Question Paper - Evaluator view

Exam Date & Time: 16-Dec-2019 (01:30 PM - 04:30 PM)

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

(CE/IT/CSE/ME/CL/EC/EE) **ENGINEERING MATHEMATICS-I [MA143]**

Marks: 70 Duration: 180 mins. Multiple choice questions

Answer all the questions.

2)

The series $a + ar + ar^2 + ar^3 + \dots$ converges if ____

(1)

1) |r| < 1 2) $r \ge 1$ 3) $r \le -1$ 4) r = 1

The principal argument of a complex number z = 1 - i is _____.

(1) 1) $-\frac{\pi}{2}$ 2) $\frac{\pi}{4}$ 3) $-\frac{\pi}{4}$ 4) $\frac{\pi}{4}$

3) If $z = 1 + i\sqrt{3}$ then $z^6 + z^3 + 1 = --$

(1)

^{2) 9} ³⁾ 513 ⁴⁾ 57

4) The power series $\sum_{n=1}^{\infty} (3x)^n$ is convergent if _____

(1) 1) $x > \frac{1}{2}$ 2) $x = \frac{1}{2}$ 3) $\frac{1}{2} < x < 1$ 4) $-\frac{1}{2} < x < \frac{1}{2}$

The Maclaurin's series expansion of $\log(1+x)$ up to x^4 is _____ 5)

(1) 1) $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$ 2) $1 + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$ 3) $x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$ 4) $1 - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$

Let $f(x) = \ln(x^2 + 5x + 6)$ then the value of $f^{(30)}(1)$ is given by_____ 6)

(1) 1) $(-29!)(\frac{1}{280} + \frac{1}{480})$ 2) $30!(\frac{1}{280} + \frac{1}{480})$ 3) $(-30!)(\frac{1}{280} + \frac{1}{480})$ 4) $29!(\frac{1}{280} + \frac{1}{480})$

7) Which of the following statement is true?

> (1) 1) $\cosh^2(z) + \sinh^2(z) = 1$ 2) $\cosh(iz) = i \cos(z)$ 3) $\sinh(iz) = i \sin(z)$ 4) $\tanh(iz) = \tan(z)$

> > (1)

(1)

If f is a function of u, v, w and u, v, w are functions of x, y and z then $\underline{\underline{\partial f}}$ is_____ 8)

 $\frac{1)}{\frac{\partial f}{\partial u}} \cdot \frac{\partial u}{\partial z} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial z} + \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial z} \quad 2) \quad \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial u} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial v} \quad 3) \quad \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial v} + \frac{\partial f}{\partial z} \cdot \frac{\partial u}{\partial v} + \frac{\partial f}{\partial v} \cdot \frac{\partial w}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial w}{\partial y} + \frac{\partial f}{\partial w} \cdot \frac{\partial w}{\partial w} + \frac{\partial g}{\partial w} \cdot \frac{\partial w}{\partial w} + \frac{\partial w}{\partial w}$

For the function $u = x^3 + y^3 - 3xy$ if r = 6, s = -3, t = 6 at point (1, 1), then at this point function u is— 9)

(1)

2) maximum 3) saddle point

10) For the function $F(x,y,z) = f(x,y,z) + \lambda \phi(x,y,z)$, the Lagrange's equations are_

 $^{1)} \ \frac{\partial F}{\partial \, x} = 0, \ \frac{\partial F}{\partial y} = 0, \ \frac{\partial F}{\partial z} = 0 \quad ^{2)} \ \frac{\partial f}{\partial x} = 0, \quad \frac{\partial f}{\partial y} = 0, \quad \frac{\partial f}{\partial z} = 0 \quad ^{3)} \ \frac{\partial \phi}{\partial x} = 0, \quad \frac{\partial \phi}{\partial y} = 0, \quad \frac{\partial \phi}{\partial z} = 0 \quad ^{4)} \ \frac{\partial f}{\partial x} = 0, \quad \frac{\partial f}{\partial \phi} = 0, \quad \frac{\partial f}{\partial z} = 0 \quad ^{4)} \ \frac{\partial f}{\partial z} = 0, \quad \frac{\partial f}{\partial z} = 0, \quad \frac{\partial f}{\partial z} = 0 \quad ^{4)} \ \frac{\partial f}{\partial z} = 0, \quad \frac{\partial$

The function $z = x^4y^2 \csc^{-1}\left(\frac{x^2+y^2}{xy}\right)$ is homogeneous of degree ____

1)
$$-2$$
 2) 3 3) 6 4) 4

12) The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$ is ______.

