$$\Rightarrow Z_n = \{[1], [2], ..., [n] = [0]\}$$

Let $f: G \rightarrow Z_n$ defined by $f(a^r) = [r]$ for all $a^r \in G$.

For all $[r] \in Z_n$, there exists a $a^r \in G$ such that $f(a^r) = [r]$ $\Rightarrow f$ is onto.

For $r \neq s$, $[r] \neq [s]$ and hence $f(a^r) \neq f(a^s)$ $\Rightarrow f$ is one-to-one.

For all
$$a^{r}$$
, $a^{s} \in G$, $f(a^{r} \cdot a^{s}) = f(a^{r+s}) = [r+s] = [r] + [s]$
$$= f(a^{r}) +_{n} f(a^{s})$$

 \Rightarrow f is a homomorphism. Hence (G, \cdot) is isomorphic to $(Z_n, +_n)$

mample 9. Prove that every finite group of order "n" is isomorphic a permutation group of degree n. [A.U M/J 2013]

(OR)

Mate and prove Cayley's theorem on permutation groups.

[MCA, Nov, 93, May 95]

Proof: Let G be the given group and A (G) be the group of all permutations of the set G.

For any $a \in G$, define a map $f : G \rightarrow G$ such that f(x) = ax. In is well defined:

Let $x = y \Rightarrow ax = ay \Rightarrow f_a(x) = f_a(y)$. Thus f_a is well defined. f_a is 1-1:

Again $f_a(x) = f_a(y) \Rightarrow ax \Rightarrow x = y$. Thus f_a is 1 - 1.

 f_a is onto: For any $y \in G$, $f_a(a^{-1}y) = a a^{-1}y$

 $= y \in G$

Thus we find a preimage $a^{-1}y$ for any "y" in G. Thus f_a is onto.

Hence f_a is permutation. (i.e.,) $f_a \in A$ (G).

Let K be the set of all such permutations. We can show that is a subgroup of A (G). Sincé $e \in G$, $f_a \in K$. Thus K is non-empty

Let
$$f_a$$
, $f_b \in K$.

Then
$$(f_a \circ f_a^{-1})(x) = f_a(a^{-1}x)$$

$$= aa^{-1}x$$

$$= ex$$

$$= f_e(x)$$

Thus the inverse of f_a is f_a^{-1}

$$(f_{a} \circ f_{b}) (x) = f_{a} (f_{b} (x))$$

$$= f_{b} (bx)$$

$$= abx$$

$$= f_{ab} (x)$$

$$\Rightarrow f_{a} \circ f_{b} = f_{ab} \in K.$$

Thus K is a subgroup of A (G).

Next we will show that G is isomorphic to K. Define a map : $\chi : G \to K$ such that $\chi (a) = f_a$. χ is well defined :

For
$$a, b \in G$$
, $a = b \Leftrightarrow ax = bx$

$$\Leftrightarrow f_a(x) = f_b(x)$$

$$\Leftrightarrow f_a = f_b$$

$$\Leftrightarrow \chi(a) = \chi(b)$$

 χ is one-one and onto.

 χ is a homomorphism:

$$\chi$$
 $(ab) = f_{ab} = f_a \circ f_b = \chi$ $(a) \cdot \chi$ (b)

Thus χ is a homomorphism and hence an isomorphism which proves the theorem.

Example 10. Show that every cyclic group of order n is isomorphic to $(\mathbf{Z_n}, +_n)$

Solution: Let (G, o) be a cyclic group of order n.

The element of G are $\{a, a^2, a^3, ..., a^n = e\}$.

The elements of Z_n are $\{[0], [1], [2], ..., [n-1]\}$.

Define

$$f: D \rightarrow Z_n$$
 by

f(e) = [0] and $f(a^i) = [i]$ for i < n where f is one-one and onto.

Then
$$f(a^{i} a^{j}) = f(a^{i+j}) = [i+j]$$

$$= [i] +_{n} [j]$$

$$= f(a^{i}) +_{n} f(a^{j})$$

Hence f is an isomorphism.

Example 11. Define: Symmetric group, Dihedral group. Show that if (G, *) is a cyclic group, then every sub group of (G, *) must be cyclic.

Show that every subgroup of a cyclic group is cyclic.

Solution: Let (G, *) be a cyclic group generated by "a", and let H be a subgroup of G. If H contains the identity element alone, then trivially H is cyclic and H = (e). Suppose that $H \neq (e)$. Since $H \subseteq G$, any element of H is of the form a^k for some integer K. Let

(ii) Group homomorphism preserves inverse

Since
$$a * a^{-1} = e_G = a^{-1} * a$$
 we have
$$g(a * a^{-1}) = g(e_G) = g(a^{-1} * a)$$

$$\Rightarrow g(a) \Delta g(a^{-1}) = e_H = g(a^{-1}) \Delta g(a)$$

$$\Rightarrow g(a^{-1}) \text{ is the inverse of } g(a)$$

$$\therefore g(a^{-1}) = [g(a)]^{-1}$$

(iii) Group homomorphism

Let S be a subgroup of (G, *)To show that $g(S) = \{x \in H/x = g(a) \text{ for some } a \in G\}$

is a subgroup of (H, Δ)

- (i) As $e_G \in S$, $g(e_G) = e_H \in g(s)$
- (ii) For each $x \in g(s)$, $\exists a \in s$ such that g(a) = xSince s is a sub group of G,

for each $a \in s$, $a^{-1} \in s$

$$g(a^{-1}) = [g(a)]^{-1} \in g(s)$$

 $\Rightarrow x^{-1} \in g(s)$

(iii) For $x, y \in g(s)$, $\exists a, b \in s$

Such that g(a) = x and g(b) = y

As s is a subgroup, $a * b \in s$

$$\Rightarrow g(a*b) = g(a) \Delta g(b)$$

$$= x \Delta y \in g(s)$$

g(s) is a subgroup of H.

4.3 NORMAL SUB-GROUP AND COSETS - LAGRANGE'S THEOREM :

Definition 1: Left coset of H in G.

Let (H, *) be a subgroup of (G, *). For any $a \in G$, the set $a \in G$ the

 $a H = \{a * h/h \in H\}$ is called the left coset of H in G determined by the element $a \in G$.

The element a is called the representative element of the left coset a H.

Note: The left coset of H in G determined by $a \in G$ is the same as the equivalence class [a] determined by the relation left coset modulo H.

Definition 2: Index of H in $G[i_G(H)]$

Let (H, *) be a subgroup of (G, *), then the number of different left (or right) cosets of H in G is called the index of H in G.

Definition 3. Normal sub-group

A subgroup (H, *) of (G, *) is called a normal sub-group if for any $a \in G$, $a \in H$ a.

Definition 4. Quotient group (or) factor group:

Let N be a normal subgroup of a group (G, *).

The set of all right cosets of N in G be denoted by

$$G/N = \{Na \mid a \in G\}$$

Now, define ⊗ as binary operation on G/N as

$$N a \otimes N b = N (a * b)$$

Then $(G/N \otimes)$ will form a group, called quotient group (or) factor group.

Definition 5. Direct product

Let (G, *) and (H, Δ) be two groups. The direct product of the two groups is the algebraic structure $(G \times H, \circ)$ in which the blank operation \circ on $G \times H$ is given by

$$(g_1, h_1) \circ (g_2, h_2) = (g_1 * g_2, h_1 \circ \Delta h_2)$$

for any $(g_1, h_1), (g_2, h_2) \in G \times H$.

Definition 6. Group homomorphism:

Let (G, *) and (G', \cdot) be two groups. A mapping $f: G \rightarrow G'$ called a group homomorphism if

$$\forall a, b \in G, f(a * b) = f(a) . f(b)$$

Definition 7. Kernel of group homomorphism:

Let (G, *) and (G', \cdot) be two groups with e' as the identity

Let $f: G \rightarrow G'$ be a homomorphism.

$$kerf = \{a \in G \mid f(a) = e'\}$$

Statement 1: [Lagrange's theorem] [A.U A/M 2004, 2005, N/D 2004]

The order of a subgroup of a finite group divides the order of the group. (OR) If G is a finite group, then $O(H) \mid O(G)$, for all sub-group H of G.

