OSNOVI TELEKOMUNIKACIJA (13E033OTR)

Elektrotehnički fakultet Katedra za telekomunikacije Beograd, 2021.

-II-

Teorija informacija, entropija, statistički kodovi (kompresija)

Teorija informacija

Koji je minimalni broj simbola kojim se može prestaviti poruka, a da se ne izgubi informacija?

Prva Šenonova teorema, bitna za kompresiju!

Koja je maksimalna brzina prenosa informacija kroz kanal u kome postoje smetnje?

> Druga Šenonova teorema, bitna za pouzdan prenos podataka!

Pouzdan zapis podataka

Predrag Ivaniš, Elektrotehnički fakultet Katedra za Telekomunikacije, Beograd

Claude Shannon (Information theory)

John von Neumann (Computer Science) Memorije koje pouzdano skladište informacije čak i kada koriste nestabilne memorijske ćelije i nepouzdana logička kola!

George Boole (Algebra)

Digitalni telekomunikacioni sistem

* Blok šema digitalnog TK sistema:

- Izvor emituje nekakve poruke
 - Diskretan izvor: štampani tekst, niz nula i jedinica koje generiše neki senzor,...
 - Kontinualan izvor: govor, muzika (audio signal), video signal,...
- Smatramo da nas u ovom trenutku ne zanima kanal (idealan je)
- Binarnom interfejsu treba dostaviti niz nula i jedinica
- Kako napraviti taj niz nula i jedinica od poruka koje emituje izvor?
- * Interfejs izvora zavisi samo od osobina izvora!

Interfejs izvora za štampani tekst

- * Neka sekvencu slova koju emituje diskretni izvor želimo da predstavimo u binarnom obliku
- * ASCII kod svaki simbol se predstavlja sa 7 bita
- * Izvor emituje tekst

ADAABABCAEBAAACCBAFADABADABAEA

- * Prethodni primer
 - Za prenos 30 slova iz prikazane sekvence potrebno je 30*7=210 binarnih simbola.
 - Koliko god ima slova potrebno je sedam puta više binarnih simbola za njihov prenos.
- * Da li se poruka može predstaviti manjim brojem binarnih simbola, a da se ne izgubi informacija koja se prenosi?
 - Želimo da pravilno rekonstruišemo svih 30 slova na strani prijema.

ASCII tabela – za štampani tekst

Dec Hx Oct Char	Dec Hx Oct Html Chr	Dec Hx Oct Html Chr Dec Hx Oct Html Chr
0 0 000 NUL (null)	32 20 040 Space	64 40 100 @ 0 96 60 140 ` `
1 1 001 SOH (start of heading)	33 21 041 @#33; !	65 41 101 A A 97 61 141 a a
2 2 002 STX (start of text)	34 22 042 @#34; "	66 42 102 B B 98 62 142 b b
3 3 003 ETX (end of text)	35 23 043 # #	67 43 103 C C 99 63 143 c C
4 4 004 EOT (end of transmission)	36 24 044 \$ \$	68 44 104 D D 100 64 144 d d
5 5 005 <mark>ENQ</mark> (enquiry)	37 25 045 % %	69 45 105 E E 101 65 145 e e
6 6 006 <mark>ACK</mark> (acknowledge)	38 26 046 & &	70 46 106 F F 102 66 146 f f
7 7 007 BEL (bell)	39 27 047 ' '	71 47 107 6#71; 🖟 103 67 147 6#103; 🦁
8 8 010 <mark>BS</mark> (backspace)	40 28 050 ((72 48 110 6#72; H 104 68 150 6#104; h
9 9 011 TAB (horizontal tab)	41 29 051))	73 49 111 6#73; I 105 69 151 6#105; i
10 A 012 LF (NL line feed, new line)		74 4A 112 6#74; J 106 6A 152 6#106; j
ll B 013 VT (vertical tab)	43 2B 053 + +	75 4B 113 6#75; K 107 6B 153 6#107; k
12 C 014 FF (NP form feed, new page)		76 4C 114 L L 108 6C 154 l L
13 D 015 CR (carriage return)	45 2D 055 - -	77 4D 115 6#77; M 109 6D 155 6#109; M
14 E 016 <mark>SO</mark> (shift out)	46 2E 056 . .	78 4E 116 N N 110 6E 156 n n
15 F 017 SI (shift in)	47 2F 057 / /	79 4F 117 6#79; 0 111 6F 157 6#111; 0
16 10 020 DLE (data link escape)	48 30 060 0 0	80 50 120 P P 112 70 160 p p
17 11 021 DC1 (device control 1)	49 31 061 1 1	81 51 121 Q Q 113 71 161 q q
18 12 022 DC2 (device control 2)	50 32 062 2 2	82 52 122 R R 114 72 162 r r
19 13 023 DC3 (device control 3)	51 33 063 3 3	83 53 123 6#83; <mark>5</mark> 115 73 163 6#115; 5
20 14 024 DC4 (device control 4)	52 34 064 4 4	84 54 124 T T 116 74 164 t t
21 15 025 NAK (negative acknowledge)	53 35 065 5 5	85 55 125 6#85; <mark>U</mark> 117 75 165 6#117; <mark>u</mark>
22 16 026 SYN (synchronous idle)	54 36 066 6 6	86 56 126 V V 118 76 166 v V
23 17 027 ETB (end of trans. block)	55 37 067 7 7	87 57 127 6#87; ₩ 119 77 167 6# 119; ₩
24 18 030 CAN (cancel)	56 38 070 8 8	88 58 130 X X 120 78 170 x X
25 19 031 EM (end of medium)	57 39 071 9 9	89 59 131 6#89; Y 121 79 171 6#121; Y
26 1A 032 SUB (substitute)	58 3A 072 ::	90 5A 132 6#90; Z 122 7A 172 6#122; Z
27 1B 033 ESC (escape)	59 3B 073 ;;	91 5B 133 [[123 7B 173 { {
28 1C 034 FS (file separator)	60 3C 074 < <	92 5C 134 \ \ 124 7C 174
29 lD 035 <mark>GS</mark> (group separator)	61 3D 075 = =	93 5D 135]] 125 7D 175 } }
30 1E 036 RS (record separator)	62 3E 076 >>	94 5E 136 ^ ^ 126 7E 176 ~ ~
31 1F 037 <mark>US</mark> (unit separator)	63 3F 077 ? ?	95 5F 137 6#95; _ 127 7F 177 6#127; DEL

