Manual Dimensional Analysis

```
density = parameter('density', 'kg m^-3', '\\rho')
viscosity = parameter('viscosity', 'kg m^-1 s^-1', '\mu')
velocity = parameter('velocity', 'm s^-1', 'u')
diameter = parameter('diameter', 'm', 'D')
```

dimensional_analysis(density, viscosity, velocity, diameter)

$$\left\{\Pi_0: rac{
ho D u}{\mu}
ight\}$$

solve_from_dimensional_analysis(density, viscosity, velocity, diameter,
target_parameter=velocity)

$$\left\{\Pi_0: \left\lceil \frac{\Pi_0 \mu}{\rho D} \right\rceil \right\}$$

Automated Standard Dimensional Analysis

Kinetic Energy

standard_dimensional_analysis('kinetic_energy mass velocity')

$$\left\{\Pi_0: \frac{\sqrt{m}v}{\sqrt{KE}}\right\}$$

$$\left\{\Pi_0:\left[rac{\Pi_0^2KE}{v^2}
ight]
ight\}$$

Fluid Flow

standard_dimensional_analysis('density viscosity velocity diameter')

$$\left\{\Pi_0: \frac{\rho D v}{\mu}\right\}$$

Pendulum

standard_dimensional_analysis('period g length')

$$\left\{\Pi_0: rac{L}{T^2g}
ight\}$$

Fluid Static

standard_dimensional_analysis('pressure density g height')

$$\left\{\Pi_0: rac{
ho hg}{P}
ight\}$$

Wave Equation

standard_dimensional_analysis('wave_length velocity period')

$$\left\{\Pi_0: rac{Tv}{\lambda}
ight\}$$

Magnetic Force

standard_dimensional_analysis('magnetic_field force electric_current length')

$$\left\{\Pi_0: rac{ILB}{F}
ight\}$$

 $solve_from_standard_dimensional_analysis('magnetic_field\ force\ electric_current\ length',\ 'force')$

$$\left\{\Pi_0: \left[\frac{ILB}{\Pi_0}\right]\right\}$$