Termodinâmica

Plano de Ensino

Componente Curricular: FISC0051 - TERMODINÂMICA

Curso: Bacharelado em Física dos Materiais (Turma TD)

Docente: Diego J. Raposo

Carga horária: 60 h Número de vagas ofertadas: 20

Natureza: Obrigatória

Dia e horário: Segunda-feira das 12:10 às 13:50

terça-feira das 12:10 às 13:50

Descrição do curso: Apresentar de maneira pormenorizada os conceitos basilares para a descrição termodinâmica de sistemas em equilíbrio, incluindo definições, demonstrações, leis e aplicações.

Requesitos: Equações diferenciais (MAT05).

Contato: Pode-se comunicar com o prof. responsável através dos e-mails:

djrs@poli.br

diego.raposo@upe.br

O material de aula estará disponível no seguinte repositório:

https://diegoraposo.github.io/

1 Objetivos

1.1 Gerais

Completar apresentação introdutória da área (Fundamentos da Ondulatória e Termodinâmica: FISO2), detalhando conceitos acerca de equações e variáveis de estado, estabilidade termodinâmica, fases puras e mudanças de fases, misturas e equilíbrio químico. De um ponto de vista mais amplo, a disciplina edifica-se em definições básicas mais as leis da termodinâmica e suas aplicações para diversos sistemas.

1.2 Específicos

Conferir ao estudante a capacidade de:

- Identificar o tipo de sistema, as variáveis intensivas e extensivas, e qual o critério de estabilidade adequado para tal caso;
- Sugerir e aplicar equação de estado adequada para obter várias propriedades termodinâmicas;
- Saber a definição de grandezas como energia interna, entropia, energia de Gibbs, entalpia, capacidade calorífica, entre outras, bem como calculá-las e aplicá-las em diferentes sistemas;
- Saber usar as leis da termodinâmicas, isoladamente ou combinadas, para deduzir e aplicar equações relevantes no estudo de sistemas em equilíbrio;
- Prever equilíbrios de fase, identificar estado padrão adequado para soluções e suas propriedades termodinâmicas, além de perceber as aproximações envolvidas;
- Aplicar os conceitos da termodinâmica no equilíbrio químico, sabendo a origem de perturbações em tal estado, e como (e quando) a velocidade de reações químicas podem ser adequadamente vinculadas às propriedades de equilíbrio do sistema.

2 Metodologia

A disciplina será edificada na apresentação de aulas expositivas, em quadro branco e/ou apresentação de slides, integrada com lista de exercícios, leitura de artigos científicos e avaliação para quantificar compreensão e evolução do estudante.

3 Avaliação dos discentes

As duas avaliações ocorrerão no meio e no fim do semestre, e valerão 10 pontos cada, sendo a média final a média aritmética entre as duas notas. A ausência em uma ou mais provas poderá ser compensada, parcialmente, por apresentação de trabalho sobre aplicação da termodinâmica em um problema específico.

4 Conteúdo programático

1. Conceitos fundamentais

- Sistemas termodinâmicos
- Sistemas de equilíbrio e não equilíbrio
- Temperatura, calor e lei dos gases (lei zero)
- Estados da matéria e equação de van der Waals

2. Primeira lei da termodinâmica

- Histórico
- Natureza do calor
- Primeiro princípio e conservação da energia
- Aplicações elementares do primeiro princípio
- Conservação da energia em reações químicas
- Conservação da energia em processos nucleares

3. Segunda lei da termodinâmica

- Histórico
- Escala absoluta das temperaturas
- Segundo princípio e conceito de entropia
- Processos reversíveis e irreversíveis
- Variações de entropia e processos irreversíveis
- Variação de entropia e mudanças de fase
- Entropia de gases perfeitos
- Segundo princípio da termodinâmica e processos irreversíveis

4. Entropia e reações químicas

- Potenciais químicos e afinidade
- Propriedades gerais da afinidade
- Produção de entropia devido à difusão
- Propriedades gerais da entropia

5. Princípios de extremo e relações termodinâmicas

- Princípios de extremo associados à segunda lei da termodinâmica
- Relações termodinâmicas gerais
- Potencial químico
- Relações de Maxwell
- Variáveis intensivas e extensivas
- Tensão superficial

6. Estados físicos da matéria

- Gases perfeitos
- Gases reais
- Estados condensados

7. Mudanças de fase

- Equilíbrio e diagrama de fase
- Regra da fase de Gibbs e teorema de Duhem
- Sistemas binários e ternários
- Construção de Maxwell e regra da alavanca
- Transições de fase
- Tensão superficial

8. Soluções e misturas

- Soluções ideais e não ideais
- Propriedades coligativas
- Solubilidade
- Misturas de grandezas de excesso
- Azeotropos

9. Transformações químicas

- Transformações da matéria
- Cinética química
- Lei da ação de massa
- Princípio do balanço detalhado

- Produção de entropia devido a reações químicas
- 10. Teoria clássica da estabilidade termodinâmica
 - Teoria clássica de estabilidade
 - Estabilidade térmica
 - Estabilidade mecânica
 - Estabilidade química e estabilidade de difusão

5 Cronograma de atividades

Dias	Conteúdos
15/Abr, 16/Abr	Conceitos fundamentais e lei zero
22/Abr, 23/Abr, 29/Abr	Primeira lei da termodinâmica
30/Abr, 06/Mai, 07/Mai	Segunda lei da termodinâmica
13/Mai, 14/Mai, 20/Mai	Entropia de reações químicas
21/Mai	Terceira lei da termodinâmica
27/Mai até 31/Mai	1°. EXERCÍCIO ESCOLAR
	Conteúdo: Conceitos fundamentais e leis da termodinâmica
03/Jun, 04/Jun, 10/Jun	Princípio de Extremo e relações termodinâmicas
11/Jun, 17/Jun	Estados físicos da matéria
18/Jun, 25/Jun	Mudanças de fase
01/Jul, 02/Jul	Soluções e misturas
08/Jul	Transformações químicas
09/Jul	Teoria clássica da estabilidade termodinâmica
15/Jul à 20/Jul	2°. EXERCÍCIO ESCOLAR
	Conteúdo: Princípios de extremo e estabilidade termodinâmica,
	fases e seu equilíbrio, soluções e transformações químicas
22/Jul à 27/Jul	2 ^a . CHAMADA
29/Jul à 02/Ago	EXERCÍCIO FINAL
05/Ago à 06/Ago	AVALIAÇÕES ADICIONAIS
07/Ago	Último dia para lançamento de notas

6 Bibliografia

Os livros mais indicados para acompanhar a disciplina, inclusive o livro-texto usado como referência principal, são apresentados a seguir:

- Kondepudi, D., Prigogine, I.; Modern Thermodynamics: From Heat Engines to Dissipative Structures; John Wiley & Sons, 2nd Edition, 2015;
- Luscombe, J.H.; **Thermodyamics**; CRC press, 2018;
- Ben-Naim, A., Casadei, D.; Modern Thermodynamics; World Scientific, 2017;

Para um entendimento mais amplo, recomenda-se as leituras adicionais de:

- Long-Qing Chen; Thermodynamic Equilibrium and Stability of Materials; Springer, 2022;
- Dill, K.A., Bromberg, S.; Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience; Garland Science, 2nd Edition, 2011;
- Fermi, E.; **Thermodynamics**; Dover Publications, 1956;
- Planck, M.; **Treatise on Thermodynamics**; Dover Publications, 3rd revised ed., 2010.
- Wilhelm Jost; Physical Chemistry, An Advanced Treatise, Vol. 1: Thermodynamics; Academic Press, 1971;