Stanley Wei Math 170A (Killip, W24)

Study Guide

Contents

1	Pro	babilities	2
	1.1	Probability Spaces	2
	1.2	Probabilities	2
	1.3	Conditional Probability	3
	1.4	Bayes' Rule	3
	1.5	Independence	4
		1.5.1 (*) Independence of Infinite Experiments	4
2	Disc	crete Random Variables	5
	2.1	Discrete Probability Distributions	5
	2.2	Expected Value	6
	2.3	Variance & Standard Deviation	7
	2.4	Conditional Expectation	7
3	$\mathbf{M}\mathbf{u}$	ltiple Discrete Random Variables	8
4	Cor	ntinuous Random Variables	9
	4.1	Cumulative Distribution Functions	9
	4.2	Continuous Random Variables	9
	4.3	Continuous Probability Distributions	10
	4.4	Expectation for Continuous Random Variables	11
	4.5	(*) Generalized Quantile Functions	11
5	Mu	ltiple Continuous Random Variables	12
	5.1	Joint CDF & Independence	12
	5.2	Joint Continuity	
	5.3	Conditional Density Functions	
	5.4	Multivariate Normal Distribution	

Probabilities 1

Probability Spaces 1.1

Definition (Sample Space). Given an experiment, we define its sample space Ω to be the set of all elementary outcomes.

Definition (σ -Algebra). A collection \mathcal{F} of subsets $E \subseteq \Omega$ is called a σ -algebra if the following hold:

- 1. $\emptyset \in \mathcal{F}$ and $\Omega \in \mathcal{F}$.
- 2. If $A \in \mathcal{F}$, $A^c \in \mathcal{F}$.
- 3. If $A_n \in \mathcal{F}$ for $n \in \mathbb{N}$, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$. [Countable unions]

Definition (*Probability Measure*). Given a sample space Ω and σ -algebra \mathcal{F} , a **probability** [measure] is an assignment $\mathbb{P}: \mathcal{F} \to \mathbb{R}$ subject to:

- 1. $\mathbb{P}(A) \geq 0 \ \forall \ A \in \mathcal{F}$.
- 2. $\mathbb{P}(\emptyset) = 0$; $\mathbb{P}(\Omega) = 1$.
- 3. If $A_n \in \mathcal{F}$ are disjoint for $n \in \mathbb{N}$, $\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$. $[\sigma\text{-additivity}]$

Probabilities 1.2

DeMorgan's Laws:

- 1. $(A \cup B)^c = A^c \cap B^c$
- 2. $(A \cap B)^c = A^c \cup B^c$

Probability Properties:

Let $A, B \in \mathcal{F}$.

1. $\mathbb{P}(A) + \mathbb{P}(A^c) = 1$

2. $0 < \mathbb{P}(A) < 1$

3. $(A \cap B) \in \mathcal{F}$.

- 4. $(A \setminus B) \in \mathcal{F}$.
- 5. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ 6. If $A \subseteq B$, $\mathbb{P}(B) \ge \mathbb{P}(A)$
- 7. If $A_n \in \mathcal{F}$ for $1 \leq n \leq N$, then $\bigcup_{n=1}^N A_n \in \mathcal{F}$. [Finite union]

Theorem (Continuity).

- 1. Given events $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subseteq \ldots$ for $n \in \mathbb{N}$, $\underline{\mathbb{P}(\bigcup_{n=1}^{\infty} A_n)} = \lim_{n \to \infty} \mathbb{P}(A_n)$.
- 2. Given events $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_n \supseteq \ldots$ for $n \in \mathbb{N}$, $\mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$

1.3 Conditional Probability

Definition (*Conditional Probability*). Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and an event B with $\mathbb{P}(B) > 0$, then the *conditional probability* of A given B is:

