R-Introduction:

Definition:

- R is an interpreted programming language used to analyze statistical information, graphical representation, reporting, and data modeling.
- R is the implementation of the S programming language, which is combined with lexical scoping semantics.
- Its most common use is to analyze and visualize data. R generally comes with the Command-line interface.

Evolution of R:

- R programming language was designed by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand.
- The R Development Core Team currently develops R.

Why R programming Language:

- R programming is an open-source free language which is currently one of the most requested programming languages in the Data Science job market.
- R is a platform-independent language and it is used as a leading tool for machine learning, statistics, and data analysis.
- R programming language allows us to integrate with other languages (C, C++) and it has a vast community of users and it's growing day by day.

Advantages of R:

- R programming is platform independent which runs on any operating systems.
- In R, everyone is welcome to provide new packages, bug fixes, and code enhancements.

Disadvantages of R:

- In the R programming language, the standard of some packages is less than perfect.
- Although, R commands give little pressure to memory management. So R programming language may consume all available memory.

Applications of R:

- We use R for Data Science.
- R is used by many quantitative analysts as its programming tool.
- Tech giants like Google, Facebook, bing, Accenture, Wipro and many more using R nowadays.

R installation:

R programming is a very popular language and to work on that we have to install two things, i.e., R and RStudio. R and RStudio work together to create a project on R.

Installation of R:

- 1. First, we have to download the R setup from https://cloud.r-project.org/bin/windows/base/.
- 2. When we click on Download R for windows, our downloading will be started of R setup. Once the downloading is finished, we have to run the setup of R in the following way:
 - Select the path where we want to download the R and proceed to Next.
 - Select all components which we want to install, and then we will proceed to Next.
 - In the next step, we have to select either customized start-up or accept the default, and then we proceed to Next.
 - When we proceed to next, our installation of R in our system will get started.
 - In the end, we will click on finish to successfully install R in our system.

Installation of RStudio:

- First, we have to visit the RStudio official site. (https://rstudio.com/products/rstudio/download/)
- 2. Select the RStudio desktop for open-source license and click on download.
- 3. Select the appropriate installer and download it. Once the downloading is finished, we have to run the setup of R in the following way:
 - Click on Next on the welcome page.
 - Click on Install.

- Click on Finish.
- 4. Now, RStudio is ready to work.

some basic commands and output:

Mathematical Functions:

FUNCTION	INPUT	OUTPUT
abs(x)	abs(-10)	10
log(x, base=y)	log(100, base=10)	2
exp(x)	exp(5)	148.4132
sqrt(x)	sqrt(25)	5
factorial(x)	factorial(3)	6
pi	pi	3.141593

Logical Functions:

FUNCTION	INPUT	OUTPUT
Greater than	5>6	FALSE
Less than	4<5	TRUE
Less than and Equal to	12<=10	FALSE
Greater than and Equal to	19>=15	TRUE
Equal to	7==8	FALSE
Not equal to	13!=14	TRUE
AND	3 & 4	TRUE
OR	3 4	TRUE
NOT	!3	FALSE

Other Functions:

FUNCTION	INPUT	OUTPUT
Colon (:)	1:6	1 2 3 4 5 6
%in%	5 %in% 6	FALSE
	5 %in% 5	TRUE