manual do usuário

Anotações:	

índice

considerações gerais.		5
gorano.	precauções importantes	5
	introdução	5
	principais características	6
instalação		7
otalagao	embalagem	7
	rede elétrica e dimensionamento dos cabos	7
	layout de instalação do equipamento	7
	seções dos cabos do equipamento	8
	aterramento	10
	local de instalação	10
	instruções para armazenamento	11
especificações técnica	as	13
	potência	13
	entrada	13
	saída	13
	sobrecarga	13
	proteções	13
	condições ambientais	13
	alarmes e indicadores	14
	painel	14
	display	15
	condições para rearme automático / desligamento	20
	comandos	21
	sinais disponíveis pelo canal serial	21
	especificações mecânicas	22
	dimensões e pesos	22
procedimentos de ope	ração	23
	instalação do equipamento	23
	acionamento	23
	desligamento	23
	bypass (opcional)	23
	rearme automático (opcional)	23
manutenção		25
Š	precauções	25
descrição simplificada	de funcionamento	27
•	estabilização da tensão de saída	27
	circuitos eletrônicos	27
	proteção da tensão de entrada	27
	rearme automático	27
	proteção de tensão da saída	27
	proteção de sobrecarga	28
	bypass (opcional)	28

comunicacões seriais		29
,	conexão serial	29
meio ambiente		31
	ações	31
termo de garantia		33
	termos	33
ficha de instalação		35
,	TEMPO - monofásico	35
	TEMPO - trifásico	37

considerações gerais

precauções importantes

Leia as instruções

 Todas as instruções deste manual devem ser lidas e seguidas com cuidado.

Arquivamento das instruções

• Este manual deve ser guardado em lugar seguro para futuras consultas.

Movimento

 Mova o equipamento com cuidado. Este não deve sofrer choques bruscos, força excessiva ou operar sobre superfície irregular.

Localização

 Posicione o equipamento sobre uma base firme e em ambiente com temperatura e umidade controladas.

Proteção dos Cabos

 O equipamento deve ser posicionado de forma que seus cabos não sejam pisados ou apertados. Não coloque qualquer objeto sobre os cabos.

Proteção da Carga

Não sobrecarregar a linha de saída AC.

Limpeza

■ Desligue e desconecte o equipamento da rede de alimentação AC antes de limpá-lo. Utilize um pano de polimento macio e seco. Nunca use cera de móveis, benzina ou outros líquidos voláteis, uma vez que eles podem atacar quimicamente o gabinete.

Períodos de Inatividade

O equipamento deve ser ligado periodicamente, durante 24 horas no mínimo a cada 3 meses. Os cabos de entrada do equipamento devem ser desconectados da rede quando este permanecer desligado por um longo período de tempo.

Falhas

- Para qualquer tipo de serviço no seu equipamento, disponha sempre de Técnicos qualificados.
 Desconecte-o da rede e chame a Assistência Técnica Schneider Electric, quando:
- Os cabos de potência estiverem com problemas;
- Objetos tiverem caído ou líquidos tenham derramado dentro do mesmo;
- O equipamento esteve exposto à chuva ou água;
- O equipamento parece não operar normalmente ou apresenta alguma mudança distinta.

introdução

Um estabilizador de Tensão da linha **TEMPO** é um conjunto de componentes eletro-eletrônicos que reunidos, irão proporcionar ao usuário a confiabilidade e a performance necessária ao bom funcionamento de suas cargas e seus equipamentos de computação.

A linha **TEMPO** microprocessada é uma inovação da linha SL, com microprocessadores que tornam o controle da Tensão de saída e gerenciamento de todas as proteções totalmente digitais.

Utiliza microcontroladores com tecnologia RISC, sendo que todas as medições e comandos locais são feitos via display LCD e duas teclas localizadas na frontal do gabinete.

Também possui uma interface serial padrão RS-232, possibilitando supervisão/gerenciamento remotamente, via software MRE ou CP Agent, incluindo todos as medições e os comandos disponíveis no painel, bem como acesso ao log de eventos armazenados no estabilizador.

principais características

- Controle e supervisão totalmente microcontrolados, usando tecnologia RISC;
- Painel amigável e de fácil operação, incluindo display LCD com informação das medidas de tensão, corrente e potência de entrada e de saída;
- Controle de tensão de saída independente por fase, através de micro degraus (tapes);
- Proteção contra falhas e irregularidades da rede de entrada, tais como falta de fase, subtensões, sobretensões;
- Estágio de potência em placa única, por fase, aumentando a confiabilidade do equipamento, bem como facilitando manutenção / substituição em caso de necessidade;
- Pela sua concepção, não introduz distorção harmônica na tensão de saída (carga linear);
- Transformador Isolador (opcional);
- Bypass manual e automático (opcional);
- Gabinete autoportante, dotado de rodízios, para melhor aproveitamento do espaço e facilitar sua movimentação;
- Software de monitoração para ambiente Windows (opcional);

- Interface ethernet / RJ 45 (opcional)
- Proteção do próprio estabilizador e do seu sistema contra sobrecarga e curto circuito, através de fusíveis de ação retardada do tipo NH ou DIAZED e proteção eletrônica via quatro faixas de sobrecarga com temporizações;
- Proteção do seu sistema contra falta de fase, subtensão ou sobretensão de saída, que desativará o estabilizador em um curto espaço de tempo, fazendo a sinalização do defeito (esta sinalização será visível no display e também via log de eventos).
- Baixa dissipação térmica;
- Operação silenciosa.

embalagem

- Abra a embalagem e confira a integridade do produto na presença do transportador. Se houver problemas, anote no Conhecimento de Transporte e na Nota Fiscal;
- Contate a Assistência Técnica Schneider Electric se algum problema for constatado;
- Guarde o Manual do Usuário para futuras consultas.

rede elétrica e dimensionamento dos cabos

- A Rede de Energia Condicionada deve estar configurada corretamente para proporcionar ao Sistema de Energia as condições técnicas e dimensionamento necessário ao seu bom funcionamento.
- O não cumprimento das especificações poderá impossibilitar a instalação do mesmo ou ainda invalidar a garantia.
- A especificação correta da rede elétrica bem como as configurações de instalação do equipamento, de acordo com seu modelo, será fornecida pela Schneider Electric. Estas configurações podem ser observadas nas figuras abaixo e as seções dos cabos na tabela logo abaixo:

layout de instalação do equipamento

Estabilizador TEMPO - Monofásico Imagem meramente ilustrativa

layout de instalação do equipamento

continuação

Estabilizador TEMPO Trifásico Imagem meramente ilustrativas

seções dos cabos do equipamento

 Abaixo os valores das seções dos cabos de acordo com a potência de cada equipamento

Potência	Tensão de Entrada	Condutor de Entrada (F+N)	Disjuntor de Entrada	Seção do Terra	Tensão de Saída	Condutor de Saída (F+N)
	120 e 127V	10 mm²	50A	10 mm²	110V à 127V	10 mm²
5 kVA	220V	4 mm²	30A	30A 15A 4 mm²	220V	4 mm²
	480V***	4 111111-	15A		2200	4 111111-
	120 e 127V	16 mm²	80A	16 mm²	110V à 127V	16 mm²
7 5 1// /	220V	6 mm³	40A	6 mm³		
7,5 kVA	380V	4 mm²	220\	25A 4 mm² 220V	220V	6 mm²
	480V***	4 111111-	25A			
	120 e 127V	25 mm²	100A	25 mm²	110V à 127V	25 mm²
10 kVA	220V	10 mm²	63A	10 mm²	0001/	402
	380V	4 mm²	30A	4 mm²	220V	10 mm²
	120 e 127V	50 mm²	150A	25 mm²	110V à 127V	50 mm²
15 kVA	220V	25 mm²	80A	16 mm²	220V	16 mm²
	380V	10 mm²	50A	10 mm²	2200	10 111111-
	120 e 127V	95 mm²	200A	50 mm ²	110V à 127V	70 mm²
20 kVA	220V	35 mm²	125A	40 2	2201/	0F?
	380V	16 mm²	63A	16 mm²	220V	25 mm²
	120 e 127V	150 mm²	300A	95 mm²	110V à 127V	150 mm²
30 kVA	220V	70 mm²	175A	35 mm²	0001/	50
	380V	25 mm²	100A	16 mm²	220V	50 mm²

seções dos cabos do equipamento

continuação

OBS: *** Tensão especial, consulte nosso departamento comercial.

Potência	Tensão de Entrada	Condutor de Entrada (3*F + N)	Disjuntor de entrada	Seção do terra	Tensão de Saída	Condutor de Saída (3*F + N)	
	208V		20A		208V		
5 kVA	220V	4 mm²	20A		220V	4 mm²	
	380V		15A	4 2	380V		
	208V	(4 + 6)2	20.4	4 mm²	208V	(4 + 6)	
7,5 kVA	220V	(4 + 6)mm²	30A		220V	(4 + 6)mm²	
	380V	4 mm²	20A	1	380V	4 mm²	
	208V	(C + 40)3	40A	6 mm²	208V	(0 + 40)3	
10 kVA	220V	(6 + 10)mm²	40A	6 mm²	220V	(6 + 10)mm²	
	380V	4 mm²	20A	4 mm²	380V	4 mm²	
	208V	(40 + 40)2	504	40	208V	(40 + 40)2	
15 kVA	220V	(10 + 16)mm²	50A	10 mm²	220V	(10 + 16)mm²	
	380V	6 mm²	30A	6 mm²	380V	6 mm²	
	208V	(40 - 05) 3	75.4	10 3	208V	(40 - 05) 2	
20 kVA	220V	(16 + 35)mm²	75A	16 mm²	220V	(16 + 35)mm²	
	380V	(10 + 10)mm ²	40A	10 mm²	380V	(6 + 10)mm ²	
	208V	(05 50)	4004		208V	(05 + 50)2	
30 kVA	220V	(35 x 50)mm²	100A	16 mm²	220V	(25 + 50)mm ²	
	380V	(16 + 16)mm ²	60A	1	380V	(10 + 16)mm ²	
	208V	(70 - 70) 2	4504	25 3	208V	(05 : 70) 3	
40 kVA	220V	(70 + 70)mm ²	150A	35 mm²	220V	(35 + 70)mm²	
	380V	(25 + 35)mm ²	80A	16 mm²	380V	(16 + 35)mm ²	
50 kVA	208V 220V	(70 + 120)mm²	175A	35 mm²	208V 220V	(70 + 120)mm²	
	380V	(35 + 50)mm ²	100A	16 mm²	380V	(25 + 50)mm ²	
	208V	, ,			208V	, ,	
	220V	(95 + 150)mm ²	200A	50 mm²	220V	(70 + 150)mm ²	
60 kVA	380V	(50 + 70)mm ²	125A	25 mm²	380V	(35 + 70)mm ²	
	400V***	(35 + 50)mm ²	100A	16 mm²	400V***	(25 + 50)mm ²	
	208V				208V		
75 kVA	220V	(150 + 185)mm²	250A	70 mm²	220V	(120 + 185)mm ²	
	380V	(70 + 95)mm ²	150A	35 mm²	380V	(50 + 95)mm ²	
	208V	(1=0 10=)			208V	(100 10=)	
	220V	(150 + 185)mm²	250A	70 mm²	220V	(120 + 185)mm ²	
80 kVA	380V	(70 + 70)mm ²	150A	35 mm²	380V	(== ==) 2	
	440V***	(50 + 70)mm ²	100A	25 mm²	400V***	(50 + 70)mm²	
	208V 220V	(2*95 + 2*120)mm²	350A	95 mm²	208V 220V	(185 + 2*120)mm ²	
100 kVA	380V	(95 + 120)mm²	200A	50 mm²	380V 400V***	(70 + 120)mm²	
	208V			208V			
125 kVA	220V	(2*150 + 2*185)mm ²	400A	150 mm²	220V	(2*95 + 2*185)mm ²	
. = 0	380V	(150 + 185)mm²	250A	70 mm²	380V	(95 + 185)mm ²	
	208V				208V	· · ·	
150 kVA	220V	(2*185 + 3*150)mm²	500A	185 mm²	220V	(2*120 + 3*150)mm ²	
TOURVA	380V	(185 + 240)mm²	300A	95 mm²	380V	(120 + 240)mm²	
	208V	(105 + 240)IIIII	300A	30 IIIII -	208V	(120 + 240)IIIII	
200 14/4		(3*185 3*240)mm²	700A	2*150 mm²		(2*185 + 3*240)mm ²	
200 kVA	220V	(0+400 + 0+400) 3	4004	400	220V ·	(0±05 + 0±400) 3	
	380V	(2*120 + 2*120)mm ²	400A	120 mm²	380V	(2*95 + 2*120)mm ²	

- Bitolas calculadas para cabos flexíveis, unipolar em cobre, isolados em PVC, conforme NBR 5.410;
- Atenção: Os cabos de interligação entre o equipamento e os quadros de alimentação e distribuição deverão ser obrigatoriamente do tipo flexível. O não atendimento desta especificação inviabiliza a instalação até sua regularização.
- Instalação em canaleta ventilada no piso ou no solo, condutores contíguos e sistema monofásico (F+N+T) e sistema trifásico (3*F+N+T), respectivamente, equilibrado.

- Temperatura ambiente de 30°C e temperatura dos cabos de 70°C.
- Seção dos cabos para a conexão de entrada e saída até 07 metros.
 A queda de tensão calculada para as seções de cabos acima foi de até 3% na entrada e 1% na saída;
- O disjuntor de entrada deverá ser tripolar de ação lenta: quando utilizar mini-disjuntor este deverá ser com curva de atuação D. Em caso de qualquer configuração diferente da tabela acima, consulte a Assistência Técnica da Schneider Electric;

O responsável pela instalação poderá preencher a Ficha de Instalação, na última página, e fornecer estes dados para o eletricista responsável pela

aterramento

- As determinações dos fabricantes dos equipamentos que utilizarão a Rede de Energia Condicionada deverão ser rigorosamente obedecidas.
- A Schneider Electric recomenda que a construção de um sistema de aterramento siga as normas vigentes no País. No Brasil, a ABNT em sua norma NBR 5.140 item 6.4, define o padrão de construção de aterramentos.

Atenção: A impedância do sistema de aterramento não deve ser maior do que 5 Ohms, e a tensão medida entre terra e neutro não deve exceder a 1 Volt.

local de instalação

- O estabilizador foi desenvolvido conforme a norma da ABNT NBR 15.014 que prevê a temperatura ambiente entre 0°C e 40°C. Além disso, o equipamento não poderá ser exposto à umidade (equipamento padrão tem grau de proteção IP-20). Condição ambiental fora da especificação pode resultar em um funcionamento inadequado ou acidentes.
- É importante que o local seja arejado, ou por meio de aberturas, exaustores ou por condicionadores de ar. Abaixo veja especificação técnica para BTU/H.

Modelos	Dissipação Térmica BTU/H
5kVA	1.400
7,5kVA	2.000
10kVA	1.700
15kVA	2.600
20kVA	5.500
30kVA	5.100
40kVA	6.800
50kVA	8.500
60kVA	10.300
75kVA	12.800
100kVA	17.000
125kVA	21.300
150kVA	25.500
200kVA	34.118

*Além dos BTU/H da tabela acima acrescentar 600 BTU's por m² da sala.

local de instalação

continuação

- Instale o estabilizador em um local bem ventilado onde não fique exposto a altas temperaturas ou umidade (equipamento padrão tem grau de proteção IP-20), podendo resultar em um funcionamento inadequado ou acidentes;
- Assegure-se que o fluxo de ar nas aberturas não está obstruído, o que pode causar sobreaquecimento no estabilizador;
- Nunca coloque qualquer objeto sobre o estabilizador;
- Assegure-se que a instalação seguiu rigorosamente as especificações deste manual;
- Para locais de espaço reduzido, os cabos de entrada e saída devem ser flexíveis e com o comprimento suficiente (mínimo de 2 metros) para o deslocamento necessário à manutenção;

- A iluminação do local onde o equipamento for instalado deve ser maior ou igual a 500 lux;
- A incidência de raios solares no equipamento pode provocar significativo aumento de temperatura, sendo altamente prejudicial;

O equipamento Estabilizador necessita de um determinado espaço ao seu redor para a liberação do ar interno e assim evitar sobreaquecimento, conforme figura abaixo:

instruções para armazenamento

■ Buscando evitar o comprometimento dos componentes do equipamento, devido à condensação e ou oxidação por excesso de umidade, mantenha-o em local abrigado, ventilado, livre de pó e, principalmente, livre de umidade.

Anotações:	

especificações técnicas

potência (FP = 0,8)	■ TEMPO : 5kVA a 200kVA		
entrada	■ Tensões¹:	■ Frequência: 60Hz	
	1Ø = 120V, 127V, 220V	■ Configuração:	
	3Ø = 220V, 380V	Monofásica e Trifásica	
	■ Variação de Rede: ± 15%		
saída	■ Tensões¹:	■ Distorção harmônica: nula	
	1Ø = 110V, 115V, 120V, 127V, 220V	■ Rendimento global²:	
	3Ø = 208V, 220V, 380V	95% para modelo monofásico	
	■ Regulação estática: ±3% (Típica)	isolador de 10 a 15KVA e	
	■ Regulação dinâmia: <5% p/ degrau de carga de 100%	92% para modelo monofásico isolador de 5,0 a 7,5KVA	
	<1,5% p/ degrau de carga de 25%	95% para modelo trifásico isolador de 30 a 200KVA e	
	Configuração: Monofásica ouTrifásica	92% para modelo trifásico isolador de 5,0 a 20KVA e	
	■ Fator de crista: 3:1	■ Tempo de resposta:	
	■ Frequência: 60Hz ± 5%	8 milisegundos	
	■ Comutação: por Triac's		
sobrecarga	■ de 0% a 25% por 10 minutos		
_	de 25% a 50% por 1 minuto		
	de 50% a 100% por 10 segundos		
	■ acima de 100% desligamento imediato		
proteções	■ Tensão de entrada: CA alta e CA baixa		
	Tensão de saída:		
	CA alta e CA baixa		
	■ Corrente de saída:		
	Sobrecarga		
condições ambientais	■ Temperatura: 0°a 40°C		
	■ Umidade: 0% a 95%		

sem condensação

O fator de potência do estabilizador TEMPO varia conforme o fator de potência da carga.

^{1 -} Outras tensões/configurações sob consulta. 2 - Sob condições nominais. 3 - Medido a partir do cruzamento por zero subsequente a aplicação do degrau de carga aditivo resistivo. Degrau aplicado no pico da tensão de saída. Por questões de evolução do produto, algumas especificações poderão sofrer alterações sem aviso prévio ou serem adequadas conforme solicitação do cliente. Fotos meramente ilustrativas.

alarmes e indicadores

LED Vermelho (Alta)

 Sobretensão na saída (5% acima da tensão nominal)

LED Verde (Normal)

■ Tensão na saída normal

LED Vermelho (Baixa)

 Subretensão na saída (5% abaixo da tensão nominal)

Alarme sonoro

Quando houver desligamento por:

- Tensão de saída alta ou baixa
- Sobrecorrente
- Sobretemperatura

Display

- Tensão e Corrente de entrada
- Tensão e Corrente de saída
- frequência de entrada
- Potência de saída (kVA)

- data, hora e temperatura interna
- liga/desliga
- liga/desliga bypass
- rearme automático sim / não
- bypass automático / manual
- modelo e n° de série

Algumas especificações poderão sofrer alterações sem prévio aviso, ou ser adequadas conforme solicitação do cliente.

painel

O painel é composto por um display de cristal líquido de duas linhas por vinte colunas, duas teclas tácteis e três leds, conforme figura abaixo.

- O display possui páginas que podem ser trocadas em ordem crescente ou decrescente, dependendo da tecla pressionada. As páginas são rotativas, ou seja, acima da última retorna para a primeira e abaixo da primeira retorna para a última. Algumas páginas permitem um comando que é acionado, pressionando-se as teclas (↑) (↓) simultaneamente.
- As páginas (telas do display LCD) dependem do modelo do equipamento, monofásico ou trifásico, sendo apresentadas a seguir.

MODELO MONOFÁSICO

Tela de Apresentação

■ Esta página do display trás informações do fabricante e do equipamento

Schneider Electric Estabilizador Tensao

Rearme Automático

■ Esta página mostra a habilitação ou não do rearme automático permitindo ainda a troca de configuração.

Rearme: sim (ou não)

Bypass manual/automático (opcional)

 Para equipamentos dotados deste acessório, esta página mostra se o equipamento está com bypass configurado para operação manual ou automático.

Bypass: Automatico (ou Manual)

Bypass Manual (opcional)

 Para equipamentos dotados deste acessório, esta página mostra se o Bypass manual está ligado ou não. Permite também sua operação.

Bypass Manual: Ligado (ou desligado)

Ligar ou desligar estabilizador

■ Permite ligar e desligar o estabilizador, buscando facilitar ao usuário/operador, esta é a tela que normalmente é mostrada no display LCD ao energizar o equipamento, ou após um minuto sem operação do display/teclado.

Pressione ↑ e ↓ para ligar (ou desligar)

Para realizar as ações/comandos descritos, consulte a seção procedimentos de operação.

continuação

Tensões e correntes de entrada e saída

 Nesta tela são mostradas as tensões de entrada e saída assim como as correntes de entrada e saída.

Ve=	Vs=
le=	ls=

Potência de saída

Mostra a potência de saída do equipamento.

Data, hora, status de operação e temperatura interna

■ Está página apresenta dados de Data e hora do relógio interno, assim como sua temperatura e o status de operação (*).

Data	Hora
Status de Operação	Temperatura

Os status de operação do estabilizador são:

Desligado - estabilizador está desligado;

Normal – estabilizador ligado, e operando dentro de suas condições normais;

Sub – operando com subtensão na saída;

Sobre - operando com sobretensão na saída;

Sobrecarga – operando com carga acima de sua capacidade nominal;

Sobretemperatura – a temperatura interna está acima da máxima permitida;

Bypass (opcional) – estabilizador está alimentando a carga através do Bypass.

Modelo, frequência, número de série e Potência nominal.

Nesta página são informados os dados do equipamento como Modelo, Número de série, Potência nominal assim como a frequência instantânea.

Modelo	Freqüência
Número de série	Potência Nominal

continuação

MODELO TRIFÁSICO

Tela de Apresentação

■ Esta página do display trás informações do fabricante e do equipamento

CP Eletrônica Estabilizador Tensão

Rearme Automático

■ Esta página mostra a habilitação ou não do rearme automático permitindo ainda a troca de configuração.

Rearme: sim (ou não)

Bypass manual/automático (opcional)

 Para equipamentos dotados deste acessório, esta página mostra se o equipamento está com bypass configurado para operação manual ou automático.

Bypass: Automatico (ou Manual)

Bypass Manual (opcional)

■ Para equipamentos dotados deste acessório, esta página mostra se o Bypass manual está ligado ou não. Permite também sua operação.

Bypass Manual: Ligado (ou desligado)

Ligar ou desligar estabilizador

■ Permite ligar e desligar o estabilizador, buscando facilitar ao usuário/ operador, esta é a tela que normalmente é mostrada no display LCD ao energizar o equipamento, ou após um minuto sem operação do display/teclado.

Pressione ↑ e ↓
para ligar (ou desligar)

Para realizar as ações/comandos descritos, consulte a seção procedimentos de operação.

continuação

Tensões e correntes nas 3 fases

Nesta tela são mostradas as tensões de entrada (nas 3 fases) do estabilizador

Ve	R	S	Т	
V				

Tensões e correntes nas 3 fases

 Esta página trás informações das tensões de saída (nas 3 fases) do estabilizador.

Corrente de entrada nas 3 fases

 Esta página trás informações das correntes de entrada (nas 3 fases) do estabilizador.

le	R	S	Т
Α			

Corrente de saída nas 3 fases

• Esta página trás informações das correntes de saída (nas 3 fases) do estabilizador.

Is	R	S	Т	
Α				

Potência de saída por fase e Total

■ Nesta página podem ser obtidas as potências instantâneas de saída por fase e a total do equipamento.

R=	S=	T=	
PTOTAL=			

continuação

Data, hora, status de operação e temperatura interna.

■ Está página apresenta dados de Data e hora do relógio interno, assim como sua temperatura e o status de operação.

Data	Hora
Status de Operação	Temperatura

Os status de operação do estabilizador são:

Desligado - estabilizador está desligado;

Normal – estabilizador ligado, e operando dentro de suas condições normais;

Sub - operando com subtensão na saída;

Sobre – operando com sobretensão na saída;

Sobrecarga – operando com carga acima de sua capacidade nominal;

Sobretemperatura – a temperatura interna está acima da máxima permitida;

Bypass (opcional) – estabilizador está alimentando a carga através do Bypass.

Modelo, Frequência, Número de série e Potência nominal.

Nesta página são informados os dados do equipamento como Modelo, Número de série, Potência nominal assim como a frequência instantânea.

Modelo	Freqüência
Número de série	Potência Nominal

condições para rearme automático / desligamento

- Para que ocorra o **Rearme Automático** do estabilizador no retorno da rede de entrada, são necessárias que as seguintes condições/situações estejam presentes:
- Rede de entrada ter saído e estar voltando para faixa de operação normal (+/- 15%);
- Temperatura interna do equipamento esteja na condição NORMAL;
- As tentativas de Rearme
 Automático do estabilizador não tenham excedido o número máximo de tentativas permitidas.
- O **Desligamento** do estabilizador, o qual será apresentado no display LCD através da mensagem "Desarme por....", sendo sinalizado também via alarme sonoro, poderá ocorrer quando:
- Sobrecarga: a carga na saída do estabilizador está acima de sua capacidade nominal (a qual é verificada por fase);

- Subtensão ou Sobretensão na saída do estabilizador;
- Sobretemperatura: temperatura interna do equipamento está acima do máximo permitido;
- Frequência fora da faixa nominal de operação.

comandos

Os seguintes comandos podem ser executados localmente (via teclado/display):

- "Liga/Desliga";
- Ligar/desligar Bypass (opcional);
- Seleção do modo de operação do Bypass: automático ou manual (opcional);
- Seleção de rearme automático: sim ou não;

Através do software MRE ou CP Agent, estes comandos poderão ser executados remotamente (detalhes vide manual específico).

