UNCLASSIFIED

AD NUMBER ADB017944 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; Dec 1976. Other requests shall be referred to the Air Force Flight Dynamics Laboratory, Attn: FBR, Wright-Patterson AFB, OH 45433 **AUTHORITY** AFFDL ltr, 13 Jul 1979

A FINITE ELEMENT MACH BOX PROCEDURE FOR FLUTTER PREDICTION OF PANELS IN THREE-DIMENSIONAL SUPERSONIC UNSTEADY POTENTIAL FLOW

DECEMBER 1976

TECHNICAL REPORT AFFDL-TR-76-161
FINAL REPORT FOR PERIOD JUNE 1976 - DECEMBER 1976

Distribution limited to U.S. Government agencies only; test and evaluation; statement applied in December 1976. Other requests for this document must be referred to AF Flight Dynamics Laboratory, (FBR), Wright-Patterson AFB, Ohio 45433.

JOC FILE COPY

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

REPRODUCED FROM BEST AVAILABLE COPY

T

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

JAMES J. OLSEN

Project Engineer

TOR THE COMMANDER

HOWARD L. FARMER, Colonel, USAF Chief, Structural Mechanics Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Approved a 4 Apply of a 1,

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED,

Best Available Copy

UNCLASSIFIED

REPORT DOCUME	いてんではない ひんたじ	READ INSTRUCTIONS
		BEFORE COMPLETING FORM
1 REPORT NUMBER	2 GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER
/ AFFDL-TR-76- 161		171
A FINITE ELEMENT MACH BO PREDICTIONS OF PANELS IN SUPERSONIC UNSTEADY POTE	THREE-DIMENSIONAL	Final Report. June 1876-December 1976,
7 AUTHOR(3)		S CONTRACT OR GRANT NUMBER &
J. Y. YANG	A CONTRACTOR OF THE CONTRACTOR	
9 PERFORMING ORGANIZATION NAME A	AND ADDRESS	IN PROGRAM C. LMENT PROJECT TALK ANEAS WORK UNIT NUMBERS
AFSC (AFWAL) AF Flight Dynamics Labor Structural Mechanics Div	atory (FBR) ision, WPAFB, Ohio 45433	111 1111
Air Force Flight Dynamic	s Laboratory	December 1976
Structural Mechanics Div Wright-Patterson AFB, Oh		13. NUMBER OF PAGE
14 MONITORING AGENCY NAME & ADDR	10 45433 ESSCIT different from Controlling Office;	15 SECURITY CLASS YM THAN THE STATE
		UNCLASSIFIED
		154 DECLASSIFICATION DOWN PADING
IB. DISTRIBUTION STATEMENT (of this k Distribution limited to statement applied in Dec referred to AF Flight Dy Ohio 45433.	U.S. Government agencies ember 1976. Other reque	only; test and evaluation; sts for this document must be , Wright-Patterson AFB,
Distribution limited to statement applied in Decretered to AF Flight Dy	U.S. Government agencies ember 1976. Other reque namics Laboratory, (FBR)	sts for this document must be , Wright-Patterson AFB,
Distribution limited to statement applied in Dec referred to AF Flight Dy Ohio 45433.	U.S. Government agencies ember 1976. Other reque namics Laboratory, (FBR)	sts for this document must be , Wright-Patterson AFB,
Distribution limited to statement applied in Dec referred to AF Flight Dy Ohio 45433. 12. DISTRIBUTION STATEMENT (of the of N/A	U.S. Government agencies ember 1976. Other reque namics Laboratory, (FBR)	sts for this document must be , Wright-Patterson AFB,
Distribution limited to statement applied in Decreferred to AF Flight Dy Ohio 45433. 12. DISTRIBUTION STATEMENT (of the of N/A	U.S. Government agencies ember 1976. Other reque namics Laboratory, (FBR)	sts for this document musi be , Wright-Patterson AFB,
Distribution limited to statement applied in Decreferred to AF Flight Dy Ohio 45433. 12. DISTRIBUTION STATEMENT (of the of N/A) 13. SUPPLEMENTARY NOTES N/A	U.S. Government agencies ember 1976. Other reque namics Laboratory, (FBR)	sts for this document musi be , Wright-Patterson AFB,
Distribution limited to statement applied in Decreferred to AF Flight Dy Ohio 45433. 12. DISTRIBUTION STATEMENT (of the of N/A) 13. SUPPLEMENTARY NOTES N/A	U.S. Government agencies ember 1976. Other reque namics Laboratory, (FBR)	sts for this document must be, Wright-Patterson AFB,

SECURITY CLASSIFICATION OF THIS GAGE (WHEN FINE PROPERTY OF THE GAGE (WHEN FINE PROPERTY)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

This development is particularly useful in the low supersonic range for panels with chord-span ratio less than about one, while the piston theory does not give satisfactory solution. Examples are demonstrated by using the 16 d.o.f. rectangular plate elements. Results for flutter boundaries for the unstressed panels agree well with an alternative Galerkin's modal solution. The examples demonstrate that flutter boundaries are dominated by higher odes for panels with higher chord-span ratio. They also demonstrate that the dominating flutter boundaries abruptly change modes as the Mach number is varied. The beneficial effect of in-plane tension is demonstrated.

UNCLASSIFIED

SECURITY OF ASSISTED ATTOM OF THIS PAGE When Para Foraint

FOREWORD

This report was prepared by Dr. T. Y. Yang, Visiting Scientist in the Optimization Group, Analysis and Optimization Branch, Structural Mechanics Division, Air Force Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. This work was performed under Project Nr. 2307, "Research in Flight Vehicle Dynamics," Task Nr. 230705, "Basic Research in Structures and Dynamics."

The manuscript was released by the author in December 1976 for publication as a technical report. The report covers work conducted from June 1976 through December 1976.

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
ΙΙ	FORMULATION OF EQUATIONS OF MOTION	5
	1. Principle of Virtual Work	5
	2. Aerodynamic Matrix and Aerodynamic Pressure	7
	 Velocity Potential and Aerodynamic Influence Coefficient 	9
111	FORMULATION FOR FLUTTER DETERMINANT IN TERMS OF FINITE ELEMENT SHAPE FUNCTIONS	12
IV	RESULTS	14
	<pre>Case 1 - Clamped panels with various</pre>	14
	Case 2 - Clamped panels with $\ell/w = 2$ at various Mach numbers	24
	Case 3 - Pinned edge panels with various chord-span ratios at M = 1.3	31
	Case 4 - Clamped square panels with various tension parameters and Mach numbers	39
٧	CONCLUDING REMARKS	57
	REFERENCES	59
	ADDENDIA - THE COMPHTED PROGRAM	61

ILLUSTRATIONS

FIGURE		PAGE
1	Panel divided into finite elements (solid lines) and boxes (dash lines) with coordinates, dimensions, and Mach cone	6
2	Three forms of integrals for computing the aerodynamic influence coefficients	b
3	Flutter boundaries for clamped panel with ℓ/w = 1/4 and M = 1.3	16
4	The first mode shape (real part) for panel corresponding to point A in Fig. 3	17
5	The second mode shape (real part) for panel corresponding to point B in Fig. 3	17
6	Flutter boundaries for clamped panel with $\ell/w = 1/2$ and M = 1.3	18
7	The first mode shape (real part) for panel corresponding to point $\mbox{\ensuremath{\Lambda}}$ in Fig. 6	20
8	The second mode shape (real part) for panel corresponding to point B in Fig. 6	20
9	Flutter boundaries for clamped panel with $\mathcal{Q}/w = 1$ and $M = 1.3$	21
10	The third mode shape (real part) for the center line of panel corresponding to point A in Fig. 9	22
11	The fourth mode shape (real part) for the center line of panel corresponding to point B in Fig. 9	27
12	Flutter boundaries for clamped panel with ℓ/w = 2 and M = 1.3	23
13	The first mode shape (real part) for panel corresponding to point A in Fig. 12	25

LIST OF ILLUSTRATIONS (Continued)

FIGURE		PAGE
14	The fifth mode shape (real part) for the center line of panel corresponding to point B in Fig. 12	25
15	Flutter boundaries for clamped panel with $2/w = 4$ and $M = 1.3$	26
16	The second mode shape (real part) for panel corresponding to point A in Fig. 15	27
17	The tenth mode shape (real part) for the center line of panel corresponding to point B in Fig. 15	27
18	Flutter boundaries for clamped panel with $\ell/w=2$ and $M=1.05, 1.1$	28
19	Flutter boundaries for clamped panel with ℓ/w = 2 and M.= 1.4, 1.5	29
20	Flutter boundaries for clamped panel with ℓ/w = 2 and M = 2.0, 3.0	30
21	Thickness required to prevent flutter for clamped aluminum panel with $\ell/w = 2$ at sea level	32
22	Flutter boundaries for pinned-edge panel with ℓ/w = 0.25 and M = 1.3	33
23	The first mode shape (real part) for panel corresponding to point A in Fig. 22	34
24	Flutter boundaries for pinned-edge panel with ℓ/w = 0.5 and M = 1.3	35
25	The first and second mode shapes (real part) corresponding to points A and B, respectively, in Fig. 24	36
26	Flutter boundaries for pinned-edge panel with $\ell/w = 1$ and M = 1.3	37
27	The first and third mode shapes (real part) corresponding to points A and B, respectivley, in Fig. 26	3 8
28	Flutter boundaries for pinned-edge panel with $l/w = 2$ and $M = 1.3$	40

LIST OF ILLUSTRATIONS (Continued)

FIGURE		PAGE
29	The first and fifth mode shapes (real part) corresponding to points A and B, respectively in Fig. 28	41
30	Flutter boundaries for clamped panel of $\ell/w = 1$, $M = 1.1$, and various tension parameters F	4 2
31	The first mode shape (real part) for panel corresponding to point A in Fig. 30	43
32	The first mode shape (real part) for panel corresponding to point B in Fig. 30	43
33	Flutter boundaries for clamped panels of $1/w = 1$, $M = 1.2$, and various tension parameters F	44
34	The first mode shape (real part) for panel corresponding to point A in Fig. 33	45
35	The first mode shape (real part) for panel corresponding to point B in Fig. 33 $$	45
36	The third mode shapes (real part) for the center line of panel with various tension parameter corresponding to points C, D, E, and F, respectively, in Fig. 33	47
37	Flutter boundaries for clamped panels with $\ell/w = 1$, M = 1.3, 1.32, 1.35, and various tension parameters F	48
38	Flutter boundaries for clamped panels with $1/w = 1$, M = 1.4, 1.45, 1.48, and various tension parameters F	49
39	Flutter boundaries for clamped panels with $Q/w = 1$, M = 1.5, and various tension parameters F	50
40	Flutter boundaries for clamped panels with ℓ/w = 1, M = 1.52, and various tension parameters F	51
41	Flutter boundaries for clamped panels with ℓ/w = 1, M = 1.54, and various tension parameters F	52
42	Flutter boundaries for clamped panels with $\ell/w = 1$, M = 1.6. and various tension parameters F	53

The state of the s

LIST OF ILLUSTRATIONS (Continued)

FIGURE		PAGE
43	Flutter Boundaries for clamped panels with $2/w\approx 1$, $M=2$, and various tension parameters F	54
44	Thickness ratios required to prevent flutter for a square clamped aluminum panel at 25,000 feet above sea level and under various values of tension parameters F	56

SYMBOLS

a, b = length and width of the rectangular plate finite element as defined in Fig. 1. [A] = aerodynamic matrix of the panel system B_{x}, B_{xs} number of boxes in the stream and cross-stream directions, respectively = $Eh^3/12(1 - \gamma^2)$, bending rigidity with γ being Poisson's ratio D = $N_{\chi}/\ell^2\omega_{\chi}^2\sigma h$, Initial in-plane tension parameter $f_{i}(x,y)$ shape function associated with degree of freedom "j" structural damping coefficient panel thickness i, j = subscripts indicate d.o.f. number [K] = stiffness matrix of the panel system k_{i} , k_{e} = $\omega \ell/V$, $\omega \varepsilon/V$, respectively, reduced frequency = length of panel in stream direction = mass matrix of the panel system Mach number receiving box index numbers in the stream and cross-stream directions, respectivley [N]= incremental stiffness matrix of the panel system N_{χ} , N_{γ} , $N_{\chi V}$ = panel in-plane line forces = $(m - \lambda)$, $(n - \nu)$, respectively r, s = transformed variables of integration based on $\varepsilon/2$ as reference length, $u\beta/2 = x_m - \epsilon$, $v/2 = y_n - \eta$ = speed of undisturbed airstream

LIST OF SYMBOLS (Continued)

W	=	width of panel in cross-stream direction
₩j	=	downwash velocity at panel surface for d.o.f. "j"
х, у	=	panel coordinates as defined in Fig. 1
\overline{x} , \overline{y}	=	x/l, y/w, respectively
x _m , y _n	=	values of x/ϵ and y/ϵ at center of box m,n
α_{ϕ}	=	aerodynamic influence coefficient relating the velocity potential at a box to unit downwash on another box (Eq. 12)
β	=	$(M^2 - 1)^{\frac{1}{2}}$
ε	=	w/B _{xs} , box width
ξ, η	=	values of x/ϵ and y/ϵ at any point in the sending box
μ	=	panel-air mass density ratio, σh/ρℓ
λ, ν	=	sending box index number in the stream and cross-stream directions, respectively
ρ	=	density of undisturbed airstream
σ	=	density of panel
τ	=	length-width ratio of box as defined in Fig. 1
$\phi_{\mathbf{j}}(\mathbf{m},\mathbf{n})$	=	velocity potential at center of box m,n for d.o.f. "j"
φ(m,n)	=	velocity potential at center of box m,n due to unit downwash over box λ, ν
ω	=	frequency of flutter motion
ω ₁	=	first natural frequency of the panel
Ω	=	$(\omega_1/\omega)^2(1 + ig)$
$\tilde{\Omega}$	=	$M^2 k_{\varepsilon}/\beta^2$

SECTION I

INTRODUCTION

Ever since the earliest days of manned flight, panel flutter has been known as one of the most important problems in the design of aircraft, missiles, launched vehicles, and spacecraft. Extensive progress in wind tunnel tests and theoretical studies has been achieved. The basic theories and an account of the developments on panel flutter can be found in, among other books, a recent text by Dowell (Reference 1). A list of keyed bibliography and collection of some significant survey papers and original papers were prepared by Garrick (Reference 2).

The theoretical solution for a panel flutter problem usually requires an accurate aerodynamic and structural theory to formulate a set of complex eigenvalue equations of motion interacted between the panel and the flow. One of the most common theoretical methods is the modal method where the aerodynamic pressure and the inertial and elastic forces of the panel are obtained by assuming the displacements as composed of a number of natural modes and generalized coordinates. The natural frequencies and corresponding normal mode shapes are obtained either theoretically or experimentally, or both. Since the finite element method is powerful and practical in the free vibration analysis of panels with arbitrary geometrical and boundary conditions, it is commonly used in obtaining natural frequencies and mode shapes in the modal method.

As an alternative approach, the finite element workers have formulated the matrix of aerodynamic pressure by using the

displacement functions as composed of the nodal degrees of freedom and shape functions rather than the generalized coordinates and natural mode shapes. Such approach can directly solve for the flutter frequencies and corresponding normal mode shapes without having to seek the natural frequencies and modes and choose the number of modes before the eigensolution, and also without having to compute the flutter mode shapes after the eigensolution. Such approach permits expression of the equations of motion in an elegant and straightforward form. Such approach also permits generality in panel configurations and boundary conditions, and allows for flexibility to accurately include physical effect such as in-plane forces.

The finite element method was first extended to the panel flutter problems by Olson (Reference 3). He formulated the aerodynamic matrix explicitly for an infinite plate element. Olson (Reference 4) later formulated the aerodynamic matrices for two rectangular (12 and 16 d.o.f.) and an 18 d.o.f. triangular plate elements. Simultaneously, but independently, Appa and Somashekar (Reference 5) formulated the aerodynamic matrix for a 12 d.o.f. rectangular plate element. Appa, Somashekar and Shah (Reference 6) later extended their work by accounting for skew panels and yawed flow by means of coordinate transformation. Sander, Bon, and Geradin (Reference 7) employed the CQ conforming quadrilateral plate finite element for flutter analysis of rectangular panels with yawed flow and in-plane stresses.

In all the above finite element works (References 3 - 7), Lighthill's linearized piston theory was employed. The Mach numbers considered were above approximately 1.6. Recently, Yang (Reference 8) developed a finite element procedure using the exact linearized two-dimensional theory (strip theory) for unsteady supersonic flow to formulate an infinite plate finite element by means of numerical integration. The flutter speed considered thus could be in the lower supersonic range. Such formulation cannot, however, be adequately applied to the more general case of rectangular panels with finite aspect ratios.

In this report, the three-dimensional supersonic unsteady potential flow theory is employed to formulate the plate finite elements so that the flutter problems of the finite panels in low supersonic range can be treated.

