Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) **Computation Tree Logic** syntax and semantics of CTL expressiveness of CTL and LTL CTL model checking fairness, counterexamples/witnesses CTI + and CTI *

Equivalences and Abstraction

• The CTL formulas $\forall \Diamond (a \land \forall \bigcirc a)$, $\forall \Diamond \forall \Box a$ and $\forall \Box \exists \Diamond a$ have no equivalent LTL formula

COMPARISON4.2-5

- The CTL formulas $\forall \Diamond (a \land \forall \bigcirc a)$, $\forall \Diamond \forall \Box a$ and $\forall \Box \exists \Diamond a$ have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

- The CTL formulas $\forall \Diamond (a \land \forall \bigcirc a)$, $\forall \Diamond \forall \Box a$ and $\forall \Box \exists \Diamond a$ have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

- The CTL formulas $\forall \Diamond (a \land \forall \bigcirc a)$, $\forall \Diamond \forall \Box a$ and $\forall \Box \exists \Diamond a$ have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

- The CTL formulas $\forall \Diamond (a \land \forall \bigcirc a)$, $\forall \Diamond \forall \Box a$ and $\forall \Box \exists \Diamond a$ have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

Introduction Modelling parallel systems Linear Time Properties Regular Properties Linear Temporal Logic (LTL) **Computation Tree Logic** syntax and semantics of CTL expressiveness of CTL and LTL CTL model checking fairness, counterexamples/witnesses CTI + and CTI * Equivalences and Abstraction

Complexity of CTL model checking

CTLMC4.3-22

LTL model checking: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

LTL model checking: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

model complexity, i.e., for fixed specification:

CTL and LTL: $\mathcal{O}(\text{size}(T))$

LTL model checking: $\mathcal{O}(\operatorname{size}(T) \cdot \exp(|\varphi|))$

model complexity, i.e., for fixed specification:

CTL and LTL: $\mathcal{O}(\text{size}(T))$

If $\Phi \equiv \varphi$ then "often" we have: $|\Phi| = \exp(|\varphi|)$