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

"Multiplication Rule":

$$\mathbb{P}(A_1 \cap \ldots \cap A_n) = \mathbb{P}(A_n \mid A_1 \cap \ldots \cap A_{n-1}) \cdot \ldots \cdot \mathbb{P}(A_2 \mid A_1) \cdot \mathbb{P}(A_1)$$

1.4 Bayes' Rule

Theorem (*Partition Theorem*). If $\{B_j\}$ form a partition of Ω with $\mathbb{P}(B_j) > 0 \ \forall j$, then $\forall A \in \mathcal{F}$:

$$\mathbb{P}(A) = \sum_{j} \mathbb{P}(A \cap B_{j}) = \sum_{j} \mathbb{P}(A \mid B_{j}) \cdot \mathbb{P}(B_{j})$$

Definition (*Bayes' Rule*). Given events A, B with $\mathbb{P}(A), \mathbb{P}(B) > 0$:

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \mid B) \cdot \mathbb{P}(B)}{\mathbb{P}(A)}$$

Definition (*Bayes' Rule on Partitions*). Given a countable partition $\{B_j\}$ of Ω with $\mathbb{P}(B_j) > 0 \ \forall \ j$ and event A with $\mathbb{P}(A) > 0$:

$$\mathbb{P}(B_j \mid A) = \frac{\mathbb{P}(B_j \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A \mid B_j) \mathbb{P}(B_j)}{\sum_k \mathbb{P}(A \mid B_k) \mathbb{P}(B_k)}$$

Given a partition $\{B_j\}$ of Ω and event A, distinguish between:

- 1. **Likelihoods** $\mathbb{P}(A | B_j)$
 - \bullet Do $\underline{\mathbf{not}}$ comprise a probability measure
- 2. **Posterior probabilities** $\mathbb{P}(B_i | A)$
 - \bullet $\underline{\mathbf{Do}}$ comprise a probability measure

1.5 Independence

Definition (*Independence*). We say that:

(i) Two events A, B are [statistically] independent if:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B)$$

• Alternatively:

$$\mathbb{P}\left(A \mid B\right) = \mathbb{P}\left(A\right)$$

(ii) Events E_{α} for $\alpha \in A$ are *independent* if, for every finite $B \subseteq A$:

$$\mathbb{P}\left(\bigcap_{\alpha\in B} E_{\alpha}\right) = \prod_{\alpha\in B} \mathbb{P}\left(E_{\alpha}\right)$$

Definition (*Conditional Independence*). Let $\mathbb{P}(C) > 0$; say that two events A, B are *conditionally independent* given C if:

$$\mathbb{P}(A \cap B \mid C) = \mathbb{P}(A \mid C) \mathbb{P}(B \mid C)$$

• Alternatively:

$$\mathbb{P}(A \mid B, C) = \mathbb{P}(A \mid C)$$

1.5.1 (*) Independence of Infinite Experiments

Given an infinite experiment, we can describe it via the infinite product of probability spaces.

Namely, given probability spaces $(\Omega_{\alpha}, \mathcal{F}_{\alpha}, \mathbb{P}_{\alpha})$ for $\alpha \in A$, we can take the sample space $\prod_{\alpha \in A} \Omega_{\alpha}$.

Definition (*Cylinder Set*). We define a *cylinder set* as follows: let $S \subseteq A$ be a finite set, and for each $\alpha \in S$ let $E_{\alpha} \in \mathcal{F}_{\alpha}$. Then the associated cylinder set is:

$$\left(\prod_{\alpha \in S} E_{\alpha}\right) \times \left(\prod_{\alpha \in S^{c}} \Omega_{\alpha}\right)$$

Theorem. Given probability spaces $(\Omega_{\alpha}, \mathcal{F}_{\alpha}, \mathbb{P}_{\alpha})$ for $\alpha \in A$, there is a unique probability law on $(\prod_{\alpha \in A}, \otimes_{\alpha \in A} \mathcal{F}_{\alpha}, \mathbb{P})$ satisfying $(\forall \text{ finite } S \subseteq A)$:

$$\mathbb{P}\left(\left(\prod_{\alpha\in S} E_{\alpha}\right) \times \left(\prod_{\alpha\in S} \Omega_{\alpha}\right)\right) = \prod_{\alpha\in S} \mathbb{P}_{\alpha}(E_{\alpha})$$

2 Discrete Random Variables

Definition (*Discrete Random Variable*). A *discrete [real-valued] random variable* on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a function

$$X:\Omega\to\mathbb{Z}$$

such that X is **measurable**; i.e.: for each $n \in X(\Omega)$, $\{\omega \in \Omega : X(\omega) = n\} \in \mathcal{F}$.

Definition (*Probability Mass Function*). Given discrete random variable X, its *probability mass function* [PMF] is the function $p_X : \mathbb{Z} \to [0, 1]$ defined by:

$$p_X(n) = \mathbb{P}\left(\{X = n\}\right)$$

Definition (*Indicator*). Given an event $E \in \mathcal{F}$, its *indicator random variable* is the function 1_E defined by:

$$1_e(\omega) = \begin{cases} 1 & \omega \in E \\ 0 & \omega \notin E \end{cases}$$

2.1 Discrete Probability Distributions

Distribution	Parameters	PMF	$\mathbb{E}\left(X\right)$	$\operatorname{Var}\left(X\right)$
Bernoulli(p)	$p \in [0, 1]$	$p_X(k) = \begin{cases} p & k = 1\\ (1-p) & k = 0\\ 0 & \text{otherwise} \end{cases}$	p	p(1-p)
Binomial(n, p)	$n \in \mathbb{N} \cup \{0\}; p \in [0, 1]$	$p_X(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$	np	p(n-np)
Geometric (p)	$p \in (0,1]$	$p_X(k) = \begin{cases} (1-p)^{k-1}p & k = 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$\lambda \in \mathbb{N} \cup \{0\}$	$p_X(k) = \begin{cases} \frac{\lambda^k}{k!} e^{-\lambda} & k \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$	λ	λ

Interpretations:

- 1. Bernoulli(p): One trial with probability of success p
- 2. Binomial(n, p): Number of successes across n independent Bernoulli(p) trials
- 3. Geometric(p): Number of independent Bernoulli(p) trials to reach 1st success
- 4. Poisson(λ): Expected number of occurrences of some event across some interval

2.2 Expected Value

Definition (*Expected Value*). Given a discrete r.v. X, we define its *expected value* (alt: mean, average, expectation) to be:

$$\mathbb{E}(X) = \sum_{k} k \cdot p_X(k),$$

given that the sum converges absolutely $(\mathbb{E}(X) = \sum_{k} |k \cdot p_X(k)| < \infty)$.

Expected Value & Composition:

$$\mathbb{E}\left(g(X)\right) = \sum_{k} g(k) \mathbb{P}\left(X = k\right)$$

Theorem (*Jensen's inequality*). If $g : \mathbb{R} \to \mathbb{R}$ is convex, then:

$$\mathbb{E}\left(g(X)\right) \geq g(\mathbb{E}\left(X\right)$$

2.3 Variance & Standard Deviation

Definition (*Variance & Standard Deviation*). Given random variable X:

- (i) Call $\mathbb{E}(X^m)$ the m^{th} moment of X.
- (ii) Define the *variance* of X as $Var(X) = \mathbb{E}((X \mu)^2)$, where $\mu = \mathbb{E}(X)$.
- (iii) Define the **standard deviation** of X as $\sigma(X) = \sqrt{\operatorname{Var}(X)}$.

Properties:

- (i) $Var(aX) = a^2 Var(X)$
- (ii) $\operatorname{Var}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$

2.4 Conditional Expectation

Definition (*Conditional Expectation*). If X a random variable and A an event with $\mathbb{P}(A) > 0$, define the *conditional PMF* of X given A:

$$p_{X\,|\,A} = \mathbb{P}\left(X = k\,|\,A\right)$$

Similarly, we define the **conditional expectation** of X given A:

$$\mathbb{E}(X \mid A) = \sum_{k} k \cdot p_{X \mid A}(k),$$

provided the sum converges absolutely.

