Serie 13 - Il Logaritmo

"Il più grande nemico della conoscenza non è l'ignoranza, ma l'illusione di conoscenza." STEPHEN HAWKING, FISICO E MATEMATICO (8.1.1942 – 14.3.2008)

- 1. Calcola:
 - a) $\log_3 81$
- **b)** $\log_5 1$
- c) $\log_{12} 144$
- **d**) $\log_7 343$

- e) $\log_{11} \frac{1}{11}$
- f) $\log_8 \frac{1}{512}$
- **g**) $\log_{13} \frac{1}{169}$
- h) $\log_2 8^{12}$ 1) $\log_3 \sqrt{3}$

- i) $\log_2 \left(\frac{1}{4}\right)^{\pi}$ m) $\log_a a^2$
- \mathbf{j}) $\log_{10} 100^7$ n) $\log_a \sqrt[3]{a}$
- **k)** $\log_{16} 2$ o) $\log_a \sqrt[5]{\frac{1}{a^3}}$
- \mathbf{p}) $\log_a \sqrt[5]{a^4}$

- **2.** Determina la base a, sapendo che...
 - a) $\log_a 64 = 3$

- **e**) $\log_a 2 = 1$

- **b)** $\log_a 1024 = 10$ **c)** $\log_a 8 = -3$ **d)** $\log_a 7 = 5$ **f)** $\log_a 10 = -\frac{1}{2}$ **g)** $\log_a 5 = 7$ **h)** $\log_a \sqrt[3]{4} = \frac{2}{3}$
- **3.** Determina x, sapendo che...
 - a) $\log_6 x = 2$

- **b)** $\log_4 x = -\frac{3}{2}$
- c) $\log_{10} (3x^2 + 2x 4) = 0$
- 4. Risolvi le seguenti equazioni (senza approssimare il risultato):
 - a) $2^x = 11$

b) $e^{x} = \pi$

c) $10^{\frac{1}{x}} = 20$

d) $4^{1-x} = 5$

e) $7^{\sqrt{x}} = 3$

 $\mathbf{f)} \ 5^{3x+1} - 5^{3x-1} = 48$

g) $8 \cdot 3^{-x} = 5$

h) $e^{-\ln x} = 3$

i) $9^x - 2 \cdot 3^x - 11 = 0$

- **5.** Calcola:

- **a)** $3^{2 \log_3 5}$ **b)** $4^{\frac{1}{3} \log_2 3}$ **c)** $27^{5 \log_3 \pi}$ **d)** $\sqrt{7}^{\log_2 3 \cdot \log_7 2}$
- $\log_{10}\left(\left(\log_{10}\left(\frac{0.01^{5}\cdot10000^{\frac{1}{3}}}{\sqrt[3]{10}\cdot\frac{1}{0.1}}\right)\right)^{2}\right)$

- **6.** Scrivi sotto forma di somma o sottrazione¹:
 - a) $\log \frac{bc}{d}$
- **b**) $\log \frac{b+c}{d+e}$
- c) $\log (a^2 b^3 \sqrt{c})$ d) $\log \frac{1}{\sqrt[3]{r}}$

- e) $\log \frac{12bd^n}{5cf^r}$
- f) $\log \sqrt{\frac{bc}{d}}$
- g) $\log \frac{4\sqrt{b}}{5\sqrt{c^3}}$
- h) $\log \sqrt{ab\sqrt{cd}}$

- 7. Scrivi come logaritmo di un solo termine:
 - a) $\log 2 + \log 3 \log 5 \log 7$
 - c) $\log 5 1$
 - e) $\log a + \log b \log c$
 - g) $-\log x \log y \log z$
 - i) $\frac{1}{3}(\log b + 2\log c) \frac{1}{2}(5\log d + \log f)$

- **b)** $2 \log 3 + 4 \log 2$
- d) $\frac{1}{2} \log 25 \frac{1}{3} \log 64 + \frac{2}{3} \log 27$
- f) $3 \log b + 2 \log c 4 \log d$
- h) $\log a^{\frac{1}{2}} + \log a^{\frac{3}{2}} \log \sqrt{a}$
- **j**) $\frac{1}{2} \log a^{2n} (n+2) \log a$

 $^{^1}$ In questo esercizio e nel seguente scriveremo semplicemente log invece di $\log_a,$ per comodità; i risultati valgono comunque per una base qualsiasi e non soltanto per il logaritmo decimale

8. * Sapendo che

$$\log 2 \cong 0,30103$$
 , $\log 3 \cong 0,47712$, $\log 5 \cong 0,69897$, $\log 7 \cong 0,84510$

calcola un'approssimazione di log 105, log 108 e log $\sqrt{70}$ ricorrendo soltanto a somme e sottrazioni.

- 9. Il logaritmo in base $10 (\log_{10})$ ci permette di sapere quante cifre avremo bisogno per scrivere un determinato numero. Ad esempio $\log_{10}(100)=2$, quindi avremo bisogno di 2+1=3 cifre per scrivere il numero 100; allo stesso modo $\log_{10}(37654)\cong 4.58$, quindi necessitiamo di 4+1=5 cifre per scrivere il numero 37'654.
 - a) Determina il numero di cifre necessarie a rappresentare (in base 10) i numeri 34^{74} e $3.56 \cdot 10^{13}$.
 - b) Un Googol è il numero intero costituito da un 1 seguito da 100 zeri ed equivale a 10^{100} . Questo numero è creato per indicare un numero enormemente grande e può essere approssimato con 70! (fattoriale di 70). Esso viene utilizzato come termine di paragone con altri numeri enormemente grandi (ad esempio: il numero di particelle elementari nell'universo visibile viene stimato tra i 10^{72} e i 10^{84} mentre il numero di possibile partite di scacchi si aggira attorno al 10^{120}).

Determina se un Googol è maggiore o minore a $5^{(6^7)}$.

10. Considera le funzioni rappresentate qui accanto:

La funzione e^x è rappresentata con la linea intera mentre la funzione $0.3e^x$ è puntinata e la funzione $0.1e^x$ è tratteggiata.

Come noti si tratta della stessa curva ma traslata verso destra; le traslazioni verso destra avvengono con una modifica della funzione del tipo: $f(x) \to f(x-k)$. Come puoi spiegare questa situazione?

11. * Un'oscillazione smorzata (ad esempio di un pendolo immerso in un fluido viscoso) può essere descritta da una funzione del tipo

$$f(t) = A \cdot b^t \cdot \sin(\omega t + \varphi) \quad .$$

- a) Un'oscillazione sinusoidale $y = \sin(t)$ viene smorzata del 30% ogni periodo. Determinane l'ampiezza f(t) in funzione del tempo, ed esegui uno schizzo del grafico della funzione f.
- b) Determina f(t) per l'oscillazione rappresentata:

Soluzioni

- 1. Ricorda: $\log_a a^n = n$.
 - a) $\log_3 81 = \log_3 3^4 = 4$
 - c) $\log_{12} 144 = \log_{12} 12^2 = 2$
 - e) $\log_{11} \frac{1}{11} = \log_{11} 11^{-1} = -1$

 - g) $\log_{13} \frac{1}{169} = \log_{13} 13^{-2} = -2$ i) $\log_2 \left(\frac{1}{4}\right)^{\pi} = \log_2 2^{-2\pi} = -2\pi$
 - **k)** $\log_{16} 2 = \log_{16} \sqrt[4]{16} = \log_{16} 16^{\frac{1}{4}} = \frac{1}{4}$
 - $\mathbf{m)} \log_a a^2 = 2$
 - o) $\log_a \sqrt[5]{\frac{1}{a^3}} = \log_a a^{-\frac{3}{5}} = -\frac{3}{5}$
- **2. Nota:** $\log_a N = b \iff a^b = N \iff a = N^{\frac{1}{b}}$.
 - a) $a = 64^{\frac{1}{3}} = \sqrt[3]{64} = 4$
 - c) $a = 8^{-\frac{1}{3}} = \sqrt[3]{\frac{1}{8}} = \frac{1}{2}$
 - **e)** a = 2
 - **g)** $a = 5^{\frac{1}{7}} = \sqrt[7]{5}$

