IS 6733: Deep Learning on Cloud Platforms

Copy Right Notice

Most slides in this presentation are adopted from slides of text book and various sources. The Copyright belong to the original authors. Thanks!

Sequence Generation

Generation

you and I are friends

1 1 0 0 0 ... 0

y: 0 0 0 0.7 0.3 ··· 0

- Sentences are composed of characters/words
- Generating a character/word at each time by RNN

Generation

 y^1 : P(w|<BOS>)

 y^2 : P(w|<BOS>,to)

 y^3 : P(w|<BOS>,to, be)

- Sentences are composed of characters/words
- Generating a character/word at each time by RNN

Generation

: minimizing cross-entropy

- Images are composed of pixels
- Train a RNN based on the "sentences"
- Generating a pixel at each time by RNN

Generation - PixelRNN

3 x 3 images

Images are composed of pixels

Conditional Generation

- We don't want to simply generate some random sentences.
- Generate sentences based on conditions:

Caption Generation

Given condition:

Chat-bot

Given condition:

"Hello. Nice to see you."

Conditional Generation

Represent the input condition as a vector, and consider the vector as the input of RNN generator

Conditional Generation

Sequence-tosequence learning

Represent the input condition as a vector, and consider the vector as the input of RNN generator

E.g. Machine translation / Chat-bot

- We will start by revisiting the problem of language modeling
- Informally, given 't-1' words we are interested in predicting the t^{th} word
- \bullet More formally, given $y_1, y_2, ..., y_{t-1}$ we want to find

$$y^* = argmax P(y_t|y_1, y_2, ..., y_{t-1})$$

- Let us see how we model $P(y_t|y_1, y_2...y_{t-1})$ using a RNN
- We will refer to $P(y_t|y_1, y_2...y_{t-1})$ by shorthand notation: $P(y_t|y_1^{t-1})$

- * Informally, given 't i' words we are interested in predicting the t^{th} word
- **Solution** More formally, given y_1 , y_2 , ..., y_{t-1} we want to find
- $y^* = argmax P(y_t|y_1, y_2, ..., y_{t-1})$
- Let us see how we model $P(y_t|y_1, y_2...y_{t-1})$ using a RNN
- **We will refer to** $P(y_t|y_1, y_2...y_{t-1})$ **by shorthand notation:** $P(y_t|y_1^{t-1})$

- * Informally, given 't i' words we are interested in predicting the t^{th} word
- **Solution** More formally, given y_1 , y_2 , ..., y_{t-1} we want to find
- $y^* = argmax P(y_t|y_1, y_2, ..., y_{t-1})$
- Let us see how we model $P(y_t|y_1, y_2...y_{t-1})$ using a RNN
- **We will refer to** $P(y_t|y_1, y_2...y_{t-1})$ **by shorthand notation:** $P(y_t|y_1^{t-1})$

- * Informally, given 't i' words we are interested in predicting the t^{th} word
- **Solution** More formally, given y_1 , y_2 , ..., y_{t-1} we want to find
- $y^* = argmax P(y_t|y_1, y_2, ..., y_{t-1})$
- **Let us see how we model** $P(y_t|y_1, y_2...y_{t-1})$ using a RNN
- **We will refer to** $P(y_t|y_1, y_2...y_{t-1})$ **by shorthand notation:** $P(y_t|y_1^{t-1})$

- * Informally, given 't i' words we are interested in predicting the t^{th} word
- **More formally, given** y_1 , y_2 , ..., y_{t-1} we want to find
- $y^* = argmax P(y_t|y_1, y_2, ..., y_{t-1})$
- **Let us see how we** model $P(y_t|y_1, y_2...y_{t-1})$ using a RNN
- **We will refer to** $P(y_t|y_1, y_2...y_{t-1})$ **by shorthand notation:** $P(y_t|y_1^{t-1})$

- * Informally, given 't i' words we are interested in predicting the t^{th} word
- **Where More formally, given** y_1 , y_2 , ..., y_{t-1} we want to find
- $y^* = argmax P(y_t|y_1, y_2, ..., y_{t-1})$
- **Let us see how we** model $P(y_t|y_1, y_2...y_{t-1})$ using a RNN
- **We will refer to** $P(y_t|y_1, y_2...y_{t-1})$ **by shorthand notation:** $P(y_t|y_1^{t-1})$

- * Informally, given 't i' words we are interested in predicting the t^{th} word
- - $y^* = argmax P(y_t|y_1, y_2, ..., y_{t-1})$
 - Let us see how we model $P(y_t|y_1, y_2...y_{t-1})$ using a RNN
 - **We will refer to** $P(y_t|y_1, y_2...y_{t-1})$ **by shorthand notation:** $P(y_t|y_t^{t-1})$

- Informally, given 't-i' words we are interested in $P(y_t=j|y_1^{t-1})$ predicting the t^{th} word
 - **More formally, given** y_1 , y_2 , ..., y_{t-1} we want to find
 - $y^* = argmax P(y_t|y_1, y_2, ..., y_{t-1})$
 - Let us see howwe model $P(y_t|y_1, y_2...y_{t-1})$ using a RNN
 - **We will refer to** $P(y_t|y_1, y_2...y_{t-1})$ **by shorthand notation:** $P(y_t|y_1^{t-1})$

We are interested in

$$P(y_t = j | y_1, y_2...y_{t-1})$$

- where $j \in V$ and V is the set of all vocabulary words.
- Using an RNN we compute this as

$$P(y_t = j | y_1^{t-1}) = softmax(Vs_t + c)_j$$

In other words we compute

$$P(y_t = j|y_1^{t-1}) = P(y_t = j|s_t)$$

= $softmax(Vs_t + c)_j$

* Notice that the recurrent connections ensure that s_t has information about y_1^{t-1}

Data:

India, officially the Republic of India, is a country in South Asia. It is the seventh-largest country by area,

Data: All sentences from any large corpus (say wikipedia)

Model:

$$s_t = \sigma(Ws_{t-1} + Ux_t + b)$$

$$P(y_t = j|y_1^{t-1}) = softmax(Vs_t + c)_j$$

- * Parameters: U; V; W; b; c
- **Unit Loss:**

$$\mathcal{L}(\theta) = \sum_{t=1}^{T} \mathcal{L}_t(\theta)$$
$$\mathcal{L}_t(\theta) = -\log P(y_t = \ell_t | y_1^{t-1})$$

where ℓ_t is the true word at time step

Algorithm: backpropagation through time.

***** What is the input at each time step?

- What is the input at each time step?
- It is simply the word that we predicted at the previous time step

- What is the input at each time step?
- It is simply the word that we predicted at the previous time step

- What is the input at each time step?
- It is simply the word that we predicted at the previous time step

- **What is the input at each time step?**
- # It is simply the word that we predicted at the previous time step

- What is the input at each time step?
- # It is simply the word that we predicted at the previous time step

- What is the input at each time step?
- It is simply the word that we predicted at the previous time step
- **4.** In general $s_t = RNN(s_{t-1}, x_t)$
- Let j be the index of the word which has been assigned the max probability at time step t-1: $x_t = e(v_j)$
- * x_t is essentially a one-hot vector $(e(v_j))$ representing the j^{th} word in the vocabulary
- In practice, instead of one hot representation we use a pretrained word embedding of the jth word

- Notice that s0 is not computed but just randomly initialized
- We learn it along with the other parameters of RNN (or LSTM or GRU)
- We will return back to this later

- Notice that s0 is not computed but just randomly initialized
- We learn it along with the other parameters of RNN (or LSTM or GRU)
- We will return back to this later

$$S = \sigma(U x_{t} + W s_{t-1} + b)$$

$$S = \sigma(W(o_{t} \odot s_{t-1}) + U x_{t} + s_{t} = \sigma(W h_{t-1} + U x_{t} + b)$$

$$S = i_{t} \odot s_{t-1} + (1 - i_{t}) \odot \tilde{s}_{t}$$

$$S = \sigma(W h_{t-1} + U x_{t} + b)$$

$$S = f_{t} \odot s_{t-1} + i_{t} \odot \tilde{s}_{t}$$

$$h_{t} = o_{t} \odot \sigma(s_{t})$$

$$S = \text{RNN}(s_{t-1}, x_{t})$$

$$S = \text{GRU}(s_{t-1}, x_{t})$$

$$S = \text{GRU}(s_{t-1}, x_{t})$$

$$S = \text{LSTM}(h_{t-1}, s_{t-1}, x_{t})$$

- Before moving on we will see a compact way of writing the function computed by RNN, GRU and LSTM
- We will use these notations going forward

- So far we have seen how to model the conditional probability distribution $P(y_t|y_1^{t-1})$
- More informally, we have seen how to generate a sentence given previous words
- What if we want to generate a sentence given an image?

A man throwing a frisbee in a park

A man throwing a frisbee in a park

So far we have seen how to model the conditional probability distribution

$$P(y_t|y_1^{t-1})$$

- More informally, we have seen how to generate a sentence given previous words
- What if we want to generate a sentence given an image?
- We are now interested in

$$P(y_t|y_1^{t-1},I)$$

where I is an image

 \clubsuit Earlier we modeled $P(y_t|y_1^{t-1})$ as

$$P(y_t|y_1^{t-1}) = P(y_t = j|s_t)$$

- Where st was a state capturing all the previous words
- We could now model $P(y_t|y_1^{t-1}, I)$ as

$$P(y_t = j | s_t, f_{c_7}(I))$$

where fc7(I) is the representation obtained from the fc7 layer of an image

- * There are many ways of making $P(y_t = j)$ conditional on $f_{c_7}(I)$
- **Let us see two such options**

- ***** Option 1: Set $s_0 = f_{c_7}(I)$
- *Now s_0 and hence all subsequent s_t 's depend on $f_{c_7}(I)$
- •• We can thus say that $P(y_t = j)$ depends on $f_{c_7}(I)$
- In other words, we are computing

$$P(y_t = j|s_t, f_{c_7}(I))$$

Encoder Decoder Models

Option 2: Another more explicit way of doing this is to compute

$$s_t = RNN(s_{t-1}, [x_t, f_{c_7}(I))]$$

- In other words we are explicitly using $f_{c7}(I)$ to compute s_t and hence $P(y_t = j)$
- You could think of other ways of conditioning $P(y_t = j)$ on f_{c7}

Encoder Decoder Models

- Let us look at the full architecture
- A CNN is first used to encode the image
- A RNN is then used to decode (generate) a sentence from the encoding
- This is a typical encoder decoder architecture
- Both the encoder and decoder use a neural network
- Alternatively, the encoder's output can be fed to every step of the decoder

Applications of Encoder Decoder models

- For all these applications we will try to answer the following questions
- What kind of a network can we use to encode the input(s)? (What is an appropriate encoder?)
- What kind of a network can we use to decode the output? (What is an appropriate decoder?)
- What are the parameters of the model?
- What is an appropriate loss function?

Task: Image captioning

A man throwing ... (stop)

Task: Image captioning

- * Data: $\{x_i = image_i, y_i = caption_i\}$
- **# Model:**
 - **Encoder:** $s_0 = CNN(x_i)$
 - **Decoder:**

$$s_t = RNN(s_{t-1}, e(\hat{y}_{t-1}))$$

$$P(y_t|y_1^{t-1}, I) = softmax(Vs_t + b)$$

- * Parameters: U_{dec} , V, W_{dec} , W_{conv} , b
- **Loss:**

$$\mathcal{L}(\theta) = \sum_{i=1}^{T} \mathcal{L}_t(\theta) = -\sum_{t=1}^{T} \log P(y_t = \ell_t | y_1^{t-1}, I)$$

Task: Textual entailment

o/p: The ground is wet

i/p: It is raining outside

Task: Textual entailment (1)

o/p: The ground is wet

i/p: It is raining outside

- **Data:** $\{x_i = premise_i, y_i = hypothesis_i\}$
- Model (Option 1):
 - **Encoder:** $h_t = RNN(h_{t-1}, x_{it})$
 - **Decoder:**

$$s_0 = h_T \quad (T \text{ is length of input})$$

$$s_t = RNN(s_{t-1}, e(\hat{y}_{t-1}))$$

$$P(y_t|y_1^{t-1}, x) = softmax(Vs_t + b)$$

- * Parameters: U_{dec} , V, W_{dec} , U_{enc} , W_{enc} , b
- **& Loss:**

$$\mathcal{L}(\theta) = \sum_{i=1}^{T} \mathcal{L}_t(\theta) = -\sum_{t=1}^{T} \log P(y_t = \ell_t | y_1^{t-1}, x)$$

Task: Textual entailment (2)

o/p: The ground is wet

i/p: It is raining outside

- **Data:** $\{x_i = premise_i, y_i = hypothesis_i\}$
- Model (Option 2):
 - **Encoder:** $h_t = RNN(h_{t-1}, x_{it})$
 - Decoder:

$$s_0 = h_T \quad (T \text{ is length of input})$$

$$s_t = RNN(s_{t-1}, [h_T, e(\hat{y}_{t-1})])$$

$$P(y_t|y_1^{t-1}, x) = softmax(Vs_t + b)$$

- * Parameters: U_{dec} , V, W_{dec} , U_{enc} , W_{enc} , b
- **Loss:**

$$\mathcal{L}(\theta) = \sum_{i=1}^{T} \mathcal{L}_t(\theta) = -\sum_{t=1}^{T} \log P(y_t = \ell_t | y_1^{t-1}, x)$$

Task: Machine Translation

o/p : Me voy a casa

i/p:I am going home

Task: Machine Translation (1

o/p: Me voy a casa

i/p: I am going home

- **Data:** $\{x_i = premise_i, y_i = hypothesis_i\}$
- Model (Option 1):
 - **Encoder:** $h_t = RNN(h_{t-1}, x_{it})$
 - **Decoder:**

$$s_0 = h_T \quad (T \text{ is length of input})$$

$$s_t = RNN(s_{t-1}, e(\hat{y}_{t-1}))$$

$$P(y_t|y_1^{t-1}, x) = softmax(Vs_t + b)$$

- * Parameters: U_{dec} , V, W_{dec} , U_{enc} , W_{enc} , b
- **Loss:**

$$\mathcal{L}(\theta) = \sum_{i=1}^{T} \mathcal{L}_t(\theta) = -\sum_{t=1}^{T} \log P(y_t = \ell_t | y_1^{t-1}, x)$$

Task: machine translation (2)

o/p: Me voy a casa

i/p: I am going home

- **Data:** $\{x_i = premise_i, y_i = hypothesis_i\}$
- Model (Option 2):
 - **Encoder:** $h_t = RNN(h_{t-1}, x_{it})$
 - **Decoder:**

$$s_0 = h_T \quad (T \text{ is length of input})$$

$$s_t = RNN(s_{t-1}, [h_T, e(\hat{y}_{t-1})])$$

$$P(y_t|y_1^{t-1}, x) = softmax(Vs_t + b)$$

- * Parameters: U_{dec} , V, W_{dec} , U_{enc} , W_{enc} , b
- **Loss:**

$$\mathcal{L}(\theta) = \sum_{t=1}^{T} \mathcal{L}_t(\theta) = -\sum_{t=1}^{T} \log P(y_t = \ell_t | y_1^{t-1}, x)$$

Task: Image Question Answeing

O/p: White

Question: What is the bird's color

Task: Image Question Answering

Question: What is the bird's color Data:

$$\{x_i = \{I, q\}_i, y \in Answer\}_{i=1}^N$$

*** Model:**

Encoder:

$$\hat{h}_I = CNN(I), \ \tilde{h}_t = RNN(\tilde{h}_{t-1}, q_{it})$$

 $s = [\tilde{h}_T; \hat{h}_I]$

***** Decoder:

$$P(y|q, I) = softmax(Vs + b)$$

- Parameters: V, b, U_q , W_q , W_{conv} , b
- **Loss:**

$$\mathcal{L}(\theta) = -\log P(y = \ell | I, q)$$

Task: Document Summarization

o/p: India won the world cup

i/p: India beats Srilanka to win ICC WC 2011. Dhoni and Gambhir's half centuries help beat SL

Task: Document Summarization

i/p : India beats Srilanka to win ICC WC 2011. Dhoni and Gambhir's half centuries help beat SL

- **Data:** $\{x_i = Document_i, y_i = Summary_i\}_{i=1}^N$
- Model:
 - **#** Encoder:

$$h_t = RNN(h_{t-1}, x_{it})$$

* Decoder:

$$s_0 = h_T$$

$$s_t = RNN(s_{t-1}, e(\hat{y}_{t-1}))$$

$$P(y_t|y_1^{t-1}, x) = softmax(Vs_t + b)$$

- * Parameters: U_{dec} , V, W_{dec} , U_{enc} , W_{enc} , b
- **Coss:**

$$\mathcal{L}(\theta) = \sum_{i=1}^{T} \mathcal{L}_t(\theta) = -\sum_{t=1}^{T} \log P(y_t = \ell_t | y_1^{t-1}, x)$$

Task: Video Captioning

o/p: A man walking on a rope

Task: Video Captioning

- **Data:** $\{x_i = videoi, y_i = desc_i\}_{i=1}^N$
- Model:
 - **Encoder:**

$$h_t = RNN(h_{t-1}, CNN(x_{it}))$$

• Decoder:

$$s_0 = h_T$$

$$s_t = RNN(s_{t-1}, e(\hat{y}_{t-1}))$$

$$P(y_t|y_1^{t-1}, x) = softmax(Vs_t + b)$$

- * Parameters: U_{dec} , W_{dec} , V, b, W_{conv} , U_{enc} , W_{enc} , b
- **Loss:**

$$\mathcal{L}(\theta) = \sum_{i=1}^{T} \mathcal{L}_{t}(\theta) = -\sum_{t=1}^{T} \log P(y_{t} = \ell_{t} | y_{1}^{t-1}, x)$$

Task: Video Classification

o/p: Surya Namaskar

Task: Video Classification

- **Data:** $\{x_i = Video_i, y_i = Activity_i\}_{i=1}^N$
- *** Model:**
 - **Encoder:**

$$h_t = RNN(h_{t-1}, CNN(x_{it}))$$

Decoder:

$$s = h_T$$

 $P(y|I) = softmax(Vs + b)$

- * Parameters: V, b, Wconv, Uenc, Wenc, b
- **& Loss:**

$$\mathcal{L}(\theta) = -\log P(y = \ell | Video)$$

Task: Dialog

o/p: I am fine

i/p: How are you

Task: Dialog

i/p: How are you

- **Data:** $\{x_i = Utterance_i, y_i = Response_i\}_{i=1}^N$
- Model:
 - **Encoder:**

$$h_t = RNN(h_{t-1}, x_{it})$$

Decoder:

$$s_0 = h_T$$
 (T is length of input)
 $s_t = RNN(s_{t-1}, e(\hat{y}_{t-1}))$

$$P(y_t|y_1^{t-1}, x) = softmax(Vs_t + b)$$

- * Parameters: U_{dec} , V, W_{dec} , U_{enc} , W_{enc} , b
- **& Loss:**

$$\mathcal{L}(\theta) = \sum_{i=1}^{T} \mathcal{L}_t(\theta) = -\sum_{t=1}^{T} \log P(y_t = \ell_t | y_1^{t-1}, x)$$