Principes de fonctionnement des machines binaires

Matthieu Picantin

méthode ordinaire

$$J = (\neg a \land \neg b) \lor (a \land \neg b) \lor (a \land b)$$
$$J = (\overline{ab}) + (\overline{ab}) + (\overline{ab})$$

méthode de Karnaugh

$$J = (\neg b) \lor (a)$$

$$J = \left(\overline{b}\right) + \left(a\right)$$

ces méthodes correspondent...

	<u> </u>	L)
′	`	0	1
2	0	0	1
а	1	1	0

... quand les 1 sont isolés

on représente le tableau sur un plan (fini)...

0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	0	1	0	0	1	1	1	1 0	de 0	1	0	0	1	1	1	1	0	1	0	0
1	1	1	1	0	0	1	1	010	011	0 1 1	010	100	101	101	100	1	1	1	1	0	0	1	1
0	1	1	0	0	0	1	1 0	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1
0	0	0	0	1	0	0	01	0	0	0	0	- 1	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	0	1	0	01	1	1	1	1	0	1	0	0	1	1	1	1	0	1	0	0
1	1	1	1	0	0	1	10	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	0	1	0	0	1	1	1	1	0	1	0	0	1	1	1	1	0	1	0	0
1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1

... mais on pense le tableau sur un plan infini, ou de façon équivalente sur un tore.

... mais on *pense* le tableau sur un plan infini, ou de façon équivalente sur un tore.

$$F = (a\overline{c}) + (\overline{b}\overline{c}e) + (\overline{a}bcd\overline{e}) + (abcde) + (\overline{b}c\overline{d})$$

La méthode de Karnaugh en bref

- Chaque 1 doit être dans au moins un rectangle.
- Un rectangle ne doit contenir que des 1 (ou des jokers).
- Un rectangle se place horizontalement ou verticalement, jamais en diagonale.
- Un rectangle est de taille $2^k \times 2^\ell = 2^{k+\ell}$ avec $k+\ell$ le nombre de variables libres (les variables libres n'apparaissent pas dans la clause).
- · Les rectangles peuvent s'intersecter.
- Les rectangles peuvent glisser sur les bords, alisser sur le tore.
- Chaque rectangle doit être aussi grand que possible.
- Il doit y avoir le moins possible de rectangle(s).