

Grain coagulation during the protostellar collapse

Pierre Marchand¹, Vincent Guillet², Ugo Lebreuilly³, Mordecai-Mark Mac Low⁴

¹ IRAP Toulouse, ² U. Paris Sud, ³ CEA Saclay, ⁴ Museum of Natural History, New-York

Grains do grow during the protostellar collapse

pierre.marchand.astr@gmail.com

ERC Starting Grant "Chemtrip Grant agreement No 949278

The grain size-distribution does not evolve much in the enveloppe... ...but grows rapidly to $> 10 \mu m$ size in the first hydrostatic core and the disk!

Tweaking the equation of coagulation

Smoluchowski equation of coagulation (1916)

$$\frac{d\rho}{dt}(m,t) = -\int_{0}^{\infty} mK(m,m')n(m,t)n(m',t)dm' + \frac{1}{2}\int_{0}^{m} mK(m-m',m')n(m-m',t)n(m',t)dm'$$

Density variation of grain of mass m = destruction by coagulation with m' + creation by coagulation between m-m' and m'

"Easy" to solve but computationally expensive!

After some clever algebraic manipulations

Environment-only dependent variable: Density, Temperature, Dust-to-gas ratio, time...

Coagulation =

1D process parametrized by χ

User's manual: how to use in simulations?

- 1. Tabulate size-distributions for several values of $\chi \rightarrow use Ishinisan^*$!
- 2. Calculate χ in your simulation (inexpensive!),
- 3. Read the corresponding size-distribution from the pre-calculated table,
- 4. Do physics with grains!

* https://bitbucket.org/pmarchan/ishinisan (you can also use it to post-process your simulations!)

Impact on MHD resistivities and gas dynamics

Conclusions

- Grain coagulate during the protostellar collapse.
- They impact many aspects of star formation.
- Coagulation is expensive to compute, this method makes it affordable.
- It unlocks a larger range of grain physics in numerical simulations.

References

Guillet et al. 2020, A&A 643, 17 Marchand et al. 2021, A&A 649, 50 Marchand et al. 2022, A&A in press Marchand et al. 2022, in prep

Mathematically accurate and self-consistent!