

8

P versus N	IP complexity	classes
◆ Clearly, P	⊆ NP.	
theoretical	to NP ?	concerns
© 2015 Goodrich and Tamassia	NP-Completeness	10

NP-Complete complexity class

- ♦ NP-complete problems: set of problems
 - to each of which any other NP-problem can be reduced in polynomial time and
 - whose solution may still be verified in polynomial time.
- any NP problem can be transformed into any of the NP-complete problems.
- ◆ Informally, at least as "tough" as any other problem in NP.

© 2015 Goodrich and Tamassia

NP-Completeness

11

11

NP-Hard complexity class

- ♠ NP-hard problems are those at least as hard as NP problems
- ◆all NP problems can be reduced (in polynomial time) to them.
- ♠ NP-hard problems need not be in NP, i.e., they need not have solutions verifiable in polynomial time.

© 2015 Goodrich and Tamassia

NP-Completeness

7000	********************	**************	0000000000	******	*****
Major NPC p	oroblems	3			
◆ SAT, 3-SAT					
♦ Vertex Cover					
◆ Clique					
♦ Independent	Set				
♦ Hamiltonian (Cycle				
◆Travelling Sa	lesperson				
◆ Partition					
Subset Sum					
♦ Graph Colorir	ng				
© 2015 Goodrich and Tamassia	NP-Completeness			14	H

Hamiltonian Cycle & Longes	t Paths
Does a given graph G have a cycle visiting vertex exactly once?	g each
solve using longest path as a subroutine:	
for each edge (u,v) of G if there is a simple path of length n-1 from u to	v
return yes // path + edge form a cycle return no	
 This algorithm makes m calls to a longest path subroutine, O(m) work outside those subroutine calls, so it shows that HamiltonianCycle < LongestPath. 	and does
(It doesn't show that Hamiltonian cycle is in P, because we how to solve the longest path problem quickly.)	don't know
© 2015 Goodrich and Tamassia NP-Completeness	20

21

RDS is NP-Complete RDS is in NP positive solution verification Given a schedule, it is easy to verify in O(n²) time whether job i is scheduled between r₁ and d₁ and that (d₁-r₁) ≥ t₁. Also the schedules of jobs i and j don't overlap whenever i ≠ j . Poly-time Reduction of the Partition problem PART < RDS PART: Given a set A = {a1, a2, ..., an}, is there a partition S ∋ Σ {ai | ai ∈ S} = Σ {ai | ai ∈ A − S} NOTE: If we solve RDS using PART (i.e., RDS < PART), it does NOT show that RDS is NP-complete 2015 Goodrich and Tamassia NP-Completeness

PART < RDS : Poly-time Reduction
♦ Given an instance I of PART: A={a ₁ , a ₂ ,, a _n }
• Generate the instance I' of RDS with (n+1)-jobs as follows: Let $W = \Sigma ai$
$r_i = 0;$ $d_i = W+1;$ $t_i = a_i;$ $1 \le i \le n$
$r_{n+1} = \frac{W}{2}$; $d_{n+1} = \frac{W}{2} + 1$; $t_{n+1} = 1$;
Note if W is not even, partition of A does not exist (i.e., no solution to PART)
Job (n+1) acts an an enforcer of a partition of A if it exists
Now, Show that
Solution to I' of RDS iff Solution to I of PART
© 2015 Goodrich and Tamassia NP-Completeness 23

The Complexity Class NP Alternate Definition)
 We say that an algorithm B verifies the acceptance of a language L if and only if, for any x in L, there exists a certificate y such that B outputs "yes" on input (x,y). NP is the complexity class consisting of all languages verified by polynomial-time algorithms. 	
 ◆ We know: P is a subset of NP. ◆ Major open question: P=NP? ◆ Most researchers believe that P and NP are different. 	
© 2015 Goodrich and Tamassia NP-Completeness 29	

