Минимален покриващ кръг

I. Постановка на задачата

Считам, че читателят е запознат на интуитивно ниво с понятия от Евклидовата геометрия като точка, окръжност, кръг, отсечка, разстояние между точки и други.

Ще използвам нотация: $\mathcal{C}_1 \prec \mathcal{C}_2 \stackrel{\text{\tiny def}}{=}$ Кръгът \mathcal{C}_1 е с по-малък радиус от кръга \mathcal{C}_2 . Аналогично за \preccurlyeq , \succ , \succcurlyeq , \asymp .

Кръг \mathcal{C} наричаме *покриващ* за крайно множество от точки V, ако $\forall v \in V : v \in \mathcal{C}$.

Условие на задачата:

За дадено крайно множество от поне 2 точки в Евклидовата равнина, се търси покриващ кръг с най-малък радиус (минимален покриващ кръг или МПК).

Твърдение: (без доказателство)

Нека \mathcal{C}_V е минимален покриващ кръг за множество от точки V. Тогава едно от следните е в сила:

- 1. Съществуват 3 различни точки $u_0, v_0, w_0 \in V$ такива, че $C_V = C_{\{u_0, v_0, w_0\}}$ и тези точки определят остроъгълен триъгълник.
- 2. Съществуват 2 различни точки $u_0, v_0 \in V$ такива, че $C_V = C_{\{u_0, v_0,\}}$ и отсечката межу тях е диаметър за C_V .

Тези точки ще наричаме *носители* за V. Те се намират по окръжността, определена от C_V . Тъй като носителите еднозначно определят единствен кръг, то C_V е единствен.

 Φ иг. 1 Множество с носители u_0 , v_0 и w_0

 Φ иг. 2 Множество с носители u_0 и v_0

Лема:

Нека V е множество от поне 3 точки, а C_V е минималният покриващ кръг за V. Ако $v \in V$ не е носител за C_V , то $C_{V\setminus \{v\}} = C_V$.

Доказателство:

Тъй като v не е носител за C_V , $V\setminus\{v\}$ съдържа всички носители, но C_V е покриващ за $V\setminus\{v\}$, така че $C_{V\setminus\{v\}} \leq C_V$. Ако допуснем, че $C_{V\setminus\{v\}} < C_V$, то $C_{V\setminus\{v\}}$ е по-малък кръг, покриващ носителите, което е противоречие с факта, че C_V е минималният такъв. В такъв случай $C_{V\setminus\{v\}} = C_V$, но C_V е единственият кръг с този радиус, покриващ носителите, така че $C_{V\setminus\{v\}} = C_V$.

Следствие от лемата:

Нека V е множество от поне 2 точки, C_V е минималният покриващ кръг за V и $u \notin C_V$. Тогава u е носител за $C_{V \cup \{u\}}$.

Доказателство:

В частност $u \notin V$, така че $V = (V \cup \{u\}) \setminus \{u\}$.

Нека u не е носител за $\mathcal{C}_{V\cup\{u\}}$. От лемата имаме, че $\mathcal{C}_V=\mathcal{C}_{(V\cup\{u\})\setminus\{u\}}=\mathcal{C}_{V\cup\{u\}}$, което е противоречие с $u\notin\mathcal{C}_V$.

II. Алгоритъм за минимален покриващ кръг

```
function c2 (point u, point v) // МПК за 2 точки { return a disk with center x = \left(\frac{u_x + v_x}{2}, \frac{u_y + v_y}{2}\right) and radius r = dist(x, u) } } function c3 (point u, point v, point w) // МПК за 3 точки, образуващи островгелен трибебленик { D = 2[u_x(v_y - w_y) + v_x(w_y - u_y) + w_x(u_y - v_y)] \\ o_x = \left[\left(u_x^2 + u_y^2\right)(v_y - w_y) + \left(v_x^2 + v_y^2\right)(w_y - u_y) + \left(w_x^2 + w_y^2\right)(u_y - v_y)\right]/D \\ o_y = \left[\left(u_x^2 + u_y^2\right)(w_x - v_x) + \left(v_x^2 + v_y^2\right)(u_x - w_x) + \left(w_x^2 + w_y^2\right)(v_x - u_x)\right]/D \\ return a disk with center <math>x = (o_x, o_y) and radius r = dist(x, u) }  Горните функции се изчисляват за константно време. Оставям на читателя да докаже коректността им!  function shuffle (array a, int i) // разбърква първите i елемента на масива a { for (j = i; j > 0; j = j - 1) { k = \text{random integer from 0 to } j - 1 \\ \text{swap}(a[j-1], a[k])  }
```

Разбъркването на елементи отнема време O(i)

III. Анализ на коректност и сложност на алгоритъма

- 1. Инвариантата на loop3 е:
 На всяка стопка от цикола, C е МПК за точките $a[0] \dots a[k-1]$ и носители a[i] и a[j].
 Сложността му е $\Theta(j)$.
- 2. Инвариантата на loop2 е: Ha всяка стъпка от цикъла, C е МПК за точките $a[0] \dots a[j-1]$ и носител a[i].

Нека $\mathcal C$ е МПК за точките $a[0]\dots a[j-1]$ и носител a[i]. Нека $\mathcal D$ е МПК за $a[0]\dots a[j]$ и носител a[i].

Ако $a[j] \notin C$, от лемата имаме, че тя е носител за D. Вероятността за това е

$$\frac{1}{j+1}$$
, ако D има 2 носителя и $\frac{2}{j+1}$, ако D има 3 носителя

Все пак a[i] е фиксиран носител.

В първия случай сложността на тази итерация е:

$$\frac{1}{j+1}\Theta(j)+\frac{(j+1)-1}{j+1}\Theta(1)=\Theta(1)$$

, а във втория:

$$\frac{2}{j+1}\Theta(j) + \frac{(j+1)-2}{j+1}\Theta(1) = \Theta(1)$$

И в двата случая имаме сложност $\Theta(1)$, откъдето очакваната сложност на loop2 е:

$$\sum_{i=1}^{i-1} \Theta(1) = \Theta(i)$$

3. Инвариантата на *loop1* е:

Ha всяка стъпка от цикъла, C е $M\Pi K$ за точките $a[0] \dots a[i-1]$.

Нека $\mathcal C$ е МПК за точките $a[0]\dots a[i-1].$ Нека $\mathcal D$ е МПК за $a[0]\dots a[i].$

Ако $a[i] \notin C$, от лемата имаме, че тя е носител за D. Вероятността за това е

$$\frac{2}{i+1}$$
, ако D има 2 носителя и

$$\frac{3}{i+1}$$
, ако D има 3 носителя

В първия случай сложността на тази итерация е:

$$\frac{2}{i+1}\Theta(i) + \frac{(i+1)-2}{i+1}\Theta(1) = \Theta(1)$$

, а във втория:

$$\frac{3}{i+1}\Theta(i) + \frac{(i+1)-3}{i+1}\Theta(1) = \Theta(1)$$

И в двата случая имаме сложност $\Theta(1)$, откъдето очакваната сложност на loop1 е:

$$\sum_{i=2}^{n-1} \Theta(1) = \Theta(n)$$

 Φ иг. 3 Резултати от тестовете (хиляди точки - тs)