Απειροστές περιστροφές και γωνιακή ταχύτητα

- Θεωρήστε ότι έχετε ένα σώμα το οποίο περιστρέφεται ως προς άξονα:
- Θεωρήστε ότι ένα σημείο P πάνω στο σώμα με διάνυσμα θέσης $\vec{r}(t)$
 - □ Εξετάζουμε την κίνηση του P ως προς ακίνητο παρατηρητή

ightharpoonup Έστω $\vec{r}(t+dt) \equiv \vec{r}(t) + d\vec{r}$ όπου $d\vec{r}$ η απειροστή μετατόπιση

$$\hat{r} \left(t + dt \right) \qquad \vec{r} \left(t \right)$$

$$|d\vec{r}| = r \sin\theta d\phi$$
 kal $d\vec{r} \perp d\vec{\phi}$ $d\vec{r} \perp \vec{r}$

ightarrow Χρησιμοποιώντας το διάνυσμα \hat{n} $\hat{n} \times \vec{r} = |\vec{r}| \sin \theta$

$$ightharpoonup$$
 Επομένως: $d\vec{r}=d\phi\hat{n} imes \vec{r}$

$$ightharpoonup$$
 Επομένως: $d\vec{r}=d\phi\hat{n} imes\vec{r}$ $d\vec{r}=d\phi\hat{n} imes\vec{r}$ $d\vec{r}=d\phi\hat{n}$

$$ightharpoonup$$
 Η σχέση $d\vec{r}=d\vec{\phi} imes \vec{r}$ ισχύει μόνο για απειροστές περιστροφές

$$ightharpoonup$$
 Η ταχύτητα του σημείου P για συνεχή περιστροφή θα είναι: $\vec{u}_P = \frac{d\vec{r}}{dt} = \frac{d\vec{\phi}}{dt} \times \vec{r}$
 $ightharpoonup$ Ορίζουμε γωνιακή ταχύτητα ω: $\vec{\omega} \equiv \frac{d\vec{\phi}}{dt}$ οπότε: $\vec{u}_P = \vec{\omega} \times \vec{r}$

$$ightharpoonup$$
 Ορίζουμε γωνιακή ταχύτητα ω: $\vec{\omega} \equiv \frac{a \varphi}{dt}$ οπότε: $\vec{u}_P = \vec{\omega} \times \vec{b}$

- Τα διανύσματα ω και dφ δεν είναι ακριβώς διανύσματα αλλά ψευδο-διανύσματα
 - ψευδοδιανύσματα περιστρέφονται σαν διανύσματα αλλά είναι αμετάβλητα ως προς χωρικούς αντικατοπτρισμούς (X
 ightharpoonup - X, Y
 ightharpoonup - Y, Z
 ightharpoonup - Z)

Πίνακας περιστροφής

- lacksquare Ο πίνακας U εξαρτάται εν γένει από τον χρόνο και έχουμε δει ότι: $\vec{r} = \sum r_i \vec{e}_i = \sum r_i \vec{e}_i'$
- $lue{}$ Η ταχύτητα επομένως του σημείου με διάνυσμα θέσης \vec{r}

$$\vec{r} = \sum_i \dot{r_i} \vec{e}_i'$$
 τα \vec{e}_i' είναι σταθερά και δεν μεταβάλλονται με τον χρόνο

- ightarrow Αλλά αν προσπαθήσω να γράψω την ταχύτητα του $ec{r}$ στο περιστρεφόμενο σύστημα τα \vec{e}_i δεν είναι σταθερά και μεταβάλλονται με τον χρόνο
- ightharpoonup Η χρονική παράγωγος του \vec{r} θα αποτελείται από δυο τμήματα:

$$\vec{r} = \sum_{i} \dot{r}_{i} \vec{e}_{i} + \sum_{i} r_{i} \dot{\vec{e}}_{i}$$
Thus is very weak problem when $\vec{r}_{i} = \vec{r}_{i} \cdot \vec{e}_{i}$

ightharpoonup Ποια η χρονική παράγωγος των $\dot{\vec{e}}_i$? $\dot{\vec{e}}_i = \frac{d}{dt} \left(\sum_i U_{ij} \vec{e}'_j \right) = \sum_i \dot{U}_{ij} \vec{e}'_j$

