數據科學分析的土壤—— Trust Al & Data Quality Pipeline

周成康. 陳瑾叡. 吳驊祐. 史康宇. 黃戎傳. 林孟璇

指導教授:李家岩

指導助教:陳彥彣. 方鈺學

Table of Contents

- 1. Background
- 2. Overview
- 3. Module 1: EDASH
- 4. Module 2: Trust Al
- 5. Demo

BACKGROUND

The Imagined Al

The Real Al

- 資料爬蟲
- 資料庫
- · 資料整併

- 資料探勘
- 視覺化
- 特徵工程
- •訓練、驗證

資料科學

- 模型部屬
- MLOps

架構整理

收入取決於...

個人造化

資料

Dive into Details

GIGO: Garbage-in-garbage-out

Wrong & Inappropriate Records

Redundant Data

Missing Records

Insufficient Domain Knowledge

Dilemma: Performance vs Explainability

With optimal value, but lack optimal solution

Not Trustworthy Enough

Ambiguous & Unfairness Mechanism

OVERVIEW

Solution: TAI&DQ Pipeline

Solution: TAI&DQ Pipeline

Solution: TAI&DQ Pipeline

Make the Black Box Transparent & Better Data

Trust Al & Data Quality

Dataset and Task Description

Gas Sensor Array Drift Dataset from University of California San Diego

Target: use chemical sensor signal to predict the class of gas

- 128 sensor signal(numerical) & Gas Class(categorical)
- 13910 records
- Classification Task
- Randomly simulating NaN values for imputation simulation

Gas Class	1	2	3	4	5	6	
# of each class	2565	2926	1641	1936	3009	1833	

EDASH Imputation Calculate Indicators EM Differential multicolliearity Entropy opt-Fuzzy C-means JS-NRMSE Missing KNN Divergence Forest

Module 1 EDASH (EDA Dashboard)

- Data Profiling
- Imputer Methods
- Data Quality

Data Profiling for Data Characterization

Data

Cluster for Expert Advice

Data Characterization: Q1, Q4, kurtosis, skewness

Variance Inflation Factor

- 1. Multicollinearity Detection
- 2. Used for **Data Leakage Detection**

Correlation/Covariance State/Change

& Performance
Metric

Missing distribution

Linearity and Distribution

Imputer Methods

From the basis of **Statistical Learning & ML**, derives different imputation

Suitable for different situations.

Score	Age		Score	Age	Train the Random Forest	Score	Age
98	10		98	10	Training model on the data	98	10
94	?	10 + 6 + 8	94	8	Predict Random	94	10
57	6	3	57	6	Training Forest	57	6
78	?	Impute missing	78	8	Predict Model	78	7
74	74 8 values using mean	64	7	Training	64	7	

Mark missing values as Predict, mark others as Training

Use model to generate prediction for missing value

Data Quality

This step is for data or imputer selection.

$$H(X) = -\sum_{x \in X} P(x) \cdot \log P(x)$$

$$h(X) = -\int_{\mathcal{X}} f(x) \log f(x) dx$$

$$rac{1}{2}\log\left(2\pi e\sigma^2
ight)$$

- Stable even with few data points
- Can be used for both numerical and categorical data type.
- Run faster in canonical form, without data points simulation

Profiling module

Processing

$$D_{KL}(P\|Q) = rac{1}{2} \left(\ln \left(rac{\sigma_Q^2}{\sigma_P^2}
ight) + rac{\sigma_P^2}{\sigma_Q^2} + rac{\left(\mu_P - \mu_Q
ight)^2}{\sigma_Q^2} - 1
ight)$$

$$D_{JS}(P\|Q) = rac{1}{2}D_{KL}(P\|M) + rac{1}{2}D_{KL}(Q\|M) \;\;\; ext{,where} \;\; M = rac{1}{2}(P+Q)$$

Stability & Performance Evaluation

Profiling module

Processing

Stability Evaluation

Performance Evaluation

- Able to hold the nonlinearity
- Generalizability by Stacking ensemble
- Explainability to some degree

Experiments - Performance

- Best Results : EM & MissForest
- KNN performance drops when missing rate is high

Experiments - Time

- EM & MissForest are time consuming
- It's better to use them when large missing rate.

Conclusion

What do we get

- Raw dataset → Knowledge beforehand of dataset characterization and detection
- Missing dataset → complete dataset with information and characterization preserved.
- Provide stability/accuracy detection of 2 datasets.
- ⇒ SOP for data quality & proper dataset

What does it mean

- Reduce economical & time cost
- Enhance performance of model
- Enhance understanding of dataset and task design

Now, let's open the black box

Trust Al Knowledge Trusted ➤ Teacher Model Student Model Active Learning Distillation Dataset Dataset Select Return Uncertain Data Labeled Data Counterfactual SHAP Explanation

Module 2 Trust Al

- Active Learning
- Knowledge Distillation
- SHAP Explanation

Active Learning

Query the Oracle

Pool-Based Sampling

Uncertainty Elimination

Avoid Selection Bias

Faster Training Process

Knowledge Distillation – Trust Al

Previous Model with Most Info

2 Correctness-Consistency

3 Efficient Subsequent Data Acquisitions

Low Cost, High Valued Training Set

5 Better Scalability and Maintainability

Kwak et al., "TrustAL: Trustworthy Active Learning using Knowledge Distillation", 2022

Knowledge Distillation - Compression

Experiments

- KNN drops with higher missing rate
- EM have most benefit with increasing iterations.

Now, let's REALLY open the black box

SHAP

- Complicated models are difficult to understand intuitively.
- SHAP opens the black box.

SHAP

SHAP is like evaluating the contribution of each member in a project.

Predicted value: calculated by the sum of contributions of features.

The sum of contributions of features results in the predicted value of target label.

One Class Global SHAP

One class global SHAP

Divide to multiple figures

Counterfactual Explanation

Decision-Making Support

Query instance (original outcome : 1)

DEMO

Business Model

關鍵合作夥伴

企業的數據分析團隊

價值主張

- 增進資料品質
- 維持高價值資料
- 提升模型效率
- 低成本高效訓練
- AI決策可解釋性

目標客群

- 有大量數據的產業,如製造業
- 資料品質欠佳的 公司
- 問卷調查發行者
- 渴望使用AI輔助 決策的企業

關鍵活動

- 方法論實驗
- 平台建設
- 可解釋性實測

關鍵資源

- 開發人員
- 平台建設
- 方法論研究者
- 平台部署資源

通路

- 網頁平台
- 程式套件

顧客關係

- 提供企業方便的 工具
- 開源成套件供開發者社群使用
- 建設成網站平台 供使用者體驗

成本結構 平台維護

收益流

使用者費用

TAIDQ

for listening

Appendix - Experiments

Appendix - Experiments

Appendix - Experiments

