1

EE5609: Matrix Theory Assignment-13

Major Saurabh Joshi MTech Artificial Intelligence AI20MTECH13002

Download codes from

https://github.com/saurabh13002/EE5609/tree/master/Assignment13

1 Question

Let A,B be $n \times n$ matrices. Which of the following equals trace(A^2B^2)?

- 1) $(trace(\mathbf{AB}))^2$.
- 2) trace($\mathbf{A}\mathbf{B}^2\mathbf{A}$).
- 3) trace($(\mathbf{AB})^2$).
- 4) trace(BABA).

2 Solution

Statement	Solution		
Definition	The trace of an $n \times n$ square matrix A is defined as:		
	$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$		
	where a_{ii} denotes the entry on the ith row and ith column of A .		
Properties	The properties of the trace : $tr(c\mathbf{A}) = c \ tr(\mathbf{A})$	(2.0.1)	
	$tr(\mathbf{A}^T) = tr(\mathbf{A})$	(2.0.2)	
	$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{B} + \mathbf{A})$	(2.0.3)	
	$tr(\mathbf{AB}) = tr(\mathbf{BA})$	(2.0.4)	
	$tr(\mathbf{A}^T\mathbf{B}) = tr(\mathbf{A}\mathbf{B}^T)$	(2.0.5)	
	$tr(\mathbf{R}^{-1}\mathbf{A}\mathbf{R}) = tr(\mathbf{R}^{-1}(\mathbf{A}\mathbf{R}))$	(2.0.6)	
	$= tr((\mathbf{A}\mathbf{R})\mathbf{R}^{-1}) = tr(\mathbf{A})$	(2.0.7)	
Checking $tr(\mathbf{A}^2\mathbf{B}^2)$.	Upon rewriting and from (2.0.4), $tr(\mathbf{A}^2\mathbf{B}^2) = tr(\mathbf{A}\mathbf{A}\mathbf{B}\mathbf{B})$	(2.0.8)	
	$= tr(\mathbf{BAAB})$	(2.0.9)	
	$= tr(\mathbf{BBAA})$	(2.0.10)	
	$= tr(\mathbf{ABBA})$	(2.0.11)	
	$= tr(\mathbf{A}\mathbf{A}\mathbf{B}\mathbf{B})$	(2.0.12)	
	$= tr(\mathbf{A}^2 \mathbf{B}^2)$	(2.0.13)	

Checking $(tr(\mathbf{AB}))^2$.	from (2.0.4), $(tr(\mathbf{AB}))^2 = (tr(\mathbf{BA}))^2$	(2.0.14)
Checking $tr(\mathbf{A}\mathbf{B}^2\mathbf{A})$.	Rewriting, $tr(\mathbf{A}\mathbf{B}^2\mathbf{A}) = tr(\mathbf{A}\mathbf{B}\mathbf{B}\mathbf{A})$ from (2.0.4), $tr(\mathbf{A}\mathbf{B}^2\mathbf{A}) = tr(\mathbf{A}\mathbf{A}\mathbf{B}\mathbf{B}) = tr(\mathbf{A}^2\mathbf{B}^2)$	(2.0.15) (2.0.16)
Checking $tr(\mathbf{AB})^2$.	from (2.0.4), $tr(\mathbf{AB})^2 = tr(\mathbf{BA})^2$	(2.0.17)
Checking $tr(\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A})$.	from (2.0.4) $tr(\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A}) = tr(\mathbf{A}\mathbf{B}\mathbf{A}\mathbf{B})$ $= tr(\mathbf{B}\mathbf{A}\mathbf{B}\mathbf{A})$	(2.0.18) (2.0.19) (2.0.20)
Conclusion	Hence, from (2.0.4), and (2.0.16) option 2, ie $tr(\mathbf{AB}^2\mathbf{A})$ answer.). is the correct

Table1:Solution