Babeş-Bolyai University, Cluj-Napoca Faculty of Mathematics and Computer Science

Optimization Techniques

Prof. Nicolae Popovici

Optimization problems in general setting

Let $f: D \to \mathbb{R}$ be a function defined on a nonempty set D and let $S \subseteq D$, $S \neq \emptyset$. **Definition 1.1** An element $x^0 \in S$ is called:

• minimum point of f w.r.t. S, if

$$f(x^0) \le f(x), \ \forall x \in S.$$

• maximum point of f w.r.t. S, if

$$f(x^0) \ge f(x), \ \forall x \in S.$$

The sets of all minimum points and maximum points of f w.r.t. S will be denoted by

$$\underset{x \in S}{\operatorname{argmin}} f(x) := \{ x^0 \in S \mid f(x^0) \le f(x), \, \forall \, x \in S \}$$
$$\underset{x \in S}{\operatorname{argmax}} f(x) := \{ x^0 \in S \mid f(x^0) \ge f(x), \, \forall \, x \in S \}.$$

Remark 1.2 Since S is nonempty, its image by f, i.e., the set

$$f(S) := \{ f(x) \mid x \in S \}$$

is a nonempty subset of \mathbb{R} , hence the following (extended-)real numbers

$$\inf f(S) \in \mathbb{R} \cup \{-\infty\}$$
 and $\sup f(S) \in \mathbb{R} \cup \{+\infty\}$

are well-defined. It is easily seen that

$$\underset{x \in S}{\operatorname{argmin}} f(x) := \{ x^0 \in S \mid f(x^0) = \inf f(S) \}$$

$$= \{ x^0 \in S \mid f(x^0) = \min f(S) \};$$

$$\underset{x \in S}{\operatorname{argmax}} f(x) := \{ x^0 \in S \mid f(x^0) = \sup f(S) \}$$

$$= \{ x^0 \in S \mid f(x^0) = \max f(S) \}.$$

Remark 1.3 inf $f(S) \in \mathbb{R}$ if and only if f(S) is bounded from below. However, the lower boundedness of f(S) does not guarantee the existence of the least element min f(S) of f(S). For instance, if $S = D = \mathbb{R}$ and $f: D \to \mathbb{R}$ is the exponential function

$$f(x) = e^x, \ \forall x \in D,$$

we have $f(S) =]0, +\infty[$, hence $\inf f(S) = 0 \in \mathbb{R}$, but f(S) does not possess a least element. In this case we have $\underset{x \in S}{\operatorname{argmin}} f(x) = \emptyset$.

Remark 1.4 sup $f(S) \in \mathbb{R}$ if and only if f(S) is bounded from above. However, the upper boundedness of f(S) does not guarantee the existence of the largest element $\max f(S)$ of f(S). For instance, if $S = [0, +\infty] \subseteq D = \mathbb{R}$ and $f: D \to \mathbb{R}$ is defined by

$$f(x) = \arctan x, \ \forall x \in D,$$

we have $f(S) = [0, \pi/2[$, hence $\sup f(S) = \pi/2 \in \mathbb{R}$, but f(S) does not possess a largest element. In this case we have $\underset{x \in S}{\operatorname{argmax}} f(x) = \emptyset$.

Definition 1.5 The problem of finding the value inf $f(S) \in \mathbb{R} \cup \{-\infty\}$ and the set $\underset{x \in S}{\operatorname{argmin}} f(x)$ (or, in practice, at least one element of this set, if any) is called *minimization problem* with objective function f and feasible set S. We denote this problem by

$$\begin{cases} \text{Minimize } f(x) \\ x \in S. \end{cases}$$
 (1.1)

The elements of S are called *feasible points* (or *feasible solutions*) of problem (1.1) while the elements of the set argmin f(x) are called *optimal solutions* of problem (1.1).

Definition 1.6 The problem of finding the value sup $f(S) \in \mathbb{R} \cup \{+\infty\}$ and the set $\underset{x \in S}{\operatorname{argmax}} f(x)$ (or, in practice, at least one element of this set, if any) is called $\underset{x \in S}{\operatorname{maximiza-tion}} f(x)$ with objective function f(x) and f(x) and f(x) we denote this problem by

$$\begin{cases}
\text{Maximize } f(x) \\
x \in S.
\end{cases} \tag{1.2}$$

The elements of S are called *feasible points* (or *feasible solutions*) of problem (1.2) while the elements of the set argmax f(x) are called *optimal solutions* of problem (1.2).

 $x \in S$

Remark 1.7 It is easy to check that

$$\underset{x \in S}{\operatorname{argmin}} f(x) = \underset{x \in S}{\operatorname{argmin}} (-f)(x);$$

$$\underset{x \in S}{\operatorname{argmin}} f(x) = \underset{x \in S}{\operatorname{argmax}} (-f)(x).$$

These realtions show that any maximization problem of type (1.2) can be transformed into a minimization problem of type (1.1) and vice-versa.

Remark 1.8 A minimization problem (1.1) has no optimal solutions, i.e.,

$$\operatorname*{argmin}_{x \in S} f(x) = \emptyset,$$

in one and only one of the following situations:

• f is not bounded from below on S, i.e.,

$$\inf f(S) = -\infty;$$

• f is bounded from below on S, but f does not attain its minimal value, i.e.,

$$\inf f(S) \in \mathbb{R} \setminus f(S).$$

Remark 1.9 A maximization problem (1.2) has no optimal solutions, i.e.,

$$\operatorname*{argmax}_{x \in S} f(x) = \emptyset,$$

in one and only one of the following situations:

• f is not bounded from above on S, i.e.,

$$\sup f(S) = +\infty;$$

• f is bounded from above on S, but f does not attain its maximal value, i.e.,

$$\sup f(S) \in \mathbb{R} \setminus f(S).$$

Level sets; characterizations of optimal solutions

Let $f: D \to \mathbb{R}$ be a function defined on a nonempty set D and let $S \subseteq D$, $S \neq \emptyset$.

Definition 2.1 For any $\lambda \in \mathbb{R}$, the following sets are called *level sets* of f (w.r.t. S and λ):

$$S_{f}(\lambda) := \{x \in S \mid f(x) = \lambda\},$$

$$S_{f}^{\leqslant}(\lambda) := \{x \in S \mid f(x) \leq \lambda\},$$

$$S_{f}^{\leqslant}(\lambda) := \{x \in S \mid f(x) < \lambda\} = S_{f}^{\leqslant}(\lambda) \setminus S_{f}(\lambda),$$

$$S_{f}^{\geqslant}(\lambda) := \{x \in S \mid f(x) > \lambda\} = S \setminus S_{f}^{\leqslant}(\lambda),$$

$$S_{f}^{\geqslant}(\lambda) := \{x \in S \mid f(x) \geq \lambda\} = S \setminus S_{f}^{\leqslant}(\lambda).$$

Proposition 2.2 The following characterizations of optimal solutions hold:

$$\underset{x \in S}{\operatorname{argmin}} f(x) = \{ x^0 \in S \mid S \subseteq D_f^{\geqslant}(f(x^0)) \}, \tag{2.1}$$

$$\underset{x \in S}{\operatorname{argmax}} f(x) = \{ x^0 \in S \mid S \subseteq D_f^{\leq}(f(x^0)) \}. \tag{2.2}$$

Existence and unicity of optimal solutions

Let $f: D \to \mathbb{R}$ be a function defined on a nonempty set D and let $S \subseteq D$, $S \neq \emptyset$.

