

FUNKTIONEN

Fragen?

siehe hochgeladeues Stript!

 $\forall x \in \mathcal{D} \exists_{\mathbf{z}} \mathcal{J} \in \mathcal{W} : f^{(x)} = \mathcal{J}.$ Funktionsbegriff. Ist $f: D \to W$ eine Funktion?

Lösung.

Surjektiv und Injektiv. Sei $f: D \to W$ eine Funktion. Füllen Sie die Tabelle aus, indem Sie D und W in Form zweier Graphiken angeben (analog zur vorherigen Übung als Venn-Diagramm und als Graph).

Lösung.

Ober: f: R→ R/203, f(x)= 1/x

	nicht injektiv	injektiv
nicht surjektiv		
surjektiv		

Surjektiv und Injektiv, Teil 2.

- 1. $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x) = 2x^2 1$ Ist f injektiv/surjektiv/bijektiv?
- 2. Verändern Sie Definitions-/Wertebereich von 1. so, dass f bijektiv wird!

Lösung.

with injectiv: es gibt $x_1 = -2 \neq 2 = x_2$ with $f(x_1) = 7 = f(x_2)$. Well suggestiv: Zer y = -2 gibt es kein x with

f(x) = -2:

Annahme: $f(x) = -2 \stackrel{+1}{=} 2x^2 = -1$ $2x^2 = -1$ $x^2 = -\frac{1}{2}$ $x^2 = -\frac{1}{2}$

2. $f: \mathbb{R}^+_0 \longrightarrow [-1,\infty[$ injettiv: $z_g: \forall x_n x_z \in \mathbb{R}^+_0: f(x_n) = f(x_z) \Longrightarrow x_n = x_z$ Seien $x_1, x_2 \ge 0$ mit $f(x_1) = f(x_1)$ gefeben, dann gilt: $\frac{1}{2}(\frac{1}{x_1}) = \frac{1}{2}(\frac{1}{x_2}) \xrightarrow{+1/2} \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1$

> swjettiv: zef: Yye[-1,00[]xeR+: f(x)=y. Sei y≥-1 gozaban. Definiere mir em ×≥0 mit f(x) = y. (NR: $2x^2 - 1 = y + 1 = 2$ $x^2 = \frac{y+1}{2} = x = \frac{y+1}{2} = \frac{$ $\times := \sqrt{\frac{y+1}{2}} \geq 0$ ≥0 da 42-1 V Danit gilt: $f(x) = 2(\sqrt{\frac{y+1}{2}})^2 - 1 = y \pi$

f ist injelety & Swjeletiv => f ist bijeletiv

Lösung. Typ des Parameters double f(x):

Typ des Parameters f(x):

Typ des Parameter f(x):

Typ des Parameters Funktion in C. Schreiben Sie eine C-Funktion die $f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^2$ implemen-