

SEQUENCE LISTING

<110> E. I. du Pont de Nemours and Company
<120> Lysophosphatidic Acid Acetyltransferases
<130> BB1332
<140> 09/914,098
<141> 2001-08-22
<150> 60/121,119
<151> 1999-02-22
<160> 58
<170> Microsoft Office 97
<210> 1
<211> 928
<212> DNA
<213> Zea mays

<220>
<221> unsure
<222> (858)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (876)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (897)
<223> n = a, c, g, or t

<400> 1
ctttttcct gtccatttcc tattgaaagg gcaagacaag ttgagaagta aaattgagag 60
gaagttgggtt gaaatgatgt gcagtgttt tggactggag ttatcaagta 120
tcatggacca cgcccaagca cacgaccta tcaggtattc gttgcaaacc atacatcgat 180
gatagatttc attattctgg agcaaatgac agcatttgct gtcatcatgc agaagcatcc 240
tggatgggtt ggatttattc agaagactat cttggaaagt gtcggttgca tctggttaa 300
tcgtaatgtat ctccgggacc gtgaagttac ggcacggaag ttacgtgatc atgttcaaca 360
accagacaac aatcctctgt tgattttcc ggaaggaact tgtgtgaaca accagtacac 420
ggtcatgttc aagaagggtg ccttgagct tggctgcgt gtatgtccaa tagctatcaa 480
gtacaataaa atatttggtg atgccttttgc gaacagtaag aagcaatctt ttacaatgca 540
cttggtccgg ctgatgacat catggctgt tgtgtgtgat gttgggtact tacctcctca 600
atatctgagg gagggagaga cggcaatigc atttgctgag agagtaaggg acatgatagc 660
tgctagagct ggactaaaga agttccttgg gatggctatc tgaaacacaa ccgtccttagt 720
ccaaacaca ctgaagagaa acaacgcata tttgccaat ctgtcttgat gagactggag 780
gagaaatgaa gggacgtaaa gccgtacaag tgcacttcgt tagggttta catgcagcta 840
ccttgttatt ccgttggntt cccaaaaaaaaaaa antgag cctggacac gtcaaantga 900
ccacctccat tttgggttggtaattttg 928

<210> 2
<211> 262
<212> PRT
<213> Zea mays

<400> 2
 Phe Phe Pro Val His Phe Leu Leu Lys Gly Gln Asp Lys Leu Arg Ser
 1 5 10 15
 Lys Ile Glu Arg Lys Leu Val Glu Met Met Cys Ser Val Phe Val Ala
 20 25 30
 Ser Trp Thr Gly Val Ile Lys Tyr His Gly Pro Arg Pro Ser Thr Arg
 35 40 45
 Pro His Gln Val Phe Val Ala Asn His Thr Ser Met Ile Asp Phe Ile
 50 55 60
 Ile Leu Glu Gln Met Thr Ala Phe Ala Val Ile Met Gln Lys His Pro
 65 70 75 80
 Gly Trp Val Gly Phe Ile Gln Lys Thr Ile Leu Glu Ser Val Gly Cys
 85 90 95
 Ile Trp Phe Asn Arg Asn Asp Leu Arg Asp Arg Glu Val Thr Ala Arg
 100 105 110
 Lys Leu Arg Asp His Val Gln Gln Pro Asp Asn Asn Pro Leu Leu Ile
 115 120 125
 Phe Pro Glu Gly Thr Cys Val Asn Asn Gln Tyr Thr Val Met Phe Lys
 130 135 140
 Lys Gly Ala Phe Glu Leu Gly Cys Ala Val Cys Pro Ile Ala Ile Lys
 145 150 155 160
 Tyr Asn Lys Ile Phe Val Asp Ala Phe Trp Asn Ser Lys Lys Gln Ser
 165 170 175
 Phe Thr Met His Leu Val Arg Leu Met Thr Ser Trp Ala Val Val Cys
 180 185 190
 Asp Val Trp Tyr Leu Pro Pro Gln Tyr Leu Arg Glu Gly Glu Thr Ala
 195 200 205
 Ile Ala Phe Ala Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala Gly
 210 215 220
 Leu Lys Lys Val Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro Ser
 225 230 235 240
 Pro Lys His Thr Glu Glu Lys Gln Arg Ile Phe Ala Glu Ser Val Leu
 245 250 255
 Met Arg Leu Glu Glu Lys
 260

$\leq 310 \times 3$

<211> 519

<211> 519
<212> DNA

<212> DNA

<220>

<221> unsure

```
<222> (46)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (69)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (72)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (86)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (117)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (142)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (144)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (186)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (241)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (245)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (347)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (368) .. (369)
<223> n = a, c, g, or t

<220>
<221> unsure
```

```
<222>  (371)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (404)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (413)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (422)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (436)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (438)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (479)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (489)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (493)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (504)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (508)..(509)
<223>  n = a, c, g, or t

<220>
<221>  unsure
<222>  (516)
<223>  n = a, c, g, or t

<400> 3
gagaactagt ctcgagttt tttttttt ttttggcat ggaatnattt tcaggcaatt 60
```

tcatgttana tntacatgttata tatcanaata gtaagtggag tacaaacaag ggttggngaa 120
aatcattact gaaaaagtaa ananatatac attattttc ctcaaagcgc cgcaacacag 180
actcancgaa tatttgttgc ttcccttctc tgtgcttggg actaggcgaa gaatacttca 240
natancatc ccaaggaacc ttttaagcc cagcacgatg tgagattatg tctctaactc 300
tctctgcaaa ttcaatgggt gtctctcctg gcttcaaatt ttgtggntcc aagtaccata 360
catcacannn nacagcccaa gatgtcatta attgcaagag atgnctggtg aangattgct 420
tnccactatt ccaaancngc atcgacgaaa atttaatgt acttgattgc caccgggnna 480
aaatttgtnc agncaaagtc aaantggnnnc cttcntgg 519

<210> 4
<211> 107
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (24)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (36)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (43)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (79)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (97)
<223> Xaa = any amino acid

<400> 4
Pro Val Ala Ile Lys Tyr Ile Lys Ile Phe Val Asp Ala Val Trp Asn
1 5 10 15

Ser Arg Lys Gln Ser Phe Thr Xaa His Leu Leu Gln Leu Met Thr Ser
20 25 30

Trp Ala Val Xaa Cys Asp Val Trp Tyr Leu Xaa Pro Gln Asn Leu Lys
35 40 45

Pro Gly Glu Thr Pro Ile Glu Phe Ala Glu Arg Val Arg Asp Ile Ile
50 55 60

Ser His Arg Ala Gly Leu Lys Val Pro Trp Asp Gly Tyr Xaa Lys
65 70 75 80

Tyr Ser Arg Pro Ser Pro Lys His Arg Glu Gly Lys Gln Gln Ile Phe
85 90 95

Xaa Glu Ser Val Leu Arg Arg Phe Glu Glu Lys
100 105

```

<210> 5
<211> 1067
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (935)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (1009)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (1016)..(1017)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (1029)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (1034)..(1035)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (1061)
<223> n = a, c, g, or t

<400> 5
tgcttcttgg actggagtga tcaagtacca tggaccacgc ccaagctcac gaccttatca 60
ggtatttgtt gcaaaccata catcgatgt agattttatt attctggagc agatgacagc 120
atttgctgtc atcatgcaaa agcatcctgg atgggttggta tttattcaga agactattct 180
ggaaaagtgtg gttgcacatcg ggttaaccg taatgatctc aaggatcgtg aagttagttgg 240
aagaaaagtta cgtgatcaag ttcagcatcc agacaacaat cctctcttga ttttcccgaa 300
aggaacttgtt gttaataatc agtacactgt gatgttcaag aagggtgctt ttgagcttgg 360
ctgtgctgtc tgcataatcg ctatcaaata taataaaaata tttgttgcgt ctttctggaa 420
tagtaagaag caatcttta caatgcattt gggtcgatctt atgacatcat gggctgttgg 480
ttgtgatgtt tggctttggg aacctcagta tctcaggaa ggggagacag cgatagaatt 540
tactgaaaga gtgagggaca tgatagctgc tcgggcttggt cttaagaagg ttccatggga 600
tggctatctg aaacataacc gcccttagccc caaacataacc gagggaaaagc agcgcatgtt 660
tgctgaatct gtgttgagga gactagagga aaactaaata gctatcaatc aactcacgg 720
ctctctgtt gttgagggat ttcccccttag ttgccttgcgtt atctgttaat cacccaaatg 780
agacctgggg catgtggaaa tgaccaccgc agttttgttgcgt taaattgtt tgcgggttgg 840
cagaatcagt agcatgtgt tggcaagaaa gaactattga atcaaccttg ctatacatac 900
gacactagtc cgatTTTGT acaccacaga tcaancgttgcgttgcgttgcgttgcgttgcgtt 960
gaacacagat ttgcgtgtac accaaatttgcgttgcgttgcgttgcgttgcgttgcgttgcgtt 1020
gatcggtgcna agtnnttaat actaaagatg gtaggttacc naacatt 1067

<210> 6
<211> 231
<212> PRT
<213> Triticum aestivum

```

<400> 6
Ala Ser Trp Thr Gly Val Ile Lys Tyr His Gly Pro Arg Pro Ser Ser
1 5 10 15

Arg Pro Tyr Gln Val Phe Val Ala Asn His Thr Ser Met Ile Asp Phe
20 25 30

Ile Ile Leu Glu Gln Met Thr Ala Phe Ala Val Ile Met Gln Lys His
35 40 45

Pro Gly Trp Val Gly Phe Ile Gln Lys Thr Ile Leu Glu Ser Val Val
50 55 60

Ala Ser Gly Phe Asn Arg Asn Asp Leu Lys Asp Arg Glu Val Val Gly
65 70 75 80

Arg Lys Leu Arg Asp Gln Val Gln His Pro Asp Asn Asn Pro Leu Leu
85 90 95

Ile Phe Pro Glu Gly Thr Cys Val Asn Asn Gln Tyr Thr Val Met Phe
100 105 110

Lys Lys Gly Ala Phe Glu Leu Gly Cys Ala Val Cys Pro Ile Ala Ile
115 120 125

Lys Tyr Asn Lys Ile Phe Val Asp Ala Phe Trp Asn Ser Lys Lys Gln
130 135 140

Ser Phe Thr Met His Leu Val Arg Leu Met Thr Ser Trp Ala Val Val
145 150 155 160

Cys Asp Val Trp Ser Trp Glu Pro Gln Tyr Leu Arg Glu Gly Glu Thr
165 170 175

Ala Ile Glu Phe Thr Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala
180 185 190

Gly Leu Lys Lys Val Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro
195 200 205

Ser Pro Lys His Thr Glu Glu Lys Gln Arg Met Phe Ala Glu Ser Val
210 215 220

Leu Arg Arg Leu Glu Glu Asn
225 230

<210> 7

<211> 1043

<212> DNA

<213> Zea mays

<400> 7

gccgcgcgtg cacgctgttc gtggatgcag atggggggcg gccgagggttgcgggggttggaa 60
ggaggaaggc cgtgctgcga tcgggggtgcg cgctctcacg ggtgatgctc ttctgtttcg 120
ggttctactg gatccgcgag acccgcagaa ggtccactaa tgctaagggt ttaaatcagg 180
accaatttga agaattccaa aggccagggg caattgtatc taatcatgtc tcttatgtgg 240
atattcttta tcacatgtca gcaccccttc caagtttgt tgctaaggag tcagtgtcca 300
ggttgccact tattggtctc ataagcaatt gtcttgatg cattttgtt caacgagaat 360
cgaagtcttc agaagctaaa ggtgtctcag gcgctgtaac tgaaaggatc caagacgttt 420

gtcaagataa	gaatacccca	atgatgttgt	tgttcccgaa	gggaactact	acaaatgggg	480
attaccttct	tccatttaag	actggagcct	ttcttcagg	tgcaccagt	cagccagtca	540
tttgaaata	cccttacagg	agattttagtc	cagcatggaa	ttcaatggat	ggagcacgtc	600
atgttttt	gctgctctgt	caatttgtaa	atcacatggaa	ggtggtccgg	ttgcctgtat	660
actatccttc	tcaactagaa	aaagaagatc	ctaagctcta	cgcaaataat	gtcagaaaac	720
taatagcaat	ggagggcaat	ttagttctt	ctaataattgg	gctggcagag	aagcgcgtgt	780
accatgcagc	actgactggt	agtagtctac	ctggcgctag	acatgagaaa	gatgattgaa	840
agacgttgcg	tcgcttttc	tgtAACAGAC	agccgaggaa	cactaaaaaa	tgtAACTGTG	900
tgctgtttt	tatacctgta	atgtggcagt	ttatttgtt	gaggaggctg	ttgagtaccc	960
ttctcatact	acattgtaca	aaaacaatgt	ccaatgtcca	ttatagttg	atgaggttcg	1020
tgctccaaaaa	aaaaaaaaaa	aaa				1043

<210> 8

<211> 278

<212> PRT

<213> Zea mays

<400> 8

Arg	Ala	Cys	Thr	Leu	Phe	Val	Asp	Ala	Asp	Gly	Gly	Arg	Pro	Arg	Leu
1				5				10					15		

Ala	Gly	Trp	Arg	Arg	Lys	Ala	Val	Leu	Arg	Ser	Gly	Cys	Ala	Leu	Ser
					20			25					30		

Arg	Val	Met	Leu	Phe	Val	Phe	Gly	Phe	Tyr	Trp	Ile	Arg	Glu	Thr	Arg
					35			40			45				

Arg	Arg	Ser	Thr	Asn	Ala	Lys	Gly	Leu	Asn	Gln	Asp	Gln	Phe	Glu	Glu
					50			55			60				

Ser	Gln	Arg	Pro	Gly	Ala	Ile	Val	Ser	Asn	His	Val	Ser	Tyr	Val	Asp
					65		70			75			80		

Ile	Leu	Tyr	His	Met	Ser	Ala	Ser	Phe	Pro	Ser	Phe	Val	Ala	Lys	Glu
					85			90				95			

Ser	Val	Ser	Arg	Leu	Pro	Leu	Ile	Gly	Leu	Ile	Ser	Asn	Cys	Leu	Gly
					100			105			110				

Cys	Ile	Phe	Val	Gln	Arg	Glu	Ser	Lys	Ser	Ser	Glu	Ala	Lys	Gly	Val
					115			120			125				

Ser	Gly	Ala	Val	Thr	Glu	Arg	Ile	Gln	Asp	Val	Cys	Gln	Asp	Lys	Asn
					130		135			140					

Thr	Pro	Met	Met	Leu	Leu	Phe	Pro	Glu	Gly	Thr	Thr	Asn	Gly	Asp	
					145		150			155			160		

Tyr	Leu	Leu	Pro	Phe	Lys	Thr	Gly	Ala	Phe	Leu	Ala	Gly	Ala	Pro	Val
					165			170			175				

Gln	Pro	Val	Ile	Leu	Lys	Tyr	Pro	Tyr	Arg	Arg	Phe	Ser	Pro	Ala	Trp
					180			185			190				

Asp	Ser	Met	Asp	Gly	Ala	Arg	His	Val	Phe	Leu	Leu	Cys	Gln	Phe	
					195			200			205				

Val	Asn	His	Met	Glu	Val	Val	Arg	Leu	Pro	Val	Tyr	Tyr	Pro	Ser	Gln
					210			215			220				

Leu Glu Lys Glu Asp Pro Lys Leu Tyr Ala Asn Asn Val Arg Lys Leu
225 230 235 240

Ile Ala Met Glu Gly Asn Leu Val Leu Ser Asn Ile Gly Leu Ala Glu
245 250 255

Lys Arg Val Tyr His Ala Ala Leu Thr Gly Ser Ser Leu Pro Gly Ala
260 265 270

Arg His Glu Lys Asp Asp
275

<210> 9

<211> 1349

<212> DNA

<213> Glycine max

<400> 9

aagaacctga cccaggatga ggatcgctg agcactcctc ttcagatccg cacaaggcatt 60
gcataatcaa tcaagcatcc tggccttat ctctgtctct gcatttcct tccttcttct 120
tctctctctc tctctaaaac cctaattcta tacatggaaag gaaatctca aatctaata 180
ctaattaatt aatccatcga tcaagcatgg agtccgaact caaagaccc aattcgaagc 240
cgccgaacgg caacggcaac agcggtcg agtccgtcc tctgctgaag ccggagcc 300
cggtctccgc cgacagcatc gccgatatgg agaagaagtt cgccgcttac gtccgccc 360
acgtgtacgg caccatggaa cgccggcgagt tgccctccaa ggagaagctc ttgctcggtt 420
tcgcgttgtt cactcttc cccattcgag tcggtctcg cgtcaccata ttgctctttt 480
attacttaat ttgttagggtt tgcaactctt tctctgcgc cactggcgaa gaggaacagg 540
aagattacgc tcacatgagt ggttggagga gaaccattat tgttcgtgt ggacgcgc 600
tctccagact catgctttc atttcggtt tttattggat ccccaatcg aactctgcct 660
ctcaggaaga caagagtccg cagcccgaag agttgaggag acctggcgta ataattcta 720
atcatgtgtc gtacttgat attttgtatc acatgtcttc ctcattccct agttttgtt 780
ctaagagatc agtggctaaa cttccgttag tcggctctcat cagcaagtgc cttgggtgt 840
tctatgttca gcgggaatca agtcatcag acttcaaggg tgttcagct gttgtcactg 900
acagaattcg agaagctcat cagaatgagt ctgctccatt aatgatgtta tttccagaag 960
gtacaaccac aaatggagag ttcccttcattcaagac tgggtgtttt ttggcaagg 1020
caccggtaact tcctgtgata ttacgatatc attaccagag atttagccct gcctggatt 1080
ccatatctgg agtgcgcatt gtgatatttc tcctgtgtca gtttgtgaat tatatggagg 1140
tgatccgatt acctgtttac catccttcac agcaggagat ggtatgtccc aaactatacg 1200
ctaataatgt tagaagggtt atggctactg agggtaattt gatactttct gatattggc 1260
tagctgaaaa acgaatatac cacgctgctc tcaatggtaa taatagcctg cctagtgttt 1320
tgcatacagaa agacgaatga taatttcat 1349

