Generated on 2017-06-02 20:30:20 by gEcon version 1.0.2 (2016-12-05) Model name: rbc_hf

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, L_t^s, I_t, H_t} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left((1 - L_t^s)^{1 - \mu} (C_t - persH_t)^{\mu} \right)^{1 - \eta}$$
(1.1)

s.t. :

$$C_t + I_t = \pi_t + K_{t-1}^{\mathrm{s}} r_t + L_t^{\mathrm{s}} W_t \quad \left(\lambda_t^{\mathrm{CONSUMER}^1}\right)$$

$$\tag{1.2}$$

$$K_t^{s} = I_t + K_{t-1}^{s} (1 - \delta) \quad \left(\lambda_t^{\text{CONSUMER}^2}\right)$$
(1.3)

$$H_t = C_{t-1} \quad \left(\lambda_t^{\text{CONSUMER}^3}\right) \tag{1.4}$$

1.2 First order conditions

$$-\lambda_t^{\text{CONSUMER}^2} + \beta \left((1 - \delta) E_t \left[\lambda_{t+1}^{\text{CONSUMER}^2} \right] + E_t \left[\lambda_{t+1}^{\text{CONSUMER}^1} r_{t+1} \right] \right) = 0 \quad (K_t^s)$$
(1.5)

$$-\lambda_t^{\text{CONSUMER}^1} + \beta E_t \left[\lambda_{t+1}^{\text{CONSUMER}^3} \right] + \mu (1 - L_t^{\text{s}})^{1-\mu} (C_t - persH_t)^{-1+\mu} \left((1 - L_t^{\text{s}})^{1-\mu} (C_t - persH_t)^{\mu} \right)^{-\eta} = 0 \quad (C_t)$$
(1.6)

$$\lambda_t^{\text{CONSUMER}^1} W_t + (-1 + \mu) (1 - L_t^{\text{s}})^{-\mu} (C_t - persH_t)^{\mu} \Big((1 - L_t^{\text{s}})^{1-\mu} (C_t - persH_t)^{\mu} \Big)^{-\eta} = 0 \quad (L_t^{\text{s}})$$
(1.7)

$$-\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2} = 0 \quad (I_t)$$
(1.8)

$$-\lambda_t^{\text{CONSUMER}^3} - \mu pers(1 - L_t^s)^{1-\mu} (C_t - persH_t)^{-1+\mu} \left((1 - L_t^s)^{1-\mu} (C_t - persH_t)^{\mu} \right)^{-\eta} = 0 \quad (H_t)$$
 (1.9)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^d, L_t^d, Y_t} \pi_t = Y_t - L_t^d W_t - r_t K_t^d$$
(2.1)

s.t.:

$$Y_t = Z_t K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{1-\alpha}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t K_t^{\text{d}^{-1+\alpha}} L_t^{\text{d}^{1-\alpha}} = 0 \quad (K_t^{\text{d}})$$

$$(2.3)$$

$$-W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) K_t^{d^{\alpha}} L_t^{d^{-\alpha}} = 0 \quad (L_t^d)$$
(2.4)

$$1 - \lambda_t^{\text{FIRM}^1} = 0 \quad (Y_t) \tag{2.5}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad (K_t^{\mathrm{d}})$$

$$\tag{2.6}$$

$$-W_t + Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.7)$$

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{3.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

2

4.1 Identities

$$Z_t = e^{\epsilon_t^Z + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$C_{t-1} - H_t = 0 (5.1)$$

$$-\lambda_t^{\text{CONSUMER}^2} + \beta \left((1 - \delta) E_t \left[\lambda_{t+1}^{\text{CONSUMER}^2} \right] + E_t \left[\lambda_{t+1}^{\text{CONSUMER}^2} r_{t+1} \right] \right) = 0$$
 (5.2)

$$-r_t + \alpha Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s^{1-\alpha}} = 0$$
 (5.3)

$$-W_t + Z_t (1 - \alpha) K_{t-1}^{s} {}^{\alpha} L_t^{s-\alpha} = 0$$
(5.4)

$$-Y_t + Z_t K_{t-1}^{s} {}^{\alpha} L_t^{s1-\alpha} = 0 (5.5)$$

$$-Z_t + e^{\epsilon_t^{\mathbf{Z}} + \phi \log Z_{t-1}} = 0 \tag{5.6}$$

$$\lambda_t^{\text{CONSUMER}^2} W_t + (-1 + \mu) \left(1 - L_t^{\text{s}}\right)^{-\mu} (C_t - persH_t)^{\mu} \left((1 - L_t^{\text{s}})^{1-\mu} (C_t - persH_t)^{\mu} \right)^{-\eta} = 0$$
(5.7)

