Lifelong Learning for Mobile Robot Task Completion (LLfTC)

Scott Sikorski University of Virginia

Motivation

Main Goal: Prevent Catastrophic Forgetting

Second Goal: Take previous work in lifelong learning and extend it to the task domain

Fig. 3: Simulated Navigation Environments: Green segments are primarily traversed using the initial policy π_0 , while red segments are mostly traversed using the learned planner π_{θ} .

Background – Gradient Episodic Memory

We aim to optimize:

$$min_{\theta} l(\pi_{\theta}, \varepsilon_k) s.t. l(\pi_{\theta}, M) \leq l(\pi_{\theta_{k-1}}, M), \forall M \in B$$

Where k is the current environment index, M is a few example data points for an environment, and B is the collection of the k-1 M's

Define
$$l(\pi, x) = \mathbb{E}_{(s,a) \in x} ||\pi_{\theta}(s) - a||_2$$

And the constraints are satisfied iff θ is initialized from θ_{k-1} and l doesn't increase

So now we optimize:

$$min_{\theta} l(\pi_{\theta}, \varepsilon_{k}) s.t. < \frac{\partial l(\pi_{\theta}, \varepsilon_{k})}{\partial \theta}, \frac{\partial l(\pi_{\theta}, M)}{\partial \theta} > 0, \forall M \in B$$

And can use a quadratic program solver without dynamically expanding parameter space

Training

- 1. Init environment and goal task
- 2. Pick action using RRT
- 3. Execute action through controller
- 4. If successful, add (state, action) to Buffer stream set
- 5. Check if action completed goal task
- 6. Set new state
- 7. Repeat 2 6 until completion or timeout
- 8. Advance environment and go to 1

RRT for Tasks

State

Goal Tasks

```
{
"objectId": "Apple|+01.83|+00.78|-00.65",
   "status": "PickUp" },
{
"objectId": "Apple|-01.65|+00.81|+00.07",
   "status": "Move",
   "objPosition": { "x": -1, "y": 0.81, "z": 0.5 }
}
```

- Heuristically interact if a goal object is reachable
- Else, randomly explore
 - Movement in one dimension
 - Rotating counts as an action
- If there are reachable objects, robot can also choose to randomly interact with it
 - Training helps prevent undoable actions like breaking
 - Does not alleviate this issue though

Updating Θ

$$\forall a_k, \ a_k \in M_{i,k} \ s.t \ k \in [0, 200)$$

- Find memory offset in memory data
- Compute Gradient on o ... t
 1 tasks
- Gather CE Loss on previous examples
- Ensure that CE Loss does not increase with new trained Θ

Model Design

- GEM: FFC MLP using Cross Entropy Loss and SGD optimizer
 - 2 layers, 100 hidden nodes, 0.001 learning rate
- Training Data: (State, Action) pairs for current environment
- Epochs: 10
- Timeout: 100s
- Number of Memories: 300

Testing

- 1. Init environment and goal
- 2. Get action from RRT and model
- 3. Execute action with highest benefit
- 4. If successful, add (state, action) to transition stream set
- 5. Check if action completed goal task
- 6. Set new state
- 7. Repeat 2 6 until completion or timeout
- 8. Advance environment and go to 1

Scoring States

```
Diff(s1, s2):

d += \sqrt{\sum (s_{1,i} - s_{2,i})^2}
inBoth = s1.obj \cap s2.obj
d += 10 * (|s1.obj| + |s2.obj| - inBoth)
for obj in inBoth:

d += \sqrt{\sum (obj_{1,i} - obj_{2,i})^2}
```

Results

Environment	# of LLfTC actions	# of RRT actions	Completed
1	4	10	T
2	200	200	F
3	50	134	T
4	51	99	T
5	200	200	T

Table 1: Testing Results to Pickup Apple

Avg Number of Completions	Avg # of fails	Avg Training Actions
1	1	8
0	183	200
0.1	22	155
0.8	5	120
0	200	200

Table 2: Training Results to Pickup Apple

Limitations & Improvements

- Incorporating RL into the model
 - Making GEM compatible with a Q function
- Feeding GEM a better defined model
 - 2017 model, we can do a lot better
- If training does not find the correct action to complete a task, we won't finish
 - Adapt with state to find a better direction even if state isn't completely the same
 - Use/develop a better sampling policy that integrates well with task completion

Q & A

Citations

Liu, Bo, Xuesu Xiao, and Peter Stone. "A lifelong learning approach to mobile robot navigation." *IEEE Robotics and Automation Letters* 6.2 (2021): 1090-1096.

Lopez-Paz, David, and Marc'Aurelio Ranzato. "Gradient episodic memory for continual learning." *Advances in neural information processing systems* 30 (2017).

https://github.com/facebookresearch/GradientEpisodicMemory/tree/masterhttps://github.com/sgsikorski/LLfTC