Unit 4: Programming concepts, illustrated with R

September 9, 2017

This unit covers a variety of programming concepts, illustrated in the context of R. So it also serves as a way to teach advanced features of R. In general the concepts are relevant in other languages, though other languages may implement things differently. One of my goals here for us to think about why things are the way they are in R. I.e., what principles were used in creating the language and what choices were made? While other languages use different principles and made difference choices, understanding what R does in detail will be helpful when you are learning another language.

References:

- Books on R listed on the syllabus: Adler, Chambers, Wickham
- R intro manual and R language manual (R-lang), both on CRAN.
- Venables and Ripley, Modern Applied Statistics with S
- Murrell, Introduction to Data Technologies

I'm going to try to refer to R syntax as *statements*, where a statement is any code that is a valid, complete R expression. I'll try not to use the term *expression*, as this actually means a specific type of object within the R language, as seen in Section 9.

1 Interacting with the operating system from R and controlling R's behavior

I'll assume everyone knows about the following functions/functionality in R: getwd(), setwd(), source(), pdf(), save(), save.image(), load()

• To run UNIX commands from within R, use *system()*, as follows, noting that we can save the result of a system call to an R object:

```
system("ls -al")
## knitr/Sweave doesn't seem to show the output of system()
files <- system("ls", intern = TRUE)
files[1:5]
## [1] "cache" "class2.log"
## [3] "class3.log" "class4.log"
## [5] "exampleRscript.R"</pre>
```

• There are also a bunch of functions that will do specific queries of the filesystem, including

```
file.exists("unit2-bash.sh")

## [1] TRUE

list.files("../data")

## [1] "coop.txt.gz" "cpds.csv" "IPs.RData"

## [4] "precip.txt" "RTADataSub.csv"
```

• There are some tools for dealing with differences between operating systems. Here's an example:

```
list.files(file.path("..", "data"))

## [1] "coop.txt.gz"    "cpds.csv"    "IPs.RData"

## [4] "precip.txt"    "RTADataSub.csv"
```

• To get some info on the system you're running on:

```
## sysname
## "Linux"
## release
```

```
##
                                   "4.4.0-93-generic"
##
                                               version
##
   "#116-Ubuntu SMP Fri Aug 11 21:17:51 UTC 2017"
##
                                              nodename
##
                                             "smeagol"
##
                                               machine
##
                                              "x86_64"
##
                                                 login
                                             "unknown"
##
##
                                                  user
##
                                            "paciorek"
##
                                       effective_user
##
                                            "paciorek"
```

• To see some of the options that control how R behaves, try the *options()* function. The *width* option changes the number of characters of width printed to the screen, while the *max.print* option prevents too much of a large object from being printed to the screen. The *digits* option changes the number of digits of numbers printed to the screen (but be careful as this can be deceptive if you then try to compare two numbers based on what you see on the screen).

```
## options() # this would print out a long list of options
options()[1:5]
  $add.smooth
   [1] TRUE
##
##
   $bitmapType
   [1] "cairo"
##
##
   $browser
   [1] "xdq-open"
##
##
  $browserNLdisabled
## [1] FALSE
##
## $CBoundsCheck
```

```
## [1] FALSE
options()[c('width', 'digits')]
## $width
## [1] 55
##
## $digits
## [1] 7
## options(width = 120)
## often nice to have more characters on screen
options (width = 55) # for purpose of making pdf of this document
options (max.print = 5000)
options(digits = 3)
a <- 0.123456; b <- 0.1234561
a; b; a == b
  [1] 0.123
## [1] 0.123
## [1] FALSE
```

- Use Ctrl-C to interrupt execution. This will generally back out gracefully, returning you to a state as if the command had not been started. Note that if R is exceeding memory availability, there can be a long delay. This can be frustrating, particularly since a primary reason you would want to interrupt is when R runs out of memory.
- The R mailing list archives are very helpful for getting help always search the archive before posting a question. More info on where to find R help in Unit 5 on debugging.
 - sessionInfo() gives information on the current R session it's a good idea to include this information (and information on the operating system such as from Sys.info()) when you ask for help on a mailing list

```
## R version 3.4.1 (2017-06-30)
```

```
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/openblas-base/libblas.so.3
## LAPACK: /usr/lib/libopenblasp-r0.2.18.so
##
## locale:
##
   [1] LC_CTYPE=en_US.UTF-8
##
   [2] LC_NUMERIC=C
   [3] LC_TIME=en_US.UTF-8
##
##
   [4] LC COLLATE=en US.UTF-8
##
   [5] LC MONETARY=en US.UTF-8
##
   [6] LC MESSAGES=en US.UTF-8
##
   [7] LC PAPER=en US.UTF-8
##
   [8] LC_NAME=C
##
  [9] LC_ADDRESS=C
## [10] LC_TELEPHONE=C
  [11] LC_MEASUREMENT=en_US.UTF-8
## [12] LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats
                graphics grDevices utils datasets
## [6] base
##
## other attached packages:
##
  [1] pryr_0.1.2 knitr_1.15.1 SCF_3.4.0
##
## loaded via a namespace (and not attached):
##
  [1] compiler_3.4.1 magrittr_1.5
                                       tools_3.4.1
##
   [4] Rcpp 0.12.10
                        codetools 0.2-15 stringi 1.1.5
##
    [7] highr_0.6
                         methods 3.4.1
                                          stringr 1.2.0
## [10] evaluate_0.10
```

• Any code that you wanted executed automatically when starting R can be placed in ~/.Rpro-file (or in individual .Rprofile files in specific directories). This could include loading pack-

ages (see below), sourcing files that contain user-defined functions that you commonly use (you can also put the function code itself in .*Rprofile*), assigning variables, and specifying options via *options()*.

- You can have an R script act as a shell script (like running a bash shell script) as follows. This will probably on work on Linux and Mac.
 - 1. Write your R code in a text file, say exampleRscript.R.
 - 2. As the first line of the file, include #!/usr/bin/Rscript (like #!/bin/bash in a bash shell file, as seen in Unit 2) or (for more portability across machines, include #!/usr/bin/env Rscript.
 - 3. Make the R code file executable with chmod: chmod ugo+x exampleRscript.R.
 - 4. Run the script from the command line: ./exampleRscript.R

If you want to pass arguments into your script, you can do so as long as you set up the R code to interpret the incoming arguments:

```
./exampleRscript.R 53 blah T
./exampleRscript.R blah 22.5 t

## First arg is, 53; second is: blah; third is: TRUE .

## Warning message:

## NAs introduced by coercion

## First arg is, NA; second is: 22.5; third is: NA .
```

2 Packages and namespaces

One of the killer apps of R is the extensive collection of add-on packages on CRAN (www.cran.r-project.org) that provide much of R's functionality. To make use of a package it needs to be installed on your system (using *install.packages()* once only) and loaded into R (using *library()* every time you start R).

Some packages are *installed* by default with R and of these, some are *loaded* by default, while others require a call to *library()*. For packages I use a lot, I install them once and then load them automatically every time I start R using my ~/.Rprofile file.

If you want to sound like an R expert, make sure to call them *packages* and not *libraries*. A *library* is the location in the directory structure where the packages are installed/stored.

Loading packages You can use *library()* to either (1) make a package available (loading it), (2) get an overview of the package, or (3) (if called without arguments) to see all the installed packages.

```
library(fields)
## Loading required package: methods
## Loading required package: spam
## Loading required package: grid
## Spam version 1.4-0 (2016-08-29) is loaded.
## Type 'help( Spam)' or 'demo( spam)' for a short introduction
## and overview of this package.
## Help for individual functions is also obtained by adding the
## suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
##
## Attaching package:
                      'spam'
## The following objects are masked from 'package:base':
##
##
      backsolve, forwardsolve
## Loading required package: maps
library(help = fields)
## library() # I don't want to run this on my SCF machine
## because so many are installed
```

If you run library(), you'll notice that some of the packages are in a system directory and some are in your home directory. Packages often depend on other packages. In general, if one package depends on another, R will load the dependency, but if the dependency is installed locally (see below), R may not find it automatically and you may have to use *library()* to load the dependency first. *.libPaths()* shows where R looks for packages on your system and *searchpaths()* shows where individual packages are loaded from. Looking the help info for *.libPaths()* gives some information about how R decides what locations to look in for packages.

```
.libPaths()
## [1] "/accounts/gen/vis/paciorek/R/x86 64-pc-linux-gnu-library/3.4"
## [2] "/system/linux/lib/R-16.04/3.4/x86_64/site-library"
## [3] "/usr/lib/R/site-library"
## [4] "/usr/lib/R/library"
searchpaths()
##
    [1] ".GlobalEnv"
##
    [2] "/system/linux/lib/R-16.04/3.4/x86_64/site-library/fields"
    [3] "/system/linux/lib/R-16.04/3.4/x86_64/site-library/maps"
##
        "/system/linux/lib/R-16.04/3.4/x86_64/site-library/spam"
##
    [5] "/usr/lib/R/library/grid"
##
    [6] "/usr/lib/R/library/methods"
##
##
        "/system/linux/lib/R-16.04/3.4/x86_64/site-library/pryr"
##
    [8] "/system/linux/lib/R-16.04/3.4/x86_64/site-library/knitr"
    [9] "/usr/lib/R/library/stats"
##
   [10] "/usr/lib/R/library/graphics"
## [11] "/usr/lib/R/library/grDevices"
## [12] "/usr/lib/R/library/utils"
## [13] "/usr/lib/R/library/datasets"
## [14] "/system/linux/lib/R-16.04/3.4/x86_64/site-library/SCF"
## [15] "Autoloads"
## [16] "/usr/lib/R/library/base"
```

Installing packages If a package is on CRAN but not on your system, you can install it easily (usually). You don't need root permission on a machine to install a package (though sometimes you run into hassles if you are installing it just as a user, so if you have administrative privileges

it may help to use them). Of course in RStudio, you can install via the GUI. If you are installing by specifying the *lib* argument, you'd generally want to use whatever user-owned directory (i.e., library) is specified by the output of *.libPaths()*. If none of them are user-owned, you may need to add a library via *.libPaths()* (e.g., by putting something like *.libPaths('~Rlibs')* in your *.Rprofile*).

```
install.packages('fields', lib = '~/Rlibs') # ~/Rlibs needs to exist!
```

Note that R will generally install the package in a reasonable place if you omit the *lib* argument. You can also download the zipped source file from CRAN and install from the file; see the help page for *install.packages()*. This is called "installing from source. On Windows and Mac, you'll need to do something like this:

```
install.packages('fields.tar.gz', repos = NULL, type = 'source')
```

If you've downloaded the binary package (files ending in .tgz for Mac and .zip for Windows) and want to install the package directly from the file, use the syntax above but omit the type='source' argument.

The difference between the source package and the binary package is that the source package has the raw R (and C and Fortran, in some cases) code as text files while the binary package has all the code in a binary/non-text format, including any C and Fortran code having been compiled. To install a source package with C or Fortran code in it, you'll need to have developer/command-line tools (e.g., *XCode* on Mac or *Rtools.exe* on Windows) installed on your system so that you have a compiler.

Package namespaces The objects in a package (primarily functions, but also data) are in their own workspaces, and are accessible after you load the package using library(), but are not directly visible when you use ls(). In other words, each package has its own namespace. Namespaces help achieve modularity and avoid having zillions of objects all reside in your workspace. We'll talk more about this when we talk about scope and environments. If we want to see the objects in a package's namespace, we can do the following:

```
[7] "package:pryr"
                             "package:knitr"
    [9] "package:stats"
                             "package:graphics"
## [11] "package:grDevices" "package:utils"
## [13] "package:datasets"
                             "package:SCF"
                             "package:base"
## [15] "Autoloads"
## ls(pos = 8) # for the state package
ls(pos = 8)[1:5] # just show the first few
## [1] "all_labels"
                         "all patterns"
## [3] "all_rcpp_labels" "asis_output"
## [5] "clean cache"
ls("package:stats")[1:5] # equivalent
## [1] "acf"
                    "acf2AR"
                                  "add1"
                                               "addmargins"
## [5] "add.scope"
```

3 Text manipulation, string processing and regular expressions (regex)

Text manipulations in R have a number of things in common with Perl, Python and UNIX, as many of these evolved from UNIX. When I use the term *string* here, I'll be referring to any sequence of characters that may include numbers, white space, and special characters, rather than to the character class of R objects. The string or strings will generally be stored as R character vectors.

For material on string processing in R, see the tutorial, *String processing in R and Python*. (You can ignore the sections on Python for now.) That tutorial then refers to the *Using the bash shell* tutorial for details on regular expressions. Finally, to test out regular expression syntax see this online tool.

Recall that when characters are used for special purposes, we need to escape them if we want them interpreted as the actual character. In the second example, the first backslash says to interpret the next backslash literally, with the second backslash being used to indicate that the bracket should be interpreted literally.

```
## for some reason, output from next few lines not printing out in pdf...
tmp <- "Harry said, \"Hi\""
cat(tmp)
tmp <- "Harry said, \"Hi\".\n"
cat(tmp)
## search for either a '^' or a 'z':
grep("[\\^z]", c("a^2", "93"))
## fails because '\^' is not an escape sequence:
grep("[\^z]", c("a^2", "93"))
## Error: '\^' is an unrecognized escape in character string starting
""[\^"</pre>
```

Challenge: explain why we use a single backslash to get a newline and double backslash to write out a Windows path in the examples here:

```
cat ("hello\nagain")

## hello
## again

cat ("hello\\nagain")

## hello\nagain

cat ("My Windows path is: C:\\Users\\My Documents.")

## My Windows path is: C:\\Users\My Documents.
```

For more information, see ?Quotes in R.

