Assignment 4

Linear Algebra MATH 2318 (Fall 2022)

6 points

1. Determine if the set is linearly dependent or linearly independent. If it is linearly dependent, find a linear dependence relation.

a)
$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$$
, where $\vec{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 3 \\ 0 \\ 2 \\ -2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 4 \\ -1 \\ 1 \end{bmatrix}$, $\vec{v}_4 = \begin{bmatrix} 5 \\ 0 \\ 3 \\ -1 \end{bmatrix}$.

b)
$$\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
, where $\vec{v}_1 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -1\\-3\\2 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 4\\6\\-2 \end{bmatrix}$.

Solution.

a) We determine if $A\vec{x} = \vec{0}$, with $A = [\vec{v_1} \ \vec{v_2} \ \vec{v_3} \ \vec{v_4}]$ has nontrivial solutions.

$$\begin{bmatrix} 1 & 3 & 0 & 5 \\ -2 & 0 & 4 & 0 \\ 1 & 2 & -1 & 3 \\ 1 & -2 & 1 & -1 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & 6 & 4 & 10 \\ R_3 - R_1 \\ R_4 - R_1 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & 6 & 4 & 10 \\ 0 & -1 & -1 & -2 \\ 0 & -5 & 1 & -6 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & -1 & -1 & -2 \\ 0 & 6 & 4 & 10 \\ 0 & -5 & 1 & -6 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & -1 & -1 & -2 \\ 0 & 6 & 4 & 10 \\ 0 & -5 & 1 & -6 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & -1 & -1 & -2 \\ 0 & 6 & 4 & 10 \\ 0 & -5 & 1 & -6 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & -1 & -1 & -2 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 6 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & 5 \\ 0 & -1 & -1 & -2 \\ 0 & 0 & -2 & -2 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$
 (this is an echelon form)

Since we don't have free variables, we don't have nontrivial solutions. Hence, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is linearly independent.

b) We determine if $A\vec{x} = \vec{0}$, with $A = [\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$ has nontrivial solutions.

$$\begin{bmatrix} 1 & -1 & 4 \\ 2 & -3 & 6 \\ -1 & 2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 4 \\ 0 & -1 & -2 \\ R_3 + R_1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 4 \\ 0 & -1 & -2 \\ 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 4 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
 (this is an echelon form)

We see that x_3 is a free variable, so the equation has nontrivial solutions. Thus, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly dependent.

To find a linear dependence relation, we finish solving $A\vec{x} = \vec{0}$:

$$\begin{bmatrix} 1 & -1 & 4 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} R_1 + R_2 \begin{bmatrix} 1 & 0 & 6 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
 (REF)

We get $x_1 + 6x_3 = 0$ and $x_2 + 2x_3 = 0$, so that:

$$x_1 = -6x_3$$

$$x_2 = -2x_3$$

$$x_3 \text{ is free}$$

which is the parametric form of the solution.

Pick $x_3 = 1$, then $x_1 = -6$, $x_2 = -2$, $x_3 = 1$. Thus,

$$-6\vec{v}_1 - 2\vec{v}_2 + \vec{v}_3 = \vec{0}.$$

4 points

2. Let $\vec{v}_1 = \begin{bmatrix} -2\\0\\1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1\\1\\-3 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -1\\-3\\r \end{bmatrix}$. Find the value of r so that the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$

is linearly dependent. For that value of r, write \vec{v}_1 as a linear combination of \vec{v}_2 and \vec{v}_3 . Solution.

$$\begin{bmatrix} -2 & 1 & -1 \\ 0 & 1 & -3 \\ 1 & -3 & r \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & -3 & r \\ 0 & 1 & -3 \\ -2 & 1 & -1 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & -3 & r \\ 0 & 1 & -3 \\ R_3 + 2R_1 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & -3 & r \\ 0 & 1 & -3 \\ 0 & -5 & 2r - 1 \end{bmatrix} \xrightarrow{\sim} R_3 + 5R_2$$

$$\sim \begin{bmatrix} 1 & -3 & r \\ 0 & 1 & -3 \\ 0 & 0 & 2r - 16 \end{bmatrix}$$

If 2r - 16 = 0, then x_3 is a free variable and the system has nontrivial solutions.

Therefore, if r = 8, $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is linearly dependent. To write \vec{v}_1 as a linear combination of the others, we finish solving the system with r = 8:

$$\begin{bmatrix} 1 & -3 & 8 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} R_1 + 3R_2 \\ \sim \end{matrix} \quad \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix} \quad (REF)$$

We get $x_1 - x_3 = 0$ and $x_2 - 3x_3 = 0$, so that:

$$x_1 = x_3$$

$$x_2 = 3x_3$$

$$x_3 \text{ is free}$$

Pick $x_3 = 1$, then $x_1 = 1$, $x_2 = 3$, $x_3 = 1$. Thus,

$$\vec{v}_1 + 3\vec{v}_2 + \vec{v}_3 = 0 \Rightarrow \vec{v}_1 = -3\vec{v}_2 - \vec{v}_3$$

4 points

- 3. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) If the set $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is linearly independent, then $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_1 + \vec{v}_4\}$ is linearly independent.
 - b) If a set of vectors is linearly dependent then at least one of the vectors is a scalar multiple of another one.
 - c) A set of 3 vectors in \mathbb{R}^2 is always linearly dependent.
 - d) If $\{\vec{x}, \vec{y}\}$ is linearly independent, and if \vec{z} is in Span $\{\vec{x}, \vec{y}\}$, then $\{\vec{x}, \vec{y}, \vec{z}\}$ is linearly dependent.

Solution.

- a) TRUE. Let c_1 , c_2 , c_3 , c_4 be scalars and consider the vector equation $c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3 + c_4(\vec{v}_1 + \vec{v}_4) = \vec{0}$. This is equivalent to $(c_1 + c_4)\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3 + c_4\vec{v}_4 = \vec{0}$. Since $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is linearly independent, we must have that $c_1 + c_4 = 0$, $c_2 = 0$, $c_3 = 0$, $c_4 = 0$, from where we conclude that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_1 + \vec{v}_4\}$ is linearly independent.
- b) FALSE. Consider the set $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right\}$. This set is linearly dependent because the last vector is a linear combination of the first two, but neither vector is a scalar multiple of another one.

MATH 2318 (Fall 2022)

- c) TRUE. When row reducing $A = [\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$, where $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are in \mathbb{R}^2 , there will be at least one column without a pivot.
- d) TRUE. Since \vec{z} is in Span $\{\vec{x}, \vec{y}\}$, then \vec{z} is a linear combination of \vec{x}, \vec{y} , thus $\{\vec{x}, \vec{y}, \vec{z}\}$ is linearly dependent.