

M201 Approfondir les systèmes décisionnels

SOMMAIRE

1. Approfondir les statistiques

- Rappeler les notions essentielles
- Assimiler les probabilités et distributions avancées
- Maitriser les mesures de dispersion et de position
 - Vulgariser le langage R

2. Visualiser les données décisionnelles

- Créer divers types de graphiques
- Configurer les graphiques pour une analyse profonde

3. Maitriser les bases de données décisionnelles

- Introduire les bases de données décisionnelles
- Explorer la modélisation dimensionnelle avancée
- Appliquer le processus ETL dans le contexte décisionnel

PARTIE 1 Approfondir les statistiques

Dans ce module, vous allez :

- Rappeler les notions essentielles
- Maitriser les mesures de dispersion et de position
- Assimiler les probabilités et distributions avancées
- Vulgariser le langage R

CHAPITRE 4 Vulgariser le langage R

Ce que vous allez apprendre dans ce chapitre :

- 1. Introduction à R et son rôle en statistique
- 2. Préparation de l'environnement
- 3. Syntaxe de base et principaux opérateurs en R
- 4. Structures de données fondamentales en R
- 5. Manipulations de données en R

01 – Introduction à R et son rôle en statistique 1-1 Historique et développement

Historique et développement

Origine: Le langage S a été développé par **John M. Chambers** et son équipe chez Bell Laboratories dans les années **1970**.

Popularité de S : À la fin des années **1980**, S est devenu populaire grâce à **S-PLUS** (une version commerciale du S) pendant près de deux décennies.

Émergence de R : Ross Ihaka et Robert Gentleman ont créé R au milieu des années 1990, inspiré par S et Scheme, et ont intégré R au **projet GNU**, le rendant ainsi **logiciel libre**.

Montée de R : R a rapidement gagné en popularité (vs S-PLUS) dans le milieu académique, et attirant des contributions significatives, y compris celles de John Chambers, qui a réorienté ses efforts vers R.

01 – Introduction à R et son rôle en statistique

OFPPT

1-2 Caractéristiques de R en tant que langage

Caractéristiques de R en tant que langage

Le R est un langage particulièrement puissant pour les applications mathématiques et statistiques vu qu'il a été développé dans ce but.

Parmi ses caractéristiques particulièrement intéressantes, on note :

- □**Environnement intégré** : R est un environnement conçu pour la manipulation de données, le calcul et la création de graphiques, tout en étant un langage de programmation autonome.
- □Inspiration et origine : R s'inspire principalement des langages S et Scheme, qui eux-mêmes sont influencés par APL et Lisp.
- □Langage interprété : Contrairement aux langages compilés comme C ou C++, R est un langage interprété, nécessitant un interprète pour exécuter les commandes soumises.

01 – Introduction à R et son rôle en statistique

OFPPT

1-2 Caractéristiques de R en tant que langage

Caractéristiques de R en tant que langage (suite)

- □ langage basé sur la notion de vecteur, ce qui simplifie les calculs mathématiques et réduit considérablement le recours aux structures itératives (boucles for, while, etc.);
- □ pas de typage ni de déclaration obligatoire des variables ;
- programmes courts, en général quelques lignes de code seulement ;
- □ temps de développement très court.

01 – Introduction à R et son rôle en statistique 1-3 Ou R est utilisé ?

Ou R est utilisé?

R est utilisé dans divers domaines, notamment :

- 1.Statistiques et analyse de données : R est largement utilisé pour des analyses statistiques avancées, des tests d'hypothèses et des modèles de régression.
- **2.Science des données** : Les scientifiques des données utilisent R pour le nettoyage, la manipulation et l'analyse de grandes quantités de données.
- 3.Bioinformatique : R est populaire pour l'analyse de données génomiques, l'épidémiologie et d'autres recherches en biologie.
- **4.Finance** : Les analystes financiers utilisent R pour la modélisation statistique, l'analyse de risques et le traitement des données financières.
- **5.Recherche académique** : Dans de nombreux domaines académiques, R est utilisé pour l'analyse de données et la visualisation, facilitant la publication de résultats reproductibles.
- **6.Marketing et analyse commerciale** : R est employé pour l'analyse de tendances de consommation, le segmentation de marché et la prévision des ventes.

PARTIE 1

01 – Introduction à R et son rôle en statistique 1-3 Ou R est utilisé ?

The picture can't be displayed.			

01 – Introduction à R et son rôle en statistique 1-4 R dans le contexte concurrentiel

R dans le contexte concurrentiel

01 – Introduction à R et son rôle en statistique 1-5 Top des projets utilisant R

Top des projets utilisant R

Google: Utilise R pour l'analyse de données et le machine learning, notamment dans des projets liés à l'analyse de texte et à la recherche d'informations. R est intégré dans des outils comme Google Cloud pour l'analyse statistique.

Facebook: Utilise R pour des analyses statistiques approfondies, y compris pour la compréhension des comportements des utilisateurs et l'optimisation des publicités. Des packages R spécifiques ont été développés pour faciliter ces analyses.

IBM: Avec IBM SPSS et IBM Watson, R est intégré pour fournir des solutions d'analyse prédictive et de data mining. R est utilisé pour améliorer les capacités analytiques des produits de l'entreprise.

Microsoft: A intégré R dans plusieurs de ses produits, y compris SQL Server et Power BI, permettant aux utilisateurs d'exécuter des analyses avancées et des visualisations directement dans leurs environnements de données.

02 - Préparation de l'environnement 2-1 Choix de l'IDE

2-1 Choix de l'IDE

Voici quelques environnements de développement intégrés (IDE) qui intègrent le langage R :

- □ Jupyter Notebook
- □ Visual Studio Code
- □ Eclipse avec le plugin StatET
- □ Rstudio

02 – Préparation de l'environnement 2-1 Choix de l'IDE

2-1 Choix de l'IDE

Rstudio:

C'est l'IDE le plus populaire pour offrant une interface conviviale, des outils de visualisation, un support pour le développement de packages R et la gestion de projets.

État du projet En développement actif Écrit en C++, Java et JavaScript / Système Microsoft Windows, Linux et d'exploitation macOS / **Environnement** Windows, OS X, GNU/Linux EDI Type Licence GNU Affero General Public License v3² Site web posit.co/products/opensource/rstudio 2 / modifier - modifier le code - voir Wikidata (aide)

02 – Préparation de l'environnement 2-2 Installation de R et Rstudio

2-2 Installation de R et Rstudio

Le téléchargement peut se faire depuis le site illustré dans la figure. Il faut installer d'abord R puis Rstudio.

2-3 Accueil de R et de Rstudio

R comme Python peut être utilisé sans Environnement de Développment Intégré (EDI).

Pour ce faire, dans le menu Démarrer, vous pouvez cherchez R 4.4.1

Si vous aimez travaillez avec **l'EDI Rstudio**, dans ce cas vous le lancez également depuis le **menu Démarrer** comme se voit dans la figure.

2-3 Accueil de R

Vous pouvez commencez la programmation via l'invite de commandes de R.

Exemples de commandes:

getwd() donne le dossier courant de tes fichiers, projets, et données d'entrées à R .

read.csv(« data.csv") essaie de lire le fichier depuis le dossier courant. Une erreur est renvoyé car le fichier data.csv n'existe pas dans "C:/Users/pc/OneDrive - OFPPT/Documents"

2-3 Accueil de R (suite)

Vous pouvez commencez la programmation via l'invite de commandes de R.

Exemples de commandes:

- Opérations arithmétiques
- Affectation avec <- ou = (préféré est <-)
- Et bien d'autres

```
R R Console
                                                                      - - X
[1] "C:/Users/pc/OneDrive - OFPPT/Documents"
> read.csv("mydata.csv")
Erreur dans file(file, "rt") : impossible d'ouvrir la connexion
De plus : Message d'avis :
Dans file(file, "rt") :
 impossible d'ouvrir le fichier 'mydata.csv' : No such file or directory
> 2/2
[1] 1
> 2+3
[1] 5
> 2/0
[1] Inf
> 0/2
[1] 0
> 0/0
[1] NaN
> x<-0
> x
[1] 0
> z = 3
> z
[1] 3
```


2-3 Accueil de R (suite)

- ✓ Nous pouvons créer un fichier R.
- ✓ Le mettre dans le répertoire courant
- ✓ Y écrire un code R
- ✓ Importer le fichier R
- ✓ Pour l'exécuter ou
- Pour exécuter une fonction particulière

2-3 Accueil de RStudio

Vous pouvez commencez la programmation via l'invite de commandes de R intégré dans RStudio.

02 – Préparation de l'environnement 2-4 Blocs de l'interface principale de RStudio

2-3 Accueil de RStudio

Vous pouvez commencez la programmation via l'invite de commandes de R intégré dans RStudio.

Les variables

Dans R les variables ne sont pas déclarées comme un type de données. Les objets R sont affectés aux variables et le type de données de l'objet R devient le type de données de la variable.

Il existe de nombreux types d'objets R. Les plus fréquemment utilisés sont :

- Vecteurs
- Listes
- Matrices
- Tableaux
- Facteurs
- Trames de données

Les vecteurs

Le plus simple de ces objets est **l'objet vecteur** et il existe **six types de données** de ces vecteurs atomiques, également appelés **six classes** de vecteurs. Les autres objets R sont construits sur les vecteurs atomiques.

Data Type	Exemple	Verification
Logical	TRUE , FALSE	<pre>v <- TRUE print(class(v)) Cela produit: [1] "logical"</pre>
Numeric	12.3, 5, 999	<pre>v <- 23.5 print(class(v)) Cela produit : [1] "numeric"</pre>

Les vecteurs

Data Type	Exemple	Verification
Integer	2L, 34L, 0L	<pre>v <- 2L print(class(v)) Cela produit: [1] "integer"</pre>
Complex	3 + 2i	<pre>v <- 2+5i print(class(v)) Cela produit: [1] "complex"</pre>
Character	'a' , '"good", "TRUE", '23.4'	<pre>v <- "TRUE" print(class(v)) Cela produit: [1] "character"</pre>

Les vecteurs

Data Type	Exemple	Verification
Raw	"Hello" is stored as 48 65 6c 6c 6f	<pre>v <- charToRaw("Hello") print(class(v)) Cela produit: [1] "raw"</pre>

Note:

Veuillez noter que dans R, le nombre de classes ne se limite pas aux six types ci-dessus. Par exemple, nous pouvons utiliser de nombreux vecteurs atomiques et créer un tableau dont la classe deviendra un tableau.

Les vecteurs à plusieurs éléments

Lorsque vous souhaitez créer un vecteur avec plusieurs éléments, vous devez utiliser la fonction c() qui consiste à combiner les éléments dans un vecteur.

```
# Create a vector.

apple <- c('red','green',"yellow")

print(apple)

# Get the class of the vector.

print(class(apple))
```

Lorsque vous executez le code, cela donne :

- [1] "red" "green" "yellow"
- [1] "character"

Nomination des variables

Ci-dessous des règles de nomination des variables

Nom de la variable	Validité	Raison
var_name2.	valide	Contient des lettres, des chiffres, un point et un underscore.
var_name%	invalide	Contient le caractère '%'. Seuls un point (.) et un underscore sont autorisés.
2var_name	invalide	Commence par un chiffre.
.var_name, var.name	valide	Peut commencer par un point (.) mais ne doit pas être suivi d'un chiffre.
.2var_name	invalide	Le point de départ est suivi d'un chiffre, ce qui le rend invalide.
_var_name	invalide	Commence par un underscore (_), ce qui n'est pas valide.

Principaux opérateurs en R

Un opérateur est un symbole qui indique au compilateur d'effectuer des manipulations mathématiques ou logiques spécifiques. Le langage R est riche en opérateurs intégrés et fournit les types d'opérateurs suivants.

- Opérateurs arithmétiques
- Opérateurs relationnels
- Opérateurs logiques
- Opérateurs d'affectation
- Opérateurs divers

Opérateurs arithmétiques

Operator	Description	Example
+	Additionne deux vecteurs	v <- c(2,5.5,6) t <- c(8, 3, 4) print(v+t) Cela produit après l'exécution: [1] 10.0 8.5 10.0
_	Soustrait le deuxièle du premier	v <- c(2,5.5,6) t <- c(8, 3, 4) print(v-t) Cela produit après l'exécution : [1] -6.0 2.5 2.0

Opérateurs arithmétiques

Operator	Description	Example
/	Division réelle de v sur t	<pre>v <- c(2,5.5,6) t <- c(8, 3, 4) print(v/t) Cela produit après l'exécution : [1] 0.250000 1.833333 1.500000</pre>
%%	Donne le reste de v sur t	<pre>v <- c(2,5.5,6) t <- c(8, 3, 4) print(v%t) Cela produit après l'exécution : [1] 2.0 2.5 2.0</pre>

Opérateurs arithmétiques

Operator	Description	Example
%/%	Division entière de v sur t (quotient)	<pre>v <- c(2,5.5,6) t <- c(8, 3, 4) print(v%/%t) Cela produit après l'exécution : [1] 0 1 1</pre>
^	v à la puissance t	<pre>v <- c(2,5.5,6) t <- c(8, 3, 4) print(v^t) Cela produit après l'exécution : [1] 256.000 166.375 1296.000</pre>

Opérateurs relationnels

Operator	Description	Example
>	Vérifie si chaque élément du premier vecteur est supérieur à l'élément correspondant du deuxième vecteur.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v>t) Cela produit après l'exécution : [1] FALSE TRUE FALSE FALSE</pre>
<	Vérifie si chaque élément du premier vecteur est inférieur à l'élément correspondant du deuxième vecteur.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v < t) Cela produit après l'exécution : [1] TRUE FALSE TRUE FALSE</pre>

