ordinal-toolkit.md — OperatorKernel O6

MOSES RAHNAMA

Mina Analytics
GENERATED: 2025-08-05 05:20:24

_	
(h,	orviow

ordinal-op-toolkit

DOCUMENT CONTENT

Version 2025-07-29 — authoritative, no placeholders; aligns with AGENT.md (same date)

0 SCOPE

This toolkit consolidates **all ordinal facts, imports, name-prefix rules, and \mu-measure patterns** required by the OperatorKernelO6 meta pro (SN, confluence, arithmetic). It is the single source of truth for ordinal API usage and module locations. If a symbol is not listed here (or AGENT.md §8), carefully evaluate the guidelines for using **out of documents** lemmas and tactics.

1 IMPORT & LIBRARY AUDIT (AUTHORITATIVE)

> Use exactly these modules; the right-hand column clarifies what is found where. Generic ordered-monoid lemmas must **not** be used for ordin multiplication unless explicitly noted.

Area | Correct import | Contains / Notes ------ | -------- | -------Init.WF | WellFounded , Acc , InvImage.wf , Subrelation.wf Prod lex orders | Mathlib.Data.Prod.Lex | Prod.Lex | lexicographic measures Ordinal basics | Mathlib.SetTheory.Ordinal.Basic | omega@_pos , one_lt_omega@ , lt_omega@ nat lt omega0 Ordinal arithmetic | Mathlib.SetTheory.Ordinal.Arithmetic Ordinal.add , Ordinal.mul_lt_mul_of_pos_left , Ordinal.mul_le_mul_iff_left , primed mul_le_mul_left' / mul_le_mul_right' Mathlib.SetTheory.Ordinal.Exponential le_mul_right Ordinal exponentiation opow, opow_ado Ordinal.opow le opow right, isNormal opow Successor helpers | Mathlib.Algebra.Order.SuccPred Order.lt_add_one_iff , Order.add_one_le_of_lt N-casts (order bridges) | Mathlib.Data.Nat.Cast.Order.Basic Nat.cast_le , Nat.cast_lt Tactics | Mathlib.Tactic.Linarith , Mathlib.Tactic.Ring | linarith , ring (both whiteliste Generic monoid inequality | Mathlib. Algebra. Order. Monoid. Defs | Generic mul le mul left — do not use it for ordinal products.

Qualification rule (must appear verbatim at call-sites):

- Exponent (<-mono): call Ordinal.opow_le_opow_right (never the bare name).
 - Exponent (<-mono at base ω): use the local theorem opow_lt_opow_right defined in §2.4 (since upstream remov Ordinal.opow_lt_opow_right).
- **Products:** prefer Ordinal.mul_lt_mul_of_pos_left and Ordinal.mul_le_mul_iff_left (
 mul_le_mul_left' / mul_le_mul_right') these are the **ordinal** APIs.
- Successor bridge: call Order.lt add one iff / Order.add one le of lt with the Order. prefix.

__

2 TOOLKIT LEMMA CATALOGUE (NAMES, SIGNATURES, MODULES)

>All entries compile under Mathlib $4 (\ge v4.8)$ + this project's local bridges. Nothing here is hypothetical.

2.1 Basics & Positivity

- omega0 pos : 0 < omega0 *module*: SetTheory.Ordinal.Basic
- one_lt_omega0 : 1 < omega0 *module*: SetTheory.Ordinal.Basic
- lt_omega0 : o < omega0 ↔ ∃ n : N, o = n module: SetTheory.Ordinal.Basic
- $nat_{t_omega0} : \forall n : \mathbb{N}$, (n : Ordinal) < omega0 module: SetTheory.Ordinal.Basic

2.2 Addition & Successor

- add_lt_add_left : a < b → c + a < c + b module: SetTheory.Ordinal.Arithmetic
- add_lt_add_right : $a < b \rightarrow a + c < b + c$ module: SetTheory.Ordinal.Arithmetic
- add_le_add_left : $a \le b \rightarrow c + a \le c + b$ module: SetTheory.Ordinal.Arithmetic
- add_le_add_right : $a \le b \rightarrow a + c \le b + c$ module: SetTheory.Ordinal.Arithmetic
- Order.lt_add_one_iff : x < y + 1 ↔ x ≤ y module: Algebra.Order.SuccPred
- Order.add_one_le_of_lt : $x < y \rightarrow x + 1 \le y$ module: Algebra.Order.SuccPred

Absorption on infinite right addends

- Ordinal.one_add_of_omega_le : omega $0 \le p \rightarrow (1 : Ordinal) + p = p$
- Ordinal.nat_add_of_omega_le : omega0 ≤ p → (n : Ordinal) + p = p

traffic-ligh

Colour | Rule of thumb | Examples

2.3 Multiplication (Ordinal-specific)

- Ordinal.mul_lt_mul_of_pos_left : a < b \rightarrow 0 < c \rightarrow c a < c b
 - Ordinal.mul_le_mul_iff_left : c $a \le c$ b \Leftrightarrow a \le b
 - Primed monotone helpers: mul_le_mul_left', mul_le_mul_right' (convenient rewriting forms).
 - le_mul_right : 0 < b → a ≤ b * a .
 - opow_mul_lt_of_exp_lt : $\beta < \alpha \rightarrow \emptyset < \gamma \rightarrow \text{omega0} ^ \beta \gamma < \text{omega0} ^ \alpha \text{module:*}$ SetTheory.Ordinal.Exponentia absorbs any positive right factor.
 - > Note: mul_le_mul_left without a trailing apostrophe comes from Algebra.Order.Monoid.Defs and is **generic** (ordered monoid Do **not** use it to reason about ordinal multiplication.

- 1. Check axioms \rightarrow none found.
- 2. It uses only OrderedRing , which Ordinal instantiates. 3. Import adds 17 decls. \Box 4. Proof is kernel-checked, no meta . Append one li to toolkit with a brief description/justification sentence and commit.
- 2.4 Exponentiation (ω-powers & normality)
- opow_add : a ^ (b + c) = a ^ b * a ^ c split exponents.
 - opow_pos : 0 < a → 0 < a ^ b positivity of powers.
 - Ordinal.opow_le_opow_right : 0 < a → b ≤ c → a ^ b ≤ a ^ c use fully-qualified.

Local strict-mono for ω -powers (replacement for deprecated upstream lemma):

```
/-- Strict-mono of \omega-powers in the exponent (base omega0 ). --/
```

@[simp] theorem opow_lt_opow_right {b c : Ordinal} (h : b < c) : omega0 ^ b < omega0 ^ c := by simpa usi
((Ordinal.isNormal_opow (a := omega0) one_lt_omega0).strictMono h)</pre>

Why this is correct: isNormal_opow states that, for a > 1, the map $b \mapsto a \wedge b$ is normal (continuous, strictly increasing). With a omega0 and one_lt_omega0, strictMono yields exactly < from < in the exponent, which is what we need in μ -decrease proofs.

2.5 Cast bridges ($\mathbb{N} \leftrightarrow Ordinal$)

```
@[simp] theorem natCast_le {m n : N} : ((m : Ordinal) \leq (n : Ordinal)) \leftrightarrow m \leq n := Nat.cast_le @[simp] theorem natCast_lt {m n : N} : ((m : Ordinal) < (n : Ordinal)) \leftrightarrow m < n := Nat.cast_lt
```

2.6 Finite vs. infinite split helper

```
theorem eq_nat_or_omega0_le (p : Ordinal) : (∃ n : N, p = n) V omega0 ≤ p := by classical cases lt_or_ge p omega0 with | inl h => rcases (lt_omega0).1 h with @n, rfl@; exact Or.inl @n, rfl@ | inr h => exact Or.inr h
```

Absorption shorthands

```
theorem one_left_add_absorb {p : Ordinal} (h : omega0 ≤ p) : (1 : Ordinal) + p = p := by simpa using (Ordinal.one_add_of_omega_le (p := p) h)

theorem nat_left_add_absorb {n : N} {p : Ordinal} (h : omega0 ≤ p) : (n : Ordinal) + p = p := by simpa using (Ordinal.nat_add_of_omega_le (p := p) (n := n) h)
```

2.7 Two-sided product monotonicity (derived helper)

```
/-- Two-sided monotonicity of (*) for ordinals, built from one-sided lemmas. -/ theorem ord_mul_le_mul {a b c d : Ordinal} (h_1 : a \le c) (h_2 : b \le d) : a b \le c d := by have h_1' : a b \le c b := by simpa using (mul_le_mul_right' h_1 b) have h_2' : c b \le c d := by simpa using (mul_le_mul_left' h_2 c) exact le_trans h_1' h_2'
```

3 M-MEASURE PLAYBOOK (USED ACROSS ALL RULE PROOFS)

Goal form: for each kernel rule Step t u , show mu u < mu t . Typical shape reduces to chains like

```
\omega^{\kappa} * (x + 1) \leq \omega^{\kappa} (x + \kappa')
```

Standard ladder (repeatable):

1 . Assert base positivity: have wpos : 0 < omega0 := omega0_pos . 2. Lift inequalities through exponents: ι Ordinal.opow_le_opow_right wpos h for \le , and the local opow_lt_opow_right for < . 3. Split exponents/products: [opow_add] to turn exponent sums into products so product monotonicity applies cleanly. 4. Move (\le) across products: ι Ordinal.mul_le_mul_iff_left , mul_le_mul_left' , mul_le_mul_right' ; for < use Ordinal.mul_lt_mul_of_pos_left with positive left factor. 5. Absorb finite addends: once omega0 \le p , rewrite (n:Ordinal) + p = p (or 1 + p = p). 6. Bridge success convert x < y + 1 \leftrightarrow x \le y via Order.lt_add_one_iff; introduce x + 1 \le y via Order.add_one_le_of_lt when chaining. Clean arithmetic noise: simp for associativity/neutral elements; ring or linarith only for integer-arithmetic side-conditions (both tactics ε whitelisted).

