CMPE 330 Spring 2017 First Midterm Examination

(Each problem is worth 10 points)

- 1. A wave in a transmission line has a frequency of f = 10 GHz and $\epsilon_r = 9/4 = 2.25$.
 - a. What are ω , λ , β , and u_p ?
 - b. At a fixed time, what length must you go for the wave to change its phase by 180° ? 3π radians? 20 cycles?
 - c. Suppose that that at the input to the transmission line the voltage is 100 V and suppose that it falls to 25 V after 1 m. After what length, to within a meter, will the voltage be less than 1 V?

Please give quantitative answers with units and no unexpressed variables like π to at least two significant figures, i.e., you must use 3.1 or 3.14 for π .

- 2. The speed of light transmission in an optical fiber is $u_{\rm p}=2.0\times10^8$ m/s, and its wavelength is $\lambda=1.5~\mu{\rm m}$. The birefringence $\Delta n/n=\Delta\epsilon_{\rm r}/2\epsilon_{\rm r}=2\times10^{-6}$. The attenuation length over which half the power is lost equals 30 km.
 - a. The light power at the transmitter is 1 mW. What is the power at 90 km?
 - b. What is the difference in the propagation velocity along the two axes of birefringence? Over what distance is there a 2π phase slip between the waves along each of the axes of birefringence.
- 3. A 50 Ω lossless line is to be matched to a resistive load impedance at 400 Ω . The operation frequency is 1 GHz and $u_p = c = 2 \times 10^8$ m/s.
 - a. What is the length of the impedance transformer?
 - b. What is its impedance?
- 4. Consider a transmission line with $Z_0 = 100 \Omega$ and $Z_L = 75 \Omega$. What is the standing wave ratio? Measured in wavelengths, how close are the first maximum and the first minimum to the load?
- 5. Consider a transmission line with a characteristic impedance of 50 Ω and a load impedance of 50 Ω . Suppose that the generator impedance is also 50 Ω and $\tilde{V}_{\rm s}=100$ V. How much power is dissipated in the load resistor and how much power is dissipated in the source resistor?

Midterm Examination Solutions

- 1. a. $f = 10 \text{ GHz} = 10^{10} \text{ s}^{-1}$; $\omega = 2\pi \times f = 6.28 \times 10^{10} \text{ s}^{-1}$; $u_{\rm p} = c/\sqrt{\epsilon_{\rm r}} = [3 \times 10^8 \text{ m/s}]/1.5 = 2.0 \times 10^8 \text{ m/s}$; $\lambda = u_{\rm p}/f = 2.0 \times 10^8/10^{10} = 2.0 \times 10^{-2} \text{ m} = 2 \text{ cm}$; $\beta = 2\pi/\lambda = (6.28/0.02) \text{ m}^{-1} = 314 \text{ m}^{-1}$.
 - b. We have that 180° corresponds to $\lambda/2 = 0.01 \text{ m} = 1.0 \text{ cm}$; 3π rads corresponds to $1.5\lambda = 0.03 \text{ m} = 3.0 \text{ cm}$; 5 cycles corresponds to $5\lambda = 0.1 \text{ m} = 10 \text{ cm}$.
 - c. The voltage falls by a factor of 4 in every meter. A factor of 100 is between $4^3 = 64$ and $4^4 = 256$. So, the voltage will fall below 1 V somewhere between 3 meters and 4 meters.
- 2. a. After 90 km, the power will be decreased by a factor of $2^3=8$. If we start with 1 mW, then we end up with $(1000/8)~\mu W=125~\mu W$, which equals 130 W to two significant figures.
 - b. We have that $\Delta u_{\rm p} = u_{\rm p} \Delta n/n = (2 \times 10^8) \times (2 \times 10^{-6}) = 400$ m/s. The length over which the phase between the two light waves slips by 2π is given by $L = \lambda(u_p/\Delta u_p) = (1.5 \times 10^{-6}) \times [(2 \times 10^8)/400] = 300/400 = 0.75$ m.
- 3 a. We need a $\lambda/4$ transformer. In this case, we have $\lambda = c/f = (2 \times 10^8)/(10^9) = 0.2$ m. Hence, we have $\lambda/4 = 0.05$ m = 5 cm.
 - b. The impedance is $(50 \times 400)^{1/2} \Omega = (\sqrt{2} \times 100) = 141 \Omega$.
- 4. We have $\Gamma = (75-100)/(75+100) = -1/7$, and since Γ is purely real, we have

$$S = \frac{1+|\Gamma|}{1-|\Gamma|} = \frac{1-\Gamma}{1+\Gamma} = 8/6 = 1.33.$$

Because Γ is purely real and negative, the voltage has a minimum at the load and every distance $-z=l=n\lambda/2$ away from the load, where $n=1,2,3,\ldots$ So, the first minimum away from the load is at $l=\lambda/2$. The maxima occur in between the minima when $-z=l=(\lambda/4)+n\lambda/2$, where $n=0,1,2,\ldots$ Hence, the first maximum occurs at $l=\lambda/4$.

5. Since the load impedance and the characteristic impedance are matched, there is only a forward-propagating wave, and the input impedance must therefore equal the load impedance, which is 50 Ω . Since the source impedance is also 50 Ω , half the power must be dissipated in the source impedance, and the other half must be dissipated in the load impedance. The power dissipated in the generator is $P_{\rm g}=(1/2)\,{\rm Re}(VI^*)$, and we have $I^*=V^*/(Z_{\rm in}^*+Z_{\rm source}^*)=(100/100)\,{\rm A}=1\,{\rm A}$. Hence, we have $P_{\rm g}=25\,{\rm W}$ and $P_{\rm L}=25\,{\rm W}$.