PA2 EE21S063

September 25, 2022

0.1 MANSI KAKKAR (EE21S063)

1	PROGRAMMING ASSIGNMENT 2 OF DEEP LEARNING
	FOR IMAGING (EE5179)

	~	0 . 1	
1.0.1	Comprises	of three	sections :

- MNIST classification using CNN
- With the architecture as:
 - A convolution layer with 32 3x3 filters with stride 1 and padding 1
 - A 2x2 maxpool layer with stride 2
 - A convolution layer with 32 3x3 filters with stride 1 and padding 1
 - A 2x2 maxpool layer with stride 2
 - A fully connected layer with 500 outputs
 - A fully connected layer with 10 outputs
- Training the network for 8 epochs with learning rate = 0.01
- Visualising the Convolutional layers
- Visualising both the convolutional layers along with one fully connected layer as well
- Visualising the output of layers after each convolutional layer
- Visualising Occlusion effects on test images
- Adversarial Examples
- Non Targetted Attack
- Targetted Attack
- Adding Noise

1.1 Importing Libraries

```
[]: import sys
  import numpy as np
  import os
  import matplotlib.pyplot as plt
  import torch
  from torchvision import datasets
  import torchvision.transforms as transforms
  from torch.utils.data import Dataset, DataLoader, random_split
  import torch.nn as nn
  import torch.nn.functional as F
  import torch.optim as optim
  from torchvision.utils import make_grid

torch.manual_seed(2111)
```

[]: <torch._C.Generator at 0x7fe65dc0f030>

```
[]: %matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 10.0) # set default size of plots
```

```
[]: #Setting the device to GPU

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(device)
```

cpu

1.2 Intialisation

```
[]: epochs = 8
  learning_rate = 0.01
  batch_size = 100
  momentum = 0.9
  indices = [10, 2, 1, 63, 65, 15, 66, 60, 61, 62]
  non_targetted_n = 15000
  targetted_n = 5000
  non_targetted_step_size = 0.01
  beta = 0.001
  alpha = 0.1
```

1.3 Loading Dataset

```
[]: transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.
     \hookrightarrow1307,), (0.3081,)),])
     train_dataset = datasets.MNIST(root = "data/", train = True, transform = __
     →transform, download = True)
     test_dataset = datasets.MNIST(root = "data/", train = False, transform = u
     →transform, download = True)
     print(f"number of train samples: {len(train_dataset)}")
     print(f"number of test samples: {len(test dataset)}")
     train_loader = DataLoader(train_dataset, batch_size = batch_size, shuffle = __
     →True)
     test_loader = DataLoader(test_dataset, batch_size = batch_size, shuffle = False)
    Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
    Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to
    data/MNIST/raw/train-images-idx3-ubyte.gz
                   | 0/9912422 [00:00<?, ?it/s]
      0%1
    Extracting data/MNIST/raw/train-images-idx3-ubyte.gz to data/MNIST/raw
    Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
    Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to
    data/MNIST/raw/train-labels-idx1-ubyte.gz
                   | 0/28881 [00:00<?, ?it/s]
      0%1
    Extracting data/MNIST/raw/train-labels-idx1-ubyte.gz to data/MNIST/raw
    Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
    Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to
    data/MNIST/raw/t10k-images-idx3-ubyte.gz
      0%1
                   | 0/1648877 [00:00<?, ?it/s]
    Extracting data/MNIST/raw/t10k-images-idx3-ubyte.gz to data/MNIST/raw
    Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
    Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to
    data/MNIST/raw/t10k-labels-idx1-ubyte.gz
      0%1
                   | 0/4542 [00:00<?, ?it/s]
```

Extracting data/MNIST/raw/t10k-labels-idx1-ubyte.gz to data/MNIST/raw

```
number of train samples: 60000
number of test samples: 10000

[]: print(f"size of train dataloader is :{len(train_loader)}")
    print(f"size of test dataloader is :{len(test_loader)}")
    data = next(iter(train_loader))
    img, target = data
    target
    print(f"image shape:{img.shape}")
    print(f"Targets shape:{target.shape}")

size of train dataloader is :600
    size of test dataloader is :100
    image shape:torch.Size([100, 1, 28, 28])
    Targets shape:torch.Size([100])
```

2 MNIST CLASSIFICATION USING CNN

3 CNN Model

- log(softmax) is used here instead of softmax
- Forward function returns output with the condition, whether the output needs softmax output or not.

```
# return out

def forward(self, x, softmax = True):
    out = self.layer1(x.float())
    out = self.layer2(out)

out = out.view(out.size(0),-1)
    out = self.layer3(out)
    out = self.layer4(out)
    if softmax:
        return F.log_softmax(out, dim = 1)
    else:
        return out
```

4 Training

- Used nll loss here
- Returns training loss

```
[]: def train_model(model, data_loader, optimizer, epoch, device, out_dir = "out/"):
      model.train()
       train_loss = []
      print('For Train Dataset:\n')
       for index, (image, target) in enumerate(data_loader):
         image, target = image.to(device), target.to(device)
         optimizer.zero_grad()
         out = model(image)
         loss = F.nll_loss(out, target)
         loss.backward()
         optimizer.step()
       train_loss.append(loss.item())
       print('Epoch: {}[{}/{} ({}%)], Train Loss:{:.06f}\n'.format(epoch, ___
      →index*len(image), len(data_loader.dataset), 100.0*index/len(data_loader),
      →loss.item()))
       return train_loss
```

5 Testing

• Returns predicted values, test/validation loss and accuracy

```
[]: def test_model(model, data_loader, epoch, device, out_dir="out/"):
    #Testing
    model.eval()
```

```
correct = 0
  loss = 0
  prediction = []
  print('For Test Dataset:\n')
  with torch.no_grad():
    for index, (image, target) in enumerate(data_loader):
       image = image.to(device)
      target = target.to(device)
      out = model(image)
      loss+= F.nll_loss(out, target, reduction = "sum").item()
      predicted = out.argmax(dim=1, keepdim = True)
      correct += predicted.eq(target.view_as(predicted)).sum().item()
      prediction.append(predicted)
  loss/= len(test_loader.dataset)
  acc = correct/(len(test_loader.dataset))
  print('Epoch:{} [{}/{} ({}%)] , Test Loss:{:.4f}, Test Accuracy:{}%\n'.
→format(epoch,index*len(image), len(data_loader.dataset), 100.0*index/
→len(data_loader), loss, 100.0*acc))
  return prediction, loss, acc
```

6 Main Function

- Stochastic Gradient Descent is used as the optimiser
- Validation losses, Accuracies are stored
- Graph for Train and Validation loss, and Accuracies has been plotted in the later stages

For Train Dataset:

Epoch: 0[59900/60000 (99.833333333333333)], Train Loss:0.253941 For Test Dataset: Epoch:0 [9900/10000 (99.0%)], Test Loss:0.2527, Test Accuracy:92.74% For Train Dataset: Epoch: 1[59900/60000 (99.83333333333333)], Train Loss:0.105856 For Test Dataset: Epoch:1 [9900/10000 (99.0%)], Test Loss:0.1518, Test Accuracy:95.57% For Train Dataset: Epoch: 2[59900/60000 (99.833333333333333)], Train Loss:0.089902 For Test Dataset: Epoch:2 [9900/10000 (99.0%)], Test Loss:0.1136, Test Accuracy:96.75% For Train Dataset: Epoch: 3[59900/60000 (99.833333333333333)], Train Loss:0.071108 For Test Dataset: Epoch:3 [9900/10000 (99.0%)], Test Loss:0.0818, Test Accuracy:97.56% For Train Dataset: Epoch: 4[59900/60000 (99.833333333333333)], Train Loss:0.070827 For Test Dataset: Epoch:4 [9900/10000 (99.0%)], Test Loss:0.0738, Test Accuracy:97.7400000000001% For Train Dataset: Epoch: 5[59900/60000 (99.833333333333333)], Train Loss:0.066107 For Test Dataset:

Epoch:5 [9900/10000 (99.0%)], Test Loss:0.0670, Test Accuracy:97.84%

```
For Train Dataset:

Epoch: 6[59900/60000 (99.833333333333333)], Train Loss:0.042361

For Test Dataset:

Epoch:6 [9900/10000 (99.0%)], Test Loss:0.0554, Test Accuracy:98.13%

For Train Dataset:

Epoch: 7[59900/60000 (99.833333333333333)], Train Loss:0.059322

For Test Dataset:

Epoch:7 [9900/10000 (99.0%)], Test Loss:0.0485, Test Accuracy:98.3500000000001%

[]: image, correct = next(iter(test_loader))
```

7 Visualising the outputs

Correct class labels along with the predicted class labels corresponding to the images of all the numbers from 0 to 9 have been plotted to show the results

```
[]: print(image.shape)
    print(correct.shape)
    print(len(predicted))
    for i in range(10):
        print("Index is: {} \t Correct: {} \t Predicted: {}\n".format(i, \" \correct[indices[i]], predicted[0][indices[i]]))
        plt.imshow(image[indices[i]].reshape(28,28).cpu())
        plt.show()
```


8 Plot Loss Graphs and Accuracy

```
[]: #plot
   plt.plot(np.asfarray(train_losses)[::int(len(train_losses)/epochs)])
   plt.plot(np.asfarray(validation_losses))
   plt.xlabel('Epoch')
   plt.ylabel('Loss')
   plt.title('train and test losses')
   plt.legend(['Training Loss', 'Validation Loss'])
   plt.show()
```

```
#plot Accuracies
plt.plot(np.asfarray(validation_accuracies))
plt.xlabel('Accuracy')
plt.ylabel('Accuracy plot')
plt.title('Epoch')
plt.show()
```


9 Average Prediction Accuracy

```
[]: #Average prediction accuracy
acc = np.mean(np.asarray(validation_accuracies))
print(f'Average prediction Accuracy is:{acc*100}%')
```

Average prediction Accuracy is:96.83500000000001%

10 Taking Random Images and plotting them

```
[]: rand_index = np.random.randint(low = 0, high = 9999, size = 5)
for idx in rand_index:
    img = test_loader.dataset.data[idx, :, :].clone()
    with torch.no_grad():
        if device==torch.device("cuda"):
            img = img.reshape(1,1,28,28).cuda().float()
        else:
            img = img.reshape(1,1,28,28).float()
        out = model.forward(img).detach().cpu().numpy()
        pred = np.argmax(out)
        plt.imshow(img.detach().cpu().numpy().reshape(28,28))
        plt.title(f'Predicted as {pred}')
        plt.show()
```


11 Dimensions of Input and Output of each layer

• Layer 1

After Convolution

- Input 28 X 28
- Output 28 X 28 X 32

After Maxpool

- Input 28 X 28 X 32
- Ouput 14 X 14 X 32

• Layer 2

After Convolution

- Input 14 X 14 X 32
- Output 14 X 14 X 32

After Maxpool

- Input 14 X 14 X 32
- Ouput 7 X 7 X 32
- Layer 3

Fully Connected Layer

- Input 7 X 7 X 32
- Ouput 500
- Layer 4

Fully Connected Layer

- Input 500
- Ouput 10

12 Parameters

• Layer 1

Convolutional layer 1

- Weights = 3 X 3 X 28 = 288
- Biases = 32
- Total = 320

Weights for Pooling Layer is 0

• Layer 2

Convolutional layer 2

- Weights = 32 X 3 X 3 X 32 = 9216
- Biases = 32
- Total = 9248

Weights for Pooling Layer is 0

• Layer 3

Fully Connected Layer 1

- Weights = 7 X 7 X 32 X 500 = 784000
- Biases = 500
- Total = 784500

• Layer 4

Fully Connected Layer 2

```
- Weights = 500 X 10 = 5000

- Biases = 10

- Total = 5010
```

So, Total number of parameters = 799078

13 Number of Neurons

- Layer 1
- $1 \times 3 \times 3 \times 32 = 288$
- Laver 2
- $3 \times 3 \times 3 \times 32 = 9216$
- Layer 3
- 500
- Layer 4
- 10

So, total number of neurons are = 9564

14 Batch Normalisation

• Batch normalisation shows almost same effects as the model without batch normalisation, not much change in accuracy

15 VISUALISING THE MODEL

16 Plot Kernels

Visualising kernel 1

• Convolutional layer 1 _____

```
[]: kernel1 = model.conv1.weight.detach().clone()
   kernel1 = kernel1.cpu()
   kernel1 = kernel1-kernel1.min()
   kernel1 = kernel1/kernel1.max()
   img1 = make_grid(kernel1)
   plt.imshow(img1.permute(1,2,0))
   plt.title("First Convolution Layer Filters")
   plt.show()
```


Visualising Kernel 2

• Convolutional Layer 2 ____

Choose the filter number between 0 and 31 which you want to visualize. 3 shape of the image is torch.Size([3, 22, 42])

Visualising kernel 3

• Fully Connected layer 1 _____

```
[]: kernel3 = model.fc1.weight.detach().clone()
   kernel3 = kernel3.cpu()
   kernel3 = kernel3 - kernel3.min()
   kernel3 = kernel3/kernel3.max()
   img = make_grid(kernel3)
   print(f'shape of the image is {img.shape}')
   plt.imshow(img.permute(1, 2, 0))
```

shape of the image is torch.Size([3, 500, 1568])

[]: <matplotlib.image.AxesImage at 0x7fe659ea6ed0>

16.1 Observations:

- Convolutional kernel 1 is more sharp whereas Convolutional kernel 2 is more smoothened.
- In convolutional kernel we can white and black patches in grids whereas in Convolutional kernel 2 we can observe grey patches in all grids

17 Visualising Features

```
[]: index = int(input("\nChoose the number for which you want to visualise feature

∪
     →map and occlusion effects\t"))
     test img = test loader.dataset.data[[index], :, :].clone()
     if (device == torch.device("cuda")):
       test_image = test_img.reshape(1,1,28,28).clone().cuda().float()
     else:
       test_image = test_img.reshape(1,1,28,28).clone().float()
     with torch.no_grad():
       out_1 = model.layer1[0].forward(test_image).reshape(32,1,28,28)
       out_1 = out_1.cpu()
       out_1 = out_1 - out_1.min()
       out_1 = out_1/out_1.max()
       img = make_grid(out_1)
      plt.imshow(img.permute(1,2,0))
      plt.title("feature map for input after convolution layer 1")
      plt.show()
     out_2 = model.layer1.forward(test_image)
     out_2 = model.layer2[0].forward(out_2)
     out_2 = out_2.cpu()
     out_2 = out_2 - out_2.min()
     out_2 = out_2/out_2.max()
     out_2 = out_2.reshape(32,1,14,14)
     img = make_grid(out_2)
     plt.imshow(img.permute(1,2,0))
     plt.title("feature map for input after convolution layer 2")
     plt.show()
```

Choose the number for which you want to visualise feature map and occlusion effects 4

17.1 Observations:

Ouput of Convolutional layer 1 shows proper feature extraction

17.2 Visualising Occluding parts of the Image

```
[]: dimension = len(range(0,14,2))
     prob_map = np.zeros((dimension, dimension), dtype = float)
     max_prob_class_map = np.zeros_like(prob_map)
     for y in range(0,14,2):
       for x in range(0,14,2):
         temp = test_img.clone()
         temp[y:y+14, x:x+14] = 0
         with torch.no grad():
           if(device==torch.device("cuda")):
             temp = temp.clone().reshape(1,1,28,28).cuda().float()
             temp = temp.clone().reshape(1,1,28,28).float()
           out = model.forward(temp, softmax = False)
           probab = F.softmax(out, dim=1).cpu().detach().numpy()
           prediction = np.argmax(probab)
           prob = probab[:, index]
           max_prob_class = prediction
           prob_map[int(y/2), int(x/2)] = prob[0]
           \max_{prob\_class\_map[int(y/2), int(x/2)]} = \max_{prob\_class\_max\_prob\_class\_max}
           if ((x\%4 == 0)\&(y\%4==0)):
             plt.imshow(temp.cpu().numpy().reshape(28,28))
             plt.title("probability of {} is {:.6f}".format(index, prob[0]))
             plt.show()
     print("\nProbability of {} as patch is move is :".format(index))
     print(prob_map)
     print("\nMaximum probable class as the patch is moved is :")
     print(max_prob_class_map)
```


Probability of 4 as patch is move is :

```
[[1. 1. 0. 0. 0. 0. 0.]
```

[1. 1. 1. 1. 1. 1. 1.]

