

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

Когнитивная радиооптика (cognitive radio optics) ЭМИИА

- машинное зрение на принципах радиооптики с применением искусственных нейронных сетей. Детекция, распознавание образов, вычисление координат и скорости динамических объектов посредством радиоволн, в том числе и за радиопрозрачными преградами.

Встраиваемые нейросетевые решения:

машинное обучение в области обработки цифровых сигналов, машинного зрения **(когнитивная радиооптика/cognitive radio optics),** интеллектуальной автоматизации и Al-навигации (системы автоматического управления).

Разработка архитектуры автономной нейросетевой модели, наборов данных и методов обучения в области обработки цифровых сигналов и машинного зрении на принципах когнитивной радиооптики, с целью интеграции технологий в продукты, комплексные решения и устройства.

Объекты интеграции и сферы применения сквозных цифровых технологий ЭМИИА:

Автопилоты, роботы, автомобили, машины, устройства. Интеллектуальная автоматизация, информационная безопасность, цифровые двойники, IoT/IIoT, Industry 4.0..

10-30%

- Снижение капитальных и операционных затрат (автоматизация, облачные вычисления, информационная безопасность, цифровая инфраструктура)
 - Повышения производительности труда
- Экономия на smart устройствах (телекоммуникационная вычислительная сеть)
- Замещение датчиков и сенсоров (датчики движения, датчики присутствия, датчики приближения, датчики позиционирования, системы пассивной навигации)
 - Сокращение расхода электроэнергии

Автомобили, системы автоматического управления и безопасности движения, ADAS, умные светофоры и остановки...

Технология машинного зрения ЭМИИА как дополнение к навигаторам, видеорегистраторам, видеокамерам, лидарам, автопилотам, охранным сигнализациям и как замена парктроникам. Система способна определять движение в условиях плохой видимости: дождь, снег, туман, преграды (день/ночь).

Роботы, производственные комплексы, платформы, машины, оборудование..

Технология машинного зрения ЭМИИА как дополнение к видеокамерам, системам автоматизации и как замена датчиков движения, датчиков присутствия, датчиков приближения, датчиков позиционирования и систем пассивной навигации.

Розетки, климат системы, бытовая техника, роботы-пылесосы, свет, умные колонки, беспилотные летательные аппараты...

Технология машинного зрения ЭМИИА как дополнение к видеокамерам, автоматизации, аварийным системам и как замена датчикам движения, датчикам приближения, датчикам присутствия и охранным системам.

Варианты интеграции решений ЭМИИА:

- 1. Встраиваемый контроллер
- 2. Встраиваемое ПО (нейронная сеть)
 - 3. Встраиваемый модуль

Встраиваемые программные решения проекта смогут улучшить многие устройства, сделать их интеллектуальнее, снизить стоимость комплексных решений и повысить безопасность посредством функционирования системы в автономном режиме без использования облачных мощностей и локальных серверов для вычисления, обработки и хранения данных.

Технологии ЭМИИА позволяют сосредоточить требуемый функционал в границах одного двух устройств. Замещается программно часть устройств, датчиков, сенсоров, а также технологических решений необходимых для мониторинга, сбора данных, интеллектуальной автоматизации и машинного зрения. **20% производимых интеллектуальных устройств** (без учета уже эксплуатируемых) имеет необходимость в такого рода технологиях **(2 млрд интеллектуальных устройств)**. Ожидается ежегодный рост данного рынка (ЕАЭС, ЕС, БРИКС, АТР) не менее **8%** 2021-2030 гг..

IDC прогнозирует, что глобальные расходы на цифровые технологии будут поддерживать двузначный годовой темп роста в течение прогнозируемого периода 2017-2022 годов и превысят отметку в 1 триллион долларов к 2022 году. Ежегодно в мире будет производиться более 10 млрд интеллектуальных устройств.

ПОТЕНЦИАЛЬНЫЕ ПОТРЕБИТЕЛИ В2В

HONDA GENERAL MOTORS.. KUKA FANUC.. GOOGLE PHILIPS MI YANDEX HUAWEI DYSON BORK..

Бизнес-модель ЭМИИА даст возможность генерировать цепочку технологических ценностей, посредством создания добавленной стоимости продуктам ключевых мировых производителей реализуемых свои решения конечным пользователям, на себестоимости и цене это не отразиться. Данный формат позволяет производителям расширить функционал и извлечь дополнительную прибыль, не только с проданных продуктов, а и с тех которые уже реализованы и эксплуатируются.

Реализация бизнес-модели ЭМИИА позволяет проекту выйти на глобальный рынок, максимально быстро масштабировать свои решения с минимальными затратами, и привлечь инвестиции.

Подробнее (стоимость ПО и устройств от 500 рублей): <u>emiia.ru</u>

Кадровая политика

2015 ЭМИИА - продемонстрирован лабораторный прототип с технологией машинного зрения (радиооптика) Разработка аппаратной части (топология электронной схемы модуля) 2016 Разработка программной части (микропрограммы) Патентные исследования Разработка аппаратной части (топология электронной схемы модуля и контроллера) 2017 Разработка программной части (микропрограммы для модуля и контроллера с нейросетевыми элементами) Произведены тестовые устройства (когнитивная радиооптика/модули) Патентные и маркетинговые исследования 2018 Разработка нейронной сети для задач машинного зрения на принципах когнитивной радиооптики Произведены тестовые устройства с технологией машинного зрения (когнитивная радиооптика/контроллеры) НИОКР, исследование оптимальных программно-аппаратных инструментов ML 2019 Разработка методологии Machine Learning (ML) Разработка архитектуры цифровой векторной ML модели автономной нейронной сети Привлечение инвестиций, предпатентная подготовка (научные публикации), патенты (заявки) 2020 Тестирование бизнес-модели, формирование маркетинговой стратегии и кадровой политики Выход на рынки ЕАЭС (продукты, комплексные решения) Выход на рынки АТР и БРИКС (продукты, комплексные решения, устройства), патенты (заявки) 2021

ОПЫТНЫЙ ОБРАЗЕЦ УСТРОЙСТВА НА ПРОГРАММНО-АППАРАТНОЙ БАЗЕ ВСТРАИВАЕМОГО SMART КОНТРОЛЛЕРА ЭМИИА MONOCLE (ТЕСТОВАЯ МОДЕЛЬ В КРУГЛОМ КОРПУСЕ)

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

Transmitting antenna T_2

$$T_1 = -L_2$$
 $T_2 = L_1$

Damping Effect compensated. Zero forcing.

Фрагменты радиограмм и код модели ML движения взрослого человека в волновом фронте, цифровые векторные маркеры и значениями (id, x, y, z) без растровых аналоговых включений (HTML5/JS/JSON).

Цифровая векторная модель ML, псевдо 3D, 2-10 Kbyte, HTML5/JS/JSON, без включения аналоговой растровой графики. Нейросетевая фильтрация и управление активной фазированной антенной решеткой позволяет смещать фазы в направлении динамических объектов, получать более точные данные для обработки сигналов, самообучения и визуализации.

Data Set size (fragment 2D) of standard models ML: 100 Kbyte

Size of the Data Set (fragment 2D) of the EMIIA models ML: 2-10 Kbyte

Raster Analog Graphics ML

EMIIA Vector Digital Graphics ML

Сравнительные характеристики фрагментов растрового датасета (слева), и векторного датасета ЭМИИА (справа).

Сравнительные характеристики программно-аппаратных решений Направление: радиооптика	Цена (руб.)	Соответствие санитарным нормам использование в промышленных и бытовых помещениях	Интеграция технологии в бытовые и промышленные устройства IoT/IIoT	Нейронная сеть Online	Нейронная сеть Offline				
Встраиваемые контроллеры и модули ЭМИИА Разработчик: ЭМИИА Россия	3 000	+		+	_				
Радиолокатор Данник-5 Разработчик: ФГУП СКБ ИРЭ РАН Россия	200 000	_	_	_	_				
Портативный радар РО-900 Разработчик: ЛОГИС-ГЕОТЕХ Россия	300 000	_	_		_				
Прибор EMERALD на базе Wi-Fi роутера Разработчик: Массачусетский технологический институт МІТ США	70 000	+	+	+	_				
3MUVA: https://www.emija.ru/p/radiooptics.html PO-900: http://www.geotech.ru/safety.equipment/bezopasnost/radary									

ЭМИИА: https://www.emiia.ru/p/radiooptics.html

EMERALD: https://www.emeraldinno.com/

PO-900: http://www.geotech.ru/safety_equipment/bezopasnost/radary_- <u>obnaruzhiteli lyudej za stenami stenovizory/portativnyj radar dlya operativnogo obnaruzh</u> eniya obektov za zhelezobetonnymi i raznesennymi stenami ro900/

Данник-5: http://www.sdbireras.ru/produkcziya/blizhnyaya- radiolokacziya/radiolokator-dlya-obnaruzheniya-lyudej-za-stenami-dannik-5

Сравнительные характеристики программных решений Направление: нейронные сети для задач машинного зрения на принципах радиооптики (когнитивная радиооптика)	Цена (руб.)	Активная фазированная антенная решетка	Нейросетевая модель, (Offline самообучение)	Нейросетевые фильтры (обработка цифровых сигналов Offline)	Требуемые Вычислительные мощности	Размер нейросетевых инструментов датасеты, скрипты, библиотеки, архивы
Встраиваемые нейросетевые элементы на базе контроллеров и модулей ЭМИИА Разработчик: ЭМИИА Россия	500	_	_	_	от 1 MFLOPS до 30 GFLOPS CPU (в зависимости от задач и формата)	100 MB
Нейросетевые элементы в приборе EMERALD на базе Wi-Fi роутера Разработчик: Массачусетский технологический институт МІТ США	5 000	+		_	140-177 GFLOPS CPU/GPU	1.7 GB

ВЛАДИМИР СТАРОСТИН

СЕО/СТО - экономика/программирование C++/MATLAB/Simulink. Руководитель проекта, разработчик интеллектуальных систем. Опыт управления собственным бизнесом и разработки в сфере информационных технологий более 10 лет. Опыт разработок, управления процессом разработки. Опыт продвижения решений на рынок Германии и Швеции.

Автор **технологии** машинного на принципах когнитивной радиооптики. Автор **технологии** определения емкости объекта по цифровым SVG контурам радиоволн и обучению нейронной сети на SVG данных для задач машинного зрения (радиооптика). Реализованные проекты: Комплексная система контроля Граад (КСК Граад)*: https://cscaraad.bloaspot.com/

наталья филиппова

COO – инженер по машинному обучению Кандидат филологических наук, MATLAB/Simulink. Опыт научной деятельности более 10 лет: www.ma.cfuv.ru.

Научная школа: «Теория языковых смыслов» (в процессе адаптации к голосовым и диалоговым функциям в Machine Learning для задач ЭМИИА). Автор методологии формирования библиотек машинного обучения для голосовых функций (диалоговая система) в offline-режиме.

* Группа разработчиков проекта принимала участие в

(умный дом, умный офис, умное производственное

предприятие). На базе данного исследовательского

разрабатываемой в данный момент технологии

машинного зрения на принципах когнитивной

потенциала сформирована архитектура

создании и коммерциализации комплексной системы

контроля программно-аппаратного решения КСК ГРААД

АЛЕКСЕЙ ЛЮМАН

CTO – физика-математика/программирование: C++/MATLAB/Simulink. Руководство отделом разработок.

Опыт разработок программно-аппаратных решений и управления техническим процессом более 10 лет. Опыт сертификации. Опыт сотрудничества в сфере разработок с Huawei и Axis Communications.

Автор **топологии** активных фазированных антенных решеток для задач машинного зрения (когнитивная радиооптика).

Реализованные проекты: Комплексная система контроля Граад (КСК Граад)*: https://cscgraad.blogspot.com/

радиооптики. Интернет-ресурс проекта: https://cscaraad.bloaspot.com/

Профили участников, дополнительная информация о проекте и команде: https://www.emiia.ru/p/information-economy.html

Технико-экономические характеристики, программные инструменты, научный задел, результаты исследований

 $\rightarrow \PiO\Delta POFHEE (PDF)$

3MUUA | EMIIA

124683 г. Москва, г. Зеленоград корп. 1818

Интернет-ресурс проекта: <u>emiia.ru</u>

Блог проекта: blog.emiia.ru

Репозиторий GitHub: github.com/EMIIA

+7 (916) 368-36-89 +7 (978) 898-60-83

<u>emiia@emiia.ru</u>