

Fig. A.1 Meiosis of *Hadogenes zuluanus*. (A) Early postpachytene. (B) Late postpachytene. (C) One sister metaphase II. (D) Two sister anaphases II. Bar = $10 \ \mu m$.

Fig. A.2 Morphology of *Hadogenes weygoldti* sp. n. (A) Male holotype, carapace and tergites I–III. (B) Female paratype, carapace and tergites I–III. (C) Male holotype, coxosternal area and sternites III–IV. (D-G) Male holotype, spiniform setation of tarsomeres of right legs I–IV, retrolateral aspect. (H) Female paratype, coxosternal area and sternite III.

Fig. A.3 Morphology of *Hadogenes weygoldti* sp. n. (A-C) Male holotype, metasoma and telson, lateral (A), dorsal (B), and ventral (C) views. (D-F) Female paratype, metasoma and telson, lateral (D), dorsal (E), and ventral (F) views. Bar = 10 mm.

Fig. A.4 The type locality of *Hadogenes weygoldti* sp. n. (A), male holotype and female paratype (B), and not type female with newborns (C).

Fig. A.5 Habitus of *Hadogenes tityrus* (Simon, 1888) from RSA, Port Nolloth, 29.3041653°S 17.0764537°E. (A) Male, dorsal view. (B) Male, ventral view. (C) Female, dorsal view. (D) Female, ventral view. Bar = 10 mm.

and the second s
Table A.1 Measurements of the relative chromosome
length (% DSL) of analysed Hadogenes species from
South Africa and in brackets arm ratio of H. zuluanus.
± shows standard deviation.

22.0			
Chrom.	H. trichiurus	H. weygoldti	H. zuluanus
No.	(2n=48)	(2n=113)	(2n=80)
1	3.24 ± 0.09	1.96 ± 0.16	2.70 ± 0.16
2	3.14 ± 0.09	1.74 ± 0.14	(5.66 ± 0.99)
3	3.00 ± 0.06	1.69 ± 0.13	1.91 ± 0.32
4	2.82 ± 0.04	1.64 ± 0.11	(1.26 ± 0.22)
5	2.78 ± 0.04	1.54 ± 0.09	1.69 ± 0.18
6	2.73 ± 0.04	1.48 ± 0.03	(1.33 ± 0.12)
7	2.70 ± 0.01	1.45 ± 0.03	1.61 ± 0.12
8	2.65 ± 0.02	1.44 ± 0.03	(>7)
9	2.63 ± 0.01	1.40 ± 0.05	1.59 ± 0.07
10	2.49 ± 0.08	1.39 ± 0.05	(1.54 ± 0.58)
11	2.47 ± 0.06	1.37 ± 0.05	1.54 ± 0.10
12	2.38 ± 0.03	1.35 ± 0.05	(>7)
13	2.36 ± 0.02	1.34 ± 0.05	1.50 ± 0.34
14	2.31 ± 0.05	1.33 ± 0.05	(1.75 ± 1.17)
15	2.28 ± 0.06	1.31 ± 0.04	1.49 ± 0.36
16	2.25 ± 0.03	1.30 ± 0.03	(1.30 ± 0.25)
17	2.23 ± 0.03	1.27 ± 0.02	1.47 ± 0.15
18	2.20 ± 0.03	1.27 ± 0.02 1.26 ± 0.02	(1.37 ± 0.13)
			(1.37 ± 0.23) 1.44 ± 0.08
19	2.19 ± 0.02	1.25 ± 0.02	
20	2.14 ± 0.04	1.24 ± 0.02	(>7)
21	2.11 ± 0.03	1.21 ± 0.02	1.39 ± 0.25
22	2.08 ± 0.01	1.19 ± 0.02	(1.71 ± 0.80)
23	2.06 ± 0.02	1.18 ± 0.02	1.38 ± 0.11
24	2.05 ± 0.02	1.17 ± 0.02	(1.57 ± 0.58)
25	2.03 ± 0.01	1.16 ± 0.01	1.38 ± 0.07
26	1.97 ± 0.03	1.16 ± 0.01	(>7)
27	1.95 ± 0.04	1.14 ± 0.01	1.35 ± 0.07
28	1.93 ± 0.03	1.13 ± 0.01	(>7)
29	1.91 ± 0.01	1.12 ± 0.02	1.32 ± 0.05
30	1.90 ± 0.01	1.11 ± 0.02	(>7)
31	1.88 ± 0.01	1.11 ± 0.02	1.30 ± 0.05
32		1.11 ± 0.02 1.10 ± 0.02	
	1.86 ± 0.02		(>7)
33	1.84 ± 0.02	1.06 ± 0.02	1.28 ± 0.06
34	1.80 ± 0.03	1.06 ± 0.01	(>7)
35	1.74 ± 0.04	1.05 ± 0.02	1.24 ± 0.04
36	1.74 ± 0.04	1.04 ± 0.02	(>7)
37	1.71 ± 0.02	1.03 ± 0.02	1.21 ± 0.03
38	1.66 ± 0.01	1.02 ± 0.02	(>7)
39	1.62 ± 0.02	1.01 ± 0.02	1.20 ± 0.15
40	1.57 ± 0.01	1.00 ± 0.03	(1.22 ± 0.14)
41	1.55 ± 0.02	0.99 ± 0.03	1.20 ± 0.04
42	1.54 ± 0.01	0.98 ± 0.03	(>7)
43	1.52 ± 0.03	0.98 ± 0.03	1.18 ± 0.03
44	1.46 ± 0.03	0.96 ± 0.03	(>7)
45	1.46 ± 0.03	0.94 ± 0.03	1.16 ± 0.04
46	1.38 ± 0.06	0.94 ± 0.03	(>7)
47	1.35 ± 0.04	0.93 ± 0.04	1.14 ± 0.04
48	1.31 ± 0.02	0.93 ± 0.03	(>7)
49		0.92 ± 0.04	1.12 ± 0.05
50		0.91 ± 0.03	(>7)
51		0.91 ± 0.03	1.11 ± 0.05
52		0.89 ± 0.10	(>7)
	· ii		e de servi

