OPTIMIZACIÓN

Erik Cuevas, Valentín Osuna, Diego Oliva y Margarita Díaz

CAPÍTULO 2 ALGORITMOS GENÉTICOS (GA)

Introducción

- Los sistemas adaptivos artificiales (SAA) son una opción viable para resolver algunos problemas clásicos de inteligencia artificial
- Algunos ejemplos son el γ-pandemonium, sistemas morfogenéticos, autómata autoreproducido, solucionador general de problemas
- Los SAA están estrechamente relacionados con las metaheurísticas
- Algoritmos Genéticos (AG) es una metaheurística inspirada en la evolución de la especies, y pertenece a los llamados Algoritmos Evolutivos
- Los AG fueron propuestos por Holland y sus colegas en los 60's para resolver problemas de optimización
- Sus operadores son selección, cruza y mutación

Generalidades

Minimizar

$$f(x) = f(x_1, x_2) = a + \exp(1) - a \cdot \exp\left(-b\sqrt{\frac{1}{d}(x_1^2 + x_2^2)}\right) - \exp\left(\frac{1}{d}(\cos(c \cdot x_1) + \cos(c \cdot x_2))\right)$$
(2.1)

considerando

$$x_1, x_2 \in [-15, 30]$$

Inicialización

- Los individuos (o soluciones candidatas), son los valores que puede tomar una posible solución al problema
- Los individuos pueden ser vectores de números binarios, o vectores de números reales
- Al principio del algoritmo es necesario inicializar la población de individuos, mediante (caso de individuos binarios):

$$b_{i,j} = 2 * rand(\cdot) - 1$$

(2.2)

$$i = 1,...,Np;$$
 $j = 1,...,Nb*d$

Selección de padres

- Sirve para seleccionar a los padres que serán cruzados
 - Selección Proporcional
 - Método de la Ruleta
 - Sobrante Estocástico
 - Universal Estocástica
 - Muestreo Determinístico
 - Selección por Rangos
 - Selección por Torneo
 - Selección de Estado Estable

Método de la Ruleta (1/2)

• En este algoritmo se utiliza el valor de aptitud (*fitness*) de los padres para construir un conjunto de probabilidades de selección, similar a una ruleta con particiones de distintos tamaños

• Algoritmo:

- Se evalúa a cada individuo considerando la función objetivo f(xi)
- Se calcula el acumulado de la función objetivo E
- Se calcula la posibilidad de selección de cada individuo p
- Se calcula la probabilidad acumulada de cada individuo qi
- Se genera un número al azar uniformemente distribuido r
- Se selecciona el padre que cumple qi > r

Método de la Ruleta (2/2)

• Ecuaciones:

$$E = \sum_{i=1}^{Np} f(x_i)$$

$$p_i = \frac{f(x_i)}{E}$$

$$q_i = \sum_{j=1}^i p_j$$

Cruza (1/2)

- Consiste en el intercambio de material genético entre soluciones candidatas
 - Cruza de un punto
 - Cruza de dos puntos
 - Cruza uniforme

Figura 2.5. Cruza de un punto para individuos binarios.

Cruza (2/2)

Figura 2.6. Cruza de *n* puntos para individuos binarios.

Figura 2.7. Cruza uniforme para individuos binarios.

Mutación

 Consiste en cambiar cada bit de una solución candidata binaria con base en probabilidades:

```
% Mutación en el Algoritmo Genético Binario
% Erik Cuevas, Valentín Osuna, Diego Oliva y Margarita Díaz
%% Mutación:
sizeH=size(H,1); Hm=rand(sizeH,Nb*d)<mutacion;</pre>
for c=1:sizeH
ind=find(Hm(c,:));
  H(c,ind)=\sim H(c,ind);
end
                   % Hijos mutados
Hm=H;
Hr=[];
                   % Hijos mutados convertidos a valores reales
for ind = 1 : sizeH
  Hr=[Hr; DECOD(Hm(ind,1:Nb),l,u,Nb),DECOD(Hm(ind,Nb+1:Nb*2),l,u,Nb)];
end
```

Programa 2.6. Mutación en el algoritmo Genético Binario.

Selección del más apto

 Consiste en seleccionar a los individuos más aptos que sobrevivirán a la siguiente generación:

Programa 2.7. Selección de los más aptos en el algoritmo Genético Binario.

Pseudocódigo

Algoritmo 2.1 Algoritmo Genético Binario	
1.	Configurar parámetros del algoritmo
2.	Inicializar y evaluar población inicial
3.	Mientras (no se cumpla criterio)
4.	Seleccionar padres considerando su aptitud
5.	Cruzar padres, generar hijos
6.	Mutación hijos
7.	Generar población de individuos más aptos
8.	Mostrar resultado