Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16

Λειτουργικά Συστήματα (ΙΙ) (διαχείριση αρχείων)

http://di.ionio.gr/~mistral/tp/csintro/

Μ. Στεφανιδάκης

Λειτουργικό Σύστημα: διαχείριση πόρων

• Εισαγωγή Λειτουργικό σύστημα Επικοινωνία με χρήστη Διαχείριση Διαχείριση Μνήμης **KMF** Διαχείριση Διαχείριση Συσκευών Αρχείων Είναι η επικοινωνία με τον χρήστη μέρος του Λ.Σ;

Διαχείριση αρχείων

• Εισαγωγή

- Διαχείριση αρχείων από το Λειτουργικό Σύστημα
 - Λειτουργίες δημιουργίας, διαγραφής, τροποποίησης
 - Έλεγχος προσπέλασης
 - Διαμοιραζόμενη προσπέλαση
 - Αποκλειστική προσπέλαση
 - Επίβλεψη αποθήκευσης
 - Αποθήκευση δομών ενός συστήματος αρχείων σε ένα τμήμα (partition) του δίσκου

Τι είναι ένα "αρχείο";

- Μια αφαιρετική δομή (abstraction)
 - Για την αποθήκευση δεδομένων στους δίσκους του συστήματος
 - Προσφέρεται από το λειτουργικό σύστημα
- Αρχεία δεδομένων
 - Ως ακολουθία (stream) από bytes
 - "binary mode"
 - Ως διαδοχικές γραμμές κειμένου
 - "text mode"
- Ειδικά αρχεία
 - Συσκευές Ε/Ε, κατάλογοι, πληροφορία συστήματος...
 - Ανάλογα με το λειτουργικό σύστημα!

Δυαδικά αρχεία

 Αρχεία Περιέχουν οποιαδήποτε ακολουθία bytes Ανάγνωση (read) *n* bytes read(4): 2D, 98, 44, 59 ..OF 35 2D 98 44 59 FD 77 47 23 89 12 .. τρέχουσα θέση (πριν τρέχουσα θέση (μετά την ανάγνωση) την ανάγνωση) • Εγγραφή (write) n bytes write(AA, 91, 11, 15) ..OF 35 **AA 91 11 15** FD 77 47 23 89 12 τρέχουσα θέση (πριν τρέχουσα θέση (μετά την εγγραφή) την εγγραφή)

Αρχεία Κειμένου

- Διαδοχικές γραμμές από χαρακτήρες
 - Σε κάποια γνωστή κωδικοποίηση
 - 7/8 bit ASCII, Unicode (UTF-8) κλπ
 - Τερματισμός γραμμής με '\n' (newline)
 - Windows: 0D 0A Unix: 0A
- Λειτουργίες
 - Ανάγνωση επόμενης γραμμής
 - Εγγραφή νέας γραμμής
 - στο τέλος του αρχείου (append)
- Προσοχή!
 - Μπορούμε να χειριστούμε ένα αρχείο κειμένου ως δυαδικό αρχείο
 - Όχι όμως και το αντίστροφο!

"Ανοίγοντας" ένα αρχείο

- Άνοιγμα αρχείου
 - open(filename,mode)
 - filename = το όνομα του αρχείου (και το μονοπάτι αν χρειάζεται)
 - mode = το είδος της ζητούμενης επεξεργασίας
 - read (ανάγνωση μόνο), write (εγγραφή μόνο, τυχόν παλιό αρχείο διαγράφεται), read-write (ανάγνωση-εγγραφή), append (προσθήκη δεδομένων στο τέλος)...
 - binary $\dot{\eta}$ text mode ($\dot{0}\chi \iota \sigma \epsilon \dot{0} \lambda \alpha \tau \alpha \Lambda \Sigma$)
 - Προετοιμασία δομών ΛΣ για επεξεργασία του αρχείου
 - Υπάρχει και το αντίστοιχο close

Δημιουργία εκτελέσιμων αρχείων

• Αρχεία

Ο μεταγλωττιστής (compiler) μεταφράζει το αρχείο γλώσσας υψηλού επιπέδου (αρχείο κειμένου) σε εκτελέσιμη γλώσσα μηχανής (δυαδικό αρχείο)

Linker (συνδέτης)

- Η έξοδος από τον μεταγλωττιστή (object code) περιέχει κενά
 - Εξωτερικές αναφορές σε μεταβλητές και συναρτήσεις
- Linker
 - Συνδέει όλα τα δυαδικά αρχεία κώδικα (object code)
 - Και τα αρχεία κώδικα βιβλιοθηκών που θα περιληφθούν
 - Κατασκευάζει το τελικό εκτελέσιμο πρόγραμμα (δυαδικό αρχείο)

Loader (φορτωτής)

- Loader
 - Προετοιμασία για την εκτέλεση του προγράμματος
 - Φόρτωση κώδικα-δεδομένων στη μνήμη
 - Δυναμική σύνδεση κοινών βιβλιοθηκών
 - Κώδικας που δεν ενσωματώνεται στο πρόγραμμά μας αλλά υπάρχει σε ένα αντίγραφο για όλες τις εφαρμογές που τον χρησιμοποιούν!

Συστήματα Αρχείων

- Αρχεία
- Συστήματα Αρχείων
- File systems
 - Οργάνωση αρχείων
 - Ονόματα αρχείων
 - Σε καταλόγους (directories) ή φακέλους (folders)
 - Μέθοδοι για τη δημιουργία, τροποποίηση και διαγραφή αρχείων
 - Διαμοιρασμός κοινών αρχείων
 - Έλεγχος πρόσβασης

Οργάνωση δίσκων

- Αρχεία
- Συστήματα Αρχείων

- Για την προσπέλαση ενός συγκεκριμένου φυσικού τμήματος δεδομένων στον δίσκο
 - Απαιτείται σύνθετη πληροφορία
 - track, sector, head...
- Οργάνωση σε ακολουθία λογικών μπλοκ
 - logical block addressing (LBA)

Διαμέριση δίσκου (partitioning)

- Αρχεία
- Συστήματα Αρχείων

- Partitions
 - Ο συνολικός δίσκος χωρίζεται σε μικρότερα τμήματα (διαμερίσεις)
- Γιατί;
 - Διατήρηση περισσότερων του ενός ΛΣ στο σύστημα
 - dual (multi)-booting
 - Διατήρηση ΛΣ σε ξεχωριστό τμήμα από τα δεδομένα του χρήστη
 - για ευκολότερες επανεγκαταστάσεις
- Μειονέκτημα
 - Μη ευέλικτο σχήμα
 - Το μέγεθος κάθε partition δεν αλλάζει δυναμικά!

Partitions σε συστήματα PC

Το περιεχόμενο ενός partition

- Εισαγωγή
- Συστήματα Αρχείων
- Boot Block
 - Εκτελέσιμος κώδικας
 - Ο υπολογιστής μπορεί να ξεκινήσει τη λειτουργία του εκτελώντας κώδικα στο partition αυτό
- Super Block
 - Κεντρικές πληροφορίες για το σύστημα αρχείων που περιέχεται στο partition
- Πληροφορία ελεύθερου χώρου
- Πληροφορία θέσης αρχείων
 - Ποιο αρχείο βρίσκεται πού στον δίσκο
- Περιεχόμενα Αρχείων και Καταλόγων

Πώς αποθηκεύονται τα αρχεία;

- Αρχεία
- Συστήματα Αρχείων
- Αποθήκευση σε μπλοκ (ή "cluster")
 - π.χ. 4KB ανά μπλοκ
 - Προφανώς ένα αρχείο μπορεί να καταλαμβάνει περισσότερα από ένα μπλοκ
 - και ένας κατάλογος (φάκελος) επίσης (είναι αρχείο κι αυτός)
- Μέθοδος δέσμευσης μπλοκ #1: συνεχόμενα μπλοκ
 - Όλο το αρχείο σε συνεχόμενα μπλοκ
 - Γρήγορη προσπέλαση αρκεί να ξέρουμε αρχή και τέλος
 - Τι συμβαίνει όταν το αρχείο αλλάζει μέγεθος;
 - Fragmentation

Πώς αποθηκεύονται τα αρχεία;

- Αρχεία
- Συστήματα Αρχείων
- Μέθοδος δέσμευσης μπλοκ #2: διασυνδεδεμένη λίστα
 - Σε κάθε μπλοκ υπάρχει δείκτης για το επόμενο μπλοκ
 - Αρκεί να ξέρουμε το πρώτο μπλοκ
 - Πώς θα προσπελάσω ένα σημείο προς το τέλος του αρχείου;
- Μέθοδος δέσμευσης μπλοκ #2β: διασυνδεδεμένη λίστα (παραλλαγή)
 - Πίνακας πληροφορίας για κάθε μπλοκ
 - Αν είναι δεσμευμένο και ποιο είναι το επόμενο
 - Γρήγορη προσπέλαση τυχαίου σημείου αρχείου
 - Ο πίνακας καταλαμβάνει μεγάλο χώρο

Πώς αποθηκεύονται τα αρχεία;

- Αρχεία
- Συστήματα Αρχείων

- Μέθοδος δέσμευσης μπλοκ #3: έμμεση δεικτοδότηση
 - Ειδικά μπλοκ (i-nodes) περιέχουν δείκτες σε άλλα μπλοκ
 - Συστήματα αρχείων στο ΛΣ Unix

Εισαγωγή στην Επιστήμη των Υπολογιστών – "Λειτουργικά Συστήματα (ΙΙ)"

Ιεραρχική δομή καταλόγων

- Αρχεία
- Συστήματα Αρχείων
- Κατάλογοι

- Η ρίζα (/) είναι στην κορυφή
 - Οι κατάλογοι (ή φάκελοι) είναι ειδικά αρχεία που περιέχουν ζεύγη (όνομα αρχείου, πληροφορία αρχείου)

Πού βρίσκεται η ρίζα;

- Αρχεία
- Συστήματα Αρχείων
- Κατάλογοι

- Εξαρτάται από το Λειτουργικό Σύστημα!
 - Windows: κάθε partition που αναγνωρίζεται προστίθεται ως ένα λογικό drive (π.χ. C: D: κλπ), το οποίο αποτελεί τη ρίζα για όλους τους φακέλους που περιέχει
 - άρα έχουμε ένα δάσος από δέντρα!
 - τύπου Unix: υπάρχει μια μοναδική ρίζα και κάθε partition μπορεί να τοποθετηθεί (mount) σε οποιοδήποτε σημείο του δέντρου
 - δεν υπάρχουν λογικά drives

Μονοπάτι Αρχείου (file path)

- Αρχεία
- Συστήματα Αρχείων
- Κατάλογοι

- Από τη ρίζα προς το αρχείο (απόλυτο μονοπάτι)
 - Ως αναγνωριστικό του αρχείου που επιλέγουμε

π.χ. /Κατάλογος-2/Κατάλογος-1/Αρχείο-Δ

Μονοπάτι Αρχείου

- Αρχεία
- Συστήματα Αρχείων
- Κατάλογοι

Αρχείο-Δ

π.χ. ../Αρχείο-Γ

Ονόματα Αρχείων

- Αρχεία
- Συστήματα Αρχείων
- Κατάλογοι

- Παλαιότερα υπήρχαν περιορισμοί
 - π.χ η μορφή 8.3
 - 8 χαρακτήρες (αλφαριθμητικοί και ορισμένα σημεία στίξης)
 - τελεία και 3 χαρακτήρες επέκταση
 - Η επέκταση και σήμερα δηλώνει τον τύπο του αρχείου
 - χωρίς να ισχύει κατ'ανάγκη!
 - .doc .txt .html .pdf .exe κλπ
- Σήμερα υπάρχει μεγαλύτερη ελευθερία στα ονόματα των αρχείων
 - αρκεί στον ίδιο κατάλογο το όνομα να είναι μοναδικό

Δικαιώματα (Permissions)

- Αρχεία
- Συστήματα Αρχείων
- Κατάλογοι

- Ποιος χρήστης (ή ομάδα χρηστών) μπορεί να κάνει τι σε ένα αρχείο
 - Παράδειγμα: Unix permissions