1 Enunciado

Num refrigerador por compressão de vapor operando em estado estacionário com vazão de 20 kg/min de HFC-134a, o evaporador fornece vapor saturado a -50 °C, o compressor tem eficiência de 75% e o condensador fornece um fluido a 1.0 MPa e 20 °C. No diagrama PH do HFC-134a, identifique o ponto correspondente a cada corrente do refrigerador. Calcule as potencias térmica e elétrica e o coeficiente de desempenho do refrigerador.

Dados:

- F = 20 kg/min
- Saída do evaporador => corrente 1
 - o temperatura dada
 - $T_1 = -50C$
 - o dado que é vapor saturado
 - \blacksquare $X \land V = V \land SAT(1)$
- Eficiência do compressor => processo 1-2
 - o eficiência dada
 - $\det_{12} = 75\%$
- Saída do condensador => corrente 3
 - o pressão dada
 - $P_3 = 1 \text{ MPa}$
 - temperatura dada
 - T_3 = 20C

Resolução:

2 ideal

- 1. Marcar a corrente 1 da qual foram dadas propriedades
 - 1. de $T_1=-50C \Rightarrow$ Encontrar a isoterma de -50C
 - 2. de $x^V=V^{SAT}(1) => Marcar a interseção da isoterma T_1 com a curva de ponto de orvalho$
 - 3. é possível ler a pressão da corrente no eixo y
 - 4. é possível ler a entalpia da corrente no eixo x
 - 5. é possível ler a entropia da corrente procurando qual isopleta passa pelo ponto marcado
- 2. Marcar a corrente 3, da qual já foram dadas 2 propriedades
 - 1. de $T_3 = 20 \Rightarrow$ procurar a isoterma
 - 2. de P_3 = 1000 => marcar a interseção da isoterma com a horizontal de pressão
 - 3. é possível ler a entalpia no eixo x
 - 4. é possível ler a entropia procurando a isopleta
 - 5. Note que o ponto fica à esquerda do envelope de fases, logo é liquido subresfriado
- 3. Calcular corrente 4
 - 1. Considerando evaporador isobárico
 - 1. P_4=P_1
 - 2. Considerando a válvula adiabática e sem trabalho \Rightarrow Q=0, W=0 :. \Delta H = 0 \Rightarrow isentálpica
 - 1. H_4=H_3
 - 3. a corrente 4 está na interseção entre a vertical de entalpia H_4=H_3 e a horizontal de pressão P_4=P_1
 - 1. é possível ler a temperatura procurando a isoterma
 - 2. é possível ler a entropia procurando a isopleta
 - 3. é possível ler a fração de vapor pois esse diagrama também possui isopletas de x^V dentro do envelope
- 4. Calcular corrente 2
 - 1. Considerando compressor adiabático e reversível => isoentrópico
 - 1. S 2 = S 1
 - 2. Considerando o condensador isobárico
 - 1. P_3=P_2

- 3. marcar o ponto da corrente 2 na interseção entre a horizaontal de P_3=P_2 com a isopleta de S_2=S_1
 - 1. é possivel ler temperatura buscando as isotermas proximas
 - 2. é possível ler entalpia no eixo x
- 5. trabalho no compressor
- 6. calor no condensador
- 7. calor no evaporador
- 8. Potencia térmica (energia por tempo) = Calor retirado (por massa) vezes vazão mássica
- 9. Potencia elétrica (energia por tempo) = Trabalho gasto (por massa) vezes vazão mássica
- 10. Coeficiente de operação (desempenho) = calor removido / trabalho gasto

3 considerando a eficiência de 75%

- 1. Resolução idem à anteriormente
- 2. Resolução idem à anteriormente
- 3. Resolução idem à anteriormente
- 4. Calcular corrente 2 ideal
 - 1. Resolução idem à anteriormente
- 5. Calcular corrente 2 real
 - 1. η_{bomba} é definida por: η_{bomba} =W_mínimo_isentropico / W_consumido_real $\Delta H=W$ $\eta_{bomba}=(H_2'-H_1)/(H_2-H_1)$
 - 2. Resolver para descobrir H_2
- 6. calcular trabalho no compressor não ideal
- 7. calcular potencia eletrica
- 8. calcular potencia termica (as correntes envolvidas nessa parte não mudaram)
- 9. calcular coeficiente de operação