Relations

2.1 INTRODUCTION

The reader is familiar with many relations such as "less than," "is parallel to," "is a subset of," and so on. In a certain sense, these relations consider the existence or nonexistence of a certain connection between pairs of objects taken in a definite order. Formally, we define a relation in terms of these "ordered pairs."

An *ordered pair* of elements a and b, where a is designated as the first element and b as the second element, is denoted by (a, b). In particular,

$$(a, b) = (c, d)$$

if and only if a = c and b = d. Thus $(a, b) \neq (b, a)$ unless a = b. This contrasts with sets where the order of elements is irrelevant; for example, $\{3, 5\} = \{5, 3\}$.

2.2 PRODUCT SETS

Consider two arbitrary sets A and B. The set of all ordered pairs (a, b) where $a \in A$ and $b \in B$ is called the *product*, or *Cartesian product*, of A and B. A short designation of this product is $A \times B$, which is read "A cross B." By definition,

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

One frequently writes A^2 instead of $A \times A$.

EXAMPLE 2.1 R denotes the set of real numbers and so $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ is the set of ordered pairs of real numbers. The reader is familiar with the geometrical representation of \mathbb{R}^2 as points in the plane as in Fig. 2-1. Here each point P represents an ordered pair (a, b) of real numbers and vice versa; the vertical line through P meets the x-axis at a, and the horizontal line through P meets the y-axis at b. \mathbb{R}^2 is frequently called the *Cartesian plane*.

EXAMPLE 2.2 Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. Then

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

 $B \times A = \{(a, 1), (b, 1), (c, 1), (a, 2), (b, 2), (c, 2)\}$

Also, $\mathbf{A} \times \mathbf{A} = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

Fig. 2-1

There are two things worth noting in the above examples. First of all $A \times B \neq B \times A$. The Cartesian product deals with ordered pairs, so naturally the order in which the sets are considered is important. Secondly, using n(S) for the number of elements in a set S, we have:

$$n(A \times B) = 6 = 2(3) = n(A)n(B)$$

In fact, $n(A \times B) = n(A)n(B)$ for any finite sets A and B. This follows from the observation that, for an ordered pair (a, b) in $A \times B$, there are n(A) possibilities for a, and for each of these there are n(B) possibilities for b.

Just as we write A^2 instead of $A \times A$, so we write A^n instead of $A \times A \times \cdots \times A$, where there are n factors all equal to A. For example, $\mathbf{R}^3 = \mathbf{R} \times \mathbf{R} \times \mathbf{R}$ denotes the usual three-dimensional space.

2.3 RELATIONS

We begin with a definition.

Definition 2.1: Let A and B be sets. A binary relation or, simply, relation from A to B is a subset of $A \times B$.

Suppose R is a relation from A to B. Then R is a set of ordered pairs where each first element comes from A and each second element comes from B. That is, for each pair $a \in A$ and $b \in B$, exactly one of the following is true:

- (i) $(a, b) \in R$; we then say "a is R-related to b", written aRb.
- (ii) $(a, b) \notin R$; we then say "a is not R-related to b", written aRb.

If R is a relation from a set A to itself, that is, if R is a subset of $A^2 = A \times A$, then we say that R is a relation on A.

The <u>domain</u> of a relation R is the <u>set of all first elements</u> of the <u>ordered pairs</u> which belong to R, and the <u>range</u> is the <u>set of second elements</u>.

EXAMPLE 2.3

(a) A = (1, 2, 3) and $B = \{x, y, z\}$, and let $R = \{(1, y), (1, z), (3, y)\}$. Then R is a relation from A to B since R is a subset of $A \times B$. With respect to this relation,

$$1Ry$$
, $1Rz$, $3Ry$, but $1Rx$, $2Rx$, $2Ry$, $2Rz$, $3Rx$, $3Rz$

The domain of R is $\{1, 3\}$ and the range is $\{y, z\}$.

- (b) Set inclusion \subseteq is a relation on any collection of sets. For, given any pair of set A and B, either $A \subseteq B$ or $A \nsubseteq B$.
- (c) A familiar relation on the set **Z** of integers is "m divides n." A common notation for this relation is to write $m \mid n$ when m divides n. Thus $6 \mid 30$ but $7 \nmid 25$.
- (d) Consider the set L of lines in the plane. Perpendicularity, written " \perp ," is a relation on L. That is, given any pair of lines a and b, either $a \perp b$ or $a \not\perp b$. Similarly, "is parallel to," written " \parallel ," is a relation on L since either $a \parallel b$ or $a \parallel b$.
- (e) Let A be any set. An important relation on A is that of *equality*,

$$\{(a, a) | a \in A\}$$

which is usually denoted by "=." This relation is also called the <u>identity</u> or <u>diagonal</u> relation on <u>A</u> and it will also be denoted by Δ_A or simply Δ .

(f) Let A be any set. Then $A \times A$ and \emptyset are subsets of $A \times A$ and hence are relations on A called the *universal* relation, respectively.

Inverse Relation

Let R be any relation from a set A to a set B. The *inverse* of R, denoted by R^{-1} , is the relation from B to A which consists of those ordered pairs which, when reversed, belong to R; that is,

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}$$

For example, let $A = \{1, 2, 3\}$ and $B = \{x, y, z\}$. Then the inverse of

$$R = \{(1, y), (1, z), (3, y)\}\$$
 is $R^{-1} = \{(y, 1), (z, 1), (y, 3)\}\$

Clearly, if R is any relation, then $(R^{-1})^{-1} = R$. Also, the domain and range of R^{-1} are equal, respectively, to the range and domain of R. Moreover, if R is a relation on A, then R^{-1} is also a relation on A.

2.4 PICTORIAL REPRESENTATIVES OF RELATIONS

There are various ways of picturing relations.

Directed Graphs of Relations on Sets

There is an important way of picturing a relation R on a finite set. First we write down the elements of the set, and then we draw an arrow from each element x to each element y whenever x is related to y. This diagram is called the <u>directed graph</u> of the relation. Figure 2-2(b), for example, shows the directed graph of the following relation R on the set $A = \{1, 2, 3, 4\}$:

 $R = \{(1, 2), (2, 2), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3)\}$

Fig. 2-2

Pictures of Relations on Finite Sets

Suppose A and B are finite sets. There are two ways of picturing a relation R from A to B.

- (i) Form a rectangular array (matrix) whose rows are labeled by the elements of A and whose columns are labeled by the elements of B. Put a 1 or 0 in each position of the array according as $a \in A$ is or is not related to $b \in B$. This array is called the *matrix of the relation*.
- (ii) Write down the elements of A and the elements of B in two disjoint disks, and then draw an arrow from $a \in A$ to $b \in B$ whenever a is related to b. This picture will be called the *arrow diagram* of the relation.

Figure 2-3 pictures the relation *R* in Example 2.3(a) by the above two ways.

Fig. 2-3

2.5 COMPOSITION OF RELATIONS

Let A, B and C be sets, and let B be a relation from A to B and let B be a relation from B to C. That is, B is a subset of $A \times B$ and B is a subset of $B \times C$. Then B and B give rise to a relation from A to B denoted by $B \circ C$ and defined by:

 $a(R \circ S)c$ if for some $b \in B$ we have aRb and bSc.

That is.

$$R \circ S = \{(a, c) \mid \text{there exists } b \in B \text{ for which } (a, b) \in R \text{ and } (b, c) \in S\}$$

The relation $R \circ S$ is called the *composition* of R and S; it is sometimes denoted simply by RS.

When a relation *R* is composed with itself, then the composition of relation is $R \circ R$.

