Performance Evaluation Benchmark

CS553 Fall 2014

1. Introduction

This report depicts the performance of various system components such as CPU, Memory, Disk, GPU and network. The experiments were performed three times and average and standard deviation were calculated. Each module describes the environment in which the experiment was performed, the theoretical values, formulas used and the respective graphs are attached in the datasheet to support the results.

2. CPU

This modules aims to measure the processor speed in terms of GFLOPs and GIOPs also allowing it to test the performance in different concurrency level (1, 2, 4 and 8 Threads).

2.1 System Environment

For CPU Benchmark we are performed our experiments on a VMware Player. Running environment is as follows:

OS: Ubuntu 14.04

RAM: 4 GB HDD: 100 GB

Core: Intel Core i7-3630QM CPU @ 2.40 GHz

x 4

2.2 Calculation

To calculate the speed in GFLOPs and GIOPs, the test performs floating point and integer operations **n** times. Here all operations are equally shared between multiple threads.

2.3 Theoretical value:

2.4 Experimental Calculation:

 $\frac{\text{GFLOPs} = (\text{\#Operations})}{(\text{totalTime* } 10^{^9})}$

GIOPs = $\frac{\text{(#Operations)}}{\text{(totalTime* }10^{^9})}$

**#Operations=No of Loop * no of Ops(Float/Int)

2.5 Results

With reference to the data sheet provided below the optimal number of threads to get the best performance is **8 Threads**. The average and standard deviation of GFLOPs and GIOPs are given in the datasheet and a comparative study is done with respect to Linpack Benchmark.

3. GPU

For GPU benchmark we have made use of CUDA C programming language to perform experiment on GPU processor and memory. We have performed our experiments on a cluster "jarvis" with following environment parameters

3.1 System Environment

CUDA Capability <Major.Minor>: V2.0 15 Multiprocessors, 32 CUDA Cores/MP: 480 CUDA Cores

Total Global Memory: 1 GB

GPU Clock Rate: 1401 MHz (1.40 GHz)

3.2 Calculation

To calculate the speed in GFLOPs and GIOPs, the test performs floating point and integer operations **n** times.

To calculate the read and write memory bandwidth the "**cudamemcpy**" is used.

Performance Evaluation Benchmark

CS553 Fall 2014

3.3 Theoretical value:

3.4 Experimental Calculation:

GFLOPs = (#Operations)*
(#Multiprocessor)*(#cores)*(#Threads)

Total Time * 10^9

GIOPs = (#Operations)* (#Multiprocessor)*(#cores)*(#Threads)Total Time * $10^{^{9}}$

Bandwidth = (#Operations)

Total time * 10^{9}

**#Operations=No of Loop * no of Ops (Float/Int/Memory Op)

3.5 Results

The GFLOPs and GIOPs were computed using the given formulas and the results are attached in the datasheet. The average and standard deviation of the results are also calculated.

4. Memory

The two parameters that are used to measure the performance of RAM are Throughput and Latency. A total of 12 experiments have been performed using various buffer sizes (1 byte, 1 Kb, 1 Mb), two operations (sequential read/write and random read/write) using 1 thread & 2 threads and the value of throughput and latency are determined by computing arithmetic mean.

4.1 System Environment

For Memory Benchmark, we have used a virtual machine with the configuration given below:

Operating System: Ubuntu 14.0.4 RAM: 4GB DDR3 SDRAM-PC12800

No of Cores Available: 4

HDD: 100 GB

Processor: Intel Core-i5 4210U 1600MHz

4.2 Theoretical Value

The theoretical peak was determined with reference to the Wikipedia page (DDR3_SDRAM). And the values are as follows:-

Throughput: 12800 Mb/s (Theoretical Peak)

Latency: 13.6 ns (Nanoseconds)

4.3 Experimental calculation

Throughput= $(n/t_t)/(1024*1024))$ Mb/s

n = No of Operations

t_t = Difference Between end time and start time

Latency = The time taken to read and write one block of data (1b/1Kb/1Mb) - [t2-t1] ns Where

t2 - t1 =Difference between end time and start time in nanoseconds

4.4 Results

With reference to the sheet below the best performance is given when we use **2 Threads.** The average and standard deviation of throughput and latency are given in the datasheet and a comparative study is done with respect to Stream Benchmark.

