

S AFRINAL LANGERATION OF THE PARTY OF THE PA

AFWAL-TR-88-4248

Days and Laboration

DAMPING PROPERTIES OF VARIOUS MATERIALS

Michael L. Drake

University of Dayton Research Institute 300 College Park Avenue Dayton, OH 45469-0001

March 1989

Final Report for Period September 1985 - October 1988

Approved for public release; distribution is unlimited

SDTICD ELECTE JUN 14 1989

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

89 6 13 132

NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not be be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

DAVID I.G. JONES

Project Engineer

Metals Behavior Branch

ALLAN W. GUNDERSON Technical Manager

Metals Behavior Branch

FOR THE COMMANDER

JOHN P. HENDERSON, Chief Metals Behavior Branch

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify WRDC/MLLN, Wright-Patterson AFB OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

CURITY	CLASSIE	CATION	OF TH	IS PAGE

	REPORT DOCUME	NTATION PAG	E			
18. REPORT SECURITY CLASSIFICATION		1b. RESTRICTIVE MARKINGS				
Unclassified	·	None 3. DISTRIBUTION/AVAILABILITY OF REPORT				
28. SECURITY CLASSIFICATION AUTHORITY		Approved for			i b b .:	
26. DECLASSIFICATION/DOWNGRADING SCHE	DULE	is unlimited		ease, distr	IDUCTOR	
4. PERFORMING ORGANIZATION REPORT NU	MBER(S)	S. MONITORING OF	IDANIZATION RE	PORT NUMBER(S)	
UDR-TR-88-122		AFWAL-TR-88				
University of Dayton Research Institute	6b. Office Symbol (If applicable)	74 NAME OF MONI Air Force W Materials L	right Aeron	autical Lab	oratories	
6c. ADDRESS (City, State and 7.1P Code)		76. ADDRESS (City,	State and ZIP Cod	(a)		
300 College Park Avenue Dayton, OH 45469		Wright-Pat	terson AFB	OH 45433-65	33	
8. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT F33615-85-	-	ENTIFICATION N	JMBER	
Sc. AUDRESS (City, State and ZIP Code)		10. SOURCE OF FUI	NDING NOS.			
, , , , , , , , , , , , , , , , , , , ,		FROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT	
11. TITLE (Include Security Classification)		62102F	2418	04	42	
Damping Properties of Variou	is Materials	<u> </u>	<u> </u>		<u> </u>	
12. PERSONAL AUTHOR(S) Michael L. Di	ake					
	COVERED	14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT				
Final FROM SE	pt 85 TO Oct 88	March 1989 291				
18. SUPPLEMENTARY NOTATION						
17. COSATI CODES	18. SUBJECT TERMS (C					
FIELD GROUP SUB. GR.	Polymers, Enam					
11 02	Complex Modulu	s, Dynamic Mo	dulus, ASIN	1 E-/56		
11 09, 10 12. ABSTRACT (Continue on reverse if nacessary a		<u> </u>				
Complex modulus data is presented for a total of 44 materials. The material types include polymers, enamels, and structural adhesives. The complex modulus data was obtained using the ASTM E-756 standard test.						
20. DISTRIBUTION/AVAILABILITY OF ABSTR	ACT	21. ABSTRACT SEC	URITY C .ASSIF	CATION		
UNCLASSIFIED/UNLIMITED 🚨 SAME AS RP	T. O DTIC USERS	UNCLASSI	FIED			
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE N (Include Ares Co	UMBER	22c. OFFICE SYM	BOL	
D. I. G. Jones		513-255-135	55	AFWAL/MLLN	I	

TABLE OF CONTENTS

<u>Section</u>		Page
1	INTRODUCTION	1
2	DAMPING POLYMERS	11
	2.1 Complete Material Evaluations	11
	2.2 <u>Preliminary Material Evaluations</u>	11
3	STRUCTURAL ADHESIVES	14
4	ENAMELS	15
5	HOW TO READ A NOMOGRAM	16
6	MANUFACTURERS	21
	APPENDIX A - DAMPING POLYMERS	A-1
	APPENDIX B - PRELIMINARY TESTS (DAMPING POLYMERS)	B-1
	APPENDIX C - STRUCTURAL ADHESIVES	C-1
	APPENDIX D - ENAMELS	D-1

LIST OF ILLUSTRATION3

<u>Figure</u>		Page
1	Typical Reduced Frequency Nomogram.	2
2	Typical Curve Fit Equations and Parameter List.	3
3	Typical Frequency versus Temperature Plot. (Number Indicates Beam Resonant Mode Number).	4
4	Typical Modulus Versus Temperature Plot. (Number Indicates Beam Resonant Mode Number).	5
5	Typical System Loss Factor versus Temperature Plot. (Number Indicates Beam Resonant Mode Number).	7
6	Typical Material Loss Factor versus Temperature Plot. (Number Indicates Beam Resonant Mode Number).	8
7	Typical Material Loss Factor versus Modulus Plot. (Number Indicates Beam Resonant Mode Number).	9
8	Typical Test Parameter and Results List.	10
9	Modulus Parameters.	18
10	Loss Factor Parameters.	18
11	Nomogram Example.	20

LIST OF TABLES

<u>Table</u>		
2.1	DAMPING POLYMERS	12
2.2	PRELIMINARY MATERIAL TESTS	13
3.1	STRUCTURAL ADHESIVES	14
4.1	ENAMELS	15
6.1	LIST OF MANUFACTURERS	21

FOREWORD

This report presents all the material property tests conducted by the University of Dayton in completing the contractual requirements for Air Force Contract Number F33615-85-C-5040 which was funded by AFWAL/MLLN. Dr. D. I. G. Jones was the Technical Contract Monitor. The author wishes to acknowledge the support of Tim Montavon, Patrick Sparto and Josephine Glover in completing the efforts to obtain the data and prepare it for publication.

SECTION 1 INTRODUCTION

This report presents the complex modulus properties for various materials. All of the materials were tested and the data reduced in accordance with ASTM E756-83. The report is divided into six sections which are:

- Section 1 Introduction
 A basic summary of information contained in this report.
- Section 2 Damping Polymers
 The test results on the damping polymers evaluated.
- <u>Section 3 Structural Adhesives</u>

 The test results on the structural adhesives evaluated.
- <u>Section 4 Enamels</u>

 The test results on the enamels evaluated.
- Section 5 How to Read a Nomogram
 The method of interpreting a nomogram.
- Section 6 Manufacturers

 The addresses for the manufacturers of all the materials evaluated.

The complex modulus data set for each material given in this report contains the following information:

- A full page reduced frequency nomogram (FRN) (see Figure 1).
- A half page RFN with a list of the modulus, loss factor, and $\alpha_{\rm T}$ equations and equation parameters used to fit the data (see Figure 2).
 - A plot of test frequency versus test temperature (see Figure 3).
 - A plot of material modulus versus test temperature, (see Figure 4).

1 Modulus of clusticity

MATERIAL CODE:

UNITS ARE ENGLISH LOG(M)=LOG(NL)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO SLOPE FOROM MROM ML

6.450E+02 0.372 150.0 2,465E+05 2.194E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

FROL TZERO ETFROL SL SH 150.0 .870 .115 -.385 7.340E+**0**5 1.800

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0)A=(LOG(FR)-LOG(FROL))/C

Figure 2. Typical Curve Fit Equations and Parameter List.

Typical Frequency versus Temperature Plot. (Number Indicates Beam Resonant Mode Number). Figure 3.

Typical Modulus versus Temperature Plot. (Number Indicates Beam Resonant Mode Number). Figure 4.

- A plot of test (system) loss factor versus test temperature (see Figure 5).
- A plot of material loss factor versus test temperature (see Figure 6).
- A plot of material loss factor versus material modulus (see Figure 7).
- A listing of all the test parameters including both the original test data and the reduced material properties (see Figure 8).

The information included in each material data set is totally complete so that the reader could recalculate the material properties from the test data or regenerate the nomogram plot using the material properties.

Typical System Loss Factor versus Temperature Plot. (Number Indicates Beam Resonant Mode Number). Figure 5.

Typical Material Loss Factor versus Temperature Plot. (Number Indicates Beam Resonant Mode Number). Figure 6.

Typical Material Loss Factor versus Modulus Plot. (Number Indicates Beam Resonant Mode Number.) Figure 7.

MATERIAL CODE: ED0425 ISD 112-A MATERIAL:

UDRI MANUFACTURER:

3M MATL. ON AL BEAMS REMARKS:

DATE: 4 Mar 1988

ENTERED BY: SEO
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: AL-080-G & AL-080-E BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: in .07882 in BEAM THICKNESS:

lb/cu in . 1 BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .002 in

DAMPING MATERIAL DENSITY: .035 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PS1	FACTOR
					002707	1.6686E+04	,058660
1	-59	2	331.5	657.7	.002797 .008329	1.2769E+04	.058245
2	-58	3	928.2	1738.5		1.7816E+04	.038761
3	-57	4	1803.9	3291.6	.006974 .009543	1.3287E+04	.034358
4	-57	5	2979.2	4963.1	.008521	2.7332E+04	.035599
5	57	6	4452.4	7728.4	.003088	1.7181E+04	.066768
6	-49	2	331.0	657.2	.009015	1.2713E+04	.062991
7	-49	3	926.9	1736.1	.007323	1.7692E+04	.040583
8	-49	4	1801.8	3286.4	.007323	2.6968E+04	.037659
9	-49	6	4446.3	7707.9		1.3095E+04	.066673
10	-48	5	2975.1	4949.3	.018580 .003710	1.6537E+04	.077796
11	-39	2	330.5	655.6		1.1640E+04	.060525
12	-39	3	925.6	1722.6	.009224	1.6811E+04	.048916
13	-39	4	1799.1	3267.2	.009107	1.2730E+04	.062662
14	-39	5	2971.0	4924.7	.017647	2.5742E+04	.002882
15	-39	6	4438.6	7654.8	.011533	2.3742E+04	.062261
16	-30	6	4431.7		.015905	1.5039E+04	.106695
17	-29	2	330.0		.005509	1.0456E+04	.079325
18	-29	3	924.2		.012998	1.5313E+04	.067886
19	-29	4	1736.4		.013372		.062566
20	-29	5	2966.4		.018191	1.1675E+04 1.3516E+04	.099781
21	-20	4	1794.0		.021107		.123456
22	-19	3	922.0		.021942	9.1766E+03	.082464
23	-19	5	2961.9		.025028	1.0223E+04	.086847
24	-19	6	4423.3		.023231	2.1300E+04 1.2945E+04	.158423
25	-18	2	329.4		.009229		.138937
26	-10	4	1791.3		.031781	1.1640E+04	.115314
27	-10	5	2957.8		.036195	9.0013E+03	.119702
28	10	6	4416.4		.033516	1.8911E+04	.202431
29	-9	2	328.5		.013512	1.0917E+04	.172666
30	-9	3	921.5		.033062	8.0469E+03	.172666
31	+0	4	1788.E		.045886	9.6029E+03	.187330
32	+0	5	2953.2	4541.1	.054818	7.6246E+03	. Icagol

Figure 8. Typical Test Parameter and Results List.

SECTION 2 DAMPING POLYMERS

This section contains data on polymeric materials which are commercially available. Not all of the these materials are sold as damping materials; therefore, the damping properties may vary significantly from batch to batch.

2.1 Complete Material Evaluations

Table 2.1 presents the polymers which were evaluated over the entire glassy to rubbery range. Also given in Table 2.1 is the material manufacture, the peak material loss factor (η_p) , the material modulus at η_p , and the temperature of η_p at 500 Hertz. The complete data sets for all the materials given in Table 2.1 are contained in Appendix A.

2.2 Preliminary Material Evaluations

Table 2.2 presents the polymers which were evaluated only on a preliminary basis. Although these tests are not complete, the data do give a general indication of the damping characteristics of the materials. The data contained in Appendix B is not recommended for damping design; it is useful only for preliminary material evaluation. If a material looks promising for a particular application, a complete complex modulus test would be required. A complete data set for each material listed in Table 2.2 is contained in Appendix B.

TABLE 2.1

DAMPING POLYMERS

Material	-	eak Material Loss Factor (np)	Material Modulus (psi) at <i>n</i> p	Temperature(*F) of np at 500 Hz
ISD-112	3M	1.03	2.43E2	75
Airflex 4500	Pir Products	1.93	2.62E3	91
Airflex 4514	Air Products	1.54	2.55E3	110
Airflex 4530	Air Products	1.34	3.57E3	124
Airflex 4814	Air Products	1.62	1.64E3	99
Vinac B-25	Air Products	2.92	9.19E3	153
Cargil 6439	Cargil	2.04	2.93E2	29
Hypalon 48	Dupont	1.85	3.09E3	80
NB491076B	EAR	1.95	2.58E3	126
Pliolite S-6B	Goodyear Chemica	1 1.30	3.00E2	180
Saflex (PVB) SR41	Monsanto	1.38	1.16E2	93
Plyamul 97-649	Reich Hold Chemi	cal 2.00	2.15E3	134
Dyad 606	Soundcoat	0.84	2.30E3	99
Dyad 609	Soundcoat	1.02	7.75E3	161
VMCH	Union Carbide	1.51	1.07E3	196
VYHH + 45	Union Carbide	1.65	1.61E3	120
VYNS-3	Union Carbide	1.45	1.45E3	209

TABLE 2.2 PRELIMINARY MATERIAL TESTS

nufacturer
Į

ISD-110 3M

976 DEV Air Products

1038B Betham

UZ201 Coating Sciences

Flexane urethane Devcon
Hypalon 30 Dupont
Hypalon 40 Dupont
C-1002 EAR

Lexan 141 General Electric

PEHA-3 Monsanto
PEHA-4 Monsanto

T-408-23A Rocket Research

SECTION 3 STRUCTURAL ADHESIVES

Currently, there is interest in using structural adhesives as high strength damping materials. The use of such materials has proven to be an effective method to reduce high cycle fatigue in several aircraft. [1] In these cases, the structure has been redesigned to incorporate a laminated structure with the proper structural adhesive used. In order to help broaden the available material choices, the structural adhesives listed in Table 3.1 were evaluated. A complete set of data for each material is contained in Appendix C.

TABLE 3.1 STRUCTURAL ADHESIVES

Material	Manufacturer	Peak Material Loss Factor (np)	Modulus	Temperature(°F) of np at 500 Hz
2214 Hi-flex	3M	1.00	2.5E4	270
E241N	Allied Resin	0.32	1.87E5	166
Hysol EA956	Dexter Hysol	1.00	3.1E4	160
Fusor 306	Lord Mfg.	0.41	8.85E4	177
Tyrite 7520	Lord Mfg	0.34	8.53E4	149
Phillybond Phillybond	Philadelphia Res	in 0.91	6.08E4	126
Epon 828	Shell Chemical	0.30	1.0E5	120

VACCA, S, "Damping in Secondary Aircraft Structure for Low Life Cycle Cost," presented at ASME 1987, Design Technology Conference, Boston, MA, Sept. 27-30.

SECTION 4 ENAMELS

The enamels listed in Table 4.1 were evaluated as potential candidates for the TF-41 Strut Fairing project. These materials are also potential candidates for other hot section jet engine components. A complete set of material data for each material listed in Table 4.1 is contained in Appendix D.

TABLE 4.1
ENAMELS

Material	Manufacturer	Peak Material Loss Factor (np)	Young's Modulus (psi) at <i>n</i> p	Temperature(°F) of η p at 500 Hz
Corning 1990	Corning	1.30	3.12E5	1127
Corning 7570	Corning	0.40	2.09E6	897
Corning 8463	Corning	0.40	3.61E6	9 19
Solar S-3B	Solar Turbines	0.47	1.82E6	1001
Solar S-16B	Solar Turbines	0.60	9.45E5	1120
Solar S23-36	Solar Turbines	1.50	1.27E6	1043

SECTION 5 HOW TO READ A NOMOGRAM

The ASTM E756-83 Standard was used to generate the material properties (modulus and material loss factor) given in this report. This data was then plotted on a reduced temperature nomogram, a characteristic plot of the complex modulus as a function of reduced frequency. Equations for loss factor and modulus data were generated and could be be used to calculate material properties at varying temperatures or frequencies. Using the curve representation of the material properties one could also calculate structural properties of damped systems.

The following is a description of the reduced frequency nomogram and the parameters which were used to fit the material property data to a curve on a nomogram plot.

Data displayed in nomogram format is amenable to the development of analytical equations to represent the data. The following equations were used in this report.

Modulus equation

$$\log_{10}(M) = \log_{10}(ML) + \frac{2 \log_{10}(\frac{MROM}{ML})}{1 + (\frac{FROM}{FR})^{N}}$$

Loss Factor Equation

$$\log_{10}(ETA) = \log_{10}(ETAFROL + \frac{C}{2} ((SL + SH)A + (SL - SH)(1 - SQRT(1 + A^2)))$$

where

$$A = \frac{\log_{10}(FR) - \log_{10}(FROL)}{C}$$

and

$$log_{10}(FR) = log_{10}(F) - \frac{12(T - T)_{zero}}{K + T - T_{zero}}$$

with

K = 525 for English units, and

K = 291 2/3 for metric units.

The parameters are defined as:

M is the material storage modulus;

NROM is the inflection point of the storage modulus curve as read on the modulus scale;

FROM is the reduced frequency value of this inflection point;

N is the slope of the curve at the inflection point;

ML is the Young's modulus value of the lower horizontal asymptote of this curve;

ETA is the loss factor;

FR is the reduced frequency;

ETAFROL is the loss factor value of the damping peak;

FROL is the reduced frequency value of the damping peak;

SL is the slope of asymptotic line for low values of reduced frequency;

SH is the slope of asymptotic line for high values of reduced frequency;

C is a parameter which defines the curvature of the damping peak;

T_{zero} is a reference temperature of the material;

T is the temperature at which the material properties are to be calculated;

F is the frequency at which the material properties are to be calculated:

Figures 9 and 10 illustrate the physical meaning of these curve parameters.

It should be noted that the modulus equation yields shear modulus for materials tested in a sandwich configuration and Young's modulus for materials tested in free-layer (Oberst) configuration. If the equation parameter $T_{\rm zero}$ is given in degrees

 $F_{\alpha T}$ Figure 10. Loss Factor Parameters.

Centigrade the modulus curve parameters will yield modulus in Pascals and if $T_{\tt zero}$ is given in degrees Fahrenheit, the modulus curve parameters will yield modulus in psi.

Figure 11 is a reduced temperature nomogram with loss factor and shear modulus curves displayed. The data points are not displayed so that the plot is more readable. The procedure for reading the nomogram is as follows:

- a) Select a combination of temperature and frequency, for example 200 Hz and 150°F.
- b) Find the point for 200 Hz on the right-hand axis.
- c) Follow the point horizontally to the line for 150'F.
- d) At this intersection, draw a vertical line.
- e) Read the modulus and loss factor values off the appropriate graph, at the point of intersection with the vertical line.

In this example, modulus G (200 Hz, $150^{\circ}F$) = 40 psi and the loss factor (200 Hz, $150^{\circ}F$) = 1.0.

Figure 11. Nomogram Example.

SECTION 6 MANUFACTURERS

Table 6.1 contains the list of the manufacturers for all the materials given in this report. The table includes a company contact, the mailing address, and a telephone number.

TABLE 6.1 LIST OF MANUFACTURERS

Air Products & Chemicals
P. C. Box 2662
Allentown, PA 18105
1-800-523-9476 or
215-481-6799

Allied Resin Corporation Weymouth Industrial Park East Weymouth, MA 02189 617-337-6070

The Betham Corporation Lincoln Blvd. & River Road Middlesex, NJ 08846 201-356-2870

Cargill
Chemical Products Division
762 Marietta Blvd. N.W.
Atlanta, GA 30318
ATTN: Rodney J. Hicks
1-800-241-4460

Coating Sciences, Inc. 48 East Newberry Road Bloomfield, CT 06002 203-243-3700

Corning Glass Works Corning, NY 14830 607-974-9000 Devcon Corporation 30 Endicott Street Danvers, MA 01923 617-777-1100

E.I. DuPont DeNemours & Company 4330 Allen Road Stow, OH 44224-1094 216-929-2961

EAR Division Cabot Corp.
7911 Zionsville Road
P.O. Box 68898
Indianapolis, IN 46268-0898
317-872-1111
ATTN: Greg Handy

General Electric Company 16600 Sprague Road Suite 380 Middleburg Heights, OH 44130 216-243-5811

Goodyear Chemicals
The Goodyear Tire & Rubber Co
1144 East Market Street
Akron, OH 44316
1-800-321-2416

Hysol Division
The Dexter Corporation
2850 Willow Pass Road
Pittsburg, CA 94565
312-687-4201

TABLE 6.1 LIST OF MANUFACTURERS (Continued)

Lord Corp. Chemical Products Group 2000 West Grandview Blvd. P.O. Box 10038 Erie, PA 16514-0038 814-868-3611

3M Industrial Specialties Division Bldg 230-1F-02, 3M Center St. Paul, MN 55144-1000 612-733-7222 ATTN: Roger Johnson

Monsanto Corp 800 N. Lindberg Blvd. St. Louis, MO 63167 1-800-325-4330

Philadelphia Resins Corp P.O. Box 454 130 Commerce Driven Montgomeryville, PA 18936 215-855-8450

Reich Hold Chemicals, Inc 525 North Broadway White Plains, NY 10603 914-682-5700

Rocket Research Company 2801 Far Hills Avenue Dayton, OH 45419 513-298-6644 ATTN: David H. Grupe

Shell Chemical Company 1415 West 22nd Street Oak Brook, IL 60522-9008 312-572-5500

Solar Turbines, Inc P.O. Box 85376 San Diego, CA \$2138-5376 619-544-5091 The Soundcoat Company, Inc. 1 Burt Drive Deer Park, NY 11729 516-242-2200 ATTN: Carl L. Wolaver

Union Carbide Chem Specialty Div. 120 S. Riverside Plaza Chicago, IL 60606 1-800-223-0537 ATTN: Pat Lagosino

APPENDIX A DAMPING POLYMERS

Material	Page
ISD-112	A-2
Airflex 4500	A-10
Airflex 4514	A-16
Airflex 4530	A-22
Airflex 4814	A-28
Vinac B-25	A-34
Cargil 6439	A-41
Hypalon 48	A-48
NB491076B	A-54
Pliolite S-6B	A-60
Saflex (PVB) SR41	A-66
Plyamul 97-649	A-74
Dyad 606	A-80
Dyad 609	A-88
VMCH	A-94
VYHH + 45 phr PLAS	A-9 9
VYNS-3	A-105

TERIAL CODE:

ED0425

ERIAL: ISD 112-A

UNITS ARE ENGLISH

LOG()=LOG(ML)+(2LOG(MR/M/ML))/(1+(FQROM/FR)^SLOPE)

TZL.0 FQROM MRCM SLOPE ML 150.0 2.465E+05 F.450E+02 0.372 2.194E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 150.0 .870 .115 -.385 7.340E+05 1.800

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C MATERIAL CODE: ED0425 MATERIAL: ISD 112-A UDRI

MANUFACTURER:

3M MATL. ON AL BEAMS REMARKS:

DATE: 4 Mar 1988 ENTERED BY: SEO

BEAM MATERIAL: STAINLESS STEEL BEAM NUMBER: AL-080-G & AL-080-E

BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: in BEAM THICKNESS: .07882 in

.1 BEAM DENSITY: lb/cu in

JAMPING MATERIAL THICKNESS: .002 in DAMPING MATERIAL DENSITY: . 035 lb/cu in

MODE BEAM COMPOSITE COMPOSITE YOUNG'S INDEX TEMP MATERIAL DEG No. FREQ FREO LOSS MODULUS Hz F Hz FACTOR PSI FACTOR .002797 1.6686E+04 -59 2 331.5 657.7 .058660 -58 3 928.2 1738.5 .008329 1.2769E+04 .058245 3 -57 4 1803.9 3291.6 .006974 1.7816E+04 .038761 -57 5 2979.2 4963.1 .009543 1.3287E+04 4 .034358 6 4452.4 .008521 2.7332E+04 5 -57 7728.4 .035599 5 -49 2 331.0 657.2 .003088 1.7181E+04 .066768 7 .009015 1.2713E+04 -49 3 926.9 1736.1 .062991 4 1801.8 3286.4 8 -49 .007323 1.7692E+04 .040583 6 4446.3 7707.9 .009064 2.6968E+04 9 -49 .037659 5 2975.1 4949.3 .018580 1.3095E+24 10 -48 - 066673 -39 2 330.5 655.6 .003710 i.6537E+04 11 .077796 12 -39 3 925.6 1722.6 .009224 1.1640E+04 .000525 4 1799.1 3267.2 .009107 1.6811E+04 13 -39 .048916 14 --39 5 2971.0 4924.7 .017647 1.2730E+04 .262662 15 -39 6 4438.6 7654.8 .011533 2.5742E+04 .046891 6 4431.7 7568.8 16 -30 .015905 2.3721E+04 .062261 .005509 1.5039E+04 17 -29 2 330.0 653.2 .106695 924.2 1706.2 18 -29 3 .012998 1.0456E+04 .079325 .013372 1.5313E+04 19 -29 4 1796.4 3234.7 .067886 .018191 1.1675E+04 20 -29 5 2966.4 4858.5 .062566 .021107 1.3516E+04 21 -20 4 1794.0 3191.4 .099781 22 3 922.9 1686.2 .021942 9.1766E+03 -19 .123456 5 2961.9 4759.3 23 -- 19 .025028 1.0223E+04 .082464 24 -19 6 4423.3 7454.4 .023231 2.1300E+04 .086847 25 -18 2 329.4 649.7 .009229 1.2945E+04 .158423 4 1791.3 3137.5 26 ~10 .031781 1.1640E+04 .138937 .036195 9.0013E+03 27 --10 5 2957.8 4654.0 .115314 28 -10 6 4416.4 7328.9 .033516 1.8911E+04 .119702 .013512 1.0917E+04 29 -9 2 328.9 645.6 .202431 .033062 8.0469E+03 3 921.5 1665.3 -9 30 .172666 .046886 9.6029E+03 +0 4 1788.6 31 3065.3 .187330 32 +0 5 2953.^ 4541.1 .054818 7.6246E+03 .169031

MATERIAL CODE: ED0425 MATERIAL: ISD 112-A MANUFACTURER: UDRI

3M MATL. ON AL BEAMS REMARKS:

DATE: 4 Mar 1988 ENTERED BY: SEO

STAINLESS STEEL BEAM MATERIAL: BEAM NUMBER: AL-080-G & AL-080-E

BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in BEAM THICKNESS: .07882 in

BEAM DENSITY: lb/cu in . 1

in

DAMPING MATERIAL THICKNESS: .002 DAMPING MATERIAL DENSITY: .035 lb/cu in

INDEX	TEMP DEG	MODE	BEAM FREQ	COMPOSITE FREQ	COMPOSITE	YOUNG'S	MATERIAL
No.	F	No.			LOSS	MODULUS	LOSS
	r 		Hz	Hz	FACTOR	PSI	FACTOR
33	+0	6	4408.7	7156.8	.051825	1.5056E+04	.175633
34	+1	2	328.4	639.2	.022114	8.4516E+03	.273141
35	+1	3	920.2	1637.9	.045362	6.8334E+03	.216811
36	+14	2	327.8	627.8	.035745	5.8367E+03	. 334337
37	+14	3	918.4	1589.2	.066 785	5.2221E+03	.280124
38	+14	4	1784.9	2947.0	.078716	7.0990E+03	.281524
39	+14	S	2946.8	4313.8	.087897	5.5871E+03	.262760
40	+14	6	4398.0	6848.3	.091025	1.1962E+04	.289180
41	+22	2	327.3	615.9	. 050361	4.274RE+03	.377460
42	+22	3	917.3	1540.7	.091168	4.0587E+03	.346000
43	+22	4	1782.7	2835.5	.111169	5.3975E+03	.370297
44	+23	5	2942.7	4152.5	.113940	4.4435E+03	.341908
45	+23	6	4391.1	6597.8	, 125564	9.3999E÷ 0 3	.388722
46	+33	3	915.8	1471.6	.126369	2.9112E+03	.434407
47	+33	4	1779.8	2683.1	.148975	3.7874E+03	.469442
48	+33	5	2938.1	3935.4	.148781	3.2010E+03	.466029
49	+33	6	4383.4	6241.7	.178269	6.5969E+03	.555024
50	+41	6	4377.3	5852.6	.212287	4.4636E+03	.694505
51	+42	3	914.6	1397.3	.171069	2.0521E+03	.556715
52	+42	4	1777.4	2532.4	.186816	2.6577E+03	.585355
53	+42	5	2934.0	3714.3	.176881	2.2112E+03	.610813
54	+50	5	2930.4	3494.4	.180965	1.4440E+03	.740635
55	+51	3	913.4	1314.1	.209271	1.4112E+03	.669469
56	+51	4	1775.0	2362.2	.220082	1.7465E+03	.727746
57	+51	5	4369.7	5429.8	.224944	2.7903E+03	.838407
58	+60	2	325.4	497.1	.257910	6.2475E+02	. 922598
59	+60	4	1772.6	2198.8	.230880	1.1119E+03	. 868599
60	+60	5	2925.8	3319.9	.164106	9.4589E+02	.843100
61	+60	6	4362.8	5139.9	.210869	1.9004E+03	. 925945
62	+61	3	912.1	1228.6	.241305	9.4540E+02	.804397
63	+70	2	324.9	458.3	.239413	4.3295E+02	.784604
64	+70	3	910.8	1136.7	.240179	5.9339E+02	.897550

MATERIAL CODE: ED0425 MATERIAL: ISD 112-A

MANUFACTURER: UDRI

REMARKS: 3M MATL, ON AL BEAMS

DATE: 4 Mar 1988

ENTERED BY: SEO
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: AL-060-G & AL-080-E
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:

in .07882 in BEAM THICKNESS:

.1 BEAM DENSITY: lb/cu in

DAMPING MATERIAL THICKNESS: .002 in
DAMPING MATERIAL DENSITY: .035 lb/cu in

INDEX TEMP MODE BEAM COMPOSITE COMPOSITE YOUNG'S	MATERIAL
No. DEG No. FREQ FFIQ LOSS MODULUS	LOSS
F Hz Hz FACTOR PSI	FACTOR
65 +70 5 2921,2 3195.0 .136692 6.3482E+0	2 .911977
66 +70 6 4355.1 4892.0 .182527 1.2478E+0	
67 +71 4 1769.6 2067.2 .206800 7.2040E+0	
68 +81 4 1766,9 1966.4 .171907 4.6120E+0	
69 +81 5 2916.2 3098.9 .108436 4.1605E+0	2 .994134
70 +81 6 4346.7 4721.0 .139923 8.5571E+0	2 1.002765
71 +82 2 324,2 429.3 .194506 3.1832E+0	2 .634090
72 +82 3 909.2 1067.7 .215310 3.8656E+0	2 .962243
73 +90 2 323.8 405.9 .169180 2.3022E+0	2 .593935
74 +90 3 908.1 1021.7 .188169 2.6508E+0	1.040774
75 +90 4 1764.5 1906.8 .139105 3.2334E+0	1.052480
76 +90 5 2912.1 3037.7 .084734 2.8578E+0	
77 +90 6 4339.8 4617.2 .108930 6.3132E+0	981636
78 +101 2 323.2 384.8 .139873 1.6154E+0	
79 +101 3 906.6 981.9 .152050 1.70SSE+0	2 1.134067
80 +101 4 1761.6 1856.6 .107759 2.1420E+0	124817
81 +101 5 2907.1 2992.0 .063234 1.9559E+0	2 1.099108
82 +101 6 4331.3 4532.5 .083956 4.5775E+0	982002
83 +111 2 322.7 368.3 .123442 1.1327E+0	
84 +111 3 905.3 954.7 .119116 1.1122E+0	
85 +112 4 1758.6 1822.9 .081339 1.4591E+0	
86 +112 5 2902.1 2958.3 .047460 1.3308E+0	
87 +112 6 4322.9 4466.6 .064679 3.2935E+0	
88 +120 6 4316.8 4420.9 .051255 2.4238E+0	1.045773
89 +121 3 903,9 937.0 .090997 7.5037E+0	1.322334
90 +121 4 1756.2 1800.2 .062415 1.0166E+0	1.242762
9! +121 5 2898.0 2935.7 .036841 9.3368E+0	
92 +122 2 322.2 350.5 .145255 6.4832E+0	
93 +130 6 4309.1 4385.7 .039801 1.8268E+0	
94 +131 3 902.6 925.5 .07 1481 5.2926F+0	
95 +131 4 1753.5 1784.0 .048172 7.2518E+0	
96 +131 5 2893.4 2918.4 .028352 6.6210E+0	1.348730

MATERIAL CODE: ED0425 MATERIAL: ISD 112-A UDRI

MANUFACTURER: REMARKS: 3M MATL. ON AL BEAMS

DATE: 4 Mar 1988

ENTERED BY: SEO
BEAM MATERIAL: STAINLESS STEFL
BEAM NUMBER: AL-080-G & AL-080-E
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH:

