Tópicos adicionais de integração finita

21.1 Volume de um sólido de revolução pelo método das cascas cilíndricas

Um sólido é gerado pela revolução da região representada na figura 21.1 em torno do eixo y. O volume do sólido poderia ser calculado pelo método do fatiamento, por fatias horizontais, porém existe um método alternativo que, em algumas situações, é mais fácil de ser aplicado, podendo ser às vezes a única alternativa para o cálculo do volume do sólido. Este método é chamado de *método das cascas cilíndricas*.

Figura 21.1. A região plana A, ao ser rotacionada em torno do eixo y, gerará um sólido de volume V.

Suponhamos f(x) contínua no intervalo [a,b], sendo $f(x) \ge 0$ para cada x em [a,b]. Seja A a região do plano dada por $a \le x \le b$, $0 \le y \le f(x)$. Subdividamos o

intervalo [a,b], por pontos $a=x_0,\ x_1,\ \dots,\ x_{n-1},\ x_n=b$ em sub-intervalos de mesmo comprimento $\Delta x=\frac{b-a}{n}$. Sobre cada intervalo $[x_{i-1},x_i]$, consideremos a região A_i entre o gráfico de f e o eixo x (compreendida entre as retas verticais $x=x_{i-1}$ e $x=x_i$). Seja V_i o volume do sólido obtido pela revolução de A_i em torno do eixo y. O volume V do sólido gerado pela revolução da região A em torno do eixo y será $V=\sum_{i=1}^n V_i$.

Figura 21.2. A sub-região A_i , entre o gráfico de f e o eixo x, no intervalo $[x_{i-1}, x_i]$, ao ser rotacionada em torno do eixo y, gera um sólido de volume V_i .

Consideremos um ponto w_i em $[x_{i-1}, x_i]$, e tomemos o retângulo R_i erguido sobre o intervalo $[x_{i-1}, x_i]$ de altura $f(w_i)$. Para Δx suficientemente pequeno a área de R_i é uma aproximação da área de A_i . Também o cilindro perfurado obtido pela revolução do retângulo R_i tem o volume W_i como uma aproximação de V_i . Quando Δx torna-se pequeno, este cilindro perfurado é o que chamamos de uma casca cilíndrica (figura 21.3).

Sabemos que um cilindro circular reto, com base e topo circulares de raio r, e altura h, tem volume $\pi r^2 h$.

O volume W_i é a diferença de volumes de dois cilindros de altura $h_i = f(w_i)$. Para o cálculo de W_i , o volume de um cilindro "interno", de raio da base x_{i-1} (e altura h_i), é subtraído do volume de um cilindro "externo", de raio da base x_i (e altura h_i). Assim sendo, temos o volume W_i dado por

$$W_{i} = \pi x_{i}^{2} f(w_{i}) - \pi x_{i-1}^{2} f(w_{i}) = \pi (x_{i}^{2} - x_{i-1}^{2}) f(w_{i})$$
$$= \pi f(w_{i})(x_{i} + x_{i-1})(x_{i} - x_{i-1})$$

Tomando w_i como sendo o ponto médio do segmento $[x_{i-1}, x_i]$, teremos $w_i = \frac{x_{i-1} + x_i}{2}$ e então $x_{i-1} + x_i = 2w_i$. Assim sendo, como $x_i - x_{i-1} = \Delta x$, teremos

$$W_i = 2\pi w_i f(w_i) \Delta x$$

Figura 21.3. A região retangular R_i , ao ser rotacionada em torno do eixo y, gerará um "cilindro perfurado" de volume W_i .

Para Δx torna-se suficientemente pequeno temos

$$V = \sum_{i=1}^{n} V_{i} \approx \sum_{i=1}^{n} W_{i} = \sum_{i=1}^{n} 2\pi w_{i} f(w_{i}) \Delta x$$
 (21.1)

Figura 21.4. O sólido de revolução é a reunião de superfícies cilíndricas de raio x e altura f(x) (e área $2\pi x f(x)$), com x percorrendo o intervalo [a, b].

A soma que aparece no somatório à direita em (21.1) é uma soma integral da função $2\pi x f(x)$ no intervalo [a,b], correspondente à partição x_0, x_1, \ldots, x_n e pontos intermediários w_1, w_2, \ldots, w_n .

Quando $\Delta x \rightarrow 0$, a soma integral tenderá ao volume V, ou seja

$$V = \lim_{\Delta x \to 0} \sum_{i=1}^{n} 2\pi w_i f(w_i) \Delta x = \int_{a}^{b} 2\pi x f(x) dx$$
 (21.2)

A ideia principal ao fazer uso do método das cascas cilíndricas é a seguinte. Para cada $x \in [a,b]$, uma superfície cilíndrica de raio x e altura f(x) é considerada (figura 21.4). A área desta superfície é $2\pi x f(x)$. A reunião dessas superfícies, quando x percorre o intervalo [a,b] é o sólido de revolução da região A em torno do eixo y. A integral definida dessas áreas no intervalo [a,b] nos dará o volume $V = \int_a^b 2\pi x \, f(x) \, dx$.

Exemplo 21.1. Calcular o volume obtido pela revolução, em torno do eixo y, da região compreendida entre o gráfico de $f(x) = x^3 - 6x^2 + 9x$ e o eixo x, para $0 \le x \le 3$.

Solução. O gráfico de f, para x no intervalo [0,3], é como o esboçado na figura ao lado. Note que se quisermos determinar o volume do sólido de revolução pelo método do fatiamento, teremos que determinar, para cada $y \in [0,4]$ os valores $x_1 = x_1(y)$ e $x_2 = x_2(y)$ em [0,3], $x_1 < x_2$, tais que $f(x_1) = f(x_2) = y$, o que não é possível na prática.

Usando então o método das cascas cilíndricas, o volume procurado será dado por $V = \int_0^3 2\pi x \, f(x) dx$, ou seja

$$V = \int_0^3 2\pi x (x^3 - 6x^2 + 9x) dx$$

$$= 2\pi \int_0^3 (x^4 - 6x^3 + 9x^2) dx = 2\pi \left(\frac{x^5}{5} - \frac{3x^4}{2} + 3x^3\right)_0^3$$

$$= 2\pi \left(\frac{3^5}{5} - \frac{3^5}{2} + 3^4\right) = 16,2\pi \approx 50,8938 \text{ unidades de volume}$$

Observação 21.1. Se f e g são funções contínuas em [a,b], sendo $0 \le a < b$ e $f(x) \ge g(x)$ para cada $x \in [a,b]$, e A é a região plana delimitada pelos gráficos de f e g e pelas retas verticais x = a e x = b, então adaptando a dedução feita para obtenção da fórmula 21.1, podemos deduzir que o volume do sólido obtido pela revolução da região A em torno do eixo y terá volume

$$V = \int_a^b 2\pi x (f(x) - g(x)) dx.$$

21.2 Integrais impróprias

21.2.1 Integrais impróprias com funções integrandas descontínuas em um ou ambos os extremos de integração

Definição 21.1. Sejam α e b números reais, α < b e suponhamos que a função f(x) satisfaz uma das seguintes condições

- (i) f(x) é contínua em]a,b] e tem uma descontinuidade infinita em a, ou seja, $\lim_{x\to a^+} f(x) = +\infty \ ou \ -\infty$
- (ii) f(x) é definida em [a,b] mas é descontínua em a, ou seja, $\lim_{x \to a^+} f(x) \neq f(a)$ ou $\lim_{x \to a^+} f(x)$ não existe.
- (iii) f(x) não é definida em $x = \alpha$ mas o limite $\lim_{x \to \alpha^+} f(x)$ existe e é finito.

Então definimos a integral $\int_a^b f(x) dx$ como sendo

$$\int_0^b f(x) dx = \lim_{t \to a^+} \int_t^b f(x) dx$$

Se $\lim_{t\to a^+} \int_t^b f(x) \, dx = L$, com L real, dizemos que $\int_a^b f(x) \, dx$ é convergente. Se o limite não existir ou for infinito, dizemos que $\int_a^b f(x) \, dx$ é divergente.

Exemplo 21.2. Calcular $\int_0^\alpha \frac{1}{\sqrt{x}} dx \ (\alpha > 0)$.

Solução. A função $f(x) = \frac{1}{\sqrt{x}}$ é definida e contínua no intervalo $]0, +\infty[$, tendo uma descontinuidade infinita no ponto 0.

Sendo
$$0 < t < \alpha$$
, $\int_t^\alpha \frac{1}{\sqrt{x}} dx = \int_t^\alpha x^{-1/2} dx = 2(x^{1/2}) \Big|_t^\alpha = 2(\sqrt{\alpha} - \sqrt{t})$.

Portanto $\int_0^\alpha \frac{1}{\sqrt{x}} \, dx = \lim_{t \to 0+} 2(\sqrt{\alpha} - \sqrt{t}) = 2\sqrt{\alpha}$, sendo portanto convergente a integral $\int_0^\alpha \frac{1}{\sqrt{x}} \, dx$.

Definição 21.2. Sejam α e b números reais, α < b e suponhamos que a função f(x) satisfaz uma das seguintes condições

- (i) f(x) é contínua em [a,b[e tem uma descontinuidade infinita em b, ou seja, $\lim_{x\to b^-} f(x) = +\infty$ ou $-\infty$
- (ii) f(x) é definida em [a,b] mas é descontínua em b, ou seja, $\lim_{x\to b^-} f(x) \neq f(b)$ ou $\lim_{x\to b^-} f(x)$ não existe.

(iii) f(x) não é definida em x = b mas o limite $\lim_{x \to b^-} f(x)$ existe e é finito.

Então definimos a integral $\int_a^b f(x) dx$ como sendo

$$\int_a^b f(x) dx = \lim_{s \to b^-} \int_a^s f(x) dx$$

Se $\lim_{s\to b^-}\int_{\mathfrak{a}}^s f(x)\,dx = L$, com L real, dizemos que $\int_{\mathfrak{a}}^b f(x)\,dx$ é convergente. Se o limite não existir ou for infinito, dizemos que $\int_{\mathfrak{a}}^b f(x)\,dx$ é divergente.

Exemplo 21.3. Calcular $\int_0^{\pi/2} \sec x \, dx$

Solução. A função $\sec x$ é contínua no intervalo $[0,\pi/2[$ e $\lim_{x\to \frac{\pi}{2}^-}\sec x=\lim_{x\to \frac{\pi}{2}^-}\frac{1}{\cos x}=\frac{1}{0^+}=+\infty$.

Agora, sendo $0 \le s < \pi/2$, $\int_0^s \sec x \, dx = (\ln|\sec x + \lg x|)_0^s = \ln|\sec s + \lg s|$. Assim sendo,

 $\int_0^{\pi/2} \sec x \, dx = \lim_{s \to \frac{\pi}{2}^-} \ln \left| \sec s + tg \, s \right| = +\infty \text{ (pois } \sec x \to +\infty \text{ e } tg \, s \to +\infty \text{ quando } s \to \frac{\pi}{2}^-), \text{ sendo portanto uma integral divergente.}$

Definição 21.3 (Convenções adicionais).

- (i) As integrais definidas estabelecidas pelas definições 21.1 e 21.2 recebem o nome de integrais impróprias.
- (ii) Se f(x) é contínua em]a,b[e tem descontinuidades nos pontos extremos a e b, convencionamos que $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$, sendo a < c < b, c qualquer, e as integrais $\int_a^c f(x) \, dx$ e $\int_c^b f(x) \, dx$ definidas conforme estabelecido nas definições 21.1 e 21.2.

Dizemos que a integral $\int_a^b f(x) dx$ é convergente se ambas as integrais impróprias $\int_a^c f(x) dx$ e $\int_c^b f(x) dx$ são convergentes. Caso contrário, a integral $\int_a^b f(x) dx$ será divergente.

(iii) Se f(x) é contínua em $[a,b] - \{c\}$, sendo a < c < b, tendo f(x) uma descontinuidade em c, então definimos $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$.

Exemplo 21.4. *Calcular* $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx$

Solução. A função $f(x) = \frac{1}{\sqrt{1-x^2}}$ é definida e contínua no intervalo]-1,1[, tendo descontinuidade infinita nos extremos do intervalo. Conforme estabelecido na definição 21.3, $\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx = \int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} dx + \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$

Temos
$$\int \frac{1}{\sqrt{1-x^2}} dx = arcsen x + C$$
, e então

$$\int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} \, dx = \lim_{\alpha \to -1^+} \int_{\alpha}^{0} \frac{1}{\sqrt{1-x^2}} \, dx = \lim_{\alpha \to -1^+} (\arcsin 0 - \arcsin \alpha) = \frac{\pi}{2}$$

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = \lim_{b \to 1^-} \int_0^b \frac{1}{\sqrt{1-x^2}} dx = \lim_{b \to 1^-} (\operatorname{arcsen} b - \operatorname{arcsen} 0) = \frac{\pi}{2}$$

Portanto

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx = \int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} dx + \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

sendo assim uma integral convergente.

