Тема №5. Смежные классы по подгруппе

Пусть H - подгруппа группы G . Левым (правым) смежным классом группы G по подгруппе H (коротко G по H) называется множество

$$gH = \{gh \mid h \in H\} \ (Hg = \{hg \mid h \in H\}),$$
 где $g \in G$.

Элемент g называется npedcmasumeлем смежного класса.

Утверждение 5.1. Пусть H - подгруппа группы G, $h \in H$. Тогда hH = Hh = H. Доказательство. (a) $hH \subseteq H$ ($\forall h_1, h_2 \in H$ $h_1h_2 \in H$); (б) $\forall h_0 \in H$ $h^{-1}h_0 \in H \Rightarrow h_0 = (hh^{-1})h_0 = h(h^{-1}h_0) \in hH$ (т.к. $h^{-1}h_0 \in H$) $\Rightarrow H \subseteq hH$.

Таким образом, $hH = H \ (Hh = H \ доказывается аналогично).$

Утверждение 5.2. Пусть H - подгруппа группы G, $g_1, g_2 \in G$, $g_1 \in g_2 H$. Тогда $g_1 H = g_2 H$. Доказательство. $g_1 \in g_2 H \Rightarrow \exists h \in H : g_1 = g_2 h \Rightarrow g_1 H = (g_2 h)H = g_2 (hH) = g_2 H$.

Утверждение 5.3. Два левых (правых) смежных класса G по H либо совпадают, либо не имеют общих элементов. Доказательство. Пусть $g_1,g_2\in G,\ g_1H\cap g_2H\neq\varnothing\Rightarrow \exists h_1,h_2\in H:\ g_1h_1=g_2h_2\Rightarrow g_1=g_2(h_2h_1^{-1})\in g_2H\Rightarrow$ (утв. 5.2) $\Rightarrow g_1H=g_2H$.

Следствие 5.1.
$$g_1H \neq g_2H \Rightarrow g_1H \cap g_2H = \emptyset$$
.

Следствие 5.2. Множество левых (правых) смежных классов группы G по любой ее подгруппе H представляет собой разбиение множества G. Действительно, (a) $\forall g \in G \ gH \subseteq G$; (б) $g_1H \neq g_2H \Rightarrow g_1H \cap g_2H = \varnothing$; (в) $\bigcup_{g \in G} gH = G$ (т.к. $g \in gH$).

Множество всех левых смежных классов группы G по подгруппе H обозначается символом G/H .

Утверждение 5.4. Пусть G - конечная группа, H - подгруппа группы G, $g \in G$. Тогда |gH| = |H|. Доказательство. $\forall h_1, h_2 \in H$ $h_1 \neq h_2 \Rightarrow gh_1 \neq gh_2$, откуда и следует справедливость доказываемого утверждения.

Теорема 5.1. Пусть G - конечная группа, H - подгруппа группы G . Тогда

$$(5.1) |G| = |G/H| \cdot |H|.$$

Доказательство.
$$|G| = \left| \bigcup_{gH \in G/H} gH \right| = |G/H| \cdot |H|$$

$$(|gH|=|H|, g_1H \neq g_2H \Rightarrow g_1H \cap g_2H = \emptyset).$$

Теорема 5.3. (основная теорема о гомоморфизмах). (1) Пусть $f: G \to G'$ - гомоморфизм группы G с ядром $H = \operatorname{Ker} f$. Тогда H - нормальная подгруппа в группе G и фактор-группа G/H изоморфна подгруппе $f(G) = \{f(g) | g \in G\}$ группы G' (кратко пишем: $G/H \sim f(G)$). (2) Обратно, если H - нормальная подгруппа в группе G, то отображение $f: G \to G/H$, определяемое формулой: $\forall g \in G \ f(g) = gH$, есть эпиморфизм (т.е. сюръективное отображение) с ядром H .

Доказательство. (1) Рассмотрим отображение

$$\varphi: G/H \to f(G) \quad \forall gH \in G/H \quad \varphi(gH) = f(g).$$

Корректность определения: $\forall g' \in gH \ g'H = gH$ и при этом $f(g') = f(gh) = f(g)f(h) = f(g)e' = f(g) \ (h \in H = \text{Ker} f).$

(a)
$$\varphi(g_1H \cdot g_2H) = \varphi(g_1g_2H) = f(g_1g_2) = f(g_1)f(g_2) = \varphi(g_1H)\varphi(g_2H)$$
.

- (б) **сюръективность:** $\forall b \in f(G) \ \exists g_b \in G \colon f(g_b) = b$ (по определению f(G)). Но $\varphi(g_bH) = f(g_b) = b$.
- (в) **инъективность:** $\forall g_1 H, g_2 H$, если $\varphi(g_1 H) = \varphi(g_2 H)$, то $f(g_1) = f(g_2) \Rightarrow f(g_1)[f(g_2)]^{-1} = e' \Rightarrow f(g_1)f(g_2^{-1}) = e' \Rightarrow f(g_1g_2^{-1}) = e' \Rightarrow f(g_1g_2^{-1}) = e' \Rightarrow g_1g_2^{-1} \in H \Rightarrow g_1 = (g_1g_2^{-1})g_2 \in Hg_2 = g_2 H \Rightarrow g_1 H = g_2 H \text{ (см. утв. 5.2)}.$
- (2) Докажем, что отображение $f: G \to G/H: \forall g \in G \ f(g) = gH$ есть эпиморфизм (т.е. сюръективное отображение) с ядром H.

(a)
$$\forall g_1, g_2 \in G$$
 $f(g_1g_2) = g_1g_2H = g_1H \cdot g_2H = f(g_1)f(g_2)$.

- (б) сюръективность: $\forall gH \in G/H \ f(g) = gH$.
- (в) (H ядро): $\{g \in G \mid f(g) = H\} = (H$ единичный элемент в G/H)= $= H = \operatorname{Ker} f (gH = H \Leftrightarrow g \in H; \text{ см. утв. 5.1, 5.2}).$

При решении задач на тему «Гомоморфизм групп» используем

Утверждение 5.5. Пусть G - группа, $g \in G$, g имеет конечный порядок $q \in \mathbb{N}$, $q \ge 2$, т.е. $< g >= \{e, g, g^2, ..., g^{q-1}\}$. Тогда каждому положительному делителю $d \ge 2$ числа q (т.е. в случае, если q делится нацело на d) соответствует одна и только одна циклическая группа порядка d, являющаяся подгруппой < g >, а именно, $< g^{q/d} >= \{e, g^{q/d}, g^{2q/d}, ..., g^{(d-1)q/d}\}$.

Доказательство. С одной стороны, $< g^{q/d} >= \{e, g^{q/d}, g^{2q/d}, ..., g^{(d-1)q/d} \}$ - подгруппа группы $< g >= \{e, g, g^2, ..., g^{q-1} \}$ порядка d . Пусть < a > - любая подгруппа группы $< g >= \{e, g, g^2, ..., g^{q-1} \}$ порядка d . Поскольку $< a > \subseteq \{e, g, g^2, ..., g^{q-1} \}$, то можно выбрать минимальное $k \in \{1, ..., q-1\}$: $g^k \in < a >$. Тогда $< g^k > \subseteq < a >$ (см. определение полугруппы). Покажем, что $< a > \subseteq < g^k >$. Пусть $g^l \in < a >$, где $l \in \{1, ..., q-1\}$. Тогда, если l делится нацело на k , то $g^l \in < g^k >$. В противном случае l = mk + r , где $r \in \{1, ..., k-1\}$, а следовательно, $g^l = g^{mk+r} = g^r$, что противоречит выбору k .

Упражнение 5.4. Найти все гомоморфные отображения циклической группы G = < a > порядка 18 в циклическую группу G' = < b > порядка 6.

