Example 12.6. Consider \mathbb{R}^n with its usual Euclidean inner product. Given any differentiable function $f: U \to \mathbb{R}$, where U is some open subset of \mathbb{R}^n , by definition, for any $x \in U$, the total derivative df_x of f at x is the linear form defined so that for all $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$,

$$df_x(u) = \left(\frac{\partial f}{\partial x_1}(x) \quad \cdots \quad \frac{\partial f}{\partial x_n}(x)\right) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) u_i.$$

The unique vector $v \in \mathbb{R}^n$ such that

$$v \cdot u = df_x(u)$$
 for all $u \in \mathbb{R}^n$

is the transpose of the Jacobian matrix of f at x, the $1 \times n$ matrix

$$\left(\frac{\partial f}{\partial x_1}(x) \quad \cdots \quad \frac{\partial f}{\partial x_n}(x)\right).$$

This is the gradient $grad(f)_x$ of f at x, given by

$$\operatorname{grad}(f)_{x} = \begin{pmatrix} \frac{\partial f}{\partial x_{1}}(x) \\ \vdots \\ \frac{\partial f}{\partial x_{n}}(x) \end{pmatrix}.$$

Example 12.7. Given any two vectors $u, v \in \mathbb{R}^3$, let c(u, v) be the linear form given by

$$c(u, v)(w) = \det(u, v, w)$$
 for all $w \in \mathbb{R}^3$.

Since

$$\det(u, v, w) = \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = w_1 \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} - w_2 \begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} + w_3 \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$$
$$= w_1(u_2v_3 - u_3v_2) + w_2(u_3v_1 - u_1v_3) + w_3(u_1v_2 - u_2v_1),$$

we see that the unique vector $z \in \mathbb{R}^3$ such that

$$z \cdot w = c(u, v)(w) = \det(u, v, w)$$
 for all $w \in \mathbb{R}^3$

is the vector

$$z = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}.$$

This is just the cross-product $u \times v$ of u and v. Since $\det(u, v, u) = \det(u, v, v) = 0$, we see that $u \times v$ is orthogonal to both u and v. The above allows us to generalize the cross-product to \mathbb{R}^n . Given any n-1 vectors $u_1, \ldots, u_{n-1} \in \mathbb{R}^n$, the cross-product $u_1 \times \cdots \times u_{n-1}$ is the unique vector in \mathbb{R}^n such that

$$(u_1 \times \cdots \times u_{n-1}) \cdot w = \det(u_1, \dots, u_{n-1}, w)$$
 for all $w \in \mathbb{R}^n$.