

Evolution du Projet

Glouton 26/09/16

Caractéristiques

Optimal localement

Voyage de proche en proche

Complexité

Glouton 26/09/16

Caractéristiques

Optimal localement

Voyage de proche en proche

Complexité

Glouton 26/09/16

Caractéristiques

Optimal localement

Voyage de proche en proche

Complexité

Glouton 26/09/16

Caractéristiques

Optimal localement

Voyage de proche en proche

Complexité

Glouton 26/09/16

Caractéristiques

Optimal localement

Voyage de proche en proche

Complexité

Densité

Densité 07/10/16

Caractéristiques

Cherche la zone la plus dense

Glouton entre fromages

Complexité

Densité

Densité 07/10/16

Caractéristiques

Cherche la zone la plus dense

Glouton entre fromages

Complexité

Densité

Densité 07/10/16

Caractéristiques

Cherche la zone la plus dense

Glouton entre fromages

Complexité

Ratio 09/10/16

Caractéristiques

$$R = d^3 / Fz$$

Cherche la zone la plus dense en prenant en compte la distance

Glouton entre fromages

Complexité

Ratio 09/10/16

Caractéristiques

$$R = d^3 / Fz$$

Cherche la zone la plus dense en prenant en compte la distance

Glouton entre fromages

Complexité

Ratio 09/10/16

Caractéristiques

$$R = d^3 / Fz$$

Cherche la zone la plus dense en prenant en compte la distance

Glouton entre fromages

Complexité

Ratio 09/10/16

Caractéristiques

$$R = d^3 / Fz$$

Cherche la zone la plus dense en prenant en compte la distance

Glouton entre fromages

Complexité

Monte Carlo

Monte Carlo 17/10/16

Caractéristiques S = sum[df]

Evalue les différents mouvements possibles en avance

On root jusqu'à la case adjacente et on bouge

Complexité

T.Nlog(N) + T.L.4 = 92 371

Monte Carlo

Monte Carlo 17/10/16

Caractéristiques S = sum[df]

Evalue les différents mouvements possibles en avance

On root jusqu'à la case adjacente et on bouge

Complexité

T.Nlog(N) + T.L.4 = 92 371

Monte Carlo

Monte Carlo 17/10/16

Caractéristiques S = sum[df]

Evalue les différents mouvements possibles en avance

On root jusqu'à la case adjacente et on bouge

Complexité

T.Nlog(N) + T.L.4 = 92 371

Quelques Pistes.. Abandonnées

Suivi

Si je suis mon adversaire pour aller au même fromage,

Je change de fromage

Cela peut empêcher d'accéder à une zone à forte densité de fromage

Algorithme A*

Permet de réduire la complexité dans la recherche de tables de distance et de routage

En se dirigeant vers le Monte Carlo, la complexité est ammoindrie, aucune nécessité

Idée Supplémentaire

Exhaustif avec élagage αβ

Et si un élagage suffisant permettait l'utilisation d'un algorithme plus complexe?

MERCI

