CSC 225 (Fall 2016): Algorithms and Data Structures I Assignment 3—programming

Due Date

• Wed, November 09, 2016

Objectives

- Heap data structure
- Priority queues
- Heapsort
- Random number generation

Programming Assignment

You are to implement a java class **PQ225** to practice designing, implementing and testing priority queues with the following objectives:

Fields

An integer array, heapArray

Constructors

PQ225()

Methods

Part 1: Random Number Generation

Design and implement a java method **ranGen()** from scratch that generates uniform integer random numbers.

Return Type	Method Description
void	ranGen(int N, int LOW, int HIGH)
	generates N random numbers in the range LOW to HIGH and inserts them into the heapArray

Implement your generator using the following pseudo code:

```
Procedure ranGen(N, LOW, HIGH):

//populate heapArray with random values

seed \leftarrow systemClock()
k \leftarrow 0

while \ k < N \ do:

//Generate a random number rn
do

rn \leftarrow rand()

while \ rn < LOW \ or \ HIGH < rn:
heapArray[k] \leftarrow rn
k \leftarrow k + 1

End Procedure
```

Part 2: Building up a heap in linear time

Return Type	Method Description
int	size()
	returns size of the array in O(1)
void	insert(int i)
	inserts an integer i into the heap in O(log n) time
int	deleteMin()
	delete the smallest integer from the heap in O(log n) time
void	makeHeap()
	turns the unsorted integer array, heapArray into a heap in O(n)

Part 3: HeapSort in O(n log n)

Implement In Place Heap Sort.

Return Type	Method Description
int	heapsort()
	sorts the integer array, heapArray, using In Place Heap Sort in O(n log n).
	Use methods from Part 2.
	(Nothing specific to return, you can use it for testing)

Part 4: Testing of Priority Queues

Return Type	Method Description
void	test() Tests and exercises the methods developed for the first three parts of this assignment extensively. The output generated by this class must convince the marker that the classes are implemented as specified. For example: • Generate heaps of different sizes (e.g., 100, 1000, 10000). • Implement a test that checks whether heapsort sorts properly. • Measure the performance of heapsort, by counting comparisons for inputs of different length. • Chart the performance on a graph!
	Your code must also print out results out into a textfile called pq_test.txt This text file must have a short description what your test cases are and along with the results. You have flexibility to decide and choose how extensively you want to test your methods.