日本国特許庁 JAPAN PATENT OFFICE

02.08.2004

REC'D 24 SEP 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 7月29日

出 願 番 号 Application Number:

特願2003-203230

[ST. 10/C]:

[JP2003-203230]

出 願 人
Applicant(s):

独立行政法人 科学技術振興機構 独立行政法人物質·材料研究機構

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1 (a) OR (b)

2004年 9月 9日

1) 1

【書類名】

特許願

【整理番号】

B16P03

【提出日】

平成15年 7月29日

【あて先】

特許庁長官殿

【国際特許分類】

B01J 25/00

CO1B 3/32

B22F 9/04

【発明者】

【住所又は居所】 茨城県つくば市並木2-8-132-103

【氏名】

蔡 安邦

【発明者】

【住所又は居所】

茨城県つくば市梅園 2-8-7 B105

【氏名】

亀岡 聡

【発明者】

【住所又は居所】 宮城県仙台市太白区郡山6-5-14-405

【氏名】

寺内 正己

【特許出願人】

【識別番号】

396020800

【氏名又は名称】 科学技術振興事業団

【特許出願人】

【識別番号】

301023238

【氏名又は名称】 独立行政法人物質・材料研究機構

【代理人】

【識別番号】

100108671

【弁理士】

【氏名又は名称】

西 義之

【手数料の表示】

【予納台帳番号】 048541

【納付金額】

10,500円

ページ: 2/E

【その他】

国等以外のすべての持ち分の割合050/100

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【物件名】

持分証明書 1

【提出物件の特記事項】 追って補充する。

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 高活性、高耐熱性メタノール水蒸気改質用触媒とその製造方法 【特許請求の範囲】

【請求項1】式 $Al_{100-y-z}Cu_yTM_z$ (ただし、yは、 $10\sim30$ 原子%、zは、 $5\sim2$ 0原子%であり、TMは、Cu以外の遷移金属の少なくとも1種)で示される準結晶又は関連結晶相のAl合金塊を粉砕することにより得られるAl合金粉末を前駆体としてアルカリ水溶液リーチング処理して得られるAl合金粒子の表面に形成されたCuナノ粒子を含有するAlの酸化物と遷移金属の酸化物からなるネットワーク層を酸化性雰囲気中で加熱して焼結されていないナノCu0粒子を該ネットワーク中に均一に分散した状態としたことを特徴とする高活性、高耐熱性メタノール水蒸気改質用触媒。

【請求項2】TMがFe, Ru, Os, Co, Rh, Irの群から選ばれる少なくとも1種であることを特徴とする請求項1記載の高活性、高耐熱性メタノール水蒸気改質用触媒。

【請求項3】TMがMn, Re, Cr, Mo, W, V, Nb, Taの群から選ばれる少なくとも1種であることを特徴とする請求項1記載の高活性、高耐熱性メタノール水蒸気改質用触媒。

【請求項4】式 $Al_{100-y-z}Cu_yTM_z$ (ただし、yは、 $10\sim30$ 原子%、zは、 $5\sim2$ 0原子%であり、TMは、Cu以外の遷移金属の少なくとも1種)で示される準結晶又は関連結晶相のAl合金塊を粉砕することにより得られるAl合金粉末を前駆体としてアルカリ水溶液リーチング処理することによって粉末表面にCuナノ粒子を含有するAlの酸化物と遷移金属の酸化物からなるネットワーク層を形成した後に、酸化性雰囲気中において、 $300\sim700$ での範囲で加熱して該ネットワーク層を焼成することを特徴とする請求項1ないし3のいずれかに記載の高活性、高耐熱性メタノール水蒸気改質用触媒の製造方法。

【請求項5】アルカリ水溶液が濃度範囲2から8重量%の炭酸ナトリウム(Na₂ CO₃)又は炭酸水素ナトリウム(NaHCO₃)水溶液であることを特徴とする請求項4記載の高活性、高耐熱性メタノール水蒸気改質用触媒の製造方法。

【請求項6】アルカリ水溶液リーチング処理によるAl合金粉末からの溶出量

が0.5~40重量%であることを特徴とする請求項4又は5記載の高活性、高耐熱性メタノール水蒸気改質用触媒の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、メタノールを水蒸気改質して水素を製造するために用いられる高活性、高耐熱性の銅系触媒とその製造方法に関する。

[0002]

【従来の技術】

銅系触媒はメタノール水蒸気改質、メタノール合成、水性ガスシフト反応ならびに有機化合物の水素化や水素化分解反応などに対し広範に用いられている。しかし、一般に銅系触媒は耐熱・耐久性が非常に低いことから使用条件などが限定される場合が多い。

[0003]

Al合金微粒子を銅系触媒の担体として使用するものとして、Al-Cu系合金(Cu; 5~20at%, 希土類元素、Fe, Mn, Pd, Co, V, Ag, Ptから選ばれる少なくとも1種の合金元素;4~18at%)融液を急冷凝固により作製したリボン状素材を酸又はアルカリで溶出処理して粉末状に分解し、その表層が無数のCu系超微粒子と無数の合金元素の超微粒子の混在相であるメタノールの水蒸気改質触媒の製造方法が知られている(特許文献1)。

[0004]

特許文献1では、Al合金の金属組織としては、Al過飽和固溶体単相組織、準結晶単相組織、微細Al結晶相と準結晶相との混相組織、微細Al結晶相と微細Al系金属間化合物相との混相組織、非晶質単相組織、非晶質相と微細Al結晶相との混相組織、非晶質相と微細Al結晶相と微細Al系金属間化合物相との混相組織などが挙げられている。

[0005]

また、Al-Pd(20~30at%)合金、Al-Cu(18~23at%)-Fe(13~15at%)合金、Al-Cu(15~20at%)-Co(15~20at%)合金、Al-Ni(10~15at%)-Co(15~20at%)合金、Al-Pd(

15~30at%)-遷移金属(17at%以下)合金、Al-Pd(15~30at%)-遷移金属(17at%以下)-B(10at%以下)合金、Al-V(13~17at%)-Cu(15~20at%)合金などの準結晶Al合金超 微粒子がメタノール分解反応において高い活性を有することが知られている(特許文献 2)。

[0006]

さらに、本発明者らは、AlとCu及びFe、Ru、Osから選ばれた少なくとも1種の 金属原子を成分とする準結晶からなるAl合金インゴットを粉砕し、得られた合金 粒子を水酸化ナトリウム水溶液でエッチングすることを特徴とするメタノール水 蒸気改質用触媒の製造方法を開発した(特許文献3、非特許文献1,2,3)。

[0007]

【非特許文献1】

Applied catalysis A:General 214(2001)237-241

【非特許文献2】

Journal of Alloys and Compounds 342 (2002)451-454

【非特許文献3】

Journal of Alloys and Compounds 342 (2002)473-476

【特許文献1】

特開平7-265704(特許第3382343)号公報

【特許文献2】

特開平7-126702号公報

【特許文献3】

特開2001-276625号公報

[0008]

【発明が解決しようとする課題】

従来のいわゆる銅系触媒は、いずれも、銅の微粒子を酸化物や金属の表面に担持させ、触媒反応の活性サイトを担わせている。これらの触媒は高温(300℃)になると、銅の微粒子の焼結により粗大化し、銅の表面積が極端に減少することにより、活性が低下する。

[0009]

特許文献 1 (特開平7-265704号公報)記載の発明の触媒は、アルカリ水溶液として、NaOHを用いる場合には、NaOHの濃度は20~30重量%で浸漬時間は1~30分間でリボン状素材を分解したものであり、高温下における焼結による粗大化を希土類元素、遷移金属、貴金属等の超微粒子を均一に分散させることによって防いで耐熱性を高めているが、耐熱性は、いずれも300℃で頭打ちになっている。

[0010]

特許文献 2 (特開平7-126702号公報)記載の発明の触媒は、液体急冷法という作製法で、コストが高くて、材料の歩留まりが悪く、こうして得た相は不安定で高温で変化するので300℃程度までは活性があるが耐熱性はあまりよくない。また、この触媒はHC1水溶液でAlを溶出しているが多くの遷移金属も溶出してしまう。

特許文献3 (特開2001-276625号公報) 記載の発明の触媒は、活性が高いものの、320℃以上になると活性が頭打ちになり、耐熱性は十分ではなかった。

[0011]

その後、本発明者らは、準結晶Al合金を前駆体とした粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子からなる高活性で耐熱性、耐久性の優れた触媒及びその製造方法を開発し、特許出願した(特願2003-60574)。

