Week 3

Random Walks on Graphs

Lecturer: Siva Athreya Scribe: Abhiti Mishra, Devesh Bajaj

3.1 Introduction

- A random walk on a graph is basically a reversible Markov chain on the graph.
- many results of random walks will hold true for general markov chains but we will not go into
 it
- we will study some of the geometric properties of the Graph which translate to different properties of the Random walks

 $\Gamma = (V, E)$

 $V \equiv \text{Vertex set} = \text{finite or countably infinite set.}$

 $E \equiv \text{Edge set} = E \subset \mathcal{P}(V) = \{\{x, y\} : |x, y \in V, x \neq y\}.$

(No self loops, No multiple edges)

- 1. $x \in V; y \in V$ is a neighbour of x in $\{x, y\} \in E$ $(x \sim y)$
- 2. A path $\gamma \in \Gamma$ is any sequence $\{x_i\}_{i=0}^n$ such that $x_{i-1} \sim x_i$ in Γ for some $n \geq 1, x_i \in V, 1 \leq i \leq n$
 - • γ is a loop if $x_0 = x_n$
 - • γ is self avoiding if $x_i \neq x_j \ \forall i \neq j$.
- 3. "chemical metric" $d: V \times V \longrightarrow [0, \infty) \bigcup \{\infty\}$ d(x, x) = 0,

$$d(x,y) = \begin{cases} \text{length of smallest path from x to y} \\ \infty \text{ if no path exixts} \end{cases}$$

- 4. Γ is connected if $d(x,y) < \infty, \forall x,y \in V$ (H1 property)
- 5. Γ is locally finite if $\forall x \in V$, $N(x) = \{y \in V | y \sim x\} \Rightarrow |N(x)| < \infty$ (H2 property)
- 6. we say Γ has a bounded geometry if $\sup_{x\in V} |N(x)| < \infty$ (H3 property)

Definition 3.1.1. $\forall x, y \in V$, we assume that thre is a weight μ_{xy} such that:

- 1. $\mu_{xy} = \mu_{yx}$
- 2. $\mu_{xy} \ge 0$
- 3. if $x \neq y$ then, $\mu_{xy} > 0 \Leftrightarrow x \sim y$

we will call (Γ, μ) a weighted graph.

Using property 3 above, $E = \{\{x, y\} | x, y \in V, \mu_{xy} > 0, x \neq y\}$

Definition 3.1.2. (Γ, μ) has bounded weights if $\exists C_1, C_2 > 0$ such that $C_1 < \mu_{xy} \leq C_2 \ \forall x, y \in V, x \neq y$. This is called the **(H4 Property)**.

Definition 3.1.3. (Γ, μ) has controlled weights if $\exists c > 0$ such that $\frac{\mu_{xy}}{\mu_x} \ge c^{-1} \ \forall x, y \in V, x \ne y$. This is called the **(H5 Property)**.

Define for $x \in V$: $\mu_x = \sum_{y \sim x} \mu_{xy}$

Definition 3.1.4. Natural weights:

$$\mu_{xy} = \begin{cases} 1 & \text{if } x \sim y \\ 0 & \text{otherwise} \end{cases}$$

Lemma 3.1.1. Suppose (Γ, μ) is a weighted graph then,

- 1. (H3), (H5) holds.
- 2. $\forall x \in V, n > 0$, $B(x, n) = \{y \in V | d(x, y) \le n\}$ (balls are not exponentially large)
- 3. $\forall x \in V, n \ge 0, \mu(B(x,n)) = \sum_{y \in B(x,n)} \mu_y \le 2\mu_x(c_2)^n$ (Balls have bounded weights)

Proof. 1. Take $x \in V$.

$$N(x) = c \sum_{y \in V} \frac{1}{c} 1_{\{x \sim y\}}$$

$$\leq c \sum_{y \in V} \frac{\mu_{xy}}{\mu_x} 1_{\{x \sim y\}}$$

$$= c \frac{1}{\mu_x} \sum_{y \in V} \mu_{xy} = c$$

2. $S(x,n) = \{y \in V | d(x,y) = n\}$

$$|S(x,n)| \le c|S(x,n-1)| \quad \forall \ n \ge 1$$

Arguing inductively,

$$|B(x,n)| = \sum_{k=0}^{n} |S(x,k)|$$

$$\leq \sum_{k=0}^{n} c^{k}$$

$$= \frac{c^{n+1} - 1}{c - 1} \leq 2c^{n}$$

3. n = 1.

$$\mu(B(x,1)) = \mu_x + \sum_{y \sim x} \mu_y$$

$$\leq c \sum_{y \sim x} \mu_{xy} + \mu_x$$

$$= c\mu_x + \mu_x$$

Second step follows from the H5 assumption.

We also note

$$\mu(B(x,2)) = \sum_{y \in B(x,2)} \mu_y = \mu(B(x,1)) + \sum_{y \sim x} \sum_{z \sim y} \mu_z$$

Therefore

$$\mu(B(x,2)) \le \mu_x + c\mu_x + \sum_{y \sim x} c \sum_{z \sim y} \mu_{zy}$$
$$= \mu_x + c\mu_x c \sum_{y \sim x} \mu_y$$
$$\le \mu_x + c\mu_x + c^2 \mu_x$$

Example. $V = \mathbb{Z}^d$. Take $x, y \in V, |x - y| = \sum_{i=1}^d |x_i - y_i|$ $E = \{(x, y) | |x - y| = 1\}$. $\mu_{xy} = 1$ whenever $(x, y) \in E$. $N(x) = 2d \ \forall x \in V$ $|B(x, n)| \sim n^d \leq 2c^n \ \forall c \geq 2$.

Example. Rooted Binary Tree- Let the root be $B_0 = \{\rho\}$. $\forall \ n \ge 1, B_n = \{0, 1\}^n$

$$V = \bigcup_{n=1}^{\infty} B_n \cup \{\rho\}$$

For $x \in B_n, n \ge 2, x = (x_1, \dots, x_n), x_i \in \{0, 1\}.$ Let the parent of x be- $\alpha(x) = (x_1, \dots, x_{n-1})$

For $n = 1, x \in B_1, \alpha(x) = \rho$

$$E = \{(x, \alpha(x)) | x \in V, x \notin B_0\}$$
$$|N(\rho)| = 2, |N(x)| = 3 \quad \forall x \notin B_0$$

Canopy Tree

$$\bar{V} = \{x \in V | x = (x_1, \dots, x_n) \text{ and } x_i = 0 \ \forall \ 1 \le i \le n \text{ for some } n \ge 1\} \cup \{\rho\}$$

f(x) is the element in \bar{V} closest to x. V_{canopy} is a subset of V such that-

$$V_{canopy} = \{ x \in V | d(x, f(x)) \le d(\rho, f(x)) \}$$

Observe that in the canopy tree, there is only one self-avoiding path to infinity, but the size of the balls $B(\rho, n)$ still grows exponentially. It shows that one does not need too many paths to infinity for the size of your graph to grow exponentially. Denoted by \mathbb{T}^2_{canopy}

3.2 Random Walks on Weighted Graphs

(This section will be done as a discrete time reversible Markov Chain)

Formally, X_n jumps from $x \sim y_i$ with probability proportional to μ_{xy_i} . It stays at x with probability proportional to μ_{xx} .

Our graph is denoted by $\Gamma = (V, E)$. We assume there are no isolated edges that is $\{\mu_x \neq 0 \ \forall x \in V\}$. Also assume H(1) and H(2).

$$\Omega = \{ f : \mathbb{N} \cup \{0\} \to V \} \equiv V^{\mathbb{N} \cup \{0\}}$$

 $\forall n \geq 0, X_n : \Omega \to V \text{ where } X_n(\omega) = \omega(n)$

Let $A_n \equiv$ observable events upto time n (all events that can be derived from X_1, \ldots, X_n). This will be a filtration.

$$\mathcal{F} \equiv \cup_{n>1} \ \mathcal{A}_n$$

Set $\mathcal{P}(x,y) = \frac{\mu_{xy}}{\mu_x} \quad \forall x, y \in V$.

 $\forall x \in V$, there exists a unique $\mathcal{P}^x(.)$ on (Ω, \mathcal{F}) .

(Existence can be shown using Kolmogorov consistency theorem).

 $\forall n \geq 1$

$$\mathbb{P}^{x}(X_{n} = x_{n}, X_{n-1} = x_{n-1}, \dots, X_{0} = x_{0}) = 1_{\{x\}}(x_{0}) \prod_{i=1}^{n} P(x_{n}, x_{n-1})$$

$$\mathbb{P}^{x}(X_{1} = y) = \mathbb{P}^{x}(X_{1} = y, \bigcup_{z \in V} X_{0} = z)$$

$$= \sum_{z \in V} \mathbb{P}^{x}(X_{1} = y, X_{0} = z)$$

$$= \sum_{z \in V} \mathcal{P}(y, z) 1_{\{x\}}(z)$$

$$= \mathcal{P}(y, x)$$

One-step transition probability-

$$\mathbb{P}(X_n = y | X_{n-1} = z) = \frac{\mathbb{P}(X_n = y, X_{n-1} = z)}{\mathbb{P}(X_{n-1} = z)} = \mathcal{P}(y, z)$$

The last equality is left as an exercise.