Exemplo 21.5. Calcular
$$\int_{-1}^{8} \frac{1}{\sqrt[3]{\chi}} dx$$

Solução. A função $f(x) = \frac{1}{\sqrt[3]{x}}$ é contínua em todos os pontos de $\mathbb{R} - \{0\}$, tendo uma descontinuidade infinita em x = 0.

A integral $\int_{-1}^{8} \frac{1}{\sqrt[3]{x}} dx$ é a soma de integrais impróprias $\int_{-1}^{0} \frac{1}{\sqrt[3]{x}} dx + \int_{0}^{8} \frac{1}{\sqrt[3]{x}} dx$

Figura 21.5. $f(x) = 1/\sqrt[3]{x}$ tem descontinuidade infinita em x = 0 mas deixa áreas finitas entre seu gráfico e o eixo x nos intervalos [-1,0[e]0,8].

Temos
$$\int \frac{1}{\sqrt[3]{x}} dx = \int x^{-1/3} dx = \frac{3}{2} \sqrt[3]{x^2} + C$$
, logo
$$\int_{-1}^{0} \frac{1}{\sqrt[3]{x}} dx = \lim_{c \to 0^{-}} \int_{-1}^{0} \frac{1}{\sqrt[3]{x}} dx = \lim_{c \to 0^{-}} \left(\frac{3}{2} \sqrt[3]{x^2} \right)_{-1}^{c} = \lim_{c \to 0^{-}} \frac{3}{2} \left(\sqrt[3]{c^2} - 1 \right) = -\frac{3}{2}.$$

$$\int_{0}^{8} \frac{1}{\sqrt[3]{x}} dx = \lim_{c \to 0^{+}} \int_{0}^{8} \frac{1}{\sqrt[3]{x}} dx = \lim_{c \to 0^{+}} \left(\frac{3}{2} \sqrt[3]{x^2} \right)_{c}^{8} = \lim_{c \to 0^{+}} \frac{3}{2} (4 - \sqrt[3]{c^2}) = 6.$$
 Portanto
$$\int_{-1}^{8} \frac{1}{\sqrt[3]{x}} dx = -\frac{3}{2} + 6 = \frac{9}{2}.$$

21.2.2 Integrais tendo limites de integração infinitos

Definição 21.4.

(i) Se a função f(x) é contínua no intervalo $[\alpha, +\infty[$, definimos

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$

Se $\lim_{b\to +\infty} \int_a^b f(x) \, dx = L$, com L real, dizemos que $\int_a^{+\infty} f(x) \, dx$ é convergente. Se o limite não existir ou for infinito, dizemos que $\int_a^{+\infty} f(x) \, dx$ é divergente.

(ii) Se a função f(x) é contínua no intervalo $]-\infty,b]$, definimos

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$

Se $\lim_{a \to -\infty} \int_a^b f(x) \, dx = L$, com L real, dizemos que $\int_{-\infty}^b f(x) \, dx$ é convergente. Se o limite não existir ou for infinito, dizemos que $\int_{-\infty}^b f(x) \, dx$ é divergente.

(iii) Se f(x) é contínua em \mathbb{R} , definimos

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{b} f(x) dx + \int_{b}^{+\infty} f(x) dx$$

(sendo b um número real qualquer) mas apenas se ambas as integrais $\int_{-\infty}^b f(x) \, dx$ e $\int_b^{+\infty} f(x) \, dx$ forem convergentes. Se ao menos uma destas integrais for divergente, diremos que $\int_{-\infty}^{+\infty} f(x) \, dx$ é divergente.

Exemplo 21.6. Calcular $\int_{-\infty}^{+\infty} \frac{1}{x^2+1} dx$.

