# Pedestrian activity in the City of Melbourne before and during COVID-19

3

Members: Huma Chaudhry, Prabhdeep Sandhu, James Akerman, (Mona Mansouri)

#### **Presentation Outline**

- Introduction
  - Background
  - Motivation
  - Research questions
- Dataset
- Data exploration and Cleanup
- Analysis Process
- Summary
- Findings and Limitations

#### Introduction:

#### **Background**

- The City of Melbourne has been recording hourly pedestrian activity within its region since at least 2009 via its pedestrian counting system.
- The system's stated aims include to
  - monitor retail activity in the city
  - inform decisions about urban planning and management
  - identify opportunities to improve city walkability and transport

#### **Motivation**

 We suspected pedestrian activity patterns in the City of Melbourne had changed since the arrival of COVID-19. About Council ~

About Melbourn

Home > About Melbourne > Research and statistics > City population

#### Pedestrian Counting System

The City of Melbourne's automated network of sensors provides information about pedestrian activity within the municipality.

Walking is important to a city - pedestrian activity is an

indication of a city's vibrancy and vitality. There is also a direct link between a city's economic prosperity and the safety and convenience of the pedestrian experience. Information from our pedestrian counting system can tell us how people use

different city locations at different times of day to better inform decision-making and plan for the future.

The data is available in our online visualisation tool. You can use this tool to:

- view a representation of pedestrian volume that compares each location on any given day and time
- . compare the average of the same day and time over the preceding four weeks or 52 weeks
- see the impact of various factors, such as major events or extreme weather conditions, on pedestrian activity in the city and compare the flow to short- and long-term averages
- · download the raw data for further analysis and visualisation.

#### Frequently asked questions

Pedestrian Counting System

### Our Research and Scope

- Hypothesis One: The overall pedestrian activity in the City of Melbourne had <u>decreased</u> since March 2020 when the first lockdown happened in Melbourne.
- Hypothesis Two: Pedestrian activity had <u>increased</u> after the first lockdown, but not to pre-pandemic levels (average of August 2019 to February 2020).
- Hypothesis Three: Pedestrian activity would increase as JobKeeper claims increased.
- **Hypothesis Four:** Pedestrian activity would <u>decrease</u> after JobKeeper was tapered.
- Hypothesis Five: Pedestrian activity <u>increases</u> as the number of Victorian full-time workers increases.

### **Datasets**

| Dataset Name                                                                         | Source                                                                                                           | Dataset description                                                                                                                 |  |  |  |  |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Pedestrian Counting System - Monthly (counts per hour)                               | https://data.melbourne.vic.gov.au/Tran<br>sport/Pedestrian-Counting-System-<br>Monthly-counts-per-hour/b2ak-trbp | Each row is a Total hourly sensor count of pedestrians.                                                                             |  |  |  |  |
| Pedestrian Counting System - Sensor Locations                                        | https://data.melbourne.vic.gov.au/Tran<br>sport/Pedestrian-Counting-System-<br>Sensor-Locations/h57g-5234        | This dataset contains status, location and directional information for each pedestrian sensor device installed throughout the city. |  |  |  |  |
| Labour force status by Sex,<br>Victoria - Trend, Seasonally<br>adjusted and Original | https://www.abs.gov.au/statistics/labour/employment-and-unemployment/labour-force-australia/aug-2021/6202005.xls | Victorian employment data for each month from February 1978 to August 2021.                                                         |  |  |  |  |
| Jobkeeper Postcode data                                                              | https://treasury.gov.au/coronavirus/jobk<br>eeper/data                                                           | Business JobKeeper per postcode per month for the duration of JobKeeper.                                                            |  |  |  |  |
| Google Maps API                                                                      | https://developers.google.com/maps                                                                               | Postcode and address data based on sensor location directional information.                                                         |  |  |  |  |

