7. КОМПЛЕКСНЫЕ ЧИСЛА И ДЕЙСТВИЯ НАД НИМИ

7.1. Основные понятия. Операции над комплексными числами

Комплексным числом называется число вида z = x + iy, где x, y - действительные числа; $i = \sqrt{-1}$ — так называемая мнимая единица*, т.е. число, квадрат которого равен -1 (корень уравнения $x^2 + 1 = 0$); x называется действительной (вещественной) частью комплексного числа, а y - мнимой его частью. Для этих чисел приняты следующие обозначения: x = Re z, y = Im z.

Рис. 7.1

Если y = 0, то $z = x \in \mathbb{R}$; если же x = 0, то число z = iy называется чисто мнимым. С геометрической точки зрения всякому комплексному числу z = x + iy соответствует точка M(x,y) плоскости (или вектор \overline{OM}), и наоборот, всякой точке M(x,y) соответствует комплексное число z = x + iy. Между множествами комплексных чисел и точек плоскости Oxy установлено взаимно однозначное соответствие, поэтому данная плоскость называется комплексной и обозначается символом (z) (рис. 7.1).

Множество всех комплексных чисел обозначается буквой \mathbf{C} . Отметим, что $\mathbf{R} \subset \mathbf{C}$. Точки, соответствующие действительным числам z=x, расположены на оси Ox, которая называется $\partial e \ddot{u}$ -ствительной осью комплексной плоскости, а точки, соответствующие мнимым числам z=iy, — на оси Oy, которую называют мнимой осью комплексной плоскости.

Два комплексных числа равны, если соответственно равны их действительные и мнимые части. Числа вида z = x + iy и $\overline{z} = x - iy$ называются *сопряженными* (см. рис. 7.1).

Если $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$ — два комплексных числа, то арифметические операции над ними выполняются по следующим правилам:

^{*}В технической литературе для мнимой единицы используется также обозначение $j = \sqrt{-1}$.

$$z_{1} + z_{2} = (x_{1} + iy_{1}) + (x_{2} + iy_{2}) = (x_{1} + x_{2}) + i(y_{1} + y_{2}),$$

$$z_{1} - z_{2} = (x_{1} + iy_{1}) - (x_{2} + iy_{2}) = (x_{1} - x_{2}) + i(y_{1} - y_{2}),$$

$$z_{1}z_{2} = (x_{1} + iy_{1})(x_{2} + iy_{2}) = (x_{1}x_{2} - y_{1}y_{2}) + i(x_{1}y_{2} + x_{2}y_{1}),$$

$$\frac{z_{1}}{z_{2}} = \frac{x_{1} + iy_{1}}{x_{2} + iy_{2}} = \frac{z_{1}\overline{z}_{2}}{z_{2}\overline{z}_{2}} = \frac{x_{1}x_{2} + y_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}} + i\frac{x_{2}y_{1} - x_{1}y_{2}}{x_{2}^{2} + y_{2}^{2}}$$

(последняя операция имеет место при условии, что $z_2 \neq 0$). В результате получаем, вообще говоря, комплексные числа. Указанные операции над комплексными числами обладают всеми свойствами соответствующих операций над действительными числами, т.е. сложение и умножение коммутативны, ассоциативны, связаны отношением дистрибутивности и для них существуют обратные операции вычитания и деления (кроме деления на нуль).

Пример 1. Даны комплексные числа $z_1 = 2 + 3i, z_2 = 3 - 4i, z_3 = 1 + i.$ Найти

$$z = \frac{z_1 + z_1 z_2 + z_2^2}{z_1 + z_3}.$$

• Последовательно вычисляем:

$$z_1 + z_3 = (2+3i) + (1+i) = 3+4i,$$

$$z_1 z_2 = (2+3i)(3-4i) = (6+12) + i(9-8) = 18+i,$$

$$z_2^2 = (3-4i)^2 = 9-24i-16 = -7-24i,$$

$$z_1 + z_1 z_2 + z_2^2 = 2+3i+18+i-7-24i = 13-20i.$$

Тогда

$$z = \frac{13 - 20i}{3 + 4i} = \frac{(13 - 20i)(3 - 4i)}{(3 + 4i)(3 - 4i)} = \frac{(39 - 80) + i(-60 - 52)}{25} = \frac{41}{25} - i\frac{112}{25}.$$

Число $r = |\overline{OM}| = \sqrt{z\overline{z}}$ называется модулем комплексного числа z. Угол φ , образованный вектором \overline{OM} с положительным направлением оси Ox, называется аргументом комплексного числа и обозначается $\varphi = \operatorname{Arg} z$.

Очевидно, что для всякого комплексного числа z = x + iy (см. рис. 7.1) справедливы формулы:

$$x = r\cos\varphi, \quad y = r\sin\varphi,$$

$$r = \sqrt{x^2 + y^2}, \quad \cos\varphi = x/r, \quad \sin\varphi = y/r,$$
 (7.1)

где главное значение аргумента $\phi = \arg z$ удовлетворяет следующим условиям: $-\pi < \arg z \le \pi$ или $0 \le \arg z < 2\pi$; $\operatorname{Arg} z = \arg z + 2\pi k$, где $k = \pm 1, \pm 2, \ldots$

Всякое комплексное число z = x + iy может быть представлено в тригонометрической форме

$$z = r(\cos \varphi + i \sin \varphi) \tag{7.2}$$

или в показательной форме

$$z = re^{i\varphi} \tag{7.3}$$

(так как по формуле Эйлера $e^{i\varphi} = \cos\varphi + i\sin\varphi$).

Формулы (7.2) и (7.3) целесообразно применять при умножении комплексных чисел, а также при возведении их в степень.

Если $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$, $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$, то справедливы формулы:

$$z_{1}z_{2} = r_{1}r_{2}(\cos(\varphi_{1} + \varphi_{2}) + i\sin(\varphi_{1} + \varphi_{2})) = r_{1}r_{2}e^{i(\varphi_{1} + \varphi_{2})},$$

$$\frac{z_{1}}{z_{2}} = \frac{r_{1}}{r_{2}}(\cos(\varphi_{1} - \varphi_{2}) + i\sin(\varphi_{1} - \varphi_{2})) = \frac{r_{1}}{r_{2}}e^{i(\varphi_{1} - \varphi_{2})} (z_{2} \neq 0),$$

$$z^{n} = r^{n}(\cos n\varphi + i\sin n\varphi) = r^{n}e^{in\varphi}.$$
(7.4)

Формула (7.4) называется формулой Муавра.

Для извлечения корня n-й степени (n > 1, $n \in \mathbb{Z}$) из комплексного числа в форме (7.2) используется формула, дающая n значений этого корня:

$$z_{k} = \sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) =$$

$$= \sqrt[n]{r} e^{i(\varphi + 2\pi k)/n} (k = \overline{0, n - 1})$$
(7.5)

(под $\sqrt[n]{r}$ понимается арифметический корень).

Пример 2. Вычислить $(1+i)^{12}$.

▶ Представим число z=1+i в тригонометрической или показательной форме, используя формулы (7.1)—(7.3):

$$r = \sqrt{1+1} = \sqrt{2}$$
, $\cos \varphi = 1/\sqrt{2}$, $\sin \varphi = 1/\sqrt{2}$, $\varphi = \pi/4$,

$$z = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{\pi i/4}.$$

Тогда по формуле Муавра (7.4) получаем:

$$z^{12} = (\sqrt{2})^{12} \left(\cos \left(12 \cdot \frac{\pi}{4} \right) + i \sin \left(12 \cdot \frac{\pi}{4} \right) \right) = \sqrt{2^{12}} e^{3\pi i} =$$

$$= 64(\cos 3\pi + i \sin 3\pi) = -64. \blacktriangleleft$$

Пример 3. Найти корни уравнения $z^6 + 1 = 0$.

