Maximum Likelihood Estimation

Readings:

Haddon 2011 (Section 3.4)

Announcements

• 558 project synopses → Due Wednesday, 3/18 (11:59pm)

How do we fit models to data?

- Least squares (see refresher below)
- Maximum likelihood
- Bayesian methods (not for this class)

$$residual = \varepsilon_i = Y_i - \widehat{Y}_i$$

$$RSS = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Maximum Likelihood

- Alternative way of fitting models and getting estimates...
- Need a quick review of probability

- Simple intro/explanation:
 - https://towardsdatascience.com/probability-conceptsexplained-maximum-likelihood-estimationc7b4342fdbb1

Probability

Probability – Frequency View

- Probability is long-run relative frequency (from a random process)
- Same as relative frequency in the population

- Examples
 - Dice toss p(1) = p(2) = ... = p(6) = 1/6
 - Coin flip p(Head) = p(Tail) = .5

Probability

- Some characteristics
 - Between 0 and 1
 - Probabilities must be non-negative.
 - The sum of probabilities over all possible mutually exclusive outcomes must equal one (e.g., dice)
 - If two events, A and B, are mutually exclusive, the probability of observing either of the events is the sum of their individual probabilities.

$$P(A \cup B) = P(A) + P(B)$$

"Union" P(A or B)

Mutually exclusive: related in such a way that each thing makes the other thing impossible; not able to be true at the same time or to exist together

Independence

- Joint probability is the probability that two (or more) different events will occur
- Statistical independence means that knowledge of one event provides no information about the probability that another event will occur

$$P(A,B) = P(A)P(B)$$

/ intersection

P(A,B) is the same as P(A and B) or $P(A \cap B)$

E.g., what is P(1 and 2) when rolling two die?

Independence

 We usually assume that observations are in some way independent of one another when we fit models

$$P(y_1, y_2, ..., y_n) = P(y_1)P(y_2) ... P(y_n) = \prod_{i=1}^{n} P(y_i)$$

• E.g., in linear regression, we assume that the errors are independent

pdf for the normal distribution

- **Probability density function (pdf)** describes the probability of an event occurring for a *continuous* distribution.
 - The total area under the curve = 1
- The normal distribution is one of the most common pdfs:

$$f(y|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-0.5\left(\frac{y-\mu}{\sigma}\right)^2}$$

$$E(Y) = \mu$$

$$Var(Y) = \sigma^{2}$$

$$E(Y) - \text{"expected value of Y"; Var(Y) - variance of Y}$$

$$\frac{0.30}{0.25} - \frac{0.20}{0.15} - \frac{0.20}{0.15} - \frac{0.10}{0.05} - \frac{0.10$$

Maximum Likelihood

Maximum Likelihood Estimation (MLE)

- ML techniques are a powerful and flexible method for parameter estimation
- Alternative to least squares methods
- This technique involves finding the parameters that maximize the probability of generating the observed data (this is how we define "best fit" with ML)
- Likelihood ≠ probability

ML - Developed by R. A. Fischer (published this while a junior in college!)

Maximum Likelihood Parameter Estimation

- ML parameter estimates maximize the probability of observing the data
- Reverses the role of parameters and data (compared to probability)
- Treat the data as fixed and find parameters that maximize the probability of observing those data

$$L(parameters \mid data) = P(data \mid parameters)$$

Likelihood (L) is conditioned on the data

Likelihood for continuous distributions

 For a continuous distribution, the likelihood is calculated as:

• "the likelihood of the parameter(s) θ (theta) is the product of the pdf values for each of the n observations Y_i given the parameter(s) θ "

Example 1 – Normal distribution

- To get probability of whole data set (given parameters):
 - Multiply prob. of each data point together b/c independent
 - $P(y_{all}) = P(y_1)xP(y_2)x ... xP(y_n)$
- Use normal PDF for getting probabilities.
- Parameters for normal are μ and σ .

Parameters

$$L(\mu, \sigma \mid y_i) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{(y_i - \mu)^2}{\sigma}\right)}$$

Maximum Likelihood Example 1

- You take a sample (n=4) from a population and you want to estimate the population average (μ) using ML.
- Samples of $Y_i = 0, 2, 4, 6$
- Calculate L for different values of μ (here, using sample SD as σ =2.6). Find the value of μ that would "maximize the likelihood".

	P(Y _i μ)		
Yi	If μ=1	If μ=3	If μ=5
0	0.127	0.027	0.001
2	0.127	0.127	0.027
4	0.027	0.127	0.127
6	0.001	0.027	0.127
L	5.35E-07	1.19E-05	5.35E-07
log(L)	-14.44	-11.34	-14.44
-log(L)	14.44	11.34	14.44

Likelihood of μ given the Y_i data

$$L(\mu, \sigma \mid \mathbf{y}_{i}) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\left[(\mathbf{y}_{i} - \mu)^{2}}{\sigma} \right]} = P(\mathbf{Y}_{1}) \times P(\mathbf{Y}_{2}) \times P(\mathbf{Y}_{3}) \times P(\mathbf{Y}_{4})$$

Maximum Likelihood Example 1

- You take a sample (n=4) from a population and you want to estimate the population average (μ) using ML.
- Samples of $Y_i = 0, 2, 4, 6$
- Calculate L for different values of μ (here, using sample SD as σ =2.6). Find the value of μ that would "maximize the likelihood".

Our ML estimate of μ is 3.

- This is the value that maximizes the likelihood on the graph
- note this matches our sample mean (\overline{Y} = (0+2+4+6)/4 =3), which is an unbiased estimator of μ .

Likelihood of μ given the Y_i data

$$L(\mu, \sigma \mid \mathbf{y}_{i}) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\left[(\mathbf{y}_{i} - \mu)^{2}\right]}{\sigma}\right)} = P(\mathbf{Y}_{1}) \times P(\mathbf{Y}_{2}) \times P(\mathbf{Y}_{3}) \times P(\mathbf{Y}_{4})$$

Properties of Likelihoods

- Likelihoods do not need to sum to one
 - They are NOT probabilities
- Likelihoods are a relative (not absolute) measure of model fit

Calculating products is difficult, so logs are often used

Likelihood Nomenclature

- Terms used to identify likelihood methods can be confusing:
- Likelihood L(θ |data) [where θ are parameters]
 - Remember: goal is to maximize likelihood
- **Log likelihood** log(L(θ | data)) or LL
 - Used because easier to deal with sums than with products.
- Negative log likelihood -log(L(θ | data)) or -LL or NLL
 - Used for historical reasons (e.g., folks used to minimizing Sums of Squares), and software more common previously for minimizing functions

ML Example 1, n=4

What would LL and –LL look like?

ML Example 1, n=4

- All 5 give you the same result.
- Profile shapes give you some information of the relative likelihood of different results

ML Example 2, n=48

 As sample size increases, the amount of information increases, so you have a narrower range of values near the "best estimate" → greater confidence in value

-LL eqns. — Normal distribution

- Negative log likelihood (negLL, -LL) [to be minimized!]
 - Done to facilitate calculations

$$negLL = \sum_{i=1}^{n} \left(\frac{1}{2} log(2\pi) + log(\sigma) + \frac{1}{2} \left(\frac{y_i - \mu}{\sigma} \right)^2 \right)$$

Negative log likelihood with constants removed:

$$negLL = \sum_{i=1}^{n} \left(log(\sigma) + \frac{1}{2} \left(\frac{y_i - \mu}{\sigma} \right)^2 \right)$$
 µ would be whatever your model is! e.g., $\mu = \beta_0 + \beta_1 X$

Properties of MLEs

- Invariant to transformations
- Asymptotically efficient (lowest possible variance)
- Asymptotically normally distributed
 - Useful for getting CI intervals
- Asymptotically unbiased (expected value of the estimated parameter equals the true value)
- ML estimates will be the same as least squares estimates if errors are normal, additive, and with constant variance

[&]quot;Asymptotic" - deals with the conditions at infinitely large sample sizes.

