Corso di Laurea Triennale in Matematica

Geometria 3 Topologia

Docente: Prof. Daniele Zuddas

Spazi topologici

Def. Sia X un insieme. L'insieme

$$\mathcal{P}(X) = \{ U \mid U \subset X \}$$

i cui elementi sono tutti i sottoinsiemi di X è detto insieme delle parti (o insieme potenza) di X.

Oss. $\mathcal{P}(X) \cong \{0,1\}^X = \{\text{funzioni } X \to \{0,1\}\} \Rightarrow |\mathcal{P}(X)| = 2^{|X|}$.

Leggi di De Morgan.
$$X - \bigcup_{\alpha \in A} U_{\alpha} = \bigcap_{\alpha \in A} (X - U_{\alpha})$$

 $X - \bigcap_{\alpha \in A} U_{\alpha} = \bigcup_{\alpha \in A} (X - U_{\alpha}).$

Def. Una *topologia* su X è una famiglia $\mathcal{T} \subset \mathcal{P}(X)$ di sottoinsiemi di X che soddisfa:

- $(1) \emptyset \in \mathcal{T}$
- (2) $X \in \mathcal{T}$
- $(3) \ \forall \{U_{\alpha}\}_{\alpha \in A} \subset \mathcal{T} \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} \in \mathcal{T}$
- $(4) \ \forall U, V \in \mathcal{T} \Rightarrow U \cap V \in \mathcal{T}.$

Uno spazio topologico (X,\mathcal{T}) è un insieme X munito di una topologia \mathcal{T} su X. Gli elementi di X sono detti punti. Scriveremo X anziché (X,\mathcal{T}) se \mathcal{T} è sottinteso.

Def. (X, \mathcal{T}) spazio topologico.

- $U \subset X$ è detto aperto in $X \Leftrightarrow U \in \mathcal{T}$.
- $C \subset X$ è detto *chiuso* in $X \Leftrightarrow X C$ aperto $\Leftrightarrow X C \in \mathcal{T}$.

Oss. Per una topologia \mathcal{T} su X abbiamo:

- (1) \emptyset è aperto e chiuso in X
- (2) X è aperto e chiuso in X
- (3) unioni arbitrarie di aperti di X sono aperte in X
- (4) intersezioni finite di aperti di X sono aperte in X (per induzione): $\forall n \in \mathbb{N}, \ \forall \ U_1 \dots, U_n \in \mathcal{T} \Rightarrow \bigcap_{i=1}^n U_i \in \mathcal{T}.$
- (3') intersezioni arbitrarie di chiusi sono chiuse: $\forall \{C_{\alpha}\}_{\alpha \in A} \text{ famiglia di chiusi in } X \Rightarrow \bigcap_{\alpha \in A} C_{\alpha} \text{ chiuso in } X$
- (4') unioni finite di chiusi sono chiuse:

$$\forall n \in \mathbb{N}, \forall C_1 \dots, C_n \text{ chiusi in } X \Rightarrow \bigcup_{i=1}^n C_i \text{ chiuso in } X.$$

Oss. Per determinare \mathcal{T} è sufficiente dichiarare gli aperti (oppure i chiusi) in modo che siano soddisfatte le proprietà precedenti.

Esempio. I seguenti esempi sono basilari e verranno usati spesso.

- (1) Topologia banale su X: $\mathcal{T}_{ban} = \{\emptyset, X\} \rightsquigarrow X_{ban} = (X, \mathcal{T}_{ban})$. È la topologia minimale, gli unici aperti sono il vuoto e lo spazio.
- (2) Topologia discreta su X: $\mathcal{T}_{dis} = \mathcal{P}(X) \rightsquigarrow X_{dis} = (X, \mathcal{T}_{dis})$. È la topologia massimale, tutti i sottoinsiemi sono aperti e chiusi.
- (3) Topologia cofinita su X: $\mathcal{T}_{cof} = \{U \subset X \mid X U \text{ finito}\} \cup \{\emptyset\} \rightsquigarrow X_{cof} = (X, \mathcal{T}_{cof}).$ Gli aperti sono i complementari dei sottoinsiemi finiti e il vuoto. I chiusi sono i sottoinsiemi finiti e X.

Oss.

- (1) X discreto \Leftrightarrow i singoletti dei punti sono aperti.
- (2) $\mathcal{T}_{dis} = \mathcal{T}_{cof} \Leftrightarrow X$ finito.

Basi di topologie

Def. Una famiglia \mathcal{B} di aperti di uno spazio topologico X è detta *base* per X se $\forall U \subset X$ aperto, $\exists \{B_i\}_{i \in I} \subset \mathcal{B}$ t.c. $U = \bigcup_{i \in I} B_i$. Gli elementi di \mathcal{B} sono detti *aperti basici*.

In altre parole \mathcal{B} è base per $X \Leftrightarrow \mathfrak{gli}$ elementi di \mathcal{B} sono aperti e ogni aperto di X è unione di elementi di \mathcal{B} .

Oss. Per definizione di base, se \mathcal{B} è base per X allora $U \subset X$ aperto $\Leftrightarrow \forall x \in U, \exists B \in \mathcal{B} \text{ t.c. } x \in B \subset U.$

Esempio. La famiglia dei singoletti $\mathcal{B} = \{\{x\} \mid x \in X\}$ è base per la topologia discreta.

Teor. Sia X un insieme e $\mathcal{B} \subset \mathcal{P}(X)$ una famiglia di sottoinsiemi di X. Allora $\exists \mathcal{T}_{\mathcal{B}}$ topologia su X t.c. \mathcal{B} è base per $\mathcal{T}_{\mathcal{B}} \Leftrightarrow$

$$(1) \ X = \bigcup_{B \in \mathcal{B}} B$$

(2) $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \cap B_2 \Rightarrow \exists B \in \mathcal{B} \ t.c.$ $x \in B \subset B_1 \cap B_2.$

Inoltre $\mathcal{T}_{\mathcal{B}}$ è unica (topologia generata da \mathcal{B}).

$$\mathcal{T}_{\mathcal{B}} = \left\{ \bigcup_{\mathcal{B} \in J} \mathcal{B} \mid J \subset \mathcal{B} \right\}$$

l'insieme di tutte e sole le unioni di elementi di ${\cal B}$.

Oss. Per definizione di $\mathcal{T}_{\mathcal{B}}$, $U \in \mathcal{T}_{\mathcal{B}} \Leftrightarrow \forall x \in U$, $\exists B \in \mathcal{B}$ t.c. $x \in B \subset U$. Mostriamo che $\mathcal{T}_{\mathcal{B}}$ è una topologia su X.

- (1) $\emptyset \in \mathcal{T}_{\mathcal{B}}$, ottenuto con $J = \emptyset$
- (2) $X \in \mathcal{T}_{\mathcal{B}}$, ottenuto con $J = \mathcal{B}$ in virtù di (1)
- $(3) \ \forall \{U_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}_{\mathcal{B}} \Rightarrow \forall \alpha \in A, \ \exists J_{\alpha} \subset \mathcal{B} \text{ t.c.}$ $U_{\alpha} = \bigcup_{B \in J_{\alpha}} B \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} = \bigcup_{B \in J} B \in \mathcal{T}_{\mathcal{B}} \text{ con } J = \bigcup_{\alpha \in A} J_{\alpha} \subset \mathcal{B}$
- (4) $\forall U_1, U_2 \in \mathcal{T}_{\mathcal{B}}, \ \forall x \in U_1 \cap U_2 \Rightarrow \exists B_1, B_2 \in \mathcal{B} \text{ t.c. } x \in B_1 \subset U_1$ e $x \in B_2 \subset U_2 \Rightarrow x \in B_1 \cap B_2 \subset U_1 \cap U_2 \Rightarrow \exists B \in \mathcal{B} \text{ t.c.}$ $x \in B \subset B_1 \cap B_2 \subset U_1 \cap U_2 \Rightarrow U_1 \cap U_2 \in \mathcal{T}_{\mathcal{B}}.$

 $\forall B \in \mathcal{B} \Rightarrow B \in \mathcal{T}_{\mathcal{B}}$ ottenuto con $J = \{B\} \Rightarrow \mathcal{B}$ è base per $\mathcal{T}_{\mathcal{B}}$.

L'unicità segue subito dalle due osservazioni precedenti.

Topologie notevoli su \mathbb{R}

Topologia Euclidea su \mathbb{R} . $\mathcal{B} = \{]a, b[\mid a < b \}$ è base per una topologia su \mathbb{R} . Infatti

- (1) l'unione di tutti gli intervalli aperti limitati è ℝ
- (2) l'intersezione di due intervalli aperti limitati è vuota oppure un intervallo aperto limitato $(\in \mathcal{B})$.

Si ha: $U \subset \mathbb{R}$ aperto $\Leftrightarrow \forall x \in U \exists a < b \text{ t.c. } x \in [a, b] \subset U$.

$$]a, +\infty[=\bigcup_{b>a}]a, b[,]-\infty, b[$$
 aperti.

 $\{a\}$, [a, b], $[a, +\infty[$, $]-\infty$, b] chiusi (ma esistono molti altri chiusi).

[a, b[e]a, b] non sono né aperti né chiusi in \mathbb{R} , $\forall a < b$.

Retta di Sorgenfrey. $\mathcal{B}_{\ell} = \{[a, b[\mid a < b \} \text{ è base per una topologia su } \mathbb{R} \text{ detta topologia di Sorgenfrey o topologia degli intervalli aperti a destra. Denotiamo con <math>\mathbb{R}_{\ell}$ questo spazio topologico (retta di Sorgenfrey).

Oss. $]a,b[=\bigcup_{c\in]a,b[}[c,b[$ aperto in $\mathbb{R}_\ell\Rightarrow$ aperti Euclidei sono aperti in \mathbb{R}_ℓ (ma non viceversa). I chiusi Euclidei di \mathbb{R} sono chiusi in \mathbb{R}_ℓ .

$$[a,+\infty[$$
 $=$ \bigcup $[a,c[$ aperto in $\mathbb{R}_{\ell}.$

[a, b] chiuso in \mathbb{R}_{ℓ} (perché chiuso in \mathbb{R}).

 $[a, b[=\mathbb{R}_{\ell}-(]-\infty, a[\cup[b, +\infty[) \Rightarrow [a, b[\text{ chiuso (e aperto) in } \mathbb{R}_{\ell}.$

Intorni e basi di intorni

Def. X spazio topologico, $J \subset X$ è *intorno* di $x \in X$ se $\exists U \subset X$ aperto t.c. $x \in U \subset J$.

Esempio. $U \subset X$ aperto non vuoto è intorno di ogni suo punto (*intorno aperto*).

 $[-1,1] \subset \mathbb{R}$ è intorno di 0, e di ogni $x \in]-1,1[$, ma non di -1 e di 1. Infatti $-1 \in]a,b[\subset [-1,1]$ è impossibile.

Oss. $U \subset X$ aperto $\Leftrightarrow \forall x \in U$, $\exists J \subset X$ intorno di x in X t.c. $J \subset U$.

Def. X spazio topologico, $\mathcal J$ famiglia di intorni di $x \in X$ è base di intorni (o sistema fondamentale di intorni) di x se $\forall L \subset X$ intorno di x, $\exists J \in \mathcal J$ t.c. $x \in J \subset L$.

Oss. Nella definizione possiamo limitarci a L intorno aperto di x.

Esempio.
$$x \in \mathbb{R} \rightsquigarrow \mathcal{J}_x = \left\{ \left] x - \frac{1}{n}, x + \frac{1}{n} \right[\mid n \in \mathbb{N} \right\}$$
 base d'intorni di x .

Def. $J \subset X$ è *intorno* di $A \subset X$ se $\exists U \subset X$ aperto t.c. $A \subset U \subset J$.

Def. $\mathcal J$ famiglia di intorni di $A\subset X$ è base di intorni (o sistema fondamentale di intorni) di A se $\forall L\subset X$ intorno (aperto) di A, $\exists J\in \mathcal J$ t.c. $A\subset J\subset L$.

Operatori topologici

X spazio topologico, $A \subset X$ sottoinsieme di X.

Def (Interno). Si chiama interno di A in X il sottoinsieme

$$\operatorname{Int}_X A \stackrel{\operatorname{def}}{=} \bigcup_{\substack{U \subset A \\ U \text{ aperto}}} U$$

unione di tutti gli aperti di X contenuti in A.

Oss. Int $_X A$ è il più grande aperto di X contenuto in A.

 $\operatorname{Int}_X A \subset A$ e vale $= \Leftrightarrow A$ aperto in X.

 $U \subset A \in U$ aperto in $X \Rightarrow U \subset \operatorname{Int}_X A$.

 $x \in \operatorname{Int}_X A \Leftrightarrow \exists U \subset X \text{ intorno di } x \text{ in } X \text{ t.c. } U \subset A.$

Esempio. $Int_{\mathbb{R}}[0, 1] =]0, 1[, Int_{\mathbb{R}}\{0\} = \emptyset, Int_{\mathbb{R}_{\ell}}[0, 1] = [0, 1[$

Def (Chiusura). Si chiama chiusura di A in X il sottoinsieme

$$Cl_X A \stackrel{\text{def}}{=} \bigcap_{\substack{C \supset A \\ C \text{ chiuso}}} C$$

intersezione di tutti i chiusi di X che contengono A.

Oss. $Cl_X A$ è il più piccolo chiuso di X che contiene A.

 $A \subset \operatorname{Cl}_X A$ e vale $= \Leftrightarrow A$ chiuso in X.

 $A \subset C$ e C chiuso in $X \Rightarrow Cl_X A \subset C$.

Prop. $x \in Cl_X A \Leftrightarrow \forall U \subset X$ intorno (aperto) di x in X si ha $U \cap A \neq \emptyset$.

Dim. Senza perdita di generalità basta considerare U intorno aperto di x.

 \Rightarrow Per assurdo, supponiamo $U \cap A = \emptyset \Rightarrow A \subset X - U$ chiuso \Rightarrow Cl_X $A \subset X - U \Rightarrow x \in X - U$ assurdo perché $x \in U$.

 \Leftarrow Per assurdo, supponiamo $x \notin \operatorname{Cl}_X A \Rightarrow x \in U := X - \operatorname{Cl}_X A$ aperto $\Rightarrow U \cap A \subset U \cap \operatorname{Cl}_X A = \emptyset \Rightarrow U \cap A = \emptyset$ assurdo.

Def (Frontiera). Si chiama frontiera (o bordo) di A in X il sottoinsieme

$$\operatorname{Fr}_X A \stackrel{\operatorname{def}}{=} \operatorname{Cl}_X A \cap \operatorname{Cl}_X (X - A)$$

intersezione delle chiusure di A e del complementare.

Si usa anche la notazione $\operatorname{Fr}_X A = \partial_X A = \partial A$.

Oss. $\operatorname{Fr}_X A$ è chiuso in X e $\operatorname{Fr}_X A \subset \operatorname{Cl}_X A$.

 $x \in \operatorname{Fr}_X A \Leftrightarrow \forall U \subset X$ intorno di x in X, si ha $U \cap A \neq \emptyset$ e $U \cap (X - A) \neq \emptyset$.

Teor. $\operatorname{Fr}_X A = \operatorname{Cl}_X A - \operatorname{Int}_X A$.

Dim. Mostriamo le due inclusioni.

 \subseteq Sappiamo $\operatorname{Fr}_X A \subset \operatorname{Cl}_X A$. Resta da dimostrare $\operatorname{Fr}_X A \cap \operatorname{Int}_X A = \emptyset$. Per assurdo se $\exists x \in \operatorname{Fr}_X A \cap \operatorname{Int}_X A \Rightarrow \operatorname{Int}_X A \cap (X - A) \neq \emptyset$ assurdo.

 $\supset \forall x \in \operatorname{Cl}_X A - \operatorname{Int}_X A$, $\forall U \subset X$ intorno aperto di x in X dimostriamo $U \cap (X - A) \neq \emptyset$. Supponiamo per assurdo $U \cap (X - A) = \emptyset \Rightarrow U \subset A \Rightarrow U \subset \operatorname{Int}_X A \Rightarrow x \in \operatorname{Int}_X A$ assurdo. Quindi $x \in \operatorname{Cl}_X (X - A)$ e per ipotesi $x \in \operatorname{Cl}_X A \Rightarrow x \in \operatorname{Cl}_X A \cap \operatorname{Cl}_X (X - A) = \operatorname{Fr}_X A$.

Sottospazi topologici

Teor. Sia X uno spazio topologico e $Y \subset X$ un sottoinsieme. Allora la famiglia

$$\mathcal{T}_Y \stackrel{\text{def}}{=} \{ U \cap Y \mid U \subset X \text{ aperto} \}$$

è una topologia su Y detta topologia indotta da X o topologia relativa o anche topologia di sottospazio.

Dim. Dimostriamo che valgono le proprietà della definizione di topologia.

- (1) $\emptyset = \emptyset \cap Y \in \mathcal{T}_Y$.
- (2) $Y = X \cap Y \in \mathcal{T}_Y$.
- (3) $\forall \{V_{\alpha}\}_{\alpha \in A} \subset \mathcal{T}_{Y} \exists \{U_{\alpha}\}_{\alpha \in A} \text{ aperti di } X \text{ t.c. } V_{\alpha} = U_{\alpha} \cap Y \forall \alpha \in A \Rightarrow$

$$\bigcup_{\alpha \in A} V_{\alpha} = \bigcup_{\alpha \in A} (U_{\alpha} \cap Y) = \left(\bigcup_{\alpha \in A} U_{\alpha}\right) \cap Y \in \mathcal{T}_{Y}.$$

(4) $\forall V_1, V_2 \in \mathcal{T}_Y \exists U_1, U_2 \text{ aperti in } X \text{ t.c. } V_1 = U_1 \cap Y \text{ e } V_2 = U_2 \cap Y \Rightarrow V_1 \cap V_2 = (U_1 \cap U_2) \cap Y \in \mathcal{T}_Y.$

Def. $Y \subset X$ con la topologia relativa è detto *sottospazio topologico*. **Oss.**

- (1) Qualunque sottoinsieme di uno spazio topologico è un sottospazio topologico con la topologia relativa.
- (2) Un sottospazio topologico $Y \subset X$ è a sua volta uno spazio topologico.
- (3) $V \subset Y$ aperto in $Y \Leftrightarrow \exists U \subset X$ aperto in X t.c. $V = U \cap Y$.
- (4) $C \subset Y$ chiuso in $Y \Leftrightarrow \exists A \subset X$ chiuso in X t.c. $C = A \cap Y$.
- (5) I sottoinsiemi di uno spazio topologico saranno sempre considerati con la topologia relativa, se non specificato diversamente.

Esempi. $I:=[0,1]\subset\mathbb{R}$ è un importante sottospazio topologico e lo consideriamo con la topologia Euclidea indotta da \mathbb{R} .

 $\mathbb{R}_+ := [0, +\infty[\subset \mathbb{R} \text{ è un altro esempio interessante.}]$

Prop. $Y \subset X$ sottospazio topologico e \mathcal{B} base per $X \Rightarrow$

$$\mathcal{B}_Y \stackrel{\mathrm{def}}{=} \{B \cap Y \mid B \in \mathcal{B}\}$$

base per Y.

Dim. Esercizio (usare le definizioni di topologia relativa e di base).

Prop. $Y \subset X$ sottospazio, $y \in Y$ e \mathcal{J}_y base di intorni di y in $X \Rightarrow$

$$\mathcal{J}_{Y,y} \stackrel{\text{def}}{=} \{J \cap Y \mid J \in \mathcal{J}_y\}$$

base di intorni di y in Y.

Dim. Esercizio (usare le definizioni).

Spazi metrici

Def. Sia X un insieme non vuoto. Una funzione $d: X \times X \to \mathbb{R}$ è detta *metrica* o *distanza* su X se valgono le seguenti proprietà $\forall x, y, z \in X$:

- (1) $d(x, y) = 0 \Leftrightarrow x = y$
- (2) d(x, y) = d(y, x)
- (3) $d(x, y) \leq d(x, z) + d(z, y)$ (disuguaglianza triangolare).

Oss. $d \geqslant 0$ infatti $\forall x, y \in X$ si ha

$$0 = d(x, x) \leqslant d(x, y) + d(y, x) = 2d(x, y).$$

Def. Uno spazio metrico (X, d) è un insieme non vuoto X munito di una metrica d su X.

Esempio. Per ogni insieme non vuoto X consideriamo la *metrica discreta*

$$d_{\text{dis}}: X \times X \rightarrow \mathbb{R}$$

$$d_{ ext{dis}}(x,y) = egin{cases} 0 & ext{se } x = y \ 1 & ext{se } x
eq y. \end{cases}$$

 (X, d_{dis}) è detto spazio metrico discreto.

Esempio. Metrica Euclidea su \mathbb{R} : $d(x,y) = |x-y|, \forall x,y \in \mathbb{R}$.

Def. (X, d) spazio metrico, $x \in X$, r > 0. Il sottoinsieme

$$B_d(x, r) := \{ y \in X \mid d(x, y) < r \} \subset X$$

è detto boccia aperta di centro x e raggio r.

$$\bar{B}_d(x,r) := \{ y \in X \mid d(x,y) \leqslant r \} \subset X$$

è detto boccia chiusa di centro x e raggio r.

Oss. $x \in B_d(x,r) \subset \bar{B}_d(x,r)$.

Teor. (X, d) spazio metrico \Rightarrow

$$\mathcal{B}_d := \{ B_d(x, r) \mid x \in X, r > 0 \}$$

base per una topologia \mathcal{T}_d su X (topologia indotta da d o top. metrica).

Dim. Oss. precedente $\Rightarrow \bigcup_{x \in \mathcal{X}} B(x, r) = X$ (proprietà (1) delle basi).

$$\forall x_1, x_2 \in X \ \forall r_1, r_2 > 0 \ \forall y \in B(x_1, r_1) \cap B(x_2, r_2) \rightsquigarrow$$

$$r := \min(r_1 - d(x_1, y), r_2 - d(x_2, y)) > 0$$

 $\forall z \in \mathcal{B}(y,r) \Rightarrow d(x_1,z) \leqslant d(x_1,y) + d(y,z) < d(x_1,y) + r \leqslant r_1 \Rightarrow z \in \mathcal{B}(x_1,r_1)$ e similmente $z \in \mathcal{B}(x_2,r_2) \Rightarrow$

$$y \in B(y, r) \subset B(x_1, r_1) \cap B(x_2, r_2)$$
 (proprietà (2) delle basi). \square

Oss. $U \in \mathcal{T}_d \Leftrightarrow \forall x \in U \exists r > 0 \text{ t.c. } B_d(x, r) \subset U.$

Def. Uno spazio topologico (X, \mathcal{T}) è detto *spazio metrizzabile* se esiste una metrica d su X che induce la topologia di X, ossia $\mathcal{T} = \mathcal{T}_d$.

Esempio. Gli intervalli aperti limitati di \mathbb{R} sono le bocce aperte rispetto alla metrica Euclidea $\Rightarrow \mathbb{R}$ metrizzabile.

Oss. X_{dis} metrizzabile perché $B_{d_{\text{dis}}}(x, 1) = \{x\}, \ \forall x \in X$.

Oss. X_{ban} non metrizzabile se $|X| \geqslant 2$.

Spazi Euclidei. Su \mathbb{R}^n consideriamo la *metrica Euclidea*

$$d(x,y) = \|x-y\| = \left(\sum_{j=1}^{n} (x_j - y_j)^2\right)^{\frac{1}{2}}$$

per ogni $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n)\in\mathbb{R}^n$. Ricordiamo che la disuguaglianza triangolare consegue dalla disuguaglianza di Cauchy-Schwarz per il prodotto scalare canonico di \mathbb{R}^n .

Def. La topologia su \mathbb{R}^n indotta dalla metrica Euclidea si chiama topologia Euclidea.

Oss. Consideriamo sempre \mathbb{R}^n con la topologia Euclidea, se non specificato diversamente.

In modo simile si definisce la topologia Euclidea su \mathbb{C}^n come quella indotta dalla metrica Euclidea

$$d(x,y) = \|x-y\| = \left(\sum_{j=1}^{n} |x_j - y_j|^2\right)^{\frac{1}{2}}$$

per ogni $x=(x_1,\ldots,x_n), y=(y_1,\ldots,y_n)\in\mathbb{C}^n$.

Prop. Sia (X, d) spazio metrico e $Y \subset X$ sottospazio topologico. Allora la restrizione $d_Y = d|_{Y \times Y} : Y \times Y \to \mathbb{R}$ è una metrica su Y che induce la topologia di sottospazio.

Dim. Che d_Y sia una metrica seque subito dal fatto che lo è d.

Che la topologia indotta su Y da d_Y sia la topologia di sottospazio segue subito dall'uguaglianza

$$B_{d_Y}(y,r) = B_d(y,r) \cap Y$$

 $\forall y \in Y \in Y \in T > 0$, che è di immediata verifica.

Cor. X spazio metrizzabile e $Y \subset X$ sottospazio $\Rightarrow Y$ metrizzabile.

Sottospazi notevoli di \mathbb{R}^n

 $B^n := \{x \in \mathbb{R}^n \mid ||x|| \leq 1\} \subset \mathbb{R}^n \text{ disco o boccia } n\text{-dimensionale.}$

 $S^n:=\{x\in\mathbb{R}^{n+1}\mid ||x||=1\}\subset\mathbb{R}^{n+1} \text{ sfera o ipersfera }n\text{-dimensionale}.$

 $I := [0, 1] \subset \mathbb{R}$ intervallo (chiuso).

 $\mathbb{R}_+ := [0, +\infty[\subset \mathbb{R} \text{ semiretta (chiusa)}].$

Oss. $S^n \subset B^{n+1} \subset \mathbb{R}^{n+1}$.

 $B^0 = \{0\}.$

 $B^1 = [-1, 1] \subset \mathbb{R}$.

 B^2 è il disco chiuso unitario in \mathbb{R}^2 .

 B^3 è la boccia chiusa unitaria in \mathbb{R}^3 .

 $S^0 = \{-1, 1\} \subset \mathbb{R}$ è uno spazio discreto con due punti.

 $S^1 \subset \mathbb{R}^2$ è la circonferenza unitaria.

 $S^2 \subset \mathbb{R}^3$ è la sfera unitaria.

Oss. I, \mathbb{R}_+ , S^n , B^n sono metrizzabili con la metrica Euclidea.

Applicazioni continue

Def. Siano X e Y spazi topologici. Un'applicazione $f: X \to Y$ è continua se $\forall V \subset Y$ aperto in Y si ha $f^{-1}(V) \subset X$ aperto in X.

In altre parole $f: X \to Y$ è continua \Leftrightarrow le preimmagini tramite f degli aperti sono aperti.

Oss. $f^{-1}(Y - V) = X - f^{-1}(V)$. Quindi $f: X \to Y$ continua $\Leftrightarrow \forall C \subset Y$ chiuso in Y si ha $f^{-1}(C) \subset X$ chiuso in X.

Prop. $f: X \to Y \ e \ g: Y \to Z \ continue \Rightarrow g \circ f: X \to Z \ continua.$

Dim. Segue subito dal fatto che $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \ \forall \ V \subset Z$. \square

Oss. $c: X \to Y$ costante $\Rightarrow c$ continua.

 $id_X: X \to X$ continua per ogni spazio topologico X.

 $Y \subset X$ sottospazio top. \Rightarrow mappa d'inclusione $i_Y : Y \hookrightarrow X$ continua.

Restrizioni di applicazioni continue a sottospazi del dominio o del codominio sono continue.

 $\forall f: X_{\text{dis}} \rightarrow Y \text{ è continua}.$

 $\forall f: X \rightarrow Y_{\text{ban}} \text{ è continua}.$

Def. $f: X \to Y$ è aperta se $\forall U \subset X$ aperto in X si ha f(U) aperto in Y. $f: X \to Y$ è chiusa se $\forall C \subset X$ chiuso in X si ha f(C) chiuso in Y.

 $f: X \to Y$ aperta $\Leftrightarrow f$ manda aperti in aperti.

 $f: X \to Y$ chiusa $\Leftrightarrow f$ manda chiusi in chiusi.

Oss. Una costante $c: \mathbb{R} \to \mathbb{R}$ è continua e chiusa, ma non aperta.

 $f: X \to Y$ aperta $\Rightarrow f(X) \subset Y$ aperto.

 $f: X \to Y$ chiusa $\Rightarrow f(X) \subset Y$ chiuso.

 $A \subset X$ aperto (risp. chiuso) \Leftrightarrow inclusione $i_A : A \hookrightarrow X$ aperta (risp. chiusa).

