CS6006 - CLOUD COMPUTING

Module 7 - CLOUD PLATFORMS IN INDUSTRY

Presented By

Dr. S. Muthurajkumar,
Assistant Professor,
Dept. of CT, MIT Campus,

Anna University, Chennai

CLOUD PLATFORMS IN INDUSTRY

- Parallel Programming Paradigm
- Apache Hadoop and Map-Reduce
- MapReduce Programming Model
- Major MapReduce Implementations for the Cloud
- Public Cloud Platforms: GAE, AWS, and Azure **TOOLS PPT**
- Programming Google App Engine
- Programming on EC2, S3
- Best Practices in Architecting Cloud Applications in the AWS Cloud

PARALLEL PROGRAMMING PARADIGM

- Processing multiple tasks simultaneously in multiple processors is called parallel processing.
- Parallel program consists of multiple processes (tasks) simultaneously solving a given problem.
- Divide-and-Conquer technique is used.

Large Problems Divided into Smaller Subproblems

APPLICATIONS OF PARALLEL PROGRAMMING PARADIGM

Science and Engineering

- Atmospheric Analysis
- Earth Sciences
- Electrical Circuit Design

Industrial and Commercial

- Data Mining
- Web Search Engine
- Graphics Processing

- Shared memory architecture
- Distributed memory architecture
- Hybrid distributed shared memory architecture

S. No	Parallel Computing	Distributed Computing			
1	Many operations are performed simultaneously	System components are located at different locations			
2	Single computer is required	Uses multiple computers			
3	Multiple processors perform multiple operations	Multiple computers perform multiple operations			
4	It may have shared or distributed memory	It have only distributed memory			
5	Processors communicate with each other through bus	Computer communicate with each other through message passing			
6	Improves the system performance	Improves system scalability, fault tolerance and resource sharing capabilities			

- Shared memory architecture
- Distributed memory architecture
- Hybrid distributed shared memory architecture

Shared memory architecture

Distributed memory architecture

Hybrid distributed shared memory architecture

APACHE HADOOP: OVERVIEW

- A scalable, fault-tolerant, open-source and cost effective software that handles large data in a distributed system
- Framework that allows for the distributed processing of large data sets across clusters of computers
- There are three parts in Hadoop, they are
 - Hadoop Distributed File System (storage)
 - Yet Another Resource Negotiator (processing)
 - Map Reduce

HADOOP ECOSYSTEM

HADOOP DISTRIBUTED FILE SYSTEM: ARCHITECTURE

HDFS: Namenode

HDFS: Datanode

Second part of HDFS

Serves read and write requests from the client and actual data is stored here

- Heartbeat
- Blocks
- Racks
- Replication

Word Count - Example

- Task: Counting the word occurrences (frequencies) in a text le (or set of les).
- < word, count > as < key, value > pair
- Mapper: Emits < word, 1 > for each word (no counting at this part).
- Shuffle in between: pairs with same keys grouped together and passed to a single machine.
- Reducer: Sums up the values (1s) with the same key value.

Map Reduce (Processing in Hadoop)

Job Tracker

130 Hadoop Map/Reduce Administration

State: RUNNING Started: Mon Nov 17 22:41:46 PST 2014

Version: 0.18.0, r686010

Compiled: Thu Aug 14 19:48:33 UTC 2008 by hadoopqa Identifier: 201411172241

Cluster Summary

Maps	Reduces	Total Submissions	Nodes	Map Task Capacity	Reduce Task Capacity	Avg. Tasks/Node
0	0	3	1	2	2	4.00

Running Jobs

Running Jobs none

Completed Jobs

	Completed Jobs											
Jobid		User	Name	Map % Complete	Map Total	Maps Completed	Reduce % Complete	Reduce Total	Reduces Completed			
job_20141	11172241_0003	hadoop-user	streamjob16751.jar	100.00%	2	2	100.00%	1	1			
job_20141	11172241_0004	hadoop-user	streamjob28967.jar	100.00%	2	2	100.00%	1	1			

Failed Jobs

Failed Jobs									
Jobid	User	Name	Map % Complete	Map Total	Maps Completed	Reduce % Complete	Reduce Total	Reduces Completed	
job_201411172241_0001	hadoop-user	streamjob64235.jar	100.00%	2	2	100.00%	1	0	

Local logs

Log directory, Job Tracker History

Hadoop, 2014.

Tasks

Hadoop map task list for job 200904110811 0003 on ip-10-250-110-47

Completed Tasks

Task	Complete	Status	Start Time	Finish Time	Errors	Counters 10
task 200904110811 0003 m 000043	100.00%	hdfs://ip- 10-250-110-47.ec2.internal /user/root/input/ncdc/all /1949.gz:0+220338475	11-Apr-2009 09:00:06	11-Apr-2009 09:01:25 (1mins, 18sec)		
task 200904110811 0003 m 000044	100.00%	Detected possibly corrupt record: see logs.	11-Apr-2009 09:00:06	11-Apr-2009 09:01:28 (1mins, 21sec)		11
task 200904110811 0003 m 000045	100.00%	hdfs://ip- 10-250-110-47.ec2.internal /user/root/input/ncdc/all /1970.gz:0+208374610	11-Apr-2009 09:00:06	11-Apr-2009 09:01:28 (1mins, 21sec)		10

Name Node

NameNode '130.230.16.37:9000'

Started: Tue Nov 18 18:09:31 PST 2014

Version: 0.18.0, r686010

Compiled: Thu Aug 14 19:48:33 UTC 2008 by hadoopga

Upgrades: There are no upgrades in progress.

Browse the filesystem

Cluster Summary

25 files and directories, 28 blocks = 53 total. Heap Size is 5.98 MB / 992.31 MB (0%)

 Capacity
 : 23.73 GB

 DFS Remaining
 : 21.42 GB

 DFS Used
 : 529.41 KB

 DFS Used%
 : 0 %

 Live Nodes
 : 1

 Dead Nodes
 : 0

Live Datanodes: 1

Node	Last Contact	Admin State	Size (GB)	Used (%)	Used (%)	Remaining (GB)	Blocks
hadoop-desk	2	In Service	23.73	0		21.42	28

Dead Datanodes: 0

Local logs

Log directory

Hadoop, 2014.

HBase

HBase

REFERENCES

- 1. Kai Hwang, Geoffrey C Fox and Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. Barrie Sosinky, "Cloud Computing Bible", Wiley Publishing Inc, 2011
- 3. Buyya R., Broberg J. and Goscinski A., "Cloud Computing: Principles and Paradigm", First Edition, John Wiley & Sons, 2011.
- 4. Rajkumar Buyya, Christian Vecchiola, S. ThamaraiSelvi,"Mastering the Cloud Computing", Morgan Kaufmann, 2013
- 5. John W. Rittinghouse and James F. Ransome, "Cloud Computing: Implementation "Management, and Security", CRC Press, 2016.
- 6. David Bernstein, "Containers and Cloud: From LXC to Docker to Kubernetes", IEEE Cloud Computing, Volume: 1, Issue: 3, 2014.
- 7. VMware (white paper),"Understanding Full Virtualization, Paravirtualization, and Hardware Assist ":www.vmware.com/files/pdf/VMware_paravirtualization.pdf.

Thank You...

