Modelos Formales de Computación

Part 2: Semantics of Programming Languages

Máster en Ingeniería y Tecnología de Sistemas Software

Outline

- Objectives
- Motivation
- 3 Denotational Semantics
- Operational Semantics
 Big-step Operational Semantics
 Small-step Operational Semantics
- **5** Continuation-Style Semantics

Outline

- Objectives
- Motivation
- Openational Semantics
- Operational Semantics
 Big-step Operational Semantics
 Small-step Operational Semantics
- **5** Continuation-Style Semantics

The objectives

- Know the different approaches for semantics in the literature
- Understand the meaning of the function [_]
- Understand the fixpoint computations for loops
- Understand the restricted evaluation of if-then-else
- Compare the different semantics using a programming language (SIMPLE)

Outline

- Objectives
- Motivation
- Openotational Semantics
- Operational Semantics
 Big-step Operational Semantics
 Small-step Operational Semantics
- **6** Continuation-Style Semantics

Programming languages definitions

- Programming languages are usually presented quite informally, in large-audience books and manuals, some of them called, for some reason, "idiot's guides".
- Some programming languages have a standardization committee, e.g. the language C specified by an ISO standard, similarly Ada, Fortran, Pascal, or Ruby.
- Quite often a programming language is simple defined by one or two "reference" compilers or interpreters, e.g. Perl, Prolog, Visual Basic.
- While books, standards or reference implementations have clearly the merit of making programming languages quickly available to masses of programmers, they cannot serve as "official" definitions of languages.

Errors in Program Semantics

Consider this program (unseq.c):

```
int main() {
    int x = 0;
    return (x = 1) + (x = 2);
}
```

When compiled with clang, this program returns 3 but with gcc we unexpectedly get 4. We can see

C. Hathhorn, G. Rosu: Dealing With C's Original Sin. IEEE Software. 36(5): 24-28 (2019)

Formal Semantics

- From the point of view of a formally untrained software engineer, formal definitions of languages may look slightly too cryptic.
- The role of mathematical theories in general is two-fold:
 - they help understanding the defined concept better, and
 - are ameanable to formal, mechanically certifiable proofs.

In particular, a formal language definition provides the basis for formal verification of programs against properties of interest.

- Modern programming languages have formal semantics to allow automated properties certification, e.g. Standard ML, Java, C, Haskell.
- New advances in programming languages towards certification of programs and properties,
 e.g. Microsoft F*

Approaches to formal semantics

- Denotational semantics.
- Operational semantics.
 - Big-step semantics
 - Small-step semantics
 - Structural Operational Semantics (SOS)
 - Modular SOS
 - Reduction semantics
 - Continuation-based semantics
 - Abstract State Machine (ASM)
- Axiomatic semantics.
- Action Semantics.
- Concurrency semantics.

Interpreters???

- We define the executable semantics of different programming languages
- Keep in mind that we do not provide an implementation of the language that would be the job of an interpreter or a compiler.
- What we provide is a semantics of the language as a formal mathematical definition of the language.
- The operations and properties, forming together what is called a specification, represent the totality of properties which if an implementation satisfies, that implementation is considered correct for our language.

Outline

- Objectives
- Motivation
- 3 Denotational Semantics
- Operational Semantics
 Big-step Operational Semantics
 Small-step Operational Semantics
- **5** Continuation-Style Semantics

Denotational Semantics

- Description
- Syntax of SIMPLE
- 3 State of a SIMPLE program
- 4 Configuration of the SIMPLE abstract machine
- 6 Denotational Semantics of SIMPLE

Denotational Semantics

- Associates to each programming language syntactic construct a well-defined and understood mathematical object, typically a function.
- Also known as fix-point semantics
- The mathematical object denotes the behavior of the corresponding language construct, so equivalence of programs is immediately translated into equivalence of mathematical objects (bi-simulation, equivalence by abstraction, etc.)
- Undefinedness is denoted by \bot and every denotational definition must propagate \bot : $\llbracket a_1 + a_2 \rrbracket \sigma = \left\{ \begin{array}{cc} \llbracket a_1 \rrbracket \sigma + \llbracket a_2 \rrbracket \sigma & \text{if } \llbracket a_1 \rrbracket \sigma \neq \bot \text{ and } \llbracket a_2 \rrbracket \sigma \neq \bot \\ \bot & \text{otherwise} \end{array} \right.$ instead of the simpler $\llbracket a_1 + a_2 \rrbracket \sigma = \llbracket a_1 \rrbracket \sigma + \llbracket a_2 \rrbracket \sigma$

Example Program in SIMPLE

```
x := 0;
n := 0;
while (n <= 2) (
    x := x + 1;
    n := n + x
)</pre>
```

- Imperative style (no concurrency)
- Assignment, loop and conditional
- Data: only integer numbers
- Data: boolean only in conditions

Syntax in SIMPLE

```
\begin{array}{lll} \textit{Var} ::= & \mathsf{standard} \ \mathsf{identifiers} \\ \textit{AExp} ::= & \textit{Var} \mid 1 \mid 2 \mid 3 \mid \dots \mid \\ & \textit{AExp} + \textit{AExp} \mid \textit{AExp} - \textit{AExp} \mid \textit{AExp} * \textit{AExp} \mid \textit{AExp} / \textit{AExp} \\ \textit{BExp} ::= & \mathsf{true} \mid \mathsf{false} \mid \textit{AExp} \leq \textit{AExp} \mid \textit{AExp} \geq \textit{AExp} \mid \textit{AExp} == \textit{AExp} \\ & \textit{BExp} \ \mathsf{and} \ \textit{BExp} \mid \textit{BExp} \ \mathsf{or} \ \textit{BExp} \mid \mathsf{not} \ \textit{BExp} \\ \textit{Stmt} ::= & \mathsf{skip} \mid \textit{Var} := \textit{AExp} \mid \textit{Stmt} \ ; \ \textit{Stmt} \\ & \mathsf{if} \ \textit{BExp} \ \mathsf{then} \ \textit{Stmt} \ \mathsf{else} \ \textit{Stmt} \mid \mathsf{while} \ \textit{BExp} \ \textit{Stmt} \\ \textit{Pgm} ::= & \mathsf{Stmt} \end{array}
```