[1. 1. 1. 1. 1. 1.]

[1. 1. 1. 1. 1. 1. 1.]

[1. 1. 1. 1. 1. 1. 1.]

[1. 1. 1. 1. 1. 1. 1.]

[1. 1. 1. 1. 1. 1.]]

Maximum probable class as the patch is moved is :

[[4. 4. 5. 1. 5. 7. 7.]

[4. 4. 4. 4. 4. 4. 4.]

```
[4. 4. 4. 4. 4. 4. 4. 4.]

[4. 4. 4. 4. 4. 4. 4.]

[4. 4. 4. 4. 4. 4. 4.]

[4. 4. 4. 4. 4. 4. 4.]
```

17.3 Observations:

• For the patches at the edges the model is able to make right predictions whereas if the patch lies around the center of the image model gives wrong predicted class

18 Adversarial Examples

19 Non - Targetted Attack

```
[]: index = int(input("\n Input the number for which you want to generate the non_
     →targetted adversarial image\t"))
     gaussian_noise = np.random.normal(loc = 128, scale = 10, size = (28,28))
     if(device==torch.device("cuda")):
       gaussian_noise_ = torch.from_numpy(gaussian_noise).reshape(1,1,28,28).cuda().
     →float()
     else:
       gaussian_noise_ = torch.from_numpy(gaussian_noise).reshape(1,1,28,28).float()
     logit_values = []
     for i in range(non targetted n):
       gaussian_noise_ = torch.autograd.Variable(gaussian_noise_, requires_grad =__
     →True)
       out = model.forward(gaussian_noise_, softmax = False)
       loss = out[:, index]
       loss_index = loss.cpu().detach().numpy()
       logit_values.append(loss_index)
       if (i\%100==0):
         print("Adversarial Image of number: {}\t : For Iteration: {}\tLogit value:__
      →{}".format(index, i, loss_index))
       loss.backward(retain graph = True)
       d = torch.sign(gaussian_noise_.grad.data)
       gaussian_noise_ = gaussian_noise_ + non_targetted_step_size*d
     plt.plot(np.asfarray(logit_values))
     plt.title(f"Cost function for {index}")
     plt.show()
     print("Adversarial Image of number: {}\t : For Iteration: {}\tLogit value: {}".
      →format(index, i, loss_index))
```

```
noise_kernel = gaussian_noise_.cpu().reshape(28,28).detach().numpy()
noise_kernel = noise_kernel - noise_kernel.min()
noise_kernel = noise_kernel/noise_kernel.max()
plt.imshow(noise_kernel)
plt.colorbar()
plt.title(f"Non-Targetted Adversarial Image gernerated for {i}")
plt.show()
```

