

SAR Compliance Test Report

Date of Report Number of pages:	er of 21 person:	Avi Wittenberg	
		Responsible Test engineer:	Kirsi Kyllönen
Testing laboratory:	Verkotan Oy Elektroniikkatie 17 90590 Oulu Finland	Client:	Mobilaris AB Kyrkogatan 2 97232 Luleå Sweden

Tested device Mobilaris Long Life Personal WiFi Tag – 466B

Related reports: -

Testing has been carried out in accordance with: 47CFR §2.1093

Radiofrequency Radiation Exposure Evaluation: Portable Devices

FCC published RF exposure KDB procedures

IEEE 1528 - 2013

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Technique

Documentation: The test report must always be reproduced in full; reproduction of an excerpt only is subject

to written approval of the testing laboratory

Test Results: The EUT complies with the requirements in respect of all parameters subject to the

test.

The test results relate only to devices specified in this document

Date and signatures:

19.06.2017

For the contents:

Laboratory Manager

TABLE OF CONTENTS

1.	SUM	MARY OF SAR TEST REPORT	. 3
	1.2.1	TEST DETAILSMAXIMUM RESULTS	. 3
2.	DESC	CRIPTION OF THE DEVICE UNDER TEST (DUT)	. 4
2	2.1	SUPPORTED FREQUENCY BANDS AND OPERATIONAL MODES	. 4
3.		DUCTED POWERS	
		TESTED CONDUCTED POWER MAXIMUM SPECIFIED OUTPUT POWER	
4.	TEST	EQUIPMENT	. 6
2	4.1.1 CONSTI I.2 F 4.2.1 I.3 T 4.3.1 I.4 S I.5 S 4.5.1	SYSTEM VALIDATION STATUS SYSTEM CHECK	. 7 . 7 . 7 . 7 . 8 . 8
		DEVICE HOLDER	
5	5.2 T 5.2.1 5.3 S	TEST POSITIONS	. 9
6.	MEAS	SUREMENT UNCERTAINTY	11
7.	TEST	*RESULTS	12
7	7.1	SAR RESULTS FOR BODY-WORN CONFIGURATION, 3 MM SEPARATION DISTANCE $^{\prime}$	12
		X A: PHOTOS OF THE DUT	
		X B: SYSTEM CHECK SCANS	
		X C: MEASUREMENT SCAN	
ΑP	PENDI	X D: RELEVANT PAGES FROM PROBE CALIBRATION REPORTS	18
ΔΡ	PENDI	X F. REI EVANT PAGES FROM DIPOLE CALIBRATION REPORTS	วก

1. SUMMARY OF SAR TEST REPORT

1.1 Test Details

Equipment under Test (EUT):

qp(/-	
Product:	Mobilaris Long Life Personal WiFi Tag – 466B
Manufacturer:	Mobilaris AB
Model:	466B
Serial Number:	02921
FCC ID Number:	2AL7A-466B
ISED Number:	22755-466B
Hardware Version:	466B
DUT Number:	23017
Battery Type used in testing:	Li-Mn02
Portable/ Mobile device	Portable
State of the Sample	Production sample

Testing information:

S .	
Testing performed:	15.6.2017
Notes: Verkotan ref 2221	
Document name: FCC_SAR_Report_Mobilaris 466B_19062017.docx	
Temperature °C	22±2 / Controlled
Humidity RH%	30±20 / Controlled
Measurement performed by:	Kirsi Kyllönen

1.2 Maximum Results

The maximum reported SAR values for Body-worn configurations are reported below. The device conforms to the requirements of the standards when the maximum reported SAR value is less than or equal to the limit. The SAR limit specified in FCC 47 CFR part 2 (2.1093) for Body is SAR1g 1.6 W/kg,

Equipment Class	System	Highest Reported* SAR _{1g} (W/kg) 3mm separation distance	Result
DTS	2.4 GHz WLAN	0.015	PASS

^{*} Reported SAR Values are scaled to upper limit of power tuning tolerance.

