Cálculo Numérico (521230)

Test 1 – Tema 4

Fecha: 3-Abr-02; 18:00-19:00. Duración: 45 minutos

Nombre y apellidos	
Matrícula	
Especialidad o carrera	

1. Sean

$$\mathbf{A} = \begin{bmatrix} n & n & \cdots & n & n+1 & 0 & \cdots & 0 \\ n & n & \cdots & n & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & & \vdots & \vdots & \ddots & \ddots & 0 \\ n & n & \cdots & n & 0 & \cdots & 0 & n+1 \\ \hline n+1 & 0 & \cdots & 0 & n & n & \cdots & n \\ 0 & \ddots & \ddots & \vdots & n & n & \cdots & n \\ \vdots & \ddots & \ddots & 0 & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & n+1 & n & n & \cdots & n \end{bmatrix} \in \mathbb{R}^{2n \times 2n} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

- (a) Hacer un programa MATLAB que:
 - i. genere la matriz anterior para n=5;
 - ii. calcule la factorización **LU** de una permutación **P** de la matriz **A** (con **L** matriz triangular inferior y **U** triangular superior);
 - iii. utilice la factorización anterior para resolver el sistema de ecuaciones $\mathbf{A}\mathbf{x} = \mathbf{b}$;
 - iv. calcule las normas infinito de la solución calculada y de su residuo.

Indicar el nombre del archivo donde se ha guardado el programa en el diskette:

Archivo	
---------	--

(b) Indicar los valores obtenidos de las siguientes entradas de las matrices $\mathbf{L} = (\ell_{ij}), \mathbf{U} = (u_{ij})$ y $\mathbf{P} = (p_{ij})$:

ℓ_{11}	
u_{2n2n}	
p_{nn}	

(c) Indicar las normas infinito de la solución calculada ${\bf x}$ y de su residuo ${\bf r}$:

$\ \mathbf{x}\ _{\infty}$	
$\ \mathbf{r}\ _{\infty}$	

(d) Indicar cuál de las siguientes es la razón por la que el residuo no es perfectamente nulo:

la factorización ${f L}{f U}$ siempre da sólo una solución aproximada	
la propagación de los errores de redondeo	
la propagación de los errores de los datos	
el residuo no tiene porque ser nulo aunque la solución sea exacta	

[20 PTS.]

2. Hacer un programa MATLAB que dibuje en un mismo gráfico las funciones

$$f(x) = \begin{cases} x^2 \left| \sin \frac{1}{x} \right| & \text{si } 0 < |x| \le 1, \\ 0 & \text{si } x = 0, \end{cases}$$

$$g(x) = x^2.$$

Indicar el nombre de los archivos donde se han guardado los programas en el diskette:

Archivos		

[10 PTS.]

RAD/RRA/MSC