Task Offloading and Resource Allocation in Mobile-Edge Computing System

Presenter: Te-Yi Kan

Te-Yi Kan, Yao Chiang, Hung-Yu Wei Dept. of Electrical Engineering
National Taiwan University

2018/05/01

Outline

- * Introduction
- *** Motivation**
- * Problem Description
- * Proposed Algorithm
- * Simulation Result
- *** Conclusion**

Introduction

* Mobile-Edge Computing (MEC) system

- * Lots of mobile applications are resource intensive.
- Providing computation resources at the edge of RAN?

Motivation

- * Promoting QoS as well as considering two critical features of tasks and devices.
 - Different tasks have different delay tolerance.
 - * Task execution cannot run out of the energy of the device.
- * We take two types of resource allocation into account.
 - * Radio resource allocation
 - Computation resource allocation

Problem Description

*** Three major parts:**

*** Multiuser system**

+ Each device has exactly one task and its own remaining energy.

Single MEC server

This MEC server has limited computation resources.

* Multi-channel system

+ Each sub-channel can be occupied by only one device.

*** Three correspond problems:**

- **❖** Offloading decision problem
- Computation resource allocation
- * Radio resource allocation

Problem Description

***** Formulation of these problems:

- Each device has its own offloading decision $x_n \in \{0,1,2,...,M\}$.
- ***** If $x_n = 0$:
 - + This device select local execution.
- \ast Otherwise, $x_n = m$:
 - This device select to offload its task via the sub-channel m
 - + This device will acquire some computation resources.

Problem Description

*** Cost function:**

* To take delay tolerance and remaining energy into account.

* The cost of failed task φ is much greater than normal cost.

Proposed Algorithm

* Three steps in our algorithm:

Proposed Algorithm (Devices Classification)

* Devices Classification

- * Three sets: S_{mec} , S_{local} and S_{other}
- * Task execution failure should be avoided.

Proposed Algorithm (Priority Assignment)

*** Priority Assignment**

- * Assigning a priority \emptyset_n to each device in S_{mec} and S_{other}
- The devices which would reduce more cost by offloading have higher priority to offload.

Proposed Algorithm (Resource Allocation)

*** Resource Allocation**

- * First, assigning sub-channels to the devices in S_{mec}
- * After assignment for S_{mec} , we'll consider S_{other} .
- Finally, allocating computation resources to those offloading devices.

Simulation Result

*** Comparison schemes:**

- * Always local execution
- * Always offloading

Conclusion

- * We discuss two issues in MEC system.
 - * Task offloading
 - * Resource allocation
- * Formulating a cost minimization problem.
 - * To take delay tolerance and remaining energy into account.
- * Our solution is more efficient and consistent with reality.
 - * We consider three critical problems.
 - * Taking delay tolerance and remaining energy into account.

Thanks for your attention!

