Деление вещественных чисел (в формате с плавающей точкой)

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «информатика» (2 июля 2016 г.)

Содержание

- Беззнаковое деление мантисс
 - Деление мантисс с восстановлением остатков
 - Деление без восстановления остатков

Деление мантисс со знаком

Деление чисел в формате с плавающей точкой

$$\frac{A}{d} = q = \frac{m_A \cdot 2^{p_A}}{m_d \cdot 2^{p_d}} = \left(\frac{m_A}{m_d}\right) \cdot 2^{(p_A - p_d)},$$

где A — делимое, d — делитель, q — частное.

Отдельно обрабатываются исключительные случаи:

- деления на ноль;
- Деления ноля.

Алгоритм деления ненулевых чисел $\frac{A}{B}$

- **1** Вычитанием из порядка делимого порядка делителя определяется порядок частного: $p_q = (p_A p_d)$.
- ② Делением мантиссы делимого на мантиссу делителя определяется мантисса частного: $m_q = \frac{m_A}{m_d}$. Деление мантисс см. далее.
- ullet Выполняется нормализация частного q. Фиксируется результат или ошибка.

		— мантисса частного
0 , 7 3 8	:0,345	— мантиссы делимого:делителя

	2					I	— мантисса частного
		,		2	_	0.245	
	0	,	7		8	:0,345	— мантиссы делимого:делителя
	0	,	7	3	8		
-	0	,	6	9	0		
	0	,	*	4	8		$q_0=2$

	2	,	1					— мантисса частного
	0	,	7	3	8		:0,345	— мантиссы делимого:делителя
	0	,	7	3	8			
-	0	,	6	9	0			
=	0	,	*	4	8			$q_0=2$
	0	,	*	4	8	0		
-	0	,	*	3	4	5		
=	0	,	*	1	3	5		$q_{-1}=1$

	_			_				1	I.
	2	,	1	3					— мантисса частного
	0	,	7	3	8			:0,345	— мантиссы делимого:делителя
	0	,	7	3	8				
-	0	,	6	9	0				
=	0	,	*	4	8				$q_0=2$
	0	,	*	4	8	0			
-	0	,	*	3	4	5			
=	0	,	*	1	3	5			$q_{-1}=1$
	0	,	*	1	3		0		
-	0	,	*	1	0	3	5		
=	0	,	*	*	3	1	5		$q_{-2} = 3$

	2	,	1	3	9					— мантисса частного
	0	,	7	3	8				:0,345	— мантиссы делимого:делителя
	0	,	7	3	8					
-	0	,	6	9	0					
=	0	,	*	4	8					$q_0=2$
	0	,	*	4	8	0				
-	0	,	*	3	4	5				
=	0	,	*	1	3	5				$q_{-1}=1$
	0	,	*	1	3	5	0			
-	0	,	*	1	0	3	5			
=	0	,	*	*	3	1	5			$q_{-2} = 3$
	0	,	*	*	3	1	5	0		
-	0	,	*	*	3	1	0	5		
=	0	,	*	*	*	*	4	5		$q_{-3} = 9$

	2	,	1	3	9	1					— мантисса частного
	0	,	7	3	8					:0,345	— мантиссы делимого:делителя
	0	,	7	3	8						
-	0	,	6	9	0						
=	0	,	*	4	8						$q_0=2$
	0	,	*	4	8	0					
-	0	,	*	3	4	5					
=	0	,	*	1	3	5					$q_{-1}=1$
	0	,	*	1	3	5	0				
-	0	,	*	1	0	3	5				
=	0	,	*	*	3	1	5				$q_{-2} = 3$
	0	,	*	*	3	1	5	0			
-	0	,	*	*	3	1	0	5			
=	0	,	*	*	*	*	4	5			$q_{-3} = 9$
	0	,	*	*	*	*	4	5	0		
-	0	,	*	*	*	*	3	4	5		
=	0	,	*	*	*	*	1	0	5		$q_{-4}=1$ — для округления!

		Частное
0 , 1 0 1	:0.110	Делимое

	0	,					Частное
	0	,	1	0	1	:0.110	Делимое
	0	,	1	0	1		
-	0		0		0		
_	0	,	1	0	1		$q_0 = 0$

	0	,	1					Частное
	0	,	1	0	1		:0.110	Делимое
	0	,	1	0	1			
-	0	,	0	0	0			
=	0	,	1	0	1			$q_0 = 0$
	0	,	1	0	1	0		
-	0	,	*	1	1	0		
=	0	,	*	1	0	0		$q_{-1}=1$

	0	,	1	1					Частное
	0	,	1	0	1			:0.110	Делимое
	0	,	1	0	1				
-	0	,	0	0	0				
=	0	,	1	0	1				$q_0 = 0$
	0	,	1	0	1	0			
-	0	,	*	1	1	0			
=	0	,	*	1	0	0			$q_{-1}=1$
	0	,	*	1	0	0	0		
-	0	,	*	*	1	1	0		
=	0	,	*	*	*	1	0		$q_{-2}=1$
								1	

	0	,	1	1	0					Частное
	0	,	1	0	1				:0.110	Делимое
	0	,	1	0	1					
-	0	,	0	0	0					
=	0	,	1	0	1					$q_0 = 0$
	0	,	1	0	1	0				
-	0	,	*	1	1	0				
=	0	,	*	1	0	0				$q_{-1}=1$
	0	,	*	1	0	0	0			
-	0	,	*	*	1	1	0			
=	0	,	*	*	*	1	0			$q_{-2}=1$
	0	,	*	*	*	1	0	0		
-	0	,	*	*	*	0	0	0		
=	0	,	*	*	*	1	0	0		$q_{-3} = 0$

	0	,	1	1	0	ĩ					Частное
	0	,	1	0	1					:0.110	Делимое
	0	,	1	0	1						
-	0	,	0	0	0						
=	0	,	1	0	1						$q_0 = 0$
	0	,	1	0	1	0					
-	0	,	*	1	1	0					
=	0	,	*	1	0	0					$q_{-1}=1$
	0	,	*	1	0	0	0				
-	0	,	*	*	1	1	0				
=	0	,	*	*	*	1	0				$q_{-2}=1$
	0	,	*	*	*	1	0	0			
-	0	,	*	*	*	0	0	0			
=	0	,	*	*	*	1	0	0			$q_{-3} = 0$
	0	,	*	*	*	1	0	0	0		
-	0	,	*	*	*	*	1	1	0		
=	0	,	*	*	*	*	*	1	0		$q_{-4} = 1$, только для округления!

Схема деления мантисс — пособом Потенциально бесконечная точность

Начальное состояние:

Схема деления мантисс — способом Потенциально бесконечная точность

Конечное состояние:

Схема деления мантисс II-м способом

Начальное состояние:

Схема деления мантисс II-м способом

Конечное состояние:

Деление нормализованных двоичных мантисс

Нормализованная мантисса вещественного числа X eq 0

 m_X представляет собой число, целая часть которого — ноль, а в старшем разряде дробной части — единица: $(0.\underbrace{1xxx\cdots xxx})_2$

мантисса

Так как нормализованная мантисса — это число из интервала: $\left[\frac{1}{2},1\right),$ то результат деления мантисс будет находиться в $\left(\frac{1}{2},2\right).$

Результат либо нормализован, либо нет:

$$\begin{aligned} &(0.1xxx\cdots xxx)_2 \in \left(\frac{1}{2},1\right),\\ &(1.xxxx\cdots xxx)_2 \in [1,2) \end{aligned}$$

Ситуации ПРС и ПМР

Как и в умножении с плавающей точкой, возможны ситуации:

- ПРС, возникающей, когда результат вычитания порядков операндов выходит за пределы представления положительных порядков. При делении ситуация ПРС является неустранимой, так как в процессе нормализации порядок результата может только увеличиваться. В случае ПРС — фиксируется ошибка вычислений.
- ПМР, возникающей, когда результат вычитания порядков операндов выходит за пределы представления отрицательных порядков. При делении ситуация ПМР является устранимой, так как в процессе нормализации порядок результата может увеличиваться и порядок результата может «вернуться» в диапазон. В случае ПМР — в качестве результата выдается ноль (и при необходимости устанавливается ПМР-флаг).

Алгоритм деления мантисс с восстановлением остатков Вход: n-разрядные мантиссы операндов, p_q — порядок результата

- \bullet $i \leftarrow 0$; в соответствии со схемой способа инициализировать регистры: остатка Δ , делителя d, частного q.
- \bigcirc Получить новый остаток $\triangle \leftarrow (\triangle d)$;
- ullet Если $\Delta \geq 0$, то в младший разряд частного занести 1. Если i=0 (ненормализованный результат), то $i \leftarrow (i+1)$; $p_q \leftarrow (p_q+1)$.
- ① Если $\Delta < 0$, то в младший разряд частного занести 0 и выполнить восстановление старого значения остатка: $\Delta \leftarrow (\Delta + d)$.
- $oldsymbol{0}$ B соответствии со схемой выполнить сдвиги регистров: q, Δ , d.
- $m{arphi}$ Выполнить округление (не обязательный шаг), получив еще один остаток $\Delta \leftarrow (\Delta d)$ и увеличив частное на единицу, если $\Delta \geq 0$.