The aerodynamic matrix is derived by using the principle of virtual work. The aerodynamic forces or velocity potentials that produce the work are obtained for each d.o.f. by the Mach box method. Each finite element is divided into several boxes. The aerodynamic influence coefficients for each pair of sending and receiving boxes are evaluated, for each d.o.f., by the method of Gaussian quadrature. The velocity potential at each receiving box is obtained, for each d.o.f., by summation of the product of corresponding downwash and influence coefficients for all sending boxes. It should be noted that a similar box method was used by Cunningham (Reference 9) in conjunction with a Galerkin's modal method for panel flutter analysis. Such 3-D aerodynamic theory was also employed by Dowell and Voss (Reference 10) in a theoretical and experimental correlation study of panel flutter.

The 16 d.o.f. conforming rectangular plate element (Reference 11) was used for example demonstrations. Flutter boundaries were found for clamped rectangular panels with various aspect ratios. The thickness ratios required to prevent flutter of an aluminum panel at sea level were plotted for Mach numbers ranging from 1.05 to 3. Results found are in favorable agreement with Cunninhgam's solution (Reference 9).

The initial in-plane tensile stresses were then included in finding the flutter boundaries for a clamped aluminum panel. The thickness ratios required to prevent flutter of the panel at 25,000 feet altitude were obtained for Mach numbers ranging from 1.05 to 2.0 for various values of tension. It was found that the dominating flutter mode changed abruptly as Mach number was varied.

SECTION II

FORMULATION OF EQUATIONS OF MOTION

The free vibration equations of motion for a finite element panel subjected to the effect of stiffness, in-plane force, inertia, and aerodynamic pressure may be written as

$$[K]\{q\} + [N]\{q\} + [M]\{\ddot{q}\} + [A]\{q\} = \{0\}$$
(1)

where [K], [N], [M], and [A] are, respectively, the stiffness, incremental stiffness, mass, and aerodynamic matrices assembled for the whole finite element system. The vector {q} contains the nodal degrees of freedom for the whole panel system. In this section, only the system aerodynamic matrix is formulated.

PRINCIPLE OF VIRTUAL WORK

For a system of plate finite elements, the deflection and aerodynamic pressure may be written by separating the time and space variables as,

$$\bar{z}(x,y,t) = z(x,y)e^{i\omega t}$$

$$\bar{p}(x,y,t) = p(x,y)e^{i\omega t}$$
(2)

where the coordinates are defined in Fig. 1.

The strain energy for the panel system is equal to the work produced by the aerodynamic pressure

$$U = \frac{1}{2} \iint z(x,y)p(x,y) dxdy$$
 (3)

Figure 1. Panel divided into finite clements (solid lines) and boxes (dash lines) with coordinates, dimensions, and Mach cone

Figure 2. Three forms of integrals for computing the accessmants influence coefficients:

The deflection function for the total finite element system may be assumed as

$$z(x,y) = \sum_{j=1}^{N} f_{j}(x,y)q_{j} = \{f\}^{T}\{q\}$$
 (4)

where $f_j(x,y)$ represents the assembled shape function corresponding to the nodal d.o.f. " q_j " and N is the number of degrees of freedom for the entire panel system. Usually, q_j represents deflection, slopes, twist, and curvatures of the plate at the nodal point j.

Similarly, the aerodynamic pressure may be assumed as

$$p(x,y) = \sum_{j=1}^{N} P_{j}(x,y)q_{j} = \{P\}^{T}\{q\}$$
 (5)

where $P_j(x,y)$ is defined in Eq. (8) as the pressure function associated with the shape function $f_j(x,y)$ and d.o.f. " q_j ."

Substituting Eqs. (4) and (5) into (3), the strain energy expression becomes

$$U = \frac{1}{2} \{q\}^{\mathsf{T}} [\Lambda] \{q\} \tag{6}$$

with

$$[A] = \iint \{f\} \{P\}^T dxdy$$
 (7)

Using the principle of virtual work, it can be interpreted that Eq. (7) yields the aerodynamic matrix.

2. AERODYNAMIC IMITRIX AND AERODYNAMIC PRESSURE

The aerodynamic perturbation pressure is obtained from the linearized three-dimensional supersonic unsteady potential flow theory. When associated

with the d.o.f. " q_j " and the shape function $f_j(x,y)$, the perturbation pressure may be expressed in terms of the velocity potential through the relation (see, for example, Ref. 12),

$$P_{j}(\bar{x},\bar{y}) = -\frac{\rho V}{\lambda} (\frac{\partial \phi_{j}}{\partial \bar{x}} + i \frac{\omega \lambda}{V} \phi_{j})$$
 (8)

where $\phi_{\mathbf{j}}$ is the velocity potential associated with d.o.f. " $q_{\mathbf{j}}$ ".

The coefficient for the <u>ith</u> row and <u>jth</u> column of the aerodynamic matrix [A] is obtained by substituting Eq. (8) into Eq. (7).

$$A_{ij} = -\frac{\rho V}{\ell} \iint f_i(\bar{x}, \bar{y})(\frac{\hat{a}^{\phi}j}{a\bar{x}} + i \frac{\omega \ell}{V} \phi_j) d(\chi \bar{x}) d(w\bar{y})$$
(9)

Performing integration by parts and assuming restrained trailing edge, Eq. (9) becomes

$$A_{ij} = \frac{\rho V}{2} \iint \phi_{j} \left(\frac{\partial f_{i}}{\partial \bar{x}} - i \frac{\omega \ell}{V} f_{i} \right) d(\ell \bar{x}) d(w \bar{y})$$
 (10)

where the quantity within the parentheses is the complex conjugate of the downwash ratio for unit d.o.f. " q_i " and unit panel length. The coefficient A_{ij} is evaluated numerically through the following simple summation

$$A_{ij} = \frac{eV}{R} \sum_{\phi_j} \left(\frac{ef_i}{eK} - i \frac{\omega \ell}{V} f_i \right) \cdot (Box Area)$$
 (11)

where the summation is to be made for every box and the quantities related to ϕ_j and f_i are evaluated numerically at the center of each box. The method for numerically evaluating the velocity potential at the center of each box is given as follows.

3. VELOCITY POTENTIAL AND AERODYNAMIC INFLUENCE COEFFICIENT

The method of Mach box as employed by Cunningham in Reference 9 is used here to derive the aerodynamic influence coefficients between each pair of boxes and the resulting velocity potentials at each box.

In this method, each finite element is divided into several equal-size boxes as shown in Fig. 1. The numbers of boxes in the stream and cross-stream directions are defined as B_X and B_{XS} , respectively. The width and length of each box are defined as ε and $\tau\varepsilon$, respectively, where $\varepsilon=w/B_{XS}$ and $\tau=\frac{2B_{XS}}{w}$. The boxes are numbered in sequence from the origin with m (or λ) and n (or v) as the box number in the stream and the cross-stream directions, respectively. The numbers (m,n) and (λ,v) refer to the receiving and sending boxes, respectively.

The boxes are assumed as sufficiently small so that the downwash over any sending box is considered as uniformly distributed at any instant, and the resulting perturbation pressure at the center of each receiving box represents the average of the pressure distributed over the box.

The velocity potential at the center of a receiving box (m,n) due to a uniformly distributed but otherwise unspecified downwash $w(\lambda,\nu)$ over the sending box (λ,ν) can be expressed, for harmonic motion, as

$$\bar{\phi}(\mathbf{m},\mathbf{n}) = \epsilon \ w(\lambda, \mathbf{v}) \alpha_{\phi}(\mathbf{r}, \mathbf{s}) \tag{12}$$

where the relative locations in stream and cross-stream directions, respectively, between the two boxes are defined as $r = m - \lambda$ and $s = n - \nu$. The aerodynamic influence coefficient from Reference 9 is,

$$\alpha_{\phi}(r,s) = \frac{1}{2\pi} \int_{u_1}^{u_2} e^{-i(\beta \tilde{\Omega}/2)u} \left\{ \cos^{-1} \frac{v_1}{u} - \cos^{-1} \frac{v_2}{u} + \int_{v_1}^{v_2} \frac{\cos[\frac{R\tilde{\Omega}}{2M}(u^2 - v^2)^{\frac{1}{2}}] - 1}{(u^2 - v^2)^{\frac{1}{2}}} dv \right\} du$$
(13)

where all the parameters are defined in the List of Symbols.

In Eq. (13), the surface integration limits $u_1,\,u_2,\,v_1,$ and v_2 result in only three different forms $I_{G1},\,I_{G2},$ and I_{G3} as shown in Fig. 2.

The first form is for any portion of a sending box (λ_1, ν) cut by both sides of the Mach cone so that $v_2 = -v_1 = u$ and s = 0.

$$I_{G1} = \frac{1}{2} \int_{u_1}^{u_2} e^{-i(\beta \bar{\Omega}/2)u} J_0(\frac{a\bar{Q}}{2\bar{M}} u) du$$
 (14)

where \mathbf{J}_0 is the Bessel function of the first kind of order zero.

The second form is for portions of a box cut by one side of the Mach cone so that the limits $v_2 = u$ and $v_1 = 2s - 1 \ge 1$.

$$I_{G2} = \frac{1}{2\pi} \int_{u_1}^{u_2} e^{-i(\beta \tilde{\Sigma}/2)u} \left\{ \cos^{-1} \frac{v_1}{u} + \int_{v_1}^{u} \frac{\cos\left[\frac{\beta \tilde{\Sigma}}{2!i}(u^2 - v^2)^{\frac{1}{2}}\right] - 1}{(u^2 - v^2)^{\frac{1}{2}}} dv \right\} du$$
 (15)

The third form is for boxes that are completely within the Mach cone and also for portions of boxes ahead of the point where the Mach line cuts the side of the box.

$$I_{G3} = \frac{1}{2\pi} \int_{u_1}^{u_2} e^{-i(g\tilde{h}/r)u} \left\{ \cos^{-1} \frac{v_1}{u} - \cos^{-1} \frac{v_2}{u} + \int_{v_1}^{v_2} \frac{\cos(\frac{g\tilde{h}}{2H}(u^2 - v^2)^{\frac{1}{2}} j - 1}{(u^2 - v^2)^{\frac{1}{2}}} dv \right\} du$$
(16)

The complete $a_{\varphi}(r,s)$ for any one sending box (x,v) consists of I_{G1} , I_{G_1} , or I_{G_3} , or a combination of I_{G_1} and I_{G_2} , or of I_{G_3} and I_{G_3} . The types of integrals and limits of integration for computing $a_{\varphi}(r,s)$ for all possible relative locations of box(x,v) and the Mach cone from (n,n) are given in Reference 9.

The evaluation of the above three integrals is carried out through the method of Gaussian quadrature. In the subsequent numerical examples, three Gaussian points are used in both x and y directions for computing I_{G_3} . Five Gaussian points in both x and y directions are used for computing I_{G_1} and I_{G_2} .

Once all possible values of the aerodynamic influence coefficient $\alpha_{\phi}(\mathbf{r},s)$ are obtained for a certain shape function $f_{\mathbf{j}}(\bar{\mathbf{x}},\bar{\mathbf{y}})$, the total velocity potential at the center of a receiving box (m,n) for the downwash associated with the same shape function is a weighted sum of the $\bar{\phi}_{\mathbf{j}}(m,n)$ defined in Eq. (12)

$$\phi_{\mathbf{j}}(\mathbf{m},\mathbf{n}) = V \varepsilon \sum_{\lambda} \sum_{\nu} \frac{w_{\mathbf{j}}(\lambda,\nu)}{V} \alpha_{\phi}(\mathbf{r},\mathbf{s})$$
 (17)

The summation is extended over all the sending boxes. The downwash ratios $w_j(\lambda,\nu)/V \text{ for a unit d.o.f. "} q_j\text{" are the total time derivatives of the shape function } f_j(\bar{x},\bar{y})e^{i\omega t}$

$$\frac{\mathbf{w}_{j}}{\mathbf{V}} = \frac{1}{\varepsilon} \left(\frac{\partial f_{j}}{\partial \bar{\mathbf{x}}} + i \frac{\omega \mathcal{L}}{\mathbf{V}} f_{j} \right) \tag{18}$$

Once the velocity potentials are obtained for each box for each shape function, they can readily be substituted into Eq. (11) for computing the aerodynamic matrix for the entire panel system.

SECTION III

FORMULATION FOR FLUTTER DETERMINANT IN TERMS OF FINITE ELEMENT SHAPE FUNCTIONS

In the present finite element flutter formulation, the parameters are so grouped and nondimensionalized that the solution is general enough to include every parameter. Assuming harmonic motion with natural frequency ω , the equations of motion (1) are rewritten in an element form as

$$\left\{\Omega \left[c_{1}[k] + Fc_{2}[n]\right] - \left[c_{3}[m] - c_{4}[A]\right]\right\}\left\{q\right\} = \{0\}$$
 (19)

where $\Omega = \omega_1^2/\omega^2(1 + ig)$ is the flutter eigenvalue parameter, and

$$c_{1} = \frac{\mu(\ell/a)^{5}D}{\omega_{1}^{2}\sigma h \ell^{4}} ; \quad c_{2} = \mu(\ell/a)^{3} ;$$

$$c_{3} = \mu(\ell/a) ; \quad c_{4} = (\frac{\ell}{a})^{3}(\frac{\epsilon}{\ell})(\frac{1}{k_{o}})^{2}(\frac{\tau \epsilon^{2}}{ab})$$
(20)

The element matrix terms are obtained as

$$k_{ij} = \int_0^1 \int_0^1 \left[\frac{\partial^2 f_i}{\partial \bar{x}^2} \frac{\partial^2 f_j}{\partial \bar{x}^2} + \left(\frac{a}{b} \right)^4 \frac{\partial^2 f_i}{\partial \bar{y}^2} \frac{\partial^2 f_j}{\partial \bar{y}^2} + \nu \left(\frac{a}{b} \right)^2 \frac{\partial^2 f_i}{\partial \bar{x}^2} \frac{\partial^2 f_j}{\partial \bar{y}^2} \right] d\bar{x} d\bar{y}$$

$$+ \nu \left(\frac{a}{b} \right)^2 \frac{\partial^2 f_j}{\partial \bar{x}^2} \frac{\partial^2 f_j}{\partial \bar{y}^2} + 2(1 - \nu) \left(\frac{a}{b} \right)^2 \frac{\partial^2 f_i}{\partial \bar{x} \partial \bar{y}} \frac{\partial^2 f_j}{\partial \bar{x} \partial \bar{y}} d\bar{x} d\bar{y}$$
(21)

$$\mathbf{n_{ij}} = \int_0^1 \int_0^1 \left[\frac{\partial f_i}{\partial \bar{x}} \frac{\partial f_j}{\partial \bar{x}} + \frac{N_y}{N_x} \frac{\partial f_i}{\partial \bar{y}} \frac{\partial f_j}{\partial \bar{y}} + \frac{N_{xy}}{N_x} \frac{\partial f_i}{\partial \bar{x}} \frac{\partial f_j}{\partial \bar{y}} + \frac{N_{xy}}{N_x} \frac{\partial f_j}{\partial \bar{x}} \frac{\partial f_j}{\partial \bar{x}} + \frac{N_{xy}}{N_x} \frac{\partial f_j}{\partial \bar{x}} \frac{\partial f_j}{\partial \bar{y}} \right] d\bar{x} d\bar{y}$$
(22)

$$m_{ij} = \int_0^1 \int_0^1 f_i f_j d\bar{x} d\bar{y}$$
 (23)

$$A_{ij} = \sum_{v} \frac{\phi_{j}}{V\varepsilon} \left(\frac{\partial f_{i}}{\partial \bar{x}} - i \frac{\omega \partial}{V} f_{i} \right)$$
 (24)

The shape functions $f_i(\bar x,\bar y)$ are usually cubic or higher order functions of nondimensional coordinate variables $\bar x$ and $\bar y$. Their differentiations with respect to $\bar x$ and $\bar y$ are performed analytically. The subscript "i" indicates the degree of freedom number with which the shape function is associated. Eqs. (19-24) are suitable for any plate finite element so long as it is a displacement model with assumed shape functions. According to the state-of-the-art of the finite element development, the stiffness matrix [k], mass matrix [m], and incremental stiffness matrix [n] have been formulated analytically and explicitly for almost every plate and shell finite element. Only the aerodynamic matrix [A] remains to be formulated and it is to be obtained by numerical integration here.

Eq. (19) constitutes an eigenvalue problem. The flutter solution is obtained by first assuming a value of reduced frequency k_{ℓ} , then varying the air-panel mass ratio $1/\mu$ incrementally and solving for the corresponding eigenvalues Ω or $(\omega_{1}/\omega)^{2}(1+ig).$ When the structural damping coefficient g changes its value from negative to positive, the panel goes from the stable region to unstable region, and vice versa. The values of k_{ℓ} and $1/\mu$ that correspond to zero g value define the flutter boundary and the corresponding mode shape defines the flutter mode. The complex eigenvalue problem is solved by using a subroutine in EISPACK provided by Argonne National Laboratory.

Before performing analysis for each class of problems, a convergence study by varying the meshes of Mach boxes and finite elements must be made in order to find the suitable meshes needed for obtaining converged results. Such meshes depend on the panel geometry, boundary conditions, flow speed, and flutter modes. However, due to the enormous computations needed for obtaining massive data in this study, not the finest meshes are used. Most of the present results are compared with those obtained by the modal method (Reference 9) and good results are obtained.

SECTION IV

RESULTS

The 16 d.o.f. conforming rectangular plate finite elements were employed to demonstrate the present formulation and procedure. The examples chosen were rectangular panels, stressed as well as unstressed, with clamped edges. For the unstressed panels, a sophisticated analytical solution by Cunningham (Reference 9) using the box method (400 boxes) and Galerkin's modal approach (6 to 16 modes) was available for comparison.

In all examples studied here, the flutter mode shapes were assumed as symmetrical about the center chord-line of the panel. Thus, only half of each panel was modeled by finite elements. In all cases, two elements in the cross stream direction were used for half of the panel. The number of elements in the stream direction varied from 4 to 10 dependent on the dominating flutter mode shapes. Each element was divided into 4 by 2 boxes in the stream and cross stream directions, respectively.

It is important to note that symmetry does not exist for the mesh of boxes unless the Mach cone apex is located at the center chord-line of the panel. The boxes on the other (disregarded) half of the panel can, however, still be accounted for since their deflection shapes are known by symmetry.

Case 1 Clamped Panels with Various Chord-span Ratios at M = 1.3

The rectangular panels with all edges clamped and chord-span ratios (ℓ/w) equal to 0, 1/4, 1/2, 1, 2, and 4 were studied for M = 1.3.

The resulting flutter boundaries are presented as plots of each dominating mode with the air-panel mass ratio $1/\mu$ as the vertical coordinate and the stiffness parameter $\frac{\omega}{1}$ (/V as the horizontal coordinate. The values of reduced frequency $k_{\rm E}$ or ω :/V are marked along each curve. The result ω : the infinite panel with ${\rm E}/{\rm W}=0$ are in exact agreement with those obtained by Cunningham, therefore, they are not presented here.

Fig. 3 shows that for the wide panel with $\ell/w = 1/4$, the first mode flutter boundary crosses the second mode flutter boundary. The critical flutter boundaries are thus dominated by the first mode in the high mass ratio range and by the second mode in the low mass ratio range. A slight amount of structural damping was also included (g = 0.01). The results agree well with those obtained by Cunningham (Reference 9).

The first flutter mode shape (real part) corresponding to point A (k_{χ} = 0.635) in Fig. 3 is shown in Fig. 4. It is seen that, due to the effect of the flow, the mode is not symmetrical about the cross stream centerline. The maximum deflection occurs at a point behind the center of the panel. The second flutter mode shape (real part) for the center chord-line of the panel corresponding to point B (k_{χ} = 1.59) in Fig. 3 is shown in Fig. 5. The effect of the flow that pushes down the front part of the panel is seen.

Fig. 6 shows that, as the panel width is reduced (r/w = 1/2), the first mode boundary shifts to the left and the second mode boundary becomes the critical flutter boundary. Again, the results agree well with Cunningham's solution.

Figure 3 Flutter boundaries for clamped panel with $\mathbf{Q}/\mathbf{w} = 1/4$ and $\mathbf{M} = 1.3$

Figure 4. The first mode shape (real part) for panel corresponding to point A in Fig. 3

Figure 5 The second mode shape (real part) for the center line of panel corresponding to point B in Fig. 3

Figure 6 Flutter boundaries for clamped panel with 1/v = 1/2 and M = 1.3

The first and second flutter mode shapes (real part) corresponding to points A and B in Fig. 6 are plotted in Figs. 7 and 8, respectively. They are quite similar to those shown in Figs. 4 and 5.

Fig. 9 shows that, as the panel becomes square, the third and fourth mode boundaries emerge and the third mode boundary becomes the critical flutter boundary. The results are in good agreement with Cunningham's solution.

The results for the first mode boundary obtained by Houbolt using the piston theory are also shown in the figure.

The third and fourth flutter mode shapes (real part) corresponding to points A and B in Fig. 9 are shown in Figs. 10 and 11, respectively. The effect of the flow that tends to blow flat the front part of the panel is seen.

Fig. 12 shows that, for a long panel with $g/w \approx 2$, the fifth mode flutter boundary becomes dominant in the low mass ratio range and the first mode boundary dominates the high mass ratio range. It also shows that Houbolt's solution for first mode and this solution are very close. There are, however, some discrepancies between this solution and Cunningham's solution for the first mode boundary. This may be due to the fact that the stiffness coupling effect between assumed beam natural modes was uniformly neglected by Cunningham Such coupling effect can become significant as the chord-span ratio increases. It should be noted that, due to the limited number of elements and boxes used, the present results are not the most accurate that this approach can produce.

Figure 7 The first mode shape (real part) for panel corresponding to point A in Fig. 6

Figure 8 The second mode shape (real part) for the center line of panel corresponding to point B in Fig. 6

Figure 9 Flutter boundaries for clamped panel with $\ell/w = 1$ and M = 1.3

Figure 10 The third mode shape (real part) for the center line of panel corresponding to point A in Fig. 9

The fourth mode shape (real part) for the center line of panel corresponding to point B in Fig. 9

Figure 12 Flutter boundaries for clumped panel with $\ell/w=2$ and M=1.3

The first and third flutter mode shapes (real part) corresponding to points A and B in Fig. 12 are shown in Figs. 13 and 14, respectively. The difference between a symmetrical <u>in vacuo</u> first mode and the first flutter mode with front part blown flat is clearly shown in $\clubsuit g$. 13.

Fig. 15 shows that, for a very long panel with $\ell/w = 4$, the tenth mode flutter boundary dominates the lower mass ratio range while the first mode boundary dominates the upper mass ratio range. The discrepancy between the present solution and Cunningham's solution may be attributed to the same reasons as explained for Fig. 6. Houbolt's solution for first mode boundary is also shown.

The second and tenth flutter mode shapes (real part) corresponding to points A and B in Fig. 15 are plotted in Figs. 16 and 17, respectively.

Case 2 Clamped Panel with ₹/w = 2 at Various Mach Numbers

A claused panel with 9/w = 2 and with one surface exposed to air stream with various Mach numbers was studied. One of the main purposes was to establish a curve for the thickness ratios required to prevent flutter of panel at various air speeds and at sea level.

The first mode flutter boundaries for panel with $\ell/w=2$ and M=1.05, 1.1; 1.4, 1.5; 2.0, and 3.0 are shown in Figs. 18, 19, and 20, respectively. Corresponding to each curve, a dashed parabola is shown. Each parabola is plotted for the equation xy=C or $(\rho k/\sigma h)(\omega_{\chi} k/V)=C$. The constant C is dependent upon

Figure 13 The first mode shape (real part) for panel corresponding to point A in Fig. 12.

Figure 14 The fifth mode shape (real part) for the center line of panel corresponding to point B in Fig. 12.

Figure 15 Flutter boundaries for clamped panel with ℓ/w = 4 and M= 1.3

Figure 16 The second mode shape (real part) for panel corresponding to point A in Fig. 15.

Figure 17 The tenth mode shape (real part) for the center line of panel corresponding to point B in Fig. 15.

Figure 18 Flutter boundaries for clamped panel with $\ell/w=2$ and M = 1.05, 1.10.

Figure 19 Flutter boundaries for clamped panel with $\ell/w=2$ and M=1.40, 1.50.

Figure 20 Flutter boundaries for clamped panel with $\ell/w=2$ and M=2.0 and 3.0.

the densities of the aluminum and the air at sea level, the dimensions of the panel, the air speed, and the bending rigidity of the panel. The intersecting point between a pair of dashed and solid curves gives the thickness ratio h/2 required to prevent flutter of the aluminum panel at sea level. For all Mach numbers considered here, the first mode flutter boundaries are critical for the dashed curves for the sea level altitude.

The results are shown in Fig. 21. The present results are slightly on the unconservative side as compared to the results of Cunningham.

Case 3 Pinned-Edge Panels with Various Chord-Span Ratios at M = 1.3

The panels with simply-supported edges and various chord length-span width ratios were studied. The flow speed considered was M=1.3. The dominating flutter boundaries for panels with $\ell/m=0.25$, 0.5, 1.0, and 2.0 are shown in Figs. 22, 24, 26 and 28, respectively. They are all in good agreement with those found by Cunningham (Reference 9).

Fig. 22 shows that the first mode flutter boundary is the critical boundary for panels with $\ell/w = 0.25$. The mode shape (real part) is shown in Fig. 23.

Fig. 24 shows that the second mode flutter boundary is the critical boundary for panels with $\ell/m = 0.5$. The first and second flutter mode shapes (real part) are shown in Fig. 25.

Fig. 26 shows that the third mode flutter boundary is the critical boundary for panel with $\ell/m = 1.0$. The first mode boundary found by Hedgepeth (Reference M) using the piston theory is also shown in the figure. The corresponding first and third flutter mode shapes (real part) are shown in Fig. 27.

Figure 21 Thickness required to prevent flutter for clamped aluminum panel with $\ell/w = 2$ at sea level.

Figure 22 Flutter boundaries for pinned edge panel with $\ell/w=1/4$ and M=1.3.

Figure 23 The First Mode Shape (Real Part) for Panel Corresponding to Point A in Fig. 22.

Figure 24 Finiter boundaries for pinned-edge panel with $\ell/w = 1/2$ and M = 1.3.

sales Mile September 7 september 2 september 2

Figure 25 The First Mode Shape (Real Part) for Panel Corresponding to
Point A in Fig. 24 and the Second Mode Shape (Real Part)
for the Center Line of Panel Corresponding to Point B in Fig. 24.

Figure 26 Flutter boundaries for pinned-edge panel with $\ell/w=1$ and M=1.3.

Figure 27 The First Mode Shape (Real Part) for Panel Corresponding to Point A in Fig. 26 and the Third Mode Shape (Real Part) for the Center Line of Panel Corresponding to Point B in Fig. 26.

Fig. 28 shows that the fifth mode flutter boundary is the critical boundary for panels with $\ell/w \approx 2.0$. The results by Hedgepeth and Cunningham are seen to be in good agreement with the present results. The corresponding first and fifth flutter mode shapes (real part) are shown in Fig. 29.

Case 4 Clamped Square Panels with Various Tension Parameters and Mach Numbers

One of the advantages of the finite element method is that the effect of in-plane forces can be included in a direct and accurate fashion. To demonstrate this, a square clamped panel was chosen and four different tension parameters F = 0.01, 0.1, 0.5, and 1 were considered. The flutter boundaries were obtained for various Mach numbers.

Fig. 30 shows the dominating first mode flutter boundaries and the hyperbola for the square, aluminum panel at 25,000 feet above sea level and at M = 1.1. Four values of tension parameters were included.

The mode shapes (real part) corresponding to points A (F = 0.01) and point B (F = 0.1) of the flutter boundaries in Fig. 30 are plotted in Figs. 31 and 32. The mode shapes for the case F = 0.5 and 1.0 are similar to those shown in Figs. 31 and 32. They are thus not shown here.

Fig. 33 shows the first and the third mode flutter boundaries for M = 1.2 and various tension parameters. For aluminum panels at 25,000 feet above sea level (dashed parabola), the third mode boundaries are the critical flutter boundaries. The first flutter mode shapes (real part) corresponding to points A and B in Fig. 33 are presented in Figs. 34 and 35, respectively.

Figure 28 Flutter boundaries for pinned-edge panel with $\ell/w=2$ and M=1.3.

Figure 29 The First Mode Shape (Real Part) for Panel Corresponding to Point A in Fig. 28 and the Fifth Mode Shape (Real Part) for the Center Line of Panel Corresponding to Point B in Fig. 28.

STIFFNESS PARAMETER $\omega_* \ell/V$ Figure 30. Flutter boundaries for clamped panels of ℓ/w =1.0 with M= 1.1 and various tension parameters F.

Figure 31 The First Mode Shape (Real Part) for Parel Corresponding to Point A in Fig. 30.

Figure 32 The First Mode Shape(Real Part) for Panel Corresponding to Point B in Fig. 30.

STIFFNESS PARAMETER $\omega,\ell/v$ Figure 33 Flutter boundaries for clamped panels of $\ell/w=1.0$ with M=1.2 and various tension parameters r

Figure 34 The First Mode Shape(Real Part) for Panel Corresponding to Point A in Fig. 33.

Figure 35 The First Mode Shape (Real Part) for Pinel Corresponding to Point B in Fig. 33.

The third flutter mode shapes (real part) for the center chord lines corresponding to points C, D, E, and F are shown in Fig. 36.

Fig. 37 shows the first mode flutter boundaries for M=1.3 and the third mode flutter boundaries for M=1.3, 1.32, 1.35 for various values of tension. The flutter boundaries are dominated by the third mode. Since the flutter mode shapes are similar to those shown in the previous figures, they are not presented here.

Fig. 38 shows the flutter boundaries for M = 1.4, 1.45, 1.48 and various tension parameters. The third mode flutter boundaries shift to the right as the Mach number increases. It is interesting to see that the top portions of the third mode flutter boundaries begin to bend down to the left as the Mach number increases.

Fig. 39 shows that for M=1.6 and various values of tension, the third mode flutter boundaries continue to bend down rapidly with a slight increase in Mach number.

Figs. 40 and 41 show that for M=1.52 and 1.54 and various values of tension, the third mode flutter boundaries bend down substantially to be small loops. They only dominate the lower range of the mass ratio.

Fig. 42 shows that for M=1.6, all the third mode flutter boundaries disappear and the first mode flutter boundaries once again become the critical boundaries. Such a phenomenon is also the case for M=2.0 as shown in Fig. 43.

Also shown in Figs. 37-43 are the dashed parabolas for an aluminum panel at 25,000 feet above sea level.

Figure 36 The Third Mode Shape (Real Part) for the Conter line of Panel with various tension parameter Corresponding to Point C. D. E. and Frespectively in Fig. 30.

Figure 37 Flotter boundaries for clamped panels of 2/w=1.0 with M 1.3, M=1.32, N=1.35 and various values of tension parameters F.

Figure 38 Flutter boundaries for clamped panels with \$\mathscr{L}/\text{w-1.0}\$ with \$M=1.4\$, \$M=1.45\$, \$M=1.48\$ and various values of tension parameters \$1.

Figure 39 flutter boundaries for clamped panels of \mathbf{Q}/w 1.0 with M=1.5 and various values of tension parameters. F.

Figure 40 Flutter boundaries for clamped panels of 1/w=1.0 with M=1.52 and various values of tension parameters F.

Figure 41 Flutter boundaries for clamped panels of $\ell/w=1.0$ with M=1.54 and various values of tension parameters F_*

Figure 42 Flutter boundaries for clamped panels of $\ell/w=1.0$ with M=1.6 and various values of tension parameters F.

Figure 43 flutter boundaries for clamped panel of £/w=1.0 with M=2.0 and various values of tension parameters. F.

By collecting all the intersecting points between the dashed parabolas and the critical flutter boundaries in Figs. 30, 33, and 37-43, the results for thickness ratios required to prevent flutter of the panel are shown in Fig. 44 for various values of Mach numbers and tension.

In Fig. 44, the critical flutter boundaries were dominated by the third mode in the Mach region between approximately 1.2 and 1.5. For other lower and higher Mach regions, the first mode flutter boundaries atte. The sharp drops in the curves are due to the abrupt changes in control flutter modes.

The beneficial effect of introducing in-plane tensions to reduce the required panel thickness to avoid flutter is clearly demonstrated. Fig. 44 should be of value to panel flutter analysts and designers.

Figure 44 Thickness ratio required to prevent flutter for various values of tension parameter f for a square clamped aluminum panel at 25,000 ft. above sea level

SECTION V

CONCLUDING REMARKS

A basic finite element procedure for panel flutter analysis has been developed and performed with examples. The following concluding remarks may be made.

- (1) The three-dimensional supersonic unsteady potential flow theory was employed. This theory allows the treatment of panels with finite aspect ratio. It is particularly advantageous at low supersonic range (1 < M < $\sqrt{2}$) for panels with chard-span ratio less than one, when the piston theory does not give satisfactory results.
- (2) The finite element method offers a set of elegant and straightforward eigenvalue equations. It can be used directly to solve for flutter frequencies and mode shapes without requiring the natural vibration frequencies and mode snapes before the eigensolution, and also without requiring the computation of mode shapes after the eigensolution.
- (3) If the modal method is used in panel flutter analysis, one could use the natural frequencies and modes found by the finite element method. Such procedure is, however, basically different from the present finite element method.
- (4) The formulations here (Eqs. 19-24) are general. They are readily applicable to any plate finite element displacement model whose shape functions are known.

