氷をマテリアルとした 3D プリンターの開発と改良

指導教員:羽田久一 教授

メディア学部 メディア学部 A.E.D. lab 学籍番号 M0118050 大谷真太郎

2022年1月

2021年度 卒 業 論 文 概 要

論文題目

氷をマテリアルとした 3D プリンターの開発と改良

メディア学部

学籍番号: M0118050

氏名

大谷真太郎

指導 教員

羽田久一 教授

キーワード

氷、3 D プリンター

氷の造形物は彫刻で作るのが一般的だが,スキルや材料の調達などの問題で誰もが簡単に製作できる訳ではない.本稿では,先行研究である「氷をマテリアルとしてた3 D プリンターの開発 著者:東京工科大学大学院 藤田大樹」の液体窒素を使い FDM 方式で氷の造形を行うプリンタを中心に問題点の改良を行う.特に問題として抱えていた、造形速度と造形精度の向上とオーバーハングの実現を目指す。その手法として、水の粘度を変える方法と造形物のサポートの充填率のパラメーターを変えながら印刷し関係性を調査し,その結果から,氷の造形物を印刷するのに適したパラメータを発見する.これにより,ユーザーは特別な知識がなくても氷プリンター用の GCode を作ることができる.氷の造形物は,時間の経過で溶けて完全に消失する性質を持っており,これは 3D プリンターに新しい表現を与える.

1

目次

2第1章	はじめに	1
з1.1	はじめに	1
41.2	現在の 3D プリンター	1
51.3	氷をマテリアルとした 3D プリンター	9
61.4	氷造形の提案	4
7第2章	関連研究	5
82.1	関連研究	
92.2	ゲルを用いて印刷する $3D$ プリンター $[1]$	5
10 2.3	Suntory-3D on the $Rocks[2]$	6
112.4	A Layered Fabric 3D Printer for Soft Inter-active Objects[3] $\dots \dots \dots$	7
122.5	Additive manufacturing of optically trans-parent glass[4]	7
132.6	静電インクジェット式 3D プリンタによる高粘度食品材料の高精度プリント [5]	Ĝ
142.7	フルカラー $3D$ プリンター $-2D$ 印刷から $3D$ 印刷へ $-[6]$	11
15 2.8	3D プリンタのセラミックスへの適用 [7]	12
16 第 3 章	仮説と提案	15
173.1	氷をマテリアルとした 3D プリンター	15
□8 第 4 章	機構の実装	17
194.1	予備実験	17
204.2	造形の仕組み	20
214.3	液体窒素を用いた造形の実装	20
224.4	プリンターの制御	20
234.5	シリンジの機構	21
244.6	ベッドの機構	21
∞第5章	実験	22
26 5.1	プリンターの動作検証	22
275.2	ノズルの高さ,移動速度,水の量による造形の変化	22
₂₀ 53	動作の確認	22

15.4	動作の確認	22
2第6章	使用例	23
з 6. 1	段落と改行	23
46.2	箇条書き	23
56.3	図表と参照	24
66.4	IATEX のコンパイル	26
ッ第7章	今後の展望	27
в 7. 1	段落と改行	27
97.2	箇条書き	27
107.3	図表と参照	28
117.4	IATEX のコンパイル	30
12 第 8 章	その次	31
138.1	数式	31
148.2	寸法	32
158.3	参考文献	33
16	謝辞	35
	秦孝立 献	26

図目次

2	1.1	3D プリンターの造形方法一覧	2
3	2.1	適当なサンプル 2	5
4	2.2	適当なサンプル 2	6
5	2.3	適当なサンプル 2	7
6	2.4	適当なサンプル 2	8
7	2.5	適当なサンプル 2	8
8	2.6	適当なサンプル 2	9
9	2.7	適当なサンプル 2	.0
10	2.8	適当なサンプル 2	.0
11	2.9	適当なサンプル 2	.1
12	2.10	適当なサンプル 2	2
13	2.11	適当なサンプル 2	.3
14	2.12	適当なサンプル 2	4
15	4.1	適当なサンプル 2	.7
16	4.2	適当なサンプル 2	.8
17	4.3	適当なサンプル 2	.8
18	4.4	適当なサンプル 2	.9
19	6.1	適当なサンプル 2	!5
20	6.2	適当なサンプル 2	:5
21	7.1	適当なサンプル 2	:9
22	7.2	適当なサンプル 2 2	g

第1章

はじめに

3 1.1 はじめに

2

4 3D プリンターは 2010 年代に低価格のものが登場するようになってから特に注目をされ続けている. 低価格化が進んだことで一般にも普及が進み 2020 年には 3D プリンター市場は世界で 210 億ドルにもなると予測されている. 3D プリンターを活用することで製造業では,生産過程において開発期間やコストを削減することや素材の選択や高性能化ができる. 特に,これまで大量生産により,均一化された商品が一般的な社会が形成されてきたが,3D プリンターの登場と普及により多種多様の者を少量生産ずつ,一般家庭で生産することができる.これまで,生産者と消費者は別の者であったが,3D プリンターの登場により生産者と消費者が同一の存在となるなりつつあるのだ. 消費者の生産者化により,これまでにない発想の商品が数多く登場し,より便利なこれまでにない発想の商品はデジタル社会により,世界中に拡散され,人類社会の発展に貢献されると考える.3D プリンターは人類の可能性を最大化させるためのツールでもある.その3D プリンターは印刷できる素材が限られているのが現状である.新たな3D プリンターの素材を開発することは、多くの人が3D プリンターを使い新しいものを作り出し、人類の想像力を最大化させるうえで重要なことだと考える.

ı, 1.2 現在の 3D プリンター

3D プリンターにはいくつかの種類がある.主に材料押出法,液槽光重合法,シート積層法,結 6 合剤噴射法,材料噴射法,粉末床溶融結合法,指向性エネルギー堆積法などである.

