Problem Set on Convex Sets

Let's recall some definitions.

Definition 1. A closed half-space in \mathbb{R}^n is a set of points $[p \ge \alpha] = \{x : p \cdot x \ge \alpha\}$ or $[p \le \alpha] = \{x : p \cdot x \le \alpha\}$ for some $p \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$.

A half-space is just the set of points one side or the other of a hyperplane $[p = \alpha] = \{x : p \cdot x = \alpha\}$. If the half-space includes the hyperplane, it is closed. If it contains no points in the hyperplane, it is open.

Definition 2. A hyperplane $[p = \alpha]$ separates convex sets A and B iff for all $x \in A$ and $y \in B$, $p \cdot x \leq \alpha$ and $p \cdot y \geq \alpha$ (or vice versa). That is, $A \subset [p \leq \alpha]$ and $B \subset [p \geq \alpha]$ (or vice versa). The separation is **proper** iff there is some $x \in A$ and $y \in B$ for which $p \cdot x \neq p \cdot y$.

Proper just means that the two convex sets do not lie in the hyperplane.

Definition 3. Two convex sets A and B are **strongly separated** by p iff there is an $\epsilon > 0$ and α such that $A \subset [p \leq \alpha]$ and $B \subset [p \geq \alpha + \epsilon]$ (or vice versa).

The key result for us is

Theorem 1 (Strong Separating Hyperplane Theorem). If K and C are non-empty disjoint convex subsets of \mathbb{R}^n with K compact and C closed, then there is a $p \neq 0$ which strongly separates K and C.

Strong separation means that there is a separating hyperplane containing neither set.

There are two ways to describe a closed convex set C. The **primal** description of C is the list of elements in C. The **dual** description of C is the set of closed half-spaces containing C. Proving this, which we briefly discussed in class, is problem 1 below.

- 1. Use the strong separating hyperplane theorem to show that if C is a closed convex set, then C is the intersection of the half-spaces containing it.
- 2. For $p \in \mathbf{R}^{\mathbf{n}}$, define $e_C(p) = \inf\{p \cdot x, x \in C\}$. $e_C(p)$ is called the **concave support function** of C.
 - (a) Show that e(p) is concave.
 - (b) Show that e(p) is homogeneous of degree 1.
 - (c) What does it mean if $e(p) = -\infty$? You can explain with a picture.
 - (d) Show that $[p \ge \alpha]$ ($[-p \le -\alpha]$) contains C iff $\alpha \le e(p)$.
- 3. Show that a function $f: \mathbf{R}^{\mathbf{n}} \to \mathbf{R}$ is concave iff $\{(x, y) \in \mathbf{R}^{\mathbf{n}} \times \mathbf{R} : y \le f(x)\}$ is convex. This set is called the **subgraph** or **hypograph** of f.
- 4. Give an example of two closed convex sets that cannot be strongly separated.
- 5. Prove Gordan's Lemma: Either Ax = 0, x > 0 has a solution or $yA \ll 0$ has a solution. Hint: This follows from Farkas' lemma.

For notation in problem 5 (and throughout the course), $x \ge 0$ means $x \in \mathbf{R}_+^{\mathbf{n}}$. x > 0 means that $x \ge 0$ and $x \ne 0$. Such vectors are called *semi-positive*. $x \gg 0$ means that each component of x is strictly positive. Similarly for the less-than relationships.