MA425/652: Applied Regression Analysis - Fall 2021

Linear Regression with One Predictor Variable

Emmanuel Thompson

7-17-2021

Contents

1.1	Relations Between Variables	1
1.2	Regression Models & Their Uses	1
1.3	Simple Linear Regression Model with Distribution of Error Terms Unspecified	1
1.4	Data for Regression Analysis	2
1.1	Relations Between Variables	
1.2	Regression Models & Their Uses	
1.3	Simple Linear Regression Model with Distribution of Error Terms Unspecified	c-
1.3.1	Formal Statement of Model	
• -	The Basic Model (one predictor with linear regression function) is written as:	

 $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ for $i = 1, 2, \dots, n$.

(1)

• where:

- $-Y_i$ = value of the response variable in the *i*th trial (Unknown).
- $-X_i$ = value of the predictor variable in the *i*th trial (Constant).
- $-\beta_0 \& \beta_1$ are unknown parameters.
- $-\epsilon_i = \text{random error term.}$
 - * Mean: $E\{\epsilon_i\} = 0$.
 - * Variance: $\sigma^2 \{ \epsilon_i \} = \sigma^2$.
 - * Covariance: $\sigma\{\epsilon_i, \epsilon_j\} = 0$ for all $i, j : i \neq j$.

1.3.2 Important Features of Model (1)

- 1. Y_i comprises of two components:
- Constant Term $\implies \beta_0 + \beta_1 X_i$.
- Error Term: $\implies \epsilon_i$.
- Therefore Y_i is a random variable.
- 2. Since $E\{\epsilon_i\} = 0$, it follows that $E\{Y_i\} = \beta_0 + \beta_1 X_i$.

3.

1.4 Data for Regression Analysis

- Observational Data
- Experimental Data
- Completely Randomized Design

1.4.1 Observational Data

- Data obtained not through experimental studies.
- Observational studies do not control the explanatory or predictor variable(s) of interest.

Example:

- Company officials wished to study the relation between age of employee (X) and number of days of illness last year (Y).
- The needed data for use in the regression analysis were obtained from personnel records. Such data are observational data since the explanatory variable, age, is not controlled.

1.4.2 Experimental Data

1.4.3 Completely Randomized Design