O2 Sensor 氧传感器设计文档 -AS 核心

Revision

Rev.	Date	Author	Command
0.1	2015/12/12	Spark.Zhou	Initial

1. 概述

本产品是以 AS 核心为基础, CJ125 为接口电路而设计,该产品可用于发动机排放 氧浓度测量,携带方便,适用于运行车辆,实验室,排放间等各环境下的氧浓度测量。

2. 氧传感器

博世 CJ125 芯片是专为博世 LSU 系列氧传感器研制的,因此传感器将使用博世 LSU 产品。

当前博世 LSU 系列氧传感器有 LSU4.9 及 LSU4.2 等。其中博世 LSU4.9 氧传感器相对 LSU4.2 的主要区别在于,后者以环境氧浓度为基准,而前者是以参考泵电流为基准,因此前者更为精确。本产品将采用 LSU4.9 为基础进行设计。

3. 硬件信息

下表表示了 CJ125 各 pin 脚信息,以及与主芯片及氧传感器连接的 pin

		CJ125	S	TM373	LSU4.9	Comments
No.	Pin	Description	Port	Function	Pin	
1	NA					
2	IA	泵电流放大器同相输入端/泵电流输出			5 RT	
3	OSZ	外接 10kΩ 下拉,晶振 192kHz				
4	DIAHG	氧加热 Gate 端诊断	PB[6]	TIM19_CH1		氧加热 Gate 端
5	VCCS	Sensor 5V 供电				
						串入电阻与诊断 threshold 有关, 推荐 6.8kΩ
6	DIAHD	氧加热 Drain 端诊断			3 H-	与氧传感器加热低边有隔离
7	/RST	Reset 脚				
						通过寄存器 RA 进行配置,RS 脚用于测量
8	RS	用于 Ri-cal 的测量				标定 Ri-cal,UN 脚用于测量 Ri
9	NA					
10	RM	测量 Ri 用的 DA 输出的晶振输出				RM与CM间串联电阻R _{RM} 与电容,用于计
						算 Ri 的 DA 输出,阻值:
11	CM	测量 Ri 用的 DA 输出的晶振滤波后				LSU4.2: 10.0kΩ LSU4.9: 31.6kΩ
12	UR	Ri 的 DA 输出脚	PB[0]	SD1_7		电路板已做 47/122 精密分压
13	SCK	SPI 的 Clock	PD[8]	SPI2_SCK		电路已做 3.3V-5V 转换
14	SO	SPI 的 Serial Out	PB[14]	SPI2_MISO		电路已做 3.3V-5V 转换
15	SI	SPI 的 Serial In	PB[15]	SPI2_MOSI		电路已做 3.3V-5V 转换
16	NA					
17	/SS	SPI 的片选				
18	VCCSS	Sensor 5V 供电				
19	VCC	芯片 5V 供电				
20	VM	虚拟地,=0.5VCC			2 IPN	氧传感器中的感应室和泵单元的虚拟地
21	US	用于感应室的参考电压 450mV				
22	UP	泵电流控制器的同相输入端				
23	UA	λ的DA输出脚	PE[8]	SD1_9		电路板已做 47/122 精密分压
24	NA					
25	NA	_				
26	CF	泵电流放大器输出并滤波后输入脚				泵电流放大器从 RF 端输出, 经外部电路低
27	RF	泵电流放大器输出端				通滤波后重新进入 CF 作运放
28	GNDS	地				
29	GND	地				
30	UB	14V 电源				
31	UN	泵电流控制器的反相输入端/Ri 测量脚			6 RE+	
32	IP	泵电流放大器反相输入端			1 APE	
					4 H+	氧传感器加热正极,PWR+

下图为氧传感器 pin 脚定义

Electrical connection:

Pin1: Pumping Current APE	red
Pin2: Virtual Ground IPN	yellow
Pin3: Heater Minus H-	white
Pin4: Heater Vbatt H+	grey
Pin5: Trim Current RT	green
Pin6: Nernst Voltage RE+	black

