Mixed-Precision CCSD

ZHE WANG 01/09 T_1 equation:

$$t_{i}^{a}D_{i}^{a} = f_{ia} + \sum_{e} t_{i}^{e} \mathcal{F}_{ae} - \sum_{m} t_{m}^{a} \mathcal{F}_{mi} + \sum_{mc} t_{im}^{ae} \mathcal{F}_{me}$$

$$- \sum_{nf} t_{n}^{f} \langle na | if \rangle - \frac{1}{2} \sum_{mef} t_{im}^{ef} \langle ma | ef \rangle$$

$$- \frac{1}{2} \sum_{men} t_{mn}^{ae} \langle nm | ei \rangle. \qquad (1)$$

$$T_{2} \text{ equation:}$$

$$t_{ij}^{ab}D_{ij}^{ab} = \langle ij | ab \rangle + P_{-}(ab) \sum_{e} t_{ij}^{ae} (\mathcal{F}_{be} - \frac{1}{2} \sum_{m} t_{m}^{b} \mathcal{F}_{me})$$

$$- P_{-}(ij) \sum_{m} t_{im}^{ab} (\mathcal{F}_{mj} + \frac{1}{2} \sum_{e} t_{j}^{e} \mathcal{F}_{me})$$

$$+ \frac{1}{2} \sum_{mn} \tau_{mn}^{ab} \mathcal{W}_{mnij} + \frac{1}{2} \sum_{e} t_{j}^{e} \mathcal{W}_{abef}$$

$$+ P_{-}(ij) P_{-}(ab) \sum_{me} (t_{im}^{ae} \mathcal{W}_{mbej} - t_{i}^{e} t_{m}^{a} \langle mb | | ej \rangle)$$

$$+ P_{-}(ij) \sum_{m} t_{i}^{e} \langle ab | | ej \rangle - P_{-}(ab) \sum_{m} t_{m}^{e} \langle mb | | ij \rangle.$$
Single-precision

$$Calculate$$

$$contractions in single-precision$$
Sum up the terms in T-amplitude equations in single-precision

Stanton, J. F.; Gauss, J.; Watts, J. D.; Bartlett, R. J., A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations. *The Journal of Chemical Physics* **1991**, *94*, 4334-4345.

(2)

Pokhilko, P.; Epifanovsky, E.; Krylov, A. I., Double Precision Is Not Needed for Many-Body Calculations: Emergent Conventional Wisdom. *Journal of Chemical Theory and Computation* **2018**, *14*, 4088-4096

Table1. Performance of CCSD calculation for water molecule clusters in double/mixed/single-precision (Results were from Python script)

# of	Double-precision(dp)				Mixed-precision(mp)				single-precision(sp)								
water													Ī		Speedup /	Speedup /	
molecul							Time/								iteration	iteration	
es	Time/s	Iterations	Time/iteration	Accuracy	Time /s	Iterations	iteration	Accuracy	Time/s	Iterations	Time/iteration	Accuracy	Speedup(mp)	Speedup(sp)	(mp)	(sp)	mp vs. sp
															0.86159844	0.79532163	
1	0.19	17	0.011176471	6	0.16	17	0.00962963	6	0.16	18	0.008888889	5	0.842105263	0.842105263	1	7	1.083333333
															0.60966542	0.56505576	
2	2.69	15	0.179333333	6	1.64	15	0.109333333	6	1.52	15	0.101333333	5	0.609665428	0.565055762	8	2	1.078947368
																0.53012600	
3	23.28	16	1.455	6	13.14	16	0.82125	6	11.57	15	0.771333333	4	0.56443299	0.496993127	0.56443299	2	1.06471478
					ĺ										0.53762776	0.49182594	
4	122.95	16	7.684375	6	61.97	15	4.131333333	5	60.47	16	3.779375	2	0.504026027	0.491825946	2	6	1.093126068
															0.55556117	0.51998372	
5	428.63	17	25.21352941	6	239.43	17	14.00765795	6	209.77	16	13.110625	5	0.558593659	0.489396449	2	7	1.068420304
													İ		0.54147671	0.50297551	
6	1211.93	17	71.29	6	617.63	16	38.601875	6	621.28	17	35.85712418	4	0.509625143	0.512636868	5	1	1.076546875

Fig1. The speedup of mixed-precision and single-precision CCSD calculation. The comparison was made between the overall time and time/iteration The smaller value in the y-axis means the calculation is faster.