Reinforcement Learning II Dynamic Programming and Model-free predictions

Antoine SYLVAIN

EPITA

2022

Contents

- Optimal policies
 - Dynamic Programming
- Model-free predictions

Policies

- Specifies the behaviour of the agent
- A deterministic policy associates an action to each state
- It can be represented by a table

	<i>s</i> ₀	a_1
•	s_1	<i>a</i> ₀
	<i>s</i> ₂	<i>a</i> ₁

- A stochastic policy associates various actions with a probability for each state
- The sum of probabilities of the actions for a given state equals 1

Policies

• Deterministic policy:

$$\pi(s) = a$$

• Stochastic policy:

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

Policies

The best policy is the one that achieves the highest value Is there always an optimal policy ? (i.e. that returns a value greater or equal than the other policies for each state)

Comparing two policies

Combining two policies

Contents

- Optimal policies
- Dynamic Programming
- Model-free predictions

What is Dynamic Programming

- A collection of algorithms that can be used to compute optimal policies
- They require a perfect model of the environment as a MDP
- Optimal substructures
- Divide the problem into sub-problems
- Combine the solutions to the sub-problems

Policy Evaluation and Control

- Policy Evaluation: Evaluation of the value function of a given policy
- **Policy Control**: Finding the best policy (i.e. maximize value function)
- Control is the overall objective
- But, to find the best policy, you first need to be able to evaluate how good it is

Iterative Policy Evaluation

- Starts with arbitrary values for each non-terminal state
- At each iteration, update the values of these states with the Bellman equation and the updated values
- Evaluations converge to the value function

Iterative Policy Evaluation

```
Input: \pi (the policy to be evaluated)
Initialize an array V(s) = 0 for all s \in S^+
Repeat:
      \Lambda \leftarrow 0
      For each s \in S:
            v \leftarrow V(s)
            V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
            \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (small positive number)
Output: V \approx v_{\pi}
```

- Small grid world
- Four possible actions (up, down, left, right)
- Reward is -1 until a terminal state is reached
- Uniform random policy (0.25 for each action)
- Undiscounted ($\gamma = 1$)

R = -1 on all transitions

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

	←		\longleftrightarrow
1	Ţ	\Leftrightarrow	ţ
1	\Leftrightarrow	Ļ	ļ
\Leftrightarrow	\rightarrow	\rightarrow	

$$k = 3$$

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

-2.9 -3.0

-2.9 -2.4

-2.9

Example

-2.4

-2.9 -3.0

-2.9 -3.0

-3.0 -2.9 -2.4 0.0

0.0 -2.4

$$k=\infty$$

k = 10

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

How to improve a policy?

- Given a policy π
 - Evaluate the policy π $v_{\pi}(s) = \mathbb{E}_{\pi}[\mathcal{R}_{t+1} + \gamma \mathcal{R}_{t+2} + \gamma^2 \mathcal{R}_{t+3} + ... | \mathcal{S}_t = s]$
 - Improve the policy by acting greedily with respect to v_{π} $\pi' = greedy(v_{\pi})$
- In the Small Gridworld example, the improved policy was optimal, so $\pi'=\pi^*$
- But in most cases, we will need more iterations of evaluation/improvement
- ullet Nonetheless, this process of policy evaluation always converge to π^*

Policy Iteration

Policy Iteration

Policy iteration for estimating $\pi \approx \pi^*$

```
Initialization: V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) \forall s \in \mathcal{S}
Policy Evaluation
Repeat:
      \Delta \leftarrow 0
      For each s \in S:
             v \leftarrow V(s)
             V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
             \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (small positive number)
Policy Improvement
policy-stable \leftarrow True
For each s \in S:
      old-action \leftarrow \pi(s)
      \pi(s) \leftarrow \operatorname{argmax}_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]
      If old-action \neq \pi(s), then policy-stable \leftarrow False
If policy-stable, return V \approx v^* and \pi \approx \pi^*, else Policy Evaluation
```


Contents

- Optimal policies
 - Dynamic Programming
- Model-free predictions

Model-free algorithms

- Dynamic Programming enables us to find optimal policies in a Markov Decision Process
- But it has a costly pre-requisite: we need a complete knowledge of the MDP
- What if we have a limited knowledge of the MDP ?
- Can we make predictions based on our experience ?

Monte-Carlo Learning

- Methods that learn directly from experience
- Model-free: we have no previous knowledge of the MDP transitions and reward
- Learns from complete episodes: no bootstraping, all episodes must terminate
- Idea: value = mean return

Monte-Carlo Policy Evaluation

- Goal: learn v_{π} from episodes of experience under policy π : $\mathcal{S}_1, \mathcal{A}_1, \mathcal{R}_2, ..., \mathcal{S}_k \sim \pi$
- Return is the total discounted reward :

$$\mathcal{G}_t = \mathcal{R}_{t+1} + \gamma \mathcal{R}_{t+2} + \dots + \gamma^{\tau-1} \mathcal{R}_{\tau}$$

- Value function is the expected return :
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[\mathcal{G}_t | \mathcal{S}_t = s]$
- Instead of expecting return, Monte-Carlo uses empirical mean

