3. kolokvij iz Osnov verjetnosti in statistike (Ljubljana, 14. 04. 2014)

Čitljivo napišite svoje ime <u>in</u> priimek ter študentsko številko. Preberi celotno besedilo vsake naloge. Čas reševanja: 60 minut. Vsaka naloga je vredna 20 točk. Dovoljena je uporaba dveh A4 listov s formulami.

- 1. V trgovini prodajajo moko v paketih, katerih teža je normalno porazdeljena s pričakovano vrednostjo 1kg in standardnim odklonom 40g.
 - (a) Za pecivo po receptu potrebujemo 950g moke. Kakšna je verjetnost, da bomo v enem paketu imeli dovolj moke za peko peciva.
 - (b) Za dvakratno količino peciva potrebujemo seveda 1900g moke. Kakšna je verjetnost, da bomo v dveh paketih skupaj imeli dovolj moke za pecivo.
 - (c) Denimo, da 80% paketov vsebuje več kot x gramov moke. Izračunaj x.
- 2. Dana je sledeča porazdelitvena tabela:

$_{Y}\backslash ^{X}$	1	2	3
-1	0	0	$\frac{1}{6}$
0	$\frac{1}{4}$	c	$\frac{1}{12}$
1	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$

Določi konstanto c ter izračunaj kovarianco K(X,Y). Ali sta slučajni spremenljivki X in Y neodvisni?

- 3. 100-krat vržemo običajno igralno kocko. Število pik na i-ti kocki, i = 1, ..., 100, označimo z X_i , vsoto vseh pik po 100 metih pa označimo z $S = X_1 + ... + X_{100}$.
 - (a) Izračunaj upanje $E(X_i)$ in disperzijo $D(X_i)$.
 - (b) S pomočjo centralnega limitnega izreka oceni porazdelitev vsote S.
 - (c) Približno koliko je verjetnost, da bo vsota S manjša od 320 ali večja od 370?

Vse odgovore dobro utemelji!

	(OVS ima svoje momente, standardizacija, binomska in normalna porazdelitev) Za slučajno spremenljivko X definiraj pričakovano vrednost $E(X)$ (ne pozabi omeniti tudi, kdaj obstaja), standardni odklon σ_X in varianco $D(X)$.
(b)	Če je slučajna spremenljivka X porazdeljena normalno $N(\mu,\sigma)$ in standardizirana v Z , ali lahko iz katerih koli treh vrednosti izmed $x,\ \mu,\ \sigma$ in z vedno izračunamo preostalo (četrto) vrednost (odgovor utemelji)?
(c)	Za standardizirano slučajno spremenljivko Z slučajne spremenljivke X iz (a) izračunaj pričakovano vrednost $E(Z)$ in odklon σ_Z (izpeljavi utemelji).
(d)	Ali lahko vsako binomsko porazdelitev aproksimiramo zelo natančno z ustrezno normalno porazdelitvijo (odgovor utemelji)?
(e)	Za neko binomsko porazdeljeno slučajno spremenljivko $(B(n,p))$ je pričakovana vrednost $\mu=4$ in standardni odklon $\sigma=\sqrt{3}$. Določi verjetnost p z izbiro med: (A) 4, (B) 1/2, (C) 1/3, (D) 1/4, (E) 1/5, (F) 1/6, (G) 1, (H) 0.