[0012]

また、準結晶Al合金粒子の表面に形成された超微粒子金属が他の金属元素と化合物触媒超微粒子を形成していることを特徴とする準結晶Al合金粒子を担体とする化合物触媒超微粒子を開発し、特許出願した(特願2003-88648)。

[0013]

多くの触媒反応は高温で起きるので、耐熱、耐久性が求められている。例えば、耐熱性が要求される燃料電池の触媒として使用される場合、特に、耐熱、耐久性が問題になっている。銅系触媒以外のものは、殆ど貴金属から構成され、コストの面では実用的ではない。

[0014]

本発明の目的は、これまでに開発された銅系触媒よりもさらに耐熱性、耐久性に優れた銅系触媒及び該触媒をできるだけ簡単なプロセスで安価に製造する方法

を提供することにある。

[0015]

【課題を解決するための手段】

本発明者等は、先に、AlCuFeやAlCuCo等の準結晶Al合金を粉砕してリーチング処理することにより得られたCu粒子と遷移金属粒子との複合微粒子からなる触媒がメタノールの水蒸気改質反応において高活性、高耐熱、耐久性を有すること、また、該触媒は該準結晶Al合金を粉砕及びアルカリ性溶液によりリーチング処理することにより容易に製造できることを見出した。

[0016]

Cuを含有する準結晶AI合金粒子にリーチング処理を施すことにより、粒子表面にできていたアルミナの薄膜を取り除くとともに、アルミニウムを溶出することにより表面に銅の微細な粒子を析出させることができる。メタノールの水蒸気改質反応において活性を表す指標であるグラム当たりのH2生成量は、Na2CO3水溶液を用いてリーチング処理して得られたAICuFe準結晶触媒では、360℃において最大で400ml/minにも達している。しかも、360℃まで温度上昇と共に水素発生量が増え続けており、従来のCu系触媒が有しない高い耐熱性を有している。

[0017]

水蒸気改質反応前後の試料の粉末X線回折では、銅又は酸化銅による明瞭な回 折ピークが認められず、Cu粒子のシンタリングが起きていなかったことを示唆し ている。詳細な調査により、この触媒は、図1のように構成されることが明らか になった。リーチング処理に際してNa₂CO₃水溶液を用いた場合、Al合金準結晶1 の表面がリーチング処理されると同時に表面にネットワーク状の酸化物2が生成 した。

[0018]

この棉飴状のネットワークはA1の酸化物とFeやCoの酸化物から構成され、極めて高い表面積を有しており、その中に平均粒径が約5nmのCu粒子3が散在している。結果として、Cuナノ粒子は高分散、高密度に分布していて高い活性を示す。また、ネットワーク状酸化物2はCu粒子3のシンタリングを防止し、高い耐熱性をもたらした。

[0019]

しかし、このネットワーク状酸化物は必ずしも安定なものではなく、高温で水蒸気環境下において分解又は転移する可能性があることが分かった。本発明者らは、準結晶A1合金を前駆体として用いて上記のように作製されたCu系触媒をさらに酸化性雰囲気中で焼成を行なうことにより、ネットワーク状酸化物をより安定化し、高活性、高耐熱性のCu系触媒が得られることを見出した。

[0020]

すなわち、本発明は、(1)式 $Al_{100-y-z}Cu_yTM_z$ (ただし、yは、 $10\sim30$ 原子%、zは、 $5\sim20$ 原子%であり、TMは、Cu以外の遷移金属の少なくとも1種)で示される準結晶又は関連結晶相のAl合金塊を粉砕することにより得られるAl合金粉末を前駆体としてアルカリ水溶液リーチング処理して得られるAl合金粒子の表面に形成されたCuナノ粒子を含有するAlの酸化物と遷移金属の酸化物からなるネットワーク層を酸化性雰囲気中で加熱して焼結されていないナノCu0粒子を該ネットワーク中に均一に分散した状態としたことを特徴とする高活性、高耐熱性メタノール水蒸気改質用触媒、である。

また、本発明は、(2)TMがFe, Ru, Os, Co, Rh, Irの群から選ばれる少なくとも1種であることを特徴とする上記(1)の高活性、高耐熱性メタノール水蒸気改質用触媒、である。

また、本発明は、(3) TMがMn, Re, Cr, Mo, W, V, Nb, Taの群から選ばれる少なくとも1種であることを特徴とする上記(1)の高活性、高耐熱性メタノール水蒸気改質用触媒、である。

[0021]

また、本発明は、(4)式 $Al_{100-y-z}Cu_yTM_z$ (ただし、yは、 $10\sim30$ 原子%、zは、 $5\sim20$ 原子%であり、TMは、Cu以外の遷移金属の少なくとも1種)で示される準結晶又は関連結晶相のAl合金塊を粉砕することにより得られるAl合金粉末を前駆体としてアルカリ水溶液リーチング処理することによって粉末表面にCuナノ粒子を含有するAlの酸化物と遷移金属の酸化物からなるネットワーク層を形成した後に、酸化性雰囲気中において、 $300\sim700$ での範囲で加熱して該ネットワーク層を焼成することを特徴とする上記(1)ないし(3)のいずれかの高活性、高耐

熱性メタノール水蒸気改質用触媒の製造方法、である。

[0022]

また、本発明は、(5)アルカリ水溶液が濃度範囲2から8重量%の炭酸ナトリウム (Na_2CO_3) 又は炭酸水素ナトリウム $(NaHCO_3)$ 水溶液であることを特徴とする上記(4)の高活性、高耐熱性メタノール水蒸気改質用触媒の製造方法、である。また、本発明は、(6)アルカリ水溶液リーチング処理によるA1合金粉末からの溶出量が $0.5\sim40$ 重量%であることを特徴とする上記(4)又は(5)の高活性、高耐熱性メタノール水蒸気改質用触媒の製造方法、である。

[0023]

通常、メタノールの水蒸気改質において、温度が高くなると分子が活発になり、活性も高くなり水素の発生量も多くなるが、さらに高温になり時間が経つと焼結により触媒活性は一般的には、劣化する。しかし、本発明の触媒の触媒活性は400℃以上なっても、直線的に活性が高くなる特長がある。

[0024]

【作用】

図2に、本発明の触媒粒子の粉末X線回折パターンを示す。また、図3に、本発明の触媒粒子の電子顕微鏡観察像を示す。図3から数ナノメートルの粒子が多く存在し、焼結が起きていないことがわかる。本発明の方法により得られる銅系触媒がメタノールの水蒸気改質触媒として耐熱性が著しく向上する理由は明確ではないが、リーチング処理によりA1合金粒子の表面に生成したネットワーク状の酸化物(擬似A1203)の安定化が酸化性雰囲気での焼成によって進むこと、リーチング処理後、遷移金属元素の酸化物又はA1203内に残存したCu原子が酸化処理によって表面に引き出されてCu0として現れる、つまり、酸化処理により新たにナノCu0粒子が形成されるために、活性が向上するものと考えられる。このCu0は比較的低温においても簡単に還元されCuに戻る。

[0025]

焼成処理における酸化の効果を確認するために、一旦酸化性雰囲気中で焼成した触媒を水素雰囲気中にて熱処理を行った。結果的に水素雰囲気中で熱処理した触媒の活性は空気中で熱処理した触媒の30%までに低下した。この活性の程度は

リーチング処理したままのものよりもかなり低くなった。また、この触媒を再度 空気中で焼成を行なうと、触媒活性がほぼ回復する。つまり、可逆的な反応が起 きている。この結果から、焼成による活性の増大は酸化に由来することが明らか である。同様な結果はω-AlCuFe及びAlCuCo準結晶においても見られる。

[0026]

本発明の触媒は、アルミニウムと銅を主成分とするAl合金を前駆体とする。こ のAl合金の第一のグループは、AlCuTM(TM=Fe, Ru, Os, Co, Rh, Ir)で示される準結晶 及び関連結晶相合金である。第二のグループは、A1CuTM(TM=Mn, Re, Cr, Mo, W, V, Nb ,Ta)で示される準結晶の関連結晶相合金である。これらのAl合金の組成は原子% で、銅が10~30%、TM元素が5~20%が好ましい。アルミニウムは、50~85%、 より好ましくは60~80%である。

[0027]

A1合金の銅含有量が10原子%より少ないと、触媒を担うCu粒子が少ないので、 高活性が期待できない。また、30原子%より多いと、Cuによるシンタリングが起 き易くなるので好ましくない。

[0028]

第一のグループのTM元素は、準結晶又は準結晶の関連結晶相を形成する元素で あり、Al合金粒子の表面に酸化物粒子を形成する。関連結晶相とは、準結晶単相 ではなく、準結晶相以外に近似結晶やその他の結晶相を含む混相組織を意味する 。例えば、準結晶の組成に近いAl70Cu20Fe10という結晶化合物(通常ω相と呼ば れている)のようなAl-Cu系金属間化合物においても触媒活性が大きく向上する

[0029]

第二のグループのA 1 合金のTM元素は、準結晶の親類である近似結晶のような 複雑な3元化合物が形成され、準結晶と同じように脆い性質を示す。また、第二 のグループのA1合金は液体急冷を施すと準結晶になる。TM元素は、Cuと殆ど非 固溶系の合金となっている。

[0030]

非固溶とは、固体状態では元素同士が溶け合わないことである。これは、上記

の合金触媒に重要な役割を果たすと考えられる。つまり、アルカリ水溶液によるリーチング処理に際して、Alだけが溶け出し、残りのCuとTM元素は非固溶のためにそれぞれのナノ粒子が形成されることになる。また、非固溶のために、Cuナノ粒子が遷移金属元素ナノ粒子に囲まれた時、Cu原子が遷移金属元素ナノ粒子中を拡散することはできない。このような効果は、上記の合金系が高温においても高い触媒活性を示す一要因である。

[0031]

本発明において、触媒製造の原料に用いられるるAl合金前駆体のうち、特に準結晶Al合金は、準結晶自身の脆さで表面積の大きな微細な1次粒子を簡単に得ることができる。準結晶Al合金は、周期性を持たず、結晶にはない10回対称を持つ、正10角形(2次元)準結晶の構造を有する。これらの組成の準結晶は安定相として知られているので、融点が1020℃付近まで達し、融点まで準結晶構造を維持するものである。それゆえ、800℃程度の高温で熱処理すれば準結晶相の成長により三つの元素から構成される"準結晶"の単相性がよいものが得られる。

[0032]

準結晶相は周期性を持たず、特定なすべり面がないので、転位の運動による塑性変形は起りにくく、脆いという性質をもっている。触媒として用いる場合、充分な活性を得るには高表面積であることが必要であるため、準結晶は粉砕加工性に優れ、容易にミクロンオーダーまで粉砕され、高表面積を達成することができることが必要である。

[0033]

本発明の耐熱銅系触媒の前駆体となるAl合金は、当該組成比の純金属を通常の溶解鋳造法、例えばアーク溶解などにより溶解し、鋳造することによりインゴットとして得られる。さらに、このインゴットは真空中や不活性雰囲気中で酸化を防ぎながら700~850℃程度の温度範囲で熱処理を行い、結晶相の均一化を図ることができる。

[0034]

本発明の触媒製造方法では、まず、得られたAI合金のインゴットを触媒として 表面積を増加させるために粉砕する。粉砕は例えば、インゴットを砕いた合金を 瑪瑙乳鉢に装入し、遊星型ボールミルにて行なう。その際に得られる粒子の粒径の分布範囲は約 1μ m \sim 100 μ m、好ましくは 5μ m \sim 50 μ mである。

[0035]

本発明の複合微粒子触媒は、こうして得られた粒子にリーチング処理を施すことにより製造される。リーチング処理に使う処理液は塩基性でアルミニウムと反応するアルカリ水溶液を用いるが、一般的に使用されるNaOH水溶液でリーチを行なうと溶出作用が強すぎてしまい、Cuナノ粒子と遷移金属元素のナノ粒子が均一に分散した触媒層の形成が困難となるので、特に、中・弱塩基性の炭酸ナトリウム(Na2CO3)又は炭酸水素ナトリウム(NaHCO3)水溶液を用いることが好ましい。アルカリ水溶液の濃度が高いと合金粒子のかなりの量のAIが溶出してしまい、粒子表面に固着した微粒子の割合が圧倒的に多くなり好ましくない。これらのアルカリ水溶液のアルカリ化合物の濃度範囲は2~8重量%程度が好ましい。2重量%未満ではリーチが充分に進行せず、また、8重量%を超えると反応が早くなりリーチの制御が困難であり、好ましくない。

[0036]

これらの低濃度のアルカリ水溶液を使用してリーチング処理することによりAl合金粒子表面に形成されていたアルミナの薄膜を取り除くとともに、合金粒子の表面下のかなり薄い層からアルミニウムを溶出する。リーチング処理温度は0~90℃の範囲であればよく、高温ほど溶出速度は速くなるが、特に加熱せず、室温近傍で行なうことが好ましい。低濃度のアルカリ水溶液によるリーチング処理によるAl溶出量は約0.5~40重量%程度が好ましい。0.5重量%未満ではAlの溶出が不十分で表面積が小さくなり、また、40重量%を超えると準結晶構造が壊れて触媒の安定性が低下するので、好ましくない。より好ましくは、3~25重量%である。 【0037】

このリーチング処理により粒子表面に銅の微細な粒子(Cuナノ粒子)を析出させることができる。リーチング処理を行なうことにより、Al合金粒子の表面にCuナノ粒子と遷移金属元素のナノ粒子が均一に分散して固着した複合粒子が得られ

る。得られた複合微粒子の粉末を濾過し、よく洗浄した後、乾燥する。

[0038]

得られた複合微粒子の比表面積は約5~40m²/g程度である。基本的にリーチング処理による1次粒子のサイズの変化は殆どないので、表面積の増大はAl合金粒子の表面に生成されたネットワーク状の微細構造に由来する。上記のとおり、低濃度のアルカリ水溶液によるリーチング処理によれば、Al合金粒子の表面から約200nmの深さの領域だけが溶け出して、Al合金粒子のコアのそのままの存在が触媒の安定性に重要な役割を果たす。したがって、この程度の表面積にも関わらず、高い触媒活性を示すことになる。

[0039]

触媒活性を担うのは、Al合金粒子表面に析出したナノ金属粒子であり、Al合金粒子は担体として機能する。AlCuFe準結晶では、FeはFeあるいはFe酸化物のナノ粒子として存在する。Fe又はその酸化物もCuに対して固溶体として溶け込まない性質をもっているので、Cu原子の拡散によるシタリングを防ぐ効果がある。

[0040]

上記のように作製された準結晶A1合金を用いたCu系触媒をさらに空気中などの酸化性雰囲気で焼成を行なうことにより、ネットワーク状酸化物をより安定化し、高活性、高耐熱性のCu系触媒が得られる。この際の加熱条件は、温度300~700℃、加熱時間4~24時間が好ましい。加熱温度を700℃より高くしたり、24時間を超えて加熱したりしても効果はさほど変わらない。加熱時間が300℃未満か、加熱時間が4時間未満では十分な効果が得られない。得られる触媒はナノスケールのA1の酸化物からなるウール状組織及びその中に高分散しているCuナノ粒子から構成されている。

[0041]

本発明の複合微粒子は、必要に応じて成形して触媒として使用する。複合微粒子は担体に担持して使用することもできる。本発明の触媒を用いる反応装置の形式は特に制限されず、固定床流通式反応装置や流動床反応装置に用いられ、気相反応のみならず液相反応にも使用することができる。

[0042]

【実施例】

次に、実施例により本発明をさらに具体的に説明する。

実施例1及び比較例1

Al-Cu-Fe準結晶/5wt %Na₂CO₃リーチング処理

[0043]

得られた粒子を5wt%のNa₂CO₃(炭酸ナトリウム)水溶液で24時間リーチング処理した。これを濾過した後、よく水洗し、乾燥した。溶出量は22.6重量%であった。これにより、準結晶Al合金粒子の表面にCuナノ粒子が均一に分散して固着した複合粒子が得られた。比表面積は約 $25m^2/g$ であった。この複合粒子をアルミナるつぼに入れて電気炉内に設置し、10Cの昇温速度で600Cまで温度を上げ、空気中600Cで24時間保持して、徐冷することにより焼成した。得られた粒子の比表面積は $17m^2/g$ であった。粉末X線の結果からCu(CuO)の粒径を見積もって約 $10\sim20$ nmであった。

[0044]

触媒活性試験

上記の方法で得られた触媒0.6 gを秤量し、固定床流通式反応装置で常圧、反応温度240~400℃に設定し、水/メタノールのモル比1.5の混合液を流通させた。 発生ガスをガスクロマトグラフィーにより分析し、水素発生速度により触媒の活性評価をした。

[0045]

図4に、得られた複合粒子の触媒活性試験結果の水素生成速度(黒四角印)を リーチング処理したままの比較例1(黒丸印)と対比して示す。空気中の焼成に より240~360℃の全温度域に亘って触媒の活性が大きく改善され、水素の生成速 度が40%以上増加している。比較的に高い温度の360℃においても、水素生成速 度が増えていることは高い耐熱性を実証しているといえる。

[0046]

ページ: 13/

実施例2及び比較例2

Al-Cu-Co準結晶/5wt%Na2CO3リーチング処理

A1:4.514g、Cu:2.453g、Co:3.033gを秤量し、水冷した銅ハース内に入れ、アルゴン雰囲気下でアーク溶解し、そのまま銅ハース内で冷却して $A1_{65}$ Cu $_{15}$ Co $_{20}$ のインゴット10gを得た。これをアルミナの鉢にて1mm以下の粉末に粉砕して石英管に真空封入し、800Cで24時間熱処理した。熱処理後に石英管から取り出し、さらに、遊星ボールミルで粉砕した。得られた粒子の粒径分布範囲は 1μ m ~ 100 μ mであった。

[0047]

得られたA1-Cu-Co準結晶合金粒子を5wt%の Na_2CO_3 水溶液で4時間リーチング処理した。これを濾過した後、よく水洗し、乾燥した。溶出量は3.6重量%であった。これにより、準結晶A1合金粒子の表面にCuナノ粒子とCoナノ粒子が均一に分散して固着した複合粒子が得られた。比表面積は約 $30m^2/g$ であった。

[0048]

この複合粒子をアルミナるつぼに入れて電気炉内に設置し、10^{\circ}の昇温速度で600^{\circ}Cまで温度を上げ、空気中600^{\circ}Cで24時間保持して、徐冷することにより焼成した。得られた粒子の比表面積は15m 2 /gであった。粉末X線の結果からCu (Cu0)の粒径を見積もって約10~20nmであった。

[0049]

実施例1と同様に触媒活性試験を行った。図5に、得られた複合粒子の触媒活性試験結果の水素生成速度(黒四角印)をリーチング処理したままの比較例2(黒丸印)と対比して示す。空気中の焼成により240~360℃の全温度域に亘って触媒の活性が実施例1のA1-Cu-Fe準結晶合金の場合よりもさらに大きく改善され、水素の生成速度が40%以上増加した。比較的に高い温度の360℃においても、水素生成速度が増えていることは高い耐熱性を実証しているといえる。

[0050]

実施例3及び比較例3

実施例1及び比較例1で用いた5wt%Na₂CO₃水溶液を同濃度のNaOH水溶液に代えてリーチング処理溶液とした以外は実施例1及び比較例1と同じ条件で処理し

た。

実施例 4 及び比較例 4

A l 合金粒子を Al_{63} Cu $_{25}$ Fe $_{12}$ 準結晶に代えて Al_{70} Cu $_{20}$ Fe $_{10}(\omega)$ 相合金粒子とした以外は実施例 3 及び比較例 3 と同じ条件で処理した。

[0051]

図6に、実施例3及び4で得られた複合粒子の触媒活性試験結果の水素生成速度(実施例3;黒四角印、実施例4;白丸印)をリーチング処理したままのもの(比較例3;黒丸印、比較例4;黒三角印)と対比して示す。空気中の焼成により240~360℃の全温度域に亘って触媒の活性が大きく改善され、水素の生成速度が40%以上増加している。比較的に高い温度の360℃においても、水素生成速度が増えていることは高い耐熱性を実証しているといえる

[0052]

【発明の効果】

以上の説明から明らかなように、準結晶又は関連結晶相のA1合金塊を粉砕することにより得られるA1合金粉末を前駆体としてアルカリ水溶液リーチング処理して得られるA1合金粒子の表面にCuナノ粒子と遷移金属のナノ粒子が均一に分散して固着した複合粒子からなるCu系触媒を、さらに酸化性雰囲気で焼成処理した触媒は焼成しないものに比べて2倍以上の高活性であるとともに、耐熱性に優れ、耐久性を有する。また、本発明の触媒は、通常の溶解鋳造法により製造したインゴットの粉砕及びリーチング処理及び酸化性雰囲気中での熱処理により容易に製造されるので、簡単なプロセスで安価に製造できる。

【図面の簡単な説明】

【図1】

図1は、本発明の触媒の表面構造を示す概念図である。

図2

図2は、本発明の触媒粒子の粉末X線回折パターンを示すグラフである。

【図3】

図3は、本発明の触媒粒子の電子顕微鏡観察像を示す図面代用写真である。

図4】

図4は、実施例1及び比較例1の触媒活性試験の結果を示すグラフである。

【図5】

図5は、実施例2及び比較例2の触媒活性試験の結果を示すグラフである。

【図6】

図6は、実施例3、4及び比較例3、4の触媒活性試験の結果を示すグラフである。

ページ: 16/E

図面

【図1】

2 ネットワーク状の酸化物

3 Cu粒子

QC

1 Al合金準結晶

【図2】

2/

【図4】

【図6】

【書類名】 要約書

【要約】

【課題】 高活性で耐熱性、耐久性に優れた銅系触媒及び該触媒をできるだけ簡単なプロセスで安価に製造する方法を提供すること。

【解決手段】式 $Al_{100-y-z}$ Cuy TM_z (ただし、yは、 $10\sim30$ 原子%、zは、 $5\sim20$ 原子%であり、TMは、Cu以外の遷移金属の少なくとも1種)で示される準結晶又は関連結晶相のAl合金塊を粉砕することにより得られるAl合金粉末を前駆体としてアルカリ水溶液リーチング処理して得られるAl合金粒子の表面に形成されたCuナノ粒子を含有するAlの酸化物と遷移金属の酸化物からなるネットワーク層を酸化性雰囲気中で加熱して焼結されていないナノCu0粒子を該ネットワーク中に均一に分散した状態としたことを特徴とする高活性、高耐熱性メタノール水蒸気改質用触媒。

【選択図】 図1

ページ: 1/E

職権訂正履歴 (職権訂正)

特許出願の番号

特願2003-203230

受付番号

5 0 3 0 1 2 5 5 6 0 4

書類名

特許願

担当官

兼崎 貞雄

6996

作成日

平成15年 8月 1日

<訂正内容1>

訂正ドキュメント

明細書

訂正原因

職権による訂正

訂正メモ

項目名の脱落があったため

訂正前内容

【発明の名称】 高活性、高耐熱性メタノール水蒸気改質用触媒とその製造方法 【請求項1】式・・・

訂正後内容

【発明の名称】 高活性、高耐熱性メタノール水蒸気改質用触媒とその製造方法 【特許請求の範囲】

【請求項1】式・・・

ページ: 1/E

【書類名】

【提出日】

【あて先】 【事件の表示】

事件の衣小』

【出願番号】

【承継人】

【識別番号】

【住所又は居所】 【氏名又は名称】

【代表者】 【連絡先】

【提出物件の目録】

【物件名】

【援用の表示】

【物件名】

【援用の表示】

出願人名義変更届 (一般承継)

平成15年10月31日 特許庁長官 殿

特願2003-203230

503360115

埼玉県川口市本町四丁目1番8号 独立行政法人科学技術振興機構

沖村 憲樹

〒102-8666 東京都千代田区四番町5-3 独立行政法 人科学技術振興機構 知的財産戦略室 佐々木吉正 TEL 0 3-5214-8486 FAX 03-5214-8417

権利の承継を証明する書面 1

平成15年10月31日付提出の特第許3469156号にかかる一般承継による移転登録申請書に添付のものを援用する。

登記簿謄本 1

平成15年10月31日付提出の特第許3469156号にかかる一般承継による移転登録申請書に添付のものを援用する。

特願2003-203230

出願人履歴情報

識別番号

[396020800]

1. 変更年月日 1998年 2月24日 [変更理由]

名称変更

住 所

埼玉県川口市本町4丁目1番8号

氏 名 科学技術振興事業団

出願人履歴情報

識別番号

[301023238]

1. 変更年月日

2001年 4月 2日

[変更理由]

新規登録

住 所 名

茨城県つくば市千現一丁目2番1号 独立行政法人物質・材料研究機構 特願2003-203230

出願人履歴情報

識別番号

[503360115]

1. 変更年月日 [変更理由]

住所氏名

2003年10月 1日

新規登録

埼玉県川口市本町4丁目1番8号 独立行政法人 科学技術振興機構