yeopjin@mit.edu

18 Main St, Cambridge, MA 02145, USA

Education

Massachusetts Institute of Technology

Cambridge, MA, USA

Ph.D. Candidate in Physics and Statistics

Aug 2020 - Jun 2026 (Expected)

Supervisor: Jeff Gore

Korea Advanced Institute of Science and Technology

Daejeon, Korea

B.S. in Physics (Major) and Math (Minor) (Summa Cum Laude)

Mar 2014 - Jun

2020

Korea Science Academy of KAIST

Busan, Korea

High School for Gifted Students in Science

Mar 2011 - Feb 2014

Interests

Physics of LLM, LLM Scaling Laws, Foundation Models for Science, LLM Agents

Work Experience

Publications

IBM-MIT Watson AI Lab

Boston, MA, USA

Summer Intern

2025

Machine Learning Alignment and Theory Scholars

Berkeley, CA, USA

Research Fellow

Summer Intern

2025

Samsung Electronics Research

Korea

2019

Harvard-MIT Health Sciences and Technology

2020

Summer Intern

Boston, MA, USA

AI Papers

- [1] **Song, J.**, Gore, J. & Kleiman, M. "Quantifying the Power of Langague Model Agent through Empowerment" Submitted to Neurips 2025.
- [2] Son, G., Hong, J., Fan, H., Nam, H., Ko, H., Lim, S., Song, J., Choi, J., Paulo, G., Yu, Y., & Biderman, S. "When AI Co-Scientists Fail: SPOT Benchmark for Automated Verification of Scientific Research." Submitted to Neurips 2025.
- [3] Song, J.*, Han, S.*, Gore, J., & Agarwal, P. "Emergence and Effectiveness of Task Vectors in In-Context Learning: An Encoder Decoder Perspective" ICML 2025, Spotlight.
- [4] Yang, S., Nam, J., Perez, T., Song, J., Du, X., & Gomez-Bombarelli, R. "Probing the Embedding Space of Protein Foundation Models through Intrinsic Dimension Analysis" AIDrugX, Neurips-W 2025.
- [5] Ying, A.*, Song, J.*, Cui. H.* et al. "MethylGPT Foundational GPT-like model for human methylation data" 2024. Under review in Nature Methods[Link]
- [6] Pearce, T., & Song, J. "Reconciling Kaplan and Chinchilla Scaling Laws" TMLR, 2024. [Link]
- [7] Song, J.*, Liu, Z.*, Tegmark, M., & Gore, J. "Resource model for neural scaling law," BGPT, ICLR-W 2024. [Link]

Physics Papers

- Song, J.*, Hu, J. & Gore, J. "Emergent cohesiveness governs coalescence between microcosms," In Preparation, 2024.
- [2] Song, J.*, Jeong, B.S.*, ..., & Oh, B.H. "Noncovalent antibody catenation on a target surface greatly increases the antigen-binding avidity," Elife, 9: e81646, 2023. [Link]
- [3] Lee, M.*, Lee, Y. H.*, **Song, J.***, & Park, Y. "Deep-learning-based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells," Elife, 9, 2020. [Link]

[4] Kim, G., Ahn, D., Kang, M., Jo, Y., Ryu, D., Kim, H., **Song, J.**, ..., & Kim, K. "Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network," Light, Science & Applications. [Link]

Research Projects Laboratory of Complex Intelligence, MIT

Boston, MA

PhD Candidate (PI: Prof. Jeff Gore)

Jun 2023 - Present

- Investigating the latent contextual knowledge structures of LLMs.
- Exploring emergent phenomena, such as neural scaling laws.

Laboratory of Complex Ecosystems, MIT

Boston, MA

PhD Candidate (PI: Prof. Jeff Gore)

Feb 2021 - Present

• Employing complex physics approach to understand (1) generic pattern of microbial coalescence and community cohesiveness. (2) Emergent pattern of evolution of multispecies community.

Laboratory of Chromatin Imaging, KAIST

 $Dae je on,\ Korea$

Research Assistant (PI: Prof. Wonki Cho)

Feb 2020 - Present

• Developed thermodynamic simulation code for multivariate Antibody binding.

Laboratory of Biomedical Optics, KAIST

Daejeon, Korea

Undergraduate Researcher (PI: Prof. YongKeun Park)

Feb 2018 - Aug 2020

- Developed deep-learning based computational algorithm for 3D time-lapse tracking of T-cell(CAR-T).
- Imaged and analyzed 3D refractive index map of sepsis bacterial pathogens for classification model.

Biomedical OCT Research Center, Massachusetts General Hospital Boston, MA, USA

Research Intern (PI: Prof. Brett Bouma)

Jun 2019 - Aug 2019

 Developed computational analysis pipeline for mapping brain image to mural connectome.

Laboratory of Quantum and Nanophotonics, KAIST

Undergraduate Researcher (PI: Prof. YongHoon Cho)

Daejeon, Korea Jul 2014 - Feb 2015

• Investigated exciton-polariton coupling effect of GaN nanoporous DBR cavity using FDTD simulation and optical experiments.

Awards	and
Honors	

Machine Learning and Theory Scholarship (MATS)	2025
Mokam Research Scholarship	2023
Asan Graduate Research Scholarship	2021 - 2025
Best Oral Presentation Award - KPS	2023
Excellent Graduate of KAIST	2020
Korea Presidential Science Scholarship	2014 - 2020

Teaching & Extracurricular

Organizer: AI Weekly Journal Club	Jun 2024 - Present
Teaching Assistant: "Complex Systems Biology"	2023
Freshmen Tutoring Program Mentor	2015-2018

Military Service

Korea National Police Agency

2018

References Prof. Max Kleiman

Prof. Jeff Gore
Prof. Oh, Byung-Ha

Massaci

 $\begin{array}{c} \textit{University of Washington} \\ \textit{Massachusetts Institute of Technology} \\ \textit{KAIST} \end{array}$