

NORA summer school on multi-modal learning

Responsible Al

Rwiddhi Chakraborty *UiT Machine Learning Group and Visual Intelligence*

Schedule Today

- 09 10: Special Topics I
- 10 11: <u>Special Topics II</u>
- 11 12: Group Project
- 12 13: Lunch
- 13 14: Group Project
- 14 15: Presentations, award, exam info, wrap-up!

In this talk

In this talk

Responsible Generation

Data privacy refers to protected training data

Prevents forgery, theft, and other violations

Models "leaking" training data is a safety risk

Leaking training data is a form of overfitting and memorization

Most modern generative models suffer from this issue

Unclear whether benchmark performances correlate with true understanding

The result

Vast majority of generated images are photographs of real people

Not all images are permissively licensed and raise copyright issues as well

Risks greater for diffusion models trained on more sensitive data (e.g medicine)

Model specific issue

GANs are safer as they are not trained to directly mimic the training data

Risks greater for diffusion models trained on more sensitive data (e.g medicine)

Responsible Generation

Biased Generation

Any attribute can be a minority in the training set

Biased Generation

Hard prompting is ambiguous

Responsible Generation

Image-guided prompt tuning

Responsible Generation

Remove copyrighted/memorized content from T2I models

Prevent model from generating harmful concepts

In this talk

In this talk

Shortcut Learning

Shortcut Learning

Shortcut Learning

There are two modalities in inference – text and vision

Do models leverage both modalities?

There are two modalities in inference – text and vision

Do models leverage both modalities?

(Un)Surprisingly, no!

The language prior

The language prior

The language prior

Issue stems from a misalignment between the train and test distributions

Shortcut Learning in VLMs

Issue stems from a misalignment between the train and test distributions

The model assigns a score

$$\frac{P_{train}(t|i)}{P_{train}(t)^{\alpha}}$$

Shortcut Learning in VLMs

Issue stems from a misalignment between the train and test distributions

The model assigns a score

$$\frac{P_{train}(t|i)}{P_{train}(t)^{\alpha}}$$

Tuning the alpha controls the assumptions on how the train and test are related

In this talk

In this talk

Data

Your model cannot be better than the data it trains on

Data

More data ⇒ Better data

In fact

In fact

"Our projections predict that we will have exhausted the stock of low-quality language data by 2030 to 2050, high-quality language data before 2026, and vision data by 2030 to 2060."

A closer look

Stable Diffusion for instance, is trained on LAION-5B

Bias and Fairness

Calibrating outcomes for a marginalized distribution in a dataset

Uniform distribution across all attributes isn't always "fair"

Bias isn't just social, it is simply a prior belief on the data

Mitigating Dataset Bias with Augmentation

Summary

Summary

