Assignment 2

Name: Arnab Sen
Roll: 510519006
Date: Aug 12, 2022

(i) Download data

Data downloaded and stored at drive.

```
In [ ]: from google.colab import drive
         drive.mount('/content/drive')
        Drive already mounted at /content/drive; to attempt to forcibly remount, call
        drive.mount("/content/drive", force_remount=True).
         BASE_PATH = '/content/drive/MyDrive/Colab_Notebooks/ML_DRIVE/Assign_2/dataset'
In [ ]:
In [ ]: import numpy as np
         import pandas as pd
         from sklearn.linear_model import LogisticRegression
         from sklearn.model_selection import KFold
         from sklearn.naive_bayes import BernoulliNB
         from random import randint
         from statistics import mean
         import matplotlib.pyplot as plt
        dataset = pd.read_csv(f"{BASE_PATH}/data.csv")
In [ ]:
         print("Dataset shape:", dataset.shape)
         print("Dataset columns:", dataset.columns)
        Dataset shape: (569, 33)
        Dataset columns: Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'p
        erimeter_mean',
                'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean',
                'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
                'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_s
        e',
                'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
                'fractal_dimension_se', 'radius_worst', 'texture_worst',
                'perimeter_worst', 'area_worst', 'smoothness_worst',
'compactness_worst', 'concavity_worst', 'concave points_worst',
                'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'],
               dtype='object')
        dataset = dataset.drop(columns = ['id', 'Unnamed: 32'])
In [ ]:
         dataset
```

Out[]:		diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	comp
	0	М	17.99	10.38	122.80	1001.0	0.11840	
	1	М	20.57	17.77	132.90	1326.0	0.08474	
	2	М	19.69	21.25	130.00	1203.0	0.10960	
	3	М	11.42	20.38	77.58	386.1	0.14250	
	4	М	20.29	14.34	135.10	1297.0	0.10030	
	564	М	21.56	22.39	142.00	1479.0	0.11100	
	565	М	20.13	28.25	131.20	1261.0	0.09780	
	566	М	16.60	28.08	108.30	858.1	0.08455	
	567	М	20.60	29.33	140.10	1265.0	0.11780	
	568	В	7.76	24.54	47.92	181.0	0.05263	

(ii) Implement Logistic regression

Implement Logistic regression using scikit-learn package in python after splitting the dataset 80:10:10 percent (use seed = 5 for splitting).

```
In [ ]:
        def train_validate_test_split(df, train_percent=.8, validate_percent=.1, seed=
            np.random.seed(seed)
            perm = np.random.permutation(df.index)
            m = len(df.index)
            train_end = int(train_percent * m)
            validate_end = int(validate_percent * m) + train_end
            train = df.iloc[perm[:train_end]]
            validate = df.iloc[perm[train_end:validate_end]]
            test = df.iloc[perm[validate_end:]]
            return train, validate, test
In [ ]: train_df, validation_df, test_df = train_validate_test_split(dataset, train_pe
        print("Shape of train:", train_df.shape)
        print("Shape of validation:", validation_df.shape)
        print("Shape of test:", test_df.shape)
        Shape of train: (455, 31)
        Shape of validation: (56, 31)
        Shape of test: (58, 31)
        train_df
In [ ]:
```

Out[]:		diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	comp
	28	М	15.300	25.27	102.40	732.4	0.10820	
	163	В	12.340	22.22	79.85	464.5	0.10120	
	123	В	14.500	10.89	94.28	640.7	0.11010	
	361	В	13.300	21.57	85.24	546.1	0.08582	
	549	В	10.820	24.21	68.89	361.6	0.08192	
	266	В	10.600	18.95	69.28	346.4	0.09688	
	470	В	9.667	18.49	61.49	289.1	0.08946	
	473	В	12.270	29.97	77.42	465.4	0.07699	
	169	В	14.970	16.95	96.22	685.9	0.09855	
	36	М	14.250	21.72	93.63	633.0	0.09823	

