纵横断面计算

开 发 文 档

一、程序功能简介

本程序用于纵横断面计算,读入点的数据,即可计算内插点、纵断面、横断面、 体积、土石方总量。

二、算法设计与流程图

1.1 坐标方位角计算

已知两点 $A(x_A,y_A)$, $B(x_B,y_B)$, 则A,B的坐标方位角为:

$$\alpha_{AB} = \operatorname{atan}\left(\frac{\Delta y_{AB}}{\Delta x_{AB}}\right) = \operatorname{atan}\left(\frac{y_B - y_A}{x_B - x_A}\right) \tag{1}$$

方位角的值与所在象限有关,判定方法如表2所示。

表 2 方位角取值范围判断

Δy_{AB}	ΔX_{AB}	坐标方位角
+	+	$lpha_{AB}$
+	-	$180^{\circ} + \alpha_{AB}$
-	-	$180^{\circ} + \alpha_{AB}$
-	+	$360^{\circ} + \alpha_{AB}$
>0	0	90°
<0	0	270°

1.2 内插点 P 的高程值的计算方法

采用反距离加权法求内插点 P 的高程, 计算方法为:

(1) 以点 P(x,y) 为圆心,寻找最近的 n 个离散点 $Q_i(x_i,y_i)$,形成点集 $Q(\mathbf{c})$

中n取5):

(2) 计算 P 到 Q 中每一已知点 Q 的距离 d_i , 计算公式为:

$$d_{i} = \sqrt{(x - x_{i})^{2} + (y - y_{i})^{2}}$$
 (2)

(3) 计算 P 点的内插高程

设 $Q_i(x_i, y_i)$ 的高程为 h_i , P 点高程 h 的插值为:

$$h = \frac{\sum_{i=1}^{n} (h_i/d_i)}{\sum_{i=1}^{n} (1/d_i)}$$
(3)

1.3 断面面积的计算

已知梯形两点 P_i , P_{i+1} 两点间的平面投影距离为 ΔL_i , 基准高程为 h_0

 P_i , P_{i+1} 的点高程为 h_i , h_{i+1} , 如图 2 所示,则该梯形的面积为:

$$S_{i} = \frac{\left(h_{i} + h_{i+1} - 2h_{0}\right)}{2}\Delta L_{i} \tag{4}$$

将断面的所有梯形进行累和得到最后的总面积

$$S = \Sigma S_i \tag{5}$$

2. 道路纵断面计算

以道路中心线上的n+1个点关键点 K_0 , K_1 ······ K_n ,形成道路的纵断面。

2.1 计算纵断面的长度

已知 $K_i(x_i,y_i)$, $K_{i+1}(x_{i+1},y_{i+1})$, 可以计算它们之间的距离, 公式为:

$$D_{i} = \sqrt{(x_{i+1} - x_{i})^{2} + (y_{i+1} - y_{i})^{2}}$$
(6)

纵断面的总长度为 $D = \sum_{i=0}^{1} D_i$

2.2 计算内插点的平面坐标

在纵断面上,从起点 K_0 开始,每隔 Δ 内插一点,记为 Z_1 ,形成纵断面上的内插点序列。

当插值点 Z_1 在 K_0 , K_1 直线上, 则 Z_1 点的坐标为

$$\begin{cases} x_i = x_0 + L_i \cos(\alpha_{01}) \\ y_i = y_0 + L_i \sin(\alpha_{01}) \end{cases}$$
(7)

其中 α_{01} 为 $K_0(x_0,y_0)$, $K_1(x_1,y_1)$ 的方位角, L_i 是待插值 Z_i 点距 K_0 点的平面投影距离。

2.3 计算纵断面面积

3. 道路横断面计算

3.1 计算横断面中心点

取 K_i , K_{i+1} 的中心点 $M_i(x_{M_i}, y_{M_i})$ 计算公式为:

$$x_{M_i} = \frac{x_i + x_{i+1}}{2}; y_{M_i} = \frac{y_i + y_{i+1}}{2}$$
 (9)

