

AMENDMENTS TO THE CLAIMS:

Claim 1 (Currently Amended) Method A method for a digital transmission system, in which a first and second known symbol sequence $\{s_1, s_2, \dots, s_M\}$ are transmitted, the frequency offset (Δf) of the transmission system is estimated by comparing a first section (^1f_M) of the received signal (r) corresponding to the first symbol sequence with a second action section (^2f_M) of the received signal (r) corresponding to the second symbol sequence, and the square of the absolute value of a pulse response (h) of the transmission system is reduced in a time domain in order to lessen the influence of symbols (x) adjacent to the first or second known symbol sequence $\{s_1, s_2, \dots, s_M\}$ on the first and second sections $(^1f_M, ^2f_M)$, respectively, of the received signal (r) . wherein the energy of a domain of the pulse response of the transmission system relative to the total energy of the pulse response is reduced with the aid of an all-pass filter, and wherein the all-pass filter is adapted to achieve a low-phase pulse response of the transmission system.

Claim 2 (Currently Amended) Method The method according to Claim 1, in which wherein the first and second symbol sequence $\{s_1, s_2, \dots, s_M\}$ are selected to be identical to one another.

Claim 3 (Currently Amended) Method The method according to Claim 1 or 2, in which wherein the reduction in the square of the absolute value of the domain of the pulse response (h) of the transmission system is undertaken with the aid of a filter (14) .

Claim 4 (Currently Amended) Method The method according to Claim 3, in which wherein a the pulse response (h) of the transmission system is estimated.

Claim 5 (Currently Amended) Method The method according to Claim 4, in which wherein coefficients of the filter (14) are determined and/or adapted by means of the estimated pulse response (h).

Claim 6 (Currently Amended) Method The method according to Claim 6 1, in which wherein the pulse response (h) is shortened.

Claim 7 (Cancelled)

Claim 8 (Cancelled)

Claim 9 (Currently Amended) Method The method according to Claim 8 1, in which wherein one value $\{^1f_M, ^2f_M\}$ of the first and second sections of the received signal (r) is determined by sampling the received signal (r).

Claim 10 (Currently Amended) Method The method according to Claim 9, in which wherein the angular difference ($\Delta\phi$) in the complex plane between the first and second samples $\{^1f_M, ^2f_M\}$ is used to estimate the frequency offset (ΔF).

Claim 11 (Currently Amended) Method The method according to Claim 10, in which wherein several pairs of samples $(\{^1f_1, ^2f_1\}, \{^1f_2, ^2f_2\}, \dots, \{^1f_M, ^2f_M\})$ are averaged over the angular differences ($\Delta\phi$).

Claim 12 (Currently Amended) Method The method according to Claim 11, in which wherein the signals are transmitted in blocks, ~~in particular in accordance with a GSM standard and/or EDGE standard~~.

Claim 13 (Currently Amended) Device (1) A device for a digital transmission system, comprising a transmitting device for transmitting a first and a second known symbol sequence $\{s_1, s_2, \dots, s_M\}$, and means (15) for comparing a first section $\{^1f_M\}$ of the received signal (r) corresponding to the first symbol sequence

with a second section (2f_M) of the received signal (r) corresponding to the second symbol sequence, ~~as a result of which it is possible to estimate from which~~ the frequency offset (ΔF) of the transmission system is estimated, characterized in that the device (1) comprises a first module (14) for reducing the square of the absolute value of a pulse response (h) of the transmission system in a time domain, ~~it being possible by means of the reduction in order~~ to lessen the influence of symbols (x) adjacent to the first or second known symbol sequence ($\{s_1, s_2, \dots, s_M\}$) on the first and second section (${}^1f_M, {}^2f_M$), respectively, of the received signal (r). wherein the first module comprises an all-pass filter, and wherein the all-pass filter is adapted to achieve a low-phase pulse response of the transmission system.

Claim 14 (Currently Amended) Device (1) The device according to Claim 13, in which wherein the first and second symbol sequence ($\{s_1, s_2, \dots, s_M\}$) are identical to one another.

Claim 15 (Currently Amended) Device (1) The device according to Claim 13 or 14, in which wherein the first module (14) comprises a filter.

Claim 16 (Currently Amended) Device (1) The device according to Claim 15, which comprises further comprising a second module (11) for estimating a pulse response (\hat{h}).

Claim 17 (Currently Amended) Device (1) The device according to Claim 16, which comprises further comprising a third module (12)-for determining and/or adapting suitable coefficients of the filter (14).

Claim 18 (Currently Amended) Device (1) The device according to Claim 17 13 in which wherein the pulse response (h) can be is shortened by means of the first module (14).

Claim 19 (Cancelled)

Claim 20 (Cancelled)

Claim 21 (Currently Amended) Device (1) The device according to Claim 20 13, which comprises further comprising a sampling device for the received signal (r), with the aid of which one value (${}^1f_M, {}^2f_M$) of the first and second section of the received signal (r) can be sampled.

Claim 22 (Currently Amended) Device (1) The device according to Claim 21, which comprises further comprising means (16) for estimating the frequency offset (Δf) from the angular difference ($\Delta\phi$) in the complex plane between the first and second sample (${}^1f_M, {}^2f_M$).

Claim 23 (Currently Amended) Device (1) The device according to Claim 22, which comprises further comprising means for determining an average value of the angular differences ($\Delta\phi$) of several pairs of samples ($\{{}^1f_4, {}^2f_4\}, \{{}^1f_2, {}^2f_2\}, \dots, \{{}^1f_M, {}^2f_M\}$).

Claim 24 (Currently Amended) Device (1) The device according to Claim 23, which wherein the device is adapted for transmission in blocks, in particular in accordance with a GSM standard and/or EDGE standard.