第八章 立体几何初步 典型易错题集

易错点 1. 混淆斜二测画法中长度有变有不变

例题 1. (上海市嘉定区安亭高级中学高二阶段练习)如图,若三角形 A'B'C' 是用斜二测画 法画出的水平放置的平面图形 ABC 的直观图.已知 A'B'=4, $\angle C'A'B'=45^\circ$,三角形 A'B'C' 的面积为 $2\sqrt{2}$.则原平面图形 ABC 中 BC 的长度为 ______.

【常见错解】 2√5

因为A'B' = 4, $\angle C'A'B' = 45^{\circ}$,且三角形A'B'C'的面积为 $2\sqrt{2}$,所以

 $S_{\triangle A'B'C'} = \frac{1}{2} A'B' \times A'C' \sin \angle B'A'C' = 2\sqrt{2}$,所以 A'C' = 2,三角形 A'B'C' 的原平面图形如下所示:

所以 AC = A'C' = 2, AB = 4 且 $AC \perp AB$, 所以 $BC = \sqrt{AC^2 + AB^2} = 2\sqrt{5}$: 故答案为: $2\sqrt{5}$

【错因分析】直观图还原原图时注意长度有变有不变:与x轴平行(重合)的线段长度不变;与y轴平行(重合)的线段长度直观图是原图的一半.本题考生忽略了AC = 2A'C' = 4,长度应该变为原来的 2 倍.

【正解】 $4\sqrt{2}$

解: 因为 A'B' = 4, $\angle C'A'B' = 45^{\circ}$,且三角形 A'B'C' 的面积为 $2\sqrt{2}$,所以

$$S_{A'B'C'} = \frac{1}{2}A'B' \times A'C' \sin \angle B'A'C' = 2\sqrt{2}$$
, $\text{FIU} A'C' = 2$,

三角形 A'B'C'的原平面图形如下所示:

所以AC = 2A'C' = 4,AB = 4且 $AC \perp AB$,所以 $BC = \sqrt{AC^2 + AB^2} = 4\sqrt{2}$;

故答案为: 4√2

【动手实战】

1. (江西赣州·高二阶段练习(文))一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为 2 的正方形,则原平面图形的面积_____

【答案】8√2

如图,由直观图知原图形是平行四边形 OABC, OA = O'A' = 2,

$$OB \perp OA$$
, $OB = 2O'B' = 4\sqrt{2}$,

所以 $S_{OABC} = 2 \times 4\sqrt{2} = 8\sqrt{2}$.

故答案为: 8√2.

好学熊资料库

2. (全国·高一课时练习)如图, $\triangle A'O'B'$ 表示水平放置的 $\triangle AOB$ 的直观图,B'在 x'轴上,A'O'和 x'轴垂直,且 A'O'=2,则 $\triangle AOB$ 的边 OB 上的高为____

【答案】 $4\sqrt{2}$

【详解】

不妨设直观图和原图面积分别为 S_1 , S_2 , $\triangle AOB$ 的边 OB 上的高为h,

由直观图 |O'B'| 与原图形中边 |OB| 长度相同,且 $S_2 = 2\sqrt{2}S_1$,A'O'和 x'轴垂直,A'O'=2,

故
$$\frac{1}{2} |OB| h = 2\sqrt{2} \times \frac{1}{2} \times 2 |O'B'|$$
,

从而 $h=4\sqrt{2}$.

故答案为: 4√2.

易错点2. 混淆直观图和原图

例题 1. (江西·南昌市豫章中学高二开学考试(文))如下图,

 $\Delta A'B'C'$ 是 ΔABC 用"斜二测画法"画出的直观图,其中

$$O'B' = O'C' = 1$$
, $O'A' = \frac{\sqrt{3}}{2}$, 那么 $\triangle ABC$ 的周长是_____.

