<Password> - необязательный, строка. Пароль пользователя, если сетевой диск подключается от пользователя, отличного от текущего.

Пример:

Set WshNetwork = CreateObject("WScript.Network")

WshNetwork.MapNetworkDrive "Z:", \\SERVER\Programs

RemoveNetworkDrive

RemoveNetworkDrive(<Name>,<Force>,<UpdateProfile>)

Отключает сетевой диск.

Параметры:

<Name> - строка, локальное имя диска (или сетевое имя, если ресурсу не сопоставлена никакая буква).

<Force> - необязательный, число (булево). Если указано True, отключение будет произведено вне зависимости от того, используется ресурс в настоящий момент или нет.

<UpdateProfile> - необязательный, число (булево). Если указано True, сетевое подключение будет удалено из профиля пользователя.

Пример:

Set WshNetwork = CreateObject("WScript.Network")

WshNetwork.RemoveNetworkDrive "Z:"

Свойства:

ComputerName

Строка, имя компьютера.

Замечание:

Только чтение.

Пример:

Set WshNetwork = CreateObject("WScript.Network")

MsgBox WshNetwork.ComputerName

UserName

Строка, имя пользователя.

Замечание:

Только чтение.

Пример:

Set WshNetwork = CreateObject("WScript.Network")

MsgBox WshNetwork.UserName

UserDomain

Строка, имя домена.

Замечание:

Только чтение.

Пример:

Set WshNetwork = CreateObject("WScript.Network")

MsgBox WshNetwork.UserDomain

Основные команды ОС Linux для работы с сетевыми ресурсами

ifconfig

Команда используется для настройки сетевых интерфейсов

Команда ifconfig имеет следующий синтаксис:

```
ifconfig [-L] [-m] interface [create] [address_family] [address
[dest_address]] [parameters] ifconfig interface destroy ifconfig -a [-
L] [-d] [-m] [-u] [address_family] ifconfig -l [-d] [-u]
[address_family] ifconfig [-L] [-d] [-m] [-u] [-C]
```

Команда **ifconfig** используется для настройки сетевых интерфейсов. Команда должна использоваться при загрузке системы для настройки адресов каждого сетевого интерфейса, а также может использоваться после загрузки для изменения параметров сетевых интерфейсов. Если команда введена без аргументов, **ifconfig** выдает информацию о состоянии активных интерфейсов. Если в качестве аргумента указан какой-либо интерфейс, то выдается информация только о состоянии этого интерфейса; если указан один аргумент -а, выдается информация о состоянии всех интерфесов, даже отключенных. Пример:

Иначе команда конфигурирует указанный интерфейс. Изменить настройки какоголибо интерфейса может только суперпользователь.

Оппии:

адрес

netmask адрес

интерфейс ир	имя интерфейса (например, rl0 в BSD или eth0 в Linux).вызывает активизацию интерфейса. Задается неявно при
	присвоении адреса интерфейсу.
down	– вызывает остановку работы драйвера для интерфейса.
[-]arp	 включает или отключает использование протокола ARP для интерфейса.
[-]promisc	– включает или отключает неразборчивый режим (promiscuous mode) работы интерфейса. В этом режиме все проходящие по сети пакеты будут приниматься интерфейсом.
[-]allmulti	– включает или отключает режим <i>all-multicast</i> . В этом режиме все многоадресные (multicast) пакеты в сети будут приниматься интерфейсом.
metric N	 устанавливает метрику интерфейса.
mtu N	– устанавливает максимальный размер пакета (Maximum Transfer Unit - MTU) для интерфейса.

– ІР-адрес, присваиваемый интерфейсу.

- устанавливает маску сети IP для этого интерфейса. По

умолчанию используется обычная маска сети класса А, В или С

(что определяется по IP-адресу интерфейса), но можно усановить любое значение.

add

- добавляет адрес IPv6 для интерфейса.

адрес/длина префикса

del

удаляет адрес IPv6 для интерфейса.

адрес/длина_префикса

irq адрес

– устанавливает аппаратное прерывание, используемое

устройством. Не для всех устройств можно динамически менять

значение IRQ.

media mun

– устанавливает физический порт или тип носителя, используемый устройством. Не для всех устройств можно менять этот параметр, и для разных устройств могут

поддерживаться различные значения. Типичные значения типа - 10base2 (коаксиальный кабель Ethernet), 10baseT (витая пара Ethernet 10 Мбит/сек), AUI (внешний передатчик) и т.д. Специальный тип носителя auto можно использовать, чтобы потребовать от драйвера автоматически обпределять тип

носителя. Не все драйверы могут это делать.

[-]broadcast [adpec]

– если указан аргумент адрес, задает соответствующий протоколу широковещательный адрес для интерфейса. В противном случае устанавливает (или сбрасывает) флаг IFF BROADCAST для интерфейса.

Пример. изменение IP-адреса интерфейса rl0:

```
user@desktop ~ $ ifconfig rl0
rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
           options=8<VLAN MTU>
           inet6 fe80::250:22ff:febb:5f1%rl0 prefixlen 64 scopeid 0x3
           inet 192.168.19.86 netmask 0xffffff00 broadcast
192.168.19.255
           ether 00:50:22:bb:05:f1
          media: Ethernet autoselect (100baseTX <full-duplex>)
          status: active
user@desktop ~ $ ifconfig rl0 192.168.0.1
user@desktop ~ $ ifconfig rl0
rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
           options=8<VLAN MTU>
           inet6 fe80::250:22ff:febb:5f1%rl0 prefixlen 64 scopeid 0x3
           inet 192.168.0.1 netmask 0xffffff00 broadcast 192.168.19.255
           ether 00:50:22:bb:05:f1
           media: Ethernet autoselect (100baseTX <full-duplex>)
           status: active
```

arp

Команда **агр** отображает ARP-таблицу данного хоста. С помощью параметра – *i* можно специфицировать сетевой интерфейс, информация о котором интересует.

Таблица с информацией о канальном уровне содержит связь IP- и MAC-адресов. При использовании параметра −л IP-адреса не будут заменяться символьными именами хостов.

route

Эта команда используется для просмотра и изменения таблицы маршрутизации хоста. Для этой команды также работает параметр – п., при использовании которого IP-адреса не будут заменяться символьными именами хостов.

Пример обычной таблицы маршрутизации для отдельного компьютера в сети:

desktop ~ # route -n						
Kernel IP rout	ing table					
Destination	Gateway	Genmask	Flags	Metric	Ref	Use
Iface						
192.168.5.0	0.0.0.0	255.255.255.0	U	0	0	0
eth1						
127.0.0.0	0.0.0.0	255.0.0.0	U	0	0	0
lo						
0.0.0.0	192.168.5.254	0.0.0.0	UG	0	0	0
eth1						

Особый интерес представляет адрес 0.0.0, который соответствует хосту назначения по умолчанию.

Для добавление нового маршрута к определённому хосту используются параметры add и -host:

```
desktop ~ # route add -host 192.168.0.1 eth0
```

Эта команда создаёт новую строку в таблице маршрутизации, согласно которой все пакетыы к узлу 192.168.0.1 должны отправляться в сетевой интерфейс eth0.

Также можно добавлять шлюз для отправки пакетов в определённую сеть или к хосту:

```
desktop ~ # route add -net 192.168.1.0 gw 192.168.0.5
```

Таким образом, все пакеты для сети 192.168.1.0 будут направляться на узел 192.168.0.5.

Аналогично, маршруты удаляются параметром del c указанием всей информации о маршруте:

```
desktop ~ # route del default gw 192.168.0.1
```

Эта команда удаляет маршрут по умолчанию через хост 192.168.0.1.

ping

Команда используется для посылки пакетов ICMP ECHO_REQUEST сетевым хостам.

Команда ping имеет следующий синтаксис:

```
ping [-AaDdfnoQqRrv] [-с число_пакетов] [-i секунд] [-l preload] [-M mask | time] [-m ttl] [-P policy] [-p pattern] [-S src_addr] [-s packetsize] [-t timeout] [-z tos] host ping [-AaDdfLnoQqRrv] [-с число_пакетов] [-I iface] [-i секунд] [-l preload] [-M mask | time] [-m ttl] [-P policy] [-p pattern] [-S src_addr] [-s packetsize] [-T ttl] [-t timeout] [-z tos] mcast-group
```

Команда **ping** использует датаграмму ECHO_REQUEST протокола ICMP, чтобы вызвать ответ ICMP ECHO_RESPONSE указанного хоста или сетевого шлюза. Если хост отвечает, **ping** выдает сообщение, что хост включен (хост is alive), в стандартный выходной поток.

Для проверки наличия хоста в сети достаточно ввести команду **ping** с аргументом - именем или адресом хоста:

```
user@desktop$ ping yandex.ru
64 bytes from 213.180.204.11: icmp_seq=0 ttl=48 time=5.659 ms
64 bytes from 213.180.204.11: icmp_seq=1 ttl=48 time=5.404 ms
64 bytes from 213.180.204.11: icmp_seq=2 ttl=48 time=4.889 ms
^C
--- yandex.ru ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 4.889/5.317/5.659/0.320 ms
```

Для отправки определенного числа пакетов необходимо указать опцию -с число_пакетов. Для установки интервала между отправкой пакетов используется опция -i секунд.

traceroute

Команда **traceroute** служит для отладки сетевых соединений посредством построения маршрута следования пакетов к хосту назначения. Для этой команды также работает параметр – п., при использовании которого IP-адреса не будут заменяться символьными именами хостов.

Пример следования пакетов до хоста ya.ru:

```
desktop ~ # traceroute ya.ru
traceroute to ya.ru (213.180.204.8), 64 hops max, 40 byte packets
1 195.91.230.65 (195.91.230.65) 0.890 ms 1.907 ms 0.809 ms
2 cs7206.rinet.ru (195.54.192.28) 0.895 ms 0.769 ms 0.605 ms
3 ix2-m9.yandex.net (193.232.244.93) 1.855 ms 1.519 ms 2.95 ms
4 c3-vlan4.yandex.net (213.180.210.146) 3.412 ms 2.698 ms 2.654 ms
5 ya.ru (213.180.204.8) 2.336 ms 2.612 ms 3.482 ms
```

netstat

Команда используется для показа состояния сети.

Команда **netstat** имеет следующий синтаксис:

```
netstat [-AaLnSW] [-f protocol_family | -p protocol] [-M core] [-N
system]
```

Команда **netstat** показывает содержимое различных структур данных, связанных с сетью, в различных форматах в зависимости от указанных опций. *Первая форма* команды показывает список активных сокетов (sockets) для каждого протокола. *Вторая форма* выбирает одну из нескольких других сетевых структур данных. *Третья форма* показывает динамическую статистику пересылки пакетов по сконфигурированным сетевым интерфейсам; аргумент интервал задает, сколько секунд собирается информация между последовательными показами.

Опции:

-a	– показывать состояние всех сокетов; обычно сокеты,
	используемые серверными процессами, не показываются.
-A	 показывать адреса любых управляющих блоков протокола, связанных с сокетами; используется для отладки.
-i	– показывать состояние автоматически сконфигурированных (autoconfigured) интерфейсов. Интерфейсы, статически сконфигурированные в системе, но не найденные во время загрузки, не показываются.
-n	– показывать сетевые адреса как числа. netstat обычно показывает адреса как символы. Эту опцию можно использовать с любым форматом показа.
-r	 – показать таблицы маршрутизации. При использовании с опцией – локазывает статистику маршрутизации.
-s	 – показать статистическую информацию по протоколам. При использовании с опцией -r, показывает статистику маршругизации.
-f семейство_адресов	 ограничить показ статистики или адресов управляющих блоков только указанным семейством_адресов, в качестве которого можно указывать:
	inet Для семейства адресов AF_INET unix Для семейства адресов AF_UNIX
-І интерфейс	– выделить информацию об указанном интерфейсе в отдельный столбец; по умолчанию (для третьей формы команды) используется интерфейс с наибольшим объемом переданной информации с момента последней перезагрузки системы. В качестве интерфейса можно указывать любой из интерфейсов, перечисленных в файле конфигурации системы, например, emd1 или lo0.
-р имя_протокола	 Ограничить показ статистики или адресов управляющих блоков только протоколом с указанным именем_протокола, например, tcp.

Пример. показ таблицы маршрутизации:

user@desktop ~\$ Routing tables Internet:	netstat -r				
Destination	Gateway	Flags	Refs	Use	Netif
Expire					
default	19-101.local	UGS	0	1373769	rl0
localhost	localhost	UH	1	290	100
192.168.0	link#1	UC	0	0	dc0
192.168.19	link#3	UC	0	0	r10
19-86.local	localhost	UGHS	0	0	100

19-101.local 116	00:0d:bc:e4:27:bf	UHLW	1	0	r10
Internet6:					
Destination	Gateway	Flags	Netif E	xpire	
localhost.prov.ru	localhost.prov.ru	UH	100		
fe80::%dc0	link#1	UC	dc0		
fe80::2a0:ccff:fe3	00:a0:cc:3d:1f:bd	UHL	100		
fe80::%rl0	link#3	UC	r10		
fe80::250:22ff:feb	00:50:22:bb:05:f1	UHL	100		
fe80::%lo0	fe80::1%lo0	U	100		
fe80::1%lo0	link#5	UHL	100		
ff01::	localhost.prov.ru	U	100		
ff02::%dc0	link#1	UC	dc0		
ff02::%rl0	link#3	UC	r10		
ff02::%lo0	localhost.prov.ru	UC	100		

host

Команда **host** служит для получения доменной информации о хосте: IP-адрес, MXзаписи и другой информации, связанной с данным символьным именем. Имя хоста указывается в качестве аргумента команды.

