

MITx: 14.310x Data Analysis for Social Scientists

Heli

Bookmarks

- Module 1: The Basics of R and Introduction to the Course
- ▶ Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 9: Single and Multivariate Linear Models > The Linear Model > Defining the Linear Model - Quiz

Defining the Linear Model - Quiz

☐ Bookmark this page

Recall our linear model:

$$Y_i = eta_0 + eta_1 x_i + \epsilon ext{ for } i = 1, 2, \dots, n$$

Question 1

1/1 point (graded)

True or False: $E[Y_i] = eta_0 + eta_1 X_i + E[\epsilon]$

a. True

b. False

Explanation

This expression is correct. However, recall that $E[\epsilon_i]=0$, and so we can simplify this further to:

$$E[Y_i] = E[eta_0 + eta_1 X_i + \epsilon_i] = E[eta_0] + E[eta_1 X_i] + E[\epsilon_i] =$$

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation
- Module 7: Assessing and Deriving Estimators -Confidence Intervals, and Hypothesis Testing
- Module 8: Causality,
 Analyzing Randomized
 Experiments, &
 Nonparametric
 Regression
- Module 9: Single and <u>Multivariate Linear</u> <u>Models</u>

The Linear Model

due Nov 28, 2016 05:00 IST

$$\beta_0 + \beta_1 X_i + 0 = \beta_0 + \beta_1 X_i$$

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Question 2

1/1 point (graded)

We usually find estimates for β_0 and β_1 by using a least squares estimator. Which of the following is the least squares estimator?

- ullet a. $\min_eta \sum_i |Y_i eta_0 eta_1 Xi|$
- lacksquare b. $\min_{eta} \sum_i (Y_i eta_0 eta_1 Xi)$
- \circ c. $\min_{eta} \sum_{i} \left(\frac{X_i eta_0}{eta_1 Y_i / eta_1} \right)^2$
- ullet d. $\min_{eta} \sum_i (Y_i eta_0 eta_1 X_i)^2$ 🗸

Explanation

1/2010	Delining the Linear Model - Quiz The Linear Model 14.510x Courseware edx
The Multivariate Linear Model due Nov 28, 2016 05:00 IST Module 9: Homework due Nov 21, 2016 05:00 IST	The least squares estimator minimizes the sum of squared residuals. The residual $(Y_i - (\beta_0 + \beta_1 X_i))$ is the difference between the true and predicted values of Y_i . The first option (a) is called the least absolute deviations estimator. The third option (c) is called the reverse least squares estimator.
 Module 10: Practical Issues in Running Regressions, and Omitted Variable Bias 	Submit You have used 1 of 2 attempts ✓ Correct (1/1 point)
• Exit Survey	Discussion Topic: Module 9 / Defining the Linear Model - Quiz Show Discussion

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

