06 - Електромагнетска компатибилност

1. У програмском пакету AWAS направити модел ко-ко антене (колинеарног коаксијално напајаног антенског низа) према слици 1.1. Модел антене се састоји од 5 колинеарно постављених жичаних сегмената. Дужина сваког сегмента је $\lambda/2$, где је λ таласна дужина у слободном простору на радној учестаности. Радна учестаност је $f = 900 \, \text{MHz}$. Полупречник жичаних проводника је $r = 1 \, \text{mm}$. Између жичаних сегмената налазе се четири струјна генератора, истих ефективних вредности I_0 , референтних смерова и почетних фаза. Сви генератори су укључени истовремено. (а) Скицирати дијаграм зрачења антене $(g/g_{\text{max}} [dB])$ у равни у којој се налази антена. (б) Израчунати I_0 тако да је укупна израчена снага $P = 16/32/48 \,\mathrm{W}$ (образложити како је I_0 рачунато). (в) Скицирати зависност ефективне вредности електричног поља у главном правцу зрачења за $0.9 \le r \le 30 \,\mathrm{m}$, где је rодстојање од центра антене. (г) Уколико је стандардима електромагнетске компатибилности предвиђено да ефективна вредност електричног поља не сме прећи $E_1 = 20 \text{ V/m}$, односно $E_2 = 3 \text{ V/m}$, за I_0 одређено под (б) израчунати на ком одстојању од антене су задати стандарди задовољени.

Слика 1.1.

2. У програмском пакету AWAS направити модел жичаног пина и петље постављених изнад савршено проводне равни. Изглед модела је приказан на слици 2.1. Координате чворова, према слици 2.1, су дате у милиметрима и износе редом (0,0,0), (0,0,5), (30,0,0), (30,0,5), (35,0,5) и (35,0,0). Полупречници свих жица од којих су начињене петље су $r=0,1\,\mathrm{mm}$. У чвору 1 је постављен први напонски генератор, а у чвору 3 други напонски генератор. Номиналне импедансе приступа 1 и 2 су $Z_{\mathrm{c}}=50\,\Omega$. (а) Израчунати пренос између приступа 1 и 2 (s_{21}) у децибелима у опсегу учестаности $0.5 \le f \le 2.0\,\mathrm{GHz}$ у 100 тачака. Скицирати s_{21} . (б) Додати још једну петљу изнад претходне структуре према слици 2.2. Координате чворова нове петље су дате у милиметрима и износе редом (-30,0,0), (-30,0,10), (60,0,10) и (60,0,0). Поновити прорачун преноса између приступа 1 и 2, као у тачки под (а). Скицирати s_{21} на истом графику. (в) На којој учестаности, из опсега $0.5 \le f \le 2.0\,\mathrm{GHz}$, је пренос између приступа 1 и 2 најмањи, а на којој највећи за случај (б)?

Слика 2.1. Слика 2.2.

3. У програмском пакету AWAS направити модел биконичне антене према слици 3.1. Димензије антене су $l=300\,\mathrm{mm}$, $h=200\,\mathrm{mm}$, $d=150\,\mathrm{mm}$, $a=10\,\mathrm{mm}$ и полупречници свих жица су 1 mm . У центру антене поставити отпорник отпорности $R=50\,\Omega$. Антену анализирати као бистатички расејач и побудити је равним простопериодичним ТЕМ таласом, електричног поља ефективне вредности $E=1\,\mathrm{V/m}$ чији је вектор паралелан оси антене, као на слици. (а) Израчунати ефективну вредност струје кроз отпорник R , у опсегу учестаности $150\,\mathrm{MHz} \le f \le 200\,\mathrm{MHz}$ са кораком мањим или једнаким од $5\,\mathrm{MHz}$. На основу струје отпорника и електричног поља израчунати антенски фактор као $AF[\mathrm{dB/m}] = 20\cdot\log_{10}\frac{E}{RI}$ и нацртати антенски фактор у функцији учестаности. (б) У циљу мерења поља у једној тачки простора на овакву антену прикључен је анализатор спектра, са улазном импедансом $50\,\Omega$. Анализатор спектра је повезан између тачака где је претходно био прикључен

отпорник R . На анализатору спектра је очитана снага $-61\,\mathrm{dBm}$ на учестаности $f=185\,\mathrm{MHz}$. Сматрајући да су каблови без губитака, израчунати ефективну вредност електричног поља на месту антене.

Слика 3.1. Модел биконичне антене.