MATH 447: Real Variables Lecture Notes

Compiled by Jerich Lee

December 7, 2024

Peano Axioms

Definition 1 (Peano Axioms). The natural numbers \mathbb{N} are defined by the following postulates:

- (N1) N contains a distinguished element 1.
- (N2) Every $n \in \mathbb{N}$ has its successor in \mathbb{N} , denoted S(n).
- (N3) 1 is not the successor of any element in \mathbb{N} .
- (N4) If m and n have the same successor, then m = n.
- (N5) If $A \subseteq \mathbb{N}$ such that $1 \in A$ and $S(n) \in A$ whenever $n \in A$, then $A = \mathbb{N}$.

Theorem 1 (Uniqueness of \mathbb{N}). Suppose X is a set with a distinguished element 1' and a successor map S', satisfying the Peano Axioms (N1-N5). Then there exists a bijection $\Phi: \mathbb{N} \to X$ such that:

$$\Phi(1) = 1', \quad \Phi(S(n)) = S'(\Phi(n)) \, \forall n \in \mathbb{N}.$$

Mathematical Induction

Theorem 2 (Principle of Mathematical Induction). Suppose $(P_n)_{n\in\mathbb{N}}$ is a sequence of statements such that:

- 1. P_1 is true.
- 2. For any $n \in \mathbb{N}$, P_n implies P_{n+1} .

Then P_n is true for all $n \in \mathbb{N}$.

Example 1 (Induction Proof). Prove $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ for $n \in \mathbb{N}$. **Proof.** Base case (n = 1):

$$\sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2}.$$

Inductive step: Assume $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$. Then:

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{n(n+1)}{2} + (n+1).$$

Simplify:

$$\sum_{k=1}^{n+1} k = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}.$$

Thus, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ holds for all n.

Properties of Integers

Definition 2 (Addition Properties of \mathbb{Z}). The integers \mathbb{Z} satisfy:

- (A1) Associativity: a + (b + c) = (a + b) + c for all $a, b, c \in \mathbb{Z}$.
- (A2) Commutativity: a + b = b + a for all $a, b \in \mathbb{Z}$.
- (A3) Neutral Element: $\exists 0 \in \mathbb{Z} \text{ such that } a + 0 = a$.
- (A4) Existence of Opposites: For every $a \in \mathbb{Z}$, $\exists -a \in \mathbb{Z}$ such that a + (-a) = 0.

Theorem 3 (Uniqueness of Additive Elements). 1. The neutral element 0 is unique.

2. For any $a \in \mathbb{Z}$, the opposite -a is unique.

Proof. 1. Suppose 0 and 0' are both neutral elements. Then:

$$0 = 0 + 0' = 0'$$
.

2. Suppose a + x = 0 and a + y = 0. Then:

$$x = x + 0 = x + (a + y) = (x + a) + y = 0 + y = y.$$

Thus, -a is unique.

Properties of \mathbb{Z} and \mathbb{Q}

Properties of Addition on \mathbb{Z}

Definition 3 (Addition Properties of \mathbb{Z}).

- (A1) **Associativity:** a + (b + c) = (a + b) + c for all $a, b, c \in \mathbb{Z}$.
- (A2) Commutativity: a + b = b + a for all $a, b \in \mathbb{Z}$.
- (A3) Neutral Element: $\exists 0 \in \mathbb{Z}$ such that a + 0 = a for all $a \in \mathbb{Z}$.
- (A4) Existence of Opposites: $\forall a \in \mathbb{Z}, \exists -a \in \mathbb{Z} \text{ such that } a + (-a) = 0.$

Proposition 1 (Uniqueness of 0 and -a). 1. The neutral element 0 is unique.

2. For each $a \in \mathbb{Z}$, the opposite -a is unique.

Multiplication on \mathbb{Z}

Definition 4 (Multiplication Properties of \mathbb{Z}).

- (M1) Associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in \mathbb{Z}$.
- (M2) Commutativity: $a \cdot b = b \cdot a$ for all $a, b \in \mathbb{Z}$.
- (M3) Neutral Element: $\exists 1 \in \mathbb{Z}$ such that $1 \cdot a = a$ for all $a \in \mathbb{Z}$.
- (M4) **Distributive Law:** $(a+b) \cdot c = a \cdot c + b \cdot c$ for all $a, b, c \in \mathbb{Z}$.

Proposition 2 (Multiplication by Zero). For any $a \in \mathbb{Z}$, $0 \cdot a = 0$.

Properties of \mathbb{Q}

Definition 5 (Field Properties of \mathbb{Q}). The rational numbers \mathbb{Q} satisfy:

(M1) **Inverse:** $\forall a \in \mathbb{Q} \setminus \{0\}, \exists a^{-1} \in \mathbb{Q} \text{ such that } a \cdot a^{-1} = 1.$

If $(X, +, 0, \cdot, 1)$ satisfies (A1-A4), (M1-M4), and the distributive law, X is called a field.

Ordered Fields

Definition 6 (Ordered Fields). A field F is ordered if equipped with a linear order \leq such that:

- (O1) If $a \le b$, then $a + c \le b + c$ for all $a, b, c \in F$.
- (O2) If $a \le b$ and $c \ge 0$, then $ac \le bc$.

Theorem 4 (Properties of Ordered Fields). Let F be an ordered field. Then for all $a, b, c \in F$:

- (i) If $a \leq b$, then $-b \leq -a$.
- (ii) If $a \le b$ and $c \le 0$, then $bc \le ac$.
- (iii) If $0 \le a$ and $0 \le b$, then $0 \le ab$.
- (iv) $0 \le a^2$ for all $a \in F$.

Rational Zeros Theorem

Theorem 5 (Rational Zeros Theorem). Suppose $p(x) = c_n x^n + \ldots + c_1 x + c_0$, with $c_0, \ldots, c_n \in \mathbb{Z}$, $c_0 \neq 0$, $c_n \neq 0$. If p(r) = 0 for $r = \frac{c}{d}$ (where $c, d \in \mathbb{Z}$, $d \neq 0$, $\gcd(c, d) = 1$), then $c \mid c_0$ and $d \mid c_n$.

Corollary 1 (Irrationality of $\sqrt{2}$). No rational number r satisfies $r^2 = 2$.

Ordered Fields and Completeness

Fields and Order

Proposition 3. If F is a field with more than one element, then $0 \neq 1$.

Proof. Let $x \in F$ be distinct from 0. Then $0 = x \cdot 0 \neq x \cdot 1 = x$, hence $0 \neq 1$.

Definition 7 (Ordered Fields). A field F is called ordered if it is equipped with a linear order \leq satisfying:

- (O1) If $a \le b$, then $a + c \le b + c$ for all $a, b, c \in F$.
- (O2) If $a \le b$ and $c \ge 0$, then $ac \le bc$.

Properties of Ordered Fields

Theorem 6. Let F be an ordered field. Then for all $a, b, c \in F$:

- (i) If $a \leq b$, then $-b \leq -a$.
- (ii) If $a \le b$ and $c \le 0$, then $bc \le ac$.
- (iii) If $0 \le a$ and $0 \le b$, then $0 \le ab$.
- (iv) $0 \le a^2$ for all $a \in F$.

Absolute Value and Distance

Definition 8 (Absolute Value). For $a \in F$, the absolute value |a| is defined as:

$$|a| = \begin{cases} a & \text{if } a \ge 0, \\ -a & \text{if } a < 0. \end{cases}$$

Definition 9 (Distance). The distance between $a, b \in F$ is defined as:

$$dist(a,b) = |a-b|.$$

Completeness Axiom

Definition 10 (Completeness Axiom). If $S \subset \mathbb{R}$ is non-empty and bounded above, then it has a unique least upper bound (supremum), denoted sup S.

Archimedean Property and Denseness of \mathbb{Q}

Proposition 4 (Archimedean Property). If a, b > 0 in \mathbb{R} , then there exists $n \in \mathbb{N}$ such that $n \cdot a > b$.

Theorem 7 (Denseness of \mathbb{Q}). The rational numbers \mathbb{Q} are dense in \mathbb{R} , meaning that for any $a, b \in \mathbb{R}$ with a < b, there exists $r \in \mathbb{Q}$ such that a < r < b.

Sequences and Limits (Sections 7-9)

Definitions and Examples

Definition 11 (Sequence). A sequence is a function $s:\{m,m+1,\ldots\}\to\mathbb{R}$ (for $m\in\mathbb{Z}$). We denote the sequence as $(s_n)_{n\geq m}$, where $s_n=s(n)$.

Definition 12 (Convergence and Limit). A sequence (s_n) converges to $L \in \mathbb{R}$ if:

$$\forall \varepsilon > 0, \exists N \in \mathbb{R} \text{ such that } |s_n - L| < \varepsilon \text{ for } n > N.$$

We write $\lim_{n\to\infty} s_n = L$ or $s_n \to L$.

Proposition 5 (Uniqueness of Limits). A sequence cannot have more than one limit.

Examples of Limits

- 1. $\lim_{n \to \infty} \frac{1}{n} = 0$.
- 2. The sequence $((-1)^n)_{n\in\mathbb{N}}$ does not converge.
- 3. $\lim_{n\to\infty} \frac{3n+1}{2n+1} = \frac{3}{2}$.

Facts about Limits

Proposition 6. If (s_n) converges, and $s_n \geq a$ for all but finitely many n, then $\lim s_n \geq a$.

Proposition 7. If $s_n \ge 0$ for all n and $\lim s_n = s$, then $\lim \sqrt{s_n} = \sqrt{s}$.

Convergent Sequences are Bounded

Definition 13 (Bounded Sequence). A sequence (s_n) is called bounded if $\exists A \in \mathbb{R}$ such that $|s_n| \leq A$ for all n.

Theorem 8. Convergent sequences are bounded.

Arithmetic of Limits

Theorem 9 (Limits of Sums, Products, and Ratios). Suppose $\lim s_n = s$ and $\lim t_n = t$. Then:

- $1. \lim(s_n + t_n) = s + t,$
- 2. $\lim(a \cdot s_n) = a \cdot s$ for any $a \in \mathbb{R}$,
- 3. $\lim(s_n \cdot t_n) = s \cdot t$,
- 4. If $t \neq 0$, then $\lim \frac{s_n}{t_n} = \frac{s}{t}$.

Sums, Products, Ratios of Limits (Section 9)

Arithmetic of Limits

Theorem 10 (Arithmetic of Limits). Suppose $\lim s_n = s$ and $\lim t_n = t$. Then:

- 1. $\lim(s_n + t_n) = s + t,$
- 2. $\lim(a \cdot s_n) = a \cdot s$ for any $a \in \mathbb{R}$,
- 3. $\lim(s_n \cdot t_n) = s \cdot t$,
- 4. If $t \neq 0$, then $\lim \frac{s_n}{t_n} = \frac{s}{t}$.

Theorem 11 (Squeeze Theorem). If $a_n \leq s_n \leq b_n$ for all n, and $\lim a_n = \lim b_n = s$, then $\lim s_n = s$.

Basic Examples of Limits

Theorem 12 (Basic Examples).

- 1. $\lim \frac{1}{n^p} = 0$ for p > 0,
- 2. $\lim a^n = 0$ if |a| < 1,
- 3. $\lim n^{1/n} = 1$,
- 4. $\lim a^{1/n} = 1$ for a > 0.

Diverging Sequences

Definition 14 (Divergence to Infinity). We say $\lim s_n = +\infty$ if for all A > 0, there exists $N \in \mathbb{R}$ such that $s_n > A$ for n > N. Similarly, $\lim s_n = -\infty$ is defined.

Theorem 13 (Product Rule for Divergence). If $\lim s_n = +\infty$ and $\lim t_n > 0$, then $\lim (s_n \cdot t_n) = +\infty$.

Theorem 14. If $s_n > 0$ for all n, then $\lim s_n = +\infty$ if and only if $\lim \frac{1}{s_n} = 0$.

Monotone Sequences (Section 10)

Definition 15 (Monotone Sequences). A sequence (s_n) is:

- Increasing if $s_n \leq s_{n+1}$ for all n,
- Decreasing if $s_n \geq s_{n+1}$ for all n,
- Monotone if it is either increasing or decreasing.

Example 2 (Examples of Monotone Sequences).

- 1. $x_n = \sum_{k=1}^n \frac{1}{k^2}$ is increasing because $x_{n+1} = x_n + \frac{1}{(n+1)^2} > x_n$.
- 2. $y_n = \frac{(-1)^n}{n^2}$ is not monotone because $y_{n+1} > y_n$ if n is odd, and $y_{n+1} < y_n$ if n is even.

Monotone Sequences and Convergence (Section 10)

Monotone Sequences

Definition 16 (Monotone Sequences). A sequence (s_n) is:

- Increasing if $s_n \leq s_{n+1}$ for all n,
- Decreasing if $s_n \geq s_{n+1}$ for all n,
- *Monotone* if it is either increasing or decreasing.

Theorem 15 (Theorem 10.2). Any monotone bounded sequence converges.

Example 3 (Bounded Monotone Sequence). Consider $s_n = \sum_{k=0}^{n-1} \frac{1}{k!}$. This sequence is:

- Increasing, since $s_{n+1} = s_n + \frac{1}{n!} > s_n$.
- Bounded, since $s_n \leq 3$ (using an induction-based proof that $k! \geq 2^{k-1}$ for $k \geq 1$).

Thus, $\lim s_n = e \approx 2.71828$.

Unbounded Monotone Sequences

Theorem 16 (Theorem 10.4). If $(s_n)_{n\geq m}$ is an unbounded increasing (decreasing) sequence, then $\lim s_n = +\infty$ (resp. $\lim s_n = -\infty$).

Example 4 (Harmonic Sequence). Let $s_n = \sum_{k=1}^n \frac{1}{k}$. This sequence is:

- Increasing, since $s_{n+1} = s_n + \frac{1}{n+1} > s_n$.
- Unbounded, as shown using a lower bound argument:

$$s_{2^m} \ge \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{2^{m-1}} \ge m.$$

Thus, $s_n \to +\infty$.

Lim Sup and Lim Inf

Definition 17 (Lim Sup and Lim Inf). Let $u_N = \sup\{s_n : n > N\}$ and $v_N = \inf\{s_n : n > N\}$. Then:

$$\limsup s_n = \lim_{N \to \infty} u_N, \quad \liminf s_n = \lim_{N \to \infty} v_N.$$

Theorem 17 (Properties of Lim Sup and Lim Inf).

- 1. $\limsup s_n \ge \liminf s_n$.
- 2. If $\lim s_n$ exists, then $\lim \sup s_n = \lim s_n = \lim \inf s_n$.
- 3. If $\limsup s_n = \liminf s_n = s$, then $\lim s_n = s$.

Example 5 (Oscillating Sequence). Let $s_n = \begin{cases} \frac{1}{n}, & n \text{ even} \\ -n, & n \text{ odd} \end{cases}$. Then:

- $\limsup s_n = 0$,
- $\liminf s_n = -\infty$.

Decimal Expansions

Theorem 18. Any real number can be expressed as a decimal expansion $K.d_1d_2d_3...$, where $K \in \{0,1,2,...\}$ and $d_k \in \{0,...,9\}$. For instance:

$$1 = 1.000 \dots = 0.999 \dots$$

Lim Inf, Lim Sup, and Cauchy Sequences (Sections 10-11)

Lim Inf and Lim Sup

Definition 18 (Lim Sup and Lim Inf). Let $u_N = \sup\{s_n : n > N\}$ and $v_N = \inf\{s_n : n > N\}$. Then:

$$\lim \sup s_n = \lim_{N \to \infty} u_N, \quad \liminf s_n = \lim_{N \to \infty} v_N.$$

Theorem 19 (Theorem 10.7).

- 1. If $\lim s_n$ is defined, then $\lim \inf s_n = \lim s_n = \lim \sup s_n$.
- 2. If $\lim \inf s_n = s = \lim \sup s_n$, then $\lim s_n = s$.

Example 6. Let $s_n = \begin{cases} \frac{1}{n} & \text{if } n \text{ is even,} \\ -n & \text{if } n \text{ is odd.} \end{cases}$ Then:

- $\limsup s_n = 0$,
- $\liminf s_n = -\infty$.

Cauchy Sequences

Definition 19 (Cauchy Sequence). A sequence (s_n) is called Cauchy if:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } |s_n - s_m| < \varepsilon \text{ for } n, m > N.$$

Theorem 20 (Theorem 10.11). A sequence (s_n) converges if and only if it is Cauchy.

Lemma 1 (Lemma 10.9). Any convergent sequence is Cauchy.

Lemma 2 (Lemma 10.10). Any Cauchy sequence is bounded.

Subsequences

Definition 20 (Subsequence). A sequence (t_k) is a subsequence of (s_n) if there exists a strictly increasing sequence $n_1 < n_2 < \ldots$ such that $t_k = s_{n_k}$ for any k.

Example 7 (Subsequence Examples).

- $s_n = \frac{1}{n}$: A subsequence $t_k = \frac{1}{k^2}$, where $n_k = k^2$.
- $s_n = (-1)^n + \frac{1}{n}$: The sequence diverges, but $s_{2k} = 1 + \frac{1}{2k}$ converges.

Theorem 21 (Subsequential Limits). Every sequence has a subsequence that converges to a limit.

Subsequences and Subsequential Limits (Section 11)

Subsequences

Definition 21 (Subsequence). A sequence (t_k) is a subsequence of (s_n) if there exists a strictly increasing sequence $n_1 < n_2 < \ldots$ such that $t_k = s_{n_k}$ for any k.

Lemma 3 (Subsequences of Subsequences). Any subsequence of a subsequence of (s_n) is a subsequence of (s_n) .

Convergence of Subsequences

Theorem 22 (Theorem 11.3). If $\lim s_n = s$ (finite or $\pm \infty$), then any subsequence (t_k) has the same limit.

Proof. Let $\lim s_n = s$, and let $t_k = s_{n_k}$. Then for $\varepsilon > 0$, there exists N such that $|s_n - s| < \varepsilon$ for n > N. Since $n_k \to \infty$, we can find K such that $n_k > N$ for k > K. Thus, $|t_k - s| < \varepsilon$ for k > K, implying $\lim t_k = s$.

Monotone Subsequences

Theorem 23 (Theorem 11.4). Every sequence has a monotone subsequence.

Corollary 2 (Bolzano-Weierstrass Theorem). Every bounded sequence has a convergent subsequence.

Example 8 (Divergent Sequence with Convergent Subsequence). Let $s_n = (-1)^n \left(1 + \frac{1}{n}\right)$. This sequence is bounded but divergent. The subsequence $s_{2k} = 1 + \frac{1}{2k}$ converges to 1.

Subsequential Limits

Definition 22 (Subsequential Limit). A subsequential limit of (s_n) is any limit of a subsequence, possibly $\pm \infty$.

Theorem 24 (Theorem 11.2). Suppose (s_n) is a sequence.

- 1. $t \in \mathbb{R}$ is a subsequential limit if and only if $\forall \varepsilon > 0, \{n : |s_n t| < \varepsilon\}$ is infinite.
- 2. $t = +\infty$ (or $t = -\infty$) is a subsequential limit if (s_n) is not bounded above (or below).

Lim Inf and Lim Sup as Subsequential Limits

Theorem 25 (Theorem 11.7). For any sequence (s_n) , $\limsup s_n$ and $\liminf s_n$ are limits of monotone subsequences.

Theorem 26 (Theorem 11.8). Let S be the set of subsequential limits of (s_n) . Then:

- 1. S is non-empty.
- 2. $\inf S = \liminf s_n$, $\sup S = \limsup s_n$.
- 3. $\lim s_n$ exists if and only if S consists of a single point, $S = \{\lim s_n\}$.

Lim Sup, Lim Inf, and Metric Spaces (Sections 11-13)

Subsequential Limits

Definition 23 (Subsequential Limit (Definition 11.6)). For a sequence (s_n) , a subsequential limit is any limit of a subsequence $(\text{in } \mathbb{R} \cup \{\pm \infty\})$.

Theorem 27 (Properties of Subsequential Limits (Theorem 11.2)). Suppose (s_n) is a sequence.

- 1. $t \in \mathbb{R}$ is a subsequential limit if and only if $\forall \varepsilon > 0$, $\{n : |s_n t| < \varepsilon\}$ is infinite.
- 2. $t = +\infty$ $(t = -\infty)$ is a subsequential limit if (s_n) is not bounded above (resp. below).

The Set of Subsequential Limits

Theorem 28 (Theorem 11.8). Suppose (s_n) is a sequence, and S is the set of subsequential limits. Then:

- 1. S is non-empty.
- 2. $\inf S = \liminf s_n \text{ and } \sup S = \limsup s_n$.
- 3. $\lim s_n$ exists if and only if S consists of a single point. Then $\{\lim s_n\} = S$.

Corollary 3 (Convergent Sequences). If $\lim s_n = s$, then $S = \{s\}$, $\lim \sup s_n = s = \liminf s_n$.

Lim Sup and Lim Inf Revisited

Theorem 29 (Theorem 12.1). If $\lim s_n = s \in (0, \infty)$, then for any sequence (t_n) :

$$\lim \sup(s_n t_n) = s \cdot \lim \sup t_n.$$

Corollary 4 (Corollary 12.3). If (s_n) is a sequence of positive numbers and $\lim \frac{s_{n+1}}{s_n}$ exists, then:

$$\lim s_n^{1/n}$$
 also exists, and $\lim s_n^{1/n} = \lim \frac{s_{n+1}}{s_n}$.

Example 9.

- 1. $\lim (n!)^{1/n} = +\infty$.
- 2. $\lim_{n \to \infty} \frac{1}{n} (n!)^{1/n} = \frac{1}{e}$.

Metric Spaces

Definition 24 (Metric (Definition 13.1)). A metric $d: S \times S \to [0, \infty)$ satisfies:

- (D1) Non-degeneracy: $d(x,y) = 0 \iff x = y$.
- (D2) Symmetry: d(x,y) = d(y,x) for all $x, y \in S$.
- (D3) **Triangle Inequality:** $d(x,y) + d(y,z) \ge d(x,z)$ for all $x,y,z \in S$.

Example 10 (Metrics).

- On \mathbb{R} : d(x,y) = |x-y|.
- On \mathbb{R}^n : $d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$.

Convergence in Metric Spaces

Definition 25 (Convergence (Definition 13.2)). A sequence $(s_n) \subset S$ converges to $s \in S$ if:

$$\lim_{n \to \infty} d(s_n, s) = 0.$$

Definition 26 (Cauchy Sequence (Definition 13.2)). A sequence $(s_n) \subset S$ is Cauchy if:

$$\forall \varepsilon > 0, \exists N \text{ such that } d(s_n, s_m) < \varepsilon \text{ for all } n, m > N.$$

Proposition 8 (Cauchy and Convergence). If (s_n) converges in (S,d), then (s_n) is Cauchy.

Definition 27 (Complete Metric Spaces). A metric space (S, d) is complete if every Cauchy sequence in S converges to a point in S.

Example 11. The space \mathbb{R}^n with the Euclidean metric is complete.

Metric Spaces (Section 13)

Definition and Examples

Definition 28 (Metric (Definition 13.1)). Suppose S is a set. A function $d: S \times S \to [0, \infty)$ is called a metric if the following hold:

- (D1) Non-degeneracy: $d(x,y) = 0 \iff x = y \text{ (hence } d(x,y) > 0 \text{ when } x \neq y).$
- (D2) **Symmetry:** d(x,y) = d(y,x) for all $x, y \in S$.
- (D3) **Triangle Inequality:** $d(x,y) + d(y,z) \ge d(x,z)$ for all $x,y,z \in S$.

Example 12 (Examples of Metrics).

- On \mathbb{R} : d(x,y) = |x-y|.
- On \mathbb{R}^n : $d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$ (Euclidean metric).
- Discrete Metric: For $x, y \in S$, define:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$

Convergence and Completeness

Definition 29 (Convergence (Definition 13.2)). Suppose (S,d) is a metric space. A sequence $(s_n) \subset S$ converges to $s \in S$ if $\lim_{n\to\infty} d(s_n,s) = 0$; that is, $\forall \varepsilon > 0, \exists N$ such that $d(s_n,s) < \varepsilon$ for n > N.

Definition 30 (Cauchy Sequence (Definition 13.2 continued)). A sequence $(s_n) \subset S$ is called Cauchy if:

$$\forall \varepsilon > 0, \exists N \text{ such that } d(s_n, s_m) < \varepsilon \text{ for } n, m > N.$$

Proposition 9 (Cauchy Sequences are Convergent in Complete Spaces). If (S, d) is complete, then every Cauchy sequence in S converges to a point in S.

Example 13 (Completeness of \mathbb{R}). \mathbb{R} with the standard metric d(x,y) = |x-y| is complete. Any Cauchy sequence in \mathbb{R} converges to a real number.

Example 14 (Non-Completeness of \mathbb{Q}). Consider \mathbb{Q} with d(x,y) = |x-y|. The sequence $r_n \in (\sqrt{2} - \frac{1}{n}, \sqrt{2})$ is Cauchy in \mathbb{Q} but does not converge in \mathbb{Q} because $\sqrt{2} \notin \mathbb{Q}$.

Special Metrics

Example 15 (Manhattan (Taxicab) Metric). For $\vec{x} = (x_1, \dots, x_n)$ and $\vec{y} = (y_1, \dots, y_n)$ in \mathbb{R}^n , the taxicab metric is defined as:

$$d_1(\vec{x}, \vec{y}) = \sum_{i=1}^n |x_i - y_i|.$$

Proposition 10 (Completeness of (\mathbb{R}^n, d_1)). The metric space (\mathbb{R}^n, d_1) is complete.

Inner Product and Triangle Inequality

Definition 31 (Inner Product). For $\vec{x}, \vec{y} \in \mathbb{R}^n$, define the inner product:

$$\langle \vec{x}, \vec{y} \rangle = \sum_{i=1}^{n} x_i y_i.$$

The magnitude of \vec{x} is:

$$\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle}.$$

Theorem 30 (Bunyakovsky-Cauchy-Schwarz Inequality). For all $\vec{x}, \vec{y} \in \mathbb{R}^n$:

$$|\langle \vec{x}, \vec{y} \rangle| < ||\vec{x}|| ||\vec{y}||$$
.

Lemma 4 (Triangle Inequality Lite). For $\vec{x}, \vec{y} \in \mathbb{R}^n$:

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|.$$

Metric Spaces: Bounded Sets, Open and Closed Sets, and Closure (Section 13)

Bounded Sets

Definition 32 (Bounded Sets). A set E in a metric space (S,d) is bounded if there exists $y \in S$ such that:

$$\sup_{x \in E} d(y, x) < \infty.$$

Remark 1. If such a y exists, then for any $z \in S$, $\sup_{x \in E} d(z, x) < \infty$. This follows from the triangle inequality:

$$d(z, x) \le d(y, x) + d(z, y).$$

Example 16. A sequence (x_k) is bounded if the set $\{x_1, x_2, \ldots\}$ is bounded. That is, for some (or any) $y \in S$:

$$\sup_{k} d(y, x_k) < \infty.$$

Bolzano-Weierstrass Theorem

Theorem 31 (Bolzano-Weierstrass for \mathbb{R}^n). Any bounded sequence in \mathbb{R}^n has a convergent subsequence.

Example 17 (Failure of Bolzano-Weierstrass in Discrete Metrics). Consider \mathbb{N} equipped with the discrete metric d(x,y) = 1 for $x \neq y$ and d(x,y) = 0 for x = y. The sequence $x_n = n$ is bounded but has no convergent subsequences because convergent sequences are eventually constant in discrete metrics.

Interior Points and Open Sets

Definition 33 (Open Ball). An open ball with center s_0 and radius r > 0 is:

$$B_r^o(s_0) = \{ s \in S : d(s, s_0) < r \}.$$

Definition 34 (Interior Points). A point $s_0 \in S$ is interior to $E \subset S$ if there exists r > 0 such that $B_r^o(s_0) \subset E$. The set of all interior points is denoted E^o , called the interior of E.

Definition 35 (Open Sets). A set $E \subset S$ is open if $E = E^o$.

Example 18.

- In $S = \mathbb{R}$ with the usual metric, $[0, \infty)$ is not open, but $(0, \infty)$ is.
- In $S = \mathbb{R}^2$, the set $E = \{(x, 0) : x \ge 0\}$ has $E^o = \emptyset$.

Properties of Open and Closed Sets

Theorem 32 (Facts about Open Sets).

- 1. S and \emptyset are open.
- 2. A union of any collection of open sets is open.
- 3. A finite intersection of open sets is open.

Definition 36 (Closed Sets). A set $E \subset S$ is closed if $S \setminus E$ is open.

Theorem 33 (Facts about Closed Sets).

- 1. S and \emptyset are closed.
- 2. An intersection of any collection of closed sets is closed.
- 3. A finite union of closed sets is closed.

Closure and Boundary

Definition 37 (Closure). The closure of $E \subset S$, denoted \overline{E} , is the intersection of all closed sets containing E.

Definition 38 (Boundary). The boundary of $E \subset S$ is:

$$\partial E = \overline{E} \setminus E^o.$$

Example 19 (Closure in \mathbb{R}). Let $E = \{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$. Then:

$$\overline{E} = E \cup \{0\}.$$

Closure, Boundary, and Open/Closed Sets (Section 13)

Open Balls and Open Sets

Definition 39 (Open Ball). For $s_0 \in S$ and r > 0, the open ball with center s_0 and radius r is:

$$B_r^o(s_0) = \{ s \in S : d(s, s_0) < r \}.$$

Proposition 11. A set $E \subset S$ is open if and only if it is a union of open balls.

Closed Sets and De Morgan's Laws

Definition 40 (Closed Sets). A set $E \subset S$ is closed if $S \setminus E$ is open.

Proposition 12 (Properties of Closed Sets).

- 1. S and \emptyset are closed.
- 2. Any intersection of closed sets is closed.
- 3. A finite union of closed sets is closed.

Proposition 13 (De Morgan's Laws). For any collection $\{A_i\}_{i\in I}\subset S$:

$$S \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (S \setminus A_i), \quad S \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (S \setminus A_i).$$

Examples of Open and Closed Sets

Example 20 (Intervals in \mathbb{R}).

- (a,b) is open, but not closed.
- [a,b] is closed, but not open.
- (a,b], [a,b) are neither open nor closed.

Example 21 (Discrete Metric). In a discrete metric space:

• Every set is both open and closed.

Closure and Boundary

Definition 41 (Closure). The closure of $E \subset S$, denoted \overline{E} , is the intersection of all closed sets containing E.

Definition 42 (Boundary). The boundary of $E \subset S$ is:

$$\partial E = \overline{E} \setminus E^o.$$

Properties of Closure and Boundary

Proposition 14.

- 1. $E = \overline{E}$ if and only if E is closed.
- 2. $s \in \overline{E}$ if and only if s is a limit of a sequence in E.
- 3. $\partial E = \overline{E} \cap (S \setminus E)^{-}$.

Example 22 (Closure of $E = \{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R}$). The closure is:

$$\overline{E} = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \{0\}.$$

Compactness (Section 13)

Definition of Compactness

Definition 43 (Compactness (Definition 13.11)). Suppose $E \subset S$. A family \mathcal{U} of open sets is an open cover for E if:

$$E\subset\bigcup_{U\in\mathcal{U}}U.$$

A subcover is a subfamily of \mathcal{U} which is also an open cover. E is called compact if every open cover has a finite subcover.

Note 1. A cover \mathcal{U} is a collection of sets, not their union. Thus, a cover is a subset of $\mathcal{P}(S)$ (the power set of S), not S.

Examples in \mathbb{R} with Usual Metric

- 1. $E = [0, \infty)$ is not compact. For example:
 - $U_k = (-1, k) \ (k \in \mathbb{N})$ is an open cover with no finite subcover.
- 2. E = (0,1) is not compact. For example:
 - $U_k = (1/k, 1) \ (k \in \mathbb{N})$ is an open cover with no finite subcover.
- 3. $E = [a, b] \ (a, b \in \mathbb{R})$ is compact (proof to follow).

Proposition 15 (Compactness of Finite Sets). Any finite set is compact.

Proof. Let $E = \{e_1, \dots, e_N\}$. For any open cover \mathcal{U} of E, select $U_i \in \mathcal{U}$ containing e_i . Then $\{U_1, \dots, U_N\}$ is a finite subcover.

Compactness and Boundedness

Proposition 16. Any compact set is bounded.

Proof. If E is not bounded, then for $s \in S$, the sets $B_k^o(s)$ $(k \in \mathbb{N})$ form an open cover of E with no finite subcover.

Example 23 (Bounded but Not Compact). Equip $\mathbb N$ with the discrete metric $d(x,y) = \begin{cases} 0 & x=y, \\ 1 & x \neq y. \end{cases}$ Then $\mathbb N$ is bounded, but it is not compact because the open cover $U_n = \{n\}$ $(n \in \mathbb N)$ has no finite subcover.

Properties of Compact Sets

Proposition 17.

- 1. A closed subset of a compact set is compact.
- 2. A finite union of compact sets is compact.

Nested Sequences of Closed Sets

Proposition 18. Suppose $F_1 \supset F_2 \supset \cdots$ are closed non-empty subsets of a compact set E. Then:

$$\bigcap_{n} F_n \neq \emptyset, \quad and it is compact.$$

Heine-Borel Theorem and Cantor Set

Theorem 34 (Heine-Borel Theorem). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Example 24 (Cantor Set). Define:

$$F_0 = [0,1], \quad F_1 = [0,1/3] \cup [2/3,1], \quad F_2 = [0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1], \dots$$

The Cantor set $C = \bigcap_n F_n$ is non-empty, closed, and compact. It contains no intervals, and its interior is empty.

Compactness and Total Boundedness (Section 13)

Definition of Compactness

Definition 44 (Compactness (Definition 13.11)). Suppose $E \subset S$. A family \mathcal{U} of open sets is an open cover for E if:

$$E\subset\bigcup_{U\in\mathcal{U}}U.$$

A subcover is a subfamily of \mathcal{U} which is also an open cover. E is called compact if every open cover has a finite subcover.

Note 2. A cover \mathcal{U} is a collection of sets, not their union. Thus, a cover is a subset of $\mathcal{P}(S)$ (the power set of S), not S.

Compactness and Completeness

Proposition 19. Suppose $E \subset S$. If E is compact, then E is complete.

Proof. Suppose E is not complete. Then there exists a Cauchy sequence $(s_n) \subset E$ which does not converge in E. For $k \in \mathbb{N}$, find n_k such that $d(s_m, s_\ell) < 2^{-k}$ for $m, \ell \geq n_k$. Construct open sets $U_k = \{s \in S : d(s, s_{n_k}) > 2^{-k}\}$, which form an open cover for E with no finite subcover. Contradiction.

Corollary 5. Any compact set is closed.

Proposition 20 (Compactness Criterion). $E \subset S$ is compact if and only if it is complete and totally bounded.

Total Boundedness

Definition 45 (Total Boundedness). A set $E \subset S$ is called totally bounded if $\forall \varepsilon > 0$, there exist $s_1, \ldots, s_n \in S$ such that:

$$E \subset \bigcup_{i=1}^n B_{\varepsilon}^o(s_i).$$

Proposition 21. A set is totally bounded if and only if any sequence in the set has a Cauchy subsequence.

Characterization of Compactness

Theorem 35. For a subset E of a metric space, the following are equivalent:

- 1. E is compact.
- 2. E is complete and totally bounded.
- 3. Any sequence in E has a subsequence with a limit in E.

Example 25. The space \mathbb{N} with the discrete metric is complete and bounded but not compact.

Heine-Borel Theorem

Theorem 36 (Heine-Borel Theorem). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Example 26 (Cantor Set). The Cantor set C, constructed as:

$$F_0 = [0, 1], \quad F_1 = [0, 1/3] \cup [2/3, 1], \quad F_2 = \cdots,$$

is compact, closed, and totally bounded but has no interior.

A Note on Compactness

Total Boundedness

Definition 46 (Total Boundedness (Definition 1.1)). A set $S \subset E$ is called totally bounded if for every $\varepsilon > 0$, there exist $p_1, \ldots, p_n \in E$ such that:

$$S \subset \bigcup_{i=1}^{n} B_{\varepsilon}^{o}(p_i).$$

Proposition 22 (Intrinsic Nature of Total Boundedness (Proposition 1.2)). A set $S \subset E$ is totally bounded if and only if for every $\varepsilon > 0$, there exist $q_1, \ldots, q_m \in S$ such that:

$$S \subset \bigcup_{j=1}^m B_{\varepsilon}^o(q_j).$$

Proposition 23 (Total Boundedness and Cauchy Subsequences (Proposition 1.3)). A set S is totally bounded if and only if any sequence in S has a Cauchy subsequence.

Corollary 6 (Characterization of Compactness (Corollary 1.4)). A set S is totally bounded and complete if and only if any sequence in S has a subsequence converging to a limit in S.

Compactness

Theorem 37 (Characterization of Compactness (Theorem 2.1)). For a subset $S \subset E$, the following are equivalent:

- 1. S is compact.
- 2. Any sequence in S has a convergent subsequence.
- 3. S is complete and totally bounded.

Compactness in \mathbb{R}^n

Theorem 38 (Heine-Borel Theorem (Theorem 3.1)). A set $S \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded.

Lemma 5 (Total Boundedness in \mathbb{R}^n (Lemma 3.3)). A set $S \subset \mathbb{R}^n$ is bounded if and only if it is totally bounded.

Theorem 39 (Bolzano-Weierstrass Theorem (Theorem 3.4)). Every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Compactness and Series (Sections 13-14)

Total Boundedness

Definition 47 (Total Boundedness). A set $E \subset S$ is totally bounded if:

$$\forall \varepsilon > 0, \exists s_1, \dots, s_n \in S \text{ such that } E \subset \bigcup_{i=1}^n B_{\varepsilon}^o(s_i).$$

Proposition 24. A set E is totally bounded if and only if any sequence in E has a Cauchy subsequence.

Proof. For $(s_i) \subset E$, construct $\{s_{i_k}\}$ with $s_{i_k} \in B^o_{2^{-k}}(x_{kj_k})$. Using the triangle inequality, show (s_{i_k}) is Cauchy.

Characterization of Compactness

Theorem 40. For a subset E of a metric space, the following are equivalent:

- 1. E is compact.
- 2. E is complete and totally bounded.
- 3. Any sequence in E has a subsequence with a limit in E.

Proof.

- $(1) \implies (2)$: Shown in the last lecture.
- $(2) \implies (3)$: Total boundedness guarantees a Cauchy subsequence, and completeness ensures convergence.
- (3) \implies (1): Contraposition: if E is not compact, construct an open cover with no finite subcover.

Compact Subsets of \mathbb{R}^n

Theorem 41 (Heine-Borel). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Example 27 (Non-Compact Set). In \mathbb{N} with the discrete metric, \mathbb{N} is closed and bounded but not compact.

Series

Definition 48 (Series and Convergence). The *n*-th partial sum of a series $\sum_{j=k_0}^{\infty} a_j$ is:

$$s_n = \sum_{j=k_0}^n a_j.$$

The series converges if $\lim_{n\to\infty} s_n$ exists, diverges otherwise.

Example 28 (Geometric Series).

$$\sum_{j=0}^{\infty} r^j = \begin{cases} \frac{1}{1-r}, & |r| < 1, \\ \infty, & r \ge 1. \end{cases}$$

Cauchy Criterion for Convergence

Definition 49 (Cauchy Criterion). A series $\sum_j a_j$ satisfies the Cauchy criterion if:

$$\forall \varepsilon > 0, \exists N \text{ such that } \left| \sum_{j=m}^{n} a_j \right| < \varepsilon \text{ for } n \geq m > N.$$

Theorem 42. A series converges if and only if it satisfies the Cauchy criterion.

Comparison Test for Convergence

Theorem 43 (Comparison Test).

- 1. If $|b_n| \le a_n$ and $\sum a_n$ converges, then $\sum b_n$ converges.
- 2. If $0 \le a_n \le b_n$ and $\sum b_n = \infty$, then $\sum a_n = \infty$.

Series and Decimal Expansions (Sections 14 and 16)

Series

Definition 50 (Partial Sums and Convergence of Series). The *n*-th partial sum of a series $\sum_{j=k_0}^{\infty} a_j$ is:

$$s_n = \sum_{j=k_0}^n a_j.$$

The series $\sum_{j=k_0}^{\infty} a_j$ converges if $\lim_{n\to\infty} s_n$ exists. Otherwise, it diverges.

Example 29 (Geometric Series).

$$\sum_{j=0}^{\infty} r^j = \begin{cases} \frac{1}{1-r}, & |r| < 1, \\ diverges, & r \ge 1 \text{ or } r \le -1. \end{cases}$$

Cauchy Criterion for Convergence

Definition 51 (Cauchy Criterion (Definition 14.3)). A series $\sum_j a_j$ satisfies the Cauchy Criterion if:

$$\forall \varepsilon > 0, \exists N \text{ such that } \left| \sum_{j=m}^{n} a_j \right| < \varepsilon \text{ for } n \geq m > N.$$

Theorem 44 (Cauchy Criterion (Theorem 14.4)). A series converges if and only if it satisfies the Cauchy Criterion.

Properties of Convergence

Corollary 7 (Necessary Condition for Convergence (Corollary 14.5)). If $\sum_j a_j$ converges, then $\lim_{n\to\infty} a_n = 0$.

Example 30. If $a_n = \frac{1}{n}$, then $\lim_{n \to \infty} a_n = 0$, but $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Tests for Convergence

Theorem 45 (Comparison Test (Theorem 14.6)).

- 1. If $0 \le |b_n| \le a_n$ and $\sum a_n$ converges, then $\sum b_n$ converges.
- 2. If $0 \le a_n \le b_n$ and $\sum b_n = \infty$, then $\sum a_n = \infty$.

Theorem 46 (Root Test (Theorem 14.9)). For a series $\sum_n a_n$, let $\alpha = \limsup_{n \to \infty} |a_n|^{1/n}$. Then:

- 1. The series converges absolutely if $\alpha < 1$.
- 2. The series diverges if $\alpha > 1$.
- 3. If $\alpha = 1$, the test gives no information.

Theorem 47 (Ratio Test (Theorem 14.8)). For a series $\sum_n a_n$ of nonzero terms:

- 1. The series converges absolutely if $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$.
- 2. The series diverges if $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$.
- 3. If $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \le 1 \le \limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$, the test gives no information.

Decimal Expansions

Theorem 48 (Decimal Expansions (Theorem 16.2)). Any real number $x \ge 0$ has at least one decimal expansion:

$$x = K.d_1d_2d_3... = K + \sum_{j=1}^{\infty} \frac{d_j}{10^j},$$

where $K \in \mathbb{Z}$ and $d_j \in \{0, 1, ..., 9\}$.

Theorem 49 (Uniqueness of Decimal Expansions (Theorem 16.3)). Any $x \ge 0$ has either exactly one decimal expansion or exactly two, one ending in ... d000... and the other in ... [d-1]999...

Theorem 50 (Repeating Decimals (Theorem 16.5)). A real number x is rational if and only if its decimal expansion is repeating.

Series and Decimal Expansions (Sections 17 and 21)

Root and Ratio Tests for Series Convergence

Theorem 51 (Root Test). For a series $\sum_n a_n$, let $\alpha = \limsup_{n \to \infty} |a_n|^{1/n}$. Then:

- 1. The series converges absolutely if $\alpha < 1$.
- 2. The series diverges if $\alpha > 1$.
- 3. If $\alpha = 1$, the test gives no information.

Theorem 52 (Ratio Test (Theorem 14.8)). For a series $\sum_n a_n$ of nonzero terms:

- 1. The series converges absolutely if $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$.
- 2. The series diverges if $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$.
- 3. If $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| \le 1 \le \limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$, the test gives no information.

Example 31.

• Consider $\sum_{k=1}^{\infty} \frac{k^4}{2^k}$. Using the Root Test:

$$a_k^{1/k} = \left(k^{1/k}\right)^4 \frac{1}{2}, \quad \lim_{k \to \infty} a_k^{1/k} = \frac{1}{2} < 1,$$

so the series converges.

• The p-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if and only if p > 1. The Root and Ratio Tests are inconclusive for this series.

Decimal Expansions

Definition 52 (Decimal Expansion). For $x \in [0, \infty)$, the decimal expansion of x is:

$$x = K.d_1d_2d_3... = K + \sum_{j=1}^{\infty} \frac{d_j}{10^j},$$

where $K \in \{0, 1, 2, ...\}$ and $d_1, d_2, ... \in \{0, 1, ..., 9\}$.

Theorem 53 (Existence of Decimal Expansions (Theorem 16.2)). Any real number $x \ge 0$ has at least one decimal expansion.

Theorem 54 (Uniqueness of Decimal Expansions (Theorem 16.3)). Any $x \ge 0$ has either exactly one decimal expansion or exactly two:

- One ending in ... d000..., where $d \in \{1, ..., 9\}$,
- Another ending in $\dots (d-1)999\dots$

For example, $\frac{1}{2} = 0.5000... = 0.4999...$

Repeating Decimal Expansions

Definition 53 (Repeating Decimals (Definition 16.4)). A repeating decimal expansion is one of the form:

$$K.d_1 \dots d_\ell d_{\ell+1} \dots d_{\ell+r} = K.d_1 \dots d_\ell \overline{d_{\ell+1} \dots d_{\ell+r}},$$

where the sequence $d_{\ell+1} \dots d_{\ell+r}$ repeats.

Theorem 55 (Repeating Decimals and Rational Numbers (Theorem 16.5)). A real number x is rational if and only if its decimal expansion is repeating.

Proof.

- $(x \text{ is rational} \implies \text{repeating})$: Follows from performing long division.
- (Repeating $\implies x$ is rational): Suppose $x = K.d_1 \dots d_\ell \overline{d_{\ell+1} \dots d_{\ell+r}}$. Then:

$$x = K + \sum_{j=1}^{\ell} \frac{d_j}{10^j} + 10^{-\ell} \left(\frac{z}{1 - 10^{-r}}\right),$$

where $z = \sum_{j=1}^{r} d_{\ell+j} 10^{-j} \in \mathbb{Q}$, so $x \in \mathbb{Q}$.

Continuity in Metric Spaces (Sections 17 and 21)

Definition of Continuity

Definition 54 (Continuity (Definition 21.1)). Suppose (S,d) and (S^*,d^*) are metric spaces. The function $f: \text{dom}(f) \to S^*$ (with $\text{dom}(f) \subset S$) is continuous at $x \in \text{dom}(f)$ if:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } d^*(f(x), f(y)) < \varepsilon \text{ whenever } d(x, y) < \delta.$$

f is called continuous on $E \subset S$ if it is continuous at every $x \in E$.

Theorem 56 (Sequential Criterion for Continuity (Theorem 17.1 + 17.2)). $f: S \to S^*$ is continuous at $x \in S$ if and only if $f(x_n) \to f(x)$ whenever $x_n \to x$.

Examples of Continuity and Discontinuity

Example 32 (Discontinuous Everywhere). The Dirichlet function $f: \mathbb{R} \to \mathbb{R}$, defined as:

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q}, \\ 0 & x \notin \mathbb{Q}, \end{cases}$$

is discontinuous at every $x \in \mathbb{R}$. This is because for any $x \in \mathbb{R}$, one can find sequences $(x_n) \subset \mathbb{Q}$ and $(y_n) \not\subset \mathbb{Q}$ such that $x_n, y_n \to x$, but $f(x_n) \to 1$ and $f(y_n) \to 0$, which do not match f(x).

Example 33 (Continuous at a Single Point). The modified Dirichlet function $g: \mathbb{R} \to \mathbb{R}$, defined as:

$$g(x) = \begin{cases} x & x \in \mathbb{Q}, \\ 0 & x \notin \mathbb{Q}, \end{cases}$$

is continuous only at x = 0. At other points, similar reasoning as the Dirichlet function applies.

Example 34 (Continuous on $\mathbb{R} \setminus \mathbb{Q}$). The Thomae function $h : \mathbb{R} \to \mathbb{R}$, defined as:

$$h(x) = \begin{cases} \frac{1}{b} & x = \frac{a}{b}, \gcd(a, b) = 1, b > 0, x \neq 0, \\ 0 & x \notin \mathbb{Q}, \end{cases}$$

is continuous at $x \notin \mathbb{Q}$ and discontinuous at $x \in \mathbb{Q}$.

Operations on Continuous Functions

Theorem 57. Suppose f, g are continuous at x_0 in a metric space (S, d). Then the following functions are also continuous at x_0 :

- \bullet |f|,
- kf $(k \in \mathbb{R}),$
- f+g,
- $f \cdot g$,
- f/g (if $g(x_0) \neq 0$).

Proposition 25. If f, g are continuous at x_0 , then $\max(f,g)$ and $\min(f,g)$ are continuous at x_0 .

Composition of Continuous Functions

Theorem 58. Suppose $(S_1, d_1), (S_2, d_2), (S_3, d_3)$ are metric spaces, and $f : dom(f) \to S_2$, $g : dom(g) \to S_3$ are functions such that f is continuous at x_0 , g is continuous at $f(x_0)$, and $f(x_0)$ and $f(x_0)$ are metric spaces, and $f(x_0)$ are functions such that f is continuous at $f(x_0)$ and $f(x_0)$ are metric spaces, and $f(x_0)$ are functions such that f is continuous at $f(x_0)$ and $f(x_0)$ are metric spaces, and f is continuous at $f(x_0)$ are metric spaces, and f is continuous at $f(x_0)$ are metric spaces, and f is continuous at $f(x_0)$ and $f(x_0)$ are metric spaces, and f is continuous at $f(x_0)$ are metric spaces, and f is continuous at $f(x_0)$ are metric spaces, and f is continuous at $f(x_0)$ and $f(x_0)$ are metric spaces, and f is continuous at $f(x_0)$ are metric spaces, and f is continuous at $f(x_0)$ and $f(x_0)$ are metric spaces.

Characterization of Continuity

Theorem 59 (Characterization of Continuity (Theorem 21.3)). Suppose (S,d) and (S^*,d^*) are metric spaces. $f: S \to S^*$ is continuous if and only if $f^{-1}(U)$ is open for every open $U \subset S^*$, where:

$$f^{-1}(U) = \{ s \in S : f(s) \in U \}.$$

Lemma 6. f is continuous at $s_0 \in S$ if for any open set U containing $f(s_0)$, there exists an open set V containing s_0 such that $f(V) \subset U$.

Continuity and the Intermediate Value Theorem (Sections 18 and 21)

Another Characterization of Continuity

Theorem 60 (Theorem 21.3). Suppose (S,d) and (S^*,d^*) are metric spaces. A function $f:S\to S^*$ is continuous if and only if $f^{-1}(U)$ is open for every open $U\subset S^*$. Here:

$$f^{-1}(U) = \{ s \in S : f(s) \in U \}.$$

Lemma 7 (Exercise 21.2). f is continuous at $s_0 \in S$ if and only if for any open set $U \ni f(s_0)$, there exists an open set $V \ni s_0$ such that $f(V) \subset U$.

Corollary 8 (Exercise 21.4). Suppose (S,d) is a metric space. A function $f: S \to \mathbb{R}$ is continuous if and only if $f^{-1}((a,b))$ is open whenever a < b.

Continuous Image of a Compact Set

Theorem 61. If $f: S \to S^*$ is continuous, and $E \subset S$ is compact, then $f(E) \subset S^*$ is compact.

Corollary 9. If $f: S \to \mathbb{R}$ is continuous, and $E \subset S$ is compact, then f(E) is bounded. Moreover, f attains its maximum and minimum values, i.e., there exist $x, y \in E$ such that:

$$f(x) = \sup_{e \in E} f(e), \quad f(y) = \inf_{e \in E} f(e).$$

Intermediate Value Theorem (IVT)

Theorem 62 (Theorem 18.2). Suppose $I \subset \mathbb{R}$ is an interval, and $f: I \to \mathbb{R}$ is continuous. Then f has the Intermediate Value Property (IVP) on I: if $a, b \in I$ with a < b, and y lies between f(a) and f(b), then there exists $x \in (a, b)$ such that f(x) = y.

Corollary 10. If I is an interval, and $f: I \to \mathbb{R}$ has the IVP, then f(I) is either an interval or a single point.

Applications of IVT

Proposition 26 (Roots of Polynomials). Any polynomial of odd degree has at least one real root.

Proposition 27 (Existence of Fixed Points). Any continuous function $f:[0,1] \to [0,1]$ has a fixed point, i.e., $x \in [0,1]$ such that f(x) = x.

Proposition 28 (Existence of m-th Roots). For any $m \in \mathbb{N}$ and y > 0, there exists x > 0 such that $x^m = y$.

Continuity of Inverse Functions

Theorem 63 (Theorem 18.4). Suppose $I \subset \mathbb{R}$ is an interval, and $f: I \to \mathbb{R}$ is strictly increasing and continuous. Then J = f(I) is an interval, and $f^{-1}: J \to I$ is strictly increasing and continuous.

Corollary 11. The function $x \mapsto x^{1/m}$, taking $[0, \infty)$ to itself, is continuous.

Continuity and Compactness (Section 18)

Continuous Image of a Compact Set

Theorem 64 (Theorem 21.4(i)). Suppose $f: S \to S^*$ is continuous, where (S, d) and (S^*, d^*) are metric spaces, and $E \subset S$ is compact. Then $f(E) \subset S^*$ is compact.

Proof. Let $(U_i)_{i\in I}$ be an open cover for f(E). Define $V_i = f^{-1}(U_i)$, which are open sets forming a cover for E. By compactness of E, there exist $i_1, \ldots, i_n \in I$ such that $E \subset \bigcup_{k=1}^n V_{i_k}$. It follows that $f(E) \subset \bigcup_{k=1}^n U_{i_k}$, proving compactness of f(E). \square

Maximum and Minimum of Continuous Functions

Corollary 12 (Similar to 18.1). If $f: S \to \mathbb{R}$ is continuous and $E \subset S$ is compact, then f(E) is bounded. Moreover, f attains its maximum and minimum values, i.e., there exist $x, y \in E$ such that:

$$f(x) = \sup_{e \in E} f(e), \quad f(y) = \inf_{e \in E} f(e).$$

Intermediate Value Property

Definition 55 (IVP). Suppose $I \subset \mathbb{R}$ is an interval, and $f: I \to \mathbb{R}$ is a function. f has the Intermediate Value Property (IVP) on I if for any $a, b \in I$ with a < b, and any y between f(a) and f(b), there exists $x \in (a, b)$ such that f(x) = y.

Theorem 65 (Theorem 18.2). Any continuous function has the IVP.

Applications of IVP

Corollary 13 (18.3). If I is an interval, and $f: I \to \mathbb{R}$ has the IVP, then f(I) is either an interval or a single point.

Proposition 29 (Roots of Polynomials). Any polynomial of odd degree has at least one real root.

Proposition 30 (Existence of Fixed Points). Any continuous function $f:[0,1] \to [0,1]$ has a fixed point, i.e., a point $x \in [0,1]$ such that f(x) = x.

Proposition 31 (Existence of m-th Root). For any $m \in \mathbb{N}$ and y > 0, there exists x > 0 such that $x^m = y$.

Continuity of Inverse Functions

Theorem 66 (Theorem 18.4). Suppose $I \subset \mathbb{R}$ is an interval, and $f: I \to \mathbb{R}$ is strictly increasing and continuous. Then f(I) is an interval, and $f^{-1}: f(I) \to I$ is strictly increasing and continuous.

Corollary 14. The function $x \mapsto x^{1/m}$, taking $[0, \infty)$ to itself, is continuous.

Monotonicity of Injective Functions

Theorem 67 (Theorem 18.6). Suppose $f: I \to \mathbb{R}$ is a continuous one-to-one function on an interval I. Then f is strictly monotone.

Sketch. For $a, b \in I$ with a < b, if f(a) < f(b), then f is strictly increasing. Otherwise, by the IVP, there would exist $x \in (a, b)$ such that f(x) = f(a), contradicting injectivity.

Uniform Continuity and Lipschitz Functions (Sections 18-19)

Uniform Continuity

Definition 56 (Uniform Continuity (Definition 21.1)). Suppose (S, d) and (S^*, d^*) are metric spaces. A function $f: S \to S^*$ is uniformly continuous on $E \subset S$ if:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } d^*(f(x), f(y)) < \varepsilon \text{ whenever } d(x, y) < \delta.$$

Here, δ depends only on ε and not on the specific point x.

Theorem 68 (Sequential Criterion for Uniform Continuity (Theorem 19.4)). If $f: S \to S^*$ is uniformly continuous, then f maps Cauchy sequences in S to Cauchy sequences in S^* .

Example 35 (Non-Uniformly Continuous Function). The function $f(x) = \frac{1}{x}$ is not uniformly continuous on $(0, \infty)$, as the Cauchy sequence $x_n = \frac{1}{n}$ is mapped to $f(x_n) = n$, which is not Cauchy.

Lipschitz Functions

Definition 57 (Lipschitz Continuity). A function $f: S \to S^*$ is Lipschitz if there exists K > 0 (called the Lipschitz constant) such that:

$$d^*(f(s), f(t)) \le K \cdot d(s, t), \quad \forall s, t \in S.$$

Proposition 32. Any Lipschitz function is uniformly continuous.

Proof. Let $\varepsilon > 0$ and set $\delta = \frac{\varepsilon}{K}$. Then if $d(s,t) < \delta$, it follows that:

$$d^*(f(s), f(t)) \le K \cdot d(s, t) < K \cdot \frac{\varepsilon}{K} = \varepsilon.$$

Example 36. For a > 0, $f(x) = \frac{1}{x}$ is Lipschitz (hence uniformly continuous) on $[a, \infty)$.

Example 37 (Uniformly Continuous but Not Lipschitz). The function $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$ but not Lipschitz.

Uniform Continuity on Compact Sets

Theorem 69 (Uniform Continuity on Compact Sets (Theorem 21.4(ii))). If $f: S \to S^*$ is continuous, and $E \subset S$ is compact, then f is uniformly continuous on E.

Sketch of Proof. Assume f is not uniformly continuous. Then $\exists \varepsilon > 0$ and sequences $(x_n), (y_n) \subset E$ such that $d(x_n, y_n) \to 0$ but $d^*(f(x_n), f(y_n)) \ge \varepsilon$. By compactness, (x_n) has a subsequence (x_{n_k}) converging to some $x \in E$, and (y_{n_k}) also converges to x. Continuity of f implies $d^*(f(x_{n_k}), f(y_{n_k})) \to 0$, contradicting $d^*(f(x_{n_k}), f(y_{n_k})) \ge \varepsilon$.

Uniform Continuity and Connectedness (Section 22)

Uniform Continuity on Compact Sets

Theorem 70 (Theorem 21.4(ii)). Suppose (S, d) and (S^*, d^*) are metric spaces, and $f: S \to S^*$ is continuous. If $E \subset S$ is compact, then $f|_E$ is uniformly continuous.

Proof. For $\varepsilon > 0$, find $\delta > 0$ such that $d^*(f(s), f(t)) < \varepsilon$ whenever $d(s, t) < \delta$. For $s \in S$, find $\delta_s > 0$ such that $d^*(f(s), f(t)) < \varepsilon/2$ whenever $d(s, t) < \delta_s$. Since E is compact:

$$E \subset \bigcup_{s \in E} B^o_{\delta_s/2}(s),$$

there exist s_1, \ldots, s_n such that $E \subset \bigcup_{k=1}^n B^o_{\delta_{s_k}/2}(s_k)$. Define $\delta = \frac{1}{2} \min_{1 \le k \le n} \delta_{s_k}$. For $s, t \in E$ with $d(s, t) < \delta$, choose s_k such that $s \in B^o_{\delta_{s_k}/2}(s_k)$. Then:

$$d(t, s_k) \le d(t, s) + d(s, s_k) < \delta + \frac{\delta_{s_k}}{2} \le \delta_{s_k},$$

implying $d^*(f(s), f(t)) \le d^*(f(s), f(s_k)) + d^*(f(t), f(s_k)) < \varepsilon$.

Extension of Uniformly Continuous Functions

Theorem 71. Suppose $E \subset S$ is compact, $f: E \to S^*$, and S^* is complete. Then f is uniformly continuous if and only if it extends to a continuous $\tilde{f}: \overline{E} \to S^*$.

Sketch. If f is uniformly continuous, define $\tilde{f}(x) = \lim_{n \to \infty} f(x_n)$ for $x \in \overline{E}$, where $x_n \subset E$ and $x_n \to x$. The limit exists by completeness and does not depend on the sequence. Continuity of \tilde{f} follows from the uniform continuity of f.

Connectedness

Definition 58 (Connected and Disconnected Sets). Suppose (S,d) is a metric space. A set $E \subset S$ is disconnected if there exist open sets $U_1, U_2 \subset S$ such that:

- 1. $E \subset U_1 \cup U_2$,
- 2. $(E \cap U_1) \cap (E \cap U_2) = \emptyset$,
- 3. $E \cap U_1 \neq \emptyset$ and $E \cap U_2 \neq \emptyset$.

A set E is connected if it is not disconnected.

Proposition 33. E is disconnected if and only if there exist $A, B \subset E$ such that:

$$E = A \cup B, \quad A \neq \emptyset, \quad B \neq \emptyset, \quad A \cap \overline{B} = \emptyset, \quad \overline{A} \cap B = \emptyset.$$

Connectedness of Intervals

Proposition 34. Any interval $I \subset \mathbb{R}$ is connected.

Proof. Suppose, for contradiction, that $I = A \cup B$, where $A, B \neq \emptyset$, $\overline{A} \cap B = \emptyset$, and $A \cap \overline{B} = \emptyset$. Choose $a \in A, b \in B$, with a < b. Define:

$$c = \sup\{x \in A : x < b\}.$$

Then $c \in I$ and c < b. If $c \in A$, there exists $\sigma > 0$ such that $(c - \sigma, c + \sigma) \subset A$, contradicting the definition of c. If $c \in B$, there exists $\sigma > 0$ such that $(c - \sigma, c + \sigma) \subset B$, contradicting $c = \sup\{x \in A : x < b\}$.

Connectedness and Path Connectedness (Section 22)

Connectedness

Definition 59 (Connected Set (Definition 22.1)). Suppose (S, d) is a metric space. A set $E \subset S$ is called disconnected if there exist open sets $U_1, U_2 \subset S$ such that:

- 1. $E \subset U_1 \cup U_2$,
- 2. $(E \cap U_1) \cap (E \cap U_2) = \emptyset$,
- 3. $E \cap U_1 \neq \emptyset$ and $E \cap U_2 \neq \emptyset$.

A set E is connected if it is not disconnected.

Proposition 35. An open set E is disconnected if and only if $E = E_1 \cup E_2$, where E_1, E_2 are disjoint, non-empty, open subsets.

Proposition 36 (Equivalent Characterization of Connectedness). A set E is disconnected if and only if there exist $A, B \subset E$ such that:

$$E = A \cup B$$
, $A \neq \emptyset$, $B \neq \emptyset$, $A \cap \overline{B} = \emptyset$, $\overline{A} \cap B = \emptyset$.

Continuous Images of Connected Sets

Theorem 72 (Theorem 22.2). Suppose (S,d) and (S^*,d^*) are metric spaces. If $E \subset S$ is connected and $f:S \to S^*$ is continuous, then f(E) is connected.

Sketch of Contrapositive Proof. If $f(E) \subset S^*$ is disconnected, write $f(E) = C \cup D$, where C, D are disjoint, non-empty, closed subsets. Define $A = f^{-1}(C) \cap E$, $B = f^{-1}(D) \cap E$. Then $E = A \cup B$, $A \cap \overline{B} = \emptyset$, and $\overline{A} \cap B = \emptyset$, so E is disconnected. \square

Path Connectedness

Definition 60 (Path Connectedness (Definition 22.4)). A set $E \subset S$ is path connected if for all $a, b \in E$, there exists a continuous function $\gamma : [0,1] \to E$ such that $\gamma(0) = a$ and $\gamma(1) = b$.

Theorem 73 (Path Connected Sets Are Connected (Theorem 22.5)). Every path connected set is connected.

Proof. If E is disconnected, then there exist open sets U_1, U_2 such that $E \subset U_1 \cup U_2$, $E \cap U_1 \neq \emptyset$, $E \cap U_2 \neq \emptyset$, and $(E \cap U_1) \cap (E \cap U_2) = \emptyset$. Let $a \in E \cap U_1$, $b \in E \cap U_2$. A path $\gamma : [0,1] \to E$ with $\gamma(0) = a$, $\gamma(1) = b$ would imply $\gamma([0,1])$ is connected, contradicting the disconnectedness of E.

Connected but Not Path Connected Sets

Example 38. Consider $E \subset \mathbb{R}^2$, where:

$$E_1 = \{(0, y) : y \in (0, 1]\}, \quad E_2 = \{(x, 0) : x \in (0, 1]\} \cup \bigcup_{n \in \mathbb{N}} \{(1/n, y) : y \in (0, 1]\}.$$

Then $E = E_1 \cup E_2$ is connected but not path connected.

Convex Sets

Definition 61 (Convex Sets). A set $E \subset \mathbb{R}^n$ is convex if for all $\vec{x}, \vec{y} \in E$ and $t \in [0, 1]$, the point:

$$\vec{z} = (1 - t)\vec{x} + t\vec{y} \in E.$$

Proposition 37. Any convex set is path connected.

Path Connectedness of Graphs

Proposition 38. The graph of a function $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ is an interval, is path connected if and only if f is continuous.

Graphs of Functions and Path Connectedness (Sections 22-23-24)

Graphs and Path Connectedness

Definition 62 (Graph of a Function). The graph of a function $f: I \to \mathbb{R}$ (where $I \subset \mathbb{R}$ is an interval) is:

$$G(f) = \{(x, f(x)) : x \in I\}.$$

Proposition 39 (Example 4 from Section 22). G(f) is path connected if and only if f is continuous on I.

Example 39 (Discontinuous f with Connected G(f)). Exercise 22.4 describes a function f such that G(f) is connected but f is discontinuous.

Proposition 40 (Multivariate Continuity). The function $f: S \to \mathbb{R}^n$, $x \mapsto (f_1(x), \dots, f_n(x))$, is continuous if and only if each $f_i: S \to \mathbb{R}$ is continuous for $1 \le i \le n$.

Sketch. If f is continuous, then G(f) is path connected. For $\vec{x} = (a, f(a)), \ \vec{y} = (b, f(b)) \in G(f)$, define a path:

$$\gamma(t) = ((1-t)a + tb, f((1-t)a + tb)), \quad t \in [0, 1].$$

If G(f) is path connected, continuity of f follows from the textbook proof.

Power Series

Definition 63 (Power Series). A power series is a series of the form:

$$\sum_{n=0}^{\infty} a_n x^n,$$

where x is a variable.

Theorem 74 (Radius of Convergence). Let $\beta = \limsup |a_n|^{1/n}$ and $R = 1/\beta$. The series:

$$\sum_{n=0}^{\infty} a_n x^n$$

converges for |x| < R, diverges for |x| > R. R is called the radius of convergence.

Remark 2. If $\lim |a_{n+1}/a_n|$ exists, it equals β . The series may converge or diverge at $\pm R$. The interval of convergence is one of:

$$(-R, R), [-R, R), (-R, R], or [-R, R].$$

Examples of Power Series

1. $\sum_{n=0}^{\infty} \frac{x^n}{n!}$: $a_n = \frac{1}{n!}$, $\beta = 0$, $R = \infty$. Interval: $(-\infty, \infty)$.

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x.$$

2. $\sum_{n=0}^{\infty} x^n$: $a_n = 1, \beta = 1, R = 1$. Diverges for $x = \pm 1$. Interval: (-1, 1).

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

3. $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$: $a_n = \frac{1}{n+1}$, $\beta = 1$, R = 1. Diverges at x = 1, converges for $x \in [-1, 1)$.

$$\sum_{n=0}^{\infty} \frac{x^n}{n+1} = \ln(1-x).$$

- 4. $\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^2}$: $a_n = \frac{1}{(n+1)^2}$, $\beta = 1$, R = 1. Converges for $x \in [-1, 1]$.
- 5. $\sum_{n=0}^{\infty} n! x^n$: $a_n = n!$, $\beta = \infty$, R = 0. Diverges for all $x \neq 0$.

Uniform Convergence

Definition 64 (Uniform Convergence (Definition 24.1-2)). A sequence $f_n \to f$ pointwise on S if:

$$\forall x \in S, \forall \varepsilon > 0, \exists N \text{ such that } |f_n(x) - f(x)| < \varepsilon \text{ for } n \ge N.$$

It converges uniformly if:

$$\forall \varepsilon > 0, \exists N \text{ such that } \sup_{x \in S} |f_n(x) - f(x)| < \varepsilon \text{ for } n \ge N.$$

Theorem 75 (Preservation of Continuity (Theorem 24.3)). If $f_n \to f$ uniformly on S and each f_n is continuous, then f is continuous.

Example 40. Consider $f_n(x) = n^2 x^n (1-x)$ on [0, 1]. It converges pointwise to f(x) = 0, but not uniformly.

Uniform Convergence and Series of Functions (Sections 24-25)

Uniform Convergence

Definition 65 (Pointwise and Uniform Convergence (24.1-2)). Suppose f, f_1, f_2, \ldots are functions $S \to \mathbb{R}$.

• $f_n \to f$ pointwise on S if:

$$\forall x \in S, \forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } |f_n(x) - f(x)| < \varepsilon \text{ for } n \geq N.$$

• $f_n \to f$ uniformly on S if:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } |f_n(x) - f(x)| < \varepsilon \text{ for } n \geq N, \forall x \in S.$$

Equivalently, $\lim_{n\to\infty} \sup_{x\in S} |f_n(x) - f(x)| = 0$.

Theorem 76 (Preservation of Continuity (24.3)). If $f_n \to f$ uniformly on S, and each f_n is continuous at $x_0 \in S$, then f is continuous at x_0 .

Sketch of Proof. Using an $\varepsilon/3$ argument, fix $\varepsilon > 0$. For $f_n \to f$ uniformly, find n such that $|f_n(x) - f(x)| < \varepsilon/3$. By continuity of f_n , there exists $\delta > 0$ such that $|f_n(x_0) - f_n(x)| < \varepsilon/3$ for $|x - x_0| < \delta$. Combine inequalities to conclude $|f(x_0) - f(x)| < \varepsilon$.

Uniformly Cauchy Sequences

Definition 66 (Uniformly Cauchy (25.3)). A sequence (f_n) of functions $S \to \mathbb{R}$ is uniformly Cauchy if:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } |f_i(x) - f_j(x)| < \varepsilon \, \forall x \in S \text{ for } i, j \geq N.$$

Equivalently, $\sup_{x \in S} |f_i(x) - f_j(x)| < \varepsilon$ for $i, j \ge N$.

Theorem 77 (Uniformly Cauchy \iff Uniform Convergence (25.4)). A sequence (f_n) is uniformly Cauchy if and only if it converges uniformly to some f.

Series of Functions

Definition 67 (Convergence of Series). A series $\sum_{n=1}^{\infty} g_n(x)$ converges (uniformly) if the sequence of partial sums $s_k(x) = \sum_{n=1}^{k} g_n(x)$ converges (uniformly).

Theorem 78 (Uniform Convergence Preserves Continuity (25.5)). If $g_n: S \to \mathbb{R}$ are continuous and $\sum_{n=1}^{\infty} g_n(x)$ converges uniformly on S, then $\sum_{n=1}^{\infty} g_n(x)$ is continuous.

Weierstrass M-Test

Theorem 79 (Weierstrass M-Test (25.7)). Suppose $M_1, M_2, \ldots \geq 0$ and $\sum_{k=1}^{\infty} M_k < \infty$. If $|g_k(x)| \leq M_k$ for all $x \in S$ and k, then $\sum_{k=1}^{\infty} g_k(x)$ converges uniformly on S.

Corollary 15. A power series $\sum_{k=0}^{\infty} a_k x^k$ converges uniformly (to a continuous function) on [-b,b] if b < R, where $R = (\limsup |a_k|^{1/k})^{-1}$.

Remark 3. Convergence need not be uniform on (-R,R). For example, $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ converges on (-1,1), but not uniformly because the partial sums are bounded while $\frac{1}{1-x}$ is not.

Limits and Differentiation (Sections 20, 28-29)

Limits

Definition 68 (Limit (20.1, slightly modified)). Suppose $S \subset \mathbb{R}$, $a \in S^-$, $f : S \to \mathbb{R}$, and $L \in \mathbb{R} \cup \{\pm \infty\}$. Then:

$$\lim_{x\to a,S}f=L$$

if $\lim f(x_n) = L$ for any sequence $(x_n) \subset S$ with $\lim x_n = a$. Such sequences (x_n) exist because $a \in S^-$.

Proposition 41 (Connection Between Limits and Continuity). If $a \in S$, then $f : S \to \mathbb{R}$ is continuous at a if and only if $\lim_{x\to a,S} f = f(a)$.

Common Set-Ups for Limits

- **Usual Limit**: Let I be an interval, a be interior to I, and $S = I \setminus \{a\}$. Write $\lim_{x \to a} f$ instead of $\lim_{x \to a, S} f$.
- **One-Sided Limit**: For S = (a, b), write $\lim_{x \to a^+} f$ (right-hand limit). Define $\lim_{x \to a^-} f$ similarly.

Useful Theorems About Limits

Theorem 80 (Equivalent Definition of Limits (20.6, Simplified)). Suppose $a \in S^-$. For $f: S \to \mathbb{R}$ and $L \in \mathbb{R}$, the following are equivalent:

- 1. $\lim_{x\to a.S} f = L$.
- 2. For all $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) L| < \varepsilon$ whenever $x \in (a \delta, a + \delta) \cap S \setminus \{a\}$.

Theorem 81 (Limit Operations (20.4)). Suppose $\lim_{x\to a,S} f_1 = L_1$ and $\lim_{x\to a,S} f_2 = L_2$. Then:

- 1. $\lim_{x\to a,S}(f_1+f_2)=L_1+L_2$,
- 2. $\lim_{x\to a,S} (f_1 \cdot f_2) = L_1 \cdot L_2$,
- 3. If $L_2 \neq 0$, $\lim_{x \to a, S} \frac{f_1}{f_2} = \frac{L_1}{L_2}$.

Theorem 82 (Squeeze Theorem). If $f(x) \leq g(x) \leq h(x)$ for all $x \in S$, and $\lim_{x \to a, S} f = \lim_{x \to a, S} h = L$, then $\lim_{x \to a, S} g = L$.

Differentiation

Definition 69 (Derivative (28.1)). Suppose I is an open interval, $a \in I$, and $f: I \to \mathbb{R}$. The derivative of f at a is:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

if the limit exists and is finite.

Rules of Differentiation

Theorem 83 (Product Rule). If f and g are differentiable at a, then (fg)'(a) = f'(a)g(a) + f(a)g'(a).

Theorem 84 (Chain Rule (28.4)). If f is differentiable at a, and g is differentiable at f(a), then $g \circ f$ is differentiable at a, with:

$$(q \circ f)'(a) = q'(f(a)) \cdot f'(a).$$

Carathéodory's Theorem

Theorem 85 (Carathéodory (Exercise 28.16)). Suppose I is an interval, $f: I \to \mathbb{R}$. f is differentiable at $a \in I$ if and only if there exists a function $\phi: I \to \mathbb{R}$, continuous at a, such that:

$$f(x) - f(a) = \phi(x) \cdot (x - a), \quad \forall x \in I,$$

and $\phi(a) = f'(a)$.

Rules of Differentiation and Mean Value Theorem (Sections 28-29)

Definition of Derivative

Definition 70 (Derivative (28.1)). Suppose I is an open interval and $a \in I$. A function $f: I \to \mathbb{R}$ is differentiable at a if the derivative:

 $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

exists and is finite.

Rules of Differentiation

Theorem 86 (Product Rule (28.3)). Suppose f and g are differentiable at a. Then fg is differentiable at a, with:

$$(fq)'(a) = f'(a)q(a) + f(a)q'(a).$$

Corollary 16. If $f(x) = x^m$ for $m \in \mathbb{N}$, then:

$$(x^m)' = mx^{m-1}.$$

Theorem 87 (Chain Rule (28.4)). Suppose f is differentiable at a and g is differentiable at f(a). Then $g \circ f$ is differentiable at a, with:

$$(g \circ f)'(a) = g'(f(a))f'(a).$$

Examples of Differentiation

- 1. If $f(x) = x^n$ for $n \in \mathbb{N}$, then $f'(x) = nx^{n-1}$.
- 2. If $f(x) = x^{-n}$ for $n \in \mathbb{N}$, then $f'(x) = -nx^{-n-1}$.
- 3. For f(x) = 1/q(x), if $q(a) \neq 0$, then:

$$\left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{g(a)^2}.$$

Criterion for Extrema

Theorem 88 (Extrema Criterion (29.1)). Suppose f is defined on an open interval I and has a maximum or minimum at $x_0 \in I$. If f is differentiable at x_0 , then:

$$f'(x_0) = 0.$$

Corollary 17. Suppose $f:[a,b] \to \mathbb{R}$ is continuous and attains its maximum or minimum at x_0 . Then one of the following holds:

- 1. $x_0 \in \{a, b\},\$
- 2. f is not differentiable at x_0 ,
- 3. $f'(x_0) = 0$.

Rolle's Theorem

Theorem 89 (Rolle's Theorem (29.2)). Suppose $f:[a,b] \to \mathbb{R}$ is continuous, differentiable on (a,b), and f(a)=f(b). Then there exists $c \in (a,b)$ such that:

$$f'(c) = 0.$$

Mean Value Theorem

Theorem 90 (Mean Value Theorem (29.3)). Suppose $f : [a,b] \to \mathbb{R}$ is continuous, differentiable on (a,b). Then there exists $c \in (a,b)$ such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Examples and Consequences of MVT

Corollary 18 (Constant Function (29.4)). If f is differentiable on (a,b) and f'(x) = 0 for all $x \in (a,b)$, then f is a constant function.

Corollary 19 (Equality of Derivatives (29.5)). If f and g are differentiable on (a,b) and f'(x) = g'(x) for all $x \in (a,b)$, then f(x) - g(x) = c for some constant c.

Rolle's Theorem, Mean Value Theorem, and Applications (Section 29)

Rolle's Theorem

Theorem 91 (Rolle's Theorem (29.2)). Suppose $f : [a, b] \to \mathbb{R}$ is continuous, differentiable on (a, b), and f(a) = f(b). Then there exists $x \in (a, b)$ such that:

$$f'(x) = 0.$$

Proof. The function f attains its maximum and minimum on [a,b]. Let $x_0, y_0 \in [a,b]$ such that $f(y_0) \leq f(x) \leq f(x_0)$ for all $x \in [a,b]$. If $f(y_0) = f(a) = f(b) = f(x_0)$, then f is constant, so f' = 0 on (a,b). Otherwise:

- If $f(x_0) > f(a) = f(b)$, then $x_0 \in (a, b)$, and $f'(x_0) = 0$.
- If $f(y_0) < f(a) = f(b)$, then $y_0 \in (a, b)$, and $f'(y_0) = 0$.

Mean Value Theorem

Theorem 92 (Mean Value Theorem (29.3)). Suppose $f:[a,b] \to \mathbb{R}$ is continuous, differentiable on (a,b). Then there exists $x \in (a,b)$ such that:

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Proof. Define $L(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$ and g(x) = f(x) - L(x). The function g is continuous on [a, b], differentiable on (a, b), and g(a) = g(b) = 0. By Rolle's Theorem, there exists $x \in (a, b)$ such that g'(x) = 0. Thus:

$$f'(x) = g'(x) + L'(x) = 0 + \frac{f(b) - f(a)}{b - a}.$$

Example 41 (MVT Application). For $x, y \in \mathbb{R}$, $|\sin x - \sin y| \le |x - y|$. Apply MVT to $f(t) = \sin t$ on [x, y]: $\exists z \in (x, y)$ such that:

$$\frac{f(x) - f(y)}{x - y} = f'(z) = \cos z.$$

Since $|\cos z| \le 1$, $\left| \frac{f(x) - f(y)}{x - y} \right| = |\cos z| \le 1$, hence $|\sin x - \sin y| \le |x - y|$.

Corollaries of MVT

Corollary 20 (Constant Functions (29.4)). If f is differentiable on (a,b) and f'=0 on (a,b), then f is constant.

Proof. If f is not constant, then there exist x < y such that $f(x) \neq f(y)$. By MVT, $\exists z \in (x, y)$ such that:

$$f'(z) = \frac{f(y) - f(x)}{y - x} \neq 0,$$

contradicting f'(z) = 0.

Corollary 21 (Equality of Derivatives (29.5)). If f, g are differentiable on (a, b) and f' = g' on (a, b), then $\exists c \in \mathbb{R}$ such that f(x) - g(x) = c for all $x \in (a, b)$.

Proof. Define h(x) = f(x) - g(x). Then h' = f' - g' = 0. By Corollary 29.4, h is constant.

Increasing and Decreasing Functions

Definition 71 (Monotonicity (29.6)). A function f on an interval I is:

- Increasing if $f(x_1) \leq f(x_2)$ for $x_1 < x_2$,
- Strictly increasing if $f(x_1) < f(x_2)$ for $x_1 < x_2$.

Corollary 22 (Monotonicity and Derivatives (29.7)). Suppose f is differentiable on (a,b):

- 1. f is increasing if and only if $f' \geq 0$ on (a, b),
- 2. If f' > 0 on (a, b), then f is strictly increasing.

Example 42 (Bernoulli's Inequality). If $n \in \mathbb{N}$ and x > -1, then:

$$(1+x)^n > 1 + nx$$
.

Let $f(x) = (1+x)^n - (1+nx)$ and show $f(x) \ge 0$ for x > -1. By differentiating f(x), we conclude f(x) is increasing and achieves its minimum at x = 0, where f(0) = 0.

Differentiating Inverse Functions and Integration (Sections 29, 32)

Differentiating Inverse Functions

Theorem 93 (Derivative of an Inverse Function (29.9)). Suppose I is an interval, $f: I \to \mathbb{R}$ is a continuous, strictly monotone function. Let J = f(I), and $g = f^{-1}: J \to I$. If f is differentiable at $c \in I$, and $f'(c) \neq 0$, then g is differentiable at d = f(c), and:

$$g'(d) = \frac{1}{f'(c)} = \frac{1}{f'(g(d))}.$$

Proof Sketch. Using Carathéodory's Theorem:

$$f(x) - f(c) = \phi(x)(x - c), \quad \phi(c) = f'(c),$$

where ϕ is continuous at c. For y = f(q(y)), differentiate both sides to find $q'(d) = 1/\phi(q(d))$.

Derivatives of Rational Powers

Example 43 (Derivative of Rational Powers). Let $f(x) = x^n$ (strictly increasing on $(0, \infty)$) with $f'(x) = nx^{n-1}$. The inverse function is $g(y) = y^{1/n}$. For y > 0:

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{n(y^{1/n})^{n-1}} = \frac{1}{n}y^{1/n-1}.$$

If $n \in \mathbb{Z}$ is odd, extend f, g to \mathbb{R} . Then $g'(y) = \frac{1}{n} y^{1/n-1}$ for y < 0.

Example 44 (Derivative of $h(x) = x^r$, $r \in \mathbb{Q}$). Write r = m/n, $h(x) = x^{m/n}$. Use the chain rule:

$$h'(x) = \frac{m}{n}x^{r-1}.$$

Inverse Trigonometric Functions

Example 45 (Arcsine). For $f(x) = \sin x$ on $[-\pi/2, \pi/2]$, $g = \arcsin : [-1, 1] \to [-\pi/2, \pi/2]$. Since $f'(x) = \cos x$, for $y \in (-1, 1)$:

$$(\arcsin y)' = \frac{1}{\sqrt{1 - y^2}}.$$

Example 46 (Arctangent). For $f(x) = \tan x$ on $(-\pi/2, \pi/2)$, $g = \arctan : \mathbb{R} \to (-\pi/2, \pi/2)$. Since $f'(x) = 1 + x^2$, for $y \in \mathbb{R}$:

$$(\arctan y)' = \frac{1}{1+y^2}.$$

Integration: Concepts and Definitions

Definition 72 (Darboux Sums). Let $f:[a,b] \to \mathbb{R}$ be bounded.

- Partition $P = \{t_0, t_1, \dots, t_n\}$ of [a, b] gives subintervals $[t_{k-1}, t_k]$.
- Lower Darboux sum:

$$L(f, P) = \sum_{k=1}^{n} m(f, [t_{k-1}, t_k])(t_k - t_{k-1}),$$

where $m(f, [t_{k-1}, t_k]) = \inf_{x \in [t_{k-1}, t_k]} f(x)$.

• Upper Darboux sum:

$$U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k])(t_k - t_{k-1}),$$

where $M(f, [t_{k-1}, t_k]) = \sup_{x \in [t_{k-1}, t_k]} f(x)$.

Definition 73 (Integrability). f is integrable on [a, b] if:

$$\sup_{P} L(f, P) = \inf_{P} U(f, P),$$

denoted $\int_a^b f(x)dx$.

Examples of Integrability

Example 47 (Constant Function). If f(x) = c, then:

$$\int_{a}^{b} f(x)dx = c(b-a).$$

Example 48 (Discontinuous Function). Let g(x) = 1 if $x \in \mathbb{Q}$, g(x) = 0 otherwise. Then:

$$\sup_{P} L(g, P) = 0, \quad \inf_{P} U(g, P) = 1.$$

Since $\sup_{P} L \neq \inf_{P} U$, g is not integrable.

Example 49 (Linear Function). If h(x) = x, then:

$$\int_0^b h(x)dx = \frac{b^2}{2}.$$

Darboux Sums, Integrability, and Riemann Integration (Sections 32-33)

Darboux Sums and Integrals

Definition 74 (Darboux Sums). Let $f:[a,b] \to \mathbb{R}$ be bounded. For a partition $P = \{a = t_0 < t_1 < \dots < t_n = b\}$:

• Lower Darboux sum:

$$L(f, P) = \sum_{k=1}^{n} m(f, [t_{k-1}, t_k])(t_k - t_{k-1}),$$

where $m(f, [t_{k-1}, t_k]) = \inf_{x \in [t_{k-1}, t_k]} f(x)$.

• Upper Darboux sum:

$$U(f, P) = \sum_{k=1}^{n} M(f, [t_{k-1}, t_k])(t_k - t_{k-1}),$$

where $M(f, [t_{k-1}, t_k]) = \sup_{x \in [t_{k-1}, t_k]} f(x)$.

Definition 75 (Integrability). The lower Darboux integral is $L(f) = \sup_P L(f, P)$, and the upper Darboux integral is $U(f) = \inf_P U(f, P)$. f is integrable if L(f) = U(f), denoted:

$$\int_{a}^{b} f = L(f) = U(f).$$

Theorem 94 (32.4). If $f:[a,b]\to\mathbb{R}$ is bounded, then $L(f)\leq U(f)$.

Integrals: Example

Example 50 (Linear Function). Is h(x) = x integrable on [0,b]? Compute $\int_0^b h(x)dx$.

For $P = \{0, \frac{b}{n}, \frac{2b}{n}, \dots, b\}$:

$$L(h, P_n) = \frac{b^2}{2} \left(1 - \frac{1}{n} \right), \quad U(h, P_n) = \frac{b^2}{2}.$$

Thus:

$$L(h) \ge \sup_{n} L(h, P_n) = \frac{b^2}{2}, \quad U(h) \le \lim_{n} U(h, P_n) = \frac{b^2}{2}.$$

Since L(h) = U(h), h(x) is integrable with:

$$\int_0^b h(x)dx = \frac{b^2}{2}.$$

Criterion for Integrability

Theorem 95 (32.5). A bounded function $f:[a,b] \to \mathbb{R}$ is integrable if and only if for all $\varepsilon > 0$, there exists a partition P such that:

$$U(f, P) - L(f, P) < \varepsilon.$$

Monotone and Continuous Functions

Theorem 96 (33.1). Any monotone function on [a, b] is integrable.

Theorem 97 (33.2). Any continuous function on [a, b] is integrable.

Mesh of a Partition

Definition 76 (Mesh (32.6)). The mesh of a partition $P = \{t_0, t_1, \dots, t_n\}$ is:

$$\operatorname{mesh}(P) = \max_{1 \le k \le n} (t_k - t_{k-1}).$$

Theorem 98 (32.7). A bounded $f:[a,b] \to \mathbb{R}$ is integrable if and only if for all $\varepsilon > 0$, there exists $\delta > 0$ such that:

$$U(f,P) - L(f,P) < \varepsilon$$
 whenever $mesh(P) < \delta$.

Riemann Integration

Definition 77 (Riemann Integral (32.8)). Let $f:[a,b]\to\mathbb{R}$ be bounded. For a partition $P=\{t_0,t_1,\ldots,t_n\}$ and $x_k\in[t_{k-1},t_k]$, define the Riemann sum:

$$S = \sum_{k=1}^{n} f(x_k)(t_k - t_{k-1}).$$

f is Riemann integrable if there exists $r \in \mathbb{R}$ such that for all $\varepsilon > 0$, there exists $\delta > 0$ such that:

$$|S - r| < \varepsilon$$
 whenever $\operatorname{mesh}(P) < \delta$.

Theorem 99 (32.9). A bounded function $f:[a,b] \to \mathbb{R}$ is Riemann integrable if and only if it is Darboux integrable. In this case:

 $\int_{a}^{b} f = R \int_{a}^{b} f.$

Integrability and Riemann Integration (Sections 32-33)

Monotone and Continuous Functions

Theorem 100 (Integrability Criterion (32.5)). A bounded function $f:[a,b]\to\mathbb{R}$ is integrable if and only if:

$$\forall \varepsilon > 0, \exists \ a \ partition \ P \ such that \ U(f, P) - L(f, P) < \varepsilon.$$

Theorem 101 (Monotone Functions Are Integrable (33.1)). Any monotone function on [a,b] is integrable.

Proof. Assume f is increasing. Fix $\varepsilon > 0$. Choose $n \in \mathbb{N}$ such that:

$$\frac{(f(b) - f(a))(b - a)}{n} < \varepsilon.$$

Consider the partition P with $t_k = a + kh$ for $0 \le k \le n$, where $h = \frac{b-a}{n}$. Then:

$$U(f,P) - L(f,P) = h \sum_{k=1}^{n} (f(t_k) - f(t_{k-1})) = \frac{(f(b) - f(a))(b-a)}{n} < \varepsilon.$$

Theorem 102 (Continuous Functions Are Integrable (33.2)). Any continuous function on [a, b] is integrable.

Proof. Fix $\varepsilon > 0$. By uniform continuity, $\exists \delta > 0$ such that $|f(x) - f(y)| < \frac{\varepsilon}{b-a}$ whenever $|x - y| < \delta$. Choose $n \in \mathbb{N}$ such that $h = \frac{b-a}{n} < \delta$, and partition P with $t_k = a + kh$. Then:

$$M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) < \frac{\varepsilon}{b-a}.$$

Thus:

$$U(f, P) - L(f, P) < hn \cdot \frac{\varepsilon}{b - a} = \varepsilon.$$

Mesh of a Partition

Definition 78 (Mesh (32.6)). The mesh of a partition $P = \{t_0, t_1, \dots, t_n\}$ is:

$$\operatorname{mesh}(P) = \max_{1 \le k \le n} (t_k - t_{k-1}).$$

Theorem 103 (Integrability and Mesh (32.7)). A bounded function $f:[a,b]\to\mathbb{R}$ is integrable if and only if:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ such that } U(f, P) - L(f, P) < \varepsilon \text{ whenever } \operatorname{mesh}(P) < \delta.$$

Riemann Integration

Definition 79 (Riemann Integral (32.8)). Let $f:[a,b]\to\mathbb{R}$ be bounded. For a partition $P=\{t_0,t_1,\ldots,t_n\}$ and $x_k\in[t_{k-1},t_k]$, define the Riemann sum:

$$S = \sum_{k=1}^{n} f(x_k)(t_k - t_{k-1}).$$

f is Riemann integrable if:

 $\exists r \in \mathbb{R} \text{ such that } \forall \varepsilon > 0, \exists \delta > 0 \text{ such that } |S - r| < \varepsilon \text{ whenever mesh}(P) < \delta.$

Theorem 104 (Equivalence of Riemann and Darboux Integrability (32.9)). A bounded $f : [a, b] \to \mathbb{R}$ is Riemann integrable if and only if it is Darboux integrable. In this case:

$$R\int_{a}^{b} f = \int_{a}^{b} f.$$

Properties of Integrable Functions

Proposition 42 (Exercise 32.7). If f is integrable on [a,b], and f = g except at finitely many points, then g is integrable on [a,b] and:

$$\int_{a}^{b} f = \int_{a}^{b} g.$$

Remark 4. The statement fails if the set of exceptions is countably infinite. For example:

$$f(x) = 0, \quad g(x) = \begin{cases} 1 & x \in \mathbb{Q}, \\ 0 & x \notin \mathbb{Q}. \end{cases}$$

f is integrable, but g is not.

Properties of Integrals and Convergence Theorems (Section 33)

Properties of Integrals

Theorem 105 (Linearity and Comparison of Integrals (33.3, 33.4(i))). Suppose f, g are integrable on [a, b], and $c \in \mathbb{R}$. Then:

1. cf is integrable, and:

$$\int_{a}^{b} cf = c \int_{a}^{b} f.$$

2. f + g is integrable, and:

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g.$$

3. If $f \geq g$, then:

$$\int_{a}^{b} f \ge \int_{a}^{b} g.$$

Theorem 106 (Triangle Inequality for Integrals (33.5)). If f is integrable on [a, b], then |f| is integrable, and:

$$\left| \int_a^b f \right| \le \int_a^b |f|.$$

Integrability of Products and Piecewise Functions

Proposition 43. If f is integrable on [a,b], then f^2 is integrable.

Corollary 23. If f, g are integrable on [a, b], then fg is integrable.

Proof. Express fg as:

$$fg = \frac{1}{4} ((f+g)^2 - (f-g)^2).$$

Since f + g and f - g are integrable, their squares are integrable, and hence fg is integrable.

Theorem 107 (Piecewise Monotone and Continuous Functions (33.8)). Suppose $f:[a,b]\to\mathbb{R}$ is either:

- 1. Piecewise monotone and bounded. or
- 2. Piecewise continuous.

Then f is integrable.

Proof. Partition [a,b] such that f is monotone or uniformly continuous on each subinterval. On each subinterval, f is integrable. By additivity of the integral, f is integrable on [a,b].

Convergence and Interchange of Limits and Integrals

Proposition 44. Suppose (f_n) is a sequence of integrable functions on [a,b] that converges uniformly to f. Then f is integrable, and:

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}.$$

Convergence Theorems

Theorem 108 (Bounded Convergence (33.11)). Suppose (f_n) are integrable on [a,b], $|f_n| \le M$ for all n, $f_n \to f$ pointwise on [a,b], and f is integrable. Then:

$$\lim_{n \to \infty} \int_a^b f_n = \int_a^b f.$$

Theorem 109 (Monotone Convergence (33.12)). Suppose (f_n) are integrable on [a,b], $f_1 \leq f_2 \leq \cdots$, $f_n \to f$ pointwise on [a,b], and f is integrable. Then:

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f.$$

Example 51 (Application of Monotone Convergence). Let $f_n(x) = \frac{1}{1+nx^3}$ on [0,1]. Then:

$$\int_0^1 f_n(x)dx \to \int_0^1 f(x)dx = 0,$$

where
$$f(x) = \begin{cases} 1, & x = 0, \\ 0, & x \in (0, 1]. \end{cases}$$

Fundamental Theorems of Calculus and Change of Variable (Section 34)

Fundamental Theorem of Calculus I

Theorem 110 (Fundamental Theorem of Calculus I (34.1)). Suppose $g : [a,b] \to \mathbb{R}$ is continuous, differentiable on (a,b), and g' is integrable on [a,b]. Then:

$$\int_a^b g'(x) dx = g(b) - g(a).$$

Example 52. Compute $\int_a^b x^n dx$. Use $g(x) = \frac{x^{n+1}}{n+1}$, so:

$$\int_{a}^{b} x^{n} dx = \frac{b^{n+1} - a^{n+1}}{n+1}.$$

Proof. Partition $P = \{a = t_0 < t_1 < \ldots < t_n = b\}$. By the Mean Value Theorem:

$$g'(x_k) = \frac{g(t_k) - g(t_{k-1})}{t_k - t_{k-1}},$$

for some $x_k \in (t_{k-1}, t_k)$. Then:

$$L(g', P) \le \sum_{k=1}^{n} g'(x_k)(t_k - t_{k-1}) = g(b) - g(a) \le U(g', P).$$

Thus $\int_a^b g'(x) dx = g(b) - g(a)$.

Integration by Parts

Theorem 111 (Integration by Parts (34.2)). Suppose $u, v : [a, b] \to \mathbb{R}$ are continuous, differentiable on (a, b), and u', v' are integrable on [a, b]. Then:

$$\int_{a}^{b} u(x)v'(x) \, dx + \int_{a}^{b} u'(x)v(x) \, dx = u(b)v(b) - u(a)v(a).$$

Example 53. Compute $\int_0^{\pi} x \cos x \, dx$. Let u(x) = x, $v'(x) = \cos x$:

$$\int_0^{\pi} x \cos x \, dx = x \sin x \Big|_0^{\pi} - \int_0^{\pi} \sin x \, dx = 0 - (-2) = -2.$$

Fundamental Theorem of Calculus II

Theorem 112 (Fundamental Theorem of Calculus II (34.3)). Suppose $f:[a,b]\to\mathbb{R}$ is integrable. Define:

$$F(x) = \int_{a}^{x} f(t) dt.$$

If f is continuous at c, then F is differentiable at c, with F'(c) = f(c).

Example 54. Let $G(x) = \int_{x^2}^2 \sin(t^2) dt$. Then $G'(x) = -2x \sin(x^4)$ by the Chain Rule.

Proof. Let $F(x) = \int_a^x f(t) dt$. Then:

$$F'(c) = \lim_{x \to c} \frac{F(x) - F(c)}{x - c} = \lim_{x \to c} \frac{\int_{c}^{x} f(t) dt}{x - c}.$$

Since f is continuous at c, $|f(t) - f(c)| \le \varepsilon$ for $|t - c| < \delta$, and thus:

$$\lim_{x \to c} \frac{\int_{c}^{x} f(t) dt}{x - c} = f(c).$$

Change of Variable in Integrals

Theorem 113 (Change of Variable (34.4)). Suppose $u: J \to I$, u' is continuous, and $f: I \to \mathbb{R}$ is continuous. Then for $a, b \in J$:

$$\int_{a}^{b} f(u(x))u'(x) dx = \int_{u(a)}^{u(b)} f(t) dt.$$

Example 55. Compute $\int_1^4 \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$. Let $u(x) = \sqrt{x}$, then $u'(x) = \frac{1}{2\sqrt{x}}$:

$$\int_{1}^{4} \frac{\sin(\sqrt{x})}{\sqrt{x}} dx = \int_{1}^{2} 2\sin t \, dt = 2(-\cos t)|_{1}^{2} = 2(\cos 1 - \cos 2).$$

Interchanging Integration, Differentiation, and Power Series (Section 26)

Interchanging Integration with Limits and Sums

Proposition 45 (Exercise 33.9, Lecture 32). Suppose (f_n) is a sequence of integrable functions on [a,b] converging uniformly to f. Then:

$$\lim_{n \to \infty} \int_{a}^{b} f_n = \int_{a}^{b} f.$$

Corollary 24. If g_n are integrable on [a,b], and $f = \sum_{n=0}^{\infty} g_n$ converges uniformly, then f is integrable, and:

$$\int_{a}^{b} f = \sum_{n=0}^{\infty} \int_{a}^{b} g_{n}.$$

Interchanging Differentiation with Limits and Sums

Example 56. Let $f_n(x) = \frac{1}{n}\sin(n^2x)$. Then $f_n \to 0$ uniformly on \mathbb{R} . However:

$$f_n'(x) = n\cos(n^2x).$$

If $x = \frac{p}{q}\pi$, then $f'_n(x)$ does not converge, even pointwise.

Power Series and Radius of Convergence

Definition 80 (Radius of Convergence). For a power series $\sum_{n=0}^{\infty} a_n x^n$, let:

$$\beta = \limsup_{n \to \infty} |a_n|^{1/n}.$$

The radius of convergence is $R = \frac{1}{\beta}$.

Theorem 114 (Uniform Convergence (26.1)). The series $\sum_{n=0}^{\infty} a_n x^n$ converges uniformly on $[-R_1, R_1]$ for $R_1 < R_2$.

Corollary 25. The series $\sum_{n=0}^{\infty} a_n x^n$ converges to a continuous function on (-R, R).

Differentiation and Integration of Power Series

Lemma 8 (Differentiation and Integration (26.3)). If $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R, then:

- 1. $\sum_{n=1}^{\infty} na_n x^{n-1}$ has radius of convergence R,
- 2. $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ has radius of convergence R.

Theorem 115 (Integration of Power Series (26.4)). Suppose $f(t) = \sum_{n=0}^{\infty} a_n t^n$ has radius of convergence R. Then for |x| < R:

$$\int_0^x f(t) \, dt = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}.$$

Example 57. For $f(t) = \frac{1}{1-t} = \sum_{n=0}^{\infty} t^n \ (R=1)$:

$$-\ln(1-x) = \int_0^x f(t) dt = \sum_{n=0}^\infty \frac{x^{n+1}}{n+1}, \quad |x| < 1.$$

Theorem 116 (Differentiation of Power Series (26.5)). Suppose $f(t) = \sum_{n=0}^{\infty} a_n t^n$ has radius of convergence R. Then for |t| < R:

$$f'(t) = \sum_{n=1}^{\infty} n a_n t^{n-1}.$$

Abel's Theorem

Theorem 117 (Abel's Theorem (26.6)). Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0. If the series converges at R (or -R), then f is continuous at R (or -R).

Abel's Theorem, Convexity, and Inequalities (Section 26)

Abel Summation Theorem

Theorem 118 (Abel's Theorem (26.6)). Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ have radius of convergence R > 0. If the series converges at R (or -R), then f is continuous at R (or -R).

Example 58.

$$1 - \frac{1}{2} + \frac{1}{3} - \dots = \ln 2.$$

Let $g(t) = \frac{1}{1+t} = \sum_{n=0}^{\infty} (-1)^n t^n$ (R=1), and $f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$. The series diverges at -1 but converges at 1:

$$\ln(1+x) = \int_0^x g(t) dt = \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k} x^k.$$

Thus:

$$f(1) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \ln 2.$$

Alternating Series

Proposition 46 (Alternating Series Test). Suppose $a_1 \geq a_2 \geq \cdots \geq 0$. Then:

$$\sum_{k=1}^{\infty} (-1)^{k-1} a_k = a_1 - a_2 + a_3 - \dots$$

converges if and only if $\lim_{k\to\infty} a_k = 0$.

Example 59.

$$1 - \frac{1}{3} + \frac{1}{5} - \dots = \frac{\pi}{4}.$$

Let $f(x) = \arctan x$, so $f'(x) = \frac{1}{1+x^2}$. For |x| < 1:

$$f'(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad f(x) = \int_0^x f'(t) dt = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}.$$

At x = 1:

$$\frac{\pi}{4} = \arctan 1 = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.$$

Convex Functions

Definition 81 (Convexity). A function f on I is convex if:

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}, \quad \forall x, y \in I.$$

Proposition 47. If f is convex, then:

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y), \quad \forall t \in (0,1).$$

Criteria for Convexity

Proposition 48. If f is differentiable on I, and f' is increasing, then f is convex.

Corollary 26. If f is twice differentiable on I, and $f'' \ge 0$, then f is convex.

Example 60. • $f(x) = e^x$ is convex on \mathbb{R} because $f''(x) = e^x > 0$.

• $g(x) = \ln x$ is concave on $(0, \infty)$ because $g''(x) = -\frac{1}{x^2} < 0$.

Inequalities

Theorem 119 (Jensen's Inequality). If f is convex on I, $x_1, \ldots, x_n \in I$, $t_1, \ldots, t_n \geq 0$, and $\sum_{i=1}^n t_i = 1$, then:

$$f\left(\sum_{i=1}^{n} t_i x_i\right) \le \sum_{i=1}^{n} t_i f(x_i).$$

Proposition 49 (Arithmetic-Geometric Means Inequality). If $x_1, \ldots, x_n > 0$, $t_1, \ldots, t_n > 0$, and $\sum_{i=1}^n t_i = 1$, then:

$$\sum_{i=1}^{n} t_i x_i \ge \prod_{i=1}^{n} x_i^{t_i}.$$

Corollary 27 (Special Case). If $x_1, \ldots, x_n > 0$, then:

$$\frac{x_1 + \dots + x_n}{n} \ge \sqrt[n]{x_1 \cdots x_n}.$$

Convexity, Inequalities, and Nowhere Differentiable Functions (Section 36)

Jensen's Inequality for Convex Functions

Theorem 120 (Jensen's Inequality). Let f be a convex function on an interval I, and let $x_1, \ldots, x_n \in I$ with $t_1, \ldots, t_n \geq 0$ and $\sum_{i=1}^n t_i = 1$. Then:

$$f\left(\sum_{i=1}^{n} t_i x_i\right) \le \sum_{i=1}^{n} t_i f(x_i).$$

If f is concave, the inequality is reversed.

Inequalities Between Means

Proposition 50 (Power Mean Inequality). Suppose r > 1 and $x_1, \ldots, x_n \ge 0$. Then:

$$\frac{x_1 + \dots + x_n}{n} \le \left(\frac{x_1^r + \dots + x_n^r}{n}\right)^{1/r}.$$

If r = 2, this gives the inequality between arithmetic and quadratic means:

$$\frac{x_1 + \dots + x_n}{n} \le \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}.$$

Proof. On $[0,\infty)$, $f(x)=x^r$ is convex because $f'(x)=rx^{r-1}$ is increasing. Apply Jensen's Inequality with $t_i=\frac{1}{n}$:

$$\left(\frac{x_1 + \dots + x_n}{n}\right)^r \le \frac{x_1^r + \dots + x_n^r}{n}.$$

Taking the r-th root gives the result.

Arithmetic and Harmonic Means

Proposition 51 (Arithmetic-Harmonic Mean Inequality). If $x_1, \ldots, x_n > 0$, then:

$$\frac{x_1 + \dots + x_n}{n} \ge \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}}.$$

Proof. Let $g(x) = \frac{1}{x}$, which is convex on $(0, \infty)$. Let $y_i = \frac{1}{x_i}$. By Jensen's Inequality with $t_i = \frac{1}{n}$:

$$\frac{1}{n} \sum_{i=1}^{n} g(y_i) = \frac{\frac{1}{x_1} + \dots + \frac{1}{x_n}}{n} \ge g\left(\frac{1}{n} \sum_{i=1}^{n} y_i\right) = \frac{n}{x_1 + \dots + x_n}.$$

Nowhere Differentiable Functions

Proposition 52. There exists a bounded, uniformly continuous function $f: \mathbb{R} \to \mathbb{R}$ that is differentiable nowhere.

Sketch. Construct a 1-periodic function $f(x) = \sum_{k=0}^{\infty} 8^{-k} s(64^k x)$, where s(x) is the sawtooth function:

$$s(x) = \phi(x - |x|), \quad \phi(t) = \min\{t, 1 - t\}.$$

- 1. f is bounded and uniformly continuous by the Weierstrass M-test.
- 2. For any $x, \delta > 0, A > 0$, there exists y with $|x y| \le \delta$ and $|f(x) f(y)| \ge A|x y|$, showing f is nowhere differentiable.

Infinite Primes and Divergence of Series

Theorem 121. Let $p_1 < p_2 < \cdots$ be the increasing sequence of prime numbers. Then:

$$\sum_{n=1}^{\infty} \frac{1}{p_n} \quad diverges.$$

Proof. Assume $\sum_{n=1}^{\infty} \frac{1}{p_n}$ converges. Let $\alpha = \sum_{n=1}^{\infty} \frac{1}{p_{2n}^2} < 1$, and $\beta = \sum_{n=K+1}^{\infty} \frac{1}{p_n} < 1 - \alpha$ for some K. Consider N such that $N > 2K/(1 - \alpha - \beta)$. Counting arguments on $\{1, 2, \dots, N\}$ lead to a contradiction.