AI & ML: Motivation

Mahesh Mohan M R, Prabhat Kumar Mishra Centre of Excellence in Al Indian Institute of Technology Kharagpur 24-07-2024

Brief History of Artificial Intelligence

Brief History of Linear Algebra

Units of Linear Algebra in AI

Scalar Vector Matrix **Tensor**

Stages of Neural Network Training

Linear Algebra for Data Representation and Pre-processing

Data Representation

Word Embedding as Vectors

[15496, 11, 466, 345, 588, 8887, 30, 220, 50256, 554, 262, 4252, 18250, 8812, 2114, 1659, 617, 34680, 27271, 13]

Experiment

Dimensionality Reduction

Dimensionality Reduction

12 dimensions

50*40 = 2000 dimensions

Dimensionality Reduction: Application 1

Dimensionality Reduction: AI Application

Dimensionality Reduction: Exploratory Data Analysis

Linear Algebra for ANN Modelling

Biological Motivation: Mammalian Vision System

Hubel and Wiesel (1959) 1981 Nobel prize

Experimental setup

Suggested a 'hierarchy' of feature detectors in the mammalian visual cortex.

Hierarchical Feedforward ANN

Common Neural Network Architecture

Fully Connected Layer

Why We Need Non-Linearities?

Convolutional Layer

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4			
		10 0	
3. 3.	50 (S)	500	
	s les		

Convolved Feature

Convolutional Layer

Linear Algebra for ANN Losses

Linear Algebra for ANN Losses

Error Measures (Norms)

Linear Algebra for ANN Training

Linear Algebra for ANN Training

Linear Algebra for ANN Training

Type	Scalar	Vector	Matrix
Scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{y}}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
Vector	$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	
Matrix	$\frac{\partial y}{\partial \mathbf{X}}$		

Linear Algebra for ANN Regularization

Stages of Neural Network Training

Overview: Stage 1 (Data)

Data Representation + Processing

- 1. Vector Spaces and Subspaces
- 2. Basis, dimension and Rank
- 3. Solving Linear Equations
- 4. Orthogonal Basis and Gram Schmidt Method
- 5. PCA and SVD
- 6. Application: Feature Extraction + Dimensionality Reduction

Overview: Stage 2 (ANN Modelling)

- 1. Linear Transformations
- 2. Inner Product and Projections
- 3. Inequalities
- 4. Application:
 - a. The Construction of Deep Neural Networks
 - B. Convolutional Neural Networks

Overview: Stage 3 (Losses)

- 1. Norms of Vectors, Functions and Matrices
- 2. L2 and L1 Norms and Interpretations
- 3. Split Algorithms for L2 and L1
- 4. Application: Different Loss Functions and Analysis

Overview: Stage 4 (Optimization)

- 1. Existence and uniqueness of solutions
- 2. Inverse and pseudo inverse of matrices
- 3. Introduction to Least Squares
- 4. Introduction to Gradient Descent and Matrix Differentials
- 5. Regularization using L2 and L1 Norms
- 6. Application: Optimization using Closed form and Gradient Descent Algorithms