5. **Disk**

This module aims to calculate the read and write speed of Disk using various patterns such as Sequential read, Sequential write, Random Read, Random Write. All these operations are performed in varying concurrency of 1, 2 and 4 threads and also with varying block size of 1b, 1kb and 1Mb.

Performance Evaluation Benchmark

CS553 Fall 2014

5.1 System Environment

Disk Benchmark experiments were performed on Lenovo G410. Running environment is as follows:

OS: Ubuntu 14.04

RAM: DDR3 6GB 1600 HDD: 500GB 5200 Processor: Intel i5 4200m

5.2 Calculations

- 1. For calculating throughput for Sequential read and Random read operation we are creating a FileChannel which reads inputstream using a buffer in form of byte[].
- 2. Timestamps are recorded before starting the reading operation and right after completing the reading operation.
- 3. To calculate the throughput we are calculating total time (t) taken to read total data (d) with multiple threads.

It is calculated as:

d= (totalReadOps * buffersize);

Throughput = (d*1000)/(1024*1024*t) (MB/sec)

t = total time taken to read d bytes of data

6. Network

There are two different approaches through which a client can establish connection with the server they are

- TCP/IP
- UDP

TCP protocol uses stream and UDP uses datagrams for communication.

6.1 System Environment

Network Benchmark was performed on Lenovo G410. Running environment is as follows:

OS: Ubuntu 14.04 RAM: DDR3 6GB 1600

Processor: Intel i5 4200m

6.2 Calculations

Here we have to calculate Network bandwidth with TCP and UDP protocols.

For this experiment we send data to server and calculate the time to get the data back as response from server.

Bandwidth= Total Data sent (bytes) * 8
(Mbits/sec) Total Time Taken

Latency: We can get the network latency value by using following command in terminal.

\$Ping 127.0.0.1

64 bytes from 127.0.0.1: icmp_seq=5 ttl=64

time=**0.048** ms

64 bytes from 127.0.0.1: icmp_seq=6 ttl=64

time=**0.021** ms

In our Experiment we calculate network latency by calculating the time taken to send 1 packet of data across nodes.

Average Latency Using TCP: 61.5 us **Average Latency Using TCP**: 72.5 us

6.3 Results

The bandwidth and latency of the network were determined and the values are depicted on the datasheet. A comparative study was done using Iperf benchmark and the results that were determined after the experiment.

CPU Benchmark

GFLOPS & GIOPS TEST CASES									
	1 Th	1 Thread		2 Thread		4 Thread		8 Thread	
	GFLOPS	GIOPS	GFLOPS	GIOPS	GFLOPS	GIOPS	GFLOPS	GIOPS	
Test 1	11.644563	11.620039	23.193471	23.008026	32.124227	32.020999	43.797731	44.65497	
Test 2	15.647424	15.14795	18.475003	18.633746	32.32649	31.693055	49.093017	44.085713	
Test 3	15.577012	14.770259	31.240744	31.007882	31.566926	33.014216	46.637018	44.500381	
Avg	14.28966633	13.84608267	24.30307267	24.21655133	32.005881	32.24275667	46.50925533	44.413688	
Std Dev	2.290997205	1.937037797	6.454800362	6.274966976	0.393368402	0.687930915	2.649953949	0.294363959	

Avg. CPU Benchmark w.r.t Threads 1 Thread 2 Thread 4 Thread 8 Thread GFLOPS 11.644563 23.193471 32.124227 43.797731 GIOPS 11.620039 23.008026 32.020999 44.65497

Comparision(4 threads)	GFlops
Linpack Avg	39.4876
Benchmark	32.005881

linpack Result(v. 11.2.0.003)

Number of equations to solve (problem size): 10000

Leading dimension of array: 10000

Number of trials to run: 4

Data alignment value (in Kbytes): 4

Current date/time: Wed Sep 24 02:36:48 2014

CPU frequency: 2.389 GHz

Number of CPUs: 4 Number of cores: 4 Number of threads: 4 Parameters are set to: Number of tests: 1

Number of equations to solve (problem size): 10000

Leading dimension of array : 10000

Number of trials to run : 4

Data alignment value (in Kbytes) : 4

Maximum memory requested that can be used=800204096, at the size=10000

======== Timing linear equation system solver ==========

Size LDA Align. Time(s) GFlops Residual Residual(norm) Check

10000 10000 4 15.196 43.8847 9.603002e-11 3.386116e-02 pass 10000 10000 4 15.819 42.1559 9.603002e-11 3.386116e-02 pass 10000 10000 4 16.019 41.6309 9.603002e-11 3.386116e-02 pass 10000 10000 4 22.024 30.2789 9.603002e-11 3.386116e-02 pass

