Analysis 1 - Serie 1

1.1.

a)
$$0 + 1 = 1 \land 0 > 1$$
 false

b)
$$0 + 1 = 1 \lor 0 < 1$$
 true

c)
$$0+1=1$$
 \lor $0<1$ false

d)
$$0 > 1 \Rightarrow 0 + 1 = 0$$
 true

Should be \Leftrightarrow

e)
$$0 + 1 = 1 \Rightarrow 0 > 1$$
 false

1.2

a)

P	Q	$\neg (P \land Q)$	$\neg P \vee \neg Q$
T	T	F	F
T	F	T	T
F	T	T	T
F	F	T	T

b, d, f, h und j) Sie haben dieselbe Taffeln, deshalb sind sie logisch aequivalent. c)

P	Q	$\neg (P \vee Q)$	$\neg P \wedge \neg Q$
Т	T	F	F
Т	F	F	F
F	T	F	F
F	F	Т	T

e)

_		
P	Q	$\neg(Q) \Rightarrow \neg P$
Т	T	T
Т	F	F
F	T	T
F	F	Т

g) Die Musterloesung ist falsch

P	Q	$(P\Rightarrow Q)\wedge (Q\Rightarrow P)$
Т	T	T
Т	F	F
F	T	F
F	F	T

P	Q	R	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee (P \wedge R)$
Т	Т	T	T	T
Т	Т	F	T	T
Т	F	T	T	T
Т	F	F	F	F
F	T	T	F	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

k)

P	Q	R	$P \wedge (Q \vee R)$	$(P \wedge Q) \vee R$
Т	T	Т	Т	Т
Т	T	F	Т	Т
Т	F	Т	Т	Т
Т	F	F	F	F
F	T	Т	F	Т
F	T	F	F	F
F	F	Т	F	Т
F	F	F	F	F

Sie sind nicht gleich, deshalb $P \wedge (Q \vee R) \not\equiv (P \wedge Q) \vee R$.

- l) M Menu
- A Kaffee
- U Kuchen

Moegliche Interpretationen:

$$(M \wedge A) \vee U - \text{gleich}$$
 wie entweder ... oder
$$M \wedge (A \vee U)$$

Sie sind nicht aequivalent.

1.3

a)

Sei
$$n \coloneqq 123456789$$

$$5 \cdot 4^{\frac{(3n+1)^2-1}{3}} = 5 \cdot 4^{\frac{9n^2+6n}{3}} = 5 \cdot 4^{3n^2+2n}$$

Lemma: eine Ganze zahl Quadriert ist eine ganze Zahl.

Lemma: 2 eine ganze zahl ist ganz.

$$\div \, 3n^2 + 2n$$
ist ganz

Lemma: Eine ganze Zahl hoch eine ganze Zahl ist eine ganze Zahl

∴
$$5 \cdot 4^{\frac{(3 \cdot 123456789+1)^2-1}{3}}$$
 ist ganz \blacksquare

b) i) Zu beweisen $\sqrt{3} < \sqrt{5}$

Nehmen wir an, dass $\sqrt{3} \ge \sqrt{5}$

Lemma: Monotonie des Quadrierens

$$\therefore \sqrt{5} \le \sqrt{3} \Rightarrow 5 \le 3$$

Kontraposition: $\neg (5 \le 3) \Rightarrow \neg (\sqrt{5} \le \sqrt{3})$

$$5 > 3 \Rightarrow \sqrt{5} < \sqrt{3}$$

Widerspruch: $5 \le 3$ ist falsch, therefore $\neg (\sqrt{3} < \sqrt{5})$ wurde widersprochen

ii)

$$A := \sqrt{3 + \sqrt{5}} < \sqrt{6}$$

$$\neg A = \sqrt{3 + \sqrt{5}} \ge \sqrt{6}$$

Lemma: Monotonie des Quadrierens

$$\therefore \neg A \Rightarrow B$$

$$B \coloneqq \sqrt{5} \ge 3$$

Lemma: Monotonie des Quadrierens

$$\therefore \sqrt{5} \ge 3 \Rightarrow 5 \ge 9$$

 $5 \geq 9$ ist falsch $\therefore B$ muss auch falsch sein und $\neg B$ ist wahr

Kontraposition: $\neg B \Rightarrow A$

$$5 < 9 \Rightarrow \sqrt{3 + \sqrt{5}} < \sqrt{6} \blacksquare$$

c) Es ist kein korrekter Beweis, da es mit einer falsche Aussage startet, die nicht zuruck zur urspruenglichen zu bewiesene Aussage hergeleitet wird.

a)

Zu beweisen:
$$\sum_{i=1}^{n} i^2 = \frac{1}{6} n(n+1)(2n+1)$$
 Es gilt fuer $n=1$:
$$1^2 = \frac{1}{6} \cdot 1 \cdot 2 \cdot 3 = 1$$
 Nehmen wir an,
$$\operatorname{dass} \sum_{i=1}^{n} i^2 = \frac{1}{6} n(n+1)(2n+1)$$
 Zu zeigen:
$$\sum_{i=1}^{n+1} i^2 = \frac{1}{6} (n+1)((n+1)+1)(2(n+1)+1)$$

$$= \frac{1}{6} (n+1)(n+2)(2n+3)$$

$$= \frac{1}{6} (n+1)(2n^2+7n+6)$$
 Beweis:
$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2$$

$$= \frac{1}{6} n(n+1)(2n+1) + (n+1)^2$$

$$= (n+1) \left(\frac{1}{6} n(2n+1) + (n+1)\right)$$

$$= \frac{1}{6} (n+1)(n(2n+1)+6(n+1))$$

$$= \frac{1}{6} (n+1)(2n^2+7n+6) \blacksquare$$

1.5

Obwohl die Gruppe wegen der Behauptung eine Farbe hat, es kann eine andere Farbe zu P(1) sein. Deshalb koennnen wir das nicht fuer $k \in \mathbb{N}_{>1}, P(k)$ extrapolieren.