VIENNA UNIVERSITY OF TECHNOLOGY

184.725 High Performance Computing

TU WIEN INFORMATICS

Exercise 1

Authors: Camilo Tello Fachin 12127084

Supervisor: Prof. Dr. Jesper Larsson Träff

December 4, 2022

Abstract

Here documented the results of exercise 1.

Contents

1	Exercise 1 - Closed Form Expressions	1
	1.1 $\sum_{i=0}^{d} k^{i}$ for $k > 0$ (Ex1.1)	1
	1.2 $\sum_{i=1}^{d} ik^{i}$ for $k > 0$ (Ex1.4)	
	1.3 $\sum_{i=1}^{d} i2^{d-i}$ (Ex1.3)	1
	1.4 $\sum_{i=1}^{d} i2^{i}$ (Ex1.2)	1
2	Exercise 2 - Graph Tree's with Canonical Numbering	2
	2.1 T_k^d with $k = 3$ and $d = 3$	2
	2.2 B_k^d with $k=3$ and $d=4$	2
	2.3 Complete unbalanced binary tree	2
3	Exercise 3 - Planar Graph H_d	3
4	Exercise 4 - Gray Code Embedding in a Hypercube	4
5	Exercise 5 - Inverse Gray Code	5
6	Exercise 6 -	5
7	Exercise 7 -	5

1 Exercise 1 - Closed Form Expressions

1.1 $\sum_{i=0}^{d} k^{i}$ for k > 0 (Ex1.1)

$$\sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=0}^{d} k^{i} - k \sum_{i=0}^{d} k^{i} = \sum_{i=0}^{d} k^{i} - \sum_{i=1}^{d+1} k^{i}$$

$$\sum_{i=0}^{d} k^{i} (1 - k) = 1 - k^{d+1}$$

$$\sum_{i=0}^{d} k^{i} = \frac{k^{d+1} - 1}{k - 1}$$
(1)

1.2 $\sum_{i=1}^{d} ik^{i}$ for k > 0 (Ex1.4)

$$\sum_{i=1}^{d} ik^{i} = \sum_{i=0}^{d} ik^{i} = \sum_{i=0}^{d} k \frac{\mathrm{d}}{\mathrm{d}k} k^{i} = k \frac{\mathrm{d}}{\mathrm{d}k} \sum_{i=0}^{d} k^{i}$$

$$\sum_{i=1}^{d} ik^{i} = k \frac{\mathrm{d}}{\mathrm{d}k} \frac{1 - k^{d+1}}{1 - k} = \frac{dk^{d+2} - (d+1)k^{d+1} + k}{(1-k)^{2}}$$
(2)

1.3 $\sum_{i=1}^{d} i 2^{d-i}$ (Ex1.3)

$$\sum_{i=1}^{d} i 2^{d-i}, \text{ use k instead of 2}$$

$$\sum_{i=1}^{d} i k^{d-i} = \sum_{i=0}^{d} dk^{d-i} - \sum_{i=0}^{d} (d-i)k^{d-i}$$

$$= d \sum_{i=0}^{d} k^{j} - \sum_{i=0}^{d} j k^{j} \text{ with } j := d-1$$

$$= \frac{d(k^{d+1} - 1)}{k - 1} - \frac{dk^{d+2} - (d+1)k^{d+1} + k}{(1 - k)^{2}} \text{ set } k \text{ back to 2}$$

$$= d2^{d+1} - d - d2^{d+2} + d2^{d+1} + 2^{d+1} - 2$$

$$\sum_{i=1}^{d} i 2^{d-i} = 2^{d+1} - 2 - d$$
(3)

1.4 $\sum_{i=1}^{d} i2^{i}$ (Ex1.2)

$$\sum_{i=1}^{d} i2^{i} = d2^{d+2} - (d+1)2^{d+1} + 2 \quad \text{with use of (2)}$$

2 Exercise 2 - Graph Tree's with Canonical Numbering

2.1 T_k^d with k=3 and d=3

Figure 1: Fixed-degree k-ary heigh d tree ${\cal T}_k^d$ with k=3 and d=3

$\textbf{2.2} \quad B_k^d \text{ with } k=3 \text{ and } d=4$

Figure 2: Complete heigh d k-nomial tree ${\cal B}_k^d$ with k=3 and d=4

2.3 Complete unbalanced binary tree

The tree drawn below is following the Pre-Order numbering scheme.

Figure 3: Complete (but unbalanced) binary tree of height d=4 with p=9 nodes.

3 Exercise 3 - Planar Graph H_d

For which d is the hypercube H_d a planar graph? In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. in fact this works for $d \leq 3$. It can also be shown with Wagner's theorem.

Figure 4: Proof without words that a hypercube graph is non-planar Wagner's theorems and finding either K_5 (top) or $K_{3,3}$ (bottom) subgraphs [1]

In fact for all hypercubes up to $d \leq 3$, neither K_5 nor $K_{3,3}$ can be found embedded in the hypercube.

Г

4 Exercise 4 - Gray Code Embedding in a Hypercube

The Gray code algorithms 2 and 3 from the HPC script are implemented in C and shown in the listing below. The executed binary indeed yields the console output yarg and gray did not throw errors - Ex1.4 done :-).

C Language Listing for EX1.4

```
#include <stdio.h>
 1
2
    #include <math.h>
    typedef unsigned int uint;
3
4
    uint gray(uint num)
5
6
        return num \hat{} (num >> 1);
 7
    }
    uint yarg(uint num)s
8
9
10
        uint mask = num;
11
        while (mask)
12
13
            mask >>= 1;
            num ^= mask;
14
15
16
        return num;
17
    uint yarg32(uint num)
18
19
20
        num = num >> 16;
21
        num \hat{}= num >> 8:
22
        num = num >> 4;
23
        num = num >> 2;
24
        num = num >> 1;
        return num;
25
26
    int main()
27
28
        int d = 20;
29
30
        uint old = gray(0);
31
        for (int j = 1; j < pow(2, d); j++)
32
            uint ans = gray(j);
33
34
            uint diff = old ^ ans;
            int check = 0;
35
36
            for (int k = 0; k < d; k++)
37
38
39
                if (diff == (1 << k))
40
                    check++;
41
42
43
            if (check != 1)
44
```



```
45
                  printf ("gray() error");
46
                 break;
47
48
49
             if (yarg(ans) != j)
50
                  printf ("yarg() error");
51
                 break;
52
53
54
             old = ans;
55
56
         printf ("yarg and gray did not throw errors - Ex1.4 \text{ done } :-)! \n");
         return 0;
57
58
```

- 5 Exercise 5 Inverse Gray Code
- 6 Exercise 6 -
- 7 Exercise 7 -

References

[1] K. Wagner. (1937). Wagner's Theorem - Über eine Eigenschaft der Ebenen Komplexe, [Online]. Available: https://en.wikipedia.org/wiki/Wagner%27s_theorem (visited on 04/12/2020).