Dimension Reduction

講者:Isaac

Outline

- SVD
- PCA
- ▶ T-SNE

What's Dimension Reduction

- Dimension Reduction is an unsupervised learning
- Can use to data compression
 - Make learning faster(Use less RAM)
- ▶ Help visualize data

Why Reduce Dimensionality?

- Reduces time complexity
 - Less computation
- Reduces space complexity
 - Less parameters
- Saves the cost of observing the features
- Data visualization if plotted in 2 or 3 dimensions

Reduce Dimensionality Illustraion

Reduce Dimensionality Illustraion

SVD

- singular-value decomposition(SVD) is a factorization of a real/complex matrix
 - can be used to do dimension reduction
- Every real matrix can be decomposed as $U\Sigma V^T$
 - $U^TU = I, V^TV = I$
 - \triangleright Σ is a diagonal matrix with non-negative real number on diagonal
 - \rightarrow rank(A) = r

Matrix rank

Rank = # of linearly independent columns/rows in A

$$rank \left(\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \right) = 2$$

$$rank \left(\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 4 & -2 & 6 \\ 3 & 6 & -6 & 19 \end{bmatrix} \right) = 3$$

$$rank \left(\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = 3$$

$$rank \left(\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 4 & -2 & 6 \\ 3 & 6 & -4 & 9 \end{bmatrix} \right) = 2$$

SVD Example

$$\begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{12} & 0 \\ 0 & \sqrt{10} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \end{bmatrix}$$

each matrix is a transformation

$$M = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
$$X = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$MX = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{3\sqrt{2}}{2} \\ \frac{3\sqrt{2}}{2} \end{bmatrix}$$

each matrix is a transformation

	Matrix	Alien	Star Wars	Casablanca	Titanic
Joe	1	1	1	0	0
Jim	3	3	3	0	0
John	4	4	4	0	0
Jack	5	5	5	0	0
Jill	0	2	0	4	4
Jenny	0	0	0	5	5
Jane	0	1	0	2	2

http://blog.csdn.net/Mr_KkTian

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} =$$

$$M'$$

$$\begin{bmatrix} .13 & .02 & -.01 \\ .41 & .07 & -.03 \\ .55 & .09 & -.04 \\ .68 & .11 & -.05 \\ .15 & -.59 & .65 \\ .07 & -.73 & -.67 \\ .07 & -.29 & .32 \end{bmatrix} \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.3 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ .12 & -.02 & .12 & -.69 & -.69 \\ .40 & -.80 & .40 & .09 & .09 \end{bmatrix}$$

15

Assume we drop the smallest singular value

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} =$$

M'

$$\begin{bmatrix} .13 & .02 & -.01 \\ .41 & .07 & -.03 \\ .55 & .09 & -.04 \\ .68 & .11 & -.05 \\ .15 & -.59 & .65 \\ .07 & -.73 & -.67 \\ .07 & -.29 & .32 \end{bmatrix} \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ \hline 0 & 0 & 1.3 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ .12 & -.02 & .12 & -.69 & -.69 \\ .40 & .80 & .40 & .80 & .89 \end{bmatrix}$$

```
\begin{bmatrix} .13 & .02 \\ .41 & .07 \\ .55 & .09 \\ .68 & .11 \\ .15 & -.59 \\ .07 & -.73 \\ .07 & -.29 \end{bmatrix} \begin{bmatrix} 12.4 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ .12 & -.02 & .12 & -.69 & -.69 \end{bmatrix}
                                                                            = \begin{bmatrix} 0.93 & 0.95 & 0.93 & .014 & .014 \\ 2.93 & 2.99 & 2.93 & .000 & .000 \\ 3.92 & 4.01 & 3.92 & .026 & .026 \\ 4.84 & 4.96 & 4.84 & .040 & .040 \\ 0.37 & 1.21 & 0.37 & 4.04 & 4.04 \\ 0.35 & 0.65 & 0.35 & 4.87 & 4.87 \\ 0.16 & 0.57 & 0.16 & 1.98 & 1.98 \end{bmatrix}
```

_				_		3				3.2
1	1	1	0	0		0.92	0.95	0.92	0.01	0.01
3	3	3	0	0		2.91	3.01	2.91	-0.01	-0.01
4	4	4	0	0		3.90	4.04	3.90	0.01	0.01
5	5	5	0	0	\approx	4.82	5.00	4.82	0.03	0.03
0	2	O	4	4		0.70	0.53	0.70	4.11	4.11
0	0	0	5	5		-0.69	1.34	-0.69	4.78	4.78
0	1	0	2	2		0.32	0.23	0.32	2.01	2.01
(0.000)				127						_

assume new sample data [1, 1, 0, 3, 2]

$$\begin{bmatrix}
1.56 & .12 \\
.59 & -.02 \\
.56 & .12 \\
.09 & -.69 \\
.09 & -.69
\end{bmatrix} = \begin{bmatrix}
1.599 & -3.35
\end{bmatrix}$$
from 5D to 2D

How many singular values to keep?

keep 80-90% of energy

How many singular values to keep?

$$\begin{bmatrix} .13 & .02 & -.01 \\ .41 & .07 & -.03 \\ .55 & .09 & -.04 \\ .68 & .11 & -.05 \\ .15 & -.59 & .65 \\ .07 & -.73 & -.67 \\ .07 & -.29 & .32 \end{bmatrix} \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ \hline 0 & 0 & 1.3 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ .12 & -.02 & .12 & -.69 & -.69 \\ .40 & -.80 & .40 & .09 & .09 \end{bmatrix}$$

$$\frac{12.4 + 9.5}{12.4 + 9.5 + 1.3} = 0.944$$

(補充)SVD

- How to calculate SVD on a matrix
 - http://www.d.umn.edu/~mhampton/m4326svd_example.pdf
- SVD calculator
 - https://m.wolframalpha.com/input/?i=SVD+%7B%7B1%2C+0%2 C+-1%7D%2C+%7B-2%2C+1%2C+4%7D%7D&lk=3

PCA

What's PCA

variables

principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a find of values of linearly uncorrelated

10-8-6-4-2-0--2--4 Find a projection matrix w from d-dimensional to kdimensional vectors that keeps error low

coordinate of yellow point under red axis

Which projection axis is better?

red arrow have larger variance

PCA

Project all the data points x onto **first** axis w1 and obtain a set of z1

What we want:

PCA

Project all the data points x onto second axis w2 and obtain a set of z2

What we want:

 $var(z_2)$ is as large as possible and $||w^2|| = 1$, $w^1 \cdot w^2 = 0$

should find the new axis which is orthogonal with all of previous axis

PCA concept

- Choose directions such that a total variance of data will be maximum
 - Maximize Total Variance
- Choose directions that are orthogonal
 - Minimize correlation
- Choose k<d orthogonal directions which maximize total variance</p>

Variance and Covariance

Variance

Measure of how far a set of numbers are spread out from their average value

 $Var(X) = \sqrt{X^2} = E[(X - \mu)^2]$ 350

standard deviation

Variance and Covariance

covariance

- measure of the joint variability of two random variables
- $cov(X,Y) = E[(X \mu_x)(Y \mu_y)]$
- ightharpoonup cov(X,X) = Var(X)

 Magnitude of covariance is meaningless but normalized covariance(correlation) meaningful

Variance and Covariance

Correlation

 $\rho_{X,Y}$ (correlation)

= covariance with normalization

$$= \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Covariance Matrix

```
\operatorname{Cov}[X, Y] = \begin{bmatrix}
E[(X_1 - E[X_1])(Y_1 - E[Y_1])] & E[(X_1 - E[X_1])(Y_2 - E[Y_2])] \\
E[(X_2 - E[X_2])(Y_1 - E[Y_1])] & E[(X_2 - E[X_2])(Y_2 - E[Y_2])] \\
E[(X_3 - E[X_3])(Y_1 - E[Y_1])] & E[(X_3 - E[X_3])(Y_2 - E[Y_2])]
\end{bmatrix} \\
= \begin{bmatrix}
\operatorname{Cov}[X_1, Y_1] & \operatorname{Cov}[X_1, Y_2] \\
\operatorname{Cov}[X_2, Y_1] & \operatorname{Cov}[X_2, Y_2] \\
\operatorname{Cov}[X_3, Y_1] & \operatorname{Cov}[X_3, Y_2]
\end{bmatrix}
```

Covariance Matrix Example

ΧI	X2
3	7
2	4

$$\bar{x}_1 = \frac{3+2}{2} = \frac{5}{2}$$

$$\bar{x}_2 = \frac{7+4}{2} = \frac{11}{2}$$

$$\begin{bmatrix} var(X1) & conv(X1, X2) \\ conv(X1, X2) & var(X2) \end{bmatrix}$$

$$var(x_1) = (3 - \frac{5}{2})^2 + (2 - \frac{5}{2})^2$$

$$var(x_1) = (7 - \frac{11}{2})^2 + (4 - \frac{11}{2})^2$$

$$var(x_2) = (7 - \frac{11}{2})^2 + (4 - \frac{11}{2})^2$$

$$cov(x_1, x_2) = \left(3 - \frac{5}{2}\right)\left(7 - \frac{11}{2}\right) + \left(2 - \frac{5}{2}\right)\left(4 - \frac{11}{2}\right)$$

Covariance Matrix Example

ΧI	X2
3	7
2	4

$$\begin{bmatrix} var(X1) & conv(X1, X2) \\ conv(X1, X2) & var(X2) \end{bmatrix}$$

 $\begin{bmatrix} \frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{9}{4} \end{bmatrix}$

What PCA does

- Step I: Get some data
- Step 2: Subtract the mean
- Step 3: Calculate the covariance matrix
- Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix
- Step 5: Choosing components and forming a feature vector

	\boldsymbol{x}	$\boldsymbol{\mathcal{Y}}$	_	\boldsymbol{x}	y
	2.5	2.4		.69	.49
	0.5	0.7		-1.31	-1.21
	2.2	2.9		.39	.99
	1.9	2.2		.09	.29
Data =	3.1	3.0	DataAdjust =	1.29	1.09
	2.3	2.7		.49	.79
	2	1.6		.19	31
	1	1.1		81	81
	1.5	1.6		31	31
	1.1	0.9		71	-1.01

_	\boldsymbol{x}	$\boldsymbol{\mathcal{Y}}$
	.69	.49
	-1.31	-1.21
	.39	.99
	.09	.29
DataAdjust =	1.29	1.09
	.49	.79
	.19	31
	81	81
	31	31
	71	-1.01

calculate covariance matrix

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

$$eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

Find eigenvalues and eigenvectors

$$eigenvalues = \begin{pmatrix} .9499833989\\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399\\ .677873399 & -.735178656 \end{pmatrix}$$

Leave eigenvalue that is larger

Note: Larger eigenvalue mean large variance on axis

\boldsymbol{x}	y
.69	.49
-1.31	-1.21
.39	.99
.09	.29
1.29	1.09
.49	.79
.19	31
81	81
31	31
71	-1.01

Transformed Data (Single eigenvector)

x
827970186
1.77758033
992197494
274210416
-1.67580142
912949103
.0991094375
1.14457216
.438046137
1.22382056

from 2D to 1D

Another PCA Interpretation

Demo

- PCA demo
 - http://setosa.io/ev/principal-component-analysis/

Example and Practice

- Example
 - PCA
 - example/dimension reduction
- Practice
 - Try to reduce dimension on each data to 3D(note that please drop the last feature in this dataset)
 - dataset/seeds_dataset.csv
 - practice/dimension reduction

t-SNE

What's t-SNE

- ▶ T-distributed Stochastic Neighbor Embedding (t-SNE) is a machine learning algorithm for visualization
 - > a nonlinear dimensionality reduction technique
 - Usually used to map N-D data into 2D/3D

What's t-SNE

Advantage of t-SNE

- Some classification group should be closer
- Different classification group should be farther(main different compared with PCA)

t-SNE concept

$$Z(2D/3D \text{ space})$$

$$P(x^{j}|x^{i}) = \frac{S(x^{i}, x^{j})}{\sum_{k \neq i} S(x^{i}, x^{k})} \qquad Q(z^{j}|z^{i}) = \frac{S'(z^{i}, z^{j})}{\sum_{k \neq i} S'(z^{i}, z^{k})}$$

Define similarity function and calculate similarity between all data pair

How to choose similarity function?

SNE

$$S(x^i, x^j) = e^{-\|x^i - x^j\|}$$

$$S'(z^i, z^j) = e^{-\|z^i - z^j\|}$$

t-SNE

$$S(x^i, x^j) = e^{-\|x^i - x^j\|}$$

$$S'(z^i, z^j) = \frac{1}{1 + \|z^i - z^j\|}$$

How to choose similarity function?

t-SNE concept

$$loss = \sum_{i} KL(P_i||Q_i) = \sum_{i \neq j} P(x^j|x^i) \log(\frac{P(x^j|x^i)}{Q(z^j|z^i)})$$

use gradient descent to optimization

t-sne reference

- t-sne result
 - https://lvdmaaten.github.io/tsne/
- t-sne source code
 - https://github.com/oreillymedia/t-SNE-tutorial
- Other reference
 - https://medium.com/d-d-mag/%E6%B7%BA%E8%AB%87%E5%85%A9%E7%A8%AE%E9%99%8D%E7%B6%AD%E6%96%B9%E6%B3%95-pca-%E8%88%87-t-sne-d4254916925b