Plotting with MATLAB

- 1. Plot the followings and add xlabel, ylabel, and title to your figure
 - (a) $x = [0 \ 1 \ 3 \ 5 \ 7 \ 8], y = [0 \ 9 \ -5 \ 8 \ 2 \ 7].$ Type plot(x, y),
 - (b) plot the parabolas $y = x^2$ and $y = -x^2$ in [-10, 10],
 - (c) plot $y = x^3$ in the interval [-10, 10], using the command fplot $(x^3, [-10, 10])$.
 - (d) For $k \in \{-0.0004, -0.0002, -0.006\}$, plot $y = 10 \exp(kx)$ in $[0.10^5]$. Use semi log along x-axis. Use holdon so that in a single figure you plot all the circles. Add different color to different figures. Change the 'line width' of each figure
 - (e) plot y vs x for the parametric curves $x(t) = \frac{2t\cos(t)}{t+1}$, $y(t) \doteq \frac{2t\sin(t)}{t+1}$, $t = [0, 4\pi]$.
 - (f) For each choice of $a, b \in \{-5, -4, -2, 0, 2, 4, 5\}$, plot y vs x for the circle $(x+a)^2 + (y-b)^2 = 4$, where $x(t) = 2\cos(t) a$, $y(t) = 2\sin(t) + b$. Use holdon so that in a single figure you plot all the circles. Add different color to different figures. Change the 'line width' of each figure.
 - (g) Do the above problem 7, but using subplot command.
 - (a) Polar coordinate system,
 - (b) Let $\theta = [0, 2\pi]$, plot $\rho = \sin(2\theta)\cos(2\theta)$, using matlab command polar (θ, ρ) .
 - (c) Plot $\rho = \theta^2$ with $0 \le \theta \le 5\pi$ in polar coordinates.

$$(M) = x^2y - 2x$$

(9) Z = xye