COMUNICAÇÃO DE DADOS E REDES

$3^{\underline{0}}$ Ano – Engenharia de Sistemas e Informática ${\rm EXAME}-1^{\underline{a}}~{\rm chamada}$

Duração: 2h EXAME – $1^{\underline{a}}$ chamada 4/6/2002

Utilize um caderno separado para responder a cada um dos grupos de questões I e II

Ι

- 1. As LAN ethernet utilizam o protocolo CSMA/CD para acesso ao meio de transmissão e um algoritmo de retracção exponencial binária após colisão.
 - a) Em que consiste o protocolo CSMA?
 - b) Como é que a detecção de colisão (CD) melhora a utilização da LAN face ao CSMA puro?
 - c) Após uma colisão, como é que o interface MAC calcula o instante em que vai retransmitir?
 - d) Qual a estrutura e significado dos campos do cabeçalho de uma trama MAC ethernet?
- 2. O protocolo TFTP, que é transportado em UDP, não possui checksum mas utiliza controlo de fluxo pára-e-espera com repetição automática por time-out. O protocolo UDP prevê um checksum que valida todo o datagrama mas não exige que ele seja utilizado pelo emissor. Caso não seja, o checksum é sempre zero, caso seja, o protocolo descarta datagramas errados. Há garantia de transferência fiável de ficheiros por TFTP? Explique porquê considerando as várias situações possiveis.
- 3. A tabela seguinte constitui a tabela de encaminhamento do Router2 do internet representado na figura da questão 4.

Tabela de encaminhamento do Router2

Rede de destino	Salto seguinte	Interface	MTU
192.168.150.0	directamente ligada	intf1	620
192.168.200.0			
192.168.100.0			
193.137.9.0	192.168.200.253	intf0	
0.0.0.0			

- a) Indique e explique quais as funções de um router num internet?
- b) Analise o internet representado na figura e preencha as quatro entradas da tabela que se encontram incompletas. [Nota: reproduza a tabela na sua folha de respostas]
- c) Descreva sucintamente como faz a leitura da primeira entrada da tabela.

4. Suponha que no internet apresentado na figura existem *sniffers* instalados nas estações A, B, C e D. Num desses *sniffers* foi capturada uma trama ethernet, da qual se apresentam seguidamente os cabeçalhos MAC e IP:


```
-- MAC header
01 source address= 04:04:04:04:04:04
02 destination address= 06:06:06:06:06:06
03 type= 0x800
-- IP header
04 version= 4
05 header length= 20 bytes
06 type of service= 0
07 total length= 1500 bytes
08 identification= 10001
09 flags= 0x; don't fragment= 0; more fragments= 0
10 offset= 0
11 time to live= 64 sec/hops
12 protocol= 17
13 source address= 192.168.100.1
14 destination address= 192.168.150.1
15 header checksum= 0x2fff
```

- a) Com base na informação apresentada, diga, justificando, em que máquina se encontra o sniffer que capturou esta trama.
- b) Discuta, justificando, a validade da seguinte afirmação: O MTU da rede 192.168.200.0 é inferior ao MTU da rede 192.168.100.0.
- c) Quais os campos de um datagrama IP poderão ser afectados quando este tem que ser fragmentado. Que a funções e utilidade tem cada um deles?
- d) Diga, justificando, se o datagrama apresentado vai chegar à estação de destino fragmentado. Em caso afirmativo, indique em que pontos ocorre a fragmentação e qual o comprimento total (total length) de cada um dos fragmentos recebidos.
- e) Antes da estação A enviar o datagrama IP apresentado, executou-se nessa estação o comando **arp -a** e reparou-se que a cache **arp** estava vazia. Repetiu-se aquele comando imediatamente após o envio do datagrama. Apresente o essencial do conteúdo da cache observado.
- f) Refira-se à utilidade do protocolo ARP e à função da cache nesse protocolo, justificando a sua localização na pilha protocolar TCP/IP.
- g) O hub é um equipamento preferivel ao switch pois permite um melhor desempenho da rede. Diga, justificando, o que pensa sobre a veracidade deste comentário.