Российский университет транспорта (МИИТ)

Институт транспортной техники и систем управления

Кафедра «Управление и защита информации»

Отчет

по практическому заданию № 1

по дисциплине «Модели безопасности компьютерных систем»

Выполнил:

Студент группы ТКИ-342

Дроздов А.Д.

Проверил:

Профессор кафедры УиЗи, д.т.н.

Алексеев В.М.

Оглавление

Исходные данные	. 3
Цели практической работы	. 3
1. Практическая часть	. 4
1.1. Разработка дискреционной модели	. 4
1.1.1. Нумерация объектов локальной сети	. 4
1.1.3. Составление дискреционной схемы	. 5
1.1.4. Таблица связей между объектами	. 6
1.1.5. Декартовое произведение дискреционной модели	. 7
1.2. Порты на объектах локальной сети	. 7
1.3 IP-алреса и протокол покальной сети	8

Исходные данные

Таблица 1 Протокол по номеру вариант

Номер варианта	Протокол
4	FTP

Цели практической работы

Для приведенной схемы локальной сети (рисунок 1) необходимо разработать: дискреционную модель (составив таблицу связей между объектами локальной сети, написать декартовое произведение), порты на объектах локальной сети, ір-адреса из пула для объектов персональных компьютеров в соответствии с номером по списку и модель соединений с использованием портов.

Рисунок 1 – Схема локальной сети

1. Практическая часть

1.1. Разработка дискреционной модели

1.1.1. Нумерация объектов локальной сети

Разработка дискреционной модели начинается с нумерования каждого объекта локальной сети.

Рисунок 2 – Локальная сеть с нумерацией объектов

Далее для упрощения исходной схемы разработана дискреционная модель со следующими обозначениями.

Таблица 2 Обозначения компонентов схемы сети

Наименование	Обозначение
Интернет	И
Объект локальной сети	\bigotimes o_i

Индексация объектов (O_i) в дискреционной схеме соответствует указанной ранее нумерации (рисунок 2).

1.1.3. Составление дискреционной схемы

Рисунок 3 – Дискреционная схема локальной сети

1.1.4. Таблица связей между объектами

Связь между двумя разными объектами обозначается следующим образом.

$$O_i \times O_j; \ i \neq j; i, j = 1, \bar{n} \tag{1}$$

Причем,

$$O_1 \times O_2 \equiv O_2 \times O_1 \tag{2}$$

и в таблице остается только одно выражение, потому что граф неориентированный.

Таблица 3 Связи объектов без учета портов

	O_1	O_2	O_3	O_4	05	06	07	08	09	010	011	012
O_1	×	V	×	×	×	V	×	×	×	×	×	×
O_2		×	>	×	×	×	×	×	×	×	×	×
O_3			×	V	V	×	×	×	×	×	×	×
O_4				×	×	×	×	×	×	×	×	×
05					×	×	×	×	×	×	×	×
06						×	V	×	×	V	×	×
07							×	V	V	×	×	×
08								×	×	×	×	×
09									×	×	×	×
010										×	V	V
011											×	×
012												×

1.1.5. Декартовое произведение дискреционной модели

В дискреционной модели декартовое произведение составляется с помощью таблицы связи объектов.

$$\begin{aligned}
O_i \times O_j &= O_1 \times O_2 + O_1 \times O_6 + O_2 \times O_3 + \\
+ O_3 \times O_4 + O_3 \times O_5 + O_6 \times O_7 + O_6 \times O_{10} + \\
O_7 \times O_8 + O_7 \times O_9 + O_{10} \times O_{11} + O_{10} \times O_{12}
\end{aligned} (3)$$

Где связь между объектами обозначается с помощью знака «х».

1.2. Порты на объектах локальной сети

В схеме с пронумерованными объектами указываются порты (e_i) , по которым объекты соединяются друг с другом.

Рисунок 4 – Схема локальной сети с нумерацией и портами

1.3. ІР-адреса и протокол локальной сети

Рисунок 4 — Схема локальной сети с нумерацией, портами, протоколами и IP-адресами