Be careful when cutting and pasting from documents that are not text files as you may paste in something that looks like a single or double quote, but which R cannot interpret as a quote because it's some other ASCII quote character. If you paste in a "from PDF, it will not be interpreted as a standard R double quote mark.

3.1 Regex practice

Write a regular expression that matches the following:

1. Only the strings "cat", "at", and "t".

- 2. The strings "cat", "caat", "caaat", etc.
- 3. "dog", "Dog", "dOg", "doG", "DOg", etc. (the word dog in any combination of lower and upper case).
- 4. Any positive number with or without a decimal point.
- 5. Any line with exactly two words separated by any amount of whitespace (spaces or tabs). There may or may not be whitespace at the beginning or end of the line.

3.2 Regex/string processing challenges

We'll work on these challenges in class.

- 1. What regex would I use to find a spam-like pattern with digits or non-letters inside a word? E.g., I want to find "V1agra" or "Fancy repl!c@ted watches".
- 2. How would I extract email addresses from lines of text using regular expressions and R string processing?
- 3. Suppose a text string has dates in the form "Aug-3", "May-9", etc. and I want them in the form "3 Aug", "9 May", etc. How would I do this search and replace operation? (Alternatively, how could I do this without using regular expressions at all?)
- 4. How would I search for numeric URLs such as in the file *urls.txt*.

4 Types, classes, and object-oriented programming

4.1 Types and classes

You should be familiar with vectors as the basic data structure in R, with character, integer, numeric, etc. classes. Vectors are either *atomic vectors* or *lists*. Atomic vectors generally contain one of the four following types: *logical*, *integer*, *double/numeric*, and *character*.

Objects in general have a type, which relates to what kind of values are in the objects and how objects are stored internally in R (i.e., in C).

Let's look at Adler's Table 7.1 to see some other types.

```
a <- data.frame(x = 1:2)
class(a)</pre>
```

```
## [1] "data.frame"
typeof (a)
## [1] "list"
is.data.frame(a)
## [1] TRUE
is.matrix(a)
## [1] FALSE
is(a, "matrix")
## [1] FALSE
m <- matrix(1:4, nrow = 2)
class (m)
## [1] "matrix"
typeof (m)
## [1] "integer"
```

Everything in R is an object and all objects have a class. For simple objects class and type are often closely related, but this is not the case for more complicated objects. The class describes what the object contains and standard functions associated with it. In general, you mainly need to know what class an object is rather than its type. Classes can *inherit* from other classes; for example, the *glm* class inherits characteristics from the *lm* class. We'll see more on the details of object-oriented programming shortly.

We can create objects with our own defined class.

```
## [1] "personClass"

is.list(bart)

## [1] TRUE

typeof(bart)

## [1] "list"

typeof(bart$firstname)

## [1] "character"
```

4.2 Attributes

Attributes are information about an object attached to an object as something that looks like a named list. Attributes are often copied when operating on an object. This can lead to some weird-looking formatting:

```
x <- rnorm(10 * 365)
qs <- quantile(x, c(.025, .975))
qs

## 2.5% 97.5%
## -2.01 1.99

qs[1] + 3

## 2.5%
## 0.986</pre>
```

Thus in an subsequent operations with qs, the *names* attribute will often get carried along. We can get rid of it:

```
names (qs) <- NULL
qs
## [1] -2.01 1.99</pre>
```

A common use of attributes is that rows and columns may be named in matrices and data frames, and elements in vectors:

```
row.names (mtcars) [1:6]
## [1] "Mazda RX4"
                         "Mazda RX4 Wag"
## [3] "Datsun 710" "Hornet 4 Drive"
## [5] "Hornet Sportabout" "Valiant"
names (mtcars)
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec"
## [8] "vs" "am" "gear" "carb"
attributes (mtcars)
## $names
## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec"
   [8] "vs" "am" "gear" "carb"
##
##
## $row.names
## [1] "Mazda RX4"
                            "Mazda RX4 Wag"
   [3] "Datsun 710"
                             "Hornet 4 Drive"
##
   [5] "Hornet Sportabout"
                            "Valiant"
   [7] "Duster 360"
##
                             "Merc 240D"
   [9] "Merc 230"
                             "Merc 280"
##
## [11] "Merc 280C"
                            "Merc 450SE"
## [13] "Merc 450SL"
                             "Merc 450SLC"
## [15] "Cadillac Fleetwood" "Lincoln Continental"
                            "Fiat 128"
## [17] "Chrysler Imperial"
## [19] "Honda Civic"
                             "Toyota Corolla"
## [21] "Toyota Corona"
                             "Dodge Challenger"
## [23] "AMC Javelin"
                             "Camaro Z28"
## [25] "Pontiac Firebird"
                             "Fiat X1-9"
## [27] "Porsche 914-2"
                             "Lotus Europa"
                             "Ferrari Dino"
## [29] "Ford Pantera L"
## [31] "Maserati Bora"
                             "Volvo 142E"
##
```

```
## $class
## [1] "data.frame"
mat <- data.frame(x = 1:2, y = 3:4)
attributes (mat)
## $names
## [1] "x" "y"
##
## $row.names
## [1] 1 2
##
## $class
## [1] "data.frame"
row.names(mat) <- c("first", "second")</pre>
mat
## x y
## first 1 3
## second 2 4
attributes (mat)
## $names
## [1] "x" "y"
##
## $row.names
## [1] "first" "second"
##
## $class
## [1] "data.frame"
vec \leftarrow c(first = 7, second = 1, third = 5)
vec['first']
## first
## 7
attributes(vec)
## $names
## [1] "first" "second" "third"
```

4.3 Assignment and coercion

We assign into an object using either '=' or '<-'. A rule of thumb is that for basic assignments where you have an object name, then the assignment operator, and then some code, '=' is fine, but otherwise use '<-'.

Let's look at these examples to understand the distinction between '=' and '<-' when passing arguments to a function.

```
## function (x, ...)
## UseMethod("mean")
## <bytecode: 0x4a21e10>
## <environment: namespace:base>

x <- 0; y <- 0
out <- mean(x = c(3,7)) # usual way to pass an argument to a function
## what does the following do?
out <- mean(x <- c(3,7)) # this is allowable, though perhaps not useful
out <- mean(y = c(3,7))
## Error in mean.default(y = c(3, 7)): argument "x" is missing, with
no default
out <- mean(y <- c(3,7))</pre>
```

What can you tell me about what is going on in each case above?

