Теория типов

Человек, который поспорил на 2 торта \heartsuit

Содержание

1	λ -ис	счисление	2
	1.1	Введение	2
	1.2	Числа Чёрча	3
	1.3	Ромбовидное свойство и параллельная редукция	4
	1.4	Порядок редукции	E
		Парадокс Карри	
	1.6	Импликационный фрагмент ИИВ	6
2	Про	осто типизированное λ -исчисление	7
	2.1	Исчисление по Карри	7
	2.2	Исчисление по Чёрчу	8

1 λ -исчисление

1.1 Введение

Смысла в этом нет.

Д.Г.

Определение (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

- (а) аппликация левоассоциативна
- (b) абстракция распространяется как можно дальше вправо

Пример.
$$((\lambda z.(z(yz)))(zx)z) = (\lambda z.z(yz))(zx)z$$

Есть понятия связанного и свободного вхождения переменной (аналогично ИП). $\lambda x.A$ связывает все свободные вхождения x в A. Договоримся, что:

- (a) Переменные x, a, b, c.
- (b) Термы (части λ -выражения) X, A, B, C.
- (с) Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные из конца.

Определение (α -эквивалентность). A и B называются α -эквивалентными ($A =_{\alpha} B$), если выполнено одно из следующих условий:

- 1. $A \equiv x$ и $B \equiv x$.
- 2. $A \equiv \lambda x.P, \, B \equiv \lambda y.Q$ и $P_{[x:=t]} =_{\alpha} Q_{[y:=t]},$ где t новая переменная.
- 3. $A \equiv PQ$, $B \equiv RS$ и $P =_{\alpha} R$, $Q =_{\alpha} S$.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx.$

Доказательство.

$$\lambda y.ty =_{\alpha} \lambda x.tx \implies \lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$$
$$tz =_{\alpha} tz \implies \lambda y.ty =_{\alpha} \lambda x.tx$$

 $tz =_{\alpha} tz$ верно по третьему условию.

Определение (β -редекс). Терм вида ($\lambda a.A$) B называется β -редексом.

$$\Pi p u м e p$$
. В выражении $(\lambda f. \underbrace{(\lambda x. \overline{f(xx)})}_{A_2} \underbrace{(\lambda x. f(xx))}_{B_2}) \underbrace{g}_{B_2}$ два β -редекса.

Определение. Множество λ -термов Λ назовём множеством классов эквивалентности Λ по $(=_{\alpha})$.

Определение (β -редукция). $A \to_{\beta} B$ (состоят в отношении β -редукции), если выполняется одно из условий:

1. $A \equiv PQ$, $B \equiv RS$ и

либо
$$P \to_{\beta} R$$
 и $Q =_{\alpha} S$ либо $P =_{\alpha} R$ и $Q \to_{\beta} S$

- 2. $A \equiv \lambda x.P, B \equiv \lambda x.Q, P \rightarrow_{\beta} Q$ (x из какого-то класса из Λ).
- 3. $A \equiv (\lambda x.P)Q, B \equiv P_{[x:=Q]}, Q$ свободно для подстановки в P вместо x.

1.2 Числа Чёрча

Хотите знать, что такое истина?

Д.Г.

$$T = \lambda x \lambda y.x$$
$$F = \lambda x \lambda y.y$$
$$Not = \lambda a.aFT$$

Похоже на тип boolean, не правда ли?

Пример.

