Point Patterns

SERGIO REY

Geographic Information Analysis

School of Geographical Sciences and Urban Planning Arizona State University

Geographic Information Analysis by Sergio Rey is licensed under a Creative Commons Attribution 4.0 International License.

Outline

- Centrography
 - Central Tendency
 - Dispersion and Orientation
 - Geometry
- Quadrat Counts
 - Test Statistic
 - Issues
- Monte Carlo Simulation
 - Motivation

Outline

- Centrography
 - Central Tendency
 - Dispersion and Orientation
 - Geometry
- Quadrat Counts
 - Test Statistic
 - Issues
- Monte Carlo Simulation
 - Motivation

Central Tendency

Purpose

- Provide a "center point"
- Similar to first moment of a distribution
- "Representative point"

Measures

- Mean Center
- Weighted Mean Center
- Median Center
- Center of Minimum Distance

Example Data

i	Xi	Уi	W_i
1	20	40	10
2	30	60	20
3	34	52	10
4	40	40	20
5	44	42	10
6	48	62	80
7	50	10	10
8	60	50	90
9	90	90	100

Mean Center

(x_m, y_m)

$$x_m = 1/n \sum_{i=1}^n x_i \tag{1}$$

$$y_m = 1/n \sum_{i=1}^n y_i \tag{2}$$

Mean Center

Mean Center

Weighted Mean center

(x_m, y_m)

$$x_m = \sum_{i=1}^n x_i \frac{w_i}{\sum_{i=1}^n w_i}$$
 (3)

$$y_m = \sum_{i=1}^n y_i \frac{w_i}{\sum_{i=1}^n w_i}$$
 (4)

(Corrected)

w, weight

- Marked point patterns
- Continuous mark
- Not categorical mark

Weighted Mean Center

Median Center

Definition(s)

English Statistics The intersection of two orthogonal axes, each which has an equal number of points on either side.

American The center of minimum travel.

English Median Center

Manhattan Median

$$Min \ f(x_m, y_m) = \sum_{i=1}^{n} |x_i - x_m| + |y_i - y_m|$$
 (5)

Advantages

- Can be found very quickly
- No calculations are typically required (other than intersection)

Disadvantage

- Never unique with even n
- Always unique with odd n
- Not unique under axis rotation

Manhattan Median

Non-Uniqueness

Center of Minimum Travel

Euclidean Median

The location from which the sum of the Euclidean distances to all points in a distribution is a minimum.

Euclidean Median

Min
$$f(x_m, y_m) = \sum_{i=1}^n \sqrt{(x_i - x_m)^2 + (y_i - y_m)^2}$$
 (6)

Weighted Euclidean Median

$$Min \ f(x_m, y_m) = \sum_{i=1}^n \frac{w_i}{\sum_{i=1}^n w_i} \sqrt{(x_i - x_m)^2 + (y_i - y_m)^2}$$
 (7)

Euclidean Median

Weber Problem

Find the optimal location for a factory: one that minimizes transport costs between sources of raw materials and delivery to the market.

Solutions

- No closed form solution
- First iterative algorithm: Kuhn and Kuenne (1962)
- Important for more general location allocation problems

Euclidean Median

Outline

- Centrography
 - Central Tendency
 - Dispersion and Orientation
 - Geometry
- Quadrat Counts
 - Test Statistic
 - Issues
- Monte Carlo Simulation
 - Motivation

Dispersion and Orientation

Measures

- Standard Distance
- Major/minor axes
- Standard Deviational Ellipse

Standard Distance

Euclidean Based

$$SD = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x_m)^2}{n} + \frac{\sum_{i=1}^{n} (y_i - y_m)^2}{n}}$$
 (8)

Uses

- Similar to standard deviation
- Combine with Mean Center for "outlier detection"
- Sensitive to extreme values

Standard Distance Circle

Standard Distance Circle

Standard Deviational Ellipse

Relative to Standard Distance

- Measures dispersion
- Sensitive to shape of distribution
- Measures dispersion in two dimensions

Components

- Angle of rotation
- Dispersion along major axis
- Dispersion along minor axis

Standard Deviational Ellipse

Major, minor axes

- Major axis defines the direction of maximum spread in the distribution
- Minor axis is orthogonal to major axis
- Minor axis defines the direction of minimum spread

Steps

- Determine rotation angle of Y-axis
- Calculate standard deviations for transposed axes
- Oetermine length of axes
- Determine area of the ellipse

Rotation Angle ⊖

$$\Theta = ARCTAN \left\{ \left(\sum_{i} (x_i - \bar{x})^2 - \sum_{i} (y_i - \bar{y})^2 \right) + \left[\left(\sum_{i} (x_i - \bar{x})^2 - \sum_{i} (y_i - \bar{y})^2 \right)^2 + \left(\sum_{i} (x_i - \bar{x})(y_i - \bar{y}) \right)^2 \right]^{1/2} \right\} /$$

$$2 \sum_{i} (x_i - \bar{x})(y_i - \bar{y})$$

Standard Deviations On Transposed Axes

 S_{x}

$$S_{x} = \sqrt{2 \frac{(\sum_{i=1}^{n} (x_{i} - \bar{x}) Cos(\Theta) - \sum_{i=1}^{n} (y_{i} - \bar{y}) Sin(\Theta))^{2}}{n-2}}$$
(9)

 S_y

$$S_{y} = \sqrt{2 \frac{(\sum_{i=1}^{n} (x_{i} - \bar{x}) Sin(\Theta) - \sum_{i=1}^{n} (y_{i} - \bar{y}) Cos(\Theta))^{2}}{n - 2}}$$
 (10)

Ellipse Axes

Lengths

$$L_{x}=2S_{x} \tag{11}$$

$$L_{x} = 2S_{x}$$

$$L_{y} = 2S_{y}$$

$$(11)$$

$$(12)$$

Mid Point

Mean Center of Point Pattern (x_m, y_m)

Area

$$A = \pi S_x S_y$$

(13)

Standard Deviational Ellipse

Outline

- Centrography
 - Central Tendency
 - Dispersion and Orientation
 - Geometry
- Quadrat Counts
 - Test Statistic
 - Issues
- Monte Carlo Simulation
 - Motivation

Shape Analysis of Point Patterns

Geometry

- Bounding Box
- Convex Hulls

Bounding Box

Convex Hull

Convex Hull and Bounding Box

Convex Hull and Bounding Box

Convex Hull (Large n)

Quartz (2) - Active

Nested Convex Hulls

Quadrat Counts

Basic Approach

- Impose a tessellation over the area
- Count number of points in each cell
- Compare observed counts against expected counts under the null of CSR

Expected Counts

- Relies on relationship between Poisson-CSR-Binomial
- Treat each cell as independent
- $E[x_i] = \lambda |A_i|$ where λ is the overall area intensity and $|A_i|$ is the area of cell i

Quadrat Counts

Basic Approach

- Impose a tessellation over the area
- Count number of points in each cell
- Compare observed counts against expected counts under the null of CSR

Expected Counts

- Relies on relationship between Poisson-CSR-Binomial
- Treat each cell as independent
- $E[x_i] = \lambda |A_i|$ where λ is the overall area intensity and $|A_i|$ is the area of cell i

Quadrat Counts

Basic Approach

- Impose a tessellation over the area
- Count number of points in each cell
- Compare observed counts against expected counts under the null of CSR

Expected Counts

- Relies on relationship between Poisson-CSR-Binomial
- Treat each cell as independent
- $E[x_i] = \lambda |A_i|$ where λ is the overall area intensity and $|A_i|$ is the area of cell i

Basic Approach

- Impose a tessellation over the area
- Count number of points in each cell
- Compare observed counts against expected counts under the null of CSR

- Relies on relationship between Poisson-CSR-Binomial
- Treat each cell as independent
- $E[x_i] = \lambda |A_i|$ where λ is the overall area intensity and $|A_i|$ is the area of cell i

Basic Approach

- Impose a tessellation over the area
- Count number of points in each cell
- Compare observed counts against expected counts under the null of CSR

- Relies on relationship between Poisson-CSR-Binomia
- Treat each cell as independent
- $E[x_i] = \lambda |A_i|$ where λ is the overall area intensity and $|A_i|$ is the area of cell i

Basic Approach

- Impose a tessellation over the area
- Count number of points in each cell
- Compare observed counts against expected counts under the null of CSR

- Relies on relationship between Poisson-CSR-Binomial
- Treat each cell as independent
- $E[x_i] = \lambda |A_i|$ where λ is the overall area intensity and $|A_i|$ is the area of cell i

Basic Approach

- Impose a tessellation over the area
- Count number of points in each cell
- Compare observed counts against expected counts under the null of CSR

- Relies on relationship between Poisson-CSR-Binomial
- Treat each cell as independent
- $E[x_i] = \lambda |A_i|$ where λ is the overall area intensity and $|A_i|$ is the area of cell i

Basic Approach

- Impose a tessellation over the area
- Count number of points in each cell
- Compare observed counts against expected counts under the null of CSR

- Relies on relationship between Poisson-CSR-Binomial
- Treat each cell as independent
- $E[x_i] = \lambda |A_i|$ where λ is the overall area intensity and $|A_i|$ is the area of cell i

Outline

- Centrography
 - Central Tendency
 - Dispersion and Orientation
 - Geometry
- Quadrat Counts
 - Test Statistic
 - Issues
- Monte Carlo Simulation
 - Motivation

χ^2 statistic

- Regular tessellation (Grid with $m \times k$ cells
- m rows
- k cols
- Equal sized cells

$$\chi^2 = \sum_{i=1}^m \sum_{j=1}^k (x_{i,j} - E[x_{i,j}])^2 / (\lambda |A_{i,j}|)$$
 (14)

χ^2 statistic

- Regular tessellation (Grid with $m \times k$ cells)
- m rows
- k cols
- Equal sized cells

$$\chi^2 = \sum_{i=1}^m \sum_{j=1}^k (x_{i,j} - E[x_{i,j}])^2 / (\lambda |A_{i,j}|)$$
 (14)

χ^2 statistic

- Regular tessellation (Grid with $m \times k$ cells)
- m rows
- k cols
- Equal sized cells

$$\chi^2 = \sum_{i=1}^m \sum_{j=1}^k (x_{i,j} - E[x_{i,j}])^2 / (\lambda |A_{i,j}|)$$
 (14)

χ^2 statistic

- Regular tessellation (Grid with $m \times k$ cells)
- m rows
- k cols
- Equal sized cells

$$\chi^2 = \sum_{i=1}^m \sum_{j=1}^k (x_{i,j} - E[x_{i,j}])^2 / (\lambda |A_{i,j}|)$$
 (14)

χ^2 statistic

- Regular tessellation (Grid with $m \times k$ cells)
- m rows
- k cols
- Equal sized cells

$$\chi^2 = \sum_{i=1}^m \sum_{j=1}^k (x_{i,j} - E[x_{i,j}])^2 / (\lambda |A_{i,j}|)$$
 (14)

$$\chi^2 = 4.6761$$
, $df = 8$, $p - value = 0.7916$

Outline

- Centrography
 - Central Tendency
 - Dispersion and Orientation
 - Geometry
- Quadrat Counts
 - Test Statistic
 - Issues
- Monte Carlo Simulation
 - Motivation

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
 - Independent cell counts
 - Independent locations

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
 - Independent cell counts
 - Independent locations

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
 - Independent cell counts
 - Independent locations

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
 - Independent cell counts
 - Independent locations

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
- Independent cell counts
 - Independent locations

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
- Independent cell counts
 - Independent locations

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
 - Independent cell counts
 - Independent locations

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
 - Independent cell counts
 - Independent locations

- Choice of tessellation
 - how many cells?
 - what cell shape?
 - locations random or fixed?
- Edge effects
- Spatial dependence
 - Independent cell counts
 - Independent locations

Outline

- Centrography
 - Central Tendency
 - Dispersion and Orientation
 - Geometry
- Quadrat Counts
 - Test Statistic
 - Issues
- Monte Carlo Simulation
 - Motivation

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Oplantate I whomas in 4 Opposite
 - Calculate ψ_i where $i = 1, 2, \dots, nsim$
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H_1)
- Simulate Empirical Sampling Distribution of $\psi|H_o$
 - Draw *nsim* realizations under the null
 - Calculate ψ_i where $i = 1, 2, \dots, nsim$
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H_1)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null
 - Calculate ψ_i where $i = 1, 2, \dots, nsim$.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H_1)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null
 - Calculate ψ_i where $i = 1, 2, \dots, n$ sim.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- ullet Simulate Empirical Sampling Distribution of $\psi|H_o$

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null.
 - Calculate ψ_i where i = 1, 2, ..., nsim.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi | H_o$
 - Draw nsim realizations under the null.
 - Calculate ψ_i where i = 1, 2, ..., nsim.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null.
 - Calculate ψ_i where i = 1, 2, ..., nsim.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null.
 - Calculate ψ_i where i = 1, 2, ..., nsim.
 - Compare ψ to distribution of ψ_i .

