

11.14: Lewis Acids and Bases

Many oxyacids are rather unstable and cannot be isolated in pure form. An example is carbonic acid, H_2CO_3 , which decomposes to water and carbon dioxide:

$$H_2CO_3(aq) \rightleftharpoons H_2O(l) + CO_2(g)$$

This decomposition process is familiar to us, as it is responsible for the fizzy nature of soda. When the CO_2 is dissolved in the soda, it becomes H_2CO_3 , but when the soda is released from high pressure, the decomposition process occurs rapidly, forming bubbles of CO_2 and water.

Since it can be made by removing H₂O from H₂CO₃, CO₂ is called the acid anhydride of H₂CO₃. (The term anhydride is derived from anhydrous, meaning "not containing water.") Acid anhydrides are usually oxides of nonmetallic elements. Some common examples and their corresponding oxyacids are SO_2 — H_2SO_3 ; SO_3 — H_2SO_4 ; P_4O_{10} — H_3PO_4 ; N_2O_5 — HNO_3 . Any of these anhydrides increases the hydronium-ion concentration when dissolved in water; for example,

$$\mathrm{P_4O_{10}}(s) + 6\mathrm{H_2O}(l)
ightarrow 4\mathrm{H_3PO_4}(aq)$$

$$\mathrm{H_3PO_4}(aq) + \mathrm{H_2O}(l) \rightleftharpoons \mathrm{H_3O^+}(aq) + \mathrm{H_2PO_4^-}(aq)$$

In the Arrhenius sense, then, acid anhydrides are acids, but according to the Brönsted-Lowry definition, they are not acids because they contain no hydrogen.

In 1923, at the same time that the Brönsted-Lowry definition was proposed, G. N. Lewis suggested another definition which includes the acid anhydrides and a number of other substances as acids. According to the **Lewis definition**, an acid is any species which can accept a lone pair of electrons, and a base is any species which can donate a lone pair of electrons. An acid-base reaction in the Lewis sense involves formation of a coordinate covalent bond (where one atom provides both shared electrons).

The Lewis definition has little effect on the types of molecules we expect to be basic. All the Brönsted-Lowry bases, for example, NH₃, O²⁻, H⁻, contain at least one lone pair. Lewis' idea does expand the number of acids, though. The proton is not the only species which can form a coordinate covalent bond with a lone pair. Cations of the transition metals, which are strongly hydrated, do the same thing:

$$\text{Cr}^{3+}_{1\text{ ewis acid}} + \text{6H}_2\text{O}_{2} \to \text{Cr}(\text{H}_2\text{O})_6^{3+}$$
 (11.14.1)

$$\begin{array}{l} \operatorname{Cr}^{3+} + 6\operatorname{H}_2\operatorname{O} \to \operatorname{Cr}(\operatorname{H}_2\operatorname{O})_6^{3+} \\ \operatorname{Lewis\ acid} + \operatorname{Lewis\ base} \end{array} \to \operatorname{Cu}(\operatorname{NH}_3)_4^{2+} \\ \operatorname{Lewis\ acid} + \operatorname{Lewis\ base} \end{array} \to \operatorname{Cu}(\operatorname{NH}_3)_4^{2+}$$
 (11.14.2)

So can electron deficient compounds such as boron trifluoride:

$$BF_3$$
 + :NH₃ \rightarrow F₃B:NH₃

Many Lewis acid-base reactions occur in media other than aqueous solution. The Brönsted-Lowry theory accounts for almost all aqueous acid-base chemistry. Therefore the Brönsted-Lowry concept is most often intended when the words acid or base are used. The Lewis definition is useful when discussing transition-metal ions, however, and is discussed again in the sections on Metals.

Example 11.14.1: Lewis Acids and Bases

Identify the Lewis acids and bases in the following list. Write an equation for the combination of each acid with the Lewis base $H_2O.(a)$ Be $Cl_2(g)$; (b) CH_3OH ; (c) SO_2 ; (d) CF_4 .

Solution

a) The Lewis diagram

shows that Be is electron deficient. Therefore $BeCl_2(g)$ is a Lewis acid. Because of the lone pairs on the Cl atoms, $BeCl_2$ can also act as a Lewis base, but Cl is rather electronegative and reluctant to donate electrons, so the Lewis base strength of $BeCl_2$ is less than the Lewis acid strength.

$$BeCl_2 + 2H_2O \longrightarrow Cl OH_2$$
 $Cl OH_2$

- **b)** There are lone pairs on O in CH₃OH, and so it can serve as a Lewis base.
- c) The S atom in SO₂ can accept an extra pair of electrons, and so SO₂ is a Lewis acid. The O atoms have lone pairs but are only weakly basic for the same reason as the Cl atoms in part (a).

$$: \overset{\cdot \circ}{\circ} \overset{\cdot \circ}{\underset{\mid \circ}{\mid}} + H - \overset{\circ}{\circ} : \longrightarrow H - \overset{\circ}{\circ} - \overset{\circ}{\overset{\circ}{\circ}} - \overset{\circ}{\overset{\circ}{\circ}} : \longrightarrow H - \overset{\circ}{\overset{\circ}{\circ}} - \overset{\circ}{\overset{\circ}{\circ}} - H$$

d) Although there are lone pairs on the F atoms, the high electronegativity of F prevents them from being donated to form coordinate covalent bonds. Consequently CF_4 has essentially no Lewis-base character.

This page titled 11.14: Lewis Acids and Bases is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn.