Dimension reduction

From modelling to visualization

Farnoosh Khodakarami

This material is prepared by Farnoosh khodakarami and Ali madani

Webinar outline

Introduction

- 1) Why do we need dimension reduction?
- 2) What are the widely-used dimension reduction methods

Dimension reduction in practice

- 1) Implementation in Python
- 2) Assumptions and parameters

DataSets

Features = Dimension of dataset

Number of dimensions in images

Number of dimensions (features) is equal to number of pixels if we use them directly as features of our models.

UCI ML hand-written digits

May help to eliminate irrelevant features or reduce noise

 May help to eliminate irrelevant features or reduce noise

 May help to eliminate irrelevant features or reduce noise

- May help to eliminate irrelevant features or reduce noise
- Reduce Time and Memory in computations

- May help to eliminate irrelevant features or reduce noise
- Reduce Time and Memory in computations
- Allow data to be more easily visualized

We can imagine things in 3D.

We can visualize, in an easy to interpret way, up to 2D.

mensionality

feature1 feature2 feature3 feature4

ionality

Feature Extraction

Feature Extraction

Feature Selection

Risk of Diabetes

	Weight(lb)	Hight(ft)
Joe	170	6'
James	150	5'3"

Risk of Type 2 Diabetes

	Weight(lb)	Hight(ft)
Joe	170	6'
James	150	5'3"

Is risk of type 2 diabetes higher for Joe?

Risk of Type 2 Diabetes

	Weight(lb)	Hight(ft)
Joe	170	6'
James	150	5'3"

 $BMI = \frac{Weight(kg)}{[Height(m)]^2}$

	ВМІ
Joe	23.1
James	26.6

Risk of Type 2 Diabetes

	ВМІ
Joe	23.1
James	26.6

Risk of type 2 diabetes is higher for James

Extraction Feature

1

Principal Component Analysis (PCA)

PHILOSOPHICAL TRANSACTIONS A

rsta.royalsocietypublishing.org

Review

Cite this article: Jolliffe IT, Cadima J. 2016 Principal component analysis: a review and recent developments. *Phil. Trans. R. Soc. A* **374**: 20150202.

http://dx.doi.org/10.1098/rsta.2015.0202

Principal component analysis: a review and recent developments

Ian T. Jolliffe¹ and Jorge Cadima^{2,3}

¹College of Engineering, Mathematics and Physical Sciences,
University of Exeter, Exeter, UK

²Secção de Matemática (DCEB), Instituto Superior de Agronomia,
Universidade de Lisboa, Tapada da Ajuda, Lisboa 1340-017, Portugal

³Centro de Estatística e Aplicações da Universidade de Lisboa
(CEAUL), Lisboa, Portugal

1 Principal Component Analysis (PCA)

LIII. On lines and planes of closest fit to systems of points in space

Karl Pearson F.R.S.

To cite this article: Karl Pearson F.R.S. (1901) LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2:11, 559-572, DOI: 10.1080/14786440109462720

1 Principal Component Analysis (PCA)

PCA: Principal Component Analysis

PCA: Principal Component Analysis

Extraction

2

t-SNE: t-Distributed Stochastic Neighbor Embedding

Journal of Machine Learning Research 9 (2008) 2579-2605

Submitted 5/08; Revised 9/08; Published 11/08

Visualizing Data using t-SNE

Laurens van der Maaten

LVDMAATEN@GMAIL.COM

TiCC

Tilburg University

P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Geoffrey Hinton

HINTON@CS.TORONTO.EDU

Department of Computer Science

University of Toronto

6 King's College Road, M5S 3G4 Toronto, ON, Canada

Editor: Yoshua Bengio

Amazing GitHub page

https://lvdmaaten.github.io/tsne/

t-SNE: t-Distributed Stochastic Neighbor Embedding

t-SNE gives you a feel or intuition of how the data is arranged in a high-dimensional space

PCA vs t-SNE:

- PCA is a linear dimension reduction technique that seeks to maximize variance and preserves large pairwise distances.
- PCA can lead to poor visualization especially when dealing with non-linear manifold structures.
- t-SNE differs from PCA by preserving only small pairwise distances or local similarities

t_SNE

The t-SNE algorithm calculates a similarity measure between pairs of instances in the high dimensional space

Tries to optimize these two similarity measures using a cost function.

t-SNE: t-Distributed Stochastic Neighbor Embedding

The embedding does not preserve global structure of data

Feature Extraction

3 UMAP: Uniform Manifold Approximation and Projection

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

Leland McInnes
Tutte Institute for Mathematics and Computing leland.mcinnes@gmail.com

John Healy
Tutte Institute for Mathematics and Computing
jchealy@gmail.com

James Melville jlmelville@gmail.com **Amazing GitHub repository**

https://github.com/lmcinnes/umap

December 7, 2018

UMAP

UMAP constructs a high dimensional graph representation of the data then optimizes a low-dimensional graph to be as structurally similar as possible.

- 1) UMAP builds something called a "fuzzy simplicial complex".
 - This is really just a representation of a weighted graph, with edge weights representing the likelihood that two points are connected.
- 2) UMAP extends a radius outwards from each point, connecting points when those radii overlap.
- 3) Once the high-dimensional graph is constructed, UMAP optimizes the layout of a low-dimensional analogue to be as similar as possible.
 - a) This process is essentially the same as in t-SNE, but using a few clever tricks to speed up the process.

UMAP vs t-SNE

 Both tSNE and UMAP were designed to predominantly preserve local structure

- UMAP is fast. It can handle large datasets and high dimensional data
 - For example, UMAP can project the 784-dimensional, 70,000-point MNIST dataset in less than 3 minutes, compared to 45 minutes for scikit-learn's t-SNE implementation.

UMAP preserves more of the data global structure.

1 PCA: Principal Component Analysis

2 t-SNE: t-Distributed Stochastic Neighbor Embedding

3 UMAP: Uniform Manifold Approximation and Projection