BEAM THICKNESS: .07882 in BEAM DENSITY: .1 lb/cu in

DAMPING MATERIAL THICKNESS: .002 in
DAMPING MATERIAL DENSITY: .035 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
97	+132	2	321.6	344.2	116420	5.1554E+01	.973996
98	+141	4	1750.9	1770.8	.036657	5.0130E+01	1.406603
99	+141	5	2888.8	2903.5	.021817	4.4119E+01	1.534525
100	+141	6	4300.7	4358.1	.031110	1.4159E+02	1.041361
101	+142	2	32i.1	338.7	.092120	4.0230E+01	.936765
102	+142	3	901.1	916.4	.053829	3.6551E+01	1.497237

in

A4500

MATERIAL: 4500

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 250.0 1.000E+08 3.000E+03 0.420 1.200E+02

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 250.0 1.900 .220 -.500 1.000E+08 .200

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C MATERIAL CODE: A4500 MATERIAL: 4500 MANUFACTURER: AIRFLEX

REMARKS: TESTED 1-16-87

DATE: 19 Jan 1987 ENTERED BY: TVG

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-3 AND 7-7
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in BEAM THICKNESS: .0591 in

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .0239 in

DAMPING MATERIAL DENSITY: .0401 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+25	<u>-</u>	671.7	1488.5	.010080	5,4588E+04	.039873
2	+25	4	1318.2	2690.9	.012640	6.1736E+04	. 037092
3	+25	5	2185.2	4205.7	.016310	7.4317E+04	.042137
4	+25	6	3273.9	5985.1	.009070	8.6705E+04	.021755
5	+50	2	241.0	560.3	.015350	3.0378E+04	.081835
6	+50	3	669.9	1445.1	.022350	4.4321E+04	.078587
7	+50	4	1314.7	2596.6	.028270	5.0879E+04	.076825
. 9	+50	5	2179.2	4034.0	.033910	6.0683E+04	.092713
9	+50	6	3264.8	5691.4	.037950	6.8842E+04	.087246
- 10	+80	2	240.1	455.3	.319100	5.5891E+03	.958068
11	+80	3	667.7	1117.4	.268750	1.0293E+ 04	.655182
12	+80	4	1310.4	2042.5	. 248240	1.5319E+04	.588452
13	+80	5	2172.1	3140.9	.277800	1.8055E+04	.689430
14	+104	2	239.4	291.7	.240880	8.3026E+02	.804031
15	+104	3	66 6.0	775.0	.372390	1.5282E+03	1.614032
16	+104	4	1307.0	1422.0	.279890	1.6770E+03	1.793514
17	+104	5	2165.5	2296.0	.241290	1.9851E+03	2.018151
18	+104	6	3245.0	3381.0	.189880	2.2806E+03	1,985648
19	+125	2	238.7	259.6	.111710	3.3253E+02	.661841
20	+125	3	654.5	686.7	.073540	4.1263E+02	.842615
21	+125	4	1304.0	1323.6	.055000	4.8947 E+0 2	.993985
22	+125	5	2161.5	2182.0	.051740	6.5475E+02	1.144711
23	+125	8	3237. 3	3244.0	.047970	6.6826E+02	1.533431
24	+125	7	4518.8	4514.0	.041710	7.4782E+02	1.545051
25	+150	2	238.0	249.4	.051400	1.9748E+ 0 2	. 459520
26	+150	3	662.7	671.1	.028610	2.2923E+02	.555313
27	+150	4	1300.4	1303.5	.019940	2.7495E+02	.615830
28	+150	5	2155.6	2149.9	.016460	3.1501E+02	.728650
29	+150	6	3228.1	3208.6	.015050	3.3019E+02	.947224
30	+150	7	4506.2	4467.6	.012180	3.1398E+02	1.114995
31	+175	2	237.3	244.4	.033240	1.3766E+02	.476898
32	+175	3	660.9	664.8	.023350	1.6947E+02	.598701

MATERIAL CODE: A4500 MATERIAL: 4500 MANUFACTURER: AIRFLEX

REMARKS:

TESTED 1-16-87

DATE: 19 Jan 1987 ENTERED BY: TVG

BEAM MATERIAL: STAINLESS STEEL BEAM NUMBER: 7-3 AND 7-7

BEAM TYPE: SANDWICH BEAM BEAM LENGTH: BEAM THICKNESS:

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .0239 in

DAMPING MATERIAL DENSITY: .0401 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	+175	4	1296.9	1294.2	.010170	1.9834E+02	.428495
34	+175	5	2149.6	2136.8	.004870	2.2106E+02	.302765
35	+175	6	3219.0	3191.2	.007990	2.2193E+02	.738768
36	+175	7	4493.6	4445.1	.005920	1.8463E+02	.910943
37	+200	2	236.5	240.5	.028150	9.4692E+01	.477034
38	+200	3	659.0	659.2	.013230	1.1980E+02	.469943
39	+200	4	1293.3	1285.9	.008360	1.3641E+02	.504316
40	+200	·S	2143.7	2126.1	.006190	1.5817E+02	.531642
41	+200	6	3209.8	3176.1	.005720	1.4367E+02	.808235
42	+200	7	4481.0	4428.0	.003790	1.2457E+02	.856399

in

in

.0591

A4514

MATERIAL: 4514

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FOROM MROM

1.500E+02 250.0 2.000E+07 3.800E+03 0.450

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

SLOPE

ML

ETFROL SL SH FROL С TZERO

.200 250.0 1.500 -.460 1.800E+07 .450

LOG(FR)=LOG(F\-12(T \-\/(525+T-T@)

A=(LOG(FR) LOCKFRULLING

MATERIAL CODE: A4514 MATERIAL: 4514 MANUFACTURER: AIRFLEX

REMARKS: TESTED 1-15-87

DATE: 19 Jan 1987 ENTERED BY: TVG

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-45 AND 7-34
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in BEAM THICKNESS: .05945 in

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .02826 in

DAMPING MATERIAL DENSITY: .04046 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE		SHEAR	MATERIAL
No.	DEG	Nο.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+25	2	242.5	592.9	.002610	4.1458E+04	.015074
2	+25	3	679.8	1589.4	.005590	7.5021E+04	.023617
3	+25	4	1336.7	2933.1	.008130	9.3165E+04	.026039
4	+25	5	2221.8	4605.0	.011590	1.1129E+05	.031636
5	+25	8	3332.4	6513.0	.014230	1.2411E+05	.034762
6	+50	2	241.8	589.9	.002950	4.0110E+04	.016685
7	+50	3	677.9	1573.2	.005780	7.0117E+04	.023448
8	+50	4	1332.4	288 9.0	.009680	8.5896E+04	.029827
9	+50	5	2214.2	4516.9	.014920	1.0148E+05	.039347
10	+74	2	241.2	558.0	. 056270	2.3417E+04	.227009
11	+74	3	576. 2	1451.2	.074280	3.9624E+04	.224573
12	+74	4	1328.2	2600.6	.090060	4.7984E+04	.223243
13	+74	5	2206.8	4002.6	.100510	5.6270E+04	.227855
14	+74	6	3308.0	5545.8	.120630	6. 00 33E+04	.263404
15	+100	2	240.5	459.6	. 485680	4.2936E+03	1.696008
16	+100	3	674.2	1141.0	.375810	1.0408E+04	.941086
17	+100	4	1323.7	1981.0	.320620	1.3335E+04	.768429
18	+125	2	239.9	287.5	.207300	8.1836E+02	.708406
19	+125	3	672.3	740.0	.224320	1.1306E+03	1.218054
20	+125	4	1319.3	1396.0	.147420	1.3977E+ 0 3	1.142629
21	+125	5	2191.3	2281.0	.184220	1.7226E+03	1.848890
22	+125	6	3282.5	3343.0	.149570	1.5491E+03	2.370150
23	+150	2	239.2	262.0	.083590	3.9817E+02	.451377
24	+150	3	670.5	707.4	.040710	6.9594E+02	.318426
25	+150	4	1315.0	1336.0	.037130	5.99 99E+0 2	.597392
2 6	+150	5	2183.7	21 88.0	.034510	5.633 0 E+02	.950967
27	+150	6	3270.1	3253.0	.024750	5.1561E+02	1.099542
28	+150	7	4557.4	4525.4	.030270	5.9935E+02	1.598169
29	+175	2	238.6	254.2	.055070	2.8460E+02	.383557
30	+175	3	668.6	678.2	.025360	2.8882E+02	.427582
31	+175	4	1310.7	1318.9	.017360	4.1549E+02	. 389702
32	+175	5	2176.0	2163.9	. 014000	3.3055E+02	.639969

MATERIAL CODE: A4514 4514 MATERIAL: MANUFACTURER: AIRFLEX

REMARKS:

TESTED 1-15-87

DATE: 19 Jan 1987 ENTERED BY: TVG

STAINLESS STEEL BEAM MATERIAL: BEAM NUMBER: 7-45 AND 7-34 BEAM TYPE: SANDWICH BEAM

7 in .05945 in BEAM LENGTH: BEAM THICKNESS:

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .02826 in DAMPING MATERIAL DENSITY: .04046 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREG	LOSS	MODULUS	LOSS
	F		Hz	Нz	FACTOR	PSI	FACTOR
33	+175	6	3257.6	3223.5	.012000	2.7457E+02	.979832
34	+175	7	4545.0	4488.3	.010670	2.5521E+02	1.296952
35	+200	2	237.9	248.1	.044340	2.0099E+02	.410165
36	+200	3	666.8	669.5	.017830	1.9081E+02	.440533
37	+200	4	1306.3	1308.8	.011770	3.3335E+02	.324169
38	+200	5	2168.4	2148.7	.008130	2.2284E+02	.542342
39	+200	6	3245.1	3203.3	.006618	1.6412E+02	.891405
40	+200	7	4532.7	4465.2	.005460	1.0420E+02	1.606374

A4530

MATERIAL: 4530

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FOROM MRCM SLOPE 250.0 3.000E+06

3.500E+03 0.450 1.100E+02

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL FROL SH C 250.0 1.300 .290 -.590 4.500E+06 .500

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0)

A=(LOG(FR)-LOG(FROL))/C

MATERIAL CODE: A4530 MATERIAL: 4530 MANUFACTURER: AIRFLEX

REMARKS:

DATE: 24 Nov 1986

ENTERED BY: GJF
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-06
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:

BEAM LENGTH: in .05925 in .283 lb/cu in BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .01882 in

DAMPING MATERIAL DENSITY: .04697 lb/cu in

T N I PO CP N C	T=140	MADE	55.44	004000175	AA4888777	21545	
INDEX	TEMP	MODE	BEAM	COMPOSITE		SHEAR	MATERIAL
No.	DEG F	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	r 		Hz	Hz	FACTOR	PSI	FACTOR
1	+49	3	661.5	1511.5	.005690	9.8099E÷04	.042855
2	+45	4	1301.6	2811.1	.008820	1.0080E+05	.040869
3	+49	5	2153.6	4391.0	.011570	1.0541E÷05	.040548
4	+49	6	3220.0	6155.0	.011320	1.0514E+05	.032712
5	+49	7	4496.1	8151.0	.004100	1.0967E+05	.010706
6	+75	2	237.2	555.0	.003570	5.3917E+04	.038247
7	·75	3	660.6	1490.3	.006960	8.1899E+04	.045563
8	+75	4	1298.9	2758.0	.011170	8.6414E+04	.046968
9	+75	5	2148.8	4285.2	.015310	9.0353E+04	.049590
10	+75	€	3212.3	6036.0	.018720	9.4882E+04	.052136
11	+75	7	4485.8	8007.0	.029350	1.0052E+05	.075045
12	+85	2	237.0	549.5	.008590	4.4798E+04	.079131
13	+85	3	660.2	1467.5	.014510	6.8010E+04	.082893
14	+85	4	1297.8	2700.0	.020930	7.3080E+04	.079765
15	+85	5	2147.0	4178.3	.026350	7.7271E+04	.079729
16	+35	6	3209.3	5886.0	.030920	8.2858E+ 04	.082397
17	+85	7	4481.9	7816.0	.029670	8.9276E+04	.073753
81	+95	2	236.8	541.9	.021020	3.5407E+04	.1622 9 4
19	+95	3	659.8	1438.0	.029620	5.4571E+04	.146166
20	+95	4	1296.8	2575.0	.059180	5.1895E+04	.191068
21	+95	5	2145.1	3949.0	.060780	5.57845+04	.163823
22	+95	6	3206.4	5602.0	.073370	6.3795E+04	.183991
23	+95	7	4477.9	7496.0	.062700	7.2582E+04	.151021
24	+110	2	236.4	493.0	.202840	9.2679E+03	.902919
25	+110	3	659.2	1268.4	.200330	1.8390E+04	.643129
26	+110	4	1295.2	2308.0	.212740	2.5260E+04	.584161
27	+125	2	236.0	367.0	.460510	1.8557E+ 0 3	1.411867
28	+125	3	658.7	936.0	.369520	4.1358E+03	1.036202
29	+125	4	1293.6	1726. 0	.378910	5.9801E+03	1.146623
30	+150	2	235.4	271.6	.141100	5.0231E+02	.578546
31	+150	3	657.7	705.0	.116310	6.6086E+02	.809359
32	+150	4	1290.9	1368.0	.134500	1.08835+03	1.080289

MATERIAL CODE: A4530
MATERIAL: 4530
MANUFACTURER: AIRFLEX

REMARKS:

DATE: 24 Nov 1986 ENTERED BY: 6JF

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-04 & SS-7-06
BEAM Tipe: SANDWICH BEAM

BEAM LENGTH: 7 in BEAM THICKNESS: .05925 in

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .01882 in

DAMPING MATERIAL DENSITY: .04697 lb/cu in

INDEX	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
							
33	+150	5	2134.9	2209.7	.113590	1.1631E+03	1.319980
34	+150	6	3190.0	3289.0	.108240	1.5918E+03	1.361173
35	+175	2	234.8	253,4	.066300	2.6162E+02	.424473
36	+175	3	656.8	675.8	. 045430	3.1813E+02	.582206
37	÷175	4	1288.3	1314.0	.043380	4.8606E+02	.696813
38	+175	5	2130.3	2141.0	.026530	4.3381E+02	.757706
39	+175	6	3182.6	3192,0	. 224590	5.7320E+02	.791046
40	+202	2	234.2	245.2	.040380	1.6534E+02	.372632
41	+202	3	655.7	662.9	.020670	1.7813E+02	.448591
42	+202	4	1285.4	1288.1	.013820	2.1848E+02	.467862
43	+202	5	2125.3	2120.7	.010370	2.5804E+02	.485743
44	+202	6	3174.6	3164.8	.008590	3.5261E+02	.439491
45	+202	7	4435.5	4411.0	.007800	3.6907E+02	.528271

MATERIAL CODE: A4814 MATERIAL: AIRFLEX 4814

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(ZLQG(MRQM/ML))/(1+(FQRQM/FR)^SLQPE)

TZERO FQROM MROM SLOPE ML 225.0 5.000e+06 2.500e+03 0.490 7.000e+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 225.0 1.600 .350 -.550 4.000E+06 .500

LOG(FR)=LOG(F)-12(T-T@)/(525+T-T@) A=(LOG(FR)-LOG(FROL))/C

A4814

MATERIAL:

AIRFLEX 4814

MANUFACTURER:

AIR PRODUCTS AND CHEMICALS INC.

REMARKS:

TEST 2 MATL PRESSED ON

DATE: ENTERED BY:

24 Nov 1986

BEAM MATERIAL:

GJF STAINLESS STEEL

BEAM NUMBER:

\$5-7-33 & \$5-7-42

REAM TYPE:

SANDWICH BEAM

BEAM LENGTH: BEAM THICKNESS:

in .**05964** in

BEAM DENSITY:

, 283

lb/cu in

* *****

DAMPING MATERIAL THICKNESS:

. **ጀ**ያያያኒ in

DAMPING MATERIAL DENSITY:

.03974 lb/cu in

INDEX	TEMP	MODE	BEAM		COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Нz	Hz	FACTOR	PSI	FACTOR
						~=~~~~~	
1	+24	4	1345.1	2707.5	-002310	6.8244E+04	<u>, 037950</u>
2	+24	5	2228.5	4347.0	.007040	7.49533E+04	035240
3	+24	6	3329.5	6308.0	.010110	9.1068E+04	.042843
4	+49	3	681.4	1403.0	.014800	4.7174E+04	.122956
5	+49	4	1741.2	2680.6	.008680	5.2078E+04	.052267
6	+49	5	2222.0	4278.0	.012060	6.9632E+04	.055700
7	+49	6	3320.0	6175.0	.014350	7.7892E+04	.055927
8	+70	3	679,7	1352.4	.034760	3.1274E+04	.216217
9	+70	4	1337.9	2574.0	.038230	4.0668E+04	.176899
1.0	+70	5	2216.6	4050.0	. 954299	4.4315E+04	.198844
11	+70	6	3312.0	5797.0	.050720	4.9725E+04	.195868
12	+83	2	242.9	476.4	. 095720	7.6017E+03	.571426
13	+83	3	678.7	1296.0	123150	1.5096E+04	579850
14	+83	4	1335.8	2396.0	151840	2.0498E+04	.555638
15	+83	5	2213.3	3 7 75 , ያ	.146750	2.6101E+04	465640
16	+83	ß	3307.1	5320.9	.134590	2.9048E+04	.385150
17	+89	2	242.7	475.3	177360	5,1510E+03	1,084384
18	+88	2	242.7	1238.6	211450	0.0000E+00	.୭ , ହର୍ହ୍ୟଥନ
19	+89	4	1334.9	2263.7	259000	1.2444E+04	, 908505
20	+101	2	242.4	351.5	.402000	8.9672E+02	1,394291
21	+101	3	677.3	931.0	.496240	1.6305E+03	2,031431
22	+101	4	1333.0	1703.0	.3505E0	2.8373E+03	1.271125
23	+108	3	676,7	830 . ହ	386400	1.6089E+03	1,387214
24	+108	4	1331.9	1594.0	.554580	1.2430E+03	3,488359
25	+108	4	1331.9	1594.0	410550	1.6858E+03	1,949382
26	+708	5	2206.8	2452.0	.349130	1.5423E+03	2,293896
27	+127	2	241.6	287.5	.140520	3,7779E+02	,540169
28	+127	3	675.2	742.0	.140160	5.0305E+02	.856550
29	+127	3	675,2	742.0	.135070	5.0448E+02	.823237
30	+127	4.	1328,9	1387.0	105270	4.3961E+02	1,232835
31	+127	4	1328.9	1387.0	.117520	4.3554E+02	1,388834
32	+127	5	2201,9	2283.0	.118260	6.1252E+02	1,616474

MATERIAL: AIRFLEX 4814

MANUFACTURER: AIR PRODUCTS AND CHEMICALS INC.
REMARKS: TEST 2 MATL PRESSED ON

DATE: 24 Nov 1986 ENTERED BY: 61F

BEAM MATERIAL: STAINLESS STEEL BEAM NUMBER: \$\$-7-33 & \$\$-7-42 BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7.0 .05964 in BEAM THICKNESS:

.283 lb/cu in **BEAM DENSITY:**

DAMPING MATERIAL THICKNESS: .00831 in

.03974 lb/cu in DAMPING MATERIAL DENSITY:

INDEX	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MQDULUS PSI	MATERIAL LOSS FACTOR
33	+127	6	3290.4	3360.0	.114580	5.5081E+02	2,487766
34	+150	2	240.9	270.1	077750	2.2934E+02	397919
35	+150	3	673.4	708.9	052760	2.7255E+02	.515683
36	+150	4	1325.3	1353.4	.038350	2.3566E+02	.778972
37	+150	5	2196.0	2220.7	.033820	2.3949E+02	1.089401
38	+150	6	3281.7	3294.0	.032480	1.8896E+02	1,941313
39	+175	2	240.2	262.1	.064860	1.6873E+02	.409791
40	+175	3	671.4	698.5	.032930	2.1072E+02	.398690
41	+175	4	1321.4	1337.4	.020490	1.5178E+02	-624987
42	+175	5	2189.5	2196.0	015570	1.1506E+02	1.011986
43	+175	6	3272.2	3271.0	.012930	8.8668E+01	1,453297
44	+200	2	239.4	257.1	.066120	1.3439E+02	.494368
45	+200	3	669,5	690.6	.027960	1.6748E+02	.412363
45	+200	4	1317.5	1328.3	.015510	1.1577E+02	.609316
47	+200	5	2183,1	2184.1	.010900	7.7817E+01	1,033557
48	+200	6	3262.7	3258.5	. 00 8130	7.7954E+01	1.146689

CM0510

MATERIAL: 880210-1

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FOROM MROM SLOPE NL

200.0 5.279E+03 5.794E+03 0.552 5.496E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+6^2)))C/2

TZERO ETFROL 200.0 2.870

SL SH .690 -1.020 9.019E+03

FROL

С .450

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(L06(FR)-L06(FR0L))/C

MATERIAL CODE: CM0510 MATERIAL: 880210-1 MANUFACTURER: UDRI

REMARKS: COMBINED DATA

DATE: 30 Aug 1988 ENTERED BY: DGA BEAM MATERIAL: ALUMINUM
BEAM NUMBER: AL-060-6
BEAM TYPE: FREE LAYE

FREE LAYER ONE SIDE

BEAM LENGTH: in BEAM THICKNESS: .06 in

BEAM DENSITY: . 1 lb/cu in

DAMPING MATERIAL THICKNESS: .05224 in

DAMPING MATERIAL DENSITY: .0445844 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+50	2	243.5	251.8	.006550	5.1395E+05	.020926
2	+50	3	681.0	705.2	.006050	5.1776E+05	.019214
3	+50	4	1333.3	1385.7	.005420	5.2914E+05	.016970
4	+50	5	2208.5	2394.1	.005130	5.4450E+05	.015835
5	+50	6	3312.3	3448.1	.003870	5.4304E+05	.012043
6	+50	6	3312.3	3511.1	.001780	6.056 5E +05	.013982
7	+75	2	242.6	247.2	.011000	4.6340E+05	.037305
8	+75	3	678.7	693.6	.009930	4.7229E+05	.033230
9	+75	4	1328.2	1364.2	.009210	4.8679E+05	.030198
10	+75	5	2199.5	2269.0	.008640	5.0260E+05	.027838
11	+75	7	4625.6	4743.0	.008140	4.9089E+05	.026871
12	+:00	2	241.7	233.4	.044260	3.0290E+05	.199670
13	+100	3	676.3	664.9	.037570	3.5303E+05	.152156
14	+100	4	1323.2	1311.9	.028890	3.7611E+05	.111472
15	+100	5	2190.6	2192.0	.025500	4.0433E+05	.093907
16	+115	4	1320.1	1282.5	.045070	3.1699E+05	.195380
17	+115	5	2185.2	2154.0	.038670	3.5862E+05	.153963
18	+125	2	240.9	210.2	.078590	5.7418E+04	1.457984
19	+125	3	673.9	599.0	.069950	9.7186E+04	.799347
20	+125	3	673.9	629.0	.063590	2.1230E+05	.373794
21	+125	4	1318.1	1217.3	.079850	1.8546E+05	.521820
22	+125	5	2181.6	2032.0	.079230	2.0681E+05	.475081
23	+133	2	240.6	207.6	.073940	3.3653E+04	2.273934
24	+133	4	1316.5	1205.0	.085140	1.6365E+05	.622925
25	+133	5	2178.8	2043.0	.080370	2.2300E+05	.453005
26	+134	4	1302.5	2451.0	.078740	9.7291E+04	.365861
27	+134	5	2158.7	3917.0	.071990	1.2773E+05	.244663
28	+140	2	240.3	202.5	.034910	0.0000E+00	0.000000
29	+140	3	672.5	575.0	.038870	1.4824E+04	2.647195
30	+140	4	1315.1	1157.0	.088160	7.4102E+04	1.278976
31	+140	5	2176.3	1963.0	.094750	1.2958E+05	.835667
32	+145	2	240.1	201.4	.016680	0.0000E+00	0.000000
~~	· . • •	Ba-	1				

MATERIAL CODE: CM0510 MATERIAL: 880210-1 MANUFACTURER: UDRI

REMARKS: COMBINED DATA DATE: 30 Aug 1988

ENTERED BY: DGA BEAM MUMBER: BEAM NUMBER: RFAM TYPE: BEAM MATERIAL: ALUMINUM

AL-060-6 FREE LAYER ONE SIDE

BEAM LENGTH: 7 in BEAM THICKNESS: .06 in

BEAM DENSITY: . 1 lb/cu in

DAMPING MATERIAL THICKNESS: .05224 in

DAMPING MATERIAL DENSITY: .0445844 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	+145	3	672.0	562.0	. 036050	0.0000E+00	0.000000
34	+145	5	2174.5	1879.0	.061230	3.6252E+04	1.741444
35	+150	2	240.0	201.2	.014910	0.0000E+00	0.000000
36	+150	2	236.5	449,1	.398640	4.2456E+03	3.610331
37	+150	2	236.5	449.1	.578490	0.0000E+00	0.000000
38	+150	3	671.5	561.9	.021972	0.0000E+00	0.000000
39	+150	3	661.5	1212.0	.363370	1.7170E+04	2.025484
40	+150	4	1300.5	2181.0	.358550	3.0173E+04	1.356948
41	+150	4	1300.5	2181.0	. 433410	2.3540E+04	1.945818
42	+150	2	236.3	344.5	.359380	3.2374E+03	1.138963
43	+160	3	660.9	1013.0	.997040	0.0000E+00	0.000000
44	+170	2	236.1	302.1	.267230	1.8450E+03	.879595
45	+170	2	236.1	302.1	.477720	1.40575+03	1.991278
46	+175	2	239.1	200.2	.003450	0.0000E+00	0.000000
47	+175	2	236.0	274.0	.181020	9.9870E+02	.777433
48	+175	3	669.1	555.5	.004370	0.0000E+00	0.000000
49	+175	3	660.0	750.0	.228530	2.2315E+03	1.137384
50	+175	3	660.0	705.0	.154330	1.1188E+03	1.255676
51	+175	4	1308.0	1093.4	.008030	0.0000E+00	0.000000
52	+175	4	1297.3	1357.0	.206260	1.4022E+03	2.468211
53	+175	5	2163.7	1821.0	.009720	0.000E+00	0.000000
54	+200	2	238.2	199.4	.002760	0.0000F.+00	0.000000
55	+200	2.	235.4	251.3	.097810	4.0828E+02	.776278
56	+200	3	8.888	551.9	.002660	0.0000E+00	0.000000
57	+200	3	658.5	676.2	.073650	4.9328E+02	1.198327
58	+200	4	1302.9	1083.4	.004530	0.0000E+00	0.000000
59	+200	5	2154.8	1805.5	.004540	0.0000E+00	0.000000
50	+200	5	2144.1	2119.0	.048040	0.0000E+00	0.000000
61	+200	6	3204.8	3161.0	.049220	0.0000E+00	0.000000
52	+225	2	234.8	239.8	.039990	1.4625E+02	.768350
63	+225	4	1290.9	1264.5	.013550	0.0000E+00	0.000000
64	+225	5	2138.6	2084.8	.010580	0.0000E+00	0.000000

MATERIAL CODE: CM@510 880210-1 MATERIAL:

UDRI MANUFACTURER:

REMARKS: COMBINED DATA

DATE: 30 Aug 1988 ENTERED BY: DGA BEAM MATERIAL: ALUMINUM

BEAM NUMBER: AL-060-6

GEAM TYPE: BEAM LENGTH: FREE LAYER ONE SIDE

7 in .06 BEAM THICKNESS: in

BEAM DENSITY: .1 lb/cu in

DAMPING MATERIAL THICKNESS: .05224 in

DAMPING MATERIAL DENSITY: .0445844 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz		FACTOR	PSI	FACTOR
65	+225	6	3196.8	3118.0	.009910	0.0000E+00	0.000000
66	+226	2	237.3	198.8	.003030	0.0000E+00	0.000000
67	+2 <i>2</i> £	3	664.3	550.2	.002070	0.0000E+00	0.000000
68	+226	4	1297.6	1078.9	.002930	0.0000E+00	0.000000
69	+226	5	2145.5		.003700	0.0000E+00	0.000000
70	+240	4	1289.0		.008183	0.0000E+00	0.000000
71	+241	3	655.9		.014369	0.0000E+00	0.000000
7 2	+242	2	234.5		.027513	0.0000E+00	0.000000
73	÷250	2	234.3	236.4	.026230	8.0808E+01	.875790
74	+250	3	655.4	625.7	.009623	0.0000E+00	0.000000
75	+250	4	1287.7	1256.6	.006760	0.0000E+00	0.000000
76	+250	5	2133.1	2074.2	.005580	0.0000E+00	0.000000
77	+250	6	3188.9	3102.0	.005640	0.0000E+00	0.000000
78	+251	2	234.3	230.4	.027298	0.0000E+00	0.000000
79	+251	4	1287.6		.005794	0.0000E+00	0.000000
80	+260	4	1286.5		.005590	0.0000E+00	0.000000
81	+261	2	234.0	230.4	.031240	0.0000E+00	0.000000
82	+261	3	654.7		.008975	0.0000E+00	0.000000
83	+270	3	654.1	625.3	.011526	0.0000E+00	0.000000
34	+271	2	233.8	230.4	.037172	0.0000E+00	0.000000

MATERIAL CODE: ED0431 MATERIAL: CARGIL 6439

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(ZLOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 140.0 2.075E+06 6.725E+02 0.624 3.473E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 140.0 2.004 .225 -.520 1.078E+06 .250

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C

EDØ431

MATERIAL:

CARGIL G439

MANUFACTURER:

REMARKS:

TEST 2

DATE: 10

10 Mar 1988

ENTERED BY:

BJF

BEAM MATERIAL:

ALUMINUM

BEAM NUMBER:

.080-E &.380.·G

BEAR TYPE:

SANDWICH BEAM

BEAM LENGTH:

7 in

BEAM THICKNESS:

.08 .1 in lb/cu in

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .0038

DAMPING MATERIAL DENSITY:

.0038 in

lb/cu in

COMPOSITE COMPOSITE INDEX TEMP MODE BEAM SHEAR MATERIAL DEG FREQ LOSS MODULUS No. No. FREQ L053 F FACTOR PSI FACTOR HZ Hz -41 4 1799.6 3340.3 .016217 1.1495E+04 .091771 1 2 1794.4 -40 3 925.7 .009007 1.0933E+04 .080108 3 ~39 2 330.5 668.3 .004610 1.2855E+04 .118144 5 2971.0 5287.0 .022977 .100447 4 -39 1.250GE+04 5 -38 6 4437.9 7608.1 .027621 1.3852E+04 .103566 6 -31 330.1 668.3 .004150 2 1,371SE+04 .113316 7 .009131 -29 3 924.2 1792.6 1.1012E+04 .081911 8 -29 4 1796.4 3327.8 .017441 1.1195E+04 .097246 9 -29 5 2966.4 5260.0 .024781 1.2077E+04 .106511 10 -29 6 4431.0 7569.9 .031189 1.3446E+04 .115651 .005795 11 -20 2 329.5 666.4 1.2859E+04 .150578 12 -193 922.9 1781.1 .012808 1.0031E+04 .107288 13 -19 4 1793.7 3295.6 .022007 1.0187E+04 .115800 .030601 14 -19 5 2961.9 5184.7 1.0790E+04 .124323 15 6 4423.3 7433.1 .034731 -19 1.1892E+04 .122438 16 -10 2 329.0 663.1 .010588 1.0509E+04 .237928 17 -10 3 921.7 1762.3 .021498 8.54835+03 .161064 8.7900E+03 18 -10 4 1791.3 3246.4 .032120 .155292 5 2957.8 19 -10 5092.5 .045261 9.3765E+03 .173082 20 -10 7277.9 6 4416.4 .042429 1.0348E+04 .142323 21 +1 2 328.4 657.1 .024222 7.1495E+03 .419382 22 +1 3 920.2 1729.6 .042730 6.5163E+03 .271450 23 4 1788.4 +1 3165.4 .057532 6.9239E+03 .247931 24 +1 5 2952.7 4874.4 .075919 6.8141E+Ø3 .258626 .064878 25 +1 6 4408.0 7059.0 8.4840E+03 .206269 2ε +10 2 328.0 €46.2 .060968 3.6480E+03 .753773 27 +11 3 918.8 1678.9 .091501 4.3043E+03 .484016 28 +11 4 1785.7 3044.7 .108519 4,8745E+03 .414468 29 5 2948.2 4665.4 .114222 5.0504E+03 +11 .363575 30 +11 6 4400.3 6768.4 .109161 C.4514E+03 .333105 31 +20 6 4393.4 6353.4 .188068 4.2519E+03 .576837 +21 32 327.4 622.7 .151176 :.3542F+03 1.294942

MATERIAL:

CARGIL 6439

MANUFACTURER:

REMARKS:

TEST 2

DATE: 10 Mar 1988

ENTERED BY: BJF
BEAM MATERIAL: ALUMINUM
BEAM NUMBER: .080-E &.080-G
BEAM TYPE: SANDWICH BFAM

BEAM LENGTH: BEAM THICKNESS: 7 -08 in irı

BEAM DENSITY:

. 1

lb/cu in

DAMPING MATERIAL THICKNESS: .0038 in DAMPING MATERIAL DENSITY: .0348 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	+21	<u>-</u> -	917.5	1590.3	.182468	2.3153E+03	.806526
34	+21	4	1783.0	2854.6	.199787	2,8783E+03	.696968
35	+21	5	2943.6	4379.8	.194131	3.2850E+03	.606991
36	+31	4	1780.3	2509.7	.324432	1.2400E+03	1.141895
3 7	+3!	5	2939.0	3864.7	.282369	1,5139E+03	.980850
38	+31	6	4385.0	5758.3	.236355	2.3676E+03	.787737
39	+41	4	1777.7	2086.3	.307177	4.1046E+02	1.483474
40	+41	5	2934.5	3342.4	.288053	5.2885E+02	1.595781
41	+41	6	4377.3	5033.5	.261282	8.9463E+ 0 2	1.326395
42	+50	3	913.5	1017.4	. 271069	1.3350E+02	1.724569
43	+51	4	1775.0	1919.9	.237407	1.8323E+ 0 2	1.917892
44	+51	5	2929.9	3112.4	.199540	2.3502F+02	1.950990
45	+51	6	4369.7	4665.5	.199997	3.8407E+02	1.816229
46	+60	3	912.2	968.1	.180702	7.4361F+01	1.749447
47	+60	4	1772.6	1846.2	.138474	1.0024E+02	1.801006
48	+60	5	2925.8	3022.6	.115G67	1.3535E+02	1.788111
49	+60	6	4362.8	4534.2	.130954	2.35i7E+02	1.772103
50	+713	3	910.8	942.7	.112860	4.5010F+01	1.657285
51	+71	4	1769.6	1811.4	.083238	6.1772E+ 0 1	1.654987
52	+71	5	2920.8	2974.3	.068350	8.2560F+01	1.647670
53	+71	6	4354.3	4450.8	.076897	1.44 1E+02	1.602359
54	+80	3	909.5	928.1	.075348	2.8333E+01	1.673644
55	+81	4	1766.9	1791.8	.053723	4.064DE+01	1.569853
56	+81	5	2916.2	2948.9	.046 0 54	5.64450+01	1.582413
57	+81	5	4346.7	4405.6	.048445	9.73206+01	1.449402
58	+90	2	323.8	343.1	.094212	2.7614E+01	.864643
59	+91	3	908.0	920.0	.052088	2.0087E+01	1.580804
60	+91	4	1764.3	1779.4	.036718	2,83650+01	1.506212
61	+91	5	2911.7	2925.9	.033675	3.2982E+01	1.934498
62	+91	6	4339.0	4377.7	.032183	7.1885E+01	1.279859
63	+101	6	4331.3	4359.7	.022371	5.8734E+01	1.105700
G4	+112	6	4322.9	4345.0	.015642	5.0696E+01	.920209

MATERIAL:

CARGIL 6439

MANUFACTURER:

REMARKS:

TEST 2

DATE: 10 Mar 1988

ENTERED BY:
BEAM MATERIAL:
BEAM NUMBER:
CEAM TYPE:
BEAM LENGTH:
ALUMINUM
SANDWICH BEAM
BEAM LENGTH:

7 .08

in

BEAM THICKNESS:

ın

BEAM DENSITY:

. 1

lb/cu in

DAMPING MATERIAL THICKNESS: .0038 in DAMPING MATERIAL DENSITY: .0348 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FRCQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
65	+122	6	4315.2	4333.9	.013449	4.6120E+01	.812430
66	+131	6	4308.4	4323.7	.010835	4.1878[+01	.716803
67	+139	6	4302.2	4313.5	.009346	3.6657E+01	.702187
68	+150	6	4293.8	4304.5	. 0082 63	3.5827E+01	.632461
69	+160	6	4286.1	4295.6	.007579	3.4097E+01	.606814

ED0014

MATERIAL: HYPALON 48

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)*SLOPE)

TZERO

140.0

FOROM

MROM

SLOPE

ML

140.0 3.715E+04

1.836

6.673E+03 0.757 4.010E+02

-.754 2.048E+04

LOG(ETA)=LOG(ETFROL)+'(SH+SL)A+(SL~SH)(1~SQR(1+A^2)))C/2

TZERO ETFROL

SL .522 SH

FROL

C .303

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C MATERIAL CODE: ED0014
MATERIAL: HYPALON

HYPALON 48

MANUFACTURER:

Oυ

REMARKS:

DATE: 4 Dec 1986

ENTERED BY: SRR

BEAM MATERIAL: STAINLESS STEEL BEAM NUMBER: SS-7-03 & SS-7-07

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH:

.059125 in

7 11

BEAM THICKNESS:

.283 lb/cu in

BEAM DENSITY:

in

DAMPING MATERIAL THICKNESS: .0242 DAMPING MATERIAL DENSITY:

.04552 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
						0.00145.04	404040
1	+50	2	241.0	554.2	.020700	2.7214E+04	.101242
2	+50	3	669.9	1480.6	.029780	5.3103E+04	.116040
3	+50	4	1314.7	2715.0	.043720	6.5749E+04	.132557
4	+50	5	2179.2	4227.0	.050860	7.7087E+04	.133403
5	+76	2	240.2	483.0	.335400	6.4628E+03	1.214468
6	+76	3	668.0	1230.0	.319540	1.4115E+04	.901529
7	+76	4	1311.0	2181.0	.374140	1.7863E+04	.984059
8	+76	4	1311.0	2181.0	.349610	1.8412E+04	.899391
9	+76	5	2173.1	3387.0	.298200	2.4885E+04	.724359
10	+99	3	666.4	778.0	.333430	1.6517E+03	1.368313
11	+99	4	1307.7	1477.0	.368310	2.3922E+ 0 3	1.857891
12	+99	5	2167.6	2357.0	.305470	2.8000E+03	1.966663
13	+99	5	2167.6	2357.0	.351850	2.6836E+03	2.360216
14	+125	2	238.7	267.7	.109450	4.6962E+02	.506945
15	+125	5	2161.5	2209.6	.065120	1.0881E+03	. 90 6639
16	+125	6	3237.3	3286.0	.059040	1.32 0 6E+03	.999380
17	+150	2	238.0	250.0	.046920	3.6302E+02	.259251
18	+150	3	662.7	687.0	.032900	4.6609E+02	.338418
19	+150	4	1300.4	1326.3	.025790	6.1517E+02	.377661
20	+150	5	2155.6	2180.8	.021280	7.8434E+ 0 2	.397410
21	+150	6	3228.1	3251.8	.021830	9.8958E+02	.480347
22	+90	2	239.8	367.0	.566210	1.8466E+03	1.787686
23	+90	2	239,8	367.0	.510840	2.0192E+03	1.498288
24	+90	3	667.0	940.5	.696540	3.0035E+03	2.730298
25	+90	3	667.0	940.5	.525100	3.9885E+03	1.604333
26	+110	2	239.2	281. 9	.210530	6.8286E+02	.778915
27	+110	2	239.2	281.9	.182330	6.9011E+02	.667988
28	+110	3	665.6	714.1	.167480	7.8887E+02	1,128739
29	+110	4	1306.1	1361.3	.161020	9.7947E+02	1.584179
30	+110	5	2165.0	2260.0	.173850	1.6640E+03	1.680753
31	+110	6	3242.8	3354.0	.172630	2.0714E+03	1.966152
32	+99	3	665.4	778.0	.419020	1.5422E+03	1.834103

MATERIAL:

HYPALON 48

MANUFACTURER:

מט

REMARKS:

DATE: 4 Dec 1986

ENTERED BY: SRR

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-07
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH:

in

BEAM THICKNESS:

.059125 in

BEAM DENSITY:

.283 lb/cu in

DAMPING MATERIAL THICKNESS: .0242 in DAMPING MATERIAL DENSITY: .04552 lb/cu in

INDEX	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	+125	3	664.5	701.2	.074440	6.3931E+02	.589513
34	+125	4	1304.0	1344.5	.070560	8.1120E+02	.812756
35	+110	3	0.0	744.5	.211680	0.0000E+00	0.000000

EDØ125

MATERIAL: NB4910768

UNITS ARE ENGLISH

L(G(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLGPE)

FOROM SLOPE TZERO MROM 3.936E+02 250.0 7.894E+05 5.691E+03 0.544

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL

250.0 1.844 .700 -.610 2.292E+06 .600

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C

MATERIAL CODE: ED0125 MATERIAL: NB491076B MANUFACTURER: EAR

REMARKS:

DATE: 24 Jun 1987

ENTERED BY: JPD

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-103 & 7-104
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH:

7 in .05983 in .283 lb/cu in

BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .00954 in DAMPING MATERIAL DENSITY: .03794 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DE6	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+23	2	242.8	534.9	.002480	1.1052E+05	.098903
2	+23	3	677.1	1425.7	.004470	6.3465E+04	.042037
3	+23	4	1333.6	2704.3	.005580	7.1783E+04	.033806
4	+23	5	2210.5	4310.5	.007120	7.9224E+04	.032634
5	+23	6	3311.3	6244.0	.008140	8.9920E+04	.031612
6	+50	2	242.1	533.3	.002550	1.0980E+05	.101679
7	+50	3	675.3	1416.2	.004630	5.8634E+04	.040957
8	+50	4	1329.6	2684.7	.004560	6.7838E+04	.026624
9	+50	5	2203.8	4267.2	.006220	7.3917E+04	.027407
10	+50	6	3301.3	6163.0	.007920	8.2818E+04	.029534
1.1	+76	2	241.4	529.6	.006650	7.9582E+04	.201576
12	+76	3	673.6	1391.3	.0:2510	4.5492E+04	.091154
13	+76	4	1325.7	2624.0	.013340	5.4194E+04	.067105
14	+76	5	2197.3	4157.0	.014290	6.0475E+04	.056302
15	+101	2	240.7	514.3	.041260	2.4862E+04	.518289
16	+101	3	672.0	1342.0	.089270	2.5474E+04	.499137
17	+101	4	1322.0	2427.0	.061280	2.8224E+04	.217473
18	+101	5	2191.2	3875.0	.065910	3.6768E+04	.209624
19	+101	6	3282.4	5640.0	.058870	4.679GE+04	.175610
20	+125	2	240.1	434.0	.355990	2.1107E+03	1.821421
21	+125	3	670.4	1075.0	.379530	4.1824E+03	1.362745
22	+125	4	1318,5	1950.0	.333330	6.5900E+03	1.034080
23	+150	2	239.5	321.2	.226650	8.2744E+02	.675380
24	+150	2	239.5	307.6	.044210	6.9864E+02	.132645
25	+150	3	668.8	800.0	.212630	1.1432E+03	.823433
26	+150	4	1314.8	1459.0	.286500	1.0709E+03	1.799192
27	+150	5	2179.0	2340.0	.181200	1.2796E+03	1.430241
28	+175	2	238.8	294.2	.014280	5.3575E+02	.047295
29	+175	3	667.1	711.5	.038790	3.7587E+02	.310517
30	+175	3	667.1	744.5	.059100	6.6702E+02	.308939
31	+175	4	1311.1	1377.0	.060280	5.5950E+02	.608548
32	+175	5	2172.9	2243.0	.054480	6.1663E+02	.785806

MATERIAL:

NB491076B

MANUFACTURER:

EAR

REMARKS:

DATE: 24 Jun 1987

ENTERED BY:

JPD

BEAM MATERIAL:

SYAINLESS STEEL

BEAM NUMBER:

7-103 & 7-104

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH:

in

BEAM THICKNESS:

.05983 .283

in lb/cu in

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .00954

in

DAMPING MATERIAL DENSITY: .03794

lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
3 3	+175	6	3255.0	3315.0	.029320	5.8206E+02	.647013
34	+200	2	238.2	288.6	.019230	4.7629E+02	.067018
35	+200	3	665.5	709.2	.009160	3.7067E+02	.073817
36	+200	3	665.5	730.0	.013620	5.5152E+02	.080980
37	+200	4	1307.4	1352.0	.014560	3.9161E+02	.198929
38	+225	2	237.5	288.1	.010890	4.7718E+02	.037816
39	+225	3	663.8	708.8	.005376	3.8026E+02	.050095
40	+225	3	663.8	729.3	.007820	5.5883E+02	.045888
41	+225	4	1303.7	1347.1	.007370	3.8130E+02	.102633

ED0126

MATERIAL: 870202-4

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO

FOROM

MROM

SLOPE

ML

140.0 1.2005+02

5.000E+02 0.350

2.000E+00

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZER0 ETFROL 140.0

1.100

SL SH .300

FROL -.630 6.000E+02

С 2.400

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0)

A=(LOG(FR)-LOG(FROL))/C

MATERIAL CODE: ED0125 MATERIAL: 870202-4 MANUFACTURER: UDRI

REMARKS:

30

31

32

+175

+175

+175

4 1297.3

5 2149.6

5 3212.8

DATE: 25 Jun 1987 ENTERED BY: TV6

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-37 & 7-35
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in BEAM THICKNESS: .05896 in

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .02204 in DAMPING MATERIAL DENSITY: .03931 lb/cu in

INDEX TEMP MODE BEAM COMPOSITE COMPOSITE SHEAR MATERIAL No. DE6 No. FREQ FREQ LOSS MODULUS LOSS F FACTOR PSI FACTOR Hz +25 239.3 581.1 .006450 6.7837E+04 .071468 1 .004960 7.5948E+04 2 +25 3 669.3 1527.2 .025185 3 +25 4 1316.5 2768.7 .005020 7.5941E+04 .017166 +25 5 2182.7 4 4376.0 .006140 9.3308E+04 .018083 5 2182.7 5 +25 .005870 4499.7 1.1068E+05 .018739 6 3260.6 6 +25 6362.0 .005640 1.1964E+05 .015575 7 4543.3 7 8465.5 +25 .006050 1.3012E+05 .015364 8 +50 2 238.7 579.0 .009100 6.5489E+04 .098570 9 +50 3 667.7 1500.0 .012730 6.4520E+04 .060222 4 1313.3 10 +50 2723.0 .011570 6.8692E+04 .037644 11 +50 5 2177.2 4290.0 .015080 8.3951E+04 .042580 5 2177.2 +50 4416.0 .013680 9.9444E+04 12 .041599 13 +75 2 238.2 574.7 .036890 5.2885E+64 .369506 14 +75 3 666.2 1477.0 .057620 5.4655E+04 . 254684 15 +75 4 1310.1 2646.0 .057750 5.7098E+04 .174758 5 2171.7 +75 16 4196.0 .079360 7.3307E+04 ,217242 5 2171.7 17 +75 4243.0 .052320 7.8876E+04 . 145656 18 +100 3 664.6 1181.0 .105170 1.4532E+04 . 255545 19 +100 4 1305.3 2250.0 .202220 2.3359E+04 . 496534 5 2166.1 20 +100 3340.0 .206590 2.4046E+04 . 489935 21 3 663.1 +125 1056.0 .200000 8.4342E+03 .472701 22 +125 4 1303.7 1828.8 .205380 9.3813E÷03 .514966 23 4 1303.7 +125 1777.0 .411400 7.1109E+03 1.201784 5 2160.6 24 +125 2640.0 .276520 7.1453E+03 .941035 25 +150 4 1300.5 1524.0 .236220 3.2720E+03 . 924971 26 +150 5 2155.1 2390.0 .168200 3.4636E+03 .878061 27 6 3220.7 +150 3460.0 .143350 3.6107E+03 . 981175 28 +175 2 236.0 296.0 .266550 9.1354E+02 .835411 29 +175 3 660.0 737.0 .147720 1.1364E+03 .728976

1363.0

2210.0

3277.0

.100360

.129540 1.0296E+03 1.158574

.090110 1.2944E+03 1.480542

1.342930

1.0843E+03

MATERIAL CODE: ED0126 MATERIAL: 870202-4 MANUFACTURER: UDRI

REMARKS:

DATE: 25 Jun 1987 ENTERED BY: TVG

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-37 & 7-35
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: in BEAM THICKNESS:

.05896 in .283 lb/cu in BEAM DE SITY:

DAMPING MATERIAL THICKNESS: .02204 in DAMPING MATERIAL DENSITY: .03931 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	+200	2	235.4	243.2	.082650	1.3448E+02	.983395
34	+200	3	658.5	659.3	.049290	1.1168E+02	1.810339
35	+225	2	234.8	236.8	.034420	6.0767E+01	.843605
36	+250	2	234.3	233.8	.019160	3.0359E+01	.909350

MATERIAL CODE: ED0440 MATERIAL: SAFLEX(PVB)SR41

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 175.0 9.313E+04 2.352E+03 0.526 7.061E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 175.0 1.377 .445 -.420 3.026E+04 .500

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C

MATERIAL: SAFLEX(PVB)SR41

MANUFACTURER:

AUTO REMARKS:

ENTERED BY: TUG
BEAM MATERIAL: ALUMINUM
BEAM NUMBER: AL-060-5 & AL-060-6
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:
BEAM THICKNESS in 7 .06 BEAM THICKNESS: in

BEAM DENSITY: .1 lb/cu in

DAMPING MATERIAL THICKNESS: .02042 in DAMPING MATERIAL DENSITY: .03826 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+0	<u>-</u>	246.2	577.1	.004008	2.5438E+04	.048630
2	+Ø	4	1347.9	3025.1	.012437	6.5156E+04	.080473
3	+0	5	2236.4	4861.6	.015063	7.5832E+04	.074771
4	+0	6	3358.1	7057.3	.022930	8.4606E+04	.093298
5	+0	7	4694.8	9408.6	.030737	8.3422E+04	.102633
6	+1	3	687.8	1589.2	.007225	5.2049E+04	.057173
7	+10	2	245.8	576.9	.004625	2.6108E+04	.057629
8	+11	3	686.8	1586.9	.007785	5.1855E+04	.072381
9	+11	4	1345.6	3018.8	.013328	6.4584E+04	.085943
10	+11	5	2232.3	4843.4	.016017	7.4116E+04	.078479
1.1	+11	6	3352.1	7020.1	.025912	8.1859E+04	.103667
12	+11	7	4687.7	9347.1	.028633	8.0530E+04	.093955
13	+26	3	685.9	1581.2	.008457	4.9565E+04	.075890
14	+20	4	1343.7	3004.4	.013547	6.1738E+04	.084543
15	+20	6	3347.1	6934.0	.028410	7.4970E+04	.108057
16	+21	2	245.4	575.8	.005207	2.5850E+04	.064546
17	+21	5	2228.6	4805.6	.017635	6.9602E+04	.082989
18	+21	7	4681.3	9245.1	.029288	7.5503E+04	.093197
19	+30	2	245.1	574.0	.006192	2.4676E+04	.073923
20	+31	3	684.8	1572.4	.010150	4.6036E+04	.085970
21	+31	4	1341.4	2901.4	.015191	5.7203E+04	.089769
22	+31	5	2224.8	4750.6	.020916	6.33 55E+04	.092746
23	+31	6	3341.1	6835.1	.029405	6.8123E+04	.106033
24	+31	7	4674.8	9093.9	.030838	6.8561E+04	.093907
25	+40	2	244.7	571.5	.007610	2.2972E+04	.085585
26	+40	4	1339.4	2949.1	.019468	5.1112E+04	.106328
27	+40	6	3 336 .2	6719.4	.034771	6.0829E+04	.118253
28	+41	3	683.8	156 0.6	.013040	4.1488E+04	.101876
29	+41	5	2221.1	4680.7	.026253	5.6324E+ 0 4	.108394
30	+41	7	4668.4	8893.4	.035472	6.0379E+04	.102439
31	+50	3	682.9	1542.9	.019159	3.5479E+04	.133054
32	+50	4	1337.3	2902.8	.027559	4.3764E+04	.135749

MATERIAL: MANUFACTURER: SAFLEX(PUB)SR41

AUTO REMARKS: DATE: 17 Mar 1988

ENTERED BY: TUG
BEAM MATERIAL: ALUMINUM
BEAM NUMBER: AL-060-5 & AL-060-6
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH: 7 in BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS:

DAMPING MATERIAL DENSITY:

.03826

.06

in

lb/cu in

DAMPING MATERIAL DENSITY:

.03826

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	+50	- 5	2217.8	4584.6	.037548	4.8039E+04	.141752
34	+51	2	244.3	568.0	.011298	2.0647E+04	.116916
35	+51	6	3330.1	6555.0	.047973	5.1936E+04	.151649
36	+51	7	4662.0	8601.2	.041727	5.0355E+04	.112709
37	+60	3	682.0	1517.2	.031202	2.8698E+04	.186758
38	+60	5	2214.0	4449.1	.058104	3.8756E+04	.197148
39	+60	6	3325.2	6325.1	.069945	4.1834E+04	.202800
40	+60	7	4656.2	8263.1	.047468	4.1015E+04	.120520
41	+61	2	243.9	562.3	.019078	1.7243E+ 0 4	.172042
42	+61	4	1335.0	2836.5	.042692	3.5483E+04	.185028
43	+70	3	681.0	1478.4	.054223	2.1438E+04	.270223
44	+70	4	1333.1	2738.6	.0 72 9 87	2.65 04E+0 4	.271450
45	+71	7	243.6	553.2	.036042	1.3072E+04	.268156
46	+71	5	2209.9	4260.7	.092024	2.9230E+04	.278177
47	+71	6	3319.2	6030.1	.103363	3.1998E+04	.275931
48	+71	7	4649.1	7712.6	.103734	2.8989E+04	.248821
49	+80	2	243.2	537.3	.074551	8.4871E+03	.430253
50	+86	7	4643.3	7197.8	-140754	2.0889E+04	.3 32293
51	+81	3	679.9	1414.5	.104254	1.3978E+04	.418402
52	+81	4	1330.8	2592.1	.127236	1.7837E+04	.402928
53	+81	5	2206.2	4001.3	.149823	2.0131E+04	.407092
54	+81	6	3313.7	5636.7	.148543	2.2580E+04	.369549
55	+90	3	679.0	1310.7	.193400	7.8257E+03	.627214
56	+91	2	242.8	508.3	.155 05 9	4.5451E+03	.673410
57	+91	4	1328.7	2355.6	.212484	1.0160E+04	.577787
58	+91	5	2202.4	3604.8	.234646	1.1708E+04	-591016
59	+91	6	3308.2	5112.1	.208015	1.4103E+04	.504122
60	+91	7	4636.2	6938.8	.230190	1.6947E+04	.564133
61	+100	3	678.0	1141.6	.320771	3.6393E+03	.889734
62 67	+100	4	1326.8	2029.7	.301443	4.98850+03	.771059
63	+100	5	2199.1	3098.4	.355154	5.5205E+03	.963552
64	+100	6	3363. 3	4474.5	.218 20 4	7.6467E+03	.567359

MATERIAL:

SAFLEX(PVB)SR41

MANUFACTURER:

REMARKS:

AUT0

DATE: 17 Mar 1988

ENTERED BY: TUG
BEAM MATERIAL: ALUMINUM
BEAM NUMBER: AL-060-5 & AL-060-6
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: BEAM THICKNESS:

.06

in 10

.1

lb/cu in

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .02042 in DAMPING MATERIAL DENSITY: .03826 lb/cu in

					~		
INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL.
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
65	+101	2	242.5	456.9	.257586	2.2216E+03	.832719
66	+110	3	677.0	946.3	.281115	1.7351E+03	.730631
67	+111	4	1324.4	1667.6	.299756	1.9797E+03	.915197
68	+111	5	2195.0	2643.4	.198537	2.6645E+03	.649415
69	+111	6	3297.2	3921.5	.244713	3.6398E+03	.84997:
70	+121	3	675.9	810.1	.193261	7.9545E+02	.540452
71	+122	4	1322.1	1462.6	.207381	8.3870E+02	.990757
72	+122	5	2190.9	2346.3	.223557	9.8276E+02	1.374473
73	+122	6	3291.2	3475.4	.185131	1.2732E+03	1.277191
74	+129	5	2188.2	2253.6	.143050	5.8085E+02	1.327617
75	+130	3	675.0	717.2	.151346	2.8554E+02	.963754
76	+130	4	1320.4	1375.0	.156466	4.1904E+02	1.250464
77	+130	6	3286.8	3359.7	.126678	7.6661E+02	1.319650
7B	+140	6	3281.3	3270.4	.067356	3.9570E+02	1.262371
79	+142	5	2183.4	2191.3	.069306	3.2965E+02	1.049560
80	+143	3	673.7	691.7	.091457	1.7263E+ 0 2	.869721
81	+144	4	1317.5	1332.4	.075 383	2.4439E+02	.947006
82	+152	3	672.8	682.7	.058932	1.3599E+02	.686341
83	+153	4	1315.6	1318.1	.046717	1.8937E+02	.735726
84	+153	6	3274.2	3228.7	.035817	2.4376E+02	1.053378
85	+154	5	2178.9	2167.3	.039942	2.4364E+02	.794973
86	+161	6	3269.8	3210.2	.022540	1.818;E+ 0 2	.875715
87	+162	3	671. 8	676.8	.037324	1.1368E+02	.5 080 38
88	+162	5	2175.9	2154.7	.025675	2.0104E+02	.610004
89	+163	4	1313.5	1309.3	.030008	1.5945E+02	.551549
90	+171	4	1311.8	1303.5	.020803	1.4085E+02	. 427935
91	+171	5	2172.6	2145.9	.017360	1.7637E+02	.465370
92	+171	6	3264.3	3196.9	.014375	1.4658E+02	.685675
93	+172	2	239.9	253.9	.038245	9.9328E+01	.245112
54	+172	3	670.8	673. 0	.026231	1.0124E+02	. 395 237
95	+180	4	1309.9	1299.4	.015402	1.3093E+02	, 338285
36	+180	5	2169.2	2139.6	.012671	1.6312E+02	. 364752

SAFLEX(PVB)SR41 MATERIAL:

MANUFACTURER:

AUTO REMARKS: DATE: 17 Mar 1988

ENTERED BY:
BEAM MATERIAL:
BEAM NUMBER:
AL-060-5 & AL-060-6
BEAM TYPE:
SANDWICH BEAM

BEAM LENGTH: 7 in .06 BEAM THICKNESS: in

BEAM DENSITY: .1 lb/cu in

DAMPING MATERIAL THICKNESS: .02042 in DAMPING MATERIAL DENSITY: .03826 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
97	+180	6	3259.4	3188.0	.010669	1.2847E+02	.576829
98	+181	2	239.5	252.9	.030624	9.5802E+01	.201389
99	+181	3	669.9	670.7	.020053	9.4479E+01	.320957
100	+191	2	239.2	251.9	.026946	9.2494E+01	.181692
101	+191	3	668.9	668.5	.015887	8.9080E+01	.267603
102	+191	5	2155.1	2134.1	.009359	1.5615E+02	.279843
103	+191	6	3253.3	3179.7	.008148	1.1802E+02	.476825
104	+192	4	1307.3	1295.8	.012041	1.2561E+02	.273955
105	+199	4	1305.8	1293.0	.009604	1.1958E+02	.278357
106	+200	5	2161.7	2129.6	.007576	1.5025E+02	.234325
107	+201	2	238.8	251.1	.024840	9.0171E+01	.170455
108	+201	3	667.9	666.9	.013521	8.5933E+01	.234598
109	+201	6	3247.9	3173.1	.006425	1 1210F+02	394091

ED0101

MATERIAL: 870106-3

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LQG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FOROM

MROM 2.800E+03 0.450 5.100E+01 1.700E+06 250.0

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A"2)))C/2 SH

ETFROL TZERO 250.0 1.912

SL

.205

FROL

SLOPE

-.490 2.524E+06

.650

ML

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0)

A=(LOG(FR)-LOG(FROL))/C

MATERIAL CODE: ED0101 870106-3 MATERIAL:

MANUFACTURER: UD MAT. SHRANK IN ON SIDES REMARKS:

DATE: 9 Jun 1987

ENTERED BY: TCM

BEAM MATERIAL: STAINLESS STEE BEAM NUMBER: 7-103 & 7-104 STAINLESS STEEL SANDWICH BEAM BEAM TYPE:

BEAM LENGTH: 1 n .05983 in .283 lb/cu in BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .0126 in DAMPING MATERIAL DENSITY: .04465 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPUSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+73	3	673.8	1484.2	.010180	1.1025E+05	.121084
2	+73	4	1326.2	2813.0	.014430	1.1236E+05	.058840
3	+73	5	2198.1	4525.0	.013170	1.3121E+05	.069346
4	+73	6	3292.7	6352.0	.007770	1.1242E+05	.028787
5	+100	2	240.8	520.8	.048500	2.3962E+04	.431724
6	+100	3	672.0	1428.0	.059870	5.0953E+04	.428424
7	+100	4	1322.2	2670.0	.075060	5.9850E+04	.356425
8	+100	5	2191.4	4202.0	.088770	6.6680E+04	.329203
9	+125	2	240.1	467.0	.335330	3.1698E+03	2.061553
10	+125	3	670.4	1242.0	.348630	8.3364E+03	1.636476
11	+125	4	1318.5	2200.0	.351820	1.2502E+04	1.181461
12	+125	5	2185.2	3250.0	.303280	1.4304E+04	.865171
13	+150	3	668.8	776.0	.478090	8.2481E+02	2.721403
14	+175	2	238.8	259.6	.119030	2.1700E+02	.762636
15	+175	3	667.1	699.0	.094990	3.4256E+02	.959430
16	+175	4	1311.1	1341.0	.080540	3.6322E+02	1.406432
17	+175	5	2172.9	2199.0	.075630	3.8670E+02	1.997477
18	+175	7	4549.1	4590.0	.061440	6.9368E+02	1.883712
19	+200	2	238.2	249.2	.054130	1.2087E+02	.550871
20	+200	3	665.5	671.0	.028080	9.8455E+01	.875738
21	+200	4	1307.4	1313.0	.023000	1.4594E+02	.941996
22	+200	5	2166.7	2165.0	.018430	1.4372E+02	1.254730
23	+200	6	3245.7	3232.0	.015500	1.1540E+02	1.958053
24	+225	2	237.5	245.8	.035960	9.4280E+01	.451400
2 5	+225	3	663.8	667.2	.017930	7.8815E+01	.688579
26	+225	4	1303.7	1305.7	.013560	1.1308E+02	.707002
27	+225	5	2160.5	2155.4	.010620	1.1263E+02	.913155
28	+225	6	3236.4	3219.9	.008650	8.9420E+01	1.398545
29	+225	7	4524.4	4503.7	.006210	1.4642E+02	.857678
30	+225	7	4524.4	4503.7	.006150	1.4643E+02	.849372
31	+250	2	236.9	242.7	.025180	7.0897E+01	.405757
32	+250	3	662.2	663.1	.011750	5.6484F+01	.619789

MATERIAL CODE: ED0101 870106-3 MATERIAL:

MANUFACTURER:

MAT. SHRANK IN ON SIDES REMARKS:

DATE: 9 Jun 1987 ENTERED BY: TCM BEAM MATERIAL: STAINLESS STEEL

BEAM NUMBER: 7-103 & 7-104 BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in .05983 BEAM THICKNESS: 1 n

BEAM DENSITY. .283 lb/cu in

DAMPING MATERIAL THICKNESS: .0126 in DAMPING MATERIAL DENSITY: .04465 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	+250	4	1300.0	1298.4	.008090	8.0253E+01	.586195
34	+250	5	2154.3	2145.2	.006150	7.6095E+01	.773944
35	+250	7	4512.1	4489.5	.003690	1.2871E+02	.575912
36	+275	2	236.2	240.5	.018223	5.5829E+01	. 363628
37	+275	3	660.5	660.0	.008180	4.3252E+01	.557089
38	+275	4	1296.3	1292.7	.005500	6.1812E+Ø1	.512141
39	+275	5	2148.1	2136.8	.004060	5.5760E+01	.691140
40	+300	2	235.5	238.9	.013560	4.7391E+01	.313593
41	+300	3	658.9	657.3	.006260	3.3658E+01	.542574
42	+300	4	1292.7	1287.6	.004150	4.8991E+01	.483252
43	+300	5	2141.9	2129.0	.003090	4.0856E+01	.712172

CMØ58Ø

MATERIAL: DYAD 606

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/NL))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 150.0 2.761E+04 5.021E+03 0.430 1.446E+02

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 150.0 .834 .380 -.300 8.287E+03 .500

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)~LOG(FROL))/C

A--83

MATERIAL CODE: CM0580 MATERIAL: DYAD 606 MANUFACTURER: SOUNDCOAT

REMARKS:

B FLEX ADHESIVE .

DATE: 12 Jul 1988 ENTERED BY:

TCM

ENTERED BY:
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-131 & SS-7-182
SEAM TYPE: SANDWICH BEAM

BEAM THICKNESS:

7 in .06017 in .283 lb/cu in

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .01948

in

DAMPING MATERIAL DENSITY: .035 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
1	+0	i	330.3	319.9	.008445	1.2410E+05	.072043
2	-1	1	918.9	896.1	.008402	1.3718E+05	.065173
3	-1	1	1802.8	1765.7	.009115	1.4681E+05	.066978
4	+0	1	2990.1	2934.1	.009307	1.5198E+05	.066845
5	+0	1	4478.9	4387.2	.010399	1.4946E+05	.076284
6	+0	1	6250.2	6122.7	.008485	1.4880E+05	.062193
7	+9	1	330.0	318.4	.009328	1.1592E+05	.084179
8	+9	1	917.8	891.6	.009017	1.2872E+05	.073621
9	+9	1	1800.6	1756.9	.009607	1.3841E+05	.073961
10	+8	1	2987.1	2919.5	.009972	1.4297E+05	.075186
11	+8	1	4474.7	4365.E	.010693	1.4049E+05	.082425
12	+8	1	6244.2	6092.9	.008780	1.4002E+05	. 067561
13	+18	1	329.6	315.5	.010493	9.95 0 9E+04	.107861
14	+18	1	916.8	884.0	.011130	1.1284E+ 05	.101429
15	+18	1	1798.6	1742.4	.010502	1.2301E+05	.089937
16	+18	1	2983.5	2896.5	.011460	1.2842E+05	.094294
17	+18	1	4469.5	4330.8	.011972	1.2549E+05	.101248
18	+18	1	€236.6	6048.2	.009670	1.2657E+05	.080799
19	+27	1	329.3	311.7	.012510	7.6671E+04	.161765
20	+28	1	915.8	873.8	.012752	9.1555E+04	.139088
21	+28	1	1796.3	1722.8	.012836	1.0198E+05	.127617
22	+27	1	2980.2	2865.8	.014213	1.0821E+05	.135080
23	+28	1	4464.3	4286.0	.013644	1.0587E+05	.133204
24	+28	1	6229.1	5990.8	.011694	1.0888E+05	.110887
25	+37	1	328.9	307.2	.014881	5.0677E+04	.280689
26	+37	1	914.8	861.5	.014667	6.5625E+04	.215285
27	+37	1	1794.3	1699.1	.014766	7.6459E+04	.189 05 1
28	+37	1	2976.5	2826.9	.017773	8.2843E+04	.213101
29	+37	1	4459.6	4230.9	.015777	8.1514E+04	. 1 93592
30	+37	1	6222.3	5916.8	.013501	8.5625E+04	.157721
31	+47	1	913.7	848.9	.015636	4.0031E+04	.362615
32	+47	1	1792.1	1675.2	.016152	5.1384E+04	.296892

MATERIAL CODE: CM0580 MATERIAL: DYAD 606
MANUFACTURER: SOUNDCOAT
REMARKS: B FLEX ADHESIVE
DATE: 12 Jul 1988

TCM ENTERED BY:

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-131 & SS-7-182
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:

7 in .06017 in .283 lb/cu in BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .01948 in DAMPING MATERIAL DENSITY: .035 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	+47	1	2972.9	2785.0	.018862	5.5982E+04	.322300
34	+47	1	4454.4	4173.5	.017348	5.6827E+04	.294999
35	+47	1	6214.7	5838.1	.015872	6.1501E+04	.249575
36	+9	3	673.6	1565.9	.010825	1.2178E+05	.093404
37	+9	4	1319.4	2921.9	.014725	1.25982+05	.077198
38	+9	5	2180.3	4581.7	.023184	1.3033E+05	.089544
39	+18	2	238.9	579.2	.007961	1.3083E+05	.191074
40	+18	3	672.7	1555.6	.013181	1.1116E+05	.105929
41	+18	4	1318.1	2892.6	.018803	1.1444E+05	.092440
42	+19	5	2178.1	4507.6	.028952	1.1583E+05	.104780
43	+28	2	238.7	575.3	.011402	1.0073E+05	.216735
44	+28	3	671.7	1537.9	018511	9.4931E+04	.131932
45	+28	4	1316.7	2844.2	.026924	9.8169E+04	.120011
46	+28	5	2176.2	4412.7	.036368	1.0016E+05	.122121
47	+37	2	238.5	-569.1	.017753	7.1691E+04	.251193
48	+37	3	670.8	1509.8	.028643	7.5113E+04	.172241
49	+37	4	1315.4	2771.1	.040703	7.9047E+04	.159657
50	+37	5	2174.2	4274.9	.053261	8.1685E+04	.163189
51	+47	2	238.3	559.7	.025470	4.8160E+04	.300892
52	+47	3	669.7	1468.6	.046462	5.5667E+04	.229077
53	+47	4	1313.9	2670.3	.062591	6.0172E+04	.213319
54	+47	5	2172.0	4087.7	.077333	6.2828E+04	.215019
55	+57	2	238.1	545.9	.050526	3.0984E+04	.370905
56	+57	3	668.7	1412.2	.074875	3.9132E+04	.301103
57	+ 57	4	1312.5	2536.7	.097176	4.3198E+04	.28u6 45
58	+57	5	2169.9	3855.8	.110995	4.5939E+04	.284113
59	+67	2	237.9	525.5	.086021	1.9065E+04	.458643
60	+67	3	667.7	1334.6	.116689	2.5883E+04	.385571
61	+67	4	1311.1	2361.5	.140785	2.8983E+04	.371657
62	+67	5	2167.7	3589.0	.136764	3.2430E+04	.331198
63	+77	2	237.7	495.8	.143033	1.1136E+04	.570316
64	+76	3	666.8	1237.7	.170296	1.6475E+04	.481286

MATERIAL:

MANUFACTURER:

DYAU BUD

SOUNDCOAT

B FLEX ADHESIVE MATERIAL CODE: CM0580

DATE: 12 Jul 1988

ENTERED BY: TCM
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-131 & SS-7-182
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:

BEAM LENGTH: in .06017 in BEAM THICKNESS:

lb/cu in BEAM DENSITY: .283

DAMPING MATERIAL THICKNESS: .01948 in

DAMPING MATERIAL DENSITY: .035 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ. Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
							~
65	+77	4	1309.6	2162.2	.185420	1.8744E+ 0 4	.457506
66	+76	5	2165.7	3305.6	. 205 265	2.1568E+04	.502487
67	+86	2	237.5	454,4	.202100	6.4349E+03	.626765
68	+86	3	665.8	1132.7	.230630	1.0413E+04	.597792
69	+86	4	1308.3	1932.0	. 222356	1.1087E+04	.554077
70	+86	5	2163.5	2894.8	.254663	1.1196E+04	.709829
71	+100	4	1306.3	1653.9	.172518	5.1792E+03	.519262
72	+110	3	663.3	858.1	.224280	2.8930E+03	.655543
73	+110	4	1304.9	1486.7	.165078	2.4679E+03	.740918
74	+110	5	2158.3	2386.7	.150562	3.0762E+03	.820043
75	+120	2	236.8	294.8	.220828	3.2691E+02	.707575
76	+120	4	1303.4	1404.3	.119679	1.3727E+03	.815666
77	+120	5	2156.1	2283.4	.095839	1.7746E+03	.795789
78	+130	2	236.6	277.7	.154886	5.6874E+02	.596749
79	+130	3	661.3	713.5	.099893	7.1090E+02	.666091
80	+130	4	1302.0	1364.0	.075747	8.8785E+ 02	.734643
81	+130	5	2153.9	2233.1	.062727	1.1829E+03	.733833
82	+139	2	236.4	266.7	.110080	4.1379E+02	.515446
83	+140	3	6 60. 3	697.2	.067674	5.1747E+02	.580560
84	+140	4	1300.6	1342.7	.049801	6.4599E+02	.63 5361
85	+140	5	2151.8	22 06.8	.041076	8.9201E+02	.615718
86	+150	2	236.2	260.6	.075405	3.3408E+02	.408606
87	+149	3	659.4	688.0	.044979	4.1479E+02	.463915
88	+150	4	1299.1	1329.8	.033568	5.0788E+02	.530524
89	+150	5	2149.6	2188.6	.027328	7.0123E+02	.510372
90	+159	2	236.0	256.8	.052331	2.8536E+02	.317991
91	+159	3	658.3	681.9	.030643	3.5274E+02	.362864
92	+160	4	1297.7	1321.3	.023753	4.2392E+02	.442148
93	+159	5	2147.6	2176.8	.019361	5.8396E+02	.427951
94	+169	2	235.8	254.2	.037483	2.5396E+02	.248657
95	+170	3	657.2	677.5	.021566	3.1416E+02	.282070
96	+170	4	1296.2	131 5.7	.018503	3.7362E+ 0 2	.386460

MATERIAL CODE: CM0580 MATERIAL: DYAD 606 MANUFACTURER: SOUNDCOAT

REMARKS: B FLEX ADHESIVE DATE: 12 Jul 1988

TCM STAINLESS STEEL ENTERED BY: BEAM MATERIAL:

BEAM NUMBER: SS-7-131 & SS-7-182

BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in .06017 in BEAM THICKNESS:

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .01948 in DAMPING MATERIAL DENSITY: .035 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	L.055	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
							
97	+170	5	2145.2	2168.7	.013995	5.1563E+02	.346984
98	+179	2	235.6	252 .0	.026390	2.2801E+02	.190287
99	+179	3	656.3	674.3	.015531	2.8474E+02	.221285
100	+179	4	1294.9	1312.2	.013617	3.4717E+02	.304044
101	+179	5	2143.3	2162.0	.010689	4.5971E+02	.294915
102	+189	2	235.4	250.5	.019799	2.1041E+02	.152068
103	+189	3	655.3	671.6	.011601	2.6459E+02	.176124
104	+189	4	1293.5	1308.2	.010109	3.1696E+02	.245359
105	+189	5	2141.1	2157.0	.008443	4.2599E+02	.249980
106	+199	2	235.2	249.2	.014642	1.9657E+02	.118700
107	+199	3	654.3	669.6	.008999	2.5178E+02	.142514
108	+199	4	1292.1	1305.0	.008001	2.9544E+02	.207081
109	+199	5	2138.9	2152.5	.007106	3.9798E+02	.224073
110	+209	2	235.0	248.3	.011228	1.8683E+02	.094782
111	+209	3	653.2	667.8	.007039	2.4247E+02	.115047
112	+209	4	1290.6	1302.1	.006782	2.7823E+02	.185409
113	+209	5	2136.7	2148.1	.005914	3.7261E+02	.198237

CM_442

MATERIAL: DYAD 609

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

SLOPE TZERO FOROM MROM ML

8.817E+02 240.0 2.384E+04 0.394 4.044E+05

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

C FROL SL SH TZERO ETFROL

-.290 6.**095E**+04 .400 1.019 .340 240.0

MATERIAL CODE: CM_442 MATERIAL: DYAD 609

UDRI

MANUFACTURER: REMARKS:

DATE:

18 Mar 1988

ENTERED BY:

BJF

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS 7-103 & SS 7-104

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH:

7 .05983

BEAM THICKNESS:

in

BEAM DENSITY:

.283

lb/cu in

in

DAMPING MATERIAL THICKNESS: .0238

in DAMPING MATERIAL DENSITY: .04 lb/cu in

INDEX	TEMP	MODE	BEAM		COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	- 	5	2180.3	2258.7	.006326	6.0975E+05	.038128
1 2	-5 -5	ລ 6	3257.0	3388.0	.006883	6.4233E+05	.039920
3	-4	3	662.9	697.4	.006883	7.0305E+05	.033320
4	-4 -4	4	1314.9	1365.5	.005986	6.2355E+05	.035269
5	+10		1312.9	1357.6	.006018	5.9079E+05	.035269
5 6		4	662.3				.035028
7	+11	3		693.5	.006402	6.6738E+05	
8	+11	5	2176.4	2246.0	.007043	5.7912E+05	.044117
9	+11	6	3251.5	3368.9	.007216	6.1071E+05	.043451
	+25	3 5	661.8	688.9	.006587	6.2430E+05	.037928
10	+25		2173.0	2231.4	.006662	5.4165E+05	.043951
11	+25	6	3246.7	3344.8	.007294	5.6742E+05	.046491
12	+26	4	1310.6	1348.3	.006474	5.5200E+05	.041850
13	+40	3	661.2	683.2	.007365	5.7039E+05	.045515
14	+40	4	1308.5	1337.0	.007071	5.0181E+05	.049312
15	+41	5	2169.1	2213.2	.007183	4.9452E+05	.050935
16	+41	6	3241.2	3318.1	.008041	5.2020E+05	.054875
17	+55	4	1305.4	1323.3	.008057	4.4016E+05	.062529
18	+55	5	2165.7	2191.1	.008237	4.3455E+05	.064936
19	+55	6	3236.4	3285.3	.008809	4.5948E+05	.066500
20	+56	3	660.5	676.1	.008584	5.0292E+05	.058688
21	+70	3	660.0	667.8	.010283	4.2384E+05	.081012
22	+70	5	2162.1	2165.4	.009359	3.6477E+05	.085508
23	+71	4	1304.1	1306.8	.009522	3.6636E+05	.086227
24	+71	6	3230.9	3247.1	.010032	3.8952E+05	.086924
25	+85	3	659.5	_659.5	.012409	3.4623E+05	.116180
26	+85	5	2158.5	2137.4	.010477	2.8926E+05	.117106
27	+85	6	3226.1	3205.7	.011313	3.1305E+05	.118368
28	+86	4	1301.9	1289.2	.010652	2.8753E+05	.119084
29	+101	4	1299.8	1272.7	.011286	2.1537E+05	.163460
30	+101	5	2154.6	2110.8	.011161	2.1998E+05	.159354
31	+102	6	3220.3	3166.9	.012785	2.4502E+05	.166150
32	+118	4	1297.3	1258.1	.010812	1.5540E+05	.211357

MATERIAL CODE: CM_442 DYAD 609 MATERIAL: MANUFACTURER: UDR I

REMARKS:

DATE: 18 Mar 1988 ENTERED BY: BJF

BEAM MATERIAL: STAINLESS SIEEL
BEAM NUMBER: SS 7-103 & SS 7-104
SANDWICH BEAM

7 in BEAM LENGTH: .05983 in BEAM THICKNESS: .283 lb/cu in BEAM DENSITY:

in

DAMPING MATERIAL THICKNESS: .0238
DAMPING MATERIAL DENSITY: .04 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	FREQ	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	YOUNG'S MODULUS PSI	MATERIAL LOSS FACTOR
33	+118	6	3214.8	3126.3	.011741	1.7415E+ 0 5	.208374
34	+119	5	2150.2	2086.4	.010648	1.5973E+05	.203849
35	+131	6	3210.4			1.3763E+05	.219288
36	+157		668.3		.267467	1.3829E+04	.688079
37	+157	4	1313.8		.199618	1.5136E+04	.627944
38	+157	5	2177.3	2546.0	.192577	1.7281E+04	.741308
39	+157	6	3261.6	3658.8	.152846	1.8645E+04	.726074
40	+171	3	667.4	807.4	.172940	6.720SE+03	.578564
41	+171	5	2173.8	2350.4	.139755	8.3471E+03	.883436
42	+172	4	1311.6	1475.8	.166219	7.6132E+03	.777570
43	+172	6	3256.1	3450.2	.114672	9.5725E+03	.898611
44	+184	4	1309.8	1385.3	.115866	3.7051E+03	.930694
45	+186	2	238.5	298.5	.182541	2.9565E+03	.552457
46	+186	3	666.4	742.0	.121254	3.5335E+03	.599871
47	+199	2	238.2	277.9	.118560	1.8877E+Ø3	.451223
48	+200	3	665.5	712.5	.090730	2.2619E+03	.675103
49	+216	2	237.7	269.1	.074192	1.4842E+03	.327128
50	+230	2	237.4	264.4	.047251	1.2785E+03	.229979
51	+246	2	237.0	261.4	.030749	1.1576E+03	.160162

EDØ124

MATERIAL: SD861219-6

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE

ML

140.0 8.000E+01 3.400E+03 0.780 8.500E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL

1.500

140.0

SL SH

.650

FROL

-.450 3.200E+01

C .200

MATERIAL:

SD861219-6

MANUFACTURER:

UDRI

REMARKS:

DATE: 24 Jun 1987 ENTERED BY:

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-04 & 7-06
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH:

.05925 in

in

BEAM THICKNESS: BEAM DENSITY:

.283 lb/cu in

DAMPING MATERIAL THICKNESS: .0119 in DAMPING MATERIAL DENSITY: .04986 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+75	4	1298.9	2810.0	.005730	1.5901E+05	.055759
2	+75	5	2148.8	4483.0	.007470	1.5077E+05	.046569
3	+100	3	659.6	1477.9	.012610	2.0871E+05	.313944
4	+100	4	1296.2	2758.0	.013670	1.1811E+05	.105245
5	+100	5	2144.2	4392.0	.016190	1.2103E+05	.086712
6	+125	2	236.0	534.7	.010010	1.3971E+05	.521537
7	+125	3	658.7	1442.5	.024120	9.7194E+04	.297361
8	+125	4	1293.6	2682.0	.018570	8.3134E+04	.109695
9	+125	5	2139.6	4276.0	.026590	9.4147E+04	.121330
10	+125	6	3197.5	6090.0	.027910	9.5965E+04	.101573
11	+150	2	235.4	515.7	.039560	3.0981E+04	.496703
12	+150	3	657.7	1384.0	.046460	4.7379E+04	.319961
13	+150	4	1290.9	2523 .0	.047290	4.6139E+04	.193012
14	+150	5	2134.9	3954.0	.085580	5.0527E+04	.288345
15	+175	2	234.8	474.2	.188950	6.6142E+03	1.098120
16	+175	3	656.8	1203.0	.215380	1.1606E+04	.780784
17	+175	4	1288.3	2152.0	.272070	1.3766E+04	.840376
18	+200	2	234.2	301.0	.365780	6.5502E+02	1.264258
19	+200	3	655.8	777.0	.393050	1.0411E+03	1.792710
20	+200	4	1285.6	1467.0	.242200	1.7370E+03	1.159187
21	+225	2	233.6	266. 0	.105070	3.3206E+02	.475698
22	+225	3	654.9	710.0	.040840	5.6276E+02	.261556
23	+225	4	1283.0	1313.0	.051180	3.5602E+02	.849704
24	+225	5	2121.0	2171.0	.078300	5.8296E+02	1.312915
25	+250	3	653.9	676. 0	.031950	2.4387E+02	. 406398
25	+250	4	1280.3	1293.0	.020800	2.0450E+02	.575538
27	+275	2	232.4	249.8	.036700	1.7699E+02	.256498
28	+275	3	653.0	667.0	.019190	1.7106E+02	.334728
29	+275	4	1277.7	1284.0	.017600	1.4886E+02	.656609
30	+300	3	652.0	625.0	.035360	0.0000E+00	0.000000
31	+300	4	1275.0	1277.0	.008300	1.1125E+02	.408509
32	+300	5	2107.1	2104.0	.007320	1.2908E+02	.508466

ED0016

MATERIAL: 860821-4

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 248.0 8.500E+06 3.336E+03 0.550 1.305E+02

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 248.0 1.550 .500 -.465 3.500E+06 .500

MATERIAL CODE: ED0016 860821-4 MATERIAL:

UD MANUFACTURER:

REMARKS: W/GREEN EPOXY

DATE: 5 Dec 1986

ENTERED BY: SRR
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-34 & SS-7-45
BEAM TYPE: SANOWICH BEAM

7 in .05945 in .283 lb/cu in BEAM LENGTH: BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .00925 in
DAMPING MATERIAL DENSITY: .046605 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+73	2	241.2	515.6	.010320	3.2811E+04	.139081
2	+73	3	676.2	1406.0	.015690	5.2063E+04	.130037
3	+73	4	1328.4	2680.0	.020150	6.7506E+04	.120894
4	+73	5	2207.2	4289.0	.025860	7.6380E+04	.119062
5	+73	6	3308.5	6209.0	.027070	8.6148E+04	.104979
6	+49	2	241.9	521.3	.002820	4.3104E+04	.047592
7	+49	3	578.0	1431.9	.004070	7.0840E+04	.042830
8	+49	4	1332.6	2740.3	.005890	8.8154E+04	.042581
9	+49	6	3320.5	6455.0	.008660	1.1739E+ 0 5	.039860
10	+32	2	242.3	522.8	.002330	4.4857E+04	.040517
11	+32	3	679.3	1439.0	.002540	7.6070E+04	.029293
12	+32	4	1335.5	2759.5	.003660	9.5124E+04	.027966
13	+32	5	2219.7	4466.0	.004160	1.1162E+05	.024329
14	+32	6	3328.9	6520.0	.005640	1.2666E+05	.027147
15	+90	2	240.8	507.2	.039650	2.0802E+04	. 405578
16	+90	3	675.0	1363.0	.055470	3.2069E+04	.341225
17	+90	4	1325.4	2550.0	.067060	3.9703E+04	.296823
18	+90	5	2202.0	4068.0	.074020	4.8727E+04	.274000
19	+90	3	3300.0	5860.0	.080380	5.6459E+04	.263016
20	+100	2	240.5	489.0	.110630	9.3983E+03	.773188
21	+100	3	674.2	1294.0	.121040	1.7473E+04	.551729
22	+100	4	1323.7	2381.0	.150480	2.1923E+04	.534764
23	· +100	5	2198.9	3780.0	.159370	2.8321E+04	.504887
24	+112	2	240.2	450.1	.291490	2.8726E+03	1.576871
25	+112	3	673.3	1161.0	.213610	7.9689E+03	.716100
26	+112	4	1321.6	2029.0	.351200	7.4118E+03	1.146256
27	+125	2	239.9	346.0	.341000	1.0439E+03	1.068773
28	+125	3	672.3	903.0	.374300	1.9827E+03	1.267476
29	+125	4	1319.3	1640.0	.433800	2.2982E+03	1.833615
30	+136	2	239.6	299.0	.173200	5.5530E+02	.574579
31	+136	3	671.5	793.0	.239800	1.0156E+03	.991415
32	+136	4	1317.4	1465.0	.267600	1.1177E+03	1.607651

MATERIAL CODE: ED0016 MATERIAL:

860821-4

MANUFACTURER:

บบ

REMARKS:

W/GREEN EPOXY

DATE: 5 Dec 1986

ENTERED BY:

SRR

BEAM MATERIAL: BEAM NUMBER:

STAINLESS STEEL SS-7-34 & SS-7-45

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH: BEAM THICKNESS:

in .05945 in

BEAM DENSITY:

.283 lb/cu in

DAMPING MATERIAL THICKNESS: .00925 in DAMPING MATERIAL DENSITY: .046605 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	+136	5	2187.9	2390.0	.248300	1.5338E+03	1.712819
34	+150	2	239.2	274.5	.104900	3.0677E+02	.465030
35	+150	3	670.5	725.0	.078900	4.5894E+02	.538338
36	+150	4	1315.0	1379.0	.087310	5.4148E+02	.898736
37	+150	5	2183.7	2248.0	.079630	5.7414E+02	1.217507
38	+150	6	3270.1	3310.0	.084050	4.3785E+02	1.834083
39	+175	2	238.6	261.0	.047510	1.9037E+02	.287871
40	+175	3	668.6	694.9	.032380	2.2971E+02	.387215
41	+175	4	1310.7	1343.0	.028070	3.0149E+02	.479965
42	+175	5	2176.0	2197.0	.022350	2.5484E+02	.720574
43	+175	6	3257.6	3263.0	.016580	1.9025E+02	1.050700

MATERIAL: 50861219-5

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

MROM SLOPE ML TZERO FOROM 3.900E+03 0.370 9.000E+01 300.0 7.000E+05

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

SH FROL C ETFROL SL TZERO -.330 1.400E+05 .350 300.0 1.440 .520

MATERIAL CODE: ED0095 MATERIAL:

SD861219-5

MANUFACTURER:

UD

REMARKS:

2nd TEST

DATE: 5 May 1987

ENTERED BY:

TV6

BEAM MATERIAL: BEAM NUMBER: STAINLESS STEEL

BEAM TYPE:

7-103 & 7-104 SANDWICH BEAM

BEAM LENGTH:

in .05986 in

BEAM THICKNESS:

BEAM DENSITY:

.283

lb/cu in

DAMPING MATERIAL THICKNESS: .02178 in DAMPING MATERIAL DENSITY: .05022 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE		SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+75	2	241.4	570.5	.006350	4.7758E+04	.052612
2	+75	3	673.7	1595.9	.005010	1.3842E+05	.042924
3	+75	4	1325.9	3028.4	.007300	1.6500E+05	.041877
4	+75	5	2197.6	4797.2	.004390	1.7646E+05	.018511
5	+75	6	3292.0	6760.0	.011360	1.6935E+05	.036960
6	+75	7	4598.6	8965.0	.014980	1.7260E+05	.042243
7	+100	2	240.8	570.8	.005710	5.0197E+04	.049522
8	+100	3	672.0	1582.1	.006990	1.2421E+05	. 055033
9	+100	4	1322.2	3010.0	.008880	1.5797E+05	.043553
10	+100	5	2191.4	4678.0	.011850	1.4668E+05	.044818
11	+100	6	3282.7	6667.0	.011370	1.5694E+05	.035716
12	+100	7	4586.2	8812.0	.018670	1.5832E+ 0 5	.051038
13	+125	2	240.1	569.5	.010170	5.0049E+04	.088787
14	+125	3	670.4	1556.9	.013220	1.0106E+05	.088887
15	+125	4	1318.5	2972.0	.011160	1.4116E+05	.057657
16	+125	5	2185.2	4481.0	.021530	1.1003E+05	.069785
17	+125	6	3273.5	6346.0	.020580	1.1851E+05	.057337
18	+150	2	239.5	551.6	.040370	3.1145E+04	.252457
19	+150	3	668.8	1464.2	.046030	5.2838E+04	.198871
20	+150	4	1314.8	2649.0	.059570	5.7978E+04	.184187
21	+150	5	2179.0	4156.0	.056116	7.0930E+04	.151921
22	+150	6	3264.2	5910.0	. 093060	8.0707E+04	. 233657
23	+175	2	238.8	499.8	.130050	1.2070E+04	. 475325
24	+175	3	667.1	1314.2	.150890	2.3551E+04	.457521
25	+175	4	1311.1	2388.0	.181110	3.0925E+04	.476280
26	+175	5	2172.9	3755.0	. 206260	3.9825E+ 04	.515726
27	+200	2	238.2	352.6	.220650	2.1951E+ 0 3	.535509
28	+200	3	665.5	953.0	.344810	4.8382E+ 0 3	.914821
29	+200	4	1307.4	1723.0	.363840	6.3194E+03	1.080090
30	+225	2	237.5	266.9	.122890	4.4840E+02	.567045
31	+225	3	663.8	710.4	.133590	7.2697E+ 0 2	,919253
32	+225	4	1303.7	1364.0	.121187	1.0096E+03	1.108343

MATERIAL:

SD861219-5

MANUFACTURER:

מט

REMARKS:

2nd TEST

DATE: 5 May 1987

ENTERED BY:

TVG

BEAM MATERIAL:

STAINLESS STEEL

BEAM NUMBER:

7-103 & 7-104

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH:

.05986 in

in

BEAM THICKNESS:

.283

lb/cu in

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .02178 in

DAMPING MATERIAL DENSITY: .05022 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	+225	5	2160.5	2219.0	.116180	1.1323E+03	1.494321
34	+225	6	3236.4	3301.0	.106630	1.4125E+03	1.623048
35	+255	2	236.7	253.5	.037040	2.6766E+02	.247160
36	+255	3	661.8	680.1	.030290	3.5954E+02	.373687
37	+255	4	1299.3	1310.5	.027010	3.9099E+02	.572279
38	+255	5	2153.1	2148.0	.022670	3.5342E+02	.856547
39	+255	6	3225.3	3204.0	.020350	3.6147E+02	1.118263
40	+255	7	4509.6	4474.0	.018980	4.3354E+02	1.210566
41	+275	2	236.2	250.0	.024080	2.2588E+02	.183320
42	+275	3	660.5	673.6	.014220	2.9218E+02	.210514
43	+275	4	1296.3	1299.4	.013000	2.8822F+02	.365630

APPENDIX B PRELIMINARY TESTS (DAMPING POLYMERS)

<u>Material</u>	Page
976 DEV	B-2
1038B	B-8
C-1002	B-14
Flexane urethane	B-22
Hypalon 30	B-29
Hypalon 40	B-34
ISD-110	B-41
Lexan 141	B-46
РЕНА-3	B-51
PEHA-4	B-56
T-408-23A	B-62
UZ201 .	B-68

A976D

MATERIAL: 976 DEV

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM IROM SLOPE ML 225.0 1.000E+06 3.600E+03 0.550 1.100E+02

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 225.0 1.900 .600 ~.800 1.200E+06 .750

MATERIAL CODE: A976D
MATERIAL: 976 DEV
MANUFACTURER: AIR PRODUCTS AND CHEMICALS

REMARKS:

DATE: 25 Nov 1986

ENTERED BY: SRR
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-33 & SS-7-42
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:

BEAM LENGTH:

7 in .059645 in

BEAM THICKNESS:

BEAM DENSITY:

.283 lb/cu in

DAMPING MATERIAL THICKNESS: .02358 in
DAMPING MATERIAL DENSITY: .0403 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+202	2	239.4	248.2	.042300	1.5991E+02	.454120
2	+202	3	669.3	665.4	.016380	6.7517E+01	1.036693
3	+202	5	2182.6	2149.3	.009960	0.0000E+00	0.000000
4	+202	6	3262.0	3208.0	.007730	0.0000E+00	0.000000
5	+202	7	4546.5	4472.6	.006420	0.0000E+00	0.000000
6	+175	2	240.2	253.5	.062330	2.2319E+02	.507151
7	+175	3	671.4	675.6	.041150	1.7208E+02	1.062388
8	+175	5	2189.5	2146.0	.023490	0.0000E+00	0.000000
9	+175	6	3272.2	3194.0	.019290	Ø.0000E+00	0.000000
10	+175	7	4561.0	4456.0	.009180	0.0000E+00	0.000000
11	+175	4	1321.4	1317.3	.018520	1.8086E+02	.876833
12	+150	2	240.9	270.0	.115180	4.5831E+02	.545007
13	+150	3	673.4	714.0	.083330	6.7047E+02	.641755
14	+150	5	2196.0	2211. 0	.057890	5.8274E+02	1.459797
15	+150	6	3281.7	3303.0	.053160	8.5993E+02	1.359369
16	+150	7	4574.4	4575.0	.047430	8.1295E+02	1.751015
17	+150	4	1325.3	1355.0	.077200	6.2266E+02	1.143797
18	+127	2	241.6	324.5	.478890	1.2064E+03	1.493972
19	+127	3	675.2	823.4	.358480	2.1874E+03	1.275821
2 0	+127	5	2201.9	2355.0	.298740	2.2143E+03	2.347901
21	+127	5	2201.9	2 4 57 .0	. 302340	3.6985E+03	1.605457
22	+127	6	3290.4	3637 .0	.246930	5.2130E+03	1.357749
23	+109	2	242.2	486.0	.460900	3.9615E+03	2.305056
24	+109	4	1331.8	2173.0	.405890	1.6096E+04	1.100885
25	+109	5	2206.6	3240.0	.462960	1.6705E+04	1.310744
26	+95	2	242.6	548.4	.080600	2.1901E+04	.376653
27	+95	3	677.7	1440.0	.104650	3.8374E+04	.364982
28	+95	4	1334.0	2575.4	.119200	4.4447E+04	.320982
29	+95	5	2210.2	3977 .0	.134520	5.2342E+04	.327832
30	+95	6	3302.5	5496.0	.148110	5.4974E+04	.342135
31	+95	6	3302.5	5525. 0	.141210	5.6442E+04	.326181
32	+86	2	242.8	552.5	.040000	2.9634E+04	.217258

MATERIAL CODE: A976D

MATERIAL:

976 DEV

MANUFACTURER: AIR PRODUCTS AND CHEMICALS

REMARKS:

DATE: 25 Nov 1986

ENTERED BY:

BEAM MATERIAL:

SRR STAINLESS STEEL

BEAM NUMBER:

SS-7-33 & SS-7-42

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH:

in

BEAM THICKNESS:

.059645 in

BEAM DENSITY:

.283 lb/cu in

DAMPING MATERIAL THICKNESS: .02358 in DAMPING MATERIAL DENSITY: .0403 lb/cu in

INDEX No.	TEMP DEG	MODE No.	BEAN FREQ Hz		LOSS	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	+86	3	678.4	1485.0	.057400	5.0061E+04	.222724
34	+86	4	1335.4	2681. 0	.068630	5.6673E+04	.197817
35	+86	5	2212.5	4130.0	.086440	6.3986E+04	.217430
36	+86	6	3305.9	5739.0	.054450	6.8789E+04	.125934
37	+86	7	4508.8	7595.0	.130090	7.3878E+04	.297808
38	+76	2	243.1	575.1	.011820	3.9219E+04	.076846
39	+76	3	679.2	1534.9	.020070	6.6812E+04	.091184
40	+76	4	1336.9	2791.9	.027470	7.3168E+04	.087769
41	+76	5	2215.1	4355.5	.035360	8.5341E+04	.096519
42	+76	6	3309.7	6055.0	.038150	8.8476E+04	.092584
43	+76	7	4614.2	7940.0	.051010	9,2056E+04	.117231
44	+50	3	681.3	1585.3	.005980	9.0657E+04	.033430
45	+50	4	1341.0	2917.0	.009320	9.7789E+04	.034686
46	+50	5	2221.8	4469.0	.016040	9.7817E+04	.046028
47	+50	6	3319.6	6448.0	.014380	1.2085E+05	.038223
48	+50	7	4628.1	8499.0	.018360	1.2627E+05	.044692

