I Questions de cours

- 1 Démontrer que que le noyau et l'image de deux endomorphismes qui commutent sont stables.
 - 2 Exercice 59 banque CCINP:

Soient n un entier naturel supérieur ou égal à 2 et E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) de degré inférieur ou égal à n.

On pose : $\forall P \in E, f(P) = P - P'$.

- a) Démontrer que f est bijective de deux manières : sans utiliser puis en utilisant une matrice de f.
- b) Soit $Q \in E$. Trouver P tel que f(P) = Q.

Indication: Si $P \in E$, quel est le polynôme $P^{(n+1)}$?

3 - Exercice 69 banque CCINP:

On considère la matrice $A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$ où a est un réel.

Quel est le rang de la matrice \hat{A} ?

II Exercices

Exercice 1:

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Montrer que E est la somme directe de plans vectoriels si, et seulement si, sa dimension est paire.

Exercice 2

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $M = \begin{pmatrix} 0 & A \\ I_n & 0 \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K}).$

- 1 Expliciter les puissances de M.
- 2 Montrer que rg(M) = n + rg(A).
- 3 Montrer que M est inversible si, et seulement si, A l'est. En déduire l'inverse de M.

Exercice 3:

Soient E un \mathbb{K} -espace vectoriel, f un endomorphisme de E et $a \in \mathbb{K}^*$.

On suppose que $f^3 - 3af^2 + a^2f = 0$. Montrer que $E = \text{Ker}(f) \oplus \text{Im}(f)$.

Exercice 4

Soient E un \mathbb{K} -espace vectoriel et $f_1, ..., f_n$ des endomorphismes de E. On suppose que $f_1 + f_2 + ... + f_n = \mathrm{Id}_E$ et :

$$\forall i, j \in [1; n], (i \neq j) \implies (f_i \circ f_j = 0)$$

- 1 Montrer que, pour tout $i \in [1; n]$, f_i est une projection vectorielle.
- 2 Montrer que $E = \bigoplus_{i=1}^{n} \operatorname{Im}(f_i)$.

Exercice 5:

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires d'un espace vectoriel E. On suppose que E_1 et E_2 sont isomorphes, on note f un isomorphisme de E_1 sur E_2 et on pose $F = \{x - f(x), x \in E\}$.

- 1 Justifier que F est un sous-espace vectoriel de E.
- 2 Montrer que $F \oplus E_1 = E$.
- 3 Montrer qu'on a aussi $F \oplus E_2 = E$.

Exercice 6:

Soient $n \in \mathbb{N}$ et $E = \mathbb{R}_n[X]$.

Pour tout $i \in [0; n]$, on note:

$$F_i = \{ P \in E \text{ tq } \forall j \in [0; n] \setminus \{i\}, \ P(j) = 0 \}$$

Montrer que les F_i sont des sous-espaces vectoriels de E et que $E = \bigoplus_{i=1}^n F_i$.

Exercice 7.

Soient $n \in \mathbb{N}^*$ et $H_1, ..., H_k$ des hyperplans d'un espace vectoriel E de dimension finie.

Montrer que dim $\left(\bigcap_{i=1}^{k} H_i\right) \ge n - k$.

Exercice 8:

Soit D la dérivation de $\mathbb{K}[X]$.

- 1 Soit F un sous-espace vectoriel de $\mathbb{K}[X]$ stable par D et contenant un polynôme P non nul de degré d. Montrer que $\mathbb{K}_d[X] \subseteq F$.
- 2 Déterminer tous les sous-espaces vectoriels de $\mathbb{K}[X]$ stables par D.

Indication : Si F est stable par D, on pourra distinguer deux cas, selon que l'ensemble des degrés des polynômes de F est majoré ou non.