Introduction to Machine Learning

Fall 2019

University of Science and Technology of China

Lecturer: Jie Wang Homework 1
Posted: Seq. 20, 2019
Name: San Zhang ID: PBXXXXXXXX

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: Linear regression 20pts

Given a data set $\{(x_i, y_i)\}_{i=1}^n$, where $x_i, y_i \in \mathbb{R}$.

1. If we want to fit the data by a linear model

$$y = w_0 + w_1 x, \tag{1}$$

please find \hat{w}_0 and \hat{w}_1 by the least squares approach (you need to find expressions of \hat{w}_0 and \hat{w}_1 by $\{(x_i, y_i)\}_{i=1}^n$, respectively).

2. **Programming Exercise** We provide you a data set $\{(x_i, y_i)\}_{i=1}^{30}$. Consider the model in (1) and the one as follows:

$$y = w_0 + w_1 x + w_2 x^2. (2)$$

Which model do you think fits better the data? Please detail your approach first and then implement it by your favorite programming language. The required output includes

- (a) your detailed approach step by step;
- (b) your code with detailed comments according to your planned approach;
- (c) a plot showing the data and the fitting models;
- (d) the model you finally choose $[\hat{w}_0 \text{ and } \hat{w}_1 \text{ if you choose the model in (1), or } \hat{w}_0, \hat{w}_1, \text{ and } \hat{w}_2 \text{ if you choose the model in (1)}].$

Solution:

1. The average fitting error of the linear model over the whole data set is

$$L(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_1 x_i + w_0))^2.$$

As L is a quadratic function, it can attain its minimum. Let

$$\begin{cases} \frac{\partial L}{\partial w_0} = 0, \\ \frac{\partial L}{\partial w_1} = 0, \end{cases}$$

which is equivalent to

$$\begin{cases} \frac{2}{n} \sum_{i=1}^{n} ((w_1 x_i + w_0) - y_i) &= 0, \\ \frac{2}{n} \sum_{i=1}^{n} x_i ((w_1 x_i + w_0) - y_i) &= 0. \end{cases}$$
(3)

Solve the above equation. We know that

$$w_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}},$$

$$w_{0} = \frac{\sum_{i=1}^{n} y_{i} - w_{1} \sum_{i=1}^{n} x_{i}}{n}.$$

2. The true model is $y = 0.5x + 1 + \epsilon$, $\epsilon \sim N(0, 0.1)$. We can see that the model in (2) has lower fitting error, which indicates the existence of overfitting.

Exercise 2: Rank of matrices 20pts

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

- 1. Please show that
 - (a) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top});$
 - (b) $rank(AB) \le rank(A)$;
 - (c) $rank(AB) \le rank(B)$;
 - (d) $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}).$
- 2. The *column space* of \mathbf{A} is defined by

$$C(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n \}.$$

The $null\ space$ of **A** is defined by

$$\mathcal{N}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0 \}.$$

Notice that, the rank of A is the dimension of the column space of A.

Please show that:

- (a) $\operatorname{rank}(\mathbf{A}) + \dim(\mathcal{N}(\mathbf{A})) = n;$
- (b) let $\mathbf{y} \in \mathbb{R}^m$, show that $\mathbf{y} = 0$ if and only if $\mathbf{a}_i^{\top} \mathbf{y} = 0$ for i = 1, ..., m, where $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m\}$ is a basis of \mathbb{R}^m .

Solution:

- 1. Let $C(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y} = \mathbf{A}\mathbf{x}, \mathbf{x} \in \mathbb{R}^n \}$ denote the *column space* of \mathbf{A} . Then, $\mathbf{rank}(\mathbf{A}) = \dim(C(\mathbf{A}))$.
 - (a) Let $\operatorname{\mathbf{rank}}(\mathbf{A}) = r$. Therefore, the dimension of the column space of \mathbf{A} is r. Let $\mathbf{A}_r = (\mathbf{a}_1, \dots, \mathbf{a}_r)$. WLOG, suppose that $\{\mathbf{a}_1, \dots, \mathbf{a}_r\}$ are linearly independent. Consider the linear combination of $\{\mathbf{A}^{\top}\mathbf{a}_1, \dots, \mathbf{A}^{\top}\mathbf{a}_r\}$:

$$\lambda_1 \mathbf{A}^{\mathsf{T}} \mathbf{a}_1 + \dots + \lambda_r \mathbf{A}^{\mathsf{T}} \mathbf{a}_r = 0, \tag{4}$$

where $\lambda_1, \dots, \lambda_r \in \mathbb{R}$. Let $\lambda = (\lambda_1, \dots, \lambda_r)^{\top}$, and then the equation (4) can be reformulated as

$$\mathbf{A}^{\top}\mathbf{A}_{r}\boldsymbol{\lambda}=0,$$

which implies that

$$\mathbf{A}_r^{\top} \mathbf{A}_r \boldsymbol{\lambda} = 0$$

$$\Rightarrow \boldsymbol{\lambda}^{\top} \mathbf{A}_r^{\top} \mathbf{A}_r \boldsymbol{\lambda} = 0$$

$$\Rightarrow \mathbf{A}_r \boldsymbol{\lambda} = 0$$

$$\Rightarrow \boldsymbol{\lambda} = 0. \quad \text{(linearly independent)}$$

Therefore, $\{\mathbf{A}^{\top}\mathbf{a}_1, \dots, \mathbf{A}^{\top}\mathbf{a}_r\}$ are linearly independent. As $\mathbf{A}^{\top}\mathbf{a}_1, \dots, \mathbf{A}^{\top}\mathbf{a}_r \in \mathcal{C}(\mathbf{A}^{\top})$, we know that

$$\operatorname{rank}(\mathbf{A}^{\top}) = \dim(\mathcal{C}(\mathbf{A}^{\top}) \ge r = \operatorname{rank}(\mathbf{A}).$$

In the same manner, we can show that

$$rank(\mathbf{A}) \geq rank(\mathbf{A}^{\top}).$$

Therefore,

$$rank(\mathbf{A}) = rank(\mathbf{A}^{\top}).$$

- (b) Let $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_p)$, where \mathbf{b}_i denotes the *i*th column of \mathbf{B} . Since $\mathbf{Ab_i} \in \mathcal{C}(\mathbf{A})$, we have $\mathcal{C}(\mathbf{AB}) \subset \mathcal{C}(\mathbf{A})$. And thus $\mathbf{rank}(\mathbf{AB}) \leq \mathbf{rank}(\mathbf{A})$.
- (c)

$$\mathbf{rank}(\mathbf{AB}) = \mathbf{rank}(\mathbf{B}^{\top}\mathbf{A}^{\top}) \leq \mathbf{rank}(\mathbf{B}^{\top}) = \mathbf{rank}(\mathbf{B}).$$

(d) Suppose that $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots)$, where the *i*th entry is one and the other entries are zero. Similar to the Exercise (a), we assume that \mathbf{a}_j is the *i*th column of \mathbf{A} and $\{\mathbf{a}_1, \dots, \mathbf{a}_r\}$ are linearly independent. Then, we have

$$\mathbf{A}^{\top}\mathbf{a}_{j} = \mathbf{A}^{\top}\mathbf{A}\mathbf{e}_{i},$$

which implies that

$$\mathbf{A}^{\top}\mathbf{a}_{j}\in\mathcal{C}(\mathbf{A}^{\top}\mathbf{A}).$$

From the Exercise (a), we know that $\{\mathbf{A}^{\top}\mathbf{a}_1, \dots, \mathbf{A}^{\top}\mathbf{a}_r\}$ are linearly independent. Thus, we have

$$\mathbf{rank}(\mathbf{A}^{\top}\mathbf{A}) \geq \mathbf{rank}(\mathbf{A}).$$

By the result of the Exercise (c), we know that $\operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}) \leq \operatorname{rank}(\mathbf{A})$. Therefore, $\operatorname{rank}(\mathbf{A}^{\top}\mathbf{A}) = \operatorname{rank}(\mathbf{A})$.

2. (a) Let $\operatorname{rank}(\mathbf{A}) = r$ and \mathbf{a}_i be the *i*th column of \mathbf{A} . WLOG, suppose that $\{\mathbf{a}_1, \ldots, \mathbf{a}_r\}$ are linearly independent, $\mathbf{A}_r = (\mathbf{a}_1, \ldots, \mathbf{a}_r)$ and $\mathbf{A} = (\mathbf{A}_r \quad \mathbf{a}_{r+1} \ldots \mathbf{a}_n)$. As $\{\mathbf{a}_1, \ldots, \mathbf{a}_r\}$ is a basis of $\mathcal{C}(\mathbf{A})$, we know that $\mathbf{a}_i, i = r+1, \ldots, n$ can be written as the linear combination of $\{\mathbf{a}_1, \ldots, \mathbf{a}_r\}$. That is, there exists $\mathbf{M} \in \mathbb{R}^{r \times (n-r)}$, such that $(\mathbf{a}_{r+1} \ldots \mathbf{a}_n) = \mathbf{A}_r \mathbf{M}$. Thus,

$$\mathbf{A} = (\mathbf{A}_r \quad \mathbf{A}_r \mathbf{M}) = \mathbf{A}_r (\mathbf{I} \quad \mathbf{M}).$$

Next, we show that $\dim(\mathcal{N}(\mathbf{A})) = n - r$. Let $\mathbf{x} = (x_1, \dots, x_n)^\top$, $\mathbf{x}_r = (x_1, \dots, x_r)^\top$ and $\mathbf{x}_{n-r} = (x_{r+1}, \dots, x_n)^\top$. Considering the linear equation $\mathbf{A}\mathbf{x} = 0$, we have

$$\begin{aligned} \mathbf{A}\mathbf{x} &= 0 \\ \mathbf{A}_r(\mathbf{I}_r \quad \mathbf{M})\mathbf{x} &= 0 \\ (\mathbf{I}_r \quad \mathbf{M}) \begin{pmatrix} \mathbf{x}_r \\ \mathbf{x}_{n-r} \end{pmatrix} &= 0 \quad (\mathbf{rank}(\mathbf{A}_r) = r) \\ \mathbf{x}_r &= -\mathbf{M}\mathbf{x}_{n-r} \end{aligned}$$

Thus the solution of $\mathbf{A}\mathbf{x} = 0$ is

$$\mathbf{x} = \begin{pmatrix} -\mathbf{M} \\ \mathbf{I}_{n-r} \end{pmatrix} \mathbf{x}_{n-r}.$$

Therefore, the dimension of the solution space of $\mathbf{A}\mathbf{x} = 0$ is n - r, which implies that $\dim(\mathcal{N}(\mathbf{A})) = n - r$.

(b) \Rightarrow Trivial. \Leftarrow Let $\mathbf{C} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$. Since $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m\}$ is a basis of \mathbb{R}^m , we have $\mathbf{rank}(\mathbf{C}^\top) = m$. Thus, $\mathbf{C}^\top \mathbf{y} = 0 \Rightarrow \mathbf{y} = 0$.

Exercise 3: Projection 30pts

Let $C \subset \mathbb{R}^n$ be a closed convex set and $\mathbf{x} \in \mathbb{R}^n$. Define

$$\mathbf{P}_C(\mathbf{x}) = \arg\min_{\mathbf{y} \in C} \|\mathbf{y} - \mathbf{x}\|_2.$$

We call $\mathbf{P}_C(\mathbf{x})$ the projection of the point \mathbf{x} onto the convex set C.

- 1. Show that any finite dimensional space is convex.
- 2. Let $\mathbf{v}_i \in \mathbb{R}^n$, $i = 1, \dots, d$ with $d \leq n$, which are linearly independent.
 - (a) For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P}_{\mathbf{v}_1}(\mathbf{w})$, which is the projection of \mathbf{w} onto the subspace spanned by \mathbf{v}_1 .
 - (b) Please show $\mathbf{P}_{\mathbf{v}_1}(\cdot)$ is a linear map, i.e.,

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}),$$

where $\alpha, \beta \in \mathbb{R}$ and $\mathbf{u}, \mathbf{w} \in \mathbb{R}^n$.

(c) Please find the projection matrix corresponding to the linear map $\mathbf{P}_{\mathbf{v}_1}(\cdot)$, i.e., find the matrix $\mathbf{H}_1 \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{P}_{\mathbf{v}_1}(\mathbf{w}) = \mathbf{H}_1 \mathbf{w}.$$

- (d) Let $V = (v_1, ..., v_d)$.
 - i. For any $\mathbf{w} \in \mathbb{R}^n$, please find $\mathbf{P}_{\mathbf{V}}(\mathbf{w})$, which is the projection of \mathbf{w} onto $\mathcal{C}(\mathbf{V})$, and the corresponding projection matrix \mathbf{H} .
 - ii. Please find **H** if we further assume that $\mathbf{v}_i^{\top} \mathbf{v}_j = 0, \, \forall \, i \neq j.$
- 3. A matrix **P** is called a projection matrix if **Px** is the projection of **x** onto $C(\mathbf{P})$ for any **x**.
 - (a) Let λ be the eigenvalue of **P**. Show that λ is either 1 or 0. (*Hint: you may want to figure out what are the eigenspaces corresponding to* $\lambda = 1$ *and* $\lambda = 0$, respectively.)
 - (b) Show that **P** is a projection matrix if and only if $\mathbf{P}^2 = \mathbf{P}$.

