Tianjin International Engineering Institute

Formal Languages and Automata

Lesson 7: Properties of regular languages

Marc Gaetano Edition 2018

Operations that preserve regularity

- In the last lecture we saw three operations that preserve regularity:
 - Union: If L, L' are regular languages, so is $L \cup L'$
 - Concatenation: If L, L' are regular languages, so is LL'
 - Star: If L is a regular language, so is L^*
- Exercise: If L is regular, is L^4 also regular?
- Answer: Yes, because

$$L^4 = ((LL)L)L$$

Example

• The language L of strings that end in 101 is regular (0+1)*101

• How about the language L of strings that do not end in 101?

Example

• Hint: A string does not end in 101 if and only if it ends in one of the following patterns:

(or it has length 0, 1, or 2)

• So \overline{L} can be described by the regular expression

$$(0+1)*(000+001+010+010+100+110+111)$$

+ ϵ + $(0+1)$ + $(0+1)(0+1)$

Complement

• The complement L of a language L is the set of all strings (over Σ) that are not in L

- Examples ($\Sigma = \{0, 1\}$)
 - $-L_1$ = all strings that end in 101
 - $-L_1$ = all strings that do not end in 101 = all strings end in 000, ..., 111 or have length 0, 1, or 2
 - $-L_2 = 1* = {\epsilon, 1, 11, 111, ...}$
 - $-L_2$ = all strings that contain at least one 0= (0 + 1)*0(0 + 1)*

Closure under complement

- If L is a regular language, is L also regular?
- Previous examples indicate answer should be yes

Theorem

If L is a regular language, so is \overline{L} .

Proof of closure under complement

 To prove this in general, we can use any of the equivalent definitions for regular languages:

- In this proof DFA definition will be most convenient
 - We will assume L is accepted by a DFA, and show the same for \overline{L}

Proof of closure under complement

• Suppose L is regular, then it is accepted by a DFA $\stackrel{\frown}{\rm M}$

• Now consider the DFA M' with the accepting and rejecting states of M reversed

Proof of closure under complement

• Now for every input $x \in \Sigma^*$:

M accepts x

After processing x, M ends in an accepting state

After processing x, M' ends in an rejecting state

M' rejects x

Language of M' is \overline{L}

 \overline{L} is regular

A warning

NFA for language of strings ending in 101

 Give NFA that accepts strings that do not end in 101 ___0,1

Intersection

• The intersection $L \cap L'$ is the set of strings that are in both L and L'

Examples:

$$L = (0 + 1)*111$$
 $L' = 1*$ $L \cap L' = ?$ $L = (0 + 1)*101$ $L' = 1*$ $L \cap L' = ?$

• If L, L' are regular, is $L \cap L$ ' also regular?

Closure under intersection

Theorem

If L and L' are regular languages, so is $L \cap L'$.

Reversal

• The reversal w^R of a string w is w written backwards

$$w = \text{cave}$$
 $w^R = \text{evac}$

• The reversal $L^{\mathbb{R}}$ of a language L is the language obtained by reversing all its strings

$$L = \{\text{push, pop}\}\$$
 $L^{R} = \{\text{hsup, pop}\}\$

Reversal of regular languages

• L =all strings that end in 101 is regular (0+1)*101

- How about L^R ?
- This is the language of all strings beginning in 101
- Yes, because it is represented by

$$101(0+1)*$$

Closure under reversal

Theorem

If L is a regular language, so is L^R .

Proof

 We will use the representation of regular languages by regular expressions

Proof of closure under reversal

- If L is regular, then there is a regular expression ${\cal E}$ that describes it
- We will give a systematic way of reversing E
- Recall that a regular expression can be of the following types:
 - Special expressions \varnothing and ϵ
 - Alphabet symbols a, b, ...
 - The union, concatenation, or star of simpler expressions
- In each of these cases we show how to do a reversal

Proof of closure under reversal

regula	ar ex	press	ion	E
--------	-------	-------	-----	---

reversal E^{R}

 \varnothing

 \varnothing

3

3

a (alphabet symbol)

a

 $E_1 + E_2$

 $E_{1}^{R} + E_{2}^{R}$

 E_1E_2

 $E_2^R E_1^R$

 E_1^*

 $(E_1^R)^*$

Applications: text search

- Text search: grep
 - Looks for occurrences of a regular expression in a file
- Syntax of regular expressions in grep
 - [atr] means the set $\{a, t, r\}$
 - [b-e] means {b, c, d, e} (in ASCII/Unicode ordering)
 - | means + (union), * means star
 - ? means "zero or one": \mathbb{R} ? is $\varepsilon + \mathbb{R}$
 - + means "one or more": R+ is RR*
 - $\{n\}$ means "n copies of": R{5} is RRRR

Regular expressions in grep

Say we have a file w.txt

```
1/1/08 14C rain\n
1/2/08 17C sunny\n
1/3/08 18C sunny\n
```

...

Want to know all sunny days

```
> grep 'sunny' w.txt
```

Any cloudy days in April '08?

```
> grep '4/[0-9]*/08 ([0-9]|C|)* cloudy' w.txt
```

Any consecutive string of 7 sunny days?

```
> grep '(([0-9]|/|C|)* sunny\n){7}' w.txt
```

Implementation of grep

 One way to implement grep is to convert the regular expression into a DFA and then "run" the DFA on this text file

- Two issues that arise:
 - grep looks for patterns inside text, while the DFA processes the input as a whole
 - DFA only produces "yes/no" answer, while grep outputs lines that contain given pattern
- How would you resolve these issues?