## Corrigé de la Session Principale (Juin 2010)

# Exercice 1

- 1) faux
- 2) vrai
- *3) faux* 
  - 4) faux
- 5) vrai
- 6) vrai

Exercice 2



1°) 
$$(\overrightarrow{\mathsf{MF}}, \overrightarrow{\mathsf{ME}}) \equiv (\overrightarrow{\mathsf{MF}}, \overrightarrow{\mathsf{MA}}) + (\overrightarrow{\mathsf{MA}}, \overrightarrow{\mathsf{MB}}) + (\overrightarrow{\mathsf{MB}}, \overrightarrow{\mathsf{ME}}) \quad [2\pi]$$
 
$$\equiv \frac{\pi}{4} + \frac{\pi}{2} + \frac{\pi}{4} \quad \pi[2\pi]$$

Donc les points E, M et F sont alignés.

- 2°) a)  $r_1or_2$  est un déplacement d'angle  $\frac{\pi}{2} + \frac{\pi}{2} = \pi$  donc  $r_1or_2$  est une symétrie centrale.  $r_1or_2(I) = r_1(J) = I$  car AJBI est un carré direct donc  $r_1or_2$  est la symétrie centrale de centre I.
  - **b)**  $r_1 or_2(E) = r_1(M) = F$ .  $r_1 or_2(E) = F$  et  $r_1 or_2$  est la symétrie centrale de centre I, donc I est le milieu de [EF]

Par suite, lorsque M varie, la droite (EF) passe par le point fixe I.

*3°)* S est la similitude directe de centre A, d'angle  $\frac{\pi}{4}$  et de rapport  $\sqrt{2}$ .

a) On a 
$$\begin{cases} \frac{\mathsf{AK}}{\mathsf{AM}} = \sqrt{2} \\ (\overline{\mathsf{AM}}, \overline{\mathsf{AK}}) = \frac{\pi}{4} [2\pi] \end{cases}$$
 donc  $S(M) = K$ 

- b) On pose S(F) = G
   On a AMF est un triangle réctangle isocèle de sommet principal A, donc
   S(AMF)=AKG est un triangle réctangle isocèle de sommet principal S(A) = A.
   D'où la construction de G
- c) AKG est un triangle réctangle isocèle de sommet principal A et  $(\overrightarrow{AK}, \overrightarrow{AF}) = (\overrightarrow{AF}, \overrightarrow{AG})$   $(2\pi)$ , donc [AF) est la bissectrice intérieure de l'angle  $(\overrightarrow{AK}, \overrightarrow{AG})$  par suite F est le milieu du segment [KG]
- **d)** S(M) = K et S(F) = G d'où S (MF) = (GK) = (KF) or (MF) passe par le point fixe I, donc (KF) passe par le point fixe P = S(I).

$$S(I) = P \quad donc \quad \begin{cases} \frac{\mathsf{AP}}{\mathsf{AI}} = \sqrt{2} \\ [\overrightarrow{\mathsf{AI}}, \overrightarrow{\mathsf{AP}}] = \frac{\pi}{4} [2\pi] \end{cases} \quad d'où AIP \ est \ un \ triagle \ rectangle \ isocèle \ de \ sommet$$

principal I.

## Exercice 3

1°) Si α est un réel non nul, alors les affixes des points M, N et P sont des réels, donc les points M, N et P sont sur l'axes des réels par suite ils sont alignés.

2°) MNAP est un parallélogramme 
$$\Rightarrow \overline{MN} = \overline{PA}$$
  

$$\Rightarrow Z_N - Z_M = Z_A - Z_P$$

$$\Rightarrow \frac{3}{2}\alpha^2 - \alpha = -2 - \frac{8}{\alpha}$$

$$\Rightarrow 3\alpha^3 - 2\alpha^2 = -4\alpha - 16$$

$$\Rightarrow 3\alpha^3 - 2\alpha^2 + 4\alpha + 16 = 0$$

Conclusion : Si MNAP est un parallélogramme alors  $\alpha$  est une solution de l'équation (E).

