PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

1MAT33 ANÁLISIS FUNCIONAL

Tercera práctica (tipo a) Primer semestre 2024

Indicaciones generales:

- Duración: 110 minutos.
- Materiales o equipos a utilizar: sin apuntes de clase.
- No está permitido el uso de ningún material de consulta o equipo electrónico.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

Cuestionario:

Pregunta 1 (5 puntos)

- a) Verifique, considerando $\mathbb{K} = \mathbb{C}$, que las funciones $f_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$, $n \in \mathbb{Z}$ forman un sistema ortonormal en $L_2[-\pi, \pi]$.
- b) ¿Es cierto que el sistema ortonormal formado por las funciones $f_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}, n \in \mathbb{Z}$ es completo? Justifique.

Pregunta 2 (5 puntos)

- 2.1) Sea H un espacio de Hilbert y $T:H\to H$ un operador lineal tal que $\langle T(x),y\rangle=\langle x,T(y)\rangle$, para todo $x,y\in H$. Pruebe que T es continuo. Sugerencia: use el Teorema del Gráfico Cerrado.
- 2.2) Sea E un espacio vectorial con producto interno y $T: E \to E$. Pruebe, considerando $\mathbb{K} = \mathbb{C}$, que si $\langle T(x), x \rangle = 0$ para todo $x \in E$, entonces T = 0.

Pregunta 3 (4 puntos)

Sea $M\subset E$ cerrado. Pruebe que $M\subset (M^\perp)^\perp$, y que si E es reflexivo, $M=(M^\perp)^\perp$.

Pregunta 4 (6 puntos)

- 4.1) Sea E un espacio con producto interno. Sean $S_1 = \{x_n : n \in \mathbb{N}\}$ y $S_2 = \{y_n : n \in \mathbb{N}\}$ conjuntos ortonormales en E tales que $[x_1, \dots, x_n] = [y_1, \dots, y_n]$ para cada $n \in \mathbb{N}$. Muestre que existe una sucesión (a_n) de escalares con módulo 1 tales que $y_n = a_n x_n$.
- 4.2) Analice si el cerrado $E=\{f\in C[0,1]:\ f(0)=0\}\subset C[0,1]$ es o no reflexivo. Considere la norma $||\cdot||_{\infty}$.
- 4.3) Sea E un espacio normado. Pruebe que, dados $\varphi_1, \varphi_2 \in E', \varphi_1 \neq \varphi_2$, existe $f \in J_E(E)$ tal que $f(\varphi_1) \neq f(\varphi_2)$.

Profesor del curso: Percy Fernández.

San Miguel, 14 de junio del 2024.