- **b)** $\log_5 1 = \log_5 5^0 = 0$
- **d)** $\log_7 343 = \log_7 7^3 = 3$
- f) $\log_8 \frac{1}{512} = \log_8 8^{-3} = -3$ h) $\log_2 8^{12} = \log_2 (2^3)^{12} = \log_2 2^{36} = 36$
- **j**) $\log_{10} 100^7 = \log_{10} 10^{14} = 14$
- 1) $\log_3 \sqrt{3} = \log_3 3^{\frac{1}{2}} = \frac{1}{2}$
- n) $\log_a \sqrt[3]{a} = \log_a a^{\frac{1}{3}} = \frac{1}{2}$
- **p)** $\log_a \sqrt[5]{a^4} = \log_a a^{\frac{4}{5}} = \frac{4}{5}$
- **b)** $a = 1024^{\frac{1}{10}} = \sqrt[10]{1024} = 2$
- d) $a = 7^{\frac{1}{5}} = \sqrt[5]{7}$
- **f)** $a = 10^{-2} = \frac{1}{100}$
- **h)** $a = (4^{\frac{1}{3}})^{\frac{3}{2}} = 4^{\frac{1}{2}} = 2$

- **3.** Ricorda: $\log_a x = b \iff x = a^b$.
 - a) $x = 6^2 = 36$
 - **b)** $x = 4^{-\frac{3}{2}} = \frac{1}{9}$
 - c) $\log_{10} (3x^2 + 2x 4) = 0 \iff 3x^2 + 2x 4 = 1 \iff 3x^2 + 2x 5 = 0;$ risolviamo l'equazione quadratica:

$$x_1 = \frac{-2 + \sqrt{2^2 - 4 \cdot 3 \cdot (-5)}}{2 \cdot 3} = 1$$
 , $x_2 = \frac{-2 - \sqrt{2^2 - 4 \cdot 3 \cdot (-5)}}{2 \cdot 3} = -\frac{5}{3}$

Quindi: x = 1 oppure $x = -\frac{5}{3}$.

- **4.** a) $2^x = 11 \iff x = \log_2 11$; $S = \{\log_2 11\}$.
 - **b)** $e^x = \pi \iff x = \ln \pi ; \mathcal{S} = \{\ln \pi\}.$
 - c) $10^{\frac{1}{x}} = 20 \iff \frac{1}{x} = \log 20 \iff x = \frac{1}{\log 20}$; $S = \{\frac{1}{\log 20}\}$.
 - d) $4^{1-x} = 5 \iff 1 x = \log_4 5 \iff x = 1 \log_4 5 ; S = \{1 \log_4 5\}.$
 - e) $7^{\sqrt{x}} = 3 \iff \sqrt{x} = \log_7 3 \iff x = (\log_7 3)^2 ; S = \{(\log_7 3)^2\}.$
 - **f**) $5^{3x+1} 5^{3x-1} = 48 \iff 5^{3x} \left(5^1 5^{-1} \right) = 48 \iff 5^{3x} \cdot \frac{24}{5} = 48 \iff 5^{3x} = 10 \iff 3x = \log_5 10 \iff 3x = \log_5$ $x = \frac{1}{3} \log_5 10$; $S = \{\frac{1}{3} \log_5 10\}$.
 - **g)** $8 \cdot 3^{-x} = 5 \iff 3^{-x} = \frac{5}{8} \iff -x = \log_3 \frac{5}{8} \iff x = -\log_3 \frac{5}{8} ; \mathcal{S} = \{-\log_3 \frac{5}{8}\}.$
 - h) $e^{-\ln x} = 3 \iff e^{\ln x} = 3^{-1} \iff x = \frac{1}{3} ; S = \left\{\frac{1}{3}\right\}.$
 - i) $9^x 2 \cdot 3^x 11 = 0 \iff (3^x)^2 2 \cdot (3^x) 11 = 0$; sostituendo $t = 3^x$ otteniamo l'equazione quadratica $t^2 - 2t - 11 = 0$ in t; applichiamo la formula risolutiva:

$$t_{1,2} = \frac{2 \pm \sqrt{4 + 44}}{2} = 1 \pm 2\sqrt{3}$$
 ;

ciò ci conduce alle equazioni esponenziali $t_1 = 3^{x_1}$ e $t_2 = 3^{x_2}$; dal momento che $t_2 = 1 - 2\sqrt{3} < 0$, la seconda equazione è impossibile, e l'unica soluzione è data da $x=x_1=\log_3\,t_1=\log_3\,\left(1+2\sqrt{3}\right)$. Quindi, $\mathcal{S} = \left\{ \log_3 \left(1 + 2\sqrt{3} \right) \right\}.$

