CS2022 Computer Architecture

Michael Manzke

Project 1 - Datapath Design - Part B

18 February 2019

Description:

Expand the *register-file* from PROJECT IA by adding a *B-Data Bus* and a *Functional Unit* to the *eight registers* in order to obtain 16-bit version of the *Datapath* shown in Figure 1 on page 3. Figure 1 is taken from Figure 7-19 in Mano and Kime.

You should write a *gate-level VHDL models* for the *Functional Unit*. The architecture should use a *16-bit ripple adder*. The *Functional Unit* should have the functionality defined on the Table 1 on page 2. Set all gate propagation delays to 1 ns and simulate arithmetic operations.

Discuss your simulation results. The CS2022 lecture notes provide the necessary information to complete the project.

DUE: Friday, 15th March 2019

Please submit a copy of your VHDL-code and test-benches including all simulation results (screenshots) for every "Entity" to Blackboard.

Figure 1: Register File and Functional Unit

Table 1: FS code definition

FS	MF Select	G Select	H Select	Micro-operation
00000	0	0000	00	F = A
00001	0	0001	00	F = A + 1
00010	0	0010	00	F = A + B
00011	0	0011	00	F = A + B + 1
00100	0	0100	01	$F = A + \bar{B}$
00101	0	0101	01	$F = A + \bar{B} + 1$
00110	0	0110	01	F = A - 1
00111	0	0111	01	F = A
01000	0	1000	00	$F = A \wedge B$
01010	0	1010	10	$F = A \vee B$
01100	0	1100	10	$F = A \oplus B$
01110	0	1110	10	$F = \bar{A}$
10000	1	0000	00	F = B
10100	1	0100	01	F = srB
11000	1	1000	10	F = slB