

程序代写代做 CS编程辅导

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

程序代写代做 CS编程辅导 Query Optimisation

- In practice, query op in corporate elements of the following three optimisation approach.
 - Semantic query optimisation

 Use application specific semantic knowledge to transform a query into the one with a lewei gost (they Petujer the same this wer).
 - Rule-based query optimisation Email: tutorcs@163.com
 Use heuristic rules to transform a relational algebra expression into an equivalent one with a possibly tower cost.
 - Cost-based query optimisation
 Use a cost model to estimate the costs of plans, and then select the most cost-effective plan.

程序代写代做 CS编程辅导 Semantic Query Optimisation

- Can we use semant constraints) to optiminate the constraints of the constrai
 - semantics: "meaning"
- Recall that, integrity constraints in the relational model include:
 - key constraints Assignment Project Exam Help
 - entity integrity constraints
 - referential integrity constraints @ 163.com
 - domain constraints: 749389476
 - ...
 - user-defined integrity: countraintscom
- Key idea: Integrity constraints may not only be utilized to enforce consistency of a database, but may also optimise user queries.

程序代写代做 CS编程辅导 Semantic Query Optimisation

Example 1:

WeChat: cstutorcs

Constraint: The relation Employee has the primary key {ssn}.

Assignment Project Exam Help

Query: SELECT DISTINCT ssn FROM Employee; Email: tutorcs@163.com

• We can avoid exize 2018 24716 ate elimination if the existing constraint tells us that tuples in the result will be unique.

https://tutorcs.com

程序代写代做 CS编程辅导 Semantic Query Optimisation

Example 2:

Constraint: No long longete cabutarromore than 200000.

Query: SELECTS Signment Project Exam Help

FROM Employee Email: tutorcs@163.com WHERE salary > 300000;

QQ: 749389476

• We do not need to execute a query if the existing constraint tells us that the result willthe emptyorcs.com

Example 3:

程序代写代做 CS编程辅导 Semantic Query Optimisation

Constraints: The relation WORKS_ON has the foreign keys:

[SOP] EMPLOYEE[ssn] and [pno] PROJECT[pnumber]

Query: SELECT DISTINCT ssn

FROM ASSIGNMENT PROJECT FramtHelp

on Works on . pno=Project pnumber;

 We can reduce the number of joins by executing the following query since both queres always feeting the same result.

SELEC**TIFISTINGTORS.com**FROM Works_on;

程序代写代做 CS编程辅导 Rule-based Query Optimisation

- A rule-based optimis forms the RA expression by using a set of heuristic rules that tyles that tyles forms the execution performance.
- Key ideas: apply the most restrictive operation before other operations, which can reduce the prize of intermediate results:
 - Push-down selection:
 Assignment Project Exam Help
 Apply as early as possible to reduce the number of tuples;
 - Push-down projection tutores @ 163.com
 Apply as early as possible to reduce the number of attributes.
 - Re-ordering joins: 749389476

 Apply restrictive icips: first to reduce the size of the result.
- But we must ensure that the resulting query tree gives the same result as the original query tree, i.e., the equivalence of RA expressions.

程序代写代做 CS编程辅导 Heuristic Rules

Staff(sid, for the salary, position, branchNo)
Branch(branch the salary, position, branchNo)

There are many heuristic halteschautransforming RA expressions, utilized by the query optimiser, such as:

Assignment Project Exam Help

$$(1) \sigma_{\varphi}(\sigma_{\psi}(R)) \stackrel{=}{=} \sigma_{\varphi \wedge \psi}(R);$$

$$\sigma_{branchNo='1'}(\sigma_{salary}) \stackrel{=}{=} olooo((\textbf{Staff})) \stackrel{=}{=} branchNo) (Staff)$$

$$(2) \pi_{\chi}(\pi_{\gamma}(R)) \stackrel{=}{=} \pi_{\chi}(R) \text{ if } \chi \subset Y;$$

$$QO: 749389476$$

$$\pi_{salary}(\pi_{branchNo,salary}(Staff)) = \pi_{salary}(Staff)$$

$$(3) \sigma_{\varphi}(R_1 \times R_2) \text{ it prochoo}(Staff \times Branch) =$$

$$(Staff) \bowtie_{Staff.branchNo=Branch.branchNo}(Branch)$$

程序代写代做 CS编程辅导 Heuristic Rules

Staff(sid, f) ne, salary, position, branchNo)
Branch(branch, true, street, suburb, city)

