

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Numéro de publication : 0 655 244 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 94402420.7

(51) Int. Cl.⁶ : A61K 31/405, A61K 38/18,
// (A61K31/405, 31:195)

(22) Date de dépôt : 27.10.94

(30) Priorité : 28.10.93 FR 9312884

(72) Inventeur : Arnal, Maurice
6, avenue Jean Moulin
F-63540 Romagnat (FR)
Inventeur : Rose, Francis
6, rue des Haudriettes
F-75003 Paris, France (FR)
Inventeur : Breuille, Denis
Isaac
F-63450 Saint-Saturnin, France (FR)
Inventeur : Obled, Christiane
16, rue des Fontaines
F-63450 Saint-Amant Tallende, France (FR)

(43) Date de publication de la demande :
31.05.95 Bulletin 95/22

(84) Etats contractants désignés :
AT BE CH DE DK ES FR GB GR IE IT LI LU MC
NL PT SE

(74) Mandataire : Casalonga, Axel
BUREAU D.A. CASALONGA - JOSSE
Morassistrasse 8
D-80469 München (DE)

(71) Demandeur : CLINTEC NUTRITION COMPANY
Three Parkway North,
Suite 500,
P.O. Box 760
Deerfield, Illinois 60015-0760 (US)

(71) Demandeur : INSTITUT NATIONAL DE LA
RECHERCHE AGRONOMIQUE
147, rue de l'Université
F-75338 Paris Cédex 07 (FR)

(54) Composition à base d'acides aminés pour le traitement d'infections.

(57) Composition à base d'acides aminés destinée à être administrée par voie orale, entérale ou parentérale, caractérisée par le fait qu'elle contient dans un milieu biologiquement et nutritionnellement acceptable, au moins de la cystéine libre ou sous forme de précurseur, prodrogue, protéine, hydrolysat peptidique, dans une proportion en cystéine pharmacologiquement active supérieure à la proportion de cystéine présente dans une composition nutritionnelle correspondant aux besoins d'un homme sain, la proportion en cystéine étant déterminée par rapport à la totalité des acides aminés présents dans la composition.

EP 0 655 244 A1

La présente invention a pour objet des compositions à base d'acides aminés présentées sous forme de solutés ou des préparations nutritives destinées à prévenir et/ou réduire les dommages tissulaires engendrés par les multiples dysfonctionnements métaboliques qui apparaissent, notamment à la suite d'une infection dite "sepsis".

5 L'infection peut être indépendante de toute autre pathologie, mais elle survient plus couramment chez l'homme après une intervention chirurgicale ou est associée à un traumatisme, à une brûlure, au diabète, à une cirrhose, à un néoplasme, etc... Elle peut également survenir lors d'un traitement avec des agents immunosuppresseurs, cytolytiques ou cytostatiques. Les accidents septiques sont également fortement corrélés avec un état de malnutrition, tout spécialement chez les jeunes enfants et chez les personnes âgées. De tels 10 accidents existent également chez l'animal, notamment les animaux domestiques et notamment dans les élevages industriels (porcs, poussins, etc...).

15 La réponse métabolique à l'infection est complexe et, à ce jour, de très nombreux points restent encore non élucidés. Cette complexité vient surtout du fait de la participation de nombreux facteurs modification des apports des substrats aux différents organes et de leur utilisation, variation de la sensibilité et de la réactivité 20 des tissus aux hormones, par exemple résistance à l'insuline, changement des débits sanguins, participation de nombreux médiateurs tels que le PAF, les cytokines (les interleukines, le TNF, etc...), dont les effets pharmacologiques peuvent être opposés selon le tissu considéré.

25 Cette réponse à l'infection est dynamique, avec plusieurs phases dont l'intensité et la durée dépendent de la sévérité de l'agression et du moment où survient l'infection par rapport à l'agression. Trois périodes sont habituellement discernées (CUTHBERTSON 1942). La phase initiale dite "ebb phase", pendant les 24 heures après l'agression qui se caractérise par une mobilisation rapide des substrats énergétiques et une activité métabolique diminuée, étape qui est suivie par la phase tardive dite "flow phase" dont la durée varie de quelques jours à 2 ou 3 semaines. Cette période voit l'activité métabolique s'accroître avec pour résultat un catabolisme général des tissus, en particulier du muscle. La dernière phase, chez les survivants, correspond à la convalescence qui est anabolique.

30 L'invention vise plus particulièrement à traiter ou prévenir par des compositions nutritionnelles les dysfonctionnements intervenant dans les deux premières phases qui sont caractérisées par l'existence d'une anorexie et d'une réponse hypermétabolique se traduisant cliniquement par une perte de poids et spécialement une fonte des protéines musculaires, par un état inflammatoire, l'existence d'une tachycardie, d'une hyper-ventilation, d'une consommation accrue d'oxygène, d'un dysfonctionnement du système immun, etc...

