How much CO₂ at 1.5°C and 2°C? – Supplementary Information

Richard Betts, Doug McNeall

The Transient Climate Response (TCR) was originally defined as the warming at the time (approx. 70 years) of CO_2 doubling in a 1%^{-y} increasing CO_2 climate model experiment. More recently, (Frame *et al.* 2006, Gregory & Forster, 2008, Held *et al.* 2010, Otto *et al.* 2013, Richardson *et al.* (2016). I) it is defined as the temperature response of the Earth system (ΔT) to any gradual increase in forcing (ΔF), normalised by the ratio of the forcing change to the forcing due to the doubling of CO_2 ($\Delta F_{2\times CO_2}$).

$$TCR = \frac{\Delta T}{\Delta F} \Delta F_{2 \times CO_2}$$
 (Eq. 1)

Rearranging

$$\Delta F = \frac{\Delta T}{TCR} \Delta F_{2 \times CO_2}$$

And we assume a log-linear form for the forcing due to CO₂

$$\Delta F = 5.35 \times ln(\frac{c}{c_0})$$
 (Eq.2)

We substitute ΔF and rearrange to obtain C, the carbon dioxide concentration at a particular temperature change and TCR.

$$C = C_0 \times exp\left(\frac{\Delta T \Delta F_{2 \times CO_2}}{5.35 \times TCR}\right)$$
 (Eq. 3)

Estimates for the various parameters are as follows:

 $\Delta F_{2 \times CO_2}$ is estimated as 3.44 W/m2 by Forster et al. (2013), with a 5-95% confidence interval of +- 10%. We use the central value only. This is the value used by Richardson et al. (2016). A higher value of 3.7 Wm⁻² Vial et al. (2013).

 C_0 is as pre-industrial carbon dioxide concentration of 280 ppm.

 ΔT is a temperature change corresponding to a specific global warming level (GWL) of either 1.5 or 2 degrees above pre-industrial.

We use equation 3 to create a transfer function, that maps a particular value of TCR and temperature change to a carbon dioxide concentration (figure 1).

We use a Monte Carlo technique to take 10⁶ samples from a probability distribution of TCR and calculate the corresponding value of CO₂ concentration using the transfer function. This results

in a distribution of CO₂ concentration for the given temperature change of 1.5 or 2K (figure 2, and figure 1 of the main paper).

Figure 2

We initially use two distributions of TCR: 1) A Gaussian distribution, fitted to have very similar 5th and 95th percentiles as the IPCC AR5 estimate (1.0 and 2.5 k) [i.e. TCR \sim N(1.75, 0.45²)]. 2) The calculated distribution from Richardson *et al.* (2016), with 5th and 95th percentiles of 1 and 3.3K, and a median of 1.66K (figure 3).

Figure 3.

5th, 50th and 95th percentiles for the distributions are as follows:

"AR5 2 degrees" 5% 50% 95% 469.3967 584.0162 1001.7613

"AR5 1.5 degrees" 5% 50% 95% 412.5196 485.9686 728.3879

"R16 2 degrees" 5% 50% 95% 415.6429 606.1163 969.7779

"R16 1.5 degrees" 5% 50% 95% 376.5562 499.6967 710.8758