Critical correction for $rec\Delta$ b s n (μ -rules):

Do not try to relate mu s and mu (delta n). They are independent parameters; the inequality mu s \leq mu (delta n) is false general. A simple counterexample (compiles in this codebase):

Structure μ -decrease proofs without assuming any structural relation between s and n beyond what the rule's right-hand side entails.

4 ORDER.SUCC VS + 1 (BRIDGE & HYGIENE)

Lean will often rewrite p + 1 to Order. succ p in goals. Work with the Order lemmas:

- Order.lt_add_one_iff : $x < y + 1 \leftrightarrow x \le y$
 - Order.add_one_le_of_lt : $x < y \rightarrow x + 1 \le y$

Keep the Order. prefix to avoid name resolution issues. Avoid inventing succ_eq_add_one —rely on these bridges instead.

5 DO-NOT-USE / DEPRECATED IN THIS PROJECT

- Generic mul_le_mul_left (from Algebra.Order.Monoid.Defs) on ordinal goals. Use Ordinal.mul_* APIs instead.

- Old paths Mathlib.Data.Ordinal. replaced by Mathlib.SetTheory.Ordinal. .
- Ordinal.opow_lt_opow_right (upstream removed). Use the local opow_lt_opow_right defined in §2.4.
- le_of_not_lt (deprecated) use le_of_not_gt .

6 MINIMAL IMPORT PRELUDE (COPY-PASTE)

```
import Init.WF
```

import Mathlib.Data.Prod.Lex import Mathlib.SetTheory.Ordinal.Basic import Mathlib.SetTheory.Ordinal.Arithmet
import Mathlib.SetTheory.Ordinal.Exponential import Mathlib.Algebra.Order.SuccPred impo
Mathlib.Data.Nat.Cast.Order.Basic import Mathlib.Tactic.Linarith import Mathlib.Tactic.Ring open Ordinal

7 READY-MADE SNIPPETS

Nat-sized measure (optional helper):

```
@[simp] def size : Trace → Nat
| void => 1
| delta t => size t + 1
| integrate t => size t + 1
| merge a b => size a + size b + 1
| rec∆ b s n => size b + size s + size n + 1
| eqW a b => size a + size b + 1
theorem step_size_decrease {t u : Trace} (h : Step t u) : size u < size t := by cases h <;> simp [size]; linarith
```

WF via ordinal μ :

```
def StepRev : Trace → Trace → Prop := fun a b => Step b a

theorem strong_normalization_forward

(dec : ∀ {a b}, Step a b → mu b < mu a) : WellFounded (StepRev Step) := by

have wfµ : WellFounded (fun x y : Trace => mu x < mu y) := InvImage.wf (f := mu) Ordinal.lt_wf

have sub : Subrelation (StepRev Step) (fun x y => mu x < mu y) := by intro x y h; exact dec h

exact Subrelation.wf sub wfµ
```

8 CROSS-FILE CONSISTENCY NOTES

- This toolkit and AGENT.md (2025-07-29) are synchronized: imports, prefixes, do-not-use list, and the μ -rule correction are identical. If you e one, mirror the change here.
 - Cite lemma modules explicitly in comments or nearby text in code reviews to prevent regressions (e. "Ordinal.mul_lt_mul_of_pos_left from SetTheory.Ordinal.Arithmetic").

9 CHECKLIST (BEFORE SENDING A PR)

- [] Imports \subseteq §6, no stray module paths.
- [] All exponent/product/ +1 lemmas called with **qualified** names as in §1.
- [] $\mu\text{-proofs}$ avoid any relation between $\,\mu\,$ s $\,$ and $\,\mu\,$ ($\delta\,$ n) in $\,$ rec $\!\Delta\,$ b s n .
- [] Tactics limited to simp, linarith, ring.
- [] No generic mul_le_mul_left on ordinal goals; use Ordinal.mul_* API.
- [] SN proof provides μ -decrease on all 8 rules; WF via InvImage.wf .
- ullet [] Normalize-join confluence skeleton compiles (normalize , to_norm , norm_nf , nfp).

End of file.