ARM 集群服务器 MARS3000 操作说明

修订记录

日期	版本	说明	备注
2020.03.06	v1.0.0	初版	
2020.11.05	v1.0.1		

目录

1.简介	4
1.1整机描述	4
1.2前面板接口	5
1.3后面板	5
1.4刀片(Node)	6
2.开关机、复位	8
2.1服务器电源管理	8
2.2节点电源管理	11
2.3SoC 电源管理	11
3.在位检测	12
3.1节点在位检测	12
3.2SoC 在位检测	13
3.3电源在位检测	14
4.风扇调速	15
4.1获取风扇状态	
4.2温控调速	
4.3手动调速	
5.指示灯开	16
5.1服务器指示灯	17
5.2节点指示灯	17
5.3SoC 指示灯	18
6.温度检测	19
6.1机箱温度	19
6.2节点温度	20
6.3SoC 温度	21

7.IP 管理	22
7.1机箱管理 IP	22
7.2按机箱为单位的 SoC IP 设定	23
7.3按节点为单位的 SoC IP 设定	25
8.系统升级	26
8.1机箱管理系统升级	26
8.2节点系统升级	28
8.3SoC 系统升级	28
9.FRU 信息	29
9.1机箱 FRU 信息	29
9.2节点 FRU 信息	29
9.3SoC FRII 信自	30

1. 简介

1.1 整机描述

MARS3000是一款2U 规格的基于 ARM 架构的云服务器,采用刀片式结构设计。每个刀片均可热插拔,可灵活配置整机的计算能力。

每个刀片支持8个六核心64位 ARM 处理器,内部架构为2核心 Cotex-A72+4核心 Cotex-A53,最高频率可达1.8GHz。

整机系统采用2个(1+1冗余设计)1300W的电源模组供电,冗余设计实现系统高可靠性。服务上电启动后终端口提供下列指令支持服务器的管理控制功能。

SHMC> help

Commands:

```
payload [<on>|<off>|<reboot>]
payload
           nodepwr <node_id> <rst>
nodepwr
           socinp <node_id> | <soc_id>
socpwr
psuinp
          psuinp
nodinp
          nodinp
socinp
          socinp
idled
         idled <node_id> [<on>|<off>]
fan
         fan [|<r>] <rpm 0~100 >
chaif
         chaif <ip > <netmask> <gw> <dns>
nodif
         nodif <node_id> <ip|mask|gw|dns> <value>
ifconfig
          ifconfig <ip|mask|gw|dns|mac> <value>
chaup
          chaup <firmware_url>
           nodup <node_id> < firmware_url >
nodup
fru
        fru [<id> <chassis id>] [<node id> <soc id>]
          temp <node_id> <soc_id>
temp
```

1.2 前面板接口

MARS3000的前面板如下图,主要是10个刀片仓位。

图3 MARS3000 前面板说明

1.3 后面板

MARS3000的后面板如下图,包含6个刀片仓位、2个电源仓位、4个万兆网口(光口)、4个千兆网口(电口)、MGMT 千兆网口和 RS232接口。

图4 MARS3000 后面板说明

1.4 刀片(Node)

整机最大可支持16个可热插拔的刀片,可以灵活配置整机的计算能力。

图5 MARS3000 刀片 (Node) 外观图

PWR ID D8 D7 D6 D5 D4 D3 D2 D1

图6 MARS3000 刀片面板说明

刀片面板指示灯说明

指示灯编号	指示灯含义
D1	1#ARM 处理器工作状态指示灯。 亮:工作正常;灭:工作异 常
D2	2#ARM 处理器工作状态指示灯。 亮:工作正常;灭:工作异 常
D3	3#ARM 处理器工作状态指示灯。 亮:工作正常;灭:工作异 常
D4	4#ARM 处理器工作状态指示灯。 亮:工作正常;灭:工作异 常
D5	5#ARM 处理器工作状态指示灯。 亮:工作正常;灭:工作异 常
D6	6#ARM 处理器工作状态指示灯。 亮:工作正常;灭:工作异 常
D7	7#ARM 处理器工作状态指示灯。 亮:工作正常;灭:工作异 常
D8	8#ARM 处理器工作状态指示灯。 亮:工作正常;灭:工作异 常
ID	刀片底板工作状态指示灯。 亮:工作正常;灭:工作异常
PWR	刀片电源状态指示灯。 亮:上电正常;灭:上电异常

2. 开关机、复位

2.1 服务器电源管理

控制服务器整机上下电(12V电源),以及查看当前电源状态

命令格式及范例:

SHMC> payload [<on>|<off>|<reboot>]

- 1,不带参数,获取当前状态
- 2, on, 上电
- 3, off, 下电
- 4, reboot, 先下电再上电

```
SHMC>
SHMC> payload on
       PSU Status:
       ______
       INFO: Power Suppliess [1]
                                  present:yes
                                                     power:off
       INFO: Power Suppliess [2]
                                      present:yes
                                                     power:on
       payload on...
       node[01] on ok
       node[02]
                on ok
       node[03]
               on
                    ok
       node[04] on
                    ok
       node[05] on
                    ok
       node[06] on
                    ok
       node[07] on
                    ok
       node[08] on
                    ok
       node[09] on
                    ok
       node[10]
                    ok
               on
       node[11] on
                    ok
       node[12] on
                    ok
       node[13] on ok
       node[14] on ok
       node[15] on ok
       node[16] on ok
       node[01] sync chassis info ok
       node[02] sync chassis info ok
       node[03] sync chassis info ok
       node[04] sync chassis info ok
       node[05] sync chassis info ok
       node[06] sync chassis info ok
       node[07] sync chassis info ok
       node[08] sync chassis info ok
       node[09] sync chassis info ok
       node[10] sync chassis info ok
       node[11] sync chassis info ok
       node[12] sync chassis info ok
       node[13] sync chassis info ok
node[14] sync chassis info ok
       node[15] sync chassis info ok
       node[16] sync chassis info ok
       payload on done!!
```

```
SHMC>
SHMC> payload off
       PSU Status:
       ______
                              [1]
       INFO:
              Power Suppliess
                                                       power:off
                                       present:yes
       INFO: Power Suppliess [2]
                                       present:yes
                                                       power:on
       payload off...
       node[01]
                is powering off
                 is powering off
       node[02]
       node[03]
                 is powering off
       node[04]
                is powering off
                is powering off
       node[05]
       node[06]
                is powering off
       node[07]
                is powering off
                is powering off
       node[08]
       node[09]
                 is powering off
       node[10]
                is powering off
       node[11]
                is powering off
                 is powering off
       node[12]
       node[13]
                is powering off
       node[14]
                is powering off
                 is powering off
       node[15]
       node[16]
                is powering off
       node[01]
                 off done.
                 off done.
       node[02]
       node[03]
                 off done.
                 off done.
       node[04]
       node[05]
                off done.
       node[06]
                off done.
       node[07]
                 off done.
                off done.
       node[08]
       node[09]
                off done.
                off done.
       node[10]
       node[11]
                off done.
       node[12]
                off done.
                off done.
       node[13]
                off done.
       node[14]
                off done.
       node[15]
       node[16] off done.
       payload off done!!
```

2.2 节点电源管理

所有 Node 都可以软重启;默认所有 Node 都是上电状态;

nodepwr <node_id> <rst>

命令格式及范例:

对 3 号节点及其所有 SoC 进行复位 SHMC>nodepwr 3 rst

2.3 SoC 电源管理

所有 SoC 都可以硬重启;默认所有 SoC 都是上电状

态; socpwr <node_id> <soc_id>

[<rst>|<off>|<on>]

soc_id 为 0 表示该节点上所有 SoC

rst, 复位

off,下电

on, 上电

命令格式及范例:

对1号节点2号 soc 进行复位 SHMC>socpwr 1 2 rst

对 1 号节点上所有 soc 进行复位 SHMC > socpwr 1 0 rst

对 1 号节点 2 号 soc 进行下电 SHMC > socpwr 1 2 off

对1号节点上所有 soc 进行下电 SHMC>socpwr 1 0 off 对1号节点2号 soc 进行上电 SHMC>socpwr 1 2 on

对1号节点上所有 soc 进行上电 SHMC>socpwr 1 0 on

注 1: socpwr 管理功能受 payload 影响,且 payload 上电后,socpwr 的操作才实际 SoC 产生效果;

3. 在位检测

3.1节点在位检测

该命令可以获得当前每路 Node 物理在位状态

命令格式及范例:

IPMC> nodinp

```
SHMC> nodinp
      INFO: Current Node In-Position Status
      node [01]
                     present: yes
      node [02]
node [03]
                     present: yes
                     present: yes
      node [04]
                     present: yes
      node [05]
                     present: yes
      node [06]
                     present: yes
      node [07]
                     present: yes
      node [08]
                     present: yes
      node [09]
                     present: yes
      node [10]
                     present: yes
                     present: yes present: yes
      node [11]
      node [12]
      node [13]
                     present: yes
      node [14]
                     present: yes
      node [15]
                     present: yes
      node [16]
                     present: yes
```

3.2 SoC 在位检测

该命令可以获得当前每路 Node 下 SoC 物理在位状态

命令格式及范例:

SHMC> socinp <node id>

3.3 电源在位检测

该命令可以获取当前机箱的电源在位信息

命令格式及范例:

SHMC>psuinp

4. 风扇调速

fan 控制智能风扇模式,使用 fan ?命令获取详情;

注 1: 机箱风扇受 payload 上下电开关逻辑控制

4.1获取风扇状态

fan 不带参数,即可获得当前风扇管理状态

命令格式及范例:

SHMC>fan

图例:

SHMC\$ far

INFO: Current Smartfan mode is [NORMAL_MODE]

4.2 温控调速

fan 控制智能风扇模式,使用 fan ?命令获取详情

命令格式及范例:

SHMC>fan p

设置当前模式为"性能模式",风扇转速随机箱温度变化而变化,有效降温。

图例:

SHMC\$ fan p

INFO: fan mode set to PERFORM MODE

凌点科技有限公司

4.3 手动调速

smartfan 控制智能风扇模式,使用 smartfan ?命令获取详情

命令格式及范例:

SHMC> fan r 50

设置当前模式为"固定模式",风扇转速固定在 50%最大风速(约 1 万转),转速不随温度变化而变化

图例:

SHMC\$ fan r 50

INFO: fan mode set to MANUAL_MODE 50

5. 指示灯开

5.1服务器指示灯

TBD

5.2 节点指示灯

ID 灯用于指示每个节点物理位置,由正视图表示的话,节点顺序如下节点分布图

N_16	N_15	N_14	N_13	N_12	N_11	N_10	N_9	N_8	N_7
FAN WALL									
				N_01	N_02	N_03	N_04	N_05	N_06

命令格式及范例:

点亮 *节点_3* LED 灯

SHMC> idled 3 on

熄灭 *节点_3* LED 灯

SHMC> idled 3 off

图例:

```
SHMC>
SHMC> idled 3 on

node[3] idled is on

SHMC>
SHMC>
SHMC>
SHMC>
node[3] idled is off

node[3] idled is off
```

注:idled 可以单个开关节点的 ID 灯,需要节点板真是存在并且 payload 上电的情况下才会起效

5.3 SoC 指示灯

SoC 指示灯,指示 SoC 当前运行状态,可以由 SoC 系统控制;

6. 温度检测

6.1机箱温度

temp 获取的是机箱温度 温度探头所处位置图示:

命令格式及范例

SHMC> temp

6.2 节点温度

temp <node_num> 获取节点温度;

命令格式及范例

获取 1 号节点的温度 SHMC > temp 1

6.3 SoC 温度

temp <node id> <soc id> 获取 SoC 温度;

soc id 为 0 表示所有 SoC

命令格式及范例

获取 2 号节点上所有 SoC 的温度 SHMC> temp 2 0

图例:

```
SHMC> temp 2 0
        Soc Temp Info:
        node [2]
                    soc [1]
                                          temperature:38
        node [2]
                   soc [2]
                                         temperature:34
        node [2]
                   soc [3]
soc [4]
                                        temperature:34
        node [2]
                                         temperature:36
        node [2]
                    soc [5]
                                          temperature:37
        node [2]
                    soc [6]
                                          temperature:38
        node [2]
                    soc [7]
                                          temperature:38
        node [2]
                    soc [8]
                                          temperature:40
```

获取6号节点上8号 SoC 的温度 SHMC> temp 6 8

7. IP 管理

7.1机箱管理 IP

使用命令 ifconfig [<ip|mask|gw|dns|mac> <value>] [<dhcp> <yes>|<no>]

命令格式及范例:

SHMC> ifconfig

显示当前 IP、GW、NetMask、 DNS、MAC 等信息

```
SHMC> ifconfig
```

IP Configuration

ip: 192.168.0.112 mask: 255.255.255.0 gw: 192.168.0.1 dns: 192.199.291.100

mac: 10:10:10:10:10

SHMC> ifconfig dhcp yes

设置机箱 IP 为 DHCP 获取方式

SHMC> ifconfig dhcp yes

设置机箱 ip 为手动设置方式

SHMC>ifconfig ip 192.168.1.100 mask 255.255.255.0 gw 192.168.1.1 dns 8.8.8.8 设置机箱 IP、GW、NetMask、 DNS

7.2按机箱为单位的 SoC IP 设定

用于给每个机箱内的 SoC 提供初始 IP 及掩码,网关等配置信息的管理功能。

使用命令 chaif <ip > <netmask> <gw> <dns>

命令格式及范例:

SHMC>chaif

显示当前配置

> chaif				
Cliati				
	c IP configuration by			
node soc	IP	=== NETMASK	GW	DNS
[01] [1]	192.168.0.100	255.255.255.0	192.168.0.1	192.168.0
[01] [2]	192.168.0.101	255.255.255.0	192.168.0.1	192.168.0
[01] [3]	192.168.0.102	255.255.255.0	192.168.0.1	192.168.0
[01] [4]	192.168.0.103	255.255.255.0	192.168.0.1	192.168.0
[01] [5]	192.168.0.104	255.255.255.0	192.168.0.1	192.168.0
[01] [6]	192.168.0.105	255.255.255.0	192.168.0.1	192.168.0
[01] [7]	192.168.0.106	255.255.255.0	192.168.0.1	192.168.0
[01] [8]	192.168.0.107	255.255.255.0	192.168.0.1	192.168.0
[02] [1]	192.168.0.100	255.255.255.0	192.168.0.1	192.168.0
[02] [2]	192.168.0.101	255.255.255.0	192.168.0.1	192.168.0
[02] [3]	192.168.0.102	255.255.255.0	192.168.0.1	192.168.0
[02] [4]	192.168.0.103	255.255.255.0	192.168.0.1	192.168.0
[02] [5]	192.168.0.104	255.255.255.0	192.168.0.1	192.168.0
[02] [6]	192.168.0.105	255.255.255.0	192.168.0.1	192.168.0
[02] [7]	192.168.0.106	255.255.255.0	192.168.0.1	192.168.0
[02] [8]	192.168.0.107	255.255.255.0	192.168.0.1	192.168.0
[02] [4]	102 160 0 100	255.255.255.0	192.168.0.1	102 160 0
[03] [1]	192.168.0.100 192.168.0.101	255.255.255.0	192.168.0.1	192.168.0 192.168.0
[03] [2] [03] [3]	192.168.0.101	255.255.255.0	192.168.0.1	192.168.0
[03] [4]	192.168.0.103	255.255.255.0	192.168.0.1	192.168.0
[03] [4]	192.168.0.104	255.255.255.0	192.168.0.1	192.168.0
[03] [6]	192.168.0.105	255.255.255.0	192.168.0.1	192.168.0
[03] [7]	192.168.0.106	255.255.255.0	192.168.0.1	192.168.0
[03] [8]	192.168.0.107	255.255.255.0	192.168.0.1	192.168.0
[62] [6]	192.100.0.107	233.233.233.0	192.100.0.1	192.108.0
[04] [1]	192.168.0.100	255.255.255.0	192.168.0.1	192.168.0
[04] [2]	192.168.0.101	255.255.255.0	192.168.0.1	192.168.0
[04] [3]	192.168.0.102	255.255.255.0	192.168.0.1	192.168.0

SHMC>chaif ip 192.168.1.10

设置机箱所有 SoC 的起始 IP 地址, 设置后会列车所有 SoC 的 IP、netmask、 gateway 、DNS 信息

ip: 为机箱所有 SoC 的起始 IP 地址, SoC 的 IP 地址在此基础上加上 SoCId 号, 生成有效 IP, 连同其他参数,在 SoC 上电后自动配置。

例: SoCId 为 5的 SoC, 上电后的 IP 地址为 192.168.1.14 (即 192.168.1.10+4)

	c IP configuration by			
node soc	IP	==== NETMASK	GW	DNS
[01] [1]	192.168.1.10	255.255.255.0	192.168.0.1	192.168.0.1
[01] [2]	192.168.1.11	255.255.255.0	192.168.0.1	192.168.0.
[01] [3]	192.168.1.12	255.255.255.0	192.168.0.1	192.168.0.
[01] [4]	192.168.1.13	255.255.255.0	192.168.0.1	192.168.0.
[01] [5]	192.168.1.14	255.255.255.0	192.168.0.1	192.168.0.
[01] [6]	192.168.1.15	255.255.255.0	192.168.0.1	192.168.0.
[01] [7]	192.168.1.16	255.255.255.0	192.168.0.1	192.168.0.
[01] [8]	192.168.1.17	255.255.255.0	192.168.0.1	192.168.0.
[02] [1]	192.168.1.18	255.255.255.0	192.168.0.1	192.168.0.
[02] [2]	192.168.1.19	255.255.255.0	192.168.0.1	192.168.0.
[02] [3]	192.168.1.20	255.255.255.0	192.168.0.1	192.168.0.
[02] [4]	192.168.1.21	255.255.255.0	192.168.0.1	192.168.0.
[02] [5]	192.168.1.22	255.255.255.0	192.168.0.1	192.168.0.
[02] [6]	192.168.1.23	255.255.255.0	192.168.0.1	192.168.0.
[02] [7]	192.168.1.24	255.255.255.0	192.168.0.1	192.168.0.
[02] [8]	192.168.1.25	255.255.255.0	192.168.0.1	192.168.0.

7.3 按节点为单位的 SoC IP 设定

用于给每个机箱内的 SoC 提供初始 IP 及掩码,网关等配置信息的管理功能,以节点为单位。

命令格式及范例:

SHMC>nodif <node_id> <ip|mask|gw|dns> <value>

显示当前配置

8. 系统升级

8.1机箱管理系统升级

使用命令 chaup < firmware_url >

命令格式及范例:

SHMC>chaup http://192.168.0.115:8000/lb001rom_103.zip

机箱 BMC 固件升 SHMC 令

8.2 节点系统升级

使用命令 nodup <node_id> < firmware_url >

命令格式及范例:

SHMC>nodup 1 http://192.168.0.115:8000/noderom

升级 1号节点 BMC 固件

图例:

```
SHMC>
SHMC> nodup 1 http://192.168.0.115:8000/481app_d0319_dishadfault_sig

INFO: Update firmware for node 1, please wait until finish
INFO: Get firmware...DONE

INFO: Verifying...80+1 records in
80+1 records out
40984 bytes (40.0KB) copied, 0.002059 seconds, 19.0MB/s
INFO: Verifying DONE

INFO: Write firmware

......DONE

INFO: Validating
.....DONE
INFO: node 1 firmware update complete.
```

8.3 SoC 系统升级

USB 刷机方式或 android OTA 升级方式参考 RK3399 原厂 OTA 手册

Fastboot UDP 方式刷机

soc 进入刷机模式:

1. 使用 chaif 配置服务器 SoC IP

如: chaif ip 192.168.0.10 mask 255.255.255.0 gw 192.168.0.1 dns 255.255.255.255

2. payload off

3. payload on

• 在 PC 端使用 fastboot 进行刷机指定分区 image

格式: fastboot -s udp:{socip} flash partitionname path_to_uboot.img

如刷机 kernel: fastboot -s udp:192.168.0.xx flash kernel kernel.img 如刷机 resoure: fastboot -s udp:192.168.0.xx flash resoure resoure.img

刷完后配置服务 soc 回正常工作模式 (使用 chaif 配置 dns 为非255.255.255.255)

1. chaif dns 8.8.8.8

payload off
 payload on

9. FRU 信息

9.1 机箱 FRU 信息

使用命令 fru [<id> <chassis id>] [<node id> <soc id>] soc id, 0表示节点上的所有 soc

获取机箱信息 SHMC> fru SHMC> fru

INFO:

manufacturer: LEADIEN

customer: zm

made time: 20200106 sn: LBAM0000001

chassisid: 1 firmware: v100

设置机箱编号为6 SHMC> fru id 6

9.2 节点 FRU 信息

获取1号节点 FRU 信息 SHMC> fru 1

9.3 SoC FRU 信息

获取1号节点2号 SoC FRU 信息 SHMC> fru 1 2

获取1号节点所有 SoC FRU 信息 SHMC> fru 1 0

```
SHMC> fru 1 0
        node[01] soc[1] manufacturerid:1
                                          customerid:1
                                                          madetime::3223602
                                                                               sn: 066KGVBJC
       node[01] soc[2] manufacturerid:1
                                          customerid:1
                                                          madetime::3223602
                                                                               sn: VVQER5ZYO
       node[01] soc[3] manufacturerid:1
                                          customerid:1
                                                          madetime::3223602
                                                                               sn: Q1FHAGAFY
       node[01] soc[4] manufacturerid:1
                                          customerid:1
                                                          madetime::3223602
                                                                               sn: SDDISHEWJ
       node[01] soc[5] manufacturerid:1
                                          customerid:1
                                                          madetime::3223602
                                                                               sn: CC070T166
       node[01] soc[6] manufacturerid:1
                                          customerid:1
                                                          madetime::3223602
                                                                               sn: 2DWTP766Y
       node[01] soc[7] manufacturerid:1
                                           customerid:1
                                                          madetime::3223602
                                                                               sn: W2VWLTBPV
        node[01] soc[8] manufacturerid:1
                                                          madetime::3223602
                                                                               sn: 0BH2CG66N
                                           customerid:1
```