Amendments to the claims:

Please replace all prior versions and listings of the claims with the following amended claims:

CLAIMS

What is claimed is:

- 1 1. (Currently Amended) A <u>composite material comprising a polymer-system</u> comprising 2 amide linkages with hetero-atoms positioned beta relative to nitrogen atoms forming the 3 amide linkages.
- 1 2. (Currently Amended) The <u>composite material polymer system</u> of claim 1, wherein the amide linkages link one or more of aromatic structures and heterocyclic structures.
- 1 3. (Currently Amended) The <u>composite material</u> polymer system of claim 2, wherein the hetero-atoms are nitrogen.
- 1 4. (Currently Amended) The <u>composite material polymer system</u> of claim 2, wherein the 2 heterocyclic structures comprise an alcohol functional group that is positioned beta to at 3 least a portion of the amide linkages.
- 5. (Currently Amended) The <u>composite material polymer system</u> of claim 2, wherein the aromatic structures comprise one or more function groups positioned beta relative to at least a portion of the amide linkages, the one or more functional group being selected from a group consisting of an alcohol functional group, a thiol functional group and an amine functional group.
- 6. (Currently Amended) The <u>composite material polymer system</u> of claim 2, wherein aromatic structures include bicyclic sub-structures.
- 7. (Currently Amended) The <u>composite material</u> polymer system of claim 1, further comprising a binder material.

1 2 3	8.	(Currently Amended) The <u>composite material</u> polymer system of claim 7, wherein the binder material comprises one or more materials selected from a group consisting of epoxy, rubber, plastic, polyurethane and silicone.
4 5 6	9.	(Currently Amended) The <u>composite material</u> polymer system of claim 2, wherein the amide linkages are positioned para between the aromatic structures and the heterocyclic structures.
7 8 9	10.	(Withdrawn) A polymer comprising amide linkages between aromatic structures and heterocyclic structures, wherein the heterocyclic structures comprise hetero-atoms positioned beta relative to a nitrogen of the amide linkages.
1 2 3	11.	(Withdrawn) The polymer of claim 10, further comprising alcohol groups positioned parato the amide linkages on at least one of the aromatic structures and heterocyclic structures.
1	12.	(Withdrawn) The polymer of claim 10, wherein hetero-atoms include nitrogen atoms.
1 2	13.	(Withdrawn) The polymer of claim 12, wherein the nitrogen atoms are positioned beta relative the nitrogen of the amide linkages.
1 2	14.	(Withdrawn) The polymer of claim 10, wherein the aromatic structures and the heterocyclic structures are linked in a para configuration between the amide linkages.
1	15.	(Withdrawn) The polymer of claim 10, further comprising hydroxyl groups.
1 2 3	16.	(Withdrawn) The polymer of claim 15, wherein the hydroxyl groups are positioned beta with respect to the amide linkages on at least one of the aromatic structures and the heterocyclic structures.
1 2	17.	(Currently Amended) A method for making a polymer composite material system comprising:

Attorney Docket No: STFO-00200

reacting a carboxylic acid precursor and an amine precursor in a suitable solvent 3 a) to form an aromatic polyamide, wherein the carboxylic acid precursor comprises 4 an aromatic structure and two reactive carboxylic acid groups and the amine 5 precursor comprises a heterocyclic structure and two reactive amine groups and 6 7 wherein the heterocyclic structure comprises a hetero-atom in a beta position 8 relative to one or more of the reactive amine groups; and 9 isolating the aromatic polyamide. b) İ 18. (Original) The method of claim 17, wherein the hetero-atom is a nitrogen. 1 19. (Original) The method of claim 17, wherein the aromatic carboxylic acid precursor 2 comprises a functional group positioned beta to one or more the reactive carboxylic acid groups, wherein the one or more functional groups are selected from a group consisting 3 of an alcohol functional group, a thiol functional group and an amine functional group. 4 (Original) The method of claim 17, wherein the heterocyclic amine precursor comprises a 20. 1 functional group positioned beta to the one or more of the reactive amine groups, wherein 2 the functional group is selected from a group consisting of an alcohol functional group, a 3 thiol functional group and an amine functional group. 4 21. (Original) The method of claim 17, wherein the two reactive carboxylic acid groups are 1 2 positioned para to each other on the aromatic structure. 22. (Original) The method of claim 17, wherein the reactive amine groups are positioned para 1 2 relative to each other on the heterocyclic structure. (Original) The method of claim 17, further comprising incorporating the aromatic 1 23. 2 polyamide in a binder material. (Original) The method of claim 23, wherein the binder material is selected from a group 24. 1 2 consisting of epoxy, rubber, plastic, polyurethane and silicone.

2		polyamide into a fabric material.
1	26.	(Withdrawn) A method of making an aromatic polyamide comprising:
2		a) combining a first precursor with a second precursor to form the aromatic
3		polyamide, wherein the first precursor comprises two reactive carboxylic acid
4		groups bonded to an aromatic structure and the second precursor comprises two
5		reactive amine groups bonded to a heterocyclic structure; and
6		b) isolating the aromatic polyamide.
1	27.	(Withdrawn) The method of claim 26, further comprising combining a third precursor
2		with the first precursor and the second precursor, wherein the third precursor comprises
3		two reactive carboxylic acid groups bonded to an aromatic structure that is different from
4		the aromatic structure of first precursor.
1	28.	(Withdrawn) The method of claim 26, further comprising combining a third precursor
2		with the first precursor and the second precursor, wherein the third precursor comprises
3		two reactive amine groups bonded to a heterocyclic structure that is different from the
4		heterocyclic structure of the second precursor.
1	29.	(Withdrawn) The method of claim 26, wherein the heterocyclic structure of the second
2		precursor comprises a nitrogen atom positioned beta to at least one of the reactive amine
3		groups.
1	30.	(Withdrawn) The method of claim 29, wherein the heterocyclic structure of the second
2		precursor comprises an alcohol functional group.
1	31.	(Withdrawn) The method of claim 30, wherein the alcohol functional group is positioned
2		beta to at least one of the reactive amine groups.
1	32.	(Withdrawn) The method of claim 26, wherein the aromatic structure comprises an
2		alcohol functional group.

(Original) The method of claim 17, further comprising integrating the aromatic

1

25.

PATENT Attorney Docket No: STFO-00200

1 33. (Withdrawn) The method of claim 32, wherein the alcohol functional group is positioned beta to at least one of the reactive carboxylic acid groups.