Distributional Treatment Effect with Latent Rank Invariance

Myungkou Shin

University of Surrey

Midwest Econometrics Group annual conference

October 3, 2025

Distributional treatment effect

Potential outcome setup: with $D \in \{0, 1\}$,

$$Y = D \cdot Y(1) + (1 - D) \cdot Y(0).$$

We do not observe Y(1) and Y(0) simultaneously; focus on ATE, LATE, etc.

Some questions can only be answered with **distribution** of treatment effect Y(1) - Y(0).

"How many people are better off under the treatment?"

"How heterogeneous is the treatment effect at the individual level?"

Various distributional treatment effect (DTE) parameters can be defined:

$$Var(Y(1) - Y(0)), Pr\{Y(1) - Y(0) \ge 0\}, etc.$$

Distributional treatment effect

Existing approaches

- Partial identification: put a bound on $\Pr\left\{Y(1)-Y(0)\leq y\right\}$ Heckman et al. (1997); Fan and Park (2010); Fan et al. (2014); Firpo and Ridder (2019) Frandsen and Lefgren (2021); Kaji and Cao (2023) and more
- Independence: assume $Y(1) \perp \!\!\! \perp Y(0)$ or $Y(0) \perp \!\!\! \perp \big(Y(1) Y(0)\big)$ Heckman et al. (1997); Noh (2023)

In this paper, I follow the latter, assuming a latent variable ${\cal U}$ such that

$$Y(1) \perp \!\!\! \perp Y(0) \mid U$$

and two proxy variables X and Z to identify the cond. dist. of Y(d) given U.

Distributional treatment effect: setup

An econometrican observes $\{Y_i, D_i, X_i, Z_i\}_{i=1}^n$:

$$Y_i = D_i \cdot Y_i(1) + (1 - D_i) \cdot Y_i(0).$$

 $Y_i, X_i, Z_i \in \mathbb{R}, D_i \in \{0,1\}$ and $\left(Y_i(1), Y_i(0), D_i, X_i, Z_i, U_i\right) \sim iid.$ X_i and Z_i are proxy variables for U_i . $U_i \in \mathbb{R}$.

Assumption 1. $(Y_i(1), Y_i(0), X_i) \perp (D_i, Z_i) \mid U_i$.

- One of the proxy Z_i and the latent variable U_i are confounders.
- In proximal inference terminology,

 X_i is outcome-aligned proxy and Z_i is treatment-aligned proxy.

Hu and Schennach (2008); Miao et al. (2018); Deaner (2023); Nagasawa (2022) and more

Assumption 2. $Y_i(1), Y_i(0), X_i$ are mutually independent given U_i .

Distributional treatment effect: example 1 (rank invariance)

Assume rank invariance between $Y_i(1)$ and $Y_i(0)$:

$$\Pr \left\{ F_{Y(1)}(Y_i(1)) = F_{Y(0)}(Y_i(0)) \right\} = 1.$$

When D_i is random, Assumptions 1-2 trivially hold with

$$U_i = X_i = Z_i = F_{Y(1)}(Y_i(1)) = F_{Y(0)}(Y_i(0)).$$

Rank invariance is a commonly used assumption in quantile treatment effect/IV literature:

Chernozhukov and Hansen (2005, 2006); Athey and Imbens (2006); Callaway and Li (2019) and more.

In this paper,

- **1.** U_i is latent and not a deterministic function of $Y_i(1)$ or $Y_i(0)$;
- **2.** conditional expectation of $Y_i(d)$ given U_i have the same rank.

Hence 'latent rank invariance.'

Distributional treatment effect: example 2 (hidden Markov model)

Consider a panel where T=3 and $D_i=1$ means being treated for t=2,3.

$$Y_{it}(d) = g_d(U_{it}, \varepsilon_{it}(d)).$$

There are a common shock U_{it} and treatment-status-specific shocks $(\varepsilon_{it}(0), \varepsilon_{it}(1))$.

Assumption 2 holds when 1) $\{U_{it}\}_{t=1}^3$ is first-order Markov given D_i and 2) $\{\{U_{it}\}_{t=1}^3, D_i\}, \varepsilon_{i1}(0), \varepsilon_{i2}(1), \varepsilon_{i2}(0), \varepsilon_{i3}(1), \varepsilon_{i3}(0) \sim \text{ind.}$

Hidden Markov model: Kasahara and Shimotsu (2009); Hu and Shum (2012) and more.

Panel data model with proxy: Deaner (2023)

In this paper,

1. treatment-status-specific shocks are introduced and assumed to be $\varepsilon_{it}(1) \perp \!\!\! \perp \varepsilon_{it}(0)$.

Identification

Assumption 3/4. full rank/completeness of $f_{X|Z}$ when U_i is discrete/continuous: (A3) (A4) "Both of the proxy variables are informative for the latent variable U_i ."

Assumption 5. $\mathbf{E}[Y_i(1)|U_i=u]$ and $\mathbf{E}[Y_i(0)|U_i=u]$ are strictly increasing in u. "Conditional expectation of $Y_i(1)$ given U_i and that of $Y_i(0)$ given U_i have the same rank." U_i can be thought of as a 'latent' or 'interim' rank.

I apply Hu and Schennach (2008) to treated subpopulation and to untreated subpopulation.

Theorem 1.

Assumptions 1-3 or Assumptions 1-2, 4-5 hold. Then, the distribution of $(Y_i(1), Y_i(0), D_i, X_i, Z_i)$ is identified.