Reversibility-

$$\mu_x \mathcal{P}(x, y) = \mu_x \frac{\mu_{xy}}{\mu_x} = \mu y x = \mu_y \mathcal{P}(y, x)$$

 (X_n, \mathcal{P}) markov chain is symmetric with reprect to $\{\mu_x\}_{x\in V}$

Lemma 3.2.1. Let $x_0, ..., x_n \in V$

$$\mu_{x_0} \mathbb{P}^{x_0}(X_n = x_n, \dots, X_0 = x_0) = \mu_{x_n} \mathbb{P}^{x_n}(X_n = x_0, \dots, X_0 = x_n)$$

The above shows the reversibility of the markov chain wrt μ .

Proof.

$$\mu_{x_0} \mathbb{P}^{x_0}(X_n = x_n, \dots, X_0 = x_0) = \mu_{x_0} \prod_{i=1}^n \mathcal{P}(x_i, x_{i-1})$$

$$= \mu_{x_0} \prod_{i=1}^n \frac{\mu_{x_i, x_{i-1}}}{\mu_{x_{i-1}}}$$

$$= \mu_{x_n} \prod_{i=1}^n \frac{\mu_{x_{n-i}, x_{n-i+1}}}{\mu_{x_{n-i+1}}}$$

$$= \mu_{x_n} \mathbb{P}^{x_n}(X_n = x_0, \dots, X_0 = x_n)$$

Remark. If $\mu(V) = \sum_{x \in V} \mu_x = 1$ and $\mu(A) = \sum_{x \in A}$, then μ is the reversible distribution for $\{X_n\}_{n \geq 0}$ that is

$$\mu_x \mathcal{P}(x, y) = \mu_y \mathcal{P}(y, x)$$

Hence $\{\mu_x\}_{x\in V}$ is the stationary distribution.

Definition 3.2.1. $A \subseteq V$. The hitting time of A be given by

$$T_A = \min\{n \ge 0 | X_n \in A\}$$

By convention, $T_A = \infty$ iff X_n does not visit A.

Definition 3.2.2. The return time of A is defined as -

$$T_A^+ = \min\{n \ge 1 | X_n \in A\}$$

Note that $X_0 \notin A \implies T_A^+ = T_A$

Definition 3.2.3. The exit time of A is-

$$au_A = T_{A^c}$$

Theorem 3.2.1. Let Γ be H(1) and H(2) and $|V| = \infty$. Then TFAE-

- 1. $\exists x \in V \text{ such that } \mathbb{P}^x(\tau_x^+ < \infty) < 1$
- 2. $\forall x \in V, \mathbb{P}^x(\tau_x^+ < \infty) < 1$
- 3. $\forall x \in V, \sum_{n=0}^{\infty} \mathbb{P}^x (X_n = x) < \infty$
- 4. $\forall x, y \in V, \mathbb{P}^x(\tau_y < \infty) < 1$
- 5. $\mathbb{P}^x(\sum_{n>0} 1_{\{X_n=x\}} < \infty) = 1 \quad \forall x, y \in V$

If the above is satisfied, the Markov Chain is transient.

Theorem 3.2.2. Let Γ be H(1) and H(2) and $|V| = \infty$. Then TFAE-

- 1. $\exists x \in V \text{ such that } \mathbb{P}^x(\tau_x^+ < \infty) = 1$
- 2. $\forall x \in V, \mathbb{P}^x(\tau_r^+ < \infty) = 1$
- 3. $\forall x \in V, \sum_{n=0}^{\infty} \mathbb{P}^x (X_n = x) = \infty$
- 4. $\forall x, y \in V, \mathbb{P}^x(\tau_y < \infty) = 1$
- 5. $\mathbb{P}^x(\sum_{n>0} 1_{\{X_n=x\}} = \infty) = 1 \quad \forall x, y \in V$

If the above is satisfied, the Markov Chain is recurrent.

Definition 3.2.4. If $\{X_n\}_{n\geq 0}$ random walk on (Γ, μ) satisfies

- 1. any statement of theorem 1.6, the graph (Γ, μ) is transient.
- 2. any statement of theorem 1.7, the graph (Γ, μ) is recurrent.

3.3 Exercises

- 1. Show that $H_3, H_4 \Rightarrow H_5$
- 2. When is (Γ, μ) transient or recurrent? Partial answer- When $|V| < \infty$, (Γ, μ) is recurrent.
- 3. **Kesten Problem-** G is a finitely generated group with generating set A. Look at the Cayley graph of G. Which groups provide transient graphs?