

12
75
AD

ADA102770

TECHNICAL REPORT ARBRL-TR-02330

A METHOD FOR REDUCING DATA FROM
RADIOGRAPHS OF SHAPED-CHARGE JETS

H. John Blische
Brian M. Simmons

June 1981

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

DMG FILE COPY

Approved for public release; distribution unlimited.

818 13005

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report
does not constitute endorsement of any commercial product.*

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER TECHNICAL REPORT ARBRL-TR-02330	2. GOVT ACCESSION NO. AD-A102	3. RECIPIENT'S CATALOG NUMBER 770
4. TITLE (and Subtitle) A METHOD FOR REDUCING DATA FROM RADIOPHOTOGRAPHS OF SHAPED-CHARGE JETS.		5. TYPE OF REPORT & PERIOD COVERED Final
7. AUTHOR(s) H. John Blische Brian M. Simmons		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory ATTN: DRDAR-BLT) Aberdeen Proving Ground, MD 21005		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 1L162618AH80
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research and Development Command U.S. Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, MD 21005		12. REPORT DATE 11 JUN 1981
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 45
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 13 JUN 1981
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release, distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Shaped-Charge Jet Radiograph Data Reduction		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (hib) This report is a users' guide intended for those involved in reducing data from radiographs of shaped-charge jets. The procedure for setting-up and reading radiographs is listed step-by-step. A computer code listing and description of the calculations are included. Jet particle velocities, break-up time, kinetic energies, lengths, diameters, length-to-diameter ratios, masses, momentums, and jet virtual origin are all included in the code.		

TABLE OF CONTENTS

	Page
I. INTRODUCTION	5
II. COMPUTATIONS AND EQUATIONS	5
III. SUMMARY	10
 APPENDICES	
A. Procedures for Preparing and Reading Radiographs . .	11
B. Input to the Program	17
C. Program Listing.	21
D. Alphabetical Listing of Program Variable Names . . .	29
E. Output from a Sample Run	33
DISTRIBUTION LIST.	45

Accession For	_____
NTIS GR121	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	_____
By	_____
Distribution/	_____
Availability Codes	_____
AVAIL and/or	_____
Dist Special	_____
A	

I. INTRODUCTION

With measurements taken directly from flash radiographs of shaped-charge jets before and after breakup, quantitative information describing particulated jet characteristics can be derived. The measurements are used to calculate such properties as particle length, diameter, velocity, mass and break-up time. It is, however, a very tedious and time consuming operation to take the measurements by hand and subsequently perform the calculations at one's desk. To alleviate much of this work, a method using digitizing equipment and a computer program has been developed and is the subject of this report. This method has proven to be very useful, especially in projects involving many rounds and requiring short turn-around time for measurements and computations.^{1,2} The equations used in the computations will be discussed in the next section. Appendices for film reading procedures and for the computer program operation are included.

II. COMPUTATIONS AND EQUATIONS

The program was designed to calculate as many quantities as possible with the data extracted from radiographs. This includes individual particles as well as the whole jet measurements. Since this report is intended as a user's guide, the calculations will be described briefly. All computations are tabulated in the output with proper headings. A typical output is shown in Appendix E.

All radiographs contain slightly magnified images of the particles of a shaped-charge jet. The positions of the particles are likewise altered from their true positions relative to the base of the shaped-charge liner. This difference is taken into account by the magnification factor, M , which is determined by the ratio of the distance, a , from the face of the x-ray tube to the jet path, to the distance, b , from the tube face to the film, as depicted in Figure 1. Thus, $M = a/b$. This factor is used in determining particle lengths, diameters, and positions. To calculate lengths and diameters, the measurements taken from the particle images on film are simply multiplied by the magnification factor.

To calculate change in position the magnification factor is used in the determination of a particle's true position during a given flash. Two cases must be considered regarding the film location in

¹R. L. Jameson, and H. J. Blische, "A Study of a Light Anti-tank Weapon," report in preparation.

²D. Dorfman, and S. K. Golaski, "Electro Formed Shaped Charge Liner Evaluation," report in preparation. Martin Marietta Corp.
Contract #DAAK 11-77-0088.

the determination of position. Refer to Figure 1 for the locations of the terms involved. Note that on all films the distance, p , from the fiducial to the particle is positive below the fiducial and negative above.

Case I: Film numbers 1 and 2.

$$s = F - [(f-p) M] ,$$

where s is the true position, F is the distance from the shaped-charge liner base to the x-ray tube focal level, f is the location of the y fiducial relative to the focal level, p is the point on the particle measured from f , and M is the magnification factor.

Case II: Film numbers 3 and 4

$$s = F + [(f+p) M] .$$

Once the positions have been determined for all flashes, velocity is calculated by

$$v = \frac{s_b - s_a}{T_b - T_a} ,$$

where $s_b - s_a$ is the distance of jet travel between the earlier (a) and later (b) flashes, and $T_b - T_a$ is the change in time between the flashes.

Break-up time is determined by the equation developed by Simon.³

$$t_b = \frac{\sum_{i=1}^n \ell_i}{v_1 - v_n}$$

where ℓ_i is the individual particle length, v_1 is the velocity of the first particle and v_n is the velocity of the nth particle.

³J. Simon, "The Effect of Explosive Detonation Characteristics on Shaped Charge Performance," BRL Memorandum Report 2414 (1974). (AD #B000337L).

Figure 1. Typical Flash X-ray Set-Up Showing Relative Positions of the Apparatus

Mass calculations involve the equation for the volume of a truncated cone. As described in Appendix A, points located around the film image of a particle outline a pair of trapezoids. This is also shown in Figure 2. The program interprets the coordinates of the points as measurements for truncated cones and applies the equation for mass, m , where

$$m = \rho \frac{\pi}{3} [H_1(R_1^2 + R_1R_2 + R_2^2) + H_2(R_2^2 + R_2R_3 + R_3^2)] .$$

Here, ρ is the density of the shaped-charge liner material, H_1 and H_2 are the heights of the truncated cones, and R_1 , R_2 and R_3 are the radii.

Momentum (mv) and kinetic energy ($\frac{1}{2}mv^2$) are finally calculated using velocity and mass previously computed.

The virtual origin of the shaped-charge jet is found by fitting a least-squares line through the particle velocity/particle position data for each flash. Theoretically, the position of the virtual origin corresponds to a particle velocity of zero.⁴

Tabulations of the above mentioned quantities are performed and listed in the output as averages. However, for the purpose of trouble-shooting, and to gain insight into the accuracy of the average computed quantities, velocities between the flashes and masses for each flash are also listed.

⁴R. DiPersio, J. Simon and A. B. Merendino, "Penetration of Shaped-Charge Jets Into Metallic Targets," BRL Report 1296 (1965). (AD #476717).

Figure 2. Particle Shape Approximation. Dashed lines outline two trapezoids that are interpreted as truncated cones in the program.

III. SUMMARY

As indicated earlier, this method quickly yields valuable information necessary for the evaluation of shaped charge designs. A large number of radiographs can be data reduced in a few days, whereas the same number would take months if reduced by hand. This has the advantage of giving the shaped charge investigator more flexibility by allowing more time to assess designs and make decisions.

For accuracy considerations, comparisons of some measurements were made with other findings, and an error estimate of one measurement was performed. Velocity, length, diameter and break-up time calculations for the round in Appendix E were compared to data of several similar rounds as reported by Majerus⁵. The quantities in Appendix E were found to be within the range of Majerus' data. There is a problem, however, with particle mass calculations. An error estimate for the mass of a selected particle revealed that the measurement could be incorrect by approximately 60%. Several factors are involved in this large error including magnification measurements, digitizing equipment accuracy, image clarity and coordinate point locations. Referring back to Figure 2, note that the group of points surrounding the particle does not represent a contour mapping of the particle shape but approximates two truncated cone geometries. This is where the largest part of the error occurs. Ideally, a much larger number of digitized points would give a better approximation of shape, but the equipment currently in use limits the number to six. One solution would be the use of a digitizer with a rapid and continuous mode point reader connected to a tape or disc data storage device. This would enable the operator to trace the image of a particle and produce a closer geometric approximation. The computer program could subsequently be modified to compute mass more accurately.

