

What's happening in term 2?

- Optimisation algorithms
 - Greedy algorithms (1 week)
 - Dynamic Programming (2 weeks)
- Computational Geometry (2 weeks)
- String matching algorithms (1 week)

Optimization Methods Part 1

Greedy algorithms

https://xkcd.com/69/

Richard Lobb and R Mukundan

Department of Computer Science and Software Engineering
University of Canterbury

The Greedy Method ("Greedy heuristic")

- A simple *intuitive* method.
- Choose whatever option looks best at the moment
 - Hoping that a locally optimal choice will lead to a globally optimal solution.
- A decision made in one stage is not changed later.
 - No backtracking
- Greedy algorithms do not always yield optimal solutions, but for many problems, they do.
- In each iteration, greedy algorithms seek a feasible solution that minimizes or maximizes a given objective function.

Examples you know and love already

Minimum Spanning Tree algorithms:

- Prim's algorithm
 - Maintain set of connected nodes
 - Repeatedly add "cheapest" node
 - GREEDY!
- Kruskal's algorithm
 - Maintain forest of disconnected trees
 - Repeatedly add "cheapest" edge that doesn't cause a cycle
 - GREEDY!

Both fairly easily shown to be optimal

Image taken from Bioinformatics Algorithms, MIT Press, 2004.

You are a shopkeeper. You need to give change of V cents to a customer. The till has coins of denominations $C = \{c_1, ..., c_m\}$. The goal is to give the customer the minimum number of coins whose total value equals the amount V.

Assumptions:

- $c_1 < c_2 < < c_m$ (Input sorted in ascending order)
- Each denomination is available in unlimited quantity
- $c_1 = 1$, so that a solution exists for any integer V > 0

Required solution:

Integers $n_1, n_2..., n_m$ such that

$$V = n_1 c_1 + n_2 c_2 + ... + n_m c_m$$

 $N = n_1 + n_2 + ... + n_m$ is the minimum possible value.

Greedy strategy:

```
counts = defaultdict(int) # Counters of all coins while V > 0: select the largest value c_i \le V (i.e., c_i \le V < c_{i+1}) counts[c_i] += 1 V = V - c_i
```


Sort C in ascending order

imax = m

while
$$V > 0$$
:

while $c_{\text{imax}} > V$:

$$imax = imax - 1$$

 $counts[c_{imax}] += 1$

$$V = V - c_{imax}$$

Q: what precondition(s) must be satisfied to ensure these loops terminate?

Examples:

- V = 82c $C = \{1c, 5c, 10c, 25c\}$ Greedy Solution = $\mathbf{3}^*25c + \mathbf{1}^*5c + \mathbf{2}^*1c$ (N = 6 coins)Here, the solution is optimal.
- V = 80c C = {1c, 10c, 25c}
 Greedy Solution = 3*25c + 5*1c = (N = 8 coins)
 This is not an optimal solution.
 Optimal Solution: 2*25c + 3*10c (N = 5 coins)

Can you suggest a sufficient property of the currency system that ensures optimality of a greedy algorithm for all $V \ge 0$?

Activity-Selection Problem

How to get your money's worth out of a carnival?

- Buy a wristband that lets you onto any ride
- Lots of rides, each starting and ending at different times
- Your goal: ride as many rides as possible

The Specific Problem: Interval scheduling

- Given a set of scheduled jobs
- o Job j starts at time s_i and finishes at time f_i .
- Two jobs are compatible if they don't overlap
- Your goal: find maximum subset of mutually compatible jobs.

Interval Scheduling

What is the (or an) optimal solution? Answer: {b, e, h}

A more challenging example

What *algorithm* will you use?

Assume greedy heuristic ... what is the sort key?

Sort by start time?

Sort by duration?

Interval Scheduling

- Have to order the jobs. Then take each job, provided it is compatible with the ones already taken.
- Bad choices for ordering:
 - \circ Increasing order of start times s_i
 - "Oh no, the first job takes all day"
 - Increasing order of job intervals $f_i s_i$.
 - "Oh no, the shortest job is at the end of the day"
- The right choice for ordering:
 - \circ Increasing order of finish times f_i
 - On completion of job with finish time $f_{j'}$ start the next job (s_k, f_k) in the sorted order such that $s_k \ge f_i$.

Interval Scheduling Algorithm

Greedy algorithm:

```
Sort jobs by finish times: f_1 \le f_2 \le \dots \le f_n
S = \{\} (Set of jobs selected)
t current = 0 (Finish time of the last job selected)
for j = 1..n:
    if s_i \ge t_{current}:
         S = S \cup \{i\}
         t_current = f_i
return S
                             (s_1, f_1)
                                                                           (s_n, f_n)
                                                  (s_i, f_i)
```

Is this always optimal? If so, prove it. If not, give a counter-example.

t current

COSC262: Greedy Algorithms

Interval Scheduling Optimality

Yes, greedy algorithm (sorting by finish time) is optimal.

Proof by contradiction (informal):

Assume algorithm is **not** optimal. Then for some problem there exists a better solution than that found by the greedy algorithm. Consider the point at which the results first differ non-trivially (e.g. excluding simple swapping of one job for another).

Greedy:		Job-G	(?)	
Optimal:		Job-O		
		1		

Optimal algorithm has Job-O that finishes later than Job-G. But if optimal algorithm had instead used Job-G the rest of its jobs could remain unchanged and it would still be optimal. Therefore this **isn't** the point at which the results first differ non-trivially, contradicting the assumption.

More formally: see https://en.wikipedia.org/wiki/Charging_argument

Fractional Knapsack Problem

- Given a set S of n items, such that each item i has a positive value b_i , and a positive weight w_i , determine the subset of S that yields the maximum value without exceeding a given weight W.
- We can select a fraction x_i of an item i giving a value $x_i b_i$ and a weight $x_i w_i$. W = 9

i	Item	Benefit b _i	Weight w _i
1	Popcorn (1 carton)	12	4
2	Potato chips (1 bag)	15	3
3	Pizza (1)	14	2
4	Chocolate cookies (bag)	20	5

Fractional Knapsack Problem

 $\begin{array}{c} \text{Greedy} \\ \text{Solution} \\ \text{with} \\ \text{measure} \\ b_i \end{array}$

i	Item	x_{i}	Benefit b_i	Weight w _i
4	Chocolate cookies	1	20	5
2	Potato chips	1	15	3
3	Pizza	1/2	7	1
	TOTAL		42	9

Greedy Solution with measure b_i/w_i

j	Item	x_{i}	Benefit b_i	Weight w _i
3	Pizza	1	14	2
2	Potato chips	1	15	3
4	Chocolate cookies	4/5	16	4
	TOTAL		45	9

Fractional Knapsack Problem

Correct greedy algorithm (optimal)

- Sort items in descending order of b_i/w_i .
- Take items (or a fraction of the final item) in order until knapsack full.
- Gives an optimal solution in $O(n \log n)$ time.

The 0/1 Knapsack

(not amenable to a greedy solution)

- A thief robbing a store finds n items; the i^{th} item is worth b_i dollars, and weighs w_i kgs (b_i , w_i are integers). The thief can carry at most W kgs. Which items should (s)he take for maximum payload?
- A greedy approach is in general sub-optimal.
- Example:

- Greedy solution using only b_i : (e) = \$100 or using b_i/w_i : (c) + (d) = \$160
- Optimal solution: (a)+(b)+(c) = \$170
- Needs dynamic programming next week.

