

UNIVERSITY OF HELSINKI

Department of Computer Science

Mohsin Khan¹
Philip Ginzboorg^{2,3}
Valtteri Niemi¹

¹University of Helsinki ²Huawei Technologies, ³Aalto University

IDENTITY PRIVACY IN 5G, DEFEATING DOWNGRADE ATTACK

IMSI

- Stands for International Mobile Subscriber Identity. Also called SUPI in 5G
- Globally Unique

MOBILE NETWORK

The SN and the HN are in a roaming contract. In case the UE is not roaming, SN and HN are the same network.

ACTIVE IMSI CATCHERS

An active IMSI catcher impersonates a legitimate SN.

No protection in GSM, 3G and LTE. There will be a protection in 5G.

DEFEATING IMSI CATCHERS IN 5G (STANDARDIZED)

3GPP has decided to solve the problem using public-key encryption as follows.

DOWNGRADE ATTACK

5G and LTE interworks \Rightarrow An LTE based active IMSI catcher can mount an attack.

DEFEATING DOWNGRADE ATTACK

Hybrid solution using public-key encryption and pseudonyms.

5G SN:

LTE SN:

Advantages

- No standardization. Works even when EAP-AKA' is used.
- Major Disadvantages of pseudonym based solution disappears
- -In case of de-synchronization of pseudonyms, resynchronization can be done just by connecting through a 5G SN.
- -A malicious SN can not mount an attack to de-synchronize pseudonyms, because the HN verifies the success of a 5G AKA and EAP-AKA'.
- -Hence, the management of pseudonyms in the subscriber database becomes less vulnerable to unwanted modification.

Challenges

- A 5G UE may connect with multiple SNs. Thus the UE will have multiple active connection using different pseudonyms simultaneously. These may create complications when a UE or the HN may forget an old pseudonym.
- SN has to rely on the HN for lawful interception identifying a user using SUPI (IMSI).