⁵J. N. Majerus, "A Model for Studying the Influence of Various Packages Upon Shaped Charge Warhead Performance," R&T Report 107 (1976). (AD#B015299L).

APPENDIX A

PROCEDURES FOR PREPARING AND READING RADIOGRAPHS

The standard BRL flash radiographic test site contains holders for film cassettes, each cassette containing either three or four films. As a rule the films bear the flash number and the film number.

After developing the films, they are arranged according to their positions in the cassettes. The jet particles are then numbered starting with the jet tip and working back, with each particle having the same designated number for every flash.

Once the particles are identified, a set of six points, outlining a pair of trapezoids, is obtained for each particle. When measurements are taken of these points, the configuration will be interpreted as a pair of truncated cones in order to calculate mass. Figure A-1 describes the preparation of the jet particle images.

The film reading machine that is presently used for this procedure is the Data Reducer 099, manufactured by the Telecomputing Corp. Signals are sent from the 099 to a digitizer, developed for BRL by Mr. Donald F. Merritt. The digitizer then transmitts this information, in the form of data units per inch, to a MAI Equipment Corp. 523 Gang Summary Unit which punches the data onto computer cards.

The following procedures will enable the user to operate the film reading equipment:

1. Insert the wired circuit board labeled "JET", label down, into the connection frame of the Gang Summary Unit.
2. Load the Gang Summary Unit feeder with blank computer cards.
3. Turn all three machines on, in any order.
4. Beginning with the first flash, place the film containing the jet tip onto the lighted reading surface of the 099. Arrange the film so that the jet is aligned horizontally on the lighted surface. The horizontal fiducial should run parallel to a line marked across the lighted surface as indicated in Figure 2. This is the x-direction. The vertical fiducial will indicate the y - direction.
5. By adjusting the large wheels located on either side of the console, place the cursor cross-hairs on the intersection of the x and y fiducials and press the button marked " ϕ " on the right of the console. This will assign (0,0) to the x/y intersection.
6. Located at the bottom-center of the digitizer console is a set of twelve registers with star-wheel adjustments. Reading from left to right, enter the round number in the first five registers, film number in the seventh and flash number in the eleventh.

7. The frame count windows in the center of the digitizer console should read zero in all units. If not, press the reset buttons until all units are zeroed.

8. Position the other switches and registers on the digitizer console as indicated in Table A-1.

9. With the cursor at (0,0), press the foot switch repeatedly until the number "1" appears in the frame count window. This will zero-out the memory in the card punch machine.

10. To read a particle place the cursor on each point, beginning with p_1 (Figure A-1), and press the foot switch for reading at each point. Repeat this step for every particle on the film.

Table A-1. Positions of Switches and Other Adjustments on the Electronic Digitizer

<u>SWITCH</u>	<u>POSITION</u>
Multiplier (x and y)	4
Direction (x)	Down
Direction (y)	Down
Normal/Test (x)	Normal
Normal/Test (y)	Normal
Printer (paper tape)	User's choice
Punch	on
Skip/Print Constants	Print (on)
Frame Count Advance	6

11. Repeat steps 4 through 10 for each film.

12. Change registers seven, film number, and eleven, flash number, when the film is changed.

13. After the particles are read for all flashes, sort the cards out by "reading the holes" in columns 77 through 80, and remove only the card for each particle that has punched holes for a "+" character over column 76. This will be the sixth (last) card for the particle.

Figure A-1. Typical Radiograph of a Shaped-Charge Jet Mounted on Film Reading Device and Showing the Sequence for Reading a Particle

APPENDIX B
INPUT TO THE PROGRAM

Card 1:

Columns 1-5: ICASES - Number of rounds to be run.

6-10: LCL - Option for printing out the shaped-charge liner density. Enter 1 if print out is not desired. Otherwise, leave blank.

Card 2: Case Identifier and some constants.

Columns 1-5: NROUND - Round Number
6-10: NPART - Number of jet particles
11-15:NFLASH - Number of flashes
16-20: RHO - Shaped-charge liner density
21-30: XMAG1 - Magnification factor for first flash
31-40: XMAG2 - Magnification factor for second flash
41-50: XMAG3 - Magnification factor for third flash
51-60: Flash 1 - Delay time for first flash
61-70: Flash 2 - Delay time for second flash
71-80: Flash 3 - Delay time for third flash.

Card 3: More constants.

Columns 1-10: FOCUS 1 - Distance from the shaped-charge liner base to the focal level of the first x-ray tube.

11-20: FOCUS 2 - Distance from the shaped-charge liner base to the focal level of the second x-ray tube.

21-30: FOCUS 3 - Distance from the shaped-charge liner base to the focal level of the third x-ray tube.

31-40: F1A } Distances of film "y" fiducials to the

41-50: F2A } focal level of Flash A. Digit is film

51-60: F3A } number and letter (A, B or C) is flash.

61-70 F4A This also applies for Card 4 constants.

Card 4: More constants for fiducial measurements.

Columns 1-10: F1B
11-20: F2B
21-30: F3B
31-40: F4B
41-50: F1C
51-60: F2C
61-70: F3C
71-80: F4C

Card 5: First particle card. All particle cards are identical in format. x and y coordinates are data units/inch in integer form.

Columns 1-5: IX(1) - x coordinate of p_1
6-10: IY(1) - y coordinate of p_1
11-15: IX(2) - x coordinate of p_2
16-20: IY(2) - y coordinate of p_2
21-25: IX(3) - x coordinate of p_3
26-30: IY(3) - y coordinate of p_3
31-35: IX(4) - x coordinate of p_4
36-40: IY(4) - y coordinate of p_4
41-45: IX(5) - x coordinate of p_5
46-50: IY(5) - y coordinate of p_5
51-55: IX(6) - x coordinate of p_6
56-60: IY(6) - y coordinate of p_6

65: L - Flash number (1,2 or 3)
70: IFILM - Film number
71-75: IROUND - Round number
77-80: IPART - Particle number