【常见错解】在 $\Delta O'A'C'$ 中,

$$O'C' = 1, O'A' = \frac{\sqrt{3}}{2}, \angle A'O'C' = 45^{\circ},$$
 由余弦定理得:

$$A'C'^2 = O'C'^2 + O'A'^2 - 2O'C' \cdot O'A' \cos 45^\circ$$
,得 $A'C' = \frac{\sqrt{6}-1}{2}$; 同理 $A'B' = \frac{\sqrt{6}+1}{2}$;

B'

所以周长为:
$$\frac{\sqrt{6}-1}{2} + \frac{\sqrt{6}+1}{2} + 2 = \sqrt{6}+2$$

【错因分析】错把直观图直接当原图了,在遇到斜二测画法画出的直观图中,一定要注意题目问的是原图,还是直观图,如果是原图,要先还原,再求解.

【正解】6

斜二测直观图的画法原则,横坐标不变,纵坐标减半,

所以 BC = 2 , $OA = 2OA' = \sqrt{3}$,

又因为 $BC \perp OA$,所以 $AC = AB = \sqrt{1^2 + (\sqrt{3})^2} = 2$,因此 $\triangle ABC$ 的周长为2 + 2 + 2 = 6,

故答案为: 6.

【动手实战】

1. (黑龙江齐齐哈尔·高一期末)如图所示, $Rt\triangle A'B'C'$ 为水平放置的 $\triangle ABC$ 的直观图,其中 $A'C' \perp B'C'$, B'O' = 3, O'C' = 4,则 $\triangle ABC$ 的面积是_____.

【答案】 28√2

Rt $\triangle A'B'C' \stackrel{+}{\Rightarrow}$, $A'C' \perp B'C'$, B'O' = 3, O'C' = 4, $\angle A'O'C' = 45^{\circ}$,

所以B'C' = B'O' + O'C' = 3 + 4 = 7, A'C' = 4,

所以 $\triangle A'B'C'$ 的面积为 $S' = \frac{1}{2} \times 7 \times 4 = 14$,

所以 $\triangle ABC$ 的面积是 $S = 2\sqrt{2} \times 14 = 28\sqrt{2}$.

故答案为: 28√2

2. (全国·高一课时练习)如图所示,已知斜二测画法画出的 $\triangle ABC$ 的直观图 VA'B'C' 是边长为 a 的正三角形,则原 $\triangle ABC$ 的面积为______.

[答案] $\frac{\sqrt{6}}{2}a^2$

过点C'作C'M'// y'轴,且交x'轴干点M'.

过C'作 $C'D' \perp x'$ 轴,且交x'轴于点 D^{ϕ} ,

则 $C'D' = \frac{\sqrt{3}}{2}a$, \therefore $\angle C'M'D' = 45^{\circ}$, \therefore $C'M' = \frac{\sqrt{6}}{2}a$. \therefore 三角形的高 $CM = \sqrt{6}a$,底边长为 a,

其面积为
$$S = \frac{1}{2} \times a \times \sqrt{6}a = \frac{\sqrt{6}}{2}a^2$$
.

<u>故答案为: $\frac{\sqrt{6}}{2}a^2$.</u>

3. (全国·高一)如图所示,VA'B'C'表示水平放置的 $\triangle ABC$ 的斜二测画法下的直观图,A'B'在 x' 轴上,B'C'与 x' 轴垂直,且 B'C'=3,则 $\triangle ABC$ 的边 AB 上的高为_____.

【答案】6√2

过点 C' 作 C'D' / / y' 轴, 交 x'轴于点 D¢, 则 \angle C'D' B' = 45°.

所以 $\triangle ABC$ 的边AB上的高 $CD = 2C'D' = 6\sqrt{2}$.

故答案为:6√2.

易错点3.在直线与平面平行中,忽视直线是否在平面内的多种情况

例题 1. (全国·高一课前预习)若直线 l 与平面 α 内的一条直线平行,则 l 和 α 的位置关系

是 ()			
A. $l \subset \alpha$	B. $l//\alpha$	$C.$ $l \subset \alpha$ 或 l / l	α D. l 和 α 相交
【常见错解】A			
【错因分析】直线	线与平面平行的判定统	定理中: 平面外一条直:	线与平面内一条直线平行,贝
该直线与此平面马	平行,忽略了平面外i	这个重要条件,本题中直	直线1与平面α内的一条直线
行,也可能 l ⊂ α			
工解】C			
【详解】			
由题意,直线1与	可平面α内的一条直线	是平行	
	平行的判定定理,则	$l//\alpha$	
也有可能 l $\subset \alpha$			
<u>故选: C</u>			
【动手实战】			
1. (黑龙江·牡丹	·江市第三高级中学高	5三阶段练习(文))下	列结论错误的个数是(
(1) 若一条直线	和平面内一条直线平	行,那么这条直线和这	公平面平行;
(2) 若直线 a // 平面 α , P ∈ α ,则过点 P 且平行于直线 a 的直线有无数条;			
(3) 如果一个平	面内的两条直线平行	于另一个平面,那么这	这两个平面平行;
(4) 如果两个平	面平行,那么分别在	这两个平面内的两条直	〔线平行或异面.
A. 0	B. 1	C. 3	D. 2
【答案】C			
【详解】			
解: 对于(1),	若一条直线和平面内	一条直线平行, 当该直	近线也在平面内时,那么这条
线和这个平面不平	平行,故(1)错误;		
对于(2),若直	线 $a//$ 平面 α , $P \in \alpha$,	则过点P且平行于直线	线 a 的直线只有一条,故(2
错误;			
对于(3),如果	一个平面内的两条直	线平行于另一个平面,	当这两条直线平行时,这两个
平面平行或相交,	故(3)错误;		
对于(4),如果	两个平面平行,那么	分别在这两个平面内的]两条直线平行或异面,故(4
正确.			
所以错误的有3			
<u>故选: C.</u>			
2. (全国·高一调	尉的练习)如果两直约		与α的位置关系是(
A. 相交	B. $b//\alpha$	C. <i>b</i> ⊂ <i>α</i>	D. <i>b</i> //α或 <i>b</i> ⊂α

【答案】D

【详解】

由 a//b,且 $a//\alpha$,结合线面平行的判定定理,

知 *b* 与α平行或 *b* ⊂ α.

故选: D

易错点4. 错误认为, 无数等于所有

例题 1. (四川恩阳·高二期中)下列命题正确的是()

- A. 与平面内无数条直线垂直的直线与该平面垂直
- B. 过直线外一点可以作无数条直线与该直线平行
- C. 各面都是正三角形的四面体的外接球球心和内切球球心恰好重合
- D. 各面都是等腰三角形的三棱锥一定是正三棱锥

【常见错解】A

【错因分析】错误的认为与平面内无数条直线垂直,无数条,那不就是这个平面的所有直线,错误的认为无数等于所有.

【正解】C

【详解】

对于 A, 一条直线与平面内的任意直线垂直,则直线与平面垂直,而无数条直线可以是一组 平行直线, A 不正确;

对于 B,由平行公理知,过直线外一点有且只有一条直线与该直线平行, B 不正确;

对于 C, 因各面都是正三角形的四面体是正四面体, 而正四面体的外接球球心和内切球球心重合, C 正确;

对于 D, 三棱锥 P-ABC中, AB=BC=CA=PA=2, PB=PC=3,

显然三棱锥 P-ABC 各面都是等腰三角形,而三棱锥 P-ABC 不是正三棱锥, D 不正确.

故选: C

【动手实战】

- 1. (山西太原·高三期末(文))设 α , β 为两个不同的平面,则 α // β 的充要条件是()
- A. α 内有无数条直线与 β 平行
- B. α, β 垂直于同一平面
- $C. \alpha, \beta$ 平行于同一条直线
- D. α 内的任何直线都与 β 平行

【答案】D

【详解】

A 选项, α 内有无数条直线与 β 平行, α 与 β 可能相交, **A** 选项错误.

B 选项, α , β 垂直于同一平面, α 与 β 可能相交, B 选项错误. C 选项, α , β 平行于同一条直线, α 与 β 可能相交, C 选项错误.

D 选项, α 内的任何直线都与 β 平行,则 α // β , D 选项正确.

故选: D

- 2. (全国·高三专题练习)下列命题中正确的个数是()
- ①若直线 a 上有无数个点不在平面 α 内,则 $a//\alpha$;
- ②若直线 a // 平面 α ,则直线 a 与平面 α 内的任意一条直线都平行;
- ③若直线 a// 直线 b// 平面 α ,则直线 a// 平面 α ;
- (4) 若直线 a // 平面 α ,则直线 a 与平面 α 内的任意一条直线都没有公共点.

A. 0

B. 1

C. 2

D. 3

【答案】B

【详解】

对于①,若直线 a 上有无数个点不在平面 α 内,则直线 a 可能与平面 α 相交,也可能与平面 α 平行,所以①错误,

对于(2), 当直线 a // 平面 α 时,直线 a 与平面 α 内直线平行或异面,所以(2)错误,

对于③,当直线 a// 直线 b// 平面 α ,则直线 a// 平面 α ,或直线 a 在平面 α 内,所以 ③错误,

对于(4),当直线 a//平面 α 时,则直线 a 与平面 α 无公共点,所以直线 a 与平面 α 内的任意一条直线都没有公共点,所以(4)正确,

故选: B

- 3. (上海长宁·高二期末)已知直线 a,b 和平面 α ,且 b 在 α 上, a 不在 α 上,则下列判断错误的是(
- A. 若 $a // \alpha$,则存在无数条直线b,使得a // b
- B. 若 $a\perp\alpha$,则存在无数条直线b,使得 $a\perp b$
- C. 若存在无数条直线b, 使得a // b, 则 $a // \alpha$
- D. 若存在无数条直线b, 使得 $a \perp b$, 则 $a \perp \alpha$

【答案】D

【详解】

若存在无数条直线b,使得a // b,b ⊂ α,a ⊄ α,则a // α,C 正确;

当 $a//\alpha$ 时,存在无数条直线b,使得 $a \perp b$,D错误.

故选: D.

易错点 5. 证明线面平行时,忽略了平面外一条直线,平面内一条直线,而造成的书写不规范

例题 1. (四川省广安代市中学校高三阶段练习(文))如图,四棱锥 P-ABCD 中,四边形 ABCD 是矩形, $AB=\sqrt{3}$, AD=2 , $\triangle PAD$ 为正三角形,且平面 PAD 上平面 ABCD , E 、 F 分别为 PC 、 PB 的中点 .

(1)证明: EF // 平面 PAD;

【常见错解】

∵E, F分别为 PC, PB 的中点, ∴ EF || BC.

AD // BC, 所以EF // AD,

.. EF // 平面 PAD;

【错因分析】证明过程中,只说明了EF // AD,为能正确理解定理,在证明过程中一定要写明 $AD \subset \mathbb{P}$ 可 PAD, $EF \not\subset \mathbb{P}$ 可 PAD 这两句话,证明过程才完整.

【正解】(1)证明见解析

【解析】

(1): E, F分别为 PC, PB 的中点, : EF || BC.

:: ABCD 是矩形, :. AD // BC,则 EF // AD,

: AD < 平面 PAD, EF < 平面 PAD, : EF // 平面 PAD;

【动手实战】

1. (山西·临县第一中学高三开学考试(文))如图,四棱柱 $ABCD - A_lB_lC_lD_l$ 中,四边形 A_lADD_l 为矩形,且平面 A_lADD_l 上平面 ABCD,AB//CD, $AB = AD = A_lA = \frac{1}{2}CD$, $\angle DAB = \frac{\pi}{2}$,M,E分别为 AD_l , B_lC 的中点.

(1)证明: *ME*// 平面 *DCC*₁*D*₁;

【答案】(1)证明见解析

(1)证明:如图,

分别取 AD 和 BC 的中点 H, P, 连接 MH, HP, PE,

 MH/DD_1 , $MH = \frac{1}{2}DD_1$, $PE//CC_1$, $PE = \frac{1}{2}CC_1$,

所以MH//PE, MH = PE,

所以四边形 MHPE 为平行四边形,

所以ME//PH, 又PH//CD. 所以ME//CD.

