Отчет по лабараторной работе №8

Архитектура компьютера

Исаханян Армен Артурович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение самостоятельной работы	16
5	Выводы	18
Список литературы		19

Список иллюстраций

3.1	Создание каталога и переход в него	7
3.2	Создание файла	8
3.3	Ввод программы	8
3.4	Запуск файла	8
3.5	Изменение программы	9
3.6	Изменение программы	10
3.7	Запуск файла	11
3.8	Изменение программы	12
3.9	Запуск файла	13
3.10	Создание файла	13
3.11	Ввод программы	13
3.12	Запуск файла	14
3.13	Создание файла	14
3.14	Ввод программы	14
3.15	Запуск файла	15
4.1	Создание файла	16
4.2		16
4.3		17

Список таблиц

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Задание

Здесь приводится описание задания в соответствии с рекомендациями методического пособия и выданным вариантом.

3 Теоретическое введение

Стек — это структура данных, организованная по принципу LIFO («Last In — First Out» или «последним пришёл — первым ушёл»). Стек является частью архитектуры процессора и реализован на аппаратном уровне. Для работы со стеком в процессоре есть специальные регистры (ss, bp, sp) и команды. Основной функцией стека является функция сохранения адресов возврата и передачи аргументов при вызове процедур. Кроме того, в нём выделяется память для локальных переменных и могут временно храниться значения регистров. На рис. 8.1 показана схема организации стека в процессоре. Стек имеет вершину, адрес последнего добавленного элемента, который хранится в ре- гистре еsp (указатель стека). Противоположный конец стека называется дном. Значение, помещённое в стек последним, извлекается первым. При помещении значения в стек указа-тель стека уменьшается, а при извлечении — увеличивается. Для стека существует две основные операции: • добавление элемента в вершину стека (push); • извлечение элемента из вершины стека (pop). # Выполнение лабораторной работы

Создал каталог work/arch-pc/lab08 и перешел в него (рис. 3.1).

Рис. 3.1: Создание каталога и переход в него

Создал файл в каталоге (рис. 3.2).

Рис. 3.2: Создание файла

Ввел программу в файл lab8-1.asm (рис. 3.3).

```
1 %include 'in_out.asm'
2 SECTION .data
3 msg1 db 'Введите N: ',0h
4 SECTION .bss
5 N: resb 10
6 SECTION .text
7 global _start
8 _start:
9; ---- Вывод сообщения 'Введите N: '
10 mov eax, msg1
11 call sprint
12; ---- Ввод 'N'
13 mov ecx, N
14 mov edx, 10
15 call sread
16 ; ---- Преобразование 'N' из символа в число
17 mov eax, N
18 call atoi
19 mov [N], eax
20 ; ----- Организация цикла
21 mov ecx,[N] ; Счетчик цикла, 'ecx=N'
22 label:
23 mov [N], ecx
24 mov eax,[N]
25 call iprintLF ; Вывод значения 'N'
26 loop label ; 'ecx=ecx-1' и если 'ecx' не '0'
27; переход на 'label'
28 call quit
                                                    Toyet - Illunian
```

Рис. 3.3: Ввод программы

Запустил исполнемый файл (рис. 3.4).

```
aaisakhanyan@dk3n65 ~/work/arch-pc/lab07 $ nasm -f elf lab8-1.asm
aaisakhanyan@dk3n65 ~/work/arch-pc/lab07 $ ld -m elf_i386 -o lab8-1 lab8-1.
aaisakhanyan@dk3n65 ~/work/arch-pc/lab07 $ ./lab8-1
Введите N: 5
5
4
3
2
1
aaisakhanyan@dk3n65 ~/work/arch-pc/lab07 $
```

Рис. 3.4: Запуск файла

Изменил текст программы добавив изменение значение регистра есх в цикле (рис. 3.5).

```
29 label:
30 sub ecx,1; 'ecx=ecx-1'
31 mov [N],ecx
32 mov eax,[N]
33 call iprintLF
34 loop label
```

Рис. 3.5: Изменение программы

Редактировал программу в файле lab8-1.asm (рис. 3.6).

```
lab8-1.asm
 Открыть 🔻 🛨
                                                ~/work/arch-pc/lab08
 1 %include 'in_out.asm'
2 SECTION .data
3 msg1 db 'Введите N: ',0h
4 SECTION .bss
5 N: resb 10
6 SECTION .text
7 global _start
8 _start:
9; ---- Вывод сообщения 'Введите N: '
10 mov eax, msg1
11 call sprint
12; ---- Ввод 'N'
13 mov ecx, N
14 mov edx, 10
15 call sread
16; ---- Преобразование 'N' из символа в число
17 mov eax, N
18 call atoi
19 mov [N], eax
20; ---- Организация цикла
21 mov ecx,[N] ; Счетчик цикла, 'ecx=N'
22 label:
23 sub ecx,1 ; 'ecx=ecx-1'
24 mov [N],ecx
25 mov eax,[N]
26 call iprintLF
27 loop label
```

Рис. 3.6: Изменение программы

Запустил исполняемый файл и получил такой результат(рис. 3.7).

Рис. 3.7: Запуск файла

Внес изменения в текст программы добавив команды push и pop (рис. 3.8).

Рис. 3.8: Изменение программы

Запустил исполняемый файл (рис. 3.9).

```
Файл Правка Вид Закладки Модули Настройка Справка

□ Новая вкладка □ Разделить окно

aaisakhanyan@dk5n55 - $ cd ~/work/arch-pc/lab08

aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ nasm -f elf lab8-1.asm

aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-1 lab8-1.o

aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ ./lab8-1

Введите N: 5

4

3

2

1

0

Ошибка сегментирования (стек памяти сброшен на диск)

aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $
```

Рис. 3.9: Запуск файла

Создал файл lab8-2.asm в том же каталоге (рис. 3.10).

```
aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ touch lab8-2.asm aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $
```

Рис. 3.10: Создание файла

Ввел программу в файл (рис. 3.11).

```
2; Обработка аргументов командной строки
 3 ;-----
 4 %include 'in_out.asm'
 5 SECTION .text
 6 global _start
 7_start:
8 рор есх ; Извлекаем из стека в 'есх' количество
9; аргументов (первое значение в стеке)
10 pop edx ; Извлекаем из стека в 'edx' имя программы
11; (второе значение в стеке)
12 sub ecx, 1 ; Уменьшаем 'есх' на 1 (количество
13; аргументов без названия программы)
14 next:
15 стр есх, 0 ; проверяем, есть ли еще аргументы
16 jz _end ; если аргументов нет выходим из цикла
17 ; (переход на метку '_end')
18 рор еах ; иначе извлекаем аргумент из стека
19 call sprintLF ; вызываем функцию печати
20 loop next ; переход к обработке следующего
21; аргумента (переход на метку 'next')
22 _end:
23 call quit
```

Рис. 3.11: Ввод программы

Запустил исполняемый файл указав его аргументы (рис. 3.12).

```
aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ nasm -f elf lab8-2.asm
aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-2 lab8-2.o
aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ ./lab8-2 аргумент1 аргумент 2 'аргумент 3'
аргумент
2
аргумент 3
aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $
```

Рис. 3.12: Запуск файла

Создал файл lab8-3.asm в том же каталоге (рис. 3.13).

```
aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ touch lab8-3.asm
aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $ gedit lab8-3.asm
aaisakhanyan@dk5n55 -/work/arch-pc/lab08 $
```

Рис. 3.13: Создание файла

Ввел программу в файл lab8-3.asm (рис. 3.14).

```
lab8-3.asm
 Открыть 🔻 🛨
                                                ~/work/arch-pc/lab08
                                    lab8-1.asm
        *report.md
                                                               lab8-2.asm
 2 SECTION .data
3 msg db "Результат: ", ∅
4 SECTION .text
5 global _start
6_start:
7 рор есх ; Извлекаем из стека в 'есх' количество
8; аргументов (первое значение в стеке)
9 pop edx ; Извлекаем из стека в 'edx' имя программы
10; (второе значение в стеке)
11 sub ecx, 1 ; Уменьшаем 'ecx' на 1 (количество
12; аргументов без названия программы)
13 mov esi, ∅ ; Используем `esi` для хранения
14; промежуточных сумм
15 next:
16 cmp ecx,0h ; проверяем, есть ли еще аргументы
17 jz _end ; если аргументов нет выходим из цикла
18; (переход на метку '_end')
19 рор еах ; иначе извлекаем следующий аргумент из стека
20 call atoi ; преобразуем символ в число
21 add esi,eax ; добавляем к промежуточной сумме
22; след. аргумент 'esi=esi+eax'
23 loop next ; переход к обработке следующего аргумента
24 _end:
25 mov eax, msg ; вывод сообщения "Результат: "
26 call sprint
27 mov eax, esi ; записываем сумму в регистр 'eax'
28 call iprintLF ; печать результата
29 call quit ; завершение программы
```

Рис. 3.14: Ввод программы

Запустил исполняемый файл указав аргументы (рис. 3.15).

```
aaisakhanyan@dkSn55 -/work/arch-pc/lab08 $ nasm -f elf lab8-3.asm
aaisakhanyan@dkSn55 -/work/arch-pc/lab08 $ ld -m elf_i386 -o lab8-3.o
aaisakhanyan@dkSn55 -/work/arch-pc/lab08 $ ld -m elf_i386 -o main lab8-3.o
aaisakhanyan@dkSn55 -/work/arch-pc/lab08 $ ld -m elf_i386 -o main lab8-3.o
aaisakhanyan@dkSn55 -/work/arch-pc/lab08 $ ./main 12 13 7 10 5
Pezynbrar: 47
aaisakhanyan@dkSn55 -/work/arch-pc/lab08 $
```

Рис. 3.15: Запуск файла

4 Выполнение самостоятельной работы

Создал файл sam.asm для выполнения самостоятельной работы (рис. 4.1).

```
aaisakhanyan@dk8n75 ~/work/arch-pc/lab08 $ touch sam.asm
aaisakhanyan@dk8n75 ~/work/arch-pc/lab08 $ []
```

Рис. 4.1: Создание файла

Написал программу для нахождения суммы значений функции 10(x-1) (вариант 17) (рис. 4.2).

Рис. 4.2: Ввод программы

Запускаю исполнямый файл с аргументами 1 и 2 (рис. 4.3).

```
aaisakhanyan@dk8n75 ~/work/arch-pc/lab08 $ nasm -f elf sam.asm
aaisakhanyan@dk8n75 ~/work/arch-pc/lab08 $ ld -m elf_i386 -o sam sam.o
aaisakhanyan@dk8n75 ~/work/arch-pc/lab08 $ ./sam 1 2
функция: 10(x - 1)
peзультат: 10
aaisakhanyan@dk8n75 ~/work/arch-pc/lab08 $
```

Рис. 4.3: Проверка

5 Выводы

Приобрел навыки написания программ с использованием циклов и обработкой аргументов командной строки.

Список литературы