Importing Necessary libraries.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from google.colab import files
uploaded = files.upload()

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving headhrain (1) (5)

import io
df = pd.read_csv(io.BytesIO(uploaded['headbrain.csv']))
df

	Gender	Age Range	Head Size(cm^3)	Brain Weight(grams)
0	1	1	4512	1530
1	1	1	3738	1297
2	1	1	4261	1335
3	1	1	3777	1282
4	1	1	4177	1590
232	2	2	3214	1110
233	2	2	3394	1215
234	2	2	3233	1104
235	2	2	3352	1170
236	2	2	3391	1120

237 rows × 4 columns

df.head()

	Gender	Age Range	<pre>Head Size(cm^3)</pre>	Brain Weight(grams)
0	1	1	4512	1530
1	1	1	3738	1297
2	1	1	4261	1335
3	1	1	3777	1282
4	1	1	4177	1590

```
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 237 entries, 0 to 236
     Data columns (total 4 columns):
          Column
                                Non-Null Count
                                                Dtype
                                                ----
      0
          Gender
                                237 non-null
                                                int64
      1
          Age Range
                                237 non-null
                                                int64
          Head Size(cm^3)
                               237 non-null
                                                int64
          Brain Weight(grams) 237 non-null
                                                int64
     dtypes: int64(4)
     memory usage: 7.5 KB
df.isnull().sum()
     Gender
                             0
                             0
     Age Range
     Head Size(cm^3)
                             0
     Brain Weight(grams)
     dtype: int64
df.shape
     (237, 4)
# Taking x and y variables
X = df['Head Size(cm^3)'].values
Y = df['Brain Weight(grams)'].values
```

```
array([4512, 3738, 4261, 3777, 4177, 3585, 3785, 3559, 3613, 3982, 3443, 3993, 3640, 4208, 3832, 3876, 3497, 3466, 3095, 4424, 3878, 4046, 3804, 3710, 4747, 4423, 4036, 4022, 3454, 4175, 3787, 3796, 4103, 4161, 4158, 3814, 3527, 3748, 3334, 3492, 3962, 3505, 4315, 3804, 3863, 4034, 4308, 3165, 3641, 3644, 3891, 3793, 4270, 4063, 4012, 3458, 3890, 4166, 3935, 3669, 3866, 3393, 4442, 4253, 3727, 3329, 3415, 3372, 4430, 4381, 4008, 3858, 4121, 4057, 3824, 3394, 3558, 3362, 3930, 3835, 3830, 3856, 3249, 3577, 3933, 3850, 3309, 3406, 3506, 3907, 4160, 3318, 3662, 3899, 3700, 3779, 3473, 3490, 3654, 3478, 3495, 3834, 3876, 3661, 3618, 3648, 4032, 3399, 3916, 4430, 3695, 3524, 3571, 3594, 3383, 3499, 3589, 3900, 4114, 3937, 3399, 4200, 4488, 3614, 4051, 3782, 3391, 3124, 4053, 3582, 3666, 3532, 4046, 3667, 2857, 3436, 3791, 3302, 3104, 3171, 3572, 3530, 3175, 3438, 3903, 3899, 3401, 3267, 3451, 3090, 3413, 3323, 3680, 3439, 3853, 3156, 3279, 3707, 4006, 3269, 3071, 3779, 3548, 3292, 3497,
```

Χ

```
3069, 3394, 3703, 3165, 3354, 3000, 3687, 3556, 2773, 3058, 3344,
            3493, 3297, 3360, 3228, 3277, 3851, 3067, 3692, 3402, 3995, 3318,
            2720, 2937, 3580, 2939, 2989, 3586, 3156, 3246, 3170, 3268, 3389,
            3381, 2864, 3740, 3479, 3647, 3716, 3284, 4204, 3735, 3218, 3685,
            3704, 3214, 3394, 3233, 3352, 3391])
X.shape
     (237,)
     array([1530, 1297, 1335, 1282, 1590, 1300, 1400, 1255, 1355, 1375, 1340,
            1380, 1355, 1522, 1208, 1405, 1358, 1292, 1340, 1400, 1357, 1287,
            1275, 1270, 1635, 1505, 1490, 1485, 1310, 1420, 1318, 1432, 1364,
            1405, 1432, 1207, 1375, 1350, 1236, 1250, 1350, 1320, 1525, 1570,
            1340, 1422, 1506, 1215, 1311, 1300, 1224, 1350, 1335, 1390, 1400,
            1225, 1310, 1560, 1330, 1222, 1415, 1175, 1330, 1485, 1470, 1135,
            1310, 1154, 1510, 1415, 1468, 1390, 1380, 1432, 1240, 1195, 1225,
            1188, 1252, 1315, 1245, 1430, 1279, 1245, 1309, 1412, 1120, 1220,
            1280, 1440, 1370, 1192, 1230, 1346, 1290, 1165, 1240, 1132, 1242,
            1270, 1218, 1430, 1588, 1320, 1290, 1260, 1425, 1226, 1360, 1620,
            1310, 1250, 1295, 1290, 1290, 1275, 1250, 1270, 1362, 1300, 1173,
            1256, 1440, 1180, 1306, 1350, 1125, 1165, 1312, 1300, 1270, 1335,
            1450, 1310, 1027, 1235, 1260, 1165, 1080, 1127, 1270, 1252, 1200,
            1290, 1334, 1380, 1140, 1243, 1340, 1168, 1322, 1249, 1321, 1192,
            1373, 1170, 1265, 1235, 1302, 1241, 1078, 1520, 1460, 1075, 1280,
            1180, 1250, 1190, 1374, 1306, 1202, 1240, 1316, 1280, 1350, 1180,
            1210, 1127, 1324, 1210, 1290, 1100, 1280, 1175, 1160, 1205, 1163,
            1022, 1243, 1350, 1237, 1204, 1090, 1355, 1250, 1076, 1120, 1220,
            1240, 1220, 1095, 1235, 1105, 1405, 1150, 1305, 1220, 1296, 1175,
             955, 1070, 1320, 1060, 1130, 1250, 1225, 1180, 1178, 1142, 1130,
            1185, 1012, 1280, 1103, 1408, 1300, 1246, 1380, 1350, 1060, 1350,
            1220, 1110, 1215, 1104, 1170, 1120])
Y.shape
     (237,)
mean X = np.mean(X)
mean Y = np.mean(Y)
n = len(X)
num = 0
denom = 0
```

for i in range(n):

 $c = mean_Y - (m*mean_X)$

m = num/denom

num += (X[i]-mean X)* (Y[i]-mean Y)

denom $+=(X[i]-mean_X)**2$

3082, 3248, 3358, 3803, 3566, 3145, 3503, 3571, 3724, 3615, 3203, 3609, 3561, 3979, 3533, 3689, 3158, 4005, 3181, 3479, 3642, 3632,

```
print(m,',',c)
```

0.26342933948939945 , 325.57342104944223

```
plt.scatter(X,Y)
```

<matplotlib.collections.PathCollection at 0x7efec5ab1ed0>


```
min_X = np.min(X)-100

max_X = np.max(X)+100
```

```
x = np.linspace(min_x,max_x,1000)
```

```
y = m*x+c
```

```
plt.scatter(X,Y,color='B')
plt.plot(x,y,color='G')
plt.title('Simple Linear Regression')
plt.xlabel('Head size cm^3')
plt.ylabel('Brain weight in grams')
```

```
Simple Linear Regression
        1600
        1500
      1400
#Calculating the error
sum_pred = 0
sum_act = 0
for i in range(n):
    y_pred = (m*X[i]+c)
    sum_pred += (Y[i]-y_pred)**2
    sum_act +=(Y[i]-mean_Y)**2
r2 = 1-(sum_pred/sum_act)
print(r2)
     0.6393117199570003
#Here we can observe that we got R^{**}2>0.5 . so we have good model
def predict(x):
    y = m*x + c
    print(y)
predict(4277)
     1452.2607060456037
predict(4512)
     1514.1666008256125
# USING SKLEARN MODEL
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
X = X.reshape((n,1))
X.shape
     (237, 1)
```

Text(0, 0.5, 'Brain weight in grams')

v shane

```
y . 3114PC
     (1000,)
lg = LinearRegression()
lg.fit(X,Y)
     LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
         normalize=False)
     LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
y_pred = lg.predict(X)
mse = mean_squared_error(Y,y_pred)
rmse = np.sqrt(mse)
r2_score = lg.score(X,Y)
print(rmse)
print(r2_score)
     72.1206213783709
     0.639311719957
lg.predict([[4177]])
     array([1425.9177721])
lg.intercept_
```