One situation in which you want to use '<-' is if it is being used as part of an argument to a function, so that R realizes you're not indicating one of the function arguments, e.g.:

```
## NOT OK, system.time() expects its argument to be a complete R expression
system.time(out = rnorm(10000))

## Error in system.time(out = rnorm(10000)): unused argument (out
= rnorm(10000))

# OK:
system.time(out <- rnorm(10000))

## user system elapsed
## 0.000 0.000 0.001</pre>
```

Here's another example:

```
mat <- matrix(c(1, NA, 2, 3), nrow = 2, ncol = 2)
apply(mat, 1, sum.isna <- function(vec) {return(sum(is.na(vec)))})
## [1] 0 1
## What is the side effect of what I have done just above?
apply(mat, 1, sum.isna = function(vec) {return(sum(is.na(vec)))}) # NOPE
## Error in match.fun(FUN): argument "FUN" is missing, with no default</pre>
```

R often treats integers as numerics, but we can force R to store values as integers:

```
vals <- c(1, 2, 3)
class(vals)

## [1] "numeric"

vals <- 1:3
class(vals)

## [1] "integer"

vals <- c(1L, 2L, 3L)
vals

## [1] 1 2 3

class(vals)

## [1] "integer"</pre>
```

We convert between classes using variants on as(): e.g.,

```
as.character(c(1,2,3))
## [1] "1" "2" "3"
as.numeric(c("1", "2.73"))
```

```
## [1] 1.00 2.73

as.factor(c("a", "b", "c"))

## [1] a b c
## Levels: a b c
```

Some common conversions are converting numbers that are being interpreted as characters into actual numbers, converting between factors and characters, and converting between logical TRUE/FALSE vectors and numeric 1/0 vectors. In some cases R will automatically do conversions behind the scenes in a smart way (or occasionally not so smart way). We saw see implicit conversion (also called coercion) when we read in characters into R using *read.table()* - strings are often automatically coerced to factors. Consider these examples of implicit coercion:

```
x <- rnorm(5)
x[3] <- 'hat' # What do you think is going to happen?
indices <- c(1, 2.73)
myVec <- 1:10
myVec[indices]
## [1] 1 2</pre>
```

Be careful of using factors as indices:

What has gone wrong and how does it relate to type coercion?

In other languages, converting between different classes is sometimes called *casting* a variable.

Here's an example we can work through that will help illustrate how type conversions occur behind the scenes in R.

```
n <- 5
df <- data.frame(rep('a', n), rnorm(n), rnorm(n))
apply(df, 1, function(x) x[2] + x[3])

## Error in x[2] + x[3]: non-numeric argument to binary operator

## why does that not work?
apply(df[, 2:3], 1, function(x) x[1] + x[2])

## [1] -3.0327 1.5020 -2.7457 -1.1100 -0.0694

## let's look at apply() to better understand what is happening</pre>
```

4.4 Object-oriented programming

Popular languages that use OOP include C++, Java, and Python. In fact C++ is the object-oriented version of C. Different languages implement OOP in different ways.

The idea of OOP is that all operations are built around objects, which have a class, and methods that operate on objects in the class. Classes are constructed to build on (inherit from) each other, so that one class may be a specialized form of another class, extending the components and methods of the simpler class (e.g., *lm* and *glm* objects).

Note that in more formal OOP languages, all functions are associated with a class, while in R, only some are.

Often when you get to the point of developing OOP code in R, you're doing more serious programming, and you're going to be acting as a software engineer. It's a good idea to think carefully in advance about the design of the classes and methods.

4.4.1 S3 approach

S3 classes are widely-used, in particular for statistical models in the *stats* package. S3 classes are very informal in that there's not a formal definition for an S3 class. Instead, an S3 object is just a primitive R object such as a list or vector with additional attributes including a class name.

Inheritance Let's look at the *lm* class, which builds on lists, and *glm* class, which builds on the *lm* class. Here *mod* is an object (an instance) of class *lm*. An analogy is the difference between a random variable and a realization of that random variable.

```
library (methods)
yb <- sample(c(0, 1), 10, replace = TRUE)
yc <- rnorm(10)
x <- rnorm(10)
mod1 < -lim(yc \sim x)
mod2 \leftarrow glm(yb \sim x, family = binomial)
class (mod1)
## [1] "lm"
class (mod2)
## [1] "glm" "lm"
is.list(mod1)
## [1] TRUE
names (mod1)
   [1] "coefficients" "residuals"
##
                                         "effects"
                         "fitted.values" "assign"
##
   [4] "rank"
##
   [7] "qr"
                         "df.residual"
                                         "xlevels"
## [10] "call"
                         "terms"
                                          "model"
is (mod2, "lm")
## [1] TRUE
methods(class = "lm")
##
   [1] add1
                       alias
                                       anova
##
   [4] case.names coerce
                                       confint
   [7] cooks.distance deviance
                                       dfbeta
## [10] dfbetas
                        drop1
                                       dummy.coef
## [13] effects
                        extractAIC
                                       family
```

```
## [16] formula
                      hatvalues
                                    influence
## [19] initialize
                                    labels
                      kappa
## [22] logLik
                      model.frame
                                    model.matrix
## [25] nobs
                      plot
                                    predict
## [28] print
                      proj
                                    qr
## [31] residuals
                     rstandard
                                    rstudent
## [34] show
                      simulate
                                    slotsFromS3
## [37] summary
                     variable.names vcov
## see '?methods' for accessing help and source code
```

Often S3 classes inherit from lists (i.e., are special cases of lists), so you can obtain components of the object using the \$ operator.

Creating our own class We can create an object with a new class as follows:

```
yog <- list(firstname = 'Yogi', surname = 'the Bear', age = 20)
class(yog) <- 'bear'</pre>
```

Actually, if we want to create a new class that we'll use again, we want to create a *constructor* function that initializes new bears:

For those of you used to more formal OOP, the following is probably disconcerting:

```
class(yog) <- "silly"
class(yog) <- "bear"</pre>
```

Methods The real power of OOP comes from defining *methods*. For example,

```
mod <- lm(yc ~ x)
summary(mod)
gmod <- glm(yb ~ x, family = 'binomial')
summary(gmod)</pre>
```

Here *summary()* is a generic method (or generic function) that, based on the type of object given to it (the first argument), dispatches a class-specific function (method) that operates on the object. This is convenient for working with objects using familiar functions. Consider the generic methods *plot()*, *print()*, *summary()*, '[', and others. We can look at a function and easily see that it is a generic method. We can also see what classes have methods for a given generic method.

