SAVIN'S ε -REGULARITY THEOREM FOR LOCALLY UNIFORMLY ELLIPTIC EQUATIONS

FAN ZHENYU

ABSTRACT. In this note, we give a simple and clear proof of Savin's ε -regularity theorem [Sav07].

Contents

1. Introduction	
1.1. Background	-
1.2. Main theorem	4
2. Applications	
3. Weak Harnack inequality and Hölder regularity	
3.1. Preliminary	
4. Proof of Theorem 1.3	9
References	13

1. Introduction

1.1. **Background.** We consider the fully nonlinear equation

(1.1)
$$F(D^2u) = 0 \text{ in } B_1,$$

where $F: \mathcal{S}^{n \times n} \to \mathbb{R}$ is a smooth function.

Definition 1.1. (1) F is said to be **elliptic**, if $F(M+N) \ge F(M)$ for any $M, N \in \mathcal{S}^{n \times n}$ with $N \ge 0$.

- (2) F is said to be **uniformly elliptic**, if there are constants $0 < \lambda \le \Lambda$, such that $\lambda ||N|| \le F(M+N) F(M) \le \Lambda ||N||$ for any $M, N \in \mathcal{S}^{n \times n}$ with $N \ge 0$.
- (3) F is said to be ρ -uniformly elliptic or locally uniformly elliptic, if there are constants $0 < \lambda \le \Lambda$, such that $\lambda ||N|| \le F(M+N) F(M) \le \Lambda ||N||$ for any $M, N \in \mathcal{S}^{n \times n}$ with $||M||, ||N|| \le \rho$ and $N \ge 0$.

Remark 1.2. Locally uniformly elliptic equation means that the equation becomes uniformly elliptic if we have a priori Hessian bound on the solution. Many important fully nonlinear equations are locally uniformly elliptic, e.g. Monge-Ampère equations, k-Hessian equations, special Lagrangian equations.

Date: April 15, 2025.

We first briefly review the regularity theory of uniformly elliptic equation. Let u be a viscosity solution to (1.1).

- In 50s, for two dimensional case, Nirenberg proved that u is smooth.
- In 80s, due to Krylov-Safanov's Harnack inequality, one can show that $u \in C^{1,\alpha}$ for some universal α .
- If we require F is convex or concave in additional, Evans-Krylov proved that $u \in C^{2,\alpha}$, hence smooth by Schauder theory and bootstrap argument.
- Many authors weaken the convexity/concavity condition in Evans-Krylov theory. See Caffarelli-Cabré, Caffarelli-Yuan, Collins.
- For general F, one cannot expect the $C^{2,\alpha}$ regularity, due to the counterexample of Nadirashivili.
- 1.2. **Main theorem.** Assume F satisfies the following hypothesis:
 - **H1)** F is elliptic and ρ -uniformly elliptic;
 - **H2)** F(0) = 0;
 - **H3**) $||D^2F|| \leq K$.

Theorem 1.3. Let F satisfy H1)-H3), and let u is a viscosity solution to

$$F(D^2u) = 0 \quad \text{in } B_1.$$

Then there exist constants $\delta, C > 0$, depending only on $n, \rho, \lambda, \Lambda$ and K, such that if $||u||_{L^{\infty}(B_1)} \leq \delta$, then $u \in C^{2,\alpha}(B_{1/2})$ with

$$||u||_{C^{2,\alpha}(B_{1/2})} \le C.$$

2. Applications

3. Weak Harnack inequality and Hölder regularity

In this section, we establish the weak Harnack inequality for locally uniformly elliptic equation, then use it to derive the partial $C^{0,\alpha}$ estimate.

3.1. **Preliminary.** For any a > 0, $y \in \overline{B}_1$, we denote the quadratic polynomial

$$P_{a,y}(x) = -\frac{a}{2}|x - y|^2 + \text{const}$$

to be a concave paraboloid centered at y of opening a.

Given $V \subset \overline{B}_1$, for any a > 0 and $y \in V$, we can slide the paraboloid $P_{a,y}$ from below until it touches u by below at some point $x \in \overline{B}_1$. We note that such touch point must exist, since $P_{a,y}$ touches u from below at x if and only if x is the minimum point of $u(z) + \frac{a}{2}|z-y|^2$ over \overline{B}_1 . We collect all touch points, and denote the set of touch points by $T_a(V)$. Equivalently,

$$T_a(V) = \left\{ x : \exists y \in V, \text{ such that } u(x) + \frac{a}{2}|x - y|^2 = \inf_z \left(u(z) + \frac{a}{2}|z - y|^2 \right) \right\}.$$

The first lemma states that if u is a supersolution and the opening a is small, then the measure of the set of touch points can control the measure of the set of centers.

