ERRATA TO "EXTREMAL PRIMES FOR ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION"

Maknys's argument for the equidistribution result quoted as Proposition 2 is incomplete. In its place, one can substitute the following estimate, which is within the reach of current technology.

Proposition 2'. Let K be an imaginary quadratic field. Fix $\mu, \nu \in \mathcal{O}_K$ with $\mu \neq 0$ and with $\nu \mod \mu$ an invertible residue class. As $x \to \infty$,

So the all imaginary quadratic field. Fix
$$\mu, \nu \in \mathcal{O}_K$$
 with g and g are g and g are g are g and g are g and g are g are g are g are g and g are g and g are g are g and g are g are g and g are g and g are g are g and g are g are g and g are g and g are g are g and g are g are g and g are g are g and g ar

when $2\pi \ge \theta_2 - \theta_1 > x^{-0.251}$. Here the estimate is uniform in the θ_i .

Our proof requires only minor modifications (one should now define $\mathcal{X}(\varpi) = \{X \in \mathbb{R} : X < N\varpi \le X + X/\log X\}$). We thank Joshua Stucky for bringing this issue to our attention and for helpful correspondence.