Lecture 25: 80x86 Evolution 1

Seyed-Hosein Attarzadeh-Niaki

Based on the slides by Barry Brey

Microprocessors and Assembly

1

Review

- Shared bus access
- Bus interfaces
 - ISA
 - PCI
- Direct Memory Access and 8237
- DMA-Controlled IO

Microprocessors and Assembly

80186/188

- Successful in the embedded controller market
- Never used by IBM in their family of PC products
- Put a portion of peripheral chips along with the 8086/88 on a single chip
 - clock generator, two 20-bit DMA channels, three 16-bit programmable counters, interrupt controller, programmable wait-state generator, and programmable chip select decoder unit.

New instructions

BOUND ENTER LEAVE IMUL INS OUTS SAR SHR SAL RCR ROR RCL ROL

PUSH

POPA

PUSHA

result, source, immediate data dest, port port, dest

dest,immediate count

dest,source

disp, level

immediate data

Microprocessors and Assembly

- 32-bit data bus (internally and externally)
- Registers were extended to 32 bits
- Address bus was increased to 32 bits
- Paging virtual memory mechanism was introduced
 - Capable of both segmentation and paging
- Can use general registers also as pointers
- New addressing mode called scaled index
- New bit-manipulation instructions
- Can be switched from protected to real mode by software

Microprocessors and Assembly

The Programming Model

- 8086 through Core2 considered program visible
 - registers which are used during programming and are specified by the instructions
- Other registers considered to be program invisible.
 - not addressable directly during applications programming
- 80286 and above contain program-invisible registers to control and operate protected memory.
 - and other features of the microprocessor
- 80386 through Core2 microprocessors contain full 32bit internal architectures.
- 8086 through the 80286 are fully upward-compatible to the 80386 through Core2.

Microprocessors and Assembly

7

The Programming Model (Including 64-bit Extensions)

• R8 - R15 found in the Pentium 4 and Core2 if 64-bit extensions are enabled

Microprocessors and Assembly

- IOP: used in protected mode operation to select the privilege level for I/O devices.
- NT (nested task): flag indicates the current task is nested within another task in protected mode operation.
- RF (resume): used with debugging to control resumption of execution after the next instruction.
- VM (virtual mode): flag bit selects virtual mode operation in a protected mode system.
- AC, (alignment check): flag bit activates if a word or doubleword is addressed on a non-word or non-doubleword boundary.
- VIF is a copy of the interrupt flag bit available to the Pentium 4–(virtual interrupt)
- VIP (virtual) provides information about a virtual mode interrupt for (interrupt pending) Pentium.

 used in multitasking environments to provide virtual interrupt flags
- ID (identification): flag indicates that the Pentium microprocessors support the CPUID instruction.

Microprocessors and Assembly

.

Real Mode Memory Addressing

- 80286 and above operate in the real or protected mode.
- Real mode operation allows addressing the first 1MB of memory
 - called the real memory, conventional memory, or DOS memory system
- A program placed in memory by DOS is loaded in the TPA at the first available area of memory above drivers and other TPA programs
 - The transient program area (TPA) holds the operating system; other programs that control the computer system.
- Segment plus offset addressing allows DOS programs to be relocated in memory.
 - In a relocatable program, the complete segment can be moved.

Microprocessors and Assembly

Protected Mode Memory Addressing

- Instead of a segment address, the segment register contains a selector that selects a descriptor from a descriptor table.
- The descriptor in the segment register describes the memory segment's location, length, and access rights.
- Global descriptors (system descriptors) contain segment definitions that apply to all programs.
- Local descriptors (application descriptors) are usually unique to an application.

Microprocessors and Assembly

11

BYTE

Descriptors

Microprocessors and Assembly

Descriptors

- Base: base address of the segment
- Limit: the length of the segment
- G: granularity Bit
 - 1 = Segment length is page granular (4GB in steps of 4K)
 - 0 = Segment length is byte granular (4KB)

Segment Register in Protected Mode

- The TI bit selects either the global or the local descriptor table.
- Requested Privilege Level (RPL) requests the access privilege level of a memory segment.

Microprocessors and Assembly

Choosing a Descriptor

- The entry in the global descriptor table selects a segment in the memory system.
- Descriptor zero is called the null descriptor, must contain all zeros, and may not be used for accessing memory.
- In this example, the DS register accesses memory locations 00100000H-001000FFH as a data segment.

Memory system FFFFFF Global descriptor table 100100 1000FF Data segment Descriptor 1 0008 000000

Microprocessors and Assembly

DS

Program-Invisible Registers

- Global and local descriptor tables are found in the memory system.
- To access & specify the table addresses, 80286–Core2 contain program-invisible registers.
- Each segment register contains a program-invisible portion used in the protected mode.
- When a new segment number is placed in a segment register,
 - the microprocessor accesses a descriptor table and
 - loads the descriptor into the program-invisible portion of the segment register.
- This allows the microprocessor to repeatedly access a memory segment without referring to the descriptor table.

Microprocessors and Assembly

Program-Invisible Registers

	Segment registers			Descriptor cache	
CS		ŀΓ	Base address	Limit	Access
DS		1			
ES					
SS					
FS					
GS		11			
TR		Γ	Base address	Limit	Access
LDTR					
	Descriptor table	addre	esses		
GDTR	Base address		Limit	Program invis	ible
IDTR				r rogiam mvie	

- 1. The 80286 does not contain FS and GS nor the program-invisible portions of these registers.
 2. The 80286 contains a base address that is 24-bits and a limit that is 16-bits.
 3. The 80386/80486/Pentium/Pentium Pro contain a base address that is 32-bits and a limit that is 20-bits.

4. The access rights are 8-bits in the 80286 and 12-bits in the 80386/80486/Pentium-Core2

Microprocessors and Assembly

Program-Invisible Registers

- The GDTR (global descriptor table register) and IDTR (interrupt descriptor table register) contain the base address of the descriptor table and its limit.
- To access the local descriptor table, the LDTR (local descriptor table register) is loaded with a selector.
 - selector accesses global descriptor table, & loads local descriptor table address, limit, & access rights into the cache portion of the LDTR
- The TR (task register) holds a selector, which accesses a descriptor that defines a task.
 - a task is most often a procedure or application
 - Allows multitasking systems to switch tasks to another in a simple and orderly fashion.

Microprocessors and Assembly

19

64 Terabytes of Virtual Memory

- 14 bits of the selector (segment) register
- Each can hold addresses of memory chunks as large as 4 gigabytes (segment limit)
- 64 terabytes of virtual memory for the 386
- Drawbacks of 386 segmentation
 - variable segment size: memory fragmentation
 - Absence of a *dirty bit* in the access byte of the descriptor table

Microprocessors and Assembly

Memory Paging

- Paging: invisibly translate a linear address to a physical address
 - Linear address: address generated by the program
 - Physical address: actual memory location
- Linear address broken into: page directory entry, page table entry, and memory page offset address.

Page Directory and Page Table

- Only one page directory in the system.
- The page directory contains 1024 doubleword addresses that locate up to 1024 page tables.
- Page directory and each page table are 4K bytes in length.

Translation Look-aside Buffer

- Intel has incorporated a special type of cache called TLB (translation look-aside buffer).
 - because repaging a 4K-byte section of memory requires access to the page directory and a page table, both located in memory
- The 80486 cache holds the 32 most recent page translation addresses.
 - if the same area of memory is accessed, the address is already present in the TLB
 - This speeds program execution
- Pentium contains separate TLBs for each of their instruction and data caches.

Microprocessors and Assembly

Comparing Paging and Segmentation

Feature	Paging	Segmentation Any size	
Size	4K bytes		
Levels of privilege	2	4	
Base address	4K-byte aligned	Any address	
Dirty bit	Yes	No	
Access bit	Yes	Yes	
Present bit	Yes	Yes	
Read/write protection	Yes	Yes	

Microprocessors and Assembly

The 64-Bit Flat Mode Memory

- Available in the 64-bit extension
- No segmentation
- Segment register only selects privilege level (CS)
- Address is 40 bits in IA32 compatibility mode
- Easier but less protection
- Real mode is not available in 64-bit mode
 - Protection and paging are allowed

Microprocessors and Assembly