Решение. В силу теоремы 5.3 (о гомоморфизмах) $f(G) = \{f(g) | g \in G\}$ - подгруппа группы G', а следовательно, в силу теоремы Лагранжа |G'| = 6 делится нацело на |f(G)|. Кроме того, в силу теоремы 5.3 для $H = \operatorname{Ker} f$ выполняется:

$$G/H \sim f(G) \Rightarrow |G/H| = |G|/|H| = |f(G)| \Rightarrow |G| = |H| \cdot |f(G)| \Rightarrow$$
 $|G| = 18$ делится нацело на $|f(G)|$. Таким образом, число $|f(G)|$ делит нацело числа $6 = |G'|$ и $18 = |G| \Rightarrow |f(G)| \in \{2,3,6\}$.

(а) Пусть |f(G)|=2. Тогда (см. утверждение 5.5) $f(G)=< b^3>=\{e',b^3\}$, т.к. 3=|G'|/2=6/2. С другой стороны, для $H=\mathrm{Ker} f$ имеем (в силу теоремы 5.3 (о гомоморфизмах))

$$G/H \sim f(G) \Rightarrow |G/H| = |G|/|H| = |f(G)| = 2 \Rightarrow$$
$$\Rightarrow |H| = 9 \Rightarrow H = \langle a^2 \rangle = \{e, a^2, a^4, ..., a^{16}\}.$$

Таким образом, $G = H \cup aH = \{e, a^2, a^4, ..., a^{16}\} \cup \{a, a^3, a^5, ..., a^{17}\}$ и

$$f: a^k \mapsto egin{cases} e', \ \text{если } k \ \text{- четно} \ b^3, \ \text{если } k \ \text{- нечетнo} \end{cases}.$$

Кратко пишем: $f: H \mapsto e', aH \mapsto b^3$.

(б) Пусть |f(G)|= 3. Тогда (см. утверждение 5.5)

 $f(G) = \langle b^2 \rangle = \{e', b^2, b^4\} = \langle b^4 \rangle = \{e', b^4, b^2\}$ (одна и та же циклическая группа, только образующие выбраны разные и по-другому их выбрать нельзя), т.к. 2 = |G'|/3 = 6/3. С другой стороны, для H = Ker f имеем (в силу теоремы 5.3 (о гомоморфизмах))

$$G/H \sim f(G) \Rightarrow |G/H| = |G|/|H| = |f(G)| = 3 \Rightarrow$$
$$\Rightarrow |H| = 6 \Rightarrow H = \langle a^3 \rangle = \{e, a^3, a^6, \dots, a^{15}\}.$$

Таким образом, $G/H = \{H, aH, a^2H\}$ и возможны два подслучая:

(16)
$$f: H \mapsto e', aH \mapsto b^2, a^2H \mapsto b^4$$
;

(26)
$$f: H \mapsto e', aH \mapsto b^4, a^2H \mapsto b^2$$
.

(в) Пусть |f(G)|=6. Тогда (см. утверждение 5.5) $f(G)=< b>=\{e',b,b^2,b^2,b^4,b^5\}=< b^5>=\{e',b^5,b^4,b^3,b^2,b\}$, т.к. 1=|G'|/6=6/6. С другой стороны, для $H=\mathrm{Ker} f$ имеем (в силу теоремы 5.3 (о гомоморфизмах))

$$G/H \sim f(G) \Rightarrow |G/H| = |G|/|H| = |f(G)| = 6 \Rightarrow$$

 $\Rightarrow |H| = 3 \Rightarrow H = \langle a^6 \rangle = \{e, a^6, a^{12}\}.$

Таким образом, $G/H = \{H, aH, a^2H, a^3H, a^4H, a^5H\}$ и возможны два под случая:

(1B)
$$f: H \mapsto e', a^k H \mapsto b^k, k = 1,...,5$$
;

(26)
$$f: H \mapsto e', a^k H \mapsto b^{5k} = b^{6-k}, k = 1,...,5$$
.