Solução. A função $f(x) = \frac{1}{x^2 + 1}$ é contínua em \mathbb{R} e $\int \frac{1}{x^2 + 1} = \operatorname{arctg} x + C$. Assim sendo,

$$\int_0^{+\infty} \frac{1}{x^2 + 1} dx = \lim_{\alpha \to +\infty} \int_0^{\alpha} \frac{1}{x^2 + 1}, dx = \lim_{\alpha \to +\infty} \left(\operatorname{arctg} x \right)_0^{\alpha} = \lim_{\alpha \to +\infty} \operatorname{arctg} \alpha = \pi/2$$

$$\int_{-\infty}^{0} \frac{1}{x^2 + 1} dx = \lim_{b \to -\infty} \int_{b}^{0} \frac{1}{x^2 + 1}, dx = \lim_{b \to -\infty} (\operatorname{arctg} x)_{b}^{0} = \lim_{b \to -\infty} (-\operatorname{arctg} b) = \pi/2$$

Portanto $\int_{-\infty}^{+\infty} \frac{1}{x^2 + 1} dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi$, sendo portanto uma integral convergente.

21.2.3 Alguns critérios para estabelecer convergência de integrais impróprias

Muitas vezes não somos capaz de estabelecer a convergência de uma integral imprópria pois não a conseguimos calcular diretamente. Mas por comparação (de desigualdade) com a integral imprópria de uma outra função a convergência ou divergência da integral pode ser estabelecida. Na sequência enunciamos alguns desses critérios de comparação e desenvolvemos exemplos de aplicação. São teoremas que apenas enunciaremos, sem fazer demonstrações.

Proposição 21.1. Suponhamos que f(x) e g(x) são funções contínuas no intervalo $]\alpha, b[$, sendo cada uma delas descontínua apenas em α , ou apenas em b, ou em ambos os extremos α e b. Suponhamos ainda que $0 \le f(x) \le g(x)$ para cada x em $]\alpha, b[$. Então

- 1. se $\int_a^b g(x) dx$ converge então $\int_a^b f(x) dx$ converge.
- 2. se $\int_a^b f(x) dx$ diverge então $\int_a^b g(x) dx$ diverge.

Proposição 21.2. Suponhamos que f(x) é função contínua no intervalo]a,b[, sendo descontínua apenas em a, ou apenas em b, ou em ambos os extremos a e b. Suponhamos ainda que $0 \le f(x) \le g(x)$ para cada x em]a,b[, sendo g(x) uma função contínua em [a,b]. Então a integral $\int_a^b f(x) \, dx$ é convergente.

Exemplo 21.7. Estabelecer a convergência ou divergência da integral $\int_{-1}^{1} \frac{1}{\sqrt{1-x^4}} dx$.

Solução. Temos $f(x) = \frac{1}{\sqrt{1-x^4}}$ contínua e positiva no intervalo]-1,1[, tendo descontinuidade infinita nos extremos -1 e 1.

Agora,
$$f(x) = \frac{1}{\sqrt{1 - x^4}} = \frac{1}{\sqrt{(1 - x^2)(1 + x^2)}} = \frac{1}{\sqrt{1 - x^2}} \cdot \frac{1}{\sqrt{1 + x^2}}$$

Como
$$\sqrt{1+x^2} > 1$$
, temos $\frac{1}{\sqrt{1+x^2}} < 1$. Logo, para cada $x \in]-1,1[$,

$$f(x) < \frac{1}{\sqrt{1-x^2}} \cdot 1 = \frac{1}{\sqrt{1-x^2}}. \text{ Sendo } g(x) = \frac{1}{\sqrt{1-x^2}}, \text{ vimos no exemplo } 21.4 \text{ que } \\ \int_{-1}^1 g(x) \, dx \text{ \'e convergente. Portanto a integral impr\'opria } \int_{-1}^1 \frac{1}{\sqrt{1-x^4}} \, dx \text{ \'e convergente.}$$

Proposição 21.3. Suponhamos que f(x) é uma função contínua no intervalo a, b[, sendo descontínua apenas em a, ou apenas em b, ou em ambos os extremos a e b.

Se a integral $\int_a^b |f(x)| dx$ é convergente então $\int_a^b f(x) dx$ é convergente.

Exemplo 21.8. Estabelecer a convergência ou divergência da integral $\int_0^{\pi} x^3 \sin \frac{1}{x} dx$

Solução. Sendo $f(x) = x^3 \operatorname{sen} \frac{1}{x}$, temos f(x) descontínua em x = 0.

