Introduction to Data Science using Python

Abhijit Dasgupta

Day Two

Day 1	Day 2				
Why Python for Data Science?	Data visualization				
A Python Primer	Statistical modeling				
Pandas for data munging	Machine learning				

Topic	Notebook
Python primer	00_python_primer
Numpy and the data science stack (not covered)	01_python_tools_ds
Pandas for data munging	02_python_pandas
Data visualization	03_python_vis
Statistical modeling	04_python_stat
Machine learning	05_python_learning

Data visualization

Data visualization is a basic task in data exploration and understanding.
Data visualization provides an opportunity to enhance communication of the story within the data.
A visual representation of the data and our innate ability at pattern recognition can help reveal the complexities in a cognitively accessible way.

Florence Nightangle, Crimean War

were due to sepsis in hospital

+ Cholera outbreak in London + Spatial mapping of households with cholera showed clustering + Helped identify wells that were contaminated

Anscombe's 4 Regression data sets

In both sets of plots, all the variables have the same means and variances and the same pairwise correlations

General concepts

Begin with the consumer in mind

- You have a deep understanding of the data you're presenting
- The person seeing the visualization doesn't
- Develop simpler visualizations first that are easier to explain

Tell a story

- Make sure the graphic is clear
- Make sure the main point you want to make "pops"

A matter of perception

- Color (including awareness of color deficiencies)
- Shape
- Fonts

Our starting point

We will start our journey today from the pandas DataFrame

- Rectangular set of data
- Different columns can be of different types

Our starting point

We will start our journey today from the pandas DataFrame

- Rectangular set of data
- Different columns can be of different types

We will see different functions applied to DataFrame objects (on the right)

We will see different functions from different packages applied on DataFrame objects (on the left)

Python setup

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Python setup

```
In [4]:
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

In [36]:
    sns.set_context('notebook')
    sns.set_style('white', {'font.family':'Futura', 'text.color':'1'})
```

Python setup

```
In [37]: mtcars = pd.read_csv('data/mtcars.csv')
    mtcars.head()
```

Out[37]:

	make	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x12ea0ae20>

Out[39]: <matplotlib.axes._subplots.AxesSubplot at 0x12f753cd0>

A ggplot clone

```
In [40]: from plotnine import *

(ggplot(mtcars) +
    aes(x = 'hp', y = 'mpg')+
    geom_point())
```


Out[40]: <ggplot: (317677087)>

Some dynamic options

```
import plotly.express as px
fig = px.scatter(mtcars, x = 'hp', y = 'mpg')
fig.show()
```

```
In [42]:
    from bokeh.plotting import figure, output_file
    from bokeh.io import output_notebook, show
    output_notebook()
    p = figure()
    p.xaxis.axis_label = 'Horsepower'
    p.yaxis.axis_label = 'Miles per gallon'
    p.circle(mtcars['hp'], mtcars['mpg'], size=10);
    show(p)
```

SokehJS 2.0.1 successfully loaded.

Out[43]:

Static plots

A pathway to learning (Chris Moffit)

- 1. Learn the basic matplotlib terminology, specifically what is a Figure and an Axes .
- 2. Always use the object-oriented interface. Get in the habit of using it from the start of your analysis. (not really getting into this, but basically don't use the Matlab form that was originally used)
- 3. Start your visualizations with basic pandas plotting.
- 4. Use seaborn for the more complex statistical visualizations.
- 5. Use matplotlib to customize the pandas or seaborn visualization.

Histogram

```
In [44]: #mtcars.plot.hist(y = 'mpg');
    #mtcars['mpg'].plot(kind = 'hist')

mtcars.plot(y = 'mpg', kind = 'hist')
    plt.show()
```



```
In [45]: sns.distplot(mtcars.mpg, kde=False)
   plt.show()
```


Bar plot

```
In [46]:
    mtcars['cyl'].value_counts().plot.bar();
    plt.show()
```



```
In [47]: sns.countplot(data = mtcars, x = 'cyl');
  plt.show()
```


Scatter plot

```
In [48]: diamonds = pd.read_csv('data/diamonds.csv.gz')
In [49]: diamonds.plot(x = 'carat', y = 'price', kind = 'scatter');
    plt.show()
```


Box plot

```
In [51]:
    diamonds.boxplot(column = 'price', by = 'color');
    plt.show()
```


Barplot (categorical vs continuous)

```
In [53]:
    ordered_colors = ['D','E','F','G','H','I','J']
    sns.barplot(data = diamonds, x = 'color', y = 'price', order = ordered_colors);
    plt.show()
```


Joint plot

```
In [54]:
    sns.jointplot(data = diamonds, x = 'carat', y = 'price');
    plt.show()
```


Facets and multiples

Line plots

```
In [55]:
    ts = pd.read_csv('data/ts.csv')
    ts.dt = pd.to_datetime(ts.dt)
    sns.lineplot(data = ts, x = 'dt', y = 'value', hue = 'kind');
    plt.show()
```


Pairs plot

In [58]:

iris = pd.read_csv('data/iris.csv')
sns.pairplot(data=iris);

Statistical modeling

Descriptive statistics

- Several descriptive statistics are available through **numpy**, like **mean**, **std** (standard deviation), **median**, **value_counts** (frequency distribution)
- We take advantage of split-apply-combine to investigate and describe data

```
In [ ]:
              diamonds = pd.read csv('data/diamonds.csv.gz')
In [62]:
              (diamonds.groupby('color').price.
                   agg([np.mean, np.median, np.std]))
                        mean median
                                            std
Out[62]:
             color
                D 3169.954096
                              1838.0
                                     3356.590935
                                     3344.158685
                E 3076.752475
                              1739.0
                F 3724.886397
                              2343.5
                                     3784.992007
                G 3999.135671
                              2242.0
                                     4051.102846
                H 4486.669196
                              3460.0
                                     4215.944171
                I 5091.874954
                              3730.0 4722.387604
                J 5323.818020
                              4234.0
                                    4438.187251
In [66]:
              (diamonds.groupby('color').price.
                   mean().plot());
```


Hypothesis tests

import scipy.stats

Function	Test
ttest_1samp	One-sample t-test
ttest_ind	Two-sample t-test
ttest_rel	Paired t-test
wilcoxon	Wilcoxon signed-rank test (nonparametric paired t-test)
mannwhitneyu	Wilcoxon rank-sum test (nonparametric 2-sample t-test)
chi2_contingency	Chi-square test for independence
fisher_exact	Fisher's exact test on a 2x2 contingency table
f_oneway	One-way ANOVA
pearsonr	Testing for correlation

import statsmodels.stats

Functions	Tests			
proportions_ztest	Test for difference in proportions			
mcnemar	McNemar's test			
sign_test	Sign test			
multipletests	p-value correction for multiple tests			
fdrcorrection	p-value correction by FDR			

```
In [68]:
    brca = pd.read_csv('data/brca.csv')
    brca.columns = brca.columns.str.replace(' ', '_')
    brca.head()
```

Out[68]:

	Unnamed:_0	Complete_TCGA_ID	Gender	Age_at_Initial_Pathologic_Diagnosis	ER_Status	PR_Status	HER2_Final_Status	Tum
0	0	TCGA-A2-A0CM	FEMALE	40	Negative	Negative	Negative	
1	1	TCGA-BH-A18Q	FEMALE	56	Negative	Negative	Negative	
2	2	TCGA-A7-A0CE	FEMALE	57	Negative	Negative	Negative	
3	3	TCGA-D8-A142	FEMALE	74	Negative	Negative	Negative	
4	4	TCGA-AO-A0J6	FEMALE	61	Negative	Negative	Negative	

5 rows × 12585 columns

```
In [71]:
            import scipy as sc
            import statsmodels as sm
            test probe = 'NP 001193600'
            tst = sc.stats.ttest ind(
                brca[brca.ER Status=='Positive'][test probe],
                brca[brca.ER Status=='Negative'][test probe],
                nan policy = 'omit')
            np.round(tst.pvalue, 3)
Out[71]: 0.277
In [73]:
            tst = sc.stats.mannwhitneyu(
                brca[brca.ER Status=='Positive'][test probe],
                brca[brca.ER Status=='Negative'][test probe],
                alternative = 'two-sided')
            np.round(tst.pvalue, 3)
```

Out[73]: 0.996

Regression analysis

Setup

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf # Use the formula interface to statsmodels
```

```
In [77]:
```

```
diamonds = sm.datasets.get_rdataset('diamonds','ggplot2').data
mod1 = smf.ols('price ~ np.log(carat) + clarity + depth + cut * color', data = diamonds)
mod1 = mod1.fit() # Actually do the fit
mod1.summary()
```

Out[77]:

OLS Regression Results

Dep. Variable:	price	R-squared:	0.786
Model:	OLS	Adj. R-squared:	0.786
Method:	Least Squares	F-statistic:	4598.
Date:	Thu, 04 Jun 2020	Prob (F-statistic):	0.00
Time:	11:35:16	Log-Likelihood:	-4.8222e+05
No. Observations:	53940	AIC:	9.645e+05
Df Residuals:	53896	BIC:	9.649e+05
Df Model:	43		
			

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2745.0643	415.804	6.602	0.000	1930.085	3560.043
clarity[T.IF]	4916.7221	83.694	58.746	0.000	4752.681	5080.763
clarity[T.SI1]	2686.1493	71.397	37.623	0.000	2546.210	2826.088
clarity[T.SI2]	2060.8180	71.809	28.699	0.000	1920.072	2201.564
clarity[T.VS1]	3710.1759	72.891	50.900	0.000	3567.309	3853.043
clarity[T.VS2]	3438.3999	71.792	47.894	0.000	3297.687	3579.112
clarity[T.VVS1]	4540.1420	77.314	58.724	0.000	4388.606	4691.678
clarity[T.VVS2]	4343.0545	75.136	57.803	0.000	4195.788	4490.321
cut[T.Good]	708.5981	161.869	4.378	0.000	391.334	1025.862
cut[T.Ideal]	1198.2067	149.690	8.005	0.000	904.812	1491.601
cut[T.Premium]	1147.1417	152.896	7.503	0.000	847.464	1446.820
cut[T.Very Good]	1011.3463	152.977	6.611	0.000	711.510	1311.183
color[T.E]	-59.4094	190.227	-0.312	0.755	-432.256	313.437
color[T.F]	-86.0097	178.663	-0.481	0.630	-436.191	264.172
color[T.G]	-370.6455	178.642	-2.075	0.038	-720.784	-20.507
color[T.H]	-591.0922	179.786	-3.288	0.001	-943.474	-238.710
color[T.I]	-1030.7417	201.485	-5.116	0.000	-1425.655	-635.829
color[T.J]	-1210.6501	223.111	-5.426	0.000	-1647.949	-773.351

cut[T.Good]	:color[T.E]	-30.3553	212.126	-0.143	0.886	-446.123	385.413
cut[T.Ideal]	:color[T.E]	-211.3711	195.630	-1.080	0.280	-594.807	172.065
cut[T.Premium]	:color[T.E]	-91.3261	199.440	-0.458	0.647	-482.230	299.578
cut[T.Very Good]	:color[T.E]	-45.2968	199.656	-0.227	0.821	-436.625	346.031
cut[T.Good]	:color[T.F]	-365.4060	202.035	-1.809	0.071	-761.397	30.585
cut[T.Ideal]	:color[T.F]	-198.0428	184.498	-1.073	0.283	-559.661	163.575
cut[T.Premium]	:color[T.F]	-322.8527	188.465	-1.713	0.087	-692.246	46.540
cut[T.Very Good]	:color[T.F]	-186.0519	189.090	-0.984	0.325	-556.670	184.566
cut[T.Good]	:color[T.G]	-93.0430	202.404	-0.460	0.646	-489.757	303.671
cut[T.Ideal]	:color[T.G]	-65.8579	183.980	-0.358	0.720	-426.461	294.745
cut[T.Premium]	:color[T.G]	35.4302	187.596	0.189	0.850	-332.260	403.121
cut[T.Very Good]	:color[T.G]	-81.2595	188.786	-0.430	0.667	-451.282	288.764
cut[T.Good]	:color[T.H]	137.0235	205.696	0.666	0.505	-266.142	540.189
cut[T.Ideal]	:color[T.H]	-83.4763	186.060	-0.449	0.654	-448.155	281.202
cut[T.Premium]	:color[T.H]	-44.4372	189.378	-0.235	0.814	-415.620	326.745
cut[T.Very Good]	:color[T.H]	-43.2485	190.851	-0.227	0.821	-417.318	330.821
cut[T.Good]:color[T.I]	331.4048	228.614	1.450	0.147	-116.681	779.490
cut[T.Ideal]:color[T.I]	106.2368	208.391	0.510	0.610	-302.210	514.684
cut[T.Premium]:color[T.I]	357.1453	212.341	1.682	0.093	-59.045	773.335
cut[T.Very Good]:color[T.I]	149.1555	213.697	0.698	0.485	-269.693	568.004
cut[T.Good]	:color[T.J]	-406.8484	256.938	-1.583	0.113	-910.448	96.752
cut[T.Ideal]	:color[T.J]	-330.0602	234.063	-1.410	0.159	-788.826	128.706
cut[T.Premium]	:color[T.J]	-156.8065	236.860	-0.662	0.508	-621.055	307.442
cut[T.Very Good]	cut[T.Very Good]:color[T.J]		238.799	-1.598	0.110	-849.620	86.475
np	.log(carat)	6630.7799	15.605	424.923	0.000	6600.195	6661.365
	depth	-0.7353	5.961	-0.123	0.902	-12.418	10.948
Omnibus:	13993.592	Durbin-W	/atson:	0.134			
Prob(Omnibus):	0.000	Jarque-Bei	a (JB):	34739.732			
Skew:	1.432	Prob(JB):		0.00	•		
Kurtosis:	5.693	Cond. No.		7.08e+03			

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.08e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
mod1 = smf.glm(
    'price ~ np.log(carat) + clarity + depth + cut * color',
    data = diamonds)
```

This formula will read as

price depends on

- log(carat),
- clarity, depth, cut and color,
- and the interaction of cut and color".

```
mod1 = smf.glm(
    'price ~ np.log(carat) + clarity + depth + cut * color',
    data = diamonds)
```

color, clarity, and cut are all categorical variables.

They actually need to be expanded into dummy variables, so we will have one column for each category level, which is 1 when the diamond is of that category and 0 otherwise.

One less dummy than levels, since we keep a reference level

```
mod1 = smf.glm(
    'price ~ np.log(carat) + clarity + depth + cut * color',
    data = diamonds)
```

An intercept term is added

```
mod1 = smf.glm(
    'price ~ np.log(carat) + clarity + depth + cut * color',
    data = diamonds)
```

The variable carat is transformed using np.log, i.e. the natural logarithm available in the numpy package. Generally, any valid Python function can be used here, even ones you create.

```
mod1 = smf.glm(
    'price ~ np.log(carat) + clarity + depth + cut * color',
    data = diamonds)
```

Interactions are computed. The syntax cut * color is a shortcut for cut + color + cut:color, where the : denotes interaction.

```
mod2 = smf.ols(
    'price ~ np.log(carat) + clarity + depth +
    C(cut, Treatment("Ideal")) * color',
    data = diamonds).fit()
```

Here we specify that cut is a categorical variable, and we are using *treatment contrasts* with *Ideal* as the reference category

Logistic regression

```
In [78]:
          titanic = sm.datasets.get rdataset('Titanic', 'Stat2Data').data
          titanic.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 1313 entries, 0 to 1312
          Data columns (total 6 columns):
                        Non-Null Count Dtype
           #
               Column
           0
              Name
                       1313 non-null object
              PClass 1313 non-null object
                       756 non-null float64
              Age
           3
                       1313 non-null object
               Sex
               Survived 1313 non-null int64
               SexCode 1313 non-null int64
          dtypes: float64(1), int64(2), object(3)
          memory usage: 61.7+ KB
```

```
In [79]:
```

```
mod_logistic = smf.glm('Survived ~ Age + Sex + PClass', data=titanic,
  family = sm.families.Binomial()).fit()
mod_logistic.summary()
```

Out[79]:

Generalized Linear Model Regression Results

Dep. Variable:	Survived	No. Observations:	756
Model:	GLM	Df Residuals:	751
Model Family:	Binomial	Df Model:	4
Link Function:	logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-347.57
Date:	Thu, 04 Jun 2020	Deviance:	695.14
Time:	11:44:14	Pearson chi2:	813.
No. Iterations:	5		

Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	1.8664	0.217	8.587	0.000	1.440	2.292
Sex[T.male]	-2.6314	0.202	-13.058	0.000	-3.026	-2.236
PClass[T.1st]	1.8933	0.208	9.119	0.000	1.486	2.300
PClass[T.2nd]	0.6013	0.148	4.052	0.000	0.310	0.892
PClass[T.3rd]	-0.6282	0.132	-4.754	0.000	-0.887	-0.369
Age	-0.0392	0.008	-5.144	0.000	-0.054	-0.024

To get odds ratios

Machine Learning

scikit-learn

scikit-learn (sklearn) is the main machine learning package in Python

- 1. sklearn requires that all inputs be numeric, and in fact, numpy arrays.
- 2. sklearn requires that all categorical variables by replaced by 0/1 dummy variables
- 3. sklearn requires us to separate the predictors from the outcome. We need to have one X matrix for the predictors and one y vector for the outcome.

- 1. First of all, we know that all pandas Series and DataFrame objects can be converted to numpy arrays using the values or to_numpy functions.
- 2. Second, we can easily extract a single variable from the data set using either the usual extracton methods or the pop function.
- 3. Third, pandas gives us a way to convert all categorical values to numeric dummy variables using the get_dummies function.

```
import numpy as np
import pandas as pd
import sklearn
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns

iris = sm.datasets.get_rdataset('iris').data
iris.head()
```

Out[86]:

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

Separate out outcome and predictors

```
In [87]: y = iris['Species']
X = iris.drop('Species', axis = 1) # drops column, makes a copy
In []: # y = iris.pop('Species') # Now iris contains just the predictors
```

Transform y to be numeric

Transforming the predictors

The usual transformations that we need for heterogeneous predictors is to create *dummy variables* for the categorical predictors.

We don't directly have a formula interface in sklearn, but we can use tools from pandas and patsy to take care of this

```
In [89]: diamonds = pd.read_csv('data/diamonds.csv.gz')
    y = diamonds.pop('price').values
    X = pd.get_dummies(diamonds)

# Alternatively
# import patsy
# f = '~ np.log(carat) + clarity + depth + cut * color'
# X = patsy.dmatrix(f, data=diamonds)
In [90]: X.info()

    <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 53940 entries, 0 to 53939
```

Data columns (total 26 columns): # Non-Null Count Dtype Column carat 53940 non-null float64 0 depth 53940 non-null float64 53940 non-null float64 2 table 53940 non-null float64 3 X 53940 non-null float64 4 У 5 53940 non-null float64 Z cut Fair 53940 non-null uint8 cut Good 53940 non-null uint8 cut Ideal 8 53940 non-null uint8 9 cut Premium 53940 non-null uint8 10 cut Very Good 53940 non-null uint8 11 color D 53940 non-null uint8 12 color E 53940 non-null uint8 13 color F 53940 non-null uint8 14 color G 53940 non-null uint8

53940 non-null

uint8

15

color H

```
16
   color I
                   53940 non-null
                                  uint8
   color J
                  53940 non-null
                                  uint8
17
   clarity I1
18
                  53940 non-null
                                  uint8
   clarity IF
                  53940 non-null
19
                                  uint8
20
   clarity SI1
                  53940 non-null uint8
21
   clarity SI2
                  53940 non-null uint8
   clarity VS1
                  53940 non-null uint8
22
   clarity VS2
23
                  53940 non-null
                                  uint8
   clarity VVS1
                  53940 non-null
24
                                  uint8
   clarity VVS2
25
                  53940 non-null
                                  uint8
```

dtypes: float64(6), uint8(20)

memory usage: 3.5 MB

Supervised machine learning methods

ML method	Code to call it		
Decision Tree	sklearn.tree.DecisionTreeClassifier , sklearn.tree.DecisionTreeRegressor		
Random Forest	sklearn.ensemble.RandomForestClassifier , sklearn.ensemble.RandomForestRegressor		
Linear Regression	sklearn.linear_model.LinearRegression		
Logistic Regression	sklearn.linear_model.LogisticRegression		
Support Vector Machines	sklearn.svm.LinearSVC, sklearn.svm.LinearSVR		