EXAMPLE 2.4 Let
$$A = \{1, 2, 3, 4\}$$
, $B = \{a, b, c, d\}$, $C = \{x, y, z\}$ and let

$$R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\}$$
 and $S = \{(b, x), (b, z), (c, y), (d, z)\}$

Consider the arrow diagrams of R and S as in Fig. 2-4. Observe that there is an arrow from $\frac{2 \text{ to } d}{d}$ which is followed by an arrow from $\frac{d}{d}$ to $\frac{d}{d}$. We can view these two arrows as a "path" which "connects" the element $\frac{d}{d} \in A$ to the element $\frac{d}{d} \in A$. Thus:

$$2(R \circ S)z$$
 since $2Rd$ and dSz

Similarly there is a path from 3 to x and a path from 3 to z. Hence

$$3(R \circ S)x$$
 and $3(R \circ S)z$

No other element of A is connected to an element of C. Accordingly,

$$R \circ S = \{(2, z), (3, x), (3, z)\}$$

Our first theorem tells us that composition of relations is associative.

Theorem 2.1: Let A, B, C and D be sets. Suppose R is a relation from A to B, S is a relation from B to C, and T is a relation from C to D. Then

$$(R \circ S) \circ T = R \circ (S \circ T)$$

Fig. 2-4

2.6 TYPES OF RELATIONS

This section discusses a number of important types of relations defined on a set A.

Reflexive Relations

A relation R on a set A is *reflexive* if aRa for every $a \in A$, that is, if $(a, a) \in R$ for every $a \in A$. Thus R is not reflexive if there exists $a \in A$ such that $(a, a) \notin R$.

EXAMPLE 2.5 Consider the following five relations on the set $A = \{1, 2, 3, 4\}$:

$$R_1 = \{(1, 1), (1, 2), (2, 3), (1, 3), (4, 4)\}$$

 $R_2 = \{(1, 1)(1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$
 $R_3 = \{(1, 3), (2, 1)\}$
 $R_4 = \emptyset$, the empty relation
 $R_5 = A \times A$, the universal relation

Determine which of the relations are reflexive.

Since A contains the four elements 1, 2, 3, and 4, a relation R on A is reflexive if it contains the four pairs (1, 1), (2, 2), (3, 3), and (4, 4). Thus only R_2 and the universal relation $R_5 = A \times A$ are reflexive. Note that R_1 , R_3 , and R_4 are not reflexive.

Symmetric and Antisymmetric Relations

A relation R on a set A is symmetric if whenever aRb then bRa, that is, if whenever $(a, b) \in R$ then $(b, a) \in R$. Thus R is not symmetric if there exists $a, b \in A$ such that $(a, b) \in R$ but $(b, a) \notin R$.

EXAMPLE 2.7

(a) Determine which of the relations in Example 2.5 are symmetric.

 R_1 is not symmetric since $(1, 2) \in R_1$ but $(2, 1) \notin R_1$. R_3 is not symmetric since $(1, 3) \in R_3$ but $(3, 1) \notin R_3$. The other relations are symmetric.

A relation R on a set A is *antisymmetric* if whenever aRb and bRa then a = b, that is, if $a \neq b$ and aRb then bRa. Thus R is not antisymmetric if there exist distinct elements a and b in A such that aRb and bRa.

EXAMPLE 2.8

(a) Determine which of the relations in Example 2.5 are antisymmetric.

 R_2 is not antisymmetric since (1, 2) and (2, 1) belong to R_2 , but $1 \neq 2$. Similarly, the universal relation R_3 is not antisymmetric. All the other relations are antisymmetric.

Remark: The properties of being symmetric and being antisymmetric are not negatives of each other. For example, the relation $R = \{(1, 3), (3, 1), (2, 3)\}$ is neither symmetric nor antisymmetric. On the other hand, the relation $R' = \{(1, 1), (2, 2)\}$ is both symmetric and antisymmetric.

Transitive Relations

A relation R on a set A is *transitive* if whenever aRb and bRc then aRc, that is, if whenever $(a, b), (b, c) \in R$ then $(a, c) \in R$. Thus R is not transitive if there exist $a, b, c \in R$ such that $(a, b), (b, c) \in R$ but $(a, c) \notin R$.

EXAMPLE 2.9

(a) Determine which of the relations in Example 2.5 are transitive.

The relation R_3 is not transitive since $(2, 1), (1, 3) \in R_3$ but $(2, 3) \notin R_3$. All the other relations are transitive.

2.8 EQUIVALENCE RELATIONS

Consider a nonempty set S. A relation R on S is an *equivalence relation* if R is reflexive, symmetric, and transitive. That is, R is an equivalence relation on S if it has the following three properties:

(1) For every
$$a \in S$$
, aRa . (2) If aRb , then bRa . (3) If aRb and bRc , then aRc .

The general idea behind an equivalence relation is that it is a classification of objects which are in some way "alike." In fact, the relation "=" of equality on any set S is an equivalence relation; that is:

(1)
$$a = \overline{a}$$
 for every $\overline{a} \in S$. (2) If $a = b$, then $b = a$. (3) If $\overline{a} = b$, $\overline{b} = c$, then $a = c$.

EXAMPLE 2.13

(a) Consider the relation $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$ on $S = \{1, 2, 3\}$. One can show that R is reflexive, symmetric, and transitive, Finally, the relation R is an equivalence relation.

Solved Problems

PRODUCT SETS

2.1. Given: $A = \{1, 2\}, B = \{x, y, z\}, \text{ and } C = \{3, 4\}.$ Find: $A \times B \times C$.

 $A \times B \times C$ consists of all ordered triplets (a, b, c) where $a \in A, b \in B, c \in C$. These elements of $A \times B \times C$ can be systematically obtained by a so-called tree diagram (Fig. 2-5). The elements of $A \times B \times C$ are precisely the 12 ordered triplets to the right of the tree diagram.

Fig. 2-5

Observe that n(A) = 2, n(B) = 3, and n(C) = 2 and, as expected,

$$n(A \times B \times C) = 12 = n(A) \cdot n(B) \cdot n(C)$$

2.2. Find x and y given (2x, x + y) = (6, 2).

Two ordered pairs are equal if and only if the corresponding components are equal. Hence we obtain the equations

$$2x = 6 \quad \text{and} \quad x + y = 2$$

from which we derive the answers x = 3 and y = -1.

RELATIONS AND THEIR GRAPHS

2.3. Find the number of relations from $A = \{a, b, c\}$ to $B = \{1, 2\}$.

There are 3(2) = 6 elements in $A \times B$, and hence there are $m = 2^6 = 64$ subsets of $A \times B$. Thus there are m = 64 relations from A to B.

2.4. Given $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$. Let R be the following relation from A to B:

$$R = \{(1, y), (1, z), (3, y), (4, x), (4, z)\}$$

- (a) Determine the matrix of the relation.
- (b) Draw the arrow diagram of R.
- (c) Find the inverse relation R^{-1} of R.
- (d) Determine the domain and range of R.
- (a) See Fig. 2-6(a) Observe that the rows of the matrix are labeled by the elements of A and the columns by the elements of B. Also observe that the entry in the matrix corresponding to $a \in A$ and $b \in B$ is 1 if a is related to b and 0 otherwise.
- (b) See Fig. 2.6(b) Observe that there is an arrow from $a \in A$ to $b \in B$ iff a is related to b, i.e., iff $(a, b) \in R$.

Fig. 2-6

(c) Reverse the ordered pairs of R to obtain R^{-1} :

$$R^{-1} = \{(y, 1), (z, 1), (y, 3), (x, 4), (z, 4)\}$$

Observe that by reversing the arrows in Fig. 2.6(b), we obtain the arrow diagram of R^{-1} .

