ESS 411/511 Geophysical Continuum Mechanics Class #26

For Problems Lab tomorrow

- Read (<u>https://courses.washington.edu/ess511/NOTES/</u>)
 - Raymond notes on stress and moments
 - Turcotte and Schubert Section 3.9
- For Friday class
- Read (https://courses.washington.edu/ess511/NOTES/)
 - Ed's note on volume elements
 - Ed's note on conservation laws
 - Ed's note on constitutive relations

A hanging plate

Average stress across the beam (per unit width)

Plane at x_1 must support the weight of all material to the right. e.g. $<\sigma_{12}>$ t is vertically directed force per unit width in x_3

$$<\sigma_{11}>t = \rho g_1 (L - x_1) t = 0$$

 $<\sigma_{12}>t = \rho g_2(L - x_1) t = 0$
 $<\sigma_{13}>t = \rho g_3 (L - x_1) t = 0$

Although $<\sigma_{11}>=0$, there must be

- tension (σ_{11} >0) in the upper part and
- compression (σ_{11} <0) in the lower part, in order to prevent the material to the right from falling down.

Incremental moment at x_1 due to outboard weight

Incremental moment at x_1 exerted by thin slice $\mathrm{d}x_1$ ' of slab at x_1 ' e.g. $<\sigma_{12}>$ t is vertically directed force per unit width in x_3

$$dM_g = - \rho gt \ dx_1'(x_1' - x_1)$$

Now add up the incremental moments at x_1 due to all thin slices dx_1 , to the right of x_1

$$M_g = \int_{x_1}^{L} \rho gt(x_1 - x_1) dx_1' = -\frac{1}{2} \rho gt(L - x_1)^2$$

The force per unit width: $\rho g t dx_1$

The lever arm: $(x_1 - x_1)$

Incremental moment at x_1 due to stress in the beam

 M_g must be balanced by an equal and opposite moment M_t at x_1 exerted by the stress state there.

$$M_t = + \int_{-t/2}^{t/2} \sigma_{11}(x_1, x_2) x_2' dx_2'$$

The force per unit width: $\sigma_{11}(x_1, x_2') dx_2'$ The lever arm: x_2'

Shear stresses at x_1 don't contribute because they have no moment arm around x_1

 σ_{11} is assumed to be linear, but it is a very good assumption.

Putting it together -

$$M_t + M_g = 0$$

$$\int_{-t/2}^{t/2} \sigma_{11}(x_1, x_2) x_2 dx_2 = \frac{1}{2} \rho gt (L - x_1)^2$$

Now include tractions on the top and bottom

Horizontal forces

$$F_1(x_1) = S_{top} - S_{bottom}$$

Vertical forces

$$F_2(x_1') = -\rho gt + N_{top} - N_{bottom}$$

Balanced forces

Zero net force in a₁ direction

$$\sigma_{11} > t + \int_{x_1}^{L} F_1(x_1') dx_1' + P_1 = 0$$

$$\langle \sigma_{11} \rangle = \frac{1}{t} \{ P_1 + \int_{x_1}^{L} F_1(x_1') dx_1' \}$$

Zero net force in a₂ direction

$$<\sigma_{12}>t+\int\limits_{x_1}^{L}F_2(x_1')dx_1'+P_2=0$$

$$<\sigma_{12}> = \frac{1}{t} \{P_2 + \int_{x_1}^{L} F_2(x_1') dx_1'\}$$

Finding stress σ_{11} in beam

$$\sigma_{11}(x_1,x_2) = 2 \frac{\sigma(x_1)x_2}{t}$$

 σ_{11} is assumed to be linear, but it is a very good assumption.

- $\sigma(x_1)$ gives the magnitude of the stress at the upper surface.
- $x_2/(t/2)$ gives the normalized shape from bottom (x_2 = -t/2) to top (x_2 = t/2)

Balance of Moments

Moment due to weight outboard from x_1

$$M_{L} = \int_{x_{1}}^{L} F_{2}(x_{1}^{'})(x_{1}^{'} - x_{1})dx_{1}^{'} + P_{2}(L - x_{1}) - P_{1}(u_{2}(L) - u_{2}(x_{1}))$$

Moment due to stress in plane at x_1

$$M_t = + \int_{-t/2}^{t/2} \sigma_{11}(x_1, x_2) x_2' dx_2'$$

Recall

$$F_2(x_1') = -\rho gt + N_{top} - N_{bottom}$$

$$F_1(x_1) = S_{top} - S_{bottom}$$

Zero net moment

$$M_t + M_L = 0$$

Calculate $M_t(x_1)$ from known geometry and forces

$$M_{t}(x_{1}) = -\int_{x_{1}}^{L} F_{2}(x_{1}^{'})(x_{1}^{'} - x_{1})dx_{1}^{'} - P_{2}(L - x_{1}) + P_{1}(u_{2}(L) - u_{2}(x_{1}))$$

With deflection

Calculate $M_t(x_1)$ from known geometry and forces

$$M_{I}(x_{1}) = -\int_{x_{1}}^{L} F_{2}(x_{1}^{'})(x_{1}^{'} - x_{1})dx_{1}^{'} - P_{2}(L - x_{1}) + P_{1}(u_{2}(L) - u_{2}(x_{1}))$$

Integral equations are messy ...

$$M_{I}(x_{1}) = -\int_{x_{1}}^{L} F_{2}(x_{1}^{'})(x_{1}^{'} - x_{1})dx_{1}^{'} - P_{2}(L - x_{1}) + P_{1}(u_{2}(L) - u_{2}(x_{1}))$$

So we can differentiate it twice with respect to x_1

$$\frac{d^2M_1(x_1)}{dx_1^2} = -F_2(x_1) - P_1 \frac{\partial^2 u_2}{\partial x_1^2}$$

Then we use the idea of flexural rigidity *D*, which relates the bending curvature to the force moment.

$$M_t = -D \frac{\partial^2 u_2}{\partial x_1^2}$$

(D is a property of the geometry and the material.)

To get an equation for the shape $\underline{u}_2(x_1)$

$$\frac{\partial^4 u_2}{\partial x_1^4} = \frac{1}{D} \left[F_2(x_1) + P_1 \frac{\partial^2 u_2}{\partial x_1^2} \right]$$