엑셀을 활용한 데이터분석

2023년도 1학기

조상구

Chapter 1. 엑셀 기초 익히기

- 데이터 분석과 엑셀
- 엑셀 기본 기능

회사에서 했던 일 그리고 할 일

보고서 Word 작성 Office 발표 PowerPoint 데이터 Excel 분석 별명은 Spread sheet 데이터는 Tabular data

왜 엑셀을 배우나?

• 엑셀과 파이썬은 무슨 관계인가?

데이터 분석

빅데이터

- 수집가공
- 분석
- 예측

Guido van Rossum

ChatGPT로 엑셀 업무 자동화하기(Python 코드 생성)

ChatGPT로 엑셀 업무 자동화하기 (Python 코드 자동 생성)

https://www.youtube.com/watch?v=5OBZnBpcYiU

실제 활용 사례

https://www.youtube.com/watch?v=rJU54l6-VTk

과목명: 엑셀을 활용한 데이터분석 - I

- 빅데이터 분석 프로세스를 이해하고 분석 수행에 필요한 엑셀의 기본적인 사용법과 주요 기능 들을 익혀 데이터 분석에 활용할 수 있다.
- 기초 통계 분석을 이해하고 탐색적 분석(Explanatory Data Analysis)을 할 수 있다.
- 데이터 시각화(Data Visualization)를 할 수 있다.
- 엑셀로 데이터를 분석할 때 발생하는 문제에 대한 해결 방안(Problem based learning capability)을 갖는다.
- OLAP(On-Line Analytical Processing)을 이해한다.

강의 계획

주차	요일	주제	강의 내용
1	3.09(목)	데이터 분석 기초	데이터분석, 엑셀 기본기능(서식지정)
2	3.16(목)	데이터 분석을 위한 기능들	셀 참조와 표 작성, 조건부 서식
3	3.23(목)	빅데이터 집계	빅데이터 집계
4	3.30(목)	빅데이터 분석	빅데이터 분석
5	4.06(목)	기술 통계량 분석 - I, 평가1	평균, 분산, 상관관계, 왜도, 첨도
6	4.13(목)	기술 통계량 분석 - ॥	t 검정, ANOVA, chi square 검정 등
7	4.20(목)	엑셀 함수	다양한 함수 이해
8	5.04(목)	데이터 필터링	원하는 자료의 필터링
9	5.11(목)	데이터 시각화	차트를 이용한 정보의 시각화
10	5.18(목)	데이터 시각화, 평가 2	다양한 시각화 이해
11	5.25(목)	데이터변환 및 문제해결	결측치 대체 및 이상치 제거 처리 방안
12	6.01(목)	탐색적 분석(EDA)	분석계획 수립, 함수와 파생변수 생성, 피봇과 차트를 이용한 시각화 응용
13	6.08(목)	업무자동화와 매크로	반복적인 작업의 자동화를 위한 엑셀 매크로
14	6.15(목)	파워 쿼리 활용	Power Query, 자동화 및 대용량 데이터 처리(DBMS와 SQL)
15	6.22(목)	OLAP 이해, 평가3	Power BI Desktop: OLAP, Dashboard 만들기, 지도와 연계

수업 내용

• 주요 수업 내용

- MS Excel의 기본 기능을 익히고 데이터 처리와 간단한 시각화 및 매크로/VBA를 실습한다.
 - 데이터 분석에 활용하는 주요 기능인 엑셀표, 필터, 피봇, 챠트 기능 학습
 - 엑셀의 다양한 함수를 이용하여 데이터 변환하는 방법을 실습
 - 파생변수를 만드는 방법을 실습
 - 자동화를 위한 매크로 작성과 실습
- 엑셀과 같이 제공되는 새로운 기술인 Power Query, Power BI Desktop을 활용 이해

Chapter 1. 엑셀 기초 익히기

- 데이터 분석과 엑셀
- 실습과제

당신은 분석전문가인가?

우리는 이미 분석전문가다.

아주 어려서 부터 ...

수업을 선택할 때 ...

배우자를 선택할 때 ...

데이터 분석은 문제해결을 목적

분석 프로세스

♥ 데이터 마이닝 프로세스 표준절차(Cross-industry standard process for data mining)

https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining

데이터과학 프로세스

https://en.wikipedia.org/wiki/Data_analysis

I 빅데이터과 I

물리적 관점의 데이터분석

데이터 수집 데이터 저장 데이터 분석

실행

15

물리적 관점의 데이터분석

데이터 수집 데이터 저장 데이터 분석

실행

기술(Descriptive)

진단(Diagnostic)

예측(Predictive)

처방(Prescriptive)

과거 현황 설명(what happened)

왜 그랬는지(why)

미래에는 무슨 일이(what will happen)

어떤 처방, 해결책(how)

https://public.dhe.ibm.com/software/data/sw-library/analytics/trust-your-data-with-ibm-business-analytics/

Data driven 의사결정 유형

데이터에 존재하는 규칙성(regularities)을 발견하기 위한 데이터분석(Data analytic)의 유형은 Descriptive, Diagnostic, Predictive, Prescriptive 등 4가지

https://www.analyticsinsight.net/four-types-of-business-analytics-to-know/

어떤 도구가 좋은 것일까?

