Лекции по квантовой механике

Набор и вёрстка:

Сарафанов Ф.Г., Понур К.А., Шиков А.П., Платонова М.В.

Disclaimer. В данном документе нами набраны лекции по квантовой механике, прочитанные на 3 курсе радиофизического факультета ННГУ **Куриным Владиславом Викторовичем**. Документ призван облегчить подготовку к зачётам и экзаменам и восполнить пробелы в знаниях читателя по квантовой механике. Разрешено копирование и распространение данного документа с обязательным указанием первоисточника.

При обнаружении ошибок, опечаток и прочих вещей, требующих исправления, можно либо создать issues в репозитории на github.com, либо написать на электронную почту sfg180@yandex.ru.

2 февраля – 7 октября 2022 г. Нижний Новгород

Оглавление

1.	Kyc	Кусочно-постоянные потенциалы					
	1.1	Произ	ввольный кусочно-постоянный потенциал				
	1.2	Движ	ение в потенциальной яме 5				
		1.2.1	Четные решения				
		1.2.2	Нечётные решения				
2.	Гар	монич	иеский осциллятор				
	2.1	Класс	сический гармонический осциллятор				
		2.1.1	Переход от классического уравнения к квантовому 13				
		2.1.2	Введение безразмерных переменных				
		2.1.3	Безразмерный импульс и уравнение Эрмита 15				
		2.1.4	Коммутатор $[\hat{p}_x, \hat{x}]$ в безразмерных переменных 15				
	2.2	Метод	ц ВКБ				
		2.2.1	Решение осциллятора при больших ξ				
		2.2.2	Условие квантования энергии				
	2.3	Полиг	номы и функции Эрмита				
		2.3.1	Моды уравнения Эрмита				
		2.3.2	Нормировка H_0				
	2.4	Опера	аторное решение уравнения Эрмита				
		2.4.1	Понижение порядка уравнения				
		2.4.2	Операторы рождения \hat{a} и уничтожения \hat{a}^+				
		2.4.3	Уравнение Эрмита в новых операторах				
		2.4.4	Смысл операторов a, a^+ и свойства α				
		2.4.5	Нахождение собственных чисел. Оператор \hat{n}				
		2.4.6	Собственные функции уравнения Эрмита				
	2.5	Вычи	сление средних				
		2.5.1	Определение средней координаты				
		2.5.2	Определение средней потенциальной энергии				
3.	Ope	биталь	ьный момент				
	3.1	Закон	ы сохранения в квантовой механике				
		3.1.1	Трансляция времени				
		3.1.2	Трансляция пространства				
		3.1.3	Вращение пространства				
	3.2	Комм	утационные соотношения				

		3.2.1	Коммутатор проекций момента импульса	40					
		3.2.2	Коммутатор проекции волнового вектора и координаты .	41					
		3.2.3	Коммутатор квадрата момента импульса и его проекции	42					
		3.2.4	Понижающий и повышающий операторы орбитального						
			момента	43					
	3.3	Собст	венные функции и числа оператора орбитального момента	46					
	3.4	Матр	ичное представление операторов момента	49					
		3.4.1	Матричные элементы операторов l_{\pm}	49					
		3.4.2	Составление матриц из матричных элементов	51					
		3.4.3	Матрицы операторов l_{\pm}, l_x, l_y	52					
	3.5	Собст	венные функции операторов момента в $ heta$ и $arphi$ представле-						
		ХКИН		54					
	3.6	Сфер	ические гармоники	58					
4.	Движение в центрально-симметричном поле								
	4.1	Свобо	одное движение	67					
	4.2	Сфер	ическая потенциальная яма	71					
	4.3	Сфер	ический гармонический осциллятор	73					
	4.4	Кулон	ново поле	75					
	4.5	Случа	айное вырождение	81					
5.	Теория возмущений								
	5.1								
		5.1.1	Ангармонический осциллятор	90					
		5.1.2	Вырождение	94					
		5.1.3	Двукратное вырождение	96					
	5.2	Элект	грон в поле двух ядер	98					
	5.3								
		5.3.1	Переходы в состояниях спектра при периодическом воз-						
			мущении						
		5.3.2	Представление Взаимодействия						
		5.3.3	Монохроматическое возмущение	106					
		5.3.4	Двухуровневая среда						
		5.3.5	Золотое правило Ферми	111					
6.	Ква	зикла	ассическое приближение	116					
	6.1	Квази	классическая волновая функция вблизи точки поворота.	120					

		6.1.1 Метод Цвана	20								
	6.2	Правило квантования Бора-Зоммерфельда	23								
7.	Спи	Спин									
	7.1	Алгебра матриц Паули	35								
	7.2	Оператор конечных вращений	38								
	7.3	Матрицы вращения вокруг базисных осей	<u>l</u> 1								
8.	Движение электрона в магнитном поле										
	8.1	Магнитный момент	<u>1</u> 2								
	8.2	Орбитальное движение	4								
		8.2.1 Калибровка	14								
	8.3	Уравнение Паули	16								
		8.3.1 Эксперимент Штерна-Герлаха	16								
	8.4	Заряженная частица в однородном магнитном поле									

1. Кусочно-постоянные потенциалы

Рассмотрим решение стационарного уравнения Шрёдингера с кусочнопостоянным потенциалом, пользуясь разбиением решения на чётную и нечётную составляющие.

1.1. Произвольный кусочно-постоянный потенциал

Рассмотрим задачу на нахождение собственных значений энергии в уравнении Шрёдингера, составив U(x) как кусочно-постоянный потенциал:

Рис. 1. Пример кусочно-постоянного потенциала U(x)

На каждом участке такого потенциала работает уравнение Шрёдингера.

$$\hat{H}\Psi(x) = E\Psi(x)$$

Это стационарное уравнение Шрёдингера: его параметром является энергия E. Запишем гамильтониан:

$$\hat{H} = \frac{\hat{p}^2}{2m} + U(\hat{x}) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(\hat{x})$$

Замечание. Как нетрудно заметить, гамильтониан записан в x-представлении, то есть $\hat{x}=x,~\hat{p_x}=-i\hbar\frac{\partial}{\partial x}$. Если потребуется, ничего не мешает перейти в p-представление:

$$\hat{p}_x = p_x, \qquad \hat{x} = i\hbar \frac{\partial}{\partial p_x}, \qquad \Psi(p) = \frac{1}{\sqrt{2\pi\hbar}} \int \Psi(x) \exp\left(-i\frac{p}{\hbar}x\right) dx$$

Вернёмся к уравнению Шрёдингера. Подставим расписанный гамильто-

ниан в уравнение:

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x) \right] \Psi(x) = E\Psi(x)$$

Пронумеруем постоянные участки потенциала. На каждом таком j-том участке потенциала

$$\frac{\partial^2 \Psi_j}{\partial x^2} + \underbrace{\frac{2m}{\hbar^2} [E - U_j]}_{k_j^2} \Psi_j(x) = 0$$

Или это же уравнение в более простом виде:

$$\Psi_j'' + k_j^2 \Psi_j = 0$$

Решение этого уравнения нам знакомо:

$$\Psi_j = c_j \exp(ik_j x) + d_j \exp(-ik_j x)$$

где c_j , d_j – константы, определяемые из условий «сшивки» решений и зануляемости волновой функции на бесконечности. Полученное кусочно-гладкое решение «сшивается» на границах постоянности S_j :

$$\begin{split} \Psi_j \big|_{S_j} &= \Psi_{j+1} \big|_{S_j} \\ \Psi'_j \big|_{S_j} &= \Psi'_{j+1} \big|_{S_j} \end{split}$$

1.2. Движение в потенциальной яме

Рассмотрим задачу в потенциальной яме

Рис. 2. Потенциальная яма

Разобьём пространство на две области: первая будет вне потенциальной

ямы, вторая – в яме. Решение уравнений Шрёдингера будем искать отдельно для двух областей.

$$\Psi_{xx}'' + k_1^2 \Psi = 0, \qquad k_1^2 = \frac{2m}{\hbar^2} E, \text{ при } \begin{cases} x > a \\ x < -a \end{cases}$$
 (1)

$$\Psi''_{xx} + k_2^2 \Psi = 0, \qquad k_2^2 = \frac{2m}{\hbar^2} (E + |U_0|), \text{ при } -a \le x \le a$$

Стоит сказать, что при E>0 движение инфинитное, а спектр волновой функции непрерывен.

При E<0 движение финитное с дискретным спектром. Следовательно $k_1^2<0$ и решением уравнения (1) будет являться:

$$\Psi = De^{-\kappa x} + D_1 e^{+\kappa x},$$

где введено обозначение $\varkappa^2 = -k_1^2 = \frac{2m}{\hbar^2}|E|$

Значит, вне потенциальной ямы волновая функция или экспоненциально спадает или убывает. Из физических соображений, не может быть бесконечного роста, поэтому коэффициент $D_1 = 0$ при x > 0 и D = 0 при x < 0.

Дальше будет решаться задача о дискретном спектре (E < 0).

Из-за выбора начала координат U(x) = U(-x), то есть функция будет четной. А значит уравнение

$$\Psi_{xx}''(x) + U(x)\Psi(x) = 0$$

инвариантно относительно замены $x \to -x$.

Решением этого уравнения будет суперпозиция чётных и нечётных волновых функций. Формализуется это введением оператора чётности \hat{P} :

$$\hat{P}\Psi(x) \underset{def}{=} \Psi(-x)$$

Этот оператор меняет $x \to -x$. Решим уравнение на собственные функции оператора \hat{P} :

$$\hat{P}\Psi = p\Psi \tag{2}$$

Подействуем на уравнение (2) оператором \hat{P} ещё раз

$$\hat{P}^2\Psi = \hat{1}\Psi = p^2\Psi$$

Отсюда $p = \pm 1$. Тогда у нас получаются уравнения:

$$\hat{P}\Psi(x) = \Psi(x)$$

$$\hat{P}\Psi(-x) = -\Psi(x)$$

Также оператор перестановки коммутирует с оператором Гамильтона, а значит чётность и нечётность сохраняются во времени. То есть, если при t=0 была задана чётная функция, то она так и останется чётной. Значит, можно решать исходные уравнение на положительной полупрямой, а затем продолжать на отрицательную полупрямую.

1.2.1 Четные решения

$$\begin{cases} \Psi_{xx}'' - \varkappa^2 \Psi = 0, & \text{при } x > a \\ \Psi_{xx}'' + k^2 \Psi = 0, & \text{при } 0 < x < a \end{cases}$$

где

$$-k_1^2 = \varkappa^2 = \frac{2m}{\hbar^2} |E|, \quad k^2 = \frac{2m}{\hbar^2} (|U_0| - |E|)$$

Все дискретные уровни должны лежать выше минимума потенциала U_0 . Запишем решения уравнения внутри и снаружи ямы при x>0:

$$\Psi_{\text{внутри}} = C \cos kx$$

$$\Psi_{\text{снаружи}} = De^{-\varkappa(x-a)}$$

Теперь следует согласовать два этих решения на границе. Сделать это можно приравняв $\Psi_{\text{внутри}}(a) = \Psi(a)_{\text{снаружи}}$ и $\Psi(a)'_{\text{внутри}} = \Psi'_{\text{снаружи}}(a)$. То есть

$$\begin{cases} C\cos ka = D\\ -kC\sin ka = -\varkappa D \end{cases}$$

Из этого уравнения следует, что

$$k \cdot \operatorname{tg} ka = \varkappa \tag{3}$$

Уравнение (3) является трансцендентным. Мы будем решать его графически.

Но прежде введём некоторые переобозначения.

$$z = \varkappa a = \sqrt{\frac{2m}{\hbar^2} |E|} a$$

$$y = ka = \sqrt{\frac{2m}{\hbar^2} (|U_0| - |E|)} a$$

$$z^2 + y^2 = \frac{2m}{\hbar^2} |U_0| a^2 = w^2$$

Тогда уравнение (3) примет вид:

$$y \cdot \operatorname{tg} y = \sqrt{w^2 - y^2}$$

Рис. 3. График функции $y \cdot \operatorname{tg}(y) = \sqrt{w^2 - y^2}$

Функция $z=y\cdot tg(y)$ - чётная, так как является произведением двух нечётных функций y и tg(y). Правая же часть исследуемого равенства $z=\sqrt{w^2-y^2}$ является верхней полуокружностью радиуса w.

Нас интересуют уровни энергии E, при которых имеются решения. В нашем случае они характеризуются координатой z точек пересечения полуокружности и $y \cdot \operatorname{tg}(y)$, так как $z = \varkappa a \sim \sqrt{|E|}$.

Как очевидно из рисунка 3, при любом сколь угодно малом значении w будет существовать хотя бы один уровень энергии. При дальнейшем увеличении значения w будут появляться новые уровни энергии, связанные с пересечением полуокружности со следующими ветвями $y \cdot \operatorname{tg}(y)$ (см. рис. 5). Исходя

из уравнения, определяющего w,

$$w^2 = z^2 + y^2 = \frac{2m}{\hbar^2} |U_0| \cdot a^2$$

увеличение w соответствует увеличению глубины потенциальной ямы U_0 .

Таким образом, для чётной серии решений имеем распределение энергетических уровней в зависимости от глубины потенциальной ямы (см. рис. 4). При малых w тангенс можно разложить в ряд, показав, что $|E| \sim w^2 \sim |U_0|^2$. Следующие корни появляются при $w \geq n\pi$.

 $y \cdot \operatorname{tg} y$

Рис. 4. График $|E|(U_0)$ (четная серия)

Рис. 5. Расщепление уровней

Изобразим график волновой функции $\Psi(x)$. Изначально имеем: косинус в отрезке [-a,a], и спадающие экспоненты вне этого отрезка. В точках a,-a решения сшиты. Вид решения в отрезке [-a,a] будет зависеть от глубины потенциальной ямы U_0 .

При $w < \pi$ имеет место решение нулевой моды. При увеличении $w > \pi$ от нулевого уровня энергии «отщепляется» новый уровень (см. рис. 5), появляются решения, соответствующие первой, второй и последующим модам (см. рис. 7).

Рис. 6. Нулевая мода $\Psi(x)$

Рис. 7. Первая мода $\Psi(x)$

Заметим, что число нулей возрастает не постепенно. Где состояние с одним нулём? Почему нули появляются парами? Дело в том, что мы рассмотрели только чётную серию, но при этом существует также нечётная серия.

1.2.2 Нечётные решения

Аналогичным образом подойдём к решению для нечётных функций. В этом случае

$$\begin{cases} \Psi_2 = c \cdot \sin kx, & x < a \\ \Psi_1 = d \cdot e^{-\varkappa(x-a)}, & x > a \end{cases}$$

Сшиваем на границе, учитывая граничные условия:

$$\begin{cases} c \cdot \sin ka = d \\ ck \cdot \cos ka = -\varkappa d \end{cases} \Rightarrow \operatorname{ctg} ka = -\varkappa$$

Вводя те же переменные, для нечётной серии получаем

$$y \cdot ctg(y) = -\sqrt{w^2 - y^2}$$

Решаем так же графически.

Разложим в ряд Тейлора в окрестности ноля: $y \cdot ctg(y)|_{y=0} \Longrightarrow 1$. Правая часть $z=-\sqrt{w^2-y^2}$ - это нижняя полуокружность радиуса w. Нас интересуют пересечения этой полуокружности с графиком $y \cdot ctg(y)$.

Теперь решения появляются только при $w \geq \frac{\pi}{2}$, а новые уровни появляются каждые $w = \frac{\pi}{2} + \pi n$.

Рис. 8. График $y \cdot ctg(y) = -\sqrt{w^2 - y^2}$

Создающаяся картина энергетических уровней показана на рисунке 9.

Рис. 9. График $|E|(U_0)$ (чётная серия сплошным, нечётная пунктиром)

Волновая функция в нечётном случае будет иметь моды, так же как это было и в чётном случае. 1-я нечётная мода будет иметь 1 ноль, следующая, вторая, будет иметь 3 нуля, и так далее.

Рис. 10. Нулевая мода $\Psi(x)$

Рис. 11. Первая мода $\Psi(x)$

Таким образом устроены моды конечного спектра. Количество уровней определяется глубиной ямы. При постепенном её увеличении будут появляться, чередуясь, чётные и нечётные моды синуса и косинуса. В случае бесконечной потенциальной ямы спектр энергий будет бесконечным.

2. Гармонический осциллятор

2.1. Классический гармонический осциллятор

Вспомним, что было в классике. Запишем уравнение Ньютона для грузика на пружинке, перемещающегося без трения по горизонтальной оси x:

$$m\ddot{x} + kx = 0$$
 \Rightarrow $\ddot{x} + \omega^2 x = 0$, где $\omega^2 = \frac{k}{m}$.

Хорошо известны решения такого уравнения:

$$x = c_1 \cos \omega t + c_2 \sin \omega t = A \cos(\omega t + \varphi_0)$$

Запишем гамильтониан такой физической системы:

$$\hat{H} = \frac{m\dot{x}^2}{2} + \frac{kx^2}{2} = \frac{p^2}{2m} + \frac{kx^2}{2}$$

2.1.1 Переход от классического уравнения к квантовому

А теперь сделаем переход к квантовой механике, заменив все физические величины – операторами:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2},\tag{4}$$

где в х-представлении:

$$\hat{p} = -i\hbar\nabla, \qquad \hat{p}_x = -i\hbar\frac{\partial}{\partial x}.$$
 (5)

Мы будем решать стационарное уравнение Шрёдингера, которое получается в случае, когда энергия имеет определённое решение, и говорят, что система имеет *стационарные состояния*. В этом случае нестационарное уравнение Шрёдингера имеет вид

$$i\hbar\dot{\Psi}(x,t) = \hat{H}\Psi(x,t) = E\Psi(x,t),$$

и оно может быть непосредственно проинтегрировано по времени, и тогда

$$\Psi(x,t) = \exp\left(-i\frac{E}{\hbar}t\right) \cdot \psi(x).$$

При этом для $\psi(x)$ выполняется так называемое стационарное уравнение Шрёдингера:

$$\hat{H}\psi(x) = E\psi(x). \tag{6}$$

2.1.2 Введение безразмерных переменных

Подставив выражения для гамильтониана осциллятора (4) и импульса (5) в стационарное уравнение Шрёдингера (6), получим уравнение гармонического осциллятор в следующем виде:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2 x^2}{2}\right)\psi(x) = E\psi(x)$$

Прежде чем решать его, приведём его к безразмерному виду, пользуясь следующими соображениями.

Слева произведение скобки на $\psi(x)$, справа произведение $E \cdot 1 \cdot \psi(x)$. Значит, если мы в левой части из скобок вынесем множитель размерности энергии, то оставшаяся скобка будет одной размерности с 1, значит, безразмерная. Простейшим вариантом, конечно, будет вынести $\hbar\omega$:

$$\hbar\omega \left(-\frac{\hbar}{2m\omega}\frac{\partial^2}{\partial x^2} + \frac{m\omega x^2}{2\hbar}\right)\psi(x) = E\psi(x)$$

Теперь можем ввести характерный масштаб:

$$l_{\rm q}^2 = \frac{\hbar}{m\omega}$$

И тогда

$$\frac{\hbar\omega}{2} \left[-l_q^2 \frac{\partial^2}{\partial x^2} + \frac{x^2}{l_q^2} \right] \psi(x) = E\psi(x)$$

Введем безразмерные переменные:

$$\varepsilon = \frac{E}{\hbar\omega}, \qquad \xi = \frac{x}{l_q} \quad \Rightarrow \quad \frac{\partial}{\partial \xi} = \frac{\partial}{\partial x} \frac{\partial x}{\partial \xi} = \frac{\partial}{\partial x} \cdot l_q, \qquad \frac{\partial^2}{\partial \xi^2} = \frac{\partial^2}{\partial x^2} \cdot l_q^2$$

Тогда уравнение гармонического осциллятора в безразмерных координатах

$$\left[-\frac{1}{2} \frac{\partial^2}{\partial \xi^2} + \frac{\xi^2}{2} \right] \psi = \varepsilon \psi \tag{7}$$

2.1.3 Безразмерный импульс и уравнение Эрмита

Попробуем сказать, как будет выглядеть безразмерный импульс $\hat{p}_b \equiv \hat{p}_{x,b}$:

$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x} = -\frac{i\hbar}{l_q} \frac{\partial}{\partial \xi}$$

Заметим, что размерный импульс должен представляться в виде безразмерного импульса, помноженного на размерную константу - единицу импульса. Из этого соображения очевидно, что

$$\hat{p}_b = -i\frac{\partial}{\partial \xi},$$

а единица импульса в наших безразмерных переменных $1p = \frac{\hbar}{l_q} = \sqrt{m\hbar\omega}$. Итак, в нашем безразмерном уравнении следующая система единиц:

Единица длины: $1\xi=l_q=\sqrt{\frac{\hbar}{m\omega}}$ Единица импульса: $1p=\frac{\hbar}{l_q}=\sqrt{m\hbar\omega}$ Единица энергии: $1\varepsilon=\hbar\omega$

Тогда уравнение осциллятора можно записать в виде, известном как уравнение Эрмита:

$$\left(\frac{\hat{p}_b^2}{2} + \frac{\xi^2}{2}\right)\psi = \varepsilon\psi \tag{8}$$

${f 2.1.4}$ Коммутатор $[\hat{p}_x,\hat{x}]$ в безразмерных переменных

Найдем коммутатор проекции импульса и координаты в безразмерных переменных. Вспомним, что $\sqrt{m\hbar\omega}\cdot\hat{p}_b=\hat{p}_x$, а $\sqrt{\frac{\hbar}{m\omega}}\cdot\xi=\hat{x}=x$. Будем использовать известный результат:

$$\hat{p}_x \hat{x} - \hat{x} \hat{p}_x = -i\hbar$$

Подставим выражения для безразмерных переменных:

$$\sqrt{m\hbar\omega} \cdot \hat{p}_b \sqrt{\frac{\hbar}{m\omega}} \xi - \sqrt{\frac{\hbar}{m\omega}} \xi \cdot \sqrt{m\hbar\omega} \cdot \hat{p}_b = -i\hbar$$

Вынесем общий множитель за скобку и сократим:

$$\sqrt{m\hbar\omega}\sqrt{\frac{\hbar}{m\omega}}(\hat{p}_b\xi - \xi\hat{p}_b) = -i\hbar \quad \Rightarrow \quad \hat{p}_b\xi - \xi\hat{p}_b = -i$$

2.2. Метод ВКБ

2.2.1 Решение осциллятора при больших ξ

Будем искать решение уравнения (7) при больших значениях ξ . Тогда мы можем пренебречь ε :

$$\left(\frac{\partial^2}{\partial \xi^2} - \xi^2\right)\psi = 0\tag{9}$$

Решением этого уравнения является функция $\psi = \exp\left\{-\frac{\xi^2}{2}\right\}$. Кроме подстановки, доказать, что эта функция действительно является решением этого уравнения можно воспользовавшись методом Вентцеля-Крамерса-Бриллюэна.

Пусть у нас есть уравнение

$$\psi'' + k^2(x)\psi = 0 \tag{10}$$

Будем искать решение в виде $\Psi = A(x) \exp\{i\theta(x)\}$. После подстановки решения в (10) получим:

$$[A'' + 2i\theta'A' + iA\theta'' - A \cdot (\theta')^2 + k^2(x)A] \exp\{i\theta\} = 0$$

Разделим действительную и мнимую части (мнимую ещё умножили на A). Тогда можно заметить, что второе уравнение системы представляет собой производную $\frac{\partial A(x)^2 \theta'(x)}{\partial x}$:

$$\begin{cases} A'' - A(\theta')^2 + k^2(x)A = 0\\ 2\theta' A' A + A^2 \theta'' = 0 = \frac{\partial \{A(x)^2 \theta'(x)\}}{\partial x} \end{cases}$$

В нашем приближении больших ξ справедливо соотношение $\left|\frac{A''}{A}\right| \ll \theta'^2$. Тогда в первом уравнении системы пренебрежём A'' и получим:

$$\theta' = \pm k(x)$$

Возвращаясь к уравнению (9), можем сказать, что $\theta' = \pm i\xi$ и $\theta = \pm i\frac{\xi^2}{2}$. Данное решение является приближенным.

2.2.2 Условие квантования энергии

Как было показано выше, $\theta=\pm i \frac{\xi^2}{2}$, тогда решение имеет вид

$$\psi = e^{-\frac{\xi^2}{2}} \implies \psi' = -\xi e^{-\frac{\xi^2}{2}}, \quad \psi'' = -e^{-\frac{\xi^2}{2}} + \xi^2 e^{-\frac{\xi^2}{2}}$$

Подставим эти производные в уравнение (9). Тогда получим

$$\xi^{2}e^{-\frac{\xi^{2}}{2}} - e^{-\frac{\xi^{2}}{2}} - \xi^{2}e^{-\frac{\xi^{2}}{2}} = -e^{-\frac{\xi^{2}}{2}} = 0$$

Заметим, что оставшийся член $-e^{-\frac{\xi^2}{2}}$, вообще говоря, не равен нулю. Однако при выполнении условия $\xi\gg 1$ этим членом можно пренебречь.

Будем искать решение в виде $\psi = \chi(\xi)e^{-\frac{\xi^2}{2}}$, где $\chi(\xi)$ - новая функция. Чтобы волновая функция спадала на бесконечности в ноль, $\chi(\xi)$ должна стремиться к бесконечности медленнее экспоненты:

$$\frac{\chi(\xi)}{e^{\frac{\xi^2}{2}}} \to 0$$
, когда $\xi \to \infty$

Аналогично предыдущим расчётам, найдём первую и вторую производные

$$\psi' = \chi' e^{-\frac{\xi^2}{2}} - \xi \chi e^{-\frac{\xi^2}{2}}, \qquad \psi'' = \chi'' e^{-\frac{\xi^2}{2}} - 2\xi \chi' e^{-\frac{\xi^2}{2}} - \chi e^{-\frac{\xi^2}{2}} + \xi^2 \chi e^{-\frac{\xi^2}{2}}$$

и подставим в уравнение (9), но при этом уже не будем считать $\varepsilon = 0$:

$$\chi'' - 2\xi\chi' - \chi + 2\varepsilon\chi = 0 \tag{11}$$

Это уравнение содержит χ только в первой степени. Будем искать его решение в виде ряда $\chi(\xi) = \sum C_n \xi^n$. Заметим, что при $\xi \to 0$ решение в виде ряда

регулярно. Найдём производные

$$\chi' = \sum nC_n \xi^{n-1}, \qquad \chi'' = \sum n(n-1)C_n \xi^{n-2}$$

и подставим их в уравнение (11)

$$\sum_{n} n(n-1)C_n \xi^{n-2} - 2\sum_{n} nC_n \xi^{n-1} \xi - \sum_{n} C_n \xi^n + 2\varepsilon \sum_{n} C_n \xi^n = 0$$

Чтобы свернуть это выражение в одну сумму, сделаем замену индексов для разных слагаемых. Так можно делать, потому что индексы у суммы – немые.

$$\sum_{n=2}^{n-2=k} \frac{n-2}{n(n-1)C_n \xi^{n-2}} - 2 \sum_{n=2}^{n=k} \frac{n-2}{n} - \sum_{n=2}^{n=k} \frac{n-2}{n} = 0$$

И тогда выражение преобразуется к более простому виду:

$$\sum_{k=0}^{\infty} [(k+2)(k+1)C_{k+2} - (2k-2\varepsilon+1)C_k]\xi^k = 0$$

Заметим, что ξ^k представляет собой полный базис пространства, и для того, чтобы $\forall \xi, \sum_{k=0}^{\infty} [\ldots] = 0$, нужно чтобы все коэффициенты под суммой $[\ldots] = 0$, т.е.

$$(k+2)(k+1)C_{k+2} - (2k-2\varepsilon+1)C_k = 0$$

откуда можно получить рекуррентное соотношение

$$C_{k+2} = \frac{2k - 2\varepsilon + 1}{(k+2)(k+1)}C_k. \tag{12}$$

Из соотношения видно, что существуют отдельные чётная и нечётная последовательности, соответствующие начальным коэффициентам C_0 (для чётных) и C_1 (для нечётных).

$$C_0 \rightarrow C_2, C_4, C_6, \dots$$

$$C_1 \rightarrow C_3, C_5, C_7, \dots$$

Это соответствует тому, что общее решения уравнения второго порядка зависит от двух констант, являющихся первыми членами ряда.

Чтобы решение было правильным, ряд должен кончиться (оборваться),

то есть, начиная с некоторого $k = k_{max} = N$, числитель в выражении (12) должен обратиться в ноль:

$$2N - 2\varepsilon + 1 = 0 \quad \Rightarrow \quad \varepsilon = N + \frac{1}{2}, \quad N = 0, 1, 2, 3, \dots$$

По сути, мы нашли собственные числа (спектр энергии), представляющие собой эквидистантный ряд (13). Теперь мы можем искать волновые функции, соответствующие разным собственным числам.

$$E_n = \hbar\omega \left(N + \frac{1}{2} \right) \tag{13}$$

2.3. Полиномы и функции Эрмита

Вспомним ключевые результаты, полученные в разделе 2.2. Мы записали уравнение Шрёдингера для гармонического осциллятора (движение частицы в потенциале x^2), вывели соответствующее ему безразмерное уравнение – уравнение Эрмита и рассмотрели его решение в виде $\chi(\xi) \cdot \exp(-\xi^2/2)$, где χ разложили в ряд. В силу уравнения Эрмита получили рекуррентное соотношение коэффициентов ряда (12). Из необходимости равенства нулю на бесконечности волновой функции мы потребовали обращение в ноль ряда начиная с некоторого члена, из чего получили квантование энергии осциллятора ε (13).

2.3.1 Моды уравнения Эрмита

Волновую функцию, отвечающую собственному числу $\varepsilon = N + \frac{1}{2}$, принято называть модой N-го порядка. Попробуем вывести выражение для моды нулевого порядка (так называемое вакуумное состояние), а также 1–3 порядков.

Нулевая мода N=0. Нулевой моде отвечает энергия $\varepsilon=\frac{1}{2}+N=\frac{1}{2}$. Для чётной моды разрешена только чётная серия коэффициентов (нечётная серия разойдётся, для неё нет условия обрыва). Коэффициент C_0 произвольный, а C_2 в силу условия обрыва уже отсутствует:

$$C_2 = \frac{2k - 2\varepsilon + 1}{(k+2)(k+1)}C_0 = \frac{2 \cdot 0 - 2 \cdot \frac{1}{2} + 1}{(0+2)(0+1)}C_0 = 0$$

Отсюда находится и решение нулевой моды:

$$\Psi_0 = \sum_{k=0}^{0} C_k \xi^k \cdot e^{-\frac{\xi^2}{2}} = C_0 \cdot \exp\left\{-\frac{\xi^2}{2}\right\}$$

Первая мода N=1. Первой моде отвечает энергия $\varepsilon=\frac{1}{2}+1=\frac{3}{2}$. Для нечетной моды разрешена только нечётная серия коэффициентов, значит $C_0=C_2=\ldots=0$, коэффициент C_1 произвольный, а C_3 в силу условия обрыва уже отсутствует. Тогда

$$\Psi_1 = C_1 \xi \cdot \exp\left\{-\frac{\xi^2}{2}\right\}$$

Вторая мода N=2. Второй моде отвечает энергия $\varepsilon=\frac{1}{2}+2=\frac{5}{2}$. Нечётные коэффициенты не рассматриваем (аналогично предыдущим моды).

Коэффициент C_0 произвольный, C_4 зануляется в силу обрыва на N=2, а C_2 выразим через C_0 :

$$C_2 = \frac{2k - 2\varepsilon + 1}{(k+2)(k+1)}C_0 = \frac{2\cdot 0 - 2\cdot \frac{5}{2} + 1}{(0+2)(0+1)}C_0 = -2C_0$$

Отсюда

$$\Psi_2 = \sum_{k=0}^{2} C_k \xi^k \cdot e^{-\frac{\xi^2}{2}} = C_0 (1 - 2\xi^2) \cdot \exp\left\{-\frac{\xi^2}{2}\right\}$$

Третья мода N=3. Третей моде отвечает энергия $\varepsilon=\frac{1}{2}+3=\frac{7}{2}$. Чётные коэффициенты не рассматриваем, коэффициент C_1 произвольный, C_5 зануляется в силу обрыва на N=3, а C_3 выразим через C_1 :

$$C_3 = \frac{2k - 2\varepsilon + 1}{(k+2)(k+1)}C_1 = \frac{2\cdot 1 - 2\cdot \frac{7}{2} + 1}{(1+2)(1+1)}C_1 = -\frac{2}{3}C_1$$

Отсюда

$$\Psi_3 = \sum_{k=1}^3 C_k \xi^k \cdot e^{-\frac{\xi^2}{2}} = C_1 \left(\xi - \frac{2}{3} \xi^2 \right) \cdot \exp\left\{ -\frac{\xi^2}{2} \right\}$$

Перед экспонентой в любом случае будет стоять какие-то полиномы. Эти

полиномы называют полиномами Эрмита и обозначают буквой H_k .

$$\Psi_k(\xi) \sim H_k(\xi) \exp\{-\xi^2/2\}$$

Рис. 12. Нулевая мода (N=0)

Рис. 13. Первая мода (N=1)

Рис. 14. Вторая мода (N=2)

Рис. 15. Третья мода (N=3)

На рис. 12-15 изображены графики зависимости $\Psi_0(\xi)$, $\Psi_1(\xi)$, $\Psi_2(\xi)$ и $\Psi_3(\xi)$. Из них можно сделать вывод, что количество нулей волновой функции совпадает с номером моды (на графиках нули отмечены маркерами).

Единственное, что мы не сделали — не нашли общую формулу (для H_k). Это можно сделать, получив общее решение уравнения 11, например, с помощью метода Лапласа, который применим к дифференциальным уравнениям, содержащим аргумент в степени не выше первой. Мы в этом разделе этого делать не будем, а сделаем в следующем с помощью операторного метода.

2.3.2 Нормировка H_0

Когда мы искали моды, перед волновой функцией оставался коэффициент C_0 или C_1 . Мы можем найти его из условия нормировки волновой функции. Сделаем это на примере нормировки Ψ_0 , для Ψ_1 аналогично и рассматривать не будем.

Предположим, что X – нормировочный множитель и $X^2\int\limits_{-\infty}^{\infty}\left|\Psi_0^2\right|\mathrm{d}\xi=1.$ Тогда в силу известного определённого интеграла Пуассона

$$\int_{-\infty}^{\infty} \exp\{-\xi^2\} \, \mathrm{d}\xi = \sqrt{\pi}$$

Нетрудно получить ответ:

$$\Psi_0 = \frac{1}{\sqrt[4]{\pi}} \exp\{-\xi^2/2\}$$

2.4. Операторное решение уравнения Эрмита

Вернёмся к уравнению (8). Для простоты теперь будем обозначать безразмерный оператор $\hat{p}_b \equiv p$, а безразмерный оператор координаты $\hat{\xi} \equiv \xi$.