First-visit Monte-Carlo Method

- Estimates the value $v_{\pi}(s)$ of state s under policy π
- Each occurrence of state s in an episode is called a visit to s
- The first occurrence of s is thus the first visit to s
- The first-visit MC-method estimates $v_{\pi}(s)$ as the average of the returns following the first visit to s:

$$V(s) = S(s)/N(s)$$

with

$$S(s) \leftarrow S(s) + \mathcal{G}_t$$
, the incremented total return

N(s), the visits counter

First-visit Monte-Carlo Prediction

```
Input: \pi, a policy to be evaluated
Initialization:
      V(s) \in \mathbb{R} \forall s \in S, arbitrarily
      Returns(s) \leftarrow \text{an empty list, for all } s \in S
Loop (for each episode):
      Generate an episode following \pi: S_0, A_0, R_1, ..., R_{\tau}
      G \leftarrow 0
      Loop for each step of episode t = T - 1, T - 2, ..., 0:
            \mathcal{G} \leftarrow \gamma \mathcal{G} + R_{t+1}
            Unless S_t appears in S_0, S_1, ..., S_{t-1}:
                   Append \mathcal{G} to Returns(s)
                   V(S_t) \leftarrow avg(Returns(S_t))
```

Every-visit Monte-Carlo Method

Quite the same, but you evaluate the returns following every visit to s

- 200 states:
 - Current sum (12-21)
 - Dealer's visible card (ace-10)
 - Usable ace ? (True or False)
- 2 actions:
 - **Stick**: Stop receiving cards and terminate
 - Twist: Take another card
- Stick reward:
 - \bullet +1 if sum of cards > sum of dealer
 - 0 if sum of card = sum of dealer
 - -1 if sum of card < sum of dealer
- Twist reward:
 - -1 if sum of cards > 21 (terminal)
 - 0 otherwise
- Transitions: automatically twist if sum of cards < 12
- Policy: Stick if sum = 20 or 21, else twist

Monte-Carlo Estimation of Action values

than state values is particularly useful.

With a model, like in dynamic programming, state value was enough

If the model is not available, estimate (state-)action values rather

- With a model, like in dynamic-programming, state-value was enough.
 Without a model, it is not sufficient.
- ullet So one of the primary goals of MC methods is to evaluate q^*
- ullet The policy evaluation becomes an estimation of $q_{\pi}(s,a)$
- A state-action s, a is said to be visited in a an episode if state s is visited and action a is selected in it

Temporal-Difference Methods

- Learn directly from episodes of experience
- Model-free: we have no previous knowledge of the MDP transitions and reward
- Learn from incomplete episodes, by bootstraping
- Updates a guess towards a guess

Temporal Difference Methods

- Whereas MC methods need to wait until the end of the episode to update the value of $V(S_t)$
- Temporal-Difference methods makes the update at step t+1
- The simplest TD method is know as TD(0)
- $V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
- α: stepsize parameter

TD(0) Algorithm

```
Input: \pi, the policy to be evaluated
Parameter: stepsize parameter \alpha \in [0, 1]
Initialization: V(s)\forall s \in S^+, arbitrarily, except V(terminal) = 0
Loop for each episode:
```

 $A \leftarrow$ action given by π for SSelect action A, observe R, S'

$$V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]$$

 $S \leftarrow S'$

until S terminal

Example of driving home

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

Example of driving home: MC vs TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Comparison of MC and TD

- TD can learn before knowing the final outcome
- TD can learn online step by step
- MC have to wait until the end of episode to know the return
- TD can learn without the final outcome
- TD can learn from incomplete sequences
- MC can only learn from complete sequences
- TD works in continuing (non-terminating) environments
- MC only works form episodic (terminating) environments

Comparison of MC and TD

- MC return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{\tau-1} R_{\tau}$ is an unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is an biased estimate of $v_{\pi}(S_t)$
- TD target has much lower variance than the return:
 - MC return depends on many random actions, transitions, rewards
 - TD target depends on one random action, transition, reward

Comparison of MC and TD

- MC has high variance, no bias
 - Good convergence properties
 - Not very sensitive to initial value
 - Very simple understanding and use
 - TD has low variance, but some bias
 - Usually more efficient than MC
 - TD(0) converge to $v_{\pi}(S_t)$
 - More sensitive to initial value

Random Walk Example

- All episodes start in the center state C
- Left and right states are terminal state
- Reward +1 if terminates on the right, else 0

Random Walk Comparison

Target / Exact Values

Updates using TD Learning

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

Updates using Monte Carlo

Random Walk Comparison

1st episode: C,D,E,D,C,D,E,Right

Target / Exact Values

Updates using TD Learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\begin{array}{cc} R_{t+1} + \gamma V(S_{t+1}) & -V(S_t) \\ 0 & 0.5 & 0.5 \end{array} \right]$$

Updates using Monte Carlo

Random Walk Comparison

Batch MC and TD

- MC and TD converge
- But what about a batch experience of finite examples ?
- Repeatedly sample episodes
- Apply MC and TD(0) on these episodes

AB Example

```
Two states A and B, no discounting, 8 episodes of experience
B, 0
B, 1
B, 1
B, 1
B, 1
B. 1
B, 1
A, 0, B, 0
What are V(A) and V(B)?
```

AB Example

Certainty Equivalence

- MC converges to solution with minimum mean-squared error
 - In the AB example, V(A) = 0
- TD(0) converges to solution of max likelihood Markov model
 - In the AB example, V(A) = 0.75

MC and TD

- TD exploits Markov property
- Usually more efficient in Markov environments
- MC does not exploit Markov property
- Usually more effective in non-Markov environments