Алгебра

Лектор: Жуков Игорь Борисович

Содержание

Элеме	енты теории чисел	1
1	Делимость	1
2	Отношение эквивалентности и разбиение на классы	1
3	Сравнение по модулю	2
4	Кольцо классов вычетов	2
5	Наибольший общий делитель	5
6	Взаимно простые числа	7
7	Линейные диофантовы уравнения	8
8	Простые числа	8
9	Основная теорема арифметики	9
10		11
11		12
Комп	лексные числа	16
12		16
13		18
14		20
Много	очлены	25
15	Многочлены и формальные степенные ряды	25
16		26
17		27
18		28
19		31

Элементы теории чисел

1 Делимость

Определение 1.1. $a,b \in \mathbb{Z}, a \mid b \iff \exists c \in \mathbb{Z} : b = ac$

Свойства.

- 1. $a \mid a$ рефлексивность
- 2. $a \mid b, b \mid c \implies \exists c \in \mathbb{Z} : b = ac$ транзитивность
- 3. $a \mid b, k \in \mathbb{Z} \implies ka \mid kb$
- 4. $a \mid b_1, a \mid b_2 \implies a \mid (b_1 \pm b_2)$
- 5. $\pm 1 \mid a$
- 6. a и b ассоциированны, если $a \mid b, b \mid a \implies a = \pm b$
- 7. a, a' и b, b' ассоциированны, тогда $a \mid b \iff a' \mid b'$
- 8. $k \neq 0, ka \mid kb \iff a \mid b$

2 Отношение эквивалентности и разбиение на классы

Определение 2.1. Отношение эквивалентности — бинарное отношение, удовлетворяющее следующим свойствам: рефлексивность, симметричность, транзитивность.

Определение 2.2. Разбиение на классы множества M — это представление M в виде $M = \bigcup_{i \in I} M_i$, где M_i — классы, I — индексное множество, $M_i \cap M_j = \emptyset$ при $i \neq j$.

Теорема 2.1. Пусть $M=\bigcup_{i\in I}M_i$ — разбиение на классы, тогда $a\sim b\iff \exists i:a,b\in M_i.$

Доказательство.

рефлексивность, симметричность — очевидны

транзитивность: $a \sim b, b \sim c \implies \exists i, j: a, b \in M_i$ и $b, c \in M_j$

$$b \in M_i \cap M_j \iff M_i \cap M_j \neq \emptyset \implies i = j \implies a, c \in M_i \implies a \sim c$$

Теорема 2.2. $\exists \sim$ — отношение эквивалентности на M. Значит \exists разбиение на классы $M = \bigcup_{i \in I} M_i$ такое, что $\forall a,b \in M: a \sim b \iff \exists i: a,b \in M_i$.

Доказательство.

$$[a] = \{b \in M \mid a \sim b\}$$
 — класс, $a \in M$

$$\forall a_1, a_2 \in M : [a_1] \cap [a_2] = \emptyset$$
 или $[a_1] = [a_2]$

$$\exists [a_1] \cap [a_2] \neq \varnothing \implies \exists x \in [a_1] \cap [a_2]$$

$$x \in [a_1], x \in [a_2] \implies x \sim a_1, x \sim a_2 \implies a_2 \sim a_1$$

$$[a_2] \subset [a_1], c \in [a_2] \implies c \sim a_2 \implies c \sim a_1 \implies c \in [a_1]$$

$$[a_1] \subset [a_2], c \in [a_1] \implies c \sim a_1 \implies c \sim a_2 \implies c \in [a_2]$$

Значит $[a_1] = [a_2]$

$$I = \{[a] \mid a \in M\}$$

$$\forall \mathfrak{A}, \mathfrak{B} \in I : \mathfrak{A} \cap \mathfrak{B} = \emptyset$$

$$a_1, a_2 \in \mathfrak{A} \implies [a_1] = \mathfrak{A} = [a_2] \implies a_2 \in [a_1] \implies a_2 \sim a_1$$

$$a_1 \in \mathfrak{A}, a_2 \in \mathfrak{B} \implies \neg(a_1 \sim a_2),$$
 так как иначе $a_1 \in [a_2] \implies \mathfrak{B} \in \mathfrak{A} \implies \mathfrak{A} \cap \mathfrak{B} \neq \emptyset$

Определение 2.3. Фактор-множество по отношению эквивалентности \sim — множество I, обозначим его как M/\sim

Пример.
$$\mathbb{Z}/\sim=\{[z]\mid z\in\mathbb{Z}\}=\{[0],[1],[2],\dots\}$$

3 Сравнение по модулю

Определение 3.1. $\exists a, b, m \in \mathbb{Z}$. Говорят, что $m \mid (a - b)$.

Свойства.

- 1. $\equiv -$ рефлексивно
- 2. $\equiv -$ симметрично
- 3. $\equiv -$ транзитивно
- 4. $a \equiv b, d \mid m \implies a^d \equiv b$
- 5. $a \equiv b, k \in \mathbb{Z} \implies ka \equiv kb$
- 6. $a \equiv b, k \in \mathbb{Z} \implies ka \equiv kb$
- 7. $a_1 \equiv b_1, a_2 \equiv b_2 \implies a_1 \pm a_2 \equiv b_1 \pm b_2$
- 8. $a_1 \equiv b_1, a_2 \equiv b_2 \implies a_1 a_2 \equiv b_1 b_2$

4 Кольцо классов вычетов

Определение 4.1. Множество классов вычетов по модулю m — это множество всех вычетов по модулю m.

Обозначается как $\mathbb{Z}/m\mathbb{Z} \iff \mathbb{Z}/m \iff \mathbb{Z}/\equiv m$

Теорема 4.1. $\exists m \in \mathbb{N}$. Тогда

- 1. $\mathbb{Z}/m\mathbb{Z} = {\overline{0}, \overline{1}, \dots, \overline{m-1}}$
- 2. $|\mathbb{Z}/m\mathbb{Z}| = m$

Доказательство.

1.
$$a \in \mathbb{Z}$$
 $(!)\overline{a} = \overline{r}, \ 0 \leqslant r < m$

а)
$$a\geqslant 0,\ \exists r$$
 — наименьшее число, такое что $r\geqslant 0, a\equiv r$
$$r\geqslant m\implies r-m\equiv a, r-m\geqslant 0, r-m< r.\ Противоречие с выбором $r.$$$

Значит r < m, тоесть r — искомое.

b)
$$a < 0$$
, $a' = a \pm (-a)m = a(1 - m) \ge 0$
 $\overline{a} = \overline{a'} = \overline{r}$, $0 \le r < m$

2. предположим
$$\overline{r} = \overline{r'}, \ 0 \leqslant r, r' < m.$$

$$|r'-r| < m \implies m \mid (r-r') \implies r'-r = 0$$

Следствие.

Теорема о делениии с остатком — $\exists a \in \mathbb{Z}, b \in \mathbb{N} \implies \exists ! q, r \in \mathbb{Z}$

1.
$$a = bq + r$$
, $0 \le r < b$

2.
$$0 \le r < b$$

Доказательство.

Существование:

В
$$\mathbb{Z}/b\mathbb{Z}$$
 рассмотрим $\overline{a} \in \{\overline{0}, \overline{1}, \dots, \overline{b-1}\}$, тогда если $\overline{a} = \overline{r}, \ 0 \leqslant r < b$ $a \equiv r \iff a = bq + r, \ q \in \mathbb{Z}$

Единственность:

$$\exists a = bq + r = bq' + r', \ 0 \leqslant r, r' < b \iff \overline{bq + r} = \overline{bq' + r'} \iff \overline{r} = \overline{r'} \iff r = r' \implies bq = bq' \implies q = q'$$

Определение 4.2. q — неполное частное при делении a на b, r — остаток при делении a на b

Определение 4.3. Операция на множестве M — бинарная операция $M \times M \to M$

На $\mathbb{Z}/m\mathbb{Z}$ определим операцию сложения и умножения по модулю m:

•
$$\overline{a} + \overline{b} = \overline{a+b}$$

•
$$\overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

$$(!) \ \overline{a} = \overline{a'}, \ \overline{b} = \overline{b'} \implies \overline{a+b} = \overline{a'+b'}, \ \overline{a\cdot b} = \overline{a'\cdot b'}$$

$$\overline{a} = \overline{a'}, \ \overline{b} = \overline{b'} \implies a \equiv a', \ \Longrightarrow \ b \equiv b' \implies a + b \equiv a' + b', \ a \cdot b \equiv a' \cdot b' \implies$$

$$\overline{a+b} = \overline{a'+b'}, \ \overline{a\cdot b} = \overline{a'\cdot b'}$$

Пример.
$$m=4,\mathbb{Z}/4\mathbb{Z}=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$$

Определение 4.4. $e \in M$ — нейтральный элемент относительно операции(*) на M, если $\forall a \in M$ справедливо a*e=e*a=a

Предложение 4.1. Операции сложения и умножения на $\mathbb{Z}/m\mathbb{Z}$ обладают следующими свойствами:

- 1. A + B = B + A коммутативность сложения
- 2. (A + B) + C = A + (B + C) ассоциативность сложения
- 3. $A + \overline{0} = A$ существование нейтрального элемента относительно сложения
- 4. $A + A' = \overline{0}$ существование обратного элемента относительно сложения
- 5. AB = BA коммутативность умножения
- 6. (AB)C = A(BC) ассоциативность умножения
- 7. $A \cdot \bar{1} = A$ существование нейтрального элемента относительно умножения
- 8. $A \cdot (B + C) = A \cdot B + A \cdot C$ дистрибутивность умножения относительно сложения.
- 9. $(B+C) \cdot A = B \cdot A + C \cdot A$ дистрибутивность сложения относительно умножения.

Определение 4.5. Кольцом называется множество M с операциями сложения и умножения, для которых выполнены аналоги свойств 1-4 и 8-9.

Определение 4.6. Кольцо коммутативное, если выполнены свойство 5.

Определение 4.7. Колько ассоциативное, если выполнено свойство 6.

Определение 4.8. Кольцо с единицей, если выполнено свойство 7.

Определение 4.9. $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = n \implies n$ — нейтральный элемент относительно сложения.

Замечание. Если (*) — операция на M, то существует единственный нейтральный элемент относительно (*).

Доказательство. e, e' — нейтральные элементы относительно (*), тогда e = e * e' = e'.

Предложение 4.2. В нашем курсе все кольца будут ассоциативные с единицей.

Лемма 4.1. В любом кольце $0 \cdot a = 0$.

Доказательство.

$$0+0=0 \implies (0+0) \cdot a = 0 \cdot a \implies 0 \cdot a + 0 \cdot a = 0 \cdot a$$

$$\exists 0 \cdot A \neq 0 \implies \exists b : b + 0 \cdot A = 0$$

$$0 = b + 0 \cdot a = b + (0 \cdot a + 0 \cdot a) = (b + 0 \cdot a) + (0 \cdot a) = 0 + (0 \cdot a) = (0 \cdot a)$$

Определение 4.10. A^* — множество обратимых элементов A.

Примеры. • $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$

- $\mathbb{Z}^* = \{-1, 1\}$
- $(\mathbb{Z}/4\mathbb{Z})^* = \{\overline{1}, \overline{3}\}$
- $(\mathbb{Z}/5\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$

Определение 4.11. Полем называется коммутативное кольцо F, такое что $F^* = F \setminus \{0\}$.

5 Наибольший общий делитель

Определение 5.1. R — коммутативное кольцо, $a, b \in R$.

Элемент d называется наибольшим общим делителем, если:

- 1. $d \mid a, d \mid b$
- $2. d' \mid a, d' \mid b \implies d' \mid d$

Предложение 5.1.

- 1. d_1, d_2 наибольшие общие делители, тогда d_1, d_2 ассоциированны.
- 2. $\exists d_1$ наибольший общий делитель, d_2 ассоциированн с d_1 , тогда d_2 тоже наибольший общий делитель.

Доказательство.

- 1. По свойству 2. $d_1 \mid d_2, \ d_2 \mid d_1 \implies d_1, \ d_2$ ассоции
рованны.
- $2. \ d_2 \mid d_1, \ d_1 \mid a, \ d_1 \mid b \implies d_2 \mid a, \ d_2 \mid b$

Пусть d_2 не наибольший, тогда $\exists d' > d_2$.

$$d' \mid a, d' \mid b \implies d' \mid d_1$$

$$d'\mid d_1,\ d_1\mid d_2 \implies d'\mid d_2$$

Противоречие

Предложение 5.2. $\exists a, b \in \mathbb{Z} \implies$

- 1. $\exists d \in \mathbb{Z} : a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$
- 2. при этом d наибольший общий делитель a, b.

Доказательство.

1. $I=a\mathbb{Z}+b\mathbb{Z}$, заметим что $0\in I$, так как 0a+0b=0.

$$I = \{0\} \implies I = 0\mathbb{Z}$$

$$I \neq \{0\} \implies c \in I \implies -c \in I$$
, так как $-(ax+by) = a \cdot -x + b \cdot -y$

То есть в I есть положительные числа.

$$d = \min\{c \mid c \in I, c > 0\}$$
, докажем что $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$

 $|| \subset ||$

$$d \in I \implies d = ax_0 + by_0, x_0, y_0 \in \mathbb{Z} \implies$$

$$\forall z \in \mathbb{Z} : dz = a(x_0 z) + b(y_0 z) \in I$$

"¬":

$$\exists c \in I, d \in \mathbb{N} \implies \exists q, r \in \mathbb{Z} : c = dq + r, 0 \leqslant r < d$$

$$c = ax_1 + by_1, x_1, y_1 \in \mathbb{Z}$$

$$d = ax_0 + by_0, x_0, y_0 \in \mathbb{Z}$$

$$r = c - dq = a(x_1 - x_0q) + b(y_1 - y_0q) \in I$$

Ho
$$r < d \stackrel{defn(d)}{\Longrightarrow} r = 0 \implies c \in d\mathbb{Z}$$

2.
$$a = a1 + b0 \in I = d\mathbb{Z} \implies d \mid a$$

$$b = a0 + b1 \in I = d\mathbb{Z} \implies d \mid b$$

$$\exists d' \mid a, \ d' \mid b, \ d = ax_0 + by_0$$

$$d' \mid ax_0, d' \mid by_0 \implies d' \mid d$$

Следствие.

- 1. $a, b \in \mathbb{Z}$: Тогда наибольший общий делитель a, b существует.
- 2. Если d наибольший общий делитель a, b, то $\exists x, y \in \mathbb{Z} : d = ax + by$ (Линейное представление наибольшего общего делителя).

Доказательство.

- 1. Доказали в двух частях предложения.
- 2. $\exists d_0$ наибольший общий делитель a,b, то есть $d_0=ax_0+by_0$ d ассоциирован с $d_0 \implies d=d_0\mathbb{Z}, z\in\mathbb{Z} \implies d=a(x_0z)+b(y_0z)$

Определение 5.2. $HOД(a,b) = \gcd(a,b)$ — неотрицательный наибольший общий делитель a,b.

Предложение 5.3. $\exists a_1, a_2, b \in \mathbb{Z} : a_1 \equiv a_2$

Тогда $gcd(a_1, b) = gcd(a_2, b)$.

Доказательство. (!) $\{c: c \mid a_1, c \mid b\} = \{c: c \mid a_2, c \mid b\}$

 $"\subset"$:

$$a_2 - a_1 = bm \implies a_2 = a_1 + bm$$

$$c \mid a_1, c \mid b \implies c \mid a_2$$

$$"\supset":$$

$$a_1 - a_2 = bm \implies a_1 = a_2 + bm$$

$$c \mid a_2, c \mid b \implies c \mid a_1$$

$$\forall x \in \{c : c \mid a_1, c \mid b\} : x \mid \gcd(a_1, b)$$

$$\forall x \in \{c : c \mid a_2, c \mid b\} : x \mid \gcd(a_2, b)$$

$$\gcd(a_1, b) = \gcd(a_2, b)$$

Определение 5.3. Алгоритм Евклида

 $gcd(a, b) = gcd(b, a \mod b)$, если $b \neq 0$

6 Взаимно простые числа

Определение 6.1. Числа a и b называются взаимно простыми, если $\gcd(a,b)=1$.

Предложение 6.1.

- 1. $\exists a,b \in \mathbb{Z}$, тогда $a \perp b \iff \exists m,n \in \mathbb{Z} : am + bn = 1$.
- $2. \ a_1 \perp b, a_2 \perp b \implies a_1 a_2 \perp b.$
- $3. a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{Z}$ и $\forall i, j : a_i \perp b_j \implies a_1 \ldots a_m \perp b_1 \ldots b_n$.
- 4. $a \mid bc, \ a \perp b \implies a \mid c$.
- 5. $ax \equiv ay$, $a \perp m \implies x \equiv y$.
- 6. $gcd(a, b) = d \implies a = da', b = db', a' \perp b'.$

Доказательство.

1. m и n существуют согласно линейному представлению НОД.

$$d = \gcd(a,b), d \mid a,d \mid b \implies d \mid (am+bn) = 1 \implies d \mid 1 \implies d = 1.$$

- 2. $1 = a_1 m_1 + b n_1, 1 = a_2 m_2 + b n_2 \implies 1 = a_1 a_2 (m_1 m_2) + b (a_1 m_1 n_2 + a_2 m_2 n_1 + b n_1 n_2) \implies a_1 a_2 \perp b.$
- 3. $a_1 \perp b, \ldots, a_n \perp b \implies a_1 \ldots a_n \perp b$

$$a_1 \dots a_n \perp b_1, \dots, a_1 \dots a_n \perp b_n \implies a_1 \dots a_n \perp b_1 \dots b_n$$

4. 1 = am + bn, c = acm + bcn

$$a \mid acm, \ a \mid bcn \implies a \mid c.$$

- 5. $m \mid (ax ay), a \perp m \implies m \mid (x y) \implies x \equiv y$.
- 6. $d \mid a, d \mid b \implies a = da', b = db' : a', b' \in \mathbb{Z}$

$$d = am + bn, m, n \in \mathbb{Z}$$

$$d = 0 \implies a' = b' = 1 = da'm + db'm$$

$$d \neq 0 \implies 1 = a'm + b'n \implies a' \perp b'.$$

7 Линейные диофантовы уравнения

Определение 7.1. Линейным диофантовым уравнением с двумя неизвестными называется уравнение вида ax + by = c, где $a, b, c \in \mathbb{Z}$.

Для решения нужно найти пару $(x,y) \in \mathbb{Z}^2 : ax + by = c$.

Пример. 12x + 21y = 5 — уравнение не имеет решений.

Если $gcd(a, b) \mid c$, то решение существует, иначе — нет.

ТООО: нужно доделать параграф

8 Простые числа

Определение 8.1. Число $p \in \mathbb{Z}$ называется простым, если $p \notin \{-1,0,1\}$ и все делители p — это ± 1 и p.

Свойства. 1. p — простое \iff -p — простое.

- 2. p простое, $a \in \mathbb{Z} \implies p|a$ или $p \perp a$.
- 3. p, q простые $\implies p, q$ ассоциированны или $p \perp q$.
- 4. $p \mid ab \implies p \mid a$ или $p \mid b$.

Предложение 8.1. $\exists a \neq \pm 1$, тогда существует простое число $p: p \mid a$.

Доказательство. $a = 0 \implies p = 239$

$$a = 1 \implies a > 0$$

Индукция по a:

$$a - \text{простое} \implies p = a, p \mid a$$

$$a$$
 — не простое, $\exists d : 1 < d < a, d \mid a$

a=dd', тогда по индукционному переходу существует простое число $p:p\mid d$

$$p \mid d, d \mid a \implies p \mid a$$

Определение 8.2. Составное число — это число отличное от 0, и не являющееся простым.

Решето Эратосфена

- $2, 3, 4, 5, 6, 7, 8, 9, \ldots, 100$
 - 2 простое, вычеркиваем все числа кратные 2
 - 3 простое, вычеркиваем все числа кратные 3
 - 4 составное, пропускаем

• и.т.д.

Теорема 8.1. (Теорема Евклида) Существует бесконечно много простых чисел

Доказательство. $\exists p_1, p_2, \dots p_n$ — все простые числа

$$N = p_1 p_2 \dots p_n + 1 \implies$$

 \exists простое число $p:p\mid N,p>0 \implies \exists j:p=p_j \implies p\mid (N-1) \implies p\mid 1 \implies p=\pm 1$

Противоречие

9 Основная теорема арифметики

Теорема 9.1. $\exists n \geqslant 2$. Тогда n можно представить в виде произведения простых чисел, и такое представление единственно с точностью до порядка сомножителей.

Доказательство.

Существование:

 $\exists n_0$ — наименьшее число ($\geqslant 2$), для которого такого представления нету.

 n_0 — составное число $\implies n_0 = ab, 2 \leqslant a, b < n_0$

По минимальности $\implies a = p_1 \dots p_k, b = q_1 \dots q_l$, все p_i, q_j — простые.

$$\implies n_0 = p_1 \dots p_k q_1 \dots q_l - \Pi$$
ротиворечие

Единственность:

$$n = p_1 \dots p_k = q_1 \dots q_l, p_i, q_i$$
 — простые.

Нудно доказать: $k = l, q_1, \ldots, q_k$ совпадают с p_1, \ldots, p_k с точностью до порядка.

Не умаляя общности иожно считать: $k \leq l$.

Индукция по k:

$$k = 1: p_1 = q_1 \dots q_l, p_1 - \text{простое} \implies l = 1, p_1 = q_1$$

$$k > 1$$
: $p_k \mid n \implies p_k \mid (q_1 \dots q_l) \implies \exists j : p_k \mid q_j \implies p_k \sim q_j \implies p_k = q_j \implies$

$$p_1 \dots p_{k-1} = q_1 \dots \hat{q_j} \dots q_l, \ k-1 \leqslant l-1$$

 $k-1 < k \implies$ применим индукционный переход:

$$k-1=l-1$$
 и $q_1,\ldots,\hat{q_j},\ldots,q_k$ — это p_1,\ldots,p_{k-1} с точностью до порядка. \Longrightarrow

 $q_1,\ldots,(q_i=p_k),\ldots,q_k$ — это p_1,\ldots,p_k с точностью до порядка.

Определение 9.1. Каноническое разложение(факторизация) числа n — это представление n в виде $p_1^{r_1} \dots p_s^{r_s}$, где p_i — разложение n на простые множители, $r_i \in \mathbb{N}$

Примеры.

- $n = 112 = 2^4 \cdot 7$
- $n = 6006 = 2^1 \cdot 3^1 \cdot 7^1 \cdot 11^1 \cdot 13^1$

Предложение 9.1. $\exists a = p_1^{r_1} \dots p_s^{r_s}, b = p_1^{t_1} \dots p_s^{t_s}$

Тогда $a \mid b \iff r_i \leqslant t_i \ \forall i \in \{1, \dots, s\}$

Доказательство. "⇒":

$$b = a \cdot p_1^{t_1 - r_1} \dots p_s^{t_s - r_s}$$

"⇐":

$$b = ac \ c = p_1^{m_1} \dots p_s^{m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n}$$

$$p_1^{t_1} \dots p_s^{t_s} = p_1^{r_1 + m_1} \dots p_s^{r_s + m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n} \implies$$

$$t_i = r_i + m_i \ \forall i \in \{1, \dots, s\}, m_{s+1} = \dots = m_n = 0 \implies t_i \geqslant r_i \ \forall i \in \{1, \dots, s\}$$

Cледcmeue. $\exists a = p_1^{r_1} \dots p_s^{r_s}$

Тогда
$$\{d > 0 : d \mid a\} = \{p_1^{t_1} \dots p_s^{t_s} \mid 0 \leqslant t_i \leqslant r_i, \forall i \in \{1, \dots, s\}\}$$

Cnedembue. $\exists a = p_1^{r_1} \dots p_s^{r_s}, \ b = p_1^{t_1} \dots p_s^{t_s}$

Тогда $\gcd(a,b)=p_1^{min(r_1,t_1)}\dots p_s^{min(r_s,t_s)}$

Определение 9.2. $\exists a,b\in\mathbb{Z}.$ Число $c\in\mathbb{Z}$ называется наименьшим общим кратным чисел a и b, если

- 1. a | c, b | c
- 2. Если $a \mid c', b \mid c'$, то $c \mid c'$

Предложение 9.2. $\exists a = p_1^{r_1} \dots p_s^{r_s}, b = p_1^{t_1} \dots p_s^{t_s}$

Тогда $c=p_1^{max(r_1,t_1)}\dots p_s^{max(r_s,t_s)}$ — наименьшее общее кратное чисел a и b

Доказательство. $a \mid c, b \mid c$ — очевидно

$$\exists a \mid c', b \mid c', c' = p_1^{m_1} \dots p_s^{m_s} p_{s+1}^{m_{s+1}} \dots p_n^{m_n}$$

$$a \mid c', b \mid c' \implies r_i \leqslant m_i, t_i \leqslant m_i, \forall i \in \{1, \dots, s\} \implies$$

$$max(r_i, t_i) \leq m_i, \ \forall i \in \{1, \dots, s\} \implies c \mid c'$$

Определение 9.3. HOK(a,b) = lcm(a,b) — положительное значение наименьшего общего кратного чисел a и b.

Cледствие. $\exists a, b \in \mathbb{N}$

Тогда $lcm(a, b) \cdot gcd(a, b) = ab$

Доказательство. $min(r_i, t_i) + max(r_i, t_i) = r_i + t_i$

10 Китайская теорема об остатках

Теорема 10.1. Пусть $(m_1, m_2) = 1$; $a_1, a_2 \in \mathbb{Z}$.

1.
$$\exists x \in \mathbb{Z}$$
:
$$\begin{cases} x_0 \equiv a_1 \\ x_0 \equiv a_2 \\ x_0 \equiv a_2 \end{cases}$$

2. $\exists x_0$ удовлетворяет системе выше

Тогда для $x \in \mathbb{Z}$: x удовлетворяет системе выше $\iff x \equiv_{m_1m_2} x_0$

Доказательство.

1. $x_0 = a_1 + km_1 = a_2 + lm_2 \implies km_1 - lm_2 = a_2 - a_1$ — линейное диофантово уравнение с дыумя неизвестными k, l

$$(m_1, m_2) = 1 \implies$$
 у него есть решение (k_0, l_0)

$$x_0 = a_1 + k_0 m_1$$
 — искомое

2. "
$$\Rightarrow$$
": $x \equiv_{m_1 m_2} x_0 \implies \begin{cases} x \equiv x_0 \\ x \equiv_{m_2} x_0 \end{cases} \implies \begin{cases} x \equiv a_1 \\ x \equiv_{m_2} a_2 \end{cases}$

"
$$\Leftarrow$$
": x удовлетворяет системе из теоремы \Longrightarrow
$$\begin{cases} x \equiv x_0 \\ x \equiv x_0 \\ x \equiv x_0 \end{cases} \Longrightarrow \begin{cases} m_1 \mid (x - x_0) \\ m_2 \mid (x - x_0) \end{cases} \Longrightarrow m_1 m_2 \mid (x - x_0)$$

Определение 10.1. $\exists R, S$ — кольца с единицей. Отображение $\varphi: R \to S$ называется изоморфизмом колец, если: φ биекция.

1.
$$\forall r_1, r_2 : \varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

2.
$$\forall r_1, r_2 : \varphi(r_1 r_2) = \varphi(r_1)\varphi(r_2)$$

Предложение 10.1. $\exists (m_1, m_2) = 1$

Тогда существует изоморфизм

$$\mathbb{Z}/m_1m_2\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z}$$

$$[a]_{m_1m_2} \mapsto ([a]_{m_1}, [a]_{m_2})$$

Доказательство. Проверим корректность:

$$\exists [a]_{m_1 m_2} = [a']_{m_1 m_2} \implies a \underset{m_1 m_2}{\equiv} a' \implies \begin{cases} a \underset{m_1}{\equiv} a' \\ a \underset{m_2}{\equiv} a' \end{cases} \implies ([a]_{m_1}, [a]_{m_2}) = ([a']_{m_1}, [a']_{m_2})$$

$$\varphi([a]_{m_1m_2} + [b]_{m_1m_2}) = \varphi([a+b]_{m_1m_2}) = \varphi([a+b]_{m_1}, [a+b]_{m_2}) =$$

$$\varphi([a]_{m_1} + [a]_{m_2}) + \varphi([b]_{m_1} + [b]_{m_2}) = \varphi([a]_{m_1 m_2}) + \varphi([b]_{m_1 m_2})$$

Для умножения аналогично.

Проверим сюръективность φ

$$X = ([a_1]_{m_1}, [a_2]_{m_2})$$

По китайской теореме об остатках $\exists a \in \mathbb{Z}: \begin{cases} a \equiv a_1 \\ a_1 \\ a \equiv a_2 \end{cases}$

про сюръективность \Longrightarrow биекция:

$$|Y| = |Z| < \infty$$

$$\varphi:Y\to Z$$

Тогда φ инъективна $\iff \varphi$ сюръективна

что-то про принцип дирихле и готово)

11 Функция Эйлера

Предложение 11.1. $\exists m \in \mathbb{N}; \ a \in \mathbb{Z}$

$$[a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \iff (a,m) = 1$$

Доказательство.

$$[a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \iff \exists [b]_m : [a]_m \cdot [b]_m = [1]_m \iff$$

$$\exists b \in \mathbb{Z}: \ ab \underset{m}{\equiv} 1 \iff$$

$$\exists b, c \in \mathbb{Z}: ab = 1 + mc \iff$$

$$\exists b, c \in \mathbb{Z}: ab - mc = 1 \iff (a, m) = 1$$

Cледствие. $\mathbb{Z}/m\mathbb{Z}$ - поле $\iff m$ — простое число.

