Employee Burnout Prediction

Employee burnout is a state of physical, emotional and mental exhaustion caused by excessive and prolonged stress. It can have serious consequences on an individual's well-being and can lead to decreased productivity and job performance. In today's fast-paced and constantly connected world, it is increasingly important to recognize and address the signs of burnout in order to maintain the health and well-being of employees.

we will be exploring the use of regression techniques to predict employee burnout. By analyzing a dataset containing various factors that may contribute to burnout such as workload, mental fatigue job and work-life balance, we can develop a model to identify individuals who may be at risk of burnout. By proactively addressing these risk factors, organizations can help prevent burnout and promote the well-being of their employees.

Dataset: Are Your Employees Burning Out?

This dataset consists of 9 columns as follows:

- Employee ID: The unique ID allocated for each employee (example: fffe390032003000)
- Date of Joining: The date-time when the employee has joined the organization (example: 2008-12-30)
- Gender: The gender of the employee (Male/Female)
- Company Type: The type of company where the employee is working (Service/Product)
- WFH Setup Available: is the work from home facility available for the employee (Yes/No)
- **Designation:** The designation of the employee of work in the organization. In the **range of [0.0, 5.0]** bigger is higher designation.
- **Resource Allocation:** The amount of resource allocated to the employee to work, le number of working hours in the **range of [1.0, 10.0]** (higher means more resource)
- Mental Fatigue Score: The level of fatigue mentally the employee is facing in the range of [0.0, 10.0] where 0.0 means no fatigue and 10.0 means completely fatigue
- Burn Rate: The value we need to predict for each employee telling the rate of Bur out while working. In the range of [0.0, 1.0] where the higher the value is more is the burn out.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
import pickle as pickle
import os
```

LOADING DATASET

data = pd.read_excel("/content/employee_burnout.xlsx")

DATA OVERVIEW

data.head()

→		EmployeeID	Date_of_Joining	Gender	Company_Type	WFH_Setup_Available
	0	fffe32003000360033003200	2008-09-30	Female	Service	No
	1	fffe3700360033003500	2008-11-30	Male	Service	Yes
	2	fffe31003300320037003900	2008-03-10	Female	Product	Yes
	3	fffe32003400380032003900	2008-11-03	Male	Service	Yes
	4	fffe31003900340031003600	2008-07-24	Female	Service	No

data.describe()

→		Date_of_Joining	Designation	Resource_Allocation	Mental_Fatigue_Score	Bur
	count	22750	22750.000000	21369.000000	20633.000000	21626
	mean	2008-07-01 09:28:05.274725120	2.178725	4.481398	5.728188	0
	min	2008-01-01 00:00:00	0.000000	1.000000	0.000000	0
	25%	2008-04-01 00:00:00	1.000000	3.000000	4.600000	0
	50%	2008-07-02 00:00:00	2.000000	4.000000	5.900000	0
	4	0000 00 00				•

data.nunique()

\rightarrow	EmployeeID	22750
	Date_of_Joining	366
	Gender	2
	Company_Type	2
	WFH_Setup_Available	2
	Designation	6
	Resource_Allocation	10
	Mental_Fatigue_Score	101
	Burn_Rate	101
	dtype: int64	

data.columns.tolist()

data.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 22750 entries, 0 to 22749
 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	EmployeeID	22750 non-null	object
1	Date_of_Joining	22750 non-null	<pre>datetime64[ns]</pre>
2	Gender	22750 non-null	object
3	Company_Type	22750 non-null	object
4	WFH_Setup_Available	22750 non-null	object
5	Designation	22750 non-null	int64
6	Resource_Allocation	21369 non-null	float64
7	Mental_Fatigue_Score	20633 non-null	float64
8	Burn_Rate	21626 non-null	float64
dtype	es: datetime64[ns](1),	float64(3), into	54(1), object(4)
memoi	ry usage: 1.6+ MB		

data.isnull().sum()

→	EmployeeID	0
	Date_of_Joining	0
	Gender	0
	Company_Type	0
	WFH_Setup_Available	0
	Designation	0

Resource_Allocation 1381 Mental_Fatigue_Score 2117 Burn_Rate 1124

dtype: int64

data.isnull().sum().values.sum()

→ 4622

EXPLORATORY DATA ANALYSIS

data.corr(numeric_only=True)['Burn_Rate'][:-1]

Designation 0.737556

Resource_Allocation 0.856278

Mental_Fatigue_Score 0.944546

Name: Burn_Rate, dtype: float64

These two variables are strongly collerated with target variable, therefore,

important to estimate it

sns.pairplot(data)
plt.show()

Drop off all observations with NaN values of our dataframe

