La loi exponentielle s'applique dans de nombreuses situations, notamment à la durée de fonctionnement des systèmes qui ne sont pas sujets à un phénomène d'usure.

1. Définition

Soit λ un réel strictement positif.

Une variable aléatoire X suit une loi exponentielle de paramètre λ lorsque sa densité de probabilité est la fonction f définie sur $[0; +\infty[$ par $f(x) = \lambda e^{-\lambda x}$.

Pour tout réel a et b de $[0; +\infty[$ avec $a \le b$:

$$P(a \leq X \leq b) = \int_a^b \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_a^b = e^{-\lambda a} - e^{-\lambda b}.$$

Remarque : comme pour les autres lois à densité, pour tout t: P(x = t) = 0; et donc, $P(a \le X \le b) = P(a < X \le b) = P(a \le X \le b)$.

2. Propriétés

Si une variable aléatoire X suit une loin exponentielle de paramètre λ , alors :

- 1. Pour tout réel $t: P(X \le t) = 1 e^{-\lambda t}$ et $P(X > t) = e^{-\lambda t}$.
- 2. $E(X) = \frac{1}{\lambda} \text{ et } V(X) = \frac{1}{\lambda^2}.$

3. Vocabulaire de la fiabilité

- La variable aléatoire T qui à tout dispositif associe sa durée de vie est appelée **temps de bon fonctionnement** (noté T.B.F.).
- La fonction F définie par $F(t) = P(T \le t)$ est appelée **fonction de défaillance**.
- La fonction R définie par $R(t) = P(T > t) = 1 P(T \le t) = 1 F(t)$ est appelée **fonction** de fiabilité du système.
- L'espérance mathématique de T est la durée de vie moyenne du système, elle est notée M.T.B.F.

Dans le cas de la loi exponentielle ou durée de vie sans vieillissement, on a :

$$F(t) = 1 - e^{-\lambda t}$$
; $R(t) = e^{-\lambda t}$ et $E(T) = \frac{1}{\lambda} = M.T.B.F.$