Introduction Méthodes Résultats et interpretations Conclusion Summary

Modélisation du transport d'un polluant Projet d'introduction à la recherche

Léo Baty, Chiheb Eddine Najjar, Nathan Godey, Régis Santet,
Song Phuc Duong, Clément Lasuen
sous la direction de
Damiano Lombardi et Sebastien Boyaval
Laboratoire INRIA

31 mai 2018

Sommaire

- Introduction
- 2 Méthodes
 - Proper Orthogonal Decomposition
 - Champs de vitesse étudiés
 - Approche eulerienne
 - Approche lagrangienne
- Résultats et interpretations
 - Approche eulerienne
 - Champ de vitesse uniforme
 - Ecoulements cellulaires
 - Approche lagrangienne
 - Champ de vitesse uniforme
 - Ecoulements cellulaires
 - Champ de vitesse de Lamb-Oseen
- 4 Conclusion

Introduction

FIGURE 1: Explosion de Deepwater Horizon, 20/04/2010

$$\partial_t c + u \nabla c = 0. (1)$$

Blocks

Block Title

You can also highlight sections of your presentation in a block, with it's own title

Theorem

There are separate environments for theorems, examples, definitions and proofs.

Example

Here is an example of an example block.

Champs de vitesse étudiés Champ de vitesse uniforme

$$\begin{cases} u_{x} = ||u||\cos(\theta) \\ u_{y} = ||u||\sin(\theta) \end{cases}$$

Champs de vitesse étudiés Écoulements cellulaires

$$\psi(x,y) = \sin(2\pi x)\sin(2\pi y) + \theta_0\cos(2\pi\theta_1 x)\cos(2\pi\theta_2 y)$$

$$\theta_0 \in [0,2.5] \text{ et } (\theta_1,\theta_2) \in [0.5,4]^2$$

FIGURE 3: Écoulement cellulaire

Champs de vitesse étudiés Champ de vitesse de Lamb-Oseen

$$\mathbf{V}(r,\theta,t) = \frac{\Gamma}{2\pi r} \left(1 - \exp\left(\frac{-r^2}{4\nu t + r_c^2}\right) \right) \mathbf{u}_{\theta}$$

Approche eulerienne

FIGURE 5: Condition initiale...

Approche eulerienne

FIGURE 6: ... et après un certain temps

Introduction **Méthodes** Résultats et interpretations Conclusion Summary

Proper Orthogonal Decomposition Champs de vitesse étudiés Approche eulerienne Approche lagrangienne

Approche eulerienne Méthode des volumes finis

Introduction **Méthodes** Résultats et interpretations Conclusion Summary

Proper Orthogonal Decomposition Champs de vitesse étudiés Approche eulerienne Approche lagrangienne

Approche eulerienne Modèle réduit

Approche lagrangienne

$$\begin{cases} \partial_t X = v(X(\xi, t), t) \\ X(\xi, 0) = \xi \end{cases}$$

Approche lagrangienne Hypothèses mathématiques

- $v \in \mathcal{C}^0(\mathbb{R}^{n \times 2} \times \mathbb{R}) \cap W^{1,\infty}(\mathbb{R}^{n \times 2} \times \mathbb{R})$
- Existence et unicité d'une solution locale (Théorème de Cauchy-Lipschitz).
- Le transport est à vitesse finie.

Approche lagrangienne Résolution numérique

Schéma de Crank-Nicholson :

$$X^{(k+1)} = X^{(k)} + \frac{\Delta t}{2} (v(X^{(k)}, t^k) + v(X^{(k+1)}, t^{k+1}))$$

Algorithme du point fixe :

$$\begin{cases} X_0^{(k+1)} = X^{(k)} \\ X_1^{(k+1)} = X^{(k)} + \Delta t v(X^{(k)}, t^k) \\ X_{r+1}^{(k+1)} = X^{(k)} + \frac{\Delta t}{2} (v(X^{(k)}, t^k) + v(X_r^{(k+1)}, t^{k+1})) \end{cases}$$

16 simulations, $\theta \in [0, \frac{\pi}{2}]$

Rôle des modes propres :

Reconstruction d'une solution fine

Condition initiale, 10 modes

Condition initiale, 20 modes

Reconstruction d'une solution fine

Condition initiale, 50 modes

Condition initiale, 100 modes

Reconstruction d'une solution fine

Condition initiale, 200 modes

Condition initiale, 500 modes

Reconstruction d'une solution fine

A mi-parcours, 10 modes

A mi-parcours, 20 modes

Reconstruction d'une solution fine

A mi-parcours, 50 modes

A mi-parcours, 100 modes

Reconstruction d'une solution fine

A mi-parcours, 200 modes

A mi-parcours, 500 modes

Approche eulerienne

Ecoulements cellulaires

Approche lagrangienne Écoulements cellulaires

Approche lagrangienne Champ de vitesse de Lamb-Oseen

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.