▶ Данное уравнение можно переписать так: $z^6 = -1$ или $z = \sqrt[6]{-1}$. Согласно формулам (7.1) число -1 в тригонометрической форме имеет вид

$$-1=1\cdot(\cos\pi+i\sin\pi)$$
.

С учетом формулы (7.5) корни исходного уравнения

$$z_k = \sqrt[6]{-1} = 1 \cdot \left(\cos\frac{\pi + 2k\pi}{6} + i\sin\frac{\pi + 2k\pi}{6}\right) = e^{i(\pi + 2\pi k)/6},$$

где $k = \overline{0,5}$. Придавая k последовательно значения 0, 1, ..., 5, находим все шесть возможных корней данного уравнения $z^6 + 1 = 0$:

$$z_{0} = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{1}{2}i = e^{\pi i/6},$$

$$z_{1} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i = e^{\pi i/2},$$

$$z_{2} = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = e^{5\pi i/6},$$

$$z_{3} = \cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6} = -\frac{\sqrt{3}}{2} - \frac{1}{2}i = e^{7\pi i/6} = e^{-5\pi i/6},$$

$$z_{4} = \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} = -i = e^{-\pi i/2} = e^{3\pi i/2},$$

$$z_{5} = \cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6} = \frac{\sqrt{3}}{2} - \frac{1}{2}i = e^{11\pi i/6} = e^{-\pi i/6}.$$

Пример 4. Найти корни уравнения $z^3 - 1 + i\sqrt{3} = 0$.

► Так как
$$z^3 = 1 - i\sqrt{3} = 2\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$$
, то по формуле (7.5)

$$z_k = \sqrt[3]{z} = \sqrt[3]{2} \left(\cos \frac{\pi/3 + 2\pi k}{3} - i \sin \frac{\pi/3 + 2\pi k}{3} \right) (k = \overline{0, 2}).$$

Следовательно, корнями данного уравнения являются:

$$z_0 = \sqrt[3]{2} \left(\cos \frac{\pi}{9} - i \sin \frac{\pi}{9} \right), z_1 = \sqrt[3]{2} \left(\cos \frac{7\pi}{9} - i \sin \frac{7\pi}{9} \right),$$
$$z_2 = \sqrt[3]{2} \left(\cos \frac{13\pi}{9} - i \sin \frac{13\pi}{9} \right). \blacktriangleleft$$

7.2. Аудиторные занятия к гл. 7

A3 - 7.1

- **1.** Найти значение выражения $(z_1 + 2z_2)z_3$, если $z_1 = 2 + 3i$, $z_2 = 3 + 2i$, $z_3 = 5 2i$. (*Ответ*: 54 + 19i.)
- **2.** Даны комплексные числа $z_1 = 3 + 5i$, $z_2 = 3 4i$, $z_3 = 1 2i$. Найти число $z = \frac{(z_1 + z_3)z_2}{z_3}$. $\left(Omeem: \frac{38}{5} + \frac{41}{5}i.\right)$
- **3.** Представить в тригонометрической и показательной формах комплексные числа $z_1 = 2 2i$, $z_2 = -1 + i$, $z_3 = -i$, $z_4 = -4$.
- **4.** Найти: а) $(2i)^{10}$; б) $(3+3i)^5$; в) $\left(\frac{5-i}{2-3i}\right)^6$. (Ответ: а) -1024; б) 927(1+i); в) -8i.)
- 5. Найти корни уравнения $z^8-1=0.$ (*Ответ* : $z_0=1, \ z_1=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i, \ z_2=i, \ z_3=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i, \ z_4=-1, \ z_5=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i, \ z_6=-i, \ z_7=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i.$)
- **6.** Найти область, которую заполняют точки z, удовлетворяющие условию: a) $2 \le |z-1| < 4$; б) $\operatorname{Re}(1/z) \le 1/2$; в) $|\operatorname{Im} z| < 2$.

Самостоятельная работа

- **1.** 1. Найти значение выражения $z_1(z_2+z_3)/z_2$, если $z_1=4+5i$, $z_2==1+i$, $z_3=7-9i$. (*Ответ*: 40-32i.)
- 2. Представить в тригонометрической и показательной формах комплексные числа $z_1 = \sqrt{3} + i$, $z_2 = -1 + \sqrt{3}i$, $z_3 = -1/2$.
- **2.** 1. Найти значение выражения $(z_1 + z_2 z_3)/z_2$, если $z_1 = 4 + 8i$, $z_2 = 1 i$, $z_3 = 9 + 13i$. (*Ответ*: 7 + 19i.)
 - 2. Решить уравнение $z^2 i = 0$. (*Ответ*: $\pm (1+i)/\sqrt{2}$.)

- 3. 1. Найти значение выражения $(z_1^2 + z_2 + z_3)/z_2$, если $z_1 = 2 i$, $z_2 = -1 + 2i$, $z_3 = 8 + 12i$. (Ответ: 2 + 2i.)
- 2. Представить в тригонометрической и показательной формах комплексные числа $z_1=2/(1+i)$, $z_2=-\sqrt{3}-i$. (*Ответ*: $z_1=\sqrt{2}(\cos(-\pi/4)+i\sin(-\pi/4))=\sqrt{2}e^{-\pi i/4}$, $z_2=2(\cos(-5\pi/6)+i\sin(-5\pi/6))=\sqrt{2}e^{-5\pi i/6}$.)

7.3. Индивидуальные домашние задания к гл. 7

ИД3-7.1

1. Выполнить указанные действия над комплексными числами z_i , $i=\overline{1,5}$, и найти модуль с точностью до целых чисел и главное значение аргумента с точностью до 1° полученного комплексного числа z, если $z_1=1+i$, $z_2=2-i$, $z_3=3+2i$, $z_4=4+3i$, $z_5=5-4i$. Записать z в тригонометрической и показательной формах.

1.1.
$$z = z_1 + z_2 - \frac{z_3 z_4}{z_5}$$
.
1.2. $z = z_2 - z_3 - \frac{z_1 z_4}{z_5}$.
1.3. $z = z_3 + z_4 - \frac{z_2 z_5}{z_1}$.
1.4. $z = z_4 - z_5 + \frac{z_1 z_2}{z_3}$.
1.5. $z = z_2 + z_3 - \frac{z_4 z_5}{z_1}$.
1.6. $z = z_3 - z_4 + \frac{z_1 z_2}{z_5}$.
1.7. $z = z_1 z_2 + \frac{z_3 z_4}{z_5}$.
1.8. $z = z_4 z_5 - \frac{z_2 z_3}{z_1}$.
1.9. $z = \frac{z_1}{z_2} - \frac{z_4 z_5}{z_3}$.
1.10. $z = \frac{z_4}{z_5} + \frac{z_1 z_3}{z_2}$.
1.11. $z = z_3 z_4 z_5 - \frac{z_1}{z_2}$.
1.12. $z = z_1 z_2 z_3 + \frac{z_4}{z_5}$.
1.13. $z = \frac{z_1 z_2}{z_3} - z_4 z_5$.
1.14. $z = \frac{z_5}{z_4} + \frac{z_4}{z_3} - \frac{z_3 z_2}{z_1}$.
1.15. $z = z_3 z_4 z_5 + \frac{z_2 z_3}{z_1}$.
1.16. $z = \frac{z_4}{z_3} - \frac{z_3}{z_4} + \frac{z_1}{z_5}$.
1.17. $z = z_1 - z_2 - \frac{z_3}{z_4 z_5}$.
1.18. $z = \frac{z_3}{z_4} + \frac{z_1 z_2}{z_3 z_5}$.
1.19. $z = z_5 - \frac{z_1}{z_2 z_3 z_4}$.

1.21.
$$z = (2z_1 - z_2)z_3 + \frac{z_4}{z_5}$$
.

1.23.
$$z = \frac{z_2}{z_1} - \frac{4z_3 - z_4}{z_5}$$
.

1.25.
$$z = z_5 - \frac{1}{z_1 z_2 + 3 z_3 z_4}$$
.

1.27.
$$z = \frac{z_3}{z_4} + \frac{z_1 z_2}{z_1 + 2z_2 - z_5}$$
.

1.29.
$$z = \frac{z_1 z_2 - z_2 z_3}{3z_4 + 4z_5}$$
.

1.22.
$$z = (3z_3 - z_2)z_1 + \frac{z_5}{z_4}$$
.

1.24.
$$z = \frac{z_1 z_2 z_3}{4z_4 + 5z_5}$$
.

1.26.
$$z = \frac{6z_1 - z_2}{3z_3z_4 - z_5}$$
.

1.28.
$$z = \frac{z_2 z_3 - z_4}{z_1 + z_5}$$
.

1.30.
$$z = \frac{(z_5 - z_4)z_3}{z_1 z_2}$$
.

2. Для данного числа z найти z^m и $\sqrt[n]{z}$. Вычисления вести с точностью до сотых.

2.1.
$$z = 1 + i$$
, $m = 3$, $n = 3$.

2.3.
$$z = 1 + 2i$$
 $m = 4$ $n = 3$

2.5.
$$z = 1 + 3i$$
, $m = 5$, $n = 3$.

2.7.
$$z = 2 - 3i$$
, $m = 4$, $n = 4$.

2.9.
$$z = 1 - 3i$$
, $m = 4$, $n = 4$.

2.11.
$$7 = 4 - i$$
. $m = 5$. $n = 4$.

2.11.
$$z = 4 - i, m = 5, n = 4$$
.

2.13.
$$z = 5 + i$$
, $m = 4$, $n = 5$.

2.15.
$$z = 2 + 3i, m = 5, n = 3.$$

2.17.
$$z = i, m = 5, n = 5.$$

2.19.
$$z = 1, m = 8, n = 9.$$

2.21.
$$z = \frac{1+i}{i}, m = 3, n = 3.$$

2.23.
$$z = \frac{2+i}{1-i}, m = 3, n = 3.$$

2.25.
$$z = \frac{i}{4+i}$$
, $m = 4$, $n = 3$.

2.27.
$$z = \frac{1+i}{2+3i}$$
, $m = 3$, $n = 5$.

2.29.
$$z = \frac{2}{3-2i}$$
, $m = 6$, $n = 4$.

2.30. z = (3+4i)(2-3i), m = 4, n = 4.

2.2.
$$z = 1 - i$$
, $m = 4$, $n = 5$.

2.4.
$$z = 2 - i$$
, $m = 3$, $n = 4$.

2.6.
$$z = 1 - 2i, m = 5, n = 4.$$

2.8.
$$z = 2 - 3i$$
, $m = 4$, $n = 3$.

2.10.
$$z = 3 - 2i$$
, $m = 3$, $n = 4$.

2.12.
$$z = 4 + 2i$$
, $m = 4$, $n = 3$.

2.14.
$$z = 1 + 4i, m = 6, n = 5.$$

2.16.
$$z = 1 + 5i$$
, $m = 5$, $n = 4$.
2.18. $z = -1$, $m = 6$, $n = 7$.

2.20.
$$z = -i$$
, $m = 8$, $n = 7$.

2.22.
$$z = \frac{1-i}{1+i}$$
, $m = 4$, $n = 4$.

2.24.
$$z = \frac{i}{1-i}, m = 4, n = 5.$$

2.26.
$$z = \frac{2+3i}{1+i}$$
, $m = 5$, $n = 3$.

2.28.
$$z = \frac{1}{8-3i}, m = 8, n = 5.$$

3. Найти и построить на комплексной плоскости (z) множество точек, которому принадлежат точки z = x + iy, удовлетворяющие указанным условиям.

3.1.
$$|z| > 1 + \text{Im } z$$
.

3.3.
$$\frac{1}{|z|} \ge 2, z \ne 0.$$

3.5.
$$|(z-1)/(z+1)| \le 1$$
.