State and Configuration in SIMPLE

A state is a mapping (i.e., substitution) from variables to integer numbers

$$\sigma: \textit{Var} \mapsto \textit{Int}$$
 Retrieve a value $\sigma[x]$ Assign a value $\sigma[x \leftarrow i]$

A configuration is just the program and the state

$$\langle a, \sigma \rangle$$

We assume a language w/o side-effects.

Three groups of denotational evaluation

Denotational Semantics of SIMPLE (I)

Denotational evaluation of arithmetic expressions:

- both arguments are recursively evaluated
- functions +, and * are extended for \bot but not shown
- ullet function / has special consideration and also extended for $oldsymbol{\perp}$

$$\llbracket _ \rrbracket : AExp \rightarrow ((Var \mapsto Int) \rightarrow Int)$$

$$\llbracket x \rrbracket \sigma = \sigma(x) \qquad \llbracket i \rrbracket \sigma = i$$

$$\llbracket a_1 + a_2 \rrbracket \sigma = \llbracket a_1 \rrbracket \sigma + \llbracket a_2 \rrbracket \sigma \qquad \llbracket a_1 - a_2 \rrbracket \sigma = \llbracket a_1 \rrbracket \sigma - \llbracket a_2 \rrbracket \sigma \qquad \llbracket a_1 * a_2 \rrbracket \sigma = \llbracket a_1 \rrbracket \sigma * \llbracket a_2 \rrbracket \sigma$$

$$\llbracket a_1 / a_2 \rrbracket \sigma = \left\{ \begin{array}{cc} \llbracket a_1 \rrbracket \sigma / \llbracket a_2 \rrbracket \sigma & \text{if } \llbracket a_2 \rrbracket \sigma \neq 0 \\ \bot & \text{otherwise} \end{array} \right.$$

Denotational Semantics of SIMPLE (II)

Denotational evaluation of boolean expressions:

- · both arguments are recursively evaluated
- ullet all functions are extended for $oldsymbol{\perp}$ but not shown
- functions (and), (or) denote the version of and, or used for implementation

$$\llbracket L_{-} \rrbracket : BExp \to ((Var \mapsto Int) \to Bool)$$

$$\llbracket true \rrbracket \sigma = true \qquad \llbracket false \rrbracket \sigma = false \qquad \llbracket not \ b \rrbracket \sigma = \neg (\llbracket b \rrbracket \sigma)$$

$$\llbracket b_{1} == b_{2} \rrbracket \sigma = \llbracket b_{1} \rrbracket \sigma (==) \llbracket b_{2} \rrbracket \sigma$$

$$\llbracket b_{1} \leq b_{2} \rrbracket \sigma = \llbracket b_{1} \rrbracket \sigma \leq \llbracket b_{2} \rrbracket \sigma \qquad \llbracket b_{1} \geq b_{2} \rrbracket \sigma = \llbracket b_{1} \rrbracket \sigma \geq \llbracket b_{2} \rrbracket \sigma$$

$$\llbracket b_{1} \text{ and } b_{2} \rrbracket \sigma = \llbracket b_{1} \rrbracket \sigma \text{ (and) } \llbracket b_{2} \rrbracket \sigma \qquad \llbracket b_{1} \text{ or } b_{2} \rrbracket \sigma = \llbracket b_{1} \rrbracket \sigma \text{ (or) } \llbracket b_{2} \rrbracket \sigma$$

Denotational Semantics of SIMPLE (III)

Denotational evaluation of instructions:

- recursive use of arithmetic and boolean evaluation functions
- instructions: and := are extended for ⊥ but not shown
- conditional and loop instructions have special consideration (extended version)

$$\llbracket . \rrbracket : Stmt \to ((Var \mapsto Int) \to (Var \mapsto Int))$$

$$\llbracket skip \rrbracket \sigma = \sigma$$

$$\llbracket x := a \rrbracket \sigma = \sigma \llbracket x \leftarrow \llbracket a \rrbracket \sigma \rrbracket$$

$$\llbracket s_1 \; ; \; s_2 \rrbracket \sigma = \llbracket s_2 \rrbracket (\llbracket s_1 \rrbracket \sigma)$$

$$\llbracket if \; b \; then \; s_1 \; else \; s_2 \rrbracket \sigma = \begin{cases} \llbracket s_1 \rrbracket \sigma & \text{if } \llbracket b \rrbracket \sigma = true \\ \llbracket s_2 \rrbracket \sigma & \text{if } \llbracket b \rrbracket \sigma = false \\ \bot & \text{if } \llbracket b \rrbracket \sigma = \bot \end{cases}$$

Denotational Semantics of SIMPLE (IV)

Denotational evaluation of loops:

- Obtain the fix point of an iterative version of the semantics

Example of execution

$$[x := 0; n := 0; while (n <= 2)(x := x + 1; n := n + x)] \sigma_0 \quad (\sigma_0 = \emptyset)$$

$$= [n := 0; while (n <= 2)(x := x + 1; n := n + x)] \sigma_1 \quad (\sigma_1 = \{x \mapsto 0\})$$

$$= [while (n <= 2)(x := x + 1; n := n + x)] \sigma_2 \quad (\sigma_2 = \{x \mapsto 0, n \mapsto 0\})$$

$$= fixpoint^{\infty}([while...]_{while}, \sigma_2) = ... = \sigma_6$$

$$[while (n <= 2)(x := x + 1; n := n + x)]_{while} \sigma_2$$

$$= [x := x + 1; n := n + x] \sigma_2 \quad \text{because } [n <= 2] \sigma_2 = \text{true}$$

$$= [n := n + x] \sigma_3 \quad (\sigma_3 = \{x \mapsto 1, n \mapsto 0\})$$

$$= \sigma_4 \quad (\sigma_4 = \{x \mapsto 1, n \mapsto 1\})$$

$$[while (n <= 2)(x := x + 1; n := n + x)]_{while} \sigma_4$$

$$= [x := x + 1; n := n + x] \sigma_4 \quad \text{because } [n <= 2] \sigma_4 = \text{true}$$

$$= [n := n + x] \sigma_5 \quad (\sigma_5 = \{x \mapsto 2, n \mapsto 1\})$$

$$= \sigma_6 \quad (\sigma_6 = \{x \mapsto 2, n \mapsto 3\})$$

$$[while (n <= 2)(x := x + 1; n := n + x)]_{while} \sigma_6 = \sigma_6$$

Exercises (I)

Which is the meaning of these programs?

```
\mathbf{0} if true and (true or false) then x:= 1 else x:= 2
```

2 skip

$$3 x := 100 + 100$$

$$\mathbf{4} \times := 1 ; \text{ if } x == 1 \text{ then } y := 2 \text{ else } y := 3$$

$$5 x := 1 ; while x >= 1 x := x - 1$$

$$6 x := 0 ; n := 0 ; while n <= 2 (x := x+1; n := n+x)$$

Exercises (II)

Which is the meaning of these programs?

- [skip]
- [1/0]
- [while (true) skip]
- [while (true) x := x + 1]

Outline

- Objectives
- Motivation
- Denotational Semantics
- Operational Semantics
 Big-step Operational Semantics
 Small-step Operational Semantics
- **6** Continuation-Style Semantics

Operational Semantics

- Description
- Syntax of SIMPLE
- 3 State of a SIMPLE program
- 4 Configuration of the SIMPLE abstract machine
- **5** Operational Semantics of SIMPLE
 - Big-step
 - 2 Small-step

Operational Semantics (I)

• Collection of axioms specifying how its expressions, statements, etc., are evaluated.

$$\frac{\langle a_1, \sigma \rangle \Downarrow \langle i_1, \sigma_1 \rangle, \langle a_2, \sigma_1 \rangle \Downarrow \langle i_2, \sigma_2 \rangle}{\langle a_1 + a_2, \sigma \rangle \Downarrow \langle i_1 + i_2, \sigma_2 \rangle}$$

"Operational" because they say how a possible implementation of a programming language should "operate".

• No agreement how an operational semantics of a language should be given. Any rigorous enough description is valid, Even an adhoc implementation.

Operational Semantics (II)

- Different formalisms for describing operational semantics:
 - Structural Operational Semantics
 - Chemical machine
 - Virtual abstract machine (JVM)
 - Even an adhoc implementation (SUN implementation of Java)
- Formal operational semantics if a collection of rules in some rigorous logical formalism. Advantage: formally reason about programs.
- Two families of operational semantics
 - Big-step operational semantics
 - Small-step operational semantics

Big-step operational semantics

- Relations on system configurations ($C \Downarrow C'$)
- Also known as natural semantics.
- How final evaluation result of each language construct can be obtained by combining the evaluation results of their syntactic counterparts.
- For example (with side effects)

$$\frac{\langle a_1, \sigma \rangle \Downarrow \langle i_1, \sigma_1 \rangle, \langle a_2, \sigma_1 \rangle \Downarrow \langle i_2, \sigma_2 \rangle}{\langle a_1 + a_2, \sigma \rangle \Downarrow \langle i_1(+)i_2, \sigma_2 \rangle}$$

• For example (w/o side effects):

$$\frac{\langle a_1, \sigma \rangle \Downarrow \langle i_1 \rangle, \langle a_2, \sigma \rangle \Downarrow \langle i_2 \rangle}{\langle a_1 + a_2, \sigma \rangle \Downarrow \langle i_1(+)i_2 \rangle}$$

Small-step operational semantics

- "One-computation-step" transitions.
- Also known as transitional semantics.
- For each language construct take one of its syntactic counterparts and show that translates into one-computation step.

$$\frac{\langle a_{1}, \sigma \rangle \rightarrow \langle a'_{1}, \sigma' \rangle}{\langle a_{1} + a_{2}, \sigma \rangle \rightarrow \langle a'_{1} + a_{2}, \sigma' \rangle} \quad \frac{\langle a_{2}, \sigma \rangle \rightarrow \langle a'_{2}, \sigma' \rangle}{\langle a_{1} + a_{2}, \sigma \rangle \rightarrow \langle a_{1} + a'_{2}, \sigma' \rangle}$$

$$\cdot \frac{\langle i_{1} + i_{2}, \sigma \rangle \rightarrow \langle i_{1}(+)i_{2} \rangle}{\langle i_{1} + i_{2}, \sigma \rangle \rightarrow \langle i_{1}(+)i_{2} \rangle}$$

Difference between intermediate (auxiliary) and final steps (observable).

