WindTrue: Sensitivity analysis applied to DANAERO wind turbine

Prashant Kumar

Benjamin Sanderse

Workflow

NURBS based parametrization

Obtain perturbed chord/twist/thickness curves from given reference curves

Non-Uniform Rational Basis Spline (NURBS)

$$S(x) = \sum_{i=0}^{N-1} c_i B_{i,p}(x)$$

Non-Uniform Rational Basis Spline (NURBS)

Why NURBS?

- -> Represent complex shapes with very few points
- -> Flexibility to design a large variety of shapes
- -> Easy to obtain high-order polynomials

Goal: Obtain perturbed chord curves from a given reference chord

Goal: Obtain perturbed chord curves from a given reference chord

Step 1: Sample locations from the reference curve

Goal: Obtain perturbed chord curves from a given reference chord

Step 1: Sample locations from the reference curve

Step 2: Compute control points at sampled location via inversion

$$S(x) = \sum_{i=0}^{N-1} c_i B_{i,p}(x) \implies \mathbf{Bc} = \mathbf{S}$$
known known

Goal: Obtain perturbed chord curves from a given reference chord

Step 1: Sample locations from the reference curve

Step 2: Compute control points at sampled location via inversion

$$S(x) = \sum_{i=0}^{N-1} c_i B_{i,p}(x) \implies \mathbf{Bc} = \mathbf{S}$$
known known

Step 3: Perturb control point values using some PDFs

Step 3: Perturb control point values using some PDFs

Global sensitivity analysis

Global sensitivity analysis

- -> Goal is to rank the uncertain parameters in the order of importance
- -> Global approaches cover the uncertainty spaces more exhaustively than local approaches
- -> Better able to capture uncertainty in the model output

Sobol sensitivity indices

Main idea: Decompose the variance of model output in terms of contribution from individual input parameters and their combinations.

$$V(y) = \sum_{i} V_i + \sum_{i,j} V_{i,j} + \text{higher order terms}$$

First order indices

$$S_1 = \frac{V_1}{V}, S_2 = \frac{V_2}{V}, \dots$$

Second order indices

$$S_{1,2} = \frac{V_{1,2}}{V}, S_{1,3} = \frac{V_{1,3}}{V}, \dots$$

Sobol sensitivity indices

Main idea: Decompose the variance of model output in terms of contribution from individual input parameters and their combinations.

$$V(y) = \sum_{i} V_i + \sum_{i,j} V_{i,j} + \text{higher order terms}$$

First order indices

$$S_1 = \frac{V_1}{V}, S_2 = \frac{V_2}{V}, \dots$$

Second order indices

$$S_{1,2} = \frac{V_{1,2}}{V}, S_{1,3} = \frac{V_{1,3}}{V}, \dots$$

We use adaptive Polynomial Chaos Expansion (Least angle regression) to compute variances

Sensitivity analysis results

Geometric Uncertainty

10% (uniformly distributed) uncertainty in chosen control point

Sobol indices

Power Axial Force

Operational Uncertainty

Yaw

Truncated Gaussian [mean = 0, std = 2, LB = -10, UB = 10]

WindSpeed

Weibull distribution [Scale = 6.1, Shape = 50]

RPM

Truncated Gaussian [mean = 12.3, std = 1, LB = 10, UB = 14]

PitchAngle

Truncated Gaussian [mean = 0.15, std = 1, LB = -2, UB = 2]

Sobol indices

Power Axial Force

Conclusions

- -> Global SA is a powerful method to analyze uncertainties in BEM models
- -> Chord and Thickness more sensitive compared to Twist
- -> Yaw angle is least sensitive parameter compared to WindSpeed, RPM and Pitch

Next Steps

- -> Determine realistic amount of perturbations for uncertain parameters
- -> Parameterization for other random inputs, model-form uncertainty
- -> Include other BEM codes in the workflow and perform comparisons