Definition (*Partition Theorem*). Given r.v. X with $\mathbb{E}(|X|) < \infty$ and partition $\{B_j\}$ of Ω with each $\mathbb{P}(B_j) \geq 0$, we have:

$$\mathbb{E}(X) = \sum_{j} \mathbb{E}(X \mid B_{j}) \mathbb{P}(B_{j}).$$

In particular, the expectations $\mathbb{E}(X | B_j)$ exist.

3 Multiple Discrete Random Variables

Definition (*Joint PMF*). Given two random variables X, Y, the *joint PMF of* X and Y is the function $p_{X,Y}$ defined by:

$$p_{X,Y}(k,l) = \mathbb{P}(X = k \& Y = l)$$

Definition (*Independence*). We say random variables X, Y are *independent* if, for any choice of k, l, the events $\{X = k\}$ and $\{Y = l\}$ are independent, i.e.:

$$\mathbb{P}\left(X=k\ \&\ Y=l\right)=\mathbb{P}\left(X=k\right)\mathbb{P}\left(Y=l\right)$$

Independence of Multiple Variables

- We say random variables X_1, X_2, \ldots are *independent* if, for any choice of k_i 's for $i \in \mathbb{N}$, the events $\{X_i = k_i\}$ are independent.
- If two random variables X, Y are independent and have expectation, then the variable XY has finite expectation $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Covariance

Definition (*Covariance*). Given two r.v.s X and Y, the *covariance* of X and Y is:

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

In particular: $Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$

4 Continuous Random Variables

Definition (*Real-Valued Random Variable*). A real-valued random variable on probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is a function $X : \Omega \to \mathbb{R}$ that is measurable, i.e.: for all $x \in \mathbb{R}$, $\{X \leq x\} \in \mathcal{F}$.

4.1 Cumulative Distribution Functions

Definition (*Cumulative Distribution Function*). Given real-valued random variable X, its *cumulative distribution function* [CDF] is the function F_x : $\mathbb{R} \to [0,1]$ defined by:

$$F_X(x) = \mathbb{P}(X \le x)$$

CDFs

- CDFs are always strictly non-decreasing
- CDFs may be discrete, continuous, or neither discrete nor continuous
- CDFs are "cadlag": continuous from the left, limit from the right:
 - $-\lim_{y \uparrow x} F_X(y) = \mathbb{P}\left(X \le x\right)$
 - $-\lim_{y \downarrow x} F_X(y) = F_X(x)$

4.2 Continuous Random Variables

Definition (*Continuous Random Variables*). A random variable $X : \Omega \to \mathbb{R}$ is called *continuous* if \exists integrable function $f_X : \mathbb{R} \to \mathbb{R}$ such that:

$$F_X(x) = \int_{-\infty}^x f_X(x')dx'$$

The function f_X is called the **probability density function** [PDF] of X.

Definition (Absolute Continuity). A function F is called absolutely continuous if, for every $\epsilon > 0$, $\exists \ \delta > 0$ s.t. for any set of intervals $((a_i, b_i))_i$ with $|b_1 - a_1| + \ldots + |b_n - a_n| < \delta$, then:

$$\sum_{i=1}^{n} |F(b_i) - F(a_i)| < \epsilon$$

Continuous Random Variables

- It is true that for any continuous R.V. X, its CDF F_X is continuous; however, it is not true that every continuous CDF F_X admits a probability density
 - Only absolutely continuous CDFs admit a probability density
- If $X: \Omega \to \mathbb{R}$ is a continuous r.v., then $\forall a \leq b$:

$$\mathbb{P}(a < X < b) = \mathbb{P}(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$

(*) Corollary: $\mathbb{P}(X = a) = 0 \ \forall \ a \in \mathbb{R}$

4.3 Continuous Probability Distributions

Definition (*Gamma Function*). For z > 0, the *gamma function* $\Gamma(z)$ is defined by:

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$$

(*) Note:
$$\underline{\Gamma(s+1) = s\Gamma(s)}$$
; for $n \in \mathbb{N}$, $\Gamma(n+1) = n!$

Distribution	Parameters	PDF	$\mathbb{E}(X)$	$\operatorname{Var}\left(X\right)$
Uniform $([a,b])$	$a \leq b$	$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{otherwise} \end{cases}$	$\frac{a+b}{2}$	$\frac{1}{12}(b-a)^2$
$\mathrm{N}(\mu,\sigma^2)$	$\mu; \sigma \geq 0$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Exponential(λ)	$\lambda > 0$	$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\Gamma(k,\lambda)$	$k, \lambda > 0$	$f_x(x) = \begin{cases} \frac{1}{\Gamma(k)} \lambda^k x^{k-1} e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$	$\frac{k}{\lambda}$	$\frac{k}{\lambda^2}$
Cauchy	None	$f_X(x) = \frac{1}{\pi(1+x^2)}$	None	None

Additional Distributions:

- $W \sim \text{LogNormal}(\mu, \sigma^2)$ if $\ln(W) \sim N(\mu, \sigma^2)$
- If $X_1, \ldots, X_n \sim \text{Exp}(\lambda)$ are independent, then $\sum_{i=1}^n X_i \sim \text{Erlang}(n, \lambda) = \Gamma(n, \lambda)$
- If $X_1, \ldots, X_n \sim \mathcal{N}(0,1)$ independent, then $\sum_{i=1}^n X_i \sim \chi_n^2 = \Gamma(\frac{n}{2}, \frac{1}{2})$

4.4 Expectation for Continuous Random Variables

Definition (Expectation). Given a continuous random variable X, we define its expectation to be:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

provided the integral is absolutely convergent.

Expectation for Continuous Random Variables

Given a continuous function g and continuous random variable X:

- $g \circ X$ is a random variable, i.e. $g \circ X$ is measurable
- $g \circ X$ is not necessarily a continuous random variable
- $g \circ X$ has expectation (if it exists) given by:

$$\mathbb{E}\left(g(X)\right) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

4.5 (*) Generalized Quantile Functions

Definition (*Generalized Quantile Function*). Given a CDF F, the *generalized quantile function* associated to F is the function $Q:(0,1)\to\mathbb{R}$ defined by:

$$Q(p) = \inf\{x : F(x) \ge p\}$$

Generalized Quantile Functions

- If F is invertible, then $Q = F^{-1}$
- $Q(p) \le x \Leftrightarrow F(x) \ge p$

5 Multiple Continuous Random Variables

5.1 Joint CDF & Independence

Definition (*Joint CDF*). Given 2 random variables $X, Y : \Omega \to \mathbb{R}$, the *joint CDF* of X and Y is the function $F_{X,Y} : \mathbb{R}^2 \to [0,1]$ defined by:

$$F_{X,Y}(x,y) = \mathbb{P}\left(X \le x \& Y \le y\right)$$

$$\updownarrow$$

$$F_{X,Y}(x,y) = \mathbb{P}\left(\{\omega : X(\omega) \le x\} \cap \{\omega : Y(\omega) \le y\}\right)$$

Definition (*Independence*). We say that two random variables X, Y are *independent* if, $\forall x, y \in \mathbb{R}$:

$$\mathbb{P}(X \le x \& Y \le y) = \mathbb{P}(X \le x) \mathbb{P}(Y \le y)$$

$$\updownarrow$$

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

5.2 Joint Continuity

Definition (*Joint Continuity*). We say that two random variables X, Y are *jointly continuous* if there is an integrable function $f_{X,Y} : \mathbb{R}^2 \to [0,1]$:

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(x',y') dy' dx'$$

The function $f_{X,Y}$, if it exists, is called the **joint PDF** of X and Y.

Joint Continuity

- If X, Y are jointly continuous, then they are individually continuous.
- If X, Y are jointly continuous, then we can find the **marginal distribution** of X (and likewise for Y) as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$

- If two variables X, Y are individually continuous and independent, then they are jointly continuous with joint PDF $f_{X,Y}(x,y) = f_X(x)f_Y(y)$
- If X, Y are jointly continuous, then $\mathbb{E}(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy$.

5.3 Conditional Density Functions

Definition (*Conditional CDF*). Given a continuous random variable X and an event A with $\mathbb{P}(A) > 0$, the *conditional CDF* of X given A is:

$$\mathbb{P}(X \le x \mid A) = \frac{\mathbb{P}(X \le x \& A)}{\mathbb{P}(A)}$$

Definition (*Conditional PDF*). Given continuous random variables X, Y, the *conditional PDF* of Y given X is:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

Definition (*Conditional Expectation*). The *conditional expectation* of Y given X is:

$$\mathbb{E}(Y \mid X = x) = \int_{-\infty}^{\infty} y f_Y \mid X(y \mid x) dy$$

Theorem. Given continuous random variables X, Y:

- 1. Law of Total Probability: $f_Y(y) = \int_X f_{Y|X}(y|x) f_X(x) dx$
- 2. Law of Total Expectation: $\mathbb{E}(Y) = \int_X \mathbb{E}(Y \mid X = x) f_X(x) dx$

Conditional Density & Expectation

- $\mathbb{E}(g(Y) | X = x) = \int_X g(y) f_{Y|X}(y | x) dx$
- $\mathbb{E}(g(Y)h(X)) = \int_X \mathbb{E}(g(Y) | X = x) h(x) f_X(x) dx$
- Two jointly continuous random variables X, Y are independent iff $f_{Y|X}(y|x) = f_Y(y)$ for all but a negligible set $x \in E$

5.4 Multivariate Normal Distribution

Definition (*Positive-Definite*). A real matrix Σ is called *positive-definite* if it is square, symmetric, and has $\forall \vec{\xi} \in \mathbb{R}^n \setminus \{\vec{0}\}$:

$$\vec{\xi} \bullet \Sigma \, \vec{\xi} > 0$$

Theorem. For any positive-definite matrix Σ , \exists invertible positive-definite matrix B s.t.:

$$\Sigma = BB^T$$

Definition (*Multivariate Normal Distribution*). We say that random variables X_1, \ldots, X_n are *jointly normal* if there exist:

- 1. A positive-definite matrix Σ (called the ${\it covariance\ matrix})$ and
- 2. A vector $\vec{\mu} \in \mathbb{R}^n$ (called the **mean**)

such that $\vec{X} = \langle \vec{X_1}, \dots, \vec{X_n} \rangle$ has PDF given by:

$$f_{\vec{X}}(\vec{x}) = \frac{1}{\sqrt{\det(2\pi\Sigma)}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu}) \bullet \Sigma^{-1}(\vec{x} - \vec{\mu})\right)$$

(*) Notation: Say that: $\int f(\vec{x})d\vec{x} = \int \dots \int f(\vec{x})dx_n \dots dx_1$, where $\vec{x} = \langle x_1, \dots, x_n \rangle$

Theorem. Given \vec{X}, Σ, μ as above:

- 1. $\int f_{\vec{X}}(\vec{x})d\vec{x} = 1$
- 2. Mean: $\int \vec{x} f_{\vec{X}}(\vec{x}) d\vec{x} = \vec{\mu}$
- 3. <u>Covariance</u>: Cov $(X_i, X_j) = \int (\vec{x}_i \vec{\mu}_i)(\vec{x}_j \vec{\mu}_j) f_{\vec{X}}(\vec{x}) d\vec{x} = \Sigma_{ij}$