$$\Rightarrow \dot{\vec{e}}_i = \sum_j \dot{U}_{ij} \left(\sum_k U_{jk}^{-1} \vec{e}_k \right) \Rightarrow \dot{\vec{e}}_i = \sum_j \left(\dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}} \right)_{ij} \vec{e}_j$$

ightharpoonup Επομένως καταλήγουμε ότι: $\vec{r} = \sum_i \dot{r_i} \vec{e}_i + \sum_i r_i \left(\dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}} \right)_{ij} \vec{e}_j$

$$\Rightarrow \dot{\vec{r}} = \sum_{i} \left[\dot{r}_{i} + \left(\dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}} \right)_{ji} r_{j} \right] \vec{e}_{j}$$

Διόρθωση για το γεγονός ότι οι άξονες συντεταγμένων δεν είναι σταθεροί χρονικά

Πίνακας περιστροφής

- \Box Είδαμε ότι στο περιστρεφόμενο σύστημα συντεταγμένων: $\vec{r} = \sum \left| \dot{r_i} + (\dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}})_{ii} r_j \right| \vec{e}_j$
- $oldsymbol{\Box}$ Ορίζουμε τον πίνακα: $\mathbf{A} = \dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}}$ ο οποίος είναι αντισυμμετρικός
 - ightharpoonup Α αντισυμμετρικός γιατί: $\mathbf{U} \cdot \mathbf{U}^{\mathrm{T}} = \mathbf{1} \Rightarrow \frac{d}{dt} (\mathbf{U} \cdot \mathbf{U}^{\mathrm{T}}) = 0 \Rightarrow \dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}} + \mathbf{U} \cdot \dot{\mathbf{U}}^{\mathrm{T}} = 0$ $\mathbf{A} = \dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}} \Longrightarrow \mathbf{A}^{\mathrm{T}} = (\dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}})^{\mathrm{T}} \Longrightarrow \mathbf{A}^{\mathrm{T}} = (\mathbf{U}^{\mathrm{T}})^{\mathrm{T}} \cdot \dot{\mathbf{U}}^{\mathrm{T}} \Longrightarrow \mathbf{A}^{\mathrm{T}} = \mathbf{U} \cdot \dot{\mathbf{U}}^{\mathrm{T}}$
 - ightharpoonup Επομένως: $\dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}} + \mathbf{U} \cdot \dot{\mathbf{U}}^{\mathrm{T}} = 0 \Rightarrow \mathbf{A} + \mathbf{A}^{\mathrm{T}} = 0 \Rightarrow \mathbf{A} = -\mathbf{A}^{\mathrm{T}} \Rightarrow \mathbf{A}$ αντισυμμετρικός
- \blacksquare A είναι ένας 3 \times 3 αντισυμμετρικός πίνακας Καθορίζεται πλήρως με τον ορισμό των στοιχείων πάνω από την κύρια διαγώνιο

Επομένως τα στοιχεία a_{12} , a_{13} και a_{23}

Επομένως τα στοιχεία
$$\mathbf{a}_{12}$$
, \mathbf{a}_{13} και \mathbf{a}_{23}
$$\mathbf{A} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ 0 & -\omega_1 \\ 0 \end{pmatrix}$$
 αντισυμμετρικός
$$\mathbf{A} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$

lacksquare Χρησιμοποιώντας φορμαλισμό δεικτών: $A_{jk} = \sum \mathcal{E}_{ijk} \omega_k$ με \mathcal{E}_{ijk} το σύμβολο Levi-Civita

$$\varepsilon_{ijk} = \begin{cases} 1 & (i,j,k) = (1,2,3),(2,3,1),(3,1,2) \\ -1 & (i,j,k) = (1,3,2),(3,2,1),(2,1,3) \\ 0 & & & & & & & & & & & & & & \\ \end{cases}$$

Ταχύτητα σε περιστρεφόμενο σύστημα συντεταγμένων

- lacksquare Είδαμε ότι μπορούμε να γράψουμε: $\mathbf{A}_{ij} = \sum \varepsilon_{ijk} \omega_k$
- lacksquare Τα ω_i είναι οι συνιστώσες του διανύσματος: $ec{m{\omega}} = \sum \omega_i ec{e}_i$ γωνιακή ταχύτητα
- Με βάση τα παραπάνω, μπορούμε να γράψουμε τις ποσότητες:

$$\dot{\vec{e}}_i = \sum_j \left(\dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}} \right)_{ij} \vec{e}_j \quad \text{kal} \qquad \dot{\vec{r}} = \sum_i \left[\dot{r}_i + \left(\dot{\mathbf{U}} \cdot \mathbf{U}^{\mathrm{T}} \right)_{ji} r_j \right] \vec{e}_j$$

$$\dot{\vec{e}}_i = \sum_j A_{ij} \vec{e}_j = -\sum_{jk} \varepsilon_{ijk} \omega_k \vec{e}_j$$

- Από το εξωτερικό γινόμενο διανυσμάτων: $\vec{e}_k \times \vec{e}_j = -\varepsilon_{kji} \vec{e}_i = \varepsilon_{jki} \vec{e}_i$ Γο διάνυσμα της τονύτητος 0ς του
- lacksquare Το διάνυσμα της ταχύτητας θα γραφεί: $\dot{\vec{r}} = \sum \left[\dot{r_i} + \mathbf{A}_{ji}r_j\right] \vec{e}_j \Rightarrow \dot{\vec{r}} = \sum \left[\dot{r_i} + r_i\vec{\omega} \times\right] \vec{e}_i$
- Η παραπάνω απόδειξη ισχύει εν γένει, για οποιοδήποτε διάνυσμα w και την παράγωγό του ως προς χρόνο σε περιστρεφόμενο σύστημα αναφοράς:

$$\vec{w} = \sum_{i} w_{i} \vec{e}_{i} = \sum_{i} w_{i}' \vec{e}_{i}'$$

$$\dot{\vec{w}} = \sum (\dot{w}_i + w_i \vec{\omega} \times) \vec{e}_i$$

 $\vec{w} = \sum_{i=0}^{r} (\dot{w}_i + w_i \vec{\omega} \times) \vec{e}_i$ Άθροισμα δυο όρων, ο ένας εκ των οποίων είναι κάθετος στα διανύσματα \vec{e}_i και ίσος με $w_i \vec{\omega} \times \vec{e}_i$

Επιτάχυνση σε περιστρεφόμενο σύστημα αναφοράς

- lacktriangle Θεωρήστε ένα σώμα με θέση που δίνεται από το διάνυσμα: $\vec{r} = \sum_i r_i \vec{e}_i$
- \Box Η ταχύτητά του θα είναι: $\vec{r} = \sum_{i} (\dot{r_i} + r_i \vec{\omega} \times) \vec{e_i}$ (1)
- Η επιτάχυνση του σώματος (στο περιστρεφόμενο σύστημα) προκύπτει από την παράγωγο της (1): $\vec{a} = d(\vec{r})/dt$
 - ightharpoonup Είδαμε όμως: $\vec{w} = dw/dt = \sum_i (\vec{w}_i + (\vec{w}_i \vec{\omega} \times) \vec{e}_i$ και θεωρήστε ότι: $w_i = \dot{r}_i + r_i \vec{\omega} \times$
 - ightharpoonup Επομένως θα έχουμε: $\vec{a} = \sum_i \left[\frac{d}{dt} (\dot{r_i} + r_i \vec{\omega} \times) \right] + (\dot{r_i} + r_i \vec{\omega} \times) \vec{\omega} \times \vec{e_i}$

$$\Rightarrow \vec{a} = \sum \begin{bmatrix} \ddot{r_i} & +\dot{r_i}\vec{\omega} \times & +r_i\vec{\omega} \times & +\dot{r_i}\vec{\omega} \times +\dot{r_i}\vec{\omega} \times \vec{\omega} \times \end{bmatrix} \ \vec{e_i}$$

$$\Rightarrow \vec{a} = \sum_{i} \left[\ddot{r_i} + 2\dot{r_i}\vec{\omega} \times + \dot{r_i}\vec{\omega} \times \vec{\omega} \times + r_i\dot{\vec{\omega}} \times \right] \vec{e_i}$$
 διάνυσμα επιτάχυνσης σε περιστρεφόμενο σύστημα