Solution:

1. Suppose that M is a n dimensional space, and $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is a basis of M. Then for all $\mathbf{x}, \mathbf{y} \in M$, there exists α_i and β_i such that $\mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{x}_i$ and $\mathbf{y} = \sum_{i=1}^n \beta_i \mathbf{x}_i$. For all $\lambda \in (0, 1)$, we have

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} = \lambda \sum_{i=1}^{n} \alpha_i \mathbf{x}_i + (1 - \lambda) \sum_{i=1}^{n} \beta_i \mathbf{x}_i$$
$$= \sum_{i=1}^{n} (\lambda \alpha_i + (1 - \lambda) \beta_i) \mathbf{x}_i \in M.$$

Therefore, M is convex.

2. (a) Let $\operatorname{span}\{\mathbf{v}_1\}$ denote the subspace spanned by \mathbf{v}_1 . For every $\mathbf{y} \in \operatorname{span}\{\mathbf{v}_1\}$, there exists $\lambda \in \mathbb{R}$ such that $\mathbf{y} = \lambda \mathbf{v}_1$. Then we have

$$\begin{split} \min_{\mathbf{y} \in C} \|\mathbf{y} - \mathbf{x}\|_2^2 &= \min_{\lambda \in \mathbb{R}} \|\lambda \mathbf{v}_1 - \mathbf{x}\|_2^2 \\ &= \min_{\lambda \in \mathbb{R}} (\lambda^2 \|\mathbf{v}_1\|_2^2 - 2\lambda \langle \mathbf{v}_1, \mathbf{x} \rangle + \|\mathbf{x}\|_2^2) \\ &= \min_{\lambda \in \mathbb{R}} \left(\|\mathbf{v}_1\|_2^2 \left(\lambda - \frac{\langle \mathbf{v}_1, \mathbf{x} \rangle}{\|\mathbf{v}_1\|_2^2} \right)^2 - \frac{|\langle \mathbf{v}_1, \mathbf{x} \rangle|^2}{\|\mathbf{v}_1\|_2^2} + \|\mathbf{x}\|_2^2 \right). \end{split}$$

Notice that $\|\mathbf{v}_1\|_2^2 > 0$. We have

$$\begin{aligned} \mathbf{P}_{\mathbf{v}_1}(\mathbf{x}) &= \arg\min_{\mathbf{y} = \lambda \mathbf{v}_1} \|\mathbf{y} - \mathbf{x}\|_2 \\ &= \left(\arg\min_{\lambda} \|\lambda \mathbf{v}_1 - \mathbf{x}\|_2\right) \mathbf{v}_1 \\ &= \frac{\langle \mathbf{v}_1, \mathbf{x} \rangle}{\|\mathbf{v}_1\|_2^2} \mathbf{v}_1. \end{aligned}$$

(b) Let $\alpha, \beta \in \mathbb{R}$ and $\mathbf{u}, \mathbf{w} \in \mathbb{R}^n$. We have

$$\mathbf{P}_{\mathbf{v}_1}(\alpha \mathbf{u} + \beta \mathbf{w}) = \frac{\langle \mathbf{v}_1, \alpha \mathbf{u} + \beta \mathbf{w} \rangle}{\|\mathbf{v}_1\|_2^2} \mathbf{v}_1$$
$$= \alpha \frac{\langle \mathbf{v}_1, \mathbf{u} \rangle}{\|\mathbf{v}_1\|_2^2} \mathbf{v}_1 + \beta \frac{\langle \mathbf{v}_1, \mathbf{v} \rangle}{\|\mathbf{v}_1\|_2^2} \mathbf{v}_1$$
$$= \alpha \mathbf{P}_{\mathbf{v}_1}(\mathbf{u}) + \beta \mathbf{P}_{\mathbf{v}_1}(\mathbf{w}).$$

(c)

$$\begin{split} \mathbf{P}_{\mathbf{v}_1}(\mathbf{x}) &= \frac{\langle \mathbf{v}_1, \mathbf{x} \rangle}{\|\mathbf{v}_1\|_2^2} \mathbf{v}_1 \\ &= \mathbf{v}_1 \frac{\mathbf{v}_1^\top \mathbf{x}}{\mathbf{v}_1^\top \mathbf{v}_1} \\ &= \left(\frac{\mathbf{v}_1 \mathbf{v}_1^\top}{\mathbf{v}_1^\top \mathbf{v}_1} \right) \mathbf{x} \\ &\Rightarrow \mathbf{H}_1 = \frac{\mathbf{v}_1 \mathbf{v}_1^\top}{\mathbf{v}_1^\top \mathbf{v}_1}. \end{split}$$

