Recommender Systems

Consider the example of movie ratings, where users can rate from 1 to 5. For simplicity sake, we can allow rating from 0 to 5. We will have the following notations:

- n_u = Number of users
- n_m = Number of movies
- r(i, j) = 1 if user j has rated movie i
- $y^{(i,j)}$ = Rating given by user j to movie i, defined only if r(i,j)=1

Let's take the following example:

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Romance (x_1)	Action (x_2
Love at Last	5	5	0	0	0.9	0
Romance Forever	5	?	?	0	1.0	0.01
Cute Puppies of Love	?	4	0	?	0.99	0
Non-stop Car Chases	0	0	5	4	0.1	1.0
Swords vs Karate	0	0	5	?	0	0.9

Here, $n_u=4$ and $n_m=5$

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

So we would have feature vectors like:

$$x^{(1)}=egin{bmatrix}1\0.9\0\end{bmatrix}$$
 $x^{(2)}=egin{bmatrix}1\1\0.01\end{bmatrix}$... and so on

For reach user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$ as $\theta^{(j)} \in \mathbb{R}^{n+1}$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

Problem Formulation

- r(i,j)=1 if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\theta^j = \text{parameter vector for user } j$
- $x^{(i)} =$ feature vector for movie i
- For user j, movie i, predicted rating: $(\theta^{(j)})^T(x^{(i)})$
- $ullet m^{(j)} = {\sf number} \ {\sf of} \ {\sf movies} \ {\sf rated} \ {\sf by} \ {\sf user} \ j$

To learn $\theta^{(j)}$:

$$\min_{ heta^{(j)}} rac{1}{2m^{(j)}} \sum_{i:r(i,j)=1} igg((heta^{(j)})^T (x^{(i)}) - y^{(i,j)} igg)^2 + rac{\lambda}{2m^{(j)}} \sum_{k=1}^n (heta_k^{(k)})^2$$

Optimization Objective

To learn $\theta^{(j)}$ (parameter for user j):

$$\min_{ heta^{(j)}} rac{1}{2} \sum_{i: r(i,j)=1} igg((heta^{(j)})^T (x^{(i)}) - y^{(i,j)} igg)^2 + rac{\lambda}{2} \sum_{k=1}^n (heta_k^{(k)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(n_u)}$:

$$J(heta^{(1)} \dots heta^{(n_u)}) = \min_{ heta^{(1)}, \dots, heta^{(n_u)}} rac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} igg((heta^{(j)})^T (x^{(i)}) - y^{(i,j)} igg)^2 + rac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (heta^{(k)}_k)^2$$

Gradient descent update:

$$\begin{aligned} \theta_k^{(j)} &:= \theta_k^{(j)} - \alpha \sum_{i: r(i,j) = 1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} (\text{for } k = 0) \\ \theta_k^{(j)} &:= \theta_k^{(j)} - \alpha \bigg(\sum_{i: r(i,j) = 1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \bigg) (\text{for } k \neq 0) \end{aligned}$$

Collaborative Filtering

Suppose we have a list of movies but we don't know the metrics

Movie	Alice ($ heta^{(1)}$)	Bob ($ heta^{(2)}$)	Carol ($ heta^{(3)}$)	Dave ($ heta^{(4)}$)	Romance (x_1)	Action (x_2)
Love at Last	5	5	0	0	?	?
Romance Forever	5	?	?	0	?	?
Cute Puppies of Love	?	4	0	?	?	?
Non-stop Car Chases	0	0	5	4	?	?
Swords vs Karate	0	0	5	?	?	?

Now suppose the audience has provided us with their ratings on how much they love romantic movies and action movies:

$$heta^{(1)} = egin{bmatrix} 0 \ 5 \ 0 \end{bmatrix} heta^{(2)} = egin{bmatrix} 0 \ 5 \ 0 \end{bmatrix} heta^{(3)} = egin{bmatrix} 0 \ 0 \ 5 \end{bmatrix} heta^{(4)} = egin{bmatrix} 0 \ 0 \ 5 \end{bmatrix}$$

From these values, it's possible to infer the values of x_1 and x_2 .

Optimization Algorithm

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$ to learn $x^{(i)}$:

$$\min_{x^{(i)}} rac{1}{2} \sum_{j: r(i,j)=1} ((heta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + rac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$ to learn $x^{(i)}, \ldots, x^{(n_m)}$:

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $x^{(1)}, \ldots, x^{(n_m)}$, to learn $\theta^{(1)}, \ldots, \theta^{(n_u)}$:

$$\min_{ heta^{(1)},\dots, heta^{(n_u)}}rac{1}{2}\sum_{j=1}^{n_u}\sum_{i:r(i,j)=1}((heta^{(j)})^Tx^{(i)}-y^{(i,j)})^2+rac{\lambda}{2}\sum_{j=1}^{n_u}\sum_{k=1}^n(heta^{(j)}_k)^2$$

Minimizing $x^{(1)}, \ldots, x^{(n_m)}$ and $\theta^{(1)}, \ldots, \theta^{(n_m)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{(i, j) : r(i, j) = 1} ((\theta^{(j)})^T x^{(i)}) - y^{(i, j)})^2 + \frac{\lambda}{2} \sum_{i = 1}^{n_m} \sum_{k = 1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j = 1}^{n_u} \sum_{k = 1}^n (\theta_k^{(j)})^2 \\ \min_{x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}} J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$$

Summary:

So we can do either of these:

- Given $x^{(1)}, \ldots, x^{(n_m)}$ and movie ratings, we can estimate $\theta^{(1)}, \ldots, \theta^{(n_m)}$
- Given $\theta^{(1)}, \dots, \theta^{(n_m)}$, we can estimate $x^{(1)}, \dots, x^{(n_m)}$

Collaborative filtering algorithm:

- 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_m)}$ to small random values
- 2. Minimize $J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_m)})$ using gradient descent or advanced optimization algorithm
- 3. For an user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^T x$

Vectorization: Low Rank Matrix Factorization

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at Last	5	5	0	0
Romance Forever	5	?	?	0
Cute Puppies of Love	?	4	0	?
Non-stop Car Chases	0	0	5	4
Swords vs Karate	0	0	5	?

Getting the values into a matrix:

$$Y = egin{bmatrix} 5 & 5 & 0 & 0 \ 5 & ? & ? & 0 \ ? & 4 & 0 & ? \ 0 & 0 & 5 & 4 \ 0 & 0 & 5 & 0 \ \end{bmatrix}$$

Predicted Ratings:

$$\begin{bmatrix} (\theta^{(1)})^T (X^{(1)}) & (\theta^{(2)})^T (X^{(1)}) & \dots & (\theta^{(n_u)})^T (X^{(1)}) \\ (\theta^{(1)})^T (X^{(2)}) & (\theta^{(2)})^T (X^{(2)}) & \dots & (\theta^{(n_u)})^T (X^{(2)}) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ (\theta^{(1)})^T (X^{(n_m)}) & (\theta^{(2)})^T (X^{(n_m)}) & \dots & (\theta^{(n_u)})^T (X^{(n_m)}) \end{bmatrix}$$

Finding related movies:

- For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$ (x_1 = romance, x_2 = action, etc)
- 5 most similar movies to movie i: find 5 movies j with the smallest $||x^{(i)}-x^{(j)}||$

Mean Normalization

Let's suppose we have a new user Eve(5) for whom the values are unknown. We'd have the matrix as:

$$Y = egin{bmatrix} 5 & 5 & 0 & 0 & ? \ 5 & ? & ? & 0 & ? \ ? & 4 & 0 & ? & ? \ 0 & 0 & 5 & 4 & ? \ 0 & 0 & 5 & 0 & ? \ \end{bmatrix}$$

Computing the average rating:

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{bmatrix} \qquad \mu - Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

Use the above calculated matrix to learn $\theta^{(j)}, x^{(i)}$

For user j, on movie i predict: $(\theta^{(j)})^T(x^{(i)}) + \mu_i$

For user Eve(5):

$$heta^{(5)} = egin{bmatrix} 0 \ 0 \end{bmatrix} \qquad (heta^{(j)})^T (x^{(i)}) + \mu_i = 0 + \mu_i = \mu_i$$