Required: Do Theorem 2.2.12, Inductive Step \exists .

Inductive Step 8. \exists

IH: For any assignments s and s', if s and s' agree on $free(\phi)$, then $Val_{M,s}(\phi) = Val_{M,s'}(\phi)$. **Show:** For any assignments s and s', if s and s' agree on $free(\exists x\phi)$, then $Val_{M,s}(\exists x\phi) = Val_{M,s'}(\exists x\phi)$.

Proof. Choose any assignments s and s', and assume that s and s' agree on $free(\exists x\phi)$.

Assume for sake of contradiction that $Val_{M,s}(\exists x\phi) \neq Val_{M,s'}(\exists x\phi)$. Without loss of generality, assume $Val_{M,s}(\exists x\phi) = 1$ and $Val_{M,s'}(\exists x\phi) = 0$.

Hence, $\max\{Val_{M,s_x^d}(\phi): d \in D\} = 1$.

In particular, for some $d^* \in D$, we have that, $Val_{M,s_x^{d^*}}(\phi) = 1$. Now, we will prove the following claim.

Claim: $s_x^{d^*}$ and $s_x'^{d^*}$ agree on $free(\phi)$.

To prove the claim, suppose $y \in free(\phi)$. We have two cases to consider. Either y and x are the same variable, or x and y are distinct variables.

If x and y are the same variable, then we have that $s_x^{d^*}(y) = s_x^{d^*}(x) = d^*$ and $s_x'^{d^*}(y) = s_x'^{d^*}(x) = d^*$. Hence, $s_x^{d^*}(y) = s_x'^{d^*}(y)$.

If x and y are distinct variables, then $y \in free(\phi) - \{x\} = free(\exists x\phi)$. And we assumed that s and s' agree on $free(\exists x\phi)$. Hence, s(y) = s'(y). Hence, $s_x^{d^*}(y) = s(y) = s'(y) = s'(y)$.

This proves the claim.

Since $s_x^{d^*}$ and $s_x'^{d^*}$ agree on $free(\phi)$, by **IH** we have that, $Val_{M,s_x^{d^*}}(\phi) = Val_{M,s_x'^{d^*}}(\phi)$.

Since $Val_{M,s_x^{d^*}}(\phi) = 1$, and $Val_{M,s_x^{d^*}}(\phi) = Val_{M,s_x^{d^*}}(\phi)$, this implies that $Val_{M,s_x^{d^*}}(\phi) = 1$.

But we assumed that $Val_{M,s'}(\exists x\phi) = 0$. This implies that $\max\{Val_{M,s'x}(\phi) : d \in D\} = 0$. This implies that $Val_{M,s'x}(\phi) = 0$.

Hence, we have that $Val_{M,s'_{x}}(\phi) = 1$ and $Val_{M,s'_{x}}(\phi) = 0$ which is a contradiction.

Therefore, our initial assumption was wrong. Therefore, $Val_{M,s}(\exists x\phi) = Val_{M,s'}(\exists x\phi)$, completing the proof, as required.

Theorem 2.5.14: Suppose that the language L' is an expansion of the language L and that $L \subseteq Form_L$ and $\phi \in Form_L$ (in which case $\Gamma \subseteq Form_{L'}$ and $\phi \in Form_{L'}$). Then $\Gamma \models_L \phi$ iff $\Gamma \models_{L'} \phi$.

Proof.
$$(\Rightarrow)$$

Assume $\Gamma \models_L \phi$. Assume for the sake of contradiction that $\Gamma \not\models_{L'} \phi$.

Hence, there exists a model $M' = \langle D', I' \rangle$ for L' and a variable assignment s such that $M' \models \Gamma[s]$ and $M' \not\models \phi[s]$.

Equivalently, for each $\sigma \in \Gamma$, $M' \models \sigma[s]$ and $M' \not\models \phi[s]$.

Equivalently, for each $\sigma \in \Gamma$, $Val_{M',s}(\sigma) = 1$ and $Val_{M',s}(\phi) = 0$.

Now, define a model $M = \langle D, I \rangle$ for L by,

$$D = D'$$

I(c) = I'(c) if c is a constant symbol of L

I(f) = I'(f) if f is an n-ary function symbol of L

I(R) = I'(R) if R is an n-ary relation symbol of L

So M' is an expansion of M. By Theorem 2.4.5, we have that,

1)
$$Val_{M,s}(\sigma) = Val_{M',s}(\sigma) = 1$$
 for each $\sigma \in \Gamma$

2)
$$Val_{M,s}(\phi) = Val_{M',s}(\phi) = 0.$$

Hence, for each $\sigma \in \Gamma$, $Val_{M,s}(\sigma) = 1$ and $Val_{M,s}(\phi) = 0$.

So for each $\sigma \in \Gamma$, $M \models \sigma[s]$ and $M \not\models \phi[s]$.

In other words $M \models \Gamma[s]$ and $M \not\models \phi[s]$.

But we assumed that $\Gamma \models_L \phi$. This implies that given our M and s, if $M \models \Gamma[s]$, then $M \not\models \phi[s]$.

So we have $M \models \Gamma[s]$ and we have that if $M \models \Gamma[s]$, then $M \models \phi[s]$. Therefore, we have that $M \models \phi[s]$.

Hence, we have shown that $M \models \phi[s]$ and $M \not\models \phi[s]$ which is a contradiction. This completes the forward direction.

 (\Leftarrow)

Assume $\Gamma \models_{L'} \phi$. Assume for the sake of contradiction that $\Gamma \not\models_L \phi$.

Hence, there exists a model $M = \langle D, I \rangle$ for L and a variable assignment s such that $M \models \Gamma[s]$ and $M \not\models \phi[s]$.

Equivalently, for each $\sigma \in \Gamma$, $M \models \sigma[s]$ and $M \not\models \phi[s]$.

Equivalently, for each $\sigma \in \Gamma$, $Val_{M,s}(\sigma) = 1$ and $Val_{M,s}(\phi) = 0$.

Now, we will define a model $M' = \langle D', I' \rangle$ for L'. Let $d \in D$ be arbitrary. For every $n \geq 1$, let f_n be any n-ary function on D and let R_n be any n-ary relation on D.

D' = D

I'(c) = I(c) if c is a constant symbol of L

I'(c) = d if c is a constant symbol of L' but not of L

I'(f) = I(f) if f is an n-ary function symbol of L

 $I'(f) = f_n$ if f is an n-ary function symbol of L' but not of L

I'(R) = I(R) if R is an n-ary relation symbol of L

 $I'(R) = R_n$ if R is an n-ary relation symbol of L' but not of L

So M' is an expansion of M. By Theorem 2.4.5, we have that,

1) $Val_{M',s}(\sigma) = Val_{M,s}(\sigma) = 1$ for each $\sigma \in \Gamma$

2) $Val_{M',s}(\phi) = Val_{M,s}(\phi) = 0.$

Hence, for each $\sigma \in \Gamma, Val_{M',s}(\sigma) = 1$ and $Val_{M',s}(\phi) = 0$.

So for each $\sigma \in \Gamma$, $M' \models \sigma[s]$ and $M' \not\models \phi[s]$.

Equivalently, $M' \models \Gamma[s]$ and $M' \not\models \phi[s]$.

But we assumed that $\Gamma \models_{L'} \phi$. This implies that given our M' and s, if $M' \models \Gamma[s]$, then $M' \not\models \phi[s]$.

So we have $M' \models \Gamma[s]$ and we have that if $M' \models \Gamma[s]$, then $M' \models \phi[s]$. Therefore, we have that $M' \models \phi[s]$.

Hence, we have shown that $M' \models \phi[s]$ and $M' \not\models \phi[s]$ which is a contradiction. This completes the proof, as required.

Theorem 2.5.19: Suppose that L is a language and that $\Gamma \subseteq Sent_L$ and that $\phi \in Sent_L$. Then $\Gamma \models \phi$ iff every model for L that satisfies Γ also satisfies ϕ .

Proof. Suppose that L is a language and that $\Gamma \subseteq Sent_L$ and that $\phi \in Sent_L$.

 (\Rightarrow)

Assume $\Gamma \models \phi$.

Show: Every model for L that satisfies Γ also satisfies ϕ .

Let M be an arbitrary model for L. Suppose $M \models \Gamma$ (i.e. M satisfies Γ). We want to show that $M \models \phi$ (i.e. M satisfies ϕ).

Let s be an arbitrary assignment. Since $M \models \Gamma$, we have $\forall \gamma \in \Gamma, M \models \gamma$. By Theorem 2.2.15 we have that, $\forall \gamma \in \Gamma, M \models \gamma[s]$ since $\Gamma \subseteq Sent_L$.

Hence, $M \models \Gamma[s]$.

By Theorem 2.5.18 we know that $\Gamma \models \phi$ iff $\Gamma \models_L \phi$. Since $\Gamma \models \phi$, we have that $\Gamma \models_L \phi$.

By Definition 2.5.11 since $\Gamma \models_L \phi$, we have that, for every model M for L and every assignment s, if $M \models \Gamma[s]$, then $M \models \phi[s]$.

So let M and s be the model and assignment we declared earlier. Since $M \models \Gamma[s]$, we have that $M \models \phi[s]$.

By Theorem 2.2.15 since $M \models \phi[s]$ and $\phi \in Sent_L$, we have that $M \models \phi$ (i.e. M satisfies ϕ) which is what we wanted to prove.

Therefore, every model for L that satisfies Γ also satisfies ϕ .

 (\Leftarrow)

Assume every model for L that satisfies Γ also satisfies ϕ .

Show: $\Gamma \models \phi$.

First we will show that $\Gamma \models_L \phi$. By Definition 2.5.11 $\Gamma \models_L \phi$ if and only if for every model M for L and every assignment s, if $M \models \Gamma[s]$, then $M \models \phi[s]$.

So let M be a model for L and let s be an assignment. Assume $M \models \Gamma[s]$. We want to show $M \models \phi[s]$.

Since $M \models \Gamma[s]$, we have $\forall \gamma \in \Gamma, M \models \gamma[s]$. By Theorem 2.2.15, $\forall \gamma \in \Gamma, M \models \gamma$ since $\Gamma \subseteq Sent_L$.

Since $\forall \gamma \in \Gamma, M \models \gamma$, we have $M \models \Gamma$ (i.e. M satisfies Γ). By our assumption, we then have that $M \models \phi$ (i.e. M satisfies ϕ).

By Theorem 2.2.15, since $M \models \phi$ and $\phi \in Sent_L$, we have that $M \models \phi[s]$.

Hence, we have shown that for every model M for L and every assignment s, if $M \models \Gamma[s]$, then $M \models \phi[s]$.

Therefore, by Definition 2.5.11, we have that $\Gamma \models_L \phi$.

By Theorem 2.5.18 we know that $\Gamma \models \phi$ iff $\Gamma \models_L \phi$. Since $\Gamma \models_L \phi$, we have that $\Gamma \models \phi$ which is what we wanted to prove.

This completes the proof, as required.

Suppose that L is a first-order language with the equals sign and a binary predicate \mathbf{R} . Show the following.

1.

$$Show: \ \forall v_1 \exists v_2 R v_1 v_2. \ \ \forall v_1 \forall v_2 \forall v_3 ((R v_1 v_2 \wedge R v_2 v_3) \rightarrow R v_1 v_3) \not\models \exists v_1 R v_1 v_1.$$

Consider the model $M = \langle D, I \rangle$ for L defined as follows.

$$D = \mathbb{N}$$

$$I(\mathbf{R}) = \{ \langle a, b \rangle : a, b \in \mathbb{N} \text{ and } a < b \}$$

Now, consider the following T-biconditionals. Note, we will be using \forall and \exists ambiguously in the metalanguage.

First we have, $M \models \forall \mathbf{v_1} \exists \mathbf{v_2} \mathbf{R} \mathbf{v_1} \mathbf{v_2} \text{ iff } \forall a \in \mathbb{N}, \exists b \in \mathbb{N} \text{ such that } a < b.$

Note that $\forall a \in \mathbb{N}, \exists b \in \mathbb{N}$ such that a < b is obviously true in the naturals with the usual ordering.

Hence, $M \models \forall \mathbf{v_1} \exists \mathbf{v_2} \mathbf{R} \mathbf{v_1} \mathbf{v_2}$.

Next, we have $M \models \forall \mathbf{v_1} \forall \mathbf{v_2} \forall \mathbf{v_3} ((\mathbf{R}\mathbf{v_1}\mathbf{v_2} \wedge \mathbf{R}\mathbf{v_2}\mathbf{v_3}) \to \mathbf{R}\mathbf{v_1}\mathbf{v_3})$ iff $\forall a, b, c \in \mathbb{N}$, if a < b and b < c, then a < c.

Note that $\forall a, b, c \in \mathbb{N}$, if a < b and b < c, then a < c is obviously true since we know that the usual ordering of the naturals is transitive.

Hence,
$$M \models \forall \mathbf{v_1} \forall \mathbf{v_2} \forall \mathbf{v_3} ((\mathbf{R}\mathbf{v_1}\mathbf{v_2} \wedge \mathbf{R}\mathbf{v_2}\mathbf{v_3}) \to \mathbf{R}\mathbf{v_1}\mathbf{v_3}).$$

Finally, we have that $M \models \exists \mathbf{v_1} \mathbf{R} \mathbf{v_1} \mathbf{v_1}$ iff $\exists a \in \mathbb{N}$ such that a < a.

Notice, that $\exists a \in \mathbb{N}$ such that a < a is obviously false since there is no natural number less than itself in the usual ordering.

Hence, $M \not\models \exists \mathbf{v_1} \mathbf{R} \mathbf{v_1} \mathbf{v_1}$.

Therefore, $\forall \mathbf{v_1} \exists \mathbf{v_2} \mathbf{R} \mathbf{v_1} \mathbf{v_2}$. $\forall \mathbf{v_1} \forall \mathbf{v_2} \forall \mathbf{v_3} ((\mathbf{R} \mathbf{v_1} \mathbf{v_2} \wedge \mathbf{R} \mathbf{v_2} \mathbf{v_3}) \rightarrow \mathbf{R} \mathbf{v_1} \mathbf{v_3}) \not\models \exists \mathbf{v_1} \mathbf{R} \mathbf{v_1} \mathbf{v_1}$, as required.

 $Show: \ \forall v_1Rv_1v_1. \ \ \forall v_1\forall v_2(Rv_1v_2\rightarrow Rv_2v_1). \ \ \forall v_1\forall v_2\exists v_3(Rv_1v_3\wedge Rv_3v_2) \not\models \forall v_1\forall v_2Rv_1v_2 \land v_3 \land Rv_3v_2 \land Rv_3v_3 \land R$

Consider the model $M = \langle D, I \rangle$ for L defined as follows.

$$D = \{1, 2, 3\}$$

$$I(\mathbf{R}) = \{ \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle \}$$

Now, consider the following T-biconditionals. Note, we will be using \forall and \exists ambiguously in the metalanguage.

First, we have $M \models \forall \mathbf{v_1} \mathbf{R} \mathbf{v_1} \mathbf{v_1}$ iff $\forall a \in D, \langle a, a \rangle \in I(\mathbf{R})$.

We know that $\forall a \in D, \langle a, a \rangle \in I(\mathbf{R})$ is true because,

For a = 1, we have $\langle 1, 1 \rangle \in I(\mathbf{R})$

For a=2, we have $\langle 2,2\rangle \in I(\mathbf{R})$

For a = 3, we have $\langle 3, 3 \rangle \in I(\mathbf{R})$

Hence, $M \models \forall \mathbf{v_1} \mathbf{R} \mathbf{v_1} \mathbf{v_1}$.

Next, we have $M \models \forall \mathbf{v_1} \forall \mathbf{v_2} (\mathbf{R} \mathbf{v_1} \mathbf{v_2} \to \mathbf{R} \mathbf{v_2} \mathbf{v_1})$ iff $\forall a, b \in D$, if $\langle a, b \rangle \in I(\mathbf{R})$, then $\langle b, a \rangle \in I(\mathbf{R})$.

Notice that $\forall a, b \in D$, if $\langle a, b \rangle \in I(\mathbf{R})$, then $\langle b, a \rangle \in I(\mathbf{R})$ is true because,

For a = 1, b = 1, we have that $\langle 1, 1 \rangle \in I(\mathbf{R})$ and $\langle 1, 1 \rangle \in I(\mathbf{R})$.

For a=2,b=2, we have that $\langle 2,2\rangle \in I(\mathbf{R})$ and $\langle 2,2\rangle \in I(\mathbf{R})$.

For a = 3, b = 3, we have that $\langle 3, 3 \rangle \in I(\mathbf{R})$ and $\langle 3, 3 \rangle \in I(\mathbf{R})$.

For a = 1, b = 2, we have that $\langle 1, 2 \rangle \in I(\mathbf{R})$ and $\langle 2, 1 \rangle \in I(\mathbf{R})$.

