

Implementing RRT-Connect and Goal biased RRT for motion planning and Comparing the performance with Standard RRT.

Video Presentation:

https://drive.google.com/file/d/1mROburGyOG8sWYYiW1FhAI57FzRK3z8j/view?usp=share_link

ENPM 661

Project -5

Team:

Vamshi Kalavagunta Surya Chappidi

Goal

- To explore different variants of Rapidly Exploring Random Tree search algorithms.
- To implement and understand innovative strategies to make the standard Sample Based Method much more efficient.
- To compare the results of RRT Connect and Goal biased RRT with Standard RRT.
- Simulating the path planning algorithms on ROS turtlebot in Gazebo environment.

Standard RRT

- RRT path planning is a sampling based motion planning algorithm that uses
 Rapidly Exploring Random Trees (RRTs) to generate feasible paths for a robot or
 other agent in a high-dimensional configuration space.
- RRT path planning incrementally builds a tree of possible paths by randomly sampling the configuration space and connecting the samples to the existing tree.

Fig. 1. Mechanism of tree expansion of an RRT

Results

Goal Biased RRT

- Goal Biased RRT is a variant of the RRT algorithm for that incorporates a bias towards the goal configuration when generating random samples.
- The algorithm generates a sample towards the goal configuration rather than at a random point in the configuration space, which can help the algorithm converge more quickly towards a solution.

Results

Bias=0

Bias=0.5

Bias =0.9

RRT-Connect

RRT-Connect builds two RRTs, one from the start configuration and one from the goal configuration, and attempts to connect them in alternating fashion until a path is found between the start and goal configurations.

Results

Comparing Results

Time taken=0.85s

Time taken=0.23s

Time taken=0.07s

RRT visualization in Gazebo

Goal-Biased-RRT visualization in Gazebo

RRT-Connect visualization in Gazebo

Thank You

ENPM 661

Project -5

Team: Vamshi Kalavagunta Surya Chappidi