1.2.1 Maximum Drift

Maximum Drift During Measurements 0.82 dB*		
_	Maximum Drift During Measurements	

^{*}Larger than 5% drifts included to scaling factors

1.2.2 Measurement Uncertainty

Expanded Uncertainty (k=2) 95 %	±22.3

2. DESCRIPTION OF THE DEVICE UNDER TEST (DUT)

The DUT is a WIFI TAG that is used for locating. It can be used with a lanyard or carried in a pocket.

The DUT utilized a duty cycle of 0.01% in normal use.

Device Category	Portable
Exposure Environment	Uncontrolled

2.1 Supported Frequency Bands and Operational Modes

Bands	Modes of Operation	Modulation Mode	Transmitter Frequency Range (MHz)
2450	WLAN b/g	DSSS/OFDM	2412 – 2472

1,721)

3. CONDUCTED POWERS

3.1 Tested conducted power

Power is reported as dBm.

Standard	Transmission mode	Modulation	Data rate [MBPS]	CH 1 2412 MHz	CH 7 2442 MHz	CH 11 2462 MHz
802.11b	DSSS	BPSK	1	11.94	13.40	12.36
802.11b	DSSS	QPSK	2	11.83	13.37	12.30
802.11b	DSSS	QPSK	5.5	11.94	13.43	12.40
802.11b	DSSS	QPSK	11	11.61	13.04	12.04
802.11g	OFDM	BPSK	6	9.86	12.60	9.70
802.11g	OFDM	BPSK	9	9.68	12.42	9.50
802.11g	OFDM	QPSK	12	9.05	11.50	8.92
802.11g	OFDM	QPSK	18	8.85	11.33	8.68
802.11g	OFDM	16QAM	24	6.42	8.48	6.24
802.11g	OFDM	16QAM	36	4.83	6.97	4.68
802.11g	OFDM	64QAM	48	2.87	4.34	3.21
802.11g	OFDM	64QAM	54	2.36	3.83	2.70

3.2 Maximum specified output power

From a Customer;

Standard	CH 1	CH 7	CH 11
	[dBm]	[dBm]	[dBm]
802.11b/g/n	16	16	16

4. TEST EQUIPMENT

Dasy52 near field scanning system, manufactured by SPEAG was used for SAR testing. The test system consists of high precision robotics system (Staubli), robot controller, computer, near-field probe, probe alignment sensor, and a phantom containing the tissue equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location of maximum electromagnetic field.

Figure 1 Schematic Laboratory Picture

4.1 Test Equipment List

Main used test system components are listed below. For full equipment list and calibration intervals, please contact the testing laboratory.

Test Equipment	Model	Serial Number	Calibration Date
DAE	DAE4	756	03.2017
Probe	EX3DV4	3892	04.2017
Dipole	D2450V2	758	01.2016
DASY5 Software	52.8.8.1258	-	NA
Signal Generator	SMIQ06B	8349681023	NA

Amplifier	AR	27573	NA
Power Sensor	NRP-Z11	100265	1.2017

4.1.1 Isotropic E-field Probe Type EX3DV4

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Calibration certificate in Appendix D
Frequency	10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g, Linearity: ± 0.2 dB
Dimensions	Overall length: 330 mm Tip length: 10 mm Body diameter: 12 mm Tip diameter: 2.5 mm Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 6 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms

4.2 Phantoms

4.2.1 Modular Flat Phantom (MFP)

The Triple Modular Phantom consists of three identical modules that can be installed and removed separately without emptying the liquid. It is used for compliance testing of small wireless devices in body-worn configurations.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 and FCC published RF Exposure KDB Procedures. The dielectric parameters of the used tissue simulants were within ±5% of the recommended values in all frequencies used. SAR testing was carried out within 24 hours of measuring the dielectric parameters. Depth of the tissue simulant was at least 15.0 cm from the inner surface of the flat phantom.

4.3.1 Recipes

2350 - 2700 MHZ:

Ingredient (% by weight)	BODY 2350 – 2700
Deionized Water	70.2
Tween 20	29.62
Salt	0.18

4.4 System Validation Status

Frequency [MHz]	Dipole Type / SN	Probe Type / SN	Calibrated Signal Type	DAE Unit / SN	Dielectric Constant ε		
2450	D2450V2 /	EX3DV4/	CW	DAE4 / 756	50.95	1.97	05/2017

4.5 System Check

Date	Tissue Type	Tissue Temp. [°C]	Frequency [MHz]	Input Power	Measured SAR _{1g} [W/kg]	1 W Target SAR _{1g} [W/kg]	1 W Normalize d SAR _{1g} [W/kg]	Deviation _{1g} (%)	Plot #
15.6.2017	M2450	23.2	2450	250mW	12.2	51.2	48.8	-4.7	1

4.5.1 Tissue Simulant Verification

				Tar	get	Meas	ured	Devi	ation
Date	Tissue Type	Tissue Temp. [°C]	Frequency [MHz]	Conductivity, σ [S/m]	Dielectric Constant [ε]	Conductivity, σ [S/m]	Dielectric Constant [ε]	σ (%)	ε (%)
			2450	1.95	52.7	1.90	50.4	-2.6	-2.5
15.6.2017	M2450	22	2412	1.91	52.8	1.86	50.5	-4.3	-2.8
			2442	1.94	52.7	1.89	50.4	-4.4	-2.6
			2472	1.98	52.7	1.93	50.3	-4.5	-2.7

5. TEST PROCEDURE

The device was set to transmit with a maximum output power by utilizing a control sw.

WLAN was tested in b mode with 5.5 Mbps data rate as the configuration was tested to have the highest conducted output power.

5.1 Device Holder

The device was placed in the device holder that is supplied by SPEAG.

5.2 Test Positions

See Appendix A for photos of the test positions.

5.2.1 Body-worn Configuration, 3 mm separation distance

The device was placed in the SPEAG device holder below the flat phantom. The distance between the device and the phantom was kept at the defined separation distance using a separate flat spacer that was removed before the start of the measurements. The device was oriented to all six sides facing the phantom to find the highest results.

5.3 Scan Procedures

Area scans were first measured for the determination of the field distribution. Next, a zoom scan with minimum of 5x5x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Power drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value is averaged over a cube of tissue using interpolation and extrapolation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

S (=1)

The interpolation, extrapolation and maximum search routines within Dasy47 are all based on the modified Quadratic Shepard's method (Robert J. Renka,"Multivariate Interpolation of Large Sets of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

6. MEASUREMENT UNCERTAINTY

DASY5 Uncertainty Budget According to IEEE 1528-2013 and IEC 622091/201x (0.3 - 3 GHz range)

	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	Veff
Measurement System								
Probe Calibration	±6.0 %	N	1	1	1	±6.0 %	±6.0 %	∞
Axial Isotropy	±4.7 %	R	√ ₂	0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	R	√ ₂	0.7	0.7	±3.9 %	±3.9 %	∞
Boundary Effects	±1.0 %	R	√ ₂	1	1	±0.6 %	±0.6 %	∞
Linearity	±4.7 %	R	√ ₃	1	1	±2.7 %	±2.7 %	∞
System Detection Limits	±1.0 %	R	√ ₂	1	1	±0.6 %	±0.6 %	∞
Modulation Response ^m	±2.4 %	R	√ ₂	1	1	±1.4 %	±1.4 %	∞
Readout Electronics	±0.3 %	N	1	1	1	±0.3 %	±0.3 %	∞
Response Time	±0.8 %	R	√ ₂	1	1	±0.5 %	±0.5 %	∞
Integration Time	±2.6 %	R	√ ₂	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise	±3.0 %	R	V _	1	1	±1.7 %	±1.7 %	∞
RF Ambient Reflections	±3.0 %	R	√ ₂	1	1	±1.7 %	±1.7 %	∞
Probe Positioner	±0.4 %	R	√ ₂	1	1	±0.2 %	±0.2 %	∞
Probe Positioning	±2.9 %	R	√ ₂	1	1	±1.7 %	±1.7 %	∞
Max. SAR Eval.	±2.0 %	R	√ ₂	1	1	±1.2 %	±1.2 %	∞
Test Sample Related			1					
Device Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0 %	R	√ ₂	1	1	±2.9 %	±2.9 %	∞
Power Scaling ^p	±0%	R	√ ₂	1	1	±0.0 %	±0.0 %	∞
Phantom and Setup								
Phantom Uncertainty	±6.1 %	R	√ ₂	1	1	±3.5 %	±3.5 %	∞
SAR correction	±1.9 %	R	√ _	1	0.84	±1.1 %	±0.9 %	∞
Liquid Conductivity (mea.) DAK	±2.5 %	R	√ ₂	0.78	0.71	±1.1 %	±1.0 %	∞
Liquid Permittivity (mea.) DAK	±2.5 %	R	√ ₂	0.26	0.26	±0.3 %	±0.4 %	∞
Temp. unc Conductivity ^{BB}	±3.4 %	R	√ ₂	0.78	0.71	±1.5 %	±1.4 %	∞
Temp. unc Permittivity ^{BB}	±0.4 %	R	√ ₂	0.23	0.26	±0.1 %	±0.1 %	∞
Combined Std. Uncertainty						±11.2 %	±11.1 %	361
Expanded STD Uncertainty						±22.3 %	±22.2 %	

7. TEST RESULTS

7.1 SAR Results for Body-Worn Configuration, 3 mm separation distance

Band	Channel	Maximun Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Test Position	Duty Cycle**	Measured SAR _{1g} [mW/g]	Power Scaling Factor	Normal duty cycle	Reported SAR _{1g} [mW/g]	Plot #
802.11b	7	16	13.43	-0.06	Front	1	0.837	1.81	1:100	0.015	2
802.11b	7	16	13.43	0.20	Back	1	0.554	1.81	1:100	0.010	
802.11b	7	16	13.43	0.07	Right side	1	0.431	1.81	1:100	0.008	
802.11b	7	16	13.43	0.24	Left side	1	0.0792	1.81	1:100	0.001	
802.11b	7	16	13.43	-0.18	Тор	1	0.279	1.81	1:100	0.005	
802.11b	7	16	13.43	0.82*	Bottom	1	0.025	2.18	1:100	0.001	

^{*}Drift considered in scaling factor **Duty cycle during measurements

APPENDIX A: PHOTOS OF THE DUT

Dimension of the DUT are 115 x 63 x 12mm

DUT from the back

Front of the device towards the phantom

Back of the device towards the phantom

Right side towards the phantom

Left side towards the phantom

Bottom towards the phantom

APPENDIX B: SYSTEM CHECK SCANS

Plot 1

Date/Time: 15.6.2017 9:56:40

Test Laboratory: Verkotan Oy

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:758

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450

MHz;Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2450 MHz; $\sigma = 1.902$ S/m; $\varepsilon_r = 50.383$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY Configuration:

• Probe: EX3DV4 - SN3892; ConvF(7.59, 7.59, 7.59); Calibrated: 18.4.2017;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn756; Calibrated: 24.1.2017

Phantom: SAR2_Phantom 1_triple flat; Type: QD 000 P51 Cx; Serial: 03_May_2017

DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Pin=250 mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.4 W/kg

Configuration/Pin=250 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.0 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 23.5 W/kg

SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.79 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 18.0 W/kg

APPENDIX C: MEASUREMENT SCAN

Plot 2

Date/Time: 15.6.2017 10:34:56

Test Laboratory: Verkotan Oy

DUT: Mobilaris 466B; Serial: 02921

Communication System: UID 0, WLAN 2.4 (0); Communication System Band: WLAN2.4GHz; Frequency: 2442

MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: f = 2442 MHz; σ = 1.893 S/m; ϵ_r = 50.394; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY Configuration:

• Probe: EX3DV4 - SN3892; ConvF(7.59, 7.59, 7.59); Calibrated: 18.4.2017;

• Sensor-Surface: 2mm (Mechanical Surface Detection), z = 31.0, -4.0

• Electronics: DAE4 Sn756; Calibrated: 24.1.2017

Phantom: SAR2_Phantom 1_triple flat; Type: QD 000 P51 Cx; Serial: 03_May_2017

• DASY52 52.8.8(1258); SEMCAD X 14.6.10(7373)

Configuration/Mobilaris Front/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.464 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 0.837 W/kg; SAR(10 g) = 0.406 W/kg (SAR corrected for target medium)

Maximum value of SAR (measured) = 1.23 W/kg

Configuration/Mobilaris Front/Area Scan (111x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.22 W/kg

APPENDIX D: RELEVANT PAGES FROM PROBE CALIBRATION REPORTS

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client Verkotan

Certificate No: EX3-3892_Apr17

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3892

Calibration procedure(s)

QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes

Calibration date:

April 18, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID	Cal Date (Certificate No.)	Scheduled Calibration
SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
SN: 103245	04-Apr-17 (No. 217-02525)	Apr-18
SN: S5277 (20x)	07-Apr-17 (No. 217-02528)	Apr-18
SN: 3013	31-Dec-16 (No. ES3-3013_Dec16)	Dec-17
SN: 660	7-Dec-16 (No. DAE4-660_Dec16)	Dec-17
ID	Check Date (in house)	Scheduled Check
SN: GB41293874	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
SN: MY41498087	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
SN: 000110210	06-Apr-16 (in house check Jun-16)	In house check: Jun-18
SN: US3642U01700	04-Aug-99 (in house check Jun-16)	In house check: Jun-18
SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	SN: 104778 SN: 103244 SN: 103245 SN: 58277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	SN: 104778

Name Function Signature

Michael Weber Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: April 18, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3892_Apr17

Page 1 of 11

EX3DV4-SN:3892

April 18, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3892

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.28	10.28	10.28	0.49	0.94	± 12.0 %
900	41.5	0.97	9.74	9.74	9.74	0.45	0.94	± 12.0 %
1750	40.1	1.37	8.63	8.63	8.63	0.33	0.80	± 12.0 %
1900	40.0	1.40	8.26	8.26	8.26	0.38	0.80	± 12.0 %
2450	39.2	1.80	7.42	7.42	7.42	0.39	0.80	± 12.0 %
2600	39.0	1.96	7.30	7.30	7.30	0.42	0.80	± 12.0 %

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

**Alf frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if fliquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

**Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

APPENDIX E: RELEVANT PAGES FROM DIPOLE CALIBRATION REPORTS

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Issued: January 15, 2016

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Verkotan

Certificate No: D2450V2-758_Jan16

Object	D2450V2 - SN: 7	58	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	January 14, 2016		
		onal standards, which realize the physical un robability are given on the following pages an	
The measurements and the unce All calibrations have been conducted Calibration Equipment used (M& Primary Standards	ertainties with confidence p cted in the closed laborato TE critical for calibration)	robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°(Cal Date (Certificate No.)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ortainties with confidence protected in the closed laborator TE critical for calibration) ID # GB37480704	robability are given on the following pages an ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-16
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	retainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages an ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	retainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317	robability are given on the following pages an ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	retainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages an ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	retainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	robability are given on the following pages an ry facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	retainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	robability are given on the following pages an ry facility: environment temperature (22 ± 3)°(Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	retainties with confidence protein in the closed laborator. TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	Cal Date (Certificate No.) Or-Oct-15 (No. 217-02222) Or-Oct-15 (No. 217-02222) Or-Oct-15 (No. 217-02223) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	retainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16

Certificate No: D2450V2-758_Jan16

Calibrated by:

Approved by:

Name

Michael Weber

Katja Pokovic

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Page 1 of 8

Function Laboratory Technician

Technical Manager

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.1 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.2 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-758_Jan16