• A big-step corresponds to many steps small-step

Outline

4 Operational Semantics Big-step Operational Semantics Small-step Operational Semantics

Big-step Definition of SIMPLE (I)

Big-step evaluation of arithmetic expressions:

- Two configurations (expression, store) and (value)
- both arguments are recursively evaluated
- Here there is no consideration for ⊥!!!!
- Function / has a condition

$$\frac{\cdot}{\langle x, \sigma \rangle \Downarrow \langle \sigma(x) \rangle} \qquad \frac{\cdot}{\langle i, \sigma \rangle \Downarrow \langle i \rangle}$$

$$\frac{\langle a_{1}, \sigma \rangle \Downarrow \langle i_{1} \rangle, \langle a_{2}, \sigma \rangle \Downarrow \langle i_{2} \rangle}{\langle a_{1} + a_{2}, \sigma \rangle \Downarrow \langle i_{1} \rangle, \langle a_{2}, \sigma \rangle \Downarrow \langle i_{2} \rangle} \qquad \frac{\langle a_{1}, \sigma \rangle \Downarrow \langle i_{1} \rangle, \langle a_{2}, \sigma \rangle \Downarrow \langle i_{2} \rangle}{\langle a_{1} - a_{2}, \sigma \rangle \Downarrow \langle i_{1} \rangle, \langle a_{2}, \sigma \rangle \Downarrow \langle i_{2} \rangle} \qquad \frac{\langle a_{1}, \sigma \rangle \Downarrow \langle i_{1} \rangle, \langle a_{2}, \sigma \rangle \Downarrow \langle i_{2} \rangle}{\langle a_{1} / a_{2}, \sigma \rangle \Downarrow \langle i_{1} \rangle, \langle a_{2}, \sigma \rangle \Downarrow \langle i_{2} \rangle} \qquad \frac{\langle a_{1}, \sigma \rangle \Downarrow \langle i_{1} \rangle, \langle a_{2}, \sigma \rangle \Downarrow \langle i_{2} \rangle}{\langle a_{1} / a_{2}, \sigma \rangle \Downarrow \langle i_{1} \rangle, \langle a_{2}, \sigma \rangle \Downarrow \langle i_{2} \rangle} \qquad i_{2} \neq 0$$

Example Proof-tree in Big-step SIMPLE

$$\frac{\frac{\cdot}{\langle y,\sigma\rangle \Downarrow 1}, \frac{\cdot}{\langle x,\sigma\rangle \Downarrow 1}}{\frac{\langle y*x,\sigma\rangle \Downarrow 1}{\langle x,\sigma\rangle \Downarrow 1}, \frac{\cdot}{\langle 2,\sigma\rangle \Downarrow 2}}{\frac{\langle x,\sigma\rangle \Downarrow 1}{\langle x-(y*x+2),\sigma\rangle \Downarrow -2}}$$

$$\sigma \equiv \{x \mapsto 1, y \mapsto 1\}$$

Big-step Definition of SIMPLE (II)

Big-step evaluation of boolean expressions:

- Two configurations (expression, store) and (value)
- both arguments are recursively evaluated
- Here there is no consideration for ⊥!!!!
- functions with parenthesis denote the version used for implementation

$$\begin{array}{c|c} \vdots & \vdots & \vdots \\ \hline \langle true,\sigma\rangle \Downarrow \langle true\rangle & \overline{\langle false,\sigma\rangle \Downarrow \langle false\rangle} \\ \hline \frac{\langle e,\sigma\rangle \Downarrow \langle b\rangle}{\langle not\ e,\sigma\rangle \Downarrow \langle \neg b\rangle} & \overline{\langle e_1,\sigma\rangle \Downarrow \langle b_1\rangle, \langle e_2,\sigma\rangle \Downarrow \langle b_2\rangle} \\ \hline \frac{\langle e_1,\sigma\rangle \Downarrow \langle b_1\rangle, \langle e_2,\sigma\rangle \Downarrow \langle b_2\rangle}{\langle e_1\ and\ e_2,\sigma\rangle \Downarrow \langle b_1(and)b_2\rangle} & \overline{\langle e_1,\sigma\rangle \Downarrow \langle b_1\rangle, \langle e_2,\sigma\rangle \Downarrow \langle b_1\rangle} \\ \hline \frac{\langle e_1,\sigma\rangle \Downarrow \langle b_1\rangle, \langle e_2,\sigma\rangle \Downarrow \langle b_2\rangle}{\langle e_1\ e_2\ e_2,\sigma\rangle \Downarrow \langle b_1\rangle, \langle e_2,\sigma\rangle \Downarrow \langle b_2\rangle} \\ \hline \frac{\langle e_1,\sigma\rangle \Downarrow \langle b_1\rangle, \langle e_2,\sigma\rangle \Downarrow \langle b_2\rangle}{\langle e_1\ e_2\ e_2,\sigma\rangle \Downarrow \langle b_1\langle e_2\rangle } & \overline{\langle e_1,\sigma\rangle \Downarrow \langle b_1\rangle, \langle e_2,\sigma\rangle \Downarrow \langle b_2\rangle} \\ \hline \langle e_1\ e_2\ e_2,\sigma\rangle \Downarrow \langle b_1\langle e_2\rangle e_2\rangle} \\ \hline \end{array}$$

Big-step Definition of SIMPLE (III)

Big-step evaluation of instructions:

- Two configurations (expression, store) and (store)
- Here there is no consideration for ⊥!!!!
- Here there are no different evaluations for arithmetic and boolean
- Big-step without side effects
- no special treatment for conditional or loop instructions

Example Proof-tree in Big-step SIMPLE

```
 \begin{array}{c} \vdots \\ \overline{\langle n <= 2, \sigma_3 \rangle \Downarrow \langle true \rangle, \cdots, \cdots} \\ \cdot \\ \overline{\langle x, \sigma_0 \rangle \Downarrow \sigma_1,} \\ \overline{\langle x := 0; while(n <= 2)(x := x+1; n := n+x), \sigma_0 \rangle \Downarrow \sigma_{k-2}} \\ \overline{\langle x := 0; n := 0; while(n <= 2)(x := x+1; n := n+x), \sigma_0 \rangle \Downarrow \sigma_{k-1}} \\ \langle x := 0; n := 0; while(n <= 2)(x := x+1; n := n+x), \sigma_0 \rangle \Downarrow \sigma_k \\ \end{array}
```

Exercises (I)

Which is the meaning of these programs?

