Lucy Y. Pao Lecture 8 Page 1 ECEN 5458

Digital Filtering

- Pole-zero mapping
- Hold equivalents
 - Zero-order hold
 - Triangle hold

Lucy Y. Pao Lecture 8 Page 2 ECEN 5458

Pole-Zero Mapping

• Apply $z = e^{sT}$ to poles and zeros of transfer function H(s) to obtain an "equivalent" H(z).

Given

$$H(s) = K_s \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}, \qquad m < n$$

then

$$H_{zp}(z) = K_d \frac{(z - e^{z_1 T})(z - e^{z_2 T}) \cdots (z - e^{z_m T})}{(z - e^{p_1 T})(z - e^{p_2 T}) \cdots (z - e^{p_n T})}$$

Need to know the poles and zeros of H(s).

- 1. How do we determine K_d ?
- 2. How do we map zeros at infinity?

Solutions:

1. Choose K_d to match gains at some frequency of interest.

2. How about mapping zeros at infinity to zeros at infinity?

Example:
$$H(s) = \frac{K_s}{s^3 + 2s^2 + 2s + 1}$$

Lucy Y. Pao

Lecture 8

Page 4

ECEN 5458

$$U(z) = \frac{K_d z^{-3}}{1 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3}} E(z)$$

Summary of Pole-Zero Mapping

- Map finite poles and zeros of H(s) with
- Map all but one of the zeros of H(s) at infinity to z = -1. Map one zero of H(s) at infinity to infinity.

Determine K_d to match gains at some frequency interest. (Often, DC gains are matched.) $|H_{zp}(z)| = |H(s)|$ $|z=e^{s_0T}$

Example

$$H(s) = \frac{a}{s+a}$$

$$H_{zp}(z) = \frac{1 - e^{-aT}}{z - e^{-aT}}$$

Lucy Y. Pao Lecture 8 Page 7 ECEN 5458

Hold Equivalents

$$\begin{array}{c|c}
e(t) & e(k) \\
\hline
T & Hold \\
\hline
e(t) & H(s) \\
\hline
e(t) & \hat{u}(t) & \hat{u}(k) \\
\hline
T & \hat{u}(k) \\
\hline
e(t) & \hat{u}(t) & \hat{u}(k) \\
\hline
e(t) & \hat{u}(t) & \hat{u}(t) & \hat{u}(t) \\
\hline
e(t) & \hat{u}(t) & \hat{u}(t) & \hat{u}(t) & \hat{u}(t) & \hat{u}(t) \\
\hline
e(t) & \hat{u}(t) & \hat{$$

Want to approximate H(s) with an H(z) such that $apprenture{r}(s)$ imates u(t) if e(k) are samples of e(t).

Idea of Hold Equivalents is to construct $\hat{e}(t) \approx e(t)$ from samples e(k), then apply to $\hat{e}(k)$ system H(s) to get that $\hat{u}(k) = u(k)$.

If e(t) is bandlimited: can perfectly reconstruct $\hat{e}(t) = e(t)$ rom samples e(k). Lucy Y. Pao Lecture 8 Page 8 ECEN 5458

Hold Equivalents to Find D(z) to Approximate D(s)

- "Hold" for D/A must be practically implementable.
- Here, hold equivalent is just a way of finding D(z). If "hold" is non-causal but D(z) is causal, that's fine!

Lucy Y. Pao Lecture 8 Page 9 ECEN 5458

Zero-Order Hold (ZOH)

- Most common hold
- Determining H(z) is exactly the same as we discussed earlier in the term:

Lucy Y. Pao Lecture 8 Page 10 ECEN 5458

Triangle Hold

$$H_{\text{TRI}}(z) = Z \left[\text{TRI}(s) H(s) \right]$$

$$\boldsymbol{H}_{\text{TRI}}(\boldsymbol{z}) = \frac{(\boldsymbol{z} - 1)^2}{\boldsymbol{T} \boldsymbol{z}} \boldsymbol{Z} \begin{bmatrix} \boldsymbol{H}(\boldsymbol{s}) \\ \boldsymbol{S}^2 \end{bmatrix}$$

See Figure 6.9 of text.