- (5) The present results agree well with Galerkin's modal solution by Cunningham.
- (6) The critical flutter boundaries for a square clamped panel change modes abruptly as the Mach number is varied.
- (7) Fig. 44 clearly demonstrates the beneficial effect of in-plane tensions.
- (8) The present development may provide a basic finite element procedure for panel flutter analysis. The present results may provide useful data to the flutter analysts and designers.
- (9) A logical next step appears to be the development of a method using triangular plate finite elements combined with triangular Mach boxes. Such development will be of great value to the flutter predictions of wing panels with arbitrary configurations. It is suggested that the triangular element developed by Bell (Reserence 15) be used.

REFERENCES

- 1. Dowell, E.H., <u>Aeroelasticity of Plates and Shells</u>, Noordhoff International <u>Publishing</u>, Leyden, The Netherlands, 1975.
- Garrick, I.E., <u>Aerodynamic Fluiter</u>, AIAA Selected Reprint Series, Vol. V, March 1969.
- Olson, M.D., "Finite Elements Applied to Panel Flutter," AIAA Journal, Vol. 5, December 1967, pp. 2267-2270.
- 4. Olson, M.D., "Some Flutter Solutions Using Finite Elements," AIAA Journal, Vol. 8, April 1970, pp. 747-752.
- 5. Appa, K. and Somashekar, B.R., "Application of Matrix Displacement Methods in the Study of Panel Flutter," AIAA Journal, Voi. 7, January 1969, pp. 50-53.
- 6. Appa, K., Somashekar, B.R., and Shah, C.G., "Discrete Element Approach to Flutter of Skew Panels with Inplane Forces under Yawed Supersonic Flow," AIAA Journal, Vol. 8, November 1970, pp. 2017-2022.
- 7. Sander, G., Bon, C., and Ceradin, M., "Finite Element Analysis of Supersonic Panel Flutter," International Journal for Numerical Methods in Engineering, Vol. 7, 1973, pp. 379-394.
- 8. Yang, T.Y., "Flutter of Flat Finite Element Panels in a Supersonic Potential Flow," AIAA Journal, Vol. 13, November 1975, pp. 1502-1507.
- Cunningham, H.J., "Flutter Analysis of Flat Rectangular Panels Based on Three-Dimensional Supersonic Unsteady Potential Flow," NASA-TR R-256, 1967.
- 10. Dowell, E.H. and Voss, H.M., "Theoretical and Experimental Panel Flutter Studies in the Mach Number Range 1.0 to 5.0," AIAA Journal, Vol. 3, December 1965, pp. 2292-2304.
- 11. Bogner, F.K., Fox, R.L., and Schmit, L.A., "The Generation of Interelement Compatible Stiffness and Mass Matrices by the Use of Interpolation Formulas," Proceedings of the Conference on Matrix Methods in Structural Mechanics, Air Force Flight Dynamics Laboratory, TR-66-80, 1966, pp. 397-443.
- 12. Watkins, E.E., "Three Dimensional Supersonic Theory," AGARD Manual on Aeroelasticity, November 1960, Part II, Chapter 5.

- 13. Houbolt, J.C., "A Study of Several Aerothermoelastic Problems of Aircraft Structures in High Speed Flight," Doctor of T.S. Thesis, The Swiss Federal Institute of Technology, Leeman, Zürich, 1958.
- 14. Hedgepeth, J.M., "Flutter of Rectangular Simply-Supported Panels at High Supersonic Speeds," Journal of Aeronautical Sciences, Vol. 24, No. 8, August 1957, pp. 563-573, 586.
- 15. Bell, K., "A Refined Triangular Plate Bending Finite Element," International Journal for Numerical Methods in Engineering, Vol. 1, 1969, pp. 101-122.

APPENDIX

THE COMPUTER PROGRAM

The description and listing of the computer program are provided in this appendix. The flow chart is given on pages 69 and 70. The procedure for input is given on pages 62, 67, and 68. The use of the program is demonstrated by considering an example of a square clamped panel with $k_{\rho} = 0.5$, M = 1.2, and F = 0.1. Both input and output data are provided.

The stiffness, mass, and incremental stiffness matrices are based on the known explicit coefficients. These coefficients are read in as input data given on pages 63-66. The program uses the subroutine EISPACK for solving the general complex eigenvalue equations.

INPUT DATA

- 1. Control Card (2F5.2, 713, 4F7.4)
 - Columns 1-5 Panel chordwise length (XL)
 - 6-10 Panel spanwise width (YL)
 - 11-13 Number of elements in chordwise direction (NX)
 - 14-16 Half number of elements in spanwise direction (NY)
 - 17-19 Number of boxes in streamwise (or chordwise) direction for one element (IBX)
 - 20-22 Number of boxes in cross-streamwise (or spanwise) direction for one element (IBY)
 - 23-25 Total number of degrees of freedom for the panel (NXD)
 - 26-28 Number of nodes in streamwise direction (NDX)
 - 29-31 Number of nodes in cross-streamwise direction (NDY)
 - 32-38 Structural damping coefficient (SG)
 - 39-45 Mach number (MACH)
 - 46-52 Starting value for the mass ratio range (MUO)
 - 53-59 Increment for the values of mass ratios (XINCR)
- 2. Element matrix cards (814, 212, 214, 216)
 Read in the data given on pages 63-66.

TABLE I DATA INFORMATION FOR QQ(I,J), QM(I,J) and QN(I,J)

4.02 (\$2.95) 5.08(\$3.05) 61-56	175	000	en de la composition della com	8) 61 4)	0012	0	0012	80 60 40	0000	0.40	175	400	0000	0001	1	200	10 10 10 10 10 10 10 10 10 10 10 10 10 1	6 200	3150	e 16	585	60 (0)	003	000	0077	() N- +4	66.0	T 6-	4200	0310	1400	000	2100	1575	0201
0000 1000 1000 1000 1000 1000 1000 100	73	2	e E	<u>ლ</u>	=	U	,-4 ;-4	=		n,	į.	•	(C)	e:	69	g.	σ,	e	<u>۳</u>	(°')	33	-13	617	e)	7	-:-	=======================================	O.J	e11	13	ï	7	==	-	
28.78 3102) 11-44		w	œ,	w	3.	(1)	(1)	2	13	ō.	N.	4	ij	7		4	ţ٥	7,	9	·ø	m	21	٠. دم	♥	ä	Ç	65	(v.)	-را زر	e O	70	A)	æ	() +1	2
04(1+0) 14(1+0) 37-40 4	691	143	0	143	191	0	101				117	33	6.94	143	169	. ආ (ආ	m	143	13	143	0	169	行かせ	57.1		644	121	(1) +4	67.7	-13	-:-	1	-121	-11	11
100 00 00 00 00 00 00 00 00 00 00 00 00																																	·		
1NI 1Z3-85-85																																	-		
(8) (8) (8)	**	o		K D	n		ı	in.	60	-4	••	S.	-	01	-	*		0		· ¥n			01		O	ю	F i	_	C T	••	5		I	i.	5
55-83 85-83																																			
08.08 \$1.48 \$1.48																													ŀ				0		
H CONTRACTOR																																	7		
08(19.0) US(45.0) 1.84-16											٠																								
JS(3) 0 9-15										~						-									•						••	••	***		~
ဂိုမှ ရွှန်											•																						N.		
933																																			
(66 67 67 67 67															_	•						•	٠			•				•			•	•	
5	7	oj.	ø	4	ın	0	۴.	03	ď	01	-	1	101	7	5	1 10	· [-	· 成	· 5	en Og	Ñ	o) O)	23	7	i N	e) Aj	Ñ)) (1)	Ň	30	ē	ര്യ	0	40	8
7																																			
É	֖֡֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2	ŝ	•	ĵ	(2)	. ~	ı î		7	~				i,		í.				G	2	رة	ñ	· ·	ŝ	ŝ	Ĉ	<u>_</u>	a.	ñ	4	ŕ	ŷ	2
) () () ()		Ů	, N	r vije V	•			4	*	+	1.5	30°	u		6								1-	ر. ح	, ,	·.	2	\ <u>'</u>	<u>.</u>	かい	20		Ó	ம்	<u>ئ</u> ب

DATA INFORMATION FOR QQ(1,J), QM(1,J) and QU(1,J), continued ... TABLE I

######################################	113 35 11
##	M M 1 ' '
11 11 11 11	
• • • • • • • • • • • • • • • • • • •	u-0-
က္မွာကရမ္ရရမ္မရုန္ကို ရေရရရမ္မရရရမ္မရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ မေရရန္ကို မေရရန္ကို မေရန္ကို မေရန္ကို မေရရန္ကို မေရန္ကို မေရရန္ကို မေရရန္ကို မေရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရနို႔မွာ မေရရန္ကို မေရရန္ကို မေရရန္ကို မေရနို႔မွာ မေရရန္ကို မေရရနို႔မွာ မေရနို႔မွာ မေရနို႔မွာ မေရနို႔မွာ မေရနို႔မွာ မေရနို႔မွာ မေရရနို႔မွာ မေရနို႔မွာ မေနို႔မွာ မေရနို႔မွာ မေရနို႔မွာ မေရနို႔မွာ မေရနို႔မွာ မေရနိ႔မွာ မေရနို႔	5 m m m
\$	7000
នេះស្រាស់ មានសម្ភាស់ មានសម្រាស់ មិនសម្រាស់ មានសម្រាស់ មានសម	0 0 0 0 0 0 0 0
<mark>ကို မက်တော့ လို မ</mark> က်လေးသို့ မောင်တို့ အသည် အသည် အသည် မောင်လေးသည် မောင်လေးသို့ အသည် မောင်လေးသည် မောင်လေးသည်။ မောင်လေးသည် မောင်လေးသည် မောင်လေးသည်။ မောင်လေးသည် မောင်လေးသည်။ မောင်လေးသည် မောင်လေးသည်။ မောင	70101
######################################	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1 1 1 1 1 1 1 1 1 1	
######################################	<u> </u>
사용의 (14.0) 중에 바로 통해 보고 있는 것이 되는 것이 되었다. 참 하는 사용이 되었다. 그 사용이 하는 것이 되었다. 그 것이 되었다. 하는 사용이 있다.	

(7) (7) and (7) (7) and not art all and not are are all and not are are all are al

000-0-0-0-0

BEST / IBLE CORY

3. Element Cards with the boundary condition code at each node (2213).

Columns 1-	3 The seque	ence number for	the element		
4-1		ting matrix row of freedom at r			(ID(1))
7-9		ting matrix row of freedom at r		the	(ID(2))
10~		ting matrix row of freedom at r			(10(3))
13-		ting matrix rov of freedom at r		[*] the	(ID(4))
16-		condition code al point I	e for deflect	ion	(w(1))
19-	21 Boundary point I	condition code	e for Z _{,X} at m	nodal	(w(2))
22-	24 Boundary point I	condition code	e for Z _{,y} at 1	nodal	(w(3))
25-	27 Boundary point I	condition code	e for Z _{,xy} at	ncdal	(w(4))
28-	Boundary point J	condition code	e for Z at noo	dal	(w(5))
31-	33 Boundary point J	condition code	a for $Z_{,X}$ at r	nodal	(w(6))
34-	36 Boundary point J	condition code	e for Z _{yy} at i	nodal	(w(7))
37-	39 Boundary point J	condition cod	de for I _{,xy} at	t nodal	(w(3))
40-	42 Boundary point K	condition code	e for Z at noo	Jal	(w(9))
43-	45 Boundary point K	condition code	e for Z _{,X} at 1	nodal	(w(10))
46-	48 Boundary point K	condition cod-	e for Z _y at i	nodal	(w(11))
49-	81 Boundary point K	condition code	e for Z _{.xy} at	nodal	(w(12))

52-54	Boundary condition code for Z at nodal point L	(w(13))
55 ~5 7	Boundary condition code for Z,x at nodal point,L	(w(14))
58-60	Boundary condition code for Z at nodal point L	(w(15))
61-63	Boundary condition code for Z,xy at nodal point L	(w(16))

The 'ID' array at I, J, K and L is assigned for each element for a specific mesh of the elements of the panel. The permutation for I, J, K and L is clockwise and I is corresponding to the origin of each local element as shown in Fig. 2. If ID(I) = 0, all the degrees of freedom at node I are zero. Same situation is applied for other nodes for the element.

The 'w' array defines the boundary condition codes for the degrees of freedom at each node. If w(I) = 0, the associated degree of freedom is zero and if $w(I) \neq 0$, the associated degree of freedom is taken into account.