35 La déperdition accélérée des protéines du muscle sert à couvrir :

- les besoins augmentés en glucose de l'organisme par le biais de la néoglucogénèse hépatique et en glutamine, source énergétique essentielle pour les cellules de la muqueuse intestinale ou pour les cellules à multiplication rapide du système immun,

40 - les besoins d'acides aminés pour les synthèses protéiques augmentées de plusieurs organes, en particulier des protéines inflammatoires au niveau du foie.

Si les actions des hormones et de certains médiateurs, tels que le TNF α , ont été l'objet et font encore l'objet de nombreuses évaluations et que certains mécanismes commencent à être bien élucidés, les besoins nutritionnels spécifiques, plus particulièrement ceux qui concernent les acides aminés, restent encore très mal connus dans le cas d'une infection ou des réactions inflammatoires post-agressions.

45 La demanderesse a eu l'idée que la stimulation subite des synthèses d'un grand nombre de protéines inflammatoires et de défense, vitales pour l'organisme, faiblement sécrétées en situation physiologique normale, riches en certains acides aminés, nécessitait en particulier, dans le cas d'une infection, des apports supplémentaires. Lors de cette phase aiguë, vu l'état d'anorexie des patients ou des animaux, la synthèse de ces protéines implique que l'organisme dégrade des quantités importantes de protéines musculaires ou autres, pour disposer d'une quantité suffisante en ces acides aminés. La consommation accrue de glutamine, comme source énergétique par le tractus digestif au cours des diverses agressions, en est une illustration.

50 Les protéines hépatiques de l'inflammation, telles que la C-réactive-protéine, l' α_1 -1-antichymotrypsine, l' α_1 -acide glycoprotéine, le fibrinogène, l'haptoglobuline, l' α_2 -macroglobuline (chez le rat), les métallothionénines contiennent un pourcentage élevé de cystéine, de sérine, d'acide aspartique, d'asparagine, de thréonine comparé à celles des protéines du muscle. La thréonine, l'acide aspartique et l'asparagine sont des acides aminés sur lesquels sont liés les oses constitutifs de ces divers glycoprotéines.

55 Lors des réactions de défense, du fait de l'état d'anorexie, l'organisme, pour synthétiser ces diverses protéines vitales, doit dégrader ses protéines musculaires de façon significative pour couvrir ces besoins particuliers, d'autant qu'à l'inverse des protéines myofibrillaires, les protéines de la réaction inflammatoire ont, en général, des demi-vies brèves.

La couverture des besoins en acides aminés doit, non seulement permettre à l'organisme d'améliorer les synthèses des protéines vitales, mais aussi d'éviter la perte des protéines musculaires. L'organisme ne pos-

sédant pas de protéines de réserve, toute quantité de protéines perdue correspond à une perte de fonction. La diminution des protéines musculaires entraîne une altération des capacités respiratoires du malade, mais aussi de ses capacités motrices. Il s'ensuit une période de convalescence longue, étant donné que la régénération des protéines myofibrillaires est lente. Cette couverture des besoins entraîne un temps de maladie plus court et permet de raccourcir la durée d'hospitalisation. Elle permet également un meilleur rendement de protection des animaux domestiques.

Il a également été mis en évidence que, durant cette période de choc, avec l'existence d'un hypermétabolisme persistant, il existait une production abondante de radicaux libres dont les effets nocifs ont été largement décrits. Pour lutter contre ces processus oxydatifs, l'organisme dispose de substances antioxydantes et de "pièges à radicaux". Le glutathion, tripeptide composé de glycine, d'acide glutamique et de cystéine, est l'un des plus abondants. Le besoin accru de ce dérivé implique, pour l'organisme, de disposer en quantité suffisante pour sa synthèse, des trois acides aminés qui le constituent.

La déplétion en glutathion, au niveau cellulaire, a pour l'organisme des conséquences métaboliques délétères : en plus de son rôle comme capteur de radicaux libres, il intervient dans de multiples réactions du métabolisme (coenzyme de réactions enzymatiques, synthèse des déoxyribonucléotides, métabolisme des xénobiotiques, réducteur intracellulaire) et il est lui-même une réserve de cystéine, directement disponible pour la synthèse protéique.

La demanderesse a découvert, après mise au point d'un modèle d'infection chez le rat, consistant en une injection unique de bactéries vivantes (E.Coli) qui maintient les animaux dans une situation catabolique durant plusieurs jours, que le besoin en certains acides aminés était augmenté.

Elle a pu constater qu'au cours d'une infection induite, on observe chez les animaux infectés, comparés à des animaux nourris de façon appariée, un amaigrissement important pendant 2 à 3 jours, avec l'instauration d'une anorexie sévère, un taux de TNF α circulant élevé supérieur à 10 ng/ml, une teneur plasmatique d' α 1 glycoprotéine acide multipliée par 20 à 60, une hyperglycémie (1,82 g/l), une hyperinsulinémie (34,7 μ U/ml).

Les mesures de synthèse protéiques, appréciées par la technique des larges doses, ont montré, toujours par rapport à des animaux nourris de façon appariée, que dans le foie, la vitesse de synthèse était augmentée de 1,8 à 2,7 fois, tandis que dans le muscle, elle était diminuée de 30%. Dans ce dernier tissu, on observe un accroissement de la protéolyse.

