Correction

Partie I

1.a
$$g \text{ est } \mathcal{C}^{\infty} \text{ et } g'(x) = (x+1)e^{x} \cdot \begin{bmatrix} x & -\infty & -1 & +\infty \\ g(x) & 0 & \sqrt{-1/e} & / +\infty \end{bmatrix}$$

- 1.b Etude en $-\infty: g(x) \xrightarrow[x \to +\infty]{} 0^-$. L'axe (Ox) est asymptote, courbe en dessous. Etude en $+\infty: g(x)/x \xrightarrow[x \to +\infty]{} +\infty$. Branche parabolique verticale.
- 2.a $g''(x) = (x+2)e^x$ du signe de x+2. g est convexe sur $[-2, +\infty[$ et concave sur $]-\infty, -2]$. $\mathcal C$ présente un point d'inflexion au point d'abscisse -2.
- 2.b Equation de la tangente en -2: y = g'(-2)(x+2) + g(-2)i.e. $y = -\frac{1}{e^2}(x+4)$. Elle coupe l'axe des abscisses au point d'abscisse -4.

- 2.c Ci-contre
- 3.a g est continue et strictement croissante sur $[-1,+\infty[$ donc g réalise une bijection de $[-1,+\infty[$ vers g = [-1], $\lim_{n \to \infty} g = [-1]$. En symétrisant le tableau de variation de $g : \frac{x}{h(x)} = \frac{1}{-1/e} \xrightarrow{x} +\infty$.
- 3.b g est dérivable et $g'(x) = (x+1)e^x \neq 0$ sur $]-1,+\infty[$ donc h est dérivable sur $]-1/e,+\infty[$. Nous verrons, ci-après, que h n'est pas dérivable en 1/e $h'(x) = \frac{1}{g'(h(x))} = \frac{1}{(h(x)+1)e^{h(x)}} \text{ or } h(x)e^{h(x)} = x \text{ donc } h'(x) = \frac{h(x)}{x(h(x)+1)} \text{ pour } x \neq 0 \text{ et } h(0) = 1 \text{ .}$
- 3.c Pour alléger posons a = 1/e. On a h(a) = -1

Quand $y \to a^+$, $\frac{h(y) - h(a)}{y - a} = \frac{x + 1}{g(x) - g(-1)}$ en posant $x = h(y) \to -1^+$.

Or $\frac{g(x)-g(-1)}{x+1} \rightarrow 0^+$ car g'(-1)=0 et la stricte croissance de g donne $\frac{g(x)-g(-1)}{x+1} > 0$

donc $\frac{h(y)-h(a)}{y-a}$ \to $+\infty$. La fonction h présente une tangente verticale en a .

- 4.a g(0) = 0 et $g(\frac{1}{2}) = \frac{1}{2}e^{1/2} \ge \frac{1}{2}$ donc $\frac{1}{2} \in [g(0), g(1/2)]$ et par suite $h(1/2) \in [0, 1/2]$.
- 4.b $\varphi(\alpha) = \frac{1}{2} e^{-\alpha} \text{ or } \alpha e^{\alpha} = \frac{1}{2} \text{ donc } \varphi(\alpha) = \alpha e^{\alpha} e^{-\alpha} = \alpha.$

 φ est dérivable par opérations et $\varphi'(x) = -\frac{1}{2}e^{-x}$ donc $|\varphi'(x)| = \frac{1}{2}e^{-x} \le \frac{1}{2}$ sur \mathbb{R}^+ .

4.c La suite (u_n) est bien définie et à valeurs positives car $\forall x \ge 0, \varphi(x) \ge 0$.

 $\text{Pour tout } n \in \mathbb{N} \text{ , } \left| u_{n+1} - \alpha \right| = \left| \varphi(u_n) - \varphi(\alpha) \right| \text{ donc par l'IAF : } \left| u_{n+1} - \alpha \right| \leq \frac{1}{2} \left| u_n - \alpha \right|.$

Par récurrence, on obtient : $\forall n \in \mathbb{N}$, $\left|u_n - \alpha\right| \leq \frac{1}{2^n} \left|u_0 - \alpha\right|$ donc $\left|u_n - \alpha\right| \to 0$ puis $u_n \to \alpha$.

4.d $|u_0 - \alpha| = |\alpha| \le 1/2$ donc $|u_n - \alpha| \le 1/2^{n+1}$.

 $\frac{1}{2^{n+1}} \leq 5.10^{-3} \Leftrightarrow 2^{n+1} \geq 200 \Leftrightarrow n \geq \log_2 100 \Leftrightarrow n \geq 7 \text{ .Pour } n = 7 \text{ , } u_7 \text{ est une valeur approchée de } \alpha \text{ à la prochée de } \alpha \text{ and } \alpha \text{$

5.10⁻³ près. A la calculatrice, $u_7 = 0.3519993...$ donc $u_7 = 0.35$ à 5.10⁻³ près. Par suite $\alpha = 0.35$ à