図 1.1 3D プリンターの造形方法一覧

https://monoist.itmedia.co.jp/mn/articles/2007/28/news007.html

- 1 特に一般に普及している 3D プリンターは 3 種類ある.
- 2 材料押出法中でも熱溶解積層方式(FDM)は、ある程度の精度(± 0.1 0.2 mm程度)と速度を
- ₃ 有し、近年では3万円以下と低価格で一般にもっとも普及している。機構は、プラスチックのマ
- 4 テリアルを加熱し細いノズルから押し出して層を積み上げ造形物を作る.
- 5 液槽光重合法(光造形法(SLA))は、最も古い 3D プリンターの積層方式で、紫外線で硬化す
- 6 る樹脂を使用し積層していく方法である.一層作るごとに樹脂が固まるまで紫外線を当てるため、
- 7 造形に時間がかかる、その代わりに精度の高い造形(0.05 mm程度)ができるのが特徴である. し
- 。 かし、液槽光重合法(光造形法(SLA))は、マテリアルの樹脂が高価であるとともに、造形後の
- 。 掃除に手間がかかり、完成後も造形物が完全に硬化するまで紫外線を当て続ける必要がある.
- 10 粉末床溶融結合法,なかでもーザー焼結 (SLS) は、金属粉末にレーザーを当て熱で溶かすこと
- 11 により積層を行う. レーザーで熱を加えるため時間がかかるが、高い精度でオブジェクトの印刷
- 12 ができる. 印刷には、金属を溶かすほどの出力の強いレーザーが必要になるためサイズやコスト、
- 13 安全面を考えても一般家庭では使用が難しいのが現状である.しかし,鋳造では再現できない,液
- 14 体を通すことのできる構造を作り出せるため、新しい活用方法も模索されている.

3D プリンターに重要とされる要素は印刷精度と印刷にかかる時間があると考える。それぞれのプリンターがどの程度 2 つの要素を満たしているかを に示す。縦の軸が精度を示し、横の軸が印刷にかかる時間を表す。表を見てわかる通り、精度を優先すると速度が落ち、速度を優先すると精度が落ちてしまう。このように、3D プリンターの印刷は時間と精度が反比例する。氷の造形物を印刷するプリンターは、速度を犠牲にして正確な造形物を印刷する業務用タイプと造形を直感的に行うためのハンディータイプのみで、中間の部分が欠落している。そこで、私は精度と速度を両立させた氷の 3D プリンターを製作した。現在広く普及しているプリンターの一部を改修することで氷造形を可能にする。

。1.3 氷をマテリアルとした 3D プリンター

氷の彫刻は、世界中で様々なイベントやアート作品に用いられている. 氷は透明なその美しさ と時間とともに変化し、最後には溶けてなくなる儚さから人々に親しまれており、様々な作品が 11 作られている.しかし、誰でも簡単に触れ合えるものではなく、氷の作品を楽しめる場所は限ら れているのが現状である.その原因として氷の作品は作るのに時間がかかり,彫刻の技術や設備 が必要となる.私は誰でも簡単に思い通りの形状の氷の作品を作れるようにするため,3D プリン ターを使い氷の造形物をプリントする新しい手法を提案する.現在の3 D プリンターによる高精 度な氷造形は,20mm/h のスピードで高さ 0.1mm の積層をしていく.この速度で氷の造形物を 作るには0度以下の部屋を用意し、造形中は常に造形物の周りを低温に保っておかなければなら 17 ない.また,Suntory-3D on the Rocks では CNC を使った切削のため特殊な機材と知識が必要 になるため, だれもが扱えるものではない. 3D プリンターとして開発されるだけでなく, 一般 の多くの人に普及させるためには精度を保ちつつ素早く造形でいるプリンターである必要がある. 私は,3D プリンターを使う知識がある人ならば,スキルに依存せずに氷の造形物を作ることがで き、現状の氷をマテリアルとした 3D プリンターよりも高速で造形のできる3 D プリンターを提 案する.

🛾 1.4 🏻 氷造形の提案

- 2 氷の造形物をつくる試みは過去に様々の方法で試されてきた、氷をマテリアルとした自動造形 には現状 2 パターンがある。1 つ目が氷の塊を CNC で掘削する方式である。CNC 方式では、精 度の高い氷をマテリアルとした造形を行おうことができるのだが、特殊な設備と技術が必要になる。2 つ目が 3D プリンターと同じ仕組みで精度の高い造形物を印刷することができるが、造形速 度が 20mm/h のスピードで高さ 0.1mm の積層とかなり速度がかなり遅い。これらの氷をマテリアルとした造形方法では造形速度が遅く、冷凍庫のような特殊な環境が必要になるため、一般の 人が気軽に氷をマテリアルとした造形を利用することが難しいのが現状である。氷をマテリアル とした造形物の使用用途は、現実に氷をマテリアルとした工業製品が無いのを考えると、強度的 な問題や常温で溶け出す問題などにより、観賞用に用いられることがほとんどと考えられる。使 用用途が観賞用であると考えた場合、工業用製品に必要な要素が正確性 (精度) などに対して、観 賞用では、氷の条件を満たしたうえで一般の人でも扱いが可能かつ、一般のユーザーが設計した データにできるだけ近い形に印刷されれば問題ないと考えられる。また、氷を再定義する。氷を またリアルとした 3D プリンターの主な使用用途は観賞と考える。観賞とは、氷特有の常温で液体へと徐々に変化し、最後にはなくなるこの過程が、ほかのマテリアルにはない大きな特徴であるこの部分を指すと考える。そのため、氷の定義として下記の 2 つを定義する。
- 1. 固体であるとき常温より低温であること.
- 18 2. 常温で溶けること.
- 19 氷の定義を以上のようにしたうえで,一般の人でも扱いが可能かつ,一般のユーザーが設計し 20 たデータにできるだけ近い形に印刷できる氷をマテリアルとした 3 D プリンターの提案する.