因为CD二平面 DCC_1D_1 , ME 年面 DCC_1D_1 ,

所以ME//平面 DCC_1D_1 .

2. (四川恩阳·高二期中(文))如图,四边形 ABCD 为正方形,PD 上平面 ABCD,PD = DC,点 E、F分别为 AD、PC 的中点.

(1)证明: DF // 平面 PBE;

【答案】(1)证明过程见解析;

(1)取 PB 中点 H, 连接 FH, EH, 因为点 $E \setminus F$ 分别为 $AD \setminus PC$ 的中点.

所以 FH//CB, $FH=\frac{1}{2}BC$,因为四边形 ABCD 为正方形,所以 BC//AD,且 BC=AD,所以 DE//FH,DE=FH,所以四边形 DEHF 为平行四边形,所以 DF//HE,因为 DF 平面 PBE,HE 二平面 PBE,故 DF// 平面 PBE

3. (内蒙古·高三阶段练习)如图,在四棱锥 P-ABCD中, $\triangle PAB$ 是边长为 2 的等边三角形,梯形 ABCD 满足 BC=CD=1,AB // CD, $AB \perp BC$,M 为 AP 的中点. (1)求证: DM // 平面 PBC ;

【答案】(1)证明见解析

(1)取 PB 的中点 N, 连接 MN, CN.

因为M为AP的中点,所以MN// AB,且 $MN = \frac{1}{2}AB$,又CD// AB,且 $CD = \frac{1}{2}AB$ 所以MN// CD且MN = CD,所以四边形 CDMN 为平行四边形,

所以 DM // CN.

: CN ⊂ 平面 PBC , DM ⊄ 平面 PBC

·· DM // 平面 PBC.

易错点 6. 忽略异面直线所成角的范围

例题 1. (四川省宜宾市第三中学校高二期中(理))直三棱柱 ABC-A'B'C'中,AC=BC = AA', $\angle ACB$ =120°,E 为 BB'的中点,异面直线 CE 与 C'A 所成角的余弦值是(

A.
$$-\frac{\sqrt{10}}{5}$$

B.
$$\frac{\sqrt{10}}{5}$$

c.
$$-\frac{\sqrt{10}}{10}$$

D.
$$\frac{\sqrt{10}}{10}$$

【常见错解】 A 如图所示,直三棱柱 ABC-A'B'C' 向上方补形为直三棱柱 ABC-A''B''C'',其中 A' , B' , C' 分别为各棱的中点,取 B'B'' 的中点 D^{\emptyset} ,可知 CE//C'D' ,异面直线 CE 与 C'A 所成角即为 C'D' 与 C'A 所成角 设 CB=2 ,则 $C'D'=\sqrt{5}$, $C'A=2\sqrt{2}$, $AD'=\sqrt{21}$,

$$\cos \angle AC'D' = \frac{8+5-21}{2\times 2\sqrt{2}\times \sqrt{5}} = -\frac{\sqrt{10}}{5}$$

【错因分析】忽略了异面直线所成角的范围 $(0,\frac{\pi}{2}]$,所以两条异面直线所成角的余弦值一定是正数.

【正解】B

如图所示,直三棱柱 ABC - A'B'C' 向上方补形为直三棱柱 ABC - A''B''C'' ,其中 A' , B' , C' 分别为各棱的中点,取 B'B'' 的中点 $D^{¢}$,可知 CE//C'D' ,异面直线 CE 与 C'A 所成角即为 C'D' 与 C'A 所成角.设 CB = 2 ,则 $C'D' = \sqrt{5}$, $C'A = 2\sqrt{2}$, $AD' = \sqrt{21}$,

$$\frac{\cos \angle AC'D' = \frac{8+5-21}{2\times2\sqrt{2}\times\sqrt{5}} = -\frac{\sqrt{10}}{5}, \text{ 故异面直线 } CE 与 C'A 所成角的余弦值为 \frac{\sqrt{10}}{5}.$$

