Corso di Logica 2.4 – Cenni di Cardinalità

Docenti: Alessandro Andretta, Luca Motto Ros, Matteo Viale

Dipartimento di Matematica Università di Torino

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

1 / 45

Quantità

Se vogliamo confrontare due insiemi *finiti*, possiamo determinare quale sia il più grande semplicemente contandone gli elementi.

Cosa possiamo dire se vogliamo invece confrontare due insiemi infiniti?

Ad esempio, è più grande l'insieme \mathbb{N} oppure l'insieme \mathbb{Q} ? E che dire di \mathbb{Z} e \mathbb{R} ? L'insieme di tutti i programmi che si possono scrivere in Java è più o meno grande dell'insieme \mathbb{N} ?

Certamente non possiamo pensare di "contarne" gli elementi, visto che sono insiemi infiniti...

Abbiamo bisogno di una tecnica diversa per stabilire **quanti** elementi contiene un insieme!

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

In questa immagine ci sono più punti rossi o più punti blu?

Quasi tutti rispondono (correttamente) che ci sono più punti blu che rossi, perché ci sono 7 punti blu e solo 6 punti rossi.

Sembra che, nel caso finito, per determinare se un insieme contenga più elementi di un altro bisogni contare il numero di elementi e confrontare i due numeri così ottenuti...

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

3 / 45

In questa immagine ci sono più punti rossi o più punti blu?

Quasi nessuno riesce a rispondere in poco tempo: è molto difficile contare rapidamente il numero di punti ed è molto difficile non "perdere il conto" e fare errori. Proviamo a disporre gli stessi punti in un modo diverso...

In questa immagine ci sono più punti rossi o più punti blu?

Ora è facile rispondere: ci sono più punti rossi! La diversa disposizione ci permette di "accoppiare" gli elementi dei due insiemi (ovvero di stabilire una corrispondenza univoca) e di notare che ci sono 3 punti rossi in più.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

5 / 45

Questo piccolo esempio mostra chiaramente che per confrontare la grandezza (in termini di quantità di elementi) di due insiemi la cosa più naturale da fare è quella di tentare di stabilire una corrispondenza biunivoca tra i due insiemi: i due insiemi hanno lo stesso numero di elementi se e solo se esiste una biezione tra di essi.

Questo metodo, non richiedendo più di "contare" il numero di elementi, si può applicare senza alcun problema agli insiemi infiniti, e ci porta al concetto fondamentale di **cardinalità**.

Cardinalità

Definizione

Due insiemi X e Y hanno la stessa **cardinalità** se esiste una biezione $f\colon X\to Y$.

Scriveremo

$$X \approx Y$$

oppure

$$|X| = |Y|$$

per indicare che X e Y hanno la stessa **cardinalità**.

Esercizio

La relazione \approx è una relazione di equivalenza.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

7 / 45

Insiemi finiti e infiniti

Definizione

Un insieme è **finito** se e solo se è in biezione con $\{0, \ldots, n-1\}$ per qualche $n \in \mathbb{N}$ (dove poniamo $\{0, \ldots, n-1\} = \emptyset$ quando n = 0).

Se X è finito ed in biezione con $\{0,\ldots,n-1\}$ scriveremo

$$|X| = n$$
.

Un insieme che non è finito si dice **infinito**.

Osservazione

Se |X| = n e |Y| = m, allora $|X \times Y| = n \cdot m$.

Se inoltre $X \cap Y = \emptyset$, allora $|X \cup Y| = n + m$.

Ordine tra le cardinalità

Definizione

X si inietta in Y se esiste una iniezione $f \colon X \to Y$. In questo caso scriveremo

$$X \lesssim Y$$

oppure

$$|X| \leq |Y|$$
.

Scriveremo $X \prec Y$ (oppure |X| < |Y|) quando $X \lesssim Y$ ma $Y \not \gtrsim X$.

Esercizio

≾ è un preordine sugli insiemi (ossia è una relazione riflessiva e transitiva).

Osservazione

Se $X \approx Y$, allora $X \precsim Y$ e $Y \precsim X$. Infatti, $X \approx Y$ se esiste una biezione $f \colon X \to Y$: ma allora f stessa mostra anche che $X \precsim Y$, mentre $f^{-1} \colon Y \to X$, che è a sua volta una biezione, dimostra che $Y \precsim X$.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

9 / 45

Proposizione

Sia $X \neq \emptyset$. Allora $X \lesssim Y$ se e solo se c'è una suriezione $g: Y \to X$.

Quindi per dimostrare che $|X| \leq |Y|$ possiamo mostrare che esiste una iniezione da X in Y oppure, equivalentemente, che esiste una suriezione da Y su X.

Dimostrazione.

Sia $f: X \to Y$ iniettiva e fissiamo un arbitrario $x_0 \in X$. Allora possiamo definire una suriezione $g: Y \to X$ ponendo

$$g(y) = \begin{cases} f^{-1}(y) & \text{se } y \in f[X] = \{f(x) \mid x \in X\} \\ x_0 & \text{altrimenti.} \end{cases}$$

Viceversa, se $g\colon Y\to X$ è una suriezione, allora per ogni $x\in X$ si ha $g^{-1}(x)\neq\emptyset$. Quindi possiamo definire una funzione $f\colon X\to Y$ che scelga per ogni $x\in X$ un punto in $g^{-1}(x)$: tale funzione è necessariamente iniettiva.

II teorema di Cantor-Schröder-Bernstein

Abbiamo osservato che se $X \approx Y$, allora $X \lesssim Y$ e $Y \lesssim X$.

Dimostreremo ora che vale anche il viceversa: se $X \lesssim Y$ e $Y \lesssim X$, allora $X \approx Y$, ovvero \approx è la relazione d'equivalenza indotta dal preordine \lesssim .

Questo fatto non è per nulla ovvio:

Esempio

Siano X = [0; 1] e Y = (0; 1). Allora si ha che $(0; 1) \lesssim [0; 1]$ perché $(0; 1) \subseteq [0; 1]$. Inoltre, la funzione

$$f: [0;1] \to (0;1), \qquad x \mapsto \frac{x+1}{3}$$

è chiaramente iniettiva e dimostra che $[0;1] \lesssim (0;1)$.

Tuttavia, non è così immediato vedere come si possa definire una *biezione* tra [0;1] e (0;1). (Dove mandiamo gli estremi 0 e 1 di X?)

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

11 / 45

II teorema di Cantor-Schröder-Bernstein

La relazione d'equivalenza associata a \lesssim è proprio \approx .

Teorema (Cantor-Schröder-Bernstein)

Se $X \lesssim Y$ e $Y \lesssim X$ allora $X \approx Y$.

In altre parole $|X| \leq |Y| \leq |X|$ se e solo se |X| = |Y|.

Idea della dimostrazione

Siano $f \colon X \to Y$ e $g \colon Y \to X$ iniezioni. Definiamo

$$X_0 = X$$

$$Y_0 = Y$$

$$X_{n+1} = g[Y_n]$$

$$Y_{n+1} = f[X_n]$$

Siano $X_{\infty} = \bigcap_{n \in \mathbb{N}} X_n$ e $Y_{\infty} = \bigcap_{n \in \mathbb{N}} Y_n$. Definiamo

$$A = X_{\infty} \cup \bigcup_{i \in \mathbb{N}} (X_{2i} \setminus X_{2i+1})$$
 e $B = \bigcup_{i \in \mathbb{N}} (Y_{2i} \setminus Y_{2i+1}).$

(continua)

Idea della dimostrazione. (continuazione).

Si verifica che (la restrizione ad A di) f è una biezione tra A e $Y\setminus B$, mentre (la restrizione a B di) g è una biezione tra B e $X\setminus A$. Allora la funzione

$$h \colon X \to Y, \qquad x \mapsto \begin{cases} f(x) & \text{se } x \in A \\ g^{-1}(x) & \text{se } x \in X \setminus A \end{cases}$$

è una biezione.

Negli (Approfondimenti) si trova una dimostrazione completa e dettagliata del teorema di Cantor-Schröder-Bernstein.

Corollario

Se $X \subseteq Y$ e $Y \lesssim X$ allora $X \approx Y$.

Dimostrazione.

Se $X\subseteq Y$ allora l'iniezione $f\colon X\to Y$ definita da f(x)=x per ogni $x\in X$ mostra che $X\precsim Y$. Dall'ipotesi $Y\precsim X$ e dal teorema di Cantor-Schröder-Bernstein segue che $X\approx Y$.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

13 / 45

Insiemi infiniti

Proposizione

X è infinito se e solo se $\mathbb{N} \lesssim X$. In particolare \mathbb{N} è il più piccolo insieme infinito: se X è infinito $|\mathbb{N}| \leq |X|$.

Dimostrazione.

Se $\mathbb{N} \lesssim X$, X è chiaramente infinito poiché non esiste una suriezione di $\{0,\ldots,n-1\}$ con \mathbb{N} , e quindi a maggior ragione con X, per ogni $n\in\mathbb{N}$.

(continua)

Dimostrazione (continuazione).

Viceversa, assumiamo che X sia infinito.

X è infinito, quindi esiste $a_1 \in X \setminus \{a_0\}$.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

15 / 45

Dimostrazione (continuazione).

Viceversa, assumiamo che \boldsymbol{X} sia infinito.

X è infinito, quindi esiste $a_2 \in X \setminus \{a_0, a_1\}$.

Dimostrazione (continuazione).

Viceversa, assumiamo che X sia infinito.

X è infinito, quindi esiste $a_3 \in X \setminus \{a_0, a_1, a_2\}$.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

15 / 45

Dimostrazione (continuazione).

Viceversa, assumiamo che \boldsymbol{X} sia infinito.

La funzione f così definita è un'iniezione che testimonia $\mathbb{N} \precsim X$.

Due insiemi finiti sono in biezione se e solo se hanno lo stesso numero di elementi. In particolare, non esiste alcuna iniezione (quindi nemmeno una biezione) tra un insieme finito e un suo sottoinsieme proprio.

Questo segue dal

Principio dei cassetti

Se $m, n \in \mathbb{N}$ con m > n, in qualunque modo si dispongano m oggetti in n cassetti, ci sarà almeno un cassetto che contiene più di un oggetto.

Una riformulazione più "matematica" è la seguente:

Sia X un insieme finito con m elementi e Y un insieme finito con n elementi. Se m>n, allora per ogni $f\colon X\to Y$ esistono $x,x'\in X$ distinti tali che f(x)=f(x').

Nel nostro caso: se X è un qualunque insieme finito con m elementi e Y un suo sottoinsieme proprio, allora il numero n di elementi di Y è strettamente minore di m: quindi non ci può essere nessuna iniezione (e tantomeno una biezione) $f \colon X \to Y$.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

16 / 45

Al contrario, la funzione f definita da f(n)=n+1 è una biezione tra $\mathbb N$ ed il suo sottoinsieme proprio $\{n\in\mathbb N\mid n>0\}$ (più in generale: $\mathbb N$ è in biezione con ogni suo sottoinsieme infinito). Questa è una caratteristica degli insiemi infiniti:

Proposizione

Un insieme X è infinito se e solo se esiste $Y \subset X$ tale che $Y \approx X$.

Dimostrazione.

Se X ha n elementi e $Y\subset X$, non si può avere $Y\approx X$ perché Y ha al più n-1 elementi. Se X è infinito, allora esiste una iniezione $j\colon \mathbb{N}\to X$. Sia $Y=X\setminus\{j(0)\}$. Allora $Y\subset X$ e si ottiene una biezione $f\colon X\to Y$ ponendo

$$f(x) = \begin{cases} x & \text{se } x \notin \text{rng}(j) \\ j(n+1) & \text{se } x = j(n). \end{cases}$$

Insiemi numerabili

Definizione

Un insieme si dice **numerabile** se è in biezione con \mathbb{N} , ossia se la sua cardinalità è la più piccola tra quelle infinite.

Osservazione

In particolare se $f\colon \mathbb{N} \to X$ è suriettiva, allora X è finito oppure numerabile. (Infatti, dall'esistenza di f segue che $X \lesssim \mathbb{N}$. Se X è infinito, si ha anche $\mathbb{N} \lesssim X$, per cui $X \approx \mathbb{N}$ per il teorema di Cantor-Schröder-Bernstein.)

Per dimostrare che un insieme X è numerabile è sufficiente **enumerare** X, ovvero elencare i suoi elementi in una successione infinita

$$x_0, x_1, x_2, \ldots, x_n, \ldots$$

in cui ogni elemento di X compaia una e una sola volta. Infatti, una tale lista definisce in realtà la biezione

$$f: \mathbb{N} \to X, \qquad n \mapsto x_n.$$

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

18 / 45

Esempio

La funzione $f: \mathbb{Z} \to \mathbb{N}$ definita da f(z) = 2z se $z \ge 0$ e f(z) = -2z - 1 se z < 0 è una biezione.

Quindi \mathbb{Z} è numerabile.

La sua inversa dà la seguente enumerazione di \mathbb{Z} :

$$0, -1, 1, -2, 2, -3, 3, \ldots, -n, n, \ldots$$

$\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$

Dimostriamo ora che: $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.

Dimostrazione 1.

L'enumerazione diagonale o triangolare è ottenuta enumerando \mathbb{N}^2 secondo l'ordinamento

$$(x,y) \lhd_T (x',y') \leftrightarrow x + y < x' + y' \lor [x + y = x' + y' \land x < x'],$$

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

20 / 45

Dimostrazione 2.

L'enumerazione quadrata è ottenuta enumerando \mathbb{N}^2 secondo l'ordinamento

$$(x,y) \lhd_Q (x',y') \leftrightarrow \left(\max(x,y) < \max(x',y') \right.$$
$$\vee \left[\max(x,y) = \max(x',y') \land (x < x' \lor [x = x' \land y < y'])] \right),$$

Dimostrazione 3.

Abbiamo già dimostrato che la funzione

$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \qquad (n,m) \mapsto 2^n \cdot (2m+1) - 1$$

è una biezione.

Osservazione

Più in generale si dimostra che, a differenza di ciò che succede per gli insiemi finiti, per ogni insieme X infinito si ha $|X \times X| = |X|$. La dimostrazione di questo risultato però non è per nulla banale.

Corollario

 $|\mathbb{N}^n| = |\mathbb{N}|$ per ogni $n \geq 1$. Analogamente, $|X^n| = |X|$ per ogni X infinito.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

22 / 45

Vediamo come si costruisce una biezione tra \mathbb{N}^3 e \mathbb{N} . Sia $h_2 \colon \mathbb{N}^2 \to \mathbb{N}$ una qualunque biezione. Definiamo $h_3 \colon \mathbb{N}^3 \to \mathbb{N}$ ponendo

$$h_3(n, m, k) = h_2(h_2(n, m), k)$$

Si verifica facilmente che la funzione h_3 è una biezione. Infatti, h_3 si può scrivere come $h_2 \circ (h_2 \times \mathrm{Id})$, dove Id è la funzione identità su \mathbb{N} .

Più in generale, per ogni n > 2 la funzione

$$h_n: \mathbb{N}^n \to \mathbb{N}, \qquad (x_1, \dots, x_n) \mapsto h_2(h_2(\dots h_2(h_2(x_1, x_2), x_3), \dots), x_n)$$

è una biezione.

Si può verificare che $h_{n+1} = h_2 \circ (h_n \times \mathrm{Id})$ per ogni $n \in \mathbb{N}$.

\mathbb{Q} è numerabile, ovvero $|\mathbb{Q}| = |\mathbb{N}|$

 $|\mathbb{N}| \leq |\mathbb{Q}|$ dato che $\mathbb{N} \subseteq \mathbb{Q}$.

La funzione

$$g: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}, \qquad (n,m) \mapsto \frac{n}{m+1}$$

è una suriezione perché ogni numero razionale q si può sempre rappresentare come rapporto tra due numeri interi n/(m+1) con denominatore (m+1) strettamente positivo. Perciò $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{N}|$.

Attenzione! g non è iniettiva, ad esempio $g(-2,2)=-\frac{2}{3}=g(-4,5)$.

Fatto cruciale

Poiché il prodotto di due biezioni è ancora una biezione, se |X|=|Y| e |Z|=|W| allora $|X\times Z|=|Y\times W|$.

Quindi $|\mathbb{N}| \leq |\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{N}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, da cui $|\mathbb{N}| = |\mathbb{Q}|$.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

24 / 45

$\mathbb{N}^{<\mathbb{N}}$ è numerabile

Ricordiamo che $\mathbb{N}^{<\mathbb{N}}$ è l'insieme di tutte le sequenze finite di numeri naturali, ovvero $\mathbb{N}^{<\mathbb{N}} = \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$ (con la solita convenzione che $\mathbb{N}^0 = \{\varepsilon\}$, dove ε è l'unica sequenza vuota).

Proposizione

$$|\mathbb{N}^{<\mathbb{N}}| = |\mathbb{N}|.$$

Per il teorema di Cantor-Schröder-Bernstein, per ottenere una biezione tra $\mathbb{N}^{<\mathbb{N}}$ ed \mathbb{N} è sufficiente dimostrare che $\mathbb{N} \lesssim \mathbb{N}^{<\mathbb{N}}$ e $\mathbb{N}^{<\mathbb{N}} \lesssim \mathbb{N}$.

La funzione

$$g: \mathbb{N} \to \mathbb{N}^{<\mathbb{N}}, \qquad n \mapsto \langle n \rangle$$

è chiaramente iniettiva, quindi $\mathbb{N} \lesssim \mathbb{N}^{<\mathbb{N}}$.

Per definire una funzione iniettiva $f \colon \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}$ procediamo nel modo seguente:

Sia $\langle {m p}_n \rangle_{n \in \mathbb{N}}$ l'enumerazione di tutti i numeri primi, cioè ${m p}_0=2$, ${m p}_1=3$, ${m p}_2=5$, . . .

Data una sequenza non vuota $s=\langle m_0,m_1,\ldots,m_k\rangle\in\mathbb{N}^{<\mathbb{N}}$ costruiamo il numero non nullo

$$f(s) = \mathbf{p}_0^{m_0+1} \cdot \mathbf{p}_1^{m_1+1} \cdots \mathbf{p}_k^{m_k+1}$$

e poniamo $f(\varepsilon)=0$. Per la fattorizzazione unica, la funzione $f\colon \mathbb{N}^{<\mathbb{N}}\to \mathbb{N}$ è iniettiva.

Osservazione

Se avessimo posto semplicemente $f(s) = p_0^{m_0} \cdot p_1^{m_1} \cdots p_k^{m_k}$ la funzione non sarebbe stata iniettiva perché ad esemplo

$$f(\langle 0 \rangle) = 2^0 = 1 = 2^0 \cdot 3^0 = f(\langle 0, 0 \rangle).$$

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

26 / 45

Sequenze finite

Più in generale, dato un insieme X consideriamo l'insieme $X^{<\mathbb{N}} = \bigcup_{n \in \mathbb{N}} X^n$ di tutte le sequenze finite a valori in X. Abbiamo visto che se X è infinito allora $X^{<\mathbb{N}}$ è infinito, poiché il suo sottoinsieme $X^1 = \{\langle x \rangle \mid x \in X\}$ è in biezione con X, e quindi è esso stesso infinito.

Se $X \neq \emptyset$ l'insieme $X^{<\mathbb{N}}$ è infinito (indipendentemente dal fatto che X sia finito o infinito).

Infatti, dato qualunque $a \in X$ si può considerare l'iniezione

$$f \colon \mathbb{N} \to X^{<\mathbb{N}}, \qquad n \mapsto \langle \underbrace{a, a, \dots, a}_{n \text{ volte}} \rangle.$$

Esercizio 1

Dimostrare che se X è finito allora per ogni $n \in \mathbb{N}$ l'insieme X^n è finito. Quanti elementi ha X^n ?

Cardinalità dell'insieme delle parti $\mathfrak{P}(X)$

Sia X un insieme non vuoto. Ricordiamo che 2^X è l'insieme di tutte le funzioni da X in $\{0,1\}$, e che è in biezione con l'insieme delle parti $\mathcal{P}(X)$ di X. In particolare, ne segue che se X è finito e ha n elementi allora $\mathcal{P}(X)$ ha 2^n elementi, da cui

$$|X| < |\mathcal{P}(X)|$$
.

Dimostreremo ora che questa proprietà continua a valere anche quando ${\cal X}$ è infinito.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

28 / 45

Il teorema di Cantor

Chiaramente $X \lesssim \mathcal{P}(X)$ poiché $X \to \mathcal{P}(X)$, $x \mapsto \{x\}$ è iniettiva.

Teorema (Cantor)

Non esiste alcuna suriezione da X su $\mathfrak{P}(X)$. Quindi $\mathfrak{P}(X) \not \subset X$.

Dimostrazione.

Supponiamo per assurdo che esista una suriezione $g\colon X \to \mathcal{P}(X)$ e sia

$$Y = \{ x \in X \mid x \notin g(x) \}.$$

Fissiamo un $\bar{x} \in X$ tale che $g(\bar{x}) = Y$. Allora

$$\bar{x} \in Y$$
 se e solo se $\bar{x} \notin q(\bar{x}) = Y$,

contraddizione.

Quindi per ogni insieme X si ha $|X| < |\mathcal{P}(X)|$.

Alcune osservazioni

In particolare $\mathcal{P}(\mathbb{N})$ non è in biezione con \mathbb{N} , ovvero $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$, e lo stesso vale quando \mathbb{N} viene sostituito da \mathbb{Z} , \mathbb{Q} , e così via.

Inoltre, vale il fatto seguente:

Ogni iniezione (suriezione, biezione) $f: X \to Y$ induce in maniera canonica la funzione iniettiva (suriettiva, biettiva)

$$\mathcal{P}(X) \to \mathcal{P}(Y), \quad A \mapsto f[A] = \{f(x) \mid x \in A\}$$

Di conseguenza

$$|\mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{Z})| = |\mathcal{P}(\mathbb{Q})|.$$

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

30 / 45

$|\mathbb{N}| < |\mathbb{R}|$

Teorema

 $|\mathbb{R}| = |\mathcal{P}(\mathbb{N})|$. In particolare, $|\mathbb{N}| = |\mathbb{Q}| < |\mathbb{R}|$.

Poiché

$$|2^{\mathbb{N}}| = |\mathcal{P}(\mathbb{N})| = |\mathcal{P}(\mathbb{Q})|,$$

è sufficiente dimostrare che $2^{\mathbb{N}} \lesssim \mathbb{R}$ e $\mathbb{R} \lesssim \mathcal{P}(\mathbb{Q})$.

Data $f \in 2^{\mathbb{N}}$, sia x_f il numero reale con espansione decimale

$$0, n_0 n_1 n_2 \dots$$

dove $n_i=f(i)+1$. Chiaramente $x_f\in(0;1)$ e se $f,f'\in2^{\mathbb{N}}$ sono distinte allora $x_f\neq x_{f'}$. Quindi la funzione

$$2^{\mathbb{N}} \to (0;1), \qquad f \mapsto x_f$$

dimostra che $2^{\mathbb{N}} \lesssim (0;1) \subseteq \mathbb{R}$.

Per dimostrare che $\mathbb{R} \lesssim \mathcal{P}(\mathbb{Q})$, utilizziamo il seguente

Fatto

I razionali sono densi in $\mathbb R$, ovvero se $x,y\in\mathbb R$ sono tali che x< y allora esiste $q\in\mathbb Q$ tale che

$$x < q < y$$
.

Consideriamo la funzione

$$\mathbb{R} \to \mathcal{P}(\mathbb{Q}), \qquad r \mapsto A_r = \{ q \in \mathbb{Q} \mid q < r \}.$$

Per la densità dei razionali in \mathbb{R} , tale funzione è iniettiva: se r < r' allora preso $q \in \mathbb{Q}$ tale che r < q < r' si ha che $q \in A_{r'} \setminus A_r$. Quindi $\mathbb{R} \lesssim \mathcal{P}(\mathbb{Q})$.

Questo conclude la dimostrazione del teorema, ovvero del fatto che

$$\mathbb{R} \approx \mathcal{P}(\mathbb{N}).$$

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

32 / 45

Alcune osservazioni

Si ricordi che nella prima parte abbiamo in realtà dimostrato che $2^{\mathbb{N}} \precsim (0;1)$. Poiché ora abbiamo anche che $\mathbb{R} \approx \mathcal{P}(\mathbb{N}) \approx 2^{\mathbb{N}}$, questo vuol dire che $\mathbb{R} \precsim (0;1)$. Ma poiché $(0;1) \subseteq \mathbb{R}$, si ha che

$$\mathbb{R} \approx (0;1),$$

ovvero che l'intera retta reale $\mathbb R$ e l'intervallo aperto (0;1) hanno lo stesso numero di punti.

Corollario

Per ogni $a, b \in \mathbb{R}$ con a < b si ha che

$$\mathbb{R} \approx [a;b] \approx [a;b) \approx (a;b] \approx (a;b).$$

Alcune osservazioni

Il fatto che

$$(0;1) \approx \mathbb{R}$$

può essere anche dimostrato geometricamente utilizzando la **proiezione stereografica**.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

34 / 45

Alcune osservazioni

Poiché $\mathbb R$ è un insieme infinito, si ha che

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} \approx \mathbb{R}$$
.

Quindi la retta reale e il piano cartesiano hanno lo stesso numero di punti!

C'è anche una semplice suriezione di $f\colon [0;1] \to [0;1] \times [0;1]$ che permette di ottenere in modo esplicito lo stesso risultato: f assegna (modulo la opportuna attenzione ai numeri che ammettono due espansioni decimali) al numero $x=0,x_0x_1x_2x_3\dots$ la coppia (y,z) dove

$$y = 0, x_0 x_2 x_4 x_6 \dots x_{2i} \dots$$
 e $z = 0, x_1 x_3 x_5 x_7 x_9 \dots x_{2i+1} \dots$

Infatti, data qualunque coppia $(y,z)\in([0;1])^2$ con $y=0,y_0y_1,\ldots$ e $z=0,z_0z_1\ldots$ si ha f(x)=(y,z) con $x=0,y_0z_0y_1z_1\ldots$

Utilizzando il fatto che l'iniezione $\mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x,0)$ testimonia $\mathbb{R} \lesssim \mathbb{R}^2$, si ottiene quindi

$$\mathbb{R} \lesssim \mathbb{R} \times \mathbb{R} \approx [0;1] \times [0;1] \lesssim [0;1] \subseteq \mathbb{R}$$
.

Esercizi

Esercizio

Dimostrare che per ogni $n \geq 1$ si ha $\mathbb{R}^n \approx \mathbb{R}$. Spiegare perché da questo segue anche $[a;b] \approx [a;b]^n$ e $(a;b) \approx (a;b)^n$ per ogni $a,b \in \mathbb{R}$ tali che a < b.

Esercizio

Dimostrare che se Y è un insieme infinito e $X \neq \emptyset$ è tale che $|X| \leq |Y|$, allora

$$|X \cup Y| = |X \times Y| = |Y|.$$

Suggerimento. Utilizzare il fatto che, essendo Y infinito, si ha $|Y \times Y| = |Y|$.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

36 / 45

Esercizio

Dimostrare che date due circonferenze C_1, C_2 si ha $|C_1| = |C_2|$ e che $|C_1| = |\mathbb{R}|$.

Esercizio

Sia $\mathbb{N}^{\mathbb{N}}$ l'insieme di tutte le funzioni $f \colon \mathbb{N} \to \mathbb{N}$.

Dimostrare che la funzione

$$F \colon \mathbb{N}^{\mathbb{N}} \to \mathcal{P}(\mathbb{N} \times \mathbb{N}), \qquad f \mapsto \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid m = f(n)\}$$

è iniettiva.

2 Utilizzando quanto visto a lezione, dimostrare che

$$|\mathbb{N}^{\mathbb{N}}| = |\mathbb{R}|.$$

Esercizio

Dimostrare che gli insiemi

$$\left\{f\in\mathbb{N}^{\mathbb{N}}\mid f\text{ è iniettiva}\right\}$$

е

$$\left\{f\in\mathbb{N}^{\mathbb{N}}\mid f\text{ è suriettiva}\right\}$$

sono in biezione con $\mathbb{N}^{\mathbb{N}}$.

Concludere che anche l'insieme

$$\left\{f\in\mathbb{N}^{\mathbb{N}}\mid f\text{ è biettiva}\right\}$$

ha la stessa cardinalità di $\mathbb{N}^{\mathbb{N}}$.

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

38 / 45

Esercizio

Dimostrare che l'insieme di tutte le rette nel piano cartesiano è in biezione con \mathbb{R} .

Esercizio

Dimostrare che l'insieme delle sequenze binarie finite (ovvero l'insieme di tutte le sequenze finite di 0 e 1) è un insieme numerabile.

Esercizio

Più in generale, dimostrare che se X è finito o numerabile, allora $X^{<\mathbb{N}}$ è numerabile.

Sia X un insieme non vuoto. Una sequenza $s = \langle s_0, \ldots, s_n \rangle \in X^{<\mathbb{N}}$ contiene ripetizioni se in s c'è almeno un elemento ripetuto due volte, ovvero se esistono $0 \le i < j \le n$ tali che $s_i = s_j$. Se ciò non accade diciamo che s è senza ripetizioni.

Esercizio

Dimostrare che per ogni insieme X infinito, l'insieme

$$\left\{s \in X^{<\mathbb{N}} \mid s \text{ è senza ripetizioni}\right\}$$

è un insieme infinito. Dimostrare anche che se X è numerabile, allora anche l'insieme delle sequenze senza ripetizioni lo è.

Esercizio

Dimostrare che se invece X è finito, allora l'insieme delle sequenze $s \in X^{<\mathbb{N}}$ senza ripetizioni è un insieme finito. (Facoltativo: quanti elementi ha?)

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022–2023

40 / 45

Esercizio

Dimostrare che per ogni insieme X non vuoto, l'insieme

$$\left\{s \in X^{<\mathbb{N}} \mid s \text{ contiene ripetizioni}\right\}$$

è un insieme infinito, e che se X è numerabile allora anche l'insieme delle sequenze contenenti ripetizioni lo è.

Esercizio

Dimostrare che l'insieme di tutti i programmi che si possono scrivere in un dato linguaggio di programmazione è numerabile.

Approfondimenti

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022-2023

42 / 45

II teorema di Cantor-Schröder-Bernstein

Teorema (Cantor-Schröder-Bernstein)

Se $X \lesssim Y$ e $Y \lesssim X$ allora $X \approx Y$. In particolare, $|X| \leq |Y| \leq |X|$ se e solo se |X| = |Y|.

Dimostrazione.

Siano $f: X \to Y$ e $g: Y \to X$ iniezioni. Definiamo

$$X_0 = X$$

$$Y_0 = Y$$

$$X_{n+1} = g[Y_n]$$

$$Y_{n+1} = f[X_n]$$

Per definizione di Y_{n+1} , ciascuna funzione $f \upharpoonright X_i \colon X_i \to Y$ è iniettiva e ha range Y_{i+1} , ovvero è una biezione tra X_i e Y_{i+1} . Da questo segue che per ogni $i \in \mathbb{N}$ la funzione $f \upharpoonright (X_{2i} \setminus X_{2i+1}) \colon X_{2i} \setminus X_{2i+1} \to Y$ è una funzione iniettiva il cui range è esattamente $Y_{2i+1} \setminus Y_{2i+2}$, quindi è una biezione tra $X_{2i} \setminus X_{2i+1}$ e $Y_{2i+1} \setminus Y_{2i+2}$.

(continua)

Dimostrazione. (continuazione)

Similmente, si dimostra che per ogni $i \in \mathbb{N}$ la funzione $g \upharpoonright (Y_{2i} \setminus Y_{2i+1}) \colon Y_{2i} \setminus Y_{2i+1} \to X_{2i+1} \setminus X_{2i+2}$ è una biezione, per cui $g^{-1} \upharpoonright (X_{2i+1} \setminus X_{2i+2})$ è una biezione tra $X_{2i+1} \setminus X_{2i+2}$ e $Y_{2i} \setminus Y_{2i+1}$.

Siano $X_{\infty} = \bigcap_{n \in \mathbb{N}} X_n$ e $Y_{\infty} = \bigcap_{n \in \mathbb{N}} Y_n$. Mostriamo ora che la funzione $f \upharpoonright A_{\infty} \colon A_{\infty} \to Y$ ha range B_{∞} , ovvero è una biezione tra A_{∞} e B_{∞} . Se $x \in A_{\infty}$, allora $x \in X_n$ per ogni $n \in \mathbb{N}$, quindi per definizione di Y_{n+1} si ha $f(x) \in Y_{n+1}$ per ogni $n \in \mathbb{N}$, quindi $f(x) \in \bigcap_{n \in \mathbb{N}} Y_n = Y_{\infty}$ (il fatto che $f(x) \in Y_0$ è banale perché $Y_0 = Y$). Questo mostra che $\operatorname{rng}(f \upharpoonright X_{\infty}) \subseteq Y_{\infty}$. Viceversa, dato $y \in Y_{\infty}$ allora $y \in Y_{n+1}$ per ogni $n \in \mathbb{N}$. In particolare, poiché $y \in Y_1 = f[X_0] = \operatorname{rng}(f)$ esiste un unico (visto che f è iniettiva) $x \in X$ tale che f(x) = y. Inoltre, poiché $f^{-1}(Y_{n+1}) = X_n$, da $f(x) = y \in Y_{n+1}$ segue $x \in X_n$, perciò $x \in \bigcap_{n \in \mathbb{N}} X_n = X_{\infty}$. Dato che f(x) = y e $x \in X_{\infty}$, questo dimostra he $y \in \operatorname{rng}(f \upharpoonright X_{\infty})$. Dunque anche $Y_{\infty} \subseteq \operatorname{rng}(f \upharpoonright X_{\infty})$, e per il principio di doppia inclusione $f \upharpoonright X_{\infty} = Y_{\infty}$.

(continua)

Andretta, Motto Ros, Viale (Torino)

Cardinalità

AA 2022–2023

44 / 45

Dimostrazione. (continuazione).

Dunque abbiamo dimostrato che

- per ogni $i\in\mathbb{N}$, la funzione $f\upharpoonright (X_{2i}\setminus X_{2i+1})\colon X_{2i}\setminus X_{2i+1}\to Y$ è una biezione tra $X_{2i}\setminus X_{2i+1}$ e $Y_{2i+1}\setminus Y_{2i+2}$;
- per ogni $i \in \mathbb{N}$, la funzione $g^{-1} \upharpoonright (X_{2i+1} \setminus X_{2i+2})$ è una biezione tra $X_{2i+1} \setminus X_{2i+2}$ e $Y_{2i} \setminus Y_{2i+1}$;
- la funzione $f \upharpoonright A_{\infty} \colon A_{\infty} \to Y$ è una biezione tra A_{∞} e B_{∞} .

Quindi la funzione

$$h \colon X \to Y, \qquad x \mapsto \begin{cases} f(x) & \text{se } x \in X_{\infty} \\ f(x) & \text{se } x \in X_{2i} \setminus X_{2i+1} \text{ per qualche } i \in \mathbb{N} \\ g^{-1}(x) & \text{se } x \in X_{2i+1} \setminus X_{2i+2} \text{ per qualche } i \in \mathbb{N} \end{cases}$$

è una biezione tra X e Y.

Back