Подвариант № 1

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ ГАУССА И МЕТОДОМ ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА

Цель работы

Изучить классический метод Гаусса (а также модифицированный метод Гаусса), применяемый для решения системы линейных алгебраических уравнений.

Постановка задачи

Дана система уравнений Ax=f порядка $n\times n$ с невырожденной матрицей A. Написать программу, решающую систему линейных алгебраических уравнений заданного пользователем размера (n — параметр программы) методом Гаусса и методом Гаусса с выбором главного элемента.

Предусмотреть возможность задания элементов матрицы системы и ее правой части как во входном файле данных, так и путем задания специальных формул.

Цели и задачи практической работы

- 1) Решить заданную СЛАУ методом Гаусса и методом Гаусса с выбором главного элемента;
- 2) Вычислить определитель матрицы det(A);
- 3) Вычислить обратную матрицу A^{-1} ;
- 4) Определить число обусловленности $M_A = ||A|| \times ||A^{-1}||$;
- 5) Исследовать вопрос вычислительной устойчивости метода Гаусса (при больших значениях параметра n);
- 6) Правильность решения СЛАУ подтвердить системой тестов (например, можно использовать ресурсы on-line системы http://www.wolframalpha.com, пакета Maple и т.п.).

Отчет по практической работе

Отчет должен содержать

- титульный лист (образец прилагается);
- описание постановки задачи и ее целей;
- описание метода (алгоритма) решения;
- описание программы и ее оригинальный текст с комментариями;
- тесты, доказывающие корректность работы программы (не менее 3-5 тестов, проверенных непосредственно вручную или с помощью специализированного программного обеспечения);
- основные выводы.

Примеры

тестовых заданий по теме

«РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ ГАУССА И МЕТОДОМ ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА»

Вариант 1

$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_4 = 4, \\ 4x_1 + 3x_2 - x_3 + 2x_4 = 6, \\ 8x_1 + 5x_2 - 3x_3 + 4x_4 = 12, \\ 3x_1 + 3x_2 - 2x_3 + 4x_4 = 6. \end{cases}$$

$$\begin{cases} x_1 + x_2 + 3x_3 - 2x_4 = 1, \\ 2x_1 + 2x_2 + 4x_3 - x_4 = 2, \\ 3x_1 + 3x_2 + 5x_3 - 2x_4 = 1, \\ 2x_1 + 2x_2 + 8x_3 - 3x_4 = 2. \end{cases}$$

$$\begin{cases} 2x_1 + 5x_2 - 8x_3 + 3x_4 = 8, \\ 4x_1 + 3x_2 - 9x_3 + x_4 = 9, \\ 2x_1 + 3x_2 - 5x_3 - 6x_4 = 7, \\ x_1 + 8x_2 - 7x_3 = 12. \end{cases}$$

Вариант 2

$$\begin{cases} 2x_1 + 3x_2 + 11x_3 + 5x_4 = 2, \\ x_1 + x_2 + 5x_3 + 2x_4 = 1, \\ 2x_1 + x_2 + 3x_3 + 2x_4 = -3, \\ x_1 + x_2 + 3x_3 + 4x_4 = -3. \end{cases}$$

$$\begin{cases} 2x_1 - x_2 + x_3 + 2x_4 = 2, \\ 6x_1 - 3x_2 + 2x_3 + 4x_4 = 3, \\ 6x_1 - 3x_2 + 4x_3 + 8x_4 = 9, \\ 4x_1 - 2x_2 + x_3 + x_4 = 1. \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + x_4 = -1, \\ 2x_1 + x_2 - 2x_3 = 1, \\ x_1 + x_2 + x_3 = 3, \\ x_1 + 2x_2 - 3x_3 - 7x_4 = 1. \end{cases}$$

Вариант 3

$$\begin{cases} 2x_1 + 5x_2 + 4x_3 + x_4 = 20, \\ x_1 + 3x_2 + 2x_3 + x_4 = 11, \\ 2x_1 + 10x_2 + 9x_3 + 7x_4 = 40, \\ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37. \end{cases}$$

$$\begin{cases} 6x_1 + 4x_2 + 5x_3 + 2x_4 = 1, \\ 3x_1 + 2x_2 + 4x_3 + x_4 = 3, \\ 3x_1 + 2x_2 - 2x_3 + x_4 = -7, \\ 9x_1 + 6x_2 + x_3 + 3x_4 = 2. \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + x_3 = 2, \\ x_1 + 3x_2 + x_3 + x_4 = 5, \\ x_1 + x_2 + 5x_3 = -7, \\ 2x_1 + 3x_2 - 3x_3 - 10x_4 = 14. \end{cases}$$

