

TALLER DE SENSORES No.3

1. FACULTAD O UNIDAD ACADÉMICA INGENIERÍA

2. PROGRAMA MECATRÓNICA

3. ASIGNATURA

SENSORES Y LABORATORIO

4. SEMESTRE

QUINTO

5. OBJETIVOS

Desarrollar la adecuación de un canal ECG, por medio de un filtro de Kalman, electrónica digital, analógica, y técnicas de comunicación para sensores.

6. COMPETENCIAS A DESARROLLAR

- Habilidad para identificar, formular y resolver problemas complejos de Ingeniería aplicando principios de Ingeniería, ciencias y matemáticas.
- Habilidad para comunicarse efectivamente ante un rango de audiencias.
- Capacidad de funcionar de manera efectiva en un equipo cuyos miembros juntos proporcionan liderazgo, crean un entorno colaborativo e inclusivo, establecen metas, planifican tareas y cumplen objetivos.
- Capacidad de desarrollar y llevar a cabo la experimentación adecuada, analizar e interpretar datos, y usar el juicio de Ingeniería para sacar conclusiones.

7. MARCO TEÓRICO

Filtro de Kalman

El filtro de Kalman es un algoritmo desarrollado por Rudolf E. Kalman en 1960 que sirve para poder identificar el estado oculto (no medible) de un sistema dinámico lineal, al igual que el observador de Luenberger, pero sirve además cuando el sistema está sometido a ruido blanco aditivo.1 La diferencia entre ambos es que en el observador de Luenberger, la ganancia K de realimentación del error debe ser elegida "a mano", mientras que el filtro de

El uso no autorizado de su contenido

TALLER DE SENSORES No.3

Kalman es capaz de escogerla de forma óptima cuando se conocen las varianzas de los ruidos que afectan al sistema. Ya que el Filtro de Kalman es un algoritmo recursivo,

este puede correr en tiempo real usando únicamente las mediciones de entrada actuales, el estado calculado previamente y su matriz de incertidumbre, no requiere ninguna otra información adicional.

Electrocardiografía

El electrocardiograma (ECG o EKG) (en alemán: Elektrokardiogramm) es la representación gráfica de la actividad eléctrica del corazón en función del tiempo, que se obtiene, desde la superficie corporal, en el pecho, con un electrocardiógrafo en forma de cinta continua. Es el instrumento principal de la electrofisiología cardíaca y tiene una función relevante en el cribado y diagnóstico de las enfermedades cardiovasculares, alteraciones metabólicas y la predisposición a una muerte súbita cardíaca. También es útil para saber la duración del ciclo cardíaco. El ECG se caracteriza por las forma de onda clásica conocida como complejo PQRS, que se puede ver en la ilustración,

TALLER DE SENSORES No.3

La siguiente tabla presenta las resistencias comércieles de 1/4W disponibles,

ΧΧΩ	ΧΧΧΩ	ΧΚΩ	ΧΧΚΩ	ΧΧΧΚΩ	ΧΜΩ
10	100	1000	10000	100000	1000000
12	120	1200	12000	120000	1200000
	130			130000	
15	150	1500	15000	150000	1500000
18	180	1800	18000	180000	1800000
20	200	2000	20000	200000	2000000
22	220	2200	22000	220000	2200000
24	240	2400	24000	240000	
27	270	2700	27000	270000	2700000
30	300	3000	30000	300000	3000000
33	330	3300	33000	330000	3300000
39	390	3900	39000	390000	3900000
47	470	4700	47000	470000	4700000
51	510	5100	51000	510000	
56	560	5600	56000	560000	5600000
62	620	6200	62000	620000	
68	680	6800	68000	680000	6800000
75	750	7500	75000	750000	7500000
82	820	8200	82000	820000	8200000
91	910	9100	91000	910000	

Tabla 1, Resistencias Comerciales

8. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS

Software de simulación PROTEUS 8.6

9. PRECAUCIONES CON LOS MATERIALES, REACTIVOS, INSTRUMENTOS Y EQUIPOS UTILIZAR

Implementar solo elementos comerciales dentro de los diseños.

10. CAMPO DE APLICACIÓN

El presente taller, fortalece competencias aplicables en; electrónica de consumo, electrónica de potencia, tratamiento de señales, robótica, control, Inteligencia artificial.

El uso no autorizado de su contenido

Página 3 de 5

TALLER DE SENSORES No.3

11. PROCEDIMIENTO, METODO O ACTIVIDADES

Realice la adecuación y filtrado de una señal de electrocardiografía ECG, por medio de filtros análogos, Kalman, y digitales si considera pertinente. La señal de la derivada cardiaca la tomara de la simulación Anexa en el archivo ECG.rar.

Utilice esta simulación como punto de partida para su desarrollo. Grafique la señal de ECG únicamente con un display gráfico. Por medio de la onda R, determine la frecuencia cardiaca en BPM, y visualice esta información permanentemente en cada onda R, proponga una estrategia para la identificación de la onda T, en cada uno de los batidos, y visualice su identificación en la gráfica del display. La grafica debe cumplir con los estándares de medida en las escalas de tiempo y amplitud.

Garantice que su simulación tiene los archivos adjuntos como *.txt y *.hex SIN RAÍCES DE ARCHIVO, deje únicamente el nombre y extensión del archivo configurado y guardado en la simulación.

Para la implementación de su diseño, tenga encuentra que solo puede usar una fuente DC sencilla para alimentar toda la electrónica. También debe implementar elementos comerciales que puedan ser comprados en el catálogo de Sigma Electrónica. http://www.sigmaelectronica.net/. Implemente en su diseño únicamente resistencias fijas, no use potenciómetros y use únicamente los valores comerciales disponibles en la tabla 1.

Entregue su taller de la siguiente forma, Suba a la álula virtual los siguientes archivos,

ECG.pdsprj (Simulación proteus)

ECG.txt (Señal ecg)

ECG.hex (Ejecutable Micros) ECG.pdf (Informe IEEE)

12. RESULTADOS ESPERADOS

Correcto funcionamiento del sistema diseñado y simulado según lo relacionado en el numeral 11.

13. CRITERO DE EVALUACIÓN AL PRESENTE TALLER

- a. Conformación de grupos de trabajo máximo de 5 estudiantes.
- b. Informe del taller en formato de artículo IEEE. (10% máxima nota igual al literal c)
- c. Cumplimiento de los resultados esperados según el numeral 11 y 12. (70%)
- d. Tamaño e implementación optima de los diseños. (20%)

El uso no autorizado de su contenido

TALLER DE SENSORES No.3

f. El presente taller solo se recibe por medio del aula virtual, el día sábado 16 de noviembre de 2019, de 8:00am a 8:00pm.