Resolução do 2º teste de AUC

2023/2024

Nota Preliminar

Não há qualquer garantia de que as resoluções estejam totalmente corretas.

Grupo I - Perguntas de V/F

1. a) Toda a congruência na álgebra \mathcal{O}_6 é núcleo de um homomorfismo com domínio igual a \mathcal{O}_6 .

Resposta: A afirmação é **verdadeira**. Dada uma congruência θ numa álgebra qualquer, ela é sempre núcleo do homomorfismo natural $\pi_{\theta} \colon A \to A/\theta$ dado por $a \mapsto [a]_{\theta}$.

b) A álgebra $\mathcal{O}_6 \times \mathcal{O}_6$ é diretamente indecomponível.

Resposta: A afirmação é **falsa**. Isto é análogo a perguntar: "O número 4×4 é primo?" — Não, não é primo porque é um produto de dois fatores e nenhum desses fatores é 1. Do mesmo modo, $\mathcal{O}_6 \times \mathcal{O}_6$ é o produto de duas álgebras não-triviais ¹, pelo que não é diretamente *indecomponível*.

c) Se (θ, θ') é um par de congruências-fator de \mathcal{M}_3 , então $\theta = \Delta_{M_3}$ ou $\theta' = \Delta_{M_3}$.

Resposta: A afirmação é verdadeira. Como M_3 possui 5 elementos e 5 é um número primo, a álgebra \mathcal{M}_3 é diretamente indecomponível. Como tal, o único par de congruências-fator é $(\Delta_{M_3}, \nabla_{M_3})$. Logo, uma das congruências θ ou θ' tem de coincidir com Δ_{M_3} .

d) Toda a álgebra diretamente indecomponível é subdiretamente irredutível.

Resposta: A afirmação é falsa. Vimos nas aulas que uma cadeia com 3 elementos é diretamente indecomponível (pelo facto de 3 ser um número primo) e, no entanto, não é subdiretamente irredutível.

e) Existe um homomorfismo $\alpha: \mathcal{O}_6 \to \mathcal{M}_3$ tal que $\ker(\alpha) = \Delta_{\mathcal{O}_6}$.

Resposta: A afirmação é falsa. Se o núcleo de α fosse a congruência trivial, então α seria uma aplicação injetiva. Isso é impossível porque $|M_3| = 5 > 6 = |O_6|$; ou seja, é impossível existir uma aplicação injetiva se o conjunto de chegada tiver menos elementos que o conjunto de partida.

f) Seja \mathcal{N} o monóide $(\mathbb{N}_0, \times, 1)$, onde \times denota a multiplicação de números naturais. Em \mathcal{N} , visto como uma categoria, 0 é um monomorfismo.

Resposta: A afirmação é **falsa**. Nesta categoria, os morfismos são os números naturais (incluindo o 0) e a composição é dada pela multiplicação. Sendo assim, um número n é um monomorfismo se $n \times m = n \times k \Rightarrow m = k$. Portanto, 0 não é um monomorfismo, visto que $0 \times 1 = 0 \times 2$ e, no entanto, $1 \neq 2$.

 $^{^1\}mathrm{Uma}$ álgebra diz-se trivialse o seu conjunto suporte tiver apenas um elemento.

Grupo II - Justificar se é verdade

Diga, justificando, se cada uma das seguintes afirmações é verdadeira.

2. Seja $\theta = \Theta(a, d) \in \text{Con}(\mathcal{O}_6)$. A álgebra \mathcal{O}_6/θ é trivial.

Resolução: A álgebra \mathcal{O}_6/θ é trivial se e só se $\theta = \nabla_{O_6}$, isto é, se e só se $x \theta y$ para todos os $x, y \in O_6$. Temos então de determinar $\Theta(a, d)$.

Por definição, $\Theta(a,d)$ é a menor congruência em \mathcal{O}_6 que contém $\{(a,d)\}$. Além disso, $\Theta(a,d)$ é uma relação de equivalência (é reflexiva, simétrica e transitiva) e satisfaz a propriedade de substituição: para quaisquer $x, y, z, w \in \mathcal{O}_6$, se $x \theta y$ e $z \theta w$, então:

$$\begin{cases} (x \wedge' z) \theta (y \wedge' w) \\ (x \vee' z) \theta (y \vee' w) \end{cases}$$

Uma vez que θ é reflexiva, temos $\triangle_{O_6} \subseteq \theta$. Como $(a,d) \in \theta$ e θ é simétrica, também temos $(d,a) \in \theta$. Atendendo a que $(a,d),(c,c) \in \theta$ e θ satisfaz a propriedade de substituição,

$$(a,d), (c,c) \in \theta \Rightarrow \begin{cases} (a \land' c) \theta (d \land' c) \Rightarrow 0 \theta c \\ (a \lor' c) \theta (d \lor' c) \Rightarrow 1 \theta d \end{cases}$$

ou seja, (0,c), $(1,d) \in \theta$. Consequentemente, por simetria, (c,0), $(d,1) \in \theta$.

