

MEC-E1070 Selection of Engineering Materials

Prof. Junhe Lian, Prof. Sven Bossuyt course assistant Zinan Li

Objectives in conflict

- Multiple objectives: may conflict
- Trade-off methods
- Penalty functions and exchange constants
- Multi-objective optimization

Multi-objective optimization

- "Solution": one candidate that meets the constraints, but not necessarily optimum by either objective
- Plot solutions.
 (Convention: express objectives to be minimized)
- "Dominated solution": one that is definitely non-optimal
- "Non-dominated solution": one that is optimal by one metric (but not usually by both)

"Trade-off surface": the surface on which the non-dominated solutions lie (Pareto Front). In 2-dimensional case: trade-off curve

Multi-objective optimization: documentation

Make a trade-off plot

Sketch a trade-off curve

Use intuition to select a solution on the trade-off curve

Multi-objective optimization: constraint

• Reformulate all but one of the objectives as constraints, setting an upper limit for it

e.g. budget limit

Multi-objective optimization: penalty function

Define locally-linear

Penalty function Z

$$Z = C + \alpha m$$

Seek solution with smallest Z

Make trade-off plot

Rearranging the equation for Z

$$\mathbf{m} = -\frac{1}{\alpha}\mathbf{C} + \frac{1}{\alpha}\mathbf{Z}$$

Lines of Z have slope -1/ α

Linear penalty functions - linear axes

- Set axes to linear before plotting property charts for linear penalty functions
- Logarithmic scales give the same best choice with Z as curves

Two-objective Log chart

Minimum mass and cost for member in tensile or compressive load and

Penalty function with log axes

Penalty function with log axes

Bar chart selection using the penalty function

 $Z = \frac{\rho}{\sigma_{\rm y}^{2/3}} \left(C_m + \alpha \right)$

Use the

"Advanced"
facility to make
the penalty
function

(Density / (Yield strength^0.66))
*(Price + 10)

List of properties

- Density
- Price
- Tensile strength
- etc

The value of the exchange constant

Penalty function with $\alpha = 1$

Penalty function with $\alpha = 10$

Penalty function with $\alpha = 100$

Bubble chart selection using penalty

function

Minimize weight
$$\square$$
 $M_2 = \frac{\rho}{\sigma_y^{2/3}}$

Penalty function
$$Z = M_1 + \alpha M_2$$

$$\alpha = 1$$
\$/kg \Longrightarrow Low alloy steels, Carbon steels,

$$\alpha = 10 \text{ $/kg}$$
 \Rightarrow Aluminum alloys, Magnesium alloys

$$\alpha = 100 \text{ $/kg}$$
 \square Carbon-fiber reinforced composites

Performance Index finder

Identify function: Panel in bending

Identify free variables:

Panel thickness

Identify variables and constraints:

Panel length

Panel width

Stiffness limited design

Identify objective

Default is to minimize

Summary

- Real design involves conflicting objectives –
 often technical performance vs. economic performance (cost).
- Trade-off plots reveal options
- If the exchange constant is known –
 penalty function allows unambiguous choice