Chpater 5: Infomation Criteria

5.1.Information Criteria & 5.2.Efficient Estimation and the Fisher Information Matrix

Gayoung Moon

2025 - 03 - 16

Descendants of Lagrange School of Mathematics, Statistics and Data Science Sungshin Women's University

Outline

- 1 Information Criteria
- 2 AIC and BIC

- 3 Example 45, 46
- 4 Efficient Estimator and the Fisher Infromation Matrix
- 5 Cramér Rao Inequality

Information Criterion

- Information criterion is an index for evaluating the validity of a statistical model from observation data.
- Information criterion refers to the evaluation of:
 - \bullet Fitness: how much the statistical model explains the data.
 - \bullet Simplicity: how simple the statistical model is.

One of the Important Problems in Linear Regression

- One of the important problems in linear regression: To select some p covariates based on N observations $(x_1,y_1),\cdots,(x_N,y_N)\in\mathbb{R}^p\times\mathbb{R}.$
- If there are too many covariates, then they overfit the data and try to explain the noise fluctuation by other covariates.

Subset S used as RSS(S)

- \bullet It isn't easy to choose $S \subseteq \{1, \cdots, p\}$ from the 2^p subsets when p is large.
 - 2^p subsets: $\{\}, \{1\}, \cdots, \{p\}, \{1, 2\}, \cdots, \{1, \cdots, p\}.$
- We express the fitness and simplicity by the residual sum of square(RSS) value RSS(S).
 - $\mathbf{RSS}(S)$ is based on the subset S and the cardinality $k(S) \coloneqq |S|$ of S.

Property of the Subset S

$$S \subseteq S' \Longrightarrow \begin{cases} \mathrm{RSS}(S) \geq \mathrm{RSS}(S') \\ k(S) \leq k(S') \end{cases} .$$

• It means that the larger the k = k(S), the smaller $\hat{\sigma}_k^2 = \frac{\text{RSS}_k}{N}$ is, where $\text{RSS}_k := \min_{k(S)=k} \text{RSS}(S)$.

Outline

1 Information Criteria

2 AIC and BIC

- 3 Example 45, 46
- 4 Efficient Estimator and the Fisher Infromation Matrix
- 5 Cramér Rao Inequality

Defination of the AIC and BIC

- Akaike's Information Criterion(AIC) and the Bayesian Information Criterion(BIC) are well known.
- The AIC and BIC are defined by:
 - $\bullet \ \ \mathrm{AIC} := N \log \hat{\sigma}_k^2 + 2k.$
 - BIC := $N \log \hat{\sigma}_k^2 + k \log N$.
- The coefficient of determination is:
 - $1 \frac{\text{RSS}_k}{\text{TSS}}$.
 - It increases monotonically with k and reaches its maximum value at k = p.

Properties of the AIC and BIC

- The AIC and BIC values:
 - They decrease before reaching the minimum at some $0 \le k \le p$.
 - In the case of k > p, they increase.
- The adjusted coefficient of determination maximizes $1 \frac{\text{RSS}_k/(N-k-1)}{\text{TSS}/(N-1)}$ at some $0 \le k \le p$.
 - It is often much larger than those of the AIC and BIC.

Outline

1 Information Criteria

- 2 AIC and BIC
- 3 Example 45, 46
- 4 Efficient Estimator and the Fisher Infromation Matrix
- 5 Cramér Rao Inequality

[Example 45] Finding the Set of Covariates that minimizes the AIC and BIC

- In 'RSS.min(X, y, T)' function:
 - Input values:

X: Independent variables matrix $(n \times p)$,

y: Dependent variable vector $(n \times 1)$,

T: A combination(matrix) of X to select from.

• Output values:

value: Minimum of the RSS,

set: Combination of X with minimum RSS.

• 'RSS.min(X, y, T)' function is using the following formula:

$$RSS = \sum_{i=1}^{N} (y_i - \hat{y_i})^2.$$

[Example 45] Finding the Set of Covariates that minimizes the AIC and BIC (Contd.)