4. SPI 信息

ID	Register	Bit	Bit Name		De	scription		Reset Value	Configuration
		7	D: 11 .	00 000	01.0	10 CTD	11 37 1	1.1	
	-	6	Diag Heater	00: STG	01: Open	10: STB	11: Normal	11	
	-	5	D: 14 ID	00: STG	01: UB LV	10: STB	11: Normal	1.1	
	-	4	Diag IA, IP	PA = 0 时才	能诊断			11	
0x78	RD_DIAG	3		00: STG	01: UB LV	10: STB	11: Normal		
		2	Diag UN	$T_SC2G = h$	igh 才能诊断 STG	$T_SC2VB = h$	igh 且 ENSCUN=1 オ	11	
		2		能诊断 STB	1				
		1	Diag VM	00: STG	01: UB LV	10: STB	11: Normal	11	
		0	Diag VIVI	00: 510	UI: UB LV	10: 315	11: Normai	11	
		7	EN_HOLD	0: 泵电流控	制 HOLD 功能 OF	F 1: HOLD E	nable	1	1
		,	EN_HOLD	不推荐使用	0			1	1
		6	PA	0. 泵由流控	E制 ON(IA 脚泵电泡	a) 1: 泵电流控	控制 OFF, IA 高阻态,	0	0
			171	0. 70-20111		がば IA 和 IP	无法诊断	0	Ŭ
	5 = 0							0	0
0x56	WR_INIT1	4	RA	0: Measurem	nent Mode	1: Calibratio	on Mode	0	测量时 = 0
	-	•	Tur	用于 Ri 标定	用于 Ri 标定与测量的切换 0: F3K Off 1: F3K ON				标定时 = 1
0x6C	RD_INIT1	3	EN_F3K	0: F3K Off					1
	-		LIV_I SIK	F3K 用于 Ri	i 的测量及标定,2	不用时可关闭		1	
		2	LA	0: Measurem	nent mode for UA	1: Adjustme	ent mode for UA	0	测量时 = 0
	-			λ的 DA 输出	出的测量与标定的	切换	换		标定时 = 1
	-	1	= 0					0	0
		0	VL	$0: \lambda x = 8, ran$	$nge = 0.65 \sim \infty$	1: $\lambda x = 17$, r	range = $0.75 \sim \infty$	1	1
	-	7	= 0					0	0
	-	6	SRESET	0: Nothing			t,能 reset 所有 register	0	0
		5	SET_DIA_Q		t稀(V _{UP} >V _{UN})时	1: 所有情况	₹.	0	0
0x5A	WR_INIT2		~==_=	IA/IP STG					, ,
		4	ENSCUN	0: UN STB i			诊断 enable	0	0
0x7E	RD_INIT2			在泵电流打	开而 sensor 为高组	l态时,需要 dis	able		
		3	80uA					0	0
		2	40uA	参考泵电流	, -(10 * bit0 + 20 *	0	0		
		1	20uA				,	0	1
		0	10uA					0	0

5. 逻辑

5.1 当量空燃比、氧传感器温度及加热占空比的计算

5.1.1 当量空燃比 λ 的相关计算

当量空燃比 λ 是由 CJ125 的 UA 脚进行 DA 电压输出, 其输出电压公式为

$$V_{UA} = r_{adj} \times VCCS + v_{\lambda x} \times I_{pmeas} \times R_{Shunt}$$

其中:

$$r_{adj} = 0.3$$
 (可标)

VCCS = 5V

 $v_{\lambda x}=17$ (为 SPI 配置 WR_INIT1 中 bit0,当前配置为 17)

$$R_{Shunt} = 61.9\Omega$$

 I_{pmeas} : 对于 LSU4.9:

	λ	0.65	0.70	0.80	0.90	1.016	1.18	1.43	1.70	2.42	air
I_{pme}	as (mA)	-2.22	-1.82	-1.11	-0.50	0.00	0.33	0.67	0.94	1.38	2.54

5.1.2 氧传感器温度阻值 Ri 的相关计算

氧传感器温度特性是由 CJ125 的 UR 脚进行 DA 电压输出, 其输出电压公式为

$$V_{UR} = VCCS / 17 + v_{Ri} \times I_{RM} \times R_i$$

其中:

