

UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES CATEDRA DE ELECTRÓNICA DIGITAL II

TRABAJO PRÁCTICO FINAL

"AUTOMATIZADOR DE APERTURA DE VENTANA ORIENTADO A MASCOTAS"

Grupo Nº 11

Alumnos: Saillen, Simón

Benitez, Joaquin

Profesor: Ing. Vrech, Rubén

Comisión: Miércoles 10hs

Consigna

Nuestro objetivo principal es realizar un dispositivo que, al acercarse una mascota, detecte (por medio de un sensor) y realice todo lo necesario para abrir una ventana para que esta pueda salir, por otra parte haremos uso de 2 display 7 segmentos para mostrar una cuenta regresiva hasta que la ventana se cierre, un teclado para ingresar el tiempo total que se desea que la ventana esté abierta y, por último, el circuito guarda la hora actual de cada vez que la mascota sale y la muestra mediante el módulo EUSART.

Haciendo uso de los módulos ADC, Timer0 y Comunicación Serie Asíncrona (EUSART) debemos diseñar el código y el circuito físico necesario para su funcionamiento, incluyendo el multiplexado de los Display y el polling del Teclado Matricial.

Desarrollo

1. Configuración

Primero configuramos todo lo necesario para que el PIC funcione correctamente, configuramos los puertos, inicializamos las interrupciones, también las interrupciones periféricas, configuramos la carga y el prescaler del Timer0, también la configuración necesaria para el ADC, la configuración de Conexión Serie, inicializamos las variables que definimos y finalmente activamos las interrupciones globales.

Pero debido a que es bastante código, no podremos mostrarlo en este informe.

2. Interrupciones

En nuestro trabajo contamos con 5 tipos distintos de interrupciones, siendo estas, ADC, Timer0, Cambio de estado de PuertoB, INT externa y Transmisión Serie. Las que más se repetirán son las primeras 3, mientras que la última sólo ocurrirá cuando se apriete un pulsador en RB0 (INT).

Al tener tantos tipos de interrupciones nos vimos en la necesidad de guardar el contexto (W y STATUS) debido a que causaba problemas con la subrutina principal.

```
Interrupcion

;GUARDO CONTEXTO

MOVWF W_TEMP

SWAPF STATUS,0

MOVWF STATUS_TEMP

BTFSC INTCON,2

GOTO Timer

BTFSC INTCON,1

GOTO Pulsador

BTFSC INTCON,0

GOTO Teclado

BTFSC PIR1,6

GOTO Conversor

GOTO Transmision
```

Imagen 1: Subrutina principal de Interrupciones (Fuente: MPLAB X IDE)

3. **Timer0**

El módulo de Timer0 es, en nuestro caso, el módulo más importante del código, debido a que hace la mayor cantidad de acciones.

Siendo estas:

- Cuenta los Segundos, Minutos y Horas que pasan (Importante para Transmisión Serie).
- Cada 1 segundo setea el bit GO/DONE del registro ADCONO, este se encarga de iniciar la conversión de la señal analógica que recibe el PIC (en caso de que se haya abierto la ventana, no empezará otra conversión hasta que se haya cerrado).
- Si en la conversión se detectó que "hay una mascota queriendo salir", entonces se incrementa un registro llamado Flag (si bien esto ocurre en el módulo ADC tiene influencia en este módulo), si dicha flag se encuentra "activada" entonces el Timer0, decrementará la variable *TiempoA* (esta se encarga de mostrar en los display el tiempo restante a cerrar la ventana).
- Si la variable *TiempoA* es cero, hace un llamado a la subrutina Cerrar.
- Cada 1 segundo, decodifica el valor de *TiempoA* (usando una tabla hexadecimal),
 y al valor lo guarda en la variable *Decenas* y en *Unidades* (estas luego en la subrutina principal serán decodificadas mediante otra tabla).
- Finalmente va a la subrutina Reseteo, donde se carga el valor inicial del timer (calculado) y luego va hacia Limpiar (donde se recupera el contexto y se limpia la flag).

El código resultante termina siendo bastante largo, por lo que las imágenes estarán cortadas:

```
Timer

DECFSZ Contador,1 ;20 veces 50ms es 1[s]

GOTO Reseteo

BTFSS Flag,0 ;Prende el ADC cada 1 seg

BSF ADCON0,1

BTFSC Flag,0

DECF TiempoA,1
```

Imagen 2: Subrutina Timer [1/3] (Fuente: MPLAB X IDE)

```
; -- SUBRUTINA DE DECODIFICACION 7 SEG --
MOVF TiempoA, 0
CALL TablaHexadecimal
MOVWF Decenas
SWAPF Decenas, 1
MOVWF Unidades
MOVLW b'00001111'
ANDWF Unidades, 1
ANDWF Decenas, 1

MOVF TiempoA, 1 ; (Para modificar el valor de Status)
BTFSC STATUS, 2 ; Z
CALL Cerrar
```

