- 1. Alfabet, cuvant, operatii cu cuvinte
- 2. Limbaj, operatii cu limbaje
- 3. Gramatica; exemple
- 4. Clasificarea gramaticilor generative; ierarhia lui Chomsky

Notiunea de alfabet: aceeasi semnificatie pentru

- √ limbile naturale
- ✓ informatica, in general
- ✓ teoria algoritmilor (prelucrarea algoritmica a informatiei), in particular: mijloc de comunicare:
 - intre oameni,
 - intre om si calculator,
 - intre calculatoare.

Definitie 1

Alfabet = Σ = orice multime finita, nevida

Elementele = simboluri

Exemple 2

$$\begin{split} \Sigma_{\text{bool}} &= \{0, \, 1\}, \\ \Sigma_{\text{latin}} &= \{\text{a,b,c,...,z}\}, \\ \Sigma_{\text{logic}} &= \{0,1,(,),\,\neg,\wedge,\vee,\text{p, q, r, ...}\} \text{ sau} \\ &\quad \{0,1,(,),\,\neg,\wedge,\vee,\chi\} \} ! ! \end{split}$$

Definitie 3

Cuvant peste un alfabet Σ = orice secventa finita de simboluri din Σ

Cuvantul vid = ε = singurul cuvant care consta din 0 simboluri

 Σ^* = multimea tuturor cuvintelor peste alfabetul Σ

$$\Sigma^+ = \Sigma^* - \{\epsilon\}$$

Observatie 4

Nu orice cuvant peste un alfabet reprezinta o notiune:

$$\Sigma_{\text{latin}}^*$$
={ ϵ ,a,...,aa,ab,ac,...,aaa,aab,...,caa,cab,cal,..,cla,...,lac,...,lca,...,cheval,...horse, ...}.

Definitie 5

Lungimea unui cuvant W peste un alfabet $\Sigma = |W| =$

= numarul de simboluri din w

$$|\varepsilon| = 0$$

Notatie 6

 $\#_s(w)$ = numarul de aparitii ale simb. $s \in \Sigma$ in cuvantul $w \in \Sigma^*$

Exemplu 7

#_t(complexitate)= 2

Observatie 8

 $\forall \Sigma, \forall w \in \Sigma^*$:

$$|w| = \sum_{S \in \Sigma} \#_S(w).$$

Definitie 9

Fie un alfabet $\Sigma = \{s_1, s_2, ..., s_k\}$; se numeste **functia lui Parikh**, functia $\psi_{\Sigma} : \Sigma^* \to \mathcal{N}^K$, $\psi_{\Sigma}(\omega) = (|\omega|_{s_1}, |\omega|_{s_2}, ..., |\omega|_{s_k}) = (\#_{s_1}|\omega|, \#_{s_2}|\omega|, ..., \#_{s_k}|\omega|)$

Exemplu 10

Fie Σ = {a, b, ...,z}; atunci ψ_{Σ} : $\Sigma^* \rightarrow \mathcal{N}^{27}$, ψ_{Σ} (Constantinopol) = (1,0,1,0,0,0,0,1,0,0,1,0,3,3,1,0,1,2,0,0,0,0,0)

Definitie 11

Fie un alfabet Σ ; atunci, pentru orice $n \in \mathbb{N}$:

$$\Sigma^n = \{ \omega \in \Sigma^* / |\omega| = n \} \text{ si } |\Sigma^n| = |\Sigma|^n$$

Exemplu 12

 $\{0,1\}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\} => 8 \text{ cuvinte}$ $\{0,1\}^5 = \{00000, 00001, 00010, 00011, 00100, 00101, 00110, ..., 11111\}.$

Definitii 13: Operatii cu cuvinte

- (i) Fie un cuvint w peste un alfabet Σ ; notam prin mi(w) sau w^R **reversul** cuvantului w, adica un cuvant din Σ^* obtinut din w prin scrierea simbolurilor acestuia in ordine inversa,
- (ii) Fie doua cuvinte v si w peste un alfabet Σ ; notam prin vw sau $v \cdot w$ cuvantul din Σ^* obtinut prin **concatenarea** lui v cu w;

Exemple 14

```
w = 856 \Rightarrow w^{\mathbb{R}} = 658; w = \text{capac} \Rightarrow w^{\mathbb{R}} = \text{capac}, v = \text{ori}, w = \text{cand} \Rightarrow vw = \text{oricand}, wv = \text{candori};
```

Observatie 15

- 1. In general, $vw \neq wv$ dar intotdeauna: |vw| = |wv| = |v| + |w|
- 2. $\forall \Sigma$: (Σ^* ,.) este un monoid (ϵ =elementul neutru).

3.
$$\forall w \in \Sigma^*$$
, definim:
$$\begin{cases} w^0 = \varepsilon, si \\ w^{n+1} = w \cdot w^n = w^n \cdot w, \forall n \in \mathbb{N}. \end{cases}$$

Definitie 16

Prefix al unui cuvant $w \in \Sigma^* = \forall v \in \Sigma^* : \exists x \in \Sigma^*$ a.i. w = vx.

Sufix al unui cuvant $w \in \Sigma^* = \forall v \in \Sigma^* : \exists y \in \Sigma^*$ a.i. w = yv.

Subcuvant al unui cuvant $w \in \Sigma^* = \forall v \in \Sigma^* : \exists x, y \in \Sigma^*$ a.i. w = xvy.

Observatie 17

 χ si/sau y pot fi si ε .

Exemple 18

```
w = intrucatva =>
```

prefix_w \in { ϵ , I, in, int, intr, intru, intruc, intruca, intrucatv, intrucatva} sufix_w \in { ϵ , a, va, tva, atva, catva, ucatva, rucatva, trucatva, ntrucatva, intrucatva,}

subcuvant_w∈{ε, i, n, t, r, u, c, a, v, in, nt, tr, ..., intru, ..., catva, ..., intrucatva}

LFA: C2 - lerarhis Champelov, similara ordinii cuvintelor in dictionar;

Definitia 19

exceptie: cuvintele scurte preced cuvintele lungi

Fie un alfabet $\Sigma = \{s_1, s_2, ..., s_m\}, m \ge 1$ si fie $s_1 < s_2 < ... < s_m$ o ordine pe Σ ;

ordinea canonica (lexicografica) pe Σ^* se defineste astfel:

 $\forall \ v,w \in \Sigma^*$: V<W daca |v|<|w| sau Simbolul cu care incep v', respectiv w' nu conteaza. |v|=|w| si $\exists \ i,j\in N,1\leq i< j\leq m$ si $\exists \ x,v',w'\in \Sigma^*$

astfel incat v=xsiv' si w =xsiw'

Observatie 20

capac < capsat < captat = captat < cazuta (c<a; at=at; t<u)

Observatie 21

Ordinea canonica permite enumerarea "tuturor" cuvintelor peste orice alfabet: fie Σ ={a,b} \rightarrow

 $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, ..., abbaababbabb,\}$

- 1. Alfabet, cuvant, operatii cu cuvinte
- 2. Limbaj, operatii cu limbaje
- 3. Gramatica; exemple
- 4. Clasificarea gramaticilor generative; ierarhia lui Chomsky

Definitie 22

Fie un alfabet Σ ;

- \checkmark se numeste **limbaj** peste Σ , orice submultime $L\subseteq\Sigma^*$
- \checkmark se numeste **limbaj** ε-liber peste Σ, orice submultime L \subseteq Σ⁺

Exemple 23

```
1. Fie V = {a,b} => \emptyset, {\epsilon}, {a,b}, {a,b}*, {ab,bba,b^{10}a^{20},abbaba}, {a^nb^{2n}|n\in\mathcal{N}}, {aw|w\in\{a,b\}^*}, {aw|w\in\{b\}^*}
```

Notatie 24

Multimea tuturor limbajelor peste alfabetul Σ :

$$\mathcal{L}_{\Sigma} = \{ L \subseteq \Sigma^* \mid L = \text{limbaj } \}.$$

Definitie 25

```
Fie un alfabet \Sigma = \{s_1, s_2, ..., s_m\}, m \ge 1 \text{ si}
```

 $\Sigma^*=\{x_1,x_2,...,x_n,...\}$ enumerarea cuvintelor peste Σ , indusa de ordinea canonica;

atunci, $\forall L \subseteq \Sigma^* \Rightarrow \exists !$ o secventa binara infinita, notata λ_L , definita astfel: cel de-al i-lea bit din λ_L este: 1, daca $x_i \in L$,

0, daca x_i∉L.

 λ_L se numeste **secventa caracteristica a limbajului L** peste $\Sigma = \{s_1, s_2, ..., s_m\}$.

Exemple 26

 $\lambda_L = 01010110110111000101001001011110...$ $\in \mathcal{B} = \text{multimea secventelor binare infinite}$

```
1. Fie \Sigma = \{a,b\} şi L = \{a,ab,abb\}
=> \sum^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ..., aaaa, aaab, aaba, ...\}
  L = \{ , a, , , ab, , , , , abb \}
=> \lambda_L = 0 1 0 0 1 0 0 0 0 0 1 0 0 0 ... = 0100100000100...
2. Fie L = \{w \in \Sigma^* | \exists y \in \Sigma^* : w=aay\}
=> \lambda_L = 000 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0,..., \ 1 \ 1 \ 1....=
     = 000100011000....111....
3. Fie L = \{w \in \Sigma^* | \exists x \in \Sigma^* : w = bx\}
   L = \{ , ,b, , ,ba,bb, , , , ,baa,bab,bba,bbb,... \}
4. Fie L = \{w \in \Sigma^* | w = palindrom\} = 1
     = \{\varepsilon,a,b,aa,bb,aaa,aba,bab,bbb,aaaa,...\}
\Rightarrow \lambda_1 = 111100110100 \dots
                                                                      13
```

Teorema 27

Multimea $\mathcal{L} = \{ L \subseteq \Sigma^* \mid L = \text{limbaj } \}$ este nenumarabila Demonstratie

