

Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression

Ruidi Chen¹ and Ioannis Ch. Paschalidis^{1,2,3} ¹ Division of Systems Engineering, Boston University ² Department of Electrical & Computer Engineering, Boston University ³ Department of Biomedical Engineering, Boston University

ABSTRACT

We develop a prediction-based prescriptive model for optimal decision making that

- . predicts the outcome under each action using a robust nonlinear model;
- 2. **prescribes** actions based on their predicted outcomes.

The *predictive* model combines *Distributionally Robust Linear Regression (DRLR)* with the K-Nearest Neighbors (K-NN) regression, which produces predictions that are robust to data perturbations and captures the nonlinearity embedded in the data. The *prescriptive* model selects each action with a probability inversely proportional to its exponentiated predicted outcome. We show theoretical guarantees on the out-of-sample performance of the predictive model, and prove the optimality of the randomized prescriptive policy in terms of the expected true future outcome. We demonstrate the proposed methodology on a diabetes and a hypertension dataset, showing that our prescribed treatment leads to a larger reduction in $\mathsf{HbA}_{1\mathsf{c}}$ and systolic blood pressure compared to a series of alternatives.

PROBLEM DESCRIPTION

- **Problem**: Given a set of drugs $[M] \triangleq \{1, ..., M\}$, choose the one that yields the lowest future HbA_{1c} /systolic blood pressure y, with the aid of patient data x that is predictive
- **Idea**: *Predict* the outcome y_m for each drug $m \in [M]$ using a robust nonlinear framework, and *prescribe* the actions based on their predictions.
- Applications: Prescribe optimal treatments for patients with diabetes or hypertension.

*Publicly available Internet images.

ROBUST NONLINEAR PRESCRIPTION

- Assumption: For any $m \in [M]$, $y_m = \mathbf{x}_m' \boldsymbol{\beta}_m^* + h_m(\mathbf{x}_m) + \boldsymbol{\varepsilon}_m$.
- Method:
 - For each $m \in [M]$, derive a robust estimate of β_m^* , denoted by $\hat{\beta}_m$, using Wasserste Distributionally Robust Optimization (DRO)[1].
 - Given a new sample x, find its K_m nearest neighbors, whose responses are denoted by $y_{m(i)}$, $i = [K_m]$, in each action group m using the metric:

$$\|\mathbf{x} - \mathbf{x}_{mi}\|_{\hat{\mathbf{W}}_m} = \sqrt{(\mathbf{x} - \mathbf{x}_{mi})'\hat{\mathbf{W}}_m(\mathbf{x} - \mathbf{x}_{mi})},$$

- where $\hat{\mathbf{W}}_m = \text{diag}((\hat{\boldsymbol{\beta}}_{m1})^2, \dots, (\hat{\boldsymbol{\beta}}_{mp})^2).$
- Prediction:

$$\hat{y}_m(\mathbf{x}) = \frac{1}{K_m} \sum_{i=1}^{K_m} y_{m(i)}.$$

- Prescription: select action m with probability

$$e^{-\xi \hat{y}_m(\mathbf{x})} / \sum_{i=1}^M e^{-\xi \hat{y}_j(\mathbf{x})}.$$

ROBUST REGRESSION

- Goal:
 - Estimate the regression line that is not skewed by outliers.

- The samples (\mathbf{x}_i, y_i) , i = 1, ..., N, may be contaminated with outliers.
- Method: Inducing robustness by hedging against a set of uncertain parameters.

Robust Optimization

Distributionally Robust Optimization

Fig. Comparisons of different optimization schemes.

Wasserstein Distributionally Robust Optimization

• The Wasserstein DRO problem:

$$\inf_{\boldsymbol{\beta}\in\mathscr{D}}\sup_{\mathbb{Q}\in\mathscr{B}}E^{\mathbb{Q}}[|y-\mathbf{x}'\boldsymbol{\beta}|].$$

- Notation:
 - β : the regression coefficient to be estimated; \mathbb{Q} : the probability distribution of
 - \mathscr{B} : the Wasserstein ball of distributions centered at the empirical distribution $\hat{\mathbb{P}}_N$: $\mathscr{B} = \{\mathbb{Q} \in \mathscr{M}(\mathscr{Z}) : W_1(\mathbb{Q}, \hat{\mathbb{P}}_N) \leq \varepsilon\}$, where the Wasserstein distance is defined

$$\mathbf{W}_{1}(\mathbb{Q}, \, \hat{\mathbb{P}}_{N}) \triangleq \min_{\Pi \in \mathscr{P}(\mathscr{Z} \times \mathscr{Z})} \left\{ \int_{\mathscr{Z} \times \mathscr{Z}} \|(\mathbf{x}_{1}, y_{1}) - (\mathbf{x}_{2}, y_{2})\| \, \Pi(d(\mathbf{x}_{1}, y_{1}), d(\mathbf{x}_{2}, y_{2})) \right\},$$

with Π the joint distribution of (\mathbf{x}_1, y_1) and (\mathbf{x}_2, y_2) , with marginals \mathbb{Q} and $\mathbb{\hat{P}}_N$.

WHY THE WASSERSTEIN METRIC?

- Other options: Kullback-Leibler distance, *f*-divergences.
- Wasserstein metric incorporates a notion of cost:

$$W_1(\mathbb{Q}_1,\mathbb{Q}_2) = \inf_{\Pi \in \mathscr{P}(\mathscr{Z} imes \mathscr{Z})} \left\{ \int_{\mathscr{Z} imes \mathscr{Z}} s(\mathbf{z}_1,\mathbf{z}_2) \ \Pi(d\mathbf{z}_1,d\mathbf{z}_2)
ight\}.$$

- Allow support out of the observed samples.
- Wasserstein a.k.a. optimal mass transport, earth mover's distance. Discrete case: transportation problem

 $W_1(\mathbb{P},\mathbb{Q}) = \min_{\pi} \quad \sum_{i=1}^m \sum_{j=1}^n \pi(i,j) s(i,j)$ s.t. $\sum \pi(i,j) = w_{q_j}, \quad \forall j,$ $\sum \pi(i,j) = w_{p_i}, \quad \forall i,$ $\pi(i,j) \geq 0, \quad \forall i,j.$

ROBUSTNESS TO OUTLIERS

- Suppose we generate training data from a mixture of \mathbb{P}_{true} (w.p. 1-q) and \mathbb{P}_{out} (w.p. q).
- Then, for q < 0.5, $W_1(\mathbb{P}_{\text{true}}, \hat{\mathbb{P}}_N) < W_1(\mathbb{P}_{\text{out}}, \hat{\mathbb{P}}_N)$. Can exclude outliers!

ROBUSTNESS OF THE WASSERSTEIN SET

Theorem 1 Suppose we are given two probability distributions \mathbb{P}_{true} and \mathbb{P}_{out} , and the mixture distribution \mathbb{P}_{mix} is a convex combination of the two: $\mathbb{P}_{mix} = q\mathbb{P}_{out} + (1-q)\mathbb{P}_{true}$. Then,

$$\frac{W_1(\mathbb{P}_{out},\mathbb{P}_{mix})}{W_1(\mathbb{P}_{true},\mathbb{P}_{mix})} = \frac{1-q}{q}.$$

• When q < 0.5, and $W_1(\mathbb{P}_{\text{true}}, \mathbb{P}_{\text{mix}}) < W_1(\mathbb{P}_{\text{out}}, \mathbb{P}_{\text{mix}}) \Longrightarrow$ the set \mathscr{B} will include the true distribution \mathbb{P}_{true} and exclude the outlying one \mathbb{P}_{out} .

TRACTABLE RELAXATION OF WASSERSTEIN DRO

• The Wasserstein DRO problem could be relaxed to $(\|\cdot\|_*)$ is the dual norm of $\|\cdot\|$ used in the Wasserstein metric)

$$\inf_{\boldsymbol{\beta} \in \mathscr{D}} \boldsymbol{\varepsilon} \| (-\boldsymbol{\beta}, 1) \|_* + \frac{1}{N} \sum_{i=1}^N |y_i - \mathbf{x}_i' \boldsymbol{\beta}|.$$

- Incorporates a class of models, e.g., regularized LAD, GLASSO with ℓ_1 -loss.
 - Connects sparsity with robustness.
 - New interpretation for the regularization coefficient ε .
 - The regularizer controls the amount of ambiguity in the data.

ESTIMATION BIAS OF THE WASSERSTEIN DRO

Theorem 2 Under mild conditions, when the sample size $N_m \ge n_m$, with probability at least δ_m ,

$$\|\boldsymbol{\beta}_m^* - \hat{\boldsymbol{\beta}}_m\|_2 \leq \tau_m.$$

• The parameters n_m, δ_m, τ_m are related to the Gaussian width of the unit ball in $\|\cdot\|_{\infty}$, the sub-Gaussian norm of (\mathbf{x}_m, y_m) , the eigenvalues of the covariance matrix of (\mathbf{x}_m, y_m) , and the geometric structure of the true regression coefficient β_m^* .

MSE of Wasserstein DRO Informed K-NN

• The bias-variance decomposition implies (η_m is the standard deviation of the noise ε_m):

$$MSE(\hat{\mathbf{y}}_{m}(\mathbf{x})|\mathbf{x},\mathbf{x}_{mi},i=[N_{m}]) \triangleq \mathbb{E}\left[\left(\hat{\mathbf{y}}_{m}(\mathbf{x})-\mathbf{y}_{m}(\mathbf{x})\right)^{2}|\mathbf{x},\mathbf{x}_{mi},i=[N_{m}]\right] \\
=\left(\frac{1}{K_{m}}\sum_{i=1}^{K_{m}}\left((\mathbf{x}-\mathbf{x}_{m(i)})'\boldsymbol{\beta}_{m}^{*}+h_{m}(\mathbf{x})-h_{m}(\mathbf{x}_{m(i)})\right)\right)^{2}+\frac{\eta_{m}^{2}}{K_{m}}+\eta_{m}^{2}.$$

- For MSE to be small:
 - $\|\boldsymbol{\beta}_m^* \hat{\boldsymbol{\beta}}_m\|_2$ is small;
 - $\|\mathbf{x} \mathbf{x}_{m(i)}\|_{\hat{\mathbf{W}}_m}$ is small for $i = [K_m]$; and
 - $h_m(\mathbf{x}) h_m(\mathbf{x}_{m(i)})$ is small for $i = [K_m]$.

DISTANCE TO THE K NEAREST NEIGHBORS

Theorem 3 Suppose we are given N_m i.i.d. samples $(\mathbf{x}_{mi}, y_{mi})$, $i \in [N_m]$, drawn from some unknown probability distribution with finite fourth moment. Every \mathbf{x}_{mi} has independent, centered coordinates:

$$\mathbb{E}(\mathbf{x}_{mi}) = \mathbf{0}, \quad cov(\mathbf{x}_{mi}) = diag(\mathbf{\sigma}_{m1}^2, \dots, \mathbf{\sigma}_{mp}^2), \forall i \in [N_m].$$

For a fixed predictor \mathbf{x} , and any given positive definite diagonal matrix $\mathbf{W} \in \mathbb{R}^{p \times p}$ with diagonal elements w_j , $j \in [p]$, and $|w_j| \leq \bar{B}^2$, suppose:

$$|(x_{mij}-x_j)^2-(\sigma_{mj}^2+x_j^2)| \leq T_m, \ a.s., \ \forall i \in [N_m], \ j \in [p],$$

where x_{mij}, x_j are the j-th components of \mathbf{x}_{mi} and \mathbf{x} , respectively. Under the condition that \bar{w}_m^2 $\bar{B}^2 \sum_{i=1}^p (\sigma_{mi}^2 + x_i^2)$, with probability at least $1 - I_{1-p_{m0}}(N_m - K_m + 1, K_m)$,

$$\|\mathbf{x} - \mathbf{x}_{m(i)}\|_{\mathbf{W}} \leq \overline{w}_m, i \in [K_m].$$

PREDICTIVE PERFORMANCE

Theorem 4 Given a fixed predictor $\mathbf{x} = (x_1, \dots, x_p)$, and some scalar \bar{w}_m , assuming

- 1. $h_m(\cdot)$ is Lipschitz continuous with a Lipschitz constant L_m .
- 2. $\bar{w}_m^2 > \bar{B}_m^2 \sum_{j=1}^p (\sigma_{mj}^2 + x_j^2)$.
- 3. $|(x_{mij}-x_j)^2-(\sigma_{mj}^2+x_j^2)| \leq T_m, \ \forall i,j.$
- 4. The coordinates of any feasible solution to Wasserstein DRO have absolute values greater than or equal to some positive number b_m (dense estimators).

When $N_m \ge n_m$, with probability at least $\delta_m - I_{1-p_{m0}}(N_m - K_m + 1, K_m)$ w.r.t. the measure of samples,

$$\mathbb{E}\left[\left(\hat{y}_m(\mathbf{x})-y_m(\mathbf{x})\right)^2\middle|\mathbf{x},\mathbf{x}_{mi},i=[N_m]\right]\leq \left(\frac{\bar{w}_m\tau_m}{b_m}+\sqrt{p}\bar{w}_m+\frac{L_m\bar{w}_m}{\bar{B}_m}\right)^2+\frac{\eta_m^2}{K_m}+\eta_m^2.$$

PRESCRIPTIVE PERFORMANCE

Theorem 5 Given any $\mathbf{x} \in \mathbb{R}^p$, denote its predicted and true future outcome under action m by $\hat{y}_m(\mathbf{x})$ and $y_m(\mathbf{x})$, respectively. For any $k \in [M]$, the expected true outcome under the randomized prescriptive policy satisfies:

$$\begin{split} \sum_{m=1}^{M} \frac{e^{-\xi \hat{y}_m(\mathbf{x})}}{\sum_{j} e^{-\xi \hat{y}_j(\mathbf{x})}} y_m(\mathbf{x}) &\leq y_k(\mathbf{x}) + \left(\hat{y}_k(\mathbf{x}) - \frac{1}{M} \sum_{m=1}^{M} \hat{y}_m(\mathbf{x})\right) \\ &+ \xi \left(\frac{1}{M} \sum_{m=1}^{M} \hat{y}_m^2(\mathbf{x}) + \sum_{m=1}^{M} \frac{e^{-\xi \hat{y}_m(\mathbf{x})}}{\sum_{j} e^{-\xi \hat{y}_j(\mathbf{x})}} y_m^2(\mathbf{x})\right) + \frac{\log M}{\xi}. \end{split}$$

ACTIVATE THE RANDOMIZED STRATEGY

- In consideration of the health care costs and treatment transients, we do not want to switch patients' treatments too frequently.
- Threshold $T(\mathbf{x})$ to activate the randomized strategy:

$$m_{\mathrm{f}}(\mathbf{x}) = \begin{cases} m, \text{ w.p. } \frac{e^{-\xi \hat{y}_{m}(\mathbf{x})}}{\sum_{j=1}^{M} e^{-\xi \hat{y}_{j}(\mathbf{x})}}, \text{ if } \sum_{k} \frac{e^{-\xi \hat{y}_{k}(\mathbf{x})}}{\sum_{j} e^{-\xi \hat{y}_{j}(\mathbf{x})}} \hat{y}_{k}(\mathbf{x}) \leq x_{\mathrm{co}} - T(\mathbf{x}), \\ m_{\mathrm{c}}(\mathbf{x}), & \text{otherwise.} \end{cases}$$

• Find the largest $T(\mathbf{x})$ such that the probability of the expected improvement being less than $T(\mathbf{x})$ is small.

Theorem 6 Assume that the distribution of the predicted outcome $\hat{y}_m(\mathbf{x})$ conditional on \mathbf{x} , is sub-Gaussian, and its ψ_2 -norm is equal to $\sqrt{2}C_m(\mathbf{x})$, for any $m \in [M]$ and any \mathbf{x} . Given a small $0 < \bar{\varepsilon} < 1$, in order to satisfy

$$\mathbb{P}\left(\sum_{k} \frac{e^{-\xi \hat{y}_{k}(\mathbf{x})}}{\sum_{j} e^{-\xi \hat{y}_{j}(\mathbf{x})}} \hat{y}_{k}(\mathbf{x}) > x_{co} - T(\mathbf{x})\right) \leq \bar{\varepsilon},$$

it suffices to set a threshold

where $\mu_{\hat{\mathbf{y}}_m}(\mathbf{x}) = \mathbb{E}[\hat{\mathbf{y}}_m(\mathbf{x})|\mathbf{x}].$

$$T(\mathbf{x}) = \max\left(0, \min_{m}\left(x_{co} - \mu_{\hat{y}_{m}}(\mathbf{x}) - \sqrt{-2C_{m}^{2}(\mathbf{x})\log(\bar{\varepsilon}/M)}\right)\right),\,$$

• As
$$\xi \to \infty$$
, the randomized policy becomes deterministic.
$$m_{\mathrm{f}}(\mathbf{x}) = \begin{cases} \arg\min_{m} \hat{y}_{m}(\mathbf{x}), & \text{if } \min_{m} \hat{y}_{m}(\mathbf{x}) \leq x_{\mathrm{co}} - T(\mathbf{x}), \\ m & \text{otherwise} \end{cases}$$

A slight modification to the threshold level $T(\mathbf{x})$ is given below:

$$T(\mathbf{x}) = \max\left(0, \min_{m}\left(x_{co} - \mu_{\hat{y}_{m}}(\mathbf{x}) - \sqrt{-2C_{m}^{2}(\mathbf{x})\log\bar{\varepsilon}}\right)\right).$$

ESTIMATE $\mu_{\hat{\mathbf{v}}_m}(\mathbf{x})$ AND $C_m^2(\mathbf{x})$

Algorithm 1 Estimating the conditional mean and standard deviation of the predicted out-

Input: a feature vector \mathbf{x} ; a_m : the number of subsamples used to compute $\hat{\boldsymbol{\beta}}_m$, $a_m < N_m$; d_m : the number of repetitions.

for $i = 1, \dots, d_m$ do

Randomly pick a_m samples from group m, and use them to estimate a robust regression coefficient $\hat{\beta}_{m_i}$ through solving Wasserstein DRO.

The future outcome for **x** under action *m* is predicted as $\hat{y}_{m_i}(\mathbf{x}) = \mathbf{x}' \hat{\boldsymbol{\beta}}_{m_i}$.

$$\mu_{\hat{y}_m}(\mathbf{x}) = \frac{1}{d_m} \sum_{i=1}^{d_m} \hat{y}_{m_i}(\mathbf{x}),$$

and the conditional standard deviation as:

$$C_m(\mathbf{x}) = \sqrt{\frac{1}{d_m - 1} \sum_{i=1}^{d_m} \left(\hat{\mathbf{y}}_{m_i}(\mathbf{x}) - \boldsymbol{\mu}_{\hat{\mathbf{y}}_m}(\mathbf{x})\right)^2}.$$

PRESCRIBE OPTIMAL TREATMENTS

Output: Estimate the conditional mean of $\hat{y}_m(\mathbf{x})$ as:

- Goal: develop optimal prescriptions for patients with type-2 diabetes and hypertension using the Electronic Health Records (EHRs).
- Predictors: demographics, diagnoses, lab tests, and past admission records.
- Response: HbA_{1c}, and systolic blood pressure.
- The reduction in HbA_{1c} /systolic blood pressure, mean (std.):

Diabetes		Hypertension	
Deterministic	Randomized	Deterministic	Randomized
-0.51 (0.16)	-0.51 (0.16)	-4.22 (0.20)	-4.22 (0.19)
-0.45 (0.13)	-0.42 (0.14)	-4.48 (0.55)	-4.51 (0.49)
-0.53 (0.13)	-0.53 (0.13)	-4.27 (0.32)	-4.29 (0.31)
-0.56 (0.06)	-0.55 (0.08)	-6.58 (0.70)	-6.78 (0.73)
-0.22 (0.04)		-2.50 (0.16)	
-0.22 (0.03)		-2.37 (0.11)	
	Deterministic -0.51 (0.16) -0.45 (0.13) -0.53 (0.13) -0.56 (0.06) -0.22 (0.02)	Deterministic Randomized -0.51 (0.16) -0.51 (0.16) -0.45 (0.13) -0.42 (0.14) -0.53 (0.13) -0.53 (0.13) -0.56 (0.06) -0.55 (0.08) -0.22 (0.04)	Deterministic Randomized Deterministic -0.51 (0.16) -0.51 (0.16) -4.22 (0.20) -0.45 (0.13) -0.42 (0.14) -4.48 (0.55) -0.53 (0.13) -0.53 (0.13) -4.27 (0.32) -0.56 (0.06) -0.55 (0.08) -6.58 (0.70) -0.22 (0.04) -2.50

REFINEMENT OF THE POLICY

- K-NN is sensitive to the number of neighbors K_m .
- Propose a patient-specific number of neighbors K'_m , where the neighbors that are relatively far away from the patient in query are discarded.
- Denote by d_i^m the distance between the patient in query and her *i*-th closest neighbor in group m, and define $j_m^* = \operatorname{arg\,max}_j \left(d_j^m - \sum_{i=1}^{j-1} \frac{d_i^m}{i-1} \right)$.

$$K_m' = egin{cases} j_m^* - 1, & ext{ if } rac{d_{j_m^*}^m - \sum_{i=1}^{j_m^* - 1} rac{d_i^m}{j_m^* - 1}}{\sum_{i=1}^{j_m^* - 1} rac{d_i^m}{j_m^* - 1}} > ilde{T}, \ K_m, & ext{otherwise}, \end{cases}$$

where \tilde{T} is some threshold that can be tuned using cross-validation.

Results on the diabetes and hypertension datasets:

	Diabetes		Hypertension	
	Deterministic	Randomized	Deterministic	Randomized
LASSO	-0.54 (0.19)	-0.54 (0.20)	-4.34 (0.28)	-4.33 (0.28)
CART	-0.62 (0.32)	-0.57 (0.27)	-4.46 (0.46)	-4.49 (0.50)
OLS+K-NN	-0.65 (0.25)	-0.64 (0.25)	-4.30 (0.35)	-4.30 (0.32)
DRO+K-NN	-0.68 (0.20)	-0.67 (0.23)	-7.42 (0.46)	-7.58 (0.51)
Current therapy	-0.23 (0.05)		-2.56 (0.14)	
Standard of care	-0.22 (0.03)		-2.37 (0.11)	

Conclusions

- All models outperform the current prescription and the standard of care.
- The Wasserstein DRO+K-NN model leads to the largest reduction in outcomes with a relatively stable performance.
- The best DRO+K-NN model leads to a 69% reduction in future systolic blood pressure compared to the 2nd best model.
- Using a patient-specific K'_m in general leads to a more significant reduction in outcomes.
- The randomized policy achieves a similar (slightly better) performance than the deterministic one.

REFERENCES

- [1] Chen, R., and Paschalidis, I.C. (2018). A robust learning algorithm for regression models using distributionally robust optimization under the Wasserstein metric, Journal of Machine Learning Research, 19, 1-48.
- [2] Chen, R., and Paschalidis, I.C. (2018). Learning optimal personalized treatment rules using robust regression informed K-NN, NIPS Machine Learning for Health (ML4H) workshop, Montreal, Canada.
- [3] Bertsimas, D., Kallus, N., Weinstein, A.M., and Zhuo, Y.D. (2017). Personalized diabetes management using electronic medical records, Diabetes Care.