Novamente pela propriedade de substituição,

$$(a,d), (b,b) \in \theta \Rightarrow \begin{cases} (a \wedge' b) \ \theta \ (d \wedge' b) \Rightarrow a \theta \ 0 \\ (a \vee' b) \ \theta \ (d \vee' b) \Rightarrow b \theta \ 1 \end{cases}$$

ou seja, $(a,0),(b,1) \in \theta$. Consequentemente, por simetria, $(0,a),(1,b) \in \theta$. Logo, até ao momento, já sabemos que:

$$\triangle_{O_6} \cup \{(a,0),(0,a),(a,d),(d,a),(b,1),(1,b),(c,0),(0,c),(d,1),(1,d)\} \subseteq \theta.$$

Por transitividade e simetria, decorre ainda que

$$(a,c),(c,a),(a,1),(1,a),(b,d),(d,b),(d,0),(0,d) \in \theta.$$

Por transitividade uma vez mais,

$$(a,b),(b,a),(c,d),(d,c),(c,1),(1,c),(b,c),(c,b) \in \theta.$$

Concluímos que $\theta = O_6 \times O_6 = \nabla_{O_6}$, pelo que a álgebra \mathcal{O}_6/θ é trivial.

3. Seja $\mathcal{R} = (R; \wedge, \vee)$ o reticulado dado pelo diagrama

Sejam θ e θ' relações de equivalência em R dadas pelas partições $\{\{a,0\},\{b,1\}\}\}$ e $\{\{b,0\},\{a,1\}\}$, respetivamente. As relações θ e θ' formam um par de congruências-fator de R.

Resolução: Em primeiro lugar, para as relações de equivalência θ e θ' formarem um par de congruênciasfator, elas têm de ser congruências. E de facto são, pois é verificada a propriedade de substituição:

- $a\theta 0$, $b\theta 1$ e $(a \wedge b)\theta (0 \wedge 1)$;
- $a\theta 0$, $b\theta 1$ e $(a \lor b)\theta (0 \lor 1)$;
- $b\theta'0$, $a\theta'1$ e $(b\wedge a)\theta'(0\wedge 1)$;
- $b\theta'0$, $a\theta'1$ e $(b\vee a)\theta'(0\vee 1)$.

Adicionalmente, as congruências θ e θ' formam um par de congruências-fator de \mathcal{R} se:

- 1. $\theta \cap \theta' = \Delta_B$;
- 2. $\theta \vee \theta' = \nabla_B$;
- 3. $\theta \circ \theta' = \theta' \circ \theta$.

Como se tem

- $\theta = \Delta_R \cup \{(a,0), (0,a), (b,1), (1,b)\};$
- $\theta' = \Delta_R \cup \{(b,0), (0,b), (a,1), (1,a)\}.$

a propriedade 1. decorre imediatamente. Para provar a propriedade 2., note-se que

$$\theta \cup \theta' = \Delta_B \cup \{(a,0), (0,a), (b,1), (1,b), (b,0), (0,b), (a,1), (1,a)\}.$$

Como $\theta \cup \theta' \subseteq \theta \vee \theta'$, por transitividade decorre que (a,b), $(b,a) \in \theta \vee \theta'$, logo $\theta \vee \theta' = \nabla_R$. Por um motivo análogo, como $\theta \cup \theta' \subseteq \theta \circ \theta'$ e $\theta \cup \theta' \subseteq \theta' \circ \theta$, o ponto 3. também se verifica. Logo, $\theta \in \theta'$ são de facto congruências-fator em \mathcal{R} .

4. Existe mergulho subdireto de \mathcal{O}_6 em $\mathbf{2} \times \mathbf{3}$, onde $\mathbf{2}$ e $\mathbf{3}$ são as cadeias com 2 e 3 elementos, respetivamente.

Resolução: Como $|\mathcal{O}_6| = 6 = |\mathbf{2} \times \mathbf{3}|$ e um mergulho subdireto é um monomorfismo, se existir um mergulho subdireto de \mathcal{O}_6 em $\mathbf{2} \times \mathbf{3}$ ele terá de ser sobrejetivo, logo um isomorfismo. No entanto, \mathcal{O}_6 e $\mathbf{2} \times \mathbf{3}$ não são reticulados isomorfos. De facto, em \mathcal{O}_6 há exatamente duas cadeias de comprimento 4, ao passo que em $\mathbf{2} \times \mathbf{3}$ há três cadeias de comprimento 4.

5. Seja \mathcal{C} a categoria definida pelos diagramas seguintes:

Todos os morfismos de \mathcal{C} são epimorfismos.

Resolução: O morfismo f é um epimorfismo se, para quaisquer morfismos $a,b \in \operatorname{Mor}(\mathcal{C}), \ a \circ f = b \circ f$ implicar a = b. Ora, existe um único morfismo que pode ser composto à esquerda com f, a saber id_B . Logo, f é um epimorfismo. O mesmo raciocínio pode ser aplicado a g. No caso de h, há dois morfismos que podem ser compostos à esquerda com h, a saber id_C e g. Contudo, $\operatorname{id}_C \circ h \neq g \circ h$. Logo, a condição $a \circ h = b \circ h$ implica necessariamente a = b. Por isso, é verdade que todos os morfismos de $\mathcal C$ são epimorfismos.

Grupo III - Demonstrações

Demonstre as seguintes afirmações.

6. Sejam $\mathcal{R} = (R, \wedge, \vee)$ um reticulado e θ uma congruência em \mathcal{R} . Para cada $x \in R$, a classe de equivalência $[x]_{\theta}$ é uma sub-álgebra de \mathcal{R} .

Resolução: Em primeiro lugar, dado $x \in R$, é evidente que $[x]_{\theta} \subseteq \mathcal{R}$. Basta então mostrar que, dados $y, z \in [x]_{\theta}$, se tem $y \wedge z \in [x]_{\theta}$ e $y \vee z \in [x]_{\theta}$. Sejam então $y, z \in R$ tais que $y \theta x$ e $z \theta x$. Como θ é uma congruência, a propriedade de substituição garante que $(y \wedge z) \theta$ $(x \wedge x)$. Decorre assim que $(y \wedge z) \theta$ x e, portanto, $y \wedge z \in [x]_{\theta}$. A justificação para a operação \vee é análoga.

7. Seja \mathcal{A} uma álgebra. $\Delta_{\mathcal{A}}$ é produto sub-directo de $\mathcal{A} \times \mathcal{A}$.

Resolução: Em primeiro lugar, note-se que $\Delta_A = \{(a, a) \mid a \in A\} \subseteq A \times A$. Por definição, Δ_A é um produto sub-direto de $A \times A$ se:

- 1. $\Delta_{\mathcal{A}}$ é uma sub-álgebra de $\mathcal{A} \times \mathcal{A}$;
- 2. $p_1(\Delta_A) = A;$
- 3. $p_2(\Delta_A) = A$.

Suponhamos que $\mathcal{A}=(A;F)$ é uma álgebra de tipo (O,τ) . Para provar 1., basta verificar que Δ_A é um sub-universo de $\mathcal{A}\times\mathcal{A}$. Para esse efeito, tomemos $f\in O_n$ e $(x_1,x_1),\ldots,(x_n,x_n)\in\Delta_A$. Então, por definição de álgebra produto,

$$f((x_1, x_1), \dots, (x_n, x_n)) = (f(x_1, \dots, x_n), f(x_1, \dots, x_n)) \in \Delta_A.$$

Por conseguinte, Δ_A é um sub-universo de $\mathcal{A} \times \mathcal{A}$ e, como tal, quando equipado com as operações de $\mathcal{A} \times \mathcal{A}$, torna-se uma sub-álgebra.

Resta apenas justificar 2., uma vez que a justificação de 3. é igual. Como $\Delta_A = \{(a, a) \mid a \in A\} \subseteq A \times A$, decorre que $p_1(\Delta_A) = \{a \mid a \in A\}$. Portanto, $p_1(\Delta_A) = A$ (e analogamente para p_2), o que conclui a demonstração.

8. Sejam $\mathcal C$ uma categoria e $f:A\to B,\,g:B\to C$ morfismos em $\mathcal C$. Se $g\circ f$ é invertível à esquerda, então f é invertível à esquerda.

Resolução: Se $g \circ f \colon A \to C$ é invertível à esquerda, então existe um morfismo $k \colon C \to A$ tal que $k \circ (g \circ f) = \mathrm{id}_A$. Como, numa categoria, a composição é associativa, decorre que $(k \circ g) \circ f = id_A$. Logo, $k \circ g \colon B \to A$ é uma inversa esquerda de f. Portanto, f é invertível à esquerda.