Not
$$T = (\lambda a.aFT)T \rightarrow_{\beta} TFT = (\lambda x.\lambda y.x)FT \rightarrow_{\beta} (\lambda y.F)T \rightarrow_{\beta} F$$

Можно продолжить:

And =
$$\lambda a.\lambda b.ab$$
F
Or = $\lambda a.\lambda b.a$ Tb

Попробуем определить числа:

Определение (Чёрчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f\left(f^{n-1}x\right) & , n > 0 \\ x & , n = 0 \end{cases}$

Пример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n.\lambda f.\lambda x.f(nfx)$$

Пример.

$$(+1)\overline{1} = (\lambda n.\lambda f.\lambda x.f(nfx))(\lambda f.\lambda x.fx) \rightarrow_{\beta} \lambda f.\lambda x.f((\lambda f.\lambda x.fx)fx) \twoheadrightarrow_{\beta} \lambda f.\lambda x.f(fx) = \overline{2}$$

Определение (η -эквивалентность).

$$\lambda x.fx =_n f$$

Аналог из C++: если **int** $f(\textbf{int}\ x)$, то результат её вычисления равен результату вычисления [] (**int** x) { **return** f(x); }.

Арифметические операции:

IsZero =
$$\lambda n.n(\lambda x.F)T$$

IsEven = $\lambda n.n$ Not T
Add = $\lambda a.\lambda b.\lambda f.\lambda x.af(bfx)$
Mul = $\lambda a.\lambda b.a(Add\ b)\overline{0}$
Pow = $\lambda a.\lambda b.b(Mul\ a)\overline{1}$
Pow* = $\lambda a.\lambda b.ba$

Для того, чтобы определить (-1), сначала определим "пару":

$$\langle a, b \rangle = \lambda f. fab$$

First = $\lambda p. Tp$
Second = $\lambda p. Fp$

n раз применим функцию $f(\langle a,b\rangle)=\langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n$$
. First $(n (\lambda p. \langle (\text{Second } p), (+1) (\text{Second } p) \rangle) \langle \overline{0}, \overline{0} \rangle)$

Сокращение записи:

$$\lambda xy.A = \lambda x.\lambda y.A$$

Определение (Нормальная форма).

Терм A — нормальная форма (н.ф.), если в нём нет β -редексов. Нормальной формой A называется такой B, что $A \twoheadrightarrow_{\beta} B$, B — н.ф. $\twoheadrightarrow_{\beta}$ — транзитивно-рефлексивное замыкание \rightarrow_{β} .

Утверждение 1.1. Существует λ -выражение, не имеющее н.ф.

$$\Omega = \omega \omega$$
$$\omega = \lambda x.xx$$

Определение (Комбинатор). Комбинатор — λ -выражение без свободных переменных.

Комбинатор неподвижной точки:

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Определение (β -эквивалентность). $A =_{\beta} B$, если $\exists C : C \twoheadrightarrow_{\beta} A, C \twoheadrightarrow_{\beta} B$

Утверждение 1.2.

$$Yf =_{\beta} f(Yf)$$

Доказательство. (на лекции не давалось)

$$Yf =_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f$$

$$=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

$$=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))$$

$$=_{\beta} f(Yf)$$

Таким образом, с помощью Y-комбинатора можно определять рекурсивные функции.

Пример.

Fact =
$$Y(\lambda f n. \text{IsZero } n \ \overline{1} \ (\text{Mul } n \ (f \ (-1) \ n)))$$

1.3 Ромбовидное свойство и параллельная редукция

Определение (Ромбовидное свойство (diamond)). G обладает ромбовидным свойством, если какие бы ни были a, b, c, что $aGb, aGc, b \neq c$, найдётся такое d, что bGd и cGd.

 $Пример. \ (<)$ на натуральных числах обладает ромбовидным свойством. (>) на натуральных числах не обладает ромбовидным свойством.

 β -редукция не обладает ромбовидным свойством.

Пример.

$$a = (\lambda x.xx)(Ia)$$

$$a \to_{\beta} (Ia)(Ia) = b$$

$$a \to_{\beta} (\lambda x.xx)a = c$$

$$b \to_{\beta} (Ia)a \to_{\beta} aa$$

$$b \to_{\beta} a(Ia) \to_{\beta} aa$$

$$c \to_{\beta} aa$$

Heт d, что $b \rightarrow_{\beta} d$ и $c \rightarrow_{\beta} d$.

Теорема 1.3 (Чёрча-Россера). В-редуцируемость обладает ромбовидным свойством.

Лемма 1.4. Если R обладает ромбовидным свойством, то R^* обладает ромбовидным свойством.

Доказательство. (Упражнение) ТООО

1.
$$M_1RN_1$$
 и $M_1RM_2...M_{n-1}RM_n \Rightarrow$ есть $N_2...N_n$: $N_1RN_2...N_{n-1}RN_n$ и M_nRN_n .

2. Покажем ромбовидное свойство.

Определение (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$

- 1. $A =_{\beta} B$, to $A \rightrightarrows_{\beta} B$
- 2. $A \rightrightarrows_{\beta} B$, to $\lambda x.A \rightrightarrows_{\beta} \lambda x.B$
- 3. $P \rightrightarrows_{\beta} Q$ и $R \rightrightarrows_{\beta} S$, то $PR \rightrightarrows_{\beta} QS$
- 4. $(\lambda x.P)Q \Rightarrow_{\beta} R_{[x:=S]}$, если $P \Rightarrow_{\beta} R$ и $Q \Rightarrow_{\beta} S$.

Утверждение 1.5. (\Rightarrow_{β}) обладает ромбовидным свойством.

Доказательство. (Упражнение) ТООО

Утверждение 1.6. *Если* $A \rightarrow_{\beta} B$, *mo* $A \rightrightarrows_{\beta} B$.

Утверждение 1.7. *Если* $A \rightrightarrows_{\beta} B$, *mo* $A \twoheadrightarrow_{\beta} B$.

Доказательство. (Упражнение) ТООО

При этом, обратное не всегда верно.

Пример.

$$(\lambda x.xx)(\lambda x.xxx) \rightarrow_{\beta} (\lambda x.xxx)(\lambda x.xxx)(\lambda x.xxx)$$
$$(\lambda x.xxx)(\lambda x.xxx) \not \Rightarrow_{\beta} (\lambda x.xxx)(\lambda x.xxx)(\lambda x.xxx)$$

Утверждение 1.8. Из предыдущих двух утверждений следует $(\rightarrow_{\beta})^* = (\Rightarrow_{\beta})^*$.

Теорема Чёрча-Россера следует из приведённых утверждений.

Следствие 1.9. Нормальная форма для λ -выражения единственна, если существует.

Теорема 1.10 (Тезис Чёрча). Если функция вычислима с помощью механического аппарата, то она вычислима с помощью λ -выражения.

1.4 Порядок редукции

«Завтра! Завтра! Не сегодня!» — так ленивцы говорят.

sprichwort

Определение.

$$K = \lambda x \lambda y.x$$
$$I = \lambda x.x$$
$$S = \lambda x y z.x z(yz)$$

I выражается через S и K: I = SKK.

Утверждение 1.11. Пусть A — замкнутое λ -выражение. Тогда найдётся выражение T, состоящее только из $S,\ K,\$ что $A=_{\beta}T.$

Пример. тут какой-то пример с омегой, подскажите чё там было, ТООО

Определение (Нормальный порядок редукции). Нормальным порядком редукции называется редукция самого левого β -редекса.

«Ленивые вычисления» (ну, почти, в ленивых ещё есть меморизация)

Определение (Аппликативный порядок редукции). Самый левый из самых вложенных.

«Энергичные вычисления»

Утверждение 1.12. Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

1.5 Парадокс Карри

Если это утверждение верно, то русалки существуют.

