Analiza obrazów - laboratoria 5, 6, 7

Piotr Moszkowicz 9 grudnia 2019

Spis treści

1	Lab	oratoria 5	1
	1.1	Binaryzacja	1
	1.2	Szkieletyzacja obrazu	2
	1.3	Erozja z pomocą bwmorph	3
	1.4	Operacja thin	4
	1.5	Operacja thicken	4
	1.6	Operacja remove	5
	1.7	Segmentacja obrazu	5
	1.8	Operacja thicken oraz segmentacja	6
	1.9	Jakość segmentacji	6
	1.10	Wododział	7
	1.11	Segmentacja wododziałowa	7
	1.12	Segmentacja wododziałowa z ramką	8
	1.13	Segmentacja wododziałowa z metrykami	8
2	oratoria 6	9	
	2.1	Segmentacja z wykorzystaniem osobnych kanałów R, G, B	10
	2.2	Wyznaczanie współczynników poszczególnych kaczek	
3	Lab	oratoria 7	11

1 Laboratoria 5

Rysunek 1: Oryginalny obraz

Na piątych laboratoriach poznawaliśmy operacje morfologiczne, które pozwalają nam na sprawdzenie obiektów, ich relacji względem siebie oraz analizę kształtów na obrazie.

1.1 Binaryzacja

Rysunek 2: Zbinaryzowany obraz wraz z operacją domknięcia

Wszystkie operację przeprowadzamy na zbinaryzowanym, domkniętym obrazie.

1.2 Szkieletyzacja obrazu

Rysunek 3: Efekt szkieletyzacji

Przy pomocy funkcji *bwmorph* możemy dokonać szkieletyzacji obrazu, dzięki czemu widzimy obiekty przypominające szkielety w naszym wypadku kaczek. Operacja ta polega na wyznaczeniu punktów równoodległych od minimum dwóch krawędzi obiektu.

Rysunek 4: Punkty końcowe szkieletu

Korzystając z tej samej funkcji możemy otrzymać jedynie punkty końcowe szkieletu obrazu.

Rysunek 5: Punkty rozgałęzień szkieletu

Kolejną funkcjonalnością, jaką daje nam bwmorph jest wyznaczenie punktów rozgałęzień szkieletów - one w zupełności wystarczą do oceny orientacji obiektów znajdujących się na obrazie.

1.3 Erozja z pomocą bwmorph

Rysunek 6: Erozja z argumentem ∞

Realizacja erozji przy argumencie ∞ da nam w efekcie jeden punkt. Warto pamiętać o tym, iż realizacja erozji zachowuje nam liczbę Euler'a. Dzięki temu jesteśmy pewni, że gdy punkt jest samodzielny to nie zostanie on usunięty.

1.4 Operacja thin

Rysunek 7: Operacja thinz argumentem ∞

Operacja thin gwarantuje nam nieusunięcie samodzielnych krawędzi.

1.5 Operacja thicken

Rysunek 8: Operacja thicken z argumentem 15

Ta operacja dokonuję dylatację, upewniając się, iż dwa obiekty nigdy się ze sobą nie połączą - tak jak w poprzednich przypadka zachowuje liczbę Euler'a. Każdy biały obszar na obrazie z pewnością zawiera kaczkę i tylko jedną kaczkę.

1.6 Operacja remove

Rysunek 9: Operacja remove z argumentem ∞

Operacja remove usuwa wnętrze obiektów - otrzymujemy obraz minus jego erozję.

1.7 Segmentacja obrazu

Rysunek 10: Obraz posegmentowany operacją bwlabel - wyświetlona druga kaczka

Segmentacja obrazu pozwala nam oddzielić wszystkie obiekty od siebie - w naszym przypadku otrzymamy tło oraz trzy kaczki. Nadając etykiety białym pikselom upewniamy się, iż ich sąsiedzi mają te same etykiety. Chcąc wyświetlić tło wybralibyśmy etykietę 0, natomiast etykiety [1,3] wyświetlą nam kolejne kaczki.

1.8 Operacja thicken oraz segmentacja

Rysunek 11: Segment obrazu z drugą kaczką wraz z jej otoczeniem

Operacja ta pozwala nam na wyświetlenie danej kaczki wraz z jej otoczeniem.

