A67, 95 (1954).
9. Hoeft, Z. Nautrforsch. 204, 1327 (1965).
10. R. Palmer, J. Chem. Phys. 54, 3244 (1971).

¹¹B. Meyer, J. J. Smith and K. Spitzer, J. Chem. Phys. 53, 3616 (1970).

¹²R. F. Barrow, J. L. Deutsch, A. Lagerqvist, and B. Westerlund, Proc. Phys. Soc. (London) 78, 1307 (1961).
¹³R. Rosenqvist and K. Tungesvik, Trans. Faraday Soc. 67, 2945 (1971); Chem. Abstr. 75, 144493. Rosenqvist and K. Tungesvik, Trans. Faraday Soc. 67, 2945 (1971); Chem. Abstr. 75, 144493j.

4)ANAF Thermochemical Tables: Si(s), 12-31-66; S₂(g), 12-31-65.

CURRENT: September 1977

O
_
٠.
-=
ഗ
-
ഗ

M.= 119.68 Strontium Sulfide (SrS)

 $S^{(298.15 \text{ K})} = 68.41 \pm 0.8 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

CRYSTAL

Strontium Sulfide (SrS)

 $\Delta_t H^{\circ}(0 \text{ K}) = -467.4 \pm 17 \text{ kJ·mo}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = -468.6 \pm 17 \text{ kJ·mo}$

Sabatier¹ measured the enthalpy of solution of StS in hydrochloric acid solution as $\Delta H(283.6 \text{ K}) = -26.9 \pm 1.0 \text{ kcal·mol}^{-1}$ for SrS(cr) HCl(aq. 100 H₂O) \rightarrow SrCl₂(aq. 100 H₂O) + H₂S(aq). We derive $\Delta_1 H^2$ (SrS, cr. 298.15 K) = -113.1 \pm 2.0 kcal·mol based on the follow auxiliary data: $\Delta_1 H^2$ (HCl; aq. 100 H₂O, 298.15 K) = -39.657 kcal·mol (3), $\Delta_1 H^2$ (H₂S, aq. 298.15 K) = -9.5 kcal·mol (12). Δ/H°(SrCl₂ aq, 200 H₂O, 298.15 K) = -209.78 kcal·mol⁻¹³ The uncertainty reflects the correction to 298.15 K and the ambiguity of the ex solution composition. Mourlot also measured the enthalpy of solution of SrS in hydrochloric acid solution as $\Delta H^{\circ} = -27.1 \pm 1.0$ kcal·mo from which we calculate $\Delta_H \, (SrS, \, cr, \, 298.15 \, K) = -112.8 \pm 2.0$ kcal·mol⁻¹, using the same auxiliary data. Enthalpy of Formation

Cater and Johnson' determined that SrS sublimes congruently and derived partial pressures of the various gaseous species Sr(g), S(g), a SrS(g) in an effusion and mass-spectrometric study. We analyze their data and the equilibrium study of Schenck and Hammerschmidt' belo

have an uncertainty of 0.5 kcal·mol-1 since the JANAF Gibbs energy functions are partially based on the estimated C, data (above 300 F). The enthalpy of solution studies 14 show wide disagreement from the mass spectrometric studies. 5.1 Four experience tends to indicate the Other mass-spectrometric studies of Berkowitz and Marquart' and Colin et al. * are also listed. The calculated 3rd law A.H. (298.15 K) m mass spectrometric experiments provide very good data on gas phase species for homogeneous reactions, but are not as reliable for condens phases in heterogeneous reactions. A weighted average of the equilibrium and entialpy of solution studies, A_tH'(SrS, 298.15 K) = -112.0 ± 4 kcal·mol⁻¹ is adopted in the tabulation.

Source	Source Method	Reaction* T/K	T/K	Data Points	8S cal·K⁻¹·mol⁻¹	Δ,H*(298.15 2nd law	Δ,H°(298.15 K), kcal·mol ⁻¹ 2nd law 3rd law	Δ _t H*(298.15 K) kcal·mol ⁻¹
n n n r m o	Knudsen mass spec. Knudsen mass spec. Equilibrium Mass spec. Mass spec.	A B O B O B	1825-2181 1825-2181 1237-1383 1809 1857-2170	Equation 3 1 1 9 Equation Equation	ation 1.26 ation 0.23 3 8.8 ± 1.8 1 -126 ± 2.8 ation -3.3	212.70 131.75 -53.0 ± 2.4 -3.3 ± 5.5 102.6	210.18 ± 0.38 131.29 ± 0.08 -64.55 ± 1.3 210.18 ± 1.0 21.8 ± 2.4 107.7 ± 0.9	-104.70 ± 2 -105.43 ± 2 -110.02 ± 4 -104.7 ± 2 -119.8 ± 16 82 ± 30
		A) SrS(c B) SrS(c	A) SrS(cr) = Sr(g) + S(g) B) SrS(cr) = SrS(g)	a	C) SrS(cr) + D) SrS(cr) +	C) $SrS(cr) + 2 SO_2(g) = SrSO_4(cr) + S_2(g)$ D) $SrS(cr) + 3 S(g) = Sr(g) + 2 S_2(g)$	λ(α) + 5⁄(g) · 2 5⁄(g)	

Heat Capacity and Entropy

King and Weller¹⁰ measured the low temperature heat capacities from 53–296 K. Their smooth values are adopted in the tabulation. The entropy, $S'(298.15 \text{ K}) = 16.3 \pm 0.2 \text{ cal·K}^{-1}\text{mol}^{-1}$, is based on $S'(51 \text{ K}) = 1.59 \text{ cal·K}^{-1}\text{mol}^{-1}$ as extrapolated by King and Weller using Debye and Einstein functions ($\theta_D = 208$, $\theta_E = 311$). The C_p^p values above 300 K are estimated by graphical extrapolation combined with method B of Kubaschewski et al. 11

Fusion Data

References

Literature melting data for SrS(cr) are not available. The value quoted by Mills¹² for the melting point, 2275 K, seems too low when compared to the alkaline earth oxide melting points.¹³

M. Sabatier, Ann. Chim. Phys. 22, 5 (1881).

U. S. Nat. Bur. Stand. Tech. Note 270-3, 264 pp. (1968).

U. S. Nat. Bur. Stand. Tech. Note 270-6, 119 pp. (1971).

M. A. Mourlot, Ann. Chim. Phys. 17, 510 (1899).

E. D. Cater and E. W. Johnson, J. Chem. Phys. 47, 5333 (1967).

R. Schenck and F. Harmerschmidt, Z. anorg. allgem. Chem. 210, 313 (1933).

J. Berkowitz and J. R. Marquart, J. Chem. Phys. 39, 275 (1963).

R. Colin, P. Goldfunger, and M. Jeunehomme, Trans. Faraday Soc. 60, 306 (1964).

B. Nikonov and N. G. Ounakhova, Zhur. Fiz. Khim. 35, 1494 (1961).

¹⁰ Kubaschewski, E. LL. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," Pergamon, Oxford, (1967).
¹² R. C. Mills, "Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides," Butterworths, London, (1974).
¹³ JANAF Thermochemical Tables. BaO(cr), 6-30-74; CaO(cr), 6-30-73; SrO(cr), 12-31-72. ¹⁰E. G. King and W. W. Weller, U. S. Bur. Mines RI 5590, 5 pp. (1960).

lo	Enthalpy F	Reference T	emperature	Enthalpy Reference Temperature = T, = 298.15 K		Standard Sta	Standard State Pressure = p = 0.1 MPs	p = 0.1 MPs
-lo			J·K-'moi-'			Kl-mol-1		
	ž	ប	S• -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_i)$	Δ.H•	Φ'€	log K,
+ 2	0	Ö	ö	INFINITE	-9.811	-467.438	-467.438	INFINITE
	8	32,008	22.471	108.640	-8.617	-468.434	-466 624	243 730
B.	200	44.936	49.669	72.763	-4.619	-468.566	-464.731	121.375
and	298.15	48.702	68.410	68.410	o	-468,608	-462.842	81088
Xact	8	48.727	68.711	68 411	000	469 600	700 637	00000
7_10	9	50.208	82.927	70.339	5.035	-470.000	-462,500	80382
	200	51.882	94318	74.032	10.143	-472.639	-458.026	47.850
7	8	53.179	103.897	78.232	15.399	-473 897	-454 970	30,600
	90	54.099	112.165	82,503	20.764	-474.913	-451.744	11.710
<u>.</u>	000	54 894	119.443	86.674	26.215	-475.813	-448 377	20,00
lay	8	55.522	125.944	90.683	31.735	-530.424	443 737	832 SC
	1000	56.233	131.832	94.508	37.324	-529.724	-434,143	17.677
•	1100	56.777	137.217	98.149	42.974	-536.882	-474755	20.146
17	1200	57.321	142.180	101.614	48.679	-537.010	-414.010	18021
8	200	57.870	146.790	104.914	54.439	-537,099	-403.756	16.223
ਰੰ	3	28.409	151.099	108:061	60.253	-537.150	-393,496	14.682
	300	28.931	155.146	11.066	66,120	-537.162	-383,235	13.345
	009	59.455	158.967	113.942	72.040	-537,137	-372.974	12.176
l	92	59.951	162.586	116.698		-673.990	-361,536	11.109
_	981	60.439	166.027	119.343		-672.032	-343.212	0966
	88	2867	169.310	121.887		-670.040	-324.999	8.935
1	337	010	175.451	124,338		-668.017	-306.891	8.015
	2300	62.028	175.465	126.701	102.403	-665.965	-288.885	7.186
	328	65,55	1/8,362	128.984		-663,886	-270.977	6,434
	38	470.00	181.134	131.192		-661.788	-253.165	5.750
	200	25.5	183.830	133,330		-659.674	-235.444	5.124
	900	07.170	180.430	135,403		-657.552	-217,811	4551
	88	5.643	188.981	137.416	134,071	-655.430	-200263	4.023
	2000	88	191.431	139.371	140,562	-633314	-182.797	3,536
_	2002	68.08	193.810	141.273	147.104	-631,216	-165.409	3.086
_	36	71700	190.124	143.125	153.699	-649.143	-148.095	2.667
	3	66.75	1987/8	144.929	160,347	-647.107	-130.853	2.278

Strontium Sulfide (SrS)

PREVIOUS:

S₁Sr₁(g)

CURRENT: September 1977 (1 bar)

PREVIOUS September 1977 (1 atm)

SrS)
Sulfide
ntium
Stro

M.= 119.68 Strontium Sulfide (SrS)	
IDEAL GAS	

S₁Sr₁(g)

			Electronic	States and Moleci	ılar Constants			
State	£, cm-1	š	we cm-1	wore, cm -1	Be, cm-1	α _* , cm ⁻¹	re, A	Source
x'x	0:0	_	388.38	1310	0.12072	0,00044	24405	1
,t	[7800.]	9	[0/2]	[1:1]	[0.0943]	[0.0005]	[2.76]	w
Ņ	[8000]	m	[330]	[12]	[0.114]	[0.0005]	[25]	٠
_ =	[8100.]	7	[270]	[::]	[0.0943]	[0.0005]	12.76	•
<u>~</u>	[11000.]		[330]	[1.2]	[0.114]	[0.0005]	12.511	٠
Β'Σ•	26531.2	-	286.8	0.84	0.10566	0.00032	2609	27

Enthalpy of Formation

The adopted value for the enthalpy of formation, $\Delta H^0(SrS, g_a, 298.15 \, K) = 25.86 \pm 2 \, kcal·mol⁻¹, is based on the Knudsen r spectrometric studies analyzed below. The three independent studies are in very good agreement and we have chosen the average of measurements. Our value is in very good agreement with <math>\Delta H^0(298.15 \, K) = 25.0 \, kcal·mol⁻¹$ adopted by NBS' and is slightly greater $\Delta H^0(298.15 \, K) = 24.1 \pm 4 \, kcal·mol⁻¹$ obtained by Mills' (using different Gibbs energy functions) in a recent critical compilation. U auxiliary JANAF data⁶ and a recommended value for $D_0^0(S_2, g_s) = 100.69 \pm 0.01 \, kcal·mol⁻¹$, we calculate $D_0^0(S_2, g_s) = 78.8 \pm 100.000 \, kcal·mol⁻¹$, we calculate $D_0^0(S_2, g_s) = 78.8 \pm 100.000 \, kcal·mol⁻¹$, we calculate $D_0^0(S_2, g_s) = 78.8 \pm 100.000 \, kcal·mol⁻¹$, we calculate $D_0^0(S_2, g_s) = 78.8 \pm 100.000 \, kcal·mol⁻¹$. kcal·mol-1.

Source	Method	Reaction*	. 7/K	Data Points	δS cal·K ⁻¹ ·mol ⁻¹	Δ _r H°(298.1. 2nd law	Δ,H°(298.15 K), kcal·mol ⁻¹ 2nd law 3rd law	Δ _t H*(298.15 K) kcal·mol ⁻¹	D% kcal·mol⁻¹
- 2 6 6	Mass spec Mass spec Mass spec Mass spec	4 4 4 B	2010-2170 1809-1934 1825-2181 1825-2181	4 2 Equation Equation	-1.86 ± 8.5 6.85 -1.16 -1.03	17.42 ± 17.9 34.19 20.85 -80.95	21.310 ± 1.60 21.375 ± 1.21 23.07 ± 0.34 -78.89 ± 0.31	25.06 ± 1.66 25.12 ± 1.3 26.82 ± 0.6 26.60 ± 0.6	79.63 ± 2.0 79.56 ± 1.5 77.87 ± 1.0

B) Sr(g) + S(g) = SrS(g) A) Sr(g) + 5z(g) = SrS(g) + S(g)

Heat Capacity and Entropy

may contribute as much as 2-3 cal·K⁻¹-mol⁻¹ to S at 3000 K. The molecular constants have been corrected to the natural iso abundances. The thermodynamic functions are calculated using first-order anharmonic corrections to Q' and Q' in the partition fun electronic states and their vibrational-rotational constants are estimated in isoconfigurational groups by analogy with SrO⁶ and from t Electronic levels (T_{e.}) and vibrational-rotational constants for the observed states are from the optical study of Barrow. ¹³ Other lowobserved in the known states of the other alkaline—earth oxides and sulfides. Uncertainty in the energy and constants for the estimated $Q = Q_{\perp} \Sigma Q_{\perp}^{\dagger} Q_{\perp}^{\dagger} S_{\parallel} \exp(-c_2 \epsilon / T).$

References

¹R. Colin, P. Goldfinger and M. Jeunehomme, Trans. Faraday Soc. 60, 306 (1964).

 R. Maquart and J. Berkowitz, J. Chem. Phys. 39, 233 (1963).
 E. D. Cater and E. W. Johnson, J. Chem. Phys. 47, 5353 (1967).
 U. S. Nat. Bur. Stand. Tech. Note 270-6, (1971).
 K. C. Mills, "Harmochemic Data for Inorganic Sulphies, Selenides, and Tellurides," Butterworths, London, (1974).
 ANANF Thermochemical Tables: Srfg.), 12-31-76, Stg.), 6-30-71; Srfg.), 12-31-65; BaO(g), SrO(g), 6-30-74; BeO(g), CaO(g), MgC 12-31-74; BeS(g), MgS(g), CaS(g), BaS(g), 9-30-77.
 "Diatomic Molecules, A Critical Bibliography of Spectroscopic Data," I-1973, R. F. Barrow, ed., Centre National de la Reche Scientifique, Paris, p. 428, (1973)

_									
-Iom:	Enthalpy R	eference T	Enthalpy Reference Temperature = T, I-K-'mol'	= 7, = 29&15 K -	×	Standard State Pressure	e Pressure = p	. = 0.1 MPa	
-mol-1	7.K	ಬ	S -[G	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\epsilon})$		₽G.	log Kr	
	08	30.	0.	INFINITE	-9.536	109.642	109.642	INFINITE - 48 952	
1	88	33.694	229.274	246.305	-3.406	109.453	77.367	-20206	
8	298.15	35.477	243.107	243,107	6	108.198	61.878	-10.841	_
1	88	35.499 35.993	243,327 248,838	243.108	0.066	108.172	61.591	-10.724	
	2 2 2	36.343 36.601 36.705	253.669 257.965	244.512 245.773	3.663 5.486 133	104.443	39.197	-4.550	
	8	37.072	268.567	250.207	910711	98.526	18.642	-1.623	
	28	37.262	274.296 279.282	253.249 256.198	14.733 18.467	95.863 93.246	5.540 -7.185	-0.413 0.469	
	<u>88</u>	37.578 37.811	283.698 287.668	259.013 261.683	22,216 25,985	36.864 35.743	-18.428 -24.512	1.070 1.280	
mass	85	38.185	291.288	264.212	29.783	26.734	-30.118	1.430	
of the	200	39.639	297.770	268.887	37.547	22.816	-40.115	1.612	
r than	1200	42.357	303.616	273.133	45.724	19249	-49.529	25. 25.	
t 2.0	150 170 170 170	44211	306.407 309.150	275.126 277.047	50.050 54.576	17.680	-54.062	1.765	
	886 886	48.689	311.865	278.906 280.711	59.326 64.318	-119.930	-53.618	1.55 1.373	
ا	2000	53.642	317.250	282.471	69.558	-117,880	-46.352	11211	
nol-1	2200	56.053 58.297 60.708	319.926	284.191 285.876	75.044 80.763	-116.518	-42.808 -39.334	0.934	
± 2.0	250	62.001	327.826	289.154	92.813	111.302	-32.616	0.710	
	2600	64.398	332.893	292.325	105.475	-107.219	-26.223	0.527	
+1+	2200 2800	65.086 65.456	335,337	293.873 295.397	111.952	-105.117 -103.032	-23.147	0.448	
	300	65.538 65.370	340.011	296.896	125.034	-101.002	-17.226	0310	
	3200	64.991 64.443	344.369 346.424	299.820 301.244	138.101	-97.255 -95.598	-11.577 -8.840	0.195	
-lving	3300	69.762 62.983	350,289	302.643	150.985	-94.120	-6.152	0.097	
trends	3600	61.248	352.102	306.688	169 749	-91.778	-0.895	0.013	
states	3200	60.339	355.506	307.985	175.828	1 20 349	4254	980	
nction	3300 4000	58.526 57.645	358.635	310.503	187.714	-89.896 -90.045	9.351	-0.125 -0.155	
	94	56.793	361.519	312.922	199244	-90.443	14.450	-0.184	
	94 95 95 95 95 95 95 95 95 95 95 95 95 95	\$4.455	364.185	315.246	215.923	-91.972 -93.097	19.599	0238	
	\$ \$	53.098	367.836	318.558	226.675	-94.451 -95.962	24.842	-0.288	
	6 8 8 8	51.903	368.971	319.619	231.954	-97.733	30.208	0336	
	\$000 \$000	51.364 50.861	371.134	321.678 322.677	242.336 247.446	-101.861 -104.191	38.567	0.403	
(g) (g)	\$100 \$200	50.394 49.960	373.169	323.658	252.509	-106.669	41.444	-0.424	
herche	5,500 5,500	49.557 49.183	375.091 376.014 376.913	325.563 326.488 377.397	262.502 267.439	-112,113 -115,037	50.392 50.392	0.467	
	280	48.517	37.790	328.289	277.207	-121231	56.631	-0.528	
	2800	47.948	379.483	330.026 330.871	286.852 291.634	-127.814 -137.814 -131.016	63.099 63.099 66.395	0.568 0.588	
	9000	47.404	381.100	331.701	296.392	-134.465	69.770	-0.607	

CURRENT: September 1977 (1 bar)

S"(298.15 K)

IDEAL GAS

Sulfur (S₂)

$A_0H^{*}(0 \text{ K}) = 128.30 \pm 0.30 \text{ kJ} \cdot \text{mol}^{-1}$ (298.15 K) = 128.60 ± 0.30 kJ·mol^{-1}	, ż	0881	1.007	0001
Δ _H "(0 K) = 128.30 ± 0.30 kJ·mol ⁻¹ Δ _H "(298.15 K) = 128.60 ± 0.30 kJ·mol ⁻¹	D, cm ⁻¹	2 134 × 10-7		2 040 × 10-7
ν,μ'ν	ants \$\alpha_{\mathfrak{c}} \text{cm}^{-1}\$	0.00157		00017
	folecular Constr Be, cm ⁻¹	0.2946	0.003	77.7
	Electronic and Molecular Constants •••**cm-1 B• cm-1	2.836	30	•
nol-i	we cm ⁻¹	724.67	702.35	
.15 K) = 228.165 ± 0.05 J·K ⁻¹ ·mol ⁻¹	€. cm ⁻¹	0	4100	
28.165	8	3	7	
15 K) = 22	State	X ³ Z ₂	a'∆g	

Enthalpy of Formation

The adopted enthalpy of formation is that selected by CODATA.1 The value was calculated from measurments of the equilibriur H,S(g) = H₂(g) ± 0.05 S₂(g) reported by Randall and Bichowsky,² Preuner,² and Preuner and Schupp,⁴ and from measurements of the partia pressure of SAg) over sulfur reported by Drowart et al. 5

The dissociation energy, D₆ = 35216.4 ± 2.5 cm⁻¹ (100.689 ± 0.021 kcal·mol⁻¹) is from the spectroscopic study by Ricks and Barrow.

