# **Storage**

## **Storage Types - Block Storage and File Storage :**



- \* What is the type of storage of your hard disk?
- Block Storage You've created a file share to share a set of files with your colleagues in a enterprise. What type of storage are you using?
- File Storage

**Block Storage** 



- \* Use case: Harddisks attached to your computers.
- Typically, ONE Block Storage de vice can be connected to ONE virtual server.
- (EXCEPTIONS) You can attach read only block devices with multiple virtual servers and certain cloud providers are exploring multi-writer disks as well!
- HOWEVER, you can connect multiple different block storage devices to one virtual server
- Used as:
- Direct attached storage (DAS) Similar to a hard disk
- Storage Area Network (SAN) High speed network connecting a pool of storage devices.
- Used by Data bases Oracle and Microsoft SQL Server

## File Storage



- Media workflows need huge shared storage for supporting processes like video editing.
- Enterprise users need a quick way to share files in a secure and organized way.
- These file shares are shared by several virtual servers

**GCP - Block Storage and File Storage** 



- Block Storage:
- Persistent Disks: Network Block Storage
- Zonal: Data replicated in one zone
- Regional: Data replicated in multiple zone
- Local SSDs: Local Block Storage
- File Storage: High performance file storage

#### **GCP - Block Storage**

- Two popular types of block storage can be attached to VM instances:
- Local SSDs
- Persistent Disks
- Local SSDs are physically attached to the host of the VM instance.
- Temporary data
- Lifecycle tied to VM instance
- **Persistent Disks** are network storage
- More durable
- Lifecycle NOT tied to VM instance

#### **Local SSDs**

- Physically attached to the host of VM instance:
- Provide very high (IOPS) and very low latency
- (BUT) Ephemeral storage Temporary data (Data persists only until instance is running)
- **Enable live migration** for data to survive maintenance events .
- Data automatically encrypted
- HOWEVER, you CANNOT configure encryption keys!
- Lifecycle tied to VM instance
- ONLY some machine types support Local SSDs
- Supports SCSI and NVMe interfaces
- Remember:
- Choose NVMe-enabled and multi-queue SCSI images for best performance.
- Larger Local SSDs (more storage), More vCPUs (attached to VM) => Even Better Performance

# **Local SSDs - Advantages and Disadvantages**

### Advantages

- Very Fast I/O (~ 10-100X compared to PDs)
- Higher throughput and lower latency
- Ideal for use cases needing high IOPs while storing temporary information
- Examples: Caches, temporary data, scratch files etc

## • <u>Disadvantages</u>

- Ephemeral storage
- Lower durability, lower availability, lower flexibility compared to PDs
- You CANNOT detach and attach it to another VM instance

## **Persistent Disks (PD)**



- Network block storage attached to your VM instance
- Provisioned capacity
- Very Flexible: Increase size when you need it when attached to VM instance
- Performance scales with size
- For higher performance, resize or add more PDs
- Independent lifecycle from VM instance
- Attach/Detach from one VM instance to another
- Options: Regional and Zonal
- Zonal PDs replicated in single zone. Regional PDs replicated in 2 zones in same Region.
- Typically Regional PDs are 2X the cost of Zonal PDs
- Use case: Run your custom database

## **Persistent Disks vs Local SSDs**

| Feature                   | Persistent Disks          | Local SSDs            |  |
|---------------------------|---------------------------|-----------------------|--|
| Attachment to VM instance | As a network drive        | Physically attached   |  |
| Lifecycle                 | Separate from VM instance | Tied with VM instance |  |
| I/O Speed                 | Lower (network latency)   | 10-100X of PDs        |  |
| Snapshots                 | Supported                 | Not Supported         |  |
| Use case                  | Permanent storage         | Ephemeral storage     |  |

#### Persistent Disks - Standard vs Balanced vs SSD

| Feature                                           | Standard                     | Balanced                             | SSD                  |
|---------------------------------------------------|------------------------------|--------------------------------------|----------------------|
| Underlying Storage                                | Hard Disk Drive              | Solid State Drive                    | Solid State<br>Drive |
| Referred to as                                    | pd-standard                  | pd-balanced                          | pd-ssd               |
| Performance - Sequential IOPS (Big<br>Data/Batch) | Good                         | Good                                 | Very Good            |
| Performance - Random IOPS<br>(Transactional Apps) | Bad                          | Good                                 | Very Good            |
| Cost                                              | Cheapest                     | In Between                           | Expensive            |
| Use cases                                         | Big Data (cost<br>efficient) | Balance between cost and performance | High<br>Performance  |
|                                                   |                              |                                      |                      |

Activata Minda

### <u>Persistent Disks – Snapshots</u>

- Take point-in-time snapshots of your Persistent Disks
- You can also schedule snapshots (configure a schedule):
- You can also auto-delete snapshots after X days
- Snapshots can be Multi-regional and Regional
- You can share snapshots across projects
- You can create new disks and instances from snapshots
- Snapshots are incremental:
- Deleting a snapshot only deletes data which is NOT needed by other snapshots.
- Keep similar data together on a Persistent Disk:

- Separate your operating system, volatile data and permanent data
- Attach multiple disks if needed This helps to better organize your snapshots and images

### <u>Persistent Disks - Snapshots - Recommendations</u>

- Avoid taking snapshots more often than once an hour.
- Disk volume is available for use but Snapshots reduce performance
- (RECOMMENDED) Schedule snapshots during off-peak hours
- Creating snapshots from disk is faster than creating from images:
- But creating disks from image is faster than creating from snapshots
- (RECOMMENDED) If you are repeatedly creating disks from a snapshot:
- Create an image from snapshot and use the image to create disks
- Snapshots are incremental:
- BUT you don't lose data by deleting older snapshots
- Deleting a snapshot only deletes data which is NOT needed by other snapshots

 (RECOMMENDED) Do not hesitate to delete unnecessary snapshots

## **Playing with Machine Images**

- (Remember) Machine Image is different from Image
- Multiple disks can be attached with a VM:
- One Boot Disk (Your OS runs from Boot Disk)
- Multiple Data Disks
- An image is created from the boot Persistent Disk
- HOWEVER, a Machine Image is created from a VM instance:
- Machine Image contains everything you need to create a VM instance:
- Configuration
- Metadata
- Permissions
- Data from one or more disks
- Recommended for disk backups, instance cloning and replication.

**Let's Compare** 

| Scenarios                        | Machine<br>image | Persistent disk snapshot | Custom<br>image | Instance<br>template |
|----------------------------------|------------------|--------------------------|-----------------|----------------------|
| Single disk backup               | Yes              | Yes                      | Yes             | No                   |
| Multiple disk backup             | Yes              | No                       | No              | No                   |
| Differential backup              | Yes              | Yes                      | No              | No                   |
| Instance cloning and replication | Yes              | No                       | Yes             | Yes                  |
| VM instance configuration        | Yes              | No                       | No              | Yes                  |

https://cloud.google.com/compute/docs/machine-images

# **Playing with Disks - Command Line**

- gcloud compute disks list/create/delete/resize/snapshot
- gcloud compute disks create my-disk-1 --zone=us-east1-a
- What should be the size and type?
- --size=SIZE (1GB or 2TB)
- --type=TYPE (default pd-standard) (gcloud compute disktypes list)
- What should be on the disk?
- --image --image-family --source-disk --source-snapshot
- How should data on disk be encrypted?
- --kms-key --kms-project

- gcloud compute disks resize example-disk-1 --size=6TB
- Only increasing disk size is supported
- gcloud compute disks snapshot test --zone=us-central1-a -snapshotnames=snapshot-test
- You can also play with the snapshots which are created:
  - gcloud compute snapshots list/describe/delete

### **Playing with Images - Command Line**

- gcloud compute images
- Actions:create/delete/deprecate/describe/export/import/list/update
- Creating Images
- gcloud compute images create my-image
- From a Disk --source-disk=my-disk --source-disk-zone=useast1-a
- From a Snapshot --source-snapshot=source-snapshot
- From another image --source-image=source-image -source-image-project=source-image-project
- From latest non deprecated image from a family -source-image-family=source-image-family --sourceimageproject=source-image-project
- Deprecate Image

- gcloud compute images deprecate IMAGE -state=DEPRECATED
- Exports virtual disk images
- gcloud compute images export --image=my-image -destination-uri=gs://my-bucket/my-image.vmdk - -exportformat=vmdk --project=my-project
- Other Examples:
- gcloud compute images delete my-image1 my-image2
- gcloud compute images list --format="value(NAME)"

#### **Playing with Machine Images - Command Line**

- (Remember) gcloud commands for machine images are IN BETA
- Commands:
- Create Machine Image:
- gcloud beta compute machine-images create
  MACHINE\_IMAGE\_NAME --source-instance
  SOURCE\_INSTANCE\_NAME
- Create an Instance from the Machine Image:
- gcloud beta compute instances create VM\_NAME --zone
  ZONE --source-machine-image
  SOURCE MACHINE IMAGE NAME

### **Storage - Scenarios - Persistent Disks**

| Scenario                                                                      | Solution                                                        |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| You want to improve performance of Persistent Disks (PD)                      | Increase size of PD or Add more PDs. Increase vCPUs in your VM. |
| You want to increase durability of Persistent Disks (PD)                      | Go for Regional PDs (2X cost but replicated in 2 zones)         |
| You want to take hourly backup of Persistent Disks (PD) for disaster recovery | Schedule hourly snapshots!                                      |
| You want to delete old snapshots created by scheduled snapshots               | Configure it as part of your snapshot scheduling!               |

## **Cloud Filestore**



## • Shared cloud file storage:

- Supports NFSv3 protocol
- Provisioned Capacity
- Suitable for high performance workloads:
- Up to 320 TB with throughput of 16 GB/s and 480K IOPS
- Supports HDD (general purpose) and SSD (performancecritical workloads)
- Use cases: file share, media workflows and content management

# **Review - Global, Regional and Zonal Resources**

- Global
- Images
- Snapshots
- Instance templates (Unless you use zonal resources in your templates)
- Regional
- Regional managed instance groups
- Regional persistent disks
- Zonal
- Zonal managed instance groups
- Instances
- Persistent disks
- You can attach a disk only to instances in the same zone as the disk

## **Storage – Scenarios**

| Solution                  |
|---------------------------|
| Local SSDs                |
| Filestore                 |
| Create a Machine<br>Image |
| Create a Custom<br>Image  |
|                           |