- $\mathbf{0}$ if true and (true or false) then x:= 1 else x:= 2
- 2 skip
- $3 \times := 100 + 100$
- $\mathbf{0}$ x := 1 ; if x == 1 then y := 2 else y := 3
- 5 x := 1 ; while x >= 1 x := x 1
- 6 x := 0 ; n := 0 ; while n <= 2 (x := x+1; n := n+x)

Exercises (II)

Which is the meaning of these programs?

- [skip]
- [1/0]
- [while (true) skip]
- [while (true) x := x + 1]

Outline

Operational Semantics
 Big-step Operational Semantics
 Small-step Operational Semantics

Small-step Definition of SIMPLE (I)

Small-step evaluation of arithmetic expressions:

- Two configurations \(\langle expression, store \rangle \) and \(\langle value \rangle \)
- both arguments shall be recursively evaluated???
- Function / has a condition

$$\begin{array}{c|c} \vdots & \vdots & \vdots \\ \hline \langle a_1,\sigma \rangle \to \langle a_1',\sigma \rangle & \overline{\langle a_2,\sigma \rangle \to \langle a_2',\sigma \rangle} \\ \hline \langle a_1+a_2,\sigma \rangle \to \langle a_1'+a_2,\sigma \rangle & \overline{\langle a_1+a_2,\sigma \rangle \to \langle a_1+a_2',\sigma \rangle} & \overline{\langle i_1+i_2,\sigma \rangle \to \langle i_1(+)i_2\rangle} \\ \hline \langle a_1,\sigma \rangle \to \langle a_1',\sigma \rangle & \overline{\langle a_1-a_2,\sigma \rangle \to \langle a_1'-a_2,\sigma \rangle} & \overline{\langle a_1-a_2,\sigma \rangle \to \langle a_1'-a_2',\sigma \rangle} & \overline{\langle i_1+i_2,\sigma \rangle \to \langle i_1(+)i_2\rangle} \\ \hline \langle a_1-a_2,\sigma \rangle \to \langle a_1'-a_2,\sigma \rangle & \overline{\langle a_1-a_2,\sigma \rangle \to \langle a_1-a_2',\sigma \rangle} & \overline{\langle i_1-i_2,\sigma \rangle \to \langle i_1(-)i_2\rangle} \\ \hline \langle a_1,\sigma \rangle \to \langle a_1',\sigma \rangle & \overline{\langle a_1,\sigma \rangle \to \langle a_1',\sigma \rangle} & \overline{\langle a_1,a_2,\sigma \rangle \to \langle a_1,a_2',\sigma \rangle} & \overline{\langle i_1+i_2,\sigma \rangle \to \langle i_1(*)i_2\rangle} \\ \hline \langle a_1,\sigma \rangle \to \langle a_1',\sigma \rangle & \overline{\langle a_1/a_2,\sigma \rangle \to \langle a_1'/a_2,\sigma \rangle} & \overline{\langle a_1/a_2,\sigma \rangle \to \langle a_1/a_2',\sigma \rangle} & \overline{\langle i_1/i_2,\sigma \rangle \to \langle i_1(/)i_2\rangle} & i_2 \neq 0 \\ \hline \end{array}$$

Example Proof-tree in Small-step SIMPLE

$$\langle x - (y * x + 2), \sigma \rangle \to \langle 1 - (y * x + 2), \sigma \rangle \to \langle 1 - (1 * x + 2), \sigma \rangle$$

$$\to \langle 1 - (1 * 1 + 2), \sigma \rangle \to \langle 1 - (1 + 2), \sigma \rangle \to \langle 1 - 3, \sigma \rangle \to \langle -2, \sigma \rangle \to \langle -2 \rangle$$

$$\sigma \equiv \{ x \mapsto 1, y \mapsto 1 \}$$

Small-step Definition of SIMPLE (II)

Small-step evaluation of boolean expressions:

- Two configurations \(\langle expression, store \rangle \) and \(\langle value \rangle \)
- both arguments shall be recursively evaluated??
- functions with parenthesis denote the version used for implementation

Small-step Definition of SIMPLE (III)

$$\begin{array}{lll} \frac{\langle a_1,\sigma\rangle \to \langle a_1',\sigma\rangle}{\langle a_1\leq a_2,\sigma\rangle \to \langle a_1'\leq a_2,\sigma\rangle} & \frac{\langle a_2,\sigma\rangle \to \langle a_2',\sigma\rangle}{\langle a_1\leq a_2,\sigma\rangle \to \langle a_1\leq a_2',\sigma\rangle} & \frac{\cdot}{\langle i_1\leq i_2,\sigma\rangle \to \langle i_1(\leq)i_2\rangle} \\ \frac{\langle a_1,\sigma\rangle \to \langle a_1',\sigma\rangle}{\langle a_1\geq a_2,\sigma\rangle \to \langle a_1'\geq a_2,\sigma\rangle} & \frac{\langle a_2,\sigma\rangle \to \langle a_2',\sigma\rangle}{\langle a_1\geq a_2,\sigma\rangle \to \langle a_1\geq a_2',\sigma\rangle} & \frac{\cdot}{\langle i_1\geq i_2,\sigma\rangle \to \langle i_1(\geq)i_2\rangle} \end{array}$$