Identification

From Theorem 1, the following two distributional treatment effect (DTE) parameters are identified:

$$F_{Y(0),Y(1)}(y,y') = \int_{\mathbb{R}} F_{Y(0),Y(1)|U}(y,y'|u) f_{U}(u) du = \int_{\mathbb{R}} F_{Y(0)|U}(y|u) \cdot F_{Y(1)|U}(y'|u) f_{U}(u) du,$$

$$F_{Y(1)-Y(0)}(\delta) = \int_{\mathbb{R}} F_{Y(1)-Y(0)|U}(\delta|u) f_{U}(u) du = \int_{\mathbb{R}} \int_{\mathbb{R}} F_{Y(1)|U}(y+\delta|u) \cdot f_{Y(0)|U}(y|u) f_{U}(u) dy du.$$

Other distributional parameters $Var(Y_i(1) - Y_i(0))$ are identified and can be estimated as well.

To estimate DTEs, estimate $\{F_{Y(1)|U}(\cdot|u)\}_u$, $\{F_{Y(0)|U}(\cdot|u)\}_u$ and $f_U(\cdot)$.

Implementation: finite support assumption

To let U_i be continuous and apply the standard semiparametric estimation theory,

Shen (1997); Chen and Shen (1998); Ai and Chen (2003) and more

Need strong assumptions such as bounded support of Y_i and X_i .

Why? DTE parameters are inner products of densities.

Instead, I assume $U_i \in \{u^1, \dots, u^K\}$ with $K < \infty$. Choice of K Reasoning behind the finite support assumption:

- Finite mixture: Henry et al. (2014) and more.
 Discretization as approximation: Bonhomme et al. (2022) and more.
- 2. DTE parameters are identified with quadratic moments; a limiting distribution is derived from U stat. theory and Neyman orthogonality.
- Identification is not tied to the finite support; alternative asymptotic theory could be developed as well.

Implementation: premise

From Assumptions 1-2 and $U_i \in \{u^1, \dots, u^K\}$, we have a finite mixture representation:

$$\begin{pmatrix}
F_{Y|D=d,Z}(y|\mathcal{Z}^1) & \cdots & F_{Y|D=d,Z}(y|\mathcal{Z}^K) \\
&= \left(F_{Y(d)|U}(y|u^1) & \cdots & F_{Y(d)|U}(y|u^K) \right) \\
& \cdot \begin{pmatrix}
\Pr\{U_i = u^1 | D_i = d, Z_i \in \mathcal{Z}^1\} & \cdots & \Pr\{U_i = u^1 | D_i = d, Z_i \in \mathcal{Z}^K\} \\
& \vdots & \ddots & \vdots \\
\Pr\{U_i = u^K | D_i = d, Z_i \in \mathcal{Z}^1\} & \cdots & \Pr\{U_i = u^K | D_i = d, Z_i \in \mathcal{Z}^K\} \end{pmatrix} \\
& = \Lambda_d$$

With Λ_d^{-1} , the distribution of $Y_i(d)$ given U_i are linear in observed distributions.

Implementation: nonnegative matrix factorization

Fix K. Given some partitions $\{\mathcal{Y}^m\}_m, \{\mathcal{X}^{m'}\}_{m'}, \{\mathcal{Z}^l\}_l$, let

$$\mathbf{H}_{d} = \begin{pmatrix} \Pr\left\{Y_{i} \in \mathcal{Y}^{1}, X_{i} \in \mathcal{X}^{1} \middle| D_{i} = d, Z_{i} \in \mathcal{Z}^{1}\right\} & \cdots & \Pr\left\{Y_{i} \in \mathcal{Y}^{1}, X_{i} \in \mathcal{X}^{1} \middle| D_{i} = d, Z_{i} \in \mathcal{Z}^{M_{Z}}\right\} \\ \vdots & \ddots & \vdots \\ \Pr\left\{Y_{i} \in \mathcal{Y}^{M_{Y}}, X_{i} \in \mathcal{X}^{M_{X}} \middle| D_{i} = d, Z_{i} \in \mathcal{Z}^{1}\right\} & \cdots & \Pr\left\{Y_{i} \in \mathcal{Y}^{M_{Y}}, X_{i} \in \mathcal{X}^{M_{X}} \middle| D_{i} = d, Z_{i} \in \mathcal{Z}^{M_{Z}}\right\} \end{pmatrix}$$

$$= \Gamma_{d} \cdot \Lambda_{d}$$

where
$$\Gamma_d = \left(\Pr\left\{ Y_i(d) \in \mathcal{Y}^m, X_i \in \mathcal{X}^{m'} \middle| U_i = u^k \right\} \right)_{(m,m'),k}$$

$$\Lambda_d = \left(\Pr\left\{ U_i = u^k \middle| D_i = d, Z_i \in \mathcal{Z}^l \right\} \right)_{k,l}.$$

 \mathbf{H}_d is a discretization of $f_{Y,X|D=d,Z}$.

The full rank condition implies $|\text{supp}_Z| \geq K$; if $|\text{supp}_Z| > K$, use partition $\{\mathcal{Z}^l\}_{l=1}^K$.

Implementation: nonnegative matrix factorization

Solve the following nonnegative matrix factorization problem:

$$\left(\widehat{\Gamma}_{0}, \widehat{\Gamma}_{1}, \widehat{\Lambda}_{0}, \widehat{\Lambda}_{1}\right) = \arg\min \left\|\mathbb{H}_{0} - \Gamma_{0} \cdot \Lambda_{0}\right\|_{F} + \left\|\mathbb{H}_{1} - \Gamma_{1} \cdot \Lambda_{1}\right\|_{F} \tag{1}$$

subject to 1) $\Gamma_0, \Gamma_1, \Lambda_0, \Lambda_1$ are nonnegative.

Also, their columnwise sums are one. ... (linear constraints)

- 2) Γ_0 and Γ_1 satisfy $Y_i(d) \perp \!\!\! \perp X_i \mid U_i \cdots (quadratic constraints)$
- 3) Γ_0 and Γ_1 imply the same marginal distribution of $X_i \cdots$ (linear constraints)

The objective becomes quadratic once we fix (Γ_0, Γ_1) or (Λ_0, Λ_1) .

The quadratic constraint becomes linear once we fix Γ_X or $(\Gamma_{Y0}, \Gamma_{Y1})$.

(1) is solved iteratively. algorithm

Implementation: nonnegative matrix factorization

Theorem 2. Assumptions 1-3 hold. Up to some permutation on $\{u^1, \cdots, u^K\}$,

$$\left\|\widehat{\Lambda}_0 - \Lambda_0 \right\|_F = O_p\left(rac{1}{\sqrt{n}}
ight) \quad ext{ and } \quad \left\|\widehat{\Lambda}_1 - \Lambda_1
ight\|_F = O_p\left(rac{1}{\sqrt{n}}
ight)$$

as $n \to \infty$.

The convergence rate is $n^{-\frac{1}{2}}$.

A direct corollary is that $\left(\widehat{\Lambda}_d\right)^{-1}$ is consistent for $(\Lambda_d)^{-1}$ at the same rate.

Implementation: plug-in GMM

Then, quadratic moments identify DTE:

$$F_{Y(1),Y(0)}(y,y') = \sum_{k,l,m=1}^{K} w_{klm} \cdot \mathbf{E} \big[\mathbf{1} \{ Y_i \le y, D_i = 1, Z_i \in \mathcal{Z}^m, Y_j \le y', D_j = 0, Z_j \in \mathcal{Z}^l \} \big]$$

$$F_{Y(1)-Y(0)}(\delta) = \sum_{k,l,m=1}^{K} w_{klm} \cdot \mathbf{E} \big[\mathbf{1} \{ Y_i \le Y_j + \delta, D_i = 1, Z_i \in \mathcal{Z}^m, D_j = 0, Z_j \in \mathcal{Z}^l \} \big]$$

for all $(y,y')\in\mathbb{R}^2$ and $\delta\in\mathbb{R}$, with $(Y_i,D_i,Z_i)\perp\!\!\!\perp (Y_j,D_j,Z_j)$ and

-
$$w_{klm} = \frac{p_U(k)\lambda_{lk,0}\lambda_{mk,1}}{p_{D,Z}(0,l)p_{D,Z}(1,m)}$$
.

- $\tilde{\lambda}_{lk,d}$ is l-th row k-th column component of $(\Lambda_d)^{-1}$ $\forall d=0,1.$
- $p_U(k) := \Pr\{U_i = u^k\} \quad \forall k = 1, \dots, K.$
- $p_{D,Z}(d,l) := \Pr\{D_i = d, Z \in \mathcal{Z}^l\}$ $\forall d = 0, 1$ and $l = 1, \cdots, K$.

Implementation: plug-in GMM

The DTE estimators are plug-in GMM estimator from (orthogonalized) moment: Lemma 1.

$$\begin{split} \widehat{F}_{Y(1)-Y(0)}(\delta) &= \sum_{k,l,m=1}^K \widehat{w}_{klm} \cdot \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j \neq i} \mathbf{1}\{Y_i \leq \underline{Y_j} + \delta, D_i = 1, Z_i \in \mathcal{Z}^m, D_j = 0, Z_j \in \mathcal{Z}^l\} \\ &+ \text{orthogonalization term} \end{split}$$

where
$$\widehat{w}_{klm}=rac{\hat{p}_{U}(k)\widehat{\widehat{\lambda}}_{lk,0}\widehat{\widehat{\lambda}}_{mk,1}}{\hat{p}_{D,Z}(0,l)\hat{p}_{D,Z}(1,m)}.$$

Theorem 3. Assumptions 1-3 hold. Then, as $n \to \infty$,

$$\sqrt{n}\left(\widehat{F}_{Y(1),Y(0)}(y,y') - F_{Y(1),Y(0)}(y,y')\right) \xrightarrow{d} \mathcal{N}\left(0,\sigma(y,y')^{2}\right)
\sqrt{n}\left(\widehat{F}_{Y(1)-Y(0)}(\delta) - F_{Y(1)-Y(0)}(\delta)\right) \xrightarrow{d} \mathcal{N}\left(0,\sigma(\delta)^{2}\right).$$

Empirical Illustration

I revisit Jones et al. (2019), which studies the effect of workplace wellness program. The program *eligibility* was randomly assigned to employees at UIUC; intent-to-treat. Using the University-provided health insurance data, Jones et al. (2019) estimates its effect on medical spending.

The variables in the dataset are:

 $Y_i = \text{monthly medical spending over August 2016-July 2017}$

 $D_i = 1$ { eligible for the wellness program starting in September 2016}

 $X_i = \text{monthly medical spending over July 2015-July 2016}$

 $Z_i = \text{monthly medical spending over August 2017-January 2019}$

"Underlying health status U_i depends on past health status, but not on medical spendings."

Empirical Illustration: setup

The eigenvalue ratio estimator and the Kleibergen-Paap rank test suggest K=3. I use K=5 and used 5-fold partitions for Y_i, X_i and Z_i : e.g. $F_V^{-1}(0), F_V^{-1}(1/5), \cdots, F_V^{-1}(1)$ and so on.

