UMBB Dpt de Maths

MI 2021/2022

Série d'escecies no 1: Les nombres réels et leurs propriétés.

★ Exercice 1 : [I] i)Soient a, b, c des nombres réels dire si les implications suivantes sont vraies ou fausses.
Complèter les par des conditions lorsque cela est nécessaire.

1)
$$a < b \Rightarrow a^2 < b^2$$
;

2)
$$a^2 < b^2 \Rightarrow a < b$$
;

3)
$$\sqrt{a} < \sqrt{b} \Rightarrow a < b$$
;

4)
$$a^2 < b^2 \Rightarrow |a| < |b|$$
;

5)
$$a < b \Rightarrow a^3 < b^3$$
;

6)
$$a^3 < b^3 \Rightarrow a < b$$
;

7)
$$a < b \Rightarrow a + c < b + c$$
; 8) $a < b \Leftrightarrow a - b < 0$;

8)
$$a < b \Leftrightarrow a - b < 0$$

10)
$$a < b \Rightarrow \frac{1}{a} > \frac{1}{b}$$
;

11)
$$a < b \Rightarrow \frac{a}{b} < 1$$
;

12)
$$a < b$$
 et $c < d \Rightarrow \frac{a}{c} < \frac{b}{d}$

ii) Comparez
$$6\sqrt{5}$$
 et $8\sqrt{3}$, puis $\frac{2}{\sqrt{6}-\sqrt{5}}$ et $\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}$

[II] i) Soient deux nombres réels a et b vérifiant -1 < a < 4 et -3 < b < -1

Donner un encadrement de a-b et de $\frac{a}{b}$

ii) Encadrez les quantités a+b, a-b, ab, $\frac{a}{b}$ et |a|+|b|,

pour a et b vérifiant $|a-1| \le 2$ et $-5 \le b \le -4$.

[III] les ensembles suivants sont-ils des intervalles, si oui de quels types?

$$A = [0,1[\ \cup \ [1,3[\ ; \ B = [0,2] \ \cup \ [6,11] \ \cup \ [1,8] \ ; \ C =]0,2[\ \cup \]3,5[\ ; \ D = [0,7] \ \diagdown \ [3,8]]$$

Exercice 2 : Résoudre dans R:

1)
$$|x+3|-|7x-1| \ge |x-1|$$
;

2)
$$\left| \frac{x-4}{x+1} \right| = \frac{x-2}{x+1}$$
;

3)
$$x(x-1)(x-2)\cdots(x-n) > 0$$
;

4)
$$\sqrt{2x+3} \ge x$$
.

Exercice 3 : Démontrer dans \mathbb{R} , les propriétés suivantes: 1) $|x \pm y| \le |x| + |y|$;

1)
$$|x \pm y| \le |x| + |y|$$
;

2)
$$||x| - |y|| \le |x \pm y|$$
;

3)
$$\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}$$
;

4)
$$|ux - vy| \le \sqrt{(u^2 + v^2)(x^2 + y^2)};$$

5)
$$1+|xy-1| \le (1+|x-1|)(1+|y-1|)$$
.

Exercice 4

1) Montrer que si l'entier n n'est pas un carré parfait, alors √nest irrationnel.

En déduire que $\sqrt{3} + \sqrt{7}$ n'est pas rationnel.

& 2) Soient x un nombre irrationnel et a un rationnel.

que peut on dire de x + a et aussi de ax pour $a \neq 0$?

- Montrer qu'il existe un irrationnel x tel que x² soit rationnel.
- Montrer que si x et y sont des rationnels positifs tels que √xest irrationnel, alors $\sqrt{x} + \sqrt{y}$ est aussi irrationnel.

Exercice 5

1) Montrer que si l'entier n n'est pas un carré parfait, alors \(\sqrt{n} est irrationnel. \)

En déduire que $\sqrt{3} + \sqrt{7}$ n'est pas rationnel.

- 2) Soient x un nombre irrationnel et a un rationnel, que peut on dire de x + a et aussi de ax pour $a \neq 0$?
- 3) Montrer qu'il existe un irrationnel x tel que $x^{\sqrt{2}}$ soit rationnel.
- 4) Montrer que si x et y sont des rationnels positifs tels que \sqrt{x} est irrationnel, alors $\sqrt{x} + \sqrt{y}$ est aussi irrationnel.

Exercice 6 : Démontrer à partir du système d'axiomes les propositions suivantes:

- 1) Les éléments; neutre , symétrique et unité sont uniques;
- 2) x.0 = 0.x = 0;
- $3)x.y = 0 \Rightarrow x = 0 \lor y = 0;$
- 4) $x < y \Rightarrow x + z < y + z$;
- 5) -x = (-1)x, (-x)y = x(-y) = (-xy), (-x)(-x) = x.x;
- 6) $x \le y \Rightarrow -y \le -x$ en particulier $x \le 0 \Rightarrow -x \ge 0$;
- 7) $(x < y \land z < 0) \Rightarrow x.z > y.z$.
- ★ Exercice 7 : Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants:

3)
$$\left[\frac{1}{2}; 1\right] \cap \mathbb{Q};$$

4)
$$\left[\frac{1}{2}; 1\right] \cap \mathbb{Q};$$

6)
$$\{\sqrt{x}, x \in]2, 9]\};$$

7)
$$\{xy; x \in]2,9], y \in]-1,10[\};$$

8)
$$\{x \in \mathbb{Q}, x^2 < 2\}$$
.

& Exercice 8 :

- [I] Soient A et B deux parties bornées non-vides de \mathbb{R} . Montrer que:
- a) Si A C B, alors inf B < inf A et sup A \le sup B.
- b) $\sup (A \cup B) = \max (\sup A, \sup B) et \inf (A \cup B) = \min (\inf A, \inf B)$.
- c) Si $A \cap B \neq \emptyset$, alors $\sup (A \cap B) \leq \min (\sup A, \sup B)$ et $\max (\inf A, \inf B) \leq \inf (A \cap B)$.
- [II] Soient A et B deux parties bornées non-vides de $\mathbb R$ telles que: $\forall a \in A, \forall b \in B, a \leq b$.

Démontrer que $\sup A$ et $\inf B$ existent et que $\sup A \leq \inf B$.

 $\textbf{[III]} \textit{Soit A une partie non-vide et bornée de } \mathbb{R}. \textit{ On note } B = \{|x-y|\,;\, (x,\ y) \in A^2\}.$

- a) Justifier que B est majorée.
- b) On note $\delta(A)$ la borne supérieure de cet ensemble. Prouver que $\delta(A) = \sup(A) \inf(A)$.

Exercice 5

1) Montrer que si l'entier n n'est pas un carré parfait, alors \(\sqrt{n} est irrationnel. \)

En déduire que $\sqrt{3} + \sqrt{7}$ n'est pas rationnel.

- 2) Soient x un nombre irrationnel et a un rationnel, que peut on dire de x + a et aussi de ax pour $a \neq 0$?
- 3) Montrer qu'il existe un irrationnel x tel que $x^{\sqrt{2}}$ soit rationnel.
- 4) Montrer que si x et y sont des rationnels positifs tels que \sqrt{x} est irrationnel, alors $\sqrt{x} + \sqrt{y}$ est aussi irrationnel.

Exercice 6 : Démontrer à partir du système d'axiomes les propositions suivantes:

- 1) Les éléments; neutre , symétrique et unité sont uniques;
- 2) x.0 = 0.x = 0;
- $3)x.y = 0 \Rightarrow x = 0 \lor y = 0;$
- 4) $x < y \Rightarrow x + z < y + z$;
- 5) -x = (-1)x, (-x)y = x(-y) = (-xy), (-x)(-x) = x.x;
- 6) $x \le y \Rightarrow -y \le -x$ en particulier $x \le 0 \Rightarrow -x \ge 0$;
- 7) $(x < y \land z < 0) \Rightarrow x.z > y.z$.
- ★ Exercice 7 : Déterminer (s'ils existent) : les majorants, les minorants, la borne supérieure, la borne inférieure, le plus grand élément, le plus petit élément des ensembles suivants:

3)
$$\left[\frac{1}{2}; 1\right] \cap \mathbb{Q};$$

4)
$$\left[\frac{1}{2}; 1\right] \cap \mathbb{Q};$$

6)
$$\{\sqrt{x}, x \in]2, 9]\};$$

7)
$$\{xy; x \in]2,9], y \in]-1,10[\};$$

8)
$$\{x \in \mathbb{Q}, x^2 < 2\}$$
.

& Exercice 8 :

- [I] Soient A et B deux parties bornées non-vides de \mathbb{R} . Montrer que:
- a) Si A C B, alors inf B < inf A et sup A \le sup B.
- b) $\sup (A \cup B) = \max (\sup A, \sup B) et \inf (A \cup B) = \min (\inf A, \inf B)$.
- c) Si $A \cap B \neq \emptyset$, alors $\sup (A \cap B) \leq \min (\sup A, \sup B)$ et $\max (\inf A, \inf B) \leq \inf (A \cap B)$.
- [II] Soient A et B deux parties bornées non-vides de $\mathbb R$ telles que: $\forall a \in A, \forall b \in B, a \leq b$.

Démontrer que $\sup A$ et $\inf B$ existent et que $\sup A \leq \inf B$.

 $\textbf{[III]} \textit{Soit A une partie non-vide et bornée de } \mathbb{R}. \textit{ On note } B = \{|x-y|\,;\, (x,\ y) \in A^2\}.$

- a) Justifier que B est majorée.
- b) On note $\delta(A)$ la borne supérieure de cet ensemble. Prouver que $\delta(A) = \sup(A) \inf(A)$.