

Estimating seed paternity

- Female fitness: Count seed numbers and weight them by seed quality
- Male fitness: Estimate individual contribution to seed paternity
- (1) Estimating the proportion of seeds sired through self-fertilisation
- (2) Identify fathers in outcrossed seeds

Seeds sired via selfing

- Selfing and outcrossing rates
 - s = Proportion of seeds produced by self fertilisation
 t = Pr. of seeds produced through outcrossing

s + t = 1

• Calculating s

Calculating the selfing rate (s)

- Some mother-offspring combinations are easy to classify:
 - Mom = AA; offspring = Aa

Paternity exclusion

- Other combinations are ambiguous:
 Mom = AA; offspring = AA
 Mom = Aa; offspring = AA or AA

• Mom = Aa; offspring = AA or AA

Ritland (2002)

Case 1. if offspring is produced by selfing (Mom = Aa; offspring = AA):

$$Aa \xrightarrow[0.5]{0.5} A$$

Case 2. if offspring is produced by outcrossing (Mom = Aa; offspring = AA):

$$Aa \xrightarrow[0.5]{0.5} A$$

Conditional probability of genotype AA, given maternal genotype AA Pr(AA | AA)

Maximum likelihood estimation of s

$$s \prod P_{kl}^{ij,s} + t \prod P_{kl}^{ij,t}$$

 $P_{kl}^{ij,s}$ = Pr. of progeny genotype A_iA_j , given that parent is A_iA_j and self-fertilises

Ritland (2002)

 $P_{kl}^{ij,t}$ = Pr. of progeny genotype $A_k A_p$ given that parent is A_iA_j and outcrosses

Maximum likelihood estimates the values of s and t given the genotypes of mother and offspring

Multilocus Estimates Perental Festimate (50) - 0.415 (0.096) Multilocus Estimates Perental Festimate (50) - 0.415 (0.096) Multilocus Certinates (50) - 0.616 (0.015) Single locus Lestimates (50) - 0.616 (0.015) Single locus Lestimates (50) - 0.618 (0.013) Difference miss (50) - 0.027 (0.700) Multilocus correlation of perintale (50) - 0.000 (0.018) Single locus correlation of perintale (50) - 0.000 (0.018) Single locus correlation of perintale (50) - 0.000 (0.018) Multilocus correlation of perintale (50) - 0.000 (0.018) Single locus correlation of perintale (50) - 0.000 (0.018) Single locus correlation of perintale (50) - 0.000 (0.018) Multilocus correlation of perintale (50) - 0.000 (0.018) Multilocus correlation of perintale (50) - 0.000 (0.018) Single locus restaurate (50) - 0.001 (0.018) Multilocus correlation (50) - 0.001 (0.018) Multilocus correlation (50) - 0.001 (0.018) Single locus restaurate (50) - 0.001 (0.018) Multilocus correlation (50) - 0.001 (0.018) Single locus restaurate (50) - 0.001 (0.018) Multilocus correlation (50) - 0.001 (0.018) Single locus correlation (50) - 0.001 (0.018) Multilocus correlation (50) - 0.001 (0.018) Single locus restaurate (50) - 0.001 (0.018) Single locus restaurate (50) - 0.001 (0.018) Multilocus correlation (50) - 0.001 (0.018) Single locus restaurate (50) - 0.001 (0.018) Multilocus correlation (50) - 0.001 (0.018) Single locus restaurate (50) - 0.001 (0.018) Multilocus restaurate (50) - 0.001 (0.018) Single locus restaurate (50) - 0.001 (0.018) Sing

Parentage analysis Jones et al. (2009) Parentage: Maternal and paternal parent estimation Paternity analysis: Male parent estimation Identifying parents of individual offspring Infer parentage based on the genotype of single individuals or groups of individuals

Single Nucleotide Polymorphism (SNP) Single nucleotide Polymorphism (SNP) Single nucleotide Polymorphism (SNP)	Genetic markers		
Single Nucleotide Polymorphism (SNP) Single Nucleotide Polymorphism (SNP) Single Nucleotide Polymorphism (SNP)	Microsatellites		
Single Nucleotide Polymorphism (SNP) The state of the state			
	Single Nucleotide Polymorphism (S	NP)	

Six approaches to parentage analysis

- Exclusion
 Categorical allocation
 Fractional allocation
 Full probability parentage analysis
 Parental reconstruction
 Sibship reconstruction

Offspring = AA

1. Exclusion • Eliminate candidate parent who fails to share at least one allele with offspring Mom = AA Father 1: AA Father 2: aa Father 3: Aa Genotyping error can be accounted for by increasing the required number of mismatches Mom = AAbb Offspring = AAbb

Father 1: AABb
Father 2: aaBB
Father 3: AaBB

2. Categorical allocation

- Excluding all but one parent may not be possible
- How to choose among the remaining candidates?
- Statistical selection of most likely parent among pool of candidates
- Most commonly used
- Maximum likelihood
- Bayesian approach (posterior probability)

Maximum Likelihood

- Probability of the data given the model P(data|model)
- Likelihood of the data given the model (parameters)

 $Likelihood \ \propto P(data|parameters)$

• Probability: Knowing the parameters -> Prediction of the outcome

• Likelihood: Observation of the data -> Estimation of the parameters

Maximum Likelihood

- n = 100 coin tosses
 k = 56 heads

$$L(data|p) = \frac{n!}{k! (n-k)!} p^{k} (1-p)^{n-k}$$

$$L(data|0.5) = \frac{100!}{56! \, 44!} 0.5^{56} 0.5^{44} = 0.0389$$

$$L(data|0.52) = \frac{100!}{56! \, 44!} \, 0.52^{56} \, 0.48^{44} = 0.0581$$

2. Categorical allocation: Maximum Likelihood

- Is parent j the most likely parent of a given offspring?
- 1. H1: The probability that individual *i* is the father
- H2: The probability that parent is randomly chosen from the population
 Calculate the likelihood ratio (H1/H2)

$$L(H_1, H_2|D) = \frac{P(D|H_1)}{P(D|H_2)}$$

- Likelihood ratios (LOD scores) for each alleged father are ranked, and the difference between the most likely and second most likely are compared
- If the difference is large enough, the offspring is assigned to the most likely father
- Categorical assignment:
 Each offspring is assigned to ONE father

2. Categorical allocation: Bayesian approach

- Calculate the probability that potential father $\emph{\textbf{k}}$ is the actual father of offspring $\emph{\textbf{i}}$

Bayesian statistics • Bayesian probabilities: degree of belief • "Probability is orderly opinion, and the inference of data is the revision of such opinion in the light of new information." $P(parameters|data) = \frac{P(data|parameters) * P(parameters)}{P(data)}$

2. Categorical allocation: Bayesian approach

 ${\it O_pM_p}$ and ${\it F_i}$ = multilocus genotypes of offspring i, known mother and alleged father ${\it A}$ = Matrix of frequencies at all loci

n = number of males sampled out of N total males in breeding population

- Compare posterior probabilities for each alleged father, choose the most probably father
- Categorical assignment:
 Each offspring is assigned to ONE father

3. Fractional allocation of parentage $\bullet \ \ \text{Each offspring is partially allocated to potential fathers in proportion to their siring}$ probability Can be calculated with ML or Bayesian approaches · Seldom used 4. Full probability analysis Elaboration of the Bayesian estimation of parentage • Estimates both parentage and other parameters of interest simultaneously $\bullet\;$ Allows incorporating uncertainty when estimating paternity into the estimation of • Example: Estimate if flower size influences siring success Categorical or fractional analysis: 1. Assign parentage to each offspring Analyse the relationship between paternal phenotype (e.g., flower size), and number of offspring sired Two separate statistical models • Full probability analysis: 1. Build a single model to estimate paternity and relationship with phenotype Single model $P(\boldsymbol{O}_i|\boldsymbol{M}_i,\boldsymbol{F}_k)$ $P(I_k(i)|\boldsymbol{M}_i,\boldsymbol{F}_k,\boldsymbol{A},N,z_k) \propto \underbrace{f(\boldsymbol{\theta},z_k)}_{\sum_{j=1}^n P(\boldsymbol{O}_i|\boldsymbol{M}_i,\boldsymbol{F}_j) + \bar{z}(N-n)P(\boldsymbol{O}_i|\boldsymbol{M}_i,\boldsymbol{A})}_{P(\boldsymbol{\theta}_i|\boldsymbol{M}_i,\boldsymbol{F}_j) + \bar{z}(N-n)P(\boldsymbol{O}_i|\boldsymbol{M}_i,\boldsymbol{A})}$

5,6. Parental and sibship reconstruction

Parental reconstruction

- Reconstruct maternal or paternal genotypes
- Requires family groups
- Most effective when >8-10 siblings are available

Sibship reconstruction

- Family groups are unknown
 Use genetic data to partition individuals into family groups

Software

- MLTR. http://genetics.forestry.ubc.ca/ritland/programs.html
 Borice. https://eeb.ku.edu/john-kelly

- Paternity:
 Cervus. http://www.fieldgenetics.com/pages/aboutCervus Overview.jsp

 - Colony, https://www.zsl.org/science/software/colony
 ColonyR. https://github.com/mdibru-R-packages/colonyR
 MasterBayes. http://jarrod.bio.ed.ac.uk/software.html

Patterns of pollen flow using fluorescent markers • Can fluorescent powder be used to took pollen in flowers with policide settlers? • Assezing the six is reallinators • Notice of context of enders, styras, end polinetors Simulating outcrossing rates	Future challenges	
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators	Ü	
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators		
Can fluorescent powder be used to track pollen in flowers with porticidal anthers? Assessing safe-sites in pollinators Points of contact of anthers, stigma, and pollinators Points of contact of anthers, stigma, and pollinators	Patterns of pollon flow using fluorescent markers]
poricidal anthers? • Assessing safe sites in pollinators • Points of contact of anthers, stigma, and pollinators	ratterns of policit flow using hubbescent markers	
Points of contact of anthers, stigma, and pollinators	poricidal anthers?	
Simulating outcrossing rates	Points of contact of anthers, stigma, and pollinators	
Simulating outcrossing rates		1
	Simulating outcrossing rates	