(1)

1) 2 2) 3 3) 1 4) 0

13) If then $\frac{\partial^2 f}{\partial x \partial y}$ then $\frac{\partial^2 f}{\partial x \partial y}$...

1) 0 2)
$$\frac{1}{x^2}$$
 3) $-\frac{1}{x^2}$ 4) $\frac{1}{x}$

Let A be a square matrix. If the homogeneous system AX = 0 has unique solution, then the nullity (A) is _____.

1) n 2) 0 3) n-1 4) n+1

PAI

Answer 4 out of 6 questions.

15) Obtain the n^{th} derivative of the function $\frac{x}{(x-1)(x-2)(x-3)}$. (4)

16) Test the convergence of the series $\frac{1\cdot 2}{3\cdot 4\cdot 5} + \frac{2\cdot 3}{4\cdot 5\cdot 6} + \frac{3\cdot 4}{5\cdot 6\cdot 7} + \cdots$ (4)

17) If $y = (\sin^{-1}x)^2$, then prove that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$. (4)

Test the convergence of the series $\frac{1!}{3} + \frac{2!}{3^3} + \frac{3!}{3^3} + \cdots$ (4)

19) State the De Moiver's formula and hence simplify the expression $\frac{(\cos 2\theta + i \sin 2\theta)^6 (\cos \theta - i \sin \theta)^3}{(\cos 3\theta - i \sin 3\theta)^4 (\sin \theta + i \cos \theta)^3}$ (4)

20) Use De Moiver's formula to solve the equation $x^4 - x^3 + x^2 - x + 1 = 0$ (4)

PART-B

Answer 2 out of 3 questions.

21) Using Taylor's series, expand the function $x^5 - x^4 + x^3 - x^2 + x - 1$ in powers of x-1. (3)

22) Evaluate $\lim_{x\to 0} \left[\frac{1}{x^2} - \frac{1}{\sin^2 x} \right]$ (3)

23) Prove that the series $\sum_{n=1}^{\infty} rac{2n^2 + 3n}{5 + n^5}$ is convergent . (3)

PART-C

Answer 1 out of 2 questions.

Solve the equation $x^3 - 3x^2 + 12x + 16 = 0$ by Cardan's method. (6)

25) Solve the equation $x^4 - 12x^3 + 41x^2 - 18x - 72 = 0$ by Ferrari's method. (6)

PART-D

Answer 4 out of 6 questions.

26) State Euler's theorem for the homogeneous function of two independent variables.

If
$$u(x,y) = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, then find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$. (4)

27) If
$$u(x, y, z) = xyz$$
, $v(x, y, z) = x^2 + y^2 + z^2$, $w(x, y, z) = x + y + z$, then find
$$J = \frac{\partial(u, v, w)}{\partial(x, y, z)}$$
(4)

Find the Extreme values of the function
$$x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$
 (4)

29) Find the rank and the nullity of the matrix
$$\begin{bmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$
 using row echelon form. (4)

30) Using Gauss- Jordan method, find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$
, if exists.

31) Investigate for what values of α and β the system of equations

$$x + 2y + z = 8;$$
 $2x + 2y + 2z = 13;$ $3x + 4y + \alpha z = \beta$ (4)

has (i) no solution (ii) unique solution (iii) infinite solutions.

PART-E

Answer 2 out of 3 questions.

32) If
$$u(x,y) = \sin(x^2 + y^2)$$
 and $a^2x^2 + b^2y^2 = c^2$, then find $\frac{du}{dx}$. Where a, b and c are constants. (3)

- 33) If the kinetic energy $T = \frac{1}{2}mv^2$, find approximately the change in T as mass changes from 49 to 49.5 and velocity changes from 1600 to 1590
- Find the equation of the tangent plane and the normal line to the surface $x^2 + y^2 + z^2 = 3$ at the point (1,1,1).

PART-F

Answer 1 out of 2 questions.

- Find the maximum value of $x^m y^n z^p$ when the variable x, y, z are subject to the condition x + y + z = 2. (6)
- 36) Using Gauss Elimination method, solve the following system of linear equations:

$$4x - 2y + 6z = 8;$$
 $x + y - 3z = -1;$ $15x - 3y + 9z = 21.$ (6)

-----End-----