ED0358

MATERIAL: 10388

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML

200.0 3.912E+06 3.511E+02 0.312 7.423E+00

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 200.0 1.356 .200 -.300 9.819E+05 1.100

LO6(FR)=LOG(F)-12(T-T0)/(525+T-T0)

A=(LOG(FR)-LOG(FROL))/C

MATERIAL CODE: ED0358
MATERIAL: 1038B
MANUFACTURER: BETHAM

REMARKS: TEST 2 93667-22

DATE: 29 Dec 1987 ENTERED BY: TCM

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-163 & 7-184
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in BEAM THICKNESS: .05998 in

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .004 in

DAMPING MATERIAL DENSITY: .036 lb/cu in

INDEX TEMP MODE BEAM COMPOSITE COMPOSITE SHEAR MATERIAL DEG No. FREQ FREQ LOSS MODULUS F FACTOR FACTOR Hz Hz 2 244.5 448.3 .024192 3.4955E+03 .113410 +0 1 .028684 6.6949E+03 3 689.6 1205.7 2 +0 .029691 1.8841E+04 7 4651.1 7091.3 3 +0 .085425 4 +1 4 1352.9 2217.0 .033838 8.4433E+03 .107244 5 5 2237.6 3566.2 .034527 1.1779E+04 **+1** .032991 3.2006E+03 +11 2 244.3 443.9 6 .147755 3 688.4 7 +11 1186.3 .042309 5.9581E+03 .152685 8 +11 ₹ 1350.9 2167.4 .050356 7.3440E+03 .154213 9 5 2234.7 3486.1 +11 .050780 1.0297E+04 .149766 2 244.0 .053773 2.7439E+03 10 +20 436.6 .224742 .061348 5.1304E+03 11 +20 3 687.4 1161.7 .210283 4 1349.2 2103.9 .078934 6.1100E+03 12 +20 .234516 .085478 8.6743E+03 13 +21 5 2231.8 3389.5 .248355 2 243.8 .079914 2.2138E+03 14 +31 425.7 .306401 .095435 4.0785E+03 15 +31 3 **686.3** 1123.9 .308267 16 +31 4 1347.1 2017.5 .128097 4.7020E+03 .375450 5 2228.9 .111211 6.8404E+03 17 +31 3253.4 .320443 18 +40 5 2226.3 3093.0 .154424 5.0561E+03 .457577 2 243.5 409.9 .144068 1.5846E+03 19 +41 .513288 .140103 2.9903E+03 3 685.2 20 +41 1071.8 .430108 .198990 3.0721E+03 21 +41 4 1345.1 1883.8 .603730 22 +50 .202892 2.0608E+03 3 684.2 1011,4 23 +50 4 1343.4 1732.5 .262308 1.8072E+03 .908239 .173211 3.0405E+03 5 2223.4 24 +50 2838.4 .573411 383.3 25 +51 2 243.3 .249515 9.2709E+02 .855734 26 +60 2 243.1 349.3 .197137 6.3231E+02 .595041 **9**33.3 27 683.1 .255434 3 +60 1.2803E+03 .820872 802.2 28 +71 3 682.0 .222548 5.0110E+02 . 375289 .183037 1.5241E+02 29 +81 2 242.6 279.3 .865225 3 680.9 743.2 2 242.4 265.0 30 +81 .192325 2.3751E+02 1.355959 .147061 8.9404E+01 31 +91 .984408 +91 3 679.8 716.2 32 .127304 1.3948E+02 1.353856

MATERIAL CODE: ED0358 MATERIAL: 1038B MANUFACTURER:

BETHAM TEST 2 93667-22 REMARKS:

DATE: 29 Dec 1987 ENTERED BY: TCM

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-163 & 7-184
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: in BEAM THICKNESS: .05998 in

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .004 in
DAMPING MATERIAL DENSITY: .036 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No,	FREQ	FREQ	LOSS	MODULUS	LOSS
	F.		Hz	H2	FACTOR	PSI	FACTOR
33	+101	2	242.1	257.7	.111020	6.1119E+01	.991126
34	+101	3	678.8	702.0	.088599	9.0690E+01	1.360343
35	+111	2	241.9	252.7	.082917	4.2444E+01	1.000037
36	+111	3	677.7	694.0	.061636	6.5087E+01	1.272916
37	+121	2	241.7	249.4	.061373	3,0859E+01	.976878
38	+122	3	676.5	688.3	.042481	4.8564E+01	1.147609
39	+130	3	675.7	684.5	.031170	3.7632E+01	1.069113
40	+132	2	241.4	247.3	.043694	2.3838E+01	.876825
41	+140	2	241.2	245.7	.041349	1.8327E+01	1.057432
42	+140	3	674.6	681.3	.023360	2.9958E+01	.993679
43	+150	2	241.0	244.3	.032754	1.3982E+01	1.079199
44	+150	3	673.5		.019112	2.6099E+01	.925735
45	+160	3	672.5		.017243	2.3985E+01	. 903598
46	+161	2	240.7		.026594	1.0758E+01	1.123595
47	+174	2	240.4	242.2	.019702	8.5375E+00	1.037945
48	+174	3	671.0		.012312	2.1801E+01	.704707
49	+102	2	240.2	241.7	.020577	7.2277E+00	1.272622
50	+182	3	570.1	674.7	.010959	2.2126E+01	.616785
51	+191	2	240.0	241.4	.019927	6.8819E+00	1.290499
52	+191	3	669.1	674.0	.009288	2.2888E+01	.504412
53	+192	2	240.0		.014561	4.1115E+00	1.562293
54	+198	3	558.4	673.0	.010379	2.1944E+01	.585920

ED0376

MATERIAL: C-1002

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 200.0 0.000E+00 0.000E+00 0.000 0.000E+00

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 200.0 0.000 0.000 0.000 0.000E+00 0.000

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C MATERIAL CODE: ED0376 MATERIAL: C-1002

C-1002 TECH PROD CORP 93479 MANUFACTURER:

REMARKS:

DATE: 18 Jan 1988 ENTERED BY: 8JF

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-152
BEAM TYPE: FREE LAYER ONE SIDE

BEAM LENGTH: in .06002 in BEAM THICKNESS:

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .11632 in

DAMPING MATERIAL DENSITY: .046 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	L055
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	-40	2	245.5	298.8	.011547	4.8749E+ 0 5	.024404
2	-39	3	685.8	835.8	.011358	4.8791E+05	.023945
3	-39	4	1351.4	1631.8	.010528	4.7445E+05	.022611
4	-39	5	2236.4	2682.8	.011496	4.6223E+05	.025031
5	-39	6	3354.0	3997.8	.011765	4.5469E+05	.025974
6	-29	2	245.2	295.6	.018467	4.5719E+Ø5	.039786
7	-29	3	685.4	826.7	.017232	4.6652E+05	.037090
8	-29	4	1349.9	1616.7	.015400	4.5695E+05	.033548
9	-29	5	2234.1	2654.2	.018539	4.4204E+05	.041224
10	-29	6	3350.1	3954.7	.015346	4.3448E+05	.034622
11	-19	5	2231.7	2606.7	.021180	4.0839E+05	.048989
12	-19	6	3346.1	3885.3	.019644	4.0169E+05	.045100
13	-18	3	684.9	808.1	.026026	4.2269E+05	.058786
14	-18	4	1348.3	1584.1	.024183	4.1840E+05	.055164
15	-17	2	244.9	287.2	.032167	4.1225E+05	. 273688
16	-10	6	3342.6	3770.4	.031901	3.4805E+05	.080885
17	-9	5	2229.4	2524.1	.041063	3.5078E+05	.103013
18	-8	2	244.7	273.1	.052109	3.2296E+05	.136352
19	-8	4	1346.8	1527.5	.042349	3.5281E+05	.105739
20	-7	3	684.4	776.¢	.042401	3.4931E+05	.105964
21	-1	6	3339.0	2434.8	.050363	0.0000E+00	0.000000
22	+0	S	2227.3	1914.0	.115518	0.0000E+00	0.000000
23	+1	3	684.1	721.1	.075828	2.3149E+05	.243582
24	+1	4	1345.5	1365.7	.054597	1.7885E+05	.210709
25	+1	7	4656.3	3565.5	.042393	0.0000E+00	0.000000
26	+4	2	244.4	250.1	.076609	1.8859E+05	.283358
27	+10	2	244.3	247.1	.089227	1.7262E+05	.351345
28	+10	3	683.7	710.1	.084786	2.0960E+05	.290967
29	+10	4	1344.2	1365.7	.072895	1.7985E+05	.279808
30	+10	5	2224.9	1914.0	.058470	0.0000E+00	0.000000
31	+10	6	3334.7	2329.2	.081109	0.0000E+00	0.000000
32	+10	7	4651.9	3514.8	.069783	0.0000E+00	0.000000

MATERIAL CODE: ED0376
MATERIAL: C-1002
MANUFACTURER: TECH PROD CORP
REMARKS: 93479

DATE: 18 Jan 1988

ENTERED BY:
BEAM MATERIAL:
BEAM NUMBER:
BEAM TYPE:
BEAM LENGTH:

BEAM LENGTH:

BY

STAINLESS STEEL

SS-7-152

FREE LAYER ONE SIDE

in .06002 in .283 lb/cu in

BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .11632 in
DAMPING MATERIAL DENSITY: .046 lb/cu in

INDEX	TEMP	MODE	BEAM		COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	+20	2	244.1	236.2	.092080	1.1543E+05	.492366
34	+20	3	683.3	674.8	.088789	1.4074E+05	.406457
35	+20	4	1342.8	1351.7	.086808	1.6694E+05	.351166
36	+20	5	2222.6	1914.0	.032935	0.0000E+00	0.000000
37	+21	6	3330.3	2255.3	.079260	0.0000E+00	0.000000
38	+21	7	4646.5	3385.1	.084136	0.0000E+00	0.000000
39	+30	3	682.8	644.7	.081977	8.5456E+04	. 5605 88
40	+31	2	243.8	226.0	.080172	6.4197E+04	.70:045
41	+31	4	1341.1	1286.4	.091870	1.0468E+05	.532912
42	+31	5	2220.0	1914.0	. 05985 3	0.0000E+00	0.000000
43	+31	6	3326.4	2154.8	.084772	0.0000E+00	0.000000
44	+31	7	4641.6	3241.1	.100589	0.0000E+00	0.000000
45	+40	2	243.6	217.6	.059843	2.4398E+04	1.270924
46	+40	3	682.4	621.8	.064497	4.5437E+04	.768016
47	+40	4	1339.8	1234.6	.078774	5.7906E+04	.756701
48	+41	5	2217.6	1914.0	.068832	0.0000E+00	0.000000
49	+41	6	3322.5	2067.8	.077504	0.0000E+00	0.000000
50	+41	7	4636.7	3101.6	.094073	0.0000E+00	0.000000
51	+50	3	682.0	604.6	.043792	1.6441E+04	1.357394
52	+50	4	1338.4	1198.4	.056309	2.6844E+04	1.095207
53	+51	5	2215.3	1914.0	.058313	0.0000E+00	0.000000
54	+51	6	3318.5	2001.0	.061815	0.0000E+00	0.000000
55	+51	7	4631.8	3004.0	.077836	0.0000E+00	0.000000
56	+50	2	243.1	210.7	.020039	0.0000E+00	0.000000
57	+60	3	681.5	595.0	.030386	1.1740E+03	0.000000
58	+61	4	1336.8	1178.3	.035217	1.0738E+04	1.652386
59	+61	5	2213.0	1914.0	.041310	0.0000E+00	0.000000
60	+61	8	3314.6	1958.5	.041804	0.0000E+00	0.0 00 000
61	+61	7	4626.9	2937.1	.055489	0.0000E+00	0.000000
62	+70	2	242.9	209.4	.016890	0.0000E+00	0.000000
63	+71	3	681.1	590.5	.017480	0.0000E+00	0.000000
64	+71	5	2210.6	1914.0	.027277	0.0000E+00	0.000000

MATERIAL: C-1002
MANUFACTURER: TECH PROD CORP
REMARKS: 93479

DATE: 18 Jan 1988

ENTERED BY: BJF
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-152
BEAM TYPE: FREE LAYER ONE SIDE
BEAM LENGTH:
BEAM THICKNESS 7 in .06002 in .283 lb/cu in BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .11632 in
DAMPING MATERIAL DENSITY: .046 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
65	+71	6	3310.6	1934.9	.027177	0.0000E+00	0.000000
66	+71	7	4522.0	2890.8	.034859	0.0000E+00	0.000000
67	+80	7	4617.5	2866.5	.023115	0.0000E+00	0.000000
68	+81	2	242.6	208.6	.013407	0.0000E+00	0.000000
69	+81	3	680.6	587.9	.010287	0.0000E+00	0.000000
70	+81	4	1333.9	1158.7	.013839	0.0000E+00	0.000000
71	+81	5	2208.3	1914.0	.017220	0.0000E+00	0.000000
72	+81	6	3306.7	1920.3	.016594	0.0000E+00	0.000000
73	+90	2	242.4	208.4	.016449	0.0000E+00	0.000000
74	+90	3	680.2	585.5	.008320	0.0000E+00	0.000000
75	+91	4	1332.4	1154.5	.008942	0.0000E+00	0.000000
76	+91	5	2205.9	1911.3	.012042	0.0000E+00	0.000000
7?	+91	7	4612.1	2849.2	.015759	0.0000E+00	0.000000
78	+92	6	3302. 3	1911.9	-011203	0.0000E+00	0.000000
79	+100	2	242.2	208.4	.015067	0.0000E+00	0.000000
80	+101	3	679.8	585.0	-006025	0.0000E+00	0.000000
81	+101	4	1330.9	1151.5	.006537	0.0000E+00	0.000000
82	+101	5	2203.6	1905.7	.010421	0.0000E+00	0.000000
83	+101	6	3298.8	1905.7	.010769	0.0 000 E+00	0.000000
84	+102	7	4606.7	2838.5	.012699	0.0000E+00	0.000000
85	+110	6	3295.2	1900.0	-008288	0.0000E+00	0.000000
86	+110	7	4602.8	2830.6	.015732	9.0000E+00	0.000000
87	+111	2	241.9	208.3	.009211	0.0000E+00	0.000000
88	+111	3	679.3	583.5	.006503	0.0000E+00	0.000000
89	+111	4	1329.5	1149.1	.005711	0.0000E+00	0.000000
90	+111	5	2201.2	1900.1	.007767	0.0000E+00	0.000000
91	+120	2	241.7	207.6	.008715	0.0000E+00	0.000000
92	+121	3	678.9	582.2	.005076	0.0000E+00	0.000000
93	+121	4	1328.0	1146.4	.004657	0.0000E+00	0.000000
94	+121	9	3290.9	1894.7	.009257	0.0000E+00	0.000000
95 00	+121	7	4597.4	2818.1	.016222	0.0000E+00	0.000000
96	+122	5	2198.7	1894.5	.009043	0.0000E+00	0.000000

MATERIAL CODE: ED0376 MANUFACTURER: TECH PROD CORP
REMARKS: 93475

DATE: 18 Jan 1988

ENTERED BY: BJF
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-152
BEAM TYPE: FREE LAYER ONE SIDE
BEAM LENGTH: 7 in .06002 in .283 lb/cu in BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .11632 in DAMPING MATERIAL DENSITY: .046 lb/cu in

		• · · · · · · · · · · · · · · · · · · ·					
INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	YOUNG'S MODULUS PSI	MATERIAL LOSS FACTOR
97	+130	5	2196.8	1889.1	.010417	0.0000E+00	0.000000
98	+130	6	3287.3	1888.8	.009711	0.0000E+00	0.000000
99	+130	7	4593.0	2810.8	.025703	0.0000E+00	0.000000
100	+131	3	678.5	581.5	.005122	0.0000E+00	0.000000
101	+131	4	1326.6	1143.8	.005139	0.0000E+00	0.000000
102	+132	2	241.4	207.2	.010418	0.0000E+00	0.000000
103	+139	2	241.3	206.8	.010209	0.0000E+00	0.000000
104	+140	3	678.1	580.6	.005157	0.0000E+00	Ø.000000
105	+141	4	1325.1	1141.3	.005516	0.0000E+00	0.000000
106	+142	5	2194.0	1882.4	.013156	0.0000E+00	0.000000
107	+142	6	3282.6	1882.3	.013363	0.0000E+00	0.000000
108	+142	7	4587.1	2810.6	.042042	0.0000E+00	0.000000
109	+150	2	241.0	205.7	.010577	0.0000E+00	0.000000
110	+151	3	677.6	579.3	.004517	0.0000E+00	0.000000
111	+151	4	1323.6	1138.8	.005801	0.0000E+00	0.000000
112	+152	5	2191.6	1875.5	.015531	0.0000E+00	0.000000
113	+152	6	3278.7	1875.1	.014707	0.0000E+00	0.000000

MATERIAL CODE: ED0632 MATERIAL: FLEXANE 45 DURO

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)*SLOPE)

TZERO FQROM MROM SLOPE ML 200.0 1.257E+10 1.258E+03 0.274 3.936E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 200.0 .800 .090 -.380 8.447E+10 .400

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C

MATERIAL:

FLEXANE 45 DURU

MANUFACTURER:

DEVCON

REMARKS:

SANDWICH

DATE: 7 Sep 1988

ENTERED BY: SEO
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-07

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH: BEAM THICKNESS:

in .**059**12 in

BEAM DENSITY:

.283

lb/cu in

DAMPING MATERIAL THICKNESS: .01313 in
DAMPING MATERIAL DENSITY: .03962 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
1	-91	3	680.1	1265.5	.003304	1.8148E+04	.010532
2	-91	6	3316.4	5385.2	.005238	4.1751E+04	.013365
3	-90	4	1334.6	2455.2	.008862	3.3184E+04	.027466
4	~90	5	2212.4	3871.3	.006277	4.1174E+04	.017486
5	76	3	5 79. 0	1260.4	.003830	1.7810E+04	.012128
6	-76	4	1332.6	2441.7	.005220	3.2282E+04	.015979
7	-76	6	3310.9	5366.8	.004424	4.1239E+04	.011273
8	-75	5	2208.9	3861.4	.004635	4.0825E+04	.012890
9	-61	3	677.9	1246.1	.006274	1.6694E+04	.019361
10	-61	5	2205.5	3819.5	.006017	3.8640E+94	.016486
11	~61	6	3305.4	5304.2	.005667	3.9052E+04	.014349
12	-60	4	1330.4	2414.3	.007384	3.0358E+04	.022097
13	~52	3	677.3	1232.3	.014929	1.5651E+04	.044965
14	~52	6	3302.1	5182.8	.018114	3.4837E+04	.045409
15	-51	2	243.9	509.5	.017004	1.6555E+04	.093824
16	-51	4	1329.1	2309.7	.017838	2.3618E+04	. 249164
17	-50	5	2202.9	3702.3	.015425	3.2802E+04	.040635
18	-50	7	4607.0	6947.6	.015306	3.9709E+04	.038154
19	-46	2	243.8	501.6	.016274	1.4163E+ 0 4	.080511
20	-46	3	676.8	1219.1	.016752	1.4715E+04	. 049333
21	-46	4	1328,4	2359.6	.025000	2.6643E+04	.071526
22	-46	5	2202.0	3736.7	.017479	3.4491E+04	.046586
23	-46	6	3259.9	5182. 5	.015092	3.4905E+04	.037838
24	-36	3	676.1	1157.4	.054024	1.0901E+04	.173764
25	-36	4	1326.9	2196.3	.066041	1.7968E+04	.172402
26	-36	6	3296.3	4975.5	.019455	2.8569E+04	.048502
27	-35	2	243.5	489.8	.062653	1.0954E+04	.274868
28	-35	5	2199.4	3555.7	.054584	2.6583E+04	.139469
29	-35	7	4599.5	6756.9	.033592	3.4675E+04	.084283
30	-21	2	243.1	430.5	.195071	4.1520E+03	.601564
31	-21	3	675.0	992.9	.158210	4.8770E+03	.408807
32	-21	4	1324.8	1934.9	.158926	9.2593E+03	.411693

MATERIAL:

FLEXANE 45 DURO DEVCON

MANUFACTURER:

REMARKS:

SANDWICH

DATE: 7 Sep 1988 ENTERED BY: SEO

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-03 & SS-7-07
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH:

in .05912 in

BEAM THICKNESS: BEAM DENSITY:

.283

lb/cu in

DAMPING MATERIAL THICKNESS: .01313 in DAMPING MATERIAL DENSITY: .03962 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	-21	5	2196.1	3237.1	.133523	1.6306E+04	.341685
34	-7	3	674.0	823.4	.176163	1.7385E+03	.606347
35	 7	4	1322.8	1642.0	.136799	3.8525E+03	.442825
36	-6	2	242.6	354.2	.159159	1.7005E+03	.412391
37	+8	2	242.2	291.9	.115542	5.8649E+02	. 407541
38	+8	4	1320.7	1413.3	.113151	1.0028E+03	.859094
39	+9	3	672.9	718.8	.093132	5.0057E+02	.716814
40	+23	2	241.7	262.7	.074827	2.3098E+02	.475820
41	+23	3	671.9	687.5	.043863	1.9676E+02	.752581
42	+23	4	1318.5	1354.2	.050203	4.3538E+02	.773563
43	+37	2	241.3	256.5	.041717	1.6955E+02	.336591
44	+37	3	670.8	680.0	.021903	1.3457E+02	.532786
45	+37	4	1316.5	1334.4	.025608	2.632 0E +02	.625820
46	+52	2	240.9	252.7	.026732	1.3434E+02	.260649
47	+52	3	669.8	675.2	.013391	9.9538E+01	.432082
48	+52	4	1314.4	1323.4	.015312	1.7891E+02	.538137
49	+67	2	240.4	250.4	.019488	1.1455E+02	.217055
50	+67	3	668.7	672.0	.009:72	7.8993E+01	.368264
51	+67	4	1312.3	1316.5	.010253	1.3379E+02	.475303
52	+81	2	240.0	248.6	.015330	1.0040E+02	.190968
5 3	+81	4	1 3 10.3	1311.7	.007440	1.0696E+02	.427439
54	+82	3	667.5	669.7	.006933	6.7129E+01	.324749
5 5	+100	2	239.5	246.8	.012375	8.8248E+01	.172126
58	+100	3	666.3	667.1	.005489	5.5095E+01	.310307
5 7	+100	4	1307.6	1306.6	.005876	8.4403E+01	.423775
58	+114	2	239.1	245.6	.010809	8.0102E+01	.163481
59	+114	3	€65.3	665.4	.004932	4.8572E+01	.314382
60	+115	4	1305.4	1303.2	.004988	7.2464E+01	.416509
61	+129	2	238.6	244.7	.010085	7.5167E+01	.161020
62	+129	3	664.2	664.0	.004339	4.5285E+01	.295266
63	+129	4	1303.4	1300.3	.004304	6.3927E+Ø1	.405297
64	+144	2	238.2	243.8	.009096	7.1059E+01	.152327

MATERIAL:

FLEXANE 45 DURO

MANUFACTURER:

DEVCON

REMARKS:

SANDWICH

DATE: 7 Sep 1988

ENTERED BY: SEO
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-03 & SS-7-07
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH:

BEAM THICKNESS:

7 .05912 in

in

BEAM DENSITY:

.283 lb/cu in

DAMPING MATERIAL THICKNESS: .01313 in DAMPING MATERIAL DENSITY: .03962 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
65	+144	3	663.1	662.6	.003943	4.2377E+01	.285391
66	+144	4	1301.3	1297.6	.004085	5.7885E+01	.422840
67	+159	2	237.7	243.1	.008983	6.7960E+01	.156155
68	+159	3	662.0	661.2	.003709	3.8973E+01	.290504
69	+159	4	1299.1	1294.7	.003805	5.0810E+01	.446461
70	+174	2	237.3	242.3	.008084	6.4248E+01	.147448
71	+174	3	660.9	6 59.7	.003593	3.5751E+01	.305383
72	+174	4	1297.0	1291.8	.003450	4.3784E+01	.467440
73	+189	2	. 236.8	241.5	.007329	6.0354E+01	.141104
74	+189	3	659.8	658.3	.003620	3.1848E+01	.343535
75	+189	4	1294.9	1288.9	.003275	3.6651E+01	.527489

A=(L06(FR)-L06(FR0L))/C

MATERIAL: HYPALON 30

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 122.0 4.908E+03 4.510E+03 0.651 1.741E+02

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 122.0 2.200 .700 -.900 3.500E+03 .200

LOG(FR)=LOG(F)~12(T-T0)/(525+T-T0)

B-32

MATERIAL CODE: ED0006
MATERIAL: HYPALON 30
MANUFACTURER: DU PONT

REMARKS: S
DATE: 25 Nov 1986
ENTERED BY: SRR

ENTERED BY: SRR
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-10 & SS-7-04
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in BEAM THICKNESS: .0592375 in

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .0208 in
DAMPING MATERIAL DENSITY: .04588 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMFOSITE	SHEAR	MATERIAL
No.	DE6	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
			277 6			2 10000404	054550
1	+50	2 3	237.6	526.9	.011350 .017570	2.1806E+04	.054558
2	+50		662.0	1462.4		5.8239E+04	.082566
3	+50	4	1303.0	2681.5	.018720	6.6225E+04	.062801
4	+50	5	2154.1	4205.9	.027380	7.9118E+04	.078920
5	+75	2	237.1	484.0	.140910	1.0091E+04	.484191
6	+75	3	660.8	1313.5	.135360	2.4474E+04	.424830
7	+75	4	1299.8	2426.0	.137680	3.5034E+04	.373608
8	+75	5	2148.8	3738.0	.061510	4.2977E+04	.148297
9	+90	2	236.7	364.3	.457860	1.9710E+03	1.340014
10	+90	3	550.1	1067.0	.278480	8.2496E+03	.702528
11	+99	2	236.5	289.9	.421980	6.9429E+02	1.577182
12	+99	2	236.5	312.6	.415230	1.0712E+03	1.288155
13	+99	3	659.7	914.0	.505470	3.3596E+03	1.611974
14	+99	4	1296.7	1559.0	.489090	3.1041E+03	2.096294
15	+110	2	236. 3	282.3	.196240	6.8055E+02	.697448
16	+110	2	236.3	293.7	. 2 05 650	8.7499E+02	.645405
17	+110	3	659.2	780.9	.382250	1.5812E+03	1.568371
13	+110	4	1295.3	1428.0	.353640	1.6747E+03	2.178542
19	+110	5	2141.3	2265.0	.233110	1.7617E+03	2.010095
20	+110	5	2141.3	2285.0	.257690	1.7223E+@3	2.271701
21	+125	2	235.9	264.8	.125760	4.2293E+02	.592707
22	+125	4	1293.4	1363.7	.141520	1.0728E+03	1.199551
23	+125	5	2138.1	2201.0	.101770	1.1111E+93	1.287163
24	+125	6	3194.7	3239.0	.088920	1.0481E+03	1.710962
25	+148	2	235.4	253.6	.059940	2.7421E+02	.384670
26	+148	3	657.5	705.1	.027980	7.2214E+02	.187492
27	+148	4	1290.4	1322.1	.041900	6.0391E+02	.579515
28	+148	5	2133.1	2154.2	.029200	6.1027E+02	.634632
29	+148	5	3187.2	3216.8	.021330	8.9260E+02	.473802
30	+148	å	3187.2	3193.1	.009170	6.03772+02	.295045

MATERIAL: HYPALON 40-

UNITS ARE ENGLISH

 $\label{logman} \verb+LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)$

TZERO FQROM MROM SLOPE ML 200.0 1.165E+08 4.816E+03 0.492 3.444E+02

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 200.0 .822 .215 -.370 6.510E+07 .550

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0) A=(LOG(FR)-LOG(FROL))/C MATERIAL CODE: ED0507 MATERIAL: HYPALON MANUFACTURER: UDRI REMARKS: HYPALON 40

DATE: 9 May 1988 ENTERED BY: SEO

BEAM MATERIAL: STAINLESS S

BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in **BEAM THICKNESS:** .08 in

BEAM DENSITY: . 1 lb/cu in

DAMPING MATERIAL THICKNESS: .02108 111

DAMPING MATERIAL DENSITY: . 05455 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
1	-24	2	329.7	724.2	.003316	2.6358E+04	.031862
2	-24	3	923.6	1963.0	.005574	4.4402E+04	.035537
3	-24	4	1795.1	3716.5	.006502	6.3473E+04	.033319
4	-24	5	2964.1	5942.4	.011184	7.7664E+04	.047114
5	-24	6	4427.1	8630.3	.015068	9.3145E+04	.055780
6	-16	3	922.5	1959.2	.005777	4.3862E+04	.036559
7	-15	2	329.3	723.0	.003508	2.6162E+04	.034529
8	-15	4	1792.7	3705.8	.007484	6.2315E+04	.037943
9	-15	5	2960.0	5917.8	.010811	7.5686E+04	.044894
10	-15	6	4420.2	8562.1	.015630	8.8634E+ 0 4	.056409
11	-5	2	328.7	720.7	. 004545	2.5258E+04	.043303
12	-5	3	921.0	1947.6	.008495	4.1401E+04	.051645
13	-5	4	1790.0	3672.9	.011156	5.7667E+04	.053806
14	-5	5	2955.5	5856.1	.014951	7.01075+04	.059456
15	-4	8	4411.8	8439.8	.018858	8.0816E+04	.065141
16	+5	3	919.6	1926.3	.018372	3.6708E+04	- 1 0303 5
17	+5	4	1787.3	3613.7	.021846	4.9968E+04	.096498
18	+5	5	2950.9	5 738.8	.029708	€.0291E+ 0 4	.109130
19	+6	2	328.2	716.0	.009687	2.2992E+04	.084090
20	+16	2	327.7	708.5	.023340	1.9408E+04	.180528
21	+16	3	918.1	189 0 .7	.043593	2.9818E+04	.217088
22	+16	4	1784.4	3525.2	.049335	4.0358E+04	.194996
23	+16	5	2945.9	55 36 . 9	.058630	4.650GE+04	.225747
24	+25	3	916.3	1820.0	.104030	1.9809E+04	.433352
25	+25	4	1781.9	3377.9	.112249	2.8185E+04	.387850
26	+25	5	2941.8	5 257. 4	.121833	3.3050E+04	.359306
27	+26	2	327.1	692.9	.063742	1.3266E+04	.402982
28	+35	2	326.7	628 .5	.111230	5.6923 E+03	.405610
29	+35	3	915.6	1681.9	.217280	1.022 3E+04	.742853
30	+35	4	1779.3	3100.6	.228746	1.5344E+04	.691002
31	+36	5	2936.8	4811.8	.196342	2.0005E+04	.525637
32	+45	2	326.1	582.3	.211045	3.2443E+03	.662477

MATERIAL:

HYPALON 40

MANUFACTURER: UDRI

REMARKS:

HYPALON 40 DATE: 9 May 1988

ENTERED BY: SEO
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: AL-080-E & AL-080-G
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:

7 .08 in

BEAM THICKNESS:

. 1

in

BEAM DENSITY:

lb/cu in

DAMPING MATERIAL THICKNESS: .02108 in DAMPING MATERIAL DENSITY: .05455 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	+45	3	914.2	1530.2	.188316	6.9858E+03	.514789
34	+46	4	1776.3	2741.6	.159066	9.4517E+03	.400112
35	+55	2	325.6	471.4	.206245	1.2543E+03	.528170
36	+56	4	1773.6	2223.0	.189739	3.2892E+03	.555581
37	+65	2	325.1	424.4	.196412	7.5577E+02	.545956
38	+66	3	911.4	1275.4	.156940	3.0646E+03	.405079
39	+66	4	1771.0	1940.6	.234649	1.2126E+03	1.204111
40	+75	2	324.5	405.2	.139686	6.0261E+02	.412824
41	+76	4	1768.3	1882.5	.160863	9.2291E+02	.991149
42	+85	2	324.1	394.9	.103087	5.2600E+02	.319808
43	+85	3	908.8	994.5	.119073	6.5431E+02	.583729
44	+86	4	1765.6	1839.8	.103983	7.09216+02	.779830
45 .	+95	3	907.5	977.2	.085398	5.5923E+02	.464885
46	+95	4	1763.2	1815.1	.072389	5.8871E+02	.629223
47	+96	2	323.5	389.0	.076225	4.8510E+02	.244113
48	+105	2	323.0	384.8	.062954	4.5605E+02	. 207045
49	+106	3	906.0	967.1	.060944	5.0773E+02	.354558
50	+108	4	1760.2	1798.6	.051705	5.1444E+02	.501399
51	+115	2	322.5	381.9	.052390	4.3718E+02	.175491
52	+116	3	904.6	960.2	.047267	4.7456E+02	.288354
53	+115	4	1757.6	1787.6	.037618	4.6883E+02	.393695
54	+125	3	903.4	954.9	.038436	4.5001E+02	.243510
55	+125	4	1755.1	1779.4	.030373	4.3681E+02	.337047
56	+126	2	322.0	379.5	.046106	4.2270E+02	.156724
57	+135	3	902.0	950.1	.032640	4.2888E+02	.214009
58	+135	4	1752.5	1771.9	.025408	4.1011E+02	.297050
59	+136	2	321.4	377.1	.044831	4.0809E+02	.154866
60	+145	2	321.0	374.6	.044136	3.9260E+02	.155313
61	+145	3	900.7	345.8	.029178	4.1048E+02	.197433
62	+145	4	1749.8	1765.0	.021161	3.8660E+02	.259842
63	+155	4	1747.1	1759.0	.019774	3.6773E+02	. 253090
64	+156	2	320.4	372.2	.043824	3.7872E+02	.156881

