Introducción a los sistemas embebidos

Mariana Prieto Informática II - R2004

Un poco de perspectiva (I)

¿Cómo funciona un circuito electrónico inteligente?

1 cable: 0 ó 1 - 2 instrucciones

2 cables: 00, 01, 10 ó 11 - 4 instrucciones

3 cables: 000, 001, 010, 011

100, 101, 110, 111 - 8 instrucciones

N cables: - 2^N instrucciones

LA CANTIDAD DE CABLES (TAMAÑO DEL BUS) ME INDICA CUÁNTAS INSTRUCCIONES PUEDO PEDIR, O SEA EL TAMAÑO DE LA MEMORIA

Un poco de perspectiva (II)

Las instrucciones una vez grabadas no cambian hasta que cargue un nuevo programa, en cambio las variables (datos) en el programa se van modificando a lo largo del mismo. Para esto necesito OTRO tipo de memoria (RAM)

Un poco de perspectiva (III)

Basados en esta distinción, la memoria de datos y de programa se pueden organizar de distintas maneras. A estos distintos tipos de organización se los conoce como "arquitecturas"

Stick LPCXpresso y LPC 1769

UM10360.pdf

Un sistema embebido es un dispositivo FUNCIONAL (o sea, que cumple con una función), integrado por un microcontrolador y los periféricos necesarios para que el mismo funcione.

Todo dispositivo electrónico (integrado, microcontrolador, sistema embebido) tiene una hoja de datos que nos ayuda a entender como funciona y como interacturar (un manual del usuario)

¿Cómo leemos una hoja de datos?

¿Y cómo configuramos el microcontrolador?

¿Y cómo configuramos el microcontrolador?

Arquitectura Cortex M3

Arquitectura Cortex M3 (II)

Arquitectura Cortex M3 (III)

Entonces... ¿Cuál es la diferencia entre memoria y periférico? MEMORIA PERIFERICO

Resumiendo...

Ejemplo... ¿Cómo accedemos al registro para modificar el valor de un pin del micro?

NXP Semiconductors UM10360

Chapter 9: LPC17xx General Purpose Input/Output (GPIO)

Only pins masked with zeros in the Mask register (see <u>Section 9.5.5</u>) will be correlated to the current content of the Fast GPIO port pin value register.

Table 109. Fast GPIO port Pin value register (FIO0PIN to FIO4PIN-at resses 0x2009 C014 to 0x2009 C094) bit description

Aside from the 32-bit long and word only accessore from in register, every fast GPIO port can also be controlled via several byte and half-word accessible register listed in Table 110, too. Next to providing the same functions as the FIOxPIN register, these additional registers allow easier and faster access to the physical port pins.

Table 110 Fact GPIO port Pin value bute and half-word accessible register description

Generic Register name	Description	Register length (bits) & access	Reset value	PORTn Register Address & Name
FIOxPIN0	Fast GPIO Port x Pin value register 0. Bit 0 in FIOxPIN0 register corresponds to pin Px.0 bit 7 to pin Px.7.	8 (byte) R/W	0x00	FIO0PIN0 - 0x 2009 C014 FIO1PIN0 - 0x 2009 C034 FIO2PIN0 - 0x 2009 C054 FIO3PIN0 - 0x 2009 C074 FIO4PIN0 - 0x 2009 C094
FIOxPIN1	Fast GPIO Port x Pin value register 1. Bit 0 in FIOxPIN1 register corresponds to pin Px.8 bit 7 to pin Px.15.	8 (byte) R/W	0x00	FIO11 - 0x 2009 C0 FIO11 - 0x 2009 C035 FIO2PIN1 - 0x 2009 C055 FIO3PIN1 - 0x 2009 C075 FIO4PIN1 - 0x 2009 C095
FIOxPIN2	Fast GPIO Port x Pin value register 2. Bit 0 in FIOxPIN2 register corresponds to pin Px.16 bit 7 to pin Px.23.	8 (byte) R/W	0x00	FIO0PIN2 - 0x 2009 C016 FIO1PIN2 - 0x 2009 C036 FIO2PIN2 - 0x 2009 C056 FIO3PIN2 - 0x 2009 C076 FIO4PIN2 - 0x 2009 C096

Dirección de comienzo del registro: 0x 2009 C014

Función del registro: Con 0: "BAJO" el estado del pin (0V) Con 1: "SUBO" el estado del pin (3,3V)

Vemos proyecto AccesoRegistros

Repaso Operadores a Nivel de bits