Nom:	DS1					
Prénom:	APP	ANA	REA	VAL	СОМ	RCO
Exercice 1 – Observation du cratère lunaire Messier						
1. Tracé de rayons, cf. annexe 1.			••			
2. L'image est à l'infini, l'œil n'accommode pas.						•
3. $G = \frac{\alpha'}{\alpha} = -\frac{f'_{\text{obj}}}{f'_{\text{oc}}}$.			•			•
4. $\alpha = \frac{\alpha}{D} \approx 2.9 \times 10^{-5}$.	•					
5. $\alpha < \varepsilon = 3 \times 10^{-4}$: impossible à distinguer à l'œil nu.				•		•
6. Oculaires $f'_{oc} = 20 \mathrm{mm}$ et $10 \mathrm{mm}$.	•			•		
7. Pour des traces de pas d'environ $l=30\mathrm{cm}$, il faudrait un objectif de distance focale $f'=f'_{\mathrm{oc}}\frac{\varepsilon D}{l}=3.8\mathrm{km}$, donc une lunette de près de 4 km de long! Ce n'est pas réalisable.	•	•	•	•	•	
8. Construction du cercle oculaire, cf. annexe 1.			••			
9. $d_{\rm co} = \frac{D_{\rm obj} f_{\rm oc}'}{f_{\rm obj}'} \approx 2.3 \mathrm{mm}$.	•		•			
EXERCICE 2 – Arc-en-ciel						
1. $\sin i = n \sin r$.						•
2. $\alpha = -r, \beta = r, \gamma = -r \text{ et } \delta = -i.$		••				
3. La réflexion ne peut être totale : principe de retour inverse de la lumière ou Snell-Descartes en J.		•			•	
4. $D = 4r - 2i - \pi$.			••			
5. $\lambda_{1,\text{vide}} = 410 \text{nm}$ (bleu), $\lambda_{2,\text{vide}} = 671 \text{nm}$ (rouge).			•			•
6. $n = \frac{c}{v}$, $n_1 = 1{,}339$ et $n_2 = 1{,}332$.	•		•			
7. $[A] = 1$ (adimensionné, sans unité), $[B] = L^2$ (surface, m^2).				••		
8. La lumière s'accumule au minimum de $ D $ et le problème présente une symétrie de révolution. La lumière semble donc venir d'un cône, ce qui forme un cercle dont seule une partie est visible : arc-en-ciel.	•	•	•	•	•	
EXERCICE 3 – Collimateur à fibre						
1. $n_{\rm c} > n_{\rm g}$.						•
$2. i_l = \arcsin \frac{n_g}{n_c}, i > i_l.$						••
3. $\theta < \theta_l$, $\sin \theta_l = ON = \sqrt{n_c^2 - n_g^2}$.						•••
4. $ON = 0.1224$.			•			
5. Placer l'extrémité de la fibre dans le plan focal objet d'une lentille convergente.		•			•	
6. $f' = \frac{r}{ON} = 8.2 \text{cm}.$	•		•			
7. $\frac{O_2S'}{O_2S'} = -f_2'$.		•				
8. $\overline{O_1S'} = \frac{2f_1'}{3}$.			••			
9. $\overline{SO_2} = f_2' - \frac{4f_1'}{3} = 43 \text{mm}.$	•		•			
10. $f'_{\text{éq}} = \frac{f'_3 f'_4}{f'_3 + f'_4}$.			••			
11. $f_3' = 30.8 \text{mm}$ et $f_4' = -49.7 \text{mm}$: $f_{\text{\'eq}}' = 81.0 \text{mm}$.	•		•			
12. $u(f'_{\text{fab}}) = \frac{f'_{\text{fab}} \times 1\%}{\sqrt{3}} \approx 0.5 \text{mm}, Z = 1.5 < 2 : \text{valeur compatible.}$				••		
Présentation de la copie					••	
Total	APP	ANA	REA	VAL	СОМ	RCO
Nombre total de points	9	7	21	8	6	11
Nombre de points obtenus						
COMMENTAIRES:	$\eta =$	%;	$\tau =$	%;	1	/62

