The University Interscholastic League Number Sense Test • HS Regional • 2016

Number	Sense Test ● HS R	tegional ● 2016	6	
			Final _	
Contestant's Number			2nd	
Read directions carefully	DO NOT UNFOLD THIS	S SHEET	1st So	core Initials
before beginning test	UNTIL TOLD TO BEGIN			
Directions: Do not turn this page until the person of 80 problems. Solve accurately and quickly as many a SOLVED MENTALLY. Make no calculations we each problem. Problems marked with a (*) require five percent of the exact answer will be scored correct.	s you can in the order in what he paper and pencil. Write approximate integral answ	hich they appear. AL conly the answer in vers; any answer to a	L PROBLEMS the space provide	ARE TO BE ed at the end of
The person conducting this contest should explain	n these directions to the o	contestants.	•	
	STOP WAIT FOR SIG	NAL!		
(1) 6102 — 524 — 423 =	(19) 4 gall	lons — 2 quarts —	- 2 pints =	cups
(2) 234 × 5 =	*(20) 815 >	× 1947 =		
(3) 1947 ÷ 3 =	$(21) 2^5 +$	$4^3 + 8^2 = $	***	
(4) 0.1875 = (proper fi	result	(22) What number divided by four gives the same result as that number minus twelve?		
(5) $55\% = $ (proper fi	(23) Let x	$x = -1$. Find $3x^2$	+ 6x — 9	
(6) $31^2 =$	(24) The s	sum of three conse		
(8) $13^3 =$	(25) $4\frac{1}{2}$ ×	$2\frac{1}{10} =$	(m	ixed number)
(9) 1111967 ÷ 9 has a remainder of	(25) 25	<u>26</u> =	(m	ixed number)
$(10) 246 - 1357 + 2134 - 711 = \underline{\hspace{1cm}}$	(27) Wha	t is 27% of 444 4 =	<u> </u>	
(11) $4\frac{1}{4} + 3\frac{1}{3} =$ (mixed r	(28) 0.025	555 =	(pr	oper fraction)
(12) 135 × 12 =	$(29) F = {$	$\{f,o,r,t,y\}, S = \{s,i,t\}$	x,t,y, and $E =$	{e,i,g,h,t,y}.
(13) 42325 ÷ 8 has a remainder of	,	S) \cap E has how m		
(14) 125% of 88 =	*(30) $4\frac{2}{3}$ ×	(1423 ÷ 14 =	***************************************	
(15) $5\frac{2}{5} - 3\frac{2}{3} =$ (mixed n	umber) (31) 15 ² -	+ 45 ² =		
(16) If 8 □'s cost \$6.40 then 5 □'s cost \$	(32) If 7x	-5 = 3, then $7x -$	+ 1 =	
(17) 37 × 14 + 14 × 33 =	(33) 213 h	oase 4 in base 10 is	s	
(18) $CXXV \times XLIV =$ (Arabic no	ımeral) (34) If a =	= 22 and $b = 14$. th	ien 4a ² — 4ab -	$+ b^2 =$