Вариант 4

$$\begin{cases} 3x_1 + 4x_2 + x_3 + 2x_4 = -3, \\ 3x_1 + 5x_2 + 3x_3 + 5x_4 = -6, \\ 6x_1 + 8x_2 + x_3 + 5x_4 = -8, \\ 3x_1 + 5x_2 + 3x_3 + 7x_4 = -8. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 = 4, \\ 3x_1 + 6x_2 + 5x_3 - 4x_4 = 5, \\ x_1 + 2x_2 + 7x_3 - 4x_4 = 11, \\ 2x_1 + 3x_2 - x_3 + 2x_4 = -10. \end{cases}$$

$$\begin{cases} 2x_1 - x_2 + 3x_3 + x_4 = 3, \\ 3x_1 + x_2 - 5x_3 = 0, \\ 4x_1 - x_2 + x_3 = 3, \\ x_1 + 3x_2 - 13x_3 + 18x_4 = -6. \end{cases}$$

Вариант 5

$$\begin{cases} 7x_1 + 9x_2 + 4x_3 + 2x_4 = 2, \\ 2x_1 - 2x_2 + x_3 + x_4 = 6, \\ 5x_1 + 6x_2 + 3x_3 + 2x_4 = 3, \\ 2x_1 + 3x_2 + x_3 + x_4 = 0. \end{cases}$$

$$\begin{cases} 6x_1 + 3x_2 + 2x_3 + 3x_4 = 5, \\ 4x_1 + 2x_2 + x_3 + 2x_4 = 4, \\ 4x_1 + 2x_2 + 3x_3 + 2x_4 = 0, \\ 2x_1 + x_2 + 7x_3 + 3x_4 = 1. \end{cases}$$

$$\begin{cases} x_1 + 3x_2 + 2x_3 - x_4 = 0, \\ 2x_1 - x_2 + 3x_3 = 0, \\ 3x_1 + 5x_2 + 4x_3 - 15x_4 = 0, \\ x_1 + 17x_2 + 4x_3 = 0. \end{cases}$$

ариант 6

$$\begin{cases}
6x_1 + 5x_2 - 2x_3 + 4x_4 = -4, \\
9x_1 - x_2 + 4x_3 - x_4 = 13, \\
3x_1 + 4x_2 + 2x_3 - 2x_4 = 1, \\
3x_1 - 9x_2 + 2x_4 = 11.
\end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 7, \\ 3x_1 + 2x_2 + x_3 + x_4 = -2, \\ x_2 - x_2 + 2x_3 + 2x_4 = 23, \\ 5x_1 + 4x_2 + 3x_3 - 6x_4 = 12. \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 + x_3 + 2x_4 = 4, \\ 4x_1 + 3x_2 + x_3 + x_4 = 5, \\ 5x_1 + 11x_2 + 3x_3 + 2x_4 = 2, \\ 2x_1 + 5x_2 + x_3 + x_4 = 1. \end{cases}$$

Вариант 7

$$\begin{cases} 2x_1 - x_2 - 6x_3 + 3x_4 = -1, \\ 7x_1 - 4x_2 + 2x_3 - 15x_4 = -32, \\ x_1 - 2x_2 - 4x_3 + 9x_4 = 5, \\ x_1 - x_2 + 2x_3 - 6x_4 = -8. \end{cases}$$

$$\begin{cases} x_1 - 2x_2 + x_3 + x_4 = 0, \\ 2x_1 + x_2 - x_3 - x_4 = 0, \\ 3x_1 - x_2 - 2x_3 + x_4 = 0, \\ 5x_1 + 2x_2 - x_3 + 9x_4 = -10. \end{cases}$$

$$\begin{cases} 8x_1 + 6x_2 + 5x_3 + 2x_4 = 21, \\ 3x_1 + 3x_2 + 2x_3 + x_4 = 10, \\ 4x_1 + 2x_2 + 3x_3 + x_4 = 8, \\ 7x_1 + 4x_2 + 5x_3 + 2x_4 = 18. \end{cases}$$

