More about OPL and Integer Programming

DS 775

Topics

- Optimization Programming Language (OPL)
 - using external data
 - our example: Excel -> R -> OPL
- Integer Programming
 - examples
 - how is different than linear programming?
 - much greater computational complexity

Using External Data in OPL

- for larger models you're not going to want to type a .dat file
- options
 - avoid OPL and construct model in R or python, then solve through API or native solver
 - use tools in IBM Optimization Studio to import data (SQL, Excel, ...)
 - use rich data tools in R or python to read data and output .dat file (munge!)

Munging Example

- use R package XLconnect to read data from Excel spreadsheet into dataframes
- use R to write text .dat file
- run in IBM optimization studio
- example write transp4.dat file we saw last week
 - see transpsheet.xlsx and transpWrite.R that from this week's download folder

Integer Programming

- Decision variables constrained to integer values
- Can produce 5 or 6 cars, but not 5.72 cars
- Often have binary (boolean) variables, 0 for no, 1 for yes

Prototype Example

Investment	Cost	Future Value
1	6	9
2	3	5
3	5	6
4	2	4

- decision variables: $x_j = 0$ (no) or 1 (yes) to buy investment j
- constraints
 - total cost ≤ 10
 - investments 3 and 4 aren't allowed together: $x_3 + x_4 \le 1$
 - only invest in 3 after investing in 1: $x_3 \le x_1$
 - only invest in 4 after investing in 2: $x_4 \le x_2$

Prototype Formulation

and each x_i has to be 0 or 1.

Maximize
$$Z = 9x_1 + 5x_2 + 6x_3 + 4x_4$$
 subject to: $6x_1 + 3x_2 + 5x_3 + 2x_4 \le 10$ $x_3 + x_4 \le 1$ $-x_1 + x_3 \le 0$ $-x_2 + x_4 \le 0$

Site Selection

- each x_i is binary to build a production facility at location i
- minimize total cost
- subject to meeting production need

Either-Or Constaints

• suppose we want one or the other or perhaps both of these:

$$3x_1 + 2x_2 \le 18$$
$$x_1 + 4x_2 \le 16$$

ullet introduce an extra binary variable y and let M be a very large number, then use

$$3x_1 + 2x_2 \le 18 + My$$

 $x_1 + 4x_2 \le 16 + M(1 - y)$

Fixed-Charge Problems

- build x_i widgets at cost c_i
- addition fixed cost of k_j if $x_j > 0$
- binary variable y_j is 1 if we decide to make widgets and 0 otherwise
- to make sure x_j is 0 if y_j is zero we add a constraint $x_j \leq My_j$ (use large M)
- total cost of widgets is $\sum c_j x_j + k_j y_j$

NP-Hard Problems

- many integer programs fall into this class of problems
- the computational complexity can increase exponentially with the number of variables
- by contrast the Simplex Method scales linearly
- Interior Point method scales cubically
- computational complexity can grow exponentially

Numerical Methods for Integer Programming

- cutting plane methods
 - start with solution allowing real variables (linear relaxation)
 - add linear constraints to drive the solution to feasible integer solution
 - also called Branch-and-Cut
- branch and bound methods
 - split the search space recursively and remove parts that aren't competitive

Employee Scheduling Problem

- schedule employees at restaurant to meet labor demand and minimize payroll
- decision variables
 - shift start time (integer)
 - length of shift (continuous)
- Mixed Integer Program

Applications of (mixed) integer programming

- production planning (maximize production)
- scheduling (find feasible solution, minimize cost)
- telecomm network planning (minimizing cost)
- cellular networks (allocating frequencies)
- traveling salesman (minimize cost)

Integer Programming in OPL

- just declare the relevant variables to be integer type and specify the range
- for binary variables the last two statements are equivalent

```
dvar int x in 0..maxint;
dvar int y in 0..5;
dvar z in 0..1;
dvar boolean z;
```

Integer Programming in Solver

 Dave Reineke is helping with this slide so consider this a placeholder

Large Integer Programs

- may require special numerical techniques
- some involve relaxation
- solve sequence of problems with continuous variables
- special methods for all binary variables
- others