Module 4. LP models for common structures

Including (but not limited to):

- Understanding common problems and their LP models/structures
 - Data Envelopment Analysis (DEA)
 - DMUs, inputs, outputs
 - Efficiency, reference set, etc.
 - Generalized network models
 - Transportation problem
 - Assignment problem
 - Minimum cost flow problem
 - » Connection with transportation problem, assignment problem, etc.
 - » Shortest path problem
 - » Max flow problem
- Knowing how to adapt/modify/extend common structures to fit particular contexts
 - Handle unbalanced networks (total demand is different from total supply capacity)
 - Handle possible unmet demand or excess production
 - Adding capacities to nodes (e.g., maximum flow that can go through some nodes)
 - Adding/adapting flow constraints for different types of capacities (number of units, weight, size, etc.)

Data Envelopment Analysis (DEA) Efficiency Model

- Sets:
- N = set of DMUs
- I = set of inputs
- 0 = set of outputs
- Parameters:
- $y_{oj} = \text{amount of output } o \in O \text{ produced by DMU } j \in N$
- $x_{ij} = \text{amount of input } i \in I \text{ produced by DMU } j \in N$
- p = Individual DMU under study
- Decision variables:
- λ_j = fraction of the *j*th DMU ($j \in N$) used to achieve efficiency (i.e., get to the efficiency frontier)
- ϕ_p = Proportional increase (growth rate) of DMU under study (p)

- Objective function: $\max \phi_p$
- Constraints:

$$\sum_{j \in N} y_{oj} \lambda_j \geq y_{op} \phi_p \qquad , \forall o \in O \text{ Sum of output * weights must be more than the person of comparison}$$

$$\sum_{j \in N} x_{ij} \lambda_j \geq x_{io} \qquad , \forall i \in I \text{ Sum of inputs * weights for others in sample must be less than the person of comparison?}$$

$$\lambda_j \geq 0 \qquad , \forall j \in N$$

$$\phi_p \ unrestricted$$

Transportation Problem

- Sets:
- $S = \text{set of } sources \{1, 2, ..., m\}$
- $D = \text{set of } destinations } \{1, 2, ..., n\}$
- Parameters:
- $a_i = \text{supply of source node } i \in S$
- $b_i = \text{demand of destination node } j \in D$
- c_{ij} = unit cost of flow through arc (i,j),
- where $i \in S$ and $j \in D$
- Decision variables:
- $x_{ij} = \text{flow through arc } (i, j), \text{ where } i \in S$ and $j \in D$

Objective function:

$$\min z = \sum_{i \in S} \sum_{j \in D} c_{ij} x_{ij}$$

Flows meet the supply or demand

Change to <= if unmet demand

Constraints:

$$\sum_{i \in S} x_{ij} = b_j$$

$$, \forall j \in D$$

$$, \forall j \in D$$

$$\sum_{i \in D} x_{ij} = a_i$$

$$, \forall i \in S$$

$$x_{ij} \ge 0$$

$$,\forall i\in S,\forall j\in D$$

Assignment Problem

• Sets:

W: Set of workers {1,2,3,...,n}J: Set of jobs {1,2,3,...,n}

Parameters:

 c_{ij} : cost of assigning worker $i \in W$ to job $j \in I$

• Variables:

 x_{ij} : binary variable that is 1 if worker $i \in W$ is assigned to job $j \in J$, and is 0 otherwise.

• Objective function:

$$\min z = \sum_{i \in W} \sum_{j \in I} c_{ij} x_{ij}$$

Constraints:

$$\sum_{i\in W} x_{ij} = 1 \qquad , \forall j\in J$$
 Each worker must be assigned a job
$$\sum_{j\in J} x_{ij} = 1 \qquad , \forall i\in W$$

$$x_{ij}\in\{0,1\} \qquad , \forall i\in W, \ \forall j\in J$$

Minimum Cost Flow Problem (MCFP)

• Sets:

N: Set of nodes {1,2,3, ..., *n*}

A: Set of arcs

Parameters:

 c_{ij} : unit cost of sending a commodity through arc $(i, j) \in A$

 b_i : demand/supply of commodities in node $i \in N$

 u_{ij} : maximum flow through arc $(i,j) \in A$ l_{ij} : minimum flow through arc $(i,j) \in A$

Variables:

 x_{ij} : flow through arc $(i,j) \in A$

Objective function:

$$\min z = \sum_{(i,j)\in A} c_{ij} x_{ij}$$

• Constraints:

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = b_i \quad , \forall i\in N$$

$$x_{ij} \leq u_{ij} \quad , \forall (i,j)\in A \\ x_{ij} \geq l_{ij} \quad , \forall (i,j)\in A \\ \text{Within Lower bound}$$

$$\forall (i,j)\in A \\ \text{Within Lower bound}$$

supply or demand

Change to <= if unmet demand

Multicommodity Minimum Cost Flow Problem (MMCFP)

• Sets:

N: Set of nodes {1,2,3, ..., *n*}

A: Set of arcs

K: Set of commodities

• Parameters:

 c_{ijk} : unit cost of sending a commodity $k \in K$ through arc $(i, j) \in A$

 b_{ik} : demand/supply of commodity $k \in K$ in node $i \in N$

 u_{ij} : maximum total flow through arc $(i,j) \in A$ l_{ij} : minimum total flow through arc $(i,j) \in A$

Variables:

 x_{ijl} : flow of commodity $l \in L$ through arc $(i, j) \in A$

• Objective function:

$$\min z = \sum_{k \in K} \sum_{(i,j) \in A} c_{ijk} x_{ijk}$$

• Constraints:

$$\sum_{j:(i,j)\in A} x_{ijk} - \sum_{j:(j,i)\in A} x_{jik} = b_{ik}$$

$$\sum_{k \in K} x_{ijk} \le u_{ij}$$

$$\sum_{k \in K} x_{ijk} \ge l_{ij}$$

Flows meet the supply / Demand (change <= for unmet demand)

$$, \forall i \in N, \forall k \in K$$

,
$$\forall (i,j) \in A$$
 Within upper bound

$$, \forall (i,j) \in A \stackrel{\text{Within Lower}}{\text{bound}}$$