(d) i. Assume that $\{\mathbf{v}_1, \dots, \mathbf{v}_d, \mathbf{v}_{d+1}, \dots, \mathbf{v}_n\}$ is a basis of \mathbb{R}^n , where $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for all $1 \leq i \leq d$ and $d+1 \leq j \leq n$. For all $\mathbf{y} \in \mathcal{C}(\mathbf{A})$, there exist $\lambda_y^i \in \mathbb{R}$, such that $\mathbf{y} = \sum_{i=1}^d \lambda_y^i \mathbf{v}_i$. For all $\mathbf{z} \in \mathbb{R}^n$, there exist $\lambda_z^i \in \mathbb{R}$, such that $\mathbf{z} = \sum_{i=1}^n \lambda_z^i \mathbf{v}_i$. Let $\lambda_z = (\lambda_z^1, \dots, \lambda_z^d)^{\top}$. Then, $\mathbf{z} = \mathbf{V} \lambda_z$ and $\lambda_z = (\mathbf{V}^{\top} \mathbf{V})^{-1} \mathbf{V}^{\top} \mathbf{z}$.

Suppose that $\mathbf{u} = \mathbf{P}_{\mathcal{C}(\mathbf{A})}(\mathbf{x})$, then

$$\begin{aligned} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} &= \left\| \sum_{i=1}^{d} \lambda_{z}^{i} \mathbf{v}_{i} - \mathbf{x} \right\|_{2}^{2} \\ &= \arg\min_{\lambda_{y}^{i} \in \mathbb{R}} \left\| \sum_{i=1}^{d} \lambda_{y}^{i} \mathbf{v}_{i} - \mathbf{x} \right\|_{2}^{2} \\ &= \arg\min_{\lambda_{y}^{i} \in \mathbb{R}} \left\| \sum_{i=1}^{d} \lambda_{y}^{i} \mathbf{v}_{i} - \sum_{i=1}^{n} \lambda_{x}^{i} \mathbf{v}_{i} \right\|_{2}^{2} \\ &= \arg\min_{\lambda_{y}^{i} \in \mathbb{R}} \left\| \sum_{i=1}^{d} (\lambda_{y}^{i} - \lambda_{x}^{i}) \mathbf{v}_{i} - \sum_{i=d+1}^{n} \lambda_{x}^{i} \mathbf{v}_{i} \right\|_{2}^{2} \\ &= \arg\min_{\lambda_{y}^{i} \in \mathbb{R}} \left\| \sum_{i=1}^{d} (\lambda_{y}^{i} - \lambda_{x}^{i}) \mathbf{v}_{i} \right\|_{2}^{2} + \left\| \sum_{i=d+1}^{n} \lambda_{x}^{i} \mathbf{v}_{i} \right\|_{2}^{2}. \end{aligned}$$

It is easy to see that $\lambda_z^i = \lambda_x^i$, $i = 1, \dots, d$. That is,

$$egin{aligned} \mathbf{z} &= \mathbf{V} \pmb{\lambda}_z \ &= \mathbf{V} \pmb{\lambda}_x \ &= \mathbf{V} (\mathbf{V}^{ op} \mathbf{V})^{-1} \mathbf{V}^{ op} \mathbf{x}. \end{aligned}$$

Therefore, we know that $\mathbf{H} = \mathbf{V}(\mathbf{V}^{\top}\mathbf{V})^{-1}\mathbf{V}^{\top}$.

ii. If we further assume that $\mathbf{v}_i^{\top} \mathbf{v}_j = 0, \, \forall i \neq j$, then

$$\mathbf{V}^{\top}\mathbf{V} = \mathbf{diag}\{\|\mathbf{v}_1\|_2^2, \dots, \|\mathbf{v}_d\|_2^2\}.$$

Thus,

$$\mathbf{H} = \mathbf{V}(\mathbf{V}^{\top}\mathbf{V})^{-1}\mathbf{V}^{\top} \ = \sum_{i=1}^{d} \mathbf{v}_{i}\mathbf{v}_{i}^{\top}/\|\mathbf{v}_{i}\|_{2}^{2}.$$

3. (a) Suppose that \mathbf{x} is the eigenvector corresponding to the eigenvalue λ . Then, we have

$$\mathbf{P}\mathbf{x} = \lambda \mathbf{x}$$
,

which implies that

$$\mathbf{P}^2\mathbf{x} = \mathbf{P}(\mathbf{P}\mathbf{x}) = \mathbf{P}(\lambda\mathbf{x}) = \lambda\mathbf{P}\mathbf{x} = \lambda^2\mathbf{x}.$$

On the other hand, it is easy to see that $P(Px) = Px = \lambda x$. Thus, we have

$$\lambda \mathbf{x} = \lambda^2 \mathbf{x}.$$

which implies that

$$\lambda = 0 \text{ or } 1.$$

When $\lambda = 0$, $\mathbf{P}\mathbf{x} = \mathbf{0}$. That is, $\mathbf{x} \in \mathcal{N}(\mathbf{P})$. For all $\mathbf{y} \in \mathcal{N}(\mathbf{P})$, $\mathbf{P}\mathbf{y} = 0$. Therefore, a vector \mathbf{y} is the eigenvector corresponding to 0 iff $\mathbf{y} \in \mathcal{N}(\mathbf{P})$.

