09/051,900

PCT/FR 96 / 01666

REC' 1 8 NOV 1996 5

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

PRIORITY DOGUMENT

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 1 i QCT. 1996

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef de Division

Yves CAMPENON

INSTITUT
NATIONAL DE
LA PROPRIETE

SIEGE 26 bis. rue de Saint Petersbourg 75800 PARIS Cédex 08 Téléphone : (1) 42 94 52 52 Télécopie : (1) 42 93 59 30

B4 167 [31795

2 OPTIONS OBLIGATOIRES au moment du dépôt (sauf pour le certificat d'utilité) REQUETE SI L'OPTION CHOISIE EST NON ET SI LE DEMANDEUR EST UNE PERSONNE PHYSIQUE IL REQUIERT LE PAIEMENT ECHELONNE DE LA REDEVANCE DE RAPPORT DE RECHERCHE LE DEMANDEUR REQUIERT L'ETABLISSEMENT DIFFÈRE DU RAPPORT DE RECHERCHE OUI) OUI EN DÉLIVRANCE D'UN NON NON TITRE DE PROPRIÉTÉ CERTIFICAT D'UTILITE DATE DE LA DEMANDE INITIALE INDUSTRIELLE * NATURE NUMÉRO DEMANDE DIVISIONNAIRE DATE DE REMISE DES PIÈCES Pour c et d. précisez : Nature, N° et date de 3 NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE À QUI TOUTE LA CORRESPONDANCE DOIT ETRE ADRESSÉE 2 **4. OCT.** 1995 CABINET BEAU DE LOMENIE 158 rue de l'Université 24 OCT. 1995 Nº D'ENREGISTREMENT NATIONAL 75340 PARIS CEDEX 07 95 12533 -CODE POSTAL DU LIEU DE DEPOT 5 REFERENCE DU CORRESPONDANT 4 NUMERO DU POUVOIR PERMANENT 6 TELEPHONE DU CORRESPONDANT 75 H2233-643/MLG $(1)_44.18.89.00$ 7 TITRE DE L'INVENTION "Dérivés d'indolin-2-one, procédé pour leur préparation et les compositions pharmaceutiques les contenant" 8 DEMANDEUR(S): Nom et Prénoms (souligner le nom patronymique) ou dénomination et forme juridique

SANOFI Société Anonyme

BREVET D'INVENTION, CERTIFICAT D'UTILITE

DÉSIGNATION DE L'INVENTEUR

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

N° D'ENREGISTREMENT NATIONAL

12533

DIVISION ADMINISTRATIVE DES BREVETS

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

Tél.: (1) 42 94 52 52 - Télécopie: (1) 42 93 59 30

TITRE DE L'INVENTION:

"Dérivés d'indolin-2-one, procédé pour leur préparation et les compositions pharmaceutiques les contenant"

LE (S) SOUSSIGNÉ (S)

SANOFI Société Anonyme

DÉSIGNE (NT) EN TANT QU'INVENTEUR (S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) : 1) FOULON Loic

14, rue de l'Ousse 31120 PINSAGUEL **FRANCE**

2) GARCIA Georges 340, rue Adrienne Boland Résidence La Belle 34000 MONTPELLIER FRANCE

3)SERRADEIL - LE GAL Claudine 45, avenue des Troubadours 31750 ESCALQUENS FRANCE

4) VALETTE Gérard 8, rue de Montségur 31120 LACROIX - FALGARDE FRANCE

NOTA: A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

N° CPI 92-1099

Marie-Louise GILLARD

24 ctobre 1995

		ANALYSI MENERAL PROPERTY AND ANALYSIS ANALYSIS AND ANALYSIS ANALYSIS AND ANALYSIS ANALYSIS AND ANALYSIS AND ANALYSIS AND ANALYSIS AND ANALYSIS AND ANALYSIS ANALYSIS ANALYSIS AND ANALYSIS AND ANALYSIS AND ANALYSIS		
and to the second secon				
DOCUMENT COMPORTANT DES MODIFICATIONS				

PAGE(S) DE LA DESCRIPTION OU DES REVENDI- CATIONS OU PLANCHE(S) DE DESSIN		R.M.*	DATE DE LA	TAMPON DATEUR DU	
odifiée(s)	Supprimée(s)	Ajoutée(s)		CORRESPONDANCE	CORRECTEUR
50 et 52			X	9 JAN 1996	Hill - 6 / The fire
			ļ		
			ļ		
			<u> </u>		

Un changement apporté à la rédaction des revendications d'origine, sauf si celui-ci découle des dispositions de l'article 28 du décret du 19 septembre 1979, est signalé par la mention "R.M." (revendications modifiées).

ة.

La présente invention a pour objet de nouveaux dérivés d'indolin-2-one, un procédé pour leur préparation. Ces nouveaux dérivés sont en général pourvus d'affinité pour les récepteurs de la vasopressine et/ou de l'ocytocine et peuvent donc constituer des principes actifs de compositions pharmaceutiques.

5

10

15

20

25

30

La vasopressine est une hormone connue pour son effet antidiurétique et son effet dans la régulation de la pression artérielle. Elle stimule plusieurs types de récepteurs : V1 (V1a, V1b), V2. Ces récepteurs sont localisés dans le foie, les vaisseaux (coronaires, rénaux, cérébraux), les plaquettes, le rein, l'utérus, les glandes surrénales, le système nerveux central, l'hypophyse. L'ocytocine a une structure peptidique proche de celle de la vasopressine. Les récepteurs de l'ocytocine se trouvent aussi sur le muscle lisse de l'utérus ; ils se trouvent également sur les cellules myoépithéliales de la glande mammaire, dans le système nerveux central et dans le rein. La localisation des différents récepteurs est décrite dans : Jard S. et al., "Vasopressin and oxytocin receptors : an overview, in Progress" dans Endocrinology., Imura H. and Shizurne K. ed., Experta Medica, Amsterdam, 1988, 1183-1188, ainsi que dans les articles suivants: Presse Médicale, 1987, 16 (10), 481-485, J. Lab. Clin. Med., 1989, 114 (6), 617-632 et Pharmacol. Rev., 1991 43 (1), 73-108. La vasopressine hépatiques, cardiovasculaires, hormonaux, exerce des effets ainsi antidiurétiques, agrégants et des effets sur les systèmes nerveux central et périphérique, sur les sphères utérine et intestinale et sur le système oculaire. L'ocytocine intervient dans la parturition, la lactation et le comportement sexuel.

Les antagonistes des récepteurs V₂ de la vasopressine (appelés également "AVP-2-antagonistes" ou "antagonistes V₂") sont préconisables comme puissants aquarétiques qui interviennent spécifiquement sur la résorption rénale de l'eau sans entraîner de fuites électrolytiques (Na⁺, K⁺) comme le font les diurétiques classiquement utilisés en clinique, tels que le furosemide où l'hydrochlorothiazide. Ces demiers entraînent après un traîtement prolonge des hypokaliemies et hyponatrémies.

Le premier antagoniste des récepteurs V₂ de l'arginine-vasopressine (ciaprès denommee AVP): l'OPC-31260, est actuellement en cours de développement clinique. La comparaison des effets de l'OPC-31260 aux diurétiques classiques, tel que le furosemide, démontre que, tant chez l'animal (Yoshitaka Y. et al., Br. J. Pharmacol., 1992, 105, 787-791) que chez l'homme (Akihiro O. et al., J. Clin. Invest., 1993, 92, 2653-2659, Akihiro O. et al., J. Pharmacol. Exp. Ther., 1995, 272, 546-551) un tel composé favorise

sélectivement la diurèse aqueuse et n'affecte pas, ou très peu aux fortes doses, l'excrétion des ions.

Des dérivés d'indolin-2-one ont été décrits dans la littérature. A titre d'exemple, on peut citer le brevet ZA 830952 qui décrit des dérivés utiles comme antihypertenseurs qui inhibent l'enzyme de conversion, le brevet FR 1509373 qui décrit des composés diurétiques pourvus d'un effet sur l'excrétion du potassium.

Plusieurs demandes de brevet ou brevets décrivent également des séries de composés non peptidiques possédant une affinité pour les récepteurs de la vasopressine et/ou de l'ocytocine. C'est le cas par exemple de EP 382185 qui décrit des dérivés de carbostyryle qui sont des antagonistes de la vasopressine utiles comme vasodilatateurs, hypotenseurs, diurétiques et antiagrégants plaquettaires ; de EP 444945 qui décrit des dérivés de spiropipéridine utile notamment dans la dysménorrhée ; de EP 514667 qui décrit des dérivés de benzazépine utiles notamment dans les troubles de la fonction rénale, dans l'hyponatrémie, le diabète ou encore dans le traitement et la prophylaxie de l'hypertension et dans l'inhibition de l'agrégation plaquettaire : de JP 03127732.

Des dérivés de benzyle ou sulfonylindoline et d'indole ont également été décrits comme antagonistes de la vasopressine. A cet effet, on peut citer les documents EP 469984, EP 526348, EP 636608, EP 636609, WO 93/15051 et WO 95/18105, mais ces documents ne décrivent pas des composés actifs de facon sélective sur le récepteur AVP-2.

Il a été maintenant trouvé que certaines indolinones présentent une excellente affinité vis-à-vis des récepteurs de la vasopressine et/ou de l'ocytocine. Ces nouvelles indolin-2-ones sont en général des AVP-2-antagonistes puissants et sélectifs. De plus, compte-tenu de leur structure et en particulier de la présence de diverses fonctions polaires, notamment des fonctions salifiables, ces molécules possèdent une bonne dispersibilité et/ou solubilité dans l'eau qui leur confère une activité pharmacologique améliorée et permettent aussi la préparation aisée de formes galéniques injectables.

٠., ٤

5

10

15

20

25

Ainsi, selon l'un de ses aspects, la présente invention concerne de nouvelles indolin-2-ones répondant à la formule :

dans laquelle:

 $^ R_1$ et R_2 représentent chacun indépendamment un hydrogène ; un hydroxyle ; un halogène ; un (C_1-C_7) alkyle ; un (C_1-C_7) polyfluoroalkyle ; un (C_1-C_7) alcoxy ; un (C_1-C_7) alkylthio ; un (C_1-C_7) polyfluoroalcoxy ; un (C_3-C_7) cycloalkyloxy ; un (C_3-C_7) cycloalkylthio ; un cycloalkylméthoxy ou un cycloalkylméthylthio dans lesquels le cycloalkyle est en C_3-C_7 ; un phénoxy ; un benzyloxy ; un nitro ; un cyano ;

- R_3 et R_4 , indépendamment l'un de l'autre, substituent une ou plusieurs fois le groupe phényle et représentent chacun indépendamment un hydrogène ; un halogène ; un (C_1-C_7) alkyle ; un (C_2-C_7) alcényle ; un (C_1-C_7) polyhalogénoalkyle ; un phényle ou un benzyle ; un cyano ; un nitro ; un groupe $-NR_5R_6$; un hydroxyamino ; un hydroxy ; un groupe OR_7 ; un groupe SR_7 ; un groupe $-COOR_8$; un groupe $-CONR_9R_{10}$; un groupe $-CSNR_9R_{10}$, l'un au moins des radicaux R_3 et R_4 étant différent de l'hydrogène ;

 $-\,R_{5}$ et R_{6} représentent chacun indépendamment un hydrogène ; un $(C_{1}-C_{7})$ alkyle ; un $(C_{2}-C_{7})$ alcényle ; un phényle ; un benzyle ; un $(C_{1}-C_{7})$ alkylcarbonyle ; un $(C_{1}-C_{7})$ thiocarbonyle ; un $(C_{3}-C_{7})$ cycloalkylthiocarbonyle ; un benzoyle ; un thiénylcarbonyle ; un furylcarbonyle ; un $(C_{1}-C_{7})$ alkyloxycarbonyle ; un phénoxycarbonyle ; un benzyloxycarbonyle ; un carbamoyle ou un thiocarbamoyle non substitué ou substitué par R_{9} et R_{10} ou bien R_{5} et R_{6}

30

35

25

5

10

15

20

.

constituent avec l'atome d'azote auquel ils sont liés un groupe hétérocyclique choisi parmi les groupes pyrrolidine, pyrroline, pyrrolyle, indoline, indole, pipéridine;

- R_7 représente un (C_1 - C_7)alkyle ; un (C_2 - C_7)alcényle ; un phényle ; un benzyle ; un (C_3 - C_7)cycloalkyle ; un (C_1 - C_7)polyfluoroalkyle ; un formyle ; un (C_1 - C_7)alkylcarbonyle ; un benzylcarbonyle ;
- R₈ représente un hydrogène, un (C₁-C₇)alkyle ; un phényle ; un benzyle;
 - Rg et R₁₀ représentent chacun indépendamment l'hydrogène ; un (C_1-C_7) alkyle ; un (C_1-C_7) polyfluoroalkyle ; un (C_2-C_7) alcényle ; un (C_3-C_7) cycloalkyle ; un pyridyle ; un phényle ; un thiényle ; un furyle ; ou bien Rg et R₁₀ constituent avec l'atome d'azote auquel ils sont liés un groupe hétérocyclique choisi parmi les groupes pyrrolidine, pipéridine ou pipérazine non substitué ou substitué par des (C_1-C_4) alkyles ; ou un (C_4-C_7) azacycloalkyle ;
- 20 W représente un groupe –CH₂– ou –SO₂–;

5

10

15

25

30

35

- Cy constitue, avec le carbone auquel il est lié, un cycle hydrocarboné non aromatique en C_3 – C_{12} , saturé ou insaturé, éventuellement condensé ou substitué par un ou plusieurs groupes (C_1 – C_7)alkyles, lesdits groupes pouvant substituer une ou plusieurs fois le même atome de carbone ou par un spirocycloalkyle en C_3 – C_6 ;
- T représente un (C_1-C_4) alkylène éventuellement interrompu par un (C_3-C_6) cycloalkylène, lesdits alkylènes étant éventuellement substitués une ou plusieurs fois sur le même atome de carbone par un (C_1-C_3) alkyle; ou bien T représente une liaison directe;

٠...

- Z représente un groupe -NR $_{11}$ R $_{12}$; -NR $_{11}$ R $_{12}$ (C $_1$ -C $_4$)alkyle (A $^-$), (A $^-$) étant un anion, de préférence Cl $^-$, Br $^-$, I $^-$ ou CH $_3$ SO $_4$ $^-$; -N(O)R $_{11}$ R $_{12}$; un groupe -NR $_{11}$ COR $_{12}$; un

 (C_1-C_4) alkyloxycarbonylamino ; un benzyloxycarbonylamino ; un groupe $-CONR_{11}R_{12}$;

 $-R_{11}$ et R_{12} représentent chacun indépendamment l'hydrogène ; un (C_1-C_7) alkyle ; un (C_3-C_7) cycloalkyle ; un phényle ; un (C_1-C_3) alkylènecycloalkyle dans lequel le cycloalkyle est en C_3-C_7 , un (C_1-C_3) alkylènephényle, lesdits groupes pouvant éventuellement être mono- ou poly-substitués par R_{13}

ou bien R₁₁ et R₁₂ constituent éventuellement avec l'atome d'azote auquel ils sont liés un hétérocycle choisi parmi les hétérocycles azétidine, pyrrolidine, pipéridine, pipérazine, pipérazinone, morpholine, morpholinene, thiomorpholine, hexahydroazépine éventuellement mono ou polysubstitué par R₁₃; ou un thiomorpholine-1,1-dioxyde ou un thiomorpholine-1-oxyde;

15

20

10

5

 $-\,R_{13}$ représente un groupe hydroxy ; un (C_1-C_4) alcoxy ; un thiol ; un (C_1-C_4) alkylthio ; un (C_1-C_4) alkylsulfinyle ; un (C_1-C_4) alkylsulfonyle ; un groupe $NR_{14}R_{15}$ dans lequel R_{14} et R_{15} représentent chacun indépendamment l'hydrogène ou un (C_1-C_4) alkyle ; un carboxy ; un carboxamide ; un amidino ; un guanidino ; un imidazolyle ; un thiényle ; un pyridyle ; un indolyle ; un tétrahydroisoquinoléinyle ; ainsi que leurs sels.

25

Selon la présente invention, par " (C_1-C_7) alkyle" ou " (C_1-C_6) alkyle", on entend un alkyle droit ou ramifié ayant 1 à 7 atomes de carbone ou respectivement 1 à 6 atomes de carbone.

Les cycles hydrocarbonés non aromatiques en C3-C12 comprennent les radicaux mono- ou poly-cycliques, condensés ou pontés, saturés ou insaturés, éventuellement terpéniques. Ces radicaux sont éventuellement mono- ou polysubstitués par un (C1-C4)alkyle. Les radicaux monocycliques incluent les cycloalkyles par exemple les cyclopropyle, cyclobutyle, cyclopentyle, cyclododécyle. radicaux Les cyclooctyle, cycloheptyle, cyclohexyle, l'adamantane, norbornane, exemple le incluent par polycycliques dihydrophénalène, bicyclo le norbornène, le le l'hexahydroindane, [2.2.1]heptane, le bicyclo [3.3.1]nonane ; le tricyclo [5.2.1.0^{2,6}]décane.

35

Le groupe phényle constitutif du substituant R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , R_{10} , R_{11} et R_{12} peut être non substitué, mono- ou di-substitué par un (C_1-C_7) alkyle, de préférence méthyle, un trifluorométhyle, un (C_1-C_7) alcoxy, de préférence méthoxy ou éthoxy, un halogène ou trisubstitué par un (C_1-C_7) alkyle, un (C_1-C_7) alkoxy ou un halogène.

Selon la présente invention, par halogène on entend un atome choisi parmi le fluor, le chlore, le brome ou l'iode, de préférence le fluor ou le chlore.

Lorsqu'un composé selon l'invention présente un ou des carbones asymétriques, les isomères optiques de ce composé font partie intégrante de l'invention.

Lorsqu'un composé selon l'invention présente une stéréoisomérie par exemple de type axial-équatorial, l'invention comprend tous les stéréoisomères de ce composé.

Les sels des composés de formule (I) selon la présente invention comprennent ceux avec des acides minéraux ou organiques qui permettent une séparation ou une cristallisation convenable des composés de formule (I), tels que l'acide picrique, l'acide oxalique ou un acide optiquement actif, par exemple un acide tartrique, un acide dibenzoyltartrique, un acide mandélique ou un acide camphosulfonique, et ceux qui forment des sels physiologiquement acceptables, tels que le chlorhydrate, le bromhydrate, le sulfate, l'hydrogénosulfate, le dihydrogénophosphate, le maléate, le fumarate, le 2-naphtalènesulfonate, le paratoluènesulfonate.

Les sels des composés de formule (I) comprennent également des sels avec des bases organiques ou minérales, par exemple les sels des métaux alcalins ou alcalinoterreux, comme les sels de sodium, de potassium, de calcium, les sels de sodium et de potassium étant préférés, ou avec une amine, telle que le trométamol, ou bien les sels d'arginine, de lysine, ou de toute amine physiologiquement acceptable.

Les groupes fonctionnels éventuellement présents dans la molécule des composes de formule (I) peuvent être protégés, soit sous forme permanente soit sous forme temporaire, par des groupes protecteurs qui assurent une synthèse univoque des composés attendus.

Par groupe protecteur temporaire des amines, alcools, thiols ou des acides carboxyliques on entend les groupes protecteurs tels que ceux décrits dans Protective Groups in Organic Synthesis, Greene T.W. et Wuts P.G.M., ed.

قني.

15

10

5

20

25

30

John Wiley et Sons, 1991 et dans Protecting Groups, Kocienski P.J., 1994, Georg Thieme Verlag.

On peut citer par exemple des groupements protecteurs temporaires des amines (carbamates, tels que *tertio*-butyloxycarbonyl clivables en milieu acide, benzyloxycarbonyle, clivables par hydrogénolyse), des acides carboxyliques (esters d'alkyle tels méthyle ou éthyle, *tertio*-butyle hydrolysables en milieu basiques ou acides, benzyliques hydrogènolysables), des alcools (tétrahydropyranyle ou méthyloxyméthyle) et se référer aux méthodes générales bien connues décrites dans Protecting Groups, cité ci-dessus.

On préférera selon la présente invention les groupements protecteurs temporaires clivables en milieu acide, neutre et par hydrogénolyse.

Les groupes protecteurs permanents sont ceux qui sont stables dans les conditions de clivage cités ci-dessus et qui sont susceptibles d'être présents dans les produits finaux. De tels groupes O-protecteurs ou N-protecteurs sont constitués par les groupes (C₁-C₇)alkyle, phényle. Les groupes N-protecteurs permanents incluant également les groupes (C₁-C₅)alcanoyles et les groupes aroyles, tel que le benzoyle.

Les composés (I) peuvent comporter des groupes précurseurs d'autres fonctions qui sont générées ultérieurement en une ou plusieurs autres étapes.

Les composés de formule (I) dans lesquels le substituant R₁ est en position 5 de l'indolin-2-one et dans lesquels R₂ représente l'hydrogène sont des composés préférés.

Egalement préférés sont les composés de formule (I) dans lesquels R₁ est en position 5 et représente un atome de chlore ou un groupe éthoxy et R₂ représente l'hydrogène.

Les composés de formule (I) dans lesquels R3 représente l'hydrogène ou un méthoxy et R4 représente un groupe méthoxy, diéthyluréido, *tertio*-amylcarbamoyle et *tertio*-butylcarbamoyle en position 4 du cycle benzénique sont des composés préférés. Parmi ces composés, ceux dans lesquels R3 est en position 2 sont préférés.

Sont également préférés les composés de formule (I) dans laquelle cy représente un cyclohexane et le groupe -O-T-Z est en position 4 dudit cyclohexane par rapport au carbone spiro.

. .

De façon particulière, on préfère les composés de formule :

35

5

10

15

20

25

dans laquelle R₁, R₃, R₄, W, T et Z sont tels que définis pour (I) et leurs sels.

Plus particulièrement préférés sont les composés de formule :

dans laquelle R₁, R₃, R₄, T et Z sont tels que définis pour (I) et leurs sels. Tout particulièrement préférés sont les composés de formule :

dans laquelle R_1 , R_3 et R_4 sont tels que définis pour (I), T représente un (C_1 - C_3)alkylène et Z représente un groupe amino, un 2-hydroxyéthylamino, un 2-(2-hydroxy)éthyloxyéthylamino, un morpholinyle ou un acide carboxylique, et leurs sels.

Plus particulièrement préférés sont les composés de formule :

dans laquelle R₁, T et Z sont tels que définis pour (I) et leurs sels.

Tout particulièrement préférés sont les produits de formule (I), (I.1), (I.2), (I.3) et (I.4) dans lesquels Cy représente un cyclohexane et pour lesquels le groupe O-T-Z est en position 4 dudit cyclohexane par rapport au carbone spiro, notamment les composés ci-après :

- $\begin{tabular}{l} \star 5-Chloro-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ; \end{tabular}$
- * 5-Ethoxy-3-spiro-[4-(2-aminoéthyloxy)cyclohexane]-1-[4-(4-N-tertio-butylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ;

5

10

15

20

25

30

	* 5-Ethoxy-3-spiro-[4-(2-(N-méthyl-N-(2-hydroxyéthyl)amino)
	éthyl)oxycyclohexane]-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzène
	sulfonyl]indolin-2-one et ses sels ;
	* 5-Ethoxy-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-(N-
5	tertio-butylcarbamoyl)-2-méthoxybenzyl]indolin-2-one et ses sels ;
	*5-Ethoxy-1-[4-(N-tertio-butylcarbamoyl))-2-méthoxybenzènesulfonyl]-
	3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]indolin-2-one et ses sels ;
	* 5-Ethoxy-3-spiro-(4-carboxyméthyloxycyclohexane)-1-(4-N- <i>tertio</i> -
	butylcarbamoyi-2-méthoxybenzènesulfonyl)indolin-2-one et ses sels ;
10	* 5-Ethoxy-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-
	(N-tertio-amylbutylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et
	ses sels ;
	* 5-Ethoxy-3-spiro-[4-(2-carboxyéthyloxy)cyclohexane]-1-[4-(N-tertio-
	amylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ;
15	* 5-Ethoxy-1-[4-(N',N'-diéthyluréido)-2-méthoxybenzènesulfonyl]-3-
	spiro-[4-(2-diméthylaminoéthyloxy)cyclohexane]indolin-2-one et ses sels ;
	et leurs sels pharmaceutiquement acceptables étant particulièrement
	adaptés pour l'utilisation dans des formulations pharmaceutiques.
	Les composés selon l'invention peuvent être préparés selon le SCHEMA 1
20	ci-après.

ھَيَ..

......

La présente invention a également pour objet un procédé pour la préparation des composés de formule (I) selon l'invention, caractérisé en ce que :

(1) soit on fait réagir sur un composé de formule :

dans lequel R₁, R₂, R₃, R₄, W, Cy et T sont tels que définis pour (I) et dans lequel X est un groupe nucléofuge, tel qu'un halogène, de préférence brome, chlore ou iode, ou un dérivé d'acide sulfonique, tel que tosyloxy, mésyloxy avec un dérivé de formule ZH (1) dans lequel Z est tel que défini pour (I) comportant une fonction nucléophile capable de déplacer X, par exemple une amine primaire ou secondaire, de préférence secondaire, dans des solvants polaires, tels que le diméthylformamide, le tétrahydrofurane ou l'acétonitrile, à des températures comprises entre 0° et 120°C, ou bien X représente un groupe réductible, tel qu'un azide que l'on réduit ensuite en amino :

(2) soit lorsque Z = -COOH on fait réagir un composé de formule :

٠. .

dans laquelle R₁, R₂, W, R₃, R₄, et Cy sont tels que définis pour (I) et T représente TCH₂- avec un oxydant, tel que l'oxyde de chrome dans un solvant acide, tel que l'acide acétique dilué à une température comprise entre 0° et 100°C, les bichromates alcalins ou les permanganates alcalins ou alcalino terreux;

(3) soit on fait réagir un composé de formule :

dans lequel R₁, R₂, Cy, T et Z sont tels que définis pour (I) avec un composé de formule :

dans lequel W, R₃ et R₄ sont tels que définis pour (I) et Hal représente un atome d'halogène en présence d'un hydrure métallique comme par exemple l'hydrure de sodium ou d'un alcoolate alcalin comme par exemple le tertiobutylate de potassium à des températures comprises entre -40° et 25°C, dans un solvant anhydre tel que le tétrahydrofurane;

ق. َ.

(4) soit lorsque Z = -COOH on fait réagir un composé de formule :

5

10

15

20

dans laquelle R₁, R₂, et Cy sont tels que définis précédemment pour (I) et T' représente T-CH₂ avec un oxydant décrit ci-dessus pour la transformation de (II' A) en (I) puis ensuite, on protège éventuellement l'acide ainsi obtenu de formule :

dans lequel R₁, R₂, Cy et T sont tels que définis précédemment pour (I) par un groupement protecteur de l'acide carboxylique pour obtenir l'intermédiaire de formule :

dans lequel R₁, R₂, Cy et T sont tels que définis pour (I) et P représente un groupe protecteur choisi parmi un alkyle, un *tert*-butyle ou un benzyle et on soumet enfin ce composé (II"BP) à l'action d'un dérivé de formule (2), pour obtenir après déprotection un composé (I) ; qui est éventuellement transformé en l'un de ses sels selon les techniques bien connues de l'homme du métier.

,

Les composés (II A) et (II B) peuvent être préparés à partir des composés (III) selon le SCHEMA 2 suivant :

ڇَ.

SCHEMA 2

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8
 R_9
 R_9

Les composés (II A) peuvent être préparés à partir de l'indolin-2-one (III) avec un halogénure de benzènesulfonyle lorsque W représente un groupe -SO₂- ou avec un halogénure de benzyle lorsque W représente un groupe -CH₂- dans un solvant inerte, tel que le diméthylformamide ou le tétrahydrofurane en présence d'un hydrure métallique, tel que l'hydrure de sodium ou d'un alcoolate alcalin comme par exemple le tertio-butylate de potassium à des températures comprises entre -40° et 25°C.

Les composés (II A) peuvent être également préparés à partir des alcools (II' A) selon des méthodes générales connues. On peut citer par exemple des systèmes triphénylphosphine / tétrachlorure de carbone selon Angew. Chem. Int. Ed., 1975, 14, 801 ou triphénylphosphine / C(Hal)4 dans lequel Hal représente un halogène en présence de pyridine selon Carbohyd. Res., 1978, 61, 511 ou par réaction avec un halogénure d'aryle— ou d'alkyl—sulfonyle en présence d'une base dans un solvant neutre. Les groupes X peuvent s'échanger : par exemple on peut transformer un groupe sulfonate en un halogénure, tel qu'un dérivé de l'iode par une réaction avec un iodure alcalin tel que l'iodure de sodium selon J. Chem. Soc., 1949, 326. Lorsque X représente un halogène on peut transformer l'halogénure (II A) en alcool (II' A) par substitution par un ion nitrate qui est ensuite réduit en présence d'un catalyseur métallique, tel que le palladium sur charbon selon la méthode décrite dans J. Med. Chem., 1995, 38, 130–136.

On peut également préparer les composés de formule (II' A) à partir des indolin-2-ones (III') correspondantes par réaction avec les réactifs (2) dans les conditions déjà décrites pour la transformation des composés (III) en (II A). La fonction alcool de (III') sera temporairement protégée (composés III' P), par exemple par un groupe protecteur, tel que méthyle ou tétrahydropyranyle selon EP 636 608.

٠. ت

Les composés (II B) peuvent être préparés à partir de l'indolin-2-one (III) par substitution du groupe nucléofuge X par un dérivé ZH(1) tel que par exemple une amine primaire ou secondaire, dans des solvants polaires, tels que le diméthylformamide, le tétrahydrofurane ou l'acétonitrile, à des températures comprises entre 0° et 120°C en fonction de la nature du nucléophile et du nucléofuge.

Les composés (II B) pour lesquels -TZ représente T-COOH sont préparés à partir d'un alcool (III') dans lequel T' représente TCH₂- en oxydant l'alcool (III') selon les conditions décrites pour la transformation de (II'A) en (I).

Les composés (III), sont originaux et font partie de l'invention. Ils peuvent être préparés selon le SCHEMA 3 réactionnel ci-après :

SCHEMA 3

15
$$R_{1}$$

$$R_{2}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{5}$$

$$R_{6}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{9}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{8}$$

$$R_{9}$$

$$R_{1}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R$$

Ainsi, les indolin-2-one (III) peuvent être obtenues par réduction des acétals (IV) dans des conditions douces par exemple selon la méthode décrite dans J. Org. Chem., 1987, 52, 2594-2596 par l'action du borohydrure de zinc en présence de chlorure de triméthylsilane dans des éthers ou des solvants chlorés, tels que par exemple le dichlorométhane, ou par l'action du complexe

35

5

diméthylsulfure. BH₃ en présence de triflate de triméthylsilyle dans les éthers ou le dichlorométhane selon la méthode décrite dans J. Org. Chem., 1993, *58*, 6756–6765, ou à partir des alcools (III') :

dans laquelle R₁, R₂, Cy et T sont tels que définis pour (I) selon les méthodes citées précédemment pour la transformation de (II' A) en (II A).

Les acétals (IV) sont préparés par des réactions bien connues par exemple à partir d'une cétone (V) sur un alcool par catalyse acide en milieu déshydratant. On peut opérer par élimination azéotropique d'eau ou en présence de tamis moléculaires selon Synthesis 1972, 419.

Les cétones (V) peuvent être préparées à partir des alcools secondaires correspondants (VI) selon les nombreuses méthodes bien connues de l'homme de l'art mettant par exemple en jeu des oxydants tels que l'oxyde de chrome en milieu acétique ou des complexes de l'oxyde de chrome tels que le chlorochromate de pyridinium dans des solvants inertes tels que l'acétate d'éthyle ou le dichlorométhane ou bien encore par hydrolyse des acétals (IV').

Les alcools (VI) peuvent être obtenus à partir des composés correspondants dont la fonction hydroxy est protégée, par exemple par un groupe méthoxyméthyle ou tétrahydropyranyle. Ces composés sont décrits dans EP 636608 ou obtenus de manière similaire. On soumet les composés ainsi protégés de formule :

à une hydrolyse chlorhydrique dans un alcool, tel que le méthanol ou l'éthanol à des températures comprises entre -5° et 70°C.

Les composés (III') peuvent être préparés selon le SCHEMA 4 ci-après :

....

15

10

5

20

25

30

SCHEMA 4

5
$$R_2$$
 (IX)
 (IX)
 R_1
 (IX)
 R_2
 (IX)
 R_2
 (IX)
 R_3
 (III)
 R_4
 (III)
 R_4
 (III)
 R_5
 (III)
 R_7
 (III)
 R_8
 (III)

Comme pour la préparation des composés (III) à partir des acétals (IV) on peut préparer les composés (III') à partir d'un acétal cyclique (IV') tel qu'un dioxolane qui est obtenu à partir d'un hydrazide (VII).

On peut également transformer un halogénure (III) en (III') selon les méthodes déjà citées pour la transformation des composés (II A) en composé (II'A).

Les composés (III') peuvent être transformés en composés (III' P) dont la fonction alcool est protégée comme indiqué précédemment.

Les composés (IV') dans lesquels T est au moins égal à -CH₂CH₂-peuvent être prépares à partir des cétones (V) par réaction avec un diol HO-T-OH selon les conditions citées pour la transformation de (V) en (IV). Les composés (IV') peuvent également être obtenus directement à partir des hydrazides correspondants (VII) par une réaction de Brunner décrite par Moore R.F. et al., J. Chem. Soc., 1951, 3475-3478, par exemple par chauffage dans

35

25

30

قريد

des solvants tels que la quinoléine en présence d'un oxyde métallique ou alcalino-terreux comme l'oxyde de calcium. On peut également procéder par chauffage dans des solvants inertes tels que la tétraline, le naphtalène ou le 1,2,3,4-tétraméthylbenzène selon la méthode décrite par Wolff J. et al., Tetrahedron, 1986, 42, (15), 4267-4272, à partir d'un sel de lithium préparé au préalable dans un solvant inerte tel que le tétrahydrofurane à basse température.

Ces dérivés de phénylhydrazide (VII) peuvent être obtenus à partir d'une phénylhydrazine (IX), qui sont des composés connus ou préparés selon des méthodes connues, et de dérivés des acides carboxylique (VIII), tels que les esters, chlorures ou anhydrides mixtes obtenus par réaction d'un chloroformiate d'alkyle, de préférence isobutyle, en présence d'une base selon les méthodes classiques bien connues de l'homme de l'art. Les acides (VIII) sont connus ou préparés selon des méthodes connues.

Une alternative pour la synthèse des composés (I) dans lesquels T représente $-CH_2-$ et Z représente un groupe $-COOZ_1$ dans lequel Z_1 représente l'hydrogène, un (C_1-C_3) alkyle ou un benzyle, consiste à utiliser un alcool de formule :

25

5

10

15

30

dans laquelle R₁, R₂, R₃, R₄, W et Cy sont tels que définis pour (I), qui sont des produits connus ou préparés selon EP 636609, sur lesquels on fait un alkylation avec un alkylant puissant tel qu'un trifluorométhane sulfonate de formule CF₃SO₂O-CH₂-COO Alk (3) dans lequel Alk représente un (C₁-C₄) alkyle, dans des solvants halogénés tels que chlorure de méthylène ou le tétrachlorure de carbone en présence d'une base telle que la 2,6-di-*tert*-butylpyridine selon la méthode décrite pour les trifluorométhanes sulfonate d'alkyles dans Carbohydrate Research, 1975, *44*, C5-C7.

. ق L'ester ainsi obtenu peut être échangé ou clivé dans les conditions générales déjà citées.

Les alcools (II C) peuvent être préparés selon le SCHEMA 5 suivant :

5

SCHEMA 5

Les alcools (II C) peuvent être préparés à partir des composés protégés (X) par déprotection dans les mêmes conditions que pour la transformation des composés (XI) en composés (VI).

Les composés (X) sont obtenus à partir des composés (XI) décrit dans EP 636608 avec les halogénures (2) selon les conditions déjà décrites pour la transformation des composés (II B) en (I) et des composés (III) en (II A).

On peut également transformer un composé de formule (I) en un autre composé de formule (I) portant un résidu polyfonctionnel tel que défini pour Z,

35

en particulier pour -NR₁₁COR₁₂ ou pour -CONR₁₁R₁₂ en procédant selon les méthodes connues de la synthèse peptidique décrite par exemple dans Principes of Peptide Synthesis 2nd ed., 1993 ; et Peptide Chemistry Bodansky M., Springler Verlag ; ainsi ces méthodes permettent d'éviter la racémisation des centres asymétriques portés éventuellement par les aminoacides.

Les réactifs ZH de formule (1) sont commerciaux ou préparés selon des méthodes connues.

Les dérivés de formule (2) :

10

15

20

25

30

5

sont également préparés selon des méthodes connues. Notamment, les halogénures de benzènesulfonyle dans lesquels W = -SO₂- et R₃ et R₄ sont tels que définis précédemment pour (I) sont préparés par des méthodes connues. Ainsi par exemple, le chlorure de 4-diméthylaminobenzènesulfonyle est préparé selon Sukenik C.N. et al., J. Am. Chem. Soc., 1977, 99, 851-858. Plus généralement, les halogénures de benzènesulfonyle substitués par un groupe diméthylamino sont connus ou préparés par des méthodes connues ; le chlorure de 4-benzyloxybenzènesulfonyle est préparé selon la demande de brevet EP 229 566.

Le chlorure d'alcoxybenzènesulfonyle est préparé à partir de l'alcoxybenzènesulfonate de sodium, lui-même préparé par action d'un halogénure d'alkyle sur l'hydroxybenzènesulfonate de sodium.

On obtient les halogénures de benzènesulfonyle selon Col. Czechoslov. Chem. Commun., 1984, 49, 1184, à partir des dérivés de l'aniline substitués par le même groupement, lesdits dérivés de l'aniline étant eux-mêmes obtenus à partir des dérivés nitrés correspondants.

L'halogénure de benzènesulfonyle (2) dans lequel le substituant en position 4 représente un groupe –NHCON(CH₂CH₃)₂ peut être préparé par action de l'acide chlorosulfonique sur la N',N'-diéthyl-N-phénylurée, elle-même obtenue par réaction de l'aniline avec le chlorure de diéthylcarbamoyle.

Dans le cas où R₃ ou R₄ représentent un carbamoyle N-substitué, on peut condenser un composé (2) dans lequel R'3 est un précurseur d'acide carboxylique, tel que N-benzylcarbamoyle, déprotèger le groupement protecteur par hydrogénolyse puis condenser avec l'amine désirée ou bien

préparer directement (2) dans lequel R₃ à la valeur attendue. On opère généralement à partir des anilines correctement choisies, elles mêmes étant obtenues par réduction du dérivé nitré correspondant.

Les anilines sont diazotées dans les conditions classiques par l'acide nitreux et mises en réaction avec du SO₂ en présence de chlorure cuivrique selon J. Heterocyclic Chem., 1986, 23, 1253.

Les halogénures de benzyle dans lesquels W représente -CH₂- sont connues ou préparées selon des méthodes connues. On peut citer par exemple J.V. Rajanbabu, J. Org. Chem., 1986, *51*, 1704–1712 et les publications citées dans EP 636609.

D'une manière générale, les dérivés halogénométhylbenzène peuvent être préparés par action des N-halogénosuccinimides sur les dérivés de méthylbenzène correspondants et selon EP 229566.

La réaction est effectuée dans un solvant comme le tétrachlorure de carbone en présence de peroxyde de dibenzoyle. On peut également préparer un dérivé d'halogénométhylbenzène à partir d'un dérivé d'hydroxyméthylbenzène correspondant par action du tribromure de phosphore dans l'éther ou par action du chlorure de thionyle.

On obtient les composés (3) à partir d'un iodoacétate d'alkyle et d'un sel de l'acide trifluorométhane sulfonique tel que le sel d'argent selon Chem. Reviews, 1977, 77.

Les ammoniums quaternaires, les dérivés N-oxydes, S-oxydes et les sulfones des composés (I) font partie de l'invention et sont préparés classiquement respectivement par réaction avec un halogénure d'alkyle, par oxydation avec de l'eau oxygénée ou un peracide, tel que l'acide peracétique ou métachloroperbenzoïque dans des solvants inertes.

Les composés de formule (I) ci-dessus comprennent également ceux dans lesquels un ou plusieurs atomes d'hydrogène, de carbone ou d'halogène, notamment de chlore ou de fluor ont été remplacés par leur isotope radioactif par exemple le tritium ou le carbone-14. De tels composés marqués sont utiles dans des travaux de recherche, de métabolisme ou de pharmacocinétique, dans des essais biochimiques en tant que ligand de récepteurs.

L'affinité des composés selon l'invention pour les récepteurs V₁ de la vasopressine a été déterminée *in vitro* en utilisant la méthode décrite dans Lynch C.J. et al., J. Biol. Chem., 1985, *260* (5), 2844–2851. Cette méthode

35

5

10

15

20

25

30

. .

consiste à étudier le déplacement de la vasopressine tritiée fixée aux sites V₁ de membranes de foie de rat.

L'affinité des composés (I) selon l'invention pour les récepteurs V₂ a été mesurée sur une préparation membranaire de rein de boeuf selon une méthode adaptée de Crause P. et al., Molecular and Cellular Endocrinology, 1982, 28, 529–541 et de Stassen F.L. et al., J. Pharmacol. Exp. Ther., 1982, 233, 50–54.

Les composés selon l'invention inhibent la fixation de l'arginine-vasopressine tritiée aux récepteurs de la préparation membranaire. Les $\rm Cl_{50}$ des composés selon l'invention sont faibles, allant de $\rm 10^{-5}$ à $\rm 10^{-9}$ M.

L'activité agoniste ou antagoniste des récepteurs de la vasopressine des composés selon l'invention, administrés par voie orale, a été évaluée chez le rat basal normalement hydraté (souche Sprague-Dawley) selon la technique décrite dans Br. J. Pharmacol., 1992, 105, 787-791. L'effet diurétique, observé en général pour les composés de formule (I) et, pour certains de ces composés, à des doses inférieures ou égales à 10 mg/kg, montre que les composés de formule (I) constituent une série de puissants antagonistes V₂.

De même, l'affinité des composés (I) selon l'invention pour les récepteurs de l'ocytocine a été déterminée *in vitro* par déplacement d'un analogue radioiodé de l'ocytocine fixé aux récepteurs d'une préparation membranaire de glandes mammaires de rates en gestation, selon une technique proche de celle décrite par Elands J. et al., dans Eur. J. Pharmacol., 1987, *147*, 197–207. Les CI₅₀ des composés selon l'invention atteignent au moins 10⁻⁵ M.

Les composés selon l'invention sont actifs après administration par différentes voies, notamment par voie orale.

Aucun signe de toxicité n'est observé avec ces composés aux doses pharmacologiquement actives et leur toxicité est donc compatible avec leur utilisation médicale comme médicaments.

Les composés selon la présente invention permettent, soit de mimer, soit d'inhiber, de façon sélective, les effets de la vasopressine et/ou de l'ocytocine. Parmi ces composés les antagonistes des récepteurs de la vasopressine peuvent intervenir sur la régulation de la circulation centrale et périphérique, notamment les circulations coronaire, rénale et gastrique, ainsi que sur la régulation hydrique et la libération de l'hormone adrénocorticotrophique (ACTH). Les agonistes de la vasopressine peuvent remplacer avantageusement la vasopressine ou ses analogues dans le traitement du diabète insipide ; ils peuvent également être utilisés dans le traitement de l'énurésie, et dans la

10

5

15

20

25

30

régulation de l'hémostase : traitement de l'hémophilie, du syndrome de Von Willebrand, antidote des agrégants plaquettaires, Laszlo F.A., Pharmacol. Rev., 1991, 43, 73-108. Drug Investigation, 1990, 2 (suppl. 5), 1-47. Les hormones elles-mêmes : la vasopressine et l'ocytocine ainsi que certains de leurs analogues peptidiques ou non peptidiques sont utilisés en thérapeutique et ont montré leur efficacité (Vasopressin. Gross P. et al. ed. John Libbey Eurotext, 1993, en particulier 243-257 et 549-562. Laszlo F.A. and Laszlo F.A. Jr., Clinical perspectives for vasopressin antagonists, Drug News Perspect., 1993, 6 (8): North W.G., J. Clin. Endocrinol., 1991, 73, 1316-1320. Legros J.J. et al., Prog. Neuro-Pharmacol. Biol. Psychiat., 1988, 12, 571-586; Andersson K.E. et al., Drugs Today, 1988, 24 (7), 509-528; Stump D.L. et al., Drugs, 1990, 39, 38-53; Caltabiano S. et al., Drugs Future, 1988, 13, 25-30; Mura Y. et al., Clin, Nephrol. 1993, 40, 60-61; Faseb J., 1994, 8 (5), A587: 3398). Ce type de molécule a profil aquarétique possède un large éventail d'indications thérapeutiques et constitue une innovation majeure dans les traitements de l'insuffisance cardiaque, des hyponatrémies, des désordres hydriques, etc. Ce type de composé peut remplacer avantageusement les diurétiques classiques dans toutes les pathologies où ils sont préconisés chez l'homme et chez l'animal. On peut aussi envisager avec de telles molécules le traitement de l'hypertension en association avec des anti-hypertenseurs d'autres classes thérapeutiques comme par exemple des β-bloquants, des inhibiteurs de l'enzyme de conversion ou encore des antagonistes des récepteurs de l'angiotensine II.

Ainsi les composés selon l'invention sont utiles notamment dans le traitement des affections des systèmes nerveux central et périphérique, du système cardiovasculaire, du système endocrinien et hépatique, de la sphère rénale, de la sphère gastrique et intestinale, en ophtalmologie et dans les troubles du comportement sexuel, chez l'homme et chez l'animal.

La présente invention a donc également pour objet des compositions pharmaceutiques contenant une dose efficace d'un composé selon l'invention ou d'un sel pharmaceutiquement acceptable de celui-ci, et des excipients convenables.

Lesdits excipients sont choisis selon la forme pharmaceutique et le mode d'administration souhaité.

Dans les compositions pharmaceutiques de la présente invention pour l'administration orale, sublinguale, sous-cutanée, intramusculaire, intra-

<u>د</u>َيَ.،

35

5

10

15

20

25

veineuse, topique, intratrachéale, intranasale, transdermique, rectale ou intraocculaire, les principes actifs de formule (I) ci-dessus, ou leurs sels éventuels, peuvent être administrés sous formes unitaires d'administration, en mélange avec des supports pharmaceutiques classiques, aux animaux et aux êtres humains pour la prophylaxie ou le traitement des troubles ou des maladies ci-dessus. Les formes unitaires d'administration appropriées comprennent les formes par voie orale telles que les comprimés, les gélules, les poudres, les granules et les solutions ou suspensions orales, les formes d'administration sublinguale, buccale, intratrachéale, intranasale, les formes d'administration sous-cutanée, intramusculaire ou intraveineuse et les formes d'administration rectale. Pour l'application topique, on peut utiliser les composés selon l'invention dans des crèmes, pommades, lotions ou collyres.

Afin d'obtenir l'effet prophylactique ou thérapeutique désiré, la dose de principe actif peut varier entre 0,01 et 50 mg par kg de poids du corps et par jour.

Chaque dose unitaire peut contenir de 0,5 à 1000 mg, de préférence de 1 à 500 mg, d'ingrédients actifs en combinaison avec un support pharmaceutique. Cette dose unitaire peut être administrée 1 à 5 fois par jour de façon à administrer un dosage journalier de 0,5 à 5000 mg, de préférence de 1 à 2500 mg.

Lorsqu'on prépare une composition solide sous forme de comprimés, on mélange l'ingrédient actif principal avec un véhicule pharmaceutique, tel que la gélatine, l'amidon, le lactose, le stéarate de magnésium, le talc, la gomme arabique ou analogues. On peut enrober les comprimés de saccharose, d'un dérivé cellulosique, ou d'autres matières appropriées ou encore on peut les traiter de telle sorte qu'ils aient une activité prolongée ou retardée et qu'ils libèrent d'une façon continue une quantité prédéterminée de principe actif.

On obtient une preparation en gélules en mélangeant l'ingrédient actif avec un diluant et en versant le melange obtenu dans des gélules molles ou dures.

Une préparation sous forme de sirop ou d'élixir ou pour l'administration sous forme de gouttes peut contenir l'ingrédient actif conjointement avec un édulcorant, acalonque de préférence, du méthylparaben et du propylparaben comme antiseptique, ainsi qu'un agent donnant du goût et un colorant approprié.

Les poudres ou les granules dispersibles dans l'eau peuvent contenir l'ingrédient actif en mélange avec des agents de dispersion ou des agents

. ق

30

5

10

15

20

25

mouillants, ou des agents de mise en suspension, comme la polyvinylpyrrolidone, de même qu'avec des édulcorants ou des correcteurs du goût.

Pour une administration rectale, on recourt à des suppositoires qui sont préparés avec des liants fondant à la température rectale, par exemple du beurre de cacao ou des polyéthylèneglycols.

Pour une administration parentérale, on utilise des suspensions aqueuses, des solutions salines isotoniques ou des solutions stériles et injectables qui contiennent des agents de dispersion et/ou des mouillants pharmacologiquement compatibles, par exemple le propylèneglycol ou le butylèneglycol.

Le principe actif peut être formulé également sous forme de microcapsules, éventuellement avec un ou plusieurs supports ou additifs, ou bien avec des matrices telles qu'un polymère ou une cyclodextrine (patch, formes à libération prolongée).

Les compositions selon l'invention peuvent être utilisés dans le traitement ou la prévention de différentes affections vasopressine-dépendantes ou ocytocine-dépendantes ainsi que dans les dysfonctionnements de la sécrétion de la vasopressine ou d'ocytocine, les affections cardiovasculaires, comme l'hypertension, l'hypertension pulmonaire, l'insuffisance cardiaque, l'insuffisance circulatoire, l'infarctus du myocarde, l'athérosclérose ou le vasospasme coronaire, en particulier chez le fumeur, les angines instables et PTCA (percutaneous transluminal coronary angioplasty), l'ischémie cardiaque, les dérèglements de l'hémostase notamment l'hémophilie, le syndrome de Von Willebrand ; les affections du système nerveux central, la migraine, le vasospasme cérébral, l'hémorragie cérébrale, les oedèmes cérébraux, la dépression, l'anxiété, les états psychotiques, les troubles de la mémoire par exemple ; les rinopathies et les dysfonctionnement rénaux comme les oedèmes, le vasospasme rénal, la nécrose du cortex rénal, l'hyponatriémie, l'hypokaliémie, le syndrome de Schwartz-Bartter ou la lithiase rénale ; les affections du système gastrique, comme le vasospasme gastrique, l'hépatocirrhose, les ulcères, la pathologie des vomissements, par exemple la nausée y compris la nausée due à une chimiothérapie, le mal des transports, ou encore le syndrome de la sécrétion inappropriée de l'hormone antidiurétique (SIADH), le diabète insipide et l'énurésie ; les affections du système hépatique tel que les cirrhoses du foie ; les désordres surrénaliens (maladie de Cushing)

٠. .

5

10

15

20

25

et en particulier l'hypercorticisme et l'hyperaldosternonémie. Les compositions selon l'invention peuvent également être utilisés dans le traitement des troubles du comportement sexuel. Chez la femme, les compositions selon l'invention peuvent être utilisés pour traiter la dysménorrhée ou le travail prématuré. On peut également utiliser les compositions selon l'invention dans le traitement des encéphalopathies cellules, des petites pulmonaires à cancers hyponatriémiques, de la maladie de Raynaud, du syndrome de Menière, du syndrome pulmonaire, du glaucome et de la prévention de la cataracte et dans les traitements post-opératoires, notamment après une chirurgie abdominale, cardiaque ou hémorragique.

Les compositions de la présente invention peuvent contenir, à côté des produits de formule (I) ci-dessus ou de leurs sels pharmaceutiquement acceptables, d'autres principes actifs qui peuvent être utiles dans le traitement des troubles ou maladies indiquées ci-dessus.

Ainsi, la présente invention a également pour objet des compositions pharmaceutiques contenant plusieurs principes actifs en association dont l'un est un composé selon l'invention.

Ainsi, selon la présente invention, on peut préparer des compositions pharmaceutiques contenant un composé selon l'invention associé à un composé agissant sur le système rénine-angiotensine tel qu'un inhibiteur de l'enzyme de conversion, un antagoniste de l'angiotensine II, un inhibiteur de la rénine. On peut également associer un composé selon l'invention, par exemple, avec un vasodilatateur périphérique, un inhibiteur calcique, un béta-bloquant, un alpha-1-bloquant ou diurétique. De telles compositions seront utiles en particulier dans le traitement de l'hypertension ou de la défaillance cardiaque. On peut également associer deux composés selon l'invention : un antagoniste spécifique du récepteur V₁ à un antagoniste spécifique de l'ocytocine ou un antagoniste V₂.

De façon avantageuse les compositions de la présente invention contient un produit de formule (I.1), (I.2), (I.3) ou (I.4) ci-dessus ou un de ses sels pharmaceutiquement acceptable. Chacun de ces composés peut également être associé à un antagoniste spécifique de l'angiotensine II de préférence à l'irbésartan.

Ces associations permettront de renforcer les activités thérapeutiques des composés selon l'invention.

ق.

35

5

10

15

20

25

Les PREPARATIONS et EXEMPLES suivants illustrent l'invention sans toutefois la limiter.

PREPARATION I

Alcools de formule (VI)

Composé VI.1

5-Ethoxy-3-spiro-(4-hydroxycyclohexane)indolin-2-one.

On chauffe à 40°durant 3 heures une solution de 22 g de 5-éthoxy-3-spiro (4-méthoxyméthyloxycyclohexane)indolin-2-one préparé selon EP 636608 dans 130 ml de méthanol et 9 ml d'acide chlorhydrique concentré (36 %). On refroidit le mélange réactionnel, puis successivement on essore, rince à l'éther diéthylique et sèche le précipité pour obtenir l'isomère polaire du produit attendu; F = 225°C. On ajoute 50 ml d'eau au filtrat, puis successivement on évapore le méthanol, extrait au dichlorométhane, lave les phases organiques à l'eau, sèche et évapore pour obtenir le produit attendu sous forme d'un mélange d'isomères; F = 170°C.

Composé VI.2

20

25

5

10

15

5-Chloro-3-spiro-(4-hydroxycyclohexane)indolin-2-one.

On procède selon le même mode opératoire que précédemment à partir de la 5-chloro-3-spiro-(4-méthoxyméthyloxycyclohexane)indolin-2-one préparé à partir de 5-chloroindolin-2-one selon la méthode décrite dans EP 636608. On isole après extraction au dichlorométhane le produit attendu sous forme d'un mélange d'isomères ; F = 260°C

قر. .

30

PREPARATION II

Cétones de formule (V)

Composé V.1

5

10

20

5-Ethoxy-3-spiro-(4-oxocyclohexane)indolin-2-one.

On dissout 3,8 g de 5-éthoxy-3-spiro-(4-hydroxycyclohexane)indolin-2-one VI.1 (mélange d'isomères) et 5,8 ml de pyridine dans 250 ml d'acétate d'éthyle et on ajoute 6,3 g de chlorochromate de pyridinium adsorbé sur 29 g d'alumine neutre. On agite ensuite le mélange réactionnel à 25°C durant 16 heures, puis on filtre et on évapore le solvant du filtrat. On isole 3,4 g du produit attendu après recristallisation en présence de charbon actif dans le toluène ; F = 168°C.

15 Composé V.2

5-Chloro-3-spiro-(4-oxocyclohexane)indolin-2-one.

On prépare ce composé selon le même mode opératoire que pour la préparation du *composé V.1* à partir de 5-chloro-3-spiro-(4-hydroxy cyclohexane)indolin-2-one *VI.2*; F = 220°C.

PREPARATION III

Acétais de formule (IV)

25 Composé IV.1

5-Ethoxy-3-spiro-[4,4-di-(2-chloroéthyloxy)cyclohexane]indolin-2-one On solubilise 3 g de 5-éthoxy-3-spiro-(4-oxocyclohexane)indolin-2-one V.1 dans 30 ml de toluène et on ajoute 4,6 ml de 2-chloroéthanol, 20 g de tamis moléculaire 5 Å et 0,22 g d'acide méthane sulfonique. On agite le mélange réactionnel lentement durant 18 heures à 20°C, puis on filtre et on rince le tamis moléculaire avec du dichlorométhane. On évapore le solvant puis cristallise le produit attendu dans l'éther diéthylique ; F = 170°C.

Composé IV.2

5-Ethoxy-3-spiro-[4,4-di(3-chloropropyloxy)cyclohexane]indolin-2-one. On procède selon le même mode opératoire que pour la préparation du composé IV.1 à partir de la même cétone V.1 et de 3-chloropropanol; F = 147°C.

Composé IV.3

10

20

25

5

5-Chloro-3-spiro-[4,4-di-(2-chloroéthyloxy)cyclohexane]indolin-2-one. On procède selon le même mode opératoire que pour la préparation du composé IV.1 à partir du composé V.2 et de 2-chloroéthanol; F = 174°C.

15 PREPARATION IV

Dérivés de formule (III)

Composé III.1

5-Ethoxy-3-spiro-[4-(3-chloropropyloxy)cyclohexane]indolin-2-one (mélange d'isomères)

A 0°C, on ajoute lentement 2,2 ml d'une solution de borohydrure de zinc 0,29 M dans l'éther diéthylique (préparée selon la méthode décrite dans Chem. Pharm. Bull. 1984, 32 (4), 1411–1415) à 0,55 g d'acétal *IV.2* dans 3 ml de dichlorométhane puis 0,34 ml de triméthylchlorosilane. On agite le mélange réactionnel pendant 16 heures à 20°C, puis successivement on ajoute 10 ml d'une solution saturée de NaHCO₃, on extrait à l'acétate d'éthyle et on lave les phases organiques avec une solution saturée de NaCl. Après séchage sur MgSO₄ et évaporation on isole 0,4 g d'une huile qui est chromatographiée sur gel de silice en éluant avec un mélange cyclohexane/acétate d'éthyle 8/2 (v/v). On isole le produit attendu (mélange d'isomères) sous forme de résine

¹H RMN, CDCi₃, 200 MHz: 7,75 (s,1H); 7,03 (d, 0,25H); 6,83 (d, 0,75H); 6,79–6,65 (m, 3H): 4,06–3,9 (q, 2H); 3,72–3,58 (m, 4H); 3,54–3,50 (m, 1H); 2,18–1,53 (m, 10H); 1,37 (t, 3H).

ق. . .

35

Composé III.2

5-Ethoxy-3-spiro-[4-(2-chloroéthyloxy)cyclohexane]indolin-2-one (mélange d'isomères).

On procède selon le même mode opératoire que pour la préparation du composé III. 1 à partir du composé IV.1.

¹H RMN, CDCl₃, 200 MHz : 8 (s, 1H) ; 6,85-6,63 (m, 3H) ; 4,03-3,93 (q, 2H) ; 3,81-3,74 (m, 2H) ; 3,70-3,58 (m, 3H) ; 2,21-1,55 (m, 8H) ; 1,4 (t, 3H).

Composé III.3

5-Chloro-3-spiro-[4-(2-chloroéthyloxy)cyclohexane]indolin-2-one.

On procède selon le même mode opératoire que pour la préparation du composé III. 1 à partir du composé IV.3.

1_H RMN, DMSO-d6 200 MHz: 10,49 (s, 0,25H); 10,39 (s, 0,75H); 7,40 (s, 1H); 7,21-7,16 (d, 1H); 6,81-6,77 (d, 1H); 3,7 (m, 4H); 3,55 (m, 1H); 1,96-1,61 (m, 8H).

PREPARATION V

Dérivés de formule (II A)

Composé II A.1

5-Ethoxy-1-[4-(N-*tertio*-butylcarbamoyl))-2-méthoxybenzènesulfonyl]-3-spiro-[4-(2-chloroéthyloxy)cyclohexane]indolin-2-one (mélange d'isomères).

On ajoute 0,29 g de *tertio*-butylate de potassium à une solution refroidie à -60°C de 0,75 g de dérivé chloré *III.2* et 0,75 g de chlorure de 4-(N-*tertio*-butylcarbamoyl)-2-méthoxybenzènesulfonyle dans 90 ml de tétrahydrofurane. On laisse remonter la température à 20°C, on agite le mélange réactionnel pendant 2 heures, puis on ajoute 30 ml d'une solution à 15% de NaCl et successivement on extrait à l'acétate d'éthyle, lave les phases organiques avec une solution à 15% de NaCl, sèche les phases organiques sur MgSO₄, évapore le solvant et chromatographie le résidu sur gel de silice en éluant avec

15

5

20

25

un mélange cyclohexane/acétate d'éthyle 85/15 (v/v) pour isoler le produit attendu sous forme de résine.

¹H RMN, DMSO-d6 200 MHz: 8 (m, 2H); 7,5 (m, 3H); 7,04 (s, 0,75H); 6,85 (m, 1,25H); 4,0 (q, 2H); 3,6 (s, 3H); 3,66 (s, 4H); 3,58 (s, 3H); 3,5 (m, 1H); 1,9-1,6 (m, 8H); 1,34 (s, 9H); 1,28 (t, 3H).

Composé II A.2

5-Ethoxy-1-[4-(N',N'-diéthyluréido)-2-méthoxybenzènesulfonyl]-3-spiro-[4-(2-tosyloxyéthyloxy)cyclohexane] indolin-2-one.

On ajoute à 0°C, 0,25 g de chlorure de tosyle à une solution de 0,18 ml de triéthylamine et 0,25 g de 5-éthoxy-1-[4-(N',N'-diéthyluréido)-2-méthoxy benzènesulfonyl]-3-spiro-[4-(2-hydroxyéthyloxy)cyclohexane]indolin-2-one (préparé dans EP 0636608) dans 3 ml de tétrahydrofurane anhydre. On agite le mélange réactionnel durant 48 heures à 20°C, on ajoute 10 ml d'une solution saturée de NaHCO₃ puis successivement on extrait à l'acétate d'éthyle, sèche les phases organiques sur MgSO₄, évapore le solvant et chromatographie le résidu sur gel de silice, éluant : dichlorométhane/méthanol 99/1 (v/v)puis 95/5 ; F = 80°C.

20

25

30

5

10

15

PREPARATION VI Alcools de formule (Il'A)

5-Ethoxy-3-spiro-[4-(2-hydroxyéthyloxy)cyclohexane]-1-(N-tertio-butyl carbamoyl-2-méthoxybenzènesulfonyl)indolin-2-one.

Composé II' A.1

a) 5-Ethoxy-3-spiro-[4-(2-nitrooxyéthyloxy)cyclohexane]-1-[4-(N-tertio-butylcarbamoyl-2-méthoxybenzènesulfonyl)indolin-2-one.

On chauffe à reflux durant 48 heures un mélange de 0,6 g de *composé* II A. 1, 0,8 g de nitrate d'argent et 0,25 g d'iodure de sodium dans 10 ml d'acétonitrile. On sépare les sels par filtration et on évapore les solvants. On isole le produit attendu par chromatographie sur gel de silice en éluant avec un mélange cyclohexane/acétate d'éthyle 80/20 (v/v); F = 80°C (hydrate).

b) On chauffe à reflux durant une heure 0,5 g du nitrate précédent, 0,5 ml de cyclohexène, 0,5 g de palladium sur charbon à 10% dans 15 ml d'éthanol puis on sépare le catalyseur par filtration, on évapore le solvant et on chromatographie le résidu sur gel de silice en éluant au dichlorométhane puis avec un mélange dichlorométhane/méthanol 99/1(v/v). On isole le mélange d'isomères du produit attendu ; F = 120°C (hémihydrate) puis l'isomère polaire qui est cristallisé dans un mélange d'éther isopropylique et d'acétate d'éthyle (1/1 ; v/v) ; F = 189°C (hydrate).

10 Composé II' A.2

5

15

20

25

30

35

5-Ethoxy-3-spiro-[4-(3-hydroxypropyloxy)cyclohexane]-1-[4-(N-tertio-amyl carbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one.

a) 5-Ethoxy-3-spiro-[4-(3-méthoxyméthyloxypropyloxy)cyclohexane]-1-[4-(N-tertio-amylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one.

On condense selon le mode opératoire décrit dans la PREPARATION V le 5-éthoxy-3-spiro-[4-(3-méthoxyméthyloxypropyloxy)cyclohexane]indolin-2-one *III'.2P* avec le chlorure de N-*tertio*-amylcarbamoyl-2-méthoxysulfonyle pour obtenir le produit attendu qui est engagé tel quel dans l'étape suivante.

b) On chauffe à 50°C durant une heure un mélange de 0,5 g du *composé* préparé en a) dans 1,5 ml de méthanol et 0,2 ml d'acide chlorhydrique concentré (36 %). On ajoute 5 ml d'eau, on extrait à l'acétate d'éthyle, puis on évapore les solvants puis on isole le produit attendu après chromatographie sur gel de silice en éluant avec un mélange de cyclohexane/acétate d'éthyle 1/1 (v/v); F = 120°C.

PREPARATION VII Indolin-2-one de formule (II.b)

Composé II B.1

5-Chloro-3-spiro[4-(2-morpholinoéthyloxy)cyclohexane]indolin-2-one (mélange d'isomères).

On chauffe durant 24 heures à 85°C un mélange de 0,57 g de composé III.3, 0,5 g de morpholine et 0,27 g de Nal dans 6 ml de diméthylformamide.

٠., ٦

durant 45 minutes. On ajoute alors à température ambiante 20 ml d'acétate d'éthyle, puis successivement on lave à l'eau, sèche la phase organique sur MgSO₄, distille les solvants sous vide et on chromatographie le résidu sur gel de silice en éluant avec un mélange cyclohexane/acétate d'éthyle 7/3 (v/v). On isole le produit attendu par cristallisation dans l'éther diéthylique ; F = 183°C

Le même produit est également obtenu par réaction de 5-éthoxy-3-spiro-(4-oxocyclohexane)indolin-2-one (composé V.1) avec l'éthylèneglycol dans le cyclohexane en présence de tamis moléculaire 5 Å et d'acide paratoluènesulfonique en quantité catalytique.

Composé IV'.2

5

10

15

20

25

30

35

5-Ethoxy-3-spiro-(4,4-propylènedioxycyclohexane)indolin-2-one

On procède selon le même mode opératoire décrit précédemment pour la préparation du *composé IV'.1* à partir de l'hydrazide correspondant ou par réaction de 5-éthoxy-3-spiro-(4-oxocyclohexane)indolin-2-one (*composé V.1*) avec du 1,3-propane-diol dans le cyclohexane en présence de tamis moléculaire 5 Å et d'acide paratoluènesulfonique en quantité catalytique ; F = 216°C.

PREPARATION X Alcools de formule (III') et (III' P)

Composé III'.1

5-Ethoxy-3-spiro-(4-hydroxyéthyloxy)indolin-2-one

A 0°C, on ajoute lentement 20,2 ml d'une solution de borohydrure de zinc 0,25 M dans l'éther diéthylique (préparée selon la méthode décrite dans Chem. Pharm. Bull., 1984, 32 (4), 1411–1415) à 3,1 g d'acétal *IV'.1* dans 20 ml de dichlorométhane puis 2,8 ml de chlorure de triméthylsilane. On agite le mélange réactionnel durant 16 heures à 20°C puis on ajoute 20 ml d'une solution saturée de NaHCO₃, et successivement on évapore les solvants, extrait à l'acétate d'éthyle, sèche sur MgSO₄, évapore le solvant et on purifie le résidu par chromatographie sur gel de silice en éluant avec un mélange cyclohexane/acétate d'éthyle 67/34 (v/v). On isole le mélange d'isomères du

On ajoute 10 ml d'eau au mélange réactionnel et 10 ml d'une solution saturée de NaHCO3 puis successivement on extrait deux fois à l'acétate d'éthyle, sèche les phases organiques sur MgSO4, évapore le solvant et chromatographie le résidu sur gel de silice en éluant au dichlorométhane puis avec un mélange dichlorométhane/méthanol 98/2 (v,v) pour isoler 0,5 g du produit attendu sous forme d'huile.

¹H RMN, DMSO-d6 200 MHz : 10,4 (s, 1H) ; 7,4 (s, 1H) ; 7,2 (d, 1H) ; 6,8 (d, 1H) ; 3,6 (m, 7H) ; 2,4 (m, 6H) ; 1,9-1,6 (m, 8H).

PREPARATION VIII

Hydrazides de formule (VII)

Composé VII.1

15

20

10

5

N'-(4-Ethoxyphényl)-N-(4,4-éthylènedioxycyclohexane)carbohydrazide
On ajoute à -40°C, 1,65 ml de chloroformiate d'isobutyle à un mélange de
2,63 g de 4,4-éthylènedioxycyclohexanoate de sodium dans 20 ml de
tétrahydrofurane puis 1,8 ml de triéthylamine. On agite le mélange réactionnel
durant 2 heures à 0°C, puis on ajoute à -20°C, 2,4 g de chlorhydrate de 4éthoxyphénylhydrazine, on agite le mélange réactionnel durant 2 heures à 0°C
puis on ajoute 100 ml d'eau et on extrait à l'acétate d'éthyle. Les phases
organiques sont lavées successivement à l'eau, avec une solution de KHSO4
(pH 2), avec une solution saturée de carbonate de potassium, séchées sur
MgSO4 et évaporées. On obtient le produit attendu après cristallisation dans
l'éther diéthylique; F = 158°C.

25

PREPARATION IX

Acétals de formule (IV')

30

Composé IV'.1

5-Ethoxy-3-spiro-(4,4-éthylènedioxycyclohexane)indolin-2-one

A -50°C, on ajoute 2,15 ml d'une solution de butyllithium 1,6 M dans l'hexane à une suspension de 1 g de l'hydrazide *VII.1* dans 16 ml de tétrahydrofurane. On agite le mélange réactionnel durant 15 minutes et on ajoute 16 ml de tétraline. On distille le tétrahydrofurane et on chauffe à 180°C

ھَيَ...

produit attendu puis l'isomère polaire qui est cristallisé dans l'éther diisopropylique; F = 125°C.

Composé III'.2

5

5-Ethoxy-3-spiro-[4-(3-hydroxypropyloxy)cyclohexane]indolin-2-one
On procède selon le même mode opératoire que précédemment pour la
préparation du *composé III'.1* à partir de l'acétal *IV'.2*, on obtient l'isomère
polaire du produit attendu ; F = 180°C (hémihydrate).

10

Composé III'.2 P

5-Ethoxy-3-spiro-[4-(3-méthoxyméthyloxypropyloxy)cyclohexane]-indolin-2-one

15

On agite durant 24 heures à température ambiante une solution de 1 g de 5-éthoxy-3-spiro-[4-(3-hydroxypropyloxy)cyclohexane]indolin-2-one *III'.2*, 7,7 ml de diméthoxyméthane, 0,065 g de LiBr et 0,07 g d'acide paratoluènesulfonique dans 15 ml de dichlorométhane et on ajoute 10 ml d'une solution saturée de NaCl. On sépare et sèche la phase organique sur MgSO₄, et distille le solvant pour obtenir l'isomère polaire du produit attendu après chromatographie sur gel de silice en éluant avec un mélange de cyclohexane/acétate d'éthyle 1/1 (v/v); F = 89°C.

25

20

PREPARATION XI

Alcools protégés de formule (X)

Composé X.1

30

5-Ethoxy-3-spiro-(4-méthoxyméthyloxycyclohexane)-1-[(4-N-*tertio*-butylcarbamoyl-2-méthoxybenzènesulfonyl]indolin-2-one
On ajoute 0,283 g de *tertio*-butylate de potassium à une solution refroidie à -40°C de 5-éthoxy-3-spiro-(4-méthoxyméthyloxycyclohexane)indolin-2-one, (*composé de formule XI*) préparé selon EP 636608, dans 80 ml de tétrahydrofurane. On laisse remonter la température à 0°C puis refroidit le mélange à -40°C et ajoute 0,73 g de chlorure de (2-méthoxy-4-N-*tertio*-butylcarbamoyl)benzènesulfonyle dans 7 ml de tétrahydrofurane. On agite le

35

. ق mélange réactionnel pendant 2 heures à température ambiante, puis successivement on ajoute 20 ml d'eau, extrait à l'acétate d'éthyle, sèche sur MgSO₄, évapore le solvant et purifie l'huile obtenue par chromatographie sur gel de silice en éluant avec un mélange cyclohexane/acétate d'éthyle 8/2 (V/V). On isole l'isomère le moins polaire du produit attendu ; F = 165°C puis l'isomère polaire ; F = 156°C.

PREPARATION XII

Alcools de formule (lic)

10

5

Composé IIc.1

5-Ethoxy-3-spiro-(4-hydroxycyclohexane)-1-[(4-N-tertiobutylcarbamoyl-2-méthoxybenzènesulfonyl]indolin-2-one

15

20

On chauffe à 50°C durant 1 heure un mélange de l'isomère polaire du composé X.1 dans 1,2 ml de méthanol et 0,24 ml d'acide chlorhydrique concentré (36 %). On ajoute 8 ml d'eau au mélange réactionnel, puis successivement on extrait au dichlorométhane, sèche les phases organiques sur MgSO₄ et on évapore les solvants. On obtient le produit attendu après purification par chromatographie sur gel de silice en éluant au dichlorométhane : F = 268°C. (isomère polaire)

Composé IIc.2

25

De la même manière, à partir de l'isomère le moins polaire préparé selon X.1, on isole l'isomère le moins polaire du produit attendu ; $F = 130^{\circ}C$ (hémihydrate).

30

PREPARATION XIII Réactifs de formule (2)

Réactif (2).1

Chlorure de 2-méthoxy-4-N-tertio-amylcarbamoylbenzènesulfonyle.

35

a) N-tertio-amyl(3-methoxy-4-nitro) benzamide

٠., ۵

On ajoute à 10°C 30 ml de *tertio*-amylamine à une solution de 27 g de chlorure de 3-méthoxy-4-nitrobenzoyle (obtenu à partir de 25 g d'acide correspondant et de chlorure de thionyle à reflux durant 4 heures suivi d'une évaporation sous vide) dans 250 ml de dichlorométhane. On agite le mélange réactionnel durant 30 minutes à 20°C, puis on ajoute 100 ml d'une solution d'acide chlorhydrique 1N, décante, lave et sèche la phase organique sur MgSO₄, puis on évapore le solvant et on chromatographie le résidu sur gel de silice en éluant au dichlorométhane pour obtenir 31 g du produit attendu ; F = 65°C.

De la même manière et à partir de N-tertio-butylamine, on prépare le N-tertio-butyl (3-méthoxy-4-nitro)benzamide ; F = 118°C.

b) N-tertio-amyl(3-méthoxy-4-amino)benzamide

On chauffe à reflux durant 3 heures un mélange de 31 g de N-tertio-amyl(3-méthoxy-4-nitro)benzamide obtenu en a), 20 g de palladium sur charbon à 10 %, 76 ml de cyclohexane dans 310 ml d'éthanol. On filtre, évapore le filtrat pour obtenir 25 g du produit attendu ; F = 108°C.

De la même manière, à partir du composé N-tertio-butyl(3-méthoxy-4-nitro)benzamide on prépare le N-tertio-butyl(3-méthoxy-4-amino)benzamide ; F=160°C.

c) Chlorure de 2-méthoxy-4-tertio-amylcarbamoylbenzènesulfonyle

On ajoute à 0°C une solution de 7,9 g de nitrite de sodium dans 31 ml d'eau à une solution de 25 g de N-*tertio*-amyl(3-méthoxy-4-amino)benzamide dans 103 ml d'acide acétique et 187 ml d'acide chlorhydrique à 36 %. On agite le mélange réactionnel durant 1 heure à 0°C puis on ajoute cette solution conservée à 0°C à une suspension de 6,8 g de chlorure cuivrique, dans 25 ml d'eau et 140 ml d'acide acétique saturée à 0°C par environ 69 g de dioxyde de soufre. On agite le mélange réactionnel à 0°C durant 3 heures puis à 20°C pendant 16 heures et on coule le milieu sur 750 g de glace en agitant ensuite pendant 1 heure à 20°C. On essore puis successivement on rince le précipité à l'eau, sèche sous vide durant 48 heures pour obtenir 19 g du produit attendu ; F = 104°C

. .

5

10

15

20

25

Réactif (2).2

Chlorure de 4-N-tertio-butylcarbamoyl-2-méthoxybenzènesulfonyle

De la même manière, à partir de N-tertio-butyl(3-méthoxy-4amino)benzamide, on isole le réactif attendu ; F = 148°C.

Réactif (2).3

5

10

20

25

30

35

Chlorure de 3-méthoxy-4-benzyloxycarbonylbenzènesulfonyle

En utilisant la même réaction que précédemment et, à partir de l'ester benzylique de l'acide 4-amino-3-méthoxybenzoïque (F = 72°C issu de la réduction du dérivé nitré correspondant par l'étain en milieu chlorhydrique ; F = 88°C), on isole le réactif attendu ; F = 55°C.

15 Réactif (2).4

N-tertio-butyl-4-bromométhyl-3-méthoxybenzamide

On agite à 30°C sous irradiation du spectre visible durant 48 heures un mélange de 3 g de N-tertio-butyl-4-méthyl-3-méthoxybenzamide, 2,4 g de N-bromosuccinimide, 0,16 g de peroxyde de benzoyle dans 40 ml de tétrachlorure de carbone. On évapore le solvant, puis successivement on ajoute 25 ml d'eau, extrait à l'éther diéthylique, sèche sur MgSO₄, évapore le solvant et chromatographie le résidu sur gel de silice en éluant avec un mélange cyclohexane/acétate d'éthyle 8/2 (v/v). On isole le réactif attendu après cristallisation dans l'éther isopropylique; F = 114°C.

EXEMPLE 1

5-Ethoxy-1-[4-(N-*tertio*-butylcarbamoyl))-2-méthoxybenzènesulfonyl]-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]indolin-2-one

<u>د .</u> . .

isomère le moins polaire.

Sous atmosphère inerte, on chauffe à 60°C durant 40 heures un mélange de 0,6 g de dérivé chloré (*II A.1*) obtenu selon la PREPARATION V, 0,26 g de morpholine, 0,15 g d'iodure de sodium dans 6 ml de diméthylformamide. On évapore le solvant sous vide, puis successivement on reprend avec 20 ml d'une solution aqueuse de NaHCO₃ à 5%, extrait à l'acétate d'éthyle, lave les phases organiques avec une solution de NaCl à 10%, sèche sur MgSO₄, évapore le solvant et on isole une résine qui est chromatographiée sur gel de silice en éluant avec un mélange dichlorométhane/méthanol 98/2 (v, v).

On isole l'isomère le moins polaire du produit attendu (Rf = 0,5 ; CCM silice; dichlorométhane/méthanol 95/5 (v, v)). On prépare le fumarate dans l'acétone et on le cristallise dans l'éther diéthylique ; F = 153°C (EXEMPLE 1).

¹H RMN, DMSO-d6 200 MHz: 8,0 (m, 2H); 7,5 (m, 2H); 7,4 (s, 1H); 6,88 (d, 1H); 6,82 (s, 1H); 6,6 (s, 2H; acide fumarique); 4,0 (q, 2H); 3,6 (s, 3H); 3,55 (m, 7H); 2,45 (m, 6H); 2-1,4 (m, 8H); 1,34 (s, 9H); 1,3 (t, 3H).

EXEMPLE 2

5-Ethoxy-1-[4-(N-tertio-butylcarbamoyl))-2-méthoxybenzènesulfonyl]-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]indolin-2-one

(I) :
$$R_1 = 5 - OC_2H_5$$
; $R_2 = H$; $R_3 = 2 - OCH_3$; $W = SO_2$;
$$R_4 = 4 - CONHC(CH_3)_3$$
; $T - Z = -CH_2CH_2 - N$

isomère le plus polaire.

On isole l'isomère le plus polaire du produit préparé ci-dessus selon l'EXEMPLE 1; Rf = 0,43; dans les conditions précédentes; F = 212°C. On prépare le fumarate dans l'acétone et on le cristallise dans l'éther diéthylique; F = 172°C (EXEMPLE 2).

1_{H RMN, DMSO-d6 200 MHz : 8,0 (m, 2H) ; 7,5 (m, 2H) ; 7,4 (s, 1H) ; 7,03 (s; 6,84 (d, 1H) ; 6,6 (s, 2H ; acide fumarique) ; 4,0 (q, 2H) ; 3,6 (s, 3H) ; 3,5 (m, 6H) ; 3,40 (m, 1H) ; 2,45 (m, 6H) ; 1,9-1,6 (m, 8H) ; 1,34 (s, 9H) ; 1,3 (t, 3H).}

هَنِيَ..

35

5

10

15

20

25

EXEMPLE 3

5-Ethoxy-1-[4-(N',N'-diéthyluréido)-2-méthoxybenzènesulfonyl]-3-spiro-[4-(2-diméthylaminoéthyloxy)cyclohexane]indolin-2-one.

(I) :
$$R_1 = 5-OC_2H_5$$
 ; $R_2 = H$; $R_3 = 2-OCH_3$; $W = SO_2$
$$R_4 = 4-NHCON < C_2H_5 C_2H_5 : T-Z = -CH_2CH_2-N < CH_3$$

Le dérivé tosylé *II A.2* obtenu précédemment selon la PREPARATION V dans 3,3 ml d'acétonitrile et 0,23 ml d'une solution aqueuse de diméthylamine à 40%. On agite le mélange réactionnel durant 48 heures à 20°C, puis on ajoute 1 ml d'une solution saturée de NaHCO₃, et successivement on extrait à l'acétate d'éthyle, sèche sur MgSO₄, évapore le solvant, chromatographie le résidu sur gel de silice en éluant avec un mélange de dichlorométhane/méthanol/ammoniaque (245/5/0,2 v/v); (Rf = 0,5; CCM silice; dichlorométhane/méthanol/ ammoniaque 85/15/1 v/v); F = 103°C.

EXEMPLE 4

5-Ethoxy-3-spiro-[4-(2-aminoéthyloxy)cyclohexane]-1-[4-(4-N-tertio-butylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one (mélange d'isomères).

(I):
$$R_1 = 5 - OC_2H_5$$
; $R_2 = H$; $R_3 = 2 - OCH_3$; $W = SO_2$; $R_4 = 4 - CONHC(CH_3)_3$; $T - Z = -CH_2CH_2NH_2$

a) 5-Ethoxy-3-spiro-[4-(2-azidoéthyloxy)cyclohexane]-1-[4-(4-N-tertiobutylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one. (mélange d'isomères)

Sous atmosphère inerte on chauffe à 100°C durant 2 heures un mélange de 0,5 g de dérivé chloré *II A.1* obtenu précédemment selon la PREPARATION V, 0,06 g d'azoture de sodium et 0,126 g d'iodure de sodium dans 5 ml de diméthylformamide. On ajoute 10 ml d'eau au mélange réactionnel puis on

20

25

15

5

10

30

35

extrait à l'acétate d'éthyle et successivement on lave les phases organiques à l'eau, sèche sur Na₂SO₄ on concentre partiellement le solvant jusqu'à un volume de 20 ml pour obtenir une solution d'azide qui est utilisée telle quelle dans la réaction suivante.

b) On hydrogène la solution obtenue en a) à 40°C durant 60 heures sous 10 bars en présence de 0,2 g de palladium/CaCO₃ (catalyseur de Lindlar; 5% Pd). On sépare le catalyseur par filtration, évapore le solvant et chromatographie sur une colonne de gel de silice en éluant avec un mélange dichlorométhane/méthanol 8/2 (v/v). On isole le produit attendu sous forme de base que l'on salifie par l'acide fumarique dans l'acétone et cristallise dans l'éther isopropylique pour obtenir le produit attendu; F = 138°C (monohydrate).

EXEMPLE 5

5

10

15

20

25

30

35

5-Chloro-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one.

(I):
$$R_1 = 5$$
-CI; $R_2 = H$; $R_3 = 2$ -OCH₃; $W = SO_2$

$$R_4 = 4$$
-CONHC(CH₃)₃; $T - Z = -CH_2CH_2$ -NO

On ajoute 0,073 g de *tertio*-butylate de potassium à une solution refroidie à -30°C de 0,21 g du *composé II B.1* obtenu précédemment selon la PREPARATION VII dans 24 ml de tétrahydrofurane. On laisse remonter la température à 0°C puis on refroidit le mélange à -40°C et on ajoute 0,19 g de chlorure de [2-méthoxy-4-(N-*tertio*-butylcarbamoyl)]benzènesulfonyle dans 2 ml de tétrahydrofurane. On agite ensuite le mélange réactionnel pendant 2 heures à -10°C, on ajoute 15 ml d'eau, puis successivement on extrait à l'acétate d'éthyle, sèche sur MgSO₄, évapore le solvant et purifie le résidu par chromatographie sur gel de silice en éluant au dichlorométhane puis avec un mélange dichlorométhane/méthanol 96/4. On isole l'isomère polaire du produit attendu qui est salifié par l'acide fumarique dans l'acétone. Le fumarate est cristallisé dans l'éther diisopropylique ; F = 107°C (trihémihydrate).

٠. .

EXEMPLE 6

5

15

20

25

30

35

5-Ethoxy-3-spiro-[4-(2-carboxyéthyloxy)cyclohexane]-1-[4-(N-tertio-amylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one.

(I):
$$R_1 = 5-OC_2H_5$$
; $R_2 = H$; $R_3 = 2-OCH_3$; $W = SO_2$

$$CH_3$$

$$R_4 = 4-CONH - C - C_2H_5$$
; $T - Z = -CH_2CH_2 - COOH$

$$CH_3$$

A 0°C on ajoute 1 g d'oxyde chromique à un mélange de 1,5 g du composé II' A.2 obtenu selon la PREPARATION VI dans 9 ml d'acide acétique et 10 ml d'eau. On agite le mélange réactionnel pendant deux heures à 20°C, puis on ajoute 80 ml d'eau et successivement on extrait à l'acétate d'éthyle, sèche sur MgSO₄ les phases organiques, distille le solvant et isole le produit attendu après chromatographie sur gel de silice en éluant avec un mélange dichlorométhane/méthanol 99/1 (v/v); F = 108°C (hémihydrate).

EXEMPLE 7

5-Ethoxy-3-spiro-(4-éthoxycarbonylméthyloxycyclohexane)-1-[(4-N-tertio-butylcarbamoyl-2-méthoxy)benzènesulfonyl]indolin-2-one.

(I):
$$R_1 = 5 - OC_2H_5$$
; $R_2 = H$; $R_3 = 2 - OCH_3$; $W = SO_2$
 $R_4 = 4 - CONHC(CH_3)_3$; $T - Z = -CH_2 - COO - C_2H_5$

On ajoute à 0°C à une solution de 0,75 g de 5-éthoxy-3-spiro-(4-hydroxycyclohexane)-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzène sulfonyl)indoline-2-one (II.C₁) dans 30 ml de dichlorométhane, 0,47g de 2,6-di-tertio-butylpyridine, 0,54 g de trifluoro-méthane sulfonate d'argent puis 0,27 ml d'iodoacétate d'éthyle. On agite le mélange réactionnel durant 48 heures à 20°C, puis successivement on filtre, évapore le solvant, et on isole le produit

....

attendu après chromatographie sur gel de silice en éluant au cyclohexane puis avec un mélange cyclohexane/dichlorométhane 20/80 (v/v) et recristallisation dans l'isopropanol; F = 165°C.

5 EXEMPLE 8

5-Ethoxy-3-spiro-(4-carboxyméthyloxycyclohexane)-1-(4-N-tertio-butyl carbamoyl-2-méthoxybenzènesulfonyl)indolin-2-one.

10 (I):
$$R_1 = 5 - OC_2H_5$$
; $R_2 = H$; $R_3 = 2 - OCH_3$; $W = SO_2$; $R_4 = 4 - CONHC(CH_2)_3$; $T - Z = -CH_2COOH$

On chauffe à 65° pendant 16 heures 0,34 g du produit obtenu à l'EXEMPLE 7 et 0,01 g d'acide paratoluènesulfonique dans 3 ml d'alcool benzylique. On évapore le solvant puis successivement on ajoute 1 ml d'eau et 1 ml d'une solution saturée de NaHCO3, extrait à l'acétate d'éthyle, évapore le solvant puis on ajoute 5 ml d'isopropanol, 0,25 g de palladium sur charbon à 10 % et 0,25 ml de cyclohexène. On chauffe le mélange réactionnel à 80°C pendant 3 heures puis successivement on filtre, rince le catalyseur au chlorure de méthylène, évapore les solvants, isole le produit attendu et le purifie par chromatographie sur gel de silice en éluant avec un mélange chlorure de méthylène /méthanol 98/2 (v/v). On recristallise la fraction du produit attendu dans un mélange d'éther isopropylique/acétate d'éthyle 8/2 (v/v); F = 175°C (hémihydrate)

En procédant selon les EXEMPLES 1 à 8 ci-dessus, on prépare les EXEMPLES 9 à 23 décrits dans le TABLEAU 1 ci-après.

<u>د</u> آ

30

25

15

20

TABLEAU 1

R₁
O-T-Z

W
OCH₃
(I)

z . F; R₄ Sel, T R₁ W Exemple •C Solvate (1) Numéro 15 170 OC_2H_5 SO₂ 1 H₂O CONHC(CH₃)₃ $(CH_2)_2-$ 9 fumarate 88 OCH₃ CI SO₂ 20 1,5 H₂O $(CH_2)_2-$ 10 SO₂ fumarate 160 OC_2H_5 2 H₂O CONHC(CH3)3 (CH₂)₂-25 .coochf 11 80 SO₂ OC₂H₅ (3) CONHC(CH₃)₃ (CH₂)₃-12 30 fumarate 170 SO₂ OC₂H₅ 2 H₂O CONHC(CH₃)₃ $(CH_2)_3-$ 13

35

5

TABLEAU 1 (suite 1)

	Exemple Numéro	R ₁	w	R ₄	Т	Z	Sel, Solvate (1)	F; ℃
5	14	OC ₂ H ₅	SO ₂	- CONHC(CH ₃) ₃	- (CH ₂) ₂ -	-N(CH3)2	fumarate 1 H ₂ O	150
10	15	OC ₂ H ₅	CH ₂	- СОИНС(СН ₃) ₃	- (CH ₂) ₂ -		fumarate 1 H ₂ O	110
15	16	OC ₂ H ₅	SO ₂	- СОИНС(СН ₃) ₃	- (CH ₂) ₂ -	CH ₃	fumarate 1 H ₂ O	165
20	17	OC ₂ H ₅	SO ₂	CH ₃ -CONHCCH ₂ CH ₃ -CH ₃	- (CH ₂) ₂ -	$\left\langle \begin{array}{c} 0 \\ 2 \end{array} \right\rangle$	-	65
	18	OC ₂ H ₅	SO ₂	- CONHC(CH3)3	- (CH ₂) ₂ -		fumarate 1,5 H ₂ O	190
25	19	OC ₂ H ₅	SO ₂	- CONHC(CH ₃) ₃	- (CH ₂) ₂ -	N S	fumarate 4 H ₂ O	208
30	20	OC ₂ H ₅	SO ₂	CONHC(CH ₃) ₃	- (CH ₂) ₂ -	- NCH3(CH2)2OH	fumarate 1 H ₂ O (2)	104

٠...

TABLEAU 1 (suite 2)

	Exemple Numéro	R ₁	w	R ₄	T	Z	Sei, Solvate (1)	F; ℃
5	21	OC ₂ H ₅	so ₂	- СОИНС(СН ₃)3	- (CH ₂) ₂ -	NCH,(CH,)2OCH,	fumarate 1,5 H ₂ O	100
10	22	OC ₂ H ₅	SO ₂	- СОИНС(СН ₃)3	- (CH ₂) ₂ -	N NCH3	dioxalate 1 H ₂ O	224
15	23	OC ₂ H ₅	SO ₂	- СОИНС(СН ₃) ₃	- (CH ₂) ₂ -	-N(CH ₂ CH ₂ OCH ₃) ₂	fumarate 1 H ₂ O	98

(1) : isomères les plus polaires sauf indications contraires.

(2) : mélange d'isomères

(3) : isomère le moins polaire

25

20

30

REVENDICATIONS

1. Composé de formule

5

10

dans laquelle:

15

- R_1 et R_2 représentent chacun indépendamment un hydrogène ; un hydroxyle ; un halogène ; un (C_1-C_7) alkyle ; un (C_1-C_7) polyfluoroalkyle ; un (C_1-C_7) alcoxy ; un (C_1-C_7) alkylthio ; un (C_1-C_7) polyfluoroalcoxy ; un (C_3-C_7) cycloalkyloxy ; un (C_3-C_7) cycloalkylthio ; un cycloalkylméthoxy ou un cycloalkylméthylthio dans lesquels le cycloalkyle est en C_3-C_7 ; un phénoxy ; un benzyloxy ; un nitro ; un cyano ;

20

- R_3 et R_4 , indépendamment l'un de l'autre, substituent une ou plusieurs fois le groupe phényle et représentent chacun indépendamment un hydrogène ; un halogène ; un (C_1-C_7) alkyle ; un (C_2-C_7) alcényle ; un (C_1-C_7) polyhalogénoalkyle ; un phényle ou un benzyle ; un cyano ; un nitro ; un groupe $-NR_5R_6$; un hydroxyamino ; un hydroxy ; un groupe OR_7 ; un groupe SR_7 ; un groupe $-COOR_8$; un groupe $-CONR_9R_{10}$; un groupe $-CSNR_9R_{10}$; l'un au moins des radicaux R_3 et R_4 étant différent de l'hydrogène ;

30

25

 $-\,R_5$ et R_6 représentent chacun indépendamment un hydrogène ; un (C_1-C_7) alkyle ; un (C_2-C_7) alcényle ; un phényle ; un benzyle ; un (C_1-C_7) alkylcarbonyle ; un (C_1-C_7) thiocarbonyle ; un (C_3-C_7) cyclo-alkylcarbonyle ; un (C_3-C_7) cyclo-alkylcarbonyle ; un benzoyle ; un thiénylcarbonyle ; un furylcarbonyle ; un (C_1-C_7) alkyloxycarbonyle ; un phénoxycarbonyle ; un benzyloxycarbonyle ; un carbamoyle ou un

35

هَيْ..

thiocarbamoyle non substitué ou substitué par Rg et R₁₀ ou bien R₅ et R₆ constituent avec l'atome d'azote auquel ils sont liés un groupe hétérocyclique choisi parmi les groupes pyrrolidine, pyrroline, pyrrolyle, indoline, indole, pipéridine ;

5

– R_7 représente un (C_1-C_7) alkyle ; un (C_2-C_7) alcényle ; un phényle ; un benzyle ; un (C_3-C_7) cycloalkyle ; un (C_1-C_7) polyfluoroalkyle ; un formyle ; un (C_1-C_7) alkylcarbonyle ; un benzylcarbonyle ;

10

- R₈ représente un hydrogène, un (C₁-C₇)alkyle ; un phényle ; un benzyle ;

15

 $-R_9$ et R_{10} représentent chacun indépendamment l'hydrogène ; un (C_1-C_7) alkyle ; un (C_1-C_7) polyfluoroalkyle ; un (C_2-C_7) alcényle ; un (C_3-C_7) cycloalkyle ; un pyridyle ; un phényle ; un thiényle ; un furyle ; ou bien R_9 et R_{10} constituent avec l'atome d'azote auquel ils sont liés un groupe hétérocyclique choisi parmi les groupes pyrrolidine, pipéridine ou pipérazine non substitué ou substitué par des (C_1-C_4) alkyles ; ou un (C_4-C_7) azacycloalkyle ;

20

W représente un groupe -CH₂- ou -SO₂-;

25

– Cy constitue avec le carbone auquel il est lié un cycle hydrocarboné non aromatique en C_3 – C_{12} , saturé ou insaturé, éventuellement condensé ou substitue par un ou plusieurs groupes (C_1 – C_7)alkyles, lesdits groupes pouvant substituer une ou plusieurs fois le même atome de carbone ou par un spirocycloalkyle en C_3 – C_6 ;

30

- T représente un (C_1-C_4) alkylène éventuellement interrompu par un (C_3-C_6) cycloalkylène les dits alkylènes étant éventuellement substitués une ou plusieurs fois sur le même atome de carbone par un (C_1-C_3) alkyle; ou bien T représente une liaison directe;

35

- Z représente un groupe -NR $_{11}$ R $_{12}$; -+NR $_{11}$ R $_{12}$ (C $_{1}$ -C $_{4}$)alkyle (A⁻), (A⁻) étant un anion, de préférence Cl⁻, Br⁻, l⁻ ou CH $_{3}$ SO $_{4}$ ⁻; -N(O)R $_{11}$ R $_{12}$; un groupe -COOR $_{11}$; un groupe -NR $_{11}$ COR $_{12}$; un

٠....

ڌ..

(C₁-C₄)alkyloxycarbonylamino; un benzyloxycarbonylamino; un groupe - CONR₁₁R₁₂;

 $-\,R_{11}$ et R_{12} représentent chacun indépendamment l'hydrogène ; un (C_1-C_7) alkyle ; un (C_3-C_7) cycloalkyle ; un phényle ; un (C_1-C_3) alkylènecycloalkyle dans lequel le cycloalkyle est en C_3-C_7 , un (C_1-C_3) alkylènephényle lesdits groupes pouvant éventuellement être mono ou polysubstitués par R_{13}

ou bien NR₁₁R₁₂ constituent éventuellement avec l'atome d'azote auquel ils sont liés constituent un hétérocycle choisi parmi les hétérocycles azétidine, pyrrolidine, pipéridine, pipérazine, pipérazinone, morpholine, morpholinone, thiomorpholine, hexahydroazépine éventuellement mono ou polysubstitué par R₁₃; ou un représentent thiomorpholine–1,1-dioxyde ou un thiomorpholine–1-oxyde;

 $-\,R_{13}$ représente un groupe hydroxy ; un (C_1-C_4) alcoxy ; un thiol ; un (C_1-C_4) alkylthio ; un (C_1-C_4) alkylsulfinyle ; un (C_1-C_4) alkylsulfonyle ; un amino, un groupe $NR_{14}R_{15}$ dans lequel R_{14} et R_{15} représentent chacun indépendamment l'hydrogène ou un (C_1-C_4) alkyle ; un carboxy ; un carboxamide ; un amidino ; un guanidino ; un imidazolyle ; un thiényle ; un pyridyle ; un indolyle ; un tétrahydroisoquinoléinyle ; ainsi que leurs sels.

2. Composé de formule :

30

5

10

15

20

25

dans laquelle R₁, R₃, R₄, W, T et Z sont tels que définis pour (I) ou un de leurs sels.

3. Composé de formule :

dans laquelle R_1 , R_3 , R_4 , T et Z sont tels que définis pour (I) ou un de leurs sels.

4. Composé de formule :

dans laquelle R_1 , R_3 et R_4 sont tels que définis pour (I), T représente un (C_1 – C_3)alkylène et Z représente un groupe amino, un 2–hydroxyéthylamino, un 2–(2–hydroxy)éthyloxyéthylamino, un morpholinyle ou un acide carboxylique, et leurs sels.

....

35

5

10

15

20

25

<u>د</u> ...

5. Composé de formule :

5

10

15

20

25

30

35

dans laquelle R₁, T et Z sont tels que définis pour (I) ou un de leurs sels.

6. Composé de formule :

dans laquelle R_1 , R_2 , Cy, T et X sont tels que définis pour (I) ou un de ses sels.

7. Composé de formule :

- * 5-Chloro-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ;
- * 5-Ethoxy-3-spiro-[4-(2-aminoéthyloxy)cyclohexane]-1-[4-(4-N-tertio-butylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ;
- *5-Ethoxy-3-spiro-[4-(2-(N-méthyl-N-(2-hydroxyéthyl)amino) éthyl)oxycyclohexane]-1-[4-(N-*tertio*-butylcarbamoyl)-2-méthoxybenzène sulfonyl]indolin-2-one et ses sels ;
- * 5-Ethoxy-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzyl]indolin-2-one et ses sels ;

* 5-Ethoxy-1-[4-(N-tertio-butylcarbamoyl))-2-méthoxybenzènesulfonyl]-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]indolin-2-one et ses sels ;

* 5-Ethoxy-3-spiro-(4-carboxyméthyloxycyclohexane)-1-(4-N-tertio-butyl carbamoyl-2-méthoxybenzènesulfonyl)indolin-2-one et ses sels ;

* 5-Ethoxy-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-(N-tertio-amylbutylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ;

* 5-Ethoxy-3-spiro-[4-(2-carboxyéthyloxy)cyclohexane]-1-[4-(N-tertio-amylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ;

* 5-Ethoxy-1-[4-(N',N'-diéthyluréido)-2-méthoxybenzènesulfonyl]-3-spiro-[4-(2-diméthylaminoéthyloxy)cyclohexane]indolin-2-one et ses sels ;

et leurs sels pharmaceutiquement acceptables étant particulièrement adaptés pour l'utilisation dans des formulations pharmaceutiques.

8. Procédé de préparation d'un composé de formule (I) selon l'une quelconque des revendications 1 à 4 caractérisé en ce que :

(1) soit on fait réagir sur un composé de formule :

dans lequel R₁, R₂, R₃, R₄, W, Cy et T sont tels que définis pour (I) et dans lequel X est un groupe nucléofuge tel qu'un halogène, de préférence brome, chlore ou iode, ou un dérivé d'acide sulfonique, tel que tosyloxy, mésyloxy avec un dérivé de formule ZH (1) dans lequel Z est tel que défini pour (I) comportant une fonction nucléophile capable de déplacer X, par exemple une amine primaire ou secondaire, de préférence secondaire, dans des solvants polaires, tels que le diméthylformamide, le tétrahydrofurane ou l'acétonitrile, à des températures comprises entre 0° à 120°C, ou bien X

20

5

10

15

25

30

représente un groupe réductible, tel qu'un azide que l'on réduit ensuite en amino,

(2) soit lorsque Z = -COOH on fait réagir un composé de formule :

dans laquelle R₁, R₂, W, R₃, R₄, et Cy sont tels que définis pour (I) et T' représente TCH₂- avec un oxydant tel que l'oxyde de chrome dans un solvant acide tel que l'acide acétique dilué à une température comprise entre 0°C et 100°C, les bichromates alcalins ou les permanganates alcalins ou alcalino terreux;

(3) soit on fait réagir un composé de formule :

5

10

15

20

25

30

35

dans lequel R₁. R₂. Cy. T et Z sont tels que définis pour (I) avec un composé de formule :

dans lequel W. R₃ et R₄ sont tels que définis pour (I) et Hal représente un atome d'halogène dans un solvant anhydre tel que le diméthylformamide ou le tétrahydrofurane en présence d'un hydrure métallique comme par exemple

. ق l'hydrure de sodium ou d'un alcoolate alcalin comme par exemple le tertiobutylate de potassium à des températures comprises entre -40° et 25°C;

(4) soit lorsque Z = -COOH on fait réagir un composé de formule :

5

10

15

20

25

30

35

dans laquelle R₁, R₂, et Cy sont tels que définis précédemment pour (i) et T'représente T-CH₂ avec un oxydant décrit ci-dessus pour la transformation de (II' A) en (I) puis ensuite, on protège éventuellement l'acide ainsi obtenu de formule :

dans lequel R₁, R₂, Cy et T sont tels que définis précédemment pour (I) par un groupement protecteur de l'acide carboxylique pour obtenir l'intermédiaire de formule :

dans lequel R₁, R₂, Cy et T sont tels que définis pour (I) et P représente un groupe protecteur choisi parmi un alkyle, un *tert*-butyle ou un benzyle et on soumet enfin ce composé (II"BP) à l'action d'un dérivé de formule (2), pour obtenir après déprotection un composé (I); un de leurs ammoniums quaternaires, oxydes, sulfones ou sels.

.....

5

20

- 9. Composition pharmaceutique contenant à titre de principe actif, un composé de formule (I) selon la revendication 1 ou un de ses sels pharmaceutiquement acceptables.
- 10. Composition pharmaceutique contenant, en tant que principe actif, un composé de formule (I.1) selon la revendication 2 ou un de ses sels pharmaceutiquement acceptables.
- 11. Composition pharmaceutique contenant, en tant que principe actif, un composé de formule (I.2) selon la revendication 3 ou un de ses sels pharmaceutiquement acceptables.
- 12. Composition pharmaceutique contenant, en tant que principe actif, un composé de formule (I.3) selon la revendication 4 ou un de ses sels pharmaceutiquement acceptables.
 - 13. Composition pharmaceutique contenant, en tant que principe actif, un composé de formule (I.4) selon la revendication 5 ou un de ses sels pharmaceutiquement acceptables.
 - 14. Composition pharmaceutique contenant, en tant que principe actif, un composé selon la revendication 7.
- 15. Composition pharmaceutique selon une quelconque des revendications 9 à 14 contenant également un autre principe actif.
 - 16. Composition pharmaceutique selon la revendication 15 caractérisée en ce que l'autre principe actif est un antagoniste spécifique du récepteur de l'angiotensine II.
 - 17. Composition pharmaceutique selon la revendication 16, caractérisée en ce que l'antagoniste spécifique du récepteur de l'angiotensine II est l'irbésartan.

35

18. Composition pharmaceutique contenant une association de 5-éthoxy-1-[4-(N-tertio-butylcarbamoyl))-2-méthoxybenzènesulfonyl]-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]indolin-2-one et l'irbésartan.

٤...

. , 2

 (C_1-C_4) alkyloxycarbonylamino ; un benzyloxycarbonylamino ; un groupe - $CONR_{11}R_{12}$;

 $-R_{11}$ et R_{12} représentent chacun indépendamment l'hydrogène ; un (C_1-C_7) alkyle ; un (C_3-C_7) cycloalkyle ; un phényle ; un (C_1-C_3) alkylènecycloalkyle dans lequel le cycloalkyle est en C_3-C_7 , un (C_1-C_3) alkylènephényle lesdits groupes pouvant éventuellement être mono ou polysubstitués par R_{13}

ou bien R_{11} et R_{12} constituent éventuellement avec l'atome d'azote auquel ils sont liés un hétérocycle choisi parmi les hétérocycles azétidine, pyrrolidine, pipéridine, pipérazine, pipérazinone, morpholine, morpholinone, thiomorpholine, hexahydroazépine éventuellement mono ou polysubstitué par R_{13} ; ou bien $NR_{11}R_{12}$ représente un thiomorpholine-1,1-dioxyde ou un thiomorpholine-1-oxyde;

 $-\,R_{13}$ représente un groupe hydroxy ; un (C_1-C_4) alcoxy ; un thiol ; un (C_1-C_4) alkylthio ; un (C_1-C_4) alkylsulfinyle ; un (C_1-C_4) alkylsulfonyle ; un groupe $NR_{14}R_{15}$ dans lequel R_{14} et R_{15} représentent chacun indépendamment l'hydrogène ou un (C_1-C_4) alkyle ; un carboxy ; un carboxamide ; un amidino ; un guanidino ; un imidazolyle ; un thiényle ; un pyridyle ; un indolyle ; un tétrahydroisoquinoléinyle ; ainsi que leurs sels.

2. Composé de formule :

$$R_1$$
 N
 O
 W
 R_3
 R_4
 $(I.1)$

25

5

10

15

٠....

5. Composé de formule :

dans laquelle R₁, T et Z sont tels que définis pour (I) ou un de leurs sels.

6. Composé de formule :

5

10

15

20

dans laquelle

- R₁, R₂, Cy et T sont tels que définis pour (I);
- X est un groupe nucléofuge tel qu'un halogène, de préférence brome, chlore ou iode, ou un dérivé d'acide sulfonique, tel que tosyloxy, mésyloxy;
- ou bien X représente un groupe réductible, tel qu'un azide, ou un de ses sels.

7. Composé de formule :

- *5-Chloro-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ;
- $\label{tertio-butylcarbamoyl} $$$ 5-Ethoxy-3-spiro-[4-(2-aminoéthyloxy)cyclohexane]-1-[4-(4-N-tertio-butylcarbamoyl)-2-méthoxybenzènesulfonyl]indolin-2-one et ses sels ;$
- *5-Ethoxy-3-spiro-[4-(2-(N-méthyl-N-(2-hydroxyéthyl)amino) éthyl)oxycyclohexane]-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzène sulfonyl]indolin-2-one et ses sels ;
- * 5-Ethoxy-3-spiro-[4-(2-morpholinoéthyloxy)cyclohexane]-1-[4-(N-tertio-butylcarbamoyl)-2-méthoxybenzyl]indolin-2-one et ses sels ;