Supporting the Design of Experiments for Synthetic Biology with Clotho 3.0

Nicholas Roehner
CIDAR (Densmore Lab)
Boston University

Design of Experiments (DOE)

Design of Experiments (DOE)

DOE for Synthetic Biology

Clotho 3.0

DOE for Synthetic Biology w/ Double Dutch

Talk Outline

- Overview of Double Dutch web app
- Double Dutch demo
- Discussion of app extensions

Step 1: Import Features

Step 1: Import Features

Step 2: Infer Modules

Step 2: Infer Modules

Step 3: Parameterize Modules

Step 3: Parameterize Module

Step 4: Categorize as Factors or Levels

Available Factors

Available Levels

Step 5: Assign Levels to Factors

Step 5a: Choose # of Levels per Factor

Step 5b: Quantify Target Levels

K-Means Clustering

Step 5c: Partition Level Choices

Step 5d: Score Level Choices

Step 5d: Score Level Choices

Step 5e: Sort Level Choices

Local Optimum and Simulated Annealing

P(accept) = e^[(oldScore - newScore)/Temp]

P(accept) = e^[(oldScore - newScore)/Temp]

Simulated Annealing

4th Order	A	В	C	D	E	F
1	0	1	1	1	-1	-1
2	0	1	0	0	0	0
3	1	1	1	1	-1	1
4	0	0	0	-1	1	0
5	-1	1	0	0	0	0
6	-1	-1	-1	1	1	0
7	0	-1	0	-1	0	0
8	1	1	-1	-1	1	-1
9	0	0	-1	0	1	-1
10	1	0	0	0	0	-1

Step 7: Generate Biological Designs

Planned Extensions

- Validate composition of modules associated with factors and levels in experimental designs.
- Fit empirical models to experimental data.
- Incorporate Pigeon for design visualization.
- Export designs in additional file formats (Euegene, SBOL, JSON).
- Generate picklists for automated assembly.

Clotho Team

Douglas Densmore

BOSTON

UNIVERSITY

J. Christopher Anderson

Stephanie **Paige**

Prashant Vaidyanatha

Bill Cao

Maxwell **Bates**