As a falsification test, I test the null hypothesis
$$f_{X|D=1,U}(\cdot|u)=f_{X|D=0,U}(\cdot|u)$$
 for all u : with $W_n=\left(\hat{f}_{X|D=1,U}(\mathcal{X}^m|u)-\hat{f}_{X|D=0,U}(\mathcal{X}^m|u)\right)_{m,u}\in\mathbb{R}^{25},$
$$nW_n{}^{\mathsf{T}}Avar(W)^{-1}W_n=16.435$$

The p-value is 0.689.

Empirical Illustration: joint distribution of potential outcomes

Figure 1: Joint density of (Y(1), Y(0)).

y-axis is Y(1) and x-axis Y(0); each cell corresponds to $F_X^{-1}(0), F_X^{-1}(1/7), \cdots, F_X^{-1}(1)$. No noticeable treatment effect; in Jones et al. (2019), p-values for ATE are 0.86-0.94.

Empirical Illustration: treatment effect distribution

Figure 2: Marginal density of Y(1) - Y(0).

Information gain from partial identification (Fan and Park, 2010).

Summary

- Assume a latent variable U such that

$$Y_i(1) \perp \!\!\!\perp Y_i(0) \mid U_i$$
.

This assumption could be thought of as a 'latent rank invariance' condition when $\mathbf{E}[Y_i(d)|U_i=u]$ is monotone increasing in u.

- Use two proxy variables X_i and Z_i to identify the distribution of $Y_i(d)|U_i$.
- Nonnegative matrix factorization estimates distribution of U_i given (D_i, Z_i) .
- An asymptotic distribution is derived for the plug-in GMM estimator.

Identification à la Hu and Schennach (2008)

An essential building block in the identification argument: $f_{Y,X|D,Z}$.

Fix y and d and discretize X_i and Z_i :

$$\mathbf{H} = \left(f_{Y=y,X|D=d,Z}(x|z)\right)_{x,z} = \left(f_{X|U}(x|u)\right)_{x,u} \cdot \operatorname{diag}\left(f_{Y|U}(y|u)\right)_{u} \cdot \left(f_{U|D=d,Z}(u|z)\right)_{u,z}.$$

H is a $|\text{supp}_X| \times |\text{supp}_Z|$ matrix whose rows correspond to X_i and columns to Z_i .

Likewise, define
$$\mathbf{H}_X = \left(f_{X|D=d,Z}(x|z)\right)_{x,z}$$
.

Under Assumptions 1-2 and full rank/completeness of H_X , $\stackrel{A3}{\longrightarrow}$ $\stackrel{A4}{\longrightarrow}$

$$\mathbf{H} \cdot (\mathbf{H}_X)^{-1} = \left(f_{X|U}(x|u) \right)_{x,u} \cdot \operatorname{diag} \left(\{ f_{Y(d)=y|U}(u) \}_u \right) \cdot \left(\left(f_{X|U}(x|u) \right)_{x,u} \right)^{-1}$$

Spectral decomposition identifies $f_{X|U}$.

Spectral Theorem of Hu and Schennach (2008)

Several deviations from Hu and Schennach (2008):

- 1. Two decomposition results; treated population and untreated population. Need to connect $\{f_{Y(1)|U}(\cdot|u)\}_u$ to $\{f_{Y(0)|U}(\cdot|u)\}_u$.
- **2.** Mapping from $\{f_{X|U}(\cdot|u)\}_u$ to u to have distribution of U_i .
- 1. is easily solved.

Firstly, split the sample into two subsamples $\{i:D_i=1\}$ and $\{i:D_i=0\}$ and we get $\big\{f_{Y(1)|U}(\cdot|u),f_{X=1|U}(\cdot|u)\big\}_u$ and $\big\{f_{Y(0)|U}(\cdot|u),f_{X=0|U}(\cdot|u)\big\}_u$.

Under Assumption 1, $f_{X|D=1,U}(\cdot|u)$ and $f_{X|D=0,U}(\cdot|u)$ should be the same.

Spectral Theorem of Hu and Schennach (2008)

A linear operator $L_{Y=y,X|D=d,X}$ maps a density of Z_i to a density of $(Y_i(d)=y,X_i)$:

$$\left(L_{Y=y,X|D=d,Z}g\right)(x) = \int_{\mathbb{R}} f_{Y(d),X|D,Z}(y,x|d,z)g(z)dz.$$

From the decomposition based on Assumption 2, we get

$$L_{Y=y,X|D=d,Z} = L_{X|U} \cdot \Delta_{Y=y|U} \cdot L_{U|D=d,Z}$$

with similarly defined operators $L_{X|U}$, $L_{U|D=d,Z}$ and a diagonal operator $\Delta_{Y=y|U}$. Thus,

$$\begin{split} L_{Y=y,X|D=d,Z} \left(L_{X|D=d,Z} \right)^{-1} &= L_{X|U} \cdot \Delta_{Y=y|U} \cdot L_{U|D=d,Z} \cdot \left(L_{X|U} \cdot L_{U|D=d,Z} \right)^{-1} \\ &= \underbrace{L_{X|U} \cdot \Delta_{Y=y|U} \cdot \left(L_{X|U} \right)^{-1}}_{\text{spectral decomposition}}. \end{split}$$

Assumption 3

Assumption 3.

- **a.** (finitely discrete U_i) $U_i \in \{u^1, \dots, u^K\}$.
- **b.** (full rank) $\left(f_{U|D=1,Z}(u|z)\right)_{u,z}$, $\left(f_{U|D=0,Z}(u|z)\right)_{u,z}$ and $\left(f_{X|U}(x|u)\right)_{x,z}$ have rank K.
- **c.** (no repeated eigenvalue) For any $k \neq k'$, there exist some $d \in \{0,1\}$ and y such that

$$f_{Y(d)|U}(y|u^k) \neq f_{Y(d)|U}(y|u^{k'}).$$

"The latent heterogeneity U_i can be at most as rich/flexible as the proxy variables." \square

Assumption 4

Assumption 4.

- **a.** (continuous U_i) $U_i \in [0,1]$.
- **b.** (bounded density) All marginal and conditional densities of $(Y_i(1), Y_i(0), X_i, Z_i, U_i)$ are bounded.
- **c.** *(completeness)* Let $f_{X|Z,d}$ denote the conditional density of X_i given $(D_i = d, Z_i)$.

$$\int_{\mathbb{R}} |g(x)| dx \quad \text{and} \quad \int_{\mathbb{R}} g(x) f_{X|Z,d}(x|z) d(x) = 0 \quad \forall d,z$$

implies g(x) = 0. Assume similarly for $f_{X|U}$.

d. (no repeated eigenvalue) $\forall u \neq u'$, there exists $d \in \{0,1\}$ such that

$$\Pr \left\{ f_{Y(d)|U}(Y_i(d)|u) \neq f_{Y(d)|U}(Y_i(d)|u') | D_i = d \right\} > 0.$$

Identification: implicit restriction

A crucial step in the identification argument is that there exists some w such that

$$\begin{aligned} \mathbf{E}[Y_{i}(1)|Y_{i}(0) = y] &= \int_{\mathbb{R}} \frac{w(y, z)}{f_{Y(0)}(y)} \cdot \mathbf{E}[Y_{i}|D_{i} = 1, Z_{i} = z]dz, \\ \mathbf{E}[Y_{i}(1)Y_{i}(0)] &= \int_{\mathbb{R}} \int_{\mathbb{R}} w(y, z) \cdot y \mathbf{E}[Y_{i}|D_{i} = 1, Z_{i} = z]dydz. \end{aligned}$$

 $\mathbf{E}[Y_i|D_i=1,Z_i] \text{ replaces } Y_i(1) \text{ and } w(y,z) \text{ replaces the joint density of } \big(Y_i(1),Y_i(0)\big).$

"Proxy variable Z_i creates sufficient variation in the distribution of $Y_i(1)$."

The implicit restriction is that

"conditional distribution of $Y_i(1)$ given $Y_i(0)$ is a linear combination of $\{F_{Y|D=1,Z}(\cdot|z)\}_z$."

Identification: falsification test

The conditional independence of $Y_i(1)$ and $Y_i(0)$ is fundamentally untestable. Instead, we can test the null

$$f_{X|D=1,U}(\cdot|u) = f_{X|D=0,U}(\cdot|u) \quad \forall u.$$

with

$$\min_{g \text{ monotone}} \mathbf{E}\left[\int_{\mathbb{R}} \left(f_{X|D=1,U}(x|g(U_i)) - f_{X|D=0,U}(x|U_i)\right)^2 du \Big| D_i = 0\right] = 0.$$

"Can we construct a latent variable U_i that satisfies 1) conditional independence $X_i \perp \!\!\! \perp Y_i \mid U_i$ and 2) random treatment $X_i \perp \!\!\! \perp D_i \mid U_i$?"

In the short panel context,

- cannot test the conditional independence across treatment regime.
- can somewhat test the intertemporal conditional independence, given random treatment.

Nonnegative matrix factorization

The objective function in (1) is quadratic with linear constraints, once we fix two out of the three matrices $\Gamma_X, \Gamma_Y, \Lambda$.

Thus, find the (local) minima by iterating among three objects:

- **1.** Given $\left(\Gamma_0^{(s)}, \Gamma_1^{(s)}\right)$, update (Λ_0, Λ_1) .
- **2.** Given $\left(\Lambda_0^{(s+1)}, \Lambda_1^{(s+1)}, \Gamma_{Y0}^{(s)}, \Gamma_{Y1}^{(s)}\right)$, update Γ_X .
- **3.** Given $\left(\Lambda_0^{(s+1)}, \Lambda_1^{(s+1)}, \Gamma_X^{(s+1)}\right)$, update $(\Gamma_{Y0}, \Gamma_{Y1})$.
- 4. Iterate 1-3 until convergence.

In practice, use may initial values to find the global minimum.

Sieve MLE

To allow for a continuous U_i , we can directly construct a likelihood using sieves:

$$f_{Y,X|D=d,Z,n}(y,x|z;\theta) = \int_{\mathbb{R}} f_{Y(d)|U,n}(y|u;\theta) \cdot f_{X|U,n}(x|u;\theta) \cdot f_{U|D=d,Z,n}(u|z;\theta) du.$$

The latent rank interpretation is simple to impose with Bernstein polynomials: a Bernstein polynomial of degree m is

$$g_m(u) = \sum_{k=0}^{m} \theta_k u^k (1-u)^{m-k}.$$

Then, monotonicity of $\int_0^1 u g_m(u) du$ is a set of linear constraints on $\{\theta_k\}_{k=0}^m$.

back

Sieve MLE

Theorem 4. Let Assumptions 1-2,4-6 hold. Then,

$$\|\hat{f}_{Y(1),Y(0)} - f_{Y(1),Y(0)}\|_{\infty} \xrightarrow{p} 0$$

as $n \to \infty$ and for any $(y, y') \in \mathbb{R}^2$ and $\delta \in \mathbb{R}$,

$$\sqrt{n}\left(\widehat{f}_{Y(1),Y(0)}(y,y') - f_{Y(1),Y(0)}(y,y')\right) \xrightarrow{d} \mathcal{N}\left(0,\sigma(y,y')^{2}\right)$$

$$\sqrt{n}\left(\Pr\left\{Y_{i}(1) - \widehat{Y}_{i}(0) \leq \delta\right\} - \Pr\left\{Y_{i}(1) - Y_{i}(0) \leq \delta\right\}\right) \xrightarrow{d} \mathcal{N}\left(0,\sigma(\delta)^{2}\right)$$