Lemma 3.1. Let F satisfy H1), and let u is a supersolution of (1.1). Set $\gamma = (n-1)\frac{\Lambda}{\lambda} + 2$. Assume $a \leq \frac{\rho}{\gamma}$ and $V \subset \overline{B}_1$. If $T_a(V) \subset B_1$, then

$$|T_a(V)| \ge \frac{1}{(1+\gamma)^n}|V|.$$

Proof. We only prove this Lemma for $u \in C^2$, for general case, one can use Jensen's ε -envelope approximation argument.

For any $x \in T_a(V)$, there exists a $y \in V$, such that

$$u(x) + \frac{a}{2}|x - y|^2 = \inf_{z \in \overline{B}_1} \left(u(z) + \frac{a}{2}|z - y|^2 \right)$$

Since $x \in B_1$ is the interior minimum point, we have

$$\begin{cases} \nabla u(x) + a(x - y) = 0, \\ D^2 u(x) + aI \ge 0. \end{cases}$$

The first identity means $y = x + \frac{1}{a}\nabla u(x)$. Therefore, give a touch point in $T_a(V)$, there is only one center that corresponds to it. Now, we can define a map

$$\mathcal{M}: T_a(V) \longrightarrow V$$

$$x \longmapsto y := x + \frac{1}{2} \nabla u(x).$$

 \mathcal{M} is clearly surjective, hence from the area forluma, we get

(3.1)
$$|V| \le \int_{T_a(V)} |\det \mathcal{M}(x)| \, \mathrm{d}x.$$

So far, we haven't used the equation. Next, we will use the equation to estimate D^2u on $T_a(V)$.

Claim. $-aI \le D^2 u \le \gamma aI$ in $T_a(V)$.

The left inequality has been proved. Suppose the right inequality fails, then there exist $x_0 \in T_a(V)$ and a direction $e \in \mathbb{S}^{n-1}$, such that

$$D^2u(x) \ge \gamma ae \otimes e - aI.$$

Note that the eigenvalues of $\gamma ae \otimes e - aI$ are $-a, \dots, -a, (\gamma - 1)a$. Since $\gamma a \leq \rho$, then $\|\gamma ae \otimes e - aI\| \leq \rho$. Since F is elliptic and ρ -uniformly elliptic, then

$$0 \ge F(D^2u(x_0)) \ge F(\gamma ae \otimes e - aI) \ge \lambda(\gamma - 1)a - (n - 1)\Lambda a > 0,$$

contradiction! Hence the claim holds.

Note that $D\mathcal{M}(x) = I + \frac{1}{a}D^2u(x)$, then $0 \leq D\mathcal{M}(x) \leq (1+\gamma)I$ in $T_a(V)$. Now from (3.1), we conclude that

$$|V| \le (1+\gamma)^n |T_a(V)|.$$

For simplicity, we denote $T_a(\overline{B}_1)$ by T_a .

Corollary 3.2. Let F satisfy H1), and let u is a supersolution of (1.1). Assume $\rho \ge \rho_0 := 8\gamma$ and $u \ge 0$. If $\inf_{B_{1/4}} u \le 1$, then

$$\frac{|T_8 \cap B_1|}{|B_1|} > \mu$$
 or $\frac{|\{u \le 2\} \cap B_1|}{|B_1|} > \mu$,

where $\mu = \mu(n, \lambda, \Lambda) \in (0, 1)$.

Proof. We claim that $T_8(B_{1/4}) \subset B_1$, then by Lemma 3.1, we have

$$|T_8 \cap B_1| \ge |T_8(B_{1/4})| \ge \frac{1}{(1+\gamma)^n} |B_{1/4}|.$$

Note that $T_8(B_{1/4}) \subset \{u \leq 2\}$ is obvious.

It remains to prove the claim. For any $x \in T_8(B_{1/4})$, there exists $y \in B_{1/4}$, such that x is the minimum point of $u(z) + 4|z - x|^2$. We only need to rule out the possibility that it takes the minimum at ∂B_1 .

For $z \in \partial B_1$, since $u \ge 0$, then we have $u(z) + 4|z - y|^2 \ge 4 \cdot (3/4)^2 = 9/4$.

On the other hand, since $\inf_{B_{1/4}} u \leq 1$, then there exists $x_1 \in B_{1/4}$, such that $u(x_1) \leq 1$, then $u(x_1) + 4|x_1 - y|^2 \leq 2$. The claim easily holds.

In the above argument, it is important to assume the touch point belongs to the interior of the ball, unless we cannot get the information of ∇u and D^2u at the touch point.

The next lemma is from a natural observation. If there is a touch point in the interior, then we enlarge the opening of the paraboloid and perturb the center slightly, then the corresponding touch points also belong to the interior.

Lemma 3.3. Let F satisfy H1), and let u is a nonegative supersolution of (1.1). Then there exists a universal $M = M(n, \lambda, \Lambda) > 1$, such that if $Ma \leq \frac{\rho}{\gamma}$, $B_r(x_0) \subset B_1$, $T_a \cap B_r(x_0) \neq \emptyset$, then

$$\frac{|T_{Ma} \cap B_r(x_0)|}{|B_r(x_0)|} \ge \mu,$$

where $\mu = \mu(n, \lambda, \Lambda) \in (0, 1)$.

Proof. Assume $x_1 \in T_a \cap B_r(x_0)$, then there exists a $y_1 \in \overline{B_1}$, such that the paraboloid

$$P_{a,y_1}(x) = -\frac{a}{2}|x - y_1|^2 + u(x_1) + \frac{a}{2}|x_1 - y_1|^2$$

touches u from below at x_1 . Next, we will enlarge the opening a to Ma and perturb the center y_1 slightly, we will show that the corresponding touch points also belong to $B_r(x_0)$. We divide the proof into 3 steps.

Step 1. We claim that $\exists x_2 \in \overline{B_{r/2}}(x_0)$ and $C_0 = C_0(n, \lambda, \Lambda) > 0$, such that $u(x_2) - P_{a,y_1}(x_2) \leq C_0 a r^2$.

To see this, we consider the barrier function

$$\psi(x) = P_{a,y_1}(a) + ar^2\phi\left(\frac{|x - x_0|}{r}\right),\,$$

where

$$\phi(t) = \begin{cases} \frac{1}{p}(t^{-p} - 1) & \text{for } \frac{1}{2} \le t \le 1, \\ \frac{1}{p}(2^p - 1) & \text{for } t < \frac{1}{2}. \end{cases}$$

Set x_2 be the minimum point of $u - \psi$ over $\overline{B_r}(x_0)$.

Note that $F(D^2\psi) \geq 0$ in $B_{r(x_0)} \setminus \overline{B_{r/2}}(x_0)$ provided p is universal large. By the definition of viscosity solutions or comparison principle. $u-\psi$ cannot attain its minimum in $B_r(x_0) \setminus \overline{B_{r/2}}(x_0)$, that is $x_2 \notin B_r(x_0) \setminus \overline{B_{r/2}}(x_0)$.

For $z \in \partial B_r(x_0)$, we have

$$u(z) - \psi(z) = u(z) - P_{a,y_1}(z) \ge 0.$$

However,

$$u(x_1) - \psi(x_1) = u(x_1) - P_{a,y_1}(x_1) = -ar^2\phi\left(\frac{|x_1 - x_0|}{r}\right) < 0.$$

Therefore $x_2 \notin \partial B_r(x_0)$.

Finally, we have $x_2 \in \overline{B_{r/2}}(x_0)$ with $(u - \psi)(x_2) < 0$. Since $\phi \leq C_0$ for universal C_0 , then

$$u(x_2) < \psi(x_2) \le P_{a,y_1}(x_2) + C_0 a r^2$$
.

Step 2. We show that $T_{Ma}(V) \subset B_r(x_0)$ with

$$V = \overline{B_r \frac{M-1}{8M}} \left(\frac{1}{M} y_1 + \frac{M-1}{M} x_2 \right).$$

For any $\widetilde{x} \in T_{Ma}(\widetilde{y})$, there exists $\widetilde{y} \in V$, such that the paraboloid

$$P_{Ma,\widetilde{y}}(x) = -\frac{Ma}{2}|x - \widetilde{y}|^2 + u(\widetilde{x}) + \frac{Ma}{2}|\widetilde{x} - \widetilde{y}|^2$$

touches u from below at \widetilde{x} .

Now we have two inequalities

$$\begin{cases} P_{a,y_1}(x) \leq u(x) & \text{in } B_1, \text{ with equality at } x_1; \\ P_{Ma,\widetilde{y}}(x) \leq u(x) & \text{in } B_1, \text{ with equality at } \widetilde{x}. \end{cases}$$

We first examine the difference of this two paraboloid, note that

$$P_{Ma,\widetilde{y}}(x) - P_{a,y_1}(x) = -\frac{Ma}{2}|x - \widetilde{y}|^2 + \frac{a}{2}|x - y_1|^2 + \text{Const}$$
$$= -\frac{(M-1)a}{2}|x - y^*|^2 + R,$$

where $y^* = \frac{M\widetilde{y} - y_1}{M - 1}$ and R denote the remainder constant term. Since $\widetilde{y} \in V$, by the definition of V, we have $y^* \in \overline{B_{r/8}}(x_2)$.

To estimate the remainder term R, we note that

$$P_{a,y_1}(x) - \frac{(M-1)a}{2}|x-y^*|^2 + R = P_{Ma,\widetilde{y}}(x) \le u(x)$$
 in B_1 ,

then, at the point x_2 , by Step 1, we get

$$R \le u(x_2) - P_{a,y_1}(x_2) + \frac{(M-1)a}{2} |x_2 - y^*|^2$$

$$\le C_0 a r^2 + \frac{M-1}{128} a r^2 = \left(C_0 + \frac{M-1}{128}\right) a r^2.$$

Our goal is to show that $\widetilde{x} \in B_r(x_0)$, thus we need to estimate $|\widetilde{x} - x_0|$. To do this, we first estimate $|\widetilde{x} - y^*|$. Since

$$0 \le u(\widetilde{x}) - P_{a,y_1}(\widetilde{x}) = P_{Ma,\widetilde{y}}(\widetilde{x}) - P_{a,y_1}(\widetilde{x})$$
$$= -\frac{(M-1)a}{2} |\widetilde{x} - y^*|^2 + R,$$

then

$$|\widetilde{x} - y^*|^2 \le \frac{2}{(M-1)a}R \le \left(\frac{2C_0}{M-1} + \frac{1}{64}\right)r^2.$$

Hence, $|\tilde{x} - y^*| \leq \frac{r}{4}$ provided M is universal large. Finally,

$$|\widetilde{x} - x_0| \le |\widetilde{x} - y^*| + |y^* - x_2| + |x_2 - x_0| \le \frac{r}{4} + \frac{r}{8} + \frac{r}{2} < r.$$

Step 3. Conclusion. By Lemma 3.1, we have

$$|T_{Ma} \cap B_r(x_0)| \ge |T_{Ma}(V)| \ge c|V| \ge c \left(r \frac{M-1}{8M}\right)^n = \widetilde{c}r^n,$$

which implies

$$\frac{|T_{Ma} \cap B_r(x_0)|}{|B_r(x_0)|} > \mu$$

for some universal $\mu \in (0,1)$.

We also need the following covering lemma.

Lemma 3.4. Let $E \subset F \subset B_1$, with $E \neq \emptyset$, and let $\mu \in (0,1)$. If for any ball $B \subset B_1$ with $B \cap E \neq \emptyset$, we have $|B \cap F| > \mu |B|$, then

$$|B_1 \setminus F| \le \left(1 - \frac{\mu}{5^n}\right) |B_1 \setminus E|.$$

Corollary 3.5. Let F satisfy H1), and let u is a nonnegative supersolution of (1.1). Assume $\rho \geq \rho_0 := 8\gamma$. If $\inf_{B_{1/4}} u \leq 1$, then

$$|B_1 \setminus T_{8M^k}| \le C_n(1-\theta)^k$$
 provided $1 \le k \le \frac{1}{\ln M} \ln \frac{\rho}{\rho_0}$.

where M is the constant in Lemma 3.3 and $\theta = \theta(n, \lambda, \Lambda) \in (0, 1)$.

Proof. We prove this corollary by induction. For k=1, the result follows from Corollary 3.2. Assume this result holds for k-1. Denote $E=T_{8M^{k-1}}\cap B_1$ and $F=T_{8M^k}\cap B_1$, then

 $E \subset F \subset B_1$. For any ball $B = B_r(x_0) \subset B_1$ with $B \cap E \neq \emptyset$, that is $T_{8M^{k-1}} \cap B_r(x_0) \neq \emptyset$. By Lemma 3.3, we have

$$\frac{|T_{8M^k}\cap B|}{|B|} \ge \mu \quad \text{provided } 8M^k \le \frac{\rho}{\gamma}, \text{ or equivalently } k \le \frac{1}{\ln M} \ln \frac{\rho}{\rho_0}.$$

Hence, by Lemma 3.4, we have $|B_1 \setminus F| \leq (1 - 5^{-n}\mu)|B_1 \setminus E|$, that is

$$|B_1 \setminus T_{8M^k}| \le \left(1 - \frac{\mu}{5^n}\right) |B_1 \setminus T_{8M^{k-1}}| \le (1 - \theta)^k,$$

provided $k \leq \frac{1}{\ln M} \ln \frac{\rho}{\rho_0}$ and if we take $\theta = 5^{-n}\mu$.

A direct consequence of Lemma 3.5 is the following weak L^{ε} estimate.

Corollary 3.6 (Weak L^{ε} estimate). Under the hypothesis of Corollary 3.5, we have

$$|\{u > t\} \cap B_1| < Ct^{-\varepsilon} \quad for \ 0 \le t \le 17\frac{\rho}{\rho_0},$$

where $\varepsilon = \varepsilon(n, \lambda, \Lambda) > 0$.

Proof. Since $\inf_{B_{1/4}} u \leq 1$, then $T_{8M^k} \subset \{u \leq 1 + 16M^k\} \subset \{u \leq 17M^k\}$. For $17 < t \leq 20\frac{\rho}{\rho_0}$, there exists $k \in \mathbb{N}$, such that $17M^k \leq t < 17M^{k+1}$, that is, $k = \left[\frac{1}{\ln M} \ln \frac{t}{17}\right]$. Since $t \leq 17\frac{\rho}{\rho_0}$, then $k \leq \frac{1}{\ln M} \ln \frac{\rho}{\rho_0}$. Hence, by Lemma 3.5, we get

$$|\{u > t\} \cap B_1| \le |\{u > 1 + 16M^k\} \cap B_1| \le |B_1 \setminus T_{8M^k}| \le (1 - \theta)^k \le Ct^{-\varepsilon}.$$

For $0 < t \le 17$, the result holds clearly.

The weak L^{ε} estimate implies the following weak Harnack inequality.

Theorem 3.7 (Weak Harnack). Let F satisfy H1), and let u is a nonnegative supersolution of (1.1). Assume $\rho > \rho_0$ and $\inf_{B_{1/4}} u \leq \frac{\rho}{\rho_0}$. Then there exists $\varepsilon_0 = \varepsilon_0(n, \lambda, \Lambda) > 0$, such that

$$||u_{\rho}||_{L^{\varepsilon_0}(B_{1/4})} \le C \inf_{B_{1/4}} u,$$

where $C = C(n, \lambda, \Lambda) > 0$ and

$$u_{\rho}(x) = \begin{cases} u(x), & \text{if } u(x) \le 17\rho/\rho_0, \\ 0 & \text{if } u(x) > 17\rho/\rho_0. \end{cases}$$

Proof. Set $B:=\inf_{B_{1/4}}u\leq\frac{\rho}{\rho_0}$, and v=u/B, then $\inf_{B_{1/4}}v=1$. Moreover, v is a nonnegative supersolution to $\widetilde{F}(D^2v)\leq 0$, where $\widetilde{F}(\cdot)=\frac{1}{B}F(B\cdot)$. Note that \widetilde{F} is $\frac{\rho}{B}$ -uniformly elliptic with same ellipticity constants $0<\lambda\leq\Lambda$. By Corollary 3.6, we have

$$|\{v > t\} \cap B_1| < Ct^{-\varepsilon}, \quad for \ 0 \le t \le 17 \frac{\rho}{\rho_0 B}.$$

Set $v_{\rho} = u_{\rho}/B$ and $\varepsilon_0 = \varepsilon/2$, then we have

$$\begin{split} \int_{B_1} |v_\rho|^{\varepsilon_0} &= \varepsilon_0 \int_0^\infty t^{\varepsilon_0 - 1} |\{v_\rho > t\} \cap B_{1/4}| \, \mathrm{d}t \\ &\leq \varepsilon_0 \left(\int_0^1 |B_{1/4}| \, \mathrm{d}t + \int_1^{17 \frac{\rho}{\rho_0 B}} t^{\varepsilon_0 - 1} |\{v > t\} \cap B_1| \, \mathrm{d}t \right) \\ &\leq \varepsilon_0 |B_{1/4}| + C \int_1^{17 \frac{\rho}{\rho_0 B}} t^{\varepsilon_0 - 1 - \varepsilon} \, \mathrm{d}t \\ &\leq C \end{split}$$

Hence, $||v_{\rho}||_{L^{\varepsilon_0}(B_{1/4})} \leq C$, which means $||u_{\rho}||_{L^{\varepsilon_0}(B_{1/4})} \leq CB = C\inf_{B_{1/4}} u$.

Theorem 3.8 (Hölder regularity). Let F satisfy H1), and let u is a viscosity solution of (1.1). Assume $\rho > 2\rho_0$ and $||u||_{L^{\infty}(B_1)} \leq 1$, then

$$\operatorname{osc}_{B_r} u \leq Cr^{\alpha}, \quad for \sqrt{\frac{2\rho_0}{\rho}} \leq r \leq 1.$$

where $C > 0, \alpha \in (0,1)$ are universal constant depending only on n, λ, Λ .

Proof. We only need to prove

$$\operatorname{osc}_{B_{4^{-k}}} u \le C(1-\kappa)^k$$
, for $0 \le k \le \frac{1}{2\ln 4} \ln \frac{\rho}{2\rho_0}$.

where C, κ are universal. We prove it by induction. For k=0, it holds obviously. Assume it holds for k, set $r_k=4^{-k}$, $M_k=\sup_{B_{4-k}}u, m_k=\inf_{B_{4-k}}u$ and $\omega_k=M_k-m_k$.

WLOG, assume that $\omega_k \geq r_k^2$. Consider the rescaled function

$$v(y) = \frac{u(r_k y) - m_k}{M_k - m_k}, \quad y \in B_1,$$

then v is a viscosity solution to $\widetilde{F}(D^2v)=0$ with $\widetilde{F}(\cdot)=\frac{r_k^2}{\omega_k}F\left(\frac{\omega_k}{r_k^2}\cdot\right)$. Note that \widetilde{F} is $\frac{r_k^2}{\omega_k}\rho$ -uniformly elliptic with same ellipticity constants $0<\lambda\leq \Lambda$.

Since $0 \le v \le 1$ with $\operatorname{osc}_{B_1} v = 1$, then only one of following holds:

$$\frac{|\{v \ge 1/2\} \cap B_1|}{|B_1|} \ge \frac{1}{2} \quad or \quad \frac{|\{v \le 1/2\} \cap B_1|}{|B_1|} \ge \frac{1}{2}$$

WLOG, assume the first case holds. Note that $||u||_{L^{\infty}(B_1)} \leq 1$, then $\omega_k \leq 2$. Since $k \leq \frac{1}{2 \ln 4} \ln \frac{\rho}{2\rho_0}$, then

$$\frac{r_k^2}{\omega_k} \rho \ge \frac{4^{-k}}{2} \rho \ge \rho_0.$$

Therefore, we applying Lemma 3.6 to conclude that

$$c_0 \le \|v_{r_k^2 \rho/2}\|_{L^{\varepsilon_0}(B_{1/4})} \le C \inf_{B_{1/4}} v.$$

This implies $\inf_{B_{1/4}} v \ge \kappa$ for some universal κ , then $\frac{m_{k+1} - m_k}{\omega_k} \ge \kappa$. Hence,

$$\omega_{k+1} = M_{k+1} - m_{k+1} \le M_k - m_{k+1} \le (1 - \kappa)\omega_k \le (1 - \kappa)^{k+1}.$$

By translation, we have the following corollary which is useful in our future compactness argument.

Corollary 3.9. Let F satisfy H1), and let u is a viscosity solution of (1.1). Assume $\rho > 2\rho_0$ and $||u||_{L^{\infty}(B_1)} \leq 1$, then

$$\operatorname{osc}_{B_r(x_0)} u \leq Cr^{\alpha}$$
, for any $x_0 \in B_{1/2}$ and $\sqrt{\frac{2\rho_0}{\rho}} \leq r \leq \frac{1}{2}$.

where $C > 0, \alpha \in (0,1)$ are universal constant depending only on n, λ, Λ . Consequently,

$$|u(x_1) - u(x_2)| \le C|x_1 - x_2|^{\alpha}$$
, for any $x_1, x_2 \in B_{1/2}$ and $\sqrt{\frac{2\rho_0}{\rho}} \le |x_1 - x_2| \le \frac{1}{2}$.

4. Proof of Theorem 1.3

Lemma 4.1 (Improvement of flatness). Let F satisfy H1)-H3), and let u be a viscosity solution to

$$F(D^2u) = 0 \quad \text{in } B_1.$$

There exists universal constants $\delta_0 > 0$, $\eta \in (0,1)$ and C > 0, which depend only on $n, \lambda, \Lambda, \rho$ and K, such that if $||u||_{L^{\infty}(B_1)} \leq \delta_0$, then there exists a quadratic polynomial P with $F(D^2P) = 0$, such that

$$|P| \le C \sup_{B_1} |u|$$
 and $\sup_{B_\eta} |u - P| \le \eta^{2+\alpha} \sup_{B_1} |u|$.

Proof. We prove this lemma by contradiction. If this lemma fails, for universal $\eta \in (0,1)$ and C > 0 to be chosen later, there exist $\{F_k\}$ and $\{u_k\}$ such that

- $\{F_k\}$ satisfy H1)-H3);
- $F_k(D^2u_k) = 0$ in B_1 in viscosity sense;
- $\delta_k := \sup_{B_1} |u_k| \to 0;$
- For any k, and any quadratic polynomial P with $F_k(D^2P) = 0$ and $P \leq C\delta_k$, we have $\sup_{B_n} |u_k P| > \eta^{2+\alpha}\delta_k$.

Step 1. Passing to limit.

Since $\{F_m\}$ are ρ -uniformly elliptic, and $||DF_m|| \leq K$, then by Arzela-Ascoli theorem, up to subsequence, DF_m converges to some matrix-valued function A locally uniformly in the ρ -neighborhood of the origin in $\mathcal{S}^{n \times n}$.

Consider $v_k = \delta_k^{-1} u_k$, then v_k satisfies $\widetilde{F}_k(D^2 v_k) = 0$ in the viscosity sense, where $\widetilde{F}_k(\cdot) = \delta_k^{-1} F(\delta_k \cdot)$. Note that \widetilde{F}_k is $\delta_k^{-1} \rho$ -uniformly elliptic. For sufficiently large k, we

have $\delta_k^{-1} \rho > 2\rho_0$. Thus we can apply Corollary 3.9 for v_k to get

$$|v_k(x_1) - v_k(x_2)| \le C|x_1 - x_2|^{\alpha}$$
, for any $x_1, x_2 \in B_{1/2}$ and $\sqrt{\frac{2\rho_0}{\delta_k^{-1}\rho}} \le |x_1 - x_2| \le \frac{1}{2}$.

Set $d_k = \sqrt{\frac{2\rho_0}{\delta_k^{-1}\rho}}$. Since $\delta_k \to 0$, then for any $\varepsilon > 0$, there exists $k_0 \in \mathbb{N}^+$, such that $2Cd_k^{\alpha} < \varepsilon$ for any $k \ge k_0$. Now for any $x_1, x_2 \in B_{1/2}$, with $|x_1 - x_2| \le d_{k_0}$, we can choose $x_3 \in B_{1/2}$ such that $|x_1 - x_3| = |x_2 - x_3| = d_{k_0}$. Now for any $k \ge k_0$, we have

$$|v_k(x_1) - v_k(x_2)| \le |v_k(x_1) - v_k(x_3)| + |v_k(x_2) - v_k(x_3)| \le 2C\delta_{k_0}^{\alpha} < \varepsilon.$$

Therefore, $\{v_k\}$ is equicontinuous. By Arzela-Ascoli theorem, up to subsequence, $v_k \to v_0$ in $C(B_{1/2})$.

Step 2. v_0 is the viscosity solution to $A^{ij}(0)D_{ij}v_0=0$ in $B_{1/2}$.

For any $x_0 \in B_{1/2}$ and $\varphi \in C^2$ such that φ touches v_0 by above at x_0 . Then for sufficiently large k, φ touches $v_k = \delta_k^{-1} u_k$ by above at some $x_k \in B_{1/2}$. Thus $\delta_k \varphi$ touches u_k by above at x_k . Then

$$0 \leq F_{k}(\delta_{k}D^{2}\varphi(x_{k})) = \int_{0}^{\delta_{k}} \frac{\mathrm{d}}{\mathrm{d}t} F_{k}(tD^{2}\varphi(x_{k})) \,\mathrm{d}t = \int_{0}^{\delta_{k}} F_{k}^{ij}(tD^{2}\varphi(x_{k})) D_{ij}\varphi(x_{k}) \,\mathrm{d}t$$

$$= \int_{0}^{\delta_{k}} F_{k}^{ij}(0) D_{ij}\varphi(x_{k}) + \left(F_{k}^{ij}(tD^{2}\varphi(x_{k})) - F_{k}^{ij}(0) \right) D_{ij}\varphi(x_{k}) \,\mathrm{d}t.$$

$$\leq \delta_{k} F_{k}^{ij}(0) D_{ij}\varphi(x_{k}) + \int_{0}^{\delta_{k}} Kt \|D^{2}\varphi(x_{k})\|^{2} \,\mathrm{d}t$$

$$= \delta_{k} \left(F_{k}^{ij}(0) D_{ij}\varphi(x_{k}) + \frac{\delta_{k}}{2} K \|D^{2}\varphi(x_{k})\|^{2} \right)$$

Here $F_k^{ij}(M) = \frac{\partial F_k}{\partial m_{ij}}(M)$. Therefore, $F_k^{ij}(0)D_{ij}\varphi(x_k) + \frac{\delta_k}{2}K\|D^2\varphi(x_k)\|^2 \geq 0$, sending $k \to \infty$, we get $A^{ij}(0)D_{ij}\varphi(x_0) \geq 0$. This implies v_0 is a viscosity subsolution to $A^{ij}(0)D_{ij}v_0 = 0$. Similarly, we can also prove that v_0 is a supersolution.

Step 3. Derive the contradiction.

Since F_k is ρ -uniformly elliptic, then $\lambda I \leq \left(F_k^{ij}(0)\right) \leq \Lambda I$, passing to limit, we get $\lambda I \leq \left(A^{ij}(0)\right) \leq \Lambda I$. Therefore, v_0 is the viscosity solution to a linear uniformly elliptic equation with constant coefficients. Moreover, $\|v_0\|_{L^{\infty}(B_{1/2})} \leq 1$, then $v_0 \in C^{\infty}(B_{1/2})$, with $\|D^k v_0\|_{L^{\infty}(B_{1/4})} \leq C = C(n, k, \lambda, \Lambda)$. Let P be the quadratic Taylor polynomial of v_0 , that is $P(x) = v_0(0) + \nabla v_0(0) \cdot x + \frac{1}{2}x^T D^2 v_0(0)x$, then $|P| \leq C = C(n, \lambda, \Lambda)$ and

$$\sup_{B_n} |v_0 - P| \le C\eta^3 \le \frac{1}{2}\eta^{2+\alpha},$$

provided $C\eta^{1-\alpha} < 1/2$.

Note that

$$F_{k}(\delta_{k}D^{2}P) = \int_{0}^{\delta_{k}} \frac{\mathrm{d}}{\mathrm{d}t} F_{k}(tD^{2}P) \, \mathrm{d}t = \int_{0}^{\delta_{k}} F_{k}^{ij}(tD^{2}P) D_{ij}P \, \mathrm{d}t$$

$$\leq \delta_{k} F_{k}^{ij}(0) D_{ij}P + \frac{\delta_{k}^{2}}{2} K \|D^{2}P\|^{2}$$

$$= o(\delta_{k}).$$

Since F_k is ρ -uniformly elliptic, then for k large, there exists $a_k = o(\delta_k)$, such that $P_k(x) := \delta_k P(x) + a_k |x|^2$ satisfies $F_k(D^2 P_k) = 0$ and $|P_k| \le C \delta_k$. Now,

$$\sup_{B_{\eta}} |u_k - P_k| = \sup_{B_{\eta}} |u_k - \delta_k P - a_k| x|^2 |$$

$$\leq \delta_k \left(\sup_{B_{\eta}} \left| \frac{u_k}{\delta_k} - P \right| + \frac{a_k}{\delta_k} \eta^2 \right)$$

$$\leq \delta_k \left(\sup_{B_{\eta}} |v_k - v_0| + \sup_{B_{\eta}} |v_0 - P| + o(1)\eta^2 \right)$$

$$\leq \delta_k \left(o(1) + \frac{1}{2} \eta^{2+\alpha} + o(1)\eta^2 \right)$$

$$< \delta_k \eta^{2+\alpha},$$

for sufficiently large k. This leads a contradiction.

Finally, applying Caffarelli's iteration argument, we get the interior $C^{2,\alpha}$ estimate for flat solutions.

Lemma 4.2. Under the hypothesis of Lemma 4.1, if $||u||_{L^{\infty}(B_1)} = \delta \leq \delta_0$, then there exists a quadratic polynomial P with $F(D^2P) = 0$ and $|P| \leq C\delta$, such that

$$|u(x) - P(x)| \le C\delta |x|^{2+\alpha}$$
, for any $x \in B_1$.

Proof. This proof is standard, see

Step 1. We construct a sequence quadratic polynomial $\{P_k\}_{k=0}^{\infty}$, such that

$$F(D^2 P_k) = 0$$
, and $\sup_{B_{\eta^k}} |u - P_k| \le \delta \eta^{(2+\alpha)k}$.

We prove it by induction. For k = 0, $P_0 = 0$ is desired. Assume it holds for k, consider the rescaled function

$$\widetilde{u}(x) = \frac{u(\eta^k x) - P_k(\eta^k x)}{\eta^{2k}}, \ x \in B_1 \quad and \quad \widetilde{F}(\cdot) := F(\cdot + D^2 P_k).$$

Then $\|\widetilde{u}\|_{L^{\infty}(B_1)} \leq \delta \eta^{k\alpha} \leq \delta_0$, by Lemma 4.1, there exists a quadratic polynomial \widetilde{P}_k , such that $\widetilde{F}(D^2\widetilde{P}_k) = 0$, $|\widetilde{P}_k| \leq C \sup_{B_1} |\widetilde{u}| \leq C \delta \eta^{k\alpha}$ and

$$\sup_{B_{\eta}} |\widetilde{u} - \widetilde{P}_k| \le \eta^{2+\alpha} \sup_{B_1} |u| \le \delta \eta^{k\alpha} \eta^{2+\alpha}.$$

Transform back to u and denote $P_{k+1}(x) = P_k(x) + \eta^{2k} \widetilde{P}_k(\eta^{-k}x)$, we have

$$F(D^2 P_{k+1}) = 0$$
 and $\sup_{B_{n^{k+1}}} |u - P_{k+1}| \le \delta \eta^{(2+\alpha)(k+1)}$.

Step 2. Show that $\{P_k\}$ will converge, and the limit is our desired polynomial.

By the construction in Step 1, $P_{k+1} - P_k = \eta^{2k} \widetilde{P}_k(\eta^{-k}x)$. Assume $\widetilde{P}_k(x) = a_k + b_k \cdot x + x^T C_k x$, since $|\widetilde{P}_k| \leq C \delta \eta^{k\alpha}$, we have $|a_k| + |b_k| + |C_k| \leq C \delta \eta^{k\alpha}$. Now

$$P_{k+1}(x) - P_k(x) = \eta^{2k} a_k + \eta^k b_k \cdot x + x^T C_k x.$$

Since $\sum \eta^{2k} |a_k|$, $\sum \eta^k |b_k|$, $\sum ||C_k||$ converge, then $\sum_{k=0}^{\infty} (P_{k+1} - P_k)$ converges. Thus $\lim_{k \to \infty} P_k = P$ for some quadratic polynomial P. Moreover, $F(D^2P) = 0$. Since

$$P(x) = \left(\sum_{k=0}^{\infty} \eta^{2k} a_k\right) + \left(\sum_{k=0}^{\infty} \eta^k b_k\right) \cdot x + x^T \left(\sum_{k=0}^{\infty} C_k\right) x,$$

it is clearly that

$$|P| \le C\delta$$
, and $\sup_{B_{\eta^k}} |P - P_k| \le C\delta\eta^{(2+\alpha)k}$.

Finally, for any $x \in B_1$, there exists $k \in \mathbb{N}$, such that $\eta^{k+1} < |x| \le \eta^k$, then

$$|u(x) - P(x)| \le |u(x) - P_k(x)| + |P(x) - P_k(x)|$$

$$\le \delta \eta^{(2+\alpha)k} + C\delta \eta^{(2+\alpha)k}$$

$$\le C\delta |x|^{2+\alpha}.$$

References

[Sav07] Ovidiu Savin, Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations $\bf 32$ (2007), no. 4-6, 557–578. MR 2334822