(4) $\sigma_{\varphi_1}(R_1 \bowtie_{\varphi_2} \mathbf{W}_2) \mathbf{GhR}_2 : \bowtie_{\mathsf{Stut}_2} \mathbf{R}_1 \mathbf{S}$

σ_{salary>60000}(Staff March Pranch P

(Staff) ⋈_{Staff.branchNo=Branch.branchNo∧salary>60000} (Branch)

(5) $\sigma_{\varphi}(R_1 \bowtie R_2 \not\vdash \text{Period})(A) \Leftrightarrow G_{\varphi}(R_1 \bowtie R_2 \not\vdash \text{Period})(A) \Leftrightarrow G_{\varphi}(R_1$

 $\sigma_{salary>60000}(Staff)\bowtie Branch)$

(6) $\sigma_{\varphi_1 \wedge \varphi_2}(R_1 \bowtie R_2) \equiv \sigma_{\varphi_1}(R_1) \bowtie \sigma_{\varphi_2}(R_2)$ if φ_1 contains only attributes in R_1 and φ_2 contains only attributes in R_2 .

 $\sigma_{salary>60000 \land city='Canberra'}(Staff \bowtie Branch) =$ $(\sigma_{salary>60000}(Staff)) \bowtie (\sigma_{city='Canberra'}(Branch))$

程序代写代做 CS编程辅导 Heuristic Rules

Staff(sid, 1) me, salary, position, branchNo)
Branch(branch + 1), street, suburb, city)

(7) If the join condition involves only attributes in X, we have $\pi_X(R_1 \bowtie R_2) \equiv \pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2)$, where X_i contains attributes in both R_1 and R_2 and one in both R_1 and R_2 and one in both R_1 and R_2 and R_3

 $\pi_{branchNo,position,city}(Staff \bowtie Branch) = \underbrace{Email: stutorcs@163.com}_{\pi_{branchNo,position}(Staff)\bowtie(\pi_{branchNo,city}(Branch))}$

(8) If the join condition contains attributes not in X, we have $\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))$, where X_i contains attributes in both in R_1 and R_1 and ones in both R_i and X

 $\pi_{position,city}(Staff \bowtie Branch) =$

 $\pi_{position,city}(\pi_{branchNo,position}(Staff) \bowtie (\pi_{branchNo,city}(Branch)))$

.....

程序代写代做 CS编程辅导 Push-down Selection – Example

Assignment Project Exam Help

Query: List the first and last names of the directors who have directed a movie that has wormani psgarrmovie awardm

Output

Description:

• Question: Can we apply the following rule to optimise the query? $\sigma_{\varphi}(R_1 \bowtie R_2) \equiv \sigma_{\varphi}(R_1) \bowtie R_2$, if φ contains only attributes in R_1

程序代写代做 CS编程辅导 Push-down Selection – Example

PERSON(id, first_nan Production_year)

MOVIE_AWARD(title, production_year)

MOVIE_AWARD(title, production_year, award_name, year_of_award)

Assignment Project Exam Help

• Query: List the first and last names of the directors who have directed a movie that has wormani page myardm

• We would have: https://tutorcs.com

 $\pi_{\textit{first_name},\textit{last_name}}((\mathsf{PERSON} \bowtie \mathsf{DIRECTOR}) \bowtie \sigma_{\textit{award_name}='\mathit{Oscar'}}(\mathsf{MOVIE_AWARD}))$

