Entropy

JUNHAO SHEN AND WEI YUAN

ABSTRACT. Enter abstract here

1. Introduction

Introduction here!

2. Entropy

By \mathscr{H} we shall denote a complex separable Hilbert space of infinite dimension, by $\mathscr{P}f(\mathscr{H})$ the finite subsets of \mathscr{H} and by $\mathscr{F}(\mathscr{H})$ the finite-dimensional subspaces of \mathscr{H} . If $\omega \in \mathscr{P}f(\mathscr{H})$ and $A \subset \mathscr{H}$ we shall write $\omega \subset_{\delta} A$ if for every $h \in \omega$ we can find $h' \in A$ such that $||h - h'|| < \delta$.

Definition 2.1. *If* $\omega \in \mathscr{P}f(\mathscr{H})$ *and* $\delta > 0$ *, we define*

$$d(\omega;\delta) = \inf\{\dim\chi : \chi \in \mathscr{F}(\mathscr{H}), \omega \subset_{\delta} \chi\}.$$

Suppose that G be a group with a finite set of generators Σ . Let $c_n = c_n(\Sigma)$ be number of elements of G whose shortest representative in $\Sigma \cup \Sigma^{-1}$ has exactly length n. The growth function C(z) of (G, Σ) is the formal power series $C(z) = \sum c_n(\Sigma)z^n$. For F_m the free group on m generators, the growth function with respect to a free basis is

$$C(z) = \frac{1+z}{1 - (2m-1)z}.$$

Thus $c_0 = 1$ and $c_n = 2m(2m-1)^{n-1}$ for n > 1.

Let $b_n = b_n(G, \Sigma) = \sum_{i=0}^n c_i$ be the number of elements of G that can be expressed in terms of words of length at most n in the generating set $\Sigma \cup \Sigma^{-1}$. The growth rate of G with respect to σ is defined to be

$$r(G,\Sigma) = \lim_{n\to\infty} \sqrt[n]{b_n(G,\Sigma)}.$$

If $r(G, \Sigma) = 1$, i.e., G has subexponential growth rate, then G is amenable. For F_m , we have

$$b_n(F_m, \Sigma) = \begin{cases} 2m & \text{if } m = 1, \\ 1 + \frac{m[(2m-1)^n - 1]}{m-1} & \text{if } m > 1. \end{cases} m > 1.$$

Thus, $r(F_m, \Sigma) = 2m - 1$. In general, there's no particular connection between rate of growth and amenability between these two extremes. In [2] is showed that for each m > 1, there is a sequence of nonamenable groups on m generators whose growth rates approach 1. On the other hand, in [3] is exhibited for each m > 1 a sequence of amenable groups on m generators whose growth rates approach 2m - 1.

2010 Mathematics Subject Classification. Primary 47L75; Secondary 15A30. Key words and phrases. Entropy.

1

In the rest of this note, we will use $\kappa_m(n)$ to denote $b_n(F_m, \Sigma)$.

On the one hand, Let $\mathfrak A$ be a von Neumann algebra and $\mathscr FU(\mathfrak A)$ be the finite subsets of unitaries of $\mathfrak A$. Suppose that $\Sigma = \{U_1, \dots, U_m\} \in \mathscr FU(\mathfrak A)$, let

$$(\Sigma \cup \Sigma^{-1})^n = \{V_{i_1} V_{i_2} \cdots V_{i_n} : V_{i_k} \in \Sigma \cup \Sigma^{-1} \cup \{I\}\}.$$

Definition 2.2. *If* $\delta > 0$, $\omega \in \mathscr{P}f(\mathscr{H})$ *and* $\Sigma = \{U_1, \dots, U_m\} \in \mathscr{F}U(\mathfrak{A})$, we define

$$fh(\Sigma,\omega;\delta) = \limsup_{n \to \infty} \frac{1}{\kappa_m(n)} d\left((\Sigma \cup \Sigma^{-1})^n \omega; \delta\right)$$
$$fh(\Sigma,\omega) = \sup_{\delta > 0} h(\Sigma,\omega;\delta),$$
$$fh(\Sigma,\mathcal{H}) = \sup\{h(\Sigma,\omega) : \omega \in \mathcal{P}f(\mathcal{H})\}.$$

