

Overview

We all know that terrorism is bad since it uses people as a means to an end, which disrespect people's lives and bodies. Because of that, our group wants to do some data science to try to predict terrorist attacks frequency. Thus, we want to ask: Is the frequency of terrorist attacks related to countries' GDP/location/life expectancy/CO2 emission? Do terrorist attacks happen more often toward some certain targets/countries/regions?

Hypothesis

We hypothesize that lower GDP and countries with high disease rate are more likely to encounter terrorist attacks. Also, we hypothesize that we can make a rough prediction of attacks' frequency using certain inputs.

Let's see some

data

Global Terrorism Database

Dataset 1

	Α
1	eventid
2	1.97E+11
3	1.97E+11
4	1.97E+11
5	1.97E+11
6	1.97E+11
7	1.97E+11
8	1.97E+11
9	1.97E+11
10	1.97E+11
11	1.97E+11
12	1.97E+11
13	1.97E+11
14	1.97E+11
15	1.97E+11
16	1.97E+11
17	1.97E+11
18	1.97E+11
19	1.97E+11
20	1.97E+11
21	1.97E+11
22	1.97E+11
23	1.97E+11
24	1.97E+11
25	1.97E+11
26	1.97E+11
27	1.97E+11
28	1.97E+11
29	1.97E+11
30	1.97E+11
31	1.97E+11
32	1.97E+11
33	1.97E+11
34	1.97E+11
35	1.97E+11
36	1.97E+11
37	1.97E+11
38	1.97E+11

	A
1	eventid
2	1.97E+11
3	1.97E+11
4	1.97E+11
5	1.97E+11
6	1.97E+11
7	1.97E+11
8	1.97E+11
9	1.97E+11
10	1.97E+11
11	1.97E+11
12	1.97E+11
13	1.97E+11
14	1.97E+11
15	1.97E+11
16	1.97E+11
17	1.97E+11
18	1.97E+11
19	1.97E+11
20	1.97E+11
21	1.97E+11
22	1.97E+11
23	1.97E+11
24	1.97E+11
25	1.97E+11
26	1.97E+11
27	1.97E+11
28	1.97E+11
29	1.97E+11
30	1.97E+11
31	1.97E+11
32	1.97E+11
33	1.97E+11
34	1.97E+11
35	1.97E+11
36	1.97E+11
37	1.97E+11

iyear

	imonth	iday
1970	7	,
1970	C)
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	L
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	
1970	1	

1970

D

2

2

3

6

12

12

13

14

15

19

19

20

21

22

22

25

25

26

26

27

28

28

19 Jar

			+	
			Ť	
			Ť	
			1	
			Ť	
			Ť	
			Ť	
			Ì	
			t	
			t	
			ł	
	. 1	^	2	
nuary	1	9-	2	
			+	
			+	
			+	
			+	

approxdate extended

0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
123	

0

G

country

country txt region

58 Dominican R

130 Mexico

160 Philippines

217 United State

78 Greece

218 Uruguay

101 Japan

resolution

0

217	United State
217	United State
217	United State
217	United State
217	United State
98	Italy
217	United State
217	United State
499	East Germar
65	Ethiopia
217	United State
218	Uruguay
217	United State
217	United State
217	United State
83	Guatemala
160	Philippines
222	Venezuela
217	United State
217	United State

217 United State

217 United State

217 United State

217 United State

499 East German

217 United State

217 United State

5	Southeast As	Tarlac	Unknown	
8	Western Eur	Attica	Athens	
4	East Asia	Fukouka	Fukouka	
1	North Ameri	Illinois	Cairo	
3	South Ameri	Montevideo	Montevideo	
1	North Ameri	California	Oakland	
1	North Ameri	Wisconsin	Madison	
1	North Ameri	Wisconsin	Madison	
1	North Ameri	Wisconsin	Baraboo	
1	North Ameri	Colorado	Denver	
8	Western Eur	Lazio	Rome	
1	North Ameri	Michigan	Detroit	
1	North Ameri	Puerto Rico	Rio Piedras	
9	Eastern Euro	Berlin	Berlin	
11	Sub-Saharan	Unknown	Unknown	
1	North Ameri	New York	New York Cit	
1	North Ameri	Puerto Rico	Rio Grande	
1	North Ameri	Washington	Seattle	
1	North Ameri	Illinois	Champaign	
3	South Ameri	Montevideo	Montevideo	
1	North Ameri	Washington	Seattle	
1	North Ameri	Washington	Seattle	
1	North Ameri	New Jersey	Jersey City	
2	Central Ame	Guatemala	Guatemala (
5	Southeast As	Metropolitar	Quezon City	
3	South Ameri	Caracas	Caracas	
1	North Ameri	Nebraska	South Sioux (
1	North Ameri	Mississippi	West Point	
1	North Ameri	New York	New York Cit	