Heat Capacity and Entropy

i.e. $\alpha = -0.0066$ cm⁻¹ and = 11.84 cm⁻¹ and three excited states. We performed the direct summation with a program written by W. H. Evans of the U. S. Bureau of Standards. The direct summation results are not extended to temperatures above 600 K since the enrgy levels derived iom the reported vibrational- rotational constants do not converge to the dissociation energy. For these higher temperatures, the program of and molecular constant data in the above table are that summarized by Rosen* and Suchard* with the exception that the position of the a d state at 4700 ± 800 cm⁻¹ is from the more recent absorption study by Carleer and Colin. 19 The thermal functions below 600 K are calculated by direct summation over vibrational-rotational energy levels of the ground state (including the proper treatment of the splitting of this level The thermal functions above 600 K are calculated using the program of McBride and Gordon. The contribution of vibrational anharmonic ity, rotation-vibration interaction, and centrifugal stretching are calculated via the procedures given by Pennington and Kobe. The electroni McBride and Gordon is used, as in the case of gaseous O2,

The value of S'(298.15 K) agrees exactly with the CODATA recommended value. The uncertainty in S'(298.15 K) is due to uncertaintie in fundamental constants, the atomic weight, and the ground state molecular constants. The contributions of the excited states above 22000 cm-1 do not affect the thermal functions below 2000 K but do become significant at higher temperatures. However, these states are no included for two reasons. First, the electronic and molecular constants are not all well-defined. Second, many of these levels have a sufficiently shallow potential energy well, which would lead to unreasonably large heat capacity values at high temperatures.

References

1. D. Cox, chairman, CODATA Task Group on Key Values in Thermodynamics, J. Chem. Thermodyn. 4, 331 (1972)

M. Randall and F. Birhowsky, J. Mr. Chem. Soc. 40, 368 (1918).
G. Preuner, Z. Anorg. Chem. 55, 279 (1907).
G. Preuner, Z. Anorg. Chem. 55, 279 (1907).
G. Preuner and W. Schupp, Z. Physik Chem. 68, 157 (1910).
J. Dowart, P. Goldfinger, D. Detrey, H. Rickert, H. Keiler, Advan. Mass Spectroscopy 4, 499 (1968).
B. J. McBride and S. Gordon, NASA TN D-4097, (1967).
R. E. Pennington and K. A. Kobe, J. Chem. Phys. 22, 1442 (1954).
T. B. Rosen, ed., "Spectroscopic Data Relative to Diatomic Molecules," Pergamon Press, New York, 515 pp. (1970).
S. N. Suchard and J. E. Melzer, "Spectroscopic Data," Vol. 2 (Honomuclear Diatomic Molecules), IFI Plenum, New York, 585 pp. (1976).
M. Carleer and R. Colin, J. Phys. B 3, 1715 (1970).

¹²I. M. Ricks and R. F. Barrow, Can. J. Phys. 47, 2423 (1969). ¹¹JANAF Thermochemical Tables: O₂(g), 3-31-77.

_				_		_		_				_				_																		
p = 0.1 MP2	log Kr	INFINITE -59.015 -25.073	-18311	-13.822	-8.275	-5.121	-1.684		ರರ	ರ	ಶರರ	o o	ರ ರ	ರರ	ာ် ဝ	00	်ဝင်	ioc	ರರರ	o' c	ioc	ಶರದ	ide	500	ာ်စံ	ರರರ	0 0	ာ် ဝ	ಶಿಕ್	်ဝင		ာ် ဝံ	ರರರ	ď
	₽'Q	128.300 112.980 96.001	787.637	79.384	56.063	49.019	22.562 10.033	FUGACTIY - 1 ba	ರ ರ	00	ಶರ	o' (ರ ರ	ರರಂ	ာ် ဝံ	೦೦	60	; o'c		o' c	i o c	်ဝင်	ပြင်		် ဝ	ರರರ	o	do	ာ်ဝင်	: o'c	ರರ	ာ် ဝံ	ರರರ	oʻ
Standard State Pressure	___\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	128.300 129.983 129.670	129.180	128.576	122,718	118.326	111.612	FUG/	o o	o'c	်ဝံဝံ	o o	တ် ဝ	ರರಂ	.	ರ ರ	00	ဝင	600	င် င	်ဝံဝ	i o o	00	000	ံ ဝံ	ರರರ	o c	i ci c	်ဝံဝံ	00	000	် ဝ	000	·0
	H*-H*(T,)	-9.124 6.062 -3.090	0.	0.060	3.396 5.115	0.860	14.009	20.674 -	21,335	28.790	36.369 40.205	44.072	51.894	59.825 63.825	67.853	71.898 75.962	80.044 84.141	88.253	96.512	108.984	113.159	121.535 125.736	129.945	138.387 142.622 146.868	151.118	159.653 163.936	168.230	176.853	185.525 189.881	194.250	203.029	216.305	220.760 225.229 229.714	234.213
= T, = 298.15 K	-[G*-If'(T,)]/T	INFINITE 255.684 231.072	228.165	228.166	229.462 230.634	234.798	237.681 240.493	242.717	243.191 245.760	248.201 250.521	252.727	256.832	260.582	264.031 265.657	267.224	268.736 270.196	271.609 272.977	274.302	276.837 278.051	280.381	281.500 282.592	283.656 284.695	285.709 286.700	287.669 288.617 289 545	290.454	292.215 293.070	294.732	295.540	297.113	298.632	300.102 300.819 301 \$25	302.220	303.579 304.243	304.833
Enthalpy Reference Temperature		0. 195.067 215.621	228.165	233.447	237.953 242.002	252.142	257.695 262.562	266.155	266.896 270.807	274.374 277.658	283.546	286.213	291.108	295.518	299.535	303.223	304.960 306.633	308.246 309.802	311.306	315.537	316.863 318.150	319.402 320.619	321.805 322.960	324.087 325.187 326.261	327.312	329.344	332.240	333.169	334.975 335.855	336.721 337.572	338.409 339.234 340.046	340.845	342.411 342.411 343.178	40.334
Reference T	ប	0. 29.367 30.452	32.490	32.525	7.4.00 7.4.00 7.4.000	35.781			36.966	37.884 37.894	38,205	39.112	39.394	39.911 40.144	40.352	40.729	40.897	41.179	41.414	41.711	41.795	41.966 42.051	42.130	444 488 888 888 888	42.575	42.13	43.115	43.236	43.488	43.757	44.181 44.181 4325	4.42	444 622 822 823	Continue 1
Enthalpy	τŘ	°888	298.15	388	888	8 8	88	882.117	88	<u>8</u> 8	8 8 8 8 8	8 9	88	2000 2000 2000 2000 2000 2000 2000 200	2100	382	250 250 250 250 250 250 250 250 250 250	2600 2700	200	3100	3300	3400 3500	3,000	8 8 8 8 8 8 8 8 8	4100	24 88 88 88	3 3 8 8 8	£ \$	\$000 \$000	5100 5200	8 8 8	860	8888	PREVIOUS.
ŢĮ	_						E .5	3	۵.		ي. ن	i	ъ.	7 E	고,	ö	ĸ	2 2	<u>~</u>												-			_

Sulfur (S2)

September

PREVIOUS:

 $M_r = 92.2055$ Silicon Sulfide (SiS₂)

52S14(cr)

 $\Delta_l H^{\circ}(298.15 \text{ K}) = -213.384 \pm 20.9 \text{ kJ·m}$ $\Delta_{lus} H^{\circ} = [8.4 \pm 4.2] \text{ kJ·m}$ $\Delta_{\rho}H^{\circ}(0 \text{ K}) = \text{Unkn}$ $S^{(298.15 \text{ K})} = [80.333 \pm 4.2] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{loc}} = 1363 \text{ K}$

CRYSTAL

Silicon Sulfide (SiS₂)

Enthalpy of Formation

Rocquet and Ancey-Haret determined the enthalpy of reaction for the following:

 $SiS_{1}(cr) + 6 \text{ HF}(20\%) \rightarrow H_{2}SiF_{6}(<20\%HF) + 2 H_{2}S(g), \Delta_{1}H^{o}(298 \ 15 \ K) = -72.8 \pm 2.2 \text{ kcal-mol}^{-1}.$

A related system was examined by Kilday and Prosen:

SiO₂ (α -quartz) + 6 HF(20.0%) \rightarrow H₂SiF₆(<20.0% HF) + 2 H₂O(f), $\Delta_i H^o$ (298.15 K) = -32.65 \pm 0.02 kcal·mol⁻¹.

Combining these two systems mathematically yields approximately the following:

SiO₂ (α -quartz) + 2 H₂S(g) \rightarrow SiS₂(cr) + 2 H₂O(l), Δ ₁H°(298.15 K) = 40.2 ± 3.0 kcal·mol⁻¹

Using JANAF and NBS auxiliary data, $\Delta_t H^o(SiS_2, c_t, 298.15 \, K)$ is equal to $-51.1 \pm 3.0 \, \mathrm{kcal \cdot mol}^{-1}$. In addition to the normal experime error in each study, another source of error arises from the saturated solution of H₂S in the former work but not the latter.

Emmons and Theisen³ measured the equilibrium vapor pressures for the system 1/2 SiS_A(cr) + 1/2 Si(cr) \rightarrow SiS(g) and presented graphic A 2nd law analysis yields Δ,H°(298.15 K) = 50.09 kcal-mol⁻¹. These results lead, respectively, to Δ_tH°(SiS₂, cr, 298.15 K) = -5 log P(SiS) vs I/T data. Using these data, a 3rd law analysis yields A.H. (298.15 K) = 55.27 kcal mol with a drift of 5.1 ± 1.2 cal K kcal-mol-1 and $\Delta_i H^o(SiS_2, cr, 298.15 \text{ K}) = -49.53 \text{ kcal-mol}^-1$, with JANAF auxiliary data.

of their graphical data for two different orifice sizes yields values of $\Delta H^{\circ}(298.15 \text{ K}) = 53.74 \text{ k}cal \cdot \text{mol}^{-1}$ and $46.9 \text{ k} \text{cal} \cdot \text{mol}^{-1}$. Again, u JANAF auxiliary data, $^{4}\Delta H^{\circ}(\text{SiS})$, cr, 298.15 K) = $-56.83 \text{ k} \text{cal} \cdot \text{mol}^{-1}$ and $-42.33 \text{ k} \text{cal} \cdot \text{mol}^{-1}$ respectively, or an average value of $-49.93 \text{ k} \cdot \text{cal} \cdot \text{mol}^{-1}$ and $-49.93 \text{ k} \cdot \text{cal}^{-1}$ and -49.93 kFruehan and Turkdogan's tudied the same reaction by means of a silica Knudsen cell-mass specrometer combination. A 2nd law ana kcal-mol-

The value chosen for the enthalpy of formation is $\Delta_t H^3(SiS_t, cr, 298.15 \, K) = -51.0 \pm 5.0 \, kcal-mol⁻¹. This value is a rounded value the work of Rocquet and Ancey-Marel. Berezknoi⁷ references five reported values for the enthalpy of formation (through 1954) recommended the work of Rocquet and Ancey-Marel⁻¹ as the most accurate. Kubaschewski et al.³ in their compilation of enthipies$ formation (through 1965) also rely on the data from Rocquet and Ancey-Maret.1

Heat Capacity and Entropy

was suggested by Rasch following procedures described by Kubaschewski et al. This equation was linearly extrapolated to yield C_p^a va up to 2000 K. Kubaschewski et al. suggested $S^a(298.15 \text{ K}) = 19.2 \text{ cal·K}^{-1} \cdot \text{mol}^{-1}$. The heat capacity is assumed to be given by the relation C_p^o cal·K⁻¹·mol⁻¹ = 17.72 ± 2.96 × 10⁻³ T for 298 < T < 1363 K. This rela

The melting point of SiS₂(ct) was determined to be Tim = 1363 K by Tiede and Thimann. 10 AmH was estimated, based on the entrop Fusion Data

melting for SiO₂ (quartz and cristobolite).

P. Rocquet and H. F. Ancey-Maret, Bull. Soc. Chum. France 1954, 1038. References

M. V. Kilday and E. J. Prosen, U. S. Nat. Bur. Stand., personal communication, (July 26, 1972).

H. H. Emmons and L. Theisen, Monatsh. Chem. 103, 62 (1972).

⁴JANAF Thermochemical Tables: SiS(g), 12–31–71, SiO₄(cr), 6–30–67, H₂S(g), 12–31–65 R. J. Fruehan and E. T. Turkdogan, Met. Trans. 2, 895 (1971).

⁶U. S. Nat. Bur. Stand. Tech. Note 270-3, 264 pp. (1968).

S. Berezknoi, "Silicon and its Binary Systems," Consultants Bureau, New York, 1960 (Russian trans.).
 O. Kubaxchewski, E. Ll. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," Pergamon Press, New York, (1967).
 R. Rasch, Glas-Email-Keramo-Tech. 20, 297 (1969).
 E. Tiede and H. Thumann, Ber. 59, II B, 1703 (1926).

77K C; S* -[G*-H*(T _i)]/T H*-H*(T _i) 0 100 200 200 200 200 200 200 2	nown:	Enthalpy Re	ference Te	mperature =	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$		Standard Stat	Standard State Pressure = $p^* = 0.1 \text{ MPa}$, = 0.1 MPa
190 290 298 15 77.488 80.333 80.333 0 -2113.84 -212.659 300 77.508 80.812 80.334 0.143 -213.562 -212.659 500 77.508 80.812 80.334 0.143 -213.562 -212.259 500 81.714 13.567 91.77 22.952 -220.548 -20.118 500 91.504 13.776 14.507 91.304 -222.594 -112.778 500 91.504 215.77 13.576 14.528 10.315 -115.079 500 91.504 215.77 15.842 81.934		TK	 		-H'(T,)]/T	H*-H*(T,)	Δ,H•	δ _G .	log K,
298.15 77.488 80.333 60.334 0 -213.344 -211.669 300 77.508 80.812 80.334 0.146 -213.262 -210.602 400 78.617 100.260 83.387 79.49 -216.602 -210.002 500 81.714 100.260 83.387 79.49 -216.002 -210.002 60 81.714 130.567 95.737 219.92 -210.002 -210.002 80 81.706 148.266 169.46 1149.70 48.758 -220.548 -200.18 100 85.315 19.529 108.864 40.388 -212.18 -200.11 100 85.235 186.275 114.970 48.758 -326.731 -115.001 1100 86.525 186.275 135.73 41.4570 48.758 -326.237 -115.001 1400 89.915 20.513 137.76 46.238 -326.237 -115.001 150 87.744 21.567 154.246 <td< th=""><th></th><th>2885₀</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>		2885 ₀							
300 75.508 80.812 60.334 0.145 -211.657<		298.15	77.488	80,333	80.333	oʻ	-213.384	-212.609	37.248
400 78.617 103.20 83.837 7 1949 -1215.872		300	77.508	80.812	80.334	0.143	-213.362	-212.605	37.018
600 81.714 135.657 95.737 23.952 -220.548 -209.185 82.006 148.256 102.553 23.131 -220.21511 82.00 83.156 159.289 108.804 40.388 -2221.815 -220.735 1000 85.255 178.083 120.842 40.388 -222.889 120.00 85.355 178.083 120.842 40.388 -222.889 1 -220.735 1100 85.252 186.273 126.423 40.388 -222.889 1 -220.735 1100 85.252 186.273 126.423 40.388 -222.889 1 -180.00 85.945 205.131 139.846 88.984 CRYSTAL <> L19.00 10.044 213.776 146.208 101.351 131.709 74.546 -232.277 1-185.71 1600 92.154 213.776 146.208 101.351 131.709 74.546 -232.277 1-190.073 1100 93.270 23.270 13.847 110.771 -115.290 100.00 93.270 23.200 13.8912 138.650 -335.182 -106.066 1700 93.210 23.00 13.8912 138.650 -335.182 -61.552 2000 96.650 240.772 166.597 148.269 -335.256 -46.172		88	79.789	120.915	89.189	15.863	-216.872	-212.329	22.039
700 82,006 148,256 102,363 32,131 -212,131 -207,211 10 82,00 84,266 163,465 114,970 40,388 -222,188 -220,199 900 84,266 169,146 114,970 43,788 -212,188 -220,199 900 84,266 169,146 114,970 43,788 -212,188 -220,199 1100 85,325 178,632 120,842 57,241 -236,731 -126,771 1100 85,725 111,730 74,545 -125,731 -124,571 1100 88,744 200,131 15,783 88,346 -122,277 -159,081 150,00 89,915 207,534 14,603 92,303 -317,704 -122,239 1100,782		009	81.714	135,657	95 737	23.952	-220.548	-209.185	18.211
800 84.315 195.289 108.804 40.388 -722.183 -720.573 1100 85.325 178.083 120.842 5724 -726.773 1100 85.325 178.083 120.842 57241 -726.773 1100 85.325 186.773 120.843 87.454 -726.773 120.873 120.754 120.755 1		700	82.006	148.265	102.363	32,131	-221.511	-207.211	15.462
100 86.535 186.275 156.473 47.244 -356.731 -186.673 1100 86.535 186.275 126.423 65.837 -324.534 -17.778 1100 86.535 196.732 136.733 136.734 -172.239 136.00 13.776 13.776 13.276		8	83.136	159.289	108.804	40.388	-222.185	-205.119	13.393
1100		88	85.395	178.083	120,842	48.738 57.241	-326.731	-186.677	9.751
1200 87.655 193.822 131.730 74.546 -132.297 -159.081 1365.000 89.486 205.131 135.783 83.586 -230.021 -145.571 1460 89.915 207.334 141.603 92.303 -317.74 <> L10/UID-19.846 120.239 -23.239		1100	86.525	186.275	126.423	65.837	-324,534	-172.778	8.205
1400 8945 205.131 193846 88.94 CRYSTAL <> LIQUID 1400 89915 207.34 141.603 92.303 -317.04 -132.29 1500 91.154 213.776 145.208 101.31 -312.95 1500 92.154 213.776 145.208 101.31 -312.95 1700 93.270 225.307 1548.47 119.782 -365.689 -92.764 1700 93.270 225.307 1548.47 119.782 -365.689 -92.764 1800 94.391 20.670 138.912 112.809 -357.799 -77.081 1900 96.650 240.732 166.597 148.269 -352.296 -46.172		0021	87.655	193.852	131.730	74.546	-322.297	-159.081	6.925
1400 89.915 207.334 141.603 92.303 -317.704 -132.239 1500 91.044 213.776 146.208 101.31 -315.347 -119.073 1600 92.154 219.687 150.618 101.31 -312.950 -106.066 1700 93.270 225.307 154.847 119.782 -360.689 -92.764 1800 93.518 220.670 138.912 128.5182 -360.689 -92.764 1900 95.518 23.804 168.283 148.269 -352.296 -46.172 2000 96.650 240.732 166.597 148.269 -352.296 -46.172 2000 95.518 23.804 -352.296 -46.172 2000 23.804 23.804 -23.804 -23.804 2000 24.804 -23.804 -23.804 2000 24.804 -23.804 -23.804 2000 24.804 -23.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 -23.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000 24.804 2000		1363,000	89.496	205.131	139.846	88.984 -	CRYSTA	OIT <>T	
1500 91,044 213.776 146,208 101,351 -315,347 -119,073 1600 93,270 2154 219,687 150,618 110,511 -312,950 -106,066 1700 93,270 223,070 18,912 129,165 -357,779 -17,081 1900 95,518 23,567 148,269 -355,182 -61,552 2000 96,650 240,732 166,597 148,269 -352,296 -46,172 166,597 148,269 -352,296 -46,172 166,597 148,269 -352,296 -46,172 166,597 166,597 148,269 -352,296 -46,172 166,597 166,597 166,597 168,269 -352,296 -46,172 166,597 166,597 168,269 -352,296 -46,172 166,597 166,597 168,269 -352,296 -46,172 166,597 168,269 -352,296 -46,172 166,597 166,597 168,269 -352,296 -46,172 166,597 168,269 -352,296 -46,172 166,597 168,269 -352,296 -46,172 168,269 168,297 168,297 168,269 168,297 168,269 168,297 168,269 168,297 168,29	T T	1400	89.915	207.534	141.603	92.303	-317 704	-132.239	
1600 92.2154 219.687 150.618 110.751 -312.9590 -12.0566 1700 93.270 223.307 13.848.47 119.782 -360.689 -92.7544 1800 95.518 253.804 162.824 138.660 -335.182 -61.552 2000 96.650 240.732 166.597 148.269 -352.296 -46.172 2001 96.650 240.732 166.597 148.269 -352.296 -46.172 2002 96.650 240.732 166.597 148.269 -352.296 -46.172 2003 96.650 240.732 166.597 148.269 -352.296 -46.172 2003 96.650 240.732 166.597 148.269 -352.296 -46.172 2003 96.650 240.732 166.597 148.269 -352.296 -46.172 2003 96.650 240.732 166.597 148.269 -352.296 -46.172 2004 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.597 148.269 -352.296 -46.172 2005 96.650 240.732 166.297 148.269 -352.296 -46.172 2005 96.650 240.732 166.297 148.269 -352.296 -46.172 2005 96.650 240.732 166.297 148.269 -352.296 -46.172 2005 96.650 240.732 166.297 148.269 -352.296 -46.172 2005 96.650 240.732 166.297 148.269 2005 96.650 240.732 166.297 2005 96.650 240.732 166.297 2005 96.650 240.732 166.297 2005 96.650 240.732 166.297 2005 96.650 240.732 166.297 2005 96.650 240.732 166.297 2005 96.650 240.732 166.297 2005 96.650 240.732 166.297 2005 96.650 240.207 2005 96.650 240.207 2005 96.650 240.207 2005 96.650 240.2	vile-	1200	91.0	213.776	146.208	101.351	-315.347	-119.073	4.146
1800 94.301 12.50.70 134.34 117.15 -30.000.9 -77.004 1800 95.518 23.50.70 18.912 18.000 95.518 23.5804 162.824 138.660 -355.182 -61.552 2000 96.650 240.732 166.597 148.269 -352.296 -46.172	<u>-</u>	009	92.154	219.687	150.618	110.511	-312.950	-106.066	3.463
1900 95.518 23.5.804 162.874 138.650 -355.182 -61.552 2000 96.650 240.732 166.597 148.269 -352.296 -46.172	9.84	88	94391	230,670	158.912	129.165	-357.979	-77.081	2237
2000 96,650 240,732 166,597 148,269 - 352,296 - 46,172		0061	95.518	235.804	162.824	138.660	-355.182	-61.552	1.692
sing of the of and and and are of the solution lines by of	lvsis	2000	96.650	240.732	166.597	148.269	-352.296	-46.172	1.206
and and and and and and and and alion lives	Sino								
and so of so	9 58								
and so of and lines by of									
and is of uion uiues y of	lue of								
uion lues	and (
ution these states and the states are states are states and the states are s	es of								
ution these states of the stat									
ution libes y of									
uthes y of	·								
y of	allon Pre-c								
y of	3								
y of									
yy of	•								
	y of								

Silicon Sulfide (SiS₂)

PREVIOUS: December 1960

Silicon Sulfide (SiS2)

100 100

Silicon Sulfide (SiS₂)

LIQUID

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [-206.9]$ $\Delta_{tus} H^{\circ} = [8.4 \pm 1.0]$

Heat Capacity and Entropy
Using methods suggested by Kubaschewski et al., the heat capacity of the liquid is assumed to be a constant 21.75 cal-KUsing methods suggested by Kubaschewski et al., the heat capacity of the liquid is assumed to be a constant 21.75 cal-K1363 K to 1403 K. S'(1, 298.15 K) is calculated in a manner similar to that used for the enthalpy of formation. A glass transiti Enthalpy of Formation $\Delta_H^0(cr, 298.15 \, \text{K})$ by adding $\Delta_{la}H^o$ and the difference in enthalpy, $H^o(1363 \, \text{K}) \rightarrow \text{Detween}$ the crystal and the liquid. $S^{\circ}(298.15 \text{ K}) = [84.687] \text{ J K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tas}} = 1363 \text{ K}$

Fusion Data
Refer to the crystal table for details.

References 10. Kubaschewski, E. Ll. Evans, and C. B. Alcock, "Metallurgical Thermochemistry," Pergamon Press, New York, (1967).

(SIS ₂)
Sulfide
Silicon
92.2055
7

S₂Si₁(cr,l)

Ω	
5	
O	
ٺ	
⋖	
↹	
۲	
'n	

\sim
=
\supset
~
\simeq
_
٠.
⋖
-
ເນ
<u>~</u>
~
**
O

Silicon Sulfide (SiS₂)

מוחב	
CRYSTAL-LI	

Refer to the individual tables for details.

1363 K crystal 1363 K liquid

).1 MPa	log Kr		37,248	37.018 27.727	8.211	15.462	13.393	9.751	8,205	6.925 5.849		5	4.176	3.511	2.914	282
ne = p° = (081 571	AL <> LIQUID	ž į	25	534	844	. I 88
ate Pressu	$\Delta_i G$		-212.609	-212.605	-209	-207	-285	-186.677	-112.	-159.081 -145.571	[AL <	IKANSI	-132,40/	-101	-94	-64.811
Standard State Pressure = p* = 0.1 MPa k I-mol-1	Δ'H•		-213.384	-213.362	-220.548	-221511	-222.185	-326.731	-324.534	-322,297 -320,021	CRYSTAL	000	-306.879	-304.541	-352.452	-347.622
	H*-H*(T,)		ö	7.949	23.952	32.131	40,388	57.241	65.837	74.546 83.368	88.984	257.16	100.719	118.919	128.020	146.220
- 298.15 K	r(T,)]T		80,333	80.334 83.387	95.737	02.363	08.804	120.842	26.423	31.730 36.783	39.846	39.840	46.773	51.535	56.071	64540
Enthalpy Reference Temperature = T, = 298.15 K I.K-'mol-'	S -[G-H'(T,)]T			80.812 103.260				178.083		193.852 1 200.913 1			219.986	_		241.498
erence Temp	ະ			73.508 78.617				85.395		88.784			91.002			2002
inthalpy Ref	7,8	25000 25000	298.15	888	<u> </u>	8	8	88	0011	1200 1300 1300	1363,000	1363.000	88	09	82	200

-3.17 -3.123 -3.129 -3.134

30.219 29.177 28.112

378.181

439.473

75.948

379.374 380.549 381.708 382.851 383.978 385.091 386.188 387.272 388.341

S₃(g)

Standard State Pressure = p = 0.1 MPa

Enthalpy Reference Temperature = T_r = 298.15 K

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [141.5 \pm 8] \text{ kJ} \cdot \text{mol}^{-1}$

Mr = 96.18 Sulfur (S3)

IDEAL GAS

 $S^{(298.15 \text{ K})} = [269.5 \pm 4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Sulfur (S₃)

Enthalpy of Formation

The enthalpy of formation for each vapor phase sulfur species S₃ to S₇ is calculated by a third law calculation using the thermal functions described below and assuming that the vapor pressure data given by Hultgren et at 1 and Rau et at 2 are correct. These values for the enthalpy of formation are dependent on the somewhat arbitrary thermal functions adopted for the polyatomic sulfur gases.

Heat Capacity and Entropy

The thermal functions for the polyatomic species, S₃ to S₅, are estimated following the suggestion of et al.² Using thermal functions calculated for S(g), S₂(g), and S₃(g), the heat capacity values for the remaining species were calculated by Rau et al.² assuming that the vibrational heat capacity per degree of freedom is the same for all suffur polyatomic species. The resulting heat capacity equations are given by Rau et al.²

observed sulfur vapor pressure data. That is, the sum of the calculated partial pressures of all eight sulfur vapor species, S₁(g) to S₁(g), does closely reproduce the observed vapor pressure. [A difference between the calculated boiling point (at 1 am) and the secondary reference temperature boiling point is due to the difference between the ideal gas calculation and the real observed value.]

The thermal fuctions for S₁(g) were calculated by adjusting the low valued vibrational frequencies such that S(298.15 K) and The use of the procedure of Rau et al.? leads to a set of thernal functions and associated enthalpies of formation which reproduce the

AH"(298.15 K) values could be found which reproduced the partial pressure of the octamer. The entropy of S₂(g) is well-known, being based on reliable data and sound statistical mechanical calculations.

The thermal functions which would result from the use of the available structural and vibrational inbformation for the remaining polyatomic species, are biased in the same way as for S_t(g). Some of the necessary information is derived from condensed phase spectra (rather than gas phase spectra), as with the octamer, the low-valued vibrational frequencies (and possibly the structure) may need to be adjusted. In any event, the use of the existing spectroscopic data (unaltered) leads to calculated entropies which are unreasonable when used in a 3rd law analysis to mesh in the vapor pressure with these thermal functions.

R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements", American Society for Metals, Metals Park, Ohio, (1973).

Rau, R. N. Kutty and J. R. F. Guedes de Carvalho, J. Chem. Thermodyn. 5, 833 (1973). JANAF Thermochemical Tables: Sz(g), 9-30-77

-806 -1.101 -1.342 -1.542 -1.711 -1.711 -2.088 -2.183 -2.268 -2.343 -2.411 -3.081 -3.089 -3.097 -3.104 -3.111 log Kr 89.456 80.877 80.877 88.452 88.452 11.078 11.078 12.825 11.078 12.825 11.078 12.825 11.078 12.825 11.078 12.825 11.078 12.825 12 304.379 310.930 317.460 323.970 330.460 134.491 141.482 148.460 155.424 162.375 169.311 176.232 183.138 190.028 203.758 210.597 217.419 224.223 231.008 237.776 244.524 251.253 251.253 251.253 264.653 271.324 271.324 271.336 291.217 ģ -48.781 -48.549 -48.300 -48.033 -47.746 -47.436 -47.100 -46.738 -46.348 -45.930 -45.482 -45.002 44.492 43.950 43.378 33.077 34.155 33.236 31.239 Kimol-50.131 49.953 39.288 -38.502 -37.687 -36.844 -35.974 42.773 40.045 Δ_H $H^{\bullet}-H^{\bullet}(T_{\bullet})$ 136.380 142.902 149.468 156.078 162.732 15.727 21.233 26.821 33.249 38.198 38.198 55.684 61.613 61.613 73.617 73.617 73.617 73.617 169.431 176.173 182.959 189.789 203.581 210.542 217.547 224.596 231.689 238.825 246.006 253.229 260.497 267.808 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{i})]T$ 299.851 303.397 306.772 309.990 313.063 316.002 318.818 321.520 324.118 326.618 329.029 331.356 333.607 335.785 337.895 339.943 341.931 343.864 345.745 347.577 349,363 351,104 352,804 354,465 356,68 357,676 359,231 360,733 360,733 360,733 360,733 371.933 373.223 374.492 375.740 365.141 366.548 367.930 369.288 370.622 J·K-'mol-' 354,000 362.013 365.694 369 191 372.524 375.709 378.760 381.691 384.511 387.230 389.856 416.134 418.002 419.833 421.629 431.751 433.342 434.909 436.452 437.974 339.827 392.397 394.858 397.246 399.565 401.821 406.158 408.246 410.285 412.278 425.121 426.821 428.492 430.135 404,018 114,226 123.391 54.586 55.500 56.246 56.895 57.482 58.030 58.551 59.053 59.541 60.019 60.489 60.953 61.413 61.413 62.321 62.321 62.320 63.666 64.998 64.998 65.833 66.733 67.203 68.68.081 68.520 68.520 68.958 69.396 69.396 70.271 70.709 71.583 72.020 72.457 72.894 73.330 73.767 74.203 74.639 75.076 ಚಿ \$25,000 \$25,00 S₃(g)

CURRENT September 1977 (1 bar)

1977 (1 atm)

PREVIOUS: December

CURRENT: September 1977 (1 bar)

DEAL GAS

Sulfur (S4)

M, = 128.24 Sulfur (S4)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [145.8 \pm 8] \text{ kJ·mol}^{-1}$ Enthalov

below and assuming that the vapor pressure data given by Hultgren et al. and Rau et al. are correct. These values for the enthalpy of The enthalpy of formation for each vapor phase sulfur species S₃ to S₇ is calculated by a third law using the thermal functions described formation are dependent on the somewhat arbitrary thermal functions adopted for the polyatomic sulfur gases $S^{(298.15 \text{ K})} = [310.6 \pm 4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ Enthalpy of Formation

Heat Capacity and Entropy

The thermal functions for the polyatomic species, S₁ to S₇, are estimated following the suggestion of Rau et al. ² Using thermal functions calculated for S(g), S₄(g), and S₄(g), the heat capacity values for the remaining species were calculated by Rau et al. ² assuming that the vibrational heat capacity per degree of freedom is the same for all sulfur polyatomic species. The resulting heat capacity equations are given by Rau et al.

The use of the procedure of Rau et al.? leads to a set of thermal functions and associated enthalpies of formation which reproduce the observed sulfur vapor pressure data. That is, the sum of the calculated partial pressures of all eight sulfur vapor species, S₁(g) to S₂(g), does closely reproduce the observed vapor pressure. [A difference between the calculated boiling point (at 1 atm) and the secondary reference temperature boiling point is due to the difference between the ideal gas calculation and the real observed value.]

Att (298.15 K) values could be found which reproduced the partial pressure of the octamer. The entropy of St(g) is well-known, being based The thermal fuctions for S₈(g) were calculated³ by adjusting the low valued vibrational frequencies such that S(298.15 K) and

species, are biased in the same way as for S₄(g). Some of the necessary information is derived from condensed phase spectra (rather than gas phase spectra). As with the octamer, the low-valued vibrational frequencies (and possibly the structure) may need to be adjusted. In any event, the use of the existing spectroscopic data (unaltered) leads to calculated entropies which are unreasonable when used in a 3rd law analysis The thermal functions which would result from the use of the available structural and vibrational inbformation for the remaining polyatomic on reliable data and sound statistical mechanical calculations. to mesh in the vapor pressure with these thermal functions.

R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements," American Society for Metals, Metals

¹H. Rau, R. N. Kutty and J. R. F. Guedes de Carvalho, J. Chem. Thermodyn. 5, 833 (1973) JANAF Thermochemical Tables: 52(g), 9-30-77 Park, Ohio, (1973).

집	thalpy Re	ference Te	mperature =	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ I.K. ⁻¹ mol ⁻¹		Standard State	Standard State Pressure = p° = 0.1 MPa k1.mol-1	,° = 0.1 MPa	
	7.K	೮	S{C.	-[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_t)$	Δ.Η.	$\Phi'G$	log Kr	
	°288								
	298.15	67.585	310646	388,341	0	145.771	185.19	-16.010	
	85	67.754	311.065	310.647	3,125	145.728	91.044	-15.852	
	8	73.817	331.505	313.393	7245	134.459	2225	-9.601	
	충 왕	75.529 76.799	348,330	315.902	14.790	126.292	59.192	-6.184	_
	8	78.569	362.500	324.892	22.565	119.728	46.416	-4,041	_
	88	80.658	385.419	331.156	38.50 38.508 38.508	114.261	2.5 2.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3	-152	_
	85	81.373	394.962	343.172	46.611	-107.485	17.462	-1.013	_
	8	82.509	411.406	354.129	63.004	-106.002	45.074	-2.140	
	88	83.447	418.606	359.206	205	-105.275	72.418	-2.910	
	<u> </u>	83.865	431.466	368.633	87.967 96.374	-103.869 -103.196	86.006 99.545	-3.466	
	8	84.662	442.718	377.205	104.821	-102.542	113.039	-3.690	
	88	85.042 85.414	452.733	381.211 385.050	113,306	-101.908	139.911	-3.887	_
	<u>8</u> 6	85.779	457.361	388.735	130.389	-100.688	153.295	-4.214 -4.352	
	2100	86.493	465.981	395.688	147.616	-99.517	179.970	-4.477	
	2200	86.845	470.013	398.975	156.283	-98.940	193.265	-4589	
	365	87.539	477.599	405.216	173.72	-91.792	219.779	-4.783	_
	88	78878	481.180	408.183	187.493	91776-	246.762	4.808	
	2100	88.564	487.969	413.844	200.137	-96.042	259.371	-5.018	_
	7 7 7 7 7 7 7 7 7 7 7	88.903 89.241	491.196	416.550	209.011	-95.440	285.654	-5.084	_
	3000	89.578	497.353	421.734	226.859	-94.201	298.764	-5.202	-
	3200	89.914	500.296	424.221	235.834	-93.560 -92.903	311.852	-5255	
	3300	90.584	505.938	429.004	253.883	-92.229	337.966	-5350	
	8 8 8 8	90.918 91.251	508.647	431,306	262.958 272.067	-91538 -90.831	350.992	-5.432	
	3600	91.584	513.863	435.749	281,209	-90.108	376.982	-5.470	
	388	92.248	518.832	439.992	299.592	-88.610	402.891	-5.538	-
	3300 400 900	92.580 92.911	521.233 523.581	442.045 444.054	308.833	-87.837 -87.049	415.815	-5.569 -5.598	
	85	93.243	525.879	446.022	327.415	-86.247	441.603	-5.626	
	430	93.904	530,336	449.840	346.130	-84.602	467.313	-5.677	
	\$ \$ 8 \$	94233 94565	532,498	453.514	355.537	-83.761 -82.910	480.138	-5.700	
	4600	94.895	536.702	455.300	374.450	-82.048	505.732	-5.743	
	4 4 8 8 8 8	95.555 95.555	540.754	458.776	393.495	-80.297	531.250	-5.781	
	\$ 8 8 8	95.885 96.214	542.728 544.669	460.470 462.134	403.067	-79.410 -78.516	543.982 556.695	-5.799 -5.816	
	\$100	96.544	546.577	463.771	422,310	-77.616	569.390	-5.832	
	2200	8873 25 26 26 26 26 26 26 26 26 26 26 26 26 26	548.455	465.382	431.981	-76,710	582.068	-5.847	
	250	97.531	552.123	468.527	451.421	-74.885	607.371	-5.875	
	2600	98.189	555.682	471.576	470.993	-73.043	632,606	-5.901	
	5700	98.518	557.423	473.067	480.829	-72,117	645.199	-5.913	
	888	99.176	560.832	475.985	500.598	-70.256	670.335	-5.935	
_	909	500	262.501	477.413	76016	-69.321	769780	CPV.C-	

PREVIOUS: September 1977 (1 atm)

S₂(g)

M, = 160.30 Sulfur (Ss)

IDEAL GAS

Sulfur (S₅)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [109.4 \pm 8] \text{ kJ} \cdot \text{mol}^{-1}$

 $S'(298.15 \text{ K}) = [308.6 \pm 4] \text{ J-K}^{-1} \cdot \text{mol}^{-1}$

The enthalpy of formation for each vapor phase sulfur species S₃ to S₃ is calculated by a third law using the thermal functions described below and assuming that the vapor pressure data given by Hultgren et al.! and Rau et al.? are correct. These values for the enthalpy of formation are dependent on the somewhat arbitrary thermal functions adopted for the polyatomic sulfur gases

Heat Capacity and Entropy

The thermal functions for the polyatomic species, S₁ to S₂, are estimated following the suggestion of Rau et al.² Using thermal functions calculated for S(g), S₂(g), and S₄(g), the heat capacity values for the remaining species were calculated by Rau et al.² assuming that the vibrational heat capacity per degree of freedom is the same for all sulfur polyatomic species. The resulting heat capacity equations are given

observed sulfur vapor pressure data. That is, the sum of the calculated partial pressures of all eight sulfur vapor species. S₁(g) to S₁(g), does closely reproduce the observed vapor pressure. [A difference between the calculated boiling point (at 1 atm) and the secondary reference temperature boiling point is due to the difference between the ideal gas calculation and the real observed value.]

The thermal fuctions for S₁(g) were calculated by adjusting the low valued vibrational frequencies such that S(298.15 K) and The use of the procedure of Rau et al.? leads to a set of thermal functions and associated enthalpies of formation which reproduce the

AH (298.15 K) values could be found which reproduced the partial pressure of the octamer. The entropy of SAg) is well-known being based on reliable data and sound statistical mechanical calculations.

species, are biased in the same way as for S₁(g). Some of the necessary information is derived from condensed phase spectra (rather than gas phase spectra). As with the octamer, the low-valued vibrational frequencies (and possibly the structure) may need to be adjusted. In any event, the use of the existing spectroscopic data (unaltered) leads to calculated entropies which are unreasonable when used in a 3rd law analysis The thermal functions which would result from the use of the available structural and vibrational inbformation for the remaining polyatomic to mesh in the vapor pressure with these thermal functions.

'R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements", American Society for Metals, Metals Park, Ohio, (1973).

²H. Rau, R. N. Kutry and J. R. F. Guedes de Carvalho, J. Chem. Thermodyn. 5, 833 (1973), ¹JANAF Thermochemical Tables: Sr(g), 9-30-77.

Enthalpy Reference Temperature	eference Te	inperature	- 7, - 298.15 K		Standard State Pressure		- p" - 0.1 MPa
7/K	ئ		-[G*-H'(T,)]/T	('L).HH	Δ.H.	₽ _G	log Kr
2888 2888							
298.15	89.501	308.638	477.413	ó	109.370	65.137	-11.412
88	89.721	309.192	308.639	9.E	109.325	64.862	-11.294
400	97.497	336.226	312.272	9.581	95.756	20821	9999
2 8	99.619 101.153	347.839	315.589	14512 19534	91.060 86.068	45.475 40.689	-5279 -4251
009	103.187	377.057	327.458	29.759	78.370	32,370	-2.818
88	104.456	393.06S 407.073	335.714	40.146 50.637	72.022	25.218	-1.882
88	105.939	419.515	351.514	107 15	-204262	18.690	1083
8	106.795	420.703	365.881	82.481	-207.524	45.391	-2772
200	107.109	450.170	372.522	93.17	-200.359	92.410	-402
845 888	107.517 107.612 107.821	456.730 466.720 474.152	378.830 384.826 390.537	114.651 125.423	-199.147 -197.988 -196.883	116.758 141.014 165.190	-4.691 -5.261 -5.752
1600	108.012	481.117	395.982	136,215	-195.832	189.293	-6.180
80.0	108.188	487.670	401.185	147.025	-194.836	213.333	-6.555
86	108.509	499.722	410.934	168.695	-192.994	261.247	7.182
2100	108.800	510 596	419.917	190.477	C#1761-	308.02	14.68
220	108.937	515.661	424.154	201.314	-190.558	332.781	-7.901
5400	109.201	525.151	432.181	223.128	-189.818 -189.108	380.293	-8.098
2500	109.329	529.611	435.989	234.054	-188.425	404.003	-8.441
2700	109.433	538.035	439.673	244.993 255.945	-187.765 -187.123	427.688	-8.592 -8.732
7800 7800 7800	109.697	\$42.022 \$45.873	446.697	266,909 277,884	-186.499	474.982	-8.861
3000	109.935	549.598	453.308	288.872	-185.297	\$22.188	-9.092
3200	110.052	553.205	456.472	310.887	-184.714	545.762	-9.196
3300	110.283	560.093	462.546	321.905	-183.579	592.853	-9384
3500	110.397	565.387	465.463 468.307	332,939 343,984	-183.025 -182.482	616.373 639.877	-9.469 -9.550
3600	110.624	569.703	471.081	355.041	-181.948	663.365	-9.625
380	110.848	575.690	476.430	377.188	-180.907	710.298	-9.764 49.764
280 4000 4000	110.959	578.571 581.382	479.013	388.279 399.380	-180.402 -179.909	733.745	-9.827
4200	111.181	584.126 586.806	484.006	410.493	-179.429	780.599	-9945
4300	11.401	589.426	488.787	432.751	-178.508	827.407	-10.051
2005	11.620	594.496	493.373	443.8%	-178.070 -177.649	850.796	-10.100
4400	111.729	596.950	495.598	466.220	-177.245	897.543	-10.192
4800	111.947	601.710	499.921	488.588	-176.496	944.257	-10276
2000	112.056	604.019 606.284	502.022 504.084	499.788 510.999	-176.152 -175.829	967.603 990.941	-10.315
200	112.273	608.507	506.110	\$22.221	-175.530	1014.274	-10388
2300	112.489	612.829	510.056	544.697	-175.002	1060.922	-10.456
2500	112.705	614.933	511.979 513.870	555.952 567.217	-174.775 -174.573	1084239	-10.488
2800	112.812	619.032	515.730	578.492	-174397	1130.862	-10.548
2800	113.027	622.994	519.360	589.779 601.076	-174.123	1174.169	-10.577
000	113.135	624.927 626.830	521.133 522.879	612.385	-174.026 -173.957	1200.776	-10.631

PREVIOUS: September 1977 (1 atm)

S₅(g)

CURRENT: September 1977 (1 bar)

CURRENT: September 1977 (1 bar)

IDEAL GAS

 $S'(298.15 \text{ K}) = [354.1 \pm 4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Sulfur (Sa)

 $\Delta_t H^{\circ}(298.15 \text{ K}) = [101.9 \pm 8] \text{ kJ-m}$

M. = 160.30 Sulfur (S.)

The enthalpy of formation for each vapor phase sulfur species S, to S, is calculated by a third law using the thermal functions desc below and assuming that the vapor pressure data given by Hultgren et al. and Rau et al. are correct. These values for the enthal formation are dependent on the somewhat arbitrary thermal functions adopted for the polyatomic sulfur gases.

Heat Capacity and Entropy

The thermal functions for the polyatomic species, S₁ to S₂, are estimated following the suggestion of Rau et al.² Using thermal func calculated for S(g), S₂(g), and S₃(g), the heat capacity values for the remaining species were calculated by Rau et al.² assuming the vibrational heat capacity per degree of freedom is the same for all sulfur polyatomic species. The resulting heat capacity equations are

The use of the procedure of Rau et al.2 leads to a set of thermal functions and associated enthalpies of formation which reproduc observed sulfur vapor pressure data. That is, the sum of the calculated partial pressures of all eight sulfur vapor species, St(g) to St(g) closely reproduce the observed vapor pressure. [A difference between the calculated boiling point (at 1 atm) and the secondary refe temperature boiling point is due to the difference between the ideal gas calculation and the real observed value.]

The thermal fuctions for S₂(g) were calculated³ by adjusting the low valued vibrational frequencies such that S(298.15 K) Δ_h^H (298.15 K) values could be found which reproduced the partial pressure of the octamer. The entropy of $S_t(g)$ is well-known, being on reliable data and sound statistical mechanical calculations.

species, are biased in the same way as for S₁(g). Some of the necessary information is derived from condensed phase spectra (rather that phase spectra). As with the octamer, the low-valued vibrational frequencies (and possibly the structure) may need to be adjusted. In any e the use of the existing spectroscopic data (unaltered) leads to calculated entropies which are unreasonable when used in a 3rd law ans The thermal functions which would result from the use of the available structural and vibrational inbformation for the remaining polya to mesh in the vapor pressure with these thermal functions.

R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements", American Society for Metals, N

¹H. Rau, R. N. Kutty and J. R. F. Guedes de Carvalho, J. Chem. Thermodyn. 5, 833 (1973). JANAF Thermochemical Tables: Sz(g), 9-30-77.

-lom-	Enthalpy Reference Temperature	eference Te	mperature	- T, - 298.15 K		Standard State Pressure	Pressure = p	0.1 MPa
	7.1	່ວ	J·K -' mot - S* -[G	nol" -[G*-H*(T,)]/T	$H^{\bullet}-H^{\bullet}(T_{\bullet})$.tmo! 	• ₽	log Kr
cribed Ipy of	°888	•	•		•			
	298.15	111.571	354.076	522.879	ó	101.922	53.699	-9.408
ctions	380	111.826	354.767	354.078	207	101.877	53.400	-9.298
hat the	\$ 4	123.265	388.354	358.5%	11.903	85.991 80.544	38.152	-4.982 -3.766
	3 8	127.318	415.817	377.474	36.845	65.856	18.838	-1.640
ce me	868	128.725	458.573	387.640	49.653	58.583 57.77	11.592	286.
erence	888	130,310	491.137 504.893	407.165	88.631	-272,303 -270,383	6.293 37.144	-365 -1.940
) and	1100	131.162	517.377	424.895	101.729	-268.514 -266.705	67.806 98.300	-3.220
pased :	1400 1400	131.694	539.334	440.858	128.019	-264.962	128.646	-5.169 -5.927
atomic	1500	132.066	558.207	455.276	154.397	-261.692	188.958	-6.580
an gas	8 <u>5</u> 5	132.34	566.735	461.979 468.379	180.839	-260.167 -258.715	218.951 248.851	-7.148
nalysis	888	132.575	589.488 596.791	474501 480366 485994	207.332	-256.017 -256.017 -254.763	308.410	-8.479 -8.479
	2100	132.768	602.766	491.401	233.867	-253.566	367.696	-9.146 -9.432
Metals	250 250 250 250 250 250 250 250 250 250	132.938 133.016 133.091	614.852 620.512 625.943	501.618 506.455 511.127	260.437 273.735 287.040	-251,322 -250,269 -249,256	426.759 456.218 485.634	-9.692 -9.929 -10.147
	2600 2700	133.164	631.164	\$15.644 \$20.016	300,353	-248.278	\$15.010 \$44.349	-10347
	2800	133,362	641.038	528.361	327.000	-246.410 -245.518	573.654 602.926	-10.702 -10.860
	3100	133.4%	654.616	536.222	367.020	-243.804	661.381	-11.14
	3200 3300	133.558	658.855 662.966	539.988 543.653	380.373 393.731	-242.978 -242.170	690.567 719.728	-11.272
	3500 3500	133.679	666,955 670,831	547.221 550.698	407.096	-241.382 -240.614	748.865 777.978	-11.505 -11.611
	3600	133.796	674.600 678.266	554.087 557.394	433.844	-239.864 -239.133	807.070 836.142	-11.710
	3800	133,911	681.837 685.316 688.708	560.622 563.775 566.856	460.615 474.008 487.408	-238.421 -237.730 -237.060	865.194 894.227 923.243	-11.893 -11.977 -12.056
	4100 4200	134.080	692.018 695.250	569.869 572.816	500.813	-236.414 -235.790	952.243	-12.132 -12.203
	4300 4400 4500 4500	134.190	698.407 701.493 704.510	575.700 578.524 581.290	527.640 541.062 554.489	-235.192 -234.619 -234.075	1010.196 1039.152 1068.095	-12 <i>27</i> 1 -12 <i>3</i> 36 -12 <i>3</i> 98
	4500	134.353	707.462	584.001	567.922	-233.559	1097.026	-12.457
	4 800 800 800	134,461	713.183	589.265 591.823	594.803 608.252	-232.619	1154.857	-12 <i>567</i> -12 <i>6</i> 19
	2000	134.567	718.674	594.333	621.706	-231.810	1212.652	-12.668
	2300	134.673	723.954	599.217 601.595	648.630	-231.140 -230.860	1299.290	-12.761
	\$400 \$500	134.779	729.038	603.932 606.229	675.575 689.056	-230.618 -230.413	1328.159 1357.023	-12.847 -12.888
	867 800 800 800 800 800 800 800 800 800 80	134,936	733.942 736.330	608.488 610.710 617.896	702.542 716.033	-230.247 -230.119 -20.075	1385.884	-12.927 -12.965 -13.001
	8000	135.040	740.985	615.048 617.165	743.030	-229.984	1501.308	-13.036

PREVIOUS: September 1977 (1 atm)

- 10.659 - 10.992 - 11.563 - 11.819 - 12.650 - 12.639 - 12.639 - 12.639 - 12.639 - 13.109 - 13.109 - 13.149

633.805 667.774 701.682 735.532

-285.902 -284.187 -282.487 -280.798 -279.118

610.292 615.214 619.995

750.192 755.878 761.381 766.711 76.901

\$25,000 \$25,00

599.985

738.215

161.343 161.896 162.170 162.442 162.712

769,326 803,066 836,754 870,392 903,980

-275.773 -274.105 -272.440 -270.778

624.643 623.163 633.565 637.852 642.033 646.111 650.091 653.380 653.779

781.778

163.516 163.782

64.048

791.140 795.638 800.024

804.302

164.840

-277.445

-13.603 -13.708 -13.807 -13.901 -13.989

937.521 971.016 1004.466 1037.873 1071.237

-269.118 -267.460 -265.804 -264.154 -264.154

-14072 -14151 -14226 -14237 -14237 -14483 -14483 -14552 -14705 -14705 -14704 -14304 -1

1270.601 1303.702 1336.770 1369.806 1402.810

835.248 838.765 842.215 845.601 848.925

167.97

831.661

1104.560 1137.844 1171.088 1204.296 1237.466

-250.870 -259.239 -257.617 -256.006

604.458 621.008 637.584 654.186 670.814

665.130 668.688 672.172 675.585 678.931

812.559 816.547 820.447 824.264 828.000

165.627 165.889

166.150 166.411 166.672 1468.730 1501.647 1534.538 1567.401

435,785

245.160 243.690

242.243

858.548

-8.326 -8.910 -9.425 -9.882 -10.292

255.049 289.974 324.776 359.466 394.053

-304.785 -302.676 -300.630 -298.642 -296.708

535.953 543.573 550.866 557.856 564.566

660.652 670.260 679.337 687.941 696.119

158.299 158.643 158.974 159.293 159.603

-316.314 -313.881 -311.508 -309.200

639.565

570.529 586.881

428.545 497.267 531.508 565.675 599.774

-294.820 -292.972 -291.161 -289.382 -287.632

74.319
105.280
115.286
115.286
115.2189
116.2190
117.2180
118.3708
118.3708
1213.346
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347
1213.347

571.018 577.229 583.217 588.996 594.582

703.914 711.359 718.487 725.324 731.893

159.905 160.201 160.492 160.779 161.063

-10.342 -10.220 -7.409 -5.408 -4.008 -4.008 -1.712 -861 -2.201 -3.44 -2.201 -3.44 -2.201 -3.44 -4.956 -4.956 -4.956 -4.956

S₇(g)

Standard State Pressure = p = 0.1 MPa

log Kr

 Φ_{G}

든 Δ_H

 $H^{\bullet}-H^{\bullet}(T_{r})$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

ئ

 $S^{\circ}(298.15 \text{ K}) = [407.7 \pm 4] \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Sulfur (S₇)

 $\Delta_t H^{\circ}(298 \text{ 15 K}) = [113.7 \pm 8] \text{ kJ·mol}^{-1}$

M, = 224.42 Sulfur (S₇)

IDEAL GAS

Enthalpy Reference Temperature = T, = 298.15 K

The enthalpy of formation for each vapor phase sulfur species S₃ to S₃ is calculated by a third law using the thermal functions described below and assuming that the vapor pressure data given by Hultgren et al.¹ and Rau et al.² are correct. These values for the enthalpy of formation are dependent on the somewhat arbitrary thermal functions adopted for the polyatomic sulfur gases **Enthalpy of Formation**

The thermal functions for the polyatomic species, S₁ to S₂, are estimated following the suggestion of Rau et al.² Using thermal functions calculated for S(g), S₂(g), and S₃(g), the heat capacity values for the remaining species were calculated by Rau et al.² assuming that the Heat Capacity and Entropy

vibrational heat capacity per degree of freedom is the same for all sulfur polyatomic species. The resulting heat capacity equations are given The use of the procedure of Rau et al.2 leads to a set of thermal functions and associated enthalpies of formation which reproduce the observed sulfur vapor pressure data. That is, the sum of the calculated partial pressures of all eight sulfur vapor species, S₁(g) to S₂(g), does closely reproduce the observed vapor pressure. [A difference between the calculated boiling point (at 1 am) and the secondary reference by Rau et al.

 ΔH^{2} (298.15 K) values could be found which reproduced the partial pressure of the octamer. The entropy of $S_{2}(g)$ is well-known, being based The thermal fuctions for S4g) were calculated by adjusting the low valued vibrational frequencies such that S(298.15 K) and temperature boiling point is due to the difference between the ideal gas calculation and the real observed value.]

The thermal functions which would result from the use of the available structural and vibrational inbformation for the remaining polyatomic species, are biased in the same way as for S₁(g). Some of the necessary information is derived from condensed phase spectra (rather than gas phase spectra). As with the octamer, the low-valued vibrational frequencies (and possibly the structure) may need to be adjusted. In any event, the use of the existing spectroscopic data (unaltered) leads to calculated entropies which are unreasonable when used in a 3rd law analysis on reliable data and sound statistical mechanical calculations. to mesh in the vapor pressure with these thermal functions

References

R. Hultgren, P. D. Desai, et al., "Selected Values of the Thermodynamic Properties of the Elements", American Society for Metals, Metals Park, Ohio, (1973).

Rau, R. N. Kutty and J. R. F. Guedes de Carvalho, J. Chem Thermodyn. 5, 833 (1973). JANAF Thermochemical Tables: Sz(g), 9-30-77.

977 (1 atm

PREVIOUS:

S₇(g)

CURRENT September 1977 (1 bar)

-15.003 -15.038 -15.073

-238.045 -236.696 -235.374 -234.078 -232.810

Sulfur (S₇)

-355 753 -353.952 -352.198 -350.488 -348.819

0 -11320 -11520

-388.966 -385.987 -383.099 -380.310 -377.622

-375.037 -372.553 -370.167 -367.875 -365.671

-363.548 -361.499 -359.520 -357.607

104.388 104.495 102.677 101.582

3

100.416 100.369 99.016 79.803 72.816 65.345

CURRENT. September 1977 (1 bar)

1977 (1 atm)

September

PREVIOUS:

-17.868 -17.947 -18.022 -18.034 -18.162 -18.218 -18.352 -18.410 -18.456 -18.450

1779.739 1820.926 1862.100 1903.261 1944.410

-321.195 -320.445 -319.751 -319.113 -318.532

-318.009 -317.545 -317.140 -316.795

1573.545 1614.823 1656.079 1697.317 1738.536

-325.736 -324.728 -323.768 -322.859 -322.859

S ₈ (g)	Standard State Pressure = p* = 0.1 MFa kJ·mol-1
Sulfur (S ₈)	Δ _t H*(0 K) = 104.39 ± 0.63 kJ·mol ⁻¹ Enthalpy Reference Temperature = T _t = 298.15 K Standard State Pressur (298.15 K) = 100.42 ± 0.63 kJ·mol ⁻¹ kJ·mol ⁻¹
M, = 256.48 Sulfur (S ₈)	$\Delta_t H^{\circ}(0 \text{ K}) = 104.39 \pm 0.63 \text{ kJ·mol}^{-1}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 100.42 \pm 0.63 \text{ kJ·mol}^{-1}$
IDEAL GAS	
(%)	.15 K) = 430.31 ± 0.05 J·K ⁻¹ ·mol ⁻¹

	TA T	TAK G** 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TAK C; S[G] 10	7 Reference 71 7 Reference 71 7 Reference 71 15 156.043 16 155.314 17 13.248 18 13.268
--	--	---	-----------------	--

enthalpy of sublimation was calculated by both the 2nd and 3rd law methods. The values obtained are tabulated as follows:

ı									
LabH°(298.15), kcal·mol ⁻¹	2nd law	21.29	26.47	24.10	24.87	23.80	24.44	23.88	24.00
Δ _{sub} H°(298.15	3rd law	24.29	24.35	24.36	24.29	24.29	24.11	24.12	24.28
	7/K	376.6 - 448.8	332.6 - 362.1	304.1 - 351.6	303.6 - 352.5	288.3 - 305.7	331.9 – 368.0	332.7 - 367.4	273.2 - 313.2
	Source	West-Menzies1	Neumann ²	Fouretier	Taillade 4	Bradley	Magee	1	Briske7

Heat Capacity and Entropy

The vibrational frequencies were taken from Scott et al.⁹ Four of the eighteen frequencies, i.e. 86(2) and 218(2) cm⁻¹, were changed to 56(2) and 248 (2) cm⁻¹, respectively, as suggested by Scott.¹⁰ The molecular structure and bond distance and angle were reported by Donohur et al. ¹¹ The principle moments of inertia are: $I_A = I_B = 1.28594 \times 10^{-37}$, and $I_C = 2.36042 \times 10^{-37}$ g·cm².

-16.821 -16.953 -17.078 -17.196 -17.307 -17.413 -17.513 -17.609 -17.609

-332.709 -331.446 -330.221 -329.036 -327.892 -326.791

5129,448 571,924 668,607 668,607 744,975 783,054 867,023 902,538 1107,602 1117,657 1

-347.191 -345.598 -344.037 -342.508 -341.011 -339.547

-338.114 -336.713 -335.344 -334.008

References

W. A. West and A. W. Menzies, J. Phys. Chem. 33, 1880 (1929).

 ¹K. Neumann, Z. Physik. Chem. A171, 416 (1934).
 ¹G. Fouretier, Compt. Rend. 218, 194 (1944).
 ¹M. Taillade, Compt. Rend 218, 836 (1944).
 ¹S. Bradley, Proc. Roy. Soc. (London) A 205, 553 (1951).
 ¹D. W. Magee, Ph. D. Thessis, The Ohio State University, 1955. 7. C. Briske, N. H. Hartshorne and D. R. Stranks, J. Chem. Soc. (London). D. W. Scott, U. S. Bur. Mines, Bartlesville, Oklahoma, personal communication, (May 22, 1964). 1200 (1960)

¹⁰D. W. Scott, U. S. Bur. Mines, Bartlesville, Oklahoma, (April 23, 1964).
¹¹D. Donohur, A. Caron and E. Goldish, J. Am. Chem. Soc. 83, 3748 (1961).