Note is not an error σ instead of σ' in $\langle a_1, \sigma \rangle \to \langle a'_1, \sigma \rangle$

Small-step Definition of SIMPLE (IV)

Small-step evaluation of instructions:

- Small-step without side effects but easy to change
- Two configurations (expression, store) and (value)
- no special treatment for conditional or loop instructions
- loops are syntactic sugar for conditional instructions

Example

```
\langle x := 0 : n := 0 : while (n <= 2)(x := x + 1 : n := n + x), \sigma_0 \rangle (\sigma_0 = \emptyset)
\rightarrow \langle n := 0 : while (n \le 2)(x := x + 1 : n := n + x), \sigma_1 \rangle (\sigma_1 = \{x \mapsto 0\})
\rightarrow \langle while(n \leq 2)(x := x + 1; n := n + x), \sigma_1 \rangle (\sigma_1 = \{x \mapsto 0, n \mapsto 0\})
\rightarrow \langle if(n \le 2) \text{ then } ((x := x + 1; n := n + x); \text{ while...}) \text{ else skip, } \sigma_1 \rangle
\rightarrow \langle if(0 \le 2) \text{ then } ((x := x + 1; n := n + x); \text{ while...}) \text{ else skip, } \sigma_1 \rangle
\rightarrow \langle if(true) \ then \ ((x := x + 1; n := n + x); while...) \ else \ skip, \sigma_1 \rangle
\rightarrow \langle x := x + 1 : n := n + x : while \dots \sigma_1 \rangle
\rightarrow \langle x := 0 + 1 : n := n + x : while \dots \sigma_1 \rangle
\rightarrow \langle x := 1 : n := n + x : while ..., \sigma_1 \rangle
\rightarrow \langle n := n + x : while..., \sigma_2 \rangle (\sigma_2 = \{x \mapsto 1, n \mapsto 0\})
\rightarrow \langle while(n \leq 2)(x := x + 1; n := n + x), \sigma_3 \rangle (\sigma_3 = \{x \mapsto 1, n \mapsto 1\})
\rightarrow \langle while(n \leq 2)(x := x + 1; n := n + x), \sigma_4 \rangle (\sigma_4 = \{x \mapsto 2, n \mapsto 3\})
\rightarrow \langle skip, \sigma_{\Lambda} \rangle
```

Exercises (I)

Which is the meaning of these programs?

- $\mathbf{0}$ if true and (true or false) then x:= 1 else x:= 2
- 2 skip
- $3 \times := 100 + 100$
- $\mathbf{0}$ x := 1 ; if x == 1 then y := 2 else y := 3
- 5 x := 1 ; while x >= 1 x := x 1
- 6 x := 0 ; n := 0 ; while n <= 2 (x := x+1; n := n+x)

Exercises (II)

Which is the meaning of these programs?

- [skip]
- [1/0]
- [while (true) skip]
- [while (true) x := x + 1]

Big-step vs Small-step

- Advantages of Big-Step
 - When it can be given to a language, it is easier to understand because it relates syntactic entities directly to their expected results
 - More abstract, more mathematical; therefore, one can more easily define and prove properties about programs
- Disadvantages of Big-Step
 - It is not executable. One always needs to provide a result value or state to each language construct and then use the inference rules to "check" whether that result value or state is indeed correct.
 - Hides non-termination of programs. Non-termination as "lack of proof" (as a division by zero or runtime error).
 - Inconvenient (impossible) for non-deterministic or parallel languages.

Big-step vs Small-step

- Advantages of Small-Step
 - It is executable. Each successful applications of small-step rules denotes a real execution step; also helps locating problems or errors in programs/semantics.
 - Non-termination of programs equals non-termination of searching for a proof. But division by zero (or runtime errors) can still be located.
 - Non-deterministic and/or parallel languages.
- Disadvantages of Small-Step
 - Less suitable for proving properties about programs; use correspondence big-step & small-step.
 - Too low level and explicit; too many language definitions.
 - It has a rigid computation granularity.

Big-step vs Small-step: Disadvantages of both

- Not modular; adding new language features.
- If one adds features with (abruptly) values (exceptions, break/continue in loops, threads, etc.) then one needs extra data stores in configurations (all definitions must change)
- No appropriate semantical foundation for concurrent languages. Big-step no meaningful concurrent language Small-step only interleaving semantics.
- They are both operational and syntax-driven, so they tell us close to nothing about models
 of languages.

Outline

- Objectives
- Motivation
- Openotational Semantics
- Operational Semantics
 Big-step Operational Semantics
 Small-step Operational Semantics
- **6** Continuation-Style Semantics

Continuation Style

- Continuation Passing Style (CPS) is a framework for enconding lambda-calculus expressions
- All elements, features, intermediate results, and final results are wrapped by corresponding continuation operations
- At any moment during the execution, the continuation structure contains everything needed to continue the execution of the program:

HALT
$$\Rightarrow a_1 + a_2 \land \text{HALT} \Rightarrow a_1 \land \Box + a_2 \land \text{HALT} \Rightarrow \cdots$$

One can simply stop the evaluation, save its state as a "core dump", and restart later

- The state contains "everything needed" to continue the execution of the program till the end.
- ullet The configuration of the "executing" program contains several attributes, including the continuation and the store σ

Continuation-Style Definition of SIMPLE (I#)

Continuation evaluation of arithmetic expressions:

both arguments shall be recursively evaluated in parallel???

$$\begin{aligned} a_1 + a_2 \curvearrowright K &\leftrightharpoons a_1 \curvearrowright \square + a_2 \curvearrowright K & \qquad a_1 + a_2 \curvearrowright K \leftrightharpoons a_2 \curvearrowright a_1 + \square \curvearrowright K \\ \langle i_1 \rangle \curvearrowright \square + a_2 \curvearrowright K &\leftrightharpoons a_2 \curvearrowright i_1 + \square \curvearrowright K & \qquad \langle i_2 \rangle \curvearrowright a_1 + \square \curvearrowright K \leftrightharpoons a_1 \curvearrowright \square + i_2 \curvearrowright K \\ i_1 + i_2 \curvearrowright K &\leftrightharpoons \langle i_1 + i_2 \rangle \curvearrowright K \end{aligned}$$

Continuation-Style Definition of SIMPLE (I)

Continuation evaluation of arithmetic expressions:

- Always one configuration: continuation | store but sometimes store is omitted
- Two kinds of continuations expression and \(\text{value} \)
- Reduce semantics operations and include more annotations
- function / has a condition

$$x \curvearrowright K \mid \sigma \leftrightharpoons \langle \sigma[x] \rangle \curvearrowright K \mid \sigma \qquad \qquad i \curvearrowright K \leftrightharpoons \langle i \rangle \curvearrowright K$$

$$a_1 + a_2 \curvearrowright K \leftrightharpoons (a_1, a_2) \curvearrowright \square + \square \curvearrowright K \qquad \langle i_1, i_2 \rangle \curvearrowright \square + \square \curvearrowright K \leftrightharpoons \langle i_1 + i_2 \rangle \curvearrowright K$$

$$a_1 - a_2 \curvearrowright K \leftrightharpoons (a_1, a_2) \curvearrowright \square - \square \curvearrowright K \qquad \langle i_1, i_2 \rangle \curvearrowright \square - \square \curvearrowright K \leftrightharpoons \langle i_1 - i_2 \rangle \curvearrowright K$$

$$a_1 * a_2 \curvearrowright K \leftrightharpoons (a_1, a_2) \curvearrowright \square * \square \curvearrowright K \qquad \langle i_1, i_2 \rangle \curvearrowright \square * \square \curvearrowright K \leftrightharpoons \langle i_1 * i_2 \rangle \curvearrowright K$$

$$a_1/a_2 \curvearrowright K \leftrightharpoons (a_1, a_2) \curvearrowright \square / \square \curvearrowright K \qquad \langle i_1, i_2 \rangle \curvearrowright \square / \square \curvearrowright K \leftrightharpoons \langle i_1/i_2 \rangle \curvearrowright K \text{ IF } i_2 \neq 0$$

Continuation-Style Definition of SIMPLE (II)

Continuation evaluation of boolean expressions:

- Always one configuration: continuation | store but sometimes store is omitted
- Two kinds of continuations expression and (value)

$$true \curvearrowright K \leftrightharpoons \langle true \rangle \curvearrowright K \qquad false \curvearrowright K \leftrightharpoons \langle false \rangle \curvearrowright K \qquad false \curvearrowright K \leftrightharpoons \langle false \rangle \curvearrowright K \qquad false \curvearrowright K \leftrightharpoons \langle false \rangle \curvearrowright K \qquad \langle b \rangle \curvearrowright not \ \Box \curvearrowright K \leftrightharpoons \langle not \ b \rangle \curvearrowright K \qquad \langle b \rangle \curvearrowright not \ \Box \curvearrowright K \leftrightharpoons \langle not \ b \rangle \curvearrowright K \qquad false \curvearrowright K \leftrightharpoons \langle false \rangle \curvearrowright K \qquad \langle b \rangle \curvearrowright not \ \Box \curvearrowright K \leftrightharpoons \langle not \ b \rangle \curvearrowright K \qquad \langle b \rangle \curvearrowright not \ \Box \curvearrowright K \leftrightharpoons \langle not \ b \rangle \curvearrowright K \qquad false \curvearrowright K \leftrightharpoons \langle false \rangle \curvearrowright K \qquad \langle b \rangle \curvearrowright not \ \Box \curvearrowright K \leftrightharpoons \langle not \ b \rangle \curvearrowright K \qquad \langle b \rangle \curvearrowright not \ \Box \curvearrowright K \leftrightharpoons \langle not \ b \rangle \curvearrowright K \qquad false \curvearrowright K \leftrightharpoons \langle not \ b \rangle \curvearrowright K \qquad \langle b \rangle \curvearrowright not \ \Box \curvearrowright K \leftrightharpoons \langle not \ b \rangle \curvearrowright K \qquad \langle b \rangle \curvearrowright not \ \Box \curvearrowright K \leftrightharpoons \langle h \rangle \bowtie ho \rangle \curvearrowright K \qquad \langle h \rangle \land ho \rangle \curvearrowright K \qquad \langle h \rangle \land ho \rangle \land ho$$

Continuation-Style Definition of SIMPLE (III)

Continuation evaluation of instructions:

- Always one configuration: continuation | store but sometimes store is omitted
- Two kinds of continuations expression and \(\frac{\value}{\value} \)

$$x := a \mathrel{\frown} K \leftrightharpoons a \mathrel{\frown} x := \square \mathrel{\frown} K \qquad \langle i \rangle \mathrel{\frown} x := \square \mathrel{\frown} K \mid \sigma \leftrightharpoons K \mid \sigma [x \leftarrow i]$$

$$s_1 \; ; \; s_2 \mathrel{\frown} K \leftrightharpoons s_1 \mathrel{\frown} s_2 \mathrel{\frown} K$$

$$\text{if e then } s_1 \; \text{else } s_2 \mathrel{\frown} K \leftrightharpoons e \mathrel{\frown} \text{if } \square \text{ then } s_1 \; \text{else } s_2 \mathrel{\frown} K$$

$$\langle \text{true} \rangle \mathrel{\frown} \text{if } \square \text{ then } s_1 \; \text{else } s_2 \mathrel{\frown} K \leftrightharpoons s_1 \mathrel{\frown} K \qquad \langle \text{false} \rangle \mathrel{\frown} \text{if } \square \text{ then } s_1 \; \text{else } s_2 \mathrel{\frown} K \leftrightharpoons s_2 \mathrel{\frown} K$$

$$\text{while e } s \mathrel{\frown} K \leftrightharpoons \text{if e then } (s : \text{while e s}) \; \text{else skip} \mathrel{\frown} K$$

skip $\curvearrowright K = K$

Example

```
x := 0: n := 0: while (n <= 2)(x := x + 1): n := n + x | \sigma_0 \rangle (\sigma_0 = \emptyset)
 = x := 0 \Leftrightarrow n := 0: while (n < = 2)(x := x + 1) : n := n + x = 0
 = 0 \sim x := \square \sim n := 0; while (n <= 2)(x := x + 1; n := n + x) \mid \sigma_0
 = n := 0; while (n <= 2)(x := x + 1; n := n + x) \mid \sigma_1 \quad (\sigma_1 = \{x \mapsto 0\})
 \Rightarrow n := 0 \Rightarrow \text{while}(n \le 2)(x := x + 1; n := n + x) \mid \sigma_1
 \Rightarrow 0 \land n := \square \land while(n \le 2)(x := x + 1; n := n + x) \mid \sigma_1
 \Rightarrow while (n \le 2)(x := x + 1; n := n + x) \mid \sigma_2 \qquad (\sigma_2 = \{x \mapsto 0, n \mapsto 0\})
 \Rightarrow if (n \le 2) then (x := x + 1; n := n + x; while...) else skip | <math>\sigma_2
 \Rightarrow n \le 2  if \square then (x := x + 1; n := n + x; while...) else skip <math>| \sigma_2 \rangle
 = \langle n, 2 \rangle \curvearrowright (\square \leq \square) \curvearrowright if \square then (x := x + 1; n := n + x; while...) else skip | <math>\sigma_2
\Rightarrow \langle 0, 2 \rangle \curvearrowright (\square \leq \square) \curvearrowright \text{if } \square \text{ then } (x := x + 1; n := n + x; \text{ while...}) \text{ else skip } | \sigma_2|
 =\langle 0 \leq 2 \rangle  if \square then (x := x + 1; n := n + x; while...) else skip <math>\mid \sigma_2
 = \langle true \rangle \curvearrowright if \square then (x := x + 1; n := n + x; while...) else skip <math>\mid \sigma_2
 \Rightarrow x := x + 1; n := n + x; while (n <= 2)(x := x + 1; n := n + x) \mid \sigma_2
 \Rightarrow while (n \le 2)(x := x + 1; n := n + x) \mid \sigma_2 \qquad (\sigma_2 = \{x \mapsto 1, n \mapsto 1\}
 \Rightarrow while (n \le 2)(x := x + 1; n := n + x) \mid \sigma_A \qquad (\sigma_A = \{x \mapsto 2, n \mapsto 3\}
\stackrel{.}{=} skip \mid \sigma_{\Lambda}
 = \sigma_{\Lambda}
```

Continuation Semantics Available

- We have implemented the continuation semantics in the programming language Maude
- The implementation is available at the course repository
- Several programs can be executed and the store is returned

```
1 if true and (true or false) then x:= 1 else x:= 2
2 skip
```

```
3 x := 100 + 100
```

```
\mathbf{4} x := 1; if x == 1 then y := 2 else y := 3
```

```
5 x := 1 ; while x >= 1 x := x - 1
```

```
6 x := 0 ; n := 0 ; while n <= 2 (x := x + 1; n := n + x)
```

```
--- Welcome to Maude ---
                                                     201010000000
                 Maude alpha104 built: Sep 26 2014 18:51:40
                  an Copyright 1997-2014 SRI International (A) > if(simi(St1).simi(S
                                                Wed Oct. 8 18:35:53 2014
Stmt: x := 0; n := 0; while n \Leftarrow 2 (x := x + 1; n := n + x)
 dvisory: redefining module CONFIGURATION: KFalse -> KFalse
rewrite in EVAL : < if true and (true or false) then x:=1 else x:=2> .
rewrites: 32 in Oms cpu (Oms real) (380952 rewrites/second) B) stmt(St)
 result Store: [x.1]
rewrite in EVAL : < skip S.) -> While (KBool KBody) => nothing
 rewrites: 3 in 0ms cpu (0ms real) (~ rewrites/second)
 result Store: empty
rewrite in EVAL : < \times := 100 + 100 > .
rewrites: 15 in 0ms cpu (0ms real) (~ rewrites/second)
 result Store: [x.200]
  and the same of th
rewrite in EVAL : < x := 1 : if x := 1 then y := 2 else y := 3 > .
 rewrites: 26 in Oms cpu (Oms real) (~ rewrites/second)
 result Store: [x.1] [v.2]
       rewrite in EVAL : < x := 1 : while x >= 1 \times := x - 1 > .
rewrites: 40 in Oms cpu (Oms real) (~ rewrites/second),
 result Store: [x.0] nation stion-Style Definition of SIMPLE (X)
rewrite in EVAL : < x := 0 ; n := 0 ; while n \Leftarrow 2 (x := x + 1 ; n := n + x) > .
```