Particle spectrograph

Wave operator and propagator

Quadratic (free) action $S = \iiint \left\{ \left(\frac{1}{2} \left(2 t_1 \ \omega^{\alpha \prime} \right) \ \omega^{\beta} + 6 \ f^{\alpha \beta} \ \tau_{\alpha \beta} + 6 \ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta} - 4 t_1 \ \omega^{\beta} \ \partial_{\beta} f^{\alpha \prime} + \right\} \right\}$	$4t_1\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$4t_1\partial'f^\alpha_{}\partial_{\theta}f_{}^{\theta}-6t_1\partial_{\alpha}f_{\theta}\partial^{\theta}f^{\alpha\prime}-3t_1\partial_{\alpha}f_{\theta}\partial^{\theta}f^{\alpha\prime}+$	$3t_1\partial_i f_{\alpha\theta}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{\alpha\prime}\partial^\theta f^{\alpha\prime} + 3t_1\partial_\theta f_{\prime\alpha}\partial^\theta f^{\alpha\prime} +$	$6t_1\omega_{lpha heta_\prime}(\omega^{lpha l heta}+2\partial^ heta f^{lpha l})+8r_2\partial_eta\omega_{lpha l heta}\partial^ heta\omega_{lpha l heta}$ -	$4r_2\partial_eta\omega_{lpha heta_1}\partial^eta\omega^{lphaeta_1}+4r_2\partial_eta\omega_{{}_1etalpha}\partial^eta\omega^{lphaeta_1}$ -	$2r_2\partial_{\scriptscriptstyle i}\omega_{lphaeta heta}\partial^{ heta}\omega^{lphaeta_i}+2r_2\partial_{ heta}\omega_{lphaeta_i}\partial^{ heta}\omega^{lphaeta_i}$ -	$4 r_2 \partial_{\theta} \omega_{lpha eta eta} \partial^{ heta} \omega^{lpha eta eta} + 6 r_5 \partial_{ert} \omega_{eta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$6 r_5 \partial_\theta \omega_{_I \ _K}^{\ _K} \partial^\theta \omega^{\alpha_I}_{\ _\alpha} - 6 r_5 \partial_\alpha \omega^{\alpha_I \theta} \partial_\kappa \omega_{_I \ _\theta}^{\ _K} +$	$12r_5\partial^\theta\omega^{\alpha\prime}_{\alpha}\partial_\kappa\omega^{\prime}_{\theta}+6r_5\partial_\alpha\omega^{\alpha\prime\theta}\partial_\kappa\omega^{\prime}_{\prime}-$	$12r_5\partial^{ heta}\omega^{lpha_l}_{}\partial_{\kappa}\omega^{}_{}))[t,lpha,eta,z]d\!\!/\!zd\!\!/\!yd\!\!/\!xd\!\!/t$
--	--	---	---	---	---	---	--	---	--	--

$\tau_{1}^{\#2}$	0	0	0	- <u>i</u> kr5+2 k³ r5	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2 r_5 + t_1}{(1 + 2k^2)^2 r_5 t_1}$	eta_{χ}				$f_{0}^{\#2} = \omega_{0}^{\#1}$	0	0 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sigma_{0^+}^{\sharp 1} \dagger$	$\sigma_{0^{+}}^{#1}$	τ ₀ ^{#1} 0	τ ₀ + 0	$\sigma_0^{\sharp 1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	$\int_{0}^{1} f_{0}^{#1}$		0 0	0	$ au_{0}^{\#1}$ †	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\begin{vmatrix} -\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1} \end{vmatrix}$	$\begin{bmatrix} 4 k^2 \\ 1 & (1+2 k^2)^2 t_1 \end{bmatrix}$	0	$\omega_{0}^{\#1}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\omega_{0}^{\#1} \uparrow$	$\tau_{0+}^{#2} + \sigma_{0-}^{#1} + \sigma_{0-}^{#1} + \sigma_{0-}^{#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$ $-\frac{1}{}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2k^4 r_5)} = \frac{1}{2}$	0	$\frac{i}{kr_5+2k^3r_5} \qquad -\frac{i}{\sqrt{2}}$	$\sigma_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1} + \alpha \beta \left[\frac{2}{(1+2k^2)^2 t_1} \right]$		$\sigma_{2}^{\#1} + ^{\alpha \beta \chi}$ 0	\int_{2}^{π} $\omega_{2}^{\#}$	$_{2}^{\#1}$ † $_{2}^{\alpha\beta}$ $_{2}^{\#1}$ † $_{2}^{\alpha\beta}$ $_{2}^{1}$ † $_{2}^{\alpha\beta\chi}$	$\frac{t_1}{2}$ $\frac{i k t_1}{\sqrt{2}}$ 0	$-\frac{i kt_1}{\sqrt{2}}$ $k^2 t_1$ 0	$\begin{array}{c} 0 \\ 0 \\ \frac{t_1}{2} \end{array}$				
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0		$^{\frac{1}{+}} \dagger^{\alpha\beta}$	$\omega_{1}^{\#1}_{1+\alpha\beta}$ $k^{2} r_{5} - \frac{t_{1}}{\sqrt{2}}$	1	$\frac{t_1}{\sqrt{2}}$	$f_{1+\alpha\beta}^{\#1}$ $-\frac{ikt_{1}}{\sqrt{2}}$ 0	$\omega_{1}^{#1}$ 0		$\omega_{1}^{\#2}{}_{\alpha}$ 0		$f_{1-\alpha}^{\#1}$ 0		#2 1 α 0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	$f_{1}^{\#}$	$^{1}_{+}$ † $^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	(0	0	0	<i>t</i> 1	0 		0		0 0 kt ₁
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	ω	#1 †α #2 †α	0		0	0	$k^2 r_5 + \frac{t_1}{3\sqrt{2}}$	6	$ \begin{array}{c} 3\sqrt{2} \\ \underline{t_1} \\ 3 \end{array} $		0	_	$\sqrt{\frac{2}{2}} kt_1$
•	$\sigma_1^{\#1} + \alpha ^{eta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$t_1^{#2} +^{\alpha}$		$_{1}^{#1} \dagger^{\alpha}$ $_{1}^{#2} \dagger^{\alpha}$	0		0	0	$-\frac{1}{3}\bar{l}kt$	$1 - \frac{1}{3}$	0 i √2 i	kt ₁	0		0 $\frac{x^2 t_1}{3}$

Massive and massless spectra

Massive particle								
Pole residue: $-\frac{1}{r_2} > 0$								
Polarisations:	1							
Square mass:	$\frac{t_1}{r_2} > 0$							
Spin:	0							
Parity:	Odd							

?	Quadratic pole	2
?	Pole residue:	$-\frac{1}{r_5 t_1^2} > 0$
?	Polarisations:	2

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0$