Homework Assignment 4

Matthew Tiger

March 11, 2016

Problem 1. Find the dual of the following linear programs via the symmetric form of duality:

a. Maximize $f(x) = c^{\mathsf{T}} x$ subject to Ax = b.

b. Maximize
$$2x_1 + 5x_2 + x_3$$
 subject to
$$\begin{cases} 2x_1 - x_2 + 7x_3 \le 6 \\ x_1 + 3x_2 + 4x_3 \le 9 \\ 3x_1 + 6x_2 + x_3 \le 3 \\ x_1, x_2, x_3 \ge 0. \end{cases}$$

 \Box

- **Problem 2.** a. Prove (via the symmetric form of duality) that the dual of the dual problem in an asymmetric form of duality is the primal (standard) problem.
 - b. Prove the weak duality proposition for the symmetric form of duality.
 - c. Prove that the primal problem is infeasible if and only if the dual problem is unbounded.

Solution. \Box

Problem 3. Prove the Duality Theorem for the symmetric case.	
Solution.	

Problem 4. Consider the following linear program:

$$\begin{array}{ll} \text{maximize} & 2x_1 + 3x_2 \\ \text{subject to} & x_1 + 2x_2 & \leq 4 \\ & 2x_1 + x_2 & \leq 5 \\ & x_1, x_2 & \geq 0. \end{array}$$

- a. Use the simplex method to solve the problem.
- b. Write down the dual of the linear program and solve the dual.

 \Box

Problem 5. Consider the following primal problem:

- a. Construct the dual problem corresponding to the primal problem above.
- b. It is known that the solution to the primal above is $\mathbf{x}^* = [3, 5, 3, 0, 0]^\mathsf{T}$. Find the solution to the dual.

Solution. \Box

Problem 6. Let A be a given matrix and \boldsymbol{b} a given vector. We wish to prove the following result: There exists a vector \boldsymbol{x} such that $A\boldsymbol{x} = \boldsymbol{b}$ and $\boldsymbol{x} \geq \boldsymbol{0}$ if and only if for any given vector \boldsymbol{y} satisfying $A^{\mathsf{T}}\boldsymbol{y} \leq \boldsymbol{0}$ we have $\boldsymbol{b}^{\mathsf{T}}\boldsymbol{y} \leq \boldsymbol{0}$. This result is known as Farkas's transposition theorem. Our program is based on duality theory, consisting of the parts listed below.

a. Consider the primal linear program

minimize
$$\mathbf{0}^{\mathsf{T}} x$$

subject to $Ax = b$
 $x \ge 0$.

Write down the dual of this problem using the notation y for the dual variable.

- b. Show that the feasible set of the dual problem is guaranteed to be nonempty.

 Hint: Think about an obvious feasible point.
- c. Suppose that for any y satisfying $A^{\mathsf{T}}y \leq 0$, we have $b^{\mathsf{T}}y \leq 0$. In this case what can you say about whether or not the dual has an optimal feasible solution.

Hint: Think about the obvious feasible point in part b.

- d. Suppose that for any \boldsymbol{y} satisfying $A^{\mathsf{T}}\boldsymbol{y} \leq \mathbf{0}$, we have $\boldsymbol{b}^{\mathsf{T}}\boldsymbol{y} \leq 0$. Use parts b and c to show that there exists \boldsymbol{x} such that $A\boldsymbol{x} = \boldsymbol{b}$ and $\boldsymbol{x} \geq \boldsymbol{0}$. (This proves one direction of Farkas's transposition theorem.)
- e. Suppose that x satisfies Ax = b and $x \ge 0$. Let y be an arbitrary vector satisfying $A^{\mathsf{T}}y \le 0$. (This proves the other direction of Farkas's transposition theorem.)

Solution. \Box