La synthèse protéique du corps entier, moins celle du foie, est augmentée malgré une forte diminution des synthèses du muscle. Cela suppose que, dans d'autres organes, les synthèses sont stimulées. n a été possible, en particulier, de constater une augmentation de la synthèse protéique dans la rate et le poumon.

L'étude des bilans de fixation et d'oxydation des acides aminés au cours de ce modèle d'infection a permis, effectivement, de déterminer un besoin accru de plusieurs acides aminés essentiels et non essentiels, et plus particulièrement au niveau du foie. Le contenu protéique du foie des rats infectés, augmente de 42% comparé à des témoins pair-fed. La demanderesse a pu constater plus particulièrement l'augmentation de la concentration en cystéine de l'ordre de 74%.

L'analyse du contenu en acides aminés du corps entier a montré une forte diminution chez les animaux infectés, sauf pour l'ensemble cystéine-cystine qui augmente significativement de 9% par rapport aux témoins nourris de façon appariée et pour certains acides aminés (thréonine, arginine) qui se maintiennent au même niveau. Ceci indique une épargne de ces acides aminés, puisque les rats infectés catabolisent respectivement 3,7 et 54% moins de thréonine et de cystéine que les témoins nourris de façon appariée, contrairement à tous les autres acides aminés indispensables qui montrent des oxydations augmentées de 10 à 30% lors de l'infection.

L'analyse de la répartition de la radioactivité dans les différents tissus après injection de L³⁵S cystéine à des rats sur le modèle d'infection précédemment cité, a fait apparaître une utilisation accrue de la cystéine pour synthétiser les protéines de la réaction inflammatoire et le glutathion. En effet, la radioactivité incorporée par gramme de protéines dans la rate et dans les protéines plasmatiques moins l'albumine, augmente de 70% chez les animaux infectés par rapport à leurs témoins pair-fed. Le pourcentage de la dose injectée se trouvant dans une fraction contenant principalement la cystéine et le glutathion, est respectivement 1,9 et 4 fois plus élevé dans le foie et la rate d'animaux infectés comparé à des témoins pair-fed.

L'effet de la supplémentation en acides aminés des régimes sur les pertes de poids a confirmé le besoin accru en certains acides aminés lors d'une infection. Trois lots d'animaux recevant des régimes isoazotés ont été comparés. Un lot témoin (lot T), un lot recevant un régime supplémenté en thréonine, sérine, acide aspartique, asparagine et arginine (lot AA) et un lot recevant un régime supplémenté en thréonine, sérine, acide aspartique, asparagine, arginine et cystéine (lot Cys). Ces supplémentations ont permis de limiter la perte de poids et d'accélérer la reprise de croissance des animaux infectés. Dix jours après l'infection, le poids des animaux était 14%, 8% et 3,5% plus faible que leur poids initial dans les lots T, AA et Cys respectivement. L'augmentation de la teneur en cystéine du régime de 0,8% à 6,7% a entraîné une réduction de l'excrétion azotée

des animaux infectés par rapport à leurs témoins pair-fed d'environ 35% dans les jours qui suivent l'infection. Dans cette même étude, la supplémentation du régime en cystéine a permis de normaliser la concentration en glutathion du foie, celle-ci étant diminuée de l'ordre de 25% avec le régime ne contenant que 0,8% de cystéine.

5 Ces résultats ont permis à la demanderesse d'établir qu'au cours de l'infection en particulier et plus généralement lors du déclenchement de situations hautement cataboliques et hypermétaboliques, les besoins en cystéine et à moindre échelle, en thréonine, en sérine, en acide aspartique et asparagine, sont nettement augmentés.

10 L'invention réside dans la formulation de compositions d'acides aminés présents dans des proportions telles qu'elles couvrent les besoins spécifiques en acides aminés et permettent d'éviter ou de prévenir la perte d'une masse importante de protéines musculaires.

15 Un objet de l'invention est donc constitué par une composition d'acides aminés destinée à être administrée par voie orale, par voie entérale ou parentérale, permettant de résoudre ce problème.

15 L'invention a également pour objet l'utilisation d'une composition d'acides aminés particulière, en vue de traiter les dommages tissulaires engendrés par des dysfonctionnements métaboliques apparaissant en particulier à la suite d'une infection.

20 L'invention a également pour objet un procédé de traitement et de prévention des dommages tissulaires engendrés par des dysfonctionnements métaboliques apparaissant notamment à la suite d'une infection.

D'autres objets de l'invention apparaîtront à la lecture de la description et des exemples qui suivent.

25 La composition à base d'acides aminés destinée à être administrée par voie orale, par voie entérale ou parentérale, conforme à l'invention, contient dans un milieu biologiquement et nutritionnellement acceptable, au moins de la cystéine libre ou sous forme d'une prodrogue ou de protéines ou d'hydrolysats riches en cystéine, dans une proportion en cystéine pharmacologiquement active supérieure à la proportion de cystéine présente dans une composition nutritionnelle correspondant aux besoins d'un homme sain, la proportion en cystéine étant déterminée par rapport à la totalité des acides aminés présents dans la composition.

30 Dans une mise en oeuvre préférée de l'invention, la cystéine sous forme pharmacologiquement active, est présente dans une proportion égale ou supérieure à 3% par rapport à la totalité des acides aminés présents dans la composition.

35 Dans une forme de réalisation de l'invention, la composition d'acides aminés conforme à l'invention contient en plus au moins de la thréonine dans des proportions égales ou supérieures à 5% et/ou au moins de la sérine dans des proportions égales ou supérieures à 12% et/ou au moins de l'acide aspartique ou d'asparagine dans des proportions égales ou supérieures à 10%, ces proportions étant déterminées par rapport à la quantité d'acides aminés présents dans la composition.

40 Une forme de réalisation particulièrement préférée consiste à utiliser des compositions telles que définies précédemment et contenant les 8 acides aminés essentiels, à savoir la leucine, l'isoleucine, la valine, le tryptophane, la phénylalanine, la lysine, la méthionine, la thréonine.

45 Selon une autre forme de réalisation de l'invention, la composition contient également de la glycine et/ou de l'arginine.

La composition conforme à l'invention peut également contenir de la taurine et/ou de la glutamine.

40 Les compositions conformes à l'invention se présentent notamment sous forme de soluté qui est un mélange d'acides aminés éventuellement utilisés sous forme de leurs sels pharmaceutiquement acceptables dans un milieu constitué généralement par de l'eau distillée.

Les compositions conformes à l'invention peuvent contenir en particulier pour 1 litre de solution d'acides aminés, les constituants suivants dans les quantités suivantes :

45

50

55

5

10

Leucine	5 à 12 g/l
Isoleucine	3 à 10 g/l
Valine	5 à 10 g/l
Tryptophane	1,0 à 3 g/l
Phénylalanine	1,5 à 7 g/l
Lysine	2 à 7 g/l
Méthionine	1,5 à 5 g/l
Thrénanine	3,0 à 7 g/l

15 Cette composition peut éventuellement contenir de la sérine dans des proportions de 2,5 à 6 g/l, de l'acide aspartique dans des proportions de 1,5 à 4 g/l, de la glycine dans des proportions comprises entre 3 à 7 g/l, de l'arginine dans des proportions comprises entre 5 et 10 g/l, de la taurine dans des proportions comprises entre 1 et 4 g/l, de la glutamine dans des proportions supérieures ou égales à 4 g/l.

20 L'invention se caractérise plus particulièrement par le fait que la cystéine est présente dans cette composition dans des proportions égales ou supérieures à 3% par rapport à la quantité totale des acides aminés présents. Elle est comprise de préférence entre 3 et 10%.

Selon une autre forme de réalisation préférée de l'invention, la thrénanine, comme déjà indiqué ci-dessus, est présente dans des proportions égales ou supérieures à 5% et est comprise de préférence entre 5 et 12% par rapport à la quantité totale d'acides aminés présents.

25 La sérine, lorsqu'elle est présente, est préférentiellement présente dans des proportions égales ou supérieures à 12% et de préférence comprises entre 12 et 16% par rapport au poids total des acides aminés présents. L'acide aspartique où l'asparagine, lorsqu'ils sont présents, le sont de préférence dans des proportions égales ou supérieures à 10% et comprises de préférence entre 10 et 15% par rapport au poids total des acides aminés présents.

30 La cystéine, utilisée conformément à l'invention, peut être utilisée sous forme de prodrogue ou de sel pharmaceutiquement acceptable, tel que sous forme de l'acide L-oxothiazolidine carboxylique. Notamment lorsqu'on souhaite éviter de maintenir des taux plasmatiques élevés de cystéine. Il est bien entendu qu'on peut utiliser d'autres précurseurs ou dérivés de cystéine pouvant être convertis en cystéine à l'intérieur des cellules. La cystéine peut être mise en œuvre sous forme combinée avec d'autres acides aminés tels que sous forme de protéine, peptide.

35 Les quantités en prodrogue ou précurseurs de cystéine, peptide ou protéine, sont déterminées sur la base de la cystéine susceptible d'être libérée à partir de ces dérivés.

On peut également utiliser les autres acides aminés mentionnés ci-dessus sous forme de précurseurs ou de prodrogues, tels que par exemple sous forme de dipeptides, notamment dans le cas de l'acide aspartique et/ou de l'asparagine.

40 Les compositions conformes à l'invention peuvent se présenter non seulement sous forme de solution aqueuse, mais également sous d'autres formes. C'est ainsi que la cystéine peut être administrée en modifiant simplement des formules orales entérales existantes en y introduisant la quantité de cystéine compatible avec les proportions conformes à l'invention.

45 La supplémentation de cystéine peut également se faire dans des préparations destinées à la nutrition orale ou entérale. Elle peut être effectuée dans ce cas par l'utilisation de protéines ou d'hydrolysats peptidiques naturellement riches en cystéine/cystine.

