CVIČENÍ MODELOVÁNÍ A SIMULACE

Cvičení 5 - LS 2014 - Michel Kana

Co uděláme ve dnešním cvičení?

- 1. Shrnuti minulého cvičeni
- 2. Jedno-kompartmentové modely
- 3. Vice-kompartmentové modely
- 4. Shrnuti

Shrnutí minulého cvičení

[Modely populací]

Model dvoudruhových populací dravec – kořist: Lotky – Volterry se zpožděním, Kolmogorovův model

Model dvoudruhových populací s konkurence

Model dvoudruhových populací se spolupráce

Epidemiologické modely

- Kompartment je homogenní a odlišitelný prostor s definovatelným rozměrem jako hmota a koncentrace.
- Látky jsou elementy, které podléhají pohybu jako je např. absorpce, vylučování, oxidace, atp. (moč, krev, ...)
- Vstup kompartmentu je reprezentován přivedením sledované látky z jeho okolí.
- Výstup kompartmentu je spojen s pohybem látky mimo prostor kompartmentu.

- 1-kompartmentovy model je zjednodušený pohled na homogenní orgán, v němž je libovolný lék nebo látek.
 - $lacktriangleq u_1$ představuje vstup léku do kompartmentu.
 - lacktriangle X_1 představuje množství léku ve kompartmentu.
 - $lue{f Y}_1$ představuje koncentrace léku ve kompartmentu.
 - lacktriangle k_{11} určuje průměrný rychlost extrakce léku z kompartmentu.
 - $lue{U}_1$ určuje hypotetický objem kompartmentu.

$$\dot{X}_1 = u_1 - k_{11} \cdot X_1$$

$$Y_1 = \frac{1}{V_1} X_1$$

1-kompartmentovy model s jednorázovým perorální příjem léku.

1-kompartmentovy model s intravenózním příjem léku.

- 2-kompartmentovy model je např. zjednodušený pohled na organismus s centrálním a periferním kompartmentem.
- Centrální kompartment
 - u₁ představuje vstup léku do centrálního kompartmentu.
 - $lacktriangleq X_1$ představuje množství léku ve centrální kompartmentu.
 - Y₁ představuje koncentrace léku ve centrální kompartmentu.
 - \mathbf{L}_{11} určuje průměrný rychlost extrakce léku z centrálního kompartmentu.
 - \mathbf{L}_{12} určuje průměrný rychlost distribuce léku z centrálního do periferního kompartmentu.
 - $lue{U}_1$ určuje hypotetický objem centrálního kompartmentu.
- Periferní kompartment
 - \square X_2 představuje množství léku ve periferní kompartmentu.
 - ${\tt L}_{12}$ určuje průměrný rychlost zpětné distribuce léku z periferního do centrálního kompartmentu.

- Vancomycin je antibiotikum s
 intramuskulární a perorální aplikaci. 8090% aplikované látky jsou vyloučeny z
 ledvin v průběhu prvních 24 hodin.
 - Centrální kompartment
 - Periferní kompartment
 - Ledviny

$$\dot{X}_{1} = (-k_{12} - k_{13}) \cdot X_{1} + k_{21} \cdot X_{2} + k_{31} \cdot X_{3} + u_{1}
\dot{X}_{2} = k_{12} \cdot X_{1} + (-k_{21} - k_{22}) \cdot X_{2} + 0 \cdot X_{3} + 0
\dot{X}_{3} = k_{13} \cdot X_{1} + 0 \cdot X_{2} + (-k_{31}) \cdot X_{3} + 0
Y_{1} = \frac{1}{V_{1}} \cdot X_{1}$$

$$X_5 = 0 \cdot X_1 + X_2$$

$$Y_2 = \frac{1}{V_2} \cdot X_2$$

$$Y_4 = X_4$$

$$Y_5 = X_5$$

Shrnutí dnešního cvičení

[Modely populací]

Jedno-kompartmentové modely Vice-kompartmentové modely

[Co bude dál?]

Příští týden představíme maticový popis kompartmentové modely.