MATERIAL: HYPALON 40
MANUFACTURER: UDRI
REMARKS: HYPALON 40

DATE: 9 May 1988

ENTERED BY:

SEO

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: AL-080-E & AL-080-G
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:

7

in

BEAM THICKNESS:

.08

in

BEAM DENSITY:

. i

lb/cu in

DAMPING MATERIAL THICKNESS: .02108 in DAMPING MATERIAL DENSITY: .05455 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTUR	SHFAR MODULUS PSI	MATERIAL LOSS FACTOR
65	+156	3	899.2	941.6	.027317	3.9380E+02	.190418
66	+165	4	1744.4	1753.0	.017920	3.4885E+02	.239699
67	+167	3	897.7	937.2	.025853	3.7658E+02	.186175
68	+170	2	313.7	369.5	.044200	3.6354E+02	.161368
69	+175	4	1741.7	1747.0	.016605	3.3029E+02	.232578
70	+177	3	896.4	932.8	.025260	3.5825E+02	.188805
71	+179	2	319.2	366.5	.044594	3.4597E+02	.167432

MATERIAL CODE: ISD110

MATERIAL: 3M ISD-110

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 160.0 4.000E+03 1.450E+02 0.270 1.450E+00

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 160.0 1.700 .360 -.310 2.200E+03 .600

MATERIAL CODE: ISD110 MANUFACTURER: REMARKS: DATE: 3M ISD-110

3M

DATA FROM 25-NOV-85

ENTERED BY: 6JF
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-16
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:
BEAM THICKNESS

7 in .0593 in .283 lb/cu in

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: ,002 in DAMPING MATERIAL DENSITY: ,035 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FRED	FREQ	LQSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	-26	4	1350.7	2506.4	,005300	1.4037E+04	.037664
2	-26	5	2229.0	3880.0	.010100	1.2410E+04	.041300
3	-26	6	3338.7	5499.0	.012400	1.2391E+04	.042298
4	-3	3	687.0	1278.8	.011600	7.3693E+03	.071256
5	-3	5	2222.8	3793.0	.017700	1.0538E+04	067104
E.	-3	6	3328.3	5345.0	.025400	1.0391E+04	.082055
7	+25	2	243.7	465.2	017700	3,6406E+03	.141387
8	+25	3	684.2	1230.7	,0327 00	4,9808E+03	. 158138
9	+25	4	1341.3	2372.0	0000550,	8,3841E+03	.145627
10	+25	5	2215.3	3585.8	.043300	7.1753E+03	. 142595
11	+50	2	242.8	446.7	, 068900	2.0262E+03	395949
12	+50	3	681.7	1139,0	.097500	2,5812E+03	.355877
13	+50	4	1336.7	2208.0	. 0 87 900	4.7585E+03	.308901
14	+50	5	2208.6	3283.0	. 097800	4.1387E+03	.292756
15	+50	6	3304.3	4558.0	.107900	4,0309E+03	.322943
16	+75	3	679.2	1068.0	.134800	1,6917E+Ø3	.438455
17	+75	4	1332.2	2079.0	.141900	3.1542E+03	.458191
18	+75	5	2201.9	3048.0	.147600	2.6551E+03	.449161
19	+75	6	3293.0	4261.0	.136100	2,6930E+03	.440631
20	+100	3	676.6	9,696	.234100	6.3464E+02	.771139
21	+100	6	3281.7	3730.0	.171600	9.9336E+ 0 2	.881166
22	+125	4	1323.0	1503.0	228200	3.7196E+02	1.233300
23	+125	5	2168.6	2368,0	.164700	3,6322E+02	1.270201
24	+125	6	3270.4	3475.0	.129500	4.1589E+02	1.,228026
25	+151	2	225.3	258.0	.166300	3.7249E+01	1,339243
26	+151	3	671.5	7ର୍ଷ୍ଟ୍ର	.124500	5.5782E+Ø1	1.680471
27	+151	4	1318.2	1368.0	.117600	3.7572E+01	1.756692

ED0495

MATERIAL: LEXAN 141

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML

200.0 9.227E+02 7.144E+03 0.576 1.354E+03

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 200.0 .115 .280 -.425 1.466E+03 .400

MATERIAL CODE: ED0495 MANUFACTURER: GE
REMARKS: RFA LEXAN 141

BEAM SPLIT AT 215 F

BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-105 & SS-7-125
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:
BEAM THICKNESS 7 in **BEAM THICKNESS:** .06029 in

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .0121 in

DAMPING MATERIAL DENSITY: .043356 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+75	3	678.5	1350.8	.002709	2.9622E+04	.011984
2	+75	4	1332.9	2498.5	.002742	3.6665E+04	.009377
3	+75	5	2209.6	4043.9	.002779	5.2058E+04	.008849
4	+75	6	3304.5	5948.3	.003245	7.0420E+04	.009908
5	+48	2	242.7	518.4	.002020	2.40285+04	.015140
6	+48	3	680.3	1350.5	.002930	2.9034E+04	.012760
7	+48	4	1336.3	2501.4	.003150	3.6502E+04	.010723
8	+48	5	2216.0	4055.4	.003420	5.2344E+04	.010889
9	+48	6	3313.9	5970.0	.004510	7.1162E+04	.013797
10	+38	2	241.7	506.6	.002570	1.8128E+04	.017227
11	+98	3	677.0	1298.2	.005120	2.1787E+04	.019006
12	+98	4	1330.0	2452.6	.004120	3.2734E+04	.013399
13	+98	5	2204.2	4023.3	.003120	5.0938E+04	.009864
14	+98	6	3296.5	5878.70	.00 3620	6.6187E+04	.010819
15	+125	2	241.2	504.0	.004800	1.7388E+04	.030127
16	+125	3	675.2	1287.0	.005800	2.0739E+04	.021038
17	+125	4	1326.6	2437.2	.064810	3.1790E+04	.015479
18	+125	5	2197.8	4001.3	.003670	4.9824E+04	.011525
19	+125	6	3287.1	5841.0	.004430	6.4468E+04	.013142
20	+149	2	240.7	487.0	.011330	1.2121E+04	.055316
21	+149	3	673.6	1239.4	.011940	1.6205E+04	.038596
22	+149	4	1323.5	2398.0	.008590	2.8973E+04	.026651
23	+149	5	2192.1	3946.0	.009060	4.6192E+ 04	.027669
24	+174	3	671.9	1144.8	.017650	1.0225E+04	.048520
25	+174	4	1320.4	2212.0	.022600	1.8374E+ 04	.060892
26	+174	5	2186.2	3346.0	.0260\$0	1.9079E+04	.066012
27	+200	3	670.2	1096.0	.041420	8.1347E+03	.108973
28	+200	4	1317.1	1907.0	.042480	8.6262E+03	108654
29	+200	5	2180.1	3159.0	.037330	1,43 63E+ 04	.095401

ED0490

MATERIAL: PEHA-3

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 200.0 4.871E+11 9.548E+01 0.246 2.466E+00

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2
TZERO ETFROL SL SH FROL C

200.0 2.596 .095 -.220 4.160E+10 .350

MATERIAL CODE: ED0490 MATERIAL: PEHA-3 MANUFACTURER: MONSANTO REMARKS: E-AH39

DATE: 28 Apr 1988

ENTERED BY: SEO
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-35 & SS-7-37
BEAM TYPE: SANDUICH BEAM BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: in BEAM THICKNESS:

.05896 in .283 lb/cu in BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .002 in DAMPING MATERIAL DENSITY: .0376 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
1	-90	2	241.8	485.5	.021090	1.0880E+04	.543745
2	-90	3	676.4	1199.7	.023750	4.3413E+03	.106121
3	-90	4	1331.1	1872.0	.020190	1.8657E+03	.058777
4	-90	5	2208.0	2 9 29.0	.017310	2.1995E+03	.052497
5	-90	6	3297.2	4325.6	.020410	3.0730E+03	.062792
6	-50	2	241.0	396.2	.154080	7.3662E+02	.603574
7	-50	3	673.9	939.5	.179880	8.2080E+02	.556659
8	~50	4	1326.0	1587.0	.100190	6.4678E+02	.388759
9	-50	5	2199.2	2532.0	.090050	7.8395E+02	.411905
10	-50	6	3284.5	3744.0	.089480	1.0690E+03	.432269
11	-30	3	672.7	778.8	.138030	2.4406E+02	.626493
12	-30	4	1323.5	1433.0	.072220	2.3793E+02	.519914
13	-30	5	2194.8	2303.0	.067170	2.2802E+02	.752640
14	-30	6	3278.1	3410.0	.079470	2.7364E+02	1.077589
15	٠0	2	239.8	263.7	.172930	4.9300E+01	1.139100
16	+0	3	670.8	698.8	.073410	5.7751E+01	.9587 0 5
17	+0	4	1319.6	1349.0	.044480	6.1386E+01	1.013371
18	+0	5	2138.2	2203.0	.031090	3.3760E+01	2.037310
19	+0	8	3268.5	3276.0	.028690	2.1244E+01	4.405995
20	+25	2	239.3	242.2	.057800	6.0618E+00	2.327967
21	+25	3	669.3	673.5	.024790	9.7186E+00	1.707605

EDØ436

MATERIAL: M880221E-4

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+ 2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FOROM MROM SLOPE ML

200.0 2.507E+10 2.128E+02 0.210 1.422E+00

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))G/2
TZERO ETFROL SL SH FROL C

200.0 3.020 .225 -.120 9.190E+07 .400

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0)

A=(LOG(FR)-LOG(FROL))/C

MATERIAL:

M880221E-4 MONSANTO

MANUFACTURER: REMARKS:

DATE:

14 Mar 1988

ENTERED BY:

TCM

BEAM MATERIAL:

STAINLESS STEEL

BEAM NUMBER:

SS-7-103 & SS-7-104

BEAM TYPE:

SANUWICH BEAM

BEAM LENGTH: BEAM THICKNESS:

in .05983 1n

.283 BEAM DENSITY:

lb/cu in

DAMPING MATERIAL THICKNESS:

.004 in

DAMPING MATERIAL DENSITY:

.0376 lb/cu in

INDEX	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
1	-90	3	684.5	1388.9	.026533	4.1381E+04	.433007
2	-90	4	1350.3	2528.3	.028355	2.3827E+04	.152126
3	-89	2	245.7	506.9	.013720	3.0998E+04	.444505
4	-89	5	2238.2	4030.0	.029022	2.7510E+04	.123928
5	-79	2	245.4	506.0	.018166	2.7006E+04	.569 0 40
6	-78	3	683.8	1379.0	.033099	3.3947E+04	.462889
7	-77	4	1348.3	2489.8	.042293	2.0341E+04	.207908
8	-76	5	2234.9	3951.3	.048179	2.3330E+04	.190928
9	-63	4	1347.2	2424.7	.068019	1.5703E+04	.294407
10	-69	5	2233.2	3844.1	.075859	1.8694E+04	.276154
11	-6 8	3	683.1	1351.5	.054784	2.1088E+04	.537629
12	-67	2	245.1	500.7	.030813	1.6209E+04	.632626
13	-59	5	2230.7	3650.7	.131660	1.2750E+04	.433634
14	-58	4	1345.5	2311.9	.122078	1.0375E+04	.454924
15	-57	2	244.8	490.7	.064414	7.9232E+03	.815918
16	-57	3	682.4	1304.1	.101049	1.1466E+04	.682916
17	-50	4	1344.3	2169.4	.192153	6.4696E+03	.645712
18	-50	5	2228.5	3422.0	.189917	8.3662E+03	.591248
19	-49	2	244.6	474.4	.115845	4.0818E+03	. 946950
20	-49	3	681.8	1242.7	.164934	6.4835E+03	.847743
21	-39	2	244.4	447.5	.177003	2.256 0 E+03	.958563
22	39	3	681.2	1135.4	.263194	3.18952+ 03	1.058858
23	-39	4	1342.7	1937.5	.256395	3.3552E+03	.814511
24	-39	5	2225.8	3084.7	.223075	4.7089E+03	.691777
25	-29	3	680.5	975.5	.254632	1.6378E+03	.805625
28	-29	4	1341.2	1695.3	.245544	1.6233E+03	.871469
27	-29	5	2223.3	275 3.0	.201209	2.4516E+03	.726524
28	-20	4	1339.9	1549.9	.208205	8.6886E+02	.977169
29	-20	5	2221.1	2509.7	.211728	1.1520E+03	1.143431
30	-19	3	679.9	878.1	.227844	9.4992E+02	.764747
31	-10	3	679.3	792.4	.186059	4.7925E+02	.824305
32	-9	4	1338.3	1445.3	.152585	4.1869E+02	1.164543

MATERIAL CODE: ED0436 M880221E-4 MATERIAL: MANUFACTURER: MONSANTO

REMARKS:

DATE: 14 Mar 1988

ENTERED BY: TCM
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-103 & SS-7-104
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: 7 in .05983 in .283 lb/cu in BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .004 in DAMPING MATERIAL DENSITY: .0376 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	-9	5	2218.4	2378.8	.152303	6.2324E+02	1.266890
34	+0	3	678.6	736.2	.143425	2.2674E+02	1.034601
35	+ 1	4	1336.8	1391.3	.111465	2.1082E+02	1.490489
36	+1	5	2215.9	2297.7	.103954	3.1893E+02	1.509126
37	+11	3	677.9	704.8	.107935	1.0365E+02	1.474261
38	+11	4	1335.3	1360.8	.067986	1.0345F+02	1.726991
39	+11	5	2213.4	2248.0	.064256	1.4350E+02	1.934802
40	+20	2	242.8	251.4	.1050 53	3.2926E+01	1.599769
41	+20	3	677.3	694.2	.067153	6.7737E+01	1.338535
42	+20	4	1334.0	1346.4	.043573	5.5775E+01	1.986862
43	+20	5	2211.2	2224.5	.041583	6.5715E+01	2,647238
44	+30	2	242.6	247.6	.070882	2.0096E+01	1.686506
45	+30	3	676.6	687.8	.043850	4.6608E+01	1.234393
46	+30	4	1332.5	1337.4	.028368	2.8345E+01	2.494802
47	+40	2	242.3	245.5	.048118	1.3615E+01	1.547507
48	+41	4	1330.9	1332.6	.018860	1.6790E+01	2.772350
49	+50	2	242.1	244.0	.033418	9.1202E+00	1.677381
50	+51	4	1329.4	1329.2	.013052	9.7270E+00	3.289179
51	+60	2	241.8	243.0	.025537	6.1518E+00	1.876329
52	+71	2	241.5	242.2	.018218	4.4929E+00	1.817582
5 3	+80	2	241.3	241.7	.013702	3.4933E+00	1.748471
54	+90	2	241.0	241.7	.010863	4.4571E+00	1.087911
55	+90	5	2193.9	2191.1	.003849	7.6231E+00	2.032023
56	+100	2	240.8	241.7	.009081	5.4166E+00	.749262
57	+112	2	240.4	241.3	.026785	5.0220E+00	.501406
58	+119	2	240.3	241.0	.005951	4.6110E+00	.572817
		_	_,0.0				, , , ,

T40823

MATERIAL: T-408-23A

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MRQM/ML))/(1+(FQRQM/FR)^SLQPE) MROM

FOROM TZERO

SLOPE ML

104.0 1.500E+06 5,511E+03 0,250 4.061E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))0/2

ETFROL TZERO

SL SH -,540 5,000E+05

FROL

2,800

..430 124.0 1.650

LUG(FR)=LOG(F)-12(T-T0)/(525+T-T0)

A=(LOG(FR)-LOG(FROL))/C

MATERIAL CODE: T40823 MATERIAL: T-408-23A MANUFACTURER: ROCKET RESEARCH

REMARKS:

DATE: 13 Jun 1988

ENTERED BY: BEAM MATERIAL: BEAM NUMBER:

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH: BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: 0
DAMPING MATERIAL DENSITY: 0

113 lb/cu in

.Ø

Ø

,Ø

in

lb/ou in

in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	-49	2	241.0	512.0	042600	2.1670E+04	412800
2	-49	3	666 .0	1435.0	039300	7.3820E+04	,4794@@
3	-49	4	1317.0	2746.0	043700	9.0250E+04	.324800
4	-49	5	2174.0	4243.0	.055400	7.4460E÷04	.245000
5	-49	6	3245.0	5979.0	. 242820	7.3570E+04	. 141000
6	25	2	240.0	474.0	137200	7,2170E+03	.6976 0 0
7	-49	6	3245.0	5942.0	,0505 0 0	7.0160E+04	171400
8	-25	3	665.0	1274.0	.089890	1.8470E+04	, 360000
9	-25	4	1313.0	2538.0	.172200	3.0380E+04	.806100
10	25	5	2169.0	3818.0	227 900	2.8810E+04	. 787000
11	-25	6	3237.0	5390,0	.193600	3.5280E+04	.574900
12	+0	2	240.0	397.0	.351600	1.9010E+03	1.250300
13	+ @	3	664.0	1147.0	. 366600	5.5990E+03	1, 504300
14	+ @	4	1310.0	2016.0	.418200	6.9020E+03	1.472400
15	+0	5	2164.0	3057.0	.540000	6.2590E+03	2.275400
16	+25	3	663.0	865.0	.538000	1,3420E+03	2.391700
17	+25	4	1306.0	15410	.352000	1.8620E+03	1.613400
18	+25	5	2158.0	2444.0	.269400	2,3380E+03	1.424500
19	+25	6	3222.0	3503.0	.240700	2,2500E+03	1.735400
20	+25	7	4507.0	4834.0	. 245600	2.5490E+03	2.092400
21	+49	2	238.0	269.0	.205200	2.6830E+02	1.044100
22	+49	3	662.0	658'8	,0788 00	3,2120E+02	.741300
23	+49	4	1303.0	1377.0	168500	6.1400E+02	1.642900
24	+49	5	2153.0	2254.0	.115800	8.7370E+02	1.275400
25	+49	6	3214.0	3343.0	.114300	1.1290E+03	1.426900
26	+49	7	4497.0	4644,0	088300	1.3310E+03	1.280300
27	+72	2	238.0	251.0	.091400	1,155@E+@2	.864000
28	+72	3	661.0	681.0	.056400	1.8490E+02	.854400
29	+72	4	1300.0	1338.0	.058400	3,5280E+02	.911400
30	+72	5	2149.0	2186.0	.038100	3,9000E+02	,୫୧ଉ ରେଉ
31	+72	6	3207.0	3263.0	.035800	5.7270E+02	.821900
32	+72	7	4487.0	4544.0	.029800	6.3200E+02	.855000

MATERIAL: T-408-23A MANUFACTURER: ROCKET RESEARCH

REMARKS:

DATE: 13 Jun 1988

ENTERED BY: BEAM MATERIAL: BEAH NUMBER:

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH: BEAM THICKNESS:

ÁÐ 10

BEAM DENSITY:

Ø

0 lb/cu in

DAMPING MATERIAL THICKNESS: 0 in
DAMPING MATERIAL DENSITY: 0 lb/eu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
33	+101	2	237.0	244.0	045800	6.7900E+01	.681600
34	+101	3	660.0	6710	029200	1.1920E+02	.657700
35	+101	4	1296.0	1312.0	.028400	1.7720E+02	.833300
36	+101	5	2142.0	2165.0	.017300	2.6380E+02	.562300
37	+101	8	3198.0	3235.0	.018200	4.2350E+02	.552.000
38	+101	7	4474.0	4510.0	.013500	4.6410E+02	.516100
33	+125	2	237.0	241.0	.025100	4.66605+01	.523300
40	+125	3	658.0	666.0	015600	8,241@E+@1	, 49 <u>5</u> 000
41	+125	4	1293.0	1305.0	.016900	1.,4830E+Q2	.583900
42	+125	5	2137.0	2153.0	. ହହସ୍ଥପ୍ତ	2.20220E+02	.371000
43	+125	5	3190.0	3215.0	.011900	3.2410E+02	. 454200
44	+125	7	4463.0	4490.0	006600	3.8850E+02	.297100
45	+151	2	236.0	239.0	014900	3,6300E+01	.391000
46	+151	3	657.0	663.0	QQ82QQ	6.7730E+01	.312300
47	+151	4	1289.0	1297.0	.008900	1.1700E+02	. 383300
48	+151	5	2132.0	2143.0	, ወወ4ዚወው	1.7780E+02	.224400
49	+151	6	3182.0	3202.0	.007700	2.9040E+02	.333600
50	+151	7	4452.0	4470.0	003800	3,2380E+02	.204100
51	+175	2	225.0	238.0	012600	3.0490E+01	. 388600
52	+175	Ą	1286.0	1291.0	,ଉହନ୍ତର୍ଜ	9,4830E+01	.523000
53	+175	5	2127.0	2139.0	002800	1.8340E+02	. 129300
54	+175	6	3174.0	3192.0	.003820	6,4400E+01	.179400
55	+175	7	4442,0	4459.0	.002900	3.1700E+02	.158200
56	+175	3	656.0	661.0	.005300	6.2430E+01	.218700

EDØ355

MATERIAL: UZ201

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM

SLOPE ML

150.0 6.174E+05 4.075E+02 0.320 1.330E+01

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 150.0 1.321 .250 -.315 2.579E+05 .250

MATERIAL CODE: ED0355
MATERIAL: UZ201
MANUFACTURER: COATING SCIENCE

REMARKS:

DATE: 28 Dec 1987

ENTERED BY: TV6
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-105 \$ 7-125
BEAM TYPE: SANDWICH BEAM
BEAM LENGTH:

BEAM LENGTH: 7 in BEAM THICKNESS:

.06029 in .283 lb/cu in BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .0028 in

DAMPING MATERIAL DENSITY: 0 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	SHEAR	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	-50	 2	244.3	469.1	.007460	4.7269E+03	.055521
2	-50	3	686.9	1230.8	.011370	6.2082E+03	.050521
3	-50	4	i348.8	2277.8	.013390	7.6754E+03	.047294
4	-50	5	2239.1	3823.0	.011250	1.3846E+04	.041080
5	-50	6	3348.2	5579.3	.007990	1.7506E+04	.027202
6	-2 5	2	244.1	463.1	.013970	4.0246E+03	.092826
7	-25	3	685.2	1200.4	.021410	5.0930E+03	.085935
8	-25	4	1345.6	2208.0	025630	6.2656E+03	.087535
9	-25	5	2233.2	3703.0	.025900	1.1186E+04	.090624
10	-25	6	3339.4	5467.0	.014080	1.5465E+04	.045996
11	+0	2	243.6	442.6	.054680	2.3734E+03	.265718
12	+Ø	3	683.5	1124.0	.061480	3.1572E+03	.204795
13	+0	4	1342.4	2036.7	.077630	3.7881E+03	.230207
14	+0	5	2227.3	3384.3	.067430	S.3955E+03	.199593
15	+0	5	2227.3	3384.3	.084780	6.3377E+03	.252336
16	+25	2	243.1	410.0	.168290	1.1166E+03	.647561
17	+25	3	681.9	1033.0	.153920	1.7879E+03	.473188
18	+25	4	1339.3	1848.0	.145100	2.1171E+03	.440368
19	+50	2	242.6	307.0	.301300	1.9601E+02	1.147840
20	+50	3	580.2	821.0	. 275030	4.1094E+02	1.163332
21	+50	4	1336.1	1507.0	.226280	4.6963E+02	1.282715
22	+75	2	242.1	271.0	.181370	8.1260E+01	1.044428
23	+75	3	678.5	733.2	.126300	1.5160E+02	.967533
24	+75	4	1332.9	1403.5	.105880	1.9057E+02	1.163178
25	+75	5	2209.6	2313.1	.116730	2.7424E+02	1.452127
26	+75	6	3304.5	3232.6	.090580	Ø.0000E+00	0.000000
27	+100	2	241.6	252.4	.054950	2.9471E+01	.685771
28	+100	3	676.9	690.1	.034490	3.5311E+01	.929083
29	+100	4	1329.7	1354.8	.027610	6.7255E+01	.767375
30	+100	5	2203.7	2241.4	.029180	1.0109E+02	.891476
31	+124	2	241.2	248.8	.032760	2.0694E+01	.556503
32	+124	3	675.3	685.4	.023930	2.6941E+01	.828738

MATERIAL CODE: ED0355 MATERIAL: UZ2**0**1

MANUFACTURER: COATING SCIENCE

REMARKS:

DATE: 28 Dec 1987 ENTERED BY: TUG BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-105 \$ 7-125
BEAM TYPE: SANDWICH BEAM

BEAM LENGTH: in .06029 BEAM THICKNESS: in

BEAM DENSITY: . 283 lb/cu in

DAMPING MATERIAL THICKNESS: .0028 in DAMPING MATERIAL DENSITY: 0 lb/cu in

INDEX TEMP MODE BEAM COMPOSITE COMPOSITE SHEAR MATERIAL No. DEG No. FREQ FREQ LOSS LOSS MODULUS FACTOR PSI F FACTOR Hz Hz 33 +124 4 1326.7 1345.8 .015680 5.1096L+01 .562919
34 +124 5 2198.0 2228.3 .016250 8.1042E+01 .609510
35 +124 6 3287.4 3332.5 .014010 1.2127E+02 .526759
36 +150 2 240.7 246.7 .017880 1.6288E+01 .376291
37 +150 3 673.5 683.3 .012220 2.6115E+01 .433745
38 +150 4 1323.4 1337.1 .007554 3.6453E+01 .373352
39 +150 5 2191.9 2213.7 .007815 5.8078E+01 .401787

 +150
 5
 2191.9
 2213.7
 .007815
 5.8078E+01
 .401787

 +150
 6
 3278.3
 3316.9
 .006753
 1.0340E+02
 .294293

 +175
 2
 240.2
 245.4
 .012430
 1.3899E+01
 .301875

 +175
 3
 671.9
 680.8
 .008284
 2.3719E+01
 .320843

 +175
 4
 1320.2
 1333.1
 .005116
 3.4154E+01
 .268062

 +175
 5
 2186.0
 2206.6
 .005484
 5.4720E+01
 .297137

 +175
 6
 3269.6
 3307.0
 .006296
 9.9966E+01
 .281993

 +200
 2
 239.7
 244.2
 .008232
 1.1937E+01
 .229659

 +200
 3
 670.2
 678.1
 .005560
 2.0898E+01
 .242018

 +200
 4
 1317.1
 1328.1
 .003644
 2.9186E+01
 .221388

 +200
 5
 2180.1
 2197.4
 .003240
 4.575...+01
 .207810

 40 41 42 43 44 45 46 47 48 5 2180.1 2197.4 .003240 4.575...+01 49 +200 .207810 +200 6 3260.9 3287.6 .003300 7.1030E+01 .204760 50

APPENDIX C STRUCTURAL ADHESIVES

Material	Page
2214 Hi-flex	C-2
E241N	C-9
EA956	C-15
Fusor 306	C-23
Tyrite 7520	C-29
Phillybond	C-34
Epon 828	C-40

MATERIAL CODE: CM0434 MATERIAL: 2214 HI FLEX

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 350.0 0.000E+00 0.000E+00 0.000 0.000E+00

L06(ETA)=L06(ETFRQL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 350.0 0.000 0.000 0.000 0.000E+00 0.000

MATERIAL CODE: CM0434

MATERIAL:

2214 HI FLEX

MANUFACTURER:

REMARKS:

DATE: 12 Mar 1988

ENTERED BY:

₿JF

BEAM MATERIAL: BEAM NUMBER:

ALUMINUM AL 7-132

BEAM TYPE:

BEAM LENGTH:

FREE LAYER ONE SIDE

7 in .06014 in

BEAM THICKNESS:

.283

lb/cu in

BEAM DENSITY: DAMPING MATERIAL THICKNESS: .0985

in

DAMPING MATERIAL DENSITY:

.0542 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+71	3	862.7	935.1	.019841	6.4814E+05	.057526
2	+72	2	305.4	330.9	.022339	6.3495E+05	.064892
3	+72	4	1697.3	1836.5	.021164	6.4671E+05	.061745
4	+73	5	2816.6	3025.8	.021531	6.2463E+05	.064498
5	+74	6	4235.9	4503.5	.023431	5.9632E+05	.073082
6	+85	2	304.8	330.9	.022921	6.3970E+05	.066117
7	+85	3	860.9	933.0	.019299	6.4493E+05	.055978
8	+85	6	4229.5	4491.8	.023450	5.9052E+05	.073460
9	+85	4	1693.5	1831.2	.021407	6.4131E+05	.062604
10	+85	5	2810.9	3019.0	.022198	6.2123E+05	.066553
11	+100	2	304.1	328.1	.020093	6.1456E+05	.059245
12	+101	3	858.8	923.4	.021169	6.1262E+05	.063197
13	+101	4	1689.5	1810.8	.020301	6.0568E+05	.061343
14	+:01	5	2804.2	2984.0	.021257	5.8426E+05	.0660\$3
15	+101	6	4220.2	4439.3	.022242	5.5311E+05	.072502
16	+115	3	85 6.9	911.2	.019470	5.7003E+05	. 060679
17	+115	.4	1685.7	1787.5	.018209	5.6439E+05	.057398
18	+115	5	2798.0	2944.8	.019257	5.4242E+95	.062628
19	+115	6	4212.0	4380.2	.015904	5.1026E+05	.088296
20	+116	2	303.4	324.3	.016429	5.7800E+05	. 050 190
21	+130	8	4203.3	4323.8	.016993	4.7070E+05	.061452
22	+131	3	854.8	899.8	-014338	5.3188E+05	. 046596
23	+131	4	1581.4	1765.6	.015463	5.2734E+05	.050787
24	+131	5	2790.9	2907.0	.015821	5.0366E+05	.053878
25	+132	2	302.7	320.6	.013029	5.4379E+05	.041264
26	+145	6	4194.6	4274.9	.014035	4,3749E+05	.053275
27	+146	3	852.8	891.0	.010798	5.0378E+05	.036266
28	+146	4	1677.3	1746.5	.012270	4.9593E+05	.041854
29	+146	5	2784.2	2874.7	.013070	4.7150E+05	.046493
30	+147	2	302.0	317.3	.010732	5.1430E+05	.035312
31	+161	2	301.3	314.3	.010574	4.8789E+05	.035768
32	+161	3	850.8	882.8	.009682	4.7820E+05	.033576

MATERIAL CODE: CM0434
MATERIAL: 2214 HI FLEX
MANUFACTURER: 3M

REMARKS:

DATE: 12 Mar 1988

ENTERED BY:
BEAM MATERIAL:
BEAM NUMBER:
BEAM TYPE:
BEAM LENGTH:
7

7 in .06014 in .283 lb/cu in BEAM THICKNESS:

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .0985 in
DAMPING MATERIAL DENSITY: .0542 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YCUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	+161	4	1673.3	1729.7	.010350	4.6935E+05	.036533
34	+161	5	2777.6	2846.7	.010893	4.4484E+05	.040138
3 5	+161	6	4185.3	4231.1	.011802	4.0915E+05	.046849
36	+174	4	1669.7	1712.7	.009064	4.4185E+05	.033262
37	+175	3	849.0	873.9	.009184	4.5014E+05	.033104
38	+175	5	2771.3	2818.7	.009876	4.1815E+05	.037895
39	+175	6	4177.1	4190.3	.010358	3.82°6E+05	.043050
40	+176	2	300.6	311.2	.011808	4.60.0E+05	.041425
41	+190	2	300.0	307.2	.013755	4.2471E+05	.050867
42	+190	3	847.0	863.4	.010289	4.1686E+05	.039006
43	+191	4	1665.2	1692.2	.010178	4.0975E+05	.039240
44	+191	5	2764.2	2785.8	.010281	3.8697E+05	.041560
45	+191	6	4167.8	4142.4	.010203	3.5195E+05	.044975
46	+205	2	299.3	300.9	.019250	3.6562E+05	.078991
47	+205	3	845.0	847.0	.014012	3.6301E+05	.058513
48	+205	4	1661.4	1660.8	.013205	3.5709E+05	.056 0 87
49	+205	5	2758.0	2736.4	.013196	3.3734E+ 0 5	.058857
50	+205	6	4159.7	4071.7	.012822	3.0416E+ 0 5	.062999
51	+220	6	4150.9	3977.2	.018545	2.4076E+05	.109399
52	+221	4	1657.1	1617.7	.020599	2. 8557E+05	.103323
53	+221	5	2750.9	2669.5	.019669	2.7086E+05	.103541
54	+222	2	298.5	291.2	.030077	2.7678E+ 0 5	.151816
55	+222	3	842.8	823.4	.023089	2.8598E+05	.115078
56	+235	2	297.9	278.2	.044031	1.5981E+ 0 5	.348571
57	+235	5	2136.4	4280.1	.062434	2.6122E+ 0 5	.158434
58	+236	2	234.6	634.9	.032621	0.0000E+00	0.000000
59	+236	3	840.9	792.1	.039426	1.8512E+ 05	.279091
60	+236	4	1653.0	1561.0	.034236	1.9283E+05	.235371
61	+236	5	2744.2	2581.1	.032034	1.8374E+ 05	.231071
62	+236	6	4141.6	3853.2	.029626	1.5903E+05	.247046
63	+236	6	3193.3	5958.2	.069467	2.7913E+05	.159498
64	+237	4	1289.4	2844.5	.05 8197	2.6817E+05	.188871

MATERIAL CODE: CM0434

MATERIAL: 2214 HI FLEX MANUFACTURER: 3M

REMARKS:

DATE: 12 Mar 1988 ENTERED BY: BJF

BEAM MATERIAL: ALUMINUM
BEAM NUMBER: AL 7-132
BEAM TYPE: FREE LAYER ONE SIDE
BEAM LENGTH:

7 in BEAM THICKNESS: .06014 in

lb/cu in BEAM DENSITY: .283

DAMPING MATERIAL THICKNESS: .0985 in

DAMPING MATERIAL DENSITY: .0542 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
65	+250	3	655.4	1536.0	.102239	1.8989E+05	.446087
66	+251	6	3188.5	5474.4	.128121	1.9013E+05	.280248
67	+253	4	1287.4	2640.0	.119395	1.7013E+05	.323099
68	+254	5	2132.2	3912.0	.121929	1.688 0 E+ 0 5	.278629
69	+265	5	2129.8	3344.4	.220494	8.3879E+ 0 4	.491374
70	+266	2	296.5	250.0	.050199	0.0000E+00	0.000000
71	+266	3	837.0	715.7	.054457	0.0000E+00	0.000000
72	+266	4	1644.9	1421.8	.055562	0.0000E+00	0.000000
73	+266	5	2730.9	2366.1	.055316	0.0000E+00	0.000000
74	+266	6	4124.2	3551.6	.054113	Ø.0000E+00	0.000000
75	+267	3	654.3	1351.8	.200808	8.1084E+04	.580547
76	+268	4	1285.4	2232.1	.226955	7.5691E+04	.517976
77	+280	3	835.1	691.1	.031462	0.0000E+00	0.000000
78	+280	5	2724.7	2270.5	.042056	0.0000E+00	0.000000
79	+280	6	4116.0	3408.6	.044571	C.0000E+00	0.000000
80	+281	2	295.8	242.7	.022161	0.0000E+00	0.000000
81	+281	4	1640.8	1366.4	.037672	0.0000E+00	0.000000
82	+294	5	2123.4	2296.4	.185707	9.4958E+03	1.085688
83	+295	3	833.1	682.5	.014655	0.0000E+00	0.000000
84	+295	6	4107.3	3332.2	.025183	0.0000E+00	0.000000
85	+296	2	295.1	240.5	.009151	0.0000E+00	0.000000
86	+296	4	1636.8	1343.2	.018321	0.0000E+00	0.000000
87	+296	5	2717.6	2223.7	.021839	0.0000E+00	0.000000
88	+297	4	1281.7	1452.2	.213210	8.9059E+03	.9122 90

MATERIAL CODE: E241NC MATERIAL: E241N(350°CURE)

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 300.0 1.000E+07 2.100E+05 0.330 4.000E+04

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 300.0 .310 .500 -.300 3.000E+06 1.300

MATERIAL CODE: E241NC

MATERIAL: E241N(350°CURE) MANUFACTURER: ALLIED RESIN CO REMARKS: TESTED 12-3-86

DATE: 15 Dec 1986 ENTERED BY: HDW

BEAM MATERIAL: STAINLESS STEEL

BEAM NUMBER: 7-06

FREE LAYER ONE SIDE BEAM TYPE:

BEAM LENGTH: 7 in BEAM THICKNESS: .05935 in

.283 lb/cu in BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .04809 in DAMPING MATERIAL DENSITY: .0518 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	ιoss
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+75	2	236.9	249.9	.005280	9.1690E+05	.024904
2	+75	3	662.6	698.9	.005570	9.1390E+05	.026301
3	+75	4	1298.5	1372.9	.008590	9.3551E+05	.039872
4	+75	5	2150.2	2277.7	.006370	9.5504E+05	.029196
5	+75	6	3215.5	3406.6	.007040	9.6165E+05	.032244
6	+75	7	4489.2	4755.0	.004460	9.5543E+05	.020455
7	+75	7	4489.2	4740.3	.007380	9.2840E+05	.034568
8	+50	2	237.5	252.6	.004790	9.9161E+05	.021426
9	+50	3	664.0	705.7	.005510	9.8451E+05	.024717
10	+50	4	1301.0	1392.1	.007230	1.044FE+06	.031074
11	+50	5	2155.0	2304.5	.006850	1.0436E+06	.029583
12	+50	6	3223.6	3438.1	.007290	1.0263E+06	.031969
13	+50	7	4499.7	4791.3	.005530	1.0067E+06	.024502
14	+26	2	238.2	254.7	.004750	1.0491E+06	.020485
15	+26	3	665.4	711.2	.005840	1.0388E+06	.025281
16	+26	4	1303.4	1405.9	.007080	1.1215E+ 0 6	.029020
17	+26	5	2159.6	2327.5	.009660	1.1190E+06	.039783
18	+26	6	3231.4	3467.9	.006370	1.0880E+06	.026889
19	+26	7	4509.7	4828.6	.005630	1.0611E+06	.024100
20	+100	2	236.2	245.0	.003410	7.7118E+ 0 5	.045009
21	+100	3	661.2	686.4	.008040	7.7698E+05	.042770
22	+100	4	1296.0	1352.6	.015380	8.2135E+05	.078448
23	+100	5	2145.4	2240.6	.008350	8.2925£+05	.042373
24	+100	6	3207.5	3348.7	.009320	8.3088E+05	.047418
25	+100	7	4478.8	4663.9	.007870	8.0564E+05	.040850
26	+125	2	235.5	237.7	.016920	5.4847E+05	.118361
27	+126	3	659.7	668.0	.015120	5.7437E+05	.101924
28	+125	4	1293.4	1316.0	.015420	6.1246E+05	.098728
29	+126	5	2140.4	2186.3	.014040	6.4435E+05	.096443
30	+126	6	3199.1	3269.3	.015540	6.5138E+05	.095215
31	+125	7	4467.9	4560.1	.013310	6.3862E+05	.082600
32	+150	2	234.8	227.7	.021340	2.5463E+05	.290441

MATERIAL CODE: E241NC

E241N(350°CURE) MATERIAL: ALLIED RESIN CO MANUFACTURER: REMARKS: TESTED 12-3-86

DATE: 15 Dec 1986 ENTERED BY: HDW

BEAM MATERIAL: STAINLESS STEEL BEAM NUMBER: 7-06

BEAM TYPE: FREE LAYER ONE SIDE

BEAM LENGTH: in .05935 in BEAM THICKNESS:

BEAM DENSITY: .283 lb/cu in

DAMPING MATERIAL THICKNESS: .04809 in

DAMPING MATERIAL DENSITY: .0518 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	YOUNG'S MODULUS PSI	MATERIAL LOSS FACTOR
33	+150	3	658.3	643.4	.022070	3.1014E+05	
34	+150	4	1290.9	1271.9	.021940	3.68 05 E+ 05	.215447
35	+150	5	2135.8	2115.3	.021650	4.0668E+05	.195158
36	+150	6	3191.3	3171.5	.021470	4.3382E+05	.183712
37	+150	7	4457.9	4424.0	.022220	4.2176E+05	.194215
38	+175	2	234.1	222.5	.010110	1.1649E+05	.284896
39	+175	3	656.9	626.1	.013860	1.3702E+05	. 33 58 0 3
40	+175	4	1288.4	1235.7	.017080	1.7890E+05	.322288
41	175	5	2131.0	2053.2	.018650	2.1028E+05	.303014
42	+17 <u>°</u>	6	3183.3	3066.7	.008540	2.1026E+05	.140871
43	+ .75	7	4447.4	4289.1	.023300	2.1680E+05	.368189
44	*223	2	233.3	220.5	.003470	7.9951E+04	.139705
45	+203	3	655. 2	618.5	.004920	7.2816E+04	.218129
46	+203	4	1285.6	1217.5	.006500	9.4384E+04	.224614
47	+203	5	2125.6	2020.8	.007980	1.1964E+05	.219624
48	+203	6	3174.2	3018.4	.008980	1.2158E+05	.244083
49	+203	7	4435.7	4213.7	.010750	1.1456E+05	.308509

MATERIAL CODE:

ED0448

MATERIAL: HYSOL EA956

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 300.0 0.000E+00 0.000E+00 0.000 0.000E+00

L06(ETA)=L06(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 300.0 0.000 0.000 0.000 0.000E+00 0.000

MATERIAL CODE: ED0448
MATERIAL: HYSOL 8

MATERIAL: HYSOL EA956
MANUFACTURER: DEXTER HYSOL

REMARKS:

DATE: 23 Mar 1988 ENTERED BY: SEO

BEAM MATERIAL: ALUMINUM BEAM NUMBER: AL-080-8

BEAM TYPE: FREE LAYER ONE SIDE

BEAM LENGTH: 7 in BEAM THICKNESS: .08 in

BEAM DENSITY: .11 lb/cu in

DAMPING MATERIAL THICKNESS: .058 in

DAMPING MATERIAL DENSITY: .0416 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+71	3	899.7	958.8	.020752	6.0299E+05	.064939
2	+72	4	1774.1	1894.3	.023543	6.1786E+05	.073152
3	+72	5	2942.9	3145.0	.026044	6.2 560 E+05	.080659
4	+72	6	4399.0	4694.2	. 025962	6.2305E+05	.080838
5	+72	7	6142.6	6554.5	.025087	3.2015E+ 05	.078135
6	+85	2	321.7	338.0	.030739	5.5136E+ 0 5	.101707
7	+85	3	897.8	950.2	.020248	5.7483E+05	.065046
8	+85	4	1769.9	1876.3	.022355	5.8791E+05	.071356
9	+86	5	2935.8	3115.3	.024193	5.9 550E+0 5	.076946
10	+86	6	4389.2	4648.3	.025673	5.911 5E+0 5	.082280
11	+86	7	6129.5	6488.5	.025853	5.8716E+05	.082994
12	+100	2	321.0	333.4	.022636	5.0809E+05	.078638
13	+101	3	895.6	939.8	.018853	5.4087E+05	.062685
14	+101	4	1765.4	1854.4	.020926	5.5093E+05	.069290
15	+101	5	2928.3	3078.5	.023265	5.5777E+05	.076772
16	+101	7	6115.4	6408.E	.024762	5.4710E+05	.082795
17	+102	6	4378.0	4596.1	.025175	5.5559E+05	.083558
18	+114	7	6103.1	6330.2	.023679	5.0782E+05	.082793
19	+115	2	320.3	327.8	.019485	4.5546E+05	.072498
20	+115	6	4368.9	4537.8	.024349	5.1457E+05	. 084603
21	+118	3	893,5	929.1	.018247	5.0599E+05	.063090
22	+116	4	1760.9	1832.1	.020234	5.1382E+05	.069782
23	+116	5	2920.7	3041.2	.021531	5.2016E+05	.073994
24	+129	4	1757.0	1810.3	.019246	4.7767E+05	.069378
25	+129	5	2914.2	3003.8	.020764	4.8222E+05	.074716
26	+129	6	4359.1	4479.2	.023327	4.7448E+05	.085191
27	+130	2	319.5	324.8	.022094	4.2953E+05	.085258
28	+130	3	891.6	917.9	.017691	4.6941E+05	.064034
29	+130	7	6088.1	6248.8	.023315	4.6876E+05	.085611
30	+145	2	318.9	320.9	.019223	3.9578E+05	.078240
31	+145	3	889.5	906.4	.016480	4.3307E+05	.062740
32	+145	5	2906.2	2964.8	.019632	4.4441E+05	.074298

MATERIAL CODE: ED0448

MATERIAL: HYSOL EA956 MANUFACTURER: DEXTER HYSOL

REMARKS:

DATE: 23 Mar 1988

ENTERED BY: SEO

BEAM MATERIAL: ALUMINUM
BEAM NUMBER: AL-080-8

AL-080-8

BEAM TYPE: BEAM LENGTH:

FREE LAYER ONE SIDE

.08

in in

BEAM THICKNESS:

.11

1 n

BEAM DENSITY:

lb/cu in

DAMPING MATERIAL THICKNESS: .068

DAMPING MATERIAL DENSITY: .0416

lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	P\$I	FACTOR
33	+146	4	1751.9	1787.0	.018156	4.4084E+05	.068760
34	+146	6	4347.2	4420.0	.021671	4.3588E+05	.083457
35	+146	7	6073.0	6165.7	.023239	4.2959E+05	.090182
36	+159	5	2899.1	2924.8	-018781	4.0540E+05	.075429
37	+159	6	4338.1	4360.2	.020522	3.9607E+05	.084182
38	+150	3	887.5	894.4	.015114	3.95 30 E+05	.065095
39	+160	4	1747.7	1763.0	.017506	4.0223E+05	.070351
40	+161	2	318.1	316.5	.018183	3.5713E+05	.079326
41	+162	7	6058.0	5080.1	.022177	3.8985E+05	.091722
42	+173	3	885.7	882.8	.016211	3.5903E+05	.069884
4 3	+175	2	317.5	311.9	.018497	3.1804E+05	.087564
44	+176	4	1742.9	1738.8	. 017382	3.6493E+05	.074513
45	+177	5	2890.1	2881.7	.018429	3.6554E+05	.079257
46	+178	7	6042.9	5987. 9	.0 20726	3.4749E+05	.092730
47	+180	6	4323.4	4292.5	.020145	3.5442E+05	.089007
48	+191	2	316.7	307.5	.019310	2.8069E+05	.100084
49	+191	6	4315.7	4234.5	.020439	3.1686E+Ø5	.097783
50	+192	7	6029.7	5906.0	.020313	3.1061E+05	.098405
51	+193	3	882.9	869.9	.016467	3.2172E+05	.076527
52	+193	5	2882.0	2839.0	.018522	3.2605E+05	.086203
53	+194	4	1737.5	1712.3	.017397	3.2524E+05	.080703
54	+205	3	881.2	857.0	.017240	2.8227E+05	.088127
55	+206	2	316.0	303.0	.020961	2.4425E+05	.120634
56	+206	4	1733.9	1687.1	.018135	2.8616E+05	.092303
57	+206	7	6016.5	5814.3	.020566	2.6958E+05	.110608
58	+207	5	2875.0	2795.1	.018888	2.8539E+05	.096786
59	+208	6	4303.8	4163.9	.019938	2.7345E+05	.106219
60	+219	4	1729.9	1659.9	.018912	2.4494E+05	.108212
61	+220	5	2868.5	2751.5	.019710	2.4559E+05	.113085
62	+221	3	879.0	843.0	.018309	2.4147E+05	. 105235
63	+221	6	4294.7	4100.5	.020366	2.3454E+05	.121999
64	+223	2	315.2	298.5	.024966	2.0830E+05	.162616

MATERIAL CODE: EDØ448

MATERIAL: HYSOL EASS6 MANUFACTURER: DEXTER HYSOL

REMARKS:

DATE: 23 Mar 1988 ENTERED BY: SEO

ALUMINUM AL-080-8 BEAM MATERIAL: BEAM NUMBER:

BEAM TYPE: FREE LAYER ONE SIDE

BEAM LENGTH: in .08 BEAM THICKNESS: in

BEAM DENSITY: .11 lb/cu in

DAMPING MATERIAL THICKNESS: .068 in DAMPING MATERIAL DENSITY: .0416 lb/cu in

INDEX TEMP MODE BEAM COMPOSITE COMPOSITE YOUNG'S LOSS DEG No. FREQ No. FREO MODULUS LOSS F Hz Hz FACTOR PSI FACTOR +223 7 6000.6 5726.0 65 .021650 2.3223E+05 .130400 5 2860.9 2703.1 .020788 2.0274E+05 66 +235 .138580 67 83 69 7 5987.4 5638.4 .023651 1.9501E+05 .163680 70 +237 71 +239 3 876.6 829.6 .020903 2.0433E+05 .136762
72 +249 6 4275.2 3957.5 .022397 1.4937E+05 .193800
73 +250 7 5975.1 5538.6 .029766 1.5251E+05 .252454
74 +252 3 874.8 815.1 .024021 1.6279E+05 .189257
75 +253 4 1719.7 1600.3 .021745 1.6028E+05 .174556
76 +253 5 2851.9 2650.1 .021962 1.5760E+05 .179819 797.4 .028564 1.1165E+05 77 +263

 3
 873.2
 797.4
 .020004
 1.1100000

 7
 5962.0
 5399.8
 .029683
 9.3769E+04
 .385786

 4
 1716.1
 1568.7
 .023262
 1.1482E+05
 .248748

 6
 4263.3
 3874.9
 .023677
 1.0253E+05
 .284141

 5
 2844.8
 2597.0
 .023430
 1.1217E+05
 .257102

 4
 1712.2
 1533.8
 .024791
 6.5997E+04
 .437624

 7
 .025078
 5.4915E+04
 .522948

 3 873.2 .311545 78 +264 79 +265 80 +266 +267 81 82 +278 .025078 5.4915E+04 .522948 83 +279 3 871.0 776.7 +280 2 295.8 269.7 .028423 4.7347E+04 1.208756 +280 3 835.1 760.8 .027250 4.4848E+04 1.253522 +280 4 1641.1 1498.1 .028071 5.3635E+04 1.080651 +280 7 5781.5 5185.7 .031045 0.0000E+00 0.000000 +281 5 2837.8 2539.3 .025742 6.3788E+04 .471356 84 85 86 87 88 89 +282 7 5945.0 5273.5 .028007 4.3981E+04 .734612
90 +283 6 4251.4 3789.5 .025564 5.5348E+04 .539707
91 +294 3 833.3 743.4 .027043 0.0000E+00 0.000000
92 +294 4 1637.3 1462.7 .028893 0.0000E+00 0.000000
93 +294 5 2718.5 2413.8 .034640 0.0000E+00 0.000000
94 +294 6 4107.9 3622.9 .031449 0.0000E+00 0.000000
95 +294 7 5770.3 5066.3 .030703 0.0000E+00 0.000000 2 294.5 258.4 .025852 0.0000E+00 0.000000 96 +309

MATERIAL CODE: ED0448
MATERIAL: HYSOL EA956
MANUFACTURER: DEXTER HYSOL

REMARKS:

DATE: 23 Mar 1988 ENTERED BY: SEO
BEAM MATERIAL: ALUMINUM
BEAM NUMBER: AL-080-8
BEAM TYPE: FREE LAYER ONE SIDE
BEAM LENGTH: 7

7 in BEAM THICKNESS: . 08 in

.11 BEAM DENSITY: lb/cu in

DAMPING MATERIAL THICKNESS: .068

DAMPING MATERIAL THICKNESS: .068 in DAMPING MATERIAL DENSITY: .0416 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
97	+309	3	831.3	728.9	.026079	0.0000E+20	0.000000
98	+309	4	1633.3	1432.3	.028435	0.0000E+00	0.000000
99	+309	5	2711.8	2365.1	.032954	0.0000E+00	0.000000
100	+309	6	4099.1	3545.8	.031771	0.0000E+00	0.000000
101	+309	7	5758.4	4954.7	.028822	0.0000E+00	0.000000
102	+325	2	293.8	253.7	.022758	0.0000E+00	0.000000
103	+325	3	829.2	715.1	.023319	0.0000E+00	0.000000
104	+325	4	1629.0	1403.7	.024840	0.0000E+00	0.000000
105	+325	5	2704.7	2326.5	. 026275	0.0000E+00	0.000000
106	+325	6	4089.8	3473.1	.028698	0.0000E+00	0.000000
107	+325	7	5745.7	4865.5	.027652	0.0000E+00	0.000000
108	+339	2	293.1	250.4	.019107	0.0000E+00	0.000000
109	+339	3	827.3	705.3	.018152	0.0000E+00	0.000000
110	+339	4	1625.2	1383.6	. 020964	0.0000E+00	0.000000
111	+339	5	2698.5	2291.7	.022573	0.0000E+00	0.000000
112	+339	6	4081.7	3423.1	.024836	0.0000E+00	0.000000
113	+339	7	5734.5	4794.8	.024109	0.0000E+00	0.000000
114	+354	2	292.4	247.9	.017669	0.0000E+00	0.000000
115	+354	3	825.3	698.1	.015290	0.0000E+00	0.000000
116	+354	4	1621.1	1367.9	.017572	0.0000E+00	0.000000
117	+354	5	2691.8	2265.4	.018632	0.0000E+00	0.200000
118	+354	6	4072.9	3382.9	.020947	0.0000E+00	0.000000
119	+354	7	5722.6	4734.6	.021449	0.0000E+00	0.000000

MATERIAL CODE: FUS308 MATERIAL: FUSOR306/350°CR

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML

350.0 4.001E+09 1.700E+05 0.530 5.146E+04

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C

350.0 .300 .500 -.340 2.300E+08 .800

MATERIAL CODE: FUS305

MATERIAL: FUSOR306/350°CR

MANUFACTURER: LORD REMARKS: NONE DATE: 22 Dec 1986 ENTERED BY: HDW

BEAM MATERIAL: STAINLESS STEEL

BEAM NUMBER: 7-47

BEAM TYPE:

FREE LAYER ONE SIDE BEAM LENGTH: in .0584 **BEAM THICKNESS:** in

.283 BEAM DENSITY: lb/cu in

DAMPING MATERIAL THICKNESS: .0553 in

DAMPING MATERIAL DENSITY: .047 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DE6	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+23	2	238.7	247.4	.003920	6.1119E+05	.020436
2	+23	3	667.7	594.2	.005250	6.3100E+05	.026711
3	+23	4	1313.0	1358.3	.005050	6.0291E+05	.026704
4	+23	5	2168.9	2245.7	.005480	6.0762E+05	.028771
5	+23	6	3251.0	3355.6	.005570	5.9401E+05	.030006
6	+23	7	4542.6	4683.1	.005250	5.8457E+05	.028573
7	+50	2	238.0	245.7	.003340	5.8333E+05	.017972
8	+50	3	665.8	689.6	. 204440	6.0320E+05	.023238
9	+50	4	1309.1	1348.1	.004440	5.7055E+05	.024397
10	+50	5	2162.4	2226.9	.005830	5.6981E+0S	.032030
11	+50	6	3240.5	3330.2	.004920	5.6256E+05	.027519
12	+50	7	4529.5	4649.6	.005100	5.5420E+05	.028814
13	+75	2	237.4	243.7	.003240	5.4554E+05	.018297
14	+75	3	664.0	684.3	.004210	5.689 6 E+05	.022962
15	+75	4	1305.6	1336.5	.003930	5.3082E+05	.022763
16	+75	5	2156.5	2207.9	.004250	5.3070E+05	.024648
17	+75	6	3230.8	3301.5	.004490	5.2413E+05	.026438
18	+75	7	4517.3	4610.9	.004860	5.1612E+05	.028935
19	+100	2	236.7	241.1	.004290	4.9472E+ 0 5	.026078
20	+100	3	562.2	679.1	.005320	5.3528E+05	.030315
21	+100	4	1302.0	1323.7	.004520	4.8608E+05	.027973
22	+100	5	2150.5	2187.3	.004570	4.8785E+ 0 5	.028162
23	+100	6	3221.0	3270.3	.004770	4.8145E+05	.029929
24	+100	7	4505.2	4569.6	.005060	4.7507E+05	.032070
25	+125	2	236.1	237.6	.007320	4.2113E+05	.050533
26	+125	3	660.4	674.7	.007530	5.0947E+05	.044437
27	+125	4	1298.4	1307.6	.005640	4.2728E+Ø5	. 045462
28	+125	5	2144.5	2161.2	.006430	4.3050E+05	.043681
29	+125	6	3211.3	3232.9	.005400	4.2812E+05	.043996
30	+125	7	4493.1	4519.6	.006820	4.2326E+05	.047319
31	+150	2	235.5	230.1	.016300	2.5488E+05	.172606
32	+150	3	658.6	671.8	.014290	4.9719E+05	.085621

MATERIAL CODE: FUS306

MATERIAL:

FUSOR306/350°CR

MANUFACTURER:

LORD

REMARKS:

NONE

DATE: 22 Dec 1986

ENTERED BY: HDW

BEAM MATERIAL: STAINLESS STEEL BEAM NUMBER: 7-47 BEAM NUMBER:

BEAM TYPE:

FREE LAYER ONE SIDE

BEAM LENGTH:

.0584

in in

BEAM THICKNESS:

.283

BEAM DENSITY:

lb/cu in

DAMPING MATERIAL THICKNESS: .0553 in DAMPING MATERIAL DENSITY: .047 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	YOUNG'S MODULUS PSI	MATERIAL LOSS FACTOR
33	+150	4	1294.8	1268.2	.014270	2.6814E+05	.145036
34	+150	5	2138.5	2110.3	.012650	3.0875E+05	.113428
35	+150	6	3201.6	3147.9	.013220	2.9115E+05	.125660
36	+150	7	4480.9	4405.0	.012620	2.9030E+05	.120303
37	+175	2	234.8	222.5	.013160	9.5943E+04	.343054
38	+175	3	656.8	624.6	.015370	1.1138E+05	.346938
39	+175	4	1291.3	1234.0	.017180	1.3721E+05	.320481
40	+175	5	2132.6	2043.0	.017620	1.4949E+05	.302841
41	+175	6	3191.9	3075.2	.013040	1.8017E+05	.189858
12	+175	7	4468.8	4289.0	.017630	1.6038E+05	.286115
~ ∙3	+200	2	234.2	220.0	.003050	5.0884E+04	.146006
44	+200	3	655.0	615.7	.005070	5.3417E+04	.231027
45	+200	4	1287.7	1215.0	.010450	7.2519E+04	.356115
46	+200	5	2126.6	2002.4	.008540	6.2159E+04	.337260
47	+200	6	3182.2	2999.0	.010240	6.7025E+04	.378498
48	+200	7	4456.7	4200.3	.011860	6.7346E+04	.437067

MATERIAL CODE: ED0102 MATERIAL: TYRITE 7520

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 340.0 8.000E+08 6.600E+04 0.220 1.400E+04

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 340.0 .340 .150 -.130 4.000E+09 .700

MATERIAL CODE: ED0102 MATERIAL: TYRITE TYRITE 7520

MANUFACTURER: LORD REMARKS: NONE NONE REMARKS: DATE: 9 Jun 1987

ENTERED BY: TCM
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: 7-50
BEAM TYPE: FREE LAYER ONE SIDE
BEAM LENGTH: in BEAM THICKNESS: .0588 in

.283 lb/cu in BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .04127 in DAMPING MATERIAL DENSITY: .039 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+75	2	239.5	236.0	.002390	2.8896E+05	.039477
2	+75	3	670.1	658.1	.005320	2.5617E+05	.098152
3	+75	4	1318.8	1298.0	.002600	2.7933E+05	.044606
4	+75	5	2176.7	2144.7	.002240	2.8944E+ 0 5	.037074
5	+75	6	3255.4	3205.9	.002980	2.8606E+05	.050145
6	+75	7	4556.4	4482.8	.002110	2.7693E+ 0 5	.036607
7	+100	2	238.9	233.8	.004250	2.21 57E+05	.089529
8	+100	3	668.4	653.1	.004870	2.0847E+05	.108502
9	+100	4	1314.9	1288.1	.004540	2.3 370E+05	.093518
10	+100	5	2170.5	2127.3	.003590	2.37 43E+05	.071097
11	+100	6	3248.3	3185.9	.006600	2.4588E+05	.127371
12	+100	7	4544.9	4447.5	.003330	2.2444E+05	.070000
13	+130	2	238.1	230.2	.005270	1.0917E+05	.217390
14	+130	3	666.2	644.0	.005840	1.0858E+05	.241792
15	+130	4	1310.2	1273.5	.007750	1.5963E+05	.222775
16	+130	5	2163.1	2099.2	.005570	1.4448E+05	.175772
17	+130	6	3239.8	3139.0	.005650	1.3099E+05	.197645
18	+130	7	4531.1	4391.5	.005000	1.3380E+05	.171179
19	+150	2	237.6	229.2	.004450	8.9050E+04	.223401
20	+150	3	664.8	641.1	.005260	8.6987E+04	.269113
21	+150	4	1307.0	1270.3	.009530	1.5777E+05	.275756
22	+150	5	2158.2	2088.8	.005480	1.1945E+05	.206864
23	+150	6	3234.2	3122.0	.008750	9.7063E+04	407992
24	+150	7	4521.9	4368.0	.005563	1.0297E+05	.244505
25	+200	2	236.4	226.6	.001120	3.4972E+04	.139287
26	+200	3	661.2	633.4	.001450	2.7571E+04	.227827
27	+200	5	2146.0	2060.0	.001930	4.5884E+04	.183834
28	+175	2	237.0	227.6	.002200	5.1262E+04	.188483
29	+175	3	563.0	636.5	.003220	4.6115E+04	.305677
30	+175	5	2152.1	2071.6	.003880	7.0483E+04	.243587
31	+175	6	3227.1	3099.4	.004450	5.1182E+04	.386992
32	+175	7	4510.4	4330.8	.004430	4.8741E+04	.403329
				-			

MATERIAL CODE: PHILLY MATERIAL: PHILLYBOND/350°

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FOROM MROM SLOPE ML

0.000E+00 200.0 Ø.000E+00 0.000E+00 0.000

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL С

0.000 0.000 0.000E+00 0.000 200.0 0.000

MATERIAL CODE: PHILLY

MATERIAL: MANUFACTURER:

PHILLYBOND/350° PHIL. RESIN CO.

