Ch3 Regression to Machine Learning

Contents

3

Subsection
A.1 Statistical Learning
A.2 How do we find 'overall pattern'? - Inference
A.3 How do we find 'overall pattern'? - Prediction
A.4 Polynomial Regression 1
A.5 Problem
A.6 Measure of Quality of Fit
A.7 KEY CONCEPT
A.8 Leave-some-out Fitting Procedure 1
A.9 Leave-some-out Fitting 2
A.10 k-fold Cross Validation
A.11 k-fold Cross Validation
A.12 CV within the Training Set
A.13 Training MSE vs Validation MSE
A.14 Assessing Model Prediction Accuracy
A.15 Bias-Variance Trade-Off
A.16 Prediction MSE

A.17 In the Class	ification S	Setting	 	 	 	 		 	 	 	 	 		 	 		 		
A.18 Trade-off in																			
A.19 K-Nearest N	Veighbor		 	 	 	 		 	 	 	 	 		 	 		 		
A.20 K-NN exam	ples		 	 	 	 		 	 	 	 	 		 	 		 		

Textbook: James et al. ISLR 2ed.

3 Subsection

[ToC]

A.1 Statistical Learning

• General Model

$$Y = f(X) + \epsilon$$

- We don't want to assume that f(X) is linear function.
- Two types of motivation:
 - Model Estimation
 - Prediction
- Pattern recognition

A.2 How do we find 'overall pattern'? - Inference

- \bullet Want to understand the relationship between X and Y
- Which predictors are associated with the response?
- What is the relationship between the response and each predictor?
- Can the relationship between Y and each predictor be adequately summarized using a linear equation, or is the relationship more complicated?

A.3 How do we find 'overall pattern'? - Prediction

• Want to guess the next Y as accurate as possible

$$\hat{Y} = \hat{f}(X)$$

- f can be a black box
- reducible error and irreducible error in prediction
- Want to reduce prediction Mean Squared Error:

$$MSE = E(Y - \hat{Y})^2 = E(Y - \hat{f}(X))^2$$

A.4 Polynomial Regression 1

A.5 Problem

- More flexibility in the model is always going to result in better fit to the data.
- Better fitting model is not always inferential.
- Better fitting Leave some out and use it for 'validation' and 'testing'.
- Underlying mechanism:

$$Y = f(X) + \epsilon$$

A.6 Measure of Quality of Fit

• Training MSE (sample)

$$MSE_{tr} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

• But we want minimum Prediction MSE

$$MSE = E(Y - \hat{f}(X))^2$$

• Solution: look at Test MSE (sample) as estimator

$$MSE_{test} = \frac{1}{m} \sum_{j=1}^{m} (y_j - \hat{f}(x_j))^2$$

A.7 KEY CONCEPT

- Cross Validation
- Don't use all data when you are fitting a model
- Leave some out and use it for 'validation' and 'testing'.

A.8 Leave-some-out Fitting Procedure 1

A.9 Leave-some-out Fitting 2

Larger dataset. n = 100 and m = 26.

A.10 k-fold Cross Validation

- Training, Validation, and Testing Set
- Usually k = 5 or k = 10. We use k = 5 in this class.
- \bullet Randomly divide n into 6 groups.
- For example, if n = 150 and k = 5,

A.11 k-fold Cross Validation

- Hyperparameter parameter in the model that controls flexibility.
- e.g. Polynomial Regression $\rightarrow d$.
- Use Cross-Validation within the training set to tune the hyperparameter.
- Once you pick your hyperparameter, test the final model using [Training Set] to fit the model, and use [Test Set] to find testing MSE.
- Cross-Validation of the training set can be used repeatedly.
- Test Set should be used only once per method at the end.

A.12 CV within the Training Set

```
CV rd 1 Training: [fold 2][fold 3][fold 4] -> Training MSE
CV rd 1 Validation: [fold 1]
                                             -> Validation MSE
CV rd 2 Training: [fold 1] [fold 3][fold 4] -> Training MSE
CV rd 2 Validation: [fold 2]
                                             -> Validation MSE
CV rd 3 Training: [fold 1] [fold 2] [fold 4] -> Training MSE
CV rd 3 Validation: [fold 3] -> Validation MSE
CV rd 4 Training: [fold 1][fold 2][fold 3] -> Training MSE
                                    [fold 4] -> Validation MSE
CV rd 4 Validation:
#--- Pick hyperparameter based on Average Validation MSE ---
Final Fit Training: [ -- All Training Set --- ] -> Training MSE
Final Fit Test:
                                              [ Test ] -> Test MSE
```

#--- Method should be compared to other Medhod using Test MSE

A.13 Training MSE vs Validation MSE

Also called in-sample vs out-sample

A.14 Assessing Model Prediction Accuracy

Assessing Model Prediction Accuracy

A.15 Bias-Variance Trade-Off

Prediction MSE can be decomposed as

$$E(Y - \hat{f}(X))^{2} = E(f(X) + \epsilon - \hat{f}(X))^{2}$$

$$= E(f(X) - E(\hat{f}(X)) + E(\hat{f}(X)) - \hat{f}(X) + \epsilon)^{2}$$

$$= E(f(X) - E(\hat{f}(X)))^{2} + E(E(\hat{f}(X)) - \hat{f}(X))^{2} + E(\epsilon^{2})$$

$$= Var(\hat{f}(X)) + Bias(\hat{f}(X))^{2} + Var(\epsilon)$$

A.16 Prediction MSE

$$E(Y - \hat{f}(X))^{2} = Var(\hat{f}(X)) + Bias(\hat{f}(X))^{2} + Var(\epsilon)$$

- can't have low variance and low bias
- has lower bound

A.17 In the Classification Setting

• Instead of MSE, work with Errror Rate:

$$ER = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$$

A.18 Trade-off in the new approach

• Classical Statistics (Probabilistic Model)

$$Y = f(X) + \epsilon$$

- Assume parametric model for $f(\cdot)$ and ϵ .
- Sampling Probability of (y_1, \dots, y_n) , which are realizations of r.v. Y.
- Esimate parameters for $f(\cdot)$ and ϵ .
- Because the model distinguish the mechanism $f(\cdot)$ vs noise ϵ , looking at insample fit was enough (if the assumption is correct).
- Predict future Y using the estimated model.

- Pros and Cons
 - Model is interpretable.
 - Future effect of the model is easier to calculate.
 - No need for out-sample validation (test set), if assumption is correct.
 - Popular models are mathematically optimized already, to save the computational task.
 - Theory on prediction interval. Based on the assumption, often distribution on the prediction error is available.

A.19 K-Nearest Neighbor

- One of elementary supervised learning model.
- Pick a point x_0 , find K nearest observations.
- $f(x_0)$ is estimated by the average of all K neighbors:

$$\hat{f}(x_0) = \frac{1}{K} \sum y_i.$$

- \bullet K is the hyperparameter.
- Can be used for Regression or Classification

K=1 (left) and K=9 (right)

A.20 K-NN examples

KNN: K=1 KNN: K=100