3.2 计算横断面插值的平面坐标和高程

过横断面中间点 M_1 ,分别向直线 K_0,\ldots,K_n 垂直线,两边各延伸25 米,得到 n 条横断面。

过M点的横断面的坐标方位角为 α_{N} 计算公式为:

$$\alpha_{M_i} = \alpha_{i,i+1} + 90^{\circ} \tag{10}$$

过 M 点横断面的内插点 N 平面坐标为:

$$\begin{cases} x_j = x_{M_i} + j\Delta\cos(\alpha_M) \\ y_j = y_{M_i} + j\Delta\sin(\alpha_M) \end{cases}$$
 (j= -5, ···, -1, 1···, 5) (11)

根据内插点的平面坐标,计算其高程,计算公式见3.2节。

3.3 计算横断面面积

说明:根据(5)公式,计算2个横断面的面积,用于横断面面积的计算点包括横断面中心点和横断面内插点(每个横断面共有11个点)构成的断面,计算结果保留小数点后3位。

4.路基土石方量计算

4.1 横断面面积计算

以关键点 K和纵断面上的内插点 Z_j (内插距离 Δ = 10m; 见 2.2节)为中心点,分别向纵断面做垂直线,两边各延伸 <math>5 米,根据公式(5),计算各横断面面积 S_j 。

4.2 路基土石方量计算

$$V_{j,j+1} = \frac{S_j + S_{j+1}}{2} L_{j,j+1}$$
 (12)

式中, S_j 和 S_{j+1} 是相邻两个横断面面积, $L_{j,j+1}$ 是这两个横断面中心点之间的平面距离。

4.3 每段纵断面土石方总量计算

针对每个纵断面 (K₀K₁, K₁K₂, K₂K₃), 计算土石方总量:

$$V_{k_i,k_{i+1}} = \sum V_{j,j+1} \tag{13}$$

说明: 计算所有纵断面的土石方总量, 计算结果保留小数点后3位。

三、主要函数和变量说明

1. Point 类

变量名	变量类型	意义
Distance	double	距离
IsDatum	bool	是否为高程
Name	string	点名
X	double	X
Υ	double	Υ
Н	double	Н

2. PrioFile 类

变量名	变量类型	意义
end	point	终点
start	point	起点
sumD	double	长度
sumS	double	面积
totapoints	point 集合	断面所有的的集合

3. DataCenter 类

变量名	变量类型	意义
cenPoint	point 集合	中心点
DatumPoint	point 集合	关键点
OriPoint	point 集合	题给所有点
Test	point 集合	测试点
RDH	double	基准高程
Vertical	PrioFile	纵断面
Hozs	PrioFile 集合	横断面

4. Draw 类(负责绘制图像)

5. Algorithm 类(负责纵横断面的计算)

四、使用说明

- 1. 首先打开【文件】下的加载数据
- 2. 打开菜单栏【计算】,点击测试可以进行相关数据比如方位角,计算内插高程的计算
- 3. 打开菜单栏【计算】,点击【计算纵断面】,计算纵断面,点击【计算横断面】计算横断面 断面

- 4. 打开【工具栏】下的【一键计算】,可以运行所有所有计算
- 5. 打开【工具栏】下的【保存报告】,实现报告的保存。

五、 主要程序运行界面

1. 加载数据

F) 计算(C)			
读取文件	├ - ├ / 一 ^{艘计算}	保存报告 人 保存	示意图	
7	ę /			
点名	Х	Y	н	
KO	3574.012	3358.3	22. 922	
P01	3570. 355	3382.21	20. 558	
P02	3571.827	3372.09	20.619	
P03	3570. 907	3362.574	20.771	
P04	3569. 494	3355.66	24. 233	
P05	3556.682	3361.789	26.66	
P06	3547. 554	3364. 421	27. 352	
P07	3534.086	3370.041	27. 158	
P08	3517.549	3376.08	27.345	
P09	3505, 572	3383. 182	25. 637	
P10	3498. 562	3390. 196	23. 033	

2. 一键运算(计算纵断面、横断面、绘制图片)

3. 读写报告

4. 保存图片