Imagen 3: Subrutina Timer [2/3] (Fuente: MPLAB X IDE)

```
; -- SUBRUTINA DE TIEMPO --
MOVLW .20
MOVWF Contador ; Reseteo el valor de Contador
INCF SEG, 1
                  ;Incremento 1 segundo
                  ;Verifico si ya pasaron 60 segundos
MOVF SEG, 0
SUBLW .60
                  ;60 seg
BTFSS STATUS, 2
                  ; Z
GOTO Reseteo
                  ;Si no pasaron entonces retorno
CLRF SEG
                  ;Seteo SEG en 0
INCF MIN, 1
                  ;Incremento 1 minuto
MOVF MIN, 0
                  ; Verifico si ya pasaron 60 minutos
SUBLW .60
                  ;60 min
BTFSS STATUS, 2
                  ; Z
GOTO Reseteo
                  ;Si no pasaron entonces retorno
CLRF MIN
                  ;Seteo MIN en 0
INCF HORA, 1
                  ;Incremento 1 hora
MOVF HORA, 0
                  ;Verifico si ya pasaron 24 horas
SUBLW .24
                  ;24 horas
BTFSS STATUS, 2
                  ; Z
GOTO Reseteo
                  ;Si no pasaron entonces retorno
CLRF HORA
                   ;Si pasaron limpio Hora
GOTO Reseteo
                  ;Retorno de la Interrupcion
```

Imagen 4: Subrutina Timer [3/3] (Fuente: MPLAB X IDE)

4. Conversor A/D

En nuestro caso, como nuestro trabajo solo requiere de ver si hay o no alguna mascota en el sensor, optamos por verificar si la señal analogica supera o no los 2.5 [V], por lo tanto, al tener un conversor de resolución de 10 bits, si el bit 9 tiene el valor de 1, significa que la señal analogica es igual o mayor que 2.5 [V], por lo tanto el código de la subrutina de interrupción verifica el valor digital convertido, si este supera los 2.5 [V] entonces llama a la subrutina *Abrir* y luego limpia la flag correspondiente y va hacia la subrutina *Limpiar* (no retorna directamente de la interrupción debido a que hay que recuperar el contexto).

```
BTFSC ADRESH,1 ;si supera los 2.5[V] entonces abre
CALL Abrir

BANKSEL PIR1
BCF PIR1,6
GOTO Limpiar
```

Imagen 5: Subrutina de Conversor (Fuente: MPLAB X IDE)

5. Teclado

Nuestro circuito cuenta con un teclado matricial para ingresar parámetros, en nuestro caso nuestro código verifica 2 filas y 3 columnas, por lo que tenemos 6 parámetros que se pueden ingresar. Cada número representa el tiempo que se quedará abierta la ventana, el 1 diez segundos, el 2 veinte y así hasta el 6 que representa 1 minuto. Esto lo logramos guardando en la variable *TiempoA* (mencionada anteriormente) mediante 6 subrutinas posibles.

```
MODO1 ;Tiempo de Apertura 10 seg

MOVLW .10

MOVWF TiempoA

MOVWF AUX

RETURN
```

Imagen 6: Ejemplo de carga de Parámetro (Fuente: MPLAB X IDE) (Hay 6 subrutinas MODO, cada una con un valor distinto de TiempoA)

```
Teclado
      BSF PORTB, 1
      BSF PORTB, 2 ;Dejo en 0 la columna 1
      BTFSS PORTB,7 ;Verifico si apretó el "1"
      CALL MODO1
      BTFSS PORTB,6 ;Verifico si apretó el "4"
      CALL MODO4
      BSF PORTB, 3
      BCF PORTB, 2 ;Dejo en 0 la columna 2
      BTFSS PORTB,7 ;Verifico si apretó el "2"
      CALL MODO2
      BTFSS PORTB,6 ;Verifico si apretó el "5"
      CALL MODO5
      BSF PORTB, 2
      BCF PORTB,1 ;Dejo en 0 la columna 3
      BTFSS PORTB,7 ;Verifico si apreto el "3"
      CALL MODO3
      BTFSS PORTB,6 ; Verifico si apretó el "6"
      CALL MODO6
      BCF PORTB, 3
      BCF PORTB, 2
      BCF PORTB,1 ;Reseteo las columnas
      GOTO Limpiar
```

Imagen 7: Subrutina Teclado (Fuente: MPLAB X IDE)

6. Abrir / Cerrar

Las subrutinas *Abrir* y *Cerrar* fueron creadas con el propósito de delegar las tareas de los distintos módulos. *Abrir* se encarga de incrementar la variable *Flag* (esta se usa para indicar que la ventana está abierta), guardar mediante direccionamiento indirecto los datos de Hora/Min/Seg en una tabla (se configuró antes y empieza en la ubicación A0 del banco 1), y de setear la polaridad del Motor DC (horario) manteniendo el motor prendido un tiempo *t* que lo hace al llamar a la subrutina de bucles anidados para generar aproximadamente 5 segundos de prendido del motor, luego apaga el motor.

