También tenemos:

Figura 7.2.11 Una curva puede estar formada por varias componentes.

Integrales de línea sobre curvas que constan de varias componentes Sea C una curva orientada que está formada por varias curvas componentes orientadas $C_i, i=1,\ldots,k$, como se muestra en la Figura 7.2.11. Entonces escribiremos $C=C_1+C_2+\cdots+C_k$. Puesto que podemos parametrizar C parametrizando las componentes C_1,\ldots,C_k por separado, podemos probar que

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{s} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{s} + \dots + \int_{C_{k}} \mathbf{F} \cdot d\mathbf{s}.$$
 (4)

Una razón para escribir una curva como una suma de componentes es que puede ser más fácil parametrizar las componentes C_i individualmente que parametrizar C como un todo. Si este es el caso, la Ecuación (4) proporciona una forma adecuada de calcular $\int_C \mathbf{F} \cdot d\mathbf{s}$.

Notación dr para las integrales de línea

En ocasiones, la integral de línea se escribe usando la siguiente notación, como haremos más adelante de forma ocasional,

$$\int_C \mathbf{F} \cdot d\mathbf{r}.$$

La razón es que podemos describir una trayectoria C^1 , \mathbf{c} , en función de un vector de posición en movimiento que parte del origen y termina en el punto $\mathbf{c}(t)$ en el instante t. Los vectores de posición se suelen denotar mediante $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, y por tanto la curva se describe usando la notación $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ en lugar de $\mathbf{c}(t)$. Por definición, la integral de línea está dada por

$$\int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt.$$

Cancelando formalmente los dt y usando la independencia de la parametrización para sustituir los límites de integración por la curva geométrica C, llegamos a la notación $\int_C \mathbf{F} \cdot d\mathbf{r}$.

Ejemplo 11

Consideremos C, el perímetro del cuadrado unidad en \mathbb{R}^2 , orientado en el sentido antihorario (véase la Figura 7.2.12). Calcular la integral de línea

$$\int_C x^2 dx + xy dy.$$

Solución

Calculamos la integral utilizando una parametrización adecuada de ${\cal C}$ que induzca la orientación dada. Por ejemplo: