HACETTEPE UNIVERSITY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING ELE 112 INTRODUCTION TO ELECTRICAL ENGINEERING LABORATORY

EXPERIMENT #4

EXPERIMENTAL EVALUATION OF SOURCE TRANSFORMATIONS, VOLTAGE AND CURRENT DIVIDER CIRCUITS AND THE SUPERPOSITION PRINCIPLE IN DC CIRCUITS

Objective: Source transformations, voltage and current divider circuits and superposition.

Theory: The details are given in the ELE110 Introduction to Electrical Engineering course notes.

2. EXPERIMENTAL WORK

- **2.1** Set up the circuit shown in *Fig. 1*. Connect a voltmeter between a and b, and measure the voltage V_{ab} . Also measure the equivalent resistance between a and b (R_{ab}) .
- **2.2** Set up the circuit in Fig. 2, and measure the voltage V_{ab} and the current I_{ab} for $V_{in} = 2V$, 4V, 6V, 8V and 10V, respectively.
- **2.3** Set up the circuit in Fig. 3, and measure the current I_{in} , I_1 , and I_2 for $V_{in} = 0.66V$, 1.32V, 1.98V, 3.3V, and 3.64V, respectively.
 - **2.4** Set up the circuit in Fig. 4.
 - a) Connect current source only, and measure V_{ab}.
 - b) Connect voltage source only, and measure V_{ab}.
 - c) Connect both of the sources at the same time, and measure V_{ab}.

3. RESULTS AND CONCLUSION

- **3.1** Compare your results from the preliminary work with the measurement you obtained in step 2.1.
- 3.2 By using the measurements in step 2.2, sketch V_{ab} vs. V_{in} . Compare this plot to the one in your preliminary work and comment.
- 3.3 By using the measurements in step 2.3., Sketch I_{in} vs I_1 and I_{in} vs I_2 . Compare these plots to the one in your preliminary work and comment.
 - **3.4** By using the measured values in step 2.4, prove the superposition principle.

EQUIPMENTS AND COMPONENTS

DC power supply

10 mA. current source

AVO meter

Resistors: 100Ω (#1), 120Ω (#1), 220Ω (#2), 330Ω (#1)