CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

How are you?

Going Online Logistics

- Lecture
 - Important Zoom features:
 - Go faster
 - Go slower
 - Raise hand
 - Yes/no
- Office Hours
 - Office hours queue
 - Services
- Exams

"Dissecting" a Computer

Most important parts (according to Nate)

- CPU
 - Circuits of transistors
- RAM
 - Limited memory
- HDD/SSD
 - Large memory

What does it mean to compute?

- We'll discuss several ideas this semester
- Several "models" of computing
- Vague idea: take and input and produce an output

Defining Our Input/Output

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE ENTSCHEIDUNGSPROBLEM

By A. M. Turing.

What we compute on: representations of things (e.g. numbers)

What do we compute on?

- String: an ordered sequence of characters
- Is a representation of something
- Characters come from an alphabet

Let's formally define them

What do we compute, then?

• Input and output are strings

Computing Machine / Program / Algorithm

Output

- Black box is an implementation
- What are we implementing?
 - Functions
 - Languages

Computing a Function

- A function f is computable under a computing model if:
- That model allows for an implementation (way of filling in the black box) such that,
 - For any input $x \in D$ (string representing an element from the domain of f)
 - The implementation "produces" the correct output

- A Language L is computable under a computing model if:
- That model allows for an implementation (way of filling in the black box) such that,
 - − For any input $x ∈ Σ^*$
 - The implementation returns 1 if and only if $x \in L$

Function vs Decision vs Language

Decision Problem	Function	Language
Are there an odd number of 1's?	$f(b) = \begin{cases} 0 & \text{number of 1s is even} \\ 1 & \text{number of 1s is } odd \end{cases}$	$\{b \in \Sigma^* b \text{ has and even number of 1s} \}$
Are there more 1s than 0s?	$f(b) = \begin{cases} 0 \text{ more 0s than 1s} \\ 1 \text{ more 1s than 0s} \end{cases}$	$\{b \in \Sigma^* b \text{ has more 1s than 0s} \}$
	Are there an odd number of 1's? Are there more 1s	Are there an odd number of 1's? $f(b) = \begin{cases} 0 & \text{number of 1s is even} \\ 1 & \text{number of 1s is } odd \end{cases}$ Are there more 1s $f(b) = \begin{cases} 0 & \text{more 0s than 1s} \\ 1 & \text{number of 1s} \end{cases}$

$$|\{0,1\}^{\infty}| > |\mathbb{N}|$$

• Idea:

- show there is no way to "list" all finited binary strings
- Any list of binary strings we could ever try will be leaving out elements of $\{0,1\}^{\infty}$

Differences

Hardware (CPU)

- Concrete
- Fixed
- Simpler (each unit of computation does "less")
 - Computation has smaller steps
- Doesn't ever need to be software
- Everything is always doing physics

Software (Java)

- "idealized", "abstract"
- Reconfigurable
- Transportable
- Each "step" is bigger
- Needs to "become" hardware
- Needs to be translated
- Sequential (limited parallel)

Defining the AON circuit model

- Define how to represent a computation
 - And/Or/Not circuit:
 - Number of inputs
 - Number of outputs
 - Gates and their labels
 - Wires connecting the above

- Define how to perform an execution
 - For each component, find its value once all its inputs are defined
 - Inputs start of with their value defined
 - Things labelled as output are the result

A circuit-like programming language

- Define how to represent a computation
 - Inputs as positional arguments
 - Outputs as return statements
 - Variable assignments using boolean operators AND/OR/NOT
- Define how to perform an execution
 - Evaluate each variable assignment sequentially

```
AON-Straightline
```

```
def MAJ(a, b, c):
    first_two = AND(a,b)
    last_two = AND(b,c)
    first_last = AND(a,c)
    temp = OR(first_two, first_last)
    return OR(temp, last_two)
```

Issues and Solutions

- What were the limitations of circuits?
 - No loops: meaning only finite functions
 - Fixed input sizes
- How can we overcome those?
 - Finite state automata (the execution definition allowed for infinite)
 - Iterated: do some work, update "state", do more work, until no more input

Finite State Automaton

Implementation:

- Finite number of states
- One start state
- "Final" states

Execution:

- Start in the initial "state"
- Read each character once, in order (no looking back)
- Transition to a new state once per character (based on current state and character)
- Give output depending on which state you end in

"Pieces" of a Regex

Empty String:

- Matches just the string of length 0
- Notation: ε or ""

Literal Character

- Matches a specific string of length 1
- Example: the regex a will match just the string a

Alternation/Union

- Matches strings that match at least one of the two parts
- Example: the regex $a \mid b$ will match a and b

Concatenation

- Matches strings that can be dividing into 2 parts to match the things concatenated
- Example: the regex (a|b)c will match the strings ac and bc

Kleene Star

- Matches strings that are 0 or more copies of the thing starred
- Example: $(a|b)c^*$ will match a, b, or either followed by any number of c's

Note: The compents here are the minimal necessary. In practice, regexes have other components as well, those are just "syntactic sugar".

Nondeterminism

Driving to a friend's house Friend forgets to mention a fork in the directions Which way do you go?

Issues and Solutions

- What were the limitations of circuits?
 - Actually infinite inputs (not relevant to us)
 - No looking back!
 - Change the machine mid-process
 - Limited storage, bigger inputs require more memory for some functions
 - Larger output space (only 0 or 1)
 - Non-determinism: no communication among parallel paths
 - Outside the scope of this semester
 - Alternation
- How can we overcome those?
 - You can look backwards!
 - Lots of / Plentiful / enough memory: infinite!
 - Make machines that can play the roll of another machine, compute machines (macros)
 - Execution model that allows for long strings to be outputs

Characterizing What's computable

- Things that are computable by FSA:
 - Functions that don't need "memory"
 - Languages expressible as Regular Expressions
- Things that aren't computable by FSA:
 - Things that require more than finitely many states
 - Intuitive example: Majority

Majority with FSA?

Consider an inputs with lots of 0s

```
000...0000 111...1111
×49,999 ×50,000
```

```
000...0000 111...1111
×50,000 ×50,000
```

```
000...0000 111...1111
×50,000 ×50,001
```

- Recall: we read 1 bit at a time, no going back!
- To count to 50,000, we'll need 50,000 states!