https://habr.com/ru/articles/126848/

PSNR — peak signal-to-noise ratio, наиболее часто используется для измерения уровня искажений при сжатии изображений. Все зависит от битности изображения.

$$PSNR = 10log_{10}(\frac{MAX_{I}^{2}}{MSE}) = 20log_{10}(\frac{MAX_{I}}{\sqrt{MSE}})$$

Где MAX_I - это максимум в данных изображения (255 в 8-битном типе данных), MSE среднеквадратичное отклонение

$$MSE = \frac{1}{m \cdot n} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} |I(i,j) - K(i,j)|^2$$

Где I(i, j) и K(i, j) - два изображения.

SSIM был создан для более точного определения различности двух изображений. Особенностью является, что он всегда лежит в промежутке от -1 до 1, причем при его значении равном 1, означает, что мы имеем две одинаковые картинки.

$$SSIM(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

Где

 $\mu_{_{\scriptscriptstyle X}}$ - среднее значение для первой картинки,

 μ_{ν} - среднее значение для второй картинки,

 $\sigma_{_{\chi}}$ - среднеквадратичное отклонение для первой картинки,

 $\boldsymbol{\sigma}_{_{\boldsymbol{\mathcal{Y}}}}$ - среднеквадратичное отклонение для второй картинки,

 σ_{xy} - это уже ковариация. $\sigma_{xy} = \mu_{xy} - \mu_x \mu_y$.

https://www.scirp.org/journal/paperinformation?paperid=90911

Тестируемые изображения:

Lena

Barbara

Cameramer

Оценки качества изображений данными метриками:

Изображение	Гауссовский шум	MSE	PSNR	SSIM
Lena	0.2	21.56	21.54	0.78
	0.4	16.81	16.81	0.74

	0.6	14.18	14.18	0.7
Barbara	0.2	21.95	21.95	0.88
	0.4	17.8	17.79	0.84
	0.6	15.49	15.48	0.8
Cameramen	0.2	21.64	21.65	0.73
	0.4	17.29	17.31	0.76
	0.6	15.27	15.28	0.76

Таблица 1. Сводка по вычитанию ошибок для метрик качества изображения (MSE, PSNR, SSIM).

С точки зрения представления SSIM нормализована, а MSE и PSNR — нет. Таким образом, SSIM можно рассматривать более понятно, чем MSE и PSNR. Это связано с тем, что MSE и PSNR являются абсолютными ошибками, однако SSIM дают ошибки восприятия и заметности. Если уровень шума увеличивается, то качество восстановления выходного изображения также ухудшается. Таким образом, мы можем сделать вывод, что SSIM сравнительно лучше, чем метрики MSE и PSNR с точки зрения человеческого зрения.

$\underline{\text{https://www.researchgate.net/publication/220931731_Image_quality_metrics_PSNR_vs_SSI}\underline{M}$

Рисунок 1: Изменение PSNR как функции SSIM для различных фиксированных значений σ_{fa}

Рисунок 2: Сравнение чувствительности PSNR и SSIM с использованием F-баллов.

На рисунке 2 мы представляем результаты F-оценки для различных деградаций. Как можно заметить, SSIM более чувствителен к сжатию jpeg по сравнению с PSNR, тогда как противоположное наблюдается для аддитивного гауссовского шума деградации. SSIM немного более чувствительна, чем PSNR в различении параметра качества сжатия jpeg2000, тогда как PSNR немного лучше, чем SSIM, в различении гауссова размытия.

В качестве окончательного вывода, значения PSNR можно предсказать из SSIM и наоборот. PSNR и SSIM в основном различаются по степени чувствительности к ухудшению изображения.