PSC 400 SYRACUSE UNIVERSITY

DATA ANALYTICS FOR POLITICAL SCIENCE

LINEAR REGRESSION

COUNTRIES.CSV

variable	description		
country	name of the country		
gdp	country's GDP from 2005 to 2006 (in trillions of local currency units)		
prior_gdp	country's GDP from 1992 to 1993 (in trillions of local currency units)		
light	country's average level of night-time light emissions from 2005 to 2006 (in units on a scale from 0 to 63, where 0 is complete darkness and 63 is extremely bright light)		
prior_light	country's average level of night-time light emissions from 1992 to 1993 (in units on a scale from 0 to 63, where 0 is complete darkness and 63 is extremely bright light)		

EXAMPLE

Table 4.5. 2012 US Presidential Election Data.			
Variable	Description		
state	abbreviated name of the state		
Obama	Obama's vote share (percentage)		
Romney	Romney's vote share (percentage)		
EV	number of Electoral College votes for the state		

- pres12.csv
- How does Obama's vote share in 2012 depend on his 2008 vote share?

EXAMPLE

Table 4.1	2008 U.S	3 Presidentia	I Flection	Data
I abic T. I.		, i i coluciilia	LICCLIOII	Data.

Description	
abbreviated name of the state	
unabbreviated name of the state	
Obama's vote share (percentage)	
McCain's vote share (percentage)	
number of Electoral College votes for the state	

pres08.csv

EXERCISE

- Create a scatterplot of Obama's 2008 vote share (x-axis) and 2012 vote share (y-axis)
- Estimate a linear regression to predict his 2012 vote share using his 2008 vote share
- Add the regression line to your scatterplot
- Interpret the intercept and slope coefficients
- What's the predicted 2012 vote share for a state where he got 50% in 2008?

COMPARE

COMPARE

EXPLANATORY POWER MEASURE

 Need: measure of how well independent variable explains dependent variable in a linear regression

EXPLANATORY POWER MEASURE

- Measure is called R²
- R² tells us how much variation of the dependent variable is explained by the independent variable
 - Between 0 and 1
 - 0: The independent variable explains none of the variation in the dependent variable
 - 1: The independent variable explains *all* of the variation in the dependent variable

EXERCISE

- Quality of Government data
- DV: Corruption perceptions index: ti_cpi
- IV: pick a (numerical) variable
- Scatterplot, linear regression line, R-squared