(d) The domain of R, Dom(R), consists of the first elements of the ordered pairs of R, and the range of R, Ran(R), consists of the second elements. Thus,

$$Dom(R) = \{1, 3, 4\}$$
 and $Ran(R) = \{x, y, z\}$

2.5. Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$, and $C = \{x, y, z\}$. Consider the following relations R and S from A to B and from B to C, respectively.

$$R = \{(1, b), (2, a), (2, c)\}$$
 and $S = \{(a, y), (b, x), (c, y), (c, z)\}$

- (a) Find the composition relation $R \circ S$.
- (a) Draw the arrow diagram of the relations R and S as in Fig. 2-7(a). Observe that 1 in A is "connected" to x in C by the path $1 \to b \to x$; hence (1, x) belongs to $R \circ S$. Similarly, (2, y) and (2, z) belong to $R \circ S$. We have

$$R \circ S = \{(1, x), (2, y), (2, z)\}$$

Fig. 2-7

(b)

- **2.6.** Consider the relation $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)\}$ on $A = \{1, 2, 3, 4\}$.
 - (a) Draw its directed graph. (b) Find $R^2 = R \circ R$.
 - (a) For each $(a, b) \in R$, draw an arrow from a to b as in Fig. 2-7(b).
 - (b) For each pair $(a, b) \in R$, find all $(b, c) \in R$. Then $(a, c) \in R^2$. Thus

$$R^2 = \{(1, 1), (2, 2), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3), (4, 4)\}$$

2.7. Let *R* and *S* be the following relations on $A = \{1, 2, 3\}$:

$$R = \{(1, 1), (1, 2), (2, 3), (3, 1), (3, 3)\}, S = \{(1, 2), (1, 3), (2, 1), (3, 3)\}$$

Find (a) $R \cup S$, $R \cap S$, $R^{\mathbb{C}}$; (b) $R \circ S$; (c) $S^2 = S \circ S$.

(a) Treat R and S simply as sets, and take the usual intersection and union. For $R^{\mathbb{C}}$, use the fact that $A \times A$ is the universal relation on A.

$$R \cap S = \{(1, 2), (3, 3)\}\$$

 $R \cup S = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 3)\}\$
 $R^{\mathbf{C}} = \{(1, 3), (2, 1), (2, 2), (3, 2)\}\$

(b) For each pair $(a,b) \in R$, find all pairs $(b,c) \in S$. Then $(a,c) \in R \circ S$. For example, $(1,1) \in R$ and (1,2), $(1,3) \in S$; hence (1,2) and (1,3) belong to $R \circ S$. Thus,

$$R \circ S = \{(1, 2), (1, 3), (1, 1), (2, 3), (3, 2), (3, 3)\}$$

(c) Following the algorithm in (b), we get

$$S^2 = S \circ S = \{(1, 1), (1, 3), (2, 2), (2, 3), (3, 3)\}$$

TYPES OF RELATIONS AND CLOSURE PROPERTIES

2.9. Consider the following five relations on the set $A = \{1, 2, 3\}$:

$$R = \{(1, 1), (1, 2), (1, 3), (3, 3)\},$$
 $\emptyset = \text{empty relation}$
 $S = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\},$ $A \times A = \text{universal relation}$
 $T = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$

Determine whether or not each of the above relations on A is: (a) reflexive; (b) symmetric; (c) transitive; (d) antisymmetric.

- (a) R is not reflexive since $2 \in A$ but $(2, 2) \notin R$. T is not reflexive since $(3, 3) \notin T$ and, similarly, \emptyset is not reflexive. S and $A \times A$ are reflexive.
- (b) R is not symmetric since $(1, 2) \in R$ but $(2, 1) \notin R$, and similarly T is not symmetric. S, \emptyset , and $A \times A$ are symmetric.
- (c) T is not transitive since (1, 2) and (2, 3) belong to T, but (1, 3) does not belong to T. The other four relations are transitive.
- (d) S is not antisymmetric since $1 \neq 2$, and (1, 2) and (2, 1) both belong to S. Similarly, $A \times A$ is not antisymmetric. The other three relations are antisymmetric.
- **2.10.** Give an example of a relation R on $A = \{1, 2, 3\}$ such that:
 - (a) R is both symmetric and antisymmetric.
 - (b) R is neither symmetric nor antisymmetric.
 - (c) R is transitive but $R \cup R^{-1}$ is not transitive.

There are several such examples. One possible set of examples follows:

(a)
$$R = \{(1, 1), (2, 2)\};$$
 (b) $R = \{(1, 2), (2, 3)\};$ (c) $R = \{(1, 2)\}.$

- **2.13.** Consider the relation $R = \{(a, a), (a, b), (b, c), (c, c)\}$ on the set $A = \{a, b, c\}$. Find: (a) reflexive(R); (b) symmetric(R); (c) transitive(R).
 - (a) The reflexive closure on R is obtained by adding all diagonal pairs of $A \times A$ to R which are not currently in R. Hence,

reflexive(
$$R$$
) = $R \cup \{(b, b)\} = \{(a, a), (a, b), (b, b), (b, c), (c, c)\}$

(b) The symmetric closure on R is obtained by adding all the pairs in R^{-1} to R which are not currently in R. Hence,

symmetric(
$$R$$
) = $R \cup \{(b, a), (c, b)\} = \{(a, a), (a, b), (b, a), (b, c), (c, b), (c, c)\}$

(c) The transitive closure on R, since A has three elements, is obtained by taking the union of R with $R^2 = R \circ R$ and $R^3 = R \circ R \circ R$. Note that

$$R^{2} = R \circ R = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$$

$$R^{3} = R \circ R \circ R = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$$

Hence

transitive(
$$R$$
) = $R \cup R^2 \cup R^3 = \{(a, a), (a, b), (a, c), (b, c), (c, c)\}$

2.16. Let R be the following equivalence relation on the set $A = \{1, 2, 3, 4, 5, 6\}$:

$$R = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}$$

Show that R is an equivalence relation.

Supplementary Problems

RELATIONS

- **2.20.** Let $S = \{a, b, c\}, T = \{b, c, d\}, \text{ and } W = \{a, d\}.$ Find $S \times T \times W$.
- **2.21.** Find x and y where: (a) (x + 2, 4) = (5, 2x + y); (b) (y 2, 2x + 1) = (x 1, y + 2).
- **2.22.** Prove: (a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$; (b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- **2.23.** Consider the relation $R = \{(1, 3), (1, 4), (3, 2), (3, 3), (3, 4)\}$ on $A = \{1, 2, 3, 4\}$.
 - (a) Find the matrix M_R of R.
- (d) Draw the directed graph of *R*.
- (b) Find the domain and range of R. (e) Find the composition relation $R \circ R$.
- (c) Find R^{-1} .

- (f) Find $R \circ R^{-1}$ and $R^{-1} \circ R$.
- **2.24.** Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c\}$, $C = \{x, y, z\}$. Consider the relations R from A to B and S from B to C as follows:

$$R = \{(1, b), (3, a), (3, b), (4, c)\}$$
 and $S = \{(a, y), (c, x), (a, z)\}$

- (a) Draw the diagrams of R and S.
- (b) Find the matrix of each relation R, S (composition) $R \circ S$.
- (c) Write R^{-1} and the composition $R \circ S$ as sets of ordered pairs.
- **2.25.** Let *R* and *S* be the following relations on $B = \{a, b, c, d\}$:

$$R = \{(a, a), (a, c), (c, b), (c, d), (d, b)\}$$
 and $S = \{(b, a), (c, c), (c, d), (d, a)\}$

Find the following composition relations: (a) $R \circ S$; (b) $S \circ R$; (c) $R \circ R$; (d) $S \circ S$.

- **2.26.** Let *R* be the relation on **N** defined by x + 3y = 12, i.e. $R = \{(x, y) | x + 3y = 12\}$.
 - (a) Write R as a set of ordered pairs. (c) Find R^{-1} .
 - (b) Find the domain and range of R. (d) Find the composition relation $R \circ R$.

PROPERTIES OF RELATIONS

- **2.27.** Each of the following defines a relation on the positive integers N:
 - (1) "x is greater than y."
- (3) x + y = 10
- (2) "xy is the square of an integer." (4) x + 4y = 10.

Determine which of the relations are: (a) reflexive; (b) symmetric; (c) antisymmetric; (d) transitive.

- **2.28.** Let R and S be relations on a set A. Assuming A has at least three elements, state whether each of the following statements is true or false. If it is false, give a counterexample on the set $A = \{1, 2, 3\}$:
 - (a) If R and S are symmetric then $R \cap S$ is symmetric.
 - (b) If R and S are symmetric then $R \cup S$ is symmetric.
 - (c) If R and S are reflexive then $R \cap S$ is reflexive.

- (d) If R and S are reflexive then $R \cup S$ is reflexive.
- (e) If R and S are transitive then $R \cup S$ is transitive.
- (f) If R and S are antisymmetric then $R \cup S$ is antisymmetric.
- (g) If R is antisymmetric, then R^{-1} is antisymmetric.
- (h) If *R* is reflexive then $R \cap R^{-1}$ is not empty.
- (i) If *R* is symmetric then $R \cap R^{-1}$ is not empty.
- **2.29.** Suppose R and S are relations on a set A, and R is antisymmetric. Prove that $R \cap S$ is antisymmetric.

EQUIVALENCE RELATIONS

- **2.30.** Prove that if R is an equivalence relation on a set A, than R^{-1} is also an equivalence relation on A.
- **2.31.** Let $S = \{1, 2, 3, ..., 18, 19\}$. Let R be the relation on S defined by "xy is a square," (a) Prove R is an equivalence relation.

Answers to Supplementary Problems

- **2.20.** {(a, b, a), (a, b, d), (a, c, a), (a, c, d), (a, d, a), (a, d, d), (b, b, a), (b, b, d), (b, c, a), (b, c, d), (b, d, a), (b, d, d), (c, b, a), (c, b, d), (c, c, a), (c, c, d), (c, d, a), (c, d, d)}
- **2.21.** (a) x = 3, y = -2; (b) x = 2, y = 3.
- **2.23.** (a) $M_R = [0, 0, 1, 1; 0, 0, 0, 0; 0, 1, 1, 1; 0, 0, 0, 0];$
 - (b) Domain = $\{1, 3\}$, range = $\{2, 3, 4\}$;
 - (c) $R^{-1} = \{(3, 1), (4, 1), (2, 3), (3, 3), (4, 3)\};$

- (d) See Fig. 2-8(a);
- (e) $R \circ R = \{(1, 2), (1, 3), (1, 4), (3, 2), (3, 3), (3, 4)\}.$
- **2.24.** (a) See Fig. 2-8(b);
 - (b) R = [0, 1, 0; 0, 0, 0; 1, 1, 0; 0, 0, 1], S = [0, 1, 1; 0, 0, 0; 1, 0, 0], $R \circ S = [0, 0, 0; 0, 0, 0; 0, 1, 1; 1, 0, 0];$
 - (c) $\{(b, 1), (a, 3), (b, 3), (c, 4)\}, \{(3, y), (3, z), (4, x)\}.$
- **2.25.** (a) $R \circ S = \{(a, c), (a, d), (c, a), (d, a)\}$
 - (b) $S \circ R = \{(b, a), (b, c), (c, b), (c, d), (d, a), (d, c)\}$
 - (c) $R \circ R = \{(a, a), (a, b), (a, c), (a, d), (c, b)\}$
 - (d) $S \circ S = \{(c, c), (c, a), (c, d)\}$

Fig. 2-8

- **2.26.** (a) {(9, 1), (6, 2), (3, 3)}; (b) (i) {9, 6, 3}, (ii) {1, 2, 3}, (iii) {(1, 9), (2, 6), (3, 3)}; (c) {(3, 3)}.
- **2.27.** (a) None; (b) (2) and (3); (c) (1) and (4); (d) all except (3).
- **2.28.** All are true except: (e) $R = \{(1, 2)\}, S = \{(2, 3)\};$ (f) $R = \{(1, 2)\}, S = \{(2, 1)\}.$