

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY DELHI

Department of Electronics & Communication Engineering

ECE111|Digital Circuits

Dr. G.S. Visweswaran

Lab_7: Latches

Student Name: Aayush Gakhar

Roll No.: 2020006

Date: 20/3/2021

Part A. NOR Latch

Aim: Implement a NOR Latch in Tinkercad and verify its operation.

Components/ICs Used: Breadboard, Red LED, 1 $k\Omega$ Resistor, [5,5 Power Supply], Wire, slideswitch, quad 2 input NOR IC(74HC02)

Link of TINKERCAD Workspace: https://www.tinkercad.com/things/4tcGFkewHil

Link of single workspace: https://www.tinkercad.com/things/377WEAm6Q1n (this was hanging in my system so I made separate also)

Circuit Diagram:

Characteristic Table:

S	R	Q _{n+1}
0	0	Qn
0	1	0
1	0	1
1	1	Undefined

Transition Table:

S	R	Present	Next
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

Characteristic equation:

		R Q _n			
		0 0	0 1	11	1 0
S	0	0	1	0	0
	1	1	1	X	X

 $Q_{n+1} = S + R' Q_n$

Excitation table:

Qn	Q _{n+1}	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	X	0

Observations/Results: The following values for Q and Q' are obtained for values of SR

S	R	Q	Q'
0	1	0	1
0	0	0	1
1	0	1	0
0	0	1	0
0	1	0	1
1	0	1	0
0	1	0	1
1	1	0	0
0	0	X	X
1	0	1	0
1	1	0	0
0	0	X	X

Applications of the experiment:

- Latches are single bit storage elements which are widely used in computing as well as data storage.
- Latches are used in the circuits like power gating & clock as a storage device.

Part B. NAND Latch

Aim: Implement a NAND Latch in Tinkercad and verify its operation.

Components/ICs Used: Breadboard, Red LED, 1 $k\Omega$ Resistor, [5,5 Power Supply], Wire, slideswitch, quad 2 input NAND IC(74HC00)

Link of TINKERCAD Workspace: https://www.tinkercad.com/things/h36tCo3ds0K

Circuit Diagram:

Characteristic Table:

S'	R'	Q _{n+1}
1	1	Qn
1	0	0
0	1	1
0	0	Undefined

Transition Table:

S'	R'	Present	Next
1	1	0	0
1	1	1	1
1	0	0	0
1	0	1	0
0	1	0	1
0	1	1	1
0	0	0	X
0	0	1	X

Characteristic equation:

		R' Q _n			
		00 01 11 10			10
S'	0	X	X	1	1
	1	0	0	1	0

 $Q_{n+1} = S + R' Q_n$

Excitation table:

Qn	Q _{n+1}	S'	R'
0	0	1	X
0	1	0	1
1	0	1	0
1	1	X	1

Observations/Results: The following values for Q and Q' are obtained for values of S' R'

S'	R'	Q	Q'
1	0	0	1
1	1	0	1
0	1	1	0
1	1	1	0
1	0	0	1
0	1	1	0
1	0	0	1
0	0	1	1
1	1	X	X
0	1	1	0
0	0	1	1
1	1	X	X

Applications of the experiment:

- Generally, latches are used to keep the conditions of the bits to encode binary numbers
- Latches are single bit storage elements which are widely used in computing as well as data storage.