

UCLA; University of Cambridge

NeurIPS 2019

Introduction

Autoregression model: $\prod_t p(\mathbf{x}_t | \mathbf{x}_{1:t-1})$

- Useful in forecasting;
- Deterministic, not generative.

GAN:

- Model directly $p(x_{1:T})$ without leveraging AR prior;
- May not capture stepwise dependencies.

The model

Embedding & Reconstructions:

S - static feature;

X - temporal features;

Hs - latent vector space of S;

Ht - latent vector space of X;

Embedding function:

$$\mathbf{h}_{\mathcal{S}} = e_{\mathcal{S}}(\mathbf{s}), \qquad \mathbf{h}_t = e_{\mathcal{X}}(\mathbf{h}_{\mathcal{S}}, \mathbf{h}_{t-1}, \mathbf{x}_t)$$

Recovery function:

$$\tilde{\mathbf{s}} = r_{\mathcal{S}}(\mathbf{h}_s), \qquad \tilde{\mathbf{x}}_t = r_{\mathcal{X}}(\mathbf{h}_t)$$

The e and r can be any function; Here e is recurrent net and r is attention-based decoder.

The model

Generator & Discriminator

Hs - latent vector space of S;

Ht - latent vector space of X;

Zs - Gaussion dist.;

Zt - Wiener process.

Generating function:

$$\hat{\mathbf{h}}_{\mathcal{S}} = g_{\mathcal{S}}(\mathbf{z}_{\mathcal{S}}), \qquad \hat{\mathbf{h}}_{t} = g_{\mathcal{X}}(\hat{\mathbf{h}}_{\mathcal{S}}, \hat{\mathbf{h}}_{t-1}, \mathbf{z}_{t})$$

Discriminator function:

$$\tilde{y}_{\mathcal{S}} = d_{\mathcal{S}}(\tilde{\mathbf{h}}_{\mathcal{S}})$$
 $\tilde{y}_t = d_{\mathcal{X}}(\mathbf{\bar{u}}_t, \mathbf{\bar{u}}_t)$

The g and d can be any function;

Here

g is recurrent net and

d is bi-directional recurrent net

Approaches

$$\mathcal{L}_{R} = \mathbb{E}_{\mathbf{s}, \mathbf{x}_{1:T} \sim p} [\|\mathbf{s} - \tilde{\mathbf{s}}\|_{2} + \sum_{t} \|\mathbf{x}_{t} - \tilde{\mathbf{x}}_{t}\|_{2}]$$

$$\mathcal{L}_{U} = \mathbb{E}_{\mathbf{s}, \mathbf{x}_{1:T} \sim p} \left[\log y_{\mathcal{S}} + \sum_{t} \log y_{t} \right]$$
$$+ \mathbb{E}_{\mathbf{s}, \mathbf{x}_{1:T} \sim \hat{p}} \left[\log (1 - \hat{y}_{\mathcal{S}}) + \sum_{t} \log (1 - \hat{y}_{t}) \right]$$

$$\mathcal{L}_{S} = \mathbb{E}_{\mathbf{s}, \mathbf{x}_{1:T} \sim p} \left[\sum_{t} \|\mathbf{h}_{t} - g_{\mathcal{X}}(\mathbf{h}_{\mathcal{S}}, \mathbf{h}_{t-1}, \mathbf{z}_{t}) \|_{2} \right]$$

(a) TimeGAN

Other Approaches

TimeGAN
RCGAN
C-RNN-GAN
T-Forcing
P-Forcing
WaveNet
WaveGAN

RNNs:

T-Forcing: teacher- forcing P-Forcing: professor-forcing

CNNs:

WaveNet:

WaveGAN: GAN counter part of WaveNET

(1) Visualization:

• tSNE, PCA

(2) Discriminative Score :

- Original sequence -> real; generated sequence -> not real.
- An off-the-shelf (RNN) classifier is trained to distinguish between the two classes.
- Classification error on the held-out test set.

(3) Predictive Score:

- Using the synthetic dataset, we train a post-hoc sequence-prediction model (by optimizing a 2-layer LSTM) to predict next-step temporal vectors over each input sequence.
- Then, we evaluate the trained model on the original dataset.
- Performance is measured in terms of the mean absolute error (MAE);

Expt #1

we experiment on sequences from autoregressive multivariate Gaussian models

$$\mathbf{x}_t = \phi \mathbf{x}_{t-1} + \mathbf{n}$$
, where $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma \mathbf{1} + (1 - \sigma)\mathbf{I})$

Table 1: Results on Autoregressive Multivariate Gaussian Data (Bold indicates best performance).