Для решения уравнения также наложим условие, что волновая функция ограничена сверху некоторым конечным числом M при любых ξ :

$$\frac{p^2 + \xi^2}{2} \Psi(\xi) = \varepsilon \Psi(\xi), \quad \left\{ |\Psi(\xi)| < M \,\middle|\, \forall \xi \right\} \tag{14}$$

Займёмся операторной алгеброй и будем рассматривать p и ξ просто как операторы. Их алгебра задаётся соотношением:

$$\hat{p}\hat{\xi} - \hat{\xi}\hat{p} = -i \tag{15}$$

2.4.1 Понижение порядка уравнения

Рассмотрим переход от уравнения второго порядка к комплексному уравнению первого порядка на примере классического осциллятора.

Это действительное уравнение второго порядка, но его можно свести к

двум комплексным уравнениям первого порядка:

$$x'' + \omega^2 x = 0$$

$$\underbrace{x'' + i\omega x'}_{u'} - i\omega x' + \omega^2 x = 0$$

$$u' - i\omega (x' + i\omega x)$$

$$u' - i\omega u = 0$$

Мы можем решить уравнение первого порядка, найти u, а затем подставить его в уравнение

$$x' + i\omega x = u$$

и решить это неоднородное уравнение первого порядка тривиальным интегрированием. Так решается уравнение классического осциллятора в книге Ландау и Ливщица «Теоретическая механика».

2.4.2 Операторы рождения \hat{a} и уничтожения \hat{a}^+

Оказывается, в квантовой механике возможна точно такая же процедура понижения порядка уравнения, только её нужно проводить на операторах. Для этого вводят новые операторы:

$$\hat{\xi} = \frac{a+a^+}{\sqrt{2}}, \qquad \hat{p} = \frac{a-a^+}{i\sqrt{2}}$$
 (16)

Операторы ξ , p эрмитовы (то есть самосопряжены), а операторы a, a^+ взаимно сопряжены друг с другом, где a^+ обозначает эрмитово сопряжение a.

Операторы $a, a^+,$ очевидно, не эрмитовы, так как $a \neq a^+$. Если бы было равенство, то получилось бы p=0, что означает неверность замены операторов.

Проверим эрмитовость ξ :

$$\xi^{+} = \left(\frac{a+a^{+}}{\sqrt{2}}\right)^{+} = \frac{a^{+} + (a^{+})^{+}}{\sqrt{2}} = \frac{a^{+} + a}{\sqrt{2}} = \xi$$

Аналогично доказывается эрмитовость p. В нём числитель поменяет знак, но это уравновешивается сменой знака i в знаменателе: $i^+ = -i$. Значит, такое представление ξ и p возможно: оно не нарушает их эрмитовости, а как мы

помним, все физические операторы эрмитовы.

Отметим, что оператор a^+ называют оператором рождения (или повышения), а a оператором уничтожения (или понижения). Смысл этих названий мы поймём позже, рассмотрев их свойства.

Коммутатор $[a, a^+]$. Займёмся вычислением такого коммутатора. Он понадобится дальше в выкладках. Подставим замену (16) в выведенный коммутатор p и ξ (15):

$$\frac{a-a^{+}}{\sqrt{2}i} \cdot \frac{a+a^{+}}{\sqrt{2}} - \frac{a+a^{+}}{\sqrt{2}} \cdot \frac{a-a^{+}}{\sqrt{2}i} = -i$$

$$(a-a^{+})(a+a^{+}) - (a+a^{+})(a-a^{+}) = 2$$

$$aa-a^{+}a+aa^{+}-a^{+}a^{+} - (aa+a^{+}a-aa^{+}-a^{+}a^{+}) = 2$$

$$aa^{+}-a^{+}a = 1$$
(17)

Получили, что операторы a и a^+ коммутируют на 1. Заменим все операторы в уравнении Эрмита (14):

$$\begin{split} \frac{p^2 + \xi^2}{2} &= \frac{(a - a^+)(a - a^+)}{2\sqrt{2}\sqrt{2}i^2} + \frac{(a + a^+)(a + a^+)}{2\sqrt{2}\sqrt{2}} = \\ &= \frac{1}{4} \big[(a + a^+)(a + a^+) - (a - a^+)(a - a^+) \big] = \\ &= \frac{1}{4} \big[aa + a^+a + aa + a^+a^+ - (aa - a^+a - a^+ + a^+a^+) \big] = \frac{1}{2} (a^+a + aa^+) \end{split}$$

Напомним, что в отличии от обыкновенной алгебры, порядок операторов нельзя менять, для них не выполняется свойство коммутативности ab=ba. Поэтому, раскрывая скобки и приводя подобные, нужно следить за порядком членов.

Применяем коммутационное соотношение:

$$\frac{1}{2}(a^{+}a + aa^{+}) = \frac{1}{2}(2a^{+}a + 1) = a^{+}a + \frac{1}{2} = \frac{p^{2} + \xi^{2}}{2}$$
 (18)

Заметим, что тут у нас стоит сумма оператора и числа. Вообще говоря, математики бы поставили перед $\frac{1}{2}$ единичный оператор, чтобы вся сумма была оператором: но в квантовой механике принято его не писать и подразумевать из контекста.

2.4.3 Уравнение Эрмита в новых операторах

Итак, мы решили уравнение Эрмита с помощью производных, разложения в ряд, иначе говоря - с помощью аппарата матанализа. Теперь попробуем решить его с помощью операторной алгебры, не решая нигде дифференциальных уравнений, кроме последнего этапа. При этом алгебра операторов нам задана коммутационными соотношениями.

Итак, используя полученное нами соотношение (18), запишем уравнение Эрмита через операторы a, a^+ :

$$\left(a^{+}a + \frac{1}{2}\right)\Psi(\xi) = \varepsilon\Psi(\xi)$$

Или перепишем его в более компактном виде, попутно введя новую переменную α :

$$a^{+}a\Psi = \underbrace{(\varepsilon - \frac{1}{2})}_{\alpha}\Psi \quad \Rightarrow \quad a^{+}a\Psi = \alpha\Psi$$
 (19)

${f 2.4.4}$ Смысл операторов $a,\ a^+$ и свойства lpha

Перепишем в дираковских обозначениях уравнение (19):

$$a^+a |\Psi_{\alpha}\rangle = \alpha |\Psi_{\alpha}\rangle$$

Это по сути задача на собственные функции Ψ_{α} и собственные значения α оператора a^+a .

Так как функция Ψ обозначает у нас волновую функцию, а дираковская скобка тоже обозначает волновую функцию, то обозначение $|\Psi_{\alpha}\rangle$ избыточно, и в дальнейшем мы будем обозначать его просто как $|\alpha\rangle$. То есть, примем соглашение, по которому мы просто нумеруем (параметризуем) собственные функции соответствующими собственными числами. Такое обозначение, например, принято в лекциях Фейнмана. Итак, мы имеем, по определению

$$|\Psi_{\alpha}\rangle \equiv |\alpha\rangle$$
.

Итак, теперь все, что мы рассматривали раньше, свелось к задаче

$$a^{+}a |\alpha\rangle = \alpha |\alpha\rangle.$$
 (20)

Исследуем свойства этого уравнения.

Неотрицательность собственных чисел α . Чтобы доказать этот факт, домножим уравнение (20) слева на левый вектор (бра-скобку) $\langle \alpha |$:

$$\langle \alpha | a^+ a | \alpha \rangle = \alpha \langle \alpha | \alpha \rangle$$

Если волновая функция нормируемая, то можно отнормировать её на единицу: $\langle \alpha | \alpha \rangle = 1$. В этом предположении сразу получаем, что в правой части уравнения стоит α , умноженное на положительное число. Осталось доказать, что в левой оно тоже положительно.

Посмотрим внимательно на левую часть уравнения. Можем ли мы предположить, что a действует только на правую скобку, а a^+ только на левую?

Можем, это позволяет нам сделать ассоциативный закон¹. Умножение операторов не коммутативно, но ассоциативно! Этот факт нетрудно доказать, если записать операторы в матричной форме.

Теперь мы можем записать уравнение так:

$$\langle \alpha | a^+ \cdot a | \alpha \rangle = \alpha \langle \alpha | \alpha \rangle$$

Слева стоит произведение двух абстрактных векторов. Заметим, что в силу определения эрмитова сопряжения

$$\langle \alpha | a^+ = (a | \alpha \rangle)^+$$

Если мы обозначим вектор $|\chi\rangle = a\,|\alpha\rangle$, то слева у нас, оказывается, стоит скалярное произведение, естественно неотрицательное:

$$\langle \chi | \chi \rangle \ge 0$$

Таким образом, α как коэффициент пропорциональности между двумя неотрицательными числами тоже число неотрицательное.

 $^{^{1}}$ Напомним на примере арифметики, что это за свойство: $3 \cdot (5 \cdot 8) = (3 \cdot 5) \cdot 8$

Смысл a как оператора уничтожения. Подействуем на уравнение (20) оператором a слева. В правой части $a \cdot \alpha |\alpha\rangle = \alpha a |\alpha\rangle$, т.к. α – число:

$$aa^+a |\alpha\rangle = \alpha a |\alpha\rangle$$

Сделаем замену в силу коммутационного соотношения (17):

$$(a^{+}a + 1)a |\alpha\rangle = \alpha a |\alpha\rangle \quad \Rightarrow \quad a^{+}a \underbrace{a |\alpha\rangle}_{|\beta\rangle} = (\alpha - 1)a |\alpha\rangle$$

Здесь мы можем считать $|\beta\rangle$ собственными функциями оператора a^+a , и сравним с уравнением (20)

$$a^+a |\beta\rangle = (\alpha - 1) |\beta\rangle \quad \Leftrightarrow \quad a^+a |\alpha\rangle = \alpha |\alpha\rangle$$

Из этого сопоставления очевидно, что должно быть верно $|\beta\rangle \sim |\alpha-1\rangle$ (равенство не пишем, так как ничего не знаем о нормировке), а значит

$$a |\alpha\rangle \sim |\alpha - 1\rangle$$

То есть, действуя оператором a, мы понизили номер волновой функции – это и есть смысл названия «оператор уничтожения» (или понижения).

Целость собственных чисел α . Выше мы доказали, что номера волновой функции у нас могут быть только неотрицательными. Рассмотрим последовательное применение оператора a n раз к $|\alpha\rangle$:

$$a^n |\alpha\rangle \sim |\alpha - n\rangle$$

Но мы помним, что $|\alpha-n\rangle\equiv|\Psi_{\alpha-n}\rangle$, а значит

$$\alpha - n > 0$$

Так как мы можем применять оператор уничтожения сколь угодно раз, нужно, чтобы при некотором номере n номер волновой функции $\alpha - n$ занулился, и тогда все последующие номера будут разрешены: они будут просто нулями. Иначе они станут отрицательными, а мы уже доказали, что это не так.

Значит,
$$\alpha = n$$
, а отсюда вывод – α целое.

Вспомним, что такое у нас α :

$$\varepsilon - \frac{1}{2} = \alpha = n$$

А это же и есть квантование осциллятора, которое мы получали в предыдущей лекции! Теперь мы получили его, не производя никаких дифференцирований, разложений в ряд и тому подобного:

$$\varepsilon = n + \frac{1}{2}, \quad n = 0, 1, 2, \dots,$$

Дальше везде вместо α мы будем писать n, подразумевая что теперь мы знаем, что собственные числа целые.

Смысл a^+ как оператора рождения. Подействуем на уравнение (20) оператором a^+ слева. В правой части $a^+(n|n\rangle) = na^+|n\rangle$, так как n - число:

$$a^+a^+a |n\rangle = na^+ |n\rangle$$

Сделаем замену в силу коммутационного соотношения (17):

$$a^+(aa^+-1)|n\rangle = na^+|n\rangle$$

Откуда перегруппировкой слагаемых получается уравнение

$$a^+aa^+ |n\rangle = (n+1)a^+ |n\rangle$$

Аналогично, как мы это проделывали с понижающим оператором, назовём новую собственную функцию $|\beta\rangle = a^+ |n\rangle$ и сравним с уравнением (20):

$$a^{+}a \mid \beta \rangle = (n+1) \mid \beta \rangle \quad \Leftrightarrow \quad a^{+}a \mid n \rangle = n \mid n \rangle$$

Отсюда $|\beta\rangle \sim |n+1\rangle$, и

$$a^+ |n\rangle \sim |n+1\rangle$$

То есть, действуя оператором a^+ , мы повысили номер волновой функции. Поэтому этот оператор называют повышающим, или оператором рождения.

2.4.5 Нахождение собственных чисел. Оператор \hat{n}

Вернёмся опять к уравнению (20) и домножим его на левую скобку $\langle n|$:

$$\langle n | a^+ a | n \rangle = n \langle n | n \rangle$$

Разделим действие операторов: a^+ действует на левую скобку, a на правую (возможность так делать мы обосновали при доказательстве неотрицательности α) и вставим между такими векторами единичный оператор:

$$\sum_{k} |k\rangle \langle k|$$

$$\downarrow$$

$$\langle n| a^{+} \hat{1} a |n\rangle = n \langle n|n\rangle$$

При этом сумму мы можем вынести за скобки:

$$\sum_{k} \langle n|a^{+}|k\rangle \ \langle k|a|n\rangle = n \langle n|n\rangle$$

Покажем, что в этой сумме только одно слагаемое не ноль. Действительно, используя понижающее свойство a и повышающее a^+ мы можем записать, что

$$\sum_{k} \langle n|k+1\rangle \langle k|n-1\rangle \sim n \langle n|n\rangle$$

Так как $\langle k|m\rangle=0$ при $k\neq m$, сумма упрощается до одного слагаемого k=n-1. Теперь вернёмся обратно к формуле с операторами:

$$\langle n|a^+|n-1\rangle \ \langle n-1|a|n\rangle = n \ \langle n|n\rangle$$
 (21)

Покажем, что если предположить, что волновая функция нормирована, $\langle m|n\rangle=\delta_{mn}$, то отсюда следует

$$|\langle n|a^{+}|n-1\rangle|^{2} = |\langle n-1|a|n\rangle|^{2} = n$$

Действительно, заметим, что и первый и второй множители – матричные элементы операторов a, a^+ . Пусть A – матрица оператора a: тогда формула (21) перепишется в виде

$$A_{n,n-1}^+ \cdot A_{n-1,n} = n$$

Но на языке матриц $A^+ = (A^*)^T = (A^T)^*$. Преобразуем сначала первый множитель:

$$A_{n,n-1}^+ \cdot A_{n-1,n} = A_{n-1,n}^* \cdot A_{n-1,n} = |A_{n-1,n}|^2 = n$$

Теперь преобразуем второй множитель:

$$A_{n,n-1}^+ \cdot A_{n-1,n} = A_{n,n-1}^+ \cdot A_{n-1,n}^{+T*} = A_{n,n-1}^+ \cdot A_{n,n-1}^{+*} = \left| A_{n,n-1}^+ \right|^2 = n$$

Действительно, если теперь вернуться к нотации Дирака, получим нужное выражение:

$$|\langle n|a^{+}|n-1\rangle|^{2} = |\langle n-1|a|n\rangle|^{2} = n$$

Извлекаем корень из этих выражений:

$$\langle n|a^+|n-1\rangle = \sqrt{n}, \qquad \langle n-1|a|n\rangle = \sqrt{n}$$
 (22)

Сравнивая полученные выражения с ранее выведенными формулами, описывающими действие операторов повышения и понижения, получим собственные числа обоих операторов:

$$a^{+}|n-1\rangle = \sqrt{n}|n\rangle, \qquad a|n\rangle = \sqrt{n}|n-1\rangle$$

Оператор числа частиц \hat{n} . Подействуем на второе выражение оператором a^+ :

$$a^{+}a|n\rangle = \sqrt{n}a^{+}|n-1\rangle = n|n\rangle \tag{23}$$

Оператор $\hat{n} \equiv a^+a$ часто называют оператором числа частиц. Если уравнение (23) помножить слева на вектор $\langle n|$, то можно будет понять, что собой представляет этот оператор в матричном виде:

$$\langle n | \hat{n} | n \rangle = n$$

Напомним, что если мы сопоставляем матрицу оператору \hat{n} , то в левой скобке стоит номер строки, в правой номер столбца, а все скалярное произведение задаёт значение матричного элемента на пересечении этих столбца и строки.

Таким образом, мы можем записать матрицу оператора. Заметим, что она

диагональная:

$$\hat{n} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & \ddots \end{pmatrix}$$

Построим также матрицы операторов уничтожения и рождения, исходя из выведенных выше формул (22) $\langle n|a^+|n-1\rangle = \sqrt{n}, \ \langle n-1|a|n\rangle = \sqrt{n}$:

2.4.6 Собственные функции уравнения Эрмита

Вернёмся к установленному нами ранее уравнению (20), задающему уравнение Эрмита в бракет-нотации:

$$a^+a |n\rangle = n |n\rangle$$

Мы установили, что собственные числа оператора $\hat{n} = a^+ a$ целые. Для того, чтобы ряд собственных функций обрывался и не было отрицательного индекса (мы доказали, что это запрещено), необходимо существование наименьшего состояния с нулевым индексом. Оно называется вакуумным состоянием:

$$a|0\rangle = 0 \tag{24}$$

Чтобы найти следующее состояние, нужно подействовать оператором рождения на предыдущее состояние, не забыв про нормировку:

$$|1\rangle = a^+ |0\rangle \cdot \frac{1}{\sqrt{1}}, \qquad |2\rangle = a^+ |1\rangle \cdot \frac{1}{\sqrt{2}}, \qquad \dots \qquad |n\rangle = a^+ |n-1\rangle \cdot \frac{1}{\sqrt{n}}$$

Ну и вообще говоря, отсюда очевидным образом следует и общая формула:

$$|n\rangle = \frac{1}{\sqrt{n!}} (a^+)^n |0\rangle \tag{25}$$

Мы нашли и собственные числа, и собственные функции – все, ни разу ничего не продифференцировав и не проинтегрировав. Это называется алгебраическим методом.

Теперь установим соответствие между старым подходом и новым подходом. Вспомним, как мы ранее вводили операторы рождения и уничтожения, и проведем операцию обратного перехода от оператора a к p и ξ :

$$\xi = \frac{a+a^+}{\sqrt{2}}, \qquad p = \frac{a-a^+}{\sqrt{2}i} \quad \Rightarrow \quad a = \frac{\xi+ip}{\sqrt{2}}$$

Учтя, что $p=-i\frac{\partial}{\partial \xi}$, получим оператор a в координатном представлении. Аналогично получается оператор a^+ .

$$a = \frac{1}{\sqrt{2}} \left(\xi + \frac{\partial}{\partial \xi} \right), \qquad a^+ = \frac{1}{\sqrt{2}} \left(\xi - \frac{\partial}{\partial \xi} \right)$$

Теперь можем перейти от braket-записи уравнения вакуумного состояния (24) к уравнению в координатном представлении

$$\frac{1}{\sqrt{2}} \left(\xi + \frac{\partial}{\partial \xi} \right) \Psi_0(\xi) = 0$$

Тут уже придётся дифференцировать, никуда не деться. Но заметим, что нам нужно решать уже не уравнение Эрмита 2-го порядка, а гораздо более простое уравнение первого порядка, которое решается всегда:

$$\xi \Psi + \frac{\partial \Psi}{\partial \xi} = 0 \quad \Rightarrow \quad \xi \, \mathrm{d}\xi = -\frac{\mathrm{d}\Psi}{\Psi} \quad \Rightarrow \quad \Psi_0 = C_1 \cdot \exp\left\{-\frac{\xi^2}{2}\right\},$$

где константа из нормировки получается $C_1 = \pi^{-1/4}$.

Чтобы получить следующую функцию, нужно подействовать на предыдущую оператором a^+ , и вообще говоря, как мы уже вывели в (25), если подействовать оператором рождения n раз, получим Ψ_n :

$$\langle \xi | n \rangle = \Psi_n(\xi) = \frac{1}{\pi^{1/4} \sqrt{n! \cdot 2^n}} \left\{ \xi - \frac{\partial}{\partial \xi} \right\}^n \exp \left\{ -\frac{\xi^2}{2} \right\}$$

Мы получили все собственные функции путём рекуррентного вычисления, и вообще говоря, вычислили все полиномы Эрмита.

Таким способом решал задачу Гейзенберг, на год раньше Шрёдингера.

2.5. Вычисление средних

Рассмотрим практический пример вычисления средних значений, пользуясь матричным представлением операторов.

2.5.1 Определение средней координаты

Найдём $\overline{\xi}$. По определению среднего:

$$\overline{\xi} = \langle n|\xi|n\rangle = \int \Psi_n^*(\xi) \, \xi \, \Psi_n(\xi) \, \mathrm{d}\xi = 0$$

Можно значительно упростить задачу, если смотреть среднее значение оператора в матричном виде. Существенно, что такое среднее составляется как сумма, каждое из слагаемых которой содержит множитель - соответствующий элемент главной диагонали матрицы оператора. Значит, если на главной диагонали нули, то среднее ноль. В нашем случае:

$$\xi = \frac{a+a^+}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left\{ \begin{pmatrix} 0 & \sqrt{1} & 0 & 0 & \dots \\ 0 & 0 & \sqrt{2} & 0 & \dots \\ 0 & 0 & 0 & \sqrt{3} & \dots \\ 0 & 0 & 0 & 0 & \ddots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 & \dots \\ \sqrt{1} & 0 & 0 & 0 & \dots \\ 0 & \sqrt{2} & 0 & 0 & \dots \\ 0 & 0 & \sqrt{3} & 0 & \dots \\ 0 & 0 & 0 & \ddots & \dots \end{pmatrix} \right\}$$

Очевидно, здесь после суммирования матриц на главной диагонали остаются нули, а значит, среднее $\overline{\xi}=0$.

2.5.2 Определение средней потенциальной энергии

Будем вычислять среднее $\frac{\overline{\xi^2}}{2}$, пользуясь матричными соображениями. Для начала, раскроем квадрат $\frac{\xi^2}{2}$, помня о том, что операторы не коммутативны:

$$\frac{\xi^2}{2} = \frac{(a+a^+)^2}{4} = \frac{1}{4} (aa + aa^+ + a^+a + a^+a^+)$$

Заметим, что некоторые слагаемые в среднем дадут ноль, так как у них нули на главной диагонали матрицы. Это aa и a^+a^+ . Рассмотрим на примере aa:

$$aa |n\rangle \sim |n-2\rangle \quad \Rightarrow \quad \langle n-2| \, aa \, |n\rangle \sim 1$$

Другие матричные элементы, кроме на строке n-2 и столбце n, занулятся в силу $\langle m|n\rangle=\delta_{mn}$. Значит, на диагонали действительно нули. Аналогично с a^+a^+ . Тогда среднее упрощается:

$$\frac{\overline{\xi^2}}{2} = \frac{1}{4} \langle n | aa^+ + a^+ a | n \rangle$$

Воспользуемся коммутационным соотношением (17):

$$\frac{1}{2}(aa^{+} + a^{+}a) = a^{+}a + \frac{1}{2} \quad \Rightarrow \quad \frac{1}{2}\langle n|aa^{+} + a^{+}a|n\rangle = \langle n|a^{+}a|n\rangle + \frac{1}{2}$$

А так как в силу (23) можем подставить $a^+a |n\rangle = n |n\rangle$, то

$$\frac{\overline{\xi^2}}{2} = \frac{1}{2} \left(\langle n | a^+ a | n \rangle + \frac{1}{2} \right) = \frac{1}{2} \left(n + \frac{1}{2} \right) = \frac{\varepsilon}{2}.$$

3. Орбитальный момент

Эмми Нётер установила связь между законами сохранения и с соответствующими им свойствами какой-либо симметрии. В квантовой механике эта связь приобретает особенно прозрачный смысл.

3.1. Законы сохранения в квантовой механике

Рассмотрим, как появляется связь закона сохранения и свойства симметрии на примере нестационарного уравнения Шрёдингера:

$$i\hbar\dot{\Psi} = \hat{H}\Psi\tag{26}$$

3.1.1 Трансляция времени

Запишем производную волновой функции по определению производной:

$$\dot{\Psi} = \lim_{\Delta t \to 0} \frac{\Psi(t + \Delta t) - \Psi(t)}{\Delta t} = \frac{\Psi(t + \delta t) - \Psi(t)}{\delta t},$$

где введено обозначение δt – бесконечно малый сдвиг во времени (операция сдвига во времени называется трансляцией времени).

Так как δt мало, можем разложить $\Psi(t+\delta t)$ в ряд Тейлора. А так как δt ещё и бесконечно мало, то разложить можем только до первого члена, учтя в силу (26), что $\frac{\partial \Psi}{\partial t} = \frac{\hat{H}}{i\hbar} \Psi(t)$:

$$\Psi(t+\delta t)=\Psi(t)+\delta t\frac{\partial\Psi}{\partial t}=\bigg\{1+\frac{\delta t}{i\hbar}\hat{H}\bigg\}\Psi(t)$$
 Оператор бесконечно малого сдвига во времени $\hat{G}_{\delta t}$

Если физическая система инвариантна относительно трансляции времени, то в ней сохраняется $\hat{H}.$

Для дальнейших рассуждений вспомним, как вводится оператор производной по времени в квантовой механике. Выведем его:

$$\langle \dot{A} \rangle = \langle \Psi | \dot{A} | \Psi \rangle + \left\langle \dot{\Psi} \middle| A \middle| \Psi \right\rangle + \left\langle \Psi \middle| A \middle| \dot{\Psi} \right\rangle = \langle \Psi | \left(\frac{\partial A}{\partial t} + \frac{i}{\hbar} (HA - AH) \right) | \Psi \rangle$$

Отсюда, очевидно, следует

$$\dot{A} = \frac{\partial A}{\partial t} + \frac{i}{\hbar} [A, H]$$

В классической физике сохранение H означает, что $\dot{H}=0$. Соотнесём это определение с выведенным равенством:

$$\dot{H} = \frac{\partial H}{\partial t} + \frac{i}{\hbar}[H, H]$$

H не может явным образом зависеть от времени, иначе о сохранении просто говорить нельзя. Но коммутатор [H,H] очевидно равен нулю, значит, равна нулю и вся сумма, и мы получили сохранение \hat{H} .

3.1.2 Трансляция пространства

Мы рассмотрели, как вводится трансляция времени и соответствующий оператор бесконечно малого сдвига во времени. Согласно теореме Нётер, если система инвариантна относительно трансляции в пространстве, то сохраняется импульс.

Оператор импульса - это оператор бесконечно малой трансляции координаты. Разложим волновую функцию в ряд Тейлора в окрестности x, для начала в одномерном случае:

$$\Psi(x+a) = \Psi(x) + a \frac{\partial \Psi(x)}{\partial x} + \ldots + \frac{a^n}{n!} \frac{\partial^n \Psi}{\partial x^n}$$

Или, в операторной форме:

$$\Psi(x+a) = \left(1 + a\frac{\partial}{\partial x} + \ldots + \frac{a^n}{n!}\frac{\partial^n}{\partial x^n}\right)\Psi(x)$$

Скобка представляет собой разложение экспоненты в ряд Тейлора. С учетом этого, получаем

$$\Psi(x+a) = \exp\bigg(a\frac{\partial}{\partial x}\bigg)\Psi(x) = \exp\bigg(\frac{i}{\hbar}\hat{p}a\bigg)\Psi(x)$$
 Оператор конечного сдвига в пространстве \hat{T}_a

Перейдём к рассмотрению бесконечно малого приращения координаты δa . Тогда можем ограничиться двумя членами разложения и получить оператор бесконечно малого сдвига в пространстве, учтя, что $p = -i\hbar \frac{\partial}{\partial x}$:

$$\Psi(x + \delta a) = \left(1 + \delta a \frac{\partial}{\partial x}\right) \Psi(x) = \left(1 + \frac{i}{\hbar} \delta a \,\hat{p}\right) \Psi(x)$$

Оператор бесконечно малого сдвига в пространстве $\hat{T}_{\delta a}$

Для нашего трёхмерного пространства несложно догадаться, какой вид будет иметь оператор сдвига, по аналогии с одномерным случаем:

$$\Psi(\vec{r} + \delta \vec{a}) = (1 + \delta \vec{a} \, \nabla) \Psi(x) = \left(1 + \frac{i}{\hbar} \left(\delta \vec{a} \,, \hat{\vec{p}}\right)\right) \Psi(x)$$

Оператор бесконечно малого сдвига в пространстве $\hat{T}_{\delta ec{a}}$

3.1.3 Вращение пространства

Рассмотрим преобразование поворота в пространстве. Как можно в общем случае описать поворот вектора в трёхмерном пространстве? Прибавить к нему некоторый бесконечно малый перпендикулярный вектор:

$$\vec{r}' = \vec{r} + \delta \vec{r}$$

Если он будет не перпендикулярен, то появится сдвиг в пространстве, а если не мал, то это не будет поворотом: при повороте длина (модуль) вектора должна сохраняться.

Рис. 16. Преобразование поворота

Если мы введём ось \vec{n} (см. рис. 16), вокруг которой будем осуществлять вращение вектора \vec{r} , то поворот можно описать с помощью нового вектора $\delta \vec{\varphi} = \vec{n} \, \delta \varphi$:

$$\delta \vec{r} = [\delta \vec{\varphi} \times \vec{r}\,]$$

Займёмся выражением оператора бесконечно малого поворота, разложив

в ряд волновую функцию повёрнутого аргумента:

$$\begin{split} \Psi(\vec{r} + \delta \vec{r}) &= \Psi(\vec{r}) + \delta \vec{r} \, \nabla \Psi(\vec{r}) = (1 + \delta \vec{r} \, \nabla) \Psi(\vec{r}) = \\ &= \bigg\{ 1 + \big([\delta \vec{\varphi} \times \vec{r}] \cdot \nabla \big) \bigg\} \Psi(\vec{r}) \end{split}$$

Заметим, что в скобках стоит смешанное произведение, для которого выполняется свойство циклической перестановки:

$$\left(\vec{a}, \left[\vec{b} \times \vec{c}\right]\right) = \left(\vec{c}, \left[\vec{a} \times \vec{b}\right]\right) = \left(\vec{b}, \left[\vec{c} \times \vec{a}\right]\right)$$

Тогда

$$\Psi(\vec{r} + \delta \vec{r}) = \left\{1 + \delta \vec{\varphi} \cdot \left[\vec{r} \times \vec{\nabla}\right]\right\} \Psi(\vec{r})$$

Введём по определению оператор момента импульса (орбитального момента):

$$\hat{ec{L}} = [ec{r} imes ec{p}] = -i\hbar \Big[ec{r} imes ec{
abla} \Big]$$

Тогда можем снова переписать выражение для поворота:

$$\Psi(\vec{r} + \delta \vec{r}) = \left\{ 1 + \frac{i}{\hbar} \delta \vec{\varphi} \cdot \hat{\vec{L}} \right\} \Psi(\vec{r})$$
Оператор бесконечно малого поворота в пространстве $\hat{R}_{\delta \vec{\varphi}}$ (27)

3.2. Коммутационные соотношения

Будем измерять момент импульса в единицах \hbar $(p=\hbar k)$ (вспомним, \hbar — это квант действия). Вводится безразмерный орбитальный момент \vec{l} :

$$\vec{L} = \hbar \vec{l}$$

Откуда, учтя что $\vec{k}=-i\nabla$, получаем

$$\vec{l} = \left[\vec{r} \times \vec{k} \right]$$

Раскроем векторное произведение:

$$\hat{l} = [\vec{r} \times \vec{k}] = -i \begin{vmatrix} \vec{x}_0 & \vec{y}_0 & \vec{z}_0 \\ x & y & z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = \begin{vmatrix} \vec{x}_0 & \vec{y}_0 & \vec{z}_0 \\ x & y & z \\ k_x & k_y & k_z \end{vmatrix}$$

Раскроем покоординатно проекции импульса, расписав определитель:

$$l_x = yk_z - zk_y$$
$$l_y = zk_x - xk_z$$
$$l_z = xk_y - yk_x$$

3.2.1 Коммутатор проекций момента импульса

Найдём коммутатор $[l_x, l_y]$, учтя, что y, x, k_z коммутируют:

$$l_{x}l_{y} - l_{y}l_{x} = (yk_{z} - zk_{y})(zk_{x} - xk_{z}) - (zk_{x} - xk_{z})(yk_{z} - zk_{y}) =$$

$$= yk_{z}zk_{x} - yk_{z}xk_{z} - zk_{y}zk_{x} + zk_{y}xk_{z} -$$

$$-(zk_{x}yk_{z} - zk_{x}zk_{y} - xk_{z}yk_{z} + xk_{z}zk_{y}) =$$

$$= yk_{z}zk_{x} - xk_{z}zk_{y} + zk_{y}xk_{z} - zk_{x}yk_{z}$$

$$= yk_{z}zk_{x} - xk_{z}zk_{y} + zk_{y}xk_{z} - zk_{x}yk_{z}$$

$$(28)$$

Посмотрим, как действует первое слагаемое на Ψ , учтя что оператор произведения раскрывается как производная произведения $(k_z \sim \frac{\partial}{\partial z})$, а $k_z z = -i$:

$$yk_z zk_x \Psi = y \cdot k_z (zk_x \Psi) = y \cdot k_z \stackrel{\downarrow}{z} k_x \Psi + y \cdot k_z z (k_x \Psi) =$$
$$= -iyk_x + zy \cdot k_z k_x \Psi$$

Для второго слагаемого можно получить аналогичную формулу заменой в последней формуле $y \to x, \ x \to y$:

$$xk_z zk_y \Psi = -ixk_y + zx \cdot k_z k_y \Psi$$

Подставим получившийся результат в (28), учтя коммутируемость некоторых операторов:

$$\begin{split} (l_x l_y - l_y l_x) \Psi &= (y k_z \, z k_x - x k_z \, z k_y + z k_y \, x k_z - z k_x \, y k_z) \Psi = \\ &= -i (y k_x - x k_y) \Psi + \overline{z y \cdot k_z} \, k_x \Psi - \underline{z x \cdot k_z} \, k_y \Psi + \underline{z x \cdot k_y} \, k_z \Psi - \overline{z y \cdot k_x} \, k_z \Psi = \\ &= -i (y k_x - x k_y) \Psi \end{split}$$

Или, вспомнив что последнее выражение можно переписать через l_z :

$$l_x l_y - l_y l_x = i l_z$$

Отсюда циклической перестановкой $x \to y \to z \to x$ получим ещё два коммутационных соотношения, и в итоге получаем важный результат - операторы проекций момента импульса между собой не коммутируют:

$$\begin{cases}
l_x l_y - l_y l_x = i l_z \\
l_y l_z - l_z l_y = i l_x \\
l_z l_x - l_x l_z = i l_y
\end{cases}$$
(29)

Вспомним, если операторы коммутируют, у них общая система собственных функций, и операторы в этом базисе диагональны \Rightarrow величины имеют определённое значение (одновременно измеримы).

3.2.2 Коммутатор проекции волнового вектора и координаты

Вспомним коммутационное соотношение для проекции импульса и координаты:

$$p_x x - x p_x = -i\hbar$$

Заметим, что так как $k=-i
abla=rac{p}{\hbar}$, то

$$k_x x - x k_x = -i$$

В силу того, что оператор нельзя переставлять только с тем объектом, на который он действует, будут выполнятся соотношения вида

$$k_y x - x k_y = 0$$

В данном случае $k_y \sim \frac{\partial}{\partial y}$, а производная по y на x не действует. Аналогичные равенства выполнятся и для других сочетаний коммутатора какой-либо проекции и координаты. Можно записать коммутатор в общем виде через символ Кронекера:

$$k_i x_k - x_j k_i = -i\delta_{ij}, \quad i, j = x, y, z$$

3.2.3 Коммутатор квадрата момента импульса и его проекции

Введём оператор квадрата момента импульса:

$$l^2 = l_x^2 + l_y^2 + l_z^2$$

Займёмся поиском коммутатора $[l^2,l_z]$. Заметим, что $[l_z^2,l_z]$, очевидно, равен нулю, и тогда:

$$[l^2, l_z] = (l_x^2 + l_y^2 +)_x^2 l_z - l_z (l_x^2 + l_y^2 +)_x^2 = l_x^2 l_z - l_z l_x^2 + l_y^2 l_z - l_z l_y^2$$
(30)

Для вычисления $[l_x^2, l_z]$ нужно пользоваться алгеброй, которая задаётся коммутационными соотношениями (29).

Для этого проделаем некоторые арифметические действия для приведения к виду, содержащем в явном виде уже известные коммутационные соотношения:

$$l_{x}^{2}l_{z} - l_{z}l_{x}^{2} = l_{x}l_{x}l_{z} \underbrace{-l_{x}l_{z}l_{x} + l_{x}l_{z}l_{x}}_{\text{Добавили и вычли}} - l_{z}l_{x}^{2} =$$

$$= l_{x}(l_{x}l_{z} - l_{z}l_{x}) + l_{x}l_{z}l_{x} - l_{z}l_{x}^{2} =$$

$$= l_{x}\underbrace{(l_{x}l_{z} - l_{z}l_{x})}_{-il_{y}} + \underbrace{(l_{x}l_{z} - l_{z}l_{x})}_{-il_{y}}l_{x} = -i(l_{x}l_{y} + l_{y}l_{x})$$

$$= l_{x}\underbrace{(l_{x}l_{z} - l_{z}l_{x})}_{-il_{y}} + \underbrace{(l_{x}l_{z} - l_{z}l_{x})}_{-il_{y}}l_{x} = -i(l_{x}l_{y} + l_{y}l_{x})$$

$$= l_{x}\underbrace{(l_{x}l_{z} - l_{z}l_{x})}_{-il_{y}} + \underbrace{(l_{x}l_{z} - l_{z}l_{x})}_{-il_{y}}l_{x} = -i(l_{x}l_{y} + l_{y}l_{x})$$

Аналогично можно получить коммутатор $[l_y^2, l_z]$:

$$l_y^2 l_z - l_z l_y^2 = l_y \underbrace{(l_y l_z - l_z l_y)}_{il_x} + \underbrace{l_y l_z l_y - l_z l_y^2}_{(l_y l_z - l_z l_y) l_y = il_x l_y} = i(l_y l_x + l_x l_y)$$
(32)

Сложив уравнения (31) и (32), получим правую часть уравнения для комму-

татора $[l^2, l_z]$ (30):

$$[l^2, l_z] = l_x^2 l_z - l_z l_x^2 + l_y^2 l_z - l_z l_y^2 = -i(l_x l_y + l_y l_x) + i(l_y l_x + l_x l_y) = 0$$

Получили важный результат²: любая проекция момента импульса и оператор квадрата момента коммутируют, а значит, имеют общую систему функций.

3.2.4 Понижающий и повышающий операторы орбитального момента

Когда мы решали задачу о гармоническом осцилляторе, нам было удобно ввести операторы рождения и уничтожения 3 . Аналогично можно ввести повышающие и понижающие операторы. Тогда, вместо операторов l_x и l_y мы получим новые операторы l_\pm . Часто вводят понижающий и повышающий операторы момента импульса:

$$l_{\pm} = l_x \pm i l_y$$

Повышающий и понижающий операторы не эрмитовы (так как в них входит мнимая единица):

$$l_{+}^{+} = l_{-}, \quad l_{-}^{+} = l_{+}$$
 (33)

Напомним, что оператор называется эрмитовым, когда выполняется следующее соотношение: $l_x^+ = l_x^{*T} = l_x$.

Замечание. Это напоминает нам поляризацию в общей физике (рис. 17): Линейная поляризация записывается через вектора в одной фазе:

$$l_x l^2 - l^2 l_x = l_x l_y^2 + l_x l_z^2 + \cancel{l_x} t_x^2 - l_y^2 l_x - l_z^2 l_x - \cancel{l_x} t_x^2$$

Подействовав на уравнение (28) оператором l_y справа и слева, получим систему уравнений и сложим её:

$$\begin{cases} l_x l_y^2 - l_y l_x l_y = i l_z l_y \\ l_y l_x l_y - l_y^2 l_x = i l_y l_z \end{cases} \Rightarrow l_x l_y^2 - l_y^2 l_x = i (l_z l_y + l_y l_z)$$

Аналогичным способом, действуя на нужное уравнение слева и справа (но не циклической перестановкой!), получается уравнение:

$$l_x l_z^2 - l_z^2 l_z = -i(l_y l_z + l_z l_y)$$

Но подставив два последних полученных выражения в выражение для коммутатора, получим, что коммутатор равен нулю.

²Тот же результат можно получить другим, более простым способом. Чтобы не повторяться, попробуем вычислить коммутатор $[l_x, l^2]$:

³Заметим, что они были не эрмитовы

Рис. 17. Круговая поляризация: вектор вращается

$$\vec{x}_0 \cos \omega t + \vec{y}_0 \cos \omega t$$

Рассмотрим теперь круговую поляризацию. Круговой называют поляризацию, в которой вектор напряжённости с течением времени поворачивается на плоскости (x,y), не изменяя своей длины. Параметрически окружность задаётся так:

$$\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases}$$

В случае комплексных переменных, мы можем записать окружность как:

$$z = x + iy = \cos\theta + i\sin\theta = e^{i\theta}$$

Тогда мы можем круговую поляризацию записать так:

$$\vec{E} = \text{Re}\{(\vec{x}_0 \pm i\vec{y}_0)e^{i\omega t}\}\$$

Комплексное сопряжение поменяет направление вращения вектора \vec{E} и даст левую круговую поляризацию. Собственно, это и есть аналогия с (33).

Теперь рассмотрим следующие коммутационные соотношения:

$$[l_z, l_{\pm}], [l_+, l_-].$$

Вычислим первый коммутатор (при вычислении использовались соотношения (29)).

$$[l_z, l_+] = l_z(l_x + il_y) - (l_x + il_y)l_z = \underbrace{l_z l_x - l_x l_z}_{il_y} + i\underbrace{(l_z l_y - l_y l_z)}_{-il_x} =$$

$$= il_y + i(-il_x) = l_x + il_y = l_+$$

Аналогично получается формула для l_{-} , и тогда

$$[l_z, l_{\pm}] = \pm l_{\pm} \tag{34}$$

Вычислим второй коммутатор:

$$[l_{+}, l_{-}] = (l_{x} + il_{y})(l_{x} - il_{y}) - (l_{x} - il_{y})(l_{x} + il_{y}) =$$
(35)
{можно сразу заметить, что все слагаемые с l_{x}^{2}, l_{y}^{2} сокращаются}
$$= il_{y}l_{x} - il_{x}l_{y} - (il_{x}l_{y} - il_{y}l_{x}) =$$

$$= i(l_{y}l_{x} - l_{x}l_{y}) - i(l_{x}l_{y} - l_{y}l_{x}) = i(-il_{z}) - i(il_{z}) = 2l_{z}$$

Теперь нам нужно через новые операторы выразить $l^2 = l_x^2 + l_y^2 + l_z^2$.

$$l^{2} = l_{x}^{2} + l_{y}^{2} + l_{z}^{2} = \frac{(l_{+} + l_{-})(l_{+} + l_{-})}{4} - \frac{(l_{+} - l_{-})(l_{+} - l_{-})}{4} + l_{z}^{2}$$

Все квадраты сократятся, поскольку операторы сами с собой коммутируют, а смешанные слагаемые удвоятся:

$$l^2 = \frac{l_- l_+ + l_+ l_-}{4} + \frac{l_+ l_- + l_- l_+}{4} + l_z^2 = \frac{l_+ l_- + l_- l_+}{2} + l_z^2$$

Воспользуемся коммутационным соотношением (35):

$$l_{+}l_{-} - l_{-}l_{+} = 2l_{z} \implies$$

$$l^{2} = \frac{2l_{-}l_{+} + 2l_{z}}{2} + l_{z}^{2} = l_{-}l_{+} + l_{z}^{2} + l_{z} = l_{+}l_{-} + l_{z}^{2} - l_{z}$$
(36)

3.3. Собственные функции и числа оператора орбитального момента

Будем искать решения аналогично тому, как мы это делали для гармонического осциллятора. Будем искать собственные векторы оператора $l_z^{\ 4}$.

В обозначениях Дирака это запишется так:

$$\hat{l}_z |\alpha_{l_z}, \alpha_{l^2}\rangle = \alpha_{l_z} |\alpha_{l_z}, \alpha_{l^2}\rangle$$

$$\hat{l}^2 |\alpha_{l_z}, \alpha_{l^2}\rangle = \alpha_{l^2} |\alpha_{l_z}, \alpha_{l^2}\rangle$$

Оператор l_z и l^2 коммутируют, значит, у них общая система собственных функций. Два собственных числа обозначают, что собственный вектор нумеруется двумя числами. Поясним это на примере двух произвольных операторов с общей системой функций:

$$A\Psi_n = a_n \Psi_n, \quad B\Psi_n = b_n \Psi_n$$

 Ψ_n собственная функция для операторов A и B, поэтому её можно нумеровать одним индексом n, но иногда нумеруют двумя индексами Ψ_{a_n,b_n} , поскольку она удовлетворяет обоим уравнениям.

Физический смысл оператора l_z - поворот вокруг оси z, то есть изменение угла φ . Поставим перед собой задачу записать l_z в сферической системе координат. Для этого найдём вид оператора бесконечно малого поворота:

$$f(\theta, \varphi + \delta\varphi) = f(\varphi) + \delta\varphi \frac{\partial f}{\partial\varphi} = \left(1 + \delta\varphi \frac{\partial}{\partial\varphi}\right) f(\varphi) = \left(1 + i\underbrace{\delta\varphi \frac{1}{i} \frac{\partial}{\partial\varphi}}_{\hat{R}_{\delta\varphi} = l_z}\right) f(\varphi)$$

Тогда в сферической системе координат (сравним с (27))

$$l_z = -i\frac{\partial}{\partial \varphi}$$

⁴Оператор, действуя на свой собственный вектор, умножает его на число

Найдём собственные функции $\Psi(\varphi)$ оператора l_z в φ -представлении:

$$-i\frac{\partial}{\partial\varphi}\Psi(\varphi) = \alpha_{l_z}\Psi(\varphi) \tag{37}$$

Решая дифференциальное уравнение (37), получим решение с точностью до константы $f(r,\theta)$, не зависящей от φ :

$$\Psi(\varphi) = f(r,\theta) \exp\{i\alpha_{l_z}\varphi\}, \quad \Psi(\varphi) = \Psi(\varphi + 2\pi)$$

Целость собственных чисел оператора l_z . Из решения следует, что собственные числа оператора l_z должны быть целым числом, иначе поворот на полный угол (2π) не переведёт функцию обратно.

$$\alpha_{l_z} = m, \quad m = 0, \pm 1, \pm 2, \dots$$

m — собственное число оператора l_z . Его также называют магнитным квантовым числом. Далее мы всюду будем писать, вместо α_{l_z} , число m:

$$l^2 | m, \alpha_{l^2} \rangle = \alpha_{l^2} | m, \alpha_{l^2} \rangle$$

Нормировка собственных функций l_z . Тривиальное интегрирование даёт предэкспоненциальный множитель:

$$\Psi_m = \frac{1}{\sqrt{2\pi}} \exp\{im\varphi\}$$

Смысл операторов повышения и понижения. Для поиска смысла подействуем оператором повышения на уравнение для собственных функций и чисел l_z :

$$l_{+} \cdot \left| l_{z} \left| m, \alpha_{l^{2}} \right\rangle = m \left| m, \alpha_{l^{2}} \right\rangle \right| \Rightarrow l_{+} l_{z} \left| m, \alpha_{l^{2}} \right\rangle = m l_{+} \left| m, \alpha_{l^{2}} \right\rangle$$

Заменим в левой части оператор, воспользовавшись коммутационными соотношениями (34):

$$l_z l_+ - l_+ l_z = l_+ \quad \Rightarrow \quad l_+ l_z = l_z l_+ - l_+$$

$$l_z l_+ |m, \alpha_{l^2}\rangle - l_+ |m, \alpha_{l^2}\rangle = m l_+ |m, \alpha_{l^2}\rangle$$
$$l_z l_+ |m, \alpha_{l^2}\rangle = (m+1) l_+ |m, \alpha_{l^2}\rangle$$

Это означает, что $l_+ | m, \alpha_{l^2} \rangle$ является собственной функцией оператора l_z , соответствующей собственному числу m+1:

$$l_+ |m, \alpha_{l^2}\rangle \sim |m+1, \alpha_{l^2}\rangle$$

Легко догадаться, что

$$l_{-}|m,\alpha_{l^2}\rangle \sim |m-1,\alpha_{l^2}\rangle$$

Ограниченность собственных чисел оператора l_z . Рассмотрим оператор l^2 . Собственные числа оператора l_z , как мы выяснили, целые. Оказывается, они также будут ограниченными вследствие того, что проекция не может быть больше, чем полный вектор. Докажем этот факт. Очевидно, что

$$l^2 - l_z^2 = l_x^2 + l_y^2$$

Оператор справа положительно определённый. Вообще говоря, будучи составленным из эрмитовых операторов, он имеет действительные собственные числа, а их сумма квадратов — положительно определённая. Для не эрмитовых было бы не так. Но в нашем случае все хорошо, и любое скалярное произведение будет положительно:

$$\langle \Psi | l_x^2 + l_y^2 | \Psi \rangle \ge 0$$

Так как операторы слева и справа равны, значит, слева тоже положительно определённый оператор, и тогда собственные числа l_z будут ограничены. \square

Обозначим максимальное возможное m_{\max} как l. Тогда минимальное $m_{\min} = -l$. Всего получается 2l+1 значений. Тогда чему равно $l_+ |l, \alpha_{l^2}\rangle$? Должно быть равно нулю:

$$l_{+} |l, \alpha_{l^2}\rangle = 0, \quad l_{-} |-l, \alpha_{l^2}\rangle = 0$$

Если бы это было не так, то нарушилось бы условие ограниченности m.

Собственные числа оператора l^2 . Подействуем оператором l^2 на собственный вектор и воспользуемся коммутационным соотношением (36):

$$|l^2|l, \alpha_{l^2}\rangle = (l_-l_+ + l_z^2 + l_z)|l, \alpha_{l^2}\rangle = l_z(l_z + 1)|l, \alpha_{l^2}\rangle$$

Так как ранее мы выяснили, что собственные значения l_z – числа m:

$$\begin{cases} l_z^2 | l, \alpha_{l^2} \rangle = l^2 | l, \alpha_{l^2} \rangle \\ l_z | l, \alpha_{l^2} \rangle = l | l, \alpha_{l^2} \rangle \end{cases} \text{ To } \Rightarrow \alpha_{l^2} = l(l+1)$$

Итак, мы нашли собственные числа оператора l^2 : $\alpha_{l^2} = l(l+1)$. Собственная функция нумеруется теперь двумя числами, m и l:

$$l_z |l, m\rangle = m |l, m\rangle \tag{38}$$

$$l^2 |l, m\rangle = l(l+1) |l, m\rangle \tag{39}$$

3.4. Матричное представление операторов момента

${f 3.4.1}$ Матричные элементы операторов l_\pm

Займёмся поиском матричных элементов операторов l_{\pm} . Для этого нужно выразить оператор l^2 через l_z и l_{\pm} (36) и подставить в формулу с собственными числами оператора l^2 (39):

$$(l_+l_- + l_z^2 - l_z) |l, m\rangle = l(l+1) |l, m\rangle$$

Теперь можно домножить уравнение на скобку $\langle l,m|$:

$$\langle l, m | l_+ l_- + l_z^2 - l_z | l, m \rangle = \langle l, m | l^2 | l, m \rangle = \langle l, m | l(l+1) | l, m \rangle$$

Предполагая, что волновая функция нормирована $\langle l,m|l,m\rangle=1$, можно упростить правую часть уравнения. В левой части уравнения можно раскрыть сумму, и тогда уравнение перепишется в следующем виде:

$$\langle l, m | l_{+}l_{-} | l, m \rangle + \langle l, m | l_{z}^{2} | l, m \rangle - \langle l, m | l_{z} | l, m \rangle = l(l+1)$$

Окончательно уравнение станет содержать только операторы l_{\pm} , если подставить собственные числа операторов l_z и l_z^2 (38):

$$\langle l, m | l_+ l_- | l, m \rangle = l(l+1) - m^2 + m = l^2 - m^2 + (l+m) = (l+m)(l-m+1)$$

В разделе 2.4.4 мы показывали, что можно разделить скалярное произведение на два сомножителя, а значит, можно и вставить между ними единичный оператор:

$$\langle l, m | l_{+}l_{-} | l, m \rangle = (\langle l, m | l_{+}) \cdot (l_{-} | l, m \rangle) = (\langle l, m | l_{+}) \cdot \hat{1} \cdot (l_{-} | l, m \rangle) =$$

$$= \langle l, m | l_{+} \cdot \sum_{k} | l, k \rangle \langle l, k | \cdot l_{-} | l, m \rangle = \sum_{k} \langle l, m | l_{+} | l, k \rangle \langle l, k | l_{-} | l, m \rangle$$

Воспользуемся повышающим и понижающим свойством операторов l_{\pm} :

$$\sum_{k} \langle l, m | l_{+} | l, k \rangle \langle l, k | l_{-} | l, m \rangle \sim \sum_{k} \langle l, m | l, k + 1 \rangle \langle l, k | l, m - 1 \rangle \sim$$

$$\sim \sum_{k} \delta_{m,k+1} \cdot \delta_{k,m-1}$$

Отсюда мы получаем, что ненулевой вклад в сумму даст только слагаемое с k=m-1, и тогда сумма вырождается в произведение двух скобок

$$\sum_{k} \langle l, m | l_{+} | l, k \rangle \langle l, k | l_{-} | l, m \rangle = \langle l, m | l_{+} | l, m - 1 \rangle \langle l, m - 1 | l_{-} | l, m \rangle$$

Операторы повышения и понижения образуют эрмитово сопряжённую пару

$$l_{-}^{+} = l_{+}, \quad l_{+}^{+} = l_{-},$$

и вследствие этого матричные элементы $\langle l,m|\,l_+\,|l,m-1\rangle$ и $\langle l,m-1|\,l_-\,|l,m\rangle$ — тоже эрмитово сопряжённые, а так как это числа, то они просто сопряжённые, и тогда их произведение есть модуль:

$$\langle l, m | l_{+}l_{-} | l, m \rangle =$$

$$= |\langle l, m | l_{+} | l, m - 1 \rangle|^{2} = |\langle l, m - 1 | l_{-} | l, m \rangle|^{2} = (l + m)(l - m + 1)$$

Чтобы найти матричный элемент, нужно извлечь корень из обоих частей уравнения. При этом, вообще говоря, число под корнем в общем случае ком-

плексное: но обычно фазу матричного элемента выбирают равной нулю, поэтому извлечение корня упрощается:

$$\langle l, m | l_+ | l, m - 1 \rangle = \sqrt{(l+m)(l-m+1)} = \langle l, m - 1 | l_- | l, m \rangle$$

Итак, мы получили матричные элементы операторов повышения и понижения. Теперь можно задаться вопросом, как будут выглядеть и сами матрицы операторов l_{\pm} .

3.4.2 Составление матриц из матричных элементов

Этот раздел возник из-за впадения аудитории в ступор перед матричными элементами. Мы хотим получить матрицы всех операторов, которые мы использовали, при l=1.

l это максимальное значение m, а m пробегает значения -l < m < +l - всего 2l+1 значений. В случае l=0 матрицей оператора является матрица 1×1 , то есть число.

Матрица оператора l^2 в случае l=1:

Как выглядит вектор $|l,m\rangle$ в своём собственном представлении? Нужно разложить его по базису, определяемому формулой

$$l_z |l, m\rangle = m |l, m\rangle$$

Домножим на скобку $\langle l', m' |$:

$$\langle l', m' | l_z | l, m \rangle = m \delta_{ll'} \delta_{mm'}$$

Это означает, что на диагонали стоит m. Матрица оператора в своём собственном представлении диагональна.

$$\hat{l}_z = m' = 0 \begin{pmatrix} m = 1 & m = 0 & m = -1 \\ m' = 1 & 1 & 0 & 0 \\ m' = -1 & 0 & 0 & 0 \\ m' = -1 & 0 & 0 & -1 \end{pmatrix}$$

Теперь, коль скоро мы нашли матрицу оператора, можем найти и её собственные вектора $|1,m\rangle$. Это задача на собственные вектора и собственные значения из линейной алгебры:

$$\begin{pmatrix} 1 - \lambda & 0 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & -1 - \lambda \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = 0$$

Чтобы это произведение было равно нулю, нужно чтобы детерминант левой матрицы был равен нулю. А он равен нулю при трех значениях λ : $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1$. Подставляя по очереди эти три значения, получим собственные вектора:

$$|1,1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad |1,0\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad |1,-1\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Или в общем виде

$$|1,m\rangle = \begin{pmatrix} \delta_{m,1} \\ \delta_{m,0} \\ \delta_{m,-1} \end{pmatrix}$$

3.4.3 Матрицы операторов $l_{\pm},\ l_x,\ l_y$

Освежив знания по составлению матриц, мы можем составить матрицу для оператора l_- :

$$\langle l, m-1 | l_- | l, m \rangle = \sqrt{(l+m)(l-m+1)}$$

Здесь m'=m-1, значит, числа стоят на нижней побочной диагонали (чтобы получить нужные матричные элементы, нужно положить m=1,0,-1 и подставить их в левую и правую скобку. Тогда число слева будет номером строки,

а число справа - номером столбца):

$$l_{-} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}$$

Для l_+ аналогично:

$$l_{+} = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}$$

Можно проверить, что эти операторы действительно повышают или понижают число m. Подействуем на собственный вектор $|1,-1\rangle$ оператором l_+ :

$$\begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \sqrt{2} \\ 0 \end{pmatrix} = \sqrt{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Т.е. вектор $|1,-1\rangle$ превратился в $|1,0\rangle$. Действуем этим же оператором теперь на $|1,0\rangle$:

$$\begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ 0 \\ 0 \end{pmatrix} = \sqrt{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

А если еще раз подействовать, получится ноль, как нас и учили.

Теперь можем получить и матрицы операторов $l_{x,y}$, выразив их через операторы повышения и понижения, для которых матрицы уже найдены:

$$l_x = \frac{1}{2}(l_- + l_+) = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{2} & 0\\ \sqrt{2} & 0 & \sqrt{2}\\ 0 & \sqrt{2} & 0 \end{pmatrix}$$

$$l_y = \frac{1}{2i}(l_+ - l_-) = \frac{1}{2i} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 0 & -\sqrt{2} & 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

3.5. Собственные функции операторов момента в θ и φ представлениях

Займёмся поиском выражений операторов бесконечно малых поворотов через углы. Ранее мы получили формулу для оператора бесконечно малого поворота вокруг оси z:

$$l_z = -i\frac{\partial}{\partial \varphi}$$

Напомним, что выражение для бесконечно малого поворота вокруг оси z было получено через разложение в ряд Тейлора:

$$f(\theta, \varphi + \delta\varphi) = f(\varphi) + \delta\varphi \frac{\partial f}{\partial\varphi} = \left(1 + \delta\varphi \frac{\partial}{\partial\varphi}\right) f(\varphi) = \left(1 + i\delta\varphi \underbrace{\frac{1}{i}\frac{\partial}{\partial\varphi}}_{\hat{R}_{\delta\varphi} = l_z}\right) f(\varphi)$$

Воспользуемся полученным выражением для поиска остальных.

Аналитический способ. По определению \vec{l} :

$$\vec{l} = \left[\vec{r} \times \vec{k} \right] = -i \left[\vec{r} \times \vec{\nabla} \right] \quad \Rightarrow \quad l_x = -i \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)$$

Затем нужно выразить все через сферические координаты:

$$x = r \sin \theta \cos \varphi, \quad y = r \sin \theta \sin \varphi, \quad z = r \cos \theta$$

Оператор дифференцирования расписать как дифференцирование сложной функции:

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial}{\partial \theta} \cdot \frac{\partial \theta}{\partial x} + \frac{\partial}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial x}$$

Все производные, которые придется считать, содержатся в якобиане:

$$\begin{pmatrix} \frac{\partial r}{\partial x} & \frac{\partial \theta}{\partial x} & \frac{\partial \varphi}{\partial x} \\ \frac{\partial r}{\partial y} & \cdots & \cdots \\ \frac{\partial r}{\partial z} & \cdots & \cdots \end{pmatrix}$$

Чтобы посчитать компоненты якобиана, нужно разрешить систему отно-

сительно r, φ, θ :

$$r = \sqrt{x^2 + y^2 + z^2}, \quad r_{\perp} = \sqrt{x^2 + y^2}, \quad \cos \theta = \frac{z}{r}, \quad \cos \varphi = \frac{x}{r_{\perp}}$$

Этот способ включает в себя много громоздких вычислений (нужно будет сосчитать девять частных производных), в которых сложно не ошибиться, поэтому будет рассмотрен второй способ, который с математической точки зрения проще.

Геометрический способ. Введём тройку векторов – орты $(\vec{r}_0, \vec{\theta}_0, \vec{\varphi}_0)$:

Рис. 18. Сферическая система координат

Введём новую систему координат (рис. 19), повёрнутую относительно лабораторной (рис. 18) таким образом, чтобы ось z осталась на месте, а ось y' была сонаправлена перпендикулярной составляющей вектора \vec{r} : $\{y'\} \parallel \vec{r}_{\perp}$.

Чем хороша новая ось x'? При вращении вокруг неё изменяется только угол θ . В старых осях у нас такое уже было: при вращении вокруг z менялся только угол φ . Значит, выражение для $l_{x'}$ должно быть таким же по виду, как и l_z , но есть разница в знаке.

Для оси z угол φ растёт по правилу правого винта: если правый винт крутить так же, как и φ , то он будет двигаться в направлении +z. Для оси же x' вращение угла θ левое, значит, по сравнению с l_z у $l_{x'}$ поменяется знак.

Рис. 19. Новая система координат

Так, не привлекая никакого дифференцирования, мы нашли в новых осях оператор $l_{x'}$:

$$l_{x'} = i \frac{\partial}{\partial \theta}$$

Рис. 20. Новый угол вращения вокруг оси y^\prime

Оператор $l_{y'}$. Поворот вектора \vec{r} осуществляется добавлением бесконечно малого перпендикулярного вектора $\delta \vec{r}$. Из рисунка 19 видно, что модуль этого вектора можно выразить через $\delta \varphi$ и $r_{\perp} = r \sin \theta$:

$$\sin \delta \varphi = \delta \varphi = \frac{\delta r}{r_{\perp}} \quad \Rightarrow \quad \delta r = r \sin \theta \delta \varphi$$
 (40)

С другой стороны, если мы теперь будем смотреть на этот же поворот со стороны оси y' (рис. 20), можно ввести бесконечно малый угол поворота $\delta\varphi'$

вокруг оси y', и для него аналогично записывается связь через δr и r_{\parallel} :

$$\sin \delta \varphi' = \delta \varphi' = \frac{\delta r}{r_{\parallel}} \quad \Rightarrow \quad \delta r = r \cos \theta \delta \varphi'$$
 (41)

Объединяя уравнения (40) и (41), получим

$$\delta\varphi' = \operatorname{tg}\theta \cdot \delta\varphi$$

Аналогично тому, как мы это делали для $l_{x'}$, можем записать оператор поворота (на угол φ') для $l_{y'}$. Точно так же учтём знак —, который исчезнет из-за того, что вращение φ' опять левое:

$$l_{y'} = i \frac{\partial}{\partial \varphi'} = i \operatorname{ctg} \theta \frac{\partial}{\partial \varphi}$$

Переход от $l_{x'}$, $l_{y'}$ к l_x , l_y получим, воспользовавшись векторностью оператора момента, а именно тем, что компоненты вектора преобразуются также, как компоненты радиус-вектора. А как преобразуются координаты, видно из рисунка (рис. 19):

$$l_x = l_{x'}\sin\varphi + l_{y'}\cos\varphi, \quad l_y = -l_{x'}\cos\varphi + l_{y'}\sin\varphi$$

Резюмируя полученные результаты, окончательно запишем операторы в сферических координатах:

$$\begin{split} l_z &= -i \frac{\partial}{\partial \varphi}, \\ l_x &= i \sin \varphi \frac{\partial}{\partial \theta} + i \cos \varphi \operatorname{ctg} \theta \frac{\partial}{\partial \varphi}, \\ l_y &= -i \cos \varphi \frac{\partial}{\partial \theta} + i \sin \varphi \operatorname{ctg} \theta \frac{\partial}{\partial \varphi} \end{split}$$

Отсюда можно получить и операторы повышения и понижения:

$$l_{\pm} = e^{\pm i\varphi} \left(\pm \frac{\partial}{\partial \theta} + i \operatorname{ctg} \theta \frac{\partial}{\partial \varphi} \right) \tag{42}$$

Для получения оператора l^2 воспользуемся его выражением через операторы

 l_{\pm}, l_z , например вторым из соотношений 36

$$l^2 = l_- l_+ + l_z^2 + l_z.$$

Подставляя в это выражение явные формулы (42) получим

$$l^{2} = e^{-i\varphi} \left(-\frac{\partial}{\partial \theta} + i \operatorname{ctg} \theta \frac{\partial}{\partial \varphi} \right) e^{i\varphi} \left(\frac{\partial}{\partial \theta} + i \operatorname{ctg} \theta \frac{\partial}{\partial \varphi} \right) - \frac{\partial^{2}}{\partial \varphi^{2}} - i \frac{\partial}{\partial \varphi}.$$

Откуда, выполнив несложные вычисления, получим простое выражение:

$$l^{2} = -\frac{1}{\sin^{2}\theta} \frac{\partial^{2}}{\partial \varphi^{2}} - \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \sin\theta \frac{\partial}{\partial \theta}$$

Интересный факт — квадрат момента является угловой частью лапласиана:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} - \frac{l^2(\theta, \varphi)}{r^2}$$

3.6. Сферические гармоники

Сферические гармоники $Y_{l,m}(\theta,\varphi)$ – это собственные функции операторов l_z и l^2 , и поэтому они удовлетворяют уравнениям на собственные значения и функции:

$$\begin{cases} l^{2}Y_{l,m}(\theta,\varphi) = l(l+1)Y_{l,m}(\theta,\varphi) \\ l_{z}Y_{l,m}(\theta,\varphi) = mY_{l,m}(\theta,\varphi) \end{cases}$$

Ранее мы получали $l_x, l_y, l_z, l^2, l_\pm$. Выпишем операторы в сферических координатах:

$$l_z = -i\frac{\partial}{\partial \varphi}, \quad l^2 = -\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}, \quad \Delta = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} - \frac{l^2(\theta, \varphi)}{r^2}$$

Физический смысл сферических гармоник. Волновая функция в декартовых координатах имеет смысл амплитуды вероятности, или, другими словами, величина

$$|\Psi(\vec{r})|^2 dx dy dz$$

есть вероятность нахождения частицы в элементарном объемчике $dx \, dy \, dz$. Волновая функция $\Psi(r, \theta, \varphi)$ есть амплитуда вероятности в сферических ко-

ординатах, так что

$$|\Psi(r,\theta,\varphi)|^2 r^2 \sin\theta dr d\varphi d\theta$$

есть вероятность нахождения частицы в элементарном объеме сферической системы координат. Поскольку, как мы видели, в сферической системе координат в операторе Лапласа угловые переменные отделяются от радиальной

$$\Psi(r, \theta, \varphi) = \sum_{n_r, l, m} R_{n_r, l}(r) Y_{l, m}(\theta, \varphi),$$

то сама сферическая гармоника Ylm будет иметь смысл амплитуды вероятности пребывания частицы в элементарном телесном угле, так что

$$|Y_{l,m}(\theta,\varphi)|^2 d\Omega = |Y_{l,m}(\theta,\varphi)|^2 \sin \theta d\varphi d\theta.$$

Отсюда следует условие нормировки сферических гармоник.

$$\int |Y_{l,m}|^2 \sin\theta d\varphi d\theta = 1.$$

Нахождение сферических гармоник. $Y_{l,m}(\theta,\varphi)$ мы можем найти, стандартным образом разделив переменные:

$$Y_{l,m}(\theta,\varphi) = \Theta_{l,m}(\theta) \cdot \Phi_m(\varphi)$$

Подставим гармонику в таком виде в уравнение на собственные значения l_z и проинтегрируем:

$$-i\frac{\partial}{\partial \varphi}\Theta_{l,m}(\theta) \cdot \Phi_m(\varphi) = m \Theta_{l,m}(\theta) \cdot \Phi_m(\varphi)$$

$$-i\frac{\partial}{\partial \varphi}\Phi_m(\varphi) = m\,\Phi_m(\varphi), \qquad \Theta_{l,m}(\theta) \neq 0 \quad \Rightarrow \quad \Phi_m(\varphi) = C \cdot \exp\{im\varphi\}$$

Чтобы найти константу, отнормируем функцию Ф. Заметим, что её квадрат можно трактовать как вероятность найти частицу в данном угле φ^5 :

$$\int_{0}^{2\pi} |\Phi_{m}(\varphi)|^{2} d\varphi = 2\pi C^{2} = 1 \quad \Rightarrow \quad \Phi_{m}(\varphi) = \frac{1}{\sqrt{2\pi}} \cdot \exp\{im\varphi\}$$

Причём m, из условия однозначности функции $\Phi_m(\varphi) = \Phi_m(\varphi + 2\pi)$, должно быть целым.

Теперь воспользуемся уравнением на собственные значения l^2 :

$$\left[-\frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} - \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} \right] \Theta_{l,m}(\theta) \cdot \Phi_m(\varphi) = l(l+1)\Theta_{l,m}(\theta) \cdot \Phi_m(\varphi)$$

Функцию Ф мы уже нашли, и можем подставить:

$$\left[\frac{m^2}{\sin^2\theta} - \frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta}\right]\Theta_{l,m}(\theta) = l(l+1)\Theta_{l,m}(\theta)$$

Это дифференциальное уравнение – с переменными коэффициентами, называется уравнением Лежандра 6 .

Один из способов его решить – сделать замену $\xi = \cos \theta$:

$$\sin^2 \theta = 1 - \xi^2, \quad \sin \theta \frac{\partial}{\partial \theta} = \dots$$

Такая замена, как говорят, рационализирует уравнение: оно становится уравнением, решение которого можно искать в виде ряда по ξ . Но мы будем решать другим способом.

Операторное решение уравнения Лежандра. Идея операторного решения заключается в том, что вместо общего решения мы можем рекуррентно получить все функции⁷, начиная с $Y_{l,l}$.

Когда мы с помощью коммутационных соотношений выводили все формулы, мы получили условие ограниченности $m \leq l$, и тогда максимально

 $^{^5}$ Для R(r) и $Y_{l,m}(\theta,\varphi)$ это не так из-за якобиан-преобразования при переходе из декартовых в сферические координаты

⁶Его решения называются присоединёнными полиномами Лежандра, и вообще — это уравнение с точки зрения математики — уравнение в обычных производных. Есть справочник Канке по обыкновенным дифференциальным уравнениям.

⁷Также, как мы делали это ранее с полиномами Эрмита

возможная сферическая гармоника с орбитальным числом l – это $Y_{l,l}(\theta,\varphi)$.

Значит, если подействовать на гармонику $Y_{l,l}$ оператором повышения, то в силу ограниченности $m=-l\dots l$ оператор должен дать ноль:

$$l_+Y_{l,l}(\theta,\varphi)=0$$

Сначала давайте рассмотрим случай l=0. В этом случае m=0 и уравнение $l_+Y_{0,0}=0$ принимает вид 8 . При этом, так как $Y_{0,0}$ не зависит от φ , второе слагаемое обратится в ноль:

$$e^{i\varphi} \left(\frac{\partial}{\partial \theta} + i \operatorname{ctg} \theta \frac{\partial}{\partial \varphi} \right) Y_{0,0} = 0 \quad \Rightarrow \quad \frac{\partial Y_{0,0}}{\partial \theta} = 0 \quad \Rightarrow \quad Y_{00} = \operatorname{const} = c$$

Остаётся отнормировать $Y_{0,0}$, чтобы найти значение константы c:

$$\int |Y_{0,0}|^2 \sin\theta \, d\varphi \, d\theta = 2\pi \int_0^{\pi} c^2 \sin\theta \, d\theta = 1 \quad \Rightarrow \quad 4\pi c^2 = 1 \quad \Rightarrow \quad Y_{0,0} = \frac{1}{\sqrt{4\pi}}$$

Высшие гармоники. Теперь рассмотрим случай m=-l,0,l. Сначала найдём формулу гармоники $Y_{l,l}$:

$$l_{+}Y_{l,l} = 0 \quad \Rightarrow \quad e^{i\varphi} \left(\frac{\partial}{\partial \theta} + i\operatorname{ctg}\theta \frac{\partial}{\partial \varphi}\right) Y_{l,l}(\theta, \varphi) = 0$$

Это уже уравнение первого порядка, линейное с переменными коэффициентами, которое решается. Прежде всего, $e^{i\varphi} \neq 0$, на него можно сократить. Разделим переменные и получим уравнение для $\Theta_{l,l}$:

$$Y_{l,l} = \Theta_{l,l}(\theta) \cdot \Phi_l(\varphi) \sim \Theta_{l,l}(\theta) e^{il\varphi} \quad \Rightarrow \quad \left(\frac{\partial}{\partial \theta} - l \operatorname{ctg} \theta\right) \Theta_{l,l}(\theta) = 0$$

Проинтегрируем полученное уравнение и получим выражение для $Y_{l,l}$:

$$\frac{d\Theta}{\Theta} = l \frac{\cos \theta}{\sin \theta} d\theta \quad \Rightarrow \quad \Theta_{l,l}(\theta) = c \cdot \sin^l \theta \quad \Rightarrow \quad Y_{l,l} \sim \sin^l \theta \cdot e^{il\varphi} = c \sin^l \theta \cdot e^{il\varphi}$$

 $l_{\pm} = l_x \pm i l_y = e^{\pm i\varphi} \left(\pm \frac{\partial}{\partial \theta} + i \operatorname{ctg} \theta \frac{\partial}{\partial \varphi} \right)$

⁸Напомним, мы получили выражения для повышающих и понижающих операторов в сферической системе координат:

Осталось гармонику отнормировать, как мы это делали раньше:

$$2\pi c^2 \int \sin^{2l} \theta \, \sin \theta \, \mathrm{d}\theta = 1$$

Это сложный интеграл, его надо брать l раз по частям. Вычислим его в случае l=1:

$$2\pi c^2 \int_{0}^{\pi} \sin^2 \theta \, \sin \theta \, \mathrm{d}\theta = 1$$

Возьмём интеграл стандартным образом:

$$2\pi c^2 \int_0^{\pi} \sin^2 \theta \, \sin \theta \, d\theta = -2\pi c^2 \int_0^{\pi} (1 - \cos^2 \theta) \, d\cos \theta =$$

$$= 2\pi c^2 \int_{-1}^{1} (1 - \xi^2) \, d\xi = 2\pi c^2 \left(\xi - \frac{\xi^3}{3} \right) \Big|_{-1}^{1} = 2\pi c^2 \cdot \frac{4}{3} = \frac{8\pi c^2}{3}$$

Отсюда $c^2 = \frac{3}{8\pi}$. Тогда

$$Y_{1,1} = \sqrt{\frac{3}{8\pi}} \sin\theta \, e^{i\varphi}$$

Рекуррентное выражение гармоник для \mathbf{l} = \mathbf{1}. Найдя $Y_{1,1}$, мы можем найти также и гармоники $Y_{1,0}$ и $Y_{1,-1}$. Воспользуемся оператором понижения:

$$l_{-}Y_{l,l}(\theta,\varphi) = \sqrt{(l+l)(l-l+1)}Y_{l,l-1}(\theta,\varphi) \quad \Rightarrow \quad l_{-}Y_{1,1}(\theta,\varphi) = \sqrt{2}Y_{1,0}(\theta,\varphi)$$

И отсюда

$$Y_{1,0} = \frac{l_{-}}{\sqrt{2}} Y_{1,1} = \frac{1}{\sqrt{2}} e^{-i\varphi} \left(-\frac{\partial}{\partial \theta} + i \operatorname{ctg} \theta \frac{\partial}{\partial \varphi} \right) \sqrt{\frac{3}{8\pi}} \sin \theta \, e^{i\varphi} =$$

$$= \sqrt{\frac{3}{16\pi}} \left(-\frac{\partial}{\partial \theta} - \operatorname{ctg} \theta \right) \sin \theta = -\sqrt{\frac{3}{4\pi}} \cos \theta$$

А если мы знаем $Y_{1,0}$, то можем также рекуррентно найти $Y_{1,-1}$:

$$l_{-}Y_{1,0}(\theta,\varphi) = \sqrt{2}Y_{1,-1}(\theta,\varphi) \quad \Rightarrow \quad Y_{1,-1} = \frac{l_{-}}{\sqrt{2}}Y_{1,0}$$

Тогда

$$Y_{1,-1} = -\sqrt{\frac{3}{8\pi}}e^{-i\varphi}\left(-\frac{\partial}{\partial\theta}\right)\cos\theta = -\sqrt{\frac{3}{8\pi}}\sin\theta \,e^{-i\varphi}$$

Вообще, любая функция на сфере может быть разложена по сферическим гармоникам:

$$f(\theta, \varphi) = \sum_{l,m} C_{l,m} Y_{l,m}(\theta, \varphi)$$

Это обобщённый ряд Фурье для функций не на отрезке, а на сфере. Сферические гармоники образуют полную систему функций для разложения. Такие функции встречались в электродинамике: разложение по мультиполям. Первый член l=0 – это монополь, l=1 – диполь, l=2 – квадруполь и вообще далее 2^l -поль.

Почему эти функции - диполи? Давайте их нарисуем. Рисовать комплексные функции мы не можем, но можем образовать функции пригодные для построения:

$$Y_{1,0} \sim \cos \theta$$
, $(Y_{1,1} + Y_{1,-1})\frac{1}{2} \sim \sin \theta \sin \varphi$, $(Y_{1,1} - Y_{1,-1})\frac{1}{2i} \sim \sin \theta \cos \varphi$

Рис. 21. Дипольные функции

Исторически так сложилось, что состояние с l=0 называется s-состояние (монопольное состояние), и так далее состояния p,d,f,g,h,\ldots Начиная с f, обозначение идёт согласно английскому алфавиту.

4. Движение в центрально-симметричном поле

Запишем в общем виде оператор поворота:

$$\hat{R} = 1 + i \left(\delta \vec{\varphi}, \vec{l} \right)$$

Мы нашли собственные функции операторов l_z , l^2 . Эти операторы коммутируют и имеют общую систему собственных функций – сферических гармоник $Y_{l,m}(\theta,\varphi)$, где l – орбитальное квантовое число, m – магнитное квантовое число. Сферические гармоники возникают при разделении переменных в уравнении Шрёдингера, в котором есть сферическая симметрия.

Постановка задачи. Запишем гамильтониан сферически симметричной задачи

$$H = \frac{p^2}{2m} + U(|\vec{r}|) \tag{43}$$

где $U(|\vec{r}\,|)$ - потенциал центрального поля, зависящий только от модуля $|\vec{r}\,|$. Поскольку потенциал сферически симметричен, удобно пользоваться сферической системой координат.

Рис. 22. Сферическая система координат

В \vec{r} – представлении оператор импульса можно выразить через лапласиан:

$$\frac{p^2}{2m} = -\frac{\hbar^2}{2m}\Delta \quad \Rightarrow \quad p^2 = -\hbar^2\Delta, \qquad \Delta = \frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{\hat{l}^2(\theta,\varphi)}{r^2}$$

Тогда уравнение Шрёдингера запишется в виде

$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{\hat{l}^2}{r^2} - \frac{2m}{\hbar^2}U(r) + \frac{2mE}{\hbar^2}\right]\Psi(\vec{r}) = 0$$

Будем искать решение в виде сферических гармоник:

$$\begin{split} \Psi(\vec{r}\,) &= R(r)\,\mathbf{Y}_{l,m}(\theta,\varphi) \\ \left[\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} - \frac{2m}{\hbar^2} U(r) + \frac{2mE}{\hbar^2} \right] R(r) &= 0 \end{split}$$

В центральном поле переменные разделились. Можно ввести

$$U_{ ext{eff}} = U(r) + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}$$

Эффективная энергия $U_{ ext{Ueff}} = U_{ ext{Ueff}} =$

Рис. 23. Отталкивающий от центра потенциал, если $l \neq 0$

При свободном движении частица летит по прямой. Если есть момент, то частица в центр не попадает, она от него отталкивается. Если момент равен нулю, то частица летит через центр (или покоится), и центробежного потенциала нет.

Наше уравнение можно рассматривать как уравнение с параметром E, и тогда приписать индекс E:

$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} - \frac{2m}{\hbar^2}U(r) + \frac{2mE}{\hbar^2}\right]R_{E,l}(r) = 0$$

Квантовых чисел всего три: энергия E, орбитальное квантовое число l,

магнитное квантовое число m. Заметим, что в уравнение совсем не входит квантовое число m^9 . Это означает, что энергия не зависит от числа m: появляется вырожденность энергии по m, и каждый уровень энергии вырождается 2l+1 раз.

Такое вырождение возникает из-за того, что в сферически симметричной системе можно произвольно выбрать ось z.

Замечание о вырождении. Выше мы выводили представления операторов в сферической системе:

$$l_z = -i\frac{\partial}{\partial \varphi}, \qquad l_x = i\sin\varphi \frac{\partial}{\partial \theta} + i\cos\varphi \operatorname{ctg}\theta \frac{\partial}{\partial \varphi},$$

$$l_y = -i\cos\varphi \frac{\partial}{\partial \theta} + i\sin\varphi \operatorname{ctg}\theta \frac{\partial}{\partial \varphi}, \qquad l^2 = -\frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \varphi^2} - \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \sin\theta \frac{\partial}{\partial \theta}$$

В силу сферической симметрии гамильтониана (43), каждый из операторов l_x , l_y , l_z , l^2 коммутирует с гамильтонианом. При этом проекции момента импульса не коммутируют между собой.

Покажем в общем случае, что это приводит к вырождению. Пусть у нас есть два не коммутирующих между собой оператора f, g, но коммутирующих с гамильтонианом:

$$[f,g] \neq 0, \quad [H,g] = 0, \quad [H,f] = 0$$

Из коммутации следует наличие общей системы собственных функций:

$$H\Psi_n = E_n\Psi_n, \quad f\Psi_n = f_n\Psi_n$$

Подействуем на первое уравнение оператором g, при этом в силу коммутации g и H можем их менять местами:

$$gH\Psi_n = E_n g\Psi_n \quad \Rightarrow \quad H g\Psi_n = E_n g\Psi_n$$

Возникает $\varphi_n = g\Psi_n$. В силу коммутации

$$\hat{H}\hat{g}\Psi_n = E_n \,\hat{g}\Psi_n \quad \Rightarrow \quad \hat{H}\varphi_n = E_n \,\varphi_n$$

 $^{^9 \}mbox{Вообще говоря, буква} \ m$ есть — но это масса частицы, а не квантовое число

Возникает вопрос, совпадают ли Ψ_n и φ_n , хотя бы с точностью до множителя? Оказывается, не совпадают, что следует из $[f,g] \neq 0$. Значит, возникает вырождение, и одному значению E_n соответствует несколько волновых функций.

Можно сформулировать общее утверждение: если есть какая-либо симметрия, то обязательно появится вырождение. Чем выше симметрия задачи, тем кратность вырождения будет больше.

4.1. Свободное движение

Как хорошо известно, в этом случае потенциала нет, $U\equiv 0$. Обозначим $k^2=\frac{2m}{\hbar^2}E$, тогда уравнение Шрёдингера можно записать в виде

$$\Delta\Psi + k^2\Psi = 0$$

Запишем это уравнение в сферических координатах:

$$\left[\frac{1}{r^2} \frac{d}{dr} r^2 \frac{d}{dr} - \frac{l(l+1)}{r^2} + k^2 \right] R_{k,l}(r) = 0$$

Из-за разделения переменных уравнение стало уравнением в обыкновенных производных. Исследуем асимптотику решения при $r \to 0$ и $r \to \infty$.

Асимптотика в нуле. Если $l \neq 0$, то можно пренебречь k^2 :

$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{l(l+1)}{r^2}\right]R_{k,l}(r) = 0$$

Заметим, что можно сделать масштабное преобразование $r \to \alpha r$, и при нем уравнение будет однородным и инвариантным. Значит, решение тоже должно быть инвариантно: $f(\alpha r) = \beta f(r)$. Такие уравнения называются дифференциальными уравнениями Коши-Эйлера, и любая степенная функция годится в качестве решения¹⁰. Будем искать решение в виде $R(r) \sim r^{\sigma}$:

$$\frac{\partial R}{\partial r} \sim \sigma r^{\sigma - 1}, \quad r^2 \frac{\partial R}{\partial r} \sim \sigma r^{\sigma + 1}, \quad \frac{\partial}{\partial r} r^2 \frac{\partial R}{\partial r} \sim \sigma (\sigma + 1) r^{\sigma - 2},$$

 $^{^{10}\}Pi$ ри этом, конечно, выполняется $(\alpha\,r)^{\gamma}=\alpha^{\gamma}\,r^{\gamma}$

Получается квадратное уравнение относительно σ . Его решения очевидны, можно увидеть, а можно посчитать дискриминант:

$$\sigma(\sigma+1) = l(l+1) \quad \Rightarrow \quad \sigma_1 = l, \quad \sigma_2 = -l-1.$$

$$R(r \to 0) = c_1 r^l + \frac{c_2}{r^{l+1}}$$

Асимптотика на бесконечности. Теперь можно пренебречь $\frac{l(l+1)}{r^2}$. Заметим, что такое уравнение будет точным при l=0 для любых r.

$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} + k^2\right]R_{k,l}(r) = 0$$

Это уравнение $c\phi e puveckoŭ$ волны. Оно решается заменой $R(r) = \frac{\xi(r)}{r}$:

$$\frac{\partial}{\partial r} \left(\frac{\xi}{r} \right) = \frac{\xi' r - \xi}{r^2}, \quad r^2 \frac{\partial}{\partial r} \left(\frac{\xi}{r} \right) = \xi' r - \xi,$$

$$\frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \left(\frac{\xi}{r} \right) = \xi'' r + \xi' - \xi' = \xi'' r, \quad \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} \left(\frac{\xi}{r} \right) = \frac{\xi''}{r}$$

После проведения всех расчётов и подстановок исходное уравнение примет вид

$$\frac{1}{r}(\xi'' + k^2 \xi) = 0,$$

и его решение (так как решали при $r \neq 0$)

$$\xi = c_1 e^{ikr} + c_2 e^{-ikr} \quad \Rightarrow \quad R = c_1 \frac{e^{ikr}}{r} + c_2 \frac{e^{-ikr}}{r}$$

Получили решение вида сферической волны. Первое слагаемое отвечает расходящейся волне, а второе - сходящейся¹¹.

Наше решение должно быть регулярно везде в случае l=0. Для этого нужно выбрать другую фундаментальную систему решений:

$$R_{k,l=0} = \frac{a_1 \sin kr + a_2 \cos kr}{r}$$

Второй член расходится в нуле, значит, $a_2 = 0$.

 $^{^{11}}$ В квантовой механике зависимость стационарных решений от времени $e^{-i\frac{E}{\hbar}t}$, нужно с учётом этого посмотреть куда будет бежать волновой фронт

Займёмся случаем $l \neq 0$:

$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} + k^2\right]R_{k,l}(r) = 0$$

Такое уравнение называется уравнением сферических функций Бесселя. Сферические функции Бесселя выражаются через обычные. Приведём ответ без доказательства (вывод можно можно посмотреть в Ландау(§33., стр.140)):

$$R_{k,l}(r) \sim r^l \left(\frac{1}{kr} \frac{\partial}{\partial r}\right)^l \cdot \frac{\sin kr}{r}, \quad R_{k,0} \sim \frac{\sin kr}{r}$$

Рис. 24. График $\sin kr/r$

$$R_{k,1}(r) \sim \frac{1}{k} \frac{\partial}{\partial r} \frac{\sin kr}{r} = \frac{1}{k} \left(\frac{k \cos kr}{r} - \frac{\sin kr}{r^2} \right)$$

Для анализа асимптотики в нуле полученные выражения надо разложить в ряд, то есть раскрыть неопределённость дальше:

$$R_{k,1} = [r \to 0] = \frac{1}{k} \left(\frac{k \left(1 - \frac{(kr)^2}{2} \right)}{r} - \frac{kr - \frac{(kr)^3}{6}}{r^2} \right) = \frac{1}{k} \left(-\frac{k^3 r}{2} + \frac{k^3 r}{6} \right) = -\frac{k^2}{3} r$$

К вопросу о нормировке. Займёмся нормировкой функции $R_{k,l}$:

$$\int_{0}^{\infty} |R_{k,l}(r)|^2 r^2 dr$$

Если считать в лоб, возникнет проблема: интеграл расходится на бесконечности, то есть не существует. Физически это говорит о свободном движении: частица может уходить на бесконечность. Так как движение инфинитное, то спектр k непрерывен.

Правильно считать нормировочный интеграл надо так:

$$\int_{0}^{\infty} R_{k,l}^* R_{k',l'} r^2 dr = \delta(k - k') \delta_{l,l'}$$

Попробуем посчитать нормировку $R_{k,0}$:

$$a_1^2 \int_0^\infty \frac{\sin kr \sin k'r}{r^2} r^2 dr = \delta(k - k')$$

Такой ответ можно получить, взяв интеграл с помощью известного интеграла 12 :

$$\int_{-\infty}^{\infty} e^{i(k-k')x} dx = 2\pi \,\delta(k-k')$$

Итак, мы рассмотрели свободное движение в сферической системе координат. Оно сложнее, чем в декартовой.

¹²Это Фурье-преобразование дельта-функции

4.2. Сферическая потенциальная яма

Рис. 25. Сферическая яма, а - радиус

Рассмотрим задачу о движении в сферически симметричной яме 13 (см. рис. 25). Для простоты рассмотрим случай, когда l=0 (так называемый s-канал):

$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} - \frac{2m}{\hbar^2}U(r) + k^2\right]R_{k,l}(r) = 0, \quad U = \begin{cases} -U_0, & r < a \\ 0, & r > a \end{cases}$$

В самом первом разделе мы уже решали задачу об одномерной яме:

$$\Psi'' + \frac{2m}{\hbar^2} (E - U_0)\Psi = 0, \quad U = \begin{cases} -U_0, & -a < x < a \\ 0, & |x| > a \end{cases}$$

Оказывается, сферическая задача сводится к одномерной заменой $R=\frac{\chi}{r}$:

$$\begin{cases} \chi'' + \frac{2m}{\hbar^2} U_0 \chi + \frac{2m}{\hbar^2} E \chi = 0, & r \le a, \\ \chi'' + \frac{2m}{\hbar^2} E \chi = 0, & r > a \end{cases}$$

Задача, казалось бы, та же. Но надо учесть особенность в нуле. Для одномерной задачи мы получали в яме

$$\Psi = C_1 \cos kx, \quad \Psi = C_2 \sin kx, \quad k^2 = \frac{2m}{\hbar^2} (U_0 - |E|)$$

¹³Казалось бы, есть сходство наших задач с электродинамическими. Главное отличие в том, что мы ищем скалярную функцию, и она может представлять собой сферически-симметричную волну, в силу скалярности, а в ЭД поля векторные. В ЭД не бывает монопольного излучения. Не может быть в точке переменного заряда: он должен откуда-то притечь (или куда-то утечь). Квантовая механика в этом плане больше похожа на акустику.

И вне ямы

$$\Psi = d_1 \exp[-\varkappa(x-a)], \quad \Psi = d_2 \exp[\varkappa(x-a)], \quad \varkappa^2 = \frac{2m}{\hbar^2}|E|$$

Ключевая разница в граничных условиях в нуле: задача на χ формально совпала с одномерной для Ψ , но нам нужна регулярность в нуле не χ , а $R=\frac{\chi}{r}$. Все чётные серии одномерной задачи дают R особенность в нуле и не подходят сферической задаче: не удовлетворяют ограниченности в нуле. Поэтому работает только нечётная серия.

Что отсюда следует? Давайте вспомним одномерную задачу. В силу граничных условий – непрерывности функции и её производной получается

$$c_2 \sin ka = d_2$$
, $c_2 k \cos ka = -\varkappa d_2 \implies k \operatorname{ctg} ka = -\varkappa$

Обозначим

$$\gamma^2 = \frac{2m}{\hbar^2} |E| \quad \Rightarrow \quad k^2 = \gamma^2 - \varkappa^2$$

Введём переменные $y=ka,\,z=\gamma a,\,p=\varkappa a,$ и тогда

$$y \operatorname{ctg} y = -p = -\sqrt{z^2 - y^2},$$

В разделе 1.2.2 мы подробно уже рассмотрели решение этой задачи. Напомним, что условие появление корня в нечётной серии

$$\sqrt{\frac{2mU_0}{\hbar^2}}a \ge \frac{\pi}{2}$$

Это важный результат: в квантовой механике в трёхмерной задаче нужно, чтобы яма была достаточно глубокой. Дискретные уровни появляются из нуля при достижении критической глубины. Это ключевое отличие сферической симметричной ямы от одномерной. В одномерной задаче один уровень энергии есть всегда, при любой глубине ямы.

4.3. Сферический гармонический осциллятор

Рассмотрим задачу о трёхмерном (сферическом) гармоническом осцилляторе. Гамильтониан такой задачи

$$H = H_x + H_y + H_z = \frac{p_x^2 + p_y^2 + p_z^2}{2m} + \frac{m\omega^2(x^2 + y^2 + z^2)}{2} = \frac{p^2}{2m} + \frac{m\omega^2r^2}{2}$$

Это тоже задача о центральном поле: гамильтониан зависит только от модуля $|\vec{r}|$. Задача решается разделением переменных в декартовой системе координат $\Psi(x,y,z) = X(x)\,Y(y)\,Z(z)$, затем решаются задачи на собственные значения

$$H_xX=E_xX,\quad H_yY=E_yY,\quad H_zZ=E_zZ,\qquad$$
 где $E=E_x+E_y+E_z$

По сути, задача разбивается на три одномерных осциллятора. Дальше для каждого решение проводится стандартным образом: вводятся безразмерные координаты $\xi=\frac{x}{l_{\text{кв}}}=x/\sqrt{\frac{\hbar}{m\omega}}$, получается уравнение, которое можно свести к уравнению Эрмита

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{m\omega^2 x^2}{2} \right] X = \hbar\omega \left[-\frac{\hbar}{2m\omega} \frac{\partial^2}{\partial x^2} + \frac{m\omega x^2}{2\hbar} \right] X = E_x X$$

Решение такой задачи мы знаем:

$$E_x = \hbar\omega \left(n_x + \frac{1}{2}\right), \quad X_{n_x}(\xi) = \exp\left[-\frac{\xi^2}{2}\right] H_{n_x}(\xi)$$

Без доказательства отметим тот факт, что решение трёхмерного осциллятора можно сконструировать из решений трах одномерных осцилляторов:

$$E = \hbar\omega \left(n_x + n_y + n_z + \frac{3}{2}\right),$$

$$\Psi = \exp\left[-\frac{x^2 + y^2 + z^2}{2l_{\text{KB}}^2}\right] H_{n_x}(\xi_x) H_{n_y}(\xi_y) H_{n_z}(\xi_z)$$

Случайное вырождение. Рассмотрим основное состояние $(n_x = n_y = n_z = 0)$. Какова его степень вырождения? Такое состояние одно: степень вырождения 1, или, как говорят, не вырожденное состояние.

Рис. 26. Уровни и степени вырождения

Количество вырождений определяется количеством способов N набрать один и тот же уровень энергии разными n_x, n_y, n_z . Так, для уровня энергии $E = \frac{5}{2}$ степень вырождения будет 3, для $E = \frac{7}{2}$ степень 6 и так далее.

Чтобы было яснее, построим табличку, куда будем записывать все возможные способы набрать определённую энергию:

Таблица 1. Таблица вырождений

	V	1	. 3			6						10									
γ	u_x	0	1	0	0	2	0	0	1	1	0	3	0	0	1	0	1	2	2	1	$\overline{0}$
$ \gamma$	u_y	0	0	1	0	0	2	0	1	0	1	0	3	0	1	1	2	1	0	0	$2 \mid$
																					1

Степени вырождения образуют арифметическую прогрессию. Степень вырождения на n-ом уровне будет

$$N = \frac{(n+1)(n+2)}{2}$$

Эту задачу можно решать и в сферической системе координат, записав соответствующий гамильтониан и разделив переменные:

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} - \frac{l^2}{r^2} \right) + \frac{m\omega^2 r^2}{2}, \quad \Psi = R_{n_r,l}(r) Y_{l,m}(\theta, \varphi),$$

где n_r – число узлов радиальной волновой функции. При таком решении квантование энергии получится в следующем виде:

$$E = \hbar\omega \left(2n_r + l + \frac{3}{2}\right)$$

Такое квантование даст тот же самый ряд степеней вырождения. Например, попробуем набрать степень $\frac{7}{2}$:

$$n_r = 1, l = 0, \quad n_r = 0, l = 2, \quad \dots \quad 6$$
 способов

Если бы мы использовали формулу вырождения по магнитному квантовому числу 2l+1, то получили бы степень вырождения меньше. Это пример так называемого **случайного вырождения**: вырождение выше, чем ожидается просто из сферической симметрии.

Если степень вырождения выше, значит есть ещё преобразование, отличное от сферического вращения. Это более высокая группа симметрии. Более низкая группа — подгруппа высокой. Пример: одномерное вращение — подгруппа трёхмерного вращения.

4.4. Кулоново поле

Прежде чем рассматривать движение в поле Кулона, нужно учесть, что на самом деле поле создаётся частицами, а значит, рассматривать нужно движение нескольких частиц. Простейший пример такой системы – атом водорода: задача двух тел – движение протона и электрона.

Потенциал Кулона зависит только от расстояния между частицами. Сила же, которая зависит только от разности расстояний, есть внутренняя сила. Поэтому полный импульс сохраняется, и можно ввести новую систему координат относительно центра масс системы $\vec{R}_{\text{цм}}$, и тогда задачу двух тел можно разделить на задачу о вращении одного из тел вокруг центра масс и задачу о движении центра масс.

Введём обозначения:

$$\vec{r} = \vec{r}_1 - \vec{r}_2,$$

где $\vec{r}_1,\ \vec{r}_2$ – радиус-векторы соответственно первой и второй частицы. Взаимодействие между частицами будем описывать притягивающим потенциалом Кулона

$$U(r) = -\frac{e^2}{r}$$

Запишем стационарное уравнение Шрёдингера:

$$\[-\frac{\hbar^2}{2m_1} \Delta_{r_1} - \frac{\hbar^2}{2m_2} \Delta_{r_2} + U(r) \] \Psi(\vec{r}_1, \vec{r}_2) = E\Psi(\vec{r}_1, \vec{r}_2)$$
(44)

Волновая функция здесь зависит от \vec{r}_1 и \vec{r}_2 , а значит, является функцией шести скалярных переменных.

Преобразование к задаче о движении центра масс. Разобьём эту систему на движение центра масс и вращение частицы вокруг общего центра масс. Введём обозначения радиус-вектора центра масс \vec{R} , массы системы M и приведённой массы m:

$$\vec{R} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2}, \qquad M = m_1 + m_2, \qquad \frac{1}{m} = \frac{1}{m_1} + \frac{1}{m_2}$$
 (45)

Запишем \vec{r} и \vec{R} в индексной форме записи x_i и X_i :

$$x_i = x_{1i} - x_{2i},$$
 $X_i = \frac{m_1 x_{1i} + m_2 x_{2i}}{m_1 + m_2},$ $i = 1, 2, 3$

Нужно перейти от старых переменных \vec{r}_1 , \vec{r}_2 к новым r, R. Для этого нужно выразить производные:

$$\frac{\partial}{\partial x_{1j}} = \frac{\partial}{\partial x_i} \cdot \frac{\partial x_i}{\partial x_{1j}} + \frac{\partial}{\partial X_i} \cdot \frac{\partial X_i}{\partial x_{1j}}, \qquad \frac{\partial}{\partial x_{2j}} = \frac{\partial}{\partial x_i} \cdot \frac{\partial x_i}{\partial x_{2j}} + \frac{\partial}{\partial X_i} \cdot \frac{\partial X_i}{\partial x_{2j}}$$

Дифференцированием уравнений по соответствующим переменным получаем:

$$\frac{\partial x_i}{\partial x_{1j}} = \delta_{ij}, \quad \frac{\partial x_i}{\partial x_{2j}} = -\delta_{ij}, \quad \frac{\partial X_i}{\partial x_{1j}} = \frac{m_1}{m_1 + m_2} \delta_{ij}, \quad \frac{\partial X_i}{\partial x_{2j}} = \frac{m_2}{m_1 + m_2} \delta_{ij},$$

где δ_{ij} – символ Кронекера. Лапласиан и другие производные в индексной форме записи примут вид:

$$\Delta_{x_1} = \sum_{i=1}^{3} \frac{\partial^2}{\partial x_{1i}^2}, \quad \Delta_{x_2} = \sum_{i=1}^{3} \frac{\partial^2}{\partial x_{2i}^2}$$

$$\frac{\partial}{\partial x_{1j}} = \delta_{ij} \left[\frac{\partial}{\partial x_i} + \frac{m_1}{m_1 + m_2} \frac{\partial}{\partial X_i} \right], \quad \frac{\partial}{\partial x_{2j}} = -\delta_{ij} \left[\frac{\partial}{\partial x_i} - \frac{m_2}{m_1 + m_2} \frac{\partial}{\partial X_i} \right]$$

В последних уравнениях, так как справа идёт неявное суммирование по i, можно упростить формулы:

$$\frac{\partial}{\partial x_{1j}} = \frac{\partial}{\partial x_j} + \frac{m_1}{m_1 + m_2} \frac{\partial}{\partial X_j}, \qquad \frac{\partial}{\partial x_{2j}} = -\frac{\partial}{\partial x_j} + \frac{m_2}{m_1 + m_2} \frac{\partial}{\partial X_j}$$

$$\Delta_{x_1} = \sum_{i} \frac{\partial^2}{\partial x_{1i}^2} = \sum_{i} \left(\frac{\partial}{\partial x_i} + \frac{m_1}{m_1 + m_2} \frac{\partial}{\partial X_i} \right)^2 = \frac{\partial^2}{\partial x_i^2} + \frac{2m_1}{m_1 + m_2} \frac{\partial}{\partial x_i} \frac{\partial}{\partial X_i} + \frac{m_1^2}{m_1 + m_2} \frac{\partial^2}{\partial X_i^2}$$

В дальнейшем знак суммы опускается и по повторяющемуся индексу подразумевается суммирование.

$$\Delta_{x_2} = \frac{\partial^2}{\partial x_{2i}^2} = \left(-\frac{\partial}{\partial x_i} + \frac{m_2}{m_1 + m_2} \cdot \frac{\partial}{\partial X_i} \right)^2 = \frac{\partial^2}{\partial x_i^2} - \frac{2m_2}{m_1 + m_2} \frac{\partial}{\partial x_i} \frac{\partial}{\partial X_i} + \frac{m_2^2}{m_1 + m_2} \frac{\partial^2}{\partial X_i^2}$$

Подставим теперь выраженные через новые переменные лапласианы в (44):

$$\begin{split} -\frac{\hbar^2}{2m_1}\Delta_{x_{1i}} - \frac{\hbar^2}{2m_2}\Delta_{x_{2i}} = \\ -\frac{\hbar^2}{2} \left(\frac{1}{m_1} \frac{\partial^2}{\partial x_i^2} + \frac{m_1}{(m_1 + m_2)^2} \frac{\partial^2}{\partial X_i^2} + \frac{1}{m_2} \frac{\partial^2}{\partial x_i^2} + \frac{m_2}{(m_1 + m_2)^2} \frac{\partial^2}{\partial X_i^2} \right) = \\ -\frac{\hbar^2}{2} \left(\frac{1}{m_1} \frac{\partial^2}{\partial x_i^2} + \frac{1}{m_1 + m_2} \frac{\partial^2}{\partial X_i^2} + \frac{1}{m_2} \frac{\partial^2}{\partial x_i^2} \right) \end{split}$$

С учётом введённых в (45) обозначений:

$$-\frac{\hbar^{2}}{2m_{1}}\Delta_{x_{1i}} - \frac{\hbar^{2}}{2m_{2}}\Delta_{x_{2i}} = -\frac{\hbar^{2}}{2}\left(\frac{1}{m}\frac{\partial^{2}}{\partial x_{i}^{2}} + \frac{1}{M}\frac{\partial^{2}}{\partial X_{i}^{2}}\right) = -\frac{\hbar^{2}}{2m}\Delta_{r} - \frac{\hbar^{2}}{2M}\Delta_{R}$$

Подставим найденные выражения в (44):

$$\left[-\frac{\hbar^2}{2M} \Delta_R - \frac{\hbar^2}{2m} \Delta_r + U(\vec{r}) \right] \Psi(\vec{R}, \vec{r}) = E \Psi(\vec{R}, \vec{r})$$

Переменные разделяются, и мы можем искать решение в виде

$$\Psi(\vec{R}, \vec{r}) = e^{i\vec{k}\vec{R}} \, \psi(\vec{r})$$

Тогда уравнение можно переписать в виде

$$\left[-\frac{\hbar^2}{2m} \Delta_r + U(\vec{r}) \right] \psi(\vec{r}) = E_{\text{нов}} \psi(\vec{r}), \quad \text{где} \quad E_{\text{нов}} = E - \frac{\hbar^2 k^2}{2M},$$

а k – волновой вектор центра масс: $\vec{P}_{\text{цм}} = \hbar \vec{k}$. Энергия теперь разделилась на энергию разностного движения и энергию центра масс. Задача двух тел свелась к свободному движению центра масс $\vec{v}_{\text{цм}} = \frac{\hbar \vec{k}}{M}$.

Рис. 27. Потенциал притяжения

Задача о вращении вокруг центра масс. Итак, уравнение для движения частицы вокруг центра масс задаётся уравнением Шрёдингера

$$\left[-\frac{\hbar^2}{2m} \, \Delta_r + U(\vec{r}) \right] \psi(\vec{r}) = E_{\text{\tiny HOB}} \, \psi(\vec{r}) \quad \Rightarrow \quad$$

$$\Rightarrow \left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{\hat{l}^2}{r^2} + \frac{2m}{\hbar^2}\bigg(E_{\text{\tiny HOB}} + \frac{e^2}{r}\bigg)\right]\psi(r) = 0$$

Будем искать решение в сферических гармониках методом разделения переменных:

$$\psi(\vec{r}) = R(r) Y_{l,m}(\theta, \varphi)$$

Подстановка в уравнение Шрёдингера даст уравнение для радиальной части:

$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{l(l+1)}{r^2} + \frac{2m}{\hbar^2}\left(E + \frac{e^2}{r}\right)\right]R(r) = 0$$

Удобно привести это уравнение к безразмерному виду. Для этого надо сделать масштабное преобразование, выбрать единицу длины и единицу энергии:

$$1L: \quad r = (1L)r_d = \alpha r_d, \qquad 1E: E = (1E)\varepsilon_d = \gamma \varepsilon_d$$

Для безразмерности нужно:

$$\frac{m\alpha^2}{\hbar^2}\gamma = 1, \quad \frac{m\alpha^2}{\hbar^2}\frac{e^2}{\alpha} = 1$$

Тогда в безразмерных переменных

$$\left[\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r} - \frac{(l+1)l}{r^2} + 2\left(\varepsilon + \frac{1}{2}\right)\right]R(r) = 0$$

где $\alpha=\frac{\hbar^2}{me^2}$ – кулоновская единица длины, $\gamma=\frac{me^4}{\hbar^2}$ – кулоновская единица энергии. Если в α подставить массу электрона, это будет боровский радиус.

Приведение к стандартному виду. Хотим найти дискретный спектр. Введём новые переменные $n=\frac{1}{\sqrt{-2\varepsilon}}$ и $\rho=\frac{2r}{n}$. В них уравнение запишется как

$$R'' + \frac{2}{\rho}R' + \left[-\frac{1}{4} + \frac{n}{\rho} - \frac{l(l+1)}{\rho^2} \right] R(\rho) = 0$$

Как ведёт себя волновая функция при $\rho \to \infty$? Пренебрежём убывающими на бесконечности членами:

$$R'' + \frac{2}{\rho}R' + \left[-\frac{1}{4} + \frac{\eta}{\rho} - \frac{l(l+1)}{\rho^2} \right] R(\rho) = 0, \quad \rho \to \infty$$

$$R'' - \frac{1}{4}R = 0 \quad \sim \exp\left[-\frac{\rho}{2} \right]$$

A при $\rho \to 0$

$$R'' + \frac{2}{\rho}R' - \frac{l(l+1)}{\rho^2}R = 0$$

Это уравнение Эйлера 14 и решение ищется в виде $R \sim \rho^l$. Член $+\frac{c_2}{\rho^{l+1}}$ не учитываем, он противоречит ограниченности волновой функции.

Предлагается искать решение в виде $R = \rho^l \exp\left[-\frac{\rho}{2}\right] W(\rho)$. Подстановка

 $^{^{14}{\}rm O}$ но однородно степени 0: если домножить решение на $\lambda,$ то λ будет можно вынести за скобки

в исходное уравнение даст

$$\rho W'' + (2l + 2 - \rho)W' + (n - l - 1)W = 0$$
$$\rho W'' + (\beta - \rho)W - \delta W = 0$$

Получившееся уравнение известно в математике как уравнение Куммера. При этом всю левую часть называют функцией Куммера или вырожденной гипергеометрической функцией:

$$F(\delta, \beta, \rho)$$

Будем искать решение в виде ряда.

$$W = \sum_{n=0}^{\infty} c_n \, \rho^n \quad \Rightarrow \quad \rho W'' = \sum_{n=0}^{\infty} c_n \, n(n-1) \rho^{n-1}$$

$$W' = \sum_{n=0}^{\infty} c_n \, n\rho^{n-1} \quad \Rightarrow \quad \rho W' = \sum_{n=0}^{\infty} c_n \, n\rho^n$$

Тогда

$$\sum_{n=0}^{\infty} c_n \, n(n-1)\rho^{n-1} - \sum_{n=0}^{\infty} c_n \, n\rho^n + \beta \sum_{n=0}^{\infty} c_n \, n\rho^{n-1} - \delta \sum_{n=0}^{\infty} c_n \, \rho^n = 0$$

В первой сумме первые два члена нули, и ещё сделаем замену n=k+1. Во второй сумме заменяем немой индекс n=k, в третей k=n-1, последняя как вторая:

$$\sum_{k=0}^{\infty} c_{k+1} k(k+1) \rho^k - \sum_{k=0}^{\infty} c_k k \rho^k + \beta \sum_{k=-1}^{\infty} c_k (k+1) \rho^k - \delta \sum_{k=0}^{\infty} c_k \rho^k = 0$$

Группируем члены:

$$(k+1)(\beta+k)c_{k+1} = (k+\delta)c_k \implies c_{k+1} = \frac{(k+\delta)}{(k+1)(k+\beta)}c_k$$

Чтобы записать общее решение этого уравнения, $c_{k=0}$ мы можем положить

произвольной, например 1:

$$c_0 = 1,$$
 $c_1 = \frac{\delta}{\beta 1},$... $c_2 = \frac{\delta(\delta + 1)}{\beta(\beta + 1)2!},$ $c_3 = \frac{\delta(\delta + 1)(\delta + 2)}{\beta(\beta + 1)(\beta + 2)3!},$

Тогда

$$c_n = \frac{\delta(\delta+1)\cdot\ldots\cdot(\delta+n-1)}{\beta(\beta+1)\cdot\ldots\cdot(\beta+n-1)}n!$$

Нам нужна регулярность в нуле и на бесконечности функции

$$R = \rho^l \exp\left[-\frac{\rho}{2}\right] W(\rho).$$

Для этого нужен обрыв ряда, чтобы он превратился в полином. Для этого с некоторого k нужно обрывать. Если δ – целое отрицательное число, то нужно $\delta = -n_r$, где n_r – целое положительное число или ноль.

Вспомним, что у нас была введена замена $\delta=1-n+l=-n_r$, тогда условие обрыва можно записать в виде

$$n = n_r + l + 1$$

Также мы делали замену $n=\frac{1}{\sqrt{-2\varepsilon}}$. Отсюда можно найти безразмерную энергию:

$$\varepsilon = -\frac{1}{2n^2}$$

Полиномы, образующиеся при обрыве ряда, называются полиномами Лагера $L_{\beta,\delta}$, и решение через них записывается как

$$R = \rho^l \exp\left[-\frac{\rho}{2}\right] L_{\beta,\delta}(\rho)$$

4.5. Случайное вырождение

Итак, мы получили выражение на собственные значения (энергию) и на собственные функции при больших $\frac{r}{n}$:

$$\varepsilon = -\frac{1}{2n^2}$$
, где $n = n_r + l + 1$, $\Psi = \left(\frac{2r}{n}\right)^l \exp\left[-\frac{r}{n}\right] L_{n_r}\left(\frac{2r}{n}\right) Y_{l,m}(\theta,\varphi)$

Сосчитаем степень вырождения. В правой колонке набрано вырождение по m, которое составляет 2l+1:

$$n = 0: \begin{cases} n_r = 0, l = 0 & 1 \implies 1 & n = 1: \begin{cases} n_r = 1, l = 0 & 1 \\ n_r = 0, l = 1 & 3 \end{cases} \Rightarrow 4$$

$$n = 2: \begin{cases} n_r = 2, l = 0 & 1 \\ n_r = 1, l = 1 & 3 \Rightarrow 9 \\ n_r = 0, l = 2 & 5 \end{cases} \Rightarrow 0 \qquad n = 3: \begin{cases} n_r = 3, l = 0 & 1 \\ n_r = 2, l = 1 & 3 \\ n_r = 1, l = 2 & 5 \\ n_r = 0, l = 3 & 7 \end{cases} \Rightarrow 16$$

Легко сообразить, что степень вырождения за счёт только 2l+1 будет

$$\sum_{l=0}^{l=n-1} (2l+1) = n^2$$

Степень вырождения же оказалась выше, чем можно было бы ожидать. Такое вырождение называется случайным и является следствием некоторой дополнительной симметрии.

Дополнительные замечания.

$$\hat{A}, \hat{B} \quad [A, B] \neq 0,$$

Напишем некий оператор (интеграл движения, закон сохранения) специфический для кулонова поля.

$$ec{A} = rac{ec{r}}{r} - rac{1}{2} \Big\{ \Big[ec{p}, ec{l} \Big] - \Big[ec{l}, ec{p} \Big] \Big\}$$

Убедимся в этом:

$$m\ddot{\vec{r}} = -\frac{\vec{r}e^2}{r^3}$$

Если бы был классический интеграл движения, то было бы

$$\vec{A} = \frac{\vec{r}}{r} - \left[\vec{p}, \vec{l}\right]$$

В квантовой механике дополнительному вырождению соответствует некото-

рый оператор, коммутирующий с гамильтонианом.

Импульс и момент импульса в квантах эрмитовы, а их симметризованное произведение (pl-lp) тоже эрмитово.

$$(AB)^{+} = B^{+}A^{+}, \quad \hat{C} = AB + BA$$
 эрмитов всегда (симметризован)

Рис. 28. Спектр в кулоновом поле

Всего под нулём находится бесконечное число уровней. В задаче про яму получалось конечное число уровней, а в кулоновом поле оно бесконечно: из-за слабого спадания функции $\frac{1}{r}$.

Для высоких n движение будет классическим. Например, сильно возбуждённые атомы водорода (так называемые ридверговские).

В размерных переменных

$$E = -\frac{\text{Ry}}{2n^2}$$
, где $\text{Ry} = 27.2 \text{ эB}$

5. Теория возмущений

Количество точно решаемых задач ограничено. Это такие задачи, как прямоугольные потенциалы, гармонический осциллятор, кулоново поле и подобные. Таких задач очень мало. Практически любая реальная физическая квантовая задача точно не решается. Поэтому важно уметь применять приближенные методы: один из них – теория возмущений. Она основана на существовании малого параметра задачи.

Покажем простейшее применение теории возмущений на примере решения алгебраических уравнений. Оказывается, можно решить точно квадратное уравнение, кубическое (с помощью формулы Кардано) и четвёртой степени, а уравнение пятой степени в радикалах уже не решается. Это строго доказанный математический факт (см. книгу Феликса Клейна «Элементарная математика глазами высшей»).

$$x^5 + \alpha x^4 + \beta x^3 + \gamma x^2 + \delta x + \varepsilon = 0$$

Довольно сложно доказать, что чего-то решить нельзя. Аналитически решить уже не получится. Тем не менее, может оказаться, (по теореме о представлении любого уравнения в виде $\Pi_{n=1}^5(x-x_n)=0$) что решение мы найдём. Например:

$$x^5 - 1 = 0$$
 его решение $x = \exp\left\{\frac{2\pi in}{5}\right\}$

Если уравнение решается в радикалах, то решения на комплексной плоскости можно построить циркулем и линейкой, иначе нельзя.

Пусть у нас есть точно решённая задача, и задача, слабо отличающая от точной:

$$x^2 + x = \varepsilon$$

Квадратное уравнение, в принципе, решается точно.

Если $\varepsilon = 0$, то

$$x^{2} + x = x(x+1) = 0$$
 $x_{1} = 0$, $x_{2} = -1$.

Будем искать решение в виде $x_2 = x_2^0 + \delta$. Тогда

$$(-1+\delta)^2 + (-1+\delta) = \varepsilon \Rightarrow 1 - 2\delta + \delta^2 - 1 + \delta = \varepsilon$$

Так как $\delta \ll 1$, то $\delta^2 \to 0$, и тогда $\delta = -\varepsilon$.

Суть теории возмущений заключается именно в разложении по малому параметру в области точного решения.

5.1. Стационарная теория возмущений

Пусть у нас есть уравнение Шрёдингера:

$$i\hbar\dot{\Psi} = \hat{H}\Psi$$

Пусть $\hat{H}=\hat{H}^0+\hat{V}$, где V - это возмущение. Предположим отсутствие явной зависимости от времени: $\frac{\partial H^0}{\partial t}=0, \frac{\partial V}{\partial t}=0.$ Тогда можем искать решение стационарной задачи:

$$\hat{H}\psi = E\psi$$

Пусть мы знаем точное решение невозмущенной задачи:

$$H^{(0)}\psi_m^{(0)}(q) = E_m^{(0)}\psi_m^{(0)}(q) \tag{46}$$

Тогда решение этой задачи ψ можно искать в виде разложения по собственным функциям стационарных состояний невозмущённой задачи:

$$(\hat{H}^{(0)} + \hat{V})\psi = E\psi, \quad \psi = \sum_{m=0}^{\infty} c_m \psi_m^{(0)}(q)$$
 (47)

Подставим это разложение в уравнение невозмущенной задачи (47), и учитывая, что оператор линейный, получим:

$$\sum_{m=0}^{\infty} c_m \left(\hat{H}^{(0)} + \hat{V} \right) \psi_m^{(0)} = E \sum_{m=0}^{\infty} c_m \psi_m^{(0)}.$$

В силу точного решения (46)

$$\sum_{m=0}^{\infty} c_m (E - E_m^{(0)}) \psi_m^{(0)} = \sum_{m=0}^{\infty} c_m \hat{V} \psi_m^{(0)}$$

Собственные функции гамильтониана невозмущённой задачи (причём он является эрмитовым оператором) ортогональны. Тогда сумму можно домно-

жить слева на $\psi_k^{(0)*}$ и проинтегрировать по $\mathrm{d}q$. В итоге получаем:

$$\left\langle \psi_k^{(0)} \middle| \psi_m^{(0)} \right\rangle \equiv \left\langle k \middle| m \right\rangle = \delta_{km} \Rightarrow (E - E_k^{(0)}) c_k = \sum_m V_{km} c_m,$$

или

$$(E_k^{(0)} - E)c_k + \sum_m V_{km}c_m = 0, (48)$$

где V_{km} – матричный элемент:

$$V_{km} = \langle \psi_k^{(0)} | V | \psi_m^{(0)} \rangle = \int \psi_k^{(0)*} \hat{V} \psi_m^{(0)}(q) dq.$$

Слагаемое $E_k^{(0)}$. Как выглядит $H^{(0)}$ в своём представлении?

$$\int \psi_k^{(0)*} H^{(0)} \psi_m^{(0)} \, \mathrm{d}q = E_m^{(0)} \delta_{km}$$

Он диагональный.

Предпологается, что спектр дискретный, так как ставились суммы, а не интегралы. Как записать систему уравнений (48) в матричном виде ? (столбцы m, строчки k)

$$\begin{pmatrix} E_1^{(0)} - E + V_{11} & V_{12} & V_{13} & \dots \\ V_{21} & E_2^{(0)} - E + V_{22} & V_{23} & \dots \\ \dots & \dots & \dots \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ \dots \end{pmatrix} = 0$$

Индекс k – это номер уравнения.

$$\sum_{j} a_{ij} c_j = 0$$

Будем считать, что V_{km} в каком-то смысле малы. В каком, выясним. Будем искать значение коэффициентов c_m и энергии E в виде рядов

$$c_m = c_m^{(0)} + c_m^{(1)} + c_m^{(2)} + \dots, \quad E = E^{(0)} + E^{(1)} + E^{(2)} + \dots$$

Где $E^{(1)}, c_m^{(1)}$ такого же порядка малости, как возмущение. Определим поправки к n-му собственному значению в нулевом, первом и втором приближении.

Для n-го состояния:

$$c_n^{(0)} = 1, c_m^{(0)} = 0 \quad (m \neq n)$$

 $E = E_n^{(0)} + E_n^{(1)} + E_n^{(2)} + \dots$

Нулевой порядок малости. Рассмотрим нулевое приближение. Пусть система без возмущения находилась в начальном состоянии $E_n^{(0)}$. В нулевом приближении все элементы V_{kn} зануляются:

$$\begin{pmatrix} E_1^{(0)} - E & 0 & 0 & \dots \\ 0 & E_2^{(0)} - E & 0 & \dots \\ \dots & \dots & \dots \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ \dots \end{pmatrix} = 0$$

Для решения этой линейной однородной системы, нужно чтобы определитель был равен нулю. Матрица диагональная, ее детерминант – произведение диагональных элементов:

$$\Delta = \prod_{k=1}^{\infty} (E_k^{(0)} - E) = \prod_{k=1}^{\infty} (E_k^{(0)} - E^{(0)}) = 0 \quad \Rightarrow c_k^{(0)} = \delta_{nk} \Rightarrow E^{(0)} = E_n^{(0)}$$

В итоге, невозмущённое решение очевидно, совпадает с решением невозмущенной задачи $\psi=\psi^{(0)}$. Мы можем так решать эту систему уравнений, т.к. сделали предположение при решении, что все энергии $E_1^{(0)}, E_2^{(0)}\dots$ разные. Вырождение будет рассмотрено позднее.

Первый порядок малости. Уравнение (48) это уравнение Шрёдингера, записанное в представлении стационарных состояний невозмущённой системы. Геометрический образ — матрица (k — номер строки, m — столбца):

$$\begin{pmatrix} E_1^{(0)} - E + V_{11} & V_{12} & V_{13} & \dots \\ V_{21} & E_2^{(0)} - E + V_{22} & V_{23} & \dots \\ \dots & \dots & \dots \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ \dots \end{pmatrix} = 0$$

Это СЛАУ. Сколько собственных функций – столько и уравнений в системе, т.е. имеем бесконечную матрицу. Рассмотрим первое приближение. Для этого в уравнении (48) при подстановке выражений для E и c_k необходимо оставить только слагаемые **первого порядка малости**. Для первой поправки ищем

решение в виде:

$$E = E_n^{(0)} + E_n^{(1)}, \quad c_k = c_k^{(0)} + c_k^{(1)}$$
$$\sum_m V_{km} c_m^{(0)} = (E_n^{(0)} + E_n^{(1)} - E_k^{(0)}) \cdot (c_k^{(0)} + c_k^{(1)}) \simeq c_k^{(0)} E_n^{(1)} + c_k^{(1)} (E_n^{(0)} - E_k^{(0)})$$

Так как $c_k^{(0)} = \delta_{nk}$:

$$\sum_{m} V_{km} \delta_{nm} = V_{kn} = \delta_{nk} E_n^{(1)} + c_k^{(1)} (E_n^{(0)} - E_k^{(0)})$$

Для случая n = k получаем поправку к энергии:

$$E_n^{(1)} = V_{nn} = \int \psi_n^{(0)*} \hat{V} \psi_n^{(0)}(q) \, \mathrm{d}q.$$

А для $n \neq k$ находим поправку к коэффициенту разложения:

$$V_{kn} = c_k^{(1)} (E_n^{(0)} - E_k^{(0)}) \Rightarrow c_k^{(1)} = \frac{V_{kn}}{E_n^{(0)} - E_k^{(0)}}, \quad n \neq k$$

Мы получили, что в первом приближении столбец коэффициентов $C=\{c_k\}$ имеет вид (на n-ом месте $1+c_n^{(1)}$)

$$C = \begin{pmatrix} c_1^{(0)} + c_1^{(1)} \\ c_2^{(0)} + c_2^{(1)} \\ \dots \\ c_n^{(0)} + c_n^{(1)} \\ \dots \end{pmatrix} = \begin{pmatrix} \frac{V_{1n}}{E_n^{(0)} - E_1^{(0)}} \\ \frac{V_{2n}}{E_n^{(0)} - E_2^{(0)}} \\ \dots \\ 1 + c_n^{(1)} \\ \dots \end{pmatrix}$$

Таким образом, мы нашли в первом порядке все коэффициенты $c_k^{(1)}$, кроме n-го – которое из уравнения не находится.

Поправку $c_n^{(1)}$ легко определить из условия нормировку волновой функции $\psi_n = \psi_n^{(0)} + \psi_n^{(1)}$ на единицу, с точностью **до первого порядка**. При этом необходимо учесть ортогональность собственных функций, их нормировку и отбросить все слагаемые, у которых порядок малости выше единицы.

$$\langle \psi | \psi \rangle = \left\langle \sum_{m} (\delta_{mn} + c_m^{(1)}) \psi_m^{(0)} \middle| \sum_{m} (\delta_{mn} + c_m^{(1)}) \psi_m^{(0)} \right\rangle =$$

$$=\left\langle (1+c_n^{(1)})\psi_n^0 + \sum_{m\neq n} c_m^{(1)}\psi_m^{(0)} \middle| (1+c_n^{(1)})\psi_n^0 + \sum_{m\neq n} c_m^{(1)}\psi_m^{(0)} \right\rangle =$$

$$= |1+c_n^{(1)}|^2 \left\langle \psi_n^{(0)} \middle| \psi_n^{(0)} \right\rangle + \left\langle \sum_{m\neq n} c_m^{(1)}\psi_m^{(0)} \middle| \sum_{m\neq n} c_m^{(1)}\psi_m^{(0)} \right\rangle =$$

$$= |1+c_n^{(1)}|^2 + \sum_{m\neq n} |c_m^{(1)}|^2 \qquad = 1+c_n^{(1)}+c_n^{*(1)} = 1+2\operatorname{Re}\left\{c_n^{(1)}\right\} = 1$$
второй порядок малости

Логично предположить, что $\operatorname{Re}\left\{c_n^{(1)}\right\}=0$. Следовательно, $c_n^{(1)}=0$. Таким образом, мы нашли первую поправку:

$$E_n^{(1)} = V_{nn}, \quad n = k$$

$$c_k^{(1)} = \frac{V_{kn}}{E_n^{(0)} - E_n^{(0)}}, \quad n \neq k$$

Второй порядок малости Запишем уравнения во втором порядке малости. В (48) подставляем k=n и разложение E и c_k до вторых порядков малости. При этом большинство слагаемых сократится, и останется:

$$-E_n^{(2)}c_n^{(0)} + \sum_{m \neq n} V_{nm}c_m^{(1)} = 0$$

Откуда поправка второго порядка к n-му уровню энергии:

$$E_n^{(2)} = \sum_{m \neq n} \frac{V_{nm} V_{mn}}{E_n^{(0)} - E_m^{(0)}}$$

Находя аналогичным способом поправку к коэффициентам (пренебрегая всем выше второго порядка малости, учитывая что у $V \cdot c_m^{(2)}$ - 3й порядок малости), получаем выражение для поправки коэффициентов разложения (??Выражение ниже – (49) получено студентом, а не записано с лекций, возможно, оно неправильное!):

$$c_k^{(2)} = \begin{cases} 0, & k = n \\ \sum_{m \neq n} \frac{|V_{mn}|^2}{(E_n^{(0)} - E_m^{(0)})(E_n^{(0)} - E_k^{(0)})} - \frac{V_{kn}V_{nn}}{(E_n^{(0)} - E_k^{(0)})^2}, & k \neq n \end{cases}$$
(49)

 ${\bf C}$ точностью до второго порядка, получаем выражение для энергии: 15

$$E_n = E_n^{(0)} + V_{nn} + \sum_{m \neq n} \frac{V_{mn} V_{nm}}{E_n^{(0)} - E_m^{(0)}}$$

5.1.1 Ангармонический осциллятор

Такой осциллятор описывает движение в непараболическом потенциале. Гамильтониан системы есть

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 x^2}{2} + \underbrace{\alpha x^3 + \beta x^4}_{\hat{V}}$$

Будем считать, что невозмущенный гамильтониан $\hat{H}^{(0)} = \frac{p^2}{2m} + \frac{m\omega^2x^2}{2}$. Эта задача может быть решена с помощью операторов рождения и уничтожения a^+,a :

$$p = -i\hbar \frac{\partial}{\partial x} \equiv -i\hbar \partial_x$$

$$H = -\frac{\hbar^2 \partial_x^2}{2m} + \frac{m\omega^2 x^2}{2} + \alpha x^3 + \beta x^4$$

$$H = \hbar \omega \left(-\frac{\hbar \partial_x^2}{2m\omega} + \frac{m\omega}{2\hbar} x^2 + \alpha \frac{x^3}{\hbar \omega} + \beta \frac{x^4}{\hbar \omega} \right)$$

Введём безразмерные величины $l_{\text{\tiny KB}} = \sqrt{\frac{\hbar}{m\omega}} \equiv l_k$ и $x = \xi l_k$:

$$H = \hbar\omega \left(-\frac{1}{2} \frac{\partial^2}{\partial \xi^2} + \frac{\xi^2}{2} + \frac{\alpha l_k^3}{\hbar\omega} \xi^3 + \frac{\beta l_k^4}{\hbar\omega} \xi^4 \right)$$

 $^{^{15}}$ В Ландау(см. $\S38$, стр 173) такую сумму часто обозначают штрихом, считая, что в такой сумме опускается бесконечное слагаемое.

Введём переменные

$$\varepsilon = \frac{E}{\hbar\omega}, \quad \tilde{\alpha} = \frac{\alpha l_k^3}{\hbar\omega}, \quad \tilde{\beta} = \frac{\beta l_k^4}{\hbar\omega}$$

Тогда

$$H = \frac{p^2 + \xi^2}{2} + \tilde{\alpha}\xi^3 + \tilde{\beta}\xi^4, \quad H\psi = \varepsilon\psi$$

Вспомним, как вводились операторы a и a^+ в (16), а также их коммутационные соотношения:

$$\xi = \frac{a+a^+}{\sqrt{2}}, \quad p = \frac{a-a^+}{i\sqrt{2}}, \quad p\xi - \xi p = -i, \quad aa^+ - a^+a = 1$$

Гамильтониан при подстановке будет иметь вид:

$$H = \underbrace{a^{+}a + \frac{1}{2}}_{H^{0}} + \underbrace{\tilde{\alpha}\frac{(a+a^{+})^{3}}{2\sqrt{2}} + \tilde{\beta}\frac{(a+a^{+})^{4}}{4}}_{V}$$

Задача схожа с теорией колебаний, где мы ищем поправку к частоте методом Ван-дер-Поля. Мы же будем искать поправку к k-му уровню энергии.

$$\varepsilon^{(0)} = k + \frac{1}{2}$$

Чтобы найти первую поправку, надо найти матричный элемент V_{kk} :

$$\varepsilon = \varepsilon^{(0)} + \langle k | V | k \rangle$$

Займёмся этим. Сначала найдем матричный элемент от кубического слагаемого:

$$\langle k | \, \tilde{\alpha} (a + a^+)^3 \, | k \rangle = \tag{50}$$

Вспомним, как действуют операторы a, a^+ , и как раскрывается куб суммы:

$$a^{+}|k-1\rangle = \sqrt{k}|k\rangle, \quad a|k\rangle = \sqrt{k}|k-1\rangle$$

$$(a+a^{+})^{3} =$$

$$= a^{3} + a^{+3} + a^{2}a^{+} + aa^{+2} + aa^{+}a + a^{+}a^{2} + a^{+}aa^{+} + a^{+2}a$$

Если расписывать действие каждого оператора на каждую собственную функцию, то в результате окажется, что под итегралом:

$$\langle k | \tilde{\alpha}(a+a^+)^3 | k \rangle = \int \psi_k^* \tilde{\alpha}(a+a^+)^3 \psi_k dq$$

в множителе $\tilde{\alpha}(a+a^+)^3\psi_k$ - отсутствуют собственные функции номера k, и в силу ортогональности $\langle \psi_k | \psi_m \rangle = \delta_{mk}$, выражение (50) равно 0, а значит, и первая поправка к энергии $\varepsilon^{(1)} = 0$.

Теперь займёмся слагаемым 4-й степени. (Ненулевыми здесь будет шесть слагаемых, из бинома Ньютона 1 4 6 4 1):

$$a^{+}|k\rangle = \sqrt{k+1}|k+1\rangle$$
, $a^{+}a^{+}|k\rangle = \sqrt{k+2}\sqrt{k+1}|k+2\rangle$, $aa^{+}a^{+}|k\rangle = (k+2)\sqrt{k+1}|k+1\rangle$, $aaa^{+}a^{+}|k\rangle = (k+2)(k+1)|k\rangle$

Находя таким образом действие каждого слагаемого в итоге получаем:

$$\langle k | aa^+aa^+ | k \rangle = (k+1)^2, \quad \langle k | aaa^+a^+ | k \rangle = (k+2)(k+1)$$

 $\langle k | a^+aaa^+ | k \rangle = k(k+1), \quad \langle k | aa^+a^+a | k \rangle = k(k+1), \quad \langle k | a^+a^+aa | k \rangle = k(k-1)$

Проделав все таким нехитрым способом, напишем окончательный ответ:

$$\varepsilon^{(1)} = \langle k | \tilde{\beta} (a + a^+)^4 | k \rangle = 3\tilde{\beta} (2k^2 + 2k + 1)$$

У гармонического осциллятора (в нулевом приближении) спектр эквидистантный, см рис. 29. При $\tilde{\beta} > 0$, из-за положительной поправки $\varepsilon^{(1)}$ уровни повышаются. Это есть проявление принципа неопределённости: мы пытаемся зажать квантовую частицу в более узком потенциале, а она реагирует путём повышения своей энергии. Чем больше k, тем выше уходят уровни энергии и сильнее нарушается эквидистантность.

Конечная разность $E_k - E_{k-1}$ – аналог производной. Для производной $\partial(x^2)/\partial x = 2x$, здесь аналогично разность порядка k^2 .

Если же $\beta < 0$ (см рис. 30), то расстояние между уровнями будет сокра-

Рис. 29. Различие уровней гармонического и ангармонического осцилляторов

щаться. ... ??

Рис. 30. Сокращение расстояния между уровнями

Как было показано ранее, в первом порядке теории возмущений добавка x^3 не изменит ничего. Во втором порядке – изменит. Попробуем найти поправку к нулевому уровню из общей формулы для уровня k:

$$\varepsilon_k = \varepsilon_k^{(0)} + V_{kk} + \sum_{m \neq k} \frac{V_{km} V_{mk}}{E_k^{(0)} - E_m^{(0)}}$$
(51)

Для k=0 $E_0^{(0)}-E_m^{(0)}<0$, а в силу эрмитовости $\hat{V}:V_{mk}=V_{km}^*$. Тогда поправка второго порядка к основному приближению будет всегда отрицательна – из-за кубического члена.

Наметим путь решения этой задачи. Нужно выписывать матричные элементы V_{mk} :

$$V_{km} = \langle k | (a + a^+)^3 | m \rangle$$

$$\langle k | a^3 | m \rangle \Rightarrow m = k + 3, \qquad \langle k | a^{+3} | m \rangle \Rightarrow m = k - 3$$

 $\langle k | a^{+2} a | m \rangle \Rightarrow m = k - 1, \qquad \langle k | a^2 a^+ | m \rangle \Rightarrow m = k + 1$

В этой сумме будет четыре члена, в знаменателе формулы (51) будет

$$E_k^0 - E_m^0 = \pm 3\hbar\omega$$

Эта задача решена в Ландау¹⁶. **Она у нас на экзамене на пятёрку.**

5.1.2 Вырождение

Модификаций теорий возмущений много. Мы будем изучать теорию возмущений Шрёдингера-Ритца. В квантовой электродинамике её применение сложно, и Фейнман придумал другую теорию возмущений, позволяющую автоматизировать решение.

От времени у нас по-прежнему ничего не зависит. Уравнение в базисе функций невозмущённой задачи запишется как

$$(E_n^{(0)} - E)c_n + \sum_m V_{nm}c_m = 0.$$

В матричном виде (m - номер столбца, n - строки):

$$\begin{pmatrix} E_1^{(0)} - E + V_{11} & V_{12} & V_{13} & \dots \\ V_{21} & E_2^{(0)} - E + V_{22} & V_{23} & \dots \\ \dots & \dots & \dots \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ \dots \end{pmatrix} = 0$$

Мы рассматривали случай, когда все $E_1^{(0)}, E_2^{(0)}, \dots$ разные – т.е. нет вырождения. Характеристическое уравнение здесь – определитель матрицы равен нулю:

$$\Delta = \prod_{n} (E_n^{(0)} - E) = 0$$

¹⁶см. §38, стр 175, решенная во втором порядке малости.

Если мы брали конкретную энергию $E = E_k^{(0)}$, то получали $c_{nk}^{(0)} = \delta_{nk}$. При вырождении одному собственному значению соответствует несколько собственных функций. У характеристического уравнения среди $E_n^{(0)}$ есть одинаковые корни¹⁷.

Пусть у нас кратность вырождения корня $E_k^{(0)}$ будет N:

$$\begin{pmatrix} E_1^{(0)} - E + V_{11} & V_{12} & V_{13} & \dots \\ V_{21} & E_2^{(0)} - E + V_{22} & V_{23} & \dots \\ \dots & \dots & \dots \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_{n_1} \\ c_{n_2} \\ \dots \end{pmatrix} = 0$$

Например, уровни энергии, и соответсвующие им собств. функции:

$$E_n^{(0)} = E_{n1}^{(0)} = E_{n2}^{(0)}, \quad \psi_{n1}^{(0)}(x), \psi_{n_2}^{(0)}(x)$$

Тогда любая их суперпозиция также будет решением:

$$\psi = d_1 \psi_{n1}^{(0)}(x) + d_2 \psi_{n_2}^{(0)}(x)$$

Как же правильно найти эти коэффициенты? Всего в столбце коэффицентов n = k + N элементов??. В матрице теперь берём не все уравнения, а только блок кратных корней (n' обозначены коэффициенты, относящиеся к одному и тому же значению энергии E_n):

$$\underbrace{(E_n^{(0)} - E)}_{-E_n^{(1)}} c_n^{(0)} + \sum_{n'} V_{nn'} c_{n'}^{(0)} = 0$$

Выше мы ограничились только первым приближением $E=E_n^{(0)}+E_n^{(1)}$. Поправка к n-му уровню

$$-E_n^{(1)}c_n^{(0)} + \sum_{n'} V_{nn'}c_{n'}^{(0)} = 0,$$

где n,n' - пробегают по всем значениям состояний, относящихся к одному собственному значению $E_n^{(0)}$, т.е. система получится N-го порядка. Условие

¹⁷ Пример кратного корня — решение уравнения $x^2 = 0$

разрешимости и нахождения коэффицентов $c_n'^{(0)}$ – равенство нулю детерминанта. Напишем, например, для порядка N=3 это уравнение в матричном виде:

$$\begin{pmatrix} -E^{(1)} + V_{11} & V_{12} & V_{13} \\ V_{21} & -E^{(1)} + V_{22} & V_{23} \\ V_{31} & V_{32} & -E^{(1)} + V_{33} \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = 0$$

Тогда в индексной записи определитель

$$\Delta = ||V_{ik} - E^{(1)}\delta_{ik}|| = 0$$

Или

$$\hat{V} = \begin{pmatrix} V_{11} & V_{12} & V_{13} & \dots \\ V_{21} & V_{22} & V_{23} & \dots \\ V_{31} & V_{32} & V_{33} \end{pmatrix}$$

и тогда

$$\det{(\hat{V} - E^{(1)}\hat{I})} = 0.$$

Это уравнение называется **секулярным**. Такими уравнениями описываются медленные движения планет, например, в небесной механике, и дают малые поправки. Характерное время оборота Земли – ровно год, а возмущения (например, влияние Луны) имеют характерные времена – века.

5.1.3 Двукратное вырождение

Простейший пример вырождения – двукратное вырождение. Обозначим номером 1 строку и столбец выделенного блока в матрице. Тогда

$$-Ec_1 + V_{11}c_1 + V_{12}c_2 = 0$$
$$-Ec_2 + V_{22}c_2 + V_{21}c_1 = 0$$

В матричном виде

$$\begin{pmatrix} -E + V_{11} & V_{12} \\ V_{21} & -E + V_{22} \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = 0$$

Смысл равенства нулю детерминанта – совпадение прямых (плоскостей, и так далее) – что даст существование нетривиального решения. Это всё имеет простой геометрический смысл и говорит о линейной зависимости уравнений.

Найдем решение $\det = 0$ – квадратное уравнение:

$$E^{2} - (V_{11} + V_{22})E + V_{11}V_{22} - V_{12}V_{21} = 0$$

В общем виде для второго порядка получим:

$$E^2 - E \operatorname{diag} \hat{V} + \det \hat{V} = 0$$

Итак, для второго порядка (учтём, что $V_{12}V_{21} = |V_{12}|^2$)

$$E_{1,2} = \frac{V_{11} + V_{22}}{2} \pm \sqrt{\frac{(V_{11} + V_{22})^2}{4} - V_{11}V_{22} + |V_{12}|^2}$$
$$E_{1,2} = \frac{V_{11} + V_{22}}{2} \pm \sqrt{\frac{(V_{11} - V_{22})^2}{4} + |V_{12}|^2}$$

Мы нашли собственные значения энергии. Дальше нужно найти константы: для нужно этого подставить одно из найденных значений в систему 5.1.3.

$$(-E_1 + V_{11})c_1 + V_{12}c_2 = 0, \Rightarrow c_2 = c_1 \frac{E_1 - V_{11}}{V_{12}}$$

 c_1 можем положить чему хотим, т.е. константа произвольная. Введём нумерацию, соответствующую решениям $E_{1,2}$:

$$c_2^1 = \frac{c_1}{V_{12}} \left[\frac{V_{22} - V_{11}}{2} + \sqrt{\frac{(V_{11} - V_{22})^2}{4} + |V_{12}|^2} \right]$$

$$c_2^2 = \frac{c_1}{V_{12}} \left[\frac{V_{22} - V_{11}}{2} - \sqrt{\frac{(V_{11} - V_{22})^2}{4} + |V_{12}|^2} \right]$$

Или можно записать в виде

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix}_{(1)} = \begin{pmatrix} V_{12} \\ \frac{V_{22} - V_{11}}{2} + \sqrt{\dots} \end{pmatrix}, \quad \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}_{(2)} = \begin{pmatrix} V_{12} \\ \frac{V_{22} - V_{11}}{2} - \sqrt{\dots} \end{pmatrix},$$

Тогда

$$\psi = c_1^{(0)} \psi_1^0 + c_2^{(0)} \psi_2^0$$

Это правильные функции нулевого приближения: они соответствуют невырожденному состоянию.

Рис. 31. Снятие вырождения при возмущении

При конечном возмущении, как говорят, снимается вырождение. Сейчас рассмотрим задачу о возникновении **зон**.

5.2. Электрон в поле двух ядер

Мы решали задачу об атоме водорода. Теперь вдруг сбоку подносим один

Рис. 32. Электрон может находится как в Ψ одного протона, так и другого

протон: получается система из двух протонов и одного электрона. Это система образует молекулярный ион H_2^+ .

Задачу можно решать так: поскольку протоны тяжёлые, то можно считать что они не двигаются, и сначала решить задачу о движении электрона в поле двух протонов:

$$H = \frac{p^2}{2m} + U(r - r_1) + U(r - r_2)$$

Нам нужно решить такую задачу:

$$\hat{H}\Psi(\vec{r}) = E\Psi(\vec{r}),\tag{52}$$

Уровни здесь дважды вырождены, так как система уровней неподвижных ядер одинакова. Будем искать волновую функцию в виде линейной комбинации:

$$\Psi(r) = c_1 \Psi^{(0)}(\vec{r} - \vec{r_1}) + c_2 \Psi^{(0)}(\vec{r} - \vec{r_2}) + \underbrace{\cdots}_{\text{поправка}}$$

Зная гамильтониан (52) этой системы, можно записать СУШ:

$$\left[\frac{p^2}{2m} + U(\vec{r} - \vec{r}_1) + U(\vec{r} - \vec{r}_2)\right] \left\{c_1 \Psi^{(0)}(\vec{r} - \vec{r}_1) + c_2 \Psi^{(0)}(\vec{r} - \vec{r}_2)\right\} = E\left\{c_1 \Psi^{(0)}(\vec{r} - \vec{r}_1) + c_2 \Psi^{(0)}(\vec{r} - \vec{r}_2)\right\} \tag{53}$$

Будем считать, что решения для одного атома мы знаем, т.е.:

$$\left[\frac{p^2}{2m} + U(\vec{r} - \vec{r_1})\right] \Psi^{(0)}(\vec{r} - \vec{r_1}) = E^{(0)} \Psi^{(0)}(\vec{r} - \vec{r_1})$$

Тогда (53) можно переписать в виде:

$$E^{(0)}c_1\Psi^{(0)}(\vec{r}-\vec{r}_1) + U(\vec{r}-\vec{r}_2)c_1\Psi^{(0)}(\vec{r}-\vec{r}_1) + E^{(0)}c_2\Psi^{(0)}(\vec{r}-\vec{r}_2) + U(\vec{r}-\vec{r}_1)c_2\Psi^{(0)}(\vec{r}-\vec{r}_2) = E\left\{c_1\Psi^{(0)}(\vec{r}-\vec{r}_1) + c_2\Psi^{(0)}(\vec{r}-\vec{r}_2)\right\}$$

Домножим это уравнение сначала на $\Psi^{(0)*}(\vec{r}-\vec{r}_1)$ и проинтегрируем по пространтсву, а затем домножим на $\Psi^{(0)*}(\vec{r}-\vec{r}_2)$, и так же проинтегрируем:

$$\int \Psi^{(0)*} \Psi^{(0)} \, \mathrm{d}^3 r = 1$$

Так же будут интегралы, которые мы не будем считать, а просто обозначим:

$$S = \int U(\vec{r} - \vec{r}_2) \Psi^{*(0)}(\vec{r} - \vec{r}_1) \Psi^{(0)}(\vec{r} - \vec{r}_1) d^3r ,$$

$$R = \int \Psi^{*(0)}(\vec{r} - \vec{r}_1) \Psi^{(0)}(\vec{r} - \vec{r}_2) d^3r ,$$

$$T = \int U(\vec{r} - \vec{r}_1) \Psi^{*(0)}(\vec{r} - \vec{r}_1) \Psi^{(0)}(\vec{r} - \vec{r}_2) d^3r ,$$

Тогда

$$E^{(0)}c_1 + Sc_1 + E^{(0)}Rc_2 + Tc_2 = Ec_1 + ERc_2$$

Теперь надо написать второе уравнение. Можно не проделывать все то же самое, а просто сделать замену:

$$r_1 \to r_2, \quad r_2 \to r_1, \quad c_1 \to c_2, \quad c_2 \to c_1.$$

$$E^{(0)}c_2 + Sc_2 + E^{(0)}Rc_1 + Tc_1 = Ec_2 + ERc_1$$

Поскольку уравнения действительные, то в интегралах S,T,R можно было бы не писать сопряжение. (Почему-то волновая функция действительна).?? Обозначим $E^{(0)} - E = -\varepsilon$, тогда оба уравнения запишутся в виде:

$$\begin{pmatrix} -\varepsilon + S & (E^{(0)}R + T - (E^{(0)} + \varepsilon)R) \\ E^{(0)}R + T - (E^{(0)} + \varepsilon)R & -\varepsilon + S \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

S, R, T – так называемые интегралы перекрытия. Упрощая систему, получим:

$$\begin{pmatrix} -\varepsilon + S & T - \varepsilon R \\ T - \varepsilon R & -\varepsilon + S \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Для существования решения, определитель должен равняться нулю. Определитель даст (учтём, что $\varepsilon \sim T, S$):

$$(S - \varepsilon)^2 - (T - \varepsilon R)^2 = 0$$

его решение будет

$$\varepsilon = S \pm (T - \varepsilon R)$$

поскольку $S, T, R \sim \mu$ – в первом порядке теории возмущений, то

$$\varepsilon(1 \mp R) = S \pm T \quad \to \quad \varepsilon = S \pm T$$

Итак, мы нашли поправку первого порядка малости. Теперь найдём коэффициенты:

$$\begin{pmatrix} -T & T \\ T & -T \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = 0$$

Видно, что уравнения линейно зависимы, значит, при $\varepsilon = S + T$, $c_2 = c_1$. Аналогично при $\varepsilon = S - T$ получается $c_2 = -c_1$.

Можно заметить, что S и T – отрицательны. Потенциал – притяжения, значит U < 0. Отсюда следует, что S + T < S - T.

Рис. 33. Расщепление

Симметричная волновая функция:

$$\Psi_1 = c_1 \Big(\Psi^{(0)}(\vec{r} - \vec{r}_1) + \Psi^{(0)}(\vec{r} - \vec{r}_2) \Big), \Rightarrow \varepsilon = -|S| - |T|$$

Антисимметричная волновая функция:

$$\Psi_2 = c_1 \Big(\Psi^{(0)}(\vec{r} - \vec{r}_1) - \Psi^{(0)}(\vec{r} - \vec{r}_2) \Big), \Rightarrow \varepsilon = -|S| + |T|$$

Это правильные функции нулевого приближения.

Можно рассмотреть задачу не о двух атомах, а о большом количестве. Степень вырождения будет очень высокой. Например, кристалл. Характерная плотность атомов в металле 10^{23} см⁻³. Уровней будет уже не 2, а 10^{24} :

Рис. 34. Разрешённая зона

Резюмируем: снятие вырождения породило зону. Уровни в зоне расположены так близко, что можно считать их сплошным спектром.

5.3. Нестационарная теория возмущений

Необходимо решить уравнение с нестационарным возмущением:

$$i\hbar\dot{\Psi} = \left(\hat{H}^{(0)} + V(\vec{r}, t)\right)\Psi$$

5.3.1 Переходы в состояниях спектра при периодическом возмущении

Пример нестационарных возмущений. Пусть есть атом водорода с потенциалом $-e^2/|x|$:

Рис. 35. Спектр атома водорода

Что такое возмущение? Пусть действует однородное электрическое поле $\vec{E}=\vec{E}_0\cos\omega t$. Его потенциал

$$\varphi = -(\vec{E} \cdot \vec{r})$$

Тогда изначальное уравнение примет вид

$$i\hbar\dot{\Psi} = \left(\frac{p^2}{2m} - \frac{e^2}{2} - e(\vec{E_0}\cdot\vec{r})\cos\omega t\right)\Psi(\vec{r},t)$$

Если бы поле было статическое, мы бы наблюдали снятие вырождения — т.е. эффект Штарка. А теперь могут возникать переходы между уровнями. Пусть мы знаем, что в нулевой момент времени электрон находится в основном состоянии. Потом мы включаем переменное поле, и электрон может возбудиться — перейти на следующий уровень, или вообще ионизироваться — перейти в область почти сплошного спектра: на простом языке, отрыв электрона от атома.

Нестационарная теория возмущений позволит нам сосчитать вероятности переходов и вероятность ионизации.

Переходы в дискретном спектре. Вообще говоря, поле неоднородное, но если размер атома много меньше длины волны, то это называется дипольным приближением. Как подойти к задаче? Пусть нам известны функции нулевого порядка (известна задача про атом водорода), а полное решение будем раскладывать по функциям невозмущённой задачи $\Psi_n^{(0)}$:

$$\Psi(\vec{r},t) = \sum_{n} c_n(t) \Psi_n^{(0)}(r), \quad \hat{H}^{(0)} \Psi_n^{(0)} = E_n^{(0)} \Psi_n^{(0)}$$

Запишем уравнение Шрёдингера, и скалярно домножим на $\Psi_m^{*(0)}$:

$$\Psi_m^{*(0)}| \quad i\hbar \sum_n \dot{c}_n(t) \Psi_n^{(0)}(r) = H^{(0)} \sum_n c_n(t) \Psi_n^{(0)}(r) + V \sum_n c_n(t) \Psi_n^{(0)}(r)$$

Воспользуемся ортогональностью:

$$\langle \Psi_m | \Psi_n \rangle = \int \Psi_m^*(r) \Psi_n(r) d^3 r = \delta_{m,n}$$

Тогда уравнение Шрёдингера принимает вид

$$i\hbar \dot{c}_m = E_m^{(0)} c_m(t) + \sum_n V_{mn}(t) c_n(t)$$
 (54)

Это энергетическое представление невозмущённой задачи. ??

Это система дифференциальных уравнений в обыкновенных производных, которых много, по всему дискретному спектру. Как её решать? Это уравнение Шрёдингера, где все операторы взяты в представлении Шрёдингера. Вспомним, что есть представления Гейзенберга и Шрёдингера. В чем состоит разница между этими представлениями? Среднее значение любой физической величины А может зависеть от времени:

$$\bar{A} = \int \Psi^*(t) \hat{A} \Psi(t, r) d^3 r = \langle \Psi(t) | \hat{A} | \Psi(t) \rangle.$$

Это язык Шрёдингера, когда волновая функция зависит от времени. Сама функция Ψ удовлетворяет уравнению Шрёдингера: А можно записать через

оператор эволюции $\hat{U}(t)$:

$$i\hbar \left|\Psi\right\rangle = H\left|\Psi\right\rangle, \quad \left|\Psi(t)\right\rangle = \hat{U}(t)\left|\Psi(0)\right\rangle, \quad \left\langle\Psi(t)\right| = \left\langle\Psi(0)\right|U^+(t)$$

Оператор эволюции должен быть унитарным, потому что

$$\langle \Psi(t)|\Psi(t)\rangle = \langle \Psi(0)|U^+U|\Psi(0)\rangle = 1 \quad \Rightarrow \quad U^+U = \hat{1}.$$

Тогда выражение для среднего значения принимает вид

$$\bar{A} = \langle \Psi(0) | U^+ A U | \Psi(0) \rangle$$

Это уже представление Гейзенберга:

$$\langle \Psi^G | A^G | \Psi^G \rangle$$

5.3.2 Представление Взаимодействия

$$A^{I} = \hat{U}^{0+} \hat{A}^{S} \hat{U}^{0}$$

$$H = H^{(0)} + V, \quad i\hbar \dot{U}^{0} = H^{(0)} U^{0}$$

Итак, нам нужно решать уравнение (54):

$$i\hbar\dot{c}_m = E_m^{(0)}c_m(t) + \sum_n \underbrace{V_{mn}(t)}_{\sim 0}c_n(t)$$

Сделаем преобразование к представлению взаимодействия. Сначала решим уравнения нулевого приближения

$$i\hbar \dot{c}_m = E_m^{(0)} c_m \quad \Rightarrow \quad c_m(t) = c_m(0) \exp\left(-i\frac{E_m^{(0)}t}{\hbar}\right),$$

а затем введём новую переменную $d_m(t)$ соотношением:

$$c_m(t) = d_m(t) \exp\left(-i\frac{E_m^{(0)}t}{\hbar}\right)$$

Тогда

$$\dot{c}_m = \dot{d}_m \exp\left(-i\frac{E_m^{(0)}t}{\hbar}\right) - \frac{iE_m^{(0)}}{\hbar}d_m \exp\left(-i\frac{E_m^{(0)}t}{\hbar}\right)$$

Подставляя \dot{c}_m в изначальное уравнение (54):

$$i\hbar \dot{d}_m \exp\left(-i\frac{E_m^{(0)}t}{\hbar}\right) = \sum_n V_{mn}(t)d_n(t) \exp\left(-i\frac{E_n^{(0)}t}{\hbar}\right)$$

Тогда

$$i\hbar \dot{d}_m = \sum_n \widetilde{V}_{mn}(t)d_n(t), \qquad (55)$$

где оператор возмущения в представлении взаимодействия

$$\widetilde{V}_{mn} = V_{mn} \exp\left(i\frac{(E_m^{(0)} - E_n^{(0)})t}{\hbar}\right)$$
 (56)

Это уравнение Шрёдингера в представлении взаимодействия. Почему оно так называется? Если бы не было взаимодействия $V_{m,n}$, все d_m были бы константами.

5.3.3 Монохроматическое возмущение

Пусть имеется переменное электрическое поле, направление по оси x. Тогда имеем:

$$\hat{V} = exE\cos\omega t, \quad V_{mn} = eEX_{mn}\cos\omega t = \frac{1}{2}eEX_{mn}(e^{i\omega t} + e^{-i\omega t}),$$
$$X_{mn} = \int \Psi_m^*(r)x\Psi_n(r) dx dy dz = X_{nm}^*.$$

Можем рассмотреть более общий случай произвольного гармонического возмущения:

$$V_{mn} = \left(F_{mn}e^{-i\omega t} + F_{nm}^*e^{+i\omega t}\right)$$

Тогда, подставив V_{mn} в (56), учитывая, что $\omega_{mn} = \frac{(E_m^{(0)} - E_n^{(0)})}{\hbar}$

$$\widetilde{V}_{mn} = F_{mn}e^{i(\omega_{mn} - \omega)t} + F_{nm}^*e^{i(\omega + \omega_{mn})t}$$

Пусть нам дано, что в начальный момент времени система находится в какомто k-ом состоянии. Значит, $d_n^{(0)}(t=0)=\delta_{nk}$. Тогда, подставляя в (55) выражение для \widetilde{V}_{mn} :

$$i\hbar \dot{d}_{mk}^{(1)} = \tilde{V}_{mk}(t) = F_{mk}e^{i(\omega_{mk}-\omega)t} + F_{km}^*e^{i(\omega_{mk}+\omega)t}$$

Настоящие уравнения – параметрические и в общем случае не решаются. А мы получили то, что можно решить. Интеграл берётся, и

$$d_{mk}^{(1)} = \frac{1}{i\hbar} \left[\frac{F_{mk}e^{i(\omega_{mk}-\omega)t}}{i(\omega_{mk}-\omega)} + \frac{F_{km}^*e^{i(\omega_{mk}+\omega)t}}{i(\omega_{mk}+\omega)} \right]$$
 (57)

Рис. 36. Структура уровней

Условие применимости такого приближения – $|d_{mk}| \ll 1$. Здесь возможно неограниченное нарастание при совпадении частоты внешнего воздействия с расстоянием между уровнями, и на таком резонансном уровне теория возмущений неприменима.

Итак, формула верна при отсутствии резонанса. Случай резонанса

$$\Omega_{mk} = \omega \cdot (m - k)$$

5.3.4 Двухуровневая среда

Важно, что система (атом) имеет сильно неэквидистантный спектр (см. рис. 37) и только пара уровней находится в резонансе. Давайте для этой пары уровней напишем уравнение. Пусть нижний уровень d_1 , верхний d_2 . Между ними могут быть и другие, но не резонансные уровни.

Пусть на атом воздействует поле частотой, близкой к резонансной: $\omega =$

Рис. 37. Спектр атома с двухуровневым переходом

 $\omega_{21} + \varepsilon$. Тогда (54) примет вид:

$$i\hbar\dot{c}_{2} = E_{2}c_{2} + c_{1}\left(F_{21}e^{-i(\omega_{21}+\varepsilon)t} + F_{12}^{*}e^{i(\omega_{21}+\varepsilon)t}\right)$$
$$i\hbar\dot{c}_{1} = E_{1}c_{1} + c_{2}\left(F_{12}e^{-i(\omega_{21}+\varepsilon)t} + F_{21}^{*}e^{i(\omega_{21}+\varepsilon)t}\right)$$

B переменных d:

$$i\hbar \dot{d}_{2} = d_{1} \left[F_{21} e^{i(\omega_{21} - \omega_{21} - \varepsilon)t} + F_{12}^{*} e^{i(\omega_{21} + \omega_{21} + \varepsilon)t} \right]$$

$$i\hbar \dot{d}_{1} = d_{2} \left[F_{12} e^{i(\omega_{21} - \omega_{21} + \varepsilon)t} + F_{21}^{*} e^{i(\omega_{21} + \omega_{21} + \varepsilon)t} \right]$$
(58)

Из формулы (58) видим, что важны члены, которые близки к резонансу. Отбросив остальные члены получим $(F_{12}=F_{21}^*)$:

$$i\hbar \dot{d}_2 = d_1 F_{21} e^{-i\varepsilon t}, \quad i\hbar \dot{d}_1 = d_2 F_{21}^* e^{i\varepsilon t}$$

Введём новые переменные $d_2=b_2e^{-i\varepsilon t/2},\ d_1=b_1e^{i\varepsilon t/2}.$ Тогда (58) запишется:

$$i\hbar\left(\dot{b}_2 - i\frac{\varepsilon}{2}b_2\right) = F_{21}b_1i\hbar\left(\dot{b}_1 + i\frac{\varepsilon}{2}b_1\right) = F_{12}^*b_2$$

Это уже уравнения с постоянными коэффициентами. Система уравнений первого порядка лучше уравнения n-го порядка. Так что решать будем так: уравнение линейное с постоянными коэффициентами, значит нужно искать решения в виде экспонент:

$$\begin{pmatrix} b_2(t) \\ b_1(t) \end{pmatrix} = \begin{pmatrix} b_2 \\ b_1 \end{pmatrix} e^{-i\Omega t}$$

Подставляем в ():

$$i\hbar \left(-i\Omega - i\frac{\varepsilon}{2}\right)b_2 = F_{21}b_1$$
$$i\hbar \left(-i\Omega + i\frac{\varepsilon}{2}\right)b_1 = F_{21}^*b_2$$

$$\hbar \left(\Omega + \frac{\varepsilon}{2}\right) b_2 = F_{21} b_1$$
$$\hbar \left(\Omega - \frac{\varepsilon}{2}\right) b_1 = F_{21}^* b_2$$

Получили СЛАУ, значит есть нетривиальное решение, когда определитель равен нулю:

 $\hbar^2 \left(\Omega^2 - \frac{\varepsilon^2}{4} \right) = |F_{21}|^2$

Отсюда

$$\Omega^2 = \frac{\varepsilon^2}{4} + \frac{|F_{21}|^2}{\hbar^2}$$

Впервые эту задачу рассмотрел Раби. Это базовая задача квантовой оптики. За это он получил Нобелевскую премию. Эта частота называется частотой Раби. Теперь найдём собственные вектора:

$$\Omega = \pm \sqrt{\frac{\varepsilon^2}{4} + \frac{|F_{21}|^2}{\hbar^2}}$$

$$\binom{b_2(t)}{b_1(t)} = c_1 \binom{b_2^1}{b_1^2} e^{-i\Omega t} + c_2 \binom{b_2^2}{b_1^2} e^{i\Omega t}$$

$$b_2^{1,2} = F_{21}, \quad b_1^{1,2} = \hbar \left(\pm \Omega + \frac{\varepsilon}{2}\right)$$

Имеем следующие выражения для собственных векторов

$$\begin{pmatrix} b_2^1 \\ b_1^1 \end{pmatrix} = \begin{pmatrix} F_{21} \\ \hbar(\Omega + \frac{\varepsilon}{2}) \end{pmatrix}, \quad \begin{pmatrix} b_2^2 \\ b_1^2 \end{pmatrix} = \begin{pmatrix} F_{21} \\ \hbar(-\Omega + \frac{\varepsilon}{2}) \end{pmatrix}.$$

Общее решение уравнений

$$\begin{pmatrix} b_2(t) \\ b_1(t) \end{pmatrix} = c_1 \begin{pmatrix} F_{21} \\ \hbar(\Omega + \frac{\varepsilon}{2}) \end{pmatrix} e^{-i\Omega t} + c_2 \begin{pmatrix} F_{21} \\ \hbar(-\Omega + \frac{\varepsilon}{2}) \end{pmatrix} e^{i\Omega t}$$

Зададим начальные условия: $b_2(t=0)=0$, $b_1(t=0)=1$: атом в начальный момент времени находится на первом уровне (нижнем). Удовлетворение начальным условиям даст $c_1=-c_2$.

$$c_{1}\left[\hbar\left(\Omega + \frac{\varepsilon}{2}\right) - \hbar\left(\frac{\varepsilon}{2} - \Omega\right)\right] = 1 \quad \Rightarrow \quad c_{1} = \frac{1}{2\hbar\Omega}$$

$$\begin{pmatrix} b_{2}(t) \\ b_{1}(t) \end{pmatrix} = \frac{1}{2\hbar\Omega} \left[\begin{pmatrix} F_{21} \\ \hbar(\Omega_{R} + \frac{\varepsilon}{2}) \end{pmatrix} e^{-i\Omega t} - \begin{pmatrix} F_{21} \\ \hbar(-\Omega + \frac{\varepsilon}{2}) \end{pmatrix} e^{i\Omega t} \right]$$

Отсюда

$$b_2(t) = -\frac{F_{21}}{2\hbar\Omega} 2i\sin\omega t = -i\frac{F_{21}}{\hbar\Omega}\sin\Omega t,$$

$$b_1(t) = -\frac{1}{2\hbar\Omega} \left[\hbar \frac{\varepsilon}{2} \left(e^{-\Omega t} - e^{i\Omega t} \right) + \hbar\Omega \left(e^{-\Omega t} + e^{i\Omega t} \right) + \right] = \cos\Omega t - \frac{i\varepsilon}{2\Omega}\sin\Omega t$$

где

$$\Omega = \pm \sqrt{\frac{\varepsilon^2}{4} + \frac{|F_{21}|^2}{\hbar^2}}$$

Можно показать, что $|b_1|^2 + |b_2|^2 = 1$.

Рассмотрим случай точного резонанса $\varepsilon=0$:

$$b_1 = \cos \Omega t$$
, $b_2 = -i \sin \Omega t$ \Rightarrow $|b_1|^2 = \cos^2 \Omega t$, $|b_2|^2 = \sin^2 \Omega t$,

Рис. 38. Осцилляция Раби

Это называется осцилляцией Раби. b_1 – населённость нижнего уровня. Легко видеть, что если резонанс неточный, то осцилляция станет неполной: система не будет полностью перекачиваться из одного состояния в другое.

Рис. 39. Неточный резонанс

5.3.5 Золотое правило Ферми

Ферми применил теорию возмущений к задаче о переходе из дискретного спектра в сплошной.

Рис. 40. Переход в спектре атома водорода

Если энергии фотона достаточно, чтобы перескочить из дискретного спектра в сплошной, работает правило Ферми. При гармоническом воздействии на систему справедливо (см. (57)):

$$c_{nk} = -\frac{F_{nk}e^{i(\omega_{nk}-\omega)t}}{\hbar(\omega_{nk}-\omega)} - \frac{F_{kn}^*e^{i(\omega_{nk}+\omega)t}}{\hbar(\omega_{nk}+\omega)}$$

 $c_m(t=0) = \delta_{mk}$. c_{nk} есть амплитуда вероятности перехода из начального состояния k в конечное n. Обозначим 18

$$n \equiv f, \quad k \equiv i$$

¹⁸Такиме обозначения используются в Ландау f=final, i=initial, см. §41 стр. 187

Нужно решить задачу

$$i\hbar \dot{c}_{fi} = F_{fi}e^{i(\omega_{fi}-\omega)t} + F_{if}^*e^{i(\omega_{fi}+\omega)t}$$

Проинтегрируем по времени от 0 до t:

$$i\hbar\dot{c}_{fi} = \tilde{V}_{fi}(t), \quad \tilde{V}_{fi}(t) = F_{fi}e^{i(\omega_{fi}-\omega)t} + F_{if}^*e^{i(\omega_{fi}+\omega)t}$$

$$i\hbar c_{fi} = \int_0^t \tilde{V}_{fi}(t)dt$$

В первом порядке теории возмущений, пренебрегая не резонансным членом:

$$c_{fi} = -\frac{F_{fi}}{\hbar} \cdot \frac{e^{i(\omega_{fi} - \omega)t} - 1}{\omega_{fi} - \omega} - \sum = -\frac{2iF_{fi}}{\hbar} \frac{e^{i\frac{\omega_{fi} - \omega}{2}t}}{\omega_{fi} - \omega} \sin\left(\frac{\omega_{fi} - \omega}{2}t\right)$$

Тогда

$$|c_{fi}|^2 = \frac{|F_{fi}|^2}{\hbar^2} \frac{\sin^2\left(\frac{\omega_{fi} - \omega}{2}t\right)}{\frac{(\omega_{fi} - \omega)^2}{4}} = \frac{|F_{fi}|^2}{\hbar^2} \frac{\sin^2(\alpha t)}{\alpha^2}$$
(59)

Какую размерность имеет амплитуда вероятности - безразмерную. Это легко проверить, если учесть, что матричный элемент имеет размерность энергии.

Рассмотрим функцию (60). Есть утверждение, что при $t \to \infty$ справедливо:

$$\frac{\sin^2(\alpha t)}{\alpha^2} \sim \delta(\alpha)t \tag{60}$$

Вычислим интеграл:

$$\int_{-\infty}^{+\infty} \frac{\sin^2(\alpha t)}{\alpha^2} d\alpha = t \int_{-\infty}^{+\infty} \frac{\sin^2(\alpha t)}{\alpha^2 t^2} d\alpha t \sim t$$

t здесь будет параметром. График функции изображён на рисунке 41: Нули функции (60) расположены в $\alpha t = n\pi$. В нуле аргумента функция равна t.

Ширина этой функции до первых нулей по оси $\alpha - \frac{2\pi}{t}$. Чем-то похоже на дельта-функцию: чем больше время, тем выше и уже эта функция. Опреде-

Рис. 41. График функции $\frac{\sin^2 \alpha t}{\alpha^2}$

ление δ -функции: в нуле бесконечность, в остальных точках 0, а площадь под кривой равна 1.

Рассмотрим интеграл

$$\int_{-\infty}^{+\infty} \frac{\sin^2 y}{y^2} \, \mathrm{d}y$$

Можно применить теорию вычетов. Чтобы свести интеграл к вычетам, нужно образовать контур на комплексной плоскости (см. рис. 42).

Рис. 42. Контур по комплексной плоскости

Особая точка y=0. Это устранимая особая точка:

$$\int_{-\infty}^{+\infty} \frac{\sin^2 y}{y^2} \, \mathrm{d}y = \int_{-\infty}^{+\infty} \frac{1 - \cos 2y}{2y^2} \, \mathrm{d}y = \int_C \left[\frac{1}{2y^2} - \frac{e^{2iy}}{4y^2} - \frac{e^{-2iy}}{4y^2} \right] \, \mathrm{d}y =$$

Где контур обходит особую точку. Нам нужно где-то этот интеграл замкнуть. Замкнём на бесконечности в верхней полуплоскости, окружностью радиуса $R \to \infty$:

$$\mathrm{d}y = R\,\mathrm{d}\varphi\,,\quad \frac{1}{2y^2} = \frac{1}{R^2}$$

Так как внутри контура C' нет особых точек, вычетов нет, интеграл равен нулю. Второй член тоже можно замкнуть сверху аналогично, и он тоже равен нулю.

А последнее слагаемое, из-за минуса, надо замыкать по нижней полуплоскости. Правило замыкания носит название «лемма Жордана».

Тогда

$$\int = -\int_{C''} \frac{e^{-2iy}}{4y^2} \, \mathrm{d}y = 2\pi i \operatorname{Res} f(0)$$

Обход по контуру идёт против часовой стрелки. А вычет – это коэффициент c_{-1} в ряде Лорана:

Res
$$f(z) = c_{-1}$$
, $f(z) = \frac{c_{-2}}{z^2} + \frac{c_{-1}}{z} + c_0 + c_1 z + \dots$

Тогда найдём вычет (разлагая в нуле):

$$\int = 2\pi i \operatorname{Res} \frac{e^{-2iy}}{4y^2} = 2\pi i \operatorname{Res} \frac{1 - 2iy}{4y^2} = \pi.$$

Итак, тогда

$$\lim_{t \to \infty} \frac{\sin^2 \alpha t}{\alpha^2} = \pi \delta(\alpha) t$$

Тогда уравнение (59) при $t \to \infty$ принимает вид:

$$|c_{fi}|^2 = \frac{|F_{fi}|^2}{\hbar^2} \pi \cdot \delta \left(\frac{\omega_{fi} - \omega}{2}\right) \cdot t$$

Воспользуемся тождеством

$$\delta(\alpha x) = \frac{1}{\alpha}\delta(x)$$

Коэффициент перед временем можно трактовать как частоту – вероят-

ность перехода в единицу времени:

$$w_{fi} = 2\pi \frac{|F_{fi}|^2}{\hbar_2} \delta(\omega_{fi} - \omega) = 2\pi \frac{|F_{fi}|^2}{\hbar^2} \delta\left(\frac{E_f - E_i}{\hbar} - \omega\right)$$
$$w_{fi} = \frac{2\pi}{\hbar} |F_{fi}|^2 \delta(E_f - E_i - \hbar\omega)$$

Это и есть золотая формула Ферми. Она применима для расчёта ядерных, химических реакций и очень много чего ещё. Дельта-функция говорит о сохранении энергии.

Замечание о плотности состояний. Обычно уровни E_f (конечные состояния) сильно вырождены. А в формуле w_{fi} стоит конкретное состояние. Вводят понятие плотности состояний. У дискретного спектра – это дельта-функции.

Плотность состояний – это число состояний в интервале:

$$N(E) = \nu(E) dE$$

Если хотим учесть переходы во все состояния (например, нужна скорость распада атомов, нам не важно куда именно улетело, важно сколько всего улетело), нужно ещё раз проинтегрировать правило Ферми:

$$W_{fi} = \int w_{fi}(E_f)\nu(E_f) dE_f = \frac{2\pi}{\hbar} |F_{fi}|^2 \nu(E_f)$$

6. Квазиклассическое приближение

Это приближение в некотором смысле – тоже вариант теории возмущений, но другой. В этом разделе мы будем говорить о методе ВКБ (Венцеля, Крамерса, Бриллюэна). Это вариация метода геометрической оптики, который был известен задолго до квантовой механики. ВКБ применим, когда параметр меняется медленно (может, сильно, но главное – медленно).

Пусть у нас есть уравнение Шрёдингера:

$$i\hbar\dot{\Psi} = [H^0 + V(t,x)]\Psi,$$

где V(t,x) – медленная функция.

Пусть мы знаем решение без возмущения. Например, для свободного движения, причём решением будет плоская волна:

$$i\hbar\dot{\Psi} = \frac{p^2}{2m}\Psi \quad \Rightarrow \quad \Psi = \exp\{-i\omega t + i(\vec{k}, \vec{r})\}$$

Характерными масштабами здесь являются временной период $T=\frac{2\pi}{\omega}$ и длина волны $\lambda=\frac{2\pi}{k}$.

Еще пример – слабонеоднородная среда: потенциал плавный, и производная потенциала в каком-то смысле мала.

Рассмотрим стационарную одномерную неоднородность V=V(x). Запишем стационарное уравнение Шрёдингера

$$H\Psi = E\Psi \quad \Rightarrow \quad -\frac{h^2}{2m}\Delta\Psi(\vec{r}) + U(\vec{r})\Psi(\vec{r}) = E\Psi(\vec{r})$$

Поскольку мы упростили задачу до одномерного случая, то:

$$-\frac{\hbar^2}{2m}\Psi'' + [E - U(x)]\Psi(x) = 0 \quad \Rightarrow \quad \Psi''(x) + k^2(x)\Psi(x) = 0 \tag{61}$$

Это уравнение Гельмгольца. Оно точно решается только для некоторых известных специальных зависимостей k(x). Однако, если k(x) плавная, то можно развить метод ВКБ.

¹⁹ Напомним структуру спектра. Смещение в красную сторону – это более длинные волны. Например, наша вселенная расширяется, и спектральные линии смещены в красную сторону.

Пусть летит частица выше потенциального барьера. В классике она не отражается: коэффициент прохождения равен единице. А в квазиклассике появляется малая экспоненциальная вероятность отражения $R \sim e^{-(E-U)}$. А если энергия ниже барьера, в классике строго 1 коэффициент отражения, а в квазиклассике аналогично экспоненциально малый коэффициент прохождения.

Если бы k было бы константой, то решение Гельмгольца было бы e^{ikx} . А теперь будем искать решение

$$kx = \int k \, \mathrm{d}x = \Theta(x), \qquad \Psi = A(x)e^{i\Theta(x)}$$

Эта идея лежит на поверхности, но очень продуктивная. Подставляем все в уравнение Гельмгольца:

$$\Psi' = (A' + i\Theta'A)e^{i\Theta}, \Psi'' = (A'' + i\Theta''A + i\Theta'A')e^{i\Theta} + i\Theta'(A' + i\Theta'A)e^{i\Theta}$$

Тогда $(e^{i\Theta} \neq 0 \ \forall \Theta)$

$$A'' + 2i\Theta'A' + i\Theta''A - (\Theta')^{2}A + k^{2}(x)A = 0$$

Можем разделить действительную и мнимую части:

$$A'' + (k^2 - (\Theta')^2)A = 0$$
$$2\Theta'A' = \Theta''A = 0 \implies \frac{\partial A^2\Theta'}{\partial x} = 0$$

До сих пор все было точное. А теперь пренебрежём A'', исходя из идеи плавности. Позже оценим, когда можно так пренебрегать. Тогда

$$(\Theta')^2 = k^2(x) \quad \Rightarrow \quad \Theta = \pm \int k \, \mathrm{d}x \,, \quad \Theta' = \pm k$$

А из второго уравнения $A = \frac{c_1}{\sqrt{k}}$. Тогда можно записать решение:

$$\Psi(x) = \frac{c_1}{\sqrt{k}} e^{i \int k dx} + \frac{c_2}{\sqrt{k}} e^{-i \int k dx}$$

Кстати, все наше решение верно для $k^2 > 0$. А так как мы ввели

$$k^2 = \frac{2m}{\hbar}(E - U(x))$$

Это классически разрешённая область. А в классически запрещённой области

$$\Psi'' - \varkappa^2(x)\Psi = 0$$
, где $\varkappa^2 = \frac{2m}{\hbar^2}(U(x) - E)$,

и решение будет иметь вид

$$\Psi(x) = \frac{d_1}{\sqrt{\varkappa}} e^{\int \varkappa dx} + \frac{d_2}{\sqrt{\varkappa}} e^{-\int \varkappa dx}.$$

Итак, мы получили уравнения для классически разрешённой области. Чтобы приближение работало, нам нужно:

$$\frac{A''}{A} \ll k^2(x)$$

Унас

$$A \sim k^{-\frac{1}{2}}, \quad A' \sim -\frac{1}{2}k^{-\frac{3}{2}}k', \quad A'' \sim -\frac{3}{4}k^{-\frac{5}{2}}(k')^2 - \frac{1}{2}k^{-\frac{3}{2}}k''$$

Тогда

$$\left| \frac{A''}{A} \right| = \left| \frac{3}{4} k^{-2} k'^2 - \frac{1}{2} k^{-1} k'' \right| \ll k^2$$

Итак,

$$k^{-2}k'^2 \ll k^2$$
 или $|k'| \ll k^2$

Второе возможно, если производная мала, или велико k^2 . Значит, приближение не работает, если $k \to 0$. Здесь

$$k' \ll k^2 \quad \Rightarrow \quad k'' \ll 2kk'$$

Первое неравенство в совмещении со следствием из второго даёт:

$$k'' \ll \frac{k'^2}{k} \ll kk'$$

Так как $k=\frac{2\pi}{\lambda}$, то $k'=-\frac{2\pi}{\lambda^2}\lambda'$. Условие локального приближения (ВКБ)

можно переписать в виде

$$\lambda' \ll 2\pi \sim 1.$$

Это означает: изменение длины волны на расстоянии порядка длины волны мало. Посмотрим на уравнение (61) как на уравнение осциллятора:

$$\ddot{x} + \omega^2(t)x = 0, \quad x = \frac{c}{\sqrt{\omega}}e^{i\int \omega t}$$

Тут можно вспомнить слово **адиабатический инвариант.** Амплитуда колебаний медленно меняется (ММА). Энергия колебаний

$$H \sim \frac{\dot{x}^2 + \omega^2 x^2}{2} = A^2 \omega^2 = \omega C^2, \quad C^2 = \frac{H}{\omega}$$

Это и есть адиабатический инвариант.

$$H = \omega J$$

Фактически, амплитуда BKБ решения представляет собой адиабатический вариант.

Точка поворота. Мы получили условие $k' \ll k^2$. Посмотрим, где оно нарушается:

Рис. 43. В точке a и симметричной ей кинетическая энергия обращается в ноль

Место, где кинетическая энергия в классике обращается в ноль, называется точкой поворота. В этом месте условие ВКБ $k'\ll k^2$ нарушается: производная k' конечна, а k^2 обращается в ноль. Значит, вблизи точки поворота

приближение неверно.

$$\Psi = \ldots + O\left(\frac{k'}{k^2}\right)$$

6.1. Квазиклассическая волновая функция вблизи точки поворота

Рассмотрим некоторые способы решения вблизи точки поворота. Один из способов – точно решить уравнение. k^2 можно заменить линейной функцией:

$$U(x) = E\left(1 + \frac{x-a}{L}\right),\,$$

где L – характерный масштаб. Разлагая потенциальную энергию в ряд Тейлора:

$$U(x) = U(a) + U'(a) \cdot (x - a) \quad \Rightarrow \quad \frac{E}{L} = U'(a).$$

Тогда введём обозначения:

$$k^{2} = -\frac{2m}{\hbar^{2}L}(x-a) = -\chi(x-a)$$

И отсюда

$$\Psi_{xx}'' - \chi(x - a)\Psi = 0.$$

Это уравнение Эйри – уравнение Шрёдингера в линейном потенциале. Вблизи точки поворота любой потенциал линеен, и мы пренебрегли членами высшего порядка. Можно решить его точно, а потом сшить при x < a и x > a с ранее полученными решениями.

6.1.1 Метод Цвана

Ещё один способ – метод Цвана 20 . Суть метода заключается в том, что мы рассматриваем уравнение на комплексной плоскости x.

 $^{^{20}}$ Это немецкая фамилия. Интересно, что перевод фамилии – Лебедев

Класс. разрешенная область

Рис. 44. Обход точки поворота в комплексной плоскости

Здесь стоит точка поворота a. Если рассматривать уравнение в комплексной плоскости, можно, формально ничего не нарушив, обойти точку поворота по окружности достаточно большого радиуса, так, чтобы формально всегда работала формула $k' \ll k^2$, то есть чтобы все время работал метод ВКБ.

Сшивка решений ВКБ в точке поворота. Запишем волновую функцию в классически запрещённой зоне, то есть справа от точки поворота:

$$x > a:$$
 $\frac{d}{\sqrt{\varkappa}} \exp\left\{-\int_{a}^{x} \varkappa(x) \, \mathrm{d}x\right\},$ где $\varkappa = \chi(x-a).$ (62)

Преобразуем подэкспоненциальное выражение, проведя интегрирование:

$$\int_{a}^{x} \varkappa(x) \, \mathrm{d}x = \chi^{\frac{1}{2}} \int_{a}^{x} (x-a)^{\frac{1}{2}} \, \mathrm{d}x = \frac{2}{3} \chi^{\frac{1}{2}} (x-a)^{\frac{3}{2}}, \quad \sqrt{\varkappa} = \chi^{\frac{1}{4}} (x-a)^{\frac{1}{4}}$$

Тогда можем переписать формулу (62) – решение справа от точки поворота:

$$\Psi(x > a) = \frac{d}{\chi^{\frac{1}{4}}(x-a)^{\frac{1}{4}}} e^{-\frac{2}{3}\chi^{\frac{1}{2}}(x-a)^{\frac{3}{2}}}$$

Теперь проведём аналогичные преобразования для волновой функции слева от точки поворота:

$$\Psi = \frac{c_1}{\sqrt{k(x)}} e^{i \int k dx} + \frac{c_2}{\sqrt{k(x)}} e^{-i \int k dx}, \quad k^2 = \chi(a - x)$$

Рис. 45. Обход точки поворота против часовой стрелки

$$\int_{a}^{x} \chi^{\frac{1}{2}} (a-x)^{\frac{1}{2}} dx = -\frac{2}{3} \chi^{\frac{1}{2}} (a-x)^{\frac{3}{2}}$$

Тогда

$$\Psi(x < a) = \frac{c_1}{\chi^{\frac{1}{4}}(a-x)^{1/4}} e^{-i\frac{2}{3}\chi^{\frac{1}{2}}(a-x)^{\frac{3}{2}}} + \frac{c_2}{\chi^{\frac{1}{4}}(a-x)^{1/4}} e^{i\frac{2}{3}\chi^{\frac{1}{2}}(a-x)^{\frac{3}{2}}}$$

Теперь давайте путешествовать по комплексной плоскости (см. рис. 45). Нужно посмотреть, как преобразуется показатель экспоненты $\sim (x-a)^{\frac{3}{2}}$ при обходе точки поворота по и против часовой стрелки. Выберем начало координат в точке поворота и перейдём к полярным координатам:

$$(x-a)^{\frac{3}{2}} = \rho^{\frac{3}{2}}e^{i0} \quad \Rightarrow \quad \rho^{\frac{3}{2}}e^{i\pi\frac{3}{2}} = -i(a-x)^{\frac{3}{2}}$$

Получается, что при обходе контура сверху показатель экспоненты стал таким же, как у решения с другой стороны! Еще преобразования:

$$(x-a)^{\frac{1}{4}} \quad \Rightarrow \quad e^{i\frac{\pi}{4}}(a-x)^{\frac{1}{4}}$$

Получается, что

$$\frac{d}{\chi^{\frac{1}{4}}(x-a)^{\frac{1}{4}}} \quad \to \quad \frac{c_1}{\chi^{\frac{1}{4}}e^{i\frac{\pi}{4}}(a-x)^{\frac{1}{3}}} \quad \Rightarrow \quad c_1 = de^{i\frac{\pi}{4}}$$

Итак, уже сшили две константы. Теперь обойдём контур по часовой стрелке, чтобы выразить ещё одну константу (из-за смены направления обхода у фазы будет другой знак):

$$(x-a)^{\frac{1}{4}} \rightarrow e^{-i\frac{\pi}{4}}(a-x)^{\frac{1}{4}}$$

Отсюда

$$c_2 = de^{-i\frac{\pi}{4}}$$

Подводя итог, запишем волновую функцию в классически разрешённой зоне:

$$\Psi(x < a) = \frac{d}{\chi^{\frac{1}{4}}(a - x)^{\frac{1}{4}}} e^{-\frac{2}{3}i\chi^{\frac{1}{2}}(a - x)^{\frac{3}{2}} + i\frac{\pi}{4}} + \frac{d}{\chi^{\frac{1}{4}}(a - x)^{\frac{1}{4}}} e^{\frac{2}{3}i\chi^{\frac{1}{2}}(a - x)^{\frac{3}{2}} - i\frac{\pi}{4}} = (63)$$

$$= \frac{2d}{\sqrt{k}}\cos\left(\frac{2}{3}\chi^{\frac{1}{2}}(a - x)^{\frac{3}{2}} - \frac{\pi}{4}\right) = \frac{2d}{\sqrt{k}}\cos\left(\int_{a}^{x} k \, dx + \frac{\pi}{4}\right) = \frac{2d}{\sqrt{k}}\cos\left(\left|\int_{a}^{x} k \, dx\right| - \frac{\pi}{4}\right)$$

Эта формула говорит о том, что при отражении от линейного потенциала набегает разность фаз. При отражении происходит скачок фазы²¹ на $\frac{\pi}{2}$, что очевидно следует из полученной нами волновой функции (63).

6.2. Правило квантования Бора-Зоммерфельда

Нильс Бор – известный датский физик. Еще до изобретения квантовой механики он придумал правила квантования, и с их помощью объяснил спектр атома водорода. Бор предположил, что адиабатический инвариант принимает не любые значения, как в классической механике, а дискретные, ничем не обосновывая.

$$J = \oint p \, \mathrm{d}q = n\hbar$$

С помощью квазиклассического приближения мы можем решить задачу о уровнях в произвольной яме.

Рис. 46. Яма и точки поворота b,а

 $^{^{21}}$ Это похоже на отражение волны в электродинамике: волна, падающая на металл, отражается и этим самым удовлетворяет граничному условию $E_{\tau}=0$. Если падает e^{ikx} , то отражается $-e^{-ikx}$. Говорят, что при отражении происходит скачок фазы на полдлины волны (на π).

Мы недавно получили

$$\frac{d}{\sqrt{\varkappa}}e^{\left|\int \varkappa dx\right|} = \frac{d}{\sqrt{k}}\cos(\ldots)$$

Со стороны 1 получаем:

$$\frac{2d_1}{\sqrt{k}}\cos\left(\int\limits_{b}^{x}k\,\mathrm{d}x - \frac{\pi}{4}\right)$$

А если применить со стороны 3:

$$\frac{2d_3}{\sqrt{k}}\cos\left(\int\limits_x^a k\,\mathrm{d}x - \frac{\pi}{4}\right)$$

Где справедлива эта формула? Эти формулы должны быть одинаковыми. Отсюда следует, прежде всего, что

$$d_1 \cos \left(\int_b^x k \, \mathrm{d}x - \frac{\pi}{4} \right) = d_3 \cos \left(\int_x^a k \, \mathrm{d}x - \frac{\pi}{4} \right)$$

Добавим к этому уравнению

$$\int_{b}^{x} = \int_{b}^{a} + \int_{a}^{x} = \int_{b}^{a} - \int_{x}^{a}, \quad \int_{x}^{a} = \varphi$$

Тогда (разобраться с пределами)??

$$d_1 \cos\left(\int_a^b k \, \mathrm{d}x - \varphi - \frac{\pi}{4}\right) = d_2 \cos\left(\varphi - \frac{\pi}{4}\right)$$

$$\int_b^a k \, \mathrm{d}x - \frac{\pi}{2} = n\pi, \quad d_3 = d_1(-1)^n \quad \Rightarrow \quad \int_b^a k \, \mathrm{d}x = \pi\left(n + \frac{1}{2}\right)$$

Часто это записывают так:

$$\oint k \, \mathrm{d}x = 2 \int_{b}^{a} k \, \mathrm{d}x = \pi (2n+1)$$

Или, учтя $p = \hbar k$:

$$\oint p \, \mathrm{d}x = \pi \hbar (2n+1)$$
 или $\oint p \, \mathrm{d}q = \dots$

Частица в параболическом потенциале. В этом случае $U=\frac{\varkappa x^2}{2}$, собственная частота $\omega=\sqrt{\frac{\varkappa}{m}}$, откуда $\varkappa=m\omega^2$. Уравнение имеет вид:

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{m\omega^2 x^2}{2} \right] \Psi(x) = E\Psi(x)$$

Хотим записать в виде:

$$\left[\frac{\partial^2}{\partial x^2} + k^2(x)\right]\Psi = E\Psi,$$

Откуда

$$k^2(x) = \frac{2m}{\hbar^2} \left(E - \frac{m\omega^2 x^2}{2} \right) \quad \Rightarrow \quad k(x) = \sqrt{\frac{2m}{\hbar^2} \left(E - \frac{m\omega^2 x^2}{2} \right)}$$

Точки поворота будут при корне, равном нулю:

$$x_*^2 = \frac{2E}{m\omega^2}$$

У нас должно быть:

$$\int_{-x_*}^{x_*} \sqrt{\frac{2m}{\hbar^2} \left(E - \frac{m\omega^2 x^2}{2} \right)} \, \mathrm{d}x = \pi \left(n + \frac{1}{2} \right)$$

Введём замену переменной и проинтегрируем:

$$m\omega^{2} = \frac{2E}{x_{*}^{2}} \implies \int_{-x_{*}}^{x_{*}} \sqrt{\frac{2mE}{\hbar^{2}} \left(1 - \frac{x^{2}}{x_{*}^{2}}\right)} \, dx = \sqrt{\frac{2mE}{\hbar^{2}}} \int_{-x_{*}}^{x_{*}} \sqrt{1 - \frac{x^{2}}{x_{*}^{2}}} \, dx = \sqrt{\frac{2mE}{\hbar^{2}}} x_{*} \int_{-1}^{1} \sqrt{1 - y^{2}} \, dy = \frac{\pi}{2} \sqrt{\frac{2mE}{\hbar^{2}}} x_{*} = \frac{\pi}{2} \sqrt{\frac{2mE}{\hbar^{2}}} x_{*} \sqrt{\frac{2E}{m\omega^{2}}} = \pi \left(n + \frac{1}{2}\right)$$

Несложными арифметическими действиями отсюда получается

$$E = h\omega \left(n + \frac{1}{2} \right)$$

Правило Бора-Зоммерфельда, полученное из классики, даёт верное правило квантования (правда, волновую функцию даст уже неверную).

7. Спин

Спин – от английского «вращение». Что же это такое? Обычно говорят, что это типично квантовое явление, не имеющее аналогов в классической механике. Действительно, аналогов нет, а вот в классической теории поля (электродинамике) такое понятие есть, и это понятие поляризации волны.

Будем анализировать волновые функции при вращении пространства или системы координат. Спин тесно связан с вращением. Как его ввести? До сих пор мы представляли волновую функцию одной буквой $\Psi(\vec{r})$. При вращении она преобразовывалась только за счёт оператора вращения:

$$R = \left[1 + i\left(\delta\vec{\varphi}, \vec{l}\right)\right],$$
 где $\vec{l} = \left[\vec{r} \times \vec{k}\right]$

Здесь \vec{l} – орбитальный момент.

Рассмотрим поле $\vec{E}(\vec{r})$. Оно само вектор, и от вектора зависит. В каждой точке пространства задано направление. А теперь мы поворочаем систему координат. При повороте изменится как радиус-вектор, так и направление $\vec{E} = (E_x, E_y, E_z)$.

Вектор – это объект, компоненты которого при повороте координат преобразуются как координаты (так по определению).

Рассмотрим более сложный объект:

$$\Psi_{\sigma}(\vec{r}), \quad \sigma = 0, \dots, n$$

Волновая функция может быть более сложной, а ею компоненты преобразуются друг через друга.

Мы рассматриваем нерелятивистскую квантовую механику, и наше рассмотрение верно при скоростях всех частиц, много меньших скорости света. Наша механика не может описать фотоны, например. Поэтому поляризация – не совсем хороший образ для нерелятивистской квантовой механике, потому что волны распространяются в вакууме со скоростью света.

Если же перейти в систему отсчёта, в которой частица покоится, и смотреть в ней за вращением, можно ввести оператор спина:

$$R = [1 + i(\delta \vec{\varphi}, \vec{s})], \quad \Psi_{\sigma}(\vec{r}) = \Psi(\vec{r}, \sigma)$$

А также можно ввести вектор полного момента:

$$\hat{\vec{j}} = \hat{\vec{l}} + \hat{\vec{s}}$$

Тогда

$$\hat{R} = \left[1 + i \Big(\delta \vec{\varphi} \,, \vec{j} \,\Big)\right]$$

Отделить спин от момента можно только тогда, когда можно перейти в систему отсчёта, в которой момент будет 0.

Переменные $\Psi_1, \Psi_2, \Psi_3, \dots$ называют спиновыми компонентами.

В каком пространстве действует оператор спина? Матричное умножение:

$$\begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \cdot \begin{pmatrix} \Psi_1 \\ \Psi_2 \\ \Psi_3 \end{pmatrix}$$

Какие коммутационные соотношения получатся для оператора \vec{s} ? Оператор \vec{l} тоже должен быть вектором.

Есть три оператора:

$$s_x$$
, s_y , s_z .

Мы не знаем, как они устроены, лишь это матрицы, действующие в этом конфигурационном пространстве. Утверждается, что аналогично орбитальному моменту

$$l_x l_y - l_y l_x = i l_z$$
, etc

Будет

$$s_x s_y - s_y s_x = i s_z, \quad j_x j_y - j_y j_x = i j_z$$

Почему коммутационные соотношения одинаковы? Мы делали явное предположение, что $\hbar \vec{l} = [\vec{r} \times \vec{p}]$. Теперь этого сделать уже не можем, но почему получается то же самое? А вот почему: это все три оператора поворота и обозначают одно и тоже: два последовательных вращения эквивалентны вращению вокруг оси z. Это свойство трёхмерного пространства, и никак не связано с видом оператора.

Значит, для всех операторов момента (которые есть операторы вращения) коммутационные соотношения одинаковы, и ими можно воспользоваться для вычисления матричных элементов.

Займёмся оператором спина. Вводятся повышающий и понижающий опе-

раторы

$$s_{\pm} = s_x \pm i s_y$$

Их коммутационные соотношения:

$$[s_+, s_-] = 2s_z, \quad [s_z, s_{\pm}] = \pm s_{\pm}$$

Также вводится оператор квадрата спина:

$$s^2 = s_x^2 + s_y^2 + s_z^2 = s_- s_+ + s_z^2 + s_z = s_+ s_- + s_z^2 - s_z$$

Будем искать собственные функции. Собственные числа обозначаем σ , а максимальное значение её s:

$$s_z |s, \sigma\rangle = \sigma |s, \sigma\rangle, \qquad s^2 |s, \sigma\rangle = s(s+1) |s, \sigma\rangle$$

Напомним, как строится теория. Подействуем на первое уравнение () оператором повышения:

$$s_+s_z|s,\sigma\rangle = (s_zs_+ - s_+)|s,\sigma\rangle = \sigma s_+|s,\sigma\rangle$$

где в силу коммутационной алгебры

$$s_z s_+ - s_+ s_z = s_+$$

Тогда

$$s_z s_+ |s,\sigma\rangle = s_+ |s,\sigma\rangle + \sigma s_+ |s,\sigma\rangle = (\sigma+1)s_+ |s,\sigma\rangle$$

Отсюда следует:

$$s_+ |s,\sigma\rangle \sim |s,\sigma+1\rangle$$

Точно также можно доказать, что

$$s_{-}|s,\sigma\rangle \sim |s,\sigma-1\rangle$$

Теорема. σ ограничена сверху. Если запишем оператор

$$s_x^2 + s_y^2 = s^2 - s_z^2$$

Если непрерывно увеличивать s_z , то в конце концов правая часть станет отрицательной, что невозможно. Значит, есть максимальное значение, и обозначим его

$$s = \sigma_{\text{max}}$$

Аналогично будет ограничение снизу на s. Расстояние между ними 2s, и оно должно покрываться целым числом – отсюда следует 2s – целое. Возможны:

$$s = 0 \implies \sigma = 0$$

$$s = \frac{1}{2} \implies \sigma = \frac{1}{2}, -\frac{1}{2}$$

$$s = 1 \implies \sigma = -1, 0, 1$$

Собственное число σ называется проекцией спина на ось z, а его максимальное значение s – спином. Число компонент волновой функции есть 2s+1, и оно принимает целые значения начиная с 1.

Нетрудно найти, пользуясь формулой ($s^2=\ldots$), матричные элементы: Подействуем на кет вектор $|s,s\rangle$, соответствующий максимальному $\sigma=s$ оператором s^2 , записав его в форме

$$s^2 = s_- s_+ + s_z^2 + s_z.$$

Тогда, поскольку для обрыва ряда нужно, чтобы $s_{+}\left|s,s\right>=0$, мы получим

$$(s_{-}s_{+} + s_{z}^{2} + s_{z}) |s, s\rangle = s(s+1) |s, s\rangle$$

Теперь будем искать матричный элемент:

$$s(s+1) = \langle s, \sigma | s_+ s_- + s_z^2 - s_z | s, \sigma \rangle = \langle s, \sigma | s_+ s_- | s, \sigma \rangle + \langle s, \sigma | s_z^2 - s_z | s, \sigma \rangle$$

$$s(s+1) - \left[\sigma^2 - \sigma\right] = \langle s, \sigma | s_+ s_- | s, \sigma \rangle = \langle s, \sigma | s_+ | s, \sigma - 1 \rangle \langle s, \sigma - 1 | s_- | s, \sigma \rangle$$

И в силу эрмитовости операторов $s_{-}=s_{+}^{+}$:

$$\langle s, \sigma - 1 | s_- | s, \sigma \rangle = \langle s, \sigma | s_+ | s, \sigma - 1 \rangle = \sqrt{s(s+1) - \sigma^2 + \sigma^2}$$

Подкоренное выражение можно преобразовать

$$s^{2} + s - \sigma^{2} + \sigma = (s + \sigma)(s - \sigma) + s + \sigma = (s + \sigma)(s - \sigma + 1),$$

и, окончательно для матричных элементов операторов s_{\pm} будем иметь

$$\langle s, \sigma - 1 | s_- | s, \sigma \rangle = \langle s, \sigma | s_+ | s, \sigma - 1 \rangle = \sqrt{(s + \sigma)(s - \sigma + 1)}$$

Рассмотрим спин $s=\frac{1}{2}$. В этом случае проекция спина может принимать два значения $\sigma=\pm\frac{1}{2}$ и волновая функция двухкомпонентна:

$$|\psi\rangle = (\psi_{\frac{1}{2}}, \psi_{-\frac{1}{2}})^T = (\psi_{\uparrow}, \psi_{\downarrow})^T$$

Тогда операторами, действующими в этом пространстве, будут матрицы 2×2 .

$$s_z = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Оператор s_+ :

$$s_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Как мы нумеруем элементы матрицы?

$$\begin{pmatrix} a_{\frac{1}{2},\frac{1}{2}} & a_{\frac{1}{2},-\frac{1}{2}} \\ a_{-\frac{1}{2},\frac{1}{2}} & a_{-\frac{1}{2},-\frac{1}{2}} \end{pmatrix}$$

Аналогично получаем

$$s_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Двухкомпонентная функция называется спинором. Это что-то вроде вектора, только недоделанного. Вообще, всё, что полуцелый спин, называется спинорами, а с целым спином – вектора, тензора и так далее.

Спин – это многокомпонентная волновая функция. При вращении новые компоненты Ψ_1, Ψ_2, Ψ_3 выражаются через старые. Мы ввели $s = \max \sigma$. $\sigma \in -s \dots s$. Само s может принимать либо целые, либо полуцелые моменты.

В чем отличие орбитального момента от спинового? Раньше у нас был оператор вращения

$$\hat{R} = \left(q + i\delta \vec{\varphi} \vec{l} \right)$$

А у спинового:

$$\hat{R} = (q + i\delta\vec{\varphi}\vec{s})$$

Оператор полного момента

$$\vec{j} = \vec{l} + \vec{s}$$
.

Если компоненты перемешиваются при преобразовании пространства, то 'эти переменные называют спиновыми. Бывают и другие дискретные переменные, не связанные с вращением, которые иногда называют псевдоспином, изоспином (но это не спин, просто так говорят). Пример изоспина: в ядерной физике протон и нейтрон часто считают изоспиновыми состояниями одной частицы, различающимися проекциями изоспина.

$$|\text{nuc}\rangle = \binom{p}{n}, \quad |p\rangle = \binom{1}{0}, \quad |n\rangle = \binom{0}{1}$$

Мы ввели операторы $s_x, s_y, s_z \to s_\pm, s_z, s^2$ и с помощью алгебры операторов вывели матричные элементы. Ось z называют осью квантования, её можно выбрать как угодно. Операторы s^2, s_z коммутируют.

$$s_z |s, \sigma\rangle = \sigma |s, \sigma\rangle$$

 $s^2 |s, \sigma\rangle = s(s+1) |s, \sigma\rangle$

Дальше мы вывели матричные элементы s_{+} :

$$\langle s, \sigma - 1 | s_{-} | s, \sigma \rangle = \sqrt{(s + \sigma)(s - \sigma + 1)},$$
$$\langle s, \sigma | s_{+} | s, \sigma - 1 \rangle = \sqrt{(s + \sigma)(s - \sigma + 1)}$$

Что мы видим? σ принимает 2s+1 значений с шагом 1. Собственные функции оператора спина называются **спинорами**.

Все элементарные частицы имеют полуцелый спин: электроны, нейтроны, протоны и т.д. По современным представлениям, весь мир состоит из вещества и поля. Всё вещество имеет полуцелый спин: три кварка, три антикварка, лептоны (электроны, мюоны, тау-лептоны и соответствующие им нейтрино). Лептоны участвуют только в слабом взаимодействии.

У фотона уже спин 1. Есть поле клея (glue), которое связывает собой кварки. Объединение всех теорий (слабого, сильного взаимодействия и т.д.) называется Great Unification Theory. Квант гравитации – гравитон – имеет спин 2.

В релятивизме всё не так просто. Известно, что поляризаций только две.

Но для безмассовых частиц наша формула не работает: мы были должны двигаться вместе с частицей (чтобы отделить спин от орбитального момента) со скоростью света, что невозможно. Согласно принципам СТО, свет остановить нельзя: в любой системе отсчёта свет летит со скоростью света.

Общая собственная функция операторов s^2, s_z нумеруется двумя квантовыми числами $|s,\sigma\rangle$, однако, очень часто полный спин фиксирован, как например у электрона s=1/2 и тогда первый индекс у вектора состояния просто опускают и пишут только второй индекс. Давайте займёмся спином $\frac{1}{2}$.

$$\sigma = \frac{1}{2}, \quad \sigma = -\frac{1}{2} \quad \Rightarrow \quad \begin{pmatrix} \Psi(\vec{r}, \frac{1}{2}) \\ \Psi(\vec{r}, -\frac{1}{2}) \end{pmatrix} = \begin{pmatrix} \Psi_{\frac{1}{2}} \\ \Psi_{-\frac{1}{2}} \end{pmatrix}$$

Почему говорят, что спин – чисто квантовое явление? В классике, вопервых, нет никаких волновых функций. Размерный спин $\vec{S}=\hbar\vec{s}$. При $\hbar\to 0$ полный спиновый момент обращается в 0. Но для орбитального момента при этом может быть $l\to\infty$, и полный момент останется конечным. Поэтому при постоянной Планка, стремящейся к нулю, спиновый момент исчезает.

Как понимать матрицу ()?

$$egin{pmatrix} \Psi_1 \ \Psi_0 \ \Psi_{-1} \end{pmatrix}, \quad egin{pmatrix} \Psi_{rac{3}{2}} \ \dots \ \Psi_{-rac{3}{2}} \end{pmatrix}$$

Операторы в пространстве таких векторов – это матрицы. Например, оператор s_z

$$\langle s', \sigma' | s_z | s, \sigma \rangle = \sigma \langle s', \sigma' | s, \sigma \rangle = \delta_{ss', \sigma\sigma'}$$

Он диагонален. Напомню, что мы нумеруем матрицу так:

$$\begin{pmatrix} a_{\frac{1}{2},\frac{1}{2}} & a_{\frac{1}{2},-\frac{1}{2}} \\ a_{-\frac{1}{2},\frac{1}{2}} & a_{-\frac{1}{2},-\frac{1}{2}} \end{pmatrix}$$

$$s_z = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{pmatrix}$$

Теперь для s_+ :

$$\left\langle \frac{1}{2} \middle| s_+ \middle| -\frac{1}{2} \right\rangle = 1$$

$$s_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad s_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Как выглядят собственные вектора:

$$\left|\sigma = \frac{1}{2}\right\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad \left|\sigma = -\frac{1}{2}\right\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Проверим, что $s_+ \left| \frac{1}{2} \right\rangle = 0$:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Проверим $s_-\left|\frac{1}{2}\right\rangle = \left|-\frac{1}{2}\right\rangle$:

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Проверим $s_-\left|\frac{-1}{2}\right\rangle = 0$:

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Итак, можно убедиться, что на языке матриц мы реализовали алгебру операторов.

