The Gauss-Bonnet Theorem

Chen Lin

University of Chicago

October 7, 2021

Theorem (Gauss-Bonnet Theorem) If R is a region on a surface S, then

Theorem (Gauss-Bonnet Theorem)

Theorem (Gauss-Bonnet Theorem)

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

Theorem (Gauss-Bonnet Theorem)

If R is a region on a surface S, then

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

• k_g is geodesic curvature on ∂R

Theorem (Gauss-Bonnet Theorem)

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

- k_g is geodesic curvature on ∂R
- ullet K is Gaussian curvature of S

Theorem (Gauss-Bonnet Theorem)

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

- k_g is geodesic curvature on ∂R
- ullet K is Gaussian curvature of S
- ullet $heta_1,\ldots, heta_p$ are the exterior angles of R

Theorem (Gauss-Bonnet Theorem)

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

Why is it awesome?

- k_g is geodesic curvature on ∂R
- ullet K is Gaussian curvature of S
- ullet $heta_1,\ldots, heta_p$ are the exterior angles of R
- $\chi(R)$ is the Euler characteristic of R

Theorem (Gauss-Bonnet Theorem)

If R is a region on a surface S, then

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

- k_g is geodesic curvature on ∂R
- ullet K is Gaussian curvature of S
- ullet $heta_1,\ldots, heta_p$ are the exterior angles of R
- $\chi(R)$ is the Euler characteristic of R

Why is it awesome?

• k_g , K, and θ_i are geometric, but $\chi(R)$ is topological!

1 The geometry

- The geometry
- 2 The topology

- The geometry
- 2 The topology
- 3 Sketch of proof

- The geometry
- 2 The topology
- 3 Sketch of proof
- 4 Some corollaries

 $S \subset \mathbb{R}^3$ is a **surface** if it is 'smooth' and looks flat locally.

 $S \subset \mathbb{R}^3$ is a **surface** if it is 'smooth' and looks flat locally.

• Tangent planes exist at each point

 $S \subset \mathbb{R}^3$ is a **surface** if it is 'smooth' and looks flat locally.

- Tangent planes exist at each point
- Identify the tangent plane with a unit normal vector

From calculus: for a path $\alpha:I\to\mathbb{R}^3$ with $\|\alpha'\|\equiv 1$, curvature is $\|\alpha''\|$.

From calculus: for a path $\alpha: I \to \mathbb{R}^3$ with $\|\alpha'\| \equiv 1$, curvature is $\|\alpha''\|$.

From calculus: for a path $\alpha: I \to \mathbb{R}^3$ with $\|\alpha'\| \equiv 1$, curvature is $\|\alpha''\|$.

What does curvature mean for a surface?

From calculus: for a path $\alpha: I \to \mathbb{R}^3$ with $\|\alpha'\| \equiv 1$, curvature is $\|\alpha''\|$.

What does curvature mean for a surface?

• We'll start with paths on surfaces

Suppose $\alpha: I \to S$ is a path and $\|\alpha'\| \equiv 1$. We can study:

 $\textbf{1} \text{ how 'straight' } \alpha \text{ is on } S$

Suppose $\alpha: I \to S$ is a path and $\|\alpha'\| \equiv 1$. We can study:

f 1 how 'straight' lpha is on S (geodesic curvature k_g)

- **1** how 'straight' α is on S (geodesic curvature k_g)
- 2 the concavity of S along α

- **1** how 'straight' α is on S (geodesic curvature k_g)
- 2 the concavity of S along α (normal curvature k_n)

- **1** how 'straight' α is on S (geodesic curvature k_g)
- 2 the concavity of S along α (normal curvature k_n)

 k_q : component of α'' on tangent plane

Suppose $\alpha: I \to S$ is a path and $\|\alpha'\| \equiv 1$. We can study:

- **1** how 'straight' α is on S (geodesic curvature k_g)
- 2 the concavity of S along α (normal curvature k_n)

 k_g : component of α'' on tangent plane

 k_n : component of α'' along N

Suppose $\alpha: I \to S$ is a path and $\|\alpha'\| \equiv 1$. We can study:

- **1** how 'straight' α is on S (geodesic curvature k_g)
- 2 the concavity of S along α (normal curvature k_n)

 k_g : component of α'' on tangent plane

 k_n : component of α'' along N

ullet The (Gaussian) curvature of S at the point is

$$K = (\max k_n) \cdot (\min k_n).$$

• The (Gaussian) curvature of S at the point is

$$K = (\max k_n) \cdot (\min k_n).$$

• Might be helpful to look at the sign of *K*:

• The (Gaussian) curvature of S at the point is

$$K = (\max k_n) \cdot (\min k_n).$$

Might be helpful to look at the sign of K:

K > 0

What are exterior angles?

What are exterior angles?

Think of a region ${\cal R}$ as a 'nice' subset of ${\cal S}$

What are exterior angles?

Think of a region R as a 'nice' subset of S

Denote exterior angles with $\theta_1, \dots, \theta_p$ and interior as $\varphi_i := \pi - \varphi_i$.

We can always "triangulate" R.

We can always "triangulate" R.

We can always "triangulate" R.

We can always "triangulate" R.

For any triangulation of ${\it R}$, we compute

We can always "triangulate" R.

For any triangulation of R, we compute

$$\underbrace{\chi(R) = V - E + F}_{\text{Euler characteristic of } R}$$

We can always "triangulate" R.

For any triangulation of R, we compute

$$\underbrace{\chi(R) = V - E + F}_{\text{Euler characteristic of } R}$$

We can always "triangulate" R.

For any triangulation of R, we compute

$$\underbrace{\chi(R) = V - E + F}_{\text{Euler characteristic of } R}$$

V: number of vertices

We can always "triangulate" R.

For any triangulation of R, we compute

$$\underbrace{\chi(R) = V - E + F}_{\text{Euler characteristic of } R}$$

- V: number of vertices
- E: number of edges

We can always "triangulate" R.

For any triangulation of R, we compute

$$\underbrace{\chi(R) = V - E + F}$$

Euler characteristic of ${\cal R}$

- V: number of vertices
- *E*: number of edges
- F: number of faces

We can always "triangulate" R.

For any triangulation of R, we compute

$$\underbrace{\chi(R) = V - E + F}_{\text{Euler characteristic of } R}$$

- V: number of vertices
- E: number of edges
- \bullet F: number of faces

 $\chi(R)$ does not depend on triangulation!

Proving the Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet Theorem)

If R is a region on a surface S, then

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

Proving the Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet Theorem)

If R is a region on a surface S, then

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

1 Show the fact for triangles:

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^3 \theta_i = 2\pi.$$

Proving the Gauss-Bonnet Theorem

Theorem (Gauss-Bonnet Theorem)

If R is a region on a surface S, then

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

1 Show the fact for triangles:

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^3 \theta_i = 2\pi.$$

Uses Stokes' Theorem: $\oint_{\partial R} \mathbf{F} \cdot d\mathbf{r} = \iint_R \mathrm{curl} \mathbf{F} \cdot N \ dA$

Theorem (Gauss-Bonnet Theorem)

If R is a region on a surface S, then

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

Theorem (Gauss-Bonnet Theorem)

If R is a region on a surface S, then

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

Triangulate the surface, apply

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^3 \theta_i = 2\pi.$$

for each triangle.

Theorem (Gauss-Bonnet Theorem)

If R is a region on a surface S, then

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^p \theta_i = 2\pi \chi(R).$$

Triangulate the surface, apply

$$\int_{\partial R} k_g \ ds + \iint_R K \ dA + \sum_{i=1}^3 \theta_i = 2\pi.$$

for each triangle.

3 Sum everything up and $\chi(R)$ will pop out.

The Gauss-Bonnet Theorem unites geometry and topology.

The Gauss-Bonnet Theorem unites geometry and topology.

ullet If S is a closed surface, then

The Gauss-Bonnet Theorem unites geometry and topology.

ullet If S is a closed surface, then

$$\iint_{S} K \ dA = 2\pi \chi(S),$$

The Gauss-Bonnet Theorem unites geometry and topology.

ullet If S is a closed surface, then

$$\iint_{S} K \ dA = 2\pi \chi(S),$$
$$= 2(2 - 2g).$$

• g: how many holes S has

The Gauss-Bonnet Theorem unites geometry and topology.

If S is a closed surface, then

$$\iint_{S} K dA = 2\pi \chi(S),$$
$$= 2(2 - 2g).$$

• g: how many holes S has

Take some sphere.

Take some sphere.

• Draw a triangle whose sides are 'straight-lines'.

Take some sphere.

- Draw a triangle whose sides are 'straight-lines'.
- The Gauss-Bonnet Theorem will tell us

$$\varphi_1 + \varphi_2 + \varphi_3 > \pi$$
.

Take some sphere.

- Draw a triangle whose sides are 'straight-lines'.
- The Gauss-Bonnet Theorem will tell us

$$\varphi_1 + \varphi_2 + \varphi_3 > \pi$$
.

• I think that's pretty epic.

THANK YOU!