<210> 10

<211> 377

<212> PRT

<213> Glycine max

<400> 10

Met Glu Ser Glu Leu Lys Asp Leu Asn Ser Lys Pro Pro Asn Gly Asn
1 5 10 15

Gly Asn Ser Val Arg Asp Asp Arg Pro Leu Leu Lys Pro Glu Pro Pro
20 25 30

Val Ser Ala Asp Ser Ile Ala Asp Met Glu Lys Lys Phe Ala Ala Tyr
35 40 45

Val Arg Arg Asp Val Tyr Gly Thr Met Gly Arg Gly Glu Leu Pro Pro
50 55 60

Lys Glu Lys Leu Leu Leu Gly Phe Ala Leu Val Thr Leu Leu Pro Ile
 65 70 75 80
 Arg Val Val Leu Ala Val Thr Ile Leu Leu Phe Tyr Tyr Leu Ile Cys
 85 90 95
 Arg Val Cys Thr Leu Phe Ser Ala Pro Thr Gly Glu Glu Gln Glu
 100 105 110
 Asp Tyr Ala His Met Ser Gly Trp Arg Arg Thr Ile Ile Val Ser Cys
 115 120 125
 Gly Arg Ala Leu Ser Arg Leu Met Leu Phe Ile Phe Gly Phe Tyr Trp
 130 135 140
 Ile Pro Glu Ser Asn Ser Ala Ser Gln Glu Asp Lys Ser Arg Gln Pro
 145 150 155 160
 Glu Glu Leu Arg Arg Pro Gly Val Ile Ile Ser Asn His Val Ser Tyr
 165 170 175
 Leu Asp Ile Leu Tyr His Met Ser Ser Phe Pro Ser Phe Val Ala
 180 185 190
 Lys Arg Ser Val Ala Lys Leu Pro Leu Val Gly Leu Ile Ser Lys Cys
 195 200 205
 Leu Gly Cys Val Tyr Val Gln Arg Glu Ser Arg Ser Ser Asp Phe Lys
 210 215 220
 Gly Val Ser Ala Val Val Thr Asp Arg Ile Arg Glu Ala His Gln Asn
 225 230 235 240
 Glu Ser Ala Pro Leu Met Met Leu Phe Pro Glu Gly Thr Thr Asn
 245 250 255
 Gly Glu Phe Leu Leu Pro Phe Lys Thr Gly Gly Phe Leu Ala Lys Ala
 260 265 270
 Pro Val Leu Pro Val Ile Leu Arg Tyr His Tyr Gln Arg Phe Ser Pro
 275 280 285
 Ala Trp Asp Ser Ile Ser Gly Val Arg His Val Ile Phe Leu Leu Cys
 290 295 300
 Gln Phe Val Asn Tyr Met Glu Val Ile Arg Leu Pro Val Tyr His Pro
 305 310 315 320
 Ser Gln Gln Glu Met Asp Asp Pro Lys Leu Tyr Ala Asn Asn Val Arg
 325 330 335
 Arg Leu Met Ala Thr Glu Gly Asn Leu Ile Leu Ser Asp Ile Gly Leu
 340 345 350
 Ala Glu Lys Arg Ile Tyr His Ala Ala Leu Asn Gly Asn Asn Ser Leu
 355 360 365
 Pro Ser Val Leu His Gln Lys Asp Glu
 370 375

```
<210> 11
<211> 585
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (363)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (391)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (404)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (433)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (439)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (449)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (470)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (510)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (527)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (532)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (535)
<223> n = a, c, g, or t
```

```

<220>
<221> unsure
<222> (539)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (557)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (562)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (571)
<223> n = a, c, g, or t

<400> 11
caggggttga ggagggaggc cgtgctgcgt gctggcccg 60
ttcgtgttcg ggttctactg gatccccgtg tccgatcgaa gcttcccaa tgccgaggat 120
gtacctaaag atcactatga agaactggaa agaccagggg cgattgtatc taatcatgtg 180
tcatatgtgg acattcttta tcataatgtca gcttcttctc cgagtttgt tgctaagaac 240
tcagtgtcca agttgccgtt gattggtctc ataagcaaat gtcttggtg cattttgtt 300
caacgagaac caaatgttca gattctaaag ggtctcaagt gctgtaactg aaagtccatg 360
agntcacaag gacgagaatc cctatatcta nccttcctg aggntacact acaatggat 420
tactctccat tanacaganc ttcttgcang gacatgcaac tgtatttgn atacctacag 480
agattatcca cctgggacca tcatggacn caagttttg ccccggnatt tnaantaana 540
agggtccctt ctgaaaact cncaaaaaga ngttcaatca gcaaa 585

<210> 12
<211> 194
<212> PRT
<213> Triticum aestivum

<220>
<221> UNSURE
<222> (120)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (130)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (134)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (144)
<223> Xaa = any amino acid

<220>
<221> UNSURE

```

```

<222> (146)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (149)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (156)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (175)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (177)..(178)..(179)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (185)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (187)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (190)
<223> Xaa = any amino acid

<400> 12
Gln Gly Leu Arg Arg Glu Ala Val Leu Arg Ala Gly Arg Val Leu Ser
      1           5           10          15

Arg Ala Met Leu Phe Val Phe Gly Phe Tyr Trp Ile Pro Val Ser Asp
      20          25          30

Arg Ser Phe Pro Asn Ala Glu Asp Val Pro Lys Asp His Tyr Glu Glu
      35          40          45

Leu Glu Arg Pro Gly Ala Ile Val Ser Asn His Val Ser Tyr Val Asp
      50          55          60

Ile Leu Tyr His Met Ser Ala Ser Ser Pro Ser Phe Val Ala Lys Asn
      65          70          75          80

Ser Val Ser Lys Leu Pro Leu Ile Gly Leu Ile Ser Lys Cys Leu Gly
      85          90          95

Cys Ile Phe Val Gln Arg Glu Pro Asn Val Gln Ile Leu Lys Gly Leu
     100         105         110

```

Lys Cys Cys Asn Lys Ser Met Xaa Ser Gln Gly Arg Glu Ser Leu Tyr
115 120 125

Leu Xaa Phe Pro Glu Xaa Thr Leu Gln Trp Asp Tyr Ser Pro Leu Xaa
130 135 140

Arg Xaa Ser Cys Xaa Asp Met Gln Leu Tyr Leu Xaa Tyr Leu Gln Arg
145 150 155 160

Leu Ser Thr Trp Asp His Asp Gly Thr Gln Val Phe Ala Pro Xaa Phe
165 170 175

Xaa Xaa Xaa Arg Val Pro Ser Glu Xaa Leu Xaa Lys Arg Xaa Ser Ile
180 185 190

Ser Lys

<210> 13

<211> 1501

<212> DNA

<213> Arabidopsis thaliana

<400> 13

atgcagaatc atgtggatta ctcggatctg taccagatgt atcctttctt cttttggcta 60
tcagtggata agaaggaaag gaaaaacctgc tcggagagag attgctccga ttgttgtatc 120
aaatcatgtt tcttatattg aaccaatctt ctacttctat gaattatcac cgaccattgt 180
tgcacatcgag tcacatgatt cacttccatt tggttggact attatcaggg caatgcaggt 240
gatatatgtg aatagattct cacagacatc aaggaagaat gctgtgcattg aaataaagag 300
aaaagcttcc tgcgatagat ttccctcgct gctgttattc cccgaaggaa ccacgactaa 360
tgggaaagtt cttatttcct tccaactcgg tgcttcatc cctggttacc ctattcaacc 420
tgttagtagtc cggttatcccc atgtacatcc tgcataatcc tggggaaata tctttttgtt 480
gacgctcatg ttttagaatgt tcactcagtt tcacaatttc atggaggttg aatatcttcc 540
tgtaatctat cccagtgaaa agcaaaagca gaatgctgtg cgtctctcac agaagactag 600
tcatgcaatt gcaacatctt tgaatgtcgat ccaaacatcc cattctttg cggacttgat 660
gctactcaac aaagcaactg agttaaagct ggagaacccc tcaaattaca tggttgaaat 720
ggcaagagtt gagtcgctat tccatgtaaag cagcttagag gcaacgcgtat ttttggatac 780
atttggccatc atgattccgg actcgagttt acgtgtttagg ctacatgact ttcttcgggg 840
tcttaaactg aaaccttgcc ctctttctaa aaggatattt gagttcatcg atgtggagaa 900
ggtcggatca atcactttca aacagtttctt gttgcctcg ggccacgtgt tgacacagcc 960
gcttttaag caaacatgcg agcttagcctt ttcccattgc gatgcagatg gagatggcta 1020
tattacaatt caagaactcg gagaagctct caaaaacaca atcccaaact tgaacaagga 1080
cgagattcga ggaatgtacc atttgcata cgacgaccaa gatcaaagaa tcagccaaaa 1140
tgacttggtg tcctgcttaa gaagaaaccc tcttctcata gccatcttg cacctgactt 1200
ggccccaaca taacacagag agacaaaatg gctggctaaatg atttgtggtg cgatgattgt 1260
aaacttgcatt ttgtggata ttattatacc ttttggtttgc tcttcattt tgatttcagc 1320
tagaaaaag aaggactgc tatgtttta gcctatataat ataccctcct ccaacatgga 1380
tccatcctt tgagtgttgg actataactg cttgtcgat tccaccccaa aaaacgctat 1440
ggtgtttgct cctctagttc tgagcaaact ttgctgtaaa aaaaaaaaaa aaaaaaaaaa 1500
a 1501

<210> 14

<211> 403

<212> PRT

<213> Arabidopsis thaliana

<400> 14

Cys Arg Ile Met Trp Ile Thr Arg Ile Cys Thr Arg Cys Ile Leu Phe
1 5 10 15

Ser Phe Gly Tyr Gln Trp Ile Arg Arg Lys Gly Lys Pro Ala Arg Arg
 20 25 30

Glu Ile Ala Pro Ile Val Val Ser Asn His Val Ser Tyr Ile Glu Pro
 35 40 45

Ile Phe Tyr Phe Tyr Glu Leu Ser Pro Thr Ile Val Ala Ser Glu Ser
 50 55 60

His Asp Ser Leu Pro Phe Val Gly Thr Ile Ile Arg Ala Met Gln Val
 65 70 75 80

Ile Tyr Val Asn Arg Phe Ser Gln Thr Ser Arg Lys Asn Ala Val His
 85 90 95

Glu Ile Lys Arg Lys Ala Ser Cys Asp Arg Phe Pro Arg Leu Leu Leu
 100 105 110

Phe Pro Glu Gly Thr Thr Asn Gly Lys Val Leu Ile Ser Phe Gln
 115 120 125

Leu Gly Ala Phe Ile Pro Gly Tyr Pro Ile Gln Pro Val Val Val Arg
 130 135 140

Tyr Pro His Val His Phe Asp Gln Ser Trp Gly Asn Ile Ser Leu Leu
 145 150 155 160

Thr Leu Met Phe Arg Met Phe Thr Gln Phe His Asn Phe Met Glu Val
 165 170 175

Glu Tyr Leu Pro Val Ile Tyr Pro Ser Glu Lys Gln Lys Gln Asn Ala
 180 185 190

Val Arg Leu Ser Gln Lys Thr Ser His Ala Ile Ala Thr Ser Leu Asn
 195 200 205

Val Val Gln Thr Ser His Ser Phe Ala Asp Leu Met Leu Leu Asn Lys
 210 215 220

Ala Thr Glu Leu Lys Leu Glu Asn Pro Ser Asn Tyr Met Val Glu Met
 225 230 235 240

Ala Arg Val Glu Ser Leu Phe His Val Ser Ser Leu Glu Ala Thr Arg
 245 250 255

Phe Leu Asp Thr Phe Val Ser Met Ile Pro Asp Ser Ser Gly Arg Val
 260 265 270

Arg Leu His Asp Phe Leu Arg Gly Leu Lys Leu Lys Pro Cys Pro Leu
 275 280 285

Ser Lys Arg Ile Phe Glu Phe Ile Asp Val Glu Lys Val Gly Ser Ile
 290 295 300

Thr Phe Lys Gln Phe Leu Phe Ala Ser Gly His Val Leu Thr Gln Pro
 305 310 315 320

Leu Phe Lys Gln Thr Cys Glu Leu Ala Phe Ser His Cys Asp Ala Asp
 325 330 335

Gly Asp Gly Tyr Ile Thr Ile Gln Glu Leu Gly Glu Ala Leu Lys Asn
340 345 350

Thr Ile Pro Asn Leu Asn Lys Asp Glu Ile Arg Gly Met Tyr His Leu
355 360 365

Leu Asp Asp Asp Gln Asp Gln Arg Ile Ser Gln Asn Asp Leu Leu Ser
370 375 380

Cys Leu Arg Arg Asn Pro Leu Leu Ile Ala Ile Phe Ala Pro Asp Leu
385 390 395 400

Ala Pro Thr

<210> 15

<211> 692

<212> DNA

<213> Oryza sativa

<220>

<221> unsure

<222> (446)

<223> n = a, c, g, or t

<220>

<221> unsure

<222> (579)

<223> n = a, c, g, or t

<220>

<221> unsure

<222> (677)

<223> n = a, c, g, or t

<400> 15

gttctaaccc gcctcctctc gcctcgccctc cgccaccat ggcttctcga aaccctagcc 60
ccgcctccct ctccacgccc ctccctctcc actccatctc gcccacgccc accaccaacg 120
gccacgcggg gcaccataac cacgacgacg acgacgagga gtcgccaacg gtgtgcggcg 180
gcgatggcgg aggagggggg gacccgttgc cgttcctatc ggaggatcgg ccggcgtgg 240
ggtcgcccgg ggggtgtcc ccggccgacc cggtccgcaa cgggacgccc gggtggtgcg 300
gggcgtacga gctcgtgagg gcgctcgtgt gcgccgggt ggcggcggcg aggctggtgc 360
tgttcgggct ctccatcgcg gtggggtacg ccgccacgtg ggtggcgctc cgccgggtgg 420
tcgacgtgcg ggagcggcg ggcgcggagg ggcgcgggcc catgcggcg tggcgccgccc 480
gcctcatgtg gatcacgcgg attccgcgcg ctgcacatctc ttctccttcg gatacattgg 540
ataaggagaa agaaaaacgg ccctagaaac ttcactatnt ttctaaatca tggtcatcat 600
agaaccatat actctcatag ctccgacat cgttctcaaa tccatatcat acattttgaa 660
aatttcagca tcagtantag ttaaaatccc aa 692

<210> 16

<211> 174

<212> PRT

<213> Oryza sativa

<220>

<221> UNSURE

<222> (136)

<223> Xaa = any amino acid

<400> 16
 Met Ala Ser Arg Asn Pro Ser Pro Ala Ser Leu Ser Thr Pro Leu Leu
 1 5 10 15

 Ser Asp Ser Ile Ser Pro Thr Pro Thr Thr Asn Gly His Ala Gly His
 20 25 30

 His Asn His Asp Asp Asp Glu Glu Ser Pro Thr Val Cys Gly Gly
 35 40 45

 Asp Gly Gly Gly Gly Asp Pro Phe Ala Phe Leu Ser Glu Asp Arg
 50 55 60

 Pro Ala Trp Trp Ser Pro Arg Gly Val Ser Pro Ala Asp Pro Phe Arg
 65 70 75 80

 Asn Gly Thr Pro Gly Trp Cys Gly Ala Tyr Glu Leu Val Arg Ala Leu
 85 90 95

 Val Cys Ala Pro Val Ala Ala Ala Arg Leu Val Leu Phe Gly Leu Ser
 100 105 110

 Ile Ala Val Gly Tyr Ala Ala Thr Trp Val Ala Leu Arg Gly Trp Val
 115 120 125

 Asp Val Arg Glu Arg Ala Ala Xaa Glu Gly Ala Gly Pro Met Pro Ala
 130 135 140

 Trp Arg Arg Arg Leu Met Trp Ile Thr Arg Ile Pro Arg Ala Ala Ser
 145 150 155 160

 Ser Ser Pro Ser Asp Thr Leu Asp Lys Glu Lys Gly Lys Pro
 165 170

 <210> 17
 <211> 480
 <212> DNA
 <213> . Glycine max

 <220>
 <221> unsure
 <222> (189)
 <223> n = a, c, g, or t

 <220>
 <221> unsure
 <222> (195)
 <223> n = a, c, g, or t

 <220>
 <221> unsure
 <222> (284)
 <223> n = a, c, g, or t

 <220>
 <221> unsure
 <222> (290)
 <223> n = a, c, g, or t

```
<220>
<221> unsure
<222> (303)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (362)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (366)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (377) .. (378)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (399)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (419)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (426)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (428)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (432)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (454)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (475)
<223> n = a, c, g, or t

<400> 17
gcgacgacga cgacttctcc gtgccgccac cgtccaccct ggaccggcgttc cgcaaccgca 60
cgccggcgat cgaggggctc tacgagtggg ccaagacggc gctgtgcctg ccgctggcgg 120
cgctgcggct cgcgctgttc gggctctgcc tcgcgggtggg gtacgtggcg acgaagggtgg 180
cgctggcang gtggnaggac aaggagaatc ccatgccccaa gtggaggtgt agggttatgt 240
```

ggatcacgcg cttgtgcgcc aaatgtattc tcttctcctt tggntatcan tggataaaac 300
ggnaaggaa acctgcacca aggggaaatt gctccaataa attgtatcta aaccatgttt 360
cntaanagtg agcctannct tcctatttct aagaattant tcctaacaat ggtgggaanc 420
tgaagncnca anactccata tcctttgtt gggnaccaat taatagagca aatgnaagtc 480

<210> 18
<211> 107
<212> PRT
<213> Glycine max

<220>
<221> UNSURE
<222> (63)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (65)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (96)
<223> Xaa = any amino acid

<220>
<221> UNSURE
<222> (101)
<223> Xaa = any amino acid

<400> 18
Asp Asp Asp Asp Phe Ser Val Pro Pro Pro Ser Thr Leu Asp Pro Phe
1 5 10 15

Arg Asn Arg Thr Pro Ala Ile Glu Gly Leu Tyr Glu Trp Ala Lys Thr
20 25 30

Ala Leu Cys Leu Pro Leu Ala Ala Leu Arg Leu Ala Leu Phe Gly Leu
35 40 45

Cys Leu Ala Val Gly Tyr Val Ala Thr Lys Val Ala Leu Ala Xaa Trp
50 55 60

Xaa Asp Lys Glu Asn Pro Met Pro Lys Trp Arg Cys Arg Val Met Trp
65 70 75 80

Ile Thr Arg Leu Cys Ala Lys Cys Ile Leu Phe Ser Phe Gly Tyr Xaa
85 90 95

Trp Ile Lys Arg Xaa Gly Lys Pro Ala Pro Arg
100 105

<210> 19
<211> 784
<212> DNA
<213> Oryza sativa

<220>
<221> unsure

```

<222> (560)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (648)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (670)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (739)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (758)
<223> n = a, c, g, or t

<400> 19
cttctcgatc ccgggtggatt cgccgccc tccgcccggc cgcggagg aggaggacga 60
ggagagggcg ctccctcggg ggtgagcatc cagccaccc ggcccggtgc ctcctttcg 120
catctcgcc cccgagatt ggaagtgggg gcagggcagg gcggcagggg ccatggcggt 180
cccactcgatc ctgcgtgc tcccgctcg tccctcttc ctcctctccg gcctcaacgc 240
catccaggcc gtcctgttc tctcgataag gccgttctcg aagagcttgt accggcggat 300
caacaggttc ttggccgagc tgctgtggct tcagctggc tggcttgtgg attgggtggc 360
aggagttaaat atacaactgc atgctgatga cgaaaactaac aaggcaatgg ggaatgagca 420
tgcacttgc atatcaaatac atcggagcga tatcgattgg cttattgggt ggattttggg 480
cacagcgctc aaggatgcct tggaagttac acttgctgtt atgaagaaac atccgaaatc 540
cttccaatta ttgggctggn ccatgttgc tgcagaatac cccttttgg gaaaaggact 600
ggccaaagga tgaaaagaca ttgaaatggg ggcccccaaa ggttgaanga cttccccaga 660
catttggcn acccttttg tttaaggacc cccttaccca acaaaactcc aacaactcaa 720
ggagtatctg ttcacaggn tgcacaccca agaaatgnat gatcacgtca aaggattgt 780
acac 784

<210> 20
<211> 146
<212> PRT
<213> Oryza sativa

<220>
<221> UNSURE
<222> (130)
<223> Xaa = any amino acid

<400> 20
Met Ala Val Pro Leu Val Leu Val Val Leu Pro Leu Gly Leu Leu Phe
      1           5           10          15

Leu Leu Ser Gly Leu Asn Ala Ile Gln Ala Val Leu Phe Leu Ser Ile
      20          25          30

Arg Pro Phe Ser Lys Ser Leu Tyr Arg Arg Ile Asn Arg Phe Leu Ala
      35          40          45

```

Glu Leu Leu Trp Leu Gln Leu Val Trp Leu Val Asp Trp Trp Ala Gly
50 55 60

Val Lys Ile Gln Leu His Ala Asp Asp Glu Thr Tyr Lys Ala Met Gly
65 70 75 80

Asn Glu His Ala Leu Val Ile Ser Asn His Arg Ser Asp Ile Asp Trp
85 90 95

Leu Ile Gly Trp Ile Leu Gly Thr Ala Leu Lys Asp Ala Leu Gly Ser
100 105 110

Thr Leu Ala Val Met Lys Lys His Pro Lys Ser Phe Gln Leu Leu Gly
115 120 125

Trp Xaa Met Leu Phe Ala Glu Tyr Pro Phe Leu Gly Lys Gly Leu Gly
130 135 140

Lys Gly
145

<210> 21
<211> 584
<212> DNA
<213> Glycine max

<220>
<221> unsure
<222> (17)..(18)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (33)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (38)..(39)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (519)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (543)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (546)
<223> n = a, c, g, or t

<220>-
<221> unsure
<222> (575)
<223> n = a, c, g, or t

<400> 21
cgtttgctga cctgacnnncg ggtttttttt ttnggggnnc acgggtttc gttgcgttgt 60
gctctgctct gtcctttgg gcctgggctg ggctgggctg ggctgggctg ggcattggcta 120
ttgcagcagc ggccgtggtg gtaccattgg gcctgctttt ctgcgcctcc ggcctccctg 180
ttaatctcat tcaggcaata tgctatgtcg tcgttaaggcc ggtgtcgaaa agtttgcata 240
gaaggatcaa ccgggttagta gcagagctct tgtggctgga gcttgtatgg cttattgatt 300
ggtgggcagg agttaaggc caaatattca cagatcatga aaccttcgt ttaatggta 360
aagagcatgc acttgtgata agcaatcaca gaagtgatat tgattggctt gttggatggg 420
tttcagctca gcgttcaggt tgtcttggca gcactctaag ctgtgatgaa gaaatctca 480
aagtttctgc cggtcattgg ctggtcaatg tggtttcng agtaacctt tctggagaag 540
aantnngcc aaagatgaaa gcccattaaa gtcangcatc ccgg 584

<210> 22
<211> 116
<212> PRT
<213> Glycine max

<400> 22
Met Ala Ile Ala Ala Ala Val Val Val Pro Leu Gly Leu Leu Phe
1 5 10 15

Phe Ala Ser Gly Leu Leu Val Asn Leu Ile Gln Ala Ile Cys Tyr Val
20 25 30

Val Val Arg Pro Val Ser Lys Ser Leu Tyr Arg Arg Ile Asn Arg Val
35 40 45

Val Ala Glu Leu Leu Trp Leu Glu Leu Val Trp Leu Ile Asp Trp Trp
50 55 60

Ala Gly Val Lys Val Gln Ile Phe Thr Asp His Glu Thr Phe Arg Leu
65 70 75 80

Met Gly Lys Glu His Ala Leu Val Ile Ser Asn His Arg Ser Asp Ile
85 90 95

Asp Trp Leu Val Gly Trp Val Ser Ala Gln Arg Ser Gly Cys Leu Gly
100 105 110

Ser Thr Leu Ser
115

<210> 23
<211> 570
<212> DNA
<213> Triticum aestivum

<220>
<221> unsure
<222> (510)
<223> n = a, c, g, or t

<220>
<221> unsure
<222> (516)
<223> n = a, c, g, or t

<220>
<221> unsure

<222> (518)

<223> n = a, c, g, or t

<400> 23

gagaggagac gcggcggcgg ccatggcgat tcccctcgat ctcgtcctgc tcccgctcgg 60
cctcctcttc ctccctctccg gcctcgatcg caacactgtc caggccgtat tgttcttgac 120
gataaggcca ttctcgaaac gattgttaccg gcagatcaac gtattcctgg ccgagttgtt 180
gtggcttcag ctgatctggc ttgtggactg gtggccaggt attaaggatc aggtgtatgc 240
ggatccagaa acttggaaac taatggcaa agagcacgcc cttctcatat ccaatcatcg 300
aagtgcattt gattggctgg ttggatggat tttagcacag cggtcaggat gtcttggaaag 360
cgcaatacgatc ataatgaaga aatcctcaaa gttccttcca gttattggtt ggtccatgtg 420
gtttgcagaa tactctttt gagagaactg gcaaaggatg aaaaacacta aatcgggtct 480
caaggtgaaa actccagata ttggctgcn tttgttnangg tcaaattact cacaaacttt 540
acagtaagaa atcatccaag gtttgcacgc 570

<210> 24

<211> 160

<212> PRT

<213> Triticum aestivum

<400> 24

Met Ala Ile Pro Leu Val Leu Val Leu Leu Pro Leu Gly Leu Leu Phe
1 5 10 15

Leu Leu Ser Gly Leu Val Val Asn Thr Val Gln Ala Val Leu Phe Leu
20 25 30

Thr Ile Arg Pro Phe Ser Lys Arg Leu Tyr Arg Gln Ile Asn Val Phe
35 40 45

Leu Ala Glu Leu Leu Trp Leu Gln Leu Ile Trp Leu Val Asp Trp Trp
50 55 60

Ala Gly Ile Lys Val Gln Val Tyr Ala Asp Pro Glu Thr Trp Lys Leu
65 70 75 80

Met Gly Lys Glu His Ala Leu Leu Ile Ser Asn His Arg Ser Asp Ile
85 90 95

Asp Trp Leu Val Gly Trp Ile Leu Ala Gln Arg Ser Gly Cys Leu Gly
100 105 110

Ser Ala Ile Ala Ile Met Lys Lys Ser Ser Lys Phe Leu Pro Val Ile
115 120 125

Gly Trp Ser Met Trp Phe Ala Glu Tyr Ser Phe Gly Glu Asn Trp Gln
130 135 140

Arg Met Lys Asn Thr Lys Ser Gly Leu Lys Val Lys Thr Pro Asp Ile
145 150 155 160

<210> 25

<211> 1337

<212> DNA

<213> Catalpa speciosa

<400> 25

gcacgagagg ctaaaggaca atgagcaagc taaaaacatc cagctccgaa ttggatttg 60
atcaccccaa tatcgaaagac tatcttccat ccggatccat tcaagagcct cacggcaagc 120
tccgcctgctg tcgatggctc gatatttcac caactctaac tgaggcagct ggtgccattg 180

ttgatgactc	cttcacgaga	tgcttcaagt	caaatccgcc	agaaccctgg	aactggaaaca	240
tatatttgtt	tcctttgtgg	tgcttaggag	ttgttgtcag	atatggctt	ctttcccct	300
taaggtaat	agtgttgaca	ataggatgga	ttatatttct	ctcatgctat	ttccctgtgc	360
atccctgtt	aaaagggcat	gacaaatga	aaaaaaaatt	agagagaggt	ctagtggagt	420
tgtgtgcag	ttttttgtt	gcatcatgga	ctgggggtgt	caagtaccat	ggccgcggc	480
ccagcatgcg	gcctaagcag	gttttgg	ctaatacac	atccatgatt	gatttcattt	540
tttggaaaca	aatgactgca	tttgcagtga	ttatgcagaa	gcattcctggg	tggtaggac	600
tattgcagag	cactatTTT	gagagtctag	gatgtatctg	gttcaaccgg	tcagagtcca	660
aggaccgtga	aattgttgc	aaaaagctaa	gagatcatgt	ccatggcgct	gataataatc	720
ctcttcttat	atccccggaa	ggaacatgtg	tgaataacca	ctacactgtg	atgtttaaga	780
agggtgcatt	tgaacttgg	tgcactgtct	gtccaaatcgc	aatcaagtat	aacaagattt	840
ttgtggatgc	cttctggAAC	agcagaaAGC	aatccttac	aatgcacttg	ttgcagctt	900
tgacatcctg	ggctgttgc	tgtgatgtt	ggtacctgg	gcctcaaaat	ctaaaacctg	960
gggaaacacc	aattgaattt	gctgagaggg	tgaggggcat	tatttctgtt	cgagcaggcc	1020
ttaagaaggt	gccgtgggat	ggatatttga	agtactctcg	ccccagccca	aagcatcgtg	1080
agcAAAGCA	acAAAGCTC	gcagagtca	ttctccatca	cctggaaAGAG	aaatagattt	1140
aagataaata	atTTTGTAT	ttactgtctt	caatttgtt	gatcaagttt	gttagctgtt	1200
ttgaaattca	atcttattt	tcactataaa	gaggattca	gttcctcaat	tgacataatg	1260
aaattcctt	gatacgtcg	tgaagaggaa	aatacaat	gaagtgtga	aaaaaaaaaa	1320
aaaaaaaaaa	aaaaaaaaaa					1337

<210> 26

<211> 371

<212> PRT

<213> Catalpa speciosa

<400> 26

Met	Ser	Lys	Leu	Lys	Thr	Ser	Ser	Ser	Glu	Leu	Asp	Leu	Asp	His	Pro
1						5				10				15	

Asn	Ile	Glu	Asp	Tyr	Leu	Pro	Ser	Gly	Ser	Ile	Gln	Glu	Pro	His	Gly
						20			25			30			

Lys	Leu	Arg	Leu	Arg	Asp	Leu	Leu	Asp	Ile	Ser	Pro	Thr	Leu	Thr	Glu
							35		40			45			

Ala	Ala	Gly	Ala	Ile	Val	Asp	Asp	Ser	Phe	Thr	Arg	Cys	Phe	Lys	Ser
						50		55			60				

Asn	Pro	Pro	Glu	Pro	Trp	Asn	Trp	Asn	Ile	Tyr	Leu	Phe	Pro	Leu	Trp
						65		70			75			80	

Cys	Leu	Gly	Val	Val	Val	Arg	Tyr	Gly	Leu	Leu	Phe	Pro	Leu	Arg	Val
						85			90			95			

Ile	Val	Leu	Thr	Ile	Gly	Trp	Ile	Ile	Phe	Leu	Ser	Cys	Tyr	Phe	Pro
						100		105			110				

Val	His	Phe	Leu	Leu	Lys	Gly	His	Asp	Lys	Leu	Arg	Lys	Lys	Leu	Glu
						115		120			125				

Arg	Gly	Leu	Val	Glu	Leu	Met	Cys	Ser	Phe	Phe	Val	Ala	Ser	Trp	Thr
						130		135			140				

Gly	Val	Val	Lys	Tyr	His	Gly	Pro	Arg	Pro	Ser	Met	Arg	Pro	Lys	Gln
						145		150			155			160	

Val	Phe	Val	Ala	Asn	His	Thr	Ser	Met	Ile	Asp	Phe	Ile	Val	Leu	Glu
						165		170			175				

Gln Met Thr Ala Phe Ala Val Ile Met Gln Lys His Pro Gly Trp Val
180 185 190

Gly Leu Leu Gln Ser Thr Ile Leu Glu Ser Leu Gly Cys Ile Trp Phe
195 200 205

Asn Arg Ser Glu Ser Lys Asp Arg Glu Ile Val Ala Lys Lys Leu Arg
210 215 220

Asp His Val His Gly Ala Asp Asn Asn Pro Leu Leu Ile Phe Pro Glu
225 230 235 240

Gly Thr Cys Val Asn Asn His Tyr Thr Val Met Phe Lys Lys Gly Ala
245 250 255

Phe Glu Leu Gly Cys Thr Val Cys Pro Ile Ala Ile Lys Tyr Asn Lys
260 265 270

Ile Phe Val Asp Ala Phe Trp Asn Ser Arg Lys Gln Ser Phe Thr Met
275 280 285

His Leu Leu Gln Leu Met Thr Ser Trp Ala Val Val Cys Asp Val Trp
290 295 300

Tyr Leu Glu Pro Gln Asn Leu Lys Pro Gly Glu Thr Pro Ile Glu Phe
305 310 315 320

Ala Glu Arg Val Arg Gly Ile Ile Ser Val Arg Ala Gly Leu Lys Lys
325 330 335

Val Pro Trp Asp Gly Tyr Leu Lys Tyr Ser Arg Pro Ser Pro Lys His
340 345 350

Arg Glu Arg Lys Gln Gln Ser Phe Ala Glu Ser Val Leu His His Leu
355 360 365

Glu Glu Lys
370

<210> 27
<211> 1582
<212> DNA
<213> Zea mays

<400> 27
cctcgcccca tcgcggacct ttccctcgccg gcgtcgccccat ctcatcgccg gcggggcggtgc 60
ggccgggtggc cgaaggccctt aggcgatggc gacctcgatct gtggcgccgg acatggagct 120
ggaccggcca aacctggagg actacctccc gcccgaactcg ctcccgccagg aggcgcggcccg 180
gaatctccat ctgcgcgatc tgctggacat ctcgcggatg ctcaccgagg cagcgggtgc 240
cattgtcgat gactccttca cacggtgctt taagtcaaat tctccagagc catggaaattg 300
gaacatatat ctgttccct tatggtgctt tggtagta ataagatatg gattactctt 360
cccactgagg tccttaacgc ttgcaatagg atggtagca tttttgctg cttttttcc 420
tgtccatttc ctattgaaag gtcaagacaa gttgagaagt aaaattgaga ggaagtgg 480
tgaaatgtg tgcagtgttt ttgttgcttc atggactgga gttatcaagt atcatggacc 540
acgcccggc acacgaccc acatggatatt cggtgcaaac catacatcgat tgatagattt 600
cattattctg gagcaaatga cagcattgc tgtcatcatg cagaagcattc ctggatgggt 660
tggatttatt cagaagacta tcttggaaag tgtcgggtgc atctggtttta atcgtaatga 720
tctccgggac cgtgaagttt cggcacggaa gttacgtgat catgttcaac aaccagacaa 780
caatcctctg ttgattttc cggaaaggaac ttgtgtgaac aaccagtaca cggtcatgtt 840
caagaagggt gcctttgagc ttggctgcgc tgtatgtcca atagctatca agtacaataa 900

aatatttgtt gatgcctttt ggaacagtaa gaagcaatct tttacaatgc acttggtccg 960
 gctgatgaca tcatgggtcg ttgtgtgtga tgtttggtaa ttacccctc aatatcttag 1020
 ggagggagag acggcaattt catttgctga gagagtaagg gacatgatag ctgctagagc 1080
 tggactaaag aagggttcctt gggatggcta tctgaaacac aaccgtccta gtcccaaaca 1140
 cactgaagag aaacaacgca tatttgcga atctgtctt atgagactgg aggagaaatg 1200
 aaggcacgt aagccgtaca agtgcacttc gttagggttt tacatgcagc taccttgtaa 1260
 ttccgggtgc ttccagaaaa aaaaaagtga gcctgggaca cgtcaagtga ccacccctc 1320
 tttgttgtaa atttgttact agttttagt gattattgt atgtacttat cagaaaaaga 1380
 atttcagta tgtgtttgg ctgcccattc aatgataggt cagtgattaa caccgaagca 1440
 ttgtgctctc gtgagatgt gtgttggct taatataattg acggtactgt accatgttt 1500
 aaatgtgatt attgaagcaa tgtgaatgga ttagctggct aagaaaaaaaaaaaaaaaaa 1560
 aaaaaaaaaaaa aaaaaaaaaaaa ag 1582

