MATH S1202: Calculus IV Quiz 4 June 16, 2016

Define curves in the following way.

- Let D be the region in the upper half xy-plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- Let C denote the boundary of D with the positive orientation. (Note that C consists of 4 arcs.)
- Let C_1 denote the piece of C lying along the circle $x^2 + y^2 = 4$.
- 1. Determine whether the vector field is conservative and if it is conservative, find a potential function.
 - (a) $\vec{F}(x,y) = (x^3, y^3)$
 - (b) $\vec{G}(x,y) = (-y^3, x^3)$

Solution. (a) The vector field \vec{F} is conservative and a potential for \vec{F} is given by $f(x,y) = \frac{1}{4}(x^4 + y^4)$.

- (b) If we denote the components of \vec{G} by $P = -y^3$ and $Q = x^3$, then we compute that $Q_x = 3x^2 \neq -3y^2 = P_y$. Since the domain of \vec{G} is all of \mathbb{R}^3 , which is simply connected, we conclude that \vec{G} is not conservative.
- **2.** Compute the line integral of the vector field over the curve C_1 .
 - (a) $\vec{F}(x,y) = (x^3, y^3)$
- (b) $\vec{G}(x,y) = (-y^3, x^3)$

Hint: For (b), you may use the trig identity

$$\sin^4 t + \cos^4 t = \frac{1}{4} \left(\cos(4t) + 3 \right)$$

Solution. (a) The fundamental theorem of line integrals implies that

$$\int_{C_1} \vec{F} \cdot d\vec{r} = f(-2,0) - f(2,0) = 0,$$

where $f(x,y) = \frac{1}{4}(x^4 + y^4)$ from 1(a).

(b) We parametrize C_1 by $\vec{r}(t) = (2\cos(t), 2\sin(t))$ for $0 \le t \le \pi$. The derivative is given by $\vec{r}'(t) = (-2\sin(t), 2\cos(t))$. We compute that

$$\int_{C} \vec{G} \cdot d\vec{r} = \int_{0}^{\pi} \vec{G}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

$$= \int_{0}^{\pi} \langle -(2\sin(t))^{3}, (2\cos(t))^{3} \rangle \cdot \langle -2\sin(t), 2\cos(t) \rangle dt$$

$$= \int_{0}^{\pi} 16 \int_{0}^{\pi} (\sin^{4}(t) + \cos^{4}(t)) dt$$

$$= 4 \int_{0}^{\pi} (\cos(4t) + 3) dt$$

$$= 12\pi.$$

- **3.** Compute the line integral of the vector field over the closed curve C.
 - (a) $\vec{F}(x,y) = (x^3, y^3)$

(b)
$$\vec{G}(x,y) = (-y^3, x^3)$$

Solution. (a) Since C is closed and \vec{F} is conservative, we conclude that $\int_C \vec{F} \cdot d\vec{r} = 0$. (b) The curve C is the boundary of the region D described in polar coordinates

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

by

$$D = \begin{cases} 0 \leqslant \theta \leqslant \pi \\ 1 \leqslant r \leqslant 2 \end{cases}.$$

We may apply Green's theorem to find that

$$\begin{split} \int_C \vec{G} \cdot d\vec{r} &= \iint_D (3x^2 + 3y^2) dA \\ &= \int_0^\pi \int_1^2 3r^2 r \, dr \, d\theta \\ &= \frac{3\pi}{4} \cdot r^4 \big|_{r=1}^{r=2} \\ &= \frac{3\pi}{4} \cdot (16 - 1) \\ &= \frac{45\pi}{4}. \end{split}$$