Jack Oliver (1389498)

Primary Supervisor
Associate Professor Nic Geard

Co-Supervisor
Dr Cameron Zachreson

Preventive behaviour: a shared example

Source: SCIG1

 Think of a time when you wore—or didn't wear—a face mask (when masks weren't mandated).

 $^{^{1} \}verb|https://southerncrossgroup.com.au/product/disposable-medical-face-mask/|$

Source: SCIG1

- Think of a time when you wore—or didn't wear-a face mask (when masks weren't mandated).
- What motivated you to protect (or not protect) yourself?

¹ https://southerncrossgroup.com.au/product/disposable-medical-face-mask/

Source: SCIG¹

- Think of a time when you wore—or didn't wear—a face mask (when masks weren't mandated).
- What motivated you to protect (or not protect) yourself?
- Was it because...
 - you felt like you might get infected?

¹ https://southerncrossgroup.com.au/product/disposable-medical-face-mask/

Source: SCIG1

- Think of a time when you wore—or didn't wear-a face mask (when masks weren't mandated).
- What motivated you to protect (or not protect) yourself?
- Was it because
 - you felt like you might get infected?
 - you thought you might infect others?

 $^{^{1} {\}tt https://southerncrossgroup.com.au/product/disposable-medical-face-mask/}$

Source: SCIG1

- Think of a time when you wore—or didn't wear-a face mask (when masks weren't mandated).
- What motivated you to protect (or not protect) yourself?
- Was it because
 - you felt like you might get infected?
 - you thought you might infect others?
 - you were used to wearing one?

Source: SCIG¹

- Think of a time when you wore—or didn't wear—a face mask (when masks weren't mandated).
- What motivated you to protect (or not protect) yourself?
- Was it because...
 - you felt like you might get infected?
 - you thought you might infect others?
 - you were used to wearing one?
 - you just wanted to fit in?

Source: SCIG¹

- Think of a time when you wore—or didn't wear—a face mask (when masks weren't mandated).
- What motivated you to protect (or not protect) yourself?
- Was it because...
 - you felt like you might get infected?
 - you thought you might infect others?
 - you were used to wearing one?
 - you just wanted to fit in?

Preventive behaviours (the use of preventive measures) differ among individuals because of unique thought processes and varying motivating factors for protection.

¹ https://southerncrossgroup.com.au/product/disposable-medical-face-mask/

Vector-borne diseases

Source: James Gathany/CDC1

- E.g. malaria, dengue, chikungunya, leishmaniasis.
- ullet \geq 700,000 deaths annually.
- Account for more than 17% of all infectious diseases [1].

- Community-based interventions
 - · Chemical: insecticides, coils
 - Non-chemical: long-sleeved clothing, staying indoors

There is a need to better understand the dynamics between vector-borne diseases and preventive behaviours to design effective community-based interventions.

Agent-based modelling

00000

Agent-based models (ABMs) define a population of decentralised, autonomous agents that interact with one another to reproduce or "grow" emergent phenomena.

An agent-based version of the SIR (Susceptible, Infected, Recovered) model:

Psychological behavioural theories

OOO●O

Modelling approaches

Behavioural theories from psychology aim to model how people behave. E.g. the Health Belief Model [2]:

Multiple behavioural theories exist, but few research efforts have investigated differences in system dynamics for disease spread and preventive measures when agents act according to various behavioural theories.

Modelling approaches

This project aims to:

- Use agent-based modelling to quantify the effects of different behavioural theories on the adoption of preventive measures.
- Investigate effective strategies for community-based interventions.

Via the following research questions:

- How does the choice of behavioural theory influence the dynamics of agent-based models for vector-borne disease spread and preventive behaviours?
- In such models, how do targeted community-based interventions influence preventive behaviours?

Proposed methods

Methods

Phase 1: Behavioural theory comparison

- Extend an existing model [3] to incorporate preventive measures.
- ② Computationally encode three behavioural theories.
- Ompare the impacts on preventive behaviours and disease spread across the three behavioural theories.

Phase 2: Simulation of community-based interventions

- Use the model from the first phase to simulate community-based interventions.
- Analyse the characteristics of effective interventions.

The baseline model

Methods

Adapted from Manore, Hickmann, Hyman, Foppa, Davis, Wesson, and Mores [3]:

- (a) Mosquito model.
- (b) Agent-based model.

Reproducing the baseline model

Work completed

Figure from original paper [3].

Reproduced figure from simulations.

Research timeline

To achieve the research objectives within the required timeframe, I propose the following timeline:

TASK TITLE	SEMESTER 1 WINTER BREAK								SEMESTER 2																	
	May			Jun				Jul					Aug				Sep				Oct					
	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	Х2	30	31	32	33	34
Thesis																										
Draft initial table of contents/structure, receive feedback																										
Problem, question, and literature																										
Organize relevant literature, create early draft of literature review																										
Draft of first chapter for context/motivation/purpose, etc.																										
Implementation and methods																										
Identify key technology and prelim. implementation details																										
Computationally encode behavioural frameworks																										
Reproduce/implement baseline VBD model																										
Extend model to build first version																										
Validation and preliminary experiments																										
Experiments and discussion (Phase 1 & 2)																										
Conduct final experiments																										
Analysis of resulting data from final experiments																										
Draft results chapter for analysis, results																										
Content and writing																										
Write full draft																										
Solicit feedback from supervisors																										
Incorporate feedback, re-draft & proofread																										
Submit thesis																										

Expected contributions and implications

This project will contribute a methodological contribution to the modelling community and an investigation into an understudied area of research in the field of vector-borne diseases:

Phase 1 will contribute:

Contributions

- an extension of an existing agent-based model with computational implementations of three psychological behavioural theories;
- insights into how these decision-making processes affect the dynamics between disease spread and preventive behaviours.

Phase 2 will contribute:

 an analysis of intervention characteristics that effectively promote preventive behaviours and curb disease spread.

Questions

Thank you—any questions?

Bibliography

- [1] W. H. O. (WHO), "Vector-borne diseases," Tech. Rep., Mar. 2020.
- [2] V. L. Champion and C. S. Skinner, "The Health Belief Model," in Health behavior: Theory, research, and practice, 5th ed., 2015, pp. 75-94.
- [3] C. A. Manore, K. S. Hickmann, J. M. Hyman, I. M. Foppa, J. K. Davis, D. M. Wesson, and C. N. Mores, "A network-patch methodology for adapting agent-based models for directly transmitted disease to mosquito-borne disease," en, Journal of Biological Dynamics, vol. 9, no. 1, pp. 52-72, Jan. 2015, ISSN: 1751-3758, 1751-3766. DOI: 10.1080/17513758.2015.1005698.