Форматы для примеров

О С порядком:

где разряды [9:4] — ПК мантиссы, [9] — знак числа, [8:4] — разряды нормализованного модуля мантиссы, [3:0] — ПК порядка, [3] — знак порядка, [2:0] — модуль порядка.

О С характеристикой:

где разряды [9:4] — ПК мантиссы, [9] — знак числа, [8:4] — разряды нормализованного модуля мантиссы, [4:0] — характеристика.

Деление (-29)/50 с восстановлением остатков I-й способ Операнды и получение порядка частного

Определяется предварительный порядок частного. Используем для работы с порядками модифицированный дополнительный код:

$$+ \frac{00,101}{11,010}$$

$$\frac{11,010}{11,111}$$

МДК
$$(p_q) = 11,111.$$

Деление (-29)/50 с восстановлением остатков l-й способ Деление мантисс

Частное q, \leftarrow	дел-е, $\Delta \leftarrow$	дел-ль, <i>d</i>	прим.	
	0,11101	0,11001	операнды; $i=0$	
1	0,11101+1,00111=0,00100		$\Delta_1 = \Delta_0, p_q \leftarrow (p_q + 1);$	
			МДК $(p_q) = 00,000;$	
1.	0,0100.		Сдвиги;	
10	0,0100.+1,00111=1,01111		$\Delta_2 < 0$;	
	1,01111+0,11001=0,0100.		Восстановление Δ_2	
10.	0,100		Сдвиги;	
100	0,100+1,00111=1,10111		$\Delta_3 < 0$;	
	1,10111+0,11001=0,100		Восстановление Δ_3	
. 100.	1,00		Сдвиги;	
. 1001	1,00+1,00111=0,00111		$\Delta_4 \geq 0$;	
1001.	0,0111.		Сдвиги;	
10010	0,0111.+1,00111=1,10101		$\Delta_5 < 0$;	
Округление необязательно				
	1,10101+0,11001=0,0111.		Восстановление Δ_5	
	0,111		Сдвиг Δ , но не q ;	
10011	0,111+1,00111=0,00011		$\Delta_6 \geq 0, m_q \leftarrow (m_q + 1);$	

Деление (-29)/50 с восстановлением остатков I-й способ Фиксация результата

- Инкремент мантиссы из-за округления не повлек её ПРС нормализация не нужна.
- Переполнения порядка частного не было: МДК $(p_q) = 00$,000.
- ullet Знак результата $1 \oplus 0 = 1$.

Результат с округлением:

Результат без округления:

Деление без восстановления остатков

Если новый остаток Δ получается отрицательным, то к нему прибавляется делитель, чтобы восстанавить старое (положительное) значение остатка. Чтобы не тратить на это время — проследим, что происходит к моменту получения следующего остатка Δ' .

• В первом способе:

$$\Delta' = egin{cases} 2 \cdot \Delta + d, & \text{ если } \Delta < 0 \colon 2 \cdot (\underbrace{\Delta + d}_{\mathsf{B.O.}}) - d = 2 \cdot \Delta + d, \ 2 \cdot \Delta - d, & \text{ если } \Delta \geq 0. \end{cases}$$

• Во втором способе:

$$\Delta' = egin{cases} \Delta + d/2, & ext{ если } \Delta < 0: (\underbrace{\Delta + d}_{ ext{B.O.}}) - d/2 = \Delta + d/2, \ \Delta - d/2, & ext{ если } \Delta \geq 0. \end{cases}$$

Алгоритм деления мантисс без восстановления остатков Вход: n-разрядные мантиссы операндов, p_{α} — порядок результата

- **1** $i \leftarrow 0$; в соответствии со схемой способа инициализировать регистры: остатка Δ , делителя d, частного q.
- ② Получить новый остаток: если $\Delta \geq 0$, то $\Delta \leftarrow (\Delta d)$, иначе $\Delta \leftarrow (\Delta + d)$.
- ullet Если $\Delta \geq 0$, то в младший разряд частного занести 1. Если i=0 (ненормализованный результат), то $i \leftarrow (i+1)$; $p_q \leftarrow (p_q+1)$.
- $oldsymbol{0}$ $\,$ Если $\Delta < 0$, то в младший разряд частного занести 0 .
- lacktriangle B соответствии со схемой выполнить сдвиги регистров: q, Δ , d.
- $m{Q}$ Выполнить округление (не обязательный шаг), получив еще один остаток (см. шаг 2) и увеличив частное на единицу, если $\Delta \geq 0$.