Statement 2: Fundamental theorem on homomorphism of groups

If f is a homomorphism of G onto G' with kernal k, then $G/K \approx G'$.

Theorem 1:

Let (H, *) be a subgroup of (G, *). The set of left cosets of H in G form a partition of G Every element of G belongs to one and only one left coset of H in G.

Proof: (i) To prove: Every element of G belongs to one and only one left coset of H in G.

. C.C Mainemaile

Let H be a subgroup of a group G. Let $a \in G$. Then a H = H if and only if $a \in H$.

Proof: Let $a \in G$

$$a H = H = ae \in H = H \Rightarrow a \in H$$

Conversely assume that $a \in H$

Then $ah \in H$, for all $h \in H$.

So $a H \subseteq H$

... (1)

Given any $y \in H$, $a^{-1}y \in H$ and $y = a(a^{-1}y) \in H$.

So $y \in a$ H for all $y \in H$.

(i.e.,) $H \subseteq a H$

... (2)

From (1) and (2) H = a H

Hence every element of G belongs to one and only one left coset of H in G.

(ii) To prove: The set of left cosets of H in G form a partition of G.

Let $a, b \in G$ and H be a sub group of G.

If $a H \cap H a \neq \phi$

Let $c \in a H \cap H a$

As $c \in a$ H we have cH = a H

[: Let H be a subgroup of a group G. Let $a, b \in G$ if

 $b \in a H$, then b H = a H]

As $c \in b$ H, we have cH = b H

So a H = c H = b H

Thus if $a H \cap b H \neq \phi$, then a H = b H.

Therefore any two distinct left cosets are disjoint. Hence the set of all (distinct) left cosets of H in G forms a partition of G.

Theorem 2: [Lagrange's theorem]

[A.U A/M 2004, 2005, N/D 2004, MINI [A.U A/M 2011, June 2011, M/J 2012, M/J 2013, M/J

The order of a subgroup of a finite group divides the matter of the group. (OR) If G is a finite group, then $\theta(H) \mid \theta(G) \mid \theta(G)$ sub-group H of G.

Solution: Statement: If G is a finite group and II in a milestance of G, then order of H is a divisor of order of G.

Proof:

Let
$$O(G) = n$$
, (Here n is finite)

Let
$$G = \{a_1 = e, a_2, a_3, \dots a_n\}$$
 and let H be a subgroup.

Consider the left cosets as follows

$$e * H = \{e * h \setminus \in H\}$$

$$a_2 * H = \{a_2 * H \setminus h \in H\}$$

$$a_n * H = \{a_n * h \setminus h \in H\}$$

We know that any two left cosets are either identical or disjoint

Also
$$0(e * H) = 0(H)$$

$$\therefore 0(a_i * H) = 0(H), \forall a_i \in G.$$

Otherwise if $a * h_i = a * h_j$ for $i \neq j$, by cancellation laws would have $h_i = h_j$, which is a contradiction.

Let there be k – disjoint cosets of H in K. Clearly their manner equals G (i.e.,) G = $(a_1 * H) \cup (a_2 * H) \cup \cup (a_k * H)$

$$0(G) = 0 (a_1 * H) + 0(a_2 * H) + ... + 0(a_k * II)$$

$$= 0(H) + 0(H) + ... + 0(H)$$

$$K - times$$

$$0(G) = K \cdot 0(H)$$

This implies 0(H) is a divisor of 0(G).

hence 3: Let (G, *) and (H, Δ) be groups and g: 0 $G \rightarrow$ H be a monopolism. Then the Kernel of g is a normal sub-gygroup.

[A.U. N/D, 2004] [A.U A/M 2011, M/J 2012 2, M/J 2013] Solution: Let K be the Kernel of the homomorph hism g (i.e.,) $G \setminus g(x) = e'$, where $e' \in H$ is the identity element of H}

To prove that K is a subgroup:

Let
$$x, y \in K$$
, then $g(x) = e'$ and $g(y) = e'$.

$$\lim : x * y^{-1} \in K$$

Hy definition of homomorphism,

$$g(x * y^{-1}) = g(x) \Delta g(y^{-1}) = g(x) \Delta [g(y)]^{-1}$$

= $e' \Delta (e')^{-1}$
= $e' \Delta e' = e'$.

Hence $x * y^{-1} \in K$ and this proves K is a sub-group of G by a finite for sub-groups.

move that K is normal: Let $x \in K$, $f \in G$, then $g(x_{\sim}) = e'$

$$f * x * f^{-1} \in K$$

$$= g(f) * g(x) * g(f^{-1})$$

$$= g(f) \cdot e^{-1} [g(f)]^{-1}$$

$$= g(f) [g(f)]^{-1}$$

$$= e'$$

$$f * x * f^{-1} \in K.$$

him h is a normal subgroup of G.

- (Fundamental Thereom on homomorphism of groups) f is a homomorphism of G onto G' with kernal K, then [A.U June 2011, N/D 2013] Proof:

Let $f: G \to G'$ be a homomorphism from the group (G, *) in the group (G', Δ) .

Then
$$K = Ker(f) = \{x \in G \mid f(x) = e'\}$$

is a normal sub-group of (G, *)

Also we know that the quotient set $(G/K, \otimes)$ is a group.

Define $\phi: G/K \to G'$ is mapping from the group $(G/K, \otimes)$ in the group (G', Δ), given by

Since, if
$$K \ a = K \ b$$

$$\Rightarrow a * b^{-1} \in K$$

$$\Rightarrow f(a * b^{-1}) = e'$$

$$\therefore f(a) \Delta f(b^{-1}) = e'$$

$$f(a) \Delta [f(b)]^{-1} = e'$$

$$f(a) \Delta [f(b)] = e' \Delta f(b)$$

$$\Rightarrow f(a) \Delta e' = f(b)$$

$$\Rightarrow f(a) = f(b)$$

$$\Rightarrow \phi(Ka) = \phi(Kb)$$

$$\phi \text{ is well defined.}$$

Claim: ϕ is a homomorphism.

Let Ka, $Kb \in G/K$

Now
$$\phi$$
 (K $a \otimes K b$) = ϕ [K $(a * b)$]
= $f[(a * b)]$
= $f(a) \Delta f(b)$
= ϕ (K a) Δ (K b)

 $\therefore \phi$ is a homomorphism.

Claim: ϕ is one-to-one.

If
$$\phi$$
 (Ka) = ϕ (K b)
then $f(a) = f(b)$
 $f(a) \Delta f(b^{-1}) = f(b) \Delta f(b^{-1})$
 $f(a * b^{-1}) = f(b * b^{-1}) = f(e) = e'$

 $\therefore a * b^{-1} \in K \Rightarrow K a = K b$

 ϕ is one-to-one.

Claim: ϕ is onto.

Let y be any element of G'.

Since $f: G \to G'$ is a homomorphism from G onto G', therefore there exists an element $a \in G$ such that f(a) = y.

 \therefore For every $a \in G$, K $a \in G/K$

We get
$$\phi$$
 (K a) = $f(a)$, for all $f(a) = y \in G'$

 ϕ is onto.

 $\phi: G/K \to G'$ is an isomorphism

$$G/K \equiv G'$$
.

Theorem 5: Prove that the intersection of two normal subgroups a normal subgroup. [MCA May, 91, MU][A.U M. [A.U M.]

Solution: Let H and K be any two normal subgroups of a group of a group when the last H ∩ K is normal in G.

since H and K are subgroups of G, $e \in H$ and $e \in K$.

Hence $e \in H \cap K$. Thus $H \cap K$ is a non-empty set.

Let $a, b \in H \cap K$

Claim: $ab^{-1} \in H \cap K$

Since, $a, b \in H \cap K$, both a, b being to H and K.

Since H and K are subgroups of G, $ab^{-1} \in H$ and $ab^{-1} \in K$ so that $ab^{-1} \in H \cap K$.

Hence $H \cap K$ is a subgroup of G, by a criterion for subgroup.

To prove: H ∩ K is normal:

Let $x \in H \cap K$, and let $g \in H$

Since $x \in H \cap K$ and $x \in H$ and $x \in K$.

Since $x \in H$, $g \in G$, $\Rightarrow gxg^{-1} \in K$ (as H is normal)

Likewise $x \in K$, $g \in G \in gxg^{-1} \in K$ (as K is normal)

Hence $x \in H \cap K$ and $g \in G \Rightarrow gxg^{-1} \in H \cap K$.

This $H \cap K$ is a normal subgroup of G.

Theorem 6: Every subgroup of an abelian group is a normal subgroup.

[A.U N/M 2013] Proof: Let (G, *) be an abelian group and (N, *) be a subgroup of G.

Let g be any element in G and let $n \in \mathbb{N}$.

Now,
$$g * n * g^{-1} = (n * g) * g^{-1}$$
 [: G is abelian]
= $n * (g * g^{-1})$.
= $n * e$
= $n \in \mathbb{N}$

 $\therefore \forall A g \in G \text{ and } n \in N, g * n * g^{-1} \in N$

: (N, *) is a normal subgroup.

Theorem 7: Let < H, * > be a subgroup of < G, * >. Then show that $\langle H, * \rangle$ is a normal subgroup iff $a * h * a^{-1} = H$, $\forall a \in G$. [MCA, Nov., 93, May 92, MU]

Solution: Let H be normal in G.

Then by definition a * H = H * a, for all $a \in G$.

Then
$$a * H * a^{-1} = a * (a^{-1} * H)$$

= $(a * a^{-1}) * H$
= $e * H$
= H

Conversely let $a^{-1} * H * a = H$, for all $a \in G$.

(i.e.,)
$$a * (a^{-1} * H * a) = a * H$$
)

(i.e.,)
$$(a*a^{-1})*(H*a) = a*H$$

(i.e.,)
$$e * (H * a) = a * H$$

(i.e.,)
$$H * a = a * H$$

Thus H is a normal subgroup.

Theorem 8: Let $\langle A, * \rangle$ be a group. Let $H = \{a/a \in G \text{ and } \}$ $a*b = b*a \ \forall \ b \in G$. Show that H is a normal subgroup.

[MCA May, 1990, March, 96, MU]

Solution: $H = \{a \in G \mid a*b = b*a, \forall b \in G\}.$

Since e * a = a * e = a, $\forall a \in G$, we have $e \in H$.

: H is non-empty

Let $x, y \in H$. Then

a * x = x * a, $\forall x \in G$ and a * y = y * a, $\forall y \in G$

4.4 DEFINITIONS AND EXAMPLES OF RINGS AND FIELDS:

Definition 1: Ring

[A.U M/J 2014]

An algebraic system (S, +, .) is called a ring if the binary operations + and . on S satisfy the following three properties:

- 1. (S, +) is an abelian group
- 2. (S, .) is a semigroup
- 3. The operation . is distributive over +; that is, for any $a, b, c \in S$,
- $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$

Examples:

- 1. The set of all integers Z, the set of all rational numbers R⁺, the set of all real numbers R are rings under the usual addition and usual multiplication.
- 2. The set of all $n \times n$ matrices M_n is a ring under the matrix addition and matrix multiplication.
- 3. If n is a positive integer, then $Z_n = \{\overline{0}, \overline{1}, \dots \overline{n-1}\}$ is a ring under $+_n$, the addition modulo n and \times_n , the multiplication modulo n.
- 4. Let (R, +, .) be a ring and X be a non-empty set. Let A be the set of all functions from X to R. (i.e.,) $A = \{f \mid f : X \rightarrow R \text{ is a function}\}$ we define \oplus and . on A as follows:
- (i) if $f, g \in A$, then $f \oplus g : X \to R$ is given by $(f \oplus g)(x) = f(x) + g(x)$ for all $x \in X$.
- (ii) if $f, g \in X$ then $f.g: X \to R$ is given by (f.g)(x) = f(x).g(x) for all $x \in X$.

Definition 2: Integral domain.

A commutative ring (S, +, •) with identity and without divisors of zero is called can integral domain.

Definition 3: Field

A commutative ring (S, +, •) which has more than one element such that every non-zero element of S has a multiplicative inverse in S is called a field.

Definition 4: Sub ring.

A subset $R \subseteq S$ where $(S, +, \bullet)$ is a ring is called a subring if $(R, +, \bullet)$ is itself with the operations + and \bullet restricted to R.

Examples:

- 1. The ring of integers Z is a subring of the ring of all rational numbers Q.
- 2. In Z the ring of all integers the set of all even integers is a subring.

Definition 5: Ring homomorphism

Let $(R, +, \bullet)$ and $(S, \oplus O)$ be rings. A mapping $g : R \to S$ is called a ring homomorphism from $(R, +, \bullet)$ to (S, \oplus, O) if for any $a, b \in R$.

$$g(a + b) = g(a) \oplus g(b)$$
 and $g(a \cdot b) = g(a) \odot g(b)$

Examples:

1. The ring M_n of all non-matrices is not commutative and has non-zero zero divisors. For example: Let n=2, then if $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $B=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ then $AB=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $BA=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. So $AB\neq BA$ and A is non-zero zero divisor.

DOWNLOADED FROM STUCOR APP

- 2. The ring Q of all rational numbers, and the ring R of real numbers are fields.
- 3. The ring $(Z_7, +_7, \times_7)$ is a field.
- 4. The ring $(Z_{10}, +_{10}, \times_{10})$ is not an integral domain. (as $5 \times_{10} 2 = 0$, yet $5 \neq 0$, $2 \neq 0$ in Z_{10}).
- 5. The ring Z of all integers is an integral domain but not a field

Definition 6. Commutative Ring:

A ring (R, +, codt) is said to be commutative if $a \cdot b = b \cdot a \ \forall \ a, b \in R$

Theorem 1: Every finite integral domain is a field.

Proof: Let (R, +, •) be a finite integral domain.

To prove $(R - \{0\}, \bullet)$ is a group i.e., to prove

- (i) there exists an element $1 \in \mathbb{R}$ such that $1 \cdot a = a \cdot 1 = a$, for all $a \in \mathbb{R}$ $(1 \in \mathbb{R}$ is an identity)
- (ii) for every element of $0 \neq a \in \mathbb{R}$, there exists an element $a^{-1} \in \mathbb{R}$ such that

$$a \cdot a^{-1} = a^{-1} \cdot a = 1$$

Let
$$R - \{0\} = \{a_1, a_2, a_3, \dots a_n\}$$

Let $a \in \mathbb{R} - \{0\}$, then the elements aa_1 , aa_2 , ... aa_n are all in $\mathbb{R} - \{0\}$ and they are all distinct.

(i.e.,) If
$$a . a_i = a . a_j, i \neq j$$

then
$$a \cdot (a_i - a_j) = 0$$

Since R is an integral domain and $a \neq 0$, we must have $a_i - a_j = 0$, (i.e.,) $a_i = a_j$ which is a contradiction.

 \therefore R - $\{0\}$ has exactly *n* elements, and R is a commutative ring with cancellation law

$$\therefore$$
 we get $a = a \cdot a_{i_0}$, for some i_0 (since $a \in \mathbb{R} - \{0\}$)

i.e.,
$$a \cdot a_{i_0} = a_{i_0} \cdot a$$
 (Since R is commutative)

Thus, let $x = a \cdot a_i$ for same $a_i \in \mathbb{R} - \{0\}$, and

$$y.a_{i_0} = a.a_{i_0} = (a_i.a) a_{i_0} = a_i.a = a.a_j = y$$

 \therefore Hence a_{i_0} is an unity R - $\{0\}$. We write it as 1.

Since $1 \in \mathbb{R} - \{0\}$, therefore there exists an element $aa_k \in \mathbb{R} - \{0\}$ such that

$$aa_{\mathbf{k}} = 1$$

$$\therefore ba = ab = 1 \text{ (let } a_k = b)$$

 \therefore b is the inverse of a, and conversely. Hence $(R, +, \bullet)$ is a field.

Thereom 2: Every field is an integral domain, but the converse need not be true.

Proof:

Let (F, +, •) is a field.

(i.e.,) F is a commutative ring with unity.

To prove F is an integral domain it is enough to show that it has non zero divisor.

Let $a, b \in \mathbb{F}$, such that a.b = 0

Let $a \neq 0$, then $a^{-1} \in F$

$$a.b = 0$$

$$\Rightarrow a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0$$

5.1 PARTIAL ORDERING-POSETS - LATTICES AS POSETS

Def. Partial order relation

A binary relation R in a set P is called a partial order relation or a partial ordering in P iff R is reflexive, antisymmetric, and transitive.

Def. Poset

A set P together with a partial ordering R is called a partially ordered set or a poset.

Note: It is conventional to denote a partial ordering by the symbol ≤. This symbol does not necessarily mean "lessthan or equal to" as is used for real numbers.

Def. Totally ordered set.

Let (P, \leq) be a partially ordered set. If for every $x, y \in P$ we have either $x \leq y \lor y \leq x$, then \leq is called simple ordering or linear ordering on P and (P, \leq) is called a totally ordered or simply ordered set or a Chain

Example: The poset (Z, \le) is totally ordered, since $a \le b$ or $b \le a$ whenever a and b are integers.

Def. Let (P, \leq) be a partially ordered set and let $A \subseteq P$. Any element $x \in P$ is an upper bound for A if for all $a \in A$, $a \leq x$.

Similarly, any element $x \in P$ is a lower bound for A if for all $a \in A$, $x \le a$

Def. Let (P, \leq) be a partially ordered set and let $A \subseteq P$. Any element $x \in P$ is a least upper bound or supremum, for A if x is an upper bound for A and $x \leq y$ where y is any upper bound for A. Similarly, then greatest lower bound, or infimum, for A is an element $x \in P$ such that x is a lower bound and $y \leq x$ for all lower bounds y.

Def. Well-ordered

A partially ordered set is called well-ordered if every nonempty subset of it has a least member.

Def. Hasse diagram or partially ordered set diagram.

A partial ordering \leq on a set P can be represented by means of a diagram known as a Hasse diagram or a partially ordered set diagram of (P, \leq) . In such a diagram, each element is represented by a small circle or a dot.

The circle for $x \in P$ is drawn below the circle for $y \in P$ if x < y, and a line is drawn between x and y if y covers x.

If x < y but y does not cover x, then x and y are not connected directly by a single line. However, they are connected through one ore more elements of P. It is possible to obtain the set of ordered pairs in \leq from such a diagram.

Example: Let $P = \{1, 2, 3, 4\}$ and \leq be the relation "lessthan or equal to" then the Hasse diagram is

Note:

- 1. Hasse diagram, named after the twentieth Century German mathematician Helmut Hasse.
- 2. In a digraph we apply the following rules then we get Hasse diagram.
- (i) Each vertex of A must be related to itself. So the arrows from a vertex to itself are not necessary.
- (ii) If a vertex b appears above vertex a and if vertex a is connected to vertex b by an edge, then aRb, so direction arrows are not necessary.
- (iii) If vertex C is above a and if c is connected to a by a sequence of edges then arc.
- (iv) The vertices are denoted by points rather than by circles.

Example. Let $A = \{a, b\}$

Hasse diagram

$$B = P(A) = \{\{\phi\}, \{a\}, \{b\}, \{a, b\}\}\$$

Then ⊆ is a relation an a whose diagraph is as follows

Example 1. Show that the "greater than or equal" relation (\geq) is a partial ordering on the set of integers.

Solution: Since $a \ge a$ for every integer a, \ge is reflexive. If $a \ge b$ and $b \ge a$, then a = b. Hence, \ge is antisymmetric. Finally, \ge is transitive since $a \ge b$ and $b \ge c$ imply that $a \ge c$. It follows that \ge is a partial ordering on the set of integers and (Z, \ge) is a poset.