3 逻辑门电路

- 3.1 逻辑门电路简介
- 3.2 基本CMOS逻辑门电路
- 3.3 CMOS逻辑门电路的不同输出结构及参数
- 3.4 类NMOS和BiCMOS逻辑门电路
- *3.5 TTL逻辑门电路
- *3.6 ECL逻辑门电路
- 3.7 逻辑描述中的几个问题
- 3.8 逻辑门电路使用中的几个实际问题
- 3.9 用VerilogHDL描述CMOS逻辑门电路

3. 逻辑门电路

教学基本要求:

- 1、了解半导体器件的开关特性。
- 2、熟练掌握基本逻辑门(与、或、与非、或非、异或门)、三态门、OD门(OC门)和传输门的逻辑功能。
- 3、学会门电路逻辑功能分析方法。
- 4、掌握逻辑门的主要参数及在应用中的接口问题。

3.1 逻辑门电路简介

- 3.1.1 各种逻辑门电路系列简介 3.1.2 开关电路

3.1.1 各种逻辑门电路系列简介

- 1、逻辑门:实现基本逻辑运算和常用逻辑运算的单元电路。
- 2、 逻辑门电路的分类

3.1.1 数字集成电路简介

1.CMOS集成电路:

广泛应用于超大规模、甚大规模集成电路

4000系列 **74HC 74HCT** 74VHC 74VHCT **74LVC 74AUC** 速度两倍于74HC 速度加快 低(超低)电压 速度慢 与TTL不兼容 与TTL兼容 与TTL兼容 速度更加快 负载能力强 负载能力强 负载能力强 抗干扰 功耗低 抗干扰 抗干扰 抗干扰

功耗低

2.TTL 集成电路:

广泛应用于中大规模集成电路

功耗低

74系列 → **74LS**系列 → **74AS**系列 → **74ALS**

功耗低

3.1.2 开关电路

逻辑变量取值0或1,对应电路中电子器件的"闭合"与"断开"。

MOS管或BJT管可以作为开关。

(a) 输出逻辑1

(b) 输出逻辑0

3.2 基本CMOS逻辑门电路

- 3.2.1 MOS管及其开关特性
- 3.2.2 CMOS反相器
- 3.2.3 其他基本CMOS逻辑门电路
- 3.2.4 CMOS传输门

3.2.1 MOS管及其开关特性

CMOS门电路是以MOS管为开关器件。

MOS管的分类:

1. N沟道增强型MOS管的结构和工作原理

1. N沟道增强型MOS管的结构和工作原理

- (1) V_{GS} 控制沟道的导电性
- $\square v_{GS}=0, v_{DS}\neq 0$, 等效背靠背连接的两个二极管, $i_{D}\approx 0$.
- $\square v_{GS}>0$,建立电场 \rightarrow 反型层 $\rightarrow v_{DS}>0$, $i_{D}\neq 0$ 。
- □沟道建立的最小 v_{GS} 值称为开启电压 V₇.

1. N沟道增强型MOS管的结构和工作原理

- (2) V_{GS} 和 V_{DS} 共同作用
- $\square \nu_{GS} > V_T, \nu_{DS} > 0$,靠近漏极的电压减小。
- \square 当 $V_{GS}>V_{T}$, i_{D} 随 V_{DS} 增加几乎成线性增加。
- \square 当 $\nu_{
 m DS}$ \uparrow \rightarrow $\nu_{
 m GD}$ = $(\nu_{
 m GS}$ - $\nu_{
 m DS}$) \leq $V_{
 m T}$,漏极处出现夹断。
- □继续增加 V_{DS} ↑ → 夹断区域变大, i_D 饱和。

2. N沟道增强型MOS管的输出特性和转移特性

输出特性分为

口 截止区:
$$v_{GS} < V_{T}$$
, $i_{D} = 0$

口可变电阻区:沟道产生, i_D 随 v_{DS} 线性增加, r_{ds} 为受 v_{GS} 控制可变电阻。

$$r_{\rm ds} = \frac{\mathrm{d}v_{\rm DS}}{\mathrm{d}i_{\rm D}}\bigg|_{v_{\rm GS} = \mathrm{cost}} = \frac{1}{2K_{\rm n}(v_{\rm GS} - V_{\rm T})}$$

口饱和区: $v_{GS} > V_{T}$, $v_{DS} > v_{GS} - V_{T}$

3. 其他类型的MOS管

- (1) P沟道增强型MOS管
- □ 结构与NMOS管相反。
- □ V_{GS}、V_{DS} 电压极性与NMOS管相反。
- □开启电压以为负值

 $i_D = 0$.

