

材料の化学1

第9回

今回のポイント:

- ・電気陰性度の一般傾向
- ・電気陰性度によるイオン結合性の理解

本講義のロードマップ

<原子の電子構造の復習>

量子論の創成

量子化学の復習

多電子原子の構成原理

電子配置

<原子の性質と周期性>

(40)

イオン化エネルギー

電子親和力

電気陰性度

原子半径とイオン半径

結合エネルギー

<原子価結合法と化合物構造>

(20)

ルイス構造とオクテッド則

混成軌道

原子価結合法による共有結合解釈

VSEPR則

< 分子軌道法による結合と構造> (2回)

分子軌道法 等核二原子分子の分子軌道 異核二原子分子の分子軌道 簡単な多原子分子の分子軌道

材料の化学1

9回月

(7-10回の内容): 2章 原子の性質と周期性

- 1. <u>イオン化エネルギー</u> (pp.21-25)
 - (1) 定義
 - (2) 同族元素の傾向
 - (3) 同周期元素の傾向
 - (4) 例:第2周期の典型元素
 - (5) 遷移元素のイオン化エネルギー
- 2. <u>電子親和力</u> (pp.25-28)
 - (1) 定義
 - (2) 同族元素の傾向
 - (3) 同周期元素の傾向
 - (4) 傾向の例外
 - (5) 遷移元素の電子親和力

- 3. <u>電気陰性度</u> (pp.28-37)
 - (1) 定義
 - (2) 典型元素の電気陰性度
 - (3) 同族元素の傾向
 - (4) 遷移元素の電気陰性度
 - (5) 電気陰性度と原子間の結合性
- 4. 原子半径とイオン半径 (pp.42-47)
 - (1) 原子半径
 - (2) イオン半径
- 5. <u>結合エネルギー</u> (pp.47-54)
 - (1) 定義
 - (2) 典型元素の傾向
 - (3) その他の結合エネルギー

電気陰性度:

原子が分子の一部であるとき、その原子が共有結合

している電子(密度)を引きつける能力を示す尺度: 1/6

ポーリングの電気陰性度 結合エネルギーに注目

・マリケンの電気陰性度

個々の原子性質 I.EとE.Aに注目

・オーレッド・ロコウの電気陰性度

クーロン引力に注目

3. 電気陰性度

電気陰性度:

原子が分子の一部であるとき、その原子が共有結合

している電子(密度)を引きつける能力を示す尺度: χ

電気陰性度は、何で決まるのか?

電気陰性度の大きな原子は、

- 自分の電子は渡さない
 - → 第一イオン化エネルギーは大きい
- 相手の電子は自分の側に引っ張り込む
 - → 電子親和力が大きい

電気 (イオン化エネルギー+電子親和力)

電気陰性度 = -

2

(これに係数をかけたものがマリケンの電気陰性度の尺度となる)

3. 電気陰性度

(2) 典型元素の電気陰性度

同族元素 :周期番号が増加するとχは減少 🔷 陰イオンになりにくい

同周期元素 :族番号が増加すると一般にχは増大 → 陰イオンになりやすい

電子親和力/

周期表の右上: χ大 ← IE, EA 大

周期表の左下: χ小 ← IE, EA小

マリケンの定義: x∞ IE + EAと合致

表2.3 Pauling および Allred-Rochow の電気競性度 10 11 12 イオン化エネルギー大 2.01 2.50 3.07 3.50 4.10 4.84 Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As イオン化エネルギー小 Fr Ra Ac

有効核電荷

上段は Pauling の他、下段は Alfred - Rochow の他

3. 電気陰性度

演習問題1

フッ素と塩素の電気陰性度(Paulingの尺度)の大小関係を Mullikenの電気陰性度の定義を基に説明してみよう。

FとCIの電気陰性度(Paulingの尺度)の大小関係

$$\chi_{\rm F}$$
 (3.98) $> \chi_{\rm CI}$ (3.16)

 EA_F (328) $\leq EA_{CI}$ (349)

IE_F (1681) > IE_{CI} (1251) IEの寄与: 大

第2周期の例外(FのEAが予想より小さい)

Fのroov: 共有結合半径が小さい

表2.2 典型元素の第一電子親和力(kJ/mol)

受け入れる電子との静電反発

1族	2 族	13級	14族	15級	16族	17族	18.16
H(73)							He(<0)
Li(60)	Be(-50)	B(27)	C(122)	N(-7)	O(141)	F(328)	Ne(<0)
Na(53)	Mg(-40)	A1(44)	Si(134)	P(72)	S(200)	C1(349)	Ar(<0)
K(48)	Ca(-30)	Ga(29)	Ge(120)	As(77)	Se(195)	Br(325)	Kr(<0)
Rb(47)	Sr(-30)	In(29)	Sn(121)	Sb(101)	Te(190)	1 (295)	Xe(<0)
Cs(46)	Ba(-30)	T1(30)	Pb(110)	Bi(110)	Po(180)	At(270)	Rn(<0)

3. 電気陰性度

同族元素の傾向

: 周期番号が増加すると x は減少

例外1) 第4周期13族·14族

4plc対する占有されている3d電子の遮へい効率が悪い

イオン化エネルギー大

IE, EA大→χ大

χ (第3周期) < χ (第4周期)

AI (1.61) < Ga (1.81) Si (1.90) < Ge (2.01) 3p1 $3p^2$

表2.3 Pauling および Allred-Rochow の間

電子親和力7

													_		_	_	_	_	
1	R	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		H 2.20																	He
		2.20																	5.50
	2	Li 0.98	Be 1.57											B 2.04	C 2.55	N 3.04	0 3.44		Ne
ジジ	野か	AF.	下	7												3.07			
X.E	3. /2/	10.33												Al	Si	P 2 10	\$ 50	CI	Ar

16族·17族

3d電子の低い遮へい効果の影

核電荷大→ 3d 軌道は収縮

一般的な傾向に戻る

1.01 1.23 Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

イオン化エネルギー小

電子親和力/

0.70 0.90 1.10

上段は Pauling の値、下段は Allred - Rochow の値

3. 電気陰性度

演習問題2

13族・14族と同様に、電気陰性度の同族の変化の傾向から 外れる例を示し、その理由に説明してみよう。

例外2) 第6周期13族·14族

6plc対する占有されている 5d, 4fの遮へい効率が悪い

IE, EA大→x大

χ(第5周期) < χ(第6周期)

In (1.78) < TI (2.04) Sn (1.96) < Pb (2.33)

5p¹ 6p¹ 5p²

 $6p^2$

PaulingとAllred-Rochowの電気陰性度 (pp. 29)

A BR	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	H 2.20 2.20																	He 5,50
2	0.98	Be 1.57 1.47													N 3.04 3.07		F 3.98 4.10	No 4.84
3	0.93	Mg 1.31 1.23											****		P 2.19 2.06		CI 3.16 2.83	Ar 3.20
4	K 0.82 0.91		1.36		V 1.63 1.45	1.66	1.55	1.83		1.91	2.00	1.65	1.81	2.01		2.55		Kr 3.0 2.94
5	100000	7.00	10000	1.33	Nb 1.60 1.23	2.16	1.90	2.20	2.28	2.20	1.93	1.60	1.78			2.10		1000
6	0.79		1.10		Ta 1.50 1.33				2.20	2.28		2.00	2.04	2.33	_			
7	0.70	Ra 0.90 0.97																

上段は Pauling の値, 下段は Alfred Rochow の値,

1.47 1.74 2.06 2.44 2.83 3.20

3. 電気陰性度

0.97 1.47

遷移元素の電気陰性度

遷移元素の電気陰性度

原子価軌道が核から遠い 内殻s p電子の遮へい効果大でIE、EAともに小さい = 貫入効果:大

同族元素

xは比較的小さい

表2.3 PaulingとAllred-Rochowの電気陰性度 (pp. 29)

	MB	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		H																	He
周期番号が増加するとχΙ	進	ויל	二增	計															5.50
	0	Li	Be											В	C	N	0	F	No
ナー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2	0.58	1.57											2.04	2.55	3.04	3.44	3.93	

陰イオンになりやすい; d, f電子の 遮へい効率が低い

族番号が増加するとχは僅かに増大傾向だか 同周期元素

陰イオンになりやすい; Z*の増加

里,	13	1	8/	1100	ŲΨ.	11	13	100	スト		200	0.	14	0-	C.	30	C.	Die	20
		K	Ca	Sc	TI.	Y	Cr	Mn	re	Co	NI	Cu	Zn	Ga	Ge	0.00	-000	Die .	
-1	4	0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	2.00	1.65	1.81	2.01	2.18	2,55	2.56	3.0
1		0.91	1.04	1.20	1.32	1.45	1.56	1.60	1.64	1.70	1.75	1.75	1.66	1.82	2.02	2.20	2.48	2.74	2.94
1		Rb	Sr	Y	Zt	Nb.	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In:	Sn	Sb	Te	1	Xe
-1	5	0.82	0.95	1.22	1.33	1.60	2.16	1.90	2.20	2.28	2.20	1.93	1.60	1.78	1.96	2.05	2.10	2.65	2.66
4		0.89	0.99	1.11	1.22	1.23	1.30	1.36	1.42	1.45	1.35	1.42	1.46	1.49	1.72	1,82	2.01	2.21	2.60
1		Ca	Ba	La	146	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po.	At	Rn
-1	6	0.70	0.85	1.10	1.30	1.50	2.35	1.90	2.20	2.20	2.28	2.54	2.00	2.04	2,33	2,02	2.00	2,20	
1		0.86	0.97	1.08	1.23	1.33	1.40	1.46	1.52	1.55	1,44	1.42	1.44	1.44	1.55	1.67	1.76	1.50	2.06
1		Fr	Ra	Ac															
	7	0.70	0.90	1.10															
1				1.00															

3. 電気陰性度

(5) 電気陰性度と原子間の結合性

(周期表·右上)

共有結合 イオン結合 🛑

原子間に<u>局在化</u>した軌道の重なり合いがある場合

相手が電気的に陽性の場合

原子価軌道 (s, p) のエネルギーは低い

軌道(電子分布)(は核近くに集中 | 同周期では原子サイズ小

ns軌道の方が核近くに分布、np軌道とのエネルギー差大:非電導性(バンドギャップ大)

xの小さな元素

(周期表·左下)

金属結合

原子間に非局在化した軌道の重なり合いがある場合

イオン結合 | 相手が電気的に<u>陰性</u>の場合

原子価軌道のエネルギーは高い

軌道(電子分布)は核周辺に分散 一同周期では原子サイズ大

ns, np軌道のエネルギー差小:金属結合では電導性(電子占有バンド)

3. 電気陰性度

(5) 電気陰性度と原子間の結合性

中間的な χ の元素 (1.9< χ < 2.2程度; B, Si, Ge, As, Sb, Teなど)

代表的な半導体

半導体的な性質 🛑 適当な大きさのバンドギャップ

半金属(亜金属、メタロイド)

3. 電気陰性度

(5) 電気陰性度と原子間の結合性

原子間結合

電気陰性度が大きい原子が電子を引きつける 各原子の電気陰性度の差で決まる

|XA - XB|が大きいほどイオン結合性が強い

イオン結合性と電気陰性度の差の関係

イオン結合性 = 1 - $\exp\{-0.25(\chi_A - \chi_B)^2\}$

演習問題3

異なる元素の2原子間の<u>イオン結合性が約50%</u>になる時の、 電気陰性度差を求めてみよう。

 $|\chi_A - \chi_B| \approx 1.7$:50%イオン結合性 (1.7で51.4%)

 $|\chi_A - \chi_B| < 1.7$:幾分かのイオン結合性を持つ共有結合

 $|\chi_A - \chi_B| > 1.7$:イオン結合性が主となる

0 1 2 3

電気陰性度の差

12

原子と原子の引っ張り合い

機性 が生じること分機

確認

イオン結合性(50%)

 $0.5 = 1 - \exp\{-0.25(\Delta X)^2\}$

 $0.5 = \exp\{-0.25(\Delta X)^2\}$

In $0.5 = -0.25(\Delta X)^2$

 $-0.69317 \cdot \cdot = -0.25(\Delta X)^2$

 $\Delta X = 1.6_{650} \sim 1.7$

X ベンタイナン会	イオン統合性-1-espi-0.25*A 1 2	17.00
0	0	0.00
0.1	0.002496878	0.25
0.2	0.009950166	1.50
0.3	0.022248763	2.22
0.4	0.039210561	3.92
0.5	0.060586937	6.06
0.6	0.086068815	8.61
0.7	0.115294095	11.53
0.8	0.147856211	14.79
0.9	0.183313517	18.33
1	0.221199217	22.12
1.1	0.261031512	26.10
1.2	0.302323674	30.23
1.3	0.344593746	34,46
1.4	0.387373606	38.74
1.5	0.430217175	43/02
1.6	0.472707576	47.27
1.7	0.514463105	51.45
1.8	0.555141934	55.51
1.9	0.594445495	59,44
2	0.632120559	63.21
2.1	0.667960065	66.80
2.2	0.701802721	70.18

3. 電気陰性度

演習問題4

HCIとKCIの原子間の結合性がどのような性質になるか、 構成元素の電気陰性度の差から考えてみよう。

表2.3 (教科書 pp. 29) のPaulingの電気陰性度の値を用いること。

A-B	H-CI	K-CI
XA	2.20	0.82
Хв	3.16	3.16
χ _A - χ _B	0.96	2.34
結合性	共有結合性	イオン結合性

HCl水溶液でHとClとなるのは イオン結合性ではなく、イオンの 水和によって安定化されるから

上記よりH-CIの方がK-CIより イオン結合性が低いといえます。

本日のまとめ

- ・電気陰性度の一般傾向
- ・電気陰性度によるイオン結合性の理解

原子間結合

電気陰性度が大きい原子が電子を引きつける 各原子の電気陰性度の差で決まる

|χ_A - χ_B|が大きいほどイオン結合性が強い

イオン結合性と電気陰性度の差の関係

イオン結合性= $1 - \exp\{-0.25(\chi_A - \chi_B)^2\}$