Projekt Universal Actuator Drive Rapport

Diplomingeniør Elektronik Bachelorprojekt Efterår 2017

Ingeniørhøjskolen Aarhus Universitet Vejleder: Arne Justesen

20. december 2017

Nicolai H. Fransen Studienr. 201404672 Jesper Kloster Studienr.

Resumé

Abstract

Indhold

In	ndhold					
1	Kra	Kravspecifikation				
	1.1	Aktørbeskrivelse	3			
	1.2	Fully dressed use cases	4			
	1.3	Ikke-funktionelle krav	5			

1 Kravspecifikation

Kravene til produktet er prioriteret ved brug af MoSCoW metoden. Her er kravene for produktet inddelt i fire kategorier, hvor de vigtigste elementer er prioriteret højest. **Must** benævner de krav som er vigtigst at opfylde, og som er absolut nødvendigt for produktet. **Should** er de krav produktet bør opfylde. **Could** er kravene som produktet evt. kunne opfylde, hvis projektets tidsramme tillader det. **Won't** er krav som ikke vil blive opfyldt inden for projektets tidsrammer, men evt. kan tages med i senere iterationer.

Følgende opdeling viser kravene udvalgt for dette projekt:

Must - Holde konstant udgangsstrøm og -spænding

- Have stabil regulering

- Ikke påvirke andre moduler ved fejl

- Konstrueres med EEE komponenter

Should - Have programmerbar udgangsstrøm og -spænding

Could – Have overstrømsbeskyttelse på udgangen

Won't - Indeholde galvanisk adskillelse

1.1 Aktørbeskrivelse

I det følgende afsnit beskrives systemets aktører. Ved hver aktør angives typen, samt en kort beskrivelse af aktørens funktion og/eller hvordan de påvirker systemet.

1.1.1 Aktør: Bruger

Type:

Primær

Beskrivelse:

Brugeren interagerer med systemet via et interface.

Han kan indstille den ønskede fart, samt kontrollere den nuværende fart og spændingen på batterierne

1.2 Fully dressed use cases

1.2.1 Use case 1 - Start bil

Mål:

Initiere bilen så den er klar til kørsel og er klar til at modtage input

Initiering:

Brugeren

Aktører:

Brugeren (primær)

Referencer:

Ingen

Samtidige forekomster:

En

Forudsætning:

Bilen er slukket og der er forbindelse fra interface til bil

Resultat:

Bilens sensorer er tændt, motorer er klar, bilen holder stille

Hovedscenarie:

- 1. Brugeren vælger via interface "Start bil"
- 2. Bilen monitorerer sensorinputs og rapporterer status
- 3. Bilen udfører motortjek ved at køre bilen lidt frem og derefter tilbage
- 4. Bilen rapporterer status
- 5. Bilen tænder for- og baglys, blinker med blinklys hvis status er OK

Extension 1: Status ikke OK

6. Bilen afventer brugerinput

Extensions:

Extension 1: Status ikke OK

1. Bilen rapporterer fejl og forsøger at angive hvilken sensor og/eller motor der fejler

1.3 Ikke-funktionelle krav

I dette afsnit beskrives de ikke-funktionelle krav. Her opstilles f.eks. krav om præcision, brugervenlighed samt produktets dimensioner.

- Inputspændingen skal være mellem 26-100V
- Der må maksimalt trækkes en peak-strøm fra inputkilden på 150% af inputstrømmen
- Skal opretholde en outputspænding på op til 21V ved 2,5A
- Der må maksimalt være en ripple-spænding på 50mV pk-pk ved fundamental ripple frekvens, og switching spikes på 100mV pk-pk
- Skal kunne omsætte op til 75W
- Skal operere med et tab på maksimalt 5W
- Skal implementeres i et volumen mindre end 17x75x100mm på forsiden af PCB, samt 3x75x100mm på bagsiden PCB'et
- Skal kunne operere med en omgivelsestemperatur mellem -35°Cog 65°C
- Skal have stabil regulering med 10dB gain og 50 graders fasemargin ved:
 - 21V/2A ved høj og lav indgangsspænding
- 5A/2Ωved høj og lav indgangsspænding
- Reguleringen skal have en risetime på maksimalt 0,5ms uden overshoot