Definition 2.3. If $\delta > 0$, $\omega \in \mathscr{P}f(\mathscr{H})$ and $\Sigma = \{U_1, \ldots, U_m\} \in \mathscr{F}U(\mathfrak{A})$. Let G be the group generated by Σ . We define

$$\begin{split} h(\Sigma,\omega;\delta) &= \limsup_{n \to \infty} \frac{1}{b_n(G,\Sigma)} d\left((\Sigma \cup \Sigma^{-1})^n \omega;\delta\right) \\ h(\Sigma,\omega) &= \sup_{\delta > 0} h(\Sigma,\omega;\delta), \\ h(\Sigma,\mathcal{H}) &= \sup\{h(\Sigma,\omega) : \omega \in \mathcal{P}f(\mathcal{H})\}. \end{split}$$

Since $\kappa_m(n) \ge b_n(G, \Sigma)$, we have the following lemma.

Lemma 2.1. $fh(\Sigma, \mathcal{H}) \leq h(\Sigma, \mathcal{H})$.

Lemma 2.2. Let $\Sigma \in \mathscr{F}U(\mathfrak{A})$ and $\omega_j \in \mathscr{P}f(\mathscr{H})$, $j \in \mathbb{N}$, $\omega_1 \subset \omega_2 \subset ...$, such that $\bigcup_{j \in \mathbb{N}} \omega_j$ is a dense subset of \mathscr{H} . Then

$$h(\Sigma, \mathcal{H}) = \sup_{j \in \mathbb{N}} h(\Sigma, \omega_j).$$

Lemma 2.3. Let $\Sigma \in \mathscr{F}U(\mathfrak{A})$ and $\omega_j \in \mathscr{P}f(\mathscr{H}) \cap (\mathscr{H})_1$, $j \in \mathbb{N}$, $\omega_1 \subset \omega_2 \subset \ldots$, such that $\bigcup_{j \in \mathbb{N}} \omega_j$ is a dense subset of $(\mathscr{H})_1$. Then

$$h(\Sigma, \mathcal{H}) = \sup_{j \in \mathbb{N}} h(\Sigma, \omega_j).$$

Proof. Let $C = \max\{\|\xi\| : \xi \in \omega\}$. By the assumptions, there is j such that

$$\{\frac{\xi}{\|\xi\|}: \xi \in \omega\} \subset_{\frac{\delta}{2C}} \omega_j$$

It is easy to see that

$$(\Sigma \cup \Sigma^{-1})^n \omega_j \subset_{\frac{\delta}{2C}} B$$

implies

$$(\Sigma \cup \Sigma^{-1})^n \omega \subset_{\delta} B.$$

Hence

$$\begin{split} h(\Sigma,\omega;\delta) &= \limsup_{n\to\infty} \frac{1}{b_n(G,\Sigma)} d\left((\Sigma \cup \Sigma^{-1})^n \omega;\delta\right) \\ &\leq \limsup_{n\to\infty} \frac{1}{b_n(G,\Sigma)} d\left((\Sigma \cup \Sigma^{-1})^n \omega_j;\frac{\delta}{2C}\right) = h(\Sigma,\omega_j;\frac{\delta}{2C}). \end{split}$$

Remark 2.1. *Lemma 2.2 and Lemma 2.3 are also true for* $fh(\Sigma)$.

Lemma 2.4. Let $\Sigma \in \mathscr{F}U(\mathfrak{A})$ and $\omega_j \in \mathscr{P}f(\mathscr{H})$, $j \in \mathbb{N}$, $\omega_1 \subset \omega_2 \subset \ldots$, be such that $\bigcup_{j \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} ((\Sigma \cup \Sigma^{-1})^n(\omega_j))$ spans a dense subspace of \mathscr{H} . If the group generated by Σ is amenable, then

$$h(\Sigma) = \sup_{j \in \mathbb{N}} h(\Sigma, \omega_j).$$

Proof. It suffices to show that given $\omega \in \mathscr{P}f(\mathscr{H})$ and $\delta > 0$ there is $\delta_1 > 0$ and ω_j such that

$$h(\Sigma, \omega; \delta) \leq h(\Sigma, \omega_i; \delta_1).$$

By the assumptions, there is $N \in \mathbb{N}$ so that

$$\omega \subset_{\frac{\delta}{2}} Nco\left(\mathbb{T}\left((\Sigma \cup \Sigma^{-1})^N \omega_j)\right)\right)$$
,

where $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$ and co denotes the convex hull. Let $\delta_1=\frac{\delta}{2Nn_i^{\kappa_m(N)}}$ where $n_j=\#\omega_j$. Then for $B\in\mathscr{F}(\mathscr{H})$ and

$$(\Sigma \cup \Sigma^{-1})^{N+n} \omega_i \subset_{\delta_1} B$$

implies

$$(\Sigma \cup \Sigma^{-1})^n Nco\left(\mathbb{T}\left((\Sigma \cup \Sigma^{-1})^N \omega_j)\right)\right) \subset_{\frac{\delta}{2}} B.$$

Therefore

$$(\Sigma \cup \Sigma^{-1})^n \omega \subset_{\delta} B.$$

Hence

$$\begin{split} h(\Sigma,\omega;\delta) &= \limsup_{n \to \infty} \frac{1}{b_n(G,\Sigma)} d\left((\Sigma \cup \Sigma^{-1})^n \omega; \delta \right) \\ &\leq \limsup_{n \to \infty} \frac{b_{n+N}(G,\Sigma)}{b_n(G,\Sigma)} \frac{1}{b_{n+N}(G,\Sigma)} d\left((\Sigma \cup \Sigma^{-1})^{N+n} \omega_j; \delta \right) = h(\Sigma,\omega_j;\delta_1) \end{split}$$

Lemma 2.5 (Proposition 8.6 in [1]). Suppose $\mathfrak A$ is a von Neumann algebra acting on $\mathcal H$ and $\Sigma = \{U_1, \ldots, U_m\} \in \mathcal F U(\mathfrak A)$, let $\Sigma \otimes I_n = \{U_i \otimes I_n : U_i \in \Sigma\} \in \mathcal F(\mathfrak A \otimes I_n)$, where $\mathfrak A \otimes I_n$ acting on $\mathcal H \otimes I^2(\mathbb Z_n)$. We have

$$nh(\Sigma, \mathcal{H}) = h(\Sigma \otimes I, \mathcal{H} \otimes l^2(\mathbb{Z}_n)).$$

Lemma 2.6 (Proposition 8.4 in [1]). Let $\mathfrak A$ be a von Neumann algebra acting on $\mathscr H$. Suppose that $\mathscr H_1 \subset \mathscr H_2 \subset \ldots \subset \mathscr H$ are invariant subspaces of $\mathfrak A$ and $\bigcup_j \mathscr H_j = \mathscr H$. Then

$$h(\Sigma, \mathcal{H}) = \sup_{j \in \mathbb{N}} h(\Sigma, \mathcal{H}_j).$$

Proposition 2.1 (Proposition 8.8 in [1]). Let \mathfrak{A} be a finite factor acting on \mathscr{H} . Then

$$h(\Sigma, \mathcal{H}) = dim_{l^2(\mathfrak{A}, \mu)} \mathcal{H} \times h(\Sigma, l^2(\mathfrak{A}, \mu)),$$

where $\dim_{l^2(\mathfrak{A},\mu)}\mathcal{H}$ is the von Neumann dimension of \mathcal{H} .

3. FOLNER ENTROPY

Definition 3.1. *Let* $OPf(\mathcal{H})$ *be the set contains the finite orthonormal subsets of* \mathcal{H} .