□ Η έκφραση αυτή της επιτάχυνσης οδηγεί στην εισαγωγή «φαινομενικών» δυνάμεων

2°ς Νόμος του Newton σε περιστρεφόμενο σύστημα

Θεωρούμε δυο νέα διανύσματα ορισμένα στο περιστρεφόμενο σύστημα (αγνοώντας τις διορθώσεις από την περιστροφή των αξόνων)

$$\vec{v}_{\text{σωμ.}} = \sum_{i} \dot{r}_{i} \vec{e}_{i}$$
 και $\vec{a}_{\text{σωμ.}} = \sum_{i} \ddot{r}_{i} \vec{e}_{i}$ (προσοχή: δεν είναι ταχύτητα ή επιτάχυνση)

Με τα παραπάνω διανύσματα, το διάνυσμα της επιτάχυνσης στο περιστρεφόμενο σύστημα αναφοράς μπορεί να γραφεί:

περιοτρεφομένο σου πρα αναφορας μπορεί να γραφεί:
$$\vec{a} = \sum_i \left[\ddot{r_i} + 2\dot{r_i}\vec{\omega} \times + r_i\vec{\omega} \times (\vec{\omega} \times) + r_i\dot{\vec{\omega}} \times \right] \vec{e_i}$$
 επιτάχυνση σε περιστρεφόμενο σύστημα συντεταγμένων

- Επομένως για περιστρεφόμενο σύστημα αναφοράς, οι εξισώσεις κίνησης είναι:
 - ightharpoonup Σύμφωνα με τον 2° νόμο του Newton: $\vec{F}=m\vec{a}$
 - Σύμφωνα με την έκφραση της πραγματικής επιτάχυνσης α συναρτήσει της α_{σωμ.}
 εμφανίζονται 3 νέοι όροι:

$$\vec{a}_1 = \vec{\omega} \times (\vec{\omega} \times \vec{r}) \quad \text{φυγόκεντρος επιτάχυνση} \\ \vec{a}_2 = 2\vec{\omega} \times \vec{v}_{\text{σωμ.}} \quad \text{Coriolis επιτάχυνση} \quad \text{συνεπίπεδη της κίνησης και} \\ \vec{a}_3 = \dot{\vec{\omega}} \times \vec{r} \quad \text{Euler επιτάχυνση} \quad \text{κάθετη στη φυγόκεντρο.} \\ \text{Εμφανίζεται λόγω μεταβολής της } \omega$$

Μη αδρανειακές δυνάμεις με φορμαλισμό Lagrange

- Θα θέλαμε να βρούμε τις μη αδρανειακές δυνάμεις χρησιμοποιώντας τον φορμαλισμό Lagrange
- □ Η Lagrangian ενός σώματος που κινείται σε ένα δυναμικό, γράφεται:

$$L = \frac{1}{2}m\dot{\vec{r}}^2 - V(r)$$
 (1)

Στο στατικό σύστημα συντεταγμένων θα γραφεί:

$$L = \frac{1}{2}m\dot{\vec{r}}'^2 - V(r) \Longrightarrow L = \frac{1}{2}m\sum_{i}\dot{r}'_{i}\dot{r}'_{i} - V(r)$$
 (2)

- Οι εξισώσεις κίνησης χρησιμοποιώντας τις στατικές συντεταγμένες βρίσκονται από τις εξισώσεις Euler-Lagrange και την μορφή της Lagrangian από την (2)
- Ποια θα ήταν η μορφή των εξισώσεων κίνησης χρησιμοποιώντας τις συντεταγμένες του περιστρεφόμενου συστήματος
- \square Ενώ η παράγωγος του r ως προς t θα είναι: $\dot{r_i}' = \sum_i \left(\dot{U}_{ji}r_j + U_{ji}\dot{r_j}\right)$ (4)
- \square Με βάση τις εξισώσεις (3) και (4) μπορούμε να αντικαταστήσουμε στην (2) και τις εξισώσεις Ε-L και να χρησιμοποιήσουμε τα r_i σαν τις δυναμικές μεταβλητές

Μη αδρανειακές δυνάμεις με φορμαλισμό Lagrange

- lacksquare Παραλείποντας τους δείκτες θα μπορούσαμε να γράψουμε: $\dot{r} = \dot{\mathbf{U}}r + \mathbf{U}\dot{r}$
- \Box Επομένως η Lagrangian θα γραφεί: $L \approx \frac{1}{2} m (\dot{\mathbf{U}}r + \mathbf{U}\dot{r}) (\dot{\mathbf{U}}r + \mathbf{U}\dot{r}) V$ $\Rightarrow L \approx \frac{1}{2} m (\dot{\mathbf{U}}\dot{\mathbf{U}}r^2 + \mathbf{U}\dot{\mathbf{U}}r\dot{r} + \mathbf{U}\mathbf{U}\dot{r}^2) V$ (παραλείποντας όρους χ2
- $\Rightarrow L \approx \frac{1}{2} m \left(\dot{\mathbf{U}} \dot{\mathbf{U}} \dot{r}^2 + \mathbf{U} \dot{\mathbf{U}} \dot{r}^2 + \mathbf{U} \mathbf{U} \dot{r}^2 \right) V \qquad \text{(παραλείποντας όρους x2)}$ $\Box \text{ H εξίσωση Euler-Lagrange: } \partial_t \left(\frac{\partial L}{\partial \dot{r}} \right) = \frac{\partial L}{\partial r} \Rightarrow \partial_t \left(\mathbf{U} \dot{\mathbf{U}} r + \mathbf{U} \mathbf{U} \dot{r} \right) = \dot{\mathbf{U}} \dot{\mathbf{U}} r + \mathbf{U} \dot{\mathbf{U}} \dot{r} V'$

$$\Rightarrow$$
 $\dot{\mathbf{U}}\dot{\mathbf{U}}r + \mathbf{U}\ddot{\mathbf{U}}r + \mathbf{U}\dot{\mathbf{U}}\dot{r} + \mathbf{U}\mathbf{U}\ddot{r} = V'$
φυγόκεντρος Euler $\vec{\omega} \times \dot{r}$ επιτάχυνση σώματος Coriolis

□ Άσκηση: Προσπαθήστε να λύσετε το παραπάνω με τους σωστούς δείκτες! Σε κάποιους από τους όρους θα πρέπει να θυμηθείτε την συνθήκη ορθοκανονικότητας (π.χ. ο όρος UUr που δίνει r)

Εφαρμογές

- □ Το κλασικό παράδειγμα ενός περιστρεφόμενου συστήματος είναι η Γη:
 - ightharpoonup Η γωνιακή ταχύτητα είναι: $\omega = \frac{2\pi}{24 \times 3600} s^{-1} \approx 7 \times 10^{-5} \ rad/sec$
- Μια μάζα η οποία κρέμεται στην άκρη ενός εκκρεμούς βρισκόμενο σε γεωγραφικό πλάτος λ :

- □ Οι περιστρεφόμενες συντεταγμένες συντεταγμένες είναι:
 - *z*: κατακόρυφος άξονας

 - x: «ανατολικά»

y: προς τον βόρρειο πόλο σώματος

 \Box Η γωνιακή ταχύτητα $\vec{\omega}$ στο σύστημα συντεταγμένων του σώματος θα είναι:

$$\vec{\omega} = \omega(0, \cos \lambda, \sin \lambda)$$

Θεωρούμε ότι η μάζα του εκκρεμούς έχει διάνυσμα θέσης $\vec{r} = (0.0, R_{\rm vn})$ (σε συντεταγμένες σώματος):

Εφαρμογές - Κίνηση στην επιφάνεια της Γης

- □ Ας θεωρήσουμε αρχικά ότι η μάζα δεν κινείται (οπότε η δύναμη Coriolis είναι 0)
- $\vec{\omega} = \omega(0,\cos\lambda,\sin\lambda)$
- Χρειάζεται επομένως να υπολογίσουμε την φυγόκεντρο δύναμη

- ightarrow Η δύναμη της βαρύτητας είναι: $\vec{F}_{\rm etalpha
 ho.} = -mg\hat{z}$
- ightarrow Η φυγόκεντρος δύναμη είναι: $\vec{F}_{\text{φυγοκ.}} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$

$$\Rightarrow \vec{F}_{\text{φυγοκ.}} = -m\vec{\omega} \times (\omega R \cos \lambda \hat{x})$$

$$\Rightarrow \vec{F}_{\varphi \nu \gamma \circ \kappa} = -m\omega^2 R \left(-\cos^2 \lambda \hat{z} + \sin \lambda \cos \lambda \hat{y} \right)$$

- □ Η φυγόκεντρος δύναμη αποτελείται από δυο όρους:
 - ightharpoonup Η μάζα θα αποκλίνει προς την -y-διεύθυνση («νότια»): $\frac{\omega^2 R}{g_{45^o}} \approx 0.3\%$
 - ♦ Το αποτέλεσμα «χάνεται» στους πόλους και ισημερινό
 - ightharpoonup Η βαρυτική δύναμη «ελαττώνεται» κατά ένα ποσοστό: $\frac{\omega^2 R}{g_{45^\circ}} \approx 0.3\%$
 - \Rightarrow Το αποτέλεσμα «χάνεται» στους πόλους ($cos\lambda = 0$) και γίνεται μέγιστο στον ισημερινό

Εφαρμογές - Παράδειγμα δύναμης Coriolis

- 🗖 Ας θεωρήσουμε ότι αφήνουμε μια μάζα να πέσει από την κορυφή ενός κτιρίου
- □ Πως επιρεάζει η δύναμη Coriolis την κίνηση του σώματος?
 - Το αποτέλεσμα της δύναμης αυτής θα είναι πολύ μικρό
 - Σε χαμηλότερη τάξη μεγέθους, η ταχύτητα θα είναι: $\vec{v}_o = -gt\hat{z}$ (το σώμα αφέθηκε την στιγμή t=0, να πέσει από το σημείο x=y=0, z=z):
 - ightharpoonup Η δύναμη Coriolis θα είναι: $\vec{F}_{Coriolis} = -2\vec{\omega} \times \vec{v} = -2\vec{\omega} \times \vec{v}_0 + \cdots$ $\Rightarrow \vec{F}_{Coriolis} = -2\omega(0,\cos\lambda,\sin\lambda) \times (-gt\hat{z}) \Rightarrow \vec{F}_{Coriolis} = -2\omega\cos\lambda(-gt)\hat{x}$
 - ➤ Η δύναμη αυτή θα είναι (1^η τάξη αναπτύγματος της επιτάχυνσης του σώματος):

$$\Rightarrow \vec{F}_{Coriolis} = m \dot{\vec{v}}_1 = 2m \omega g t \cos \lambda \hat{x} \\ \Leftrightarrow \text{'Onou:} \quad \vec{v} = \vec{v}_0 + \vec{v}_1 + \cdots$$

$$\vec{v} = \omega g t^2 \cos \lambda \hat{x}$$

- ightharpoonup Η απόκλιση της θέσης του σώματος είναι: $d\vec{r} = \int \vec{v}_1 dt = \frac{\omega g t^3 \cos \lambda}{3} \hat{x}$
- Το σώμα αυτό θα αποκλίνει «ανατολικά»
- Στο νότιο ημισφαίριο, λ<0, το σώμα θα αποκλίνει «δυτικά»</p>
- Για ένα 10-όροφο κτίριο η απόκλιση είναι ~5mm

Εφαρμογές - Το εκκρεμές Foucault

Έχουμε ένα σφαιρικό εκκρεμές

- Μπορούμε να γράψουμε την Lagrangian του συστήματος σε σφαιρικές συντεταγμένες όπως έχουμε κάνει πολλές φορές
- Αλλά στην περίπτωση αυτή είναι καλύτερο να χρησιμοποιήσουμε την μέθοοο των ποιγοτω. σαν ανεξάρτητες συντεταγμένες Η Lagrangian θα είναι: $L = \frac{1}{2}m(\dot{x}'^2 + \dot{y}'^2 + \dot{z}'^2) - mgz'$ την μέθοδο των πολ/στων Lagrange και να αφήσουμε τα x, y, z
 - - σε «αδρανειακές» συντεταγμένες και θα πρέπει να μετατρέψουμε σε συντεταγμένες σώματος (περιστροφικές)
- \Box Η ταχύτητα «σώματος», $v_{σωμ}$ θα είναι: $\vec{v}_{aδρaν} = \vec{v}_{σωμ} + \vec{\omega} \times \vec{r}$
- \Box Άρα $\vec{v}_{a\delta\rho av.}^2 = \vec{v}_{a\delta\rho av.} \cdot \vec{v}_{a\delta\rho av.}$ $\Rightarrow \vec{v}_{a\delta\rho av.}^{2} = \vec{v}_{\sigma\omega\mu.}^{2} + \vec{v}_{\sigma\omega\mu.} \cdot (\vec{\omega} \times \vec{r}) + (\vec{\omega} \times \vec{r}) \cdot \vec{v}_{\sigma\omega\mu.} + (\vec{\omega} \times \vec{r}) \cdot (\vec{\omega} \times \vec{r})$ (2)
- \Box Αλλά $\vec{\omega} = \omega(0,\cos\lambda,\sin\lambda)$ ενώ είδαμε ότι: $\omega \sim 7 \times 10^{-5} \Rightarrow (\vec{\omega} \times \vec{r})^2 \approx 0$ (3)
- \Box Τέλος ο όρος $\vec{v}_{\text{σωμ.}} \cdot (\vec{\omega} \times \vec{r})$ μπορεί να γραφεί $\vec{v}_{\text{σωμ.}} \cdot (\vec{\omega} \times \vec{r}) = \vec{\omega} \cdot (\vec{r} \times \vec{v}_{\text{σωμ.}})$

