ICPC Workshop 1

Graph Theory

Isaiah Iliffe and Angus Ritossa

Table of contents

- Problem: Internet
 - Statement
 - Solution
- 2 Problem: Two Colouring
 - Statement
 - Solution
- 3 Problem: Cards
 - Statement
 - Solution
- 4 Lab: work on vjudge set

There are N houses in a town, labelled from 1 to N.

 ${\cal M}$ specified pairs of houses have a cable between them.

Which houses are connected by some sequence of cables to house 1?

There are N houses in a town, labelled from 1 to N.

 ${\it M}$ specified pairs of houses have a cable between them.

Which houses are connected by some sequence of cables to house 1?

Sample Input

```
9 8
```

Ι.

1 .

2

5

1

_ .

1 (

7 0

There are N houses in a town, labelled from 1 to N.

 ${\cal M}$ specified pairs of houses have a cable between them.

Which houses are connected by some sequence of cables to house 1?

Sample Input

	•	•
3		

Sample Output

- 1 2
- 3
- 3
- 5
- 0

Constraints

$$N, M \le 200000$$

There are N houses in a town, labelled from 1 to N.

 ${\cal M}$ specified pairs of houses have a cable between them.

Which houses are connected by some sequence of cables to house 1?

which houses are connected by some sequence of cables to house 1?				
Sample Input	Sample Output	Diagram		
9 8	1			
1 2	2	(6)		
1 5	3	\sim (5)		
2 5	4	(4)		
5 4	5	\mathcal{L}		
4 3	6			
2 3	Constraints	(3) (2)		
4 6	$N, M \le 200000$			
7 8				
		(7)— (8) (9)		

Representing graphs

■ A graph is an abstraction of the town, as simply a set of objects in which some pairs of the objects are in some sense "related"

Representing graphs

- A graph is an abstraction of the town, as simply a set of objects in which some pairs of the objects are in some sense "related"
- Houses correspond to nodes and cables correspond to edges
- How can we represent a graph mathematically? Computationally?

Representing graphs

- A graph is an abstraction of the town, as simply a set of objects in which some pairs of the objects are in some sense "related"
- Houses correspond to nodes and cables correspond to edges
- How can we represent a graph mathematically? Computationally?
- Adjacency list
 - For each node, store a list (vector in C++) of adjacent nodes
 - Implementation: see code

Depth-first search

- To "process" a node, just "process" each of its neighbours
- But never "process" a node more than once
- Implementation: see code

Theorem (Fundamental Theorem of DFS)

A DFS initiated at a node u will process a node v exactly when there exists a path between u and v.

So our problem can be solved by running a DFS from node 1, then checking which nodes have been processed. We'll come back to how exactly to code a solution up and submit it.

DFS Walkthrough

You are given a graph with N nodes and M edges.

You are given a graph with N nodes and M edges.

Can you colour each node either black or white, such that any two connected nodes are of different colour?

You are given a graph with N nodes and M edges.

Can you colour each node either black or white, such that any two connected nodes are of different colour? (In other words, is the graph bipartite?)

If yes, output a possible allocation of colours for each node.

You are given a graph with N nodes and M edges.

Can you colour each node either black or white, such that any two connected nodes are of different colour? (In other words, is the graph bipartite?)

If yes, output a possible allocation of colours for each node.

Example

Modify the DFS algorithm so each node gets a colour, and all nodes seen so far satisfy the different colour criterion

- Modify the DFS algorithm so each node gets a colour, and all nodes seen so far satisfy the different colour criterion
- If there is ever a contradiction in what colour a node should be, say NO

- Modify the DFS algorithm so each node gets a colour, and all nodes seen so far satisfy the different colour criterion
- If there is ever a contradiction in what colour a node should be, say NO
- Otherwise, output the final colour of each node.

- Modify the DFS algorithm so each node gets a colour, and all nodes seen so far satisfy the different colour criterion
- If there is ever a contradiction in what colour a node should be, say NO
- Otherwise, output the final colour of each node.
- What if not everything is connected, though?

- Modify the DFS algorithm so each node gets a colour, and all nodes seen so far satisfy the different colour criterion
- If there is ever a contradiction in what colour a node should be, say NO
- Otherwise, output the final colour of each node.
- What if not everything is connected, though?
- Implementation: see code

Cards: Statement

There are N cards.

The *i*-th card has the colour a[i] on one side, and the colour b[i] on the other side.

What is the maximum number of colours you can see at once?

Cards: Statement

There are N cards.

The *i*-th card has the colour a[i] on one side, and the colour b[i] on the other side.

What is the maximum number of colours you can see at once?

Sample Input

4

1 1

Ι,

4 4

2 3

Sample Output

4

Constraints

 $N, M \le 200000$

Cards: Statement

There are N cards.

The *i*-th card has the colour a[i] on one side, and the colour b[i] on the other side.

What is the maximum number of colours you can see at once?

Sample Input

1 /

1 1

Ι,

2 3

Sample Output

4

Constraints

 $N, M \le 200000$

Thinking time

- Reframe in terms of a graph
 - You are given a graph
 - You must choose a node at one end of each edge to be activated
 - What is the maximum number of distinct activated nodes?

- Reframe in terms of a graph
 - You are given a graph
 - You must choose a node at one end of each edge to be activated
 - What is the maximum number of distinct activated nodes?
- Observations after trying stuff on paper
 - Each component (set of nodes reached by one DFS) can be dealt with independently

- Reframe in terms of a graph
 - You are given a graph
 - You must choose a node at one end of each edge to be activated
 - What is the maximum number of distinct activated nodes?
- Observations after trying stuff on paper
 - Each component (set of nodes reached by one DFS) can be dealt with independently
 - If there are no cycles in a component, we can activate every node but one. Why?

- Reframe in terms of a graph
 - You are given a graph
 - You must choose a node at one end of each edge to be activated
 - What is the maximum number of distinct activated nodes?
- Observations after trying stuff on paper
 - Each component (set of nodes reached by one DFS) can be dealt with independently
 - If there are no cycles in a component, we can activate every node but one. Why?
 - If there is a cycle, it allows us to activate everything. Why?

- Reframe in terms of a graph
 - You are given a graph
 - You must choose a node at one end of each edge to be activated
 - What is the maximum number of distinct activated nodes?
- Observations after trying stuff on paper
 - Each component (set of nodes reached by one DFS) can be dealt with independently
 - If there are no cycles in a component, we can activate every node but one. Why?
 - If there is a cycle, it allows us to activate everything. Why?
- So our problem can be solved by finding each component (using DFS), and for each component, determining whether or not there is a cycle (within our DFS, or otherwise).

- Reframe in terms of a graph
 - You are given a graph
 - You must choose a node at one end of each edge to be activated
 - What is the maximum number of distinct activated nodes?
- Observations after trying stuff on paper
 - Each component (set of nodes reached by one DFS) can be dealt with independently
 - If there are no cycles in a component, we can activate every node but one. Why?
 - If there is a cycle, it allows us to activate everything. Why?
- So our problem can be solved by finding each component (using DFS), and for each component, determining whether or not there is a cycle (within our DFS, or otherwise).
- Implementation

Lab

- Join the vjudge group: https://vjudge.net/group/unswicpc
- Go to the contest for this workshop
- If you need help, or don't know what to do, message me or Angus
- A: A+B solve this first if you haven't used vjudge before
- **B: Internet** implement the first problem from today
- C: Cards implement the third problem from today
- D: Paradox second problem from today (two colouring), but a bit harder
- E: Maze and F: Graph harder problems
- Angus will go over Graph at 1:40