Devoir à la maison n° 16

À rendre le 25 mars

Le but du problème est de montrer que le nombre π est irrationnel.

Soit $n \in \mathbb{N}$, soit $P \in \mathbb{R}[X]$ un polynôme de degré 2n. On considère les applications F et G suivantes, définies sur \mathbb{R} :

$$F: x \mapsto F(x) = P(x) - P''(x) + P^{(4)}(x) - \dots + (-1)^n P^{(2n)}(x) = \sum_{k=0}^n (-1)^k P^{(2k)}(x) ;$$

$$G: x \mapsto G(x) = F'(x) \sin x - F(x) \cos x$$
.

- 1) Montrer que F + F'' = P.
- 2) Calculer G'(x). En déduire que $\int_0^{\pi} P(x) \sin x \, dx = F(0) + F(\pi)$.

On suppose désormais que π est un nombre rationnel, et on écrit $\pi = \frac{a}{b}$ avec a et b entiers naturels strictement positifs. Dans tout ce qui suit, le polynôme P est donné par

$$P(X) = \frac{1}{n!} X^n (a - bX)^n.$$

- 3) On pose $Q = X^n$ et $R = (a bX)^n$. Donner les expressions de $Q^{(j)}$ et $R^{(j)}$, pour tout $j \in [0, n]$, puis pour tout j > n.
- 4) Montrer que pour tout $j \neq n$, $Q^{(j)}(0) = 0$. Que vaut $Q^{(n)}(0)$?
- **5)** Montrer que $P^{(j)}(0) = 0$ pour tout $j \in [0, n-1]$. Calculer $P^{(j)}(0)$ pour tout $j \in [n, 2n]$.
- 6) En déduire que F(0) est un entier relatif.
- 7) On pose $S(X) = P(\pi X)$. Montrer que $\forall x \in \mathbb{R}$ S(x) = P(x).
- 8) Exprimer $S^{(2k)}$ en fonction de $P^{(2k)}$, pour $k \in \mathbb{N}$.
- 9) En déduire que pour tout $x \in \mathbb{R}$, $F(\pi x) = F(x)$, puis que $F(\pi)$ est un entier relatif.

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^{\pi} \frac{1}{n!} x^n (a - bx)^n \sin x \, dx$.

- 10) Montrer que, pour tout $n \in \mathbb{N}^*$, I_n est un entier strictement positif.
- 11) Montrer que $\lim_{n\to+\infty} I_n = 0$.
- 12) Conclure.

— FIN —