Assignment 2_Final

June 5, 2022

1 Preparation

```
[1]: import pandas as pd
    import statsmodels.api as sm
    import numpy as np
    from statsmodels.tools.eval_measures import mse
    import warnings
    warnings.simplefilter(action='ignore', category=FutureWarning)
[2]: temp1 = pd.read_stata("Assignment_2(StockReturn).dta")
     temp2 = pd.read_stata("Assignment_2(Factors).dta")
[3]: df = temp1.set_index('ym').join(temp2.set_index('ym'))
    df.head()
[3]:
                                                                      date \
                 permno ticker
                                                         comnam
    2001-01-01 10107.0
                                                 MICROSOFT CORP 2001-01-31
                          MSFT
    2001-01-01 11850.0
                           MOX
                                               EXXON MOBIL CORP 2001-01-31
    2001-01-01 12490.0
                           IBM
                                INTERNATIONAL BUSINESS MACHS COR 2001-01-31
    2001-01-01 14593.0
                          AAPL
                                             APPLE COMPUTER INC 2001-01-31
    2001-01-01 55976.0
                           WMT
                                             WAL MART STORES INC 2001-01-31
                                                              marketcap \
                       prc
                                   vol
                                             ret
                                                    shrout
    уm
                            10208871.0 0.407781
                                                 5335391.0 325792320.0
    2001-01-01
                 61.062500
    2001-01-01
                 84.150002
                             1558784.0 -0.032063
                                                 3476189.0 292521312.0
    2001-01-01 112.000000
                             1989212.0 0.317647
                                                 1754380.0
                                                            196490560.0
    2001-01-01
                 21.625000
                             2482727.0
                                       0.453782
                                                  346029.0
                                                              7482877.0
    2001-01-01
                 56.799999
                             1799279.0 0.069176 4466336.0 253687888.0
                turnover
                           mktrf
                                     smb
                                             hml
                                                    rmw
                                                            cma
                                                                     rf
    ym
    2001-01-01
                1.913425
                          2001-01-01 0.448418 0.0313 0.0545 -0.0511 -0.0546 -0.0505
                                                                 0.0054
    2001-01-01 1.133855 0.0313 0.0545 -0.0511 -0.0546 -0.0505
                                                                 0.0054
    2001-01-01 7.174910 0.0313 0.0545 -0.0511 -0.0546 -0.0505
                                                                 0.0054
```

```
[4]: # check if null exists
df.isnull().values.any()
```

[4]: False

2 First Part: Seeking Alpha

2.1 IBM

Times-series regression is implemented to IBM. The outcome of the regressions for the return on market premium factor, Fama-French 3 factors & 5 factors, and the Newey-West estimator are as stated. Accordingly, the market premium factor plays a critical rule in all the models, while other factors are insignificant in the two Fama-French models.

2.1.1 Market premium factor

```
[5]: df_IBM = df[df["ticker"] == "IBM"]
    Y_IBM = df_IBM["ret"]
    X_IBM = df_IBM["mktrf"]
    X_IBM = sm.add_constant(X_IBM)
    model_IBM = sm.OLS(Y_IBM, X_IBM)
    results_IBM = model_IBM.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

```
[6]: results_IBM.summary()
```

[6]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ret	R-squared:	0.385
Model:	OLS	Adj. R-squared:	0.383
Method:	Least Squares	F-statistic:	59.93
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	2.44e-13
Time:	22:07:07	Log-Likelihood:	371.80
No. Observations:	252	AIC:	-739.6
Df Residuals:	250	BIC:	-732.5
Df Model:	1		

Covariance Type: HAC

========	========	========		=======	========	=======
	coef	std err	Z	P> z	[0.025	0.975]
const	-0.0005	0.004	-0.133	0.894	-0.008	0.007
mktrf	0.9848	0.127	7.741	0.000	0.735	1.234
========		========				=======
Omnibus:		67.3	363 Durbin	-Watson:		1.977

Prob(Omnibus): 0.000 Jarque-Bera (JB): 331.897 Skew: 0.962 Prob(JB): 8.50e-73 Kurtosis: 8.282 Cond. No. 22.5 ______

Notes:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

2.1.2 Fama-French 3 factors

```
[7]: X_IBM_3 = df_IBM[["mktrf", "smb", "hml"]]
     X IBM 3 = sm.add constant(X IBM 3)
     model_IBM_3 = sm.OLS(Y_IBM, X_IBM_3)
     results_IBM_3 = model_IBM_3.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

[8]: results_IBM_3.summary()

[8]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: R-squared: 0.402 Model: OLS Adj. R-squared: 0.395 Least Squares F-statistic: Method: 31.11 Date: Sun, 05 Jun 2022 Prob (F-statistic): 4.17e-17 Time: 22:07:07 Log-Likelihood: 375.27 No. Observations: 252 AIC: -742.5Df Residuals: 248 BIC: -728.4Df Model: 3 Covariance Type:

HAC

========	=========					=======
	coef	std err	z	P> z	[0.025	0.975]
const mktrf smb hml	-0.0005 1.0133 -0.0527 -0.2904	0.004 0.140 0.254 0.214	-0.152 7.231 -0.208 -1.357	0.879 0.000 0.835 0.175	-0.008 0.739 -0.550 -0.710	0.007 1.288 0.444 0.129
Omnibus: Prob(Omnibus) Skew: Kurtosis:	ns):	0.		•	========	1.935 223.909 2.39e-49 44.2

Notes:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

2.1.3 Fama-French 5 factors

```
[9]: X_IBM_5 = df_IBM[["mktrf", "smb", "hml", "rmw", "cma"]]
X_IBM_5 = sm.add_constant(X_IBM_5)
model_IBM_5 = sm.OLS(Y_IBM, X_IBM_5)
results_IBM_5 = model_IBM_5.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

[10]: results_IBM_5.summary()

[10]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: ret R-squared: 0.413 Model: OLS Adj. R-squared: 0.401 Method: Least Squares F-statistic: 18.92 Sun, 05 Jun 2022 Prob (F-statistic): Date: 6.51e-16 Time: 22:07:07 Log-Likelihood: 377.73 No. Observations: 252 AIC: -743.5Df Residuals: 246 BIC: -722.3Df Model: 5 Covariance Type: HAC

========	=========	========	========		========	=======
	coef	std err	z	P> z	[0.025	0.975]
const	0.0018	0.004	0.406	0.685	-0.007	0.011
mktrf	0.9379	0.132	7.106	0.000	0.679	1.197
smb	-0.1407	0.271	-0.520	0.603	-0.671	0.390
hml	-0.1762	0.184	-0.956	0.339	-0.538	0.185
rmw	-0.3754	0.209	-1.795	0.073	-0.785	0.034
cma	-0.1016	0.262	-0.387	0.698	-0.615	0.412
========	========	========			========	=======

Omnibus:	49.300	Durbin-Watson:	1.921
Prob(Omnibus):	0.000	Jarque-Bera (JB):	180.777
Skew:	0.754	Prob(JB):	5.56e-40
Kurtosis:	6.865	Cond. No.	71.4

Notes:

2.2 TSM

Times-series regression is implemented to TSM. The outcome of the regressions for the return on market premium factor, Fama-French 3 factors & 5 factors, and the Newey-West estimator are as stated. Accordingly, the market premium factor plays a critical rule in all the models, while other factors are insignificant in the two Fama-French models. Nevertheless, the smb and hml results are significant in Fama-French 3 factors model, and hml and rmw factors are significant in five factors model, implying that hml is important for TSM's stock price.

2.2.1 Market premium factor

```
[11]: df_TSM = df[df["ticker"] == "TSM"]
    Y_TSM = df_TSM["ret"]
    X_TSM = df_TSM["mktrf"]
    X_TSM = sm.add_constant(X_TSM)
    model_TSM = sm.OLS(Y_TSM, X_TSM)
    results_TSM = model_TSM.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

[12]: results_TSM.summary()

[12]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ret	R-squared:	0.377
Model:	OLS	Adj. R-squared:	0.374
Method:	Least Squares	F-statistic:	40.84
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	8.04e-10
Time:	22:07:07	Log-Likelihood:	294.42
No. Observations:	252	AIC:	-584.8
Df Residuals:	250	BIC:	-577.8
Df Model:	1		
Covariance Type:	HAC		

=========		==========				=======
	coef	std err	z	P> z	[0.025	0.975]
const	0.0084	0.004	1.910	0.056	-0.000	0.017
mktrf	1.3158	0.206	6.390	0.000	0.912	1.719
=========			=====			=======
Omnibus:		44.443	Durb	in-Watson:		2.051
Prob(Omnibus)	:	0.000	Jarq	ue-Bera (JB):		128.917
Skew:		0.751	Prob	(JB):		1.01e-28
Kurtosis:		6.166	Cond	. No.		22.5
			======			

Notes:

11 11 11

2.2.2 Fama-French 3 factors

```
[13]: X_TSM_3 = df_TSM[["mktrf", "smb", "hml"]]
      X_TSM_3 = sm.add_constant(X_TSM_3)
      model_TSM_3 = sm.OLS(Y_TSM, X_TSM_3)
      results_TSM_3 = model_TSM_3.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

```
[14]: results_TSM_3.summary()
```

[14]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: R-squared: 0.405 ret 0.398 Model: OLS Adj. R-squared: Method: Least Squares F-statistic: 17.82 Date: Sun, 05 Jun 2022 Prob (F-statistic): 1.66e-10 Time: 22:07:07 Log-Likelihood: 300.25 No. Observations: AIC: -592.5 252 Df Residuals: 248 BIC: -578.4 Df Model: 3

HAC Covariance Type:

========				========	========	=======
	coef	std err	z	P> z	[0.025	0.975]
const	0.0077	0.004	1.913	0.056	-0.000	0.016
mktrf	1.2817	0.186	6.878	0.000	0.916	1.647
smb	0.3514	0.245	1.435	0.151	-0.129	0.831
hml	-0.5360	0.232	-2.309	0.021	-0.991	-0.081
========	:=======			=======	========	=======
Omnibus:		29.3	319 Durbin	u-Watson:		2.063
Prob(Omnibu	ıs):	0.0	000 Jarque	e-Bera (JB):		64.698
Skew:		0.5	565 Prob(J	IB):		8.93e-15
Kurtosis:		5.2	210 Cond.	No.		44.2
========				========	========	=======

Notes:

2.2.3 Fama-French 5 factors

[15]: X TSM 5 = df TSM[["mktrf", "smb", "hml", "rmw", "cma"]]