Source: www.LookupTables.com

Kompresija podataka

* Kompresija podataka za diskretne izvore bez memorije

- Izvor emituje niz simbola od kojih svaki pripada konačnom skupu (alfabet koji čini q simbola)
- Diskretan izvor: štampani tekst, niz nula i jedinica koje generiše neki senzor,...
- Sve od izlaza interfejsa izvora u predajniku do ulaza interfejsa izvora u prijemniku predstavlja binarni kanal u njega ulaze i iz njega izlaze nule i jedinice (pri prenosu se javlja greška ako uđe 0 a izađe 1 i obrnuto)
- Štampani tekst treba pretvoriti u niz nula i jedinica <u>MINIMALNE DUŽINE</u>!

* Interfejs izvora = koder izvora = statistički koder!

Kada tekst može da se komprimuje?

- * Moramo znati još nešto o izvoru da bi svaki simbol predstavili sa manjim brojem simbola (kraćom binarnom sekvencom).
- * Ako znamo da izvor ne emituje ništa osim ovih šest simbola, ali ne znamo ništa o jeziku na kome je pisan (čak ni strukturu jezika, koje slovo se koliko često pojavljuje)?
 - Optimalan je binarni kod!
 - $A\rightarrow000$, $B\rightarrow001$, $C\rightarrow010$, $D\rightarrow011$, $E\rightarrow100$, $F\rightarrow101$.
- * Možda će se pojaviti još neko slovo ali znamo da je tekst pisan na engleskom jeziku
 - Morze je primetio da se neka slova pojavljuju češće
 - Logička predstava slova i brojeva pomoću dva simbola (tačka i crta)

•
$$A \rightarrow . \rightarrow 01$$

•
$$B \rightarrow -... \rightarrow 1000$$

•
$$C \rightarrow -.-. \rightarrow 1010$$

•
$$D \rightarrow -... \rightarrow 100$$

•
$$E \rightarrow . \rightarrow 0$$

•
$$F \rightarrow ... \rightarrow 0010$$

Diskretni izvor bez memorije

* Opisuju se:

Skupom mogućih poruka

$$S = \{s_1, s_2, ..., s_q\}$$

• Verovatnoćama pojavljivanja pojedinih simbola iz ovog skupa

$$P(s_i), i=1, 2, ..., q.$$

* Primer:

- Izvor emituje q=6 simbola A, B, C, D, E, F
- Verovatnoće pojavljivanja

$$P(A)=0.5, P(B)=0.2, P(C)=0.1, P(D)=0.1, P(E)=0.07, P(F)=0.03$$

• Primer sekvence (samo jedna realizacija slučajnog procesa):

ADAABABCAEBAAACCBAFADABADABAEA

Claude Shannon

- * Šenon je definisao količinu informacija u poruci, a srednja količina informacija po poruci je entropija. Ona predstavlja meru neizvesnosti o poruci koju će izvor emitovati.
- * Imajući u vidu statističko kodovanje Šenon je pokazao vezu entropije i minimalnog broja signala po poruci potrebnog za predstavljanje informacija koje emituje izvor.
- * Time se postavljaju granice do kojih je moguće obaviti kompresiju.

Claude Shannon - Father of the Information Age https://www.youtube.com/watch?v=z2Whj_nL-x8

The Man Who Turned Paper Into Pixels https://www.youtube.com/watch?v=Q8rVJZ-VDKQ

Tech Icons: Claude Shannon https://www.youtube.com/watch?v=z7bVw7lMtUg

Ultimate Useless Machinehttps://www.youtube.com/watch?v=vIlAmkmHX60

Količina informacija

* Informacija može imati više značenja

- sintaktički nivo poruka nosi informacije ako na strani prijema postoji neizvesnost o tome koja će poruka biti primljena.
- semantički nivo zahteva se da korisnik razume značenje poruke (da je shvati)
- pragmatički nivo razmatra se vrednost informacija (korist koju izvlači korisnik)
- * Najjednostavniji način pomoću logaritma

$$Q(s_i) = \log(1/P(s_i))$$

* Funkcija mora da zadovolji sledeće

- Količina informacija ne može biti negativna.
- Ako je verovatnoća pojave simbola ravna jedinici, događaj je siguran i simbol ne nosi nikakvu informaciju prijemniku log(1)=0;
- Ako su simboli nezavisni, količine informacija koju oni nose se sabiraju

$$Q(s_i s_k) = \log(1/P(s_i, s_k)) = \log(1/[P(s_i)P(s_k)]) = Q(s_i) + Q(s_k)$$

- * Ako je baza logaritma 2 jedinica je Šenon (Claude Shannon).
- * Prethodni primer:

$$Q(A) = log_2(1/0.5) = ld(2) = 1[Sh], Q(F) = ld(1/0.03) = 5.06[Sh], ...$$

Entropija

- * Entropija predstavlja prosečnu "meru neizvesnosti (neopredeljenosti)" posmatrača o tome šta će izvor da emituje.
 - Emitovanjem pojedinih simbola izvor emituje u proseku tačno potrebnu količinu informacija i upravo potpuno razrešava ovu neizvesnost.

$$H(S) = \overline{Q(s_i)} = \sum_{i=1}^q P(s_i)Q(s_i) = \sum_{i=1}^q P(s_i)\operatorname{ld}\left(\frac{1}{P(s_i)}\right) = -\sum_{i=1}^q P(s_i)\operatorname{ld}P(s_i) \quad \left[\frac{\operatorname{Sh}}{\operatorname{simb}}\right].$$