Доказательство. считаем $m \geqslant 1$

$$m=1: \mathbb{Z}/1\mathbb{Z}=\{\overline{0}\}$$

$$m$$
 — простое: $(a,m)=1$ для $\forall a\in\{1,2,\ldots,m-1\}$

$$(\mathbb{Z}/m\mathbb{Z})^* = \{\overline{1}, \overline{2}, \dots, \overline{m-1}\}$$

$$m$$
 — составное: $m = ab$, $2 \leqslant a \leqslant m - 1$

$$(a,m) \neq 1 \implies \overline{a} \notin (\mathbb{Z}/m\mathbb{Z})^*$$

Определение 11.1. \mathbb{F}_{p^r} — поле из n элементов $\iff n=p^r,\ p\in\mathbb{P},\ r\in\mathbb{N}$

(оте оти вх)

Определение 11.2. $\exists m \in \mathbb{N} : \varphi(n) = |(\mathbb{Z}/m\mathbb{Z})^*|$

Функция $\varphi \times \mathbb{N} \to \mathbb{N}$ — функция Эйлера.

Предложение 11.2. $\exists p \in \mathbb{P}, \ r \in \mathbb{N}.$

Тогда
$$\varphi(p^r) = p^r - p^{r-1}$$
.

Доказательство.
$$\varphi(p^r) = |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ (a, p^r) = 1\}| = p^r - |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ (a, p) \neq 1\}| = p^r - |\{a \mid 0 \leqslant a \leqslant p^r - 1, \ p \mid a\}| = p^r - p^{r-1}$$

Предложение 11.3. $\exists m, n \in \mathbb{N}, (m, n) = 1.$

Тогда $\varphi(mn) = \varphi(m) \cdot \varphi(n)$. (Мультипликативность)

Доказательство. Построим отображение $\lambda: (\mathbb{Z}/mn\mathbb{Z})^* \times (\mathbb{Z}/m\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$:

$$[a]_{mn} = A \in (\mathbb{Z}/mn\mathbb{Z})^* \mapsto ([a]_m, [a]_n)$$

$$[a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^* \implies (a, mn) = 1 \implies \begin{cases} (a, m) = 1 \\ (a, n) = 1 \end{cases} \begin{cases} [a]_m \in (\mathbb{Z}/m\mathbb{Z})^* \\ [a]_n \in (\mathbb{Z}/n\mathbb{Z})^* \end{cases}$$

Проверка корректности:

$$[a]_{mn} = [a']_{mn} \implies ([a]_m, [a]_n) = ([a']_m, [a']_n)?$$

$$[a]_{mn} = [a']_{mn} \implies a \underset{mn}{\equiv} a' \implies \begin{cases} a \underset{m}{\equiv} a' \\ a \underset{n}{\equiv} a' \end{cases} \begin{cases} [a]_m = [a']_m \\ [a]_n = [a']_n \end{cases}$$

Проверим что λ — биекция:

Инъективность:

$$\lambda([a]_{mn}) = \lambda([b]_{mn}) \implies \begin{cases} [a]_m = [b]_m & \xrightarrow{\text{KTO}} a \equiv b \implies [a]_{mn} = [b]_{mn} \\ [a]_n = [b]_n & \xrightarrow{\text{KTO}} a \equiv b \end{cases} \implies [a]_{mn} = [b]_{mn}$$

Сюръективность:

Рассмотрим $([b]_m, [c]_n) \in (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$.

$$(m,n) = 1 \stackrel{\text{KTO}}{\Longrightarrow} \exists a : \begin{cases} a \equiv b \\ a \equiv c \end{cases}$$

$$\begin{cases} (b,m) = 1 \implies (a,m) = 1 \\ (c,m) = 1 \implies (a,n) = 1 \end{cases} \implies (a,mn) = 1 \implies [a]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^*$$

$$\lambda([a]_{mn}) = ([a]_m, [a]_n) = ([b]_m, [c]_n) \implies \lambda$$
 — биекция.

$$\lambda - \text{ биекция } \implies |(\mathbb{Z}/mn\mathbb{Z})^*| = |(\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*| \implies \varphi(mn) = \varphi(m) \cdot \varphi(n)$$

Следствие. $\exists m_1, \dots, m_k$ — попарно взаимно простые числа.

Тогда
$$\varphi(\prod_{i=1}^k m_i) = \prod_{i=1}^k \varphi(m_i).$$

Доказательство. Индукция по k.

База:
$$k=1 \implies \varphi(m_1) = \varphi(m_1)$$

Переход: $n-1 \rightarrow n$

$$(m_n, m_1) = \ldots = (m_n, m_{n-1}) = 1 \implies (m_1, \ldots, m_n) = 1 \implies$$

Алгебра

$$\varphi(m_1 \dots m_n) = \varphi(m_1 \dots m_{n-1})\varphi(m_n) = \varphi(m_1) \dots \varphi(m_{n-1})\varphi(m_n)$$

 $\pmb{Cnedcmeue.}$ $\exists n=p_1^{r_1},\ldots,p_s^{r_s}$ — разложение числа n на простые множители.

$$\implies \varphi(n) = \prod_{i=1}^{s} (p_i^{r_i} - p_i^{r_i-1})$$

Доказательство. По следствию:
$$\varphi(n) = \varphi(\prod_{i=1}^s p_i^{r_i}) = \prod_{i=1}^s \varphi(p_i^{r_i}) = \prod_{i=1}^s (p_i^{r_i} - p_i^{r_i-1})$$

Теорема 11.1. $\exists m \in \mathbb{N}, a \in \mathbb{Z}, (a, m) = 1 \implies a^{\varphi(m)} \equiv 1$ — теорема Эйлера.

Лемма 11.1.

Пусть R — ассоциативное кольцо с единицей.

1.
$$a, b \in R^* \implies ab \in R^*$$

2.
$$a \in R^*$$
, $x, y \in R \implies ax = ay \implies x = y$, $xa = ya \implies x = y$

Доказательство.

 $1. \ a'$ — обратный к a элемент, b' — обратный к b элемент.

$$(ab)(b'a') = a(bb')a' = aa' = 1$$

$$(b'a)(ab) = b'(aa')b = bb' = 1$$

 $2. \ a'$ — обратный к a элемент.

$$ax = ay \implies a'ax = a'ay \implies x = y$$

$$xa = ya \implies xaa' = yaa' \implies x = y$$

Доказательство. (теоремы Эйлера)

$$(\mathbb{Z}/m\mathbb{Z})^* = \{A_1, A_2, \dots, A_{\varphi(m)}\}\$$

$$[a]_m, A_j \in (\mathbb{Z}/m\mathbb{Z})^* \stackrel{lemma-1}{\Longrightarrow}$$

$$[a]_m A_1, \ldots, [a]_m A_{arphi(m)}$$
 — различные элементы

$$([a]_m A_j = [a]_m A_k \stackrel{lemma-2}{\Longrightarrow} A_j = A_k) \implies$$

$$\{[a]_m A_1, \dots, [a]_m A_{\varphi(m)}\} = (\mathbb{Z}/m\mathbb{Z})^* \implies$$

$$[a]_m A_1 \cdot \ldots \cdot [a]_m A_{\varphi(m)} = A_1 A_2 \ldots A_{\varphi(m)} \implies$$

$$[a]_m^{\varphi(m)} A_1 A_2 \dots A_{\varphi(m)} = [1]_m A_1 A_2 \dots A_{\varphi(m)} \stackrel{lemma-2}{\Longrightarrow}$$

$$[a]_m^{\varphi(m)} = [1]_m \implies [a^{\varphi(m)}]_m = [1]_m \implies a^{\varphi(m)} \underset{m}{\equiv} 1$$

Теорема 11.2. (Малая теорема Ферма)

$$\exists p \in \mathbb{P}, a \in \mathbb{Z} \implies a^p \equiv a$$

Доказательство.

$$(a,p) = 1 \implies a^{p-1} \underset{p}{\equiv} 1 \implies a^{p-1} a \underset{p}{\equiv} 1 a \implies a^{p} \underset{p}{\equiv} a$$

 $(a,p) \neq 1 \implies a \underset{p}{\equiv} 0 \implies a^{p} \underset{p}{\equiv} 0 \implies a^{p} \underset{p}{\equiv} a$

Теорема 11.3. (Теорема Вильсона)

$$p \in \mathbb{P} \implies (p-1)! \underset{p}{\equiv} -1$$

Доказательство.

B
$$(\mathbb{Z}/m\mathbb{Z})^*$$

$$\overline{(p-1)!} = \overline{1} \cdot \overline{2} \cdot \ldots \cdot \overline{p-1} = \prod_{A \in (\mathbb{Z}/m\mathbb{Z})^*} A = \prod_{A^2 = \overline{1}} \cdot \prod_{A^2 \neq \overline{1}} = \prod_{A^2 = \overline{1}} \cdot (A_1 \cdot A_1' \cdot \ldots) = \prod_{A^2 = \overline{1}} \cdot \overline{1} = \prod_{A^2 = \overline{1$$

$$A^2 = \overline{1} \iff A^2 - \overline{1}^2 = \overline{0} \iff (A - \overline{1})(A + \overline{1}) = \overline{0} \stackrel{\mathbb{Z}/p\mathbb{Z}-field}{\iff} A - \overline{1} = \overline{0}, A + \overline{1} = \overline{0} = \prod_{A^2 = \overline{1}} A^2 = \overline{0}$$

$$p \neq 2 \implies \overline{1} \cdot \overline{-1} = \overline{-1}$$

$$p = 2 \implies \overline{1} = \overline{-1}$$

Алгебра 15

Комплексные числа

12 Построение поля комплексных чисел

Определение 12.1. $\mathbb{C} = \mathbb{R} \times \mathbb{R} = \{(a,b) \mid a,b \in \mathbb{R}\}$

Определение 12.2.

- Сложение на \mathbb{C} : $(a_1,b_1)+(a_2,b_2)=(a_1+a_2,b_1+b_2)$
- Умножение на \mathbb{C} : $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2 b_1 b_2, a_1 b_2 + a_2 b_1)$

Предложение 12.1. ($\mathbb{C}, +, \cdot$) - поле.

Доказательство.

- Коммутативность сложения очевидно.
- Ассоциативность сложения очевидно.
- (0,0) нейтральный элемент сложения.
- (-a, -b) обратный элемент к (a, b).
- Коммутативность умножения очевидно.
- Ассоциативность умножения проверяется.
- Дистрибутивность проверяется.
- (1,0) нейтральный элемент умножения.
- $(a,b)z_1z_2=(1,0): z_1=(a,-b), z_2=\frac{1}{a^2+b^2}$

Определение 12.3. \mathbb{C} — поле комплексных чисел.

Определение 12.4. $c \in \mathbb{C}$ — комплексное число.

Предложение 12.2. $\mathbb{R}' = \{(a,0) \mid a \in \mathbb{R}\}$

R' замкнуто относительно сложения, вычитания, умножения, содержит единицу, то есть является подкольцом поля \mathbb{C} .

 $\implies \mathbb{R}'$ — само является кольцом относительно сложения, умножения, ограниченных на \mathbb{R}' .

 $\mathbb{R} \stackrel{\varphi}{\to} \mathbb{R}'(a \mapsto (a,0)), \ \varphi(a)$ — изоморфизм колец, т.е. φ — биекция и $\varphi(a+b) = \varphi(a) + \varphi(b); \ \varphi(ab) = \varphi(a)\varphi(b).$

Отождествим (a, 0) с вещественным числом a.

$$(a,0)\cdot(0,1)=(0,a)$$

$$(a,b) = (a,0) + (0,b) = (a,0) + (b,0) \cdot (0,1) = a + b \cdot (0,1) = a + bi$$

Определение 12.5. z = a + bi — комплексное число. a = Re(z), b = Im(z) — действительная и мнимая части комплексного числа z. В геометрическом виде это вектор z = (a, b).

Определение 12.6. z = a + bi — комплексное число. $\overline{z} = a - bi$ — сопряженное к z.

Определение 12.7. Автоморфизм — изоморфизм на себя.

Отступление про отображения

Определение 12.8. $id_M: M \to M, \ x \mapsto x$ — тождественное отображение на M.

Определение 12.9. $\exists \alpha : M \to N, \ \beta : N \to P$ — отображения

Тогда $\alpha \circ \beta : M \to P, \ x \mapsto \alpha(\beta(x))$ — композиция отображений.

Определение 12.10. $\exists \alpha : M \to N$ — отображение

Отображение $\beta: N \to M$ — обратное к α , если $\beta \circ \alpha = id_M$.

Предложение 12.3. У отображения $\alpha: M \to N$ есть обратное отображение, если и только если α — биекция.

Доказательство.

"⇒":

Инъективность:

$$\beta \circ \alpha = id_M, \ \alpha(x) = \alpha(y) \implies \beta(\alpha(x)) = \beta(\alpha(y)) \implies x = y$$

Сюръективность:

$$y \in N, \ y = \alpha(\beta(y)) \in Im(\alpha)$$
(Іт это прообраз)

"⇐":

Пусть α — биекция, назовем $\beta: N \to M$ — обратный, если $\forall y \in N\alpha^{-1}(y) = \{x\}, \ x \in M$

Положим $\beta(y) = x$, $\alpha \circ \beta = id_N$, $\beta \circ \alpha = id_M$

Продолжение

Предложение 12.4. $\sigma: \mathbb{C} \to \mathbb{C}, \ z \mapsto \overline{z}$ — автоморфизм.

Доказательство.

$$\sigma$$
 — биекция, т.к. $\sigma \circ \sigma = id_{\mathbb{C}}$

$$\sigma(z_1 + z_2) = \sigma(z_1) + \sigma(z_2)$$
 — очевидно

$$\sigma(z_1 z_2) = \sigma(z_1) \sigma(z_2)$$

$$\sigma(1) = 1$$
 — очевидно

$$z_1 = a_1 + b_1 i$$
, $z_2 = a_2 + b_2 i$

$$\sigma(z_1 z_2) = \overline{a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)} = a_1 a_2 - b_1 b_2 + i(a_1 b_2 + a_2 b_1)$$

$$\sigma(z_1)\sigma(z_2) = \overline{(a_1 - ib_1)(a_2 - ib_2)} = a_1a_2 - b_1b_2 + i(a_1b_2 + a_2b_1)$$

13 Тригонометрическая форма комплексного числа

Определение 13.1. $a + bi = r(\cos \varphi + i \sin \varphi)$

$$a = r \cos \varphi$$

$$b = r\sin\varphi$$

Определение 13.2. Модулем комплексного числа $z = a + bi \in \mathbb{C}$ назовем:

$$|z| = \sqrt{a^2 + b^2}$$

Предложение 13.1.

1.
$$|z| \ge 0$$
, $|z| = 0 \iff z = 0$

$$2. |z_1 z_2| = |z_1||z_2|$$

3.
$$|z_1 + z_2| \le |z_1| + |z_2|$$

4.
$$|\overline{z}| = |z|$$

5.
$$z\overline{z} = |z|^2$$

Доказательство.

1. очевидно

2.
$$z_1 = a_1 + b_1 i$$
, $z_2 = a_2 + b_2 i$

$$|z_1 z_2|^2 = (a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2 = a_1^2 a_2^2 + b_1^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2 = (a_1^2 + b_1^2)(a_2^2 + b_2^2) = |z_1|^2 |z_2|^2$$

3.
$$\iff |z_1 + z_2|^2 \leqslant (|z_1| + |z_2|)^2$$

$$\iff (a_1 + a_2)^2 + (b_1 + b_2)^2 \leqslant a_1^2 + b_1^2 + a_2^2 + b_2^2 + 2|z_1||z_2|$$

$$\iff a_1 a_2 + b_1 b_2 \leqslant \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)}$$

$$\Leftarrow |a_1a_2 + b_1b_2| \leqslant \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2^2)}$$

$$\iff a_1^2 a_2^2 + b_1^2 b_2^2 + 2a_1 a_2 b_1 b_2 \leqslant (a_1^2 + b_1^2)(a_2^2 + b_2^2)$$

$$\iff 2a_1a_2b_1b_2 \leqslant b_1^2a_2^2 + a_1^2b_2^2$$

$$\iff (b_1 a_2 - b_2 a_1)^2 \geqslant 0$$

4. очевидно

5.
$$z = a + bi \implies \overline{z} = a - bi$$

 $z\overline{z} = (a + bi)(a - bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$

Замечание.
$$z^{-1}=rac{\overline{z}}{|z|^2}=rac{a}{a^2+b^2}-irac{b}{a^2+b^2}$$

Определение 13.3. Пусть $z \in \mathbb{C}$. Аргументом z назовем такое $\varphi \in \mathbb{R}$,

что
$$z = |z|(\cos \varphi + i \sin \varphi)$$

Предложение 13.2.

- 1. Если z=0, то любой $\varphi\in\mathbb{R}$ аргумент z
- 2. Если $z \neq 0$, то:
 - (а) аргумент существует
 - (b) если φ_0 аргумент z, то φ аргумент $z\iff \varphi=\varphi_0+2\pi k,\ k\in\mathbb{Z}$

Доказательство.

1. тривиально

2.
$$z_0 = \frac{1}{|z|} \cdot z$$

 $|z_0| = \left|\frac{1}{|z|}\right| \cdot |z| = \frac{1}{|z|} \cdot |z| = 1$
 $z_0 = a_0 + ib_0, \ |z_0| = a_0^2 + b_0^2 = 1 \implies \exists \varphi_0 : \begin{cases} a_0 = \cos \varphi_0 \\ b_0 = \sin \varphi_0 \end{cases}$
 $z = |z| \cdot z_0 = |z|(\cos \varphi_0 + i \sin \varphi_0)$
 $\varphi = \varphi_0 + 2\pi k \implies \begin{cases} \cos \varphi = \cos \varphi_0 \\ \sin \varphi = \sin \varphi_0 \end{cases} \implies \varphi - \text{аргумент}$
 $\varphi - \text{аргумент} \implies z = |z|(\cos \varphi + i \sin \varphi) \implies \begin{cases} \cos \varphi = \cos \varphi_0 \\ \sin \varphi = \sin \varphi_0 \end{cases} \implies \varphi - \varphi_0 = 2\pi k, \ k \in \mathbb{Z}$

Определение 13.4. $arg(z) = \varphi$ означает φ - один из аргументов z

Замечание. Предположим оказалось, что $z=r(\cos\varphi+i\sin\varphi)$ для некоторых $r\geqslant 0,\ \varphi\in\mathbb{R}.$ Тогда $r=|z|,\ \varphi=\arg z$

Доказательство. $|z| = \sqrt{(r\cos\varphi)^2 + (r\sin\varphi)^2} = \sqrt{r^2} = r \implies \varphi$ - аргумент по определению

Предложение 13.3.

- 1. $\arg \overline{z} = -\arg z$
- $2. z \in \mathbb{R} \iff \arg z = k\pi, \ k \in \mathbb{Z}$
- 3. $\arg(z_1 z_2) = \arg z_1 + \arg z_2$
- 4. $\exists z_2 \neq 0 \implies \arg \frac{z_1}{z_2} = \arg z_1 \arg z_2$

Доказательство.

1.
$$\arg z = \varphi$$

$$z = |z|(\cos \varphi + i \sin \varphi)$$

$$\overline{z} = |z|(\cos \varphi - i \sin \varphi) = |\overline{z}|(\cos(-\varphi) + i \sin(-\varphi)) \implies$$

$$\arg \overline{z} = -\varphi$$

 $2. "\Rightarrow ":$

z > 0:

$$z = |z| \cdot 1 = |z|(\cos 0 + i \sin 0) \implies \arg z = 0$$

$$z < 0:$$

$$z = |z| \cdot (-1) = |z|(\cos \pi + i \sin \pi) \implies \arg z = \pi$$

$$" \Leftarrow ":$$

$$\sin(k\pi) = 0$$
3. $\arg z_1 = \varphi_1, \ \arg z_2 = \varphi_2 \implies$

$$(!) \varphi_1 + \varphi_2 = \arg(z_1 z_2)$$

$$z_1 = |z_1|(\cos \varphi_1 + i \sin \varphi_1), \ z_2 = |z_2|(\cos \varphi_2 + i \sin \varphi_2) \implies$$

$$z_1 z_2 = |z_1| \cdot |z_2|(\cos \varphi_1 \cdot \cos \varphi_2 - \sin \varphi_1 \cdot \sin \varphi_2 + i(\sin \varphi_1 \cdot \cos \varphi_2 + \cos \varphi_1 \cdot \sin \varphi_2)) =$$

$$|z_1 z_2|(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)) \implies \arg(z_1 z_2) = \varphi_1 + \varphi_2$$
4. $z_1 = \frac{z_1}{z_2} \cdot z_2 \implies \arg z_1 = \arg \frac{z_1}{z_2} + \arg z_2 \implies \arg \frac{z_1}{z_2} = \arg z_1 - \arg z_2$

Следствие. (Формула Муавра)

Пусть $z \in \mathbb{C}, |z| = r, \arg z = \varphi, n \in \mathbb{Z}.$

Тогда
$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi))$$

Доказательство.

n > 0 — индукция по n

База: n = 1 — тривиально

Переход:
$$n-1 \to n$$

$$z^{n} = z^{n-1} \cdot z = r^{n-1}(\cos((n-1)\varphi) + i\sin((n-1)\varphi)) \cdot z = r^{n-1}(\cos((n-1)\varphi) + i\sin((n-1)\varphi)) \cdot r(\cos\varphi + i\sin\varphi) = r^{n}(\cos((n-1)\varphi + \varphi) + i\sin((n-1)\varphi + \varphi)) = r^{n}(\cos(n\varphi) + i\sin(n\varphi))$$

$$n = 0, \ 1 = r^{0}(\cos(0) + i\sin(0)) = 1$$

$$n < 0: \ n = -k, \ k \in \mathbb{N}$$

$$z^{n} = \frac{1}{z^{k}}$$

$$|z^{n}| = \frac{1}{|z^{k}|} = \frac{1}{|z|^{k}} = |z|^{-k} = |z|^{n}$$

$$\arg z^{n} = \arg 1 - \arg z^{k} = 0 - k\varphi = n\varphi$$

14 Корни из комплексных чисел

$$\begin{split} z^n &= w, \ n \in \mathbb{N}, \ w \in \mathbb{C} \\ w &= 0 \implies z = 0 \\ w &\neq 0, \ w = r(\cos \varphi + i \sin \varphi), \ r > 0, \ \varphi \in \mathbb{R}, \ z = p(\cos \alpha + i \sin \alpha), \ p > 0, \ \alpha \in \mathbb{R} \end{split}$$

Алгебра

$$z^{n} = w \iff p^{n}(\cos n\alpha + i\sin n\alpha) = r(\cos \varphi + i\sin \varphi) \iff \begin{cases} p^{n} = r \\ n\alpha = \varphi + 2\pi k, \ k \in \mathbb{Z} \end{cases} \iff \begin{cases} p = \sqrt[n]{r} \\ \alpha = \frac{\varphi + 2\pi k}{n}, \ k \in \mathbb{Z} \end{cases}$$

$$z^n = w \iff z = \underbrace{\sqrt[n]{r} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right)}_{z_k}, \ k \in \mathbb{Z}$$

При каких $k, l: z_k = z_l$?

$$z_k = z_l \iff \frac{\varphi + 2\pi k}{n} = \frac{\varphi + 2\pi l}{n} + 2\pi s, \ s \in \mathbb{Z} \iff \frac{k}{n} + \frac{l}{n} + s, \ s \in \mathbb{Z} \iff k = l + ns, \ s \in \mathbb{Z} \iff k \equiv l \iff z \in \{z_0, z_1, \dots, z_{n-1}\}$$

Таким образом, мы доказали:

Теорема 14.1. $\exists n \in \mathbb{N}, w \in \mathbb{C}$

- 1. Если w=0, То уравнение $z^n=w$ имеет единственный корень z=0.
- 2. Если $w \neq 0$, То уравнение $z^n = w$ имеет ровно n различных корней:

$$z_k = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \ k = 0, 1, \dots, n - 1$$

Изображение на окружности

Комплексные корни образуют праильный n-угольник на окружности.

Лемма 14.1. Пусть
$$z_0, z_1, \dots, z_{n-1}$$
 — все корни $z^n = w, \ n > 1$ Тогда $z_0 + z_1 + \dots + z_{n-1} = 0$

Доказательство.

$$z_k = z_{k-1} \underbrace{\left(\cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}\right)}_{\xi}$$

$$S = z_0 + z_1 + \ldots + z_{n-1}$$

$$z_k = z_0 \cdot \xi^k$$

Алгебра

$$\xi \cdot S = z_1 + z_2 + \dots + \underbrace{z_n}_{=z_0} = S \implies (\xi - 1)S = 0$$

$$n \neq 1 \implies \xi \neq 1$$

$$(\xi - 1)S = 0 \implies S = 0$$

Определение 14.1. Группа — это множество G с операцией $*: G \times G \to G$ такая, что:

- 1. * ассоциативна: (a*b)*c = a*(b*c)
- 2. Существует нейтраальный элемент $e \in G$ такой, что a * e = e * a = a для любого $a \in G$
- 3. У любого элемента $a \in G$ существует обратный элемент $a^{-1} \in G$ такой, что $a * a^{-1} = a^{-1} * a = e$

Примеры.

- 1. $(\mathbb{Z}, +)$
- 2. $((\mathbb{Z}/n\mathbb{Z})^*, \cdot)$
- 3. Если R ассоциативное кольцо с 1, то $R^* = \{r \mid \exists s \in R : rs = sr = 1\}$ группа относительно умножения.

Проверить замкнутость относительно умножения.

Зафиксируем $n \in \mathbb{N}$

$$\mu_n = \{z \in \mathbb{C} \mid z^n = 1\} = \{\underbrace{\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}}_{\xi_k} \mid k = 0, 1, \dots, n-1\}$$
 — группа относительно

умножения

 $z,w\in\mu_n\implies zw\in\mu_n$ — замкнутость относительно умножения

$$(zw)^n = z^n w^n = 1 \cdot 1 = 1$$

Доказательство, что μ_n — группа:

- ullet Ассоциативность так как есть ассоциативность в ${\mathbb C}$
- $1 \in \mu_n \ (1 = \xi_0)$

•
$$\xi_k \cdot \xi_{-k} = \left(\cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}\right) \left(\cos\frac{2\pi(-k)}{n} + i\sin\frac{2\pi(-k)}{n}\right) = 1$$

Лемма 14.2. $\xi_k = \xi_1^k$

Алгебра

Доказательство. $\left(1\cdot\cos\frac{2\pi k}{n}+i\sin\frac{2\pi}{n}\right)^k=1\cdot\left(\cos\frac{2\pi k}{n}+i\sin\frac{2\pi k}{n}\right)$ (по формуле Муавра)

22

Определение 14.2. G — группа с операцией $*, g \in G, n \in \mathbb{Z}$

$$g^{n} = \begin{cases} g * g * \dots * g & n > 0 \\ e & n = 0 \\ g^{-1} * g^{-1} * \dots * g^{-1} & n < 0 \end{cases}$$

Определение 14.3. Группа G называется циклической, если $\exists g \in G : G = \{g^n \mid n \in \mathbb{Z}\}$

Пишут: $G = \langle g \rangle$

Определение 14.4. g — образующий элемент группы G

Примеры.

•
$$\mathbb{Z}=\langle 1 \rangle=\langle -1 \rangle$$
 (по сложению) $g^n= egin{cases} 1+1+\ldots+1 & n>0 \\ 0 & n=0 \\ -1+-1+\ldots+-1 & n<0 \end{cases}$

- $\mathbb{Z}/5\mathbb{Z}=\langle\overline{1}\rangle=\langle\overline{2}\rangle=\langle\overline{3}\rangle=\langle\overline{4}\rangle$ (по сложению)
- $\mathbb{Z}/6\mathbb{Z} = \langle \overline{1} \rangle = \langle \overline{5} \rangle$ (по сложению)
- $(\mathbb{Z}/5\mathbb{Z})^* = \langle \overline{2} \rangle = \langle \overline{3} \rangle$ (по умножению)
- ($\mathbb{Z}/8\mathbb{Z}$)* не циклическая группа $g^2=e\implies g^{2k}=e,\ g^{2k+1}=g$

Определение 14.5. G — группа, $g \in G$

Если $\forall n \in \mathbb{N} : g^n \neq e$, то говорят, что g — бесконечный порядок

Если $\exists n \in \mathbb{N} : g^n = e$, то минимальное такое n называют порядком g (пишут: ord g = n)

Пример. $\mathbb{Z}/5\mathbb{Z}$

$$\operatorname{ord} \overline{1} = 1$$

$$\operatorname{ord} \overline{2} = 4$$

$$\operatorname{ord} \overline{3} = 4$$

$$\operatorname{ord} \overline{4} = 2$$

Предложение 14.1. Пусть G — конечная группа, $|G|=n, \ g\in G$.

Тогда:
$$G = \langle g \rangle \iff \text{ord } g = n$$

Доказательство. "⇒":

$$\exists k,l:g^k=g^l,\ k,l\in\{0,1,\ldots,n\},\ k
eq l$$
 (так как G конечная)

$$k < l \colon g^{-k} \cdot g^k = g^{-k} \cdot g^l = g^{l-k} = e$$

$$0 < l - k \le n$$

Таким образом, порядок q не превосходит n

Предположим, ord q = m < n

$$G = \{g^k \mid k \in \mathbb{Z}\} = \{g^{mq+r} \mid q \in \mathbb{Z}, \ 0 \leqslant r < m\} = \{g^0, g^1, \dots, g^{m-1}\}$$
 — противоречие, так как $|G| \leqslant m < n$

$$\operatorname{ord} q = n$$

$$\implies g^0, g^1, g^2, \dots, g^{n-1}$$
 — они попарно различны

$$\implies \{g^0, g^1, \dots, g^{n-1}\} = G$$
$$\implies G = \langle g \rangle$$

Определение 14.6. Первообразным корнем из 1 степени n называется такой элемент $z\in\mathbb{C}^*,$ что ord z=n

Пример. $\mu_6=\{1,\xi_1,\xi_2,\xi_3,\xi_4,\xi_5\}$ ord 1=1, ord $\xi_1=6,$ ord $\xi_2=3,$ ord $\xi_3=2,$ ord $\xi_4=3,$ ord $\xi_5=6$ ξ_2 — первообразный корень из 1 степени 3

Алгебра 24

Многочлены

15 Многочлены и формальные степенные ряды

Определение 15.1. Последовательность финитная $\iff \exists N : \forall n \geqslant N : a_n = 0.$

Определение 15.2. Многочленом над R (от одной переменной) называется финитная последовательность $(a_i), a_i \in \mathbb{R}, i = 0, 1, 2, \dots$

Определение 15.3. R — коммутативное кольцо с 1.

 $R[x] = \{(a_i) \mid a_i \in R, i = 0, 1, \dots; a_i = 0 \text{ при } i \to \infty\}$ — кольцо многочленов над R.

Введём сложение и умножение на R[x]

$$(a_i) + (b_i) = (a_i + b_i)$$

$$(a_i)\cdot (b_i)=(p_i)$$
, где $p_k=\sum\limits_{i=0}^k a_i b_{k-i}$

 $\exists a \in R, \ [a] = (a, 0, 0, \ldots)$ — многочлен, равный a.

$$[a] + [b] = [a+b]$$

$$[a] \cdot [boba] = (aboba, 0, 0, \ldots) = [aboba]$$

Отождествим [a] с a.

$$[a] \cdot (b_0, b_1, \ldots) = (ab_0, ab_1, \ldots)$$

$$(a_0, a_1, \ldots, a_n, 0, 0, \ldots) = (a_0, 0, 0, \ldots) + (0, a_1, 0, 0, \ldots) + \ldots + (0, 0, \ldots, a_n, 0, 0, \ldots) =$$

$$a_0 \cdot \underbrace{(1,0,0,\ldots)}_{x_0} + a_1 \cdot \underbrace{(0,1,0,\ldots)}_{x_1} + \ldots + a_n \cdot \underbrace{(0,0,\ldots,1,0,0,\ldots)}_{x_n} =$$

$$a_0 + a_1 \cdot x_1 + \ldots + a_n \cdot x_n$$

$$x_j \cdot x_1 = (0, \dots, 1, 0, 0, \dots) \cdot (0, 1, 0, 0, \dots) = (0, \dots, 0, 1, 0, 0, \dots) = x_{j+1} \implies$$

$$\forall m \in \mathbb{N} : x_m = x_1^m$$

$$x_1 = x \implies x_m = x_1^m = x^m$$

Значит получили стандартную запись многочленов $(a_0 + a_1x + a_2x^2 + \ldots + a_nx^n)$

Определение 15.4. $\exists f \in R[x], f \neq 0$ (то есть не (0))

Тогда степенью f называется максимальное j такое что $a_i \neq 0$

Обозначим $\deg(f) = j$.

Если f = 0, то $\deg(f) \in \{-1, -\infty\}$ (по разному обозначают).

Определение 15.5. $d = \deg f \implies a_d$ называется старшим коэффициентом f.

Определение 15.6. Константой называется множество f такое что $\deg(f) \leq 0$.

Определение 15.7. Мономом называется множество вида ax^{j} .

Предложение 15.1. R[x] — коммутативное ассоциативное кольцо с 1.

Доказательство. Аксиомы относящиеся к сложению очевидны.

Проверим коммутативность умножения и дистрибутивность.

$$(f \cdot g) \cdot h = f \cdot (g \cdot h)$$
 — сводится к сложению, f, g, h — мономы.

$$\begin{cases} (aX^i \cdot bX^j) \cdot cX^k = abX^{i+j} \cdot cX^k = abc \cdot X^{i+j+k} \\ aX^i \cdot (bX^j \cdot cX^k) = aX^i \cdot bcX^{j+k} = abc \cdot X^{i+j+k} \end{cases}$$

$$(fg)h = f(gh)$$

$$f = \sum_{i=0}^{k} f_i, \ g = \sum_{j=0}^{l} g_j, \ h = \sum_{m=0}^{n} h_m$$

$$(fg)h = (\sum f_i \cdot \sum g_j) \cdot \sum h_k = \sum (f_i \cdot g_j) \cdot \sum h_k \stackrel{\text{ассоц. для мономов}}{=} \sum f_i \cdot \sum (g_j \cdot h_k) = f(gh)$$

Определение 15.8. $R[[x]] = \{(a_i) \mid a_i \in R, i = 0, 1, \ldots\}$ — множество формальных степенных рядов над R.

$$(a_i) = \sum_{i=0}^{\infty} a_i X^i$$

Упражнение. R[[x]] — коммутативное ассоциативное кольцо с 1.

16 Свойства степени

Предложение 16.1. $f, g \in R[x], \deg f = m, \deg g = n$

1. $deg(f+g) \leq max(m,n)$

При этом: $m \neq n \implies \deg(f+g) = \max(m,n)$

 $2. \deg(fg) \leqslant m + n$

Доказательство.

1.
$$f = \sum_{i=0}^{m} a_i X^i$$
, $g = \sum_{i=0}^{n} b_i X^i$, $d = \max(m, n)$

$$f = \sum_{i=0}^d a_i X^i, \ g = \sum_{i=0}^d b_i X^i$$

$$f + g = \sum_{i=0}^{d} (a_i + b_i) X^i \implies \deg(f + g) \leqslant d$$

$$m \neq n \implies \begin{cases} a_d = 0 \\ b_d \neq 0 \end{cases}$$
 или $\begin{cases} a_d \neq 0 \\ b_d = 0 \end{cases} \implies a_d + b_d \neq 0 \implies \deg(f + g) = d$

2.
$$\left(\sum_{i=0}^{m} a_i X^i\right) \left(\sum_{j=0}^{n} b_j X^j\right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) X + \dots + a_m b_n X^{m+n} \implies \deg fg \leqslant m + n$$

Алгебра

Замечание. $\deg fg < m+n,$ если $a_m \neq 0$ или $b_n \neq 0$ и $a_m b_n = 0$

Замечание. Будем считать, что $\deg 0 = -\infty$

Определение 16.1. Область целостности (целостное кольцо, область) — коммутативное ассоциативное кольцо с $1 \neq 0$ и без делителей нуля.

$$a \neq 0$$
 так чтобы $\exists b \neq 0 : ab = 0$

Предложение 16.2. Пусть R - ОЦ(область целостности).

- 1. $\forall f, g \in R[x] : \deg(fg) \leq \deg f + \deg g$
- 2. R[x] OЦ

Доказательство.

- 1. В предыдущем доказательстве $\begin{cases} a_m \neq 0 \\ b_n \neq 0 \end{cases} \implies a_m b_n \neq 0 \implies \deg(fg) = m+n$
- $2. f \neq 0 \implies \deg f \geqslant 0, g \neq 0 \implies \deg g \geqslant 0 \implies \deg(fg) \geqslant 0 \implies fg \neq 0$

 ${\it Cnedcmeue.}\,$ Пусть R- ОЦ: тогда $R[x]^*=R^*$

Доказательство. Очевидно $R^* \subset R[x]^*$

Обратно, пусть $f \in R[x]^* \implies$

 $\exists g \in R[x] : f \cdot g = 1 (\implies f, g \neq 0)$

$$\deg(fg) = 0 = \deg f + \deg g \implies \deg f = \deg g = 0 \implies f \in R^*$$

Примеры.

- 1. $\mathbb{Z}[x]^* = \{\pm 1\}$
- $2. \ \mathbb{R}[x]^* = \mathbb{R} \setminus \{0\}$
- 3. $(\mathbb{Z}/4\mathbb{Z})[x]^*$ бесконечное множество

Упражнение. $R[[x]]^* = \{\sum_{i=0}^{\infty} a_i X^i \mid a_0 \in R^* \}$

17 Деление с остатком

Теорема 17.1 (о делении с остатком для многочленов). $R-\mathrm{O}\mbox{$\sc L$}$.

Пусть $f,g\in R[x],\ g\neq 0$ и старший коэффициент g обратим.

Тогда $\exists ! \ q, r \in R[x]$:

- 1. f = gq + r
- 2. $\deg r < \deg g$

Доказательство. $\deg g = d, \ g = b_d X^d + \dots$

1. Существование q и r

Индукция по
$$\deg f \colon \deg f < d \implies$$
 подходит $q = 0, r = f$

Пусть
$$\deg f = n \geqslant d$$

$$f_1 = f - g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d}$$
, где b_d — старший коэффициент g

$$g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} = (b_d X^d + \dots) \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} = a_n X^n + \dots \implies \deg f_1 < n$$

По индукционному предположению $\exists q_1, r_1 \in R[x]$ такие, что:

(a)
$$f_1 = gq_1 + r_1$$

(b)
$$\deg r_1 < d$$

$$f = g \cdot a_n \cdot b_d^{-1} \cdot X^{n-d} + f_1 = g \underbrace{(a_n \cdot b_d^{-1} \cdot X^{n-d} + q_1)}_q + \underbrace{r_1}_r$$

2. Предположим $f = g \cdot q_1 + r_1 = g \cdot q_2 + r_2$, $\deg r_1 < d, \deg r_2 < d$

$$g(q_1 - q_2) = r_2 - r_1$$

Предположим
$$q_1 \neq q_2 \implies \deg g \cdot (q_1 - q_2) = \underbrace{\deg g}_d + \underbrace{\deg q_1 - q_2}_{\geqslant 0} \geqslant d, \ \deg(r_2 - r_1) < d$$

Замечание. Условие $R-\mathrm{O} \mbox{$\sc L}$ не существенно.

$$g = b_d X^d + \dots, \ b_d \in R^*$$

$$b_d \cdot a = 0 \implies b_d^{-1}(b_d a) = 0 \implies a = 0$$
 (что это значит?)

18 Гомоморфизм подстановки

Определение 18.1. Пусть R,S – кольца. Гомоморфизм из кольца R в кольцо S называется отображение $\varphi:R\to S$ так что:

1.
$$\varphi(a+b) = \varphi(a) + \varphi(b), \forall a, b \in R;$$

2.
$$\varphi(ab) = \varphi(a)\varphi(b)$$

$$3. \ \varphi(1_R) = 1_S$$

Предложение 18.1 (свойства гомоморфизма).

1.
$$\varphi(0_R) = 0_S$$

2.
$$\forall a \in R : \varphi(-a) = -\varphi(a)$$

3.
$$\forall a, b \in R : \varphi(a - b) = \varphi(a) - \varphi(b)$$

Доказательство.

1.
$$0_R = 0_R + 0_R \implies \varphi(0_R) = \varphi(0_R) + \varphi(0_R) \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} = \varphi(0_R) + \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} = \varphi(0_R) + \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S} \implies \underbrace{\varphi(0_R) + (-\varphi(0_R))}_{0_S}$$

2.
$$a + (-a) = 0_R \implies \varphi(a) + \varphi(-a) = \varphi(0_R) = 0_S \implies \varphi(-a) = -\varphi(a)$$

3.
$$\varphi(a-b) = \varphi(a) + \varphi(-b) = \varphi(a) - \varphi(b)$$

Определение 18.2. Пусть S-кольцо, $R \subset S$. R называется подкольцом S, если:

1.
$$\forall a, b \in R : a - b \in R$$

2.
$$\forall a, b \in R : ab \in R$$

$$3. 1_S \in R$$

Замечание. Этих условий достаточно (остальные выражаются)

$$1 \in R \implies 0 = 1 - 1 \in R$$

$$a \in R \implies -a = 0 + (-a) = 0 - a \in R$$

$$a, b \in R \implies a + (-(-b)) = a - (-b) \in R$$

Примеры.

- 1. Пусть R подкольцо в S. Тогда $i_R:R\to S$ гомоморфизм, $a\mapsto a$.
- 2. $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ гомоморфизм, $a \mapsto \overline{a}$
- 3. $\mathbb{C} \to \mathbb{C}$ гомоморфизм, $z \mapsto \overline{z}$

Теорема 18.1. Пусть B - кольцо, A - подкольцо такое что, $\forall a \in A \ \forall b \in B : ab = ba$

Зафиксируем $b \in B$. Тогда отображение $\varphi_b : A[x] \to B$

 $a_nX^n+\ldots+a_1X+a_0\mapsto a_nb^n+\ldots+a_1b+a_0$ является гомоморфизмом колец.

Доказательство.

Если
$$f = a_n X^n + \ldots + a_1 X + a_0$$
, то $f(b) = a_n b^n + \ldots + a_1 b + a_0 = \varphi_b(f)$

Нужно проверить: (f + g)(b) = f(b) + g(b)

$$(fg)(b) = f(b)g(b)$$

$$1(b) = 1$$
 — тривиально

$$(f+g)(b)=f(b)+g(b)$$
 — очевидно из определения $f+g$.

$$f = \sum_{i=0}^{n} a_i X^i, g = \sum_{i=0}^{m} c_i X^i$$

$$fg = \sum_{k=0}^{n+m} d_k X^k, d_k = \sum_{i+j=k} a_i c_j$$

$$(fg)(b) = \sum_{k=0}^{n+m} d_k b^k$$

$$f(b)g(b) = \left(\sum_{i=0}^n a_i b^i\right) \left(\sum_{j=0}^m c_j b^j\right) = \sum_{i=0}^n \sum_{j=0}^m a_i b^i c_j b^j \stackrel{\text{коммут.}}{=}$$

$$\sum_{i=0}^{n} \sum_{j=0}^{m} a_i c_j b^{i+j} = \sum_{k=0}^{n+m} \underbrace{\left(\sum_{i,j\geqslant 0, i+j=k} (a_i c_j)\right)}_{d_k} b^k = (fg)(b)$$

Примеры.

1. A — любое коммутативное кольцо, B = A[x]

A - подкольцо в $B=A[x] \implies$ можно рассмотреть f(g), где $f,g\in A[x]$

2. $\mathbb{R}[x] \xrightarrow{\varphi} \mathbb{R}[x], f \mapsto f(5)$

$$\operatorname{Im} \varphi = \mathbb{R} \neq \mathbb{R}[x]$$

 $3. A \rightarrow A$

$$f \stackrel{lpha}{\longmapsto} f(x_2, x_3, x_4, \ldots)$$
 — инъективный, но не сюръективный

 $f \stackrel{\beta}{\longmapsto} f(0,x_1,x_2,x_3,\ldots)$ — сюръективный, но не инъективный

Упражнение.

- 1. Найти все автоморфизмы Q
- 2. Найти все автоморфизмы \mathbb{R}
- 3. Найти все автоморфизмы $\mathbb{R}[x]$

Теорема 18.2 (Безу). Пусть $f \in R[X]$, $c \in R$. Тогдаа остаток при делении f на X - c есть f(c).

Доказательство.

$$f = (X-c) \cdot q + r$$
, по теореме о делении с остатком $\deg r < \deg(X-c) = 1 \implies$

$$f(c) = (c-c) \cdot q(c) + r(c) = r(c)$$

Следствие. Пусть $f \in R[X], \ c \in R$. Тогда $f(c) = 0 \iff (X - c) \mid f$

Определение 18.3. Пусть R — подкольцо S, элементы R коммутируют с элементами S. Тогда $s \in S$, такой что f(s) = 0, где $f \in R[x]$ — называется корнем из f в R.

Примеры.

1.
$$f = x^4 - 2$$
 в $\mathbb{Z}[x]$

f не имеет корней в \mathbb{Z}

f имеет 2 корня в \mathbb{R}

f имеет 4 корня в \mathbb{C}

Предложение 18.2. Пусть R – область целостности, $f \in R[x]$, $\deg f = d \geqslant 0$. Тогда число корней f в R не превосходит d.

Доказательство. Индукция по d

 $\mathit{Базa} : d = 0 \implies f$ ненулевой $d \implies$ корней нет

 Π ереход: d > 0

 $\mathbf{y} f$ нет корней в $R \implies \mathbf{y}$ тверждение выполнено

У f есть корни в R, пусть $c \in R$ — какой-либо из корней f

$$f(c) = 0 \implies f = (X - c) \cdot g$$
, где $g \in R[x]$

$$\deg f = \deg(X - c) + \deg g \implies \deg g = d - 1$$

Пусть c_1, \ldots, c_l — все корни g в R

По предположению индукции: $l \leqslant d-1$

Утверждение: $\{c_1, \ldots c_l, c\}$ — все корни f в R

$$f(c_1) = \ldots = f(c_l) = f(c) = 0$$

Предположим $\exists c' \notin \{c_1, \ldots, c_l, c\}$, такой что f(c') = 0

 $\implies (c'-c) \cdot g(c') = 0$ — противоречие с тем, что R — область целостности

 \implies у f не более $l+1\leqslant d$ корней в R.

Пример. x^2-1 имеет 4 корня в $\mathbb{Z}/8\mathbb{Z}$ или в $\mathbb{Z}/5\mathbb{Z}$

$$x^2 \equiv 1 \iff \begin{cases} x^2 \equiv 1 \\ x^2 \equiv 1 \end{cases} \iff \begin{cases} x \equiv 1 \text{ или } x \equiv -1 \\ x \equiv 1 \text{ или } x \equiv -1 \end{cases}$$

Предложение 18.3 (формальное и функциональное равенство многочленов).

Пусть R – бесконечная область: $f,g \in R[x]$

таковы, что $\forall a \in R : f(a) = g(a)$

Тогда f = g

Доказательство.

h=f-g, предположим, что $h \neq 0 \implies \deg h = d \geqslant 0 \implies$ у h есть $\leqslant d$ корней.

Но $\forall a \in R: h(a) = f(a) - g(a) = 0, R$ - бесконечная область, противоречие. Так как их не больше чем d, но R бесконечно.

Пример.
$$R = \mathbb{Z}/3\mathbb{Z}, f = X, g = X^3$$

$$\forall A \in \mathbb{Z} : a^3 \equiv a \implies \forall \alpha \in \mathbb{Z}/3\mathbb{Z} : f(\alpha) = g(\alpha)$$

19 Temp