- (2) N沟道耗尽型MOS管
- □ 绝缘层掺入正离子,使衬底表面形成N沟道。
- □ V_{GS}电压可以是正值、零或负值。
- □ V_{GS}达到某一负值V_P,沟道被夹断,

(a) 标准符号

(b) 简化符号

(2) N沟道耗尽型MOS管

N沟道耗尽型MOS管符号如图。

(a)标准符号

(b) 简化符号

(3) P沟道耗尽型MOS管

结构与N沟道耗尽型MOS管相反。 符号如图所示。

(a) 标准符号

(b) 简化符号

4. MOS管开关电路

当v_I < V_T : MOS管截止, 输出高电平

当 $\upsilon_I > V_T$: MOS管工作在可变电阻区,输出低电平

□当 v₁为低电平时:

MOS管截止,相当于开关"断开",输出为高电平。

□当 v_I为高电平时:

MOS管工作在可变电阻区,相当于开关"闭合", 输出为低电平。

□MOS管相当于一个由V_{GS}控制的无触点开关。

5. MOS管开关电路的动态特性

- □由于MOS管栅极、漏极与衬底间电容,栅极与漏极之间 的电容存在, 电路在状态转换之间有电容充、放电过程。
- □输出波形上升沿、下降沿变得缓慢。

3.2.2 CMOS 反相器

1. 工作原理
$$V_{\text{TN}} = 2 \text{ V}$$
 $V_{\text{TP}} = -2 \text{ V}$ $V_{\text{DD}} > (V_{\text{TN}} + |V_{\text{TP}}|)$

$v_{\rm i}$	$v_{ m GSN}$	v_{GSP}	$^{m{arphi}}\mathbf{T_{N}}$	T_{P}	$\nu_{\rm O}$
0 V	0V	-5V	截止	导通	5V
5 V	5 V	0V	导通	截止	0 V

逻辑真值表

逻辑图

逻辑表达式

$$L = A$$

CMOS反相器的重要特点:

第一, v_I 是高电平还是低电平, T_N 和 T_P 中总是一个导通而另一个截止。CMOS反相器的静态功耗几乎为零。

第二, MOS管导通电阻低, 截止电阻高。使充、放电时间常数小, 开关速度更快, 具有更强的带负载能力。

第三,MOS管的, $I_G \approx 0$,输入电阻高。 理论上可以带任意同类门,但负载门输入杂散电容会影响开关速度。

2. 电压传输特性和电流传输特性

电压传输特性 $v_0 = f(v_I)$ 电流传输特性 $i_D = f(v_I)$

3. 输入逻辑电平和输出逻辑电平

4.CMOS反相器的工作速度

带电容负载

输出从低电平跳变为高电平

输出从高电平跳变为低电平

在由于电路具有互补对称的性质,它的开通时间与关闭时间是相等的。平均延迟时间小于10 ns。

3.2.3 其他基本CMOS 逻辑门电路

1. CMOS 与非门

\boldsymbol{A}	В	T_{N1} T_{P1} T_{N2} T_{P2}	L
0	0,3	截止 导通 截止导通	1
0		截止 导通 导通截止	1
净	0	导通 截止 截止 导通	1
1	1	导通 截止 导通 截止	0

与非门

L = AB

N输入的与非门的电路?

输入端增加有什么问题?

2. CMOS 或非门

N输入的或非门的电路的结构?

输入端增加有什么问题?

或非门

$$L = \overline{A + B}$$

例:分析CMOS电路,说明其逻辑功能。

3.2.4 CMOS传输门(双向模拟开关)

1. 传输门的结构及工作原理

1、传输门的结构及工作原理

设 $T_P:|V_{TP}|=2V$, $T_N:V_{TN}=2V$, υ_I 的变化范围为0到+5V。

$$c=0=0V$$
, $\overline{c}=1=+5V$

$$v_{GSN} = 0V - (0V到 + 5V) = (0到 - 5)V$$

$$\upsilon_{GSP} = +5V - (0V到 + 5V) = (5到0)V$$

开关断开, 不能转送信号

2) 当c=1, $\overline{c}=0$ 时

$$a$$
、 v_l = $0V$ ~ $3V$
 v_{GSN} = $5V$ $-(0V$ ~ $+3V)$ = $(5$ ~ $2)V$
 v_{GSN} > V_{TN} , T_N 导通
 b 、 v_l = $2V$ ~ $5V$
 v_{GSP} = $0V$ $-(2V$ ~ $+5V)$
 $=$ $-2V$ ~ $-5V$
 $|v_{GSP}|$ > $|V_T|$, T_P 导通
 C 、 v_l = $2V$ ~ $3V$
 T_N 导通, T_P 导通
 $v_O = v_I$

2. 传输门的应用

传输门组成的异或门

$$B=0$$

TG1断开, TG2导通

$$L=A$$

B=1

TG1导通, TG2断开

2. 传输门的应用

3.3 CMOS逻辑门电路的不同输出结构及参数

- 3.3.1 CMOS逻辑门电路的保护和缓冲电路
- 3.3.2 CMOS漏极开路和三态门电路
- 3.3.3 CMOS逻辑门电路的重要参数

3.3.1 输入保护电路和缓冲电路

采用缓冲电路能统一参数,使不同内部逻辑集成逻辑门电路具有相同的输入和输出特性。

1. 输入端保护电路:

$$(1) \ 0 < v_{\rm I} < V_{\rm DD} + v_{\rm DF}$$

$$\mathbf{D}_1$$
、 \mathbf{D}_2 截止

$$(2)$$
 $u_{
m I} > V_{
m DD} +
u_{
m DF}$ $onumber$ $onumber$

$$(3) \nu_{\rm I} < -\nu_{
m DF}$$
 D_2 导通, D_1 截止 $\nu_{
m G} = -\nu_{
m DF}$

当输入电压不在正常电压范围时,二极管导通,限制了电容两端电压的增加,保护了输入电路。

 R_S 和MOS管的栅极电容组成积分网络,使输入信号的过冲电压延迟且衰减后到栅极。

(2) CMOS逻辑门的缓冲电路

输入、输出端加了反相器作为缓冲电路,所以电路的逻辑功能也发生了变化。增加了缓冲器后的逻辑功能为与非功能

$$L = \overline{\overline{A} + \overline{B}} = \overline{A \cdot B}$$

$$A \cdot B$$

$$A \cdot B$$

$$A \cdot B$$

3.3.2 CMOS漏极开路(OD)门和三态输出门电路

- 1. CMOS漏极开路门
- 1.) CMOS漏极开路门的提出

输出短接,在一定情况下会产 生低阻通路,大电流有可能导 致器件的损毁,并且无法确定 输出是高电平还是低电平。

(2)漏极开路门的结构与逻辑符号

开路输出

- (a)工作时必须外接电源和电阻;
- (b)与非逻辑不变
- (c) 可以实现线与功能;

漏极开路门输出连接

$$L = \overline{AB} \cdot \overline{CD}$$
$$= \overline{AB} + \overline{CD}$$

(2) 上拉电阻对OD门动态性能的影响

Rp的值愈小,负载电容的充电时间常数亦愈小,因而开关速度愈快。但功耗大,且可能使输出电流超过允许的最大值I_{OL(max)}。

Rp的值大,可保证输出电流不能超过允许的最大值I_{OL(max)}、功耗小。但负载电容的充电时间常数亦愈大,开关速度因而愈慢。

当V_O=V_{OL}

最不利的情况:

只有一个 OD门导通,

为保证低电平输出OD门的输出电流不能超过允许的最大值 $I_{OL(max)}$ 且 $V_{O}=V_{OL(max)}$, R_{P} 不能太小。

$$I_{\text{OL}(max)} = \frac{V_{\text{DD}} - V_{\text{OL}(max)}}{R_{\text{p}(min)}} + I_{\text{IL}(\text{total})}$$

$$R_{\text{p}(min)} = \frac{V_{\text{DD}} - V_{\text{OL}(max)}}{I_{\text{OL}(max)} - I_{\text{IL}(\text{total})}}$$

