Section 16 Rotary Wing

- 16.1 Principal Aeroderivatives
- 16.2 Forward Flight Static And Dynamic Stability

16.1 PRINCIPAL AERODERIVATIVES

Derivative	Common Name	Principal Contributors	Typical Sign
	CONT	ROL POWER	
M_{B_1}	Pitch control power	MR Thrust vector Mast bending moment Control gearing Rotor type Effective hinge offset	-
$L_{\scriptscriptstyle A_{ m l}}$	Roll control power	MR Thrust vector Mast bending moment Control gearing Rotor type Effective hinge offset	-
$N_{ heta_{\!\scriptscriptstyle T\!R}}$	Yaw control power	TR thrust TR moment arm Control gearing	-
$Z_{ heta_{\!\scriptscriptstyle C}}$	Heave control power	MR thrust Control gearing	-
	STATI	IC STABILITY	
M_{u}	Speed stability	MR flap back Mast bending moment Horizontal tailplane	+
$M_{_{\scriptscriptstyle{W}}}$	Static/Incidence/Angle of Attack stability	MR flap back Mast bending moment Horizontal tailplane Fuselage	
$L_{_{\scriptscriptstyle V}}$	Lateral static stability (dihedral effect)	MR 'flap back' TR vertical moment arm Fuselage	-
$N_{_{\scriptscriptstyle{V}}}$	Directional static stability (weathercock effect)	TR thrust Vertical tailplane Fuselage	+
	D	AMPING	
X_{u}	Drag damping	Rotor drag Fuselage drag	-
Y_{ν}	Side force	Rotor drag Fuselage drag	-
$Z_{_{\scriptscriptstyle W}}$	Heave damping	MR characteristics	-
L_p	Roll damping	Main rotor Effective hinge offset	-
$M_{_{q}}$	Pitch damping	Main rotor Effective hinge offset Horizontal tailplane	-
N_r	Yaw damping	Tail rotor Vertical tailplane Fuselage	-

16.1 PRINCIPAL AERODERIVATIVES (Continued)

Derivative	Common Name	Principal Contributors	Typical Sign
	CROS	SCOUPLING	
$L_{ heta_{\!\scriptscriptstyle TR}}$	Tail rotor roll	Tail rotor vertical position	+
M_{θ_C}	Pitch change with power	Forward speed Main rotor	+
$N_{ heta_{\scriptscriptstyle C}}$	Torque reaction	Torque	
$Y_{ heta_{TR}}$	Tail rotor drift	Tail rotor	

References:

Padfield, G.D., (2007), *Helicopter Flight Dynamics*, 2nd Edition, Blackwell Publishing, UK.

Cooke, A., Fitzpatrick, E., (2002), Helicopter Test and Evaluation, Wiley Blackwell, UK.

Leishman, J.G., (2006), *Principles of Helicopter Aerodynamics*, 2nd Edition, Cambridge University Press, UK.

16.2 FORWARD FLIGHT STATIC AND DYNAMIC STABILITY

		ľ			l	
Stability Characteristic	Principal Influences	pal nces	Тур	Typical Test		Role Relation
Longitudinal Static Stability	• M _w • M _u	2 3	• •	Trimmed flight control positions Trimmed flight control positions - collective	• •	Control margins Control inputs progressive, predictable, and in correct sense
)	$M_{\theta_{\mathcal{C}}}$	20	•	Apparent static stability	٠	Speed selection
	$ullet$ $H_{ heta_{T\!R}}$	$ heta_{TR}$	•	Collective fixed static stability	•	Speed maintenance
	• M _w	92	•	Apparent manoeuvre stability		
Manoeuvre Stability	\bullet M_q	. 6	•	Collective fixed manoeuvre stability	•	Aggressive turning and manoeuvring flight
	$ullet$ $M_{ heta_{\scriptscriptstyle C}}$	θ_C	•	Pull-ups/push-overs		
	• M.	2	•	Excitation of dynamic long term	•	IMC flight
Longitudinal Dynamic Stability	$\bullet M_u$ $\bullet M_q$	п. Б	•	Natural turbulence, release to trim, pulse input	• •	Transit Nuisance mode
Lateral-Directional Static Stability	$\begin{array}{ccc} \bullet & L_{\nu} \\ \bullet & N_{\nu} \end{array}$	850	•	Trimmed flight control positions	• •	Control margins Control inputs progressive, predictable, and in correct sense
	• Y		•	Steady heading sideslip (SHSS)	• •	Sideforce cues Maintaining balanced flight
Lateral Static Stability (Dihedral)	• L _v		• •	SHSS Turns on one control – pedal	• • •	Transit Lateral and out-of-wind transitions Instrument approaches
Directional Static Stability	• N _v	gúè.	•	SHSS Turns on one control - cyclic	• •	Transit Instrument approaches
Lateral-Directional Dynamic Stability – Lateral-Directional Oscillations (Dutch Roll Mode	• L_{ν}	10	•	Excitation of LDO via doublet, pulse, or SHSS release to trim	• • •	IMC flight Transit Nuisance mode
Lateral-Directional Dynamic Stability – Spiral Stability	 L_v N_r L_r 	25 N997	• •	Turns on one control – cyclic Time to half/double bank angle	• • •	IMC flight Turns Lateral gust response

16.3 References:

Padfield, G.D., (2007), *Helicopter Flight Dynamics*, 2nd Edition, Blackwell Publishing, UK.

Cooke, A., Fitzpatrick, E., (2002), Helicopter Test and Evaluation, Wiley Blackwell, UK.

Leishman, J.G., (2006), *Principles of Helicopter Aerodynamics*, 2nd Edition, Cambridge University Press, UK.

NOTES