Esempio. $id_{\mathbb{R}} : \mathbb{R}_{dis} \to \mathbb{R}$ continua e biiettiva ma l'inversa non è continua.

Def. Siano X e Y spazi topologici. Un'applicazione $f: X \to Y$ è detta omeomorfismo se valgono le seguenti:

- (1) f è biiettiva
- (2) f è continua
- (3) f^{-1} è continua.

Diciamo che X e Y sono *omeomorfi* se esiste un omeomorfismo $f: X \to Y$ e in tal caso scriviamo $X \cong Y$.

N.B. Gli omeomorfismi si chiamano anche applicazioni bicontinue.

Oss. $id_X : X \to X$ omeomorfismo per ogni spazio X (stessa topologia).

 $f: X \to Y$ omeomorfismo $\Rightarrow f^{-1}: Y \to X$ omeomorfismo.

 $f: X \to Y \in g: Y \to Z$ omeomorfismi $\Rightarrow g \circ f: X \to Z$ omeomorfismo.

L'omeomorfismo è una relazione d'equivalenza tra spazi topologici.

Oss. Data $f: X \to Y$ bilettiva, si ha f^{-1} continua $\Leftrightarrow f$ aperta $\Leftrightarrow f$ chiusa (attenzione, serve bilettiva).

 $f: X \to Y$ omeo $\Leftrightarrow f$ continua, bijettiva e aperta (o chiusa).

Cor. Per ogni spazio X l'insieme

$$Omeo(X) \stackrel{\text{def}}{=} \{ f : X \to X \mid f \text{ omeo} \}$$

è un gruppo rispetto a composizione, detto gruppo degli omeomorfismi.

N. B. In generale Omeo(X) è un gruppo molto grande e molto complicato, quasi mai abeliano (a parte alcuni casi banali).

Def. Una proprietà \mathcal{P} è detta *proprietà topologica* se $\forall X, Y$ spazi topologici, X ha \mathcal{P} e $Y \cong X \Rightarrow Y$ ha \mathcal{P} .

In altre parole \mathcal{P} è una proprietà topologica se valendo per uno spazio X vale anche per tutti gli spazi omeomorfi a X, ovvero \mathcal{P} è *invariante* a meno di omeomorfismi. Studieremo in seguito importanti proprietà topologiche.

La Topologia studia le proprietà topologiche degli spazi. Un problema fondamentale è capire se due spazi topologici X e Y sono omeomorfi.

Prop. La metrizzabilità è una proprietà topologica.

Dim. Diamo solo un'idea, lasciando i dettagli per Esercizio.

X metrizzabile e $Y \cong X \Rightarrow \exists d_X$ metrica su X che ne induce la topologia e $\exists f: Y \to X$ omeo \rightsquigarrow

$$d_Y:Y imes Y o \mathbb{R}$$
 $d_Y(y_1,y_2)=d_X(f(y_1),f(y_2))$

metrica su Y che induce la topologia di Y.

Def. Dati gli spazi X e Y definiamo l'insieme delle applicazioni continue

$$C(X,Y) \stackrel{\text{def}}{=} \{f: X \to Y \mid f \text{ continua}\}.$$

Oss. $C(X,Y) \neq \emptyset$ (contiene almeno le costanti). Omeo $(X) \subset C(X,X)$.

Prop. $f: X \to Y$ è continua $\Leftrightarrow \forall x \in X, \forall V \subset Y$ intorno di $f(x) \in Y$, $\exists U \subset X$ intorno di x in X t.c. $f(U) \subset V$.

Dim. Non è restrittivo limitarci a considerare solo intorni aperti.

 \Rightarrow $\forall V \subset Y$ intorno aperto di $f(x) \Rightarrow x \in U := f^{-1}(V) \subset X$ aperto.

 $\forall V \subset Y$ aperto, se $f^{-1}(V) = \emptyset$ allora è aperto.

Se $f^{-1}(V) \neq \emptyset$, $\forall x \in f^{-1}(V) \Rightarrow V$ intorno di f(x) in $Y \Rightarrow \exists U \subset X$ intorno di x t.c. $f(U) \subset V \Rightarrow x \in U \subset f^{-1}(V) \Rightarrow f^{-1}(V)$ aperto in $X \Rightarrow f$ continua.

Oss. Nella Prop. possiamo limitarci a considerare intorni U e V aperti e/o basici (se abbiamo preventivamente fissato basi di intorni in X e Y). La dimostrazione richiede solo piccole modifiche.

Continuità negli spazi metrici

Cor. Siano (X, d_X) e (Y, d_Y) spazi metrici. Allora $f: X \to Y$ è continua $\Leftrightarrow \forall x_0 \in X, \forall \varepsilon > 0, \exists \delta > 0 \text{ t.c. } \forall x \in X \text{ si abbia che}$

$$d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \varepsilon$$
.

Dim. Segue subito dalla Prop. e dall'Oss. usando come intorni basici le bocce aperte $V = B_{d_Y}(f(x), \varepsilon)$ e $U = B_{d_X}(x_0, \delta)$.

Oss. In generale δ dipende da x_0 e da ε .

La definizione di funzione continua generalizza quella studiata in Analisi. Le funzioni reali di variabili reali la cui continuità è nota dall'Analisi saranno considerate continue senza bisogno di dimostrazione.

Oss. Applicazioni affini reali $f: \mathbb{R}^n \to \mathbb{R}^m$, f(x) = Ax + b con $A \in M_{m,n}(\mathbb{R})$ e $b \in \mathbb{R}^m$, sono continue.

Idem per applicazioni affini complesse $\mathbb{C}^n \to \mathbb{C}^m$.

<u>Affinità reali</u> $f: \mathbb{R}^n \to \mathbb{R}^n$, f(x) = Ax + b con $A \in GL_n(\mathbb{R})$ e $b \in \mathbb{R}^n$, sono omeomorfismi (l'inversa è anch'essa affinità quindi continua).

Idem per affinità complesse $\mathbb{C}^n \to \mathbb{C}^n$.

In particulare, per b=0, le applicazioni lineari $\mathbb{R}^n \to \mathbb{R}^m$ sono continue e gli automorfismi lineari $\mathbb{R}^n \to \mathbb{R}^n$ sono omeomorfismi (idem su \mathbb{C}).

Esempio. exp: $\mathbb{R} \to [0, +\infty[$, $\exp(x) = e^x$ è continua e infatti è omeo

con inversa
$$\log:]0, +\infty[\to \mathbb{R}, \text{ pure essa continua} \Rightarrow \mathbb{R} \cong]0, +\infty[.$$
 $g:]0, 1[\to]0, +\infty[, g(x) = \frac{x}{1-x} \text{ omeo con inversa } g^{-1}(y) = \frac{y}{1+y}.$

]0, 1[
$$\cong$$
] a , b [\cong] a , $+\infty$ [\cong] $-\infty$, a [\cong \mathbb{R} .

$$[0,1[\cong [a,b[\cong]a,b]\cong [0,+\infty[\cong [a,+\infty[\cong]-\infty,a].$$

 $[0,1] \cong [a,b]$ ma $[0,1] \ncong \mathbb{R}$ (lo vedremo più avanti).

Chiusura e frontiera negli spazi metrici

Def. Dato (X, d) spazio metrico, $\forall x \in X$ e $\forall A, B \subset X$ non vuoti, definiamo la distanza tra x e A

$$d(x, A) := \inf\{d(x, a) \mid a \in A\} \geqslant 0$$

e la distanza tra A e B

$$d(A, B) := \inf\{d(a, b) \mid a \in A, b \in B\} \ge 0.$$

Oss. $x \in A \not\leftarrow \Rightarrow d(x, A) = 0$.

 $A \cap B \neq \emptyset \not = d(A, B) = 0.$

L'inf non è necessariamente un minimo.

Esempio. In \mathbb{R} con la distanza Euclidea d(0,]0, 1[) = 0.

Prop. (X, d) spazio metrico, $\emptyset \neq A \subset X \Rightarrow$

$$d_A:X\to\mathbb{R}$$

$$d_A(x) = d(x, A)$$

funzione continua.

Oss. In altre parole la distanza da un sottoinsieme è continua.

 $Dim. \ \forall x_0, x \in X, \ \forall a \in A \ per \ la \ disuguaglianza triangolare e passando all'inf si ha$

$$d(x, a) \leqslant d(x, x_0) + d(x_0, a) \implies d_A(x) - d_A(x_0) \leqslant d(x, x_0)$$

da cui scambiando x con x_0 si deduce

$$|d_A(x)-d_A(x_0)|\leqslant d(x,x_0).$$

Si ottiene quindi la continuità ponendo $\delta = \varepsilon$.

Oss. $f: X \to \mathbb{R}$ continua \Rightarrow i sottoinsiemi di X definiti da un'equazione continua $f(x) = \alpha$, o da una disequazione $f(x) \geqslant \alpha$ o $f(x) \leqslant \alpha$, con $\alpha \in \mathbb{R}$, sono chiusi in X in quanto preimmagini di chiusi.

Analogamente i sottoinsiemi di X definiti da $f(x)>\alpha$ o da $f(x)<\alpha$ o da $f(x)\neq\alpha$ sono aperti in X.

Prop. Siano (X, d) uno spazio metrico e $\emptyset \neq A \subset X$. Allora

$$Cl_X A = \{x \in X \mid d(x, A) = 0\}.$$

Dim. Poniamo $C = \{x \in X \mid d(x, A) = 0\}$ e dimostriamo $Cl_X A = C$.

 \subset C chiuso in X perché definito da un'equazione continua.

 $A \subset C \Rightarrow \operatorname{Cl}_X A \subset C$.

Cor. $\forall x \in X$ si ha $x \in \operatorname{Cl}_X A \Leftrightarrow d(x, A) = 0$.

Cor. $\forall x \in X$ si ha $x \in \operatorname{Fr}_X A \Leftrightarrow d(x, A) = d(x, X - A) = 0$.

Cor. $A \subset X$ chiuso, $x \in X$ e $d(x, A) = 0 \Rightarrow x \in A$.

N. B. $\emptyset \neq A$, $B \subset X$ chiusi e $d(A, B) = 0 \Rightarrow A \cap B \neq \emptyset$.

Spazi vettoriali normati

Def. Sia V uno spazio vettoriale reale o complesso. Una funzione

$$\|\cdot\|:V\to\mathbb{R}$$

è detta norma su V se valgono le seguenti $\forall v, w \in V, \forall \alpha \in \mathbb{R}$ o \mathbb{C} :

- $(1) \|v\| = 0 \Rightarrow v = 0_V$
- $(2) \|\alpha v\| = |\alpha| \|v\|$
- (3) $||v+w|| \le ||v|| + ||w||$ (disuguaglianza triangolare per la norma).

Uno spazio vettoriale normato $(V, \|\cdot\|)$ è uno spazio vettoriale reale o complesso V munito di una norma.

Oss.
$$||0_V|| = ||0 \ 0_V|| = 0 ||0_V|| = 0$$
. $0 = ||0_V|| = ||v - v|| \le ||v|| + ||-v|| = 2||v||, \ \forall \ v \in V \Rightarrow ||\cdot|| \ge 0$.

Prop. Sia V uno spazio vettoriale normato. Allora la funzione

$$d: V \times V \to \mathbb{R}$$
$$d(v, w) = ||v - w||$$

è una metrica su V. Pertanto V è anche uno spazio metrico e quindi uno spazio topologico.

Dim. Esercizio.

Oss. Si ha: $|||v|| - ||w||| \le ||v - w|| \Rightarrow ||\cdot|| : V \to \mathbb{R}$ continua. Esercizio.