Representing text in binary

The ASCII encoding system uses a fixed-length 7-bit binary string to store each character (but using 8-bit bytes)

ASCII = American Standard Code for Information Interchange

V		the second section for the feet for			0.0000	10000010101010000			-		
0100000		0110000	0	1000000	@	1010000	P	1100000	,	1110000	p
0100001	1	0110001	1	1000001	Α	1010001	Q	1100001	a	1110001	q
0100010	п	0110010	2	1000010	В	1010010	R	1100010	ь	1110010	r
0100011	#	0110011	3	1000011	C	1010011	S	1100011	С	1110011	S
0100100	\$	0110100	4	1000100	D	1010100	Т	1100100	d	1110100	t
0100101	%	0110101	5	1000101	E	1010101	U	1100101	е	1110101	u
0100110	82	0110110	6	1000110	F	1010110	V	1100110	f	1110110	v
0100111		0110111	7	1000111	G	1010111	W	1100111	g	1110111	w
0101000	(0111000	8	1001000	H	1011000	X	1101000	h	1111000	х
0101001)	0111001	9	1001001	I	1011001	Y	1101001	i	1111001	у
0101010	*	0111010	1	1001010	J	1011010	Z	1101010	j	1111010	Z
0101011	+	0111011	,	1001011	K	1011011	[1101011	k	1111011	{
0101100	,	0111100	<	1001100	L	1011100	1	1101100	1	1111100	
0101101	-	0111101	=	1001101	M	1011101]	1101101	m	1111101	}
0101110		0111110	>	1001110	И	1011110	^	1101110	n	1111110	~
0101111	1	0111111	?	1001111	0	1011111		1101111	0		

For a more complete table, see https://www.ascii-code.com/

Fixed-length versus variable length codes

Fixed-length codes (e.g. 8-bit ASCII) are convenient:

Easy indexing, counting etc

But variable-length codes are (potentially) more efficient

- Example 1: Morse Code
 - Most-frequent letters have short encodings
- Example 2: UTF-8
 - Most-common chars are 1-byte, less common 2, 3 and 4 bytes

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

An example problem

Consider the following string of characters containing only the six symbols 'a', 'b', 'c', 'd', 'e', 'f':

acbcfcccbccadbcbcccdceadeaaaaacbcbebefbea

The character frequencies are:

Char	Frequency	No. of bits (8-bit ASCII)
'a' = 01100001	9	72
'b' = 01100010	8	64
'c' = 01100011	15	120
'd' = 01100100	3	24
'e' = 01100101	5	40
'f' = 01100110	2	16
TOTAL	42 characters	42 * 8 = 336 bits

How to encode this "document" efficiently?

Variable length binary encoding

- How might we improve that by using variable length encodings?
- Ambiguous decoding:

```
'a'=0, 'b'=1, 'c'=01, 'd'=10, 'e'=11, 'f'=001
010 could mean either "aba", or "ad", or "ca"
```

- We just have a stream of 0s and 1s, no spacers between them (c.f. Morse).
- A binary code allows for unambiguous decoding if and only if no binary string in the code is a prefix of any other binary string in the code. Example:

```
'a'=000, 'b'=0010, 'c'=0011, 'd'=01, 'e'=10, 'f' =11
01000100010 = "daeb"
```

Called a binary prefix code.

Representing Binary Prefix Codes

- Binary prefix codes are represented using 2-trees (a binary tree where every non-leaf node has exactly two children).
 - At every internal node, the left branch is labelled 0, and the right branch 1.
- Leaf nodes represent characters.
- The prefix code of a character is the edge-label sequence along the path from the root to the leaf node containing the character.

Example of a Binary Prefix Code

Characters are at the leaves of the tree.

'c' = 0011	15	60
'd' = 01	3	6
'e' = 10 'f' = 11	5	10
TOTAL	42 characters	4 139 bits

The Encoding Problem

- Given a frequency table for characters in a document, find the/an optimum binary-prefix coding tree.
 - Optimum means minimum length encoded document.
- Clearly we require short encodings for frequent characters, longer encodings for infrequent ones.
- Example on previous slide is clearly not optimal.
- It's worse than a fixed-length 3-bit coding
 - 3 bits is sufficient since we only have 6 characters
 - 3 * 42 = 126 bits

Greedy, Take #1

Let's greedily give the most frequent character the shortest possible code (a single 0) then allocate the next available code (10) to the next most frequent character, and so on.

Gives:

Char	Frequency	No. of bits
,c, = 0	15	15
'a' = 10	9	18
'b' = 110	8	24
'e' = 1110	5	20
'd' = 11110	3	15
'f' = 11111	2	10
TOTAL	42 characters	102 bits

Exercise:
Draw the tree

Better, but is it optimal? Can you find a failing case?

Greedy, Take #2: Huffman Coding

- Let's greedily give the least common characters the longest encodings!
 - An algorithm called Huffman coding
- It generates optimal binary prefix codes for a given set of frequencies.
- Solution for previous example:
 - Leaf nodes are labelled with (frequency, char)
 - Internal nodes are labelled with total frequency of all leaves in their subtree

Huffman Coding algorithm

- Uses a "bottom-up" greedy approach.
- Maintains a list of partial coding trees, sorted in order of total frequency of all characters in the tree
 - Actually we don't need a fully sorted list; a min-heap will do
 - Start with each character as a trivial tree (just a leaf)
- Repeatedly combine the two trees of lowest frequency

Huffman Coding - Example

Increasing frequency

Stage 1:

Char Freq 'a' 9 'b' 8 'c' 15 'd' 3 'e' 5 'f' 2

Stage 2:

Stage 3:

Stage 4:

Huffman Code - Example (cont'd)

Stage 5:

Stage 6:

Ordering trees when frequencies are equal

To ensure a unique solution in lab exercises we require that if multiple trees have the same frequency, they are ordered by the alphabetically smallest leaf node character they contain.

For example: in the image below, both trees have a frequency of 6 but the tree on the right, which has the character 'a' as it smallest leaf, should be sorted to come *before* the tree on the left, which has 'g' as its smallest leaf.

Huffman Code - Example

Char	Frequency	No. of bits
'a' = 01	9	18
'b' = 00	8	16
'c' = 11	15	30
'd' = 1001	3	12
'e' = 101	5	15
'f' = 1000	2	8
TOTAL	42 characters	99 bits

- Requires 99/42 = 2.36 bits/character
- This is an optimal result (as always, with Huffman coding)
 - For proof see <u>www.cs.utoronto.ca/~brudno/csc373w09/huffman.pdf</u>

Huffman Coding: complexity

- The trees list must support the priority queue operations 'insert', and 'pop_min'
 - Each is $O(\log n)$ using a min-heap.
- At each iteration, two elements are removed from the priority queue, and the combined tree's root is added back to the list. The size reduces by one, and hence the total number of iterations is O(n).
- Therefore the total time complexity is $O(n \log n)$.

Decoding Huffman Codes

- To decode a stream of bits, start at the root of the encoding tree, and follow a left-branch for a 0, a right branch for a 1.
- When you reach a leaf, write the character stored at the leaf, and start again at the top of the tree.
- Eg. 0110011100 = adcb

A Skewed Encoding Tree

Certain frequency tables can generate unbalanced binary trees

Char	Freq
ʻa'	1
ʻb'	2
'c'	4
'd'	8
'e'	16
'f'	32

Char	Freq	Enc Bits	Total Bits
'a'	1	5	5
ʻb'	2	5	10
'c'	4	4	16
'd'	8	3	24
'e'	16	2	32
'f'	32	1	32
Total	119		
Avg.	1.8		

Caveat

- The encoding information must be transmitted along with the text to the decoding system.
 - An added cost
- OR: the frequency information for generic English text (say) may be used, e.g.

Advantages/disadvantages

Huffman coding gives optimal encoding based on *global* character frequencies only, but:

- Whole document must be processed first.
- Can't do local optimisation (e.g. change in char frequencies half way through a long document).
- Encoding table must itself be encoded into the document.
- Can't recognise patterns, e.g. common words.

Lempel-Ziv algorithm (and derivatives like LZW) generally give better compression by using a dynamic compression table with common substring recognition.

Deflate algorithm (https://en.wikipedia.org/wiki/DEFLATE) combines LZ and Huffman coding.

Used by zip, pkzip, gzip, png, etc