Programación Funcional en Haskell Primera parte

Paradigmas de Lenguajes de Programación

Departamento de Ciencias de la Computación Universidad de Buenos Aires

26 de marzo de 2024

Repaso: usando GHCi

Cómo empezar:

```
$ ghci
Loading ...
Prelude>:q
Leaving GHCi.
$ ghci test.hs
Loading ...
[1 of 1] Compiling Main ( test.hs, interpreted )
Ok, modules loaded: Main.
*Main>
```

Otros comandos útiles:

- Para recargar: :r
- Para cargar otro archivo: :1 archivo.hs
- Para conocer el tipo de una expresión: :t True

Currificación y aplicación parcial

```
prod :: (Int, Int) -> Int
prod(x, y) = x * y
prod' :: Int -> Int -> Int
prod' x y = x * y
prod :: (Int, Int) -> Int
prod(x, y) = x * y
prod' :: Int -> Int -> Int
prod' x y = x * y
prod :: (Int, Int) -> Int
prod(x, y) = x * y
prod' :: Int -> (Int -> Int)
(prod, x) y = x * y
```

¿Qué hacen estas funciones?

Currificación y aplicación parcial

Podría decirse que ambas "toman dos argumentos (x, y) y devuelven su producto". Pero esto no es del todo así...

Las funciones en Haskell siempre toman un único argumento.

Entonces ¿qué hacen estas funciones?

- prod recibe una tupla de dos elementos.
- prod' es una función que toma un x de tipo Int y devuelve una función de tipo Int -> Int, cuyo comportamiento es tomar un entero y multiplicarlo por x.

En particular, (prod' 2) es la función que duplica.

Una definición equivalente de prod' usando funciones anónimas:

prod'
$$x = y -> x*y$$

Decimos que prod' es la versión currificada de prod.

curry – uncurry

Ejercicio

Definir las siguientes funciones:

- 1 curry :: ((a,b) -> c) -> (a -> b -> c)
 que devuelve la versión currificada de una función no
 currificada.
- 2 uncurry :: (a -> b -> c) -> ((a,b) -> c) que devuelve la versión no currificada de una función currificada.

Los paréntesis en gris no son necesarios, pero es útil escribirlos cuando estamos aprendiendo y queremos ver más explícitamente que estamos devolviendo una función.

Aplicación parcial

Ejercicios

```
Sea la función:
prod :: Int -> Int -> Int
prod x y = x * y
Definimos doble x = prod 2 x
 j Cuál es el tipo de doble?
 2 ; Qué pasa si cambiamos la definición por doble = prod 2?
 3 ; Qué significa (+) 1?
 4 Definir las siguientes funciones de forma similar a (+)1:
       ■ triple :: Float -> Float
       ■ esMayorDeEdad :: Int -> Bool
```

Funciones muy útiles

Ejercicios

- 1 Implementar y dar los tipos de las siguientes funciones:
 - a (.) que compone dos funciones. Por ejemplo: $((\x -> x * 4).(\y -> y 3))$ 10 devuelve 28.
 - b flip que invierte los argumentos de una función. Por ejemplo: flip (\x y -> x y) 1 5 devuelve 4.
 - (\$) que aplica una función a un argumento. Por ejemplo: id \$ 6 devuelve 6.
 - d const que, dado un valor, retorna una función constante que devuelve siempre ese valor. Por ejemplo:

 const. 5 ''casa'' devuelve 5
- 2 ¿Qué hace flip (\$) 0?
- **3** ¿Y (==0) . (flip mod 2)?

Pueden ver más funciones útiles en la sección Útil del Campus.

Listas

Hay varias macros para definir listas:

Por extensión

Esto es, dar la lista explícita, escribiendo todos sus elementos. Por ejemplo: [4, 3, 3, 4, 6, 5, 4, 5].

Secuencias

Son progresiones aritméticas en un rango particular. Por ejemplo: [3..7] es la lista que tiene todos los números enteros entre 3 y 7, mientras que [2, 5..18] es la lista que contiene 2, 5, 8, 11, 14 y 17.

■ Por comprensión

Se definen de la siguiente manera:

[expresión | selectores, condiciones] Por ejemplo: $[(x,y) \mid x \leftarrow [0..5], y \leftarrow [0..3], x+y==4]$ es la lista que tiene los pares (1,3), (2,2), (3,1) y (4,0).

Listas infinitas

Haskell también nos permite trabajar con listas infinitas.

Algunos ejemplos:

- naturales = [1..] 1, 2, 3, 4, ...
- multiplosDe3 = [0,3..] 0,3,6,9,...
- primos = [n | n <- [2..], esPrimo n]
 (asumiendo esPrimo definida) 2, 3, 5, 7, ...
- infinitosUnos = 1 : infinitosUnos 1, 1, 1, 1, ...

¿Cómo es posible trabajar con listas infinitas sin que se cuelgue?

Evaluación lazy

```
take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs
infinitosUnos :: [Int]
infinitosUnos = 1 : infinitosUnos
nUnos :: Int -> [Int]
nUnos n = take n infinitosUnos
```

- Si ejecutamos nUnos 2... nUnos $2 \rightarrow$ take 2 infinitosUnos \rightarrow take 2 (1:infinitosUnos) \rightarrow 1 : take (2-1) infinitosUnos \rightarrow 1 : take 1 infinitosUnos \rightarrow 1 : 1:take (1-1) infinitosUnos \rightarrow 1 : take 0 infinitosUnos \rightarrow 1 : 1 : []
- ¿Qué sucedería si usáramos otra estrategia de reducción?
- Si para algún término existe una reducción finita, entonces la estrategia de reducción lazy termina.

Funciones de alto orden

Definamos las siguientes funciones

Precondición: las listas tienen algún elemento.

- maximo :: Ord a => [a] -> a
- minimo :: Ord a => [a] -> a
- listaMasCorta :: [[a]] -> [a]

Siempre hago lo mismo... ¿Se podrá generalizar? ¿Cómo?

Ejercicio

- mejorSegun :: (a -> a -> Bool) -> [a] -> a
- Reescribir maximo y listaMasCorta en base a mejorSegun

Esquemas de recursión sobre listas: filter

```
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs) =
    if p x
    then x : filter p xs
    else filter p xs
```

Ejercicios

Definir usando filter:

- 1 deLongitudN :: Int -> [[a]] -> [[a]]
- 2 soloPuntosFijosEnN :: Int -> [Int->Int] ->
 [Int->Int]

Dados un número n y una lista de funciones, deja las funciones que al aplicarlas a n dan n.

Esquemas de recursión sobre listas: map

```
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
```

Ejercicio

Definir usando map:

- I reverseAnidado :: [[Char]] -> [[Char]] que, dada una lista de strings, devuelve una lista con cada string dado vuelta y la lista completa dada vuelta. Por ejemplo: reverseAnidado [''quedate'', ''en'', ''casa''] devuelve [''asac", ''ne'', ''etadeuq'']. Ayuda: ya existe la función reverse que invierte una lista.
- paresCuadrados :: [Int] -> [Int] que, dada una lista de enteros, devuelve una lista con los cuadrados de los números pares, y los impares sin modificar.

Desplegando la macro de las listas por comprensión

Definir una expresión equivalente a las siguiente utilizando map y filter:

Ejercicio

```
listaComp f xs p = [f x | x <- xs, p x]
```

Nota: concatMap = concat . map

Esquemas de recursión estructural sobre listas

Ya conocen foldr y foldl.

Para situaciones en las cuales no hay un caso base claro (ej: no existe el neutro), tenemos las funciones: foldr1 y foldl1.

Permiten hacer recursión estructural sobre listas sin definir un caso base:

- foldr1 toma como caso base el último elemento de la lista.
- foldl1 toma como caso base el primer elemento de la lista.

Para ambas, la lista **no** debe ser vacía, y el tipo del resultado debe ser el de los elementos de la lista.

Ejercicio

Definir mejorSegún :: (a -> a -> Bool) -> [a] -> a usando foldr1 o foldl1.

Recursión sobre listas

Implementar las siguientes funciones utilizando esquemas de recursión

- elem :: Eq a => a -> [a] -> Bool que indica si un elemento pertence o no a la lista.
- 2 sumaAlt, que realiza la suma alternada de los elementos de una lista. Es decir, da como resultado: el primer elemento, menos el segundo, más el tercero, menos el cuarto, etc.
- 3 sacarPrimera:: Eq a => a -> [a] -> [a] que elimina la primera aparición de un elemento en la lista.
- ¿Qué otros esquemas de recursión conocen?

Folds sobre estructuras nuevas

```
Sea el siguiente tipo:
data AEB a = Hoja a | Bin (AEB a) a (AEB a)
Ejemplo: miÁrbol = Bin (Hoja 3) 5 (Bin (Hoja 7) 8 (Hoja 1))
```

Definir el esquema de recursión estructural (fold) para árboles estrictamente binarios, y dar su tipo.

El esquema debe permitir definir las funciones altura, ramas, #nodos, #hojas, espejo, etc.

¿Cómo hacemos?

Recordemos el tipo de foldr, el esquema de recursión estructural para listas.

```
foldr :: (a -> b -> b) -> b -> [a] -> b
¿Por qué tiene ese tipo?
(Pista: pensar en cuáles son los constructores del tipo [a]).
```

Un esquema de recursión estructural espera recibir un argumento por cada constructor (para saber qué devolver en cada caso), y además la estructura que va a recorrer.

El tipo de cada argumento va a depender de lo que reciba el constructor correspondiente. (¡Y todos van a devolver lo mismo!)

Si el constructor es recursivo, el argumento correspondiente del fold va a recibir el resultado de cada llamada recursiva.

¿Cómo hacemos? (Continúa)

Miremos bien la estructura del tipo.

Estamos ante un tipo inductivo con un constructor *no recursivo* y un constructor *recursivo*.

¿Cuál va a ser el tipo de nuestro fold?

¿Y la implementación?

Solución

Ejercicio para ustedes: definir las funciones altura, ramas, #nodos, #hojas y espejo usando foldAEB. Si quieren podemos hacer alguna en el pizarrón.

Folds sobre otras estructuras

Dado el siguiente tipo que representa polinomios:

- Definir la función
 evaluar :: Num a => a -> Polinomio a -> a
- Definir el esquema de recursión estructural foldPoli para polinomios (y dar su tipo).
- Redefinir evaluar usando foldPoli.

Una estructura más compleja

Dado el tipo de datos data RoseTree a = Rose a [RoseTree a] de árboles donde cada nodo tiene una cantidad indeterminada de hijos.

Escribir alguna de las siguientes funciones:

- hojas, que dado un RoseTree, devuelva una lista con sus hojas ordenadas de izquierda a derecha, según su aparición en el RoseTree.
- ramas, que dado un RoseTree, devuelva los caminos de su raíz a cada una de sus hojas.
- tamaño, que devuelve la cantidad de nodos de un RoseTree.
- altura, que devuelve la altura de un RoseTree (la cantidad de nodos de la rama más larga). Si el RoseTree es una hoja, se considera que su altura es 1.

Una estructura más compleja

Dado el tipo de datos data RoseTree a = Rose a [RoseTree a] de árboles donde cada nodo tiene una cantidad indeterminada de hijos.

- Escribir el esquema de recursión estructural para RoseTree.
- 2 Usando el esquema definido, escribir las siguientes funciones:
 - hojas, que dado un RoseTree, devuelva una lista con sus hojas ordenadas de izquierda a derecha, según su aparición en el RoseTree.
 - ramas, que dado un RoseTree, devuelva los caminos de su raíz a cada una de sus hojas.
 - tamaño, que devuelve la cantidad de nodos de un RoseTree.
 - altura, que devuelve la altura de un RoseTree (la cantidad de nodos de la rama más larga). Si el RoseTree es una hoja, se considera que su altura es 1.

Fin