

PHYS415

GENERAL RELATIVITY

Lecture Notes

Contents

O	Physical Overview of General Relativity			1
Ι	Review of Special Relativity			2
	I.1	Lorentz Transformations		4
		I.1.1	Examples of Lorentz Transformations $\ \ldots \ \ldots \ \ldots$	5
		I.1.2	The Restricted Lorentz Group	7
	I.2	The So	calar Product in Minkowski Spacetime	8
	I.3	The Causal Structure of Minkowski Spacetime $\ \ldots \ \ldots \ \ldots$		9
		I.3.1	4-velocity	11
		I.3.2	4-momentum	11
		I.3.3	Angular momentum	12
	I.4	Gauß's	s Theorem in Minkowski Spacetime	12
TT	The	Equiv	zalence Principle	14

0 Physical Overview of General Relativity

IN GENERAL RELATIVITY, gravity is no longer a "force"...

Space tells matter how to move;

Matter tells space how to curve.

— Misner, Thorne and Wheeler

In Newtonian gravity, escape velocity is given by $\frac{1}{2}mv^2 = \frac{GMm}{R}$. Gravity is significant if $\frac{v^2}{2} \sim \frac{GM}{R}$. Special relativity is significant when $v^2 \sim c^2$. Hence, general relativity is significant when $\frac{c^2}{2} \sim \frac{GM}{R} \iff R \sim \frac{2GM}{c^2}$; this is the Schwarzschild radius.

When escape velocity \sim light velocity, the existence of a black hole if implied.

I Review of Special Relativity

Background —

See (?, ch 1) and (?, ch 5, 12, 13).

Assumptions of Special Relativity:

1. The world is described by a 4-dimensional continuum¹, **spacetime**, or **Minkowski space** \mathcal{M}^4 , which is the set of all **events** x^{μ} ,

$$x^{\mu} \equiv \boldsymbol{x} = \left(x^{0}, x^{i}\right) \equiv \left(x^{0}, \vec{x}\right) = \underbrace{\left(ct, \vec{x}\right)}_{\text{time, space}}.$$

Notation -

Greek indices, μ, ν run over *spacetime* index values; $\{0, 1, 2, 3\}$. Latin indices (mid-alphabet), i, j, k run over *spatial* index values; $\{1, 2, 3\}$. x is a 4-vector (twiddle); \vec{x} is a 3-vector (under bar).

2. There exist **inertial frames**; namely, frames in which the measured values of time t and position x^i of events result in *linear* equations of motion for *free* particles.

Postulates of Special Relativity:

- 1. PRINCIPLE OF RELATIVITY: The laws of physics are invariant under transformations $x^{\nu} \to x^{\bar{\mu}}(x^{\nu})$ from one inertial frame to another (and such transformations form a group).
- 2. Constancy of the Speed of Light: There exists an invariant upper bound on all velocities

$$\left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right| \le \left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right|_{\mathrm{max}} = c \quad \text{(speed of light)}$$

and this value is the same in all inertial frames.

¹Mathematically, a Lorentzian manifold...

For photons,

$$c = \left| \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right| = \left| \frac{\mathrm{d}\vec{x}'}{\mathrm{d}t} \right|. \tag{I.1}$$

Rewriting (I.1) we see that, for photons,

$$(\mathrm{d} x)^2 + (\mathrm{d} y)^2 + (\mathrm{d} z)^2 - c^2 (\mathrm{d} t)^2 = (\mathrm{d} x')^2 + (\mathrm{d} y')^2 + (\mathrm{d} z')^2 - c^2 (\mathrm{d} t')^2 = 0.$$

This suggests the definition of the **spacetime interval** between any neighbouring events x^{μ} and $x^{\mu} + dx^{\mu}$ as

$$\begin{split} \mathrm{d}s^2 &\equiv -c^2 \mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2 \\ &= \eta_{\mu\nu} \mathrm{d}x^\mu \mathrm{d}x^\nu & ...pseudo-Riemannian\ structure \end{split}$$

where $x^{\mu} = (x^0, x^i) = (ct, x, y, z)$ and where

$$\eta_{\mu\nu} = \begin{pmatrix} -1 \\ +1 \\ +1 \\ +1 \end{pmatrix} \equiv \operatorname{diag}\left(-1, +1, +1, +1\right) \equiv -1 \oplus \mathbb{1}_3.$$

For photons, $ds^2 = 0$. Using the two postulates, one may show that the interval ds^2 is invariant with respect to coordinates based in any inertial frame (?, §1.6).

$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = \eta_{\bar{\mu}\bar{\nu}} dx^{\bar{\mu}} dx^{\bar{\nu}}.$$
 (I.2)

Note

- The symbol ds^2 for the interval is purely notational convention, since we may have $ds^2 < 0$ is some cases.
- The first postulate alone implies either S.R. or its $c \to \infty$ limit (a.k.a. Galilean relativity).
- Formally, $\mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$ is shorthand for the tensor product $\mathrm{d} x^{\mu} \otimes \mathrm{d} x^{\nu}$, and you will see that $\mathrm{d} s^2 = \eta$ is really the metric tensor...

I.1 Lorentz Transformations

In an inertial frame K, the equations of motion of a free particle are linear;

$$\frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\lambda^2} = 0 \qquad \iff \qquad x^{\mu} = x_0^{\mu} + u^{\mu}\lambda,$$

where x_0^{μ} , u^{μ} are constant and λ is a parameter. Similarly, in any other inertial frame K,

$$\frac{\mathrm{d}^2 x^{\bar{\mu}}}{\mathrm{d}\lambda^2} = 0 \qquad \iff \qquad x^{\bar{\mu}} = x_0^{\bar{\mu}} + u^{\bar{\mu}}\lambda.$$

Now,

$$\frac{\mathrm{d}x^{\bar{\mu}}}{\mathrm{d}\lambda} = \frac{\partial x^{\bar{\mu}}}{\partial x^{\nu}} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\lambda} = \frac{\partial x^{\bar{\mu}}}{\partial x^{\nu}} u^{\nu} \qquad \dots chain rule$$

$$\implies 0 = \frac{\mathrm{d}^2 x^{\bar{\mu}}}{\mathrm{d}\lambda^2} = \frac{\partial}{\partial x^{\alpha}} \left(\frac{\partial x^{\bar{\mu}}}{\partial x^{\nu}} u^{\nu} \right) u^{\alpha} = \frac{\partial^2 x^{\bar{\mu}}}{\partial x^{\alpha} \partial x^{\nu}} u^{\nu} u^{\alpha} \qquad \therefore u^{\nu} \ constant$$

$$\implies 0 = \frac{\partial^2 x^{\bar{\mu}}}{\partial x^{\alpha} \partial x^{\nu}}. \qquad \dots since \ true \ \forall u^{\alpha}$$

So the required transformation between inertial frames is *linear*;

$$x^{\bar{\mu}} = L^{\bar{\mu}}_{\ \nu} x^{\nu} + a^{\bar{\mu}},$$
 (I.3)

where $a^{\bar{\mu}}$ and $L^{\bar{\mu}}{}_{\nu} \equiv \frac{\partial x^{\bar{\mu}}}{\partial x^n u}$ are constants. Differentiate (I.3) and substitute into (I.2) to give $\eta_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = \eta_{\bar{\mu}\bar{\nu}} L^{\bar{\mu}}{}_{\mu} L^{\bar{\nu}}{}_{\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu}$. Since this is true $\forall \, \mathrm{d}x^{\mu}$,

$$\eta_{\bar{\mu}\bar{\nu}}L^{\bar{\mu}}{}_{\mu}L^{\bar{\nu}}{}_{\nu} = \eta_{\mu\nu}.$$
 (I.4)

In matrix form, (I.3) and (I.4) are

$$\bar{x} = Lx + a,
L^{\top} \eta L = \eta.$$
(I.3a)
(I.4a)

Transformations $\underline{x} \mapsto \underline{x}$ defined by (I.3), (I.4) are the *inhomogeneous* Lorentz transformations, or **Poincaré transformations**, and form the Poincaré group IO(1,3) (pronounced Inhomogeneous Orthogonal group).

"Inhomogeneous" refers to the inclusion of spacetime translations $x^{\nu} \mapsto x^{\bar{\mu}} = \delta^{\bar{\mu}}_{\nu} x^{\nu} + a^{\bar{\mu}}$, which form a subgroup T⁴ of the Poincaré group. If we set $a^{\bar{\mu}} = 0$ in (I.3), we are left with homogeneous transformations, called simply the **Lorentz** transformations.

In G.R., our task is to generalise these ideas to general coordinate frames for which $L^{\bar{\mu}}_{\ \nu}$ are not necessarily constant.

I.1.1 Examples of Lorentz Transformations

A transformation belonging to the (homogeneous) Lorentz group O(1,3) can be represented as a matrix acting on coordinates x^{μ} when they are *viewed as vectors*.

$$x^{\mu} \cong \mathbf{x} = \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}$$

Note

Spacetime events (i.e., *points* in spacetime) are not themselves vectors—neither addition nor scalar multiplication of events makes physical sense (i.e., spacetime itself is not a *vector space*). However, in S.R. we may represent events by their associated displacement vector relative to a chosen orthogonal inertial frame.

The Lorentz group O(1,3) consists of (combinations of) the following:

• Rotations, e.g., about the z-axis (in the xy-plane) by an angle θ ;

$$L_R(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$z, z$$

$$\bar{y}$$

$$\bar{x}$$

$$x$$
(isotropy of spacetime)

• Boosts, e.g., by a velocity \vec{v} in the x-direction;

$$L_B(\alpha) = \begin{pmatrix} \cosh \alpha & -\sinh \alpha & 0 & 0 \\ -\sinh \alpha & \cosh \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos i\alpha & i\sin i\alpha & 0 & 0 \\ i\sin i\alpha & \cos i\alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

where $\alpha = \tanh^{-1} \frac{v}{c}$ is the *rapidity parameter*. In terms of the velocity $\beta \equiv \frac{v}{c}$, one has $\cosh \alpha = \frac{1}{\sqrt{1-\beta^2}} \equiv \gamma$ and $\sinh \alpha = \frac{\beta}{\sqrt{1-\beta^2}} \equiv \beta \gamma$.

-- Note

Boosts appear similar to rotations, but differ as a consequence of the indefiniteness of the metric. Formally, an x-boost of rapidity α is equivalent to a rotation by an 'imaginary angle' $\alpha'=i\alpha$ through the τx -plane, where $\tau=it$ is 'imaginary time'... though this is not a good picture physically!

An important difference between rotations and boosts is that, where $0 \le \theta < 2\pi$ for rotations, we have $-\infty < \alpha < \infty$ for boosts, i.e., rotations form a $compact^2$ subgroup of the Lorentz (or Poincaré) group, whereas boosts are non-compact—and in fact do not form a subgroup (because, in general, the composition of two boosts forms a combination of a rotation and a boost).

Both rotations and boosts depend on continuous parameters (θ or α). However, the Lorentz group O(1,3) also contains *discrete* transformations...

• Parity inversion;
$$P = \operatorname{diag}(1, -\mathbb{1}_3) \equiv \begin{pmatrix} 1 & & \\ & -1 & & \\ & & -1 & \\ & & -1 \end{pmatrix}$$
.

Notice that P is *not* equivalent to a rotation; it transforms a right-handed frame into a left and vice versa, since det P = -1.

²A compact set is one for which any infinite sequence of elements contains a convergent subsequence. E.g., $[0, 2\pi)$ is compact, but \mathbb{R} is not (consider the sequence $\{1, 2, 3, ...\} \subset \mathbb{R}$).

Note.

In even spatial dimensions, the transformation $R = \mathrm{diag}(1, -\mathbb{1}_{2n})$ is not a parity transformation; it is a rotation by π and $\det R = 1$. In these cases, inversions $x_i \mapsto -x_i$ of a single spatial coordinate are parity transformations.

• Time reversal; $T = \text{diag}(-1, \mathbb{1}_3)$.

The Lorentz matrix condition (I.4) implies that $(\det L)^2 = 1 \iff \det L = \pm 1$ for any Lorentz transformation $L \in \mathrm{O}(1,3)$. Those with $\det L = +1$ and those with $\det L = -1$ form two disconnected pieces of $\mathrm{O}(1,3)$, but only the first piece contains the identity transformation $\delta^{\bar{\mu}}_{\nu}$.

Inspecting the $\bar{\mu}\nu = \bar{0}0$ component of (I.4) gives

$$\left(L^{\bar{0}}{}_{0}\right)^{2} - \sum_{\bar{k}=1}^{3} \left(L^{\bar{k}}{}_{0}\right)^{2} = 1 \implies \left(L^{\bar{0}}{}_{0}\right)^{2} \geq 1,$$

which shows that there exists two disconnected classes of Lorentz transformation with $L^{\bar{0}}_{0} \geq 1$ and $L^{\bar{0}}_{0} \leq -1$. Those with $L^{\bar{0}}_{0} \geq 1$ are called **orthochronous**.

I.1.2 The Restricted Lorentz Group

We define the subgroup of restricted Lorentz transformations by adding two conditions to the Lorentz matrix condition (I.4); that they be 1) orthochronous and 2) have determinant unity.

$$\mathrm{SO}^+(1,3) \equiv \left\{ \boldsymbol{\varLambda} \; \middle| \; \boldsymbol{\varLambda}^\top \boldsymbol{\eta} \boldsymbol{\varLambda} = \boldsymbol{\eta}, \boldsymbol{\varLambda}^{\bar{0}}{}_0 \geq 1, \det \boldsymbol{\varLambda} = 1 \right\}$$

We have removed the discrete transformations involving P and T, so that $\mathrm{SO}^+(1,3)$ is continuous and connected, unlike $\mathrm{O}(1,3)$.

Notation

The S in $SO^+(1,3)$ refers to the condition $\det \Lambda=1$, and the $^+$ refers to orthochronality. Sometimes $SO^+(1,3)$ is simply written as SO(1,3).

Groups whose elements may be continuously parametrised are **Lie groups**. The translation group T^4 (parametrised continuously by Δx^{μ}) and the rotation group SO(3) (parametrised continuously by three angles) are examples of *connected* Lie groups.

Reintroducing translations to the restricted Lorentz group gives the restricted Poincaré group $\mathrm{ISO}^+(1,3)$ —also a connected Lie group. Unrestricted groups may be reconstructed by reintroducing the discrete transformations;

$$\mathcal{O}(1,3) = \left\{ \boldsymbol{\varLambda}, \boldsymbol{\varLambda}\boldsymbol{P}, \boldsymbol{\varLambda}\boldsymbol{T}, \boldsymbol{\varLambda}\boldsymbol{P}\boldsymbol{T} \;\middle|\; \boldsymbol{\varLambda} \in \mathcal{SO}^+(1,3) \right\}.$$

I.2 The Scalar Product in Minkowski Spacetime

We define a scalar product

$$\mathrm{d}s^2 = \eta_{\mu\nu} \mathrm{d}x^{\mu} \mathrm{d}x^{\nu} = \mathrm{d}x_{\mu} \mathrm{d}x^{\mu} \equiv \mathrm{d}\boldsymbol{x} \cdot \mathrm{d}\boldsymbol{x},$$

where

$${\rm d}x_{\mu} = \eta_{\mu\nu} {\rm d}x^{\nu} = \left(-{\rm d}x^0, {\rm d}x^1, {\rm d}x^2, {\rm d}x^3 \right) \tag{I.5}$$

is the dual component form.

We refer to $\{dx^{\mu}\}$ as the *contravariant* components, and $\{dx_{\mu}\}$ as the *covariant* components of the vector $d\mathbf{x}$. Thus the metric $\eta_{\mu\nu}$ acts as an *index-lowering operator*³.

The identity operation (a Lorentz transformation of course) is the Kronecker delta $\delta^{\mu}_{\ \nu}$ in indexed form.

Thus $\delta^{\mu}_{\ \nu} = \left(\eta^{-1}\eta\right)^{\mu}_{\ \nu} = \left(\eta^{-1}\right)^{\mu\lambda}\eta_{\lambda\nu}$ by applying the rule that the indices of η are downstairs. As a matrix, $\eta^{-1} = \eta = \mathrm{diag}\left(-1,\mathbbm{1}\right)$, but we write $\eta^{-1} = \left(\eta^{-1}\right)^{\mu\lambda} = \eta^{\mu\lambda}$ (with indices raised) so that levels of indices are consistent, i.e.

$$\eta^{\mu\lambda}\eta_{\lambda\nu} = \delta^{\mu}_{\ \nu}. \tag{I.6}$$

By (I.5) and (I.6) if follows that

$$\mathrm{d}x^{\mu} = \eta^{\mu\lambda} \mathrm{d}x_{\lambda},$$

i.e. $\eta^{\mu\lambda}$ is an index-raising operator.

³N.B. $\{dx_{\mu}\}$ are *not* differentials of coordinates.

Under a Poincaré transformation $x^{\mu} \to x^{\bar{\mu}}(x^{\mu})$

$$\mathrm{d} x^{\bar{\mu}} = L^{\bar{\mu}}{}_{\mu} \mathrm{d} x^{\mu}, \qquad \qquad \text{where } L^{\bar{\mu}}{}_{\mu} = \frac{\partial x^{\bar{\mu}}}{\partial x^{\mu}} \in O(1,3). \tag{I.7}$$

The inverse transformation taking $x^{\bar{\mu}}$ back to x^{μ} just swaps indices $\bar{\mu} \leftrightarrow \mu$ in above. Thus the natural notation for the Lorentz matrix inverse to $L^{\bar{\mu}}_{\ \mu}$ is $(L^{-1})^{\mu}_{\ \bar{\mu}} \equiv L^{\mu}_{\ \bar{\mu}} = \frac{\partial x^{\mu}}{\partial x^{\bar{\mu}}}$. By the chain rule:

$$L^{\bar{\mu}}{}_{\mu}L^{\mu}{}_{\bar{\nu}} = \delta^{\bar{\mu}}{}_{\bar{\nu}}, \qquad \qquad L^{\mu}{}_{\bar{\mu}}L^{\bar{\mu}}{}_{\nu} = \delta^{\mu}{}_{\nu}.$$

From (I.5), (I.7), and (I.4a) it follows that (exercise) under (I.7)

$$\mathrm{d}x_{\bar{\mu}} = L^{\mu}{}_{\bar{\mu}} \mathrm{d}x_{\mu}.$$

I.3 The Causal Structure of Minkowski Spacetime

Because of the indefiniteness of the Minkowski metric (and hence of the Minkowski scalar product), 4-vectors can have positive, zero or negative norm.

A 4-vector
$$\mathbf{V}$$
 is called
$$\begin{cases} \text{timelike} \\ \text{null} \end{cases} \text{ if } \mathbf{V} \cdot \mathbf{V} = V_{\mu} V^{\mu} = \eta_{\mu\nu} V^{\mu} V^{\nu} \begin{cases} < 0 \\ = 0 \\ > 0 \end{cases}$$

One spatial dimension suppressed; light-cone in (3+1)-d spacetime is a continuum of spheres.

By the second postulate, all causally connected events relative to an event P lie in its future or past lightcone, because P cannot causally influence events outside the lightcone without transmitting superluminal data.

A particle's **worldline** is a curve $x^{\mu} = x^{\mu}(\lambda)$ whose tangent V given by $V^{\mu} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda}$ is everywhere timelike; $V^{\mu}V_{\mu} < 0$. This implies that, in an inertial frame, the particles velocity \vec{v} is subluminal $|\vec{v}| < c$ (exercise).

Consider a freely moving particle whose (timelike) worldline unit tangent vector is V. There always

exists a Lorentz transformation which sends a timelike unit vector to $V^{\mu} \mapsto V^{\bar{\mu}} = (1,0,0,0)$ (exercise). The **proper time interval** $d\tau$ between two neighbouring events along the particle's worldline is defined as the interval of time measured in the particle's instantaneous rest frame.

$$c^2 d\tau^2 = -\eta_{\mu\nu} dx^{\mu} dx^{\nu} \tag{I.8}$$

Note

Since dx is timelike, $\eta_{\mu\nu}dx^{\mu}dx^{\nu} < 0$, so (I.8) contains a minus sign. Proper time is not defined for spacelike intervals, since this would yield an imaginary time. Instead, proper distance is defined by $d\ell^2 = \eta_{\mu\nu}dx^{\mu}dx^{\nu}$.

Proper time is the time *experienced* by the particle, i.e., the time that would be measured by a clock moving on the same worldline.

Suppose we have a worldline $x^{\mu}(\lambda)$. Integrate $d\tau$ via (I.8) along the path to get the total proper time elapsed between events $x^{\mu}(\lambda_i)$ and $x^{\mu}(\lambda_f)$.

$$\Delta \tau = \frac{1}{c} \int_{\lambda_{-}}^{\lambda_{f}} d\lambda \sqrt{-\eta_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda}}$$
 (I.9)

Note

The proper time elapsed depends on the path taken between the two events. (See the Twin Paradox.)

Particle worldlines can be characterised by an action principle: variation of (I.9) with respect to the trajectories, $\delta x^{\mu}(\lambda)$, yields the equations of motion $\frac{\partial^2 x^{\mu}}{\partial \lambda^2} = 0$ (holding $\delta x^{\mu} = 0$ fixed at both ends) (exercise). In fact, the extremised trajectory minimises the proper time—freely falling particles take the path of maximum proper time.

By (I.8),
$$c^2 d\tau^2 = -dt^2 + \sum_i (dx^i)^2 = dt^2 (-1 + \vec{v} \cdot \vec{v})$$
 where $v^i \equiv \frac{dx^i}{dt}$ so

$$d\tau = \sqrt{1 - \frac{v^2}{c^2}} dt \equiv \gamma dt \tag{I.10}$$

is the proper time of a frame moving at velocity \vec{v} relative to a frame with coordinates (ct, x^i) .

I.3.1 4-velocity

Since proper time $d\tau$ is an *invariant*, we are motivated to define the 4-vector

$$u^{\mu} \equiv \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} = \frac{\mathrm{d}t}{\mathrm{d}\tau} \left(c, \frac{\mathrm{d}\vec{x}}{\mathrm{d}t} \right) = \gamma(c, \vec{v}),$$

where γ is defined as in (I.10). In the particle's instantaneous rest frame, $\|\vec{v}\|^2 = u^i u_i = 0$, so that $u^\mu u_\mu = u^0 u_0 = -c^2$. However, since this is an invariant (it is a scalar, which does not transform under Poincaré transformations), we have

$$\|\underline{\boldsymbol{u}}\|^2 \equiv \underline{\boldsymbol{u}} \cdot \underline{\boldsymbol{u}} \equiv u^\mu u_\mu = -c^2$$

in all frames.

I.3.2 4-momentum

Relativistic 4-momentum is defined by

$$\mathbf{p} \equiv m\mathbf{u} = \left(\frac{E}{c}, \vec{p}\right), \qquad E = \gamma mc^2, \qquad \vec{p} = \gamma m\vec{v}.$$
(I.11)

This form of 4-momentum may be deduced from an action using the Hamiltonian approach. We want to extremise (I.2), but first multiply by mc^2 to get the units right. The action is

$$S = -mc^2 \int_{x_i}^{x_f} \mathrm{d}\tau = \int_{t_i}^{t_f} \mathrm{d}t L$$

where the Lagrangian is

$$L = L(\vec{x}, \dot{\vec{x}}; t) = -mc^2 \sqrt{1 - \frac{v^2}{c^2}} = -mc^2 \sqrt{1 - \frac{\vec{x} \cdot \vec{x}}{c^2}}.$$

Then, the Hamiltonian (total energy) and conjugate momentum are

$$\begin{split} E &= \vec{p} \cdot \vec{x} - L = \gamma m v^2 + \frac{mc^2}{\gamma} = \gamma m c^2, \\ \vec{p} &= \frac{\partial L}{\partial \dot{\vec{x}}} = mc^2 \frac{1}{2} \frac{2\dot{\vec{x}}}{\sqrt{1 - v^2/c^2}} = \gamma m \vec{v}, \end{split}$$

matching the definition (I.11).

In all rest frames,

$$\boxed{\|\underline{\boldsymbol{p}}\|^2 = \underline{\boldsymbol{p}} \cdot \underline{\boldsymbol{p}} = p^{\mu} p_{\mu} = -m^2 c^2}$$

as can be shown by evaluating in the particle's instantaneous rest frame and using scalar invariance.

For photons with m=0, the 4-momentum \mathbf{p} is a null vector. Photons have no instantaneous rest frame—but we can always find a frame in which $\mathbf{p} = \frac{E}{c}(1,0,0,1)$.

I.3.3 Angular momentum

The covariant orbital angular momentum of a particle about an event $\mathbf{x}_0 = \{x_0^{\mu}\}$ is defined as

$$j^{\mu\nu} = (x^\mu - x^\mu_0) p^\nu - (x^\nu - x^\nu_0) p^\mu,$$

where x^{μ} and p^{μ} are the particle's position and momentum. This is an antisymmetric tensor, $j^{\mu\nu}=-j^{\nu\mu}=j^{[\mu\nu]}$, with 6 independent components: $j^{0k}, j^{k\ell}, k < \ell$.

- Example

About the origin $x_0^\mu=0$, we have $j^{ij}=x^ip^j-x^jp^i$ which is equivalent to $j^{ij}=\epsilon^{ijk}\ell_k$ where $\vec{l}=\vec{x}\times\vec{p}$. j^{0k} represents the motion of the centre of mass: $j^{0k}=x^0p^k-x^kp^0=\gamma mc(v^kt-x^k)$.

I.4 Gauß's Theorem in Minkowski Spacetime

In three dimensional Euclidean space, Gauß's theorem is

$$\int_{R} d^{3}x \, \nabla \cdot \vec{V} = \oint_{\partial R} d\vec{S} \cdot \vec{V},$$

where \vec{V} is a 3-vector and $R \subset \mathbb{R}^3$ is a region of Euclidean space with boundary ∂R . The surface element $d\vec{S}$ is normal to the boundary ∂R . In index form,

$$\int_R \mathrm{d}^3x\,\partial_i V^{i\dots} = \oint_{\partial R} \mathrm{d}S_i V^{i\dots},$$

where dots denote possible free indices, which are not involved. The proof of Gauß's theorem does not require 3 dimensions or a +++ metric signature. In Minkowski spacetime \mathcal{M}^4 , Gauß's theorem reads

$$\int_R \mathrm{d}^4 x\, \partial_\mu V^{\mu\dots} = \oint_{\partial R} \mathrm{d} \varSigma_\mu V^{\mu\dots},$$

where ∂R is now the boundary of a simply-connection region $R\subset \mathcal{M}^4$ with normal surface element d Σ .

II The Equivalence Principle