VCCS = 5V

 $v_{Ri} = 15.5$ (Gain)

 $I_{RM} = 158 \mu A$

R, 为传感器热敏电阻阻值

对于 LSU4.9, 感应室阻值 Ri 反应了氧传感器的当前温度。其温度曲线:

LSU4.9 氧传感器最佳工作温度为 780 $\mathbb C$ 左右,可接受温度范围为 700 – 850 $\mathbb C$,因此其对应的 Ri 阻值约为 550 Ω ~200 Ω 。

5.1.3 氧传感器加热的相关计算

氧传感器加热(O2 Heater)频率定义: KO2_Hz_HtrOutput = 100 Hz

氧传感器加热占空比计算公式为:

$$DutyCycle = (\frac{V_{H,eff}}{V_{Batt}})^{2}$$

其中, $V_{H,eff}$ 为有效加热电压, V_{Batt} 为加热器电源电压(由主芯片 PE[13]采集)

相关 A2L 标定(可调整):

标定量	物理意义	类型	最小值	最大值	默认值
KO2_f_HtrOutpu	氧传感器加热频率	Uint16	0Hz	1024Hz	100Hz
t	于[1文/25/fif //I ///////中	Omitio	OHZ	102411Z	TOOTIZ

5.2 初始化

初始化时,按照 SPI 表进行 SPI 配置,其中[RA]和[LA]均使用标定模式(=1),此时 SDADC 通道读取 λ 及 Ri。

5.2.1 当量空燃比 λ 的标定

a) 标定计算

如前所述, 当量空燃比 λ 由 CJ125 的 UA 脚电压输出, 其输出电压公式为

$$V_{\mathit{UA}} = r_{\mathit{adj}} \times VCCS + v_{\mathit{\lambda x}} \times I_{\mathit{pmeas}} \times R_{\mathit{Shunt}}$$

$$V_{SD1_9} = \frac{47}{122} \times V_{UA} = \frac{47}{122} \times (r_{adj} \times VCCS + v_{\lambda x} \times I_{pmeas} \times R_{Shunt})$$

每次初始化时,氧传感器的空燃比截距(Offset)需要标定。此时设置[LA] = $1(WR_INIT1)$ bit 2),进入标定模式。

在标定模式下, I_{pmeas} 电流为 0,因此此时 uP 得到的 UA 脚分压电压为:

$$V_{SD1_9_cal} = \frac{47}{122} \times V_{UA} = \frac{47}{122} \times (r_{adj} \times VCCS)$$

因此,得到计算空燃比 λ 的截距 Offset:

$$r_{adj} \times VCCS = \frac{122}{47} \times V_{SD1_9_cal}$$

b) 截距可信度诊断

截距的电压值理论上为 1.3~1.7V(Threshold 见下述标定)。其值由于芯片的特性,使用周期,电源电压的变化而变化。

当 $V_{SD1_{-9}}$ 所测得的电压值超出 $(1.3\sim1.7)\times\frac{47}{122}\approx0.500\sim0.655V$ 时,可判定截距标定不可信。

当截距电压可信时,将当前截距电压赋值 LAMOFST 给相应 NV 变量 LAMOFPRE; 当截距电压不可信时,将上次标定的 LAMOFPRE 值赋值给当前截距 LAMOFST。

c) Error Counter

设置 Error Counter (EC)初始值为 0。当截距电压超出 Threshold 时,判断不可信,EC 自加 1。经过一定 timing(标定)后,进入重新标定阶段。当 EC 达到 3 或以上时,当前 key cycle 不再标定并记录 fault。

相关 A2L 变量(可调整):

相	关量	A2L 名	物理意义	类型	最小值	最大值	初始值	NV?
V_{SD1}	_9_ <i>cal</i>	LAMCALSC	标定时 uP 测得的 UA 脚 电压经分压后的值	uint16	0V	5V	0.578V	N
$r_{adj} \times 1$	VCCS	LAMOFST	标定时空燃比的截距电 压,即分压前	uint16	0V	5V	1.5V	N

$r_{adj} \times VCCS$	LAMOFPRE	NV 变量:标定时空燃比 截距电压,分压前	uint16	0V	5V	1.5V	Y
Error Counter	LAMEC	空燃比标定 Error Counter	uint	0	255	0	N

相关 A2L 标定(可调整):

标定量	物理意义	类型	最小值	最大值	默认值	
KO2_V_LamCal	空燃比标定截距范围低	uint	0V	5V	1.3V	
LoThresh	工然比例是截距把国民	uiiit	ÜV	3 v	1.3 V	
KO2_V_LamCal	空燃比标定截距范围高	uint	0V	5V	1.7V	
HiThresh	工際比例是假距视图同	uiiit	O V	3 v	1./ V	
KO2_t_LamReCa	空燃比两次标定间隔时间	uint16	Og	25.5s	20	
1	工然比例次你是问隔时间	umito	Os	23.38	3s	

5.2.2 氧传感器温度阻值 Ri 的标定

a) 标定计算

如前所述,氧传感器温度特性是由 CJ125 的 UR 脚进行 DA 电压输出,其输出电压公式为:

$$V_{UR} = VCCS / 17 + v_{Ri} \times I_{RM} \times R_i$$

$$V_{SD1_{-}7} = \frac{47}{122} \times V_{UR} = \frac{47}{122} \times (VCCS / 17 + v_{Ri} \times I_{RM} \times R_i)$$

其中:

VCCS = 5V

 $v_{Ri} = 15.5$ (Gain)

$$I_{RM} = 158 \mu A$$

 R_i 为传感器热敏电阻阻值,传感器的温度曲线为

每次初始化时,氧传感器 desired 加热温度(阻值 Ri)需要标定。此时设置[RA] = 1(WR_INIT1 bit 4),进入标定模式。

在标定模式下, R_{ical} =301 Ω ,即表示该模式下读到的电压为加热反馈的目标电压,定义此时 uP 得到的 UA 脚分压电压为 $V_{SD1_7_cal}$ 。

b) Rical 可信度诊断

代入公式:

$$V_{SD1_{-}7_{-}cal} = \frac{47}{122} \times (VCCS / 17 + v_{Ri} \times I_{RM} \times R_{ical}) \approx 0.3973V$$

可信的电压范围为标定 $V_{SD1_7_cal_High}$ 以及 $V_{SD1_7_cal_Low}$

当 $V_{SD1_7_cal}$ 所测得的电压值超出 $V_{SD1_7_cal_High} \sim V_{SD1_7_cal_Low}$ 时,可判定标定不可信。 当标定电压可信时,将当前标定电压赋值 LAMOFST 给相应 NV 变量 LAMOFPRE; 当标定电压不可信时,将上次标定的 LAMOFPRE 值赋值给当前标定 LAMOFST。

c) Error Counter

设置 Error Counter (EC)初始值为 0。当标定电压超出 Threshold 时,判断不可信,EC 自加 1。经过一定 timing(标定)后,进入重新标定阶段。当 EC 达到 3 或以上时,当前 key cycle 不再标定并记录 fault。

相关 A2L 变量(可调整):

相关量	A2L 名	物理意义	类型	最小值	最大值	初始值	NV?	
-----	-------	------	----	-----	-----	-----	-----	--

$V_{SD1_7_cal}$	RICALSC	标定时 uP 测得的 UR 脚电压经分压后的值	uint16	0V	5V	0.3973V	N
$V_{{\it UR_cal}}$	RICAL	标定时 UR 脚电压,即分 压前	uint16	0V	5V	0V	N
	RICALPRE	NV: Ri 标定值,分压前	uint16	0V	5V	1.0313V	Y
Error Counter	RIEC	Ri 标定 Error Counter	uint	0	255	0	N

相关 A2L 标定(可调整):

标定量	物理意义	类型	最小值	最大值	默认值	NV?
KO2_V_RiCalLo	热敏电阻标定范围低	uint	0	5V	0.35V	N
Thresh	然敬电阻你是包围队	uint	U	3 V	0.33 V	11
KO2_V_RiCalHi	热敏电阻标定范围高	wint	0V	5V	0.4537	N
Thresh	然致电阻你走把国同	uint	ÜV	3 V	0.45V	1
KO2_t_RiReCal	热敏电阻两次标定间隔时间	Uint16	0s	25.5s	3s	N

5.3.3 氧传感器加热

如前所述,氧传感器加热(O2 Heater)占空比计算公式为:

$$DutyCycle = (\frac{V_{H,eff}}{V_{Batt}})^2$$

其中, $V_{H,eff}$ 为有效加热电压, V_{Batt} 为加热器电源电压(由主芯片 PE[13]采集)

由于水的露点原因,在氧传感器低温时(初始化),加热的占空比不得太大,定义低温 时最大的有效加热电压 V_{H,eff_Dew} = KO2_V_HtrEffDewPt = 2V

另外,定义持续加热时有效加热电压的上限 V_{H,eff_HiLim} = KO2_V_HtrEffHiLim = 12V

相关 A2L 标定(可调整):

标定量	物理意义	类型	最小值	最大值	默认值	
KO2_V_HtrEffD	初始化时的有效加热电压	uint	0V	32V	2V	
ewPt	1000年100日 大人川 然 电压	uiiit	0 0	32 V	∠ v	
KO2_V_HtrEffHi	热敏电阻标定范围高		OM	221/	121/	
Lim	2000 中四小人名巴西	uint	0V	32V	12V	

5.3 10ms Loop Function

5.3.1 当量空燃比 λ 的计算

由于:

$$V_{SD1_9} = \frac{47}{122} \times V_{UA} = \frac{47}{122} \times (r_{adj} \times VCCS + v_{\lambda x} \times I_{pmeas} \times R_{Shunt})$$

$$I_{pmeas} = \frac{(\frac{122}{47}V_{SD1_9} - r_{adj} \times VCCS)}{v_{\lambda x} \times R_{Shunt}}$$

其中, $r_{adj} \times VCCS = LAMOFST$ (已标定)

$$v_{\lambda x} = 17$$
, $R_{Shunt} = 61.9\Omega$

确定 I_{meas} 值后,由查下表得到相应λ:

λ	0.65	0.70	0.80	0.90	1.016	1.18	1.43	1.70	2.42	air
I_{pmeas} (mA)	-2.22	-1.82	-1.11	-0.50	0.00	0.33	0.67	0.94	1.38	2.54

表中, air 对应 λ≈1561.8 (经 LSU4.9 datasheet 公式计算得)

相关 A2L 变量(可调整):

相关量	A2L 名	物理意义	类型	最小值	最大值	初始值	NV?
λ	LAMBDA	当量空燃比	uint16	0	65.535	0	N
$I_{\it pmeas}$	IPMEAS	泵电流	uint16	-10 mA	10 mA	0	N

5.3.2 氧传感器温度的计算(可忽略)

由于:

$$V_{SD1_{-}7} = \frac{47}{122} \times V_{UR} = \frac{47}{122} \times (VCCS / 17 + v_{Ri} \times I_{RM} \times R_i)$$

$$R_{i} = \frac{\frac{122}{47} V_{SD1_{-7}} - VCCS / 17}{v_{Ri} \times I_{RM}}$$

其中
$$v_{Ri}$$
=15.5, I_{RM} =158 μA ,VCCS=5V

确定 R_i 值后,由查标定表格(一维)得到相应传感器温度: $KO2_T_HtrTempVsRi_{\circ}X$ 轴

为 Ri, Y 轴为传感器温度 O2TEMP

相关 A2L 变量(可调整):

相关量	A2L 名	物理意义	类型	最小值	最大值	初始值	NV?
Ri	O2TEMPRI	氧传感器感应室内热敏 电阻阻值	uint16	0	65535Ω	0	N
	O2TEMP	氧传感器温度	uint16	-40°C	1300℃	0	N

相关 A2L 标定(可调整):

标定量	物理意义	类型	X	Y	维数	Comment
KO2_T_HtrTemp	氧传感器温度与感应室内热敏电	Tabla	OTEMBRI	OTEMD	1x20	具体参数待
VsRi	阻阻值对比关系	Table O2TEMPRI		O21EMP	1820	标定

5.3.3 氧传感器加热占空比

如前所述,只要计算 $V_{H,eff}$, 就可以得到占空比值

由于水的露点原因,在氧传感器低温时(初始化),加热的占空比不得太大,之前已经定义,低温时最大的有效加热电压 V_{H,eff_Dew} = KO2_V_HtrEffDewPt = 2V。该加热电压的持续时间定义 KO2_t_HtrEffDewPtTiming = 15s

达到该 Timing 后,将以 $V_{H,eff}$ = KO2_V_HtrEffInit = 8.5V 加热,并以 0.4V/s 的加速度增加 $V_{H,eff}$,直至其上限 V_{H,eff_HiLim} = KO2_V_HtrEffHiLim = 12V。

期间,实时采集 Ri 值,以 PID 方式使 V_{SD1_7} 接近标定电压 RICALSC。

6. 诊断

通过读取 SPI 中 0x78 RD_DIAG,得到相应的故障码

ID	Register	Bit	Bit Name		Description							
		7	Diag Heater	00: STG	01: Open	10: STB	11: Normal	11				
		6	Diag Heater	00: 510	or: Open	10: 315	11: Normai	11				
		5	Ding IA ID	00: STG	01: UB LV	10: STB	11: Normal	11				
		4	Diag IA, IP	PA = 0 时才能说	参断			11				
0x78	RD_DIAG	3		00: STG	01: UB LV	10: STB	11: Normal					
		2	2	2	2	2	Diag UN	T_SC2G = high	才能诊断 STG, T	_SC2VB = high	且 ENSCUN=1 才	11
		2		能诊断 STB								
		1	Diag VM	00: STG	01: UB LV	10: STB	11: Normal	11				
		0	Diag VIVI	00.510	UI. UB LV	10. 515	11. Normal	11				

相关 A2L 变量(可调整):

相关量	A2L	类型		定义(bin)				
Diag Heater	DIAGHTR	枚举	00: STG	01: Open	10: STB	11: Normal	11	
Diag IA, IP	DIAGIAIP	枚举	00: STG	01: Open	10: STB	11: Normal	11	
Diag UN	DIAGUN	枚举	00: STG	01: Open	10: STB	11: Normal	11	
Diag VM	DIAGVM	枚举	00: STG	01: Open	10: STB	11: Normal	11	
Faults	FAULT	数组	Bit 0: λ	Bit 0: λ 标定 fault				
			Bit 1: Ri					
			Bit 2-7:	Reserved				

7. 通过 CAN 配置 CJ125 SPI

由于一些配置 SPI 及内部寄存器的不确定性,需要增加通过上位机与核心间 CAN 消息的收发来配置或读取 CJ125 的 SPI。

Matrix:

Command: 从上位机至 AS 核心

CANID	Byte7	Byte6	Byte5	Byte4	Byte3	Byte2	Byte1	Byte0
0x7EE	RD/	index	RD: 0xB2/	RD: 0xF3/	0x78			
	WR		WR:WR_INIT1	WR:WR_INIT2				

RD/WR: RD (Read) = 0x00, WR (Write) = 0x11

Index: 对于多个 CJ125,给芯片进行排序。一路 CJ125 时,index = 0x00。以此类推

Response: 从 AS 核心至上位机

CANID	Byte7	Byte6	Byte5	Byte4	Byte3	Byte2	Byte1	Byte0
0x7EF	ERROR	RD/	index	RD: RD_INIT1	RD: RD_INIT2	RD: RD_DIAG	unused	unused
		WR		WR: Echo	WR: Echo INIT2	WR: unused		
				INIT1 相应值	相应值			

ERROR: 0x00 = Normal

Byte2 及 Byte1 中,WR 的 Echo 是指回应相应的 Command 值,而非 RD_INITx 的值