THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Problem Sheet for Week 3

MATH1901: Differential Calculus (Advanced)

Semester 1, 2017

Web Page: sydney.edu.au/science/maths/u/UG/JM/MATH1901/

Lecturer: Daniel Daners

Material covered

	Roots of complex numbers;
	Complex exponential function $e^z = e^x(\cos y + i \sin y)$;
П	Functions of a complex variable;

Outcomes

After completing this tutorial you should

☐ Sketching the image of a region.

Summary of essential material

The complex exponential function. For any complex number z = x + iy, $x, y \in \mathbb{R}$ we define the *complex exponential function* by

$$e^z := e^x(\cos y + i\sin y),$$

The sketch below shows the mapping properties of the exponential function.

It is an invertible map from $\{z \in \mathbb{C} \mid -\pi < \text{Im } z \leq \pi\}$ onto $\mathbb{C} \setminus \{0\}$. The above mapping properties together with the argument modulus form are useful to determine the images of sets under certain complex functions.

Roots of complex numbers. Given $n \in \mathbb{N}$, the *n-th roots* of a complex number α are the solutions to the equation $z^n = \alpha$. If $\alpha = 1$ we talk about the *roots of unity*. By De Moivre's theorem the roots of unity are equally spaced on the unit circle:

By De Moivre's theorem we have $(e^{2\pi ki/n})^n = e^{2\pi ki} = 1$, so $e^{2\pi ki/n}$, k = 0, ..., n-1, are the roots of unity. If $z = re^{i\theta}$ is given in polar form, then again by de Moivre's theorem the *n*-th roots of *z* are given by

$$\alpha_k = r^{1/n} e^{\theta i/n + 2\pi k i/n}$$
 $k = 0, 1, ..., n - 1.$

Again the *n* roots lie on a circel. Its radius in $r^{1/n}$ and they are equally spaced starting from $r^{1/n}e^{i\theta/n}$.

Hints for determining images. Let $f: \mathbb{C} \to \mathbb{C}$ be a function, and let $D \subseteq \mathbb{C}$. The *image of D under f* is $im(D) = \{ f(z) \mid z \in D \}.$

If you need to determine the image of a set under a complex map there are several approaches:

- Write z = x + iy with $x, y \in \mathbb{R}$, then do a computation. This is sometimes useful, but a lot of the time inefficient. The method should only be applied as a last step after using some of the techniques below.
- Use that $z\bar{z} = |z|^2$
- Use geometric properties, in particular $|z_1 z_2|$ is the distance between z_1 and z_2 on the complex plane.
- Write $z = re^{i\theta}$ in modulus-argument form, in particular if powers of z are involved.

Questions to complete during the tutorial

1. Express the following complex numbers in Cartesian form:

(a) $e^{2\pi i/3}$

- (b) $e^{i\frac{\pi}{12}}e^{i\frac{2\pi}{3}}e^{i\frac{\pi}{4}}$
- 2. Solve the following equations and plot the solutions in the complex plane:

(a) $z^5 = 1$

(b)
$$z^4 = 8\sqrt{2}(1+i)$$

3. Find all solutions of the following equations:

(b)
$$e^z = -10^{-10}$$

(a)
$$e^z = i$$
 (b) $e^z = -10$ (c) $e^z = -1 - i\sqrt{3}$ (d) $e^{2z} = -i$

(d)
$$e^{2z} = -1$$

4. Let $f: \mathbb{C} \to \mathbb{C}$ be the function $z \mapsto z^2$. Sketch the following sets, and then sketch their images under the function f.

(a) $A = \{z \in \mathbb{C} \mid \text{Im}(z) = 2\}$

(c) $C = \{z \in \mathbb{C} \mid |z| = 1 \text{ and } Im(z) \ge 0\}$

(b) $B = \{z \in \mathbb{C} \mid \operatorname{Im}(z) = 2\operatorname{Re}(z)\}$

(d)
$$D = \{z \in \mathbb{C} \mid |z| = 1\}$$

5. Sketch the following sets and their images under the function $z \mapsto e^z$.

(a) $A = \{z \in \mathbb{C} \mid 0 < \text{Re}(z) < 2 \text{ and } \text{Im}(z) = \frac{\pi}{2} \}$

(b) $B = \{z \in \mathbb{C} \mid \text{Re}(z) = 1 \text{ and } |\text{Im}(z)| < \pi/2\}$

(c) $C = \{z \in \mathbb{C} \mid \operatorname{Re}(z) < 0 \text{ and } \pi/3 < \operatorname{Im}(z) < \pi\}$

(d) $D = \{z = (1+i)t \mid t \in \mathbb{R}\}$

- **6.** Find all solutions of the equation $e^{2z} (1+3i)e^z + i 2 = 0$.
- 7. (a) Use the definition of the complex exponential function to show that for all $n \in \mathbb{N}$ and all $\theta \in \mathbb{R}$

$$\sum_{k=-n}^{n} \left(e^{i\theta} \right)^k = 1 + 2\cos\theta + 2\cos 2\theta + \dots + 2\cos n\theta.$$

(b) Hence, use the formula for a geometric series to show that

$$1 + 2\cos\theta + 2\cos 2\theta + \dots + 2\cos n\theta = \frac{\sin(n + \frac{1}{2})\theta}{\sin\frac{\theta}{2}} \quad \text{whenever } \theta \notin 2\pi\mathbb{Z}.$$

The expression is called the *n*-th *Dirichlet kernel* and appears in the summation of Fourier series.

2

Extra questions for further practice

- **8.** Express the following complex numbers in Cartesian form:
 - (a) $e^{-i\pi}$

(b) $e^{\ln 7 + 2\pi i}$

- (c) $\sin(i\pi)$
- **9.** Solve the following equations and plot the solutions in the complex plane:
 - (a) $z^3 = -i$

- (b) $z^6 = -1$
- **10.** (a) Sketch the set $A = \{z \in \mathbb{C} \mid 1/2 < |z| < 4, 0 \le \text{Arg}(z) \le \pi/4\}$.
 - (b) Sketch the image B of A in the w-plane under the function $z \mapsto 1/z$.
- 11. (a) Show that every complex number $z \in \mathbb{C}$ can be expressed as z = w + 1/w for some $w \in \mathbb{C}$.
 - (b) Use this substitution to solve the equation $z^3 3z 1 = 0$.
- 12. Solve, using a completion of squares, the general quadratic equation

$$az^2 + bz + c = 0$$
 with $a, b, c \in \mathbb{C}$.

In other words, prove the standard formula to solve a quadratic equation.

Challenge questions (optional)

13. From the definition of $e^{i\theta} = \cos \theta + i \sin \theta$ we deduce that

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \qquad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

We replace $\theta \in \mathbb{R}$ by any complex number $z \in \mathbb{C}$ and define

$$\cos z := \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z := \frac{e^{iz} - e^{-iz}}{2i}.$$

and call them the complex cosine and sine functions.

- (a) Show that when z is real, $\cos z$ and $\sin z$ reduce to the familiar real functions.
- (b) Show that $\cos^2 z + \sin^2 z = 1$ for all $z \in \mathbb{C}$.
- (c) Show that $\cos(z+w) = \cos z \cos w \sin z \sin w$ for all $z, w \in \mathbb{C}$.
- (d) Is it true that $|\sin z| \le 1$ and $|\cos z| \le 1$ for all $z \in \mathbb{C}$?
- **14.** There is a 'cubic formula' analogous to the much loved quadratic formula, although it is a lot more complicated. In this question you solve the general cubic equation

$$az^3 + bz^2 + cz + d = 0$$
 with $a, b, c, d \in \mathbb{C}$,

generalising the method of Question 11. Here is an outline of the strategy:

- (a) Make a substitution of the form $z = u + \alpha$, with α to be determined, to reduce the equation to the form $u^3 + pu q = 0$.
- (b) Now attempt a substitution of the form $u = w + \beta/w$ with a cleverly chosen β to reduce the equation to a quadratic in w^3 .

3

(c) You can now solve this quadratic equation for w, hence back-track to find z.

- 15. Let *n* be a given positive integer. A *primitive nth root of unity* is a solution $z = \alpha$ of the equation $z^n = 1$ with the property that the powers $\alpha, \alpha^2, \dots, \alpha^{n-1}, \alpha^n$ give all of the *n*th roots of unity. For example, the 4th root of unity $\alpha = i$ is primitive, since $i, i^2 = -1, i^3 = -i, i^4 = 1$ gives us all 4th roots of unity, while the 4th root $\alpha = -1$ is not primitive, since $-1, (-1)^2 = 1, (-1)^3 = -1, (-1)^4 = 1$ fails to give us all of the 4th roots of unity.
 - (a) Find all primitive 6th roots of unity.
 - (b) Find all primitive 5th roots of unity.
 - (c) For which values of k, $0 \le k \le n-1$, is $e^{i\frac{2\pi k}{n}}$ a primitive *n*th root of unity?
- **16.** We introduced the complex numbers by saying something along the lines of: "Append a solution i of the equation $x^2 + 1 = 0$ to the real numbers \mathbb{R} ". This is a bit mysterious, and you might ask: "What is this magical element i? Where does it live?". Here is a more formal approach. Let $\mathbb{R}^2 = \{(a, b) \mid a, b \in \mathbb{R}\}$ and define an addition operation and a multiplication operation on \mathbb{R}^2 by:

$$(a,b) + (c,d) = (a+c,b+d)$$
 for all $(a,b) \in \mathbb{R}^2$
$$(a,b)(c,d) = (ac-bd,bc+ad)$$
 for all $(a,b) \in \mathbb{R}^2$.

Let $\mathbf{0} = (0,0)$, $\mathbf{1} = (1,0)$, and $\mathbf{i} = (0,1)$.

- (a) Show that $\mathbf{0} + (a, b) = (a, b)$ for all $(a, b) \in \mathbb{R}^2$.
- (b) Show that $\mathbf{1}(a, b) = (a, b)$ for all $(a, b) \in \mathbb{R}^2$.
- (c) Show that $i^2 + 1 = 0$.
- (d) Explain why \mathbb{R}^2 with the above operations is really just \mathbb{C} in disguise. Thus it is possible to introduce \mathbb{C} without ever talking about the 'imaginary' number i.