Вариант 8

$$\begin{cases} 2x_1 + x_2 + 4x_3 + 8x_4 = -1, \\ x_1 + 3x_2 - 6x_3 + 2x_4 = 3, \\ 3x_1 - 2x_2 + 2x_3 - 2x_4 = 8, \\ 2x_1 - x_2 + 2x_3 = 4. \end{cases}$$

$$\begin{cases} x_1 + x_2 - 3x_3 + x_4 = -1, \\ 2x_1 + x_2 - 2x_3 - x_4 = 1, \\ x_1 + x_2 + x_3 - x_4 = 3, \\ 2x_1 + 4x_2 - 6x_3 + 14x_4 = 12. \end{cases}$$

$$\begin{cases} x_1 + 4x_2 + 5x_3 + 2x_4 = 2, \\ 2x_1 + 9x_2 + 8x_3 + 3x_4 = 7, \\ 3x_1 + 7x_2 + 7x_3 = 12, \\ 5x_1 + 7x_2 + 9x_3 + 2x_4 = 20. \end{cases}$$

Вариант 9

$$\begin{cases} 2x_1 - 5x_2 + 3x_3 + x_4 = 5, \\ 3x_1 - 7x_2 + 3x_3 - x_4 = -1, \\ 5x_1 - 9x_2 + 6x_3 + 2x_4 = 7, \\ 4x_1 - 6x_2 + 3x_3 + x_4 = 8. \end{cases}$$

$$\begin{cases} 4x_1 + 3x_2 - 9x_3 + x_4 = 9, \\ 2x_1 + 5x_2 - 8x_3 - x_4 = 8, \\ 2x_1 + 16x_2 - 14x_3 + 2x_4 = 24, \\ 2x_1 + 3x_2 - 5x_3 - 11x_4 = 7. \end{cases}$$

$$\begin{cases} 12x_1 + 14x_2 - 15x_3 + 24x_4 = 5, \\ 16x_1 + 18x_2 - 22x_3 + 29x_4 = 8, \\ 18x_1 + 20x_2 - 21x_3 + 32x_4 = 9, \\ 10x_1 + 12x_2 - 16x_3 + 20x_4 = 4. \end{cases}$$

Вариант 10

$$\begin{cases} 3x_1 - 2x_2 - 5x_3 + x_4 = 3, \\ 2x_1 - 3x_2 + x_3 + 5x_4 = -3, \\ x_1 + 2x_2 - 4x_4 = -3, \\ x_1 - x_2 - 4x_3 + 9x_4 = 22. \end{cases}$$

$$\begin{cases} 2x_1 + 6x_2 + 2x_3 + x_4 = 10, \\ 2x_1 + x_2 + x_3 - 2x_4 = 2, \\ x_1 + x_2 + 5x_3 - x_4 = -7, \\ 2x_1 + 3x_2 - 3x_3 + 9x_4 = 14. \end{cases}$$

$$\begin{cases} 24x_1 + 14x_2 + 30x_3 + 40x_4 = 28, \\ 36x_1 + 21x_2 + 45x_3 + 61x_4 = 43, \\ 48x_1 + 28x_2 + 60x_3 + 82x_4 = 58, \\ 60x_1 + 35x_2 + 75x_3 + 99x_4 = 69. \end{cases}$$

Вариант 11

$$\begin{cases} 4x_1 - 3x_2 + x_3 + 5x_4 = 7, \\ x_1 - 2x_2 - 2x_3 - 3x_4 = 3, \\ 3x_1 - x_2 + 2x_3 = -1, \\ 2x_1 + 3x_2 + 2x_3 - 8x_4 = -7. \end{cases}$$

$$\begin{cases} 2x_1 - 2x_2 + x_3 - x_4 = 1, \\ x_1 + 2x_2 - x_3 + x_4 = 1, \\ 4x_1 - 10x_2 + 5x_3 - 5x_4 = 1, \\ 2x_1 - 14x_2 + 7x_3 - 11x_4 = -1. \end{cases}$$

$$\begin{cases} 2x_1 - x_2 + 3x_3 + 4x_4 = 5, \\ 4x_1 - 2x_2 + 5x_3 + 6x_4 = 7, \\ 6x_1 - 3x_2 + 7x_3 + 8x_4 = 9, \\ 8x_1 - 4x_2 + 9x_3 + 10x_4 = 11. \end{cases}$$

ариант 12

$$\begin{cases} 2x_1 - 2x_2 + x_4 = -3, \\ 2x_1 + 3x_2 + x_3 - 3x_4 = -6, \\ 3x_1 + 4x_2 - x_3 + 2x_4 = 0, \\ x_1 + 3x_2 + x_3 - x_4 = 2. \end{cases}$$

$$\begin{cases} x_1 + 3x_2 + 2x_3 + x_4 = 0, \\ 2x_1 - x_2 + 3x_3 - 2x_4 = 0, \\ 3x_1 - 5x_2 + 4x_3 - 3x_4 = 0, \\ x_1 + 17x_2 + 4x_3 - 23x_4 = 0. \end{cases}$$

$$\begin{cases} 45x_1 - 28x_2 + 34x_3 - 52x_4 = 9, \\ 36x_1 - 23x_2 + 29x_3 - 43x_4 = 3, \\ 47x_1 - 32x_2 + 36x_3 - 48x_4 = -17, \\ 27x_1 - 19x_2 + 22x_3 - 35x_4 = 6. \end{cases}$$

Вариант 13

$$\begin{cases} 3x_1 - 2x_2 + 2x_3 - 2x_4 = 8, \\ 2x_1 - x_2 + 2x_3 = 4, \\ 2x_1 + x_2 + 4x_3 + 8x_4 = -1, \\ x_1 + 3x_2 - 6x_3 + 2x_4 = 3. \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 + x_3 + 2x_4 = 4, \\ 4x_1 + 3x_2 + x_3 + x_4 = 5, \\ x_1 - 7x_2 - x_3 - 2x_4 = 7, \\ 2x_1 + 5x_2 + x_3 + x_4 = 1. \end{cases}$$

$$\begin{cases} x_1 - x_2 + x_3 - x_4 = 0, \\ 4x_1 - x_2 - x_4 = 0, \\ 2x_1 + x_2 - 2x_3 + x_4 = 0, \\ 5x_1 + x_2 - 4x_4 = 0. \end{cases}$$

Примеры

содержательных заданий по теме

«РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ МЕТОДОМ ГАУССА И МЕТОДОМ ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА»

Пример 1.

Элементы матрицы A вычисляются по формулам:

$$A_{ij} = \begin{cases} \frac{i+j}{m+n}, & i \neq j, \\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j, \end{cases}$$

Элементы вектора f (вектор правой части системы) задаются формулами:

Номер вариант	n	m	$b_i, i=1,, n$
1	40	10	$b_i = n \cdot i + m$
2	20	8	$b_i = 200 + 50 \cdot i$
3	30	9	$b_i = i^2 - 100$
4	50	15	$b_i = m \cdot n - i^3$
5	30	20	$b_i = m \cdot i + n$
6	25	10	$b_i = i^2 - n$

Пример 2.

Элементы матрицы A вычисляются по формулам:

$$A_{ij} = \begin{cases} q_M^{i+j} + 0.1 \cdot (j-i), & i \neq j, \\ (q_M - 1)^{i+j}, & i = j, \end{cases}$$

где
$$q_M = 1.001 - 2 \cdot M \cdot 10^{-3}$$
, $i, j = 1,...n$.

Элементы вектора f (вектор правой части системы) задаются формулами:

Номер	M	n	b_i , $i=1,,n$
варианта			

A	1	1	50	$n \cdot e^{\frac{x}{i}} \cdot \cos(x)$
	2	2	40	$ x-\frac{n}{10} \cdot i\cdot \sin(x)$
	3	3	30	$x \cdot \exp\left(\frac{x}{i}\right) \cdot \cos\left(\frac{x}{i}\right)$
	4	4	100	$n \cdot \exp\left(\frac{x}{i}\right) \cdot \cos(x)$
	5	5	100	$ x-\frac{n}{10} \cdot i\cdot \sin(x)$
	6	6	100	$x \cdot \exp\left(\frac{x}{i}\right) \cdot \cos\left(\frac{x}{i}\right)$

ПРАКТИЧЕСКАЯ РАБОТА № 1 (2)

Подвариант № 2

ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

(на примере методов Зейделя и верхней релаксации)

Цель работы

изучить классические итерационные методы (Зейделя и верхней релаксации), используемые для численного решения систем линейных алгебраических уравнений; изучить скорость сходимости этих методов в зависимости от выбора итерационного параметра.

