

July 30, 2022

```
[2]: import pandas as pd
     import numpy as np
     import statsmodels.api as sm
     import seaborn as sns
     import matplotlib.pyplot as plt
     plt.rcParams["figure.figsize"] = (10,8)
     sns.set()
[3]: data = pd.read_csv("ToyotaCorolla.csv")
     data
[3]:
           Price
                   Age
                        Kilometers Fuel_Type
                                                 ΗP
                                                      Metallic
                                                                  Color
                                                                         Automatic
                              46986
                                        Diesel
                                                                   Blue
           13500
                                                 90
                                       Diesel
                                                                 Silver
     1
           13750
                    23
                              72937
                                                 90
                                                             1
                                                                                  0
     2
           13950
                    24
                              41711
                                       Diesel
                                                 90
                                                             1
                                                                   Blue
                                                                                  0
     3
           14950
                    26
                              48000
                                       Diesel
                                                 90
                                                             0
                                                                  Black
                                                                                  0
     4
           13750
                    30
                              38500
                                       Diesel
                                                 90
                                                             0
                                                                  Black
                                                                                  0
     1431
            7500
                    69
                              20544
                                                 86
                                                              1
                                                                   Blue
                                                                                  0
                                       Petrol
     1432
           10845
                    72
                              19000
                                        Petrol
                                                             0
                                                                   Grey
                                                                                  0
                                                 86
     1433
                                                                   Blue
             8500
                    71
                              17016
                                        Petrol
                                                 86
                                                                                  0
     1434
            7250
                    70
                              16916
                                        Petrol
                                                 86
                                                             1
                                                                   Grey
                                                                                  0
     1435
            6950
                    76
                                                110
                                                                  Green
                                  1
                                        Petrol
             CC
                          Quarterly_Tax
                                          Weight
                  Doors
     0
           2000
                      3
                                    210
                                            1165
                      3
     1
           2000
                                    210
                                            1165
     2
           2000
                      3
                                    210
                                            1165
     3
           2000
                      3
                                    210
                                            1165
     4
           2000
                      3
                                    210
                                            1170
     1431 1300
                      3
                                     69
                                            1025
     1432 1300
                      3
                                            1015
                                     69
     1433 1300
                      3
                                     69
                                            1015
     1434
           1300
                      3
                                     69
                                            1015
     1435 1600
                                     19
                                            1114
```

0.0.1 Câu 1.1: Trực quan hoá thống kê mô tả của các thuộc tính

```
[4]: data.isna().sum()
[4]: Price
                      0
    Age
                      0
    Kilometers
                      0
    Fuel_Type
                      0
    ΗP
                      0
    Metallic
     Color
    Automatic
     CC
                      0
    Doors
                      0
     Quarterly_Tax
    Weight
                      0
     dtype: int64
[5]: axes=data.hist(figsize=(20,18), bins=15)
     for axes_row in axes:
         for axes_col in axes_row:
             title = axes_col.get_title()
             if(title==''):
                 continue
             mean = data[title].mean()
             mode = data[title].mode(dropna=True)
             median = data[title].quantile(0.5)
             axes_col.axvline(mean, color="red",ls="--", label="mean")
             axes_col.axvline(mode[0], color="black",ls="--", label="mode")
             axes_col.axvline(median, color="orange",ls="--", label="median")
             axes_col.legend()
     plt.show()
```


- [6]: plt.figure(figsize=(15,8))
 sns.boxplot(data=data,orient="h")
- [6]: <AxesSubplot:>

0.0.2~ 1.2. Tìm mối quan hệ giữa các biến

```
[7]: corr = data.corr()
corr
```

[7]:		Price Age	Kilometers HP Metallic	Automatic \	
	Price	1.000000 -0.876590	-0.569960 0.314990 0.108905	0.033081	
	Age	-0.876590 1.000000	0.505672 -0.156622 -0.108150	0.031717	
	Kilometers	-0.569960 0.505672	1.000000 -0.333538 -0.080503	-0.081854	
	HP	0.314990 -0.156622	-0.333538 1.000000 0.058712	0.013144	
	Metallic	0.108905 -0.108150	-0.080503 0.058712 1.000000	-0.019335	
	Automatic	0.033081 0.031717	-0.081854 0.013144 -0.019335	1.000000	
	CC	0.126389 -0.098084	0.102683 0.035856 0.031812	0.066740	
	Doors	0.185326 -0.148359	-0.036197 0.092424 0.085243	-0.027654	
	Quarterly_Tax	0.219197 -0.198431	0.278165 -0.298432 0.011326	-0.055371	
	Weight	0.581198 -0.470253	-0.028598 0.089614 0.057929	0.057249	
		CC Doors	Quarterly_Tax Weight		
	Price	0.126389 0.185326	0.219197 0.581198		
	Age	-0.098084 -0.148359	-0.198431 -0.470253		
	Kilometers	0.102683 -0.036197	0.278165 -0.028598		
	HP	0.035856 0.092424	-0.298432 0.089614		
	Metallic	0.031812 0.085243	0.011326 0.057929		
	Automatic	0.066740 -0.027654	-0.055371 0.057249		
	CC	1.000000 0.079903	0.306996 0.335637		
	Doors	0.079903 1.000000	0.109363 0.302618		
	Quarterly_Tax	0.306996 0.109363	1.000000 0.626134		
	Weight	0.335637 0.302618	0.626134 1.000000		

```
[8]: # Truc quan correlation matrix
sns.heatmap(corr, annot=True, cmap="YlGnBu")
```

[8]: <AxesSubplot:>

Các thuộc tính có khả năng liên quan nhau - Age ~ Price - Kilometers ~ Price - Weight ~ Price

```
[9]: df = data.copy()
   df["ln(Price)"] = np.log(df["Price"])
   sns.regplot(data=df, x="Age", y="ln(Price)")
```

[9]: <AxesSubplot:xlabel='Age', ylabel='ln(Price)'>

[10]: sns.regplot(data=df, x="Kilometers", y="ln(Price)", order=3)

[10]: <AxesSubplot:xlabel='Kilometers', ylabel='ln(Price)'>


```
[11]: sns.regplot(data=df, x="Age", y="Kilometers", order=3)
```

[11]: <AxesSubplot:xlabel='Age', ylabel='Kilometers'>


```
[12]: sns.regplot(data=df, x="Weight", y="ln(Price)")
```

[12]: <AxesSubplot:xlabel='Weight', ylabel='ln(Price)'>

Nhận xét thu được từ quan sát biểu đồ: - Tuổi đời của xe càng lớn thì giá xe càng giảm - Kilometers đi được càng lớn thì giá xe cũng giảm dần

0.0.3 1.3. Price theo Fuel Type and Color

```
[13]: # Phân phối giá tiền cho Loại nhiên liệu tiêu thụ data["Price"].hist(by=data["Fuel_Type"]) plt.show()
```



```
[14]: #Phân phối giá tiền cho màu sắc data["Price"].hist(by=data["Color"], figsize=(18,15), xrot=1) plt.show()
```


0.0.4~ 1.4 Ứng dụng mô hình dự đoán giá xe

```
[15]: df= data.copy()
  ols = sm.OLS(df["Price"], df[["Age", "Kilometers", "Weight"]])
  reg = ols.fit()
  reg.summary()
```

[15]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

======

Dep. Variable: Price R-squared (uncentered):

0.984

Model: OLS Adj. R-squared (uncentered):

0.984

Method: Least Squares F-statistic:

3.013e+04

Date: Sat, 30 Jul 2022 Prob (F-statistic):

0.00

Time: 22:36:27 Log-Likelihood:

-12456.

No. Observations: 1436 AIC:

2.492e+04

Df Residuals: 1433 BIC:

2.493e+04

Df Model: 3
Covariance Type: nonrobust

	coef	std err		t	P> t	[0.025	0.975]
Age Kilometers Weight	-123.4563 -0.0236 17.9553	2.188 0.001 0.104	-56.4 -20.3 173.3	311	0.000 0.000 0.000	-127.747 -0.026 17.752	-119.165 -0.021 18.158
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0	.000		•		1.501 1652.385 0.00 4.57e+03

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 4.57e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Nhận xét: - Mô hình OLS cho Rsquared=0.984 (tốt) - Giá trị p_value rất nhỏ (\sim 0.00) => các tham số kết quả đều có ý nghĩa thống kê - Mô hình phù hợp: -123.4563 - 0.0236 + 17.9553

0.0.5 2. Mô phỏng Monte Carlo

0.0.6 Nhận định bài toán:

- Biến ngẫu nhiên X là số cuộc gọi trong khoảng thời gian delta_t
- X sẽ có phân phối Poisson với giá tri trung bình lambda

```
[16]: #lấy mẫu 10000 lần với cỡ mẫu 100 có phân phối poisson lambda = 2
freq_array = []
for i in range(0,10000):
    sample = np.random.poisson(lam=4, size=100)
    freq = np.sum(sample==5)/100
    freq_array.append(freq)
```

```
print("\nXac xuat de nhan 5 cuoc goi trong 2 phut",np.mean(freq_array), "\n")
```

Xac xuat de nhan 5 cuoc goi trong 2 phut 0.156904

```
[17]: #lấy mẫu 10000 lần với cỡ mẫu 100 có phân phối poisson lambda = 1
freq_array = []
for i in range(0,10000):
    sample = np.random.poisson(lam=1, size=100)
    freq = np.sum(sample==0)/100
    freq_array.append(freq)
print("\nXac xuat de nhan khong cuoc goi trong 30 giay",np.mean(freq_array),
    \[ \]\"\n")
```

Xac xuat de nhan khong cuoc goi trong 30 giay 0.367483

```
[18]: #láy mãu 10000 lần với cỡ mẫu 100 có phân phối poisson lambda = 1/3
freq_array = []
for i in range(0,10000):
    sample = np.random.poisson(lam=1/3, size=100)
    freq = np.sum(sample>=1)/100
    freq_array.append(freq)
print("\nXac xuat de nhan it nhat 1 cuoc goi trong 10 giay",np.
    mean(freq_array), "\n")
```

Xac xuat de nhan it nhat 1 cuoc goi trong 10 giay 0.284398

```
[]:
```