In []: validation_df

Out[]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	comp
243	В	13.750	23.77	88.54	590.0	0.08043	
82	М	25.220	24.91	171.50	1878.0	0.10630	
260	М	20.310	27.06	132.90	1288.0	0.10000	
433	М	18.820	21.97	123.70	1110.0	0.10180	
348	В	11.470	16.03	73.02	402.7	0.09076	
372	М	21.370	15.10	141.30	1386.0	0.10010	
314	В	8.597	18.60	54.09	221.2	0.10740	
22	М	15.340	14.26	102.50	704.4	0.10730	
337	М	18.770	21.43	122.90	1092.0	0.09116	
308	В	13.500	12.71	85.69	566.2	0.07376	
550	В	10.860	21.48	68.51	360.5	0.07431	
239	М	17.460	39.28	113.40	920.6	0.09812	
220	В	13.650	13.16	87.88	568.9	0.09646	
13	М	15.850	23.95	103.70	782.7	0.08401	
485	В	12.450	16.41	82.85	476.7	0.09514	
160	В	11.750	20.18	76.10	419.8	0.10890	
72	М	17.200	24.52	114.20	929.4	0.10710	
177	М	16.460	20.11	109.30	832.9	0.09831	
276	В	11.330	14.16	71.79	396.6	0.09379	
367	В	12.210	18.02	78.31	458.4	0.09231	
35	М	16.740	21.59	110.10	869.5	0.09610	
326	В	14.110	12.88	90.03	616.5	0.09309	
207	М	17.010	20.26	109.70	904.3	0.08772	
476	В	14.200	20.53	92.41	618.4	0.08931	
225	В	14.340	13.47	92.51	641.2	0.09906	
120	В	11.410	10.82	73.34	403.3	0.09373	
216	В	11.890	18.35	77.32	432.2	0.09363	
29	М	17.570	15.05	115.00	955.1	0.09847	
347	В	14.760	14.74	94.87	668.7	0.08875	
188	В	11.810	17.39	75.27	428.9	0.10070	
544	В	13.870	20.70	89.77	584.8	0.09578	
325	В	12.670	17.30	81.25	489.9	0.10280	
180	М	27.220	21.87	182.10	2250.0	0.10940	
406	В	16.140	14.86	104.30	800.0	0.09495	
233	М	20.510	27.81	134.40	1319.0	0.09159	
508	В	16.300	15.70	104.70	819.8	0.09427	

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	comp
459	В	9.755	28.20	61.68	290.9	0.07984	
505	В	9.676	13.14	64.12	272.5	0.12550	
165	В	14.970	19.76	95.50	690.2	0.08421	
126	М	13.610	24.69	87.76	572.6	0.09258	
556	В	10.160	19.59	64.73	311.7	0.10030	
474	В	10.880	15.62	70.41	358.9	0.10070	
264	М	17.190	22.07	111.60	928.3	0.09726	
64	М	12.680	23.84	82.69	499.0	0.11220	
16	М	14.680	20.13	94.74	684.5	0.09867	
214	М	14.190	23.81	92.87	610.7	0.09463	
532	В	13.680	16.33	87.76	575.5	0.09277	
487	М	19.440	18.82	128.10	1167.0	0.10890	
384	В	13.280	13.72	85.79	541.8	0.08363	
338	В	10.050	17.53	64.41	310.8	0.10070	
522	В	11.260	19.83	71.30	388.1	0.08511	
175	В	8.671	14.45	54.42	227.2	0.09138	
398	В	11.060	14.83	70.31	378.2	0.07741	
518	В	12.880	18.22	84.45	493.1	0.12180	
172	М	15.460	11.89	102.50	736.9	0.12570	
332	В	11.220	19.86	71.94	387.3	0.10540	

In []: test_df

Out[]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	comp
32	М	17.020	23.98	112.80	899.3	0.11970	
31	М	11.840	18.70	77.93	440.6	0.11090	
235	В	14.030	21.25	89.79	603.4	0.09070	
374	В	13.690	16.07	87.84	579.1	0.08302	
397	В	12.800	17.46	83.05	508.3	0.08044	
408	М	17.990	20.66	117.80	991.7	0.10360	
418	В	12.700	12.17	80.88	495.0	0.08785	
389	М	19.550	23.21	128.90	1174.0	0.10100	
552	В	12.770	29.43	81.35	507.9	0.08276	
265	М	20.730	31.12	135.70	1419.0	0.09469	
14	М	13.730	22.61	93.60	578.3	0.11310	
94	М	15.060	19.83	100.30	705.6	0.10390	
391	В	8.734	16.84	55.27	234.3	0.10390	
78	М	20.180	23.97	143.70	1245.0	0.12860	
387	В	13.880	16.16	88.37	596.6	0.07026	
183	В	11.410	14.92	73.53	402.0	0.09059	
449	М	21.100	20.52	138.10	1384.0	0.09684	
380	В	11.270	12.96	73.16	386.3	0.12370	
491	В	17.850	13.23	114.60	992.1	0.07838	
190	М	14.220	23.12	94.37	609.9	0.10750	
364	В	13.400	16.95	85.48	552.4	0.07937	
135	М	12.770	22.47	81.72	506.3	0.09055	
245	В	10.480	19.86	66.72	337.7	0.10700	
274	М	17.930	24.48	115.20	998.9	0.08855	
147	В	14.950	18.77	97.84	689.5	0.08138	
105	М	13.110	15.56	87.21	530.2	0.13980	
294	В	12.720	13.78	81.78	492.1	0.09667	
324	В	12.200	15.21	78.01	457.9	0.08673	
539	В	7.691	25.44	48.34	170.4	0.08668	
110	В	9.777	16.99	62.50	290.2	0.10370	
5	М	12.450	15.70	82.57	477.1	0.12780	
144	В	10.750	14.97	68.26	355.3	0.07793	
103	В	9.876	19.40	63.95	298.3	0.10050	
210	М	20.580	22.14	134.70	1290.0	0.09090	
446	М	17.750	28.03	117.30	981.6	0.09997	
41	М	10.950	21.35	71.90	371.1	0.12270	

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	comp
362	В	12.760	18.84	81.87	496.6	0.09676	
377	В	13.460	28.21	85.89	562.1	0.07517	
254	М	19.450	19.33	126.50	1169.0	0.10350	
146	М	11.800	16.58	78.99	432.0	0.10910	
86	М	14.480	21.46	94.25	648.2	0.09444	
542	В	14.740	25.42	94.70	668.6	0.08275	
431	В	12.400	17.68	81.47	467.8	0.10540	
65	М	14.780	23.94	97.40	668.3	0.11720	
205	М	15.120	16.68	98.78	716.6	0.08876	
44	М	13.170	21.81	85.42	531.5	0.09714	
27	М	18.610	20.25	122.10	1094.0	0.09440	
80	В	11.450	20.97	73.81	401.5	0.11020	
437	В	14.040	15.98	89.78	611.2	0.08458	
113	В	10.510	20.19	68.64	334.2	0.11220	
204	В	12.470	18.60	81.09	481.9	0.09965	
519	В	12.750	16.70	82.51	493.8	0.11250	
411	В	11.040	16.83	70.92	373.2	0.10770	
8	М	13.000	21.82	87.50	519.8	0.12730	
73	М	13.800	15.79	90.43	584.1	0.10070	
400	М	17.910	21.02	124.40	994.0	0.12300	
118	М	15.780	22.91	105.70	782.6	0.11550	
206	В	9.876	17.27	62.92	295.4	0.10890	

```
In []: y_test, y_train, y_valid = test_df['diagnosis'], train_df['diagnosis'], validat
X_test, X_train, X_valid = test_df.drop('diagnosis', axis=1), train_df.drop('diagnosis')
```

(iii) Train Logistic Regression Model

```
"inv_of_regularization": C
In [ ]: def display_table(models, columns):
           headers = ['solver', 'accuracy', 'penalty', 'inv_of_regularization'] + column
           data = [[model['solver'], model['score'], model["penalty"], model["inv_of_rec
           return pd.DataFrame(
               columns = headers,
               data = data
         newton_cg_model = train_model_with_solver(X_train, y_train, X_valid, y_valid,
         lbfgs_model = train_model_with_solver(X_train, y_train, X_valid, y_valid, "lbfg
         liblinear_model = train_model_with_solver(X_train, y_train, X_valid, y_valid,
         display_table([newton_cq_model, lbfqs_model, liblinear_model], X_train.columns
In [ ]:
Out[]:
             solver accuracy penalty inv_of_regularization radius_mean texture_mean perimeter_mean a
            newton-
                                 12
                    0.964286
                                                  1.0
                                                          -0.482746
                                                                      -0.114460
                                                                                      0.151515
                cg
                                 12
                                                                                      0.155643
              lbfgs
                    0.964286
                                                  1.0
                                                          -0.406884
                                                                      -0.112863
            liblinear
                   0.946429
                                 12
                                                  1.0
                                                          -1.653319
                                                                      -0.091261
                                                                                     -0.029303
        3 rows × 34 columns
```

(iv) Use 'l1', 'l2', 'none' penality to train the Logistic regression model.

```
11_model = train_model_with_solver(X_train, y_train, X_valid, y_valid, "saga"
         12_model = train_model_with_solver(X_train, y_train, X_valid, y_valid, "saga",
         none_model = train_model_with_solver(X_train, y_train, X_valid, y_valid, "saga
         display_table([l1_model, 12_model, none_model], X_train.columns)
In [ ]:
Out[]:
            solver accuracy penalty inv_of_regularization radius_mean texture_mean perimeter_mean an
         0
             saga
                   0.910714
                                 11
                                                   1.0
                                                          -0.014208
                                                                       -0.009116
                                                                                      -0.076412
                                                   1.0
         1
             saga
                   0.910714
                                 12
                                                          -0.014422
                                                                       -0.009283
                                                                                      -0.076457
             saga 0.910714
                                                   1.0
                                                          -0.014426
                                                                       -0.009281
                                                                                      -0.076474
                              none
        3 rows × 34 columns
```

(v) Vary the I1 penalty over the range (0.1, 0.25, 0.75, 0.9)

compare the coefficients of the features.

```
In [ ]:
         penalties = [0.1, 0.25, 0.75, 0.9]
         models = [train_model_with_solver(X_train, y_train, X_valid, y_valid, "saga",
          display_table(models, X_train.columns)
Out[]:
            solver accuracy penalty inv_of_regularization radius_mean texture_mean perimeter_mean an
              saga 0.910714
                                  11
                                                    0.10
                                                             -0.012256
                                                                          -0.007591
                                                                                          -0.075876
          0
                                  11
          1
              saga
                    0.910714
                                                    0.25
                                                             -0.013558
                                                                          -0.008598
                                                                                          -0.076237
          2
              saga 0.910714
                                  11
                                                    0.75
                                                             -0.014136
                                                                          -0.009062
                                                                                          -0.076391
              saga 0.910714
                                  11
                                                    0.90
                                                             -0.014186
                                                                          -0.009092
                                                                                          -0.076415
          3
         4 rows × 34 columns
```

(vi) Estimate the average accuracy of the Naive Bayes algorithm using 5-fold cross-validation

Use scikit-learn package in python. Plot the bar graph using matplotlib.

```
In [ ]:
        X = dataset.drop('diagnosis', axis=1)
        y = dataset['diagnosis']
        folds = KFold(n_splits=5, shuffle=True)
        nb_accuracy = []
        for train_ids, test_ids in folds.split(X):
          X_train = X.iloc[train_ids]
          y_train = y.iloc[train_ids]
          X_test = X.iloc[test_ids]
          y_test = y.iloc[test_ids]
          naive_bayes_model = BernoulliNB()
          naive_bayes_model.fit(X_train, y_train)
          accuracy = naive_bayes_model.score(X_test, y_test)
          nb_accuracy.append(accuracy)
        print("Avg accuracy = ", mean(nb_accuracy))
        Avg accuracy = 0.6274646793976091
        plt.xlabel('5-Fold Iteration')
In [ ]:
        plt.ylabel('Accuracy')
        plt.title('Accuracy of the 5-Fold Iterations')
        plt.bar([x for x in range(1,6)],nb_accuracy, color='green')
        plt.plot()
Out[]:
```