Input the number for which you want to generate the non targetted adversarial image 2 Logit value: [-38.10905] Adversarial Image of number: 2 : For Iteration: 0 Adversarial Image of number: 2 Logit value: : For Iteration: 100 [-23.902775]Adversarial Image of number: 2 : For Iteration: 200 Logit value: [-9.716741] Adversarial Image of number: 2 Logit value: [4.215282] : For Iteration: 300 Adversarial Image of number: 2 Logit value: [17.900095] : For Iteration: 400 Adversarial Image of number: 2 : For Iteration: 500 Logit value: [32.006042] Adversarial Image of number: 2 Logit value: [46.26215] : For Iteration: 600 Adversarial Image of number: 2 : For Iteration: 700 Logit value: [60.40389] Adversarial Image of number: 2 : For Iteration: 800 Logit value: [74.6654] Adversarial Image of number: 2 : For Iteration: 900 Logit value: [88.92104] Adversarial Image of number: 2 : For Iteration: 1000 Logit value: [103.25814] Adversarial Image of number: 2 : For Iteration: 1100 Logit value: [117.65619] : For Iteration: 1200 Logit value: [131.97504] Adversarial Image of number: 2 Adversarial Image of number: 2 : For Iteration: 1300 Logit value: [146.67616] : For Iteration: 1400 Logit value: [161.44267] Adversarial Image of number: 2 Adversarial Image of number: 2 : For Iteration: 1500 Logit value: [176.2153] Adversarial Image of number: 2 : For Iteration: 1600 Logit value: [191.1542] Adversarial Image of number: 2 : For Iteration: 1700 Logit value: [206.23053] Adversarial Image of number: 2 : For Iteration: 1800 Logit value: [221.48038] Adversarial Image of number: 2 : For Iteration: 1900 Logit value: [236.97792] Adversarial Image of number: 2 : For Iteration: 2000 Logit value: [252.66455] Adversarial Image of number: 2 : For Iteration: 2100 Logit value: [268.63437] Adversarial Image of number: 2 : For Iteration: 2200 Logit value: [284.8304] : For Iteration: 2300 Logit value: [301.20212] Adversarial Image of number: 2 : For Iteration: 2400 Logit value: [317.70517] Adversarial Image of number: 2 Adversarial Image of number: 2 : For Iteration: 2500 Logit value: [333.96118] Adversarial Image of number: 2 : For Iteration: 2600 Logit value: [350.2793] : For Iteration: 2700 Logit value: [367.25452] Adversarial Image of number: 2 Adversarial Image of number: 2 : For Iteration: 2800 Logit value: [384.31528] Adversarial Image of number: 2 : For Iteration: 2900 Logit value: [401.50894] Adversarial Image of number: 2 : For Iteration: 3000 Logit value: [418.64432] Adversarial Image of number: 2 : For Iteration: 3100 Logit value: [435.8132] Adversarial Image of number: 2 : For Iteration: 3200 Logit value: [453.25522] Adversarial Image of number: 2 : For Iteration: 3300 Logit value: [470.81445] Adversarial Image of number: 2 : For Iteration: 3400 Logit value: [488.04984]

```
Adversarial Image of number: 2
                                  : For Iteration: 3500 Logit value: [505.14438]
                                  : For Iteration: 3600 Logit value: [522.17834]
Adversarial Image of number: 2
                                  : For Iteration: 3700 Logit value: [539.2304]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 3800 Logit value: [556.4044]
                                  : For Iteration: 3900 Logit value: [573.7238]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 4000 Logit value: [591.1583]
                                  : For Iteration: 4100 Logit value: [608.6943]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 4200 Logit value: [626.3247]
Adversarial Image of number: 2
                                  : For Iteration: 4300 Logit value: [643.8217]
Adversarial Image of number: 2
                                  : For Iteration: 4400 Logit value: [661.35675]
Adversarial Image of number: 2
                                  : For Iteration: 4500 Logit value: [678.84576]
Adversarial Image of number: 2
                                  : For Iteration: 4600 Logit value: [696.38837]
Adversarial Image of number: 2
                                  : For Iteration: 4700 Logit value: [713.8523]
                                  : For Iteration: 4800 Logit value: [731.31213]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 4900 Logit value: [748.7936]
                                  : For Iteration: 5000 Logit value: [766.17584]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 5100 Logit value: [783.5324]
                                  : For Iteration: 5200 Logit value: [800.7908]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 5300 Logit value: [817.8989]
                                  : For Iteration: 5400 Logit value: [834.90753]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 5500 Logit value: [851.664]
Adversarial Image of number: 2
                                  : For Iteration: 5600 Logit value: [868.3288]
                                  : For Iteration: 5700 Logit value: [884.7343]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 5800 Logit value: [900.97833]
Adversarial Image of number: 2
                                  : For Iteration: 5900 Logit value: [917.2064]
Adversarial Image of number: 2
                                  : For Iteration: 6000 Logit value: [933.4102]
                                  : For Iteration: 6100 Logit value: [949.7841]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 6200 Logit value: [966.2858]
                                  : For Iteration: 6300 Logit value: [982.8173]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 6400 Logit value: [999.3483]
Adversarial Image of number: 2
                                  : For Iteration: 6500 Logit value:
[1015.89667]
                                  : For Iteration: 6600 Logit value: [1032.4503]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 6700 Logit value: [1048.8296]
Adversarial Image of number: 2
                                  : For Iteration: 6800 Logit value: [1065.4583]
Adversarial Image of number: 2
                                  : For Iteration: 6900 Logit value: [1082.1415]
                                  : For Iteration: 7000 Logit value: [1098.8428]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 7100 Logit value: [1115.4437]
Adversarial Image of number: 2
                                  : For Iteration: 7200 Logit value: [1132.0876]
Adversarial Image of number: 2
                                  : For Iteration: 7300 Logit value: [1148.744]
                                  : For Iteration: 7400 Logit value: [1165.369]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 7500 Logit value: [1182.0908]
Adversarial Image of number: 2
                                  : For Iteration: 7600 Logit value: [1198.8019]
                                  : For Iteration: 7700 Logit value: [1215.5239]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 7800 Logit value: [1232.2323]
                                  : For Iteration: 7900 Logit value: [1248.9297]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 8000 Logit value: [1265.6167]
Adversarial Image of number: 2
                                  : For Iteration: 8100 Logit value: [1282.3741]
```

```
: For Iteration: 8200 Logit value: [1299.1537]
Adversarial Image of number: 2
                                  : For Iteration: 8300 Logit value: [1315.8593]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 8400 Logit value: [1332.4738]
Adversarial Image of number: 2
                                  : For Iteration: 8500 Logit value: [1349.1443]
Adversarial Image of number: 2
                                  : For Iteration: 8600 Logit value: [1365.819]
Adversarial Image of number: 2
                                  : For Iteration: 8700 Logit value: [1382.4961]
Adversarial Image of number: 2
                                  : For Iteration: 8800 Logit value: [1399.188]
Adversarial Image of number: 2
                                  : For Iteration: 8900 Logit value: [1415.8092]
Adversarial Image of number: 2
                                  : For Iteration: 9000 Logit value: [1432.4487]
Adversarial Image of number: 2
                                  : For Iteration: 9100 Logit value: [1449.1019]
                                  : For Iteration: 9200 Logit value: [1465.7426]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 9300 Logit value: [1482.3683]
Adversarial Image of number: 2
                                  : For Iteration: 9400 Logit value: [1499.0144]
                                  : For Iteration: 9500 Logit value: [1515.7329]
Adversarial Image of number: 2
                                  : For Iteration: 9600 Logit value: [1532.6]
Adversarial Image of number: 2
Adversarial Image of number: 2
                                  : For Iteration: 9700 Logit value: [1549.5641]
Adversarial Image of number: 2
                                  : For Iteration: 9800 Logit value: [1566.52]
Adversarial Image of number: 2
                                  : For Iteration: 9900 Logit value: [1583.4691]
Adversarial Image of number: 2
                                  : For Iteration: 10000
                                                                Logit value:
[1600.4056]
Adversarial Image of number: 2
                                  : For Iteration: 10100
                                                                Logit value:
[1617.3842]
Adversarial Image of number: 2
                                  : For Iteration: 10200
                                                                Logit value:
[1634.3678]
Adversarial Image of number: 2
                                  : For Iteration: 10300
                                                                Logit value:
[1651.3531]
Adversarial Image of number: 2
                                  : For Iteration: 10400
                                                                Logit value:
[1668.4207]
Adversarial Image of number: 2
                                  : For Iteration: 10500
                                                                 Logit value:
[1685.463]
                                  : For Iteration: 10600
                                                                Logit value:
Adversarial Image of number: 2
[1702.5176]
Adversarial Image of number: 2
                                  : For Iteration: 10700
                                                                 Logit value:
[1719.5729]
Adversarial Image of number: 2
                                  : For Iteration: 10800
                                                                Logit value:
[1736.6105]
Adversarial Image of number: 2
                                  : For Iteration: 10900
                                                                 Logit value:
[1753.6605]
                                  : For Iteration: 11000
Adversarial Image of number: 2
                                                                Logit value:
[1770.7472]
Adversarial Image of number: 2
                                  : For Iteration: 11100
                                                                Logit value:
[1787.7692]
Adversarial Image of number: 2
                                  : For Iteration: 11200
                                                                 Logit value:
[1804.8456]
Adversarial Image of number: 2
                                  : For Iteration: 11300
                                                                 Logit value:
[1821.9634]
Adversarial Image of number: 2
                                  : For Iteration: 11400
                                                                 Logit value:
[1838.98]
```

Adversarial [1855.9265]	Image	of	number:	2	:	For	Iteration:	11500	Logit	value:
Adversarial [1872.9681]	Image	of	number:	2	:	For	Iteration:	11600	Logit	value:
Adversarial [1890.0127]	Image	of	number:	2	:	For	Iteration:	11700	Logit	value:
Adversarial [1907.1073]	Image	of	number:	2	:	For	Iteration:	11800	Logit	value:
Adversarial [1924.1901]	Image	of	number:	2	:	For	Iteration:	11900	Logit	value:
Adversarial [1941.2793]	Image	of	number:	2	:	For	Iteration:	12000	Logit	value:
Adversarial [1958.3485]	Image	of	number:	2	:	For	Iteration:	12100	Logit	value:
Adversarial [1975.4581]	_						Iteration:			value:
Adversarial [1992.6053]							Iteration:		J	value:
Adversarial [2009.7645]							Iteration:			value:
Adversarial [2026.9603]							Iteration:			value:
Adversarial							Iteration:		J	value:
Adversarial							Iteration:			value:
Adversarial							<pre>Iteration: Iteration:</pre>			value:
Adversarial [2093.7607] Adversarial							Iteration:			value:
[2109.8857] Adversarial							Iteration:		J	value:
[2125.804] Adversarial							Iteration:			value:
[2141.5461] Adversarial							Iteration:		J	value:
[2157.0789] Adversarial							Iteration:			value:
[2172.361] Adversarial	· ·						Iteration:			value:
[2187.468] Adversarial							Iteration:			value:
[2202.2654] Adversarial							Iteration:			value:
[2216.7478] Adversarial [2231.1494]	Image	of	number:	2	:	For	Iteration:	13800	Logit	value:

Adversarial [2245.4944]	Image	of	number:	2	:	For	Iteration:	13900	Logit	value:
Adversarial [2259.7761]	Image	of	number:	2	:	For	Iteration:	14000	Logit	value:
Adversarial [2274.0222]	Image	of	number:	2	:	For	Iteration:	14100	Logit	value:
Adversarial [2288.1853]	Image	of	number:	2	:	For	Iteration:	14200	Logit	value:
Adversarial [2302.2708]	Image	of	number:	2	:	For	Iteration:	14300	Logit	value:
Adversarial [2316.3354]	Image	of	number:	2	:	For	Iteration:	14400	Logit	value:
Adversarial [2330.3577]	Image	of	number:	2	:	For	Iteration:	14500	Logit	value:
Adversarial [2344.2625]	Image	of	number:	2	:	For	Iteration:	14600	Logit	value:
Adversarial [2358.0461]	Image	of	number:	2	:	For	Iteration:	14700	Logit	value:
Adversarial [2371.8577]	Image	of	number:	2	:	For	Iteration:	14800	Logit	value:
Adversarial [2385.6401]	Image	of	number:	2	:	For	Iteration:	14900	Logit	value:

Adversarial Image of number: 2 : For Iteration: 14999 Logit value: [2399.2395]

19.1 Observations:

- The cost function is always increasing
- The Adversarial Image does not complletely look like the original image (2) but still somehow it is a bit realisable.
- For other images also this snippet was run, and it provided similar observations

19.2 Targetted Attack

```
[]: look like = int(input("Input the number you want to generate image to look_
     →like\t"))
     classify_as = int(input("Input the number you want the original number to be_
     if(device==torch.device("cuda")):
       image = test_loader.dataset.data[indices[look_like], :, :].clone().
     \rightarrowreshape(1,1,28,28).cuda().float()
     else:
       image = test loader.dataset.data[indices[look like], :, :].clone().
     \rightarrowreshape(1,1,28,28).float()
     gaussian_noise = np.random.normal(loc = 128, scale = 10, size = (28,28))
     if(device==torch.device("cuda")):
       gaussian_noise_ = torch.from_numpy(gaussian_noise).reshape(1,1,28,28).cuda().
     →float()
     else:
       gaussian_noise_ = torch.from_numpy(gaussian_noise).reshape(1,1,28,28).float()
     for i in range(targetted n):
       gaussian_noise_ = torch.autograd.Variable(gaussian_noise_, requires_grad = __
      →True)
       out = model.forward(gaussian_noise_, softmax = False)
       probab = F.softmax(out, dim = 1)
       to_be_predicted_prob = probab[:,classify_as].cpu().detach().numpy()
      logit_value = out[:, classify_as]
      mse_error = F.mse_loss(gaussian_noise_, image)
       mse_error_ = mse_error.cpu().detach().numpy()
      loss = logit_value - beta*mse_error
       if (i\%20==0):
         print("Iteration: {}\t Number: {}\t Classified with probability: {}\t MSE:⊔
      →{}\n".format(i, look_like, to_be_predicted_prob, mse_error_))
      loss.backward(retain_graph = True)
       d = torch.sign(gaussian_noise_.grad.data)
       gaussian_noise_ = gaussian_noise_ + non_targetted_step_size*d
     print("Iteration: {}\t Number: {}\t Classified with probability: {}\t MSE:__
      →{}\n".format(i, look_like, to_be_predicted_prob, mse_error_))
     classified_img = gaussian_noise_.cpu().reshape(28,28).detach().numpy()
     classified_img = classified_img - classified_img.min()
     classified_img = classified_img/classified_img.max()
     f, ax = plt.subplots(1,2)
     ax[0].imshow(image.cpu().reshape(28,28).numpy())
     ax[0].set_title(f"Target Image of {look_like}")
     ax[1].imshow(classified_img)
     ax[1].set_title(f"Generated image of {look_like} classified as {classify_as}")
     plt.show()
```

Input the number you want to generate image to look like

3

Input the number Iteration: 0 15350.0126953125	Number: 3	original number to Classified with			6 MSE:
Iteration: 20 15345.30078125	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 40 15340.4697265625	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 60 15336.3056640625	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 80 15332.5966796875	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 100 15328.9609375	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 120 15324.677734375	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 140 15320.29296875	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 160 15316.3662109375	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 180 15311.423828125	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 200 15306.5341796875	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 220 15301.1328125	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 240 15296.1083984375	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 260 15290.966796875	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 280 15284.8369140625	Number: 3	Classified with	probability:	[0.]	MSE:
Iteration: 300 15278.8818359375	Number: 3	Classified with	probability:	[0.]	MSE:

Iteration: 320 15273.216796875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 340 15268.662109375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 360 15264.642578125	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 380 15260.208984375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 400 15255.1240234375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 420 15249.7861328125	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 440 15244.2216796875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 460 15239.095703125	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 480 15233.3203125	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 500 15227.287109375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 520 15220.9375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 540 15214.5380859375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 560 15208.6640625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 580 15202.515625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 600 15196.484375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 620 15190.099609375	Number:	3	Classified	with	probability:	[0.]	MSE:

Iteration: 640 15183.4287109375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 660 15177.16796875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 680 15171.1875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 700 15165.4443359375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 720 15159.607421875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 740 15153.7880859375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 760 15148.345703125	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 780 15142.5654296875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 800 15136.041015625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 820 15129.14453125	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 840 15122.724609375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 860 15116.6630859375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 880 15110.82421875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 900 15104.724609375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 920 15098.357421875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 940 15091.7451171875	Number:	3	Classified	with	probability:	[0.]	MSE:

Iteration: 960 15085.2705078125	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 980 15079.072265625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1000 15072.7744140625		3	Classified	with	probability:	[0.]	MSE:
Iteration: 1020 15066.724609375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1040 15060.9443359375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1060 15055.201171875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1080 15049.1884765625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1100 15043.05859375	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1120 15036.9072265625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1140 15030.388671875	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1160 15023.9208984375		3	Classified	with	probability:	[0.]	MSE:
Iteration: 1180 15017.3759765625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1200 15010.94140625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1220 15004.6552734375		3	Classified	with	probability:	[0.]	MSE:
Iteration: 1240 14998.3056640625	Number:	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1260 14992.1123046875	Number:	3	Classified	with	probability:	[0.]	MSE:

Iteration: 1280 Number: 14985.853515625	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1300 Number: 14979.6953125	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1320 Number: 14973.4921875	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1340 Number: 14967.4208984375	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1360 Number: 14961.7744140625	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1380 Number: 14956.099609375	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1400 Number: 14949.9248046875	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1420 Number: 14943.5458984375	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1440 Number: 14936.8720703125	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1460 Number: 14930.015625	3	Classified	with	probability:	[0.]	MSE:
Iteration: 1480 Number: 14923.41796875	3	Classified	with	probability:	[6.e-45]	MSE:
Iteration: 1500 Number: 14917.083984375	3	Classified	with	probability:	[6.4e-44]	MSE:
Iteration: 1520 Number: MSE: 14911.0205078125	3	Classified	with	probability:	[7.82e-43]	
Iteration: 1540 Number: MSE: 14905.205078125	3	Classified	with	probability:	[9.792e-42]]
Iteration: 1560 Number: MSE: 14899.5322265625	3	Classified	with	probability:	[1.29145e-4	10]
Iteration: 1580 Number: MSE: 14893.703125	3	Classified	with	probability:	[1.732979e-	-39]

Iteration: 1600 Number: 3 Classified with probability: [2.299814e-38]

MSE: 14888.052734375

Iteration: 1620 Number: 3 Classified with probability: [2.9768519e-37]

MSE: 14882.521484375

Iteration: 1640 Number: 3 Classified with probability: [3.760498e-36]

MSE: 14877.052734375

Iteration: 1660 Number: 3 Classified with probability: [4.7243408e-35]

MSE: 14871.0048828125

Iteration: 1680 Number: 3 Classified with probability: [5.847755e-34]

MSE: 14865.025390625

Iteration: 1700 Number: 3 Classified with probability: [7.54102e-33]

MSE: 14859.462890625

Iteration: 1720 Number: 3 Classified with probability: [1.0550139e-31]

MSE: 14854.81640625

Iteration: 1740 Number: 3 Classified with probability: [1.4597837e-30]

MSE: 14850.1015625

Iteration: 1760 Number: 3 Classified with probability: [2.0532223e-29]

