Mathe II - Formelsammlung

Sallar Ahmadi-Pour

$WiSe\ 2013/14$

Inhaltsverzeichnis

1	Mengenlehre					
	1.1	Allgemeines				
	1.2	Teilmenge				
	1.3	Nullmenge				
	1.4	Potenzmenge				
	1.5	Anzahl der Elemente einer Menge				
	1.6	Komplementärmenge				
	1.7	Vereinugungsmenge				
	1.8	Paarmenge / Produktmenge				
	1.9	Rechenregeln				
	1.10	Abbildungen				
	1.11	Anzahl der Elemente einer unendlichen Menge				
2	Voll	ständige Induktion 6				
	2.1	Allgemeines				
	2.2	Beispiele				
3	Gru	ppen, Ringe und Körper 8				
U	3.1	Gruppe				
	3.2	Ring				
	3.3	Körper				
4	T/	1 7 11 0				
4		$\begin{array}{ll} \textbf{10} \\ \textbf{Potenzen von } z & \dots &$				
	4.1					
	4.2	Arithmetische Form				
		4.2.1 Gleichheit über Komponenten				
	4.3	Multiplikation und Division				
	4.4	Formeln und Sätze für komplexe Zahlen				
	4.5	Polarebenen Darstellung / Trigonometrische Darstellung				
		4.5.1 Satz von Moivre 12				

5	\mathbf{Abl}	ildungen und Funktionen	
	5.1	Grundbegriffe	
	5.2	Gerade und ungerade Funktion	
	5.3	Periodische Funktionen	
		5.3.1 Beschränktheit	
		5.3.2 Monotonieverhalten	
	5.4	Elementare Funktionen	
		5.4.1 Polynome	
		5.4.2 Lineare Funktion	
		5.4.3 Quadratische Funktion	

1 Mengenlehre

1.1 Allgemeines

$$\begin{aligned} M_E &= \{a \mid a \text{ mit Eigenschaft } E\} \\ M_A &= \{a_1, a_2, a_3, \dots, a_n\} \\ M &= \{a_1, a_2, a_3, \dots\} \end{aligned} & \text{Aufzählend, abzählbar Endlich} \\ M &= \{a_1, a_2, a_3, \dots\} \\ M_AE &= \{1, 2, 3, \dots\} = \{n \mid n \in \mathbb{N}\} \end{aligned} & \text{abzählbar Unendlich} \\ a &\in M \\ a \notin M \end{aligned} & \text{a Elemnt aus der Menge M} \\ a &= \underbrace{\text{nicht Element aus M}} \end{aligned}$$

1.2 Teilmenge

 $A \subset B \to A$ Teilmenge von B oder $B \supset A$. A = B wenn $A \subset B$ und $B \subset A$.

$$x \in A \Leftrightarrow x \in B$$

1.3 Nullmenge

$$M = \{\} = \emptyset$$

1.4 Potenzmenge

Menge aller Teilmengen. $A = \{1, 2\}$; $P(A) = \{\{1\}, \{2\}, \{1, 2\}, \emptyset\}$

1.5 Anzahl der Elemente einer Menge

$$\#A = |A| = 2 \text{ und } |P(A)| = 4.$$

$$|P(M)| = 2^{|M|}$$

1.6 Komplementärmenge

Sei $A\subset M$, dann ist \bar{A} die Komplementärmenge. $\bar{A}=\{x\mid x\in M\land x\notin A\}$ $\bar{M}=\emptyset$ und $\bar{\emptyset}=M$ $A\backslash M=\bar{A}$

1.7 Vereinugungsmenge

 $A \cup B := \{x \mid x \in A \lor x \in B\}$ Man sagt auch: A vereinigt B.

1.8 Paarmenge / Produktmenge

$$A\times B:=\{(a,b)\ |\ a\in A,b\in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Man sagt auch A und B.

Ist $B \subset A$ so heißt $A \setminus B$ Komplement \bar{B} oder B^c .

1.9 Rechenregeln

Seien A, B, C Mengen und M das Einselement:

- a) $A \cup B = B \cup A$ Kommutativ
- b) $A \cap B = B \cap A$ Kommutativ
- c) $(A \cup B) \cup C = A \cup (B \cup C)$ Assoziativ
- d) $(A \cap B) \cap C = A \cap (B \cap C)$ Assoziativ
- e) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributiv
- f) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ Distributiv
- g) $A \cap (A \cup C) = A$ Verschmelzung
- h) $B \cup (B \cap C) = B$ Verschmelzung
- i) $A \cup \emptyset = A$ aber $A \cap \emptyset = \emptyset$
- j) $A \cap M = A$ aber $A \cup M = M$
- k) $A \cup \bar{A}$ und $A \cap \bar{A} = \emptyset$ Komplement-Eigenschaft
- 1) $\bar{\bar{A}} = A$
- m) $\overline{A \cup B} = \overline{A} \cap \overline{B}$ DeMorgansche Regel
- n) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ DeMorgansche Regel

1.10 Abbildungen

Eine Abbildung ist SURJEKTIV: $\forall b \in B \exists a \in A, f(a) = b$.

Eine Abbildung ist injektiv: $\forall a, a' \in Aa \neq a' \Rightarrow f(a) \neq f(a')$.

Eine Abbildung ist BIJEKTIV wenn sie surjektiv und injektiv ist.

1.11 Anzahl der Elemente einer unendlichen Menge

abzählbare Unendlichkeit Sei M eine Menge. M heißt unendlich, falls es eine echte Teilmenge $N \subset M$ gibt, die sich bijektiv auf M abbilden lässt. Eine Menge heißt endlich, wenn sie nicht unendlich ist.

Abzählbarkeit Eine Menge heißt abzählbar unendlich, wenn eine Bijektion zwischen M und N existiert. $|\mathbb{N}|=\infty$

2 Vollständige Induktion

2.1 Allgemeines

Ein Beweis mit vollständiger Induktion (z.B. einer Summenformel bzw. deren nicht iterativer Formel) besteht immer aus:

- <u>Induktionsbehauptung</u>: hier wird die zu beweisende Gleichung niedergeschrieben. Dies ist unsere Induktionsannahme.
- Dann folgt der Induktionsanfang, hier wird ein (möglichst einfacher) Fall für z.B. n=1 durchgerechnet.
- Sollte der Induktionsanfang korrekt sein, kann man nun den <u>Induktionsschritt</u> vollziehen. Hierbei muss die Induktionsbehauptung verwendet werden. Durch geschicktes Umformen gelangt man nun zu einer aussage, welcher für n+1 gilt. Somit sei eine Behauptung mit vollständiger Induktion bewiesen.
- Als letztes kommt der <u>Induktionsschluss</u>. Hier wird die Formel erneut niedergeschrieben, jedoch mit zugehörigem Definitionsbereich (z.B. für alle $n \ge 1$).

2.2 Beispiele

Sei $\sum_{k=1}^n \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$ unsere Induktionsbehauptung welche zu beweisen gilt, so folgt daraus:

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \tag{1}$$

$$\sum_{k=1}^{1} \frac{k}{2^k} = 2 - \frac{1+2}{2^1} \tag{2}$$

für alle $n \geq 1$ sei die Behauptung richtig

$$\sum_{k=1}^{n+1} \frac{k}{2^k} = \sum_{k=1}^{1} \frac{k}{2^k} + \frac{n+1}{2^{n+1}}$$

$$= 2 - \frac{n+2}{2^n} + \frac{n+1}{2^n}$$

$$= 2 + \frac{-n-2}{2^n} + \frac{n+1}{2^{n+1}}$$

$$= 2 + \frac{-2n-4+n+1}{2^{n+1}}$$

$$= 2 + \frac{-n-3}{2^{n+1}}$$

$$= 2 - \frac{n+3}{2^{n+1}}$$

$$= 2 - \frac{(n+1)+2}{2^{n+1}}$$

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \quad \text{gilt für alle } n \ge 1.$$

$$(4)$$

Bei diesem Beispiel ist Gleichung (1) die Induktionsbehauptung bzw. -annahme, (2) der Induktionsanfang, (3) der Induktionsschritt mit Umformung und (4) der Induktionsschluss. Sei $2^n < n!$ unsere Induktionsbehauptung welche zu beweisen gilt, so folgt daraus:

$$2^{n_0} < n_0!$$
$$2^4 = 16 < 4! = 24$$

für $n \ge 4$ sei $2^n < n!$

$$n \to n+1$$
$$2^n < n! \quad \text{gilt } \forall n \ge 4$$

3 Gruppen, Ringe und Körper

3.1 Gruppe

Ein Paar (M, \circ) (M ist eine Menge und \circ eine zweistellige Verknüpfung), das folgende Eigenschaften besitzt:

- Abgeschlossenheit bzgl. Verknüpfung o (die Anwendung der Verknüpfung hat ein Ergebnis aus der selben Menge)
- Assoziativgesetz: $a \circ (b \circ c) = (a \circ b) \circ c$
- Neutrales Element e: Es gibt ein Element e, genannt neutrales Element, sodass $e \circ a = a \circ e = a$ für alle a.
- inverses Element: Zu jedem a gibt es ein b mit $a \circ b = b \circ a = e$, b heißt das zu a inverse Element.

Beispiele:
$$(\mathbb{Q},+), (\mathbb{R},+), (\mathbb{Q} \setminus \{0\},\cdot), (\mathbb{R} \setminus \{0\},\cdot)$$

Eine Gruppe (G, \circ) heißt abelsch oder kommutativ, wenn $\forall a, b \in G$ die Kommutativität gilt, ansonsten gilt sie als nicht-abelsch bzw. nicht-kommutativ.

•
$$a \circ b = b \circ a$$

Beispiele:
$$(\mathbb{Z}, +)$$

Eine Gruppe heißt *Halbgruppe*, wenn nur die Abgeschlossenheit und die Assoziativität erfüllt sein müssen.

Beispiele:
$$(\mathbb{N}_0,+), (\mathbb{N},+), (\mathbb{N}_0,\cdot), (\mathbb{N},\cdot)$$

3.2 Ring

Ein Ring ist eine Menge M von Elementen zusammen mit zwei Verknüpfungen \circ und \square , für die gelten:

- (M, \circ) ist eine kommutative Guppe
- (M, \square) ist abgeschlossen und assoziativ (Halbgruppe)
- Distributivgesetze:

$$a \circ (b \Box c) = (a \circ b) \Box (a \circ c)$$
$$(a \circ b) \Box c) = (a \Box c) \circ (b \circ c)$$

In einem kommutativen Ring gilt außerdem das Kommutativgesetz: $a \circ b = b \circ a$

Beispiele: $(\mathbb{Z},+,\cdot),\,(\mathbb{Q},+,\circ)$

3.3 Körper

Ein Körper ist eine Menge M von Elementen zusammen mit zwei Verknüpfungen circ und \square , für die gelten:

- (M, \circ) ist eine kommutative Gruppe
- $(M \setminus e_0, \square)$ ist eine Gruppe $(e_0$ ist das neutrale Element bzgl. \circ).
- Distributivgesetze:

$$a \circ (b \square c) = (a \circ b) \square (a \circ c)$$

 $(a \circ b) \square c) = (a \square c) \circ (b \circ c)$

In einem kommutativen Körper gilt außerdem das Kommutativ
gesetz: $a\circ b=b\circ a$

Beispiele: $(\mathbb{Q}, +, \circ), (\mathbb{R}, +, \circ), (\mathbb{C}, +, \circ)$

4 Komplexe Zahlen – $\mathbb C$

Im folgenden werden beide Konventionen i und j für die imaginäre Einheit $\sqrt{-1}$ genutzt. Des weiteren werden hier nicht alle Operationen auf und mit komplexen Zahlen beschrieben.

4.1 Potenzen von z

Jede Potenz von einer komplexen Zahl z (z.B. j^{99}) lässt sich runter brechen auf eine Potenz zwischen 1 und 4.

$$j^{4n+1}=j \quad j^{4n+2}=-1 \quad j^{4n+3}=-j \quad j^{4n}=1 \qquad \forall n \in \mathbb{N}$$

$$j=-\frac{1}{k} \qquad j=\sqrt{-1}$$

4.2 Arithmetische Form

$$x, y \in \mathbb{R}, z = x + jy$$

In \mathbb{C} wird nach Betrag der Zahl sortiert, nicht wie in \mathbb{R} (links ist die Zahl kleiner als Rechts).

4.2.1 Gleichheit über Komponenten

$$Re(z) = \frac{1}{2}(z + z^*)$$

 $Im(z) = \frac{1}{2j}(z - z^*)$

4.3 Multiplikation und Division

Bei der Multiplikation von C-Zahlen addieren sich die Winkel und multiplizieren sich die Radien. Bei der Division von C-Zahlen subtrahieren sich die Winkel und dividieren sich die Radien.

4.4 Formeln und Sätze für komplexe Zahlen

Für alle $z, z_1, z_2 \in \mathbb{C}$ gilt:

$$(z_{1} + z_{2})^{*} = z_{1}^{*} + z_{2}^{*}$$

$$(z_{1} \cdot z_{2})^{*} = z_{1}^{*} \cdot z_{2}^{*}$$

$$(\frac{z_{1}}{z_{2}})^{*} = \frac{z_{1}^{*}}{z_{2}^{*}} \quad \text{mit } z_{2} \neq 0$$

$$(z^{*})^{*} = z$$

$$z \cdot z = |z|^{2}$$

$$\frac{1}{z} = \frac{z^{*}}{(z \cdot z^{*})} = \frac{z^{*}}{|z|^{2}}$$

$$|z^{*}| = |z|$$

$$|z| \geq 0$$

$$|z| = 0 \Leftrightarrow z = 0$$

$$|z_{1} \cdot z_{2}| = |z_{1}| \cdot |z_{2}|$$

$$\left|\frac{z_{1}}{z_{2}}\right| = \frac{|z_{1}|}{|z_{2}|} \quad \text{mit } z_{2} \neq 0$$

$$|z_{1} + z_{2}| \leq |z_{1}| + |z_{2}| \quad \text{Dreiecksungleichung}$$

4.5 Polarebenen Darstellung / Trigonometrische Darstellung

Zur Darstellung einer komplexen Zahl über eine polarebenen Darstellung (man spricht auch von der trigonometrischen Darstellung) benötigen wir von unserer komplexen Zahl z einen Radius und einen Winkel.

$$r = |z| = \sqrt{x^2 + y^2}$$

sei der Radius. Die Komplexe Zahl lässt sich dann mittels Sinus und Kosinus ausdrücken:

$$z = r\cos\varphi + ir\sin\varphi$$
$$z = r(\cos\varphi + i\sin\varphi)$$

Mit der eulerschen Identität $e^{i\phi} = \cos \varphi + i \sin \varphi$ folgt:

$$z = re^{i\varphi}$$

Mit dieser Darstellung lassen sich Multiplikationen wesentlich einfacher vollziehen:

$$r_1 e^{i\varphi_1} \cdot r_2 e^{i\varphi_2} = r_1 \cdot r_2 e^{i\varphi_1 + \varphi_2}$$

Wenn man komplexe Zahlen potenziert, potenzieren sich die Beträge (der Radius r) und multiplizieren sich die Winkel jeweils mit n.

$$z^n = (re^{i\varphi})^n = r^n e^{i\varphi n}$$

4.5.1 Satz von Moivre

Der Satz von Moivre besagt, dass $(\cos x + i \sin x)^n = \cos(n x) + i \sin(n x)$ gilt. Dies folgt aus $e^{i x} = \cos x + i \sin x$ und $(e^{i x})^n = e^{i n x}$. Dieser kann über die Additionstheoreme über die vollständige Induktion gezeigt werden.

5 Abbildungen und Funktionen

5.1 Grundbegriffe

Eine Abbildung $f:A\to B$ heißt Funktion von A nach B, wenn jedem $a\in A$ genau ein $b\in B$ zugeordnet wird. b=f(a) heißt Funktionswert an der Stelle a. Der Definitionsbereich $\mathbb D$ sind die Werte, die in die Funktion als a eingegeben werden können. Der Wertebereich $\mathbb W$ sind die Werte, die aus der Funktion resultieren. Die Bereiche können als übliche Mengen mit Eigenschaft niedergeschrieben werden z.B.:

$$\mathbb{D}(f(x)) = \{x \in \mathbb{R} \mid x\}$$

$$\mathbb{W}(f(x)) = \{y \in \mathbb{R} \mid y\}$$

5.2 Gerade und ungerade Funktion

$$f(-x) = f(x)$$
 Gerade Funktion $f(-x) = -f(x)$ Ungerade Funktion

5.3 Periodische Funktionen

$$f(x + \lambda) = f(x)$$

Kleinstes $\lambda > 0$ ist die primitive Periode.

5.3.1 Beschränktheit

Es sei $f: A \to B$. $M \subset A$ beschränkt an K.

Beispiel: $f(x) = \sin x$

$$|\sin x| \le 1 \quad \forall x \in \mathbb{R}$$

Kleinste obere Schranke einer Funktion heißt Supremum.

$$f(x) = \sin x$$
$$\sup f = 1$$

Größte untere Schranke heißt Infimum.

$$\inf f = -1$$

5.3.2 Monotonieverhalten

Eine Funktion $f: A \to B$ heißt im Intervall $I \subset A$ monoton wachsend bzw. streng monoton wachsend, wenn $\forall x_1, x_2 \in I$ mit $x_1 > x_2$ die Ungleichung

$$f(x_1) \ge f(x_2)$$
 bzw. $f(x_1) > f(x_2)$

gilt. Entsprechend heißt sie monoton fallend bzw. streng monoton fallend, wenn $\forall x_1, x_2 \in I$ mit $x_1 > x_2$ die Ungleichung

$$f(x_1) \le f(x_2)$$
 bzw. $f(x_1) < f(x_2)$

5.4 Elementare Funktionen

5.4.1 Polynome

Ein Polynom ist definiert durch:

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = \sum_{k=0}^{n} a_k x^k$$

Addition/Subtraktion:

$$\sum_{k=0}^{n} a_k x^k \pm \sum_{k=0}^{n} b_k x^k = \sum_{k=0}^{n} (a_k \pm b_k) x^k$$

Multiplikation:

$$\sum_{k=0}^{n} a_k x^k \cdot \sum_{k=0}^{n} b_k x^k = \sum_{k=0}^{n} a_k x^k \cdot \sum_{l=0}^{n} b_l x^l = \sum_{k=0}^{n} \sum_{l=0}^{n} a_k b_l x^{k+l}$$

5.4.2 Lineare Funktion

Die Hauptform der linearen Funktion lautet $f(x) = a_0 + a_1x$. a_0 und a_1 können mit zwei Wertepaaren von f(x) bestimmt werden:

$$a_1 = \frac{y_2 - y_1}{x_2 - x_1}$$

$$a_0 = y_1 - \frac{y_2 - y_1}{x_2 - x_1} x_1 = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$$

Die Zweipunktform der linearen Funktion lautet $\frac{y-y_1}{x-x_1} = \frac{y_2-y_1}{x_2-x_1}$. Die Achsenabschnittsform lautet $\frac{x}{a} + \frac{y}{b} = 1$. Mit f(0) = b und f(a) = 0.

5.4.3 Quadratische Funktion

Die Hauptform der quadratischen Funktion lautet $f(x) = a_0 + a_1 x + a_2 x^2$.

Die Nullstellen der quadratischen Funktion lassen sich über die p,q-Formel bestimmen. Diese leitet sich aus der Hauptform her:

$$a_2x^2 + a_1x + a_0 = 0$$
 : a_2
$$x^2 + px + q = 0$$
 mit $p = \frac{a_1}{a_2}, q = \frac{a_0}{a_2}$
$$\Rightarrow x_{1/2} = -\frac{p}{2} \pm \sqrt{(\frac{p}{2})^2 - q}$$
 p,q-Formel

Die Nullstellen lassen sich ebenfalls mithilfe der Mitternachtsformel bestimmen:

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Diskriminante $D = b^2 - 4ac$

Dabei gelten für die Diskriminante D folgende Eigenschaften und Folgen für die Funktion:

D > 0 reelle Lösung $x_1 | x_2$

D = 0 eine doppelte reelle Lösung

D < 0 zwei Lösungen in \mathbb{C} die konjugiert-komplex zueinander sind

Wurzelsatz von Viëta ist für \mathbb{C} als auch \mathbb{R} gültig und lautet:

$$p = -(x_1 + x_2)$$
$$q = x_1 \cdot x_2$$

Das Horner-Schema erlaubt es in wenigen Rechenschritten Nullstellen als auch Funktionswerte zu berechnen. Diese Methode erweist sich als einfach für Computerprogramme zu implementieren. Außerdem erlaubt es die Berechnung von Funktionswerten ohne Taschenrechner¹ Beispiel: $f(x) = 5x^6 - 2x^5 + 2x^3 + x^2 - 6x + 1$. Zur Berechnung vom Funktionswert f(2) sieht das Horner-Schema wie folgt aus:

¹Als Beispiel: $11 + 7x - 5x^2 - 4x^3 + 2x^4 = 11 + x \cdot (7 + x \cdot (-5 + x \cdot (-4 + x \cdot 2)))$