MATH 520 PROBLEM SET 10 SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON

This problem set is due at the end of the day on Wednesday, the 26th of April 2017.

Problem 1

Suppose that A is a 7×7 matrix with three distinct (real) eigenvalues. One of its eigenspaces is two-dimensional, and another eigenspace is four-dimensional. Is A diagonalizable? Explain your reasoning carefully.

Problem 2

Let *A* be an $n \times n$ matrix with complex entries, and let **v** be a complex eigenvector of *A* with eigenvalue $\lambda \in \mathbb{C}$. Show that for each nonzero complex scalar μ , the vector μ **v** is an eigenvector of *A*.

Problem 3

Show that for vectors **u** and **v** in \mathbb{R}^n , we have

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2.$$

Hint: write out the left-hand side in terms of inner products, apply the distributive property, and simplify.

Problem 4

Show that if *V* is a subspace of \mathbb{R}^n , then V^{\perp} is a subspace of \mathbb{R}^n .

Problem 5

Find an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ of \mathbb{R}^3 where $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$. (Hint: we will learn a general procedure for this, but you don't need it here. Trial and error works.)