1.9 Jakość segmentacji

Rysunek 12: Każdy kolor oznacza inny segment obrazu

Możemy również sprawdzać jakość naszej segmentacji - najłatwiejszym sposobem jest oznaczenie każdego segmentu na obrazu osobnym kolorem co widać powyżej.

1.10 Wododział

Rysunek 13: Wododział

Wododział - transformata odległościowa obrazu, wpisujemy wartości (w pikselach) odległości od obiektu. Im ciemniejsze punkty, tym dalej znajduje się ten punkt od obiektu.

1.11 Segmentacja wododziałowa

Rysunek 14: Segmentacja wododziałowa

Segmentacja wododziałowa pozwala na dokładniejszą segmentację.

1.12 Segmentacja wododziałowa z ramką

Rysunek 15: Segmentacja wododziałowa z ramką

Segmentacja wododziałowa z ramką wyróżnia nam obiekty od tła.

1.13 Segmentacja wododziałowa z metrykami

Rysunek 16: Segmentacja wododziałowa z metryką Chebyshev'a

Rysunek 17: Segmentacja wododziałowa z metryką Manhattan

Metryki takie jak Chebyshev'a (chessboard) oraz Manhattan (cityblock) pozwalają nam na uzyskanie dokładniejsze segmentacji obrazu.

2 Laboratoria 6

Rysunek 18: Oryginalny obraz

Na szóstych laboratoriach kontynuowaliśmy segmentację, jednak tym razem na podstawie innego obrazka. Tenże obrazek wymagał wyodrębnienia kanałów, aby proces binaryzacji przebiegł pomyślnie.

2.1 Segmentacja z wykorzystaniem osobnych kanałów R, G, B

Rysunek 19: Segmentacja obrazu - binaryzacja kanałów R i B

Na podstawie wcześniejszej analizy histogramów zignorowaliśmy kanał G, gdyż wprowadzał za dużo szumów. Dzięki temu w efekcie binaryzacji z domknięciem wyodrębniliśmy obiekty od tła.

2.2 Wyznaczanie współczynników poszczególnych kaczek

	1	2	3	4	5	
1	0.8143	103.7532	6.9789	81.2226	0.5292	
2	0.7230	92.5182	6.0063	73.1723	0.9534	
3	0.7313	86.8981	5.4470	55.1829	0.8808	
4	0.8133	103.5388	6.6611	88.2141	0.8560	
5	0.7758	84.5915	5.7689	63.6346	0.8090	
6	0.8872	113.7836	6.2583	70.9665	0.7230	
7	0.5666	73.5153	5.9325	59.2524	0.4972	
8	0.2711	17.7943	3.4750	20.8499	2.3846	
9						

Rysunek 20: Współczynniki kolejnych kaczek

Następnie wyznaczyliśmy różne współczynniki dla każdej z kaczek. Tutaj na obrazku każdy wiersz oznacza kolejne współczynniki dla danej kaczki. Są to kolejno:

Współczynnik malinowski - podobieństwo figury do koła - 0 -> jest kołem

Współczynnik Danielsona - średnia odległość piksela od krawędzi, również podobieństwo figury do koła, również 0 -> jest kołem

Współczynnika Blair-Bliss'a - średnia odległość piksela od środka masy

Współczynnik Harlika - odległość piksela na krawędzi od środka masy

Współczynnik Ferret'a

2.3 Metoda 3 sigm - wyznaczanie nietypowych obiektów

Kolejnym zadaniem, była implementacja metody 3 sigm, która pozwala nam na ocenę podobieństwa danego obiektu do całej reszty. Dzięki temu możemy sprawdzić jakość segmentacji danego segmentu - w tej sytuacji wykryliśmy, iż jako kaczka uznany został kawałek skrzydła.

3 Laboratoria 7

Rysunek 21: Trening sieci neuronowej w oprogramowaniu Matlab

Na ostatnich laboratoriach padaliśmy podobieństwo obiektów z pomocą sieci neuronowych. Dzięki temu udało nam się nieskategoryzować wcześniej wspomnianego kawałka skrzydła jako osobnej kaczki.