Cerrar, por otro lado, setea la polaridad del motor al revés, llama a la subrutina de bucles y apaga el motor.

```
INCF Flag, 1
        BCF PORTC, 5
        BSF PORTC, 4 ; Polaridad Horario
        CALL Bucle0
        BCF PORTC, 4
        ;Guardo HH/MM/SS en la Tabla
        MOVF HORA, 0
        MOVWF INDF
        INCF Elementos, 1
        INCF FSR, 1
        MOVF MIN, 0
        MOVWF INDF
        INCF Elementos, 1
        INCF FSR, 1
        MOVF SEG, 0
        MOVWF INDF
        INCF Elementos, 1
        INCF FSR, 1
        RETURN
Cerrar
        INCF Flag, 1
        BCF PORTC, 4
                      ;Polaridad Antihorario
        BSF PORTC, 5
        CALL Bucle0
        BCF PORTC, 5
        MOVF AUX, 0
        MOVWF TiempoA ; Reseteo el valor de TiempoA
        RETURN
```

Abrir

Imágenes 7 y 8: Subrutinas Abrir y Cerrar (Fuente: MPLAB X IDE)

7. Pulsador y Transmisión Serie

Nuestro código realiza un seguimiento constante de la hora, y cada vez que se abre la ventana guarda los datos en una Tabla mediante direccionamiento indirecto.

Por lo tanto usamos la interrupción de Pulsador solo para activar la Interrupción de Transmisión y para mover FSR al principio de la tabla.

Para lograrlo elegimos el valor de Baudios de 9600, por lo que tuvimos que configurar previamente los registros SPBRG, TXSTA y RCSTA.

Para empezar la transmisión, en la subrutina *Pulsador* se habilita la interrupción mediante el registro PIE1, luego se setea el valor inicial de la tabla (A0) en el registro FSR (esto es debido a que a la hora de escribir la tabla el valor se mueve), como dice el datasheet del PIC, al tener las interrupciones habilitadas pero ningún dato cargado se setea la flag de transmisión inmediatamente, luego en la subrutina *Transmisión* incrementamos FSR mientras haya elementos que mandar, al acabarse los elementos a enviar se deshabilita la interrupción y se termina la transmisión.

```
MOVF INDF, 0

MOVWF TXREG
INCF FSR, 1

DECFSZ Elementos, 1

GOTO Limpiar ; Si bien la flag se limpia sola hay que ...
; ... recuperar el contexto

; SI YA NO HAY ELEMENTOS TERMINO LA TRANSMISION
BANKSEL PIE1
BCF PIE1, 4
BCF TXSTA, 5 ; TXEN = 0

MOVF AUX2, 0
MOVWF Elementos ; Reseteo el valor de Elementos

GOTO Limpiar
```

Imágenes 9: Subrutina Transmisión (Fuente: MPLAB X IDE)

```
Pulsador

BANKSEL PIE1
BSF PIE1, 4 ;TXIE
MOVLW 0xA0
MOVWF FSR
BSF TXSTA, 5 ;TXEN

MOVF Elementos, 0
MOVWF AUX2 ;Guardo el valor de Cant_Elem

BCF INTCON, 1
GOTO Limpiar
```

Imagen 10: Subrutina Pulsador (Fuente: MPLAB X IDE)

8. Subrutina Principal (Main)

Delegamos la tarea de multiplexar los 2 display 7 segmentos a la subrutina Main, para hacer esto optamos por utilizar un retardo de unos 50 ciclos aprox (subrutina *Retardo*) entre medio de cada Display, en el display 1 se mostrará el valor de la variable Decenas, y en el display 2 se mostrará el valor de Unidades (ambos valores son decodificados mediante la tabla *TablaDecimal*), variando entre cada display cambiando los valores de RE0 y RE1.

```
;Primer Display
CALL Retardo
BCF PORTE, 1
BSF PORTE, 0
MOVF Decenas, 0
CALL TablaDecimal
MOVWF PORTD
NOP
NOP
CALL Retardo
;Segundo Display
BCF PORTE, 0
BSF PORTE, 1
MOVF Unidades, 0
CALL TablaDecimal
MOVWF PORTD
GOTO Main
```

Imagen 11: Subrutina Main (Fuente: MPLAB X IDE)

Cálculos

Displays

Para los displays lo que hicimos fue considerar una corriente de 20[mA] por segmento, es decir, una corriente máxima de 140[mA], la ecuación de salida del transistor quedria de la siguiente manera

$$4.3V = 2.2V + 140mA.Rc + 0.4V$$

lo que nos dio una resistencia de colector RC= $12[\Omega]$.

Para la ecuación de salida consideramos un β del transistor de 300 y calculamos la resistencia de base

$$4.3V = 0.7V + IB.RB$$

Donde $IB = 140mA/300 = 466\mu A$

lo que nos dio una resistencia de base RB= $7.7K\Omega$

Timer 0

Como necesitamos que el programa vaya guardando los segundos que pasan y también activar la conversión del ADC cuando pase la misma cantidad de tiempo los cálculos que realizamos fueron los siguientes.

