ZAAWANSOWANE METODY EKSPLORACJI

INFORMACJE WSTĘPNE

Prof. dr hab. inż. Grzegorz Dudek Wydział Matematyki i Informatyki Uniwersytet Łódzki

PLAN WYKŁADU

- 1. Informacje wstępne *
- 2. Podstawy uczenia maszynowego
- Uczenie się indukcyjne
- 4. Grupowanie danych
- 5. Drzewa decyzyjne
- 6. Sieci neuronowe
- 7. Konwolucyje sieci neuronowe
- 8. Predykcja szeregów czasowych
- 9. Rekurencyjne sieci neuronowe
- 10. Maszyna wektorów nośnych
- 11. Selekcja atrybutów

Racka K: Metody eksploracji danych i ich zastosowanie. Zeszyty Naukowe PWSZ w Płocku, Nauki Ekonomiczne, t. XXI, 2015.

Mirończuk M.: Przegląd i klasyfikacja zastosowań, metod oraz technik eksploracji danych. Studia i Materiały Informatyki Stosowanej 2(2), str. 35-46, 2010

^{*} Ten wykład oparty jest na materiałach dostępnych w internecie:

 $[\]underline{\text{http://home.agh.edu.pl/}^{\text{pszwed/wiki/doku.php?id=med:wyklady,}} \ \underline{\text{http://wazniak.mimuw.edu.pl/index.php?title=Eksploracja} \ \ \underline{\text{danych}}$

LITERATURA

DEFINICJE

Eksploracja danych (data mining, odkrywanie wiedzy w bazach danych, zgłębianie danych), to proces odkrywania nowych reguł, wzorców i zależności w zbiorach danych.

Cel – zasadniczym celem eksploracji danych jest wydobycie wiedzy z danych. Wiedza ta pozwala zrozumieć różne zjawiska i procesy, wspomaga procesy podejmowania decyzji.

Narzędzia – statystyka, uczenie maszynowe

Eksploracja danych jest dziedziną multidyscyplinarną, która skupia wokół siebie wiele dziedzin związanych z przechowywaniem, przetwarzaniem i analizowaniem danych, wydobywaniem z nich wiedzy i jej wdrażaniem. W kontekście zastosowań biznesowych stosuje się też nazwę *business intelligence*.

ETAPY ODKRYWANIA WIEDZY

Eksploracja danych jest jednym z etapów procesu odkrywania wiedzy z baz danych (Knowledge Discovery in Databases, KDD), który składa się z następujących kroków:

- 1. Czyszczenie danych (data cleaning) usuwanie błędów, danych nadmiarowych, powtórzonych
- 2. Integracja danych łączenie danych pochodzących z różnych źródeł (baz danych), posiadających różną strukturę oraz różne modele danych
- 3. Selekcja danych z bazy danych pobierane są wybrane dane do przeprowadzenia analiz
- 4. Transformacja danych przetwarzanie lub łączenie danych w formach odpowiednich dla eksploracji
- 5. Eksploracja danych stosowanie metod eksploracji danych w celu wydobycia z danych wzorców, reguł, zależności
- 6. Ocena odkrytych wzorców, reguł, zależności identyfikacja najbardziej interesujących wzorców
- 7. Prezentacja odkrytej wiedzy przedstawienie odkrytej wiedzy użytkownikowi za pomocą technik wizualizacji i reprezentacji danych

DATA MINING NA TLE INNYCH DYSCYPLIN

DATA SCIENCE

ŹRÓDŁA DANYCH

Codziennie wytwarzane jest około 2.5·10¹⁸ bajtów danych

- dane operacyjne firm i instytucji (banki, ubezpieczalnie, przemysł, sieci handlowe, ...)
- aktywność internetowa (e-handel, ...)
- dane z urządzeń mobilnych
- pomiary z rozproszonych czujników
- dane eksperymentalne (fizyczne, biologiczne, astronomiczne, ...)
- ...

PRZYKŁAD

Przykład wykorzystania eksploracji danych: pozyskiwanie informacji na temat klientów sieci handlowej

- Jakie inne jeszcze produkty, najczęściej, kupują klienci, którzy kupują wino?
- Czym różnią się koszyki klientów kupujących wino i piwo?
- W jaki sposób można scharakteryzować klientów kupujących wino?
- W jaki sposób pogrupować klientów kupujących wino?
- Czy można dokonać predykcji, że dany klient kupi wino?

- klasyfikacja
- regresja
- grupowanie
- odkrywanie sekwencji
- odkrywanie charakterystyk
- analiza przebiegów czasowych
- odkrywanie asocjacji
- eksploracja stron WWW, sieci społecznościowych
- eksploracja tekstów
- eksploracja obrazów i wideo
- eksploracja danych dźwiękowych
- wykrywanie anomalii, zmian i odchyleń
- rekomendowanie
- ...

Klasyfikacja

Klasyfikacja polega na zaklasyfikowaniu obserwacji (obiektu) do pewnej klasy.

Metoda klasyfikacji (klasyfikator) przypisuje klasę obserwacji na podstawie charakterystyk klas i reguł klasyfikacji.

Charakterystyki klas powstają w procesie uczenia się systemu klasyfikującego na pewnym zbiorze danych sklasyfikowanych.

Regresja

Regresja (aproksymacja funkcji) polega na przedstawieniu pewnej funkcji f(x) w innej, zazwyczaj prostszej postaci h(x).

Metoda regresji przypisuje obserwacji x wartość funkcji h(x).

Funkcja aproksymująca powstaje w procesie uczenia się modelu na pewnym zbiorze danych reprezentujących funkcję f(x).

Grupowanie

Podział danych na grupy tak, aby wewnątrz każdej grupy znalazły się obserwacje podobne.

Metoda grupowania dokonuje podziału na grupy na podstawie podobieństwa pomiędzy obserwacjami.

Charakterystyki grup powstają w procesie uczenia się systemu na pewnym zbiorze danych.

Odkrywanie sekwencji (sequential pattern mining, string mining)

Odkrywanie wzorców w danych sekwencyjnych.

Odkrywanie wzorców zachowań, na podstawie analizy danych zmieniających się w czasie.

- Odkrywanie wzorców zachowań użytkowników korzystających z Internetu.
- Badanie notowań akcji i odkrywanie wzorców w celu ustalenia modelu decyzyjnego dla strategii inwestycyjnych.
- Odkrywanie wzorców sekwencji w DNA.

Odkrywanie charakterystyk

Odkrywanie charakterystyk polega na znajdowaniu zwięzłych opisów (charakterystyk) podanego zbioru danych.

- Określanie powszechnych symptomów danej choroby
 Przykładowo, symptomy określonej choroby mogą być wyrażone przez zbiór reguł
 charakteryzujących (np. pacjenci chorujący na COVID-19 cechują się temperaturą
 ciała większa niż 37.5 C, suchym kaszlem, zmęczeniem, utratą smaku lub węchu)
- Określenie profilu klienta
- Znajdowanie zależności funkcyjnych pomiędzy zmiennymi

Analiza szeregów czasowych

Wykrywanie trendów, wahań okresowych, właściwości szeregów, prognozowanie.

- Analiza i prognoza zapotrzebowania na dobra
- Badanie dynamiki zjawisk masowych
- Diagnostyka predykcyjna w przemyśle
- Analizy giełdowe
- Badanie rozwoju gospodarczego
- Analiza i predykcja szeregów czasowych w meteorologii

Odkrywanie asocjacji

Badanie współwystępowania wartość (wariantów) różnych zmiennych. Wyniki analizy tego typu mają postać reguł asocjacyjnych postaci jeżeli A, to B.

Pierwotnym zastosowaniem była analiza koszykowa: badanie współzależności pomiędzy kupowanymi produktami.

- Analiza usług pod kątem zwiększenia sprzedaży
- Optymalizacja pakietów usług, opłat i taryf w sektorze finansowym, telekomunikacyjnym, itp.
- Planowanie kampanii promocyjnych
- Weryfikacja skuteczności kampanii marketingowych

Eksploracja danych tekstowych (text mining)

Metody eksploracji danych służące analizie treści dokumentów tekstowych w celu znalezienia nowych informacji, które nie są dostępne bezpośrednio.

- Wykrywanie plagiatów
- Klasyfikacja dokumentów tekstowych np. poczty internetowej oddzielenie informacji ważnych od nieistotnych
- Grupowanie danych tekstowych np. artykułów ze względu na tematy i treść
- Analiza treści zamieszczanych na portalach społecznościowych
- Modele językowe (Chat GPT)

Eksploracja obrazów

Wydobywania wiedzy poprzez odkrywanie relacji między obrazami, czy też wzorów ukrytych (niejawnie) w obrazach (np. rozpoznawanie obiektów na obrazach).

Dziedzina ta wykorzystuje metody pochodzące z widzenia komputerowego (ang. computer vision), przetwarzania obrazów, eksploracji danych, uczenia maszynowego, baz danych i sztucznej inteligencji.

Eksploracja danych wideo

Odkrywanie wzorów w zawartościach baz multimedialnych przechowujących dane wideo.

Cele:

- wykrywanie przyczyn zarejestrowanych zdarzeń
- wykrywanie zdarzeń niepożądanych, np. pojazdów wjeżdżających na teren chroniony, ludzi zachowujących się nietypowo
- określanie typowych i nieprawidłowych zachowań,
- klasyfikacja zachowania do wybranej kategorii np. chodzenie, bieganie, skakanie
- grupowanie i określanie interakcji pomiędzy obiektami.

Przedmiotem zainteresowania statystyki opisowej są przede wszystkim:

- miary położenia (m.in. tendencji centralnej): np. średnia, dominanta (moda), kwantyle.
- miary dyspersji (rozproszenia, zróżnicowania): np. wariancja, odchylenie standardowe, odchylenie przeciętne.
- miary asymetrii (skośności): np. klasyczny/pozycyjny współczynnik asymetrii.

Miary średnie

Średnia arytmetyczna liczb x_1, \ldots, x_n

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Średnia arytmetyczna ważona liczb x_1, \ldots, x_n z wagami a_1, \ldots, a_n , gdzie $a_i \ge 0$ dla każdego $i = 1, \ldots, n$ oraz $\sum_{i=1}^n a_i = 1$

$$\bar{x} = \sum_{i=1}^{n} a_i x_i.$$

Średnia geometryczna liczb dodatnich x_1, \ldots, x_n

$$\bar{g} = \sqrt[n]{x_1 \cdots x_n}.$$

Średnia harmoniczna liczb x_1, \ldots, x_n różnych od zera

$$\bar{h} = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}.$$

Mediana (wartość środkowa) m_e dla danych niezgrupowanych

$$m_e = \begin{cases} x_{\left(\frac{n+1}{2}\right)}, & n - \text{nieparzyste}, \\ \\ \frac{x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}}{2}, & n - \text{parzyste}. \end{cases}$$

Moda (dominanta) m_0 dla danych niezgrupowanych – wartość, która pojawia się najczęściej.

Procent osób zarabiających dane kwoty brutto

Na podstawie danych GUS za 2010 rok, like-a-geek.jogger.pl

65% Polaków zarabia poniżej średniej krajowej

Miary zmienności

 $Rozstep \ r = x_{max} - x_{min}.$

Kwantyle – wartości danej cechy, które dzielą ją na określone części pod względem liczby jednostek. Dane muszą być uporządkowane niemalejąco.

Kwartyle dla danych niezgrupowanych

- Kwartyl pierwszy (dolny) Q_1 dzieli dane tak, że 1/4 jednostek ma wartości niższe lub równe, a 3/4 jednostek ma wartości wyższe lub równe niż kwartyl. (Mediana "lewej połowy danych".)
- Kwartyl drugi (środkowy) Q_2 to mediana. Dzieli dane tak, że 1/2 jednostek ma wartości niższe lub równe i 1/2 jednostek ma wartości wyższe lub równe niż kwartyl.
- Kwartyl trzeci (górny) Q_3 dzieli dane tak, że 3/4 jednostek ma wartości niższe lub równe, a 1/4 jednostek ma wartości wyższe lub równe niż kwartyl. (Mediana "prawej połowy danych".)

Rozstęp międzykwartylowy $Q_3 - Q_1$.

Odchylenie ćwiartkowe (rozstęp międzykwartylowy połówkowy) $Q = \frac{Q_3 - Q_1}{2}$.

Typowy obszar zmienności $(m_e - Q, m_e + Q)$.

Wykres pudełkowy

Długość każdego z wąsów jest równa 1,5IQR, chyba, że:

- wartość maksymalna jest mniejsza niż $Q_3 + 1,5IQR$
- wartość minimalna jest większa niż $Q_1-1.5IQR$,

W takim przypadku długość wąsa jest zdeterminowana przez odpowiednio wartość maksymalną lub minimalną. Obserwacje znajdujące się poza 3 rozstępami IQR to obserwacje odstające.

Odchylenie przeciętne dla danych niezgrupowanych

$$d = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

Wariancja dla danych niezgrupowanych

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}.$$

 $Odchylenie\ standardowe$

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}.$$

Typowy obszar zmienności $(\bar{x} - s, \bar{x} + s)$.

Współczynnik zmienności

Miara pozycyjna

$$v = \frac{Q}{m_e}$$
, gdzie Q – odchylenie ćwiartkowe

Miary klasyczne

$$v = \frac{d}{\bar{x}}$$
, gdzie d – odchylenie przeciętne

$$v = \frac{s}{\bar{x}}$$

Rozkład normalny

Zwany także rozkładem Gaussowskim. Parametry: średnia $\mu \in \mathbb{R}$, wariancja $\sigma^2 \in \mathbb{R}_+$, z dodatnim pierwiastkiem (odchylenie standardowe).

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \text{ dla } x \in \mathbb{R}$$

$$\mathbb{E}(X) = \mu$$

$$\operatorname{Var}(X) = \sigma^2$$

Rozkład normalny standardowy ma średnią $\mu=0$ i wariancję $\sigma^2=1$. Stąd, jego funkcja gęstości to

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \text{ dla } x \in \mathbb{R}$$

Współczynnik asymetrii

$$A_s = \frac{1}{s^3} \cdot (\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^3)$$

Kurtoza

$$K = \frac{1}{s^4} \cdot (\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^4)$$

Histogram

Graficzny sposób przedstawiania rozkładu empirycznego. Przedstawia liczebności obserwacji w zadanych przedziałach badanej zmiennej.

Współzależność

Kowariancja

$$cov(x, y) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}) \cdot (y_i - \bar{y})$$

Współczynnik korelacji liniowej Pearsona

$$r_{xy} = \frac{\operatorname{cov}(x, y)}{s(x) \cdot s(y)}$$

gdzie

s(x), s(y) – odchylenia standardowe zmiennych x, y.

- $* r_{xy}$ bada tylko **liniową** zależność między zmiennymi,
- * $r_{xy} \in \langle -1, 1 \rangle$ i pozwala określić siłę i kierunek zależności liniowej
 - $-\,$ jeśli $|r_{xy}|$ jest bliskie 0, to mamy słabą zależność liniową między zmiennymi,
 - $-\,$ jeśli $|r_{xy}|$ jest bliskie 1, to mamy silną zależność liniową między zmiennymi,
 - $-\;$ jeśli $r_{xy}>0,$ to zależność między zmiennymi jest dodatnia,
 - jeśli $r_{xy} < 0$, to zależność między zmiennymi jest ujemna.

Kwartet Anscombe'a

Cecha	Wartość
Średnia arytmetyczna zmiennej x	9
Wariancja zmiennej x	11
Średnia arytmetyczna zmiennej y	7.50
Wariancja zmiennej y	4.122
Współczynnik korelacji pomiędzy zmiennymi	0.816
Równanie regresji liniowej	y = 3.00 + 0.500 x

GRAFICZNA PREZENTACJA DANYCH

Sankey diagram with default settings

#391 Several group on the same radar chart

