Better Anchoring and Ambiguity Measurement with Mixture Models

Juraj Medzihorsky

13 September 2020

The Problem

Differential item functioning

How crunchy do you like your toast?

- 1. Very crunchy
- 2. Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

Anchoring items

Source: Wikimedia Commons

How crunchy is this toast?

- 1. Very crunchy
- 2. Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

Anchoring batteries

Source: Wikimedia Commons

How crunchy is this toast?

- 1. Very crunchy
- 2. Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

How is this toast?

- 1. Very
- 2.
- 3. Neither nor
- 4.
- 5. Very

How crunchy **hot** is this toast?

- 1. Very crunchy hot
- 2. Crunchy Hot
- 3. Neither crunchy hot nor soft cold
- 4. Soft Cold
- 5. Very soft cold

Howenundhwisthistoast??

- 11. Verycrumably
- 22. Crumabby
- 33. Neitilbler crumabhyynon softt
- 44. Søftft
- 55. Verysoftt

Source: telegraph.co.uk

EES Left-Right batteries

Low-quality responses

Low-quality responses

Low-quality responses

A Solution

A mixture framework

$$O = \pi M + (1 - \pi)C$$

- O observed responses
- M informative responses
- *C* uninformative responses
- π mixing weight, $\pi \in [0, 1]$

Modeling Informative Responses

Aldrich-McKelvey Scaling

Classical AMS

$$y_{ro} \sim \text{Normal}(\alpha_r + \beta_r \theta_o, \sigma)$$

Bayesian AMS (Hare at al. 2015)

$$y_{ro} \sim \text{Normal}(\alpha_r + \beta_r \theta_o, \sigma_r \sigma_o)$$

Scaling self-placements

$$\zeta_r = \frac{Z_r - \alpha_r}{\beta_r}$$

Fitting complex latent variable models

 $Peter Fischli \ and \ David \ Weiss's \ The First Blush \ of Morning, 1984.$ Source: https://www.wmagazine.com/story/peter-fischli-david-weiss-merry-pranksters

Measurement model

$$y_{ro} \sim \text{Categorical}(\mathbf{p}_{ro})$$
 $p_{rok} = \text{OrdLogit}((\tau_{rk} - \gamma_r \theta_o) \beta_o)$
 $\boldsymbol{\tau_r} \sim \text{Logistic}(0, 1), \ \tau_{rk} < \tau_{r,k+1}$
 $P(\gamma_r = -1) \sim \text{Beta}(0.5, 0.5), \ \gamma_r \in \{-1, +1\}$
 $\ln \beta_o \sim \text{Normal}(0, 1)$
 $\theta_o \sim \text{Normal}(0, \sigma)$
 $\zeta_r \sim \text{Normal}(0, \sqrt{R}\sigma)$
 $\sigma \sim \text{HalfNormal}^+(0, 1)$

Modeling Uninformative

Responses

Contamination models

iv. Between-respondent multidimensionality

Building Mixture Models

10 mixture models

	Scale flipping	Midpoint inflation	Pseudo- guessing	Item slope
1.A 2.A	Y			
3.A	Y	battery		
4.A	Y	item		
5.A	Y	battery	item	
6.A	Υ	item	item	
1.B				Υ
2.B	Y			Υ
3.B	Y	battery		Υ
4.B	Υ	item		Υ

EES: Model fit

EES: Best fit

Model 4.B

- Respondent thresholds
- Scale flipping by respondent, population rate
- Midpoint inflation by response, item rate
- Item discrimination

EES: Midpoint inflation estimated by model 4.B

Ambiguity and dispersion

Ambiguity and agreement

Conclusion

Conclusion

Developing the paper

- Two-step version
- Bayesian model validation
- Replicate causal analyses

Future research

- Modeling rationalization bias (Bølstad 2020)
- Nonresponse and ambiguity (Rozenas 2013)
- More structured component memberships

Thank you!

APPENDIX

Three EES Left-Right batteries

AMS: EES UK 2009 Left-Right battery

AMS: EES UK 2009 Left-Right battery

THE END