Homework #5

Raymond Deneckere

Fall 2017

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by the rule $f(x) = x + 2x^2 \sin(\frac{1}{x})$ for $x \neq 0$, and f(0) = 0. Show that $f'(0) \neq 0$, but that f is not locally invertible near 0. Why does this not contradict the inverse function theorem?
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f_1(x,y) = x^2 y^2$ and $f_2(x,y) = 2xy$.
 - (a) At which points in \mathbb{R}^2 is $f(\cdot, \cdot)$ locally invertible?
 - (b) Letting $u = f_1(x, y)$ and $v = f_2(x, y)$, compute $\frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}, \frac{\partial y}{\partial u}, \frac{\partial y}{\partial v}$.
- 3. Consider the system of equations

$$x + y + uv = 0$$

$$xyu + v = 0$$

- (a) Use the Implicit Function Theorem to discuss the solvability of this system for u, v in terms of x, y near x = y = u = v = 0.
- (b) Check the same question directly.
- 4. Show that the system of equations

$$3x + y - z + u^2 = 0$$

$$x - y + 2z + u = 0$$

$$2x + 2y - 3z + 2u = 0$$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f_1(x,y) = e^x \cos y$ and $f_2(x,y) = e^x \sin y$.
 - (a) What is the image of $f(\cdot, \cdot)$?
 - (b) Show that the Jacobian of f is not zero at any point of \mathbb{R}^2 . Conclude that every point of \mathbb{R}^2 has a neighborhood in which f is injective, but that f is not injective on \mathbb{R}^2 .
 - (c) Put $a = (a_1, a_2) = (0, \frac{\pi}{3})$ and $b = (b_1, b_2) = f(a)$, and let g be the continuous inverse of f, defined in a neighborhood of b such that g(b) = a. Find an explicit formula for g, compute Df(a), Dg(b), and verify that $Dg(b) = Df(a)^{-1}$.