valogat

1. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(-1, \frac{2}{3})$, $(-5, \frac{154}{3})$ and $(10, \frac{574}{3})$. Then, its leading coefficient is:

- (a) 2 ✓
- (b) 4
- (c) $\frac{1}{2}$
- (d) -2

2. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(6, -\frac{178}{3})$, $(-3,-\frac{16}{3})$ and $(9,-\frac{376}{3}).$ Then, its leading coefficient is:

- (a) $-\frac{4}{3}$ \checkmark
- (b) $\frac{2}{3}$
- (c) $\frac{5}{3}$
- (d) $-\frac{11}{6}$

3. foeh3

Consider the Lagrange interpolational polynomial of the points (1, -5), (-4, -10) and (5, -49). Then, its leading coefficient is:

- (a) $-\frac{4}{3}$ \checkmark
- (b) $\frac{1}{6}$
- (c) $-\frac{16}{3}$ (d) $-\frac{10}{3}$

4. foeh3

Consider the Lagrange interpolational polynomial of the points $(-3, \frac{27}{2})$, $(5,\frac{193}{6})$ and $(-9,\frac{223}{2})$. Then, its leading coefficient is:

- (a) $\frac{4}{3}$ \checkmark (b) $\frac{7}{3}$
- (c) 1
- (d) $-\frac{1}{6}$

Consider the Lagrange interpolational polynomial of the points $(-2, \frac{26}{3})$, $(-9, \frac{1375}{6})$ and $(-8, \frac{539}{3})$. Then, its leading coefficient is:

- (a) 3 ✓
- (b) $\frac{3}{2}$
- (c) 4
- (d) 2

6. **foeh3**

Consider the Lagrange interpolational polynomial of the points (5, -19), (9, -71) and (-8, -71). Then, its leading coefficient is:

- (a) -1 \checkmark
- (b) $-\frac{3}{2}$
- (c) $\frac{1}{3}$
- (d) 1

7. foeh3

Consider the Lagrange interpolational polynomial of the points $(6, -\frac{115}{2})$, $(-6, -\frac{107}{2})$ and $(-10, -\frac{889}{6})$. Then, its leading coefficient is:

- (a) $-\frac{3}{2}$ \checkmark (b) $\frac{1}{2}$

- (c) $-\frac{1}{6}$ (d) $-\frac{1}{2}$

Consider the Lagrange interpolational polynomial of the points (9, 89), (-8,55) and (-6,29). Then, its leading coefficient is:

- (a) 1 ✓
- (b) $\frac{4}{3}$
- (c) $\frac{5}{3}$
- (d) 3

9. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(-9, \frac{173}{2})$, (4,15) and $(-1,\frac{5}{2})$. Then, its leading coefficient is:

- (a) 1 ✓
- (b) $-\frac{1}{2}$
- (c) 2
- (d) $\frac{1}{3}$

10. **foeh3**

Consider the Lagrange interpolational polynomial of the points (-6, -67), $\left(-2,-\frac{37}{3}\right)$ and $\left(1,\frac{2}{3}\right)$. Then, its leading coefficient is:

- (a) $-\frac{4}{3} \checkmark$ (b) $\frac{2}{3}$ (c) $-\frac{10}{3}$ (d) $-\frac{8}{3}$

11. foeh3

Consider the Lagrange interpolational polynomial of the points $(10, -\frac{317}{3})$, $(-2, -\frac{5}{3})$ and $(-7, -\frac{130}{3})$. Then, its leading coefficient is:

- (a) -1 \checkmark
- (b) $-\frac{4}{3}$

- (c) $-\frac{7}{3}$
- (d) 3

Consider the Lagrange interpolational polynomial of the points (-10, 123), $(7, \frac{233}{3})$ and (-1, 3). Then, its leading coefficient is:

- (a) $\frac{4}{3}$ \checkmark
- (b) $\frac{10}{3}$
- (c) $\frac{17}{6}$
- (d) 2

13. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(8, -\frac{250}{3})$, $(4, -\frac{52}{3})$ and $(6, -\frac{133}{3})$. Then, its leading coefficient is:

- (a) $-\frac{3}{2}$ \checkmark (b) $-\frac{17}{6}$ (c) $-\frac{11}{6}$ (d) $-\frac{5}{2}$

14. **foeh3**

Consider the Lagrange interpolational polynomial of the points (6, -20), $(-1,\frac{13}{6})$ and $(-10,-\frac{124}{3})$. Then, its leading coefficient is:

- (a) $-\frac{1}{2}$ \checkmark (b) $-\frac{5}{2}$
- (c) -1
- (d) $-\frac{9}{2}$

15. **foeh3**

Consider the Lagrange interpolational polynomial of the points (0, 2), (5,42) and (9,146). Then, its leading coefficient is:

- (a) 2 ✓
- (b) -1
- (c) $\frac{5}{3}$
- (d) -2

Consider the Lagrange interpolational polynomial of the points $(9, \frac{71}{2})$, $(4,\frac{19}{3})$ and $(-5,\frac{101}{6})$. Then, its leading coefficient is:

- (a) $\frac{1}{2}$ \checkmark (b) $-\frac{1}{2}$
- (c) 1
- (d) $-\frac{5}{6}$

17. foeh3

Consider the Lagrange interpolational polynomial of the points $(-1, -\frac{17}{3})$, $(-10, -\frac{224}{3})$ and $(-7, -\frac{137}{3})$. Then, its leading coefficient is:

- (a) $-\frac{1}{3}$ \checkmark
- (b) $\frac{7}{6}$
- (c) $\frac{1}{3}$
- (d) $-\frac{10}{3}$

18. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(-9, \frac{214}{3})$, $(-7, \frac{124}{3})$ and $(10, \frac{328}{3})$. Then, its leading coefficient is:

- (a) 1 ✓
- (b) $\frac{7}{3}$
- (c) 2
- (d) $\frac{1}{2}$

Consider the Lagrange interpolational polynomial of the points $(-1, \frac{14}{3})$, $(0,\frac{2}{3})$ and $(-7,\frac{338}{3})$. Then, its leading coefficient is:

- (a) 2 ✓
- (b) 6
- (c) $\frac{3}{2}$
- (d) 5

20. **foeh3**

Consider the Lagrange interpolational polynomial of the points (-9, -281), (6, -86) and (0, -2). Then, its leading coefficient is:

- (a) -3 \checkmark
- (b) -2
- (c) $-\frac{5}{2}$ (d) $-\frac{13}{3}$

21. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(2, -\frac{11}{3})$, $(-4, -\frac{29}{3})$ and $(5, -\frac{56}{3})$. Then, its leading coefficient is:

- (a) $-\frac{2}{3}$ \checkmark
- (b) $\frac{5}{6}$ (c) $\frac{2}{3}$
- (d) $\frac{7}{2}$

22. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(-2, \frac{5}{2})$, $(-7, \frac{155}{2})$ and $(4, \frac{89}{2})$. Then, its leading coefficient is:

- (a) 2 ✓
- (b) 3

- (c) 6
- (d) -1

Consider the Lagrange interpolational polynomial of the points (6, -42), (0, -2) and $(-5, -\frac{71}{3})$. Then, its leading coefficient is:

- (a) $-1 \checkmark$
- (b) -3
- (c) $-\frac{1}{2}$
- (d) 1

24. **foeh3**

Consider the Lagrange interpolational polynomial of the points (9, -44), (-2, -11) and (0, 1). Then, its leading coefficient is:

- (a) -1 \checkmark
- (b) $-\frac{7}{3}$
- (c) $\frac{1}{2}$
- (d) $-\frac{4}{3}$

25. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(-2, \frac{8}{3})$, $(0, \frac{2}{3})$ and $(-7, \frac{128}{3})$. Then, its leading coefficient is:

- (a) 1 ✓
- (b) -3
- (c) $\frac{1}{3}$
- (d) $-\frac{1}{3}$

26. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(-5, \frac{82}{3})$, (-6, 41) and (3, 14). Then, its leading coefficient is:

- (a) $\frac{4}{3}$ \checkmark
- (b) 2
- (c) $\frac{1}{3}$
- (d) $-\frac{2}{3}$

Consider the Lagrange interpolational polynomial of the points $(-7, \frac{190}{3})$, $(0,\frac{1}{3})$ and $(-1,\frac{10}{3})$. Then, its leading coefficient is:

- (a) 1 ✓
- (b) $\frac{7}{3}$
- (c) 5
- (d) -1

28. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(0, -\frac{1}{3})$, $(-9, \frac{565}{6})$ and $(-1, \frac{13}{6})$. Then, its leading coefficient is:

- (a) 1 ✓
- (b) $\frac{5}{3}$
- (c) -2
- (d) 5

29. **foeh3**

Consider the Lagrange interpolational polynomial of the points (6, -19), (3, -4) and $(7, -\frac{80}{3})$. Then, its leading coefficient is:

- (a) $-\frac{2}{3}$ \checkmark (b) $-\frac{13}{6}$
- (c) $\frac{4}{3}$
- (d) -2

Consider the Lagrange interpolational polynomial of the points (3, -7), (-4, -14) and (8, -42). Then, its leading coefficient is:

- (a) $-\frac{2}{3}$ \checkmark
- (b) $-\frac{1}{6}$ (c) $-\frac{13}{6}$ (d) $-\frac{7}{6}$

31. foeh3

Consider the Lagrange interpolational polynomial of the points $(-5, \frac{68}{3})$, $(4,\frac{59}{3})$ and (-6,33). Then, its leading coefficient is:

- (a) 1 ✓
- (b) $\frac{1}{2}$
- (c) $-\frac{1}{3}$
- (d) $\frac{3}{2}$

32. **foeh3**

Consider the Lagrange interpolational polynomial of the points $(-8, \frac{113}{3})$, $(-7, \frac{169}{6})$ and (-6, 20). Then, its leading coefficient is:

- (a) $\frac{2}{3}$ \checkmark
- (b) $-\frac{10}{3}$ (c) $-\frac{5}{6}$ (d) $\frac{13}{6}$

33. **foeh3**

Consider the Lagrange interpolational polynomial of the points (-10, -78), (-3, -1) and (10, -118). Then, its leading coefficient is:

- (a) $-1 \checkmark$
- (b) 3

- (c) $\frac{1}{2}$ (d) -4