

ELEC3441_Hw2

JIANG Feiyu 3035770800

A.1 Resolving Branch Hazards

1.1

Sequence	Instruction Address	Instruction	Branch Taken? (Y/N)
1	I10	beqz	Υ
2	114	bnez	Υ
3	I10	beqz	Υ
4	114	bnez	Υ
5	I10	beqz	Υ
6	114	bnez	Υ
7	I10	beqz	Υ
8	114	bnez	Υ
9	I10	beqz	Υ
10	114	bnez	Υ
11	I10	beqz	N
12	114	bnez	Υ
13	I10	beqz	N
14	114	bnez	Υ
15	I10	beqz	Υ
16	114	bnez	Υ

Sequence	Instruction Address	Instruction	Branch Taken? (Y/N)
17	I10	beqz	Υ
18	l14	bnez	Υ
19	I10	beqz	N
20	l14	bnez	N

1.2

 $Required\ cycles=2+7\times 15+2\times (15+1)+1\times (15+1+3)=158.$ When considering the initial latency, 11+158=169 cycles are needed.

1.3

An 4 cycles delay will occur for misprediction of one branch. Thus, the $required\ cycles=2+7\times(11+4+4)+2\times(11+1+4)+1\times(11+1+3)=182$

When considering the initial latency, 11+182=193 cycles are needed.

1.4

There will be 20×5 mispreiction, thus, $Required\ cycles=2+7 \times 11+2 \times (11+1)+11+1+3+4=122.$

Considering about the initial latency, 11+122=133 cycles are needed.

1.5

$$S1\ time = 168 \times 1 = 169$$

$$S2\ time = 193 \times 1.5 = 289.5$$

$$S3\ time = 133 \times 2 = 266$$

S1 < S2 < S3, thus, S1 is the best.

A.2 Cache Access

2.1

index	tag	valid	dirty				da	ıta			
				7	6	5	4	3	2	1	0
0	-	0	0	-	-	-	-	-	-	-	-
1	-	0	0	-	-	-	-	-	-	-	-
2	-	0	0	-	-	-	-	-	-	-	-
3	-	0	0	-	-	-	-	-	-	-	-
4	5D221I	7 1	1	BEEF0007	BEEF0006	0EEE3441	0EEE3441	BEEF0003	BEEF0002	BEEF0001	0EEE3441
5	-	0	0	-	-	-	-	-	-	-	-
6	-	0	0	-	-	-	-	-	-	-	-
7	-	0	0	-	-	-	-	-	-	-	-
8	-	0	0	-	-	-	-	-	-	-	-
9	-	0	0	-	-	-	-	-	-	-	-
10	-	0	0	-	-	-	-	-	-	-	-
11	-	0	0	-	-	-	-	-	-	-	-
12	-	0	0	-	-	-	-	-	-	-	-
13	-	0	0	-	-	-	-	-	-	-	-
14	-	0	0	-	-	-	-	-	-	-	-
15	-	0	0	-	-	-	-	-	-	@稀土掘	金技术社区

Assume all data in main memory contain the value 0x0EEE3441 . According to the question,

Capacity: 512BLine size: 8 words

· Organization: direct map

• Policy: write back, write allocate

 $offset \ size = log_2(line \ size \times 4) = 5 \ bit$

 $index\ size = log_2(cache\ capacity/line\ size) = 4bit$

Thus, the tag size should be:

$$32-offset\ size-index\ size=23bit$$

As we know, the structure of each line is tag 23bit + index 4bit + offset 5bit.

Cache access:

Address (hex)	Туре	index	tag	Hit/Miss	Reason
BA443E98	R	0100	0x5d221f	Н	
BA443FA8	W	1101	0x5d221f	Н	Compulsory

Address (hex)	Туре	index	tag	Hit/Miss	Reason
54E99A88	R	0100	0x2a74cd	М	Compulsory
54E99BB8	R	1101	0x2a74cd	М	Compulsory
30013C80	R	0100	0x18009e	М	Compulsory
54E99A84	R	0100	0x2a74cd	М	Conflict due to 54E99A88
54E99BA0	R	1101	0x2a74cd	Н	
BA443FA4	W	1101	0x5d221f	М	Conflict due to BA443FA8
54E99A90	W	0100	0x2a74cd	Н	
BA443E88	W	0100	0x5d221f	М	Conflict due to BA443E98

file content

idx	tag	valid	dirty	data7	data6	data5	data4	data3	data2	data1	data0
4	5D221F	1	0	0EEE3441	0EEE3441	0EEE3441	0EEE3441	0EEE3441	0EEE3441	0EEE3441	0EEE3441
13	5D221F	1	1	0EEE3441	0EEE3441	0EEE3441	0EEE3441	0EEE3441	111111111111111111111111111111111111111	8 11141141	0EEE3441
									(604	th Tr 100 215.1	又小牡.区.

2.2

the structure of each line is tag 24bit + index 3bit + offset 5bit.

Cache access:

Address (hex)	Туре	index	tag	Hit/Miss	Reason
BA443E98	R	100	0xBA443E	Н	
BA443FA8	W	101	0xBA443F	Н	Compulsory
54E99A88	R	100	0x54E99A	М	Compulsory
54E99BB8	R	101	0x54E99B	М	Compulsory
30013C80	R	100	0x30013C	М	Compulsory
54E99A84	R	100	0x54E99A	Н	

Address (hex)	Туре	index	tag	Hit/Miss	Reason
54E99BA0	R	101	0x54E99B	Н	
BA443FA4	W	101	0xBA443F	Н	
54E99A90	W	100	0x54E99A	Н	
BA443E88	W	100	0xBA443E	М	Conflict due to BA443E98

file content

idx	tag	valid	dirty	data7	data6	data5	data4	data3	data2	data1	data0
•••											
4	BA443E	1	0	0EEE3441	0EEE3441	0EEE3441	0EEE3441	BEEF0003	BEEF0002	BEEF0001	0EEE3441
4	54E99A	1	0	0EEE3441	0EEE3441	0EEE3441	11111111	BEEF0003	BEEF0002	BEEF0001	0EEE3441
5	BA443F	1	1	0EEE3441	0EEE3441	0EEE3441	0EEE3441	0EEE3441	11111111	11111111	0EEE3441
5	54E99B	1	1	0EEE3441							
•••									(砂柿土畑金	技术社区

2.3

the structure of each line is tag 27bit + offset 5bit.

Cache access:

Address (hex)	Туре	tag	Hit/Miss	Reason
BA443E98	R	0x5D221F4	Н	
BA443FA8	W	0x5d221FD	Н	Compulsory
54E99A88	R	0x2a74cd4	M	Compulsory
54E99BB8	R	0x2a74cdD	M	Compulsory
30013C80	R	0x18009e4	М	Compulsory
54E99A84	R	0x2a74cd4	Н	
54E99BA0	R	0x2a74cdd	Н	
BA443FA4	W	0x5d221fd	М	Compulsory
54E99A90	W	0x2a74cd4	Н	

Address (hex)	Туре	tag	Hit/Miss	Reason
BA443E88	W	0x5d221f4	Н	

file content

idx		tag	valid	data7	data6	data5	data4	data3	data2	data1	data0	Sequence
	0											2,8
	1	2A74CD4	1	0EEE3441	0EEE3441	0EEE3441	11111111	0EEE3441	0EEE3441	0EEE3441	0EEE3441	3,6,9
	2	2A74CDD	1	0EEE3441	4,7							
	3	18009E4,	1	0EEE3441	5,							
	4	5D221F4	1	BEEF0007	0EEE3441	0EEE3441	0EEE3441	BEEF0003	BEEF0002	BEEF0001	0EEE3441	1,10
	5											
•••											-38 L IELA	EB-1821 FF
	15									(@稀土掘金	技术社区

2.4

The minimum number of misses is 3. Here is one possible design:

Cache Parameter	Range
capacity	256 B
line size	16 words
set associativity	4
write miss policy	write allocate

A.3 Simple Pipeline

3.1

According to the program, there are 100 loops in total, for each loop, $a_0+=(100+17), a1+=(100-17).$

When the loop ends, $a_0 = 10485760 + 100 imes 117 = 10497460$, while $a_1 = 10559596$

Since there are four consecutive add out of the loop, $a_0=16\times 10497460=167959360=0x0A02DB40$, and similarly, $a_1=0x0A1206C0$

3.2

$$5+14\times100+8=1413~\text{cycles}$$

3.3

load use hazard

```
lw t2, 0(s1)
add t3, t1, t2
```

3.4

For each Load, the Load Use hazard will cause 4 extra cycles as penalty, which happens for 100 times.

Branch misprediction will cause 3 more cycles as penalty, which happens for 99 times.

Thus, $CPI = rac{1413 + 99 imes 3 + 4 imes 100}{1413} = 1.49$

A.4 Streaming Cache Performance

4.1

```
loop:

RM * 2

RH * 7 * 2

WH * 8
```

$$rac{2^{10}}{8}=128~times$$

4.2

The
$$Miss~rate=rac{2 imesrac{1024}{8}}{3 imes1024}=0.0833$$

The $AMAT=Hit\ time+Miss\ rate imes\ Miss\ Penalty=(7 imes2+8) imes1+rac{1}{12} imes300=26\ cycles$

4.3

 $Total\ run\ time = (5 \times 1 + \times 4 + 26 \times 3) \times N = 91N$

4.4

Relacement policy: LRU is applied in the final 2^3 loops.

 $2^{23}>2^{20}$, the size of array is greater than the cache capacity.

```
loop:

RM * 2

RH * 7 * 2

WH * 8
```

Miss rate doesn't change.

4.5

graph LR CPU --read--> Cache CPU --write--> Buffer Buffer --> Memory Memory --write allocate--> Cache

graph LR CPU --read--> Cache Memory --write allocate--> Cache CPU --write--> Memory All Read is before Write in the code. Therfore there is no difference in cache content except for the dirty bit.

	Read miss penalty	Write miss penalty	Overall performance of the above code
with write buffer	no effect	no effect	no effect
without write	decrease	increase	unknow, almost balanced

	Read miss penalty	Write miss penalty	Overall performance of the above code
buffer			

Explanation:

Without write buffer, cache fetches data from memory, thus, read miss penalty decrease; CPU needs to write the cache by the data from memory, thus, write miss penalty increase; the overall performance can't be determined if the read/miss penalty is unknown, the read and write miss penalty are almost balanced.