第 2 章

関連研究

3 2.1 関連研究

- 4 新しいマテリアルを使い、今までにない 3D プリンターでは表現できなかったモノを作ること
- 5 を可能にしている研究を中心最新の 3D プリンターに関する研究を調査した.

。2.2 ゲルを用いて印刷する 3D プリンター [1]

- 7 この研究は、ゲルをマテリアルとして用いた造形物を 3D プリンディングするものである. 図 1
- 8 のように、ゲル溶液を使用しながら強度や感触を部位によって変化させて造形物を作成すること
- 。 ができる.

図 2.1 適当なサンプル 2

- 10 これは、ゲル化を誘起する UV レーザーを光ファイバーを通して局所的にゲル溶液に照射する
- 11 ことで, ゲルの 3 次元造形を可能にしている. 3D プリンターは現在, 臓器の立体イメージを作り

- 1 出すのに医療分野で活用されているが、手術の計画や事前検証のための立体の臓器モデルを作製
- 2 するには、数千万もする工学な 3D プリンターを使用してプラスチックやゴムなどの、実際の臓
- 3 器よりもはるかに硬い樹脂を用いて造形をする方法しか存在しなかった.このゲルを用いて印刷
- 4 する 3D プリンターは、低コストで感触がより患者のものと似ている臓器モデルを作成できる可
- 5 能性を秘めている.
- 6 この 3D プリンターは材料として微粒子調整ダブルネットワークゲル (略称:P-DN ゲル) を使用
- 7 している. このゲルは強電解質性を示すモノマー由来の堅く脆い高分子ネットワーク (1st ネット
- 8 ワーク) と、中性を示すモノマー由来の柔軟な高分子ネットワーク (2nd ネットワーク) が相互侵
- 。 入網目構造をとっている複合材料である.この P-DN ゲル溶液に UV レーザーを照射することで
- 10 ラジカル反応が生じ、ゲルの3次元構造をつくることができる.

11 2.3 Suntory-3D on the Rocks[2]

- 12 氷を掘削し様々な彫刻を作りお酒に入れて楽しむ試みがある. 多軸の CNC を使い掘削するこ
- 13 とで高精度の彫刻を作ることができるが、一般に普及させるのはコストならびに加工中の冷却の
- 14 面から考えると難しい.

図 2.2 適当なサンプル 2

https://mag.sendenkaigi.com/brain/201406/up-to-works/002420.php

2.4 A Layered Fabric 3D Printer for Soft Inter-active Objects[3]

- 2 この研究では布の造形物を印刷するためのプリンターを紹介している.また,布の中に導電繊
- 3 維の層を入れたり、コイル状の布を入れることで、タッチセンサーとしての利用法や NFC を使
- 4 い LED を光らせるアプリケーションが紹介されている. このプリンターの仕組みは, 布のロー
- 5 ルを引き出し天板に吸着させ固定し、レーザーでモデルの輪郭を切断し布のロールから切り出す.
- 6 この工程を繰り返し、アイロンの熱で接着していくことで造形物が完成する.

図 2.3 適当なサンプル 2

https://thelastnewspaper.com/a-layered-fabric-3d-printer-for-soft-interactive-objects/

2.5 Additive manufacturing of optically trans-parent glass[4]

- 8 ガラスをマテリアルに使ったこの研究では、高温で流動性の高い状態に保持されたガラスを貯
- 。 めておき, そのガラスを垂らすことで造形していく. 実際に造形されたガラスの造形物は一回の

- 1 ストロークで出せるラインは太く分厚いものであり、細かい造形はできないがサイズの大きい花
- 2 瓶のようなものを造形することができる. この手法で造形された花瓶は光を乱反射させる特性が
- 3 あり、上からライトを当て光の波紋を楽しむアプリケーションが提示されていた.

図 2.4 適当なサンプル 2

図 2.5 適当なサンプル 2

https://www.behance.net/gallery/65276297/GLASS-I

図 2.6 適当なサンプル 2

https://www.solidsmack.com/fabrication/
mits-mediated-matter-group-unveils-transparent-glass-3d-printer/

2.6 静電インクジェット式 3D プリンタによる高粘度食品材料の高 精度プリント [5]

- 3 この研究では静電インクジェット法を用いることで、高い印刷精度で高粘度材料を用いた、視
- 4 覚的、味覚的に優れた食品の印刷を可能にする 3D プリンターの開発をしている.
- 5 従来の食品の 3D プリンターには熱溶解式 (FDM) 式 3D プリントを用いたチョコレートの印刷
- 6 がある.しかし、熱溶解式では積層ピッチが約 0.5[mm] 以上と非常に粗く、また高粘度材料をプ
- 7 リントする際には添加物を加える必要がある.この添加物には、食品の味に影響が出てくる問題
- ® 点がある. 静電インクジェット法を用いると、この問題を解決すると同時に高精度な印刷が可能
- 。となる. 下の模式図の様なチョコレートプリンターを作製し, 実験を行った.

図 2.7 適当なサンプル 2

- 1 この 3D プリンターは高粘度食品材料であるミルクチョコレートに高電圧を加え微小液滴を吐
- 2 出し、下図のような超微細なラインを印刷することを可能にする. また電圧のコントロールに
- 3 よって、吐出するラインの径を制御することもできる.

図 2.8 適当なサンプル 2

1 2.7 フルカラー 3D プリンター—2D 印刷から 3D 印刷へ—[6]

- $_2$ フルカラー $_3$ D プリンターについて紹介する.このプリンターは $_3$ UV(紫外線) 硬化インクジェッ
- 3 ト方式を採用したことで任意の 3D 形状の造形を可能にすると同時に、その表面にフルカラーで
- 4 印刷することができる. このフルカラー 3D プリンターにより, クリエイターの創造物が画面の
- 5 中だけではなく、今までより容易に手に取れるようになっている。新しい市場も徐々に出現し始
- 。 めていて、最近では 3D 撮影による人文やペットのリアルなコピー造形物が話題になっている.
- 7 この 3D プリンターは、下図のようにインクを UV 光源で硬化させながら積層法で造形を行う.

図 2.9 適当なサンプル 2

。 $2D \ge 3D$ を比較した時、フルカラー 3D プリンターでは下図のような印刷が行われている.

図 2.10 適当なサンプル 2

- 2D の印刷では画像データの濃度によりカラーインクの量が変化するが、これを 3D に適用する
- 2 とカラー創の外形が崩れてしまうため、カラーインクのない空きスペースには透明インクを補填
- 3 して外形を保つ工夫をしている.

4 2.8 3D プリンタのセラミックスへの適用 [7]

- 5 この研究では、セラミックス材料を用いた 3D プリンター開発を行っている. 主にセラミック
- 6 ス緻密体を作製する基礎検討に関しての研究である.
- 7 今回このプリンタには、SLM 方式を採用する. この方式では下図のように、薄く敷き詰めた粉
- 末床にレーザや電子ビームを走査して粉末を溶解し、順次積層することで3次元の造形物を得る.
- 。 昨今では、レーザや電子ビームの出力向上に伴い、新規な材料の適用が可能となってきているが、
- 10 セラミックスに関しては、急熱急冷を伴うプロセスの特性上衝撃熱が発生するため構造体の密度
- 11 向上が難しく、工業的な部材の製造は実現していない.この高密度焼結体の迅速な 3 次元造形が
- 12 実現すれば、小ロットの射出成形やテープ整形の代替、複雑形状を生かした高性能セラミックス
- 13 フィルターや半導体作製用の露光ステージへの利用が期待できる.

図 2.11 適当なサンプル 2

- 1 熱衝撃を回避したセラミックスの SLM 法として,直接セラミックスを焼結せずに,レーザに
- 2 よる形状の作製と焼結による密度向上を分離した間接法が考案されている.この間接法では,セ
- 3 ラミックスと低融点の樹脂成分と複合化した粉末を用い、樹脂部分のみをレーザ溶解することで
- 4 シート成形,グリーン体を作製し、その後、脱脂・焼結することによりセラミックス単体の焼結
- 5 体を得るものである.間接法を用いた様々な試みがなされてきたが、造形に時間がかかる、密度
- 6 が低いなどの理由で工業的な利用には未だ至っていない.
- 7 この研究では、高強度アルミナ焼結体の作製を目的とした間接法プロセス構築のための検討を
- 8 行い、アルミナの相対密度が94%の焼結体の作製に成功している。検討のため、①~③のそれぞ
- 。 れの特性に着目した
- 10 ①原料セラミックスの選定・粒子径・粒子径分布
- 11 ②原料樹脂の選定・脱脂性・樹脂の融点またはガラス移転点
- 12 ③造粒粉の作製・流動性・粒子径・かさ密度・1 個粒子の密度
- 13 その他にも、SLM 条件の最適化、3D プリンタ内の粉体挙動のシュミレーションを行った結果、
- 14 以下の図のような,アルミナの相対密度が 94 %セラミック緻密体を作製することに成功した.

図 2.12 適当なサンプル 2

第 3 章

仮説と提案

。3.1 氷をマテリアルとした 3D プリンター

- 4 3D プリンターに実装した、氷を作るための機構について述べる. これまでの氷の造形方法は大
- 5 きく分けて2つある.大きな氷から切削して造形するもの.もう一つが、水を少しずつたらし長
- 6 時間をかけて、造形するのもがある. どちらも取り扱いが難しく、造形するのに長時間を要して
- 7 しまうのが問題だ、また、短時間できる氷の造形として、過冷却水を使っての造形が有名である.
- ® しかし、過冷却水の場合準備に時間がかかる上、温度変化に敏感で少しの衝撃でも凍り始めてし
- 。 まうため、制御が難しい. 一般の人でも扱いが可能かつ, 一般のユーザーが設計したデータにで
- 10 きるだけ近い形に印刷できる氷をマテリアルとした 3 D プリンターの提案する. 必要な要素とし
- 11 ては以下のようである.
- 1. ある程度の精度で造形ができること.
- 2. 通常の3 D プリンターと同程度の速度で印刷ができること.
- 14 3. 氷の定義を満たしていること.
- 15 4. 3D プリンターが扱える人であれば、短時間で扱えるようになること.
- 16 それぞれの要素について実装にするにあたり、以上のことが有効ではないかと考える.「ある程
- 17 度の精度で造形ができること.」「通常の3Dプリンターと同程度の速度で印刷ができること.」を
- 18 満たすために液体窒素を使った造形方法が有効ではないかと考える.また,他の研究では、特殊
- 19 な機材を使用し、装置が高価になりがちである。液体窒素は、日本各地で手に入る上、価格も1

1 リットルあたり 300 円と安価であるため、今回の研究で使用することにした.「3D プリンターが 扱える人であれば、短時間で扱えるようになること.」を満たすためには、既存の 3D プリンター と同様の使用方法で使える必要があるため、世界中で使用されている 3D プリントおよびスライ サーソフトウェアである Ultimaker Cura で操作が可能である必要があると考える. 氷の定義を したことで、純粋な水以外でも氷の造形ができる. 純粋な水を積層する場合、水の粘度が低いた め、固まる前に広がってしまう. そのため造形精度が悪く、造形物のからはみ出した部分には造 形ができず、オーバーハングなども造形することが難しい. よって、水の粘度を上げることによ り、上記の問題を解決できるのではと考える. また、粘度を上げる手段として、いくつかの方法 が考えられる. 水に砂糖などを加え粘度を上げる方法とシャーベット状のものをマテリアルとし て使用する方法だ. シャーベット状のものを使用する場合は、温度管理が必要になるため、今回 の機構では、砂糖を加え粘度を高めたものをマテリアルとして使用する.

