

Локальные особенности и согласование

изображений

Антон Конушин

Задача сопоставления изображений

- Есть несколько изображений конкретных объектов
- Хотим найти эти объекты на тестовом изображении
- Попробуем «сопоставить» изображения объектов с тестовым изображением
- Задача «image matching»

Вводный пример

Задача №1

Задача №2

- Почему во втором случае было легче его найти?
- Были видны «характерные» фрагменты медведя

Особенности (features)

- «Хорошо различимые фрагменты» объекта
 - «особенности» (features)
 - «характеристические точки» (characteristic points)
 - «локальные особые точки» (local feature points)
- Характерные фрагменты позволяют справится с изменениями ракурса, масштаба и перекрытиями

Требования

- Какие можно сформулировать требования к «хорошо различимым фрагментам» объекта?
- Отличаются от большинства других фрагментов объекта
- Инвариантны к изменению освещения
- Инвариантны к изменению ракурса
 - Можно находить одну и ту же точку на измененных изображениях
 - Можем «идентифицировать» эту точку

Локальные особенности

Пример особой точки

Пример точки, не являющейся особой

- Какая из двух точек является характерной («особой»)?
- Локальная (особая) точка *р* изображения *I* должна обладать «характерной окрестностью» D, т.е. отличаться от всех точек в некоторой окрестности *р*
- Для определения, является ли точка «характерной», нам достаточно только её окрестности

Яндекс

Два основных класса особенностей

уголки (corners)

пятна (blobs)

Применение

Поиск и выделение объектов, распознавание изображений

Применение

Поиск изображений по содержанию в базе изображений

Сопоставление изображений, построение панорам и трёхмерная реконструкция

Требования к особенностям

- Локальность (Locality)
 - Особенность занимает маленькую область изображения, поэтому работа с ней нечувствительна к перекрытиям
- Повторимость (Repeatability)
 - Особенность находится в том же месте объекта не смотря на изменения масштаба, положения, ракурса и освещения
- Значимость (Saliency)
 - Каждая особенность имеет уникальное (distinctive) описание
- Компактность и эффективность
 - Количество особенностей существенно меньше числа пикселей изображения

Повторимость

- Особенность должна находится в том же месте объекта не смотря на изменения масштаба, положения, ракурса и освещения изображения
- Как можно это проверить?
 - Выделим характерные особенности на изображении объекта
 - Применим к изображению геометрическое или цветовое преобразование
 - Выделим характерные особенности на изменённом изображении, они должны найтись в тех же местах объекта
- Метод выделения особенностей должен быть «инвариантным» к преобразованиям

Геометрические преобразования

• Параллельный перенос

• Подобие (перенос, масштаб, поворот)

• Аффинное

Аффинное преобразование даёт хорошее приближение искажений, претерпеваемых небольшим плоским фрагментом объекта при малом изменении ракурса

• Параллельный перенос

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Евклидово преобразование
 (М – ортогональная матрица)

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

• Аффинное преобразование

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

Гомография

Перспективное преобразование плоскости

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} \cong \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{12} & h_{33} \end{bmatrix} * \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Перевод в однородные
$$(x,y)\Rightarrow\begin{bmatrix}x\\y\\1\end{bmatrix}$$
 Перевод из однородных $\begin{bmatrix}x\\y\\w\end{bmatrix}\Rightarrow(x/w,y/w)$ координаты

Удобнее представлять себе так:

$$\begin{bmatrix} wx & wy & w \end{bmatrix}^T \cong \begin{bmatrix} x & y & 1 \end{bmatrix}^T \cong \begin{bmatrix} x & y \end{bmatrix}^T$$

Гомография

• Преобразование между 2мя разными видами одной и той же плоскости

• Преобразование между видами с повернутой камеры (центр проекции общий)

Фотометрическое преобразование

Аффинное изменение яркости $(I \rightarrow a I + b)$

Его вполне достаточно для моделирования устойчивости методы выделения особенностей к изменению условий освещения

Особенно, если будем работать с серыми изображениями!

Локальные особенности

Проведём эксперимент, будем рассматривать разные точки на изображении и проверять, являются ли они локальными особенностями

монотонный регион: в любом направлении изменений нет

«край»: вдоль края изменений нет

«уголок»: изменения при перемещении в любую сторону

Детектор Харриса

- Наиболее популярный детектор локальных особенность точек – детектор Харриса (Harris)
- Ищет такие точки (x,y), окрестность которых меняется при любом сдвиге (x+u, y+v)
- Такие точки обычно оказываются углами, поэтому метод ещё называют «детектор углов»

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988

Устройство метода

Изменение окрестности точки (x,y) при сдвиге [u,v]:

Source: R. Szeliski

Устройство метода

Изменение окрестности точки при сдвиге [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) [I(x+u,y+v) - I(x,y)]^{2}$$

Разложение в ряд Тейлора 2го порядка *I*(*x*,*y*) вокруг (x,y) (билинейная интерполяция при маленьких сдвигах)

$$[I(x+u,y+v)-I(x,y)]^{2} \approx [I(x,y)+I_{x}u+I_{y}v-I(x,y)]^{2}$$

$$= [I_{x}u+I_{y}v]^{2} = I_{x}^{2}u^{2}+2I_{x}I_{y}uv+I_{y}^{2}v^{2}$$

$$= (u,v)\begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} (u,v)^{T}$$

Устройство метода

Итого изменение окрестности можно свести к:

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

где M — матрица 2×2 вычисленная по частным производным:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{I_x I_x}^{I_x I_x} & \sum_{I_x I_y}^{I_x I_y} \\ \sum_{I_x I_y}^{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_x I_y}^{I_x I_y} [I_x I_y] = \sum_{I_x I_y}^{I_x I_y} \nabla_{I_x I_y}^{I_x I_y}$$

Интерпретация матрицы моментов

Рассмотрим случай, когда градиенты выровнены по осям (вертикальные или горизонтальные)

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Если одно из λ близко к 0, тогда это не угол, и нужно искать другие точки

Общий случай

М – симметричная, поэтому её можно привести к диагональному виду:

этому
$$M=R^{-1}DR=R^{-1}egin{bmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{bmatrix}R$$

R – ортогональная матрица из собственных векторов M, D – диагональная из собственных значений M

Матрицу *М* можно визуализировать в виде эллипса, у которого длины осей определены собственными значениями, а ориентация определена матрицей R

Уравнение эллипса:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

Направление наимедленного изменения

Визуализация матриц вторых моментов (Гессианов)

Зависимость Е от λ

Классификация точек изображения по собственным значениям матрицы производных *М*

$$E(u,v) = (u,v)M(u,v)^{T}$$

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

 λ_1 и λ_2 малы; E не меняется по всем направлениям

Функции отклика углов

• Функция отклика угла по Харрису:

$$R = \det M - k \left(\operatorname{trace} M \right)^{2}$$

$$\det M = \lambda_{1} \lambda_{2}$$

$$\operatorname{trace} M = \lambda_{1} + \lambda_{2}$$

$$(k = 0.04 - 0.06)$$

• Функция по Фёрстнеру (Forstner):

$$R = \det M / \operatorname{trace} M$$

Яндекс

Вычисление отклика угла R

Найдём точки с большим откликом *R*>порог

- Как быть с тем, что функция отклика угла больше порога в некоторых областях?
- Как нам выбрать конкретные точки в областях?

Оставим только точки локальных максимумов R

- 1. Вычислить градиент изображения в каждом пикселе
 - С использованием гауссова сглаживания
- 2. Вычислить матрицу вторых моментов М по окну вокруг каждого пикселя
- 3. Вычислить отклик угла *R*
- 4. Отсечение по порогу R
- 5. Найти локальные максимумы функции отклика (non-maximum suppression) по окрестности заданного радиуса
- 6. Выбор N самых сильных локальных максимумов

Результат работы детектора

детектор Фёрстнера

детектор Харриса

Важный вывод

Детектор – суть некоторая функция, локальные максимумы которой мы используем в качестве особенностей изображений

Инвариантность

Что у детектора Харриса с инвариантностью?