**3°)** 
$$\alpha = 1 + \sqrt{3}$$

**a)** 
$$\alpha = 2e^{i\frac{\pi}{3}}$$
,  $\frac{3}{2}\alpha^2 = 6e^{i\frac{2\pi}{3}}$  et  $\frac{8}{\alpha} = \frac{8}{2e^{i\frac{\pi}{3}}} = 4e^{-i\frac{\pi}{3}}$ .

**b)** 
$$\frac{3}{2}\alpha^2 = 6e^{i\frac{2\pi}{3}} = 6(-\frac{1}{2} + \frac{\sqrt{3}}{2}i) = -3 + 3\sqrt{3}i$$
 et  $\frac{8}{\alpha} = 4e^{-i\frac{\pi}{3}} = 4(\frac{1}{2} - \frac{\sqrt{3}}{2}i) = 2 - 2\sqrt{3}i$ ...

On 
$$a \begin{cases} z_{\overline{MN}} = -3 + 3i\sqrt{3} - 1 - i\sqrt{3} = -4 + 2i\sqrt{3} \\ z_{\overline{PA}} = -2 - 2 + 2i\sqrt{3} = -4 + 2i\sqrt{3} \end{cases}$$
  $donc \quad \overline{MN} = \overline{PA}$ 

Et on a  $det(\overrightarrow{AM}, \overrightarrow{AN}) \neq 0$  c'est-à-dire que les points A, M et N ne sont pas alignés

# donc MNAP est un parallélogramme.

4°)a) 
$$\alpha$$
 est une solution de  $(E) \Rightarrow 3\alpha^3 - 2\alpha^2 + 4\alpha + 16 = 0$   

$$\Rightarrow \overline{3\alpha^3 - 2\alpha^2 + 4\alpha + 16} = 0$$

$$\Rightarrow 3(\overline{\alpha})^3 - 2(\overline{\alpha})^2 + 4\overline{\alpha} + 16 = 0$$

$$\Rightarrow \overline{\alpha} \text{ est une solution de } (E).$$

Donc si  $\alpha$  est une solution de (E) alors  $\bar{\alpha}$  est une solution de (E).

**b)** D'après a) Si MNAP est un parallélogramme alors  $\alpha$  et  $\overline{\alpha}$  sont des solutions de (E). Pour  $\alpha = 1 + i\sqrt{3}$ , MNAP est un parallélogramme, donc  $\alpha = 1 + i\sqrt{3}$  et  $\overline{\alpha} = 1 - i\sqrt{3}$  sont des solutions de (E).

Par suite, pour tout nombre complexe z,  $3z^3 - 2z^2 + 4z + 16 = 3(z-\alpha)(z-\overline{\alpha})(z-\beta)$  avec  $\alpha = 1 + i\sqrt{3}$ .

Par identification on obtient, -  $12\beta = 16$  donc  $\beta = -\frac{4}{3}$ .

Les solutions de (E) son donc  $t: 1+i\sqrt{3}$ ,  $1-i\sqrt{3}$  et  $\frac{-4}{3}$ 

ightharpoonup La solution  $\frac{-4}{3}$  est inacceptable car  $\alpha$  est non réel.

$$Pour \quad \alpha = 1 - i\sqrt{3} \quad on \ a \quad \begin{cases} z_{\overline{MN}} = -3 - 3i\sqrt{3} - 1 + i\sqrt{3} = -4 - 2i\sqrt{3} \\ z_{\overline{PA}} = -2 - 2 - 2i\sqrt{3} = -4 - 2i\sqrt{3} \end{cases}$$

donc  $\overline{MN} = \overline{PA}$ , Par suite MNAP est un parallélogramme.

Conclusion: Les affixes des points M pour lesquelles MNAP est un parallélogramme sont  $1+i\sqrt{3}$  et  $1-i\sqrt{3}$ .

#### Exercice 4

1°) a) 
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (\ln x - x \ln x + x) = -\infty$$
;  $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left( \frac{\ln x}{x} - \ln x + 1 \right) = -\infty$ ;  $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left( \frac{\ln x}{x} - \ln x + 1 \right) = -\infty$ 

b) fest dérivable sur 
$$\int 0$$
,  $+\infty$  [ et on a pour tout  $x > 0$   $f'(x) = \frac{1}{x} - \ln x - 1 + 1 = \frac{1}{x} - \ln x$ 

**2°)** a) Pour tout x > 0, f'(x) = g(x) - h(x).

| x                   | 0                   | β | $+\infty$                                   |
|---------------------|---------------------|---|---------------------------------------------|
| Position            | Cg au dessus de Cg⊾ |   | <sup>C</sup> g au dessous de C <sub>h</sub> |
| f'(x) = g(x) - h(x) | +                   | 0 | -                                           |

- **b)** f est croissante sur ]0,  $\beta]$  et décroissante sur  $[\beta, +\infty[$
- c) On a  $C_h$  et  $C_g$  se coupent en un point d'abscisse  $\beta > 0$ , donc  $h(\beta) = g(\beta)$  d'où  $\ln \beta = \frac{1}{\beta}$ .

Par suite 
$$f(\beta) = \ln \beta - \beta \ln \beta + \beta = \frac{1}{\beta} - 1 + \beta = \frac{1}{\beta} + \beta - 1$$

3°)a)Pour tout x > 0,  $f(x) - h(x) = x(1 - \ln x)$ . Le signe de f(x) - h(x) est celui de  $1 - \ln x$ .

| X         | 0                              | e | $+\infty$                                                |
|-----------|--------------------------------|---|----------------------------------------------------------|
| f(x)-h(x) | +                              | 0 | -                                                        |
| Position  | <sup>C</sup> f au dessus de C₁ |   | $\mathcal{C}_f$ au dessous de $\mathcal{C}_{\mathtt{h}}$ |

Les deux courbes se coupent au point d'abscisse e.

On a:  $\begin{cases}
f \text{ est continue et strictement croissante sur } \mathbf{0}, \boldsymbol{\beta} \\
f (\mathbf{0}, \boldsymbol{\beta}) = \mathbf{-} \infty, f(\boldsymbol{\beta})
\end{cases}$ 

 $0 \qquad car \, f(\beta) > 0$   $Donc \, {}^{C}f \, coupe \, (x'x) \, en \, un \, seul \, point \, d'abscisse \, x_1 \, \epsilon 10. \, \beta 1$   $Et \, on \, a \, encore \, f(0.4) \times f(0.5) = [ln(0.4) - (0.4)ln(0.4) + 0.4][ln(0.5) - (0.5)ln(0.5) + 0.5] \approx -0.02 \le 0$ 

Donc 
$$0.4 \le x_1 \le 0.5$$

$$\begin{cases} f \text{ est continue et strictement décroissante sur } [\beta], +\infty [\\ f(\beta), +\infty [] = ]-\infty, f(\beta)] \end{cases}$$

$$0 car f(\beta) > 0$$

Donc  $C_f$  coupe (x'x) en un seul point d'abscisse  $x_2 \in [\beta]$ ,  $+\infty$  [ Et on a encore  $f(3.8) \times f(3.9) = [\ln(3.8) - (3.8)\ln(3.8) + 3.8][\ln(3.9) - (3.9)\ln(3.9) + 3.9]$ 

$$\approx -2.9 < 0$$
Donc 3.8<  $x_2 < 3.9$ 

En conclusion : la courbe  $^{\mathfrak{C}}f$  coupe l'axe des abscisses en deux points d'abscisses respectives  $x_1$  et  $x_2$  telles que  $0.4 < x_1 < 0.5$  et  $3.8 < x_2 < 3.9$ 

# c) Voir graphique

Soit les points I(1,0),  $C(0, f(\beta))$  et  $D(\beta, f(\beta))$ .

On a 
$$f(\beta) = \frac{1}{\beta} + \beta - 1$$
 alors  $f(\beta) - 1/\beta = \beta - 1$  donc  $OC - OB = OA - OI > 0$  donc  $BC = AI$ 

alors C est le point de  $[OB)\setminus [OB]$  et tel que BC=AI

donc le point D est le point du plan admettant les points A et C comme projetés orthogonaux sur les axes.

