Computer Architecture

Fall, 2022 Week 5

2022.10.17

組別	:	 -				
簽名	:_					

The execution of the procedure needs to follow accurate steps. There are six steps showing below, please organize the steps with correct order.

- (a)Putting the result values in the registers that caller is able to access
- (b)Transferring control to the procedure
- (c)Performing the main task of the procedure
- (d)Putting parameters in the registers where the procedure can access
- (e)Returning control to the place where procedure was called
- (f)Acquiring storage for procedure (saving the values of \$s0 to \$s7 in memory)

Ans:

dab afaca aae

◆ [group14]

			rs	rt	rd	shamt	funct
Instructions	Memory Location	opcode	13	ľ·Ľ	immed	diate /	offset
					addı	ress	
lw \$t0, 0(\$s0)	59996	35	19	9	0		
Loop: andi \$t1, \$t0, 1	60000	8	9	8	1		
add \$s1, \$s1, \$t1	60004	0	17	9	17	0	32
srl \$t0, \$t0, 1	60008	(a)	0	9	9	(b)	2
beq \$t0, \$t0, Exit	60012	4	9	9	(C)		
j Loop	60016	2	(d)				
Exit: sw \$t0, 4(\$s0)	60020	43	16	8	(E)		

Assume Loop at location 60000, fill in the blank a,b,c,d,e.

	_							
	Memory Location	opcode	rs	rt	rd	shamt	funct	
Instructions					immediate / offset			
					address			
lw \$t0, 0(\$s0)	59996	35	19	9	0			
Loop: andi \$t1, \$t0, 1	60000	8	9	8	1			
add \$s1, \$s1, \$t1	60004	0	17	9	17	0	32	
srl \$t0, \$t0, 1	60008	0	0	9	9	1	2	
beq \$t0, \$t0, Exit	60012	4	9	9		1		
j Loop 60016 2 /5000				00				
Exit: sw \$t0, 4(\$s0)	60020	43	16	8	4			

♦ [group1]

- 1. Please select the correct options.
 - a. "fabel" copies the address of the next instruction into the register \$ra and then jumps to the address label.
 - b. Stack is used from low to high address.
 - c. Hardware will translate complex instructions to simpler microoperations. (Complex instruction set)
 - √ d. For nested calls, caller needs to save its return address and any arguments and temporaries after the call on the stack.
 - e. Immediate can not specify the entire address in PC since there are 32 bits in PC and only 16 bits for immediate.

 - g. If program counter is at 799999Ch, we can use jump 帕尼峰作 instruction jump to 80000004h.
 - h. The last two bits of word aligned address are always
 00 because a word is 4-bytes.

Ans: C, d, e, h

◆ [group5]

Suppose the program counter (PC) is at address 0x0000 0000. Please choose the impossible statement. $a \ b \ c \ b' \ e \ f$

1010 III III III 1101

- (1) Is it possible to use one single branch-on-equal (beq) MIPS instruction to get to address 0x0002 fffc?
- (2) Same to question (1) except that the address is changed to 0xffff ff00. Sign extension 4 ± 2 h
- (3) Is it possible to use one jump (j) MIPS instruction to get to address 0x00030000?
- (4) Same to question (3) except that the address is changed to 0x0fff ff00.

Ans: (1) , 18 bit 超過 ± 217 能见

◆ [group13]

In MIPS , what's the difference among " j " , " jr " , " jal " ? What's their instruction format?

Ans:

```
Ans: j (jump): jump directly to a given lobel without any condition.

jal (jump and link): store the following address of instruction in 4ra and jump to target memory.

jr (jump register): jump to the address in register which is usually $ra (return address register)

j label

jal label

jr $register
```

♦ [group3]

Which of the following statements are true? Explain why if it's

false

a. We can jump to every word in memory with j instruction, but we can't if use beg instruction.

 \sqrt{h}

opcode	rs	rt	immediate	
beq	\$s1	\$ s2	16 ₍₁₀₎	

執行時PCR经指到 F- Tinstruction

Assume PC point to the next instruction.

For this beg instruction, if \$s1==\$s2, PC jump to PC+16*4

 $\sqrt{}$ c. For the following MIPS code:

18 hit 12"

Exit:

Immediate value of beq in first line is $2_{(10)}$ $+2^{19}-4 \sim -2^{19}$ 2' compliment

- With beg instruction, we can jump $\pm 2^{17}$ bytes from PC
- If we need to use three registers in a function, the instruction addi \$sp, \$sp, \(\frac{12}{2} - 17\)

has to be done before we save the three registers.

Ans: b, C

- a. j can't jump every word in memory, it can only jump 226 words from PC
- d. $+2^{17}-4 \sim -2^{17}$ z' complement
- e. addi \$5p,\$5p,-12

◆ [group7]

Consider the following program, assuming \$s1 is multiple of 4, choose the correct options.

1784 bne \$s1, \$s2, Else 1788 add \$s0, \$s1, \$s2 1792 j Exit 1796 Else: lh \$s0, 0(\$s1) 1800 Exit:

(a) if \$s1 ≠ \$s2, and the value stored at memory address \$s1 is Sign extension → 1000 0x00008A43, then \$s0 = 0xFFFF8A43 after executing the program.

- (b) the immediate of the instruction at location 1784 is $3_{
 m c} \ge$
- (c) the jump target of the instruction at location 1792 is 1800.
- (d) if the program concludes the procedure body of a non-leaf procedure, then only \$s0, \$s1, and \$s2 need to be stored on stack.
- (e) The program used two types of addressing mode, which are PC-relative addressing and pseudodirect addressing.

Ans: (e