Conversion of Waste CO₂ & Shale Gas to High Value Chemicals

DE-EE0005766

Novomer, Inc. (Praxair Sub-Contractor)

Project Period: 8/1/2013-11/30/2015

Mike Slowik, Directors of Chemicals, Novomer (Presenter)

U.S. DOE Advanced Manufacturing Office Program Review Meeting
Washington, D.C.

June 14-15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

- Overall Objective To develop, build, and validate a semiintegrated laboratory scaled continuous process with capacity of 5kg/day to make CO₂-based drop-in chemicals.
- Achieve industry leading cost for Acrylic Acid, Succinic Anhydride, and Propiolactone based polymers
 - Novomer process can leverage lower cost ethylene feedstocks from shale and other sources
 - Lowest capital cost due to simple unit operations
- Low Carbon & Energy Footprint
 - >99% catalyst selectivity results in high atom efficiency and almost zero wasted feedstock.

Technical Approach

• The current propylene oxidation process to make **Acrylic Acid** (AA) is energy intensive and has operating challenges.

<u>Characteristics of Existing Propylene Process</u>

- Complex, expensive reactors
 - Molten salt cooling system
- Sensitive catalytic systems
- Difficult downstream separation
- Energy intensive process
- Global operating rates (60-70%) significantly below industry average (graph inset)

Technical Approach

- Advantages of Novomer Process:
 - High Selectivity Catalyst (>99%)
 - Leverages low cost shale gas & ethylene derivatives
 - Lower energy & carbon footprint
 - Novomer process changes the paradigm with respect to transporting Glacial AA

Transition and Deployment

- Novomer process is feedstock agnostic & appeals to a wide range of chemical & brand companies for deployment
 - Brand owners interested in carbon negative AA from bio-based sources
 - Chemical manufacturer with low cost ethylene feedstock interested in higher value derivatives and diversification.

Transition and Deployment

- Novomer has started the BEP for a >50kt/yr commercial plant.
- First commercial plant will be ready for production at end of 2018.

Measure of Success

• Novomer's process will be 30-50% lower cost and have a significantly lower carbon & energy footprint.

Figure 2.1 Novomer's Cost Position against Two-Step Propylene Oxidation (Q1 2014)

■ Raw Materials Utilities ■ Direct Fixed Costs ■ Allocated Fixed Costs ■ Depreciation □ ROCE @ 10 percent

Project Management & Budget

- Project Duration Aug 1 2013 to Nov 30 2015
 - BP1 All Tasks Complete
 - BP2 All Tasks Complete.

Total Project Budget		
DOE Investment	\$4.3M	
Cost Share	\$1.6M	
Project Total	\$5.9M	

Results and Accomplishments

Major Accomplishments

- Determined optimal reactor configuration
 - Built & Tested 3 Different reactor configurations (Single phase CSTR, two phase CSTR, and Loop Reactor)
- Identified separation scheme for Catalyst
 - Evaluated membrane, liquid/liquid extraction, and distillation
- Dramatic Improvement in Catalyst Performance
 - Improved catalyst activity by 3X, Reduced solvent cost by 1/2, and improved solubility by 5X
- Validated Economics, Energy, and CO, Footprint
 - Third parties (CCTI & Nexant) provided external validation
- Operated Continuous System with recycle for extended periods of time.

Reactor System (Rochester, NY)

Exceeded Go/No-Go Metrics

	BP1 Goal	Achieved
Selectivity	95%	>99%
Residence Time	<600 min	40 min
Lactone Concentration	>15wt%	3owt%
Catalyst Rejection	> 8o %	99.5%
EO Conversion	>6o%	>95%

Addendum -

- •Novomer has made significant investment in parallel with the DOE Project
- •Designed, built, and commissioned an automated continuous system in Q4 2014.
- •Complimentary to Current DOE Project; Allows technology to be scaled more quickly.