- In 'AIC(BIC).min' function:
 - \bullet 'combn(1:p, k)' generates all combinations of k variables out of a total of p.
 - Output values:
 AIC(BIC).min: Minimum of the AIC/BIC,
 set.min: The combination of variables with the lowest AIC/BIC.
- 'AIC(BIC).min' function is using the following formula:

$$\begin{split} \text{AIC} &:= N \log \hat{\sigma}_k^2 + 2k, \\ \text{BIC} &:= N \log \hat{\sigma}_k^2 + k \log N. \end{split}$$

[Example 45] Finding the Set of Covariates that minimizes the AIC and BIC (Contd.)

• In the AIC case:

```
RSS.min=function(X,y,T){
  m=ncol(T); S.min=Inf
  for(j in 1:m){
    q=T[,j]; S=sum((lm(y-X[,q]))fitted.values - y)^2)/n
  if(S<S.min){S.min=S; set.q=q}</pre>
return(list(value=S.min,set=set.q))}
library (MASS) # We use the Boston data set in the R MASS package.
df=Boston; X=as.matrix(df[,c(1,3,5,6,7,8,10,11,12,13)]); y=df[[14]];
# We assume the 'MEDV' variable is responses
# and the remaining variables are covariates.
p=ncol(X); n=length(y)
AIC.min=Inf
for(k in 1:p){
  T=combn(1:p,k); res=RSS.min(X,y,T)
  AIC= n*log(res$value/n)+2*k ##
  if(AIC<AIC.min){AIC.min=AIC; set.min= res$set}}</pre>
```

[Example 45] Finding the Set of Covariates that minimizes the AIC and BIC (Contd.)

• AIC:

```
## Warning: 'MASS' R 4.4.3
## [1] -1530.84
## [1] 1 3 4 6 8 9 10
```

- In the BIC case:
 - If we change the line 'n*log(S.min) + 2*k' marked by ## in the AIC code with 'n*log(S.min) + k*log(N)', then the quantity becomes the BIC.
- BIC:

```
## [1] -1504.61
## [1] 3 4 6 8 9 10
```

- Both AIC and BIC values have negative values.
 - \rightarrow It means that AIC and BIC may not be suitable as criteria for model

[Example 46] The Plot of Changes of AIC/BIC with # of Covariates

Changes of AIC/BIC with # of Covariates

 The BIC is larger than the AIC, but the BIC chooses a simpler model with fewer variables than the AIC.

Outline

1 Information Criteria

2 AIC and BIC

- 3 Example 45, 46
- 4 Efficient Estimator and the Fisher Infromation Matrix
- 5 Cramér Rao Inequality

Probability Density Function of the Observations

• Suppose that:

$$x_1, \cdots, x_N \in \mathbb{R}^{p+1}$$

•
$$y_1, \dots, y_N \in \mathbb{R}$$

- Random variables: $e_1, \dots, e_n = \varepsilon \sim N(0, \sigma^2)$
- Unknown constants: $\beta_0 \in \mathbb{R}, \beta \in \mathbb{R}^p \to \beta \in \mathbb{R}^{p+1}$
- In other words,

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^{N \times (p+1)}, \ y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^N, \ \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} \in \mathbb{R}^{p+1}.$$

• The observations have been generated by the realizations $y_i = x_i \beta + \beta_0 + \varepsilon, i = 1, \dots, N$ with random variables and unknown constants.

Probability Density Function of the Observations (Contd.)

• When $f(y|x,\beta)$ follows a multivariate Gaussian distribution, the probability density function(PDF) can be written as follows:

$$f(y|x,\beta) := \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp\Big\{-\frac{1}{2\sigma^2}\|y - x\beta\|^2\Big\}.$$

The Value of $\hat{\beta}^{LSE}$ and the Likelihood

•
$$y = X\beta + \varepsilon$$

• In the least squares method, we estimated β by:

$$\hat{\beta}^{LSE} = (X^{\top}X)^{-1}X^{\top}y.$$

 \bullet $\hat{\beta}^{LSE}$ coincides with the $\beta \in \mathbb{R}^{p+1}$ that maximizes the likelihood

$$\begin{split} L :&= \prod_{i=1}^N f(y_i|x_i,\beta) \\ &= \prod_{i=1}^N \left(\frac{1}{\sqrt{(2\pi\sigma^2)}} \exp\Big\{-\frac{1}{2\sigma^2}(y_i-x_i\beta)^2\Big\}\right). \end{split}$$

Caculating log-likelihood

• The log-likelihood is written by:

$$\begin{split} \ell &:= \log L \\ &= \log \prod_{i=1}^N \left(\frac{1}{\sqrt{(2\pi\sigma^2)}} \exp\left\{ -\frac{1}{2\sigma^2} (y_i - x_i \beta)^2 \right\} \right) \\ &= \log (2\pi\sigma^2)^{-\frac{N}{2}} + \log \prod_{i=1}^N \exp\left\{ -\frac{1}{2\sigma^2} (y_i - x_i \beta)^2 \right\} \\ &= -\frac{N}{2} \log (2\pi\sigma^2) - \prod_{i=1}^N \frac{1}{2\sigma^2} (y_i - x_i \beta)^2 \\ &= -\frac{N}{2} \log (2\pi\sigma^2) - \frac{1}{2\sigma^2} \|y - X\beta\|^2. \end{split}$$

• If $\sigma^2 > 0$ is fixed, maximizing l is equivalent to minimizing $||y - X\beta||^2$.

Differentiate log-likelihood with σ^2

• If we partially differentiate ℓ w.r.t. σ^2 :

$$\begin{split} \frac{\partial \ell}{\partial \sigma^2} &= \frac{\partial}{\partial \sigma^2} \Big(-\frac{N}{2} \log \left(2\pi \sigma^2 \right) - \frac{1}{2\sigma^2} \|y - X\beta\|^2 \Big) \\ &= \frac{\partial}{\partial \sigma^2} \Big(-\frac{N}{2} \log \left(2\pi \sigma^2 \right) \Big) - \frac{\partial}{\partial \sigma^2} \Big(\frac{1}{2\sigma^2} \|y - X\beta\|^2 \Big) \\ &= -\frac{N}{2} \frac{1}{2\pi\sigma^2} 2\pi - \|y - X\beta\|^2 \Big(-\frac{1}{2} \Big) \frac{1}{(\sigma^2)^2} \\ &= -\frac{N}{2\sigma^2} + \frac{\|y - X\beta\|^2}{2(\sigma^2)^2} = 0. \end{split}$$

Differentiate log-likelihood with σ^2 (Contd.)

• Using $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$, we find:

$$\hat{\sigma}^2 := \frac{1}{N}\|y - X\hat{\beta}\|^2 = \frac{1}{N}\|y - \hat{y}\|^2 = \frac{RSS}{N}.$$

• It is the maximum likelihood estimate of $\hat{\sigma}^2$.

Efficient Estimator and the Fisher Information Matrix

- Efficient Estimator:
 - When there are multiple unbiased estimators, the estimator with the smallest variance is called an efficient estimator.
- Let $\nabla \ell$ be the vector consisting of $\frac{\partial \ell}{\partial \beta_j}, \ j=0,1,\cdots,p,$
 - \rightarrow The fisher information matrix:

The covariance matrix J of $\nabla \ell$ divided by N.

Differentiation of the Score Function

• For $f^N(y|x,\beta) := \prod_{i=1}^N f(y_i|x_i,\beta)$,

$$\begin{split} \nabla \ell &= \frac{\nabla f^N(y|x,\beta)}{f^N(y|x,\beta)} \\ &= \frac{\nabla \prod_{i=1}^N f(y_i|x_i,\beta)}{f^N(y|x,\beta)} \\ &= \frac{\nabla \prod_{i=1}^N \left(\frac{1}{\sqrt{(2\pi\sigma^2)}} \exp\left\{-\frac{1}{2\sigma^2}(y_i-x_i\beta)^2\right\}\right)}{f^N(y|x,\beta)} \\ &= \frac{f^N(y|x,\beta) \cdot \nabla \left(-\frac{1}{2\sigma^2} \sum_{i=1}^N (y_i-x_i\beta)^2\right)}{f^N(y|x,\beta)} \\ &= \frac{f^N(y|x,\beta) \cdot \left(-\frac{1}{\sigma^2} \sum_{i=1}^N (y_i-x_i\beta)x_i\right)}{f^N(y|x,\beta)} \\ &= -\frac{1}{\sigma^2} \sum_{i=1}^N (y_i-x_i\beta)x_i. \end{split}$$

Integral of $\nabla f^N(y|x,\beta)$

• If we partially differentiate both sides of $\int f^N(y|x,\beta)dy = 1$ w.r.t. β , we have that $\int \nabla f^N(y|x,\beta)dy = 0$.

$$\begin{split} \int \nabla f^N(y|x,\beta) \, dy &= \int \nabla \prod_{i=1}^N \left(\frac{1}{\sqrt{(2\pi\sigma^2)}} \exp\left\{ -\frac{1}{2\sigma^2} (y_i - x_i\beta)^2 \right\} \right) dy \\ &= \int f^N(y|x,\beta) \cdot \nabla \left(-\frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - x_i\beta)^2 \right) dy \\ &= \int f^N(y|x,\beta) \cdot \left(-\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i\beta) x_i \right) dy \\ &= -\frac{1}{\sigma^2} \sum_{i=1}^N x_i \int (y_i - x_i\beta) f^N(y|x,\beta) \, dy \\ &= -\frac{1}{\sigma^2} \sum_{i=1}^N x_i E[y_i - x_i\beta] \\ &= -\frac{1}{\sigma^2} \sum_{i=1}^N x_i (x_i\beta - x_i\beta) = 0. \end{split}$$

Expectation of the Score Function

• We have that:

$$\begin{split} E\nabla\ell &= \int \nabla l \cdot f^N(y|x,\beta) \, dy \\ &= \int \frac{\nabla f^N(y|x,\beta)}{f^N(y|x,\beta)} \, f^N(y|x,\beta) \, dy \\ &= \int \left(-\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i\beta) x_i \right) f^N(y|x,\beta) \, dy \\ &= -\frac{1}{\sigma^2} \sum_{i=1}^N x_i \int (y_i - x_i\beta) \, f^N(y|x,\beta) \, dy \\ &= -\frac{1}{\sigma^2} \sum_{i=1}^N x_i \, E[y_i - x_i\beta] \, = -\frac{1}{\sigma^2} \sum_{i=1}^N x_i \, (E[y_i] - x_i\beta) \\ &= -\frac{1}{\sigma^2} \sum_{i=1}^N x_i \, (x_i\beta - x_i\beta) \, = \int \nabla f^N(y|x,\beta) \, dy \, = 0. \end{split}$$

Differentiation of $E[\nabla \ell]$

And

$$\begin{split} 0 &= \nabla \otimes \left[E \nabla \ell \right] \\ &= \nabla \otimes \int (\nabla l) f^N(y|x,\beta) dy \\ &= \int (\nabla^2 l) f^N(y|x,\beta) dy + \int (\nabla l) \{ \nabla f^N(y|x,\beta) \} dy \\ &= \int \nabla \Big\{ -\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i\beta) x_i \Big\} f^N(y|x,\beta) \, dy + \int \Big\{ -\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i\beta) x_i \Big\} \{ \nabla f^N(y|x,\beta) \} dy \\ &= \int \frac{1}{\sigma^2} \sum_{i=1}^N x_i x_i^\top f^N(y|x,\beta) \, dy + \int \Big\{ -\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i\beta) x_i \Big\} \Big\{ -\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i\beta) x_i \Big\} \, dy \\ &= \frac{1}{\sigma^2} \sum_{i=1}^N x_i x_i^\top \int f^N(y|x,\beta) \, dy + \int \Big\{ -\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i\beta) x_i \Big\}^2 \, dy \\ &= \frac{1}{\sigma^2} \sum_{i=1}^N x_i x_i^\top + \int \Big\{ -\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i\beta) x_i \Big\}^2 \, dy \\ &= E[\nabla^2 \ell] + E[(\nabla \ell)^2]. \end{split}$$

The Covariance Matrix J of $\nabla \ell$

• We can verify that it is as follows:

$$E[\nabla^2 \ell] + E[(\nabla \ell)^2] = 0.$$

$$\div E[(\nabla \ell)^2] = -E[\nabla^2 \ell].$$

• Then, the above equation implies that:

$$J=\frac{1}{N}E[(\nabla\ell)^2]=-\frac{1}{N}E[\nabla^2\ell].$$

Outline

1 Information Criteria

2 AIC and BIC

- 3 Example 45, 46
- 4 Efficient Estimator and the Fisher Infromation Matrix
- 5 $Cram\'{e}r Rao$ Inequality

$Cram\acute{e}r-Rao$ Inequality

- Cramér Rao inequality is:
 - Inequality that gives a lower bound on the variance of the discomfort estimate.
 - It is expressed as the inverse matrix of the fisher information matrix.

$$Var(\tilde{\beta}) \geq (NJ)^{-1}.$$

- $\tilde{\beta} \in \mathbb{R}^{(p+1)}$: unbiased estimator.
- $(NJ)^{-1}$: the fisher information matrix $\in \mathbb{R}^{(p+1)\times (p+1)}$.

Definition of log-likelihood Function and Score Function

• We defined the log-likelihood function above as follows:

$$\ell := \log L = -\frac{N}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\|y - X\beta\|^2.$$

• And we can also define the score function as the slope of the log-likelihood:

$$\nabla \ell := -\frac{1}{\sigma^2} \sum_{i=1}^N (y_i - x_i \beta) x_i.$$

Definition of the Fisher Information Matrix

ullet The fisher information matrix J is expressed as the square of the expectation of the score function.

$$J = \frac{1}{N} E[(\nabla \ell)^2] = \frac{1}{N\sigma^4} E[\sum_{i=1}^N (y_i - x_i\beta)^2 x_i]$$

• In Gaussian distribution, $E[(y_i - x_i\beta)^2] = \sigma^2$:

$$J = \frac{1}{N\sigma^2} \sum_{i=1}^{N} x_i.$$

Propositoin of $Cram\acute{e}r-Rao$ **Inequality**

- The least squares estimate satisfies the equality part of the inequality.
- \bullet We know $\int f^N(y|x,\beta)=1$ and this end, if we partially differentiate both sides of

$$\int \tilde{\beta}_i f^N(y|x,\beta) dy = \beta_i$$

w.r.t β_j , we have the following equation:

$$\int \tilde{\beta_i} \frac{\partial}{\partial \beta_j} f^N(y|x,\beta) dy = \begin{cases} 1, i=j \\ 0, i\neq j \end{cases}.$$

Propositoin of Cramér – Rao Inequality (Contd.)

- If we write this equation in terms of its covariance matrix, we have that $E[\tilde{\beta}(\nabla \ell)^{\top}] = I$, where I is a unit matrix of size (p+1).
- And we know $E[\nabla \ell] = 0$, we rewrite the above equation as follows:

$$E[(\tilde{\beta}-\beta)(\nabla \ell)^\top] = I.$$

Propositoin of Cramér – Rao Inequality (Contd.)

• Then, the covariance matrix of the vector of size 2(p+1) is:

$$\begin{bmatrix} V(\tilde{\beta}) & I \\ I & NJ \end{bmatrix}.$$

- \bullet Because both $V(\tilde{\beta})$ and J are covariance matrices, they are non-negative definite.
 - Non-negative definite: Let A be an $n \times n$ real symmetric matrix, A is non-negative definite if:

$$xAx \ge 0$$
, for any $x \in \mathbb{R}^n$.

Propositoin of Cramér – Rao Inequality (Contd.)

• Then, we claim that both sides of matrixes are non-negative definite:

$$\begin{bmatrix} V(\tilde{\beta})-(NJ)^{-1} & 0 \\ 0 & NJ \end{bmatrix} = \begin{bmatrix} I & -(NJ)^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} V(\tilde{\beta}) & I \\ I & NJ \end{bmatrix} \begin{bmatrix} I & 0 \\ -(NJ)^{-1} & I \end{bmatrix}.$$

- For an arbitrary $x \in \mathbb{R}^n$, if $xAx \geq 0$, for an arbitrary $B \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^m$, we have that $yBABy \geq 0$, which means that $V(\tilde{\beta}) (NJ)^{-1}$ is non-negative definite.
- So, we have the conclusion:

$$\div V(\tilde{\beta}) \geq (NJ)^{-1}.$$

Q & A

Thank you:)