Computational Approximation to Inference

Motivations

- Substitute capital for labor
- Practical when no analytical results are available
- Very flexible

- Not generalizable beyond data at hand
- Less powerful than exact tests (if available)
- May be computationally expensive

Computational Approximation to Inference

Motivations

- Substitute capital for labor
- Practical when no analytical results are available
- Very flexible

- Not generalizable beyond data at hand
- Less powerful than exact tests (if available)
- May be computationally expensive

Motivations

- Substitute capital for labor
- Practical when no analytical results are available
- Very flexible

- Not generalizable beyond data at hand
- Less powerful than exact tests (if available)
- May be computationally expensive

Motivations

- Substitute capital for labor
- Practical when no analytical results are available
- Very flexible

- Not generalizable beyond data at hand
- Less powerful than exact tests (if available)
- May be computationally expensive

Motivations

- Substitute capital for labor
- Practical when no analytical results are available
- Very flexible

- Not generalizable beyond data at hand
- Less powerful than exact tests (if available)
- May be computationally expensive

Motivations

- Substitute capital for labor
- Practical when no analytical results are available
- Very flexible

- Not generalizable beyond data at hand
- Less powerful than exact tests (if available)
- May be computationally expensive

Motivations

- Substitute capital for labor
- Practical when no analytical results are available
- Very flexible

- Not generalizable beyond data at hand
- Less powerful than exact tests (if available)
- May be computationally expensive

Motivations

- Substitute capital for labor
- Practical when no analytical results are available
- Very flexible

- Not generalizable beyond data at hand
- Less powerful than exact tests (if available)
- May be computationally expensive

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H_1)
- Simulate Empirical Sampling Distribution of $\psi|H_o$
 - Oplantate I whomas it is a consideration
 - Calculate ψ_i where $i = 1, 2, \dots, nsim$
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H_1)
- Simulate Empirical Sampling Distribution of $\psi|H_o$
 - Octobrish tealizations under the nul
 - Calculate ψ_i where $i = 1, 2, \dots, nsim$
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H_1)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the nul
 - Calculate ψ_i where $i=1,2,\ldots,n$ sim.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_o$
 - Draw nsim realizations under the null
 - Calculate ψ_i where $i = 1, 2, \dots, nsim$.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- ullet Simulate Empirical Sampling Distribution of $\psi|H_o$

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null.
 - Calculate ψ_i where i = 1, 2, ..., nsim.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null.
 - Calculate ψ_i where i = 1, 2, ..., nsim.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null.
 - Calculate ψ_i where i = 1, 2, ..., nsim.
 - Compare ψ to distribution of ψ_i .

- Specify test statistic
- ullet Calculate test statistic on observed pattern: ψ
- Specify a null hypothesis (H_o)
- Specify an alternate hypothesis (H₁)
- Simulate Empirical Sampling Distribution of $\psi|H_0$
 - Draw nsim realizations under the null.
 - Calculate ψ_i where i = 1, 2, ..., nsim.
 - Compare ψ to distribution of ψ_i .

Pseudo Significance Level

p-value

$$p(\chi^2) = \frac{1 + \sum_{i=1}^{nsim} \phi_i}{nsim + 1}$$
 (15)

where:

$$\phi_i = \begin{cases} 1 & \text{if } \psi_i^2 \ge \chi^2, \\ 0 & \text{otherwise} \end{cases}$$
 (16)

Code: ihhpsim.r

```
source ("quadcounts.r")
source("ihppsim.r")
pp=ippsim(100) *9+1
ppt=quadcount(pp[,1],pp[,2])
set.seed(100)
nsim=99
source("hppsim.r")
results=matrix(0,nsim+1,1)
for(i in 1:nsim) {
    pp=csr(100,1,1,10,10)
    t=quadcount(pp$x,pp$y)
    results[i]=t$chi2
results[100]=ppt$chi2
plot (density (results), main="Quadrat Test of Inhomogenous Po
Point Process", xlab="Chi^2", ylab="f(Chi^2)")
abline (v=ppt$chi2, col='red')
```

Empirical Sampling Distribution

Pseudo Significance Level

p-value

$$p(\chi^2) = \frac{1 + \sum_{i=1}^{nsim} \phi_i}{nsim + 1}$$
 (17)

where:

$$\phi_i = \begin{cases} 1 & \text{if } \psi_i^2 \ge \chi^2, \\ 0 & \text{otherwise} \end{cases}$$
 (18)

p-value

$$p(\hat{\chi}^2) = \frac{1+0}{99+1} = 0.01 \tag{19}$$

Pseudo Significance Level

p-value

$$p(\chi^2) = \frac{1 + \sum_{i=1}^{nsim} \phi_i}{nsim + 1}$$
 (17)

where:

$$\phi_i = \begin{cases} 1 & \text{if } \psi_i^2 \ge \chi^2, \\ 0 & \text{otherwise} \end{cases}$$
 (18)

p-value

$$p(\hat{\chi}^2) = \frac{1+0}{99+1} = 0.01 \tag{19}$$