В случае спина 1:

$$\begin{pmatrix} a_{1,1} & a_{1,0} & a_{1,-1} \\ a_{0,1} & a_{0,0} & a_{0,-1} \\ a_{-1,1} & a_{-1,0} & a_{-1,-1} \end{pmatrix}$$

Давайте распишем случай спина 1. Теперь будет три вектора:

$$|1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad |0\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \quad |-1\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Теперь матрица s_z :

$$s_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$s_{+} = \sqrt{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad s_{-} = \sqrt{2} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Если есть две частицы с разным спином, спин у них складывается. Из двух частиц со спином $\frac{1}{2}$ можно получить спин 0 или 1. Более подробно займёмся спином $\frac{1}{2}$. Вводят такую матрицу:

$$s_z = \frac{1}{2}\sigma_z, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Тогда

$$s_x = \frac{s_+ + s_-}{2} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad s_y = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Эти матрицы $\sigma_{x,y,z}$ называют матрицами Паули:

$$\vec{s} = \frac{1}{2}\vec{\sigma}$$

Здесь компоненты вектора – это матрицы. Хотя это настоящий вектор: при преобразовании координат он преобразуется как координаты.

7.1. Алгебра матриц Паули

Прежде всего, оператор спина подчиняется соотношениям:

$$s_x s_y - s_y s_x = i s_z$$

Тогда (пишем одно соотношение, все остальные отличаются циклической перестановкой)

$$\sigma_x \sigma_y - \sigma_y \sigma_x = 2i\sigma_z$$

Проверим, действительно ли это так:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} - \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = 2i\sigma_z$$

Отсюда также видно, что

$$\sigma_x \sigma_y = i \sigma_z, \quad \sigma_y \sigma_x = -i \sigma_z,$$

И

$$\sigma_x \sigma_y + \sigma_y \sigma_x = 0$$

Такую сумму называют антикоммутатором, и говорят, что матрицы Паули с разными индексами антикоммутируют. Интересно, что квадраты матриц Паули – единичные матрицы:

$$\sigma_x^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \sigma_y^2 = \sigma_z^2 = \hat{1}$$
$$s^2 = \frac{3}{4}\hat{1}.$$

В итоге, есть три матрицы, удовлетворяющие антикоммутационному соотношению

$$\sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij} \hat{1}$$

Почему мы назвали наш параграф алгеброй матриц Паули? Потому, что мы нашли таблицу умножения для этих матриц, а алгебра — это математическая модель с двумя определяющими операциями, сложения и умножения. Матрицы Паули могут быть рассмотрены как некоторые гиперкомплексные единицы, из которых можно образовать гиперкомплексное число z, :

$$z = a\sigma_0 + b_1\sigma_1 + b_2\sigma_2 + b_3\sigma_3 = a + (\vec{b}\,\vec{\sigma}).$$

Здесь, для единообразия записи мы ввели обозначение $\sigma_0 = \hat{1}$. У алгебры обычных комплексных чисел есть две образующих единицы: 1 и i. А здесь четыре образующих числа, и Гамильтон, придумавший её, назвал её кватернионной алгеброй.

А мы вывели, по сути, таблицы умножения и сложения матриц. Мы можем матрицы Паули умножать и складывать, и их множество замкнуто относительно этих операций: результат – тоже матрица Паули.

Рассмотрим произвольную функцию от матрицы z:

$$f(z) = f\left(a + \vec{b}\vec{\sigma}\right)$$

Одно из определений взятия функции от матрицы:

$$f(\hat{z}) = \sum_{n=1}^{\infty} \frac{\partial^n f}{\partial z^n} \Big|_{z=\hat{z}}$$

О чем свидетельствуют полученные нами соотношения? Квадратичная степень выражается через линейную. Это значит, что **любая функция при таком определении представляет собой линейную функцию**.

Как найти такую функцию? Надо воспользоваться вторым определением: функция от диагональной матрицы, по определению:

$$f(\operatorname{diag} A) = f(\operatorname{diag}(a_n)) = \operatorname{diag}(f(a_n))$$

Если матрица приводится к диагональному виду, то эти два определения совпадают. А как мы знаем, что эрмитовы матрицы всегда можно привести к диагональному виду.

Как преобразуются матрицы при преобразовании координат? Пусть есть вектор столбец $\vec{\Psi}$:

$$\Psi = egin{pmatrix} \Psi_1 \ \Psi_2 \ \Psi_3 \end{pmatrix}, \quad arphi = \hat{A} \Psi$$

Введём новый вектор

$$\Psi' = S\Psi$$

Тогда

$$\varphi' = S\varphi = S\hat{A}\Psi = S\hat{A}S^{-1}\Psi'$$

И

$$\varphi' = A'\Psi', \quad A' = SAS^{-1}$$

Пусть A' – диагональный: $A' = \operatorname{diag}(a)$. Тогда

$$A = S^{-1}A'S$$

По определению,

$$f(A') = f(a)$$

Отсюда

$$f(A) = def = S^{-1}f(SAS^{-1})S$$

Получили новое определение, но оно хуже: оно справедливо не всегда, а только когда матрица может быть приведена к диагональному виду.

Если мы будем пользоваться другим определением, у нас появится множитель

$$S^{-1}(SAS^{-1})^n S = S^{-1}(SAS^{-1}) \cdot \dots \cdot (SAS^{-1})S = A^n$$

Приведём () к диагональному виду: выберем ось z вдоль \vec{b} , тогда

$$f(a+\vec{b}\vec{\sigma}) = f(a+b\sigma_z) = f\begin{pmatrix} a+b & 0\\ 0 & a-b \end{pmatrix} = \begin{pmatrix} f(a+b) & 0\\ 0 & f(a-b) \end{pmatrix}$$

Утверждается, что $f\left(a+\vec{b}\vec{\sigma}\right)=A+\vec{B}\vec{\sigma}$: это есть свойство матриц Паули, любая функция должна быть линейна.

$$A + B\sigma_z = \begin{pmatrix} A + B & 0\\ 0 & A - B \end{pmatrix}$$

Тогда получается, что

$$A + B = f(a + b), \quad A - B = f(a - b) \Rightarrow$$

$$A = \frac{f(a + b) + f(a - b)}{2}, \quad B = \frac{f(a + b) - f(a - b)}{2}$$

У нас $\vec{z_0}=\vec{b}/b$, и тогда $\vec{B}=\frac{\vec{b}}{b}B$. Задача решена. Итак, мы продолжаем тему спина. Рассмотрим спин $\frac{1}{2}$.

7.2. Оператор конечных вращений

Мы вводили спин как оператор бесконечно малых вращений:

$$\hat{R} = \left[\hat{1} + i(\delta \vec{\varphi} \cdot \vec{s}) \right]$$

где оператор поворота работает как $\varphi' = \hat{R} \varphi$. Хотим образовать оператор конечных вращений. Эта задача решается просто, стандартно в теории групп. Мы изучаем группу вращения в трёхмерном пространстве, а спиноры, вектора, тензора реализуют различные представления

По определению, мы вводили

$$\delta \vec{\varphi} = \vec{n} \delta \varphi$$

Можем выбрать ось z так, чтобы она торчала вдоль \vec{n} . Тогда оператор вращения вокруг новой оси z':

$$R_{\vec{z}_0\delta\varphi} = [1 + i\delta\varphi \hat{s}_z]$$

 $A s_z$ диагонален: для $\frac{1}{2}$

$$s_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Тогда в силу диагональности можем написать:

$$\psi' = \psi + i \frac{\delta \varphi}{2} \sigma_z \psi \quad \Rightarrow \quad \frac{\psi' - \psi}{\delta \varphi} = \frac{i \sigma_z \psi}{2} \quad \Rightarrow \quad \frac{\partial \psi}{\partial \varphi} = \frac{i \sigma_z \psi}{2}$$

Это матричное уравнение, или система дифференциальных уравнений:

$$\frac{\partial \psi_1}{\partial \varphi} = \frac{i}{2}\psi_1, \quad \frac{\partial \psi_2}{\partial \varphi} = -\frac{i}{2}\psi_2$$

Спинор у нас двухкомпонентный. Если спин 1, то будет три уравнения, но все равно они будут диагональными. А их мы уже можем решить:

$$\psi_1 = \psi_1^0 e^{i\frac{\varphi}{2}}, \quad \psi_2 = \psi_2^0 e^{-i\frac{\varphi}{2}}$$

или опять в матричном виде:

$$\psi = e^{i\frac{\varphi}{2}\sigma_z}\psi^0.$$

Мы получили оператор вращения на конечный угол φ вокруг новой оси. Его можно представить в виде, справедливом для произвольного спина

$$\psi = e^{i\varphi s_z}\psi^0.$$

Здесь стоит экспоненциальная функция от диагональной матрицы, которая,

как обычно, понимается как

$$\exp\frac{i\varphi}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \stackrel{\text{def}}{=} \begin{pmatrix} e^{i\frac{\varphi}{2}} & 0 \\ 0 & e^{-i\frac{\varphi}{2}} \end{pmatrix}$$

Теперь хотим вернуться обратно, к неповёрнутой системе координат. Операция возврата, это поворот, который сохраняет скалярное произведение, поэтому s_z нужно просто заменить на $\vec{n}_0 \vec{s}$. Мы получим формулу

$$\psi = e^{i\varphi(\vec{n},\vec{s})}\psi^0,$$

верную для любого спина. Обсудим спин 1/2 поподробнее. Для спина $\frac{1}{2}$ при повороте на угол 2π (полный оборот) со спинором происходит следующее:

$$\vec{R}_{2\pi} = -\hat{1} \quad \Rightarrow \quad \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \rightarrow \begin{pmatrix} -\psi_1 \\ -\psi_2 \end{pmatrix}$$

Говорят, что спиноры реализуют двузначное представление.

Попробуем упростить формулу для оператора конечного вращения. Ранее мы получили, что для произвольная функция от линейной комбинации матриц Паули есть линейная функция, а именно

$$f\left[a + \left(\vec{b}, \vec{\sigma}\right)\right] = A + \vec{B}\vec{\sigma}$$

где

$$A = \frac{f(a+b) + f(a-b)}{2}, \quad \vec{B} = \frac{\vec{b}}{b} \frac{f(a+b) - f(a-b)}{2}$$

Применим решение этой задачи к выражению оператора поворота 22 . Хотим узнать f, a, b

$$R = \exp\left[i\frac{\varphi}{2}(\vec{n}, \vec{\sigma})\right]$$

Нетрудно увидеть, что

$$f = e^{i\frac{\varphi}{2}}, \quad a = 0, \quad \vec{b} = \vec{n}, \quad |b| = 1.$$

Отсюда

$$A = \cos\frac{\varphi}{2}, \quad B = i\sin\frac{\varphi}{2}$$

Тогда окончательно для спина $\frac{1}{2}$

$$\hat{R} = \cos\frac{\varphi}{2} + i(\vec{n}, \vec{\sigma}) \sin\frac{\varphi}{2}$$

Можно переписать в виде матрицы:

$$\hat{R} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cos \frac{\varphi}{2} + \left\{ i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} n_x + i \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} n_y + i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} n_z \right\} \sin \frac{\varphi}{2} =$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cos \frac{\varphi}{2} + i \begin{pmatrix} n_z & n_x - in_y \\ n_x + in_y & -n_z \end{pmatrix} \sin \frac{\varphi}{2}$$

7.3. Матрицы вращения вокруг базисных осей

$$R_z = \begin{pmatrix} e^{i\frac{\varphi}{2}} & 0\\ 0 & e^{-i\frac{\varphi}{2}} \end{pmatrix}$$

$$R_x = \cos\frac{\varphi}{2} + \sigma_x \sin\frac{\varphi}{2} = \begin{pmatrix} \cos\frac{\varphi}{2} & i\sin\frac{\varphi}{2}\\ i\sin\frac{\varphi}{2} & \cos\frac{\varphi}{2} \end{pmatrix}$$

Нетрудно видеть, что эрмитово сопряжение оператора поворота

$$R^+ = R^{-1}$$

и оператор оказывается унитарным, как и должно быть, для того чтобы он сохранял норму. В общем случае

$$\langle \psi' | \psi' \rangle = \langle \psi | U^+ U | \psi \rangle = \langle \psi | \psi \rangle.$$

Ну и наконец

$$R_y = \cos\frac{\varphi}{2} + i\sigma_y \sin\frac{\varphi}{2} = \begin{pmatrix} \cos\frac{\varphi}{2} & \sin\frac{\varphi}{2} \\ -\sin\frac{\varphi}{2} & \cos\frac{\varphi}{2} \end{pmatrix}$$

 $[\]overline{\,\,^{22}\mathrm{B}\,\,}$ Ландау-Лившице введены обозначения $\hat{R}_{arphi}=U$

8. Движение электрона в магнитном поле

Рис. 47. Электрон в магнитном поле

Вращение электрона в магнитном поле можно трактовать как круговой ток или магнитный диполь:

$$ec{j}=enec{v},$$
 где $n(ec{r})=\delta(ec{r}-ec{r}_1)$

8.1. Магнитный момент

Механический момент - момент импульса:

$$\vec{L} = \sum m[\vec{r} \times \vec{v}] = \int \rho[\vec{r} \times \vec{v}] d^3r$$

Определение магнитного момента

$$\vec{\mu} = \frac{1}{2c} \sum e[\vec{r} \times \vec{v}] = \frac{1}{2c} \int [\vec{r} \times \vec{j}] d^3r$$

Магнитный момент связан с механическим в классике теоремой Лармора:

$$\vec{\mu} = \frac{e}{2mc}\vec{L}$$

Простейший пример магнитного момента – Земля. Считается, что внутри есть некий «магнит» (течёт магма, есть ферромагнитное ядро, текут токи внутри):

Рис. 48. Магнитное поле земли

Если поместить элементарный магнитик в поле диполя, то он будет ориентирован по полю. Энергия магнитика в поле

$$U = -\left(\vec{\mu}, \vec{B}\right)$$

В классической механике момент чисто орбитальный, а в квантовой механике есть два вида момента, и полный момент $\vec{J} = \vec{L} + \vec{S}$. Все моменты измеряются в единицах действия \hbar , и тогда:

$$\vec{\mu} = \frac{e\hbar}{2mc}\vec{L}$$

Множитель перед полным безразмерным моментом \vec{j} называется магнетоном Бора.

Дирак доказал, что для спинового момента электрона коэффициент пропорциональности в два раза больше

$$\vec{\mu} = 2\mu_B \vec{s}$$

так что

$$\vec{\mu} = \mu_B \Big(\vec{l} + 2\vec{s} \Big)$$

Вводится понятие д-фактора:

$$\mu = \frac{e\hbar}{2mc}g\vec{s}$$

Для электрона g=2. Это впервые показал Дирак, когда написал своё релятивистское уравнение Дирака, а в нерелятивистском случае этот результат

называется аномальным соотношением. Для связи спина и момента стоит двойка, а для орбитального момента двойки нет.

Бор и Ван-Лёвен доказали, что в состоянии термодинамического равновесия система электрически заряженных частиц (электронов, атомных ядер и т. п.), помещённая в постоянное магнитное поле, не могла бы обладать магнитным моментом, если бы она строго подчинялась законам классической физики.

8.2. Орбитальное движение

Давайте запишем выражение для электрона, движущегося в магнитном поле. Будем рассматривать квантовое движение: есть орбитальная и спиновая части.

Для начала попробуем записать уравнение Шрёдингера для безспиновой частицы (s=0). Можно записать через векторный и скалярный потенциалы, которые автоматически удовлетворяют уравнениям без источников:

$$\vec{E} = -\nabla \varphi - \frac{1}{c} \frac{\partial \vec{A}}{\partial t}$$

8.2.1 Калибровка

Потенциалы определены с точностью до калибровки:

$$A \to A + \nabla f$$
, $\varphi \to \varphi - \frac{1}{c} \frac{\partial f}{\partial t}$

Утверждается, что калибровочные преобразования – закон природы, а значит, уравнение Шрёдингера должно быт относительно них инвариантно:

$$i\hbar\frac{\partial\Psi}{\partial t} = \frac{p^2}{2m}\Psi$$

Как ввести в нем магнитное поле? Нужно заменить

$$\vec{p} \rightarrow \vec{p} - \frac{q}{c}\vec{A}, \quad U = q\varphi, \quad i\hbar \frac{\partial}{\partial t} \rightarrow i\hbar \frac{\partial}{\partial t} - q\varphi$$

Так как магнитное поле не совершает работы, то потенциальная энергия одинакова как при наличии магнитного поля, так и при отсутствии. Итак, урав-

нение Шрёдингера для бесспиновой частицы в магнитном поле:

$$\left(i\hbar\frac{\partial}{\partial t} - q\varphi\right)\Psi = \frac{(\vec{p} - \frac{1}{c}\vec{A})^2}{2m}\Psi$$

В классической механике

$$\vec{F} = q \left(\vec{E} + \frac{1}{c} \left[\vec{v} \times \vec{B} \right] \right)$$

В нашей квантовой механике

$$\vec{p} = -ih\nabla$$

Во пространстве он входит в уравнения как

$$-ih\nabla - \frac{1}{c}\vec{A},$$

А во времени как

$$ih\frac{\partial}{\partial t} - q\varphi$$

Это удлинённая (ковариантная) форма. В силу калибровочной инвариантности

$$\vec{A} \rightarrow \vec{A} + \nabla f, \quad \varphi \rightarrow \varphi - \frac{1}{c} \frac{\partial \varphi}{\partial t}$$

Можно исключить лишние члены фазовых преобразованием волновой функции:

$$\Psi \to \Psi \exp\left[\frac{iqf}{\hbar c}\right]$$

В таком случае и уравнения Максвелла, и Шрёдингера останутся инвариантными.

$$\[i\hbar \frac{\partial}{\partial t} - q\varphi + \frac{1}{c} \frac{\partial f}{\partial t} \right] \Psi \exp \left[\frac{iqf}{\hbar c} \right]$$

$$e^{\frac{iqf}{\hbar c}} \left[i\hbar \frac{\partial}{\partial t} + i\hbar \frac{iq}{\hbar c} \frac{\partial f}{\partial t} - q\varphi + \frac{1}{c} \frac{\partial f}{\partial t} \right] \Psi = 0$$

8.3. Уравнение Паули

Что изменится, если ввести спин? Должно добавиться к этому уравнению уравнение для потенциальной энергии:

$$\left(i\hbar\frac{\partial}{\partial t} - q\varphi\right)\Psi = \frac{(\vec{p} - \frac{q}{c}\vec{A})}{2m}\Psi - (\vec{\mu}, \vec{B})\Psi$$

Для электрона $s=\frac{1}{2},\,g=2,\,$ а магнитный момент

$$\vec{\mu} = \frac{e\hbar}{2mc}g\vec{S} = \frac{e\hbar}{2mc}\vec{\sigma}$$

В в итоге уравнение для электрона

$$\left(i\hbar\frac{\partial}{\partial t} - e\varphi\right)\Psi = \left[\frac{(-ih\nabla - \frac{e}{c}\vec{A})^2}{2m} - \frac{e\hbar}{2mc}(\vec{\sigma}, \vec{B})\right]\Psi, \quad \Psi = \begin{pmatrix}\Psi_1\\\Psi_2\end{pmatrix}$$

Кстати, здесь можно ввести гирочастоту, называемую также циклотронной

$$\vec{\omega}_H = \frac{e\vec{B}}{mc} \quad \Rightarrow \quad \frac{e\hbar}{2mc}(\vec{\sigma}, \vec{B}) = \frac{\hbar}{2}(\vec{\sigma}, \vec{\omega}_H)$$

Это уравнение и называется уравнением Паули.

8.3.1 Эксперимент Штерна-Герлаха

В приборе Штерна-Герлаха, прежде всего, были незаряженные частицы.

Рис. 49. Опыт Штерна-Герлаха

Летели нейтральные атомы натрия. В приборе магнитное поле неоднородно: оно создаётся квадрупольным магнитом. Один конец магнита острый, а

другой тупой. На нас по рисунку летит пучок: нейтральный, но с магнитным моментом.

Элементарный магнитик в таком неоднородном поле втягивается в область сильного поля. Сила, действующая на магнитик

$$\vec{F} = \nabla \Big(\vec{\mu}, \vec{B} \, \Big) = (\vec{\mu} \, \nabla) \vec{B}$$

Это производная по направлению $\vec{\mu}$ от поля \vec{B} . Если поле приблизительно линейно неоднородно, то

$$U = -\vec{r} \cdot (\vec{\mu} \, \nabla) \cdot \vec{B}$$

Что будет происходит, если влетает атом с каким-то направлением спина, например спин вверх? Что с ним будет происходит? Если у него гиромагнитное соотношение положительно, то магнитный момент тоже смотрит вверх, и атом отклоняется вниз. Итак, этот прибор, фактически, измеряет проекцию спина на ось z.

В классике на экране была бы непрерывная картина. Но как мы знаем, проекция спина может принимать дискретные значения. Поэтому на экране прибора будут регистрироваться несколько полос: для спина $\frac{1}{2}$ и спина $-\frac{1}{2}$. Это впервые позволило наблюдать дискретность спектра.

Прибор Штерна-Герлаха – аналог поляризатора в оптике.

Теперь пусть прибор разложил пучок на два пучка. Если поставить последовательно ещё один прибор, то второго пучка уже не будет:

Рис. 50. Два прибора Штерна-Герлаха

Если же повернуть второй прибор и у него будет новая ось z', то можно

через оператор поворота

$$U_{\varphi} = \cos\frac{\varphi}{2} + i(\vec{u}, \vec{\sigma}) \sin\frac{\varphi}{2}$$

$$U_{\varphi} = \cos\frac{\varphi}{2} + i\sigma_x \sin\frac{\varphi}{2} = \begin{pmatrix} \cos\frac{\varphi}{2} & i\sin\frac{\varphi}{2} \\ i\sin\frac{\varphi}{2} & \cos\frac{\varphi}{2} \end{pmatrix}$$

Тогда если начальное состояние $\begin{pmatrix} 1\\0 \end{pmatrix}$, то

$$\begin{pmatrix} \Psi_1' \\ \Psi_2' \end{pmatrix} = U \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \cos \frac{\varphi}{2} \\ i \sin \frac{\varphi}{2} \end{pmatrix}$$

Здесь интенсивности

$$I_1 = \cos^2\frac{\varphi}{2}, \quad I_2 = \sin^2\frac{\varphi}{2}$$

Если угол $\frac{\pi}{2}$, то интенсивности будут равны. В этом отличие от оптики (поляризацию света можно сравнить со спином 1): у света интенсивность при проходе через поляроид $\sin^2 \varphi$.

Итак, прибор Штерна-Герлаха – это поляризатор для спина. Он всегда будет разбивать излучение на два пучка (хотя и интенсивность одного из них может быть равна нулю).

8.4. Заряженная частица в однородном магнитном поле

Эта задача носит имя Ландау. Для электрона q=e,g=2,s=1/2, а уравнение

$$\left[i\hbar\frac{\partial}{\partial t} - e\varphi\right]\Psi = \left[\frac{(-i\hbar\nabla - \frac{e}{c}\vec{A})^2}{2m} - \frac{e\hbar}{2mc}(\vec{\sigma}, \vec{B})\right]\Psi$$

Рассмотрим случай, когда электрического поля нет $(E=0,\varphi=0)$, а магнитное поле однородно $(\vec{B}\parallel\vec{z}_0=\mathrm{const}).$

$$\vec{B} = \operatorname{rot} \vec{A} = \begin{vmatrix} \vec{x}_0 & \vec{y}_0 & \vec{z}_0 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_x \end{vmatrix}$$

Отсюда

$$B_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}$$

Чтобы поле было однородным, можно выбрать $A_y=B_zx,\ A_x=0$ или наоборот: $A_x=-B_zy,\ A_y=0.$ Такой выбор называют калибровкой Ландау.

Такая свобода возникает вследствие калибровочной инвариантности, с калибровочной функцией f = Bxy. Выберем второй вариант.

Будем искать стационарные решения, так как гамильтониан от времени не зависит:

$$\left[\frac{(-i\hbar\nabla-\frac{e}{c}\vec{A})^2}{2m}-\frac{e\hbar}{2mc}(\vec{\sigma},\vec{B}\,)\right]\Psi=E\Psi$$

$$\frac{1}{2m}\bigg(-i\hbar\frac{\partial}{\partial x}+\frac{e}{c}\cdot B\cdot y\bigg)^2\Psi-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial y^2}\Psi=\frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2}\Psi-\frac{e\hbar B}{2mc}\sigma_z\Psi=E\Psi,\quad \sigma_z=\left(\begin{smallmatrix} 1&0\\0&-1\end{smallmatrix}\right)$$

$$\Psi=\begin{pmatrix}\Psi_\uparrow\\\Psi_\downarrow\end{pmatrix}$$

$$\left[\frac{1}{2m}\left(-i\hbar\frac{\partial}{\partial x} + \frac{e}{c}\cdot B\cdot y\right)^2 - \frac{\hbar^2}{2m}\frac{\partial^2}{\partial y^2} - \frac{\hbar^2}{2m}\frac{\partial^2}{\partial z^2} - \frac{e\hbar B_z}{mc}\sigma\right]\Psi = E\Psi$$

$$\sigma_z = \frac{1}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \sigma & 0\\ 0 & -\sigma \end{pmatrix}$$

Так как нет явной зависимость от x и z, можно искать решение в виде преобразования Фурье:

$$\Psi = \Phi(y) \exp\{ik_x x + ik_z z\}$$

Тогда

$$\left[\frac{1}{2m}\left(\hbar k_x + \frac{e}{c}By\right)^2 - \frac{\hbar^2}{2m}\frac{\partial^2}{\partial y^2} + \frac{\hbar^2}{2m}k_z^2 - \frac{e\hbar B_z}{mc}\sigma\right]\Phi = E\Phi$$

Перенесём последние два слагаемых вправо и введём новую энергию

$$\varepsilon = E - \frac{\hbar^2 k_z^2}{2m} + \frac{\hbar eB}{mc}\sigma = E - \frac{\hbar^2 k_z^2}{2m} + \hbar \omega_H \sigma$$

Тогда

$$\left[\frac{1}{2m}\left(\hbar k_x + \frac{e}{c}By\right)^2 - \frac{\hbar^2}{2m}\frac{\partial^2}{\partial y^2}\right]\Phi = \varepsilon\Phi$$

Это ни что иное, как уравнение осциллятора. Вспомним его:

$$\left[-\frac{h^2}{2m} \frac{\partial^2}{\partial y^2} + \frac{m\omega^2 y^2}{2} \right] \Phi = \varepsilon \Phi$$

Попробуем привести уравнение () к такому виду:

$$\frac{1}{2m} \frac{e^2 B^2}{c^2} \frac{m}{m} \left(\frac{h k_x c}{e B} + y \right)^2 = \frac{m \omega_H^2}{2} (y - y_0)^2$$

Тогда приведённый вид

$$\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial y^2} + m\omega_H^2 (y - y_0)^2 \right] \Phi = \varepsilon \Phi$$

Приведём уравнение к безразмерному виду:

$$h\omega_H \left[-\frac{\hbar}{2m\omega_H} \frac{\partial^2}{\partial y^2} + \frac{m\omega_H (y - y_0)^2}{2\hbar} \right] \Phi = \varepsilon \Phi$$

Можем ввести

$$Y - Y_0 = \frac{y - y_0}{l_H}, \quad l_H = \sqrt{\frac{\hbar}{m\omega_H}} = \sqrt{\frac{\hbar c}{eB}}$$

$$\hbar\omega_H \left[\frac{(Y - Y_0)^2}{2} - \frac{1}{2} \frac{\partial^2}{\partial (Y - Y_0)^2} \right] \Phi = \varepsilon \Phi$$

Решение такого осциллятора нам известно:

$$\varepsilon = \hbar\omega_H \left(n + \frac{1}{2}\right) \quad \Rightarrow \quad E = \hbar\omega_H \left(n + \frac{1}{2}\right) + \frac{\hbar^2 k_z^2}{2m} - \hbar\omega_H \sigma$$

Так как $\sigma = \pm \frac{1}{2}$, то

$$E = \hbar\omega_H n + \frac{\hbar^2 k_z^2}{2m} - \hbar\omega_H \left(\sigma - \frac{1}{2}\right)$$

Рассмотрим случай без свободного движения $(k_z = 0)$:

Рис. 51. Расщепление уровней

Уровень $E = \hbar \omega_H$ дважды вырожден, и все высшие уровни дважды врождены. А собственные функции

$$\Phi = \exp\left\{-\frac{(Y - Y_0)^2}{2}\right\} H_n(Y - Y_0)$$

Тогда

$$\Psi = \exp\{ik_x x + ik_z z\} \exp\left\{-\frac{(y - y_0)^2}{2l_H^2}\right\} H_n\left(\frac{y - y_0}{l_H}\right)$$

где
$$y_0 = -\frac{\hbar k_x c}{eB} = -\frac{\hbar k_x}{m\omega_H}$$
.

Заметим, что есть вырождение: волновые функции зависят от k_x , а энергия – нет. Обсудим аналогию с классической механикой.

Классическая задача

$$m\dot{\vec{v}} = \frac{e}{c} \left[\vec{v} \times \vec{B} \right], \quad B \equiv B_z$$

$$\begin{cases} \dot{v}_x = \omega_H v_y \\ \dot{v}_y = -\omega_H v_x \\ \dot{v}_z = 0 \end{cases}$$

Ищем решение в виде

$$e^{-i\omega t} \begin{pmatrix} v_x \\ v_y \end{pmatrix} \Rightarrow \begin{cases} -i\omega v_x = \omega_H v_y \\ -i\omega v_y = -\omega_H v_x \end{cases}$$

$$v_z = v_z^0$$

Для первых двух уравнений считаем определитель, чтобы система имела решение:

$$\omega = \pm \omega_H$$

Тогда два собственных вектора найдём, и полное решение

$$\begin{pmatrix} v_x \\ v_y \end{pmatrix} = c_1 \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{-i\omega_H t} + c_2 \begin{pmatrix} 1 \\ i \end{pmatrix} e^{i\omega_H t}$$

Это хорошо известный результат: на плоскости (v_x, v_y) мы крутимся в одну сторону – это гировращение, а по z происходит движение с постоянной скоростью.

Проинтегрируем решение:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{c_1}{-i\omega_H} \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{-i\omega_H t} + \frac{c_2}{i\omega_H} \begin{pmatrix} 1 \\ i \end{pmatrix} e^{i\omega_H t} + \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

Точка (x_0, y_0) называется ведущим центром. На плоскости (x, y) происходит вращение вокруг ведущего центра по радиусу

$$r_H = \frac{v}{\omega_H}$$

Аналогия классики и квантового решения. Волновая функция локализована по *у*. Что у неё определено?

Рис. 52. Функция $\Phi(y)$

Продольное движение что в классике, что в квантах одинаково. А поперечное зависит от калибровки: в функции определён центр y_0 , по оси xосцилляции.

Центр волновой функции может быть назван ведущим центром. В отличии от классической задачи, где определены обе координаты ведущего цен-

тра, то теперь при нашем выборе калибровки будет определена координата y_0 ведущего центра, а по x функция не локализована.

Заметим, что если выбрать другую калибровку $A_y = Bx$, ситуация перевернётся: локализация по x и неопределённость по x.

В Ландау также решена задача о симметричной калибровке

$$A_x = \frac{1}{2}By, \quad A_y = -\frac{1}{2}Bx$$

При этом уровни энергии не изменятся. Уровни энергии движения электрона в магнитном поле называются уровнями Ландау.

Неофициальный минимум и полезные формулы

Волновая функция и её физический смысл. Каждое состояние системы может быть описано в данный момент времени определенной функцией координат $\psi(q)$, эта функция называется волновой. q – обобщенные координаты системы, в простейшем случае x,y,z.

 $|\psi|^2 \, \mathrm{d}q$ определяет распределение вероятностей значений координат.

При этом вероятность того, что система находится в каком-то состоянии всегда равна 1

$$\int_{-\infty}^{\infty} |\psi(q)|^2 \, \mathrm{d}q = 1$$

Операторы физических величин, их свойства (эрмитовость, некоммутативность). ??

Введем и определим понятие оператор \hat{f} . Пусть $\hat{f}\psi$ обозначает результат воздействия оператора \hat{f} на функцию ψ

kek

Импульс. Волновая функция свободной частицы. Импульс определяется оператором $\hat{p} = -i\hbar\nabla$ Волновая функция свободной частицы:

$$\Psi(\vec{r},t) = \frac{1}{(2\pi\hbar)^{3/2}} \exp\{i(\vec{k}\vec{r} - \omega t)\} = \frac{1}{(2\pi\hbar)^{3/2}} \exp\{\frac{i}{\hbar}(\vec{p}\vec{r} - Et)\}$$

Энергия принимает любые значения. Энергетический спектр непрерывный.

Стационарное и нестационарное уравнения Шрёдингера.

Нестационарное:
$$i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = \hat{H}\Psi(\vec{r},t)$$

В развернутом виде:

$$i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m}\Delta\Psi(\vec{r},t) + U(\vec{r})\Psi(\vec{r},t)$$

Стационарное:
$$\hat{H}\Psi(\vec{r}) = E\Psi(\vec{r})$$

Или, расписывая оператор Гамильтона:

$$\frac{\hbar^2}{2m}\Delta\Psi(\vec{r}) + [E - U(\vec{r})]\Psi(\vec{r}) = 0,$$

E=const– энергия системы, $U(\vec{r})$ – потенциальная энергия

Значение постоянной Планка

$$\hbar = 1.054 \cdot 10^{-34} \text{ Дж} \cdot \text{с}$$
 $\hbar = 1.054 \cdot 10^{-27} \text{ эрг} \cdot \text{с}$
 $\hbar = 6.582 \cdot 10^{-16} \text{ эВ} \cdot \text{c}$

Формулы

Коммутационные соотношения

$$[p_x, x] = -i\hbar$$

$$[a, a^+] = 1$$

$$\begin{cases} l_x l_y - l_y l_x = i l_z \\ l_y l_z - l_z l_y = i l_x \\ l_z l_x - l_x l_z = i l_y \end{cases}$$

$$[l^2, l_z] = 0$$

$$[l_z, l_{\pm}] = \pm l_+$$

$$[l_+, l_-] = 2l_z$$

Собственные числа операторов

$$a^{+}|n-1\rangle = \sqrt{n}|n\rangle, \qquad a|n\rangle = \sqrt{n}|n-1\rangle$$

$$l_{+} |m, l - 1\rangle = \sqrt{(m+k)(l-m+1)} |m+1, l\rangle,$$

 $l_{-} |m, l\rangle = \sqrt{(m+k)(l-m+1)} |m-1, l\rangle$

$$l_z |l, m\rangle = m |l, m\rangle$$

 $l^2 |l, m\rangle = l(l+1) |l, m\rangle$