Лабораторная работа 4.7.2, Эффект Поккельса.

Радькин Кирилл, Б01-005

11.03.22

Цель работы: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

В работе используются: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

Теоретическая справка:

- Эффектом Поккельса называется изменение показателя преломления света в кристалле под действием электрического поля, причём это изменение пропорционально напряжённости электрического поля. В первом приближении это изменение считается линейным относительно напряженности.
- Эффект Поккельса может наблюдаться только в кристаллах, не обладающих центром симметрии. Вследствие линейности эффекта относительно внешнего поля E эл при изменении направления поля на противоположное должен меняться на противоположный и знак изменения показателя преломления Δn . Но в кристаллах с центром симметрии это невозможно, так как оба взаимно противоположных направления внешнего поля физически эквивалентны
- Выражение для радиуса *m*-нного темного кольца для случая, когда направление анализатора перпендикулярно поляризации лазерного излучения:

$$r_m^2 = \frac{\lambda}{l} \frac{(n_0 L)^2}{(n_0 - n_e)m} \tag{1}$$

где: λ — длина волны лазерного излучения, l — длина кристалла, n_0 — показатель преломления кристалла для случая, когда вектор \vec{E} перпендикулярен оптической оси кристалла Z, n_e — показатель преломления для случая, когда вектор \vec{E} располагается вдоль оси Z

Ход работы:

1. Соберем оптическую схему, включим лазер, получим на экране интерференционную картину

2. Измерим радиусы темных колец r(m) и расстояние L от середины кристалла до экрана, построим график.

$$L = 76.5 \text{ cm}$$

r, cm	2.85	3.9	4.85	5.5	6.2	6.8
m	1	2	3	4	5	6

3. Построим график r^2 от m

По углу наклона прямой определим лучепреломление n_0-n_e

Необходимые табличные величины: $n_0=2.29,\ l=26$ мм, $\lambda=0.63$ мкм

Полученный угол наклона: $k=7.62\pm0.67~{\rm cm}^2$, тогда величина $n_0-n_e=0.097\pm0.011$

- 4. Подключим блок питания. Уберем матовую пластину, на экране появляется пятно. С увеличением напряжения яркость пятна увеличивается, достигает максимума при $U=U_{\lambda/2}=300~\mathrm{B}.$
- 5. Подадим на кристалл напряжение $U=\frac{U_{\lambda/2}}{2}$ и убедимся, что поляризация на выходе кристалла получается круговой.
- 6. Установим вместо экрана фотодиод и подклюич осциллограф
- 7. Определим по осциллографу полуволновое напряжение, соответствующее максимуму и минимуму сигнала на осциллограмме: $U_{\lambda/2} = 474 \text{ B}$.
- 8. Зафиксируем фигуры Лиссажу для напряжений $U_{\lambda/2}, U_{\lambda}, U_{3\lambda/2}$

Рис. 1. r^2 от m

Рис. 2. Осцилограмма $U_{\lambda/2}$

Рис. 3. Осцилограмма U_{λ}

Рис. 4. Осцилограмма $U_{3\lambda/2}$