

10/566599
IAP9 Rec'd PCT/PTO 31 JAN 2005

SEQUENCE LISTING

<110> Syngenta Ltd

<120> Improvements in or Relating to Organic Compounds

<130> 70298

<150> GB 0318109.6

<151> 2004-08-01

<160> 43

<170> PatentIn version 3.1

<210> 1

<211> 142

<212> PRT

<213> Lepista nuda

<400> 1

Met Ser Gln Glu Ile Val Gln Ser Gly Gln Thr Tyr Ile Ile Thr Asn
1 5 10 15

Ala Lys Ser Gly Thr Val Val Asp Leu Ser Gly Glu Asp Asn Lys Ser
20 25 30

Ile Ile Gly Phe Pro Lys His Gly Gly Thr Asn Gln Arg Trp Thr Leu
35 40 45

Asn Trp Thr Gly Lys Ser Trp Thr Phe Arg Ser Val Ser Ser Glu Met
50 55 60

Tyr Leu Gly Leu Asn Gly Ser Pro Ser Asp Gly Thr Lys Leu Val Ala
65 70 75 80

Val Thr Thr Pro Val Glu Trp His Ile Trp His Asp Glu Val Asp Pro
85 90 95

Ser Thr Tyr Arg Ile Phe Val Pro Phe Thr Thr Phe Asn Met Asp Leu
100 105 110

Tyr Ala Gln Gly Ser Ala Ala Pro Gly Thr Pro Ile Thr Thr Trp Tyr
115 120 125

Thr Trp Lys Gly Ile His Gln Thr Trp Arg Phe Glu Leu Ala
130 135 140

<210> 2

<211> 429

<212> DNA

<213> Lepista nuda

<400> 2
atgtcgcaag aaattgttca atcaggacaa acctacatca tcactaacgc ccaaatccggc 60
acagttgttg acctttcggg cgaagacaac aaatctatta ttggatttcc caagcatgga 120
ggaacaaatc agaggtggac cctcaactgg acaggaaaga gttggacttt ccgctccgtt 180
tcttcgtaaa tgtatcttgg cctgaatggc tcgcccgtctg atggaacaaa actggtagcc 240
gtgaccaccc ctgttgagtgc gcacatctgg cacgacgaag ttgacccttc aacttatcgt 300
atctttgtac ctttcaccac attcaacatg gacctctacg cccaaaggtag tgccgccccct 360
ggtaacgccta tcacaacttg gtatacatgg aagggcattcc accaaacgtg gaggtttgaa 420
ctagcttag 429

<210> 3

<211> 17

<212> PRT

<213> Lepista nuda

<220>

<221> MISC_FEATURE

<222> (2) .. (2)

<223> Xaa is glutamine or lysine

<220>

<221> MISC_FEATURE

<222> (4) .. (4)

<223> Xaa is leucine or isoleucine

<220>

<221> MISC_FEATURE

<222> (6) .. (6)

<223> Xaa is glutamine or lysine

<220>

<221> MISC_FEATURE

<222> (9) .. (9)

<223> Xaa is glutamine or lysine

<220>

<221> MISC_FEATURE

<222> (12) .. (12)

<223> Xaa is leucine or isoleucine

<220>

<221> MISC_FEATURE

<222> (13) .. (13)

<223> Xaa is leucine or isoleucine

<400> 3

Glu Xaa Glu Xaa Val Xaa Ser Gly Xaa Thr Tyr Xaa Xaa Thr Asn Ala
1 5 10 15

Lys

<210> 4
<211> 20
<212> PRT
<213> Lepista nuda

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa is leucine or isoleucine

<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Xaa is leucine or isoleucine

<400> 4
Xaa Val Ala Val Thr Thr Pro Val Glu Trp His Xaa Trp His Asp Glu
1 5 10 15

Val Asp His Thr
20

<210> 5
<211> 18
<212> PRT
<213> Lepista nuda

<220>
<221> MISC_FEATURE

<222> (7) .. (7)

<223> Xaa is leucine or isoleucine

<220>

<221> MISC_FEATURE

<222> (9) .. (9)

<223> Xaa is leucine or isoleucine

<400> 5

Trp Ser Ser Glu Met Tyr Xaa Gly Xaa Asn Gly Ser Pro Ser Asp Gly
1 5 10 15

Thr Lys

<210> 6

<211> 16

<212> PRT

<213> Lepista nuda

<220>

<221> MISC_FEATURE

<222> (10) .. (10)