Nuestro PIC funciona con un reloj interno de 4MHz lo que significa un tiempo de instrucción $Ti=1\mu S$. El prescaler está configurado en 1:256 por lo que lo más conveniente fue desbordar el Tmr0 cada 50mS y repetirlos 20 veces para obtener ese tiempo.

$$50mS = [(256 - carga) \times 256 + 2] \times 1\mu S$$

Por lo que cargamos el timer con 61.

Sensor

El sensor es básicamente un puente de Wheatstone con dos LDR que varían de la misma forma cuando hay luz o esta se atenúa ubicados diagonalmente en las ramas opuestas para que nos genere una salida analógica de 0 a 5 voltios. Utilizamos dos resistencias de $10 \text{K}\Omega$ para esto.

Puente H

```
Para el puente H hay que considerar los siguientes valores
```

Vce=0.4V

Vbe=0.7V

 β =300

Ic=100mA

VM=3V (motor)

Voh=4.3V

 $lb=350\mu A$

$$VCC = RC \times IC + VCE1 + VCE3 + VM$$

$$5V = RC \times 100mA + 0.4 + 0.4 + 3V$$

Lo que nos da una $RC = 12\Omega$

Para la resistencia de base 1

$$VOH = VBE1 + IB \times RB1 + VM + VCE3$$

$$4.3 = 0.7 + 350 \mu A \times RB + 3V + 0.4$$

Lo que nos da una $RB1 = 570\Omega$

Para la otra resistencia de base:

$$VOH = VBE2 + IB \times RB2$$

Lo que nos da una $RB2 = 10K\Omega$

Diagramas Circuitales

Displays:

Sensor:

Puente H (para seleccionar dirección del motor):

Circuito Completo:

Prototipo de Ventana:

Materiales

- PIC16F887
- Transistores NPN (BC547)
- Display 7-SEG Verde (FYS-5211AG)
- Amplificador Operacional (LM224N)
- Fotorresistor LDR (Genérico)
- Modulo Chip MAX3232 TTL RS-232
- Resistencias 10 1K 10K (Genéricas)
- LED Rojo (Genérico)
- LED Verde (Genérico)
- LED Azul (Genérico)
- Teclado Matricial (Genérico)
- Motor DC Cepillado (Genérico)
- Pulsador (Genérico)

^{*}Genérico: Todo elemento del circuito cuyo número de serie no encontramos, por lo que usamos datasheets genéricos.

Gráficos Topológicos

Imagen 13: Ventana (Fuente: Propia)

Imagen 14: Fotografía del Circuito Funcional (Fuente: Propia)

Imagen 15: Fotografía - Vista Lateral - Circuito Físico (Fuente: Propia)

Conclusiones

Se lograron completar los objetivos principales del trabajo práctico, haciendo uso de las herramientas adquiridas en clase. Si bien hubo algunos inconvenientes a la hora de lograr el circuito o programar el microcontrolador se logró hacer que el circuito principal funcione tal cual fue planeado.

Lamentablemente no pudimos lograr que funcionara el motor DC, por eso agregamos en el circuito 2 leds que muestran cuándo se estaría abriendo o cerrando la ventana, si bien no es lo mismo que un circuito funcional, se puede apreciar la idea del trabajo realizado. No pudimos probar el módulo de Transmisión Serie

Bibliografía y referencias

- https://www.alldatasheet.es/
 (ALLDATASHEET Motor de búsqueda de Datasheets que más utilizamos)
- https://www.microchip.com/
 (MICROCHIP Fuente del datasheet del PIC16F887)

Amplifier Transistors NPN Silicon

COLLECTOR

2
BASE

3
FMITTER

MAXIMUM RATINGS

Rating	Symbol	BC 546	BC 547	BC 548	Unit
Collector-Emitter Voltage	VCEO	65	45	30	Vdc
Collector-Base Voltage	Vсво	80	50	30	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc	
Collector Current — Continuous	IC	100			mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD		625 5.0	mW mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watt mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150		°C	

BC546, B BC547, A, B, C BC548, A, B, C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS				•		
Collector-Emitter Breakdown Voltage (I _C = 1.0 mA, I _B = 0)	BC546 BC547 BC548	V(BR)CEO	65 45 30	_ _ _	_ _ _	V
Collector-Base Breakdown Voltage (IC = 100 μAdc)	BC546 BC547 BC548	V(BR)CBO	80 50 30	_ _ _	_ _ _	V
Emitter-Base Breakdown Voltage (IE = 10 μA, IC = 0)	BC546 BC547 BC548	V(BR)EBO	6.0 6.0 6.0	_ _ _	_ _ _	V
Collector Cutoff Current (VCE = 70 V, VBE = 0) (VCE = 50 V, VBE = 0) (VCE = 35 V, VBE = 0) (VCE = 30 V, TA = 125°C)	BC546 BC547 BC548 BC546/547/548	ICES	 - -	0.2 0.2 0.2 —	15 15 15 4.0	nA μA

BC546, B BC547, A, B, C BC548, A, B, C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS		•	•			
DC Current Gain (I _C = 10 μ A, V _{CE} = 5.0 V)	BC547A/548A BC546B/547B/548B BC548C	hFE	_ _ _	90 150 270	_ _ _	_
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC546 BC547 BC548 BC547A/548A BC546B/547B/548B BC547C/BC548C		110 110 110 110 110 200 420	— — — 180 290 520	450 800 800 220 450 800	
$(I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC547A/548A BC546B/547B/548B BC548C		_ _ _	120 180 300	_ _ _	
Collector-Emitter Saturation Voltage ($I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$) ($I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA}$) ($I_C = 10 \text{ mA}, I_B = \text{See Note 1}$)		VCE(sat)	_ _ _	0.09 0.2 0.3	0.25 0.6 0.6	V
Base-Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.5 mA)		V _{BE(sat)}	_	0.7	_	V
Base–Emitter On Voltage (I _C = 2.0 mA, V_{CE} = 5.0 V) (I _C = 10 mA, V_{CE} = 5.0 V)		VBE(on)	0.55 —		0.7 0.77	V
SMALL-SIGNAL CHARACTERISTICS			1			
Current-Gain — Bandwidth Product (I _C = 10 mA, V _{CE} = 5.0 V, f = 100 MHz)	BC546 BC547 BC548	fτ	150 150 150	300 300 300	_ _ _	MHz
Output Capacitance (V _{CB} = 10 V, I _C = 0, f = 1.0 MHz)		C _{obo}	_	1.7	4.5	pF
Input Capacitance ($V_{EB} = 0.5 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz}$)		C _{ibo}	_	10		pF
Small–Signal Current Gain (I _C = 2.0 mA, V _{CE} = 5.0 V, f = 1.0 kHz)	BC546 BC547/548 BC547A/548A BC546B/547B/548B BC547C/548C	h _{fe}	125 125 125 125 240 450		500 900 260 500 900	_
Noise Figure (I _C = 0.2 mA, V _{CE} = 5.0 V, R _S = 2 k Ω , f = 1.0 kHz, Δ f = 200 Hz)	BC546 BC547 BC548	NF	_ _ _	2.0 2.0 2.0	10 10 10	dB

Note 1: I_B is value for which I_C = 11 mA at V_{CE} = 1.0 V.

Figure 1. Normalized DC Current Gain

Figure 3. Collector Saturation Region

Figure 2. "Saturation" and "On" Voltages

Figure 4. Base–Emitter Temperature Coefficient

BC547/BC548

Figure 5. Capacitances

Figure 6. Current-Gain - Bandwidth Product

BC547/BC548

Figure 7. DC Current Gain

Figure 8. "On" Voltage

Figure 9. Collector Saturation Region

Figure 10. Base-Emitter Temperature Coefficient

BC546

Figure 11. Capacitance

Figure 12. Current-Gain - Bandwidth Product

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION DO AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	INCHES MILLIMETE		IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
7	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.115		2.93	
ν	0.135		3 43	

STYLE 17:
PIN 1. COLLECTOR
2. BASE
3. EMITTER

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3–14–2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

DESCRIPTION

- 13.20mm (0.52") Single digit numeric display series.
- Standard brightness.
- Low current operation.
- Excellent character apperance.
- Easy mounting on P.C.boards or sockets

Package Dimensions &Internal Circuit Diagram

Notes:

- · All dimensions are in millimeters (inches)
- Tolerance is $\pm 0.25(0.01")$ unless otherwise noted.
- · Specificaions are subject to change whitout notice.

: Absolute maximum ratings ($Ta=25^{\circ}C$)

Damanatan	Cl l		Value		11!4
Parameter	Symbol	Test Condition	Min	Max	Unit
Reverse Voltage	VR	IR=30μA	5		V
Forward Current	IF			30	mA
Power Dissipation	Pd			100	mW
Pulse Current	Ipeak	Duty=0.1mS, 1KHz		150	mA
Operating Temperature	Topr		-40	+85	° C
Storage Temperature	Tstr		-40	+85	° C

• -XX: Surface / Lens color:

Number	0	1	2	3	4	5
Ref Surface Color	White	Black	Gray	Red	Green	
Epoxy Color	Water clear	White diffused	Red Diffused	Green Diffused	Yellow Diffused	

■ Description:

• Color Code & Chip characteristics: (Test Condition: IF=20mA)

