# Comparing the similarities of different cities across the globe

Priya Dwivedi May 2020

#### 1 Introduction

An ill planned city can be a pain for people living in that city. For example, it is important to have enough public space, parks so that families can spend their quality time or to do any exercise. Similarly, for young people, it becomes important to have enough bar, pub, cafe where they can spend their quality night life. Until now, people just move to the city where they find good jobs. However, living in a city without enough amenities can be mentally challenging.

At the same time, municipalities are trying to attract young and skilled labours to their city in order to improve the city's economic activity. Therefore, the department of marketing works together with the urban planner to improve the city and utilise the space efficiently.

To help the urban planner or the person who is looking for a new city to move, we will examine the city's neighborhood and assess its similarities with other cities across the globe. In this project, we will answer the following question:

- Which of the cities falls in the same cluster?
- Which of the venue categories are dominated in a particular city or cluster?
- What actions need to be taken in order to improve the resident lifestyle of that particular city?

We will be investigating multiple cities from Europe, Asia and Australia. This analysis will be performed using Foursquare API.

The targeted audience for this project will the urban planner as well as the people looking for a new city to move.

#### 2 Data

After defining the problem, the next step for data science project is to find the relevant data in order to solve the problem. This step is detailed in the sub-section Data acquisition. Furthermore, this will be followed by data pre-processing.

#### 2.1 Data acquisition

First, we chose the 4 cities from Australia: Sydney, Melbourne, Brisbane, and Perth, 4 cities from India: Delhi, Mumbai, Ahmedabad, and Bangalore, 5 cities from Europe: Amsterdam, Rotterdam, Cologne, Munich and Berlin. Then we used their names and countries as an input to geopy python library. This gave us the latitude and longitude for each city.

Moreover, we used foursquare service to extract the information about the nearby venues or venue categories in a city. Foursquare API is location based service with diverse information about venues. The latitudes and longitudes were used as an input to Foursquare API in order to explore the nearby venues. We chose to explore the area around the city center by defining the radius of 8 km and limited the number of venues to 100.

For example, if x y and z are the cities to be investigated, the following steps were performed to extract the relevant data.

- 1. Found the latitude and longitude of cities using geopy python library.
- 2. These latitudes and longitudes were the input for foursquare API. Using foursquare API, explored the nearby venues of the city.
- 3. Clean and pre-process the data.

In the following sub-section, we will detail about the pre-processing steps.

#### 2.2 Data pre-processing

The collected data via Foursquare API had venue name, latitude, longitude and venue category. After dropping the non-significant columns e.g., venue name, latitude and longitude and adding the significant column, e.g., city name, we created a dataframe containing the cities and venue categories. These venue categories were then converted to dummy variables corresponding to each city. We grouped the data by cities and took average of dummy variables corresponding to the same cities. The resulted dataframe was used for further analysis.

## 3 Methodology

Before we begin the analysis of the data, let us visualise the selected cities on the world map as shown in Fig. 1. For each city, we extracted the nearby venues and venue categories. The higher the frequency of a venue category, the dominant the presence of the category is. In order to know which categories are dominantly present in a city, we found the top 15th most common venue categories.

We checked the most common venue categories for Amsterdam, Delhi and Sydney separately. Fig. 2 shows the most common venues for Amsterdam. Netherlands is a country known for much more tolerant policy of drugs than rest of the countries. Coffee shops in the Netherlands should not be confused with the American version where you will be served with hot coffee and baked goods. Coffee shops act as a legal dispensaries for marijuana. The strong presence of coffee shops in the bar plot indicate its popularity and demand. Amsterdam is a very popular city for tourists, therefore seeing hotels as 2nd most common venue is not surprising for us. Note that parks and canals are at the bottom of the list. It suggests the city center is hugely crowded with either tourists or shops. Fig. 3 shows the most common venues for Delhi. Indians being famous for their food, Indian restaurants are on top of the list, is completely logical. However, parks/gardens are something that this city lacks. Fig. 4 shows the most common venues for Sydney. The interesting thing to note here is that park are the most common venues. Even being the most populous city in Australia, they have maintained a balanced combination of economical activity and public spaces.