Попробуем построить логику на основе λ -исчисления. Введём комбнатор-импликацию, обозначим (\supset). Введём М.Р. и правила:

- 1. $A \supset A$
- 2. $(A \supset (A \supset B)) \supset (A \supset B)$
- 3. $A =_{\beta} B$, тогда $A \supset B$

Введём обозначение: $Y_{\supset a} \equiv Y(\lambda t.t \supset a) =_{\beta} Y(\lambda t.t \supset a) \supset a$. Построим парадокс:

- 1) $Y_{\supset a} \supset Y_{\supset a}$
- $2) \quad Y_{\supset a} \supset (Y_{\supset a} \supset a)$
- (схема аксиом) (можно доказать)
- 3) $(Y_{\supset a}\supset Y_{\supset a}\supset a)\supset (Y_{\supset a}\supset a)$ (схема аксиом)
- 4) $Y_{\supset a} \supset a$

- (M.P.)
- $5) \quad (Y_{\supset a} \supset a) \supset Y_{\supset a}$
- (третье правило)

6) $Y_{\supset a}$

(M.P.)

7) a

(M.P.)

Так можно доказать любое a.

1.6 Импликационный фрагмент ИИВ

Определение (импликационный фрагмент ИИВ). Рассмотрим интуиционистское исчисление высказываний.

1. Введём схему аксиом:

$$\overline{\Gamma, \varphi \vdash \varphi}$$

2. Правило введения импликации:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

3. И правило удаления импликации:

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Мы построили импликационный фрагмент ИИВ (и.ф.и.и.в).

Пример. Докажем $\varphi \to \psi \to \varphi$:

$$\frac{\frac{\varphi,\psi\vdash\varphi}{\varphi\vdash\psi\to\varphi}}{\frac{\varphi\vdash\psi\to\varphi}{\vdash\varphi\to(\psi\to\varphi)}} (2)$$

Теорема 1.13. И.ф.и.и.в полон в моделях Крипке.

Доказательство. Допишу, ТООО

Следствие 1.14. И.ф.и.и.в замкнут относительно выводимости.

Если некоторое утверждение выводится в ИИВ ($\vdash_{\tt u} \varphi$) и содержит только импликации, то оно выводится и в и.ф.и.и.в. ($\vdash_{\tt u} \varphi$).

2 Просто типизированное λ -исчисление

Определение (Тип). $T = \{\alpha, \beta, \gamma, \ldots\}$ — множество типов. σ, τ — метапеременные для типов. Если τ, σ — типы, то $\sigma \to \tau$ — тип.

$$\Pi ::= T \mid \Pi \to \Pi \mid \ (\Pi)$$

 (\rightarrow) правоассоциативна.

Определение (Контекст). Контекст — Γ .

$$\Gamma = \{ \Lambda_1 : \sigma_1; \ \Lambda_2 : \sigma_2 \ \dots \ \Lambda_n : \sigma_n \}$$
$$|\Gamma| = \{ \sigma_1, \ \sigma_2 \ \dots \ \sigma_n \}$$
$$\operatorname{dom} \Gamma = \{ \Lambda_1, \ \Lambda_2 \ \dots \ \Lambda_n \}$$

2.1 Исчисление по Карри

Определение (Типизируемость по Карри). Рассмотрим исчисление со следующими правилами:

1.
$$\overline{\Gamma, x : \sigma \vdash x : \sigma} \ (x \not\in \text{dom}(\Gamma))$$

$$2. \ \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau}$$

$$3. \ \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \sigma \to \tau} \ (x \not \in \mathrm{dom}(\Gamma))$$

Если λ -выражение типизируется этими трёмя правилами, то говорят, что оно типизируется по Карри.

Лемма 2.1 (subject deduction). $Ecnu \Gamma \vdash M : \sigma \ mo \ \Gamma \vdash N : \sigma$.

Следствие 2.2. $Ecnu \Gamma \vdash M : \sigma \ u \ M \twoheadrightarrow_{\beta} N, \ mo \ \Gamma \vdash N : \sigma.$

Теорема 2.3 (Чёрча-Россера). Если $\Gamma \vdash M : \sigma, M \twoheadrightarrow_{\beta} N \ u \ M \twoheadrightarrow_{\beta} P,$ тогда найдётся Q, что $N \twoheadrightarrow_{\beta} Q,$ $P \twoheadrightarrow_{\beta} Q \ u \ \Gamma \vdash Q : \sigma.$

Пример. Несколько доказательств:

1. Докажем $\lambda x.x: \alpha \to \alpha$:

$$\frac{\overline{x : \alpha \vdash x : \alpha}}{\vdash \lambda x . x : \alpha \to \alpha} (1)$$

2. Докажем $\lambda f.\lambda x.fx:(\alpha \to \beta) \to \alpha \to \beta$:

$$\frac{\Gamma \vdash f : \sigma \to \tau}{f : \sigma \to \tau; x : \sigma \vdash fx : \tau} \frac{(1)}{\Gamma \vdash x : \sigma} \frac{(2)}{(2)}$$
$$\frac{f : \sigma \to \tau; x : \sigma \vdash fx : \tau}{f : \sigma \to \tau \vdash \lambda x. fx : \sigma \to \tau} \frac{(3)}{(3)}$$
$$\vdash \lambda f. \lambda x. fx : (\sigma \to \tau) \to (\sigma \to \tau)}$$

3. $\Omega = (\lambda x.xx)(\lambda x.xx)$ не типизируемо: **TODO**

Лемма 2.4 (Свойство subject expansion). Неверно, что если $M \to_{\beta} N$, $\Gamma \vdash N : \sigma$, то $\Gamma \vdash M : \sigma$.

Например, для $Ka\Omega$.

Свойство 2.5. В общем случае тип не уникален, бывает, что одновременно $\vdash \lambda x.x : \alpha \to \alpha$ и $\vdash \lambda x.x : (\beta \to \beta) \to (\beta \to \beta)$.

Определение (Сильная нормализация). Назовём исчисление сильно-нормализуемым, если не существует бесконечной последовательности β -редукций.

Определение (Слабая нормализация). Назовём исчисление слабо-нормализуемым, если для любого терма существует последовательность β -редукций, приводящая его к нормальной форме.

Теорема 2.6 (о сильной нормализации). Просто типизируемое λ -исчисление сильно нормализуемо. Любое просто типизируемое λ -выражение сильно нормализуемо.

TODO{

$$\begin{tabular}{ll} \textbf{Теорема 2.7.} \ \textit{Рассмотрим полином } E(m,n) = \begin{cases} \ensuremath{\varPio\mathit{лuhoM}}(m,n) & m>0, n>0 \\ \ensuremath{\varPio\mathit{nuhoM}}(m) & m>0, n=0 \\ \ensuremath{\varPio\mathit{nuhoM}}(n) & m=0, n>0 \\ \ensuremath{\textit{Kohcmahma}} & m=0, n=0 \end{cases} .$$

Eсли $\nu=(\alpha \to \alpha) \to (\alpha \to \alpha)$ и $F: \nu \to \nu \to \nu$, то F- рассматриваемый полином.

2.2 Исчисление по Чёрчу

Определение (Типизация по Чёрчу).

$$\Lambda_{\mathbf{q}} ::= x \mid \lambda x^{\sigma} . \Lambda_{\mathbf{q}} \mid (\Lambda_{\mathbf{q}}) \mid \Lambda_{\mathbf{q}} \Lambda_{\mathbf{q}}$$

Правила:

1.
$$\overline{\Gamma, x : \sigma \vdash_{\mathbf{q}} x : \sigma} (x \not\in \mathrm{dom}(\Gamma))$$

$$2. \ \frac{\Gamma \vdash_{^{_{\mathbf{q}}}} M : \sigma \to \tau \quad \Gamma \vdash_{^{_{\mathbf{q}}}} N : \sigma}{\Gamma \vdash_{^{_{\mathbf{q}}}} MN : \tau}$$

$$3. \ \frac{\Gamma, x : \sigma \vdash_{\mathbf{q}} M : \tau}{\Gamma \vdash_{\mathbf{q}} \lambda x^{\sigma}.M : \sigma \to \tau} \ (x \, \mathscr{L} \operatorname{dom}(\Gamma))$$

Определение.

$$|\Lambda_{\mathbf{q}}| = \begin{cases} x & \Lambda_{\mathbf{q}} \equiv x \\ |\Lambda_1| |\Lambda_2| & \Lambda_{\mathbf{q}} \equiv \Lambda_1 \Lambda_2 \\ \lambda x. |\Lambda| & \Lambda_{\mathbf{q}} \equiv \lambda x^{\sigma}. \Lambda \end{cases}$$

Лемма 2.8 (Subject reduction по Чёрчу). Пусть $\Gamma \vdash_{\mathbf{q}} M : \sigma \ u \ |M| \to_{\beta} N$. Тогда найдётся такое H, что absH = N, $\Gamma \vdash_{\mathbf{q}} H : \sigma$.

Теорема 2.9 (Чёрча-Россера). Если $\Gamma \vdash_{\mathbf{q}} M : \sigma$, $|M| \twoheadrightarrow_{\beta} N$, $|M| \twoheadrightarrow_{\beta} T$. Тогда найдётся такое P, что $\Gamma \vdash_{\mathbf{q}} P : \sigma$, $N \twoheadrightarrow_{\beta} |P|$ и $T \twoheadrightarrow_{\beta} |P|$.

Теорема 2.10 (о стирании).

- 1. Ecau $M \to_{\beta} N$ u $\Gamma \vdash_{\P} M : \sigma, mo |M| \to_{\beta} |N|$.
- 2. Ecau $\Gamma \vdash_{\mathbf{q}} M : \sigma, mo \ \Gamma \vdash_{\mathbf{k}} |M| : \sigma.$

Теорема 2.11 (о поднятии). Пусть $P \in \Lambda_{\mathsf{ч}}, \, M, N \in \Lambda_{\mathsf{\kappa}}.$

- 1. Если $M \to_{\beta} N$, |P| = M, то найдётся такое Q, что |Q| = N, $P \to_{\beta} Q$.
- 2. Если $\Gamma \vdash_{\kappa} M : \sigma$, то найдётся такое $P \in \Lambda_{\mathtt{q}}$, что $\Gamma \vdash_{\mathtt{q}} P : \sigma$, |P| = M.

ТООО комментарии про то, зачем мы это делаем.

$$\begin{split} \frac{\Gamma \vdash A : \varphi \quad \Gamma \vdash B : \psi}{\Gamma \vdash \langle A, B \rangle : \varphi \& \psi} \\ \frac{\Gamma \vdash R : \varphi \& \psi}{\Gamma \vdash \pi_1 R : \varphi} \quad \frac{\Gamma \vdash R : \varphi \& \psi}{\Gamma \vdash \pi_2 R : \psi} \end{split}$$

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \qquad \frac{\Gamma \vdash \varphi \to \pi \quad \Gamma \vdash \psi \to \pi}{\Gamma \vdash \varphi \lor \psi \to \pi}$$

$$\frac{\Gamma \vdash A : \varphi}{\Gamma \vdash \mathrm{inj}_1 A : \varphi \lor \psi}$$

ТОДО трешак какой-то пошёл :(

Теорема 2.12 (об изоморфизме Карри-Ховарда).

- 1. Пусть $\Gamma \vdash \sigma u$.ф.и.и.в., тогда найдётся такое Δ , что $|\Delta| = \Gamma$, M-такой терм, что $\Delta \vdash_{\mathsf{ч}} M : \sigma$.
- 2. Пусть $\Delta \vdash_{\mathbf{q}} M : \sigma$, тогда $|\Delta| \vdash \sigma$.

Доказательство. Построим Δ . $\Gamma = \{\sigma_1, \sigma_2 \ldots\}, \ \Delta = \{x_1 : \sigma_1, x_2 : \sigma_2, \ldots\}.$