Remark 3.1. By Lemma 7.8 in [1], we have

$$d(\omega; \delta) \ge n(1 - \delta^2),$$

where $\omega = \{e_1, \dots, e_n\} \in \mathcal{OP}(\mathcal{H})$. Therefore we will use the following definition.

Definition 3.2. Let \mathfrak{A} be a von Neumann algebra. If $\delta > 0$, $\omega \in O\mathscr{P}f(\mathcal{H})$ and $\Sigma = \{U_1, \ldots, U_m\} \in \mathscr{F}U(\mathfrak{A})$, we define

$$\begin{split} Foh(\Sigma;\delta) &= \inf_{\omega} \frac{1}{dim(\omega)} d\left((\Sigma \cup \Sigma^{-1})\omega;\delta\right) \\ Foh(\Sigma,\mathscr{H}) &= \limsup_{\delta \to 0} Foh(\Sigma;\delta), \\ Foh(\mathfrak{A},\mathscr{H}) &= \inf_{\Sigma} \{Foh(\Sigma,\mathscr{H}) : \omega \in \mathscr{P}f(\mathscr{H}), \text{ and } \Sigma \text{ generates } \mathfrak{A} \}. \end{split}$$

Remark 3.2. *It is easy to see that* $Foh(\mathfrak{A}, \mathcal{H}) \geq 1$.

Lemma 3.1. If $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and $\mathfrak{A} = \mathfrak{A}_1 \oplus \mathfrak{A}_2$, then

$$Foh(\mathfrak{A}, \mathcal{H}) \leq \min(Foh(\mathfrak{A}_1, \mathcal{H}_1), Foinh(\mathfrak{A}_2, \mathcal{H}_2)).$$

Lemma 3.2. Let \mathcal{R} be the hyperfinite II_1 factor. $\mathscr{H} = L^2(\mathcal{R}, \tau)$ where τ is the faithful normal trace on \mathcal{R} . For any subset of unitaries $\Sigma = \{U_1, \ldots, U_n\}$ of \mathcal{R} , we have

$$Foh(\Sigma, \mathcal{H}) = 1.$$

Proof. Let $\delta > 0$. Since \mathcal{R} is hyperfinite, there exist a type I_n subfactor \mathcal{N} of \mathcal{R} such that there are n unitaries $V_1 \dots V_n$ in \mathcal{N} satisfying

$$||V_i - U_i||_2 \leq \delta$$
.

Let

$$W = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & \gamma & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \gamma^{n-2} & 0 \\ 0 & 0 & \dots & 0 & \gamma^{n-1} \end{pmatrix} \text{ and } S = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

be two unitaries that generates \mathcal{N} , where $\gamma=e^{\frac{2\pi i}{n}}$. Then $\omega=\{W^iS^j\Omega:i,j\in\{0,\ldots,n-1\}\}$ is an orthonormal subsets in $F=\{A\Omega:A\in\mathcal{N}\}$, where Ω is a trace vector. It is not hard to see that

$$\frac{1}{\dim(\omega)}d\left((\Sigma\cup\Sigma^{-1})\omega;\delta\right)=1.$$

This clearly implies that $Foh(\Sigma, \mathcal{H}) = 1$.

Lemma 3.3. Let $\mathfrak A$ be a II_1 factor. If there is a subset of unitaries $\Sigma = \{U_1, \ldots, U_n\}$ in $\mathfrak A$ such that Σ generates $\mathfrak A$ and $Foh(\mathfrak A, L^2(\mathfrak A, \tau)) = 0$, then $\mathfrak A$ is hyperfinite.

REFERENCES

- [1] Dan Voiculescu, *Dynamical approximation entropies and topological entropy in operator algebras*, Comm. Math. Phys. Volume 170, Number 2 (1995)
- [2] G.N. Arzhantseva, V.S. Guba and L. Guyot. *Growth rates of amenable groups,* Journal of Group Theory, 8 (2005), no.3, 389-394.
- [3] R. Grigorchuk and P. de la Harpe, *Limit behaviour of exponential growth rates for finitely generated groups*, Monographie de L'Enseignement Mathematique 38 (2001), 351-370.

UNH AND AMSS