$$-\lambda_{t}^{\text{CONSUMER}^{2}} - \beta \mu pers E_{t} \left[\left(1 - L_{t+1}^{\text{s}} \right)^{1-\mu} \left(C_{t+1} - pers H_{t+1} \right)^{-1+\mu} \left(\left(1 - L_{t+1}^{\text{s}} \right)^{1-\mu} \left(C_{t+1} - pers H_{t+1} \right)^{\mu} \right)^{-\eta} \right] + \mu \left(1 - L_{t}^{\text{s}} \right)^{1-\mu} \left(C_{t} - pers H_{t} \right)^{-1+\mu} \left(\left(1 - L_{t}^{\text{s}} \right)^{1-\mu} \left(C_{t} - pers H_{t} \right)^{-\eta} \right)^{-\eta} = 0$$

$$(5.8)$$

$$-C_t - I_t + Y_t = 0 (5.9)$$

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (5.10)$$

$$U_t - \beta E_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left((1 - L_t^s)^{1-\mu} (C_t - prsH_t)^{\mu} \right)^{1-\eta} = 0$$
(5.11)

6 Steady state relationships (after reduction)

$$-\lambda_{\rm ss}^{\rm CONSUMER^2} + \beta \left(\lambda_{\rm ss}^{\rm CONSUMER^2} r_{\rm ss} + \lambda_{\rm ss}^{\rm CONSUMER^2} (1 - \delta)\right) = 0 \tag{6.1}$$

$$-r_{\rm ss} + \alpha Z_{\rm ss} K_{\rm ss}^{\rm s}^{-1+\alpha} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{6.2}$$

$$C_{\rm ss} - H_{\rm ss} = 0 \tag{6.3}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\rm s} {}^{\alpha} L_{\rm ss}^{\rm s} {}^{-\alpha} = 0$$
 (6.4)

$$-Y_{\rm ss} + Z_{\rm ss}K_{\rm ss}^{\rm s} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{6.5}$$

$$-Z_{\rm ss} + e^{\phi \log Z_{\rm ss}} = 0 \tag{6.6}$$

$$\lambda_{\rm ss}^{\rm CONSUMER^2} W_{\rm ss} + (-1 + \mu) \left(1 - L_{\rm ss}^{\rm s}\right)^{-\mu} \left(C_{\rm ss} - persH_{\rm ss}\right)^{\mu} \left(\left(1 - L_{\rm ss}^{\rm s}\right)^{1-\mu} \left(C_{\rm ss} - persH_{\rm ss}\right)^{\mu}\right)^{-\eta} = 0$$
(6.7)

$$-\lambda_{\rm ss}^{\rm CONSUMER^2} + \mu (1 - L_{\rm ss}^{\rm s})^{1-\mu} (C_{\rm ss} - persH_{\rm ss})^{-1+\mu} \Big((1 - L_{\rm ss}^{\rm s})^{1-\mu} (C_{\rm ss} - persH_{\rm ss})^{\mu} \Big)^{-\eta} - \beta \mu pers (1 - L_{\rm ss}^{\rm s})^{1-\mu} (C_{\rm ss} - persH_{\rm ss})^{-1+\mu} \Big((1 - L_{\rm ss}^{\rm s})^{1-\mu} (C_{\rm ss} - persH_{\rm ss})^{\mu} \Big)^{-\eta} = 0$$

$$(6.8)$$

$$-C_{\rm ss} - I_{\rm ss} + Y_{\rm ss} = 0 ag{6.9}$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0$$
 (6.10)

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left((1 - L_{\rm ss}^{\rm s})^{1 - \mu} (C_{\rm ss} - persH_{\rm ss})^{\mu} \right)^{1 - \eta} = 0$$
(6.11)

7 Calibrating equations

$$-0.36Y_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} = 0 (7.1)$$

8 Parameter settings

$$\beta = 0.99 \tag{8.1}$$

$$\delta = 0.025 \tag{8.2}$$

$$\eta = 2 \tag{8.3}$$

$$\mu = 0.3 \tag{8.4}$$

$$pers = 0.57 \tag{8.5}$$

$$\phi = 0.95 \tag{8.6}$$

9 Steady-state values

	Steady-state value
$\lambda^{ m CONSUMER^2}$	0.7116
r	0.0351
C	0.7494
H	0.7494
I	0.2584
$K^{ m s}$	10.3356
$L^{ m s}$	0.2721
U	-175.4236
W	2.3706
Y	1.0078
Z	1

10 The solution of the 1st order perturbation

Matrix P

$$\begin{array}{cccc} & C_{t-1} & K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ C_{t} & 0.5544 & 0.0151 & 0.1764 \\ K_{t}^{\mathrm{s}} & -0.5092 & 0.9817 & 1.1759 \\ Z_{t} & 0 & 0 & 0.95 \end{array}$$

Matrix Q

$$\begin{array}{c}
\epsilon^{Z} \\
C \\
K^{s} \\
Z
\end{array}
\begin{pmatrix}
0.1857 \\
1.2377 \\
1
\end{pmatrix}$$

Matrix R

Matrix S

$$\begin{array}{cccc} & \epsilon^{\rm Z} \\ \lambda^{\rm CONSUMER^2} & \begin{pmatrix} -0.3781 \\ 0.0496 \\ 0 \\ I \\ L^{\rm s} & 0.1753 \\ U & 1.2377 \\ 0.1753 \\ U & 1.20524 \\ W & 1.8206 \\ Y & 1.4234 \\ \end{pmatrix}$$

11 Model statistics

11.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
\overline{r}	0.0351	0.0046	0	N
C	0.7494	0.0333	0.0011	N
H	0.7494	0.0333	0.0011	N
I	0.2584	0.1077	0.0116	N
K^{s}	10.3356	0.3633	0.132	N
L^{s}	0.2721	0.0164	0.0003	N
U	-175.4236	1.1325	1.2825	N
W	2.3706	0.1719	0.0295	N
Y	1.0078	0.1325	0.0175	N
Z	1	0.0922	0.0085	N

11.2 Correlation matrix

	r	C	H	I	K^{s}	L^{s}	U	W	Y	Z
\overline{r}	1	0.623	0.263	0.993	0.14	0.994	0.918	0.92	0.965	0.98
C		1	0.911	0.674	0.826	0.701	0.867	0.865	0.799	0.758
H			1	0.315	0.899	0.358	0.584	0.582	0.485	0.429
I				1	0.232	0.997	0.95	0.951	0.983	0.992
K^{s}					1	0.243	0.521	0.516	0.396	0.332
L^{s}						1	0.954	0.956	0.987	0.996
U							1	1	0.99	0.978
W								1	0.991	0.979
Y									1	0.998
Z										1

11.3 Cross correlations with the reference variable (Y)

	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
r_t	0.035	0.126	0.245	0.388	0.556	0.749	0.965	0.613	0.331	0.109	-0.059	-0.182
C_t	0.251	-0.244	-0.131	0.025	0.228	0.485	0.799	0.867	0.804	0.677	0.527	0.375
H_t	0.251	-0.32	-0.244	-0.131	0.025	0.228	0.485	0.799	0.867	0.804	0.677	0.527
I_t	0.813	0.069	0.193	0.345	0.527	0.74	0.983	0.622	0.349	0.143	-0.011	-0.122
K_t^{s}	2.742	-0.459	-0.39	-0.278	-0.115	0.107	0.396	0.57	0.66	0.685	0.665	0.612
L_t^{s}	0.124	0.076	0.2	0.352	0.534	0.746	0.987	0.668	0.402	0.185	0.016	-0.113
U_t	8.55	-0.077	0.053	0.222	0.432	0.688	0.99	0.754	0.545	0.366	0.214	0.089
W_t	1.298	-0.073	0.057	0.226	0.436	0.69	0.991	0.755	0.546	0.365	0.211	0.085
Y_t	1	-0.005	0.124	0.286	0.486	0.724	1	0.724	0.486	0.286	0.124	-0.005
Z_t	0.696	0.028	0.155	0.314	0.507	0.735	0.998	0.698	0.446	0.24	0.076	-0.051

11.4 Autocorrelations

	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
\overline{r}	0.707	0.462	0.261	0.101	0
C	0.911	0.738	0.537	0.337	0.156
H	0.911	0.738	0.537	0.337	0.156
I	0.667	0.413	0.217	0.069	-0.043
K^{s}	0.955	0.851	0.71	0.55	0.384
L^{s}	0.716	0.473	0.271	0.108	-0.02
U	0.737	0.509	0.316	0.155	0.025
W	0.74	0.512	0.317	0.155	0.024
Y	0.724	0.486	0.286	0.124	-0.005
Z	0.713	0.471	0.271	0.11	-0.016

12 Impulse response functions

Figure 1: Impulse responses (C,H,L^s,W,I) to $\epsilon^{\rm Z}$ shock

Figure 2: Impulse response (Y) to $\epsilon^{\mathbb{Z}}$ shock