«Использование метода SSA в машинном обучении для прогноза временных рядов»

Ежов Федор Валерьевич, группа 20.М03-мм

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент Голяндина Н.Э. Рецензент: Программист, Майкрософт Израиль, Шлемов А.Ю.

Санкт-Петербург 2022г.

Постановка задачи

Рассмотрим временной ряд $X_N = (x_1, ..., x_N)$.

Задача: прогнозирование временного ряда. Нейронные сети (NN) подходят для решения этой задачи.

Предобработка: Singular Spectrum Analysis (SSA). Методы, использующие предобработанные данные, называем гибридными (SSA-NN).

Mетод SSA также может прогнозировать временные ряды самостоятельно.

Что лучше? Метод SSA или NN или SSA-NN.

Singular Spectrum Analysis (SSA)

Считаем, что $\mathsf{X}_N = \mathsf{S}_N + \xi_N$, где S_N – сигнал, ξ_N – шум, случайный процесс с нулевым мат. ожиданием.

Входные данные: $\mathbf{X}_N = (x_1, \dots, x_N)$. Результат: $\widehat{\mathbf{S}}_N = (\widehat{s}_1, \dots, \widehat{s}_N)$ — оценка сигнала ряда X_N . Параметры: 1 < L < N — длина окна. 1 < r < L — количество компонент.

Алгоритм выделение сигнала:

- Траекторная матрица.
 - $\mathbf{X} = [X_1 : \ldots : X_K], K = N L + 1; X_i = (x_i, \ldots, x_{i+L-1}),$
- **3**SVD.**X** $= \sum_{i=1}^{L} \sqrt{\lambda_i} U_i V_i^T,$
- f O Оценка $\widehat{\sf S}_N$ получается путем диагонального усреднения матрицы $\widehat{\pmb X} = \sum_{i=1}^r \sqrt{\lambda_i} U_i V_i^T.$

Результат: $\widehat{\mathsf{S}}_N = (\widehat{s}_1, \dots, \widehat{s}_N)$.

Подробнее в книге: Golyandina, Nekrutkin, Zhigljavsky, Analysis of Time Series Structure - SSA and Related Techniques, 2001.

Singular Spectrum Analysis (SSA)

Модель сигнала конечного ранга:

$$s_n = \sum_{k=1}^{P} \sin(2\pi\omega_k n + \phi_k) \cdot e^{\alpha_k n} \cdot (\beta_{m_k} n^{m_k} + \dots + \beta_1 n + \beta_0)$$

Число компонент r для частных случаев:

- r = 2 для синуса или косинуса.
- **3** r = m + 1 для полинома степени m.

Рекомендации для выделения сигнала:

- $lackbox{0} \ L = \lfloor rac{N+1}{2}
 floor$, если сигнал конечного ранга.
- f 2 L поменьше, если сигнал локально (приближенно) конечного ранга.

Обычные и гибридные методы

- MultiLayer Perceptron (MLP) (далее именуемая как ANN).
- Recurrent neural network (RNN).
- Gated recurrent unit (GRU).
- Long short-term memory (LSTM).

Гиперпараметры нейронных сетей: T – размер входного вектора, h – размер скрытого слоя.

Параметры (веса) нейронных сетей инициализируются случайно. Оптимизация параметров происходит с помощью «обратного распространения ошибки».

Обычные (негибридные) методы: ANN, RNN, GRU, LSTM. Гибридные методы: SSA-ANN, SSA-RNN, SSA-GRU, SSA-LSTM.

Отличие

На вход гибридным методам подается оценка сигнала ряда.

Метод ANN

$$\hat{x}_{T+1} = \sum_{\ell=1}^{h} w_{\ell}^{(2)} f(\sum_{i=1}^{T} w_{i\ell}^{(1)} x_i + \theta^{(1)}) + \theta^{(2)}.$$

Обычные и гибридные методы

- MultiLayer Perceptron (MLP) (далее именуемая как ANN).
- Recurrent neural network (RNN).
- Gated recurrent unit (GRU).
- Long short-term memory (LSTM).

Гиперпараметры нейронных сетей: T – размер входного вектора, h – размер скрытого слоя.

Параметры (веса) нейронных сетей инициализируются случайно. Оптимизация параметров происходит с помощью «обратного распространения ошибки».

Обычные (негибридные) методы: ANN, RNN, GRU, LSTM. Гибридные методы: SSA-ANN, SSA-RNN, SSA-GRU, SSA-LSTM.

Отличие

На вход гибридным методам подается оценка сигнала ряда.

Разбиение

Пусть au, v и t=N-T номера последних строчек в каждой соответствующей части.

Каждая выборка выделена цветом: $\mathbf{Z}_{\mathrm{train}}, \mathbf{Z}_{\mathrm{val}}, \mathbf{Z}_{\mathrm{test}}.$

Предобработка данных

Тренировочная выборка:

Для обучения SSA применяется к $\mathsf{Z}_{\mathrm{train}} = (z_1, \dots, z_{\tau+T+1}).$

Валидационная/тестовая выборки:

Для прогноза элемента z_m применям SSA к $(z_{m-1-(\tau+T)},\dots,z_{m-1}).$

Основные гиперпараметры гибридных методов:

- L (размер окна SSA).
- r (количество компонент в SSA для оценки сигнала).
- Т (размер входного вектора в нейронной сети).
- h (размер скрытого слоя нейронной сети).

Как сравнивать?

Задача: Сравнить метод SSA или NN или SSA-NN.

Нужна методика сравнения.

Методика должна позволять:

- Сравнить различные группы методов корректно.
- Получить рекомендации по выбору гиперпараметров.
- Оценить устойчивость относительно параметров методов.
- Оценить устойчивость относительно случайных возмущений.

Методика сравнения

Прогноз методом SSA.

Выбор параметров SSA для гибридных методов.

Сравнение методов: После выбора лучших пар L и r для гибридных методов для гиперпараметров T и h задается сетка.

В каждой ячейке T, h находится соответствующая ошибка прогноза.

	T_1	T_2		T_n
h_1	$\operatorname{err}(T_1,h_1)$	$\operatorname{err}(T_2,h_1)$		$\operatorname{err}(T_n,h_1)$
h_2	$\operatorname{err}(T_1,h_2)$	$\operatorname{err}(T_2,h_2)$		$\operatorname{err}(T_n,h_2)$
:		:	• • •	
h_m	$\operatorname{err}(T_1,h_m)$	$\operatorname{err}(T_2,h_m)$		$\operatorname{err}(T_n,h_m)$

Усреднение по T или по h.

Методика сравнения

Прогноз методом SSA.

Выбор гиперпараметров SSA для гибридных методов.

Сравнение методов.

Проверка устойчивости методов: Дополнительная проверка устойчивости осуществляется с помощью случайной инициализации весов.

Также в методику включена различная визуализация в виде графиков или чисел.

Эксперименты

Методика применялась к синтетическим и реальным данным.

Реальные данные:

- Indian Rain.
- Earth Orientation Parameters (EOP).
- Погода в Санкт-Петербурге.

На синтетических данных было исследовано:

- Влияние выбора параметра r.
- Влияние шума в ряде.
- Влияние длины ряда.
- Влияние красного шума.

Эксперименты. Indian Rain

Критика в Du, Zhao, Lei, 2017: гибридные методы не улучшают прогноз.

Рассмотрим временной ряд «Indian Rain» длины 1500 точек. Данные показывают среднемесячные осадки в Индии.

Разбиение: 750 (тренировочная), 500 (валидационная), 250 (тестовая) точек.

Гиперпараметры r = 7, L = 375.

Эксперименты. Indian Rain. Прогноз SSA

Цель: посмотреть для каких L и r прогноз SSA имеет оптимальную ошибку.

На графике: зависимость RMSE прогноза метода SSA на валидационной выборке относительно ${\cal L}.$

Эксперименты. Indian Rain. Сравнение методов

Зададим $T=\{12,48,\dots,408\},\ h=\{10,25,\dots,100\}.$ Усреднение ошибок по h. Результат: SSA–NN < SSA < NN.

Эксперименты. Indian Rain. Проверка устойчивости

Зададим $T=\{12,156\}$, $h=\{10,25,\ldots,100\}$.

Эксперименты. Indian Rain. Выводы

- SSA-NN < SSA < NN
- SSA позволяет выбрать методы с меньшим размером Т и h, что дает больше количество пар «признаки-предсказываемые значения», а также снижает сложность модели.

Объяснение:

- Ряд имеет достаточную длину.
- Сигнал ряда простой и конечного ранга.
- Достаточный уровень шума.

Эксперименты. Погода

Характеристика погоды в Санкт-Петербурге. Размер ряда 828 точек. Ряд похож на «Indian Rain».

Разбиение: 528, 150, 150 точек.

$$L = 264, r = 5.$$

Эксперименты. Погода

Результаты:

- Результаты для NN и SSA-NN смешиваются.
- Средняя ошибка метода SSA наименьшая.

Вопрос таких результатов остается открытым.

Эксперименты. Earth Orientation Parameters (EOP)

Метод SSA дал хорошие результаты ранее (Okhotnikov, Golyandina, 2019).

Рассмотрим ряд «x pole» из данных EOP.

Перейдем от дневных к месячным значениям.

Вычтем тренд. Размер ряда 620.

Разбиение: 320, 150, 150 точек.

Сигнал неконечного ранга. Маленький шум.

$$L = 78, r = 18.$$

Эксперименты. Earth Orientation Parameters (EOP)

Результаты:

- $SSA \leq NN < SSA-NN$.
- Наилучший результат показал метод SSA (L=26, r=12).
- Наилучшие параметры приводят к сильной аппроксимации методом SSA.

Возможные объяснения:

- Сигнал неконечного ранга.
- Маленький шум.

Эксперименты. Таблица с результатами

Data	ssa-params	ann	rnn	gru	lstm	ssa
Rain	-	225.75	223.07	227.73	230.17	222.39
	L = 375, r = 7	220.80	220.58	219.81	220.46	222.39
EOP	-	0.027	0.013	0.016	0.020	0.011
	L = 78, r = 18	0.030	0.023	0.018	0.025	0.011
Погода	-	5.803	5.911	5.894	5.969	5.638
	L = 264, r = 5	5.753	5.868	5.912	5.895	5.638

Эксперименты. Синтетические данные

Рассмотрим ряд $\{Z_N: z_i = \left(\sin(2\pi \frac{i}{6}) + 2\sin(2\pi \frac{i}{12})\right)\}.$

Ранг ряда равен 4. Будем добавлять к ряду белый или красный шум.

Эксперименты:

- **3** Z_{650} + белый шум $1.5 \varepsilon_i; \ \varepsilon_i \sim \mathsf{N}(0,1).$
- $2 Z_{650} +$ белый шум $0.3 \varepsilon_i$.
- ullet Z $_{650}$ + красный шум ξ_i , где $\xi_i=\xi_{i-1}+\sigma arepsilon_i$, $\sigma=1.2$, $arepsilon_i\sim {
 m N}(0,1).$

experiment	ssa-params	ann	rnn	gru	Istm	ssa
1	-	1.657	1.635	1.623	1.625	1.586
	L = 175, r = 4	1.567	1.587	1.566	1.581	1.586
2	-	0.326	0.325	0.321	0.330	0.316
	L = 175, r = 4	0.312	0.316	0.313	0.317	0.316
3. Ряд	-	1.819	1.396	1.415	1.461	1.803
	L = 84, r = 14	2.031	1.968	1.914	2.043	1.803
3. Сигнал	-	1.404	1.679	1.697	1.577	1.398
	L = 175, r = 4	0.919	0.856	0.876	0.943	1.398

Эксперименты. Синтетические данные

Результаты эксперимента с красным шумом:

- SSA-NN < SSA < NN, ошибка прогноза сигнала.
- SSA-NN > SSA > NN, ошибка прогноза всего ряда.

Разные постановки задачи приводят к разным результатам.

experiment	ssa-params	ann	rnn	gru	lstm	ssa
1	-	1.657	1.635	1.623	1.625	1.586
	L = 175, r = 4	1.567	1.587	1.566	1.581	1.586
2	-	0.326 0.312	0.325 0.316	0.321	0.330	0.316
	L = 175, r = 4	0.312	0.316	0.313	0.317	0.316
3. Ряд	-	1.819	1.396	1.415	1.461	1.803
	L = 84, r = 14	2.031	1.968	1.914	2.043	1.803
3. Сигнал	-	1.404	1.679	1.697	1.577	1.398
	L = 175, r = 4	0.919	0.856	0.876	0.943	1.398

Результаты

- Разработана методика, позволяющая сравнивать методы и помогать в выборе гиперпараметров.
- Продемонстрирован положительный результат гибридных методов на реальных данных.
- Гибридные методы не всегда работают точнее обычных. Осталось много вопросов.
- При применении гибридных методов важно помнить, что они решают задачу прогнозирования сигнала.