Постановка задачи

Дана система уравнений Ax=f порядка $n \times n$ с невырожденной матрицей A. Написать программу численного решения данной системы линейных алгебраических уравнений (n- параметр программы), использующую численный алгоритм итерационного метода Зейделя:

$$(D+A^{(-)})(x^{k+1}-x^k)+Ax^k=f$$
,

где $D, A^{(-)}$ - соответственно диагональная и нижняя треугольные матрицы, k - номер текущей итерации;

в случае использования итерационного метода верхней релаксации итерационный процесс имеет следующий вид:

$$(D+\omega A^{(-)})\frac{x^{k+1}-x^k}{\omega}+Ax^k=f,$$

где ω - итерационный параметр (при $\omega = 1$ метод верхней релаксации переходит в метод Зейделя).

Предусмотреть возможность задания элементов матрицы системы и ее правой части как во входном файле данных, так и путем задания специальных формул.

Цели и задачи практической работы

- 1) Решить заданную СЛАУ итерационным методом Зейделя (или более общим методом верхней релаксации);
- 2) Разработать критерий остановки итерационного процесса, гарантирующий получение приближенного решения исходной системы СЛАУ с заданной точностью;

h Изучить скорость сходимости итераций к точному решению задачи (при использовании итерационного метода верхней релаксации провести эксперименты с различными значениями итерационного параметра ω (в случае симметрической положительно определенной матрицы системы известно, что для сходимости итераций следует выбирать $0 < \omega < 2$; при $\omega = 1$ метод верхней релаксации совпадает с методом Зейделя);

Правильность решения СЛАУ подтвердить системой тестов (например, можно использовать ресурсы on-line системы http://www.wolframalpha.com, пакета Maple и

т.п.).

Отчет по практической работе

Отчет должен содержать

титульный лист (образец прилагается);

• описание постановки задачи и ее целей;

• описание метода (алгоритма) решения;

• описание программы и ее оригинальный текст с комментариями;

- тесты, доказывающие корректность работы программы (не менее 3-5 тестов, проверенных непосредственно вручную или с помощью специализированного программного обеспечения);
- основные выводы.

Приложение 2

Примеры

тестовых заданий по теме

«ИТЕРАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

(на примере методов Зейделя и верхней релаксации)»

Варианты заданий берутся из Практической работы № 1 (1) (Подвариант № 1) «Решение систем линейных алгебраических уравнений методом Гаусса и методом Гаусса с выбором главного элемента».

московский государственный университет

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ» ЗАДАНИЕ № 1

ОТЧЕТ

о выполненном задании

студента	учебной группы факультета ВМК МГУ

гор. Москва

2018 г.

ведение в численные методы

Практическое задание № 1. Прямые и итерационные методы решения СЛАУ

Группа 203

/п	ФИО студента	Вариант Задания № 1
1	БАРАНОВ ДАНИИЛ АЛЕКСАНДРОВИЧ	Подвариант 1: приложение 1-7, приложение 2 (п. 2-6); Подвариант 2 (метод верхней релаксации): приложение 1-7, приложение 2 (п. 2-6)
2	ГАЛИКЕЕВА АННА ВАДИМОВНА	Подвариант 1: приложение 1-7, приложение 2 (п. 1-2); Подвариант 2 (метод верхней релаксации): приложение 1-7, приложение 2 (п. 1-2)
3	КАЛЕНДАРОВ АНДРЕЙ ЭМИЛЕВИЧ	Подвариант 1: приложение 1-9, приложение 2 (п. 2-2); Подвариант 2 (метод верхней релаксации): приложение 1-9, приложение 2 (п. 2-2)
4	КАРПИКОВА ПОЛИНА ВЛАДИМИРОВНА	Подвариант 1: приложение 1-8, приложение 2 (п. 1-5); Подвариант 2 (метод верхней релаксации): приложение 1-8, приложение 2 (п. 1-5)
5	КЛЕЩЕНОК ВИКТОР СЕРГЕЕВИЧ	Подвариант 1: приложение 1-11, приложение 2 (п. 1-5); Подвариант 2 (метод верхней релаксации): приложение 1-11, приложение 2 (п. 1-5)
6	КОРНЕЕВА АЛЕКСАНДРА МИХАЙЛОВНА	Подвариант 1: приложение 1-13, приложение 2 (п. 1-4); Подвариант 2 (метод верхней релаксации): приложение 1-13, приложение 2 (п. 1-4)
7	кошовец федор игоревич	Подвариант 1: приложение 1-3, приложение 2 (п. 2-6); Подвариант 2 (метод верхней релаксации): приложение 1-3, приложение 2 (п. 2-6)
8	КУКУШКИН ДЕНИС ИГОРЕВИЧ	Подвариант 1: приложение 1-1, приложение 2 (п. 2-6); Подвариант 2 (метод верхней релаксации): приложение 1-1, приложение 2 (п. 2-6)
9	МАЛАФЕЕВ МИХАИЛ ВЛАДИСЛАВОВИЧ	Подвариант 1: приложение 1-9, приложение 2 (п. 1-3); Подвариант 2 (метод верхней релаксации): приложение 1-9, приложение 2 (п. 1-3)
10	НЕМЕШАЕВА АЛИСА АЛЕКСЕЕВНА	Подвариант 1: приложение 1-13, приложение 2 (п. 2-4); Подвариант 2 (метод верхней релаксации): приложение 1-13, приложение 2 (п. 2-4)
11	никифоров никита игоревич	Подвариант 1: приложение 1-10, приложение 2 (п. 2-3); Подвариант 2 (метод верхней релаксации): приложение 1-10, приложение 2 (п. 2-3)
12	ПЕТРУСОВА ЕКАТЕРИНА ДМИТРИЕВНА	Подвариант 1: приложение 1-9, приложение 2 (п. 1-2); Подвариант 2 (метод верхней релаксации): приложение 1-3, приложение 2 (п. 1-2)
13	РЯБИНИН МИХАИЛ АНДРЕЕВИЧ	Подвариант 1: приложение 1-11, приложение 2 (п. 2-5); Подвариант 2 (метод верхней релаксации): приложение 1-11, приложение 2 (п. 2-5)
14	САБИРЬЯНОВ АРТУР РАМИЛЕВИЧ	Подвариант 1: приложение 1-7, приложение 2 (п. 2-1); Подвариант 2 (метод верхней релаксации): приложение 1-7, приложение 2 (п. 2-1)
15	серебрякова софья андреевна	Подвариант 1: приложение 1-4, приложение 2 (п. 1-2); Подвариант 2 (метод верхней релаксации): приложение 1-3, приложение 2 (п. 1-2)
16	6 СОТНИКОВ ДМИТРИЙ МИХАЙЛОВИЧ	Подвариант 1: приложение 1-1, приложение 2 (п. 1-5); Подвариант 2 (метод верхней релаксации): приложение 1-1, приложение 2 (п. 1-5)
1	7 СУШКО НИКИТА СЕРГЕЕВИЧ	Подвариант 1: приложение 1-5, приложение 2 (п. 2-3); Подвариант 2 (метод верхней релаксации): приложение 1-5, приложение 2 (п. 2-3)
1	8 ТРАВНИКОВА АРИНА СЕРГЕЕВНА	Подвариант 1: приложение 1-3, приложение 2 (п. 1-2); Подвариант 2 (метод верхней релаксации): приложение 1-3, приложение 2 (п. 2)
1	9 УДОВИЧЕНКО ИГОРЬ РОМАНОВИЧ	Подвариант 1: приложение 1-13, приложение 2 (п. 1-4); Подвариант 2 (метод верхней релаксации): приложение 1-13, приложение 2 (п. 1-4)
2	0 ФЕДОРОВ ИЛЬЯ СЕРГЕЕВИЧ	Подвариант 1: приложение 1-2, приложение 2 (п. 1-6); Подвариант 2 (метод верхней релаксации): приложение 1-2, приложение 2 (п. 1-6)
2	21 ХАЙБУЛАЕВ ГЛЕБ СЕРГЕЕВИЧ	Подвариант 1: приложение 1-11, приложение 2 (п. 2-4); Подвариант 2 (метод верхней релаксации): приложение 1-1, приложение 2 (п. 2-4)
2	22 ЧИБИСОВ ДМИТРИЙ АЛЕКСАНДРОВИЧ	Подвариант 1: приложение 1-12, приложение 2 (п. 2-4); Подвариант 2 (метод верхней релаксации): приложение 1-12, приложение 2 (п. 2-4)
	23 ШАПОВАЛОВ РОМАН НИКОЛАЕВИЧ	Подвариант 1: приложение 1-9, приложение 2 (п. 2-2); Подвариант 2 (метод верхней релаксации): приложение 1-9, приложение 2 (п. 2-2) Подвариант 1: приложение 1-13, приложение 2 (п. 2-4);
	24 ШАРКОВ ЛЕОНИД НИКОЛАЕВИЧ	Подвариант 1: приложение 1-13, приложение 2 (п. 2-4), Подвариант 2 (метод верхней релаксации): приложение 1-13, приложение 2 (п. 2-4)