Opérateurs relationnels

Operator	Description	Example
==	Vérifie si chaque élément du premier vecteur est égale à l'élément correspondant du deuxième vecteur.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v==t) Cela produit après l'exécution : [1] FALSE FALSE TRUE</pre>
<=	Vérifie si chaque élément du premier vecteur est inférieur ou égale à l'élément correspondant du deuxième vecteur.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v<=t) Cela produit après l'exécution : [1] TRUE FALSE TRUE TRUE</pre>

Opérateurs relationnels

Operator	Description	Example
>=	Vérifie si chaque élément du premier vecteur est supérieur ou égal à l'élément correspondant du deuxième vecteur.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v>=t) Cela produit après l'exécution : [1] FALSE TRUE FALSE TRUE</pre>
!=	Vérifie si chaque élément du premier vecteur est différent de l'élément correspondant du deuxième vecteur.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9) print(v!=t) Cela produit après l'exécution : [1] TRUE TRUE TRUE FALSE</pre>

Opérateurs logiques

Ils s'appliquent uniquement aux vecteurs de type **logique**, **numérique ou complexe**. Tous les nombres supérieurs à 1 sont considérés comme des valeurs logiques (VRAI). Chaque élément du premier vecteur est comparé à l'élément correspondant du deuxième vecteur. Le résultat de la comparaison est une valeur booléenne.

Operator	Description	Example
&	Il s'agit de l'opérateur logique AND élément par élément. Il combine chaque élément du premier vecteur avec l'élément correspondant du deuxième vecteur et donne une sortie VRAI si les deux éléments sont VRAI.	<pre>v <- c(3,1,TRUE,2+3i) t <- c(4,1,FALSE,2+3i) print(v&t) Cela produit après l'exécution : [1] TRUE TRUE FALSE TRUE</pre>
!	On l'appelle opérateur NON logique. Il prend chaque élément du vecteur et donne la valeur logique opposée.	<pre>v <- c(3,0,TRUE,2+2i) print(!v) Cela produit après l'exécution : [1] FALSE TRUE FALSE FALSE</pre>

Opérateurs logiques

L'opérateur logique && et | | ne considère que le premier élément des vecteurs et donne un vecteur d'un seul élément en sortie.

Operator	Description	Example
&&	Appelé opérateur logique AND. Il prend le premier élément des deux vecteurs et donne la valeur VRAI uniquement si les deux sont VRAI.	<pre>v <- c(3,0,TRUE,2+2i) t <- c(1,3,TRUE,2+3i) print(v&&t) Cela produit après l'exécution : [1] TRUE</pre>
II	Appelé opérateur logique OU. Il prend le premier élément des deux vecteurs et donne la valeur VRAI uniquement si les deux sont VRAI.	<pre>v <- c(0,0,TRUE,2+2i) t <- c(0,3,TRUE,2+3i) print(v t) Cela produit après l'exécution : [1] FALSE</pre>

Opérateurs d'affectation

Ces opérateurs sont utilisés pour attribuer des valeurs aux vecteurs.

Operator	Description	Example
<- or = or <<-		v1 <- c(3,1,TRUE,2+3i) v2 <<- c(3,1,TRUE,2+3i) v3 = c(3,1,TRUE,2+3i)
		print(v1) print(v2) print(v3) Cela produit après l'exécution :
		[1] 3+0i 1+0i 1+0i 2+3i
	Appelée affectation à gauche	[1] 3+0i 1+0i 1+0i 2+3i
	, production of the second of	[1] 3+0i 1+0i 1+0i 2+3i
-> Or ->>	Appelée affectation à droite	<pre>c(3,1,TRUE,2+3i) -> v1 c(3,1,TRUE,2+3i) ->> v2 print(v1) print(v2) Cela produit après l'exécution : [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i</pre>

Opérateurs divers

Ces opérateurs sont utilisés à des fins spécifiques et non pour des calculs mathématiques ou logiques généraux.

Operator	Description	Example
÷	Opérateur deux points. Il crée la série de nombres en séquence pour un vecteur.	<pre>v <- 2:8 print(v) Cela produit après l'exécution : [1] 2 3 4 5 6 7 8</pre>
%in%	Cet opérateur est utilisé pour identifier si un élément appartient à un vecteur.	<pre>v1 <- 8 v2 <- 12 t <- 1:10 print(v1 %in% t) print(v2 %in% t) Cela produit après l'exécution : [1] TRUE [1] FALSE</pre>

Opérateurs divers

Ces opérateurs sont utilisés à des fins spécifiques et non pour des calculs mathématiques ou logiques généraux.

Operator	Description	Example
	Cet opérateur est utilisé pour multiplier une matrice par sa transposée.	<pre>M = matrix(c(2,6,5,1,10,4), nrow=2,ncol=3,byrow = TRUE) t = M %*% t(M) print(t) Cela produit après l'exécution :</pre>
%*%		[,1] [,2] [1,] 65 82
		[2,] 82 117