МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Вариант 19

Студентка гр. 1383	Седова Э.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2022

Цель работы.

Изучение понятия ветвящихся процессов. Разработка программы, обрабатывающей целые числа, на языке Ассемблера.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4.

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Выполнение работы.

$$/-(6*i-4)$$
 , при a>b I1 = f4 = $<$ \ $3*(i+2)$, при a<=b I2 = f5 = $<$ \ $-(6*I-6)$, при a<=b $<$ \ $/(6*I-6)$, при a<=b Res = f7 = $<$ \ $/(max(6,|i1|)$, при k>=0

Таблица 1 – примеры тестовых случаев

Номер	Входные данные	Выходные данные
1	a=5	i1=000C =12
	b=8	i2= FFFA=-6
	i=2	res = 0034=12

	k=3	
2	a=2	i1=0034=52
	b=-3	i2=0034=52
	i=-8	res = 0034 = 104
	k=-1	
3	a=-40	i1=0009=9
	b=0	i2=0000=0
	i=1	res = 0009=9
	k=1	
4	a=0	i1=0006=6
	b=0	i2=0006=6
	i=0	res = 0006=6
	k=0	

Для минимализации длины кода были произведены следующие упрощения:

1. При а>b:

$$-(6i - 4) = -((2i + i)2 - 4)$$
$$20 - 4i = -4(i - 5)$$

2. При а<=b:

Пусть
$$3(i+2) = x$$
, тогда $-(6i - 6) = 2(9 - x)$

3. Так как в f3 всегда используется модуль f1, метка getabs_i1, необходимая для взятия модуля от f1, вынесена отдельно. Это помогает избежать дублирования кода.

Программный код см. в приложении А.

Файлы диагностических сообщений см. в приложении Б.

Выводы.

В ходе выполнения работы было изучено понятие ветвящихся процессов. Разработана программа, на языке Ассемблера, обрабатывающая целые числа.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: 3lb.asm

```
DOSSEG
                                                 ; Задание сегментов под
ЛОС
        .MODEL SMALL
                                                        ; Модель памяти-
SMALL (Малая)
        .STACK 100h
                                                      ; Отвести под Стек
256 байт
        .DATA
                                                       ; Начало сегмента
данных
          a dw 2
          b dw -3
          i dw -8
          k dw -1
          i1 dw 0
          i2 dw 0
          res dw 0
        .CODE
                                            ; Начало сегмента кода
        mov ax, @data
                                                  ; Загрузка в DS адреса
начала
       mov ds, ax
                                            ; сегмента данных
     mov ax, a
     стр ах, в ; сравниваем равны ли а и в.
     jle second ;выполняет короткий переход, если первый операнд >
второго операнда
     first:
                    ;if(a>b)
     mov cx, i ;i
     shl cx, 1 ;2i
     add cx, i ;3i
     shl cx, 1 ;6i
     sub cx, 4; 6i-4
     neg cx
     mov ax, i ;i
     sub ax, 5; i-5
     shl ax, 1 ;2i-10
     shl ax, 1 ;4i-20
                 ;20-4i
     neg ax
     jmp result
     second:
                      ;if(a<=b)
     mov cx, i ;i
     add cx, i ;2i
     add cx, i ;3i
     add cx, 6 ;3i+6
     mov ax, cx : 3i+6
     neg ax
                       ;-3i-6
     add ax, 9 ; -3i+3
     shl ax, 1 ;-6i+6
```

```
result:
          mov [i1], cx
          mov [i2], ax
          mov bx, k
          cmp bx, 0
     getabs_i1:
          neg cx
          js getabs_i1
     jge final2; короткий переход, если первый операнд >= второго
операнда
     final1:
          getabs_i2:
               neg ax
               js getabs_i2
          add cx, ax
          jmp answer
     final2:
          cmp cx, 6
          jge answer
          mov cx, 6
     answer:
          mov [res], cx
          mov ah, 4ch
          int 21h
                                                ; завершение программы и
выход в ДОС
          END
```

ПРИЛОЖЕНИЕ Б ФАЙЛЫ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

Название файла: 3lb.lst

	□Micro	soft	(R)	Macro	Assembler	Version	5.10
11/5/	/22 00:3	11:26					
1-1							Page
				DOSSEG			
					ёРµ сегм	PuPSC PaPT	; PïPaPr
P"PħI	эў			1 1 111 101	CI μ CI I μΙ II)	1μ100,1511	111311
	. •			.MODEL	SMALL		
				; РњРsРҐРµР	»СЊ памяС,Р	ë-SMALL(РњР°	лая)
				.STACK	100h		
				; PħC, PIPμC	ЃС , Pë РїРѕРґ РЎ	С,ек 256 Р	±P°PNºC,
				.DATA			
				; PŔP°C‡P°P	»Ps CΓ̈́PμPiPjPμP	SC,P° PTP°PS	PSC< C
	0000	0005		ć	a dw 5		
	0002	8000		1	o dw 8		
	0004	0002		=	i dw 2		
	0006	0003]	k dw 3		
	8000	0000		=	i1 dw 0		
	000A	0000		=	i2 dw 0		
	000C	0000		1	res dw 0		
				.CODE			;
PŔP°(C						
				‡P°P»Ps CΓ́P	μΡiΡjΡμPSC,Ρ° Ρ	∈PsPrP°	
	0000	В8	R	mov ax,			; P-P°
				PiCЂCŕP·PєP	° PI DS P°PTCЪP	μCÍP° PSP°C‡	P°P»P°
	0003	8E D8		mov	7		ds,
ax				; СЃРµ			
				PiPjPµPSC,P	° Prp°PSPSC <c< td=""><td></td><td></td></c<>		
	0005	1 0000	R	mov ax, a			
	0000	111 0000 .		mov ax, a			

```
0008 3B 06 0002 R cmp ax, b ; CΓCЪP°PIPSPËPIP°PμPj
CTP°PIPSC
                      < P≫Pë a Pë b.
                     jle second ; PIC< PïPsP»PSCΨΡμC,
    000C 7E 20
P∈PsChPsC,P
                      εΡΈΡ№ ΡΪΡμCЂΡμC...PsPr, ΡμCЃΡ»ΡΕ ΡΪΡμCЂΡΙC<
PsP
                      "PμCTP°PSPr > PIC, PsCTPsPiPs PsPrp"PsPrp"PsPrp"
     000E
                     first: ;if(a>b)
     000E 8B 0E 0004 R mov cx, i ;i
                          shl cx, 1 ;2i
     0012 D1 E1
     0014 03 0E 0004 R add cx, i ;3i
     0018 D1 E1
                          shl cx, 1 ;6i
     001A 83 E9 04
                          sub cx, 4; 6i-4
     001D F7 D9
                          neg cx
     001F A1 0004 R mov ax, i ;i
     0022 2D 0005
                          sub ax, 5; i-5
     0025 D1 E0
                          shl ax, 1 ;2i-10
     0027 D1 E0
                          shl ax, 1 ;4i-20
     0029 F7 D8
                          neg ax ;20-4i
     002B EB 19 90
                          jmp result
                 second:
     002E
                              ;if(a<=b)
     002E 8B 0E 0004 R
                         mov cx, i ;i
                          add cx, i ;2i
     0032 03 0E 0004 R
     0036 03 0E 0004 R add cx, i ;3i
     003A 83 C1 06
                         add cx, 6 ;3i+6
                         mov ax, cx;3i+6
     003D 8B C1
     003F F7 D8
                                    ;-3i-6
```

neg ax

```
□Microsoft (R) Macro Assembler Version 5.10
11/5/22 00:11:26
                                                          Page
1-2
     0041 05 0009 add ax, 9 ;-3i+3
     0044 D1 E0
                         shl ax, 1 ;-6i+6
                 result:
     0046
     0046 89 0E 0008 R
                           mov [i1], cx
     004A A3 000A R
                     mov [i2], ax
     004D 8B 1E 0006 R
                                mov bx, k
     0051 83 FB 00
                                cmp bx, 0
     0054
                      getabs i1:
     0054 F7 D9
                                neg cx
     0056 78 FC
                                js getabs il
     0058 7D 09
                           jge final2 ;PePsCЪPsC,PePëP№
PïPuCЂPuC...PsP
                      r, PμCΓ́P»Pë PïPμCЂPIC<P№ PsPïPμCЂP°PSPr >=
PIC,
                       PsCTPsPiPs PsPiPuCTP°PSPrP°
     005A
                      final1:
     005A
                           getabs i2:
     005A F7 D8
                                     neg ax
     005C 78 FC
                                     js getabs i2
     005E 03 C8
                                add cx, ax
     0060 EB 09 90
                                 jmp answer
     0063
                      final2:
     0063 83 F9 06
                                cmp cx, 6
     0066 7D 03
                                 jge answer
     0068
          в9 0006
                                mov cx, 6
     006B
                      answer:
     006B 89 0E 000C R
                                mov [res], cx
     006F B4 4C
                                mov ah, 4ch
     0071 CD 21
                                int 21h
                                                               ;
```

 $P \cdot P^{\circ}$

PIC<C...Ps

Рґ РІ Р**″**РћРЎ

END

 \square Microsoft (R) Macro Assembler Version 5.10 11/5/22 00:11:26

Symbols-1

Segments and Groups:

		1	J á	a r	n e	Э			Lengt	h	Alig	_J n	Combi	ne Class
DGROUP .				•						GROUE	?			
_DATA										000E	WORD	PUBLI	C	'DATA'
STACK										0100	PARA	STACE	K'STAC	K'
_TEXT .	•									0073	WORD	PUBLI	C	'CODE'

Symbols:

	N a m e	Type Value	Attr
			0000 _DATA 006B _TEXT
FINAL1	 	. L NEAR	005A _TEXT
FINAL2	 	. L NEAR	0063 _TEXT
FIRST	 	. L NEAR	000E _TEXT
GETABS_I1	 	. L NEAR	0054 _TEXT
GETABS_I2	 	. L NEAR	005A _TEXT
I	 	. L WORD	0004 _DATA
I1	 	. L WORD	0008 _DATA
I2	 	. L WORD	000A _DATA

K	 L WORD 0006 _DATA
RES	 L WORD 000C _DATA
RESULT	 L NEAR 0046 _TEXT
SECOND	 L NEAR 002E _TEXT
@CODE	 TEXT _TEXT
@CODESIZE	 TEXT 0
@CPU	 TEXT 0101h
@DATASIZE	 TEXT 0
@FILENAME	 TEXT _3lb
@VERSION	 TEXT 510

Microsoft (R) Macro Assembler Version 5.10 00:11:26

11/5/22

Symbols-2

73 Source Lines73 Total Lines32 Symbols

48004 + 457206 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors