

- 1 -

SEQUENCE LISTING

<110> The Scripps Research Institute
Friedlander, Martin
Otani, Atsushi
DaSilva, Karen

<120> HEMATOPOIETIC STEM CELLS AND METHODS OF
TREATMENT OF NEOVASCULAR EYE DISEASES THEREWITH

<130> TSRI-900.1

<150> 60/467051
<151> 2003-05-02

<150> 60/398522
<151> 2002-07-25

<160> 2

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 4742
<212> DNA
<213> Artificial Sequence

<220>
<223> DNA encoding His-tagged human T2-TrpRS

<400> 1
tggcgaatgg gacgcgcctt gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgcctt agcgcgcgt cctttcgctt tcttccttc 120
ctttctcgcc acgttcgccc gctttccccg tcaagctcta aatcgggggc tcccttttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgatttagg gtgatggtc 240
acgtagtggg ccatcgccct gatagacggt ttttcgcctt ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggcttattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgt 540
tccgctcatg agacaataac cctgataaaat gcttcaataa tattgaaaaa ggaagagtat 600
gagtattcaa cattccgtg tcgccttat tccctttttt gcccattttt gccttcctgt 660
ttttgctcac ccagaacacgc tggtaaaagt aaaagatgtt gaagatcagt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cgtaagatc ctggagagtt ttcccccga 780
agaacgtttt ccaatgatga gcaactttaa agttctgcta tgtggcgcgg tattatccc 840
tattgacgcc gggcaagagc aactcggtcg cccatatac tattctcaga atgacttggt 900
tgagtactca ccagtcacag aaaagatct tacggatggc atgacagtaa gagaattatg 960
cagtgcgtcc ataaccatga gtgataaac tgcggccaac ttacttctga caacgatcgg 1020
aggaccgaag gagctaaccg ctttttgca caacatgggg gatcatgtaa ctcgccttga 1080
tcgttggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaaactt attaactggc gaactactta ctctagcttc 1200

ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260
ggcccttcgg cgtggctgg ttattgctga taaatctgg gcccgtgagc gtgggtctcg 1320
cggtatcatt gcagcaactgg ggccagatgg taagccctcc cgtatcttag ttatctacac 1380
gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agttactca tataacttt agattgattt 1500
aaaacttcat ttttaattt aaaggatcta ggtgaagatc cttttgata atctcatgac 1560
caaataccct taacgtgagt tttcggttcca ctgagcgtca gacccctgaa aaaagatcaa 1620
aggatcttct tgagatcctt ttttctgctc cgtaatctgc tgcttgaaa caaaaaacc 1680
accgctacca gcggtgggtt gtttgcggg tcaagagcta ccaactctt ttccgaaggt 1740
aactggcttc agcagagcgc agataccaaa tactgtcctt ctatgttagc cgtagttagg 1800
ccaccacttc aagaactctg tagcaccgccc tacatacctc gctctgtcaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtctg tcttaccggg ttggactcaa gacgatagtt 1920
accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgg 1980
gcgaacgacc tacaccgaac tgagataacct acagcgtgag ctatgagaaa gcccacgct 2040
tcccgaaggg agaaaaggcgg acaggatattcc ggtaaagcggc agggtcggaa caggagagcg 2100
cacgagggag cttccagggg gaaacgcctg gtatctttt agtctgtcg ggtttcgcca 2160
cctctgactt gagcgtcgat ttttgtatg ctcgtcagggg gggcggagcc tatggaaaaa 2220
cgccagcaac gcccccttt tacgggttccct ggcctttgc tggccttttgc ttcacatgtt 2280
ctttcctgctc ttatccccctg attctgttggaa taaccgtatt accgcctttt agtgagctga 2340
taccgctcgc cgcaagccgaa cgaccgagcg cagcgtatca gtgagcgggg aagcggaga 2400
gcccctgatg cggatttttc tccttacgca tctgtgcggg atttcacacc gcatatatgg 2460
tgcactctca gtacaatctg ctctgtatgcc gcatagtttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gctgcgccttcc gacaccgcctt aacaccgcgt gacgcgcctt 2580
gacgggcttg tctgtcccg gcatccgcctt acagacaagc tgcgttgcgc tccggagct 2640
gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700
catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgc tccagctcg 2760
tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcccggccatg ttaagggcg 2820
tttttcctg ttttgttact gatgcctccg tgtaaggggg atttctgttc atggggtaa 2880
tgataccgt gaaacgagag aggtatgtca cgatacgggt tactgtatgat gaacatgccc 2940
ggttactgga acgttgcgtt ggtaaacaaac tggcggtatg gatgcggcg gaccagagaa 3000
aaatcactca gggtaatgc cagcgcttcg ttaatacaga tgcgttgcgtt ccacagggt 3060
gccagcagca tcctgcgtatc cagatccggaa acataatggt gcagggcgct gacttccgc 3120
tttccagact ttacgaaaca cggaaaccga agaccattca tgggtttgc tgggtcg 3180
acgtttgcgc gcagcagtcg ctgcgtatc gctgcgtat cggtgattca ttctgctaa 3240
cagtaaggca accccgcctt cctagccggg tcctcaacgaa caggagcactg atcatgcgc 3300
cccgtggcca ggacccaacg ctggccggaa tctcgatccc gcggaaattaa tacgactcac 3360
tatagggaga ccacaacgggt ttccctcttag aaataatttt gtttaacttt aagaaggaga 3420
tatacatatg agtgcacaaatg gcatagacta cgataagctc attgttgcgtt ttggaaatgt 3480
taaaatttgcgaa aagagactaa taaaccgaat agagagagcc accggccaaa gaccacacca 3540
cttcctgcgc agaggcatct tcttctcaca cagagatatg aatcaggatcc ttgtatgccta 3600
tgaaaataag aagccatttt atctgtacac gggccggggc ccctcttcgt aagcaatgca 3660
tgttaggtcact ctcattccat ttatttgcact aaagtggctc caggatgtat ttaacgtgcc 3720
cttgggtcatc cagatgacgg atgacgagaa gtatctgtgg aaggacgttgc ccctggacca 3780
ggcctatggc gatgtgttg agaatgcca ggacatcatc gcctgtggct ttgacatcaa 3840
caagactttc atattctctg acctggacta catggggatg agtcaggatc tctacaaaaa 3900
tgtgggtgaag attcaaaaacg atgttacctt caaccaagtg aaaggcattt tcggcttcac 3960
tgacagcgtac tgcattggaa agatcaggatcc tcctgcctatc caggctgcgc ctccttcag 4020
caactcatcc ccaacatcttcc gacccatcc gacggatatc cagtgccatc tcccatgtgc 4080
cattgaccag gatccttact tttagaatgac aaggacgtc gccccccatgg tccggctatcc 4140
taaaccagcc ctgtgtcact ccacccctt cccagccctg caggccggcc agacccaaat 4200
gagtggccagc gacccaaact ctcctccatcc ctcaccggac acggccaaacg agatcaaaaac 4260
caaggtcaat aagcatgcgt tttctggagg gagagacacc atcgaggagc acaggcaggat 4320
tggggcaac tgtgtgtgg acgtgtctt catgtacatc accttcttcc tcgaggacga 4380

cgacaagctc gaggcagatca ggaaggatta caccagcgga gccatgctca ccggtgagct 4440
caagaaggca ctcatacgagg ttctgcagcc cttgatcgca gagcaccagg cccggcgcaa 4500
ggaggtcacg gatgagatag tgaaagagtt catgactccc cggaagctgt cttcgactt 4560
tcagaagctt gcggccgcac tcgagcacca ccaccaccac cactgagatc cggtgctaa 4620
caaagccgaa aagaagctg agttggctgc tgccaccgct gagcaataac tagcataacc 4680
ccttggggcc tctaaacggg tcttgagggg tttttgctg aaaggaggaa ctatatccgg 4740
at 4742

<210> 2

<211> 392

<212> PRT

<213> Artificial Sequence

<220>

<223> His-tagged human T2-TrpRS

<400> 2

Met	Ser	Ala	Lys	Gly	Ile	Asp	Tyr	Asp	Lys	Leu	Ile	Val	Arg	Phe	Gly
1					5					10				15	
Ser	Ser	Lys	Ile	Asp	Lys	Glu	Leu	Ile	Asn	Arg	Ile	Glu	Arg	Ala	Thr
								20		25			30		
Gly	Gln	Arg	Pro	His	His	Phe	Leu	Arg	Arg	Gly	Ile	Phe	Phe	Ser	His
							35		40			45			
Arg	Asp	Met	Asn	Gln	Val	Leu	Asp	Ala	Tyr	Glu	Asn	Lys	Lys	Pro	Phe
						50		55			60				
Tyr	Leu	Tyr	Thr	Gly	Arg	Gly	Pro	Ser	Ser	Glu	Ala	Met	His	Val	Gly
					65		70			75			80		
His	Leu	Ile	Pro	Phe	Ile	Phe	Thr	Lys	Trp	Leu	Gln	Asp	Val	Phe	Asn
					85			90			95				
Val	Pro	Leu	Val	Ile	Gln	Met	Thr	Asp	Asp	Glu	Lys	Tyr	Leu	Trp	Lys
					100			105			110				
Asp	Leu	Thr	Leu	Asp	Gln	Ala	Tyr	Gly	Asp	Ala	Val	Glu	Asn	Ala	Lys
					115			120			125				
Asp	Ile	Ile	Ala	Cys	Gly	Phe	Asp	Ile	Asn	Lys	Thr	Phe	Ile	Phe	Ser
					130			135			140				
Asp	Leu	Asp	Tyr	Met	Gly	Met	Ser	Ser	Gly	Phe	Tyr	Lys	Asn	Val	Val
				145			150			155			160		
Lys	Ile	Gln	Lys	His	Val	Thr	Phe	Asn	Gln	Val	Lys	Gly	Ile	Phe	Gly
					165			170			175				
Phe	Thr	Asp	Ser	Asp	Cys	Ile	Gly	Lys	Ile	Ser	Phe	Pro	Ala	Ile	Gln
						180		185			190				
Ala	Ala	Pro	Ser	Phe	Ser	Asn	Ser	Phe	Pro	Gln	Ile	Phe	Arg	Asp	Arg
						195		200			205				
Thr	Asp	Ile	Gln	Cys	Leu	Ile	Pro	Cys	Ala	Ile	Asp	Gln	Asp	Pro	Tyr
					210			215			220				
Phe	Arg	Met	Thr	Arg	Asp	Val	Ala	Pro	Arg	Ile	Gly	Tyr	Pro	Lys	Pro
		225				230			235			240			
Ala	Leu	Leu	His	Ser	Thr	Phe	Phe	Pro	Ala	Leu	Gln	Gly	Ala	Gln	Thr
						245			250			255			
Lys	Met	Ser	Ala	Ser	Asp	Pro	Asn	Ser	Ser	Ile	Phe	Leu	Thr	Asp	Thr
						260		265			270				
Ala	Lys	Gln	Ile	Lys	Thr	Lys	Val	Asn	Lys	His	Ala	Phe	Ser	Gly	Gly
					275			280			285				

Arg Asp Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val
290 295 300
Asp Val Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys
305 310 315 320
Leu Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly
325 330 335
Glu Leu Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu
340 345 350
His Gln Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe
355 360 365
Met Thr Pro Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala
370 375 380
Leu Glu His His His His His
385 390