

$$M = U\!\cdot\!\Sigma\cdot\!V^*$$

Análisis de componentes principales

Identificar σ_1 y σ_2 y sus respectivas direcciones, mediante la matriz de componentes principales T. $T = U \Sigma$

Al proyectar sobre los componentes principales. Los datos se *separan*.

Tomar los primeros valores singulares, puede ser útil para eliminar ruido.

Tomar los primeros valores singulares, puede ser útil para eliminar ruido.

Figure 1.22: Underlying rank 2 matrix (a), matrix with noise (b), clean matrix after optimal hard threshold $(4/\sqrt{3})\sqrt{n}\sigma$ (c), and truncation based on 90% energy (d).