第 4 章

機構の実装

3 4.1 予備実験

2

- 4 水に砂糖等の粘度を上げられる物質を添加し造形を行う方式の実証を行った. 初めに, 3D プリ
- 5 ンターとして自動化させる前に、水の粘度が造形物の造形速度、造形精度、オーバーハングの造形
- 6 に影響を与えるのか調査を行った. 造形の仕組みは図のようになっている. 実験の装置は、 保温
- 7 のため一番下に発泡スチロールの容器を用意した. その上に-196 度の液体窒素を十分に注ぎ、さ
- 。 らにその上からアルミトレーを沈める. それにより, アルミトレーも液体窒素に近い温度まで冷
- 。 やされ、そこに注射器を使い水あめと水の中間の粘度の水をたらすことで、冷やされた水が氷に
- 10 変わる.冷やされた氷の温度は0度よりも低く、その上に水をたらすと氷柱ができるように氷が
- 11 積層される.

図 4.1 適当なサンプル 2

図 4.2 適当なサンプル 2

図 4.3 適当なサンプル 2

1 制作した装置は図 2 である.この装置を使い,水の粘度がどの程度、造形速度と造形精度に影響するのか調査を行った.造形物はオーバーハングの調査を行うため図のように中を空洞になる ように造形を行った. 実際に制作した装置を使い造形を行ったものが図である.造形時間は約 5 分ほどで完成した.造形精度の問題もあるが通常の 3D プリンターよりもかなり早い結果になっ た.大きさは横幅約 3 センチ,高さ約 1.5 センチほどである.使用した水の量は,約 200ml ほど

である.初めに想定した形通りに造形ができ、オーバーハングの造形も成功した.また、発見し

た特徴として、透明度の高い氷を制作することができた.

図 4.4 適当なサンプル 2

8 結果は予想通り、造形速度の改善と、オーバーハングができない問題の解消、これら二つを改 善しつつ、さらに造形精度の向上ができた。通常のプラスチックをプリントする 3D プリンター 2 と比較して、押し出される水の粘度が関係していることが分かった。また、造形する際に使用し た水が砂糖を溶かすために加熱していたた。この余熱があったため、注射器から押し出すときの 温度が 50 度くらいになっていた。そのため、液体窒素の注射器内部の水が冷え固まらず、すでに 造形されている造形部分の表面を溶かすため、造形物が水をはじくことなく接着できているので はないかという仮説が仮説を立てることができた.

4.2 造形の仕組み

- 2 予備実験では、液体窒素と水に砂糖を混ぜ粘度を上げることにより、ある程度の精度と速度を
- ₃ 持つ事が分かった.ここでは、予備実験を自動化させ、プリンターが氷を積層造形していく仕組
- 4 みについて解説する. 造形用のペットに熱伝導率の高い金属製のアルミプレートを使用し、液体
- 5 窒素の保温性を高める為発泡スチロールでできた容器に沈めた.液体窒素は-196℃であり、アル
- 。 ミプレートもそれに近い温度まで冷やされる. そこに水をたらすことで、水が冷やされ氷が作ら
- 7 れる.氷は、アルミプレートを通して、液体窒素により冷やされ続けるため、氷の温度も0℃以
- 家下になる、その上に水をたらすとその水も氷へと状態が変化し氷が積層される。

。4.3 液体窒素を用いた造形の実装

- 10 ここでは、液体窒素を使用した造形機構について述べる.機構の全体像は図のようになってい
- 11 る.ノズルから水を供給するためのシリンジを押し出す機構を実装した.また,今回の水は粘度
- 12 を持たせているため、長いチューブを用いてしまうと、抵抗で押し出すのが難しくなる. そのた
- 13 めシリンジからノズルまでの距離ができるだけ短くなる機構を実装した.

14 4.4 プリンターの制御

- 15 氷の 3D プリンターの制御は,Marlin-Ai3M という 3D プリンターの制御用アプリケーション
- 16 と Mariln というファームウェアを一部改造し使用している.改造内容は,モーターの駆動方向の
- 27 変更, モータードライバーへの対応, 3 D プリンターは安全装置として, 一定の温度以下で作動
- 18 しないようになっている.この安全装置が 0 ℃以下で稼働する氷の 3 D プリンターでは必要が無
- 19 いため, 無効にさせた.この作業を行ったことにより, 基本的に一般に販売されている 3D プリン
- 20 ターと同じように制御することができる.

14.5 シリンジの機構

- 2 シリンジを押し出して水を供給するために、既存のエクストルーダー用のモーターを利用して
- 3 いる.シリンジを押し出すためにモーターの回転を上下の運動へ置き換えるために、全ねじ棒を
- 4 使用した、また、そのままモーターを直結してしまうと、力不足になることが想定されてため、ギ
- 5 ヤで回転数を調整している. 既存の 3D プリンターでは、フィラメントを押し出すモーターを利
- 6 用しているため、PC を使い水の押し出し量を自由に調整することが可能であり、安定して造形が
- 7 できる設定を模索することができる.

。4.6 ベッドの機構

- 変体窒素で氷を造形するベッドとして、大きく2つに分けられる。1つ目が液体窒素用のトレー
- 10 だ.液体窒素用のトレーでは、下に保温性を高め、液体窒素の持ち時間を長くするために、発泡
- 11 スチロールを使用した.また、アルミプレートの下に液体窒素がたまるようにくぼみをつけてい
- 12 る.2つ目が造形用のトレーだ.熱伝導率の高い金属のプレートを使用する.今回はアルミ製の
- 13 プレートを使用した.また,造形したものを取り出しやすくするために、取り外しが容易な設計
- 14 を行った. 完成したハードは図のようになっている.

第5章

実験

₃ あああ

1

- 4 5.1 プリンターの動作検証
- 5 あああ
- 。5.2 ノズルの高さ、移動速度、水の量による造形の変化
- 7 ああ
- 。5.3 動作の確認
- 9 あああ
- 10 5.4 動作の確認
- 11 ああああああ

第6章

使用例

。6.1 段落と改行

2

- 4 段落頭の字下げは自動で行われるため、全角スペースによる手動調整は不要であり、禁止であ
- 5 る。IAT_FX ソース中での改行は空行を挟まない場合は無視される。ソース内では自分で編集しや
- 6 すいように改行してよい。
- 7 このように、空行を挟むと改段落となる。また、強制改行は
- 。 このように \\ で強制的に行うことができる。しかし、この場合は段落の字下げもされないため、
- 。 改段落を行う用途には空行を用いるべきで、強制改行 (\\) は利用すべきではない。
- しかしながら、例えば \verb 環境やインライン数式を用いる場合などで、abcdefghijklmnopqrstuvwxyzA
- ու というようにページ幅を超えてしまったり、前の行が間延びしてしまうようなケースがある。そ
- 12 のような場合、\\ を用いて強制改行により
- abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ というように用いるとよい。

14 6.2 箇条書き

- 15 数字を使った場合の箇条書きの例を示す。
- 1. 数字の付いた箇条書きの例
- 2. こんな感じで手順などを列挙
- 数字を付けずに列挙したい場合は itemize 環境を使う。このようにあるキーワードを指定して

- 」 \begin(} と \end{} で囲む範囲のことを○○環境と呼ぶ。
- 2 順番などを伴わない箇条書きの例
- enumerate 環境や itemize 環境は、入れ子構造を持つことができる。例えば enumerate 環境
- 5 の場合、以下のようになる。
- 6 1. 東京都
- 7 (a) 八王子市
- 8 (b) 多摩市
- 9 2. 神奈川県
- 10 (a) 横浜市
- 11 (b) 川崎市
- 12 3. 山梨県

13 6.3 図表と参照

- 14 図を挿入する際は以下のように書く。必ずキャプションを付けるとともに、図に対する説明を
- 15 本文中で記載すること。何かの手違いで図が表示されなくなったとしても、文章で意味が通じる
- 16 くらいに説明するのを目安にすること。以下の図 7.1 と図 7.2 は、適当なサンプル画像である。

図 6.1 適当なサンプル

図 6.2 適当なサンプル 2

- これまで、IPTEX での図は伝統的には EPS 形式が用いられてきたが、近年では JPEG 形式や
- 2 PNG 形式など多くの画像フォーマットに対応している。Inkscape や Illustrator 等のように直
- ₃ 接 EPS 形式を出力する場合は EPS を用いることが望ましいが、それ以外の状況では EPS への
- 4 変換は行わずに画像ファイルを直接指定した方が品質が良い。ただし、JPEG や PNG などの画
- ${\mathfrak s}$ 像ファイルは EPS に比べて ${\operatorname{IMT}}_{\operatorname{E\! X}}$ のコンパイルが長時間になる傾向があり、あまり巨大な画像
- 6 データを使用するとかなりコンパイル時間が長くなってしまうので、注意が必要である。また、使
- 7 用する画像ファイルはこのテンプレートのように fig サブフォルダ内に格納することを推奨する。

- 1 図への参照は \label コマンドを用いて各図のキャプションにキーワードを付けておき、文中
- 2 で \ref コマンドによってキーワードを指定することで記述する。キーワードは参照対象に応じ
- 3 てプリフィクスを付けることが望ましい。以下の表 7.1 に一般的に用いる参照対象ごとのプリ
- 4 フィクスを挙げる。

表 6.1 ラベルに指定するキーワードのプリフィクス一覧

参照対象	プリフィクス
章	chp:
節	sec:
図	fig:
表	tbl:
式	eqn:

5 手作業でのナンバリングは非効率極まりない上に必ずミスが出るので行わないこと。

6.4 LATEX のコンパイル

- 7 IATeX のコンパイルは、「コマンドプロンプト」や「PowerShell」などのコマンドライン上で
- 。「latexmk」コマンドを用いる。例えば、「M01xxyyy.tex」というファイルから PDF を作成した
- 。 い場合は
- 10 latexmk MO1xxyyy
- 11 というように、拡張子を抜いてコマンドラインで指定する。
- また、コマンドラインに不慣れな学生は、Atom エディタ等の LATEX パッケージを用いること
- 13 も良案である。Atom エディタを用いた IATFX の記述については、研究室 Wiki を参照のこと。

第7章

今後の展望

。7.1 段落と改行

2

- 4 段落頭の字下げは自動で行われるため、全角スペースによる手動調整は不要であり、禁止であ
- 5 る。IAT_FX ソース中での改行は空行を挟まない場合は無視される。ソース内では自分で編集しや
- 6 すいように改行してよい。
- 7 このように、空行を挟むと改段落となる。また、強制改行は
- 。 このように \\ で強制的に行うことができる。しかし、この場合は段落の字下げもされないため、
- 。 改段落を行う用途には空行を用いるべきで、強制改行 (\\) は利用すべきではない。
- 10 しかしながら、例えば \verb 環境やインライン数式を用いる場合などで、abcdefghijklmnopqrstuvwxyzA
- ո というようにページ幅を超えてしまったり、前の行が間延びしてしまうようなケースがある。そ
- 12 のような場合、\\ を用いて強制改行により
- abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ というように用いるとよい。

14 7.2 箇条書き

- 15 数字を使った場合の箇条書きの例を示す。
- 1. 数字の付いた箇条書きの例
- 2. こんな感じで手順などを列挙
- 数字を付けずに列挙したい場合は itemize 環境を使う。このようにあるキーワードを指定して

- 」 \begin(} と \end{} で囲む範囲のことを○○環境と呼ぶ。
- ₂ 順番などを伴わない箇条書きの例
- enumerate 環境や itemize 環境は、入れ子構造を持つことができる。例えば enumerate 環境
- 5 の場合、以下のようになる。
- 6 1. 東京都
- 7 (a) 八王子市
- 8 (b) 多摩市
- 9 2. 神奈川県
- 10 (a) 横浜市
- 11 (b) 川崎市
- 12 3. 山梨県

13 7.3 図表と参照

- 14 図を挿入する際は以下のように書く。必ずキャプションを付けるとともに、図に対する説明を
- 15 本文中で記載すること。何かの手違いで図が表示されなくなったとしても、文章で意味が通じる
- 16 くらいに説明するのを目安にすること。以下の図 7.1 と図 7.2 は、適当なサンプル画像である。

図 7.1 適当なサンプル

図 7.2 適当なサンプル 2

- これまで、IPTEX での図は伝統的には EPS 形式が用いられてきたが、近年では JPEG 形式や
- 2 PNG 形式など多くの画像フォーマットに対応している。Inkscape や Illustrator 等のように直
- ₃ 接 EPS 形式を出力する場合は EPS を用いることが望ましいが、それ以外の状況では EPS への
- 4 変換は行わずに画像ファイルを直接指定した方が品質が良い。ただし、JPEG や PNG などの画
- ${\mathfrak s}$ 像ファイルは EPS に比べて ${\operatorname{IMT}}_{\operatorname{E\! X}}$ のコンパイルが長時間になる傾向があり、あまり巨大な画像
- 6 データを使用するとかなりコンパイル時間が長くなってしまうので、注意が必要である。また、使
- 7 用する画像ファイルはこのテンプレートのように fig サブフォルダ内に格納することを推奨する。

- 1 図への参照は \label コマンドを用いて各図のキャプションにキーワードを付けておき、文中
- 2 で \ref コマンドによってキーワードを指定することで記述する。キーワードは参照対象に応じ
- 3 てプリフィクスを付けることが望ましい。以下の表 7.1 に一般的に用いる参照対象ごとのプリ
- 4 フィクスを挙げる。

表 7.1 ラベルに指定するキーワードのプリフィクス一覧

参照対象	プリフィクス
章	chp:
節	sec:
図	fig:
表	tbl:
式	eqn:

5 手作業でのナンバリングは非効率極まりない上に必ずミスが出るので行わないこと。

。7.4 LATEX のコンパイル

- 7 IATeX のコンパイルは、「コマンドプロンプト」や「PowerShell」などのコマンドライン上で
- 。「latexmk」コマンドを用いる。例えば、「M01xxyyy.tex」というファイルから PDF を作成した
- 。 い場合は
- 10 latexmk MO1xxyyy
- 11 というように、拡張子を抜いてコマンドラインで指定する。
- また、コマンドラインに不慣れな学生は、Atom エディタ等の LATEX パッケージを用いること
- 13 も良案である。Atom エディタを用いた IATEX の記述については、研究室 Wiki を参照のこと。

第8章

その次

。8.1 数式

- 数式のインラインモードは $x^2 + y^2 < 1$ のように表示させることができる. インラインモード
- 5 で「\$...\$」を使うやり方は、近年の LaTeX ではあまり推奨されていないが、その利用は妨げ
- 6 ない.
- ァ ディスプレイ数式モードを利用する際に推奨するのは equation 環境である.

$$\mathbf{A}_p = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{B}|^2} \mathbf{B}. \tag{8.1}$$

- 8 数式の参照は「\ref」ではなく「\eqref」を用いる.上記の数式を参照すると「式 (8.1)」とな
- 。 る. このように、\egref を用いた場合は数式中と同じ様式の括弧がつく.
- 10 また、複数行にわたる数式を表示したい場合は align 環境を用いることを推奨する. 以下の式
- 11 (8.2) にその例を示す.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

$$= \sum_{i}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}. \tag{8.2}$$

- 2 数式で複数行を用いる方法として、古い IATrX に関する資料では eqnarray 環境の解説を行っ
- 13 ている場合があるが、最近の \LaTeX では幾つかのパッケージ (特に \LaTeX 関連) と同時に利用す
- 14 ると問題が発生することがあるため、利用は推奨しない. 複数行を用いる方法としては他にも

- 1 gather, multline, split など多くの環境があるが、equnarray 以外のものであれば問題はない。
- 2 具体的な数式の記述方法については書籍や Web 上の情報等を参照のこと。

38.2 寸法

- 4 IATEX では、縦方向や横方向に空白を空けたいとき (\vspace, \hspace) や、画像の縦幅や横
- ₅ 幅を指定したい場合など、多くの場面で寸法を指定することがある。IATFX の寸法単位は mm (ミ
- 。 リメートル) や cm (センチメートル) など多くの種類が利用でき、小数点以下も記述できるため
- 7 かなり柔軟な指定ができる。例えば、表のキャプションと本体の間を少し空けたいときは
- 8 \begin{table}[H]
- 。 \caption{ラベルに指定するキーワードのプリフィクス一覧}
- 10 \label{tbl:pre_list}
- 11 \centering
- vspace{0.5cm}
- 13 \begin{tabular}{||1||r||} \hline
- 14 のように、表本体の直前に \vspace を入れればよい。
- IATeX の寸法指定で留意すべきこととして、単位の「true つき」と「true なし」の使い分けが
- 16 ある。例えば、先述の「\vspace{0.5cm}」に対し、true つきの場合は「\vspace{0.5truecm}」
- 17 ということになる。
- true がついていない場合、\documentclass の指定時でのフォントサイズを変更すると、その
- 19 フォントサイズに伴って (空白幅や画像幅などの) 実際の寸法も変化する。フォントサイズを変更
- 20 した際に連動してほしい寸法については、この「true なし」を用いるとよい。一方、「true つき」
- 21 の場合はフォントサイズの変更には連動せず常に固定の値となる。センタリングした画像幅など
- 22 はフォントサイズと連動しない方が都合がよいことも多く、そういった場合は「true つき」の寸

1 法を指定するとよい。

2 8.3 参考文献

- 参考文献リストの作成は、BibTeX を用いることを推奨する。文献の参照は、リスト上で文献に
- 4 付けたキーワードを cite コマンドによって指定することで記述する。例えば、「阿部ら [?] による
- 5 と、某手法 [8] には重大な欠点が存在することが指摘されている。」という利用方法となる。
- 。 文献を1つも参照していない状態で PDF を生成するバッチファイルを実行するとエラーとな
- っるので注意すること。生成した PDF ファイル中で参照がうまくできていない場合には参照番号
- 。 ではなく「?」記号が表示される。
- 9 BibTeX の記述方法は、どのような種類の文献かによって異なる。以下に具体的な例を列挙
 10 する。
- □ 論文誌掲載の学術論文 [?][8]
- 研究会の研究報告 [9]
- 博士論文 [10]
- 修士論文 [11]
- 学部卒業論文 [12]
- 16 書籍 [13]
- URL[14]
- 文献の属性の種類や、設定するべきステータスについても Web を参照すること。論文データ
- 19 ベースサイトでは BibTeX の記述形式によるテキストを出力してくれるところもあるので、利用
- 20 できると便利である。リストの記述順は一切気にする必要がなく、参考文献に挙げないものが含
- 21 まれていても問題無いので、関連しそうな文献は全てリスト化しておくとよい。
- ₂₂ BiBT_FX における著者名の列挙はカンマで並べるのではなく、

- author = "阿部 雅樹 and 渡辺 大地 and 三上 浩司",
- 2 というように、各氏名の間に「and」を入れるという独特の形式を持つ。
- また、BibTeX では author や title 等でのアルファベット大文字小文字を自動的に変換する機
- 4 能があり、例えばタイトル中の「3DCG における」といった文字列は「3dcg における」となる。
- 5 これを強制的に大文字小文字を指定したい場合は、
- title = "{3DCG}における何かしらの手法",
- 7 のようにその部分だけ波括弧で囲うことで指定できる。

謝辞

- 2 謝辞は基本的に査読の対象とならない。各人の自由に記述して良い。ただし、あまりに公序良
- 3 俗に反する内容である場合は修正を求める場合があるので、はっちゃけるにしても良識・常識の
- 4 範疇を超えないようにして欲しい。

参考文献

- 2 [1] 岡田耕治, 渡邉洋輔, 齊藤梓, 川上勝, 古川英光. 3d ゲルプリンティング. ネットワークポリマー論文集, Vol. 37, No. 2, pp. 81–87, 2016.
- ⁴ [2] Suntory-3D on the Rocks. 2017-10-16.
- ⁵ [3] Huaishu Peng, Jennifer Mankoff, Scott E. Hudson, and James McCann. A layered fabric
- 3d printer for soft interactive objects. In Proceedings of the 33rd Annual ACM Conference
- on Human Factors in Computing Systems, Vol. 2, pp. 1789–1798, 2015.
- 8 [4] Michael Stern, Giorgia Franchin, Markus Kayser, John Klein, Chikara Inamura, Shreya-
- Dave, James C Weaver, Peter Houk, Paolo Colombo, Maria Yang, and Neri Oxman.
- Additive manufacturing of optically transparent glass. 3D Printing and Additive Manu
- facturing, Vol. 2, No. 3, pp. 92–105, 2015.
- 12 [5] 鈴木祐哉, 高岸賢輔, 梅津信二郎. 静電インクジェット方式 3d プリンタによる後年度食品材
- 13 料の高精度プリント. ライフサポート学会, 2016.
- [6] 八角邦夫. 静電インクジェット方式 3d プリンタによる後年度食品材料の高精度プリント. 科学と教育, Vol. 68, No. 2, pp. 66-67, 2020.
- 16 [7] 陶山剛. 3d プリンタのセラミックスへの適用. 科学と教育, Vol. 68, No. 2, pp. 66-67, 2020.
- [8] D.Nowrouzezahrai, J.Johnson, A.Selle, D.Lacewell, M.Kaschalk, and W.Jarosz. A Pro-
- grammable System for Artistic Volumetric Lighting. ACM Transactions on Graphics,
- Vol. 30, No. 4, pp. 29:1–29:8, 2011.
- 20 [9] 青木明優花, 阿部雅樹, 渡辺大地. 洋服シワに対するキャラクターイラスト特有の影形状のリ
- 21 アルタイムレンダリング. 情報処理学会研究報告デジタルコンテンツクリエーション (DCC),
- Vol. 2020-DCC-24, No. 24, pp. 1–8, 2020.

- 1 [10] 竹内亮太. ストローク履歴を活用した 3 次元形状モデリング手法の研究. 博士論文, 東京工科
- 大学大学院バイオ情報・メディア研究科メディアサイエンス専攻, 2013.
- 3 [11] 阿部雅樹. エネルギー波表現のリアルタイムレンダリング. 修士論文, 東京工科大学大学院バ
- 4 イオ情報・メディア研究科メディアサイエンス専攻, 2010.
- 5 [12] 阿部雅樹. ボリュームレンダリングを用いたエネルギー波のリアルタイム形状変形. 学部卒業
- 6 論文, 東京工科大学メディア学部ゲームサイエンスプロジェクト, 2008.
- 7 [13] 鳥山明. DRAGON BALL 大全集 鳥山明ワールド (7). 集英社, 1996.
- 8 [14] Effekseer 開発チーム. Effekseer. http://effekseer.github.io/jp/index.html. 参照:
- 9 2016.4.15.