Análise de Dados Longitudinais Modelos Lineares Mistos

Enrico A. Colosimo/UFMG

http://www.est.ufmg.br/~enricoc/

- Modelo de Efeitos Fixos: apresenta somente fatores fixos, exceto o termo do erro experimental (erro de medida).
- Modelo Misto: apresenta tanto fatores fixos quanto aleatórios, além do erro experimental.

Ideia:

- Os parâmetros da regressão variam de indivíduo para indivíduo explicando as fontes de heterogeneidade da população.
- Cada indivíduo tem a sua própria trajetória média e um subconjunto dos parâmetros de regressão são tomados como aleatórios.
- Efeitos fixos são compatilhados por todos os indivíduos e os aleatórios são especificos de cada um.

Exemplo: Intercepto aleatório

$$Y_{ij} = \beta_{0i} + \beta_1 t_{ij} + \varepsilon_{ij} = \beta_0 + b_{0i} + \beta_1 t_{ij} + \varepsilon_{ij}$$

Intercepto Aleatório

Exemplo: Intercepto e Inclinação aleatórios

$$Y_{ij} = \beta_{0i} + \beta_{1i}t_{ij} + \varepsilon_{ij} = \beta_0 + b_{0i} + \beta_1t_{ij} + b_{1i}t_{ij} + \varepsilon_{ij}$$

Intecepto e Inclinação Aleatórios

tempo_ij 5/

Características:

- **1** Características populacionais β (fixos);
- ② Características individuais β_i ou b_i (aleatórios).

Efeito:

- **1** Média: $E(Y_i) = X_i \beta$
- Permite obter estimativa de trajetórias individuais no tempo.

Modelo Linear Misto - Simetria Composta

Exemplo: $Y_{ij} = \beta_{0i} + \beta t_{ij} + \varepsilon_{ij}$ (Intercepto aleatório).

- $\beta_{0i} \sim N(\beta_0, \sigma_{\beta_0}^2)$.
- $\varepsilon_{ij} \sim N(0, \sigma^2)$.
- β_{0i} e ε_{ij} são independentes.

- **1** $Var(Y_{ij}) = \sigma^2 + \sigma_{\beta_0}^2$.
- $2 Cov(Y_{ij}, Y_{ij'}) = \sigma_{\beta_0}^2$

Modelo Linear Misto - Inclinação aleatória

Exemplo: $Y_{ij} = \beta_{0i} + \beta_{1i}t_{ij} + \varepsilon_{ij}$ (Intercepto e inclinação aleatórios).

- $\beta_{0i} \sim N(\beta_0, \sigma_{\beta_0}^2)$, $\beta_{1i} \sim N(\beta_1, \sigma_{\beta_1}^2)$, $Cov(\beta_{0i}, \beta_{1i}) = \sigma_{\beta_{01}}$.
- $\varepsilon_{ij} \sim N(0, \sigma^2)$.
- $\beta' = (\beta_{0i}, \beta_{1i})$ e ε_{ii} são independentes.

- $\text{2ov}(Y_{ij}, Y_{ij'}) = \sigma_{\beta_0}^2 + t_{ij}t_{ij'}\sigma_{\beta_1}^2 + (t_{ij} + t_{jj'})\sigma_{\beta_{01}}.$

Vantagens

Predizer trajetórias individuais

$$Y_{ij} = X_{ij}\beta + b_i + \varepsilon_{ij}$$

Resposta Média populacional:

$$E(Y_{ij}) = X_{ij}\beta$$

Resposta média para o i-ésimo indivíduo (trajetória):

$$E(Y_{ij}/b_i) = X_{ij}\beta + b_i$$
.

Flexibilidade em acomodar estruturas não balanceadas

Forma Geral do Modelo Misto

$$Y_i = X_i \beta + Z_i b_i + \varepsilon_i$$

em que:

$$(\beta)_{p\times 1}$$
: efeitos fixos; $(b_i)_{q\times 1}$: efeitos aletaórios.

e,

$$b_i \sim N_q(0,\Sigma)$$
 e $\varepsilon_{ij} \sim N(0,\sigma^2)$

Sendo b_i e ε_{ij} independentes.

$$q \le p \Rightarrow Z_i$$
 é um subconjunto de X_i

Incluimos efeitos aleatórios somente para as covariáveis que variam com o tempo.

Característica do Modelo

Média Populacional ou Marginal

$$E(Y_i) = X_i \beta.$$

Média condicional ou específica por indivíduo

$$E(Y_i|b_i) = X_i\beta + Z_ib_i.$$

Covariância Marginal

$$Var(Y_i) = Z_i Var(b_i) Z_i' + \sigma_2 I_{n_i}.$$

9 Podemos assumir que $\varepsilon_i \sim N(0, R_i)$ mas o usual é tomar $R_i = \sigma^2 I_{n_i}$ e interpreta-lo como covariância condicional. Ou seja,

$$Var(Y_i/b_i) = R_i = \sigma^2 I_{n_i}$$
.

Inferência para o Modelo Misto

$$Y_i = X_i \beta + Z_i b_i + \varepsilon_i,$$

em que,

$$b_i \sim N_q(0, \Sigma(\alpha)) e \varepsilon_{ij} \sim N(0, \sigma^2),$$

 b_i e ε_{ij} independentes.

Desta forma tem-se:

p efeitos fixos e $\frac{q(q+1)}{2} + 1$ efeitos aletaórios.

Inferência Estatística para $\theta = (\beta, \alpha, \sigma^2)$;

- Máxima Verossimilhança.
- 2 Máxima Verossimilhança Restrita.

Função de Verossimilhança

$$L(\theta/y) = \prod_{i=1}^{N} p(y_i/\theta)$$

$$= \prod_{i=1}^{N} \int p(y_i, b_i/\theta) db_i$$

$$= \prod_{i=1}^{N} \int p(y_i/b_i, \theta) p(b_i/\theta) db_i$$

em que,

$$p(y_i/b_i, heta) \sim N_n(X_ieta + Z_ib_i, \sigma^2I)$$
 $p(b_i/ heta) \sim N_o(0, \Sigma)$

е

Observações

- EMV É obtido usando verossimilhança perfilada e iterações via algoritmo EM ou/e Newton-Raphson. Detalhes numéricos podem ser encontrados em Pinheiro e Bates (2000), Cap. 2.
- O EMVR também pode ser obtido através de

$$I*(\theta) = I(\theta) + termo.$$

- A função Ime do R fornece EMVR e EMV usando um enfoque híbrido (EM + Newton-Raphson). Esta função é de autoria de Pinheiro e Bates.
- EMV e EMVR têm assintoticamente as propriedades usuais de um estimador de máxima verossimilhança (consistência e normalidade).

Avaliação dos Componentes de Variância

- **1** Número de componentes é igual a $\frac{q(q+1)}{2} + 1$ em que q é o número de efeitos aleatórios no modelo.
- 2 Muitas situações envolvem q=2 (intercepto e inclinação aleatórios) e portanto:

$$\frac{2(2+1)}{2}+1=4,$$

que permite termos heterogeneidade de variâncias e covariâncias pois ficam em função do tempo.

A escolha da "melhor" estrutura de variância-covariância pode ser realizada utilizando o teste da RMVR. Estes testes, usualmente, são na fronteira do espaço de parâmetros. Neste caso, a estatística da RMVR não tem, sob H₀ uma distribuição qui-quadrado.

Dist. da Estatística da RMVR sob H_0

• A distribuição neste caso é uma mistura (50:50) de dist. qui-quadrado. Ou seja, por exexmplo, para $H_0: \sigma_{\beta_1} = 0$

$$RMVR \sim 0.5\chi_q + 0.5\chi_{q+1}$$

Exemplo Modelo completo: q=2 (intercepto e inclinação aleatórios) Modelo restrito: q=1 (somente intercepto aleatório)

Teste usual (errado): nível de significância: 5,99 Teste correto:

$$RMVR \sim 0,5\chi_1+0,5\chi_2$$

nível é 5,14 (Tabela, Apend. C, Fitzmaurice et al, 2004).

Proposta ad hoc: para testar a 0,05, use o nível de 0,10.

Transmissão Vertical - HIV

Estudo Longitudinal Desbalanceado: Avaliação longitudinal do crescimento de lactentes nascidos de mães infectadas com o HIV-1.

- Comparar longitudinalmente altura de lactentes infectados e não-infectados nascidos de mães infectadas pelo HIV.
- Uma coorte aberta acompanhada no ambulatório de AIDS pediátrica do Hospital das Clínicas da Universidade Federal de Minas Gerais.
- Período: 1995 a 2003.
- Inclusão: primeiros três meses de vida.
- Grupos: (1) não-infectados: 97; (2) infectados: 42.
- Controlado por sexo.

Perfis médio por grupo

Gráfico para Meninos e Meninas

Modelo para a Média Populacional

Modelo Polinomial:

$$\begin{split} E(Y_{ij}) &= \beta_0 + \beta_1 t_{ij} + \beta_2 t_{ij}^2 + \beta_3 sexo_i + \beta_4 status_i \\ &+ \beta_5 t_{ij} * sexo_i + \beta_6 t_{ij} * grupo_i + \beta_7 t_{ij}^2 * sexo_i + \beta_8 t_{ij}^2 * grupo_i \end{split}$$

Crianças - Transmissão Vertical - Modelo Marginal (gls)

- Modelo quadrático para a média com termos de interação.
- Algumas formas para a $Var(Y_i)$: exponencial, simetria composta.
- Resultados para os quatro termos da interação.

Coeficiente	Indep. (Incorreto)		Exponencial		Simetria Composta	
	Est.	EP	Est.	EP	Est.	EP
Idade:grupo	-0,164	0,041	-0,160	0.057	-0,142	0,027
Idade2:grupo	0,020	0,008	0,017	0,008	0,018	0,005
Idade:sexo	0,046	0,037	0,165	0,052	0,100	0,025
Idade2:sexo	-0,014	0,007	-0,020	0,008	-0,015	0,005

Crianças - Transmissão Vertical - GEE

- Modelo quadrático para a média com termos de interação.
- Algumas formas para a $Var(Y_i)$: exponencial, simetria composta.
- Modelo para média com 9 termos (interceptos diferentes)
- Resultados para os quatro termos da interação.

Coeficiente	Independente		Simetria Composta		
	Est.	EP	Est.	EP	
Idade:grupo	-0,164	0,059	-0,142	0,057	
Idade2:grupo	0,020	0,011	0,018	0,008	
Idade:sexo	0,046	0,050	0,100	0,047	
Idade2:sexo	-0,014	0,009	-0,015	0,007	

Obs. As estimativas são as mesmas do gls-normal e o erro-padrão fica inflacionado.

Crianças - Transmissão Vertical - Modelos Misto

- Modelo quadrático para a média com termos de interação.
- Termos aleatórios: somente intercepto, intercepto + linear, intercepto + liner + quadrático.
- Resultados para os quatro termos da interação.

Interc.		Inter + linear		três termos	
Est.	EP	Est.	EP	Est.	EP
-0,142	0,027	-0,161	0.049	-0,148	0,050
0,018	0,005	0,022	0,004	0,026	0,007
0,100	0,025	0,131	0,045	0,114	0,046
-0,015	0,005	-0,009	0,004	-0,013	0,007
	Est. -0,142 0,018 0,100	Est. EP -0,142 0,027 0,018 0,005 0,100 0,025	Est. EP Est. -0,142 0,027 -0,161 0,018 0,005 0,022 0,100 0,025 0,131	Est. EP Est. EP -0,142 0,027 -0,161 0.049 0,018 0,005 0,022 0,004 0,100 0,025 0,131 0,045	Est. EP Est. EP Est. -0,142 0,027 -0,161 0.049 -0,148 0,018 0,005 0,022 0,004 0,026 0,100 0,025 0,131 0,045 0,114

Formulação em dois Estágios do Modelo Linear Misto

Estágio 1

Medidas Longitudinais no i-ésimo indivíduo são modeladas como:

$$Y_i = Z_i \beta_i + \varepsilon_i$$

em que Z_i covariáveis intra-indivíduo (tempo dependente) e $\varepsilon_i \sim N(0, \sigma^2 I_k)$.

Estágio 2

 β_i : aleatório (variando de indivíduo para indivíduo) tal que:

$$E(\beta_i) = A_i \beta$$

em que A_i contém somente covariáveis que variam entre indivíduos (não dependente do tempo) e

Formulação em dois Estágios do Modelo Linear Misto

$$Var(\beta_i) = \Sigma.$$

Desta forma,

$$Y_i = Z_i(A_i\beta + b_i) + \varepsilon_i$$

= $X_i\beta + Z_ib_i + \varepsilon_i$

Ou seja, sob a restrição que

$$X_i = Z_i A_i$$

obtém-se o modelo de efeitos aleatórios.

Predição dos Efeitos Aleatórios

Objetivo: predizer perfis individuais ou identificar indivíduos acima ou abaixo do perfil médio.

Obs.: não dizemos estimar os efeitos pois os mesmos são aleatórios. Dizemos predizer os efeitos aleatórios.

Deseja-se:

$$\widehat{Y}_i = \widehat{E}(Y_i/b_i) = X_i\widehat{\beta} + Z_i\widehat{b}_i$$

e para tal necessita-se de \hat{b}_i , o chamado Estimador BLUP ("Best Linear Unbiased Predictor") de b_i .

Predição dos Efeitos Aleatórios

No modelo linear misto,

- Y_i e b_i tem uma distribuição conjunta normal multivariada.
- Usando conhecidas propriedades da normal multivariada, temos que

$$E(b_i/Y_i,\widehat{\beta}) = \Sigma Z_i' Var(Y_i)^{-1} (Y_i - X_i\widehat{\beta})$$

Usando os estimadores MVR dos componentes de variância,

$$\widehat{b}_i = \widehat{\Sigma} Z_i' \widehat{Var}(Y_i)^{-1} (Y_i - X_i \widehat{\beta})$$

o BLUP de b_i .

Predição dos Efeitos Aleatórios

Desta forma obtemos:

$$\widehat{Y}_{i} = X_{i}\widehat{\beta} + Z_{i}\widehat{b}_{i}
= X_{i}\widehat{\beta} + Z_{i}\widehat{\Sigma}Z'_{i}\widehat{Var}(Y_{i})^{-1}(Y_{i} - X_{i}\widehat{\beta})
= X_{i}\widehat{\beta} + (Z_{i}\widehat{\Sigma}Z'_{i} + \widehat{R}_{i} - \widehat{R}_{i})\widehat{Var}(Y_{i})^{-1}(Y_{i} - X_{i}\widehat{\beta})
= (\widehat{R}_{i}\widehat{Var}(Y_{i})^{-1})X_{i}\widehat{\beta} + (I_{n_{i}} - \widehat{R}_{i}\widehat{Var}(Y_{i})^{-1})Y_{i}$$

em que $Var(\varepsilon_i) = R_i$.

Interpretação: média ponderada entre a média populacional $X_i\widehat{\beta}$ e o i-ésimo perfil observado. Isto signfica que o perfil predito é encolhido na direção da média populacional.

Interpretação dos Efeitos Aleatórios Preditos

Ou seja,

- R_i : variação intra-indivíduo:
- Var(Y_i): variação total.
- R_i grande, mais peso em $X_i \hat{\beta}$;
- Var(b_i) grande, mais peso em Y_i;
- n_i pequeno mais peso em $X_i \hat{\beta}$.

Análise de Resíduos e Diagnóstico

Pontos Principais:

- A análise de dados longitudinais não fica completa sem a examinação dos resíduos. Ou seja, a verificação das suposições impostas ao modelo e ao processo de inferência.
- As ferramentas usuais de análise de resíduos para a regressão convencional (com observações independentes) podem ser estendidas para a estrutura longitudinal.

Suposições dos Modelos

- Estrutura da média: forma analítica, linearidade dos β 's.
- Normalidade (resposta e efeitos aleatórios).
- Estrutura de Variância-Covariância: Homocedasticidade e correlação das medidas do mesmo indivíduo.

Resíduos

Defina o vetor de resíduos para cada indivíduo

$$r_i = Y_i - X_i \hat{\beta}, \quad i = 1, \dots, N,$$

que é um estimador para o vetor de erros

$$\epsilon_i = Y_i - X_i \beta, \quad i = 1, \dots, N.$$

 Tratando-se de dados longitudinais, sabemos que os componentes do vetor de resíduos r_i são correlacionados e não necessariamente têm variância constante.

Utilidade dos Resíduos ri

Gráficos:

- Gráfico de r_{ij} vs Ŷ_{ij}: é útil para identificar alguma tendência sistemática (por exemplo, presença de curvatura) e presença de pontos extremos ("outliers"). O modelo corretamente especificado não deve apresentar nenhuma tendência neste gráfico.
 - Limitação: este gráfico não tem necessariamente uma largura constante. Ou seja, cuidado ao interpretar este gráfico com relação a homocedasticidade.
- Gráfico de r_{ij} vs t_{ij} : é também útil para identificar alguma tendência sistemática da média no tempo.

Solução: Examinar resíduos transformados

- Há muitas possibilidades para transformar os resíduos.
- A tranformação deve ser realizada de forma que os resíduos "imitem" aqueles da regressão linear padrão.
- Os resíduos r_i^* definidos a seguir são não-correlacionados e têm variância unitária:

$$r_i^* = L_i^{-1} r_i,$$

em que L_i é a matriz triangular superior resultante da decomposição de Cholesky da matriz de covariâncias estimada $\widehat{Var}(Y_i)$, ou seja, $\widehat{Var}(Y_i) = L_i L_i'$.

Resíduos transformados

 Podemos aplicar a mesma transformação ao vetor de valores preditos Ŷ_i, ao vetor da variável resposta Y_i e à matriz de covariáveis X_i:

$$\hat{Y}_{i}^{*} = L_{i}^{-1} \hat{Y}_{i}
Y_{i}^{*} = L_{i}^{-1} Y_{i}
\mathbf{X}_{i}^{*} = \hat{L}_{i}^{-1} \mathbf{X}_{i}$$

e então todos os diagnósticos de resíduos usuais para a regressão linear padrão podem ser aplicados para r_i^* .

Gráficos de Adequação

- Gráfico de dispersão dos resíduos transformados r_{ij}^* versus os valores preditos transformados \hat{Y}_{ij}^* : não deve apresentar nenhum padrão sistemático para um modelo corretamente especificado. Ou seja, deve apresentar um padrão aleatório em torno de uma média zero. Útil para verificar homocedasticidade.
- Gráfico de dispersão dos resíduos transformados r_{ij}^* versus covariáveis transformadas X_{ij}^* (em especial, idade ou tempo): verificar padrões de mudança na resposta média ao longo do tempo;
- QQ-plot de r_i^* : verificar normalidade e identificar outliers.

Semi-variograma

• O semi-variograma, denotado por $\gamma(h_{ijk})$, é dado por:

$$\gamma(h_{ijk}) = \frac{1}{2}E(r_{ij}-r_{ik})^2,$$

em que $h_{ijk} = t_{ij} - t_{ik}$.

 O semi-variograma pode ser utilizado como uma ferramenta para verificar a adequação do modelo selecionado para a estrutura de covariância dos dados.

Semi-variograma

 Como os resíduos têm média zero, o semi-variograma pode ser reescrito como:

$$\gamma(h_{ijk}) = \frac{1}{2}E(r_{ij} - r_{ik})^{2}
= \frac{1}{2}E(r_{ij}^{2} + r_{ik}^{2} - 2r_{ij}r_{ik})
= \frac{1}{2}Var(r_{ij}) + \frac{1}{2}Var(r_{ik}) - Cov(r_{ij}, r_{ik}).$$

 Quando o semivariograma é aplicado aos resíduos transformados, r_{ii}*, a seguinte simplificação é obtida:

$$\gamma(h_{ijk}) = \frac{1}{2}(1) + \frac{1}{2}(1) - 0 = 1.$$

Semi-variograma

• Logo, se o modelo é corretamente especificado para a matriz de covariâncias, o gráfico do semi-variograma amostral $\hat{\gamma}(h_{ijk})$ dos resíduos transformados versus h_{ijk} deveria flutuar aleatoriamente em torno de uma linha horizontal centrada em 1.

O semi-variograma é muito sensível a outliers.

Estudo de caso: Influência da menarca nas mudanças do percentual de gordura corporal

- Estudo prospectivo do aumento de gordura corporal em uma coorte de 162 garotas.
- Sabe-se que o percentual de gordura nas garotas tem um aumento considerável no período em torno da menarca (primeira menstruação).
- Parece que este aumento continua significativo por aproximadamente quatro anos depois da menarca, mas este comportamento ainda n\u00e3o foi devidamente estudado.
- As meninas foram acompanhadas até quatro anos depois da menarca.

Estudo de Caso

 Há um total de 1049 medidas, com uma média de 6,4 medidas por menina.

- Variáveis de interesse:
 - Resposta: Percentual de gordura corporal;
 - Covariáveis: Tempo em relação à menarca (Idade da menina no instante observado menos Idade quando teve a menarca) - pode ser positivo ou negativo.

Figura: Gráfico de perfis com curva alisada

- O modelo inicialmente proposto considera que cada garota tem uma curva de crescimento spline linear com um knot no tempo da menarca.
- Ajustou-se o seguinte modelo linear de efeitos mistos:

$$E(Y_{ij}|b_i) = \beta_1 + \beta_2 t_{ij} + \beta_3 (t_{ij})_+ + b_{1i} + b_{2i} t_{ij} + b_{3i} (t_{ij})_+,$$

em que

$$(t_{ij})_+ = \left\{ egin{array}{ll} t_{ij} & ext{se} & t_{ij} > 0 \ 0 & ext{se} & t_{ij} \leq 0. \end{array}
ight.$$

 Lembremos que no modelo linear de efeitos mistos, a matriz de variância-covariância de Y_i é dada por:

$$Var(Y_i) = Z_i \Sigma Z'_i + \sigma^2 I_{n_i},$$

em que Z_i é a matriz de covariáveis relacionadas aos efeitos aleatórios, Σ é a matriz de covariância dos efeitos aleatórios e n_i é o número de observações do i-ésimo indivíduo, $i = 1, \ldots, N$.

• Logo, os resíduos transformados neste caso podem ser obtidos a partir da decomposição de Cholesky da matriz estimada $\widehat{Var}(Y_i) = Z_i \hat{\Sigma} Z_i' + \hat{\sigma}^2 I_{n_i}$.

Resultados do ajuste:

Tabela: Coeficientes de regressão estimados (efeitos fixos) e erros padrões

-	Variável	Estimativa	EP	t	p-valor	
	Intercepto	21,3614	0,5646	37,8400	0,0000	
	Tempo	0,4171	0,1572	2,6500	0,0081	
	(Tempo) ₊	2,0471	0,2280	8,9800	0,0000	
-						

Tabela: Covariâncias estimadas para os efeitos aleatórios (\hat{G}) e variância estimada para os erros ($\hat{\sigma}^2$)

Estimativa	Parâmetro	Estimativa
45,9407	$Cov(b_{1i}, b_{2i}) = g_{12}$	2,5275
1,6309	$Cov(b_{1i}, b_{3i}) = g_{13}$	-6,1141
2,7496	$Cov(b_{2i}, b_{3i}) = g_{23}$	-1,7513
9,4734		
	45,9407 1,6309 2,7496	$\begin{array}{ccc} 45,9407 & Cov(b_{1i},b_{2i}) = g_{12} \\ 1,6309 & Cov(b_{1i},b_{3i}) = g_{13} \\ 2,7496 & Cov(b_{2i},b_{3i}) = g_{23} \end{array}$

• Análise de resíduos:

- Da figura anterior (Resíduos vs Tempo), observa-se uma tendência quadrática no período após a menarca.
- Refinando o modelo anterior, consideraremos agora que cada garota tem uma curva de crescimento spline linear-quadrática com um knot no tempo da menarca.
- Ajustou-se o seguinte modelo linear de efeitos mistos:

$$E(Y_{ij}|b_i) = \beta_1 + \beta_2 t_{ij} + \beta_3 (t_{ij})_+ + \beta_4 (t_{ij})_+^2 + b_{1i} + b_{2i} t_{ij} + b_{3i} (t_{ij})_+ + b_{4i} (t_{ij})_+^2,$$

em que

$$(t_{ij})_+^2 = \left\{ egin{array}{ll} t_{ij}^2 & ext{se} & t_{ij} > 0 \ 0 & ext{se} & t_{ij} \leq 0. \end{array}
ight.$$

Resultados do ajuste:

Tabela: Coeficientes de regressão estimados (efeitos fixos) e erros padrões

Variável	Estimativa	EP	t	p-valor
Intercepto	20,4201	0,5817	35,1032	0,0000
Tempo	-0,0155	0,1612	-0,0962	0,9234
$(Tempo)_+$	4,8439	0,4055	11,9446	0,0000
$(Tempo)_+^2$	-0,6469	0,0772	-8,3842	0,0000

Tabela: Covariâncias estimadas para os efeitos aleatórios (\hat{G}) e variância estimada para os erros (\hat{G}^2)

Parâmetro	Estimativa	Parâmetro	Estimativa
$Var(b_{1i}) = g_{11}$	48,0586	$Cov(b_{1i}, b_{3i}) = g_{13}$	-9,5900
$Var(b_{2i})=g_{22}$	1,7326	$ Cov(b_{1i}, b_{4i}) = g_{14}$	0,6479
$Var(b_{3i})=g_{33}$	5,3693	$Cov(b_{2i}, b_{3i}) = g_{23}$	-1,5342
$Var(b_{4i}) = g_{44}$	0,1172	$Cov(b_{2i}, b_{4i}) = g_{24}$	-0,1735
$Cov(b_{1i}, b_{2i}) = g_{12}$	3,0295	$Cov(b_{3i}, b_{4i}) = g_{34}$	-0,4395
$Var(e_i) = \sigma^2$	8,0274		

Análise de resíduos:

Figura: Semi-variograma empírico para os resíduos transformados

- Gráficos de dispersão não apresentam mais nenhuma tendência acentuada.
- Semi-variograma está oscilando aleatoriamente em torno da linha horizontal 1.
- Pela análise de resíduos, confirmamos a adequação do segundo modelo proposto.

O que fazer frente a violação de suposições?

- Verificar a estrutura da média.
- Transformar a resposta.
- Propor outra estrutura de Variância-Covariância para os erros (Modelo Marginal)
- Modelar a estrutura variância-covariância do erro intra-indivíduo (erro de medida, Modelo de Efeito Aleatórios).

Verificar a Estrutura da Média

- Existe alguma proposta teórica da área?
- Perfis, especialmente os alisados, são as principais ferramentas.
- Propostas Empíricas: splines (com um ou no máximo dois knots), modelos lineares ou quadráticos. Possivelmente algo como decaimento exponencial.

Transformar a resposta

- Vantagens quando temos distribuição assimétrica para a resposta. Por exemplo: custo. Utilizar transformação logarítmica.
- Desvantagem: interpretação dos resultados.

Propor outra estrutura de Variância-Covariância para os erros (Modelo Marginal)

- Utilizar a não-estruturada em delineamentos balanceados quando o número de tempos medidos não for excessivo.
- Incluir heterocedasticidade quando possível.

Modelar a variância-covariância do erro Intra Indivíduos (Modelo de Efeito Aleatórios)

- Suposição: $Var(\varepsilon_i) = \sigma^2 I$.
- Podemos estruturar a

$$Var(\varepsilon_i)$$
.

Isso pode ser feito inclusive em termos de covariáveis.

• O R ajusta alguns tipos de estrutura.