

Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II Lösung

Blatt 09

1. (NA) Minifragen

(a) Muss eine Funktion $f:[a,b]\to\mathbb{R}$ auf ganz [a,b] differenzierbar sein, damit der Mittelwertsatz anwendbar ist?

Lösung: Nein, es reicht aus, dass f auf (a, b) differenzierbar ist.

(b) Ist die Ableitung einer differenzierbaren Funktion immer stetig?

Lösung: Nein, betrachte bspw. die Funktion

$$f \colon \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$$
 als Gegenbeispiel.

(c) Folgt aus gleichmäßiger Stetigkeit Differenzierbarkeit?

Lösung: Nein, betrachte bspw. die Funktion

 $f: \mathbb{R} \to \mathbb{R}$ mit f(x) = |x| als Gegenbeispiel.

2. (A) Mittelwertsätze

a) Zeigen Sie, dass es genau ein $x \in [0, +\infty)$ gibt mit $e^x + \sqrt{x} = 3$. (2) **Lösung:** Sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = e^x + \sqrt{x}$. Es gilt, dass f als Summe stetiger Funktionen stetig ist und

• f(0) = 1,

•
$$f(2) = e^2 + \sqrt{2} > 4$$
.

Nach ZWS gibt es mindestens ein $\xi \in (0,2)$ mit $f(\xi) = 3 \in (1,4)$. Betrachten wir nun die Ableitung von f, gegeben durch $f'(x) = e^x + \frac{1}{2\sqrt{x}}$. f' ist somit größer als 0 für alle x > 0. Somit ist f streng monoton wachsend auf $(0,\infty)$. Damit gibt es genau ein $\xi \in (0,2)$ mit $f(\xi) = 3 \in (1,4)$.

b) Berechnen Sie mithilfe der Mittelwertsätze:

a)
$$\lim_{n\to\infty} n(1-\cos(1/n))$$
 (2)
Lösung: $\lim_{n\to\infty} n(1-\cos(\frac{1}{n})) = -\lim_{n\to\infty} \frac{\cos(\frac{1}{n})-\cos(0)}{\frac{1}{n}-0}$
 $\lim_{n\to\infty} -\lim_{n\to\infty} \sin(\xi_n) = -\sin(\lim_{n\to\infty} \xi_n) = -\sin(0) = 0.$

b)
$$\lim_{x\to a} \frac{x^{\alpha} - a^{\alpha}}{x^{\beta} - a^{\beta}}$$
 für $a > 0$, $\beta \neq 0$. (2) **Lösung:** Seien $f(x) = x^{\alpha}$, $g(x) = x^{\beta}$ jeweils mit Definitionsbereich $[0, \infty)$. Beide Funktionen sind stetig differenzierbar. Nach dem 2. MWS gibt es

für jedes $x \in [0, \infty)$ ein $\xi \in (0, \infty)$ mit $a < \xi < x$ oder $x < \xi < a$ und

$$f'(\xi)(g(x) - g(a)) = g'(\xi)(f(x) - f(a))$$

$$\Leftrightarrow f'(\xi)(-1)(g(a) - g(x)) = g'(\xi)(-1)(f(a) - f(x))$$

$$\Leftrightarrow f'(\xi)(g(a) - g(x)) = g'(\xi)(f(a) - f(x)).$$

Außerdem gilt $g(x) \neq g(a)$ und da $\beta \neq 0$, ist $g'(\xi) = \beta \xi^{\beta-1} \neq 0$, also ist

$$\frac{x^{\alpha} - a^{\alpha}}{x^{\beta} - a^{\beta}} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)} = \frac{\alpha \xi^{\alpha - 1}}{\beta \xi^{\beta - 1}} \to \frac{\alpha}{\beta} a^{\alpha - \beta} (x \to a),$$

da mit $x \to a$ auch $\xi \to a$.

3. (A) Grenzwerte

Berechnen Sie die folgenden Grenzwerte:

a)
$$\lim_{x \to 1} \frac{\sin(\pi x)}{x^2 - 2x + 1}$$
 (1.5)

Lösung: Zunächst gilt $x^2 - 2x + 1 = (x - 1)^2$. Seien nun $f(x) := \sin(\pi x)$ und $g(x) := (x - 1)^2$. Es gilt, dass

- $\sin(\pi x) \to 0 (x \to 1)$
- $(x-1)^2 \to 0 (x \to 1)$
- $g'(x) = 2x 2 \neq 0$ für $x \in \mathbb{R} \setminus \{1\}$

Benutze L'Hospital separat auf $(\frac{1}{2}, 1)$ und $(1, \frac{3}{2})$:

- $\frac{f'(x)}{g'(x)} = \frac{\pi \cos(\pi x)}{2x-2} \to \infty (x \to 1^-)$, denn für $x \in (\frac{1}{2}, 1)$ ist f'(x) < 0 und g'(x) < 0 sowie $f'(x) \to -\pi (x \to 1^-)$ und $g'(x) \to 0 (x \to 1^-)$.
- $\frac{f'(x)}{g'(x)} = \frac{\pi \cos(\pi x)}{2x-2} \to -\infty (x \to 1^+)$, denn für $x \in (1, \frac{3}{2})$ ist f'(x) < 0 und g'(x) > 0 sowie $f'(x) \to -\pi (x \to 1^+)$ und $g'(x) \to 0 (x \to 1^+)$.

Nach L'hospital gilt dann $\frac{f(x)}{g(x)} \to \infty$ $(x \to 1^-)$ und $\frac{f(x)}{g(x)} \to -\infty$ $(x \to 1^+)$. Somit existiert der gesuchte Grenzwert nicht.

b)
$$\lim_{x \to 0} \left(\frac{1}{\sin^2(x)} - \frac{1}{x^2} \right)$$
 (1.5)

Lösung:

$$\frac{1}{\sin^2(x)} - \frac{1}{x^2} = \frac{x^2 - (x - \frac{x^3}{6} + \frac{x^5}{5!} \dots)^2}{x^2 \sin^2(x)}$$

$$= \frac{x^2 - (x^2 - \frac{2x^4}{6} + \dots)}{x^2 \sin^2(x)} = \frac{\frac{1}{3}x^4 + \dots}{x^2 \sin^2(x)}$$

$$= \frac{\frac{1}{3}x^2 + \dots}{\sin^2(x)} = \frac{\frac{1}{3} + \dots}{\left(\frac{\sin^2(x)}{x^2}\right)} = \frac{\frac{1}{3} + \dots}{\left(\frac{\sin(x)}{x}\right)^2} \to \frac{1}{3}(x \to 0)$$

c)
$$\lim_{x \to 0} \frac{\log(\cos(3x))}{\log(\cos(2x))} \tag{1.5}$$

Lösung: Seien $f(x) = \log(\cos(3x))$ und $g(x) = \log(\cos(2x))$, dann gilt:

•
$$f(x) \rightarrow 0 (x \rightarrow 0)$$

•
$$g(x) \rightarrow 0 (x \rightarrow 0)$$

•
$$g(x) \to 0 \ (x \to 0)$$

• $g'(x) = \frac{-2\sin(2x)}{\cos(2x)} \neq 0 \ \text{auf} \ (-\frac{\pi}{4}, \frac{\pi}{4}) \setminus \{0\}$

Wende L'Hospital an:

$$\frac{f'(x)}{g'(x)} = \frac{-\frac{1}{\cos(3x)} \cdot 3 \cdot \sin(3x)}{-\frac{1}{\cos(2x)} \cdot 2 \cdot \sin(2x)} = \underbrace{\frac{\cos(2x)}{\cos(3x)}}_{\rightarrow 1 (x \rightarrow 0)} \cdot \frac{3}{2} \cdot \frac{\sin(3x)}{\sin(2x)}$$

Wende L'Hospital auf $\frac{\sin(3x)}{\sin(2x)}$ an, denn $\sin(3x) \to 0 (x \to 0)$ und $\sin(2x) \to 0$ $0 (x \to 0)$. Außerdem gilt $(\sin(2x))' = 2\cos(2x) \neq 0$ für $x \in (-\frac{1}{4}\pi, \frac{1}{4}\pi)$. Wir erhalten

$$\frac{(\sin(3x))'}{(\sin(2x))'} = \frac{3\cos(3x)}{2\cos(2x)} \to \frac{3}{2}(x \to 0)$$

 $\overset{\text{L'Hospital}}{\Rightarrow} \lim_{x \to 0} \frac{f'(x)}{g'(x)} = 1 \cdot \tfrac{3}{2} \cdot \tfrac{3}{2} = \tfrac{9}{4} \overset{\text{L'Hospital}}{\Rightarrow} \lim_{x \to 0} \frac{f(x)}{g(x)} = \tfrac{9}{4}.$

d)
$$\lim_{x\to 0} \frac{2\cos(x) + e^x + e^{-x} - 4}{x^4}$$
 (1.5)
Lösung: Seien $f(x) = 2\cos(x) + e^x + e^{-x} - 4$ und $g(x) = x^4$, dann gilt:

- $f(x) \rightarrow 0 (x \rightarrow 0)$
- $g(x) \rightarrow 0 (x \rightarrow 0)$
- $q'(x) = 4x^3 \neq 0$ für $x \in \mathbb{R} \setminus \{0\}$

Wende L'Hospital an:

$$\frac{f'(x)}{g'(x)} = \underbrace{\frac{-f'(x)}{-2\sin(x) + e^x - e^{-x}}}_{=g'(x)}$$

Da $f'(x) \to 0 (x \to 0), g'(x) \to 0 (x \to 0)$ und $g''(x) = 12x^2 \neq 0$ für $x \in$ $\mathbb{R} \setminus \{0\}$, wende L'Hospital ein weiteres Mal an:

$$\frac{f''(x)}{g''(x)} = \underbrace{\frac{-2\cos(x) + e^x + e^{-x}}{12x^2}}_{=g''(x)}$$

Da $f''(x) \to 0 (x \to 0), g''(x) \to 0 (x \to 0)$ und $g'''(x) = 24x \neq 0$ für $x \in$ $\mathbb{R} \setminus \{0\}$, wende L'Hospital ein weiteres Mal an:

$$\frac{f'''(x)}{g'''(x)} = \underbrace{\frac{2\sin(x) + e^x - e^{-x}}{24x}}_{=g'''(x)}$$

Da $f'''(x) \to 0 (x \to 0), g'''(x) \to 0 (x \to 0)$ und $g''''(x) = 24 \neq 0$ für $x \in \mathbb{R}$, wende L'Hospital ein weiteres Mal an:

$$\frac{f''''(x)}{g''''(x)} = \frac{2\cos(x) + e^x + e^{-x}}{24} \to \frac{1}{6} (x \to 0)$$

 $\overset{\text{L'Hospital}}{\Rightarrow} \lim_{x \to 0} \frac{f''''(x)}{g''''(x)} = \frac{1}{6} \overset{\text{L'Hospital}}{\Rightarrow} \dots \overset{\text{L'Hospital}}{\Rightarrow} \frac{f(x)}{g(x)} = \frac{1}{6}.$

4. (A) Sinus und Kosinus Hyperbolicus

Wir haben im letzen Semester auf Blatt 9 gezeigt, dass die Funktionen sinh, cosh : $\mathbb{R} \to \mathbb{R}$ durch

$$\cosh(x) = \frac{1}{2}(e^x + e^{-x}) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \quad \sinh(x) = \frac{1}{2}(e^x - e^{-x}),$$

mit der Eigenschaft $\cosh^2(x) - \sinh^2(x) = 1 \ \forall x \in \mathbb{R}$ gegeben sind.

a) Zeigen Sie, dass die Umkehrfunktion von cosh, nämlich arcosh (Areakosinus Hyperbolicus), existiert und geben Sie größtmögliche Mengen I, J an, so dass arcosh: $I \to J$ existiert, mit $1 \in I$.

Lösung: Wir bestimmen das größtmögliche Intervall, auf dem cosh bijektiv ist. Da für $x, y \in [0, \infty)$ mit x < y gilt, dass

(2)

$$\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} < \sum_{k=0}^{\infty} \frac{y^{2k}}{(2k)!} = \cosh(y),$$

ist cosh auf $[0, \infty)$ streng monoton wachsend. Da außerdem für jedes $x \in \mathbb{R}$ gilt, dass

$$\cosh(-x) = \sum_{k=0}^{\infty} \frac{(-x)^{2k}}{(2k)!} = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = \cosh(x),$$

ist cosh symmetrisch bzgl. der y-Achse. Es folgt, dass cosh streng onoton fallend auf $(-\infty,0]$ ist. Wir beschränken uns nun auf das Intervall $[0,\infty)$. cosh ist als Summe und Produkt stetiger Funktionen stetig und es gilt, dass $\cosh(0) = 1$ und $\lim_{x\to\infty} \cosh(x) = \infty$. Mit dem Zwischenwertsatz folgt, dass für alle $y \in [1,\infty)$ ein eindeutiges $x \in [0,\infty)$ ex. mit $\cosh(x) = y$. Die Eindeutigkeit folgt dabei aus der strengen Montonie von cosh auf $[0,\infty)$. Insgesamt ist also cosh bijektiv auf $[0,\infty)$ und arcosh: $[1,\infty) \to [0,\infty)$ existiert.

b) Berechnen Sie $\operatorname{arcosh}'(x) \ \forall x \in I.$ (2)

Lösung: Zunächst gilt, dass

$$\cosh'(x) = \frac{1}{2}(e^x - e^{-x}) = \sinh(x)$$

und somit ist $\cosh'(x) > 0$ für alle x > 0. Mit dem Satz über die Ableitung der Umkehrfunktion ist arcosh in $y = \cosh(x)$ differenzierbar und

$$\frac{d}{dy}\operatorname{arcosh}(y) = \frac{1}{\cosh'(\operatorname{arcosh}(y))} = \frac{1}{\sinh(\operatorname{arcosh}(y))}$$
$$= \frac{1}{\sinh(x)} = \frac{1}{\sqrt{\cosh^2(x) - 1}} = \frac{1}{\sqrt{y^2 - 1}}$$

für y > 1. Für y = 1 ex. die Ableitung nicht.