		Dice	s. (Test Condit	Spectral		vard	
Emi	tting Color	Material	Peak Wave Length(^λ P)	e Line Voltage halfwidth(Unit		ge(VF)	Luminous Intensity (Iv)
				∆λ1/2 ₎	Тур	Max	Unit:mcd
Н	Red	GaP	700nm	90nm	2.20	2.50	5.0
S, SR	Hi Red	AlGaAs,SH	660nm	20nm	1.80	2.20	15-20
D	Super Red	AlGaAs,DH	660nm	20nm	1.80	2.20	20-30
LR	Ultra Red	AlGaAs,DDH	660nm	20nm	1.90	2.40	26-38
HR	HE Red	GaAsP	640nm	45nm	1.90	2.40	50-80
Е	Orange	GaAsP	630nm	35nm	2.10	2.50	10-20
Α	Amber	GaAsP	610nm	35nm	2.10	2.50	15-20
Υ	Yellow	GaAsP	590nm	35nm	2.10	2.50	15-20
G	Green	GaP	570nm	30nm	2.20	2.50	14-18
Ultra	a brightness						
UH R	Ultra Hi Red	AlGalnP	645nm	20nm	2.10	2.50	80-150
UE	Ultra Orange	AlGaInP	630nm	20nm	2.10	2.50	180-210
UA	Ultra Amber	AlGalnP	610nm	20nm	2.10	2.50	90-120
UY	Ultra Yellow	AlGalnP	590nm	20nm	2.10	2.50	150-200
UG	Ultra Green	AlGalnP	570nm	30nm	2.20	2.50	60-100
PG	Ultra Pure Green	InGaN	520nm	36nm	2.80	3.80	260-310
BG	Ultra Blue Green	InGaN	505nm	36nm	2.80	3.80	260-310
В	Blue	InGaN	430nm	30nm	2.80	3.80	10-20
UB	Ultra Blue	InGaN	470nm	30nm	2.80	3.80	80-90
		IIIGain	460nm	30nm	2.80	3.80	80-90
V	UV	InGaN	405nm		2.80	3.80	5-8
W	White	InGaN	X=0.29,y=0.30		2.80	3.80	180-200
U W	Ultra White	InGaN	X=0.29,y=0.30		2.80	3.80	180-200
Segment-to-Segment Luminous Intensity ratio(Iv-M) 1.5:1							

ADD: NO.115 QiXin Road NingBo Zhejiang China ZIP.: 315051 TEL: 0086-574-87927870 87933652 FAX:0086-574-87927917 <u>Http://www.foryard.com</u> E-mail:sales@foryard.com

- (1) GaAsP/GaAs 655nm/Red
- (2) GaP 570nm/Yellow Green
- (3) GaAsP/GaP 585nm/Yellow
- (4) GaAsp/GaP 635nm/Orange & Hi-Eff Red
- (5) GaP 700nm/Bright Red
- (6) GaAlAs/GaAs 660nm/Super Red
- (8) GaAsP/GaP 610nm/Super Red

- (9) GaAlAs 880nm
- (10) GaAs/GaAs & GaAlAs/GaAs 940nm
- (A) GaN/SiC 430nm/Blue
- (B) InGaN/SiC 470nm/Blue
- (C) InGaN/SiC 505nm/Ultra Green
- (D) InGaAl/SiC 525nm/Ultra Green

FORWARD VOLTAGE (Vf) FORWARD CURRENT VS. FORWARD VOLTAGE

FORWARD CURRENT (mA) RELATIVE LUMINOUS INTENSITY VS. FORWARD CURRENT

AMBIENT TEMPERATURE Ta(°C) FORWARD CURRENT VS. AMBIENT TEMPERATURE

NOTE:25 ℃ free air temperature unless otherwise specified

Http://www.foryard.com

type	QTY/foam(pcs)	QTY /Bundle (pcs)	QTY / CARTONDimension
FYS-5211A/Bx-xx	11*13=143	143*16=2288	2288*4=9152

ADD: NO.115 QiXin Road NingBo Zhejiang China TEL: 0086-574-87927870 87933652 FAX:008 Http://www.foryard.com E-mail:sa

Zhejiang China ZIP.: 315051 FAX:0086-574-87927917 E-mail:sales@foryard.com Philips Semiconductors Product specification

Low power quad op amps

LM124/224/324/324A/ SA534/LM2902

DESCRIPTION

The LM124/SA534/LM2902 series consists of four independent, high-gain, internally frequency-compensated operational amplifiers designed specifically to operate from a single power supply over a wide range of voltages.

UNIQUE FEATURES

In the linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

The unity gain crossover frequency and the input bias current are temperature-compensated.

FEATURES

- Internally frequency-compensated for unity gain
- Large DC voltage gain: 100dB
- Wide bandwidth (unity gain): 1MHz (temperature-compensated)
- Wide power supply range Single supply: 3V_{DC} to 30V_{DC} or dual supplies: ±1.5V_{DC} to ±15V_{DC}
- Very low supply current drain: essentially independent of supply voltage (1mW/op amp at +5V_{DC})
- Low input biasing current: 45nA_{DC} (temperature-compensated)
- \bullet Low input offset voltage: 2mV $_{DC}$ and offset current: 5nA $_{DC}$
- Differential input voltage range equal to the power supply voltage
- Large output voltage: 0V_{DC} to V_{CC}-1.5V_{DC} swing

