AI1103: Assignment 5

Santosh Dhaladhuli MS20BTECH11007

Download all python codes from

https://github.com/Santosh-Dhaladhuli2003/ AI1103/blob/main/Assignment%205/ Assignment%205.py

and latex codes from

https://github.com/Santosh-Dhaladhuli2003/ AI1103/blob/main/Assignment%205/ Assignment%205.tex

1 GATE IN 2007 Question No. 27

Assume that the duration in minutes of a telephone conversation follows the exponential distribution $f(x) = \frac{1}{5}e^{-\frac{x}{5}}$, $x \ge 0$. The probability that the conversation will exceed five minutes is...

- 1) $\frac{1}{e}$ 2) $1 \frac{1}{e}$
- 3) $\frac{1}{e^2}$ 4) 1 $\frac{1}{e^2}$

2 Solution

Let X be a Random variable defined, that denotes the duration of a telephonic conversation in minutes. So, $X \in [0,\infty)$

Using the probability in exponential distribution,

CDF of X is
$$F(y) = Pr(X \le y)$$

$$\implies F(y) = 1 - \int_{y}^{\infty} \frac{1}{5} e^{-\frac{x}{5}} dx$$
(2.0.2)

Required Probability is $Pr(X > 5) = 1 - Pr(X \le 5)$ (2.0.3) From (2.0.1), (2.0.2) and (2.0.3)

$$\implies \Pr(X > 5) = 1 - \left(1 - \int_{5}^{\infty} \frac{1}{5} e^{-\frac{x}{5}} dx\right) \quad (2.0.4)$$

$$\implies \Pr(X > 5) = \int_{5}^{\infty} \frac{1}{5} e^{-\frac{x}{5}} \quad (2.0.5)$$

$$\implies \Pr(X > 5) = \left(-e^{-\frac{x}{5}}\right)\Big|_{5}^{\infty} \quad (2.0.6)$$

$$\implies \Pr(X > 5) = -e^{-\infty} + e^{-1} \quad (2.0.7)$$

$$\therefore \Pr(X > 5) = 0 + e^{-1} = \frac{1}{e} \quad (2.0.8)$$

... The correct answer is **Option 1**

