

INTERNATIONAL A-LEVEL FURTHER MATHEMATICS FM04

(9665/FM04) Unit FS2 Statistics

Mark scheme

January 2024

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordaga.com

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2024 OxfordAQA International Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√ or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

–x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

ISW Ignore subsequent working

Q	Answer	Marks	Comments
1	$H_0: \mu_{\alpha} = \mu_{\beta}$ $H_1: \mu_{\alpha} > \mu_{\beta}$	B1	Both hypotheses oe
	$z = \frac{87.5 - 75.9}{\sqrt{\frac{36.2^2}{150} + \frac{27.4^2}{120}}}$	M1	Condone use of $\frac{(\overline{X}-\overline{Y})-(\mu_x-\mu_y)}{\sqrt{S_p^2\bigg(\frac{1}{n_x}+\frac{1}{n_y}\bigg)}}$ oe
	= 3.00	A 1	AWRT 3.00 [$z = 2.9958$] oe
	z critical value = 2.3263	B1	AWRT 2.33 oe
	3.00 > 2.3263 Reject H ₀	A1ft	Correctly compares their z or t test statistic and critical value and rejects null hypothesis
	Sufficient evidence to suggest that on average, the Beta computer uses less energy per hour compared to the Alpha computer	E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value Condone definite conclusion

Question 1 Total	6
------------------	---

Q	Answer	Marks	Comments
2(a)	$M_X(t) = 0.1e^{-t} + 0.2e^{2t} + 0.6e^{5t} + 0.1e^{7t}$	M1	Applies mgf formula Condone one slip
	$M'_X(t) = -0.1e^{-t} + 0.4e^{2t} + 3e^{5t} + 0.7e^{7t}$	M1	Differentiates their $M_X(t)$
	$M_X'(0) = 4$	A 1	cso
		3	

Q	Answer	Marks	Comments
2(b)	$M_X''(t) = 0.1e^{-t} + 0.8e^{2t} + 15e^{5t} + 4.9e^{7t}$	M1	Differentiates their $M_X'(t)$
	$M_X''(0) = 20.8$	A 1	CSO oe
		2	

Q	Answer	Marks	Comments
2(c)	$Var(X) = M''_X(0) - (M'_X(0))^2 = 20.8 - 4^2$	M 1	Applies formula to find variance with their $M_X''(0)$ and $M_X'(0)$
	Var(X) = 4.8	A1ft	ft their $M_X''(0)$ and $M_X'(0)$ oe
		2	

Question 2 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
3	$\bar{x} = 28 \text{ and } s^2 = \frac{440}{3}$	B1	For s^2 AWRT $s^2 = 147$ or $s = $ AWRT 12.1
	$t_3 = 4.541$	B1	AWRT 4.54
	$28 \pm 4.541 \times \sqrt{\frac{\left(\frac{440}{3}\right)}{4}}$	M1	Applies correct formula for upper or lower limit of confidence interval with their values
	(0.5, 55.5)	A 1	AWRT 0.5 for lower limit AWRT 55.5 for upper limit

Question 3 Total	4	
------------------	---	--

Q	Answer	Marks	Comments
4(a)	Lifetimes of the moths have a normal distribution	E1	Condone just normal distribution stated
		1	

Q	Answer	Marks	Comments
4(b)	$H_0: \sigma = 5$ $H_1: \sigma \neq 5$	B1	Both hypotheses, oe
	H ₁ : $\sigma \neq 5$ $\frac{(n-1)s^2}{\sigma^2} = \frac{(101-1)\times 5.6^2}{5^2}$	M1	PI Condone one error
	= 125.44	A 1	AWRT 125
	$\chi^{2}_{100}(0.975) = 129.561$ [and $\chi^{2}_{100}(0.025) = 74.222$]	B1	Finds correct critical value or correct probability, AWRT 0.043 or 0.0435
	[74.222 <] 125.44 < 129.561 Do not reject H ₀	A1ft	Correctly compares their χ^2 test statistic and their critical value or their probability and 0.025 and does not reject the null hypothesis
	Sufficient evidence to suggest that the population standard deviation of the lifetimes of the moths is 5 days	E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value Condone definite conclusion
		6	

Q	Answer	Marks	Comments
4(c)	$H_0: \sigma_M = \sigma_B$ $H_1: \sigma_M < \sigma_B$	B1	Both hypotheses oe
	$\frac{s_B^2}{s_M^2} = \frac{5.9^2}{5.6^2}$	M1	or $\frac{s_M^2}{s_B^2} = \frac{5.6^2}{5.9^2}$
	= 1.11	A 1	AWRT 1.11 or AWRT 0.90
	$F_{50,100} = 1.477$	B1	Finds correct critical value 1.477 or $\frac{1}{1.477} = \mathbf{AWRT} \ 0.68 \text{ or correct}$ probability AWRT 0.32 or 0.325
	1.11 < 1.477 Do not reject H ₀	A1ft	Correctly compares their F test statistic and their critical value or their probability and 0.05 and does not reject null hypothesis
	Insufficient evidence to suggest that the population variance of the lifetimes of the butterflies is greater than the population variance of the lifetimes of the moths	E1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value Condone definite conclusion
		6	

