$X = (X_1, \dots, X_n), Y = (Y_1, \dots, Y_n), Z = (X_1, \dots, X_n, Y_1, \dots, Y_n).$

$$K_1(Z) = \sum_{i,j=1}^{n} |X_i - Y_j|, \tag{1}$$

$$K_2(Z) = (\overline{X} - \overline{Y})^2, \tag{2}$$

$$L_1(Z) = \sum_{i,j=1}^{n} \ln(1 + |X_i - Y_j|)$$
(3)

$$L_1^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)\right), \qquad C = \sum_{1 \le i < j \le 2n} |Z_i - Z_j|/(n(2n-1)), \tag{4}$$

$$L_2(Z) = \sum_{i,j=1}^n \ln(1+|X_i-Y_j|^2)$$
 (5)

$$L_2^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)^2\right), \qquad C = \sum_{1 \le i \le j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{6}$$

$$T_1(Z) = -\left(\sum_{i=1}^n \ln(1 + [X_i - Z_{cen}]_+) + \sum_{j=1}^n \ln(1 + [Z_{cen} - Y_j]_+)\right), \quad X_{cen} \le Y_{cen}, \quad [a]_+ = a \quad if \quad a > 0,$$
 (7)

$$NC = \frac{S_X^2 + (\bar{X} - \bar{Y})^2}{S_V^2} + \frac{S_Y^2 + (\bar{X} - \bar{Y})^2}{S_Y^2}, \tag{8}$$

$$CC^{C} = \sum_{i=1}^{n} \left\{ \ln \left(1 + \frac{|X_i - Y_{cen}|}{Y_{sd}} \right) + \ln \left(1 + \frac{|Y_i - X_{cen}|}{X_{sd}} \right) \right\}, \tag{9}$$

$$CC_2^C = \sum_{i=1}^n \left\{ \ln \left(1 + \left(\frac{|X_i - Y_{cen}|}{Y_{sd}} \right)^2 \right) + \ln \left(1 + \left(\frac{|Y_i - X_{cen}|}{X_{sd}} \right)^2 \right) \right\}, \tag{10}$$

$$CC_3^C = \sum_{i,j=1}^n \ln\left(1 + \left|\frac{X_i}{Y_{sd}} - \frac{Y_j}{X_{sd}}\right|^2\right),\tag{11}$$

(12)

(13)

 X_{cen}, X_{sd} — max likelihood estimations of mean and standard deviation with starting points the 25% trimmed mean and the interquartile range respectively.

Таблица 1: Мощность тестов при размерах выборок n=5

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
C(0, 1)	0.059	0.052	0.049	0.055	0.049	0.053	0.054	0.053	0.055	0.057	0.063	0.014	0.029	0.003	0.442
C(1, 1)	0.134	0.128	0.148	0.149	0.141	0.136	0.128	0.102	0.133	0.134	0.094	0.052	0.082	0.036	0.447
C(2, 1)	0.305	0.269	0.343	0.337	0.342	0.298	0.271	0.233	0.278	0.271	0.185	0.133	0.207	0.121	0.44
C(3, 1)	0.466	0.388	0.559	0.535	0.563	0.453	0.389	0.435	0.436	0.436	0.325	0.238	0.322	0.202	0.455
C(4, 1)	0.613	0.519	0.7	0.682	0.701	0.605	0.527	0.565	0.557	0.554	0.415	0.353	0.426	0.307	0.427
C(0, 1)	0.054	0.054	0.054	0.051	0.05	0.052	0.055	0.05	0.049	0.043	0.045	0.011	0.027	0.008	0.448
C(0, 3)	0.082	0.061	0.165	0.151	0.165	0.075	0.058	0.171	0.128	0.131	0.166	0.011	0.035	0.008	0.592
C(0, 5)	0.102	0.069	0.267	0.244	0.276	0.093	0.074	0.312	0.204	0.209	0.272	0.013	0.037	0.019	0.68
C(0, 7)	0.158	0.085	0.419	0.384	0.421	0.138	0.098	0.436	0.292	0.301	0.376	0.02	0.048	0.021	0.745
C(0, 9)	0.147	0.071	0.486	0.423	0.483	0.132	0.083	0.495	0.35	0.355	0.428	0.015	0.038	0.021	0.795
C(0, 1)	0.057	0.056	0.056	0.056	0.058	0.058	0.053	0.061	0.059	0.056	0.055	0.016	0.028	0.007	0.466
C(1, 2)	0.101	0.093	0.145	0.127	0.139	0.099	0.092	0.124	0.112	0.112	0.125	0.044	0.059	0.025	0.479
C(2, 3)	0.194	0.153	0.282	0.276	0.285	0.192	0.164	0.262	0.191	0.195	0.235	0.05	0.105	0.051	0.566
C(3, 4)	0.245	0.174	0.398	0.364	0.399	0.224	0.187	0.359	0.285	0.294	0.342	0.053	0.121	0.061	0.66
C(4, 5)	0.28	0.193	0.48	0.438	0.48	0.264	0.211	0.44	0.34	0.35	0.411	0.076	0.148	0.085	0.678
C(0, 1)	0.059	0.056	0.059	0.058	0.065	0.058	0.057	0.07	0.058	0.06	0.061	0.025	0.03	0.007	0.457
C(1, 3)	0.104	0.082	0.148	0.139	0.151	0.099	0.083	0.157	0.124	0.128	0.159	0.018	0.046	0.015	0.554
C(2, 5)	0.156	0.11	0.337	0.305	0.335	0.15	0.114	0.331	0.217	0.22	0.291	0.034	0.063	0.032	0.665
C(3, 7)	0.217	0.135	0.469	0.431	0.475	0.193	0.149	0.462	0.335	0.346	0.402	0.033	0.086	0.045	0.747
C(4, 9)	0.229	0.137	0.532	0.489	0.537	0.21	0.15	0.522	0.386	0.398	0.46	0.043	0.09	0.054	0.808

Таблица 2: Мощность тестов при размерах выборок n=50

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
C(0, 1)	0.035	0.04	0.049	0.054	0.051	0.039	0.048	0.053	0.052	0.049	0.054	0.013	0.058	0.039	0.82
C(0.5, 1)	0.166	0.073	0.291	0.228	0.283	0.153	0.182	0.048	0.116	0.077	0.053	0.038	0.3	0.297	0.817
C(1, 1)	0.548	0.157	0.814	0.726	0.798	0.44	0.502	0.055	0.375	0.233	0.088	0.084	0.746	0.807	0.823
C(1.5, 1)	0.887	0.228	0.993	0.974	0.993	0.753	0.817	0.071	0.659	0.456	0.142	0.133	0.96	0.985	0.834
C(2, 1)	0.973	0.322	1	0.998	1	0.884	0.947	0.097	0.8	0.654	0.295	0.229	0.995	0.999	0.839
C(0, 1)	0.045	0.054	0.042	0.048	0.045	0.049	0.045	0.048	0.05	0.055	0.055	0.019	0.047	0.04	0.833
C(0, 2)	0.262	0.051	0.527	0.43	0.521	0.22	0.063	0.178	0.325	0.325	0.321	0.019	0.061	0.179	0.858
C(0, 3)	0.644	0.061	0.917	0.843	0.919	0.523	0.06	0.341	0.604	0.602	0.603	0.03	0.055	0.494	0.896
C(0, 4)	0.826	0.046	0.995	0.952	0.995	0.656	0.069	0.473	0.74	0.728	0.726	0.021	0.076	0.71	0.916
C(0, 5)	0.921	0.057	0.999	0.983	0.999	0.765	0.069	0.532	0.813	0.801	0.798	0.018	0.071	0.851	0.946
C(0, 1)	0.048	0.051	0.05	0.047	0.053	0.046	0.053	0.048	0.043	0.044	0.044	0.023	0.059	0.041	0.836
C(0.5, 1.5)	0.202	0.076	0.371	0.28	0.356	0.172	0.137	0.086	0.19	0.169	0.15	0.029	0.196	0.261	0.844
C(1, 2)	0.517	0.095	0.818	0.721	0.813	0.419	0.299	0.186	0.449	0.381	0.344	0.042	0.446	0.652	0.827
C(1.5, 2.5)	0.768	0.119	0.976	0.929	0.972	0.618	0.48	0.27	0.624	0.56	0.515	0.06	0.63	0.872	0.896
C(2, 3)	0.894	0.131	1	0.979	0.999	0.737	0.566	0.305	0.736	0.65	0.611	0.059	0.723	0.959	0.887
C(0, 1)	0.04	0.035	0.035	0.035	0.038	0.033	0.041	0.042	0.035	0.034	0.033	0.016	0.035	0.035	0.827
C(0.5, 2)	0.334	0.047	0.618	0.49	0.614	0.256	0.111	0.165	0.339	0.317	0.305	0.022	0.164	0.34	0.865
C(1, 3)	0.726	0.072	0.965	0.899	0.963	0.565	0.211	0.328	0.631	0.601	0.588	0.029	0.299	0.716	0.88
C(1.5, 4)	0.897	0.09	0.996	0.975	0.996	0.725	0.272	0.441	0.767	0.737	0.72	0.044	0.367	0.891	0.912
C(2, 5)	0.949	0.094	1	0.994	1	0.819	0.32	0.538	0.842	0.818	0.811	0.045	0.415	0.956	0.934