HW #4 - due on February 26, in class

PARAMETER ESTIMATION IN A DISCRETE DYNAMICAL SYSTEM

THE LOGISTIC POPULATION GROWTH MODEL

Consider the logistic population growth model

$$x'(t) = x(t) * [1 - x(t)] + p, \quad t > 0$$
(1)

$$x(0) = \bar{x}_0 \tag{2}$$

where $p \in \mathbb{R}$ denotes a control parameter and the initial condition \bar{x}_0 is specified. A discrete system is obtained by applying Euler's method to the initial-value problem (1-2)

$$x_j = x_{j-1} + h [x_{j-1} * (1 - x_{j-1}) + p], \quad j = 1 : m$$
 (3)

$$x_0 = \bar{x}_0 \tag{4}$$

with the specified initial value \bar{x}_0 and a time step h. Notice that if we take h = 1/m, then x_m is the discrete version of the solution to (1)-(2) at time t = 1.

The goal of a parameter optimization problem is formulated as follows: through the control parameter p, we want to bring the final state of the system x_m as close as possible to a given target value (desired state, data) \bar{y}_m provided at time $t_m = m * h$.

Given the initial state $x_0 = \bar{x}_0$, the optimization problem is: find an optimal value p^* to the parameter p that minimizes the cost functional

$$f(x,p) = \frac{1}{2}(x_m - \bar{y}_m)^2 \tag{5}$$

subject to the model constraints (3).

Your job:

- Task 1 (10 points) Write the first-order optimality conditions for the minimization of the cost (5) subject to the constraints (3).
- Task 2 (20 points) Write a code for a function $[f, p, x, \lambda] = optimpmodel(\bar{x}_0, \bar{y}_m, m, h)$ that takes as input the initial state \bar{x}_0 , the target state \bar{y}_m , the number of time steps m, and the step size h and returns the minimum value of the cost function f, the optimal parameter value p, the time series of model states $x = [x_1; x_2; \ldots; x_m]$ and the associated lagrange multipliers $\lambda = [\lambda_1; \lambda_2; \ldots; \lambda_m]$.
- Task 3 (20 points) For each of the following sets of input values:

(i)
$$\bar{x}_0 = 2, \bar{y}_m = 0.5, m = 100, h = 0.01$$

(ii)
$$\bar{x}_0 = 0.5, \bar{y}_m = 2, m = 100, h = 0.01$$

provide the following outcomes:

- the value of the optimal parameter p^*
- plots of the time-series of the discrete states x_j and the Lagrange multipliers λ_j , j=1:m (use separate figures)