This is a cheat sheet for the RL-MPC tutorial.

Keep this handy and also feel free to chime in during the tutorial for clarification :-)

Reinforcement learning

s,s'	State	s_t, s_{t+1}
a	Action	a_t
p	State transition probability	$s' \sim p\left(s' s,a\right)$
r	Reward	$r_t = r(s_t, a_t)$
π	Policy	$a \sim \pi(a s), \ a = \pi(s)$
γ	Discount factor	$\gamma \in [0,1]$
G_t	Discounted return	$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$
Q^{π}	State-action value function	$Q^{\pi}(s, a) = \mathbb{E}\left[G_0 _{a_0 = a}^{s_0 = s}\right]$
Q^{\star}	Optimal value function	The above, but better
V^{π}	Value function	$V^{\pi}(s) = \mathbb{E}\left[G_0 s_0 = s\right]$
V^{\star}	Optimal value function	$V^{\star}(s) = \max_{a} Q^{\star}(s, a)$
π^{\star}	Optimal policy	$\pi^{\star}(s) = \arg\max_{a} Q^{\star}(s, a)$

Control

x	State	x_t
u	(Control) input	u_t
f	State transition function	$\boldsymbol{x}_{t+1} = f(\boldsymbol{x}_t, \boldsymbol{u}_t)$
ℓ	(Stage) cost	$\ell(x, u) = x^T M x + u^T R u$
K	Gain matrix	u = -Kx

Acronyms

RL	Reinforcement learning
MPC	Model predictive control
LQR	Linear quadratic regulator
PID	Proportional-integral-derivative