New tool with GUI for fitting O-C diagrams

Pavol Gajdoš

Institute of Physics, Faculty of Science P. J. Šafárik University in Košice

O-C diagrams

- O-C diagram difference between observed time and calculated time of minima
- precise timing of minima of EBs → mass transfer, 3rd body, etc.
- exact physical model of these changes is complicated and strongly non-linear
- we present new method and graphical user interface for fitting O-C diagrams

Fitting O-C diagrams

- using standard methods is problematic
- many free parameters
- our algorithms:
- 1. genetic algorithms
 - without any starting values (only interval)
 - initial estimation of parameters
- 2. Monte Carlo method
 - final values and errors of parameters

GUI

- basic control of OCFit class:
 - load data, fitting, show results
- intuitive, buttons available after running necessary function
- python tkinter (python 2 & 3)
- version for Windows (exe file)

GUI - workflow

- 1. Loading data from file
 - a. Load saved class (go to 4)
- 2. Set linear ephemeris
 - a. Plot or save initial O-C
 - b. Linear / quadratic fitting
- 3. Init class
- 4. Set parameters of model
- 5. Set fitting parameters
- 6. Fitting model GA +MCMC
 - a. Fit on background (go to 1a)
- 7. Working with results
- 8. Save class to file

GUI – loading data

- from text file
- data in columns
- no strict structure
- setting errors / weights of individual methods


```
# Write errors / weights for each used method to next column!

pg 3

vis 1

pe 5

Vis 1

V 10

B 10

Y 10

R 10

BV 10

ccd 10

U 10
```

GUI – model parameters

- 9 available models:
 - LiTE 3rd, 4th body
 + quadratic trend
 - Agol's models (Agol et al., 2005)
 - apsidal motion
- setting values, limits and steps of params

GUI – parameters of fitting

- setting parameters of fitting function:
 - genetic algorithms (GA)
 - Monte Carlo (MCMC)
- save fitting sampling to file (for detailed analysis)

GUI – plot results

- plotting model
 with O-C data
- zoom, pan
- save to file
- plot residual O-C

GUI - summary

- list of model
 parameters –
 values & errors
- some other calculated parameters
- statistics

parameter	unit	value	error
P	d	0.9861930849055186	2.6349077361253385e-10
P	у	0.0027001049574064315	7.21413235350579e-13
P3	ď	3837.38743702554	35.35925936774578
P3	y	10.506409952361896	0.09681036398487519
Q	d	7.541196872446929e-12	7.287157612982575e-14
a_sin_i3	AU	3.015305355525287	0.06581575323440621
e3		0.13275897174987378	0.08651442064599471
t0	JD	39002.94116064023	0.0010994070375637986
t03	JD	40722.08574045595	53.60948952763268
w3	deg	350.0260421658507	10.076549171503158
кз	S	1491.734417480774	35.6594257632427
K3	m	24.862240291346232	0.5943237627207117
f_m3	M_sun	0.24836203628006495	0.016894957371410918
Model: LiTE3Quad Fitting method: MCMC chi2 = 121.36025520264236 chi2_r = 0.3018911820961253 AIC = 137.36025520264235 AICc = 137.7193574470314 BIC = 169.4895124802292			

Summary

Some hints...

- use errors (instead of weights)
- good initial ephemeris!
- NOT fit linear ephemeris, if it isn't necessary
- if fitting ephemeris, use very small interval
- set appropriate fitting parameters:
 - for testing: GA (100, 100); MC (1000, 0, 1)
 - for good results at least: GA (1000, 1000);
 MC (1e6, 1e3, 10)
- save class to file

Examples

Conclusion

- without entering exact starting values
- time and computationally intensive
- possibility to include more models of O-Cs
- already used in papers Gajdoš et al. (2017),
 Parimucha et al. (2018)
- available at: https://github.com/pavolgaj/OCFit
- if you have any problems with this program, please, contact me:
 - pavol.gajdos (a) student.upjs.sk

