MI3 Sección A Primer Semestre 2021

Profesora: Inga. Ericka Cano Aux: William Hernández

CLASE 08/03/2021

MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

CIRCUITOS EN SERIE RC Y RL

Ejemplo

Un circuito en serie RC con una resistencia de 10 ohms una capacitancia de 0.02 faradios se le aplica una tensión de $100e^{-5t}$ voltios. La carga inicial es cero Determine:

- a) Determine q(t) e i(t)
- b) Cual es la máxima carga del capacitor para $t \geq 0$ y en que momento ocurre

$$E(t) = 100e^{-5t} V$$

$$R = 10\Omega$$

$$C = 0.02 f$$

La corriente i y la carga q se relacionan mediante
$$i = \frac{dq}{dt}$$

$$i = \frac{dq}{dt}$$

$$10\frac{dq}{dt} + \frac{1}{0.02}q = 100e^{-5t} \div 10$$

$$\frac{dq}{dt} + 5q = 10e^{-5t}$$

$$\frac{dq}{dt} + \frac{1}{0.02}q = 10e^{-5t}$$

$$\frac{dq}{dt} + 5q = 10e^{-5t} \rightarrow lineal en q$$

$$P(t) = 5$$

$$Q(t) = 10e^{-5t}$$

$$F.I. = e^{5t}$$

$$e^{5t}q = \int (e^{5t})10e^{-5t} dt$$

$$e^{5t}q = 10 \int dt$$

$$e^{5t}q = 10t + C$$

$$q = \frac{10t}{e^{5t}} + \frac{C}{e^{5t}}$$

$$q(t) = 10te^{-5t} + Ce^{-5t}$$

Condiciones iniciales
$$q(0) = 0$$

$$q(t) = 10te^{-5t} + Ce^{-5t}$$

$$0 = 10(0)e^{0} + Ce^{0}$$

$$C = 0$$

 $q(t) = 10te^{-5t}$

Carga para cualquier instante t

Recordar

La corriente y la carga se relacionan mediante

$$i = \frac{dq}{dt}$$
 $\rightarrow i + i = \frac{dq}{dt} = \frac{dq}{dt}$

$$q(t) = 10te^{-5t}$$

$$i(t) = \frac{dq}{dt} = q'(t) = -50te^{-5t} + 10e^{-5t}$$

$$i(t) = 10e^{-5t} - 50te^{-5t}$$
 Corriente para cualquier instante t

Cual es la maxima carga del capacitor?

$$q'(t) = 0$$

$$q'(t) = 10e^{-5t} - 50te^{-5t} = 0$$

$$10e^{-5t} - 50te^{-5t} = 0$$

$$e^{-5t}(10 - 50t) = 0$$

$$(10 - 50t) = 0$$

$$t=\frac{1}{5}s$$

$$q_{max} = q_{\left(\frac{1}{5}\right)} = 10\left(\frac{1}{5}\right)e^{-5\left(\frac{1}{5}\right)}$$

$$q_{max} = 0.7357 C$$

TRAYECTORIAS ORTOGONALES

TRAYECTORIAS ORTOGONALES

Aplicación Geométrica de las ecuaciones diferenciales. Cuando todas las curvas de una familia $G(x,y,C_1)=0$ intersecan ortogonalmente (90°) a todas las curvas de otra familia $H(x,y,C_2)=0$ se dice que ambas familias son Trayectorias ortogonales entre sí.

$$Si \left| \frac{dy}{dx} = f(x, y) \right|$$

es la ED de la familia G

$$\therefore \left| \frac{dy}{dx} = - \frac{1}{f(x, y)} \right|$$

es la ED para la familia

de trayectorias ortogonales de H

$$y' = -\frac{1}{y'}$$

Una trayectoria ortogonal de una familia de curvas, es la curva que interseca a cada una de las curvas de dicha familia, de forma tal que las rectas tangentes son mutuamente perpendiculares en cada punto de intersección

Ejemplo

Encuentre la familia de trayectorias ortogonales de los círculos con centro en el origen.

 $(x^2 + y^2) = r^2 \rightarrow Familia de círculos con centro en el origen (familia 1)$

Derivando implicitamente con respecto a la variable x

$$2x + 2yy' = 0$$

$$y' = -\frac{2x}{2y}$$

 $y' = -\frac{x}{y}$ \rightarrow ED asociada a la familia de círculos en el origen.

$$f(x,y) = -\frac{x}{y}$$

Encontrando la ED de la familia 2 que es ortogonal a la familia 1

$$y' = -\frac{1}{f(x, y)}$$
$$y' = -\frac{1}{\left(-\frac{x}{y}\right)}$$

ED asociada a las trayectorias ortogonales (familia 2)

$$y' = \frac{y}{x}$$

$$\frac{dy}{dx} = \frac{y}{x}$$

ED primer orden, variables separables

$$\frac{dy}{y} = \frac{dx}{x}$$

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\ln y = \ln x + c_1$$

$$\ln y - \ln x = c_1$$

$$\ln \left(\frac{y}{x}\right) = c_1$$

$$e^{\ln\left(\frac{y}{x}\right)} = e^{\ell_1}$$

$$\frac{y}{x} = c$$

$$y = Cx$$

 $Trayectoria\ ortogonal$

Familia 2 ortogonal a la familia 1 Son rectas que pasa por el origen

Loulen 1

Familia 1

círculos con centro en el origen

$$x^2 + y^2 = r^2$$

Familia 2

Familia ortogonal Rectas que pasa por el origen

$$y = Cx$$

Ejemplo

$$\frac{x^2}{a^2} + \frac{x^2}{b^2} = 1$$

$$\Rightarrow b > 0$$

Encuentre la familia de trayectorias ortogonales para la siguiente ecuación.

$$Sea x^2 + 3y^2 = C$$

$$(x^2)+(3y^2) = C \rightarrow Familia de Elipses con centro en el origen (familia 1)$$

Derivando implicitamente con respecto a la variable x

$$2x + 6yy' = 0 = 2$$

$$x + 3yy' = 0$$

$$y' = -\frac{x}{3y} \rightarrow ED$$
 asociada a la familia de elipses $f(x,y) = \left(-\frac{x}{3y}\right)$

$$f(x,y) = \left(-\frac{x}{3y}\right)$$

Encontrando la ED de la familia 2 que es ortogonal a la familia 1

$$y' = -\frac{1}{f(x, y)}$$

$$y' = -\frac{1}{\left(-\frac{x}{3y}\right)}$$

$$y' = \frac{3y}{3y}$$

ED asociada a las trayectorias ortogonales (familia 2)

Encontrando la familia 2 que es ortogonal a la familia 1

$$y' = \frac{3y}{x}$$

$$\frac{dy}{dx} = \frac{3y}{x}$$
 ED primer orden, variables separables

$$\frac{dx}{dx} = \frac{1}{x}$$

$$\frac{dy}{y} = \frac{3dx}{x}$$

$$\int \frac{dy}{y} = 3 \int \frac{dx}{x}$$

$$\ln y = 3\ln x + c_1$$

$$\ln y - 3\ln x = c_1$$

$$\ln y - 3\ln x = c_1$$

$$\ln y - \ln x^3 = c_1$$

$$ln\left(\frac{y}{x^3}\right) = c_1$$

$$e^{\ln\left(\frac{y}{x^3}\right)} = e^{e_1}$$

$$\frac{y}{x^3} = c$$

$$y = Cx^3$$

Trayectoria ortogonal Familia 2 ortogonal a la familia 1 Son funciones cubicas (monomio cubico)

- Curvas equipotenciales
- Campos magnéticos
- Lineas isotérmicas e isobáricas
- Lineas equidistantes

Aplicaciones de las trayectorias ortogonales:

PRUEBA DE CONOCIMIENTO

Encuentre las trayectorias ortogonales a la familia de parábolas con vertice en el origen y foco sobre el eje x