(i) multimea B a secventelor binare infinite este nenumarabila

Folosim metoda diagonalizarii şi a p.p.a.

ppa $\exists f: N \rightarrow \mathcal{B}$, bijectiva a.i. $f(n)=b_n \in \mathcal{B} \rightarrow$

n	$f(n)=b_n$
1	100
2	010
3	110
4	001

putem construi o secventa binara **b** astfel:

a n^a cifra binara din b este:

0, daca a n-a cifra binara din f(n) este 1, 1, daca a n-a cifra binara din f(n) este 0

- => b \neq f(n), \forall n \in N:
- => B este nenumarabila.

n	f(n)=b _n
1	<u>1</u> 0000
2	0 <u>1</u> 000
3	11 <u>0</u> 00
4	001 <u>0</u> 0
5	1010 <u>0</u>
	14

```
(ii) multimea \mathcal{L} = \{L \subseteq \Sigma^* \mid L = limbaj\} este nenumarabila E suficient sa gasim f: \mathcal{L} \to \mathcal{B}, bijectiva ori, \exists f: \mathcal{L} \to \mathcal{B}: f(L) = \lambda_L şi, evident, f = bijectiva; cf. (i) \mathcal{B} = nenumarabila => \mathcal{L} nenumarabila.
```

Definitii 28: Operatii cu limbaje

Fie limbajul $L \subseteq \Sigma$; definim şi notam prin:

$$mi(L)=L^R=\{mi(v) \mid v \in L\}$$

reversul limbajului L in raport cu Σ ;

$$\mathsf{L}^\mathsf{C} = \{ v \in \Sigma^* \, | \, v \notin \mathsf{L} \}$$

complementul limbajului L in raport cu Σ ;

Fie limbajele $L_1 \subseteq \Sigma_1^*$ şi $L_2 \subseteq \Sigma_2^*$ (Σ_1 şi Σ_2 oarecare); definim şi notam prin:

$$L_1 \cup L_2 = \{ v \in (\Sigma_1 \cup \Sigma_2)^* \mid v \in L_1 \text{ sau } v \in L_2 \}$$

reuniunea limbajelor L₁ şi L₂;

$$L_1 \cap L_2 = \{ v \in (\Sigma_1 \cap \Sigma_2)^* \mid v \in L_1 \text{ si } v \in L_2 \}$$

intersectia limbajelor L₁ și L₂;

$$L_1 - L_2 = \{ v \in \Sigma_1^* | v \in L_1 \text{ si } v \notin L_2 \}$$

diferenta limbajelor L₁ și L₂.

Definitii 28: Operatii cu limbaje (cont.)

Fie doua alfabete Σ_1 si Σ_2 si doua limbaje $L_1 \subseteq \Sigma_1^*$ si $L_2 \subseteq \Sigma_2^*$; definim si notam :

$$L_1L_2=L_1 \circ L_2=\{vw\in(\Sigma_1\cup\Sigma_2)^*|v\in L_1 \text{ si } w\in L_2\}$$

limbajul obtinut prin concatenarea (produsul) acestora;

$$L^* = \bigcup_{n \ge 0} L^n$$
, unde $L^0 = \{\varepsilon\}$ si $L^{n+1} = L \cdot L^n$, $\forall n \in \mathbb{N}$

inchiderea reflexiva și tranzitiva (Kleene) a limbajului L;

$$L^+ = \bigcup_{n \ge 1} L^n$$
, obs.: $L^* = L^+ \cup \{\varepsilon\}$

inchiderea tranzitiva a limbajului L

Fie alfabetul Σ si doua limbaje $L_1, L_2 \subseteq \Sigma^*$; definim si notam :

$$L_1 / L_2 = \{ w \in \Sigma * | \exists v \in L_2 : wv \in L_1 \}$$

câtul la dreapta al limbajului L1 prin limbajul L2,

$$L_1 \setminus L_2 = \{ w \in \Sigma * \mid \exists v \in L_2 : vw \in L_1 \}$$

câtul la stanga al limbajului L1 prin limbajul L2.

Definitii 28: Operatii cu limbaje (cont.)

(i) Fie doua alfabete Σ si Ψ ; se numeste **substitutie** o functie

$$s: \Sigma \to \mathcal{P}(\Psi^*)$$

Extindem aceasta aplicatie la Σ^* prin

$$s(\varepsilon) = \{\varepsilon\},\$$

 $s(a\beta) = s(a)s(\beta), \forall a \in \Sigma, \forall \beta \in \Sigma^*$

Obs. aceasta extensie este canonica:

daca
$$w = \alpha \beta \in \Sigma^*$$
, atunci $s(w) = s(\alpha)s(\beta)$, $s(\alpha)$, $s(\beta) \subseteq \Psi^*$

(ii) Fie un limbaj $L \subseteq \Sigma^*$; atunci definim prin:

$$s(L) = \bigcup_{\alpha \in L} s(\alpha)$$

limbajul obtinut din L prin substitutie canonica

Ex.: fie s: $\{a,b\} \rightarrow \{0,1,x\}^*$ s(a)= 0x, s(b)=x11 daca L= $\{a,b, aa, ab, ba, bb\}$ => s(L) = $\{0x, x11, 0x0x, 0xx11, x110x, x11x11\}$.

```
Definitii 28: Operatii cu limbaje (cont.)
O substitutie s: \Sigma^* \to \mathcal{P}(\Psi^*) se numeste
          finita:
                   card (s(a)) < \infty, \forall a \in \Sigma
                   (orice simbol din \Sigma este substituit de un limbaj peste \Psi, finit )
          [omo]morfism:
                  card (s(a)) = 1, \forall a \in \Sigma
                  (multimea s(a) este singleton)
          substitutie / morfism ε-free:
                  \varepsilon \notin S(a), \forall a \in \Sigma.
```

Definitii 28: Operatii cu limbaje (cont.)

```
Ex.: fie s<sup>-1</sup>: \{0,1,x\}^* \to \mathcal{P}\{a,b\}^* s<sup>-1</sup>(0x)=a, s<sup>-1</sup>(x11)=b unde s: \{a,b\} \to \{0,1,x\}^* s(a)= 0x, s(b)=x11 daca L = \{0x, x11, 0x0x, 0xx11, x110x, 0x0x0x\} => s<sup>-1</sup>(L) = \{a, b, aa, ab, ba, aaa\};
```

Observatie 29

- 1. L $o \varnothing = \varnothing o L = L, \forall L$
- 2. L o $\{\varepsilon\} = \{\varepsilon\}$ o L= L, \forall L
- 3. L $\cup \emptyset = \{\epsilon\} \cup L = L, \forall L$
- 4. $L \cap \emptyset = \emptyset, \forall L$
- 5. L \cap { ε } = { ε }, \forall L.

Cum caracterizam formal un limbaj L?
printr-o reprezentare finita a tuturor secventelor sale
Mai multe metode:

- ✓enumerarea tuturor elementelor limbajului
- ✓ enuntarea proprietatilor distinctive ale elementelor sale
- √ definirea unei gramatici generative G

$$G=(\{S\}, \{a,b\}, \{S \rightarrow aSb \mid SS \mid \epsilon\}, S) \Rightarrow \\ L=\{\epsilon, ab, a^nb^n, a^nbab^n, a^n(ba)^kb^n, \dots\} \\ \checkmark definire a unui automat A \\ L(A)=\{w\in\{0,1\}^* \mid w=\alpha 1 \text{ sau } w=\alpha 00, \alpha \in \{0,1\}^*\} \\ \checkmark etc.$$

- 1. Alfabet, cuvant, operatii cu cuvinte
- 2. Limbaj, operatii cu limbaje
- 3. Gramatica; exemple
- 4. Clasificarea gramaticilor generative; ierarhia lui Chomsky

Gramaticile

- ✓ initial: notiune introdusa de lingvisti pentru studierea limbajelor naturale (Noam CHOMSKY, '1950):
 - caracterizarea frazelor corecte dintr-un limbaj,
 - o definitie structurala a frazelor corecte dintr-un limbaj;
- ✓ ulterior: un instrument de reprezentare finita, generativa a oricarui limbaj, constand din:
 - o multime finita de elemente de baza,
 - un set finit de reguli de producere a frazelor corecte (sintactic) din limbaj.

Definitie 30

Se numeste **gramatica** un sistem **G= (V_T,V_N,S,P)** unde:

- \Box V_T = multime finita, nevida (simboluri terminale),
- \square V_N = multime finita, nevida (*simboluri neterminale=variabile*):

$$V_T \cap V_N = \emptyset; V_T \cup V_N = V$$

(vocabularul terminalelor și neterminalelor gramaticii!);

- □ S∈ V_N;= simbolul de start (axioma gramaticii),
- □ P = multime finita, nevida (*productii*):

$$P \subseteq (V_N \cup V_T)^* V_N (V_N \cup V_T)^* \times (V_N \cup V_T)^*$$

OBS.:
$$((\alpha,\beta) \in P \equiv \alpha \rightarrow \beta : \alpha \text{ se inlocuieste cu } \beta) =>$$

$$P = \{\alpha \rightarrow \beta \mid \alpha \in V^* \cdot V_N \cdot V^*; \beta \in V^*\}.$$

```
Exemple 31: G = (V_T, V_N, S, P)
```

```
    G₁=({0,1,2,...,9}, {S,C}, S, {S→CC, C→0, C→1, C→2, C→3, C→4, C→5, C→6, C→7, C→8, C→9, C→ε} ) =>
    S→CC→0C→01
    S→CC→7C→70
    S→CC→5C→52 etc.
```

- => $L_1 = \{ n \in \mathcal{N} | n < 100 \};$
- 2. $G_2 = (\{0,1,2,...,9\}, \{S,C,B\}, S, \{S \rightarrow CB, B \rightarrow CB, B \rightarrow C, C \rightarrow 0|1|...|9|\epsilon\}) => S \rightarrow CB \rightarrow CCB \rightarrow \rightarrow C^nB \rightarrow C^{n+1} \rightarrow 2C^n \rightarrow 24C^{n-1} \rightarrow 2409194...7 => L_2 = N;$
- 3. $G_3=(\{I,V,X,L,C,D,M\}, \{S,A,B\}, S, \{S\rightarrow AB, B\rightarrow AB, B\rightarrow A, A\rightarrow I|V|X|L|C|D|M|\epsilon\})$ S\rightarrow AB \rightarrow AAAB \rightarrow AAAA \rightarrow MMXV
 - => L₃ = multimea numerelor naturale in grafia latina (fara respectarea regulilor de tipul: 4 se fomeaza ca IV şi nu ca IIII; 100 este C şi nu LL).

G₂=({0,1,2,...,9}, {S,C,B}, S, {S→CB, B→CB, B→C, C→0|1|...|9| ε })

=> Cum procedam pentru a descrie un limbaj cu ajutorul unei gramatici generative?

Generam fiecare cuvant din limbaj dupa urmatorul algoritm:

- 1. Scriem simbolul de start (apare in m. stg. al primei productii din P şi este notat cu S (de obicei)),
- 2. Alegem una dintre productiile care au acest simbol in m. stg. şi inlocuim simbolul ales cu m. dr. al respectivei productii,

$$S \Rightarrow {}^{1}CB^{2} \Rightarrow CCB$$
 sau $S \Rightarrow {}^{1}CB^{3} \Rightarrow CC$ sau $S \Rightarrow {}^{1}CB^{4} \Rightarrow 7B$

3. Repetam Pasul 2 pana cand in m.dr. nu mai exista neterminale care pot fi inlocuite

$$S\Rightarrow^1CB\Rightarrow^2CCB\Rightarrow^2CCCB\Rightarrow^3CCCC\Rightarrow^4CCC9\Rightarrow^4CCO9\Rightarrow^40CO9^4\Rightarrow0509;$$

Observatie 32

La fiecare pas de calcul, se aplica o <u>singura productie</u>, unui <u>singur</u> <u>neterminal</u>.

LFA: C2 - Ierarhia Cho

Fie doua alfabete Σ si Ψ ; se numeste **substitutie** o functie $s: \Sigma \to \mathcal{P}(\Psi^*)$ Extindem aceasta aplicatie la Σ^* prin $s(\varepsilon) = \{\varepsilon\},$ $s(a\beta) = s(a)s(\beta), \forall a \in \Sigma, \forall \beta \in \Sigma^*$

Notatie: ⇒

Substitutie = Derivare directa

Observatie 33

 $S \Rightarrow CB \Rightarrow CCCB \Rightarrow CCCC \Rightarrow CCC9 \Rightarrow CCO9 \Rightarrow 0CO9 \Rightarrow 05O9$

Notatie: ⇒*

Inchiderea tranzitiva a derivarii directe = Derivare

Definitii 34

Se numeste **substitutie = derivare directa** = aplicarea unei productii = daca $\mathbf{a} \rightarrow \mathbf{\beta} \in P$ şi $\delta, \gamma \in V^*$, atunci $\delta \mathbf{a} \gamma \Rightarrow \delta \mathbf{\beta} \gamma$

Se numeste **derivare** = aplicarea consecutiva a mai multor productii = daca $\alpha_1 \Rightarrow \alpha_2, \alpha_2 \Rightarrow \alpha_3, ..., \alpha_{n-1} \Rightarrow \alpha_n$ atunci $\alpha_1 \Rightarrow^* \alpha_n$

Definitie 35

Se numeste limbaj generat de o gramatica $G=(V_T, V_N, S, P)$ multimea $L(G) = \{\omega \in V_T^* \mid S \Rightarrow^* \omega\};$

Observatie 36

Pentru ca o secventa de simboluri ω sa faca parte limbajul L generat de gramatica G, ea trebuie sa indeplineasca 2 conditii:

- sa fie formata numai din simboluri terminale şi care sa provina din vocabularul de terminale V_T al gramaticii G,
- 2. sa se obtina printr-o derivare care "pleaca" din simbolul de start S al G;

Definitie 37

Fie $G_1=(V_T,V_N^1,S,P^1)$, $G_2=(V_T,V_N^2,S,P^2)$ si $L_1=L(G_1)$, $L_2=L(G_2)$, Limbajele L_1 şi L_2 se numesc **echivalente** ddaca $L(G_1)\equiv L(G_2)$.

Observatie 38: Gramatica unui limbaj finit / infinit !!

```
1. G = (V_T, V_N, S, P), unde:
              V_{T} = \{a,b,c\}
              V_N = \{S, F, H, J\}
              p₁: S→FHJ
              p_2: F \rightarrow a
              p_3: H \rightarrow b
              p_{4}: J \rightarrow c
S \Rightarrow^1 FHJ \Rightarrow^2 aHJ \Rightarrow^3
       abJ \Rightarrow 4 abc
L = { abc} finit !!! DE CE ?
```

```
2. G_4 = (V_T, V_N, S, P), unde:
                V_{T} = \{a,b,c\}
                V_N = \{S, F, H, J\}
                p₁: S→FHJ
                 p_2: F \rightarrow aF \mid a
                 p_3: H \rightarrow bH \mid b
                 p_4: J \rightarrow cJ \mid c
S \Rightarrow^1 FHJ \Rightarrow^2 aFHJ \Rightarrow^2 ... \Rightarrow^2 a^n FHJ \Rightarrow^2
          a^{n+1}HJ \Rightarrow^3 a^{n+1}bHJ \Rightarrow^3 ... \Rightarrow^3 a^{n+1}b^mHJ
          \Rightarrow 3' a^{n+1}b^{m+1}J \Rightarrow 4 a^{n+1}b^{m+1}J \Rightarrow 4 ...\Rightarrow 4'
          an+1bm+1ck+1
```

29

 $L = \{ a^n b^m c^k \mid n, m, k \in \mathcal{N}^* \}$

Exemple 39

```
1. G_3 = (V_T, V_N, S, P), unde:
              V_T = \{a, b\}
               V_N = \{S,C\}
               S
               p₁: S→aSb
               p_2: S \rightarrow \varepsilon
S \Rightarrow^1 aSb \Rightarrow^1 aaSbb \Rightarrow^1
         aaaSbbb \Rightarrow<sup>2</sup> aaabbb
L_3 = \{ a^n b^n \mid n \in \mathcal{N} \};
```

```
2. G_4 = (V_T, V_N, S, P), unde:
               V_T = \{0,1\}
               V_N = \{S,A,B\}
                p₁: S→AB
                p_2: A \rightarrow 0A
                p_3: A \rightarrow \varepsilon
                p_4: B \rightarrow 1B
                p_5: B \rightarrow \varepsilon
S \Rightarrow^1 AB \Rightarrow^2 0AB \Rightarrow^4
           0A1B \Rightarrow^2 00A1B \Rightarrow^2
           000A1B \Rightarrow 30001B \Rightarrow 4
           00011B \Rightarrow 5 00011
```

 $L_4 = \{ 0^{j}1^k \mid j,k \in \mathcal{N} \}$

```
3. G_5 = (V_T, V_N, S, P), unde:
              V_{T} = \{0\}
               V_N = \{S, L, Z, R\}
               p₁: S→LZL
               p_2: LZ \rightarrow LR
               p_3: RZ \rightarrow ZZR
               p_4: RL \rightarrow ZZL
               p_5: Z \rightarrow 0
               p_6: L \rightarrow \varepsilon
S \Rightarrow^1 LZL \Rightarrow^2 LRL \Rightarrow^4
          LZZL \Rightarrow^2 LRZL \Rightarrow^3
          LZZRL ⇒<sup>4</sup> LZZZZL ⇒<sup>5*</sup>
          L0000L ⇒ 6* 0000
L_5 = \{ 0^{(2^n)} \mid n \in \mathcal{N} \};
```

```
4. G_6 = (V_T, V_N, S, P), unde:
             V_T = \{0, 1\}
             V_N = \{S,A\}
              p_1: S \rightarrow 1A
              p_2: A \rightarrow 0A
              p_3: A \rightarrow 1A
              p_4: A \rightarrow \varepsilon
S \Rightarrow^1 1A \Rightarrow^2 10A \Rightarrow^2
         100A \Rightarrow^3 1001A \Rightarrow^2
         10010A \Rightarrow^3 100101A \Rightarrow^3
         1001011A \Rightarrow 4 1001011
L_6 = \{1\} \cdot \{0,1\}^*
este limbajul reprezentarilor
binare ale numerelor naturale.
```

31

```
5. G_7 = (V_T, V_N, S, P), unde:
     V<sub>T</sub> consta dintr-o multime finita de cuvinte din limba româna
     V_N = \{ \langle propozitie \rangle, \langle subject \rangle, \langle predicat \rangle, \langle substantiv \rangle, \}
          S = cpropozitie>
     p_2: <substantiv>
     p_3: <subject> \rightarrow    
     p_5: <substantiv> \rightarrow piersic | vapor | functie| ....
     p_7: <verb> \rightarrow scrie | pluteste | creste
< substantiv > <verb> ⇒ vapor <verb> ⇒ vapor pluteste
<substantiv> <verb> ⇒ functie <verb> ⇒ functie pluteste
L consta din propozitii fomate din substantivele, pronumele
(personale) și verbele limbii romane, corecte gramatical (semantic?).
```

- 1. Alfabet, cuvant, operatii cu cuvinte
- 2. Limbaj, operatii cu limbaje
- 3. Gramatica; exemple
- 4. Clasificarea gramaticilor generative; ierarhia lui Chomsky

Clasificare a gramaticilor generative

determinata de restrictiile impuse productiilor:

Gramatici de tip 0 (fara restrictii)	Gramatici fara restrictii
Overnatiai de tin 1 (dependente de context)	Gramatici monotone
Gramatici de tip 1 (dependente de context)	Gramatici dependente de context
Gramatici de tip 2 (independente de context)	Gramatici independente de context
	Gramatici lineare
Gramatici de tip 3 (regulate)	Gramatici lineare la dreapta/stanga
	Gramatici regulate

Definitie 40

Doua gramatici G₁ şi G₂ se numesc **echivalente** daca genereaza acelasi limbaj:

$$G_1 \equiv G_2 \Leftrightarrow L(G_1) = L(G_2)$$

Definitie 41

Gramatica de tip 0: productiile nu suporta nicio restrictie

```
Tipul 0: \alpha \rightarrow \beta

unde: \alpha \in (V_N \cup V_T)^* \cdot V_N \cdot (V_N \cup V_T)^*, \beta \in (V_N \cup V_T)^*

Ex. ant.: G_5 = (\{0\}, \{S,L,Z,R\},S,P), unde: P = \{S \Rightarrow LZL, LZ \Rightarrow LR, RZ \Rightarrow ZZR, RL \Rightarrow ZZL, Z \Rightarrow 0 L \Rightarrow \epsilon\}
S \Rightarrow^1 LZL \Rightarrow^2 LRL \Rightarrow^4 LZZL \Rightarrow^2 LRZL \Rightarrow^3 LZZRL \Rightarrow^4 LZZZZL
\Rightarrow^6 0000L^6 \Rightarrow 0000
L_5 = \{ 0^{(2^n)} \mid n \in \mathcal{N} \}.
```

Definitie 42

Tipul 1:

Gramatica de tip 1 (dependenta de context):

 $\alpha A\beta \rightarrow \alpha \nu \beta$

```
unde:
                 \alpha, \beta, \nu \in (V_N \cup V_T)^*, A \in V_N, \nu \neq \varepsilon
                    daca S \rightarrow \epsilon \in P atunci S nu poate aparea în m. dr. al nici unei
obs.:
                    productii din P,
                    \alpha,\beta formeaza contextul in care A poate fi inlocuit cu \nu;
Ex.: G_8 = (\{0\}, \{S,B\},S,P), unde:
         P=\{S\rightarrow aSBc, S\rightarrow abc, cB\rightarrow Bc, bB\rightarrow bb\}
         S \Rightarrow^1 aSBc \Rightarrow^1 aaSBcBc \Rightarrow^1 a^3SBcBcBc \Rightarrow^2 a^4bcBcBcBc \Rightarrow^3
                a^4bBccBcBc\Rightarrow^3 a^4bBcBccBc \Rightarrow^3 a^4bBcBcBcc \Rightarrow^3 a^4bBBccBcc \Rightarrow^3
                a^4bBBcBccc \Rightarrow^3 a^4bBBBcccc \Rightarrow^4 a^4bbBBc^4 \Rightarrow^4 a^4bbbBc^4 \Rightarrow^4
                a4bbbbc4
         S \Rightarrow 1 \dots a^n S(Bc)^n \Rightarrow 2 a^{n+1}bc(Bc)^n \Rightarrow 3 \dots a^{n+1}bB^nc^{n+1} \Rightarrow 4 \dots a^{n+1}b^{n+1}c^{n+1}
         L_5 = \{ a^n b^n c^n \mid n \ge 0 \}.
                                                                                                              36
```

Teorema 39

Fie G = gramatica dependenta de context

=> G este recursiva (i.e. exista un algoritm care decide, pentru orice secventa w, daca $w \in L(G)$ sau $w \notin L(G)$).

Demonstratie

Fie $w \in \Sigma^*$: |w|=n

Notam cu $(\alpha_i)_{i < k}$ o derivare oarecare pentru w: $S \Rightarrow^* w$;

Evident: $\forall 1 \le i < j \le k$: $\alpha_i \ne \alpha_j$;

Ip: |w|=n şi G dependenta de context $=> \forall 1 \le i \le k$: $|\alpha_i| \le n$;

Def . G: numarul tuturor derivarilor posibile este finit =>

ele pot fi generate imediat (primitiv recursiv) =>

verificarea faptului ca cel putin una dintre aceste derivari genereaza w revine la cautarea intr-o multime finita;

Evident, timpul necesar pentru verificare creste exponential =>

37

Definitie 44

Gramatica de tip 2 (independenta de context):

```
Tipul 2: A \rightarrow \alpha
```

unde: $A \in V_N$, $\alpha \in (V_N \cup V_T)^*$

obs. neterminalul A poate fi inlocuit cu secventa α in orice context

ar aparea;

GIC sunt f importante:

- ✓ putere generativa suficienta: pot descrie sintaxa oricarui limbaj de programare,
- ✓ destul de simple: permit proiectarea unor algoritmi de parsare eficienti care – pentru orice secvbenta data - sa determine daca şi cum poate fi generata de gramatica respectiva;

Ex. ant.:
$$G_3 = (\{a,b\}, \{S,C\},S,\{S \rightarrow aSb, S \rightarrow \epsilon\})$$
:
 $S \Rightarrow^1 aSb \Rightarrow^1 aaSbb \Rightarrow^1 aaaSbbb \Rightarrow^2 aaabbb$
 $L_3 = \{a^nb^n \mid n \in \mathcal{N}\}$.

Ex.: $G_8 = (V_T, V_N, S, P)$ descrie instructiunea de atribuire intr-un limbaj de programare oarecare

```
\begin{split} &V_N = \{\text{-atribuire>}, \text{-expr>}, \text{-op>}\}, \\ &V_T = \{\text{nume\_ct}, \text{nume\_var}, +, -, *, /\} \\ &P = \{\text{-atribuire>} := \text{nume\_var} = \text{-expr>} \\ &\text{-expr>} := \text{nume\_ct} | \text{nume\_var} | \text{-expr>} < \text{-op>} := + |-|*|/ \} \end{split}
```

Alt ex.:

Sintaxa unui limbaj de programare simplu: doar trei tipuri de instructiuni: atribuiri, if-then, stop

- ✓ Pentru constante şi identificatori: un singur element, notat i
- ✓ Variabilele: simple sau indexate
- ✓ Operatorii aritmetici: + si *
- ✓ Notatia folosita: notatia Backus Naur (a se vedea definirea sintaxei limbajului ALGOL60). ->

```
Ex.: G_9 = (V_N, V_T, < program >, P), unde
V_N = \{ \langle program \rangle, \langle instruction \rangle, \langle atribuire \rangle, \langle if \rangle, \langle expresie \rangle, \langle termen \rangle, \}
       <factor>, <variabila >, <index>},
V_T = \{ \text{ begin, end, if, then, stop, t, i, +, *, (, ), =, ,, ; } \}
 P = {program>→begin linie> end
       <linie>→<linie>;<instruc tie> | <instructiune>
       <instructione>→<atribuire> | <if> | stop
       <atribuire>→<variabila >=<expresie>
       <if>→if( <expresie>) then <atribuire>
       <expresie>→<expresie> + <termen> | <termen>
       <termen>→<termen> * <factor> | <factor>
       <factor>→(<expresie>)| <variabila >
       <variabila >→t(<index>)|i
       <index>→<index>, <expresie> | <expresie> }.
```

Definitie 45

Gramatica de tip 3 (regulata):

Tipul 2: $A \rightarrow aB$ sau $A \rightarrow Ba$

 $A \rightarrow a$

unde: $A,B \in V_N$, $a \in V_T$

obs.: daca $S \rightarrow \varepsilon \in P$ atunci S nu poate aparea în m. dr. al nici unei

productii din P,

productiile de tipul $A \rightarrow aB$ ($A \rightarrow Ba$) definesc o gramatica

regulata la dreapta (stanga); ele sunt echivalente,

GR sunt f importante: descriu structura lexicala a limbajelor

de programare

Ex. ant.: $G_6 = (\{0,1\}, \{S,A\}, S, \{S \rightarrow 1A, A \rightarrow 0A, A \rightarrow 1A, A \rightarrow \epsilon\})$, unde:

 $S \Rightarrow^1 1A \Rightarrow^2 10A \Rightarrow^2 100A \Rightarrow^3 1001A \Rightarrow^2 10010A \Rightarrow^3 100101A$

 \Rightarrow 3 1001011A \Rightarrow 4 1001011

 $L_6 = \{1\} \cdot \{0,1\}^*$ este limbajul reprezentarilor binare ale nr naturale

Ierarhia lui Chomsky

Teorema 46

Notam cu:

 \mathcal{L}_0 - multimea limbajelor generate de gramatici de tip 0

 \mathcal{L}_1 - multimea limbajelor generate de gramatici de tip 1

 \mathcal{L}_2 - multimea limbajelor generate de gramatici de tip 2

 \mathcal{L}_3 - multimea limbajalor generate de gramatici de tip 3

Atunci:

$$\mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$$

Incluziunile nestricte: forma productiilor;

Incluziunile stricte: contraexemple.

Definitii 47

Gramatica monotona: $\alpha \rightarrow \beta$, $|\alpha| \leq |\beta|$,

unde: $\alpha, \beta \in (V_N \cup V_T)^*$

Gramatica lineara: $A \rightarrow wBV$,

unde: $A \in V_N, B \in V_N \cup \{\epsilon\}, w, v \in V_T$

Gramatica ε -libera: o gramatica in care nu exista reguli de stergere (productii de forma $A \rightarrow \varepsilon$)

Observatii 48

- In gramaticile de tip 0 şi 1 se admit productii de forma $A \rightarrow \varepsilon$ cu conditia ca A sa nu apara in m.dr. al niciunei productii;
- Existenta/inexistenta regulilor de stergere poate modifica in mod semnificativ puterea generativa a gramaticii.

- 1. Alfabet, cuvant, operatii cu cuvinte
- 2. Limbaj, operatii cu limbaje
- 3. Gramatica; exemple
- 4. Clasificarea gramaticilor generative; ierarhia lui Chomsky