 $\text{ as } n\to\infty.$

Assumption 6 I

Assumption 6

- **a.** Functions in $\{\Theta_n\}_{n=1}^{\infty} \cup \Theta$ is uniformly bounded. Θ is convex.
- **b.** $f_{Y(1)|U}, f_{Y(0)|U}, f_{X|U}, f_{U|D=1,Z}, f_{U|D=0,Z}$ are in the interior of $\Lambda_c^{\gamma_1}([0,1]^2)$ with $\gamma_1 > 1$. Also, for any $\theta \in \Theta_n$ for some n,

$$f_{Y(1)|U,n}(\cdot;\theta), f_{Y(0)|U,n}(\cdot;\theta), f_{X|U,n}(\cdot;\theta), f_{U|D=1,Z,n}(\cdot;\theta), f_{U|D=0,Z,n}(\cdot;\theta) \in \Lambda_c^{\gamma_1}([0,1]^2)$$

and $\log f_{Y,X|D,Z}(\cdot;\theta) \in \Lambda_c^{\gamma}([0,1]^4)$ with $\gamma > 2$.

c. $\mathbf{E}\left[\left(\log f_{Y,X|D,Z}(Y_i,X_i|D_i,Z_i)\right)^2\right]<\infty.$ There exists measurable functions h_1,h_2 such that

$$h_{1}(y,d,x,z) \leq \frac{1}{f_{Y,X|D,Z}(y,x|d,z;\theta)} \left(\int_{0}^{1} \frac{f_{Y(d)|U}(y|u;\theta)f_{X|U}(x|u;\theta)f_{U|D=d,Z}(u|z;\theta)}{f_{Y(d)|U}(y|u;\theta) + f_{X|U}(x|u;\theta) + f_{U|D=d,Z}(u|z;\theta)} du \right) \leq h_{2}(y,d,x,z)$$

Assumption 6 II

for all $\theta \in \Theta$ and $\mathbf{E}\left[\left(h_1(Y_i, D_i, X_i, Z_i,)\right)^2\right]$, $\mathbf{E}\left[\left(h_2(Y_i, D_i, X_i, Z_i)\right)^2\right] < \infty$. Also, There exist a measurable function h_3 such that

$$\frac{1}{2f_{Y,X|D,Z}(y,x|d,z;\theta)^{2}} \left(\int_{0}^{1} \frac{f_{Y(d)|U}(y|u;\theta)f_{X|U}(x|u;\theta)f_{U|D=d,Z}(u|z;\theta)}{f_{Y(d)|U}(y|u;\theta) + f_{X|U}(x|u;\theta) + f_{U|D=d,Z}(u|z;\theta)} du \right)^{2} + \frac{1}{f_{Y,X|D,Z}(y,x|d,z;\theta)} \int_{0}^{1} \left(f_{Y(d)|U}(y|u;\theta) + f_{X|U}(x|u;\theta) + f_{U|D=d,Z}(u|z;\theta) \right) du \\
\leq h_{3}(y,d,x,z)$$

for all $\theta \in \Theta$ and $\mathbf{E}\left[\left(h_3(Y_i, D_i, X_i, Z_i,)\right)^2\right] < \infty$.

d. $\|\Pi_n\theta^0-\theta^0\|_{\infty}=o(n^{-\frac{1}{4}})$ as $n\to\infty$ where

$$\Pi_n \theta^0 = \arg \max_{\theta \in \Theta_n} \mathbf{E} \left[\log f_{Y,X|D,Z}(Y_i, X_i | D_i, Z_i; \theta) \right]$$

Also, $p_n \to \infty$, $\frac{p_n \log n}{\sqrt{n}} \to 0$ as $n \to \infty$.

Assumption 6 III

e. With some $c_1, c_2 > 0$,

$$c_{1}\mathbf{E}\left[\log \frac{f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta^{0})}{f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta)}\right] \leq \|\theta - \theta^{0}\|^{2} \leq c_{2}\mathbf{E}\left[\log \frac{f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta^{0})}{f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta)}\right]$$

holds for any $\theta \in \Theta_n$ such that $\|\theta - \theta^0\|_{\infty} = o(1)$.

f. Let p_1 be the degree of a tensor product Bernstein polynomial used in approximating $f_{Y(1)|U}$ to Θ_n and similarly define p_0, p_X, p_{1Z} and p_{0Z} ; for example, $p_1 = (p^y + 1) \cdot (p^u + 1)$. With some abuse of notation, let $\{\theta_{j,1}\}_{j=1}^{p_1}$ denote the basis functions used in approximating $f_{Y(1)|U}$ and similarly define $\{p_{j,0}\}_{j=1}^{p_0}, \cdots, \{p_{j,0Z}\}_{j=1}^{p_{0Z}}$.

Assumption 6 IV

Let

$$\frac{d}{d\theta_{1}} \log f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta^{0}) \left[\{\theta_{j,1}\}_{j=1}^{p_{1}} \right] = \begin{pmatrix} \frac{d}{d\theta_{1}} \log f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta^{0}) \left[\theta_{1,1}\right] \\ \vdots \\ \frac{d}{d\theta_{1}} \log f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta^{0}) \left[\theta_{p_{1},1}\right] \end{pmatrix}$$

$$W_{n}(Y_{i},D_{i},X_{i},Z_{i}) = \begin{pmatrix} \frac{d}{d\theta_{1}} \log f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta^{0}) \left[\{\theta_{j,1}\}_{j=1}^{p_{1}}\right] \\ \vdots \\ \frac{d}{d\theta_{0,Z}} \log f_{Y,X|D,Z}(Y_{i},X_{i}|D_{i},Z_{i};\theta^{0}) \left[\{\theta_{j,0Z}\}_{j=1}^{p_{0,Z}}\right] \end{pmatrix}$$

and

$$\Omega_n = \mathbf{E} \left[W_n(Y_i, D_i, X_i, Z_i) \left(W_n(Y_i, D_i, X_i, Z_i) \right)^{\mathsf{T}} \right].$$

Then, the smallest eigenvalue of Ω_n is bounded away from zero uniformly across n.

Choice of K

Under Assumption 3, the rank of the following $M_X \times 2M_Z$ matrix is K:

$$\mathbf{H}_{X} = \begin{pmatrix} \Pr\left\{X_{i} \in \mathcal{X}^{1} \middle| D_{i} = 0, Z_{i} \in \mathcal{Z}^{1}\right\} & \cdots & \Pr\left\{X_{i} \in \mathcal{X}^{1} \middle| D_{i} = 1, Z_{i} \in \mathcal{Z}^{M_{Z}}\right\} \\ \vdots & \ddots & \vdots \\ \Pr\left\{X_{i} \in \mathcal{X}^{M_{X}} \middle| D_{i} = 0, Z_{i} \in \mathcal{Z}^{1}\right\} & \cdots & \Pr\left\{X_{i} \in \mathcal{X}^{M_{X}} \middle| D_{i} = 1, Z_{i} \in \mathcal{Z}^{M_{Z}}\right\} \end{pmatrix}$$

We can apply the Kleibergen-Paap rank test or the eigenvalue ratio test.

Kleibergen and Paap (2006); Ahn and Horenstein (2013)

Simulation

Monte Carlo simulations with a simple DGP with K=3 and $Y_i, X_i, Z_i \in \{1,2,3\}$. Nonnegative matrix factorization is applied to two 9×3 matrices.

Informativeness of the two proxy variables:

$$\Gamma_X = \left(\Pr\{X_i = x | U_i = u^k\}\right)_{x,k} = \begin{pmatrix} 0.800 & 0.100 & 0.067\\ 0.133 & 0.800 & 0.133\\ 0.067 & 0.100 & 0.800 \end{pmatrix}$$
$$\Lambda = \left(\Pr\{U_i = u^k | Z_i = z\}\right)_{z,k} = \begin{pmatrix} 0.840 & 0.091 & 0.040\\ 0.077 & 0.772 & 0.055\\ 0.083 & 0.137 & 0.905 \end{pmatrix}.$$

Their smallest singular values are 0.665 and 0.701.

Simulation

As we shift Λ , estimation worsens:

$\widehat{F}_{Y(1)-Y(0)}$									
	$\sigma_{\min}(\Lambda)$	$\sigma_{\min}(\Lambda) = 0.701$		$\sigma_{\min}(\Lambda) = 0.501$			$\sigma_{\min}(\Lambda) = 0.310$		
δ	bias	rMSE	bia	as	rMSE		bias	rMSE	
-2	0.000	0.006	0.0	01	0.010		0.001	0.025	
-1	-0.000	0.017	0.0	00	0.025		-0.002	0.052	
0	-0.007	0.028	-0.0)12	0.040		-0.014	0.076	
1	-0.009	0.025	-0.0)14	0.040		-0.015	0.084	

Table 1: Bias and rMSE of DTE estimator, B=200.

First step NMF worsens as Z_i gets less informative.

Simulation

		$\widehat{F}_{Y(1)-Y(0)}$	
	$\sigma_{\min}(\Lambda) = 0.701$	$\sigma_{\min}(\Lambda) = 0.501$	$\sigma_{\min}(\Lambda) = 0.310$
$\Pr\left\{F_{Y(1)-Y(0)}(-2) \in \widehat{CI}\right\}$	0.968	0.970	0.990
$\Pr\left\{F_{Y(1)-Y(0)}(-1) \in \widehat{CI}\right\}$	0.978	0.960	0.970
$\Pr\left\{F_{Y(1)-Y(0)}(0) \in \widehat{CI}\right\}$	0.960	0.975	0.990
$\Pr\left\{F_{Y(1)-Y(0)}(1) \in \widehat{CI}\right\}$	0.970	0.970	0.980
$\Pr\left\{\text{reject } F_{X D=1,U} = F_{X D=0,U}\right\}$	0.070	0.063	0.049

Table 2: Coverage of CI and type I error of falsification test, B=200.

Choice of K

In the empirical application, both rank test and eigenvalue ratio estimator suggest K=3.