PIN CONFIGURATION

Figure 1. Pin Configuration

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Dual In-Line Package (DIP)	-55°C to +125°C	LM124N	SOT27-1
14-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	LM124F	0581B
14-Pin Plastic Dual In-Line Package (DIP)	-25°C to +85°C	LM224N	SOT27-1
14-Pin Ceramic Dual In-Line Package (CERDIP)	-25°C to +85°C	LM224F	0581B
14-Pin Plastic Small Outline (SO) Package	-25°C to +85°C	LM224D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	0°C to +70°C	LM324N	SOT27-1
14-Pin Ceramic Dual In-Line Package (CERDIP)	0°C to +70°C	LM324F	0581B
14-Pin Plastic Small Outline (SO) Package	0°C to +70°C	LM324D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	0°C to +70°C	LM324AN	SOT27-1
14-Pin Plastic Small Outline (SO) Package	0°C to +70°C	LM324AD	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	-40°C to +85°C	SA534N	SOT27-1
14-Pin Ceramic Dual In-Line Package (CERDIP)	-40°C to +85°C	SA534F	0581B
14-Pin Plastic Small Outline (SO) Package	-40°C to +85°C	SA534D	SOT108-1
14-Pin Plastic Small Outline (SO) Package	-40°C to +125°C	LM2902D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	-40°C to +125°C	LM2902N	SOT27-1

1995 Nov 27 1 853-0929 16050

Philips Semiconductors Product specification

Low power quad op amps

LM124/224/324/324A/ SA534/LM2902

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	32 or ±16	V _{DC}
V _{IN}	Differential input voltage	32	V _{DC}
V _{IN}	Input voltage	-0.3 to +32	V _{DC}
P _D	Maximum power dissipation, $T_A=25$ °C (still-air) ¹		
	N package	1420	mW
	F package	1190	mW
	D package	1040	mW
	Output short-circuit to GND one amplifier ² V _{CC} <15V _{DC} and T _A =25°C	Continuous	
I _{IN}	Input current (V _{IN} <-0.3V) ³	50	mA
T _A	Operating ambient temperature range LM324/A LM224 SA534 LM2902 LM124	0 to +70 -25 to +85 -40 to +85 -40 to +125 -55 to +125	°C °C °C °C
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES:

1. Derate above 25°C at the following rates:

F package at 9.5mW/°C

N package at 11.4mW/°C

D package at 8.3mW/°C

- Short-circuits from the output to V_{CC}+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA, independent of the magnitude of V_{CC}. At values of supply voltage in excess of +15V_{DC} continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.
 This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the
- 3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input bias clamps. In addition, there is also lateral NPN parasitic transistor action on the IC chip. This action can cause the output voltages of the op amps to go to the V+ rail (or to ground for a large overdrive) during the time that the input is driven negative.

1995 Nov 27

Low power quad op amps

DC ELECTRICAL CHARACTERISTICS

V_{CC}=5V, T_A=25°C unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	LM124/LM224		LM324/SA534/LM2902			UNIT	
			Min	Тур	Max	Min	Тур	Max	וואט
V _{OS}	Offset voltage ¹	R _S =0Ω		±2	±5		±2	±7	mV
		$R_S=0\Omega$, over temp.			±7			±9	
ΔV _{OS} /ΔT	Temperature drift	$R_S=0\Omega$, over temp.		7			7		μV/°(
I _{BIAS}	Input current ²	I _{IN} (+) or I _{IN} (-)		45	150		45	250	nA
		$I_{IN}(+)$ or $I_{IN}(-)$, over temp.		40	300		40	500	
ΔΙ _{ΒΙΑS} /ΔΤ	Temperature drift	Over temp.		50			50		pA/°0
los	Offset current	l _{IN} (+)-l _{IN} (-)		±3	±30		±5	±50	nA
		$I_{IN}(+)$ - $I_{IN}(-)$, over temp.			±100			±150	
ΔI _{OS} /ΔT	Temperature drift	Over temp.		10			10		pA/°(
V _{CM}	Common-mode voltage	V _{CC} ≤30V	0		V _{CC} -1.5	0		V _{CC} -1.5	_ v
	range ³	V _{CC} ≤30V, over temp.	0		V _{CC} -2	0		V _{CC} -2	
CMRR	Common-mode rejection ratio	V _{CC} =30V	70	85		65	70		dB
V _{OUT}	Output voltage swing	R_L =2kΩ, V_{CC} =30V, over temp.	26			26			V
V _{OH}	Output voltage high	R_L ≤10kΩ, V_{CC} =30V, over temp.	27	28		27	28		V
V _{OL}	Output voltage low	$R_L \le 10k\Omega$, over temp.		5	20		5	20	m∨
I _{CC}	Supply current	R _L =∞, V _{CC} =30V, over temp.		1.5	3		1.5	3	mA
		R _L =∞, over temp.		0.7	1.2		0.7	1.2	
A _{VOL}	Large-signal voltage gain	V_{CC} =15V (for large V_O swing), R_L ≥2k Ω	50	100		25	100		V/mV
		V_{CC} =15V (for large V_{O} swing), R_{L} $\ge 2k\Omega$, over temp.	25			15			
	Amplifier-to-amplifier coupling ⁵	f=1kHz to 20kHz, input referred		-120			-120		dB
PSRR	Power supply rejection ratio	R _S ≤0Ω	65	100		65	100		dB
l _{оит}	Output current source	V _{IN} +=+1V, V _{IN} -=0V, V _{CC} =15V	20	40		20	40		
		V _{IN} +=+1V, V _{IN} -=0V, V _{CC} =15V, over temp.	10	20		10	20		
	Output current	V _{IN} -=+1V, V _{IN} +=0V, V _{CC} =15V	10	20		10	20		mA
	sink	V_{IN} -=+1V, V_{IN} +=0V, V_{CC} =15V, over temp.	5	8		5	8		
		V _{IN} -=+1V, V _{IN} +=0V, V _O =200mV	12	50		12	50		μА
l _{sc}	Short-circuit current ⁴		10	40	60	10	40	60	mA
GBW	Unity gain bandwidth			1			1		MHz
SR	Slew rate			0.3			0.3		V/µs
V _{NOISE}	Input noise voltage	f=1kHz		40			40		nV/√l
V_{DIFF}	Differential input voltage ³				V _{CC}			V _{CC}	V

