银行家算法 避免系统

9. (考研真題) 假定系统中有 5 个进程 P₀、P₁、P₂、P₃、P₄和 4 种资源 A、B、C、D.

若出现如表所示资源分配情况。

进程	已分配到资源	尚需资源需求	当前可用资源数
P	(1, 1, 1, 0)	(0, 3, 3, 1)	(0, 3, 2, 2)
R	(0, 2, 3, 1)	(0, 3, 4, 2)	フ
P ₂	(0, 2, 1, 2)	(1, 0, 3, 4)	
N	(0, 3, 1, 0)	(0, 3, 2, 0)	
R.	(1, 0, 2, 1)	(0, 4, 2, 3)	

问:(1)该状态是否安全?为什么?

(2)如果进程 PO 提出资源请求 (0,0,0,1),系统能否将资源分配给它?为什么?

银行家算法: 外城上群兒. 安全状态: 是指可以找到一个热灯证安全序 刻: Need: 还需多了

Available=空闲资源 Allocation = 巴分酚族源 Work: 开始= Available.

Max = 共需要发源 Finish: 标识

if work > Need 则形的与两元.

有这样一个安全序列 Popo 1, P4 P2 所以该状态是安全的

(1)						
(,,	进程	Allocation	WOOK	Næd	workt Allocation	Finish
	P3	(0,3,1,0)	(0,3,22)	(0,3,2,0)	(0.6.3.2)	True
	Po	(0,1,1,0)	(0,6,3,2)	(033,1)	(1,7,4,2)	True
	Pı	(0,2,3,1)	(1,7,4,2)	(0,3,4,2)	(1,9,7,3)	True
	P4	(1,0,2,1)	(1,9,7.3)	(0,4,23)	(2,9,9,4)	True
	P2	(0,2,1,2)	(2.9,9,4)	1,0,3,	(2,11,10.6)	True

页面置换算法

1、先进先出(F1F0)

在一个请求分页系统中,有一个长度为5页的进程,假如系统为它分配3个物理块,并且此进程的页面走向为 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2。分别用FIFO算法分别计算出程序访问过程中所发生的缺页次数。

2、最近最久未使用(LRU)

在一个请求分页系统中,有一个长度为5页的进程,假如系统为它分配3个物理块,并且此进程的页面走向为2,3,2,1,5,2,4,5,3,2,5,2。分别用LRU算法分别计算出程序访问过程中所发生的缺页次数。

3、最佳页面置换(OPT)

在一个请求分页系统中,有一个长度为5页的进程,假如系统为它分配3个物理块,并且此进程的页面走向为2,3,2,1,5,2,4,5,3,2,5,2。分别用OPT算法分别计算出程序访问过程中所发生的缺页次数。

5将1换下是因为后面用不到1 4将5换下是因为后面要先用2、3再用5 5将3换下是因为最后只用32, 此时换3和4都可从