• Поворот

• Масштаб

• Аффинное

• Аффинное изменение яркости $(I \rightarrow a I + b)$

Детекторы Харриса

- Частичная инвариантность к изменению освещенности
 - √Используются только производные
 - => инвариантность к сдвигу $I \rightarrow I + b$
 - ✓ Масштабирование: $I \rightarrow a I$

Детектор Харриса

Инвариантность к вращению изображения:

Эллипс вращается, но его форма (собственные значения) остаются неизменными

Отклик угла R инвариантен относительно вращению изображения

Масштабирование?

 Угол или нет? - Зависит от масштаба изображения!

Характерный масштаб

- С какого момента фрагмент считается «углом»?
- Если наш детектор Харриса на нескольких соседних масштабах пометит точку как угол, то как нам быть?

Инвариантность к масштабированию

- Цель: определять размер окрестности особой точки в масштабированных версиях одного и того же изображения
- Требуется метод выбора размера характеристической окрестности

«Пятна», «Капля», «Вlob» - вначале для особенностей такого типа была разработана теория выбора характерного размера

Поиск краев

Второй проход

От поиска краев к поиску блобов

- Край = «всплеск»
- Блоб = совмещение двух «всплесков»

Выбор масштаба: величина отклика лапласиана Гауссиана достигает максимума в центре блоба в том случае, если размер лапласиана «соответствует» размеру блоба

Выбор масштаба

- Нужно найти характеристический размер блоба путем свертки с Лапласианом в нескольких масштабах и найти максимальные отклики
- Однако, отклик Лапласиана затухает при увеличении масштаба:

Почему так происходит?

 Отклик производной фильтра Гаусса на идеальный край затухает с увеличением масштаба σ

Нормализация масштаба

- Отклик производной фильтра Гаусса на идеальный край затухает при увеличении σ
- Нужно домножить производную на σ для достижения инвариантности к масштабу
- Лапласиан это вторая производная фильтра гаусса, поэтому домножаем на σ²

Эффект нормализации

Нормализованный по масштабу отклик Лапласиана

Поиск блобов в 2D

Лапласиан Гауссиана: Центрально-симметричный оператор поиска блобов в 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Поиск блобов в 2D

Лапласиан Гауссиана: Центрально-симметричный оператор поиска блобов в 2D

$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Выбор масштаба

• На каком масштабе Лапласиан достигает максимума отклика на бинарный круг радиуса r?

изображение

Лапласиан

Выбор масштаба

• 2D Лапласиан задается формулой:

$$(x^2+y^2-2\sigma^2)\,e^{-(x^2+y^2)/2\sigma^2}$$
 (с точностью до масштаба)

• Для бинарного круга радиуса r, Лапласиан достигает максимума в $\sigma = r/\sqrt{2}$

Slide by S. Lazebnik

Характеристический размер

Характеристический размер определяется как масштаб, на котором достигается максимум отклика Лапласиана

Характеристический масштаб

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* **30** (2): pp 77--116.

Slide by S. Lazebnik

У «хорошего блоба» – один ярко выраженный пик функции

Многомасштабный детектор блобов

- 1. Свертываем изображение нормализованным фильтром Лапласианом на разных масштабах
- 2. Ищем максимум отклика Лапласиана в 3D

sigma = 11.9912

Эффективная реализация (DoG)

Приближение Лапласиана с помощью разницы гауссиан:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
 (Лапласиан)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
 (Разница Гауссиан)

Difference of Gaussian = DoG

Эффективная реализация (DoG)

Детектор DoG также выделяет «блобы» на изображении

Детектор Harris-Laplacian

- Выделяем углы на изображении, но с характеристическим размером
- Максимизация:
 - По изображению откликов углов Харриса
 - По масштабу Лапласиана
- Разные варианты чередования вычисления функции Харриса и Лапласиана

Сравнение

Сравнение простого детектора Харриса и Харрис-Лапласиана

Харрис

Харрис-Лаплас

- Углы и блобы разные виды локальных особенностей
- Детекторы Харрис-Лапласиан и LoG (DoG) выделяют разные множества особенностей
- Можно применять их одновременно

Дескрипторы

Точки найдены – как их сопоставить?

- Нужно как-то описать каждую точку, чтобы можно было отличать одну от другой!
- Дескриптор (Descriptor) вектор признак окрестности точки

Дескрипторы

Необходимо каждую интересную точку описать набором параметров:

Как будем поступать:

- Возьмём окрестность точки
 - Какой формы?
 - Какого размера?
- Вычислим по окрестности набор признаков
 - Какие?

Простейший подход

- Возьмём квадратные окрестности, со сторонами, параллельными строкам и столбцами изображения
- Яркости пикселов будут признаками
- Сравнивать будем как два изображения попиксельно (SAD, SSD)
- Такая окрестность инвариантна только к сдвигу изображения

Недостаток простой окрестности

- Детектор точек инвариантен к повороту, а окрестность нет
- Небольшие сдвиги, т.е. ошибки в нахождении точки делают невозможным попиксельное сравнение

Метод SIFT

- Scale-Invariant Feature Transform:
 - Детектор DoG
 - Определение положения и характерного масштаба особенности
 - Ориентация
 - Определение доминантной ориентации особенности по градиентам
 - Дескриптор
 - Использование статистик по направлению градиентам
- Устойчив к изменениям освещенности и небольшим сдвигам

David G. Lowe. "<u>Distinctive image features from scale-invariant keypoints.</u>" *IJCV* 60 (2), pp. 91-110, 2004.

Гистограмма ориентаций градиентов

- Основа дескриптора SIFT подсчёт гистограммы ориентаций градиентов
 - Вычислим направление градиента в каждом пикселе
 - Квантуем ориентации градиентов на 8 ячеек (направлений)
 - Пометим каждый пиксель номером ячейки
 - Посчитаем гистограмму направлений градиентов
 - Для каждой ячейки посчитаем количество пикселов с номером этой ячейки

Ориентация фрагмента

- Идея: найти основное (доминантное) направление градиентов пикселей в окрестности точки
- Выберем в гистограмме ячейку с максимальным значением, возьмём это направление как доминирующее

• Повернем фрагмент так, чтобы дом градиента было направлен вверх

• Если локальных максимумов несколько – считаем, что несколько точек с разной ориентацией

Окрестность особенности

- Для каждой найденной особенности теперь знаем характеристические масштаб и ориентацию
- Выберем соответствующую прямоугольную окрестность
 - (Rotation Invariant Frame)
- Приведем окрестность к стандартному размеру (масштабируем)

Пример локальных особенностей

Построение дескриптора

- Для учета пространственного распределения свойств разделим окрестность на блоки сеткой, в каждом блоке посчитаем свою гистограмму градиентов
- Обычно сетка 4х4, в каждой гистограмма с 8ю ячейками
- Стандартная длина вектора-дескриптора 128 (4*4*8)
- Можем использовать обычную меру SSD для сравнения дескрипторов
- Можем использовать другие метрики, учитывающие, что дескриптор SIFT это гистограмма

Устойчивость к сдвигам

- За счёт чего можно дескриптор сделать устойчивым к небольшим сдвигам?
- Использовать ядро при расчёте гистограммы
 - Взвешиваем вклад пикселей по ядрау
 - Веса рассчитываем в зависимости от близости к центру, по Гауссине
 - Небольшие изменения в локализации (положении, масштабе и ориентации) будут приводить к небольшим изменения дескриптора

Резюме SIFT

- Дескриптор SIFT весьма специфичен, устойчив к изменениям освещения, небольшим сдвигам
- Вся схема SIFT (детектор, выбор окрестностей, дескриптор) оказалась очень эффективным инструментов для анализа изображений

- Запатентован
- Модель для многих других дескрипторов

Пример выделения SIFT

Развитие

Дескрипторы продолжают активно исследоваться:

- Уменьшение размера
 - Разные формы сжатия
- Ускорение
 - Более простые признаки
- Обучение
 - Подбор оптимальных параметров

Резюме локальных особенностей

- Локальные характерные особенности один из основных инструментов для анализа изображений
- Особенности должны быть устойчивы к изменению положения, масштаба, ракурса и освещения изображения
- Мы рассмотрели несколько методов:
 - Детекторы: Harris, LoG, DoG, Harris-Laplace
 - Дескрипторы: Окрестность, SIFT

Сопоставление изображений

- Ищем медведя на новой картинке с помощью особых точек
- Какие могут возникнуть проблемы?
- Несколько точек могут быть похожи
- Возникают ложные соответствия

Сопоставление изображений

- У нас есть несколько гипотез возможных пар соответству точек (x,x'). Как нам выбрать правильные?
- Надо изучать гипотезы для набора разных точек в «совокупности», проверять, согласуются ли они друг с другом
- Что, в этом случае, значит «согласуются друг с другом»?
- Удовлетворяют одному геометрическому преобразованию!

Ошибки в данных

- Какая модель преобразования Т «правильная» для медведя?
 - Определенная комбинация сдвига + поворота + масштабирования
- Обозначим одним цветом пару соответствующих точек
- Какие пары соответствующих точек («соответствия») на картинке согласуются друг с другом, а какие нет?
- Элементы данных, удовлетворяющие модели Т называются «inlier» («вброс»)
- Не удовлетворяющие T «outlier» («выброс»)

Общая схема работы

- Найти особые точки, вычислить дескрипторы
- Сопоставить точки по дескрипторам, получить соответствия («putative correspondence»)
- По набору соответствий, с учетом возможных ошибок измерения положения точек и выбросов, вычислить модель преобразования Т
- Отфильтровать выбросы в соответствиях

- *Идея* проведение оценки не по всем данным, а выборке, не содержащей выбросов
- Поскольку какие элементы данных выбросы заранее неизвестно, то...
 - ...строим много выборок случайным образом!
- По каждой выборке строим гипотезу
- Среди всех гипотез выберем ту, которая лучше всего согласуется со всеми данными
- Random sample consensus (RANSAC)

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

Выборка как основа схемы

- Основой RANSAC является оценка модели по небольшой выборке $S \subset x$
- Проблема количество таких выборок огромно
- Поэтому будем строить гипотезы по выборке минимального размера
- Для прямой:

А для геометрических преобразований сколько?

Пример RANSAC

Базовая схема RANSAC

Повторяем N раз:

- (i) Построение случайной выборки S ⊂ X
- (ii) Построение гипотезы [⊙] по выборке S
- (iii) Оценка качества гипотезы ⊕ по набору исходных данных X
- (іv) Если гипотеза Э лучше предыдущих, запоминаем её

После завершения итераций:

- (i) Построение чистой выборки X' путём фильтрации выбросов, не удовлетворяющих Θ_{best}
- (ii) Уточнение гипотезы Θ_{best} по X'

Сколько гипотез нужно проверить?

$$(1-(1-e)^s)^N = 1-p$$
 $N = \log(1-p)/\log(1-(1-e)^s)$

$$N = \log(1-p)/\log(1-(1-e)^s)$$

- N количество выборок
- р вероятность получить хорошую выборку за N итераций;
- s количество элементов в выборке
- ε процент хороших точек в наборе

Количество итераций

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

- Количество выборок быстро растет с ростом размера выборки и доли выбросов
- Как быть, если мы не знаем долю выбросов в данных?

Адаптивное завершение алгоритма

- Доля е обычно заранее неизвестна, поэтому начинаем с грубой оценки (пр.: 50%), затем вычисляем оценку хороших точек для каждой гипотезы
- Процедура:
 - *N*=∞, *sample_count* =0
 - While N > sample_count
 - Строим выборку, гипотезу, оцениваем кол-во inliers
 - Установим e = 1 (number of inliers)/(total number of points)
 - Перевычислим N по e: $N = \log(1-p)/\log(1-(1-e)^s)$
 - Увеличим sample_count на 1

Функции качества

Первоначально было предложено 2 способа оценки качества гипотез:

RANSAC

$$R(\theta) = \sum_{i} p(\varepsilon_{i}(\theta)^{2}), \ p(\varepsilon_{i}^{2}) = \begin{cases} 1 & \varepsilon_{i}^{2} \leq T^{2} \\ 0 & \varepsilon_{i}^{2} > T^{2} \end{cases}, i = \overline{1,n}$$

 $\mathcal{E}_i(\theta)$ - невязка i-ой точки и оцениваемой гипотезы

LMS (Least median squares)

$$R(\theta) = median(\varepsilon_i(\theta)^2), i = \overline{1,n}$$

Большой порог – проблема RANSAC! Яндекс

Большой порог – проблема!

Проблема LMS

Нет хорошего решения, если выбросов >50%

Медиана ошибки одинакова для обоих решений

Функции качества

· M-SAC

• Возьмём робастную функцию, называемую М-оценкой, в качестве целевой функции:

$$R(\theta) = \sum_{i} p(\varepsilon_{i}(\theta)^{2}), \ p(\varepsilon_{i}^{2}) = \begin{cases} \varepsilon_{i}^{2} & \varepsilon_{i}^{2} \leq T^{2}, i = \overline{1, n} \\ T^{2} & \varepsilon_{i}^{2} > T^{2} \end{cases}$$

• M-SAC дает более точную оценку без увеличения вычислительной сложности

Лучше неверного

Пример использования

Сопоставление изображений

Сопоставление особенностей по дескрипторам – много ложных

Алгоритм сопоставления

- Дано {(x,x')} набор пар соответствующих точек на изображениях I и I'
- Вычислим модель преобразования ⊕ между изображениями I и I' по ключевым точкам с помощью RANSAC
- Отфильтруем выбросы в {(x,x')} по модели Θ
 - **Е**СЛИ ОШИБКА p(x,x') > T (x,x') выброс
- Уточним модель Θ
 - Метод наименьших квадратов по всем Inliers
 - Пересчёт inliers и outliers
 - Итеративный пересчёт
 - Нелинейная оптимизация по всем данным с М-функцией в качестве целевой

Геометрические преобразования

Ошибка переноса:

$$\sum_{i} d^{2}(x'_{i}, \overline{x}_{i}) + d^{2}(x_{i}, \overline{x}'_{i}) \quad \overline{x} = Tx \quad \overline{x}' = T^{-1}x'$$

Геометрическая ошибка:

$$\sum_{i} d^{2}(x'_{i}, \hat{x}'_{i}) + d^{2}(x_{i}, \hat{x}_{i}) \qquad \hat{x}'_{i} = T\hat{x}_{i}$$

Расчёт ошибок

• Ошибка переноса

$$\sum_{i} d^{2}(x'_{i}, \overline{x}_{i}) + d^{2}(x_{i}, \overline{x}'_{i}) \quad \overline{x} = Tx \quad \overline{x}' = T^{-1}x'$$

Рассчитывается достаточно просто

• Геометрическая ошибка

$$\sum_{i} d^{2}(x'_{i}, \hat{x}'_{i}) + d^{2}(x_{i}, \hat{x}_{i}) \quad \hat{x}'_{i} = T\hat{x}_{i}$$

Вычисление оптимальных (\hat{x}_i, \hat{x}'_i) зависит от конкретного преобразования.

Чаще всего геометрическая ошибка оптимизируется как нелинейная функция. Берутся начальные приближения для (\hat{x}_i, \hat{x}_i') и итеративно оптимизируется.

Медленный, но самый точный метод.

Ложные соответствия

500 особенностей

Соответствия (268)

Выбросы (117)

Хороших соответствий (151)

Приложение: склейка панорам

Распознавание панорам

Благодаря мощи методов SIFT и RANSAC можно в неупорядоченном наборе фотографий определить, какие относятся к какой панораме, и сшить их

M. Brown and D. Lowe, <u>"Recognizing Panoramas,"</u> ICCV 2003. http://www.cs.ubc.ca/~mbrown/panorama/panorama.html

RANSAC pros and cons

• Плюсы

- Простой и общий метод
- Применим для множества задач
- Хорошо работает на практике

• Минусы

- Много настраиваемых параметров
- Не всегда удается хорошо оценить параметры по минимальной выборке
- Иногда требуется слишком много итераций
- Не срабатывает при очень высокой доле выбросов
- Часто есть лучший способ, нежели равновероятно выбирать точки