Low power quad op amps

DC ELECTRICAL CHARACTERISTICS (Continued)

V_{CC}=5V, T_A=25°C unless otherwise specified.

CVMDC!	DADAMETED	TEST COMPLTIONS					
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT	
V _{OS}	Offset voltage ¹	R _S =0Ω		±2	±3	mV	
		$R_S=0\Omega$, over temp.	$R_S=0\Omega$, over temp.				
ΔV _{OS} /ΔT	Temperature drift	$R_S=0\Omega$, over temp.		7	30	μV/°C	
I _{BIAS}	Input current ²	l _{IN} (+) or l _{IN} (-)		45	100	— nA	
		I _{IN} (+) or I _{IN} (-), over temp.		40	200] IIA	
ΔI _{BIAS} /ΔT	Temperature drift	Over temp.		50		pA/°C	
I _{OS}	Offset current	l _{IN} (+)-l _{IN} (-)		±5	±30		
		I _{IN} (+)-I _{IN} (-), over temp.			±75	nA	
ΔΙ _{ΟS} /ΔΤ	Temperature drift	Over temp.		10	300	pA/°C	
V _{CM}	Common-mode voltage range ³	V _{CC} ≤30V	0		V _{CC} -1.5	V	
		V _{CC} ≤30V, over temp.	0		V _{CC} -2	V	
CMRR	Common-mode rejection ratio	V _{CC} =30V	65	85		dB	
V _{OUT}	Output voltage swing	R _L =2kΩ, V _{CC} =30V, over temp.	26			V	
V _{OH}	Output voltage high	R_L ≤10kΩ, V_{CC} =30V, over temp.	27	28		V	
V _{OL}	Output voltage low	R _L ≤10kΩ, over temp.		5	20	mV	
I _{CC}	Supply current	R _L =∞, V _{CC} =30V, over temp.		1.5	3	mA	
		R _L =∞, over temp.		0.7	1.2	mA	
A _{VOL}	Large-signal voltage gain	V _{CC} =15V (for large V _O swing), R _L ≥2kΩ	25	100		V/mV	
		V _{CC} =15V (for large V _O swing), R _L ≥2kΩ, over temp.	15			V/mV	
	Amplifier-to-amplifier coupling ⁵	f=1kHz to 20kHz, input referred		-120		dB	
PSRR	Power supply rejection ratio	R _S ≤0Ω	65	100		dB	
	Output current source	V _{IN} +=+1V, V _{IN} -=0V, V _{CC} =15V	20	40		mA	
		V _{IN} +=+1V, V _{IN} -=0V, V _{CC} =15V, over temp.	10	20		mA	
Гоит	Output current	V _{IN} -=+1V, V _{IN} +=0V, V _{CC} =15V	10	20		mA	
	sink	V _{IN} -=+1V, V _{IN} +=0V, V _{CC} =15V, over temp.	5	8		mA	
		V _{IN} -=+1V, V _{IN} +=0V, V _O =200mV	12	50		μΑ	
I _{SC}	Short-circuit current ⁴		10	40	60	mA	
V_{DIFF}	Differential input voltage ³				V _{CC}	V	
GBW	Unity gain bandwidth			1		MHz	
SR	Slew rate			0.3		V/µs	
V _{NOISE}	Input noise voltage	f=1kHz		40		nV/√Hz	

NOTES:

- 1. $V_O \approx 1.4 V_{DC}$, $R_S = 0 \Omega$ with V_{CC} from 5V to 30V and over full input common-mode range (0V_{DC}+ to V_{CC} -1.5V).
- 2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC} -1.5, but either or both inputs can go to +32V without damage.
 Short-circuits from the output to V_{CC} can cause excessive heating and eventual destruction. The maximum output current is approximately
- 4. Short-circuits from the output to V_{CC} can cause excessive heating and eventual destruction. The maximum output current is approximately 40mA independent of the magnitude of V_{CC}. At values of supply voltage in excess of +15V_{DC}, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
- 5. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of coupling increases at higher frequencies.

1995 Nov 27

EQUIVALENT CIRCUIT

Figure 2. Equivalent Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Performance Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 4. Typical Performance Characteristics (cont.)

TYPICAL APPLICATIONS

Figure 5. Typical Applications