1 North Ameri Mississippi

1 North Ameri New York

1 North Ameri Washington Seattle

1 North Ameri Ohio

9 Eastern Euro Berlin

1 North Ameri Nebraska

M

Mexico city

Unknown

West Point

Norwalk

Berlin

New York Cit

South Sioux (

latitude

18.4567

19.3718

15.4785

37.997

33.5804

37.0051

-34.8911

37.7919

43.0765

43.072

43.46

39.7589

41.8909

42.3316

18.3869

52.501

40.6971

18.3799

47.6107

40.1167

-34.8911

47.6107

47.6107

40.7178

14.6228

14.674

10.4828

42.470

33.606

40.6971

33.606

40.6971

41.2419

52.501

47.6107

42.4799

city

region txt provstate

1 North Ameri Federal

2 Central America & Caribbe Santo Domin

co2-emission-dataset

Dataset 2

	A	В	С	D	E	
1	Entity	Code	Year	Annual CO2 e	missions	
2	Afghanistan	AFG	1750	0		
3	Afghanistan	AFG	1751	0		
4	Afghanistan	AFG	1752	0		
5	Afghanistan	AFG	1753	0		
6	Afghanistan	AFG	1754	0		
7	Afghanistan	AFG	1755	0		
8	Afghanistan	AFG	1756	0		
9	Afghanistan	AFG	1757	0		
10	Afghanistan	AFG	1758	0		
11	Afghanistan	AFG	1759	0		
12	Afghanistan	AFG	1760	0		
13	Afghanistan	AFG	1761	0		
14	Afghanistan	AFG	1762	0		
15	Afghanistan	AFG	1763	0		
16	Afghanistan	AFG	1764	0		
17	Afghanistan	AFG	1765	0		
18	Afghanistan	AFG	1766	0		
19	Afghanistan	AFG	1767	0		
20	Afghanistan	AFG	1768	0		
21	Afghanistan	AFG	1769	0		
22	Afghanistan	AFG	1770	0		
23	Afghanistan	AFG	1771	0		
24	Afghanistan	AFG	1772	0		
25	Afghanistan	AFG	1773	0		
26	Afghanistan	AFG	1774	0		
27	Afghanistan	AFG	1775	0		
28	Afghanistan	AFG	1776	0		
29	Afghanistan	AFG	1777	0		
30	Afghanistan	AFG	1778	0		
31	Afghanistan	AFG	1779	0		
32	Afghanistan	AFG	1780	0		
33	Afghanistan	AFG	1781	0		
34	Afghanistan	AFG	1782	0		
35	Afghanistan	AFG	1783	0		
36	Afghanistan	AFG	1784	0		
37	Afghanistan	AFG	1785	0		
20	A f = : - +	A F.C	1700	0		

Life Expectancy (WHO)

	Α	В
1	Country	Year
	Afghanistan	
	Albania	
	Algeria	
	Algoria	,

Dataset 3

2015	Developing	
2014	Developing	59
2013	Developing	59
2012	Developing	59
2011	Developing	59
2010	Developing	58
2009	Developing	58
2008	Developing	58
2007	Developing	57
2006	Developing	57
2005	Developing	57
2004	Developing	
2003	Developing	56
2002	Developing	56
2001	Developing	55
2000	Developing	54
2015	Developing	77
2014	Developing	77
2013	Developing	77
2012	Developing	76
2011	Developing	76
2010	Developing	76
2009	Developing	76
2008	Developing	75
2007	Developing	75
2006	Developing	74
2005	Developing	73
2004	Developing	
2003	Developing	72
2002	Developing	73
2001	Developing	73
2000	Developing	72
2015	Developing	75
2014	Developing	75
2013	Developing	75
2012	Developing	75
2011	Davidaning	7/

Status

65	203	62	0.01	/1.2/90230
59.9	271	64	0.01	73.5235817
59.9	268	66	0.01	73.2192427
59.5	272	69	0.01	78.1842153
59.2	275	71	0.01	7.0971087
58.8	279	74	0.01	79.6793674
58.6	281	77	0.01	56.7622168
58.1	287	80	0.03	25.8739254
57.5	295	82	0.02	10.910156
57.3	295	84	0.03	17.1715175
57.3	291	85	0.02	1.38864773
57	293	87	0.02	15.2960664
56.7	295	87	0.01	11.0890527
56.2	3	88	0.01	16.8873509
55.3	316	88	0.01	10.5747282
54.8	321	88	0.01	10.42496
77.8	74	0	4.6	364.975229
77.5	8	0	4.51	428.749067
77.2	84	0	4.76	430.876979
76.9	86	0	5.14	412.443356
76.6	88	0	5.37	437.0621
76.2	91	1	5.28	41.8227572
76.1	91	1	5.79	348.055952
75.3	1	1	5.61	36.6220685
75.9	9	1	5.58	32.2465523
74.2	99	1	5.31	3.3021542
73.5	15	1	5.16	26.9931214
73	17	1	4.54	221.8428
72.8	18	1	4.29	14.7192888
73.3	15	1	3.73	104.516916
73.6	14	1	4.25	96.2055708
72.6	11	1	3.66	91.7115405
75.6	19	21		0
75.4	11	21	0.01	54.2373183
75.3	112	21	0.53	544.450743
75.1	113	21	0.66	555.926083
	444	1000		

Life expectar Adult Mortal infant death: Alcohol

	percentage e	Hepatitis B	Measles	BMI
L	71.2796236	65	1154	
L	73.5235817	62	492	
L	73.2192427	64	430	
L	78.1842153	67	2787	
L	7.0971087	68	3013	
L	79.6793674	66	1989	
L	56.7622168	63	2861	
3	25.8739254	64	1599	
2	10.910156	63	1141	
3	17.1715175	64	1990	
2	1.38864773	66	1296	
2	15.2960664	67	466	
L	11.0890527	65	798	
L	16.8873509	64	2486	
L	10.5747282	63	8762	
L	10.42496	62	6532	
5	364.975229	99	0	
L	428.749067	98	0	
5	430.876979	99	0	
ļ	412.443356	99	9	
7	437.0621	99	28	
3	41.8227572	99	10	
)	348.055952	98	0	
L	36.6220685	99	0	
3	32.2465523	98	22	
L	3.3021542	98	68	
5	26.9931214	98	6	
ļ	221.8428	99	7	
)	14.7192888	97	8	
3	104.516916	96	16	
5	96.2055708	96	18	
5	91.7115405	96	662	
	0	95	63	
L	54.2373183	95	0	

65	1154
62	492
64	430
67	2787
68	3013
66	1989
63	2861
64	1599
63	1141
64	1990
66	1296
67	466
65	798
64	2486
63	8762
62	6532
99	0
98	0
99	0
99	9
99	28
99	10
98	0
99	0
98	22
98	68
98	6
99	7
97	8
96	16
96	18
96	662
95	63
95	0
95	25
95	18

M

58

62

63

63

58

58

41

36

35

24

98

97

97

97

97

95

95

24

24

24

24

Total expend

8.16

8.18

8.13

8.52

7.87

9.42 8.33

6.73

7.43

8.7

8.79

8.82

7.76 7.8

8.2

6

5.88

5.66

5.59

5.71

5.34 5.79

5.87

6.1

5.86

6.12

6.38

6.27

6.3

6.26

7.21

7.12

6.14

6

under-five d∈ Polio

83

86

102

106

110

113

116

118

120

122

122

122

122

19.1

18.6

18.1

17.6

17.2

16.7

16.2

15.7

15.2

14.7

14.2

13.8

13.4

13

12.6

12.2

58

57.2

56.5

55.8

55.1

54.3

53.5

52.6

51.7

5.8

49.9

48.9

47.9

46.9

46

45

59.5

58.4

57.2

56.1

Data cleaning

We merged all three datasets together because it is convenient for us to make analysis and find correlation in the future. We choose to merge on "Country" and "Year" becasue these are shared column of all three datasets. Since the "Year" column of all three datasets cover different years and dataset 3 only cover year 2000 - 2005, we limit the year to 2000 - 2015 so there won't be many missing data in the final dataset.

2. EDA

Visualizations

Visualizations

Visualizations

Multiple Linear Regression Prediction model

Steps


```
In [85]: preprocessing(X)
                   VIF
                                               Features
             37.188662
                                       Life expectancy
              3.031046
                                               Alcohol
             45.396187
                        Income composition of resources
              4.387596
                                        Adult Mortality
              7.611101
                                                   GDP
              1.836985
                                          infant deaths
              6.765698
                                 percentage expenditure
              1.432079
                                              Measles
              8.099446
                                                   BMI
              5.792687
                                      Total expenditure
            15.188202
                                            Diphtheria
              1.776908
                                               HIV/AIDS
In [86]: # drop those columns to avoid multicollinearity
         X.drop(['Life expectancy ', 'Income composition of resources', 'GDP', 'percentage expenditure',' BMI ', 'Total expen
         preprocessing(X)
                 VIF
                             Features
         0 1.568358
                              Alcohol
         1 2.849879 Adult Mortality
         2 1.797224
                        infant deaths
         3 1.331247
                             Measles
         4 1.505919
                             HIV/AIDS
```


In [90]: model_1 = sms.OLS(y_train, x_train).fit()
model_1.summary()

Out[90]: OLS Regression Results

Dep. Variable:	Count	R-squared (uncentered):	0.465
Model:	OLS	Adj. R-squared (uncentered):	0.456
Method:	Least Squares	F-statistic:	53.01
Date:	Thu, 09 Dec 2021	Prob (F-statistic):	1.74e-39
Time:	02:16:39	Log-Likelihood:	-3096.3
No. Observations:	310	AIC:	6203.
Df Residuals:	305	BIC:	6221.
Df Model:	5		
Covariance Type:	nonrobust		
	coef std err	t P> t [0.025 0.97	75]

Let's improve the model!

OUR PROCESS of improving

0.931

This is the final R-squared

X2

We doubled the model performance

Over 100 lines

A lot of cells

100% Our total effort

Thanks for your time