Sinais disponíveis pelo canal serial

Variáveis de supervisão	
Tensão de entrada	corrente de entrada
Tensão de saída	corrente de saída
Temperatura interna do equipamento	Data e hora
Valor da proteção de sobretemperatura	liga/desliga remoto
Valores da tensão de saída p/ desligamento por sobre ou	bypass: liga/desliga remoto
subtensão	
Variáveis de calibração	
tensão de entrada	corrente de entrada
tensão de saída	corrente de saída
Data e hora	Modelo
Potência nominal	número de série
Proteção de sobretemperatura	rearme automático - sim/não
bypass – sim/não	bypass - automático/manual

Eventos (capacidade p/ 1018 eventos)	
Energização do equipamento (ligado na rede)	todos comandos remotos
todos comandos locais	todas as sinalizações
todas as proteções	calibrações de modelo ou número de série
limpeza do buffer	calibrações de relógio ou data
Calibrações de parâmetros	, , , , , , , , , , , , , , , , , , ,

especificações mecânicas

- Gabinete metálico com pintura eletrostática em epóxi-pó corrugado com tratamento anti-corrosivo, montado sobre rodízios giratórios.
- Classe de Proteção IP20 (padrão), outro IP sob consulta.

dimensões e pesos

Potência	Configuração	Modelo	Dimensões (alt. x larg. x prof.) em mm	Peso em kg
TEMPO 510/4	Monofásica	MI / MF	860 x 610 x 350	75 / 50
TEMPO 5KVA	Trifásica	TI / TF	1200 x 670 x 300	130
	Monofásica	MI	000 040 050	100
TEMPO 7 510 /A		MF	860 x 610 x 350	65
TEMPO 7,5KVA	Trifécies	TI	1200 x 670 x 300	130
	Trifásica	TF	860 x 610 x 350	95
	Monofásica	MI	860 x 610 x 350	120
TEMPO 10KVA	Monorasica	MF	800 X 610 X 330	70
TEMPO TUKVA	Trifásica	TI	1200 x 670 x 300	155
	TIIIaSiCa	TF	860 x 610 x 350	110
	Monofásica	MI	860 x 610 x 350	165
TEMPO 15KVA	WOTOTASICA	MF	000 X 010 X 330	100
	Trifásica	TI / TF	1200 x 610 x 450	200 / 135
TEMPO 20KVA	Monofásica	MI / MF	1200 x 670 x 300	195 / 115
TEIVIPO ZUKVA	Trifásica	TI / TF	1200 x 610 x 450	240 / 155
	Monofásica	MI / MF	1200 x 610 x 450	310 / 185
TEMPO 30KVA	Trifásica	TI	1200 x 610 x 450	330
		TF	1200 x 610 x 450	195
TEMPO 40KVA	Trifásica	TI	1400 x 810 x 550	380
TEIWII O 40KVA		TF	1400 x 810 x 550	210
TEMPO 50KVA	Trifásica	TI	1400 x 810 x 550	460
TEIVIPO SURVA		TF	1400 x 810 x 550	225
TEMPO 60KVA	Trifásica	TI	1720 x 810 x 650	560
TEIVIPO OURVA		TF	1400 x 810 x 550	255
TEMPO 75KVA	Trifásica	TI	1720 x 810 x 650	700
TEINIFO /SKVA	TIIIasica	TF	1400 x 810 x 550	280
TEMPO 100KVA	Trifásica	TI	1930 x 860 x 650	900
TEINIFO TOURVA	Tillasica	TF	1400 x 810 x 550	350
TEMPO 125KVA	Trifásica	TI	1930 x 860 x 750	1125
TEMPO IZONVA	iiilasica	TF	1930 x 860 x 650	440
TEMPO 150KVA	Trifácion	TI	1930 x 860 x 750	1350
TEIVIPO 150KVA	Trifásica	TF	1930 x 860 x 650	500
TEMPO 200kVA	Trifácica	TF	1930 x 860 x 650	550
I LIVIPO ZUUKVA	00kVA Trifásica	TI	2070 x 1050 x 700	1700

As especificações e pesos são válidos para equipamentos padrão. Algumas especificações poderão sofrer alterações sem prévio aviso,ou ser adequadas conforme solicitação do cliente.

procedimentos de operação

instalação do equipamento

- Antes de ligar (energizar) o estabilizador, certifique-se que:
- A instalação está de acordo com as especificações do manual do equipamento;
- Tensões de entrada e saída estão de acordo com as especificações do equipamento;
- Sequências de fases das tensões de entrada e saída estão corretas;

A conexão dos cabos de rede de entrada (ou da rede alternativa externa, quando esta for a configuração do equipamento) permite a presença de tensão na saída do estabilizador.

acionamento

- No painel interno à porta frontal, verifique se os fusíveis estão corretamente conectados e energize a entrada do estabilizador. Isso fará com que a placa microprocessada inicialize e apareça no display a página de acionamento do estabilizador.
- Ligue o estabilizador pressionando as teclas (↑) (↓) simultaneamente (se estiver com a opção de rearme automático, ele irá ligar automaticamente). O led verde do circuito de sinalização de saída deve acender indicando Tensão de saída normal.

desligamento

- Posicione o cursor na página de desligar, pressione as teclas (↑) (↓) simultaneamente.
- Caso o estabilizador esteja configurado para "bypass automático" (opcional), a saída passará a ser alimentada pelo bypass.
- Todas as vezes que for necessário fazer o desligamento do estabilizador, desabilite o rearme automático (veja detalhes seção rearme automático) por motivos de segurança.

 Assim que religar o equipamento volte a habilitar essa opção.

bypass (opcional)

- Posicione o cursor na página do "bypass manual" e pressione as teclas (↑) (↓) simultaneamente para ligar ou desligar o bypass manual.
- Na opção de bypass automático ele irá atuar quando houver qualquer problema com a Tensão de saída. Para selecionar automático ou manual a página "bypass" alterna as opções "(manual)" e "(automático)".

rearme automático (opcional)

■ Posicione o cursor na página do "rearme automático" e pressione as teclas (↑) (↓) simultaneamente, para habilitar (sim) ou desabilitar (não) o rearme automático.

Anotações:	

manutenção

precauções

Este produto foi projetada visando uma fácil e barata manutenção. Para assegurar uma operação contínua e sem problemas, sugerimos que sejam tomadas algumas precauções:

- Mantenha o gabinete limpo.
 Utilize um pano limpo e seco ou
 um pincel para retirar a poeira. Se
 o gabinete estiver muito sujo, você
 pode umedecer um pano com água
 e detergente neutro, na proporção
 de seis para um, para remover as
 manchas. Não utilize cera para
 móveis. Mantenha limpa e livre as
 entradas de ar localizadas na parte
 inferior do gabinete.
- Quando o equipamento estiver desligado e não for utilizado por um longo período, ligue o sistema a cada 3 (três) meses e deixe-o operar durante, no mínimo, 24 horas.
- Reaperte os parafusos e contatos de bornes e verifique se todos os conectores das placas estão adequadamente encaixados.

- Ferramentas usadas na manutenção:
- Osciloscópio de 2 canais;
- Multiteste;
- Amperimetro (true RMS);
- Microcomputador ou PALM (consulte modelos compatíveis);
- Chave Allen:
- Chave de fenda;
- Chave de boca;
- Chave Philips;

Atenção: Toda e qualquer manutenção no equipamento deve ser executada por técnicos devidamente capacitados e treinados pela Schneider Electric.

EM CASO DE DÚVIDA

Consulte o Representante Técnico local ou chame:

Schneider Electric

Fábrica | Porto Alegre

Rua da Várzea, 379 | CEP 91040-600 | RS

Telefone: 55 51 2131 2407 | Fax: 55 51 2131 2469

Anotações:	

descrição simplificada de funcionamento

estabilização da tensão de saída

- Para a compensação das variações de tensão da rede AC, são empregados um conjunto formado por 10 transformadores isoladores (tapes), cujos secundários estão ligados em série.
- Os seus primários serão comutados através de Triac's, colocando-os em fase ou em oposição de fase, assim adicionando ou subtraindo tensão, estabilizando a tensão na saída, de modo independente em cada fase.

circuitos eletrônicos

- Composto de uma única placa de controle microprocessada e de uma placa de acionamento dos Tape's para cada fase. A placa microprocessada utiliza microcontroladores com tecnologia RISC, RTC (real time clock), interface serial, circuito de acionamento de contatoras, sensor de temperatura, condicionadores de sinais analógicos,
- alarme sonoro, leds indicadores da tensão de saída (tensão alta / normal / baixa), duas teclas e o display.
- A placa de acionamento contém os Triac's que comutam os Tape's de compensação e seu respectivo circuito de disparo (isolados opticamente da placa de controle).

proteção da tensão de entrada

- A proteção da tensão de entrada irá desativar o acionamento, manual, remoto ou automático da contatora de entrada caso ocorra queda de uma das fases ou ainda quando ocorrer uma subtensão
- ou sobretensão na entrada da rede, sendo estes valores limites estipulados em relação a um percentual da tensão de entrada.

rearme automático

- O sistema de rearme automático irá religar o estabilizador, após a ocorrência de uma anormalidade na Tensão de entrada ou frequência de operação do mesmo, no instante em que estas voltarem para dentro dos limites de Tensão de estabilização e frequência de operação e, portanto, todas as três fases estiverem presentes.
- O rearme automático pode ser habilitado ou desabilitado pelo painel de comando ou remotamente com um PC. Para habilitar ou
- desabitar, procure a página "rearme" pressionando qualquer tecla várias vezes até que ela apareça, e então pressione as teclas (†) (\$\psi\$) simultaneamente para trocar entre (sim) ou (não).
- O rearme automático atua no máximo 4 vezes em um intervalo de 20 segundos, após isso ele ficará desabilitado. Após rearmar, decorridos 20 segundos sem novo rearme, o número de tentativas é renovado.

proteção de tensão da saída

- A proteção da tensão de saída abrirá a contatora de entrada caso ocorra queda de uma das fases ou ainda quando ocorrer uma subtensão ou sobretensão, sendo estes valores limites estipulados em relação a um percentual da tensão de saída (padrão de fábrica ±10%). Antes disso haverá uma sinalização nos leds do painel quando se esgotarem os TAPE's a serem somados (subtensão) ou subtraídos (sobretensão). Desta forma o usuário já está ciente de que o estabilizador está operando em condições críticas e pode vir
- a desligar-se automaticamente a qualquer momento. Neste caso, ao desligar-se não haverá rearme automático, mesmo estando habilitado, ao menos que a placa de controle detecte também que rede de entrada tenha saído da faixa.

proteção de sobrecarga

A proteção digital de sobrecarga é temporizada por faixas especificadas na seção especificações técnicas. Ao detectar sobrecorrente, o que é monitorado individualmente por fase, e em que faixa se enquadra, é gravado o evento e bem como o alarme sonoro é acionado com frequência proporcional à intensidade para que o usuário tenha conhecimento.

 Ainda existem fusíveis de ação retardada do tipo NH ou DIAZED, ou por disjuntor termomagnético para aumentar a segurança.

bypass (opcional)

- A contatora de Bypass (opcional) oferece a possibilidade de transferir diretamente a rede de entrada para o equipamento consumidor, condição esta necessária quando ocorre uma falha no estabilizador. Desta forma, mesmo que o estabilizador esteja inoperante, o usuário continuará recebendo energia da rede elétrica.
- O bypass poderá ser ativado manualmente a qualquer hora, não importando as condições de entrada. Na opção de bypass automático ele irá atuar quando houver qualquer anormalidade com a tensão de saída. Com Rearme Automático habilitado a prioridade será para o rearme.
- Para ligar ou desligar o bypass deve-se proceder de maneira semelhante à descrita no rearme, na página "bypass manual" para (ligar) ou (desligar), pressionando as teclas (↑) (↓) simultaneamente. E para selecionar automático ou manual a página "bypass" alterna as opções "(manual)" e "(automático)".

comunicação serial

conexão serial

■ Para monitoração e supervisão remota do equipamento, utiliza-se o conector serial fêmea padrão RS232 presente na parte posterior do estabilizador. Maiores detalhes sobre a comunicação serial e supervisão remota podem ser obtidas junto à documentação do software MRE e/ ou do CP Agent para estabilizadores.

Anotações:	

meio ambiente

ações

- Preocupação cada dia mais presente na sociedade, o meio ambiente necessita de cuidados cada vez maiores por parte das empresas a fim de contribuírem para a diminuição dos impactos em todo o ciclo de vida do produto. Seja na redução de gases poluentes e tratamento de resíduos até o descarte.
- A Schneider Electric visando atender as normas que determinam cuidados a serem tomados com relação ao descarte do produto ao fim da sua vida útil, recomenda que sejam encaminhados as empresas
- com licenciamento de operação ambiental os itens como baterias, placas de circuito impresso e capacitores eletrolíticos. Esses componentes são considerados de periculosidade conforme a classificação da NBR 10.004.
- Para maiores informações entrar em contato com o Departamento de Pós Vendas pelo fone (51) 2131.2407

Anotações:	

garantia

termos

A Schneider Electric garante seus produtos pelo prazo de 12 (doze) meses, contados a partir da emissão da nota fiscal de venda, contra defeitos de fabricação, peças, instrumentos e de mão de obra, que os tornem impróprios ou inadequados ao uso a que se destinam.

Para usufruir da garantia, o cliente deverá:

- Seguir as orientações do Manual do Usuário em sua totalidade;
- Apresentar a nota fiscal de venda, emitida pela Schneider Electric;
- Utilizar-se de um dos representantes técnicos credenciados e indicados pela Schneider Electric.

A garantia não cobrirá:

- Despesas de locomoção, estadia e alimentação do pessoal de manutenção, nos casos de atendimento no local de instalação;
- Despesas com o transporte de ida e volta do produto até o representante credenciado Schneider Electric;
- Atendimentos fora do horário comercial, definido de segunda à sexta-feira, das 08:00 às 18:00 horas, excluindo-se os feriados;
- Danos gerais, especiais, diretos ou indiretos, inclusive danos emergentes, lucros cessantes ou indenizações subseqüentes, decorrentes da utilização, desempenho ou paralisação do produto.

A garantia será invalidada, automaticamente, se:

- O produto for utilizado em rede elétrica fora dos padrões especificados ou em desacordo com o Manual do Usuário;
- O produto for utilizado com acessórios ou adicionais, não especificados pela Schneider Electric;

- O produto for instalado, ajustado, aberto para conserto ou tiver seus circuitos alterados por técnico não autorizado ou não credenciado pela Schneider Electric;
- Os dados de identificação do produto ou de suas peças forem removidos, rasurados ou alterados;
- O produto for utilizado em ambientes agressivos, com presença de gases corrosivos ou umidade, poeira, sujeira, maresia e etc.
- O produto sofrer qualquer dano por acidente ou movimentação incorreta;
- O produto sofrer dano causado por agentes da natureza, como: descargas atmosféricas, temporais, vendavais, inundações, incêndios, terremotos, maremotos, etc.
- For introduzida qualquer modificação no produto, sem a autorização da Schneider Electric.

A garantia é válida apenas no território brasileiro e anula qualquer outra assumida por terceiros, não estando nenhuma empresa ou pessoa habilitada ou autorizada a fazer exceções ou assumir compromissos em nome da Schneider Electric.

Anotações:	

ficha de instalação

TEMPO - monofásico

O equipamento deverá ser instalado de acordo com a configuração realizada pelo representante Schneider Electric conforme o modelo do equipamento, e conforme a tabela com os valores abaixo:

Estabilizador TEMPO Monofásico

	Cabos de Entrada até 7m	Cabos de Saída até 7m
Tensão (V)		
Corrente (A)		
Seção das Fases (mm²)		
Seção do Neutro (mm²)		
Seção do Terra (mm²)		
Disjuntor de Entrada Ação Retardada		

Anotações:	

ficha de instalação

TEMPO - trifásico

O equipamento deverá ser instalado de acordo com a configuração realizada pelo representante Schneider Electric conforme o modelo do equipamento, e conforme a tabela com os valores abaixo:

Estabilizador TEMPO Trifásico

	Cabos de Entrada até 7m	Cabos de Saída até 7m
Tensão (V)		
Corrente (A)		
Seção das Fases (mm²)		
Seção do Neutro (mm²)		
Seção do Terra (mm²)		
Disjuntor de Entrada Ação Retardada		

Os Centros de Serviços Schneider Electric oferecem:

- Engenharia, start-up e assistência técnica
- Manutenção e peças de reposição

Ligue para o seu representante de vendas que ele irá colocá-lo em contato com os centros de atendimento mais próximos.

Schneider Electric SA