Program Flow Chart

Program Flow Chart continued

PROGRAM LISTING AND SAMPLE PROBLEM

	PROCRAM FLUTTER <imput.output.tare5=imput.tare6=qutput) 05(10:18:40:18)-rt-cf<="" commlex="" th=""><th>Ņ</th><th>:0</th></imput.output.tare5=imput.tare6=qutput)>	Ņ	:0
4	PEAL @VC16+163+0MC16+163+GRC23+GRRC16+83+GRIC16+83+5MC18+183+5KC18	A	20 20
	1.10.000016.16.16).50018.18).0000.00000.000.000.000.000.000.000.00)** \$4	40
	25) 116 (10, 10)	Á	50
	THIEGER PASARMANPIACIACMAMAUSCROAUMCROAUGCIGAAURCRO	A	60
	CORPARI ABEDOKOA BW+AB+C+CB	A	70
	COMBON PRODUCT INSPENDENCE OF TRY FRY	A	ខឲ្
	COMMON ABLDONEA OCTONION	A	90
	COMMON ZBLOCK3Z SK+SM+SM	A	100
000000	PANEL FLUTIER FOR CLAMPED PANEL	Ĥ	110
č	PPHILE PERFECT FOR SERVICE	Ä	130
č		Ä	150
č.	THE D.O.F.FO FOR EACH NOVAL POINT ON THE ELEMENT	Â	160
Č		A	170
	1X1 G#Dx8 ##0	Ĥ	189
	1):2000>-12400	H	190
	INSCHOOL NO.	Ĥ	500
	10/4 (NO) 5/4 (NO) PAIN 193	A	210
	READ 1340 XLOYLONXONYO IBNO IBYONXDONDXONDYO SGOMACHOMUO OXINCR	Ĥ	140 220
C	ELEM \$511 FEET (ELEMENT) \$ BITT \$ BIT	Ä	230
C	PAICL FIRAMETERS	Ä	240
Č	하는 사람들은 사람들이 가지 않는 것이 되었다.	4	250
	PDISN#0.32	À	260
	HDRAMEREDRATE (1982)	Ĥ	270
	ED-YLZS, OZFLOATONY)	Ĥ	289
	AB ABO ABO	H	290
	845-807440 XLD3-XLZYL	A	300
	PRINT 135, XLN, AU, BU	Ĥ	310 320
e .	Frank (1997) NEWFYIGHDIG	Fi.	330
000	THE FIRST FREQUENCY PARAMETER FOR CLAMPED PANEL	Ä	340
Ĉ		A	350
	CK 0-4.73	H	36.0
	CK2=0, 2025022	Ĥ	070
	683*2,6472354	A	3:00
_	<pre>(K1*(E) 0**4**((%LH*CK0)**4)*2,*((%L'4*CK0*CK2*CK3)**2)</pre>	Ĥ	3.46
ç c c	BON PHANAETEPS	A A	400
ř	DIA FERRINGIES	Ĥ	410
•	IRT=nK4nY41RC*IBY	H	430
	PRO#1. FLUHT (IRC)	Ä	440
	FEY=1.7FCDaT+1BY)	H	450
	EPICH-PO-FEDHT (IBY)	A	450
	SIGNERSWERISH	Ĥ	470
	EL-EPINEN.	H	480
_	PRINT 136, EPISH-SIGMA	н	490
×	PEFRIMENCE MEDICETI FREQUENCY PARAMETER	H	500
0 0 0	From the transplant of the Annal Section of the Committee	Ĥ	510 520
_	rL=0.59	4	5 30 5 30
	PRINT 137. KL	Ä	540
Č.		н	55.0
Ç	INITIAL IN-PLANE FOR PARAMETER	H	560

```
F=0.1
PRINT 138, F
                                                                                                             590
                                                                                                             600
      FLOW PARAMETERS
                                                                                                             610
                                                                                                             620
      PRINT 139, MACH
                                                                                                             630
      BETA=SORT(MHCH*+2-1.)
DrEGA=(MACH*+2>+KL+FL>>(BETA**2)
                                                                                                             640
                                                                                                             650
      BM-EETH-OMEGA/(2. PMACH)
                                                                                                             660
      UD#BH#MACH
                                                                                                             670
      C=1.7(2.43.14159)
                                                                                                             659
      CB=FO
                                                                                                             690
                                                                                                             700
      GENERATING AERODYNAMIC INFLUENCE COEFFICIENTS
                                                                                                             720
                                                                                                             730
740
750
760
770
      PMANIFICK® LBM
      SMMX-2*NY*IEY
DO 101 I=1.FMAX
DO 101 U=1.5MAX
          GFR(I+J)=0.
101 GR1(1+3)=0.
                                                                                                             780
      DO 102 IS=1.RMAX
R=IS-1
                                                                                                             300
     R=15-1
DS#SIGMA/BCTA*(EPISM/2.+EPISM*FLGAT(R))
UF#IFIX(DS-(EPISM/2.))/EPISM)+2
IF (UF.GT.SMHX) UF=5MAX
IF (DS.LT.(EPISM/2.)) UF=1
UG(IS)#UF
DO 102 U=1+UF
                                                                                                             810
                                                                                                             820
                                                                                                             830
840
                                                                                                            850
860
                                                                                                            870
          COLL CHECK (RISIBETAISIGMAIGR)
                                                                                                            880
          PL=R+1
          $1-5+1
                                                                                                             900
          GRR(R1+S1)=GR(1)
                                                                                                             910
          GPI(P1,S1)=GP(2)
                                                                                                             920
                                                                                                             930
                                                                                                             940
      GENERATING ELEMENT STIFFNESS MATRIX: ELEMENT INCREMENTAL STIFFNESS MEDPIX: AND ELEMENT MASS MATRIX
                                                                                                            950
                                                                                                            960
970
      DQ 103 I-1-16
                                                                                                             980
      DO 103 J=1.1
                                                                                                             990
          PEAD 140. (US(L).L=1.8).12.1Y.(UM(L).L=1.2).(UB(L).L=1.2).
CO(1.U)=(BA**1Y)*(FLDAT(US(1))/FLDAT(US(2))+(AE**4)*FLDAT(US(3)
)/FLDAT(US(4))+(AE**2)*FLDAT(US(5))/FLDAT(US(6))+(AE**2)*FDICN*
                                                                                                         A 1000
                                                                                                         H 1010
                                                                                                         A 1020
A 1030
                                                                                                         H 1040
                                                                                                         A 1050
                                                                                                         A 10.0
                                                                                                         a 10∺0
                                                                                                         A 1090
                                                                                                        A 1100
                                                                                                         A 1110
                                                                                                        A 1120
     ASSEMBLE ELEMENT STIFFNESS MATRIX: ELEMENT INCREMENTAL STIFFNESS MATRIX: AND ELEMENT MASS MATRIX
```

```
CALL ASSEB (NX-NY-NXD)
                                                                                                      A 1160
                                                                                                      A 1170
     GENERATING VELOCITY POTENTIAL FUNCTIONS
                                                                                                      A 1180
                                                                                                      A 1190
A 1200
     KL=KUZELDAT(NX)
     CALL AERO CHROMY FRED IBT FKL FY VS EPISM SIGMA BETA AD BA JG NDX NDY
                                                                                                      A 1210
                                                                                                      A 1220
                                                                                                      A 1230
     GENERACING MASTER AERODYNAMIC MATRIX
                                                                                                      A 1240
                                                                                                        1250
     Mantelli Est od
                                                                                                        1260
         DO 122 117=14007
ND14-4
IF CTIV.EO.NDY> ND14=2
                                                                                                      Ĥ
                                                                                                        1270
                                                                                                      A
                                                                                                        1280
                                                                                                      A
                                                                                                        1290
              DO 121 1001=1:1014
                                                                                                        1300
                  II=(II/-1)*4*HDR+(IIX-1)*4+ND1
                                                                                                      A 1310
                  IF (IIY.E0.560) II=(IIY-1)*4*HEM+(III-1)*2*ND1
                                                                                                        1320
                  00 120 JUNE 1:100X
00 120 JUNE 1:100X
                                                                                                      A
                                                                                                        1330
                                                                                                        1340
1350
                      HIG4=4
                                                                                                      A
                       IF (JJY.EQ.HDY) ND24=2
                                                                                                        1360
                  PEGNITESUN VET DO
                                                                                                      A
                                                                                                        1370
                       301+4*(1-XUU)+X011*4*(1-YUU)=XUU
                                                                                                        1380
                      IF (JUY.E0.NDY) J0=(JUY-1)*4*HDX+(JUX-1)*2+ND2
                      Q=0.
                                                                                                        1400
                      00:0.
                                                                                                        1410
                      0150.

DO 118 NL1=1+NX

N1=NL1=10X

IF (N1,LT,0) 60 TO 118

** *** 67 15 GO TO 119
                                                                                                        1420
                                                                                                        1430
                                                                                                      Ĥ
                                                                                                        1440
                          IF (N1.GT.1) GO 10 119
Dd 117 M.E=1+NY
NE=ML2-IIY
                                                                                                        1450
                                                                                                      AAAAA
                                                                                                        1460
                                                                                                        1470
1430
                               IF (N2.LT.0) GO TU 117
IF (N2.GT.1) GO TO 119
IF (N1.EO.0) GO TO 105
IF (N2.EQ.0) GO TO 106
                                                                                                     Ĥ
                                                                                                        1490
1500
                                                                                                      A
                                                                                                      Ä
                                                                                                        1510
                               IKL=IX3(ND1)
                                                                                                        1520
                               GO TO 103
IF (N2.EQ.0) GO TO 107
105
                                                                                                        1540
                                                                                                        1550
1560
                               IKE=IXS(HDD)
                              GD TD 100
INL=IN4(ND1)
GD TD 103
IKL=IN1(ND1)
                                                                                                      A
106
                                                                                                        1570
                                                                                                      Ĥ
                                                                                                      A
                                                                                                        1580
107
                                                                                                      A 1590
108
                               DO 116 M=1.1BX
                                                                                                      A 1600
                                   DO 115 HO=1-18Y
                                                                                                      A 1610
                                       ML=(ML2-1)*IBY+NS
MK=(ML-1)*IBX+M
                                                                                                     A 1620
A 1639
                                       THEFUNATIONAL PREMERBY/2.
YM=FLDAT(N=1)*FEY*REY/2.
CALL SHAPE (FA:DFA:DFA:DFA:DF:M*YM*EA)
IF (JJM=NL12 109*109*110
JJ=(JJY-1)*4*(NDM+1)*(JJM=1)*4*ND2*(NX=NL1
                                                                                                      A 1640
                                                                                                      A 1650
109
                                                                                                        1650
                                       >+4
                                                                                                        1690
                                       1F (JJY.EQ.HDY) JJ=(JJY-1)*4*(HDX+1)+(JJX-
                                                                                                     A 1700
                                       1)*2+(NK-NL1)*2+ND2
                                                                                                     A 1710
                                       60 TO 111
                                                                                                     A 1720
110
                                       YK=0.
                                                                                                     A 1730
```

```
VES≖Ď.
                                                                                                                    H 1740
                                              VK.=40.

GO TO 114

IF (JJY.E0.NBY) GO TO 113

JJY=JJ+2*(NDX+1)*(<2*HDY-2)-JJY)*4*(NDX+1)

IF (MD2.E0.3.DH.HD2.E0.4) GO TO 112

VK:=Y(JJ+HM)*+V(JJ7*HM)

VK:=Y(JJ+HM)*+V(JJ7*HM)
                                                                                                                   A 1750
A 1760
A 1770
H 1780
   111
                                                                                                                    A 1790
                                               VKS=VS(JJ+MM)+V3CJJ7+MM)
                                                                                                                    A 1800
                                               60 10 114
                                                                                                                    4 1810
   112
                                               YK=Y(JJ+M)-Y(JJ7+M)
                                                                                                                       1820
                                               VKS=VSCJJ; MM)-VSCJJJ7; MM)
                                                                                                                    A 1830
                                               GO TO 114
                                                                                                                      1840
   113
                                               VE=V(JJ)MH)
                                                                                                                    A 1858
                                              VKS=VSCUU+MM>
O:0+C-FA+VK+DFA/KL+VKS)+(SIGMA+(EPISH+#2))
   114
                                               /(AU+BO)
                                                                                                                       1089
                                               OC=OC+C-FA*VKS-DFA/KL*VK)*(CIGMA*(EPISH**2
                                                                                                                       1000
                                                                                                                      1900
                                               >> KHO*RO>
   115
                                          CONTINUE
                                                                                                                      1910
   116
117
                                     CONTINUE
                                                                                                                   A 1930
A 1930
                                CONTINUE
                                                                                                                   A 1940
A 1950
A 1960
A 1970
                            CONTINUE
   118
                           AKCII;J0>=0
AKICII;J0>=0S
   113
   120
                       CONT INUE
   121
                  CONTINUE
                                                                                                                    A 1980
   122
              CONTINUE
                                                                                                                       1990
   123 CENTINUE
                                                                                                                    A 2000
CCCC
                                                                                                                    A 2010
         FINDING EIGENVALUES AND EIGENVECTORS FOR VARIOUS RATIOS OF AIR
                                                                                                                    A 2020
         MASS TO PANEL MASS
                                                                                                                    A 2030
                                                                                                                    n 2040
         YH=117*2
                                                                                                                    A 2050
         34=48
                                                                                                                    A 2060
         FQ 124 I=1.000
FQ 124 J-1.000
                                                                                                                   A 2070
A 2030
         IN 124 U-140AD

IKC1.J'=0.01*C(KH**5)/CK1*3K(I.J)+F*(KH**2)*(YH)*3H(I.J)/

CHLL GINM2 CIK-HEMENED:HED:

IF (E2.E0.0) GD ID 131

PRINT 141: SG
                                                                                                                   н 2000
н 2100
                                                                                                                    A 2110
                                                                                                                   A 2120
         KL=FL+FH
                                                                                                                   A 2150
A 2140
         C10=13H NU0/1225.
         FACTURES. MUDO
FACTURE 0.01 FACTOR
DO 125 1=14000
                                                                                                                   A 2150
                                                                                                                   H 8160
                                                                                                                   A 2170
         NO 189 Jaionen
SMC1-Un-E10*OMC1-UN
                                                                                                                   A 2180
                                                                                                                   A 2190
A 2200
  125 CONCINUE
DO 130 ITER=1.9
IND=1
                                                                                                                   6 2210
                                                                                                                   A 2220
             MUSHUO-XIMER
FRINT 1844 NU
FALEU MUSHUO
                                                                                                                   ਜ ਫੋਟੋ-0
ਜ ਫੋਟੋ40
                                                                                                                   A 2250
H 2260
H 2270
A 2280
A 2290
A 2300
             FOCTOS=FECTO: **PATIO
             BO 126 J=1+H00
BO 126 J=1+H00
SM(I+J)=1-YRATID*SM(I+J)
   126
             CONTINUE
              DO 128 I=1+HMD
                                                                                                                   A 2310
```

```
A 2320
A 2330
                            DO 128 J=1.0MD
                                       нС≖0.
В∴≖0.
                                                                                                                                                                                                                                                                                           A 2340
H 2350
                                         DO 187 KI*1+NOD
                                                   167 (1*19/0.0

B1=28(1-K1)*(EM(K1-U)-AK(K1-U))

B1=28(1-K1)*(-AK1(1-U))

A2=A1+(A31+(3G*B31))

B5=B1+(B31-(SG*A31))
                                                                                                                                                                                                                                                                                            H 2360
                                                                                                                                                                                                                                                                                            A 2380
                                                                                                                                                                                                                                                                                            A 2390
                                        CONTINUE
 127
                                                                                                                                                                                                                                                                                            A 2400
                                         CS(I+J)=FHPLX(AS+BS)
                                                                                                                                                                                                                                                                                           A 2410
A 2420
A 2430
 123
                            CONTINUE
                            CALL COETS (HKD-HCD-CS-IND-US)
                             DO 129 Tel+5
                                                                                                                                                                                                                                                                                            H 2440
                                       CF STATE CFACTOR . O. O. NECT SHOCK TO SCF
                                                                                                                                                                                                                                                                                            A 2450
                                                                                                                                                                                                                                                                                           H 2460
                                        ARMEDIAL CHECTOO
                                                                                                                                                                                                                                                                                            A 2470
                                         CCD2HP@GMLB=08
                                                                                                                                                                                                                                                                                            A 2430
                                       G=ROZHO
RT=COORT/US/(1))
                                                                                                                                                                                                                                                                                           A 2499
A 2500
                                                                                                                                                                                                                                                                                           н 2500
н 2510
н 2520
н 2530
н 2540
н 2550
н 2570
                                         SP=PEOL(RT)
                                         TK#SR#kL
                                        PRINT 142, HS(I)+G+SR+1K
                            PPINT 143: (CS(J.I):J=1:HXD)
                            MIJQ=MJ
  130 CONTINUE
                 GO TO 132
  131 PPING 145
 102 STUP
                                                                                                                                                                                                                                                                                            A 2000
133 FDSmHT ( 34H1 PANEL FLUTTER FIR CLAMPED PANEL*****)
134 FDSmHT (265.2*713*467.4*)
135 FDSmHT (28* 2000.ENGTH 4010TH PATIO **1F6.3*2%* 26HCHOPDWISE ELEMENT
1 LENGTH **1F6.0*30* 24HCPANNISE ELEMENT BIDTH **1F6.3***
136 FDSMHT (20) 10HBCK NIOTH **1F6.0*30* 34HPATIO OF FOX LENGTH TO POX
                                                                                                                                                                                                                                                                                            A 2610
                                                                                                                                                                                                                                                                                           A 2620
                                                                                                                                                                                                                                                                                           H 2630
                                                                                                                                                                                                                                                                                           A 2640
                                                                                                                                                                                                                                                                                           A 2650
A 2660
 1 NIOTH =:1F6.3/)
137 FERMAT (2%: 19HPCONCED FREQUENCY =:1F6.3/)
138 FORMAT (2%: 19HHITTM: IN-PLANE FORCE PARAMETER=:1F6.3/)
                                                                                                                                                                                                                                                                                            A 2670
138 FORMAT (2% 13HIMITIA, IN-PLACE FORCE FARMACTER=:1F6.3/)
139 FORMAT (2% 13HIMICH NUMBER =:1F5.2/)
140 FORMAT (2% 32H3) FORMACH NUMBER (2FF.2/)
141 FORMAT (2% 32H3) FORMACHER DAMPING COEFFICIENT =:1F0.3///)
142 FORMAT (15H0 EIGENVALUM=:1F8.5:2H3 IE12.5:3H 5H G = :1F8.5:2M
1-17HFPEOURMY PATIO =:1F8.5:2H3 IE12.5:2H1FFHESS PAPAMACTER =:1F8.5:3H3 FORMAT (14H EIGENVECTUP:12M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M:10E12.5/2M
                                                                                                                                                                                                                                                                                            A 2690
                                                                                                                                                                                                                                                                                           A 2700
                                                                                                                                                                                                                                                                                           A 2710
A 2710
A 2720
A 2730
A 2750
A 2750
A 2750
144 FERRAT ( 2080 DERSITY PATIO NU-1F9.5)
145 FORWAT ( 174 SINGULAR MATRIX)
                END
                                                                                                                                                                                                                                                                                           ₩ 2790
               SUPPOUTING MESER (NEARY-NEID)
              PERL IN 18:18:18:400 (18:18:18:18:18:18:16:16:16:16:16:16:18:18)
INTEGER UCLES:IB(4)
                                                                                                                                                                                                                                                                                          E
                                                                                                                                                                                                                                                                                                         20
                                                                                                                                                                                                                                                                                          E
                                                                                                                                                                                                                                                                                                          30
              COMMUN VELOCKEY COLOMICH COMMUN VELOCKEY CKISMICH
                                                                                                                                                                                                                                                                                          F
                                                                                                                                                                                                                                                                                                          40
                                                                                                                                                                                                                                                                                                          50
```

