Conversion réciproque d'énergie électrique en énergie chimique

Agrégation

Pile Daniell

Eloïse Mestre

Électrosynthèse de l'eau de Javel

MESTRE Eloïse

Dosage de l'eau de Javel

<u>Titrage indirect:</u>

(1) Ajout de KI en excès:

ClO⁻(aq) + 2H⁺(aq) + 2 e- = Cl⁻(aq) + H₂O(l)

$$I^{-}(aq) = I_{2}(aq) + 2e$$

$$Clo^{-}(aq) + 2I^{-}(aq) + 2H^{+}(aq) = Cl^{-}(aq) + I_{2}(aq) + H_{2}O(l)$$

(2) Titrage de I_2 par $S_2O_3^{2-}(aq)$:

$$2 S_2 O_3^{2-}(aq) + I_2(aq) = 2I^-(aq) + S_4 O_6^{2-}(aq)$$

(3) À l'équivalence :

$$n(I_2) = \frac{n(S_2O_3^{2-})}{2} = \frac{[S_2O_3^{2-}] V_{eq}}{2} = n(ClO^-)_{titré}$$

Synthèse industrielle

Cellule à membrane

Cellule à mercure

https://www.eurochlor.org/about-chlor-alkali/how-are-chlorine-and-caustic-soda-made/membrane-cell-process/

Processus de synthèse industriels

Processus	Avantages	Inconvénients	Production en Europe (%)
Cellule à mercure	Dichlore de haute pureté Soude concentrée	Consommation énergétique élevée Utilisation de mercure	0
Cellule à membrane	Séparation des produits Consommation énergétique modérée	Nécessite une purification du dichlore	85
Autres			5

https://www.eurochlor.org/about-chlor-alkali/how-are-chlorine-and-caustic-soda-made/membrane-cell-process/

MESTRE Eloïse

Accumulateur Li-ion

MESTRE Eloïse

Merci