Capítulo 2

Caracterização estática de sistemas de medição

Aula 2: Características estatísticas

Prof. Fernando C. Guimarães — ENE — FT — UnB

Slides: Prof. Lélio R. Soares Júnior – ENE – FT – UnB

Características estatísticas

Ensaios de 4 elementos do mesmo tipo:

4 amostras do mesmo tipo de elemento

Características estatísticas

Variações estatísticas na saída de um elemento com o tempo - repetibilidade

- ✓ Fenômeno: para *I* constante, são feitas medidas periódicas de *O* e para cada medida encontra-se um O diferente \rightarrow Falta de repetibilidade.
- \checkmark Causas: flutuações aleatórias de I_M e I_I (K_M , K_I diferentes de zero) e também flutuações em I (devido a flutuações aleatórias na saída do elemento precedente).
- ✓ Pode-se modelar as flutuações de I_M , I_I e I com funções densidade de probabilidade do tipo normal (gaussiana), p(x):

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\bar{x})^2}{2\sigma^2}\right]$$

 \overline{x} : média ou valor esperado $p(x) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp \left| -\frac{(x - \bar{x})^2}{2\sigma^2} \right|$ (centro da distribuição) $\sigma : \underline{\text{desvio padrão}}$ (espalhamento da distribuição)

Características estatísticas

Ex: Função densidade de probabilidade normal com média nula

Características estatísticas

Como

$$O = KI + a + N(I) + K_M I_M I + K_I I_I$$

o valor médio da saída do elemento será dada por

$$\bar{O} = K\bar{I} + a + N(\bar{I}) + K_M\bar{I}_M\bar{I} + K_I\bar{I}_I$$

Seja $\varDelta O$ um pequeno desvio de O em relação a seu valor médio causado por pequenos desvios $\varDelta I$, $\varDelta I_M$ e $\varDelta I_I$ em relação aos respectivos valores médios, então

$$\Delta O = \left(\frac{\partial O}{\partial I}\right) \Delta I + \left(\frac{\partial O}{\partial I_M}\right) \Delta I_M + \left(\frac{\partial O}{\partial I_I}\right) \Delta I_I$$

Características estatísticas

Do estudo de probabilidade tem-se

$$\sigma_0 = \sqrt{\left(\frac{\partial O}{\partial I}\right)^2 \sigma_I^2 + \left(\frac{\partial O}{\partial I_M}\right)^2 \sigma_{I_M}^2 + \left(\frac{\partial O}{\partial I_I}\right)^2 \sigma_{I_I}^2}$$

O tem <u>distribuição normal</u>. Assumindo que I_M , I_I e I são independentes:

$$p(O) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[\frac{-(O - \bar{O})^2}{2\sigma_0^2}\right]$$

Qual é o objetivo dessa análise?

$$P(\bar{O} - 3\sigma_0 \le O \le \bar{O} + 3\sigma_0) = \frac{1}{\sigma_0 \sqrt{2\pi}} \cdot \int_{\bar{O} - 3\sigma_0}^{O + 3\sigma_0} \exp\left[-\frac{(o - \bar{O})^2}{2\sigma_0^2}\right] do = 99,7\%$$

Exemplo:

Se um sensor de temperatura com $\sigma_0 = 0.02$ °C fornece uma medida de 20 °C, então:

$$P(20^{\circ} - 3 \cdot 0.02^{\circ} \le T \le 20^{\circ} + 3 \cdot 0.02^{\circ}) = P(19.94^{\circ} \le T \le 20.06^{\circ}) = 99.7\%$$

Características estatísticas

Variações estatísticas sobre um lote de elementos similares - tolerância

- \checkmark Ex: Lote de resistores termométricos (metálicos) com resistência nominal (R₀) de 100,0Ω.
- \checkmark Alguns valores medidos: 99,8Ω, 100,1Ω, 99,9Ω, 100,0Ω, 100,2Ω.
- ✓ Distribuidos estatisticamente em torno do valor nominal
- ✓ Causa: <u>flutuações na manufatura</u>.
- ✓ Uma boa representação é por uma distribuição normal (gaussiana)

$$p(R_0) = \frac{1}{\sigma_{R_0} \sqrt{2\pi}} \exp \left[\frac{-(R_0 - \bar{R}_0)^2}{2\sigma_{R_0}^2} \right]$$

Características estatísticas

 \overline{R}_0 é a média (100,0Ω) e $\sigma_{R\theta}$ é o desvio padrão da distribuição (0,10Ω por exemplo)

Nesse caso, o fabricante pode especificar: $R_0 \rightarrow 100,0\Omega \pm 0,15\Omega$

Características estatísticas

De forma geral:

$$p(O) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left[\frac{-(O - \bar{O})^2}{2\sigma_0^2}\right]$$

$$\bar{O} = \bar{K}\bar{I} + \bar{N}(\bar{I}) + \bar{a} + \bar{K}_M\bar{I}_M\bar{I} + \bar{K}_I\bar{I}_I$$

$$\sigma_0 = \sqrt{\left(\frac{\partial O}{\partial I}\right)^2 \sigma_I^2 + \left(\frac{\partial O}{\partial I_M}\right)^2 \sigma_{I_M}^2 + \left(\frac{\partial O}{\partial I_I}\right)^2 \sigma_{I_I}^2 + \left(\frac{\partial O}{\partial K}\right)^2 \sigma_K^2 + \left(\frac{\partial O}{\partial a}\right)^2 \sigma_a^2 + \dots}$$

Identificação das características estáticas - calibração

Para I constante ou variando lentamente

Considera-se como valor verdadeiro de uma variável de entrada do elemento como aquela medida a partir de instrumentos com a melhor precisão e acurácia possíveis, disponível ao fabricante do elemento.

Identificação das características estáticas - calibração

Distinção entre acurácia (exatidão) e precisão:

Precisão está relacionada ao grau de refinamento da execução da operação. É uma indicação da uniformidade ou reprodutibilidade dos resultados.

Fim.