<223> Xaa is leucine or isoleucine

<400> 6

Ala Val Thr Thr Pro Val Glu Trp His Xaa Trp His Asp Glu Val Asp
1 5 10 15

<210> 7

<211> 8

<212> PRT

<213> Lepista nuda

<220>

<221> MISC_FEATURE

<222> (4)..(4)

<223> Xaa is leucine or isoleucine

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> Xaa is leucine or isoleucine

<220>

<221> MISC_FEATURE

<222> (8)..(8)

<223> Xaa is phenylalanine or oxidised methionine

<400> 7

Ser Gly Asn Xaa Gly Xaa Tyr Xaa
1 5

<210> 8

<211> 8

<212> PRT

<213> Lepista nuda

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> Xaa is phenylalanine or oxidised methionine

<220>

<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is leucine or isoleucine

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is leucine or isoleucine

<400> 8

Xaa Tyr Xaa Gly Xaa Asn Gly Ser
1 5

<210> 9
<211> 5
<212> PRT
<213> Lepista nuda

<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa is leucine or isoleucine

<400> 9

Thr Val Asp Xaa Ser
1 5

<210> 10
<211> 17
<212> PRT
<213> Lepista nuda

<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa is glutamine or lysine

<400> 10

Xaa Ser Ala Ala Pro Gly Ser Ser His Thr Thr Gly Glu Tyr Thr Trp
1 5 10 15

Lys

<210> 11
<211> 7
<212> PRT
<213> Lepista nuda

<400> 11

Asn Ser Val Tyr Thr Trp Lys
1 5

<210> 12
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<220>
<221> modified_base
<222> (3)..(3)
<223> I

<220>
<221> modified_base
<222> (9) .. (9)
<223> I

<220>
<221> modified_base
<222> (15) .. (15)
<223> I

<220>
<221> modified_base
<222> (18) .. (18)
<223> I

<400> 12
gggmaracgt ayhtghtgac

20

<210> 13
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<220>
<221> modified_base
<222> (8) .. (8)
<223> I

<220>

<221> modified_base

<222> (11)..(11)

<223> I

<220>

<221> modified_base

<222> (17)..(17)

<223> I

<400> 13

argarhtggt gmarwsggg

19

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<220>

<221> modified_base

<222> (6)..(6)

<223> I

<220>

<221> modified_base

<222> (9)..(9)

<223> I

<220>

<221> modified_base

<222> (12) .. (12)

<223> I

<220>

<221> modified_base

<222> (18) .. (18)

<223> I

<400> 14

gcrttggta dgadrttaggt

20

<210> 15

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<220>

<221> modified_base

<222> (3) .. (3)

<223> I

<220>

<221> modified_base

<222> (6) .. (6)

<223> I

<220>

<221> modified_base

<222> (12) .. (12)

<223> I

<220>

<221> modified_base

<222> (15)..(15)

<223> I

<400> 15
tkgccgswyt kgacgadytc

20

<210> 16

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<220>

<221> modified_base

<222> (3)..(3)

<223> I

<220>

<221> modified_base

<222> (15)..(15)

<223> I

<400> 16
gtggartggc ayhtgtggca

20

<210> 17

<211> 20

<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<220>
<221> modified_base
<222> (3)..(3)
<223> I

<220>
<221> modified_base
<222> (6)..(6)
<223> I

<220>
<221> modified_base
<222> (9)..(9)
<223> I

<220>
<221> modified_base
<222> (12)..(12)
<223> I

<400> 17
acgacgccgg tggartggca

20

<210> 18
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<220>

<221> modified_base

<222> (6)..(6)

<223> I

<400> 18

tgrtcgacyt crtgcrtgccca

20

<210> 19

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<220>

<221> modified_base

<222> (9)..(9)

<223> I

<400> 19

tcrtgccaga drtgccaytc

20

<210> 20

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 20
aattaaccct cactaaaggg 20

<210> 21

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 21
actaaaggga acaaaagctg g 21

<210> 22

<211> 16

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 22
gtaaaacgac ggccag 16

<210> 23

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 23
caggasaaca gctatgac 18

<210> 24
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<400> 24
tcatcaactaa cgccaaatcc g 21

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<400> 25
ttgttgacct ttcgggcgaa g 21

<210> 26
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer
<400> 26
ttcagaagaa acggagcgg 19

<210> 27
<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 27

tccaaactctt ccctgtccag

20

<210> 28

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 28

tctcttccag tttctaccat g

21

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Primer

<400> 29

acaaattaca tccgaaacct g

21

<210> 30

<211> 418

<212> DNA

<213> Lepista nuda

<400> 30
tactaaaggg aacaaaagct ggagctccac cgcgggtggcg gccgctctag aactagtgga 60
tccccccgggc tgcaggaatt cggtcacgagg aactttctgc ctgcgttttt tgctcctact 120
gtttttctct tccagttct accatgtcgc aagaaattgt tcaatcagga caaacctaca 180
tcatcaactaa cgccaaatcc ggcacagttg ttgaccttgc gggcgaagac aacaaatcta 240
ttattggatt tcccaagcat ggaggaacaa atcagaggtg gaccctcaac tggacaggga 300
agagttggac ttcccgctcc gtttcttctg aaatgtatct tggcctgaat ggctcgccgt 360
ctgatggaac aaaactggta gccgtgacca cccctgttga gtggcgcac tggcacga 418

<210> 31

<211> 91

<212> PRT

<213> Lepista nuda

<400> 31

Met Ser Gln Glu Ile Val Gln Ser Gly Gln Thr Tyr Ile Ile Thr Asn
1 5 10 15

Ala Lys Ser Gly Thr Val Val Asp Leu Ser Gly Glu Asp Asn Lys Ser
20 25 30

Ile Ile Gly Phe Pro Lys His Gly Gly Thr Asn Gln Arg Trp Thr Leu
35 40 45

Asn Trp Thr Gly Lys Ser Trp Thr Phe Arg Ser Val Ser Ser Glu Met
50 55 60

Tyr Leu Gly Leu Asn Gly Ser Pro Ser Asp Gly Thr Lys Leu Val Ala
65 70 75 80

Val Thr Thr Pro Val Glu Trp Arg Ile Trp His
85 90

<210> 32

<211> 211

<212> DNA

<213> Lepista nuda

<400> 32
gcctcgttt tttgctccta ctgttttct cttccagttt ctaccatgtc gcaagaaatt 60
gttcaatcg gacaaaccta catcatcaact aacgc当地 aat ccggcacagt tgttgacctt 120
tcgggcgaag acaacaaatc tattattgga tttcccaagc atggaggaac aaatcagagg 180
tggaccctca actggacagg gaagagttgg a 211

<210> 33

<211> 55

<212> PRT

<213> Lepista nuda

<400> 33

Met Ser Gln Glu Ile Val Gln Ser Gly Gln Thr Tyr Ile Ile Thr Asn
1 5 10 15

Ala Lys Ser Gly Thr Val Val Asp Leu Ser Gly Glu Asp Asn Lys Ser
20 25 30

Ile Ile Gly Phe Pro Lys His Gly Gly Thr Asn Gln Arg Trp Thr Leu
35 40 45

Asn Trp Thr Gly Lys Ser Trp
50 55

<210> 34

<211> 493

<212> DNA

<213> Lepista nuda

<400> 34
ttgttacact ttccggcgaa gacaacaaat ctattattgg atttcccaag catggagggaa 60
caaatacgag gtggaccctc aactggacag ggaagagttg gactttccgc tccgtttctt 120
ctgaaatgta tcttggcctg aatggctcgc cgtctgatgg aacaaaactg gtagccgtga 180
ccaccctgt tgagtggcac atctggcacg acgaagttga cccttcaact tatcgtatct 240
ttgttacactt caccacattc aacatggacc tctacgccc rggtagtgcc gccccctggta 300

cgcctatcac aacttggtat acatggaagg gyatccacca aacgtggagg tttgaactag 360
cttaggktaa ggttcggat gtaatttgtg tgtgtaaatc ttcttgacc atgttgtgct 420
tttattgtac tccgcttgtt atcattatac ccacctatgt tgcaacatct ttttggatcc 480
aaaaaaaaaaa aaa 493

<210> 35

<211> 120

<212> PRT

<213> Lepista nuda

<400> 35

Val Asp Leu Ser Gly Glu Asp Asn Lys Ser Ile Ile Gly Phe Pro Lys
1 5 10 15

His Gly Gly Thr Asn Gln Arg Trp Thr Leu Asn Trp Thr Gly Lys Ser
20 30

Trp Thr Phe Arg Ser Val Ser Ser Glu Met Tyr Leu Gly Leu Asn Gly
35 45

Ser Pro Ser Asp Gly Thr Lys Leu Val Ala Val Thr Thr Pro Val Glu
50 60

Trp His Ile Trp His Asp Glu Val Asp Pro Ser Thr Tyr Arg Ile Phe
65 80

Val Pro Phe Thr Thr Phe Asn Met Asp Leu Tyr Ala Gln Gly Ser Ala
85 95

Ala Pro Gly Thr Pro Ile Thr Thr Trp Tyr Thr Trp Lys Gly Ile His
100 110

Gln Thr Trp Arg Phe Glu Leu Ala
115 120

<210> 36

<211> 471

<212> DNA

<213> Lepista nuda

<400> 36

tctcttccag	tttctaccat	gtcgcaagaa	attgttcaat	caggacaaac	ctacatcatc	60
actaacgcca	aatccggcac	agttgttgac	cttcggcg	aagacaacaa	atctattatt	120
ggatttcca	agcatggagg	aacaaatcg	aggtggaccc	tcaactggac	agggaaagagt	180
tggactttcc	gctccgttcc	ttctgaaatg	tatcttgcc	tgaatggctc	gccgtctgat	240
ggaacaaaac	tggtagccgt	gaccacccct	gttgagtggc	acatctggca	cgacgaagtt	300
gacccttcaa	cttacatgtat	ctttgtacct	ttcaccacat	tcaacatgga	cctctacgccc	360
caaggttagtg	ccgccccctgg	tacgcctatc	acaacttggt	atacatggaa	gggcatccac	420
caaacgtgga	ggtttgaact	agcttagggt	caggtttcgg	atgtaatttg	t	471

<210> 37

<211> 706

<212> DNA

<213> Lepista nuda

<400> 37

tctcttccag	tttctaccat	gtcgcaagaa	attgttcaat	caggacaaac	ctacatcatc	60
actaacgcca	aatccggcac	agttgttgac	cttcggcg	aagacaacaa	atctagtaag	120
tcgttttag	tcccatgttt	tttttgtca	aaaaaaattt	actgacatat	tttgtctcca	180
gttattggat	ttcccaagca	tggaggaaca	aatcagaggg	taggtctaga	aatgcacctc	240
gttaatattt	gttttattt	acattcatga	acagtggacc	ctcaactgga	caggaaagag	300
ttggactttc	cgctccgttt	cttctgaaat	gtatcttggc	ctgaatggct	cgccgtctga	360
tggaaacaaaa	ctggtagccg	tgaccacccc	tggtgagtgg	cacatctggc	acgacgaagt	420
tgacccttca	acttatcggt	gagtcccta	aatattactt	gcttgtggtt	catactaata	480
cgtcggtcga	agtatctttt	tacctttcac	cacattcaac	atggacctct	acgcccaggg	540
tagtccgccc	cctgg tacgc	ctatcacaac	ttggatataca	tggaaaggta	tccaccaaac	600
gtggaggttt	gaacttaggta	gggcttgcga	tctcaccgg	atcctccatg	aactaatgt	660
atcacgtcgt	gttctagctt	agttcaggt	ttcggatgta	atttgt		706

<210> 38

<211> 418

<212> DNA

<213> Lepista nuda

<400> 38

tcgtgccaga tgccgcactc aacaggggtg gtcacggcta ccagtttgt tccatcagac 60
ggcgagccat tcaggccaag atacatttca gaagaaacgg agcgaaaagt ccaactcttc 120
cctgtccagt tgagggtcca cctctgattt gttcctccat gcttggaaa tccataata 180
gatttgttgc cttcgcccga aaggtaaca actgtgccgg atttggcggt agtgatgatg 240
taggttgtc ctgattgaac aatttcttgc gacatggtag aaacttggaa agaaaaacag 300
taggagcaaa aaaacgaggc agaaagttcc tcgtgccgaa ttcctgcagc ccgggggatc 360
cactagttct agagcggccg ccaccgcggt ggagctccag ctttggttcc ctttagta 418

<210> 39

<211> 211

<212> DNA

<213> Lepista nuda (

<400> 39

tccaaacttcc ttgagggtcc acctctgatt tttcctcca tgcttggaa 60
atccaataat agatttgttgc ttccgcccga aaggtaac aactgtgccgg gatttggcggt 120
tagtgatgat gttagttgttgc ttccgatgttgc caatttcttgc cgacatggta gaaacttggaa 180
gagaaaaaca gtaggagcaaa aaaacgaggc c 211

<210> 40

<211> 493

<212> DNA

<213> Lepista nuda

<400> 40

tttttttttt ttgggatcca aaaagatgtt gcaacatagg tgggtataat gataacaagc 60
ggagtacaat aaaagcacaa catggtccaa gaagatttac acacacaaat tacatccgaa 120
acctgamcct aagcttagttc aaacctccac gtttgggtgaa trcccttcca tgtataccaa 180

gttgtatag gcgtaccagg ggcggcacta ccytggcggt agaggtccat gttgaatgtg 240
gtgaaaggta caaagatacg ataagttgaa gggtaactt cgtcgtgccat gatgtgccac 300
tcaacagggg tggtcacggc taccagttt gttccatcaag acggcgagcc attcaggcca 360
agatacattt cagaagaaac ggagcgaaa gtccaaactct tccctgtcca gttgagggtc 420
cacctctgtat ttgttcctcc atgcttggaa aatccaataa tagatttggtt gtcttcgccc 480
gaaaggtaaa caa 493

<210> 41

<211> 471

<212> DNA

<213> Lepista nuda

<400> 41
acaattaca tccgaaacct gaccctaagc tagttcaaacc ctccacgttt ggtggatgcc 60
cttccatgtat taccaagttt tgataggcgt accagggcg gcactacctt gggcgttagag 120
gtccatgttg aatgtggta aaggtacaaa gatacgataa gttgaagggt caacttcgtc 180
gtgccagatg tgccactcaa caggggtggt cacggctacc agtttggttc catcagacgg 240
cgagccattt aggccaagat acatttcaga agaaaacggag cgaaaaagtcc aactcttccc 300
tgtccagttt agggtccacc tctgatttgc tcctccatgc ttggaaatc caataataga 360
tttgggtct tcgccccaaa ggtcaacaac tgtgcccggat ttggcgtagt tgatgtgta 420
ggtttgcctt gattgaacaa ttcttgcga catggtagaa actggaagag a 471

<210> 42

<211> 706

<212> DNA

<213> Lepista nuda

<400> 42
acaattaca tccgaaacct gaacctaagc tagaacacga cgtgatcaca ttagttcatg 60
gaggatccgg gtgagatcgc aagccctacc tagttcaaacc ctccacgttt ggtggatacc 120
cttccatgtat taccaagttt tgataggcgt accagggcg gcactaccct gggcgttagag 180
gtccatgttg aatgtggta aaggtacaaa gatacttcga acgacgtatt agtatgaacc 240

acaagcaagt aatattttagg ggactcacccg ataagttcaa gggtcaactt cgtcgtgcca 300
gatgtgccac tcaacagggg tggtcacggc taccagttt gttccatcag acggcgagcc 360
attcaggcca agatacattt cagaagaaac ggagcggaaa gtccaaactct tccctgtcca 420
gttgagggtc cactgttcat gaatgtcaat aaaaaccaat attaacgagg tgcatttcta 480
gacctaccct ctgatttgtt cctccatgct tggaaatcc aataactgga gacaaaatat 540
gtcagtcaat ttttttgac aaaaaaaaaac atgggactaa aaacgactta ctagatttgt 600
tgtcttcgcc cgaaaggtca acaactgtgc cgatttggc gtttagtgatg atgttagttt 660
gtcctgattg aacaatttct tgcgacatgg tagaaactgg aagaga 706

<210> 43

<211> 17

<212> PRT

<213> Lepista nuda

<220>

<221> MOD_RES

<222> (1) .. (1)

<223> ACETYLATION

<220>

<221> MISC_FEATURE

<222> (2) .. (2)

<223> Xaa is glutamine or lysine

<220>

<221> MISC_FEATURE

<222> (4) .. (4)

<223> Xaa is leucine or isoleucine

<220>

<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa is glutamine or lysine

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Xaa is glutamine or lysine

<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> Xaa is leucine or isoleucine

<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> Xaa is leucine or isoleucine

<400> 43
Ser Xaa Glu Xaa Val Xaa Ser Gly Xaa Thr Tyr Xaa Xaa Thr Asn Ala
1 5 10 15

Lys