Дискретные структуры

МФТИ, весна 2014

Александр Дайняк

www.dainiak.com

Одно обобщение деления многочленов

Утверждение.

Пусть $P \in \mathbb{F}[x_1, ..., x_m]$ и $\tilde{P} \in \mathbb{F}[x_i]$ — произвольные ненулевые многочлены.

Тогда существуют Q , $R \in \mathbb{F}[x_1, \dots, x_m]$, такие, что

$$P = \tilde{P} \cdot Q + R,$$

и $\deg_{x_i} R < \deg_{x_i} \tilde{P}$.

Доказательство: во всех мономах P, куда x_i входит в степени больше $\deg_{x_i} R$, заменяем эту степень, выразив её через \tilde{P} .

По сути, это «деление столбиком», в котором мы рассматриваем P как многочлен от x_i с коэффициентами из $\mathbb{F}[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_m]$.

Пример

Пусть
$$P\coloneqq x_1^5x_2^8x_4+x_1^2+x_1x_3$$
 и $\tilde{P}\coloneqq x_1^2+3x_1$. Тогда
$$P=x_1^3x_2^8x_4\cdot \left(\tilde{P}-3x_1\right)+\left(\tilde{P}-3x_1\right)+x_1x_3=\\ =\left(x_1^3x_2^8x_4+1\right)\cdot \tilde{P}-3x_1^4x_2^8x_4-3x_1+x_1x_3=\\ =\left(x_1^3x_2^8x_4+1\right)\cdot \tilde{P}-3x_1^2x_2^8x_4\left(\tilde{P}-3x_1\right)-3x_1+x_1x_3=\\ =\left(x_1^3x_2^8x_4-3x_1^2x_2^8x_4+1\right)\cdot \tilde{P}+9x_1^3x_2^8x_4-3x_1+x_1x_3=\\ =\left(\ldots\right)\cdot \tilde{P}+9x_1x_2^8x_4\left(\tilde{P}-3x_1\right)-3x_1+x_1x_3=\\ =\left(\ldots\right)\cdot \tilde{P}-27x_1^2x_2^8x_4-3x_1+x_1x_3=\\ =\left(\ldots\right)\cdot \tilde{P}-27x_2^8x_4\left(\tilde{P}-3x_1\right)-3x_1+x_1x_3=\\ =\left(\ldots\right)\cdot \tilde{P}-27x_2^8x_4\left(\tilde{P}-3x_1\right)-3x_1+x_1x_3=\\ =\left(\ldots\right)\cdot \tilde{P}+81x_1x_2^8x_4-3x_1+x_1x_3=\\ =\left(\ldots\right)\cdot \tilde{P}+81x_1x_1x_2^8x_4-3x_1+x_1x_3=\\ =\left(\ldots\right)\cdot \tilde{P}+81x_1x_1x_2^8x_1+x_$$

Теорема Алона о нулях

Теорема.

Пусть $P \in \mathbb{F}[x_1, ..., x_m]$ — произвольный полином, и пусть $x_1^{t_1} \cdot ... \cdot x_m^{t_m}$ — моном старшей степени, то есть $\sum_i t_i = \deg P$. Пусть $S_1, ..., S_m \subseteq \mathbb{F}$ — произвольные множества, такие, что $|S_i| \geq t_i + 1$ для всех i.

Тогда найдутся такие $s_1 \in S_1, ..., s_m \in S_m$, что $P(s_1, ..., s_m) \neq 0$

Доказательство: индукция по $\deg P$.

Если $\deg P = 1$, то P — линейная форма:

$$P(x_1, ..., x_m) = c_0 + \sum_{i} c_i x_i$$

Если, например, $c_1 \neq 0$, то $|S_1| \geq 2$ и, как бы ни были фиксированы $x_2 \leftarrow s_2, \dots, x_m \leftarrow s_m$, уравнение $P(x_1, s_2, \dots, s_m) = 0$ имеет не более одного корня.

Значит, найдётся $s_1 \in S_1$, для которого $P(s_1, s_2, ..., s_m) \neq 0$.

Пусть $\deg P > 1$, и для многочленов меньшей степени утверждение теоремы выполнено.

Б.о.о. будем считать, что $t_1 > 0$.

Зафиксируем произвольное $s \in S_1$ и поделим с остатком P на $(x_1 - s)$: $P = (x_1 - s) \cdot Q + R$,

где $Q \not\equiv 0$ и $\deg_{x_1} R < \deg_{x_1} (x_1 - s) = 1$, то есть R не зависит от x_1 .

$$P = (x_1 - s) \cdot Q + R,$$

где $Q \not\equiv 0$ и $\deg_{x_1} R < \deg_{x_1} (x_1 - s) = 1$, т.е. R не зависит от x_1 .

Если найдётся набор $s_2 \in S_2, ..., s_m \in S_m$, такой, что $R(s_2, ..., s_m) \neq 0$, то $P(s, s_2, ..., s_m) \neq 0$,

что и требовалось.

Остаётся разобрать случай, когда

$$\forall s_2 \in S_2, \dots, \forall s_m \in S_m \quad R(s_2, \dots, s_m) = 0.$$

$$P = (x_1 - s) \cdot Q + R$$

Т.к. в P один из мономов степени $\deg P$ имеет вид $x_1^{t_1} \cdot \ldots \cdot x_m^{t_m}$, то в Q один из мономов степени $\deg Q$ имеет вид $x_1^{t_1-1} \cdot \ldots \cdot x_m^{t_m}$.

По предположению индукции, найдутся такие

$$s_1 \in S_1 \setminus \{s\}, \quad s_2 \in S_2, \quad \dots, \quad s_m \in S_m,$$

для которых

$$Q(s_1, \dots, s_m) \neq 0.$$

Для таких $s_1, ..., s_m$ получаем

$$P(s_1, ..., s_m) = (s_1 - s) \cdot Q(s_1, ..., s_m) \neq 0$$

Аддитивная комбинаторика

Аддитивная комбинаторика изучает свойства подмножеств натуральных чисел и абелевых групп при сложении.

Пусть $A, B \subseteq G$, где G — абелева группа.

Обозначим

$$A + B \coloneqq \{a + b \mid a \in A, b \in B\}$$

Вопрос: как можно оценить |A + B|, если известны |A| и |B|?

Пример простой оценки сверху:

$$|A + B| \le \min\{|G|, |A| \cdot |B|\}$$

Теорема Коши—Давенпорта

Teopeма (Cauchy, Davenport).

Если
$$A, B \subseteq \mathbb{Z}_p$$
, где p — простое число, то $|A + B| \ge \min\{p, |A| + |B| - 1\}$

Доказательство:

Сначала рассмотрим лёгкий случай |A| + |B| > p.

Для любого $c \in \mathbb{Z}_p$ имеем

$$|A| + |c - B| = |A| + |B| > p$$

а значит $A \cap (c - B) \neq \emptyset$, и найдутся $a \in A$ и $b \in B$, такие, что a = c - b. Отсюда $c \in A + B$.

Т.к. c брался произвольным, получаем $A+B=\mathbb{Z}_p$.

Теорема Коши—Давенпорта

Пусть теперь $|A| + |B| \le p$.

Допустим, что |A+B|<|A|+|B|-1, и придём к противоречию.

По предположению, найдётся $C \subset \mathbb{Z}_p$, такое, что |C| = |A| + |B| - 2 и $A + B \subseteq C$.

Рассмотрим многочлен

$$P(x,y) \coloneqq \prod_{c \in C} (x+y-c) \in \mathbb{Z}_p[x,y]$$

Заметим, что P(x, y) = 0 для любых $x \in A, y \in B$.

Теорема Коши—Давенпорта

$$P(x,y) \coloneqq \prod_{c \in C} (x+y-c) \in \mathbb{Z}_p[x,y]$$

Раскрыв скобки в определении P, видим, что

$$\operatorname{coef}_{x^{|A|-1}y^{|B|-1}} P = \left(\frac{(|A|+|B|-2)!}{(|A|-1)!(|B|-1)!}\right) \mod p \neq 0$$

то есть моном $x^{|A|-1}y^{|B|-1}$ реально входит в многочлен.

По теореме Алона, найдутся $a \in A$ и $b \in B$, такие, что $P(a,b) \neq 0$.

Но такого не может быть по определению P.

Вопрос: сколько плоскостей нужно, чтобы покрыть все, *кроме* одной, вершины куба?

Теорема (Алон, Фюреди).

Наименьшее число плоскостей, достаточное, чтобы покрыть все, кроме одной, вершины куба в \mathbb{R}^n , равно n.

Доказательство:

Б.о.о. будем считать, что у нас куб $\{0,1\}^n$, и что вершина, которую мы не покрываем (0,0,...,0).

Куб $\{0,1\}^n$, не покрываем вершину (0,0,...,0).

n плоскостей достаточно — например, такие:

- $x_1 1 = 0$
- $x_2 1 = 0$
- ...
- $x_n 1 = 0$

Сложная часть — доказать, что меньшим числом плоскостей не обойтись.

Докажем это от противного...

Допустим, мы обошлись m плоскостями, m < n. Пусть их уравнения такие:

$$\langle \boldsymbol{a}_1, \boldsymbol{x} \rangle - b_1 = 0$$

 \vdots
 $\langle \boldsymbol{a}_m, \boldsymbol{x} \rangle - b_m = 0$

При этом b_1 , ..., $b_m \neq 0$, т.к. ни одна из плоскостей не должна покрывать точку (0,0,...,0). Рассмотрим многочлен:

$$P(x_1, \dots, x_n) \coloneqq \prod_{j=1}^m (b_j - \langle \boldsymbol{a}_j, \boldsymbol{x} \rangle) - \left(\prod_{j=1}^m b_j\right) \cdot \left(\prod_{i=1}^n (1 - x_i)\right)$$

Имеем $\deg P = n$, и

$$\operatorname{coef}_{x_1 \cdot x_2 \cdot \dots \cdot x_n} P = (-1)^{n+1} \prod_{j=1}^m b_j \neq 0.$$

По теореме Алона, найдутся $\alpha_1 \in \{0,1\}, \dots, \alpha_n \in \{0,1\}$, для которых $P(\alpha_1, \dots, \alpha_n) \neq 0$.

Допустим, мы обошлись m плоскостями:

$$\langle \boldsymbol{a}_1, \boldsymbol{x} \rangle - b_1 = 0$$

 \vdots
 $\langle \boldsymbol{a}_m, \boldsymbol{x} \rangle - b_m = 0$

По теореме Алона, найдётся точка из $\{0,1\}^n$, на которой многочлен

$$P(x_1, \dots, x_n) := \prod_{j=1}^m \left(b_j - \langle \boldsymbol{a}_j, \boldsymbol{x} \rangle \right) - \left(\prod_{j=1}^m b_j \right) \cdot \left(\prod_{i=1}^n (1 - x_i) \right)$$

не равен нулю. Но это невозможно:

•
$$P(0, ..., 0) = \prod_{j=1}^{m} (b_j) - (\prod_{j=1}^{m} b_j) \cdot (\prod_{i=1}^{n} 1) = 0$$

• Для любой точки $(\alpha_1,\dots,\alpha_n)\in\{0,1\}^n\setminus\{(0,\dots,0)\}$ имеем $P(\alpha_1,\dots,\alpha_n)=\prod_{i=1}^m(0)-\left(\prod_{i=1}^mb_i\right)\cdot 0=0$

Общая постановка многих задач в теории графов:

в данном графе с известными свойствами выделить подграф с требуемыми свойствами.

Например:

- В заданном графе найти максимальную клику
- В заданном несвязном графе найти компоненту связности с максимальным числом вершин.

•

Вопрос: во всяком ли k-регулярном графе существует (k-1)-регулярный подграф?

Известно следующее:

- Это так для $k \le 3 простое упражнение.$
- Это так для k=4 и это трудная теорема (В.А. Ташкинов '1984)
- Это в общем случае не верно для $k \ge 6$

Вопрос: во всяком ли k-регулярном графе существует k'-регулярный подграф (k' < k)?

Известно, например, что для любых нечётных k и k' ответ на вопрос положительный.

Если ослабить условие «строгой» регулярности и рассматривать «почти регулярные» графы (у которых степени вершин близки, но необязательно равны) — тоже можно доказать кое-что интересное...

Теорема (Алон, Фридланд, Калаи).

Пусть p — простое число. Пусть G = (V, E) — мультиграф (без петель), удовлетворяющий условиям

- $\Delta(G) \leq 2p-1$,
- $\bullet \frac{1}{|V|} \sum_{v \in V} d(v) > 2p 2.$

Тогда в G есть p-регулярный подграф.

•
$$\Delta(G) \le 2p - 1$$
, $u_{|V|} \sum_{v \in V} d(v) > 2p - 2$

Каждому $e \in E$ сопоставим переменную x_e .

Рассмотрим многочлен от переменных $\{x_e\}_{e\in E}$ с коэффициентами в \mathbb{Z}_p :

$$P := \prod_{v \in V} \left(1 - \left(\sum_{e \in E: e \ni v} x_e \right)^{p-1} \right) - \prod_{e \in E} (1 - x_e)$$

$$\bullet \, \frac{1}{|V|} \sum_{v \in V} d(v) > 2p - 2$$

$$P \coloneqq \underbrace{\prod_{v \in V} \left(1 - \left(\sum_{e \in E: e \ni v} x_e \right)^{p-1} \right) - \prod_{e \in E} (1 - x_e)}_{Q}$$

Из условия,
$$2\cdot |E|=\sum_{v\in V}d(v)>(2p-2)\cdot |V|$$
, отсюда $\deg Q\leq (p-1)\cdot |V|<|E|.$

Следовательно, $\deg P = |E|$.

При этом, $\operatorname{coef}_{\prod_{e \in F} x_e} P = (-1)^{|E|+1} \neq 0.$

$$P \coloneqq \prod_{v \in V} \left(1 - \left(\sum_{e \in E: e \ni v} x_e \right)^{p-1} \right) - \prod_{e \in E} (1 - x_e)$$

 $\deg P = |E|$ и $\operatorname{coef}_{\prod_{e \in F} \chi_e} P = (-1)^{|E|+1} \neq 0.$

Значит, по теореме Алона, найдётся набор значений $\pmb{\alpha}=(\alpha_e)_{e\in E}\in\{0,1\}^{|E|}$, такой, что $P(\pmb{\alpha})\neq 0$. При этом для любого $v\in V$ имеем

$$\sum_{e \in E: e \ni v} \alpha_e \stackrel{p}{=} 0,$$

иначе, по малой теореме Ферма, получилось бы

$$\left(\sum_{e \in F: e \ni v} \alpha_e\right)^{p-1} \stackrel{p}{=} 1 \quad \Rightarrow \quad P(\alpha) = 0 \quad (\mathsf{B} \, \mathbb{Z}_p).$$

- $\Delta(G) \leq 2p-1$
- $P := \prod_{v \in V} (1 (\sum_{e \in E: e \ni v} x_e)^{p-1}) \prod_{e \in E} (1 x_e)$

Нашли $\pmb{\alpha} \in \{0,1\}^{|E|}$, т. ч. $P(\pmb{\alpha}) \neq 0$, и $\forall v \in V$

$$\sum_{e \in E: e \ni v} \alpha_e \stackrel{p}{=} 0$$

Кроме того, видно, что $\alpha \neq \mathbf{0}$. Взяв те рёбра G, для которых $\alpha_e = 1$, и все вершины G, получим непустой остовный подграф G'.

В подграфе G' степень каждой вершины v равна $\sum_{e \in E: e \ni v} \alpha_e \stackrel{p}{=} 0$, а значит, эта степень равна нулю либо p.

По набору α построили непустой остовный подграф G'. В подграфе G' степень каждой вершины равна нулю или p. Выбросив из G' вершины нулевой степени, получим искомый p-регулярный подграф.