Performance Summary (GFlops)

Size LDA Align. Average Maximal

10000 10000 4 39.4876 43.8847

Residual checks PASSED

GPU Benchmark

GFLOPS & GIOPS Test Cases					
	GFLOPS GIOPS				
Test 1	909.14781	909.057099			
Test 2	909.135815	909.135801			
Test 3	Test 3 909.341192 909.185434				
Avg	Avg 909.2082723 909.1261113				
Std Dev	0.115267942	0.064713872			

Memory Performance						
	1 B 1 KB 1 MB					
Test 1	0.003034	3.046447	2848.576614			
Test 2	0.00318	3.197439	3244.668319			
Test 3	0.003158	3.167503	3167.088346			
Avg	0.003124	3.137129667	3086.77776			
Std Dev	7.8715E-05	0.079947173	209.903555			

MEMORY BENCHMARK

	1 B ~ Test Cases				
	Seq Read	Seq Write	Rand Read	Rand Write	
Test 1	166.555	165.705	35.355	28.577	
Test 2	210.137	87.868	30.822	25.068	
Test 3	177.597	77.445	25.068	23.413	
Avg	184.763	110.3393333	30.415	25.686	
Std Dev	22.65747885	48.23046253	5.155562918	2.636885853	

	1 KB ~ Test Cases				
	Seq Read Seq Write Rand Read Rand Wi				
Test 1	6686.902	2602.571	2688.311	1988.198	
Test 2	4212.84	3178.466	2585.565	1915.032	
Test 3	5655.749	4595.993	2538.003	1986.98	
Avg	5518.497	3459.01	2603.959667	1963.403333	
Std Dev	1242.728562	1025.895472	76.82380189	41.89523001	

	1 MB ~ Test Cases					
	Seq Read	Seq Write	Rand Read	Rand Write		
Test 1	4187.314	1960.125	1978.442	1841.187		
Test 2	4359.665	1945.262	1957.221	1741.252		
Test 3	3650.445	2120.687	1981.113	1901.074		
Avg	4065.808	2008.691333	1972.258667	1827.837667		
Std Dev	369.8932726	97.27537821	13.09129957	80.74293434		

	1 Thread						
Mode 1 B 1 Kb 1 Mb							
segread	177.851	6813.568	5470.72				
randread	30.23	2716.935	3823.39				
seqwrite	105.703	4383.608	3619.039				
randwrite	29.363	2284.563	3421.96				

2 Threads					
	1 B	1 KB	1 MB		
seqread	4891.17	7491.038	6976.568		
randread	3073.024	5743.351	5993.933		
seqwrite	2603.205	4230.956	5695.231		
randwrite	2194.948	3758.589	5064.33		

Comparision	Throughput ~ MB/s
Stream	5471.2
Benchmark	5470.72

Stream Result

STREAM version \$Revision: 5.10 \$

This system uses 8 bytes per array element.

Array size = 10000000 (elements), Offset = 0 (elements)

Memory per array = 76.3 MiB (= 0.1 GiB).

Total memory required = 228.9 MiB (= 0.2 GiB).

Each kernel will be executed 10 times.

The *best* time for each kernel (excluding the first iteration) will be used to compute the reported bandwidth.

Your clock granularity/precision appears to be 1 microseconds. Each test below will take on the order of 62233 microseconds.

(= 62233 clock ticks)

Increase the size of the arrays if this shows that you are not getting at least 20 clock ticks per test. WARNING -- The above is only a rough guideline. For best results, please be sure you know the

precision of your system timer.

 Function
 Best Rate MB/s
 Avg time
 Min time
 Max time

 Copy:
 5471.2
 0.035321
 0.029244
 0.045979

 Scale:
 5274.4
 0.034456
 0.030335
 0.042022

 Add:
 7411.2
 0.035179
 0.032383
 0.039936

 Triad:
 7021.0
 0.038899
 0.034183
 0.063289

Solution Validates: avg error less than 1.000000e-13 on all three arrays

1 B ~ Test Cases Rand Read Seq Read Seq Write Rand Write Test 1 1.9234 0.6136 0.9986 0.2495 Test 2 0.2234 0.4549 0.7475 0.2434 0.9864 0.5495 0.3485 Test 3 0.6234 0.9234 0.684966667 0.7652 0.280466667 Avg Std Dev 0.888819442 0.272842378 0.225072588 0.058997486

	1 KB ~ Test Cases						
	Seq Read	Seq Write	Rand Read	Rand Write			
Test 1	95.34567	65.3456	75.3433	23.56789			
Test 2	120.3454	49.3456	86.3456	34.09876			
Test 3	75.34567	30.3456	60.3455	24.34567			
Avg	97.01224667	48.3456	74.01146667	27.33744			
Std Dev	22.54610905	17.52141547	13.05111624	5.868374693			

	1 MB ~ Test Cases					
	Seq Read	Seq Write	Rand Read	Rand Write		
Test 1	3465.264	2987.264	2196.475	1475.187		
Test 2	3200.346	2357.576	2240.867	1649.252		
Test 3	3197.465	2678.576	2667.576	1485.074		
Avg	3287.691667	2674.472	2368.306	1536.504333		
Std Dev	153.7888982	314.8640603	260.1241282	97.76740483		

Comparision Throughput ~ MB/s		
IOZONE	3344	
Benchmark	3287.691667	

DISK Benchmark

1 Thread				
Mode 1 B 1 Kb 1 Mb				
seqread	0.9234	97.0122	3287.6991	
randread	0.7652	74.0114	2368.306	
seqwrite	0.6849	48.3456	2674.472	
randwrite	0.2804	27.33744	1536.504	

2 Threads				
1 B 1 KB 1 MB				
seqread	0.7254	67.1254	1428.125	
randread	randread 0.2541		1125.415	
seqwrite	seqwrite 0.6251		948.254	
randwrite	0.1254	21.457	895.548	

Network Benchmark

TCP Loopback Bandwidth(1 Thread)				
1 B 1 KB 6		64kb		
Test 1	1.58	356.24	8842.45	
Test 2	0.57	394.87	7995.24	
Test 3	1.98	346.46	8135.48	
Avg	1.376667	365.8567	8324.39	
Std Dev	0.726659	25.5977	454.0996	

TCP Loopback Bandwidth(2 Thread)				
	1 B 1 KB 64k		64kb	
Test 1	1.67	158.58	7320.68	
Test 2	0.95	135.49	7788.47	
Test 3	0.97	180.79	7062.26	
Avg	1.196667	158.2867	7390.47	
Std Dev	0.410041	22.65142	368.1008	

UDP Loopback Bandwidth(1 Thread)				
	1 B 1 KB		64 kB	
Test 1	0.46	14.879	494.48	
Test 2	0.47	28.25	528.46	
Test 3	0.19	12.98	395.25	
Avg	0.373333	18.703	472.73	
Std Dev	0.15885	8.322287	69.21722	

UDP Loopback Bandwidth(2 Thread)					
1 B 1 KB 64KB					
Test 1	1	7.56	156.46		
Test 2	1	6.45	178.34		
Test 3	1	3.47	97.34		
Avg	1	5.826667	144.0467		
Std Dev	0	2.115049	41.90248		

Test	Latency(TCP)ms		
1	76		
2	44		
3	28		
4	39		
5	55		
6	65		
7	47		
Avg	61.5		

Test	Latency(UDP)ms		
1	76		
2	59		
3	57		
4	63		
5	42		
6	39		
7	69		
Avg	72.5		

Iperf Results (Mbits/sec)			
	1kb	64kb	1mb
Bandwidth	1518	12240	39485

Credits

- 1. Arihant Raj Nagarajan(**A20334121**)
 - CPU Benchmark
 - GPU Benchmark
- 2. Rahul Krishnamurthy(A20330185)
 - Memory Benchmark
- 3. Shashank Sharma(A20330372)
 - Disk Benchmark
 - Network Benchmark

References:

- 1.http://docs.oracle.com
- 2.https://iperf.fr/
- 3.http://www.cs.virginia.edu/stream/
- 4.https://software.intel.com/en-us/articles/intel-math-ker nel-library-linpack-download
- 5.http://www.iozone.org/
- 6.http://docs.nvidia.com/cuda/index.html#axzz3EHDMjsHc