<210> 28
 <211> 371
 <212> PRT
 <213> Zea mays

<400> 28
 Met Ala Thr Ser Ser Val Ala Ala Asp Met Glu Leu Asp Arg Pro Asn
 1 5 10 15

Leu Glu Asp Tyr Leu Pro Pro Asp Ser Leu Pro Gln Glu Ala Pro Arg
 20 25 30

Asn Leu His Leu Arg Asp Leu Leu Asp Ile Ser Pro Val Leu Thr Glu
 35 40 45

Ala Ala Gly Ala Ile Val Asp Asp Ser Phe Thr Arg Cys Phe Lys Ser
 50 55 60

Asn Ser Pro Glu Pro Trp Asn Trp Asn Ile Tyr Leu Phe Pro Leu Trp
 65 70 75 80

Cys Phe Gly Val Val Ile Arg Tyr Gly Leu Leu Phe Pro Leu Arg Ser
 85 90 95

Leu Thr Leu Ala Ile Gly Trp Leu Ala Phe Phe Ala Ala Phe Phe Pro
 100 105 110

Val His Phe Leu Leu Lys Gly Gln Asp Lys Leu Arg Ser Lys Ile Glu
 115 120 125

Arg Lys Leu Val Glu Met Met Cys Ser Val Phe Val Ala Ser Trp Thr
 130 135 140

Gly Val Ile Lys Tyr His Gly Pro Arg Pro Ser Thr Arg Pro His Gln
 145 150 155 160

Val Phe Val Ala Asn His Thr Ser Met Ile Asp Phe Ile Ile Leu Glu
 165 170 175

Gln Met Thr Ala Phe Ala Val Ile Met Gln Lys His Pro Gly Trp Val
 180 185 190

Gly Phe Ile Gln Lys Thr Ile Leu Glu Ser Val Gly Cys Ile Trp Phe
 195 200 205

Asn Arg Asn Asp Leu Arg Asp Arg Glu Val Thr Ala Arg Lys Leu Arg
 210 215 220

Asp His Val Gln Gln Pro Asp Asn Asn Pro Leu Leu Ile Phe Pro Glu
225 230 235 240

Gly Thr Cys Val Asn Asn Gln Tyr Thr Val Met Phe Lys Lys Gly Ala
245 250 255

Phe Glu Leu Gly Cys Ala Val Cys Pro Ile Ala Ile Lys Tyr Asn Lys
260 265 270

Ile Phe Val Asp Ala Phe Trp Asn Ser Lys Lys Gln Ser Phe Thr Met
275 280 285

His Leu Val Arg Leu Met Thr Ser Trp Ala Val Val Cys Asp Val Trp
290 295 300

Tyr Leu Pro Pro Gln Tyr Leu Arg Glu Gly Glu Thr Ala Ile Ala Phe
305 310 315 320

Ala Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala Gly Leu Lys Lys
325 330 335

Val Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro Ser Pro Lys His
340 345 350

Thr Glu Glu Lys Gln Arg Ile Phe Ala Glu Ser Val Leu Met Arg Leu
355 360 365

Glu Glu Lys
370

<210> 29

<211> 1422

<212> DNA

<213> Oryza sativa

<400> 29

gcacgagatc actgcgaaga tttcctcgcc ggcggcggag gggatcgacg gagggggggga 60
tggcgacctc gtcgggtggcg ggggacatcg agctggaccg gccgaacctg gaggactacc 120
tccccatccga ctcgctgccg caggagttcc ccaggaatct ccatctgcgc gatctgctgg 180
acatctcgcc ggtgctcaact gaagcagcgg gcgcacatcg cgtatgattca ttcacacgtt 240
gctttaagtc aaattctcca gagccatggaa attggaacat ttatatttcc ccattgtgg 300
gcttgggagt agtgataaga tacggaatac tattcccgct gaggggccta actcttctag 360
ttggatgggtt agcattcttt gctgcctttt ttcctgtaca tttcttatttgg aaaggtcaaa 420
agatgagaag taaaatagag agaaagctgg ttgaaatgtat gtgcagtgtt ttttgtgctt 480
cttggactgg agtgatcaag tatcatgggc ctcgccccaa cacacggcct catcaggttat 540
ttgttgcaaa ccatacatcg atgatagatt tcattattct ggagcagatg acagcatttgc 600
ctgtcattat gcaaaagcat cctggatggg ttggatttat tcagaagact atcttggaaa 660
gtgttggttt catctggttt aatcgcaatg atctcaagga tcgtgaagtgg tttgtcaaaaa 720
agttacgaga tcatgttcaa catccagaca gcaatcctct cctgattttc cctgaaggaa 780
cttgtgttaa caaccagtac actgtcatgt tcaagaaggg tgcttttagt cttggctgtg 840
ctgtatgccc aatagctatc aaatacaata aaatatttgc tgatgccttc tggaatagta 900
agaagcaatc gttacaatg cacttggta ggcttatgac atcatggca gttgtgtgtg 960
atgtatggta ctggagcct cagtatctga gggatggaga aacagcaatt gaatttgctg 1020
aaagagtaag agacatgata gctgcttagag ctggctttaa gaaggttccg tgggacgggt 1080
atctgaaaca caaccggccct agtcccaaacc acactgaaga gaagcagcgc atctttgctg 1140
actctgtgtt gcgagactg gaggaaagct aaacagatat caatcaactc tggtgctcat 1200
tggtgagtcc aggttactaa tgccttagtg tgtatctggg tctctggagt atgtggaaat 1260
taccactgca gttttgttgtt aaattgtttc cagcttgaca gaatcaacat ttaatagcct 1320
gtattagcca agattttatg attggtagg gttAACACAT aaatattata cttcccaaa 1380

tgatgtatta atacttaccc taaaaaaaaaaa aaaaaaaaaaa ac

1422

<210> 30

<211> 370

<212> PRT

<213> Oryza sativa

<400> 30

Met Ala Thr Ser Ser Val Ala Gly Asp Ile Glu Leu Asp Arg Pro Asn
1 5 10 15

Leu Glu Asp Tyr Leu Pro Ser Asp Ser Leu Pro Gln Glu Phe Pro Arg
20 25 30

Asn Leu His Leu Arg Asp Leu Leu Asp Ile Ser Pro Val Leu Thr Glu
35 40 45

Ala Ala Gly Ala Ile Val Asp Asp Ser Phe Thr Arg Cys Phe Lys Ser
50 55 60

Asn Ser Pro Glu Pro Trp Asn Trp Asn Ile Tyr Leu Phe Pro Leu Trp
65 70 75 80

Cys Leu Gly Val Val Ile Arg Tyr Gly Ile Leu Phe Pro Leu Arg Gly
85 90 95

Leu Thr Leu Leu Val Gly Trp Leu Ala Phe Phe Ala Ala Phe Phe Pro
100 105 110

Val His Phe Leu Leu Lys Gly Gln Lys Met Arg Ser Lys Ile Glu Arg
115 120 125

Lys Leu Val Glu Met Met Cys Ser Val Phe Val Ala Ser Trp Thr Gly
130 135 140

Val Ile Lys Tyr His Gly Pro Arg Pro Ser Thr Arg Pro His Gln Val
145 150 155 160

Phe Val Ala Asn His Thr Ser Met Ile Asp Phe Ile Ile Leu Glu Gln
165 170 175

Met Thr Ala Phe Ala Val Ile Met Gln Lys His Pro Gly Trp Val Gly
180 185 190

Phe Ile Gln Lys Thr Ile Leu Glu Ser Val Gly Cys Ile Trp Phe Asn
195 200 205

Arg Asn Asp Leu Lys Asp Arg Glu Val Val Ala Lys Lys Leu Arg Asp
210 215 220

His Val Gln His Pro Asp Ser Asn Pro Leu Leu Ile Phe Pro Glu Gly
225 230 235 240

Thr Cys Val Asn Asn Gln Tyr Thr Val Met Phe Lys Lys Gly Ala Phe
245 250 255

Glu Leu Gly Cys Ala Val Cys Pro Ile Ala Ile Lys Tyr Asn Lys Ile
260 265 270

Phe Val Asp Ala Phe Trp Asn Ser Lys Lys Gln Ser Phe Thr Met His
275 280 285

Leu Val Arg Leu Met Thr Ser Trp Ala Val Val Cys Asp Val Trp Tyr
290 295 300

Leu Glu Pro Gln Tyr Leu Arg Asp Gly Glu Thr Ala Ile Glu Phe Ala
305 310 315 320

Glu Arg Val Arg Asp Met Ile Ala Ala Arg Ala Gly Leu Lys Lys Val
325 330 335

Pro Trp Asp Gly Tyr Leu Lys His Asn Arg Pro Ser Pro Lys His Thr
340 345 350

Glu Glu Lys Gln Arg Ile Phe Ala Asp Ser Val Leu Arg Arg Leu Glu
355 360 365

Glu Ser
370

<210> 31

<211> 1392

<212> DNA

<213> Sorghum

<400> 31

gcacgagcca ggaatctcca tctgcgcgat ctgcggaca tctgcgggt gctaaccgag 60
gcagcgggtg ccatagtcga tgattcatc acgcgctgct ttaagtcgaa ttctccagaa 120
ccatggact ggaacatata tttgttccct ttatgggtct tcgggttagt aattcgatat 180
ggattactt tcccactgag gtccttaacg cttgcaatag gatggtagc atttttgct 240
gccttttcc ccgtgcattt cctattgaaa ggtcaagaca agttgagaaa taaaatttag 300
aggaagttgg ttgaaatgtat gtgcagtgtt tttgttgctt catggactgg agtgatcaag 360
taccatggac cacgccccaa cacacgacct catcaggat ttgttgcaaa ccatacatca 420
atgatagatt tcattattct ggagcaaatg acagcatttgc ctgtcatcat gcagaagcat 480
cctggatggg ttggatttat tcagaagact atcttgaaa gtgtgggttgc catctggttt 540
aaccgtaatg atctccggga tcgtgaagtt acggcacgga agttgcgtga tcatgttcaa 600
catccagaca aaaaccctct cttgattttc ccagaaggaa cttgtgttaa caaccagtat 660
acggcatgt tcaagaaggg tgccttgag cttgggtgtg ctgtctgtcc aatagctatc 720
aaatacaata aaatattttgt tgatgcctt tggAACAGTA agaagcaatc ttttacatgt 780
cacttggtcc ggttcatgtat atcatggct gttgtgtgtg atgtttggta cttggagcct 840
caatatctga gggagggaga gactgcaatt gcgtttgtg agagagtaag ggacatgata 900
gcagctagag ctggctttaa gaaggtcccgg tggatggct atctgaaaca caaccgccct 960
agtcccaaac acaccgaaga gaagcaacgc atattcgccg aatctgtctt gaggagacta 1020
gaggagaaat gaagagacat caaacactac aagcgcattt gtttagtgtt ttaccgttca 1080
gctaccttgt aattcggttg gctccccgaa aaaaaaaaaaagt ccgggacacg tcaagtgc 1140
agctcagttt tggatggaaat ttatttagaa tttgacagaa ttggatgtgt gaacttacca 1200
agaaaggaag aatagccgca tggatgtgg ctgttcattc tatgattgtt taggaattga 1260
cacttggaaac acggtaactt attcagaggc tggatggct tttatgtatc gacgatgtaa 1320
tggatggaaat tcatgtgatt attgattcaa taatatgtgtt agattaaaaaaa aaaaaaaaaaa 1380
aaaaaaaaaa aa 1392

<210> 32

<211> 343

<212> PRT

<213> Sorghum

<400> 32

Ala Arg Ala Arg Asn Leu His Leu Arg Asp Leu Leu Asp Ile Ser Pro
1 5 10 15

Val	Leu	Thr	Glu	Ala	Ala	Gly	Ala	Ile	Val	Asp	Asp	Ser	Phe	Thr	Arg
				20					25				30		
Cys	Phe	Lys	Ser	Asn	Ser	Pro	Glu	Pro	Trp	Asn	Trp	Asn	Ile	Tyr	Leu
				35			40					45			
Phe	Pro	Leu	Trp	Cys	Phe	Gly	Val	Val	Ile	Arg	Tyr	Gly	Leu	Leu	Phe
				50			55			60					
Pro	Leu	Arg	Ser	Leu	Thr	Leu	Ala	Ile	Gly	Trp	Leu	Ala	Phe	Phe	Ala
				65			70			75			80		
Ala	Phe	Phe	Pro	Val	His	Phe	Leu	Leu	Lys	Gly	Gln	Asp	Lys	Leu	Arg
				85				90				95			
Asn	Lys	Ile	Glu	Arg	Lys	Leu	Val	Glu	Met	Met	Cys	Ser	Val	Phe	Val
				100				105				110			
Ala	Ser	Trp	Thr	Gly	Val	Ile	Lys	Tyr	His	Gly	Pro	Arg	Pro	Ser	Thr
				115			120			125					
Arg	Pro	His	Gln	Val	Phe	Val	Ala	Asn	His	Thr	Ser	Met	Ile	Asp	Phe
				130			135			140					
Ile	Ile	Leu	Glu	Gln	Met	Thr	Ala	Phe	Ala	Val	Ile	Met	Gln	Lys	His
				145			150			155			160		
Pro	Gly	Trp	Val	Gly	Phe	Ile	Gln	Lys	Thr	Ile	Leu	Glu	Ser	Val	Gly
				165				170				175			
Cys	Ile	Trp	Phe	Asn	Arg	Asn	Asp	Leu	Arg	Asp	Arg	Glu	Val	Thr	Ala
				180				185			190				
Arg	Lys	Leu	Arg	Asp	His	Val	Gln	His	Pro	Asp	Lys	Asn	Pro	Leu	Leu
				195			200			205					
Ile	Phe	Pro	Glu	Gly	Thr	Cys	Val	Asn	Asn	Gln	Tyr	Thr	Val	Met	Phe
				210			215			220					
Lys	Lys	Gly	Ala	Phe	Glu	Leu	Gly	Cys	Ala	Val	Cys	Pro	Ile	Ala	Ile
				225			230			235			240		
Lys	Tyr	Asn	Lys	Ile	Phe	Val	Asp	Ala	Phe	Trp	Asn	Ser	Lys	Gln	
				245				250				255			
Ser	Phe	Thr	Met	His	Leu	Val	Arg	Leu	Met	Thr	Ser	Trp	Ala	Val	Val
				260			265			270					
Cys	Asp	Val	Trp	Tyr	Leu	Glu	Pro	Gln	Tyr	Leu	Arg	Glu	Gly	Glu	Thr
				275			280			285					
Ala	Ile	Ala	Phe	Ala	Glu	Arg	Val	Arg	Asp	Met	Ile	Ala	Ala	Arg	Ala
				290			295			300					
Gly	Leu	Lys	Lys	Val	Pro	Trp	Asp	Gly	Tyr	Leu	Lys	His	Asn	Arg	Pro
				305			310			315			320		
Ser	Pro	Lys	His	Thr	Glu	Glu	Lys	Gln	Arg	Ile	Phe	Ala	Glu	Ser	Val
				325				330			335				

