KIỂM TRA GIỮA KỲ - NHÓM 4

Câu 1.

Dãy số (x_n) xác định bởi $x_1 = \frac{1}{2}$, $x_{n+1} = \frac{1}{2-x_n}$ $(n \ge 1)$.

- a) Chứng minh dãy (x_n) là dãy đơn điệu tăng và bị chặn trên bởi 1.
- b) Tìm $\lim_{n\to+\infty} x_n$.

Câu 2. Cho hàm số

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} x^2 + m & x \ge 0, \\ \frac{1 - \cos x}{x^2} & x < 0, \end{cases}$$

trong đó m là một tham số thực.

- a) Xác định m để f liên tục trên \mathbb{R} .
- b) Với giá trị m vừa tìm, hàm số đã cho có khả vi tại x=0 hay không?

Câu 3. Biết rằng khai triển Maclaurin của hàm f(x) đến cấp 2 với phần dư Lagrange có dạng:

$$f(x) = f(0) + f'(0) + f''(0)\frac{x^2}{2!} + f'''(c)\frac{x^3}{3!}.$$

trong đó c nằm giữa 0 và x. Viết khai triển này cho $f(x) = \cos x$ từ đó suy ra $\cos x \ge 1 - \frac{x^2}{2}$ với mọi $-\pi \le x \le \pi$.

Câu 4. Khảo sát sự hội tụ của tích phân suy rộng $\int_1^{+\infty} \frac{dx}{\sqrt{4x^3+3x+1}}$.