牙学熊资料库

<u>故选: B</u>

【动手实战】

1. (四川·沪县五中高二期中(文))空间四边形 ABCD中, AB、BC、CD的中点分别是 P、

Q、R,且 PQ=3,QR=5,PR=7,那么异面直线 AC 和 BD 所成的角是(

A. 30° C. 120°

D. 150°

【答案】B

:: AB、BC、CD的中点分别是 P、Q、R, :. PQ // AC, QR // BD,

:异面直线 AC和 BD 所成的角是 ZPQR(或其补角),

$$\Delta PQR + \cos \angle PQR = \frac{PQ^2 + QR^2 - PR^2}{2PQ \cdot QR} = \frac{3^2 + 5^2 - 7^2}{2 \times 3 \times 5} = -\frac{1}{2}, \quad \angle PQR = 120^{\circ},$$

∴异面直线 AC和 BD 所成的角为60°.

故选: B.

2. (江苏如东·高一期中)如图,直三棱柱 $ABC - A_1B_1C_1$ 中, $AA_1 = AB = AC = BC$,则异面 直线 AB_1 和 BC_1 所成角的余弦值为(

- A. $-\frac{1}{2}$
- B. $\frac{1}{2}$
- c. $-\frac{1}{4}$
- D. $\frac{1}{4}$

【答案】D

【详解】

连接 B_1C 交 BC_1 于点O,取AC中点D,连接OD

设 $AA_1 = AB = AC = BC = 2$

 $:: 三棱柱 ABC - A_1B_1C_1为直三棱柱 :: 四边形 BCC_1B_1为矩形$

$$\sqrt{DC_1} = \sqrt{4+1} = \sqrt{5}$$
, $OC_1 = \frac{1}{2}BC_1 = \sqrt{2}$ $\therefore \cos \angle DOC_1 = \frac{2+2-5}{2\times\sqrt{2}\times\sqrt{2}} = -\frac{1}{4}$

∴ 异面直线 AB_1 和 BC_1 所成角的余弦值为 $|\cos \angle DOC_1| = \frac{1}{4}$

故选: D

3. (内蒙古呼和浩特·一模(文))如图,已知正三棱柱 $ABC - A_1B_1C_1$ 的侧棱长为底面边长的 2 倍,M 是侧棱 CC_1 的中点,则异面直线 AB_1 和 BM 所成的角的余弦值为(

A.
$$-\frac{3\sqrt{10}}{20}$$

B.
$$-\frac{3}{16}$$

c.
$$\frac{3\sqrt{10}}{20}$$

D.
$$\frac{3}{16}$$

【答案】C

【详解】

正三棱柱 $ABC - A_1B_1C_1$ 的侧棱长为底面边长的 2 倍,设 AB = a,则 $AA_1 = 2a$,

取 BB_1 中点 N , AB 中点 E , 连接 NE , NC_1 , EC_1 , EC_1 , 如下图所示:

则 $\angle ENC_1$ 即为异面直线 AB_1 和BM所成的角或其补角,

FILL
$$EN = \frac{1}{2}AB_1 = \frac{\sqrt{5}}{2}a$$
, $EC_1^2 = EC^2 + CC_1^2 = \frac{3}{4}a^2 + 4a^2 = \frac{19}{4}a^2$,

$$C_1N = BM = \sqrt{2}a,$$

所以在 $\triangle ENC_1$ 中由余弦定理可得 $\cos \angle ENC_1 = \frac{NC_1^2 + NE^2 - EC_1^2}{2NC_1 \cdot NE}$

$$=\frac{2a^2 + \frac{5}{4}a^2 - \frac{19}{4}a^2}{2 \times \sqrt{2}a \times \frac{\sqrt{5}a}{2}} = \frac{3\sqrt{10}}{20},$$

因为异面直线夹角的取值范围为 $\left[0,\frac{\pi}{2}\right]$,

所以异面直线 AB_1 和 BM 所成的角的余弦值为 $\frac{3\sqrt{10}}{20}$,

<u>故选: C.</u>

公众号 好学熊资料库