50 Le taux de cystéine doit dans ce cas également être présent dans des quantités supérieures à la proportion de cystéine présente dans une composition destinée à l'homme sain. Cette quantité étant déterminée par rapport à la totalité des acides aminés présents sous forme libre ou combinée. Il est également possible de l'exprimer en tenant compte de la teneur en azote contenu dans la cystéine ou de ces précurseurs et celle de la quantité totale d'azote dans la composition. Le pourcentage représente dans ce cas la quantité d'azote de la cystéine par rapport à l'azote total.

55 La cystéine liée dans une protéine ou un hydrolysat peptidique, est présente de préférence dans des proportions égales ou supérieures à 3% par rapport à la totalité des acides aminés présents sous forme libre ou liée dans la composition.

Lorsqu'elle est exprimée en teneur en azote, la quantité d'azote de la cystéine libre ou sous forme de l'un

de ses précurseurs, prodrogue, protéine, hydrolysat peptidique, est supérieure ou égale à 2,15% par rapport à l'azote total.

Ces compositions peuvent se présenter : ou forme d'une composition nutritive complète destinée à l'administration par voie parentérale. Cette préparation renferme, outre les acides aminés ou leurs dérivés (peptides), et des sources de calories osidiques glucose, fructose, sorbitol, etc.) et/ou lipidiques (triglycérides d'acides gras à chaînes longues ou à chaînes moyennes ou courtes), des électrolytes, des oligo-éléments, et des vitamines. La cystéine ou ses précurseurs étant présents dans des proportions supérieures à 3% par rapport à la quantité d'acides aminés présents dans la composition nutritive.

Lorsque la composition se présente sous forme d'une composition nutritive destinée à la voie orale ou entérale contenant de la cystéine dans des proportions supérieures à 3% par rapport à la quantité d'acides aminés présents dans la composition nutritive. L'ajout en cystéine ou par les autres acides aminés cités ci-dessus, est obtenue soit par l'acide aminé lui-même, par une prodrogue ou par des protéines ou des hydrolysats peptidiques particulièrement riches en l'acide aminé considéré (par exemple cystéine). Cette composition, outre des protéines, des acides aminés et des peptides, renferme des sources caloriques osidiques (sous forme de carbohydrates divers) et/ou lipidiques (triglycérides d'acides gras à chaînes longues ou moyennes, apportés sous forme d'huiles de diverses origines), des électrolytes, des oligo-éléments et des vitamines.

La cystéine peut également être prémélangée avec les autres acides aminés utilisables dans les compositions conformes à l'invention et se présenter sous forme de poudre aseptique réhydratable au moment de l'administration ou pouvant être stockée sous forme d'un concentrat congelé ou réfrigéré qui est décongelé et mélangé à la concentration appropriée au moment de l'utilisation.

Les compositions parentérales peuvent se présenter sous forme de solution aqueuse ou de solution non aqueuse, de suspension ou d'émulsion.

Ces compositions peuvent être administrées par des dispositifs connus dans les modes d'administration orale, parentérale ou entérale.

Un autre objet de l'invention est constitué par l'utilisation d'une composition telle que définie ci-dessus, pour la préparation d'un médicament destiné à prévenir ou à diminuer les dommages tissulaires engendrés par des dysfonctionnements métaboliques. Le traitement s'effectue comme indiqué ci-dessus par voie parentérale ou entérale.

L'invention a également pour objet le traitement de dommages tissulaires engendrés par les dysfonctionnements métaboliques apparaissant en particulier à la suite d'une infection, en administrant par voie parentérale ou entérale à l'homme ou à l'animal une quantité efficace de cystéine ou d'un analogue fonctionnel tel que défini ci-dessus, dans des quantités pharmacologiquement actives et supérieures à la quantité de cystéine présente dans une composition nutritionnelle correspondant aux besoins d'un homme ou d'un animal sain.

L'administration s'effectue plus particulièrement par voie orale, parentérale ou entérale. La quantité en cystéine administrée est égale ou supérieure à 3% par rapport à la quantité totale d'acides aminés administrés et elle est généralement comprise entre 3% et 10%.

Les exemples suivants sont destinés à illustrer l'invention sans présenter un caractère limitatif.

40

45

50

55

EXEMPLES

Exemples 1 et 2 - On prépare les solutés d'acides aminés suivants :

5	Leu		7,2 g/l	7,2 g/l
	Ile		5,6 g/l	5,6 g/l
	Val		5,6 g/l	5,6 g/l
10	Trp		1,2 g/l	1,2 g/l
	Phe		3,2 g/l	3,2 g/l
	Lys		3,2 g/l	3,2 g/l
15	Met		2 g/l	2 g/l
	Thr		4 g/l	6 g/l
20	Asp		8 g/l	8,5 g/l
	Glu		2,4 g/l	2,4 g/l
	Ser		9,8 g/l	9,8 g/l
25	Gly		5,9 g/l	5 g/l
	Ala		6,2 g/l	5,8 g/l
	Cys		2,5 g/l	4 g/l
30	Orn		2,4 g/l	-
	Tyr		0,4 g/l	0,4 g/l
	His		3,2 g/l	3 g/l
35	Arg		4,6 g/l	4,6 g/l
	Pro		3,2 g/l	3,2 g/l
40	Eau distillée	qsp	1 l	
	AAT		80,2 g/l	80,7 g/l

