Name:	Bhe	

Fri 10 Feb 2017

Exam 1: Intro to Multidimensional Calculus (§11.1-11.7, 12.1-12.2)

Exam Instructions: You have 50 minutes to complete this exam. Justification is required for all problems. No electronic devices (phones, iDevices, computers, etc) except for a basic scientific calculator. On story problems, round to one decimal place. If y early th disrupt and qu

early then you may leave, UNLESS there are less than 5 minutes of class left. To predisruption, if you finish with less than 5 minutes of class remaining then please stay stand quiet.	revent
In addition, please provide the following	data:
Drill Instructor:	
Drill Time:	
Your signature below indicates that you have read this page and agree to fo the Academic Honesty Policies of the University of Arkansas.	llow
Signature: (1 pt)	

1. (16 pts) A 100 kg box rests on a ramp with an incline of 30° to the floor (see figure). Find the components of the force perpendicular to and parallel to the ramp. (The vertical component of the force exerted by an object of mass m is its weight, which is mg, where $g = 9.8 \text{ m/s}^2$ is the acceleration due to gravity.)

- 2. Determine whether the following statements are true or false. You must justify your answer.
 - (a) (5 pts) The domain of the function f(x,y) = 1 |x-y| is $\{(x,y) \mid x \ge y\}$.

(b) (5 pts) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{0}$

(c) (5 pts) The domain of the function u = f(w, x, y, z) is a region in \mathbb{R}^3 .

(d) (5 pts) All level curves of the plane z = 2x - 3y are lines.

3. (18 pts) Determine an equation of the line that is perpendicular to the lines

$$\mathbf{r}(t) = \langle -2 + 3t, 2t, 3t \rangle$$

$$\mathbf{R}(s) = \langle -6 + s, -8 + 2s, -12 + 3s \rangle$$

and passes through the point of intersection of the lines r and R.

4. Suppose \mathbf{u} and \mathbf{v} are differentiable functions at t=0 with $\mathbf{u}(0)=\langle 0,1,1\rangle,\ \mathbf{u}'(0)=\langle 0,7,1\rangle,\ \mathbf{v}(0)=\langle 0,1,1\rangle,\ \mathbf{v}'(0)=\langle 1,1,2\rangle$. Evaluate the following expressions:

(a) (6 pts)
$$\frac{d}{dt}(\mathbf{u} \cdot \mathbf{v})\Big|_{t=0}$$

(b) (6 pts) $\frac{d}{dt}(\cos(t)\mathbf{u}(t))\Big|_{t=0}$

5. A golfer stands 400 ft horizontally from the hole and 40 ft below the hole (see figure).

Suppose the ball is hit with an initial speed of 150 ft/s, at an angle of θ from the ground.

(a) (12 pts) Find the acceleration $\mathbf{a}(t)$, velocity $\mathbf{v}(t)$, and position $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ vectors for the trajectory of the ball.

(b) (6 pts) Write down a system of two equations to find the two unknowns: (1) time of flight and (2) θ . Do not solve the system.

- 6. (15 pts) Match equations (a)-(f) with the surfaces (A)=(F).
 - (a) $y z^2 = 0$
 - (b) $4x^2 + \frac{y^2}{9} + z^2 = 1$
 - (c) $x^2 + \frac{y^2}{9} = z^2$ (d) 2x 3y z = 5

 - (e) $x^2 + \frac{y^2}{9} z^2 = 1$
 - (f) y = |x|