1 -

```
DG 101 J=1.HMD
DG 101 J=1.HMD
SK(I+J)=0.
                                                                                                                                      8
B
                                                                                                                                             60
                                                                                                                                             70
                                                                                                                                      ₿
                                                                                                                                             80
                 (M(I+J)#0.
                                                                                                                                             90
                 SHKI.J>=0.
                                                                                                                                           100
    101 CONTINUE
                                                                                                                                           110
           NTX=: KX+HY
           DO 106 NEN-1-11TX
               106 NEN=1+HTX
READ 107+ IN+(ID(I)+I=1+4)+(U(I)+I=1+16)
DO 105 L=1+4
IF (ID(L)-EU+0) GO TO 105
II=ID(L)
DO 104 M=1+4
IE=4+(L-1)+M
IF (U(IE)+ED+0) GO TO 104
DO 103 L0=1+4
IF (ID(L))-ED+0) GO TO 103
J#ID(L)
DO 108 M=1+4
                                                                                                                                           130
                                                                                                                                           149
150
                                                                                                                                     B
                                                                                                                                     B
                                                                                                                                     B
                                                                                                                                           160
                                                                                                                                     B
                                                                                                                                           170
                                                                                                                                          180
                                                                                                                                     B
                                                                                                                                          200
                                                                                                                                          210
                                                                                                                                          220
                                JJ=In(E^)

NO 102 MC=1+4

IES=4*(LS-1)+MS

IF (4K(EA),E0,0) GO TO 102

SK(II+JJ)=CK(II+JJ)+00(IE+IES)

SK(II+JJ)=SM(II+JJ)+0M(IE+IES)

SK(II+JJ)=SM(II+JJ)+0M(IE+IES)

JJ=JJ+1

JJ=JJ+1
                                                                                                                                          230
                                                                                                                                          240
250
260
                                                                                                                                     P
                                                                                                                                     B
                                                                                                                                          270
                                                                                                                                          280
290
300
    102
                                CONTINUE
                                                                                                                                          310
    103
                           CONTINUE
                                                                                                                                          320
                           11=11+1
                                                                                                                                          330
   104
105
                     CONTINUE
                                                                                                                                          340
350
                CUNTINUE
                                                                                                                                     B
    106 CUNTINUE
                                                                                                                                     B
                                                                                                                                          360
          RETURN
                                                                                                                                     B
                                                                                                                                          370
C
                                                                                                                                          380
   107 FDRMAT (2213)
                                                                                                                                          3.30
C
                                                                                                                                          400
410
          END
           SUBROUTINE HERD (MX+NY+NMD+IBT+KA+Y+YS+EPISN+SIGMA+BETA+AD+BA+JG+N
         1DN - NDY >
                                                                                                                                     000000000000000000
                                                                                                                                            80
          REAL V(40-16)+VS(40-16)+GRR(16+8)+GRI(16+8)+KA
                                                                                                                                            30
          INTEGER JG(16)
CHIRCH /ELDCKI/ IEX+REX+GRR+GRI+IEY+REY
                                                                                                                                            40
                                                                                                                                            50
           IKI (NC)=8HIC
                                                                                                                                            6.0
          1%2(NC)=12+NC
1%3(NC)=hC
1%4(NC)=4+NC
NC)=4%2
                                                                                                                                            70
                                                                                                                                            80
                                                                                                                                            90
                                                                                                                                          100
          MDX1=MDX+1
MDY1=2*MDY=1
                                                                                                                                          110
                                                                                                                                          120
           NE ALC
           DO 116 NCS=1+NY
                                                                                                                                          140
                DO 115 M=1. IEX
DO 115 M=1. IEY
                                                                                                                                          150
                                                                                                                                          160
                                                                                                                                          170
                     Ithi=(IE-1/#IBX+M
```

```
NT=(NES-1)#IEY+N
                                                                                                                                                                                                   180
                          MT=(NT-1)+IBX+M
                                                                                                                                                                                                    190
                          DO 114 JUST 1 NTO 1
DO 113 ITS 1 HDY1
                                                                                                                                                                                                   200
                                                                                                                                                                                                   210
                                                                                                                                                                                                   530
530
                                          IF CILEO. HBY) H4=2
                                                                                                                                                                                                   240
250
200
270
                                          DO 112 HD=14H4
                                                 JI=(II-1)*4*HDM1+(JJ-1)*4*HD
IF (II.EO, HDY) JI=(II-1)*4*HDM1+(JJ-1)*2*HD
IF (II.GI, HDY) JI=(II-2)*4*HDM1+2*HDM1+(JJ-1)*4*HD
                                                 G=0.
GS=0.
                                                                                                                                                                                                   280
                                                 MI 110 TK=1+HE
                                                                                                                                                                                                    300
                                                                                                                                                                                                    310
                                                        MI*M*.JJ
IF 
                                                                                                                                                                                            ē
                                                                                                                                                                                                    320
                                                                                                                                                                                            000000000
                                                                                                                                                                                                    340
350
                                                                                                                                                                                                    360
                                                                                                                                                                                                    370
                                                                                                                                                                                                   380
                                                                                                                                                                                                    400
                                                                GO TO 104
1F (N2.E0.0) GO TO 103
                                                                                                                                                                                                    410
101
                                                                                                                                                                                                    420
                                                                  TEL=INS(HD)
                                                                                                                                                                                                    430
                                                                 60 TO 104
                                                                                                                                                                                                    4.10
                                                                  IEL=1X4(HD)
102
                                                                                                                                                                                                    450
                                                                 60 TO 104
IKL#IXI (HD)
                                                                                                                                                                                                    46.0
103
                                                                                                                                                                                                    470
                                                                IBF=IES
IF (MK.EG.MED) IBF=M
DO 108 MK=1+IBF
ME=(MK-1+IBX+MK
                                                                                                                                                                                                    480
104
                                                                                                                                                                                                    496
                                                                                                                                                                                                    500
                                                                                                                                                                                                   510
                                                                         M=MM-M1+1
                                                                                                                                                                                                    520
                                                                         JX=JG(HD)
                                                                                                                                                                                                   530
                                                                         DO 107 MU=1-167
                                                                                                                                                                                                    540
                                                                                MiL=(IN/S-1)*IBY+M2
                                                                                                                                                                                                    550
                                                                                IF (HT.GT.MSL) 60 TO 105
ISL#MSL-HT+1
                                                                                                                                                                                                    50.0
                                                                                                                                                                                                    570
                                                                                 IF (ISL.6T.JM) 60 TO 108
                                                                                                                                                                                                   530
530
                                                                                GO TO 106
ISL#HT- MOL+1
                                                                                                                                                                                                   600
105
                                                                                IF (ICH.GT.UX) GB TD 107
SCHELBHT(MK-1)*RRK+RBK/2.
                                                                                                                                                                                                   610
                                                                                                                                                                                                   620
106
                                                                                 YY#FLUAT(MS-1) PPEY+PEY/2.
                                                                                                                                                                                                   630
                                                                                CALL SHAPE (FAL-DEAL-THE-XX-YY-BA)
G=G+(FAL-OFF-HT-TEL)+DFAL/KA+GRI(HD-TEL
                                                                                                                                                                                                   640
                                                                                                                                                                                                    650
                                                                                                                                                                                                   660
670
680
                                                                                 DH (CH2193)*(C
                                                                                GS=GS+(FAL*GRI(HS+1SL)-DFAL/KA*GRR(HS+1
SL))*(EPISH)/AD
                                                                                                                                                                                                   679
700
710
720
730
107
                                                                         CONTINUE
                                                                CONTINUE
193
193
                                                         CONTINUE
110
                                                 CONTINUE
                                                 V(JI+MT)=G
                                                  VS(JI+MT)=GS
                                                                                                                                                                                                   740
112
                                          CONTINUE
                                                                                                                                                                                                    750
```

(

BEST AVAILABLE CULY

	113 114 115	CONTINUE CONTINUE CONTINUE CONTINUE	¥	0000	760 770 780 790
	***	RETURN		Ċ	806
C				Č	810
C				č	830 830
		EHD			0.0
		AUXIOUS LIPE ALPON UN O BOYL OLOMA PAS			4.0
		SUBFOUTINE CHECK (R)S+BETA+SIGMA+GR) DINCHSIGH GR(2)+ DR(4)+ DY(4)		D D	10 20
		INDIGER Res		Ď	30
		CONTRACT FILLECTION BITH UD+C+CB		Ď	40
		#1=2.*FLO#T(\$)-1.		D	50
		62*2.*FLD61(3)+1.		Ď.	
		A3-FUNE(2*P-1)*CIGNW/BETA		D	70
		#1=FLORT(2:P+1)*CIGNAZAETA		I:	8.0
		DG 101 I=1+2		Ţ)	2.0
		P((CI)=SIGMA*(FLDAT(R)+0.5)		Ţ)	100
		12=1+2		D	119
	101	DXC(2)=SIGN(*(FLUAT(R)=0.5)		D	120
		DO 102 1=1.4.3		_	130
	105	DY(I)=FLDAT(S)+0.5		D	140
	4 42	DO 103 I=2,3			150
	103	DYCI>=FLGAT(\$)=0.5 IF (\$.60.0) 60 TO 113		_	$\frac{160}{170}$
		IF (0Y(1),GT,(DX(1)/ECTA)) 60 TO 105		-	180
		IF (BY(4), GT, (BX(4)/BETA)) GO TO 109		_	190
		DO 104 JK#1+2		Ī.	200
		In-UK			210
		CALL GIR (IK-A1-A2-A3-A4-YG3)			220
		GR(JK)=YG3		D	230
	104	CONTINUE		D	249
		RETURN		D	$\varepsilon > 0$
	105	IF (DY(3).GT.(DX(3)/DETA)) GO TO 107		D	260
		DO 106 IK=1+2		D	270
		CHLL GIPS (IK+A1+A3+A4+YG2)	· · · · · · · · · · · · · · · · · · ·	Į)	250
		GP(1K)=Y62	· ·	Đ	550
	106	CONTINUE		-	500
	. 07	RETURN BD 103 IN=1+2		D D	310 320
	101	CHIL GIRS (IK+A1+A1+A4+YG2)		_	336
		(\$40)0=505		ī.	340
	103	COM THUE	·		350
		RETURN			150
	109	IF (2003).GT. (DM(3)/BETA)) GO TO 111		Ď	370
		PG 110 IK=1.2	•	D	330
÷		Celt GIP (IK-A1-A2-A2-A4-YG3)		D	390
		C-AL GIPS (IK-A1-A3-AC-YG2)	·	U	400
		GM(1K)=YG3+YG2		D	410
	110	CONTINUE		D	420
		PETURN THE THE PETURN	•	Į.	430
	III	DB 118 IK=1+2 CALL GIR (IK+A1+A2+A2+A4+Y53)		I) D	440 450
		たいしん なるい こるいマヤムアヤルファルフロマス じはびど	i		→ ∪

DESTY

		CALL GIRS (IK-A1-A1-A2-YG2)	D	460
		GECIK)#VG3+YG2	Ţ	470
	110	PETURN	Ū	420
	113	IF (P.FO.0) GO TO 120	I.	490 500
	* * * 3	IF (DYCL).GT. (DXCL) (LETA)) GO TO 114	Ti.	516
		60 10 116	Đ	560
	114	PO 115 W=1+2	Ď	550
		CAUL OGGA (IK:A3:A4:YG)	D	540
	4 4 8	M(IX)≠YG	D	550
	113	COMPTIBLE RETURN	P	560 473
	116	IF (0YO4).6T.(DX(4)/RETA)) GO TO 118	I) D	570 500
	•••	NO 117 18:11-2	Ď	590
		COLL GIR (IK.01A3.A4.YG3)	D	600
		68x3f(2#3, •1/63	D	610
	117	CONTINUE	D	620
		PETUN	p	630
	116	00 119 18=1+2 044 0555 (18-05-1-385)	Ď	640
		CHLL 0634 (IK+A3+1.+YG) CHLL GIR (IK+0.+1.+A1+YG3)	D D	650 630
		GE(1k)≠2.*YG3+YG	Ď	660 670
	119	CONTINUE	Ď	630
		PETLAN	D	690
	120	IF (WYCD.LE.CDMCDVEETA)) 60 TO 122	Ď	700
		TO 121 II = 1 + 2	T)	710
		CPLI, OGBA (IK+0.+A4+YG)	D	720
	121	GPCIK)#YG CONCINUE	D D	730 740
	15.1	RETURN	D	750
	122	RO 183 IV=1+2	I.	760
		CHLL 062A (IK+0.+1.+YG)	D	770
		CHLL GIR (IK 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Ď	780
		GEC1K)#2. *YG3+YG	Ð	790
	153	CENTINUE	Ð	8.00
		PETUFIL	Ŀ	810
ζ			D D	- 830 - 0 - 5
-		END	D E	800 840
			D	Care ()
		CUBICULINE GIPS (IK-YS-ML-MU-YG2)	Ε	10
		CIRCUIT FELDICKION IMPUBECECB	Ē	20
		6≈0.5•(((0+5).)	Ē	38
		\$ = X(1 - X).	Ē	40
		V1=0.200234655*B	Ε	50
		Y2=0,-15 1000023 * B	E	ÉН
		TCLTro-a TCLTetrapy	Ē	7.0
		260 Terbora-Y1	E E	\$6 20
		DELTHERAYE	Ē	100
		PCL Test 31-72	Ē.	110
		100-C+ B-2.7*C0.568808887*FYCIY+DELTA0+Y5+DELTA0++0.47862867*CFYCI	Ē	120
		B. DELTHINYS. DELTHID HEYCIK. DELTHONYS. DELTHOD) +0.236926885* (FYCIK. DE	E	100
	â	RUTAR + VS + DELTAR + FYKIK + DELTAR + VC + DELTAR >>>	E	140
		KETURN	Ε	150
			£	189
		END	Ľ	190

DEST RECEIVED CONT

	FUNCTION FYCIK, DELTA, YL, YU) COMMON /BLDCKO/ BM, UB, C, CB	•	• •
	FK(BM:DELTA: Z)=(CDS(BM+SQRT(DF) TA##0~Z##2))~1.)/SQRT(DF) TA##2~Z##2	F	ି ଅଣ୍ଡ ଅଣ୍ଡ
	47	F	40
	A=0.5#(YU+YL) B=YU-YI	F	
	¥1*0.2692346)5*B	F	
	11-0.26763453748 Y2≈0.453089923◆B	F	
	DELTA0*A	F	- ,
	DELTAL PARA PY	F	
	DELTH3%A-Y1	F	
	DELTH2=H+Y2	F	120
	DET.TH4=A-Y2	F	130
	IF (IV.EO.1) GO TO 101	F	140
	FY=-SIN(UB+DFLTA)+(ACDC(YL/DELTA)+(B/2.)+(0.568880889+FK(BM+DELTA+	F	150
	1DZLTA0>+0.47562867*CFFCM+DELTA+DELTA+FFFFM+DELTA+DELTA+DELTA-DELT	F	160
	PETUPIA	۶	170
10	# FY=CO3(UB*DCLTA)*(ACO3(YL/DELTA)+/B/2.)*(0.568888889*FK(BM.DELTA.D	-	186 190
	TELTHO: +0.47862867 +(FKCEM, DELTH. DFLTHI)+FKCEM, DELTH, DELTH3))+0.2369	Ē	200
	&26385F(FK(231)DELTA)DELTA2)+FK(BM:DELTA)DELTA4))))	-	210
	RETURN	F	220
	END	F	250
	END	F	2 60
	SUBPOUTINE GIR (IK+YU+YU+XU+YG3)	G	10
	CONMUNI ZELOCKOZ BM•UE•C•C2	G	20
	6=9.5*(XU+)4.)	G	30
	B=ME-14L	Ğ	40
	Y1≈0,3872983346*B	Ğ	
	DCLT60#A DELT61#A+Y1	G	66 70
	DELTHI-HTT	6	80
	YG3=C*(B/2.)*(0.888888899*FX(IK+DELTA0+YL+YU)+0.55555556*(FX(IK+D	Ğ	
	1ELTr1.YL,YU)+FX(IK,DCLTA2.YL,YU)>>	Ğ	-
	PETURN	Ğ	110
		G	
	END	G	130
	FUNCTION FX(IK)BELTAYLYU)	н	10
	COMMON / FLUCKO/ BM, UB. C. CB	H	20
	FS*EM*DELTH*?>=(COO:BN#SORT(DELTA**2-Z**2))-1.)/SORT(DELTA**2-Z**2)	H	30
		н	40
	r=0.5*(YU+YL)	Н	50
	B=YU-YL	H	€.Q
	Y1=0.3072903064B IF (18.60.10 GD 7D 101	Н	70
	FX=-GIN(UB*DELTH)*(ACOS(YL/DELTA)+ACOS(YU/DELTA)+(B/Z.)*(0.88888888	Н	80
	199*FS(Bh+DELTA+A)+0.57555556*(FS(Bh+DELTA+A+Y1)+F3(BM+DELTA+A-Y1)	H	99 100
	5)))	н	110
	SE (US-1)	н	120
101	FINCUS(UB*DCLTA)*(ACOS(YLZDELTA)-ACOS(YUZDELTA)+(BZ2.)*(0.80888888	Н	130
	19*FS(RM+DELTA+A)+0.555555556*(FS(EM+DELTA+A+Y1)+FS(EM+DELTA+A-Y1))	н	140
	2)) 6:Tihm	Н	150
	RETURN	Н	150
	END	H	170
	이동 현실 사람들은 사람들이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.	7.7	100

Be

SUBROUTING 063A (IK, ML, MU, YG)	1	10
COMMIN /FLOCKO/ RM, UB, C, CB	i	žŏ
A=0.5*(NU+NL)	ī	30
B≈:3U+33_	i	40
Y1=0, 269334655#B	ī	50
Y2≈0.400089923•B	ī	66
で展別を(ロチでも)	i	75
YY+Br(*(n-Y1)	•	80
2×86*(6+72)	Ť	90
22=BH < (n-Y2)	i	100
NaBi4##	i	110
CHLL RESULTY-0-BUI-0.0001-IER)	í	120
C:41. Pd. J (YY+0+8)2+0,0001+1ER)	i	130
CALL BE J (2.0.BJ)0.0001, [ER)	i	140
C(41), E(5) (22,00 B)400,0001 (ER)	i	150
CHIL DESU (X:0.BU0.0.0001.TER)	ī	160
Y=(R+,6:Y1)	i	170
YY=018 2 : 61 − 1 2 3	i	180
\$2460 P4U#\$	i	196
(20年度) (第4年) (20年) (20	i	200
Martin 18 to 1	i	210
1F (1K.E9.1) GB TO 101	ī	220
YG=-0.5*(\$/2.7*(0.5669998),0+0U8*(X)H12*#66899565,07*(\$/3.7*)*6.9-9YG=-0.5*(\$/2.7*)*6.00000000000000000000000000000000000	ī	230
1YY)*2J2\+0.236923885*(\$1H(Z)*BJ3+\$1H(ZZ)*BJ4\)	i	£40
RETURN	ī	250
101 YG=0.5*(B/2.)*(0.568888989*CDS(X)*BJ0+0.47862867*(CDS(Y)*BJ1+CDS(Y	ī	260
1Y2*BJ2Y+0,236926885*(CB3(Z)*BJ3+CB3(ZZ)*BJ4))	Í	270
PETIEN	Ĩ	230
	Ĭ	290
CONTRACTOR	1	300

)1	ICP*1 PETUEN			•		j
	FETURIT IF (11) 103+103+104 IER-2 PETURIT					ָ ר
)4)5	1F (N-15.) 105-105-106 HTEST=20.+10.*K-K**2/3. 60 10 107					j
)?	64E5) =90.+%/2. IF (N-HYEST) 109-103-108 (EP-4					j J
	PETURN ILF=0					J
	HISH+1 BPREV=.0				•	,
	COMPUTE STARTING VALUE D	FIN				j
10	IF (X-5.) 110,111,111 Ma=X+6. GO 10 112					ر ال ال
	MA=1.1***********************************					ق ن ل
	SET UPPER LIMIT OF H					j j
	MMMD=MTEST 00 121 M=MZEFO+MMAX+3					j
	SET F(h)+F(h-1)					J J
	Fill=1.0E-28 FM=.0 ALPHA=.0					j
13	IF (M-(M/2)*2) 114.11 JT=-1	3+114				ن ز ز.
14	GO TO 115					Ĵ
15	10 113 K=1+M2					J
	HK=M-K					J J
	erk=2.*Float(MK)*F FM=FMi FMI=F/M					ن ز ز
16	IF (NR N-1) 117•11 EJ-Delk	6-117				J J
17	JT=-JT 5-1+JT					J J
18						ر ل ن
19 26	Bu=ByK Alpha=Alpha+ByK					ا. ل
21	BJ=BJ/ALFHA IF (ABS(BJ-BFPEV)-ABS BFPEV=BJ	(D#BJ)) 122,123	2,121			ں ل ر
	IER=3					Š

BEST

	SUFFROUT THE	SHAPE (FA-DTA-	IK+X+Y+BA)	•			¥	10
		(24/3)=3.(24					<u> </u>	20
	F2(2)=2*((2						5	30
	F4(Z)=(21.43				: " K		T:	
							K	40
	DE1(2)=6, *(K	36
	DF2(2)+3,+0	2**2)~4.*2*1.					K	66
	DF4(2)≥3.*(Z**2)-2.*2					K	70
	16 CH. FO. 0) GU TO 106						80
		.DP. IK.E0.3.DF	TK. FO. S. DP	IK. FO. 25 GD	TIT TOT		ρ.	90
	IC CIV to S	.D2.1K.E0.4.G8	TE EN & MO	INTEGERY OF	70 102		5	
								100
		489.1K.E0.11.0						110
		.0.DR.IK.E9.12.	GR. IK.EQ. 14.	38.IK.EQ.16) GO TO 104		K	120
101	Gi#F1(()						K	130
	CC=OFICK)	•					K	140
	60 (0.195							130
102	AA=F2CO		and the second of					160
	CC-UES(X)	and the second of the						
	GD 10 105				The Mark of the Control	100		170
								180
103	99*1, F1(X)							190
	CC=-TF1(X)							200
	60 70 105						K .	210
104	#9 - #64(3)						ĸ	220
	CC=IF4(X)						K	230
1.05	IF CIK.FO. 1	.OR. IK. EO. 2. OR	1K.FO. 13.0P.	TK.FO. 141	RE=F1(Y)			240
		OR. IK. EQ. 4.09						230
		.OR. IK.EO. 6. UP						
								560
		.OK. [K.E0.8.OP	: 18-50-11-08:	i i Kiliu i i doji.	RRat de Abaru			270
	FREINHESE						K	250
	DFA=CC#DB			The Control of the Control			K	290
	PETURN						K	300
106	FA=0.							310
	DFA=0.							320
	RETURN							
	NE LOWIT							330
	PUR							340
	END						K :	350

PANEL FLUTTER FOR CLAMPED PANEL

LENGTH-WIDTH PATIO = 1.000
CHOPUMISE ELEMENT LENGTH = 1.000 SPANMISE ELEMENT WIDTH = 1.000
BOX WIDTH = .500 RATIO OF BOX LENGTH TO BOX WITH = .500
REDUCED FREQUENCY = .500
INITIAL IN-PLANE FORCE PAPAMETER= .100

0.000

STRUCTURAL DEFPING COEPFICIENT

DENSITY RATIO FOR . 01500

2.71207E-01 1.73227E-03 3.495725-01-6.74931E-04 3.910895-01-1.28203E-03 4.54907E-01-5.720485-03 5.13697E-01-5.7741E-03 7.747E-03 7.13697E-01-1.24987E-02-3.7672E-03 7.94762E-03 7.94762E-03 7.6477E-02-3.7672E-03 7.6477E-02-3.7672E-03 7.6477E-03-1.4777E-03 7.7467E-03 7.6477E-03 7.7467E-03 1.60359E-01-1.27551E-02-1.36712E-01-5.06522E-03-1.94742E-01-1.55964E-02-1.16354E-01-8.20407E-03-9.96943E-03-4.70427E-03-4.70447E-03-1.5596E-01-3.0447E-03-1.5705E-02-1.60734E-02-6.51616E-01-2.97707E-03-3.58316E-01-3.0777E-03-3.6076E-01-3.0776E-03-1.5776E-03-1.47750E-02-1.54725E-01-1.33035E-02-2.62591E-01-2.33017E-02-1.76307E-01-1.471505-02-5.40318E-02-1.49576E-03-1.43144E-02-6.92169E-02-3.66703E-02-1.6307E-03-1.43144E-02-5.92169E-01-2.3716-03-1.6307E-03-1.78307E-01-1.471505-02-5.40318E-02-1.49576E-03-1.43147E-03-3.56705E-03-1.43147E-03-3.48307E-03-1.43147E-03-3.48307E-03-1.43147E-03-3.48307E-03-1.43147E-03-3.48307E-03-1.43147E-03-3.48307E-03-1.431505-02-3.48307E-03-1.43147E-03-3.48307E-03-1.43147E-03-3.48307E-03-3.483 3.99682-01-7.65865E+03 4.15737E+01 6.45275E-04-3.41736E+01-7.91461E+03-4.82366E+01-7.69072E+03 5.69927E+01 2.40735E+02 -2.10618E+02 5.61680E+02-4.10748E+01-2.82078E+02-2.65645C+01+1.18713E+02 2.97272E+01 6.31796E+02-4.00658E+01-3.24370C+03 -5.7-916E+01 4.70239E+03 4.10188E+01 2.84316E+02-2.93596E+01-1.34572E+02-3.40882E+01-2.06160E+02-5.51195E+01-2.77998C+02-1.63270E+01 1.93235E+01-2.01186E+01-2.77998C+02 3.20200E+01 4.10527E+02 35702 .18125 .12453 .71404 STIFFNESS PAPAMETER = SOUTH STITITION PROGRESS IN * 85867 STIFFIEDS PARAMETER # - 02829 FREGUENCY RATIO . - 00999 FPEDUENCY RATIO . .00431 FPECUENCY PATID 5.09752E-01 -1.44227E-02 EIGENVALUE - 7.18589E-02 -7.13719E-04 FIGENCECIOS 16FHUNEUE 1.314845-01 5.57010E-04 ETGENVALUE ETGENVECTOR 2.71207E-01

| 01 2,06447E+01-1,70349E+01-2,7440E+01-4,3445E+01-1,63509E+01-1,03509E+01-1,03509E+03-2,535099E+03-2,53509E+03-2, 280 . 22727 STIFFIESS PROGRETER # . 03722 FPENTINGY RATIO .. * 2 etservelle - 3.163146-08 - 1.901746-09 etservester -6. 267940 -1. 65556

EIGENVALUE= 1.38812E-01 1.04935E-03 G = .00756 FREQUENCY RATIO = .37258 STIFFNESS PARAMETER = .18629
EIGEN/ECTUR
-1.04603E-01-8.68992E-03-1.16775E-01-2.49425E-03-1.23101E-01-1.31595E-02-8.71043E-02-9.96725E-03-3.76974E-03 8.18527E-03
-1.04603E-01-8.68992E-03-1.10775E-01-2.36345E-02 6.18409E-01-1.303567E-02 4.03026E-01-7.76314E-05 8.77230E-02-3.10660E-02
6.36505E-01-6.61053E-02-9.69051E-02-2.79283E-02-1.64549E-01-1.93015E-02-1.35186E-01-1.59207E-02 1.06455E-01-2.17587E-02
7.49558E-01-6.43060E-03 8.15534E-01-5.92423E-02 5.58570E-02-2.93602E-02 4.56446E-01-1.23192E-02 5.20538E-01-1.24326E-02 3.96015E-01-2.21455E402-3.75765E-01 7.796752-03 6.22640E-01-1.21634E-02 9.38408E-01-2.59552E-02 F-01 2.586942-01-1.304072-01 1.105182-01 2.579322-01-2.150572-01 1.848752-01-3.375193-01-3.5%6852-02-3.320932-02 1-01-5.331763-01-5.876∻52-02-0.04364E-01-5.63612E-01 5.357842-01 4.6090×2-01-9.162031-02 1.675705-01 4.036942-03 1-01 6.528792-01 2.965∻02-01 6.317182-01 2.19078E-01-1.39609C-01 7.4358×5-02-2.1339∪E-01-1.∪6027E-01-2.177215+01 1-01 3.40671E-01-3.∩8150E-02 6.19561E-01 4.61583E-01 6.106165-01 1,35685E-01 3,72302E-02 2,84460E-02 4,01859E-01-4,18115E-01 1,12980E-01 6,32020E-02 1,75155E-01-5,39036E-02 2.42194E-01 9.68509E-01-3.81281E-01 1.43230E-01-1.06373E+00 5.65499E-01 1.25330E-01-7.43764E-01 2.73503E-01 M Ħ STIFFHESS PARAMETER PARAMETER PARAMETER PERMETER いいはいいいいい STIFFINESS STIFFRESS 2.43916E-01 1.07862E-02 . 22165 .73017 .23701 . Ħ 2.500002-01 0. 1.25275E-01-1.74406E-02 7.07136Z-01-2.16722E-02 2.88874E-02-1.38357E-02 5.10147E-01-2.02298E-03 5.10147E-01-2.03299E-02-5.41673E-01 2.31675E-02 4.69379Z-01-4.82755E-03 1.84782E-01-2.3547E-02 6.89759Z-01-3.27375E-02-6.63778Z-01 1.85861E-02 EIGENVALUE - 5.60590E-02 -5.09035E-03 G = -.09080 FREQUENCY RATIO = EIGENVECTOR - 1.55715E-01-8.35883E-02-1.24132E-01-7.18035E-02 1.34613E-01 1.19970E-01 4.04032E-01-3.31513E-01 1.89025E-01-2.16774E-02-3.15504E-01-3.55937E-01 -6.03619E-01-2.36812E-01-8.84037E-01 3.72805E-02 9.51827E-02 9.59939E-01 -1.97375E-01-2.203916E-01-6.6207E-01-9.57312E-02-8.41293E-01 2.48088E-01 RAT10 RATID FPERUINCY FREQUENCY -. 05500 -. 04062 Ħ O O -e. 760085-03 -2,164675-02 . 02500 339255-01 'n 4.356135-01+5 -1.898988-01 6 -4.587198-01 3 FHT -1.63754F-01 €16EriVALUE= FIGENVECTOR

DENSITY RATIO MU» .03500

```
2.59137E-01-4.89550E-03 2.97623E-01-4.(%.082E-03 2.454245-01 1.42141E-03 3.50007E-01-1.04682E-02 5.41070E-01-1.04682E-02
   .
   PRINCIPER
STIFFIESS
 .74071
   .
                                     1.88853E-01 6.82261E-04 1.94158E-01-1.26495E-03
4.05453E-01-9.65308E-03 4.76952E-02-9.85994E-03
-3.22906E-01 1.16760E-02 2.50000E-01 0.
4.27525E-01-1.80803E-02-3.86984E-01 6.76952E-03
   PAT 10
   FREGUEISCY
   -. 05002
     Ħ
   G
   10.11464961.01
                    EIGENVECTUR
1.30468C-01 1.85831E-03 1.
9.75827E-02-1.0678E-02 4.
3.11886E-01-1.11887E-02-3.
   5.483146-01
```

1.70118C-02 1.59552E-02 2.57285E-01-7.86166E-92 2.45544E-01-5.47607E-02 19161. A PARAMETER EIGENVALUE= 1.46696E-01 9.67724E-04 6 • .00660 FRECUENCY RHIIO • .38301 STIFFNESS PARA EIGENVECTOR 1.006315_01-4.54288E-03-1.37437E-01 4.11744E-03-1.040705_01-1.61930E-02-7.07397E-02-1.993605-03 5.006315_01-1.65530E-02 2.49430E-01-5.84067E-02 9.084786-01-9.15125E-02 7.03397E-01-3.74541E-02 1.15580E+00 1.95723E-01-5.16120E-03-7.69797E-02-1.39487E-01-2.04390E-02-1.20644E-01-2.53449E-02 1.07955E+00-7.06030E-02 1.46302E+00-1.98239E-01 2.6587E-01-3.98851E-02 STIFFRESS PHTIO

.14724 2.85026E-02 1.55747E-04 4.16231E-02-6.0193EE-03-1.01876E-01-1.89510E-01-2.90596E-02 1.02490E-01-8.84133E-04 2.81134E-01 3.02009E-02 2.13243E-03 2.8709E-02-2.07017E-03 6.98806E-02-3.54760E-01 2.27551E-02 jė PARAMITTER STIFFMESS e .29467 RHTIO FREGUENCY -. 06405

9.235845-02 -1.84:802_ನಿಯ 1.489532-01 2.143352-01 3.672952-01-5.012562-01-1.567152-01-7.610902-02-3.009042-01 9.218902-01 6.080533-01 1.107412-09 * 1.490162+00-5.373282-01 2.724522+00-4.785472-01-5.440112-02 2.013845-42-1.626927-01-4.640472-03-4.54675-01-2.508322-02-2.300862-01 1.8085925+00-2.792082-01 2.974062+00 4.914145-04 31 2, 053296-H PLEATER 09-349486 STIFFIESS 663632-01-9. . OF 844 2.520525-02-2. Ħ RATIO FREQUENCY 2,155285-02-8,099295-02 .05041 Ħ ø 3, 63030E-03 2.867575-01 7.201655-02 7,793655-03 165874005= 1658750708 .072825-01 7

4.067392-01-9.026145-02 1.1998855-01 1.072945-01 7.271845-01 6.014905-01-3.085015-01 7.760343-01 2.042855-01-3.948375-02 8.003765-02-2.50365-01 PARAMETER STIFFRESS = .24912 EIGENVALUE 6.19034E-02 -6.25723E-03 G = -.10108 FRECUENCY RATIO = EIGENVECTUR -2.0553E-01 9.02497E-02-2.15528T-01 1.31835E-01 2.36528Z-01-2.01705E-02 -9.49457E-01-2.85586E-02 1.81807E-01-2.51753E-01-7.65737E-01-2.15981E-01 -1.54385E+00 4.31538E-01-1.54385E+00 1.28374E+00 1.88221E-01-7.25742E-03 -1.54385E-01-7.25742E-03 (-6.17539E-01-1.09660E+00 1.52778E+00

DENSITY RATIO MU= .04500

2.76377E-01-5.49729E-03 3.20769E-01-3.72462E-03 2.89749E-01-1.50521E-02-3.3148E-01-8.35919E-03 3.69389E-01-1.15392E-02 PAPARETER STIFFNESS 1.955855-01 1.527358-03 1.961418-01-1.542945-03 4.475255-01-1.124558-62 8.842138-02-1.241748-02 -3.616758-01 1.330988-02 2.500005-01 0.576848-03 5.019898-01-2.210878-02-4.201572-01 6.276848-03 RHT 10 FREOUTHCY v -3.18754E-02 ELGENYALUE 5.54946E-01 ELGENYECTOR 1.27393F-01 2.36980E-03 1 1.34285E-01-1.25434E-02 4.3.58910E-01-1.3010E-02-3.3. 5.049465-01

₽

2.59137E-01-4.89550E-03 2.97e23E-01-4.05.382E-03 2.454245E-01 1.42145E-03 3.50007E-01-1.04632E-02 .37036 PATAMETER STIFFNESS .74071 EIGENVALUE: 5.48314E-01 -2.74249E-02 G = ..05002 FREQUENCY RATIO = EIGENVECTUE 1.30468E-01 ..85881E-03 1.88853E-01 6.2261E-04 1.94158F-01-1.26495E-03 9.75807E-02-1.08678E-02 4.04532E-01-9.65306L-03 4.76952E-02-9.8994E-03 3.15886E-01-1.11687E-02-3.25906E-01 1.16760E-02 2.50000E-01 0. 1.47464E-01-1.44788E-02 4.27525E-01-1.80855E-02-3.85964E-01 6.76952E-03

EIGENWELDE 1.46696E-01 9.67724E-04 G = .00660 FREDUENCY RHIID = .38301 STIFFNESS PARAMETEP = .19151
EIGENWELDE 1.4288E-03-1.57437E-01 4.11744E-03-1.040705-01-1.61980E-02-7.07387E-02-1.90360E-02 1.70118E-02 1.59852E-02
5.046155-01-4.54288E-03-7.0403E-01-5.84057E-02 9.08978E-01-9.15125E-02 7.03397E-01-3.7451E-02 2.45044E-01-7.861662-02-7.07938E+00 1.95723E-01-5.4504E-01-5.47607E-02-1.07935E+00-7.06030E-02 1.46303E+00-1.98238E-01 2.66987E-01-8.98851E+02

1-7,787995-94 1 1,479855-02 8-2,002888-03 4,162315-02-6,019355-93-1,019765-01-1,024945-01-8,841315-04 2,811152-01 2,870925-02-2,070175-03 6,988465-02-¥ OTIFFICATION PROMITTER .29467 ¥ 2.85026E-02.1.55747E-04 1.89510E-01-2.90298E-02 3.02099E-02.13248E-03 3.54760E-01.2.27551E-02 FREGUENCY RHIID -,06405 E1GENVALUEL 8.674976-02 -5.5596E-03 G * -. E1GENVALUEL 8.674976-02 -5.5596E-03 G * -. 6.55040E-02 -5.550740E-02 7.17694E-03-6.2017417-02-1.74979E-02 9.451345-02-1.92645E-02 4.72552E-01-3.47574E-02 2.81982E-01 5.18324E-03 1.62550E-01-3.47574E-02 5.19329E-01-2.77407E-02

85 ទ 2.143352+01 3.67896E-01-5.01886E-01-1.56519E-01-7.64090E-02-3.00864E-01 9.21890E-01 6.08083E-01 1.10741E+09 9. 1.49016E+00-5.37328E-01 2.72452E+00-4.78847E-01-5.44011E-02 2.013845-02-1.62898F-01-4.64047E-08-4.59407E-01-1. 2.50832E-02-2.30086E-01 1.80859E+00-2.79208E-01 2.97406E+00 4.91414E-04 20 063296-PERSONAL 98767E-03 STIFFRESS 663638-01-9. .05044 2.520525-02-2. Ħ RATIO FREQUENCY 2.15528E-02-8.09929E-02 .05041 Ħ U 3,630305-03 2.867575-01 7.20165E-02 7,793655-03 105894005 1058950108 1078825-01

Ħ

0635-01 1.072945-01 5015-01 7.768342-01 3765-08-2.503655-01 4.067395-01-9.285145-00 1.199882 7.271245-01 6.014905-01-3.085011 2.042255-01-3.940875-02 8.00376 PASHIMETER STIFFAESS .24912 Ħ EIGENVALUE= 6.19034E-UG -erginiste -EIGENVALUE
-2.0572E-01 9.02437E-08-2.195282-01 1.31835E-01 2.862822-01-2.01705E-02 4
9.49457E-01 9.02437E-08-2.195282-01 1.31835E-01 2.868737E-01-2.18981E-01 1.5435E+00 4.3153E-01-1.5435E+00 1.88281E-01-7.25742E-03 4
-1.54355E+00 4.3153E-01-1.5947EE+00 1.22374E+00 1.88281E-01-7.25778E+00 --6.17539E-01-2.50015E-01-1.25672E+00 6.21582E-U1-1.09660E+00 1.52778E+00

76377E-01-5,497295-03 3,20769E-01-3,72462E-03 89749E-01-1,50521E-02-2,31148E-01-8,35919E-05 69389E-01-3,11467E-03 5,8394E-01-1,15392E-02 PAPERFITTER STAFFAESS ณ์ณ์ต่ # 1.955855-01 1.527356-03 1.961416-01-1.542946-03 4.475825-01-1.124556-02 8.842136-02-1.241746-02-3.616756-01 1.330986-02 2.500005-01 0.5.019896-01-2.210876-02-4.201572-01 6.276846-03 RHT10 FREGUENCY -. 05/44 G -3.18754E-02 EIGENVALUE 5.54946E-01 1.273381-01 1.373381-01 1.34335E-01-1.25434E-02 3.53316-01-1.30102E-02-3 5.049465-01

3 5.52837E-02 1-1.28263E-01 2-5.04236E-02 -3.24131E-01 1.440185+00 4.285765-01 .877135-01 1.677545-04 .647905-01-7.616775-03 .845205-01-1.051665-02 2.39509E-01-7.69874E-03 4.16254E-02-1.56865E-03 7.36850E-01-6.13420E-03 1.11151E-02 4.19844E-02 5.67700E-01-2.30429E-01 6.85757E-02-1.924545-02 -2.240125-92-1.032095-91 9.663185-01-3.531595-01 8.45575-62 6.228515-03 1.67850E-01-2.698415-61-9.31677E-02-2.4996EE-01-5.54818F-01-4.23183E-01-1.48945E-01-2.90617E-01-6.91957E-03-2.37034E-(1-2.94163E-01-1.76762G-01 9.645992-01 3.03762E-(1 4.65054E-01 9.79577E-6.09093E-4.01070E-PROFITTR STIFFHESS PARAMETER STIFFNESS PAPAMETER STIFFFRESS FARANCIEP 9.36030C-02-7.34521C-02 3.61157E-01 1.96636E-01 1.26536E-01-5.56964E-02 .350892-01 2.511945-02-.014456-01-7.682866-01 .243425-01-1.806306-02 3,233165-01-6,115825-03 4,393535-01-1,779485-02-4,207795-01-1,467085-03 2,116795-01-3,541715-02 8,719075-01-2,557355-93 2,398155-01-3,431185-02 1.11777E-01-8.49976E-02 3.60966E-01 1.63741E-01 1.53548E-01-7.26543E-02 STIFFIRESS 2.78465E-01 3.14075Z-01 2.62813E-01 .31614 .51473 .30782 .27017 તાં તો તાં . H Ħ EIGENVALUE* 5.27070E-01 -3.58407E-02 G = -.06792 FREQUENCY XHILD = EIGENVECTUR 1.17861C-01 3.74064E-03 2.09554E-01 4.78854E-03 2.01613E-01-2.15845E-03 2.5766C-01-1.290558-02 5.57428E-02 7.0578C-02 5.5428E-02 7.0578C-02 5.5481E-01 1.34288E-02 2.50000E-01 0.59491E-04 4.16510E-01-1.91731E-02 7.65900E-01-2.81871E-03-5.06411E-01 2.99491E-04 EIGENVALUE= 2.64673E-01 -1.71390E-02 G = -.06476 FPECUENCY PNIIG = FIGENVALUE= 2.64678E-02 -1.7139E-02 -1.7276E-03 T.05742E-02-1.91103E-02 -1.73766E-03 C.077464E-03 C.077468E-03 C.077468E 8.54917E-02-2.39602E-03 7.13685E-02-6.41917E-03 6.38045E-02-2.17715E-02-3.13550E-02 2.07451E-01 6.32171E-01-6.69970E-01 8.33220E-02 6.13506E-03 7.18405E-01 5.82375E-03 8.75560E-01-5.69030E-01 5.42405E-02-1.29479E-01 9.87012E-02-3.02939E-02 7.57332E-02 8.53733E-03-4.49689E-01-3.16834E-02 2.05332E+00-4.3625EE-01 9.20345E-02-3.59456E-02 9.99420E-01-6.11273E-01 2.05505+00-5.98348E-01 EIGENVALUE= 9.44164E-02 -1.12974E-02 G = -.11966 FREQUENCY RATIO = EIGENVECTUR
-6.50417E-02 e.67698E-03-1.47682E-01-3.19608E-02 1.29629E-01 1.2459E-01
-1.45858E-01-2.69748E-01 5.22790E-01 4.35277E-01 6.32014E-01 5.71645E-01
1.77683E+00 e.39668E+00 1.0029E+00 2.37102E+00 1.4454E-01 1.40620E-01
N.07297E-01 3.96929E-01 1.81207E+00 2.46367E+00 1.228572F+00 2.43933E+00 FREGUENCY PATIO FREQUENCY RATIO PATIO Ħ ø -2,57349E-02 4.74660E-02 EIGENVALUE 7.072095-02 EIGENVECTER
-2.16220E-02-7.390745-02 5
-2.629056-01 4.878165-03 7
9.344545-01-4.674585-01 2
-3.45996-01-4.833195-02 9 EIGEMANDER 9.43066E-02 EIGHMYECTUR 3.72718E-03.20938E-02 8 -1.10614E-01 1.83149E-01 6 5.86131E-01-9.42902E-02 6 -8.03509E-02 2.44447E-01 7 RHTIU

7,05847E-01-1,45245E+00 9,97612E-01-1,78519E+00 1,70998E+00-2,89987E+00-5,0544E-01 9,05852E-01 8,925796-01-1,78411E+00 1,99059E+00-3,69477E+00 20-316-65 20-33-69 21-08 4.014109-01-1.555195-02 5.055215-01-1.567 7.912305-01-6.983015-02-2.180215-01-2.00 5.005255-01-7.019599-03 1.024285-03-4.03 .31942 36925-01 1.767582-01+1.501345-01-7.485915-03-394591-01-3.087491-3.087105-01-9.366245-03 19.55-01-8.242775-01 1.846395-01-1.057392+00-8.976555-91 2.373775-02-3.657451-1. 48375+09-1.154875+00-1.778275-01-1.36995-01-2.578785-01-3.96385E-01-2.281495-01 ¥ ä 中心とは、まただり PROPERTIES PERRETER STIFFIESS STIFFIELD STIFFIESS STIFFIESS .65495 .63885 .33300 30845 Ħ EIGENWHUDE* 1.013045-01 6.58020F-02 6 * .64953 FREDUENCY PHIID * EIGENWEUTZ 7.05992-02 7.05992-02 1.02030G-01-1.48087E-02 8.30203E-02-2.573782-03 4.70392-03 6.575555-01-1.48087E-03-3.4067897-02 8.5549375-03 5.654067-02 8.5549375-03 5.654067-02 8.5549375-03 5.654067-02 8.5549375-03 5.654067-02 8.5549375-03 5.654067-03 6.5549375-03 6.554067-0 IGENVALUE* 4.28697E-01 -1.50055E-02 G r -.03570 FREQUENCY RATIO = 1020/SE-02 C.90697E-03 E.19530E-01 1.14132E-02 E.10303E-01-4.01199E-03 -14823E-01-3:9193-E-02 B.1135E-01-4.56170E-02 B.82035E-01-7.34597E-02 C.82035E-01-7.34597E-02 C.82035E-01-7.34597E-02 C.82570E-01 C.85575E-01-7.83575E-01-7.83575E-01-7.83575E-01-1.20143E-02-1.20142E-02-1.2 4.10725E-01-1.45633E+00 PATID FRECUENCY PATIO -.11356 2.12438E-01-5.99033E-01 1.80346E-01-2.09634E+00 H. ¥ v o -4,620016-03 E1GC#/MLUG* 9.390775-00 -5. E1GF#VEC1G3 4.514055-00 1.73 5.991364-01 7.174816-01-6.57 5.899478-01-2.161855+00 1.67 30-324368 6 4,00318E-01 #5 RATIO ALTONGO

1.57537E-02 3.75457E-02 5.25127E-01-2.955795-01 7.61216E-02-3.19507E-03

1.84279E+01-9.69420E+02 3.58183C+01 1.45539E+01 1.77531E+01-8.5140EC+03

B

1.17849E-01 5.19427E-02 1.51454E-01 2.04656E-01-1.897372-01-3.48161E-02-3.87223E-01-2.8892E-01-1.0552E-01 4.81638E-01 7.260054-01 3.59766E-01-1.67419E-01-7.51564E-01 5.97041E-01-9.30731E-01-7.74589E-01-1.8960E-01 9.29646E-02-1.32174E+00 1.02014E+00 2.1860E-01-1.89656E-01 1.15002E+00 7.55451E-01-1.60316E-01-8.90751E-02-2.17483E-01-3.00128E-01-5.77104E-02-5.04771E-01 4.99059E-01 1.65958E-02-3.17483E-01-3.00128E-01-5.77104E-02-5.04771E-01 4.99059E-01 1.65958E-02 22

.0850 Ξ PATIO DENSITY

2.14023E-01 -1.15/78E-01 4.37918E-01 .40772E-02-1.07525E-01 1.63074E-01-1.31170E-01 .96216E-01-5.40799E-02 3.70376E-01 1.3772E-01. .35370E-02-1.49746E-01 1.85971E-01-2.09430E-01. PAPAMETER STIFFIESS RATIO FREGUENCY 2-7.290985-02 7. 1 3.147265-02 2. 1-9.253182-02 8. 1 2.140715-01-2. .24715 ø 1.120325-01 4.53302E-01 EIGENVELUE= EIGENVECTUR=5.14835E-02 -2.95795E-02 -4.15239E-02 -1.60198

.16623 8.85416-01-1.767305-01 8.807116-01.7.119786-08 3.6830.E-01-3.98000E-01 data FAPAMETER STIFFIGG SEPTIMENTS į. đ 2.3%6875-01-1.283135-01 2.3%5%6-01-4.170065-01 3.128115-01-1.304806-01 STIFFIELD STIFFRESS STIFFRESS 7.31643E-62-1.15187E-01.3.0868(5-62-1.27016E-01.1.39990 2.1830/7-62-5.4045%(-00-3.918000-01-4.90/90E-01-3.511E/ 1.18301E-60-1.45060E-01.1.30460E-68-2.09780E-01.1.9189 ST IFF HE 34850 . 23018 10000A .69103 7887 * 401-01 ... 00004001-01-10. ... 10000401-10. ... 10000401-10. ... 10000401-01. ... 10000401-00. ... 10000401-1.169272+60 6. 60009401-08-8. 6. 600010-63 9. 6499401-09 5. 6005461-08 9. 600041-0. 6. 600041-09 9. 6005461-01-9. 6877411-08 ... 1944-081-01-6. 4004881-01-9. 0897501-0. 4. 6944401-01-Ħ PREDUENCY PATED 20030-02 29096-01 29096-01 FRECOGNOY PATID FRECUENCY RATIO Dilita FPECUENCY PHIN SPECULIARY. 8.177356-01-5.720952-01 -,83124 1900 - 19 ĸ Ü O O 10 9.167715-02 47.0000000.X-1.030688-01 -8.347018-00 MANAGE TO STATE TO ST -2. 9008801-01 -6.40624E-03-4.74/05E-01-8.50211E-01 # 10 mm and 10 m 80 THO TOLE '8 4.433915-01 i E CT LINE

8.46356E-02 5.48869E-03 1.02659E-01-1.08206E-01 9.55197E-02-5.69047E-02 6.11954E-02-1.94423E-01 4.20107E-02 1.87424E-02 1.776528E-02 3.0403E-01 7.42469E-02-3.36514E-02 1.63430E-01 3.0376E-01-9.70787E-02 2.013752-61-6.203552-01 4.36965E-01-3.6927E-01 5.07385E-01-9.77652E-01 1.29409E-02-4.59769E-02 1.34629E-01-3.67412E-01 8.07385E-02-3.78187E-02 1.33786E-01 4.21366E-01 6.33038E-01-3.75537E-01 9.62209E-01-1.0091E+00 .13122 .17215 # H . 36245 CTIFFNESS PAPERSTER STREMESS PRESENTER KANAGARA NAMERITA SOURCE .34431 PRECUENCY RATIO * 7 FRECOGNETIC * FREQUENCY RATIO .85933 -,95131 1. 00000t ۰ ت 9 S -9.47621E-02 -3.942125-02 9.737985-02 1.133205-01 9.961245-02 1.16445E-01 EIGENVALUE* EIGENVECTUR 8.46356E-02 1665WALUE= 1658WED:103 GENVELUE* 6.19214E-01