Partie II

- 1.a f_{λ} est \mathcal{C}^{∞} et $f_{\lambda}'(x) = -\mathrm{e}^{-x} + 2\lambda x = \mathrm{e}^{x}(-1 + 2\lambda g(x))$ est du signe de $g(x) \frac{1}{2\lambda}$. En posant $m_{\lambda} = h(1/2\lambda)$, on a $x - \infty - m_{\lambda} + \infty - \infty$ $f_{\lambda}(m_{\lambda}) + \infty - \infty$. $f_{\lambda}(m_{\lambda}) = \mathrm{e}^{-m_{\lambda}} + \lambda m_{\lambda}^{2} = 2\lambda m_{\lambda} + \lambda m_{\lambda}^{2} = \lambda m_{\lambda}(m_{\lambda} + 2)$ car $m_{\lambda} \mathrm{e}^{m_{\lambda}} = 1/2\lambda$.
- 1.b Quand $x\to +\infty$, $\frac{f_\lambda(x)}{x}\to +\infty$. Branche parabolique verticale. Quand $x\to -\infty$, $\frac{f_\lambda(x)}{x}\to -\infty$. Branche parabolique verticale.
- 1.c Ci-contre.
- $\begin{array}{ll} \text{2.a} & m_{\lambda} = h(1/2\lambda) \text{ est décroissante par composition.} \\ & \text{Quand } \lambda \to +\infty \text{ , } 1/2\lambda \to 0 \text{ or } h(x) \xrightarrow[x \to 0]{} h(0) = 0 \text{ donc } m_{\lambda} \to 0 \text{ .} \\ & \text{Quand } \lambda \to 0^+ \text{ , } 1/2\lambda \to +\infty \text{ or } h(x) \xrightarrow[x \to +\infty]{} +\infty \text{ donc } m_{\lambda} \to +\infty \text{ .} \\ \end{array}$
- $\begin{array}{ll} 2. \mathrm{b} & m_{\lambda} \mathrm{e}^{m_{\lambda}} = 1/2 \lambda \ \, \mathrm{donc} \ \, 2 \lambda m_{\lambda} = \mathrm{e}^{-m_{\lambda}} \\ \\ \mathrm{Quand} \ \, \lambda \to +\infty \, , \, \, m_{\lambda} \to 0 \, , \, \, 2 \lambda m_{\lambda} = \mathrm{e}^{-m_{\lambda}} \to 1 \, \, \mathrm{puis} \, \, m_{\lambda} \sim \frac{1}{2 \lambda} \, . \end{array}$
- 2.c En passant au logarithme népérien $m_\lambda \mathrm{e}^{m_\lambda} = 1/2\lambda$, on obtient $\ln m_\lambda + m_\lambda = -\ln(2\lambda)$. Quand $\lambda \to 0^+$, $m_\lambda \to +\infty$ donc $\ln m_\lambda = o(m_\lambda)$ donc $-\ln 2\lambda = m_\lambda + o(m_\lambda) \sim m_\lambda$. De plus $\ln 2\lambda = \ln 2 + \ln \lambda \sim \ln \lambda$ donc $m_\lambda \sim -\ln \lambda$.
- 3.a Si $\lambda \leq \mu$ alors $\forall x \in \mathbb{R}$, $f_{\lambda}(x) = \mathrm{e}^{-x} + \lambda x^2 \leq \mathrm{e}^{-x} + \mu x^2$ donc $f_{\lambda}(m_{\mu}) \leq f_{\mu}(m_{\mu})$. De plus, m_{λ} étant minimum de f_{λ} , on a $f_{\lambda}(m_{\lambda}) \leq f_{\lambda}(m_{\mu})$ et donc $\theta(\lambda) \leq \theta(\mu)$. Ainsi θ est croissante.
- $\begin{array}{ll} \text{3.b} & \text{Quand } \lambda \to +\infty \text{ , } m_{\lambda} \sim \frac{1}{2\lambda} \text{ donc } \theta(\lambda) \sim \lambda \frac{1}{2\lambda} (\frac{1}{2\lambda} + 2) \to 1 \text{ .} \\ & \text{Quand } \lambda \to 0^+ \text{ , } m_{\lambda} \sim -\ln \lambda \text{ donc } f_{\lambda} \sim \lambda (\ln \lambda)^2 \to 0 \text{ .} \end{array}$
- 3.c $\frac{\theta(\lambda) \theta(0)}{\lambda} = m_{\lambda}(m_{\lambda} + 2) \to +\infty$.

La fonction θ n'est pas dérivable en 0 mais y présente une tangente verticale.

3.d Quand $\lambda \to +\infty$, $\theta(\lambda) \to 1^-$ donc la droite d'équation y=1 est asymptote, courbe en dessous. En $\lambda=0$, la courbe est en l'origine avec une tangente verticale. En $\lambda=2$, $m_\lambda=h(1)=\alpha$. On a $\theta(1)=\alpha(\alpha+2)$. Reste à calculer $\theta'(1)$.

$$\theta'(\lambda) = (\lambda(m_{\lambda}^2 + 2m_{\lambda}))' = m_{\lambda}^2 + 2m_{\lambda} + 2\lambda m_{\lambda}'(m_{\lambda} + 1) \text{ avec } m_{\lambda}' = (h(1/2\lambda))' = -\frac{1}{2\lambda^2}h'(1/2\lambda) \text{ donc}$$

$$\theta'(1) = \alpha^2 + 2\alpha - (\alpha + 1) \frac{2\alpha}{(\alpha + 1)} = \alpha^2.$$

