Final Project: Modified zero-in for root-finding

We would like to find a root of the equation

$$f(x) = 0$$
, for $x \in \mathbf{R}$

given an initial interval [a, b] with

$$f(a)\cdot f(b)<0.$$

with a combination of two methods

- bisection method, for its reliability
- inverse quadratic interpolation (IQI) method, for its higher order of convergence.

inverse quadratic interpolation (IQI) method

Given three pairs of points (x_0, f_0) , (x_1, f_1) , (x_2, f_2) , IQI defines a quadratic polynomial in f that goes through these points,

$$x(f) = \frac{(f - f_1)(f - f_2)}{(f_0 - f_1)(f_0 - f_2)} x_0 + \frac{(f - f_0)(f - f_2)}{(f_1 - f_0)(f_1 - f_2)} x_1 + \frac{(f - f_0)(f - f_1)}{(f_2 - f_0)(f_2 - f_1)} x_2$$

This leads to an estimate for the root $x_3 \stackrel{\text{def}}{=} x(0)$:

$$x_3 = \frac{f_1 f_2}{(f_0 - f_1) (f_0 - f_2)} x_0 + \frac{f_0 f_2}{(f_1 - f_0) (f_1 - f_2)} x_1 + \frac{f_0 f_1}{(f_2 - f_0) (f_2 - f_1)} x_2$$

Modified zero-in for root-finding in a sketch

For given initial interval [a, b] with

$$f(a) \cdot f(b) < 0.$$

We would like to find a root of the equation f(x) = 0, for $x \in \mathbf{R}$

Modified zero-in for root-finding in a sketch

For given initial interval [a, b] with

$$f(a)\cdot f(b)<0.$$

We would like to find a root of the equation f(x) = 0, for $x \in \mathbf{R}$

- 1. **set** x_0 , x_1 , $x_2 = a$, b, $c \stackrel{def}{=} \frac{a+b}{2}$
- 2. **let** $x_3 = IQI(x_0, x_1, x_2)$
 - ▶ if $x_3 \notin [a, b]$
 - **do** bisection steps on [a, b]
 - ▶ set new interval $[a^{\text{new}}, b^{\text{new}}] \subset [a, b]$ with

$$f(a^{\text{new}}) \cdot f(b^{\text{new}}) < 0,$$
 repeat step (1)

- **else if** $|f(x_3)|$ has not DECREASED by a factor of 2 within 4 consecutive **IQI** iterations,
 - **do** bisection steps on [a, b]
 - **set** new interval $[a^{\text{new}}, b^{\text{new}}] \subset [a, b]$ with

$$f(a^{\text{new}}) \cdot f(b^{\text{new}}) < 0$$
, repeat step (1)

- repeat IQI in step (2)
- 3. stop when iteration converged

Algorithm Sketch

```
1: procedure ModifiedZeroIn(f, I, params) ▷ Basic algorithmic structure
      set x_0 = I.a, x_1 = I.b, x_2 = \frac{1}{2}(x_0 + x_1)
      while root not yet found do
3:
          while root not yet found do
4:
             set x_3 = IQI(x_0, x_1, x_2)
5:
             if x_3 \notin [a, b] then
                                                                 ▶ IQI failure
6:
                 break
             end if
8:
             if |f(x_3)| NOT DECREASED by a factor of 2 in 4 iterations then
9:
                 break
10:
             end if
11:
             repeat IQI using safety bracket
12:
13:
          end while
          perform bisection
14:
      end while
15:
      return root/report failure
17: end procedure
```

More details!

- 1. function calls: when the function $f(\cdot)$ is called.
 - 1.1 There are THREE function calls in IQI formula

$$f_0 = f(x_0), \quad f_1 = f(x_1), \quad f_2 = f(x_2)$$

$$x_3 = \frac{f_1 f_2}{(f_0 - f_1) (f_0 - f_2)} x_0 + \frac{f_0 f_2}{(f_1 - f_0) (f_1 - f_2)} x_1 + \frac{f_0 f_1}{(f_2 - f_0) (f_2 - f_1)} x_2$$

1.2 There are EIGHTEEN function calls in IQI formula

$$x_3 = \frac{f(x_1) f(x_2)}{(f(x_0) - f(x_1)) (f(x_0) - f(x_2))} x_0 + \frac{f(x_0) f(x_2)}{(f(x_1) - f(x_0)) (f(x_1) - f(x_2))} x_1 + \frac{f(x_0) f(x_1)}{(f(x_2) - f(x_0)) (f(x_2) - f(x_1))} x_2$$

Faster with 1.1, needs further improvement for full extra credit

More details!

- 1. function calls: when the function $f(\cdot)$ is called.
 - 1.1 There are THREE function calls in IQI formula

$$f_0 = f(x_0), \quad f_1 = f(x_1), \quad f_2 = f(x_2)$$

$$x_3 = \frac{f_1 f_2}{(f_0 - f_1) (f_0 - f_2)} x_0 + \frac{f_0 f_2}{(f_1 - f_0) (f_1 - f_2)} x_1 + \frac{f_0 f_1}{(f_2 - f_0) (f_2 - f_1)} x_2$$

1.2 There are EIGHTEEN function calls in IQI formula

$$x_3 = \frac{f(x_1) f(x_2)}{(f(x_0) - f(x_1)) (f(x_0) - f(x_2))} x_0 + \frac{f(x_0) f(x_2)}{(f(x_1) - f(x_0)) (f(x_1) - f(x_2))} x_1 + \frac{f(x_0) f(x_1)}{(f(x_2) - f(x_0)) (f(x_2) - f(x_1))} x_2$$

Faster with 1.1, needs further improvement for full extra credit

- 2. IQI with safety bracket:
 - ▶ sort $x_0, x_1 = a, b; x_2 \in (a, b)$ with $f(a) \cdot f(b) < 0$
 - ▶ let $x_3 = IQI(x_0, x_1, x_2) \in (a, b)$
 - if $f(x_0) \cdot f(x_2) < 0$, continue **IQI** with x_0, x_2, x_3 : $x_0^{\text{new}} = \min(x_0, x_2, x_3), x_1^{\text{new}} = \max(x_0, x_2, x_3).$
 - if $f(x_2) \cdot f(x_1) < 0$, continue **IQI** with x_1, x_2, x_3 : $x_0^{\text{new}} = \min(x_1, x_2, x_3), x_1^{\text{new}} = \max(x_1, x_2, x_3).$

Programming project submission details (I)

You should turn in a .m file modifiedzeroinxxx.m which contains a matlab function of the form function [root,info] = modifiedzeroinxxx(func,Int,params)

- xxx is your student id
- func is a function handle
- ▶ Int contains the initial interval [Int.a, Int.b]
- params is an object that contains at least two fields params.root_tol and params.func_tol.

Your algorithm should terminate once the interval containing the root is at most params.root_tol in length, or the function value at the current iterate is at most params.func_tol in absolute value.

Programming project submission details (II)

On output, root is the computed root, and info should have at least one field info.flag, which is 0 for a successful execution, and 1 otherwise. Your program will be tested on test functions on pages 8 and 9, on the given intervals.

- 1. (100 points) Your root finder finds all roots within 25 function calls.
- 2. (70 points) Your root finder finds all roots.
- 3. You get an **extra credit** of 5 points for finding roots within 25 <u>function calls</u> on test functions on page 9.
- 4. (0 points) Your program does not run.

We will choose params.root_tol = params.func_tol = 10^{-7} . Your program will receive 0 points if it is found to be highly similar to the matlab built-in function fzero. While we allow group discussions, you must do all your programming work by yourself.

Submit your .m file on gradescope by 23:59PM, May 9, 2025

Test functions (easy)

- f(x) = x * exp(-x) 2 * x + 1 on interval [0, 3]
- $f(x) = x \cos(x) 2x^2 + 3x 1$ on interval [1,3]
- $f(x) = x^3 7x^2 + 14x 6$ on interval [0, 1]
- $f(x) = \sqrt{x} \cos(x)$ on interval [0,1]
- $f(x) = 2x \cos(2x) (x+1)^2$ on interval [-4, -2]

Test functions (hard)

- $f(x) = x^3 32x + 128$ on interval [-8, 0]
- $f(x) = x^4 2x^3 4x^2 + 4x + 4$ on interval [0,2]
- $f(x) = -x^3 \cos(x)$ on interval [-3, 3]
- $f(x) = (x-5)^7 10^{-1}$ on interval [0, 10]
- $f(x) = (x-3)^{11}$ on interval [2.4, 3.4]