This lecture will be recorded

slides and code

https://tiny.cc/compas-ii

TODAY

robot control compas rrc instructions overview

Today's goal

Understand robot control modes and RRC basic set of instructions

Right-click → Compose Up

docker/rrc_virtual_controller

COMPAS RRC driver for ROS

robot control compas rrc nstructions overview

Traditional programming (offline control)

Our goal: online control

Control

Offline control

Online real-time control

Online non-real-time control

robot control compas rrc instructions overview

3D Concrete Printing

- Data streaming
- More than 300'000 points
- More than 4 hours of printing

WAAM

- Process Feedback
- Integrated Fronius welder
- Arc Weld PowerPac
- SmartTac

Mesh Mould

- Advanced Processing
- Slice positioning with
 - COMPAS RRC
- Rebar welding with
 - Externally Guided Motion

Features

Live communication

Multi-Tasking

Multi-Move

Multi-Controller

Multi-Location

Communication

Send ~75ms

Send and Wait ~150ms

Send and Wait in the Future

Send and Subscribe ~75ms

Instructions

Motions

Signals

Basics

Utilities

Custom

robot control compas rrc instructions overview

Hello world

```
ros = rrc.RosClient()
abb = rrc.AbbClient(ros, '/rob1')
done = abb.send_and_wait(rrc.PrintText('Welcome to COMPAS_RRC'))
```


Send instruction (non-blocking)

Send an instruction without waiting for any kind of feedback
abb.send(rrc.PrintText('Hello.'))

Send instruction with feedback (blocking)

```
# Send and wait
done = abb.send_and_wait(rrc.PrintText('Sent with feedback.'))
```


Send instruction with feedback (non-blocking)

```
# Send and defer waiting
future = abb.send(rrc.PrintText('feedback',feedback_level=rrc.FeedbackLevel.DONE))
# Here you can do other stuff [..]
# Wait for feedback
done = future.result(timeout=3.0)
```


Basics

Set Tool

Set WorkObject

Set Max Speed

Set Acceleration

Motion

Get Frame

Move to Frame

Get Joints

Move to Joints

Get Robtarget Move to Robtarget

Utilities

No-op (Ping)

Print Text

Utilities

Wait Time (Delay)

Stop (Pause)

Stop Watch

Utilities

Custom Instructions

10 signals

Read analog Set analog

Read digital
Set digital
Pulse digital

Read group signal
Set group signal

Work objects

```
# Define pick positions
frame on pick = Frame(Point(50, 50, 50), Vector(0, -1, 0), Vector(-1, 0, 0))
frame on place = Frame(Point(50, 50, 50), Vector(0, -1, 0), Vector(-1, 0, 0))
# Move to frame on pickup pallet (work object)
abb.send(rrc.SetWorkObject('ob RRC Brick Pallet'))
abb.send and wait(rrc.MoveToFrame(frame on pick, speed, rrc.Zone.FINE))
# Move to frame on place (work object)
abb.send(rrc.SetWorkObject('ob RRC Build Space'))
abb.send and wait(rrc.MoveToFrame(frame on place, speed, rrc.Zone.FINE))
```


Pick & place example

```
# Create a new brick
done = abb.send and wait(rrc.PulseDigital('doNewBrick',0.2))
# [..]
# Vacuum on
abb.send(rrc.SetDigital('doVacuumOn',1))
# Motion
abb.send(rrc.MoveToFrame(pre place position, speed, rrc.Zone.Z10))
abb.send(rrc.MoveToFrame(place position, speed, rrc.Zone.FINE))
# Vacuum off
abb.send(rrc.SetDigital('doVacuumOn',0))
```


Next week

- Quiz -instead of coding assignment- due next week: Wed 5th May, 9AM.
- Ask for help if needed: Slack, Forum, Office Hours (Fridays, request via Slack)
- Next lecture:
 - Robot control exercise with real robot!

Thanks!

