1 Assignment - I

- 1. Define groupoid, semi group, monoid and group. Show the following by giving examples:
 - (a) groupoid but not semi-group
 - (b) semi group bun not monoid,
 - (c) monoid but not group
- 2. Prove that a group of order 3 is Abelian.
- 3. What is the order of an element of a group? Prove that order of an element divides the order of the group.
- 4. Write down the composition table for permutation on $S = \{1, 2, 3\}$. Hence, find the inverse of $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$.
- 5. Prove that any permutation of a finite set containing at least two elements can be written as the product of transpositions. Show that product of transpositions of a permutation is not unique.
- 6. Define cyclic group. Find all generators of the cyclic group $(\mathbb{Z}_9; +)$.
- 7. Prove that a non-empty subset H of a group G is a subgroup iff
 - (a) for any $a, b \in H$, $ab \in H$
 - (b) for $x \in H, x^{-1} \in H$
- 8. Find all the normal subgroups of the symmetric group S_3 .

Problem 1.1. Define groupoid, semigroup, monoid and group. Show the following by giving examples:

- 1. groupoid but not semigroup,
- 2. semigroup but not monoid,
- 3. monoid but not group

Solution.

Groupoid: A non-empty set of elements G is said to form a groupoid if in G is defined a binary operation called the product denoted by * such that $a * b \in G$ for all $a, b \in G$.

Here the binary operation * defined on the set G does not need to be associative, i.e., $(a*b)*c \neq a*(b*c)$ for all $a,b,c \in G$, so we can say that the groupoid (G,*) is a set on which is defined a non-associative binary operation which is closed on G.

Semigroup: Let S be a non-empty set. S is said to be a semigroup, if on S is defined a binary operation '·' such that

- 1. For all $a, b \in S$ we have $a \cdot b \in S$ (closure).
- 2. For all $a, b, c \in S$ we have $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associative law).
- (S, \cdot) is a semigroup.

Monoid: Let (S, \cdot) be a semigroup. If S contains an element e such that $e \cdot s = s \cdot e = s$ for all $s \in S$ then S is a monoid.

Group: A non-empty set G is called a group under an operation $(a, b) \to ab$ defined on $G \times G$ iff the following properties hold.

- 1. $ab \in G$ for all $a, b \in G$ (closure property)
- 2. (ab)c = a(bc) holds for all $a, b, c \in G$ (associative law)
- 3. There exists $e \in G$ such that ea = ae = a holds for all $a \in G$ (existence of identity)
- 4. For every $a \in G$ there exists $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = e$ (existence of inverse).

Groupoid but not semigroup:

Let us consider the set of integers \mathbb{Z} with an operation '-' on \mathbb{Z} that is usual subtraction; $(\mathbb{Z}, -)$ is a groupoid but not semigroup. Because, for all $a, b \in \mathbb{Z}$ under subtraction $a - b \in \mathbb{Z}$, but it does not satisfy associative law, i.e., $(a - b) - c \neq a - (b - c)$.

Semigroup but not monoid:

Let $\mathbb{Z}^+ = 1, 2, ..., \infty$. \mathbb{Z}^+ is a semigroup under addition. Now, $(\mathbb{Z}^+, +)$ is only a semigroup and not a monoid, because there is not any identity element (i.e., 0) in the set \mathbb{Z}^+ . For a semigroup to be monoid it has to have an identity element. So $(\mathbb{Z}^+, +)$ is only a semigroup and not a monoid.

Monoid but not group: