Module PRB1 : Probabilités de base.

Examen 1^{re} session : durée trois heures.

Documents autorisés : polycopié et notes personnelles de cours, table des lois usuelles.

Mardi 13 janvier 2004.

Exercice 1. Soient r un réel strictement positif et $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes de même loi μ uniforme sur $\left[-r\sqrt{3},r\sqrt{3}\right]$.

- 1. (a) Expliciter la densité de la probabilité μ .
- (b) Expliquer pourquoi X_1 a des moments de tous les ordres et préciser $\mathbb{E}[X_1]$, $\mathbb{E}[X_1^2]$ ainsi que la variance de X_1^2 .

Pour $n \ge 1$, on pose

$$T_n = \left(\frac{X_1^2 + \ldots + X_n^2}{n}\right)^{\frac{1}{2}}.$$

- 2. Prouver que $(T_n)_{n\geq 1}$ converge presque sûrement vers r.
- 3. On étudie à présent la convergence en loi de la suite de terme général $U_n = \sqrt{n} (T_n r)$, $n \ge 1$.
- (a) On pose, pour tout $n \geq 1$, $V_n = \sqrt{n} \left(T_n^2 r^2\right)/(2r)$. Montrer que la suite $(V_n)_{n\geq 1}$ converge en loi vers une variable aléatoire réelle gaussienne centrée de variance $r^2/5$.
 - (b) En utilisant l'identité

$$x-r = \frac{x^2 - r^2}{2r} - \frac{\left(x^2 - r^2\right)^2}{2r(x+r)^2}, \quad x \ge 0,$$

montrer que $U_n = V_n - W_n$, où W_n est une variable aléatoire réelle telle que

$$0 \le W_n \le \frac{\sqrt{n}}{2r^3} \left(T_n^2 - r^2 \right)^2.$$

- (c) Prouver que $\lim_{n\to+\infty} \mathbb{E}[W_n] = 0$. En déduire que la suite $(W_n)_{n\geq 1}$ converge en probabilité vers 0.
 - (d) Conclure que $(U_n)_{n\geq 1}$ converge en loi et identifier sa limite.

Exercice 2. Si $x \in \mathbb{R}^3$, on désigne par |x| sa norme euclidienne et on note, pour tout $\rho \geq 0$, B_{ρ} la boule euclidienne fermée de \mathbb{R}^3 de centre 0 et de rayon $\rho : B_{\rho} = \{x \in \mathbb{R}^3 : |x| \leq \rho\}$; on rappelle que le volume V_{ρ} de B_{ρ} est $V_{\rho} = \frac{4}{3}\pi\rho^3$.

1. Soient R > 0 et X_1, \ldots, X_n n variables aléatoires de \mathbb{R}^3 indépendantes et identiquement distribuées suivant la loi uniforme sur B_R c'est à dire de densité $x \longmapsto \mathbf{1}_{B_R}(x)/V_R$.

On pose, pour tout $r \geq 0$,

$$N_{R,n}(r) = \mathbf{1}_{B_r}(X_1) + \ldots + \mathbf{1}_{B_r}(X_n), \qquad D_{R,n} = \inf\{|X_k| : k = 1, \ldots, n\}.$$

- (a) Déterminer, pour tout $r \geq 0$, la loi de $\mathbf{1}_{B_r}(X_1)$ puis celle de $N_{R,n}(r)$.
- (b) Exprimer, pour $r \ge 0$, $\{D_{R,n} > r\}$ à l'aide de la variable aléatoire $N_{R,n}(r)$.

Soit d > 0. On s'intéresse au comportement asymptotique de $N_{R,n}(r)$ lorsque le rapport $\frac{n}{V_R}$ reste constant égal à d. Pour cela, on note, pour $n \in \mathbb{N}^*$ et $r \geq 0$,

$$R_n = \left(\frac{3n}{4\pi d}\right)^{\frac{1}{3}}, \qquad N_n(r) = N_{R_n,n}(r), \qquad D_n = D_{R_n,n},$$

et on fait tendre n vers $+\infty$.

- 2. (a) Montrer que, pour tout r > 0, $N_n(r)$ converge en loi lorsque $n \to +\infty$ vers une variable aléatoire N(r) suivant la loi de Poisson de paramètre dV_r .
- (b) En déduire que D_n converge en loi lorsque $n \to +\infty$ vers une variable aléatoire D dont on précisera la fonction de répartition.
 - (c) Exprimer $\mathbb{E}[D]$ à l'aide de la fonction Γ : pour s > 0, $\Gamma(s) = \int_0^{+\infty} x^{s-1} e^{-x} dx$.
- 3. Si 0 représente le système solaire, les variables X_i la position des étoiles dans l'univers et d est la densité stellaire, quelle interprétation peut-on donner à D?

Exercice 3. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires réelles indépendantes; pour tout $n\in\mathbb{N}^*$, X_n suit la loi de Poisson de paramètre $\lambda_n>0$. On pose, pour $n\in\mathbb{N}^*$,

$$S_n = X_1 + \ldots + X_n, \qquad s_n = \lambda_1 + \ldots + \lambda_n.$$

- 1. Calculer la fonction caractéristique φ_n de S_n . Quelle est la loi de S_n ? sa moyenne? sa variance?
- 2. Montrer que $(S_n)_{n\in\mathbb{N}^*}$ converge presque sûrement vers une variable aléatoire S de $\overline{\mathbb{R}}_+$.
- 3. On suppose que $\sum_{n\geq 1} \lambda_n < +\infty$. Calculer $\lim_{n\to +\infty} \mathbb{E}[S_n]$. En déduire que S est finie presque sûrement et déterminer la loi de S.
- 4. On suppose désormais que $\sum_{n>1} \lambda_n = +\infty$.
 - (a) Montrer que, pour tout $r \in \mathbb{N}$, $\mathbb{P}(S > r) = 1$. Déterminer S.
- (b) Montrer que la suite de terme général $Y_n = (S_n s_n)/s_n$, $n \in \mathbb{N}^*$, converge presque sûrement vers 0 lorsque $n \to +\infty$. On pourra utiliser le lemme de Kronecker et l'inégalité $s_n^{-2} \lambda_n \leq s_{n-1}^{-1} s_n^{-1}$, $n \geq 2$.

Lemme de Kronecker : Soient $(b_n)_{n\geq 1}$ une suite croissante de réels strictement positifs telle que $\lim_{n\to +\infty}b_n=+\infty$ et $(x_n)_{n\geq 1}$ une suite de réels. Si $\sum_{n\geq 1}(x_n/b_n)$ converge dans \mathbb{R} , alors $\lim_{n\to +\infty}(\sum_{i=1}^n x_i)/b_n=0$.

(c) Déterminer la limite en loi de $(\sqrt{s_n} Y_n)_{n \in \mathbb{N}^*}$ lorsque $n \to +\infty$.