Decision Trees for Uplift Modeling

CONFerence Paper · December 2010

DOI: 10.1109/ICDM.2010.62 · Source: DBLP

CITATIONS

42

READS
3,636

2 authors:

Piotr Rzepakowski
7 PUBLICATIONS 237 CITATIONS

SEE PROFILE

SEE PROFILE

READS
4,636

Szymon Jaroszewicz
Polish Academy of Sciences
62 PUBLICATIONS 1,159 CITATIONS

SEE PROFILE

Decision trees for uplift modeling

Piotr Rzepakowski

National Institute of Telecommunications Warsaw, Poland Warsaw University of Technology Warsaw, Poland

Szymon Jaroszewicz

National Institute of Telecommunications Warsaw, Poland Polish Academy of Sciences Warsaw, Poland

ICDM 2010

Marketing campaign example

Main idea of uplift modeling

We can divide objects into four groups

- Responded because of the action
- Responded regardless of whether the action is taken (unnecessary costs)
- Oid not respond and the action had no impact (unnecessary costs)
- Oid not respond because the action had a negative impact (e.g. customer got annoyed by the campaign, may even churn)

Traditional classification vs. uplift modeling

Traditional models predict the conditional probability

P(response|treatment)

Traditional classification vs. uplift modeling

Traditional models predict the conditional probability

P(response|treatment)

Uplift models predict change in behaviour resulting from the action

P(response|treatment) - P(response|no treatment)

Marketing campaign example (uplift modeling approach)

Related work

- Literature
 - Surprisingly little attention in literature
 - Business whitepapers offering vague descriptions of algorithms used
- Two general approaches
 - Subtraction of two models
 - Modification of model learning algorithms

Subtraction of two models

Current approaches to uplift decision trees

• Create splits using difference of probabilities $(\Delta \Delta P)$

$$P^{T} = 5\% \\ P^{C} = 3\% \qquad \Delta P = 2\%$$

$$x < a \qquad x >= a$$

$$P^{T} = 8\% \\ P^{C} = 3.5\% \qquad \Delta P = 4.5\%$$

$$P^{T} = 3.7\% \\ P^{C} = 2.8\% \qquad \Delta P = 0.9\%$$

$$\Delta \Delta P = 3.6\%$$

- Pruning not used (or not described)
- Work only for two class problems and binary splits

Our approach to uplift decision trees

- Spliting criteria based on Information Theory
- Pruning strategy designed for uplift modeling
- Multiclass problems and multiway splits possible
- If the control group is empty, the criterion should reduce to one of classical splitting criteria used for decision tree learning

Kullback-Leibler divergence

 Measure difference between treatment and control groups using KL divergence

$$KL\left(P^{T}(Class): P^{C}(Class)\right) = \sum_{y \in Dom(Class)} P^{T}(y) \log \frac{P^{T}(y)}{P^{C}(y)}$$

Kullback-Leibler divergence

 Measure difference between treatment and control groups using KL divergence

$$KL\left(P^{T}(Class): P^{C}(Class)\right) = \sum_{y \in Dom(Class)} P^{T}(y) \log \frac{P^{T}(y)}{P^{C}(y)}$$

Need KL-divergence conditional on a given test

$$KL(P^{T}(Class) : P^{C}(Class)|Test)$$

$$= \sum_{a \in Dom(Test)} \frac{N^{T}(a) + N^{C}(a)}{N^{T} + N^{C}} KL(P^{T}(Class|a) : P^{C}(Class|a))$$

Measures how much the two groups differ given a test's outcome

Final splitting criterion

- Measures the *increase* in difference between treatment and control groups from splitting based on *Test*
- If the control group is empty, KL_{gain} reduces to entropy gain

Final splitting criterion

- Measures the *increase* in difference between treatment and control groups from splitting based on *Test*
- ullet If the control group is empty, KL_{gain} reduces to entropy gain

$$KL_{ratio} = \frac{KL_{gain}(Test)}{KL_{value}(Test)}$$

- Tests with large number of values are punished
- Tests which split the control and treatment groups in different proportions are punished
- Postulates are satisfied

Splitting criterion based on squared Euclidean distance

$$Euclid\left(P^{T}(Class): P^{C}(Class)\right) = \sum_{y \in Dom(Class)} \left(P^{T}(y) - P^{C}(y)\right)^{2}$$

- Euclidgain, Euclidratio analogous to KL
- Better statistical properties (values are bounded)
- Symmetry

Pruning procedure (maximum class probability difference)

Definitions

$$Diff(Class, node) = P^{T}(Class|node) - P^{C}(Class|node)$$

Maximum class probability difference (MD)

$$MD(node) = max_{Class} |Diff(Class|node)|$$

 $sign(node) = sgn(Diff(Class^*, node))$

Pruning procedure (maximum class probability difference)

Definitions

$$Diff(Class, node) = P^{T}(Class|node) - P^{C}(Class|node)$$

Maximum class probability difference (MD)

$$MD(node) = max_{Class} |Diff(Class|node)|$$

 $sign(node) = sgn(Diff(Class*, node))$

- Use separate validation sets
- Bottom up procedure
- Keep subtree if
 - On validation set: MD of the subtree is greater than if it was replaced with a leaf
 - And the sign of MD is the same in training and validation sets

Experimental evaluation

- Compared models
 - **1 Euclid** uplift decision trees based on E_{ratio}
 - KL uplift decision trees based on KL_{ratio}
 - **3 DeltaDeltaP** based on the $\Delta\Delta P$ criterion
 - DoubleTree separate decision trees for the treatment and control groups

Method of evaluating uplift classifiers

- Control and treatment datasets are scored using the same model
- Compute lift curves on both datasets
- Uplift curve = lift curve on treatment data lift curve on control data
- Measure model's performance based on
 - Area under the uplift curve (AUUC)
 - Height of the uplift curve at the 40th percentile

The uplift curve for the splice dataset

Data preparation

- Lack publicly available data to test uplift models
- Datasets from UCI repository were split into treatment and control groups based on one attribute
- Procedure of choosing the splitting attribute:
 - If an action was present it was picked (e.g. hepatitis data)
 - Otherwise pick the first attribute which gives a reasonably balanced split

Methodology of model comparision

- **1** Models are evaluated using 2×5 crossvalidation
- Models are compared by ranking on all datasets
- Oheck if there are differences in model prformance using Friedman's test, a nonparametric analogue of ANOVA
- If the test shows significant differences, a post-hoc Nemenyi test is used to assess which of the models are significantly different

Results for Area Under Uplift Curve Nemenyi test at p = 0.01

Results for the height of the curve at the 40th percentile Nemenyi test at p=0.05

Summary

- Method for decision tree construction for uplift modeling in the style of modern decision tree learning
 - Information Theory based splitting
 - Dedicated pruning strategy
- Two splitting criteria (KL and Euclidian distance)
- Reduce to standard decision trees if control data absent
- The new method significantly outperforms previous approaches to uplift modeling
- Other applications e.g. medicine