FATE P01, P02

Data Anonymization

Ashwin S they/them

<u>Fairness</u>, <u>Accountability</u>, <u>Transparency</u> and <u>Ethics of Data Processing</u> (<u>FATE</u>)

Programming Sessions

upf.

1. **6 Labs =** 3 Modules x 2 Sessions

2. Grading Policy

M1: Data Anonymization (40%) Submit by 11:59 PM, Feb 03, 2025

M2: Algorithmic Fairness I (20%) Submit by 11:59 PM, Feb 20, 2025

M3: Algorithmic Fairness II (40%) Submit by 11:59 PM, Mar 07, 2025

3. Queries / Discussion

Please post on the Aula Global Forum for everyone's benefit.

4. Email: ashwin.singh01@estudiant.upf.edu

Overview

- 1. Attributes in Microdata
- 2. *k*-Anonymity
- 3. Methods for *k*-Anonymity
 - a. Global Recoding (Generalization)
 - b. Micro-Aggregation
- 4. \{\colon \text{Diversity [New!]}
- 5. Local Suppression for \earlier Diversity

Attributes In Microdata

1. Identifiers

Can unambiguously identify a person (passport, DNI/NIE, email address, etc.)

2. Quasi-Identifiers

Can sometimes identify the person when combined with other quasi-identifiers.

```
(gender <-> zip-code <-> age)
```

3. Confidential Attributes

Sensitive information about a person (salary, ethnicity, gender, etc.)

4. Non-Confidential Attributes

Whatever remains...

k-Anonymity

D1: $x_1, x_2 \in X$ belong to the same **equivalence class** if \forall quasi-identifiers $q \in Q$, $x_1(q) = x_2(q)$.

D2: X satisfies k-anonymity when there exist at least k elements in each equivalence class.

Gender	Zip-Code	Salary	Equivalence Class
man	08010	<5000€	C1
man	08010	<5000€	C1
woman	08022	>5000€	C2
woman	08022	>5000€	C2

Sweeney, L. (2002). k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05), 557–570. https://doi.org/10.1142/S0218488502001648

Global Recoding (Generalization)

Gender	Zip-Code	Generalized Zip-Code	Salary	Equivalence Class
man	08011	0801*	<5000€	C1
man	08012	0801*	<5000€	C1
woman	08020	0802*	>5000€	C2
woman	08022	0802*	>5000€	C2

Remember

All instances in the database are modified during generalization.

(which is why it is global)

It is **non-perturbative**. Why?

Quasi-Identifiers	Confidential Attribute
-------------------	------------------------

Micro-Aggregation

Company	Workers	Aggregated Workers	Profit	Equivalence Class
А	44	41	+1000€	C1
В	25	27	+500€	C2
С	39	41	+750€	C1
D	30	27	+300€	C2

Discuss

Why do we take the **mean**?

Is it **perturbative** OR **non-perturbative**?

Identifier Quasi-Identifiers Confidential Attribut
--

Micro-Aggregation ► Intuition

Univariate Case

Sort data by the continuous quasi-identifier

Assign first k items class 1, next k items class 2, and so on... (*not always optimal)

Multivariate Case

k-Partition Problem with Minimal Information Loss [NP-Hard]

J. Domingo-Ferrer and J. M. Mateo-Sanz, "Practical data-oriented microaggregation for statistical disclosure control," in IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 1, pp. 189-201, Jan.-Feb. 2002, doi: 10.1109/69.979982.

Micro-Aggregation ► Loss of Information

Plots generated across different runs of Gaussian Mixture Model to cluster and micro-aggregate data to achieve *k*-anonymity.

Loss of Information

$$SSE = \sum_{c \; \in \; C} \sum_{q \; \in \; Q_c} (q - \overline{q}_c)' (q - \overline{q}_c)$$

C is the set of equivalence classes

Q_c is the set of quasi-identifier vectors in equivalence class c

l-Diversity

A dataset X satisfies **l-diversity** when there exist at least **l**distinct values of the **confidential attribute** in each **equivalence class**.

Zip-Code	Profession	Equivalence Class
0801*	Software Engineer	C1
0801*	Software Engineer	C1
0802*	Architect	C2
0802*	Doctor	C2

What is the problem here?

Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). L -diversity: Privacy beyond k -anonymity. ACM Transactions on Knowledge Discovery from Data, 1(1), 3. https://doi.org/10.1145/1217299.1217302

ℓ-Diversity ► Local Suppression

A dataset X satisfies **l-diversity** when there exist at least **l**distinct values of the **confidential attribute** in each **equivalence class**.

Zip-Code	Profession	Equivalence Class
0801*	Software Engineer	C1
0801*	Engineer	C1
0802*	Architect	C2
0802*	Doctor	C2

What is the problem now?

Machanavajjhala, A., Kifer, D., Gehrke, J., & Venkitasubramaniam, M. (2007). L -diversity: Privacy beyond k -anonymity. ACM Transactions on Knowledge Discovery from Data, 1(1), 3. https://doi.org/10.1145/1217299.1217302