ZHEYU JIANG

Phone: $(765)479-5855 \Leftrightarrow \text{Email: jiang} 360@purdue.edu$

EDUCATION

Ph.D, Purdue University, Chemical Engineering

2014 - 2018

Advisors: Prof. Rakesh Agrawal and Prof. Mohit Tawarmalani

B.Ch.E with distinction, magna cum laude, University of Minnesota

2010 - 2014

Advisor: Prof. Michael Tsapatsis

PROFESSIONAL EXPERIENCE

Prof. Rakesh Agrawal Group, Purdue University

August 2014 – October 2018

Graduate Research Assistant

- · Solved a longstanding challenge in chemical engineering of developing a shortcut based method to determine the minimum reflux condition for any multi-feed, multi-product distillation column separating ideal multicomponent mixtures
- \cdot Developed an enumeration based optimization algorithm that guarantees global optimality for the first time in literature to identify optimal distillation configurations that can potentially save up to 50% of total cost or total exergy loss compared to conventional schemes
- · Proposed the first systematic multi-layer approach for process intensification in multicomponent distillation, offering industrial practitioners an easy-to-follow recipe to synthesize numerous new and intensified configurations that further enhance operability, improve efficiency, and reduce total costs

The Dow Chemical Company

May 2016 – August 2016

PhD Internship

- \cdot Designed new distillation configurations for several Dows processes that could save up to 10-15% in energy consumption compared to Dows current most effective technologies
- · Hosted weekly meetings involving R&D, engineering, and business experts regarding potential innovation and retrofit opportunities for implementing these newly identified configurations

Prof. Michael Tsapatsis Group, University of Minnesota

November 2012 – May 2014

- Undergraduate Research Assistant
- · For the first time, developed a solution processable method to achieve purification of sub-100 nm thin film of exfoliated MFI zeolite nanosheets based on density gradient centrifugation
- · Optimized the process that prepared high performance α -alumina membrane support for MFI nanosheet coating, leading to ten-fold increase in fabrication efficiency and improved support quality
- · Investigated on complete removal of structural directing agent in MFI nanosheets by acid treatment

Honeywell UOP

June 2013 - August 2013

Internship

- · Constructed new UniSim based simulations for UOP's Oleflex and FCC processes; and optimized their EOS models to successfully describe the VLE and LLE for all major components involved
- · Established a crude oil thermodynamic properties databank for major global oil reserves

PUBLICATIONS

1. AGRAWAL, K. V., TOPUZ, B., JIANG, Z., NGUENKAM, K., ELYASSI, B., FRANCIS, L. F., TSAP-ATSIS, M., AND NAVARRO, M. Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. *AIChE Journal* 59, 9 (2013), 3458–3467

- 2. Jiang, Z., Madenoor Ramapriya, G., Tawarmalani, M., and Agrawal, R. Minimum energy of multicomponent distillation systems using minimum additional heat and mass integration sections. AIChE Journal 64, 9 (2018), 3410–3418
- 3. Jiang, Z., Madenoor Ramapriya, G., Tawarmalani, M., and Agrawal, R. Process intensification in multicomponent distillation. *Chemical Engineering Transactions* 69 (2018)
- 4. Jiang, Z., and Agrawal, R. Process intensification in multicomponent distillation: A review on recent advancements. (Working Paper)
- 5. Jiang, Z., Mathew, T., Huff, J., Nallasivam, U., Tawarmalani, M., and Agrawal, R. Global optimization of multicomponent distillation configurations: 3. global minimization of total cost for multicomponent mixture separations. (Working Paper)
- 6. Jiang, Z., Mathew, T., Chen, Z., Huff, J., Shenvi, A., Tawarmalani, M., and Agrawal, R. Global optimization of multicomponent distillation configurations: 4. minimization of total exergy loss for multicomponent mixture separations. (Working Paper)
- 7. Jiang, Z., Tawarmalani, M., and Agrawal, R. An accurate minimum reflux calculation method for multi-feed, multi-product distillation columns distilling ideal multicomponent mixtures: 1. mathematical model. (Working Paper)
- 8. Jiang, Z., Tawarmalani, M., and Agrawal, R. An accurate minimum reflux calculation method for multi-feed, multi-product distillation columns distilling ideal multicomponent mixtures: 2. optimization model and case studies. (Working Paper)

HONORS AND AWARDS

AIChE Separations Division Graduate Student Research Award	2018
Eastman Graduate Travel Grant, Purdue University	2017
Purdue Graduate Student Government Travel Grant, Purdue University	2016
Maroon Global Excellence Scholarship, UMN	2010 - 2014
College of Science and Engineering Merit Scholarship, UMN	2012 - 2013
Charles A. Mann Award, Department of Chemical Engineering, UMN	2012 - 2013

SKILLS

Java, Python
LaTeX, HTML, MATLAB, GAMS, Aspen Plus, Aspen Hysys, UniSim
SEM, basic familiarity of TEM
Analytical and organic chemistry laboratory instruments and techniques

ACTIVITIES

First-Year Representative Purdue Chemical Engineering Graduate School Organization (GSO)	2015 - 2016
Graduate Teaching Assistant CHE 378 – Heat and Mass Transfer	Fall 2015
Graduate Teaching Assistant CHE 450 – Design and Analysis of Process Systems	Spring 2017