K	1	2	3	4	5	6	7	8
eigenvalue ratio	3.505	3.991	4.029	2.721	1.653	1.863	1.418	3.309
growth ratio	0.964	1.135	1.472	1.353	0.893	0.956	0.580	1.035

Table 3: Eigenvalue ratios and growth ratios

K	1	2	3	4	5	6
test statistic	884.82	116.23	35.75	20.08	13.80	7.94
p-value	0.000	0.001	0.984	0.998	0.995	0.992

Table 4: Kleibergen-Paap rank test statistics for H_0 : rank = K and their p-values

Additional moments

The quadratic moment is

$$\begin{split} &\sum_{l=1}^{K} \frac{\tilde{\lambda}_{lk,d}}{p_{D,Z}(d,l)} \cdot \mathbf{E} \left[\frac{1}{2} \mathbf{1} \{ Y_i \in \mathcal{Y}, D_i = d, X_i \in \mathcal{X}, Z_i \in \mathcal{Z}^l \} \right] \\ &+ \sum_{m=1}^{K} \frac{\tilde{\lambda}_{mk,d}}{p_{D,Z}(d,m)} \cdot \mathbf{E} \left[\frac{1}{2} \mathbf{1} \{ Y_j \in \mathcal{Y}, D_j = d, X_j \in \mathcal{X}, Z_i \in \mathcal{Z}^m \} \right] \\ &- \sum_{l=1}^{K} \sum_{m=1}^{K} \frac{\tilde{\lambda}_{lk,d} \tilde{\lambda}_{mk,d}}{p_{D,Z}(d,l) \cdot p_{D,Z}(d,m)} \mathbf{E} \left[\mathbf{1} \{ Y_i \in \mathcal{Y}, D_i = d, Z_i \in \mathcal{Z}^l, X_j \in \mathcal{X}, D_j = d, Z_j \in \mathcal{Z}^m \} \right] = 0 \end{split}$$

with $(Y_i, D_i, Z_i) \perp \!\!\! \perp (Y_j, D_j, Z_j)$.

References L

- Ahn, Seung C and Alex R Horenstein, "Eigenvalue ratio test for the number of factors," Econometrica, 2013, 81 (3), 1203-1227.
- Ai, Chunrong and Xiaohong Chen, "Efficient estimation of models with conditional moment restrictions containing unknown functions," *Econometrica*, 2003, 71 (6), 1795–1843.
- Athey, Susan and Guido W Imbens, "Identification and inference in nonlinear difference-in-differences models," *Econometrica*, 2006, 74 (2), 431–497.
- Bonhomme, Stéphane, Thibaut Lamadon, and Elena Manresa, "Discretizing unobserved heterogeneity," *Econometrica*, 2022, 90 (2), 625–643.
- Callaway, Brantly and Tong Li, "Quantile treatment effects in difference in differences models with panel data," Quantitative Economics, 2019, 10 (4), 1579–1618.
- Chen, Xiaohong and Xiaotong Shen, "Sieve extremum estimates for weakly dependent data," Econometrica, 1998, pp. 289–314.
- Chernozhukov, Victor and Christian Hansen, "An IV model of quantile treatment effects," Econometrica, 2005, 73 (1), 245–261.
- Chernozhukov, Victor and Christian Hansen, "Instrumental quantile regression inference for structural and treatment effect models," *Journal of Econometrics*, 2006, 132 (2), 491–525.
- Deaner, Ben, "Proxy controls and panel data," 2023.
- Fan, Yanqin and Sang Soo Park, "Sharp bounds on the distribution of treatment effects and their statistical inference," Econometric Theory, 2010, 26 (3), 931–951.

References II

- Fan, Yanqin, Robert Sherman, and Matthew Shum, "Identifying treatment effects under data combination," *Econometrica*, 2014, 82 (2), 811–822.
- Firpo, Sergio and Geert Ridder, "Partial identification of the treatment effect distribution and its functionals," *Journal of Econometrics*, 2019, *213* (1), 210–234.
- Frandsen, Brigham R and Lars J Lefgren, "Partial identification of the distribution of treatment effects with an application to the Knowledge is Power Program (KIPP)," *Quantitative Economics*, 2021, 12 (1), 143–171.
- Heckman, James J, Jeffrey Smith, and Nancy Clements, "Making the most out of programme evaluations and social experiments: Accounting for heterogeneity in programme impacts," *The Review of Economic Studies*, 1997, *64* (4), 487–535.
- Henry, Marc, Yuichi Kitamura, and Bernard Salanié, "Partial identification of finite mixtures in econometric models," Quantitative Economics, 2014. 5 (1), 123–144.
- Hu, Yingyao and Matthew Shum, "Nonparametric identification of dynamic models with unobserved state variables," *Journal of Econometrics*, 2012, 171 (1), 32–44.
- Hu, Yingyao and Susanne M Schennach, "Instrumental variable treatment of nonclassical measurement error models," Econometrica, 2008, 76 (1), 195–216.
- Jones, Damon, David Molitor, and Julian Reif, "What do workplace wellness programs do? Evidence from the Illinois workplace wellness study," The Quarterly Journal of Economics, 2019, 134 (4), 1747–1791.
- Kaji, Tetsuya and Jianfei Cao, "Assessing Heterogeneity of Treatment Effects," 2023.

References III

- Kasahara, Hiroyuki and Katsumi Shimotsu, "Nonparametric identification of finite mixture models of dynamic discrete choices," Econometrica, 2009, 77 (1), 135–175.
- Kleibergen, Frank and Richard Paap, "Generalized reduced rank tests using the singular value decomposition," *Journal of econometrics*, 2006, 133 (1), 97–126.
- Miao, Wang, Zhi Geng, and Eric J Tchetgen Tchetgen, "Identifying causal effects with proxy variables of an unmeasured confounder," *Biometrika*, 2018, 105 (4), 987–993.
- Nagasawa, Kenichi, "Treatment effect estimation with noisy conditioning variables," arXiv preprint arXiv:1811.00667, 2022.
- Noh, Sungho, "Nonparametric identification and estimation of heterogeneous causal effects under conditional independence," Econometric Reviews, 2023, 42 (3), 307–341.
- Shen, Xiaotong, "On methods of sieves and penalization," The Annals of Statistics, 1997, 25 (6), 2555–2591.