COMP8760

Lecture 1

Solutions to Worksheet for Practice

Sanjay Bhattacherjee

1. Sets: Membership, Subset, Cardinality

Let $A = \{1, 2, 3\}$. Fill in the blanks.

- (a) Is $1 \in A$? Yes (Yes/No)
- (b) Is $4 \in A$? No (Yes/No)
- (c) Is $4 \notin A$? Yes (Yes/No)
- (d) Is $100 \notin A$? Yes (Yes/No)
- (e) Is $\{1,3\} \subseteq A$? Yes (Yes/No)
- (f) Is $\{4\} \subseteq A$? No (Yes/No)
- (g) Is $\{3,4\} \subseteq A$? No (Yes/No)
- (h) What is |A|? 3
- (i) What is $|\{1, 2, 3, 4, \dots, 100\}|$? <u>100</u>
- (j) What is $|\{2, 4, 6, 8, \dots, 100\}|$? 50
- (k) Is $A \subseteq \{2, 4, 6, 8, \dots, 100\} \subseteq \mathbb{Z}$? No (Yes/No) (error corrected)

2. Division Theorem

Fill in the blanks.

- (a) $99 = 8 \times 12 + 3$
- (b) $199 = 3 \times 53 + 40$
- (c) $9 = 0 \times 12 + 9$
- (d) $0 = 0 \times 53 + 0$
- (e) $-1 = -1 \times 12 + 11$
- (f) $-12 = -1 \times 12 + 0$

3. \mathbb{Z}_N : Set of All Remainders of N

Fill in the blanks.

- (a) $\mathbb{Z}_2 = \{0, 1\}$
- (b) $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$
- (c) $\mathbb{Z}_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$
- (d) $\mathbb{Z}_{13} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
- (e) $\mathbb{Z}_{1297} = \{0, 1, 2, \dots, 1296\}$

4. Modulus operator: $a \mod N$

Fill in the blanks.

- (a) $23 \mod 11 = \underline{1}$
- (b) $22 \mod 11 = \underline{0}$
- (c) $23 = 34 \mod 11$; <u>True</u> (True/False)
- (d) $-3 = 8 \mod 11$; <u>True</u> (True/False)
- (e) $-3 = -15 \mod 11$; False (True/False)

5. Modular Arithmetic

Write the addition and multiplication tables for all elements in \mathbb{Z}_4 . Answer:

We know that \mathbb{Z}_4 is the set of all remainders of 4. So,

$$\mathbb{Z}_4 = \{0, 1, 2, 3\}.$$

Addition (mod 4) in \mathbb{Z}_4

	0	1	2	3
0	l	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Multiplication (mod 4) in \mathbb{Z}_4

	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

6. Prime Numbers

Fill in the blanks.

- (a) Is 63 a prime? No (Yes/No)
- (b) Is 67 a prime? Yes (Yes/No)
- (c) What is the prime factorisation of 1001? $1001 = 7 \times 11 \times 13$
- (d) Using the prime factorisation technique, find the GCD and LCM of the integer pair (539, 1001)?

$$539 = 7^2 \times 11^1;$$
$$1001 = 7^1 \times 11^1 \times 13^1;$$

So,

$$lcm(539, 1001) = 7^2 \times 11^1 \times 13^1 = 7007,$$

and

$$\gcd(539, 1001) = 7^1 \times 11^1 \times 13^0 = 77.$$