Playdoh – Time Series Forecasting

(본 문서는 Docker를 통해 실행하는 방법을 사용하는 것을 상정해 작성했습니다. 또한, 영어 웹페이지 버전이며 한글 버전도 예시와 똑같은 실행 순서를 가집니다.)

2023/11/22

목차

- 1 패키지 소개
- 2 전제 조건
- 3 예시 데이터
- 4 실행 순서(샘플 데이터)
 - 4.1 샘플 데이터 로드
 - 4.2 날짜 컬럼 및 예측 컬럼 지정
 - 4.3 학습 범위 지정
 - 4.4 하이퍼파라미터 지정
 - 4.5 모델 학습
 - 4.6 결과 확인
 - 4.7 모델 다운로드

1. 패키지 소개

Playdoh는 AI에 익숙하지 않은 분들도 쉽게 사용할 수 있는 몇 가지 애플리케이션을 제공합니다. 이 패키지는 다음과 같은 기능을 제공합니다:

- 이미지 분류(Image Classification)
- 감성 분류(Sentiment Analysis)
- 음성 텍스트 변환(Speech-to-Text)
- 시계열 예측(Time Series Forecasting)

2. 전제 조건

- Docker
- Visual Studio Code

3. 예시 데이터

date	meantemp	humidity	wind_speed	meanpressure
2017-01-0	15.91304348	85.86956522	2.743478261	59
2017-01-02	18.5	77.2222222	2.894444444	1018.277778
2017-01-03	17.11111111	81.88888889	4.016666667	1018.333333
2017-01-04	18.7	70.05	4.545	1015.7
2017-01-09	18.38888889	74.9444444	3.3	1014.333333
2017-01-06	19.31818182	79.31818182	8.681818182	1011.772727
2017-01-07	7 14.70833333	95.83333333	10.04166667	1011.375
2017-01-08	15.68421053	83.52631579	1.95	1015.55
2017-01-09	14.57142857	80.80952381	6.542857143	1015.952381
2017-01-10	12.11111111	71.9444444	9.361111111	1016.888889
2017-01-1	1 11	72.11111111	9.772222222	1016.777778
2017-01-12	11.78947368	74.57894737	6.626315789	1016.368421
2017-01-13	13.23529412	67.05882353	6.435294118	1017.529412
2017-01-14	13.2	74.28	5.276	1018.84
2017-01-1	16.43478261	72.56521739	3.630434783	1018.130435
2017-01-16	14.65	78.45	10.38	1017.15
2017-01-17	11.72222222	84.4444444	8.038888889	1018.388889
2017-01-18	13.04166667	78.33333333	6.029166667	1021.958333
2017-01-19	14.61904762	75.14285714	10.33809524	1022.809524
2017-01-20	15.26315789	66.47368421	11.22631579	1021.789474
	<	예시 데이티	4>	

- 지원되는 확장자: csv, xlsx

4. 실행 순서(샘플 데이터)

4.1. 샘플 데이터 업로드

- "Start with sample data" 버튼을 체크하여 샘플 데이터를 로드 합니다.

4.2. 날짜 컬럼 및 예측 컬럼 지정

- 날짜 컬럼을 지정합니다.

- 예측 컬럼을 지정합니다.

4.3. 학습 범위 지정

- 학습시킬 데이터의 범위를 지정합니다.
- 테스트 데이터는 학습 범위로부터 원래 데이터의 끝 범위까지 자동으로 지 정됩니다.
 - 추가적인 예측 데이터는 테스트 데이터의 10%로 지정됩니다.

4.4. 하이퍼파라미터 지정

- 각 **"하이퍼파라미터의 이름"** 또는 **"?"** 클릭하여 하이퍼파라미터의 설명을 보실 수 있습니다.

4.5. 모델 학습

- "Train Model" 버튼을 클릭하여 모델을 학습시킵니다.

4.6. 예측 및 결과 확인

- "Prediction" 버튼을 클릭하여 예측을 시도합니다.

- 오른쪽 그래프를 통해 모델의 학습 결과를 확인합니다.

4.7. 모델 다운로드

- "Download Model" 버튼을 클릭하여 해당 모델을 다운로드 받을 수 있습 니다.