Name:			
Instruct	or:		

Math 10550, Exam III November 19, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLE	ASE N	IARK YOUR ANSV	WERS WI	TH AN X, not a	circle!
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice	
11	
12	
10	
13	
Total	

Instructor:

Multiple Choice

1.(6 pts.) The slant asymptote of $y = \frac{x^2 + 2x + 1}{x - 1}$ is given by

- (a) x = 1
- (b) y = x
- (c) y = 1

- (d) y = x + 3
- (e) y = 3

2.(6 pts.) The equation $x^5 + x - 1 = 0$ has one solution between 0 and 1. Find the result of one iteration of Newton's method applied to this equation with 1 as the starting point (i.e. find x_2 using Newton's method applied to the equation with $x_1 = 1$).

- (a)

- (b) 1 (c) $\frac{1}{2}$ (d) $\frac{3}{4}$ (e) $\frac{5}{6}$

Name: ______

3.(6 pts.) A car racing on a straight road crosses the starting line with a velocity of 88 ft/sec. From this point on it accelerates at $\frac{60}{\sqrt{t}}$ ft/sec². How fast in ft/sec will the car be going 4 seconds after the car has crossed the starting line?

- (a) 292 ft/sec
- (b) 244 ft/sec
- (c) 328 ft/sec

- (d) 152 ft/sec
- (e) 208 ft/sec

4.(6 pts.) The graph of a piecewise defined function f(x) consisting of a semicircle and 3 straight lines, is shown below. Use the graph to calculate the value of R_5 , the right endpoint approximation to $\int_0^{10} f(x)dx$ using 5 approximating rectangles.

(a) $R_5 = 8$

- (b) $R_5 = 12$
- (c) $R_5 = 6$

- (d) $R_5 = 16$
- (e) $R_5 = 5$

Instructor:

5.(6 pts.) If $f(x) = \int_0^{5x} \cos(t^2) dt$, then f'(x) =

- (a) $5\cos(5x^2)$
- (b) $-5\cos(5x^2)$
- (c) $5\cos(25x^2)$

- (d) $-25\cos(5x^2)$
- (e) $-5\cos(25x^2)$

6.(6 pts.) Evaluate $\int (4-3x^2)(4x+1)dx$.

(a)
$$-12x^4 - 3x^3 + 16x^2 + 4x + C$$

(a)
$$-12x^4 - 3x^3 + 16x^2 + 4x + C$$
 (b) $-\frac{3}{4}x^4 - x^3 + 8x^2 + 4x + C$

(c)
$$-2x^5 - x^4 + 8x^3 + 4x^2 + C$$

(d)
$$-3x^4 - x^3 + 8x^2 + 4x + C$$

(e)
$$-36x^2 + 16 + C$$

Name: _____ Instructor:

7.(6 pts.) Evaluate the integral $\int_0^{\sqrt{\pi}} x \sin(x^2) dx$.

- (a) 1

- (b) $\frac{\pi}{4}$ (c) 2 (d) $1 \frac{1}{\pi}$ (e) $\frac{1}{4}$

8.(6 pts.) Evaluate $\int_{1}^{9} \frac{1}{\sqrt{x}(1+2\sqrt{x})^2} dx$.

- (a) $\frac{8}{9}$ (b) $\frac{4}{21}$ (c) $\frac{1}{7}$ (d) 1 (e) $\frac{1}{4}$

Name: _____ Instructor:

9.(6 pts.) Evaluate $\int_{1}^{6} |x - 2| dx$.

- (a) $\frac{15}{2}$ (b) 8 (c) 4 (d) $\frac{33}{2}$ (e) $\frac{17}{2}$

Name: _ Instructor: ___

10.(6 pts.) If the following is a graph of the function f(x), which graph among the answers is the graph of $\int_0^x f(t)dt$?

Note: The letter corresponding to the diagram is on the lower left.

(a)

(c)

(d)

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(13 pts.) Evaluate the definite integral $\int_0^2 (1+x^2)dx$ by using right endpoint approximations and the **limit definition** of the definite integral. Hint: $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{1}{6}n(n+1)(2n+1)$.

Hint:
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$
.

Name:	
Instructor:	

12.(13 pts.) Find all the points on the hyperbola $y^2 - x^2 = 4$ that are closest to the point (2,0).

Name:	
Instructor:	

13.(14 pts.) A page of a book is to have a total area of 150 square inches, with 1 inch margins at the top and sides, and a 2 inch margin at the bottom. Find the dimensions in inches of the page which will have the largest print area.

Name:		
Instructor:	ANSWERS	

Math 10550, Exam III November 19, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLE	ASE MARK Y	YOUR ANSWI	ERS WITH A	N X, not a circ	ele!
1.	(a)	(b)	(c)	(ullet)	(e)
2.	(a)	(b)	(c)	(d)	(•)
3.	(a)	(b)	(ullet)	(d)	(e)
4.	(a)	(•)	(c)	(d)	(e)
5.	(a)	(b)	(ullet)	(d)	(e)
6.	(a)	(b)	(c)	(•)	(e)
7.	(•)	(b)	(c)	(d)	(e)
8.	(a)	(•)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(•)
10.	(ullet)	(b)	(c)	(d)	(e)

Please do NOT	write in this bo	х.
Multiple Choice		
11.		
12.		
13.		
Total		