Numerical Methods for the Solution of PDEs

Laboratory with deal.II — <u>www.dealii.org</u>

LAB 3 — FEValues

Luca Heltai < luca.heltai@unipi.it>

https://luca-heltai.github.io/nmpde https://github.com/luca-heltai/nmpde

Aims for this Lecture

- Integration of Finite Element functions on cells (or faces)
 - Local numbering VS global numbering
 - Mapping
 - Basis function Values and Gradients
- Post-processing and visualisation
 - Error tables

Reference material

- Documentation
 - https://www.dealii.org/current/doxygen/deal.ll/ group FE vs Mapping vs FEValues.html
 - https://www.dealii.org/current/doxygen/deal.ll/group UpdateFlags.html

What we want to compute today:

Error in the finite element space interpolation:

$$||u - u_h||_{1,\Omega} = \sqrt{\int_{\Omega} (u - u_h)^2 + (\nabla u - \nabla u_h)^2}$$

Split integration on cells:

Integrate g on all cells T_m :

$$b := \int_{\Omega} g = \sum_{m} b_{m} := \sum_{m} \int_{T_{m}} g dT_{m}$$

Transform integral on T_m to \hat{T}

$$\int_{T_m} g dT_m = \int_{\hat{T}} (g \circ F_m) J_m d\hat{T} \qquad J_m := \det(DF_m)$$

Use quadrature formula on \hat{T}

$$\int_{\hat{T}} (g \circ F_m) J d\hat{T} \simeq \sum_{q=0}^{n_q-1} g(F_m(\hat{x}_q)) J_m \hat{w}_q$$

Split integration on cells:

For gradients:

$$\hat{\nabla}(g\circ F_m) = [\nabla g\circ F_m]DF_m^T \Longrightarrow \nabla g = [\hat{\nabla}(g\circ F_m)]DF_m^{-T}$$

On each quadrature point we need:

$$x_q := F_m(\hat{x}_q), \quad B_m := DF_m(\hat{x}_q), \quad J_q w_q = \det(B_m), \quad B_m^{-7}$$

New classes

Integration on a cell: the Quadrature classes

- n-Order Gauss quadrature
- Other rules
 - Gauss Lobatto
 - Simpson
 - Trapezoidal
 - Midpoint
 - A few others
- Anisotropic
 - Tensor product

Integration on a cell: the Mapping classes

- n-order mappings
 - Increase accuracy of:
 - Integration schemes
 - Surface basis vectors
- Boundary and interior manifolds

New class

Integration on a cell: the FEValues class

- Object that helps perform integration
- Combines information of:
 - Cell geometry
 - Finite-element system
 - Quadrature rule
 - Mappings
- · Can provide:
 - Shape function data
 - · Quadrature weights and mapping jacobian at a point
 - Normal on face surface
 - Covariant/contravariant basis vectors
- More ways it can help:
 - Object to extract shape function data for individual fields
 - Natural expressions when coding
- Low level optimisations

$$b_{m} := \sum_{q=0}^{n_{q}-1} g(F_{m}(\hat{x}_{q}))J_{m}\hat{w}_{q}$$

```
b(m) +=

g(fe_values.quadrature_point(q_point)) *

fe_values.JxW (q_point);
```