APPENDIX C
PROGRAM LISTING

The program is written in FORTRAN IV and is currently on file
in the BRL Control Data Corporation's CYBER 170/7600 system.

```

1      PROGRAM MAIN(INPUT,OUTPUT,TAPES=INPUT,TAPEo=OUTPUT)      MAIN      2
2      DIMENSION S1(100),S2(100),S3(100),VOL(100),XL(100),DIA(100),    MAIN      3
3      LV1(100),V2(100),V3(100),VEL(100),XMASS(100),XKE(100),SUMKE(100),    MAIN      4
4      ZFLOC(100),XXL(100),SUML(100),IX(6),IY(6),ZX(4),ZY(4),    MAIN      5
5      ZMPEAK(100),SUMMAS(100),B(10000),DA(3),DR(3),XMAG(3)      MAIN      6
6      DIMENSION AA(2,3),CC(2),MR(500),AF(500),SIG(2),TT(2)      COFFMA  1
7      DIMENSION SA(10),SB(10),SC(10),SD(10),SE(10),SF(10),SL1(10)      MAIN      7
8      1SL2(10),SL3(10),ST(10),L1(100),L2(100),L3(100)      MAIN      8
9      DIMENSION P(100),TOTP(100),SUMDIA(100),SUMLEN(100),XDIA(100),DELV(    MAIN      9
10     1100),SDELV(100),SUMDEL(100)      MAIN      10
11     DIMENSION XVOL(3,100)      MAIN      11
12     DIMENSION AZ(100,100)      COPPER  1
13     DATA SA(1),SA(2),SA(3)/10HVELOCITY (.+10HMM/MICROSE+3HC)>/      MAIN      12
14     DATA SB(1),SB(2),SB(3)/10HCUMULATIVE,10H MASS (GRA+4HMS)>/      MAIN      13
15     DATA SC(1),SC(2),SC(3),SC(4)/10HPOSITION A+10HLONG JET L+10HENUTH    MAIN      14
16     1(MM)+,1H>/      MAIN      15
17     DATA SD(1),SD(2),SD(3)/10HCUMULATIVE,10H R.E. (JUL+5HLES)>/      MAIN      16
18     DATA SE(1),SE(2),SE(3),SE(4)/10HDISTANCE F+10HMM CHARGE+10H BASE    MAIN      17
19     1(MM),1H>/      MAIN      18
20     DATA SF(1),SF(2),SF(3)/10HWEAK=UP T+10HINE (MICRC+5HSEC)>/      MAIN      19
21     DATA SL1(1)/0HFLASH 1>/      MAIN      20
22     DATA SL2(1)/0HFLASH 2>/      MAIN      21
23     DATA SL3(1)/0HFLASH 3>/      MAIN      22
24     1 FORMAT(3IS,FS,2+6F10.5)      MAIN      23
25     2 FORMAT(7F10.5)      MAIN      24
26     6 FORMAT(8F10.5)      MAIN      25
27     21 FORMAT(2IS)      MAIN      26
28     30 FORMAT(12IS,2X,11,2X,3IS)      MAIN      27
29     HEAD(5,21) ICASES,LCL      MAIN      28
30     IF(EOF(5)) 23,23      MAIN      29
31     23 DO 500 IJ=1,ICASES      MAIN      30
32     22 READ(5,1)NROUND,NPAHT,NFLASH,RHO,(XMAG(I),I=1+3),FLASH1,FLASH2,    MAIN      31
33     1FLASH3      MAIN      32
34     IF(EOF(5)) 24,24      MAIN      33
35     24 ENCODE(21+20,ST(1)) NROUND      MAIN      34
36     20 FORMAT(10HROUND NUMB,6HMR +15.2H >)      MAIN      35
37     HEAD(5,2) FOCUS1,FOCUS2,FOCUS3,F1A,F2A,F3A,F4A      MAIN      36
38     IF(EOF(5)) 25,25      MAIN      37
39     25 HEAD(5,6) F1B,F2B,F3B,F4B,F1C,F2C,F3C,F4C      MAIN      38
40     IF(EOF(5)) 26,26      MAIN      39
41     26 R0=RHO      MAIN      40
42     IF(LCL,NE,1) GO TO 29      MAIN      41
43     RHO=0.      MAIN      42
44     C      MAIN      43
45     C      44
46     C      45
47     C      46
48     C      47
49     C      48
50     C      49
51     C      50
52     C      51
53     C      52
54     C      53
55     C      54
56     C      55
57     C      56
58     C      57
59     C      58
60     C      59
61     C      60
62     C      61
63     C      62
64     C      63
65     C      64
66     C      65
67     C      66
68     C      67
69     C      68
70     C      69
71     C      70
72     C      71
73     C      72
74     C      73
75     C      74
76     C      75
77     C      76
78     C      77
79     C      78
80     C      79
81     C      80
82     C      81
83     C      82
84     C      83
85     C      84
86     C      85
87     C      86
88     C      87
89     C      88
90     C      89
91     C      90
92     C      91
93     C      92
94     C      93
95     C      94
96     C      95
97     C      96
98     C      97
99     C      98
100    C      99
101    C      100
102    C      101
103    C      102
104    C      103
105    C      104
106    C      105
107    C      106
108    C      107
109    C      108
110    C      109
111    C      110
112    C      111
113    C      112
114    C      113
115    C      114
116    C      115
117    C      116
118    C      117
119    C      118
120    C      119
121    C      120
122    C      121
123    C      122
124    C      123
125    C      124
126    C      125
127    C      126
128    C      127
129    C      128
130    C      129
131    C      130
132    C      131
133    C      132
134    C      133
135    C      134
136    C      135
137    C      136
138    C      137
139    C      138
140    C      139
141    C      140
142    C      141
143    C      142
144    C      143
145    C      144
146    C      145
147    C      146
148    C      147
149    C      148
150    C      149
151    C      150
152    C      151
153    C      152
154    C      153
155    C      154
156    C      155
157    C      156
158    C      157
159    C      158
160    C      159
161    C      160
162    C      161
163    C      162
164    C      163
165    C      164
166    C      165
167    C      166
168    C      167
169    C      168
170    C      169
171    C      170
172    C      171
173    C      172
174    C      173
175    C      174
176    C      175
177    C      176
178    C      177
179    C      178
180    C      179
181    C      180
182    C      181
183    C      182
184    C      183
185    C      184
186    C      185
187    C      186
188    C      187
189    C      188
190    C      189
191    C      190
192    C      191
193    C      192
194    C      193
195    C      194
196    C      195
197    C      196
198    C      197
199    C      198
200    C      199
201    C      200
202    C      201
203    C      202
204    C      203
205    C      204
206    C      205
207    C      206
208    C      207
209    C      208
210    C      209
211    C      210
212    C      211
213    C      212
214    C      213
215    C      214
216    C      215
217    C      216
218    C      217
219    C      218
220    C      219
221    C      220
222    C      221
223    C      222
224    C      223
225    C      224
226    C      225
227    C      226
228    C      227
229    C      228
230    C      229
231    C      230
232    C      231
233    C      232
234    C      233
235    C      234
236    C      235
237    C      236
238    C      237
239    C      238
240    C      239
241    C      240
242    C      241
243    C      242
244    C      243
245    C      244
246    C      245
247    C      246
248    C      247
249    C      248
250    C      249
251    C      250
252    C      251
253    C      252
254    C      253
255    C      254
256    C      255
257    C      256
258    C      257
259    C      258
260    C      259
261    C      260
262    C      261
263    C      262
264    C      263
265    C      264
266    C      265
267    C      266
268    C      267
269    C      268
270    C      269
271    C      270
272    C      271
273    C      272
274    C      273
275    C      274
276    C      275
277    C      276
278    C      277
279    C      278