c) Zeigen Sie, dass
$$\operatorname{arcosh}(x) = \log(x + \sqrt{x^2 - 1})$$
 für $x \ge 1$. (2)

Lösung: Es gilt

$$\frac{d}{dx}\log(x+\sqrt{x^2-1}) = \frac{1}{x+\sqrt{x^2-1}} \left(1 + \frac{2x}{2\sqrt{x^2-1}}\right)$$

$$= \frac{1}{x+\sqrt{x^2-1}} \left(\frac{\sqrt{x^2-1}+x}{\sqrt{x^2-1}}\right)$$

$$= \frac{1}{\sqrt{x^2-1}} \stackrel{\text{b}}{=} \operatorname{arcosh}'(x).$$

Nach dem Identitätssatz (11.2.9) gibt es eine Konstante c mit $\operatorname{arcosh}(x) = \log(x + \sqrt{x^2 - 1}) + c$. Da $\cosh(0) = 1$ und damit $\operatorname{arcosh}(1) = 0$, und $\log(1 + \sqrt{1^2 - 1}) = 0$, ist c = 0 und damit gilt

$$\operatorname{arcosh}(x) = \log(x + \sqrt{x^2 - 1}) \quad \forall x \ge 1.$$

5. (A) Lipschitz-Stetigkeit und Differenzenquotienten

Sei $a < b, f: (a, b) \to \mathbb{R}$ differenzierbar und $L \ge 0$.

- a) Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - a) $|f'(x)| \le L \ \forall x \in (a,b)$
 - b) $|f(x) f(y)| \le L|x y| \ \forall x, y \in (a, b), \text{ d.h., } f \text{ ist Lipschitz-stetig mit}$ Lipschitz-Konstante L. (3)

Lösung: a) \Rightarrow b): Wir nehmen an, dass $|f'(x)| \leq L \quad \forall x \in (a,b)$. Seien $x,y \in (a,b)$, oBdA x < y. Dann ist die Einschränkung $f:[x,y] \to \mathbb{R}$ stetig und differenzierbar auf (x,y). Nach dem 1. MWS gibt es ein $\xi \in (x,y)$ mit

$$|f(x) - f(y)| = |f'(\xi)(x - y)|$$
$$= |f'(\xi)| \cdot |x - y|$$
$$\leq L|x - y|.$$

b) \Rightarrow a): Sei $x_0 \in (a, b)$ beliebig und $x \in (a, b)$ mit $x \neq x_0$. Nach Annahme gilt, dass

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| \le L.$$

Da f differenzierbar ist in x_0 und die Betragsfunktion stetig ist, gilt

$$L \ge \lim_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} \right|$$
$$= \left| \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \right|$$
$$= |f'(x_0)|.$$

b) Zeigen Sie, dass für alle $x, y \in \mathbb{R}$ gilt:

$$|\sin(x) - \sin(y)| \le |x - y|.$$

Lösung: Es gilt, dass $|\sin'(x)| = |\cos(x)| \le 1 \quad \forall x \in \mathbb{R}$. Daraus folgt, dass sin die Aussage 5 a) a) für L = 1 erfüllt und somit auch die Aussage 5 a) b) für L = 1 erfüllt.

(1)

c) Zeigen oder widerlegen Sie: Ist f zweimal stetig differenzierbar auf (a, b), so gilt für alle x_0 in (a, b):

$$f''(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}.$$
(2)

Lösung: Die Aussage stimmt, denn es gilt

$$f''(x_0) = \lim_{h \to 0} \frac{f'(x_0) - f'(x_0 - h)}{h}$$

$$\stackrel{\text{Def.}}{=} \lim_{h \to 0} \frac{1}{h} \left(\lim_{h_1 \to 0} \frac{f(x_0 + h_1) - f(x_0)}{h_1} - \lim_{h_2 \to 0} \frac{f(x_0 - h + h_2) - f(x_0 - h)}{h_2} \right) = *$$

Da f stetig differenzierbar ist, ex. die Limites in der großen Klammer und können zusammengefasst werden:

$$* = \lim_{h \to 0} \lim_{h_1 \to 0} \frac{f(x_0 + h_1) - f(x_0) - f(x_0 - h + h_1) + f(x_0 - h)}{h \cdot h_1}$$

Da f zweimal stetig differnzierbar ist, ex. beide Limites und lassen sich wie folgt zusammenfassen:

$$* = \lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 + h)}{h^2}$$

6. (T),(NA)

Berechnen Sie die folgenden Grenzwerte:

a)
$$\lim_{x \to \pi} \frac{\sin(3x)}{\tan(5x)}$$

b)
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos(x)}$$

c)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$

$$d) \lim_{x \to 0} \frac{\sin(x)}{x}$$

7. (T),(NA)

Zeigen Sie für $x \in (-1,1)$

$$\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}.$$

Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.