燕 支 集 自 敍

□-----□ 瀧 澤 英 ー 教 授 □

瀧澤教授,學廣識博,該詣風趣 · 初授業,中、德、英、法數國語言並蓋,學者無不驚骸,繼以Classical Chinese 書於黑板,洋洋數百餘言,文情相映,如清風,如秋水,而暢然不絕 · 觀其文,諷其音,無有不傾服者 ·

編者感於能為古文者少,況先生為外國人,而行文專善至此,遂踵門拜見,請以 其文發表,慨蒙先生應允,得而刊之,謹此致謝○

庚寅歲暮。旅次名古屋。得微恙。言歸未遂。偶 讀頤道堂集,心竊好之。集中絕句。**多**綺靡艷麗。而 時含悽苑悲凉之意。且具漂泊流浪之情。午夜夢回。 寒燈孤影。鄉思縈迥。萬感叢生。乃取譯之。旅舍題 壁曰。六朝殘礎採薇歌。春水當年月映波。一夜東風 吹短夢。燕支湖上落花多。於是乎詩興油然。終夜不 寐。且誦且譯。凡得三百餘首。余向關注究理之學。 以課務鞅掌。不得片暇。雖欲付梓未及。爾來舟車南 北。斯集未嘗去篋。客春刊譯唐宋詩詞釆梅一卷。敝 友小山、加村、押田、宮坂、古田五君。咸謂碧城詩 未聞有譯本。斯集情蘊。最適我邦人士。君何不試之 。謝曰。嘗欲付剞劂寄稿某氏,稿竟散佚而罷。乃從 五君之言。閱覽多種刊本。闡明詞旨。發凡起例。釣 七玄微。意或不得。低徊吟哦。寢食俱廢。窮十月之 力。初稿始成。凡一百有八首。題云燕支集。以諷鄉 愁。譯時七言各首。悉用日文七十五音。惟恐意有未 盡。譯語多瑕。倘能藉此。以窺碧城詩義之微。則幸 甚矣。尚冀知音者雅正。

昭和癸已仲春參月拾貳日 信州瀧澤英一敍於名古屋

燕支集德譯自敍

丁酉初秋。奉命赴西歐考察。因履獨邦。波昂挂 帆。阿邊溫浴。拜參慕尼赫耶神。時探蘿蔭古堡。又 用柏林戰蹟。逆旅斯土。已一年有半。任務將畢。歲 值已亥仲春。懷舊撫今。不能無感。旅舍題壁曰。 薩江城亡國波。月沉原上歎飄峨。有人畫壁秋燈程。 低徊菩提一曲歌。又曰。六街樓殿總荒基。春草紅心 水一涯。夜半長風空漠漠。柏林城外雨絲絲。行篋開 心, 治携有手譯陳碧城七言古詩。自題燕支集一卷。關山 浪跡。白雲悠悠,蓋以慰鄉愁者也。夙有將該集另行 歐譯之意。未果。後赴狼河西畔馬爾堡。始得閑暇。 德譯付梓。題曰紅燕集。欲使紫髯綠眼。亦得解燕支 濃淡已耳。

蓬萊島上。人言實信。有洲無河。龍灣一水。 草翩麟。水逐殘木。芙蓉點綴。萬物始此。參卜 有人。亦得大吉。試問年華。甲子末週。月陰渺遠。無人參伍。陽輪五轉。名河幽蘭。城街停駐 。不知其主。彌月懸弓。遂失光輝。堡中黃土。 不辦有無。

昭和己亥初夏端午節日本信州瀧澤英→敍於蘭河 西畔馬爾堡。

(編者按:瀧澤英一教授本年度應聘來臺,在本系講授流體力學,第一天上課時,即將此文寫在黑板上, 同學們無不欽佩先生之學識淵博,其中尤以末段最爲精彩,主要在敍述「日本信州瀧澤英一敍於蘭河畔馬爾堡 」諸字,可細細揣摸。)

岩 ε_2 是導體 $\varepsilon_2 \to \infty$,於是在 ε_1 中的場當於由 $\omega(U, V)$ $-\omega(U, -V)$ 產生的

岩 $ε_2$ 是絕緣體, $ε_2$ →0於是 $ε_1$ 中的場相當於由ω(U, V)+ω(U, -V)產生的。

於是,碰到任何右圖④中有 Source 的題目,我們把它轉換到圖⑨就行了。

 ϕ_B 可用B法求出

C. 若有二導體,空間有電荷ω,於是

$$\begin{cases} \phi xx + \phi yy = -\frac{\omega}{\varepsilon} \\ \text{在S}_1 \bot \phi = \phi_1 \text{在S}_2 \bot \phi = \phi_2 \end{cases}$$
 這問題可分成兩部分

而我們要求的解就是Ø=ØA+ØB

這就是所謂重叠原理,可用來解:n個導體,並 且空間有電荷的題目,

D. 若邊界條件是 $\emptyset = \emptyset(x, y)$ 或 $\frac{\partial \emptyset}{\partial n}$ $\frac{\partial \emptyset}{\partial n}$ $\frac{\partial \emptyset}{\partial n}$ 的情形就須用 Green function 去求了。

最後我提出一個問題作對本文了解的一個測驗。 這 Conformal Mapping 是否可用以解二度空間的 Diffusion Eq. 或 Wave Eq? 因為他們也都含有 Øxx+Øyy 的項。

Ans. 不可以,因為方程式變為

$$\emptyset uu + \emptyset vv = -\frac{\partial \emptyset}{\partial \theta} \left| \frac{dg}{dw} \right|^2 \mathcal{R} \emptyset uu + \emptyset vv = \frac{1}{c^2}$$

 $\left. \begin{array}{c|c} \partial^2 \not > & \frac{dg}{dw} \end{array} \right|^2$ 在U-V平面已不再是 Diffusion Eq. 或 Wave Eq.