Midterm Review 2023 F

Course Outline

20/10/2023 15:31

By Yushu Zou <- Not A Detailed Oriented Person Not 100% correct, trust lecture note if there exist conflict:)

- Prepare Tips
- Data Wrangling
- Distributions
- Confidence Intervals
- Hypothesis Tests
- Python Code

Prepare Tips

- Lecture Code & Demo Code
- Homework Problem
- Tutorial Quiz
- Practice Exam

Data Wrangling

Import library

```
import FULL_NAME as SHORT_NAME
```

- Axis : column-wise : axis = 1; row-wise: axis = 0
- loc support boolean index, but liloc does not
- df.col) or df['col']] or df[('col')]] or df[(('col'))] give series; df[['col']]] gives dataframe
- compond function: &(and), |(or), ==(equal), !=(not equal)
 ex. df.loc[(cond1) &(cond2), ('col1', 'col2')]
- Possible Error
 - Forget import package before calling function package
 - Calling wrong package name: if import FULL_NAME, then use FULL_NAME.func; if import FULL_NAME, then use SHORT_NAME, then use SHORT_NAME.func

- Calling wrong function name from the package
- Calling Boolean select column when using .iloc

Distribution

Characteristics of a distribution

- Location/Center
 - o Mean: n=len(my samp); my samp.sum()/n or my samp.mean()
 - o Median: np.percentile(my_samp, 50) or sorted(my_samp) [int(n/2)] or np.quantile(my_samp, 0.5)
 - Mode: from collections import Counter Counter (my_samp).most_common()
- Scale/Spread
 - Range: Maximun Minimum my samp.max() my samp.min()
 - IQR (for boxplot) np.quantile(my_samp, 0.75) -np.quantile(my_samp, 0.25)
 - o Variance: my samp.var(ddof=1)
 - Standard Deviation: my samp.std(ddof=1)
- Skewness:
 - Left-Skewed (Mean < Median < Mode)
 - Right-Skewed (Mean > Median > Mode)
 - Symmetry (Mode = Median = Mean)
- Modality (Unimodal, Bimodal, Multimodal)

Data Type

Quantitative / Numerical

- Continuous: example: (52.4,23.5)
- Discrete: example(30, 50)

Qualitative / Categorical

- Binary: two level categorical example(Yes, No)
- Ordinal: ordered value, example (Monday, Tuesday,..)
- Nominal: factor example(Countries, Hair Color)

Data Visualization

Barplot

One bar for each category variable; order of the bars is arbitrary

• Bar plot can interpret the frequency of the categorical data [Mode]

Histogram

Height of each bar counts the number of values of the numerical variable in the corresponding bin

Histogram can interpret Skewness, Modality

Boxplot

Summarizes the distribution of a numerical variable.

- Boxplot can interpret Median; IQR ($75^{th}-25^{th}$); Outliers, Skewness, etc
- We cannot interpret mean and variance from boxplot

Scatterplot

Each point is determined by the values of 2 numerical variables: one on x axis, the other on y axis

Sample Statistics

sample size = n

- ullet Sample Mean : $\overline{x} = rac{1}{n} \sum_{i=1}^n x_i$
- ullet Sample Variance $s^2=rac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})^2$
- Sample Standard Deviation: $s=\sqrt{s^2}$

Confidence Interval

There's a xxx% chance that this xxx% confidence interval construction procedure **captured the true** parameter value

The purpose of confidence interval is to obtain an estimate the parameter that reflects sampling variability.

A larger confidence level (e.g., instead of 95%, use 98%) would ensure that we capture the population parameter in more samples. This would give a wider confidence interval, extending to more of the bootstrap sampling distribution.

The probability of committing a type I error (rejecting the null when it is actually true) is called α ; i.e.,the level of statistical significance. For 99% CI, α =0.01 (confidence level). This means that there is a 1% probability of making a type I error.