Пример работы команды:

```
user@desktop ~$ host yandex.ru yandex.ru has address 213.180.204.11 yandex.ru mail is handled by 10 mx2.yandex.ru.yandex.ru mail is handled by 0 mx1.yandex.ru.
```

Вторым аргументом можно указать DNS-сервер, который будет использоваться при получении этой информации:

```
user@desktop ~$ host yandex.ru nsl.aiya.ru
Using domain server:
Name: nsl.aiya.ru
Address: 85.142.20.152#53
Aliases:
yandex.ru has address 213.180.204.11
Using domain server:
Name: nsl.aiya.ru
Address: 85.142.20.152#53
Aliases:
Using domain server:
Name: nsl.aiya.ru
Address: 85.142.20.152#53
Aliases:
yandex.ru mail is handled by 0 mx1.yandex.ru.
yandex.ru mail is handled by 10 mx2.yandex.ru.
```

smbclient

Для просмотра ресурсов сети Microsoft используется программа smbclient. Допустим, вы хотите подключиться к общему каталогу share компьютера nt_wsl. При этом допустим, что ваше имя пользователя user и пароль 123456. В этом случае использование команды smbclient выглядит следующим образом:

\$ smbclient //nt wsl/share -U user%123456

Если пароль не нужен, то указывается только имя пользователя без знака процента.

2. Задание на лабораторную работу.

Для выполнения лабораторной работы необходимо:

- 1. Изучить основные команды ОС Windows и ОС Linux для работы с сетевыми ресурсами
- 2. Научиться определять IP адрес компьютера и сетевые настройки в ОС Windows и ОС Linux
- 3. Научиться проверять наличие соединения с удалённым узлом. Научиться определять по имени компьютера его IP-адрес
- 4. Научиться осуществлять мониторинг использования сети и анализ сетевого взаимодействия в ОС Windows и ОС Linux
- 5. Научиться осуществлять подключение и отключение сетевых дисков с использованием командного процессора и серверов сценариев

3. Индивидуальные задания.

Необходимо написать файл сценариев в ОС Windows и ОС Linux, осуществляющий решение задачи согласно варианта. Результаты решения сохранить в текстовый файл

№ варианта	Условие задачи
1	Определить IP-адрес компьютеров, с заданной маской имени.
2	Посчитать количество компьютеров, видимых с данного компьютера.
3	Определить компьютер в сети, скорость взаимодействия с котором наибольшая.
4	Определить компьютер в сети, до которого самый длинный маршрут
5	Определить IP-адреса всех компьютеров, связь с которыми осуществляется через указанный шлюз
6	Определить компьютеры, имеющие более одного ІР-адреса
7	Найти компьютер в сети, скорость взаимодействия с которым наименьшая
8	Сформировать список всех доступных сетевых ресурсов в заданном сегменте
9	Определить IP-адреса всех доступных DHCP-серверов
10	Подключить все доступные сетевые ресурсы из указанного списка компьютеров
11	Определить IP-адреса всех доступных DNS-серверов
12	Определить IP-адреса всех доступных WINS-серверов
13	Определить МАС-адреса компьютеров, из указанного списка (задан ір адрес)
14	Определить компьютер в сети, скорость взаимодействия с котором

	наименьшая.
15	Определить МАС-адреса всех доступных DHCP-серверов
16	Определить MAC-адреса всех доступных DNS-серверов
17	Определить MAC-адреса всех доступных WINS-серверов
18	Сформировать список имен компьютеров в заданном сегменте
19	Определить ір адреса компьютеров установивших подключения с данным компьютером
<u>20</u>	Подключить все доступные сетевые ресурсы со всех компьютеров, установивших подключения с данным компьютером
21	Определить самый короткий участок на пути к указанному узлу
22	Определить ІР-адреса всех компьютеров, связь с которыми
	осуществляется через шлюз по умолчанию
<u>23</u>	Вывести список доступных сетевых ресурсов со всех компьютеров,
	установивших подключения с данным компьютером
24	Посчитать количество компьютеров, видимых через шлюз по умолчанию.
25	Определить количество маршрутизаторов на пути к указанному
	узлу
26	Вывести ір адреса маршрутизаторов на пути к указанному узлу,
	отсортированных по возрастанию времени задержки.
27	Определить скорости доступа к компьютерам из списка по ір
	адресам
28	Определить имя домена в котором находиться данный компьютер
29	Определить самый длинный участок на пути к указанному узлу
30	Определить компьютеры, не имеющие имен

Отчёт должен содержать описание всех изученных команд и подробное описание действий для выполнения п.1-5, листинги решения индивидуального задания и результаты проведённой верификации. Результаты выполнения лабораторной работы должны быть обязательно продемонстрированы на компьютере.

4. Контрольные вопросы

- 1. Команды ОС Windows и ОС Linux для работы с сетевыми ресурсами. Основные параметры.
- 2. Проверка наличия соединения с удалённым узлом.
- 3. Программные средства мониторинга и анализа использования сети в ОС Windows и ОС Linux
- 4. Основные команды WSH и Bash для работы с сетевыми ресурсами