POLYNOMIALS

ASSIGNMENT-1

- 1. Is 2- $\sqrt{3}x + 5x^2$ a polynomial or not?
- 2. Find quadratic polynomials if zeroes are given as following
 - (i) $3 + \sqrt{2}$ and $3 \sqrt{2}$ (ii) $3 + \sqrt{5}$ and $3 \sqrt{5}$ (iii) $\frac{2}{3}$ and $-\frac{1}{3}$
- 3. Write the zeros of the polynomial $x^2 + 5x + 6$.
- 4. If α and β are the zeros of $x^2 + 5x + 12$, then what is the value of $\alpha\beta$?
- 5. Find the quadratic polynomial, whose zeros are $\frac{5}{3}$ and $\frac{-3}{2}$?
- 6. If the sum of the zeros of the polynomial $f(x) = 2x^3 kx^2 + 4x 5$ is 6, then what is the value of K?
- 7. Find the quadratic equation if one zeroes is $(2+\sqrt{5})$ and sum of zeroes is 4
- 8. Can x-1 be the remainder of division of a polynomial p(x) by x + 3?
- 9. What is the sum of the zeros of the polynomial $4x^2 6x + 12$?
- 10. If one zero of the zeros of quadratic polynomial $P(x) = x^2 + 4kx 25$ is negative of the other, find the value of K.
- 11. If α and β are the zeros of the polynomial $f(x) = ax^2 + bx + c$, then find $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.
- 12. If 1 is the zero of the quadratic polynomial $x^2 + kx 5$, then find the value of k.
- 13. If one root of the polynomial $f(x) = x^2 + 5x + k$ is reciprocal of the other, find the value of K.
- 14. Find the zeros of the linear polynomial y=2x-7 graphocally.
- 15. If α , β are the zeros of $f(x) = px^2 2x + 3p$ and $\alpha + \beta = \alpha\beta$, then find the value of p.

- 16. What mist be subtracted from the polynomial $8x^4 + 14x^3 + x^2 + 7x + 8$, so that the resulting polynomial is exactly divisible by $4x^2 3x + 2$?
- 17. If (x + b) is a factor of the $2x^2 + 2bx + 5x + 10$, find the b.
- 18. If the product of zeros of the polynomial $ax^2 6x 6$ is 4, find the value of a.
- 19. If α and β are the zeros of the quadratic polynomial $p(x) = x^2 5x 1$, find the value of $\frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} + 2\left[\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right] \alpha\beta$
- 20. If a and b are the zeros of the polynomial $x^2 5x + 6$, find a polynomial whose zeros are 2a 1 and 2b 1.
- 21. Divide the polynomial $2x^2 + 3x + 1$ by the polynomial x + 2 and verify the division algorithm.
- 22. If a and b are the zeros of the quadratic polynomial $f(x) = 2x^2 5x + 7$, find the polynomial whose zeros are 2a + 2b and 2a + 2b.
- 23. Check whether the polynomial $g(x) = x^2 2$ is a factor of the polynomial $f(x) = x^4 + x^3 + x^2 2x 3$ by applying division algorithm.
- 24. If a and b are the zeros of the quadratic polynomial $f(x) = x^2 p(x+1) q$, show that (a+1)(b+1) = 1-q.
- 25. If (x-2) is a factor of $x^3 + ax^2 + bx + 16$ and b = 4a find the values of a and b.
- 26. If the zeros of the quadratic polynomial $x^2(a+1)x + b$ are 2 and -3, then find a and b.

- 27. Check whether the polynomial $x^2 3$ is a factor of the polynomial $2x^4 + 3x^3 2x^2 9x 12$, by dividing the second polynomial by the first polynomial.
- 28. Find the zeros of $2x^4 3x^3 3x^2 + 6x 2$, if you know that two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.
- 29. Find all the zeros of the polynomial $f(x) = 2x^4 3x^3 5x^2 + 9x 3$, it being given that two of its zeros are $\sqrt{3}$ and $-\sqrt{3}$.
- 30. If the polynomial x^4 $6x^3$ + $16x^2$ 25x + 10 is divided by another polynomial x^2 2x + k, the remainder comes out to be x + a, find k and a.
- 31. If $\sqrt{2}$ is a zero of the cubic polynomial $6x^3 + \sqrt{2}x^2 10x 4\sqrt{2}$, then find its other two zeros.
- 32. If $x \sqrt{5}$ is a factor of the cubic polynomial $x^3 3\sqrt{5}x^2 + 13x 3\sqrt{5}$, then find all the zeros of the polynomial....

ASSIGNMENT-2

- 1. Look at the graph in the given fig. Each is the graph of y = p(x), where p(x) is a polynomial. For each of the graphs, find the numbers of zeroes of p(x).
- 2. Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$, and verify the relationship between the zeroes and the coefficient.
- 3. Find the zeroes of the polynomial x^2-3 and verify the relationship between the zeroes and the coefficients.
- 4. Find the quadratic polynomial, the sum and product of whose zeroes are -3 and 2, respectively.
- 5. Verify that 3, -1 and - $\frac{1}{3}$ are zeroes of the cubic polynomial $p(x) = 3x^2 5x^2 11x 3$, and then verify the relationship between the zeroes and the coefficients.
- 6. Divide $2x^2 + 3x + 1$ by x + 2.

- 7. Divide $3x^2 x^3 3x + 5$ by $x 1 x^2$, and verify the division algorithm.
- 8. Find all zeroes of $2x^4 3x^3 3x^2 + 6x 2$, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