The general method that the code will follow is:

```
from sklearn... import Machine
machine = Machine(*parameters*)
machine.fit(X, y)
```

Split the data into a training set and a test set (80/20)

Model build on the training set **only**, and see predictive performance on the test set

```
In [93]:
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y , test_size = 0.2, random_state=
```

Initialize 2 models

```
In [94]:
    from sklearn.linear_model import LinearRegression
    from sklearn.tree import DecisionTreeRegressor

lm = LinearRegression()
    dt = DecisionTreeRegressor()
```

Fit the models to the data

```
In [96]:
    lm.fit(X_train, y_train)
    dt.fit(X_train, y_train)
```

See how the models do on the training set (don't really do or report this)

```
In [98]:
    from sklearn.metrics import r2_score
    print('Linear regression:', r2_score(y_train, lm.predict(X_train)))
    print('Decision tree:', r2_score(y_train, dt.predict(X_train)))
```

Linear regression: 0.9202636015648039

Decision tree: 0.9999965428396391

See how the models do on the training set (don't really do or report this)

```
In [98]:
    from sklearn.metrics import r2_score
    print('Linear regression:', r2_score(y_train, lm.predict(X_train)))
    print('Decision tree:', r2_score(y_train, dt.predict(X_train)))
```

Linear regression: 0.9202636015648039 Decision tree: 0.9999965428396391

We're almost certainly overfitting!!

Visualizing a decision tree

```
In [100]:
             import graphviz
             from sklearn import tree
             dt = DecisionTreeRegressor(max depth=2) # Limit to 2 layers
             dt.fit(X train, y train)
             dot data = tree.export graphviz(dt, out file=None,
                                              feature names = X train.columns,
                                              filled=True, rounded=True)
             graph = graphviz.Source(dot data);
             graph
                                                  carat <= 0.416
Out[100]:
                                               mse = 15852573.11
                                                 samples = 43152
                                                 value = 3925.87
                                                              False
                                              True
                                       y \le -0.183
                                                               v \le 1.279
                                   mse = 1250735.975
                                                           mse = 15319732.951
                                    samples = 27947
                                                            samples = 15205
                                    value = 1635.185
                                                            value = 8136.181
              mse = 267632.084
                                    mse = 781351.904
                                                           mse = 4663622.549
                                                                                  mse = 11615083.581
               samples = 19909
                                     samples = 8038
                                                            samples = 10283
                                                                                     samples = 4922
               value = 1054.442
                                                            value = 6130.315
                                     value = 3073.602
                                                                                   value = 12326.819
```

Cross-validaton


```
In [102]:
    from sklearn.model_selection import cross_val_score
    cv_score = cross_val_score(dt, X_train, y_train, cv=5, scoring='r2')
    print("CV average score =", np.round(np.mean(cv_score), 3))
```

CV average score = 0.829

Tuning models using cross-validation

0.9645325340549133

How does this model do on the test set?

```
In [104]: 
   p = clf.best_estimator_.predict(X_test)
   r2_score(y_test, p)
```

Out[104]: 0.9657241131204777

Unsupervised learning

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propaga- tion	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral cluster- ing	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Ward hierarchical clustering	number of clusters or distance threshold	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters or distance threshold, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between near- est points
OPTICS	minimum cluster membership	Very large n_samples, large n_clusters	Non-flat geometry, uneven cluster sizes, variable cluster density	Distances between points
Gaussian mix- tures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance be- tween points

K-Means clustering

```
In [105]:
    iris = sm.datasets.get_rdataset('iris').data
    sns.relplot(data=iris, x = 'Sepal.Length',y = 'Sepal.Width', hue = 'Species');
```


Agglomerative (hierarchical) clustering

```
In [110]: hc = AgglomerativeClustering(distance_threshold=0, n_clusters=None, linkage='complete')
hc.fit(iris[['Sepal.Length','Sepal.Width']])

plot_dendrogram(hc, truncate_mode='level', p=3)
plt.xlabel("Number of points in node (or index of point if no parenthesis).");
```