Leu Arg Arg Leu Glu Glu Lys
340

<210> 33
<211> 1466
<212> DNA
<213> Glycine max

<400> 33
tctctctctc tctctctctc tctctctctg gacaaaattg ccctccatca 60
cttccttgt tagagttgtt ttctgcaacc taccatgcaa ttcctcacct gaatccgttt 120
tctattgcca cgttggatc gaaaagtcta gtttaaccac acgtttgtgg ttgttagtgaa 180
agcgtaacga agatgaatgg cattggaaaa ctcaaatacg cgagttctga attggacctt 240
cacattgaag attacctacc ttctggatcc agtgttcaac aagaacggca tggcaagctc 300
cgactgtgtg atttgctaga catttctcct agtctatctg aggccagcacg tgccattgt 360
gatgatacat tcacaagggtg ctcaagtca aatcctccag aaccttgaa ctggaatgtt 420
tatttggttc ctttgggtg ctgtggagtt gtgggtcgat atttgatttt gttccctatt 480
aggattctag tgggtgcatt agatggatt atatttctt cagccttcat tccagtgac 540
tccctcctga aaggaaatga tgatttgagg aaaaagattg agaggtgtt ggtggagatg 600
atgtgcagg tctttgttgc atcatggact ggggttgcata agtaccatgg gccaagacct 660
agtatccgac caaaacaggt ttttggcc aatcataactt ccatgattga tttcattatc 720
ttagaacaga tgactgcatt tgctgttatt atgcagaagc atcctggatg ggtggattt 780
ttgcagagca ccattttgga gagtgtgggg tgtatctgtt tcaatcgatc agaggccaaag 840
gatcgagaaa ttgtggcaag gaaattgagg gatcatgtcc tggagctaa caataaccct 900
cttctcatat ttccctgaagg aacttgcattt aataatcact actctgtcat gttcaagaag 960
ggtcatttg aacttggctg cacaatttc ccagttgcaa tcaagtacaa taaaattttc 1020
gtcgatgctt tttggatag tcgaaagcaa tcattcacca ctcatctt gcaattaatg 1080
acatcttggg ctgtagttt tgatgtttgg tacttggagc cacaattt gaagccagga 1140
gagacaccca ttgaatttgc agagagagtt agagacataa tctcacatcg tgctggcctt 1200
aaaaaggttc ctggatgg atatctgaag tattctcgcc ctatcccac gcacagagaa 1260
ggaaagcaac aaatattcgc tgagtctgtg ttgcggcgct ttgagggaaa ataatgtata 1320
tcttttact tttcagtaa tgatttctc caaccctgt ttgtactcca cttactacta 1380
tgatatacat gtatctta catgaaattt cctgaaaattt ttccatgacc aaaaaaaaaa 1440
aaaaaaaaact cgagactagt tctctc 1466

<210> 34
<211> 373
<212> PRT
<213> Glycine max

<400> 34
Met Asn Gly Ile Gly Lys Leu Lys Ser Ser Ser Ser Glu Leu Asp Leu
1 5 10 15

His Ile Glu Asp Tyr Leu Pro Ser Gly Ser Ser Val Gln Gln Glu Arg
20 25 30

His Gly Lys Leu Arg Leu Cys Asp Leu Leu Asp Ile Ser Pro Ser Leu
35 40 45

Ser Glu Ala Ala Arg Ala Ile Val Asp Asp Thr Phe Thr Arg Cys Phe
50 55 60

Lys Ser Asn Pro Pro Glu Pro Trp Asn Trp Asn Val Tyr Leu Phe Pro
65 70 75 80

Leu Trp Cys Cys Gly Val Val Val Arg Tyr Leu Ile Leu Phe Pro Ile
85 90 95

Arg Ile Leu Val Leu Ala Leu Gly Trp Ile Ile Phe Leu Ser Ala Phe
 100 105 110
 Ile Pro Val His Ser Leu Leu Lys Gly Asn Asp Asp Leu Arg Lys Lys
 115 120 125
 Ile Glu Arg Cys Leu Val Glu Met Met Cys Ser Phe Phe Val Ala Ser
 130 135 140
 Trp Thr Gly Val Val Lys Tyr His Gly Pro Arg Pro Ser Ile Arg Pro
 145 150 155 160
 Lys Gln Val Phe Val Ala Asn His Thr Ser Met Ile Asp Phe Ile Ile
 165 170 175
 Leu Glu Gln Met Thr Ala Phe Ala Val Ile Met Gln Lys His Pro Gly
 180 185 190
 Trp Val Gly Leu Leu Gln Ser Thr Ile Leu Glu Ser Val Gly Cys Ile
 195 200 205
 Trp Phe Asn Arg Thr Glu Ala Lys Asp Arg Glu Ile Val Ala Arg Lys
 210 215 220
 Leu Arg Asp His Val Leu Gly Ala Asn Asn Asn Pro Leu Leu Ile Phe
 225 230 235 240
 Pro Glu Gly Thr Cys Val Asn Asn His Tyr Ser Val Met Phe Lys Lys
 245 250 255
 Gly Ala Phe Glu Leu Gly Cys Thr Ile Cys Pro Val Ala Ile Lys Tyr
 260 265 270
 Asn Lys Ile Phe Val Asp Ala Phe Trp Asn Ser Arg Lys Gln Ser Phe
 275 280 285
 Thr Thr His Leu Leu Gln Leu Met Thr Ser Trp Ala Val Val Cys Asp
 290 295 300
 Val Trp Tyr Leu Glu Pro Gln Asn Leu Lys Pro Gly Glu Thr Pro Ile
 305 310 315 320
 Glu Phe Ala Glu Arg Val Arg Asp Ile Ile Ser His Arg Ala Gly Leu
 325 330 335
 Lys Lys Val Pro Trp Asp Gly Tyr Leu Lys Tyr Ser Arg Pro Ser Pro
 340 345 350
 Lys His Arg Glu Gly Lys Gln Gln Ile Phe Ala Glu Ser Val Leu Arg
 355 360 365
 Arg Phe Glu Glu Lys
 370

<210> 35
 <211> 1384
 <212> DNA
 <213> Catalpa speciosa

<400> 35

gcacgaggta	ggtttctgtc	gaggatttg	ttgtttgtt	tcgggttcta	ttggatttgt	60
gaaaccagta	aggaaattga	ggttcatggg	caggggaaata	atgagtctgc	atcttaggaat	120
cggctctgaag	aggtggaaagg	acctggggct	attgtatcca	atcatatatc	ttatataagat	180
atccctgtatc	acatgtcttc	ctctttccca	agtttcgttt	ccaagagatc	cgtcgctaaa	240
cttccccttg	ttggtcttgt	gagcaagtgt	cttggttgtg	tatatgtaca	gcgtgagtt	300
aagtctcg	atttcaaggg	ggtatcaggt	gttgcactg	aaagaattca	agaagctcat	360
caaaataagt	ttgctccaaa	gatgataatt	ttcccagaag	gcacaactac	aatggggac	420
ttcctccttc	cattcaagac	tggtgcattt	ttggcaaagg	ctccagact	tcctgtcatt	480
ttaagatatt	cgtaccagag	atttagtccc	gcgtggact	ctatttctgg	ggctcgccat	540
gtgattcttc	ttctctgtca	gttgtaaat	tacattgaag	tgacacattt	gcctgtttat	600
catccgtccg	aacaagaaaa	ggaagatccc	aagctttcg	ctgaaaatgt	taggcttctg	660
atggctcg	aggtaattt	gattttcg	gatattggat	tggcggagaa	acgagtttat	720
catgctgctc	tcaatggttt	actttgtcaa	agataatcca	gcttcgctat	attgattgt	780
taaatgtatt	tttgacttc	cataaaaacta	ataactaagc	ccataaaatta	cgctggaaga	840
ggtcattgt	cttcatcg	tatacgattt	ctaactatta	tctggacatc	ttagttactg	900
cttcagctt	ggtaaggatc	ctctaaagct	gtctctattt	gatacattag	gccgtctggc	960
ttaatacaga	acgtggaa	cgatgttga	ttaacgacgt	tggtaaacat	ggagctattg	1020
cttctactg	aaatttgacc	atccattatt	tgattcttga	gacatgaagt	tgagaaaatta	1080
gagttcg	ttttagg	ataaaatcgca	tttctcta	agtttgttct	actgggtacg	1140
gtattagtt	cccttgtat	atagcacaat	gcaaatgctg	tagttaacta	ctttgtttt	1200
atcttctgtt	ttgtttgtt	tattgcaacg	ttaggagtt	taaatatcct	taaaaatctag	1260
ttggattagc	atagttaa	gtgaaatatg	tagtggtgcc	tgagaatggt	cttggattgg	1320
aagtcttg	tcttctgg	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1380
						1384

<210> 36

<211> 251

<212> PRT

<213> Catalpa speciosa

<400> 36

Ala	Arg	Gly	Arg	Phe	Leu	Ser	Arg	Ile	Leu	Leu	Phe	Val	Phe	Gly	Phe
1				5					10				15		

Tyr	Trp	Ile	Gly	Glu	Thr	Ser	Lys	Gly	Ile	Glu	Val	Asp	Gly	Gln	Gly
					20				25				30		

Asn	Asn	Glu	Ser	Ala	Ser	Arg	Asn	Arg	Ser	Glu	Glu	Val	Glu	Gly	Pro
						35		40				45			

Gly	Ala	Ile	Val	Ser	Asn	His	Ile	Ser	Tyr	Ile	Asp	Ile	Leu	Tyr	His
						50		55			60				

Met	Ser	Ser	Ser	Phe	Pro	Ser	Phe	Val	Ser	Lys	Arg	Ser	Val	Ala	Lys
						65		70		75			80		

Leu	Pro	Leu	Val	Gly	Leu	Val	Ser	Lys	Cys	Leu	Gly	Cys	Val	Tyr	Val
						85			90			95			

Gln	Arg	Glu	Leu	Lys	Ser	Ser	Asp	Phe	Lys	Gly	Val	Ser	Gly	Val	Val
						100		105			110				

Thr	Glu	Arg	Ile	Gln	Glu	Ala	His	Gln	Asn	Lys	Phe	Ala	Pro	Lys	Met
						115		120			125				

Ile	Ile	Phe	Pro	Glu	Gly	Thr	Thr	Asn	Gly	Asp	Phe	Leu	Leu	Pro	
						130		135			140				

Phe Lys Thr Gly Ala Phe Leu Ala Lys Ala Pro Val Leu Pro Val Ile
145 150 155 160

Leu Arg Tyr Ser Tyr Gln Arg Phe Ser Pro Ala Trp Asp Ser Ile Ser
165 170 175

Gly Ala Arg His Val Ile Leu Leu Cys Gln Phe Val Asn Tyr Ile
180 185 190

Glu Val Thr His Leu Pro Val Tyr His Pro Ser Glu Gln Glu Lys Glu
195 200 205

Asp Pro Lys Leu Phe Ala Glu Asn Val Arg Leu Leu Met Ala Arg Glu
210 215 220

Gly Asn Leu Ile Leu Ser Asp Ile Gly Leu Ala Glu Lys Arg Val Tyr
225 230 235 240

His Ala Ala Leu Asn Gly Leu Leu Cys Gln Arg
245 250

<210> 37

<211> 1042

<212> DNA

<213> Triticum aestivum

<400> 37

gcacgagcag gggttgagga gggaggccgt gctgcgtgct ggccgcgtgt tgcgcgggc 60
aatgctgttc gtgttgcgggt tctactggat ccccggtgcc gatcgaagct tccccaaatgc 120
cgaggatgta cctaaagatc actatgaaga actggaaaga ccaggggcga ttgtatctaa 180
tcatgtgtca tatgtggaca ttctttatca tatgtcagct tcttctccga gttttgttgc 240
taagaactca gtgtccaagt tgccgttgc tggtctcata agcaaatgtc ttgggtgtcat 300
ttttgttcaa cgagaatcca aatgttcaga ttctaaaggt gtctcaggtg ctgtaactga 360
aaggctccat gaggttccac aagacgagaa ttcccctatg atcttactct tccctgaggg 420
tactactacg aatggggatt accttctccc attaaagaca ggacgccttc ttgcaagggc 480
accattgcaa cctgtatatt ttagatatcc ttacaggaga tttagtccag cctgggactc 540
catggatggg gcacgtcatg tgggggtgc cctctgtcaa tttgcaaatt acatagaggt 600
ggttcgcttg cctgtatact atccttctga gcaagaaaag caggatccta gagtctatgc 660
caacaacgtc agaaaattgc ttgcgactga gggtaattta gttctgtcta atcttgggct 720
ggctgaaaag cgtgtgtatc atgcggcact taatggtaat agtcctcgtg ctctgcata 780
gaaagatgat tgaaagccct tgcataact tctgtacact atctgttgag gtgattgtaa 840
gaatgtatgc caactttagc tgatcatgtg attcatggtt tctctgtttg aggagtatgt 900
tgattgatga aaacattata cctatttga gatgaattcc ctccttatac tacattgtat 960
agaaaaccatt aaacattata gtcataataat aatgtctggc ataattgttt tgcttggca 1020
aaaaaaaaaaaa aaaaaaaaaaa aa 1042

<210> 38

<211> 261

<212> PRT

<213> Triticum aestivum

<400> 38

Gln Gly Leu Arg Arg Glu Ala Val Leu Arg Ala Gly Arg Val Leu Ser
1 5 10 15

Arg Ala Met Leu Phe Val Phe Gly Phe Tyr Trp Ile Pro Val Ser Asp
20 25 30

Arg Ser Phe Pro Asn Ala Glu Asp Val Pro Lys Asp His Tyr Glu Glu
35 40 45

Leu Glu Arg Pro Gly Ala Ile Val Ser Asn His Val Ser Tyr Val Asp
 50 55 60

Ile Leu Tyr His Met Ser Ala Ser Ser Pro Ser Phe Val Ala Lys Asn
 65 70 75 80

Ser Val Ser Lys Leu Pro Leu Ile Gly Leu Ile Ser Lys Cys Leu Gly
 85 90 95

Cys Ile Phe Val Gln Arg Glu Ser Lys Cys Ser Asp Ser Lys Gly Val
 100 105 110

Ser Gly Ala Val Thr Glu Arg Leu His Glu Val Ser Gln Asp Glu Asn
 115 120 125

Ser Pro Met Ile Leu Leu Phe Pro Glu Gly Thr Thr Thr Asn Gly Asp
 130 135 140

Tyr Leu Leu Pro Phe Lys Thr Gly Ala Phe Leu Ala Arg Ala Pro Leu
 145 150 155 160

Gln Pro Val Ile Leu Arg Tyr Pro Tyr Arg Arg Phe Ser Pro Ala Trp
 165 170 175

Asp Ser Met Asp Gly Ala Arg His Val Phe Leu Leu Leu Cys Gln Phe
 180 185 190

Ala Asn Tyr Ile Glu Val Val Arg Leu Pro Val Tyr Tyr Pro Ser Glu
 195 200 205

Gln Glu Lys Gln Asp Pro Arg Val Tyr Ala Asn Asn Val Arg Lys Leu
 210 215 220

Leu Ala Thr Glu Gly Asn Leu Val Leu Ser Asn Leu Gly Leu Ala Glu
 225 230 235 240

Lys Arg Val Tyr His Ala Ala Leu Asn Gly Asn Ser Pro Arg Ala Leu
 245 250 255

His Gln Lys Asp Asp
 260

<210> 39
 <211> 1459
 <212> DNA
 <213> Zea mays

<220>
 <221> unsure
 <222> (203)
 <223> n = a, c, g, or t

<400> 39
 gttccaatc atatctcgta catagaaccc atattcttct tctatgaatt gttcccaacc 60
 attgtttcggt cagagtctca tgatgcccta ccatttggta gaacaattat tcgagcgatg 120
 caggttatat atgttgacag attctcacca gcttctcgga aggctgctgt aaatgaaata 180
 aagagaaaagg cagcttgcaa tancttcccg cgggtcctgt tattccctga aggcaccaca 240
 acaaatggga gatctctgat ttcggtccaa catggtgctgt tcataacctgg ctaccctgtt 300
 caacctgtt ttgtccatata tccacatgtg cactttgatc aatcatgggg aaatatatcg 360

ttattaaagc tcatgttcaa gatgttcaca cagttcata atttcata ggttagagtac 420
 cttcctgttg tctaccctcc tgagatcaag caagagaatg cccttcattt tgcagaggat 480
 accagctatg ctatggcacg tgccctgaat gccttgcga cttattattc atggcgattc 540
 tatgattatg gcacgagcag tagaagctgg aaaggtaac tgctcaaatt atatggaga 600
 aatggcttgg gttaaagatg tttacggat aagcacagca gaagtatgg aactattgga 660
 acatccctg gctatgaatc cagataacga tggacgttg aaagctgaag atttctggc 720
 tcatttttgtt ctggattgca gtcctctgtg caagaagata tttcactatt tcgatttata 780
 cattaagggg ttgattacgt tccgtcagtt cttgggttggg tgccgcacc tgaggaagca 840
 accactgttc cagggttcct gcgagaccgc ctttgagaag tgccgggtc ctgaaacgtc 900
 ttagatctcc agggcacagc tagctgatct cttgcggta agcatggtgc caccttctga 960
 tgataagatg ctggagctgt tcaagacgtt cgatgttagat ggcgacgaga agatcagcag 1020
 ggacgacttc atggcgtgtc ttgggaggtt cccgttctg atcgcttct ttgctgccct 1080
 gatcaatggg gaagtgtaca tcgagatagt ctgaatgaat gcctgaggca aagcgatgcc 1140
 gcgtaaaagg ctggagctgc cagtgcagg ctaggcagg gatccctcc gtttatgcaa 1200
 tgtggatacc caccgggtgc tcctccactt tgagacaaa gcaactgttag tattgggtat 1260
 tgggttgcat caagtggctg accagtgttag tgcgtcgatt ttgttagtt gcttcgttcg 1320
 aattattatt ggccatttac cgaatctgtt gagatacgcg ctggacttagt agattgtcga 1380
 tggactcag aacgcaaata gaaagcatct gtaatctgaa ctaactgaga aaacattaa 1440
 aaaaaaaaaa aaaaaaaaaa 1459

<210> 40
 <211> 204
 <212> PRT
 <213> Zea mays

<220>
 <221> UNSURE
 <222> (68)
 <223> Xaa = any amino acid

<400> 40
 Val Ser Asn His Ile Ser Tyr Ile Glu Pro Ile Phe Phe Phe Tyr Glu
 1 5 10 15

