2 PSD Matrices (Adona) [25 points]

Part A [15 points]: Basic properties of PSD matrices

1. Suppose $v \in \mathbb{R}^{|I|}$. Let $k_1 < \cdots < k_{|I|}$ denote the elements of I. Define $v_I \in \mathbb{R}^n$ such that each $(v_I)_{k_i} = v_i$ and $(v_I)_k = 0$, $\forall k \notin I$. Since $X \succeq 0$,

$$v^T X_I v = v_I^T X v_I \ge 0,$$

and hence $X_I \succeq 0$.

2. If $I = \{i, j\}$, then, since $X_I \succeq 0$,

$$0 \le \det X_I = X_{ii}X_{jj} - X_{ij}^2,$$

and hence $X_{ij}^2 \leq X_{ii}X_{jj}$.

If $X_{ii} = 0$, then each $0 \le X_{ii}^2, X_{ij}^2 \le X_{ii}X_{jj} = 0$, and so $X_{ji} = X_{ij} = 0$.

3. If $X = Q\Lambda Q^{-1}$, where Λ is a diagonal matrix of eigenvalues of X, then

$$\det X = \det(Q\Lambda Q^{-1}) = \det Q \det \Lambda \det(Q^{-1}) = \det Q \det \Lambda \det(Q)^{-1} = \det \Lambda.$$

Since the determinant of a diagonal matrix is trivially the product of its diagonal elements, $\det X$ is the product of the eigenvalues of X.

4. **Lemma** If $X = Y^T Z Y$ for some invertible matrix Y, then $X \succeq 0$ if and only if $Z \succeq 0$.

Proof: If $X \succeq 0$, then, $\forall v \in \mathbb{R}^n$.

$$0 \le (Y^{-1}v)^T X Y^{-1} v = (Y^{-1}v)^T Y^T Z Y Y^{-1} v = v^T Z v,$$

and so $Z \succeq 0$. The converse follows, since $Z = (Y^{-1})^T XY$. \square

It is easily checked that $X = Y^T Z Y$, where

$$Y = \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}$$
 and $Z = \begin{bmatrix} A & 0 \\ 0 & C - B^T A^{-1}B \end{bmatrix}$.

Since Y is triangular without zeros on its diagonal, Y is invertible. Thus, by the lemma, it suffices to show that $Z \succeq 0$ if and only if $A \succeq 0$ and $C - B^T A^{-1} B \succeq 0$. One implication is immediate from Part 1. On the other hand, it is clear that any eigenvalue of either A or $C - B^T A^{-1} B$ is an eigenvalue of Z, and hence, if $A, C - B^T A^{-1} B \succeq 0$, then Z has non-negative eigenvalues and so $Z \succeq 0$.

¹sss1@andrew.cmu.edu

Part B [10 points]: Formulating problems as SDPs

1. Let $X \in \mathbb{R}^{n \times n}$ such that each $X_{uv} = x_u^T x_v$. Since

$$||x_u - x_v||^2 = x_u^T x_u - 2x_u^T x_v + x_v^T x_v,$$

the objective function is just

$$\frac{1}{4}X \cdot W$$

where W_{uv} is the weight of (u, v) if $(u, v) \in \mathcal{E}$ and $W_{uv} = 0$ otherwise.

Each constraint $||x_u||^2 = 1$ is simply

$$X \cdot A_u = 1$$
,

where $(A_u)_{uu} = 1$ and all other coordinates of A_u are zero.

Since each $||x_u||^2 = 1$, the constraint $||x_{s_i} - x_{t_i}||^2 = 4$ for $(s_i, t_i) \in T$ is equivalent to $x_{s_i} = -x_{t_i}$, and so it can be written

$$X \cdot A_{(s_i, t_i)} = 0,$$

where $A_{(s_i,t_i)}$ has 1 in indices (s_i,s_i) and (s_i,t_i) .

Didn't have time to finish this part.

2. Didn't have time to finish this part.