## Data Exportation and Clean Up

| Common clean u | p strategies across all hypothesis                                                    | <ol> <li>Get data from APIs</li> <li>Select common sensors for year 2019, 2020, 2021</li> <li>Remove Duplicate rows</li> <li>Correct data type for columns</li> </ol> |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Hypothesis     | Datasets                                                                              | Hypothesis Specific Clean Up Steps                                                                                                                                    |  |  |  |  |
| Hypothesis 1   | Pedestrian count (per hour data) - csv                                                | Removed inactive values     Used sum() to get monthly data per location                                                                                               |  |  |  |  |
| Hypothesis 2   | Pedestrian count (per hour data) - csv  Pedestrian Counting System - Sensor Locations | Convert Month column to categorical type and sort     Merge and aggregate average monthly pedestrian count across all sensors                                         |  |  |  |  |

### Data Exportation and Clean Up (continued)

| Hypothesis         | Datasets                                               | Clean Up Steps                                                                                                                                           |  |  |  |  |  |
|--------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Hypotheses 3 and 4 | Pedestrian Counting System - Monthly (counts per hour) | <ul> <li>Filtered by year and date (Aug-19 to Aug-21)</li> <li>Removed all null values</li> <li>Aggregated hourly values by month-year</li> </ul>        |  |  |  |  |  |
|                    | Pedestrian Counting System - Sensor Locations          | <ul> <li>Filtered by year and date (Aug-19 to Aug-21)</li> <li>Removed all null values</li> </ul>                                                        |  |  |  |  |  |
|                    | Google Maps API                                        | Filtered locations by latitude and longitude coordinates found in the sensor location data.                                                              |  |  |  |  |  |
|                    | JobKeeper data                                         | Filtered by sensor location postcodes found from the Google Maps API                                                                                     |  |  |  |  |  |
|                    |                                                        |                                                                                                                                                          |  |  |  |  |  |
| Hypothesis 5       | Labour Force, Australia<br>(Full time employment)      | <ul> <li>Filtered data for full-time employment for both genders across year 2019, 2020, 2021</li> <li>Save dataframe as a separate .csv file</li> </ul> |  |  |  |  |  |

## **Analysis Process**

| Hypothesis   | Analysis Process                                                                                                                     |                                                                                                                            |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|              | Descriptive Analysis                                                                                                                 | Statistical Analysis                                                                                                       |  |  |  |  |  |  |
| Hypothesis 1 | <ul><li>Line graphs</li><li>Google map locations</li><li>Table format of final result</li></ul>                                      | <ul><li>Independent T-test</li><li>Logical analysis</li></ul>                                                              |  |  |  |  |  |  |
| Hypothesis 2 | Bar chart                                                                                                                            | Independent T-test                                                                                                         |  |  |  |  |  |  |
| Hypothesis 3 | Created line graphs of summed pedestrian count data for relevant postcodes for the months during the time JobKeeper was implemented. | Conducted correlation tests between pedestrian count and JobKeeper business application counts for each relevant postcode. |  |  |  |  |  |  |
| Hypothesis 4 | Created line graphs of summed pedestrian count data for relevant postcodes for the months after JobKeeper was implemented.           | Conducted independent t-tests to verify apparent downward trend in pedestrian activity after the end of JobKeeper.         |  |  |  |  |  |  |
| Hypothesis 5 | Scatter plot                                                                                                                         | <ul><li>Linear Regression</li><li>T-test</li></ul>                                                                         |  |  |  |  |  |  |

# Findings

# Hypothesis 1

the overall pedestrian activity in the City of Melbourne had decreased since March 2020 when the first lockdown happened in Melbourne.

# Dataset used for analysis

|            | Bourke<br>Street<br>Mall<br>(North) | Bourke<br>Street<br>Mall<br>(South) | Melbourne<br>Central | Town<br>Hall<br>(West) | Princes<br>Bridge | Flinders<br>Street<br>Station<br>Underpass | Birrarung<br>Marr | Webb<br>Bridge | Southern<br>Cross<br>Station | Victoria<br>Point | <br>QVM-<br>Queen<br>St<br>(East) | QVM-<br>Therry<br>St<br>(South) | Faraday<br>St-<br>Lygon<br>St<br>(West) | QVM-<br>Franklin<br>St<br>(North) | Elizabeth<br>St-<br>Lonsdale<br>St<br>(South) |
|------------|-------------------------------------|-------------------------------------|----------------------|------------------------|-------------------|--------------------------------------------|-------------------|----------------|------------------------------|-------------------|-----------------------------------|---------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------------|
| Month      |                                     |                                     |                      |                        |                   |                                            |                   |                |                              |                   |                                   |                                 |                                         |                                   |                                               |
| Aug-<br>19 | 906524                              | 641786                              | 981893               | 1064689                | 963378            | 1051024                                    | 324456            | 144995         | 621153                       | 155030            | <br>206593                        | 137175                          | 193302                                  | 99286                             | 325035                                        |
| Sep-<br>19 | 943758                              | 643780                              | 869674               | 971314                 | 925437            | 1008301                                    | 234247            | 140767         | 561236                       | 131512            | <br>179612                        | 93315                           | 184283                                  | 87344                             | 313040                                        |
| Oct-<br>19 | 1028680                             | 495941                              | 919196               | 1047185                | 1028103           | 1151297                                    | 187355            | 58490          | 638247                       | 148089            | <br>194461                        | 94980                           | 205178                                  | 101168                            | 332225                                        |
| Nov-<br>19 | 1037267                             | 744945                              | 901523               | 1074747                | 673975            | 1105507                                    | 320914            | 137894         | 536947                       | 134803            | <br>205257                        | 135467                          | 205253                                  | 94935                             | 328209                                        |
| Dec-<br>19 | 1192463                             | 927155                              | 911297               | 1244392                | 1068849           | 1187116                                    | 209137            | 146964         | 442756                       | 118303            | <br>207353                        | 132729                          | 223789                                  | 97110                             | 310402                                        |



## Largest drop of pedestrian count

| Location             | Max<br>month | Max value | Min<br>month | Min value | Difference | Difference<br>percentag<br>e |
|----------------------|--------------|-----------|--------------|-----------|------------|------------------------------|
| Pelham St<br>(South) | Aug 2019     | 83553     | Oct 2020     | 1790      | 81763      | 97.86                        |

## Smallest drop of pedestrian count

| Location                     | Max<br>month | Max value | Min<br>month | Min value | Difference | Difference<br>percentag<br>e |
|------------------------------|--------------|-----------|--------------|-----------|------------|------------------------------|
| QVM-<br>Therry St<br>(South) | Aug 2019     | 137175    | Aug 2021     | 59596     | 77579      | 56.55                        |





# Hypothesis 2,5

#### Average Pedestrian activity pre-pandemic year.





Average Pedestrian activity in the first pandemic year 2020.

Hypothesis 2: Average Pedestrian activity increased after the first lockdown, but not to pre-pandemic levels .



#### Trend of pedestrian activity from PreLockdown (2019) to PostLockdown (2020)



Hypothesis 2: Average Pedestrian activity increased after the first lockdown, but not to prepandemic levels.

Scatter plot can illustrate a relationship been pedestrian count in 2019 and 2020.

It has a negative relation.

**Hypothesis 2:** Average Pedestrian activity increased after the first lockdown, but not to pre-pandemic levels

#### Statistically prove significance of change using p-value

#### independent T-test on Hypothesis 2:

Reject the Null hypothesis- There is a significant change in both categories with p-value 0.0001

#### Summary Statistics across 2019, 2020, 2021

|                      | count | mean         | std          | min        | 25%        | 50%        | 75%         | max        |
|----------------------|-------|--------------|--------------|------------|------------|------------|-------------|------------|
| day_based_counts2019 | 8.0   | 2.151833e+07 | 1.982256e+06 | 18816254.0 | 19871838.0 | 22167802.5 | 22908900.50 | 23896524.0 |
| day_based_counts2020 | 8.0   | 1.112107e+07 | 8.177723e+06 | 3157701.0  | 5037630.0  | 7415702.5  | 17895621.75 | 23189121.0 |
| day_based_counts2021 | 8.0   | 1.034907e+07 | 3.192701e+06 | 5678484.0  | 8628688.0  | 9957313.0  | 11531720.75 | 15917378.0 |