 Leu Phe Pro Thr Ile Val Ser Ser Glu Ser His Asp Ala Leu Pro Phe
 20 25 30

 Val Gly Thr Ile Ile Arg Ala Met Gln Val Ile Tyr Val Asp Arg Phe
 35 40 45

 Ser Pro Ala Ser Arg Lys Ala Ala Val Asn Glu Ile Lys Arg Lys Ala
 50 55 60

 Ala Cys Asn Xaa Phe Pro Arg Val Leu Leu Phe Pro Glu Gly Thr Thr
 65 70 75 80

 Thr Asn Gly Arg Phe Leu Ile Ser Phe Gln His Gly Ala Phe Ile Pro
 85 90 95

 Gly Tyr Pro Val Gln Pro Val Val His Tyr Pro His Val His Phe
 100 105 110

 Asp Gln Ser Trp Gly Asn Ile Ser Leu Leu Lys Leu Met Phe Lys Met
 115 120 125

 Phe Thr Gln Phe His Asn Phe Met Glu Val Glu Tyr Leu Pro Val Val
 130 135 140

 Tyr Pro Pro Glu Ile Lys Gln Glu Asn Ala Leu His Phe Ala Glu Asp
 145 150 155 160

Thr Ser Tyr Ala Met Ala Arg Ala Leu Asn Ala Leu Pro Thr Tyr Tyr
165 170 175

Ser Trp Arg Phe Tyr Asp Tyr Gly Thr Ser Ser Arg Ser Trp Lys Gly
180 185 190

Glu Leu Leu Lys Leu Tyr Gly Arg Asn Gly Leu Gly
195 200

<210> 41

<211> 2115

<212> DNA

<213> Oryza sativa

<400> 41

gcacgagggtt ctaacccggcc tcctctcgcc tcgcctccgc caccatggc ttctcgaaac 60
cctagccccg cctccctctc cacgcccgtc ctctccgact ccatctcgcc cacgcccacc 120
accaacggcc acgcggggca ccataaccac gacgacgacg acgaggagtc gccaacggtg 180
tgccggcggcg atggcggagg agggggggac ccgttcgcgt tcctatcgga ggatcggccg 240
gcgtggtgtt cgccgcgggg ggtgtccccg gccgaccgt tccgcaacgg gacgcccggg 300
tggtgccgggg cgtacgagct cgtgaggcg ctcgtgtgcg cgccgggtggc ggcggcgagg 360
ctggtgctgt tcgggctctc catcgccgtg gggtacgccc ccacgtgggt ggcgctccgc 420
gggtgggtcg acgtgcggga gcgggcggcg caggaggcg ccgggcccatt gccggcgtgg 480
cgccgcggcc tcatgtggat cacgcggatc tccgcgcgt gcattcctt ctccttcgga 540
taccatttggaa taaggagggaa agaaaaaccc ggccttagag agttgcacc tatagttgtc 600
tcaaattcatg tattcatacat agaaccata tacttcttct atgagctgtt cccgacaatc 660
gtttcttcag attctcatga ttccatacca tttgttggaa caattatccg agcaatgcag 720
gttatatatg ttgacagatt ctcgcagact tcaaggaagt ctgctgtaaa taaaataaaag 780
gatgtgattt cagagaaagg cggcttgcaa tagttccca cgtgtcttgc tattcccgga 840
aggcacgaca acaaatggaa gatttctgtat ttcttccaa catggtgcatt tcataacctgg 900
ctaccctgtt caacctgtta ttgtgcgcta tccacatgtg cacttgcattc aatcatgggg 960
aaatatatca ttaggaaagc tcatgttcaa gatgtttacc cagtttcaca atttcatgga 1020
ggttagatgtc ctccctgttg ttacccacc tgagatcaag caagagaatg cccttcattt 1080
tgcagagaac actagctatg ctatggcaca tgcacttaat gttattccaa cctcttattc 1140
atatggggat tcaatgatca tggctcgagc agtggaaagat gaaaggta actgctcaaa 1200
ttatatggtg gagatggctt ggtaaaaga aacatatgtt gtgagcacat cagaagcaat 1260
ggcactcttg gaagacttt ttgttatgag cccagacaag gacggacgtg tgaatgcgca 1320
agattttgg gctcattttg gccttaattt cacccttctt tgcaagaaga tatttcagta 1380
cttcgattt gaagccaagg aatccatcac attccgtcag ttcttgattt gatgtgcgc 1440
cctcaggaag cagccatgtt ttcaggacgc ctgcgaaacc gcgtttgaga ggtgttaggaa 1500
tcccttaaca tctcacatcg gcagggagca gctcgccgtt gtcctgcgtt caagcatgct 1560
tgagctgtatg accgataatg ggatgtatgaa gctgttcaag acgttggacg tcgacgtga 1620
cgacgaaatc agcaaggatg acctgtatggc atcccttagg aagctccct tcatgtatgc 1680
gctcttcgcg ggcggatca acggggaaatg ctacatcgag atagttgtat cgactggatt 1740
gatgcgcagg gagagcaaaa atgggtggatg ggagttgtt acgcgggtggg agacgacaga 1800
cctccgtctg ttttagagg gatggttcc aaccgcttca ccgtccatgt agctttctca 1860
ggcgtgttgg actaaagtgg ctaaccgtt tagtgcgcaaa tttgtttca tatcgtaaaa 1920
atatatattt atatccatag aaaagctgtc gcgtgatggc acgctggatt gtgcaatgtg 1980
gatatgatac tgtacaacat tggccaact gggcgtgcac atagaaactc tttttttgggt 2040
ttggtttgggt ttggctaact ggatggatga ttacaaactc ctttttggct aaaaaaaaaa 2100
aaaaaaaaaaa aaaaa 2115

<210> 42

<211> 255

<212> PRT

<213> Oryza sativa

<400> 42
 Met Ala Ser Arg Asn Pro Ser Pro Ala Ser Leu Ser Thr Pro Leu Leu
 1 5 10 15

 Ser Asp Ser Ile Ser Pro Thr Pro Thr Thr Asn Gly His Ala Gly His
 20 25 30

 His Asn His Asp Asp Asp Glu Glu Ser Pro Thr Val Cys Gly Gly
 35 40 45

 Asp Gly Gly Gly Gly Asp Pro Phe Ala Phe Leu Ser Glu Asp Arg
 50 55 60

 Pro Ala Trp Trp Ser Pro Arg Gly Val Ser Pro Ala Asp Pro Phe Arg
 65 70 75 80

 Asn Gly Thr Pro Gly Trp Cys Gly Ala Tyr Glu Leu Val Arg Ala Leu
 85 90 95

 Val Cys Ala Pro Val Ala Ala Ala Arg Leu Val Leu Phe Gly Leu Ser
 100 105 110

 Ile Ala Val Gly Tyr Ala Ala Thr Trp Val Ala Leu Arg Gly Trp Val
 115 120 125

 Asp Val Arg Glu Arg Ala Ala Gln Glu Gly Ala Gly Pro Met Pro Ala
 130 135 140

 Trp Arg Arg Arg Leu Met Trp Ile Thr Arg Ile Ser Ala Arg Cys Ile
 145 150 155 160

 Leu Phe Ser Phe Gly Tyr His Trp Ile Arg Arg Lys Gly Lys Pro Ala
 165 170 175

 Pro Arg Glu Leu Ala Pro Ile Val Val Ser Asn His Val Ser Tyr Ile
 180 185 190

 Glu Pro Ile Tyr Phe Phe Tyr Glu Leu Phe Pro Thr Ile Val Ser Ser
 195 200 205

 Asp Ser His Asp Ser Ile Pro Phe Val Gly Thr Ile Ile Arg Ala Met
 210 215 220

 Gln Val Ile Tyr Val Asp Arg Phe Ser Pro Ala Ser Arg Lys Ser Ala
 225 230 235 240

 Val Asn Glu Ile Lys Asp Val Ile Ser Glu Lys Gly Gly Leu Gln
 245 250 255

 <210> 43
 <211> 2041
 <212> DNA
 <213> Glycine max

 <400> 43
 gcacgaggcg acgacgacga cttctccgtg cgcaccgt ccaccctgga cccgttccgc 60
 aaccgcacgc cgccgatcga ggggctctac gagtgggcca agacggcgct gtgcctgccg 120
 ctggcggcgc tgccgctcgc gctgttcggg ctctgcctcg cggtgggta cgtggcgacg 180
 aaggtggcgc tggcagggtg gaaggacaag gagaatcca tgcccaagtg gaggtgttagg 240
 gttatgtgga tcacgcgtt gtgcgccaga tgtattctct tctccttgg ctatcagtgg 300

ataaaacgga aaggaaaacc tgcaccaagg gaaattgctc caataattgt atctaaccat 360
gtttcttata ttgagcctat cttctatttc tatgaattat ttcctaccat tgtggcagct 420
gagtctcatg actccataacc ttttgttgc accattatta gagcaatgca ggtcatatat 480
gttaacagat tcttaccatc atcaaggaag caggctgtta gggaaataaa gaaatctgct 540
ttcaaggaac tgaataacag agaagggcct cttgtataa atttcctcga gtactattat 600
ttcccgaggg aacaacaact aatggcagga accttatctc cttccaactt ggtgcattta 660
tccctggata cccaatccag cctgttaatta tacgctatcc tcatgtacac tttgaccaat 720
cctgggtaa tgtttcttg gaaaaagctt tggcataat gttcactcaa tttcacaact 780
ttttgaggt agaatatctt cctgtcattt atccccttgc tgataaggaa actgctgtac 840
atttcggga gaggactagc cgtgctatcg caactgcact aaatgctgca cagacaggac 900
attcttatgg agacataatg cttcatatga aagcacaaga agcaaaacag gagaacccct 960
caagtttat ggttggaaatg accaaggtgg aatcatttatt tcatatcagc agcacggaag 1020
ctgtggactt tctggataaa ttcttggcca tgaatcctga tcccagtggt cgtgttcaat 1080
atcatgactt cttgagggtt ttaagactt aggcttgcac actatctgca aagatatttt 1140
cattcattga tgggagaag agtgggacaa ttacggttcag acagttcttgc tatggatctg 1200
cccatgttat gtcaccaacct gggttcgatc aaaccttga agaagcctt gctggctgtg 1260
gcgggtcagt aaagacctat gttgttgaac aagagttacg agatttcatc caacctgcta 1320
tcctcaattt gaggagat gaggtccatg agttttttt gttatttgac aatgataatg 1380
atgaaagaat tgacaagaat gactttctt catgccttag aagaaatcct cttctcatag 1440
catttttac acctcagcca cagcaaaaag aatttgaagg taatggagtg atagaaatag 1500
tgtgatggat ggatttcaca ttccaggctt ttgtggacta caaagaaaag aaatgggtag 1560
ggattcctgg ggaatacata cagtatagga tgcagtggcc tcattttttt tttttttcc 1620
ttttctctt taattttttt accttgctt gattaattac tcgtaaagca taactatttgc 1680
gtgaagatct gtgccatcca tcctgcttca tttgtatgtt tttgttagct aggtcagttt 1740
tgcacagcta gatgtcagtt acctggatgt tggatcaca ccgatccaac atttgagttt 1800
tggtcaggg accatgctga catttaggtt ccatgtgggtt catgtaaagt ttgaaccaac 1860
gtgtcaattt gtaacaaaca ttataactgt atttttttc aaagatgtga acatgaagaa 1920
agtaatgtaa ttatggaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaactcgag 1980
ggggggcccc gttgtttcg aggtcgacgt gctcgataag attgtatcca caccgagcgc 2040
g 2041

<210> 44
<211> 228
<212> PRT
<213> Glycine max

<400>	44															
Ala	Arg	Gly	Asp	Asp	Asp	Asp	Phe	Ser	Val	Pro	Pro	Pro	Ser	Thr	Leu	
1									10					15		
Asp	Pro	Phe	Arg	Asn	Arg	Thr	Pro	Ala	Ile	Glu	Gly	Leu	Tyr	Glu	Trp	
20									25					30		
Ala	Lys	Thr	Ala	Leu	Cys	Leu	Pro	Leu	Ala	Ala	Leu	Arg	Leu	Ala	Leu	
35									40					45		
Phe	Gly	Leu	Cys	Leu	Ala	Val	Gly	Tyr	Val	Ala	Thr	Lys	Val	Ala	Leu	
50									55					60		
Ala	Gly	Trp	Lys	Asp	Lys	Glu	Asn	Pro	Met	Pro	Lys	Trp	Arg	Cys	Arg	
65									70					75		80
Val	Met	Trp	Ile	Thr	Arg	Leu	Cys	Ala	Arg	Cys	Ile	Leu	Phe	Ser	Phe	
											85			90		95
Gly	Tyr	Gln	Trp	Ile	Lys	Arg	Lys	Gly	Lys	Pro	Ala	Pro	Arg	Glu	Ile	
									100					105		110
Ala	Pro	Ile	Ile	Val	Ser	Asn	His	Val	Ser	Tyr	Ile	Glu	Pro	Ile	Phe	
									115					120		125

Tyr Phe Tyr Glu Leu Phe Pro Thr Ile Val Ala Ala Glu Ser His Asp
130 135 140

Ser Ile Pro Phe Val Gly Thr Ile Ile Arg Ala Met Gln Val Ile Tyr
145 150 155 160

Val Asn Arg Phe Leu Pro Ser Ser Arg Lys Gln Ala Val Arg Glu Ile
165 170 175

Lys Lys Ser Ala Phe Lys Glu Leu Asn Asn Arg Glu Gly Pro Leu Val
180 185 190

Ile Asn Phe Leu Glu Tyr Tyr Phe Pro Arg Glu Gln Gln Leu Met
195 200 205

Ala Gly Thr Leu Ser Pro Ser Asn Leu Val His Leu Ser Leu Asp Thr
210 215 220

Gln Ser Ser Leu
225

<210> 45

<211> 1502

<212> DNA

<213> Zea mays

<400> 45

gcacgaggc gtcctcacca tgccgatccg gcgtcagcgc tagggtagg gtctcctctg 60
cgcccttatac gccatggctc ctaacgaagc cgctagcatc accaccccgt ccgagccgga 120
gagcgtggc ggcagtgaga ttagcagcga agacatggcc gccgccagtc cgctcctctc 180
gtcgtcctcc ccctccccctt cccctccgc agcccccgtg ctggagagca tagaggaact 240
ggaccggaag tacgcaccgt acgcgcggcg ggacgcgtac ggaccgatgg ggctcgccc 300
cgtgagcgcgca gcccgggctg cgccgttgcg gtttgcgcg gtcgtgtgg tcccgctccg 360
tgtcgtggca ggtgttctcg tactcgtggt ctactaccc tggatccgcg tggatccgc 420
gcgggtggag gaggaccggg agggcggcga agggatggg tacgcgcgt tggacgggtg 480
gaggcgggctg gggctgtgc ggtgcggccg cgcaactcgct cgccatgtgt ttgttgcctt 540
cggttctat tggatccgag agtacgacag ccgccttccc aatgctgagg atggccatgt 600
ggaccgtct aaagaaatcg aaaggcctgg ggcaattgtg tctaattatg tatcttatgt 660
ggatattctt tatcacatgt cagcctctt tcctagttt gttgctaaga gatcagtggc 720
tagattgcct ctagttggc tcataagcaa atgtcttgg tgcattttt ttcagccgg 780
gtcgaaaaca ccagattca aagggtttc aggtgctgta tctgaaagaa tccatcggtc 840
tcatacacag aaaaatgcac caatgatgct actctccct gagggcacaa ctacaaatgg 900
ggattatctc ctccattca aaacagggtgc ttttcttgc aaggcaccag ttcaaccagt 960
catttgaga tatttttaca aaagattaa tgcagcatgg gattccatgt cagggccacg 1020
tcatgtattt ctgctgctct gtcaatttgt aaattacca gaggtggtcc gcttaccagt 1080
ttactatct tctgagcaag aaaaggatga tcctaaagctc tatgcaaaca atgtacggaa 1140
actgatggca gtggaggaa acttgattct ttcagacctt gggctggcgg agaagcgagt 1200
gtaccatgcc gcactgaatg gtaatagtct agtcgtgtc ttacatcaga aagatgattg 1260
aaatgccatg ctatcggtc tccataatac tggcttgctt gtaactgtgt gcttgcttgt 1320
gcatcgcat ggtttagagg aatgtcgta atatactatc cggcataaat ctgtaaagta 1380
attaccaac tgtcatagtt cagtaattat gttggttata ctcctacatg gttggccatc 1440
cgcacatttgc atcctgtggt caatccatgt gagcctttt tactaaaaaa aaaaaaaaaa 1500
aa 1502

<210> 46

<211> 395

<212> PRT

<213> Zea mays

<400> 46
 Met Ala Pro Asn Glu Ala Ala Ser Ile Thr Thr Pro Ser Glu Pro Glu
 1 5 10 15

 Ser Val Gly Gly Ser Glu Met Ser Ser Glu Asp Met Ala Ala Ala Ser
 20 25 30

 Pro Leu Leu Ser Ser Ser Pro Ser Pro Ser Pro Ser Ala Ala Pro
 35 40 45

 Val Leu Glu Ser Ile Glu Glu Leu Asp Arg Lys Tyr Ala Pro Tyr Ala
 50 55 60

 Arg Arg Asp Ala Tyr Gly Pro Met Gly Leu Gly Pro Val Ser Ala Ala
 65 70 80

 Glu Ala Ala Arg Leu Ala Phe Ala Ala Val Val Leu Val Pro Leu Arg
 85 90 95

 Val Val Ala Gly Val Leu Val Leu Val Val Tyr Tyr Leu Val Cys Arg
 100 105 110

 Val Cys Thr Leu Arg Val Glu Glu Asp Arg Glu Gly Gly Glu Gly Asp
 115 120 125

 Gly Tyr Ala Arg Leu Asp Gly Trp Arg Arg Ala Gly Ala Val Arg Cys
 130 135 140

 Gly Arg Ala Leu Ala Arg Ala Met Leu Phe Val Phe Gly Phe Tyr Trp
 145 150 155 160

 Ile Arg Glu Tyr Asp Ser Arg Leu Pro Asn Ala Glu Asp Gly His Val
 165 170 175

 Asp Gln Ser Lys Glu Ile Glu Arg Pro Gly Ala Ile Val Ser Asn His
 180 185 190

 Val Ser Tyr Val Asp Ile Leu Tyr His Met Ser Ala Ser Phe Pro Ser
 195 -- 200 205

 Phe Val Ala Lys Arg Ser Val Ala Arg Leu Pro Leu Val Gly Leu Ile
 210 215 220

 Ser Lys Cys Leu Gly Cys Ile Phe Val Gln Arg Glu Ser Lys Thr Pro
 225 230 235 240

 Asp Phe Lys Gly Val Ser Gly Ala Val Ser Glu Arg Ile His Arg Ala
 245 250 255

 His Gln Gln Lys Asn Ala Pro Met Met Leu Leu Phe Pro Glu Gly Thr
 260 265 270

 Thr Thr Asn Gly Asp Tyr Leu Leu Pro Phe Lys Thr Gly Ala Phe Leu
 275 280 285

 Ala Lys Ala Pro Val Gln Pro Val Ile Leu Arg Tyr Pro Tyr Lys Arg
 290 295 300

 Phe Asn Ala Ala Trp Asp Ser Met Ser Gly Ala Arg His Val Phe Leu
 305 310 315 320

Leu Leu Cys Gln Phe Val Asn Tyr Leu Glu Val Val Arg Leu Pro Val
325 330 335

Tyr Tyr Pro Ser Glu Gln Glu Lys Asp Asp Pro Lys Leu Tyr Ala Asn
340 345 350

Asn Val Arg Lys Leu Met Ala Val Glu Gly Asn Leu Ile Leu Ser Asp
355 360 365

Leu Gly Leu Ala Glu Lys Arg Val Tyr His Ala Ala Leu Asn Gly Asn
370 375 380

Ser Leu Ala Arg Ala Leu His Gln Lys Asp Asp
385 390 395

<210> 47

<211> 1555

<212> DNA

<213> Oryza sativa

<400> 47

gcacgaggtt taaaaccacgt ctcgtcgcca tctcctcatg cctaccact gctagggttt 60
gcccttaagc ccccccacct ctccgccccatg gctctccctc tccacgcacgc caccacctcc 120
ccctccgacc ccgacgacccct cggcgccggc ggcgaggagg aggaggagag gctcgccctcg 180
aagccgctgc tctcgtcccc gtccacctat cttccgcgg ggacggagga gggcggtcgag 240
gagctggagc tcgaccggag gtacgcgccc tacgcgagggc gggacgcgtta cggggcgatg 300
ggccggggcc ccctggggcg ggcggggccgg gggcggtcg gggtggcgcc cgccgtgctc 360
ttcccgctcc ggctcgccgc gggcggtcg tcgtcgatcg cctactaccc tctgtggccgc 420
gtgtgcacgc tgctgttgaa ggaggaggag cgcgagggtg gcgggtggcg ccggctggaa 480
gaagtggagg gggacgggta cgccgcggc tacgcgatggc gaggggttgg ggcgtgaggg cgtcgatcg 540
tgcggccgcg cgctcgccgc cgccatgtt ttcgtcttcg gttctactg gatccgcgag 600
taegactgcc gctccctga tgctgaggat gagcatcagg aacagtccaa agaattggaa 660
agaccagggg cagtagtatac taatcatgtt tcttatgtgg atattctta ccacatgtca 720
tcttccttcc caagctttgt tgccaaagaga tcagtgccca gattgccat ggttgtctc 780
ataagcaaat gtcttgatg cattttgtt cagcggaaat ctaaaacctc agatttcaaa 840
ggcgtttcag gtgtgtgac tgagagaatc caacgggctc atcaacagaa gaattctcca 900
atgatgctac tttccctga aggcacaact acaaattggtg attatcttcc cccttcaag 960
acaggagcat ttcttgcaaa agcaccagtg aagccagtca ttttaagata tccttacaag 1020
agatttagtc cagcatggga ttctgtgtct ggggctcgcc atgtatttct gtcctttgt 1080
caatttgtaa ataacattga ggtgatccat ttgcctgtgtt attaccatc tgagcaagag 1140
aaggaagatc ctaagctgtt cgcattaaat gtacggaaat tgatggcagt ggagggaaac 1200
ttgattctt ctgatcttgg gctagcagag aagcgtgtgt accatgcggc attgaatgg 1260
aataatagtc tacctcgatgc ttacatcattt aaagatgatt gaaatgcctt gccatcgcc 1320
ttctgtatatac tgatgtgag tgacttgctt gtaatatgag tacaagttcc tggtgttgca 1380
tgattcctca tggtgagagg agctatgtt atatcctccc agtaaactgt aaaatttattt 1440
gtccatagtg tggttcagta atcatgtcag ttatacatga ttacattcac atgtctggaa 1500
cacacttac catgcaatcc atcgatgtga gctttataaaa aaaaaaaaaaaaaaaa 1555

<210> 48

<211> 404

<212> PRT

<213> Oryza sativa

<400> 48

Met Ala Leu Pro Leu His Asp Ala Thr Thr Ser Pro Ser Asp Pro Asp
1 5 10 15

Asp Leu Gly Gly Gly Gly Glu Glu Glu Glu Arg Leu Ala Ser Lys
20 25 30

Pro Leu Leu Ser Ser Pro Ser Thr Tyr Pro Ser Ala Gly Thr Glu Glu
 35 40 45

 Gly Val Glu Glu Leu Glu Leu Asp Arg Arg Tyr Ala Pro Tyr Ala Arg
 50 55 60

 Arg Asp Ala Tyr Gly Ala Met Gly Arg Gly Pro Leu Gly Ala Ala Gly
 65 70 75 80

 Ala Gly Arg Leu Ala Val Gly Ala Ala Val Leu Phe Pro Leu Arg Leu
 85 90 95

 Ala Ala Gly Val Leu Val Leu Val Ala Tyr Tyr Leu Val Cys Arg Val
 100 105 110

 Cys Thr Leu Arg Val Glu Glu Glu Glu Arg Gly Gly Gly Gly Gly
 115 120 125

 Ala Ala Gly Glu Val Glu Gly Asp Gly Tyr Ala Arg Leu Glu Gly Trp
 130 135 140

 Arg Arg Glu Gly Val Val Arg Cys Gly Arg Ala Leu Ala Arg Ala Met
 145 150 155 160

 Leu Phe Val Phe Gly Phe Tyr Trp Ile Arg Glu Tyr Asp Cys Arg Phe
 165 170 175

 Pro Asp Ala Glu Asp Glu His Gln Glu Gln Ser Lys Glu Leu Gly Arg
 180 185 190

 Pro Gly Ala Val Val Ser Asn His Val Ser Tyr Val Asp Ile Leu Tyr
 195 200 205

 His Met Ser Ser Ser Phe Pro Ser Phe Val Ala Lys Arg Ser Val Ala
 210 215 220

 Arg Leu Pro Met Val Gly Leu Ile Ser Lys Cys Leu Gly Cys Ile Phe
 225 230 235 240

 Val Gln Arg Glu Ser Lys Thr Ser Asp Phe Lys Gly Val Ser Gly Ala
 245 250 255

 Val Thr Glu Arg Ile Gln Arg Ala His Gln Gln Lys Asn Ser Pro Met
 260 265 270

 Met Leu Leu Phe Pro Glu Gly Thr Thr Asn Gly Asp Tyr Leu Leu
 275 280 285

 Pro Phe Lys Thr Gly Ala Phe Leu Ala Lys Ala Pro Val Lys Pro Val
 290 295 300

 Ile Leu Arg Tyr Pro Tyr Lys Arg Phe Ser Pro Ala Trp Asp Ser Met
 305 310 315 320

 Ser Gly Ala Arg His Val Phe Leu Leu Leu Cys Gln Phe Val Asn Asn
 325 330 335

 Leu Glu Val Ile His Leu Pro Val Tyr Tyr Pro Ser Glu Gln Glu Lys
 340 345 350

Glu Asp Pro Lys Leu Tyr Ala Asn Asn Val Arg Lys Leu Met Ala Val
355 360 365

Glu Gly Asn Leu Ile Leu Ser Asp Leu Gly Leu Ala Glu Lys Arg Val
370 375 380

Tyr His Ala Ala Leu Asn Gly Asn Asn Ser Leu Pro Arg Ala Leu His
385 390 395 400

Gln Lys Asp Asp

<210> 49

<211> 1072

<212> DNA

<213> Glycine max

<400> 49

gcacgaggga agattacgct catatgagtg ggttgaggag aaccgtcatt gtttcgtgtg 60
gacgcgcctt ctccagagtc atgctcttca ttttcggctt ttattggatc cccgaatcca 120
actctgcctc tcaggaagac cgagtcagc ctgaagagtt ggggagaccc agcgtaataa 180
tatctaatac ttgttcatac ttggatattt tgtatcacat gtcgtcctca ttcccaagtt 240
ttgttgctaa gagatcagtg gctaaacttc cgctcattgg tctcatcagc aagtgcctt 300
gttgtgtgt ttttcagcgg gaatcaaagt catcgactt caagggtgtt tcagctgtt 360
tcactgacag aattcaagaa gtcatcaga atgagtctgc tccattaatg atgttatttc 420
cagaaggaac aaccacaaat ggagagttcc tccttccatt caagactggt gttttttgg 480
caaaggcacc agtacttcct gtgattttaa gatatcatta ccagagattt agccccgcct 540
gggattccat atctgggtt cccatgtaa tatttctcct gtgtcagttt gtgaattata 600
tggaggtgat ccgagtacct gttaccatc cctcacagca ggagatgaat gatcccaaac 660
tatatgctaa taatgttaga agttgtatgg ctactgaggg taatttata ctttctgata 720
ttgggttagc tgaaaaacga atatatcacg ctgctctcaa tggtaataat agcatgccta 780
gtgttttgcg tcagaaagac gaatgataat ttcatggccc ccgtctcaaa tgaaatgttag 840
ttccagtcga gtttagttt caaacttagt atctgtttat gaatggacag cttgtgtgaa 900
gggtatagct aaatagtata cattcaccta aacatctgaa tggtaattgt gtaattttct 960
tgtaaataac gtgaccaata atgttttaat tgctggtgaa ctcatttga ggcacacaaat 1020
tcaagatcta taagtttaac ttttttcgt tcaaaaaaaaaaaaaaa aa 1072

<210> 50

<211> 267

<212> PRT

<213> Glycine max

<400> 50

Thr Arg Glu Asp Tyr Ala His Met Ser Gly Leu Arg Arg Thr Val Ile
1 5 10 15

Val Ser Cys Gly Arg Ala Leu Ser Arg Val Met Leu Phe Ile Phe Gly
20 25 30

Phe Tyr Trp Ile Pro Glu Ser Asn Ser Ala Ser Gln Glu Asp Arg Ser
35 40 45

Gln Pro Glu Glu Leu Gly Arg Pro Ser Val Ile Ile Ser Asn His Val
50 55 60

Ser Tyr Leu Asp Ile Leu Tyr His Met Ser Ser Ser Phe Pro Ser Phe
65 70 75 80

Val Ala Lys Arg Ser Val Ala Lys Leu Pro Leu Ile Gly Leu Ile Ser
 85 90 95

 Lys Cys Leu Gly Cys Val Tyr Val Gln Arg Glu Ser Lys Ser Ser Asp
 100 105 110

 Phe Lys Gly Val Ser Ala Val Val Thr Asp Arg Ile Gln Glu Ala His
 115 120 125

 Gln Asn Glu Ser Ala Pro Leu Met Met Leu Phe Pro Glu Gly Thr Thr
 130 135 140

 Thr Asn Gly Glu Phe Leu Leu Pro Phe Lys Thr Gly Gly Phe Leu Ala
 145 150 155 160

 Lys Ala Pro Val Leu Pro Val Ile Leu Arg Tyr His Tyr Gln Arg Phe
 165 170 175

 Ser Pro Ala Trp Asp Ser Ile Ser Gly Val Arg His Val Ile Phe Leu
 180 185 190

 Leu Cys Gln Phe Val Asn Tyr Met Glu Val Ile Arg Val Pro Val Tyr
 195 200 205

 His Pro Ser Gln Gln Glu Met Asn Asp Pro Lys Leu Tyr Ala Asn Asn
 210 215 220

 Val Arg Arg Leu Met Ala Thr Glu Gly Asn Leu Ile Leu Ser Asp Ile
 225 230 235 240

 Gly Leu Ala Glu Lys Arg Ile Tyr His Ala Ala Leu Asn Gly Asn Asn
 245 250 255

 Ser Met Pro Ser Val Leu His Gln Lys Asp Glu
 260 265

 <210> 51
 <211> 838
 <212> DNA
 <213> Glycine max

 <220>
 <221> unsure
 <222> (205)
 <223> n = a, c, g, or t

 <220>
 <221> unsure
 <222> (779)
 <223> n = a, c, g, or t

 <220>
 <221> unsure
 <222> (814)
 <223> n = a, c, g, or t

 <400> 51
 gagagaacta gtctcagcca ttttccattt ctttccactt ttatgttttc aggtcatata 60
 tgtaacaga ttcttaccat catcaaggaa gcaggctgtt agggaaataa agagaaggc 120
 ctcttgcaat agatccctc gagtactatt atttcccgag ggaacaacaa caaatggcag 180

```

gaaccttatac tccttccaac ttggngcatt tatccctgga taccuaatcc agcctgtaat 240
tgtacgctat cctcatgtgc actttgacca atcctgggt catgtttctt tggaaagct 300
tatgttcaga atgttcactc aatttcacaa ctttttgag gttagaatatc ttccgtcat 360
ttatcccctg gatgataagg aaactgctgt acattttcg  gagaggacta gccgtgctat 420
cgcaactgca ctaaatgctg tccagacagg acattctt  ggagacataa tgcttcata 480
gaaagcacaa gaagcaaaac aggagaaccc ctcaagttt atggttgaaa tgaccaaggt 540
ggaatcagtg agtccctaaa agcaaatgac cttaccattt ccttttttt tctgccattt 600
tcaagtccct tgtaaattat cttttctt aactttt  gtaggatatt taggttaaac 660
cttttgaagt acatgcaaat gccacagtaa cccttgctt atgccaatgg atgacagaca 720
taagtgaccc agggtggtc  cataatgtt  gggccttcta atctatgg  aatatgtant 780
gaaaggggag aatatttaaa ttgtgattt  tggnaataag gggataatat gacataag 838

```

<210> 52
<211> 185
<212> PRT
<213> Glycine max

<400> 52
 Arg Glu Leu Val Ser Ala Ile Phe His Phe Phe Pro Leu Leu Cys Phe
 1 5 10 15
 Gln Val Ile Tyr Val Asn Arg Phe Leu Pro Ser Ser Arg Lys Gln Ala
 20 25 30
 Val Arg Glu Ile Lys Arg Arg Ala Ser Cys Asn Arg Phe Pro Arg Val
 35 40 45
 Leu Leu Phe Pro Glu Gly Thr Thr Asn Gly Arg Asn Leu Ile Ser
 50 55 60
 Phe Gln Leu Gly Ala Phe Ile Pro Gly Tyr Pro Ile Gln Pro Val Ile
 65 70 75 80
 Val Arg Tyr Pro His Val His Phe Asp Gln Ser Trp Gly His Val Ser
 85 90 95
 Leu Gly Lys Leu Met Phe Arg Met Phe Thr Gln Phe His Asn Phe Phe
 100 105 110
 Glu Val Glu Tyr Leu Pro Val Ile Tyr Pro Leu Asp Asp Lys Glu Thr
 115 120 125
 Ala Val His Phe Arg Glu Arg Thr Ser Arg Ala Ile Ala Thr Ala Leu
 130 135 140
 Asn Ala Val Gln Thr Gly His Ser Tyr Gly Asp Ile Met Leu His Met
 145 150 155 160
 Lys Ala Gln Glu Ala Lys Gln Glu Asn Pro Ser Ser Phe Met Val Glu
 165 170 175
 Met Thr Lys Val Glu Ser Val Ser Pro
 180 185

```
<210> 53
<211> 1632
<212> DNA
<213> Oryza sativa
```

<400> 53

cttctcgatc ccgggtggatt cgccgccc tccgcccggc cgcggagg aggaggacga 60
 ggagagggcg ctccctcgaa ggtgagcatc cagccaccc gcggcggtgc ctcctttcg 120
 catctcgccc cgcgagatt ggaagtgggg gcaggcagg gcggcagggg ccatggcggt 180
 cccactcgatc ctcgtcgatc tcccgctcg tccctcttc ctcctctccg gcctcatcat 240
 caacgccatc caggccgtcc tggttcttc gataaggccg ttctcgaaga gcttgtaccg 300
 gcggatcaac aggttcttg ccgagctgct gtggcttcag ctggcttgc ttgtggattg 360
 gtggcaggaa gttaagatac aactgcgtgc tgatgacgaa acttacaagg caatggggaa 420
 ttagcatgca cttgtcatat caaataatcg gagcgatatac gattggctta ttgggtggat 480
 tttggcacag cgctcaggat gccttggaa tacacttgct gttatgaaga aatcatcgaa 540
 attccttcca gttattggct ggtccatgtg gtttgcagaa tacctcttt tggaaaggag 600
 ctggccaaag gatgaaaaga cattgaaatg gggcctccaa aggttgaagg acttccccag 660
 accattttgg cttagccctt ttgttgaggg cactcgctt actccagcaa agcttctagc 720
 agctcaggag tatgctgtt cacagggtt gccagcaccc agaaatgtat tgattccacg 780
 tacaaggaa tttgtatcg ctgttaactat tatgcgggat ttgttccag ctatttatga 840
 tacaacagta attatccaa aagattcacc tcaaccaaca atgctgcgga ttttgaagg 900
 gcaatcttca gtggtacatg ttccgtatgaa acgtcatgca atgagtgaga tgccaaagtc 960
 agaagacgat gttcaaaat ggtgcaaaga catcttgta gcaaaggatg cattactgga 1020
 taagcatttgc gcgacaggca ctttgatga ggagattaga ccaattggcc gcccagtaaa 1080
 atcattgctg gtgactttgt ttgggtcatg tcccttttataatggcc tcaagctt 1140
 cctatggact caactcctgt cgacatggaa aggagtcggg ttacggcc ttgggctcgc 1200
 actggtgacg gcggtcatgc atgtcttcat catgttctcg cagtcagagc gatcgagctc 1260
 agccaaggcg gctcgaaacc gtgtcaagaa agattgaaag agatgaagat agagtctgca 1320
 gcttatcaat gggagctacc aattaattgg gtattgaatt catgtaggca aaaaaattga 1380
 gggcctaatac tttcctgtat aatgcaccaa aagggttctt acagaactga atgcctgaat 1440
 agagagattc taggagattt ggtgaactag caactctgag ctctgttgc ctgtattttc 1500
 agagaatgtt tttttggca gaacaggaat tgtactactt gtatttatttgaacttctac 1560
 atcagtctgg atttggatc aagacctta gtgatttgc tatcagtgaa acttaaaaaaa 1620
 aaaaaaaaaaa aa 1632

<210> 54
 <211> 374
 <212> PRT
 <213> Oryza sativa

<400> 54

Met	Ala	Val	Pro	Leu	Val	Leu	Val	Val	Leu	Pro	Leu	Gly	Leu	Leu	Phe
1									10						15

Leu	Leu	Ser	Gly	Leu	Ile	Ile	Asn	Ala	Ile	Gln	Ala	Val	Leu	Phe	Leu
									25						30

Ser	Ile	Arg	Pro	Phe	Ser	Lys	Ser	Leu	Tyr	Arg	Arg	Ile	Asn	Arg	Phe
								35				40		45	

Leu	Ala	Glu	Leu	Leu	Trp	Leu	Gln	Leu	Val	Trp	Leu	Val	Asp	Trp	Trp
								50			55		60		

Ala	Gly	Val	Lys	Ile	Gln	Leu	His	Ala	Asp	Asp	Glu	Thr	Tyr	Lys	Ala
								65			70		75		80

Met	Gly	Asn	Glu	His	Ala	Leu	Val	Ile	Ser	Asn	Asn	Arg	Ser	Asp	Ile
								85				90		95	

Asp	Trp	Leu	Ile	Gly	Trp	Ile	Leu	Ala	Gln	Arg	Ser	Gly	Cys	Leu	Gly
								100			105		110		

Ser	Thr	Leu	Ala	Val	Met	Lys	Lys	Ser	Ser	Lys	Phe	Leu	Pro	Val	Ile
								115			120		125		

Gly Trp Ser Met Trp Phe Ala Glu Tyr Leu Phe Leu Glu Arg Ser Trp
130 135 140

Ala Lys Asp Glu Lys Thr Leu Lys Trp Gly Leu Gln Arg Leu Lys Asp
145 150 155 160

Phe Pro Arg Pro Phe Trp Leu Ala Leu Phe Val Glu Gly Thr Arg Phe
165 170 175

Thr Pro Ala Lys Leu Leu Ala Ala Gln Glu Tyr Ala Val Ser Gln Gly
180 185 190

Leu Pro Ala Pro Arg Asn Val Leu Ile Pro Arg Thr Lys Gly Phe Val
195 200 205

Ser Ala Val Thr Ile Met Arg Asp Phe Val Pro Ala Ile Tyr Asp Thr
210 215 220

Thr Val Ile Ile Pro Lys Asp Ser Pro Gln Pro Thr Met Leu Arg Ile
225 230 235 240

Leu Lys Gly Gln Ser Ser Val Val His Val Arg Met Lys Arg His Ala
245 250 255

Met Ser Glu Met Pro Lys Ser Glu Asp Asp Val Ser Lys Trp Cys Lys
260 265 270

Asp Ile Phe Val Ala Lys Asp Ala Leu Leu Asp Lys His Leu Ala Thr
275 280 285

Gly Thr Phe Asp Glu Glu Ile Arg Pro Ile Gly Arg Pro Val Lys Ser
290 295 300

Leu Leu Val Thr Leu Phe Trp Ser Cys Leu Leu Leu Tyr Gly Ala Val
305 310 315 320

Lys Leu Phe Leu Trp Thr Gln Leu Leu Ser Thr Trp Lys Gly Val Gly
325 330 335

Phe Thr Gly Leu Gly Leu Ala Leu Val Thr Ala Val Met His Val Phe
340 345 350

Ile Met Phe Ser Gln Ser Glu Arg Ser Ser Ser Ala Lys Ala Ala Arg
355 360 365

Asn Arg Val Lys Lys Asp
370

<210> 55

<211> 1498

<212> DNA

<213> Glycine max

<400> 55

gcacgaggtt ccgtttgtcg acctgaccctc ggaaatccaa agagggaaac tcacgggttt 60
tcgttgcgtt gtgtctgtct ctgctccttt gggcctggc tgggctggc tgggctggc 120
tggcatgc tattgcagca gcccgtgg tggtaccatt gggcctgctc ttcttcgcct 180
ccggcctcct tggtaatctc attcaggcaa tatgctatgt cgtcgttaagg ccgggtgtcga 240
aaagtttcta cagaaggatc aaccgggttag tagcagagct cttgtggctg gagcttgtat 300
ggcttattga ttggtgggca ggagttaagg tccaaatatt cacagatcat gaaacccattc 360

gttaatggg taaagagcat gcacttgtga taagcaatca cagaagtat attgattggc 420
 ttgttggatg ggttcagct cagcgttcag gttgtcttgg cagcactcta gctgtatga 480
 agaaaatctc aaagttctg ccggtcattg gctggtcaat gtggtttct gagtatctt 540
 ttctggagag aagttggcc aaggatgaaa gcacattaaa gtcaggcatc cagcgactga 600
 gtgatttccc tcttcctt tggctagtc tctttgtaga aggaacgcgt tttacacagg 660
 ccaaactatt agctgctcag gaatatgccca cttccactgg attgcctgtt cctagaaaatg 720
 tttgattcc aagaactaag gttttgtt ctgcagtaag tcataatgcgc tcatttgc 780
 ctgccattt tgatgtaca gtagccatcc ctaagagttc ccctgctcct acaatgctaa 840
 gactctcaa gggacaaacct tcagtggtgc atgttcatat caagaggcat ttgatgaagg 900
 aactgccaga tacagatgag gctgttgc aatgggtcg agatatattt gtggccaagg 960
 atgcttgtt agacaaacat atggctgagg gtacttttag tgatcaagag ctgcaggata 1020
 ctggtcgacc aataaagtct cttctggtag ttatatctt ggcgtgtctg gttgttgcgg 1080
 ggtctgtaaa gttcctgeaa tggtcttcgt tactcttcc ctggaagggt gttgcatttt 1140
 cagctttgg tttggcagtt gtactgcac ttatgcaaat tctgattcaa ttctcacagt 1200
 cagagcgttc aaacccggcc aagatcgtgc ctgcaaagtc aaaaaacaag gggctttgat 1260
 ttatggcg aacttaaagt tgcatattatg tgtgatgagt gactcatgta atactcatta 1320
 tttgcttc aacatcttat catagtatgc ttctattcta tatatgtact attatgaatg 1380
 cttatcgatt cattgtttt aatttaatta ggatattcctt ttgttattgac agtcttaggg 1440
 atggctaga aaaattcaac cacctatttt attttaaaaa aaaaaaaaaa aaaaaact 1498

<210> 56

<211> 377

<212> PRT

<213> Glycine max

<400> 56

Met	Ala	Ile	Ala	Ala	Ala	Val	Val	Val	Pro	Leu	Gly	Leu	Leu	Phe
1									10					15

Phe	Ala	Ser	Gly	Leu	Leu	Val	Asn	Leu	Ile	Gln	Ala	Ile	Cys	Tyr	Val
				20				25					30		

Val	Val	Arg	Pro	Val	Ser	Lys	Ser	Leu	Tyr	Arg	Arg	Ile	Asn	Arg	Val
						35		40				45			

Val	Ala	Glu	Leu	Leu	Trp	Leu	Glu	Leu	Val	Trp	Leu	Ile	Asp	Trp	Trp
					50				55			60			

Ala	Gly	Val	Lys	Val	Gln	Ile	Phe	Thr	Asp	His	Glu	Thr	Phe	Arg	Leu
					65			70		75			80		

Met	Gly	Lys	Glu	His	Ala	Leu	Val	Ile	Ser	Asn	His	Arg	Ser	Asp	Ile
								85		90			95		

Asp	Trp	Leu	Val	Gly	Trp	Val	Ser	Ala	Gln	Arg	Ser	Gly	Cys	Leu	Gly
					100				105			110			

Ser	Thr	Leu	Ala	Val	Met	Lys	Lys	Ser	Ser	Lys	Phe	Leu	Pro	Val	Ile
					115				120			125			

Gly	Trp	Ser	Met	Trp	Phe	Ser	Glu	Tyr	Leu	Phe	Leu	Glu	Arg	Ser	Trp
					130			135			140				

Ala	Lys	Asp	Glu	Ser	Thr	Leu	Lys	Ser	Gly	Ile	Gln	Arg	Leu	Ser	Asp
						145		150		155		160			

Phe	Pro	Leu	Pro	Phe	Trp	Leu	Ala	Leu	Phe	Val	Glu	Gly	Thr	Arg	Phe
								165		170			175		

Thr Gln Ala Lys Leu Leu Ala Ala Gln Glu Tyr Ala Thr Ser Thr Gly
 180 185 190
 Leu Pro Val Pro Arg Asn Val Leu Ile Pro Arg Thr Lys Gly Phe Val
 195 200 205
 Ser Ala Val Ser His Met Arg Ser Phe Val Pro Ala Ile Tyr Asp Val
 210 215 220
 Thr Val Ala Ile Pro Lys Ser Ser Pro Ala Pro Thr Met Leu Arg Leu
 225 230 235 240
 Phe Lys Gly Gln Pro Ser Val Val His Val His Ile Lys Arg His Leu
 245 250 255
 Met Lys Glu Leu Pro Asp Thr Asp Glu Ala Val Ala Gln Trp Cys Arg
 260 265 270
 Asp Ile Phe Val Ala Lys Asp Ala Leu Leu Asp Lys His Met Ala Glu
 275 280 285
 Gly Thr Phe Ser Asp Gln Glu Leu Gln Asp Thr Gly Arg Pro Ile Lys
 290 295 300
 Ser Leu Leu Val Val Ile Ser Trp Ala Cys Leu Val Val Ala Gly Ser
 305 310 315 320
 Val Lys Phe Leu Gln Trp Ser Ser Leu Leu Ser Ser Trp Lys Gly Val
 325 330 335
 Ala Phe Ser Ala Phe Gly Leu Ala Val Val Thr Ala Leu Met Gln Ile
 340 345 350
 Leu Ile Gln Phe Ser Gln Ser Glu Arg Ser Asn Pro Ala Lys Ile Val
 355 360 365
 Pro Ala Lys Ser Lys Asn Lys Gly Ser
 370 375

<210> 57
 <211> 1415
 <212> DNA
 <213> Triticum aestivum

<400> 57
 gcacgaggag aggagacgcg gccccggcca tggcgattcc cctcgtgctc gtcctgctcc 60
 cgctcggcct cctcttcctc ctctccggcc tcgtcgtaa cactgtccag gccgtattgt 120
 tcttgcgtat aaggccattc tcgaagcgat tgtaccggca gatcaacgta ttcctggccg 180
 agttgttgtg gcttcagctg atctggcttg tggactggtg ggcaggtatt aaggtacagg 240
 tgtatgcgga tccagaaaact tgaaaactaa tggcaaaaga gcacgccctt ctcataatcca 300
 atcatcgaag tgacattgtat tggctgggtt gatggatttt agcacagcgt tcaggatgtc 360
 ttgaaagcgc aatacgatata atgaaaaat cctcaaagtt cttccagtt attgggttgt 420
 ccatgtgggtt tgcagaatac ctcttttgg agagaagctg ggcaaaaggat gaaaaaacac 480
 ttaaatcggg tcttcaaagg ttgaaaagact tccccagatc attttggctt gcccttttg 540
 ttgagggtac aagatttact ccagaaaaac ttttagcagc tcaagaatat gcagtctcac 600
 agggtttgcg agcgcctagg aatgtgctga ttccacgaac aaaggattt gtatcagctg 660
 taagtattat gcgtgacttt gtcccagcta tctacgatac aacagtgatt attccggaaag 720
 attcgcttaa accaacaatg ctgcgtattc ttcagggaca atcatcagtt gttcatgtcc 780
 gcataaaaacg ccattcaatg agtgatatgc ctaactcgga tgaggatgtt tcaaaatggt 840
 gcaaaagatat attttagca aaggacgcgt tattggacaa acatatacgca actggtaactt 900

ttgatgagga aattatacca attggccgtc cagtcaaatac tttgatggtg gtcctgtctt 960
ggcatgtct cctcctataat ggtgctcata gattcttaca gtggaccagg ctcttgcga 1020
cgtggaaagg agtgatcctc tttgcttctg gattggcaat gtaaccgcc gttatgcata 1080
tattcatcat gttctcgacg gccgagcgtcaagctctgc gaaagcagca agggaccgag 1140
tgaagaaggat ttgatagctc gtgtgaaatt cagtctatag gggactgcc aatttattat 1200
gttcagaata tatgttagaca caggctccat gggtaaccatc tagtatgtcc ttgttgcct 1260
cggttaagagc tttaggaaatt ttgtgtggcg agaactgtga gctttcttcc ttctttctct 1320
actttgtaat gacttgtaaa gatttgctt gccataccag gaatcgctgc tcgaatttat 1380
cgaagctttt ttttatcaaa aaaaaaaaaaaa aaaaaa 1415

<210> 58
<211> 374
<212> PRT
<213> Triticum aestivum

<400> 58
Met Ala Ile Pro Leu Val Val Leu Leu Pro Leu Gly Leu Leu Phe
1 5 10 15

Leu Leu Ser Gly Leu Val Val Asn Thr Val Gln Ala Val Leu Phe Leu
20 25 30

Thr Ile Arg Pro Phe Ser Lys Arg Leu Tyr Arg Gln Ile Asn Val Phe
35 40 45

Leu Ala Glu Leu Leu Trp Leu Gln Leu Ile Trp Leu Val Asp Trp Trp
50 55 60

Ala Gly Ile Lys Val Gln Val Tyr Ala Asp Pro Glu Thr Trp Lys Leu
65 70 75 80

Met Gly Lys Glu His Ala Leu Leu Ile Ser Asn His Arg Ser Asp Ile
85 90 95

Asp Trp Leu Val Gly Trp Ile Leu Ala Gln Arg Ser Gly Cys Leu Gly
100 105 110

Ser Ala Ile Ala Ile Met Lys Lys Ser Ser Lys Phe Leu Pro Val Ile
115 120 125

Gly Trp Ser Met Trp Phe Ala Glu Tyr Leu Phe Leu Glu Arg Ser Trp
130 135 140

Ala Lys Asp Glu Lys Thr Leu Lys Ser Gly Leu Gln Arg Leu Lys Asp
145 150 155 160

Phe Pro Arg Ser Phe Trp Leu Ala Leu Phe Val Glu Gly Thr Arg Phe
165 170 175

Thr Pro Ala Lys Leu Leu Ala Ala Gln Glu Tyr Ala Val Ser Gln Gly
180 185 190

Leu Thr Ala Pro Arg Asn Val Leu Ile Pro Arg Thr Lys Gly Phe Val
195 200 205

Ser Ala Val Ser Ile Met Arg Asp Phe Val Pro Ala Ile Tyr Asp Thr
210 215 220

Thr Val Ile Ile Pro Glu Asp Ser Pro Lys Pro Thr Met Leu Arg Ile
225 230 235 240

Leu Gln Gly Gln Ser Ser Val Val His Val Arg Ile Lys Arg His Ser
245 250 255

Met Ser Asp Met Pro Asn Ser Asp Glu Asp Val Ser Lys Trp Cys Lys
260 265 270

Asp Ile Phe Val Ala Lys Asp Ala Leu Leu Asp Lys His Ile Ala Thr
275 280 285

Gly Thr Phe Asp Glu Glu Ile Ile Pro Ile Gly Arg Pro Val Lys Ser
290 295 300

Leu Met Val Val Leu Ser Trp Ser Cys Leu Leu Tyr Gly Ala His
305 310 315 320

Arg Phe Leu Gln Trp Thr Gln Leu Leu Ser Thr Trp Lys Gly Val Ile
325 330 335

Leu Phe Ala Ser Gly Leu Ala Met Val Thr Ala Val Met His Val Phe
340 345 350

Ile Met Phe Ser Gln Ala Glu Arg Ser Ser Ser Ala Lys Ala Ala Arg
355 360 365

Asp Arg Val Lys Lys Asp
370