Jakub Čížek – katedra fyziky nízkých teplot Tel: 221 912 788

jakub.cizek@mff.cuni.cz

http://physics.mff.cuni.cz/kfnt/vyuka/upf/index.html

Úvod do praktické fyziky NOFY055

zimní semestr 2024/2025

http://physics.mff.cuni.cz/kfnt/vyuka/upf/index.html

On-line materiály pro jednotlivé paralelky naleznete kliknutím na odkaz v tabulce níže.

vyučující	paralelka	čas, učebna	materiály
prof. Mgr. Jakub Čížek, Ph.D. jakub.cizek@mff.cuni.cz	1 2	Po 16:30, T5 St 10:40, T9	
RNDr. Petr Hruška, Ph.D. petr.hruska@mff.cuni.cz	3 4	Po 9:00, T6 Út 10:40, T9	
RNDr. Vojtěch Chlan, Ph.D. vojtech.chlan@mff.cuni.cz	5	St 10:40, T5 St 13:10, T5	
doc. RNDr. Helena Valentová, Ph.D. helena.valentova@mff.cuni.cz	8 7	Čt 10:40, M3 Čt 14:00, M3	

podmínky pro získání zápočtu

software požívaný v praktické části

Každý seminář se bude skládat z teoretické části (přednáška) a praktické části (cvičení). Ve cvičení budeme používat následující software: Python, Origin a Excel. Nainstalujte si tedy prosím tento software na Váš počítač.

- Python je moderní a univerzální programovací jazyk, který se lze velmi snadno
 naučit. Anaconda je distribuce Pythonu určená pro vědecké výpočty a zpracování dat
 a je k dispozici zdarma na stránkách projektu Anaconda
 - Úvod do jazyka <u>Python</u>
 - A. Number Inniharma Duthami neo neści e rialstaru a maticami

- Python je moderní a univerzální programovací jazyk, který se lze velmi snadno
 naučit. Anaconda je distribuce Pythonu určená pro vědecké výpočty a zpracování dat
 a je k dispozici zdarma na stránkách projektu Anaconda
 - Úvod do jazyka <u>Python</u>
 - o NumPy knihovna Pythonu pro práci s vektory a maticemi
 - o Matplotlib knihovna Pythonu pro kreslení grafů
 - SciPy knihovna Pythonu pro numerické výpočty
- Origin je profesionální program pro zpracování výsledků fyzikálních měření a
 tvorbu grafů. Pro studenty MFF UK je k dispozici plovoucí licence pro nejnovětší
 verzi programu Origin 2020b 9.7.5.184.

Postup instalace programu:

- stáhněte si instalační soubor <u>https://su.mff.cuni.cz/file/home/kudrna/install.dsk/Origin/Origin2020bSr0H.zip</u> Je třeba se přihlásit jako do SISu
- 2. Rozbalte všechny soubory z balíku a spusťte Setup.exe
- Potřebné údaje pro instalaci, tj. sériové číslo: GF3S5-3089-7909154, licenční server: pluto.troja.mff.cuni.cz, port: 27001 jsou již předvyplněny, stačí je odsouhlasit a upravit si případně jméno uživatele.
- 4. Origin s plovoucí licencí potřebuje spojení s licenčním serverem, ale podporuje tzv. "vypůjčení licence", menu Help -> "Activate License..." -> Borrow. Po dobu výpůjčky pak pracuje i bez přístupu k licenčnímu serveru.
- Stav licence Originu je vidět v menu Help -> "Activate License..." nebo Help -> About -> tlačítko License.
- Excel je tabulkový procesor od firmy Microsoft, který se hodí i na zpracování dat z
 fyzikálních měření a tvorbu grafů (příklady v tomto semináři jsou udělané ve verzi
 MS Office Excel 2007, česká lokalizace).
 - <u>Seznam</u> některých užitečných funkcí v Excelu
 - Všichni studenti MFF UK mohou používat zdarma službu Office 365
 - Bezplatnou alternativou k Excelu je tabulkový procesor Calc ve volně dostupném balíku <u>Libre Office</u>.

prof. Mgr. Jakub Čížek, Ph.D.

https://physics.mff.cuni.cz/kfnt/vyuka/upf/cizek/index.html

Seznam některých užitečných funkcí v Excelu

- seminář 1: statistická a systematická chyba, platné číslice
- přednáška pdf prezentace
- videozáznam přednášky z roku 2020
- cvičení průměry, míry rozptylu používáme Excel
 - Excel soubor <u>prumery.xlsx</u>
- seminární úlohy
- vzorové řešení
 - úloha 2: Excel soubor 3-sigma-kriterium.xlsx
- bonusová úloha rmk
 - zadání
- stručné shrnutí

- seminář 2: maximální chyba, třída přesnosti, analogové a digitální přístroje
- přednáška pdf prezentace
- videozáznam přednášky z roku 2020
- · cvičení systematická chyba měření elektrického odporu
 - Eratosthenovo měření velikosti Země
 - řešení úlohy s měřením hustoty
- seminární úlohy
- vzorové řešení
- · bonusová úloha balistické kyvadlo
 - zadání
- stručné shrnutí

Podmínky pro získání zápočtu

- během semestru je nutné absolvovat 2 písemné testy
- každý test je hodnocen v bodové škále 0-15 bodů
- k získání zápočtu je nutné dosáhnout v součtu alespoň 16 bodů
- body je možné získat také vyřešením bonusových úloh každá úspěšně vyřešená bonusová úloha = 1 bod řešení bonusových úloh mi posílejte na e-mail jakub.cizek@mff.cuni.cz deadline je vždy do neděle 24:00 hod.

výsledky měření nebo pozorování jsou vždy zatíženy chybou

- **statistické** jsou důsledkem náhodných fluktuací, které se popisují metodami matematické statistiky
- systematické vznikají v důsledku chybných kalibrací, interpretací a pod., zatěžují stejným způsobem výsledek každého nezávisle opakovaného měření
- hrubé vznikají hrubým zásahem do procesu měření, jejich velikost významně převyšuje rozptyl chyby statistické

statistická chyba

Náhodná a systematická chyba

precise = malá náhodná (statistická) chyba accurate = malá systematická chyba

Náhodná a systematická chyba

• příklad: 2011 nadsvětlená neutrina

CERN

- rychlost světla $c = 299792458 \text{ m s}^{-1}$
- doba letu t = 2.438354 ms

Nejistota (uncertainty) výsledku měření

CIMP - Comité International des Poinds et Mesures (1981, 1985) ISO (Mezinárodní Organizace pro Normalizaci) – Guide to the Expression of Uncertainty in Measurements (1993)

- statistické (typu A) k jejich vyhodnocení byly použity statické metody
- ostatní (typu B) zpracování ostatních složek nejistoty σ_B^2
- $oldsymbol{\cdot}$ odhad skutečné hodnoty měřené veličiny $\hat{\mu}$
- ullet odhad chyby kombinovaná standardní nejistota $\sigma_C^2 = \sigma_A^2 + \sigma_B^2$

výsledek měření :
$$x=(\hat{\mu}_x\pm\sigma_{C,x})$$
 $[x]$ označení jednotky absolutní chyba (nejistota)

• relativní chyba -
$$\eta_x = \frac{\sigma_{C,x}}{\hat{\mu_x}} imes 100\%$$

Zápis výsledku měření

- nejistotu (chybu) uvádíme nejvýše na 2 platné číslice
- výsledek zaokrouhlíme v řádu poslední platné číslice neurčitosti (chyby)
- platné číslice všechny číslice s vyjímkou nul před první nenulovou číslicí př.

 $0.00152 \rightarrow 3$ platné číslice

 $0.010040 \rightarrow 5$ platných číslic

 $10.10000300 \rightarrow 10$ platných číslic

zápis výsledku měření

$$v = (1.63 \pm 0.02) \text{ ms}^{-1}$$
 $I = (0.10 \pm 0.01) \times 10^{-3} \text{ A}$
 $P = (5.105 \pm 0.012) \text{ GPa}$ $t = 0.405(3) \text{ s}$

Poznámka: Pokud se chyba měření ve výsledku neudává, předpokládá se implicitně, že je menší, než polovina řádu za poslední platnou číslicí výsledku:

$$v = 1.5 \text{ ms}^{-1} \implies 1.45 \text{ ms}^{-1} < v < 1.55 \text{ ms}^{-1}$$

Zápis výsledku měření

• aby se předešlo této nejednoznačnosti měli bychom výsledky měření zapisovat ve tvaru *x.xxxx*, kde *x* jsou číslice