- 다양한 기능
 - 목적을 달성하는데 필요한
- 사용이 편리한
 - 내가 익숙한
 - 내가 쓸 줄 아는
- 쉽게 구할 수 있는
 - 내 컴퓨터
 - 다른사람 컴퓨터
 - 나의 다른 기기(스마트폰)
 - 클라우드에서 실행되는
- 커뮤니티 활용 가능성
 - 나의 문제를 같이 풀어 줄 많은 사람

데이터분석가, 엔지니어를 위한 사이트(네트워크)

https://www.kaggle.com/

Kaggle을 사용하는 분석가들의 도구

https://www.kaggle.co m/headsortails/whatwe-do-in-the-kernels-akaggle-survey-story

Excel, R, Python other tools?

https://towardsdatascience.com/comparison-of-data-analysis-tools-excel-r-python-and-bi-tools-6c4685a8ea6f

주교재

Q Google 검색 또는 URL 입력

부교재

https://support.microsoft.com/en-us/office/excel-video-training-9bc05390-e94c-46af-a5b3-d7c22f6990bb

Excel video training

23 | 빅데이터과 |

1. 우리가 이미 알고 있는 데이터

■ 스프레드시트(spreadsheet)

- Tabular data
- 머신러닝에 적합한 데이터 형태

\ \ \	Α	В	С	D	
1		Column 1	Column 2	Column 3	Ī
2	Row 1	2.2	2.3	1	
3	Row 2	2.3	2.6	0	
4	Row 3	2.1	2	1	

Column

- Single type: 몸무게, 키, 가격
- 특정 컬럼내의 데이터는 동일 척도(scale), 서로 상대적인 의미

Row

■ 관측대상(Observation, 사람)으로 행이 많으면 샘플의 개수가 많아지게 된다.

Cell

- 특정 row와 columns에 해당되는 single value
- 수치형(Numeric type, 키, 몸무게 등)과 범주형(Categorical type, 국가명, 성별, 색깔명 등)으로 구분

2. Statistical Learning 관점의 데이터

■ 통계논리/추론의 관점

\rightarrow	Α	В	С	
1	X1	X2	Υ	
2	2.2	2.3	1	
3	2.3	2.6	0	
4	2.1	2	1	
5				

- Input/Output
 - Output = f(Input)
- Input variable/Output variable
- Independent/Dependent variable
 - 독립변수와 종속변수
 - Dependent variable = f(Independent variable)
 - Y = f(X1, X2), Y = f(X)
- Matrix/Vector
 - Vector = f(Matrix)

3. Computer Science 관점의 데이터

■ 통계논리/추론의 관점

\rightarrow	Α	В	С	D
1		Attribute 1	Attribute 2	Output Attribute
2	Instance 1	2.2	2.3	1
3	Instance 2	2.3	2.6	0
4	Instance 3	2.1	2	1
- 5				

- Attributes(속성) = Features(특성)
- Instances(사례)
- 주로 이미지(images), 오디오(audio)와 영상(video) 자료에 적용 자율주행, CCTV탐지, 홍체인식 등
 - Output = program(Input Features)
 - Predictions = program(Instances)

4. Mathemetics 관점의 데이터

- 수학자의 관점
- 선형대수(Linear algebra)
- 기하(Geometry)와 벡터(Vector)
- 행렬과 벡터(Matrix and Vector)
 - 벡터를 다른 곳으로 여행보내주는 행렬

Scalar 24

Matrix
[6 4 24]
1 -9 8]
row(s) × column(s)

Chapter 1. 엑셀 기초 익히기

- 데이터 분석과 엑셀
- 엑셀 기본 기능

Tabular Data

ID	TOTAL ACTIONS	ACTION 1	ACTION 2	TOTAL TIME
10	120	80	40	0:50:05
11	255	130	125	1:40:03
12	180	100	80	1:20:19
13	305	205	100	1:58:58
14	71	50	21	0:35:41
15	418	310	108	2:08:18
16	222	150	72	1:32:58

Events Data

분석 도구로서의 엑셀

- 보고서 작성
- 데이터 저장 데이터베이스
- 계산
- Data cleaning
- EDA(시각화)
- 알고리즘원리 + 교육 목적
- 통계분석
- 시뮬레이션 + 자동화
- 최적화

같이 생각해 볼 문제

- 엑셀을 효율적으로 이용하기
 - 어떤 작업을 하더라도 빠르게 쉽게 하는 방법은 없을까?
 - 원하는 곳으로 빠르게 이동하는 방법은?
 - 여러 셀을 동시에 선택하는 방법은?
 - 메뉴 탭을 누르지 않고 빠르게 버튼을 누르는 방법은 없나?
- 서식
 - 엑셀은 누구를 위한 도구인가? 인간 vs. 컴퓨터
 - 빠르게 인지할 수 있게 하는 방법은?
 - 정돈된 느낌을 주도록 하려면?

주요 메뉴 / 리본 메뉴

눈여겨 볼만한 기능 - 빠른 실행 도구 모음에 추가

눈여겨 볼만한 기능

33

눈여겨 볼만한 기능 - 삽입 - 아이콘/그림/3D모델

눈여겨 볼만한 기능 - 삽입 - 스파크라인

실습 주요 내용

- •빠르게 이동하기
- •쉽게 복사하기

단축키+빠른 실행 도구 모음

- 화면 축소/확대
 - 메뉴,마우스,터치패드
- 셀이동
 - A1 (home-key, 주소창)
 - Range의 각 끝점(ctrl + 화살표)
- 선택
 - Range 전체선택
 - ctrl-A, ctrl-shift-end
 - Range내 한 행, 열
 - Sheet 전체선택
 - Sheet 한 행, 열 (ctrl-sp, shift-sp)
 - 떨어진 컬럼, 셀 (ctrl + mouse click)
 - · 특수한 셀 찾아 선택 (홈 --> 선택)

- 복사/이동/삭제
 - ctrl-c, v
 - 마우스 이용
 - 선택하여 붙여넣기 / 행렬 바 꿈
- 입력
 - 선택한 셀 한꺼번에 입력하 기
 - 채우기 핸들러
 - · 숫자 → 문자로 입력
- Sheet간 이동
 - ctrl-pgdn, pgup
- 빠른 실행 도구 모음 만들기

■ 정수 1부터 100까지 더해보기를 엑셀로 해보자

10진수						2진수					
자리순서	3	2	1	0	10진법	자리순서	3	2	1	0	2진법
자리수 크기	1000	100	10	1	표현	자리수 크기	8	4	2	1	표현
example 1	0	0	0	1	1	example 1	0	0	0	0	0
example 2	0	0	1	0	10	example 2	0	0	0	1	1
example 3	0	1	0	0	100	example 3	0	0	1	0	2
example 4	1	0	0	0	1000	example 4	0	0	1	1	3
example 5	1	2	3	4	1234	example 5	0	1	0	0	4
example 6	1	9	7	6	1976	example 6	0	1	0	1	5
						example 7	0	1	1	0	6
1 H -1 L n	LIIC	> – ı				example 8	0	1	1	1	7

십진법과 이진법을 엑셀의 기본기능만 사용하여 만드는 것과 함수를 이용하여 만들어 보자

■ 코딩을 처음부터 할 것인가? Library를 불러 사용할 것인가? —————

바닥부터 만들기 (from scratch) 직접 밥을 만들기

함수를 이용하여 만들기(function) 햇밥

■ 상대주소와 절대주소를 사용하여 구구단을 만들어 보자

	Α	В	С	D	Е	F	G	Н	1
1	열1	2	3	4	5	6	7	8	9 🔻
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

■ 과거 데이터(X, Y)의 패턴을 가장 잘 설명해주는 직선을 구하는 공식에 따라 그 직선의 절편과 기울기를 구해보자

-															
4	Α	В	С	D	E	F	G	Н	1	.	J 1	K ι	М	N	0
1	X	Υ	X*Y	X의 제곱	예측 값, f(X)							·			
2	20	21	420	400	24,93							Υ			
3	25	30	750	625	27.78		45								
4	36	36	1,296	1,296	34,07									•	
5	33	35	1,155	1,089	32,36		40								
6	47	37	1,739	2,209	40.36									•	
7	49	42	2,058	2,401	41.50		35					• /			
8			7,418	8,020			20								
9	X 평균	Y평균					30				•/				
10	35	34					25								
11 12															
12							20			•					
13	직선 구하는	공식(알고리	즘)		(//) 12 - 2 5 4										
14		_	n		f(X) = 13 + 0.6*X	10	15								
15	\geq	$(X_i - \overline{X})(X_i - \overline{X})$	$(Y_i - \overline{Y}) \sum$	$X_i Y_i - n \overline{X} \overline{Y}$	절면 (Intercept)	13									
16	$\hat{\beta}_1 = \frac{i=1}{n}$	n	$ = \frac{i=1}{n}$		기눌기(Slope)	0.6	10								
10		$\sum (X_i - \bar{X})$	$(\overline{z})^2$	$(X_i^2 - n\overline{X}^2)$	절편(intercept) 기울기(slope)										
10		i=1	i=1				5								
13 14 15 16 17 18 19 20 21															
21	$\hat{\beta}_0 = \overline{Y}$ -	$-\hat{\beta}_1 \overline{X}$					0		10	20		30	40	50	60
	-						0		10	20		30	40	50	60

ChatGPT로 엑셀 VBA 코드 작성하기

ChatGPT를 이용해 Excel에서 두 숫자 사이에 일정한 간격으로 원하는 개수만큼 숫자를 채워 넣는 VBA코드 작성하기https://www.youtube.com/watch?v=T_NN0OQ9bSo