Question 4 Total 13

Q	Answer	Marks	Comments
5	$\begin{aligned} \mathbf{H}_0: \mu_B &= \mu_A \\ \mathbf{H}_1: \mu_B &> \mu_A \end{aligned}$	B1	Both hypotheses If use μ_D , $\mathrm{H_1}$ must be consistent with their differences oe
	Employee Difference 1 8 2 16 3 0 4 1 5 -3 6 1 7 3	В1	All differences
	$\bar{x} = \frac{26}{7} \text{ or } -\frac{26}{7}$	B1	Sight of AWRT 3.7 or –3.7 Must be consistent with their differences
	$s^2 = \frac{284}{7}$	B1	AWRT 40.6 Accept <i>s</i> = AWRT 6.4
	$t = \frac{\frac{26}{7}}{\sqrt{\frac{284}{7}}} \text{ or } \frac{-\frac{26}{7}}{\sqrt{\frac{284}{7}}}$	M1	Using their mean and variance $ \frac{(\bar{X} - \bar{Y}) - (\mu_x - \mu_y)}{\sqrt{S_p^2 \left(\frac{1}{n_x} + \frac{1}{n_y}\right)}} $
	= 1.54 or –1.54	A 1	AWRT Must be consistent with their differences
	t_6 critical value = 1.94 or –1.94	В1	AWRT Must be consistent with their differences unless changes –1.54 to 1.54 first
	1.54 < 1.94 Do not reject H ₀	A1ft	Correctly compares their <i>t</i> test statistic and their critical value and does not reject null hypothesis
	Sufficient evidence to suggest that average number of errors made each day has not reduced following the training course	E1ft	Gives a conclusion in context based on a comparison using the <i>t</i> -distribution Conclusion must not be definite

Question 5 Total	9		
------------------	---	--	--

Q	Answer	Marks	Comments
6(a)	z = 1.96	B1	AWRT 1.96
	$1.96 \times \frac{300}{\sqrt{n}} = 29.4$	M1	Set up an equation with their $z \times \frac{300}{\sqrt{n}}$ oe
	<i>n</i> = 400	A 1	400, 399 or 401
		3	

Q	Answer	Marks	Comments
6(b)	z = 2.5758	B1	AWRT 2.58 PI
	Width = $2 \times 2.5758 \times \frac{300}{\sqrt{400}}$	M1	Calculates either the width or half-width using their z and their n
	= 77.3	A 1	If 400 final answer in (a) AWRT 77.3 If 399 final answer in (a) AWRT 77.4
		3	If 401 final answer in (a) AWRT 77.2

Q	Answer	Marks	Comments
6(c)	Upper limit = $4450 + 0.5 \times 77.3 = 4488.65$	B1ft	Calculates upper limit of confidence interval ft their width
	4500 is not in the confidence interval so Rashida will reject the null hypothesis	E1ft	Correct conclusion ft their confidence interval
		2	

Question 6 Total	8	
------------------	---	--

Q	Answer	Marks	Comments
7(a)	 H₀: There is no association between time of day and number of snacks eaten H₁: There is an association between time of day and number of snacks eaten 	B1	Both hypotheses, variables must be stated in at least the null hypothesis oe
		1	

Q	Answer	Marks	Comments
7(b)	There are expected frequencies less than 5 so two columns need to be merged	E1	Explains that columns need to be merged because there are expected frequencies less than 5 If particular expected frequencies are identified, they need to be correct (1.76 and 2.24)
	So degrees of freedom = $(2-1)(2-1) = 1$	B1	Shows correct calculation of degrees of freedom
		2	

Q	Answer	Marks	Comments
7(c)	$\sum \frac{\left(O-E -0.5\right)^2}{E} \text{ or } \sum \frac{\left(O_i-E_i -0.5\right)^2}{E_i}$	B1	Correct test statistic
		1	

Q	Answer	Marks	Comments
7(d)	Critical value = 3.841	B1	AWRT 3.8 or correct probability AWRT 0.025
	5.05 > 3.841	M1	Correctly compares χ^2 test statistic and their critical value or their probability and 0.05
	So null hypothesis is rejected	A 1	Correct conclusion
		3	

Question 7 Total	7	
------------------	---	--

Q	Answer	Marks	Comments
8(a)	$E(R) = E\left(\frac{1}{n+2}\left(A+B+\sum_{i=1}^{n}X_{i}\right)\right)$ $= \frac{E(A)+E(B)+\sum_{i=1}^{n}E(X_{i})}{n+2}$	M1	Finds $E(R)$ in terms of $E(A)$, $E(B)$, $E(X_i)$ and n
	$=\frac{\mu+\mu+n\mu}{n+2}$	A 1	Find E(R) in terms of μ and n
	$=\frac{\mu(n+2)}{n+2}=\mu$ therefore unbiased	A 1	Must see $n+2$ cancelled to give μ and conclusion
		3	

Q	Answer	Marks	Comments
8(b)	$Var(R) = Var\left(\frac{1}{n+2}\left(A+B+\sum_{i=1}^{n}X_{i}\right)\right)$ $= \frac{Var(A)+Var(B)+\sum_{i=1}^{n}Var(X_{i})}{(n+2)^{2}}$	M1	Finds $\operatorname{Var}(R)$ in terms of $\operatorname{Var}(A)$, $\operatorname{Var}(B)$, $\operatorname{Var}(X_i)$ and n Condoning not squaring $n+2$ May be seen in part (c) if not attempted in this part
	$=\frac{\sigma^2+\sigma^2+n\sigma^2}{(n+2)^2}$	A 1	Find $Var(R)$ in terms of σ^2 and n May be seen in part (c) if not attempted in this part
	$= \frac{(n+2)\sigma^2}{(n+2)^2} = \frac{\sigma^2}{(n+2)}$ As $n \to \infty$, $Var(R) \to 0$ therefore consistent	A 1	Correctly finds $Var(R) = \frac{\sigma^2}{(n+2)}$, applies limiting process and gives conclusion
		3	

Q	Answer	Marks	Comments
8(c)	$\operatorname{Var}\left(\overline{X}\right) = \frac{\sigma^2}{n}$	B1	Finds $Var(\bar{X}) = \frac{\sigma^2}{n}$ or $\frac{n\sigma^2}{n^2}$
	Relative Efficiency = $\frac{\frac{1}{Var(R)}}{\frac{1}{Var(\bar{X})}} = \frac{\frac{n+2}{\sigma^2}}{\frac{n}{\sigma^2}}$	M1	Applies relative efficiency formula either way round with either the correct $\operatorname{Var}(R)$ or their $\operatorname{Var}(R)$ from part (b) and their $\operatorname{Var}(\overline{X})$
	$=\frac{n+2}{n}$	A 1	Correct simplification, if calculates relative efficiency the other way round will achieve $\frac{n}{n+2}$
	The student's claim is not true as estimator R is more efficient than estimator \overline{X} as $\frac{n+2}{n} > 1$	E1	Correct conclusion and justification CSO If calculates relative efficiency the other way round justification will be $\frac{n}{n+2} < 1$
		4	

Question 8	otal 10	
------------	---------	--

Q	Answer	Marks	Comments
9(a)	z = 2.3263	B1	AWRT 2.33
	$8 \pm 2.3263 \times \sqrt{\frac{10.24}{6}}$	M1	Attempts to calculate one of the limits
	$ar{X}$ $<$ 4.961, $ar{X}$ $>$ 11.039	A 1	Correct critical region AWRT 4.961 and AWRT 11.039 Condone \overline{X} < 4.961 and \overline{X} > 11.039 Do not ignore subsequent working
		3	

Q	Answer	Marks	Comments
9(b)	Power = $P\left(Z < \frac{4.961 - 11.4}{\sqrt{\frac{10.24}{6}}}\right) + P\left(Z > \frac{11.039 - 11.4}{\sqrt{\frac{10.24}{6}}}\right)$	М1	Identifies correct probabilities corresponding to their critical region PI
	= 0.61	A 1	AWRT 0.61
		2	

Question 9 To	5
---------------	---

Q	Answer	Marks	Comments
10	 H₀: Lifetime of the star has a normal distribution H₁: Lifetime of the star does not have a normal distribution 	B1	Both hypotheses Variable should be stated in at least the null hypothesis
	$\bar{t} = 9.5 \text{ and } s^2 = 0.04$	B1	
	$ \begin{array}{c cccc} t & Probability & Expected \\ Frequency \\ \hline t \leq 9.25 & 0.10565 & 5.2825 \\ \hline 9.25 < t \leq 9.5 & 0.39435 & 19.7175 \\ \hline 9.5 < t \leq 9.75 & 0.39435 & 19.7175 \\ \hline t > 9.75 & 0.10565 & 5.2825 \\ \hline \end{array} $	M1 A1ft A1	 M1: Uses T ~ N (their 9.5, their 0.04) to find a probability A1: Correct probabilities to 2 decimal places PI ft their 9.5 and 0.04 A1: Correct expected frequencies to 2 decimal places
	$ \sum \frac{\left(O-E\right)^2}{E} = \frac{\left(6-5.2825\right)^2}{5.2825} + \frac{\left(22-19.7175\right)^2}{19.7175} + \frac{\left(13-19.7175\right)^2}{19.7175} + \frac{\left(9-5.2825\right)^2}{5.2825} $	M1	Attempts to calculate test statistic
	= 5.3	A1	AWRT 5.3
	v = 4 - 2 - 1 = 1	B1	PI by correct critical value
	$\chi_1^2(0.99) = 6.635$	B1ft	Finds correct critical value or correct probability, AWRT 0.02 ft their degrees of freedom
	5.3 < 6.635 Do not reject H_0	A1ft	Correctly compares their χ^2 test statistic and their critical value or their probability and 0.01 and does not reject null hypothesis
	Sufficient evidence to suggest that the lifetime of the star can be modelled by a normal distribution	E 1	Gives a conclusion in context based on a comparison of the correct test statistic and correct critical value
			Condone definite conclusion

Question 10 Total	11	
-------------------	----	--