2.三态(TSL)输出门电路

逻辑功能: 高电平有效的同相逻辑门

三态门电路的应用

任何时刻只能有一个门的使能端为有效,其他门输出高阻

3.3.3 CMOS逻辑门电路的重要参数

1. 输入和输出的高、低电平

输入低电平的上限值 $V_{
m IL(max)}$

输入高电平的下限值 $V_{
m IL(min)}$

输出高电平的下限值 $V_{
m OH(min)}$

输出低电平的上限值 $V_{
m OH(max)}$

1. 输入和输出的高、低电平

			X//	X	
类型 参数/单位	$ \begin{pmatrix} V_{\text{DD}} = 5V \\ I_{\text{O}} = 1\text{mA} \end{pmatrix} $	$ 74HC $ $ \begin{pmatrix} V_{\text{DD}} = 5V \\ I_{\text{O}} = 0.02\text{mA} \end{pmatrix} $	$74HCT$ $\begin{pmatrix} V_{\rm DD} = 5V \\ I_{\rm O} = 0.02 \text{mA} \end{pmatrix}$	$74LVC$ $\begin{pmatrix} V_{\rm DD} = 3.3V \\ I_{\rm O} = 0.1 \text{mA} \end{pmatrix}$	$74AUC$ $V_{DD} = 1.8V$ $I_{O} = 0.1 \text{mA}$
V _{IL(max)} /V	1.0	1.5	0.8	0.8	0.6
V _{OL(max)} /V	0.05	0.1	0.1	0.2	0.2
$V_{ m IH(min)}/ m V$	4.0	次 3.5	2.0	2.0	1.2
$V_{ m OH(min)}/ m V$	4.95	4.9	4.9	3.1	1.7
高电平噪声容限(V _{NH} /V)	0.95	1.4	2.9	1.1	0.5
低电平噪声容限(V _{NL} /V)	0.95	1.4	0.7	0.6	0.4

2. 噪声容限

在保证输出电平不变的条件下,输入电平允许波动的范围。它表

示门电路的抗干扰能力

负载门输入高电平时的噪声容限:

VNH —当前级门输出高电平的最小

值时允许负向噪声电压的最大值。

 $V_{
m NH} = V_{
m OH(min)} - V_{
m IH(min)}$ 负载门输入低电平时的噪声容限:

 $V_{
m NL}$ —当前级门输出低电平的最大

值时允许正向噪声电压的最大值

$$V_{\rm NL} = V_{\rm IL(max)} - V_{\rm OL(max)}$$

3.传输延迟时间

传输延迟时间是表征门电路开关速度的参数,它说明门电路在输入脉冲波形的作用下,其输出波形相对于输入波形延迟了多长的时间。

传输延迟时间与电源电压V_{DD}及负载电容大小有关。

表中为各个非门的参数。

类型	74HC	74AHC	74LVC	74AUC
参数	$V_{\rm DD}$ =5V	$V_{\rm DD}$ =5V	$V_{\rm DD}$ =3.3V	$V_{\rm DD}$ =1.8V
$t_{ m PLH}$ 或 $t_{ m PHL}(m ns)$	6	3.8	2.5	0.8

CMOS电路传输延迟时间

4. 功耗

静态功耗:指的是当电路没有状态转换时的功耗,即门电路空载时电源总电流 I_D 与电源电压 V_{DD} 的乘积。

动态功耗:指的是电路在输出状态转换时的功耗,对于TTL门电路来说,静态功耗是主要的。

CMOS电路的静态功耗非常低,CMOS门电路有动态功耗

- 5. 延时-功耗积 是速度功耗综合性的指标.延时-功耗积,用符号DP表示。 几种CMOS系列非门的DP见下页。
 - 6. 扇入与扇出数 扇入数: 取决于逻辑门的输入端的个数。

几种CMOS系列非门的*DP*性能比较

			11.	
系列 参数/单位	74HC04 (V _{DD} =5V)	74AHC04 (V _{DD} =5V)	74LVC04 (V _{DD} =3.3V)	74AUC04 (V _{DD} =1.8V)
功耗电容C _{PD} /pF	21	û 12	8	17
传输延迟时间 t _{pd} /ns(C _L =15pF)	6	3.8	2.5	0.8
功耗P _D /mW(10MHz) 延时功耗积 <i>DP</i> /pJ	9 54	6.8 25.84	2.5 6.25	1 0.8

扇出数: 是指其在正常工作情况下, 所能带同类门电路的最大数目。

(a) 带拉电流负载

当负载门的个数增加时,总的拉电流将增加,会引起输出高电压的降低。但不得低于输出高电平的下限值,这就限制了负载门的个数。

高电平扇出数:

$$N_{
m OH} = rac{I_{
m OH}(驱动门)}{I_{
m IH}(负载门)}$$

IOH: 驱动门的输出端为高电平电流

I_{II}:负载门的输入电流为。

(b)带灌电流负载

当负载门的个数增加时,总的灌电流 I_{OL} 将增加,同时也将引起输出低电压 V_{OL} 的升高。当输出为低电平,并且保证不超过输出低电平的上限值。

$$N_{
m OL} = rac{I_{
m OL}(驱动门)}{I_{
m IL}(负载门)}$$

IoL: 驱动门的输出端为低电平电流

III: 负载门输入端电流之和

3.4 类NMOS和BiCMOS逻辑门电路

3.4.1 <u>类NMOS门电路</u>
3.4.2 <u>BiCMOS门电路</u>

3.4.1 类NMOS门电路

- ◆MOS集成电路分为PMOS、NMOS和CMOS。
- ◆NMOS比PMOS速度快。
- ◆CMOS有静态功耗低、抗干扰能力强等诸多优点成为主流器件。但CMOS电路增加一个输入端必须增加一个PMOS和一个NMOS管,在某些希望芯片面积小的应用,仍采用NMOS。
- ◆类NMOS电路可与CMOS电路相匹配。

1. 类NMOS反相器

当v_I=0: NMOS管截止, PMOS管导通,输出高电平。

当v_I=V_{DD}: NMOS管和PMOS管均导通, NMOS管比PMOS管导通电阻小很多,输出低电平。

2. 类NMOS与非门和或非门

3.4.2 BiCMOS门电路

特点: 功耗低、速度快、驱动力强工作原理:

υι为高电平:

 M_N 、 M_1 和 T_2 导通, M_P 、 M_2 和 T_1 截止,输出 υ_0 为低电平。

 M_1 的导通,迅速拉走 T_1 的基区存储电荷; M_2 截止, M_N 的输出电流全部作为 T_2 管的驱动电流, M_1 、 M_3 加快输出状态的转换

υι为低电平:

 M_P 、 M_2 和 T_1 导通, M_N 、 M_1 和 T_2 截止,输出 υ_0 为高电平。

M₁截止,M_p的输出 电流全部作为T₁的驱动电流。

 T_2 基区的存储电荷通过 M_2 而消散。

M1、M2加快输出状态的转换电路的开关速度可得到改善

3.5 TTL逻辑门电路

- 3.5.1 BJT的开关特性
- 3.5.2 TTL反相器的基本电路
- 3.5.3 改进型TTL门电路

3.5 TTL逻辑门

3.5.1 BJT的开关特性

 $v_{\rm I}$ =0V时: $i_{\rm B}$ ≈0, $i_{\rm C}$ ≈0, $v_{\rm O}$ = $V_{\rm CE}$ ≈ $V_{\rm CC}$, c、e极之间近似于开路。

 $v_{\rm I}$ =5V时: $i_{\rm B} \approx i_{\rm BS}$, $v_{\rm O} = V_{\rm CE} \approx 0.2$ V, c、e极之间近似于短路。

BJT相当于受vr控制的电子开关。

2. BJT的开关时间

BJT饱和与截止两种状态的相

互转换需要一定的时间才能完成。

从截止到导通

开通时间 $t_{\rm on}(=t_{\rm d}+t_{\rm r})$

从导通到截止 关闭时间 $t_{\rm off}(=t_{\rm s}+t_{\rm f})$

2. BJT的开关时间

若带电容负载

 C_L 的充、放电过程均需经历一定的时间,必然会增加输出电压 v_0 波形的上升时间和下降时间,导致基本的BJT反相器的开关速度不高。

故需设计有较快开关速度的实用型TTL门电路。

3.5.2 TTL反相器的基本电路

1. 电路组成

输出级

输入级TI和电阻 $R_{\rm hl}$ 组成。用于提 高电路的开关速度 T,的集电结和发射 极同时输出两个相 位相反的信号,作 为T3和T4输出级的 驱动信号;

2. TTL反相器的工作原理(逻辑关系、性能改善)

(1) 当输入为低电平($\upsilon_{\Gamma} = 0.2 \text{ V}$)

 T_1 深度饱和, $V_{B1}=0.9V$

要使 T_2 、 T_3 导通则要求, V_{B1} =2.1V

 T_2 、 T_3 截止, T_4 、D导通

$$v_{\rm O} = v_{\rm B4} - v_{\rm BE4} - v_{\rm D} =$$
 $(5 - 0.7 - 0.7) \, {\rm V} = 3.6 \, {\rm V}$

	输入	T_1	T_2	T_3	D_4	T_4	输出
•	低电平	饱和	截止	截止	导通	导通	高电平

(2) 当输入为高电平(v_I=3.6 V)

T2、T3饱和导通

T₁:倒置的放大状态。

 T_4 和D截止。

使输出为低电平.

$$v_{\mathrm{O}} = v_{\mathrm{C3}} = V_{\mathrm{CES3}} = 0.2 \mathrm{V}$$

逻辑真值表

输入A	输出L
0	1
1	0

逻辑表达式 L = A

输入	T_1	$\mathbf{T_2}$	T_3	$\mathbf{D_4}$	T_4	输出
低电平	饱和	截止	截止	导通	导通	高电平
高电平	倒置工作	饱和	饱和	截止	截止	低电平

3.5.3 改进型TTL门电路-抗饱和TTL门电路

采用肖特基势垒二极管SBD限制BJT导通时的饱和深度。

SBD导通电压为0.4V。使BJT的c、e间正偏电压钳位在0.4V,而不进入深度饱和。

1.肖特基TTL反相器 电路如图所示。

2. 其他TTL门电路

3.7 逻辑描述中的几个问题。

3.7.1 正负逻辑问题

3.7.2 基本逻辑门的等效符号及其应用

3.7 逻辑描述中的几个问题

3.7.1 正负逻辑问题

1. 正负逻辑的规定

正逻辑体制:将高电平用逻辑1表示,低电平用逻辑0表示

负逻辑体制:将高电平用逻辑0表示,低电平用逻辑1表示

					采用正式	逻辑	与非门]
2. 正负逻辑等效变换				\boldsymbol{A}	В	L		
	某电路输	入与输出	电平表		0	0	1	
	A	В	L		0	1	1	
	L	L	Н	∽	W-1	0	1	
	L	Н	Н		1	1	0	
					必田公理	2 44	ور باد بد	
	H	L	Н		采用负逻	二种	或非门	
	H H	L H	H		不用贝拉 A	Z 料 B		
	<u>H</u>	H	逻辑					
		H				В	L	
	H 正逻辑 与非	H	逻辑或非			<i>B</i>	$oldsymbol{L}$	
	H 正逻辑 与非	H	逻辑或非或		1 1	<i>B</i>	<i>L</i> 0 0	

3.7.2 基本逻辑门电路的等效符号及其应用

系统输入信号中,有的是高电平有效,有的是低电平有效。

低电平有效,输入端加小圆圈; 高电平有效,输入端不加小圆圈。

1、 基本逻辑门电路的等效符号

$$L = \overline{AB} = \overline{A} + \overline{B}$$

$$A \longrightarrow B \longrightarrow B \longrightarrow B \longrightarrow B$$

与非门及其等效符号

$$L = \overline{A + B} = \overline{A} \cdot \overline{B}$$

或非门及其等效符号

$$A \longrightarrow A \longrightarrow B$$

$$A \longrightarrow B$$

$$A \longrightarrow B$$

$$A \longrightarrow B$$

$$L = AB = \overline{A} + \overline{B}$$

$$A = D$$

$$L = AB$$

$$B = AB$$

$$B = AB$$

$$L = A + B = \overline{A \cdot B}$$

$$A = \sum_{B} L = A + B$$

$$A = \sum_{B} L = \overline{A} \cdot \overline{B} = A + B$$

逻辑门等效符号的应用

利用逻辑门等效符号,可实现对逻辑电路进行变换,以简化电路,能减少实现电路的门的种类。

逻辑门等效符号强调低电平有效

$$\stackrel{\square}{=} \stackrel{\square}{AL} = 0 \quad RE = 1$$

使EN为低电平

 G_2 可用或门实现

如RE、AL都要求高电平有效,EN低电平有效

如 \overline{RE} 、 \overline{AL} 都要求低电平有效,EN高电平有效

如RE、AL都要求高电平有效,EN高电平有效

3.8 逻辑门电路使用中的几个实际问题

- 3.8.1 各种门电路之间的接口问题
- 3.8.2 门电路带负载时的接口问题
- 3.8.3 抗干扰措施
- 3.8.4 CMOS小逻辑和宽总线系列

3.8.1 各种门电路之间的接口问题

在数字电路或系统的设计中,往往将不同电源电压的CMOS系列(或CMOS和TTL)两种器件混合使用,以满足综合要求。由于每种器件的电压和电流参数各不相同,因而在这两种器件连接时,要满足驱动器件和负载器件以下条件:

- 1)门电路的输入或输出电压必须处在手册规定的极值之内。
- 2)驱动器件的输出电压必须处在负载器件所要求的输入电压范围,包括高、低电压值(属于电压兼容性的问题)。
 - 3)驱动器件必须对负载器件提供足够大的拉电流和灌电流(属于门电路的扇出数问题);

1. 各种门电路输入或输出电压的极值

(1)输入电压极值 $V_{\text{I(max)}}$ 和 $V_{\text{I(min)}}$ 有些逻辑门电路允许 V_{I} 超过 V_{DD} ,有些不允许。

74HC系列最大输入 $V_{\text{I(max)}}$ = V_{DD} +0.5V, V_{i} 被钳位,不能超过 V_{DD} 。

74AHC系列 $V_{I(max)}$ =7V,采用 V_{DD} =3.3V时,允许 V_{I} >3.3V。

两系列 $V_{\text{I(min)}}$ 均为0V,考虑保护二极管作用, $V_{\text{I(min)}}$ =-0.5V。

1. 各种门电路输入或输出电压的极值

(2)输出电压极值 $V_{O(max)}$ 和 $V_{O(min)}$ 有些逻辑门电路允许 V_{O} 超过 V_{DD} ,有些不允许。
74HC和AHC系列最大输入 $V_{O(max)}=V_{DD}+0.5$ V,不能超过 V_{DD} 。
74LVC系列 $V_{O(max)}=6.5$ V。采用 $V_{DD}=3.3$ V时,允许 $V_{O}>3.3$ V,只要小于6.5V即可。

2. 各种门电路电压兼容性和电流匹配性问题

负载器件所要求的输入电压

对负载器件提供足够大的拉电流和灌电流

驱动电路必须能为负载电路提供合乎相应标准的高、低电平

驱动电路必须能为负载电路提供足够的驱动电流

驱动电路

负载电路

1.)
$$V_{OH(min)}$$
 $\geqslant V_{IH(min)}$

$$V_{OL(max)} \leq V_{IL(max)}$$

$$3$$
, $\mid I_{OH(max)} \mid \geq I_{IH(total)}$

$$I_{OL(max)} \geqslant I_{IL(total)}$$

图中给出了各个系列在给定电源电压下四个逻辑电平参数

3、5V CMOS门驱动3.3V CMOS门

$$I_{OL \text{ (max)}} = 20 \mu A / I_{OH \text{ (max)}} = -20 \mu A$$

$$I_{OL (max)} = 20 \mu A$$
 $I_{OH (max)} = -20 \mu A$
 $V_{IH(min)} = 2V$ $V_{IL(max)} = 0.8V$

$$I_{\text{IH (max)}} = 5\mu A$$
 $I_{\text{IL (max)}} = -5 \mu A$

输出、输入电压

$$V_{OH(min)} \ge V_{IH(min)}$$

$$V_{OH(min)} \ge V_{IH(min)}$$
 $V_{OL(max)} \le V_{IL(max)}$

当负载门个数n小于≤4

4. 3.3V CMOS门驱动5V CMOS门

已知: 3.3V CMOS门系列 V_{OH (min)}=2.4V V_{OL(max)}=0.4V

5V CMOS门系列

 $I_{OL \text{ (max)}} = 0.1 \text{mA}$ $I_{OH \text{ (max)}} = -0.1 \text{mA}$

 $V_{IH(min)}=3.5V$ $V_{IL(max)}=1.5V$

 $I_{\text{IH (max)}} = 5\mu A$ $I_{\text{IL (max)}} = -5 \mu A$

式2、3、4、都能满足,但式1 V_{OH(min)} ≥V_{IH(min)}不满足

采用外接上拉电阻。

$$V_{\mathrm{OH}} = V_{DD} - R_P (I_{\mathrm{O}} + \mathrm{n}I_{\mathrm{IH}})$$

(Io: 驱动门输出级截止管的漏电流)

5. 低电压CMOS电路之间的接口

不同系列逻辑电路之间接口,通常采用专门的逻辑电平转换器,如图所示。 $V_{\rm DDA}$ 和 $V_{\rm DDB}$ 分别为两种系列逻辑电路的电源电压。

3.8.2 门电路带负载时的接口电路

1. 用门电路直接驱动显示器件 门电路的输入为低电平,输出为高电平时, LED发光

$$R = \frac{V_{\rm OH} - V_{\rm F}}{I_{\rm D}}$$

当输入信号为高电平,输出为低电平时,LED发光

$$R = \frac{V_{\text{CC}} - V_{\text{F}} - V_{\text{OL}}}{I_{\text{D}}}$$

例3.8.2 试用74HC04六个CMOS反相器中的一个作为接口电路,使门电路的输入为高电平时,LED导通发光。

解: LED正常发光需要几mA的电流,并且导通时的压降 $V_{\rm F}$ 为1.6 $V_{\rm o}$ 根据表3.3.4查得,当 $V_{\rm cc}$ =5 $V_{\rm ol}$ + $V_{\rm ol}$ =0.1 $V_{\rm ol}$ + $I_{\rm ol}$ =4mA。因此 $I_{\rm ol}$ 取值不能超过4mA。限流电阻的最小值为

$$R = \frac{(5-1.6-0.1)V}{4mA} = 825\Omega$$

2. 机电性负载接口

用各种数字电路来控制机电性系统的功能,而机电系统所需的工作电压和工作电流比较大。要使这些机电系统正常工作,必须扩大驱动电路的输出电流以提高带负载能力,而且必要时要实现电平转移。

如果负载所需的电流不特别大,可以将两个反相器并联作为驱动电路,并联后总的最大负载电流略小于单个门最

大负载电流的两倍。

如果负载所需的电流比较大,则需要在数字电路的输出端与负载之间接入一个功率驱动器件。

3.8.3 抗干扰措施

1. 多余输入端的处理措施

以不改变电路工作状态及稳定可靠为原则。

一是与其他输入端并接,二是直接接电源或地。与门、与非门输入端接电源。或门、或非门输入端接地。

- 2. 去耦合滤波电容
 - 在直流电源和地之间接去耦合滤波电容,滤除干扰信号。
- 3. 接地和安装工艺

将电源地和信号地、模拟和数字地分开。印刷版的连线尽量短,以去除寄生干扰。

3.8.4 小逻辑和宽总线系列

1.小逻辑电路

相比传统逻辑器件,小逻辑芯片体积更小。它是作为大规模可编程逻辑器件的补充或接口。用来修改或完善大规模集成芯片之间连线或外围电路连线。

NanoStar 封装 面积为 0.9mm²

Micro QFN 封装 面积为 1.4mm²

传统封装的2输入与非门

小逻辑封装的2输入与非门

2. 宽总线电路

宽总线是指将多个相同的单元电路封装在一起,以减少体积、改善电路性能,满足计算机、信息传输等设备的总线传输需求。

74AUC16240内部有16个三态输出缓冲器,分成4组,如图(下一页)。使用时,可连成16位、两组8位或其他形式。

74AUC16240功能表

使能 OE	输入A	输出Y
L XÃ	H	$\mathbf L$
tX	L	Н
H	×	高阻

2. 宽总线电路

74AUC16240

3.9 用VerilogHDL描述CMOS门电路

3.9.1 CMOS门电路的Verilog建模

用VerilogHDL对MOS管构成的电路建模,称为开关级建模, 是最底层的描述。

用关键词nmos、pmos定义NMOS、PMOS管模型。rnmos、rpmos定义输入与输出端存在电阻的NMOS、PMOS管模型。 关键词supply1、supply0分别定义了电源线和地线。

1、设计举例

试用Verilog语言的开关级 建模描述CMOS与非门。

电路 描述

module NAND2 (L,A,B); //IEEE 1364—1995 Syntax input A,B; //输入端口声明 output L; //输出端口声明 supply1 Vdd; supply0 GND; wire W1; //将两个NMOS管 之间的连接点定义为W1 pmos (L,Vdd,A); //PMOS 管的源极与Vdd相连 pmos (L,Vdd,B); //两个 PMOS管并行连接 nmos (L,W1, A); //两 NMOS管串行连接 nmos (W1,GND, B); //NMOS管的源极与地相连 endmodule

说明

部分

3.9.2 CMOS传输门电路的Verilog建模

用关键词cmos定义传输门 cmos C1(输出信号,输入信号

例:用Verilog语言的开关级建模描述下列异或门。

module mymux2to1 (A, B, L);
//IEEE 1364—1995 Syntax
input A, B; //输入端口声明
output L; //输出端口声明
wire Anot, Bnot; //声明模
块内部的连接线
inverter V1(Anot, A); //调用

inverter V1(Anot, A); //调用 底层模块inverter, 见下一页 inverter V2(Bnot, B); cmos (L, Anot, B, Bnot); //调 用内部开关元件 cmos (L, A, Bnot, B); //(output,input,ncontrol,pcontrol) endmodule

//CMOS反相器 module inverter (Vo,Vi); //IEEE 1364—1995 Syntax input Vi; //输入端口声明 output Vo; //输出端口声明 supply1 Vdd; supply0 GND; pmos (Vo,Vdd,Vi); //实例 化, 调用内部开关元件 nmos (Vo,GND,Vi); //(漏极, 源极,控制栅极) endmodule

NY PARTY AND THE PARTY AND THE