Εργαστήριο #7

1. Τι θα πρέπει να έχετε ολοκληρώσει πριν συνεχίσετε...

Από τα προηγούμενα εργαστήρια, θα πρέπει να έχετε σχεδιάσει και ελέγξει:

Ένα τμήμα alu8, το οποίο εκτελεί τις πράξεις AND, OR, XOR και ΠΡΟΣΘΕΣΗ (ή ΑΦΑΙΡΕΣΗ) σε 2 bytes εισόδου και θα παράγει αποτέλεσμα ομοίως του ενός byte. Το τμήμα alu8 παράγει τα εξής σήματα κατάστασης: α) z (zero): 1 όταν το αποτέλεσμα είναι μηδενικό, σε κάθε άλλη κατάσταση 0, β) s (sign): 1 όταν ο αριθμός είναι αρνητικός, αλλιώς 0, γ) c (carry): όταν η μη προσημασμένη πρόσθεση παράγει κρατούμενο και δ) ν (overflow): 1 όταν το αποτέλεσμα της προσημασμένης πρόσθεσης παράγει υπεργείλιση, αλλιώς 0.

2. Μονοπάτι δεδομένων (datapath) ενός κύκλου.

Στο παρόν εργαστήριο θα συνδυάσετε την ΑΛΜ των 8 bits που έχετε ήδη φτιάξει και ελέγξει, μαζί με δύο νέα τμήματα, τα οποία **θα βρείτε έτοιμα** στη βιβλιοθήκη **lablib.jelib** στο site του εργαστηρίου. Τα δύο αυτά τμήματα είναι:

α) regfile, ομάδα 8 καταχωρητών (R0..R7) για ανάγνωση (έξοδοι Α και Β) και εγγραφή. Ο R0 έχει ειδική λειτουργία: ό,τι γράφεται σε αυτόν δεν αποθηκεύεται, ενώ όταν διαβαστεί το περιεχόμενό του είναι πάντα 0. Τα σήματα εισόδου και εξόδου είναι τα εξής:

Ονομασία	Κατεύθυνση	Λειτουργία
d0 d7	είσοδοι	εισαγωγή δεδομένων προς εγγραφή
wrsel0wrsel2	είσοδοι	επιλογή καταχωρητή για εγγραφή
wrelk	είσοδος	τα δεδομένα εγγράφονται στην ανερχόμενη ακμή του σήματος αυτού
rstbar	είσοδος	όσο το σήμα αυτό είναι 0 (Low), το περιεχόμενο όλων των καταχωρητών παραμένει 0
rda0 rda2	είσοδος	επιλογή καταχωρητή ανάγνωσης για την έξοδο Α
rdb0 rdb2	είσοδος	επιλογή καταχωρητή ανάγνωσης για την έξοδο Β
a0 a7	έξοδοι	έξοδος ανάγνωσης Α
b0 b7	έξοδοι	έξοδος ανάγνωσης Β

(E7)

β) **mux2to1x8**, 8πλός πολυπλέκτης 2 σε 1. Από δύο ομάδες εισόδων των 8 bits η κάθε μία, επιλέγει ποια ομάδα θα περάσει στην έξοδο (επίσης των 8 bits) με βάση ένα σήμα επιλογής. Οι είσοδοι και έξοδοι έχουν ως εξής:

Ονομασία	Κατεύθυνση	Λειτουργία
ia0 ia7	είσοδοι	πρώτη ομάδα εισόδου (8 bits)
ib0 ib7	είσοδοι	δεύτερη ομάδα εισόδου (8 bits)
o0 o7	έξοδοι	έξοδος (8 bits)
sel	είσοδος	επιλογή ομάδας 8 bits που θα εμφανιστεί στην έξοδο. Με 0 επιλέγεται η ia, ενώ με 1 η ib.

3. Σχεδιασμός μονοπατιού δεδομένων.

Το μονοπάτι δεδομένων που θα σχεδιάσετε θα εκτελεί σε **έναν κύκλο ρολογιού** μια πράξη μεταξύ δύο πηγών δεδομένων και θα αποθηκεύει το αποτέλεσμα στο regfile. Η αποθήκευση θα ξεκινά στην ανερχόμενη ακμή του ρολογιού και θα ολοκληρώνεται μέσα στον επόμενο κύκλο. Το σχήμα του μονοπατιού δεδομένων θα επιτρέπει την εκτέλεση πράξεων:

- α) μεταξύ δεδομένων από 2 καταχωρητές (έξοδοι A και B του regfile)
- β) μεταξύ δεδομένων από 1 καταχωρητή (έξοδος Β) και μέσω της άμεσης εισόδου im0..im7

4. Δοκιμαστική λειτουργία.

Δοκιμάστε να εκτελέσετε σε 3 κύκλους τα εξής:

R1 ← 10

R2 ← 20

 $R3 \leftarrow R1 + R2$

(E7)