Until now, we have analysed 3 cities from different continents. Each city



Figure 1: Selected cities on the world map. We have selected 4 cities from Australia, 4 cities from India and 5 cities from Europe.



Figure 2: Bar plot for top 15th most common venue categories in Amsterdam

has its own type. We would like to see the same analysis for each city. This will give us the insights about the city as well as the opportunity to improve the city infrastructure. For example, we can clearly see that there no parks in the top 15th most common venue in Delhi. This indicate an opportunity to create some space for parks for healthy and happy lifestyle of the resident. Therefore, we performed the similar analysis for all the selected cities, the results as shown in Fig. 5. However, by closely observing these cities and most common venues, we could not figure out the closely resembling cities. Then comes the importance of machine learning algorithms.

The most obvious choice of machine learning algorithm is k-mean clustering. This algorithm calculates the distance of two data points and creates few clusters for each data point based on the calculated distance. After several iterations of this method, it divides the data points in few clusters and data points in each cluster share large amount of similarities.



Figure 3: Bar plot for top 15th most common venue categories in Delhi



Figure 4: Bar plot for top 15th most common venue categories in Sydney

| city      | latitude   | longitude  | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue         | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th Mos<br>Commor<br>Venue |
|-----------|------------|------------|-------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Perth     | -31.952712 | 115.860480 | 2                 | Café                        | Coffee<br>Shop              | Park                        | Bakery                      | Italian<br>Restaurant               | Hotel                       | Vietnamese<br>Restaurant    | Asian<br>Restaurant         | Ice Cream<br>Shop           | Gym                         |
| Sydney    | -33.854816 | 151.216454 | 2                 | Park                        | Café                        | Scenic<br>Lookout           | Coffee<br>Shop              | Theater                             | Cocktail<br>Bar             | Bakery                      | Hotel                       | Bookstore                   | Ва                          |
| Melbourne | -37.814218 | 144.963161 | 2                 | Café                        | Coffee<br>Shop              | Park                        | Bar                         | Cocktail<br>Bar                     | Ice Cream<br>Shop           | Plaza                       | Hotel                       | Bakery                      | Japanese<br>Restauran       |
| Brisbane  | -27.468968 | 153.023499 | 0                 | Coffee<br>Shop              | Park                        | Beer Bar                    | Brewery                     | Hotel                               | Café                        | Italian<br>Restaurant       | Bar                         | Farmers<br>Market           | Scenic<br>Lookou            |
| Amsterdam | 52.372760  | 4.893604   | 0                 | Coffee<br>Shop              | Hotel                       | Bar                         | Bakery                      | Cocktail<br>Bar                     | French<br>Restaurant        | Plaza                       | Café                        | Yoga<br>Studio              | Bookstore                   |
| Rotterdam | 51.922896  | 4.463173   | 0                 | Coffee<br>Shop              | Café                        | Bakery                      | Hotel                       | Restaurant                          | Bar                         | Park                        | Movie<br>Theater            | Sandwich<br>Place           | Deli ,<br>Bodega            |
| Berlin    | 52.517037  | 13.388860  | 0                 | Coffee<br>Shop              | Park                        | Bookstore                   | Ice<br>Cream<br>Shop        | Bakery                              | Wine Bar                    | Monument<br>/ Landmark      | Café                        | Gourmet<br>Shop             | Art Gallery                 |
| Munich    | 48.137108  | 11.575382  | 2                 | Café                        | Plaza                       | Ice Cream<br>Shop           | Cocktail<br>Bar             | Gourmet<br>Shop                     | Hotel                       | Coffee<br>Shop              | Department<br>Store         | Beer<br>Garden              | Italiar<br>Restauran        |
| Cologne   | 50.938361  | 6.959974   | 2                 | Park                        | Café                        | Coffee<br>Shop              | Burger<br>Joint             | Italian<br>Restaurant               | Plaza                       | Bar                         | Hotel                       | Ice Cream<br>Shop           | Restauran                   |
| Delhi     | 28.651718  | 77.221939  | 1                 | Indian<br>Restaurant        | Café                        | Hotel                       | Lounge                      | Chinese<br>Restaurant               | Restaurant                  | Coffee<br>Shop              | Bar                         | Monument<br>/<br>Landmark   | Fast Food<br>Restauran      |
| Mumbai    | 18.938771  | 72.835335  | 1                 | Indian<br>Restaurant        | Hotel                       | Dessert<br>Shop             | Café                        | Fast Food<br>Restaurant             | Cricket<br>Ground           | Scenic<br>Lookout           | Pizza Place                 | Ice Cream<br>Shop           | Seafood<br>Restauran        |
| Bangalore | 12.979120  | 77.591300  | 1                 | Hotel                       | Ice Cream<br>Shop           | Indian<br>Restaurant        | Bakery                      | Brewery                             | Italian<br>Restaurant       | Department<br>Store         | Burger<br>Joint             | Lounge                      | Put                         |
| Ahmedabad | 23.021624  | 72.579707  | 1                 | Café                        | Indian<br>Restaurant        | Restaurant                  | Hotel                       | Vegetarian<br>/ Vegan<br>Restaurant | Fast Food<br>Restaurant     | Dessert<br>Shop             | Pizza Place                 | Coffee<br>Shop              | Multiplex                   |

Figure 5: This table shows the most common venues for all the selected cities.

#### 4 Results

In Fig. 9, we have shown the results after running k-mean clustering algorithm. The pre-defined number of clusters were 3. The clusters after running the k-mean clustering algorithms are shown in the Table 1. In cluster 0 as

| Cluster 0 | Cluster 1 | Cluster 2 |
|-----------|-----------|-----------|
| Brisbane  | Delhi     | Perth     |
| Amsterdam | Mumbai    | Sydney    |
| Rotterdam | Ahmedabad | Melbourne |
| Berlin    | Bangalore | Cologne   |
|           |           | Munich    |

Table 1: Clusters formed after running k-mean cluster algorithm.

shown in Fig. 6, the most dominant venues are coffee shop, Park, hotel, brewery and bar. Apart from these venues, they also have yoga studio, monument / landmark and art gallery. In cluster 1 as shown in Fig. 7, the most dominant venues are Indian restaurant, hotel and cafe. However, there no park or scenic lookout in the 8 km range. It is possible that park and scenic lookout can be at the outskirt of city or there are none. This can be an opportunity for the stakeholders to look into details and improve the city lifestyle by taking actions. In cluster 2 as shown in Fig. 8, The most dominant venues in this clusters are cafe, park/ scenic lookout.

| city      | latitude   | longitude  | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd<br>Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th<br>Most<br>Common<br>Venue |
|-----------|------------|------------|-------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------------|
| Brisbane  | -27.468968 | 153.023499 | 0                 | Coffee<br>Shop              | Park                           | Beer Bar                    | Brewery                     | Hotel                       | Café                        | Italian<br>Restaurant       | Bar                         | Farmers<br>Market           | Scenic<br>Lookout               |
| Amsterdam | 52.372760  | 4.893604   | 0                 | Coffee<br>Shop              | Hotel                          | Bar                         | Bakery                      | Cocktail<br>Bar             | French<br>Restaurant        | Plaza                       | Café                        | Yoga<br>Studio              | Bookstore                       |
| Rotterdam | 51.922896  | 4.463173   | 0                 | Coffee<br>Shop              | Café                           | Bakery                      | Hotel                       | Restaurant                  | Bar                         | Park                        | Movie<br>Theater            | Sandwich<br>Place           | Deli /<br>Bodega                |
| Berlin    | 52.517037  | 13.388860  | 0                 | Coffee<br>Shop              | Park                           | Bookstore                   | Ice<br>Cream<br>Shop        | Bakery                      | Wine Bar                    | Monument<br>/<br>Landmark   | Café                        | Gourmet<br>Shop             | Art<br>Gallery                  |

Figure 6: Most common venues for cluster 0.

| city      | latitude  | longitude | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue         | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th Most<br>Common<br>Venue | 1 |
|-----------|-----------|-----------|-------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|---|
| Delhi     | 28.651718 | 77.221939 | 1                 | Indian<br>Restaurant        | Café                        | Hotel                       | Lounge                      | Chinese<br>Restaurant               | Restaurant                  | Fast Food<br>Restaurant     | Snack<br>Place              | Monument<br>/<br>Landmark   | Bookstore                    | F |
| Mumbai    | 18.938771 | 72.835335 | 1                 | Indian<br>Restaurant        | Hotel                       | Dessert<br>Shop             | Café                        | Scenic<br>Lookout                   | Fast Food<br>Restaurant     | Pizza Place                 | Ice<br>Cream<br>Shop        | Cricket<br>Ground           | Theater                      |   |
| Bangalore | 12.979120 | 77.591300 | 1                 | Hotel                       | Ice Cream<br>Shop           | Indian<br>Restaurant        | Bakery                      | Pub                                 | Brewery                     | Department<br>Store         | Lounge                      | Burger<br>Joint             | Italian<br>Restaurant        |   |
| Ahmedabad | 23.021624 | 72.579707 | 1                 | Café                        | Indian<br>Restaurant        | Restaurant                  | Hotel                       | Vegetarian<br>/ Vegan<br>Restaurant | Dessert<br>Shop             | Fast Food<br>Restaurant     | Pizza<br>Place              | Coffee<br>Shop              | Multiplex                    |   |

Figure 7: Most common venues for cluster 1.

| city      | latitude   | longitude  | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd<br>Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th Most<br>Common<br>Venue |
|-----------|------------|------------|-------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|
| Perth     | -31.952712 | 115.860480 | 2                 | Café                        | Coffee<br>Shop                 | Park                        | Bakery                      | Asian<br>Restaurant         | Italian<br>Restaurant       | Hotel                       | Ice Cream<br>Shop           | Vietnamese<br>Restaurant    | Gym                          |
| Sydney    | -33.854816 | 151.216454 | 2                 | Park                        | Café                           | Scenic<br>Lookout           | Coffee<br>Shop              | Theater                     | Cocktail<br>Bar             | Bakery                      | Garden                      | Bar                         | Hotel                        |
| Melbourne | -37.814218 | 144.963161 | 2                 | Café                        | Coffee<br>Shop                 | Park                        | Bar                         | Cocktail<br>Bar             | Plaza                       | Ice Cream<br>Shop           | Thai<br>Restaurant          | Bakery                      | Gym /<br>Fitness<br>Center   |
| Munich    | 48.137108  | 11.575382  | 2                 | Café                        | Plaza                          | Ice<br>Cream<br>Shop        | Cocktail<br>Bar             | Gourmet<br>Shop             | Coffee<br>Shop              | Department<br>Store         | Beach                       | Italian<br>Restaurant       | Beer<br>Garden               |
| Cologne   | 50.938361  | 6.959974   | 2                 | Park                        | Café                           | Coffee<br>Shop              | Italian<br>Restaurant       | Plaza                       | Burger<br>Joint             | Bar                         | Hotel                       | Ice Cream<br>Shop           | French<br>Restaurant         |

Figure 8: Most common venues for cluster 2.



Figure 9: Clusters after running k-mean algorithm.

### 5 Discussions

In this work, we have not considered the influence of the population and population density of the cities. This can certainly influence our results as highly populated city might be bigger in size as well. Where as, we have consider 8 km of radius for our study. It is possible that a large fraction of population lives out side of this circle. Hence, the results of this study can be improved by considering the cities of similar population density.

## 6 Conclusions

In this project, we compared the similarities of different cities across the globe. This was done by using python library called geopy and foursquare API. We extracted the nearby venues of each city within a radius of 8 km.

Then, we applied k-mean clustering algorithms to the data set in order to find the clusters with similar cities. This gives an important insight about the cities. The results in this work can be further improved by considering the population density.