Compactness (1.5): Part-III : If (X, d) is TB and complete, every sequence within it has a convergent subsequence.

We begin by proving $(3) \implies (2)$ for our main theorem. We show that every sequence in a TB metric space has a *Cauchy* subsequence; if our metric space is **complete**, this Cauchy subsequence must converge.

Theorem 5.6 : Any sequence in a totally bounded (TB) metric space (X, d) has a Cauchy subsequence.

Proof Let $(x_j)_{j=1}^{\infty}$ be a sequence in X. We will iteratively extract subsequences from $(x_j)_{j=1}^{\infty}$ and arrive at a Cauchy subsequence; we use the symbol \subset^* to denote a subsequence inclusion. Let k index the k-th subsequence extracted: $(x_{kj})_{j=1}^{\infty} \subset^* (x_j)_{j=1}^{\infty}$, and also denote the k-th term of our sequence of interest $(y_n)_{n=1}^{\infty}$, which we constructed as explained below.

- (Base Case) For k = 1, let the first "extracted" sequence: $(x_{1j})_{j=1}^{\infty}$ just be our original sequence $(x_j)_{j=1}^{\infty}$; Set $y_1 = x_{11} = x_1$.
- (Recursion) For $k \geq 2$, extract $(x_{kj})_{j=1}^{\infty}$ to satisfy:
 - $-(1) (x_{kj})_{j=1}^{\infty}$ is a subsequence of $(x_{k-1j})_{j=1}^{\infty}$
 - $-(2) (x_{kj})_{j=1}^{\infty}$ falls into a ball of radius $(\frac{1}{k})$ inside X.
 - (3) Set $y_k = x_{kk}$

First,we need to show that this construction can be *satisfied* for each $k \geq 2$. Certainly, condition (1) can always be satisfied. For (2), we proceed by induction.

Suppose for some $k \geq 2$, the subsequence $(x_{k-1j})_{j=1}^{\infty}$ has already been formed to satisfy (1) and (2). Since (X,d) is TB, for $\varepsilon = \frac{1}{k}$, X can be covered by **finitely many** (say, p) balls of radius $\frac{1}{k}$: $B_1, ..., B_p$. Thus: $(x_{k-1j})_{j=1}^{\infty} \subset X \subseteq \bigcup_{s=1}^p B_s$. Since the sequence $(x_{k-1j})_{j=1}^{\infty}$ has infinitely many terms, at least one of these balls must contain infinitely many terms of $(x_{k-1j})_{j=1}^{\infty}$.

Let this ball be $B_l, l \in [p]$. Now, we can simply select all the terms in B_l in order, to form our k - th subsequence $(x_{kj})_{j=1}^{\infty}$; let x_{k1} be the first¹ term in B_l, x_{k2} the second, and so on. Thus, $(x_{kj})_{j=1}^{\infty} \subseteq (x_{k-1j})_{j=1}^{\infty}$ falls into a ball of radius 1/k. Setting $y_k = x_{kk}$, conditions (1)–(3) are met.

Now we claim that $(y_n)_{n=1}^{\infty}$ is a Cauchy subsequence of our original sequence $(x_j)_{j=1}^{\infty}$.

For **any** $k \geq 2$, $(y_n)_{n=k}^{\infty} \subset^* (x_{kj})_{j=1}^{\infty}$, since: At the starting index n = k, $y_k = x_{kk} \in (x_{kj})_{j=1}^{\infty}$, and for n > k, $y_n = x_{nn} \in (x_{nj})_{j=1}^{\infty} \subset^* (x_{kj})_{j=1}^{\infty}$, seen by $(x_{k+1j})_{j=1}^{\infty} \subset^* (x_{kj})_{j=1}^{\infty}$ for any k > 1 (from-(1)).

 $^{^1\}mathrm{By}$ "first", we mean: k1 is the smallest index among the indices k-1j to fall in $B_l,$ and so on (Well-Ordering of $\mathbb N)$

Thus, for each k>1, $(y_n)_{n=k}^{\infty}\subset^*(x_{kj})_{j=1}^{\infty}\subseteq B(z;\frac{1}{k})$, where $z\in X$ (-(2)). So whenever $n\geq k$, $y_n\in B(z;\frac{1}{k})\Longrightarrow d(y_n,z)<\frac{1}{k}$. Then, $\forall k\geq 2$, $m,n>k\Longrightarrow d(y_m,y_n)< d(y_m,z)+d(z,y_n)<\frac{2}{k}$. Thus, For any $\varepsilon>0$, with $N=\frac{2}{\varepsilon}$. Then $k\geq N\Longrightarrow \forall m,n>N$, $d(y_m,y_n)<\varepsilon$. Whereby $(y_n)_{n=1}^{\infty}$ is a Cauchy subsequence of our original sequence $(x_j)_{j=1}^{\infty}$.