Is Deeper Better Only When Shallow Is Good?

School of Computer Science, The Hebrew University, Israel

Depth Separation

There exist functions which can be expressed efficiently by a deep network but require an exponential width in order to be expressed by a shallow network

Motivation

- Basic question: on which distributions deeper networks are much better than shallow ones?
- Various works show **depth separation** functions. (Telgarsky 2015, Safran and Shamir 2016, Cohen et al 2016, Daniely 2017, Poggio et al 2017).
- But, can such functions be learned efficiently using gradient-descent?
- We show that in some cases **strong** depth separation implies that gradient-descent **fails**.

IFS and Fractal Distributions

• Iterated Function System:

$$K_0 = [-1, 1]^d$$

 $K_n = F_1(K_{n-1}) \cup \ldots \cup F_r(K_{n-1})$

- We assume F_i are affine, invertible, contractive with disjoint images.
- The "depth" of the fractal is n
- Example: $F_i(x) = c_i + \frac{1}{4}(x c_i)$ for $c_i \in \{\pm 1\}^2$

- We use the fractal set K_n to generate a binary classification problem.
- A fractal distribution D_n is a distribution in which positive examples sampled from the set K_n and negative examples are sampled from its complement, with some margin $\gamma > 0$.

Cantor Vicsek

Depth Separation of Fractals

We show that a network of depth O(n) can express a depth n fractal, but a shallower network requires exponential width:

Theorem 1 Consider an IFS over $[-1,1]^d$ with r generating functions and depth n. For any fractal distribution D_n there exists a ReLU network of depth 2n + 1 and width 5dr which realizes D_n .

Proof by induction:

- A ReLU network can approximate $I_0(x) = 1_{x \in K_0}$
- Assume we expressed: $I_{n-1}(x) = 1_{x \in K_{n-1}}$
- Then, we can express: $1_{x \in K_n} = \bigvee_i I_{n-1}(F_i^{-1}(x))$

Theorem 2 If D_n has non-zero probability in any area of K_n , then a network of depth t must have width $\geq \frac{d}{e}r^{n/td}$ to realize D_n .

Proof idea:

- A network of width k and depth t has at most $(ek/d)^{td}$ linear regions
- To realize D_n we need r^n linear regions

Approximation Curve

• Approximation curve: How much of the negative examples are on the fine details of the fractal:

$$P(j) := 1 - L_{D_n}(1_{x \in K_j}) = 1 - \Pr_{(x,y) \sim D_n} [x \in K_j \land y = -1]$$

• Note: P(0) = 1/2, P(n) = 1, and P is monotonically increasing

The following theorem shows that with reasonable width, the error of a depth $\Theta(j)$ network is roughly 1 - P(j):

Theorem 3 Fix a depth n distribution with approx. curve P. Denote $L_{D_n}(H_{t,k})$ the loss of depth-t width-k nets. Then, for all j: 1) For a depth t = 2j + 2 and width k = 5dr network we have

$$L_{D_n}(H_{t,k}) \leq (1 - P(j))$$

2) (for d = 1) For every s, if $k < r^s$ and t < j/s then

$$(1 - r^{st-j})(1 - P(j)) \le L_{D_n}(H_{t,k})$$

 \Rightarrow if $P(j) = \frac{1}{2}$ for every j < d then every shallow network has loss $\gtrsim \frac{1}{2}$

Strong Depth Separation

There exists a distribution on which a small deep network gets loss 0, but a small shallow network gets loss $\gtrsim \frac{1}{2}$

Gradient Descent and Approximation Curve

Cantor distribution:

We show that the approximation curve controls the **optimization**:

Theorem 4 Consider a depth t, width k, network, and suppose the weights, W, are initialized randomly in the "normal" way. Consider a depth n, one-dimensional Cantor fractal, and let j = $\lceil \log(tk^2/\delta) \rceil$. Then, with probability > 1 - δ , all elements of the gradient at W are of magnitude $< 5(P(j) - \frac{1}{2})$.

⇒ Gradient-descent is likely to fail on every cantor distribution with strong depth separation, even though the network is expressive enough.

Experiments

• Training depth 5 network on 2D Cantor distribution of depth 5, for different approximation curves:

• Training networks of various depth and width on 2D Cantor distribution with "good" curve vs. training on CIFAR-10:

