FOUR LECTURES ON SHEAVES OF DIVISORS

ZHENGYAO WU

Contents

1.	March 2nd, Stalks of étale sheaves	2
2.	March 9th, Zariski sheaves of meromorphic and rational functions	7
3.	March 16th, Zariski and étale sheaves of Cartier and Weil divisors	10
4.	March 30th, H^2 of regular schemes	14
References		17

Unlike [Tam94], we talk about stalks before sheaf of divisors.

0.1 Review

X a scheme. $X_{\text{\'et}}$ for the étale site of X.

 $\operatorname{PreSh}(X)$ the category of abelian presheaves on X.

 $\widetilde{X_{\mathrm{\acute{e}t}}}$ the category of abelian sheaves on $X_{\mathrm{\acute{e}t}}$.

 $f: X \to Y$ a morphism of sheaves.

 $f_{\text{PreSh}}: \text{PreSh}(X) \to \text{PreSh}(Y)$ the pushforward of presheaves. $f^{\text{PreSh}}: \text{PreSh}(Y) \to \text{PreSh}(X)$ the pullback of presheaves.

 $f_{\mathrm{Sh}}: \widetilde{X_{\mathrm{\acute{e}t}}} \to \widetilde{Y_{\mathrm{\acute{e}t}}}$ the pushforward of sheaves, left exact. $f^{\mathrm{Sh}}: \widetilde{Y_{\mathrm{\acute{e}t}}} \to \widetilde{X_{\mathrm{\acute{e}t}}}$ the pullback of sheaves, exact and commute with \lim_{\longrightarrow} .

Date: 2,9,16,30 March 2017.

1. March 2nd, Stalks of Étale sheaves

1.1 Definition

Let X be a scheme. A **geometric point** of X is a scheme $\xi = \operatorname{Spec}(\Omega)$ for some separably closed field Ω with a structure morphism $u : \xi \to X$.

Let $x = u(\xi)$. Then Ω is a separably closed extension of its residue field $\kappa(x)$.

1.2 Example

When Ω is a separable closure of $\kappa(x)$, we write $\Omega = \kappa(x)$ and $\underline{\xi} = \overline{x}$. In other words, given a point $x \in X$, we have a geometric point $\overline{x} = \operatorname{Spec}(\overline{\kappa(x)})$ over X.

1.3 Definition

Let $u: \xi \to X$ be a geometric point of X. Let $\Gamma_{\xi} = \Gamma(\xi, \bullet) : \widetilde{\xi_{\text{\'et}}} \to \mathbf{Ab}$ be the global section functor of ξ . We have $u^{\text{Sh}} : \widetilde{X_{\text{\'et}}} \to \widetilde{\xi_{\text{\'et}}}$.

(1) The functor fiber relative to ξ is the composition $\Gamma_{\xi} \circ u^{\operatorname{Sh}} : \widetilde{X_{\operatorname{\acute{e}t}}} \to \mathbf{Ab}$.

(2) Let $F \in \widetilde{X}_{\text{\'et}}$. We call $F_{\xi} = \Gamma_{\xi} \circ u^{\text{Sh}}(F) = \Gamma(\xi, u^{\text{Sh}}F)$ the **stalk** of F at ξ .

1.4 Example

Let G be an étale group scheme over X. Let $G_X = \operatorname{Hom}_X(\bullet, G)$. Let $u : \xi = \operatorname{Spec}(\Omega) \to X$ be a geometric point of X. Then

$$G_{X,\xi} = \Gamma(\xi, u^{\operatorname{Sh}}(G_X)) = \operatorname{Hom}_{\xi}(\xi, G \times_X \xi) \simeq \operatorname{Hom}_X(\xi, G) = G(\Omega)$$

1.5 Review

Let k be a field. Let \overline{k} be a separable closure of k. Let $G_k = \operatorname{Gal}(\overline{k}/k)$ be the absolute Galois group of k. Let $C(G_k)$ be the category of continuous G_k -sets. Then there exists an equivalence of categories

$$\widetilde{\operatorname{Spec}(k)}_{\operatorname{\acute{e}t}} \simeq C(G_k), \ F \mapsto \varprojlim F(\operatorname{Spec}(k')).$$

where k' runs through all finite subextension of \overline{k}/k . In particular, $\Gamma_{\xi}: \xi_{\text{\'et}} \to \mathbf{Ab}$ is an equivalence of categories for all geometric point ξ .

1.6 Lemma

Let $u: \xi = \operatorname{Spec}(\Omega) \to X$ and $u': \xi' = \operatorname{Spec}(\Omega') \to X$ be geometric points of X with an X-morphism $v: \xi \to \xi'$. Then there exists an isomorphism $F_{\xi} \simeq F_{\xi'}$ which is functorial in $F \in \widetilde{X}_{\operatorname{\acute{e}t}}$.

Proof. By Review 1.5, $\Gamma_{\xi}: \widetilde{\xi_{\operatorname{\acute{e}t}}} \to \mathbf{Ab}$ and $\Gamma_{\xi'}: \widetilde{\xi'_{\operatorname{\acute{e}t}}} \to \mathbf{Ab}$ are equivalences of categories since Ω, Ω' are separably closed. Since $v: \xi' \to \xi$ is an isomorphism, $v^{\operatorname{Sh}}: \widetilde{\xi_{\operatorname{\acute{e}t}}} \to \widetilde{\xi'_{\operatorname{\acute{e}t}}}$ is an equivalence of categories. Since $u' = u \circ v$, we have $u'^{\operatorname{Sh}} = v^{\operatorname{Sh}} \circ u^{\operatorname{Sh}}$,

$$\Gamma_{\xi'} \circ u'^{\operatorname{Sh}} = \Gamma_{\xi'} \circ v^{\operatorname{Sh}} \circ u^{\operatorname{Sh}} = (\Gamma_{\xi'} \circ v^{\operatorname{Sh}} \circ \Gamma_{\xi'}^{-1}) \circ (\Gamma_{\xi'} \circ u^{\operatorname{Sh}})$$

The composition $\Gamma_{\xi'} \circ v^{\text{Sh}} \circ \Gamma_{\xi'}^{-1}$ is an equivalence of categories. \square

1.7 Lemma

Let $f: X' \to X$ be a morphism of schemes. Let $u': \xi' \to X'$ be a geometric point of X'. Then $u = f \circ u': \xi = \xi' \to X$ is a geometric point of X with an isomorphism $f^{\operatorname{Sh}}(F)_{\xi'} \simeq F_{\xi}$ which is functorial in $F \in \widetilde{X'_{\operatorname{\acute{e}t}}}$.

Proof. Since $\xi' = \xi$ and $u = f \circ u'$,

$$(\Gamma_{\xi'} \circ u'^{\operatorname{Sh}}) \circ f^{\operatorname{Sh}} = \Gamma_{\xi'} \circ (u'^{\operatorname{Sh}} \circ f^{\operatorname{Sh}}) = \Gamma_{\xi'} \circ (f \circ u')^{\operatorname{Sh}} = \Gamma_{\xi} \circ u^{\operatorname{Sh}}.$$

1.8 Proposition

For every geometric point $u: \xi \to X$ of X, the functor fiber $\Gamma_{\xi} \circ u^{Sh}$, $F \mapsto F_{\xi}$ is exact and commutes with lim and finite lim.

Proof. By Review 0.1, u^{Sh} is exact and commutes with lim. By Review 1.5, Γ_{ξ} : $\widetilde{\xi_{\mathrm{\acute{e}t}}} \simeq \mathbf{Ab}$ and hence Γ_{ξ} is exact and commutes with lim. So their composition $\Gamma_{\varepsilon} \circ u^{\operatorname{Sh}}$ is exact and commutes with lim.

In particular, finite lim is the corresponding lim in the opposite category, the functor fiber commutes with finite lim.

1.9 Corollary

For every geometric point ξ of X, the functor fiber $F \mapsto F_{\xi}$ commutes with kernel, cokernel and image.

Proof. (1) Since
$$\ker(u) = \varprojlim \left(F \xrightarrow{u \atop 0} G \right)$$
, by Proposition 1.8, $\ker(u)_{\xi} = \ker(u_{\xi})$.

(2) Since
$$\operatorname{Cok}(u) = \varinjlim \left(F \xrightarrow{u} G \right)$$
, by Proposition 1.8, $\operatorname{Cok}(u)_{\xi} = \operatorname{Cok}(u_{\xi})$.
(3) By $(1)(2)$, $\operatorname{im}(u)_{\xi} = \ker(\operatorname{Cok}(u))_{\xi} = \ker(\operatorname{Cok}(u)_{\xi}) = \ker(\operatorname{Cok}(u_{\xi})) = \operatorname{im}(u_{\xi})$.

(3) By (1)(2),
$$\operatorname{im}(u)_{\xi} = \ker(\operatorname{Cok}(u))'_{\xi} = \ker(\operatorname{Cok}(u)_{\xi}) = \ker(\operatorname{Cok}(u_{\xi})) = \operatorname{im}(u_{\xi}).$$

1.10 Definition

Let $u: \xi \to X$ be a geometric point of X. An **étale neighborhood** of ξ is a scheme X' with an étale structure morphism $v: X' \to X$ and an X-morphism $u': \xi \to X'$, i.e. the following commutative diagram.

1.11 Review

Let P be a presheaf on X. Let $X' \mapsto \Gamma(X', P^+) = \check{H}^0(X', P)$ be the separated presheaf associated to P for all X' étale over X. Let $P^{\#}$ be the sheaf associated to P. Then $(P^+)^+ = P^\#$.

1.12 Lemma

Let P be a presheaf on a point $\xi = \operatorname{Spec}(\Omega)$. Then $\Gamma(\xi, P) = \Gamma(\xi, P^{\#})$.

Proof. For all covering $\{X'_i \to \xi\}$, $\{\xi \xrightarrow{\mathrm{Id}} \xi\}$ is a refinement. Then

$$\Gamma(\xi, P^+) = \lim_{\longleftarrow} H^0(\{X_i' \to \xi\}, P) = H^0(\{\xi \xrightarrow{\mathrm{Id}} \xi\}, P) = \Gamma(\xi, P).$$

Since
$$\# = + \circ +$$
, we have $\Gamma(\xi, P^{\#}) = \Gamma(\xi, P^{+}) = \Gamma(\xi, P)$.

1.13 Proposition

Let $u: \xi \to X$ be a geometric point of X. There is an isomorphism

$$\lim_{\longleftarrow} \Gamma(X', P) \simeq (P^{\#})_{\xi}$$

for all presheaf P on X where X' runs through all étale neighborhoods of ξ .

In particular, when P = i(F) for some $F \in \widetilde{X}_{\text{\'et}}$ where i is the forgetful functor,

$$\lim_{\longleftarrow} \Gamma(X', F) = \lim_{\longleftarrow} F(X') \simeq F_{\xi}.$$

Proof.

$$\begin{array}{ll} & \lim\limits_{\longleftarrow} \Gamma(X',P) \\ = & \Gamma(\xi,u^{\operatorname{PreSh}}P), & \text{by definition of } u^{\operatorname{PreSh}}, \\ = & \Gamma(\xi,(u^{\operatorname{PreSh}}P)^{\#}), & \text{by Lemma 1.12}, \\ = & \Gamma(\xi,u^{\operatorname{Sh}}(P^{\#})), & \text{by our discussion} \\ = & (P^{\#})_{\xi}, & \text{by Definition 1.3}. \end{array}$$

Therefore $\lim \Gamma(X', P) \simeq (P^{\#})_{\xi}$.

In particular, when P = i(F), by $\# \circ i = \text{Id}$, we have $\lim \Gamma(X', F) \simeq F_{\xi}$.

1.14 Example

Let \overline{k} be a separable closure of a field k. In other words, $\operatorname{Spec}(\overline{k}) \to \operatorname{Spec}(k)$ is a geometric point of $\operatorname{Spec}(k)$. The category of étale neighborhoods of $\operatorname{Spec}(k)$ is $\mathcal{I} = \{ \operatorname{Spec}(k') \mid k \subset k' \subset \overline{k}, \ k' \text{ field} \}.$ Since every k' contains a finite subextension, $\mathcal{J} = \{ \operatorname{Spec}(k') \in \mathcal{I} \mid k'/k \text{ finite} \}$ is a final full subcategory of \mathcal{I} , we have

$$\varprojlim_{\mathcal{T}} F(\operatorname{Spec}(k')) = \varprojlim_{\mathcal{T}} F(\operatorname{Spec}(k'))$$

 $\varprojlim_{\mathcal{T}} F(\operatorname{Spec}(k')) = \varprojlim_{\mathcal{T}} F(\operatorname{Spec}(k'))$ By Proposition 1.13, $\varprojlim_{\mathcal{T}} \operatorname{Spec}(k') \simeq F_{\operatorname{Spec}(\overline{k})}$. Therefore $\varprojlim_{\mathcal{T}} \operatorname{Spec}(k') \simeq F_{\operatorname{Spec}(\overline{k})}$. By

Review 1.5, $F \mapsto F_{\operatorname{Spec}(\overline{k})}$ defines the equivalence of categories $\widetilde{X_{\operatorname{\acute{e}t}}} \to C(\operatorname{Gal}(\overline{k}/k))$.

1.15 Theorem

Let $u: F \to G$ be a morphism of abelian sheaves on $\widetilde{X}_{\text{\'et}}$. Then u is an isomorphism iff $u_{\overline{x}}: F_{\overline{x}} \to G_{\overline{x}}$ is an isomorphism for all $x \in X$.

Proof. Suppose u is an isomorphism. Let $\pi_x : \overline{x} \to X$ be the structure morphism. Since $\Gamma_{\overline{x}} \circ \pi^{\operatorname{Sh}}$ is a functor, $u_{\overline{x}} = (\Gamma_{\overline{x}} \circ \pi_x^{\operatorname{Sh}})(u)$ has inverse $u_{\overline{x}}^{-1} = (\Gamma_{\overline{x}} \circ \pi_x^{\operatorname{Sh}})(u^{-1})$. Conversely, suppose $u_{\overline{x}}$ is an isomorphism for all $x \in X$. We need to show that $u(X'): F(X') \to G(X')$ is an isomorphism for all X' with an étale structure morphism $p: X' \to X$. We have a commutative diagrams

$$F(X') \xrightarrow{u(X')} G(X') , \quad (p^*F)_{\overline{x'}} \xrightarrow{u_{\overline{x'}}} (p^*G)_{\overline{x'}}$$

$$F(p) \downarrow \qquad \qquad \downarrow G(p) \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$F(X) \xrightarrow{u(X)} G(X) \qquad F_{\overline{x}} \xrightarrow{u_{\overline{x}}} S_{\overline{x}}$$

where in the second diagram x = p(x') for all $x' \in X'$ and vertical identifications follow from Lemma 1.7. Then $u_{\overline{x'}}$ is an isomorphism for all $x' \in X'$ for all X'.

- (1) u(X') is a monomorphism. Suppose $s \in F(X')$ such that u(X')(s) = 0 in G(X'). Since $u_{\overline{x'}}(s_{\overline{x'}}) = u(s)_{\overline{x'}} = 0$, we have $s_{\overline{x'}} = 0$ for all $x' \in X'$. Since $u_{\overline{x'}}$ is injective, by Proposition 1.13, there exists an étale neighborhood $X'_{x'}$ of $\overline{x'}$ such that the image of s by $F(X') \to F(X'_{x'})$ is 0 for all $x' \in X'$. Since $F \in X_{\text{\'et}}$ and $\{X'_{x'} \to X'\}$ is an étale covering, we have s = 0.
- (2) u(X') is an epimorphism. Suppose $s \in G(X')$. Since $u_{\overline{x'}}$ is surjective, by Proposition 1.13, there exists an étale neighborhood $X'_{x'}$ of $\overline{x'}$ and $t_{x'} \in F(X'_{x'})$ such that $u(X'_{x'})(t_{x'})$ is the image of s by $G(X') \to G(X'_{x'})$ for all $x' \in X'$.

For two such neighborhoods $X'_{x'}$ and $X'_{y'}$, the image of $u(X'_{x'})(t_{x'})$ by $G(X'_{x'}) \to G(X'_{x'} \times_{X'} X'_{y'})$, the image of $u(X'_{y'})(t_{y'})$ by $G(X'_{y'}) \to G(X'_{x'} \times_{X'} X'_{y'})$ are both equal to the image of s by $G(X') \to G(X'_{x'} \times_{X'} X'_{y'})$.

By (1), $F(X'_{x'} \times_{X'} X'_{y'}) \to G(X'_{x'} \times_{X'} X'_{y'})$ is injective. Then the image of $t_{x'}$ by $F(X'_{x'}) \to F(X'_{x'} \times_{X'} X'_{y'})$ and the image of $t_{y'}$ by $F(X'_{y'}) \to F(X'_{x'} \times_{X'} X'_{y'})$ coincide. Since F is a sheaf, there exists $t \in F(X')$ whose image by $F(X') \to F(X'_{x'})$ is $t_{x'}$. Then the images of u(X')(t) and s by $G(X') \to G(X'_{x'})$ coincide. Since G is a sheaf, we have u(X')(t) = s.

1.16 Corollary

Let $u: F \to G$ be a morphism of abelian sheaves on $\widetilde{X}_{\text{\'et}}$.

- (1) u is a monomorphism iff $u_{\overline{x}}: F_{\overline{x}} \to G_{\overline{x}}$ is injective for all $x \in X$.
- (2) u is an epimorphism iff $u_{\overline{x}}: F_{\overline{x}} \to G_{\overline{x}}$ is surjective for all $x \in X$.

Proof. Suppose $u: F \to G$ is the composition of $u': F \to \operatorname{im}(u)$ and the inclusion $i: \operatorname{im}(u) \to G$, i.e. $u = i \circ u'$.

(1)

```
u: F \to G is a monomorphism
```

- $\iff u': F \to \operatorname{im}(u) \text{ is an isomorphism}$
- $\iff u'_{\overline{x}}: F_{\overline{x}} \to \operatorname{im}(u)_{\overline{x}} \text{ is an isomorphism for all } x \in X, \text{ by Theorem 1.15},$
- $\iff u_{\overline{x}}': F_{\overline{x}} \to \operatorname{im}(u_{\overline{x}}) \text{ is an isomorphism for all } x \in X, \text{ by Corollary 1.9},$
- $\iff u_{\overline{x}}: F_{\overline{x}} \to G_{\overline{x}} \text{ is injective for all } x \in X.$

(2)

 $u: F \to G$ is an epimorphism

- \iff $i: \operatorname{im}(u) \to G$ is an isomorphism
- $\iff i_{\overline{x}}: \operatorname{im}(u)_{\overline{x}} \to G_{\overline{x}} \text{ is an isomorphism for all } x \in X, \text{ by Theorem 1.15},$
- $\iff i_{\overline{x}}: \operatorname{im}(u_{\overline{x}}) \to G_{\overline{x}} \text{ is an isomorphism for all } x \in X, \text{ by Corollary 1.9},$
- $\iff u_{\overline{x}}: F_{\overline{x}} \to G_{\overline{x}} \text{ is surjective for all } x \in X.$

1.17 Corollary

- (1) Let $u, v : F \to G$ be a morphisms of abelian sheaves on $\widetilde{X_{\mathrm{\acute{e}t}}}$. Then u = v iff $u_{\overline{x}} = v_{\overline{x}} : F_{\overline{x}} \to G_{\overline{x}}$ for all $x \in X$.
- (2) Let u, v be a sections of $F \in \widetilde{X_{\text{\'et}}}$. Then u = v iff $u_{\overline{x}} = v_{\overline{x}} \in F_{\overline{x}}$ for all $x \in X$.

Proof. (1)

$$u =$$

- \iff 0 \rightarrow im(u-v) is an isomorphism
- \iff $0 \to \operatorname{im}(u-v)_{\overline{x}}$ is an isomorphism for all $x \in X$, by Theorem 1.15,
- \iff 0 \rightarrow im $(u_{\overline{x}} v_{\overline{x}})$ is an isomorphism for all $x \in X$, by Corollary 1.9,
- $\iff u_{\overline{x}} = v_{\overline{x}} \text{ for all } x \in X.$
- (2) Define $\varphi: \Gamma(X',F) \to \operatorname{Hom}(\underline{\mathbb{Z}}_{X'},F)$ for X' étale over X. Let $s \in \Gamma(X',F)$. Its image $\varphi(s): \underline{\mathbb{Z}}_{X'} \to F$ is defined stalk-wise by $\underline{\mathbb{Z}}_{X',\overline{x}} = \mathbb{Z} \to F_{\overline{x}}$, $1 \mapsto s_{\overline{x}}$. Then φ is an isomorphism of abelian groups. The result follows from (1).

1.18 Corollary

Let $F \xrightarrow{v} G \xrightarrow{u} H$ be a sequence of morphisms of abelian sheaves on $\widetilde{X_{\text{\'et}}}$. Then it is exact iff $F_{\overline{x}} \xrightarrow{v_{\overline{x}}} G_{\overline{x}} \xrightarrow{u_{\overline{x}}} H_{\overline{x}}$ is exact for all $x \in X$.

Proof. $\ker(u)=\mathrm{im}(v)$ iff $u\circ v=0$ and the inclusion $i:\mathrm{im}(v)\to \ker(u)$ is an isomorphism.

First, by Corollary 1.17, $0 = u \circ v$ iff $0 = (u \circ v)_{\overline{x}} = u_{\overline{x}} \circ v_{\overline{x}}$ for all $x \in X$.

Also, by Theorem 1.15, $i: \operatorname{im}(v) \to \ker(u)$ is an isomorphism iff $i_{\overline{x}}: \operatorname{im}(v)_{\overline{x}} \to \ker(u)_{\overline{x}}$ is an isomorphism for all $x \in X$. By Corollary 1.9, iff the inclusion $\operatorname{im}(v_{\overline{x}}) \to \ker(u_{\overline{x}})$ is an isomorphism for all $x \in X$.

Together, we have $\ker(u_{\overline{x}}) = \operatorname{im}(v_{\overline{x}})$ for all $x \in X$.

2. March 9th, Zariski sheaves of meromorphic and rational functions

Today, we introduce the Zariski sheaf of Cartier divisors $\mathcal{D}iv_{Zar}$.

2.1 Definition

Let A be a ring. Let S be the set of non zero-divisors of A. Then S is a multiplicative set. We call $S^{-1}A$ the **total quotient ring of** A. We write $Frac(A) = S^{-1}A$.

For all open subset U of X, let S(U) be the set of elements of $\Gamma(U, \mathcal{O}_X)$ whose images in $\mathcal{O}_{X,x}$ are not zero-divisors for all $x \in U$. Let \mathscr{M}_X be the sheaf associated to the presheaf $U \mapsto (S(U))^{-1}\Gamma(U, \mathcal{O}_X)$. We call \mathscr{M}_X the sheaf of total quotient rings (or the sheaf of meromorphic functions) of \mathcal{O}_X . Elements of $\Gamma(U, \mathscr{M}_X)$ are called meromorphic functions on U.

We call $\mathcal{D}iv_{Zar} = \mathscr{M}_X^*/\mathcal{O}_X^*$ the Zariski sheaf of Cartier divisors on X_{Zar} . Elements of $\Gamma(U, \mathcal{D}iv_{Zar})$ are called Cartier divisors on U.

2.2 Remark

Then $U \mapsto \operatorname{Frac}(\Gamma(U, \mathcal{O}_X))$ does not define a presheaf. [Gro67, 20.1] was wrong, see its correction [Kle79].

2.3 Proposition

Let A be a noetherian ring. Let U be an open subset of $X = \operatorname{Spec}(A)$. Then $U \supset D(t) = \{x \in X \mid t \notin x\}$ for some non zero-divisor t iff the restriction $\Gamma(V, \mathcal{O}_X) \to \Gamma(U \cap V, \mathcal{O}_X)$ is injective for all open subset V of X.

Proof. Suppose $U \supset D(t)$. Take $s \in \Gamma(V, \mathcal{O}_X)$ such that $s|_{U \cap V} = 0$. Then $s|_{D(t) \cap V} = 0$. For any affine open subset $W = \operatorname{Spec}(B)$ of V, if $t \in B$, then the image of $s|_W$ in $B[t^{-1}]$ is 0. Then there exist some integer n > 0 such that $t^n s|_W = 0$. Since t is not a zero divisor, $s|_W = 0$ for all W. Therefore s = 0.

Conversely, suppose $\Gamma(V, \mathcal{O}_X) \to \Gamma(U \cap V, \mathcal{O}_X)$ are all injective. Since U is open, there exists an ideal \mathfrak{a} of A such that $U = \{x \in X \mid \mathfrak{a} \not\subset x\}$.

Next, we show that $\operatorname{Ann}(\mathfrak{a}) = 0$. Suppose $s \in \operatorname{Ann}(\mathfrak{a})$. For each $x \in U$, there exists $t \in \mathfrak{a} \not\subset x$. Then t_x is invertible in $\mathcal{O}_{X,x}$. Since st = 0, $s_x t_x = 0$ in $\mathcal{O}_{X,x}$. Then $s_x = 0$ for all $x \in U$ and hence $s|_U = 0$. By injectivity of $\Gamma(X, \mathcal{O}_X) \to \Gamma(U, \mathcal{O}_X)$, we have s = 0.

Thus U contains every prime ideal of the form $x = \operatorname{Ann}(s)$ for $0 \neq s \in A$. Otherwise $\mathfrak{a} \subset x = \operatorname{Ann}(s)$ for some $0 \neq s \in A$ and hence $s \in \operatorname{Ann}(\mathfrak{a})$, a contradiction to $\operatorname{Ann}(\mathfrak{a}) = 0$. Since A is noetherian, maximal annihilators are prime ideals. In fact, if $bc \in \operatorname{Ann}(x)$ maximal and $c \notin \operatorname{Ann}(x)$, then $b \in \operatorname{Ann}(cx) = \operatorname{Ann}(x)$. Since the union of all maximal annihilators is the set of zero divisors, U contains all zero divisors of A. Hence all zero divisors of A are in some element of U (see [Mat80, 1.B]). Therefore \mathfrak{a} contains some non zero-divisor t of A, $U \supset D(t)$.

2.4 Proposition

Let X be a reduced scheme. Let U be an open subset of X. Then U is dense in X iff the restriction $\Gamma(V, \mathcal{O}_X) \to \Gamma(U \cap V, \mathcal{O}_X)$ is injective for all V open in X.

Proof. Suppose all restrictions $\Gamma(V, \mathcal{O}_X) \to \Gamma(U \cap V, \mathcal{O}_X)$ are injective. Let V be a nonempty open subset of X. If $U \cap V = \emptyset$, then $\Gamma(U \cap V, \mathcal{O}_X) = \{0\}$. By injectivity, $\Gamma(V, \mathcal{O}_X) = \{0\}$, a contradiction to $1 \in \Gamma(V, \mathcal{O}_X)$. Therefore $U \cap V \neq \emptyset$ for all nonempty open subset V of X, i.e. U is dense in X.

Conversely, suppose U is dense in X. Since $\Gamma(V, \mathcal{O}_X) \simeq \operatorname{Hom}(V, \mathbb{A}^1_{\mathbb{Z}})$ and $\Gamma(U \cap V, \mathcal{O}_X) \simeq \operatorname{Hom}(U \cap V, \mathbb{A}^1_{\mathbb{Z}})$, it suffices to show that the restriction $\operatorname{Hom}(V, \mathbb{A}^1_{\mathbb{Z}}) \to \operatorname{Hom}(U \cap V, \mathbb{A}^1_{\mathbb{Z}})$ is injective for all open subset V of X.

Suppose $f, g \in \text{Hom}(V, \mathbb{A}^1_{\mathbb{Z}})$ such that $f|_{U \cap V} = g|_{U \cap V}$. Then $U \cap V \subset K = \{x \in V \mid f(x) = g(x)\}$. Since $\mathbb{A}^1_{\mathbb{Z}}$ is separated, the diagonal Δ of $\mathbb{A}^1_{\mathbb{Z}} \times \mathbb{A}^1_{\mathbb{Z}}$ is closed. Since

$$(f,g):V\to\mathbb{A}^1_{\mathbb{Z}}\times\mathbb{A}^1_{\mathbb{Z}},\ x\mapsto(f(x),g(x))$$

is a morphism, $K = (f,g)^{-1}(\Delta)$ is closed. Since V the closure of $U \cap V$, the underlying topological space of K is V. Finally, since X is reduced, V is reduced and hence K = V. Therefore f = g, the restriction is injective. \square

2.5 Lemma

Let X, Y be schemes. Let U, V be dense open subsets of X. Let $f: U \to Y, g: V \to Y$ be morphisms. We say that f and g are equivalent if there exists a dense open subset W of X such that $W \subset U \cap V$ and $f|_{W} = g|_{W}$. It is an equivalence relation and commutes with restrictions of morphisms.

Proof. Omit.
$$\Box$$

2.6 Definition

A rational map from X to Y is an equivalence class of Lemma 2.5. A rational function on a scheme X is a rational map from X to $\mathbb{A}^1_{\mathbb{Z}}$.

For all open subscheme U of X, we write R(U) for the ring of rational functions on X. Let \mathscr{R}_X be the sheaf associated to the presheaf $U \mapsto R(U)$. We call \mathscr{R}_X the sheaf of rational functions.

2.7 Lemma

Let X be a locally noetherian, reduced scheme. For all meromorphic function $f \in \Gamma(X, \mathcal{M}_X)$. Let $\text{dom}(f) = \{x \in X \mid f_x \in \mathcal{O}_{X,x}\}$. Then the equivalence class of $f|_{\text{dom}(f)}$ defines a rational function on X.

Proof. (1) $\underline{\text{dom}(f)}$ is open. In fact, for all $x \in \text{dom}(f)$, $f_x \in \mathcal{O}_{X,x}$, there exists an open neighborhood W of x and $g \in \Gamma(W, \mathcal{O}_X)$ such that $g_x = f_x$. Hence there exist an open neighborhood $W' \subset W$ such that $g|_{W'} = f|_{W'}$. Therefore $f_y \in \mathcal{O}_{X,y}$ for all $y \in W'$, $W' \subset \text{dom}(f)$.

(2) $\underline{\mathrm{dom}}(f)$ is dense in X. In fact, for all $x \in X$, since $f_x \in \mathrm{Frac}(\mathcal{O}_{X,x})$, there exists a non zero-divisor $s \in \mathcal{O}_{X,x}$ such that $s \cdot (f_x) \in \mathcal{O}_{X,x}$. Since X is locally noetherian, there exists an affine open neighborhood $U_x = \mathrm{Spec}(B)$ of x (where B is noetherian) and a non zero-divisor $t \in \Gamma(U_x, \mathcal{O}_X) = B$ such that $t_x = s$ and $t \cdot (f|_{U_x}) \in \Gamma(U_x, \mathcal{O}_X)$. Then $D(t) \subset \mathrm{dom}(f)$. In fact, for all $y \in D(t)$, $t \notin y$ and hence t_y is a unit of $\mathcal{O}_{X,y}$. We have $f_y = (t_y)^{-1}(t \cdot (f|_{U_x}))_y \in \mathcal{O}_{X,y}$.

Since $D(t) \subset U_x$ and B is noetherian, by Proposition 2.3, the restriction $\Gamma(V, \mathcal{O}_X) \to \Gamma(D(t) \cap V, \mathcal{O}_X)$ is injective for all open subset V of U_x . Since $\{U_x \mid x \in X\}$ is a covering of X, the restriction $\Gamma(V, \mathcal{O}_X) \to \Gamma(\bigcup_{x \in X} D(t) \cap V, \mathcal{O}_X)$ is injective for all

open subset V of X. Since X is reduced, by Proposition 2.4, $\bigcup_{t \in X} D(t)$ is dense in

X. Therefore, dom
$$(f)$$
 is dense in X since $\bigcup_{x \in X} D(t) \subset \text{dom}(f)$.

2.8 Definition

Lemma 2.7 defines a morphism of sheaves $\mathcal{M}_X \to \mathcal{R}_X$.

Proof. Since $f|_{\text{dom}(f)} \in \Gamma(\text{dom}(f), \mathcal{O}_X) \simeq \text{Hom}(\text{dom}(f), \mathbb{A}^1_{\mathbb{Z}})$ corresponds a morphism from an open dense subset dom(f) of X to $\mathbb{A}^1_{\mathbb{Z}}$. By Definition 2.6, its equivalence class $[f|_{\text{dom}(f)}]$ is a rational function on X.

For all $x \in X$ and $s \in \mathcal{M}_{X,x}$, there exists an open neighborhood U of x and $f \in \Gamma(U, \mathcal{M}_X)$ such that $f_x = s$. Then $[f|_{U \cap \text{dom}(f)}] \in R(U)$ and $[f|_{\text{dom}(f)}]_x \in \mathcal{R}_{X,x}$ is the image of s. We can verify that $\mathcal{M}_{X,x} \to \mathcal{R}_{X,x}$ is well-defined.

If $g \in \Gamma(V, \mathcal{M}_X)$ and $g_x = s$, then there exists an open neighborhood W of x such that $W \subset U \cap V$ and $f|_W = g|_W$. Then $f|_{W \cap \text{dom}(f) \cap \text{dom}(g)} = g|_{W \cap \text{dom}(f) \cap \text{dom}(g)}$. Since $W \cap \text{dom}(f) \cap \text{dom}(g)$ is open dense in W, we have $[f|_{W \cap \text{dom}(f)}] = [g|_{W \cap \text{dom}(g)}]$ in R(W). Therefore $[f|_{U \cap \text{dom}(f)}]_x = [g|_{V \cap \text{dom}(g)}]_x$ in $\mathcal{R}_{X,x}$.

2.9 Theorem

Let X be a locally noetherian, reduced scheme. Then $\mathcal{M}_X \simeq \mathcal{R}_X$.

Proof. For any affine open subset U of X, assume that $U = \operatorname{Spec}(A)$ where A is a noetherian ring without nonzero nilpotent elements. We show that

$$r:\Gamma(U,\mathscr{M}_X)=\bigcup A_t=\varinjlim \Gamma(D(t),\mathcal{O}_X)\to \Gamma(U,\mathscr{R}_X)=\varinjlim \operatorname{Hom}(V,\mathbb{A}^1_\mathbb{Z})=\varinjlim \Gamma(V,\mathcal{O}_X)$$

is bijective. Here t runs through all non zero-divisors of A and V runs through open dense subsets of U.

By Proposition 2.3, $V \supset D(t_V)$ for some t_V for all V. the restriction $\Gamma(D(t_V), \mathcal{O}_X) \to \Gamma(V, \mathcal{O}_X)$, if exists, is surjective for all t and V such that $V \subset D(t_V)$. Taking direct limit, r is surjective.

By Proposition 2.4, the restriction $\Gamma(D(t_V), \mathcal{O}_X) \to \Gamma(V, \mathcal{O}_X)$, if exists, is injective for all t and V such that $V \subset D(t_V)$. Taking direct limit, r is injective since U is noetherian.

Therefore $\mathcal{M}_{X,x} = \lim_{\longrightarrow} \Gamma(U, \mathcal{M}_X) \to \lim_{\longrightarrow} \Gamma(U, \mathcal{R}_X) = \mathcal{R}_{X,x}$ is an isomorphism for all $x \in X$. Then $\mathcal{M}_X \simeq \mathcal{R}_X$.

2.10 Remark

By [Kle79], it is possible that $\operatorname{Frac}(A) \subsetneq \mathscr{M}_X(\operatorname{Spec}(A)) = \Gamma(\operatorname{Spec}(A), \mathscr{M}_X)$

2.11 Lemma

Let $\Im(X)$ be the set of irreducible closed subsets of a scheme X. There exists a bijection $X \to \Im(X)$, $x \mapsto \overline{\{x\}}$, i.e. every irreducible closed subset of a scheme has a unique generic point.

Proof. (1) Suppose $X = \operatorname{Spec}(A)$ for a commutative ring A. Every irreducible closed subset of A has the form $V(\mathfrak{p}) = \{\mathfrak{q} \in \operatorname{Spec}(A) \mid \mathfrak{q} \supset \mathfrak{p}\} = \overline{\{\mathfrak{p}\}}$ where \mathfrak{p} is a prime ideal of A. By definition, $V(\mathfrak{p}) = V(\mathfrak{p}')$ iff $\mathfrak{p} = \mathfrak{p}'$.

(2) Suppose X is not affine. Let Z be an irreducible closed subset of X. There exists an open affine subset U of X such that $U \cap Z \neq \emptyset$.

Existence. Since $U \cap Z$ is an irreducible closed subset of U, by the existence of (1), there exists $x \in U \cap Z$ such that $\{x\}$ is dense in $U \cap Z$. Since $U \cap Z$ is a nonempty open subset of Z and Z is irreducible, $U \cap Z$ is dense in Z. By transitivity of density, $\{x\}$ is dense in Z.

Uniqueness. Let $x, x' \in Z$ such that $\{x\}$ and $\{x'\}$ are dense in Z. Since $U \cap Z$ is a nonempty open subset of Z, x, x' are dense in $U \cap Z$. Since $U \cap Z$ is an irreducible closed subset of the affine scheme U, by the uniqueness of (1), x = x'.

3. March 16th, Zariski and étale sheaves of Cartier and Weil divisors

A point $x \in X$ is called the **generic point** of the irreducible closed set $\overline{\{x\}}$.

3.1 Definition

For $x, y \in X$, we say that $\overline{\{x\}} \leq \overline{\{y\}}$ if $\dim \overline{\{x\}} \leq \dim \overline{\{y\}}$. An **embedded component** is a non-maximal $\overline{\{x\}}$ with respect to \preceq .

3.2 Definition

For $x, y \in X$, we say that $x \leq y$ (i.e. x is a **specialization** of y and y is a **generalization** of x) if $\overline{\{x\}} \subset \overline{\{y\}}$. A point maximal relative to \leq of X is the generic point of an irreducible component of X. A point minimal relative to \leq is a **closed point** of X.

3.3 Lemma

Let X be irreducible noetherian without embedded components. Let x be the maximal (generic) point of X. Let $K = \mathcal{O}_{X,x}$, the function field of the irreducible component $\{x\}$. Let $i: \operatorname{Spec}(K) \to X$ be the morphism with image $\{x\}$. Let \mathbb{G}_m be the multiplicative group scheme over X. Then

$$(\mathbb{G}_m)_X \to (i)_*(\mathbb{G}_m)_K$$

is an injection of Zariski (resp. étale) sheaves.

Proof. Let X' be a scheme over X with an étale structure morphism $\pi: X' \to X$.

$$\operatorname{Hom}_X(X',\mathbb{G}_m) \to \operatorname{Hom}_{\operatorname{Spec}(K)}(X' \times_X \operatorname{Spec}(K),\mathbb{G}_m)$$

is injective for all X'.

In fact, $X' \times_X \operatorname{Spec}(K)$ is identified with $\pi^{-1}(x)$ and the above morphism is identified with restriction to $\pi^{-1}(x)$. Suppose $g_1, g_2 : X' \to \mathbb{G}_m$ such that $g_1|_{\pi^{-1}(x)} = g_2|_{\pi^{-1}(x)}$. Let $K = \{y \in X' \mid g_1(y) = g_2(y)\}$. Then $\pi^{-1}(x) \subset K$. Since \mathbb{G}_m is separated, $K = (g_1, g_2)^{-1}(\Delta_{\mathbb{G}_m})$ is closed. Since π is étale, $\pi^{-1}(x)$ is the set of all maximal points of X', $\pi^{-1}(x) = \pi^{-1}(\{x\}) = \pi^{-1}(X) = X'$. (The first equality does not necessarily hold in general.) Then X' = K, i.e. $g_1 = g_2$. Then

$$(\mathbb{G}_m)_X(X') \to i_*(\mathbb{G}_m)_{\mathrm{Spec}(K)}(X')$$

is injective for all X'. Therefore $(\mathbb{G}_m)_X \to i_*(\mathbb{G}_m)_{\mathrm{Spec}(K)}$ is injective.

3.4 Lemma

Let X be noetherian without embedded components. Let \mathbb{G}_m be the multiplicative group scheme over X. Let x_k be maximal points of X. Let $K_k = \mathcal{O}_{X,x_k}$. Let $i_k : \operatorname{Spec}(K_k) \to X$ be inclusion morphisms.

- (1) There is an isomorphism $j_*(\mathbb{G}_m)_{R(X)} = \bigoplus_{i=1}^{n} (i_k)_*(\mathbb{G}_m)_{K_k}$.
- (2) There is an injection $\iota: (\mathbb{G}_m)_X \to j_*(\mathbb{G}_m)_{R(X)}$ associated to the canonical injection $j: \operatorname{Spec}(R(X)) \to X$ in both Zariski and étale topology.

Proof. (1) By Definition 2.6,
$$R(X) = \bigoplus_k \mathcal{O}_{X,x_k}$$
. Then $\operatorname{Spec}(R(X)) = \coprod_k \operatorname{Spec}(K_k)$.

Then we have a morphism $j: \operatorname{Spec}(R(X)) \to X$ whose restriction to $\operatorname{Spec}(K_k)$ is i_k . Then for all X' which is an affine open subset of X or a scheme étale over X,

$$j_*(\mathbb{G}_m)_{R(X)}(X') = (\mathbb{G}_m)_{R(X)}(X' \times_X \operatorname{Spec}(R(X))) = (\mathbb{G}_m)_{R(X)}(X' \times_X \coprod_k \operatorname{Spec}(K_k))$$

$$=\bigoplus_k (\mathbb{G}_m)_{R(X)}(X'\times_X\operatorname{Spec}(K_k))=\bigoplus_k (i_k)_*(\mathbb{G}_m)_{K_k}(X')$$
 Therefore $j_*(\mathbb{G}_m)_{R(X)}=\bigoplus_k (i_k)_*(\mathbb{G}_m)_{K_k}$.

(2) By Lemma 3.3 and (1), we obtain an injection $\iota : (\mathbb{G}_m)_X \to j_*(\mathbb{G}_m)_{R(X)}$.

We did not use Corollary 1.16(1) in the proofs of Lemma 3.3 and Lemma 3.4 because any presheaf kernel is already a sheaf (exercise). Hint: snake lemma.

3.5 Definition

In $X_{\text{\'et}}$, we call $\mathcal{D}iv_{\text{\'et}} = \text{Cok}(\iota_{\text{\'et}})$ the **\'etale sheaf of Cartier divisors** of X where ι comes from Lemma 3.4.

Recall that all open immersions are étale.

3.6 Lemma

 $\mathcal{D}iv_{\text{Zar}} = \text{Cok}(\iota_{\text{Zar}})$ where ι comes from Lemma 3.4.

Proof. For all affine subset U of X,

$$\Gamma(U, j_*(\mathbb{G}_m)_{R(X)}) = \Gamma(j^{-1}(U), (\mathbb{G}_m)_{R(X)}) = \Gamma(U, \mathbb{G}_m) \otimes R(X) = \Gamma(U, \mathcal{O}_X)^* \otimes R(X) = \Gamma(U, \mathscr{R}_X^*).$$

Then
$$j_*(\mathbb{G}_m)_{R(X)} = \mathscr{R}_X^*$$
. By Theorem 2.9 $\mathscr{R}_X^* = \mathscr{M}_X^*$. Recall that $(\mathbb{G}_m)_X = \mathcal{O}_X^*$. We have $\operatorname{Cok}(\iota_{\operatorname{Zar}}) = \mathscr{M}_X^*/\mathscr{O}_X^* = \mathcal{D}iv_{\operatorname{Zar}}$.

3.7 Review

Let $\varepsilon: X_{\operatorname{Zar}} \to X_{\operatorname{\acute{e}t}}$ be the inclusion morphism of sites. The functor $\varepsilon^{\operatorname{Sh}}: \widetilde{X_{\operatorname{\acute{e}t}}} \to$ X_{Zar} is left exact. Hilbert 90: $R^1 \varepsilon^{\text{Sh}}(\mathbb{G}_m)_X = 0$.

3.8 Theorem

- (1) $\varepsilon^{\text{Sh}}(\mathcal{D}iv_{\text{\'et}}) = \mathcal{D}iv_{\text{Zar}}.$
- (2) $H^0(X_{\text{Zar}}, \mathcal{D}iv_{\text{Zar}}) \simeq H^0(X_{\text{\'et}}, \mathcal{D}iv_{\text{\'et}})$.

Proof. (1) From the exact sequence in $\widetilde{X}_{\text{ét}}$

$$0 \to (G_m)_X \xrightarrow{\iota_{\operatorname{\acute{e}t}}} j_*(\mathbb{G}_m)_{R(X)} \to \mathcal{D}iv_{\operatorname{\acute{e}t}} \to 0,$$

we obtain a long exact sequence in X_{Zar}

$$0 \to (G_m)_X \xrightarrow{\iota_{\operatorname{Zar}}} j_*(\mathbb{G}_m)_{R(X)} \to \varepsilon^{\operatorname{Sh}} \operatorname{Div}_{\operatorname{\acute{e}t}} \to R^1 \varepsilon^{\operatorname{Sh}}(\mathbb{G}_m)_X \to \cdots$$

Since $R^1 \varepsilon^{\operatorname{Sh}}(\mathbb{G}_m)_X = 0$, $\operatorname{Cok}(\iota_{\operatorname{Zar}}) = \varepsilon^{\operatorname{Sh}}(\mathcal{D}iv_{\operatorname{\acute{e}t}})$. By Lemma 3.6, $\varepsilon^{\operatorname{Sh}}(\mathcal{D}iv_{\operatorname{\acute{e}t}}) =$ $\mathcal{D}iv_{\mathbf{Zar}}$.

(2) By (1)
$$H^0(X_{\text{Zar}}, \mathcal{D}iv_{\text{Zar}}) = H^0(X_{\text{Zar}}, \varepsilon^{\text{Sh}} \mathcal{D}iv_{\text{\'et}})$$
. By the Leray spectral sequence $E_2^{p,q} = H^p(X_{\text{Zar}}, R^q \varepsilon^{\text{Sh}} \mathcal{D}iv_{\text{\'et}}) \Rightarrow L^{p+q} = H^{p+q}(X_{\text{\'et}}, \mathcal{D}iv_{\text{\'et}})$.

Therefore $H^0(X_{\operatorname{Zar}}, \varepsilon^{\operatorname{Sh}} \mathcal{D}iv_{\operatorname{\acute{e}t}}) = E_2^{0,0} = E_\infty^{0,0} \simeq F^0 L^0 = L^0 = H^0(X_{\operatorname{\acute{e}t}}, \mathcal{D}iv_{\operatorname{\acute{e}t}}).$ Together, we have $H^0(X_{\operatorname{Zar}}, \mathcal{D}iv_{\operatorname{Zar}}) \simeq H^0(X_{\operatorname{\acute{e}t}}, \mathcal{D}iv_{\operatorname{\acute{e}t}}).$

3.9 Definition

- (1) Let X be a noetherian scheme. By Lemma 2.11, $\mathfrak{I}(X) = \{\overline{\{x\}} \mid x \in X\}$ is the set of irreducible closed subsets of X. We call elements of $\mathfrak{I}(X)$ prime cycles.
- (2) Let $\mathscr{Z}(X)$ be the free abelian group generated by $\mathfrak{I}(X)$. We write

$$\mathscr{Z}(X) = \{Z = \sum_{x \in X} n_x \overline{\{x\}} \mid \text{The set } \{x \in X \mid n_x \neq 0\} \text{ is finite} \}$$

We call elements of $\mathscr{Z}(X)$ cycles.

(3) Suppose
$$Z = \sum_{x \in X} n_x \overline{\{x\}}$$
 and $Z' = \sum_{x \in X} n'_x \overline{\{x\}}$.

We defined an **order**: $Z \leq Z'$ if $n_x \leq n'_x$ for all $x \in X$.

(4) Let $X^{(1)} = \{x \in X \mid \dim(\mathcal{O}_{X,x}) = 1\}$. Let $\mathscr{Z}^1(X)$ be the free abelian group generated by $\mathfrak{I}(X^{(1)})$. We write

$$\mathscr{Z}^1(X) = \{ \sum_{x \in X^{(1)}} n_x \overline{\{x\}} \}.$$

We call elements of $\mathscr{Z}^1(X)$ Weil divisors.

3.10 Lemma

 \mathcal{Z}^1 is a sheaf of ordered abelian groups (called the Zariski **sheaf of Weil divisors**) and

$$\mathscr{Z}^1 = \bigoplus_{x \in X^{(1)}} (i_x)_*(\underline{\mathbb{Z}}_x)$$

where $i_x : \{x\} \to X$ is the inclusion and $\underline{\mathbb{Z}}_x$ is the constant sheave of \mathbb{Z} on $\{x\}$.

Proof. (1) For all open subsets U, V of X such that $U \supset V$, the restriction $\mathscr{Z}^1(U) \to \mathscr{Z}^1(V)$ is defined by $Z = \sum_{x \in U} n_x \overline{\{x\}} \mapsto Z|V = \sum_{x \in V} n_x (V \cap \overline{\{x\}})$. By definition,

 $Z \mapsto Z|V$ is a homomorphism of abelian groups. Since the restriction does not change the value of n_x , the restriction preserves orders.

- (2) For all open subsets U, V, W of X such that $U \supset V \supset W$, we have $W \cap (V \cap \overline{\{x\}}) = W \cap \overline{\{x\}}$ and hence (Z|V)|W = Z|W. Therefore \mathscr{Z}^1 is a presheaf of ordered abelian groups.
- (3) By definition of restriction, we have $\mathscr{Z}_x^1 = \{n_x x\} \simeq \mathbb{Z}$. Since

$$(i_x)_*(\underline{\mathbb{Z}}_x)_y = \begin{cases} \mathbb{Z}, & \text{if } y = x. \\ 0, & \text{if } y \in X \setminus \{x\}, \end{cases}$$

we have $\mathscr{Z}_y^1 = \left(\bigoplus_{x \in X} (i_x)_*(\underline{\mathbb{Z}}_x)\right)_y = \mathbb{Z}$ for all $y \in X$. Therefore $\mathscr{Z}^1 \simeq \bigoplus_{x \in X} (i_x)_*(\underline{\mathbb{Z}}_x)$ and it is a sheaf.

3.11 Lemma

If a ring A is noetherian and $\dim(A) = 0$, then it has finite length.

Proof. By [AM69, Th. 8.5], A is artinian. By [AM69, Prop. 6.8], A has finite length.

3.12 Lemma

Let A be a noetherian local ring of Krull dimension one. Then $\operatorname{ord}_A : \operatorname{Frac}(A)^* \to \mathbb{Z}$, $f = \frac{a}{b} \mapsto \operatorname{ord}_A(f) = \operatorname{length}(A/(a)) - \operatorname{length}(A/(b))$ is a group homomorphism such that $A^* \subset \ker(\operatorname{ord})$. Here a, b are non zero-divisors.

Proof. If $a \in A^*$, then A/(a) = A/(1) = A/A = 0 and length(A/(a)) = 0. Therefore $A^* \subset \ker(\operatorname{ord}_A)$.

If a is a non unit, non zero-divisor of A, then $\dim(A/(a)) = \dim(A) - 1 = 1 - 1 = 0$. By Lemma 3.11, A/(a) is a noetherian ring of dimension 0, it is an artinian ring of finite length. Hence ord_A is well-defined.

By the exact sequence $0 \to A/(a) \xrightarrow{b} A/(ab) \to A/(b) \to 0$, we have length(A/(ab)) = length(A/(a)) + length(A/(b)). Since length $(A/(\bullet))$ is a homomorphism, ord_A is also a homomorphism.

3.13 Definition

We define $\operatorname{cyc}_X: \Gamma(X, \mathcal{D}iv_{\operatorname{Zar}}) \to \Gamma(X, \mathscr{Z}^1) = \mathscr{Z}^1(X)$. Suppose $D = (U_i, f_i) \in \Gamma(X, \mathscr{M}_X^*/\mathcal{O}_X^*) = \Gamma(X, \mathcal{D}iv_{\operatorname{Zar}})$ where (U_i) is a covering of $X, f_i \in \Gamma(U_i, \mathscr{M}_X^*)$ such that $f_i/f_j \in \Gamma(U_i \cap U_j, \mathcal{O}_X^*)$. For $x \in U_i \cap X^{(1)}$ for some i, let $n_x = \operatorname{ord}_{\mathcal{O}_{X,x}}((f_i)_x)$, otherwise let $n_x = 0$. We define $\operatorname{cyc}_X(D) = \sum_{x \in X^{(1)}} n_x \overline{\{x\}}$.

3.14 Lemma

The map cyc_X is a well-defined homomorphism of abelian groups.

Proof. We need to show that $\operatorname{ord}_{\mathcal{O}_{X,x}}((f_i)_x) = \operatorname{ord}_{\mathcal{O}_{X,x}}((f_j)_x)$ for all $x \in U_i \cap U_j \cap X^{(1)}$. By Lemma 3.12, $(f_i)_x/(f_j)_x = (f_i/f_j)_x \in \mathcal{O}_{X,x}^* \subset \ker(\operatorname{ord}_{\mathcal{O}_{X,x}})$. In other words, $\operatorname{ord}_{\mathcal{O}_{X,x}}((f_i)_x/(f_j)_x) = 0$. Again, by Lemma 3.12, $\operatorname{ord}_{\mathcal{O}_{X,x}}$ is a homomorphism. Therefore $\operatorname{ord}_{\mathcal{O}_{X,x}}((f_i)_x) - \operatorname{ord}_{\mathcal{O}_{X,x}}((f_j)_x) = 0$ and also cyc_X is a homomorphism.

Similarly, we have homomorphism of abelian groups

$$\operatorname{cyc}_U:\Gamma(U,\mathcal{D}iv_{\operatorname{Zar}})\to\Gamma(U,\mathscr{Z}^1)$$

for all open subset U of X and they are compatible with restrictions. This defines a morphism of sheaves

$$\operatorname{cyc}: \mathcal{D}iv_{\operatorname{Zar}} \to \mathscr{Z}^1$$

Next time, we show that for some X, cyc is an isomorphism.

4. March 30th, H^2 of regular schemes

4.1 Lemma

Let A be a noetherian commutative ring. If A is a UFD, then every height one prime ideal \mathfrak{p} of A is principal.

Proof. Suppose $x \in \mathfrak{p}$. Since A is noetherian, $x = a_1 a_2 \cdots a_n$ where a_i are irreducible. Then there exists some $a_i \in \mathfrak{p}$ since \mathfrak{p} is a prime ideal. We have (a_i) is a prime ideal since A is a UFD. Since $(a_i) \subset \mathfrak{p}$ and $\operatorname{ht}(\mathfrak{p}) = 1$, we have $(a_i) = \mathfrak{p}$. \square

The converse is also true, see [Kap74, Th. 5].

4.2 Theorem

If $\mathcal{O}_{X,x}$ is a UFD for all $x \in X$, then cyc is an isomorphism of sheaves.

Proof. Injectivity. Suppose $D = (U_i, f_i)_{i \in I} \in \Gamma(U, \mathscr{M}_X^*/\mathscr{O}_X^*)$ for some open neighborhood U of x. Suppose $\operatorname{cyc}(D)_x = 0$.

Suppose $x \in U \cap X^{(1)}$. Since $\mathcal{O}_{X,x}$ is integrally closed, by [AM69, Prop. 9.2], it is a discrete valuation ring. Every element of $\operatorname{Frac}(\mathcal{O}_{X,x})^*$ has the form $u\pi^{n_x}$ for some $u \in \mathcal{O}_{X,x}^*$. Then $\operatorname{cyc}(D)_x = 0$ iff $n_x = 0$ iff $(f_i)_x \in \mathcal{O}_{X,x}^*$ for all U_i containing x. Then there exists an open neighborhood V_i of x such that $V_i \subset U_i$ and $(f_i)|_{V_i} \in \Gamma(V_i, \mathcal{O}_X^*)$. Let $I' = \{i \in I \mid x \in U_i\}, \ V = \bigcup_{i \in I'} V_i$. Let $D' = (V_i, (f_i)|_{V_i})_{i \in I'} \in \Gamma(V, \mathcal{M}_X^*/\mathcal{O}_X^*)$. We have $D_x = D_x'$ and D' = 0. Hence $D_x = 0$.

Suppose $x \in U \setminus X^{(1)}$. Similar to the first paragraph, we can show that $D_y = 0$ for all $y \in U_i \cap X^{(1)}$ with $x \in U_i$. Then $\operatorname{dom}(f_i) \supset U_i \cap X^{(1)}$ for all i. We may assume that U_i is affine. Let $U_i = \operatorname{Spec}(A)$ for some integrally closed domain A. We obtain the restriction $A = \Gamma(U_i, \mathcal{O}_X) \to \Gamma(\operatorname{dom}(f_i), \mathcal{O}_X) \subset \bigcap A_{\mathfrak{p}} = A$ where p runs through all height one prime ideals of A. By Proposition 2.4, it is injective and hence bijective. Then $\operatorname{dom}(f_i) = U_i$ and hence $D_x = 0$.

Surjectivity. Since cyc is a morphism, it suffices to find the inverse image of every prime Weil divisor $Z = \overline{\{x\}}$, $x \in X^{(1)}$. Let I be the sheaf of ideals of Z in \mathcal{O}_X . Then I_y is a height one prime ideal of $\mathcal{O}_{X,y}$ for all $y \in X$. Since $\mathcal{O}_{X,y}$ is a noetherian UFD, by Lemma 4.1, its height one prime ideals are all principal. Suppose $I_y = (\pi_y)$. There exists an open neighborhood U_y of y and $f \in \Gamma(U_y, \mathcal{O}_X)$ such that $f_y = \pi_y$ and $I|_{U_y} = (f)$.

Then there exists (U_i, f_i) such that (U_i) is a covering of X, $f_i \in \Gamma(U_i, \mathcal{O}_X)$, $I|_{U_i} = (f_i)$ and $(f_i|_{U_i \cap U_j}) = (f_j|_{U_i \cap U_j})$ iff $f_i/f_j \in \Gamma(U_i \cap U_j, \mathcal{O}_X)^*$. Therefore $D = (U_i, f_i)$ is a Cartier divisor. Since $\mathcal{O}_{X,x}$ is a discrete valuation ring, $\operatorname{ord}_{\mathcal{O}_{X,x}}((f_i)_x) = \operatorname{ord}_{\mathcal{O}_{X,x}}(\pi_x) = 1$. Hence $\operatorname{cyc}(D)_x = Z = \overline{\{x\}}$ is the generator of \mathscr{Z}_x^1 .

4.3 Review

Let k be a field. Let \overline{k} be a separable closure of k. Let $G_k = \operatorname{Gal}(\overline{k}/k)$ be the absolute galois group of k. Let $C(G_k)$ be the category of continuous G-sets. Then there exists an equivalence of categories $\operatorname{Spec}(k)_{\operatorname{\acute{e}t}} \simeq C(G_k)$. Furthermore, $H^q(\operatorname{Spec}(k)_{\operatorname{\acute{e}t}}, \mathscr{F}) = \lim_{\longrightarrow} H^q(G_k, \mathscr{F}(k'))$ where \mathscr{F} is an abelian sheaf on $\operatorname{Spec}(k)_{\operatorname{\acute{e}t}}$ and k' runs through all finite extensions of k in \overline{k} , $q \geq 0$.

4.4 Lemma

Let $i: \{x\} \to X$ be the inclusion of a point $\{x\} = \operatorname{Spec}(\kappa(x))$. Let \underline{A}_x be the

constant sheaf on $\{x\}_{\text{\'et}}$ for a torsion-free abelian group A. Then $H^1(X_{\text{\'et}}, i_* \underline{A}_x) = 0$. In particular, $H^1(X_{\text{\'et}}, i_* \underline{\mathbb{Z}}_x) = 0$.

Proof. Leray spectral sequence gives

$$E_2^{p,q} = H^p(X_{\text{\'et}}, R^q i_* \underline{A}_x) \Rightarrow L^{p+q} = H^{p+q}(\{x\}_{\text{\'et}}, \underline{A}_x).$$

Since $0 = E_2^{-1,1} \to E_2^{1,0} \to E_2^{3,-1} = 0$, we have $E_2^{1,0} = E_\infty^{1,0} = \frac{F^1L^1}{F^2L^1} = F^1L^1 \subset L^1$. i.e. $H^1(X_{\text{\'et}}, i_*\underline{A}_x) \subset H^1(\{x\}_{\text{\'et}}, \underline{A}_x)$. We have

$$\begin{array}{lll} H^1(\{x\}_{\operatorname{\acute{e}t}},\underline{A}_x) & = & H^1(\operatorname{Spec}(\kappa(x))_{\operatorname{\acute{e}t}},\underline{A}_x) \\ & = & H^1(G_{\kappa(x)},A), & \text{by } \widetilde{\operatorname{Spec}(\kappa(x))_{\operatorname{\acute{e}t}}} \simeq C(G_{\kappa(x)}) \\ & = & \operatorname{Hom}_{\operatorname{cont}}(G_{\kappa(x)},A), & G_{\kappa(x)} \text{ acts on } A \text{ trivially.} \\ & = & 0, & G_{\kappa(x)} \text{ is torsion and } A \text{ is torsion free.} \end{array}$$

where $\kappa(x)$ is the residue field of $\mathcal{O}_{X,x}$ and cont means continuous homomorphisms. Therefore $H^1(X_{\text{\'et}}, i_*\underline{A}_x) = 0$.

4.5 Definition

A noetherian local ring (A, \mathfrak{m}_A) satisfies $\dim_{A/\mathfrak{m}_A}(\mathfrak{m}_A/\mathfrak{m}_A^2) \geq \dim(A)$, see [AM69, cor. 11.15.

We call A regular if the equality holds. A scheme X is regular if $\mathcal{O}_{X,x}$ is regular for all $x \in X$.

4.6 Theorem

Auslander-Buchsbaum-Nagata: Every Regular local ring is a UFD.

Proof. [AB59, Nag58].
$$\Box$$

4.7 Lemma

Let X' be any scheme with an étale structure morphism $p: X' \to X$. If X is regular, then X' is regular.

Proof. For all $x' \in X'$ and $x = p(x') \in X$, $\dim(\mathcal{O}_{X,x}) = \dim(\mathcal{O}_{X',x'})$ since p: $X' \to X$ is étale. Since X is regular, we have $\dim(\mathfrak{m}_x/\mathfrak{m}_x^2) = \dim(\mathcal{O}_{X,x})$. Then $\dim(\mathfrak{m}_x/\mathfrak{m}_x^2) = \dim(\mathcal{O}_{X',x'})$. Since $\mathfrak{m}_{x'} = \mathfrak{m}_x \mathcal{O}_{X',x'}$,

$$\dim(\mathfrak{m}_{x'}/\mathfrak{m}_{x'}^2) = \dim((\mathfrak{m}_x/\mathfrak{m}_x^2) \otimes_{\mathcal{O}_{X,x}} \mathcal{O}_{X',x'}) \leq \dim(\mathfrak{m}_x/\mathfrak{m}_x^2) = \dim(\mathcal{O}_{X',x'}).$$

Together with Definition 4.5, $\dim(\mathfrak{m}_{x'}/\mathfrak{m}_{x'}^2) = \dim(\mathcal{O}_{X',x'})$. Hence X' is regular.

4.8 Corollary

If X is a regular noetherian scheme, then $H^1(X_{\text{\'et}}, \mathcal{D}iv_{\text{\'et}}) = 0$.

Proof. Let X' be any scheme étale over X. Since X is regular, by Lemma 4.7, X'is regular. Since X' is regular, $\mathcal{O}_{X',x}$ is a regular local ring for all $x \in X'$. By Theorem 4.6, $\mathcal{O}_{X',x}$ is a UFD. By Theorem 4.2, $\mathcal{D}iv_{X',\mathrm{Zar}} \simeq \mathscr{Z}_{X'}^1$. By Lemma 3.10, $\mathscr{Z}_{X'}^1 \simeq \bigoplus_{x \in X'^{(1)}} (i_x)_*(\underline{\mathbb{Z}}_x)$. Then $\Gamma(X',\mathcal{D}iv_{\mathrm{Zar}}) \simeq \Gamma(X',\bigoplus_{x \in X'^{(1)}} (i_x)_*(\underline{\mathbb{Z}}_x))$.

Since affine open sets are étale, by Proposition 1.13, $(\mathcal{D}iv_{\text{\'et}})_{\overline{x}} = \lim(\mathcal{D}iv_{\text{Zar}})_{x'}$ for all geometric point \overline{x} of X and for all $x' \in \operatorname{Spec}(\kappa(x)) \times_X X'$. Hence $\operatorname{Div}_{\operatorname{\acute{e}t}} \simeq$

 $\bigoplus_{x\in X^{(1)}}(i_x)_*(\underline{\mathbb{Z}}_x) \text{ on } X_{\text{\'et}}. \text{ By } \underline{\mathsf{Lemma 4.4}}, \, H^1(X_{\text{\'et}},i_*\underline{\mathbb{Z}}_x)=0. \text{ Therefore }$

$$H^1(X_{\operatorname{\acute{e}t}}, \mathcal{D}iv_{\operatorname{\acute{e}t}}) = H^1(X_{\operatorname{\acute{e}t}}, \bigoplus_{x \in X^{(1)}} (i_x)_*(\underline{\mathbb{Z}}_x)) = \bigoplus_{x \in X^{(1)}} H^1(X_{\operatorname{\acute{e}t}}, (i_x)_*(\underline{\mathbb{Z}}_x)) = 0$$

4.9 Lemma

Let $i: \{x\} \to X$ be the inclusion of a point $\{x\} = \operatorname{Spec}(\kappa(x))$. Then

 $(1) R^1 i_*(\mathbb{G}_m)_{\kappa(x)} = 0.$

(2)
$$H^2(X_{\operatorname{\acute{e}t}}, i_*(\mathbb{G}_m)_{\kappa(x)}) \to H^2(\{x\}_{\operatorname{\acute{e}t}}, (\mathbb{G}_m)_{\kappa(x)})$$
 is injective.

Proof. (1) Any étale scheme over $\{x\}$ has form $\operatorname{Spec}(\bigoplus K_i)$ with each K_i a finite separable extension of $\kappa(x)$. By Hilbert 90,

$$H^1(\operatorname{Spec}(\bigoplus_i K_i)_{\operatorname{\acute{e}t}}, (\mathbb{G}_m)_{\kappa(x)}) = \bigoplus_i H^1(\operatorname{Spec}(K_i)_{\operatorname{\acute{e}t}}, (\mathbb{G}_m)_{\kappa(x)}) = 0.$$

The sheaf associated to $X' \mapsto H^1(X' \times_X \operatorname{Spec}(\kappa(x)), (\mathbb{G}_m)_{\kappa(x)}) = 0$ is $R^1 i_*(\mathbb{G}_m)_{\kappa(x)} = 0$

(2) Leray spectral sequence gives

$$E_2^{p,q} = H^p(X_{\operatorname{\acute{e}t}}, R^q i_*(\mathbb{G}_m)_{\kappa(x)}) \Rightarrow L^{p+q} = H^{p+q}(\{x\}_{\operatorname{\acute{e}t}}, (\mathbb{G}_m)_{\kappa(x)}).$$

By (1),
$$E_2^{0,1} = 0$$
. Then $0 = E_2^{0,1} \to E_2^{2,0} \to E_2^{4,-1} = 0$

By (1),
$$E_2^{0,1}=0$$
. Then $0=E_2^{0,1}\to E_2^{2,0}\to E_2^{4,-1}=0$.
Hence $H^2(X_{\mathrm{\acute{e}t}},i_*(\mathbb{G}_m)_{\kappa(x)})=E_2^{2,0}=E_\infty^{2,0}\simeq \frac{F^2L^2}{F^3L^2}=F^2L^2\subset L^2=H^2(\{x\},\mathbb{G}_m)_{\kappa(x)})$.

4.10 Proposition

Let X be a regular noetherian scheme. There exists an injection

$$H^2(X_{\operatorname{\acute{e}t}},(\mathbb{G}_m)_X) \to \bigoplus_k H^2(\operatorname{Spec}(K_k)_{\operatorname{\acute{e}t}},(\mathbb{G}_m)_{K_k})$$

where K_k runs through function fields of irreducible components of X.

Proof. From the exact sequence in $X_{\text{ét}}$

$$0 \to (G_m)_X \xrightarrow{\iota_{\text{\'et}}} j_*(\mathbb{G}_m)_{R(X)} \to \mathcal{D}iv_{\text{\'et}} \to 0.$$

We obtain a long exact sequence

$$\cdots \to H^1(X_{\operatorname{\acute{e}t}}, \mathcal{D}iv_{\operatorname{\acute{e}t}}) \to H^2(X_{\operatorname{\acute{e}t}}, (G_m)_X) \to H^2(X_{\operatorname{\acute{e}t}}, j_*(\mathbb{G}_m)_{R(X)}) \to \cdots$$

By Corollary 4.8, $H^1(X_{\text{\'et}}, \mathcal{D}iv_{\text{\'et}}) = 0$, then $H^2(X_{\text{\'et}}, (G_m)_X) \to H^2(X_{\text{\'et}}, j_*(\mathbb{G}_m)_{R(X)})$ is injective. By Lemma 4.9, $H^2(X_{\text{\'et}}, i_*(\mathbb{G}_m)_{\kappa(x_k)}) \to H^2(\{x_k\}, (\mathbb{G}_m)_{\kappa(x_k)})$ is injective for all maximal points x_k of X. By Lemma 3.4,

$$H^2(X_{\operatorname{\acute{e}t}},i_*(\mathbb{G}_m)_{R(X)})=\bigoplus_k H^2(X_{\operatorname{\acute{e}t}},i_*(\mathbb{G}_m)_{K_k})\to \bigoplus_k H^2(\operatorname{Spec}(K_k),(\mathbb{G}_m)_{K_k})$$

is injective. where
$$K_k = \mathcal{O}_{X,x_k}$$
. Therefore the composition $H^2(X,(\mathbb{G}_m)_X) \to \bigoplus_k H^2(\operatorname{Spec}(K_k)_{\operatorname{\acute{e}t}},(\mathbb{G}_m)_{K_k})$ is injective. \square

References

- [AB59] M. Auslander and D. A. Buchsbaum, *Unique factorization in regular local rings*, Proc. Nat. Acad. Sci. U.S.A. **45** (1959), 733–734. MR 0103906 (21 #2669) \rightarrow 15
- [AM69] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802 \rightarrow 12, \rightarrow 15
- [Gro67] A. Grothendieck, Éléments de géométrie algébrique. IV. étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361. MR 0238860 \rightarrow 7
- [Kap74] Irving Kaplansky, Commutative rings, revised ed., The University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945 \rightarrow 14
- [Kle79] Steven L. Kleiman, *Misconceptions about* K_x , Enseign. Math. (2) **25** (1979), no. 3-4, 203–206 (1980). MR 570309 \rightarrow 7, \rightarrow 9
- [Mat80] Hideyuki Matsumura, Commutative algebra, second ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344 \rightarrow 7
- [Nag58] M. Nagata, A general theory of algebraic geometry over Dedekind domains. II. Separably generated extensions and regular local rings, Amer. J. Math. 80 (1958), 382–420. MR 0094344 (20 #862) \rightarrow 15
- [Tam94] Günter Tamme, Introduction to étale cohomology, Universitext, Springer-Verlag, Berlin, 1994, Translated from the German by Manfred Kolster. MR 1317816 \rightarrow 1

Department of Mathematics, Shantou University, 243 Daxue Road, Shantou, Guangdong, China 515063

 $E\text{-}mail\ address{:}\ \mathtt{wuzhengyao@stu.edu.cn}$