DETECTING BIAS IN LANGUAGE MODELS

KATE REISS
11 MARCH 2022

BIAS IN LANGUAGE MODELS: GPT-3

Over

300

apps use language model GPT-3 Two muslims walked into a... [GPT-3 completions below]

...synagogue with axes and a bomb.

...gay bar and began throwing chairs at patrons

...Texas cartoon contest and opened fire.

Abid et al. 2021

WORD EMBEDDINGS

- Words represented as vectors
- Closer words have similar meanings

Source: Data Ethics by Brian Spiering

HOW DO WORD MEANINGS DIFFER?

Wikipedia

- 400,000 Words
- 200 Dimensions

Twitter

- 1.2 Billion Words*
- 200 Dimensions

*200,000 English

140,000 Words in Common

DBSCAN CLUSTERING

Wikipedia Clusters

- 1. "Fourteen"
- 2. "Exactly"
- 3. "Buckinghamshire"
- 4. "Father"
- 5. "Convicted"
- 6. "Championships"

Twitter Clusters

- 1. "Politicking"
- 2. "Thinnest"
- 3. "Inducted"
- 4. "Bookshelf"
- 5. "Conservatively"
- 6. "Orthodontics"

14 Total

8 Total

ANALOGY TESTS

Man is to King as Woman is to ____?

200 dimensions

- Wikipedia: "Queen"
- Twitter: "Queen"

Reduced Dimensions

- Wikipedia: "Queen"
- Twitter: "Meets"

APPENDIX

```
In [59]: result = model twitter25.most similar(positive=['woman', 'king'], negative=['man'], topn=3)
         print(result)
         [('meets', 0.8841923475265503), ('prince', 0.832163393497467), ('queen', 0.8257461190223694)]
In [60]: result = model twitter200.most similar(positive=['woman', 'king'], negative=['man'], topn=3)
         print(result)
         [('queen', 0.6820898056030273), ('prince', 0.5875527262687683), ('princess', 0.5620488524436951)]
         result = model wikipedia200.most similar(positive=['woman', 'king'], negative=['man'], topn=3)
In [57]:
         print(result)
         [('queen', 0.6978679299354553), ('princess', 0.6081744432449341), ('monarch', 0.5889754891395569)]
In [58]: result = model wikipedia50.most similar(positive=['woman', 'king'], negative=['man'], topn=3)
         print(result)
         [('queen', 0.8523604273796082), ('throne', 0.7664334177970886), ('prince', 0.7592144012451172)]
```

```
Twitter Clusters:
Cluster 1: ['politicking', 'trashing', 'butchering', 'archiving', 'fabric
ating', 'flaunting', 'cribbing']
Cluster 2: ['thirstiest', 'straightest', 'shortest', 'thickest', 'hippes
t', 'whitest', 'thinnest']
Cluster 3: ['induct', 'inducted', 'inducts', 'inducting', 'hof', 'inducti
ons', 'induction', 'inductees', 'inductee']
Cluster 4: ['bookshelf', 'shelving', 'bookcase', 'bookcases', 'headboar
d', 'shelves', 'bookshelves']
Cluster 5: ['conservatively', 'creatively', 'rationally', 'maturely', 're
phrase'l
Cluster 6: ['one-off', 'half-hour', 'two-night', 'one-hour', 'two-hour']
Cluster 7: ['whole-heartedly', 'wholehearted', 'heartedly', 'heartily',
'respectfully', 'wholeheartedly', 'wholly']
Cluster 8: ['orthodontics', 'orthodontists', 'osteopath', 'orthodontist']
```

Wikipedia Clusters:

Cluster 1: ['twenty-six', 'seventy-five', 'thirty-five', 'forty-two', 'twenty-eight', 'twenty-nine', 'twenty-five', 'forty-five', 'four', 'thirteen', 'thirty-one', 'twenty-three', 'thirty-six', 'sixty-five', 'forty-six', 'sixty', 'three', 'forty', 'thirty', 'twenty-four', 'thirty-two', 'twenty-two', 'forty-eight', 'fourteen', 'sixty-four', 'thirty-three', 'twenty-one', 'thousand']

Cluster 2: ['exactly', 'really', 'surely', 'reason', 'importantly', 'thou gh', 'actually', 'what', 'everything', 'fact', 'would', 'absolutely', 'th ing', 'whoever', 'whatever', 'learned', 'although', 'somehow', 'think', 'this', 'things', 'ought', 'learn', 'undoubtedly', 'why', 'knew', 'everyo ne', 'might', 'know', 'thinks', 'nothing', 'certainly', 'hates', 'whereve r', 'thought', 'whether', 'whenever', 'knowing', 'that', 'something', 'ne ither', 'thinking', 'clearly']

Cluster 3: ['warwickshire', 'northamptonshire', 'buckinghamshire', 'glouc estershire', 'monmouthshire', 'leicestershire', 'staffordshire', 'worcest ershire', 'bedfordshire', 'northants', 'chorley', 'nottinghamshire', 'che shire', 'oxfordshire', 'wiltshire', 'first-class', 'cambridgeshire', 'der byshire', 'herefordshire', 'lancashire', 'lincolnshire', 'hertfordshire']

Cluster 4: ['fifth', 'twenty-first', 'finishing', 'thirteenth', 'straigh t', 'fourteenth', 'fifteenth', 'sixth', 'seventh', 'tenth', 'sixteenth', 'twelfth', 'fourth', 'first', 'ninth', 'third']

Cluster 5: ['father', 'brother', 'grandfather', 'nephew', 'his', 'stepfather', 'son-in-law', 'grandmother', 'brother-in-law', 'father-in-law', 'mother']

```
Cluster 6: ['indict', 'treason', 'pleading', 'plea', 'charge', 'implicate
d', 'counts', 'charging', 'charges', 'quilty', 'plead', 'arrested', 'plea
ded', 'theft', 'indicted', 'accused', 'convicts', 'convicted', 'suspect
s', 'pleads', 'convicting', 'pled', 'racketeering']
Cluster 7: ['northwestern', 'southwest', 'southern', 'east', 'southeaster
n', 'northeast', 'southwestern', 'northeastern', 'southeast', 'northern',
'northwest', 'eastern']
Cluster 8: ['forecasters', 'expecting', 'forecasted', 'predictions', 'exp
ected', 'prediction', 'expectations', 'predicted', 'foresaw', 'analysts',
'predicting', 'forecasting', 'forecasts', 'forecast', 'predicts']
Cluster 9: ['matches', 'champions', 'tournaments', 'match', 'tourney', 'c
hampionships', 'tournament', 'round', 'playoff', 'championship']
Cluster 10: ['catchers', 'homers', 'pitches', 'shortstop', 'pitching', 'c
atcher', 'hitters', 'pitchers', 'pitcher', 'hitter', 'pitched', 'diamondb
acks', 'fastball', 'lofton', 'leadoff']
Cluster 11: ['toasted', 'cooking', 'minced', 'roasting', 'broth', 'grate
d', 'eaten', 'chives', 'tofu', 'beans', 'onions', 'uncooked', 'cooked',
'spiced', 'chopped', 'finely', 'roasted', 'marinated', 'cook', 'onion',
'meat', 'celery']
                                                                          Cluster 12: ['increased', 'higher', 'increase', 'reduce', 'increasing',
'reduction', 'reductions', 'increases', 'rates', 'reduced']
Cluster 13: ['shouts', 'shouted', 'crying', 'chanting', 'screaming', 'ins
```

ults', 'chanted', 'shout', 'screamed', 'shouting']

```
In [10]: model wikipedia200.most similar('girl')
Out[10]: [('boy', 0.8486549854278564),
          ('girls', 0.7696278691291809),
          ('woman', 0.7648226022720337),
          ('child', 0.7002282738685608),
          ('mother', 0.6969297528266907),
          ('teenage', 0.6899838447570801),
          ('boys', 0.6887997388839722),
          ('teen', 0.6872598528862),
          ('teenager', 0.6842571496963501),
          ('daughter', 0.6838234663009644)]
In [12]: model twitter200.most similar('girl')
Out[12]: [('boy', 0.8434211015701294),
          ('girls', 0.8288909792900085),
          ('she', 0.8030763864517212),
          ('quy', 0.7873061299324036),
          ('woman', 0.7817050218582153),
          ('chick', 0.7750226855278015),
          ('friend', 0.7702169418334961),
          ('bitch', 0.7611055374145508),
          ('that', 0.7493616342544556),
          ('pretty', 0.746584951877594)]
```


Twitter Clusters

K-Means Before and After Dimensionality Reduction

WORDS FARTHEST APART BASED ON COSINE SIMILARITY

literacy inventing sweetheart fireproof tripwire tomboys levittown bluntly waitress wha cathouse eatery weathers officals clutch coffeemaker soundcard peacefully