Отчет по лабораторной работе \mathbb{N}_2 3 Методы оптимизаций

Решения СЛАУ.

Скроба Дмитрий M3234

June 2021

1. Постановка задачи

- Реализовать алгоритмы решения СЛАУ:
 - 1. Метод решния СЛАУ на основе LU-разложения(форма хранения матрицы профильная)
 - 2. Метод решения СЛАУ методом Гаусса с выбором ведущего элемента (форма матрицы - плотная, квадратичная)
- Написать генератор матриц:
 - 1. С заданным числом обусловленности и размерностью.
 - 2. Матриц Гильберта
- Протестировать написанные методы на случайно сгенерированных матрицах.
- Сравнить два метода относительно точности и количество выполненных итераций.

2. Анализ методов

Метод 1:

$$Ax = b \Leftrightarrow A = LU : LUx = b$$

Суть метода, заключается в том, что исодная матрица A представляется в виде произведения ниженетреугольной и верхнетреугольной матрицы: L и U соответственно. Далее решаются две подзадачи:

$$\begin{cases} Ly = b \\ Ux = y \end{cases}$$

Так как обе матрицы L и U являются треугольным, асимптотика решения этих уранений: $O(n^2)$, где п размерность пространства.

Перед работой данного метода требуется привести матрицу к LU-виду, что в свою очередь занимает $O(n^3)$ времени.

• Метод 2: Суть метода заключается двух действиях: прямом и обратном ходе. Во время прямого хода последовательно находится ведущий элемент данного столбца - максимальный элемент, после чего все остальные не обработаннные строчки зануляют свой элемент этого столбца, тем самым по итогу получается треугольная матрица. После обратного хода вычисляется значения неизвестного вектора. Асимптотика алгоритма: $O(n^3)$ - за счет прямого хода.

3. Результаты исследований

Параметры исследований:

- Неизвестный вектор: $x^* = (0, 1, ..., n)$;
- $-\epsilon = 10^{-20}$;

-Решения СЛАУ при помощи LU-разложения

Матрицы генерируются случайным образом, элементы матрицы: $a_{ij} \in 0, -1, -2, -3, -4,$ за

ислючением главной диагонали, элементы которой равны сумме на строке взятой с отрицательным знаком, в случае первой строки так же добавляется 10^{-k} - где k число обусловленности матрицы.

n	k	$ x^* - x_k $	$ x^* - x_k / x^* $
10	1	0,000000000000	0,000000000000
10	2	0,000000000019	0,000000000001
10	3	0,000000000199	0,000000000010
10	4	0,000000000644	0,00000000033
10	5	0,000000008368	0,000000000426
10	6	0,000000094073	0,000000004794
100	1	0,000000002233	0,000000000004
100	2	0,000000072988	0,00000000125
100	3	0,000000687986	0,000000001183
100	4	0,000003720160	0,000000006396
100	5	0,000002302613	0,000000003959
100	6	0,000107291983	0,000000184452
1000	1	0,000013726869	0,000000000751
1000	2	0,000187991706	0,000000010289
1000	3	0,000516185718	0,000000028251
1000	4	0,016536243228	0,000000905049
1000	5	0,047676899674	0,000002609414
1000	6	0,306816218125	0,000016792423

-Решения СЛАУ при помощи LU-разложения(Гильбертовы матрицы) Генерируется матрицы Гильберта заданной размерности.

n	$ x^* - x_k $	$ x^* - x_k / x^* $
10	534,850229575901	27,258491734313
50	121751,660353085010	587,651353234426
90	42110629,442582780000	84720,033709112280
130	2862856836,050331000000	3326194,784009740700
170	37230930607,613810000000	28965418,760954283000
210	568672750836,143300000000	322512180,009168900000
250	36984314138514,055000000000	16157250804,068926000000
290	4206020314516847,5000000000000	1471341319879,605200000000
330	5447895197220991,0000000000000	1570480950720,091800000000
370	4856460471261080,0000000000000	1179501676589,382800000000
410	29898259770010300,0000000000000	6226401445400,253000000000
450	184322791205905568,0000000000000	33388563938902,203000000000
490	5823969619607512,0000000000000	928584513149,540800000000
530	14941826896507814000,00000000000000	2118051124210862,8000000000000

Гильбертовы матрицы показали экспоненциальный рост погрешности, в зависимости от размерности пространства (числом обусловленности).

-Сравнение работы методов Гаусса и метода основаного на LU-разложении

n	k	LU	$ x^* - x_k $	$ x^* - x_k / x^* $	Gauss	$ x^* - x_k $	$ x^* - x_k / x^* $
10	1	97	0,000000000000	0,000000000000	475	0,000000000000	0,000000000000
10	2	98	0,000000000019	0,000000000001	475	0,000000000019	0,000000000001
10	3	100	0,000000000199	0,000000000010	475	0,000000000199	0,000000000010
10	4	99	0,000000000644	0,000000000033	475	0,000000000644	0,000000000033
10	5	98	0,000000008368	0,000000000426	475	0,000000008368	0,000000000426
10	6	100	0,000000094073	0,000000004794	475	0,000000094073	0,000000004794
100	1	9979	0,000000002233	0,000000000004	348250	0,000000002233	0,0000000000004
100	2	9975	0,000000072988	0,000000000125	348250	0,000000072988	0,000000000125
100	3	9973	0,000000687986	0,000000001183	348250	0,000000687986	0,000000001183
100	4	9973	0,000003720160	0,000000006396	348250	0,000003720160	0,000000006396
100	5	9978	0,000002302613	0,000000003959	348250	0,000002302613	0,000000003959
100	6	9968	0,000107291983	0,000000184452	348250	0,000107291983	0,000000184452
1000	1	999750	0,000013726869	0,000000000751	334832500	0,000013726869	0,000000000751
1000	2	999747	0,000187991706	0,000000010289	334832500	0,000187991703	0,000000010289
1000	3	999752	0,000516185718	0,000000028251	334832500	0,000516185718	0,000000028251
1000	4	999762	0,016536243228	0,000000905049	334832500	0,016536243230	0,000000905049
1000	5	999733	0,047676899674	0,000002609414	334832500	0,047676899677	0,000002609414
1000	6	999774	0,306816218125	0,000016792423	334832500	0,306816218127	0,000016792423

Разлочие в количестве итераций обусловленно не учитыванием разложением матрицы на LU.

4. Выводы

Исходя из проведенных опытов, можно сказать об одинаковых погрешностях метода Гаусса с выбором ведущего элемента и на основе LU-разложения, они оба имеют одинаковую асимптотическую сложность. При этом так как основную часть времени метод на основе LU, занимает само разложение матрицы, а значит при повторном исселдовании матрицы время работы метода будет меньше.

5. Приложения

Реализация всех методов и всех вспомогательных классов выводящих резальтаты представленна в репозитории (sdmitrioul)