Potential Challenges of ML Methods

- Programming may be required because usually problem specific
- Likelihood equations need to be worked out for a given problem
- Numerical techniques are often required to find MLE
- MLEs may be biased for small samples and asymptotic benefits may not apply to small samples

Summary 1: Maximum likelihood

- Goal: find the parameter values that make the observed data most likely
 - <u>Maximize</u> likelihood (L), <u>maximize</u> log-likelihood (LL), or <u>minimize</u> negative log-likelihood (-LL) → give same result
- Likelihood is different than probability
 - Probability: Knowing parameters → Prediction of data
 - Likelihood: Observation of data → Estimation of parameters
- ML is an alternative to least squares for fitting models
 - ML and Least Squares give same results if errors are normal and additive with constant variance
- Writing a likelihood function relies on the equation for your distribution
 - See Haddon 2011 for examples, or lecture for eqns.

Model fitting with nonlinear optimization

Readings:

Haddon 2011 (Section 3.4)

How to find minimum of -LL? Nonlinear Optimization

 Nonlinear optimization is the general term for trying to find the maximum or minimum of a function (e.g., likelihood fxn)

Numerical solution (vs. Analytical solution) – approximate solution found through iterative searching

Parameter Value

Minimization

• R has functions to do this: e.g., optim()

Parameter Value

Potential Nonlinear Optimization Problems

optim() in R

- optim() uses an algorithm that relies on derivatives to find the optimal solution
- Some common outcomes:
 - it finds the "best" solution
 - it reaches its limit of iterations (can change maxit)
 - Misc. errors
- Check that convergence criteria were met:
 - \$convergence = $0 \rightarrow SUCCESS!$
 - \$convergence = 1 → max iterations reached

Potential Nonlinear Optimization Problems

- 1. Improper starting values
- 2. Model specification or coding error
- Negative log likelihood function may be undefined for some parameter values
- 4. Parameterization problems (scaling, correlated parameters)
- 5. Uninformative data

1. Starting values

- Parameters need to be provided "good" starting values for all nonlinear optimization routines
 - The starting value should be: of the <u>same sign</u> and <u>similar magnitude</u> the expected solution
- Obtain starting values by eye
- Use several sets of starting values
- Can increase max number of iterations (using maxit) to allow longer search
 - optim(..., control=list(maxit=10000))

2. Model Specification and Coding Errors

- R cannot detect mistakes in your model
- Make sure that model predictions make sense
 - Do the numbers make sense?
 - Graph predictions over the data
- Try specific sets of parameter values for which you know the correct answer
- Fit model to simulated data

3. negLL function may be undefined for some parameter values

- Common example:
 - Sigma (σ) can't be negative can't have a negative SD of residuals
 - Warning

```
Warning messages:
1: In log(sigma) : NaNs produced
```

- Possible solutions:
 - Ignore
 - Use a different method that allows constraints (e.g., "L-BFGS-B")
 - Estimate $log(\sigma)$ which can be negative, then backtransform

4. Parameterization Problems

- Many models can be written in several forms, each called a parameterization
- Parameters should have low correlations with one another
- Parameters should be of similar magnitude (e.g., avoid 0.000000529 and 3.54)
 - \rightarrow estimating parameters in log space can help (e.g., ln(5.3E-07) = -14.45

5. Uninformative data

- The data may have little or no information about one or several parameters
- Only able to statistically estimate n-1 parameters

Summary 2 - Nonlinear Optimization

- Nonlinear optimization general term for trying to find the maximum or minimum of a function (e.g., likelihood function).
 - Numerical solution used when can't Analytical solution)

Potential problem with nonlinear optimization:

- 1. Improper starting values
- 2. Model specification or coding error
- Negative log likelihood function may be undefined for some parameter values
- 4. Parameterization problems (scaling, correlated parameters)
- 5. Uninformative data