Integral extension

Def: Let B be a ring & A be a subring of B then B is called an extension of A. An element tell is said to be integral over A if I a monic poly f(x) & A[x] s.t. f(b)=0. B is said to be integral over A if HXEB, X is integral over A.

B is finite A-alg =) B is integral over A. Converse holds if B is a fig. A-alg.

Thm: Let ASB berings & NEB. TFAE

- On is integral over A.
- DA[x] is a finite A-module
- 3 There exist CEB subring sit A[x] CC&C is a finite A-module.

Con: ACB Kings. X, y & B integral over A > x+y & xy are integral over A. (Pf: A[x]:, finite A-mod & A[x,y] is finite A-mod integral over A. Con: ASBrings. Then $\overline{AB} = \{x \in B \mid x \text{ integral over } A\}$ is a Dring. It is called the integral closure of A in B.

Blea finite A-alg & Clea finite B-alg. Then C is a finite A-alg.

Con: Let B be a fig. A-alg with PiA >B the sta map. If B is integral over P(A) then B is a finite A-algebra. I. part if ACB, Bfig A-alg & B int over A => Bis a finite A-alg

This genty by by as on A-alg. by,,, by are intover P(A). (: his integral) φ(A)[h, b) is a finite (A)[h]-mod =) φ(A)[1,,62] is a finite p(A)-mod Proceeding this way we get $B = \varphi(A)[b, \dots, b_n]$ is a finite $\varphi(A)$ -mod B is a finite A-mod. i.e. B is a finite A-alg. Examples i) finite field ext or alg ext are integral. 2) Z[J3] OR Z[i], Z[-5/2] Z[13] is integral over Z. Z[1] is not JS satisfy X2-5 integral over Z 3) A = k[x, y, z] $B = A[W] = A[W] = X^2W + y^3W^3 + x$ B = A[W] =Bis int over A. (4) $\mathbb{Z} \subset \mathbb{Z}\left[\frac{1}{2}\right]$ $f(a)=2\chi-1$ then $f(\frac{1}{2})=0$. Def An int domain A is called integrally closed on normal if $A = \overline{A}$ frac(A).

@LetACB be an integral ext & SCA be a mult subset then S'B is integral over S'A. P: $\xi \in S^{-1}B$, ξ intover A = 0 ($f^{+} + a_{0} = 0$)

For some $a_{1} \in A$. $\left(\frac{b}{s}\right)^{n} + \frac{a_{n-1}}{s}\left(\frac{b}{s}\right)^{n-1} + \frac{a_{0}}{s^{n}} = 0$ by is in the of $S^{1}A$. Hillert-Nullstellensatz (Algebraic version): Let k be a field. A finitely generated k-alg $k[x_1,-,x_n]$ is a field then $x_1,-,x_n$ are alg over k. Note: $K\subseteq B$ be a rig ext with B int domain if $\chi_1,...,\chi_n\in B$ are algover K then $K[\chi_1,...,\chi_n]$ is a field. (From field theory) Pf: Via induction on n. $k[\chi] \text{ is a field } =) \frac{1}{\pi} = \alpha_0 + \alpha_1 \chi_1 + \alpha_2 \chi_1^{2} + t \alpha_m \chi_1^{m}$ $=) \chi_1 \text{ is intower } k$ $\left[\chi\left(\mathcal{H}_{1},-,\chi_{n}\right)\right]=\left[\chi\left(\mathcal{H}_{1}\right)\left[\chi_{2},-,\chi_{n}\right]\right]$ (as $\left[\chi_{1},-,\chi_{n}\right]$ is a field where $k(x_i) \subseteq k(x_{ij-j}x_n)$ is the field ger by k & X1. By ind hyp with $k = k(x_1)$, $\chi_{2,-}, \chi_n$ are algebraic over $k(x_i)$.

So enough to show this algorer k.

Suppose not, then k[x,] is isomorphic to a poly ring. Let $M_{\chi_{2}, k(\chi_{1})}$ $(Z) = Z^{m} + \frac{b_{m-1}}{C_{m}(\chi_{1})} Z^{m-1} + \frac{b_{m}(\chi_{1})}{C_{m}(\chi_{1})} Z^{m} + \frac{b_{m}(\chi_{1})}{C_{m}(\chi_{1})} Z$ Then his integral over k(n, an(n)) where $Q_2(\chi_1) = \prod_{i=0}^{m-1} C_i(\chi)$ Similarly I a; (xi) E K[xi] s.t. n; is integral over L(X1, ai(x)). Hence Mr,-, Mr are integral over k[x, \frac{1}{aph}] where $a(x_i) = \prod_{i=1}^{N} a_i(x_i)$

But $(R[X_i])$ has infinitely many paine elements Let $p(X_i)$ be a prime s.t. $p(X_i) + \alpha(X_i)$: Since a field Then $\frac{1}{p(X_i)} \in k[X_1, X_2, -, X_n]$ but to is not integral over k[x1, a(x1)] to 22,1-7 % intover (2 (24) a(x.)) $\left(\frac{1}{p(x_{1})}\right)^{W_{1}} + \frac{C_{m-1}(x_{1})}{Q(x_{1})^{i_{m-1}}}\left(\frac{1}{p(x_{1})}\right)^{m-1} + \cdots + \frac{C_{o}(x_{1})}{Q(x_{1})^{i_{o}}} = 0$ in 1/(X1) then $Q(\chi_i) + C'_{m-1}(\chi_i) p(\chi_i) + \dots + C'_{o}(\chi_i) p(\chi_i)^{m} = 0$ in $k[\chi_i]$ $= p(x_i) | \alpha(x_i)$ $= p(x_i) | \alpha(x_i)$