

MM54HC4511/MM74HC4511 BCD-to-7 Segment Latch/Decoder/Driver

General Description

This high speed latch/decoder/driver utilizes advanced silicon-gate CMOS technology. It has the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 10 LS-TTL loads. The circuit provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and an output drive capability. Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to test the display, to turn-off or pulse modulate the brightness of the display, and to store a BCD code, respectively. It can be used with seven-segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.

The 54HC/74HC logic family is speed, function, and pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Latch storage of input data
- Blanking input
- Lamp test input
- Low power consumption characteristics of CMOS devices
- Wide operating voltage range: 2 to 6 volts
- Low input current: 1 μA maximum
- \blacksquare Low quiescent current: 80 μA maximum over full temperature range (74 Series)

Connection Diagram

TL/F/5373-1

Order Number MM54HC4511 or MM74HC4511

Truth Table

		INP	UT	S						C	TUC	PU	TS	
LE	ΒĪ	LT	D	С	В	Α	а	b	С	d	е	f	g	DISPLAY
x	х	L	х	X	X	X	Н	Н	Н	Н	Н	Н	Н	8
x	L	н	х	X	X	X	L	L	L	L	L	L	L	
L	Н	н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0
L	Н	н	L	L	L	Н	L	Н	Н	L	L	L	L	1
L	Н	н	L	L	Н	L	Н	Н	L	Н	Н	L	Н	2
L	Н	н	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3
L	Н	н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	н	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5
L	Н	н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6
L	Н	н	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7
L	Н	н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	Н	н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9
L	Н	н	Н	L	Н	L	L	L	L	L	L	L	L	
L	Н	н	Н	L	Н	Н	L	L	L	L	L	L	L	
L	Н	н	Н	Н	L	L	L	L	L	L	L	L	L	
L	Н	н	Н	Н	L	Н	L	L	L	L	L	L	L	
L	Н	н	н	Н	Н	L	L	L	L	L	L	L	L	
L	Н	н	н	Н	Н	Н	L	L	L	L	L	L	L	
Н	Н	Н	x	X	X	X				*				*

x=Don't care

^{* =} Depends upon the BCD code applied during the 0 to 1 transition of LE.

Absolute Maximum Ratings (Notes 1 and 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to +7.0 V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to $+150$ °C

Power Dissipation (PD)

 (Note 3)
 600 mW

 S.O. Package only
 500 mW

 Lead Temp. (T_L) (Soldering 10 seconds)
 260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A) MM74HC MM54HC	-40 -55	+85 +125	°C
$ \begin{array}{ll} \text{Input Rise or Fall Times} \\ (t_{\text{f}},t_{\text{f}}) & V_{CC}\!=\!2.0V \\ & V_{CC}\!=\!4.5V \\ & V_{CC}\!=\!6.0V \end{array} $		1000 500 400	ns ns ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V_{IL}	Maximum Low Level		2.0V		0.5	0.5	0.5	V
	Input Voltage**		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V_{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	V
	Catput Voltage	10011=20 μ/τ	4.5V	4.5	4.4	4.4	4.4	ľ
			6.0V	6.0	5.9	5.9	5.9	v
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	v
		I _{OUT} ≤6.0 mA I _{OUT} ≤7.8 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum Low Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	0.0 V	5.7	0.40	0.04	0.2	•
	Output Voltage	I _{OUT} ≤20 μA	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V	- U.E.	±0.1	± 1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $v_{CC}\!=\!5\text{V},\,T_{A}\!=\!25^{\circ}\text{C},\,C_{L}\!=\!15\,\text{pF},\,t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay from Inputs A thru D to any Output		60	120	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from BI to any Output		60	120	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay from LT to any Output		60	120	ns
ts	Minimum Setup Time Inputs A thru D to LE		10	20	ns
t _H	Minimum Hold Time Inputs A thru D to LE		-3	0	ns
t _W	Minimum Pulse Width for LE			16	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}, \, t_f = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур	Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation	LE=0V	2.0V	300	600	756	894	ns
	Delay from Inputs	$\overline{LT} = V_{CC}$	4.5V	60	120	151	179	ns
	A thru D to any Output	$\overline{BI} = V_{CC}$	6.0V	51	102	129	152	ns
t _{PHL} , t _{PLH}	Maximum Propagation	$\overline{LT} = V_{CC}$	2.0V	300	600	756	894	ns
	Delay from BI to		4.5V	60	120	151	179	ns
	any Output		6.0V	51	102	129	152	ns
t _{PHL} , t _{PLH}	Maximum Propagation	BI=0V	2.0V	300	600	756	894	ns
	Delay from LT to		4.5V	60	120	151	179	ns
	any Output		6.0V	51	102	129	152	ns
ts	Minimum Setup Time		2.0V		100	126	149	ns
	Inputs A thru D to LE		4.5V		20	25	30	ns
			6.0V		17	21	25	ns
t _H	Minimum Hold Time		2.0V		0	0	0	ns
	Inputs A thru D to LE		4.5V		0	0	0	ns
			6.0V		0	0	0	ns
t _W	Minimum Pulse Width		2.0V		80	100	120	ns
	for LE		4.5V		16	20	24	ns
			6.0V		14	17	20	ns
t _r , t _f	Maximum Input Rise and		2.0V		1000	1000	1000	ns
	Fall Time		4.5V		500	500	500	ns
			6.0V		400	400	400	ns
C _{PD}	Power Dissipation Capacitance (Note 5)							pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

 $\textbf{Note 5:} \quad C_{PD} \text{ determines the no load dynamic power consumption, } P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}, \text{ and the no load dynamic current consumption, } I_S = C_{PD} \ V_{CC} \ f + I_{CC}.$

INPUTS

A, B, C, D (Pins 7, 1, 2, 6)—BCD data inputs. A (pin 7) is the least-significant data bit and D (pin 6) is the most significant bit. Hexadecimal data A–F at these inputs will cause the outputs to assume a logic low, offering an alternate method of blanking the display.

OUTPUTS

a-g—Decoded, buffered outputs. These outputs, unlike the 4511, have CMOS drivers, which will produce typical CMOS output voltage levels.

CONTROLS

 $\overline{\text{BI}}$ (Pin 4)—Active-low display blanking input. A logic low on this input will cause all outputs to be held at a logic low, thereby blanking the display. LT is the only input that will override the BI input.

LT (Pin 3)—Active-low lamp test. A low logic level on this input causes all outputs to assume a logic high. This input allows the user to test all segments of a display, with a single control input. This input is independent of all other inputs

LE (Pin 5)—Latch enable input. This input controls the 4-bit transparent latch. A logic high on this input latches the data present at the A, B, C and D inputs; a logic low allows the data to be transmitted through the latch to the decoder.

Output Characteristics (V_{CC}=5V)

TL/F/5373-2

TL/F/5373-3

Typical Applications

Typical Common Cathode LED Connection

Incandescent Bulb Driving Circuit

^{*}The expected minimum curves are not guarantees, but are design aids.

Dual-In-Line Package Order Number MM54HC4511J or MM74HC4511J NS Package J16A

Dual-In-Line Package Order Number MM74HC4511N NS Package N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor

Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408