

Wine Quality Classification

Hands-on

Introduction to Data Science Elective

On behalf of the PDEng Data Science

5 November 2019

Agenda

Yesterday:

Exploratory analysis of the Wine Quality dataset.

Today:

Machine learning: wine quality classification.

Learning from data

Inputs and Outputs

Inputs

- Words, sentences
- Images, videos
- Sensor observations, time series
- Voice

Outputs

Class label

Inputs and Outputs in the Wine Data

Inputs

Fixed acidity	Total sulfur dioxide
Volatile acidity	Density
Citric acid	рН
Residual sugar	Sulphates
Chlorides	Alcohol
Free sulfur dioxide	

Outputs

Quality **Score** or **Class**Regression Classification

What is learning?

 Learning or training refers to estimate the parameters of a model.

Dataset

Machine learning is about generalizing to unseen data.

Split Data

Split dataset into a training and test set:

```
x_train, x_test, y_train, y_test = train_test_split(data_features,
data['grade'], test_size=0.1)
```


What data is out there?

Data in the PDEng Data Science

Types of learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning

LeCun's Cake Analogy

Y. LeCun

How Much Information is the Machine Given during Learning?

- "Pure" Reinforcement Learning (cherry)
- ➤ The machine predicts a scalar reward given once in a while.
- ► A few bits for some samples
- Supervised Learning (icing)
- ► The machine predicts a category or a few numbers for each input
- ► Predicting human-supplied data
- ► 10→10,000 bits per sample
- ► Self-Supervised Learning (cake génoise)
- ► The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- ► Millions of bits per sample
 © 2019 IEEE International Solid-State Circuits Conference

1.1: Deep Learning Hardware: Past, Present, & Future

Supervised Learning

 Given a dataset D of inputs x and <u>labeled</u> targets y, *learn* to predict y from x.

Most successful paradigm in machine learning.

Unsupervised Learning

• Given only the inputs x, models p(x) and find

Wine Quality Dataset

Supervised

Inputs

Fixed acidity	Total sulfur dioxide
Volatile acidity	Density
Citric acid	рН
Residual sugar	Sulphates
Chlorides	Alcohol
Free sulfur dioxide	

Outputs

Handcrafted features

Example: Decision Tree

Predict wine quality on the test data

How to evaluate our model?

Use a performance metric (e.g., accuracy)

Number of correct predictions made divided by the total.

How to interpret our model?

In a decision tree, compute feature importance.

```
importances = decisiontree.feature_importances_
indices = np.argsort(importances)
```


How to visualize our model?

Visualize the decision tree!

Support Material

Jupyter Notebook:

Wine Quality classification using decision tree.

Available in the shared folder @ https://bit.ly/34r6YUs

References

 A Few Useful Things to Know About Machine Learning, Domingos, 2012 (Link)

- Dataset source (<u>Link</u>)
- Modelling wine preferences by data mining from physicochemical properties (Link)
- Predicting wine quality using data analytics (Link)

References

- Predicting quality of wine based on chemical attributes (<u>Link</u>)
- Data analysis on the wine dataset (<u>Link</u>)
- Wine Quality Classification (<u>Link</u>)
- Vinho Verde webpage (Link)

Thank you for your attention!