- **5.** a) $3^{2 \log_3 5} = 3^{\log_3(5^2)} = 5^2 = 25$
 - **b)** $4^{\frac{1}{3}\log_2 3} = (2^2)^{\frac{1}{3}\log_2 3} = 2^{\frac{2}{3}\log_2 3} = 2^{\log_2(3^{\frac{2}{3}})} = 3^{\frac{2}{3}} = \sqrt[3]{9}$
 - **c)** $27^{5\log_3 \pi} = (3^3)^{5\log_3 \pi} = 3^{15\log_3 \pi} = 3^{\log_3(\pi^{15})} = \pi^{15}$
 - $\mathbf{d}) \sqrt{7}^{\log_2 3 \cdot \log_7 2} = 7^{(\frac{1}{2}\log_2 3) \cdot \log_7 2} = 7^{\log_7 \left(2^{\frac{1}{2}\log_2 3}\right)} = 2^{\frac{1}{2}\log_2 3} = 2^{\log_2 (3^{\frac{1}{2}})} = 3^{\frac{1}{2}} = \sqrt{3}$
 - e) $\log_{10} \left(\left(\log_{10} \left(\frac{0.01^5 \cdot 10000^{\frac{1}{3}}}{\sqrt[3]{10} \cdot \frac{1}{0.1}} \right) \right)^2 \right) = \log_{10} \left(\left(\log_{10} \left(\frac{10^{-2 \cdot 5} \cdot 10^{4 \cdot \frac{1}{3}}}{10^{1/3} \cdot 10^{-(-1)}} \right) \right)^2 \right) = \log_{10} \left(\log_{10} \left(10^{-10 + 4/3 1/3 1} \right)^2 \right) = \log_{10} \left((-10)^2 \right) = \log_{10} (100) = 2$
- **6.** a) $\log \frac{bc}{d} = \log b + \log c \log d$
 - **b)** $\log \frac{b+c}{d+e} = \log(b+c) \log(d+e)$
 - c) $\log (a^2 b^3 \sqrt{c}) = 2 \log a + 3 \log b + \frac{1}{2} \log c$
 - d) $\log \frac{1}{\sqrt[3]{r}} = -\log \sqrt[3]{r} = -\frac{1}{3}\log r$
 - e) $\log \frac{12bd^n}{5rf^r} = \log 12 + \log b + n \log d \log 5 \log c r \log f$
 - **f**) $\log \sqrt{\frac{bc}{d}} = \frac{1}{2} \log \frac{bc}{d} = \frac{1}{2} \log b + \frac{1}{2} \log c \frac{1}{2} \log d$
 - g) $\log \frac{4\sqrt{b}}{5\sqrt{c^3}} = \log 4 + \frac{1}{2}\log b \log 5 \frac{3}{2}\log c$
 - $\mathbf{h)} \ \log \sqrt{ab\sqrt{cd}} = \frac{1}{2} \log ab\sqrt{cd} = \frac{1}{2} \log a + \frac{1}{2} \log b + \frac{1}{2} \cdot \frac{1}{2} \log(cd) = \frac{1}{2} \log a + \frac{1}{2} \log b + \frac{1}{4} \log c + \frac{1}{4} \log d + \frac{1}{2} \log a + \frac$
- 7. a) $\log 2 + \log 3 \log 5 \log 7 = \log \frac{2 \cdot 3}{5 \cdot 7} = \log \frac{6}{35}$
 - **b)** $2 \log 3 + 4 \log 2 = \log 3^2 + \log 2^4 = \log(3^2 \cdot 2^4) = \log 144$
 - c) $\log 5 1 = \log 5 \log 10 = \log \frac{5}{10} = \log \frac{1}{2}$
 - **d**) $\frac{1}{2}\log 25 \frac{1}{3}\log 64 + \frac{2}{3}\log 27 = \log\left(25^{\frac{1}{2}}64^{-\frac{1}{3}}27^{\frac{2}{3}}\right) = \log\frac{5\cdot 9}{4} = \log\frac{45}{4}$
 - e) $\log a + \log b \log c = \log \frac{ab}{a}$
 - f) $3 \log b + 2 \log c 4 \log d = \log \frac{b^3 c^2}{d^4}$
 - g) $-\log x \log y \log z = \log \frac{1}{xyz}$
 - **h**) $\log a^{\frac{1}{2}} + \log a^{\frac{3}{2}} \log \sqrt{a} = \log \left(a^{\frac{1}{2}} \cdot a^{\frac{3}{2}} \cdot a^{-\frac{1}{2}} \right) = \log a^{\frac{3}{2}}$
 - i) $\frac{1}{3}(\log b + 2\log c) \frac{1}{2}(5\log d + \log f) = \log \frac{b^{\frac{1}{3}}c^{\frac{2}{3}}}{d^{\frac{5}{2}}t^{\frac{1}{2}}}$
 - **j**) $\frac{1}{2} \log a^{2n} (n+2) \log a = n \log a (n+2) \log a = -2 \log a = \log \frac{1}{a^2}$
- **8.** $105 = 3 \cdot 5 \cdot 7$