```
X_TSM_5 = sm.add_constant(X_TSM_5)
     model_TSM_5 = sm.OLS(Y_TSM, X_TSM_5)
     results_TSM_5 = model_TSM_5.fit(cov_type='HAC',cov_kwds={'maxlags':12})
[16]: results_TSM_5.summary()
[16]: <class 'statsmodels.iolib.summary.Summary'>
                                OLS Regression Results
                                                                           0.441
     Dep. Variable:
                                      ret
                                           R-squared:
     Model:
                                      OLS
                                           Adj. R-squared:
                                                                           0.430
                            Least Squares F-statistic:
     Method:
                                                                           19.11
     Date:
                         Sun, 05 Jun 2022 Prob (F-statistic):
                                                                        4.66e-16
     Time:
                                 22:07:07 Log-Likelihood:
                                                                          308.12
     No. Observations:
                                                                          -604.2
                                      252
                                           AIC:
                                           BIC:
     Df Residuals:
                                      246
                                                                          -583.1
     Df Model:
                                        5
                                      HAC
     Covariance Type:
     _____
                                                               [0.025
                      coef
                             std err
                                                    P>|z|
                                                                          0.975
     const
                    0.0131
                               0.005
                                          2.711
                                                    0.007
                                                                0.004
                                                                           0.023
     mktrf
                    1.1125
                               0.138
                                         8.086
                                                    0.000
                                                                0.843
                                                                           1.382
                               0.237
                                         0.572
                                                    0.568
                                                               -0.328
                                                                           0.599
     smb
                   0.1352
                               0.156
                   -0.3100
     hml
                                         -1.985
                                                    0.047
                                                               -0.616
                                                                          -0.004
     rmw
                  -0.9123
                               0.284
                                         -3.216
                                                    0.001
                                                               -1.468
                                                                          -0.356
                   -0.0958
                               0.456
                                         -0.210
                                                    0.834
                                                               -0.990
                                                                           0.799
     cma
     Omnibus:
                                   29.927
                                            Durbin-Watson:
                                                                           1.983
     Prob(Omnibus):
                                    0.000
                                            Jarque-Bera (JB):
                                                                          67.905
```

Notes

Skew:

Kurtosis:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

0.567

5.276

Prob(JB):

Cond. No.

1.80e-15

71.4

3 Second Part: Turnover and Out-of-Sample Tests

Do stocks with weaker liquidity have to compensate investors with higher returns?

We present the result of time series regression of stock return on the turnover ratio in the previous

month by using the Newey-West estimator, which includes the coefficient estimated, the t-statistic, and the corresponding p-value. With the negative coefficient, we can roughly draw a conclusion that stocks with weaker liquidity do have to compensate investors with higher returns; However, the p-value is insignificant.

[18]: results_MSFT.summary()

[18]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ret	R-squared:	0.012
Model:	OLS	Adj. R-squared:	0.008
Method:	Least Squares	F-statistic:	3.120
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	0.0786
Time:	22:07:07	Log-Likelihood:	317.95
No. Observations:	251	AIC:	-631.9
Df Residuals:	249	BIC:	-624.8
Df Model:	1		
Covariance Type:	HAC		

=========		========		========	========	========
	coef	std err	z	P> z	[0.025	0.975]
const turnover	0.0348 -0.0175	0.011 0.010	3.067 -1.766	0.002 0.077	0.013 -0.037	0.057 0.002
========		========		========	========	=======
Omnibus:		9.	.417 Durb	in-Watson:		2.181
Prob(Omnibus	s):	0.	.009 Jarq	ue-Bera (JB)	:	11.728
Skew:		0.	.309 Prob	(JB):		0.00284
Kurtosis:		3.	.860 Cond	. No.		5.92

Notes:

Model Comparison

With the comparison of turnover model and random walk model, we can see the result of MSE as below. For the turnover model, its MSE is slightly higher than the random walk model. The result shows that turnover model cannot be a good mdoel for stock return since the model underperform the random walk model.

MSE of Rolling Regression

```
[19]: ret = df MSFT["ret"]
      turnover = df_MSFT["turnover"]
      all res = []
      a = []
      b = []
      for i in range(df_MSFT.shape[0]-24):
          ret i = ret.iloc[i:i+23]
          turnover_i = turnover.iloc[i:i+23]
          turnover_i = sm.add_constant(turnover_i)
          model = sm.OLS(ret_i, turnover_i).fit()
          residual = ret.iloc[i+24] - (model.params[0] + model.params[1]*turnover.
       \rightarrowiloc[i+24])
          all_res.append(residual)
      for i in range(len(all_res)):
          all_res[i] = all_res[i] **2
      sum(all_res)/228
```

[19]: 0.004213175991491555

MSE of average of 24 month model

```
[20]: past_average = []
for end_time in range(len(Y_MSFT)):
    avg = np.mean(Y_MSFT[end_time-24:end_time])
    if np.isnan(avg) == False:
        past_average.append(avg)

mse(past_average, Y_MSFT[24:])
```

[20]: 0.004087260674424726

4 Third Part: Portfolio Analysis

using the information between 2001 and 2010

```
[21]: df.index.unique()[:120]
```

```
[21]: DatetimeIndex(['2001-01-01', '2001-02-01', '2001-03-01', '2001-04-01',
                     '2001-05-01', '2001-06-01', '2001-07-01', '2001-08-01',
                     '2001-09-01', '2001-10-01',
                     '2010-03-01', '2010-04-01', '2010-05-01', '2010-06-01',
                     '2010-07-01', '2010-08-01', '2010-09-01', '2010-10-01',
                     '2010-11-01', '2010-12-01'],
                    dtype='datetime64[ns]', name='ym', length=120, freq=None)
     using the information between 2011 and 2021
[22]: df.index.unique()[120:]
[22]: DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01',
                     '2011-05-01', '2011-06-01', '2011-07-01', '2011-08-01',
                     '2011-09-01', '2011-10-01',
                     '2021-03-01', '2021-04-01', '2021-05-01', '2021-06-01',
                     '2021-07-01', '2021-08-01', '2021-09-01', '2021-10-01',
                     '2021-11-01', '2021-12-01'],
                    dtype='datetime64[ns]', name='ym', length=132, freq=None)
     4.1 First Portfolio
     Equal-weighted
[23]: df_first = {
          "ret": [],
          "mktrf": [],
          "smb": [],
          "hml": [],
          "rmw": [],
          "cma": []
      }
[24]: for i in range(len(df.index.unique())):
          df_first["ret"].append(df.loc[df.index.unique()[i]]["ret"].mean())
          df_first["mktrf"].append(df.loc[df.index.unique()[i]]["mktrf"].mean())
          df_first["smb"].append(df.loc[df.index.unique()[i]]["smb"].mean())
          df first["hml"].append(df.loc[df.index.unique()[i]]["hml"].mean())
          df_first["rmw"].append(df.loc[df.index.unique()[i]]["rmw"].mean())
          df first["cma"].append(df.loc[df.index.unique()[i]]["cma"].mean())
```

df_first = pd.DataFrame(df_first).set_index(df.index.unique())

[25]:

[26]: df first.head()

```
[26]: ret mktrf smb hml rmw cma ym 2001-01-01 0.255562 0.0313 0.0545 -0.0511 -0.0546 -0.0505 2001-02-01 -0.103990 -0.1005 0.0279 0.1248 0.0912 0.0906 2001-03-01 0.034233 -0.0726 0.0236 0.0643 0.0339 0.0390 2001-04-01 0.139320 0.0794 -0.0088 -0.0470 -0.0348 -0.0318 2001-05-01 -0.047119 0.0072 0.0359 0.0336 0.0025 0.0191
```

4.1.1 Market premium factor (2001-2010)

```
[27]: Y1_first = df_first["ret"][df.index.unique()[:120]]
X_first = df_first["mktrf"][df.index.unique()[:120]]
X_first = sm.add_constant(X_first)
model_first = sm.OLS(Y1_first, X_first)
results_first = model_first.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

[28]: results_first.summary()

[28]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

			==========
Dep. Variable:	ret	R-squared:	0.700
Model:	OLS	Adj. R-squared:	0.698
Method:	Least Squares	F-statistic:	275.8
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	1.14e-32
Time:	22:07:09	Log-Likelihood:	234.98
No. Observations:	120	AIC:	-466.0
Df Residuals:	118	BIC:	-460.4
Df Model:	1		
a · m	TT A C		

Covariance Type: HAC

=========		=======	=======		========	========
	coef	std err	z	P> z	[0.025	0.975]
const	0.0108	0.004	2.839	0.005	0.003	0.018
mktrf	1.0833	0.065	16.608	0.000	0.955	1.211
=========						
Omnibus:		87	.556 Durl	oin-Watson:		1.578
Prob(Omnibus)):	0	.000 Jar	que-Bera (JB):	743.461
Skew:		2	.387 Prol	o(JB):		3.63e-162
Kurtosis:		14	.220 Cond	l. No.		20.7
=========						========

Notes:

4.1.2 Market premium factor (2011-2021)

```
[29]: Y2_first = df_first["ret"][df.index.unique()[120:]]
X_first = df_first["mktrf"][df.index.unique()[120:]]
X_first = sm.add_constant(X_first)
model_first = sm.OLS(Y2_first, X_first)
results_first = model_first.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

```
[30]: results_first.summary()
```

[30]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

______ Dep. Variable: R-squared: 0.790 ret Model: OLS Adj. R-squared: 0.788 Method: Least Squares F-statistic: 698.1 Date: Sun, 05 Jun 2022 Prob (F-statistic): 4.09e-54 Time: 22:07:09 Log-Likelihood: 330.04 No. Observations: 132 AIC: -656.1Df Residuals: 130 BIC: -650.3Df Model: 1

Df Model: 1
Covariance Type: HAC

	coef	std err	z	P> z	[0.025	0.975]
const	0.0032 0.9595	0.001 0.036	2.277 26.421	0.023 0.000	0.000 0.888	0.006 1.031
Omnibus: Prob(Omnibus): Skew: Kurtosis:	=====	0.				2.156 0.774 0.679 24.9

Notes:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

4.1.3 Fama-French 3 factors (2001-2010)

```
[31]: X_first_3 = df_first[["mktrf", "smb", "hml"]]
X_first_3 = sm.add_constant(X_first_3)
model_first_3 = sm.OLS(Y1_first, X_first_3[:120])
results_first_3 = model_first_3.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

```
[32]: results_first_3.summary()
```

[32]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

===========	===========		==========
Dep. Variable:	ret	R-squared:	0.706
Model:	OLS	Adj. R-squared:	0.698
Method:	Least Squares	F-statistic:	113.0
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	2.85e-34
Time:	22:07:09	Log-Likelihood:	236.10
No. Observations:	120	AIC:	-464.2
Df Residuals:	116	BIC:	-453.0
Df Model:	3		
C	TIAC		

Covariance Type: HAC

	coef	std err	z	P> z	[0.025	0.975]
const mktrf smb hml	0.0107 1.0740 0.0822 -0.1504	0.003 0.071 0.196 0.175	3.344 15.089 0.419 -0.858	0.001 0.000 0.676 0.391	0.004 0.935 -0.303 -0.494	0.017 1.214 0.467 0.193
Omnibus: Prob(Omnibus) Skew: Kurtosis:	us):	0.	2 42 52	•	:	1.523 525.237 8.84e-115 41.4

Notes:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

4.1.4 Fama-French 3 factors (2011-2021)

```
[33]: X_first_3 = df_first[["mktrf", "smb", "hml"]]
X_first_3 = sm.add_constant(X_first_3)
model_first_3 = sm.OLS(Y2_first, X_first_3[120:])
results_first_3 = model_first_3.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

[34]: results_first_3.summary()

[34]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ret	R-squared:	0.809
Model:	OLS	Adj. R-squared:	0.804
Method:	Least Squares	F-statistic:	270.7
Date:	Sun, 05 Jun 2022	<pre>Prob (F-statistic):</pre>	3.18e-55
Time:	22:07:09	Log-Likelihood:	336.29
No. Observations:	132	AIC:	-664.6
Df Residuals:	128	BIC:	-653.1
Df Model:	3		
Covariance Type:	нлс		

Covariance Type: HAC

	coef	std err	z	P> z	[0.025	0.975]
const	0.0029	0.001	1.937	0.053	-3.37e-05	0.006
mktrf	0.9998	0.039	25.633	0.000	0.923	1.076
smb	-0.2394	0.098	-2.445	0.014	-0.431	-0.048
hml	0.1498	0.052	2.873	0.004	0.048	0.252
Omnibus:		1.	.810 Durbi	n-Watson:		2.157
Prob(Omnib	us):	0.	.405 Jarqu	e-Bera (JB):	1.449
Skew:		-0.	.031 Prob(JB):		0.484
Kurtosis:		3.	510 Cond.	No.		48.1
========	========			========		========

Notes:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

4.1.5 Fama-French 5 factors (2001-2010)

```
[35]: X_first_5 = df_first[["mktrf", "smb", "hml", "rmw", "cma"]]
      X_first_5 = sm.add_constant(X_first_5)
      model_first_5 = sm.OLS(Y1_first, X_first_5[:120])
      results_first_5 = model_first_5.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

[36]: results_first_5.summary()

[36]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

===========	:==========		=========
Dep. Variable:	ret	R-squared:	0.746
Model:	OLS	Adj. R-squared:	0.735
Method:	Least Squares	F-statistic:	166.5
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	1.12e-50
Time:	22:07:09	Log-Likelihood:	244.90
No. Observations:	120	AIC:	-477.8

Df Residuals:	114	BIC:	-461.1

Df Model: 5
Covariance Type: HAC

========	========	========	=========	========	========	
	coef	std err	z	P> z	[0.025	0.975]
const mktrf smb hml rmw	0.0143 0.8955 0.0610 0.1742 -0.3824	0.004 0.128 0.177 0.153 0.150	3.622 6.970 0.345 1.142 -2.545	0.000 0.000 0.730 0.253 0.011	0.007 0.644 -0.286 -0.125 -0.677	0.022 1.147 0.408 0.473 -0.088
cma	-0.6133	0.219	-2.797	0.005	-1.043	-0.184
Omnibus: Prob(Omnibus) Skew: Kurtosis:	======= us):	0.		•		1.406 257.119 1.47e-56 67.2

Notes:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

4.1.6 Fama-French 5 factors (2011-2021)

```
[37]: X_first_5 = df_first[["mktrf", "smb", "hml", "rmw", "cma"]]
X_first_5 = sm.add_constant(X_first_5)
model_first_5 = sm.OLS(Y2_first, X_first_5[120:])
results_first_5 = model_first_5.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

```
[38]: results_first_5.summary()
```

[38]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ret	R-squared:	0.810
Model:	OLS	Adj. R-squared:	0.802
Method:	Least Squares	F-statistic:	176.3
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	4.21e-55
Time:	22:07:09	Log-Likelihood:	336.62
No. Observations:	132	AIC:	-661.2
Df Residuals:	126	BIC:	-643.9
Df Model:	5		
Covariance Type:	HAC		

	coef	std err	z	P> z	[0.025	0.975]
const	0.0031	0.002	1.943	0.052	-2.6e-05	0.006
mktrf	0.9916	0.041	24.163	0.000	0.911	1.072
smb	-0.2496	0.087	-2.870	0.004	-0.420	-0.079
hml	0.1832	0.070	2.617	0.009	0.046	0.320
rmw	-0.0190	0.121	-0.157	0.875	-0.257	0.219
cma	-0.0962	0.227	-0.425	0.671	-0.540	0.348
Omnibus:		1.	======= 094 Durbin	 ı-Watson:		2.122
Prob(Omnib	ous):	0.	579 Jarque	e-Bera (JB)	:	0.666
Skew:		-0.	048 Prob(J	ß):		0.717
Kurtosis:		3.	334 Cond.	No.		81.2
========						

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

4.2 Second portfolio

62% AAPL & 14% WMT & 24% XOM

```
[39]: df_second = {
    "ret": [],
    "mktrf": [],
    "smb": [],
    "hml": [],
    "rmw": [],
    "cma": []
}
```

```
[40]: ## test: stock == "AAPL" & column = "ret" & specific date

df[df["ticker"] == "AAPL"] ["ret"] [df.index.unique()[0]]
```

[40]: 0.45378151535987854

```
df_second["smb"].append(df[df["ticker"]=="AAPL"]["smb"][df.index.
       \rightarrowunique()[i]]*0.62 + df[df["ticker"]=="WMT"]["smb"][df.index.unique()[i]]*0.
       df second["hml"].append(df[df["ticker"]=="AAPL"]["hml"][df.index.
       \hookrightarrowunique()[i]]*0.62 + df[df["ticker"]=="WMT"]["hml"][df.index.unique()[i]]*0.
       \hookrightarrow 14 + df[df["ticker"]=="XOM"]["hml"][df.index.unique()[i]]*0.24)
          df_second["rmw"].append(df[df["ticker"]=="AAPL"]["rmw"][df.index.
       \rightarrowunique()[i]]*0.62 + df[df["ticker"]=="WMT"]["rmw"][df.index.unique()[i]]*0.
       \hookrightarrow14 + df[df["ticker"]=="XOM"]["rmw"][df.index.unique()[i]]*0.24)
          df second["cma"].append(df[df["ticker"]=="AAPL"]["cma"][df.index.
       \hookrightarrowunique()[i]]*0.62 + df[df["ticker"]=="WMT"]["cma"][df.index.unique()[i]]*0.
       \hookrightarrow14 + df[df["ticker"]=="XOM"]["cma"][df.index.unique()[i]]*0.24)
      df_second = pd.DataFrame(df_second).set_index(df.index.unique())
[43]: df second.head()
[43]:
                       ret
                             mktrf
                                       smb
                                               hml
                                                       rmw
                                                                cma
      2001-01-01 0.283334 0.0313 0.0545 -0.0511 -0.0546 -0.0505
      2001-02-01 -0.120888 -0.1005 0.0279 0.1248 0.0912 0.0906
      2001-03-01 0.130969 -0.0726 0.0236 0.0643 0.0339 0.0390
      2001-04-01 0.122032 0.0794 -0.0088 -0.0470 -0.0348 -0.0318
      2001-05-01 -0.133126  0.0072  0.0359  0.0336  0.0025  0.0191
     4.2.1 Market premium factor (2001-2010)
[44]: Y1_second = df_second["ret"][:120]
      X second = df second["mktrf"][:120]
      X_second = sm.add_constant(X_second)
      model second = sm.OLS(Y1 second, X second)
      results_second = model_second.fit(cov_type='HAC',cov_kwds={'maxlags':12})
[45]: results_second.summary()
[45]: <class 'statsmodels.iolib.summary.Summary'>
                                  OLS Regression Results
      Dep. Variable:
                                              R-squared:
                                                                                0.367
                                        ret
      Model:
                                        OLS
                                              Adj. R-squared:
                                                                                0.361
      Method:
                              Least Squares
                                              F-statistic:
                                                                                88.65
      Date:
                           Sun, 05 Jun 2022 Prob (F-statistic):
                                                                             4.86e-16
      Time:
                                   22:07:12
                                              Log-Likelihood:
                                                                               155.48
      No. Observations:
                                        120
                                              AIC:
                                                                               -307.0
      Df Residuals:
                                        118
                                              BIC:
                                                                               -301.4
```

Df Model:	1
Covariance Type:	HAC

==========	=======		=======	========	:=======	=======
	coef	std err	Z	P> z	[0.025	0.975]
const	0.0254 1.0452	0.006 0.111	4.299 9.415	0.000	0.014 0.828	0.037 1.263
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	6.89 0.03 0.3 3.9	32 Jarqu 76 Prob(•	:	1.961 7.550 0.0229 20.7

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

4.2.2 Market premium factor (2011-2021)

```
[46]: Y2_second = df_second["ret"][120:]
X_second = df_second["mktrf"][120:]
X_second = sm.add_constant(X_second)
model_second = sm.OLS(Y2_second, X_second)
results_second = model_second.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

[47]: results_second.summary()

[47]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

			=======================================
Dep. Variable:	ret	R-squared:	0.488
Model:	OLS	Adj. R-squared:	0.484
Method:	Least Squares	F-statistic:	105.4
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	1.80e-18
Time:	22:07:12	Log-Likelihood:	237.85
No. Observations:	132	AIC:	-471.7
Df Residuals:	130	BIC:	-465.9
Df Model:	1		
Covariance Type:	HAC		
	=======================================		=======================================

	coef	std err	z	P> z	[0.025	0.975]
const	0.0063	0.004	1.600	0.110	-0.001	0.014
mktrf	0.9710	0.095	10.266	0.000	0.786	1.156

Omnibus:	9.596	Durbin-Watson:	1.897
<pre>Prob(Omnibus):</pre>	0.008	Jarque-Bera (JB):	11.716
Skew:	-0.450	Prob(JB):	0.00286
Kurtosis:	4.149	Cond. No.	24.9
=======================================	-=========		=========

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

4.2.3 Fama-French 3 factors (2001-2010)

```
[48]: X_second_3 = df_second[["mktrf", "smb", "hml"]]
X_second_3 = sm.add_constant(X_second_3)
model_second_3 = sm.OLS(Y1_second, X_second_3[:120])
results_second_3 = model_second_3.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

```
[49]: results_second_3.summary()
```

[49]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	ret	R-squared:	0.413
Model:	OLS	Adj. R-squared:	0.398
Method:	Least Squares	F-statistic:	66.29
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	4.86e-25
Time:	22:07:12	Log-Likelihood:	160.03
No. Observations:	120	AIC:	-312.1
Df Residuals:	116	BIC:	-300.9
Df Model:	3		
Covariance Type:	HAC		

covariance type.

	coef	std err	z	P> z	[0.025	0.975]
const	0.0250	0.006	4.029	0.000	0.013	0.037
mktrf	1.0103	0.122	8.298	0.000	0.772	1.249
smb	0.3138	0.237	1.322	0.186	-0.152	0.779
hml	-0.5816	0.171	-3.409	0.001	-0.916	-0.247
Omnibus:		9.0	======================================	 n-Watson:		1.842
Prob(Omnibus	3):	0.0	008 Jarque	e-Bera (JB):		10.513
Skew:		0.	534 Prob(J	ΙΒ):		0.00521
Kurtosis:		3.9	980 Cond.	No.		41.4

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

4.2.4 Fama-French 3 factors (2011-2021)

```
[50]: X_second_3 = df_second[["mktrf", "smb", "hml"]]
X_second_3 = sm.add_constant(X_second_3)
model_second_3 = sm.OLS(Y2_second, X_second_3[120:])
results_second_3 = model_second_3.fit(cov_type='HAC',cov_kwds={'maxlags':12})
```

[51]: results_second_3.summary()

[51]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable: ret R-squared: 0.533 Model: OLS Adj. R-squared: 0.522 Least Squares F-statistic: Method: 58.36 Date: Sun, 05 Jun 2022 Prob (F-statistic): 7.65e-24 Time: 22:07:12 Log-Likelihood: 243.93 No. Observations: 132 AIC: -479.9Df Residuals: 128 BIC: -468.3Df Model: 3 Covariance Type: HAC

______ P>|z| [0.025 coef std err Z ______ 0.004 const 0.0042 1.157 0.247 -0.003 0.011 mktrf 1.0795 0.104 10.349 0.000 0.875 1.284 smb -0.648 -0.033 -0.34070.157 -2.173 0.030 hml -0.2233 0.122 -1.827 0.068 -0.4630.016

Omnibus:	13.847	Durbin-Watson:	1.934
Prob(Omnibus):	0.001	Jarque-Bera (JB):	20.645
Skew:	-0.539	Prob(JB):	3.29e-05
Kurtosis:	4.609	Cond. No.	48.1

Notes:

4.2.5 Fama-French 5 factors (2001-2010)

```
[52]: X_second_5 = df_second[["mktrf", "smb", "hml", "rmw", "cma"]]
     X second 5 = sm.add constant(X second 5)
     model_second_5 = sm.OLS(Y1_second, X_second_5[:120])
     results_second_5 = model_second_5.fit(cov_type='HAC',cov_kwds={'maxlags':12})
[53]: results_second_5.summary()
[53]: <class 'statsmodels.iolib.summary.Summary'>
                             OLS Regression Results
     ______
     Dep. Variable:
                                       R-squared:
                                                                    0.444
                                  ret
     Model:
                                  OLS Adj. R-squared:
                                                                    0.419
     Method:
                         Least Squares F-statistic:
                                                                    32.48
     Date:
                       Sun, 05 Jun 2022 Prob (F-statistic):
                                                                1.83e-20
     Time:
                              22:07:12 Log-Likelihood:
                                                                   163.27
     No. Observations:
                                  120 AIC:
                                                                   -314.5
                                  114 BIC:
    Df Residuals:
                                                                   -297.8
    Df Model:
                                    5
     Covariance Type:
                                  HAC
                                               P>|z|
                                                         [0.025
                                                                   0.975]
                   coef
                          std err
                  0.0268
                            0.005
                                      4.979
                                               0.000
                                                         0.016
                                                                    0.037
     const
                                               0.000
    mktrf
                  0.9492
                            0.199
                                     4.759
                                                         0.558
                                                                   1.340
     smb
                 0.3612
                            0.216
                                     1.671
                                               0.095
                                                         -0.062
                                                                   0.785
    hml
                 -0.2784
                            0.274
                                     -1.015
                                               0.310
                                                        -0.816
                                                                    0.259
                 0.0391
                           0.229
                                     0.171
                                               0.865
                                                         -0.410
                                                                    0.489
     rmw
                            0.267
                                     -3.203
                                               0.001
                                                         -1.379
                 -0.8554
                                                                   -0.332
     ______
     Omnibus:
                                 9.900
                                       Durbin-Watson:
                                                                    1.868
     Prob(Omnibus):
                                0.007
                                       Jarque-Bera (JB):
                                                                   11.479
```

Notes:

Skew:

Kurtosis:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 12 lags and without small sample correction

0.512 Prob(JB):

4.116 Cond. No.

0.00322

67.2

4.2.6 Fama-French 5 factors (2011-2021)

```
[54]: X_second_5 = df_second[["mktrf", "smb", "hml", "rmw", "cma"]]
    X_second_5 = sm.add_constant(X_second_5)
    model_second_5 = sm.OLS(Y2_second, X_second_5[120:])
    results_second_5 = model_second_5.fit(cov_type='HAC',cov_kwds={'maxlags':12})
[55]: results_second_5.summary()
```

[55]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================			
Dep. Variable:	ret	R-squared:	0.573
Model:	OLS	Adj. R-squared:	0.556
Method:	Least Squares	F-statistic:	75.53
Date:	Sun, 05 Jun 2022	Prob (F-statistic):	3.12e-36
Time:	22:07:12	Log-Likelihood:	249.84
No. Observations:	132	AIC:	-487.7
Df Residuals:	126	BIC:	-470.4
Df Model:	5		

Covariance Type: HAC

=======	coef	std err	z	P> z	[0.025	0.975]
const	0.0027	0.003	0.892	0.373	-0.003	0.009
mktrf	1.0438	0.092	11.318	0.000	0.863	1.225
smb	-0.0852	0.162	-0.527	0.598	-0.402	0.231
hml	-0.3017	0.148	-2.042	0.041	-0.591	-0.012
rmw	0.6765	0.217	3.120	0.002	0.252	1.101
cma	-0.0691	0.364	-0.190	0.849	-0.782	0.644
========	========				========	=======
Omnibus:		6.0	057 Durbin	n-Watson:		1.967
Prob(Omnibu	.s):	0.0	048 Jarque	e-Bera (JB):		6.580
Skew:		-0.3	322 Prob(JB):		0.0373
Kurtosis:		3.8	884 Cond.	No.		81.2

Notes:

4.3 Summary of Alphas

[56]:	Portflio1	(2001-10)	Portflio1	(2011-21)	\
Market Premium		1.08%		0.32%	
Fama-French 3 Factor	rs.	1.07%		0.29%	
Fama-French 5 Factor	rs.	1.43%		0.31%	
	Portflio2	(2001-10)	Portflio2	(2011-21)	
Market Premium		2.54%		0.63%	
Fama-French 3 Factor	rs.	2.50%		0.42%	
Fama-French 5 Factor	rs.	2.68%		0.27%	

4.4 Result

With the above coefficients and intercepts, we may know that the alphas between two periods (2001-2010 and 2011-2021) decrease for all three regression models whether it's equally weighted portfolio or tangency portfolio. We can interpret that the stock market may gradually become efficient with time passing, which makes a long position generates less alpha in a long run. However, the tangency portfolio generates more alpha than the equally weighted one. It may be resulted by AAPL since it generates more alpha than the average of all stocks, and AAPL takes up to 62% for the portfolio.