Table 1: Results on Autoregressive Multivariate Gaussian Data (Bold indicates best performance).								
Temporal Correlations (fixing $\sigma=0.8$) Feature Correlations (fixing $\phi=0.8$)								
Settings	$\phi = 0.2$	$\phi = 0.5$	$\phi = 0.8$	$\sigma = 0.2$	$\sigma = 0.5$	$\sigma = 0.8$		
Discriminative Score (Lower the better)								
TimeGAN	.175±.006	.174±.012	$.105 \pm .005$.181±.006	.152±.011	.105±.005		
RCGAN	.177±.012	.190±.011	$.133\pm.019$.186±.012	.190±.012	.133±.019		
C-RNN-GAN	.391±.006	.227±.017	.220±.016	.198±.011	.202±.010	.220±.016		
T-Forcing	.500±.000	.500±.000	$.499 \pm .001$.499±.001	.499±.001	$.499 \pm .001$		
P-Forcing	.498±.002	.472±.008	$.396 \pm .018$.460±.003	.408±.016	.396±.018		
WaveNet	.337±.005	.235±.009	$.229 \pm .013$.217±.010	.226±.011	$.229 \pm .013$		
WaveGAN	.336±.011	.213±.013	.230±.023	.192±.012	.205±.015	.230±.023		
Predictive Score (Lower the better)								
TimeGAN	.640±.003	.412±.002	.251±.002	.282±.005	.261±0.002	.251±.002		
RCGAN	.652±.003	.435±.002	$.263\pm.003$.292±.003	.279±.002	$.263\pm.003$		
C-RNN-GAN	.696±.002	.490±.005	$.299 \pm .002$.293±.005	.280±.006	$.299 \pm .002$		
T-Forcing	.737±.022	.732±.012	.503±.037	.515±.034	.543±.023	$.503 \pm .037$		
P-Forcing	.665±.004	.571±.005	$.289 \pm .003$.406±.005	.317±.001	$.289 \pm .003$		
WaveNet	.718±.002	.508±.003	.321±.005	.331±.004	.297±.003	.321±.005		
WaveGAN	.712±.003	.489±.001	$.290 \pm .002$.325±.003	.353±.001	$.290 \pm .002$		

(1) Sine; (2) Stocks; (3) Energy; (4) Events

(1) Sine; (2) Stocks; (3) Energy; (4) Events

Table 2: Results on Multiple Time-Series Datasets (Bold indicates best performance).

Metric	Method	Sines	Stocks	Energy	Events
	TimeGAN	.011±.008	.102±.021	.236±.012	.161±.018
	RCGAN	.022±.008	.196±.027	.336±.017	.380±.021
Discriminative	C-RNN-GAN	.229±.040	.399±.028	.499±.001	.462±.011
Score	T-Forcing	.495±.001	.226±.035	.483±.004	.387±.012
	P-Forcing	.430±.027	.257±.026	.412±.006	$.489 \pm .001$
(Lower the Better)	WaveNet	.158±.011	.232±.028	.397±.010	.385±.025
	WaveGAN	.277±.013	.217±.022	.363±.012	.357±.017
	TimeGAN	.093±.019	.038±.001	.273±.004	.303±.006
	RCGAN	.097±.001	.040±.001	.292±.005	$.345 \pm .010$
Predictive	C-RNN-GAN	.127±.004	.038±.000	.483±.005	.360±.010
Score	T-Forcing	$.150\pm.022$	$.038 \pm .001$.315±.005	.310±.003
	P-Forcing	.116±.004	.043±.001	.303±.006	.320±.008
(Lower the Better)	WaveNet	.117±.008	.042±.001	.311±.005	.333±.004
	WaveGAN	.134±.013	.041±.001	.307±.007	.324±.006
	Original	.094±.001	.036±.001	.250±.003	.293±.000

Table 3: Source-of-Gain Analysis on Multiple Datasets (via Discriminative and Predictive scores).

Metric	Method	Sines	Stocks	Energy	Events
	TimeGAN	.011±.008	.102±.021	.236±.012	.161±.018
Discriminative	w/o Supervised Loss	.193±.013	.145±.023	.298±.010	.195±.013
Score	ore w/o Embedding Net.		.260±.021	.286±.006	.244±.011
(Lower the Better)	w/o Joint Training	.048±.011	.131±.019	.268±.012	.181±.011
	TimeGAN	.093±.019	.038±.001	.273±.004	.303±.006
Predictive	w/o Supervised Loss	.116±.010	$.054 \pm .001$.277±.005	.380±.023
Score	w/o Embedding Net.	.124±.002	$.048 \pm .001$.286±.002	.410±.013
(Lower the Better)	w/o Joint Training	.107±.008	.045±.001	.276±.004	.348±.021

Conclusion

- We propose TimeGAN:
 - a novel framework for time-series generation that combines the versatility of the unsupervised **GAN approach** with the control over conditional temporal dynamics afforded by supervised **autoregressive models**.
- State-of-the-art benchmarks
- Future: privacy framework.

Thanks!