Деление 50/(-29) без ВО І-й способ Операнды и получение характеристики частного

$$A = 50 = \frac{9 \cdot 8 \cdot 4 \cdot 3 \cdot 0}{0 \cdot 11001 \cdot 1110}$$

$$B = -29 = \frac{9 \cdot 8 \cdot 4 \cdot 3 \cdot 0}{1 \cdot 11101 \cdot 1101}$$

Определяется харатеристика частного: $c_q = (c_A - c_d) + \Delta$. Используем для работы с характеристиками МДК:

$$00,1110+11,0011+00,1000=00,1001.$$

МДК
$$(c_q) = 00,1001.$$

Деление 50/(-29) без ВО І-й способ Деление мантисс

Частное m_q, \leftarrow	дел-е, △ ←	дел-ль, <i>d</i>	прим.		
	00,11001	00,11101	операнды;		
0	00,11001+11,00011=11,11100		$-d,\Delta_0<0$; Р-т нормализован!		
0.	11,1100.		сдвиг;		
01	11,1100.+00,11101=00,10101		$+d, \Delta_1 \geq 0;$		
01 .	01,0101.		сдвиг;		
011	01,0101.+11,00011=00,01101		$-d, \Delta_2 \geq 0;$		
.011.	00,1101.		сдвиг;		
.0110	00,1101.+11,00011=11,11101		$-d, \Delta_3 < 0;$		
0110.	11,1101.		сдвиг;		
01101	11,1101.+00,11101=00,10111		$+d, \Delta_4 \geq 0;$		
1101.	01,0111.		сдвиг; Нормализация!		
11011	01,0111.+11,00011=00,10001		$-d, \Delta_5 \geq 0;$		
Округление необязательно					
	01,0001.		сдвиг;		
11100	01,0001.+11,00011=00,00101		$-d, \Delta_6 \geq 0, m_q \leftarrow (m_q + 1);$		

Деление 50/(-29) с восстановлением остатков I-й способ Фиксация результата

- Инкремент мантиссы из-за округления не повлек её ПРС нормализация не нужна.
- Переполнения характеристики частного не было:

$$MДK(c_q) = 00,1001.$$

ullet Знак результата $(1 \oplus 0) = 1$.

Результат с округлением:

Результат без округления:

Деление мантисс со знаком

Представления мантисс в дополнительном или обратном кодах встречается редко, поэтому приводится только алгоритм подобного деления.

Алгоритм деления мантисс в ДК без ВО

Вход: \emph{n} -разрядные знаковые мантиссы ДК, $\emph{p}_{\emph{q}}$ — порядок частного

- $oldsymbol{lack}$ Если знаки Δ и d совпадают, то $\Delta \leftarrow (\Delta-d)$, иначе $\Delta \leftarrow (\Delta+d)$.
- ullet Если знаки делимого и Δ совпадают, то $q_0 \leftarrow 1$. Если i=0 (ненормализованный результат), то $i \leftarrow (i+1)$; $p_q \leftarrow (p_q+1)$.
- lacktriangle Если знаки d и Δ совпадают, то $q_0 \leftarrow 1$, иначе $q_0 \leftarrow 0$. Обр. код!
- $oldsymbol{0}$ В соответствии со схемой выполняются сдвиги регистров: q, Δ , d.
- Выполняется переход шагу 2.
- Выполняется коррекция частного (см. следующий слайд).

Процедура коррекции частного

Вход: A — делимое, d — делитель, q — частное, Δ — остаток. Выход: q

	$d \geq 0$	d < 0
$A \geq 0$	$q \leftarrow q$,	$q \leftarrow (q+1),$
A < 0	$q \leftarrow egin{cases} q, & (\Delta=0) ee (\Delta=-d), \ (q+1), & ext{иначе,} \end{cases}$	$q \leftarrow egin{cases} (q+1), & (\Delta=0) \lor (\Delta=d), \ q, & ext{иначе}. \end{cases}$

В процессе коррекции может возникать $\Pi \overline{PC}$ мантиссы частного q, которое должно устраняться в ходе нормализации.

Выполнить деление чисел (выбрав формат с плавающей точкой самостоятельно):

- 27/9, первым способом без восстановления остатков;
- 39/10, вторым способом без восстановления остатков.

Подобрать пример, когда в результате округления возникает временное ПРС мантиссы.

Советы самоучке

Подробно об особенностях целочисленного деления см. в [1]. «Длинные» алгоритмы умножения и деления, см. в четвертой главе «Арифметика» [2]

Библиография I

Г. Уоррен-мл. Алгоритмические трюки для программистов / Г. Уоррен-мл. —

2 изд. —

М.: Издательский дом «Вильямс», 2014. —

512 c.

 $\blacksquare \quad \mathcal{A}. \mathcal{A}. \mathcal{K}$ нут. Искусство программирования, получисленные алгоритмы / Д.Э.Кнут. —

3 изд. —

М.: Вильямс, 2005. —

T. 2. —

832 c.