Temos também $|f(x)| = |x^3| \cdot |sen\frac{1}{x}| \le |x^3|$.

A função $g(x) = |x^3|$ é contínua em $[0,\pi]$. Pela proposição 21.2, a integral $\int_0^{\pi} |f(x)| dx$ é convergente.

Logo, pela proposição 21.3, $\int_0^{\pi} x^3 \sin \frac{1}{x} dx = \int_0^{\pi} f(x) dx$ é convergente.

Proposição 21.4. Suponhamos que f(x) e g(x) são funções definidas e contínuas no intervalo $[\alpha, +\infty[$.

- 1. Se $0 \le f(x) \le g(x)$ para cada $x \ge \alpha$, e $\int_{\alpha}^{+\infty} g(x) \, dx$ é convergente, então $\int_{\alpha}^{+\infty} f(x) \, dx$ é convergente.
- 2. Se $0 \le f(x) \le g(x)$ para cada $x \ge a$, $e \int_a^{+\infty} f(x) dx$ é divergente, então $\int_a^{+\infty} g(x) dx$ é divergente.
- 3. Se $\int_{\mathfrak{a}}^{+\infty} |f(x)| \, dx$ é convergente então $\int_{\mathfrak{a}}^{+\infty} f(x) \, dx$ é convergente.
- 4. Se $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = L$, sendo L real e positivo, então as integrais $\int_a^{+\infty} f(x) dx$ e $\int_a^{+\infty} g(x) dx$ são ambas convergentes ou ambas divergentes.

As quatro propriedades enunciadas também são válidas para o caso das integrais impróprias $\int_{-\infty}^{b} f(x) dx$ e $\int_{-\infty}^{b} f(x) dx$, se f(x) e g(x) são definidas e contínuas no intervalo $]-\infty,b]$ (neste caso, no limite do item 4, toma-se $x \to -\infty$).

Exemplo 21.9. Estabelecer convergência ou divergência de cada uma das integrais

- (a) $\int_{\alpha}^{+\infty} \frac{1}{x^p} dx$ sendo p > 0 constante e $\alpha > 0$.
- (b) $\int_0^{+\infty} e^{-x^2} dx$
- (c) $\int_{2}^{+\infty} \frac{1}{x^5 \sqrt[3]{x^2}} dx$

Solução.

(a) Se
$$p \ne 1$$
, temos $\int \frac{1}{x^p} dx = \int x^{-p} dx = \frac{x^{-p+1}}{-p+1} + C$. Neste caso teremos

$$\int_{a}^{+\infty} \frac{1}{x^{p}} = \lim_{b \to +\infty} \int_{a}^{b} \frac{1}{x^{p}} = \lim_{b \to +\infty} \left(\frac{x^{-p+1}}{-p+1} \right)_{a}^{b} = \lim_{b \to +\infty} \left(\frac{b^{-p+1}}{-p+1} - \frac{a^{-p+1}}{-p+1} \right)$$

$$= \begin{cases} +\infty & \text{se } p < 1 \text{ (pois } -p+1 > 0) \\ \frac{1}{(p-1)a^{p-1}} & \text{se } p > 1 \text{ (pois } -p+1 = -(p-1) < 0) \end{cases}$$

Se p = 1,
$$\int \frac{1}{x^p} dx = \int \frac{1}{x} dx = \ln x + C$$
. Neste caso,

$$\int_{0}^{+\infty} \frac{1}{x^{p}} dx = \int_{0}^{+\infty} \frac{1}{x} dx = \lim_{b \to +\infty} \int_{0}^{b} \frac{1}{x} dx = \lim_{b \to +\infty} (\ln x)_{a}^{b} = \lim_{b \to +\infty} (\ln b - \ln a) = +\infty$$

Concluímos então que a integral $\int_{\alpha}^{+\infty} \frac{1}{x^p} dx$ é convergente se p > 1 e divergente de 0 .

(b) Temos $x^2 > x$ se x > 1, portanto $-x^2 < -x$ se x > 1. Daí $f(x) = e^{-x^2} < e^{-x} = g(x)$ quando x > 1. Sendo $g(x) = e^{-x}$, temos

$$\int_{1}^{+\infty} g(x) dx = \int_{1}^{+\infty} e^{-x} dx = \lim_{b \to +\infty} \int_{1}^{b} e^{-x} dx = \lim_{b \to +\infty} \left(-e^{-x} \right)_{1}^{b} = \lim_{b \to +\infty} \left(-e^{-b} + e^{-1} \right) = \frac{1}{e}$$

Pela proposição 21.4, a integral $\int_1^{+\infty} f(x) dx = \int_1^{+\infty} e^{-x^2} dx$ é convergente.

Daí
$$\int_0^{+\infty} e^{-x^2} dx = \int_0^1 e^{-x^2} dx + \int_1^{+\infty} e^{-x^2} dx$$
 é convergente.

(c) Sendo $f(x) = \frac{1}{x^5 - \sqrt[3]{x^2}}$, consideremos $g(x) = \frac{1}{x^5}$. Temos f(x) e g(x) contínuas no intervalo $[2, +\infty[$.

Agora
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^5}{x^5 - x^{2/3}} = \lim_{x \to +\infty} \frac{1}{1 - x^{-13/3}} = \frac{1}{1 - 0} = 1.$$

Pela proposição 21.4, ambas as integrais $\int_2^{+\infty} \frac{1}{x^5 - \sqrt[3]{x^2}} dx$ e $\int_2^{+\infty} \frac{1}{x^5} dx$ possuem o mesmo comportamento quanto à convergência ou divergência. Como a segunda integral é convergente, a primeira também o é.

21.3 Problemas

21.3.1 Volumes de sólidos de revolução pelo método das cascas cilíndricas

Calcule o volume do sólido de revolução obtido pela rotação da região dada em torno do eixo y.

1. Região delimitada pela curva $y = x^2$, pelo eixo x, e pelas retas x = 1 e x = 2. Resposta. $15\pi/2$.

- 2. Região plana delimitada pela curva $y = \sin x$ e pelo eixo x, para $0 \le x \le \pi$. Resposta. $2\pi^2$.
- 3. Região limitada pelas curvas $y = \sqrt{x}$ e $y = x^2/8$. Resposta. $48\pi/5$.
- 4. Região delimitada pela curva $y = \sqrt{x^2 + 1}$, pelos eixos x e y, e pela reta $x = \sqrt{3}$. Resposta. $14\pi/3$.
- 5. Região delimitada pelo gráfico de $f(x) = 3x^3 4x^2 x + 5/2$, pelos eixos x e y, e pela reta x = 4/3 (sabendo que f(x) > 0 quando x > 0). Resposta. $8\pi/5$.
- 6. Região delimitada pela circunferência $(x-b)^2+y^2=a^2$, sendo b>a>0. Resposta. $2\pi^2a^2b$.

21.3.2 Integrais impróprias

Calcule ou determine divergência de cada uma das seguintes integrais impróprias.

1.
$$\int_0^3 \frac{1}{(x-1)^2} dx$$
. Resposta. Diverge.

2.
$$\int_{-\infty}^{+\infty} \frac{1}{x^2 + 4x + 9} dx$$
. Resposta. $\pi/\sqrt{5}$.

3.
$$\int_0^{1/2} \frac{1}{x^2 \ln x} dx$$
. Resposta. $1/\ln 2$.

4.
$$\int_{\alpha}^{+\infty} \frac{\alpha x}{x \ln x} dx$$
 ($\alpha > 0$). Resposta. Diverge.

5.
$$\int_0^{+\infty} \frac{\arctan x}{x^2 + 1} dx$$
. Resposta. $\pi/8$.

Para cada uma das integrais, determine se converge ou diverge.

6.
$$\int_{-1}^{+\infty} \frac{1}{x^2 + \sqrt[3]{x^4 + 1}} dx$$
. Resposta. Converge.

7.
$$\int_{1}^{+\infty} \frac{1}{2x + \sqrt[3]{x^2 + 1} + 5} dx$$
. Resposta. Diverge.

8.
$$\int_{1}^{2} \frac{1}{\ln x} dx$$
. Resposta. Diverge.

9.
$$\int_{\pi/2}^{+\infty} \frac{\sin x}{x^2} dx$$
. Resposta. Converge.

10.
$$\int_0^1 \frac{1}{\sqrt[3]{1-x^2}} dx$$
. Resposta. Converge.