$$= \vec{\omega} \cdot \left[(y\dot{z} - z\dot{y})\hat{x} - (x\dot{z} - z\dot{x})\hat{y} + (x\dot{y} - y\dot{x})\hat{z} \right] = -\omega_y(x\dot{z} - z\dot{x}) + \omega_z(x\dot{y} - y\dot{x})$$
(5)

Το εκκρεμές Foucault

- **Σ**υλλέγοντας τους όρους από τις εξισώσεις (3), (4) και (5) η (2) γίνεται: $\dot{x}'^2 + \dot{y}'^2 + \dot{z}'^2 = \dot{x}^2 + \dot{y}^2 + \dot{z}^2 + 2\omega\cos\lambda(\dot{x}z \dot{z}x) + 2\omega\sin\lambda(\dot{y}x \dot{x}y) + O(\omega^2)$
- \square Υποθέτουμε ότι το z είναι \sim σταθερό:
 - ightharpoonup Τότε ο όρος της Lagrangian $\dot{z}^2 = 0$
 - ightharpoonup Επίσης μπορούμε να αγνοήσουμε τον όρο: $2\omega\cos\lambda(\dot{x}z-\dot{z}x)$
 - \diamondsuit γιατί ο $2^{o\varsigma}$ όρος θα είναι \sim 0
 - \Rightarrow ενώ ο 1^{ος} όρος γράφεται σαν: $\dot{x}z = \frac{d(xz)}{dt}$ που είναι ολικό διαφορικό

και η δυναμική δεν αλλάζει αν προσθέσουμε στην Lagrangian ολικό διαφορικό

- □ Eniong: $z^2 = l^2 x^2 y^2 \Rightarrow z^2 = l^2 \left(1 \frac{x^2 + y^2}{l^2} \right) \Rightarrow z = l \sqrt{1 \frac{x^2 + y^2}{l^2}}$ $\Rightarrow z \approx l \left(1 \frac{x^2 + y^2}{2l^2} \right) \Rightarrow z \approx l \frac{x^2 + y^2}{2l}$
- \Box Επομένως η Lagrangian γίνεται: $L = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) + m\omega \sin \lambda (\dot{y}x \dot{x}y) mg\frac{x^2 + y^2}{2l}$
- □ Μετά τις απλουστεύσεις αυτές μπορούμε να υπολογίσουμε τις εξισώσεις κίνησης:

Το εκκρεμές Foucault – εξισώσεις κίνησης

- **□** Βρήκαμε ότι την Lagrangian: $L = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) + m\omega \sin \lambda(\dot{y}x \dot{x}y) mg\frac{x^2 + y^2}{2l}$
- Οι εξισώσεις θα είναι: $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = \frac{\partial L}{\partial x}$ $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = \frac{d}{dt} (m\dot{x} m\omega \sin \lambda \dot{y}) = m\ddot{x} m\omega \sin \lambda \dot{y}$ $\frac{\partial L}{\partial x} = m\omega \sin \lambda \dot{y} mg\frac{x}{l}$ $\frac{\partial L}{\partial x} = m\omega \sin \lambda \dot{y} mg\frac{x}{l}$
- Aνάλογα για το y: $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) = \frac{\partial L}{\partial y}$ $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}} \right) = \frac{d}{dt} (m\dot{y} + m\omega \sin \lambda x) = m\ddot{y} + m\omega \sin \lambda \dot{x}$ $\frac{\partial L}{\partial y} = -m\omega \sin \lambda \dot{x} mg \frac{y}{l}$ $\frac{\partial L}{\partial y} = -m\omega \sin \lambda \dot{x} mg \frac{y}{l}$
- Οι δυο εξισώσεις μοιάζουν με ένα ζεύγος αρμονικών ταλαντωτών

Το εκκρεμές Foucault - εξισώσεις κίνησης

□ Βρήκαμε ότι οι εξισώσεις κίνησης είναι απλά ένα ζεύγος αρμονικών ταλαντωτών:

$$\ddot{x} + \frac{g}{l}x = 2\omega \sin \lambda \dot{y} \qquad \qquad \ddot{y} + \frac{g}{l}y = -2\omega \sin \lambda \dot{x}$$

- **Δ** Αν βρισκόμασταν στον ισημερινό: $\sin \lambda = 0$ οπότε: $\ddot{x} + \frac{g}{l}x = 0$ και $\ddot{y} + \frac{g}{l}y = 0$
- Για διαφορετικές θέσεις, οι εξισώσεις λένε ότι έχουμε κάποια «πηγή» για τους αρμονικούς ταλαντωτές:
- □ Οι δυο αρμονικοί ταλαντωτές είναι συζευγμένοι
- \Box Ένα trick: Θεωρήστε την μιγαδική ποσότητα $\zeta \equiv x + iy$
- \square Πολ/ζουμε την 2^n εξίσωση με i και την προσθέτουμε στην 1^n εξίσωση:

$$\ddot{x} + i\ddot{y} + \frac{g}{l}(x + iy) = 2\omega \sin \lambda (\dot{y} - i\dot{x}) \Rightarrow \ddot{\zeta} + \frac{g}{l}\zeta = -i2\omega \sin \lambda \dot{\zeta}$$
$$\Rightarrow \ddot{\zeta} + \frac{g}{l}\zeta + i2\omega \sin \lambda \dot{\zeta} = 0 \quad \text{αρμονικός ταλαντωτής με μιγαδική απόσβεση}$$

- lacktriangle Οι λύσεις αυτές ενός αρμονικού ταλαντωτή με απόσβεση αλλά τώρα Q
 ightarrow i Q
- \Box Επομένως θα έχουμε λύσεις της μορφής: $\zeta = e^{iat}$

Το εκκρεμές Foucault - Λύσεις εξίσωσης κίνησης

 Ανάγαμε το πρόβλημα των δυο συζευγμένων ταλαντώσεων σε x-y, σε μια αποσβένουσα ταλάντωση με μιγαδικό παράγοντας ποιότητας

$$\ddot{\zeta} + \frac{g}{l}\zeta + i2\omega\sin\lambda\dot{\zeta} = 0$$
 με λύσεις της μορφής: $\zeta = e^{iat}$

- \Box Αντικατάσταση στην διαφορική εξίσωση δίνει: $-a^2 + \frac{g}{I} 2\omega a \sin \lambda = 0$
- □ Υποθέτουμε ότι ο 2ος όρος είναι αρκετά μεγαλύτερος του 3ου όρου, οπότε οι λύσεις της δευτεροβάθμιας εξίσωσης γίνονται:

$$a \approx -(\omega \sin \lambda) \pm \sqrt{\frac{g}{l}}$$

- $a \approx -(\omega \sin \lambda) \pm \sqrt{\frac{g}{l}}$ \Box Επομένως $\zeta = x + iy = A \times e^{i\sqrt{\frac{g}{l}}t i\omega \sin \lambda t}$ όπου Α μιγαδική σταθερά
 - Η σταθερά Α περιγράφει την αρχική διεύθυνση της ταλάντωσης Αν Α πραγματική η ταλάντωση είναι στην χ-διέυθυνση, αν είναι μιγαδική στην χ
 - Ο όρος του sinλ προκαλεί μικρή αλλαγή στην μιγαδική σταθερά Α
 - ♦ Αν για t=0 ήταν στην x-διεύθυνση μετά από χρόνο t θα έχει αλλάξει h γωνια το χ-у επίπεδο
 - Το εκκρεμές θα ταλαντώνεται στο x-y επίπεδο αλλά ο άξονας περιστροφής θα περιστρέφεται με περίοδο: $T = 2\pi/(\omega \sin \lambda)$