* Primer

$$H(S)=P(A)Q(A)+P(B)Q(B)+P(C)Q(C)+P(D)Q(D)+P(E)Q(E)+P(F)Q(F)$$

=0.5*1[Sh]+0.2*2.32[Sh]+...+0.03*5.06[Sh]=2.05 [Sh/simb]

Hafmenov postupak

- Hafmenov kod koji odgovara izvoru koji:
 - Emituje šest simbola
 - Verovatnoće zadate u drugoj koloni tabele
- Postupak
 - Poređati po opadajućim verovatnoćama
 - Sažimati po dva simbola i dati im isti prefiks

si	P(s _i)	Xi	s_i	$P(s_i)$	Xi	si	P(s _i)	Xi	s _i	P(s _i)	Xi	Si	$P(s_i)$	\mathbf{x}_{i}
s_1	0.5	0	sı	0.5	0	s_1	0.5	0	s_1	0.5	0	s_1	0.5	0
s_2	0.2	11	s_2	0.2	11	s_2	0.2	11	S3S4S5 S6	0.3*	10	s ₂ s ₃ s ₄ s ₅ s ₆	0.5*	1
s ₃	0.1	101	s ₃	0.1	101	S4S5 S6	0.2*	100	s_2	0.2	11			
S4	0.1	1000	s_4	0.1	1000	S ₃	0.1	101						
S ₅	0.07	10010	S ₅ S ₆	0.1*	1001									
Só	0.03	10011												

Srednja dužina kodne reči, efikasnost koda

- Srednja dužina kodne reči:

$$L_{sr} = 0.5*1 + 0.2*2 + 0.1*3 + 0.1*4 + 0.07*5 + 0.03*5 = 2.1 [b / simb]$$

- Entropija izvora

$$H(s) = \sum_{i=1}^{6} P(s_i) ld \frac{1}{P(s_i)} = 2.0502 \left[\frac{Sh}{simb} \right]$$

-Efikasnost

$$\eta = \frac{H(s)}{Lsr} \cdot 100\% = 97.63\%$$

- Stepen kompresije

$$\rho = \frac{\lceil ld(q) \rceil}{Lsr} = \frac{3}{2.1} = 1.4285$$

Predstava pomoću stabla, drugi primer

- Deset simbola izvorne liste, verovatnoće su im bitno različite!
- Dužina kodne reči bitno zavisi od verovatnoće pojavljivanja simbola kome je reč pridružena.

Jedinstvenost rešenja?

* Doctunal iluctrovan tabalom.

Si	P(s _i)	Xi	Si	$P(s_i)$	Xi	Si	P(s _i)	Xi	s _i	P(s _i)	Xi	Si	P(s _i)	Xi
s ₁	0.5	0	s_1	0.5	0	s ₁	0.5	0	s ₁	0.5	0	s ₁	0.5	0
s_2	0.2	11	s_2	0.2	11	s_2	0.2	11	S3S4S5 S6	0.3*	10	s ₂ s ₃ s ₄ s ₅ s ₆	0.5*	1
S ₃	0.1	1000	S ₅ S ₆	0.1*	101	S ₃ S ₄	0.2*	100	S ₂	0.2	11			
s ₄	0.1	1001	S ₃	0.1	1000	S ₅ S ₆	0.1	101						
S ₅	0.07	1010	s_4	0.1	1001									
s ₆	0.03	1011												

* Kodno stablo

Da li je ovo rešenje bolje?

* Srednja dužina kodne reči:

$$L_{sr} = 0.5*1 + 0.2*2 + 0.1*4 + 0.1*4 + 0.07*4 + 0.03*4 = 2.1 [b / simb]$$

* Entropija izvora

$$H(s) = \sum_{i=1}^{6} P(s_i) ld \frac{1}{P(s_i)} = 2.0502 \left[\frac{Sh}{simb} \right]$$

* Efikasnost nije maksimalna, moguće je postići veću kompresiju!

$$\eta = \frac{H(s)}{Lsr} \cdot 100\% = 97.63\%$$

* Iako je ovde postignut isti stepen kompresije kao i za prethodno rešenje, maksimalni stepen kompresije određen je entropijom!

$$\rho_{\text{max}} = \frac{\lceil ld(q) \rceil}{H(S)} = \frac{3}{2.05} = 1.4634$$

Toplogije stabla

* Predstava koda koje odgovara prvom rešenju:

Stablo koje odgovara drugom mogućem rešenju koje ima istu srednju dužinu kodne reči:

Sibling property

* Ako je binarni prefiks Hafmenov kod, kodno stablo ima sledeću osobinu:

- Svaki čvor (osim korena) povezan je sa čvorom porekla, ili "roditeljskim" čvorom, koje se nalazi jedan hijerarhijski nivo iznad njega. Da bi osobina bila zadovoljena, potrebno da se svi čvorovi odozdo nagore i sleva nadesno mogu sortirati po neopadajućim (ili u obrnutom poretku po nerastućim) verovatnoćama.
- Primer jednog stabla (prikazano levo) koje ovo zadovoljava i jednog kodnog stabla (prikazano desno) koje ne zadovoljava pomenutu osobinu.

Robert Fano

- * Predstavu koda pomoću stabla je predložio Fano (*Robert Fano*), koji je u vreme nastanka Teorije informacija sarađivao sa Šenonom i već 1952. godine držao kurs (*Information Theory Course*) iz ove naučne discipline na doktorskim studijama na MIT (*Massachusetts Institute of Technology*).
- * Šenon i Fano su predložili prvi praktičan algoritam statističkog kodovanja (Šenon-Fanoov postupak) i on je bio skoro optimalan.

Robert Fano – interviewhttps://www.youtube.com/watch?v=Rfdbk663L0I

Project MAC (1963), saradnici Marvin Minsky, John McCarthy (smislio programski jezik Lisp):

- operating systems
- artificial intelligence
- theory of computation

David Huffman

- * Hafmenov algoritam nastao je kao rezultat seminarskog rada Dejvida Hafmena koji je urađen u okviru ispita koji je polagao na pomenutom predmetu na MIT koji je polagao kod profesora Fanoa.
- * Ovaj studentski rad je 1952. godine objavljen u formi naučnog rada.

Proširenje izvora, entropija proširenja

- * Ako se umesto pojednih simbola posmatraju sekvence od po 2, 3 ili više (n) sukcesivnih simbola, tada se kaže da se posmatra drugo, treće ili n-to proširenje izvora.
 - Ono se obično obeležava sa S^n a broj njegovih simbola je upravo q^n .
 - Drugim rečima, *n*-to proširenje izvora je izvor čiji su simboli sekvence od po *n* simbola prvobitnog izvora.

* Primer

- Originalni izvor emituje poruke iz skupa $S=\{A, B, C\}$ sa verovatnoćama P(A)=1/2, P(B)=1/4, P(C)=1/4;
- Proširenje izvora "emituje" složene simbole iz sledećeg skupa: S²={AA, AB, AC, BA, BB, BC, CA, CB, CC}.
- Računa se na osnovu verovatnoća složenih simbola $\sigma_i = s_i s_k$, za izvore bez memorije važi $P(s_i, s_k) = P(s_i)P(s_k)$.

```
H(S)=1/2*1+1/4*2+1/4*2=1.5 [Sh/simb]
P(AA)=0.5*0.5=0.25,..., P(CC)=0.25*0.25=0.0625
H(S<sup>2</sup>)=0.25*ld(4)+...+0.0625*ld(16)=3 [Sh/simb]= 2H(S).
```

Prva Šenonova teorema

- * Ako u tekstu postoji suvišnost, ona se može otkloniti kompresijom.
 - Koliki stepen kompresije se maksimalno može postići?
 - Kolika je minimalna dužina kodne reči a da se sačuva kompletna informacija (da kod bude nedestruktivan)?
- * Prva Šenonova teorema dovoljnim proširivanjem reda izvora i njegovim kodiranjem može se postići proizvoljno visoka efikasnost:

$$\lim_{n\to\infty}\frac{L_{sr,n}}{nH(s)}=1$$

- Ovaj izraz važi i za izvore s memorijom!
- Kompresija može najviše ići do nivoa gde se svaki simbol u proseku predstavlja sa onoliko bita koliko iznosi entropija izvora.

Hafmenov kod primenjen na proširenje izvora

* Posmatra se izvor koji emituje dva simbola sa sledećim verovatnoćama:

si	s ₁	s 2
P(si)	0.7	0.3

- * Potrebno je izvršiti binarno statističko kodovanje (po Hafmenovom postupku) izvora informacija, njegovog drugog i trećeg proširenja. Odrediti efikasnost svakog od postupaka i uporediti rezultate sa postavkom Prve Šenonove teoreme.
 - Postupak statističkog kodovanja elemenata liste originalnog izvora je trivijalan:
 - Entropija originalnog izvora, srednja dužina kodne reči i efikasnost

$$H(s) = 0.7ld \frac{1}{0.7} + 0.3ld \frac{1}{0.3} = 0.8813 \text{ Sh/simb}$$

$$L_{sr} = 0.7*1 + 0.3*1 = 1 \text{ b/simb}$$

$$\eta = \frac{0.8813}{1} \cdot 100\% = 88.13\%$$

Hafmenov kod primenjen na proširenje izvora

- * Ako se umesto pojednih simbola posmatraju sekvence od po 2, 3 ili više (n) sukcesivnih simbola, tada se kaže da se posmatra drugo, treće ili n-to proširenje izvora.
 - Ono se obično obeležava sa S^n a broj njegovih simbola je upravo q^n .
 - Drugim rečima, *n*-to proširenje izvora je izvor čiji su simboli sekvence od po *n* simbola prvobitnog izvora.
- * Postupak statističkog kodovanja elemenata liste II proširenja izvora:

s_i	P(s _i)	\mathbf{x}_{i}	si	P(s _i)	Xi	si	P(s _i)	x_i
$\sigma_1 = s_1 s_1$	0.49	1	$\sigma_{\rm l}$	0.49	1	$\sigma_2 \sigma_3 \sigma_4$	0.51*	0
$\sigma_2 = s_1 s_2$	0.21	01	$\sigma_{_{3}}\sigma_{_{4}}$	0.30*	00	$\sigma_{_{1}}$	0.49	1
$\sigma_3 = s_2 s_1$	0.21	000	σ_2	0.21	01			
$\sigma_4 = s_2 s_2$	0.09	101						

• Entropija II proširenja, srednja dužina kodne reči i efikasnost

$$H^{2}(s) = 2H(s) = 1.7626 \text{ Sh/simb}$$

$$L_{sr} = 0.49*1 + 0.21*2 + 0.21*3 + 0.09*3 = 1.81 \text{ b/simb}$$

$$\eta = \frac{1.7626}{1.81} \cdot 100\% = 97.38\%$$

Prva Šenonova teorema – primer 2

- * Posmatrajmo binarni izvor bez memorije sa verovatnoćama pojavljivanja simbola P(0)=0.99 i P(1)=0.01.
 - Originalni izvor ima entropiju H(S)=0.0808. On se može kodovati trivijalnim Hafmenovim kodom 0->0, 1->1, čime se jedan simbol izvorne liste predstavlja sa jednim bitom, pa je L_{sr} =1. Efikasnost je 8.08% a stepen kompresije 0%.
 - Drugo proširenje sastoji se od četiri simbola sa verovatnoćama P(00)=0.9801, P(01)=0.0099, P(10)=0.0099 i P(11)= 10^{-4} i entropijom H(S)=0.1616. Srednja dužina kodne reči je L_{sr} =1.0299. Efikasnost je 15.7%.
 - Sa povećanjem reda proširenja efikasnost teži maksimalnoj vrednosti i postignuti stepen kompresije znatno raste.
 - U slučaju petog proširenja biće P(00000)=(0.99)⁵=0.951 i ovom simbolu će biti dodeljena kodna reč '0', dok će preostale petobitne kombinacije iz izvorne liste imati znatno manje verovatnoće. To tnači da će pet nula iz izvorne liste biti zamenjene jednim binarnim simbolom iz kodne liste a da se ne izgubi informacija koja se prenosi!
 - Pri dovoljno velikom proširenju **100 simbola iz izvorne liste mogu se zameniti sa nešto više od osam simbola kodne liste** (i jedno i drugo su biti). Ova tvrdnja nije ništa drugo nego nešto drugačije interpretirana I Šenonova teorema!

Šta znači da izvor ima memoriju?

- Prethodni izraz važi samo za izvore bez memorije!
- Ako uvek važi P(B)=P(B/A), za koji par uzastopno emitovanih simbola A i B, onda se može reći da izvor nema memoriju. Tada važi i P(A,B)=P(A)P(B).
- Bitne verovatnoće:

$$P(B) \approx 6/30 = 0.2$$

ADAABABCAEBAAACCBAFADABADABAEA

P(B/A)≈3/12=0.25 (nepreklapajući parovi)

<u>ADAABABCAEBAAACCBAFADABADABAE</u>A

P(B/A)≈3/14=0.21 (preklapajući parovi)

• Treba posmatrati preklapajuće kombinacije, ali to nije previše bitno koji se pristup usvoji ako je uzorak dovoljno veliki.

Izvori sa memorijom m-tog reda

- * Verovatnoća emitovanja trenutnog simbola zavisi od verovatnoća prethodnih *m* emitovanih simbola:
 - Štampani tekst:

TELEKOMUNIKACIJE

- Praktično svi izvori slučajnog signala u prirodi.
- * Entropija izvora s memorijom *m*-tog reda:

$$H_{m}(S) = \sum_{j=1}^{q} \sum_{i_{1}=1}^{q} \sum_{i_{2}=1}^{q} \cdots \sum_{i_{m}=1}^{q} P(s_{i_{1}}, s_{i_{2}}, ..., s_{i_{m}}, s_{j}) \operatorname{ld}\left(\frac{1}{P(s_{j} / s_{i_{1}}, s_{i_{2}}, ..., s_{i_{m}})}\right) = \sum_{S^{m+1}} P(s_{i_{1}}, s_{i_{2}}, ..., s_{i_{m}}, s_{j}) \operatorname{ld}\left(\frac{1}{P(s_{j} / s_{i_{1}}, s_{i_{2}}, ..., s_{i_{m}})}\right).$$

Entropija izvora s memorijom prvog reda:

$$H_1(S) = \sum_{j=1}^{q} \sum_{i=1}^{q} P(s_i, s_j) \operatorname{ld} \left(\frac{1}{P(s_j / s_i)} \right)$$

Primer izvora sa memorijom

- * Govor, odnosno štampani tekst je jedan od najvažnijih primera diskretnog niza s memorijom.
- * Entropije za neke jezike date su u tabeli:
 - H_{max} kad bi sva slova bila jednako verovatna
 - H₀ bez memorije, poznate verovatnoće pojavljivanja slova
 - H₁ verovatnoća pojave svakog slova zavisi samo od prethodnog

Jezik (tekst)	Razmak	H_{max}	H_0	H_1	H_2
srpski	da	4,95	4,24	3,41	-
hrvatski	da	4,76	4,19	3,59	3,10
ruski	da	5,00	4,05	3,52	3,01
engleski	ne	4,70	4,14	3,56	3,30
engleski	da	4,76	4,03	3,32	3,10
francuski	da	4,76	3,95	3,17	2,83
nemački	da	4,76	4,04	3,42	2,82

Suvišnost (redundansa)

* Suvišnost (redundansa)

$$R = \frac{H_{\text{max}} - H}{H_{\text{max}}} \cdot 100 = \left(1 - \frac{H}{H_{\text{max}}}\right) 100 [\%],$$

- * Procenjena entropija i suvišnost za neke jezike:
 - Veliki deo konstrukcija u svakom jeziku je predvidiv;
 - Nije neophodno preneti baš svako slovo da bi razumeli poruku:

Suvišnost obično iznosi preko 70%

Jezik	Entropija [Sh/simb]	Suvišnost [%]
engleski	1,30	72,7
ruski	1,37	72,6
francuski	1,40	70,6

Zašto je ovo bitno?

- * Želimo da potrošimo minimalnu količinu memorije za skladištenje SMS poruke u memoriji telefona
 - Omogućava da se skladišti veći broj poruka, audio i video zapisa na istom prostoru!
- * Što je binarna sekvenca kraća, potrebno je manje vremena da se prenese ako je brzina signaliziranja ista
 - Omogućava da se poruka brže pošalje!

Hafmenov algoritam za izvore s memorijom

* Nema imamo izvor sa memorijom prvog reda, pri čemu su simboli jednakoverovatni a tranzicione verovatnoće su P(0/1)=P(1/0)=0.99 i P(0/0)=P(1/1)=0.01

$$H(S) = 0.99 \times \text{ld} \frac{1}{0.99} + 0.01 \times \text{ld} \frac{1}{0.01} = 0.0808 [Sh/simb]$$

* Primena Hafmenovog algoritma:

- Na originalni izvor -> Lsr=1 [bit/simb], efikasnost je 8.08%. Iako su simboli jednakoverovatni pa je entropija pridruženog izvora 1 [Sh/simb], efikasnost je mala zbog prisustva memorije.
- Na II proširenje -> P(00)=0.5*0.01=0.005, P(01)=0.5*0.99=0.495, P(10)=0.5*0.99=0.495, P(11)=0.5*0.01=0.005 pa je entropija pridruženog izvora 1.0808 [Sh/simb] dok je sama entropija originalnog izvora H(S)=0.1616 [Sh/simb]. Sada je Lsr=1.488 [bit/simb], pa je efikasnost nešto veća i iznosi 10.86%.
- Iako je Hafmenov algoritam dizajniran za izvore bez memorije, proširenjem izvora implicitno se uzima u obzir prisustvo memorije!

Deterministička binarna sekvenca

* Odrediti entropiju sekvence

* Očigledno je u pitanju izvor prvog reda pa je dijagram stanja i izraz za entropiju isti kao u prethodnom primeru

$$H(S) = 0.5*0*1d\frac{1}{0} + 0.5*1*1d\frac{1}{1} + 0.5*1*1d\frac{1}{1} + 0.5*0*1d\frac{1}{0} = 0[Sh/simb]$$

- * Pošto je entropija jednaka nuli, jasno je da ovaj izvor ne emituje informacije!
 - U pitanju je deterministički signal, on ne nosi informaciju!

Primer izvora s memorijom

- * Neka je na jednom parking mesta postavljen senzor koji svake minute očitava da li je to parking mesto zauzeto.
- * Ako je mesto slobodno emituje se binarna nula, a u suprotnom se emituje binarna jedinica.

Kodovi koji uzimaju u obzir memoriju izvora

* Hafmenov algoritam ima nekoliko nedostataka:

- osetljivost na gubljenje sinhronizacije
- potreba za poznavanjem statistike sekvence koja se prenosi
- najozbiljniji nedostatak Hafmenovog postupka je što se izvor tretira kao izvor bez memorije.
- * Tačnije rečeno, ako je u pitanju izvor s memorijom, ne koriste se statističke zavisnosti koje postoje u sekvenci izvornih simbola.
- * Efikasnost se može povećati proširivanjem izvora, ali se može desiti da se tek pri proširenju višeg reda dobija kod koji ima željenu efikasnost.
 - Pri takvom proširenju broj kodnih reči može da bude veoma veliki.
 - Uzimanje u obzir statističke zavisnosti u sekvenci može se postići ako se verovatnoće simbola proširenog izvora ne računaju na osnovu prostih verovatnoća pojavljivanja (kao da je izvor bez memorije), već se dobijaju statističkom obradom poruke koju treba kodovati.
 - Da bi ove verovatnoće bile pouzdane za proširenja višeg reda potrebna je poruka velike dužine.

Univerzalni kod, kompleksnost

- * Ovo dovodi do ideje formiranja pojma univerzalnog koda. To je kod koji vrši kompresiju prenošene sekvence bez apriornog poznavanja njenih statističkih osobina (termin je uveo Andrej Nikolajevič Kolmogorov).
 - Sekvenca može da bude i nestacionarna. U koderu se formira, na osnovu poznatog dela poruke, koji je već ušao u koder, model na osnovu koga se vrši kompresija.
 - U principu ovaj model je adaptivan, tj. stalno prati statističke osobine poruke koja se koduje. U slučaju izvora bez memorije može se približiti po performansama kompaktnom kodu, a u ostalim slučajevima vrši se adaptacija na tekuću statistiku sekvence.
- * S gledišta Teorije informacija može se smatrati da je kompleksnost neke sekvence simbola ravna potrebnom broju bita da se ona opiše. Ovako definisana kompleksnost bi bila jednaka količini informacija koju nosi ta sekvenca.
 - Kolmogorov je uveo *računsku kompleksnost (comutational complexity)* za neku sekvencu i ona je ravna minimalnoj dužini programa, na nekom osnovnom programskom jeziku, nezavisno od korišćenog računara, kojom se može generisati (odštampati) ta sekvenca.

Kompleksnost

- * Ako je niz potpuno slučajan, tada dužina sekvence odgovara i dužini najkaćeg opisa sekvence.
 - * U slučaju stacionarnog diskretnog procesa bez memorije pokazuje se da srednja vrednost algoritamske kompleksnosti teži entropiji kada dužina sekvence neograničeno raste.
- * Lempel-Zivov algoritam se može shvatiti kao pokušaj da se napiše program kojim će dekoder (na prijemu) generisati sekvencu komprimovanu od strane kodera na predaji
 - * Lempel-Zivov (LZ) postupak kodovanja je jedna vrsta univerzalnog kodovanja u okviru koje ne postoji eksplicitni model. Osnove LZ kodovanja date su u radovima Abrahama Lempela i Jakoba Ziva 1977. godine i 1978. godine (LZ77, LZ78, LZW)

Lempel Zivov (LZ) algoritam

* Dve faze:

- Prvo se formira rečnik na osnovu dela sekvence koju emituje izvor;
- Kada je rečnik jednom formiran, on se koristi za kompresiju ostalog dela sekvence koju emituje izvor.

* Obično se koristi za kompresiju teksta

- * Na prvih 256 pozicija slova, brojevi i specijalni znaci (prošireni ASCII).
- * Poznavanje ovog (manjeg, standardnog i nezavisnog od statistike prenošene sekvence!) dela rečnika je potreban i dovoljan uslov da se rekonstruiše rečnik i izvrši dekompresija samo na osnovu presretnute sekvence!
- * Ukupna veličina rečnika je obično 2048 ili 4096 adresa, pa se svaki složeni simbol upisan u rečnik predstavlja kombinacijom od 11 ili 12 bita.

LZW, kompresija

<u>abbaaba</u> bb**abb**abb ->0110242 366 (tj. 000 001 000 010 100 010 011 110 110)

set w = NIL
loop

read a character K
if wK exists in the dictionary
w = wK
else

output the code for w
add wK to the string table
w=K
endif
end loop

reč	nik					
adresa	sadržaj	W	k	wk	?	out
0	a					
1	b	nil	a	a	+	
		a	b	ab	-	0
2	ab	b	b	bb	-	1
3	bb	b	a	ba	-	1
4	ba ba	a	a	aa	-	0
5	aa	a	b	ab	+	
		ab	b	abb	-	2
6	abb	b	a	ba	+	
		ba	a	baa	-	4
7	baa	a	b	ab	+	
		ab	a	aba	-	2

LZ vs. Hafmen

* Neka je sekvenca koju treba komprimovati

abababababababa...

- * ukupno:
 - dve podsekvence dužine 2 (ab,ba)
 - dve podsekvence dužine 3 (aba,bab)
 - dve podsekvence dužine 4 (abab,baba)

*	Ako	rečnik ima	16 adresa	(sa 4 bita)
---	-----	------------	-----------	-------------

- -> na adr 14. i 15. će biti sekvence dužine 8
- * Ako rečnik ima 4096 adresa (sa 12 bita)
 - -> na adr 4094. i 4095. će biti sekvence dužine 2048!

rečnik									
adresa	sadržaj								
0	a								
1	b								
2	ab								
3	ba								
4	aba								
5	abab								
6	bab								
7	baba								
8	ababa								

^{*} U realnosti rečnik ima ukupno 4096 pozicija, prvih 256 pozicija osnovni simboli (0-255) a na pozicijama (256-4095) izvedeni simboli.

^{*} Naravno, statistička zavisnost je znatno manja nego u navedenom primeru ali je sasvim dovoljna da za štampani tekst radi bolje nego Hafmen.

Prednosti LZ algoritma

- * LZ postupci kompresije primenjeni na engleski tekst postižu kompresiju od oko 55%, tj. toliko smanjuju broj potrebnih bita, dok primena Hafmenovog postupka na istom uzorku daje kompresiju od oko 43%.
 - Objašnjenje je jednostavno. LZ algoritmi uzimaju u obzir statističku zavisnost, dok Hafmenov postupak tretira tekst kao statistički nezavisan niz.
- * Osim ove osobine, koja je obično presudna za izbor statističkog koda, Lempel-Zivov algoritam ima bar još dve velike prednosti u odnosu na Hafmenov algoritam:
 - Njegova programerska realizacija je znatno jednostavnija (kako u koderu, tako i u dekoderu). Da bi se u ovo uverio, čitaocu se predlaže da napiše program koji vrši Hafmenovo kodovanje izvora koji emituje proizvoljan broj simbola sa zadatim verovatnoćama pojavljivanja.
 - Kod Lempel-Zivovog postupka ne postoji problem sinhronizacije svaki segment smešten na određenu memorijsku lokaciju predstavlja se kodnom reči fiksne dužine $\log_2(M)$, pri čemu M označava veličinu rečnika.

Primena LZ i Hafmenovog algoritma

- * LZ77 u kombinaciji sa Hafmenovim algoritmom čini osnovu praktično svih komercijalno dostupnih alata za kompresiju teksta (ZIP, WINZIP, ARJ, LHA, ...). LZW algoritam se koristi pri kompresiji slike i čini osnovu GIF formata.
- * U novije vreme se pojavljuju algoritmi koji na optimalan način kombinuju LZ77 i Hafmenov algoritam npr. DEFLATE algoritam, koga je smislio *Phil Katz* s namerom da unapredi ZIP postupak, standardizovan je 1996. godine a danas se koristi u GZIP postupku kompresije teksta i PNG formatu zapisa statične slike.
- * Primenom ovakvih algoritama za neke vrste podataka praktično je dostignut maksimalno mogući stepen kompresije (dostignuta je granica određena entropijom).
- * Moguć je i veći stepen kompresije statične i pokretne slike ili audio zapisa, ali su u pitanju destruktivne metode kojima se žrtvuje kvalitet nauštrb smanjenja veličine odgovarajućih fajlova najpoznatiji ovakvi algoritmi su razne varijante JPEG i MPEG standarda.

Primene algoritama za kompresiju

PRIMENE:

 Nedestruktivna kompresija pisanog teksta ili slike obično se zasniva na LZ kodovima (LZ77, LZW) ili kombinaciji LZ/Hafmen.

Utility	Format	Compression
pkarc (DOS) arc (Unix, Mac, etc.)	.arc, .ark	LZW
arj (DOS)	.arj	LZ77 + hashing, secondary static Huffman
Compuserve GIF	.gif	LZW
gzip	.gz	LZ77 + hashing, secondary static Huffman
lha, lharc	.lha, .lhz	LZ77 + tries, secondary static Huffman
squeeze (DOS)	.sqz	LZ77 + hashing
pkzip (DOS) zip (Unix) WinZip (Windows)	.zip	LZ77 + hashing, secondary static Huffman
zoo (DOS/Mac/Unix)	.Z00	LHA
freeze (Unix)	.F	LZ77 + hashing, secondary adaptive Huffman
yabba (Unix)	.Y	LZ78 variant
compress (Unix)	.Z	LZW

JPEG:

- 1. do irreversible compression on colour channels
- 2. compute the *Discrete Cosine Transform* for
- 3. "reduce" the DCT output: more reduction
- 4. Huffman encode the reduced output

MPEG:

- 1. do irreversible compression on colour channels (not on shade channel)
- 2. for each block of 16x16 in a frame, try to find a "similar" block in a previous (*or future*)
- 3. store the differences between blocks instead of storing entire blocks
- 4. Huffman encode the whole thing

Run Length i diferencijalno kodovanje

- * Jednostavan algoritam kompresije koji se koristi kada u nizu podataka koji emituje izvor postoji veliki broj simbola koji se uzastopno ponavljaju.
- * Ovaj algoritam je prvi put primenjen za kompresuju radarske slike koja je generisana na meteorološkim stanicama, zatim se koristio pri prenosu televizijske slike [26], a od strane provajdera *Compuserve* je bio predložen u jednom od prvih formata za kompresiju slike.
- * Zasniva se na principu da se dugi niz bita šalje kao jedan podatak, a osnovna prednost algoritma je izuzetna jednostavnost. Kodovanje je brzo, dekodovanje je izuzetno jednostavno, a kompresija se lako implementira (softverski ili hardverski). Ilustracije radi, sledećem nizu *m* koji emituje izvor odgovara sekvenca *c* na izlazu kodera

* Često se koristi i diferencijalni kod, kod koga se koduje razlika dva simbola koja emituje izvor $c_i = m_i - m_{i-1}$, čime se dobija

dok se pri dekodovanju primenjuje pravilo $m_i = c_i + c_{i-1}$ za i > 1, odnosno $m_1 = c_1$.

Aritmetički kod

* Peter Elias (profesor MIT, tvorac konvolucionih kodova) je početkom šezdesetih godina XX veka predložio da se blokovi ulaznih simbola koduju združeno stvarajući jedinstvenu sekvencu kodovanih simbola, potencijalno kraću od sekvence koju proizvodi simbolski kod.

Pomenuti metod je prvi put dokumentovan u knjizi koju je pisao *Norman Abramson* (profesor na Stenfordu, smislio ALOHAnet) i kasnije unapređen u radovima gde se prvi put naziva *aritmetičkim kodom*. Naziv potiče od činjenice da se veći blok simbola, recimo 1 MB podataka, koduje jedinstvenim decimalnim brojem iz opsega

[0,1).

Aritmetički kod

- * Aritmetički kod je adaptacija igre pogađanja (*guessing game*) u kojoj se od učesnika traži da pogađa slovo po slovo unapred zadate rečenice, pritom zapisujući broj pokušaja koji je potreban da bi se slovo pogodilo.
- * Ovo je ilustrovano sledećom tabelom, gde su u gornjoj vrsti napisana slova (prema redosledu njihovog pojavljivanja), a u donjoj broj pokušaja koji je bio potreban da se odgovarajuće slovo pogodi.

N	e	-	p	u	c	a	j	-	t	o	p	o	m	-	k	o	m	a	r	c	a
1	2	1	12	3	4	1	1	1	9	3	6	1	1	1	16	2	15	1	1	1	1

- * Zbog semantičkih pravila jezika za pogađanje pojedinih slova potreban je različit broj pokušaja. Na primer, iako se slova "e" i "k" pojavljuju isti broj puta u posmatranoj rečenici (po jednom), prosečan igrač će znatno teže pogoditi slovo "k" kojim započinje nova reč.
- * Ako bi se posmatrana slova kodovala brojem pokušaja potrebnim za njihovo pogađanje, izlazni skup bi zadržao isti ukupan broj simbola 31 (30 slova i znak za razmak), jer je to ujedno i maksimalan broj pokušaja pogađanja karaktera. S druge strane, potencijal za kompresiju "sekvence pokušaja" bi se povećao, jer bi dominirale vrednosti koje odgovaraju malom broju pokušaja.

 Predrag Ivaniš, Elektrotehnički fakultet

Berouz-Viler transformacija, Bzip2

- * Berouz-Viler transformaciju naziva se po prezimenima autora (Michael Burrows, David Wheeler) i predložena je 1983. godine (nije objavljena) od strane Vilera a zaokruženo rešenje je publikovano 1994. godine..
- * Ova transformacija ne predstavlja kompresioni algoritam, već metod kojim se ulazni podaci rearanžiraju, tako da se poveća njihov kompresioni potencijal.

$$X = \begin{bmatrix} A & N & A & N & A & S \\ N & A & N & A & S & A \\ A & N & A & S & A & N \\ N & A & S & A & N & A \\ A & S & A & N & A & N \\ S & A & N & A & N & A \end{bmatrix} \Rightarrow Y = \begin{bmatrix} A & N & A & N & A & S \\ A & N & A & S & A & N \\ A & S & A & N & A & N \\ N & A & N & A & S & A \\ N & A & S & A & N & A \\ S & A & N & A & N & A \end{bmatrix}.$$

* Izlaz iz transformatora je sekvenca SNNAAA, koja ima veći stepen memorije nego originalna sekvenca, pa je pogodnija za kompresiju.

Berouz-Viler transformacija, Bzip2

- * Burrows, Michael; Wheeler, David J. (1994), A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation
 - David Wheeler University of Cambridge Computer Laboratory
 - Michael Burrows University of Cambridge, Microsoft, Google

* Danas se mnogo koristi u bioinformatici, gde se vrši fragmentacija i sekvenciranje DNK (next-generation sequencing, NGS)

Literatura

- [1] C. E. Shannon, "A mathematical theory of communication," *Bell System Technical Journal*, vol. 27, pp. 379-423, July 1948; pp. 623-656, October 1948.
- [2] T. M. Cover, J. A. Thomas, *Elements of Information Theory*, John Wiley & Sons, Inc., New York 1991.
- [3] N. Abramson, *Information Theory and Coding*, McGraw-Hill Book Company, New York 1963.
- [4] R. Fano, *Transmission of Information*, John Wiley & Sons, Inc. New York 1961.
- [5] D. A. Huffman, "A Method for the Construction of Minimum Redundancy Codes", *Proc. IRE*, Vol. 40 (1952), pp. 1098-1101
- [5] J. Ziv, A. Lempel, "A Universal Algorithm for Sequential Data Compression", *IEEE Trans. Inform. Theory*, Vol. IT-23 (1977), pp. 337-343
- [6] D. Drajić, P. Ivaniš, "*Uvod u teoriju informacija sa kodovanjem*", IV izdanje, Akademska misao, Beograd, 2018.
- [7] P. Ivaniš, "Zbirka rešenih zadataka iz teorije informacija i kodovanja", Akademska misao, Beograd, 2013.