# **Hypothesis Five:** Pedestrian activity increases as the number of Victorian full-time workers increases.

Trend of pedestrian activity vs. Fully time employment le6 2.32 2.30 Person Employed 2020 2.28 2.26 v = 0.0047x + 2.21e + 062.24 2.22 2.20 2.25 0.50 le7 Average Pedestrian count per month 2020

Scatter plot shows direct relationship between full time employed persons and pedestrian count

# Hypothesis Five: Pedestrian activity increases as the number of Victorian full-time workers increases.

#### Statistical Analysis with t-test

```
df3_employed["day_based_counts2020"].corr(df3_employed["Person Employed 2020"])
```

0.8471311321828738

```
corr2=st.pearsonr(x_val,y_val)
print(f'The correlation between full time employment and pedestrian count is {round(corr2[0],2)}
```

The correlation between full time employment and pedestrian count is 0.85 with p-value 0.0005

Because p-value<0.05, thus there is a significant relationship- it did not happen by chance

# Hypothesis 3

Pedestrian activity would increase as JobKeeper claims increased

Statistically significant moderate to strong negative correlations were found between pedestrian activity and JobKeeper Business applications for 5 of the 7 Melbourne postcodes observed (3000, 3004, 3008, 3052, 3053)

#### Correlation Tests

The correlation between both factors for postcode 3000 is -0.76 with a p-value of 0.00436

The correlation between both factors for postcode 3004 is -0.87 with a p-value of 0.00027

The correlation between both factors for postcode 3006 is -0.26 with a p-value of 0.40575

The correlation between both factors for postcode 3008 is -0.69 with a p-value of 0.01349

The correlation between both factors for postcode 3010 is 0.15 with a p-value of 0.65185

The correlation between both factors for postcode 3052 is -0.59 with a p-value of 0.04526

The correlation between both factors for postcode 3053 is -0.72 with a p-value of 0.00776

The correlation between both factors is -0.76 with a p-value of 0.00436



# Hypothesis 4

Pedestrian activity would decrease after JobKeeper was tapered

Although there appeared to be a decline in pedestrian activity after the JobKeeper tapering, our analysis found that there was no statistically significant difference in pedestrian activity during these periods.



- Independent Tweest Analysis postcode 3006 is 0.132
- the p-value of the Welch's t-test for postcode 3000 is 0.233
- the p-value of the Welch's t-test for postcode 3052 is 0.116
- the p-value of the Welch's t-test for postcode 3010 is 0.185
- the p-value of the Welch's t-test for postcode 3008 is 0.08
- the p-value of the Welch's t-test for postcode 3004 is 0.126

### Findings Summary

**Hypothesis One -** the overall pedestrian activity in Melbourne had decreased since March 2020 when the first lockdown happened in Melbourne.



#### Conclusion

- There was an average drop of 87% in pedestrian activity at various locations in Melbourne during covid19.
- Since the first lockdown, the pedestrian activity has still not returned to pre-lockdown which might suggest a new trend. Only half of the pedestrian activity was returned back (50% instead of 87%)
- The negative correlation found in most postcodes may be because businesses were struggling to pay their workers as the number of pedestrians and hence customers decreased.
- No statistically conclusive evidence of pedestrian numbers decreasing after JobKeeper.
   Apparent decline maybe due to chance.
- Full time workers were still active during years affected by lockdown.

#### **Research Limitations**

#### Research Limitations

- Data on the financial situation of businesses within each postcode was limited to only JobKeeper claims.
- Impossible to distinguish types of pedestrians (Tourists, event spectators, patrons etc..).
- Data does not represent entire population such as pedestrians who didn't walk past sensors (work from home, no purpose of travel to CBD).
- Dataset had few sensors inactive, because of which the accuracy might have been compromised.

### Questions?