MSE: 14845.2666015625

Iteration: 1780 Number: 3 Classified with probability: [2.8642108e-28]

MSE: 14840.259765625

Iteration: 1800 Number: 3 Classified with probability: [4.090465e-27]

MSE: 14835.263671875

Iteration: 1820 Number: 3 Classified with probability: [6.0899205e-26]

MSE: 14830.5380859375

Iteration: 1840 Number: 3 Classified with probability: [9.194063e-25]

MSE: 14825.8408203125

Iteration: 1860 Number: 3 Classified with probability: [1.3915011e-23]

MSE: 14821.234375

Iteration: 1880 Number: 3 Classified with probability: [2.1142486e-22]

MSE: 14816.2294921875

Iteration: 1900 Number: 3 Classified with probability: [3.2386247e-21]

MSE: 14811.1953125

Iteration: 1920 Number: 3 Classified with probability: [4.9481776e-20] MSE: 14806.2041015625

Iteration: 1940 Number: 3 Classified with probability: [7.5776966e-19]

MSE: 14801.099609375

Iteration: 1960 Number: 3 Classified with probability: [1.1680073e-17]

MSE: 14796.1611328125

Iteration: 1980 Number: 3 Classified with probability: [1.7698313e-16]

MSE: 14791.5126953125

Iteration: 2000 Number: 3 Classified with probability: [2.5987644e-15]

MSE: 14786.673828125

Iteration: 2020 Number: 3 Classified with probability: [3.8174582e-14]

MSE: 14781.798828125

Iteration: 2040 Number: 3 Classified with probability: [5.8171805e-13]

MSE: 14776.9873046875

Iteration: 2060 Number: 3 Classified with probability: [8.755142e-12]

MSE: 14772.4462890625

Iteration: 2080 Number: 3 Classified with probability: [1.1767816e-10]

MSE: 14767.9765625

Iteration: 2100 Number: 3 Classified with probability: [1.5703416e-09]

MSE: 14763.6923828125

Iteration: 2120 Number: 3 Classified with probability: [1.9813388e-08]

MSE: 14759.6181640625

Iteration: 2140 Number: 3 Classified with probability: [2.4227307e-07]

MSE: 14755.35546875

Iteration: 2160 Number: 3 Classified with probability: [2.9555833e-06]

MSE: 14751.3623046875

Iteration: 2180 Number: 3 Classified with probability: [3.5680332e-05]

MSE: 14747.7529296875

Iteration: 2200 Number: 3 Classified with probability: [0.00042684]

MSE: 14744.1591796875

Iteration: 2220 Number: 3 Classified with probability: [0.00492496]

MSE: 14740.7431640625

Iteration: 2240 Number: MSE: 14737.974609375	3	Classified	with	probability:	[0.0504693	9]
Iteration: 2260 Number: MSE: 14735.4501953125	3	Classified	with	probability:	[0.3456434	6]
Iteration: 2280 Number: MSE: 14732.958984375	3	Classified	with	probability:	[0.8467935	3]
Iteration: 2300 Number: MSE: 14730.533203125	3	Classified	with	probability:	[0.9841053]
Iteration: 2320 Number: MSE: 14728.115234375	3	Classified	with	probability:	[0.9985868]
Iteration: 2340 Number: MSE: 14725.6220703125	3	Classified	with	probability:	[0.9998797]]
Iteration: 2360 Number: MSE: 14723.2998046875	3	Classified	with	probability:	[0.9999897	5]
Iteration: 2380 Number: MSE: 14721.025390625	3	Classified	with	probability:	[0.9999991	7]
Iteration: 2400 Number: MSE: 14718.60546875	3	Classified	with	probability:	[0.9999999]
Iteration: 2420 Number: 14716.486328125	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2440 Number: 14714.2861328125	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2460 Number: 14712.177734375	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2480 Number: 14709.8623046875	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2500 Number: 14707.6220703125	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2520 Number: 14705.66796875	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2540 Number: 14703.94140625	3	Classified	with	probability:	[1.]	MSE:

Iteration: 2560 14702.1943359375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2580 14700.486328125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2600 14699.0380859375		3	Classified	with	probability:	[1.]	MSE:
Iteration: 2620 14697.587890625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2640 14696.1923828125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 2660 14694.8544921875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2680 14693.736328125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2700 14692.521484375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2720 14691.69140625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2740 14690.9833984375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2760 14690.328125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2780 14689.67578125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2800 14688.923828125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2820 14688.17578125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2840 14687.595703125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2860 14687.5302734375	Number:	3	Classified	with	probability:	[1.]	MSE:

Iteration: 2880 14687.701171875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2900 14687.7470703125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 2920 14688.103515625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2940 14688.67578125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 2960 14689.1708984375		3	Classified	with	probability:	[1.]	MSE:
Iteration: 2980 14689.9501953125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 3000 14691.0	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3020 14691.8955078125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 3040 14692.5390625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3060 14693.26171875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3080 14694.0927734375		3	Classified	with	probability:	[1.]	MSE:
Iteration: 3100 14694.99609375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3120 14695.6044921875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3140 14696.2734375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3160 14697.125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3180 14697.845703125	Number:	3	Classified	with	probability:	[1.]	MSE:

Iteration: 3200 14698.388671875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3220 14698.783203125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3240 14699.6953125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3260 14700.8056640625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3280 14701.9716796875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3300 14703.5234375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3320 14705.291015625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3340 14707.2265625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3360 14709.24609375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3380 14711.1328125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3400 14713.07421875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3420 14715.111328125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3440 14717.0498046875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3460 14719.1455078125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 3480 14720.8720703125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3500 14722.826171875	Number:	3	Classified	with	probability:	[1.]	MSE:

Iteration: 3520 14724.7734375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3540 14726.5048828125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 3560 14728.1806640625		3	Classified	with	probability:	[1.]	MSE:
Iteration: 3580 14730.01953125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3600 14731.7802734375		3	Classified	with	probability:	[1.]	MSE:
Iteration: 3620 14733.7138671875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3640 14735.759765625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3660 14738.041015625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3680 14740.8369140625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3700 14743.423828125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3720 14746.5927734375		3	Classified	with	probability:	[1.]	MSE:
Iteration: 3740 14749.470703125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3760 14752.3369140625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3780 14755.658203125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3800 14758.6845703125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3820 14761.541015625	Number:	3	Classified	with	probability:	[1.]	MSE:

Iteration: 3840 14764.615234375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3860 14767.6181640625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3880 14770.654296875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3900 14773.7919921875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3920 14777.1484375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3940 14780.29296875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3960 14783.3662109375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 3980 14786.4208984375		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4000 14789.677734375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4020 14793.1376953125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4040 14796.5166015625		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4060 14799.7587890625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4080 14802.9208984375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4100 14806.392578125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4120 14810.1572265625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4140 14814.095703125	Number:	3	Classified	with	probability:	[1.]	MSE:

Iteration: 4160 14818.4638671875		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4180 14822.8056640625		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4200 14827.1328125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4220 14831.5966796875		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4240 14835.890625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4260 14840.3251953125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4280 14844.62890625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4300 14848.85546875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4320 14853.25	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4340 14857.5029296875		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4360 14861.7490234375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4380 14866.046875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4400 14870.412109375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4420 14874.765625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4440 14878.80078125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4460 14882.9326171875	Number:	3	Classified	with	probability:	[1.]	MSE:

Iteration: 4480 14887.154296875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4500 14891.5537109375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4520 14896.1796875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4540 14900.8408203125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4560 14905.408203125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4580 14909.9580078125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4600 14914.4345703125		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4620 14918.60546875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4640 14922.55078125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4660 14926.7490234375		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4680 14931.1962890625		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4700 14935.44921875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4720 14939.2587890625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4740 14943.0947265625		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4760 14947.0166015625		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4780 14951.2412109375		3	Classified	with	probability:	[1.]	MSE:

Iteration: 4800 14955.3671875	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4820 14959.64453125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4840 14963.8759765625		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4860 14968.162109375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4880 14972.6484375	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4900 14977.0947265625		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4920 14981.7080078125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4940 14986.283203125	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4960 14990.775390625	Number:	3	Classified	with	probability:	[1.]	MSE:
Iteration: 4980 14995.3701171875		3	Classified	with	probability:	[1.]	MSE:
Iteration: 4999 14999.6884765625		3	Classified	with	probability:	[1.]	MSE:

19.3 Observations:

• Although, as per classified probability the generated image of 3 is closely classified to 6 in about 2500 iterations but still the output was not good enough and no where was close to 6, so iterations have been increased to 5000 to make a clear observation

19.4 Adding Noise

```
[]: orig_input = int(input("Input the original image class\t"))
     target input = int(input("Input the target image class\t"))
     if(device==torch.device("cuda")):
       image = test_loader.dataset.data[indices[orig_input], :, :].clone().
      \rightarrowreshape(1,1,28,28).cuda().float()
       image = test_loader.dataset.data[indices[orig_input], :, :].clone().
      \rightarrowreshape(1,1,28,28).float()
     gaussian_noise = np.random.normal(loc = 128, scale = 10, size = (28,28))
     if(device==torch.device("cuda")):
       gaussian_noise_ = torch.from_numpy(gaussian_noise).reshape(1,1,28,28).cuda().
      →float()
     else:
       gaussian_noise_ = torch.from_numpy(gaussian_noise).reshape(1,1,28,28).float()
     prob = 0
     highest_prob = orig_input
     iter = 0
     while(highest_prob!=target_input):
```

```
gaussian_noise_ = torch.autograd.Variable(gaussian_noise_, requires_grad = ___
 →True)
  out = model.forward(gaussian_noise_, softmax = False)
  probab = F.softmax(out, dim = 1).cpu().detach().numpy()
 highest_prob = int(np.argmax(probab))
  prob = probab[:, target input]
 loss = out[:, target input]
  loss_op = loss.cpu().detach().numpy()
  if (iter%5==0):
    print("Iteration: {}\t target: {}\t probability: {}\t Logit Value: {}".
 →format(iter, target_input, prob, loss_op))
  loss.backward(retain graph = True)
  d = torch.sign(gaussian_noise_.grad.data)
  d = d - d.min()
  d = d/d.max()
  gaussian_noise_ = gaussian_noise_ + alpha*d
  iter = iter+1
print("Iteration: {}\t target: {}\t probability: {}\t Logit Value: {}".
→format(iter, target_input, prob, loss_op))
noisy_image = (gaussian_noise_ + image).cpu().reshape(28,28).detach().numpy()
noisy_image = noisy_image - noisy_image.min()
noisy image = noisy image/noisy image.max()
f, ax = plt.subplots(1,2)
ax[0].imshow(image.cpu().reshape(28,28).numpy())
ax[0].set_title(f"Original Image of {orig_input}")
ax[1].imshow(noisy image)
ax[1].set_title(f"noisy image of {orig_input} classified as {target_input}")
plt.show()
new_input = int(input("\nInput the number to which you want to add noise\t"))
if(device==torch.device("cuda")):
  image = test_loader.dataset.data[indices[new_input], :, :].clone().
\rightarrowreshape(1,1,28,28).cuda().float()
else:
 new_image = test_loader.dataset.data[indices[new_input], :, :].clone().
\rightarrowreshape(1,1,28,28).float()
out = model.forward(gaussian_noise_ + new_image, softmax = False)
probab = F.softmax(out, dim = 1).cpu().detach().numpy()
highest_prob = int(np.argmax(probab))
prob = probab[:, highest_prob]
noisy_image = (gaussian_noise_ + new_image).cpu().reshape(28,28).detach().
→numpy()
noisy_image = noisy_image - noisy_image.min()
noisy_image = noisy_image/noisy_image.max()
```

```
f, ax = plt.subplots(1,2)
ax[0].imshow(new_image.cpu().reshape(28,28).numpy())
ax[0].set_title(f"Original Image of {new_input}")
ax[1].imshow(noisy_image)
ax[1].set_title(f"noisy image of {new_input} classified as {highest_prob}")
plt.show()
#Displaying the Gaussian Noise
gaussian = (gaussian_noise_).cpu().reshape(28,28).detach().numpy()
gaussian = gaussian - np.min(gaussian)
gaussian = gaussian/np.max(gaussian)
plt.imshow(gaussian)
plt.title(f"Gaussian Noise")
plt.show()
Input the original image class
Input the target image class
Iteration: 0
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-120.84282]
Iteration: 5
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-116.45839]
Iteration: 10
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-112.15775]
Iteration: 15
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-107.888084]
Iteration: 20
                                 probability: [0.]
                 target: 6
                                                          Logit Value:
[-103.65156]
Iteration: 25
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-99.45339]
Iteration: 30
                                 probability: [0.]
                 target: 6
                                                          Logit Value:
[-95.23397]
Iteration: 35
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-90.99499]
                                 probability: [0.]
Iteration: 40
                 target: 6
                                                          Logit Value:
[-86.78435]
                                 probability: [0.]
                                                          Logit Value: [-82.5534]
Iteration: 45
                 target: 6
Iteration: 50
                                 probability: [0.]
                                                          Logit Value:
                 target: 6
[-78.32528]
Iteration: 55
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-74.09195]
Iteration: 60
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-69.906425]
Iteration: 65
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-65.785255]
Iteration: 70
                 target: 6
                                 probability: [0.]
                                                          Logit Value:
[-61.70714]
Iteration: 75
                                 probability: [0.]
                                                          Logit Value:
                 target: 6
```

[57 450700]						
[-57.652782]			1 1 . 7	FO 7		
Iteration: 80	target:	6	probability:	[0.]	Logit Value:	
[-53.597675]	.	C		Γο J	T	
Iteration: 85	target:	6	probability:	[0.]	Logit Value:	
[-49.57004]			1 1 1 2 1 .	F0 3		
Iteration: 90	target:	6	probability:	[0.]	Logit Value:	
[-45.556816]				F0 7		
Iteration: 95	target:	6	probability:	[0.]	Logit Value:	
[-41.46698]				5 - 3		
Iteration: 100	target:	6	probability:	[0.]	Logit Value:	
[-37.281227]						
Iteration: 105	target:	6	probability:	[0.]	Logit Value:	
[-33.078987]						
Iteration: 110	target:	6	probability:	[0.]	Logit Value:	
[-28.798023]						
Iteration: 115	target:	6	probability:	[0.]	Logit Value:	
[-24.466846]						
Iteration: 120	target:	6	probability:	[0.]	Logit Value:	
[-20.15675]						
Iteration: 125	target:	6	probability:	[0.]	Logit Value:	
[-15.857097]						
Iteration: 130	target:	6	probability:	[0.]	Logit Value:	
[-11.495364]						
Iteration: 135	target:	6	probability:	[0.]	Logit Value:	
[-7.110835]						
Iteration: 140	target:	6	probability:	[0.]	Logit Value:	
[-2.7245054]						
Iteration: 145	target:	6	probability:	[0.]	Logit Value:	
[1.6141633]					-	
Iteration: 150	target:	6	probability:	[0.]	Logit Value:	
[5.9246187]			-			
Iteration: 155	target:	6	probability:	[0.]	Logit Value:	
[10.305806]	· ·				· ·	
Iteration: 160	target:	6	probability:	[0.]	Logit Value:	
[14.685559]	J		1		O	
Iteration: 165	target:	6	probability:	[0.]	Logit Value:	[19.06596]
Iteration: 170	target:		probability:		Logit Value:	_
[23.400944]	0		1 ,		O	
Iteration: 175	target:	6	probability:	[0.]	Logit Value:	
[27.757862]	0.1		1		8 7 7 7	
Iteration: 180	target:	6	probability:	[0.]	Logit Value:	[32.11764]
Iteration: 185	target:		probability:		Logit Value:	
Iteration: 190	target:		probability:		Logit Value:	[0011.011]
[40.838604]		-	ry.			
Iteration: 195	target:	6	probability:	[0.]	Logit Value:	
[45.189182]	502-500.	-	riouddiiioy.	[~.]		
Iteration: 200	target:	6	probability:	[0.]	Logit Value:	
[49.510468]	Jar 800.	5	producting.	[0.1	20510 Value.	
[10.010400]						

Iteration: 205	target:	6	probability:	[0.]	Logit	Value:	[53.83653]
Iteration: 210	target:	6	probability:	[0.]	Logit	Value:	
[58.032223]	· ·		-		Ü		
Iteration: 215	target:	6	probability:	[0.]	Logit	Value:	
[62.198997]	Ü		1		O		
Iteration: 220	target:	6	probability:	[0.]	Logit	Value:	[66.39063]
Iteration: 225	target:		probability:		•	Value:	
[70.589935]	242		production	[0.1]	000		
Iteration: 230	target:	6	probability:	[0]	Logit	Value:	
[74.783585]	ourgoo.	Ü	probability.	[0.]	10810	varao.	
Iteration: 235	target:	6	probability:	[0]	Logit	Value:	
[78.958145]	target.	O	probability.	[0.]	LOGIC	varue.	
Iteration: 240	+	c	nmahahili+	Γ Λ]	Tomit	Volue	[02 1/00E]
Iteration: 245	target:		probability:		_		[83.14925]
	target:		probability:		_	Value:	[87.34281]
Iteration: 250	target:	О	probability:	[0.]	Logit	Value:	
[91.513275]			1 1 1 7 1 .	F0 7	.		[OF 40004]
Iteration: 255	target:		probability:		_		[95.69894]
Iteration: 260	target:		probability:		_	Value:	[99.90609]
Iteration: 265	target:	6	probability:	[0.]	Logit	Value:	
[104.18825]							
Iteration: 270	target:	6	probability:	[0.]	Logit	Value:	
[108.46722]							
Iteration: 275	target:	6	probability:	[0.]	Logit	Value:	
[112.75619]							
Iteration: 280	target:	6	probability:	[0.]	Logit	Value:	
[117.05495]							
Iteration: 285	target:	6	probability:	[0.]	Logit	Value:	
[121.37104]							
Iteration: 290	target:	6	probability:	[0.]	Logit	Value:	
[125.827156]	_						
Iteration: 295	target:	6	probability:	[0.]	Logit	Value:	
[130.29489]	Ü				Ü		
Iteration: 300	target:	6	probability:	[0.]	Logit	Value:	
[134.76794]	Ü		1		O		
Iteration: 305	target:	6	probability:	[0.]	Logit	Value:	[139.2342]
Iteration: 310	target:		probability:		•	Value:	
[143.71367]	0018001		probability.	[0.]	20820	varao.	
Iteration: 315	target:	6	probability:	[8 e-45]	Logit	Value:	
[148.20105]	ourgoo.	Ü	probability.	[0.0 10]	10810	varuo.	
Iteration: 320	target:	6	probability:	[1 986-43]		Logit	Value:
[152.70844]	target.	O	probability.	[1.906 40]		Logi	varue.
Iteration: 325	+2220+1	6	probability:	[4 0750-40]	1	I omit	· Value
	target:	0	probability:	[4.9756-42]	J	говт	Value:
[157.215]	+	6	nmoh-h-1	[1 00007 -	407	T	. Vol.
Iteration: 330	target:	O	probability:	[1.2099/e-	40]	Logit	Value:
[161.70735]		C		FO 407670	207	т	. 17- 1
Iteration: 335	target:	Ö	probability:	L3.49/6/2e	-39]	Logit	Value:
[166.17903]				[0	007	. .	
Iteration: 340	target:	6	probability:	լ9.587751e	-38]	Logit	: Value:

[470 00504]				
[170.66594] Iteration: 345	target: 6	nrohohili+***	[2.4672863e-36]	Logit Value:
[175.14253]	target: 6	probability:	[2.40/20036-30]	Logit value:
Iteration: 350	target: 6	probability:	[5.9502956e-35]	Logit Value:
[179.6344]	041800. 0	probability.	[0.00020000 00]	20810 (4140)
Iteration: 355	target: 6	probability:	[1.5106252e-33]	Logit Value:
[184.17712]	C	1		G
Iteration: 360	target: 6	probability:	[3.7528815e-32]	Logit Value:
[188.72229]				
Iteration: 365	target: 6	probability:	[9.766636e-31]	Logit Value:
[193.25668]				
Iteration: 370	target: 6	probability:	[2.55953e-29]	Logit Value:
[197.79614]			50 000m2 003	
Iteration: 375	target: 6	probability:	[6.92879e-28]	Logit Value:
[202.3387]	t C		[4 0700000- 00]	I + W- 1
Iteration: 380	target: 6	probability:	[1.8786983e-26]	Logit Value:
[206.89755] Iteration: 385	target: 6	nrobabili+w.	[4.8970325e-25]	Logit Value:
[211.43645]	target. 0	probability.	[4.09703256-25]	Logic value.
Iteration: 390	target: 6	nrohahility:	[1.3008667e-23]	Logit Value:
[215.98582]	uargeu. U	probability.	[1:00000076 20]	Logio varac.
Iteration: 395	target: 6	probability:	[3.3422565e-22]	Logit Value:
[220.53339]	8.4	1		8
Iteration: 400	target: 6	probability:	[8.489005e-21]	Logit Value:
[225.0705]	-	-		_
Iteration: 405	target: 6	probability:	[2.1372244e-19]	Logit Value:
[229.59233]				
Iteration: 410	target: 6	probability:	[5.2181547e-18]	Logit Value:
[234.11568]				
Iteration: 415	target: 6	probability:	[1.2206997e-16]	Logit Value:
[238.64331]		1 1 . 7	[0 000000 45]	
Iteration: 420	target: 6	probability:	[2.8986005e-15]	Logit Value:
[243.16391] Iteration: 425	target: 6	nrohohili+***	[6.608872e-14]	Logit Value:
[247.69434]	target. O	probability.	[0.0000/2e-14]	Logic value.
Iteration: 430	target: 6	probability.	[1.4965944e-12]	Logit Value:
[252.22542]	ourgoo. o	probability.	[1.10000110 12]	Logio varao.
Iteration: 435	target: 6	probability:	[3.885591e-11]	Logit Value:
[256.78198]	O	1 3		G
Iteration: 440	target: 6	probability:	[9.897071e-10]	Logit Value:
[261.34277]				
Iteration: 445	target: 6	probability:	[2.5952172e-08]	Logit Value:
[265.89835]				
Iteration: 450	target: 6	probability:	[6.9506467e-07]	Logit Value:
[270.45212]				
Iteration: 455	target: 6	probability:	[1.7995802e-05]	Logit Value:
[275.01865]			[0.0004500]	
Iteration: 460	target: 6	probability:	[0.0004588]	Logit Value:

[279.57602]

Iteration: 465 target: 6 probability: [0.01211608] Logit Value:

[284.06186]

Iteration: 470 target: 6 probability: [0.24875082] Logit Value:

[288.4764]

Iteration: 473 target: 6 probability: [0.5525548] Logit Value:

[290.24255]

Input the number to which you want to add noise 8

19.5 Observations:

- The iterations run till the target class gets highest probability
- First Plot is of the original image with noise added to it to classify it as another number
- Second plot shows behaviour of a new class image on noise being added to it
- Third plot is the noise kernel