```
data=data.dropna()
data.shape

→ (18590, 9)
```

Analsing what type of data is each variable

data.dtypes

\rightarrow	EmployeeID	object
	Date_of_Joining	datetime64[ns]
	Gender	object
	Company_Type	object
	WFH_Setup_Available	object
	Designation	int64
	Resource_Allocation	float64
	Mental_Fatigue_Score	float64
	Burn_Rate	float64
	dtype: object	

The values that each variable contains.

The employees ID doesn't provide any useful information and, therefore, they must be dropped.

```
data = data.drop('EmployeeID', axis = 1)
```

Checking the correlation of Date of Joining with Target variable

```
print(f"Min date {data['Date_of_Joining'].min()}")

The Min date 2008-01-01 00:00:00

print(f"Max date {data['Date_of_Joining'].max()}")

The Max date 2008-12-31 00:00:00

data_month = data.copy()
```

data_month["Date_of_Joining"] = data_month['Date_of_Joining'].astype("datetime64[ns]") # Sr

data_month["Date_of_Joining"].groupby(data_month['Date_of_Joining'].dt.month).count().plot(k

The date of joining is uniform distributed with values between 2008-01-01 and 2008-12-31. So in order to create a new feature which represents the labor seniority, we could create a variable with de days worked

data_2008 = pd.to_datetime(["2008-01-01"]*len(data)) # Specify time unit as nanoseconds wher
data["Days"] = data['Date_of_Joining'].astype("datetime64[ns]").sub(data_2008).dt.days
data.Days

```
\rightarrow
     0
                 273
     1
                 334
     3
                 307
     4
                 205
     5
                 330
     22743
                 349
     22744
                 147
     22746
                  18
                   9
     22748
     22749
```

Name: Days, Length: 18590, dtype: int64

```
# Select only numeric columns before calculating correlation
numeric_data = data.select_dtypes(include=['number'])
correlation = numeric_data.corr()['Burn_Rate']
print(correlation)
```

```
Designation 0.736412
Resource_Allocation 0.855005
Mental_Fatigue_Score 0.944389
Burn_Rate 1.000000
Days 0.000309
Name: Burn_Rate, dtype: float64
```

data.corr(numeric_only=True)['Burn_Rate'][:]

$\overline{\Rightarrow}$	Designation	0.736412
	Resource_Allocation	0.855005
	Mental_Fatigue_Score	0.944389
	Burn_Rate	1.000000
	Days	0.000309
	Name: Burn Rate, dtvpe:	float64

We observed that there is no strong correlation between Date of Joining and Burn Rate.So, we are dropping the column Date of Joining.

```
data = data.drop(['Date_of_Joining','Days'], axis = 1)
```

data.head()

→		Gender	Company_Type	WFH_Setup_Available	Designation	Resource_Allocation	Mental_F
	0	Female	Service	No	2	3.0	
	1	Male	Service	Yes	1	2.0	
	3	Male	Service	Yes	1	1.0	
	4	Female	Service	No	3	7.0	
	5	Male	Product	Yes	2	4.0	
	4						>

Now analysing the categorical variables

```
cat_columns = data.select_dtypes(object).columns
fig, ax = plt.subplots(nrows=1, ncols=len(cat_columns), sharey=True, figsize=(10, 5))
for i, c in enumerate(cat_columns):
    sns.countplot(x=c, data=data, ax=ax[i])
plt.show()
```


The number of observations of each category on each variable is equally distributed, except to the Company_Type where the number of service jobs its almost twice that of product ones.

One-Hot Encoding for categorical features

```
# Check if the columns exist before applying get_dummies
if all(col in data.columns for col in ['Company_Type', 'WFH_Setup_Available', 'Gender']):
    data = pd.get_dummies(data, columns=['Company_Type', 'WFH_Setup_Available', 'Gender'], dr
    data.head()
    encoded_columns = data.columns
else:
    print("Error: One or more of the specified columns are not present in the DataFrame.")
    # Add debugging steps here to investigate why the columns are missing.
    # For example, print the existing columns:
    print(data.columns)
```

Preprocessing

```
# Split df into X and y
y = data['Burn_Rate']
X = data.drop('Burn_Rate', axis=1)
```

```
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, shuffle=True, ranc
# Scale X
scaler = StandardScaler()
scaler.fit(X_train)
X_train = pd.DataFrame(scaler.transform(X_train), index=X_train.index, columns=X_train.colum
X_test = pd.DataFrame(scaler.transform(X_test), index=X_test.index, columns=X_test.columns )

import os
import pickle
scaler_filename = '../models/scaler.pkl'
# Create the 'models' directory if it doesn't exist
os.makedirs(os.path.dirname(scaler_filename), exist_ok=True)
# Use pickle to save the scaler to the file
with open(scaler_filename, 'wb') as scaler_file:
    pickle.dump(scaler, scaler_file)
```

X_train

3	Designation	Resource_Allocation	Mental_Fatigue_Score	Company_Type_Service	WFI
897	77 0.723327	0.250185	-0.061773	0.724706	
141	15 -0.159330	0.250185	-0.941481	0.724706	
879	0.723327	0.250185	0.973179	0.724706	
117	-1 .041987	-1.214568	-0.579248	-1.379869	
194	- 0.159330	0.738436	1.180169	-1.379869	
134	53 0.723327	1.226687	1.645897	-1.379869	
211	79 0.723327	0.250185	-1.044976	0.724706	
632	0.723327	0.250185	0.093470	0.724706	
149	- 0.159330	0.250185	0.714441	0.724706	
28	8 -0.159330	0.250185	1.076674	-1.379869	
1301 ◀	3 rows × 6 columns	<u> </u>			•

y_train

_	8977	0.41
	14115	0.34
	8797	0.61
	1173	0.35
	1941	0.61

```
13453
              0.78
     21179
              0.30
     6327
              0.42
     14933
              0.54
     288
              0.57
     Name: Burn_Rate, Length: 13013, dtype: float64
import os
import pickle
#saving the processed data
path = '../data/processed/'
# Create the directory if it doesn't exist
os.makedirs(path, exist ok=True)
X train.to csv(path + 'X train processed.csv', index=False)
y_train.to_csv(path + 'y_train_processed.csv', index=False)
```

MODEL BUILDING

Linear Regression

```
# Create an instance of the LinearRegression class
linear regression model = LinearRegression()
# Train the model
linear_regression_model.fit(X_train, y_train)
      ▼ LinearRegression
     LinearRegression()
#Linear Regressing Model Performance Metrics
print("Linear Regression Model Performance Metrics:\n")
# Make predictions on the test set
y pred = linear regression model.predict(X test)
# Calculate mean squared error
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
# Calculate root mean squared error
rmse = mean_squared_error(y_test, y_pred, squared=False)
print("Root Mean Squared Error:", rmse)
# Calculate mean absolute error
mae = mean_absolute_error(y_test, y_pred)
print("Mean Absolute Error:", mae)
# Calculate R-squared score
r2 = r2_score(y_test, y_pred)
print("R-squared Score:", r2)
```

#from sklearn.linear model import LinearRegression

→ Linear Regression Model Performance Metrics:

Mean Squared Error: 0.0031569779113610717 Root Mean Squared Error: 0.0561869905882231 Mean Absolute Error: 0.04595032032644773

R-squared Score: 0.918822674247248

Based on the evaluation metrics, the Linear Regression model appears to be the best model for predicting burnout analysis.