(36) Given the set $\{1,5,12,22, m,51,70, n,117,145, \dots\}$. Find $m + n$. (37) $36 \times 53 =$ (38) $4\frac{5}{8} \times 4\frac{3}{8} =$ (mixed number) (39) $(22 + 44 \times 66) \div 8$ has a remainder of (40) $\sqrt{523524} =$ (41) $31 \times 39 + 16 =$ (42) Let $39^4 \times 39^{-2} \div 39^k = 39^3$. Find k. (43) The sum of the roots of $9x^2 - 6x = -1$ is (44) The area of a right triangle with a base of 40 cm and a hypotenuse of 41 cm is (45) The midpoint of the segment with end points (-1 , 3) and $(6, -10)$ is (x, y) . Find $x + y$. (46) If $3^{-2} + x^{-1} = 6^{-1}$ then $x =$ (47) Which of the following is an odious number, $3, 5, \text{ or } 7$? (48) The sum of the integral values of $x = 1$ is (49) The sum of the integral values of $x = 1$ is (49) The sum of the integral values of $x = 1$ is (49) The sum of the integral values of $x = 1$ is (50) $4^2 \times 3^4 \times 2^5 =$ (51) $(2 + 3i) \div 5i = (a + bi)$. Find $(a + b)$. (52) Find the 5^{th} term of the geometric sequence, $81, -27, 9, -3, \dots$ (53) $7C.5 \times 5P.3 =$ (55) The odds of selecting a pentagonal number of the set of digits is (66) $4232016 \div 425 =$ (61) The sum of the reciprocals of all of the position divisors of 35 is (62) $7^{10} \div 13$ has a remainder of (63) The Greatest Integer Function is written as $f(x) = [x]$. Find $[x]$ is $f(x) = [x$	(35)	$\left(\frac{9}{16}\right)^{\frac{3}{2}} = $	(58) Find the units digit of 18 ⁷ .
*(60) 4232016 ÷ 425 = (37) $36 \times 53 =$ (38) $4\frac{5}{8} \times 4\frac{3}{8} =$ (mixed number) (62) $7^{10} \div 13$ has a remainder of divisors of 35 is (63) $7^{10} \div 13$ has a remainder of divisors of 35 is (64) $7^{10} \div 13$ has a remainder of $7^{10} \div 13$ has a remainder of divisors of 35 is (62) $7^{10} \div 13$ has a remainder of		Given the set {1,5,12,22,m,51,70,n,117, 145,}.	(59) The odds of selecting a pentagonal number from
(61) The sum of the reciprocals of all of the position divisors of 35 is (62) $7^{10} \div 13$ has a remainder of (62) $7^{10} \div 13$ has a remainder of (63) The Greatest Integer Function is written as $f(x) = [x]$. Find $\left[\frac{\sqrt{5} + 1}{2} - 3.14\right]$. (64) If $31 \times 39 + 16 =$ (65) $524_6 + 423_6 + 201_6 =$ (66) Change 0.42323235 to a base 10 fraction. and a hypotenuse of 41 cm is	(25)		
(38) $4\frac{7}{8} \times 4\frac{7}{8} =$ (mixed number) (39) $(22 + 44 \times 66) \div 8$ has a remainder of (62) $7^{10} \div 13$ has a remainder of (63) The Greatest Integer Function is written as $f(x) = [x]$. Find $\left[\frac{\sqrt{5} + 1}{2} - 3.14\right]$. (42) Let $39^4 \times 39^{-2} \div 39^k = 39^3$. Find k. (64) If $\log_8(4x + 3) = 2$ then $x =$ (65) $524_6 + 423_6 + 201_6 =$ (66) Change 0.42323235 to a base 10 fraction. and a hypotenuse of 41 cm is	(37)	36 × 53 =	
*(40) $\sqrt{523524} =$ (63) The Greatest Integer Function is written as f(x) = [x]. Find $\left[\frac{\sqrt{5}+1}{2}-3.14\right]$. (42) Let $39^4 \times 39^{-2} \div 39^k = 39^3$. Find k. (64) If $\log_8(4x+3) = 2$ then $x =$ (65) $524_6 + 423_6 + 201_6 =$ (66) Change 0.42323235 to a base 10 fraction. (67) How many positive integers less than 20 are relatively prime to $20?$ (68) $1-\cos^2(\frac{5\pi}{3}) =$ (69) The first four digits of the decimal for $\frac{7}{11}$ is $\frac{7}{11}$	(38)	$4\frac{5}{8} \times 4\frac{3}{8} =$ (mixed number)	(61) The sum of the reciprocals of all of the positive divisors of 35 is
(41) $31 \times 39 + 16 =$ (42) Let $39^4 \times 39^{-2} \div 39^k = 39^3$. Find k. (43) The sum of the roots of $9x^2 - 6x = -1$ is (44) The area of a right triangle with a base of 40 cm and a hypotenuse of 41 cm is	(39)	(22 + 44 × 66) ÷ 8 has a remainder of	(62) $7^{10} \div 13$ has a remainder of
(41) $31 \times 39 + 16 =$ $f(x) = [x]$. Find $\left[\frac{\sqrt{5} + 1}{2} - 3.14\right]$. (42) Let $39^4 \times 39^{-2} \div 39^k = 39^3$. Find k. (43) The sum of the roots of $9x^2 - 6x = -1$ is (44) The area of a right triangle with a base of 40 cm and a hypotenuse of 41 cm is	*(40)	$\sqrt{523524} = $	(63) The Greatest Integer Function is written as
(43) The sum of the roots of $9x^2 - 6x = -1$ is	(41)	31 × 39 + 16 =	$f(x) = [x]$. Find $\left[\frac{\sqrt{5}+1}{2} - 3.14\right]$.
(44) The area of a right triangle with a base of 40 cm and a hypotenuse of 41 cm is cm² (65) The midpoint of the segment with end points $(-1,3)$ and $(6,-10)$ is (x,y) . Find $x+y$. (68) $1-\cos^2(\frac{5\pi}{3})=$ (69) The first four digits of the decimal for $\frac{7}{11}$ is $3,5,$ or $7?$ (69) The first four digits of the decimal for $\frac{7}{11}$ is $\frac{7}{11}$ is $\frac{7}{11}$ the sum of the integral values of x such that $ x-2 -4\le 6$ is (71) Truncate $5\sqrt{6}$ to the nearest tenth. (72) The largest element of the range of $y^2=16$ is $\frac{7}{11}$ is $\frac{7}{11}$ in	(42)	Let $39^4 \times 39^{-2} \div 39^k = 39^3$. Find k	(64) If $\log_8(4x + 3) = 2$ then $x = $
and a hypotenuse of 41 cm is cm² (45) The midpoint of the segment with end points (-1, 3) and $(6, -10)$ is (x, y) . Find $x + y$ (68) $1 - \cos^2(\frac{5\pi}{3}) =$ (69) The first four digits of the decimal for $\frac{7}{11}$ is	(43)	The sum of the roots of $9x^2 - 6x = -1$ is	$(65) 524_6 + 423_6 + 201_6 = \underline{\qquad} 6$
(45) The midpoint of the segment with end points $(-1,3)$ and $(6,-10)$ is (x,y) . Find $x+y$. (46) If $3^{-2}+x^{-1}=6^{-1}$ then $x=$ (47) Which of the following is an odious number, $3,5,$ or 7 ? (48) The sum of the integral values of x such that $ x-2 -4\le 6$ is (49) The sum of the number of faces, the number of sides, and the number of vertices of a Platonic icosahedron is *(50) $4^2\times 3^4\times 2^5=$ (51) $(2+3i)\div 5i=(a+bi)$. Find $(a+b)$. (52) Find the 5^{th} term of the geometric sequence, $81,-27,9,-3,$ (53) ${}_{7}C_{5}\times {}_{5}P_{3}=$ (67) How many positive integers less than 20 are relatively prime to 20 ? (68) $1-\cos^2(\frac{5\pi}{3})=$ (69) The first four digits of the decimal for $\frac{7}{11}$ is $\frac{7}{11}$ is $\frac{7}{11}$ is $\frac{7}{11}$ is $\frac{7}{11}$ is $\frac{7}{11}$ in $\frac{7}{11}$ is $\frac{7}{11}$ in $\frac{7}{11}$ is $\frac{7}{11}$ in $\frac{7}{11}$ in $\frac{7}{11}$ is $\frac{7}{11}$ in $\frac{7}{$	(44)		(66) Change 0.4232323 5 to a base 10 fraction.
(46) If $3^{-2} + x^{-1} = 6^{-1}$ then $x =$ (47) Which of the following is an odious number, 3, 5, or 7? (48) The sum of the integral values of x such that $ x-2 -4 \le 6$ is (49) The sum of the number of faces, the number of sides, and the number of vertices of a Platonic icosahedron is *(50) $4^2 \times 3^4 \times 2^5 =$ (51) $(2+3i) \div 5i = (a+bi)$. Find $(a+b)$. (52) Find the 5^{th} term of the geometric sequence, $81, -27, 9, -3, \dots$ (53) $7^{C}5 \times 5^{C}3 =$ (68) $1 - \cos^2(\frac{5\pi}{3}) =$ (69) The first four digits of the decimal for $\frac{7}{11}$ is *(70) $2^2 + 4^2 + 6^2 + 8^2 + \dots 14^2 + 16^2 =$ (71) Truncate $5\sqrt{6}$ to the nearest tenth. (72) The largest element of the range of $y^2 = 16$ is (73) If $f(x) = \frac{2}{x+3} - 1$, then $f^{-1}(-4) =$ (74) $\int_{-1}^{1} (3x-4) dx =$ (75) If $3x-2 = 4 \pmod{8}$, $0 \le x \le 7$, then $x =$ (76) The 1^{st} triangular number times the 2^{nd} hex number times the 3^{rd} pentagonal number is	(45)	The midpoint of the segment with end points	(67) How many positive integers less than 20 are relatively prime to 20?
(48) The sum of the integral values of x such that $ x-2 -4 \le 6$ is (49) The sum of the number of faces, the number of sides, and the number of vertices of a Platonic icosahedron is *(50) $4^2 \times 3^4 \times 2^5 =$ (51) $(2+3i) \div 5i = (a+bi)$. Find $(a+b)$. (52) Find the 5^{th} term of the geometric sequence, $81, -27, 9, -3, \dots$ (53) $7^{C}5 \times 5^{C}3 =$ (55) $7^{C}5 \times 5^{C}3 =$ (65) Which of the integral values of x such that $ x-2 + 4^2 + 6^2 + 8^2 + \dots + 14^2 + 16^2 =$ (71) Truncate $5\sqrt{6}$ to the nearest tenth. (72) The largest element of the range of $y^2 = 16$ is (73) If $f(x) = \frac{2}{x+3} - 1$, then $f^{-1}(-4) =$ (74) $\int_{-1}^{1} (3x-4) dx =$ (75) If $3x-2 \equiv 4 \pmod{8}$, $0 \le x \le 7$, then $x = 1$ (76) The 1^{st} triangular number times the 2^{nd} hex number times the 3^{rd} pentagonal number is	(46)		$(68) \ 1 - \cos^2(\frac{5\pi}{3}) = \underline{\hspace{1cm}}$
(48) The sum of the integral values of x such that $ x-2 -4 \le 6$ is	(47)		(69) The first four digits of the decimal for $\frac{7}{11}$ is 0.
(49) The sum of the number of faces, the number of sides, and the number of vertices of a Platonic icosahedron is	(48)	The sum of the integral values of x such that	(71) Truncate $5\sqrt{6}$ to the nearest tenth.
*(50) $4^{2} \times 3^{4} \times 2^{5} =$ (51) $(2 + 3i) \div 5i = (a + bi)$. Find $(a + b)$. (52) Find the 5 th term of the geometric sequence, $81, -27, 9, -3, \dots$ (53) ${}_{7}C_{5} \times {}_{5}P_{3} =$ (74) $\int_{-1}^{1} (3x - 4) dx =$ (75) If $3x - 2 \equiv 4 \pmod{8}$, $0 \le x \le 7$, then $x =$ (76) The 1 st triangular number times the 2 nd hex number times the 3 rd pentagonal number is	(49)	The sum of the number of faces, the number of sides, and the number of vertices of a Platonic	
(51) $(2+3i) \div 5i = (a+bi)$. Find $(a+b)$. (74) $\int_{-1}^{1} (3x-4) dx = \frac{1}{2} (75)$ Find the 5 th term of the geometric sequence, (75) If $3x-2 \equiv 4 \pmod{8}$, $0 \le x \le 7$, then $x = \frac{1}{2} (75)$ The 1 st triangular number times the 2 nd hex number times the 3 rd pentagonal number is			(73) If $f(x) = \frac{2}{x+3} - 1$, then $f^{-1}(-4) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
(52) Find the 5 th term of the geometric sequence, $81, -27, 9, -3, \dots$ (53) $_{7}C_{5} \times _{5}P_{3}=$ (75) If $3x - 2 \equiv 4 \pmod{8}$, $0 \le x \le 7$, then $x = $ (76) The 1 st triangular number times the 2 nd hex number times the 3 rd pentagonal number is			(74) $\int_{-1}^{1} (3x-4) dx =$
81, -27 , 9, -3 , (76) The 1 st triangular number times the 2 nd hex number times the 3 rd pentagonal number is	(51)	$(2+3i) \div 5i = (a+bi)$. Find $(a+b)$.	J _1 ·
(53) ${}_{7}C_{5} \times {}_{5}P_{3} =$ (57) The last triangular number times the 2^{rd} next number is number times the 3^{rd} pentagonal number is	(52)		(75) If $3x - 2 \equiv 4 \pmod{8}$, $0 \le x \le 7$, then $x = $
CRED TRUE I COM CONTRACTOR TO THE CATALON TO THE CA	(53)		(76) The 1 st triangular number times the 2 nd hexagonal number times the 3 rd pentagonal number is
			(77) The domain of the function $\sqrt{\operatorname{Ln}(e^x)}$ is $x \ge $
(78) How many subsets containing only 4 elemen			(78) How many subsets containing only 4 elements does the set {r,e,g,i,o,n} have?
(56) The sum of the coefficients of the x^3y^2 term and the xy^4 term of $(x + y)^5$ is	(56)		$(79) \ 44^2 \div 22^2 \times 11^2 = \underline{\hspace{1cm}}$
*(80) The interest on \$5000 for 2.5 years at a simp	(57)		*(80) The interest on \$5000 for 2.5 years at a simple interest rate of 1.5% is dollars (integer)

University Interscholastic League - Number Sense Answer Key HS ● Regional ● 2016 *number) x - y means an integer between x and y inclusive

NOTE: If an answer is of the type like $\frac{2}{3}$ it cannot be written as a repeating decimal

(4)
$$\frac{3}{16}$$

(5)
$$\frac{11}{20}$$

(7) 21.5,
$$\frac{43}{2}$$
, $21\frac{1}{2}$

$$*(10)$$
 297 — 327

(11)
$$7\frac{7}{12}$$

(15)
$$1\frac{11}{15}$$

$$(23) - 12$$

(25)
$$9\frac{9}{20}$$

(26)
$$20\frac{18}{29}$$

$$(28) \frac{23}{900}$$

$$(35) \frac{27}{64}$$

(38)
$$20\frac{15}{64}$$

$$(39)$$
 6

$$(42) - 1$$

$$(43) \frac{2}{3}$$

$$(45) - 1$$

$$(48)$$
 42

(51) .2,
$$\frac{1}{5}$$

$$(59) \frac{1}{4}$$

$$*(60)$$
 9,460 — 10,455

(61)
$$\frac{48}{35}$$
, $1\frac{13}{35}$

$$(63) - 2$$

(64) 15.25,
$$\frac{61}{4}$$
, $15\frac{1}{4}$

(66)
$$\frac{109}{120}$$

(68) .75,
$$\frac{3}{4}$$

(71) 12.2,
$$\frac{61}{5}$$
, $12\frac{1}{5}$

$$(73) - \frac{11}{3}, -3\frac{2}{3}$$

$$(74) - 8$$

$$(76)$$
 72