3 Resistance variation

At the end of this chapter you should be able to:

- appreciate that electrical resistance depends on four factors
- appreciate that resistance $R = \frac{\rho l}{a}$, where ρ is the resistivity
- recognize typical values of resistivity and its unit
- perform calculations using $R = \frac{\rho l}{a}$
- define the temperature coefficient of resistance, α
- recognize typical values for α
- perform calculations using $R_{\theta} = R_0(1 + \alpha \theta)$

3.1 Resistance and resistivity

The resistance of an electrical conductor depends on 4 factors, these being: (a) the length of the conductor, (b) the cross-sectional area of the conductor, (c) the type of material and (d) the temperature of the material.

Resistance, R, is directly proportional to length, l, of a conductor, i.e. $R \propto l$. Thus, for example, if the length of a piece of wire is doubled, then the resistance is doubled.

Resistance, R, is inversely proportional to cross-sectional area, a, of a conductor, i.e. $R \propto 1/a$. Thus, for example, if the cross-sectional area of a piece of wire is doubled then the resistance is halved.

Since $R \propto l$ and $R \propto 1/a$ then $R \propto l/a$. By inserting a constant of proportionality into this relationship the type of material used may be taken into account. The constant of proportionality is known as the **resistivity** of the material and is given the symbol ρ (Greek rho). Thus,

resistance
$$R = \frac{\rho l}{a}$$
 ohms

 ρ is measured in ohm metres (Ω m)

The value of the resistivity is that resistance of a unit cube of the material measured between opposite faces of the cube.

Resistivity varies with temperature and some typical values of resistivities measured at about room temperature are given below:

Copper
$$1.7 \times 10^{-8} \Omega \text{m}$$
 (or $0.017 \mu \Omega \text{m}$)

Aluminium
$$2.6 \times 10^{-8} \Omega m$$
 (or $0.026 \mu\Omega m$)

Carbon (graphite) $10 \times 10^{-8} \Omega m$ (or $0.10 \mu\Omega m$)

Glass $1 \times 10^{10} \ \Omega m$ (or $10^4 \ \mu\Omega m$)

Mica $1 \times 10^{13} \Omega m$ (or $10^7 \mu\Omega m$)

Note that good conductors of electricity have a low value of resistivity and good insulators have a high value of resistivity.

Problem 1. The resistance of a 5 m length of wire is 600 Ω . Determine (a) the resistance of an 8 m length of the same wire, and (b) the length of the same wire when the resistance is 420 Ω .

(a) Resistance, R, is directly proportional to length, l, i.e. $R \propto l$

Hence, 600 $\Omega \propto 5$ m or 600 = (k)(5), where k is the coefficient of proportionality. Hence,

$$k = \frac{600}{5} = 120$$

When the length l is 8 m, then resistance

$$R = kl = (120)(8) = 960 \Omega$$

(b) When the resistance is 420 Ω , 420 = kl, from which,

length
$$l = \frac{420}{k} = \frac{420}{120} = 3.5 \text{ m}$$

Problem 2. A piece of wire of cross-sectional area 2 mm² has a resistance of 300 Ω . Find (a) the resistance of a wire of the same length and material if the cross-sectional area is 5 mm², (b) the cross-sectional area of a wire of the same length and material of resistance 750 Ω

Resistance *R* is inversely proportional to cross-sectional area, *a*, i.e. $R \propto \frac{1}{a}$

Hence 300
$$\Omega \propto \frac{1}{2 \text{ mm}^2}$$
 or $300 = (k) \left(\frac{1}{2}\right)$,

from which, the coefficient of proportionality, $k = 300 \times 2 = 600$

(a) When the cross-sectional area $a = 5 \text{ mm}^2$ then $R = (k) \left(\frac{1}{5}\right)$

$$= (600) \left(\frac{1}{5}\right) = 120 \Omega$$

(Note that resistance has decreased as the cross-sectional is increased.)

(b) When the resistance is 750 Ω then 750 = (k)(1/a), from which

cross-sectional area,
$$a = \frac{k}{750} = \frac{600}{750} = 0.8 \text{ mm}^2$$

Problem 3. A wire of length 8 m and cross-sectional area 3 mm² has a resistance of 0.16Ω . If the wire is drawn out until its cross-sectional area is 1 mm², determine the resistance of the wire.

Resistance R is directly proportional to length l, and inversely proportional to the cross-sectional area, a, i.e.,

i.e., $R \propto \frac{l}{a}$ or $R = k\left(\frac{l}{a}\right)$, where k is the coefficient of proportionality.

