## RAMAN DATA AND ANALYSIS

## Raman Spectroscopy for Analysis and Monitoring

The Raman scattering technique is a vibrational molecular spectroscopy which derives from an inelastic light scattering process. With Raman spectroscopy, a laser photon is scattered by a sample molecule and loses (or gains) energy during the process. The amount of energy lost is seen as a change in energy (wavelength) of the irradiating photon. This energy loss is characteristic for a particular bond in the molecule. Raman can best be thought of as producing a precise spectral fingerprint, unique to a molecule or indeed and individual molecular structure. In this respect it is similar to the more commonly found FT-IR spectroscopy. However, unlike FT-IR, there are a distinct number of advantages when using Raman.

- Raman can be used to analyse aqueous solutions since it does not suffer from the large water absorption effects found with FT techniques.
- The intensity of spectral features in solution is directly proportional to the concentration of the particular species
- Raman spectra are generally robust to temperature changes
- Raman requires little or no sample preparation. It does not need the use of Nujol, or KBr matrices and is largely unaffected y sample cell materials such as glass.
- The use of a Raman microscope such as the LabRAM provides very high level of spatial resolution and depth discrimination, not found with the FT methods of analysis

These advantages and its highly specific nature, mean that Raman has become a very powerful tool for analysis and chemical monitoring. Depending upon instrumentation, it is a technique which can be used for the analysis of solids, liquids and solutions and can even provide information on physical characteristics such as crystalline phase and orientation, polymorphic forms, and intrinsic stress.

| Functional Group/ Vibration              | Region                       | Raman  | InfraRed |
|------------------------------------------|------------------------------|--------|----------|
| Lattice vibrations in crystals, LA modes | 10 - 200 cm <sup>-1</sup>    | strong | strong   |
| δ(CC) aliphatic chains                   | 250 - 400 cm <sup>-1</sup>   | strong | weak     |
| υ(Se-Se)                                 | 290 -330 cm <sup>-1</sup>    | strong | weak     |
| υ(S-S)                                   | 430 -550 cm <sup>-1</sup>    | strong | weak     |
| υ(Si-O-Si)                               | 450 -550 cm <sup>-1</sup>    | strong | weak     |
| υ(Xmetal-O)                              | 150-450 cm <sup>-1</sup>     | strong | med-weak |
| υ(C-I)                                   | 480 - 660 cm <sup>-1</sup>   | strong | strong   |
| υ(C-Br)                                  | 500 - 700 cm <sup>-1</sup>   | strong | strong   |
| υ(C-CI)                                  | 550 - 800 cm <sup>-1</sup>   | strong | strong   |
| υ(C-S) aliphatic                         | 630 - 790 cm <sup>-1</sup>   | strong | medium   |
| υ(C-S) aromatic                          | 1080 - 1100 cm <sup>-1</sup> | strong | medium   |
| υ(O-O)                                   | 845 -900 cm <sup>-1</sup>    | strong | weak     |
| υ(C-O-C)                                 | 800 -970 cm <sup>-1</sup>    | medium | weak     |
| υ(C-O-C) asym                            | 1060 - 1150 cm <sup>-1</sup> | weak   | strong   |



| υ(CC) alicyclic, aliphatic chain vibrations | 600 - 1300 cm <sup>-1</sup>  | medium        | Medium |
|---------------------------------------------|------------------------------|---------------|--------|
| υ(C=S)                                      | 1000 - 1250 cm <sup>-1</sup> | strong        | weak   |
| υ(CC) aromatic ring chain vibrations        | *1580, 1600 cm <sup>-1</sup> | strong        | medium |
|                                             | *1450, 1500 cm <sup>-1</sup> | medium        | medium |
|                                             | *1000 cm <sup>-1</sup>       | strong/medium | weak   |
| δ(CH3)                                      | 1380 cm <sup>-1</sup>        | medium        | strong |
| δ(CH2)<br>δ(CH3) asym                       | 1400 - 1470 cm <sup>-1</sup> | medium        | medium |
| δ(CH2)<br>δ(CH3) asym                       | 1400 - 1470 cm <sup>-1</sup> | medium        | medium |
| υ(C-(NO2))                                  | 1340 - 1380 cm <sup>-1</sup> | strong        | medium |
| υ(C-(NO2)) asym                             | 1530 - 1590 cm <sup>-1</sup> | medium        | strong |
| υ(N=N) aromatic                             | 1410 - 1440 cm <sup>-1</sup> | medium        | -      |
| υ(N=N) aliphatic                            | 1550 - 1580 cm <sup>-1</sup> | medium        | -      |
| δ(H2O)                                      | ~1640 cm <sup>-1</sup>       | weak broad    | strong |
| υ(C=N)                                      | 1610 - 1680 cm <sup>-1</sup> | strong        | medium |
| υ(C=C)                                      | 1500 - 1900 cm <sup>-1</sup> | strong        | weak   |
| υ(C=O)                                      | 1680 - 1820 cm <sup>-1</sup> | medium        | strong |
| υ(C≅C)                                      | 2100 - 2250 cm <sup>-1</sup> | strong        | weak   |
| υ( <b>C</b> ≅ <b>N</b> )                    | 2220 - 2255 cm <sup>-1</sup> | medium        | strong |
| υ(-S-H)                                     | 2550 - 2600 cm <sup>-1</sup> | strong        | weak   |
| υ <b>(C</b> –H)                             | 2800 - 3000 cm <sup>-1</sup> | strong        | strong |
| υ <b>(=(C-H))</b>                           | 3000 - 3100 cm <sup>-1</sup> | strong        | medium |
| υ <b>(</b> ≅(C-H))                          | 3300 cm <sup>-1</sup>        | weak          | strong |
| υ(N-H)                                      | 3300 - 3500 cm <sup>-1</sup> | medium        | medium |
| · ,                                         |                              |               |        |

**HORIBA**JOBIN YVON

France:

HORIBA Jobin Yvon S.A.S., 231 rue de Lille, 59650 Villeneuve d'Ascq. Tel: +33 (0)3 20 59 18 00, Fax: +33 (0)3 20 59 18 08. Email: raman@jobinyvon.fr www.jobinyvon.fr HORIBA Jobin Yvon Inc., 3880 Park Avenue, Edison, NJ 08820-3012. Tel: +1-732-494-8660, Fax: +1-732-549-2571. Email: raman@jobinyvon.com www.jobinyvon.com HORIBA Ltd., JY Optical Sales Dept., 1-7-8 Higashi-kanda, Chiyoda-ku, Tokyo 101-0031. USA:

Japan:

Germany:

China:

(All HORIBA Jobin Yvon companies were formerly known as Jobin Yvon)

2/2