Digital System Design with HDL (I) Lecture 11

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Moore-Type FSMs
- Mealy-Type FSMs
- Verilog Code for FSMs

General Form of A Sequential Circuit.

- Sequential circuits are called finite state machines (FSM).
- Combinational circuit 1 has inputs from the input W and the state Q of the flip-flops.
- The output Z always depends on the state Q of the flipflops. It may also depend on the input W.

General Form of A Sequential Circuit.

- The sequential circuits whose outputs depend only on the state of the circuit are of **Moore type**.
- Those whose outputs depend on both the state and the inputs are of **Mealy type**.

4

Moore State Model.

We wish to design such a circuit:

- The circuit has one input w and one output z.
- All changes in the circuit occur on the positive edge of a clock signal.
- The output z is 1 if during the past two clock cycles w was 1. Otherwise z is 0.

Clockcycle:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t_6	t ₇	t ₈	t9	t ₁₀
											1
<i>z</i> :	0	0	0	0	0	1	0	0	1	1	0

Sequences of input and output signals.

5

Moore State Model

State Diagram

- State A: w is 0 during past 1 clock cycle.
- State B: w has been 1 for just 1 clock cycle.
- State C: w has been 1 for 2 clock cycles.

6

Moore State Model.

State Table

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	С	1

	Present	Next		
	state	w = 0	w = 1	Output
	<i>y</i> ₂ <i>y</i> ₁	$Y_{2}Y_{1}$	$Y_{2}Y_{1}$	Z
A	00	00	01	0
В	01	00	10	0
C	10	00	10	1
	11	dd	dd	d

Moore State Model.

Next-State and Output Expressions

Moore State Model.

Moore State Model.

Alternative State Assignment

	Present	Next		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
1	00	00	01	0
3	01	00	11	0
7	11	00	11	1
	10	dd	dd	d

10

12

Moore State Model

11

Mealy State Model.

We wish to design such a circuit:

- The circuit has one input w and one output z.
- The output z is 1 in the clock cycle when the second occurrence of w =1 is detected. Otherwise z is 0.

Clock cycle: w: z:	t_0	t ₁	t_2	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t9	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	1	0	0	1	1	0	0

Sequences of input and output signals.

Mealy State Model.

State Diagram

- State A: w is 0, producing an output z = 0.
- State B: w is 1.
- If w = 1 for two consecutive clock cycles, the machine remains in state B and produce an output z = 1.

13

Mealy State Model.

Implementation

$$Y = D = w$$
$$z = wy$$

Output z depends on both the state and the input.

Mealy State Model.

State Table

Α

В

Present	Next	state	Output z		
state	w = 0	w = 1	w = 0	w = 1	
A	A	В	0	0	
В	A	В	0	1	

Present	Next	state	Output		
state	w = 0	w = 1	w = 0	w = 1	
y	Y	Y	Z	Z	
0	0	1	0	0	
1	0	1	0	1	

14

Verilog Code for the Moore FSM.

```
module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] y, Y;
parameter [2:1] A = 2'b00, B = 2'b01, C =
2'b10;
```

// Define the next state combinational circuit

```
always @(w, y)
case (y)
A: if (w) Y = B;
else Y = A;
B: if (w) Y = C;
else Y = A;
C: if (w) Y = C;
```

C: if (w) Y = C; else Y = A; default: Y = 2'bxx; endcase

Verilog Code for the Moore FSM.


```
module simple (Clock, Resetn, w, z);
   input Clock, Resetn, w;
   output z;
   reg [2:1] y;
   parameter [2:1] A = 2'b00, B = 2'b01, C = 2'b10;
   // Define the sequential block
   always @(negedge Resetn, posedge Clock)
      if (Resetn = = 0)
                            v \leq A:
         case (y)
             A: if (w) y \le B;
               else y \le A;
             B: if (w) y \le C;
               else y \le A;
             C: if (w) y \leq C;
               else v \le A:
             default: y \le 2bxx;
         endcase
   // Define output
   assign z = (y = = C);
                                               17
endmodule
```

Verolig Code for the Mealy FSM.

Verilog Code for the FSM.

State Assignment

- State assignments are specified by a parameter statement in Verilog code.
- Verilog compilers can recognize the code for an FSM.
- They can optimize the implementation by looking for a better state assignment based on the cost of implementation.
- The user can either allow the compiler to optimize the state assignment or suppress it.

Verilog Code for the FSM.

- The code for the Moore one is synthesised in a CPLD.
- The used parts are highlighted in blue.

$$Y_1 = w\bar{y}_1\bar{y}_2$$

$$y_2 = wy_1 + wy_2$$

= $w(y_1 + y_2)$

20

$$z = y_2$$