程序代写代做 CS编程辅导 Push-down Projection – Example

- Query: List the first and sast hames difficulties who have directed a movie that has won an 'Oscar' movie award Email: tutorcs @ 163.com π_{first_name,last_name} ((PERSON ⋈ DIRECTOR) ⋈ σ_{award_name='Oscar'} (MOVIE_AWARD))
- Question: Can we apply the following rule to optimise the query?

$$\frac{\text{https:}/\text{tutorcs.com}}{\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_2}(R_2))},$$

where X_i contains attributes in both in R_1 and R_2 , and ones in both R_i and X

程序代写代做 CS编程辅导 Push-down Projection – Example

Given the relation so

PERSON(id, first_nan

DIRECTOR(id, title, production_year)

MOVIE_AWARD(title,

MOVIE_A

• Query: List the first and tast names of the directors who have directed a movie that has won an 'Oscar' movie award Email: tutorcs@163.com $\pi_{\textit{first_name},\textit{last_name}}((\text{PERSON} \bowtie \text{DIRECTOR}) \bowtie \sigma_{\textit{award_name}='Oscar'}(\text{MOVIE_AWARD}))$

• we would have: QQ: 749389476

 $\pi_{\textit{first_name}}$, $last_name$ ($\pi_{\textit{first_name}}$) is the production_year (PERSON \bowtie DIRECTOR) $\bowtie \pi_{\textit{title}}$, production_year ($\sigma_{\textit{award_name}}$) OSCar' (MOVIE_AWARD)))

程序代写代做 CS编程辅导 A Common Query Pattern (Be Careful)

- - (1) **join** all the **trans**tions,
 - (2) select the desired tuples, and
 - (3) project on the counted cattributes
- This query pattern can be expressed as an RA expression

Email: $\mathfrak{A}^{(\sigma_{\varphi}(R_{1})}(S_{1}^{(S_{2})}(S_{1}^{(S_{2})}(S_{1}^{(S_{2})})),$

or as an equivalent SQL statement QQ: 749389476

SELECT DISTINCT A_1, \ldots, A_n FROM R_1, \ldots, R_k WHERE φ ; https://tutorcs.com

 Queries falling into this pattern can be very inefficient, which may yield huge intermediate result for the joined relations.

A Common Query Pattern (Be Careful)

push-down selectio

WeChat: cstutorc SA1,...,An

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

R₁

R₂

程序代写代做 CS编程辅导 Re-ordering Joins - Example

● Given the relation so PERSON(id, first_nan th

DIRECTOR(id, title, production_year) with cs

[title, production_year] \(\) MOVIE_AWARD[title, production_year];

[id] \(\) PERSON[id] and Project Exam Help

Suppose that it has 100 tuples.

MOVIE_AWARD(title, production_year, award_name, year_of_award)
Suppose that it has 1000 tuples

- Example: Consider that following two.RArqueries. Which one is better?
 - Person ⋈ Movie_Award ⋈ Director
 - Person ⋈ Director ⋈ Movie_Award

程序代写代做 CS编程辅导 Cost-based Query Optimisation

- A query optimiser does not depend solely on heuristic optimisation. It estimates and company the gosts of different plans.
- It estimates and compares the costs of executing a query using different execution strategies and could be a cost of execution strategies and costs of execution strategies and cost of execution strategies and costs of execution strategies and costs of execution strategies.
- The query optimiser needs to finite the number of execution strategies to be considered for improving efficiency. https://tutorcs.com

程序代写代做 CS编程辅导 Summary

- In general, there are securing a query in a database.
- The user expects the Test to be returned promptly, i.e., the query should be processed as fast as possible.
 WeChat: cstutorcs
- But, the burden of optimising queries should not be put on the user's shoulder. The DBMS's reign to cotot the queries Exam Help
- Nonetheless, SQL is pat ait utable guery legguage in which queries can be optimised automatically.
- Instead, SQL queries are transformed into their corresponding RA queries and optimised subsequently.com
- A major advantage of relational algebra is to make alternative forms of a query easy to explore.