§ 1. Zbiory

b) to nie jest możliwe, 1.6. Tylko $C_6 = C_3$. 1.12. a) m jest dzielnikiem n,

c) n jest dzielnikiem m.

e) $A \cap B = \emptyset$. c) $B \subset A$, a) $A \subset B$, 1.20.

d) $A \subset B$. b) $A \subset B$.

1.27. Zbiór wszystkich punktów płaszczyzny, których obie współrzędne są liczbami naturalnymi.

1) Każde z tych działań jest wykonalne w zbiorze 2*, bo wynik dowolnego z tych działań na dwóch podzbiorach zbioru X jest podzbiorem zbioru X. 1.29.

b) "o" i "o" (d

c) elementem neutralnym działania "O" jest Ø, a elementem neutralnym działania "∩" jest zbiór X.

1.31. Np. b)

2	2	0	-
-	1	2	0
0	0	-	2
⊕,	0	-	2

1.32. 7; 1; 2; 86; 8; 76.

1.33. a) 2, b) 0, c) 8, d) 8.

a) (0, 1); (1, 0); (2, 4); (4, 2); (3, 3), b) (0, 0); (1, 11); (11, 1); (2, 10); (10, 2); (3, 9); (9, 3); (4, 8); (8, 4); (5, 7); (7, 5); (6, 6),

c) (0, 1); (1, 0); (2, 3); (3, 2),

d) (0, 1); (1, 0); (2, 5); (5, 2); (3, 4); (4, 3). a) 6, b) 1, c) 20, d) 9, e) 25, f) 2.

1.35. a) 6, b) 1, c) 20, d) 9, e) 25, 1) 2. 1.36. a) 1, b) 2 lub 4 lub 6, lub 6, c) 3, d) nie ma rozwiązania.

a) Tak, b) 1, 3, 2, 2, 12, 6, 36,

c) istnieje element neutralny działania □; jest nim liczba 1.

a) Każde z tych działań jest przemienne, łączne są tylko działania Δ i o, 1.42

b) elementem neutralnym działania △ jest (-1), a działania o jest 0; działanie I nie ma elementu neutrainego,

w zbiorze liczb naturalnych i w zbiorze liczb całkowitych są wykonalne dzia-

§ 2. Liczby rzeczywiste

a) Parzysta, b) parzysta, c) parzysta, d) parzysta.

2.9. a) Parzysta, b) parzysta, c) nieparzysta, d) nieparzysta.

2.10. a) n+(n+1)+(n+2)=3n+3=3(n+1),

b) 2n+(2n+2)+(2n+4)=6n+6=6(n+1),

c) $(2n-1)+(2n+1)+(2n+3)+(2n+5)=8n+8=8\cdot(n+1)$.

2.11. a) $(a+b)^2$, b) $(a-b)^2$, c) a^2+b^2 , d) a^2-b^2 . **2.12.** a) $(n+1)^2-n^2=n^2+2n+1-n^2=2n+1$, b) $(2n+2)^2-(2n)^2=4(2n+1)$,

c) $(2n+3)^2-(2n+1)^2=8(n+1)$.

215. Wsk. Rozważ w jakiej potędze występuje liczba 2 w rozkładzie na czynniki pierwsze każdej ze stron równości.

217. a) Wiadomo, że jeżeli $a \in W$ i $b \in W$, to $a + b \in W$ i $a - b \in W$. Przypuśćmy więc, że $a \in W$ i $b \notin W$. Niech a+b=c. Gdyby $c \in W$, wowczas $c-a \in W$, c-a=b. Otrzymalibysmy wiec: $b \in W$, co jest sprzeczne z założeniem. W takim razie $a+b \notin W$

2.18. Gdyby każda z liczb a, b, c była wymierna, to suma a+b byłaby liczbą wymierną, wbrew założeniu.

2.19. Ponieważ a+b i a-b są liczbami wymiernymi, to ich suma (a+b)+(a-b)=2ai różnica (a+b)-(a-b)=2b są liczbami wymiernymi. Stąd a i b są wymierne.

2.20. Korzystamy z definicji dzielenia:

 $= c \Leftrightarrow a = b \cdot c$.

Jeśli $a \neq 0$ i b = 0, to nie istnieje liczba c taka, że $a = 0 \cdot c$.

Jesti a = 0 i b = 0, to każda liczba c spełnia warunek $0 = 0 \cdot c$. Jest to sprzeczne z def. działania.

2.22. 2.

2.23. 0.

2.24.

2.25. 0,8.

Û b) 1; 2,26. a) 1;

7 2.27.

e) 0,3; $0,\frac{1}{100}$ ab. c) 56,25; d) 26125; b) 847 800; 2,28. a) 2,32; 59

d) a·100 Δ, c) 400; b) 700; 2.29. a) 280;

2.30. a) 800%; b) 40%; c) 500%.

2.31. 34%.

2.32 ap + bq %. 9+0