280    C      279
281    C      280
282    C      281
283    C      282
284    C      283
285    C      284
286    C      285
287    C      286
288    C      287
289    C      288
290    C      289
291    C      290
292    C      291
293    C      292
294    C      293
295    C      294
296    C      295
297    C      296
298    C      297
299    C      298
300    C      299
301    C      300
302    C      301
303    C      302
304    C      303
305    C      304
306    C      305
307    C      306
308    C      307
309    C      308
310    C      309
311    C      310
312    C      311
313    C      312
314    C      313
315    C      314
316    C      315
317    C      316
318    C      317
319    C      318
320    C      319
321    C      320
322    C      321
323    C      322
324    C      323
325    C      324
326    C      325
327    C      326
328    C      327
329    C      328
330    C      329
331    C      330
332    C      331
333    C      332
334    C      333
335    C      334
336    C      335
337    C      336
338    C      337
339    C      338
340    C      339
341    C      340
342    C      341
343    C      342
344    C      343
345    C      344
346    C      345
347    C      346
348    C      347
349    C      348
350    C      349
351    C      350
352    C      351
353    C      352
354    C      353
355    C      354
356    C      355
357    C      356
358    C      357
359    C      358
360    C      359
361    C      360
362    C      361
363    C      362
364    C      363
365    C      364
366    C      365
367    C      366
368    C      367
369    C      368
370    C      369
371    C      370
372    C      371
373    C      372
374    C      373
375    C      374
376    C      375
377    C      376
378    C      377
379    C      378
380    C      379
381    C      380
382    C      381
383    C      382
384    C      383
385    C      384
386    C      385
387    C      386
388    C      387
389    C      388
390    C      389
391    C      390
392    C      391
393    C      392
394    C      393
395    C      394
396    C      395
397    C      396
398    C      397
399    C      398
400    C      399
401    C      400
402    C      401
403    C      402
404    C      403
405    C      404
406    C      405
407    C      406
408    C      407
409    C      408
410    C      409
411    C      410
412    C      411
413    C      412
414    C      413
415    C      414
416    C      415
417    C      416
418    C      417
419    C      418
420    C      419
421    C      420
422    C      421
423    C      422
424    C      423
425    C      424
426    C      425
427    C      426
428    C      427
429    C      428
430    C      429
431    C      430
432    C      431
433    C      432
434    C      433
435    C      434
436    C      435
437    C      436
438    C      437
439    C      438
440    C      439
441    C      440
442    C      441
443    C      442
444    C      443
445    C      444
446    C      445
447    C      446
448    C      447
449    C      448
450    C      449
451    C      450
452    C      451
453    C      452
454    C      453
455    C      454
456    C      455
457    C      456
458    C      457
459    C      458
460    C      459
461    C      460
462    C      461
463    C      462
464    C      463
465    C      464
466    C      465
467    C      466
468    C      467
469    C      468
470    C      469
471    C      470
472    C      471
473    C      472
474    C      473
475    C      474
476    C      475
477    C      476
478    C      477
479    C      478
480    C      479
481    C      480
482    C      481
483    C      482
484    C      483
485    C      484
486    C      485
487    C      486
488    C      487
489    C      488
490    C      489
491    C      490
492    C      491
493    C      492
494    C      493
495    C      494
496    C      495
497    C      496
498    C      497
499    C      498
500    C      499
501    C      500
502    C      501
503    C      502
504    C      503
505    C      504
506    C      505
507    C      506
508    C      507
509    C      508
510    C      509
511    C      510
512    C      511
513    C      512
514    C      513
515    C      514
516    C      515
517    C      516
518    C      517
519    C      518
520    C      519
521    C      520
522    C      521
523    C      522
524    C      523
525    C      524
526    C      525
527    C      526
528    C      527
529    C      528
530    C      529
531    C      530
532    C      531
533    C      532
534    C      533
535    C      534
536    C      535
537    C      536
538    C      537
539    C      538
540    C      539
541    C      540
542    C      541
543    C      542
544    C      543
545    C      544
546    C      545
547    C      546
548    C      547
549    C      548
550    C      549
551    C      550
552    C      551
553    C      552
554    C      553
555    C      554
556    C      555
557    C      556
558    C      557
559    C      558
560    C      559
561    C      560
562    C      561
563    C      562
564    C      563
565    C      564
566    C      565
567    C      566
568    C      567
569    C      568
570    C      569
571    C      570
572    C      571
573    C      572
574    C      573
575    C      574
576    C      575
577    C      576
578    C      577
579    C      578
580    C      579
581    C      580
582    C      581
583    C      582
584    C      583
585    C      584
586    C      585
587    C      586
588    C      587
589    C      588
590    C      589
591    C      590
592    C      591
593    C      592
594    C      593
595    C      594
596    C      595
597    C      596
598    C      597
599    C      598
600    C      599
601    C      600
602    C      601
603    C      602
604    C      603
605    C      604
606    C      605
607    C      606
608    C      607
609    C      608
610    C      609
611    C      610
612    C      611
613    C      612
614    C      613
615    C      614
616    C      615
617    C      616
618    C      617
619    C      618
620    C      619
621    C      620
622    C      621
623    C      622
624    C      623
625    C      624
626    C      625
627    C      626
628    C      627
629    C      628
630    C      629
631    C      630
632    C      631
633    C      632
634    C      633
635    C      634
636    C      635
637    C      636
638    C      637
639    C      638
640    C      639
641    C      640
642    C      641
643    C      642
644    C      643
645    C      644
646    C      645
647    C      646
648    C      647
649    C      648
650    C      649
651    C      650
652    C      651
653    C      652
654    C      653
655    C      654
656    C      655
657    C      656
658    C      657
659    C      658
660    C      659
661    C      660
662    C      661
663    C      662
664    C      663
665    C      664
666    C      665
667    C      666
668    C      667
669    C      668
670    C      669
671    C      670
672    C      671
673    C      672
674    C      673
675    C      674
676    C      675
677    C      676
678    C      677
679    C      678
680    C      679
681    C      680
682    C      681
683    C      682
684    C      683
685    C      684
686    C      685
687    C      686
688    C      687
689    C      688
690    C      689
691    C      690
692    C      691
693    C      692
694    C      693
695    C      694
696    C      695
697    C      696
698    C      697
699    C      698
700    C      699
701    C      700
702    C      701
703    C      702
704    C      703
705    C      704
706    C      705
707    C      706
708    C      707
709    C      708
710    C      709
711    C      710
712    C      711
713    C      712
714    C      713
715    C      714
716    C      715
717    C      716
718    C      717
719    C      718
720    C      719
721    C      720
722    C      721
723    C      722
724    C      723
725    C      724
726    C      725
727    C      726
728    C      727
729    C      728
730    C      729
731    C      730
732    C      731
733    C      732
734    C      733
735    C      734
736    C      735
737    C      736
738    C      737
739    C      738
740    C      739
741    C      740
742    C      741
743    C      742
744    C      743
745    C      744
746    C      745
747    C      746
748    C      747
749    C      748
750    C      749
751    C      750
752    C      751
753    C      752
754    C      753
755    C      754
756    C      755
757    C      756
758    C      757
759    C      758
760    C      759
761    C      760
762    C      761
763    C      762
764    C      763
765    C      764
766    C      765
767    C      766
768    C      767
769    C      768
770    C      769
771    C      770
772    C      771
773    C      772
774    C      773
775    C      774
776    C      775
777    C      776
778    C      777
779    C      778
780    C      779
781    C      780
782    C      781
783    C      782
784    C      783
785    C      784
786    C      785
787    C      786
788    C      787
789    C      788
790    C      789
791    C      790
792    C      791
793    C      792
794    C      793
795    C      794
796    C      795
797    C      796
798    C      797
799    C      798
800    C      799
801    C      800
802    C      801
803    C      802
804    C      803
805    C      804
806    C      805
807    C      806
808    C      807
809    C      808
810    C      809
811    C      810
812    C      811
813    C      812
814    C      813
815    C      814
816    C      815
817    C      816
818    C      817
819    C      818
820    C      819
821    C      820
822    C      821
823    C      822
824    C      823
825    C      824
826    C      825
827    C      826
828    C      827
829    C      828
830    C      829
831    C      830
832    C      831
833    C      832
834    C      833
835    C      834
836    C      835
837    C      836
838    C      837
839    C      838
840    C      839
841    C      840
842    C      841
843    C      842
844    C      843
845    C      844
846    C      845
847    C      846
848    C      847
849    C      848
850    C      849
851    C      850
852    C      851
853    C      852
854    C      853
855    C      854
856    C      855
857    C      856
858    C      857
859    C      858
860    C      859
861    C      860
862    C      861
863    C      862
864    C      863
865    C      864
866    C      865
867    C      866
868    C      867
869    C      868
870    C      869
871    C      870
872    C      871
873    C      872
874    C      873
875    C      874
876    C      875
877    C      876
878    C      877
879    C      878
880    C      879
881    C      880
882    C      881
883    C      882
884    C      883
885    C      884
886    C      885
887    C      886
888    C      887
889    C      888
890    C      889
891    C      890
892    C      891
893    C      892
894    C      893
895    C      894
896    C      895
897    C      896
898    C      897
899    C      898
900    C      899
901    C      900
902    C      901
903    C      902
904    C      903
905    C      904
906    C      905
907    C      906
908    C      907
909    C      908
910    C      909
911    C      910
912    C      911
913    C      912
914    C      913
915    C      914
916    C      915
917    C      916
918    C      917
919    C      918
920    C      919
921    C      920
922    C      921
923    C      922
924    C      923
925    C      924
926    C      925
927    C      926
928    C      927
929    C      928
930    C      929
931    C      930
932    C      931
933    C      932
934    C      933
935    C      934
936    C      935
937    C      936
938    C      937
939    C      938
940    C      939
941    C      940
942    C      941
943    C      942
944    C      943
945    C      944
946    C      945
947    C      946
948    C      947
949    C      948
950    C      949
951    C      950
952    C      951
953    C      952
954    C      953
955    C     
```

```

      PRINT *
  40 FORMAT(2X,'PARTICLE  AVG. VELOCITY  TOTAL JET  BREAK-UP',/2
  12X,'NUMBER',/4X,'(MM/MICROSEC)',/3X,'LENGTH(MM)',/3X,'(MICROSEC)',/2)
  50 P1=3.14159
  60 DO 150 I=1,NFLASH
  70 DO 149 J=1,NPAHT
  80 RFAD(5,30)(IX(K),IY(K),K=1,6),L,IFILM,IROUND,IPART
  90 IF(EGF(S)) 32,32
 32 DO 35 M=1,6
 33 ZX(M)=FLOAT(IX(M))/15.4906
 34 ZY(M)=FLOAT(IY(M))/15.4906
 35 IF(ZX(1),EQ,ZX(2)) GO TO 40
 40 R1=5*SQRT((ZX(1)-ZX(6))**2+(ZY(1)-ZY(6))**2)*XMAG(I)
 41 R2=5*SQRT((ZX(2)-ZX(5))**2+(ZY(2)-ZY(5))**2)*XMAG(I)
 42 R3=5*SQRT((ZX(3)-ZX(4))**2+(ZY(3)-ZY(4))**2)*XMAG(I)
 43 P1X=(ZX(1)+ZX(6))/2.
 44 P1Y=(ZY(1)+ZY(6))/2.
 45 P2X=(ZX(3)+ZX(4))/2.
 46 P2Y=(ZY(3)+ZY(4))/2.
 47 P3X=(ZX(2)+ZX(5))/2.
 48 AZ(I,J)=(ZY(2)+ZY(5))/2.
 49 P3Y=(ZY(2)+ZY(5))/2.
 50 XH1=SQRT((P1X-P3X)**2+(P1Y-P3Y)**2)*XMAG(I)
 51 XH2=SQRT((P3X-P2X)**2+(P3Y-P2Y)**2)*XMAG(I)
 52 P1Z=P1X
 53 P1X=P2X
 54 GOTO 45
 55 P1X=ZX(1)
 56 IF(L,EQ,2) GOTO 55
 57 IF(L,EQ,3) GOTO 65
 58 IF(IFILM,EQ,2) GO TO 67
 59 IF(IFILM,EQ,3) GO TO 68
 60 IF(IFILM,EQ,4) GO TO 69
 61 S1(J)=FOCUS1-(F1A-P1X)*XMAG(I)
 62 GO TO 15
 63 S1(J)=FOCUS1-(F2A-P1X)*XMAG(I)
 64 GO TO 15
 65 S1(J)=FOCUS1-(F3A+P1X)*XMAG(I)
 66 GO TO 15
 67 S1(J)=FOCUS1-(F4A+P1X)*XMAG(I)
 68 IF(ZX(1),EQ,ZX(2)) GO TO 50
 69 L1(J)=0
 70 GOTO 75
 71 L1(J)=1
 72 GOTO 40
 73 IF(IFILM,EQ,2) GO TO 57
 74 IF(IFILM,EQ,3) GO TO 58
 75 IF(IFILM,EQ,4) GO TO 59
 76 S2(J)=FOCUS2-(F1B-P1X)*XMAG(I)
 77 GO TO 16
 78 S2(J)=FOCUS2-(F2B-P1X)*XMAG(I)
 79 GO TO 16
 80 S2(J)=FOCUS2-(F3B+P1X)*XMAG(I)
 81 GO TO 16
 82 S2(J)=FOCUS2-(F4B+P1X)*XMAG(I)
 83 GO TO 16
 84 S2(J)=(S2(J)-S1(J))/(FLASH2-FLASH1)
 85 V1(J)=(S2(J)-S1(J))/(FLASH2-FLASH1)
 86 IF(ZX(1),EQ,ZX(2)) GO TO 50
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112

```

115	L2(J)=0	MAIN	113
	GOTO 75	MAIN	114
60	L2(J)=1	MAIN	115
	GOTO 80	MAIN	116
65	IF(IFFLASH.EQ.2) GOTO 80	MAIN	117
120	IF(IFILM.EQ.2) GO TO 67	MAIN	118
	IF(IFILM.EQ.3) GO TO 68	MAIN	119
	IF(IFILM.EQ.4) GO TO 69	MAIN	120
	S3(J)=FOCUS3-(F1C-P1X)*XMAG(I)	MAIN	121
	GO TO 17	MAIN	122
125	67 S3(J)=FOCUS3-(F2C-P1X)*XMAG(I)	MAIN	123
	GO TO 17	MAIN	124
	68 S3(J)=FOCUS3-(F3C-P1X)*XMAG(I)	MAIN	125
	GO TO 17	MAIN	126
	69 S3(J)=FOCUS3-(F4C-P1X)*XMAG(I)	MAIN	127
130	17 V2(J)=(S3(J)-S2(J))/(FLASH3-FLASH2)	MAIN	128
	V3(J)=(S3(J)-S1(J))/(FLASH3-FLASH1)	MAIN	129
	IF(ZX(1).EQ.ZX(2)) GO TO 70	MAIN	130
	L3(J)=0	MAIN	131
	GOTO 75	MAIN	132
135	70 L3(J)=1	MAIN	133
	GOTO 80	MAIN	134
	75 VOL(J)= VOL(J)*(PI*XH1/3.0*(H1**2+R1*R2+R2**2)+PI*XH2/3.0*(H2**2+R2*R3+R3**2))	MAIN	135
140	PI*XH1	MAIN	136
	XVOL(I,J)= PI*XH1/3.0*(R1**2+R1*R2+R2**2)+H1*XH2/3.0*(H2**2+H2*R3+R2**2)	MAIN	137
	XVOL(I,J)= XVOL(I,J)*.001*RH0	MAIN	138
	XL(J)=XL(J)+SQR((P1X-P2X)**2+(P1Y-P2Y)**2)*XMAG(I)	MAIN	139
	DIA(J)=DIA(J)+2.*R2	MAIN	140
145	80 CONTINUE	MAIN	141
	IF(I.LT.NFLASH) GOTO 149	MAIN	142
	IF(IFFLASH.EQ.2) GOTO 85	MAIN	143
	IF(L1(J).EQ.1.AND.L2(J).EQ.1.AND.L3(J).EQ.1) GO TO 149	MAIN	144
	IF(L1(J).EQ.0.AND.L2(J).EQ.0.AND.L3(J).EQ.0) GO TO 90	MAIN	145
	IF(L2(J).EQ.1.AND.L3(J).EQ.1) GO TO 95	MAIN	146
	IF(L1(J).EQ.1.AND.L3(J).EQ.1) GO TO 95	MAIN	147
	IF(L2(J).EQ.0.AND.L3(J).EQ.1) GO TO 95	MAIN	148
	IF(L1(J).EQ.0.AND.L3(J).EQ.0) GO TO 100	MAIN	149
	IF(L2(J).EQ.0.AND.L3(J).EQ.0) GO TO 100	MAIN	150
	IF(L1(J).EQ.0.AND.L2(J).EQ.0) GO TO 100	MAIN	151
	IF(L2(J).EQ.1.AND.L3(J).EQ.1) GO TO 149	MAIN	152
	IF(L1(J).EQ.1.AND.L2(J).EQ.1) GO TO 149	MAIN	153
	IF(L1(J).EQ.0.AND.L2(J).EQ.0) GO TO 100	MAIN	154
	IF(L2(J).EQ.0.AND.L3(J).EQ.0) GO TO 95	MAIN	155
155	90 XMASS(J)=VOL(J)*.001/3.*RH0	MAIN	156
160	XL(J)=XL(J)/3.	MAIN	157
	DIA(J)=DIA(J)/3.	MAIN	158
	GOTO 149	MAIN	159
	95 XMASS(J)=VOL(J)*.001*RH0	MAIN	160
	GOTO 149	MAIN	161
165	100 XMASS(J)=VOL(J)*.001/2.*RH0	MAIN	162
	XL(J)=XL(J)/2.	MAIN	163
	DIA(J)=DIA(J)/2.	MAIN	164
	149 CONTINUE	MAIN	165
170	150 CONTINUE	MAIN	166
	GO TO 170 N=1.NPAHT	MAIN	167
	IF(IFFLASH.EQ.2) GOTO 155	MAIN	168

```

VEL(N)=V1(N)+V2(N)+V3(N))/3.0.
175 GOTO 160
155 VFL(N)=V1(N)+1
160 SUML(N)=XL(N)+SUML(N-1)
SUMMAS(N)=XMASS(N)+SUMMAS(N-1)
ELOD(N)=XL(N)/DIA(N)
VEL(N)=VEL(N)+10.
XKE(N)=5.0*XMASS(N)+.001*(VEL(N)*1000.)**2
180 SUMKE(N)=XKE(N)+SUMKE(N-1)
P(N)=VEL(N)*XMASS(N)
TOTP(N)=P(N)+TOTP(N-1)
SUMDIA(N)=SUMDIA(N-1)+DIA(N)
IF(N.EQ.1)GOTO 165
185 HREAK(N)=SUML(N)/(VEL(1)-VEL(N))
GOTO 170
165 HREAK(1)=0.0
170 PRINT 171, N, VEL(N), SUML(N), HREAK(N)
171 FORMAT(23X,I2.10X,F6.3,9X,F6.2,7X,F6.1)
190 PRINT 52
52 FORMAT(1H1,20X,'PARTICLE',4X,'VELOCITY1',4X,'VELOCITY2',4X,
1'VELOCITY3',4X,'NUMBER',3X,'(MM/MICROSEC)',2X,'(MM/MICROSEC)',1,
22X,'(MM/MICROSEC)',1,/)
DO 172 J=1,NPART
172 PRINT 173, J,V1(J),V2(J),V3(J)
173 FORMAT(23X,I2,9X,F6.3,9X,F6.3,9X,F6.3)
PRINT 175
175 FORMAT(1H1,20X,'PARTICLE LENGTH DIA. L/D MASS TOTAL J MAIN
1ET',4X,'NUMBER',5X,'(MM)',4X,'(MM)',9X,'(GRAMS)',2X,'MASS(GRAMS)',1
2)',1)
DO 176 I=1,NPART
176 PRINT 177, I,XL(I),DIA(I),ELOD(I),AMASS(I)+SUMMAS(I)
177 FORMAT(23X,I2,8X,F4.1,4X,F4.1,2X,F4.1,4X,F5.2,5X,F4.2)
PRINT 603
200 603 FORMAT(1H1,20X,'PARTICLE',4X,'MASS1',9X,'MASS2',9X,'MASS3',4X,22X,
1'NUMBER',4X,'(GRAMS)',7X,'(GRAMS)',7X,'(GRAMS)',1,/)
DO 600 J=1,NPART
I=1
500 =PITF(6,602) IJ,XVOL(I,J),XVOL(I+1,J),XVOL(I+2,J)
602 FORMAT(23X,I2,6X,F8.4,6X,F8.4,6X,F8.4)
PRINT 180
180 FORMAT(1H1,20X,'PARTICLE K.E. TOTAL JET [INSTANCE FROM CM MAIN
1ARGE BASE',4X,'NUMBER',4X,'(JOULES)',3X,'*KE(JOULES)',2X,'FLASH CORPA
21',2X,'FLASH 2',2X,'FLASH 3',1)
DO 181 I=1,NPART
181 PRINT 182, I,XKE(I),SUMKE(I),S1(I),S2(I),S3(I)
182 FORMAT(23X,I2,7X,F8.0,4X,F8.0,4X,F5.0,4X,F5.0,4X,F5.0)
PRINT 183
183 FORMAT(1H1,20X,'PARTICLE',4X,'MOMENTUM',4X,'TOTAL JET',4X,22X,'NUMBER CORPA
1ER',4X,'(KG-M/SEC)',3X,'MOMENTUM',1,/)
DO 185 I=1,NPART
185 PRINT 186,I,P(I),TOTP(I)
186 FORMAT(23X,I2,9X,F6.2,7X,F6.2)
PRINT 33
33 FORMAT(1H1,21X,'PARTICLE',8X,'DEVIANCE FROM PATH (MM)',4X,23X,
1'NUMBER',6X,'FLASH 1 FLASH 2 FLASH 3',1)
DO 800 JJJ=1,NPART
*WRITE (6,36) JJJ,AZ(1,JJJ),AZ(2,JJJ),AZ(3,JJJ)

```

```

230      36 FORMAT(24X,I2,8X,F6.3,3X,F8.3+3X,F8.3)
230      400 CONTINUE
230      DO 192 N=2,NPART
230      SUMLEN(N)=SUMLEN(N-1)+XL(N)
230      XDIA(N)=XDIA(N-1)+DIA(N)
230      IF(N.EQ.2) GO TO 191
235      DELV(N)=VEL(N-1)-VEL(N)
235      GO TO 192
191      DELV(N)=VEL(1)-VEL(N)
192      SVELV(N)=SDELV(N-1)+DFLV(N)
235      DO 195 J=3,NPART
240      195 SUMDEL(J)=DELV(J)+SUMDEL(J-1)
240      AVL1=SUML(NPART)/FLOAT(NPART)
240      AVL2=SUMLEN(NPART)/FLOAT(NPART-1)
240      AV01=SUMDIA(NPART)/FLOAT(NPART)
240      AVD2=XDIA(NPART)/FLOAT(NPART-1)
245      ADELV1=SDELV(NPART)/FLOAT(NPART-1)
245      ADELV2=SUMDEL(NPART)/FLOAT(NPART-2)
245      PRINT 200, AVL1,AVL2,AV01,AVD2,ADELV1,ADELV2
200      FORMAT(1H1, //, 4TX, 'ITH JET TIP', //, 20X, 'AVERAGE PART', MAIN 236
200      1ICLE LENGTH', 7X,F6.2,7X,F6.2, //, 20X, 'AVERAGE PARTICLE DIAMETER', 6X, MAIN 237
200      2F5.2,8X,F5.2, //, 20X, 'AVERAGE CHANGE IN VELOCITY', 6X,F4.2,9X,F4.2) MAIN 238
200      PRINT 505
250      NRA=2
250      NN=1
250      IC=0
255      CALL POLYLS(VEL,S1,NPART,AA,NRA,NN,CC,RR,AF,ERMS,SIG,TT,DET,IC) CORRA 23
255      #WHITE(6,41) CC(1)
255      *1 FORMAT(20X, ' VIRTUAL ORIGIN FOR FLASH 1', F12.6) CORRA 24
255      CALL POLYLS(VEL,S2,NPART,AA,NRA,NN,CC,RR,AF,ERMS,SIG,TT,DET,IC) CORRA 25
255      #WHITE(6,42) CC(1)
260      *2 FORMAT(20X, ' VIRTUAL ORIGIN FOR FLASH 2', F12.6) CORRA 26
260      IF(L.LT.3) GO TO 515 CORRA 27
260      CALL POLYLS(VEL,S3,NPART,AA,NRA,NN,CC,RR,AF,ERMS,SIG,TT,DET,IC) CORRA 28
260      #WHITE(6,43) CC(1)
265      *3 FORMAT(20X, ' VIRTUAL ORIGIN FOR FLASH 3', F12.6) CORRA 29
265      515 CONTINUE CORRA 30
265      505 FORMAT(1H1) MAIN 240
265      DO 510 JN= 1,NPART MAIN 241
265      VOL(JN)=0. MAIN 242
265      XL(JN)=0. MAIN 243
270      510 DIA(JN)=0. MAIN 244
270      500 CONTINUE MAIN 245
270      STOP MAIN 246
270      END MAIN 247

```

APPENDIX D
ALPHABETICAL LISTING OF PROGRAM VARIABLE NAMES

ADELV1: Average change in velocity between particles.

ADELV2: Average change in velocity between particles, excluding the jet tip.

AVD1: Average diameter of all particles.

AVD2: Average diameter of particles, excluding the jet tip.

BREAK: Break-up time.

DELVA: Change in velocity between particles.

DIA: Diameter of a particle.

ELOD: Length-to-diameter ratio of a particle.

L1, L2, L3: Flags for flashes 1,2 and 3 used for determining the average length, diameter and mass of a particle.

P: Momentum of a particle.

P1X, P2X, P3X: Computed x coordinates of points between p_1 and p_6 , p_3 and p_4 , and p_2 and p_5 , respectively.

P1Y, P2Y, P3Y: Computed y coordinates of points between p_1 and p_6 , p_3 and p_4 , and p_2 and p_5 , respectively.

R1: Radius of the front end of a particle.

R2: Radius of the mid-section of a particle.

R3: Radius of the back end of a particle.

S1: Computed distance from the shaped-charge liner base to the back end of a particle for the first flash.

S2: Computed distance from the shaped-charge liner base to the back end of a particle for the second flash.

S3: Computed distance from the shaped-charge liner base to the back end of a particle for the third flash.

SDELV: Summation of the changes in velocities between particles, used in the calculation of average change in velocity.

SUMDEL: Summation of the changes in velocities between particles excluding the jet tip.

SUMDIA: Summation of the diameters of all particles, used to compute average diameter.

SUMKE: Summation of all particle kinetic energies.

SUML: Summation of the lengths of all particles.

SUMLEN: Summation of the lengths of particles excluding the jet tip.

SUMMAS: Summation of the masses of all particles.

TOTP: Summation of the momentums of all particles.

V1: Velocity computed between the first and second flashes.

V2: Velocity computed between the second and third flashes.

V3: Velocity computed between the first and third flashes.

VEL: Average velocity of V1, V2 and V3.

VOL: Summation of the volumes of a particle over all flashes.

XDIA: Summation of all particle diameters excluding the jet tip.

XH1: Height of the truncated cone on the front end of a particle.

XH2: Height of the truncated cone on the back end of a particle.

XKE: Kinetic energy of a particle.

XL: Length of a particle averaged over all flashes.

XMASS: Mass of a particle averaged over all flashes.

XVOL: Mass of a particle for a particular flash.

ZX: X coordinate converted from data units/inch to millimeters.

ZY: Y coordinates converted from data units/inch to millimeters.

APPENDIX E
OUTPUT FROM A SAMPLE RUN

ROUND NUMBER 2203

LINER DENSITY(GM/CC)- 8.9

MAGNIFICATION FACTOR- .92000 .92000 .92000

DISTANCE FROM LINER BASE TO FOCAL POINT(MM)

FLASH 1- 914.4

FLASH 2- 914.4

FLASH 3- 914.4

DELAY TIMES (MICROSEC)

FLASH 1- 161.9

FLASH 2- 183.1

FLASH 3- 202.9

PARTICLE NUMBER	AVG. VELOCITY (MM/MICROSEC)	TOTAL JET LENGTH (MM)	BREAK-UP (MICROSEC)
1	7.741	30.93	0.0
2	7.549	42.00	214.8
3	7.476	54.87	207.1
4	7.371	77.95	210.4
5	7.123	87.68	141.4
6	7.046	97.79	140.7
7	6.918	107.25	130.3
8	6.899	110.82	131.6
9	6.863	116.90	133.2
10	6.776	131.93	136.8
11	6.625	144.04	129.0
12	6.614	149.58	132.7
13	6.501	163.09	131.4
14	6.323	178.85	126.1
15	6.291	184.00	126.4
16	6.188	188.02	121.0
17	6.163	193.36	122.4
18	6.124	201.88	124.8
19	5.951	214.24	114.7
20	5.898	226.25	122.0
21	5.772	243.74	123.0
22	5.613	262.23	123.0
23	5.432	278.11	120.3
24	5.295	288.03	117.8
25	5.247	298.54	119.7
26	5.160	310.01	120.8
27	5.075	321.11	120.4
28	4.944	331.04	118.4
29	4.842	350.73	121.0
30	4.674	368.56	120.0
31	4.588	376.67	114.4
32	4.501	394.42	121.1
33	4.414	407.47	122.0
34	4.213	430.33	122.1
35	4.084	441.84	120.4
36	4.046	454.14	122.0
37	3.872	473.40	122.1
38	3.629	494.02	120.1
39	3.556	510.84	122.0
40	3.333	538.74	122.0
41	3.177	554.78	121.6
42	3.066	574.32	122.4
43	2.822	595.34	121.1

PARTICLE NUMBER	VELOCITY1 (MM/MICROSEC)	VELOCITY2 (MM/MICROSEC)	VELOCITY3 (MM/MICROSEC)
1	7.773	7.709	7.742
2	7.573	7.525	7.550
3	7.483	7.469	7.476
4	7.586	7.150	7.376
5	7.244	6.999	7.126
6	7.163	6.926	7.049
7	7.048	6.785	6.921
8	7.009	6.786	6.901
9	6.987	6.737	6.866
10	6.886	6.664	6.779
11	6.728	6.519	6.627
12	6.580	6.649	6.613
13	6.555	6.445	6.502
14	6.370	6.275	6.324
15	6.325	6.256	6.292
16	6.239	6.135	6.189
17	6.206	6.119	6.144
18	6.178	6.068	6.125
19	6.014	5.888	5.943
20	5.950	5.846	5.900
21	5.849	5.692	5.774
22	5.699	5.524	5.615
23	5.532	5.330	5.435
24	5.362	5.226	5.257
25	5.307	5.186	5.248
26	5.227	5.108	5.170
27	5.123	5.026	5.074
28	5.020	4.867	4.944
29	5.823	3.839	4.015
30	4.797	4.548	4.677
31	4.694	4.479	4.641
32	4.621	4.378	4.503
33	4.509	4.317	4.416
34	4.330	4.043	4.216
35	4.204	3.964	4.040
36	4.175	3.915	4.049
37	3.974	3.776	3.851
38	3.787	3.468	3.623
39	3.699	3.408	3.554
40	3.457	3.205	3.334
41	3.305	3.046	3.150
42	3.253	2.876	3.071
43	2.953	2.688	2.825

PARTICLE NUMBER	LENGTH (MM)	DIA. (MM)	L/D	MASS (GRAMS)	TOTAL JET MASS (GRAMS)
1	30.9	4.8	6.4	3.70	3.70
2	11.1	2.5	4.4	.29	3.44
3	12.9	2.9	4.5	.41	4.40
4	23.1	2.8	8.3	.73	5.14
5	9.7	2.9	3.4	.30	5.44
6	10.1	2.7	3.7	.31	5.75
7	9.5	2.3	4.1	.23	4.97
8	3.6	2.0	1.8	.07	4.04
9	6.1	2.4	2.6	.14	4.18
10	15.0	2.6	5.8	.48	4.66
11	12.1	2.4	5.0	.30	6.97
12	5.5	2.5	2.2	.15	7.12
13	13.5	2.9	4.7	.42	7.54
14	15.8	2.5	6.3	.43	7.97
15	5.1	2.2	2.3	.11	4.07
16	4.0	2.1	1.9	.07	4.14
17	5.3	2.5	2.1	.13	4.28
18	8.5	2.8	3.1	.26	4.52
19	12.4	2.8	4.4	.40	5.43
20	12.0	2.3	5.3	.27	4.14
21	17.5	2.3	7.7	.42	9.61
22	18.5	2.6	7.1	.50	10.10
23	15.9	2.6	6.0	.44	10.55
24	9.9	2.8	3.5	.31	10.86
25	10.5	2.7	3.9	.31	11.17
26	11.5	2.6	4.4	.31	11.48
27	11.1	3.0	3.7	.34	11.88
28	9.9	2.9	3.5	.34	12.20
29	14.7	2.9	6.4	.66	12.87
30	17.8	2.8	6.3	.56	13.42
31	8.1	2.9	2.8	.25	13.66
32	18.3	2.6	7.0	.51	14.17
33	12.5	3.1	4.0	.47	14.64
34	22.9	2.8	8.1	.73	14.37
35	11.5	2.9	4.0	.39	14.76
36	12.3	3.2	3.9	.46	15.22
37	14.3	3.0	6.4	.78	17.00
38	20.6	3.6	5.6	.96	17.46
39	16.8	3.0	5.6	.66	18.61
40	27.4	3.5	8.0	1.49	21.11
41	16.0	3.6	4.5	.73	21.84
42	14.5	4.0	4.9	1.10	21.94
43	21.0	3.9	5.3	1.24	23.18

PARTICLE NUMBER	MASS1 (GRAMS)	MASS2 (GRAMS)	MASS3 (GRAMS)
1	3.2790	3.7919	4.0380
2	.2431	.3145	.3044
3	.3305	.5462	.3644
4	.7037	0.0000	.7587
5	.2584	.3559	.2993
6	.2835	.3017	.3442
7	.1980	.2552	.2214
8	.0553	.0600	.0804
9	.1137	.1287	.1890
10	.4704	.4470	.5257
11	.2633	.3399	.3070
12	.1232	.1771	0.0000
13	.3949	.4784	.3792
14	.4385	.4003	.4510
15	.0947	.0979	.1233
16	.0725	.0615	.0746
17	.0923	.1691	.1431
18	.2072	.3005	.2321
19	.2944	.5067	.4109
20	.2320	.3066	.2623
21	.2049	.4622	.4894
22	.4570	.4864	.5437
23	.4447	.3612	.5205
24	.3100	.3123	.3067
25	.2868	.3094	.3424
26	.3022	.3063	.3340
27	.4153	.3907	.3757
28	.3499	.3318	.2424
29	.6938	0.0000	.6331
30	.6149	.5427	.4427
31	.3094	.1883	.2465
32	.7043	.3562	.4584
33	.4304	.5044	0.0000
34	.7279	.6434	.6305
35	.3945	.3630	.4035
36	.4736	.5001	.3942
37	.9466	.6912	.7134
38	1.2210	.9140	.7421
39	.5911	.4527	.9200
40	1.6889	1.5623	1.1457
41	.7484	.6758	.7803
42	1.2289	1.1217	.9580
43	1.3572	1.1849	1.1808

PARTICLE NUMBER	K.E. (JOULES)	TOTAL JET KE(JOULES)	DISTANCE FROM CHARGE BASE (MM)		
			FLASH 1	FLASH 2	FLASH 3
1	110950.	110950.	1005.	1170.	1323.
2	8188.	119138.	980.	1140.	1249.
3	11561.	130699.	964.	1123.	1271.
4	19862.	150560.	930.	1091.	1233.
5	7726.	158286.	915.	1069.	1217.
6	7690.	165976.	902.	1054.	1191.
7	5384.	171360.	888.	1038.	1172.
8	1552.	172912.	884.	1032.	1167.
9	3387.	176299.	876.	1025.	1158.
10	11045.	187345.	859.	1005.	1137.
11	6657.	194002.	841.	983.	1112.
12	3245.	197286.	831.	970.	1102.
13	8821.	206108.	816.	955.	1083.
14	8594.	214702.	794.	924.	1043.
15	2083.	216785.	788.	922.	1046.
16	1331.	218117.	782.	914.	1036.
17	2560.	220677.	776.	907.	1025.
18	4624.	225300.	766.	897.	1017.
19	7154.	232455.	749.	874.	963.
20	4644.	237099.	736.	862.	978.
21	6924.	244023.	715.	839.	942.
22	7807.	251830.	689.	810.	920.
23	6524.	258354.	664.	784.	842.
24	4341.	262695.	655.	764.	872.
25	4309.	267004.	645.	757.	860.
26	4196.	271200.	633.	743.	845.
27	5073.	276273.	621.	724.	829.
28	3969.	280242.	608.	714.	811.
29	7777.	288020.	587.	701.	785.
30	6009.	294024.	566.	682.	748.
31	2611.	296640.	557.	667.	746.
32	5145.	301784.	538.	634.	723.
33	4554.	306338.	523.	614.	714.
34	6515.	312853.	500.	595.	673.
35	3234.	316087.	488.	577.	655.
36	3733.	319820.	475.	562.	641.
37	5495.	325715.	452.	537.	611.
38	6315.	332030.	425.	504.	574.
39	4141.	336172.	409.	487.	555.
40	4287.	344454.	381.	464.	518.
41	3709.	348167.	366.	437.	498.
42	5182.	353344.	344.	414.	471.
43	4942.	358292.	323.	395.	434.

PARTICLE NUMBER	MOMENTUM (KG-M/SEC)	TOTAL JET MOMENTUM
1	28.67	28.67
2	2.17	30.83
3	3.09	33.93
4	5.39	39.32
5	2.17	41.49
6	2.18	43.67
7	1.56	45.23
8	.45	45.68
9	.99	46.66
10	3.26	49.92
11	2.01	51.93
12	.99	52.92
13	2.71	55.64
14	2.72	58.36
15	.66	59.02
16	.43	59.45
17	.83	60.28
18	1.51	61.74
19	2.40	64.10
20	1.57	65.77
21	2.40	68.17
22	2.78	70.45
23	2.40	73.35
24	1.64	74.49
25	1.64	76.64
26	1.62	78.26
27	2.00	80.26
28	1.61	81.86
29	3.21	85.08
30	2.57	87.65
31	1.14	88.74
32	2.29	91.07
33	2.06	93.13
34	3.04	96.23
35	1.58	97.81
36	1.84	99.65
37	3.04	102.69
38	3.48	106.17
39	2.33	108.50
40	4.97	113.48
41	2.33	115.81
42	3.38	114.14
43	3.50	122.64

	WITH JET TIP	W/O TIP
AVERAGE PARTICLE LENGTH (mm)	13.85	13.44
AVERAGE PARTICLE DIAMETER (mm)	2.84	2.74
AVERAGE CHANGE IN VELOCITY (mm/ μ sec) • 12		.17

VIRTUAL ORIGIN FOR FLASH 1= -85.114956 MM
VIRTUAL ORIGIN FOR FLASH 2= -81.133748 MM
VIRTUAL ORIGIN FOR FLASH 3= -85.896955 MM

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Commander Defense Technical Info Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
2	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS (2 cys) Dover, NJ 07801	2	Commander US Army Missile Command ATTN: DRSMI-R DRSMI-YDL Redstone Arsenal, AL 35809
1	Commander US Army Armament Materiel Readiness Command ATTN: DRSAR-LEP-L, Tech Lib Rock Island, IL 61299	1	Commander US Army Tank Automotive Rsch and Development Command ATTN: DRDTA-UL Warren, MI 48090
1	Director US Army ARRADCOM Benet Weapons Laboratory ATTN: DRDAR-LCB-TL Watervliet, NY 12189	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range NM 88002
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E P. O. Box 209 St. Louis, MO 61366	1	AFELM, The Rand Corporation ATTN: Library-1 1700 Main Street Santa Monica, CA 90406
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035		<u>Aberdeen Proving Ground</u> Dir, USAMSAA ATTN: DRXSY-1 DRXSY-MP, H. Cohen Cdr, USATECOM ATTN: DRSTE-TO-F Dir, USA CSL Bldg. E3516, EA ATTN: DRDAR-CLB-PA

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number _____

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: _____

Telephone Number: _____

Organization Address: _____

— — — — — FOLD HERE — — — — —

Director
US Army Ballistic Research Laboratory
Aberdeen Proving Ground, MD 21005

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 12062 WASHINGTON, DC
POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director
US Army Ballistic Research Laboratory
ATTN: DRDAR-TSB
Aberdeen Proving Ground, MD 21005

— — — — — FOLD HERE — — — — —