For a = 2, b = 1, we have that $\langle 2, 1 \rangle \in I(\mathbf{R})$ and $\langle 1, 2 \rangle \in I(\mathbf{R})$.

For a = 2, b = 3, we have that $\langle 2, 3 \rangle \in I(\mathbf{R})$ and $\langle 3, 2 \rangle \in I(\mathbf{R})$. For a = 3, b = 2, we have that $\langle 3, 2 \rangle \in I(\mathbf{R})$ and $\langle 2, 3 \rangle \in I(\mathbf{R})$.

For a = 1, b = 3, we have that $\langle 1, 3 \rangle \notin I(\mathbf{R})$.

For a = 3, b = 1, we have that $\langle 3, 1 \rangle \notin I(\mathbf{R})$.

Note, the last two cases above are vacuously true.

Hence, $M \models \forall \mathbf{v_1} \forall \mathbf{v_2} (\mathbf{R} \mathbf{v_1} \mathbf{v_2} \to \mathbf{R} \mathbf{v_2} \mathbf{v_1}).$

Next, we have that $M \models \forall \mathbf{v_1} \forall \mathbf{v_2} \exists \mathbf{v_3} (\mathbf{R} \mathbf{v_1} \mathbf{v_3} \wedge \mathbf{R} \mathbf{v_3} \mathbf{v_2})$ iff $\forall a, b \in D, \exists c \in D$ such that $\langle a, c \rangle \in I(\mathbf{R})$ and $\langle c, b \rangle \in I(\mathbf{R})$.

And $\forall a, b \in D, \exists c \in D$ such that $\langle a, c \rangle \in I(\mathbf{R})$ and $\langle c, b \rangle \in I(\mathbf{R})$ is true because,

```
For a=1,b=1, take c=1 so that \langle 1,1\rangle \in I(\mathbf{R}) and \langle 1,1\rangle \in I(\mathbf{R}).
For a=2,b=2, take c=2 so that \langle 2,2\rangle \in I(\mathbf{R}) and \langle 2,2\rangle \in I(\mathbf{R}).
For a=3,b=3, take c=3 so that \langle 3,3\rangle \in I(\mathbf{R}) and \langle 3,3\rangle \in I(\mathbf{R}).
For a=1,b=2, take c=2 so that \langle 1,2\rangle \in I(\mathbf{R}) and \langle 2,2\rangle \in I(\mathbf{R}).
For a=2,b=1, take c=2 so that \langle 2,2\rangle \in I(\mathbf{R}) and \langle 2,1\rangle \in I(\mathbf{R}).
For a=2,b=3, take c=3 so that \langle 2,3\rangle \in I(\mathbf{R}) and \langle 3,3\rangle \in I(\mathbf{R}).
For a=3,b=2, take c=3 so that \langle 3,3\rangle \in I(\mathbf{R}) and \langle 3,2\rangle \in I(\mathbf{R}).
For a=1,b=3, take c=2 so that \langle 1,2\rangle \in I(\mathbf{R}) and \langle 2,3\rangle \in I(\mathbf{R}).
For a=3,b=1, take c=2 so that \langle 3,2\rangle \in I(\mathbf{R}) and \langle 2,1\rangle \in I(\mathbf{R}).
```

Hence, $M \models \forall \mathbf{v_1} \forall \mathbf{v_2} \exists \mathbf{v_3} (\mathbf{R} \mathbf{v_1} \mathbf{v_3} \wedge \mathbf{R} \mathbf{v_3} \mathbf{v_2}).$

Finally, we have that $M \models \forall \mathbf{v_1} \forall \mathbf{v_2} \mathbf{R} \mathbf{v_1} \mathbf{v_2}$ iff $\forall a, b \in D, \langle a, b \rangle \in I(\mathbf{R})$.

However, it is clear that $\forall a, b \in D, \langle a, b \rangle \in I(\mathbf{R})$ is not true since we can take a = 1, b = 3 and clearly $\langle 1, 3 \rangle \notin I(\mathbf{R})$.

Hence, $M \not\models \forall \mathbf{v_1} \forall \mathbf{v_2} \mathbf{R} \mathbf{v_1} \mathbf{v_2}$.

Therefore, $\forall \mathbf{v_1} \mathbf{R} \mathbf{v_1} \mathbf{v_1}$. $\forall \mathbf{v_1} \forall \mathbf{v_2} (\mathbf{R} \mathbf{v_1} \mathbf{v_2} \to \mathbf{R} \mathbf{v_2} \mathbf{v_1})$. $\forall \mathbf{v_1} \forall \mathbf{v_2} \exists \mathbf{v_3} (\mathbf{R} \mathbf{v_1} \mathbf{v_3} \wedge \mathbf{R} \mathbf{v_3} \mathbf{v_2}) \not\models \forall \mathbf{v_1} \forall \mathbf{v_2} \mathbf{R} \mathbf{v_1} \mathbf{v_2}$.

Question 5

First we will restate the following given claims to reference in our proofs later.

We have a function $f: D \to D$ such that $d \triangleright f(d)$.

- $(7) \forall d \in D, \exists d' \in D \text{ such that } d \triangleright d'$
- $(8) \forall d, d', d'', \text{ if } d \triangleright d' \text{ and } d' \triangleright d'', \text{ then } d \triangleright d''$
- $(9)\forall d \in D, d \not\triangleright d$
- $(10)f^0(d) = d$
- $(11)f^{n+1}(d) = f(f^n(d))$

Proof of Claim (12)

Claim (12): Fix any $d \in D$. Then $\forall n \geq 1, d \triangleright f^n(d)$.

Proof. Fix $d \in D$. We will use induction on n.

Base Case: For n = 1, we know that $d \triangleright f(d)$ by definition of f.

IH: $d \triangleright f^n(d)$ for some $n \ge 1$.

Show: $d \triangleright f^{n+1}(d)$.

By definition of f, we know that $f^n(d) \triangleright f(f^n(d))$. And $f^{n+1}(d) = f(f^n(d))$ by (11). Hence, we have that $f^n(d) \triangleright f^{n+1}(d)$.

Since $d \triangleright f^n(d)$ by **IH** and $f^n(d) \triangleright f^{n+1}(d)$, therefore, by (8) we have that $d \triangleright f^{n+1}(d)$. This completes the proof, as required.

Lemma

We will use the following lemma to complete our proof of Claim (13).

Lemma: For a fixed $m \in \mathbb{N}$, we have that $f^{m+n} = f^n(f^m(d))$ for all $n \ge 1$.

Proof. Fix $m \in \mathbb{N}$.

Base Case: For n = 1, we have that $f^{m+1}(d) = f(f^m(d))$ by (11).

IH: $f^{m+n} = f^n(f^m(d))$

Show: $f^{m+(n+1)}(d) = f^{n+1}(f^m(d))$

Notice that,

$$f^{m+(n+1)}(d) = f^{(m+n)+1}(d)$$

= $f(f^{m+n}(d))$ By (11)
= $f(f^n(f^m(d))$ By **IH**
= $f^{n+1}(f^m(d))$ By (11)

This completes the proof of the Lemma.

Proof of Claim (13)

Claim (13): $\forall d \in D, \forall i, j \in \mathbb{N}$, if $i \neq j$, then $f^i(d) \neq f^j(d)$.

Proof. Let $d \in D$. Let $i, j \in \mathbb{N}$. Assume $i \neq j$. And assume for the sake of contradiction that $f^i(d) = f^j(d)$.

WLOG, assume i > j. So, $\exists k \ge 1$ such that i = j + k.

And, $f^j(d) \triangleright f^k(f^j(d))$ by Claim (12). But clearly we have that $f^k(f^j(d)) = f^{j+k}(d) = f^i(d)$ by our Lemma. Hence, $f^j(d) \triangleright f^i(d)$.

But we assumed that $f^i(d) = f^j(d)$. Hence, we have that $f^j(d) \triangleright f^j(d)$ which contradicts (9).

Therefore, our assumption was wrong and $f^{i}(d) = f^{j}(d)$, completing the proof, as required.

Extra: Why does Claim (13) mean D is infinite?

Let $d \in D$ be fixed. By Claim (13), for every $i, j \in \mathbb{N}$ such that $i \neq j$, we have that $f^i(d) \neq f^j(d)$.

Hence,
$$d = f^0(d) \neq f^1(d) \neq f^2(d) \neq f^3(d) \neq f^4(d) \neq ...$$

This shows that for every natural number, there is a distinct element of D. Hence, we have at least as many distinct elements of D as there are natural numbers.

In other words, the cardinality of D is greater than or equal to the cardinality of \mathbb{N} . And \mathbb{N} is an infinite set.

Therefore, D is an infinite set.