45

50

55

Exemple 3 - On prépare les solutés d'acides aminés suivants :

	Leu		6 g/l
5	Ile		4,5 g/l
	Val		4,5 g/l
	Trp		1,2 g/l
10	Phe		3 g/l
	Lys		3 g/l
	Met		2 g/l
15	Thr		6 g/l
	Asp		8,5 g/l
20	Gln		8 g/l
	Ser		9,8 g/l
	Gly		4,8 g/l
25	Ala		4 g/l
	Cys		4 g/l
	Orn		-
30	Tyr		0,4 g/l
	His		3 g/l
	Arg		4 g/l
35	Pro		3 g/l
	Eau	qsp	1 l
40	AAT		81,1 g/l

45

50

55

Exemple 4 - On prépare les solutés d'acides aminés suivants :

	Leu	12 g/l
	Ile	9,3 g/l
	Val	9,3 g/l
	Trp	2 g/l
10	Phe	5,33 g/l
	Lys	5,33 g/l
	Met	3,33 g/l
15	Thr	10 g/l
	Asp	14,16 g/l
20	Glu	4 g/l
	Ser	16,8 g/l
	Gly	8,33 g/l
25	Ala	10 g/l
	Cys	6,66 g/l
	Orn	-
30	Tyr	0,5 g/l
	His	5 g/l
	Arg	7,6 g/l
35	Pro	5,18 g/l
	Eau	qsp 1 l
40	AAT	134,17 g/l

45

50

55

Exemples 5 et 6 - On prépare les solutés d'acides aminés suivants :

5	Leu	7,2 g/l	7,2 g/l
	Ile	5,6 g/l	5,6 g/l
	Val	5,6 g/l	5,6 g/l
10	Trp	1,2 g/l	1,2 g/l
	Phe	3,2 g/l	3,2 g/l
	Lys	3,2 g/l	3,2 g/l
	Met	2 g/l	2 g/l
15	Thr	4 g/l	6 g/l
	Asp	8 g/l	8,5 g/l
20	Glu	2,4 g/l	2,4 g/l
	Ser	9,8 g/l	9,8 g/l
	Gly	5,6 g/l	5 g/l
	Ala	6 g/l	5,8 g/l
25	OTC°	2,6 g/l	4 g/l
	Orn	2,4 g/l	-
	Tyr	0,4 g/l	0,4 g/l
30	His	3,2 g/l	3 g/l
	Arg	4,8 g/l	4,6 g/l
	Pro	3,2 g/l	3,2 g/l
35	Eau	qsp	1 l
40	AAT	80,4 g/l	80,7 g/l

45 ° Acide 4-oxothiazolidine-carboxylique ou sous forme salifiée.

50

55

Exemple 7 - On prépare les solutés d'acides aminés suivants :

5	Leu	6 g/l
	Ile	4,5 g/l
	Val	4,5 g/l
	Trp	1,2 g/l
10	Phe	3 g/l
	Lys	3 g/l
	Met	2 g/l
15	Thr	6 g/l
	Asp	8,5 g/l
	Gln	7,8 g/l
20	Ser	9,8 g/l
	Gly	5 g/l
	Ala	4 g/l
	OTC°	4 g/l
25	Orn	-
	Tyr	0,4 g/l
	His	3 g/l
30	Arg	4 g/l
	Pro	3 g/l
35	Eau	qsp
		1 l
40	AAT	81,1 g/l

° Acide 4-oxothiazolidine-carboxylique ou sous forme salifiée.

45

50

55

Exemple 8 - On prépare les solutés d'acides aminés suivants :

5	Leu	12 g/l
	Ile	9,3 g/l
	Val	9,3 g/l
10	Trp	2 g/l
	Phe	5,33 g/l
	Lys	5,33 g/l
	Met	3,33 g/l
15	Thr	10 g/l
	Asp	14,16 g/l
	Gln	4 g/l
20	Ser	16 g/l
	Gly	8,33 g/l
	Ala	10 g/l
25	OTC ^o	6,66 g/l
	Orn	-
	Tyr	0,5 g/l
	His	5 g/l
30	Arg	7,6 g/l
	Pro	5,33 g/l
35	Eau	qsp 1 l
40	AAT	134,17 g/l

^o Acide 4-oxothiazolidine-carboxylique ou sous forme salifiée.

45

50

55

Exemple 9 - On prépare les solutés d'acides aminés suivants :

5	Leu		6 g/l
	Ile		5 g/l
	Val		5 g/l
10	Trp		1,2 g/l
	Phe		3 g/l
	Lys		3 g/l
15	Met		2 g/l
	Thr		6 g/l
	Asp		8,5 g/l
20	Ser		9,6 g/l
	Cys		5 g/l
	Ala-Gln		15 g/l
25	Gly		5 g/l
	Arg		4 g/l
30	Eau	qsp	1 l
	AAT		78,3 g/l

35

40

45

50

55

Exemple 10 - On prépare les solutés d'acides aminés suivants :

	Leu	6 g/l
5	Ile	5 g/l
	Val	5 g/l
	Trp	1,2 g/l
10	Phe	3 g/l
	Lys	3 g/l
	Met	2 g/l
	Thr	6 g/l
15	Asp	8,5 g/l
	Ser	9,6 g/l
	OTC°	5 g/l
20	Ala-Gln	15 g/l
	Gly	5 g/l
	Arg	4 g/l
25	Eau	qsp 1 l
30	AAT	78,3 g/l

35 ° Acide 4-oxothiazolidine-carboxylique ou sous forme salifiée.

Exemple 11

	Composition (pour 1000 ml) destinée à l'administration orale ou entérale.	
40	Protéines	58,2 g (sous forme de petits peptides de caséine et de lastosérum)
	Cystéine	4,9 g
45	Lipides	52 g (triglycérides à chaînes moyennes, huile de soja, etc.)
	Glucides	158 g (maltodextrines et amidon)

50

55

<u>Minéraux</u>		
5	Sodium	1000 mg
	Potassium	1660 mg
10	Calcium	450 mg
	Phosphore	500 mg
15	Magnesium	330 mg
	Fer	13,3 mg
	Zinc	13,3 mg
	Manganèse	2,7 mg
	Cuivre	1,3 mg
	Chlorures	2500 mg
20	Iode	100 mg

Vitamines

25	A	1064	mg
	E	20	mg
	B ₁	2	mg
	B ₂	2	mg
30	B ₅	6,7	mg
	B ₆	2,6	mg
	C	133	mg
	PP	26,6	mg
35	B ₁₂	3	mg
	Acide folique	333	mg
40	Biotine	133	mg
	Choline	266	mg

45 La même proportion de cystéine peut aussi être apportée par un précurseur, par exemple l'acide 4-oxothiazolidine carboxylique ou des peptides riches en cystéine.

Revendications

50 1. Composition à base d'acides aminés destinée à être administrée par voie orale, entérale ou parentérale, caractérisée par le fait qu'elle contient dans un milieu biologiquement et nutritionnellement acceptable, au moins de la cystéine libre ou sous forme de précurseur, prodrogue, protéine, hydrolysat peptidique, dans une proportion en cystéine pharmacologiquement active supérieure à la proportion de cystéine présente dans une composition nutritionnelle correspondant aux besoins d'un homme sain, la proportion en cystéine étant déterminée par rapport à la totalité des acides aminés présents dans la composition.

55 2. Composition selon la revendication 1, caractérisée par le fait que la cystéine sous forme pharmacologi-

quement active est présente dans une proportion égale ou supérieure à 3% par rapport à la totalité des acides aminés présents dans la composition.

3. Composition selon la revendication 1, caractérisée par le fait que la quantité d'azote de la cystéine est supérieure ou égale à 2,15% par rapport à la quantité d'azote totale.
- 5
4. Composition selon l'une quelconque des revendications 1 à 3, caractérisée par le fait qu'elle contient en plus au moins de la thréonine dans des proportions égales ou supérieures à 5% et/ou au moins de la sérine dans des proportions égales ou supérieures à 12% et/ou au moins de l'acide aspartique ou de l'asparagine dans des proportions supérieures ou égales à 10%, ces proportions étant déterminées par rapport à la quantité d'acides aminés présents dans la composition.
- 10
5. Composition selon l'une quelconque des revendications 1 à 4, caractérisée par le fait qu'elle contient au moins les 8 acides aminés essentiels constitués par la leucine, l'isoleucine, la valine, le tryptophane, la phénylalanine, la lysine, la méthionine, la thréonine.
- 15
6. Composition selon l'une quelconque des revendications 1 à 5, caractérisée par le fait que la composition contient également de la glycine et/ou de l'arginine.
7. Composition selon l'une quelconque des revendications 1 à 6, caractérisée par le fait que la composition contient également de la taurine et/ou de la glutamine.
- 20
8. Composition selon l'une quelconque des revendications 1 à 7, caractérisée par le fait que les acides aminés sont utilisés sous forme libre, sous forme de leurs sels ou sous forme de précurseurs, prodrogues, protéines, hydrolysats peptidiques.
- 25
9. Composition selon l'une quelconque des revendications 1 à 8, caractérisée par le fait qu'elle contient pour 1 litre de solution d'acides aminés :

30	Leucine	5 à 12 g/l
	Isoleucine	3 à 10 g/l
	Valine	5 à 10 g/l
	Tryptophane	1,0 à 3 g/l
35	Phénylalanine	1,5 à 7 g/l
	Lysine	2 à 7 g/l
	Méthionine	1,5 à 5 g/l
40	Thréonine	3,0 à 7 g/l

la composition contenant de la cystéine dans des proportions égales ou supérieures à 3% par rapport à la quantité totale des acides aminés présents.

- 45
10. Composition selon l'une quelconque des revendications 1 à 9, caractérisée par le fait que la cystéine est présente sous forme de prodrogues.
11. Composition selon la revendication 10, caractérisée par le fait que la cystéine est utilisée sous forme de l'acide L-oxothiazolidine carboxylique ou de ses sels pharmaceutiquement acceptables.
- 50
12. Composition selon l'une quelconque des revendications 1 à 11, se présentant sous forme d'un soluté.
13. Composition selon les revendications 1 à 11, sous forme d'une composition nutritive complète destinée à l'administration par voie parentérale, cette préparation renferme, outre les acides aminés ou leurs dérivés (peptides), et des sources de calories osidiques et/ou lipidiques, des électrolytes, des oligo-éléments et/ou des vitamines, la cystéine ou ses précurseurs étant présents dans des proportions supérieures à 3% par rapport à la quantité d'acides aminés présents sous forme libre ou liée dans la composition nutritive.
- 55

14. Composition selon l'une quelconque des revendications 1 à 11, caractérisée par le fait que la composition se présente sous forme d'une composition orale ou entérale nutritive contenant de la cystéine dans des proportions supérieures à 3% par rapport à la quantité d'acides aminés présents dans la composition nutritive.
- 5 15. Composition selon l'une quelconque des revendications 1 à 10 et 14, sous forme d'une composition nutritive destinée à la voie orale ou entérale, caractérisée par le fait qu'elle renferme en plus des sources caloriques osidiques et/ou lipidiques, des électrolytes, des oligo-éléments et/ou des vitamines.
- 10 16. Composition selon l'une quelconque des revendications 1 à 11, caractérisée par le fait qu'elle se présente sous forme d'une poudre réhydratable au moment de l'administration, contenant des acides aminés et au moins de la cystéine ou un précurseur dans des proportions supérieures à 3% par rapport à la quantité d'acides aminés présents dans cette composition, les acides aminés et/ou la cystéine étant présents sous forme de prodrogues, de protéines, d'hydrolysat peptidique riche en acide aminé.
- 15 17. Utilisation d'une composition telle que définie dans l'une quelconque des revendications 1 à 15, pour la préparation d'un médicament destiné à prévenir ou à diminuer les dommages tissulaires engendrés par des dysfonctionnements métaboliques.
- 20 18. Utilisation selon la revendication 17, caractérisée par le fait que les dysfonctionnements métaboliques sont dus à une infection ou à une agression engendrant une réaction inflammatoire.
19. Utilisation selon la revendication 17 ou 18, caractérisée par le fait que la composition est destinée à être administrée à l'homme.
- 25 20. Utilisation selon la revendication 17 ou 18, caractérisée par le fait que la composition est destinée à être administrée à l'animal.

30

35

40

45

50

55

Office européen
des brevets

RAPPORT DE RECHERCHE EUROPEENNE

N° de la demande
EP 94 40 2420

DOCUMENTS CONSIDERES COMME PERTINENTS			
Catégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int.Cl.6)
A	NUTRITION (UNITED STATES), MAY-JUN 1991, VOL. 7, NO. 3, PAGE(S) 163-7; DISCUSSION 167-8, Garcia de Lorenzo y Mateos A et al 'Nutritional and metabolic support: converging concepts.' * page 164, colonne 2 * ---	1-18	A61K31/405 A61K38/18 //(A61K31/405, 31:195)
A	EP-A-0 264 953 (PFRIMMER & CO) 27 Avril 1988 * page 7; exemple 4 * ---	1-18	
A	DE-A-29 46 563 (B. BRAUN MELSUNGEN AG) 21 Mai 1981 * revendications * ---	1-18	
A	EP-A-0 318 446 (AB ERIK VENNARS) 31 Mai 1989 * abrégé * ---	1-18	
A	EP-A-0 046 167 (LEOPOLD & CO) 24 Février 1982 * exemples * ---	1-18	DOMAINES TECHNIQUES RECHERCHES (Int.Cl.6)
A	US-A-4 604 286 (SEIZO KAWAJIRI) 5 Août 1986 * colonne 2; tableau 1 * ---	1-18	A61K
A	FR-A-2 317 917 (DR. EDUARD FRESINIUS CHEMISCHE-PHARMAZEUTISCHE INDUSTRIE KG) 11 Février 1977 * revendications * -----	1-18	
Le présent rapport a été établi pour toutes les revendications			
Lieu de la recherche	Date d'achèvement de la recherche	Examinateur	
LA HAYE	1 Février 1995	Leherte, C	
CATÉGORIE DES DOCUMENTS CITÉS			
X : particulièrement pertinent à lui seul	T : théorie ou principe à la base de l'invention		
Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie	E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date		
A : arrête-plan technologique	D : cité dans la demande		
O : divulgation non-sécrite	L : cité pour d'autres raisons		
P : document intercalaire			
& : membre de la même famille, document correspondant			