In many cases there will be a default method (here, *mean.default()*), so if no method is defined for the class, R uses the default. Sidenote: arguments to a generic method are passed along to the selected method by passing along the calling environment.

We can define new generic methods:

```
summarize <- function(object, ...)
UseMethod("summarize")</pre>
```

Once *UseMethod()* is called, R searches for the specific method associated with the class of *object* and calls that method, without ever returning to the generic method. Let's try this out on our *bear* class. In reality, we'd write either *summary.bear()* or *print.bear()* (and of course the generics for *summary* and *print* already exist) but for illustration, I wanted to show how we would write both the generic and the specific method, so I'll write a *summarize* method.

Note that the *print()* function is what is called when you simply type the name of the object, so we can have object information printed out in a structured way. Recall that the output when we type the name of an *lm* object is NOT simply a regurgitation of the elements of the list - rather *print.lm()* is called.

Similarly, when we used print (object.size(x)) we were invoking the *object_size*-specific print method which gets the value of the size and then formats it. So there's actually a fair amount going on behind the scenes.

Surprisingly, the *summary()* method generally doesn't actually print out information; rather it computes things not stored in the original object and returns it as a new class (e.g., class *summary.lm*), which is then automatically printed, per my comment above, using *print.summary.lm()*, unless one assigns it to a new object. Note that *print.summary.lm()* is hidden from user view.

```
out <- summary(mod)
out
print(out)
getS3method(f="print", class="summary.lm")</pre>
```

More on inheritance As noted with *lm* and *glm* objects, we can assign more than one class to an object. Here *summarize()* still works, even though the primary class is *grizzly_bear*.

```
class(yog) <- c('grizzly_bear', 'bear')
summarize(yog)

## Bear of age 20 whose name is Yogi the Bear.</pre>
```

The classes should nest within one another with the more specific classes to the left, e.g., here a *grizzly_bear* would have some additional objects on top of those of a *bear*, perhaps *num-ber_of_people_eaten* (since grizzly bears are much more dangerous than some other kinds of bears), and perhaps additional or modified methods. *grizzly_bear* inherits from *bear*, and R uses

methods for the first class before methods for the next class(es), unless no such method is defined for the first class. If no methods are defined for any of the classes, R looks for *method.default()*, e.g., *print.default()*, plot.default(), etc..

Class-specific operators We can also use operators with our classes. The following example will be a bit silly (it would make more sense with a class that is a mathematical object) but indicates the power of having methods.

Class-specific replacement functions We can use replacement functions with our classes. For more on what a replacement function is, see Section 6.6.

This is again a bit silly but we could do the following. We need to define the generic replacement function and then the class-specific one.

```
`age<-` <- function(x, ...) UseMethod("age<-")
`age<-.bear` <- function(object, value) {
      object$age <- value
      return(object)
}
age(older_yog) <- 60</pre>
```

Why use class-specific methods? We could have implemented different functionality (e.g., for summary()) for different objects using a bunch of if statements (or switch()) to figure out what class of object is the input, but then we need to have all that checking. Furthermore, we don't

control the *summary()* function, so we would have no way of adding the additional conditions in a big if-else statement. The OOP framework makes things *extensible*, so we can build our own new functionality on what is already in R.

Final thoughts Consider the *Date* class discussed in the R bootcamp. This is another example of an S3 class, with methods such as *julian()*, *weekdays()*, etc.

Challenge: how would you get R to quit immediately, without asking for any more information, when you simply type 'q' (no parentheses!)?

What we've just discussed are the old-style R (and S) object orientation, called S3 methods. The new style is called S4 and we'll discuss it next. S3 is still commonly used, in part because S4 can be slow (or at least it was when I last looked into this a few years ago). S4 is more structured than S3.

4.4.2 S4 approach

S4 methods are used a lot in *bioconductor*, a project that provides a lot of bioinformatics-related code. They're also used in *lme4*, among other packages. Tools for working with S4 classes are in the *methods* package.

Note that components of S4 objects are obtained as object@component so they do not use the usual list syntax. The components are called *slots*, and there is careful checking that the slots are specified and valid when a new object of a class is created. You can use the *prototype* argument to *setClass()* to set default values for the slots. There is a default constructor (the method is actually called *initialize()*), but you can modify it. One can create methods for operators and for replacement functions too. For S4 classes, there is a default method invoked when *print()* is called on an object in the class (either explicitly or implicitly) - the method is actually called *show()* and it can also be modified. Let's reconsider our *bear* class example in the S4 context.

```
yog <- new("bear", name = 'Yogi', age = 20,</pre>
                         birthday = as.Date('91-08-03'))
## next notice the missing age slot
yog <- new("bear", name = 'Yogi',</pre>
        birthday = as.Date('91-08-03'))
## finally, apparently there's not a default object of class Date
yog <- new("bear", name = 'Yogi', age = 20)</pre>
## Error in validObject(.Object): invalid class "bear" object: invalid
object for slot "birthday" in class "bear": got class "S4", should
be or extend class "Date"
yoq
## An object of class "bear"
## Slot "name":
## [1] "Yoqi"
##
## Slot "age":
## numeric(0)
##
## Slot "birthday":
## [1] "91-08-03"
yog@age <- 60
```

S4 methods are designed to be more structured than S3, with careful checking of the slots.

```
setValidity("bear",
    function(object) {
        if(!(object@age > 0 && object@age < 130))
            return("error: age must be between 0 and 130")
        if(length(grep("[0-9]", object@name)))
            return("error: name contains digits")
        return(TRUE)
    # what other validity check would make sense given the slots?
    }
)</pre>
```

```
## Class "bear" [in ".GlobalEnv"]
##
## Slots:
##
## Name:
               name
                           age birthday
## Class: character
                      numeric
                                    Date
sam < -new("bear", name = "5z%a", age = 20,
        birthday = as.Date('91-08-03'))
## Error in validObject(.Object): invalid class "bear" object:
name contains digits
sam <- new("bear", name = "Z%a B''*", age = 20,</pre>
        birthday = as.Date('91-08-03'))
sam@age <- 150 # so our validity check is not foolproof
```

To deal with this latter issue of the user mucking with the slots, it's recommended when using OOP that slots only be accessible through methods that operate on the object, e.g., a setAge() method, and then check the validity of the supplied age within setAge().

Here's how we create generic and class-specific methods. Note that in some cases the generic will already exist.

```
## [1] "isVoter"
## attr(,"package")
## [1] ".GlobalEnv"

isVoter(yog)
## Yogi is of voting age.
```

We can have method signatures involve multiple objects. Here's some syntax where we'd fill in the function body with appropriate code - perhaps the plus operator would create a child.

```
setMethod(`+`, signature = c("bear", "bear"),
  definition = function(bear1, bear2) {
    ## method code goes here
}
```

As with S3, classes can inherit from one or more other classes. Chambers calls the class that is being inherited from a *superclass*.

For a more relevant example suppose we had spatially-indexed time series. We could have a time series class, a spatial location class, and a "location time series" class that inherits from both. Be careful that there are not conflicts in the slots or methods from the multiple classes. For

conflicting methods, you can define a method specific to the new class to deal with this. Also, if you define your own *initialize()* method, you'll need to be careful that you account for any initialization of the superclass(es) and for any classes that might inherit from your class (see help on *new()* and Chambers, p. 360).

You can inherit from other S4 classes (which need to be defined or imported into the environment in which your class is created), but not S3 classes. You can inherit (at most one) of the basic R types, but not environments, symbols, or other non-standard types. You can use S3 classes in slots, but this requires that the S3 class be declared as an S4 class. To do this, you create S4 versions of S3 classes use *setOldClass()* - this creates a virtual class. This has been done, for example, for the *data.frame* class:

```
showClass("data.frame")
## Class "data.frame" [package "methods"]
##
## Slots:
##
## Name:
                         .Data
                                             names
## Class:
                         list
                                         character
##
## Name:
                                          .S3Class
                    row.names
## Class: data.frameRowLabels
                                         character
##
## Extends:
## Class "list", from data part
## Class "oldClass", directly
## Class "vector", by class "list", distance 2
```

You can use *setClassUnion()* to create what Adler calls *superclass* and what Chambers calls a *virtual class* that allows for methods that apply to multiple classes. So if you have a person class and a pet class, you could create a "named lifeform" virtual class that has methods for working with name and age slots, since both people and pets would have those slots. You can't directly create an object in the virtual class.

4.4.3 Reference classes

Reference classes are a new construct in R. They are classes somewhat similar to S4 that allow us to access their fields by reference. Importantly, they behave like pointers (the fields in the objects

are 'mutable'). Let's work through an example where we set up the fields of the class (like S4 slots) and class methods, including a constructor. Note that one cannot add fields to an already existing class.

Here's the initial definition of the class.

```
tsSimClass <- setRefClass("tsSimClass",
    fields = list(
        n = "numeric",
        times = "numeric",
        corMat = "matrix",
        corParam = "numeric",
        U = "matrix",
        currentU = "logical"),
    methods = list(
        initialize = function(times = 1:10, corParam = 1, ...) {
            ## we seem to need default values for the copy() method
            ## to function properly
            require(fields)
            times <<- times # field assignment requires using <<-
            n <<- length(times)</pre>
            corParam <<- corParam</pre>
            currentU <<- FALSE
            calcMats()
            callSuper(...) # calls initializer of base class (envRefClass)
        },
        calcMats = function() {
            ## Python-style doc string
            ' calculates correlation matrix and Cholesky factor '
            lagMat <- rdist(times) # local variable</pre>
            corMat <<- exp(-lagMat / corParam) # field assignment</pre>
            U <<- chol(corMat) # field assignment
            cat("Done updating correlation matrix and Cholesky factor\n")
            currentU <<- TRUE
```

We can add methods after defining the class.

Now let's see how we would use the class.

```
master <- tsSimClass$new(1:100, 10)
master
tsSimClass$help('calcMats')
devs <- master$simulate()
plot(master$times, devs, type = 'l')
mycopy <- master
myDeepCopy <- master$copy()
master$changeTimes(seq(0,1, length = 100))
mycopy$times[1:5]
myDeepCopy$times[1:5]</pre>
```

A few additional points:

- As we just saw, a copy of an object is just a pointer to the original object, unless we explicitly invoke the *copy()* method.
- As with S3 and S4, classes can inherit from other classes. E.g., if we had a *simClass* and we wanted the *tsSimClass* to inherit from it:

```
setRefClass("tsSimClass", contains = "simClass")
```

- We can call a method inherited from the superclass from within a method of the same name with *callSuper(...)*, as we saw for our *initialize()* method.
- If we need to refer to a field or change a field we can do so without hard-coding the field name as:

```
master$field('times')[1:5]
## the next line is dangerous in this case, since
## currentU will no longer be accurate
master$field('times', 1:10)
```

- Note that reference classes have Python style doc strings. We get help on a class with class\$help(), e.g. tsSimClass\$help(). This prints out information, including the doc strings.
- If you need to refer to the entire object within an object method, you refer to it as .self. E.g., with our tsSimClass object, .self\$U would refer to the Cholesky factor. This is sometimes necessary to distinguish a class field from an argument to a method.
- There is a new, more efficient version of ReferenceClasses call R6 classes. See the *R6* package.

5 Standard dataset manipulations

Base R provides a variety of functions for manipulating data frames, but now many researchers use add-on packages (many written by Hadley Wickham) to do these manipulations in a more elegant, often more efficient way. Module 5 of the R bootcamp describes some of these new tools, but I'll summarize them here.

5.1 split-apply-combine

Often analyses are done in a stratified fashion - the same operation or analysis is done on subsets of the data set. The subsets might be different time points, different locations, different hospitals, different people, etc.

The split-apply-combine framework is intended to operate in this kind of context: first one splits the dataset by one or more variables, then one does something to each subset, and then one combines the results. The *plyr* and *dplyr* packages implement this framework, with *dplyr* newer and faster. One can also do similar operations using various flavors of the *apply()* family of functions such as by(), tapply(), and aggregate(), but the dplyr-based tools are often nicer to use.

5.2 Long and wide formats

Finally, we may want to convert between so-called 'long' and 'wide' formats, which we can motivate in the context of longitudinal data (multiple observations per subject) and panel data (temporal data for each of multiple units such as in econometrics). The wide format has repeated measurements for a subject in separate columns, while the long format has repeated measurements in separate rows, with a column for differentiating the repeated measurements. The wide format is useful for doing separate analyses by group, while the long format is useful for doing a single analysis that makes use of the groups, such as ANOVA or mixed models or for plotting, such as with *ggplot2*.

```
long <- data.frame(id = c(1, 1, 2, 2),
                    time = c(1980, 1990, 1980, 1990),
                    value = c(5, 8, 7, 4))
wide \leftarrow data.frame(id = c(1, 2),
                    value 1980 = c(5, 7), value 1990 = c(8, 4))
long
##
     id time value
      1 1980
  2
      1 1990
                  8
## 3
      2 1980
                  7
## 4
      2 1990
                  4
wide
     id value 1980 value 1990
##
```

```
## 1 1 5 8
## 2 2 7 4
```

There are a variety of functions for converting between wide and long formats. I'd recommend the *gather()* and *spread()* functions in the tidyr package. There are also the *melt()* and *cast()* in the *reshape2* package. These are easier to use than the functions in base R such as *reshape()* or *stack()* and *unstack()* functions.

6 Functions, variable scope, and frames

R is a functional programming language. All operations are carried out by functions including assignment, various operators, printing to the screen, etc.

Functions are at the heart of R. In general, you should try to have functions be self-contained - operating only on arguments provided to them, and producing no side effects, though in some cases there are good reasons for making an exception.

Functions that are not implemented internally in R (i.e., user-defined functions) are also referred to officially as *closures* (this is their *type*) - this terminology sometimes comes up in error messages.

6.1 Functions as objects

Everything in R is an object, including functions.

```
x <- 3
x(2)

## Error in x(2): could not find function "x"

x <- function(z) z^2
x(2)

## [1] 4

class(x); typeof(x)

## [1] "function"
## [1] "closure"</pre>
```

We can call a function based on the text name of the function.

```
myFun <- 'mean'; x <- rnorm(10)
eval(as.name(myFun))(x)
## [1] -0.346</pre>
```

We can also pass a function into another function either as the actual function object. This is one aspect of R being a functional programming language.

```
x <- rnorm(10)

f <- function(fxn, x) {
    fxn(x)
}
f(mean, x)

## [1] 0.223</pre>
```

We can also pass in a function based on a a character vector of length one with the name of the function. Here *match.fun()* is a handy function that extracts a function when the function is passed in as an argument of a function. It looks in the calling environment for the function and can handle when the function is passed in as a function object or as a character vector of length 1 giving the function name.

```
f <- function(fxn, x) {
          match.fun(fxn)(x)
}
f("mean", x)
## [1] 0.223

f(mean, x)
## [1] 0.223</pre>
```

This allows us to write functions in which the user passes in the function (as an example, this works when using *outer()*). Caution: one may need to think carefully about scoping issues in such contexts.

Function objects contain three components: an argument list, a body (a parsed R statement), and an environment.

```
f1 <- function(x) y <- x^2
f2 <- function(x) {y <- x^2; z <- x^3; return(list(y, z))}
class(f1)
## [1] "function"
body (f2)
## {
## y <- x^2
## z <- x^3
## return(list(y, z))
## }
typeof(body(f1)); class(body(f1))
## [1] "language"
## [1] "<-"
typeof(body(f2)); class(body(f2))
## [1] "language"
## [1] "{"
```

We'll see more about objects relating to the R language and parsed code in Section 9. For now, just realize that the parsed code itself is treated as an object(s) with certain types and certain classes.

do.call()

The *do.call()* function will apply a function to the elements of a list. For example, we can *rbind()* together (if compatible) the elements of a list of vectors instead of having to loop over the elements or manually type them in:

```
myList <- list(a = 1:3, b = 11:13, c = 21:23)
args(rbind)
## function (..., deparse.level = 1)
## NULL</pre>
```

```
rbind(myList$a, myList$b, myList$c)
##
         [,1] [,2] [,3]
## [1,]
            1
                 2
                       3
## [2,]
           11
                12
                      13
## [3,]
           21
                22
                      23
rbind(myList)
##
                      b
## myList Integer, 3 Integer, 3 Integer, 3
do.call(rbind, myList)
##
     [,1] [,2] [,3]
##
        1
              2
                    3
## b
       11
             12
                   13
             22
                   23
## C
       21
```

Why couldn't we just use *rbind()* directly? Basically we're using *do.call()* to use functions that take "..." as input (i.e., functions accepting an arbitrary number of arguments) and to use the list as the input instead (i.e., to use the list elements).

More generally do.call() is a way to pass arguments to a function where the arguments are a list:

```
do.call(mean, list(1:10, na.rm = TRUE))
## [1] 5.5
```

6.2 Inputs

Arguments can be specified in the correct order, or given out of order by specifying name = value. R first tries to match arguments by name and then by position. In general the more important arguments are specified first. You can see the arguments and defaults for a function using args():

```
args(lm)
## function (formula, data, subset, weights, na.action, method = "qr",
```

```
## model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
## contrasts = NULL, offset, ...)
## NULL
```

Functions may have unspecified arguments, which are designated using '...'. Unspecified arguments occurring at the beginning of the argument list are generally a collection of like objects that will be manipulated (consider paste(), c(), and rbind()), while unspecified arguments occurring at the end are often optional arguments (consider plot()). These optional arguments are sometimes passed along to a function within the function. For example, here's my own wrapper for plotting, where any additional arguments specified by the user will get passed along to plot:

```
pplot <- function(x, y, pch = 16, cex = 0.4, ...) {
    plot(x, y, pch = pch, cex = cex, ...)
}</pre>
```

If you want to manipulate what the user passed in as the ... args, rather than just passing them along, you can extract them (the following code would be used within a function to which '...' is an argument:

```
myFun <- function(...) {
    print(..2)
    args <- list(...)
    print(args[[2]])
}
myFun(1,3,5,7)
## [1] 3
## [1] 3</pre>
```

You can check if an argument is missing with missing(). Arguments can also have default values, which may be NULL. If you are writing a function and designate the default as argname = NULL, you can check whether the user provided anything using is.null(argname). The default values can also relate to other arguments. As an example, consider dgamma():

```
args(dgamma)
## function (x, shape, rate = 1, scale = 1/rate, log = FALSE)
## NULL
```

As we've seen, functions can be passed in as arguments (e.g., see the variants of apply()). Note that one does not need to pass in a named function - you can create the function on the spot - this is called an *anonymous function* (also called a *lambda function* in some languages such as Python):

```
mat <- matrix(1:9, 3)
apply(mat, 1, min) # apply() uses match.fun()
## [1] 1 2 3
apply(mat, 2, function(vec) vec - vec[1])
       [,1] [,2] [,3]
## [1,] 0 0
        1
## [2,]
             1
## [3,] 2 2
                  2
apply(mat, 1, function(vec) vec - vec[1])
## [,1] [,2] [,3]
## [1,] 0 0
## [2,]
        3
## [3,] 6 6
                  6
## explain why the result of the last expression is transposed
```

We can see the arguments using args() and extract the arguments using formals(). formals() can be helpful if you need to manipulate the arguments.

```
f <- function(x, y = 2, z = 3 / y) { x + y + z }
args(f)

## function (x, y = 2, z = 3/y)
## NULL

formals(f)

## $x
##
##</pre>
```

```
## $y
## [1] 2
##
## $z
## 3/y
class(formals(f))
## [1] "pairlist"
```

A *pairlist* is like a list, but with pairing that in this case pairs argument names with default values.

