

ADS AD TO AT P CA CO SOUN

www.aduni.edu.pe

Situaciones Lógicas IV

Elaborar estrategias para la resolución optima de problemas matemáticos cotidianos con creatividad e ingenio.

SITUACIONES LÓGICAS III

Problemas sobre cortes y seccionamientos

Problemas sobre situaciones deportivas

	SERIE A	PJ	PG	PE	PP	GF	GC	PTS
	OMBÚ JRS	2	2	0	0	7	0	6
	SAUCE	2	2	0	0	6	1	6
I	7 ESTRELLAS	2	0	0	2	1	6	0
ı	CERROMAR	2	0	0	2	0	7	0

Problemas sobre corte y seccionamientos

En este tipo de problemas, se busca determinar la menor cantidad de cortes de tal forma que bajo ciertas condiciones se obtengan sólidos o figuras preestablecidas.

Algunos elementos que pueden ser cortados:

OBSERVACIONES:

En muchos casos, en los problemas de cortes se sugiere tener en cuenta la **simetría** de la figura.

Por ejemplo:

Luego de realizar el primer corte debemos reacomodar las partes obtenidas para poder continuar con los otros cortes; colocando una encima de la otra o una a continuación de la otra dependiendo de las condiciones de cada problema.

Alineamos las partes

Superponemos las partes

CASOS MÁS FRECUENTES

1.- Cartón, triplay o madera

En estos casos **no se puede doblar** el cartón, triplay o madera por ello alineamos o superponemos convenientemente con el objetivo de realizar el menor número de cortes.

Por ejemplo:

Un trozo de madera ha sido marcado en cuadrados iguales ¿Cuántos cortes rectos deberán realizarse como mínimo, de modo que todos los cuadrados que contienen las letras estén separados?

Aplicación 1

En la figura se tiene un trozo de madera, el cual puede ser dividido en 12 cubitos. Si solo se desea separar los 3 cubos sombreados, ¿cuántos cortes rectos como mínimo deberá realizarse con una sierra eléctrica?

A) 2

C) 4

D) 5

Resolución:

Nos piden el menor número de cortes que deben realizarse para obtener los cubos sombreados

∴ Se realizan como mínimo 3 cortes

2.- Mallas o alambrados

En estos casos se busca hacer el corte a un **punto de** soldadura.

Un punto de soldadura es la unión de varios segmentos cuando se corta el punto de soldadura todos los segmentos de la malla o alambrado quedan sueltos.

Por ejemplo:

Si no se puede doblar el alambre en ningún momento, ¿cuántos cortes rectos como mínimo se deberá realizar para separar los 16 segmentos de alambre?

∴ Se realizan 3 cortes como mínimo

3.- Hoja de papel, tela o cartulina

En estos casos se puede **doblar adecuadamente** el papel, tela o cartulina con el objetivo de realizar el menor número de cortes.

Por ejemplo:

Si una hoja de papel cuadrado se quiere dividir en cuatro cuadrados pequeños como se muestra la figura, ¿cuántos cortes como mínimo se deberá realizar?

Problemas sobre situaciones deportivas

En este tipo de problemas en la mayoría se busca calcular el resultado de cierto partido de futbol, para ello debemos analizar la tabla de posiciones que suelen darnos.

TABLA DE POSICIONES

Equipo	PJ	PG	PE	PP	GF	GC	PUNTOS
Perú	3	3	0	0	7	2	9
Brasil	3 <	- 1	1	1	4	5	4
Colombia	3 <	_ 1	0	2	3	7	3
Argentina	3 <	0	1	2	5	5	1

En general se considera:

Partido ganado : 3 puntos

Partido empatado : 1 punto

Partido perdido : 0 puntos

PJ: Partidos Jugados

PG: Partidos Ganados

PE: Partidos Empatados

PP: Partidos Perdidos

SUMA = SUMA 19

GF: Goles a Favor

GC: Goles en Contra

Suma de goles goles a favor = Suma de goles en contra

Para entender mejor este tipo de problemas realizaremos el siguiente ejemplo:

En un torneo participan 3 equipos de fútbol A,B y C cuyos resultados de los partidos fueron:

Completemos una tabla de posiciones asociada a estos resultados donde colocaremos la cantidad de goles a favor (GF) y cantidad de goles en contra (GC) de cada equipo:

Equipos	GF	GC
Α	7	4
В	3	6
ACU	5	5 D
	15	15

Suma de Goles a favor = Suma de Goles en contra

Además:

$$\begin{pmatrix}
N^{\circ} \text{ de goles} \\
\text{del partido} \\
\mathbf{A} \text{ vs } \mathbf{C}
\end{pmatrix} = \begin{pmatrix}
Goles a \\
favor \\
\text{de } \mathbf{A}
\end{pmatrix} + \begin{pmatrix}
Goles a \\
favor \\
\text{de } \mathbf{C}
\end{pmatrix} - \begin{pmatrix}
Goles en \\
\text{contra} \\
\text{de } \mathbf{B}
\end{pmatrix}$$

Aplicación 2

Tres equipos juegan un triangular a una sola rueda, la tabla muestra algunos valores al final del triangular de la cantidad de goles a favor(GF) y goles en contra(GC). Se sabe que Alianza y Universitario empataron ¿Cuál es el resultado del partido entre Cristal y Universitario, respectivamente?

A) _	2 - 1	Equipos	GF	GC
B)	0 - 1	Alianza	5	4
C)	2 - 2	Universitario	4	3
D)	1 - 0	Cristal	1	

Resolución:

Nos piden el resultado del partido cristal vs universitario. Completamos la tabla

Equipos	GF	GC
Alianza	5	4
Universitario	4	3
Cristal	1	3

suma de GF= suma GC

Ubicamos los partidos

∴ El partido entre SC vs U quedó 0 - 1

Aplicación 3

En un campeonato quedaron como finalistas los tres equipos que se muestran en la tabla; estos disputaron entre si un torneo de todos contra todos, al final aparece una tabla de posiciones con sólo algunos datos. ¿Cuál fue el resultado del partido entre A y B respectivamente?

	PJ	PG	PP	PE	GF	GC
Α		2			5	0
В					3	
С				1		4

A) 4-1 **B**) 4-0 C) 3-1 D) 4-2

Resolución:

Nos piden el resultado del partido entre A y B De los datos:

	PJ	PG	PP	PE	GF	GC
Α	2	2	0	0	5	<u>(0)</u>
В	2	0	1	1	(3)	DU
С	2	0	1	1		4

Ubicamos los partidos:

Α	>	>	С
(1)			<u>(0)</u>

В	С
(3)	3

∴ El partido entre A y B quedó 4 - 0

www.aduni.edu.pe

