Realistic Animation of Fluids

Nick Foster and Dimitri Metaxas

Overview

- Problem Statement
- Previous Work
- Navier-Stokes Equations
- Explicit solving
- Results

Problem Statement

- Simulate fluids for graphics applications
- Scalability
- Usability
 - Easy to setup
 - Controllable

Related Work

- Non-physics based
 - Paramtric functions
 - Sinusoidal phase functions
- Physics based
 - CFD
 - Too expensive
 - Not controllable
 - Kass and Miller
 - Shallow water
 - Chen and Lobo
 - Navier-Stokes in 2-D
 - Fluid zero depth
 - Use instantaneous pressure

Navier-Stokes Equation

Conservation of Momentum

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{\partial p}{\partial x} + g_x + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{\partial p}{\partial y} + g_y + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right)$$

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{\partial p}{\partial z} + g_z + \mu \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right)$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

$$\rho \frac{D\mathbf{V}}{Dt} = -\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{V}$$

Vector form

$$\frac{\rho \mathbf{V}}{Dt} = -\nabla p + \rho \mathbf{g} + \mu \nabla^2 \mathbf{V}$$

- Vector form
- ightharpoonup Normalize for ρ

$$\frac{D\mathbf{V}}{Dt} = -\nabla p + \mathbf{g} + \mu \nabla^2 \mathbf{V}$$

- Vector form
- ightharpoonup Normalize for ρ

$$\frac{D\mathbf{V}}{Dt} = -\nabla p + \mathbf{g} + \mu \nabla^2 \mathbf{V}$$

- Vector form
- ightharpoonup Normalize for ρ
- LHS
 - Intertial force

$$\frac{D\mathbf{V}}{Dt} = -\nabla p + \mathbf{g} + \mu \nabla^2 \mathbf{V}$$

- Vector form
- ightharpoonup Normalize for ρ
- LHS
 - Intertial force
- RHS
 - Surface forces due to pressure differences

$$\frac{D\mathbf{V}}{Dt} = -\nabla p + \mathbf{g} + \mu \nabla^2 \mathbf{V}$$

- Vector form
- ightharpoonup Normalize for ρ
- LHS
 - Intertial force
- RHS
 - Surface forces due to pressure differences
 - Gravity

$$\frac{D\mathbf{V}}{Dt} = -\nabla p + \mathbf{g} + \mu \nabla^2 \mathbf{V}$$

- Vector form
- ullet Normalize for ρ
- LHS
 - Intertial force
- RHS
 - Surface forces due to pressure differences
 - Gravity
 - Sheer force due to viscosity

LHS

Begin with Newton's Second Law

$$\mathbf{F} = m \frac{d\mathbf{V}}{dt}$$

LHS

Begin with Newton's Second Law

$$\mathbf{F} = m \frac{d\mathbf{V}}{dt}$$

Using the Chain Rule

$$\frac{d\mathbf{V}}{dt} = \frac{\partial \mathbf{V}}{\partial x} \frac{dx}{dt} + \frac{\partial \mathbf{V}}{\partial y} \frac{dy}{dt} + \frac{\partial \mathbf{V}}{\partial z} \frac{dz}{dt} + \frac{\partial \mathbf{V}}{\partial t}$$

LHS

Begin with Newton's Second Law

$$\mathbf{F} = m \frac{d\mathbf{V}}{dt}$$

Using the Chain Rule

$$\frac{d\mathbf{V}}{dt} = \frac{\partial \mathbf{V}}{\partial x} \frac{dx}{dt} + \frac{\partial \mathbf{V}}{\partial y} \frac{dy}{dt} + \frac{\partial \mathbf{V}}{\partial z} \frac{dz}{dt} + \frac{\partial \mathbf{V}}{\partial t}$$

$$= u\frac{\partial \mathbf{V}}{\partial x} + v\frac{\partial \mathbf{V}}{\partial y} + w\frac{\partial \mathbf{V}}{\partial z} + \frac{\partial \mathbf{V}}{\partial t}$$

- Pressure
- Gravity
- Sheer forces

$$F_{yx} = \mu \frac{\partial^2 u}{\partial y^2}$$
$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

- Pressure
- Gravity
- Sheer forces

$$F_{yx} = \mu \frac{\partial^2 u}{\partial y^2}$$

$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

- Pressure
- Gravity
- Sheer forces

$$F_{yx} = \mu \frac{\partial^2 u}{\partial y^2}$$

$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

- Pressure
- Gravity
- Sheer forces

$$F_{yx} = \mu \frac{\partial^2 u}{\partial y^2}$$
$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

- Pressure
- Gravity
- Sheer forces

$$F_{yx} = \mu \frac{\partial^2 u}{\partial y^2}$$
$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

- Pressure
- Gravity
- Sheer forces

$$F_{yx} = \mu \frac{\partial^2 u}{\partial y^2}$$

$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

- Pressure
- Gravity
- Sheer forces

$$F_{yx} = \mu \frac{\partial^2 u}{\partial y^2}$$
$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

- Pressure
- Gravity
- Sheer forces

$$F_{yx} = \mu \frac{\partial^2 u}{\partial y^2}$$

$$F_{xx} = \mu \frac{\partial^2 u}{\partial x^2}$$

In 3-D:

$$F_x = \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)$$

- Incompressible fluid
- Divergence should be zero

- Incompressible fluid
- Divergence should be zero

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} = 0$$

- Incompressible fluid
- Divergence should be zero

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} = 0$$

$$\Rightarrow \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

Solving Navier-Stokes

- Specify obstacle/boundaries
- Discretize on a rough grid
- Solve equations
- Interpolate surface of fluid

- Rectangular Cartesian grid
- Finite differences
- Velocity defined on cell faces
- Pressure defined in cell
- Stability

$$1 > \max\left[u\frac{\delta t}{\delta x}, v\frac{\delta t}{\delta y}, w\frac{\delta t}{\delta z}\right]$$

- Rectangular Cartesian grid
- Finite differences
- Velocity defined on cell faces
- Pressure defined in cell
- Stability

$$1 > \max\left[u\frac{\delta t}{\delta x}, v\frac{\delta t}{\delta y}, w\frac{\delta t}{\delta z}\right]$$

- Rectangular Cartesian grid
- Finite differences
- Velocity defined on cell faces
- Pressure defined in cell
- Stability

$$1 > \max\left[u\frac{\delta t}{\delta x}, v\frac{\delta t}{\delta y}, w\frac{\delta t}{\delta z}\right]$$

- Rectangular Cartesian grid
- Finite differences
- Velocity defined on cell faces
- Pressure defined in cell
- Stability

$$1 > \max\left[u\frac{\delta t}{\delta x}, v\frac{\delta t}{\delta y}, w\frac{\delta t}{\delta z}\right]$$

Types of Cells

- Empty
 - A cell containing no particles
- Surface
 - A cell containing at least 1 particle that is adajacent to an *Empty* cell
- Full
 - A cell containing at least 1 particle and not a Surface cell

Calculating Velocities

Velocities from momentum equations

$$\frac{\partial u}{\partial t} = -\frac{\partial p}{\partial t} + g_x - u\frac{\partial u}{\partial x} - v\frac{\partial u}{\partial y} - w\frac{\partial u}{\partial z} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

Pressure from continuity equations

$$D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

• δp is proportional to D

Consistency

- Velocity and pressure are updated
- Iterate until $D < \epsilon$

$$\begin{array}{rcl} \delta p & = & \beta D \\ u_{i+1/2,j,k} & = & u_{i+1/2,j,k} + (\delta t/\delta x) \delta p \\ u_{i-1/2,j,k} & = & u_{i-1/2,j,k} - (\delta t/\delta x) \delta p \\ v_{i,j+1/2,k} & = & u_{i,j+1/2,k} + (\delta t/\delta y) \delta p \\ v_{i,j-1/2,k} & = & u_{i,j-1/2,k} - (\delta t/\delta y) \delta p \\ w_{i,j,k+1/2} & = & u_{i,j,k+1/2} + (\delta t/\delta z) \delta p \\ w_{i,j,k-1/2} & = & u_{i,j,k-1/2} - (\delta t/\delta z) \delta p \\ \tilde{p}_{i,j,k} & = & p_{i,j,k} + \delta p \end{array}$$

Boundary Conditions

- Stationary Obstacles
 - Non-slip
 - Free-slip
- Infow and outflow
- Free Surfaces

$$u_0 = 0$$

$$p_0 = p_1$$

$$w_0 = -w_1$$

$$w_0 = w_1$$

Free Surface

- Free faces set so divergence zero
- Surface pressure set to atmospheric pressure
- Cases
- 3-D: 64 configurations

Free Surface

- Free faces set so divergence zero
- Surface pressure set to atmospheric pressure
- Cases
- 3-D: 64 configurations

Free Surface

- Free faces set so divergence zero
- Surface pressure set to atmospheric pressure
- Cases
- 3-D: 64 configurations

Recap

- 1. Set boundary conditions
- 2. Classify cells
- 3. Calculate velocities for Full cells
- 4. Calculate pressures for Full cells
- 5. Update velocities for Surface cells
- 6. Iterate

Problem

- Stability condition
- Limited spatial resolution
- Computational complexity
- Main contribution
 - Interpolating methods for displaying the surface
- 3 methods for tracking fluid positions

Marker Particles

- Convect massless particles with local fluid velocity
- Use weighted average of 4 nearest velocities
 - Weighting based on area
 - Multiplied by timestep
- Labeling done based on particles
 - 1 particle test

Free Surface Particles

- Only keep particles at surface
- Rules for adding and removing particles
 - If far apart: Insert a particle
 - If close: remove and connect neighbors
- Region growing algorithm

Height Field

Scalar function

$$\frac{\partial h}{\partial t} = w - u \frac{\partial h}{\partial x} - v \frac{\partial h}{\partial y}$$

- Cell configuration trivial
- Need other methods
 - Overturning wave
 - Spray
 - Foam

Height Field

Scalar function

$$\frac{\partial h}{\partial t} = w - u \frac{\partial h}{\partial x} - v \frac{\partial h}{\partial y}$$

- Cell configuration trivial
- Need other methods
 - Overturning wave
 - Spray
 - Foam

Buoyancy

- Rigid object
- Force formula

$$\mathbf{f}_{n_i} = -\nabla p_i dV_i + m_i \mathbf{g}$$

$$\mathbf{f}_{fluid} = \sum_i \mathbf{f}_{n_i}$$

Lagrange equations of motions

$$\mathbf{M}\ddot{\mathbf{q}} + \mathbf{D}\dot{\mathbf{q}} = \mathbf{f}_q + \mathbf{g}_q$$

- Do not affect water flow
- Collisions treated separately

Control

- Inflow and Outflow
- Instead of atmospheric pressure, apply surface pressure history
 - Constant
 - Time-depedent
 - Height of surface

$m \rightarrow (2)$	$A + B\cos(Cz - wt)$
$p_{applied}(z) =$	δt

Р	Р	Р
Р	Р	Р

