MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 - MARCH 2011 SOLUTION KEY

Round 4

- A) Given: $Q = \frac{10+3x}{6-x}$ The value of x must be less than 6 for the value of the fractional expression to be positive. Testing $x = \underline{5} \Rightarrow Q = 25$, $x = \underline{4} \Rightarrow Q = 11$, $x = \underline{2} \Rightarrow Q = 4$ x = 1, 3 fail! Where's the 4th value?!
 - There was no requirement that x had to be positive. $x = -1 \implies Q = +1$
- B) Using the Venn diagram to the right

$$100 = x + z + 40 + 12$$

$$120 = x + y + 12 + 40$$

$$130 = y + z + 40 + 12$$

Then:

$$48 = x + z$$

$$68 = x + y$$

$$78 = v + z$$

Solving,
$$x = 19$$
, $y = 49$ and $z = 29$

Thus, the number of students belonging to no club is:

$$1000 - (40 + 40 + 40 + 12 + 19 + 49 + 29) = 1000 - 229 = 771$$

Note:
$$8x^3 - 1$$
 is factored as $A^3 - B^3 = (A - B)(A^2 + AB - B^2)$, where $A = 2x$ and $B = 1$.

Round 5

- A) The vertex angle measures either $(3x)^{\circ}$ or $(6x)^{\circ}$. In the first case, $15x = 180 \implies x = 12$ and \angle s measure 36, 72 and 72 In the second case, $12x = 180 \implies x = 15$ and \angle s measure 90, 45 and 45 Thus, the smallest possible interior angle measures <u>36</u>°.
- B) The shortest distance is measured along the altitude. Let the length of the altitude in $\triangle PQR$ be h units. The sides of $\triangle PQR$ have lengths 3x, 4x and 5x, where x represents the proportionality constant. The area of $\triangle PQR$ is $\frac{1}{2}(3x)(4x)$ or $\frac{1}{2}h(5x)$. Equating, $h = \frac{12}{5}x$ or $x = \frac{5h}{12}$. Perimeter = $12x = 12\left(\frac{5h}{12}\right) = \underline{5h}$.

Math

40

12

Z

40

Science