REMARKS

NONE

DATE: 29 Dec 1986

ENTERED BY:

HDW

BEAM MATERIAL:

STAINLESS STEEL

BEAM NUMBER:

7-43

BEAM TYPE:

FREE LAYER ONE SIDE

BEAM LENGTH:

in

BEAM THICKNESS:

.0593 .283

in

in

BEAM DENSITY:

lo/cu in

DAMPING MATERIAL THICKNESS:

.05328

DAMPING MATERIAL DENSITY: .0395

lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+50	2	241.6	251.5	.007990	6.0815E+05	.045307
2	+50	3	678.7	706.2	.908740	6.1154E+05	.049585
3	+50	4	1327.7	1389.1	.008500	6.4740E+05	.045996
4	+50	5	2199.5	2300.6	.008220	6.4824E+05	.044585
5	+50	6	3291.5	3440.9	.008340	6.4907E+05	.045448
6	+50	7	4597.3	4780.0	.006860	6.0858E+05	.039208
7	+75	2	241.0	246.1	.012310	4.7861E+05	.084345
8	+75	3	676.2	695.8	.013310	5.3095E+05	.084054
9	+75	4	1324.0	1363.5	.011290	5.3551E+05	.070718
10	+75	5	2193.3	2259.5	.010720	5.4023E+05	.066898
11	+75	6	3282.2	3380.9	.010590	5.4325E+05	.066180
12	+75	7	4585.6	4711.2	.010760	5.2395E+05	.069068
13	+100	2	240.3	235.4	.024090	2.1664E+05	.328608
14	+100	3	673.7	665.1	.019850	2.6457E+05	.226382
15	+100	4	1320.4	1308.0	.010700	2.8533E+05	.114101
16	+100	5	2187.0	2183.2	.019190	3.3361E+05	.178924
17	+100	6	3273.0	3272.1	.014880	3.4536E+05	.135481
18	+100	7	4573.9	4563.6	.017990	3.3201E+05	.169136
19	+125	2	239.7	225.5	.023020	0.0000E+00	0.000000
20	+125	3	671.2	639.9	.022190	6.1800E+04	.991009
21	+125	4	1316.7	1265.7	.026230	1.0788E+05	.685545
22	+125	5	2180.8	2101.7	.024550	1.2276E+05	.569457
23	+125	6	3263.8	3153.3	.023850	1.3816E+ 0 5	.498128
24	+125	7	4562.3	4404.0	.024230	1.3289E+05	.523952
25	+150	2	239.0	221.3	.015320	0.0000E+00	0.000000
26	+150	3	668.7	626. Ø	.011410	0.0000E+00	0.000000
27	+150	4	1313.0	1230.9	.015200	0.0000E+00	0.000000
28	+150	5	2174.6	2041.6	.014110	0.0000E+00	0.000000
29	+150	6	3254.6	3056.0	.014920	0.0000E+00	0.000000
30	+150	7	4550.6	4268.7	.014180	0.0000E+00	0.000000
31	+175	2	239.4	219.5	.018950	0.0000E+00	0.000000
32	+175	3	666.2	620.0	.003270	0.0000E+00	0.000000

MATERIAL CODE: PHILLY

PHILLYBOND/350° MATERIAL: PHIL. RESIN CO. MANUFACTURER:

NONE REMARKS: DATE: 29 Dec 1986 ENTERED BY: HDW

STAINLESS STEEL BEAM MATERIAL:

7-43 BEAM NUMBER:

BEAM TYPE: FREE LAYER ONE SIDE

BEAM LENGTH: in .0593 BEAM THICKNESS: in

.283 lb/cu in BEAM DENSITY:

DAMPING MATERIAL THICKNESS: .05328 in DAMPING MATERIAL DENSITY: .07.5 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	YOUNG'S MODULUS PSI	MATERIAL LOSS FACTOR
33	+175	4	1309.4	1219.8	.006800	Ø.0000E+00	0.000000
34	+175	5	2168.4	2021.7	.005140	0.0000E+00	0.000000
35	+175	6	3245.3	3021.1	.005160	0.0000E+00	0.000000
36	+175	7	4538.9	4218.1	.006990	0.0000E+00	0.000000
37	+200	2	237.7	218.4	.029120	0.0000E+00	0.000000
38	+200	3	663.7	517.5	.001830	0.0000E+00	0.000000
39	+200	4	1305.7	1214.2	.002820	0.0000E+00	0.000000
40	+200	5	2162.2	2012.7	.002310	0.0000E+00	0.000000
41	+200	6	3236.1	3006.1	.002710	0.0000E+00	0.000000
42	+200	7	4527.2	4196.3	.002450	0.0000F+00	0.000000

ED0407

MATERIAL: EPON 828

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)*SLOPE)

TZERO FQROM MROM SLOPE ML

300.0 0.000E+00 0.000E+00 0.000 0.000E+00

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2
TZERO ETFROL SL SH FROL C

300.0 0.000 0.000 0.000 0.000E+00 0.000

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0)

A=(LOG(FR)-LOG(FROL))/C

MATERIAL CODE: ED0407

MATERIAL: EPON 828
MANUFACTURER: SHELL CHEMICAL

REMARKS:

DATE: 18 Feb 1988

ENTERED BY: TVG
BEAM MATERIAL: STAINLESS STEEL
BEAM NUMBER: SS-7-44
BEAM TYPE: FREE LAYER ONE SIDE
BEAM LENGTH:

7 in .0594 in .283 lb/

BEAM THICKNESS:

BEAM DENSITY:

lb/cu in

DAMPING MATERIAL THICKNESS: .0583 in DAMPING MATERIAL DENSITY: .0419 lb/cu in

INDEX	TEMP	MODE	BEAM		COMPOSITE	YOUNG'S	MATERIAL
No.	DE6	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PS1	FACTOR
1	+50	2	238.6	240.0	.003850	3.5528E+ 0 5	.028479
2	+50	3	668.0	674.3	.010750	3.7443E+05	.076058
3	+50	4	1316.1	1336.6	.004350	4.1139E+05	.028722
4	+50	5	2181.2	2215.3	.004760	4.1383E+05	.031409
5	+50	6	3260.9	3303.6	.005080	4.0224E+05	.034466
6	+50	7	4534.4	4604.5	.005490	4.0981E+05	.035300
7	+76	2	238.4	236.9	.005720	2.9179E+05	.049971
8	+76	3	667.3	664.7	.008050	3.0406E+05	.067836
9	+76	4	1314.4	1314,6	.009180	3.2886E+05	.072968
10	+76	5	2178.5	2178.5	.009210	3.2969E+05	.073376
11	+76	6	3256.7	3256.0	.007520	3.3037E+05	.060073
12	+76	7	4532.4	4545.2	.005980	3.4271E+05	.045875
13	+103	2	238.1	232.1	.010040	1.9595E+05	.124655
14	+103	3	666.6	653.6	.010600	2.2469E+05	.116297
15	+103	4	1312.6	1288.3	.012650	2.3173E+05	.136193
16	+103	5	2175.7	2136.3	.012920	2.3513E+05	.137966
17	+103	6	3252.3	3197.7	.011130	2.4318E+05	.115863
18	+103	7	4530.2	4472.6	.010150	2.6178E+05	.098197
19	+128	3	665.9	639.7	.012010	1.2564E+05	.224261
20	+128	4	1311.0	1257.3	.012780	1.1913E+ 0 5	.253067
21	+128	5	2173.1	2086.2	.013260	1.2452E+ 0 5	.253180
22	+128	6	3248.2	3126.0	.012640	1.3702E+05	.221668
23	+128	7	4528.2	4379.1	.012240	1.5933E+ 0 5	.185276

APPENDIX D ENAMELS

Materials	Page
Corning 1990	D-2
Corning 7570	D-8
Corning 8463	D-13
Solar S-3B	D-19
Solar S-16B	D-25
Solar S23-36	D-30

MATERIAL CODE: C_1990 MATERIAL: CORNING # 1990

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 5.300E+05 0.600 0.006 3.000E-02 5.000E+04

LOG. ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

SL **ETFROL FROL** C **TZERO** SH

.360 -.360 1.400E-02 .250 800.0 1.300

MATERIAL: CORNING # 1990
MANUFACTURER: CORNING GLASS
REMARKS: RETEST 1000 HRS/1000°F

DATE: 9 Jan 1987 ENTERED BY: HDW

BEAM MATERIAL: HAYNES #188
BEAM NUMBER: 01-56-2
BEAM TYPE: FREE LAYER ONE SIDE

8.25 BEAM LENGTH: in .0377 BEAM THICKNESS: in

BEAM DENSITY: . 33 lb/cu in

DAMPING MATERIAL THICKNESS: .011 in
DAMPING MATERIAL DENSITY: .1253711 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+700	2	1.04.8	112.3	.007840	5.8244E+06	.038445
2	+700	3	293.3	316.1	.008320	6.1752E+06	.039175
3	+700	4	575.7	622.0	.008020	6.3368E+06	.037194
4	+700	5	957.3	1029.0	.007590	6.1149E+06	.036345
5	+700	6	1428.1	1549.0	.007200	6.6567E+06	.03259%
6	+750	2	104.4	111.5	.008250	5.6024E+06	.041342
7	+750	3	291.0	313.4	.004850	6.0384E+06	.022939
8	+750	4	572.4	616.4	.007790	6.07842+06	.036868
9	+750	5	956.3	1014.8	.007100	5.3647E+06	.037196
10	+750	6	1420.9	1529.0	.009610	6.1225E+06	.045698
11	+800	2	103.3	110.3	.011330	5.4857E+06	.056755
12	+800	3	289.3	310.2	.011030	5.7211E+06	.053697
13	+800	4	589.4	609.5	.010710	5.6763E+06	.052740
14	+800	5	947.6	1006.5	.010800	5.3188E+06	.056191
15	+800	6	1413.8	1517.0	.011870	5.8967E+06	.057516
16	+850	2	103.4	108.1	.024520	4.3568E+06	.145375
17	+850	3	288.1	304.6	.016120	4.9133E+06	.085853
18	+850	4	566.3	599.5	.015210	5.0119E+06	.081144
19	+850	5	943.1	992.1	.013810	4.7469E+06	.077467
20	+850	6	1406.7	1494.9	.016860	5.3001E+06	.087391
21	+900	2	102.8	106.7	.031490	3.9713E+06	.198354
22	+900	3	287.5	300.4	.022640	4.2874E+06	.134400
23	+900	4	564.2	592.1	.026850	4.5179E+06	.153664
24	+900	5	935.2	980.7	.022330	4.5038E+06	.128605
25	+900	6	1399.9	1468.0	.019410	4.5389E+06	.111794
26	+950	2	102.2	103.2	.053490	2.5876E+06	.471292
2 7	+950	3	285.2	295.9	.027240	3.8633E+06	.172915
28	+950	4	559.9	578.0	.051210	3.6324E+06	.341903
29	+950	5	932.8	965.8	.021230	3.8355E+06	.137539
30	+950	6	1392.1	1456.0	.039700	4.3535E+ 0 6	.233911
31	+1000	2	101.7	98.0	.040410	6.1461E+05	1.299769
32	+1000	3	283.5	281.7	.054450	1.8522E+06	.628311

MATERIAL: CORNING * 1990

MANUFACTURER: CORNING GLASS

REMARKS: RETEST 1000 HRS/1000'F

DATE: 9 Jan 1987

ENTERED BY

ENTERED BY: HDW

BEAM MATERIAL: HAYNES #188
BEAM NUMBER: 01-56-2
BEAM TYPE: FREE LAYER ONE SIDE
BEAM LENGTH:

8.25 in .0377 in BEAM LENGTH: BEAM THICKNESS:

lb/cu in

DAMPING MATERIAL THICKNESS: .011 in

DAMPING MATERIAL DENSITY:

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DE6	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
33	+1000	4	556.7	564.1	.018680	2.7233E+06	.155747
34	+1050	2	101.2	97.0	.027020	3.9762E+05	1.310142
35	+1050	3	283.0	274.7	.045110	8.7550E+05	1.026236
36	+1050	5	920.8	895.1	.025470	9.4850E+05	.542126
37	+1050	6	1378.2	1367.7	.004710	1.8185E+06	.055861
38	+1100	2	100.5	95.8	.011480	1.5893E+05	1.352354
3 9	÷1100	3	281.3	269.6	.020510	3.7487E+05	1.039218
40	+1100	5	915.0	887.3	.040970	8.3946E+05	.966261
41	+1150	2	99. 9	95.0	.004910	1.1312E+05	.798885
42	+1150	3	279.5	266.7	.008480	2.0205E+05	.777196
43	+1150	4	548.5	523.4	.014040	2.0426E+05	1.277144
44	+1150	5	909.5	869.7	.017930	2.9082E+05	1.159527
45	+1150	6	1358.8	1294.0	. 023110	1.3738E+ 0 5	3.139988
46	+1200	2	99.1	94.3	.003610	7.5291E+04	.867562
47	+1200	3	277.6	264.4	.004730	1.3632E+05	.630797
48	+1200	4	544.9	519.3	.005700	1.6347E+05	.637318
49	+1200	5	903.5	860.5	.010180	1.4004E+05	1.334325
50	+1200	6	1349.6	1284.6	.013520	1.1752E+05	2.115504

MATERIAL CODE: C_7570 MATERIAL: CORNING 7570

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)*SLOPE)

TZERO FQROM MROM SLOPE ML 914.0 1.509E+03 2.183E+06 0.530 9.009E+05

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 914.0 .400 .360 -.400 1.300E+03 .300

MATERIAL:

CORNING 7570

MANUFACTURER:

CORNING

REMARKS:

DATE: 13 Jun 1988

ENTERED BY: BEAM MATERIAL: BEAM NUMBER:

BEAM TYPE:

SANDWICH BEAM

BEAM LENGTH: BEAM THICKNESS:

in 0 in

lb/cu in

BEAM DENSITY:

DAMPING MATERIAL THICKNESS: 0 in
DAMPING MATERIAL DENSITY: .3298669 lb/cu in

0

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	SHEAR MODULUS PSI	MATERIAL LOSS FACTOR
1	+1100	2	100.6	95.5	.001700	7.7751E+05	.054900
2	+1100	3	281.7	267.9	.001200	8.7319E+05	.036600
3	+1099	4	552.1	525.9	.001400	9.5631E+05	.036500
4	+1099	5	912.6	872.3	.001300	1.1340E+06	.030200
5	+1099	6	1363.3	1304.8	.001400	1.2065E+06	.029400
6	+1051	2	101.3	96.2	.001900	7.9104E+05	.060600
7	+1051	3	283.7	269.8	.001500	8.8373E+05	.042500
8	+1051	4	555.9	529.5	.001500	9.6762E+05	.039500
9	+1051	5	918.9	878. 0	.001500	1.1308E+06	.034800
10	+1051	6	1372.7	1313.2	.001600	1.1995E+06	.034800
11	+1000	2	101.9	96.8	.002100	8.3420E+05	.065100
12	+1000	3	285.4	271.6	.001800	9.3162E+ 05	.052100
13	+1000	4	559.3	533.0	.002200	1.0053E+06	.057200
14	+1000	5	924.5	884.1	.002900	1.1895E+06	.064000
15	+1000	6	1381.1	1322.5	.003200	1.2651E+ 06	.068500
16	+950	2	102.5	97.5	.003300	8.8756E+05	0.000000
17	+950	4	562.6	537.0	.008000	1.1023E+06	.194000
18	+950	5	929.3	891.9	. 914700	1.3979E+0E	.285900
19	+950	6	1389.2	1335.8	.014400	1.5071E+06	.262500
20	+900	2	103.2	98.6	.019200	1.1585E+06	.450900
21	+900	4	566.2	547.3	.025800	1.8147E+06	.415800
22	+900	5	935.9	913.0	.028800	2.3363E+06	.356400
23	+900	8	1398.0	1373.1	.029800	2.7013E+06	.319300
24	4851	4	589.1	568.7	.015800	3.8200E+06	.162600
25	+851	5	940.7	945.2	.017300	4.2339E+06	-130700
26	+851	6	1405.3	1420.1	.013300	4.5501E+08	.09520 0
27	+801	2	104.3	105.6	.009700	4.6973E+06	.068100
28	+801	3	292.0	295.8	. 907600	4.7364E+06	.052900
29	+801	4	572.3	580.4	. 005800	4.8205E+06	. 040000
∴0	+801	5	946.0	963.8	.004500	5.5613E+06	.029800
31	+801	6	1413.7	1441.3	.003900	5.1966 E+06	.025700

MATERIAL CODE: C_8463 MATERIAL: CORNING # 8463

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(I+(FQROM/FR)^SLOPE)

TZERO FOROM MROM SLOPE ML

800.0 3.000E+00 3.600E+06 0.950 1.750E+06

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 800.0 .400 .700 -.690 3.000E+00 .250

MATERIAL:

CORNING # 8463

MANUFACTURER:

CORNING GLASS RETEST 1000 HRS/1000°F

REMARKS:

DATE: 2 Feb 1987

ENTERED BY:

HDW

BEAM MATERIAL:

HAYNES #188

BEAM NUMBER:

01-37-1

BEAM TYPE:

FREE LAYER ONE SIDE

BEAM LENGTH:

8.23

BEAM THICKNESS:

.0372 in

in

BEAM DENSITY:

.33

lb/cu in

DAMPING MATERIAL THICKNESS:

.0083

in DAMPING MATERIAL DENSITY: .225 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
					~~~~~		
1	+700	2	104.5	108.5	.000875	7.6015E+06	.004749
2	+700	3	292.2	304.2	.000644	7.8152E+06	.003420
3	+700	4	573.4	595.0	.000586	7.5671E+06	.003191
4	+700	5	950.4	982.7	.000651	7.3183E+06	.003645
5	+700	6	1421.8	1467.7	.001696	7.2337E+06	.009620
6	+750	2	104.1	107.9	.001339	7.4430E+06	.007665
7	+750	3	290.8	302.7	.000667	7.7447E+06	.003541
8	+750	4	570.6	592.2	.000643	7.5116E+06	.003495
9	+750	5	946.0	978.3	.000787	7.2681E+ <b>0</b> 6	.004398
10	+750	6	1415.0	1451.1	.001936	7.1858E+06	.010958
11	+800	2	103.5	107.1	.003400	7.1828E+06	.018952
12	+800	3	289.4	300.3	.002470	7.4048E+06	.013445
13	+800	4	567.7	587.7	.001990	7.2374E+06	.011027
14	+800	5	941.6	970.7	.001670	6.9421E+06	.009583
15	+800	6	1408.2	1450.4	.002760	6.9125E+06	.015957
16	+850	2	103.0	105.6	.012700	6.3805E+ <b>0</b> 6	.076651
17	+850	3	288.0	296.0	.010000	6.5720E+06	.058928
18	+850	4	564.8	579.6	.007560	6.4779E+06	.045077
19	+850	5	937.0	959.3	.005210	6.3402E+06	.037824
20	+850	6	1401.2	1433.9	.006102	6.3380E+06	.037338
21	+900	2	102.5	101.8	.031820	4.0559E+06	.272014
22	+900	3	286.5	286. <b>9</b>	.046990	4.5856E+06	.362495
23	+900	4	561.9	560. <b>6</b>	.039610	4.3491E+06	.319352
24	+900	5	932.2	938.8	.019810	5.0466E+06	.142611
25	+900	6	1394.0	1421.8	.059360	6.0219E+06	.374537
26	+950	2	101.9	98.3	.009864	2.1048E+06	.147274
27	+950	3	284.9	275.8	.013778	2.2936E+06	.189947
28	+950	4	558.8	540.9	.014600	2.2918E+06	.201750
29	+950	5	927.4	900.0	.021220	2.4745E+06	.275823
30	+950	6	1386.5	1348.0	.024920	2.6065E+06	.310853
31	+1000	2	101.3	97.7	.001730	2.0223E+06	.025494
32	+1000	3	283.3	273.5	.004420	2.0926E+06	.065494

MATERIAL:

**CORNING # 8463** 

MANUFACTURER:

CORNING GLASS

REMARKS:

RETEST 1000 HRS/1000°F

DATE: 2 Feb 1987

ENTERED BY:

HDW

BEAM MATERIAL:

HAYNES #188

BEAM NUMBER:

01-37-1

BEAM TYPE:

FREE LAYER ONE SIDE

BEAM LENGTH:

8.23 in .0372 in

**BEAM THICKNESS:** 

.33

lb/cu in

BEAM DENSITY:

in

DAMPING MATERIAL THICKNESS: .0083 DAMPING MATERIAL DENSITY:

.225

lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	YOUNG'S MODULUS PSI	MATERIAL LOSS FACTOR
33	+1000	4	555.6	536.1	.006240	2.0692E+06	.093539
34	+1000	5	922.2	887.9	.008560	1.9494E+06	.136434
35	+1000	6	1378.7	1330.4	.010150	2.1003E+06	.151955
36	+1050	2	100.7	97.0	.001753	1.9345E+06	.027648
37	+1050	3	281.6	271.4	.002837	1.9621E+06	.044073
38	+1050	4	552.3	531.8	.001862	1.9132E+06	.029642
39	+1050	5	916.8	880.7	.002305	1.7849E+06	.039385
40	+1050	6	1370.5	1318.2	.003095	1.8741E+06	<b>.0</b> 50822
41	+1100	2	99.8	96.2	.001970	1.9730E+06	.028505
42	+1100	3	279.6	269.2	.001375	1.8691E+06	.022036
43	+1100	4	547.8	527.4	.001631	1.8745E+06	.026061
44	+1100	5	909.6	873.4	.001156	1.7320E+06	.020013
45	+1100	6	1358.9	1307.1	.001683	1.8456E+06	.027593













MATERIAL CODE: SOL_3B MATERIAL: SOLAR S-3B

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 850.0 1.400E+00 1.950E+06 0.500 7.500E+05

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 850.0 .470 .500 -.410 1.000E+00 .250

MATERIAL CODE: SOL_3B
MATERIAL: SOLAR S-38
MANUFACTURER: SOLAR TURBINES

REMARKS: RETEST 1000 HRS/1000°F

DATE: 3 Feb 1987
ENTERED BY: HDW
BEAM MATERIAL: HAYNES #188

BEAM MATERIAL: HAYNES \$189 BEAM NUMBER: 01-89-1

BEAM TYPE: FREE LAYER BOTH SIDES

BEAM LENGTH: 9 in BEAM THICKNESS: .0427 in

BEAM DENSITY: .33 lb/cu in

DAMPING MATERIAL THICKNESS: .0072 in

DAMPING MATERIAL DENSITY: .13 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	L.05\$	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+700	2	99.1	103.8	.002420	5.1511E+06	.012369
2	+700	3	278.2	290.7	.002080	5.0544E+06	.010844
3	+700	4	545.3	570.7	.002940	5.1303E+06	.015152
4	+700	5	902.1	941.2	.002010	5.1470E+06	.010344
5	+700	6	1349.0	141 2	.002310	5,1452E+06	.011948
6	+750	2	98.8	103.1	.003010	4.9134E+06	.015907
7	+750	3	277.1	288.7	.002560	4.8516E+06	.013710
8	+750	4	543.2	566.7	.003900	4.9259E+06	.020642
9	+750	5	898.9	938.3	.003010	4.9652E+06	.015856
10	+750	6	1344.8	1402.3	.002520	4.9450E+06	.013392
11	+800	2	98.4	102.1	.005140	4.5964E+06	.028510
12	+800	3	275.9	286.3	.003840	4.5944E+06	.021354
13	+800	4	540.8	562.1	.004800	4.6894E+06	.026256
14	+800	5	895.5	930.6	.003510	4.7001E+06	.021404
15	+800	6	1339.5	1391.4	.003630	4.7046E+06	.019962
16	+850	2	98.1	101.0	.009900	4.1867E+06	.058959
17	+850	3	274.7	283.6	.907050	4.3155E+06	.040963
13	+850	4	538.4	557.8	.009500	4.4864E+06	.053489
19	+850	5	991.7	923.4	.006560	4.4798E+06	.037096
20	+850	E	1333.6	1381.3	.005720	4.5177E+06	.032283
21	+900	2	97.6	98.9	.027600	3.3633E+06	.196194
22	+900	3	273.4	278.6	.018740	3.6352E+06	.124745
23	+900	4	535.9	565.0	.032210	5.3352E+05	.156467
24	+900	Š	887.5	909.0	.012760	3.8932E+06	.080458
25	+900	6	1327.6	1364.0	.012170	4.0714E+06	.074318
26	+950	2	97.1	96.4	.036930	2.3799E+05	.352474
27	+950	3	271.9	271.5	.039040	2.6351E+06	.340460
28	+950	4	533.2	546.2	.033140	3.8460E+06	.208703
29	+950	5	883.i	883.6	.026480	2.7434E+06	.223895
30	+950	3	1321.0	1324.8	.032300	2.8691E+06	.264044
31	+1000	2	96.5	94.0	.018700	1.5098E+06	.267668
32	+1000	3	270.0	264.8	.029790	1.7964E+06	.362448

MATERIAL CODE: SOL_3B

MATERIAL: SOLAR S-3B
MANUFACTURER: SOLAR TURBINES
REMARKS: RETEST 1000 HRS/1000°F

DATE: 3 Feb 1987

ENTERED BY: HDW
BEAM MATERIAL: HAYNES #188
BEAM NUMBER: Ø1-89-1
BEAM TYPE: FREE LAYER BOTH SIDES

BEAM LENGTH:

in

BEAM THICKNESS:

.0427 in .33 lb/

BEAM DENSITY:

lb/cu in

DAMPING MATERIAL THICKNESS: .0072

in

DAMPING MATERIAL DENSITY: .13 lb/cu in

INDEX No.	TEMP DEG F	MODE No.	BEAM FREQ Hz	COMPOSITE FREQ Hz	COMPOSITE LOSS FACTOR	YOUNG'S MODULUS PSI	MATERIAL LOSS FACTOR
33	+1000	5	878.5	862.9	.031980	1.8832E+06	.375669
34	+1000	6	1314.1	1280.4	.029900	1.5378E+06	.425968
35	+1056	2	95.9	92.7	.007660	1.1659£+ <b>0</b> 6	.138052
36	+1050	3	268.7	260.3	.012060	1.2576E+06	.202606
37	+1050	5	873.1	847.3	.029400	1.3372E+06	.468936
38	+1050	6	1305.0	1275.5	.016900	1.6549E+06	.222369
39	+1100	3	266.9	240.2	.004900	0.0000E+00	0.000000
		5	867.0	837.1	.011350	1.1065E+06	.213543
		-					
40 41	+1100 +1100	5 6	857.0 1297.0	837.1 1253.0	.011350	1.1065E+06 1.1381E+06	.213543













S_16_B

MATERIAL: SOLAR S-16B

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)*SLOPE)

TZERO

FOROM

MROM

SLOPE

1000.0 1.350E+06 0.750 3.950E+05 6.500E+00

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SQR(1+A^2)))C/2

TZERO 1000.0

ETFROL .600

SL SH .450 -.370 2.500E+00

FROL

.700

LOG(FR)=LOG(F)-12(T-T0)/(525+T-T0)

A-(LOG(FR)-LOG(FROL))/C

1 ATERIAL CODE: S_16_B

MATERIAL:

SOLAR S-16B SOLAR TURBINES

MANUFACTURER:

RETEST 1000 HRS/1000°F

REMARKS:

DATE: 2 Feb 1987

ENTERED BY:

HD₩

BEAM MATERIAL: HAYNES #188

BEAM NUMBER:

01-88

BEAM TYPE:

FREE LAYER BOTH SIDES

BEAM LENGTH:

9.04

in

BEAM THICKNESS:

.0427 .33

រៈព

in

BEAM DENSITY:

lb/cu in

DAMPING MATERIAL THICKNESS:

.0095

DAMPING MATERIAL DENSITY:

.0867 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LU <b>S</b> S	MCDULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
i	+900	 2	96.5	103.4	.007540	3.969ZE+06	.034351
Ž	+900	3	270.9	291.2	.004880	4.1139E+06	.021700
3	+900	4	531.3	570.9	.003870	4.1126E+06	.017234
4	+900	5	879.2	943.2	.002970	4.0612E+06	.013380
5	+900	6	1315.8	1460.5	.023700	5.3924E+06	.086724
6	+950	2	96.1	104.4	.022500	4.4486E+06	.093704
7	+950	3	269.9	293.2	.020120	4.4801E+06	.083318
8	+950	4	529.7	576.6	.017690	4.5659E+06	.072391
9	+950	5	876.0	957.4	.013680	4.7221E+06	.054612
10	+950	6	1311.5	1437.3	.026720	4.864ZE+06	.104975
11	+1000	2	95.8	102.5	.048100	3.8823E+06	.220241
12	+1000	3	268.7	289.7	.038250	4.1663E+06	.166282
13	+1000	5	872.3	950.0	.028840	4.5493E+06	.117665
14	+1050	3	267.8	283.5	.039150	3.4920E+06	.194460
15	+1050	4	525.1	547.8	.025920	2.9901E+06	.14619;
16	+1050	5	869.0	906.0	.064020	2.9778E+06	.362928
17	+1100	2	95.0	92.9	. 026370	9.3526E+05	.411721
18	+1100	3	266.6	262.1	.032580	1.0893E+06	.443430
19	+1100	5	865.6	8 <b>55.0</b>	.050870	1.5921E+06	.491673
20	+1150	2	94.5	91.3	.011490	5.7062E+05	.283745
21	+1150	3	265.1	256.7	.016520	6.4155E+05	.366187
22	+1150	5	860.5	839.0	.036230	8.4245E+05	.622581
23	+1200	2	93.9	90.3	.006390	4.4114E+05	.199888
24	+1200	3	263.2	253.5	.007260	4.8265E+05	.208608
25	+1200	4	516.6	497.5	.009850	4.7901E+05	.286029
25	+1200	5	<b>85</b> 5. <i>7</i>	825. <b>0</b>	.012410	5.3217E+05	.326421
27	+1250	2	93.2	89.3	.003760	3.6024E+05	.140955
28	+1250	3	260.4	250.8	.003140	4.7561E+05	.089620
29	+1250	4	512.8	492.2	.004190	3.8437E+05	.148417
30	+1250	5	847.8	815.7	.005800	4.4965E+05	.176507
31	+1250	6	1273.8	1220.9	.008580	3.5024E+05	.337792
32	+1000	6	1305.7	1438.0	.025240	5.0090E+26	.096388













MATERIAL CODE: \$23_36 MATERIAL: SOLAR \$23_36

UNITS ARE ENGLISH

LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FQROM/FR)^SLOPE)

TZERO FQROM MROM SLOPE ML 700.0 2.000E-02 2.000E+06 0.950 5.300E+05

LOG(ETA)=LOG(ETFROL)+((SH+SL)A+(SL-SH)(1-SGR(1+A^2)))C/2

TZERO ETFROL SL SH FROL C 700.0 1.500 .750 -.750 9.000E-03 .150

MATERIAL CODE: \$23_36

MATERIAL: MANUFACTURER:

SOLAR \$23_36 SOLAR TURBINES

REMARKS:

RETEST 1000 HRS/1000°F

DATE: 2 Feb 1987

ENTERED BY: BEAM MATERIAL:

HAYNES #188

BEAM NUMBER:

01-42

HDW

BEAM TYPE:

FREE LAYER BOTH SIDES

BEAM LENGTH:

8.219 in in

**BEAM THICKNESS:** 

.0372 .33

lb/cu in

BEAM DENSITY:

in

DAMPING MATERIAL THICKNESS: .0023 DAMPING MATERIAL DENSITY:

.0795 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	L055	MODULUS	LOSS
	F		Hz	Hz	FACTOR	PSI	FACTOR
1	+600	2	106.2	109.4	.002650	6.8152E+ <b>0</b> 6	.031459
2	+800	3	297.4	308.5	.002310	8.0215E+06	.023652
3	+600	4	583.5	603.3	.002320	7.4560E+06	.025313
4	+600	5	967.7	999.1	.002780	7.3106E+06	.031214
5	+600	6	1448.1	1492.3	.004630	7.0539E+06	.054066
6	+650	2	105.8	109.0	.002350	6.7683E+06	.027882
7	+650	3	296.2	<b>307.</b> 2	.002210	7.8938E+ <b>0</b> 6	.022791
8	+650	4	581.2	600.6	.002260	7.3420E+06	.024948
9	+650	5	964.0	994.9	.002290	7.1 <b>79</b> 6E+ <b>0</b> 6	.025958
10	+650	6	1442.5	1485.3	.003980	6.9666E+06	.046676
11	+700	2	105.5	108.4	.002390	6.4185E+06	.029616
12	+700	3	295 <b>.0</b>	305.7	.002220	7.6971E+06	.023251
13	+700	4	579.3	597.4	.002540	6.9698E+Ø6	.029226
14	+700	5	960.5	989.6	.002430	6.8575E+ <b>06</b>	.028534
15	+700	6	1437.1	1480.2	.005270	6.8602E+06	.062252
16	+750	2	105.0	107.9	.002090	6.34 <b>89E+06</b>	.025932
17	+750	3	293.7	304.1	.002040	7.5229E+06	.021640
18	+750	4	576.4	594.6	.001680	6.9485E+06	.019208
19	+750	5	956.0	985.2	.002490	6.8349E+06	.029076
20	+800	2	104.5	107.3	.002860	6.1780E+06	.036070
21	+800	3	292.4	302.5	.001970	7.3290E+06	.021226
22	+800	4	573.8	591.7	.001880	6.8226E+ <b>0</b> 6	.021676
23	+800	5	951.7	<b>979.</b> 9	.001750	6.6271E+06	.020848
24	+800	6	1423.5	1458.3	.009940	5.8773E+06	.133028
25	+850	2	104.1	106.6	.004750	5.7274E+06	.063791
26	+850	3	291.0	300.5	.004330	6.9623E+ <b>0</b> 6	.048458
27	+850	4	571.1	587.9	.003740	6.4953E+06	.044718
28	+850	5	947.2	973.4	.004210	6.2718E+06	.052299
29	+900	2	103.4	105.4	.011770	4.8603E+06	.181856
30	+900	3	289.4	297.6	.009410	6.2438E+06	.115172
31	+900	4	568.5	584.3	.005990	6.1936E+06	.074193
32	+900	5	942.9	968.3	.006200	6.1065E+06	.078278

DATE: 2 Feb 1987

ENTERED BY: HDW
BEAM MATERIAL: HAYNES #188
BEAM NUMBER: 01-42
BEAM TYPE: FREE LAYER E

FREE LAYER BOTH SIDES

BEAM LENGTH:

8.219 in .0372 in

BEAM THICKNESS:

.33

BEAM DENSITY:

lb/cu in

DAMPING MATERIAL THICKNESS: .0023 in
DAMPING MATERIAL DENSITY: .0795 lb/cu in

INDEX	TEMP	MODE	BEAM	COMPOSITE	COMPOSITE	YOUNG'S	MATERIAL
No.	DEG	No.	FREQ	FREQ	LOSS	MODULUS	LOSS
110.	F	NO.	Hz	Hz	FACTOR	PSI	FACTOR
	r 		n2 	nz	rnciok	L 2 I	-HUIUK
33	+900	6	1410.2	1453.0	.010050	6.6602E+06	.117828
34	+950	2	103.0	102.9	.023230	1.8959E+06	.877509
35	+950	3	288.0	291.4	.021280	3.7702E+06	.413554
36	+950	4	565.4	572.4	.021310	3.8676E+06	.405544
37	+950	5	937.4	952.1	.001630	4.3741E+06	.027777
38	+950	6	1402.2	1442.0	.016850	6.2905E+06	.206009
39	+1000	2	102.5	100.5	.014220	0.0000E+00	0.000000
40	+1000	3	286.5	285.3	.016820	1.4568E+06	.810913
41	+ 1 000	4	562.2	554.6	.019290	1.4731E+05	0.000000
42	+1000	5	932.0	925.3	.029720	1.0430E+06	2.006170
43	+1000	6	1394.7	1381.5	.012450	7.2584E+05	1,210788
44	+1050	2	101.9	98.9	.000753	0.0000E+00	0.000000
45	+1050	3	284.7	269.9	.005410	0.0000E+00	0.000000
46	+1050	4	559.0	547.4	.012420	0.0000E+00	0.000000
47	+1050	5	926.8	904.9	.015800	0.0000E+00	0.000000
48	+1050	6	1386.3	1354.7	.034550	0.0000E+00	0.000000
49	+1100	2	101.3	98.0	.004390	0.0000E+00	0.000000
50	+1190	3	283.1	267.4	.003700	0.0000E+00	0.000000
51	+1100	4	555.9	540.1	.006480	0.0000E+00	0.000000
52	+1100	5	921.5	894.7	.097330	Ø.0000E+00	0.000000
53	+1100	6	1378.5	1337.7	.010240	Ø.0000E+00	0.000000