

DATOS GENERALES

Asignatura:	Introducción al aprendizaje automático				
Clave:		Grupo:			
Horario:	Viernes: 17:00 – 21:00 Sábados: 9:00 – 13:00	Maestría:	Internet de las Cosas (IoT)	Salón:	
Profesor:	Dr. Gaddiel Desirena Ló	pez	E-mail:	gdesirena@gmail.com	

PRESENTACIÓN

Debido a nuevas tecnologías de cómputo, hoy día el Aprendizaje automático no es como el del pasado. Nació del reconocimiento de patrones y de la teoría que dice que las computadoras pueden aprender sin ser programadas para realizar tareas específicas; investigadores interesados en la inteligencia artificial deseaban saber si las computadoras podían aprender de datos. El aspecto iterativo del Aprendizaje automático es importante porque a medida que los modelos son expuestos a nuevos datos, éstos pueden adaptarse de forma independiente. Aprenden de cálculos previos para producir decisiones y resultados confiables y repetibles. Es una ciencia que no es nueva – pero que ha cobrado un nuevo impulso. Esta asignatura se enfoca en conceptos introductorios de Aprendizaje Automático para cubrir conocimientos y habilidades sobre espacios vectoriales, regresión lineal y redes neuronales.

ACTITUDES Y VALORES

siguientes aspectos:
Participación activa, con compromiso, perseverancia y actitud positiva.
El cumplimiento de las normas de disciplina establecidas.
El cumplimiento en tiempo y forma de las actividades que se encomienden como trabajo independiente.
El desarrollo de espíritu crítico y autocrítico (constructivo) en el análisis del desempeño propio y de los compañeros.

Se espera que al cursar esta asignatura se desarrolle responsabilidad ante la actividad académica, manifiesta en al menos los

☐ El sentido de la ética, evitando, en particular, cometer actos deshonestos en la realización de las actividades evaluativas.

☐ El desarrollo de la capacidad para identificar características personales al afrontar procesos de aprendizaje y, como consecuencia, para aprender con mayor independencia.

 $f \Box$ Diálogo abierto, directo y respetuoso tanto con el profesor como con los compañeros.

☐ Tolerancia y respeto

CONTENIDO

UNIDAD 1. Introducción al aprendizaje automático

- 1.1 ¿Qué es aprendizaje automático?
- 1.2 Definición de aprendizaje
- 1.3 Elementos de aprendizaje automático
- 1.4 Paradigmas del aprendizaje automático
- 1.5 Aplicaciones de aprendizaje automático
- 1.6 Tuercas y pernos de la teoría del aprendizaje automático

UNIDAD 2 Espacios vectoriales y afines y mapeos lineales

- 2.1 Espacios vectoriales
 - Grupos
 - Espacios vectoriales
 - Sub espacios vectoriales
- 2.2 Independencia lineal
- 2.3 Base y rango
 - Generación de conjunto y bases
 - Rango
- 2.4 Mapeos lineales
 - Representación matricial de mapas lineales
 - Cambio de base
 - Imagen y Kernel
- 2.5 Espacios afines
 - Sub espacios afines
 - Mapeos afines

UNIDAD 3. Regresión lineal

- 3.1 Formulación de problemas
- 3.2 Estimación de parámetros
 - Estimación máxima de probabilidad (MLE)
 - Sobreajuste en regresión lineal
 - Estimación máxima posterior (MAP)
 - Estimación de MAP como regularización
- 3.3 Regresión lineal bayesiana
 - Modelo
 - Predicciones previas
 - Distribución posterior
 - Predicciones posteriores
 - Cálculo de la probabilidad marginal
- 3.4 Máxima probabilidad como proyección ortogonal

UNIDAD 4. Discriminadores lineales y redes neuronales artificiales

4.1 Clasificadores lineales

4.2 Redes neuronales artificiales

- Neurona
- Algoritmo de aprendizaje perceptrónico
- Perceptrones multicapa
- Retropropagación

EVALUACIÓN DEL APRENDIZAJE

Productos	% de Calificación
Participación en línea	20
Tareas	30
Producto Integrador (Examen ó Proyecto)	50
TOTAL:	100%

REFERENCIAS BIBLIOGRÁFICAS:

- Real-Time Systems And Programming Languages: Ada, Real-Time Java, And C/Real-Time POSIX 4th Edition (International Computer Science Series)
- Hard Real-Time Computing Systems Predictable Scheduling Algorithms and Applications, Third Edition.
- Siewert, S. Real-Time Embedded Components and Systems. Mercury Learning & information Ed. 2015
- Navabpour, S. Time-triggered Runtime Verification of Real-time Embedded Systems. https://uwspace.uwaterloo.ca/bitstream/handle/10012/8168/Navabpour_Samaneh.pdf?sequence=3&isAllowed=y. 2014