Отчёт по лабораторной работе 7

Гебриал Ибрам Есам Зекри НПИ-01-18

Содержание

1	Цел	ь работы	5
2	Зада	ание	6
3	Вып	олнение лабораторной работы	7
	3.1	Теоретические сведения	7
	3.2	Выполнение работы	9
		3.2.1 Первый случай $\alpha_1(t)$ > $\alpha_2(t)$	9
		3.2.2 второй случай $\alpha_1(t) < \alpha_2(t)$	11
		3.2.3 третий случай	13
	3.3		15
4	Выв	воды	17

List of Tables

List of Figures

3.1	График решения уравнения модели Мальтуса	8
3.2	График логистической кривой	9
3.3	График распространения рекламы. Коэффициент α_1 = 0.605, коэф-	
	фициент α_2 = 0.000017	10
3.4	График распространения рекламы. Коэффициент α_1 = 0.000065,	
	коэффициент α_2 = 0.209	12
3.5	Гравик для определиние в какой момент времени скорость распро-	
	странения рекламы будет иметь максимальное значение	13
3.6	График распространения рекламы для третьего случая	14
3.7	График распространения рекламы. типа модели Мальтуса	16
3.8	График распространения рекламы. Уравнение логистической кривой.	16

1 Цель работы

Посмотреть модель распространения рекламы.

2 Задание

Вариант 42

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.605 + 0.000017n(t))(N - n(t))$$
.

2.
$$\frac{dn}{dt} = (0.000065 + 0.209n(t))(N - n(t)).$$

3.
$$\frac{dn}{dt} = (0.51 sin(t) + 0.31 * t * n(t))(N - n(t)).$$

При этом объем аудитории N=2200, в начальный момент о товаре знает 21 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:

 $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt}=(a_1(t)+a_2(t)n(t))(N-n(t))$$

При $\alpha 1(t)$ » $\alpha 2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (рис. 3.1):

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае, при $\alpha 1(t)$ « $\alpha 2(t)$ получаем уравнение логистической кривой (рис. 3.2):

Figure 3.2: График логистической кривой

3.2 Выполнение работы

Нам в задании дано:

N=2200 -максимальное количество людей, которых может заинтересовать товар

х0=21 - количество людей, знающих о товаре в начальный момент времени

3.2.1 Первый случай $\alpha_1(t)$ > $\alpha_2(t)$

$$\frac{dn}{dt} = (0.605 + 0.000017n(t))(N - n(t))$$

Начальные условия:

 $\alpha_1 = 0.605$

 $\alpha_2 = 0.000017$

Код программы

t0 = 0; //начальный момент времени

x0 = 21; // количество людей, знающих о товаре в начальный момент времени

N = 2200; // максимальное количество людей, которых может заинтересовать товар

t = 0: 0.1: 30; // временной промежуток (длительность рекламной

```
компании)
//функция, отвечающая за платную рекламу
function g=k(t);
g=0.605;
endfunction
//функция, описывающая сарафанное радио
function v=p(t);
v=0.000017;
endfunction
//уравнение, описывающее распространение рекламы
function xd=f(t, x);
xd=(k(t)+p(t)*x)*(N-x);
endfunction
x=ode(x0, t0, t, f); //решение ОДУ
x=ode(x0, t0, t, f); //решение ОДУ
x=ode(x0, t0, t, f); //решение ОДУ
```

График распространения рекламы для этого случая (рис. 3.3):

Figure 3.3: График распространения рекламы. Коэффициент α_1 = 0.605, коэффициент α_2 = 0.000017

Получил модель типа модели Мальтуса.

3.2.2 второй случай $\alpha_1(t)$ < $\alpha_2(t)$

$$\frac{dn}{dt} = (0.000065 + 0.209n(t))(N - n(t))$$

Начальные условия:

 $\alpha_1=0.000065$

 $\alpha_2=0.209$

Код программы

```
t0 = 0; //начальный момент времени
х0 = 21; // количество людей, знающих о товаре в начальный момент
времени
N = 2200; // максимальное количество людей, которых может
заинтересовать товар
t = 0: 0.1: 30; // временной промежуток (длительность рекламной
компании)
//функция, отвечающая за платную рекламу
function g=k(t);
g = 0.000065;
endfunction
//функция, описывающая сарафанное радио
function v=p(t);
v = 0.209;
endfunction
//уравнение, описывающее распространение рекламы
function xd=f(t, x);
xd = (k(t) + p(t)*x)*(N - x);
endfunction
```

x = ode(x0, t0, t, f); //решение ОДУ

plot(t, x); //построение графика решения

График распространения рекламы для этого случая (рис. 3.4):

Figure 3.4: График распространения рекламы. Коэффициент α_1 = 0.000065, коэффициент α_2 = 0.209

Получил уравнение логистической кривой.

3.2.2.1 определиние в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Я добавил в программе чтобы построить график производной (рис. 3.5):

```
n=size(x,"c");
for i=1:n
    dx(i)=(k(t)+p(t)*x(i))*(N-x(i));
end
```


Figure 3.5: Гравик для определиние в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Маскимальное значение в момент времени t=0.01.

3.2.3 третий случай

$$\frac{dn}{dt} = (0.51sin(t) + 0.31 * t * n(t))(N - n(t))$$

Начальные условия:

$$\alpha_1 = 0.51 sin(t)$$

$$\alpha_2 = 0.31 * t$$

Код программы

t0 = 0; //начальный момент времени

x0 = 21; // количество людей, знающих о товаре в начальный момент времени

N = 2200; // максимальное количество людей, которых может заинтересовать товар

t = 0: 0.1: 30; // временной промежуток (длительность рекламной

```
компании)
//функция, отвечающая за платную рекламу
function g=k(t);
g=0.51;
endfunction
//функция, описывающая сарафанное радио
function v=p(t);
v=0.31;
endfunction
//уравнение, описывающее распространение рекламы
function xd=f(t, x);
xd=(k(t)*sin(t)+p(t)*t*x)*(N-x);
endfunction
x=ode(x0, t0, t, f); //решение ОДУ
x=0de(x0, t0, t, f); //решение ОДУ
x=0de(x0, t0, t, f); //решение ОДУ
```

График распространения рекламы для этого случая (рис. 3.6):

Figure 3.6: График распространения рекламы для третьего случая

Получаем уравнение логистической кривой.

3.3 Контрольные вопросы к лабораторной работе

1. Записать модель Мальтуса (дать пояснение, где используется данная модель).

модель типа модели Мальтуса:

$$\frac{dn}{dt}=(a_1(t)+a_2(t)n(t))(N-n(t))$$

В случае $\alpha_1(t)$ » $\alpha_2(t)$.

Он широко используется в популяционной экологии как первый принцип популяционной динамики. Мальтус писал, что для всех форм жизни, располагающих избытком ресурсов, характерен экспоненциальный рост популяции. Тем не менее, в какой-то момент ресурсов начинает недоставать, и рост замедляется.

2. Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение).

$$\frac{dn}{dt}=(a_1(t)+a_2(t)n(t))(N-n(t))$$
при В случае $\alpha_1(t)$ « $\alpha_2(t)$.

3. На что влияет коэффициент $\alpha_1(t)$ и $\alpha_2(t)$ в модели распространения рекламы.

Интенсивность рекламной кампании и сарафанное радио

4. Как ведет себя рассматриваемая модель при $a_1(t) >> a_2(t).$

Модель типа модели Мальтуса (рис. 3.7):

Figure 3.7: График распространения рекламы. типа модели Мальтуса

5. Как ведет себя рассматриваемая модель при $a_1(t) << a_2(t).$ уравнение логистической кривой. (рис. 3.8):

Figure 3.8: График распространения рекламы. Уравнение логистической кривой.

4 Выводы

Рассмотрел модель распространения рекламы.