

planetmath.org

Math for the people, by the people.

compact pavings are closed subsets of a compact space

 ${\bf Canonical\ name} \quad {\bf CompactPavingsAreClosedSubsetsOfACompactSpace}$

Date of creation 2013-03-22 18:45:01 Last modified on 2013-03-22 18:45:01

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282) Entry type Theorem Classification msc 28A05 Recall that a paving \mathcal{K} is compact if every subcollection satisfying the finite intersection property has nonempty intersection. In particular, a topological space is http://planetmath.org/Compactcompact if and only if its collection of closed subsets forms a compact paving. Compact paved spaces can therefore be constructed by taking closed subsets of a compact topological space. In fact, all compact pavings arise in this way, as we now show.

Given any compact paving \mathcal{K} the following result says that the collection \mathcal{K}' of all intersections of finite unions of sets in \mathcal{K} is also compact.

Theorem 1. Suppose that (K, \mathcal{K}) is a compact paved space. Let K' be the smallest collection of subsets of X such that $K \subseteq K'$ and which is closed under arbitrary intersections and finite unions. Then, K' is a compact paving.

In particular,

$$\mathcal{T} \equiv \{K \setminus C \colon C \in \mathcal{K}'\} \cup \{\emptyset, K\}$$

is closed under arbitrary unions and finite intersections, and hence is a topology on K. The collection of closed sets defined with respect to this topology is $\mathcal{K}' \cup \{\emptyset, K\}$ which, by Theorem ??, is a compact paving. So, the following is obtained.

Corollary. A paving (K, \mathcal{K}) is compact if and only if there exists a topology on K with respect to which K are closed sets and K is compact.