match.call() will show the user-suppled arguments explicitly matched to named arguments.

```
match.call(definition = mean,
    call = quote(mean(y, na.rm = TRUE)))

## mean(x = y, na.rm = TRUE)

## what do you think quote does? Why is it needed?
```

6.3 Outputs

return (x) will specify x as the output of the function. By default, if return() is not specified, the output is the result of the last evaluated statement. return() can occur anywhere in the function, and allows the function to exit as soon as it is done.

```
f <- function(x) {
    if(x < 0) {
    return(-x^2)
    } else res <- x^2
}
f(-3)
## [1] -9</pre>
```

invisible(x) will return x and the result can be assigned in the calling environment but it will not be printed if not assigned:

```
f <- function(x) { invisible(x^2) }
f(3)
a <- f(3)
a
## [1] 9</pre>
```

A function can only return a single object (unlike Matlab, e.g.), but of course we can tack things together as a list and return that, as with lm() and many other functions.

```
mod <- lm(mpg ~ cyl, data = mtcars)
class(mod)
## [1] "lm"
is.list(mod)
## [1] TRUE</pre>
```

6.4 Approaches to passing arguments to functions

6.4.1 Pass by value vs. pass by reference

When talking about programming languages, one often distinguishes *pass-by-value* and *pass-by-reference*. Pass-by-value means that when a function is called with one or more arguments, a copy is made of each argument and the function operates on those copies. Pass-by-reference means that the arguments are not copied, but rather that information is passed allowing the function to find and modify the original value of the objects passed into the function. In pass-by-value, changes to an argument made within a function do not affect the value of the argument in the calling environment. In pass-by-reference changes inside a function do affect the object outside of the function. R is (roughly) pass-by-value. R's designers chose not to allow pass-by-reference because they didn't like the idea that a function could have the side effect of changing an object. However, passing by reference can sometimes be very helpful, and we'll see ways of passing by reference later in this Unit (and also note our discussion of Reference Classes).

Pass-by-value is elegant and modular in that functions do not have side effects - the effect of the function occurs only through the return value of the function. However, it can be inefficient in terms of the amount of computation and of memory used. In contrast, pass-by-reference is more efficient, but also more dangerous and less modular. It's more difficult to reason about code that uses pass-by-reference because effects of calling a function can be hidden inside the function.

An important exception is par(). If you change graphics parameters by calling par() in a user-defined function, they are changed permanently outside of the function. One trick is as follows:

```
f <- function() {
      oldpar <- par()
      par(cex = 2)
      # body of code
      par() <- oldpar
}</pre>
```

Note that changing graphics parameters within a specific plotting function - e.g., plot (x, y, pch = '+'), doesn't change things except for that particular plot. Can you think of other R functions that have side effects?

Pointers By way of contrast to a pass-by-value system, I want to briefly discuss the idea of a pointer, common in compiled languages such as C.

```
int x = 3;
int* ptr;
ptr = &x;
*ptr * 7; // returns 21
```

Here ptr is the address of the integer x.

Vectors in C are really pointers to a block of memory:

```
int x[10];
```

In this case x will be the address of the first element of the vector. We can access the first element as x [0] or x.

Why have we gone into this? In C, you can pass a pointer as an argument to a function. The result is that only the scalar address is copied and not the entire vector, and inside the function, one can modify the original vector, with the new value persisting on exit from the function. For example:

```
int myCal(int *ptr) {
   *ptr = *ptr + *ptr;
}
```

When calling C or C++ from R, one (implicitly) passes pointers to the vectors into C. Let's see an example:

In C, the function definition looks like this:

```
void logLik(double* out, double* theta)
```

6.4.2 Promises and lazy evaluation

In actuality, R is not quite pass-by-value; rather it is *call-by-value*. Copying of arguments is delayed in two ways. The first is the idea of promises and lazy evaluation, described here. The second is the idea of *copy-on-change*, described in Section 8. Basically, with copy-on-change, copies of arguments are only made if the argument is changed within the function. Until then the object in the function just refers back to the original object.

Let's see what a *promise* object is. In function calls, when R matches user input arguments to formal argument names, it does not (usually) evaluate the arguments until they are needed, which is called *lazy evaluation*. Instead the formal arguments are of a special type called a *promise*. Let's see lazy evaluation in action. Do you think the following code will run?

What's strange about that?

Another example:

```
f <- function(x) print("hi")
system.time(mean(rnorm(1000000)))

## user system elapsed
## 0.072 0.000 0.071

system.time(f(3))

## [1] "hi"
## user system elapsed
## 0 0 0 0</pre>
```

```
## [1] "hi"
## user system elapsed
## 0.004 0.000 0.001
```

Where are arguments evaluated? User-supplied arguments are evaluated in the calling frame, while default arguments are evaluated in the frame of the function:

```
z <- 3
x <- 100
f <- function(x, y = x*3) {x+y}
f(z*5)
## [1] 60</pre>
```

Here, when f() is called, z is evaluated in the calling frame and z * 5 is assigned to x in the frame of the function, while y = x * 3 is evaluated in the frame of the function.

Challenge: How could I experimentally determine if the default argument is treated as a promise as well?

6.5 Operators

Operators, such as '+', '[' are just functions, but their arguments can occur both before and after the function call:

```
a <- 7; b <- 3
# let's think about the following as a mathematical function
# -- what's the function call?
a + b
## [1] 10

'+`(a, b)
## [1] 10</pre>
```

In general, you can use back-ticks to refer to the operators as operators instead of characters. In some cases single or double quotes also work. We can look at the code of an operator as follows using back-ticks to escape out of the standard R parsing, e.g., % * %.

Finally, since an operator is just a function, you can use it as an argument in various places:

```
x \leftarrow 1:3; y \leftarrow c(100,200,300)
outer(x, y, `+`)
##
        [,1] [,2] [,3]
## [1,] 101 201 301
## [2,] 102 202 302
## [3,] 103 203 303
myList <- list(list(a = 1:5, b = "sdf"), list(a = 6:10, b = "wer"))
myMat <- sapply(myList, `[[`, 1)</pre>
## note that the index "1" is the additional argument to the [[ function
myMat
       [,1] [,2]
## [1,]
         1 6
## [2,]
         2
               7
          3
## [3,]
## [4,]
         4 9
## [5,] 5
              10
cbind(myList[[1]][[1]], myList[[2]][[1]]) ## equivalent but doesn't scale
##
        [,1] [,2]
## [1,]
       1
## [2,]
          2
               7
## [3,]
          3
               8
## [4,]
          4
                9
## [5,]
               10
```

You can define your own *binary* operator (an operator taking two arguments) using a string inside % symbols. Here's how we could do Python-style string addition: