Estatística Aplicada a Recuros Hídricos

Docente: Rachid Muleia

rachid.muleia@uem.mz

Mestrado em Gestão de Recursos Hídricos - DGEO/UEM

Tema: Variáveis Aleatórias

Ano lectivo: 2023

Definição: Uma variável aleatória (v.a.) é uma função que associa um número real a cada resultado do espaço amostral de um experimento aleatório.

Uma variável aleatória, seu domínio e seu contradomínio

- **a** qualquer elemento ω de Ω corresponde um único valor $x = X(\omega)$.
- \blacksquare A v.a. denota-se em geral por uma letra maiúscula $X, Y \dots$
- Na prática, estamos interessado no conjunto de valores que a v.a. pode assumir e na probabilidade de ocorrência de cada valor.

Exemplo: Considere um experimento em que cada um de três veículos que trafegam em uma determinada estrada siga pela saída à esquerda (E) ou à direita (D) no final da rampa de saída.

$$\Omega = \{ EEE, DEE, EDE, EED, EDD, DED, DDE, DDD \}$$

■ Seja X o número de veículos que sigam à direita;

Exemplo: Considere um experimento em que cada um de três veículos que trafegam em uma determinada estrada siga pela saída à esquerda (E) ou à direita (D) no final da rampa de saída.

 $\Omega = \{ EEE, DEE, EDE, EED, EDD, DED, DDE, DDD \}$

- Seja X o número de veículos que sigam à direita;
- ullet X é uma v.a. que pode assumir um dos valores 0,1,2, e 3 com probabilidades

Exemplo: Considere um experimento em que cada um de três veículos que trafegam em uma determinada estrada siga pela saída à esquerda (E) ou à direita (D) no final da rampa de saída.

$$\Omega = \{ \textit{EEE}, \textit{DEE}, \textit{EDE}, \textit{EED}, \textit{EDD}, \textit{DED}, \textit{DDE}, \textit{DDD} \}$$

- Seja X o número de veículos que sigam à direita;
- ullet X é uma v.a. que pode assumir um dos valores 0,1,2, e 3 com probabilidades

$$P(X = 0) = P(\{DDD\}) = 1/8$$

 $P(X = 1) = P(\{DEE, EDE, EED\}) = 3/8$
 $P(X = 2) = P(\{EDD, DED, DDE\}) = 3/8$
 $P(X = 3) = P(\{DDD\}) = 1/8$

A distribuição de probabilidade de X fica:

X	0	1	2	3
P(X)	$\frac{1}{8}$	3/8	3/8	$\frac{1}{8}$

Exemplo: Considere um experimento em que cada um de três veículos que trafegam em uma determinada estrada siga pela saída à esquerda (E) ou à direita (D) no final da rampa de saída.

$$\Omega = \{ \textit{EEE}, \textit{DEE}, \textit{EDE}, \textit{EED}, \textit{EDD}, \textit{DED}, \textit{DDE}, \textit{DDD} \}$$

- Seja X o número de veículos que sigam à direita;
- ullet X é uma v.a. que pode assumir um dos valores 0,1,2, e 3 com probabilidades

$$P(X = 0) = P(\{DDD\}) = 1/8$$

 $P(X = 1) = P(\{DEE, EDE, EED\}) = 3/8$
 $P(X = 2) = P(\{EDD, DED, DDE\}) = 3/8$
 $P(X = 3) = P(\{DDD\}) = 1/8$

A distribuição de probabilidade de X fica:

Χ	0	1	2	3
P(X)	$\frac{1}{8}$	3 8	<u>3</u> 8	$\frac{1}{8}$

As variáveis aleatórias são classificadas em discretas e contínuas

Variáveis aleatórias discretas

Definições:

- Uma variável aleatória X é discreta se ela pode assumir valores em um conjunto finito ou infinito, porém enumerável.
- Função de probabilidade de uma v.a. discreta X É uma função que associa a cada valor assumido pela v.a. X a probabilidade do evento correspondente, ou seja, $x_i \to p(x_i) = P(X = x_i), i = 1, 2, ..., n$ de tal forma que:
 - i) $p(x_i) \ge 0, \ \forall i, \ i = 1, 2, ..., n$
 - $ii) \sum_{i=1}^{n} p(x_i) = 1$
- Ao conjunto $\{(x_i, p(x_i)), i = 1, 2, ..., n\}$ chama-se distribuição de probabilidade ou função de massa de probabilidade (fmp) de X;
- Note que *X* é o nome da v.a., enquanto que *x_i* (minúsculo) é um certo que *X* pode assumir.

Definição: Se X é uma v.a. discreta cujos valores possíveis são x_1, x_2, \ldots, x_n , onde $x_1 < x_2 < \ldots < x_n$, então a função de distribuição ou função acumulada de probabilidade de X, denotada por F(x), é definida como

$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i).$$

Indica a probabilidade de o valor observado de X ser no máximo x. Para uma v.a. discreta X, F(x) satisfaz as seguintes propriedades:

1)
$$F(x) = P(X \le x) = \sum_{x_i \le x} p(x_i).$$

- 2) $0 \le F(x) \le 1$
- 3) Se $x \le y$, então $F(x) \le F(y)$
- 4) $\lim_{x \to -\infty} F(x) = 0$ e $\lim_{x \to +\infty} F(x) = 1$;

Exemplo: Num determinado bairro, 25% das famílias não têm filhos, 50% têm um filho e 25% das famílias têm dois filhos.

- Seja X o n° de filhos de uma família sorteada ao acaso nesse bairro.
- X é uma v.a. que pode assumir um dos valores 0,1 e 2.
- Função de probabilidade de X:

X	0	1	2
$p(x_i) = P(X = x_i)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

■ Determinamos F(x) de cada valor no conjunto $\{0,1,2\}$:

Exemplo: Num determinado bairro, 25% das famílias não têm filhos, 50% têm um filho e 25% das famílias têm dois filhos.

- Seja X o n° de filhos de uma família sorteada ao acaso nesse bairro.
- X é uma v.a. que pode assumir um dos valores 0,1 e 2.
- Função de probabilidade de X:

X	0	1	2
$p(x_i) = P(X = x_i)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

■ Determinamos F(x) de cada valor no conjunto $\{0,1,2\}$:

$$F(0) = P(X \le 0) = P(X = 0) = p(0) = 1/4;$$

$$F(1) = P(X \le 1) = p(0) + p(1) = 3/4;$$

$$F(2) = P(X \le 2) = p(0) + p(1) + p(2) = 1$$

- Para qualquer outro valor de x, F(x) será igual ao valor de F mais próximo possível de X à esquerda de x
- Exemplo: $F(0,7) = P(X \le 0,7) = P(X \le 0) = 1/4$; F(2,999) = F(2) = 3/4

Exemplo (Cont.):

■ Portanto, a função de distribuição de X é:

Exemplo (Cont.):

■ Portanto, a função de distribuição de X é:

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{4} & 0 \le x < 1 \\ \frac{3}{4} & 1 \le x < 2 \\ 1 & 2 \le x \end{cases}$$

Exemplo (Cont.): Gráfico da função de distribuição de X

■ F(x) é uma função escada ou função degrau, isto é, F dá um passo (salto) de tamanho $p(x_i)$ em x_i , sempre que $p(x_i) > 0$

Exemplo 1: Considere a seguinte função:

$$P(X = j) = (8/7)(1/2)^{j}, j = 1, 2, 3.$$

- i) Verifique que a função dada é uma função de probabilidade de X.
- ii) Calcule $P(X \le 1)$, P(X > 1), P(2 < X < 6) e $P(X \le 1$ ou X > 1)
- iii) Determine a função de distribuição de X
- iv) Calcule $F(1,99) \in F(2,5)$

Exemplo 1: Considere a seguinte função:

$$P(X = j) = (8/7)(1/2)^{j}, j = 1, 2, 3.$$

- i) Verifique que a função dada é uma função de probabilidade de X.
- ii) Calcule $P(X \le 1)$, P(X > 1), P(2 < X < 6) e $P(X \le 1 \text{ ou } X > 1)$
- iii) Determine a função de distribuição de X
- iv) Calcule F(1,99) e F(2,5)

Resolução:

Exemplo 1: Considere a seguinte função:

$$P(X = j) = (8/7)(1/2)^{j}, j = 1, 2, 3.$$

- i) Verifique que a função dada é uma função de probabilidade de X.
- ii) Calcule $P(X \le 1)$, P(X > 1), P(2 < X < 6) e $P(X \le 1 \text{ ou } X > 1)$
- iii) Determine a função de distribuição de X
- iv) Calcule F(1,99) e F(2,5)

Resolução:

Х	1	2	3
P(X)	$\frac{4}{7}$	<u>2</u> 7	$\frac{1}{7}$

- i) $\sum_{j=1}^{3} P(X=j) = 1$. Portanto, p(x) é uma f.p. de X.
- ii) $P(X \le 1) = P(X = 1) = \frac{4}{7}$; $P(X > 1) = 1 P(X \le 1) = \frac{3}{7}$; $P(2 < X < 6) = P(X = 3) = \frac{1}{7}$; $P(X \le 1 \text{ ou } X > 1) = P(X \le 1) + P(X > 1) = \frac{4}{7} + \frac{3}{7} = 1$

Resolução (cont.):

X	[]	1 2	3
P()	X) {	$\frac{2}{7}$	$\frac{1}{7}$

iii) Função de distribuição

$$F(x) = \begin{cases} 0 & x < 1 \\ \frac{4}{7} & 1 \le x < 2 \\ \frac{6}{7} & 2 \le x < 3 \\ 1 & 3 < x \end{cases}.$$

iv)
$$F(1,99) = P(X \le 1,99) = P(X \le 1) = F(1) = \frac{4}{7}$$
 e
 $F(2,5) = P(X \le 2,5) = P(X \le 2) = F(2) = \frac{6}{7}$

Proposição: Para quaisquer dois números a e b com $a \le b$,

$$P(a \le X \le b) = F(b) - F(a^{-})$$

onde " a^{-} " é o maior valor possível de X estritamente menor que a.

■ Se os valores possíveis de X forem inteiros e, se a e b forem inteiros, então

$$P(a \le X \le b) = F(b) - F(a-1)$$

- Considerando a = b, resulta que P(X = a) = F(a) F(a 1)
- Subtrai-se $F(a^-)$ ao vez de F(a) porque queremos incluir P(X=a)

$$P(a \le X \le b) = F(b) - F(a) + P(X = a)$$

■ Note que F(b) - F(a) fornece $P(a < X \le b)$

Exemplo 2: Considere uma v.a. X com os F(0) = 0,58, F(1) = 0,72, F(2) = 0,76, F(3) = 0,81, F(4) = 0,88, F(5) = 0,94, ...

$$P(2 \le X \le 5) =$$

Proposição: Para quaisquer dois números a e b com $a \le b$,

$$P(a \le X \le b) = F(b) - F(a^{-})$$

onde " a^{-} " é o maior valor possível de X estritamente menor que a.

Se os valores possíveis de X forem inteiros e, se a e b forem inteiros, então

$$P(a \le X \le b) = F(b) - F(a-1)$$

- Considerando a = b, resulta que P(X = a) = F(a) F(a 1)
- Subtrai-se $F(a^-)$ ao vez de F(a) porque queremos incluir P(X=a)

$$P(a \le X \le b) = F(b) - F(a) + P(X = a)$$

■ Note que F(b) - F(a) fornece $P(a < X \le b)$

Exemplo 2: Considere uma v.a. X com os F(0) = 0.58, F(1) = 0.72, F(2) = 0.76, F(3) = 0.81, F(4) = 0.88, F(5) = 0.94, ...

$$P(2 \le X \le 5) = F(5) - F(1) = 0,22;$$

 $P(X = 3) =$

Proposição: Para quaisquer dois números a e b com $a \le b$,

$$P(a \le X \le b) = F(b) - F(a^{-})$$

onde " a^{-} " é o maior valor possível de X estritamente menor que a.

Se os valores possíveis de X forem inteiros e, se a e b forem inteiros, então

$$P(a \le X \le b) = F(b) - F(a-1)$$

- Considerando a = b, resulta que P(X = a) = F(a) F(a 1)
- Subtrai-se $F(a^-)$ ao vez de F(a) porque queremos incluir P(X=a)

$$P(a \le X \le b) = F(b) - F(a) + P(X = a)$$

■ Note que F(b) - F(a) fornece $P(a < X \le b)$

Exemplo 2: Considere uma v.a. X com os F(0) = 0.58, F(1) = 0.72, F(2) = 0.76, F(3) = 0.81, F(4) = 0.88, F(5) = 0.94, ...

$$P(2 \le X \le 5) = F(5) - F(1) = 0,22;$$

 $P(X = 3) = F(3) - F(2) = 0,05$

$$F(x) = \begin{cases} 0 & x < 10 \\ 0, 2 & 10 \le x < 12 \\ 0, 5 & 12 \le x < 13 \\ 0, 9 & 13 \le x < 25 \\ 1 & 25 \le x \end{cases}$$

i)
$$P(X \le 12) =$$

$$F(x) = \begin{cases} 0 & x < 10 \\ 0, 2 & 10 \le x < 12 \\ 0, 5 & 12 \le x < 13 \\ 0, 9 & 13 \le x < 25 \\ 1 & 25 \le x \end{cases}$$

- i) $P(X \le 12) = F(12) = 0,5$
- ii) P(X < 12) =

$$F(x) = \begin{cases} 0 & x < 10 \\ 0, 2 & 10 \le x < 12 \\ 0, 5 & 12 \le x < 13 \\ 0, 9 & 13 \le x < 25 \\ 1 & 25 \le x \end{cases}$$

- i) $P(X \le 12) = F(12) = 0,5$
- ii) $P(X < 12) = P(X \le 10) = F(10) = 0,2$
- iii) $P(12 \le x \le 20) =$

$$F(x) = \begin{cases} 0 & x < 10 \\ 0, 2 & 10 \le x < 12 \\ 0, 5 & 12 \le x < 13 \\ 0, 9 & 13 \le x < 25 \\ 1 & 25 \le x \end{cases}.$$

- i) $P(X \le 12) = F(12) = 0.5$
- ii) $P(X < 12) = P(X \le 10) = F(10) = 0,2$
- iii) $P(12 \le x \le 20) = F(20) F(11) = 0, 9 0, 2 = 0, 7$
- iv) P(X > 18) =

$$F(x) = \begin{cases} 0 & x < 10 \\ 0, 2 & 10 \le x < 12 \\ 0, 5 & 12 \le x < 13 \\ 0, 9 & 13 \le x < 25 \\ 1 & 25 \le x \end{cases}$$

- i) $P(X \le 12) = F(12) = 0.5$
- ii) $P(X < 12) = P(X \le 10) = F(10) = 0,2$
- iii) $P(12 \le x \le 20) = F(20) F(11) = 0, 9 0, 2 = 0, 7$
- iv) $P(X > 18) = 1 P(X \le 18) = 1 F(18) = 1 0.9 = 0.1$

Média e Variância de uma v.a discreta X

- A média e variância são frequentemente usados para resumir a distribuição de probabilidade de uma v.a.
- Definição: Seja X uma v.a. discreta que assume os valores x_1, x_2, \ldots, x_n com probabilidades $p(x_1), p(x_2), \ldots, p(x_n)$, respectivamente. A média, valor esperado ou esperança matemática ou valor esperado de X, denotado por E(X) ou μ_X , é

$$E(X) = \mu_{\mathsf{x}} = \sum_{i=1}^{n} \mathsf{x}_{i} \mathsf{p}(\mathsf{x}_{i})$$

- A Esperança matemática é um número real.
- Exemplo: Seja X o nº de filhos de uma família sorteada ao acaso num bairro com a seguinte distribuição de probabilidade:

X	0	1	2	3	
P(X)	0, 3	0, 4	0, 2	0, 1	

Média e Variância de uma v.a discreta X

- A média e variância são frequentemente usados para resumir a distribuição de probabilidade de uma v.a.
- Definição: Seja X uma v.a. discreta que assume os valores x_1, x_2, \ldots, x_n com probabilidades $p(x_1), p(x_2), \ldots, p(x_n)$, respectivamente. A média, valor esperado ou esperança matemática ou valor esperado de X, denotado por E(X) ou μ_X , é

$$E(X) = \mu_X = \sum_{i=1}^n x_i p(x_i)$$

- A Esperança matemática é um número real.
- Exemplo: Seja X o nº de filhos de uma família sorteada ao acaso num bairro com a seguinte distribuição de probabilidade:

X	0	1	2	3	
P(X)	0,3	0,4	0, 2	0, 1	

O valor esperado de X (nº médio de filhos por família) é

$$E(X) = 0 \times 0, 3 + 1 \times 0, 4 + 2 \times 0, 2 + 3 \times 0, 1 = 1, 1.$$

Propriedades da esperança matemática

- i) E(k) = k, K: constante.
- ii) $E(k \cdot X) = k \cdot E(X)$
- iii) $E(X \pm Y) = E(X) \pm E(Y)$

iv)
$$E\left\{\sum_{i=1}^{n} X_{i}\right\} = \sum_{i=1}^{n} \{E(X_{i})\}$$

- v) $E(aX \pm b) = aE(X) \pm b$, a e b constantes.
- vi) $E(X \mu_x) = 0$

Variância de uma v.a. discreta

- A variância fornece o grau de dispersão (variabilidade) na distribuição de probabilidade de *X* em torno da média.
- Definição: Seja X uma v.a. discreta que assume os valores x_1, x_2, \ldots, x_n com probabilidades $p(x_1), p(x_2), \ldots, p(x_n)$, respectivamente. A variância de X, denotado por Var(X) ou σ_x^2 , ou apenas σ^2 , é

$$Var(X) = \sum_{i=1}^{n} (x_i - E(X))^2 p(x_i)$$

$$= \sum_{i=1}^{n} x_i^2 p(x_i) - \{E(X)\}^2 \qquad = \boxed{E(X^2) - \{E(X)\}^2}$$

- O desvio padrão da variável X é $\sigma_x = \sqrt{Var(x)}$
- O Coeficiente de variação de X é $CV(X) = \frac{\sigma_x}{F(X)}, E(X) \neq 0$

Variância de uma v.a. discreta

■ Exemplo: Considere novamente o nº de filhos de uma família

X	P(X)	$X \cdot P(X)$	$X^2 \cdot P(X)$
0	0,3	0	0
1	0,4	0,4	0,4
2	0,2	0,4	0,8
3	0,1	0,3	0,9
	1	E(X) = 1, 1	$E(X^2)=2,1$

Variância de uma v.a. discreta

■ Exemplo: Considere novamente o nº de filhos de uma família

X	P(X)	$X \cdot P(X)$	$X^2 \cdot P(X)$
0	0,3	0	0
1	0,4 0,2	0,4	0,4
2	0,2	0,4 0,4	0,8
3	0,1	0,3	0,9
	1	E(X) = 1, 1	$E(X^2)=2,1$

- $Var(X) = E(X^2) \{E(X)\}^2 = 2, 1 1, 1^2 = 0,89$
- $\sigma_x = \sqrt{0.89} = 0.943$ filhos (desvio médio em relação a média)
- $CV(X) = \frac{0.943}{1.1} = 0.857$

Propriedades da variância

- i) Var(k) = 0, K: constante.
- ii) $Var(k \cdot X) = k^2 \cdot Var(X)$.
- iii) $Var(X \pm Y) = Var(X) + Var(Y) \pm 2cov(X, Y)$, cov(X, Y) é a covariância entre X e Y.

Definição: Covariância entre X e Y,

$$cov(X, Y) = E\{[X - E(X)].[Y - E(Y)]\},\$$

mede o grau de dependência entre as variáveis X e Y.

iv)
$$Var\left\{\sum_{i=1}^{n} X_i\right\} = \sum_{i=1}^{n} Var(X_i) + 2\sum_{i < j}^{n} cov(X_i, X_j)$$

v) $Var(aX \pm b) = a^2 Var(X)$, a e b constantes.

Distribuição conjunta de duas v.a.'s

- Muitas vezes há interesse em estudar mais de um resultado de um experimento aleatório;
- Para duas v.a.'s X e Y definidas em um mesmo espaço amostral, obtém-se a v.a. bidimensional (X,Y)
- Se (X, Y) é uma variável aleatória bidimensional, então

Uma v.a. bidimensional, seu domínio e seu contradomínio

■ cada elemento ω do espaço amostral Ω corresponde um único ponto de coordenadas $(X(\omega), Y(\omega))$

Função de massa de prob. conjunta de duas v.a.'s

Definição: Sejam $X=(x_1,x_2,x_3\ldots,x_m)$ e $Y=(y_1,y_2,y_3\ldots,y_n)$ duas v.a.'s discretas definidas no espaço amostral Ω de um experimento. Diz-se que a função $p(x_i,y_j)=P(X=x_i,Y=y_j)$ define a função (de massa) de probabilidade conjunta da v.a. bidimensional (X,Y) se:

- i) $p(x_i, y_j) \ge 0$ para todo par (i, j)
- ii) $\sum_{i=1}^{m} \sum_{j=1}^{n} p(x_i, y_j) = 1$
- Observação: A notação $P(X = x_i, Y = y_j)$ representa intersecção, ou seja, $P(X = x_i \cap Y = y_j)$.
- Ao conjunto $\{(x_i, y_j), p(x_i, y_j), i = 1, ..., m \text{ e } j = 1, ..., n\}$ dá-se o nome de distribuição conjunta de probabilidades da variável bidimensional (X, Y)
- Exemplo: Dado o quadro a seguir, referente ao salário e tempo de serviço de dez operários, determinar a distribuição conjunta de probabilidade da variável X: salário (\$); e da variável Y: tempo de serviço (anos).

Distribuição conjunta de probabilidade de duas v.a.'s

Operário	Α	В	С	D	Е	F	G	Н	ı	J
X	500	600	600	800	800	800	700	700	700	600
Y	6	5	6	4	6	6	5	6	6	5

A tabela de dupla entrada, contendo a probabilidade conjunta das v.a.'s X e Y é feita da seguinte forma:

Por exemplo: P(X = 800, Y = 6) = 2/10, pois temos dois operários com 6 anos de servico auferindo \$ 800;

■ P(X = 700, Y = 4) = 0, pois não há nenhum operário que ganhe \$ 700 e tenha 4 anos de serviço.

Distribuição conjunta de probabilidade de duas v.a.'s

Operário	Α	В	С	D	Е	F	G	Н		J
X	500	600	600	800	800	800	700	700	700	600
Y	6	5	6	4	6	6	5	6	6	5

A tabela de dupla entrada, contendo a probabilidade conjunta das v.a.'s X e Y é feita da seguinte forma:

Por exemplo: P(X = 800, Y = 6) = 2/10, pois temos dois operários com 6 anos de servico auferindo \$ 800;

- P(X = 700, Y = 4) = 0, pois não há nenhum operário que ganhe \$ 700 e tenha 4 anos de serviço.
- De modo análogo, obtemos as demais probabilidades conjuntas

V	X				Totais das linhas
'	500	600	700	800	Totals das Illilias
4	0	0	0	1/10	1/10
5	0	2/10	1/10	0	3/10
6	1/10	1/10	2/10	2/10	6/10
Totais das colunas	1/10	3/10	3/10	3/10	1

Distribuições marginais

- As distribuições marginais: são distribuições individuais de X e Y obtidas a partir da distribuição conjunta de (X,Y)
- Definição Sejam $X = (x_1, x_2, x_3 ..., x_m)$ e $Y = (y_1, y_2, y_3 ..., y_n)$ duas v.a.'s discretas com função de probabilidade conjunta $p(x_i, y_j) = P(X = x_i, Y = y_j)$. Sejam p_X e p_Y as correspondentes funções de probabilidade marginais de X e de Y. Então

$$p_X(x_i) = P(X = x_i) = \sum_{j=1}^n p(x_i, y_j) \ i = 1, 2, \dots, m \quad e$$
$$p_Y(y_j) = P(Y = y_j) = \sum_{i=1}^m p(x_i, y_j) \ j = 1, 2, \dots, n$$

Exemplo (cont.): Para obter a probabilidade marginal de Y = 6, somamos as probabilidades p(x, 6) para todos os valores possíveis de x, ou seja,

Distribuições marginais

$$\rho_Y(6) = P(X = 500, Y = 6) + P(X = 600, Y = 6) + P(X = 700, Y = 6)
+ P(X = 800, Y = 6)
= \frac{1}{10} + \frac{1}{10} + \frac{2}{10} + \frac{2}{10} = \frac{6}{10}$$

Para obter a probabilidade marginal de X=800, somamos as probabilidades p(800,y) para todos os valores possíveis de y, ou seja,

Distribuições marginais

$$p_Y(6) = P(X = 500, Y = 6) + P(X = 600, Y = 6) + P(X = 700, Y = 6) + P(X = 800, Y = 6)$$
$$= \frac{1}{10} + \frac{1}{10} + \frac{2}{10} + \frac{2}{10} = \frac{6}{10}$$

Para obter a probabilidade marginal de X=800, somamos as probabilidades p(800,y) para todos os valores possíveis de y, ou seja,

$$p_X(800) = P(X = 800, Y = 4) + P(X = 800, Y = 5) + P(X = 800, Y = 6)$$
$$= \frac{1}{10} + 0 + \frac{2}{10} = \frac{3}{10}$$

- Poderemos estar interessados em calcular E(X|Y=5);
- Definição: A função de probabilidade condicional de X dado que $Y = y_j$ é dada por:

$$p_{X|Y}(x_i|y_j) = P(X = x_i|Y = y_j) = \frac{P(X = x_i, Y = y_j)}{P(Y = y_j)},$$

$$j = \text{fixo}; i = 1, 2, ..., m; p(y_j) \neq 0$$

■ Analogamente, a função de probabilidade condicional de Y dado que $X = x_i$ é dada por:

$$p_{Y|X}(y_j|x_i) = P(Y = y_j|X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)},$$

$$i = \text{fixo}; j = 1, 2, \dots, n; p(x_i) \neq 0$$

■ A esperança condicional de X dado $Y = y_i$ é

$$E(X|Y = y_j) = \sum_{i=1}^{m} x_i \times p(x_i|y_j) = \sum_{i=1}^{m} x_i \frac{p(x_i, y_j)}{p(y_j)}$$

■ A esperança condicional de Y dado $X = x_i$ é:

$$E(Y|X = x_i) = \sum_{j=1}^{n} y_j \times p(y_j|x_i) = \sum_{j=1}^{n} y_j \frac{p(x_i, y_j)}{p(x_i)}$$

Assim

$$P(X = 500|Y = 5) = \frac{P(X = 500, Y = 5)}{P(Y = 5)} = \frac{0}{3/10} = 0$$

$$P(X = 600|Y = 5) = \frac{P(X = 600, Y = 5)}{P(Y = 5)} = \frac{2/10}{3/10} = 2/3$$

$$P(X = 700|Y = 5) = \frac{P(X = 700, Y = 5)}{P(Y = 5)} = \frac{1/10}{3/10} = 1/3$$

$$P(X = 800|Y = 5) = \frac{P(X = 8, Y = 5)}{P(Y = 5)} = \frac{0}{3/10} = 0$$

• Calculando E(X|Y=5), teremos:

X	P(X Y=5)	$X \cdot P(X Y=5)$
500	0	0
600	2/3	1200/3
700	1/3	700/3
800	0	0
\sum	1	1900/3

- Então E(X|Y=5) = 633, 33;
- O salário médio dos operários com cinco anos de serviço é de \$ 633,33.

Da mesma forma, podemos definir as variâncias condicionais.

• A variância condicional de X dado $Y = y_j$ é:

$$Var(X|Y = y_j) = E[\{X - E(X|Y = y_j)\}^2 | Y = y_j]$$

= $E(X^2|Y = y_j) - \{E(X|Y = y_j)\}^2$,

onde
$$E(X^2|Y = y_j) = \sum_{i=1}^m x_i^2 \rho_{X|Y}(x_i|y_j)$$

• A variância condicional de Y dado $X = x_i$ é:

$$Var(Y|X = x_i) = E[\{Y - E(Y|X = x_i)\}^2 | X = x_i]$$
$$= E(Y^2|X = x_i) - \{E(Y|X = x_i)\}^2,$$

onde
$$E(Y^2|X = x_i) = \sum_{i=1}^n y_j^2 p_{Y|X}(y_j|x_i)$$

Exemplo: Calculando o tempo médio de serviço e o desvio padrão dos operários com salários de \$ 700,00.

• Queremos E(Y|X = 700) e Var(Y|X = 700)

Y	P(Y X=700)	$Y \cdot P(Y X=700)$	$Y^2 \cdot P(Y X=700)$
4	0	0	0
5	1/3	5/3	25/3
6	2/3	12/3	72/3
	1	17/3	97/3

Portanto

$$E(Y|X = 700) = \frac{17}{3} = 5,67$$

$$Var(Y|X = 700) = \frac{97}{3} - \left(\frac{17}{3}\right)^2 = \frac{2}{9}$$

$$\sigma(Y|X = 700) = \sqrt{\frac{2}{0}} = 0,47$$

Variáveis aleatórias independentes

$$\text{Sejam} \left\{ \begin{array}{lll} X: x_1, x_2, \dots, x_m & \text{e} & P(X=x_i) = p(x_i), i = 1, \dots, m \\ Y: y_1, y_2, \dots, y_n, & \text{e} & P(Y=y_j) = p(y_j), j = 1, \dots, n \end{array} \right.$$

- **Definição**: As v.a.'s X e Y são independentes se, e somente se, $P(X = x_i, Y = y_j) = P(X = x_i) \cdot P(Y = y_j)$, para todo par (x_i, y_j) , i = 1, 2, ..., m e j = 1, 2, ..., n.
- As variáveis X e Y do problema dos operários não são independentes, pois, por exemplo,
 - → P(X = 500, Y = 4) = 0 $P(X = 500) \cdot P(Y = 4) = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{100}$
 - → $P(X = 500, Y = 4) \neq P(X = 500) \cdot P(X = 4)$.

Resultados importantes

Sejam
$$\begin{cases} X: x_1, x_2, \dots, x_m & \text{e } P(X = x_i) = p(x_i), i = 1, \dots, m \\ Y: y_1, y_2, \dots, y_n, & \text{e } P(Y = y_j) = p(y_j), j = 1, \dots, n \\ (X, Y): (x_1, y_1), \dots, (x_m, y_n) & \text{e } P(X = x_i, Y = y_j) = p(x_i, y_j). \end{cases}$$

- i) $E(X \pm Y) = E(X) \pm E(Y)$
- ii) Covariância entre X e Y: $cov(X,Y) = E(X \cdot Y) E(X) \cdot E(Y)$
- iii) São X e Y são independentes, então $E(X \cdot Y) = E(X) \cdot E(Y)$
- iv) Se X e Y são independentes, então cov(X,Y)=0. A reciproca não é verdadeira.
- v) Se X e Y são independentes, então $Var(X \pm Y) = Var(X) + Var(Y)$
- vi) Se X_1, X_2, \dots, X_m são independentes, então

$$Var\left(\sum_{i=1}^{m}X_{i}\right)=\sum_{i=1}^{m}Var(X_{i})$$

Coeficiente de Correlação

Assim como a covariância, o coeficiente de correlação mede o grau de dependência entre X e Y.

■ Definição: Coeficiente de correlação é definido como

$$\rho = \frac{cov(X, Y)}{\sigma_{\mathsf{X}} \cdot \sigma_{\mathsf{Y}}}$$

$$e |\rho| \le 1 \Rightarrow -1 \le \rho \le +1.$$

- Lembre-se que a covariância fornece uma medida ao guadrado;
- Além disso, o campo de sua variação é muito amplo, isto é, $-\infty < cov(X,Y) < +\infty$
- \blacksquare Quanto mais próximo for ρ de +1 e ρ de -1, maior o grau de dependência entre X e Y

Considere a distribuição conjunta de probabilidades da v.a (X, Y)

Y	Y					
	0	1	2	3		
0	1/8	2/8	1/8	0		
1	0	1/8	2/8	1/8		

Calcule

- i) E(2X 3Y)
- ii) Cov(X, Y)
- iii) Var(2X 3Y)
- iv) E(Y|X=1)
- **v**) ρ

Resolução:

X	Y						
	0	1	2	3	P(X)	$X \cdot P(X)$	$X^2 \cdot P(X)$
0	1/8	2/8	1/8	0	4/8	0	0
1	0	1/8	2/8	1/8	4/8	4/8	4/8
P(Y)	1/8	3/8	3/8	1/8	1	$E(X) = \frac{1}{2}$	$E(X^2) = \frac{1}{2}$
$Y \cdot P(Y)$	0	3/8	6/8	3/8	E(Y	() = 3/2	
$Y^2 \cdot P(Y)$	0	3/8	12/8	9/8	E($(Y^2) = 3$	

- P(X = 0, Y = 0) = 1/8, P(X = 0) = 4/8 e P(Y = 0) = 1/8.
- $P(X = 0, Y = 0) \neq P(X = 0) \cdot P(Y = 0)$. Portanto X e Y não são independentes.
- $E(X) = E(X^2) = 0.5$; $Var(X) = 0.5 0.5^2 = 0.25$ e $\sigma_x = 0.5$
- E(Y) = 1.5; $E(Y^2) = 0.3$; $Var(Y) = 3 1.5^2 = 0.75$ e $\sigma_y = 0.87$

Resolução:

- i) $E(2X 3Y) = 2E(X) 3E(Y) = 2 \cdot 0, 5 3 \cdot 1, 5 = -3, 5$
- ii) Para calcular Cov(X,Y), definiremos a v.a. $Z=X\cdot Y$ e encontramos a distribuição de Z

Z	P(Z)	$Z \cdot P(Z)$
0	4/8	0
1	1/8	1/8
2	2/8	4/8
3	1/8	3/8
	1	$E(Z) = E(X \cdot Y) = 1$

Portanto

$$cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

=1 - 0, 5 \cdot 1, 5 = 0, 25

Resolução:

iii)
$$Var(2X - 3Y) = ?$$

$$Var(2X - 3Y) = Var(2X) + Var(3Y) - 2cov(2X, 3Y)$$

$$= 4Var(X) + 9Var(Y) - 12cov(X, Y)$$

$$= 4 \cdot 0, 25 + 9 \cdot 0, 75 - 12 \cdot 0, 25 = 4, 75$$

iv)
$$E(Y|X = 1)$$

Y	P(Y X=1)	$Y \cdot P(Y X=1)$
0	0	0
1	1/4	1/4
2	2/4	4/4
3	1/4	3/4
	1	E(Y X=1)=2

v)
$$\rho = \frac{cov(X,Y)}{\sigma_x \cdot \sigma_y} = \frac{0.25}{0.5 \cdot 0.87} = 0,575$$