Theorem 3.1 The minimization problem (1.1) has at least one optimal solution, i.e.,

$$\underset{x \in S}{\operatorname{argmin}} f(x) \neq \emptyset,$$

if one of the following conditions is fulfilled:

- (C1) There exists $\mu \in \mathbb{R}$ such that $S_f^{\leqslant}(\mu)$ is nonempty and bounded, and $S_f^{\leqslant}(\lambda)$ is closed for every $\lambda \in]-\infty, \mu]$.
- (C2) S is closed, f is continuous, and there exists $\mu \in \mathbb{R}$ such that $S_f^{\leqslant}(\mu)$ is nonempty and bounded.
- (C3) S is compact and $S_f^{\leqslant}(\lambda)$ is closed for each $\lambda \in \mathbb{R}$.

Remark 3.3 In the particular case when f is continuous on the nonempty compact set S, then both level sets $S_f^{\leq}(\lambda)$ and $S_f^{\geqslant}(\lambda)$ are closed for every $\lambda \in \mathbb{R}$. In this case we recover from (C3) in Theorem 3.1 and Corollary 3.2 the conclusion of the classical Weierstrass Theorem.

Theorem 3.4 Let $f: S \to \mathbb{R}$ be a function defined on a nonempty set $S \subseteq \mathbb{R}^n$. The following assertions are equivalent:

- 1° The minimization problem (1.1) has at most one optimal solution.
- 2° For all $x^1, x^2 \in S, x^1 \neq x^2, \text{ there exists } x^* \in S \text{ such that } f(x^*) < \max\{f(x^1), f(x^2)\}.$

Proof. $1^{\circ} \Rightarrow 2^{\circ}$. Assume that $\operatorname{card}(\operatorname{argmin}_{x \in S} f(x)) \leq 1$ and suppose to the contrary that there exist two distinct points $x^1, x^2 \in S$ satisfying the inequality $f(x) \geq \max\{f(x^1), f(x^2)\}$ for every $x \in S$. We infer that $f(x^1) \leq f(x)$ and $f(x^2) \leq f(x)$ for any point $x \in S$, i.e., $x^1, x^2 \in \operatorname{argmin}_{x \in S} f(x)$, contradicting the hypothesis.

 $2^{\circ} \Rightarrow 1^{\circ}$. Assume that for every distinct points $x^1, x^2 \in S$ there exists $x^* \in S$ such that $f(x^*) < \max\{f(x^1), f(x^2)\}$, and suppose to the contrary that $\operatorname{card}(\operatorname{argmin}_{x \in S} f(x)) > 1$. Then we can choose $x^1, x^2 \in \operatorname{argmin}_{x \in S} f(x), x^1 \neq x^2$. By hypothesis, we can find $x^* \in S$ such that $f(x^*) < \max\{f(x^1), f(x^2)\}$. We infer that $f(x^*) < f(x^1) = f(x^2) = \inf f(S) \leq f(x^*)$, a contradiction.

Corollary 3.5 Let $f: S \to \mathbb{R}$ be a function defined on a nonempty set $S \subseteq \mathbb{R}^n$. The following assertions are equivalent:

- 1° The maximization problem (1.2) has at most one optimal solution.
- 2° For all $x^1, x^2 \in S, x^1 \neq x^2, \text{ there exists } x^* \in S \text{ such that } f(x^*) > \min\{f(x^1), f(x^2)\}.$

Proof. Follows by Theorem 3.4 applied to -f in the role of f.

Convex sets and their extreme subsets/points

For any points $x, y \in \mathbb{R}^n$ we denote

$$[x,y] := \{(1-t)x + ty \mid t \in [0,1]\};$$
$$[x,y] := \{(1-t)x + ty \mid t \in [0,1]\}.$$

Notice that if $x \neq y$, then $]x,y[=[x,y] \setminus \{x,y\};$ otherwise, if x=y, then $[x,y]=]x,y[=\{x\}.$

Definition 4.1 A set $S \subseteq \mathbb{R}^n$ is said to be *convex* if

$$[x,y] \subseteq S$$
 for all $x,y \in S$.

Remark 4.2 For any set $S \subseteq \mathbb{R}^n$ the following assertions are equivalent:

 1° S is convex.

$$2^{\circ}\ (1-t)x+ty\in S,\ \forall\, x,y\in S,\ \forall\, t\in [0,1].$$

Example 4.3 By a *hyperplane* in \mathbb{R}^n we mean any set of type

$$H(c,\lambda) := \{ x \in \mathbb{R}^n \mid \langle c, x \rangle = \lambda \},$$

where $c \in \mathbb{R}^n \setminus \{0_n\}$ and $\lambda \in \mathbb{R}$. The sets

$$H^{\leqslant}(c,\lambda) := \{x \in \mathbb{R}^n \mid \langle c, x \rangle \leq \lambda\}$$
$$H^{\geqslant}(c,\lambda) := \{x \in \mathbb{R}^n \mid \langle c, x \rangle > \lambda\}$$

are called *closed half-spaces* while the sets

$$H^{<}(c,\lambda) := \{x \in \mathbb{R}^n \mid \langle c, x \rangle < \lambda\}$$

$$H^{>}(c,\lambda) := \{x \in \mathbb{R}^n \mid \langle c, x \rangle > \lambda\}$$

are called *open half-spaces*. It is a simple exercise to check that all hyperplanes, as well as closed and open half-spaces, are convex sets.

Proposition 4.4 If \mathscr{F} is a family of convex sets in \mathbb{R}^n , then the set $\bigcap_{S \in \mathscr{F}} S$ is also convex.

Proof. Let $t \in [0,1]$. For any $S' \in \mathscr{F}$ we have

$$(1-t)\bigcap_{S\in\mathscr{F}}S+t\bigcap_{S\in\mathscr{F}}S\subseteq (1-t)S'+tS'\subseteq S',$$

hence $(1-t)\bigcap_{S\in\mathscr{F}}S+t\bigcap_{S\in\mathscr{F}}S\subseteq\bigcap_{S'\in\mathscr{F}}S'=\bigcap_{S\in\mathscr{F}}S$. Thus $\bigcap_{S\in\mathscr{F}}S$ is a convex set. \square

Definition 4.5 The *convex hull* of an arbitrary set $M \subseteq \mathbb{R}^n$ is defined by

$$\operatorname{conv} M := \bigcap \{ S \subseteq \mathbb{R}^n \mid S \text{ is convex and } M \subseteq S \}.$$

Remark 4.6 conv M is a convex set as an intersection of a family of convex sets. Therefore, M is convex if and only if $M = \operatorname{conv} M$.

Definition 4.7 For any $k \in \mathbb{N}$, the set

$$\Delta_k := \{(t_1, \dots, t_k) \in (\mathbb{R}_+)^k \mid t_1 + \dots + t_k = 1\}$$

is called the standard simplex of \mathbb{R}^k . It is easily seen that Δ_k is convex.

Definition 4.8 Given an arbitrary nonempty set $M \subseteq \mathbb{R}^n$, a point $x \in \mathbb{R}^n$ is said to be a *convex combination* of elements of $M \subseteq \mathbb{R}^n$, if there exist $k \in \mathbb{N}^*$, $x^1, \ldots, x^k \in M$, and $(t_1, \ldots, t_k) \in \Delta_k$, such that $x = t_1 x^1 + \cdots + t_k x^k$.

Theorem 4.9 (Characterization of the convex hull via convex combinations) The convex hull of a nonempty set $M \subseteq \mathbb{R}^n$ admits the following representation:

conv
$$M = \left\{ \sum_{i=1}^{k} t_i x^i \mid k \in \mathbb{N}^*, \ x^1, \dots, x^k \in M, \ (t_1, \dots, t_k) \in \Delta_k \right\}.$$

Proof. Denote by

$$C(M) := \left\{ \sum_{i=1}^{k} t_i x^i \mid k \in \mathbb{N}^*, \ x^1, \dots, x^k \in M, \ (t_1, \dots, t_k) \in \Delta_k \right\}.$$
 (4.1)

For the equality conv M = C(M) it suffices to show that the following conditions are fulfilled:

- (i) $M \subseteq C(M)$;
- (ii) C(M) is convex;
- (iii) $C(M) \subseteq S$ for every convex set $S \subseteq \mathbb{R}^n$ with $M \subseteq S$.

Condition (i) holds, since one obtains in C(M) the elements of M considering k=1.

In order to prove (ii) pick $x, y \in C(M)$ and $\alpha \in [0, 1]$. Then there exist $k, \ell \in \mathbb{N}^*$, $x^1, \ldots, x^k, y^1, \ldots, y^\ell \in M$, $(t_1, \ldots, t_k) \in \Delta_k$ and $(s_1, \ldots, s_\ell) \in \Delta_\ell$ such that $x = \sum_{i=1}^k t_i x^i$ and $y = \sum_{i=1}^\ell s_i y^i$. Thus

$$(1 - \alpha)x + \alpha y = \sum_{i=1}^{k} (1 - \alpha)t_i x^i + \sum_{i=1}^{\ell} \alpha s_i y^i.$$

Since $\sum_{i=1}^{k} (1-\alpha)t_i + \sum_{i=1}^{\ell} \alpha s_i = (1-\alpha)\sum_{i=1}^{k} t_i + \alpha \sum_{i=1}^{\ell} s_i = 1-\alpha+\alpha=1$, it follows that $(1-\alpha)x + \alpha y$ is also a convex combination of elements of M, that is, it belongs to C(M). Thus (ii) holds.

For proving (iii) consider a convex subset $S \subseteq \mathbb{R}^n$ such that $M \subseteq S$. We get the inclusion $C(M) \subseteq S$ by performing an induction argument. We prove that proposition

$$\mathscr{P}(k): "\sum_{i=1}^k t_i x^i \in S, \forall x^1, \dots, x^k \in M, \forall (t_1, \dots, t_k) \in \Delta_k"$$

is true for every $k \in \mathbb{N}^*$. Obviously $\mathscr{P}(1)$ is true (since $M \subseteq S$). Assume now that $\mathscr{P}(h)$ is true for a natural number $h \in \mathbb{N}^*$. We are going to prove that $\mathscr{P}(h+1)$ is also true. Let $x^1, \ldots, x^h, x^{h+1} \in M$ and $(t_1, \ldots, t_h, t_{h+1}) \in \Delta_{h+1}$. Without loss of generality we may assume that $t := \sum_{i=1}^h t_i > 0$ (otherwise $\mathscr{P}(h+1)$ obviously would be true). Then $t + t_{h+1} = 1$ and $\frac{1}{t}(t_1 + \cdots + t_h) = 1$. By the induction hypothesis and using the convexity of S, we get

$$\sum_{i=1}^{h+1} t_i x^i = t \left(\sum_{i=1}^h \frac{t_i}{t} x^i \right) + (1-t) x^{h+1} \in S.$$

Hence $\mathscr{P}(h+1)$ is true. It follows that $\mathscr{P}(k)$ is true for every $k \in \mathbb{N}^*$. Thus $C(M) \subseteq S$. \square

Theorem 4.12 (Carathéodory) If S is a nonempty subset of \mathbb{R}^n , then every point $x \in \text{conv } S$ can be expressed as a convex combination of at most n+1 elements of S.

Convex functions

Definition 5.1 Let $f: S \to \mathbb{R}$ be a function defined o a nonempty set $S \subseteq \mathbb{R}^n$. We say that f is a *convex function* if its domain S is a convex set and

$$f((1-t)x^1 + tx^2) \le (1-t)f(x^1) + t f(x^2), \ \forall x^1, x^2 \in S, \ \forall t \in [0,1].$$

Example 5.2 (Distance function) Let $C \subseteq \mathbb{R}^n$ be a nonempty convex set. Consider the distance function w.r.t. $C, d_C \colon \mathbb{R}^n \to \mathbb{R}$, defined by

$$d_C(x) := \inf\{||x - c|| : c \in C\}, \ \forall x \in \mathbb{R}^n.$$

We will prove that this function is convex. In particular, for any $a \in \mathbb{R}^n$, the distance function $d(\cdot, a) : \mathbb{R}^n \to \mathbb{R}$, defined by

$$d(x, a) := ||x - a||, \ \forall x \in \mathbb{R}^n,$$

is convex (in this case the set $C := \{a\}$ is a singleton).

Indeed, let $x^1, x^2 \in \mathbb{R}^n$ and $t \in [0, 1]$. Consider two sequences $(c^k)_{k \in \mathbb{N}}$ and $(\tilde{c}^k)_{k \in \mathbb{N}}$ of points of C such that

$$\lim_{k \to \infty} ||x^1 - c^k|| = d_C(x^1), \quad \lim_{k \to \infty} ||x^2 - \tilde{c}^k|| = d_C(x^2). \tag{5.1}$$

Since C is a convex set, it follows that for any $k \in \mathbb{N}$ we have $(1-t)c^k + t\tilde{c}^k \in C$, hence

$$d_C((1-t)x^1 + tx^2) \leq \|(1-t)x^1 + tx^2 - (1-t)c^k - t\tilde{c}^k\|$$

$$\leq (1-t)\|x^1 - c^k\| + t\|x^2 - \tilde{c}^k\|.$$

Letting $k \to \infty$ and recalling (5.1), we infer

$$d_C((1-t)x^1 + tx^2) \le (1-t)d_C(x^1) + td_C(x^2).$$

Thus d_C is a convex function.

Definition 5.4 Let $f: M \to \mathbb{R}$ be a function defined on a nonempty set $M \subset \mathbb{R}^n$. The set $\operatorname{epi} f := \{(x, \lambda) \in \mathbb{R}^n \times \mathbb{R} \mid x \in M, \ f(x) \le \lambda\}$ is called the epigraph of f. Theorem 5.5 (Characterization of convex functions by means of their epigraph) Let $f: S \to \mathbb{R}$ be a function defined on a nonempty convex set $S \subseteq \mathbb{R}^n$. Then the following

assertions are equivalent:

- 1° Function f is convex.
- The epigraph of f (i.e., epif) is a convex set (in the space $\mathbb{R}^n \times \mathbb{R}$).

Proof. $1^{\circ} \Rightarrow 2^{\circ}$. Assume that 1° holds and consider any points $(x^1, \lambda_1), (x^2, \lambda_2) \in \text{epi} f$ and any number $t \in [0,1]$. Then we have $f(x^1) \leq \lambda_1$ and $f(x^2) \leq \lambda_2$. By 1° it follows that

$$f((1-t)x^1 + tx^2) \le (1-t)f(x^1) + tf(x^2) \le (1-t)\lambda_1 + t\lambda_2$$

which shows that

$$((1-t)x^1 + tx^2, (1-t)\lambda_1 + t\lambda_2) = (1-t)(x^1, \lambda_1) + t(x^2, \lambda_2) \in epif.$$

Thus epif is a convex set, i.e., 3° holds.

 $2^{\circ} \Rightarrow 1^{\circ}$. Assume that 2° holds and consider any $x^1, x^2 \in S$ and $t \in [0, 1]$. Since $(x^1, f(x^1)), (x^2, f(x^2)) \in \text{epi} f$, we have

$$((1-t)x^1 + tx^2, (1-t)f(x^1) + tf(x^2)) = (1-t)(x^1, f(x^1)) + t(x^2, f(x^2)) \in epif,$$

hence $f((1-t)x^1+tx^2) \leq (1-t)f(x^1)+tf(x^2)$. Thus function f is convex, i.e., 1° holds. \square

Theorem 5.6 (Characterization of differentiable convex functions) Let $S \subseteq \mathbb{R}^n$ be a nonempty convex set and let $f: S \to \mathbb{R}$ be a differentiable function. The following assertions are equivalent:

- 1° Function f is convex.
- $2^{\circ} \langle x x^0, \nabla f(x^0) \rangle \leq f(x) f(x^0) \text{ for any } x, x^0 \in S.$
- $3^{\circ} \ \langle x^1-x^2, \nabla f(x^1)-\nabla f(x^2)\rangle \geq 0 \ for \ any \ x^1, x^2 \in S.$

Local/global extrema of convex functions

Definition 6.1 Let $f: S \to \mathbb{R}$ be a function defined on a nonempty set $S \subseteq \mathbb{R}^n$. An element $x^0 \in S$ is said to be a:

• local minimum point of f, if there exists a neighborhood $V \in \mathcal{V}(x^0)$ of the point x^0 such that

$$f(x^0) \le f(x), \ \forall x \in V \cap S.$$

• local maximum point of f, if there exists a neighborhood $V \in \mathcal{V}(x^0)$ of the point x^0 such that

$$f(x^0) \ge f(x), \ \forall x \in V \cap S.$$

• global minimum point of f (or, simply, minimum point of f), if x^0 is a minimum point of f w.r.t. S in the sense of Definition 1.1, i.e., $x^0 \in \operatorname*{argmin}_{x \in S} f(x)$, which actually means that

$$f(x^0) \le f(x), \ \forall x \in S (= V \cap S \text{ with } V := \mathbb{R}^n \in \mathcal{V}(x^0)).$$

• global maximum point of f (or, simply, maximum point of f), if x^0 is a maximum point of f w.r.t. S in the sense of Definition 1.1, i.e., $x^0 \in \operatorname*{argmax}_{x \in S} f(x)$, which actually means that

$$f(x^0) \ge f(x), \ \forall x \in S \ (= V \cap S \text{ with } V := \mathbb{R}^n \in \mathcal{V}(x^0)).$$

The local/global minimum points and maximum points are generically called local/global extremum points (or local/global extremum points) of f.

Remark 6.2 For any point $a \in \mathbb{R}$ and any real number r > 0, we denote by B(a, r) the open Euclidean ball centered at a with radius r, i.e.,

$$B(a,r) := \{ x \in \mathbb{R}^n \mid ||x - a|| < r \}.$$

It is easy to see that:

• x^0 is a local minimum point of f if and only if there exists $\varepsilon > 0$ such that

$$f(x^0) \le f(x), \ \forall x \in B(x^0, \varepsilon) \cap S.$$

• x^0 is a local maximum point of f if and only if there exists $\varepsilon > 0$ such that

$$f(x^0) \ge f(x), \ \forall x \in B(x^0, \varepsilon) \cap S.$$

Remark 6.3 Every global minimum (resp. maximum) point of f is a local minimum (resp. maximum) point of f. The converse is not true, as the following example shows.

Example 6.4 Consider the function $f: S = [0,3] \to \mathbb{R}$, defined by

$$f(x) := \lfloor x \rfloor, \ \forall \, x \in [0, 3],$$

where |x| denotes the integer part (floor) of x. It is a simple exercise to check that:

- The set of all global minimum points of f is $\underset{x \in S}{\operatorname{argmin}} f(x) = [0, 1[$.
- The set of all global maximum points of f is $\underset{x \in S}{\operatorname{argmax}} f(x) = \{3\}.$
- The set of all local minimum points of f is $[0, 1[\cup]1, 2[\cup]2, 3[$.
- The set of all local maximum points of f is [0,3].

Lemma 6.5 (Structure of lower level sets of convex functions) Let $f: S \to \mathbb{R}$ be a convex function, defined on a nonempty convex set $S \subseteq \mathbb{R}^n$. Then, for any $\lambda \in \mathbb{R}$, the level set $S_f^{\leq}(\lambda)$ is convex.

Proof. Let $\lambda \in \mathbb{R}$. Recall that

$$S_f^{\leqslant}(\lambda) := \{ x \in S \mid f(x) \le \lambda \},\$$

according to Definition 2.1 of Lecture 2. Let $x^1, x^2 \in S_f^{\leq}(\lambda)$ and $t \in [0, 1]$. It follows that $f(x^1) \leq \lambda$ and $f(x^2) \leq \lambda$, hence

$$(1-t)f(x^1) + tf(x^2) \le (1-t)\lambda + t\lambda = \lambda.$$

Since function f is convex, the following inequality also holds:

$$f((1-t)x^1 + tx^2) \le (1-t)f(x^1) + tf(x^2).$$

Therefore, we have $f((1-t)x^1+tx^2) \leq \lambda$. Taking into account that S is a convex set, we deduce that $(1-t)x^1+tx^2 \in S_f^{\leqslant}(\lambda)$. Thus the level set $S_f^{\leqslant}(\lambda)$ is convex. \square

Theorem 6.6 (Structure of the set of minimum points of convex functions) Let $f: S \to \mathbb{R}$ be a convex function, defined on a nonempty convex set $S \subseteq \mathbb{R}^n$. Then, the set of all global minimum points of f, i.e., $\operatorname{argmin} f(x)$, is convex.

24

Case 1: $\inf f(S) = -\infty$.	
In this case, the set $\operatorname{argmin} f(x) = \emptyset$ is obviously convex.	
Case 2: $\inf f(S) =: \lambda \in \mathbb{R}$.	
In this case, the set $\underset{x \in S}{\operatorname{argmin}} f(x) = S_f^{\leq}(\lambda)$ is convex, by Lemma 6.5.	
Theorem 6.7 (Coincidence of local and global minimum points of convex funct	ions)
Let $f: S \to \mathbb{R}$ be a convex function, defined on a nonempty convex set $S \subseteq \mathbb{R}^n$. For an	
point $x^0 \in S$, the following assertions are equivalent:	
$1^{\circ} \ x^{0} \ is \ a \ global \ minimum \ point \ of \ f.$	
2° x^{0} is a local minimum point of f .	
Lemma 6.8 (Fermat's necessary optimality condition) Let $f: S \to \mathbb{R}$ be a function	ι,
defined on a nonempty set $S \subseteq \mathbb{R}^n$ and let $x^0 \in S$ be a local extremum point of f . If $x^0 \in \operatorname{int} A$	3
and f is partially derivable at x^0 , then x^0 is a stationary point of f, i.e., $\nabla f(x^0) = 0_n$.	

Proof. In view of Remark 1.8, we distinguish two cases.

Theorem 6.9 (Characterization of minimum points of differentiable convex functions)

Let $f: S \to \mathbb{R}$ be a differentiable convex function, defined on a nonempty open convex set $S \subseteq \mathbb{R}^n$. For any point $x^0 \in S$ the following assertions are equivalent:

 1° x^{0} is a global minimum point of f.

 2° x^0 is a stationary point of f.

when f is not convex.
For proving the implication $2^{\circ} \Rightarrow 1^{\circ}$ we will use Theorem 5.6. More precisely, since
function f is differentiable and convex, we have $\langle x-x^0, \nabla f(x^0)\rangle \leq f(x)-f(x^0)$ for all $x \in S$.
On the other hand, by hypothesis 2° we have $\nabla f(x^0) = 0_n$. Thus we have $0 \le f(x) - f(x^0)$,
i.e., $f(x^0) \le f(x)$, for all $x \in S$, which actually means 1°.

Proof. The implication $1^{\circ} \Rightarrow 2^{\circ}$ holds by Fermat's optimality condition (Lemma 6.8) even