

## National Institute of Technology Tiruchirappalli, Tamil Nadu – 620 015

<u>Machine Learning Techniques and Practices – CT1</u> Date: 24.02.2022

<u>Duration:</u> 1 Hr <u>Time:</u> 10:00 – 11:00 AM

Total Marks: 20

- If a dataset has the target labels associated with all the samples and the machine learning algorithm also considers all these labels to take a decision, then which category does this learning algorithm belong to?

  (1 M)
  - (a) Supervised
- **(b)** Unsupervised
- (c) Semi-supervised
- (d) Reinforcement
- 2. (i) Draw Box-and-Whisker Plot for the values: **4, 7, 9, 8, 12, 80, 15**
- (4 + 2 = 6 M)
- (ii) Discuss about the spread of data in the above plot using Q1, Q2, Q3 and IQR values.
- 3. Match the following:

(2 M)

- A. Feature Binning
- (i) Creates separate columns for each unique value that is present in the categorical feature
- B. Feature Engineering
- (ii) Converts the "n" unique values in categorical features to values between 0 and n-1
- C. Label Encoding
- (iii) Should be utilized when one wants to replace an existing feature with more meaningful additional features
- D. One Hot Encoding
- (iv) Should be applied on features that has large number of unique values
- (a)  $A \rightarrow (ii)$ ;  $B \rightarrow (iii)$ ;  $C \rightarrow (iv)$ ;  $D \rightarrow (i)$
- **(b)**  $A \rightarrow (iii)$ ;  $B \rightarrow (i)$ ;  $C \rightarrow (iv)$ ;  $D \rightarrow (ii)$
- (c)  $A \rightarrow (i)$ ;  $B \rightarrow (iv)$ ;  $C \rightarrow (ii)$ ;  $D \rightarrow (iii)$
- (d)  $A \rightarrow (iv)$ ;  $B \rightarrow (iii)$ ;  $C \rightarrow (ii)$ ;  $D \rightarrow (i)$
- 4. (i) Write the names of various binning methods.

$$(2 + 3 = 5 M)$$

(ii) Consider the following data and apply any two binning methods [Hint: Bin Size = 3]

- 5. (i) Does the feature "Age" in below dataset require Feature Scaling? State the reason.
  - (ii) How will you identify whether the features "Speed" and "Acceleration" are related to each other or not (State the reason). Also, draw a rough graph using these two features and identify what

will be the range/value of Pearson Correlation Coefficient. What will be your final decision – That is, under what condition you will be dropping a feature? (2 + 4 = 6 M)

| SI.<br>No. | Name     | Age  | Speed<br>(in<br>km/hr) | Acceleration<br>(in %) | Rotation<br>of Tyre (in<br>km/hr) | Direction of Motion | Clear<br>Vision<br>(in %) | Class  |
|------------|----------|------|------------------------|------------------------|-----------------------------------|---------------------|---------------------------|--------|
| 1.         | Bala     | 1000 | 100                    | 60                     | 100                               | Forward             | 80                        | Racing |
| 2.         | Karthick | 25   | 120                    | 70                     | 120                               | Forward             | 70                        | Racing |
| 3.         | Sundar   | 35   | 140                    | 75                     | 140                               | Forward             | 60                        | Racing |
| 4.         | Rajesh   | 30   | 160                    | 85                     | 160                               | Forward             | 50                        | Racing |
| 5.         | Kumar    | 20   | 180                    | 100                    | 180                               | Forward             | 40                        | Racing |