Def. Due metriche d_1 e d_2 su X sono equivalenti se $\exists C_1, C_2 > 0$ t.c.

$$C_1d_1(x,y) \leqslant d_2(x,y) \leqslant C_2d_1(x,y), \quad \forall x,y \in X.$$

Due norme $\|\cdot\|_1$ e $\|\cdot\|_2$ su V sono equivalenti se $\exists C_1, C_2 > 0$ t.c.

$$C_1||v||_1 \leqslant ||v||_2 \leqslant C_2||v||_1, \quad \forall v \in V.$$

Oss. Sono due relazioni d'equivalenza.

Norme equivalenti su V inducono metriche equivalenti. Esercizio.

Prop. Metriche equivalenti su un insieme X inducono la stessa topologia.

Dim. $d_1, d_2: X \times X \to \mathbb{R}$ metriche equivalenti $\rightsquigarrow C_1, C_2 > 0$ t.c.

$$C_1d_1 \leqslant d_2 \leqslant C_2d_1 \implies B_{d_1}(x, C_2^{-1}r) \subset B_{d_2}(x, r) \subset B_{d_1}(x, C_1^{-1}r).$$

Esempio. $\forall x = (x_1, \dots, x_n) \in \mathbb{R}^n \circ \mathbb{C}^n$, definiamo:

$$||x||_1 := |x_1| + \dots + |x_n|;$$

 $||x||_{\infty} := \max(|x_1|, \dots, |x_n|).$

Sono equivalenti tra loro e alla norma Euclidea || · ||:

$$||x||_{\infty} \leqslant ||x||_1 \leqslant n||x||_{\infty}, \quad ||x||_{\infty} \leqslant ||x|| \leqslant \sqrt{n} \, ||x||_{\infty}.$$

Pertanto su \mathbb{R}^n e \mathbb{C}^n potremo usare indifferentemente una di queste norme per rappresentare la topologia Euclidea.

Esempio. Su \mathbb{R}^n e \mathbb{C}^n si considera anche la p-norma (o norma ℓ^p), $\forall p \geqslant 1$:

$$\|x\|_p:=\left(\sum\limits_{j=1}^n|x_j|^p
ight)^{\!\!rac{1}{p}}\!\!.$$

Si ha subito la disuguaglianza

$$\|x\|_{\infty}\leqslant \|x\|_{p}\leqslant n^{\frac{1}{p}}\|x\|_{\infty}$$

da cui per il Teorema dei due carabinieri

$$\lim_{p\to +\infty}\|x\|_p=\|x\|_\infty.$$

Sfere unitarie $\|x\|_p=1$ in \mathbb{R}^2 per alcuni valori di $p\geqslant 1$.

Oss. $\|\cdot\|_p$ non soddisfa la disuguaglianza triangolare $\forall p \in]0, 1[$.

Enunciamo senza dimostrare il teorema seguente.

Teor. dim $V < \infty \Rightarrow$ tutte le norme su V sono tra loro equivalenti.

N.B. dim $V = \infty \Rightarrow$ esistono norme non equivalenti su V.

Lavoro di gruppo. (a) $B^2 \cong [-1, 1]^2 \subset \mathbb{R}^2$. (b) $\operatorname{Fr}_{\mathbb{R}^2} B^2 = S^1$.

Lezione 5 Immersioni

Immersioni, immersioni locali e omeo locali

Def. Un'applicazione tra spazi topologici $f: X \to Y$ è detta

- (1) immersione se $f|_{f(X)}: X \to f(X)$ omeo, dove $f(X) \subset Y$ ha la top. di sottospazio. Scriviamo $f: X \hookrightarrow Y$ e diciamo X si immerge in Y.
- (2) immersione locale se $\forall x \in X$, $\exists U \subset X$ intorno di x t.c. $f|_U : U \to Y$ è un'immersione. Diciamo che X si immerge localmente in Y.
- (3) omeomorfismo locale se $\forall x \in X$, $\exists U \subset X$ intorno di x t.c. $f(U) \subset Y$ intorno di f(x) e $f_{|U}: U \to f(U)$ omeo.

N. B. In inglese: immersione = embedding; immersione loc. = immersion.

Oss. $X \subset Y$ sottospazio topologico $\Leftrightarrow i_X : X \hookrightarrow Y$ immersione.

Oss. $f: X \hookrightarrow Y$ immersione $\not = \Rightarrow f$ continua e iniettiva.

 $X \hookrightarrow Y \Leftrightarrow X$ omeomorfo ad un sottospazio di Y e a meno di immersione possiamo considerare $X \subset Y$.

 $f: X \to Y$ immersione loc. $\not \Leftarrow \Rightarrow f$ continua e loc. iniettiva $(\forall x \in X, \exists U \subset X \text{ intorno di } x \text{ t.c. } f_{|U}: U \to Y \text{ iniettiva}).$ Immersione $\not \Leftarrow \Rightarrow$ immersione loc.

 $f: X \to Y$ omeo loc. $\Leftrightarrow f: X \to Y$ immersione loc. aperta.

Esempio. $\forall k < n$ consideriamo le immersioni canoniche

$$\mathbb{R}^{k} \hookrightarrow \mathbb{R}^{n} \qquad \mathbb{C}^{k} \hookrightarrow \mathbb{C}^{n}$$

$$x \mapsto (x, 0_{\mathbb{R}^{n-k}}) \qquad x \mapsto (x, 0_{\mathbb{C}^{n-k}}).$$

Abbiamo anche: $B^k \hookrightarrow B^n$, $S^k \hookrightarrow S^n$.

Possiamo considerare $\mathbb{R}^k \subset \mathbb{R}^n$, $\mathbb{C}^k \subset \mathbb{C}^n$, $S^k \subset S^n$, $B^k \subset B^n$, $\forall k < n$. Queste immersioni sono chiuse.

Lavoro di gruppo. $f: [0, 2\pi[\rightarrow S^1, f(t) = (\cos t, \sin t) \text{ omeo?}]$