# d) Cf admet:

- une tangente horizontale au point d'abscisse  $\beta$ .
- une branche parabolique de direction (yy') au voisinage de  $+\infty$ .
- l'axe des ordonnées comme asymptote.



$$\mathbf{4}^{\circ})\mathbf{a}) \ \mathcal{A}(t) = \begin{cases} \int_{t}^{\beta} g(x) - h(x) dx \ \text{si } 0 < t < \beta \\ \int_{t}^{t} h(x) - g(x) dx \ \text{si } t > \beta \end{cases} = \begin{cases} \int_{t}^{\beta} f'(x) dx \ \text{si } 0 < t < \beta \\ \int_{t}^{t} -f'(x) dx \ \text{si } t > \beta \end{cases} = f(\beta) - f(t)$$

- b) Voir graphique
- c)  $t_1 \in ]0, \beta[, t_0 \in ]\beta, +\infty[$

$$\mathcal{A}(t_1) = \mathcal{A}(t_0) \Leftrightarrow f(t_0) - f(t_1) = f(t_0)$$

$$\Leftrightarrow f(t_1) = f(t_0)$$

Or  $f(t_0) \in J_{-\infty}, f(\beta)$  et fréalise une bijection de  $J_0$ ,  $sur_{J_{-\infty}}, f(\beta)$  , donc

il existe un seul réel  $t_1 \in ]0$ ,  $\beta[$  tel que  $\mathcal{A}(t_1) = \mathcal{A}(t_0)$ 



## Exercice 5

1°) La fonction 
$$t \to e^{\sqrt{t}}$$
 est continue et positive sur [1, 2], donc 
$$V = \int_{1}^{2} \pi \left(e^{\sqrt{t}}\right)^{2} dt. = \pi \int_{1}^{2} e^{\sqrt{4t}} dt = \pi F(2)$$

**2°)** a) La fonction:  $t \mapsto e^{\sqrt{4t}}$  est continue sur  $[0, +\infty[$  et  $1 \in [0, +\infty[$  donc F est dérivable

 $sur [1, +\infty[$  et on a pour tout x  $[1, +\infty[$ ,  $F'(x) = e^{\sqrt{4x}}$ 

La fonction :  $x \mapsto \sqrt{4x}$  est dérivable sur  $[1, +\infty[$  et la fonction :  $t \mapsto te^t$  est continue sur  $\blacksquare$  donc la fonction G est dérivable sur  $[1, +\infty[$  et on a pour tout  $x \in [1, +\infty[$ 

$$G'(x) = (\sqrt{4x})'. (\sqrt{4x})^{-1} = 2e^{\sqrt{4x}} = 2F'(x)$$

**b)** Pour tout  $x \in [1, +\infty[, 2F(x) = 2F(x) - 2F(1) = \int_{1}^{x} 2F'(t)dt = \int_{1}^{x} G'(t)dt = G(x) - G(1)$ .

3°)a)Soit 
$$x \in [1, +\infty[$$
,  $G(x) = \int_{a}^{\sqrt{4x}} te^{t} dt$ .

On effectue une Intégration par partie :

On pose 
$$\begin{cases} u(t) = t & donc \\ \end{cases} u'(t) = 1$$

$$v'(t) = e^t \qquad v(t) = e^t$$

Pour tout  $x \in [1, +\infty[$ ,  $G(x) = \int_{1}^{\sqrt{4x}} te^{t} dt = [te^{t}]_{1}^{\sqrt{4x}} - \int_{1}^{\sqrt{4x}} e^{t} dt = \sqrt{4x}e^{\sqrt{4x}} - e - e^{\sqrt{4x}} + e = (\sqrt{4x} - 1)e^{\sqrt{4x}}$ .

**b)** 
$$V = \pi F(2) = \pi \frac{G(2) - G(1)}{2} = \pi \frac{(\sqrt{8} - 1)e^{\sqrt{8}} - e^2}{2}$$