-		
53	0.89 ± 0.03	1.10 ± 0.05
54	0.88 ± 0.02	(>7)
55	0.87 ± 0.02	1.08 ± 0.07
56	0.87 ± 0.01	(>7)
57	0.85 ± 0.01	1.05 ± 0.06
58	0.84 ± 0.02	(>7)
59	0.82 ± 0.01	1.03 ± 0.05
60	0.82 ± 0.01	(>7)
61	0.82 ± 0.01	1.01 ± 0.04
62	0.80 ± 0.03	(>7)
63	0.79 ± 0.03	1.00 ± 0.05
64	0.78 ± 0.02	(>7)
65	0.78 ± 0.02	0.97 ± 0.04
66	0.77 ± 0.02	(>7)
67	0.76 ± 0.01	0.95 ± 0.06
68	0.76 ± 0.02	(>7)
69	0.74 ± 0.03	0.92 ± 0.05
70	0.73 ± 0.03	(>7)
71	0.73 ± 0.03 0.72 ± 0.03	0.90 ± 0.05
		(>7)
72	0.70 ± 0.04	Z
73	0.68 ± 0.04	0.87 ± 0.06
74	0.67 ± 0.02	(>7)
75	0.66 ± 0.03	0.80 ± 0.06
76	0.65 ± 0.02	(>7)
77	0.65 ± 0.03	0.73 ± 0.04
78	0.65 ± 0.10	(>7)
79	0.65 ± 0.03	0.69 ± 0.05
80	0.64 ± 0.02	(>7)
81	0.63 ± 0.02	(-)
82		
	0.62 ± 0.03	
83	0.61 ± 0.03	1
84	0.61 ± 0.02	
85	0.60 ± 0.04	
86	0.59 ± 0.03	J
87	0.58 ± 0.03	
88	0.57 ± 0.03	
89	0.56 ± 0.03	.,
90	0.56 ± 0.03	
91	0.56 ± 0.03	
92	0.54 ± 0.03	
93	0.54 ± 0.03 0.53 ± 0.03	
93		
	0.53 ± 0.04	
95	0.53 ± 0.04	
96	0.52 ± 0.03	
97	0.51 ± 0.03	
98	0.50 ± 0.03	
99	0.50 ± 0.03	
100	0.49 ± 0.02	
101	0.49 ± 0.02	
102	0.48 ± 0.02	
103	0.40 ± 0.02	<u> </u>
104	0.47 ± 0.02	<u> </u>
105	0.47 ± 0.02	
106	0.45 ± 0.03	
107	0.45 ± 0.03	
108	0.44 ± 0.02	
109	0.43 ± 0.03	
110	0.43 ± 0.02	
111	0.42 ± 0.03	
112	0.40 ± 0.03	
113	0.36 ± 0.05	
110	0.30 ± 0.05]