

Université Hassan II- Mohammedia
Faculté des Sciences et Techniques

Département de Mathématiques **Année Universitaire :2008/2009**
Option :MIP(Module :M311) **M.Harfaoui et R.Morchedi**

Premier contrôle
Durée : Une heure

=====

Exercice 0.0.1 (7 pts)

Soit f la fonction définie sur \mathbb{R}^2 par :

$$f(x, y) = (x^2 + y^2 - 8)(x^2 + y^2)$$

1. Déterminer les points stationnaires de f . (1 pt+2 pts)
2. Donner la nature des points trouvés en 1. (1,5 pt+2,5 pts)

=====

Exercice 0.0.2

Soit f la fonction définie sur \mathbb{R}^2 par :

$$f(x, y) = y^3 + (x^2 + 1)y + x^4$$

1. Montrer que l'équation $f(x, y) = 0$ définit implicitement y comme fonction de x sur \mathbb{R} , qu'on notera $\varphi(x)$. (2 pt)
2. Déterminer en fonction de x et $\varphi(x)$ la dérivée $\varphi'(x)$ sur \mathbb{R} . (1,5 pts)

=====

Exercice 0.0.3

soit f la fonction définie par :

$$\begin{cases} f(x, y) = \frac{x^3(y-1)^2}{x^4 + (y-1)^4}, & \text{si } (x, y) \neq (0, 1) \\ f(0, 1) = 0 & \end{cases}$$

1. Donner D_f le domaine de définition. (0,5 pt)
2. Montrer que f est continue sur D_f . (1 pts+1,5 pts)
3. Calculer $\frac{\partial f}{\partial x}(x, y)$ et $\frac{\partial f}{\partial y}(x, y)$ pour tout (x, y) de D_f . (1,5 pts+1,5 pts)
4. Étudier la différentiabilité de f sur D_f . (1,5 pts+2 pts)

=====

Bon courage

Université Hassan II- Mohammedia
Faculté des Sciences et Techniques

Département de Mathématiques Année Universitaire :2008/2009
Option :MIP(Module :M311) M.Harfaoui et R.Morchedi

Premier contrôle : Corrigé
 Durée : Une heure

=====

correction 0.0.1

Soit f la fonction définie sur \mathbb{R}^2 par :

$$f(x, y) = (x^2 + y^2 - 8)(x^2 + y^2)$$

1. Déterminer les points stationnaires de f . (1 pt+2 pts)

La fonction f est un polynôme, donc elle est de classe C^∞ .

Les points stationnaires de f sont les points (x, y) tels que

$$\frac{\partial f}{\partial x}(x, y) = 4x(x^2 + y^2 - 4) = 0 \text{ et } \frac{\partial f}{\partial y}(x, y) = 4y(x^2 + y^2 - 4) = 0.$$

Ces points sont l'origine $O(0, 0)$ et tous les points du cercle de centre O et de rayon 2 ($x^2 + y^2 = 4$).

2. Donner la nature des points trouvés en 1. (1,5 pt+2,5 pts)

Les dérivées partielles secondes de f sont :

$$\frac{\partial^2 f}{\partial x^2}(x, y) = 4(3x^2 + y^2 - 4), \quad \frac{\partial^2 f}{\partial x^2}(x, y) = 4(x^2 + 3y^2 - 4) \text{ et } \frac{\partial^2 f}{\partial x \partial y}(x, y) = 8xy.$$

La matrice hessienne est donc $\mathcal{H}_f(x, y) = \begin{pmatrix} 4(3x^2 + y^2 - 4) & 8xy \\ 8xy & 4(x^2 + 3y^2 - 4) \end{pmatrix}$

et son déterminant est $\det \mathcal{H}_f(x, y) = 16(3x^2 + y^2 - 4).(x^2 + 3y^2 - 4) - 64x^2y^2$.

Natures des points stationnaires :

(a) Pour le point O , puisque $\det \mathcal{H}_f(0, 0) = 16^2 > 0$ et $\frac{\partial^2 f}{\partial x^2}(0, 0) - 16 < 0$, f admet un maximum en O qui est $f(0, 0) = -8$

(b) Pour les points du cercle de centre O et de rayon 2 ($x^2 + y^2 = 4$), puisque $\det \mathcal{H}_f(x, y) = 0$, le théorème ne s'applique pas. On utilise donc la formule de Taylor à l'ordre 2.

En effet, pour tout point (a, b) du cercle on a :

$$\begin{aligned} f(a + h, b + k) - f(a, b) &= \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(a, b)h^2 + 2 \frac{\partial^2 f}{\partial x \partial y}(a, b)hk + \frac{\partial^2 f}{\partial y^2}(a, b)k^2 \right) + (h^2 + k^2)\epsilon(h, k) \\ &= Q(h, k) + (h^2 + k^2)\epsilon(h, k) \end{aligned}$$

Mais $a^2 + b^2 = 4$ donc $\frac{\partial^2 f}{\partial x^2}(a, b) = 8a^2$, $\frac{\partial^2 f}{\partial x \partial y}(a, b) = 16ab$ et $\frac{\partial^2 f}{\partial y^2}(a, b) = 8b^2$ et donc $Q(h, k) = 8a^2h^2 + 16abhk + 8b^2k^2 = 8(ah + bk)^2 \geq 0$

Ce qui prouve que f admet un minimum en tout point du cercle.

correction 0.0.2

Soit f la fonction définie sur \mathbb{R}^2 par :

$$f(x, y) = y^3 + (x^2 + 1)y + x^4$$

1. Montrer que l'équation $f(x, y) = 0$ définit implicitement y comme fonction de x sur \mathbb{R} , qu'on notera $\varphi(x)$. (2 pt)

La fonction f est de classe \mathcal{C}^∞ sur \mathbb{R} . Comme $\frac{\partial f}{\partial y}(x, y) = 3y^2 + x^2 + 1 \neq 0$ pour tout x de \mathbb{R} alors d'après le théorème des fonctions implicites l'équation $f(x, y) = 0$ définit implicitement y comme fonction de x sur \mathbb{R} .

2. Déterminer en fonction de x et $\varphi(x)$ la dérivée $\varphi'(x)$ sur \mathbb{R} . (1,5 pts)

$$\text{Pour tout } x \text{ de } \mathbb{R} \text{ on a : } \varphi'(x) = -\frac{\frac{\partial f}{\partial x}(x, y)}{\frac{\partial f}{\partial y}(x, y)} = -\frac{2x\varphi(x) + 4(\varphi(x))^2 + 1}{3(\varphi(x))^3 + x^2 + 1}$$

correction 0.0.3

soit f la fonction définie par :

$$\begin{cases} f(x, y) = \frac{x^3(y-1)^2}{x^4 + (y-1)^4}, & \text{si } (x, y) \neq (0, 1) \\ f(0, 1) = 0 \end{cases}$$

1. Donner D_f le domaine de définition. (0,5 pt)

$$D_f = \{(x, y) \in \mathbb{R}^2 / (x, y) \neq (0, 1)\} \cup \{(0, 1)\} = \mathbb{R}^2$$

2. Montrer que f est continue sur D_f . (1 pts+1,5 pts)

(a) Pour $(x, y) \neq (0, 1)$ la fonction est une fonction rationnelle de domaine de définition $\mathbb{R}^2 - \{(0, 1)\}$, donc f est continue sur $\mathbb{R}^2 - \{(0, 1)\}$.

(b) Pour $(x, y) = (0, 1)$ on a : $|f(x, y) - f(0, 1)| = \left| \frac{x^3(y-1)^2}{x^4 + (y-1)^4} \right|$.

On sait que $ab \leq \frac{1}{2}(a^2 + b^2)$ donc

$$|x^3(y-1)^2| = |x^2(y-1)^2| \cdot |x| \leq \frac{1}{2}(x^4 + (y-1)^4) \cdot |x| \text{ et on a alors :}$$

$|f(x, y) - f(0, 1)| \leq |x| \text{ et } \lim_{(x,y) \rightarrow (0,1)} |x| = 0 \text{ d'où la continuité de } f$
 $(0, 1)$.

3. Calculer $\frac{\partial f}{\partial x}(x, y)$ et $\frac{\partial f}{\partial y}(x, y)$ pour tout (x, y) de D_f . (1,5 pts+1,5 pts)

(a) Pour $(x, y) \neq (0, 1)$ faire les calculs.

(b) Pour $(x, y) = (0, 1)$ on a :

$$\frac{\partial f}{\partial x}(0, 1) = \lim_{h \rightarrow 0} \frac{f(h, 1) - f(0, 1)}{h} = 0$$

$$\text{et } \frac{\partial f}{\partial y}(0, 1) = \lim_{k \rightarrow 0} \frac{f(0, 1+k) - f(0, 1)}{k} = 0$$

4. Étudier la différentiabilité de f sur D_f .

(1,5 pts+2 pts)

(a) Pour $(x, y) \neq (0, 1)$ f est différentiables car les fonction $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sont continues pour tout $(x, y) \neq (0, 1)$.

(b) Pour $(x, y) = (0, 1)$ on a :

$$\left| \frac{f(h, 1+k) - f(0, 1) - \frac{\partial f}{\partial x}(0, 1)h - \frac{\partial f}{\partial y}(0, 1)k}{\sqrt{h^2 + k^2}} \right| = \left| \frac{h^3(k-1)^2}{(h^4 + (k-1)^4)(\sqrt{h^2 + k^2})} \right|$$

dont la limite, quand (h, k) tend vers $(0, 0)$, n'est pas nulle. Ce qui prouve que la fonction n'est pas différentiable en $(0, 1)$.

=====