```
In [3]: import numpy as np
        import pandas as pd
        from sklearn.preprocessing import MinMaxScaler
        from keras.models import Sequential
        from keras.layers import LSTM, Dropout, Dense
        from sklearn.metrics import mean absolute error
        # Load and preprocess data
        data = pd.read csv('Dispense.csv')
        scaler = MinMaxScaler(feature range=(0, 1))
        data scaled = scaler.fit transform(data['Dispense'].values.reshape(-1, 1))
        # Prepare sequences
        def create_sequences(data, seq_length):
            X = []
            y = []
            for i in range(len(data) - seq length):
                X.append(data[i:i + seq length])
                y.append(data[i + seq_length])
            return np.array(X), np.array(y)
        seq length = 30
        X, y = create sequences(data scaled, seq length)
        # Split data
        split = int(0.8 * len(X))
        X train, X test = X[:split], X[split:]
        y train, y test = y[:split], y[split:]
        # Build LSTM model
        model = Sequential()
        model.add(LSTM(units=50, return sequences=True, input shape=(seq length, 1)))
        model.add(Dropout(0.2))
        model.add(LSTM(units=50, return sequences=False))
        model.add(Dropout(0.2))
        model.add(Dense(units=1))
        model.compile(optimizer='adam', loss='mean absolute error')
        # Train model
```

Both

```
model.fit(X train, y train, epochs=50, batch size=32, validation split=0.1)
# Predict and evaluate
predictions = model.predict(X test)
predictions = scaler.inverse transform(predictions)
y test inv = scaler.inverse transform(y test)
mae = mean absolute error(y test inv, predictions)
print(f'Mean Absolute Error: {mae}')
# Forecast next 7 days
last sequence = data scaled[-seq length:]
forecast = []
for in range(7):
    next pred = model.predict(last sequence.reshape(1, seq length, 1))
    forecast.append(next pred[0, 0])
    last sequence = np.append(last sequence[1:], next pred)
forecast = scaler.inverse transform(np.array(forecast).reshape(-1, 1))
print('Next 7 days forecast:', forecast.flatten())
```

D:\New folder\Lib\site-packages\keras\src\layers\rnn\rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead. super(). init (**kwargs)

Epoch 1/50	
•	• 15s 20ms/step - loss: 0.1154 - val_loss: 0.1050
Epoch 2/50	_
328/328	• 5s 16ms/step - loss: 0.1109 - val_loss: 0.1056
Epoch 3/50	<u>-</u>
328/328 ——————	• 10s 16ms/step - loss: 0.1100 - val_loss: 0.1049
Epoch 4/50	
328/328 ——————	• 5s 16ms/step - loss: 0.1089 - val_loss: 0.1031
Epoch 5/50	
328/328	• 6s 18ms/step - loss: 0.1088 - val_loss: 0.1033
Epoch 6/50	
328/328	• 6s 19ms/step - loss: 0.1091 - val_loss: 0.1032
Epoch 7/50	
328/328	• 6s 19ms/step - loss: 0.1071 - val_loss: 0.1033
Epoch 8/50	
	• 6s 19ms/step - loss: 0.1071 - val_loss: 0.1027
Epoch 9/50	
	• 5s 17ms/step - loss: 0.1090 - val_loss: 0.1031
Epoch 10/50	
	• 5s 15ms/step - loss: 0.1066 - val_loss: 0.1025
Epoch 11/50	
	• 6s 17ms/step - loss: 0.1085 - val_loss: 0.1026
Epoch 12/50	
	• 6s 17ms/step - loss: 0.1056 - val_loss: 0.1036
Epoch 13/50	
	• 6s 17ms/step - loss: 0.1055 - val_loss: 0.1041
Epoch 14/50	F- 47 / 1 0 4056 1 1 0 4046
	• 5s 17ms/step - loss: 0.1056 - val_loss: 0.1046
Epoch 15/50 328/328	Fs 17ms/ston loss, 0 1040 val loss, 0 1020
Epoch 16/50	• 5s 17ms/step - loss: 0.1049 - val_loss: 0.1029
•	• 5s 16ms/step - loss: 0.1048 - val_loss: 0.1074
Epoch 17/50	33 101113/3CEP - 1033. 0.1040 - Val_1033. 0.10/4
•	• 6s 20ms/step - loss: 0.1051 - val_loss: 0.1043
Epoch 18/50	03 20m3/3tcp 1033. 0.1031 vai_1033. 0.1043
328/328 —————	• 10s 18ms/step - loss: 0.1040 - val_loss: 0.1069
Epoch 19/50	
328/328	• 5s 16ms/step - loss: 0.1040 - val loss: 0.1069
Epoch 20/50	
328/328 ————	• 5s 16ms/step - loss: 0.1043 - val_loss: 0.1040
Epoch 21/50	
•	

Both

220 /220	F. 46 / 1 3 0 4046 13 0 4054
	- 5s 16ms/step - loss: 0.1046 - val_loss: 0.1054
Epoch 22/50	Fo 16mg/stop logge 0 1047 well logge 0 1041
	- 5s 16ms/step - loss: 0.1047 - val_loss: 0.1041
Epoch 23/50	62 10m2/star 1 0 1050 m3 1 0 1042
	- 6s 18ms/step - loss: 0.1058 - val_loss: 0.1043
Epoch 24/50	Co 17mg/ston loss, 0 1036 wellloss, 0 1056
	- 6s 17ms/step - loss: 0.1036 - val_loss: 0.1056
Epoch 25/50	- Co 17mc/cton local 0 1027 val local 0 1040
	- 6s 17ms/step - loss: 0.1037 - val_loss: 0.1048
Epoch 26/50	- 6s 17ms/step - loss: 0.1050 - val_loss: 0.1058
328/328 ————————————————————————————————————	- 65 1/ms/step - 10ss: 0.1050 - Val_10ss: 0.1058
•	- 5s 17ms/step - loss: 0.1023 - val_loss: 0.1036
Epoch 28/50	- 35 1/ms/step - 10ss. 0.1025 - Val_10ss. 0.1036
•	- 11s 18ms/step - loss: 0.1038 - val_loss: 0.1036
Epoch 29/50	113 10ms/step - 10ss. 0.10s0 - Val_10ss. 0.10s0
•	- 10s 16ms/step - loss: 0.1014 - val_loss: 0.1023
Epoch 30/50	103 10113/3cep - 1033. 0.1014 - Val_1033. 0.1023
•	- 5s 16ms/step - loss: 0.1035 - val_loss: 0.1026
Epoch 31/50	33 10m3/3cep - 1033. 0.1033 - Val_1033. 0.1020
	- 5s 15ms/step - loss: 0.1032 - val_loss: 0.1035
Epoch 32/50	33 15m3/3 (cβ 1033. 0.1032 Val_1033. 0.1033
	- 6s 17ms/step - loss: 0.1035 - val_loss: 0.1037
Epoch 33/50	03 17 m3/3 ccp 1033. 0.1033
	- 6s 18ms/step - loss: 0.1039 - val_loss: 0.1038
Epoch 34/50	
•	- 6s 18ms/step - loss: 0.1018 - val_loss: 0.1052
Epoch 35/50	
328/328	• 5s 15ms/step - loss: 0.1033 - val_loss: 0.1077
Epoch 36/50	
328/328	• 6s 17ms/step - loss: 0.1016 - val_loss: 0.1026
Epoch 37/50	
328/328	• 5s 16ms/step - loss: 0.1025 - val_loss: 0.1042
Epoch 38/50	
328/328 ——————	- 5s 15ms/step - loss: 0.1014 - val_loss: 0.1053
Epoch 39/50	
328/328	- 5s 16ms/step - loss: 0.1020 - val_loss: 0.1046
Epoch 40/50	
328/328	- 6s 17ms/step - loss: 0.1009 - val_loss: 0.1067
Epoch 41/50	
328/328	- 6s 17ms/step - loss: 0.1041 - val_loss: 0.1044

Epoch 42/50 **328/328** —

Epoch 43/50

```
• 5s 16ms/step - loss: 0.1005 - val loss: 0.1034
       328/328 -
       Epoch 44/50
       328/328 -
                                    6s 17ms/step - loss: 0.1020 - val loss: 0.1055
       Epoch 45/50
       328/328 -
                                    6s 17ms/step - loss: 0.1015 - val loss: 0.1004
       Epoch 46/50
                                    6s 20ms/step - loss: 0.1003 - val loss: 0.1052
       328/328 -
       Epoch 47/50
       328/328 -
                                    6s 17ms/step - loss: 0.1030 - val loss: 0.1045
       Epoch 48/50
       328/328 -
                                    6s 17ms/step - loss: 0.1022 - val loss: 0.1040
       Epoch 49/50
       328/328 -
                                   - 10s 17ms/step - loss: 0.0983 - val loss: 0.1027
       Epoch 50/50
                                  - 5s 16ms/step - loss: 0.0987 - val loss: 0.1047
       328/328 ---
       92/92 ----
                             2s 11ms/step
       Mean Absolute Error: 230455.04662356785
       1/1 -
                              - 0s 31ms/step
       1/1 -
                               - 0s 29ms/step
                              - 0s 28ms/step
       1/1 ---
                              - 0s 26ms/step
       1/1 ---
                             -- 0s 29ms/step
       1/1 ---
                          ---- 0s 28ms/step
       1/1 -
                             — 0s 27ms/step
       Next 7 days forecast: [394895.16 228965.2 176321.48 236056.75 304060.1 299512.25 183971.39]
In [ ]: #Code for ARIMA
In [2]: import pandas as pd
        from statsmodels.tsa.arima.model import ARIMA
        from sklearn.metrics import mean absolute error
        # Load data
        data = pd.read csv('Dispense.csv', parse dates=['caldate'])
        data.set index('caldate', inplace=True)
        # Train ARIMA model
```

- 5s 16ms/step - loss: 0.1018 - val loss: 0.1053

file:///C:/Users/dellpc/Downloads/Both.html

```
train = data['Dispense'][:int(0.8 * len(data))]
 test = data['Dispense'][int(0.8 * len(data)):]
 arima model = ARIMA(train, order=(5, 1, 0))
 arima model fit = arima model.fit()
 # Predict and evaluate
 predictions = arima model fit.forecast(steps=len(test))
 mae = mean absolute error(test, predictions)
 print(f'Mean Absolute Error: {mae}')
 # Forecast next 7 days
 forecast = arima model fit.forecast(steps=7)
 print('Next 7 days forecast:', forecast.values)
D:\New folder\Lib\site-packages\statsmodels\tsa\base\tsa model.py:473: ValueWarning: An unsupported index was provided and will
be ignored when e.g. forecasting.
 self. init dates(dates, freq)
D:\New folder\Lib\site-packages\statsmodels\tsa\base\tsa model.py:473: ValueWarning: An unsupported index was provided and will
be ignored when e.g. forecasting.
  self. init dates(dates, freq)
D:\New folder\Lib\site-packages\statsmodels\tsa\base\tsa model.py:473: ValueWarning: An unsupported index was provided and will
be ignored when e.g. forecasting.
 self. init dates(dates, freq)
Mean Absolute Error: 226170.125146452
Next 7 days forecast: [435743.74359247 381136.10840052 420346.66724897 326334.07003046
470775.18501113 341920.84405613 397809.55674381]
D:\New folder\Lib\site-packages\statsmodels\tsa\base\tsa model.py:836: ValueWarning: No supported index is available. Predictio
n results will be given with an integer index beginning at `start`.
  return get prediction index(
D:\New folder\Lib\site-packages\statsmodels\tsa\base\tsa model.py:836: FutureWarning: No supported index is available. In the n
ext version, calling this method in a model without a supported index will result in an exception.
 return get prediction index(
D:\New folder\Lib\site-packages\statsmodels\tsa\base\tsa model.py:836: ValueWarning: No supported index is available. Predictio
n results will be given with an integer index beginning at `start`.
 return get prediction index(
D:\New folder\Lib\site-packages\statsmodels\tsa\base\tsa model.py:836: FutureWarning: No supported index is available. In the n
ext version, calling this method in a model without a supported index will result in an exception.
 return get prediction index(
```

file:///C:/Users/dellpc/Downloads/Both.html

Tried to Implement a short code here

The Results are as follows:

LSTM: Mean Absolute Error: 230455.04662356785, Next 7 days forecast: [394895.16 228965.2 176321.48 236056.75 304060.1 299512.25 183971.39]

ARIMA: Mean Absolute Error: 226170.125146452, Next 7 days forecast: [435743.74359247 381136.10840052 420346.66724897 326334.07003046 470775.18501113 341920.84405613 397809.55674381]