quindi: $\log 105 = \log(3 \cdot 5 \cdot 7) = \log 3 + \log 5 + \log 7 \approx 0,47712 + 0,69897 + 0,84510 \approx 2,02119$;

• $108 = 2^2 \cdot 3^3$

quindi: $\log 108 = 2 \log 2 + 3 \log 3 \cong 2 \cdot 0,30103 + 3 \cdot 0,47712 \cong 2,03342$;

 $\bullet \ 70 = 2 \cdot 5 \cdot 7$

quindi: $\log \sqrt{70} = \frac{1}{2} (\log 2 + \log 5 + \log 7) \cong \frac{1}{2} \underbrace{(0,30103 + 0,69897 + 0,84510)}_{1,8451} = 0,92255$

- 9. a) $\log_{10}(34^{74}) = 74 \cdot \log_{10}(34) \cong 113.33$, quindi avremo bisogno di 114 cifre. $\log_{10}(3.56 \cdot 10^{13}) = \log_{10}(3.56) + 13 \cdot \underbrace{\log_{10}(10)}_{-1} \cong 0.55 + 13 = 13.55$, quindi avremo bisogno di 14 cifre.
 - b) $\log_{10} \left(5^{(6^7)}\right) = 6^7 \cdot \log_{10}(5) \cong 195'666.9$ Quindi per scrivere $5^{(6^7)}$ avremo bisogno di 195'667 cifre, mentre per scrivere un *Googol* avremo bisogno "solo" di 101 cifre. Ovviamente $5^{(6^7)}$ è maggiore di 10^{100} .

10. Vogliamo dimostrare che una funzione $k \cdot e^x$ può essere espressa come e^{x-p} dove k e p sono delle costanti in relazione fra loro. Dalla definizione di logaritmo possiamo ottenere:

$$0.3 \cdot e^x = e^{\ln(0.3)} \cdot e^x = e^{x + \ln(0.3)}.$$

Da notare che $ln(0.3) \cong -1.2$ e dunque negativo: si tratta di una traslazione verso destra!

11. a) Il periodo è $T=2\pi$; dal momento che deve valere $b^{2\pi}=\frac{70}{100}=\frac{7}{10}$, ricaviamo immediatamente

$$b = \left(\frac{7}{10}\right)^{\frac{1}{2\pi}}$$
 e quindi $f(t) = b^t \sin(t) = \left(\frac{7}{10}\right)^{\frac{t}{2\pi}} \sin(t)$.

Schizzo (la curva tratteggiata rappresenta $y=\left(\frac{7}{10}\right)^{\frac{t}{2\pi}})$:

b) Rileviamo immediatamente l'ampiezza iniziale A=10, il periodo T=2 per l'oscillazione così come la traslazione verso sinistra di $\frac{1}{4}$ del periodo, cioè $\frac{1}{2}$ unità. Con $\omega=\frac{2\pi}{T}=\pi$, ricaviamo quindi immediatamente la funzione che descrive l'oscillazione "libera":

$$g(t) = 10\sin\left(\pi\left(x + \frac{1}{2}\right)\right) = 10\sin\left(\pi x + \frac{\pi}{2}\right) \qquad \left(= 10\cos\left(\pi x\right)\right) ;$$

dal momento che nell'intervallo [0,1] l'ampiezza si riduce a 9, ricaviamo immediatamente $b=\left(\frac{9}{10}\right)^t$, e quindi

$$f(t) = \left(\frac{9}{10}\right)^t g(t) = 10 \left(\frac{9}{10}\right)^t \sin\left(\pi x + \frac{\pi}{2}\right)$$