3.7. Im
$$\bar{z}^2 < 1$$
.

3.9.
$$1 < |z| \le 2, \frac{\pi}{3} \le \arg z < \frac{\pi}{2}.$$

3.11.
$$\frac{1}{|z|} \le 3, z \ne 0.$$

3.13.
$$\operatorname{Im}(z^2 - \overline{z}) = 1 - \operatorname{Im} z$$
.

3.15.
$$z^2 + \overline{z}^2 \ge 1$$
.

3.17.
$$|z-i|+|z+i| \le 4$$
.

3.19. Re
$$(1+z) = |z|$$
.

3.21.
$$|z| \le 2$$
, $\frac{1}{|z|} \ge 0.8$, $z \ne 0$.

3.23.
$$-1 < \text{Re}(z+i) \le 2, |z-3| \le 1$$
. 3.24. $|z| \ge 1, |\text{Im } z| \ge 1$.

3.25.
$$z\overline{z} + 2i(z - \overline{z}) - 12 \le 0$$
.

3.27.
$$(1+i)z + (1-i)\overline{z} + 4 \ge 0$$
.

3.29.
$$\frac{\pi}{6} < \arg(z - 1 - 2i) \le \frac{5\pi}{6}$$
.

3.2.
$$|z| > 1 + \text{Re } z$$
.

3.4.
$$1 < |z - i| < 2$$
, $\frac{\pi}{6} < \arg z < \frac{\pi}{3}$.

3.6.
$$|z-1| < |z-i|$$
.

3.8.
$$4 \le |z-1|+|z+1| \le 8$$
.

3.10. Im
$$z^2 > 3$$
.

3.12.
$$\frac{1}{4} < \text{Re}\left(\frac{1}{z}\right) + \text{Im}\left(\frac{1}{z}\right) < \frac{1}{2}$$
.

3.14. Re
$$\left(\frac{1}{z}\right) = 2$$
.

3.16.
$$3|z| - \text{Re } z \ge 0$$
.

3.18. Re
$$(z^2 - \overline{z}) \ge 0$$
.

3.20.
$$\operatorname{Im}\left(\frac{1}{z}\right) \leqslant \frac{1}{2}$$
.

3.22.
$$|z-3i| \le 4, |z| \le 2.$$

3.24.
$$|z| \ge 1$$
, $|\text{Im } z| \ge 1$.

3.26.
$$|z| = \text{Re}(z+i)$$
.

3.28.
$$|z+i|-|z-i| \le 2$$
.

3.30.
$$|z-3| = |1-2\overline{z}|$$
.

Решение типового варианта

1. Найти $z = z_1 z_2 - z_3 (z_4 - z_5)/(2z_1 + z_2)$, если $z_1 = i$, $z_2 = 1 - i$, $z_3 = 1 - i$ = 2 + 3i, $z_4 = -1 + i$, $z_5 = 6 - 5i$. Вычислить |z| и arg z с точностью до целого числа и 1° соответственно. Записать z в тригонометрической и показательной формах.

▶ Подставляем указанные z_i , $i = \overline{1,5}$, в выражение для z. Имеем: z ==i(1-i)-(2+3i)(-1+i-6+5i)/(2i+1-i)=1+i-(2+3i)(-7+6i)/(1+i)==1+i+(32+9i)(1-i)/((1+i)(1-i))=1+i+(41-23i)/2=21,5-10,5i.

Далее находим: $|z| = \sqrt{21,5^2 + 10,5^2} \approx 23,93$. Округляя до целого числа, получаем |z| = 24. Наконец, согласно формулам (7.1), находим:

$$\arg z = \arctan \frac{y}{x} = \arctan(-10.5/21.5) = -\arctan(0.4884) = -26^{\circ}02' \approx -26^{\circ}.$$

- **2.** Дано z = 2 7i. Найти z^5 и $\sqrt[4]{z}$. Ответ дать с точностью до сотых.
- ▶ Представим данное z в тригонометрической форме (7.2). Для этого находим r = |z| и arg z. Имеем:

$$|z| = \sqrt{2^2 + 7^2} = \sqrt{53} \approx 7,28, \arg z = \arg \frac{y}{x} = -\arctan \frac{7}{2} \approx -74^{\circ}04' \approx -74^{\circ},$$

 $z = 7,28(\cos(-74^{\circ}04') + i\sin(-74^{\circ}04')).$

По формуле Муавра (7.4) получаем:

$$z^{5} = (7,28)^{5} (\cos(-5.74^{\circ}04') + i\sin(-5.74^{\circ}04')) = 20449,71(\cos(-10^{\circ}20') + i\sin(-10^{\circ}20')) \approx 20449,71(0,9840 - 0,1784i) = 20122,51 - 3648,22i.$$

Округляя до целых, имеем $z^5 \approx 20123 - 3648i$.

По формуле (7.5) находим:

$$z_k = \sqrt[4]{z} = \sqrt[4]{7,28} \left(\cos \frac{-74^\circ + 360^\circ k}{4} + i \sin \frac{-74^\circ + 360^\circ k}{4} \right),$$

где k=0,1,2,3. Последовательно вычисляем z_0,z_1,z_2,z_3 :

$$z_{0} = \sqrt[4]{7,28} \left(\cos \left(-\frac{74^{\circ}}{4} \right) + i \sin \left(-\frac{74^{\circ}}{4} \right) \right) \approx 1,64(\cos 18,5^{\circ} - i \sin 18,5^{\circ}) \approx$$

$$\approx 1,64(0,95 - 0,32i) \approx 1,56 - 0,52i,$$

$$z_{1} = 1,64 \left(\cos \left(\frac{-74^{\circ} + 360^{\circ}}{4} \right) + i \sin \left(\frac{-74^{\circ} + 360^{\circ}}{4} \right) \right) =$$

$$= 1,64(\cos(90^{\circ} - 18,5^{\circ}) + i \sin(90^{\circ} - 18,5^{\circ})) = 1,64(\sin 18,5^{\circ} + i \cos 18,5^{\circ}) =$$

$$= 1,64(0,32 + 0,95i) \approx 0,52 + 1,56i,$$

$$z_{2} = 1,64(\cos(180^{\circ} - 18,5^{\circ}) + i \sin(180^{\circ} - 18,5^{\circ})) =$$

$$= 1,64(-\cos 18,5^{\circ} + i \sin 18,5^{\circ}) = -1,56 + 0,52i,$$

$$z_{3} = 1,64(\cos(270^{\circ} - 18,5^{\circ}) + i \sin(270^{\circ} - 18,5^{\circ})) =$$

$$= 1,64(-\sin 18,5^{\circ} - i \cos 18,5^{\circ}) = -0,52 - 1,56i.$$

З а м е ч а н и е. Если степень m невелика, то z^m можно находить, не переходя к тригонометрической форме числа z. В рассмотренном выше примере m=5, а z=2-7i. Тогда по формуле Ньютона для бинома имеем:

$$(2-7i)^5 = 2^5 + 5 \cdot 2^4 (-7i) + 10 \cdot 2^3 (-7i)^2 + 10 \cdot 2^2 (-7i)^3 + 5 \cdot 2(-7i)^4 + (-7i)^5 =$$

$$= 32 - 560i - 3920 + 13720i + 24010 - 16807i = 20122 - 3647i.$$

К нахождению корней из *z* формула Ньютона неприменима, поэтому необходим переход к тригонометрической форме числа *z*.

3. Найти и изобразить на комплексной плоскости (z) множество точек, которому принадлежат точки z = x + iy, подчиненные указанным условиям:

a) Re
$$\overline{z}^2 \le 2$$
; 6) Im $\left(\frac{1}{z}\right) \ge \frac{1}{6}$;

- в) одновременно выполняются «а» и «б».
- ▶ а) Re $\overline{z}^2 \le 2$, Re $(x-iy)^2 \le 2$, $x^2 y^2 \le 2$ множество точек, заполняющих ветви гиперболы и область между ними (рис. 7.2);

б)
$$\operatorname{Im}\left(\frac{1}{z}\right) = \operatorname{Im}\left(\frac{\overline{z}}{z\overline{z}}\right) = \operatorname{Im}\frac{x - iy}{x^2 + y^2} = -\frac{y}{x^2 + y^2} \geqslant \frac{1}{6}, \quad x^2 + y^2 + 6y \leqslant 0,$$
 $x^2 + (y+3)^2 \leqslant 9$ — множество точек на окружности с центром в точке $C(0,-3)$ и радиусом 3 и все точки внутри нее (рис. 7.3);

$$\operatorname{B} \begin{cases} \operatorname{Re} \overline{z}^{2} \leq 2, \\ \operatorname{Im} \left(\frac{1}{z} \right) \geq \frac{1}{6}. \end{cases}$$

Рис. 7.2

Рис. 7.3

Рис. 7.4

Совмещаем рис. 7.2 и рис. 7.3 так, чтобы совпали оси координат xOy. Тогда общая часть множеств для «а» и «б» дает ответ — «щербатый круг» (рис. 7.4). \P

7.4. Дополнительные задачи к гл. 7

1. Представить в показательной форме следующие комплексные числа:

a)
$$z = -\sqrt{12} - 2i$$
; 6) $z = -\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}$.

(*Omeem*: a) $4e^{7\pi i/6}$; б) $e^{6\pi i/7}$.)

2. Доказать формулу

$$(1+\cos\alpha+i\sin\alpha)^{2n} = \left(2\cos\frac{\alpha}{2}\right)^{2n}e^{in\alpha}, n \in \mathbb{N}, \alpha \in \mathbb{R}.$$

- **3.** Найти сумму $\sum_{k=0}^{n} e^{ik\phi} . \left(\textit{Ответ}: \frac{e^{i(n+1)\phi} 1}{e^{i\phi} 1} . \right)$
- **4.** При каких целых значениях n справедливо равенство $(1+i)^n = (1-i)^n$? (*Ответ*: $n = 4k, k \in \mathbb{Z}$.)
 - 5. Используя формулу Эйлера, найти сумму

$$\cos x + \cos 2x + \cos 3x + \dots + \cos nx$$

$$\left(Omsem: \left(\sin \frac{nx}{2} \cos \frac{n+1}{2} x \right) \middle/ \sin \frac{x}{2} . \right)$$

6. Доказать тождество

$$x^5 - 1 = (x - 1)(x^2 - 2x\cos 72^\circ + 1)(x^2 - 2x\cos 144^\circ + 1).$$

Найти и построить на комплексной плоскости (z) области, которым принадлежат точки z = x + iy, удовлетворяющие указанным условиям.

- 7. $|z-z_1| < 4$, где $z_1 = 3-5i$. (*Ответ*: внутренность круга радиусом R = 4 с центром в точке z_1 .)
- **8.** $|z+z_1| > 6$, где $z_1 = 1-i$. (*Ответ*: множество точек вне круга радиусом R = 6 с центром в точке $-z_1$.)
- **9.** 1 < |z-i| < 3. (*Ответ*: кольцо между окружностями с центром в точке z=i, радиусы которых $r_1=1, r_2=3$.)
- **10.** 0 < |z+i| < 1. (*Ответ*: внутренность круга радиусом R = 1 с выколотым центром в точке z = -i.)
- **11.** $0 \le \text{Re}(3iz) \le 2$. (*Ответ*: горизонтальная полоса, заключенная между прямыми y = 0, y = -2/3.)
- **12.** Re(1/z) > a, где a = const, $a \in \mathbb{R}$. (*Ответ*: если a = 0, то x > 0 правая полуплоскость без границы; если a > 0 или a < 0, то получаем точки, лежащие соответственно внутри или вне окружности $(x-1/(2a))^2 + y^2 = 1/(4a^2)$.)
- **13.** $\operatorname{Re}((z-ai)/(z+ai)) = 0$, где $a = \operatorname{const}, a \in \mathbf{R}$. (*Ответ*: точка z = ai.)
- **14.** $Im(iz) \le 2.$ (*Ответ*: полуплоскость, лежащая левее прямой x = 2.)