Bootstrapping

- 1. Obtain data sample x_1, x_2, \ldots, x_n drawn from a distribution F.
- 2. Define u statistic computed from the sample (mean, median, etc).
- 3. Sample $x_1^*, x_2^*, ..., x_n^*$ with replacement from the original data sample. Let it be F^* the empirical distribution. Repeat N times (N is bootstrap iterations).
- 4. Compute u* the statistic calculated from each resample.

if you are still confuse about the concept https://www.youtube.com/watch?v=Xz0x-8-cgaQ

Bootstrapping --> Confidence Interval


```
# Create list variable to store the sample statistics
bootstrapped_means = []
# Start boostrapping, iteration
for i in range(reps):
# Drawing sample from the Sample with replacement <- independent sample
    bootstrap_sample = np.random.choice(x, n, replace = True)
# Calculate the sample statistics from the sample and append to the list
    bootstrapped_means += [bootstrap_sample.mean()]</pre>
```

```
# Constructing 95% Confidence Interval based on the sample statistics np.quantile(bootstrapped_means,(0.025, .975))
```

Hypothesis Testing

A statistic is any function of a sample of data

p-value: The probability of a test statistic being as or more extreme than the observed test statistic if H_0 was true

Process

- 1. State null hypothesis H_0 and alternative hypothesis H_1 : H_0 is FALSE
- 2. Choose the lpha-significance level at which H_0 will be rejected (for p-values smaller than lpha)
- 3. Simulate a chosen number of samples (e.g. 10,000) from the sampling distribution of the test statistic under the assumption that H_0 is true.
- for one-sample hypothesis test, the test statistic will be same as the statistic (mean, median, proportion ...) of the group
- for two-sample hypothesis test, the test statistic will be the difference between the statistic of the two groups
- for paired hypothesis test, the test statistic will be the
- 5. Compute the observed test statistic and the p-value of the observed test statistic relative to the above sampling distribution.
 - collect the proportion of cases that are more extreme than the oberseved statistics

```
(abs(simulated_statistics - null_hypothesis) >= abs(observed_statistics -
null_hypothesis)).sum()/num_simulation
```

6. Conclusion: "Reject H_0 at α -significance level" if the p-value is less than α ; Otherwise, "fail to reject H_0 at α -significance level".

Type 1 and Type 2 Error

Type 1: Reject H_0 when H_0 is true

Type 2: Do not reject H_0 when H_0 is false

	H _o True	H _o False
Reject H ₀	Type I Error	Correct Rejection
Fail to Reject H ₀	Correct Decision	Type II Error

Python Code (Does not contain all the code Professor show on the lecture!)

import Numpy as np import Pandas as pd

1. Reading csv file

```
pd.read_csv(.... FILENAME...)
```

2. Finding variable type in dataframe

```
df.dtypes Or type (...VARIABLE_NAME...)
```

3. Finding the number of rows and columns in the dataframe

```
df.shape
```

4. Summary variable in dataframe

`df.describe()

5. Checking NULL value in the dataframe

`df.isnull().sum()

6. Show subset of dataframe

```
df.head() same as df.iloc[:5,:]
```

<-- Return first 5 rows

7. Select columns from dataframe

```
one column: df['col']
```

```
multiple column: df[['col1', 'col2']]; (.iloc[,:]); df.loc[:, CONDITION]
```

based on condition: df.loc[boolean selection column, ('col1', 'col2')]

8. Group by and aggregation function

```
df .groupby('one column').aggregation function
aggregation function: (.sort_values(ascending=True/False); (.size()); (.mean())....
```

9. Drawing histogram/bar plot

```
import plotly.express as px
fig = px.histogram(df, x="col", nbins=n)
```

8. Drawing boxplot

```
fig = px.box(df, y="col") // y is numeric
// if want to create boxplot by categorical variable col2
fig = px.box(df, y="col1", x = "col2")
fig.show()
```