When $\lambda = 1$, $\mathbf{P}\mathbf{x} = \mathbf{x}$. This implies that $\mathbf{x} \in \mathcal{C}(\mathbf{P})$. For all $\mathbf{y} \in \mathcal{C}(\mathbf{P})$, $\mathbf{P}\mathbf{y} = \mathbf{y}$. Therefore, a vector \mathbf{y} is the eigenvector corresponding to 1 iff $\mathbf{y} \in \mathcal{C}(\mathbf{P})$.

(b) " \Rightarrow :" Suppose that **P** is a projection matrix, and $\mathbf{P}\mathbf{x} = \mathbf{v}$. By the definition of the projection operator, there exist subspaces $U, V \subset \mathbb{R}^n$, such that $\mathbb{R}^n = U \oplus V$. For all $\mathbf{x} \in \mathbb{R}^n$, \mathbf{x} can be uniquely written as $\mathbf{x} = \mathbf{u} + \mathbf{v}$, where $\mathbf{u} \in U$ and $\mathbf{v} \in V$. We have $\mathbf{P}\mathbf{x} = \mathbf{v} \in V$.

It is easy to see that

$$\mathbf{P}^2\mathbf{x} = \mathbf{P}(\mathbf{P}\mathbf{x}) = \mathbf{P}\mathbf{v} = \mathbf{0} + \mathbf{v},$$

where $\mathbf{0} \in U$ and $\mathbf{v} \in V$. Thus, $\mathbf{P}^2\mathbf{x} = \mathbf{v}$ for all $\mathbf{x} \in \mathbb{R}^n$, i.e., $\mathbf{P}^2 = \mathbf{P}$.

"\(\phi\):" First, we show that $\mathbb{R}^n = \mathcal{C}(\mathbf{P}) \oplus \mathcal{N}(\mathbf{P})$ if $\mathbf{P}^2 = \mathbf{P}$.

Suppose that $\mathbf{x} \in \mathcal{N}(\mathbf{P})$. Then, $\mathbf{P}(\mathbf{x} - \mathbf{P}\mathbf{x}) = \mathbf{P}\mathbf{x} - \mathbf{P}^2\mathbf{x} = 0$. Thus, $\mathcal{N}(\mathbf{P}) \subset \{\mathbf{x} - \mathbf{P}\mathbf{x}\}$.

Suppose that $\mathbf{y} \in \{\mathbf{x} - \mathbf{P}\mathbf{x}\}$. Then, there exists \mathbf{x}_0 , such that $\mathbf{y} = \mathbf{x}_0 - \mathbf{P}x_0$. As $\mathbf{P}\mathbf{y} = \mathbf{P}(\mathbf{x}_0 - \mathbf{P}\mathbf{x}_0) = 0$, we know that $\{\mathbf{x} - \mathbf{P}\mathbf{x}\} \subset \mathcal{N}(\mathbf{P})$.

Therefore, we have $\{\mathbf{x} - \mathbf{P}\mathbf{x}\} = \mathcal{N}(\mathbf{P})$.

For all $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{x} = (\mathbf{x} - \mathbf{P}\mathbf{x}) + \mathbf{P}\mathbf{x}$, where $(\mathbf{x} - \mathbf{P}\mathbf{x}) \in \mathcal{N}(\mathbf{P})$ and $\mathbf{P}\mathbf{x} \in \mathcal{C}(\mathbf{P})$. Thus, $\mathbb{R}^n \subset \mathcal{C}(\mathbf{P}) + \mathcal{N}(\mathbf{P})$. Further, we know that $\dim(\mathcal{C}(\mathbf{P})) + \dim(\mathcal{N}(\mathbf{P})) = n$, which implies that

$$\mathbb{R}^n = \mathcal{C}(\mathbf{P}) \oplus \mathcal{N}(\mathbf{P}).$$

By the definition of the projection, we know that **P** is a projection matrix.

Remark: Note that we use the following definition of the projection operator.

Definition: Let V be a vector space and let U and W be subspaces of V such that $V = U \oplus W$. Then v can be written uniquely as v = u + w where $u \in U$ and $w \in W$. The Projection Operator Onto U is the linear operator $P_{U,W}$ defined by $P_{U,W}(v) = u$ for all $v \in V$.

If we use the definition that $\mathbf{P}_C(\mathbf{x}) = \arg\min_{\mathbf{y} \in C} \|\mathbf{y} - \mathbf{x}\|_2$, then we require an additional condition that $\mathbf{P}^{\top} = \mathbf{P}$, which implies that $C(\mathbf{P}) \perp \mathcal{N}(\mathbf{P})$.

Exercise 4: 5pts

Let $\mathbf{x} \in \mathbf{R}^n$. Find the gradients of the following functions.

- 1. $f(\mathbf{x}) = \mathbf{a}^{\top} \mathbf{x}$.
- $2. \ f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{x}.$
- 3. $f(\mathbf{x}) = \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Solution:

- 1. $\nabla f(\mathbf{x}) = \mathbf{a}$.
- $2. \nabla f(\mathbf{x}) = 2\mathbf{x}.$
- 3. $\nabla f(\mathbf{x}) = 2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} \mathbf{y}).$

Exercise 5: Second-order sufficient optimality conditions 10pts

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable at \mathbf{x} . If $\nabla f(\mathbf{x}) = 0$ and the Hessian matrix $\mathbf{H}(\mathbf{x})$ is positive definite, then \mathbf{x} is a strict local minimum.

- 1. Show the above result by contradiction.
- 2. Show the result by NOT using contradiction. [Hint: you may need eigen-decomposition.]

Solution: 1. Suppose that \mathbf{x} is not a strict local minimum. Then, there is a sequence $\{\mathbf{x}_k\}$ with $\mathbf{x}_k \to \mathbf{x}$ and $f(\mathbf{x}_k) \leq f(\mathbf{x}), \forall k = 1, 2, \dots$ Let

$$\mathbf{d}_k = \frac{\mathbf{x}_k - \mathbf{x}}{\|\mathbf{x}_k - \mathbf{x}\|_2}.$$

As $\|\mathbf{d}_k\| = 1$ for all k, we can find a subsequence $\{\mathbf{d}_{k_j}\}$ that converges to a vector \mathbf{d} (Bolzano–Weierstrass Theorem), i.e., $\lim_{j\to\infty} \mathbf{d}_{k_j}$. Moreover, for each j

$$f(\mathbf{x}_{k_j}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{x}_{k_j} - \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{H}(\mathbf{x})(\mathbf{x}_{k_j} - \mathbf{x}), \mathbf{x}_{k_j} - \mathbf{x} \rangle + \|\mathbf{x}_{k_i} - \mathbf{x}\|_2^2 \phi_{\mathbf{x}}(\mathbf{x}_{k_i} - \mathbf{x}),$$

where $\lim_{\mathbf{x}_{k_j} \to \mathbf{x}} \phi_{\mathbf{x}}(\mathbf{x}_{k_j} - \mathbf{x}) = 0$. Thus,

$$\frac{f(\mathbf{x}_{k_j}) - f(\mathbf{x})}{\|\mathbf{x}_{k_i} - \mathbf{x}\|_2^2} = \frac{1}{2} \langle \mathbf{H}(\mathbf{x}) \mathbf{d}_{k_j}, \mathbf{d}_{k_j} \rangle + \phi_{\mathbf{x}}(\mathbf{x}_{k_j} - \mathbf{x}),$$

which implies that $\langle \mathbf{H}(\mathbf{x})\mathbf{d}, \mathbf{d} \rangle \leq 0$ contradicting the fact that $\mathbf{H}(\mathbf{x}) \succ 0$.

2. As f is twice differentiable, the Taylor's theorem leads to:

$$f(\mathbf{x} + t\mathbf{d}) = f(\mathbf{x}) + t\langle \nabla f(\mathbf{x}), \mathbf{d} \rangle + \frac{1}{2}t^2\langle \mathbf{H}(\mathbf{x})\mathbf{d}, \mathbf{d} \rangle + ||t\mathbf{d}||_2^2 \phi_{\mathbf{x}}(t\mathbf{d}),$$
 (5)

where **d** is a vector with unit length, i.e., $\|\mathbf{d}\|_2 = 1$, and $\lim_{t\to 0} \phi_{\mathbf{x}}(t\mathbf{d}) = 0$.

By the assumption, the Hessian matrix $\mathbf{H}(\mathbf{x})$ is positive definite. Thus,

$$\mathbf{H}(\mathbf{x}) = \mathbf{U} \mathbf{\Sigma} \mathbf{U}^{\top}, \quad \text{(eigen-decomposition)}$$

where $\Sigma = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n), \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n > 0$ and $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}$. Let $\mathbf{U} = (\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n)$. Clearly, the set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ is an orthonormal basis of \mathbb{R}^n . Thus, we can write the vector \mathbf{d} in (5) as

$$\mathbf{d} = \sum_{i=1}^{n} \alpha_i \mathbf{u}_i,$$

where $\alpha_i = \langle \mathbf{d}, \mathbf{u}_i \rangle$ and $\sum_{i=1}^n \alpha_i^2 = 1$.

By the assumption, we also have $\nabla f(\mathbf{x}) = 0$. Therefore, (5) becomes

$$f(\mathbf{x} + t\mathbf{d}) = f(\mathbf{x}) + \frac{1}{2}t^2 \langle \mathbf{H}(\mathbf{x})\mathbf{d}, \mathbf{d} \rangle + ||t\mathbf{d}||_2^2 \phi_{\mathbf{x}}(t\mathbf{d})$$

$$= f(\mathbf{x}) + \frac{1}{2}t^2 \langle \mathbf{U}\boldsymbol{\Sigma}\mathbf{U}^{\top}\mathbf{d}, \mathbf{d} \rangle + ||t\mathbf{d}||_2^2 \phi_{\mathbf{x}}(t\mathbf{d})$$

$$= f(\mathbf{x}) + \frac{1}{2}t^2 \sum_{i=1}^n \lambda_i \alpha_i^2 + ||t\mathbf{d}||_2^2 \phi_{\mathbf{x}}(t\mathbf{d})$$

$$\geq f(\mathbf{x}) + \frac{1}{2}t^2 \sum_{i=1}^n \lambda_n \alpha_i^2 + ||t\mathbf{d}||_2^2 \phi_{\mathbf{x}}(t\mathbf{d})$$

$$= f(\mathbf{x}) + t^2 (\lambda_n/2 + \phi_{\mathbf{x}}(t\mathbf{d})).$$

Notice that $\lim_{t\to 0} \phi_{\mathbf{x}}(t\mathbf{d}) = 0$. Thus, for $\lambda_n/4$, there exists a $\delta > 0$ such that

$$|\phi_{\mathbf{x}}(t\mathbf{d})| < \lambda_n/4, \ \forall |t| = ||t\mathbf{d}|| < \delta,$$

Consequently, we have

$$f(\mathbf{x} + t\mathbf{d}) > f(\mathbf{x}) + t^2 \lambda_n / 4, \forall |t| = ||t\mathbf{d}|| < \delta,$$

which implies that \mathbf{x} is a strict local minimum. This completes the proof.

Exercise 6: Identically independently distributed 10pts

Suppose that the training samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ are i.i.d.. show that

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \prod_{i=1}^n p(\mathbf{x}_i).$$

Solution: As the training samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ are i.i.d., we have

$$p((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)) = p(\mathbf{x}_1, \dots, \mathbf{x}_n, y_1, \dots, y_n)$$
(6)

$$= \prod_{i=1}^{n} p(\mathbf{x}_i, y_i). \tag{7}$$

Therefore, we know that

$$p(\mathbf{x}_1, \dots, \mathbf{x}_n) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} p(\mathbf{x}_1, \dots, \mathbf{x}_n, y_1, \dots, y_n) dy_1 \dots dy_n$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \prod_{i=1}^{n} p(\mathbf{x}_i, y_i) dy_1 \dots dy_n$$

$$= \prod_{i=1}^{n} \int_{-\infty}^{\infty} p(\mathbf{x}_i, y_i) dy_i$$

$$= \prod_{i=1}^{n} p(\mathbf{x}_i).$$

Exercise 7: First-order condition II 5pts

Suppose that f is continuously differentiable. Prove that f is convex if and only if $\operatorname{dom} f$ is convex and

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge 0.$$

Solution: \Rightarrow The convexity of f implies that

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle,$$

 $f(\mathbf{x}) \ge f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle.$

Adding them together leads to desired result.

$$\Leftarrow$$
 Let $\mathbf{x}_t = \mathbf{x} + t(\mathbf{y} - \mathbf{x})$. Then,

$$f(\mathbf{y}) = f(\mathbf{x}) + \int_0^1 \langle \nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})), \mathbf{y} - \mathbf{x} \rangle dt$$

= $f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \int_0^1 \frac{1}{t} \langle \nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}), \mathbf{x}_t - \mathbf{x} \rangle dt$
\geq $f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.$