Specyfikacja implementacyjna i funkcjonalna programu rozwiązującego labirynt w Javie

Oliwia Woźniak, Karolina Wiśniewska

1 Opis problemu

Celem naszego programu było rozwiązanie labiryntu wgranego przez użytkownika przy wywołaniu programu. Dozwolony format pliku z labiryntem to tekstowy (.txt) lub binarny (.bin). Przy wywołaniu program program wypisuje do standard output ścieżkę z rozwiązaniem. Przy użyciu odpowiednich flag program również posiada również opcje zapisania rozwiązania do pliku w formacie binarnym. Powinien również posiadać funkcjonalne GUI (Graficzny Interfejs Użytkownika). Program powinien być napisany w języku Java.

2 Algorytm

Do rozwiązania problemu wykorzystałyśmy algorytm Dijkstry. Algorytm ten służy głównie do znajdywania najkrótszej ścieżki w grafie skierowanym, gdzie wszystkie wierzchołki są ze sobą powiązane krawędziami.

W tym wypadku, grafem jest cały labirynt:

- wierzchołkami są wszystkie pola puste, pole początku i końca oraz ściany
- krawędziami są wszystkie przejścia pomiędzy polami, nie będące ścianą. Oznacza to, że ściany są wierzchołkami poza grafem.

Algorytm zaczyna przeszukiwanie labiryntu od punktu określonego jako start (domyślnie lub przez użytkownika),

3 Struktura Katalogów

3.0.1 Pakiety - src/main/java/Main

- MazeData Pakiet odpowiedzialny za obsługę danych labiryntu, takich jak struktura i właściwości labiryntów.
 - Coords.java
 - DJQueue.java
 - MazeBrowse.java
- File Pakiet odpowiedzialny za operacje na plikach, takie jak wczytywanie i zapisywanie danych.
 - BinaryFileHeader.java
 - CodeWord.java
 - MazeFileReader.java
 - MAzeFileWriter.java
- GUI Pakiet zawierający komponenty graficznego interfejsu użytkownika.
 - ButtonEnum.java definiuje typy przycisków używanych w interfejsie graficznym
 - ButtonPanelComposite.java kompozyt zarządzający panelami przycisków "Wybierz labirynt", "Wypisz labirynt", "Wybierz wejście", "Wybierz wyjście", "Rozwiąż"
 - ControlPanelButton.java implementuje przyciski znajdujące się w panelu kontrolnym
 - ControlPanelComposite.java zarządza kompozytem panelu kontrolnego w interfejsie graficznym
 - MazeToImageConverter.java konwertuje strukturę labiryntu na obraz wyświetlany w interfejsie graficznym
 - ${\bf Maze View.java}$ wyświetla i zarządza widokiem labiryntu
 - ${\bf ScrollPane Composite.java}$ kompozyt zarządzający panelami przewijania w interfejsie graficznym.
 - StatusLabelPanel.java mplementuje panel statusowy wyświetlający informacje o stanie pliku z labiryntem
- Listeners Pakiet zawierający klasy nasłuchujące zdarzeń generowanych przez użytkownika. Klasy są odpowiedzialne odpowiednio za przycinki w panelu kontrolnym oraz działania myszki oraz panel przewijania odpowiedzialne za prace w labiryncie
 - ChooseEntryButton.java
 - ChooseExitButton.java
 - FileButtonListener.java
 - ListenerFactory.java
 - MazeMouseActionListener.java
 - SolveButtonListener.java
 - WriteFileButtonListener.java

3.0.2 Klasy-src/main/java/Main

- $\bullet\,$ Main.
java - Główna klasa programu uruchamiająca aplikację.
- \bullet Application GUI.java - Klasa zarządzająca głównym interfejsem graficznym użytkownika.
- \bullet Custom EventManager.java - Klasa zarządzająca niestandardowymi zdarzeniami w aplikacji.
- \bullet $\mathbf{EventType.java}$ Klasa definiująca różne typy zdarzeń używane w aplikacji.

Rysunek 1: Diagram Modułów

4 Funkcjonalności Programu

4.1 Zarządzanie Labiryntami

Program umożliwia wgrywanie, edytowanie lub wprowadzanie wejść/ wyjść.

4.2 Wizualizacja Labiryntu

Za pomocą graficznego interfejsu użytkownika (GUI) program wizualizuje strukturę labiryntu, pozwalając użytkownikowi na interaktywną nawigację i manipulację wejść/wyjść. Wizualizuje ścieżke z rozwiązaniem.