Since R = 0.16, l = 8 and a = 3, then $0.16 = (k)(\frac{8}{3})$, from which

$$k = 0.16 \times \frac{3}{8} = 0.06$$

If the cross-sectional area is reduced to $\frac{1}{3}$ of its original area then the length must be tripled to 3×8 , i.e., 24 m

New resistance $R = k \left(\frac{l}{a}\right) = 0.06 \left(\frac{24}{1}\right) = 1.44 \ \Omega$

Problem 4. Calculate the resistance of a 2 km length of aluminium overhead power cable if the cross-sectional area of the cable is 100 mm². Take the resistivity of aluminium to be $0.03\times10^{-6}~\Omega m$

Length l = 2 km = 2000 m; area, $a = 100 \text{ mm}^2 = 100 \times 10^{-6} \text{m}^2$; resistivity $\rho = 0.03 \times 10^{-6} \Omega \text{m}$

Resistance $R = \frac{\rho l}{a} = \frac{(0.03 \times 10^{-6} \ \Omega \text{m})(2000 \ \text{m})}{(100 \times 10^{-6} \ \text{m}^2)} = \frac{0.03 \times 2000}{100} \ \Omega$ = **0.6** Ω

Problem 5. Calculate the cross-sectional area, in mm², of a piece of copper wire, 40 m in length and having a resistance of 0.25 Ω . Take the resistivity of copper as $0.02 \times 10^{-6} \ \Omega m$

Resistance $R = \frac{\rho l}{a}$ hence cross-sectional area $a = \frac{\rho l}{R}$ $= \frac{(0.02 \times 10^{-6} \ \Omega \text{m})(40 \ \text{m})}{0.25 \ \Omega} = 3.2 \times 10^{-6} \ \text{m}^2$ $= (3.2 \times 10^{-6}) \times 10^6 \ \text{mm}^2 = 3.2 \ \text{mm}^2$

Problem 6. The resistance of 1.5 km of wire of cross-sectional area 0.17 mm² is 150 Ω . Determine the resistivity of the wire.

Resistance,
$$R = \frac{\rho l}{a}$$

hence, resistivity $\rho = \frac{Ra}{l} = \frac{(150 \ \Omega)(0.17 \times 10^{-6} \ \text{m}^2)}{(1500 \ \text{m})}$
 $= 0.017 \times 10^{-6} \ \Omega \text{m or } 0.017 \ \mu \Omega \text{m}$

Problem 7. Determine the resistance of 1200 m of copper cable having a diameter of 12 mm if the resistivity of copper is $1.7 \times 10^{-8}~\Omega m$

Cross-sectional area of cable,
$$a = \pi r^2 = \pi \left(\frac{12}{2}\right)^2$$

 $= 36\pi \text{ mm}^2 = 36\pi \times 10^{-6} \text{ m}^2$
Resistance $R = \frac{\rho l}{a} = \frac{(1.7 \times 10^{-8} \Omega \text{m}) (1200 \text{ m})}{(36\pi \times 10^{-6} \text{ m}^2)}$
 $= \frac{1.7 \times 1200 \times 10^6}{10^8 \times 36\pi} \Omega = \frac{1.7 \times 12}{36\pi} \Omega$
 $= \mathbf{0.180} \Omega$

Further problems on resistance and resistivity may be found in Section 3.3, problems 1 to 7, page 29.

3.2 Temperature coefficient of resistance

In general, as the temperature of a material increases, most conductors increase in resistance, insulators decrease in resistance, whilst the resistance of some special alloys remain almost constant.

The **temperature coefficient of resistance** of a material is the increase in the resistance of a 1 Ω resistor of that material when it is subjected to a rise of temperature of 1°C. The symbol used for the temperature coefficient of resistance is α (Greek alpha). Thus, if some copper wire of resistance 1 Ω is heated through 1°C and its resistance is then measured as 1.0043 Ω then $\alpha=0.0043$ Ω/Ω °C for copper. The units are usually expressed only as 'per °C', i.e., $\alpha=0.0043/$ °C for copper. If the 1 Ω resistor of copper is heated through 100°C then the resistance at 100°C would be $1+100\times0.0043=1.43\Omega$

Some typical values of temperature coefficient of resistance measured at 0°C are given below:

Copper	0.0043/°C	Aluminium	0.0038/°C
Nickel	0.0062/°C	Carbon	−0.000 48/°C
Constantan	0	Eureka	0.000 01/°C

(Note that the negative sign for carbon indicates that its resistance falls with increase of temperature.)

If the resistance of a material at 0°C is known the resistance at any other temperature can be determined from:

$$R_{\theta} = R_0(1 + \alpha_0 \theta)$$

where R_0 = resistance at 0° C

 R_{θ} = resistance at temperature θ °C

 α_0 = temperature coefficient of resistance at 0° C

Problem 8. A coil of copper wire has a resistance of 100 Ω when its temperature is 0°C. Determine its resistance at 70°C if the temperature coefficient of resistance of copper at 0°C is 0.0043/°C

Resistance $R_{\theta} = R_0(1 + \alpha_0 \theta)$

Hence resistance at 70°C,
$$R_{70} = 100[1 + (0.0043)(70)]$$

= $100[1 + 0.301] = 100(1.301)$
= **130.1** Ω

Problem 9. An aluminium cable has a resistance of 27 Ω at a temperature of 35°C. Determine its resistance at 0°C. Take the temperature coefficient of resistance at 0°C to be 0.0038/°C

Resistance at θ °C, $R_{\theta} = R_0(1 + \alpha_0 \theta)$

Hence resistance at 0°C,
$$R_0 = \frac{R_\theta}{(1 + \alpha_0 \theta)} = \frac{27}{[1 + (0.0038)(35)]}$$
$$= \frac{27}{1 + 0.133} = \frac{27}{1.133} = 23.83 \ \Omega$$

Problem 10. A carbon resistor has a resistance of 1 k Ω at 0°C. Determine its resistance at 80°C. Assume that the temperature coefficient of resistance for carbon at 0°C is -0.0005/°C

Resistance at temperature
$$\theta^{\circ}$$
C, $R_{\theta} = R_0(1 + \alpha_0 \ \theta)$
i.e., $R_{\theta} = 1000[1 + (-0.0005)(80)]$
= $1000[1 - 0.040] = 1000(0.96) = 960 \ \Omega$

If the resistance of a material at room temperature (approximately 20°C), R_{20} , and the temperature coefficient of resistance at 20°C, α_{20} , are known

then the resistance R_{θ} at temperature θ °C is given by:

$$R_{\theta} = R_{20}[1 + \alpha_{20}(\theta - 20)]$$

Problem 11. A coil of copper wire has a resistance of $10~\Omega$ at 20° C. If the temperature coefficient of resistance of copper at 20° C is $0.004/^{\circ}$ C determine the resistance of the coil when the temperature rises to 100° C

Resistance at θ °C, $R = R_{20}[1 + \alpha_{20}(\theta - 20)]$

Hence resistance at
$$100^{\circ}$$
C, $R_{100} = 10[1 + (0.004)(100 - 20)]$
= $10[1 + (0.004)(80)]$
= $10[1 + 0.32]$
= $10(1.32) = 13.2 \Omega$

Problem 12. The resistance of a coil of aluminium wire at 18° C is $200~\Omega$. The temperature of the wire is increased and the resistance rises to $240~\Omega$. If the temperature coefficient of resistance of aluminium is $0.0039/^{\circ}$ C at 18° C determine the temperature to which the coil has risen.

Let the temperature rise to θ°

Resistance at
$$\theta$$
°C, $R_{\theta} = R_{18}[1 + \alpha_{18}(\theta - 18)]$

i.e.
$$240 = 200[1 + (0.0039)(\theta - 18)]$$

$$240 = 200 + (200)(0.0039)(\theta - 18)$$

$$240 - 200 = 0.78(\theta - 18)$$

$$40 = 0.78(\theta - 18)$$

$$\frac{40}{0.78} = \theta - 18$$

$$51.28 = \theta - 18, \text{ from which, } \theta = 51.28 + 18 = 69.28^{\circ}\text{C}$$

Hence the temperature of the coil increases to 69.28°C

If the resistance at 0° C is not known, but is known at some other temperature θ_1 , then the resistance at any temperature can be found as follows:

$$R_1 = R_0(1 + \alpha_0\theta_1)$$
 and $R_2 = R_0(1 + \alpha_0\theta_2)$

Dividing one equation by the other gives:

$$\frac{R_1}{R_2} = \frac{1 + \alpha_0 \theta_1}{1 + \alpha_0 \theta_2}$$

where R_2 = resistance at temperature θ_2

Problem 13. Some copper wire has a resistance of 200 Ω at 20°C. A current is passed through the wire and the temperature rises to 90°C. Determine the resistance of the wire at 90°C, correct to the nearest ohm, assuming that the temperature coefficient of resistance is $0.004/^{\circ}C$ at 0°C

$$R_{20} = 200 \ \Omega, \ \alpha_0 = 0.004/^{\circ} \text{C}$$

$$\frac{R_{20}}{R_{90}} = \frac{[1 + \alpha_0(20)]}{[1 + \alpha_0(90)]}$$
Hence $R_{90} = \frac{R_{20}[1 + 90\alpha_0]}{[1 + 20\alpha_0]} = \frac{200[1 + 90(0.004)]}{[1 + 20(0.004)]} = \frac{200[1 + 0.36]}{[1 + 0.08]}$

$$= \frac{200(1.36)}{(1.08)} = 251.85 \ \Omega$$

i.e., the resistance of the wire at 90°C is 252 Ω

Further problems on temperature coefficient of resistance may be found in Section 3.3, following, problems 8 to 14, page 30.

3.3 Further problems on resistance variation

Resistance and resistivity

- The resistance of a 2 m length of cable is 2.5 Ω . Determine (a) the resistance of a 7 m length of the same cable and (b) the length of the same wire when the resistance is 6.25 Ω . [(a) 8.75 Ω (b) 5 m]
- 2 Some wire of cross-sectional area 1 mm² has a resistance of 20 Ω . Determine (a) the resistance of a wire of the same length and material if the cross-sectional area is 4 mm², and (b) the cross-sectional area of a wire of the same length and material if the resistance is 32 Ω .

 [(a) 5 Ω (b) 0.625 mm²]
- Some wire of length 5 m and cross-sectional area 2 mm² has a resistance of 0.08 Ω . If the wire is drawn out until its cross-sectional area is 1 mm², determine the resistance of the wire. [0.32 Ω]
- 4 Find the resistance of 800 m of copper cable of cross-sectional area 20 mm^2 . Take the resistivity of copper as $0.02 \mu\Omega m$. [0.8 Ω]

- 5 Calculate the cross-sectional area, in mm², of a piece of aluminium wire 100 m long and having a resistance of 2 Ω . Take the resistivity of aluminium as $0.03 \times 10^{-6} \Omega \text{m}$. [1.5 mm²]
- 6 (a) What does the resistivity of a material mean?
 - (b) The resistance of 500 m of wire of cross-sectional area 2.6 mm² is 5 Ω . Determine the resistivity of the wire in $\mu\Omega$ m.

 $[0.026~\mu\Omega m]$

7 Find the resistance of 1 km of copper cable having a diameter of 10 mm if the resistivity of copper is $0.017 \times 10^{-6} \Omega m$. [0.216 Ω]

Temperature coefficient of resistance

- 8 A coil of aluminium wire has a resistance of 50 Ω when its temperature is 0°C. Determine its resistance at 100°C if the temperature coefficient of resistance of aluminium at 0°C is 0.0038/°C. [69 Ω]
- 9 A copper cable has a resistance of 30 Ω at a temperature of 50°C. Determine its resistance at 0°C. Take the temperature coefficient of resistance of copper at 0°C as 0.0043/°C. [24.69 Ω]
- 10 The temperature coefficient of resistance for carbon at 0° C is $-0.00048/^{\circ}$ C. What is the significance of the minus sign? A carbon resistor has a resistance of 500 Ω at 0° C. Determine its resistance at 50° C. [488 Ω]
- 11 A coil of copper wire has a resistance of 20 Ω at 18°C. If the temperature coefficient of resistance of copper at 18°C is 0.004/°C, determine the resistance of the coil when the temperature rises to 98°C [26.4 Ω]
- 12 The resistance of a coil of nickel wire at 20° C is 100Ω . The temperature of the wire is increased and the resistance rises to 130Ω . If the temperature coefficient of resistance of nickel is $0.006/^{\circ}$ C at 20° C, determine the temperature to which the coil has risen. [70°C]
- 13 Some aluminium wire has a resistance of 50 Ω at 20°C. The wire is heated to a temperature of 100°C. Determine the resistance of the wire at 100°C, assuming that the temperature coefficient of resistance at 0°C is 0.004/°C [64.8 Ω]
- 14 A copper cable is 1.2 km long and has a cross-sectional area of 5 mm². Find its resistance at 80°C if at 20°C the resistivity of copper is $0.02 \times 10^{-6} \Omega m$ and its temperature coefficient of resistance is $0.004/^{\circ}C$ [5.952 Ω]