U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A033 937

MICROCIRCUIT DEVICE RELIABILITY DIGITAL DETAILED DATA

RELIABILITY ANALYSIS CENTER
GRIFFISS AIR FORCE BASE, NEW YORK

MDA 033937

SHEET	MDR-4	3. Recipient's Accession No. AD-A 033937
4. Title and Subtitle Microcircuit Device Rel	dahitian	5. Report Date Summer 1976
Digital Detailed Data		6,
7. Author(s) Mark R. Klein		8. Performing Organization Rept.
 Performing Organization Name and A Reliability Analysis Ce 	mter (RBRAC)	10. Project/Task/Work Unit No.
Rome Air Development Ce Griffiss Air Force Base		11. Contract/Grant No. F30602-76-C-0192 226
12, Sponsoring Organization Name and		13. Type of Report & Period Covered
Rome Air Development Ce Griffies Air Force Base		N/A
OLILIAN MIL TOICE DESC	, 10771	14.
15. Supplementary Notes		
reliability demonstration, results arranged by operat	, and equipment checkout experience , and equipment checkout experience , and experience ,	ed listings consist of field, erience as well as life test nd part number. MIL-HDBK-217B permit comparisons with predicted
17. Key Words and Document Analysis.	17e. Descriptors	
Integrated Circuits	Life Testing	
Reliability	Malfunctions	
	Pandyananahal /Cananada	a Daguitan
Digital Devices Field Experience	Environmental/Screening	ng Results
Field Experience 17b. Identifiers/Open-Ended Terms	Environmental/Screening	
Field Experience 17b. Identifiers/Open-Ended Terms Digital Detailed Microci 17c. COSATI Field 'Group	·	apendium
Field Experience 17b. Identifiers/Open-Ended Terms Digital Detailed Microci 17c. COSAT! Field 'Group 18. Availability Statement	rcuit Device Reliability Con	19. Security Class (This Report) 21. No. of Pages
Field Experience 17b. Identifiers/Open-Ended Terms Digital Detailed Microci 17c. COSATI Field 'Group 18. Availability Statement Approved for Public Rele	rcuit Device Reliability Con	19. Security Class (This 21, No. of Pages Report) UNCLASSIFIED 23.4
Field Experience 17b. Identifiers/Open-Ended Terms Digital Detailed Microci 17c. COSATI Field 'Group 18. Availability Statement	rcuit Device Reliability Con	19. Security Class (This 21. No. of Pages Report) UNCLASSIFIED 23.4

The Reliability Analysis Center is a Boli Information Analysis Center,
operated by IIT Research Institute

under contract to the Rome Air Development Center, AFSC

The Reliability Analysis Center (RAC) is a service for the dissemination of reviability information concerning integrated circuits, hybrid devices and discrete devices (transistor, diodes) employed in military, space and commercial applications.

The RAC analyzes and disseminates information that is generated during all phases of device fabrication, testing, equipment assembly and operation. RAC data files are continually updated through information collected by R&D, testing laboratories, device and equipment manufacturers, government agencies and field installations.

REQUESTS FOR TECHNICAL ASSISTANCE AND INFURMATION ON AVAILABLE RAC SERVICES AND PUBLICATIONS MAY BE DIRECTED TO:

Harold A. Lauffenburger
Reliability Analysis Center (RBRAC)
Rome Air Development Center
Griffiss Air Force Base, NY 13441
Telephone: 315/330-4151
Autovon: 587-4151

ALL OTHER REQUESTS SHOULD BE DIRECTED TO:

Rome Air Development Center
RBRD/Anthony J. Feduccia
Griffiss Air Force Base, NY 13441
Telephone: 315/330-4921
Autovon: 587-4921

RELIABILITY ANALYSIS CENTER

A DoD Information Analysis Center

MICROCIRCUIT DEVICE RELIABILITY DIGITAL DETAILED DATA

Summer 1976

Prepared By:

Mark R. Klein Reliability Analysis Center (IIT Research Institute)

Under Contract to:

Rome Air Development Center Griffiss Air Force Base, New York 13441

Catalog No. MDR-4

Approved for Public Release, Distribution Unlimited

IIT RESEARCH INSTITUTE 1976

ATIS is authorized to reproduce and sell this report. Permission for further reproduction must be obtained from the copyright preprieter.

INTRODUCTION

This Microcircuit Device Reliability compendium contains test, failure mode, and operational data on digital devices. The burn-in, environmental/screening and failure mode information is presented in summarized formats, while the operational (field experience, reliability demonstration, and equipment checkout) and life test data are presented in a detailed format. Data for the Digital Detailed Data publication was collected, refined, and reduced from government and industry reports by the Reliability Analysis Center in order to present objective information for general usage.

Part One presents burn-in, environmental/screening, and die and packaging system failure mode data summarized into tabular and pie chart formats. The burn-in data is presented by operational type (TTL, PMOS and CMOS) while the environmental/screening information is categorized by package configuration. Die related failure modes are broken out by operational type and integration scaling (SSI, MSI, LSI). Packaging system failure modes are presented by package configuration.

Part Two presents detailed listings of life, field, reliability demonstration and equipment checkout data categorized by operational type (CMOS, TTL, etc.), device manufacturer, and part number.

The information contained in this publication can be applied to part selection and usage through the analysis of the environmental/screening data (Section II) and the detailed life and operational data (Part II). This data highlights the possible problem areas with microcircuit devices.

Furthermore, screening and corrective action decisions as well as test specifications can be enhanced by the consideration of the pertinent data compiled on the subject areas in both Parts I and II.

The failure mode information in Sections III and IV is useful in determining the relative distribution of device defects as determined by their die related and packaging system failure modes. This data is also well suited as the basis of failure mode, effects and criticality analyses (FMECA).

Since the users of this publication are confronted with many varied applications for the data contained herein, no attempt has been made to formulate specific conclusions or broad recommendations. Each is encouraged to compare his particular application with the appropriate data subset to complement his own internally generated information.

STATES OF THE PROPERTY OF THE

Preceding page blank

是一个时间,我们就是一个时间,我们就是一个时间,我们们的时间,我们们们的时间,我们们们们的时间,我们们们的时间,我们们们的时间,我们们们们们们们们们们们们们们们

Table of Contents

	<u>Page</u>
Introduction	vii
Fait One - SUMMARIZED DIGITAL INFORMATION	1
Introduction	3
Section I - Digital Burn-in Test Results	c
Introduction Table 1: Burn-in Test Results	5 7
table i. buin-in lest hesuits	•
Section II - Digital Environmental/Screening Data	9
Introduction Table 2: Environmental Testing of Screen Class B-1	9
Ceramic Dual In-line Packaged Devices for	
MIL-M-38510 Qualification	10
Table 3: Ceramic Dual In-line Package Test Sequences	12
Table 4: Hermetic Flat Package - Single Stress	
Tests	18 19
Table 5: Ceramic Flat Package - Test Sequences Table 6: Ceramic/Notal Flat Package - Test	19
Sequences	21
Table 7: Metal/Glass Flat Package - Test	00
Sequences Table 8: Plastic Dual In-line Package - Single	22
Stress Tests	23
Table 9: Plastic Dual In-line Package - Test	•
Sequences	24
Section III - Die Related Defect Summary	
Introduction	27
Table 10: SSI, MSI, LSI CMOS Pie Chart	28
Table 11: SSI, MSI, LSI CMOS Detailed Classification	29 30
Table 12: SSI, MSI, LSI ECL Pie Chart	31
Table 13: SSI, MSI, LSI FCL Detailed Classification Table 14: LSI, NMOS Pie Chart	32
Table 15: LSI NMOS Detailed Classification	33
Table 16: SSI, MSI Low Power TTL Pie Chart	34
Table 17: SSI, MSI Low Power TTL Detailed	•
Classification	35
Table 18: SSI, MSI, LSI Schottky TTL Pie Chart	36
Table 19: SSI, MSI, LSI Schottky TTL Detailed	
Classification	37
Table 20: SSI, MSI, LSI Standard TTL Pie Chart	38
Table 21: SSI, MSI, LSI Standard TTL Detailed	
Classification	39

Table of Contents (cont'd)

	Page
Table 22: LSI Al Gate PMOS Pie Chart	40
Table 23: LSI Al Gate PMOS Detailed Classification	41
Table 24: LSI Si Gate PMOS Pie Chart	42
Table 25: LSI Si Gate PMOS Detailed Classification	43
Section IV - Packaging System Defect Summary	
Introduction	45
Table 26: Ceramic, Ceramic/Metal, Plastic Dual In-line	
Package Detailed Classification	46
Table 27: Ceramic Dual In-line Package Pie Chart	47
Table 28: Ceramic/Metal Dual In-line Package Pie	
Chart	47
Table 29: Plastic Dual In-line Package Pie Chart	48
Table 30: Ceramic, Ceramic/Metal, Metal, Glass Flat	40
Package Detailed Classification	49
Table 31: Ceramic Flat Package Pie Chart	50 50
Table 32: Metal Flat Package Pie Chart	50
Part Two - DIGITAL DEVICE DATA - DETAILED LISTINGS	51
Introduction	53
Usage Guide	54
CMOS	58
CTL	66
DTL	69
ECL	104
PMOS	111
RCTL	117
RTL	119
TTL	122
TTL, High Speed	196
TTL, Low Power	204
TTL, Low Power Schottky	214
TTL, Schottky	215
TTL, SUHL	221
Bibliographic Data Sheet	226

A CONTRACT OF THE PROPERTY OF

INTRODUCTION

This Microcircuit Device Reliability compendium contains test, failure mode, and operational data on digital devices. The burn-in, environmental/screening and failure mode information is presented in summarized formats, while the operational (field experience, reliability demonstration, and equipment checkout) and life test data are presented in a detailed format. Data for the Digital Detailed Data publication was collected, refined, and reduced from government and industry reports by the Reliability Analysis Center in order to present objective information for general usage.

Part One presents burn-in, environmental/screening, and die and packaging system failure mode data summarized into tabular and pie chart formats. The burn-in data is presented by operational type (TTL, PMOS and CMOS) while the environmental/screening information is categorized by package configuration. Die related failure modes are broken out by operational type and integration scaling (SSI, MSI, LSI). Packaging system failure modes are presented by package configuration.

Part Two presents detailed listings of life, field, reliability demonstration and equipment checkout data categorized by operational type (CMOS, TTL, etc.), device manufacturer, and part number.

The information contained in this publication can be applied to part selection and usage through the analysis of the environmental/screening data (Section I!) and the detailed life and operational data (Part II). This data highlights the possible problem areas with microcircuit devices.

Furthermore, screening and corrective action decisions as well as test specifications can be enhanced by the consideration of the pertinent data compiled on the subject areas in both Parts I and II.

The failure mode information in Sections III and IV is useful in determining the relative distribution of device defects as determined by their die related and packaging system failure modes. This data is also well suited as the basis of failure mode, effects and criticality analyses (FMECA).

and the second second second control of the second second

Since the users of this publication are confronted with many varied applications for the data contained herein, no attempt has been made to formulate specific conclusions or broad recommendations. Each is encouraged to compare his particular application with the appropriate data subset to complement his own internally generated information.

Preceding page blank

Part One

SUMMARIZED DIGITAL INFORMATION

These sections present environmental, screen, and failure classification data not found in the computer generated "detailed" listings located in Part II. This data has been generically prepared in tabular and chart formats. All information is identified as vendor (manufacturer), user, or independent test lab data. Data entries not footnoted as either user or independent test lab information consist of vendor data. Additionally, environmental (device evaluation) and screening entries are distinguished from each other.

The "No. Device Records" column indicates the quantity of individual device records compiled from different systems and sources pertaining to the same generic characteristics: operational type, test type, part number, or package configuration. This quantity indicates a measure of the representativeness of the test results. Data from various records are merged where the generic characteristics are identical and the percent fallout indicates that each of the device lots represented could be members of the same homogeneous percent defective distribution.

AND THE PROPERTY OF THE PROPER

Care should be taken when comparing test results since test populations as well as testing methods vary to a great extent.

Additional information may be obtained by contacting the Reliability Analysis Center directly.

Section 1

DIGITAL BURN-IN TEST RESULTS

The data in this section is composed of SSI and MSI digital device burn-in test results. Burn-in test results can be a very useful tool for estimating infant mortality fallout. The elevated temperature involved effectively accelerates many semiconductor failure mechanisms. Generally, analyses conclude that burning-in components prior to field usage is more cost effective than using non-burned-in parts. This is a result of the high costs of assembly and system maintenance.

The tests reported consist of a single activator of circuit related defects, a burn-in test, followed by a detector, an electrical measurement (EM) at 25°C unless otherwise noted. Al' tests considered were of less than 250 hours; testing over and above 250 hours is considered life testing. (Life test data can be found in Part Two). An indication of the quality of the test results is obtained through the test population size and the number of device records. (For a better understanding of "No. Device Records" see the Part One-Summarized Digital Information introduction.) The devices undergoing burn-in testing are devices which have not seen (with the exception of entries B1 and B2) prior screening, that is, these devices are screen class "MONE".

Entries A1, A2, A3 and A4 are all dynamic burn-in results reported by the same user, a military and commercial systems manufacturer. These parts were procured to standard vendor specifications.

Entries B1 and B2 are results obtained from testing performed by the user on parts procured to vendor; equivalent screen class C for a military system. Entry B1 consists of merged SSI and MSI TTL data of equivalent fallout percentages. It is important to note that while most of the MSI data were able to be merged with the SSI data in Entry B1, nine out of thirty-eight MSI records had a substantially higher fallout rate (Entry B2). The nine records indicate that the prior screening of these substandard lots to MIL-STD-883 Class C did not activate some of the mechanisms that cause infant mortality fallout. Entry B2 provides a basis for estimating the mean value of the infant mortality not eliminated from such lots. The addition of a burn-in to the screening sequence, thus screening the devices to Class B, effectively activates these failure mechanisms and decreases the residual infant mortality.

Entries C1, C2 and C3 are burn-in data summarized from the screening records of devices that were in the process being qualified to MIL-M-38510 screen class B. Entry C2 consists of 16 merged TTL records. Entries C1 and C3 indicate divergent data. These variant data entries are possibly due to lot oriented problems.

Preceding page blank

Entry D1 is data summarized from government high-rel testing. The small population involved should be considered before drawing any conclusions.

Entry E1 contains data obtained from screening done for a non-military government system. This entry also has a small population.

Entry F1 consists of burn-in data taken from high-rel screening performed on CMOS devices. Despite the large population, only 6 lots are involved. The testing consisted of separate burn-ins for the P and N channels run at 15 volts, and also a dynamic burn-in run at 10 volts. The results of the electrical measurements run at -55° C and $+125^{\circ}$ C may not be indicative of the burn-in fallout since these devices had not been pre-tested at these temperatures. However, the high fallout at $+i25^{\circ}$ C indicates the risk of making electrical measurements only at $+25^{\circ}$ C when the devices are to be utilized at elevated temperatures.

Table 1
DIGITAL BURN-IN TEST RESULTS

OPERATIONAL TYPE	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
A1) TTL	125°C, 96 HRS DYNAMIC	244	108899	337	.31
A2) TTL	125°C, 112 HRS DYNAMIC	2	682	2	.39
A3) TTL	125°C, 168 HRS DYNAMIC	2	1266	3	. 24
A4) TTL	125°C, 192 HRS DYNAMIC	1	1992	3	.5
B1) TTL (SSI & MSI)	125°C, 164 HRS REV BIAS	189	485127	6941	1.4
B2) TTL (MSI)	125°C, 164 HRS REV BIAS	9	21385	5210	24.4
C1) TTL	125°C, 168 HRS DYNAMIC	1	2297	10	.43
C2) TTL	125°C, 168 HRS DYNAMIC	16	12130	226	1.9
C3) TTL	125°C, 168 HRS DYNAMIC	2	3404	289	8.5
D1) PMOS	125°C, 240 HRS DYNAMIC	5	730	51	6.9
El) CMOS	125°C, 168 HRS DYNAMIC	6	691	15	2.2

Table 1 (cont'd)
DIGITAL BURN-IN FEST RESULTS

OPE TYP	RATIONAL E	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
F1)	CMOS (BURN-IN SEQUENCE)	150°C, 36 HRS STATIC P CHANNEL	6	5531	70	1.26
		150°C, 36 HRS STATIC N CHANNEL		5449	53	. 97
		125°C, 240 HRS DYNAMIC		5395	-	-
		EM AT 25°C		5395	94	1.74
		EM AT -55°C		5301	27	.51
		EM AT +125°C		5274	1531	29.0

Section II

DIGITAL ENVIRONMENTAL/SCREENING DATA

The data entries presented in this section are useful for comparing the results of various test schemes. They are valuable for both the identification of potentially better screening possibilities and the detection of the inherent weaknesses of microcircuit packages. Increased cost effectiveness through improved testing is one of the distinct benefits gained through the analysis of the information presented here.

The tests presented are generally designed to stress the constructional aspects of integrated circuits and are therefore categorized with respect to the device package type. Hermetic dual in-line packages include Ceramic, Ceramic/Metal and Metal/Glass constructions. Plastic dual in-line packages include Epoxy A, Epoxy B, Phenolic and Silicone constructions. The test results presented in this section pertain to devices having a screen class of "NONE" unless noted. Environmental (device evaluation) test results are differentiated from the screening entries. User and independent test lab data are identified through footn tes so as to separate these data from vendor data entries. Entries not identified as user or independent test lab information consist of vendor data. The "No. Device Records" column indicates the number of simil test records merged together to form a single entry. This number gives an indication of the representativeness of the results. (For a better understanding of "No. Device Records" see the Part One-Summarized Digital Information introduction).

The test results are presented in two major classifications: test sequence results, and single stress test results.

The test sequences are listings of digital environmental and screening data entries. These sequences include the available information pertaining to the test conditions in the column designated "Stress Level". The notation "EM" is used to indicate an electrical measurement. Since activator steps do not always include the subsequent detector measurements, dashes have been utilized to indicate where "No. Failed" and "Percent Fallout" do not apply. For example, the burn-in test in the first sequence of Table 3 is an activator. The fallout from the burn-in is detected by the electrical measurement that follows.

Entries consisting of environmental testing performed on devices being qualified to MIL-M-38510 Class B are included in the ceramic dual in-line package (CDIP) test sequences (Table 2). These devices are military grade (B-1 screen class) TTL parts that are being put through qualification test subgroups. The results of these test entries should be indicative of MIL-M-38510 Class B device quality, as these devices did succeed in qualifying.

"Single Stress" testing refers to tests consisting of a single activator (e.g., a moisture resistance test) with one or more detectors (electrical measurements, fine/gross leak tests, or visual and radiographic inspections). Results arising from a sequence of inter-related tests (for example, when a hermeticity check is preceded by a lead fatigue or thermal shock test) are included in the test sequence tables. The "Relative % Contribution" column on the single stress test tables (Tables 4 and 8) refers to the relative contribution, in percent, of the activator test stresses to the fallout rate.

Table 2

DIGITAL ENVIRUNMENTAL/SCREENING DATA

ENVIRONMENTAL TESTING OF SCREEN CLASS B-1 CERAMIC DUAL IN-LINE
PACKAGED DEVICES FOR MIL-M-38510 QUALIFICATION

TEST	STRESS Level	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
FINE LEAK	RADIOISOTOPE 5.E-8 CC/SEC	16			
=	12 MINUTES, 5 ATM		237	0	0
THERMAL SHOCK	-55/+125°C 15 CYCLES		237	_	_
FINE LEAK	RADIOISOTOPE		207		
	5.E-8 CC/SEC 12 MINUTES, 5 ATM		237	0	0
VIBRATION VARIABLE EDGO	20HZ, 2KHZ				-
VARIABLE FREQ FINE LEAK	20G, 3 AXES RADIOISOTOPE		237	-	•
	5.E-8 CC/SEC 12 MINUTES, 5 ATM		237	2	.84
GROSS LEAK	FLUOR, 125°C			_	
	3X, 90 PSIG		235	0	0
LEAD FATIGUE	8 OZ, 90° 3 ARCS	9	188	0	0
FINE LEAK	RADIOISOTOPE				
	5.E-8 CC/SEC 12 MINUTES, 5 ATM		188	0	0
GROSS LEAK	FLUOR, 125°C 3X, 90 PSIG		138	1	.53
	JA, 30 F310			· · · · · · · · · · · · · · · · · · ·	

Table 2 (cont'd)
DIGITAL ENVIRONMENTAL/SCREENING DATA

ENVIRONMENTAL TESTING OF SCREEN CLASS B-1 CERAMIC DUAL IN-LINE PACKAGED DEVICES FOR MIL-M-38510 QUALIFICATION

TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
MECHANICAL SHOCK VIBRATION/	1.5KG, .5 MSEC 6 AXES, 5 BLOWS 20 HZ, 2 KHZ	7	142	-	-
VARIABLE FREQ	20G, 3 AXES		142	-	-
CONSTANT ACCELERATION FINE LEAK	30KG, 6 AXES 1 MINUTE RADIOISOTOPE 5.E-8 CC/SEC		142	-	-
(DOCC L'AV	12 MINUTES, 5 ATM FLUOR, 125°C		142	0	Q
GROSS LEAK VISUAL	3X, 90 PSIG 5-10 X		142	2	1.4
INSPECTION EM	5-10 X		140 140	0	0 0
MECHANICAL	1.5KG, .5 MSEC	2			
SHOCK VIBRATION	6 AXES, 5 BLOWS 20 HZ, 2 KHZ		102	-	-
VARIABLE FREQ CONSTANT	30KG. 6 AXES		102	-	-
ACCELERATION V1SUAL	1 MINUTE		102	•	-
INSPECTION EM			102 102	0 1	0 .98
THERMAL	-55/+125°C	7			
SHOCK VIBRATION	15 CYCLES		139	-	-
	12 MINUTES, 5 ATM RADIOISOTOPE		139	•	-
GROSS LEAK	5.E-8 CC/SEC 12 MINUTES, 5 ATM FLUOR, 125°C		139	20	14.4
EM	3X, 90 PSIG		119 116	3 n	2.5 0

Table 3

DIGITAL ENVIRONMENTAL/SCREENING DATA

CERAMIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

BAKE 150°C, 24 HRS 5 828 THERMAL 0/130°C SHOCK 15 CYCLES 828 0 0 CONSTANT 3U.G, 1 AXIS ACCELERATION 1 MINUTE 828 4 .49 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN., 30 MIN. 824 7 .85 GROSS LEAK 125°C, 3X, 90 PSIG 817 33 4.0 FUNCTIONAL EM 25°C 784 54 6.9 BURN-IN 125°C, 240 HRS 730 STATIC/ -20°C, +25°C FUNCTIONAL EM +75°C 730 51 7.0 VISUAL 3X, INSPECTION 10X 679 12 1.8 LEAD 8 0Z, 90° 117 FATIGUE 6 ARCS 6920 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 125°C, 3X, 90 PSIG 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 125°C, 3X, 90 PSIG 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 121 0 0 FINE LEAK HE, 5.E-8	TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT	
SHOCK 15 CYCLES 828 0 0 CONSTANT 30 G, 1 AXIS ACCELERATION 1 MINUTE 828 4 .49 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN., 30 MIN. 824 7 .85 GROSS LEAK 125°C, 3X, 90 PSIG 817 33 4.0 FUNCTIONAL EM 25°C 784 54 6.9 BURN-IN 125°C, 240 HRS 730 STATIC/ -20°C, +25°C FUNCTIONAL EM +73°C 730 51 7.0 VISUAL 3X, INSPECTION 10X 679 12 1.8 LEAD 8 0Z, 90° 117 FATIGUE 6 ARCS 6920 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 FATIGUE METHOD 2036 CONDITION F 121 0 0 GROSS LEAK 125°C, 3X, 125°C, 3X 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 ELEAD FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. GROSS LEAK 125°C, 3X 121 0 0 ELEAD TO THE LEAK HE, 5.E-8 CC/SEC 60 MIN. GROSS LEAK 125°C, 3X 121 0 0 ELEAD TO THE LEAK HE, 5.E-8 CC/SEC 60 MIN. GROSS LEAK 125°C, 3X 121 0 0 ELEAD TO THE LEAK HE, 5.E-8 CC/SEC 60 MIN. GROSS LEAK 125°C, 3X 121 0 0 ELEAD TO THE LEAK HE, 5.E-8 CC/SEC 60 MIN. FATIGUE 6 ARCS 1394 0 0			5	828	-	-	
ACCELERATION 1 MINUTE FINE LEAK HE, 5.E-8 CC/SEC 60 MIN., 30 MIN. 824 7 .85 GROSS LEAK 125°C, 3X, 90 PSIG 817 33 4.0 FUNCTIONAL EM 25°C 784 54 6.9 BURN-IN 125°C, 240 HRS 730 STATIC/ -20°C, +25°C FUNCTIONAL EM +73°C 730 51 7.0 VISUAL 3X, INSPECTION 10X 679 12 1.8 LEAD 8 0Z, 90° 117	SHOCK	15 CYCLES		828	0	0	
GROSS LEAK GROSS LEAK GROSS LEAK 125°C, 3X, 90 PSIG 817 33 4.0 FUNCTIONAL EM 25°C 784 54 6.9 BURN-IN 125°C, 240 HRS 730 STATIC/ -20°C, +25°C FUNCTIONAL EM +75°C VISUAL 3X, INSPECTION 10X 679 12 1.8 LEAD B OZ, 90° 117 FATIGUE GROSS LEAK 125°C, 3X, 90 PSIG MIL STD 750A THATIGUE METHOD 2036 CONDITION F FATIGUE METHOD 2036 CONDITION F GROSS LEAK 125°C, 3X MIL STD 750A 11 FATIGUE METHOD 2036 CONDITION F FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. GROSS LEAK 125°C, 3X 90 PSIG FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. GROSS LEAK 125°C, 3X 121 0 0 121 0 121 0 0 121 0 0 121 0 0 121 0 0 121 0 0 121 0 0 121 0 0 121 0 0 121 0 0 121 0 0 121 0 0 0 121 121 0 0 0 121 121 0 0 0 121 121 0 0 0 121 121 0 0 0 121 121 0 0 0 121 121 0 0 0 121 121 0 0 0 0 121 121 0 0 0 0 121 0 0 0 121 0 0 0 121 0 0 0 121 0 0 0 121 0 0 0 0 121 0 0 0 0 121 0 0 0 0 121 0 0 0 0 121 0 0 0 0 0 121 0 0 0 0 0 0 0 0 0 0 0 0 0		1 MINUTE		828	4	.49	
GROSS LEAK 125°C, 3X, 90 PSIG 817 33 4.0 FUNCTIONAL EM 25°C 784 54 6.9 BURN-IN 125°C, 240 HRS 730 STATIC/ -20°C, +25°C FUNCTIONAL EM +73°C 730 51 7.0 VISUAL 3X, INSPECTION 10X 679 12 1.8 LEAD 8 oz, 90° 117 + FATIGUE 6 ARCS 6920 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 + FATIGUE METHOD 2036 CONDITION F 121 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 LEAD HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 HEAD - 121 0 0 LEAD + 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 HEAD - 121 0 0	FINE LEAK	HE, 5.E-8 CC/SEC 60 MIN 30 MIN.		824	7	.85	
FUNCTIONAL EM 25°C 784 6.9 BURN-IN 125°C, 240 HRS 730 STATIC/ -20°C, +25°C FUNCTIONAL EM +73°C 730 51 7.0 VISUAL 3X, INSPECTION 10X 679 12 1.8 LEAD 8 0z, 90° 117 FATIGUE 6 ARCS 6920 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 HEAD TIME LEAK HE, 5.E-8 CC/SEC 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 FINE LEAK 125°C, 3X 121 0 0 HEAD TIME LEAK 125°C, 3X 121 0 0 FINE LEAK 125°C, 3X 121 0 0 FINE LEAK 125°C, 3X 121 0 0 FINE LEAK 125°C, 3X 121 0 0 FATIGUE 6 ARCS 1394 0 0	GROSS LEAK	125°C, 3X,		917	33	4 0	
BURN-IN 125°C, 240 HRS 730 STATIC/ -20°C, +25°C 730 51 7.0 VISUAL 3X, INSPECTION 10X 679 12 1.8 LEAD 8 0Z, 90° 117 + FATIGUE 6 ARCS 6920 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 + FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 LEAD FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 HEAD FATIGUE 8 0Z, 90° 7 FATIGUE 6 ARCS 1394 0 0	FUNCTIONAL EM						
STATIC/					-		
VISUAL 3X, INSPECTION 10X 679 12 1.8 LEAD 8 oz, 90° 117 + FATIGUE 6 ARCS 6920 0 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN., 30 MIN. 6920 0 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 0 LEAD MIL STD 750A 11 + FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 C C GROSS LEAK 125°C, 3X 121 0 0 C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 0 C C C GROSS LEAK 125°C, 3X 121 0 C C C GROSS LEAK 125°C, 3X 121 0 C C C GROSS LEAK 125°C, 3X 121 0 C C C GROSS LEAK 125°C, 3X 121 0 C C C GROSS LEAK 125°C, 3X 121 0 C C C GROSS LEAK 125°C, 3X 121 0 C C C GROSS LEAK 125°C, 3X 121 0 C C C GROSS LEAK 125°C, 3X 121 0 C C C GROSS LEAK 125°C, 3X 121 0 C C GROSS LEAK 125°C, 3X 121°C, 3X 121°C		-20°C, +25°C					
INSPECTION 10X 679 12 1.8				730	51	7.0	
LEAD 8 oz, 90° !17 + FATIGUE 6 ARCS 6920 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN., 30 MIN. 6920 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 + FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD 8 oz, 90° 7 FATIGUE 6 ARCS 1394 0 0				679	12	1.8	
FATIGUE 6 ARCS FINE LEAK HE, 5.E-8 CC/SEC 60 MIN., 30 MIN. 6920 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD FATIGUE 8 0Z, 90° 7 FATIGUE 6 ARCS 1394 0 0							
FATIGUE 6 ARCS FINE LEAK HE, 5.E-8 CC/SEC 60 MIN., 30 MIN. 6920 0 0 GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD FATIGUE 8 0Z, 90° 7 FATIGUE 6 ARCS 1394 0 0	LEAD	8 oz, 90°	117				+
GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 + FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD 8 0Z, 90° 7 FATIGUE 8 ARCS 7 FATIGUE 6 ARCS 1394 0 0	FATIGUE	6 ARCS		6920	0	0	
GROSS LEAK 125°C, 3X, 90 PSIG 6920 0 0 LEAD MIL STD 750A 11 + FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 CEM 121 0 0 CEM TEAM 121 0 0 CEM TEAM 121 0 0 CEM TEAM TEAM TEAM TEAM TEAM TEAM TEAM TE	FINE LEAK			6020	^	0	
90 PSIG 6920 0 0 LEAD MIL STD 750A 11 + FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD 8 0z, 90° 7 FATIGUE 6 ARCS 7	GDOSS LEAK			0920	U	U	
FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD 8 0z, 90° 7 FATIGUE 6 ARCS 7	UNUSS ELAK			6920	0	0	
FATIGUE METHOD 2036 CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD 8 0z, 90° 7 FATIGUE 6 ARCS 7							
CONDITION F 121 0 0 FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD 8 oz, 90° 7 FATIGUE 6 ARCS 7			11				+
FINE LEAK HE, 5.E-8 CC/SEC 60 MIN. 121 0 0 GROSS LEAK 125°C, 3X 121 0 0 EM 121 0 0 LEAD 8 oz, 90° 7 FATIGUE 6 ARCS 7	INITUOL			121	0	n	
GROSS LEAK 125°C, 3X 121 0 0 0 EM 121 0 0 0 121 0 0 121 0 0 121 0 0 121 0 0 121 121	FINE LEAK			161	v	U	
EM 121 0 0				121	0	0	
LEAD 8 oz, 90° 7 + FATIGUE 6 ARCS 1394 0 0		125°C, 3X					
FATIGUE 6 AKCS 1394 0 0	EM			121	0	0	
FATIGUE 6 AKCS 1394 0 0	LEAD	0 0 000	7				+
			/	1394	n		•

⁺ Environmental Test Data

Table 3 (cont'd)

DIGITAL ENVIRONMENTAL/SCREENING DATA

CERAMIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT	
MECHANICAL SHOCK	1.5KG, .5 MSEC 6 AXES, 5 BLUWS	110	7424	-	-	+
VIBRATION/ VARIABLE FREQ. CONSTANT	100 PZ, 2KHZ 20G., 3 AXES 20 KG, 6 AXES		7424	-	-	
ACCELERATION EM	1 MINUTE EACH		7424 7424	- 9	.12	
MECHANICAL SHOCK	1.5KG .5 MSEC	10	220		-	+
VIBRATION FATIGUE	60 HZ, 20G 3 AXES		220	-	-	
VIBRATION/ VARIABLE FREQ. CONSTANT	100 HZ, 2 KHZ 3 AXES 6 AXES		220	-	-	
ACCELERATION EM	1 MINUTE EACH		220 220	- 0	0	
SOLDERABILITY TEMPERATURE	232°C -65/+200°C	11	242		-	4
CYCLING	5 CYCLES 0/100°C		242	~	-	
THERMAL SHOCK MOISTURE	5 CYCLES -10/+65°C		242	-	-	
RESISTANCE EM	98%RH 		242 242	0	_ 0 	
TEMPERATURE CYCLING	-55/+85°C 5 CYCLES	5				4
BAKE	10/10 MINUTES 150°C, 100%,72 HRS		1949 1949	-	-	
EM			1949	95	4.9	
THERMAL SHOCK TEMPERATURE	-55/+125°C 15 CYCLES -65/+150°C	120	9287	-	-	4
CYCLING	10 CYCLES 15/15 MINUTES		9287	-	-	
MOISTURE RESISTANCE EM	-10/+65°C 98%RH 		9287 9287	337	- .40	

LANDERS AND LANDERS OF THE PROPERTY OF THE PRO

ALLES CONTRACTOR CONTRACTOR AND CONTRACTOR C

⁺ Environmental Test Data

Table 3 (cont'd)

DIGITAL ENVIRONMENTAL/SCREENING DATA

CERAMIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

TEST	STRESS Level	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
VISUAL INSPECTION BAKE TEMPERATURE	INTERNAL 75X 150°C, 24 HRS -65/+150°C	1	1914	2	.10
CYCLING CONSTANT	10 CYCLES 10/10 MINUTES 15KG, 1 AXIS		1912	-	-
ACCELERATION FINE LEAK	1 MINUTE RADIOISOTOPE		1912	-	~
GROSS LEAK	5.E-8 CC/SEC 12 MIN, 5 ATM FLUOR, 125°C		1912	186	9.7
EM BURN-IN	3X, 90 PSIG 125°C, 168 HRS		1726 1726 1597	0 129 -	0 7.5 -
EM VISUAL INSPECTION	3X 20X		1597 1486	111 10	7.0 .67
			1400 		.07
VISUAL INSPECTION BAKE	INTERNAL 75X 150°C, 24 HRS	1	3492 31 ¹ 5	377	10.8
TEMPERATURE CYCLE	-65/+150°C 10 CYCLES 10/10 MINUTES		3115	-	-
CONSTANT ACCELERATION FINE LEAK	15KG, 1 AXIS 1 MINUTE RADIOISOTOPE		3115	•	-
GROSS LEAK	5.E-8 CC/SEC 12 MINUTES, 5 ATM FLUOR, 125°C		3115	674	21.6
EM BURN-IN	90 PSiG, 3X 125°C, 168 HRS		2441 2441 2297	0 144	0 5.9
EM VISUAL	3X		2297	10	.43
INSPECTION	20X		2287	1	.04

Table ³ (Cont'd)

DIGITAL ENVIRONMENTAL/SCREENING DATA

CERAMIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
VISUAL INSPECTION BAKE TEMPERATURE	30X 100X 150°C, 24 HRS -65/+150°C	1	1271 1095	176 -	13.8
CYCLING CONSTANT	10 CYCLES 10/10 MINUTES 30 KG, 1 AXIS		1095	<u>.</u> .	e tr
ACCELERATION VISUAL	1 MINUTE 10X		1095	-	-
INSPECTION SEAL TEST VISUAL	20X 30X		1095 1036	59 13	5.4 1.3
INSPECTION EM	75X 		1023 974	49 29	4.8 3.0
BURN-IN EM	125°C, 168 HRS		945 945	34	3.6
VISUAL INSPECTION	3X 20X		909	24	2.6
VISUAL INSPECTION BAKE TEMPERATURE CYCLING	INTERNAL 75X 150°C, 24 HRS -65/+150°C 10 CYCLES	9	14272	3661	25.7
CONSTANT	10/10 MINUTES 15KG, 1 AXIS		10611	•	••
ACCELERATION FINE LEAK	1 MINUTE RADIOISOTOPE 5.E-8 CC/SEC		10611	-	
GROSS LEAK	12 MINUTES, 5 ATM FLUOR, 125°C		10611	128	1.2
EM	90 PSÍG, 3X		10479 10468	11 2202	.10 21
BURN-IN EM	125°C, 168 HRS		8266 8266	129	1.6
VISUAL INSPECTION	3X 20X		8137	15	.18

Table 3 (cont'd)

DIGITAL ENVIRONMENTAL/SCREENING DATA

CERAMIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

TEST	STRESS Level	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
VISUAL INSPECTION BAKE TEMPERATURE	30X 75X 150°C, 24 HRS -65/+150°C	1	500 475	25 -	5.0
CYCLING	10 CYCLES 10/10 MINUTES		475	-	•
VISUAL INSPECTION CONSTANT	10X 20X 30KG, 1 AXIS		475	64	13.5
ACCELERATION SEAL TEST VISUAL	1 MINUTE		411 411	0	- 0
INSPECTION EM BURN-IN	20X 125°C, 168 HRS		411 362 360	49 2 -	11.9 .55
EM VISUAL INSPECTION	3X 20X		360 355	5 0	1.4 0
VISUAL INSPECTION BAKE TEMPERATURE CYCLING	30X 75X 150°C, 24 HRS -65/+150°C 10 CYCLES	3	6667 5259	1364	20.5
CONSTANT	10/10 MINUTES 30 KG, 1 AXIS		5259	-	-
ACCELERATION SEAL TEST EM	1 MINÚTE 		5259 5259 5151	108 2057	2.05 39.9
VISUAL INSPECTION BURN-IN EM	10X 20X 125°C, 168 HRS		3094 3037 3029	57 8 129	1.8 .26 4.3
VISUAL INSPECTION	3X 20X		2900	120	4.1

Table 3 (cont'd)

DIGITAL ENVIRONMENTAL/SCREENING DATA

CERAMIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

en de la companya de

TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
VISUAL	INTERNAL	1			
INSPECTION	75X	·	2530	418	16.5
BAKE	150°C, 24 HRS		2112	•	-
TEMPERATURE	-65/+150°C				
CYCLING	10 CYCLES				
	10/10 MINUTES		2112	-	-
CONSTANT	15KG, 1 AXIS				
ACCELERATION	1 MINUTE		2112	••	-
FINE LEAK	RADIOISOTOPE				
	5.E-8 CC/SEC		2112	0	ð
GROSS LEAK	12 MINUTES, 5 ATM FLUOR, 125°C		2112	U	U
GROSS LEAK	90 PSIG, 3X		2112	0	0
EM	50 / 51d, 5x		2112	305	14.4
BURN-IN	125°C, 168 HRS		1807	-	-
EM			1807	178	9.9
VISUAL	3X		1007	170	J. J
INSPECTION	20X		1629	2	.12

Table 4

DIGITAL ENVIRONMENTAL/SCREENING DATA

HERMETIC FLAT PACKAGE - SINGLE STRESS TESTS

SINGLE STRESS TESTS	NO. TESTED	NO. FAILED	PERCENT FALLUUT	NO. DEVICE RECORDS	RELATIVE % CONTRIBUTION
BOND STRENGTH	145	0	0	7	0
HIGH PRESSURE	4630	34	.73	1	7.1
SALT ATMOSPHERE	1674	10	.60	54	5.9
SOLDERABILITY	2936	0	0	38	0
THERMAL SHOCK	45	4	8.9	2	87.

NOTE: The above are all environmental test entries

Table 5 DIGITAL ENVIRONMENTAL/SCREENING DATA CERAMIC FLAT PACKAGE - TEST SEQUENCES

TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
LEAD FATIGUE FINE LEAK GROSS LEAK	80 oz, 90°C, 6 ARCS HE, 5.E.8, 60 MIN, 30 MIN. 125°C, 3X, 90 PSIG	54	2816 2816 2816	0 0 0	0 + 0 0
LEAD FATIGUE SEAL TEST	8 oz, 90°, 6 ARCS	1	154 154	0	0 + .65
MECHANICAL SHOCK STATIC EM MOISTURE	1.5KG, .5 MSEC 4 AXES, 5 BLOWS 25°C	37	1480 1480	- 0	*,++ 0
RESISTANCE STATIC EM LEAD FATIGUE FINE LEAK GROSS LEAK	-10/+65°C, 98%RH 25°C 8 oz HE, 5.E-8 CC/SEC FLUOR, 90°C, 90 PSIG		1480 1480 1480 1480 1480	0 0 0 0	0 0 0 0
MECHANICAL SHOCK VIBRATION/ VARIABLE FREQ. CONSTANT	1.5KG, .5 MSEC 6 AXES, 5 BLOWS 100 HZ, 2KHZ 20 G, 3 AXES 20 KG, 6 AXES	66	11895 11897	-	+
ACCELERATION EM	1 MINUTE EACH		11895 11895	6	.05
THERMAL SHOCK TEMPERATURE CYCLING	-55/+125°C 15 CYCLES -65/+150°C 10 CYCLES	75	4222	-	+
MOISTURE RESISTANCE EM	15/15 MINUTES -10/+65°C		42^2 4222 4222	- 13	- - .31
			7666	13	. 31

User Data Environmenta! Test Data Radiation Hardened DTL, Screen Class B-1

Table 5 (cont'd)

DIGITAL ENVIRONMENTAL/SCREENING DATA

CERAMIC FLAT PACKAGE - TEST SEQUENCES

TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
VISUAL	30X	2			
INSPECTION	75X	٤	1107	70	6.3
BAKE	150°C, 24 HRS		1037	-	0.3
TEMPERATURE	-65/+150°C		1037	-	_
CYCLING	10 CYCLES				
0.020	10/10 MINUTES		1037	-	_
CONSTANT	30 KG, 6 AXES		100,		
ACCELERATION	1 MINUTE EACH		1037	-	-
SEAL TEST			1037	37	3.6
FUNCTIONAL EM	25°C		1000	116	11.6
BURN-IN	125°C, 168 HRS		884	-	-
STATIC/	25°C, -55°C				
DYNAMIC EM	+125°C		884	12	1.4
VISUAL	3X				
INSPECTION	20X		872	10	1.1
VISUAL	INTERNAL	7			
INSPECTION	75X		8363	2808	33,6
BAKE	150°C, 24 HRS		5555	-	_
TEMPERATURE	-65/+150°C				
CYCLING	10 CYCLES				
	10/10 MINUTES		5555	-	-
CONSTANT	15KG, 1 AXIS				
ACCELERATION	1 MINUTE		5555	-	-
FINE	RADIOISOTOPE				
LEAK	5.E - 8 CC/SEC			_	
CDOCC	12 MIN, 5 ATM		5555	6	.11
GROSS	FLUOR, 125°C		~~40	•	
LEAK EM	3X, 90 PSIG		5549	0	0
BURN-IN	125°C, 168 HRS		5549	1696	30.6
EW EW	120 C, 100 MKS		3853	- 07	- -
VISUAL	3X		3853	97	2.5
INSPECTION	UN				

Table 6 DIGITAL ENVIRONMENTAL/SCREENING DATA CERAMIC/METAL FLAT PACKAGE - TEST SEQUENCES

TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCE FALLO	
VISUAL INSPECTION EM BAKE EM BAKE EM BURN-IN EM FINE LEAK GROSS LEAK VISUAL INSPECTION	- - - - - - -	2	49 49 30 30 25 25 22 22 16 16	0 19 - 5 - 3 - 6 0	0 39. 16.7 12 27.2 0 0	*, ++
VISUAL INSPECTION EM BAKE EM FINE LEAK GROSS LEAK VISUAL INSPECTION	-	1	32 32 32 32 32 31 31 31	0 0 - 1 0 0	0 0 0 3.1 0 0	*, ++

User Data (CMOS Devices) Screen Class A-1

Table 7

DIGITAL ENVIRONMENT/SCREENING DATA

METAL/GLASS FLAT PACKAGE - TEST SEQUENCES

TEST	STRESS Level	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
MECHANICAL SHOCK VIBRATION/ VARIABLE FREQ. CONSTANT ACCELERATION	1.5KG, .5 MSEC, 6 AXES, 5 BLOWS 100 HZ, 2 KHZ 20G, 3 AXES 20 KG, 6 AXES 1 MINUTE EACH	2	113 113 113	0 0 1	0 0 .98
EM			112	6	5.4
THERMAL SHOCK TEMPERATURE	-55/+125°C 15 CYCLES -65/+150°C	1	110	-	+
CYCLING MOISTURE	10 CYCLES -10/+65°C		110	-	-
RESISTANCE EM	98%RH		110 110	- 0	0

⁺ Environmental Test Data

Table 8

DIGITAL ENVIRONMENTAL/SCREENING DATA

PLASTIC DUAL-IN LINE PACKAGE - SINGLE STRESS TESTS

12.6 12.1	+
12.1	+
	т
1.1	*
0	+, **
EO 1	+, **
52.1 8.0	+
4.4	+, **
2 7	**
7.0	+
	2.7 7.0

RELATIVE CONTRIBUTION OF ACTIVATOR STRESS TO FALLOUT RATE

Table 9 DIGITAL ENVIRONMENTAL/SCREENING DATA PLASTIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

TEST	STRESS LEVEL	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCENT FALLOUT
BAKE	125°C, 48 HRS	13	2458	-	_ ++
THERMAL SHOCK EM	0/100°C 10 CYCLES +25/+125°C		2458 2458	118 	4.8
FUNCTIONAL/ PARAMETRIC EM THERMAL	25°C 70°C 0/100°C	208	727106	-	*
SHOCK Burn-In	5 CYCLES 125°C, 48 HRS			-	•
FUNCTIONAL/	REV BIAS			-	•
PARAMETRIC EM	70°C		1	1801 — — — —	1.6
MECHANICAL SHOCK VIBRATION VARIABLE	1.5KG .5 MSECS 6 AXES, 5 BLOWS 100 HZ, 2 KHZ	3	827	-	+
FREQUENCY	20G, 3 AXES		827	-	•
CONSTANT ACCELERATION EM	20 KG, 6 AXES 1 MINUTE EACH		827 827	3	.36
MOISTURE RESISTANCE EM EM MOISTURE	+25/+65°C 90%RH 25°C 100°C +25/+65°C	3	105 105 103	2 3	+, * 1.9 2.9
RESISTANCE EM EM	90%RH 25°C 100°C		100 100 99	1 0	1.0

Independent Test Lab Data User Data

Environmental Data

Table 9 (cont'd) DIGITAL ENVIRONMENTAL/SCREENING DATA PLASTIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

THE PROPERTY OF THE PROPERTY O

TEST	STRESS LEVEL	NO. DEVICE RECORDS		NO. FAILED	PERCE FALLO	
STORAGE EM THERMAL SHOCK BURN-IN	0-2 YRS WAREHOUSE 25°C 0/100°C 5 CYCLIS 100°C, 168 HRS REV BIAS 25°C	96	721484 721484 706784 706784 706784	-	1.32	*
TEMPERATURE CYCLING BAKE EM	-55/+85°C 5 CYCLES 10/10 MINUTES 150°C, 72 HRS	83	36249 36249 36249		.05	++
TEMPERATURE CYCLING TEMPERATURE C'CLING	-65/+125°C 10 CY(_ES 15/15 MINUTES -65/+150°C 40 CYCLES	4	222	0	0	*, +
TEMPERATURE CYCLING THERMAL SHOCK MOISTURE RLJISTANCE EM	-65/+125°C 10 CYCLES 15/15 MINUTES 0/100°C 10 CYCLES 85°C 85%RH 25°C, 100°C	4	225 225 225 225 225	- - 0	0	*, +
THERMAL SHOCK EM BURN-IN	O/100°C 5 CYCLES 125°C 125°C, 168 HRS REV BIAS 50°C	5	185 185 183 183	- 2 - 2	1.1	++

Independent Test Lab Data User Data Environmental Test Data

dure de la bora mondiago, dos obras estas estas estas estas de la calenda compose estas estas estas estas esta

Table 9 (cont'd) DIGITAL ENVIRONMENTAL/SCREENING DATA PLASTIC DUAL IN-LINE PACKAGE - TEST SEQUENCES

TEST	STRESS Level	NO. DEVICE RECORDS	NO. TESTED	NO. FAILED	PERCE FALLO	
THERMAL SHOCK BURN-IN EM	0/100°C 10 CYCLES 125°C, 72 HRS REV BIAS 25°C	24	4379 4356 4353	23 - 128	.53 2.9	++
THERMAL SHOCK BURN-IN STATIC/ FUNCTIONAL EM VISUAL	0/100°C 5 CYCLES 125°C, 168 HRS REV BIAS 70°C	28	8722 8722 8722	- - 90	- 1.0	++
INSPECTION THERMAL SHOCK TEMPERATURE CYCLING MOISTURE RESISTANCE EM		28	8632 1231 1231 1231 1231	- - - 3	.07 - - .24	+

Independent Test Lab Data Environmental Test Data

Section III

DIE RELATED DEFECT SUMMARY

The summaries presented in this section are useful in determining the expected distribution of die related failure modes. This information furnishes an casily utilized overview of the inherent design weaknesses of the various operational types (CMOS, ECL, NMOS, PMOS, TTL). The data can be used to form the foundation for failure mode effects and criticality analyses (FMECA) for die related problems.

The data was compiled from failure analysis reports as well as from the failure information associated with test and field experience obtained from the Reliability Analysis Center database. This information was summarized with regard to the devices' operational type and their respective integration scaling (SSI, MSI, LSI). Pie charts are included for the user's convenience. LSI information was included for reference purposes only. Much of the LSI information is expected to change as more data becomes available. The base population of defects should always be considered before drawing any conclusions from the data. The defective parts considered for this section were of varying screen class quality.

and the second second to the second second

Electrical overstress (EOS) data was not included unless the report gave specific information concerning the overstress. This was done to exclude improper data arising from the misuse of integrated circuits. This data censoring is especially important with regard to CMOS, where a large percentage of the defects are due to ruptured oxide layers. Also, lot oriented defects (e.g., a report of 30 similar devices of the same date code all experiencing contamination problems) were not summarized, as this data would tend to skew the results.

LEAD TO THE PROPERTY OF THE PR

In the detailed breakdowns (odd numbered tables) a standardized list of failure classifications was used to allow comparisons between operational types. This results in blank entries for several detailed classifications within particular tables.

When known, "leakage" was qualified to be either input or output leakage. All other leakage was categorized "surface leakage".

Table 10
DIE RELATED DEFECT SUMMARY
SSI, MSI, LSI CMOS

GENERAL DEFECT	NO.	RELATIVE
CLASSIFICATION	MALFUNCTIONS	PERCENT
SURFACE BULK OXIDE DIFFUSION METALLIZATION INPUT/OUTPUT CIRCUIT	65 12 54 10 14 15	38 7 32 6 8 9

erichi de anno de la company d

Table 11
DIE RELATED FAILURE MODES: SSI, MSI, LSI CMOS

FAILURE CLASSIFICATION	SS CM No.			MS CM No.			LS CM No.	
SURFACE DEFECTS CONTAMINATION FOREIGN MATERIAL/STRAY	26 22	37 31		31 22	37 27		8 8	50 50
PARTICLES INVERSION/CHANNELING SURFACE LEAKAGE	2 2	2 3		2 5 2	2 6 2			
BULK DEFECTS CRYSTAL IMPERFECTIONS CRACKED, CHIPPED DIE	2 1 1	3 2 2		10 9 1	12 11 1		0	0
OXIDE DEFECTS GATE OXIDE PINHOLES FIELD OXIDE PINHOLES	27 8	39 11		21	25 2		6 5	38 31
OXIDE FAULT OXIDE SHORT/BREAKDOWN GLASSIVATION DEFECT	17 2	24 2		1 17 1	1 21 1		1	ó
DIFFUSION DEFECTS DIFFUSION ANOMALY DIFFUSION SPIKE/PIPED JUNCT.	8	11		2	2		0	0
ISOLATION DEFECT MASK FAULT	8	11		2	2			
METALLIZATION DEFECTS OPEN AT OXIDE STEP OPEN AT CONTACT WINDOW	4 2	7 3		8	10		2	12
OPEN/NOT SPECIFIED SHORT/INTERLEVEL METAL	1	2		4	5		2	13
SHORT/NOT SPECIFIED PITTED/CORRODED				1	1			
SMEARED/SCRATCHED ELECTROMIGRATION	1	2		3	4			
INPUT/OUTPUT CKT. DEFECTS EXCESSIVE INPUT LEAKAGE	3	4	1	12	14		0	0
INPUT CIRCUIT SHORT EXCESSIVE OUTPUT LEAKAGE OUTPUT CIRCUIT SHORT	3	4		2 2	2			
TOTAL	70	<u> </u>	j	84	<u> </u>	1	16	

Table 12
DIE RELATED DEFECT SUMMARY
SSI, MSI, LSI ECL

GENERAL DEFECT	NO.	RELATIVE
CLASSIFICATION	MALFUNCTIONS	PERCENT
SURFACE BULK OXIDE DIFFUSION METALLIZATION INPUT/OUTPUT CIRCUIT	49 0 188 24 114 5	13 0 50 6 30

Table 13
DIE RELATED FAILURE MODES: SSI, MSI, LSI ECL

FAILURE CLASSIFICATION	SS: ECI No.	_	MSI ECL No.			LSI ECL No.	•
SURFACE DEFECTS CONTAMINATION FOREIGN MATERIAL/STRAY PARTICLES INVERSION/CHANNELING	0	0	49 17	13 4		0	0
SURFACE LEAKAGE			32	8			
BULK DEFECTS CRYSTAL IMPERFECTIONS CRACKED, CHIPPED DIE	0	0	0	0		0	0
OXIDE DEFECTS GATE OXIDE PINHOLES	1	50	186	50		1	50
FIELD OXIDE PINHOLES OXIDE FAULT OXIDE SHORT/BREAKDOWN	1	5 0	29 131	8 35			j ,
PASSIVATION DEFECT			26	7		1	50
DIFFUSION DEFECTS DIFFUSION ANOMALY DIFFUSION SPIKE/PIPED JUNC.	0	0	24 1 2	6 0 1		0	0
ISOLATION DEFECT MASK FAULT			21	5			
METALLIZATION DEFECTS OPEN AT OXIDE STEP OPEN AT CONTACT WINDOW	1	50	112	30		1	50
OPEN/HOT SPECIFIED SHORT/INTERLAYER METAL SHORT/NOT SPECIFIED PITTED/CORRODED SMEARED/SCRATCHED ELECTROMIGRATION	1	50	14 16 25 25 25 2 30	4 4 7 7 1 8		1	50
INPUT/OUTPUT CKT. DEFECTS EXCESSIVE INPUT LEAKAGE INPUT CIRCUIT SHORT EXCESSIVE OUTPUT LEAKAGE OUTPUT CIRCUIT SHORT	0	0	5 5	']		0	0;
TOTAL	2		376		<u>.</u>		

Table 14
DIE RELATED DEFECT SUMMARY

LSI NMOS

GENERAL DECECT	NO.	RELATIVE
CLASSIFICATION	MALFUNCTIONS	PERCENT
SURFACE BULK OXIDE DIFFUSION METALLIZATION INPUT/OUTPUT CIRCUIT	2 0 6 2 2	17 0 49 17 17

Table 15
DIE RELATED FAILURE MODES: LSI NMOS

FAILURE CLASSIFICATION	LS NN No.	I 10S %
SURFACE DEFECTS CONTAMINATION FOREIGN MATERIAL/STRAY PARTICLES	2	17
INVERSION/CHANNELING SURFACE LEAKAGE	2	17
BULK DEFECTS CRYSTAL IMPERFECTIONS CRACKED, CHIPPED DIE	C	0
OXIDE DEFECTS GATE OXIDE PINHOLES FIELD OXIDE PINHOLES OXIDE FAULT	6	49
OXIDE SHORT/BREAKDOWN PASSIVATION DEFECT	6	49
DIFFUSION DEFECTS DIFFUSION ANOMALY DIFFUSION SPIKE/PIPED JUNCTION ISOLATION DEFECT MASK FAULT	3. 2	17 17
METALLIZATION DEFECTS OPEN AT OXIDE STEP	2	17
OPEN AT CONTACT WINDOW OPEN/NOT SPECIFIED SHORT/INTERLAYER METAL SHORT/NOT SPECIFIED PITTED/CORRODED SMEARED/SCRATCHED ELECTROMIGRATION	2	17
INPUT/OUIPUT CKT. DEFECTS EXCESSIVE LEAKAGE INPUT CIRCUIT SHORT EXCESSIVE OUTPUT EXCESSIVE OUTPUT LEAKAGE OUTPUT CIRCUIT SHORT	0	0
TOTAL	12	

Table 16
DIE RELATED DEFECT SUMMARY
SSI, MSI LOW POWER TTL

GENERAL DEFECT	NO.	RELATIVE
CLASSIFICATION	MALFUNCTIONS	PERCENT
SURFACE	48	33
BULK	5	3
OXIDE DIFFUSION	24 24	17
METALLIZATION INPUT/OUTPUT CIRCUIT	37 7	25 5

Table 17

DIE RELATED FAILURE MODES: SSI. MSI LOW POWER TTL

FAILURE	SSI L POWER		MSI LO POWER	
CLASSIFICATION	No.	%	No.	%
SURFACE DEFECTS CONTAMINATION FOREIGN MATERIAL/STRAY PARTICLES INVERSION/CHANNELING SURFACE LEAKAGE	25 11 2 3 9	27 12 2 3 10	23 7 16	43 13 30
BULK DEFECTS CRYSTAL IMPERFECTIONS CRACKED, CHIPPED DIE	3 1 2	3 1 2	2 1 1	4 2 2
OXIDE DEFECTS	18	20	6	11
GATE OXIDE PINHOLES FIELD OXIDE PINHOLES OXIDE FAULT OXIDE SHORT/BREAKDOWN PASSIVATION DEFECT	6	7 13	5	10 2
DIFFUSION DEFECTS DIFFUSION ANOMALY DIFFUSION SPIKE/PIPED JUNCTION ISOLATION DEFECT	12 2 2	13 2 2	12 9	23 17
MASK FAULT	8	9	3	5
METALLIZATION DEFECTS	27	29	10	19
OPEN AT OXIDE STEP OPEN AT CONTACT WINDOW OPEN/NOT SPECIFIED SHORT/INTERLAYER METAL SHORT/NOT SPECIFIED PITTED/CORRODED SMEARED/SCRATCHED ELECTROMIGRATION	15 4 1 5 1	16 4 1 6 1	7	13 2 2 2 2
INPUT/OUTPUT CKT DEFECTS EXCESSIVE INPUT LEAKAGE INPUT CIRCUIT SHORT EXCESSIVE OUTPUT LEAKAGE OUTPUT CIRCUIT SHORT	7 2 5	8 2 6	0	0
TOTAL	92		53	

Table 18
DIE RELATED DEFECTS SUMMARY
SSI, MSI, LSI SCHOTTKY TTL

在自己的,我们就是一个人,我们也是不是一个人,我们就是一个人,我们就是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也会会会会会

GENERAL DEFECT CLASSIFICATION	NO. MALFUNCTIONS	RELATIVE PERCENT
SURFACE BULK OXIDE DIFFUSION	26 0 6	33 0 8 8
METALLIZATION INPUT/OUTPUT CIRCUIT	36 3	47

Table 19
DIE RELATED FAILURE MODES: SSI. MSI. LSI SCHOTTKY TTL

THE STATE STATE TO THE PROPERTY OF THE PROPERT

FAILURE CLASSIFICATION	SCHO	SSI SCHOTTKY TTL No. %		MSI SCHOTTKY TTL No. %		LSI SCHOTT TTL No. %		TKY
SURFACE DEFECTS CONTAMINATION FOREIGN MATERIAL/STRAY PARTICLES INVERSION/CHAMMELING SURFACE LEAKAGE	0	0		0	0		26 13 13	43 21 21
BULK DEFECTS CRYSTAL IMPERFECTIONS CRACKED, CHIPPED DIE	0	0		0	0		0	0
OXIDE DEFECTS GATE OXIDE PINHOLES FIELD OXIDE PINHOLES OXIDE FAULT	2	40		2	19		2	3
OXIDE SHORT/BREAKDOWN PASSIVATION DEFECT	2	40		2	18		2	3
DIFFUSION DEFECTS DIFFUSION ANOMALY	1	20		3	27		2	3
DIFFUSION SPIKE/PIPED JUNCTION ISOLATION DEFECT		20		3	27		2	3
MASK FAULT	1	20			•		4	3
METALLIZATION DEFECTS OPEN AT OXIDE STEP OPEN AT CONTACT WINDOW	2	40		3	27		31	51
OPEN/NOT SPECIFIED SHORT/INTERLAYER METAL	ì			}			1 3	2 5
SHORT/NOT SPECIFIED	1	20		2	18		27	45
PITTED/CORRODED SMEARED/SCRATCHED ELECTROMIGRATION	1	20		י	10			
INPUT/OUTPUT CKT. DEFECTS EXCESSIVE INPUT LEAKAGE	0	0		3	27		0	0
INPUT CIRCUIT SHORT EXCESSIVE OUTPUT LEAKAGE OUTPUT CIRCUIT SHORT	•			3	27			
TOTAL	5	1	1	11	L		61	l

Table 20
DIE RELATED DEFECT SUMMARY
SSI, MSI, LSI STANDARD TTL

ger production of the Theorement Health Shipping and Statement of the Statement of Statement of

GENERAL DEFECT CLASSIFICATION	NO. MALFUNCTIONS	RELATIVE PERCENT
SURFACE	66 29	16
BULK OXIDE	59	14
DIFFUSION METALLIZATION	32 213	8 51
INPUT/OUTPUT CIRCUIT	1.7	4

Table 21
DIE RELATED FAILURE MODES: SSI, MSI, LSI STANDARD TTL

FAILURE	SSI		MSI TTL		LSI TTL	.
CLASSIFICATION	No.	%	No.	%	No.	%
SURFACE DEFECTS CONTAMINATION FOREIGN MATERIAL/STRAY PARTICLES INVERSION/CHANNELING SURFACE LEAKAGE	51 29 7 11 4	20 11 3 4 2	10 5 4 1	11 6 5 1	5 2 1 2	8 3 2 3
BULK DEFECTS CRYSTAL IMPERFECTIONS CRACKED, CHIPPED DIE	24 2 22	9 1 8	5 3 2	6 3 2	0	0
OXIDE DEFECTS GATE OXIDE PINHOLES	27	10	10	11	22	33
FIELD OXIDE PINHOLES OXIDE FAULT OXIDE SHORT/BREAKDOWN	8 19	3 7	6 3	7 3 0	12 3 3 2	18 4 8 3
PASSIVATION DEFECT	1,0	-	·			
DIFFUSION DEFECTS DIFFUSION ANOMALY DIFFUSION SPIKE/PIPED JUNCTION ISOLATION DEFECT	19 4 3	7 2 1 0	13 9 2	15 10 2	0	0
MASK FAULT	ıi	4	2	2		
METALLIZATION DEFECTS	136	52	38	43	39	59
OPEN AT OXIDE STEP OPEN AT CONTACT WINDOW OPEN/NOT SPECIFIED SHORT/INTERLAYER METAL SHORT/NOT SPECIFIED PITTED/CORRODED	85 13 8 22 5	33 5 3 8 2	4 10 7 15	5 11 8 17	11 9 17	17 13 26
SMEARED/SCRATCHED ELECTROMIGRATION	3	1	2	2	2	3
INPUT/OUTPUT CKT. DEFECTS EXCESSIVE INPUT LEAKAGE INPUT CIRCUIT SHORT EXCESSIVE OUTPUT LEAKAGE OUTPUT CIRCUIT SHORT	5 1 2 2	2 0 1	12 6 4 1	14 7 5 1	0	0
TOTAL	262		88	·	66	L

Table 22
DIE RELATED DEFECT SUMMARY
LSI AL GATE PMOS

GENERAL DEFECT	NO.	RELATIVE
CLASSIFICATION	MALFUNCTIONS	PERCENT
SURFACE BULK OXIDE DIFFUSION METALLIZATION INPUT/OUTPUT CKT	41 0 21 14 20 10	39 0 20 13 19 9

Table 23
DIE RELATED FALIURE MODES: LSI AL GATE PMOS

FAILURE	LSI A GATE	
CLASSIFICATION	NO.	%
SURFACE DEFECTS CONTAMINATION FOREIGN MATERIAL/STRAY PARTICLES	41 39	39 37
INVERSION/CHANNELING SURFACE LEAKAGE	1	1
BULK DEFECTS CRYSTAL IMPERFECTIONS CRACKED, CHIPPED DIE	0	0
OXIDE DEFECTS GATE OXIDE PINHOLES FIELD OXIDE PINHOLES OXIDE FAULT OXIDE SHORT/BREAKDOWN PASSIVATION DEFECT	21 17 1 1 2	20 16 1 1 2
DIFFUSION DEFECTS DIFFUSION ANOMALY DIFFUSION SPIKE/PIPED JUNCTION ISOLATION DEFECT MASK FAULT	14	13
METALLIZATION DEFECTS	20	19
OPEN AT OXIDE STEP OPEN AT CONTACT WINDOW OPEN/NOT SPECIFIED SHORT/INTERLAYER METAL	1 3	1 3
SHORT/NOT SPECIFIED PITTED/CORRODED SMEARED/SCRATCHED ELECTROMIGRATION	15 1	14
INPUT/OUTPUT CKT. DEFECTS EXCESSIVE INPUT LEAKAGE INPUT CIRCUIT SHORT EXCESSIVE OUTPUT LEAKAGE OUTPUT CIRCUIT SHORT	10	9
TOTAL	106	

Table 24
DIE RELATFD DEFECT SUMMARY
LSI Si GATE PMOS

GENERAL DEFECT	NO.	RELATIVE
CLASSIFICATION	MALFUNCTION	PERCENT
SURFACE BULK OXIDE DIFFUSION METALLIZATION INPUT/OUTPUT CIRCUIT	19 1 0 0 7 4	61 3 0 0 23 13

Table 25
DIE RELATED FAILURE MODES: LSI Si GATE PMUS

FAILURE	LSI Si GATE P		LSI S GATE (EARO	PMOS
CLASSIFICATION	NO.	%	NO.	%
SURFACE DEFECTS CONTAMINATION FOREIGN MATERIAL/STRAY PARTICLES INVERSION/CHANNELING	7 5	39 27	12 6	92 46
SURFACE LEAKAGE	2	11	6	46
BULK DEFECTS CRYSTAL IMPERFECTIONS	1	6	0	0
CRACKED, CHIPPED DIE	1	6		
OXIDE DEFECTS GATE OXIDE PINHOLES FIELD OXIDE PINHOLES OKIDE FAULT OXIDE SHORT/BREAKDOWN PASSIVATION DEFECT	0	0	0	0
DIFFUSION DEFECTS DIFFUSION ANOMALY DIFFUSION SPIKE/PIPED JUNCTION ISOLATION DEFECT MASK FAULT	0	0	0	0
METALLIZATION DEFECTS OPEN AT OXIDE STEP OPEN AT CONTACT WINDOW	6	33	1	8
OPEN/NOT SPECIFIED SHORT/INTERLAYER METAL	4	21	1	8
SHORT/NOT SPECIFIED PITTED/CORRODED SMEARED/SCRATCHED ELECTROMIGRATION	1	6 6		
INPUT/OUTPUT CKT. DEFECTS EXCESSIVE INPUT LEAKAGE INPUT CIRCUIT SHORT EXCESSIVE OUTPUT LEAKAGE OUTPUT CIRCUIT SHORT	4 3 1	22 17 6	0	0
TOTAL	18		13	

Section IV

PACKAGING SYSTEM LITECT SUMMARY

The summaries presented in this section serve as a means of determining the expected distribution of packaging system failure modes. This data yields an easily used overview of the inherent design weaknesses of the diverse packaging configurations. The information contained in the summaries can be used to form the basis for failure mode, effects and criticality analyses (FMECA) for packaging system problems.

The data consists of summarized failure modes attributed to the integrated circuit package construction. The results are reiterated in pie chart form for the user's convenience. In two instances there were insufficient data to generate pie charts: for the ceramic/metal flat package (CMFPK) and for the glass flat package (GLFPK). Package abbreviations utilized are:

constructions of the property of the contraction of the contraction of the property of the contraction of th

CDIP	•	Ceramic Dual In-line Package
CMDIP	-	Ceramic/Metal Dual In-line Package
PLDIP	-	Plastic Dual In-line Package
CFPK	•	Ceramic Flat Package
CMFPK	•	Ceramic/Metal Flat Package
MFPK	-	Metal Flat Package
CI Ebk	_	Class Flat Package

Whenever possible, failures were subcategorized under the appropriate specific failure classification. It should be noted that since the RAC receives data from many government systems and sources, the amount of failure information concerning hermetic packages generally far outweights the amount of data that relates to plastic packages. It should not be assumed that plastic packages fail less (or more, for that matter) because of the smaller failure population. The base population of defects should always be considered before making any conclusions.

Preceding page blank

Table 26

PACKAGING SYSTEM FAILURE MODES: CERAMIC, CERAMIC/METAL, PLASTIC DIP

FAILURE CLASSIFICATION	CD	- (DIP	-	DIP
WIREBOND RELATED BROKEN BOND INTERMETALLIC FORMATION LIFTED BOND MISPLACED BOND	No. 9 4 1 2	% 7 3 1 1	No. 41 35 5	31 26 4 1	No. 24 15 3 6	52 36 7 15
MULTIPLE BONDS OVERBONDED	1	1				
WIRE RELATED BROKEN WIRE CORRODED WIRE WIRE DRESS	12	9	1	1	14 8	34 20
SHORTED WIRES WIRE TO DIE SHORT	2 9	7			6	15
PACKAGE RELATED DIE BOND DEFECT EXTERNAL LEAD, BROKEN EXTERNAL LEAD, CORROSION EXTERNAL LEAD FATIGUE SEAL MATERIAL, EXCESSIVE SEAL, NONHERMETIC SOLDER REJECT	108 1 1 104 2	84 1 1 80 2	91 25 14 1 51	68 13 10 1 38	3 2 1	7 5 2
TOTAL	129	· •	133	<u> </u>	41	

Table 27
CERAMIC DIP
DEFECT SUMMARY

A STATE OF THE STATE OF THE STATE STATE OF THE STATE OF T

Table 28

CERAMIC/METAL DIP
DEFECT SUMMARY

Table 29
PLASTIC DUAL IN-LINE PACKAGE
DEFECT SUMMARY

Table 30

PACKAGING SYSTEM FAILURE MODES:

CERAMIC, CERAMIC/METAL, METAL, GLASS FLAT PACKAGE

FAILURE CLASSIFICATION	CFF No.	γK %	CMF No.	PK*	MF No.	PK %		GLF No.	PK* %
WIREBOND RELATED BROKEN BOND INTERMETALLIC FORMATION	19 7	33 12	4	45 45	15 2	32 4		3	25 8
LIFTED BOND MISPLACED BOND	8	14			1 4	2 9		2	17
MULTIPLE BONDS OVERBONDED	3	2 5			8	17			
WIRE RELATED BROKEN WIRE CORRODED WIRE WIRE DRESS	9 2 7	16 3	2 1 1	22 11 11	3	6		1	8 8
SHORTED WIRES WIRE TO DIE SHORT									
PACKAGE RELATED DIE BOND DEFECT EXTERNAL LEAD, BROKEN EXTERNAL LEAD CORROSION	29 4 2 1	51 7 3 2	3	33	29 20	62 43		8	67
EXTERNAL LEAD FATIGUE SEAL MATERIAL, EXCESSIVE SEAL, NO. HERMETIC SOLDER REJECT	9 11 2	17 20 3	1	11	9	19		8	67
TOTAL	57		9		47	·	1	12	

^{*} NOTE: Due to the small malfunction population, pie charts for these package types have been omitted

Table 31
CERAMIC FLAT PACKAGE
DEFECT SUMMARY

Table 32

METAL FLAT PACKAGE

DEFECT SUMMARY

Part Two

DIGITAL DEVICE DATA - DETAILED LISTINGS

transcription of the conference of the conferenc

The data presented in Part Two has been extracted from reports concerning digital devices excluding LSI and memory devices (which are contained in a separate publication entitled "Memory/LSI Data"). This data includes field experience, life test, reliability demonstration, and equipment checkout testing results of post 1971 vintage. The listings are arranged by operational type (CMOS, TTL, etc.) and by manufacturer in alphabetical order. The part numbers are in left hand justified numerical order and are arranged by decreasing screen class quality (A-1 to NONE) within each part number category. Because of the left hand justification, care should be taken while looking for a specific part number.

The information presented can be utilized to generate representative failure rates for either specific devices or for classes of devices. All of the information necessary for a MIL-HDBK-217B reliability prediction is presented in each entry. The means for failure rate computation by package, operational type, complexity, etc. are also available. This data format facilitates the analyses and comparison of failure rates between reliability demonstration testing and actual field experience. The user is cautioned that the data contained herein may not be used in lieu of other contractually cited references and specifications.

The similarities between life testing and field experience are also able to be examined. Information contained in this part provides valuable backup information for testing programs. The data furnishes an indication of the expected performance for various device types. As always, however, the base population of devices and the amount of testing performed should be considered before drawing any conclusions. One should further note that the information presented displays both the nominal and possible dispersion.

A Usage Guide has been included to familiarize the user with the format, terminology and abbreviations used in the detailed listing section. Additional information may be obtained by contacting the Reliability Analysis Center directly.

Preceding page blank

USAGE GUIDE

ist een kultuutuun perkapaan ora main een toosa oli kuntuutuun peraka asen een een een kiristi kastaala paan e

The description given below is for the format and codes of this section. The circled numbers shown on the tabulation form below refer to the explanatory texts which follow. A few minutes familiarizing oneself with the information supplied below will aid user interpretation of the data contained herein.

DIGITAL DEVICE DATA

_		!	
RELIABILITY ANALYSIS CENTER	PACKAGE/ : JNCT* : EQUIP. : TEST : STRESS : #TESTED/ : REMARKS : PINS : TEMP. : TYPE : LEVEL : #FAILED :	~ ~	(18)
ANA			
TABILITY	: #TESTED/: : #FAILED :	* PART * HOURS	(16)
REL			
	STRESS LEVEL		(15)
	TEST	: TEST : APPL. : DATA : OATE : ENV. : CLASS.	(13)
	EOUIP. TYPE	APPL. EVV.	(11)
	JNCT	TEST	(6) (0L)
			•• •• ••
* WANUFACTURER *OPFRATIO: JAL TYPE	: PACKAGE/ : JNCT* : EQUIP. : TEST : PINS : TEMP. : TYPE : TYPE	: CHIP : TEST : APPL. : DATA : PROTECT. : OATE : EWV. : CLASS.	(3)
CTUF ION	,	!	
* WANUFACTURER *OPFPATIONAL	SCRN CLAS	: 170. : GATES	(5)
101			
	PART : DEVICE : SCRN.	ShIVO : :	(3) ; (4) ; (5)
(2)	PART NO.		(3)
i	ii	1 ++ ++	

Denotes the manufacturer of the tested devices. Manufacturers are arranged alphabetically within each operational type. The is used to indicate parts produced by two or more manufacturers. This term is often used where second sourcing of equipment level Manufacturer. term "various" parts occurs. Ξ

Reflects the technology of the devices (CMOS, DTL, TTL, TTL High Speed, TTL Low Speed, TTL Schottky, TTL SUHL.) Operational Type. (2) Part numbers are arranged in left hand Part No. These are listings of the device part number, neglecting package and temperature rating suffixes. <u>Justified</u> numerical order. Thus, a sequence as the following is possible: 5408, 54107, 5411, 74160, 8162. 3

Device Function. 3

These screening codes are of the same basic Scrn. Class. Screen class is listed in order of decreasing quality within each part number category. form as found in MIL-HDBK-217B with several variations. (5)

Reproduced from best available co MIL-M-38510, Class A (JAN)
MIL-STD-883A, Method 5004, Class A
Vendor Equivalent of A-1
MIL-M-38510, Class B (JAN)
MIL-STD-883, Method 5004, Class B
Vendor Equivalent of B-1 A-1 A-2 JB B-1 B-2

MIL-M-38510, Class C (JAN)
MIL-STD-883A. Method 5004, Class C
Vendor Equivalet of C-1
Nonstandard Screening Including a Burn-in Test
No Screening Beyond Normal Vendor's QC
Not Reported SC C-1 C-2 None N.R.

THE PROPERTY OF THE PROPERTY O

(Usage Guide) cont'd

- No. Gates. The MIL-HDBK-217B complexity (the number of gates) is derived from logic diagrams or, when necessary, by dividing the number of transis-tors by four (see MIL-HDBK-217B, section 2.1-1). "ZERO" indicates that the number of gates is unknown. (9)
- Package/Pins. Indicates the package construction and the number of pins per package. 2

PACKAGE PREFIXES

H Hermetic KVR Kovar M/G Metal/Glass NI Nickel PH Phenolic QTZ Quartz \$ \$11cone \$N Tin	LLS Leadless Package QIP Quad In-Line Package (similar to DIP but with staggered [Zig-Zag SQR Square Package
AL Aluminum AU Gold C Ceramic (Al203, Ti02, Be0) CM Ceramic Metal Kovar/Al203, KOVAR/Be02, KOVAR/Al203 E Fpoxy (Epoxy A, Epoxy B) EC Ceramic with Epoxy Seal	CAN Metal Can DIP Dual In-Line Packages FPK Flat Package INL In-Line Package

Chip Protect. Chip (Die) Protection. The information in this category corresponds to the glassivation, passivation coatings on the die as well as any material used to interface the die to the package. 8

g] leads)

-	Si3N4 Silicon Nitride passivation	GLASS A generic term for a glassivation laye r used when the specific material is unknown	Phosphorous doped silicate
	S13N4	GLASS	PSG
	Boron doped silicate	Siliçone. Often used in plastic packages for reducing thermal coefficient mismatch	Silicon dioxide. Standard passivation material
	BS102	SLCNE	2018

This quantity, expressed in degrees centigrade (C°), is calculated from the highest ambient temperature * TEMP. Junction Temperature (T_J) . ed in "stress level" as follows. JCT. * 6)

Where either the thermal resistance or the typical power dissipation quantities are not known, the following estimate (see MIL-HOBK-217B section 2.1.5-3) is used.

$$T_{\rm J}$$
 = $T_{\rm A}$ + 10°C if the number of transistors \leq 120

$$T_{J}$$
 = T_{A} + 25°C if the number of transistors > 120

The number of transistors is approximately equal to four times the number of gates.

Junction temperature is based on estimated ambient conditions and must therefore be considered an estimate itself.

AND THE PROPERTY OF THE SAME AND THE SAME AN

(Usage Guide) cont'd

- Blanks indicate unknown dates. Testing completed The test date indicates the start and end dates of thedevice operation reported. was considered obsolete and was excluded from this publication. Test Date. before 1971 (10)
- Ins information in conjunction with the application environment Equip. Type. Equipment type entries pertain to the actual use of the devices. Juns ("Appl. Env.") gives a good indication of the manner in which the devices were vsed. Ê

Radar equipment Signal processing (buffers, converters, amplifiers) Sonar equipment Navigational equipment Power supplies NAVIGÍN POWER RADAR SIGPROC SIGPROC Instrumentation and display Not applicable (part level testing) Computation (digital processors) Calculating equipment Combinational equipment Control equipment Communications CALC COMBIN COMMCTN COMPUTR CONTROL DISPLAY

Applications environment symbols are synonymous with many of the environmental symbols used in MIL-STD-2178. Appl. Env. (15) Ground, transportable (carried by vehicle) Missile, ground, benign Missile launch and flight Not applicable (part level testing) NZ.41, sheltered Naval, submarine usage Naval, unsheltered Space, flight Satellite launch Spacecraft launch and flight (commercial environmentally Ground, mobile, inhabited Ground, mobile, uninhabited Ground, portable (able to be hand carried) Airborne, inhabited Airborne, inhabited/uninhabited Airborne, uninhabited Ground, benign Ground, benign, commercial controlled conditions) Ground, fixed AI AU AU GB GBC **F29**9 Test terms for this section are listed below. Where sequences of tests occur, the tests are listed in sequential order. Test Type. (13) Reverse bias life test
Relative humidity life test with constant operation
Ring counter life test
Static, dynamic, and functional electrical measurements
Storage life test
Storage life test
Static and dynamic test
Temperature cycle, vibration, and power cycle test Vibration test Vibration fatigue test Random vibration test Variable frequency V Visual inspection REVBIAS RHOPCNS SUFEM SOLE EM SOLE EM STALIFE SAD EM TCVIBPC TEMPCYC VIBRETG VIBRETG VIBRETG Not applicable (equipment level testing)
Dynamic operation and high temperature reverse bias test
Power cycle test Low temperature, vibration, and power cycle test Mechanical shock test Electrical measurements
Functional electrical measurement
Lvw temperature, vibration, and power cycle test
Humidity life (nonoperating) test
Intermittent life test Constant operation life test
Dynamic electrical measurements
Dynamic operation life test
Dynamic and functional electrical measurements Accelerated life test EM FINCT EM FINCT EM HUMLIFE INTLIFE LIVIBPC N.A. N.A. ACCLIFE CNST OP DYN EM DYN OP D&F EM

Data Class. The data classification is actually two separate pieces of information. The first indicates the specific form of testing done; second shows who performed the testing and reported the results. This latter item is important to consider. <u>4</u>

"ON" time listed in "Stress Level". Equipment level checkout testing Equipment level reliability demonstration testing NOTE: Only "ON" time is reported. Total test duration can be determined from the percentage of Long term part level life testing (>250 hours) CHE REL

Equipment level field experience
Independent test lab
Government agency
Device user
Vendor (manufacturer with government approval 5

Stress Level. This column contains available information concerning the test conditions. The higher temperature listed is used in determining the junction temperature ("JCT*. TEMP.") of the devices under test. Percentages apply to the percentage of applied power, the percent "ON" time (listed after the number of g's for Fower cycling tests), the percentage of applied vibration, or, when "RH" is printed, to the relative humidity. One hundred percent rated power should be assumed when not stated. Descriptors used are listed below. (15)

(PSIG = PSIA + 15 at seal level) by the percent voltage applied) Mineral ofl(silicon ofl, UCON 100) inch, gauge. Voltage cycle (followed Times Pounds per square Radioisotope Relative humidity Milliseconds Percent Seconds Ounces MIN MIN OIL MSEC OZ PSIA RADIS RH SEC V. CYC X Gravitational acceleration constant Pressure (in atmosphere)
As defined in MIL-STD-883A
Degrees centigrade
Number of cycles Grams per square meter luorocarbon K110 (1000) Degrees He] 1 um Each GMS/MSQ CY (C) DEG ATMOS AXES FLUOR

Tested/# Failed. The number tested is reported only for life testing since this constitutes the only part level testing done in this section. Reporting the number of devices tested for systems (as in field, reliability demonstration, and equipment checkout testing) is generally inaccurate as the individual parts may have varied testing durations depending on part replacements and whether the systems under test maintain a constant number of pieces of equipment. (16)

If more than one test record has an identical test background (all information identical except for the number tested, number failed, and part hours, and test dates), the records are considered for merging. The merging process sums the number tested, number failed, and part hours of similar test records. Record merging is performed if the data successfully meets a parametric homogeneity test (Fisher F-test) at the 5% significance level. If the records do not merge, the number tested, number failed, part hours, and the test dates are printed a separate time for each distinct test popula-

represents the product of the number of devices tested and the number of hours over which they were tested. "**" power. Thus, "5.90E 04" is equivalent to fifty nine thousand (59000) part hours. This number Part Hours. This number cates ten raised to the (12)

This column is utilized for additional information. Failure information (number failed per failure mode and mechanism) will appear Remarks. This column it this column when known. (18)

THE THE PROPERTY OF THE PROPER

MINISTER STATES OF THE STATES

MOTOROL CMOS		MANUFACTI OPERATION					R:	ELIABILITY A	MALYSIS CENTER
PART :		SURN.	PACKAGE/	JCT.* TEMP.		DATA CLASS.		/TESTED/	
:		NO. (CHIP : PROTECT.	TEST DATE		TEST TYPE		PART : HOURS	:
# #14002	GATE	# NONE	CDIP 14		: :N.A. : Y.A.	LIFE V		30/ 0 I	ION IMPLANTED
14002	GATE	HINE 2	EDIP 14 SILICONE		N.A.	LIFE V		100/ 0 3.00E 05	ION IMPLANTED
±14012	GATE	* N')NE	CDIP 14		2N.A. 1.A.	LIFE V		30/ 0 : 1.38E 05 :	ION TABLANTED
14012	GATE		EDIP 14		* *N.A. * N.A.	LIFE V	125C 80%		IZSHORT-PIN 9 : DATE CODE 7235:
:14021	SHIFT REGIST	None	CDIP 16			LIFE V :		פר PO/ ח :	7239: ION IMPLANTED:
14501 14501	GATE	# NONE # 4	CDIP 14			LIFE V		20/ 0 : 1.005 04 :	IOR PAPLANTED
: :14514 :	DECODER	* N)NE * 73	CDIP 24		: :N.A. : N.A.		* * 1250 55% * 1500 55%	47/ 0 : 1.41E 0 :	GSTVAJ941 VOI

	 		•		_			-90788500000-95555		
	NATIO CMOS	NAL	*MANUFACT	URER	DIGITAL D	EA1CE DY	.TA		RELIABILITY A	NALYSIS CENTER
			# 2 22 2 2 2 2 2 2 2	* PACKAGE/	JCT.* *	EQUIP. :		STRESS	: #TESTED/: : #FAILED :	REMARKS
	:	; ;		* PROTECT.		ENV. *	TYPE		PART : HOURS :	
\$	#4601A	GATE			150 #N	i.A. :	LIFE V STGLIFE	1	32/ 0 : 3.20E 04 :	
	#4601A #	# GATE	* NONE	CDIP 14	135C #N	I.A. :	LIFE V	125C	: 76/ 0 : 7.60E 04 : :	
,										
!										
l										
The state of the s										
Name of Street										
NAME OF THE PARTY										
Section 1										
(CO)										
NAME OF TAXABLE PARTY.										
•										
Ę										
18. C. 311(C. 1111-1111-1111-1111-1111-1111-1111-11										
12. C.										
19. C. T. C.										
A Company of the second second second second										
						59				
H. Olympia de la companya de la comp						59				
95 Other strategic strateg						59				
98 Demograph administration and second secon						59				

RCA CMOS		*MANJFACTURER *OPERATIONAL TY	PF					ELIARII.ITY 1	HALYSIS CENTER
PART NO.	DEVICE FUNCTION	SCRN. S PACE CLASS S PINS					**	* PTSSTED/ *	
:	: :	# Wh. # CHIF # GATES # PROT			APPL.			: 100062 :	:
14001 14001	GATE	# A-1 # CHFF # 4 #5102		1250	ii.A.	LIFT U		25/ 1 : : 5.00 : 04 :	# TCTTACARCECNE
4001A	GATE	B-1 C4D1 4 S102		550 73/73			-0540 0550 830Y2,2G47%	/ 0 1.20£ 04	:
4002	GATE	A-1 CMFF 2 S102	K 14	1500 /72		LIFE I STOLIFE		24/ 1	
	: :			:		CNST OP	125C	24/ 0 : 2.40F 04 :	
	: :		:		: :	REVBIAS	125C	1 24/ 0 1 1 2.405 04	
	: :	; ; ; ;	:		: :		1250 10	24/ 0 / 7.208 01 :	:
4002	GATE	# A-1 # CMFI # 2 #SI72	K 14	1250 70/71	; ;;{, 4, ; ; ;	LIFE '		: 25/ 7 : : 5.005 04 :	
: :4302 :	: JATE	1 1 1 CHFF 1 2 15102	K 14 #	125C :		LIFE I		1 24/ 1 1 1 2.309 51 1	
:	1 1	: : : :	1 1	:	: : :	STGLIFE	1500 1500	: 23/ 1: : 2,307 11:	
•	: :	: : : :	: :	:	: :	CHST OP	125C	: 23/ 7 : : 2,30° 74 :	
:	1 1	: : : :	:	:	: : :	: PEVRIAS :	12 oc	1 23/ 2 1 1 23/ 2 1 1 6.105 04 1	
: :400:	: BATE	# 4-1 # CMFF # 2 #SI02	K 14	1250 /72		LIFS I : REVBIAS :		1 25/ 1 1 25/ 1 1 2.459 01 1	
:	: :	: :	:		; ; ;	‡ ሳሪ በ.እር • ትር በ.እር	1250 1250	24/) : 24/) : 2405 04 :	
1 2 3	: :	; ; ; ;	1 1 1	;	: : :	: STOLIFE 	1 1300 1 1300	1 24/) 1 1 2.40° 01 1	
:	: :	; ; ; ;	; ;		t 1 :	1 315T OP	1250 1250	1 21/ 7 1 1 7.25- 11 1	
: :4 773	FLIP FLIP D	1 4-1 1 UTF1 1 20 19102	K 14 #	1500		: LIFE L : : LIFE L :		: ??/): : 2.207 04 :	
:	1 1 1	: : : :), 1		: : :	: CIST OP :	1 1250 1	: 72/ 7 : : 2,207 14 :	: :
: :	: :	: : : :	: :		; ; ;	: 5:Au[/2	1250	1 5.30± 01 1 1 5.4 01 1	:
:	: : :	; ; ; ;	:		t : :	: : JA1 Jb :	i i 1250 i	1 77/ 7 1 1 4.407 01 1	
: :1773 :	# FLIP FLUP	# A-1 # CAF) # 20 #3102	K 14 #	1253 772		: LIF-I : : CIST ne :		1 22/) 1 1 2.2) - 11 1	
:	: :	1 1 1 1	: :		: :	: 5.ABI4!: : 5.ABI4!:	i i 1250 i	1 3 502 J 1 1 1 J 2	
1 1 1	: :	1 1 1 1	:		: :	s .>A 1 .>5 s>A 1 .>5 s	1 13 5C	1 22/ 7 1	
t 1	: :	; ; ; ;	:		: :	r storita - i	! ! 15)	1	
1	•	1 1	1		•	:	I	1 1	ı

RCA CMOS		ANUFACTO PERATION	URER NAL TYPE	pit = 20 traph	3 2 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4) a ne sesse us :		RELIABILITY A	NALYSIS CENTER
PART NO.		SCRN. CLASS	PACKAGE/	JCT.+ TEMP.	EQUIP.	DATA CLASS.	STRESS LEVEL	* FAILED *	REMARKS
			CHIP PROTECT.		APPL.	TEST TYPE	l I	PART HOURS	
4003	FLIP FLOP		CNFPK 14 S	125C		LIFE I		25/ 0 1 2.50E 04	
:		: :		: :		REVBIAS	125C	25/ 7 2.50E	
				, ; ;	:	DYN OP	125C	25/ 0 2.50E 04	
					:	STGLIFE	150C	25/ 1 7.50E 04	I/VECHANICAL PACKAGE HANDLING
4003	FLIP FLOP		CMFPK 14 SI()2	125C /72		LIFE I Dr OP	125C	22/ 0 2.205 04	
	8					STGLIFE	150C	22/ 2 2.20E 04	
	• •					CNST OP	125C	20/ 0 2.00E 04	
						REVBIAS	125C	20/ 1 5.90E 04	
4003	FLIP FLOP	A-1 20	CMFPK 14	12fC / 2	8M.A. 8 V.A.	LIFE I REVBIAS	125C	22/ 0 2.20E 04	
			\$ \$		1	DYN OP	125C	22/ 0 2.20E 04	
	\$ \$		1		1	STGLIFE	150C	22/ 0 2.20E 04	
			•		:	CNST ()P	125C	22/ 1 6.40E 04	1 1
4008A	ADDER FULL		CMDIP 16	55C 73/73	COWACTN		-054C 055C 83CY2.2G67%	9.00E 03	
4009A	BUFFER	8-1 6	CMDIP 16	55C 73/73	CONNCTN		-054C 055C 83CY2.2G67%	1.607.04	
4010A	BUFFER	B-1 6	CMDIP 16	55C 73/73	NTORYGO:		-054C 055C 33CY2.2G67%	3.20E 04	
4011A	GATE	B-1 4	CMDIP 14	55C 73/73	* AI		-054C 055C 33CY2.2G67%	1.27E 04	
4013	FIP FLOP	A-1 24	CMFPK 14	125C 70/71		LIFE U		25/ 0 i	! !
4013	FLIP FLOP	A-1 24	* CMFPK 14 *SI02	25C 72/74		FLD U		5.15E 04	
4013A	* FLIP FLOP * D	В~ , 24	# CMDIP 16 #S102	55C 73/73	*CO'PICTV * AI		* -0540 0550 * 930Y2.2067%	2.00E 04	
4013A	FLIP FLOP	NONE 24	# CMDIP 16 #S102		- 10 0 / 10	STOLIFE		\$ 557 0 8 \$ 5.50E 04	
4013A	FLIP FLOP	NONE 24	# CMDIP 16 #S102			LIFE V		1 132/ 0 1 1.32F 05	
4015A	SHIFT REGIST	8-1 59	* CADID 19	55C 73/73			-054C 055C 93CY2.2G67%	# / 0 # 3.20E 04	
4019A	DIVIDER	8-1 57	# CMDIP 16	55C 73/73	FAI		* -054C 055C * 83CY2,2067%	# 4.00F 04	IZ OPEN PASSIVATION COMA HMATIO
40194	DIVIDER	NONE 57	# CMDIP 16 #S102		: V.A.	L.FE V REVBIAS		1 77/ I 1 7.70F 04	

RCA C405		#MANJFACTURER #OPERATIONAL TYPE		RELIABILITY ANALYSIS CENTER
: PART : NO.	DEVICE FUNCTION		JCT.* : FOULP. : DATA : STRESS THUP. : TYPE : CLASS. : LEVEL	# #TESLED/ # PENARKS # # #EA (LED # #
;	:	: NO. : CHIP : GATES : PROTECT.	TEST : APPL. : TEST : DATE : ENV. : TYPE :	PART : : HOURS : :
# #4019A	GATE		550 *C0"40T" * REL U * -0540 0550 73/73 * AI * TOVIRPO * 030Y2.2057	1 1.20E 04 1 1
:4019A	GATE	12 :S102	1500 :4.4. : LIF# V : 1500 273 : 1.1 : STOLIFE :	t 557) t t t 5+309 04 t
#4019A	JATE	# JONE # CADIP 16 # 12 #5102	1250 FR.A. : LIFE V : 1250 773 : N.A. : REVBIAS :	77/ 1 : : 7./0°. 94 : :
4022A	COUNTER	HOME : CADIP 15 39 :SIO2	1500 : 1.1. : LIF= / : 1500 /73 : : STOLIF: t	55/): :5.50F 04:
4022A	COUITER	* 1)NF * CADIP 16 * 39 *SIO2	1250 M.A. : LIFF / : 1250 /73 : N.A. : REVBIAS :	: 55/): : 5.50° 01:
14J24A	COUNTER BINARY		300 :COMMOT 4 : REL U : -0540 0550 73/73 : AI : TOVIBPC : 930Y2.2047 :	14.000 03
:4025A	GATE		15) #CO (GTT) # 124 1 # - 1546 0 50 73/73 # AL # FOVEBPC # 33.99.25677	1 / 1 1
40304	CATE		550 *COAMOT I : REL II : -0.40 0550 73/73 : AI : FGVISPC : 330Y2.2357	1 / 7 : :
:40491	: JALLEO		550 :00 (401) : RUL U : -0540 055; 73/73 : 11 : CVI :PC : 330Y2.20675	3.205 11
:4049A	: 30FFF8	3-1 (30IP 16 6 (SI02	500 CO (PUTR : REL) = 3510 0500 75/75 : AI : LOVINEC : 130Y1.3) (1	; /); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
:4749A	: SUFFER	B-1 : CHDIP 15 5 :SI02	500 :00 APUT (: 251, 0 : -0540 0500 7575 : NI : COVIBEO : 170Y1, 33 620	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

	* #TESTED/ *	STRESS LEVEL	DATA : CLASS. :		JCT.*	PACKAGE/	* SCRN. : * CLASS	DEVICE FUNCTION	PART NO.
	PART HOURS		TEST TYPE		TEST DATE	CHIP PROTECT.		: :	
ION IMPLANTE	32/ 0 6,40E 04		LIFE V STGLIFE			EDIP 14	NONE	GATE	1001
	32/ 0		EW	,				: :	
ION IMPLANTE	31/ 0 6.20E 04	150C·	LIFE V STOLIFE	N.A. N.A.	150C 74/74	EDIP 14	NONE 4	GATE	1001
	31/ 0		£4	: :			:	: :	
ION IMPLANTE	50/ 0 5.00E 04		LIFE V STOLIFE			EDIP 14	NONE 4	GATE	1001
	50/ 0		ЕЧ	:				:	
ION IMPLANTE	50/ 0 2.50E 04	085C	LIFE V REVBIAS	:N.A. : N.A.		EDIP 14	NONE 4	GATE	1001
	50/ 0		ЕИ	:				; ; ;	
ION IMPLANTE	30/ 0 1.50% 04		LIFE V REVBIAS	N.A.)[.\ 14	NONE 4	GATE	1001
	30/ 0		EM	: :				* *	
ION TUPLANTE	28/ 0 1.40E 04	125C	LIFE V		125C 74/74	_DI2 14	NONE 4	GATE	4001
	28/ 0	 	i i i	: :		: :	:	: :	
TON IMPLANTS	47/ 0 4.70E 04		LIFE V		125C 74/74	: 5)], 14 : : 5)], 14 :	NONE 4	GATE	4001
3/DEGRADATIO FAIL DELTA Id			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	: :		: :	:	: :	
TON TAPLANTS	497 0 : 498 04 :	150C	: LIFE V : : STOLIFF :		1500 74/74	CDIP 14	NONE 4	: JATE	٠.١
	1 48/ 1 1 1 0.		:	: : :		:	: :	: :	
ION TAPLAUTE	: 5n/ n : : 1.nn= 05 :		: : V PALL : : BALK16 :			CDIP 14	# H.)NE # 4	: GATE	1)),
	: 50/ 1: : 10:		: : : : : : : : : : : : : : : : : : :	1 1		; ; ; ;	: :	: :	
1): // 8//)[[: 45Z): : 45Z): : 0.))`04:		: O(A)b :		1250 74/75	CDIP 14	1 400S 1 4	: : JATE :	40 m
	: 45/): : ().		: 91 : : 91 :	•		! ; ! ;	t t	: :	
ION THEFTATE	: 45/ 0 : : 4505 04 :		LIFE V : REVBIAS :		125C 14/74	CDIP 14	NONE :	: JAIL : JAIL	1001
	1 15/ 15/ 15 t		t kiri	: : :		: : : :	1 : 1 :	: :	
TO 1 TABL 7 11%	: 2,40° 04 :		LIFF V : REVBIAS :	: :		CDIP 14	: N)NE :	: JAT:	in) i
175 fort= 5ATE 10			-	: :		: ; : ;	1 :	: :	

SIGNETICS CMOS		*MANUFACTURER *OPERATIONAL TYPE						RELIABILITY ANALYSIS CENTER		
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/	JCT.*	EQUIP.	DATA CLASS.	STRESS LEVEL	* #TESTED/ : * #FAILED :	REMARKS	
) 	:		CHIP PROTECT.	TEST PATE		TEST TYPE		* PART * HOURS *		
4001	GATE	# NONE # 4	CMDIP 14			LIFE V	150¢	: 50/ 0 : : 1.00E 05 :	ION IMPLANTED	
	:		2 2		:	EM		50/ 1	I/CATASTROPHIC OXIDE	
4001	GATE	NONE 4		125C 74/75		LIFC V DYN OP	125C	45/ 0 9.00E 04	ION IMPLANTED	
			t :		: :	EM	: :	45/ 0		
4001	GATE	NONE	CMDIP 14	74/75	*N.A. * N.A.	LIFE V	-010C	25/ 0 : 2.50E 04 :	ION IMPLANTED	
	:		: :		:	EM :	-010C	25/ 0		
4011	GATE	NONE 4	EDIP 14		#N.A. # N.A.	LIFE V STGLIFE	150C	53/ 0 1.59E 05	ION IMPLANTED	
	:		: :		:	: EA	: :	53/ 0		
4011	GATE	NONE 4	EDIP 14			LIFE V	045C	60/ 0 6.00E 04	ION IMPLANTED	
		:	:	: :	: :	s : c³4	: :	10.	2/CATASTROPHIC 1/DETRADATION P WELL FAULTS	
4011	GATE	NONE 4	EDIP 14			LIFE V	095C		ION IMPLANTED	
	:		! !	: :	:	: E4	: :	60/ 1		
4011	GATE	NONE 4	EDIP 14		:N.A. : N.A.	LIFE V	: 150C	30/ 0 3.00E 04	INV IMPLANTED	
: :	t :	:	:	; ;	:	: EM	: :	30/ 0		
4011 :	GATE	# 110NE # 4	EDIP 14	85C 74/74	#N. \. # ./. A.	: LIFE V : REVBIAS	: 085C	29/ 0 2.80E 04	TO A TABLANTED	
: :	1	:	: :	:	:	* EX	:	29/ J		
4011 :	GATE	NONE 1	SDIP 14	: 1500 : 74/74		: LIFE V : STOLIFE	: 1500 :	1 30/ 0 1 1 3.00F 01 1	TON TABLYALED	
:	: :	:	1 1	: :	: :	# (E)/ #	: :	: 30/) i		
40!1 •	GATE	NONE 4	: SDIP 14	950 74/74	#N.A. # 4.A.	* LIFE V * REVBIAS	20dFG 2	# 29/ 0 # 2.90E 04	ION IMPLANTO	
:	; ;		1 1	:	:	FW	:	; 397 3 ; 397 3		

A THE PARTY OF THE

	SOL ID CMOS	STATE SCIENT	*MANUFACTURER *OPERATIONAL TYPE						RELIABILITY AVILYSIS CENTER		
:	PART NO.	DEVICE FUNCTION		PACKAGE/					# #FAILED		
3		t t		CHIP PROTECT.			TEST TYPE	‡ ‡	* PART * HOURS	:	
:40	007A	BUFFER	NONE 3	CFPK 14			LIFE V		: 40/ 0 : 7.60E 02		
:		: :		:	:	:	DYN OP	150C 100% 40XHZ	49/ 0 3.65E 04		
140	X07A	BUFFER	NONE 3	CFPK 14			LIFE V	125C 100%	40/ 1 2.80E 05	I/DEGRADATION : OF IMPUT DIODE:	

THE REPORT OF THE PROPERTY OF

PART	DEAICE	* COD:	DACKAGE/ :	JCT.* * EQUIP.	DATA	STRESS	*TESTED/ :	PEARKS
	FUNCTION	CLASS			CLASS.		#FAILED	CARRAGE
	: : 				TEST TYPE		PART : HOURS :	
253	GATE	3 H.C.H :	CDIP 14	135C +N.A.	LIFE V	1250 1001	: 105/ 0 : : 1.05€ 05 :	
093	LATCH S RS	* NONE	CDIP 14	1500 H.A. 1 772 : N.A.	LIFE V		34/ 0 : 3.40E 04 :	
093	LATCH RS	ผอมร	CDIP 14		LIFA V REVBIAS	1250 1793	52/ 7: 5.205 04:	
099	LATCH RS	BNCV:	CDIP 14	500 +00 (P)TR - 773 + 38		OSOC COMPUT OPERATE	/ 3:	
1089	INVERTER	: NONE	CDIP 14	600 C04PHTR 773 38		050C COMPUT OPERATE	7.058 07	
952	GATE	1 3 HE	CDIP 14		LIFE V	1250 1703	61/ 0 : 5.10° 04 :	
754	GATE	: 2 : A)NE	COIP 14		LIFE V GEVER	1250 170%	50/ 1 : : 7.00	
9356	BUFFER	: 5 : ANE	CDIP 14		LIFE V		39/ 0 : 5.30E)4 :	
7756	9UFFER	: 1) IIE : 2	CDIP 14		LIFE V	1250 IN;	271/ 0 : 2.12E 05 :	
756	BUITER	: 4)Nu	CDIP 14			F DEGT COMPUT F OPERATE	1 / 1 1 1 4.35F)R 1	
952	JATE	* 5 * 8046	: CDIP 14		LIFE V		6.80£ 04	
)·/52	JATE :	# 10HE # 2	CDIP 14			DPTRAFE	/ 1 i	
9953	JATF	1 1/01/7 1 3	COIP 14		LIF: V		100/ 0 : 1.00% 05 :	
123	SATE	1 14F 1 3	: CDIP 14		LIFE V	1250 1701	791/ 0 : 7.639 05 :	
1753	GATE	4 774E 3	COIP 14			TURNOC DORCE ETARTRO	2.358 01	
7754	SATE	1 5 1 1 1 1 1 1 1 1	CDI2 14		LIFT V	1250, 1703 1	77/ 0 : 7./0= 04 :	
9954	GATE	1 JUNE 2	CDIP 14			DERATE	3.143 07	
9955	GATE	1 10 HE	CDIP 14	550 (0019777 773 (3)		: OBORNATE OBORNATE	; /); ; 725); ;	
9955	BUFFER B	1 Min 5	े अपने जिल्ला इ.स.च्या		V FRIJORE		177/ 1 1 1.77 05 1	
7754	3UFFER	1 2 1 4) 1E	CDIP 14	: 1320 td.A. : 7/3 : 1.A.	* LIFT V * REVERS	: 125C 19):	1050/);	
ひから	3UFFFR	1 V) dF 1 2	CDIP 14	# 54C #COSPUT?	# FLD # 1.1.	: 0500 :	1 5.00° 07 1	
7,7	FLIP FLOP RS	3 400C	# 3015-14		LIFF V		# 45Z 0 # # 4.50° 04 # #	
757	FLIP FLOR	; }	CDI2 (4)	: 1490 : 1.A. : 772 : 1.A.	# TIFH V # REVBIAS	: 1330 1004 :	# 452 0 # # 4.500 01 #	
934	JAT"	1 1)NE 1 3	CDIP 14	1500 : 4.4. 1 /73 : 4.4.	FIFE V		1 37/ 0 1 1 3,40, 04 1	

Reproduced from best available copy.

independent de esperando paleiro per de desenta de minimo de minimo de minimo de minimo de minimo de minimo de

FAIRCHILD CTL		*MANUFACTUHER *OPE PATIONAL TYPE						RELIABILITY ANALYSIS CENTER		
PART NO.			PACKAGE/				STRESS LEVEL		SEABAS :	
:	:		CHIP PROTECT.				: :	# PART # # HOURS #	:	
1 19964 1	: GATE	r NONE 3	CDIP 14			LIFE V	1250, 100%	: 77/ 0 : 7,70= 04 :	:	
19964	GATE	NONE 3	CDIP 14		COAPUT?		OSOC COMPUT OPERATE	4.73E 07	:	
19965	GATE	NONE 4	CDIP 14		COMPUTO 3B		OSOC COMPUT	1.54# 03 1	:	
9966	GATE	NONE 4	CDIP 14			LIFE V STGLIFE		: 69/ 9 : : 5.00E 04 :	:	
\$ \$9966 \$	GATE	# NONE # 4	CDIP 14			LIFF V	: : 1250 100% :	77/ 0 : 7,70E 04 :	: :	
:9967 :	FLIP FLOP	NONE 10	: CDIP 14			LIFE V		: 98/ 9 : : 2.80E 04 :	:	
2 19967	FLIP FLOP JK	NONE	: CDIP 14			LIFE V	፤ ፣ 1250 100ፕ ፤	: 299/ 1 : : 2.00E 05 :	:	
:9971 :	GATE	NONE 6	: CDIP 14 :	74C /73			: : 050C COMPUT : OPERATE :	2.95E 03 I	: :	

ITT CTL	w 18 94422 a w	#HANUFACTI #OPERATION					RELIABILITY A	HALYSIS CETTER
	DEVICE FUNCTION	: SJRN. : : CLASS :		JCC.* * EOUIP. * TE49. * TYPE	DATA CLASS.	STRESS LEVEL	* FAILED	
 	3	# NO. # GATES	CHIP PROTECT.	TEST # APPL. DATE # ENV.	TEST TYPE		PART I	
: :9099 :	: FLIP FLOP : JK	ance a	CDIP 16	150C = N.A. 772 : 3.A.	LIFE V		77/ 0 1 17.70E 04	
9093	FLIP FLOP	NONE	CDIP 16	1350 N.A. 69/72 N.A.	LIFE V		77/ 0 7.70E 01	
: :952 :	GATE	NONE 2	CDIP 14	: 150C : N.A. : 69/74 : N.A.	LIFE V		1927 1	IZDEGRADATIO:
\$ \$952 \$	SATE	# N')NE	CDIP 14	135C N.A. 69/74 N.A.	LIFE V		167/ 0 1 1.675 05	
953	GATE	NONE 3	CDIP 16	150 C H.A. 775 N.A.	LIFE V		115/ 0	
953	SATE	ENCV:	CDIP 16	135C N.A. 775 J.A.	LIFE V		526/ 10 6.53E 05	
: : 955 :	FOATE	NONE 1	CDIP 14	: 1500 : II.A. : 774 : II.A.	LIFE V : STOLIFE :		104Z 0 1	
: :953 :	JATE .	3HCF :	CDIP 14	: 135C :N.A. : /74 : J.A.	: LIFE V		209/ 0 1 2.09E 05	
: : 956 :	; ; JATE	: 45HE : 2	CDIP 16	: 1500 #N.A. : 775 : Y.A.	LIFE V		75/ 1 1 7,60E 04	
* * 954 *	GATE	# 40NE # 2	CDIP 16	: 125C :N.A. : /75 : J.A.	: LIFE V : : RINGCHT :		1 154/ 1 1 1.545 05	
: :954 :	GATE	# # 40NE # 3	CDIP to	: 150C =N.A. : /75 : J.A.	: LIFE V : STGLIFE		203/ 0 (2.03/ 05 (
: :954 :	: JATE	# 11) NE # 3	CDIP 16	: : : 135C :N.A. : /73 : .l.A.	LIFE V RINGOVT		1 1927 0 0 1 1,325 05 0	
: :954 :	F GATE	: :1)NE : :3	CDIP 16	: : : : 135C :N. \. : /75 : N. A.	: LIFE V : : RINGONE		1 22/ 0 1 1 2.20E 01	
: :265 :	: JATE	: H)NE : 4	CDIP 14	: : : : 150C :N.A. : /75 : :.A.	LIFE V		204/ 0 1 2.04F 05 1	
# #4.32 #	: : JAIE :	: JONE : 4	CDIP 14	: : : 1350 :N.A. : /74 : i.A.	: LIFE V : AINGCAT		# 287/ 1 (# 287/ 1 (# 20 E7F-2 (
: :965 :	JAT"	# I DNE # 4	CDIP 16	: : : : 1500 :N.\. : 69274 : Y.A.	: LIFF V : 3F3LIFE		1 132/ 1 1 1 1,82	
; ; 755 ;	: 34TT	# # 40,45 # 4	CDIP 15	: : : : 1353 :Y.A. : 62274 : :A.	· V PRIJ · · TROCKIS: ·		1 1.52 02 6 1 135 0 1	; ; ;
: :)47 :	: : FLIP FL W : JK	1 1) 19	# # CDI2 lo #	: 1503 : 1.1. : 775 : 1.1.	* V FAIL! *		1 1137 2 4 1 3.905 04 4	
: :	# FLIP FLOP # PK	; ; D1; ;	: CDI2 15	: : : : : : : : : : : : : : : : : : :	: (1400AL)	1 1230 1 1230	: 336/ 3 : : 2.3211 05 :	
: :)/> :	: 'YLa	; ; '1)' ; ; 4	: : 0012-15 :	: : : : : : : : : : : : : : : : : : :	: LIFE V : STOLIFF	: : 1500 :	: 3.7 ·) : : 33/ ·) :	
: : 777 :	; ; JATF	: 10.1 <u>1≃</u> : 10.11 <u>≃</u>	DIP 16	: : : : 1353 : 1.4. : : : : : : : : : : : : : : : : : : :	: : UIF: V : :II:3:11;		# 1557 0 : # 1567 05 : # 1567 05 :	
	1	:	t	1 1		:		1

The second of th

Reproduced from best available copy.

	DVANCE TL) MICRO DEV	*MANUFA *OPERAT			 	 	 			?E1	TABILIT	Y 	AMALYSIS CENTER	
_	ART :				PACKAGE/ PINS							#TESTED! #FAILED		# REMARKS #	
;	;		: NO. : GATE		CHIP PROTECT.				:		:	PART HOURS		1 1	
‡ ‡931	8	ENCODER	: : B-1 : 29		CDIP 15					-0540 0500 130Y1.30 62%		/ (4.76E 0	•		
931	9 :	ENCODER	: B-1 : 29	:	CDIP 16					-0540 0500 170Y1.30 623	: :	6.22E 0	3	: : :	

DIBITAL DEVICE DATA

FAIRCHI UTL		#HAHJFACTU #OPERATION					ان ان	ELIABILITY AN	VEARLE CEALES
PART VO.	DEVICE FUNCTION	SCRY.	PACKAGE/ PINS	JCT.* : 1 TE4P. : 1	EOUIP. : TYPE :	DATA : CLASS. :		* *TESTED/ * * *FAILED *	PTIARKS :
	 		CHIP PROTECT.	TEST : DATE : I		TEST :		PAYI : HOURS :	:
1149	INVERTER	: HONE : 4	AICA1 10	1350 ±.H.		V PALI E CAIGVEC	1250 1003	: 104/ 0 : : 1,045 05 :	:
1154	INVERTER	* NONE :	CDIP 14	135C #N		LIFE V	1250 100%	966/ 0 :	:
1155	INVERTER	. N.) 4E	CDIP 14	1350 #N		LIFE V	1250 170%	954/ 0 3.145 05	
1155	GATE	: VINE : 4	CDIP 14	135C #N		LIFE V	1250 170%	953/ 0 : 1.45£ 05 :	:
: :1157 :	GATE	: 473,4 <u>E</u>	CDIP 14	1350 #1 773 #		LIFE V	129G 199K	1.09E 05	:
: :1158 :	GATE	# 1.1NE # 3	COIP 14	135C IN		LIFE V	1350 1333	419/ 0 : 7.02F 04 :	:
:1260 :	ETAC:	* N.)NE * 2	CFPK 14	135C ±1		LIFE V	1250 100%	: 194/ 0 : : 1.04E 05 :	:
1302 1	INVERTER	* V.)NE * 2	CDIP 14	135C 1.1		LIFF V	1250 1773	1 000/ 0 1 1 000 00 1	:
1312	GATE	៖ √174¢ • 4	CDIP 14	150C 1		LIFE V		39/ 0: 3,305 04:	:
11312	JATE	N)43 4	CDIS 14	1350 IN		LIFE V	1320 1703	77/ 3:	:
9040	FLIP FLOP	A-1 4	CFPK 14	25C 1C 70/74		FLD U	125C	2.31E 07	1
9040	FLIP FLOP	NONE 4	CFPK 14	150C N 70/72		LIFE V		: 130/ 0 : : 1.30E 05 :	\$ \$ 2
19040 1	FLIP FLOP	NONE 4	CFPK 14	1250 N 70/72		LIFE V REVBIAS	1250 100%	65/ 0 : 6.50E 04 :	; ;
19J41	JATE	A-1 2	CFPK 14	25C C 70/74	3F *	FLD U		/ 0 : 5.09E 05	: :

Reproduced from best available copy.

FAIRCE DTL	 	*MANUFACTION	NAL TYPE	*******	4 701 27 72	## ###### #=		HELIABILITY	NALYSIS CENTE
PART NO.	DEVICE FUNCTION	# SCRN. # CLASS	PACKAGE/ PINS	JCT.* TEMP.		DATA CLASS.	STRESS LEVEL	* #TESTED/ * #FAILED	
· ====	:		CHIP PROTECT.	TEST DATE			:	* PART * HOURS	;
9041	GATE	NONE 2	CFPK 14			LIFE V		130/ 0 1.30E 05	
2041	GATE	NONE 2	CFPK 14		N.A. N.A.	LIFE V REVBIAS		130/ 0 :	
2042	# GATE # EXPANDABLE	A-1 2	CFPK 14	25C 70/74	COMBIN SF	FLD U		* / 0 * 1.14E 06	
2042	GATE EXPANDABLE	NONE 2	N.R. O		: :N.A. : N.A.	LIFE U			 I/DEGRADATIO MID TEST DEL
9042	GATE EXPANDABLE	NONE 2	CFPK 14		: :N.A. : N.A.	LIFE V		# 63/ 0 # 6.30E 04 #	
042	GATE EXPANDABLE	NONE	CFPK 14	125C 70/72		LIFE V REVBIAS		95/ 0 1 9.50E 04	
043	GATE EXPANDABLE	: A-1 : 2	CFPK 14	25C 72/74	COMBIN SF	FLD U	025C	1 / 0 1 1.79E 06	
043	GATE EXPANDABLE	NONE :	CFPK 14		: *N.A. : !!.A.	LIFE V		65/ 0 = 6.50E 04 =	
043	# GATE # EXPANDABLE	* NONE :	CFPK 14		: :N.A. : N.A.	LIFE V	125C 100%	65/ 0 1 6.50E 04 1	: :
044	GATE EXPANDABLE	# A-1 :	CFPK 14	35C 72/74	COMBIN SIF	FLD U	1	2.48E 05	
044	GATE LYPANDABLE	NONE	N.R. O		: :N.A. : N.A.	LIFE U			I/DEGRADATIO
044	GATE EXPANDABLE	NONE :	CFPK 14	160C 772		LIFE V		* 65/ 0 * 6.50E 04 *	REJECT
044	GATE EXPANDABLE	NONE :	CEPK 14	1350 1370 172		LIFE V : REVBIAS :		6.50E 04	
046	GATE	# A-1	CFPK 14	: : 70/74	COMBIN SF	FLD U		1 / 0 1 1.14E 07	
046	GATE	# A-1	CFPK 14	35C 72/74	: COMBIN : SF	FLD U		9.65E 06	
046	GATE	* NONE 4	CFPK 14			LIFE V : STGLIFE :		1 182/ 0 1 1 182E 05	
046	GATE	NONE 1	CFPK 14	135C 70/72		LIFE V		376/ 0 1 3.78E 05	
047	GATE	# A-1 #	CFPK 14	!	: COMBIN	FLD U		: / 0 : : 3.93E 06 :	
047	GATE	NONE :	CFPK 14	1600	: :11.4.	LIFE V	150C	6,50E 04	
047	: GATE	NONE :	CFPK 14	135C	: :N.A.		1250 100%	* 65/ 1 *	
793	: : FLIP FLOP : JK	NONE :	CDIP 14	135C	i in.a.		1250 100%	1 187/ I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
094	FLIP FLOP	NONE (CDIP 14	137C	i N.A.	: :	1250 100%	# 435Z 1 # 4.35E 05 #	
097	FLIP FLOP	1 NONE 1	CDIP 14	137C	: : N. 4.	: :	1250 170%	340/ 1 2.01E 05 1	

FAIRCHILD DTL *MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER DEVICE PART # SORN. # PACKAGE/ : JCT.* : EQUIP. DATA STRESS # TESTED/ # REMARKS FUNCTION : CLASS : PINS TEMP. : TYPE CLASS. LEVEL * FAILED NO. # APPL. CHIP TEST # NO. TEST PART : GATES : PROTECT. DATE TYPE HOURS 1600 *N.A. LIFE V : **\$9099** FLIP FLOP HONE CDIP 14 150C 38/ 3.90E 04 JK 28 70/73 : N.A. STOLIFE # LIFE V. # 125C 100% 1350 +N.A. 19099 FLIP FLOP NONE CDIP 14 639/ /73 : H.A. REVBIAS : 6.39E 05 JK 28 185C IN.A. 70/72 I N.A. LIFE V : 1500 NONE 19112 INVERTER CDIP 14 7.705 04 STGLIFE : 1600 IN.A. 70/72 I N.A. 19112 INVERTER LIFE V : 1250 100% 106/ NONE CDIP 14 REVBIAS 1.05E 05 160C :N.A. /72 : N.A. LIFE V # 1500 CFPK 14 10/45 FLIP FLOP NUNE STGLIFE : 3.80€ 04 52/ 0 1350 *N.A. LIFE V # 1250 100% FLIP FLOP 19/45 NONE CFPK 14 1.045 05 /72 : N.A. REVBIAS : 39/ 0 19762 GATE NONE CFPK 14 1600 :N.A. LIFE V : 1500 /72 : .I.A. STGLIFE : 3.90E 04 LIFE V : 125C 100% 190/ 0 NONE 135C *N.A. 19762 GATE CFPK 14 1.43E 05 /72 : II.A. REVBIAS # FLD U : 0250 A-1₂ CFPK 14 27C *C0/3IN 19930 GATE 1.24E 05 72/74 : SF ı∛.A. : 0 / 0 1.42E 05 CEPK 14 27C ±C043IN FLD U # 025C :9930 GATC A-1 70/74 * SF N.A. 300/ 3 :9930 GATE CFPK 14 127C *N.A. LIFE U # 1250 100% 2.13E 05 /72 # H.A. RINGCHT : 35/ 0 1.759 04 LIFE U : 1250 100% 127C :N.A. /71 : 11.A. :9930 GALF CFPK 14 RINGCHT STAT EH : 025C 35/ 0 LIFE U # 1250 100% 35/ 0 1.75E 04 CFPK 14 1270 :N.A. /71 : N.A. 19930 GATE X RINGONT : 35/ 0 STAT Ed : 05.20 0. LIFE V 212/ I 3.392 05 CDIP 14 127C #N.A. 1250 1993 :9930 **JATE** NONE **EXPANDABLE** PEVBIAS : 311CF 155C IN.A. LIFE V 1500 45/ 0 4.50° 04 :9930 GATE NICAH 8 STOLIFE : 457 °0 4,500 °04 MONC 1300 Pl.A. LIFE V 1520 1002 19930 GATE MICAN 9 /72 1 i.A. REVBIAS 1550 IN.A. 772 I I.A. LIFE V 19930 NONE MICAN 10 1500 490/ CATE 4.90= 35 STOLIFE LIFE V 5.500 04 : 9937 4DNE CEPK 14 127C :N.1. 125C 100° UATE 70/12 * N. 4. REVBIAS 335/ 2 : 2/0F 3R 2.30 05 : 0F 1rr S 1 SYOF BRADALION LIEC 9 19932 BUFFER CEPK 14 132C : N.A. * 1500 1WH PINGCHT # EXPANDABLE 1310 111.4. 271 1 1.4. LIFE U + 35/ 1250 1224 :9932 BUFFER CFPK 14 2 RINGCIT 1.795 04 1 **EXPANDABLE** STAT EM : 0250 35/ 1 1 0.

	DIGITAL DEVICE DATA										
FAIRCH! DTL		MANUFACTI OPERATION						RELIABILITY AN	IALYSIS CENTER		
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/ PINS	JCT.* TEMP.		DATA CLASS.	STRESS LEVEL	* #TESTED/ * * #FAILED *	REMARKS #		
3			CHIP PROTECT.	TEST DATE		TEST TYPE	1	PART :	:		
: :9932 :	BUFFER Expandable	X 2	CFPK 14		: :N.A. : N.A.	LIFE U		: 35/ 0 : : 1.75E 04 :	: :		
1 1	:	: :] 	I	:	STAT L.	025C	35/ 0 :	:		
19932	BUFFER - EXPANDABLE	# NONE #	CFPK 14	157C 7C '72		JIFE V		65/ 0 : 6.50E 04 :	:		
19932	BUFFER EXPANDABLE	NONE 2	CFPK 14	132C 70/72	N.A. N.A.	LIFE V	1250 100%	77/ 0 7.70E 04			
9932	BUFFER EXPANDABLE	NONE 2	CDIP 14	157C 70/73	*N.A. * N.A.	LIFE V		38/ 0 3.90E 04	:		
19932 1	BUFFER EXPANDABLE	NONE 2	CDIP 14	132C 70/73	*N.A. * N.A.	LIFE V	1250 100%	349/ 2 : 3.49E 05 :	:		
9935	INVERTER EXPANDABLE	NONE 6	CDIP 14	132C /72	*N.A.	LIFE V	1250 100%	55/ 0 5.50E 04	:		
9936	INVERTER	NONE 6	CDIP 14		N.A. N.A.	LIFE V	1250 170%	120/ 0 1.20E 05	:		
9937	INVERTER	NONE 6	CFPK 14	134C /72	*N.A.	TICE V	1250 100%	55/ 0 5.50= 04	:		
9937	INVERTER	NONE 6	CDIP 14	134C /72	IN.A.	F LIFE V	125C 100%	77/ 0 7.70E 04			
9944	BUFFER	A-1	CFPK 14	28C 70/74	COMBIN SF	FLD U	025C	/ 0 4./E 05	:		
9944	BUFFER EXPANDABLE	B-1	CDIP 14	28C 73/73	CO'MCT'I GE	CMM U OPERATE	^25C 1MX	9.70E 03			
9944	BUFFER EXPANDABLE	B-1	CDIP 14	28C 73/73	017 1010111	ABL U OPPRITE		1.205 05			
10044	BUFFER EXPANDABLE	NONE 2	CFPX 14			REVBI/3	1270, Indix	77/ 0 7.70E 04	:		
2944	SUFFER EXPANDABLE	N)NE	CDIP 14	127C 70/73	: . \. : . \.	# F146 A	1520 100 8	219/ 0 2.195 03	:		
9945	FLIP FLOP	λ-1 : 16	CFPY 14		COMEN SF	PLD U:	225C	9.56E 05	:		
9945	FLIP FLOP	3-1 16	CFPK 14	130C //2	! I.A. ! I.A.	LIFE U	1250 100%	435/ 1 1.569 05	:		
9245	FLIP FLOP	X 16	CFP< 14	130C /71		LIPE U		35/ 0 / 1.75E 04	:		
:						KP TATE	1250	35/ 0	:		
:	:	:			:		•	: 0. :	:		

FAIRCHILD DIL *MANUFACTURER *OPERATIONAL TYPE HELIABILITY ANALYSIS CENTER PART NO. * SCHN. * PACKAGE/ * CLASS * PINS DEATCE JCT.* : EOUIP. DAΓA STRESS . #TESTED/ : HEHAKKS IFMP. : TYPE FUNCTION CLASS. LEVEL #FAILED TEST TYPE # CHIP PARC GATES . PROTECT. . DATE . ENV. おいじょち X 16 130C :N.A. /71 : N.A. LIFE U FLIF FLOW 125C 100% 1 4945 CFPK 14 35/ 0 : 1.75£ 04 : RINGCNT STAT EM : 025C 35/ 1300 IN.A. 1 5945 **FLIF -LOP** NONE CFPK 14 LIFE V 125C 132/ 1.32E 05 16 70/12 # N.A. REVHIAS 130C IN.A. LIFE V # 125C 100% 262/ 0 : 9945 FLIP FLOR NONE CDIP 14 REVBIAS 2.62£ 05 18 290 ICOMBIN FLD U : 025C CFPK 14 GALE A-1 : 4440 2.14E 05 N. A. B-1 1290 IN.A. LIFE U : 245/ 3 1 19940 GALE CFPK 14 3/DEGRADATION 125C 100% /72 : N.A. 2.23= 05 2-I cex 1-vOL1AGE 35/ 0 1.75ë 04 19940 GALE X CFPK 14 129C :N.A. LIFE U . 125C 100% /71 : N.A. RINGCHT I STAT EM . U25C 35/ 1 35/ U 1.75E U4 129C +N.A. /71 + N.A. LIFE U RINGCNT 19940 GAIE X CFPK 14 125C 100% 35/ 0 STAT EM : 025C NONE 4 125C IN.A. 70/72 I N.A. GATE CFPK 14 19945 LIFE V : 125C 100% 65/ 0 SIGLIFF 6.50- 04 150C IN.A. /0//2 : N.A. 19940 GALF NONE CFPK 14 65/ 0 6.50£ 04 SIGLIFE # 129C IN.A. 70/12 I N.A. LIFF V 1977 0 1 004 6 NONE CFFK 14 GALF 125C 170% REVBIAS : 1.97E 05 131C IN.A. LIFE V # 1250 100% £ 4948 FLIP FLOR NONE CFPK 14 55/ 10/12 : N.A. 6.501 04 REVISIAS : 1290 IN.A. LIFE V : 1250 1004 HONE CDIP 14 11/ 19949 GALE /.ol= 04 14951 1290 IN.A. LIFE V # 1250 1074 142/ FLIF FLOP NONE CFrK 14 MONOSTABLE 10/72 1 N.A. REVALAS . 1.335 05 LIFF V : 150C 1 2921 NONE CD1P 14 150C #N. A. EXPAND. BLE 2.802 04 1 113 : N.A. 128C = N. A. //2 = N. A. LIFE V : 125C 103% GALF EXPANDABLE NOHE 2 17/ J 1.102 J4 10041 CDIP 14 LIFF 0 1 1250 100% 14405 JALE K∽T CFFK 14 1280 IN.A. 1/DeGHADALLUN 112 : N.A. RINGCHT : 1,255 05 OF Icex 1280 IN.A. LIFE V : 1250 1004 209/ U : 5962 4440 NONE CFrK 14 1 10/12 : 4.4. REVRIAS # 2,08: 05 # 150 C IN.A. LIFF / : 1500 52/ 0 NONe. CDIP 14 1 14462 UAIF SIGLIFF : 5.20= 01 # 10/72 : N.A.

FAIRCE DTL	IILD	*MANUFACI *OPERATIO			HELIABILITY ANALYSIS CENTER				
PART NO.	DEVICE FUNCTION		PACKAGE/					: #TESSED/ : #FAILED	
1	1	: NO. : GATES	: CHIP : PROTECT.		: APPL. : ENV.		:	PARF HOURS	: :
19962	GALE	* NONE * 3	CDIP 14			LIFE V	# 125C 100%	187/ 0 4.07E 05	
9963	GAFE	NONE 3	CFPK 14		****	LIFE V REVBIAS	125C 100x	55/ 0 5,50£ 04	

	FERRARI DIL	1 I	*#ANUFACI *OPERALIO		 					кŀ	LIABILITA	An	אנץסוז נדעובי	₹
	PAR1 NO.			PACKAGE/					SIKESS Level		#1E51FU/ #FAILFU		HENAAK 2	:
:		1		CHIP		APPL.		:			PARI BJURS	:		:
:	0.2130	· ·›Att	i NOne	KAHCAN R			CAPL OF	-)290		11021/ 3 3,32e 00			:

Reproduced from best available copy.

HARRIS #MANUFACTURER KELIABILITY ANALYSIS CENTER
DTL **OPERATIONAL TYPE*

PART ** DEVICE ** SCHN. ** PACKAGE/ ** JCT.* ** EQUIP. ** DATA ** STRESS ** #TESTED/ ** REMARKS

PART :		SCHN. CLASS		JCT.* : EQU : IEMP. : TYP	IP. : DATA E : CLASS.		#TESTED/	
:		NO. GALES		FFST : APP DATE : ENV			PART HOURS	: :
SEE REMARKS		C-1	: CMFPK 14 : :SIO2	175C = N.A. 772 = N.			4.44E UO	#GENERIC RD200'S: *DIELECT ISOLATE: *KADIATION HARD.*
211	EXPANDER	A-1 2	* CMFPK 14 *SI02	35C COMB 70/14 : SF			/ 0 2.826 06	1
	GATE EXPANDABLE	B=1 2	CFrK 14	135C : N. A. /72 : N.				DIELECT ISOLATE: ************************************
930	GALE EXPANDABLE	X 2	FPK 14	135C = N.A. 771 = N.		125C 100%		DIELECT ISOLATE:
			•		STAT EM		35/ 0 0.	:
930	GATE EXPANDABLE	X 2	# FFK 14 #S102	1350 IN.A. 771 I.N.		125C 100%	35/ 0 1.75£ 04	
			1		STAT EM	025C	35/ 0 0.	: :
930	GALE EXPANDABLE	X 2	FPK 14	135C :N.A. /71 : N.			35/ 0 1.75£ 04	
:			1		STAT EM		37/ 0	: :
	GALE EXPANDABLE	X 2	FrK 14 \$102	135C = N.A. 771 = N.		125C 100%	35/ 0 1.75£ 04	: :
:			:		STAI EM	025C	35/ O	
930	GALF EXPANDABLE	X 2	FPK 14 1SI02	135C :N.A. 771 : N.			357 0 1.75≝ 04	
				•	STAL EW		35/ U	: :
±y32	BUFFER EXPANDABLE	X 2	FPK 14 15102	135C : N. A.		125C 100%	35/ U 1.75£ U4	
			1	:	SIAI EM	: 025C	35/ 0 0.	,
932	BUFFER EXPANDABLE	X 2	FPK 14 15102	135C IN.A. 771 I N.		125C 100%	35/ 0 1.75č 04	
1					STAT FM	025C	35/ C	
i y 32	FXHANDABLE BUFFER	Χ	FPK 14	135C :N.A. 7/1 : N.		1250 170%	35/ () 1.75= 04	
:			:	: : :	STAT FM		35/ U	: :
1932			+ FrK 14 +5102	1350 IN.A.			35/ 0 1.75± 04	
1		! !	: :		SIAL FM		357 O	: : : : : : : : : : : : : : : : : : :
1944	EXPANDABLE		CFPK 14	//2 + N.		1	: 2.13± U5	*DIELECT TODAY** **********************************
	: FLIP FLOP :	H-1	1 CEPK 14 : 15102	1350 IN.A.	* LIFF U	‡ 1250 FM. ‡	1159/ 2	2/DEGRADATION : DIELECT 130LATE TRADIATION TARD.

THE CHANGE

HAHRIS DIL		*MANUFACIURER *OPFRATIONAL TY						ANALYSIS CFILER
# PART I		# SCHN. # PACA # CLASS # PINS	GE/ : JCT.*	# EOUIF.		S STRESS	* #TESIFD/ * #FAILED	* HFMARKS *
		: NO. : CHIP : GAIES : PHOI			. 1501		# HOURS	: :
# # # # # # # # # # # # # # # # # # #	: : FLIP FLOP : Jk	1 X 1 FPI 1 X 1 SI02 1 1	: (14 : 1350 : /71		LIFF U RINGCNI	: : 125C (100% :		: DIELECT ISOPVLE: HWDIVION HWD::
\$; \$;	: :	1 1 1 1	:	:	STAT EM	025C •	: 35/ U : 0.	: : : :
\$945 \$	FLIF FLOP Jk	: X : Fr : 3 :SI02	14 1 1350		LIFE U	1 125C 100%		*DIELECT ISOLATE * *RADIATION HARD. *
1			:		STAL EM	025C	35/ 0	
‡945 i	rLIP rLOP	X 1 FP			LIFF U	125C 100%		*DIaLeCi ISOLATE*
i :	: : :	: :	:	:	SIAL FM	025C	35/ 0 0.	: :
1945	: :	*	1 1350 1 771	: N. A.	: LIFF U : RINGCNT	፤ ፣ 1250 - 100ኤ ፣		######################################
1	: :	1 1	:	1	SIAL EA	: 025C :	35/ 0	: :
1945	+LI+ +L0+ Jk	X : rF		N.A.	: LIFF U : RINGCNI	125C 100%		DIELECT ISOLATES
			•		STAT EN	025C	39/ U	:
1962	GAIL	H-1 : Chri			EIHF U	1250 107%	1 4.55E U5	* I/DEGRADATION * *DIELECT ISOLATE*
1962	UAIF	1		*N.A.	E LIFE U	1250 133%	35/ 0 1./5h u4	
1 :		: :	:	:	F STAL CM	0250	35/ U	; ; ;
1 1 1	I GALF	1	14 ± 1350 ± 7/1		: LIFF U : RINGCVI	1 1 1250 170%	35/ 0 1./5= 04	
t :	; ; ;	: : : :	; ;	t 1	STATEM	0250	35/ 0	: :
1405	JAIL	: X : FFI : 3 :5102		: :N.A. : N.A.	LIFF U RINGCAT	# # 1250 100% #	: 35/ U : 1.75+ U4	
1 :		: :	; ;	!	: 4 SIAL FM	: 025C	35/ U	: : : : : : : : : : : : : : : : : : :
		: :	*	1		•	•	•

DfL		MANUFACI OPERATIO					HELIABILITY A	NALYSIS CENIER
PART NO.		SCHN.		: JCl.* : EOUIP. : [FMP. : 1YPE	DAFA CLASS.		* TESSEU/ * *FAILEU	
					FEST TYPE	: :	PARI PARI PARI	· · · · · · · · · · · · · · · · · · ·
	: FLIP FLOP : JK	: : 8-1 : 0	CPrK 14		LIFE V		1 14/ 0 1 1 1,40± 04 1	
9093	FLIP FLOP	B-1	CFFK 14	: /74 : N.A.	LIFE V RINGCNT		38/ 0 3.d0: 04	
9097	FLIP +LO+	C-1	CDIP 14	137C :N.A.	LIFE V		2:0/ 0 2:10£ 05	
	FLIP FLOP JK	C-5	CD1P 14		LIFF V RINGCVI		105/ 0 1.05E 05	
	FLIP FLO2 JK	NONE O	CDIP 14	150C IN.A.	LIFF V		75/ 0 7.50E 04	
9097	FLIP FLOP	NOME	CD1r 14		LIFF V		52/ 0 5.20£ 04	
	FLIP FLOP	B-2	CDIP 14	: //ɔ : N.A.	LIFF V		22/ 7	
	FLIP -LOr Jk	9-2	CDIP 14		LIFF V		55/ 0 5.50± 04	
	FL1+ -L0+ Jk	C-1	CDIP 14		LIFE U		75/ 0 : 7.50E 04 :	
	FLIP FLOP Jk	C-1	CDIP 14		LIFF U		: 1.09/ 0 : cu 3c0.1	:
	FLIP FLO	NONE	CDIP 14		LIFF V RINGCNT		132/ 1	
;y37	GAIF	A-2 2	CFrK 14	150 C IN.A.	LIFE V SIGLIFE		37/ i) : 3.80= U4 :	
# 5 30 #	GALE	B-1	CFrK 14		LIFF U RINGCNI	125C 1004	637/ 0 : 9.17: U4 :	
±930	GALE EXPANDABLE	9-2 2	VICAN 10		LIFF V SIGLIFF		52/ 0 : 5.205 04 :	:
1930	GALE EXPANDAPLE	R-2	HICAN 10	1350 IN.A. 775 I N.A.	LIFF V RINGCVI		10 Ne01 1.00 00	:
i y 30	DALE :	• •	CUIP 14		LIr- V Siblir		22/ 0 :	
1931 i	JAIF	: R-2	CDIr 14		LIAE V		20/ U I	
1 1	:	C-1	Crr 14 i	1 //4 1 N.A.	Lir- v	!	1 2517 1 1	1 1
1	I GAIE	: C-1 :	1 Crr< 14 1 1 1	1 12/3 17,4, 1 //4 1 4,6, 1		1257 1 04	1 3no/ U 1 1 c./la u 1 1	
1,3)	: ,A.F. :	: C−1 : ∠ :	: C.12 14 : : :	1 /14 1 5.4.	i Line o i Sioliei i		1 0 Nocl 1 1 co :0c.1 1 1	
1 30 E	L OAIF L	: C-1	: Caip 14 : : :	1 //4 1 4.7.	: [] v : : ::oL[:		1 2.31% 2 1 1 2.31~ 0 > 1	TOTAL STATE
1 1		: 5 : C-1	1 Culp 14 1 1 1	1 1213 14.4.	: _[+=0 :		1 217 01	
1 ;		-	Lir 14 i	1 /14 1	i les vi i las vi i		1 454) I 1 4.5- () I	:
		: 1140 : 2	: 1		1 1 1		; 1 / ; ; 1, ; ;	: :

DIGITAL DEALCH DATA

# 400 E 22 40 4 2 24 p	he he en wa essa :	4 26 94 24 56 22 EE	un es an an an an		IAL TYPE	3//0 2 ME 94	M 22 23 26 27 24 24 26 27	DIL.
KENWKS	* *TES[FD/ : * FAILFU	Sines Level	DATA :	JCI.* * EQUIP. * IFMP. * IYPE		SCHN.		PAKT NU.
	F PART F		IFSI TYPE	FFS: APPL.	PROJECI.			
	1 134/ 1 4 1.345 up 4		LIFF V RINGCYT	135C #N.A. 1/5 1 N.A.	CFPK 14	# NORE #	# GATE # EXPANDABLE	30
	311/ 0 2.84± 05		RINGCAL	135C N.A. 775 N.A.	CDIP 14	NO.IE	GATE EXPANDABLE	93 0
	105/ U 1.05± 05		SIGLIFE L	1500 N.A. //o 1 N.A.	EDIP 14	NONE 2	GATE	y 3 9
	214/ 2 2.14= 05		LIFE V	87C N.A. 7/5 N.A.	5DIH 14	HONE	GATE	y30
	36/ 0 3.60: 04		LIFF V	12/C IN.A. /73 I N.A.	ED1P 14	NONE	GATF	30
	1/4/ 1 1.74: U5	1250	LIFF V	127C +N.A. //o = 1.A.	EDIP 14	NONE	GATE	30
	35/ 0 1./55 04	1500 1008	LIFF U	131C N.A.	CFrK 14	# B-1 #	HUFFER	y32
	36/ 0 3.60= 04		LIFF V SIGLIFE		NICAN 10	H-2	# BUFFER • EXPANDANLE	v32
	397 U 3.90a U4		LIFF V	1350 IN.A.	AICV4 10	# R-2	# HUFFER	32
	211/ Up		: STOPINE :	1500 *11.A. 174 * N.A.	CFrK 14	; C-1	F BOEE¢⊴	/32
TZE:GHADATION	222/ I 3.20± 05		: LIFF V :	131C #N.A.	CirPK 14	: C-1	: HUPFR	¥32
	1507 0 1.50£ 05		LIFE U	150C N.A. 7/4 N.A.	CDIP 14	C-1	: :	v32
	2947 0 2.946 00		LIFF V	1500 FN.A. 7/4 = 11.A.	COLP 14	: C-1	# BUFFFR	137
	21U/ 0 2.10: Up		. F[h)C41	131C N.A.	CDIP 14	C-1	E HUPFFR	y 32
IZUgoka JATion	020/ 1 در 20: در		HIN CMI	1310 IN.A.	CDIP 14	: C-1	# BunhER	y32
	1 \col 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		LT: - V SIGLIFF	1500 IN.A.	CFrK 14	: NONE	# HUFF B # FARANDAMLE	y 32
	1 1/6/ 1 1 1/6/ 1		E LIFF V RINGCUL	130C IN.A.	CHYK 14	* NOne	# GUFFFR # -XFANDAHLD	د{ د
	25/ U = 25/ U = 1		: Linh V : SiGLinh	: //ɔ : i.٨.	CD12 14	: 5 : 40%	# HURFFR # HAPANJABEH	y 12
	1 3.40; v4 4		: LIFF v : HIMCAI		t COIP IA (t multiple	i norrhR i narhlahta	, 42
	1 143/ (1) 1 1.43/ (1)		i i Ling V i Stoline	1 1500 PA.A.	: CDIP 14	1 10.in 1 2	i nuch#R	y,
	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		: : LIF - V : RINGC+1	1310 15.4.	: CDIP 14	1 1 160 m 1 2	i for I HR	νų
	1 57 J 1 1 6.8)- U1		: l.lr= v SloLim	1 150C 1h.A.	: -012 14 1 	: 40 _{th}	1 1 out F-R 1	, } ·
	1 3127 2 1 1 3127 2 1 1 3,12, 05 1		: : LIr= V : !U.LIr+		:	: "() ₁₁ : 2	t turff t	y (/
	1 1)// 0 1 1 () () () ()		: : Lir- v : 21 \ n \ V	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	: FOIP 14	1 .K)10	t t ort.R	. }

A CONTRACTOR OF THE PROPERTY O

TO SHOW THE SHEED BOOK OF THE STANDARD STANDARD STANDARD STANDARD SHEET STANDARD SHEET SHE

のでは、 100mmのでは、 100mmのでは、 100mmのできないのできないできない。 100mmのできないが、 100mmので

OIL OIL		MANUFACT OPERATION	NAL TYPE				ELIABILITY A	NALYSIS CENIER
PART NO.	* PANCLION DEAICE	SCHN.	# PACKAGE/	JCT.* : EGUIP.		s niesa	: #TESIED/ : #FAILED :	HEMARKS
:	:				: TEST : TYPF	 	F PARE F	
: :933	# ARRAY # DIODE	# B-1 # 2	CFPK 14		LIFE V		# 40/ 0 # # 4.00E U4 #	1 1
1933	ARRAY DIODE	# B-1	CFrK 14		LIFE V :	1250 170%	10/ 0 1,40€ 04	
933	EXPANDER	C-1	CDIP 14		STOLIFE V		130/ 0	
933	E XPANDER	C-1	CDIP 14	135C #N.A. 7/4 : N.A.	LIFE V		210/ 0 2.10£ 05	:
933	ARRAY DIODE	C-1	CFPK 14		LIFE V		38/ 0 1.39± 05	:
933	ARRAY DIODE	C-1	CFPK 14		LIFE V		32/ 0 3.20£ 04	:
933	EXPANJER	C-2	CD12 14		LIFF V		105/ 0	:
1933	* ARRAY * DIODE	: C-2	CFPK 14		LIFF V		63/ 0 0.30= 04	
933	EXPANDER	* NONE 2	CDIP 14	1500 N.A. 7/5 1 N.A.	FIFF V		104/ 0 0.60£ 04	:
933	EXPANDER	# NONE	CDIP 14	135C :N.A. //o : N.A.	LIFF V RINGCYT		43/ 0 6,10£ 04	:
933	ARRAY DIODE	NONE	FDIP 14	150C N.A. //4 N.A.	LIFF V		46/ 0 4.60c 04	
¥ y 33	* ARRAY	NONE 2	EDIP 14		LIFF V	085C 85#HH	104/ 2 1.04E 05	
9 33	* DIUDE	* NONE : 2	EDIP 14	135C = N.A. 775 = N.A.	LIFE V		22/ 0 : 2.20m u4 :	
: 935	INVERTER	i A-2	CFrK 14		LIr= V : SIGLIRF :		55/ U 55.50@ U4 5	
: 435 :	INVERTOR	. A-∠ . o	Chrk 14		: LIFE V : RINGCVI		38/ () 3.30± ()4	
1 4 3 5	INVERTER	i NOHe	EDIP 14		LIFF V		22/ U : 2.20ë U4 :	
1935 1	INVERTER	NO.ett	: FDIP 14 :		LIFE V		1047) 11.04e 05	
1 × 17	: INAEKIRK :	* NOME	EDIP 14	1 //s 1 1.A.	LIFF V		1 11/ 0 1 1 1.10± 04 1	
: : > 36	: Luvi⊰T⊑R :	: H-1:	# CFPK 14 :	1 1310 #H.A. 1 //4 # H.A.	r 311/9C41	1 1250 100%	1 397 U 1 1 3,80a U4 1	:
\$ \$930 \$: IsevenTan	1 B-2 1 6	: Chr< 14 :	1500 IN.A.	: LIFE v : : SIGLIFE :	•	1 /2/ 1 1 1 /•20: 04	; ;
; ;y30	: INVENTER	# R-2	: CAPK 14 :	131; -N.A. 7/5 # 4.A.	: HINOCAI		2, 0 i 2,30- u4 i	; ;
1 1 2 36 1	: LuVFRTek	1 C-1	: CDIP 14 :	1500 IN.A.	:		i 143/ 0 i i 1,13= 00 i	; ;
1936 1936	: : Inverter :	: C-1	CD12 14	131C 1N.A.	1 341 APCA1 :	1 1250 130%	: 413/ 1 : : 4.13- 05 :	IZUL GRADATIUN
1 1 \ 30	: InvFRTER	# 10 ivi	I CEPK 14 : I :	1310 IN.A.	: Elm V : dirent	: : [250 [1]] ₄	1 52/ 1 1 1 3.21 194 1	:

TO THE POST OF THE

111 JiC		AANG ACT:					RELIABILITY /	ANALYSIS CENTER
: PArT : 40.		SCHY.		JC1.* : EQUIP.	DATA CLASS.	i infio L=∀HL	* *FESIED/ I	
:					1631 : 17P= :		F PARL F	: : : : : : : : : : : : : : : : : : :
\$ \$936 \$: INVERICH :	: N():1È:	: CFrK 14 :		LIFE V RINGCAL		22/ 1 = 2.2UE 04 =	
¥ y 36	: : INAEKTEK :	: 11011E	CDIP 14		: LIFF V :		1 152/ 0 1 1 1.52% 05 1	
936	: : INALUTER :	* NONE	CDIP 14		LIFE V	125C 130%	1 154/ U 1 1 154≦ U 1	
: : y36 :	: 144FH1=H	. NOHE . O	: CDIS 14		: LIFF v : : RINGCN[: 157/ G: : 1.d2: Up:	
1 1436 1	: : IMAEKTEK :	: NOHE : 0	EDIP 14		LIFY: SIGLIFF:		1 184/ 1 1 1 184/ 1 1 1 184= 1841	
1 1 1 1 1	: IMAEBIEB :	* MONE * O	፥ 5012 14 ፡ ፡ 5012 14 ፡	1	: LIFE V : : HUWLIFE :	HHWCB JGRO	# 830/ 12 # # n.30d ub #	
:	:	t : :	1 1 1	//p i	\$:	! !	# 4847 12 # # 2,426 05 #	
; ;y3/	: INVERSER :	: : C-1 : O	CDIP 14		LIFF U : SCOLIEF :		34/ 7 i	
; ;y3/	: : Id∀ERick :	: C-I	: CDIP 14 :		LIFF U : RINGC'IT :		1 1057 0 1 1 105: 05 1	
; ; y 37 ;	: 194141 u	C-2	: Caip 14 : : Caip 14 :		: KINGCAT :		* 105/ 1 1 * 2.35: 05 4	
193/	: : IMAPHTER :	: 110Hz	FDIP 14	1500 th.A.	LIFF V : SCOLIFE :		1007 0 i	
; ;y3/ ;	: : [HAFHTFH :	: 14)14E	: -DIP 14 :		: LIFE V :	: 1 085С Вэлин 1	1 203/ U 1 2.0ni U 2	
; ;93/ ;	: invherek :	akCH a	: "DIP 14 :	: 134c :N.A. : //ɔ : V.A.	F FINGCAL :			
# #941 #	: 1716 4704 : 1716 4704 :	: R-1 : I	: Chilp 14 :		Lirk V		34/ U 1 3.40- U4	
1741	* FLTP / LOP * MONOS (ABL)	: i1-2 : i	COIP 14	1350 #N.A.	: SIVOC1) ; : [[4c \]		י אין אין אין אין אין אין אין אין אין אי	
1941	FLIF FLOR	: C=1 : 1	CDIP 14		RINGCVI		105/ 11 105/ 11 105/ 11	
1741	FirLIP ELOP Fin MOSTAPLE	* NONE	CMP 14		LIn V : SIGLIN		# 347 U # # 4,40a U4 #	
	FLIF CLOP FAUNCSIARLY	2 10mm	CDIP 14		: RINGCHI	1250 1774	105/ 1 1.15/ 1	:
1941	1 /3/41 1	8-1	CF1 & 14	1300 4%A.	* br 2C11 i	100 100	10/) 1/60 u4	
1,14	: \1}	: 2-2 : 2-2	i orrk 14	1 1500 IN.A.	: List o : : Sallis		# 40/ (# 40/ (
1 y 4-1	: : ->A_i	: : '-2 :	: ::::::::::::::::::::::::::::::::::::	1/2 1 4.A.	: L1:5 V : : Stol.1::		227 0 1 1 2.20 04 1	
1944	# # (+/_{ #	: 1-2	: CO[0 4 : CO[0 4	1 1300 P.A. 1 7/5 F. A.	: 41, 0,41 ; : 114, 4 ; : 114, 4 ;		11/ U i	
1711	\$	C-1	i utra 11 i	1500 Pl.A.	s liet v :		ו לין אול בין אול בין פליל בין בין פליל בין בין פליל בין	TZI PRATALICA E
\$ \range 4 2 5	ALT F	: C-1 : /	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		* Lin- V * 1017 (211)	1 25(* 1)0%	ا (440 د) ا ری ۱440 د)	

ITI *MANUFACTURER
*UPERATIONAL TYPE HELIABILITY ANALYSIS CENTER PART NO. DEVICE * SCHN. * PACAGE/ * JCT.* * EQUIP * CLASS * PINS * IFMP. * TYPE DATA : CLASS. : SIRFSS HEMARKS # #TE5: ED/ # LEVEL # #FAILED # * NO. * CHIP * TEST * GAIES * PROTECT. * DAIE # APPL. PARE IYPE HOURS LIFE U : 125C 130C IN.A. 1944 # GALE C-1 CDIP 14 : 154/ 0 4 /74 1 N.A. RINGCHT : 1.54E U5 # 150C IN.A. LIFE V : 1500 1944 GALE C-2 CDIP 14 1 SIGLIFE : /75 : N.A. 5.20E 04 1944 NONE CFrK 14 1500 IN.A. LIFE V : 150C 35/ EXPANDABLE SIGLIFF : 8.50± 04 1944 CFPK 14 135C 4N.A. LIFE V : 1250 NONE. 407 EXPANDABLE RINGCHT : 8.00E U4 1944 GALE CDIP 14 130C +N.A. LIFE V # 125C 100% NONE 154/ /73 : N.A. RINGCHI : 1.54E 05 1444 GALE EDIP 14 # 1503 IN.A. LIF# V : 150C NONE 34/ STGLIFE : 3.40r. 04 LIFE V : 035C 85AHH 1944 GATE W)Nc **EDIP 14 :** 90C IN. 4. /14 3 N.A. HULLIF : 5.90± 04 1444 NONE EDIP 14 # 130C =N.A. LIFF V # 1250 JALF 195/ 0 //o : V.A. RINJOYT : 1.056 05 1945 A-1 CfrK 14 # 30C + COMBIN FLD U : 025C FLIF FLOR 10/14 : SF N. A. 1 6.78E 05 1 1300 .N.A. LIFF U : 1250 1004 CFrK 14 : 305/ 43 443/DEGKAD4[1] 1945 FLIP rLOP 8-1 //2 1 N.A. RINGCYT : 2.53€ 65 4 of Ir 1500 IN.A. LIFF V : 1500 1 ,45 FLIP FLOR 8-2 CDIP 14 # 49/ 0 SIGLIFE : 4.308 04 /75 : Y.A. LIFF V : 1250 1300 IN. 4. 106/ I FLIF FLOR 8-2 1445 CDIP 14 # /75 3 3.A. RINGCNT : * 1.05£ Jo 1500 IN.A. LIFF V : 1500 1945 FLIF FLOP 8-2 VICAV 10 : /15 : V.A. STGLIFE : 1.105 04 LIFE V : 1250 1350 IN.A. 11/ 0 1445 NICAN 10 # Sair Flor 3-2 175 1 N.A. PINGCHT : 1.13: 04 1345 FLIF FLOR C-1 CFFK 14 1 1500 11.4. LIFF 6 : 1500 //4 + N.A. SIGNIFE # 4.505 04 LIF# J # 1250 FLIF FLOR 1 , 10 0-1 CFrK 14 # / 14 1 V.A. FINGOVE + 3.16: 05 LIFE U : 1500 1500 in.A. 1-45 Full rich 0-1 3012 14 : STOLIFF + //1 1 Y.A. 3.003 05 -Lie ruir LIFE V : 1 - 40 0012 14 1 11: 1 SIGLIFE : 1.145 00 11-= o : 1445 rair rade J. 14 1453 525/ 114 1 4.1. 21130NT : :.20: 05 001r 14 t 1-4 -Livele 1252 1000 224/ 31,500.1 114 : 2.500 00 Lire . 1 1740 FLIF FLOR 30 Ir 14 1573 5.2 = 04 5. Julie 1 Fair FLOR 10,00 1250 13.2 -140011 1 1.10: 04 LIFE V I 1,43 rale rack · ` \= 1250 100% 1.07 05 .- 14 8 1,20 CLIF FU'S

111		MANUFACT	NHEH	DIGITAL DEVICE D	A I A	,	KF1,1 ABIL114 A	MALYSIS CENTER
* LVYL	* DFVICE	OPFRAI ION SCHN.	HAL TYPE PACKAGE/	JCf.* : EQUIP.		: SinE35	* #TESLEN/ 1	HEMAKS
: NJ.	# FUNCTION		CHIP		: CLASS. : FEST	: 	* PAHL !	
8 8 8945	: fLIP rLOP	· _ ·	EDIP 14	: :	LIFE V	 !	t 105/ 0	************
# # #945	FLIP FLOR	: 3 : : NON:	CDIP 14	: //3 : N.A.	RINGCNT	! !	1.05= 05 4	 -
: : :945	# # FLIP FLOP	: 3 : NONE	CDIP 14	: //5 : N.A. : : 135C :N.A.	SIGLIFE :	:	: 2.50€ U4 : : 77/ U :	
: : :946	I I I GAIF	1 1 2 A-1	: : CFrK 14	: //5 : N.A. : : : 29C : COMPIN	FU U	: : U250	3.21a u5 a	
: : :946	: : : GALF	: 4 : R-1	: : CFPK 14		: N.A. : LIFF V	:	4.99± 05 1 40/ 0 1	l
: : :946	: : : GALF	1 4 1 1 R-1	: : Chrk 14	: //4 : N.A. : : 129C : N.A.	: STGLIFE :	: : 1250 107%	# 4.00c 04 F	•
: : : 946	I I I GAIF	: 4 : H=1	: : CFPK 14			1 1250 130%	1./bt:04 1 1 70/ 0 1	! !
# # #946	# # # GALF	: 4 : B-2	: : COIP 14	: //4 : N.A. : : 150C : N.A.	I LIF V	:	# /.60= 04 (# 52/ 0 (t
: : : 440	I I GAIF	1 4 1 C-1	i i i Cppk 14	: //: N.A. : 150c :N.A.	: SIGLIFF V	:	: 5.20± 04 :	:
: : :945	I I I GALF	: 4 : C-1	1 1 1 CFYK 14	: //4 ! N.A. : : : : : : : : : : : : : : : : : : :	: SIGLIFF : LIFF V	፤ ፤ ፤ 1250 - 130%	1.41± 05 1 1 194/ 1 1	: : : TZD:::Gi. AD 41 (u)
1 1 1446	# # # GAIE	: 4 : C-1	: CDIP 14	: //4 : N.A. : : 150 c : N.A.	: RINGCAL	:	: 1.32d up 1 : /d?/ U !	! !
: : : 46	I I I GAIF	: 4 : C-1	: : CDIP 14		SIGLIFF LIFFU	: : 1250		i I TZDEGRADACIO:
: : :946	: : : GALF	: 4 : C-2	: : CDIP 14		RINGCVI	: : 1250	1 12/ 1	! !
: : :946	t t t JΛt⊦	: 4 : Will:	: : CDIP 14		F FIRE A	: 1500	1 1.2/2 US 1 1 2)6/ U 1	; ;
\$ \$ \$Y46	I I I JAIE	# 4 # MONE	t COIP 14			t t 1250 - 190a	± 52// 1 =	! :
: : :947	t GALL	: 4 : 110ac	: : CDIP 14		RINGCVI LIF' V	: : 1250	# 5.27E 05 1 # 3987 1 1	i 1
; ; ;y43	i i rille elde	1 15-1	: : CHMK 14		F LIFE V	: : 1503	1 3.74± 05 1 1 121/ 1 1	! !
1 1 1 4 4 4	i Felir elor	i i H-1	# CHPK 14		Lie V	: : 1250 - 130%	1 1.2/5 05 1 1 /o/ 0	, ,
1,41	i i riir riur	1 C-1	: : Crr< 14		1 Line V	1 15 %	1 133/ UH 1	! !
; ; ; 4 ;	i i stil stile	1 (-1	1 1 Chrs 14			1 1250 1304	1 1.43 · Up 1	: !
1 1 1941	i Fritti (10e	i i li')et	i i Chrk 14	: 150, :11.A.	# 1.165 V	t (5)	1 35/ 0	:
: : ,4 (rull mLOr	t in	: : ChrK 14		1 5161 fer 2 L161 v	1	ま 1.67、04 (ま つ2/) (ま 5.7)・ い	! !
1 1 1 × 4 (i Ja i ruli rlor	1	t UrrK 14	1 /75 1 1.A. 1 150 1N.A. 1 /0//3 1 1.A.	t LIFE V	1 1 140) 1)um	1 113/ U	
1 1 > 4 (: ::(11+ rLO2	:	1 1 . Fr & 14	1 1303 N.A	: Linf v	1 1 12% 109%	1 (15/)	!

ITT DiL		MANUHACI DPFRATIC					dellast ist en	Arrib Centin
PART NO.		SCHN.		JCI.* : EQUIP.	DAIA CLASS.	SIRFS5 LEVEL	* #TESIED/ :	KEMAKKS \$
:							: SPAC :	:
: : y49 :	: : GATE :	: : B-2 : 4	CDIP 14		LIFF V SIGLIFE		: 11/ 0: : 1.10± 04:	\$ \$ \$
: :	: GATE :	t t H-2 t 4	CDIP 14		LIFE V RINGCNT		: 11/ 0: : 1.10E U4:	:
1949	GATF	NONE	CDIP 14		. IFE V		93/ 1 : 1,10£ 05 :	; ;
# #949 #	GATE	NONE 4	CDIP 14		LIFF V		105/ 0 : 105/ 0 :	1
1 1950 1	# # FLIP FLOP # No	: : A-1 : 2	CFrK 14	26C + CUMHIN 1 10/14 + 5F	: - LD U : - N.A. :	U25C	1 / 0 1 1 3.576 U4 1	:
1 1 y b C	: FLIP FLOP : Ho	NONE 2	CFrK 14	1500 #N.A. 772 # N.A.	Lire v SioLire		93/ 0 9.30± 04	:
: 950	42 +FILA EFU& 1	NONE	CFPK 14	12HC #N.A. 7/2 # N.A.	LIFF V		134/ 1: 1.34: cu	
1951	FLIP FLOP MOMOSIARLE	A-1	CtrK 14	290 1004HIN 10/14 SE	rLD U N.A.	025C	3,576 05	
‡951 ‡	* FLIF FLOP * MONOSIABLE	H-1	CFrK 14		Lift V		20/ 0: 4.00± 64:	:
:951 :	* HTTP HTOP	2 R-1	CFPK 14	1290 IN.A.	LIFE V RINJONT		: 38/ 0 : : 3,80≟ ∪4 :	:
#951 #	# FLIP FLOP # MOMOSIABLE	C-1	CDIP 14		Lire V SiGLIFE		# 45/ 0 # # 4.50= 04 #	:
1951	FLIP FLOF	C-1	CDIP 14	135C IN.A. 774 I N.A.	LIFF V RINGCNI		160/ 0	:
1961	GATE	C-1	CFFK 14		Lire v SiGLire		1 45/ 0 1 1 4.57= 04 1	1
1901	GATE:	(-1 2	CEPK 14		LIFF U KINGCNI		11/ 0 1 1,102 04 1	:
1961 1	GATE	C-1	COIP 14		LIFF U SIGLIFF		1 1.817 U	: :
#961 #	F GATE	C-1	CDIP 14		LIFF U : RINGCVI		1 2847 0 1 1 2.845 00 1	1
#901 #	GATH E	C-2	COIP 14		HINGCAL		1 21/ 1 1 1 2.105 04 1	1
1401	GATF	NOde:	CDIP 14		Lire v Slotir		1 /1/ 0 1 1 /.10m 04 1	:
# yol	GATE	NONE 2		128C IN.A.	RINGCAL	1250 170%	102/);	1
1462	1	4-1 3	CHPK 14	10/14 # Sr	N.A.		11./3. 00 1	; ;
1962	3 - λΓΕ 2	⊧ h=1	Cfrk 14	1500 *N.A.	i llr⊆ V i SiGl Int i		1 20/ 0 1 1 2.00 - 14 1	; ;
1962	: ',ATI	H-1 3	CFrK 14	126C #N.A.	LIF+ V I PIMOCVI	11250 110%	1 34/ 1	; ;
962	: 6 \T :	-2 ,	CDIr 14	1260 18.4.	FI 'V		11/ 11	: : :
112	I JATI I	(-I	Cer v 14	//1 : 1.4.	Lire u Sublire		1 5 - 14 1	: :

a a as a salano en como en com

IT:		*MANUFACTURER *OPERALIONAL TYPE			KELIABILITY A	WALYSIS CSNIER
# PART # NO.	* POACTION	# SCHN. # PACAAJE/ # CLASS # PINS	# JCT.* # EQUIP. # DH'A # 1FMP. # 1YME # CLAS		* #TESTED/ *	
1	1	* NO. * CHIP * GAIES * PHOTECI.	: IESI : APPL. : IESI : DAIE : ENV. : IYPE		PARI PARI P	:
1 1962 1	: GATE	1 C-1 1 CFPK 14	# # # # # 128C #N.A. # LIFE # //4 # N.A. # MINGC	v + 125C 130x NT +	88/ U 8 6.30E U4 8	
1962	GATE	C-1 COIP 14	1500 N.A. : LIFF 7/4 N.A. : SIGLI	U : 150C FE :	369/ 0 4 4.3/E 05	
y62	GATE	C-1 CD1P 14	128C N.A. LIFF 774 N.A. RINGC	U 125C	1009/ 1 1.03: 00	ROTT/GANOmini
962	GATE	C-2 CDIP 14	1260 N.A. LIFE	V = 1250 HT	1037 1 1.03€ 00	
962	GATI	NONE CDIP 14	1500 IN.A. LIFF 10//2 N.A. STGLI	V 1250 100% FE	1847 () 1.84€ ∪5	:
1902	GATE	NOwn COIP 14	1500 IN.A. LIFE	V : 150C FF :	143/ 1 1.43≝ ∪p	,
1902	GATE	NOME CDIP 14	1 1280 14.A. 1 LIFF 1 //4 1.A. 7 RINGC	V = 1250 170% VT =	1020/ 1 1.01- 06	1/UEGRAPALIUN :
1962	# GATE	* NONE * EDIP 14	1 1500 IN.A. 1 LIFF	V : 150C	75/ 1 7.50c U4	:
1462	# UATF	* NONE * EDIP 14	1280 FN.A. 1 LIFF 1 //4 N.A. 1 RINGC	v 1250 170%	105/ U 1.05± Up	
1403	# GATI-	* NONE * CD1P 14	# 1500 #N.A. # LIFF # //o # N.A. # STOLE	20c1 # V	9// 0	:
;yo3	GATE	NONE COIP 14	12nd 111.A. : Linf 7/0 : N.A. : RINGC	V = 1250 -IT =	1 /e/ 1 1.05 vs	
1963	GATI-	* 309E * EDIP 14	1500 M.A. LIFF 7/2 N.A. SIGLI	00c1 V 150C	/5/ U /•၁/:: U4	
1 yo3	GATE:	1 NOan 1 HOIP 14	1 12dC 1N.A. 1 LIFF 1 //2 1.A. 1 RINGC	V 1250 1004	: 105/ 1 : 1.05: 05 :	:

WALASIS CENTE	FLIABILITY					*MANUFACT *OPERATIO		DIT
	#TESIED/ #FAILED	SIRESS		.* : EQUIP. P. : 144E		SCHN.	DEVICE	PART NO.
	PARI :		TEST TYPE	i : APPL. E : ENV.	CHIP PROTECT.		1	
	/ 0 : 3.64E 04 :	0000 000	KEL U	3C CUMMČTN /2 GB	CFPK 14	B-1	: GATF	1907
	/ 0 i 2,87≝ ∪3 i		FLD U	3C *COMMETN 73 * AI	CFPK 14 GLASS		GATE	1907
	/ 1 1.82£ 04	-055C 070C 1 84CYC 2.2G	REL U TCVIAPC	BC COMMCTN 72 GB	CFrk 14 GLASS		GATE	1912
	/ 0 1 1.44E 03		PLD U	BC #COMMCTN 73 # AI	CFPK 14	# R-1 # 4	GATE	1912
	57/ 0 : 5.70£ 04 :		LIFF V STGLIFE		CDIP 14 GLASS	* NONE	FLIP FLOP	163
	110/ 0 1.10± 05		LIFE V REVBIAS		CDIP 14 GLASS		FLIP FLOP	063
	294/ 0 1,27£ 05		LIFE V REVBIAS	SC :N.A. 71 : N.A.	CDIP 14 GLASS		FLIP FLOP	063
	260/ 0 1.05£ 05		LIFE V STGLIFE	50 IN.A. 71 I N.A.	CDIP 14 GLASS	1 4	GATE	068
	104/ 0 5.20£ 04		LIFE V SIGLIFE	OC :N.A. 71 : N.A.	CDIP 14	* NONE * 4	GATF	663
	150/ 0 9.76E U4		LIFE V REVBIAS		CDIP 14	* IX)NE	GATE	068
2/DeGradafic	/!4/ 2 3.18E 05		LIFE V RINGCNT	DC :N.A. /1 : N.A.	CDIP 14 GLASS		GATE	063
	42/ 0 4.20± 04		LIFF V REVBIAS	IC IN.A. /1 N.A.	PHDIP 14	1 4	GATE	600
	40/ 0 3.91£ 04		LIFE V RINGCNI	IC N.A.	PHDIP 14	NONE 4	GATE	668
	109/ U 1.04£ U5		LIFF V REVRIAS	OC IN.A.	CDIP 14 GLASS	* NONE	FXPANDER	069
	186/ 0 1.75= 06		LIFF V	4C IN.A. /I N.A.	CDIP 14		GATE	071
	5.70≟ U4		LIFF V STGLIFF	5C IN.A. / N.A.	CDIP 14 GLASS		GATF	0/2
	97/ U :		LIFF V	-114/14	CDIP 14 GLASS		GATE	0/2
	110/ 0: 1.10: 05:		LIFF V	/I + N.A.	CDIP 14 GL/.SS	1 4	GATF	012
	49/ U : 4,60± U4 :		LIFF V I	C = N. A	OIP 14 to SS to 1	1 2	# GAIE # EXPANDABLE	073
	214/ U :	:	LIFF V :	PC = N.A.	FOIP 14 : GLA.5 :	* NOne :	GATH	d46
	/ () i 4.08h u4 i	025C #	FLD U	BC + COMBIN		* A-1	# Humffix	932
	5.400 04 1		CALBEC :		CFrk 14 & GLAS5 #	10	: COUNTER : DECADE	5 38
	/ 0 : 4,31= 03 :			BC =COMMCIN (CFPK 14 #	1 0 t	: COUNTER : DECADE	y }d
	/ 0 :	-05°C 070C 3	46L U #	12 1 GH H 3C 1CO /MCIN H	CFPK 14 1 GLASS 1		: COUNTER : RIPPLE	y 39

de en entre entre de la completación de la completa

OLGITAL DEVICE DATA

HOTOROLA	·	*MANUHACI *OPERATIO			 		REILIARILIIY	ANALYSIS OF THER
PART :	DEVICE FUNCTION					SIRFSS LEVEL	: #TESIFU/	
1 1			CHIP :			:	# PARI # HOURS	i :
	COJNTÉR R IPPLE	# R-1	# CFPK 14 #GLASS	73C 12/73	: : FLD U : OPERACE		: : / 0 : 4.315 03	
1940	INVFRIER		CFPK 14 : GLASS		RELL U TOVIRPO	# # -0550 0700 # 640YC 2.23	* / 0 * 3.04± 04	
940	INVERTER				: PLD U		2.87E 03	
1945	FLIP -LO2		CFrk 14	34C 73//4	FLD U	025C	: / U : 1.53± U5	
949	I .IVER CER		CHPK 14	33C 13/74	FL') U	: : U25C :	9.13± 04	
	rLIP rLOR ACAOSIABLE		CFPK 14	30°C 13/14	* FLD U * N.A.	025C	1 / 0 1 3.000 04	
1961	GNIF		: CFrK 14 (: JLASS (30C 13/14	* • i=LD U • N•A•		: / U : 2.74£ U4	
1402	JAIF		: CHPK 14 :	290 13/14	 : : PEO U : N.A.	: : U250; :	i / 0 i /.14= 04	-

*MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER NOT REPORTED * SCHIL * PACKAGE/ * JCT.* * CLASS * PINS * IEMP. * DEVICE FUNCTION DAFA : CLASS. : : FAILED : STRESS REMARKS PART * IEMP. * TYPE LEVEL : APPL. * NO. * CHIP * TESI * GAIES * PROIECL. * DAFE PARE *iYPE* LIFF U # GALE X N.R. 14 # 444/ 6 #9046 IN.A. /72 : N.A. RINGCHT : 6.75E 04 135C IN.A. /72 I N.A. LIFE U . 736/ 51 **#930** GALE X N.R. 14 125C RINGCHT : 1.24E 05 135C *N.A. LIFE U . BUFFER N.R. 14 125C 1932 2.385 05 RINGCHT : 135C IN.A. /72 I N.A. LIFE U -:933 GALE N.R. 14 EXPANDABLE RINGCAT : 3.235 04 FUIP FLOP 135C +N.A. LIFE U : 1286/ 30 1945 N.R. 14 /72 1 N. A. EINGCNI : 2.165 05 GALE 135C IN.A. LIFE U : 1120/ 87 1946 N.R. 14 /72 : N.A. 1.886 05 RINGCHT : 135C IN.A. /72 I N.A. FLIP FLOP LIFE U : 1250 :948 N.R. 14 RINGCYT : 8.082 04 135C 1N.A. //2 1 N.A. GALE LIFF U . 125C 1962 N.R. 14 1.46E 04 RINGCHT : FLD U : 050C *N/R EXPANDER C-1 CFPK O 60C *CONTROL 3.00E 06 71/73 # NS5 N.A. OC CONTROL FLD U : 0500 GAFE C-1 CFPK 14 EN/R 1.67E 0/ 1/73 : 1155 N.A. *N/R GALE C-1 CFrK 14 60C *CONTHOL * FLD U : 0500 3/APPLICATION 3.71E 07 C-1₂ 60C *CONTROL * FLI) U # 050C *N/R GALF CEPK 14 I/APPLICATION 1.72: 08 NS5 /1/73 / 5 t 2/APPLICATION 6.94£ U6 # 60C *COV[hOL * FLD U : 0500 3/APPLICATION C-1 IN/R GALE CEPK 0 3.02: 07 C-1 **CFPK 14 :** 60C CONTROL : FED U : 050C # FLIP rLOP *N/R 3.14m 07

PHILCO DIL				DIGITAL	DEALCE (λ1 <i>F</i>			
22 22 22 22 2		AANUHACI OPERALIO			- 2× 2 2 2 5 4 5	: 22 24 22 22 22 28	ER ES ES ES ES ES R:	YILJIFALLIN	A.IALYSID CEI
PART NO.	* OFVICE * FUNCTION	# CLASS	PI.CKAGE/ (JCI.* :		DATA :	s Livel	: flesifu/ : ffailfu	
:	! !		PROIECI.	if5i U√lt i		LEST I	: : 	# HONY2 # BAY1	: :
: ≉¤63∪ :	# GAIF	# 8-1 # 2	: Crty 14 :		: ::::::::::::::::::::::::::::::::::::	LIFF U :	1250 100a	: 353/ 1 : 1.75£ US	: : I/DEGRADA: : OF Icex
1 10091 1	# # GAIF #	: : R-1 : 2	CFPK (4)	135C	: N. A. 	LIFE U	125C 1004	: 393/ 2 : 2,176 05	: -
‡ ≠oo∺2 ‡	i GAIF	# # P-1 # 2	: Crr& 14 :		•	LIFF U	1250 100%	# 350/ - # 1,70± up	
\$ \$6643 \$: : FLIP FLOP :	: H-1	: CFrK 14 :	1350 1 172 1	: :N.A. : N.A.	LIFE U	1250 107.	1 769/ 10 1 3,60± 05	: :10/bE(#ADAI : b-Ir, I-
#bod4	: GAIF	: ا B-1	: CFrK 14 :	135C	t		1250 100 ₄	:	: 1-VOLIAJ :10/b=G(A)Aj : 0-Ir, 1-
1 1 1 3 0	# GALF # GALF	t t H-1 t 2	: CFFK 14 :	135C	:	: :	: : 1250 101%	: 35/ 0 : 1./oi: 04	: 1-VOLTA3
# # y 32	# EXPANDABLE # GOFFEM #	t t B-1 t 2	CFPK 14	t 1350 t	:	t :	1 1250 190%	1 1957 U 1 4.75£ U4	:
: :9930 :	# GAIF # EACANDABLE	1 1 X 1 2	: :			: L'FF U :		: : 35/ U : 1.75~ U4	
: :	: :	1 1	! !	: :	! !	I SIAL FH !		± 30 0 0 30 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0	; ;
: : y930	: : GAIF : LAMANDARLC	: X	:	: 1350 : : //1 :		LIFE U :		: : 35/ 0 : 1.75: 04	
1 1 1	1 1	:	: : : : : : : : : : : : : : : : : : :	: : : :	: :	: SCAL =4 :	02 oC,	; 35/ () ; (),	: : :
19932	BUFFER BUFFER BUFFER	; ; X ; 2	: Frk 14 : :SIO2 :	1350 I	: !N.A. ! Y.A.	: LIFE U : : RINGCH :	: : 1290 170%	# 35/ 0 # 1,/5± 04	: :
:	1	1	i :			I SIAL AP I	1	; ; 35/ 7 ; 0,	: :
‡ ‡9932	i suff-Ra		: : Fr< 14 : :5132				1250 100m	1 /5/ U 1 /52 U4	
:	# PXPANDABLE	1 2	131.72	: :	: :	STAL EN	: U253	# # 39/ ()	:
1 444	1 SACE		FPK 14 1	1350	N. A.	LIFE U	1250 1704	: 0. : 35/ 0 : 1./2: 04	
:	: -APANDAHL:	: 2 :	1 1	: :	t 1	RINGCNI I	1 1 USOC	1 35/ U	:
19944	* GAIF		FPC 14	1 139U 1	: Βιε. Α.	: Link U	: : 1253 - 17)	\$ \$ 33/ ·)	
1 1	t GA NUANLU t	: 2	10102	: :	: !	* 1V1 1 1	i), ',	# 1.75 ,4 # 357 U	: :
1 1 1 ////)	1 1 cult (LOF		rrk 14	: : : : : : : : : : : : : : : : : : :	N. 3.	LIFE U	1850 1000	1 35/ 1	
1	1 J ₁ , 1		; ;	: :	! !	# REPORT #	i i 5250	1 1./1-01	: :
:	1	: :	i 1 - FeK 14 o	135C	17.4.	: LIEC U : : RESCH :	: 1250 - 190	1 ()/ () 1 ()/ ()	
: : : : : :	* FLIT (LOW)		ا دا ادا						

	PHILCU DTL	-FORD	*MANUFACI						RELIABILITY ANAL	ASIR CEATER
:	PART NO.	* DEVICE		PACKAGE/				Siress Level	# #FAILED #	REMARKS :
:		:		: CHIP				: :	≠ PARi ≉ ≠ HOURS ≠	:
199	945	FLIP FLOP	* X				: LIFE U : RINGCYT	125C 10U%	35/ 0 : 1.756 04 :	:
:		* *	:			:	STAL EY	025C	35/ 0	
199	945	FLIP FLOP	: X : 3	FPK 14 :			LIFE U	125C 100%	: 35/ 0 : : 1.75£ 04 :	:
:		:	:	:	:	: :	STAT EK	025C	35/ 0	
9	962	GALE	X 3	FPK 14			LIFE U	125C 100%	35/ 0 : 1./5E 04 :	:
:			•	:		•	STAT FM	025C`	35/ 0:	i :
: 99	962	GAIF	X 3	FPK 14			LIFF U		35/ 0: : 1.75£ 04:	;
:			•	:		: :	SIAL EM	025C	35/ 0 :	
99	962	GALE .	X 3	FPK 14			LIFE U	125C 100%	35/ 0: 1./5c 04:	:
:		:		:	, f :	• •	STAT EN	025C	35/ 0 :	
		1	:		•		:	:	1	

755. # 1 T T	E CLASS. TEST TYPR FLO FLO N.A.	: TYPE : APL. : EAV. : EAV. : CO IBIN : SF : CO48IN : SF : CO48IN	TE 4P. TEST DATE 35C 73/74 35C 73/74 35C	PACKAGE/ PINS CHIP PROTICT. ***********************************	CLASS ROS GATES A-1 A-1 A-1	E DEVICE FUNCTION	# PART # NO.
1 290 1 000 1 000 1 000 1 000 1 000	* TYPE * FLD * UNA.	* EAV. *CO (BIN * SF *CO4BIN * SF *CO4BIN	35C 73/74 35C 73/74 35C 73/74	# PROTTCT. #M/GFPK 14 #GLASS #M/GFPK 14	# GATES	. BINARY	213
10 000 10 000 11 3 545 A. 1	FLD	*CO 18IN * SF *CO 481N * SF *CO 49IN	35C 73/74 35C 73/74 35C	#GLASS # #M/GFPK 14	: 1 : A-1	. BINARY	213
1/4 545. A. 7 B J2 ,	# 57 % 4 # 1 1 1	CO481N F SF CO491N	35C 73/74 35C	#MZGFPK 14			:
A. + : :1: J2:	i V.A.	*C0491N	350		: 3	GATE	216 1
	T LED -		1 73/74	#MZGEPK 14 #GLASS	# A-1 # 3	FLIP FLOP	275
•	H.A.	CO43IN	35°C 73/74	IN/GEPK 14	# A-I	GATE EMPANDABLE	: :231
U ‡ 0256 A. ₹		COARIN	35C 73/74	#W/OFPK 14 July 83	: A-1 : 3	GATE	236
U 1 0250	# N.A.		: 73/74	#RZEPPK 14 TRACS	* A-1	GATE	*246 !
			35C 73/74	#WZGFPK 14 #GLASS	. \-1	: G/TE : EXPANDABLE	: :26;
. (1 ± 025) A • ±	: V.4.	CO GIN	35C 73/74	#M/GFF 14	*	SATE	265
() (025) A.	* F',D (*CO'13IN * SF	35C 73/74	PERCEPT 14	. √ . √	GATE	:230
U : 0250			1 73/74	#M/GF9K 14	* 4-1 * 6	GATE	296
82C # 34C		1 33 1 33	: 78C : /72	# CHEPK 14 #GLASS	R-1	BUFFER EXPANDABLE	932
□ 1 ∓ 0500 ΔΓ = ∓	1 FLD 1 TARBOO :	COMMET'S	99C 72/73	# CMFPK 14	8-1	* BUFFER * EXPANDABLE	932
. II # -059 BPC # 940	F LCAIREC	# COMMOT:	94C 1/72	#MZGFPK TA #GLASS	: 8-1 : 20	: FLIP FLOP : JK	1994
3PC + 940	: REL :	COMMCT	94C 772	#M/GFPK 1	# B-1 # 20	* FLIP FLOP * JK	1994
U # 0500 ALE #	FID (*CO AMCT	: 74C : 72/73	IM/OFPK 14 IGLASS	# B-1 # 20	FLIP FLOP	1794
A. : 1	### N.A. ###################################	CO GIN TO SE CONSIN SE COMMENT AI COMMETT GB COMMETT COMMETT	: 73/74 : 35C : 73/74 : 35C : 73/74 : 78C : 78C : 78C : 72/73 : 94C : 72/72 : 94C : /72 : 94C : /72 : 74C	#M/GFPK 14 #GLASS #M/GFPK 14 #GLASS #CHFPK 14 #GLASS ###################################	3 A-1	GATE GATE GATE BUFFER EXPANDABLE BUFFER EXPANDABLE FLIP FLOP JK FLIP FLOP JK FLIP FLOP	

A CONTRACTOR OF THE PROPERTY O

SIGNETICS DTL *MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER PART NO. DEVICE FUNCTION # JCT.* # EQUIP. # TEMP. # TYPE DATA CLASS #TESTED/ : #FAILED : STRESS LEVEL REMARKS * NO. * CHIP * TEST * GATES * PROTF'T. * DATE TEST TYPE # APPL. PART HOURS 35C *COMBIN 70/74 * SF 1106 **EXPANDER** #M/GFPK 14 FLD U : 025C 1.05E 06 150C :N.A. 72/72 : N.A. NONE 2 **#106** EXPANDER #M/GFPK 14 LIFE V 40/ 0 150C 72/72 STOLIFE 4.00E 04 40/ 0 150C :N.A. 72/72 : N.A. 40/ 0 4.70E 04 GATE EXPANDABLE NONE 1 +110 CFPK 10 LIFE V 150C SIGLIFE 40/ 0 *N.A. 40/ 0 4.00E 04 GATE 133C 11 71/72 1 2111 NONE 2 #M/GFPK 14 LIFE V 125C CNST OP 40/ GAT E EXPLINDABLE 150C IN.A. 72/72 I N.A. NONE 2 #M/GFPK 14 LIFE V 150C 40/ STOLIFE 4.00E 04 40/ GATE EXPANDABLE 17.A. 1 N.A. 40/ 0 4.00E 04 133C 71/71 1112 NONE #M/GFPK 14 LIFE V 125C CNST OP EM 40/ 0 126C N.A. 72/72 N.A. #115 GATE NONE 2 #M/GFPK 10 40/ 0 4.00E 04 LIFE V 125C CNST OP EM 40/ 0 129C : 72/72 : LIFE V 40/ 0 4.00E 04 :116 GATE #M/GFPK 14 NONE 125C EXPANDABLE EM 40/ 0 0. NONE 8 LIFE V STGLIFE 40/ 0 4.00E 04 1124 FLIP FLOP 150C 71/71 *M/GFPK 14 * N.A. 150C EM 40/ 0 FLIP FLOP NONE #M/GFPK 14 150c LIFE V 40/ 150C 71/71 STOLIFE 4.00E 04 EM 40/ 40/ 0 4.00E 04 1124 FLIP FLOP 150C 71/71 NONE *M/GFPK 14 *N.A. * N.A. LIFE V 150C STGLIFE EM 40/ 150C IN.A. 71/71 : N.A. 1124 FLIP FLOP NONE *M/GFPK 14 LIFE V 150C 40/ 0 4.00E 04 STGLIFE ЕМ 40/ 0

SIGNETICS

THE PARTY OF THE P

*MANUFACTURER *OPE-ATTONAL TYPE

RELIABILITY ANALYSIS CENTER

PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/	JCT.* TENP.	EQUIP.	DATA CLASS.	STRESS LCVEL	* #TESTED/ * * #FAILED *	REMARKS
	: :		CHIP PROTECT.	TEST DATE		TEST TYPE		PART HOURS	
1.4	FLIP FLOP	* YONE	は/GFPK 14	150C		LIFE V		# 40/ 0 4 # 4.00E 04	
	: :	:	\$ 1 \$ 1		: :	EM		49/ 0	
124	FLIP FLOP	SACH B	#M/G. ⁷ PK 14	150C 72/72		LIFE V		# 40/ 0 # # 4.00E 04 #	
	: :	:	: :	: :	: : :	EM :		40/ 0 :	
124	FLIP FLOP	NONE B	# ************************************	150C 72/72		LIFE V STGLIFE	150C	# 40/ 0 # # 4.00E 04 #	
	: :	:	: :	: : :	: : :	: EX		40/ 0	
124	FLIP FLOP	NONE 3	M/GFPK 14	150C 72/72		LIFE V	150C	# 40/ 0 # # 4.00E 04 #	
	: :	:	: :	: : :	: :	: E4		40/ 0	
124	FLIP FLOP	: NONE : 8	M/GFPK 14	150C 72/72		LIFE V	150C	4.00E 04	
	:	:	: :	: :	:	: E4		40/ 0	
124	FLIP FLOP	NONE R	W/GFPK 14	130C 73/73		LIFE V	125C	45/ 0 : 4.502 04 :	
	:	1	1	: :	: :	: EV	: :	45/ 0	
124	FLIP FLOP	NONE	W/GFPK 14	130C 71/71		LIFE V	125C	40/ 0 4.00E 04	
	: :		, 1 1	: :	:	: CV	: :	40/ 0	
124	FLIP FLOP	1 N)NE	M/GFPK 14	1300		V BALL	125C	40/ 0 4.00E 04	
	1		:	! !	:	E4	• •	40/ 0	
124	FLIP FLOP	NONE	4/OFPK 14	1300 171/71		FIEL V	: 125C	: 40/ ↑: :4.70€ ∩1:	
	:		:	: :	:	: 21 :	: :	3.40/ 0	
124	FLIP FLOP	1)AE	PVOEPK 14	1300	N. \.	LIFE V		49/) 4.00£ 04	
	i :		:	! !	:	: 51 :	:	10/ 0	
124	SLIP FLD2	2P(P)	CEPK 10	150 ¢ 73/73		LIF" V		45Z 9 1 4.50F 04 1	
	: :	:	i i	: :	:	1 1 4 1	: :	10.45/ 7	
150	4 FLIP FOP 4 19 O MARL	1 1944 1944	PAZGEPK 10	1310 17/77		LIFT V DYA OP	# 1350 #	1 10/ 0 1	
	:	:		: :	:	:	t •	467) :	

*MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER SIGNETICS DEVICE FUNCTION * SCRN. * PACKAGE/ * CLASS * PINS #TESTED/ ##FAILED # PART NO. DATA CLASS. STRESS LEVEL REMARKS # JCT.* # TEMP. # * NO. * CHIP * GATES * PROTECT. * TEST APPL ENV. TEST PART HOURS FLIP FLOP MONOSTABLE #M/GFPK 14 40C #COMBIN FLD U 025C :161 N.A. 6.14E 05 40/ 0 4.00E 04 LIFE V *161 FLIP FLOP NONE ##/GFPK 14 125C N.A. MONOSTABLE DYN OP E٩ 40/ 140C IN.A. 71/71 I H.A. LIFE V *161 FLIP FLOP *M/GFPK 14 125C 40/ 0 4.00E 04 MONOSTABLE DYN OP ЕМ 40/ 0 140C IN.A. 72/72 I N.A. FLIP FLOP NONE 2 LIFF V #M/GFPK 14 125C 40/ 0 :161 MONOSTABLE DYN OP 4.00E 04 E٨ 40/ 0 129C :N.A. 72/72 : N.A. 40/ 0 4.0CE 04 NONE 3 **170** GATE *M/GFPK 14 LIFE V 125C CNST OP 43/ N.A. 180 NONE *M/GFPK 14 129C 71/71 LIFE V 125C 40/ 0 4.00E 04 GATE CNST OP EM 40/ 0 1290 IN.A. 12/72 IN.A. NONE *M/GFPK 14 LIFE V 1250 40/ 0 :180 GATE 4.00E 04 40/ 0 0. 150 C :N.A. 72/72 : H.A. 40/ 0 4.00E 04 1316 GATE NONE NICAN 10 LIFE V 1500 EXPANDABLE 72/72 : STGLIFE 40/ 0 SDIP 14 29C *COAPUTR 73/75 * GBC FLD G : 1.91E 05 : 380 GATE NONE 025C N.A. 25C *CO38IN 70/74 * SF FLD U : 025C £731 **EXPANDER** ۸-- ۱ M/GFPK 14 7 0 8.58E 05 CHK O 33C #COMMOTN 70/71 # GB 18415 GATE *4/GFPK 14 030C 1.20E 04 -055C 072C 241CY2.2G83% REL Q / 0 4.56E 04 18415 75C + COMMOTN GATE *M/GFPK 14 CCAIBEC B-!₂ PEL Q TCVIBPC -055C 072C 241CY 83% 19415 GATE *M/GFPK 14 *COMMCTN / 0 1.40E 06 FLD G 4.01E 03 53C + COMMCTN 72/73 + AI 19415 #M/GFPK 14 050C GATE 32C # CHK U OPERATE *CORACT 4 18415 GATE CFPK 14 0300 3.01E 03 G3 :8416 GATE EXPANDABLE #M/GFPK 14 33C + COWNCT + 73/71 + GB CHK U 0300 5.41E 04 33C #C0 HCT# 18416 GATE *M/GFPK 14 7 7 3.118 04 EXPANDABLE

THE TRANSPORT OF THE PROPERTY OF THE PROPERTY

				DIGITAL	DEVICE 9	ATA			
SIGNE DIL PART	*******	MAN JFACT OPERATIO SCRN.		======= : JCT.#	EQUIP.	######################################	18 NE 2 NE	ELIABILITY A: * TESTED/ :	IALYSIS RE4/
* NG.	* FUNCTION		: CHIP		: APL.	TEST		: PAGI :	
:	! 		PROTECT.	 :	:			HOURS :	
#8416 #	# GATE # EXPANDABLE	‡ 2 ‡	:	: 70/71 :	: 33 :	* CALBEC :	241CY2.23831	: :	
#8416 #	# SATE # SXPANDABLE #	: 2		1 70/71 1	\$ 3'}	* LCAIBLC :	241CY 53%	5.99E 04 :	
#9415 #	# GAIE # EXPANDABLE	: B-1 : 2	*'!/GFPK 14 *	33C 72/73	*CO 14CT.I	: "LD 3 : : I.A. :		1.70E 04 :	
#8415 #	# GATE # EXPANDABLE #	: B-1 : 2	: CFPK 14	: 32C : 70/71		* CHK U F		5.013 03 i	
19424	FLIP FLOP	1 A-1 1 4	*4/GFPK 14	30C 72/74		: FLO U		7.73E 04	
19424	FLIP FLOP	8-1 4	MZGFPK 14	35C 73/71	CO AACT V	* OPERATE :	1 030C	6.715 04	
8424	FLIP FLOP	B-1 4	*1/3FPK 14			CHK O	• 030C	/ 0 1.59E 05	
: :8424 :	FLIP FLOP	# 8-1 # 4	#M/GFPK 14	: 77C : 70/71		FCVI6PC	: -0550 0720 : 2410Y 83%	/ 0 i	
# #9424 #	: FLIP FLOP : RS	: B-1 : 4	# #W/GFP% 14 #	: : 77C : 70/71			: -550 0720 : 2410Y2.23934	: /) : : /) : : / 17E	
, 18424 1	FLIP FLOP	1 B-1 1 4	1 13/GPPK 14 1	: 550 : 72/73	CO LICTA	: FLD 3:		:	
# #8424 #	FLIP FLOP	2 B-1 2 4	: CFPK 14		: G3	# CHK U : # OPTRATE		: / 0 : : 1,50F 01 :	
: :8424 :	: FLIP FLOP : RS		1 1/2/GFPK 14			: FLD G :		: /): : 3.32E 03:	
# #9424	FLIP FLOP	: : 3-2	MZGFPK 14	: 300	*CO '1CT ;		: 035C	; / / ; ; 2,11:01:	
8455	JAT':	8-1	: : %ZGFP:/: 14	: : 330	CO VICE!	1	: : 7300	: /) : : 2,10° 04 :	
\$ \$9455	# GATE	1 1 B-1	: :'3/GFP< 14	: 33C	#CO47CT4	: CIK O	: : 0300	: / 0:	
: : 8455	: BATE	: 3-1	: :MZGFPK 14	: 750	# CO 14CT.4	REL O	: : -0.60 0720	: 2./1F 04 : : : : : : : : : : : : : : : : : :	
: : 3455	: ; : GATE	5-1	#1/GFP< 14	; ; 75C	#COPMOT I	: : (FL)	: -355C 372C	: / () :	
: : :3155	: : GAT [©]	7 1 3-1	: 4/GFPK 14	1 1 530	#CO WCT1	: FLD 3	: 0500	1 / 1	
1 1 19455	I I I JATF	# 2 # 3-1	: : CFPK 14	:	1	: JK U	: : 0310	: 2.019 03 : : /) :	
: : 3470	# # # 3ATC	1 3-1 1 5	1 1 (ZGFPK 14	:	:	*)P -RALT :	:	: 3.) : 3	
: 3470	: : BATE	1	: : 11/GFPK 14	: 73/71 :	: 33 :	: 05.94L	: :	: 3.31 11 : : /) :	
# # #947.)	# BATE	: 3 :	:	: 73//I	1 /3 1	# PERATE	1	· 1.21~)1 :	
:	:	1 3 1	:	: 70/71 :	; ;·	: CALIACL :	1 2110(2) 23/37/37	: 1, 3 - 15 :	
13470 1	I SAT"	: 3	:	# 70/71 #	1)H 1	* (S/I P) :	# 2410Y #25 #	1 /. / 1 - /5 1 1	
#317.) #	: 3A1		#WZJePC 14			F PLD 0		: / う: : 1.40~04 :	

SIGNET	rics	*MANUFACTURER *OPERATIONAL TYPE			R	ELIABILITY ANA	LYSIS CENTER
PART NO.	* DEVICE * FUNCTION	# SCRN. # PACKAGE/ # CLASS # PINS	JCT.* EQUIP. TEMP. TYPE			#FAILED #	REMARKS :
:	: :	* NO. * CHIP * GATES * PROTECT.	TEST : APPL. DATE : ENV.	TEST TYPE		PART BHOURS	:
# #8470	GATE			OPERATE		/ 0 : 6.01E 03 :	:
8480	GATE		27C + COMBIN	FLD U		/ 0 4.67E 04	•
8480	GATE	B-1 M/GFPK 14	70/71 * GB	CHK U		/ 0 1.53E 05	
8480	GATE	B-1 :M/GFPK 14	70/71 # GB	* OPERATE	0300	/ 0 = 1.62E 05 =	:
8450	GATE	B-1 M/GFPK 14	74C COMMCTN	REL O	•	/ 0 6.28E 05	
#8480	GATE			REL Q		/ 0 1.89E 07	:
8480	GATE	B-1 M/GFPK 14	1 72/73 1 AI	FLD G		/ 0 5.41E 04	:
8480	GATE		31C COMMCTN 70/71 GH	CHK U		/ 0 9.025 03	:
38481	GATE	B-1 #M/GFPK 14	: 70/71 : GB	CHK U		/ 0 9.02E 04	1
8481	GATE	B-1 N/GFPK 14		CHK O		/ 0 9.32E 04	:
8481	GATE	B-1 M/GFPK 14			-055 072C 241CY2.2G83%	7 0 3.61E 05	:
8481	GATE		74C COWNCTN 70/71 GB		-055C 272C 241CY 83%	/ 0 1.09E 07	1
*8481 *	GATE	B-1 #M/GFPK 14		FLD G		/ 0 : : 3.10E 04 :	# # #

ATAC SCIVIC MATERIA

SPRAGU	IE 	*MANUFACTO						RELIABILITY ANALYSIS CENTE	R
PART NO.			PACI'AGE/ PINS					* FTESTED/ * REMARKS * FFAILED *	\$ 1
:	1		SHIP PROTECT.				; ;	PART : HOURS :	:
:5141B	: GATE	# A-1 # 2	FPK 10	33C 70/14		FID J	7 • 025C	3.57F 04 :	:
5161	GATE	A-1 2		350 70/74		FLD U	1925C	2.49F 0F	1
5162	GATE	A-! 3	FPK 14	350 10/74		FLD U	0250	4.23E 05	:
5171	GATE	4-1	FPK 10	350 70/71		FLD U	. 035C	7.145 04	:
1 15191	GATE	:	# FPK 10	35° 7/7:	COMBIN SF	* FLD U	025C	2.19E 05	:

					DIGITAL	DEVICE DA	NTA			
	STEWAR DTL	WARNER	* XANUFACTO * OPERATION					,	RELIABILITY AN	TASIS (
	PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/ PINS		EQUIP.			#TESTED/ # #FAILED #	REMAR
	:	: :	* NO. * GATES	CHIP PROTECT.		APPL.		: :	PART : HOURS :	
!	*708	# FLIP FLOP	* NONE	CFPK 14	80C 72/73	*COMMCTN :	-		1 / 2 1 1 4.77E 06 1	
		GATE	NONE	CFPK 14	1500		LIFE V	: : 160C	1 15/ 0 1 1 1.50E 04 1	
	1930	GATE	NONE	: ("FPK 14	135C		LIFE V	1 125C	71/ 0 : 7.10E 04 :	
	# #930	GATE	NONE	CFPK 14	800	:	: FLD U	* 070C 100%	7.10E 01	
	•	INVERTER		CFPK 14	•	*COMMCTN	:	070C 100%	: / 0 : : 2.12E 06 :	
r 1	2 2946 2	GATE	NONE	CFPK 14		*COVMCTN	FLD U	: 070C 100%	/ 0 : 2.12E 06 :	
	: :950	FLIP FLOP	* NONE	CFPK 14	: : 80C	1 1	FLD U	: 070C 100%	2.12E 00 : : : : : : : : : : : : : : : : : :	
 	: :962 :	GATE	NONE	4 1 CFPK 14	: 80C	# COMMCTN	FLD U	3 070C 100%	/ 0 : 5.30E 05 :	
ì										

DIT	I,ISTRUMENTS	*MANUFACT *OPERATIO				*** *******	***********	KELINDICIII AN	ALYSIS CENTER
PART NO.	DEVICE FUNCTION	# SURN. # CLASS	PACKAGE/				STRESS LEVEL	#TESTED/ : #FAILED :	REMARKS
: :	1		PROTECT.	TEST DATE		TEST TYPE	! !	PART HOURS	
15930	# GATE # EXPANDABLE		EDIP 14		N.A.	LIFE V		80/ 1 1.76E 06	
15830	GATE EXPANDABLE		EDIP 14 GLASS			LIFE V		17(/ 2 # 3.68£ 05 #	
15846 15846	GATE		EDIP 14			LIFE V		170/ 2 3.72E 06	
15846 1	GATE	: 4	EDIP 14		1.A.	LIFE V		332/ 1 5.60E 06	
: :15933 :	EXPANDER	* A-1	CFPK 14 CFPK 1	35C 70/74	COMBI!	FLD U	025C	/ 0 1.42E 05	
: :15944 :	GATE EXPANDABLE		CFPK 14 :	27C 70/74	COMBIN SF	FLD U		/ 0 1.42F 05	
115945 1	FLIP FLOP	: A~I : 3	##/GFPK 14 #GLASS	28C 70/74	: : CO'(BIN : SF	# FLD U		2.78E 06	
1 15945 1	: FLIP FLOP : JK	: X	: FPK 14 :		: :N.A. : J.A.	LIFE U	: 125C 100%	35/ 0 1.75E 04	
: :	: :	:	1 : : : : : : : : : : : : : : : : : : :		: :	STAT ER	: 025C	35/ 1	
1 15945 1	FLIP FLOP	: : X : 3	FPK 14 15102	135C 771		LIFC TRINGCHE	125C 100%	35/ 0 1.75F 04	
: :	:	:	1 1 1		: : :	STAT EX	025C	35/ 0	
15945 15945	FLIP FLOP	; X	# FF'\ 14 #ST02	135C 771		: LIFE U		35/ 0 1.75E 04	
:	:	:	1	: : :	: :	STAT EM	1 1025C	35/ 0	
: :15945 :	FLIP FLOP	: : (: 8	: FPK 14 :SI02	: 135C : /71		LIFE U	: : 1250 170% :	35/ 0: 1.758 0:	
: :	:	: :	: :	: :	: :	KE TATE	: 025C	35/ 0	
ŧ ∔15945 ŧ	GATE	: 1-1 : 4	# CFPK 14 #GL153	: : 280 : 70/74	# #C0/3IH # SF	: FLD U	: : 0?5C :		
: :15952 :	; ; JATE ;	: \+1 : \-1	CFPK 14 GLASS	: : 270 : 70/74	# #00'931.1 # SE	1 (10); 1 (1.A.)		1 / 0 :	
‡ ‡15962 ‡	JATE	: (: 3		: : 1350 : 771	: :N.A. : '.A.	F FILOSAL	* 1550 F10%	34/); : 1.70° 01;	
:	1 1 1	: :	: :	: : :	: :	FALLE	: 72.5C	34/ 0	
: :15942 :	ATF	; X ; X	# FPC 14 #3102	: : 1350 : 771	: :.i :	i tre q i trecti	# 1250 T003	357 3 i i 1,751 34 i	
:	: :	: : :	t t	: : :	: :	: : : : : : : : : : : : : : : : : : : :	: 12,7	1 3y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
#156 * * * * * * * * * * * * * * * * * * *	: 141	: : % : 3	: FPK 14 : FPK 14		: :	: (1400.1)	: 150 1505	: 50/ 7: -1-1-/ 04:	
;	:	: :	-	: :	1 1 1	# 14 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : 12 gr	: 1 / 1 / 1 i	
# #4745	i elle Bibb	: : -1	1 1 / m ² (11 1 (1)	1 1 1/23	‡ 400 0		2 1 15 C	1 / 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

TEXAS DTL	I.ISTRUMENTS	*MANUFACTURER *OPERATIONAL TY	PE .			RI	LIABILITY	ANALYSIS CENTER
	DEVICE FUNCTION	: SURN. : PACK : CLASS : PINS	GE/ : JCT.+ : TEMP.	EQUIP.	DATA CLASS.		#TESTED/ #FAILED	REMARKS :
:	:	# NO. # CHIP # GATES # PROT			TEST TYPE	: :	PART HOURS	; ;
5300	FLIP FLOP	A-1 M/GFP 4 GLASS	(10 : 35C : 70/74	- 017-117211	FLD U		/ 0 2.14= 05	
9097	FLIP FLOP	8-1 M/GDI 16 GLASS		COUBIN AI	FLD U		/ 1 2.10E 04	: : : : : : : : : : : : : : : : : : :

HUITAL DEVICE DATA

VARIOUS DTL	; 	*MA LIFACT!					:	RELIABILITY A	NALYSIS CENTED
PART	DEVICE FUNCTION	: SUR 1. : : C'_ASS :	PACKNOF/ PINS			DATA CLASS.	* STRESS * LEVEL	* *TFSCED/ : *FAILE:) :	
: :	 		PROTICT.		: A.PI : FIV.		: :	: PART : : 2500b :	:
	GATL EXPLUDABLE	: 3-1 : 4	FPK 15	74/75	: : 7A)AR :	FLD 3		1 /) 1 1 1.845 0 1	
3, 3	SATE EXPANDABLE	; ; - 1	FP< 16	91C 73/73			-0550 0710 320Y2.30 56%	2.792 03	:
323	DATE EXPANDABLE	# R=1 # 4 i	FPK 15	310 73/74			-0340 0710 300Y1.30 504	3,347 04	:
1932	3UFr:ER	‡ χ ‡ 2	FPK 14	500 52/72	CO IPUTR	FLD J JPERATE		2.516 05	:
1933	EXPANDER :	# B-1	FP(14		CO ' (CT)	PEL 'J	-0550 0700 340YO 2.20	5.45= 01	:
1233 1	EXPANDER	# B-1 # 2	FP(14	500 72/73		FLD 'I		4.31F 03	
1935	I AVERTER	# B=1 # 6 #	FPK 14		€00 40T . 33	PST II	-0.50 0700 340YC 2.23	2.70E 05	:
1936	INVERTER	3-1 3-1	FP< 14	602 12/73		FLD J		7 0 1.53E 04	:
914	GATE GXPA IDABLE	B-1 2	FPK 14	1'775	* 24)4.2 * AIU	FLD 3		1.051 0	
1944	37TE CXPAJDABLE	B-1	FPK 14	31C 73/73			-0550 0710 32072.23 563	5.130 03	:
1944	DATE EXPANDABLE	B-1	FP.C 14	710 73/74			-0:1; 0710 800Y1.3; 50,	/) 5.21E 01	:
251	FLIP FLOP MOJOSTABLE	X	FPK 14	700 52 /2		FLD U		/ n	:
1932	JATF	3-1	FPK 14		CO ' CT I		-3 11 01 01 00 -3 11 01 01 00	1.46100	:
:952	GAII	: B-1	FP C 14)b 1471 bfn 1		: 1.15° 04	:
1942	υ \T ′	: /	₹P€ 14	-		(PL) :	ß ć.	: / 1 : : 3,39	: : :

	WESTIN UTL	IG.1	OUSE		NUFACT PERATIO			 	_	 				RE	LIABILITY	A!	NALYSIS CENTER
:	PART NO.		DEVICE FUNCTION				PACKACE/ PINS 1						STRESS LEVEL		STESTED/ SFAILED		REMARKS :
:		;					CHIP PROTECT.								PART HOURS	:	:
‡ ‡2!	13		FLIP FLOP	:	A-1	:	CMFPK 14	35. 70/74		:	FLD U		025C	:	/ 0 1.54E 05		:
121	16	:	GATE	:	A-1 3	:	CMFPK 14	35C 70/74		1	FLD U	:	025C	:	/ J 2.25E 06		:
122	25		FLIP FLOP JK	:	1-1 ₃		CMFPK 14	35C 70/74			FLD U	:	025C	:	2.04E 06		:
‡ ‡2:	31		GATE EXPANDABLE		A-1 ₂	:	CUFPK 14	35C 70/74		:	FLD U	:	025C.	:	/ 0 5.42E 06		:
‡2: ‡	36	:	GATE	:	A-1 ₃	:	CMFPK 14	35C 70/74		:	FLD U	:	025C	1	/ 0 1.235 06	_	:
: :24	46	:	GATE	:	A-1 4	:	CMFPK 14	35C 70/ 4		:	FLD U	:	025C	:	/ 0 3.47E 06		:
12·	56	:	GATE	:	A-1 ₄	:	CMFPK 14	35C 70/74		:	FLD U	:	025C	:	/ 0 2.67E 06		: :
129	36	:	GATE	:	A-1 6	:	CMFPK 14	35C 70/74		:	FLD U	:	025C	:	7 0 3.69E 05		:

FAIRCHILD		• M	ANUFACT		250					RELIABILITY AHALYSIS CENTE							
ECL						TYPE			 			manufacti minerata vente					
PART NO.		EVICE UNCTION		SCRN. CLASS		PACYAGE/ PINS		JCT.* TEMP.			DATA CLASS.	:	STRESS LEVEL		FAILED :	REMARKS	
	:			NO. GATES		CHIP PROTECT.			APPL. ENV.		,	:		;	PART : HOURS :		
0109	GAT	E	:	NONE 2	:	CDIP 14	:	131C /73	I.A.	:	LIFE V REVBIAS		1250 100%	:	54/ 0 : 8.10E 04 :		
116	GAT	E	:	NONE 2	:	CFPK 14	:	150C /72	i.4. ii.a.	:	LIFE V STGLIFE		1500	:	39/ 0 : 3.80E 04 :		
116	GAT	E	:	NONE 2	:	CFPK 14	:	149C /72	N.A.	:	LIFE V REVBIAS		125C 100%	:	52/ 0 5.20E 04		
126	GAT	E	8	NONE 2	:	CFPK 14	:	149C /72	л.А. N.А.	:	LIFE V REVBIAS		125C 100%	:	104/ 0 1 1.040 05 1		
32 1	GAT	E	:	NONE 4	:	CDIP 14	:	135C /73	i	*	LIFE V REVBIAS		125C 100%	:	54/ 1 : 5.40E 04 :		
03	GAT	E	:	NONE	:	CDIP 16	:	150C /72	۱.۸. ۱.۸.	:	LIFE V STGLIFE		150C	:	99/ 0 : 9.90F 04 :		
03	GAT	E	:	NONE	1	CDIP 16	:	135C /72	N.A. N.A.	:	LIFE V REVBIAS		1250 100%	:	148/ 0 : 1.48E 05 :		
10	FLI	P FLOP	:	NONE	:	CDIP 16	:	150C /72	1.A.	:	LIFE V STGLIFE		150C	:	52/ 0 : 5.20E 04 :		
10	FLI	P FLOP	3	NONE	:	CDIP 16	:	135C /72	₹.A. .J.A.	:	LIFE V REVBIAS		125C 100%	:	52/ 0 : 5.20E 04 :		
5002	GAT	E	:	NONE 2	:	CDIP 16	:	1300 772	۷.4. ۸.۸.	:	LIFE V REVBIAS		125C 100%	:	52/ 1 : 5.20E 04 :		
5109	GAT	E	:	NONE 2	:	CDIP 14	:	131C /73	N.A 5.A.	:	LIFE V PEVBIAS		1250 100%	1	54/ 0 : 8.10E 04 :		
513	GAT	E	:	NONE 2	:	CDIP 16	:	135C /73	N.A.	:	LIFE V REVBIAS		125C 100%	1	54/ 1 5.40E 04		
528	FLI	P FLOP	:	NONE	:	CDIP 16	:	135C /73	۱۰۸۰	:	LIFE V FEVBIAS		125C 100%	1	270/ 0 : 2.70E 05 :		
5:190	: COU	NTER	:	NONE	:	CDIP 16	:	1350 773	N.A. il.A.	:	LIFE V REVBIAS		125C 100%	:	48/ 0 : 7.20E 04 :		

MOTOROL ECL		#MANUFACT #OPERATIO					RELIABILITY AN	ALYSIS CENTER
* PART :	DEVICE FUNCTION	SCRN. CLASS		JCI.* : EOUIP. : TEMP. : TYPE	DATA CLASS.	STRESS LEVEL	* #TESTED/ * * #FAILED *	REMARKS #
			CHIP PROTECT.	TEST : APPL. : DATE : ENV.	TEST TYPE		PART HOURS	:
10101	GATE	NONE	CDIP 16	35C *COMPUTR 73/75 * 3BC *	-	025C	: / 0 : : 2.90E 06 :	:
10102	GATE	NONE 4	CDIP 16	35C *COMPUTR : 73/75 * GBC	FLD G	025C	1 / 0 1 1.56E 05 1	:
10104	GATE	NONE 4	CDIP 16 PSG	39C : COMPUTR : 73/75 : GBC	FLD G		2.61E 05	:
10105	GATE	NONE 3	CDIP 16	33C COMPJTR 73/75 GBC	FLD G		1.04E 05	:
10107	GATE	NONE 3	CDIP 16	37C COMPUTE 73/75 JBC	FLD G	025C	/ 0 : 3.47E 04 :	:
10109	GATE	NONE 2	CDIP 16	30C COMPUTR 73/75 GBC	FLD G	025C	/ 0: 6.25E 05:	:
10110	GATE	NONE 2	CDIP 16	40C : COMPUTR 73/75 : GBC	FLD G N.A.	025C	/ 0 1.74E 04	:
10111	GATE	: JONE : 2	CDIP 16	40C *COMPUTR 73/75 * GBC	FLD G	02 5C	/ 0 1.74E 04	:
10131	FLIP FLOP D	NONE		48C COMPUTR 73/75 GBC,	FLD G	025C	/ 0 3.13E 05	:
10133	LATCH BISTABLE	NONE 30	CDIP 16	502 COMPUTR 73/75 198C	FLD G	025C	/ 0 6.95E 04	:
10136	COUNTER	ЭИСИ	CDIP 16	88C + CG :PUTR 73/75 + GBC	FLD G	025C	2.61E 05	:
10145	ИЕMORY RAM	NONE	CDIP 0	88C COMPUTR 73/75 GBC	FLD G	0250	1.04E 05	:
10161	DECODER	NONE 12	CDIP 16	75C *COMPUTR 73/75 * GBC	FLD G		7 0 5.216 04	:
10162	DECODER	NONE 12	CDIP 16	75C COMPUTE 73/75 GBC		025C	3.47E 04	:
10164	NULTIPLEXER	NONE 12	CDIP 16	56C COMPUTR 73/75 JBC	FLD G	025C	6.08E 05	:
10173	MULTIPLEXER	NONE 33	CDIP 16	53C + COMPUTR 73/75 + GBC	FLD G	025C	/ 0 : 6.95E 04 :	:
10174	MULTI PLEXER	NONE 12	CDIP 0	58C *COMPUTR 73/75 * GBC		025C	/ 0: 3.82E 05:	:
101/9	GENERATOR	NONE 12		50C COMPUTE 73/75 GBC	FLD G		3.47E 04	:
1201	GATE	B-1	CDIP 14		L'FE V		9/ U 9.00E 03	:
1201	GATE	B-1	CDIP 14	772 # N.A.	LIFE V REVBIAS		30/ 0 3.00E 04	:
1201	GATE	NONE	CFPK 14	142C #N.A.	LIFF V		10/ 0 1.00E 04	:
1201	GATE	NONE	# CDIP 14			0250	/ 0 8.34E 05	:
1204	GATE	B-1 2	# CDIP 14		LIFC V		9/ 0 × 9.00E n3	:
1204 1	GATE	# B−1 # 2			LIFE V REVBIAS		30/ 0 : 3.000 04 :	t t,

MOTOROE		IANUFACT	11055	DIGITAL	DEVICE DA	NTA	.	ELIABILITY AN	IAI VCIC A
ECL.	\$ () 1 20 00 00 12 14 15 15 15	PERATIO	NAL TYPE	JCT.*	* EQUIP.	DATA :		ecindiciii Ar eessesses sess : #TESTEC/ :	REMARI
* NO. 1			* CHIP		* APPL.		~ ~~~~~	PART :	
! ;			PROTECT.	 I	* ENV.			HOURS #	
#1204 #	GATE		CDIP 14 F			LIFE V STGLIFE		70/ G . 6.92E 04 :	
#1204 #	31A, 1		# CDIP 14 : #GLASS		COMPUTE S GBC			4.33E 06	
#1206 #	GATÉ	NONE 2	CDIP 14 PSG	30C 73/75	COMPUTR GBC			1.74E 94	
1207	GATE	B-1 3	CDIP 14		*N.A. * N.A.	LIFE V		9/ 0 9.00E 03	
#1207	GATE	B-1 3	CDIP 14		*N.A.	LIFE V		29/ 0 2.90E 04	
1207	GATE	NONE 3	CDIP 14		COMPUTE CBC	FLD G		/ 0 5.38E 05	
1209	GATE	NONE 3	CDIP 14		C MF JTR GBC	FLD G		/ 0 1.04E 05	
1210	GATE	8-1 4	CDI 14 GLASS		N.A. N.A.	LIFE V		9/ 0 9.00E 03	
: :1210 :	GATE	B-1 4	CDIP 14		: :N.A. : N.A.	LIFE V REVBIAS		29/ 0 : 2.90£ 04 :	
; ;1210 ;	GATE	NONE 4	CDIP 14		*COMPUTR * GBC	: FLD G : N.A.		: / O: : 8.96E 06:	
1 11211 1	: GATE	NONE	CDIP 14	:	#COMPUTR	FLD G	025C	: / 0 : : 1.55E 06 :	
: :12:	I I GATE	NONE 4	# CDIP 14	1	*COMPUTR			: / 3 : : 1.81E 06 :	
11213	· ·	B-1	# CEPK 14	# 89C	*COMMCTN	1	: -055C 070C	: / 0 : : 3.64E 04 :	
1	: FLIF FLOP	: B-1	# CFPK 14	: 69C	*CO-MCT-I	1	• 050C	1 / 0 1 1 4.3 IE 03.	
: !1215	:	* NONE * NONE	# CDIP 14	\$	*COMPUT?	FLD G	: : 0250	1 / 0 1 1 5.38E 05 1	
11:16	# SLIP FLOP	t RONE	# CFPK 14	: 146C	: :::		# 1250	1 14/ 0 1 1 1.40E 04 1	
i :1.16	raffrendb r	: : 40Nm : R	: CD1r 14	1	* COMPUTR	FLD G	: 025C	1 / 0 1	
11227	t the rise	I NONE	CDIP 14		#COMPUTS	FLD 3	: : 0250	1 / 0 1 1 5.285 25 1	
11325	:	i DHE	: CDIP 16	: 42C	* *COMPUTR	: FLD 3	: 025°	· / 0 · · · · · · · · · · · · · · · · ·	
: :1 24	-	: 3000	DIP 14		#COAPUTR	rLD G	₽ ₽ 0250	: / 1 4	
; ; ;{?}}	1 1 /AT1.	: 5 : Diff	: : CDIP 14		#COMPUTR	FLD U	: : 0250	1.740 05	
: : :1 ` { }	t JATt	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CDIP 14		# #COMPUTA	FLD G	* 1250	1.275.06	
1 1 1 142	: : FLIP FLOP	400 i	: CDIP 16	# # 430	#COMPUTA	: '1.A. : FLD J	# 025C	1 4.25F 01 1	!
# # #1231	FILTP FLOR	# 15 # ###E	# P50	1 13/75 1	ま JBC ま	I N.A.	1	: 4.85E 06 :	:
:	1	1 5	1 PS/	1 /3/7-	1 1			# 1.73E 05 1	1

HOTOROLA

MANUFACTURER
OPERATIONAL TYPE

RELIABILITY ANALYSIS CENTER

ECL	١.	PERATIO	NAL TYPE						
PARI :		SCRN. CLASS	PACKAGE/ PINS	JCT.* TEMP.		DATA CLASS.		#TESTED/ #FAILED	
-			CHIP PROTECT.	TEST DATE		TEST TYPF		PART I	:
1238	DECODR/DEMUX		CDIP 14	40C 73/75	* COMPUTR : * GBC		_	/ 0 i 1.34E 05	:
1240	LATCH BISTABLE	NONE 29	CDIP 14	50C 73/75	# #COMPUTR GBC	FLD G	025C	/ 1 2.47E ()5	:
1242	DECODER	HONE 9	CDIP 16	50C 73/75	COMPUTR GBC	FLD G	0250	/ 0 5.55E 05	
1243	DECODER	NONE 8	CDIP 14	46C 73/75	COMPUTO GBC	FLD G	025C	/ 0 1.56E 05	:
1246	GENERATOR	NONE 7	CDIP 14	46C 73/75	COMPUTO JBC	FLD G	025C	. /) i - 2.26E 05	
1247 1	GATE	* 4 * HONE	CDIP 14 : PSG	38C 73/75	*COMPUT? * GBC	FLD G	025C	: / 1 : : 1.45£ 06 :	: : : : : : : : : : : : : : : : : : :
#1248 #	GATE	NONE 4	CDIP 14	38C 73/75	CO IPUT? GBC	FLD 3 :	025C	3.65E 05	: :
*1259 *	* ADDER * FULL *	* NONE * 12	CDIP 16 PSG	63C 73/75	#COMPUTR # GBC #	FLD G:	025C	: / J : : 4.955 04 :	
*1661 *	: GATE :	# B−1 # 2	CFPK 14 GLASS		#RADAR # AIU #	FLD G : N.A. :	: :	3.75E 03	
*1661 *	# GATE #	: B-1 : 2		73/73		TCVIBPC	-055C 071C 32CY2.2G564	3.84E 02	
:1561 :	: GATE :		# CFPK 14 #GLASS	960 73/74	#RADAF # VIU #		: -054C 071C : 800Y1.3650%	4.60E 33	:
:1563 :	: GATE :	* B−1 * 4 *	# CFPK 14 #GLASS	74/75	* \$ACA9 * AIU *	FLD G	: : :	: / 1 : 1.12E 04	: 17 0P54 : : :
11563 1	: GATE :	:	1	73/73	FRADAR F AIU	: TCVISPC	1	: / 0 : : 1.15 03 :	: : :
:1463 :	: GATE	: 3-1 : 4 :	1	73/74	1	: CCVIBPC	-0540 0710 - 300Y1.3050%	: /) : : 1.38E 04 :	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
#1671 #	FLIP FLOP		:	73/73	:	: TOVI 3PC	: -0550 0710 : 320Y2.2056%	: /): : 1,15E 03 :	1
#15/1 #	FLIP FLOP	:	:	: 73/74 :	:	FCVIBPC	: -054C 071C : 30CY1.3G30.	: / 0 : : 1,39 04 : :	; ; ;
#350 # #	: GATT : :	: JONE : 2 :	SEASS	: 1593 : 771 :	: 1.1.	: LIFT V : STOLIEF :			TOTATACH STOLEN
*360 *	JATT:	: 1011d : 2 :	: 3777 10 :31 A 55	1340	11.A.	: TIFE V : TIGOTO			I OTTACACCECT I OTTACACCECT I DETENTACE I SCENTEST VO I

-	PLESSE ECL	Y	*HANDIFACTUR *HOTTAKEGO*		 				ANALYSIS CENTER
:	PART NO.	DEVICE FUNCTION	# SURH. # # CLASS #			DATA CLASS.		* TESTED/ * #FAILED	
:		:	# MAD. # # GNTES N	CHIP :	: APPL. : ENV.		:	* PART * Hours	: :
:	3502	E COUNTER	: 8-1 : : 4 :				: -054C 055C : 83CY2.2G67;	# / 0 # 4.00% 03	

*MANJFACTURER *OPERATIONAL TYPE SIGNSTICS ECL RELIABILITY ANALYSIS CENTER DEVICE FUNCTION PART NO. * SCRN. * PACKAGE/ * JCT.* * EOUIP. * CLASS * PINS * TEMP. * TYPE DATA CLASS. STRESS LEVEL * #TESTED/ *
* #FAILED * REMARKS * NO. * CHIP * TEST * GATES * PROTECT. * DATE APPL. TEST TYPE PART HOURS 45/ 0 4 4.50E 04 10105 GATE NONE CDIP 16 132C #N.A. LIFE V 125¢ 73/73 : :I.A. CHST OP 84 45/) 0. LIFE V 130C # 72/72 # 1/ 0 7.00E 03 :10109 GATE NONE CDIP 16 *%.A. 125C ΕA INDELIA ILL BOIXO LIFE V NONE 2 125C 43/ 0 3.70E 04 10109 GATE CDIP 16 1300 #N.A. 72/73 # 31.A. E٦ I/DEL74 lee 43/ 1 150 C :N.A. NONE 2 CDIP 16 *10111 GATE LIFE V 150C 62/ 0 1.245 05 STOLIFE EX 62/ 0 NONE 2 CDIP 16 139C ±1 72/72 ± LIFE V 45/ 0 9,70% 04 10111 GATE 125C CHST OP 2/DELTA ILL DELTA VIO 163C *N.A. 74/74 * N.A. LIFE V 45/ 0 4.50E 04 :10131 FLIP FLOP NONE EDIP 16 1250 34 45/ **#10133** LATCH NONE 38 CDIP 15 151C : 1.A. 74/74 : 1.A. CHEE V 1230 45/ J 4.50E 04 5.1 45/ 3000 in.A. 74/71 i i.A. LIFE V CDIP 16 49/ 1 1.90° 01 BRCH 300C **#10141** SHIFT RESIST 74/71 ā 1 OLEGGT SEALS HONE 12 **#10154 SULTIPLEXER** CD15 12 150 C = 1.1. 74/74 = N.A. LIFC V STOLIFE 1500 47/ 0 9,40# 04 0.47/ 1: 5 1 17 OP' 1 : 1.A. : 1.A. :10164 AUL'LI BLEXEU 354E 12 CDI2 15 # 1510 73/73 LIFE V 125C 4ン/ 0 いいこうしょ CARL US J. 45/ 1510 = 1.A. 73//3 = 4.A. 447 0 1.76E 00 11)HE 12 110154 HULTIPLEXER CDI2 13 LIFE V 1250 C 131, Ob 41/ ŋ. 36,3E LIFE V £10164 SEXELIGITION CDIS 13 1250 45/) 4.50: 04 5.4 45/ n.

THE PROPERTY OF THE PROPERTY O

ATAC BUILDED JATE IC

	SIG.IET		TA DEACT						RELITATION A	MALYSIS CERTIR
:	PART :	FUNCTION DEVICE		PLUS					* \C 4767 IV :	
:		; ;	: 1). : J\T'S	CHIP PROTECT.	123T	: 42L. : EIV.	1631 1947	:	1 25 CF 1 1995	:
: : :	0164	ANITA LEXES	: : TRIE : 12				: : LIFE V : DYJ OP	125C	: 17/ 0 : 9,40% 04 :	
:	:	: : :	:	: :		: : :	: : 64	: :		I/)TITA IIn
: :1	0171	DECODR/DEMUX	# .1385 # 13	CDIS 18	1530 73/73		: 1164 A :		: 467 7 : 2.201 01	
:	:	: : :		: :		: :	: : ½', :	; ;		10) A14(N)
: :1	0174	: AULTIPLEXER	10 HE 12		!510 74/74		LIFE V		2 22/ 7 2 2.20° 04	
:	;	: :	:	:		: :	: F.4	: :	22/ 7	
1 1	7174	: WLTIPLEXER	3 HCK: 1	EDIP 16	171C 71/74		: LIFE V : : 243T OP		* 467 0 * 9.20E 04	
:		: : :	:	: :		: : :	: - 現代 :	; ; ;	# 45/ 1	; ;
: 1	0231	: : FLIP FL02 : D	# 13 H	E COLVIA			: LIFE V : : 3631 32		* 45/ 7 : * 4.50E 04 :	
:		; ;	:	: :	: : :	:	: : :	1	45/ 0	; ;

Reproduced from best av. ilable copy.

AMERICAN MICRO SYS *MANUFACTURER PMOS **OPERATIONAL TYPE

RELIABILITY ANALYSIS CENTER

PART NO.	* DEVICE * FUNCTION			JCF.* : EQUIP. TEMP. : TYPE			* #TESTED/ : * #FAILED :	RE JARKS :
:	:	NO. GATES		TEST : APPL.			PART : HOURS :	:
2470 *	DIVIDER FREQUENCY	# NONE # 26	SDIP 14		: .IFE V : .TGLIFE :		: 73/ 0 : : 7.30E 04 :	:
2470	DIVIDER FREQUENCY	NONE 26	SDIP 14		LIFE V :	125C	133/ 0 1.33E 05	: :
2470	DIVIDER FREQUENCY	NONE 26	SDIP 14		LIFE V	085C 35%RH	53/ 0 : 5.30E 04 :	:
2470	DIVIDER FREQUENCY	NONE 26	CMDIP 14		L!FE V	150C	15/ 0 : 1.50E 04 1	:
2470	DIVIDER FREQUENCY	NONE 26	CMDIP 14		LIFE V : CNST OP :		25/ 0 : 2.50E 04 :	:
2470	DIVIDER FREQUENCY	NONE 26	CMDIP 14		LIFE V :	085C 95%RH	15/ 0 1.50E 04	:

	COLLINS PMOS	S RADIO	*MANUFACT *OPERATIO			RELIABILITY ANALYSIS CEVTER				
:	PART No.	DEVICE FUNCTION	SCRN.	PACKAGE/			DATA CLASS.		* #TESTED/ * #FAILED	REMARKS :
:	1			CHIP PROTECT.		APPL.	TEST TYPE	; t	* PART * HOURS	: :
: 3	51-807	ADDER	# HONE				LIFE V	125C 100%		PART NUMBER : 351-8076-011 :
:3	51-807	ADDER	NONE	M/GFPK 34			LIFE V DYN OP	125C 100%		PART NUMBER : 351-8076-011

FAIRCI PMOS		*MANUFACT *OPERATIO						RELIABILITY .	ANALYSIS CENTER	
FART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/	JCT.* TEMP.		DATA CLASS.	STRESS LEVEL	• #TESTED/ • #FAILED		:
	:		CHIP PROTECT.	TEST DATE				PART HOURS	: :	:
3100	GATE	* 8	SDIP 16			LIFE V	125C 100%	38/ 1 3.80E 04		:
3101	FLIP FLOP	NONE	SDIP 16			LIFE V	125C 100%	22/ 0 2.20E 04		:
3101	FLIP FLOP		CMDIP 16			LIFE V	1250 100%	52/ 0 5.20E 04		:
3102	GATE	* j	NICAN 10			LIFE V	1250 100%	204/ 0 9.74E 05		:
3700	SWITCH	* NONE	FPK 14		* *N.A. * H.A.	LIFE V	1250 100%	55/ 0 8.25E 05		:
3701	SMITCH	# I	CMFPK 14			LIFE V STCLIFE		: 34/ 0 : 3.40E 04		:
3701	SWITCH	* NONE	CMFPK 14 GLASS			LIFE V REVBIAS	1250 100%	143/ 0 3.34E 05		:
3705	# MULTIPLEXER # SWITCH		SDIP 16 GLASS	35C 75/75	CO'MCTil GT		: : 025C : 6CY 2.2G R8%	. / 6	: :	:
3705	MULTIPLEXER SWITCH			35C 75/75	COMMOTH ST	FLD G	025C	8.31E 03		:
3705	MULTIPLEXER SWITCH		SDIP 16	35C	COMMCIA GT	REL O		9.51E 04		:
3705	: MULTIPLEXER : SWITCH	13	- 02/100			LIFE V REVEIAS	1250 100%	94/ 0 9.40E 04		1
3708	MULTIPLEXER SWITCH	* NONE	SDIP 16			LIFE V REVBIAS	125C 100%	: 14/ 0 : 7.14E 04		:

	GENERA PAGS	L INSTRUMENT	*MANUFACTI *OPERATION	NAL TYPE						ANALYSIS CENTER	_
:	PART No.	DEVICE FUNCTION		PACKAGE/ PINS	JCT.*	. EQUIP.	* DATA	STRESS	#TESTED/ #FAILED	REMARKS	:
:		:	# NO. # GATES	CHIP PROTECT.			TEST TYPE	t :	PART HOURS	t	:
1 1	2009	* WULTIPLEXER	# A-1 # 6	CUFPK 14	35C 73/74		FLD U	• 025C	3.16E 06	SILICON GAIE	: : :

MOTORO PMOS		*MANUFACTO *OPERATION					RELIABILITY ANAI	LYSIS CENTER
PART	DEVICE FUNCTION	SCRN.	PACKAGE/			STRESS LEVEL	* #TESTED/ * * #FAILED *	REMARKS :
:	:		CHIP PROTECT.	: ENV.	TEST		PARF : HOURS :	:
: :1125 :	: FLIP FLOP : T	16	NICAN 10 SILICONE		: LIFE V : RINGCNT		50/ 0 : 1.953 05 :	; ;
1150	* MULTIPLEXER	* NONE	CDIP 16		LIFE V		95/ 0 : 4.68£ 05 :	:
1155	GATE		CDIP 14		LIFE V		: 435/ 2 : : 2.75£ 06 :	:
21180	DIVIDER FREQUENCY	:	CDIP 14 SILICONE		LIFE V		: 24/ 0 : : 1.20E 04 :	:
1180 1180	DIVIDER FREQUENCY	# HONE	PHDIP 14 : SILICONE :		LIFE V O NYC		36/ 0 : 7.20£ 04 :	1
1183	SYNTHESIZER FREQUENCY		CDIP 14 :		: LIFE V : DYA OP		: 32/ J : : 1.608 04 :	:
1184	SYNTHESIZER FREQUENCY	NONE	CDIP 14 :		: LIFE V : DYN OP		: 20/ : : 2.00E 04 :	:
16004	# ARRAY		M/GDIP 24		* LIFE V * O' I'YC		: 33/ 1: : 1.92E 04:	:
16043 1	ARRAY		: :M/JDIP 24 : :SILICONE :		LIFE V DYN OP		: 70/ : : 1.54· 95 :	:
:13319	: 4.V.	: NONE	DIP 0		: LIFE V		9/ 2: 3.37= 05:	:
: 2255	GATF		CDIP 14 SILICONE		LIFE V		: 557 0 : : 5505 04 :	:
: :7654 :	ARRAY		CDIP 24 SILICOJE		1 DA4 Ob 1 DA4 Ob		: 72/ /) : : 6.45° 04 :	: :

A CONTRACT CONTRACT SECTION SE

FAIRCHILD

*MANUFACTURER
*OPERATIONAL TYPE

RELIABILITY ANALYSIS CENTER

TTL	10	PERATIO	NAL TYPE						MACIOIO CENIER
PART NO.		SCRN. CLASS	PACKAGE/	JCT.*		DATA CLASS.		#TESTED/	
1 1			CHIP PROTECT.		APPL. 1	TEST TYPE))	PART HOURS	‡
# #9318	ENCODER	NONE 24	CFPK 16	155C *N		LIFE V REVBIAS	125C 100%	210/ 0 2.10E 05	
9321	DECODER	8-1 18	CDIP 16	40C C 73/73	OMMCTN GB	CHK U OPERATE		/ 0 3.40E 03	
9321	DECODER	B-1 18	CDIP 16	40C C 73/73	OMMCTN GB	REL U OPFRATE		/ 0 4.60E 04	
9321	DECUDER	B-1 18	CDIP 16	74/75	IGPROC AU	FLD G N.A.		/ 0 3.42E 03	
9321	DECODER	B-1 18	CDIP 16	65C C 75/75	OMPUTR AI		-054C 050C 13CY1.3G 62%	/ 0 1.54E 03	
9321	DECODER	B-1 18	CDIP 16	65C C 75/75	OMPUTR AI		-054C 050C 17CY1.3G 62%	/ 0 2.01E 03	
9321	DECODER	NONE 18	CDIP 16	150C N 773		LIFE V STGLIFE		37/ 0 3.70E 04	
9321	DECODER	NONE 18	CDIP 16	140C N /73		LIFE V REVBIAS		52/ 0 5.20E 04	
9322	MULTIPLEXER	B-1 19	CDIP 16	40C C 73/73	COMMCTN GB	CHK U OPERATE		/ 0 1.30E 03	
19322	MULTIPLEXER	B-1 19	CDIP 16	40C C	GB GB	REL U OPERATE		/ 0	
\$9322 \$	MULTIPLEXER	B-1 19	CDIP 16	74/75	AU			/ 0 5.12E 03	: :
19322	MULTIPLEXER	NONE 19	CDIP 16	150C N /72		LIFE V STGLIFE		17/ 0 1.70E 04	
19322	MULTIPLEXER	NONE 19	CDIP 16	138C IN		LIFE V		338/ 1 7.38E 05	
19324	CUMPARATOR	B-1 28	CDIP 16	45C C	CONVICTN GB	CHK U OPERATE		/ 0 5.40E 03	
19324	COMPARATOR	8-1 28	CDIP 16	45C 10	COMMCTN GB	RFL U OPERATE		7.38E 04	I/MECHANICAL DIE THRM FATIGUES TEMPERATURE S
9324	CUMPARATOR	B-1 28	CDIP 16	74/75	AU AU	FLD G		/ 0 1.71E 03	:
9334	LATCH ADRESSABLE	B-1 59	CDIP 16	15 74/75	AU AU	FLD G		/ 0 1.71F 03	
9 334	LATCH ADRESSABLE	NONE 59	CDIP 16			LIFE V STOLIFI		35/ 0 3.50E 04	
19338	REGISTER 8 BIT	B-1 138	CPIP 16	70C C 73/73		CHK U OPERATL	025C 100%	8.20E 04	
19328 1	REGISTER 8 BIT	B=1 138	CDIP 16	70C C		REL U OPERATE		/ 1 1.13E 06	1/MECHANICAL : DIE : PPOCESS : PROC CONTROL:
1 19344 1	MULTIPLIER BINARY	NONE 37	CDIP 24	158C N 772		LIFE V REVBIAS	1250 100%	78/ 0 7.80E 04	
9348	GENERATUR	NONE 27	CDIP 16		٧.٨.	LIFE V STGLIFE		40/ 0 4.00E 04	
19348 1	GENERATOR	NONE 27	-		N.A.	LIFE V REVBIAS	:	55/ 0 5.50E 04	:

SPRAGI RCTL	JE 	*MANJFACT *OPERATIO						RELIABILITY	ANALYSIS CENTER
PART NO.	DEVICE FUNCTION		PACKAGE/ PINS					* #TESTED/ * #FAILED	* PEMARKS *
:	:	: NO. : GATES	CHIP PROTECT.		* APPL. * ENV.		:	PART HOURS	:
: :510	: FLIP FLOP : RS	# A-1	FPK 10	35C 70/74		: • FLD U • N.A.	: 0250	; / 0 ; 9.21E 05	•
5111B	FLIP FLOP	A-1	FPK 14	35C 70/74	COMBIN SF	FLD U	0250	2.14E 05	-
512	GATE	. A-1	FPK 10	35C 70/74	*C04BIH	FLD U	. 02 oC	2.49E 05	·

是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

18. 5

TEXAS LISTRIMENTS *MANUFACTURER RELIABILITY ANALYSIS CENTER RCTL *OPE: IATIONAL TYPE * SCRN. * PACKAGE/ * JCT.* * EOUIP. * CLASS * PINS * TEMP. * TYPE STRESS LEVEL PIAT DEVICE DATA * #TESTED/ : REHARKS NO. FUNCTION CLASS. : #FAILED # HO. # CHIP # TEST # APPL. # GATES # PROTECT. # DATE # ENV. Test PART TYPE HOURS 27C #C04BIN *M/GFPK 10 1510 FLD U # 025C * FLIP FLOP 70/74 : SF 1.675 06 * RS *GLASS A.K. 27C 4C0 (BI) FI.D U # 025C #3/GFPK 14 #5111B FLIP FLOP 1.425 05 SS *GLASS 70/74 \$ N.A. **#5112** 250 ±00/31H FL9 U # 025C FLIP FLOP #:H/GFPX 10 2.645 06 #GLASS 70/74 * SF II.A. N.1. 1 0250 1.645 05 A-1 15123 GATE ##/GFPK 10 25C #C0'f813 FLD U : 0250 2.14 05 #GLASS 70/74 : 3F N.A. FI.D U # 0250 #514B GATE *3/GFPK 10 26C #C013III 1.678 03 *GLASS 70/74 : SF J.A. : *5158 GATE *M/GFPK 10 26C *CO'IBIN FI.D U : 0250 1.495 76 #GLASS 70/74 * SF 31.A. = *#/GFPK 14 * 28C #CO48IN FLD U : 0230 \$5161B GATE 1.539 34 70/74 : SF 3 EGLASS V. 1. 290 (CO (BI): 70/74 | SF FLD (I + 0350 15162 #M/GFPK 14 # GATE 1.398 05 **≉GLASS**

350 *COABIN 70/74 * SF

FLD U 0250

6.79E 01

*%/GFPK 10 *

#GT.ASS

15163

INVESTER

PART	* DEVICE	SCRN.	PACKAGE/	JCT.* * EQUIP.	* DATA :	STRESS	* #TESTED/ *	SYPANS?
110.		CLASS		TEMP. : TYPE	CLASS.		#FAILED	:cin1 w
			CHIP PROTECT.	TEST : APPL. DATE : ENV.		: : 	PART : HOURS :	
9902	FLIP FLOP	HONE	HICAN 6	1 150C 1N.A. 1 /73 1 11.A.	LIFE V		: 32/ 7: : 3.20: 04:	
9902	FLIP FLOP	нэн е	HICAN 6	1350 14.A. 773 14.A.	LIFF V	1250 170%	37/ 0 3.20E 04	
9906	SHIFT REGIST	HONE :	ilica: 8	150C :N.A. /73 : ii.A.	LIFE V		419/ 0 4.19E 05	
9906	SHIFT REGIST	HONE 2	NICA.I 9	134C : II.A. 773 : II.A.	LIFE V	1250 100%	2023/ 1 2.025 05	
9909	BUFFER	NONE	NICA.1 8	150C :N.A. 773 : II.A.	LIFE V		65/ 0: 6.50% 04:	
9909	BUFFER	NONE	UICAH 3	126C = 11.A. 773 = :1.A.	LIFE V	1250 120%	35/ 0 6.505 04	
9910	GATE	;IONE 2	NICAH 8	150C :N.A. 773 : :I.A.	LIFE V		207/ 0 2.07E 05	
9910	GATE	NONE 2	NICAJ S	1260 H.A. 773 J.A.	LIFE V	1250 1703	344/ 0 3.44E 05	
9911	GATE	YONE 2	NICAH 8	150 C IN.A.	LIFE V		117/ 0 1.176 05	
9911	GATE	: 300 ii : 2	HICA,i 3	1260 I.I.A. 173 I.I.A.	LIFE V	125C 1203	117/ 0	
9912	* ADDER	1085 4	MICAN 8	/73 1.A.	TOLIFE		47/ 0 4.70E 01	
9 912	A ADER	HONE 4	HICAN 8	127C + N.A. 1773 + 11.A.	LIFE V	1250 1703	4.50E 04	
9913	FLIP FLOP	: 40%E	AICAI 8	1500 #1.A. 773 # 1.A.	LIFE V		157/ n 1.57% 05	
9913	* FLIP FLOP * D	: HOHE :	41CV4 ⋴	128C =4.4.	LIFE V	125C 100%	213/ 7 : 2,13E 05 :	
9914	: GATE	A-1 2	HICAH 8	310 ±00131d 7)274 ± 3F	FLD U		3,57E 04	
9914	GATE	JONE 2	NICAL 8	1500 : 1.A. 772 : N.A.	LIFE V		395/ 0 : 3,35º 05 :	
9914	SATE	리기리운 2	VICAL B	1310 ±1.A. 273 ± 1.A.	LIF V	1250 170%	513/ 0 3,20° 0	
915	EDATE	1011E 2	NECAL 10	1500 11.1. 173 1.4.	LIFE V		907) : 9,00', 04 :	
9915	CATE	13NE 2	VICA - 13	1310 Pl. V.	LIFE V	1250 1703	143/ 0 i 1.437 05 i	
7921	: EXPANDER	1.036 2	MICAN 9	1500 11.V.	V - 41.1 P41.1010		117/ 0 :	
9921	FERNIAGES	ENOK:	HICAN 8	13		1250 FXX	116Z 0 1 1.150 05 1	
9923	FLIP FLOP JK	HONE 3	ICAL B	1500 H.A.	LIF V		3.47 04 :	
9923	FLIP FLOP	: 304E :	IICAI 8	139C #N.A. 273 # 1.1.	LIF · V	1250 100 (\$ 32/) \$ \$ 5.207 34 \$	
9925	FLIP FLOP	10:13	HICAY 10	150 C : 1.A.	LIF- V		10// 0 1	

FAIRCHILD RTL		##A IJFACTU #OPERATIO						REFIABILITA VAMPARIS CERTA			
PART HO.	DEVICE FUNCTION	# SCRN. F	PACKAGEZ : PINS :			DATA CLAS.		: 'FAILED :	\$. 1/5,6c		
:	:		CHIP PROTECT.	TEST : DATE :		rasr Type		# PAYT # # 119085 #	:		
: : 7926 :	FLIP FLOP	# NOME :	VICAJ 10			LIFE V	1250 1734	1 210/ 0 1 1 3.167 0 1	:		
9927	INVERTER	NONE 4	JICA,i 10			LIFE V		52/ 7 : 5.277 01 :	:		
9927	INVERTER	: in.ie	JICA. 10			LIF: /	1250 170;	5.207 01 i	:		
9958	ODU ITER	* 1333 * 34	TICAL B		!.\. !.\.	LIFE V		152V) i	: :		
2258	COUNTEP DECADE	: 17);IE : 34	ilca i s	1500 ± 1 772 ±		CIFE V	1500 170	3937 1 i	; ;		
: 9953 :	COUNTER CADED	11:1E 34	COIP 14			LIFE V		: 31/ 1 : : 3.412 :01 :	: :		
:2253	OU ITER	: 1),1€ 34	30IP 14			UIFE V :	1373 170 .	91/ 0 i	:		
: 9959 :	3UFFER	: 11)NE	CDIS 19			LIFE V	1370 1703	4.50.01	:		
: 9974	FLIP FLOP	: 1)'4E	GICAL 8			LIFE V ETIJCIE		52/ 0 : 5.20: 01 :	:		
: 79/4	: FLIP FLOP	: 3082	: NICAI 8			LIFE V	1300 100:	32/ 0 : 5,20% 01 :	:		
‡0289 ‡0289	OUNTER DINARY	: 10HE	CDIP 14			LIFE >		34/): : 3.40= 04:	: :		
19289	COUNTER BINARY	FRON:	: CDI2 14			LIFE V	120% 177% 1	52/ 0 : 5,20° 04 :	: : :		

Reproduced from best available copy.

MOTOR RTL	OLA	*MANUFACTURER *OPERATIONAL TYPE	ELIABILITY ANALYSIS CENTER	
A PART B NO.	DEVICE FUNCTION	* SCRN. * PACKAGE/ * CLASS * PINS		: #TESTED/: REMARKS :
:	: :	# NO. # CHIP # GATES # PROTECT.	TEST : TYPE :	PART : :
927	INVERTER	# B-1 # CFPK 10 # 4 #GLASS		7.28E 04
1927	/NVERTER	B-1 CFPK 10		5.74E 03

ADVANCED MICRO DEV *MANUFACTURER TIL *OPERATIONAL TYPE

RELIABILITY ANALYSIS CENTER

PART		SCRN. CLASS	PACKAGE/ : PINS :	JCT.* TEXP.		DATA CLASS.		#TESTED/ # #FAILED #	PEMARKS
			CHIP : PROTECT.	TEST DATE		TEST TYPE		PART : HOURS :	
54154	DECODR/DEMUX	8-1 25	CDIP 24	50C 75/75	COAPUTR I		-054C 050C 4 13CY1.3G 62%	: /) : : 2.30E 0. :	
54154	XUKECVBDOOEC	3-1 25	CDIP 24	60C 75/75	CO.4PUTR		-054C 050C	/ 0 3.66E 03	
9091	SWITCH	HONE 102	DIP 24	150C /73		LIFE I STOLIFE		25/ 0 a 2.50% 04	
9091	SNITCH	ฟอมอ 102	DIP 24	1500 /73		Lifê i Pevbias		77/ 1 7.70E 04	
9300	SHIFT RECIST	C-1 40	CDIP 16		:::	LIFE V STOLIFE		131/ 0 1.315 05	
9300	34IFT REGIST	C-1 40	CDIP 16			CIST OP		261/ 0 20 716.2	
9300	SHIFT RESIST	NONE 49	SDIP 16	106C 171	:::	LIFE U SOLDER		20/ 0	
		•			:	REVBIAS	07nc	20/ 0 2.00E 04	
9316 •	COUNTER BINARY	C-1 57	CDIP 16	150C /72		LIFE V STOLIFE		55/ 0 5.503 04	
9316	COUTTER BINARY	C-1 57	CDIP 16	164C /72	. N.A.	LIFE V		182/ 0 182/ 0	
9316	COUNTER BINARY	C-1 57	CFPK 16	150C	: :N.A. : I.A.	LIFE V		55/ 1 5.50% 04	
9316 •	COUNTER BINARY	C-1 57	CFPK 16		: : ::	LIFE V		77/ 0 7.709 04	
: :9316	COUNTER SINARY	JUNE 57	SDIP 16	1090 771	::::	LIFE U	2500	21/)	
; ;	: :	:	:		:	SATBVE	0710	24/ 0 2.40E 04	
9324	201/PARATOR	ii~1 17	CDIP 16	730 75/75	COLEGUS.		-0540 0500 130Y1.39 621	7 0 7 20 101-11	
* *932	: COMPARATOR	3-1 17	CDIP 16	13C 67/c7	COAPILS		-0543 0500 170/1-30 623	3.56 02	
29347	LOSIC SHIT ARITHMETIC	3-1 55	CDI2 24 €	930 75/75	CO PUTA	SACIACL SACIACL	-0340 0500 + 13571.36 621	1.76. 23	
29340 29340	LASIS THE ARIVACETIO	8-1 - 36	CDI2 24	727 77/75	11 × 00 × 00		- 2540 0500 - 170¥1•38 614	7 0 9,52 03	
:97514 :	: 300 max : 31 1/2 Y	3-1		590 27777	*CO3PJ1 ?	COVINDO	: : =0510 0500 : 130Y1,33 62(. / 0 : 1. 1. 14	
		3-1 3-1	: UDI2 15	93 75/75			* =0530 0500 * 17071.33 62%	/ /) : : 1.415 01	
: :/3L?4	1	: n- : 17	: CDE2 15	967 73/7			: +)540 0590 : 13071.30 424	1.13. 21	
: 2 (I, 2 '	# DOTABATOR #	: 3-1 : 17	: DE2-16)60 75/75	* /I		* -0:40 0500 * 17071.30 627	1.4 (01)	
	# FLIP FLOP # 90 05TA L.1	: 3-1 : 11	OFP. 11		: 1.1.	* 1.116. V	:	* 40/ 0 * 4.10. 11	•
	: 80.10 eL02	: : 3-1 : 1)	: : СИР 14 :		11.1.	: LIS V : LIS (02)	÷ 1270	105Z 1 11.75 75	1

Reproduced from best available copy.

ADVANCED MICRO DEV *MANUFACTURER *OPERATIONAL TYPE

RELIABILITY ANALYSIS CENTER

116		*OFGRALIUNAL TIPE			
PART NO.	DEVICE FUNCTION		* JCT.* * EQUIP. * TEMP. * TYPE		* FTESTED/ * REMARKS * FAILED *
:	:	# NO. # CHIP # GATES # PROTECT.	* TEST * APPL. * DATE * ENV.		PART : : HOURS : :
# #9602	FLIP-FLOP MONOSTABLE	# # # # EDIP 16	91C IN.A. 772 I N.A.	LIFL J : 070C	50/ 0 : 5.00E 04 :
9602	FLIP FLOP MONOSTABLE	NONE SDIP 16		LIFE U 260C	32/ 0
:	: :			REVBIAS 070C	32/ 0 3.20E 04

FAIRCH TIL		MANUFACTU OPERATION					RELIABILITY AND	NALYSIS CENTER	
PART NO.		SCRN.		JCT.* : EQUIP. : TEMP, : TYPE	DATA CLASS.	STRESS LEVEL	* #TESTED/ * * #FAILED *	REMARKS	
			CHIP PROTECT.	TEST : APPL. : DATF : ENV. :	TEST : TYPE		# PART # # Hours #		
1305	GATE	NONE 2	CFPK 14	1500 VA.A. 4 7/3 # N.A. 4	LIFE V		: 34/ 0 : : 3.40E 04 :		
1305	GATE	* NONE * 2	CFPK 14	135C *N.A. 1 773 1 N.A.	LICE V REVUIAS		105/ 0 1 1.05E 05		
1 306	GATE	NONE	CFPK 14		LIFE V STGLIFE		34/ 0 3.40E 04		
1306	GATE	NONE 4	CFPK 14	1350 N.A. 773 N.A.	LIFE V REVBIAS		160/ 1 1.60E 05		
1335	GATE	: N /NE : 6	CDIP 14		LIFE V REVBIAS		75/ 0 1.25£ 04		
1 336	GATE	: NONE : 3	CDIP 14	135C :N.A. /73 : N.A.	LIFE V REVBIAS		75/ 0 26E 04		
1 33 7	GATE	NONE 2	CDIP 14		LIFE V		75/ 0 1.26E 04		
1339	GATE	NONE 4	CDIP 14	135C N.A. 773 N.A.	LIFE V		75/) : 25 04 :		
1340	GATE	NONE 4	CDIP 14	150 C N.A. 772 1.A.	LIFE V		52/ 0 5.20E 04		
1340	GATE	NONE 4	CDIP 14	135C N.A. 773 N.A.	LIFE V		202/ 2 1.78E 03		
1340	GATE	NONE 4	EDIP 14	135C N.A. 773 N.A.	LIFE V	1250 100%	51/ 0: 5.10E 04:		
ክ #1340 #	GATE	NONE 4	SDIP 14		LIFE V	0850 99%ณ	50/ 0 : 5.00E 04 :		
: :1340 :	GATE	NONE 4	SDIP 14	135C N.A. 772 N.A.	LIFE V REVBIAS		51/ 0 5.10E 04		
: :1341 :	GATE	NONE 2	CDIP 14		LIFE V REVBIAS		75/ 0 : 1.265 04 :		
: :1342 :	LATCH	HONE	CDIP 14		LIFE V		75/ 0 : 1.26E 04 :		
1 1343	FLIP FLOP	HONE	CDIP 14		LIFE V REVBIAS		75/ 0 1.26E 04		
# #4601 #	# GATE # EXPANDABLE	: NONE : 3	CDIP 14	127C : 11.A.	LIFE V	1250 1003	79/ 0 3.29E 05		
: :5400 :	GATE	: HONE : 4	CFPK 14	: : : : : : : : : : : : : : : : : : :	LIFE V	1250 100%	: 20/ : : 6.60E 05 :		
: :5401 :	GATE	: GONE : 4	: CFPK 14	: : : : : : : : : : : : : : : : : : :	LIFE V REVBIAS	: 125C 100%	77/ 0 : 7,70E 04 :		
: :5403 :	GATE	: '40HE : 4	: CFPK 14	: 130C :N.A. : /72 : N.A.	: LIFE V		77/ 0 : 7.70E 04 :		
: :5410 :	GATE	* NONE * 3	: CFPK 14	: 129C :N.A. : /72 : N.A.	: LIFE V : REVBIAS		: 65/ 0 : : 6,50E 04 :		
: :5420 :	: GATE	NONE 2	: CDIP 14	: 127C :N.A. : /72 : N.A.	LIFE V	: : 1250, 100% :	52/ 0 5.20E 04		
: :5451 :	: GATE : EXPANDABLE	: HONE : 6	: CFPK 14	: 129C :N.A. : /72 : N.A.	LIFE V REVBIAS		6.50E 04		
: :5454 :	GATE EXPANDABLE	# HONE # 5	: CFPK 14	: 128C :N.A. : /72 : i.A.	LIFE V		: 55/ : : 5.50E 04 :		

associates associates associates and appropriate and a second associated as a second and and and and and appropriate

				DIGITAL DEVICE D	VIV			
FAIRCH TTL		*MANUFACTU *OPERATION		: S ippy up 2002241; se se	2 ya 4 2 y 2 a 2 . * 1	14 244 2 42 24 24 24 24 24 24 24 24 24 24	RELIABILITY AN	ALYSIS CENTER
PART NO.	DEVICE	SCRN. S CLASS		JCT.* * EQUIP. TEMP. * TYPE	DATA L	STRESS LEVEL	* #TESTED/ : * #FAILED :	REMARKS
	* *		CHIP PROTECT.	TEST : APPL. DATE : ENV.	TEST :		PART HOURS	
5454	S GATE EXPANDABLE	# NONE # 5	CDIP 14		LIFE V REVBIAS	125C 100%	52/ 1 : 5.20E 04 :	
5470	* FLIP FLOP * JK	* NONE	CDIP 14	133C = N.A. /72 = N.A.	LIFE V REVBIAS		55/ 0 : 5.50E 04 :	
5473	FLIP FLOP	* NONE 20	CFPK 14	137C • N.A. /72 • N.A.	LIFE V REVBIAS		55/ 0 5.50E 04	
5473	FLIP FLOP	NONE 20	CDIP 14	137C H.A. /72 H.A.	LIFE V REVBIAS		117/ 0 1.17E 05	
5474	FLIP FLOP	NONE	CFPK 14	135C = N.A. 772 = N.A.	LIFE V REVBIAS		55/ 0 5.50E 04	
5486	GATE	NONE 4	CFPK 14	143C = N.A. 772 = N.A.	LIFE V REVBIAS		77/ 0 7.70E 04	
5490	COUNTER DECADE	NONE 15	CDIP 14	144C = N.A. 772 = N.A.	LIFE V REVBIAS		65/ 0 6.50E 04	
5495	SHIFT REGIST	NONE	CDIP 14	148C N.A. /72 N.A.	LIFE V	125C 100%	52/ 0 5.205 04	
7400	GATE	NONE 4	CDIP 14	130C N.A. 70/72 N.A.	LIFE V	125C 100%	187/ 0 2.36E 05	
7400	GATE	NONE 4	EDIP 14	150C :N.A. /73 : N.A.	LIFE V STGLIFE		38/ 0 3.80E 04	
7400	GATE	NONE	SDIP 14	1300 H.A. 773 H.A.	LIFE V		154/ 0 1.54E 05	
7401	GATE	NONE	CDIP 14	130C N.A. /72	LIFE V		55/ 0 2.75E 05	
7404	INVERTER	NONE 6	SDIP 14	77C IN.A. 772 II.A.	LIFE U		30/ 0 3.00E 04	
7410	GATE	NONE 3	CDIP 14	150C N.A. 773 H.A.	LIFE V		38/ 0 3.805 04	
7411	GATE	NONE	CDIP 14	130C H.A. /72 H.A.	LIFE V		55/ 0 5.50E 04	
7420	GATE	NONE 2	CDIP 14	127C N.A. 70/73 N.A.	LIFE V		264/ 0 2.64E 05	
7427	GATE	: N.)NE	EDIP 14	150C N.A. 773 N.A.	LIFE V STGLIFE		38/ 0 3.30E 04	
7427	GAIC	: 110NE : 3	EDIP 14	133C N.A. 772 1 1.A.	LIFE V	125C 170%	77/ 0 7.70E 04	
7430	JATE	NONE	CDIP 14		LIFE V		38/ 0 3.80E 04	
7430	GATE	NONE	CDIP 14		LIFE V	1250 170%	132/ 0 1.32E 05	
7430	GATE	NOTE -	EDIP 14		LIFE V	132C 100%	65/ 0 6.50E 04	
7440	BUFFER	1 NONE 2	CDIP 14	130C N.A. 70/73 I.A.	LIFE V	1250 170%	230/ 0 2.309 05	
7440	BUFFER	NONE 2	: EDIP 14		LIFE V		3.80E 04	
7410	BUFFER	; 40HE	EDIP 14		LIFE V	1250 100%	77/ ^ . 7.70% 04	
	:				• 1	1		

The state of the s

PTAG SOLVED DETIGIO

FAIRCHILD TTL		*MANUFACT *OPERATIO				RELIABILITY ANALYSIS CENTE		
PART NO.	DEVICE FUNCTION	SCRII.	PACKAGE/ PINS	JCT.* : EDUIP. TEMP. : TYPE	DATA CLASS.	STRESS LEVEL	* #TESTED/ *	REMARKS
	: :		CHIP PROTECT.	TEST : APPL. DATE : E:IV.	TEST TYPE		PART BENDERS	
7442	DECODER BCD/DECIHAL	: 13 : 17)HE	CDIP 16	150C :N.A. 773 : H.A.	LIFE V		: 39/ 0 : : 3,80E 04 :	
7442	DECODEP	# NONE # 18	CDIP 16		LIFE V	1250 170%	77/ 0 : 7,705 04 :	
7442	DECODER BCD/DECIMAL	# HOHE	CDIP 16	1390 N.A. 772 N.A.	LIFE V	125C 100%	: 55/ 0: : 2.75E 04:	
7442	DECODER BCD/DECIHAL	: NONE : 13	EDIP 16	1420 El.A. 773 El.A.	LIFE V		: 77/ 0: : 7.70E -4:	
7473	FLIP FLOP	# HONE # 20	CDIP 14	1370 -il.A. 772 - l.A.	LIFE V : EVBIAS :		1 109/ 2 1 1 109E 03 1	
7473	FLIP FLOP	: 177HE : 20	EDIP 14	150 C = 11.A. 773 = 1.A.	Life V		: 39/ 0: : 3.80E 04:	
7473	: FLIP FLOP : JK	* NONE * 20	EDIP 14	1370 H.A. 72/73 H.A.	LIFE V	1250 100%	: 77/ 0 : : 7.705 04 :	
7473	FLIP FLOP	# NONE # 20	EDIP 14	1370 Pl.A. 773 F R.A.	LIFE V : REVBIAS	1250 100%	: 77/ 0: : 7.70E 04:	
7474	FLIP FLOP	* NONE	CDIP 14		LIFE V		: 39/ 0: : 3,80E 04:	
7474	FLIP FLOP	: 11)11E : 12	CDIP 14	1350 H.A. 173 L.A.	LIFE V RE/BIAS	1250 170%	: 209/ 2 : : 2.09E 05 :	
7474	FLIP FLOP	10015 12	EDIP 14	1500 H.A. 773 H.A.	LIFE V STGLIFE		33/ 1 : 3.80E 04 :	
7414	FLIP FLOP	# NONE 12	EDIP 14	1350 H.A. 773 N.A.	LIFE V REVBIAS		1 154/ 0 1 1 1.542 05 1	
7475	LATCH	# 10HE	CDI5 19	150C =N.A. : /73 V.A. :	LIFE V		: 76/ 1 : : 7.50E 04 :	
7475	LATCH	# .lon= # 24	CDIP 16	1410 Pl.A. 1 173 1 B.A. 1	LIFE V REVBIAS	1250 100%	1 187/ 0 1 1 2.155 05 1	
7475	LATCH	# 11 DHE #	91 - JCB	1500 11.A. 1 173 1 1.A. 1	LIFE V : STJLIFE :		: 38/ 0: : 3,70E 04:	
7 175	LATCH	# 40HE :	EDIP 16	: 1440 than : : 1440 than : : 773 than :	LIFE V : RFVBIAS :	1250 100%	: 64/ 0 : : 5,403 04 :	
7476	: FLIP FLOP : JK	# 11.0NE #	CDIP 14	1 1370 +N.A. 1 1 72/73 + 1.4.	LIFE V	1250 1701	: 77/ 1 : 7.70E 04 :	
7 475	FLIP FLOP	# # # # # # # # # # # # # # # # # # #	CDIP 16		LIFE V : STJLIFE :	1500	: 38/ 1: : 3.305.04:	
7475	FLIP FLOP	# 10HE 1	91 21C.	: : :	LIFE /	1250, 1994	: 132/ 1 : : 1.327 05 :	
7475	FLIP FLDP	1012	EDI - 16	773 + N.A. I	LIFE / : STJLIFE :		1 39 0 1 1 39 0 1 1 3.30 04 1	
7475	FLIP FLOP	: 1.N= 1 : 20	E BI PIDE	1370 1N.A. 1 773 1 1.A. 1	LIFE V : REVBIAS :	1230 170.	: 77/ 0 : : 7.70E 04 :	
7485	SATE	* N) NE 1	CDI2 14	1 1430 IN. \. 1 1 /72 1.A.	LIFE V	1250 170;	: 55/ 0 : : 1.10E 05 :	
7420	# CGUTTER # CACAC	1 174E 1 1 15 1	GDIP 14 :	1 44C 1N.4. 1 172 1 1.4. 1		1250 IMS	: 55/ h : 1.10E 05 :	
1157	: COUNTER : DECADE	1 1715 1 1 15 1	EDIP 14	1500 17.4.	LIFE V : STOLIFE :	1500	1 39/ 0 1 1 3, 03 04 1	

THE WAS THE STATE OF THE STATE

FAIRCHILD *MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER TTL PART NO. PACKAGE/ PINS DEVICE FUNCTION SCRN. JCT.* : EQUIP DATA CLASS. STRESS #TESTED/ : #FAILED : REMARKS CLASS * # APPL TEST TYPE CHIP TEST PART GATES # DATE HOURS 17494 SHIFT REGIST NONE CDIP 16 150C *N.A. LIFE V 38/ /73 : N.A. STGLIFE 3.80E 04 NONE 50 143C #N.A. /73 # N.A. 17494 SHIFT REGIST CDIP 16 125C 100% 6.40E 04 REVBIAS :7495 SHIFT REGIST NONE CDIP 14 148C :N.A. /72 : N.A. LIFE V 55/ 125C 100% REVBIAS 1.10E 05 17495 NONE 38/ SHIFT REGIST EDIP 14 150C *N.A. LIFE V 150C /73 : N.A. STGLIFE 3.80E 04 14RC =N.A. /73 = N.A. 17495 SHIFT REGIST : NONE EDIP 14 LIFE V 125C 100% REVBIAS 7.70E 04 150C :N.A. /73 : N.A. 38/ 0 3.80E 04 ***7496** SHIFT REGIST NONE CDIP 16 150C STGI.IFE 174/ 0 17496 NONE 39 SHIFT REGIST : CDI2 15 149C #N.A. 1250 100% 2.29E 05 /73 : N.A. REVBIAS 19000 150C :N.A. /73 : N.A. 38/ 0 HONE CFPK 14 LIFE V FLIP FLOP 150C 3.80E 04 STGLIFE 76/ 0 7.60E 04 **\$9000** FLIP FLOP NONE CDIP 14 150C :N.A. LIFE V 150C /73 : N.A. STGLIFE 264/ 0 1-45E 05 9000 137C *N.A. LIFE V FLIP FLOP NONE CDIP 14 125C 100% REVBIAS CHK U 19001 FLIP FLOP B-1 39C *COMMCTN / 0 5.44E 04 CDIP 14 025C 100% OPERATE JK 73/73 : GB B-1 13 REL U 7.48E 05 19001 FLIP FLOP CDIP 14 39C + COMMCTN 025C OPERATE JK 73/73 : 52/ 0 5.20E 04 139C = N.A. /72 = N.A. NONE 13 LIFE V REVBIAS **\$9001** FLIP FLOP CDIP 14 125C 100% 19002 GATE B-1 30C CONVCTN CHK U CDIP 14 0250 100% 3.60E 05 GB OPERATE 19002 GATE 8-1 CDIP 14 30C COPMOTN 925C 4.93E 06 GB OPERATE 130C IN.A. 70/73 I V.A. 19002 GATE NONE CFPK 14 125C 100% 158/ 1.58E 05 REVBIAS 130C IN.A. 70/72 IN.A. **\$9002** GATE **NONE** CDIP 14 125C 100% 4.83E 04 REVBLAS 19003 29C COMMOTH CHK B GATE B-1 CDIP 14 025C 100% 1.12E 05 OPERATE 3/73 # GB 29C COMMOTH 19003 GATE B-1 CDIP 14 RFL U 925C OPFPATE 1.55E 06 150C IN.A. /73 : N.A. 38/ 0 3.80E 04 : 9003 NONE LIFE V GATE CFPK 14 150 C STGLIFF 129C N.A. 70/72 N.A. :9003 GATE NONE LIFE V CFPK 14 1250 1 mx 7.70E 04 REVBIAS 129C :N.A. /73 : N.A. **#9003** GATE NONE CDIP 14 LIFE V 125C 1.00% 110/ 6.42E 04 REVBIAS 27C COPMETN 19004 GATE CHK CDIP 14 025C 1.25E 05 73/73 : GB OPERATE 27C COVYCTN REL 19004 GATE B-1 CDIP 14 73/73 GB 1.73E 06 # OPERATE

FAIRCH!		MANUFACTI OPERATIO	NAL TYPE	RELIABILITY ANALYSIS CENTEP					
PART :			PACKAGE/		EOUIP. :		STRESS	: #TESTFD/ : : #FAILE() :	REYARKS :
: :			CHIP PROTECT.		APPL. : ENV. :			PART : HOURS :	:
\$ 9074 \$	GATE	# HONE # 2	CFPK 10	: 150C :N. : /72 :		LIFE V		: 38/ 0: : 3.80E 04:	:
19004	GATE	: NONE : 2	CFPK 10	128C = N.		LIFE V	1250 100%	38/ 0 : 3.80F 04 :	: :
9004	GATE	KONE 2	CDIP 14	127C N 70/72		LIFE V REVBIAS	1250 100%	110/ 0 : 1.10E 05 :	:
9005	GATE EXPANDABLE	B-1	CDIP 14	30C C 73/72	ับม _ี "ICTN : GB :	CHK U OPERATE	225C 170%	1.21F 04	:
9005	GATE EXPANDABLE	1 B-1	CDI2 14	30C C	UPPCTH F	PEL U OPERATE		1.46E 05	:
9005	GATE EXPANDABLE	NONE 6	COIP 14	130C III 70/72		LIFE V REVSIAS	1250`100%	: 557 : : 5,505 04 :	:
±9006	EXPANDER	LONE 2	CHPK 14	150c .4 /73		LIFF V STOLIFF		387 0 i 3,80E 04 i	:
9006	EXPANDER	NONE 2	CFPK 14	1270 ±1/		REVRIAS		77/ 0 : : /.70E 04 :	; ;
\$9007 \$	GATE	1 R-1	COLP 14	26C C	GB #	CHY U		3.00E 04	:
¥9007	GATE	2 B-1 2 1	CDIP 14	26C +C	OMMOTH : GB :	OPERATE		1 4.15F 05 1	:
\$9008 \$	GATE EXPANDABLE	1 B-1 1 5	CDIP 14	30C C	RESPINO BB I	OPERATE	1250 IM¥	1.30F 03:	1 1
	GATE EXPANDABLE	1 B+1	COIP 14	30C ±C	G3 :	REL U		1 1,85E 04 1	:
1907H 1	GATE FXPANDABLE	NUNE 5	CDIP 14	130C 19 70/72		LIFE V	1250 1004	1 557 0 1 1 5.50E 04 1	:
19009	BUFFER	: B-I	COIP 14	31C C		CHK U		8.74F 03	1
9009	BUFFER	: B-I : 2	CDIP 14		OPPOINTS	PEL U OPFRATF		1.20F 05	:
#9014 #	GATE	8-1 6	CMP 14	30C IC	יינדטאיינטי יינד או	OPERATE I		# 60E 04	:
19014	GATE	: B=1 : 0	: CDIP 14	300 IC	OPMOTH :	REL U OPERATE		1.180 06	:
19015	i o/TE i	: B-1 : 4	CDIP 14	34C iC 73/73 i		OPERATE I		1 2,061 04 1	:
	· OAle ·	1 R-1 1 A		34C ±C		TIAS ISD		11.115 0/ 1	:
	I INVERTIR	1 6-1 1 5	COTP 14	32C ±C	GPFCTN +	CPK U C		1 2.15 05 1	:
19016	E INVERTIN	1 h-1	r Colb IV	72C 4C	macta i	Obtovite of Total		12.95F 06 1	1 1
19016 1	i ItivkRTeR	1,047 5		1530 19		LIF V		1 6.50 0 1 1 6.50 04 1	: :
	! INVLPTER !	* NOME 6	: OF \$4.10	131C i'' 10/72	.A. I		1250 TYNY	65/ 0 i	: :
14016 1	E INV PIEC E	F North	i 30[2]1			SIALING :		1 30V 31	:

A CONTROL OF THE PROPERTY OF T

FAIRCH!		MANUFACTU DPERATION				RELIABILITY ANALYSIS CENTER				
PART NO.		SCRN.	PACKAGE/ PINS	JCT.* TEMP.		DATA CLASS.	STRESS LEVEL	* #TESTED/ : #FAILED	REMAPKS :	
1			CHIP PROTECT.	TEST DATE		TEST TYPE	t t	PART HOURS	:	
\$ \$016 \$	INVERTER	NONE 1	CDIP 14	132C 170/72		LIFE V	: : 125C 100%	\$ 54/ 0 \$ 5.40E 04 \$		
19016	INVERTER	NONE 6	SDIP 14	77C 771	*N.A. * N.A.	LIFE U REVBIAS		82/ 0 8 8,20E 04	:	
9020	FLIP FLOP JK	B-1 27	CDIP 16	74/75	SICPROC	FLD G N.A.	; ;	/ 0 1.02E C4	:	
9020	FLIP FLOP JK	NONE	CDIP 16	150C /73	N.A. N.A.	LIFE V STGLIFE		38/ 0 3.80E 04	:	
9020	FLIP FLOP JK	NONE 27	CDIP 16	146C /73	N. A. N. A.	LIFE V REVBIAS	125C 100%	77/ 0 7.70E 04	:	
9022	FLIP FLOP JK	B-1 27	CDIP 16	74/75	SIGPROC AU	FLD G	!	/ 0 3.42E 03	:	
9022	FLIP FLOP JK	NONE 27	CDIP 16	150 C 773	N. A. N. A.	LIFE V STGLIFE		38/ 0 3.80E 04	:	
9022	FLIP FLOP JK	NONE 27	CDIP 16	146C /73	N.A. N.A.	LIFE V REVBIAS		77/ 0 7.70E 04		
9024	FLIP FLOP JK	B-1 16	CDIP 16	34C 73/73	COMMCTN GB	CHK U OPERATE		/ 0 3.50F 05	:	
19024	FLIP FLOP JK	B-1 16	CDIP 16	34C 73/73	COMMCTN GB	REL U OPERATE	∂25C	/ 0 4.83E 06	:	
\$9024 \$	FLIP FLOP JK	B-1 :	CDIP 16	74/75	SIGPROC AU	FLD G N.A.		/ 0 2.39E 04	:	
9024	FLIP FLOP JK	NONE 16	CFPK 16	136C /73	N.A.	LIFE V REVBIAS	125C 100%	154/ 0 1.54E 05	:	
9300	SHIFT PEGIST	B-1 40	CDIP 16	55C 73/73	COMMOTN GB	CHK U OPERATE		/ 0 1.08E 04	:	
\$9300 \$	SHIFT REGIST	B-1 1	CDIP 16	55C 73/73	CUPACTN GB	REL U OPERATE		/ 0 1.48E 05	:	
9300	SHIFT REGIST	B~1 40	CFPK 16	106C /72	COMMETN GB	RFL U TCVIBPC	-055C 070C 84CYC 2.2G	2.18E 05	I/SHORT : OVERSTRESS :	
19300	SHIFT REGIST	B-1 40	CFPK 16	86C 72/73	COPWCTN AI	FLD U OPERATE		/ 0 1. °E 04		
19300	SHIFT REGIST	NONE 40	FPK 16	1501 70/72		LIFE V STGLIFE		114/ 0 1.14E 05	:	
9300	SHIFT REGIST	NONE 40	FPK 16			LIFE V REVBIAS	_	271/ 0 2.71F 05	:	
19300	SHIFT REGIST	NONE :	CDIP 14			LIFF V STOLIFF		141/ 0:	:	
19300	SHIFT REGIST	NONE 40	CDID 16		11. A. 1 N. A.	LIFE V	1250 1MK	1.51E n6	:	
9300	SHIFT REGIST	NONE 40	CFPK IA		N.A.	LIFF V	_	234/ 0 : 3.34F 05 :	:	
9300	SHIFT REGIST	NONE 40	CFPK 16		*N.A.	LIFE V REVRIAS	1250 170%	711/ 1 : 6.6°C 05 :	* * * * * * * * * * * * * * * * * * *	
9300	SHIFT REGIST	NUNE 40	CFPK 16	106C 69/73	COPPOTE GR		-0550 0700 20Y0 In HR E	5.02E 04	: :	
19300	SHIFT REGIST	NONE 40	CFPK 16	106C 69Z/3	# GB		-0550 0700 30YC 19 HP E	7.525 04	:	

FAIRCHI TTL		'ANUFACTU PERATIO			<i>52,102 17</i>				MALYSIS CENTER
PARI :		SCRN.	PACKAGE/		EQUIP.		STRESS LEVEL	* #TESTED/ : * #FAILED :	γ(:\APYS :
1 1			CHIP PROTECT.	TEST DATE		TEST TYPE		PAPT : HOUPS :	:
9300	SHIFT REGIST	I/ONE	SDIP 16	150C		LIFE V		: 38/ 0: : 3.80E 04:	:
1937)0	SHIFT REGIST	NONE 40	SDIP 16			LIFE V	085C 954PH	1 10/ 0 : 1.00F (5 :	:
9300	SHIFT REGIST	NUME 40	801P 16			LIPE V	125C 100%	71/ 0 : 7.105 04 :	:
9371	DECODER	8 -1 1a	CDIP 16	40C 73/73	CUNVCTH GB	CHK U UPERATE	า250 170#	6.72E 02	:
9301	DECODER	8-1 13	CDIP 16	73/73	COMMETN GB	PHL U OPEPATE		9.25E 03	:
193(1	DI-CODER	r-2 18	CDIP 16	•	*CUMCTN	FLD G	125C	/ 0: 4.98F 03:	:
5391	PECUPER	B-2 13	Cu15 19	4C0 71/71	CUPTOTH GT	PEL O		/ 0 1.58F 04	:
9301	DECOPER	HONE	COIP 16	15CC 70/73		LIFF V		1297 0: 1.29F 05:	:
9301	DECUDER	18 18	או יונט			LIFE V	1250-100%	57/ 0: 5.70E 04:	:
19301	DECODER	1046 13	Culb 19			LIFE V	1250 1M4	1807 0 6.05F 04	:
19301	DLCUDER	HONE 12	CFPK 16		N.A.	LIFT V STOLIFF		697/ 0: 4.97E 05:	:
9371	DECOMER	NO46:	CFPK 16			LIFE V PEVISIAS	1250 1MX	: 824/ 1 : : 8.24E 05 :	:
i 9301	DECOMER	NOME 13	SHIP IN		:N.A.	LIFE V HUVLIFF	085C 95xpH	51/ n : 5,105 c4 :	:
19371	A CODER	100 <u>6</u> 18	37I≥ IA			LIFE V	1250 Inna	1 52/ 1 1 5.20[04 1	
	APDER LOLL	NOUE 22	COTE 16			LIEU STOLIEF		1/4/ " : 1.44F 05 :	:
	AISTR FOLE	NONE 22	או פומט			LIHE V	1250 TOOK	1667 0 : R.101 04 :	:
	APDeP FULL	!!U!!!: 22	CFPK 16			LIFL V		1 320V 0 1	:
4	F 141.1 F 141.1	10)NF		773	1.1.	: IIHF V : CIVUIAS		1 5297 0 1 1 5,29° 15 1	:
	୍ୟ ପଥାବ ନ	,/−2 35	CHPK IN		*COMMCTN	: FLD G		11.4.	:
	L/10P	! !=1 56	:	13/13	t 3B	E CHI U	1 0250 100.	7.1/ 04	:
•	T ATCH	15ml 156	: GUIS 24 i	13C 13/73	1 34 50000010	: 014 041g : : 014 041g :	:	: 5.701 ° :	:
174)	FRATE	HUNE :	CEBE SV	1400	1' . 4. 1		125, 1007	1 5.601 7 1	:
171,	4 A4850	1 131 1 25 1	: 5016 4 :		1' . V.	Lli' V Dof Inc		1 1217 5 1	:
:	1	.J1⊵ •			: 1.5.	* [/ [/	: 1 1550 100°	1 1 1/ 0:	: :

					101 IVI	- DEVICE IN	717					
FAIRCH TIL			ANUFACTO PERATION	JRER NAL TYPE	FB 2 E 2 E 2 E	1085786335	#2 # 2 # 2 3 3 2 2 5		86 ===	LIAFILITY AU	ALYSIS CENTE	p ===
PAPT NU.	DEVICE FUNCTION		SCRN.	PACKAGE/	JCT.* TEMP.	# EQUIP. F	DATA :	STPESS LEVEL		#TFSTED/ : #FAILED :	BEAYBKS	:
	:			CHIP PROTECT.	TEST PATE		TFST TYPE	! !	:	PART : HOURS :		:
9308	LATCH	:	NUNE 56	CDIP 24		: :7. A. : N. A.	LIFE V	125C 1(A%	:	184/ 0 : 1.78E 05 :		:
930ช	LATCH	:	NONE 56	EDIP 24		:N.A. : N.A.	LIFE V	1250 100%	:	42/ 0 ± 4.20E 04 ±		:
9309	MULTIPLEXER	:	B-1 16	CDIP 16	10C 73, 73	CONNCTH G3	CHK U	0250 100%	:	2.00E 03:		:
9309	MULTIPLEXER	:	B-1 16	CDIP 16	40C 73/73	אדטגיינטס: רס :	REL U		:	2.75E 04		:
930 <i>9</i>	HULTIPLEXER	:	B-1 16	CDIP 16	74/75	SIGPROC	FLD G		:	6.83E 03		:
9309	# MULTIPLEXER	:	ALONE 16	CDIP 16	150C 70/73	: :N.A. : V.A.	LIFE V		:	165/ 0 : 1.65E 05 :		:
9309	MULTIPLEXER	:	NONE 16	CDIP 16		: :N.A. : N.A.	LIFE V : REVBIAS :	1250 1707	:	443/ 0 : 3.83F 05 :		:
9309	MULTIPLEXER	:	NUNE 16	CFPK 16	150° 173	: 1.A.	LIFE V		1	143/ 0 : 1.43E 05 :		:
9309	* MULTIPLEXER	:	NONE 16	CFPK 16	143C 772	N.A. N.A.	LIP V :		:	490/ 0 : 4.90E 05 :		:
9309	. MULTIPLEXER	:	NONE	CFPK 16	168C 72/73	11.A. 11.A.	LIFE V : REVBIAS :		:	315/ 0: 3.15E 05:		:
9310	COUNTER DECADE	:	B-1 60	CDIP 16	58C 73/73	CUPACTN GB	CPK U UPETATE	125C 100%	:	/ 0 : 4.70E 03 :		:
9310	COUNTER DECADE	:	B-1 60	CDIP 16	58C 73/73	COMICTN GB	REL U		:	6.45E 04		:
9310	COUNTER DECADE	:	8-1 60	CDIP 16	74/75	SIGPRUC AU	FLO G	; ;	:	1.715 03		:
9310	COUNTER DECADE	:	NUNE 60	CD14 16		:N.A. : Y.A.	LIFE V	1250 IM"	:	62/ n : 5.50F n4 :		:
9311	* DECORRADE PUX	:	[1-1 25	COIP 24	73/ 3	CUTHCTP GB	* Obligati * ChK n : *	1250 IMD	:	6.725 03		:
9311	* DECODPZDEMUX	:	3-1 25	Chilp 24	340 73/73	COPYCIN B	REL U	0250	:	9.23 04		:
9311	* DECODENDE	:	B-1 25	CDIP 24	14/75	*SIGPRUC * AH	: FID 6: : N.A.	: : :	:	/ 0 : 1.71E 03 :		:
v311	* DECODPAN ANX	;		: CFPK 24	: 410 75775	* OT **	FI 15 G	0.15C	:	/ n: y.97F n3:		:
9311	* DE CONFADE NAX	:	B-2 25	CFPK 24		COPPCTS	PLL O		:	7 0 ± 3.17= 04 ±		1
9311	* DECODRADE AUX	:	NONE 25	CDIP 24		171.A. 1 N.A.	LIFF V		:	156/ 0 : 1.56F 05 :		:
9311	* OFCOD, NDFMOX	:	52 HUNF	CDIP 24		: N. A.	LIFE V		:	420/ 0 i 2.81E 05 i		:
y311	* DECORPZDERUX	:		: CFb _h 54		* A.	LIFE A SVETEN		:	3/3/ 0 i 7.31F 04 i	•	1
y312	* "ULTIPLEKER	:		•	13//3	#C0777C131	# CHC U : # CHC U :		:	/ 0 i		:
	:	:			:	:	t	ı	:	*		:

_	PLESSE ECL		TOARUIAK:		 		 	REL		ANALYSIS CENTER	
:	PART NO.	DEVICE FUNCTION		PACKAGE/ PINS					"TESTED/ #FAILED		*
:		:		CHIP PROTECT.		APPL.		; ;	PART HOURS	:	:
: :	R602	COUNTER	8-1 4				REL U = -054 TCVIBPC = 83CY		4.ME 03	•	: : : : : : : : : : : : : : : : : : : :

FAIRCHILD

*MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER

TTL	*(PERATIO	NAL TYPE						
PART I		SCRN. CLASS	PACKAGE/	JCT.* TEMP.		DATA CLASS.		#TESTED/	
1 (CHIP PROTECT.			TEST TYPE	•	PART HOURS	1
1 19318	ENCODER	NONE 24	CFPK 16		: :N.A. : N.A.	LIFE V	125C 100%	210/ 0 2.10E 05	
9321	DECODER	B-1 18	CDIP 16	40C 73/73	COMMCTN GB	CHK U		/ 0 3.40E 03	
9321	DECODER	B-1 18	CDIP 16	40C 73/73	COMMCTN GB	REL U OPFRATE		/ 0 4.60E 04	
9321	DECODER	B-1 18	CDIP 16	74/75	SIGPROC AU	FLD G N.A.		/ 0 3.42E 03	
9321	DECODER	B-1 18	CDIP 16	65C 75/75	COMPUTR AI		-054C 050C 13CY1.3G 62%	/ 0 1.54E 03	-
9321	DECODER	B-1 18	CDIP 16	65C 75/75	COMPUTR AI		-054C 050C 17CY1.3G 62%	/ 0 2.01E 03	
9321	DECODER	NONE 18	CDIP 16	150C /73		LIFE V STGLIFE		37/ 0 3.70E 04	
9321	DECODER	NONE 18	CDIP 16			LIFE V REVBIAS		52/ 0 5.20E 04	
9322	MULTIPLEXER	B-1 19	CDIP 16	40C 73/73	COMMCTN GB	CHK U OPERATE		/ 0 1.30E 03	
9322	MULTIPLEXER	8-1 19	CDIP 16	40C 73/73	COMMOTN GB	REL U OPERATE		/ 0 i	
9322	MULTIPLEXER	B-1 19	CDIP 16	74/75	SIGPROC AU			/ 0 5.12E 03	
9322	MULTIPLEXER	NONE 19	CDIP 16		N.A. N.A.	LIFE V STGLIFE		17/ 0 1.70E 04	
9322	MULTIPLEXER	NONE 19	CDIP 16		N.A.	LIFE V REVBIAS		338/ 1 7.38E 05	
19324	CUMPARATOR	B−1 28	CDIP 16	45C 73/73	CONVCTN GB	CHK U		/ 0 5.40E 03	
19324	COMPARATOR	B-1 28	CDIP 16	45C 73/73	COMMCTN GB	REL U OPERATE		7.38E 04	
9324	CUMPARATOR	B-1 28	CDIP 16	74/75	SIGPROC AU	FLD G		/ 0 1.71E 03	
9334	LATCH ADRESSABLE	B-1 59	CDIP 16	74/75	SIGPRUC AU			/ 0 1.71F 03	
9 334	LATCH ADRESSABLE	NUNE 59	CDIP 16		N.A.	LIFE V		35/ 0 3.50E 04	
9338	REGISTER 8 BIT	B-1 138	CPIP 16	70C 73/73		CHK U OPERATL		/ 0 : 8.20E 04 :	
1 y 328	REGISTER 8 BIT	B-1 138	CDIP 16	70C 73/73		REL U OPERATE		/ 1 1.13E 06	IZMECHANICAL DIE PPOCESS PROC CONTROL
19344	MULTIPLIER BINARY	NONE 37	CDIP 24	/72		LIFE V		78/ 0 7.80E 04	
9348	GENERATUR	NONE 27	CDIP 16	150C 173		LIFE V STGLIFE		40/ 0 4.00E 04	
1 19348 1	GENERATUR	NONE: 27	-	152C 773	*N.A.	LIFE V REVBIAS	1	55/ 0 5.50E 04	

A Calabra

FAIRCHILD TIL *MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER DEVICE FUNCTION * JCT.* * EQUIP. * TEMP. * TYPE DATA CLASS STRESS LEVEL PART * SCRN. * PACKAGE/ #TESTED/ : REMARKS # CLASS # PINS **#FAILED** NO. # NO. # GATES # CHIP : TEST PROTECT. : DATE # APPL TEST TYPE PART HOURS FLIP FLOP 40C *COMMCTN 025C 100% 19600 B-1 CDIP MONOSTABLE GB OPERATE 2.00E 03 FLIP FLOP 19600 B-1 11 CDIP 14 40C #COMMCTN 025C 2.75E 04 MONOSTABLE 73/73 1 GB OPERATE FLIP FLOP 40C #COMBIN FLD U 19601 CDIP 14 MONOSTABLE N.A. 2.48E 05 85C *COMMCTN /72 * GB -055C 070C 84CYC 2.2G FLIP FLOP REL U 1069 CFPK 14 2.00E 05 MONOSTABLE 19601 FLIP FLOP CFPK 14 65C COMMOTN FLD U 050C 4.31E 03 OPERATE MUNOSTABLE 72/73 IA # FLIP FLOP MUNOSTABLE CHK U 40C # COMMCTN 19601 CDIP 14 025C 1.00% 2.70E 03 OPERATE 73/73 * GB 40C COMMOTN REL U FLIP FLOP 025C 19601 CDIP 14 MONOSTABLE OPERATE 3.68E 04 73/73 * GB 45C #DISPLAY FLD U 19601 FLIP FLOP CDIP 14 030C 9.70E 05 MONOSTABLE 10 185/ 0 1.85E 05 150C IN.A. LIFE V 9601 FLIP FLOP NONE CFPK 14 150C MONOSTABLE STGLIFE 140C :N.A. 0/73 : N.A. 525/ 0 5.22E 05 FLIP FLOP LIFE V NONE CFPK 14 125C 100% 19601 MONOSTABLE 70/73 REVBIAS LIFE V STGLIFE 724/ 0 7.24E 05 FLIP FLOP NONE CDIP 14 150 C : N.A. 9601 MONOSTABLE 70/73 1 LIFE V 9601 FLIP FLOP NONE 2 CDIP 14 140C IN.A. 125C 100% 1104/ MONOSTABLE 70/73 1.13E 06 N.A. REVBIAS 150C IN.A. /72 I N.A. LIFE V FLIP FLOP NONE 10 9601 EDIP 14 150C MUNOSTABLE STOLIFE 3.40E 04 FLIP FLOP 100C #N.A. LIFE V 98%RH 232/ NONE EDIP 14 085C 9601 MUNOSTABLE 10 /72 1 HUMLIFE 2.32E 05 FLIP FLOP SDIP 14 100C #N.A. LIFE V 98%RH 19601 NONE 085C MONOSTABLE HUMLIFE 5.20E 04 140C #N.A. LIFE V 208/ :9601 FLIP FLUP NONE SDIP 14 1.93E 05 MUNOSTABLE REVBIAS FLIP FLOP 50C + COMMCTN CHK U 025C 100% 9602 CDIP 16 5.51E 04 MONOSTABLE 73/73 * GB OPERATE 50C +CO™MCTN DEI II FLIP FLOP CDIP 16 **125C** 9602 **OPERATE** 7.55F 05 MONOSTABLE 73/73 # GB 150C :N.A. LIFE V 19602 FLIP FLOP NUNE CDIP 16 150C 260/ STGLIFE MUNUSTABLE /73 : N.A. 2.60E 05 18 150C IN.A. LIFE V 125C 100% FLIP FLOP NONE **CDIP 16 4** 19602 MUNOSTABLE PEVBIAS 1.31E 05 150C LIFE V 130/ 19602 FLIP FLUP NONE CDIP 16 IN.A. 125C MUNUSTABLE /73 : N.A. REVBIAS 1.30E 05 150C IN.A. /72 I N.A. 19672 FLIP FLUP NONE CFPK 16 LIFE V MONOSTABLE STGLIFE 1 3.30E 04 CFPK 16 155C :N.A. /72 : N.A. LIFE V # 125C 100% 32/ 0 3.20E 04 FLIP FLOP NONE 19602 REVBIAS MUNOSTABLE 18

FERRA	FERRANTI ITL		URER NAL TYPE	PELIABILITY ANALYSIS CENTED				
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/ PINS		DATA CLASS.		: #TESTED/: REMAR : #FAILED :	KS :
:	1		CHIP PROTECT.	4 APPL. 4 ENV.	IEST TYPE	:	PART : HGURS :	:
±5400	GATE	NONE	EDIP 14		LIFE V		1 1514/ 7 1 1 1-51E 06 1	:
15400	GATE	NONE	EDIP 14	 	LIFE V	: : 170C :	50/ 0 3.00E 04	:

	HARAI! TIL	5	# MANUFAC # CPERA FI	TURER ONAL TYPE	 			PELIABILITY /	AMALYSIS CENTER
:	PART Nu.	* DEVICE * FUNCTION		* PACKAGE/ * PINS		* PATA * CLASS. *	STPESS LEVEL	# #TESTED/ :	
:		:		* CHIP * PROTECT.		TFST TYPE		PART :	; ;
:	165	# ENCUDER	: C-1	* CDIP 24 *SIU2		: LIFE V : I : STGLIFE :	175C	: 22/ 0 : 2.20E 04 :	
:	' 65	ENCODER	C-1	* CDIP 24 *SI()2	: :N.A. : N.A.	LIFF V : 1	125C	\$ 52/ 0 : \$ 5,20F 04 :	

ITI TIL		MANUFACTO OPERATION					RELIABILITY A	NALYSIS CENTER
PART NU.	* DEVICE * FUNCTION	SCRN.		JCT.⇒ : EQUIP. TEMP. : TYPE	DATA CLASS.	STRESS LEVEL	* #TESTED/ * * #FAILED *	REMAPKS :
	: :		CHIP PROTECT.	TEST : APPL.	TEST TYPE	:	PART SHOURS	
\$ \$5400	GATE	1 A-2	CFPK 14	150C =N.A. 75 = N.A.	LIFE V		52/ 0 = 5.20E 04 =	:
5400	GATE	A-2	CFPK 14	130C =N.A. /75 = N.A.	LIFE V		52/ 0 5.20E 04	•
5400	GATE	B-1	CFPK 14	150C N.A. /74 N.A.	LIFE V STGLIFE		55/ 0 5.50E 04	:
5400	GATE	B-1	CFPK 14	130C N.A. /74 : N.A.	LIFE V RINGCNT		77/ 0 7.70E 04	:
5400	GATE	B-2	CFPK 14	150C #H.A. /75 # N.A.	LIFE V STGLIFF		50/ 0 5.00E 04	:
5400	GATE	B-2	CFPK 14		LIFE V RINGCNT		106/ 0 1.06E 05	
5400	GATE	8-2 4	CDIP 14	130C :N.A. /75 : N.A.	LIFE V		105/ 0 1.05E 05	:
5400	GATE	C-1	CDIP 14	150C = N.A. 774 = 11.A.	LIFE V STGLIFE		55/ 1 : 5.50E 04	I/DEGRADATION :
5400	GATE	C-1	CDIP 14	130C #H.A. 774 * N.A.	LIFE V RINGCNT		77/ 0 7.70E 04	:
5400	GATE	C-2	CDIP 14	1300 IN.A. 775 IN.A.	LIFF V RINGCNT		53/ 0 : 5.30F 04 :	:
5400	GATE	NONE 4	CDIP 14	150C IN.A. /73 I N.A.	LIFE V STGLIFE		55/ 0 : 5.50E 04 :	:
5400	GATE	NONE 4	CDIP 14		LIFE V		77/ 0 : 7.70% C4	:
5401	GATE	B-1	CHPK 14	150C IN.A. /74 : N.A.	LIME V STGLIFE		55/ 0 5.50E 04	:
5401	GATE	B−1 4	CFPK 14	130C :N.A. /74 : N.A.	LIFE V RINGCNT		77/ 0 : 7.70E 04 :	:
5471	GATE	B-2	CFPK 14		LIFE V		105/ 0: 1.05E 05:	:
\$5401 \$	GATE	B-2	CHPK 14	130C 14.A.	LIFE V RIMGENT		106/ 0 1 1.06E 05 1	:
\$5401 \$	GATE	C-1	CFPK 14		LIFE V		# 81/ 0 # # 8.10F 04 #	:
540	GATE	C-1	CFPK 14		RINGCHT		1 165/ 0 1 1 1.455 05 1	:
#5401 #	GATE	C-1	CDIP 14 :		LIFE V		55/ 0 : 55/ 0 :	:
5401	GATE	C-1 :	CDIP 14 :		LIFF U		77/ 0 : 7.70E 04 :	:
5401	GAIL	NONE 4	CDIP 14	150C IN.A.			55/ 0 : 5.50F 04 :	:
15401	GATE	NONE :	CNIP 14 :		LIFE V		77/ 0 : 7.70E 04 :	1 1
15402	CATE	B-1 :	CDIP 14	150 C N.A. 174 1 17.A. 1	LIFE V STGLIFE		5.50E 04	:
15402 1	GYLF	B-I I	CDIP 14 :	131C IN.A. 1	RINGCHT		1 77/ 0 1 1 7.70F 04 1	:

الموري الموري والمقام المفاحة المراجعة والموافق المجموعية والمورية المورية والمورية والمورية والمعارفة والمورية والمورية

ITT		MANUFACTI OPERATION					PELIABILITY AND	ALYSIS CENTER
PART :	DEVICE FUNCTION	SCRN.		JCT.* : EQUIP. : TEMP. : TYPE	DATA CLASS.	STRESS LEVEL	: #TESTED/: : #FAILED :	REMAPKS :
1			CHIP PROTECT.			: :	PART : HGURS :	:
\$ 5402 \$		B-2	CFPK 14	150 C = N.A.	LIFE V		: 55/ 0: : 5.50E 04:	: :
\$5402 \$	GATE	8 B-2 1	CFPK 14	: 131C :N.A. :: : /75 : N.A. :	LIFE V RINGCNT		38/ 0 : 3.80E 04 :	; ;
\$5402 \$	GATE	C-1	CFPK 14	150C :N.A. /74 : N.A.	LIFE V STGLIFE		52/ 0 5.20E 04	: :
:5402	GATE	C-1	CFPK 14	131C :N.A. /74 : N.A.	LIFE V		174/ 1: 1.7cf 05:	:
5402	GATE	C-1	CDIP 14	150C :N.A. /74 : N.A.	LIFE V STGLIFE		34/ 0 3,40E 04	:
\$5402 \$	GATE	C-1	COIP 14	131C =N.A. 774 = N.A.	LIFE V RINGCHT		105/ 0 : 1.05E 65 :	: :
\$5402 \$	GATE	MONE 4	CFPK 14	150 C = N.A. 772 = N.A.	LIFE V STGLIFE		52/ 0 5.20E 04	:
:5402	GATE	NONE 4	CFPK 14	131C IN.A. //2 I N.A.	LIFE V		176/ 1 1.76E 05	;
±5402	GATE	NONE 4	EDIP 14	150C :N.A. /73 : N.A.	LIFE V STGLIFE		34/ 0 : 3.40E 04 :	; ;
15402 1	GATE	NUNE 4	ENIP 14	131C = N.A. /73 = N.A.	LIFE V		105/ 0 1.05E 05	:
\$5403 \$	GATE	8 B-1 8 4	CDIP 14	150C : N.A. 774 : N.A.	LIFE V STGLIFE		176/ 0: 1.76E 05:	: :
15403 1	GATE	8 B-1 1 4	CDIP 14		LIFE V		52/ 0: 5.20E 04:	: :
:5404 :	INVERTER	# B-1 # 6	CFPK 14	150C :N.A.	LIFE V STOLIFE		: 65/ 0 : : 6.50E 04 :	: :
15404 1	INVERTER	\$ B-1 \$ 6	CFPK 14	132C :N.A. 774 : N.A.	LIFE V RINGCHT		: 111/ 0: : 1.11E 05:	:
\$ 5404 \$	INVERTER	# B-2 # 6	CFPK 14	150C IN.A.	LIFE V STGLIFE		: 45/ 0 : : 4.50E 04 :	: :
15404 1	INVERTER	: C-1 : 6	CDIP 14	150C :N.A.	LIFE U STGLIFE		: 55/ 0: : 5.50E 04:	: :
\$54/)4 \$	INVERTER	: C-1 : 6	CDIP 14	132C M.A.	LIFE V		: 77/) : : /./OE 04 :	1
15404 1	INVERDER	: C-2 : 6	CDIP 14	132C IN.A.	: Liel V : Rirgent	_	: 53/ 1 : : 5.30E 04 :	:
15494 1	I IVERTEP	2 NON 2 6	CDIP 14		LIFE V STGLIFE		: 59/ 0: : 5,50% 04:	:
:5404 :	INVERTER	101E 6	CMIP 14	132C = V.A.	LIFE V PIT GCUT	1250 1000 1	: 7// O : : 7.70F 04 : :	: :
15404 1	: IfVePTeR	: พบท <i>ะ</i> : 6	CDIP 14	132C +N.A.	LIFT V		: 22/ 1 : : 2.20F 04 :	:
:5405 :	INVERTER	8-1 6	CHPK 14		LIFF V		1 11/ 0 1	; ;
15405 1	: TWEP1ER	1 P-1 1 6 :	CFPK 14		: LIHE V : PIMOCNT :	: :	: 35/ 0 : : 3.50E 34 :	: :
#5405 #	: Irverier :	1 B-2 1 6	CFPK 14	1 /75 1 1.A.	: Lirb V : STCLIFE :		1 55/ 0 1 1 5.5/E 04 1 1	: :

	TIL	w was a ma maga pa pa	OPERATION		100 300 22222222222 107 + + COULD	***************************************	CTDCCC -	**************************************	DENTURA 2222 22 2222
	* PART * NU.	DEVICE FUNCTION	CLASS	PINS		CLASS.	LEVEL	#TESTED/:	REYARKS
	:	: : 						PART HOURS	
	\$ \$5405 \$	INVERTER	* B-2 :	CFPK 14		LIFE V RINGCNT		22/ 0 : 2.20E 04 :	
	1 15405 1	* INVECTER	: C-1	CFPK 14	150C #N.A. 774 # N.A.	LIFE U STGLIFE		55/ 0 = 5.50E 04 =	
	‡ ‡5405 ‡	INVERTER	: C-1 : 6	CFPK 14	: 132C *N.A. : /74 * N.A.	LIFE V RINGCHT	125C 100%	77/ 0 : 7.70E 04 :	
	\$ \$5405 \$	INVERTER	C-2	CFPK 14		LIFE V		22/ 0 : 2.20E 04 :	
	: :5405 :	INVERTER	C-2	CFPK 14	/75 * N.A.	LIFE V RINGCNT		52/ 1 : 5.20E 04 :	
	‡ ‡5405 ‡	INVERTER	NONE 6	CFPK 14		LIFE V STGLIFE		55/ 0 : 5.50E 04 :	
	# #5405 #	INVEPTER	NUNE 6	CFPK 14	: : : : 132C *N.A. : /73 * N.A.	LIFE V	1250 100%	77/ 0 : 7.70E 04 :	
	: :5410 :	GATE	B-1 3	CFPK 14		LIFE V STGLIFE		25/ 0 : 2.50E 04 :	
	: :5410 :	GATE	# B-1 # 3	CFPK 14		: LIFE V : PINGCNT	1250 100%	89/ 0 I 8.80E 04 I	
	‡ ‡5410 ‡	GATE	* B-2 * 3	: CFPK 14 :	: : : : : : : : : : : : : : : : : : : :	LIFE V STGLIFE		55/ 0 t 5.50E 04 t	
	: :5410 :	GATE	C-1	CDIP 14		LIFE V STGLIFE		92/ 0 : 9.20E 04 :	
	*5410 *	GATE	t C-1	CDIP 14	129C = N.A. 774 = N.A.		1250 100%	157/ 0 : 1.57E 05 :	
	: :5410 :	GATE	C-2	CDIP 14	150 C H.A.	LIFF V STGLIFF		12/ 0 1 1.20E 04	
•	\$5410 \$	GATE	* NONE	CFPK 14	150 C N.A. 772 N.A.	LIFE V STGLIFE		26/ 0 2.60E 04	
	1 15410 1	: GATE	HONE 3	: CFPK 14	1 129C #N.A. 1 /72 : N.A.		: : 1250 100% :	# 88/ O # # 8.80F 04 #	
	: :54121 :	FLIP FLUP MUNDSTABLE	: A-2 : 9	CFPK 14	150 C :N.A.	LIFE V STGLIFF		52/ 0 : 5.20F 04 :	
	154121 154121	FLIP FLUP MUNUSTABLE	# B=1 # 8	COIP 14			፤ # ቀባ54ሮ በ5በር # 130Y1.3G ለማዩ	/ 0 : 2.74E 04 :	
	54121	FLIP FLEP NOMOSTABLE	: B-1		1 75/15 1 AI	: TCVIBPC	\$ 170Y1.30 62%		
	# #54121	FLIP FLOP FLOOSTAGE	i R−2	CDIP 14	1500 IN.A.	LIFF V	: 1500 :	30/ 0 : 3,00E C4 :	
	: :54121 :	FLIP FLOP	# B-2 # 8	: CDI2 14	175 1 1.1.		125C	30/ 0 : 3.00E 04 :	
	: :54151 :	* WULTIPLEXER			142C IN.A.		:	55/ 0 i	
	\$54157 \$	WULTIPLEXER		CDIP 16	150C IN.A.	LIFF V	± 150C	105/ 0 1.05E 05	
	•54157 •	MULTIPLEXER	¥		1 /74 1 1.A.	* PINGCAT	1 1250 100%	176/ 0 : 1.76F 05 :	
	5420	GATE	1 2	# CFPK 14	150 C = N.A. 774 = N.A.			10/ 0 : 1.00F 0a :	

ITT TTL		*MANUFACTO *OPERATION	IAL TYPE				RELIABILITY AND	
PART	SEVICE FUNCTION	SCRY.	PACKAGE/	JCT.* : EQUIP. : TEMP. : TYPE		STPESS	: #TESTED/ : : #FAILED :	RENAPKS :
!	:		CHIP PROTECT.				PART : HOUPS :	:
\$ \$5420 \$	# GATE	# B-1 :	CFPK 14	: : : 127C : H.A. : /74 : N.A.	: LIFE v : : RINGCHT :	125C 100%	: 36/ 0: : 3.60E 04:	: :
\$5420 \$	# GATE	B-2	CFPK 14		LIFF V STGLIFF		55/ 0 = 5.50E 04 =	:
\$5420	GATE	C-1	CFPK 14	150C N.A. /74 N.A.	LIFE V		55/ 0 5-50F 04	:
25420 2	GATE	C-1	CFPK 14	127C = N.A. //4 = N.A.	LIFE V	125C 110%	: 77/ 0 : 7.70F 04 :	:
#5420 #	# GATE	* NONE 2	CFPK 14	150C =N.A. /73 = N.A.	LIFE V		\$ 55/ 0 : \$ 501 04 :	:
\$5420 \$	S GALE	* NUN::	: CFPK 14 :	127C : N.A. : //3 : N.A.	: LIFE V : RIVOCVI :	1250 100% 1	: 77/ 0: : 7.70F 04:	:
\$5420 \$	# GATE	៖ NUNE ៖ 2	EDIP 14		: Link V : STGLIFF		: 69/ 0: : 2.90: 04:	:
\$5420 \$: GATE	# FORE 2	: EOID 14 :	# 97C #N.A. # 775 # 9.A.	: LIFE V : HUTLIFE	៖ 1950 - 85पम : :	: 150Z 0 : : 7.505 04 :	:
15420 1	GATE 1	* NOME * 2	: EDIP 14 :	12/C #M.A. 1 /72	: LIFE V	: 1250 1M4 :	: 210/ 0 : : 1.5/E 05 :	:
#5430 # #_	GATE :	# B=1 # 1	: CFPK 14	7/4 1 11. h.	: LIFE V : STGLIFF	: :	\$ 55/ 0 \$ 1 9.50° 04 \$ 1	:
#5430 #	GATE 1	: R-1 : 1	# CHPK 14	1 /74 1 1.4.	* PINGCHT	:	77/ 0 : 7.701 04 :	:
#5430 #	GATE :	# 6-1 # 1	: CDIP 14	: //4 : 1.A.	LIFE V STGLIFF	: :	1 215/ 0 1 1 2.15E 05 1	:
#5439 #	# GATE	# E-2	: CFPK 14 : : CFPK 14	: /75 : I.A.	: Lirt V : STGLIFE	: :	1 05 \ 0 1 1 e0 3e0 1 : 1 0 \\\ 1 0 \\\ 1 0 \\\	:
#54.30 # #5430	GAIL GAIL GAIL	: {:-} : 1 : C-1	* CPPK 14 * * CpPK 14	: 775 : ".A.	LIFE V	t :	1 267 0	1
* * *5430	: GALE	: C-1	: Chr (14	: //4 : 1.Λ. : :	: STOLIFE		1 2 208 c4	:
: : :5430	I GALL	: 1 : C-1	# CDIP 14	1 /74 1 Y.A.	PINGCTI LIFE U	: :	: P.80€ 04 : : 444Z 0 :	:
* * *5431	: GATL	1 HOME	:	: /// : 'I.\. : : : : : : : : : : : : : : : : : : :	i PENETAS	:	1 244 05 1	:
\$ \$ \$5430	i i i GAIn	i 1	:	: //2 : N.A. : : :	: of(Linh		1 2.60F 04 1 1 FRZ 0 1	:
1 1 154 h	1 1 1 GA15	1 1 1 1/1/12	:	1 772 1 9.A. 1 150C 1N.A.	LIFT V	:	:n. /d:	:
: : :5430	I I OAIL	# 1 # NUNE	: : Chip 14	1 69/72 1 1.4. 1 1 1 1 12/0 11.4.	: SfGLIe! : : Life v	: : 1250 1004	1 1.40 D I I I 262/ 0 I	: :
# #5710	i i i steril	; ['-1		: 02/25 : 1 V*	i HIGCTT	: : : 1600	1 2.62E (5 1 1 52/ 0 1	1 1
1 1 1544 +	‡ ∓ nUnl ER	; 2 ; 13-1	: : Chie 14	: //4 : 1.A. : : : : : : : : : : : : : : : : : : :	STCLIET Filhry	1 1 1250 100x	: ' 20F 04 :	: :
: : :544(៖ ៖ ៖ កាប់កូតាក្រុង	; C-1	: CDIP 14		i HrgCTT i Hr v	1 1500	17.70 14 1 1	: :
:	1	; ?	:	: //4 : 1.1.	: T(1])	! !	1 4.9% (4 1 1	:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		* Const	DACKARES		TERRETERS:	- STOUCE	* ************************************	24222222222222222222222222222222222222
PART NU.	FUNCTION	CLASS		JCT.* : LOUIP. : TEMP. : TYPE	CLASS.	STRE'S LEVEL	* #TFSTED/ : * #FAILED :	PENAPKS
	! !		CHIP PRUTECT.		TEST TYPE	 	PART : HGURS :	
5440	* BUFFEP	C-1	CDIP 14	123C #N.A. 774 # N.A.	LIFE V	1250 1mx	182/ 0 : 1.82E 05 :	
5440	BUFFER	NONE 2	EDIP 14	150C *N.A. 773 * N.A.	LIFF V		34/ 0 3.40F 04	
5440	BUFFER	NONE 2	E01P 14	131C IN.A. 773 I N.A.	LIFE V		105/ 0 1.05E 05	
5442	DECODER	8-1 18	CFPK 16	150C IN.A. 774 I N.A.	LIFE V STGLIFF		: 105/ 0 : : 1.05E 05 :	
5442	DECUDER	B-1 18	CFPK 16	142C IN.A. 774 : 1.A.	LIFE V RINGCNT		: 176/ 1 : : 1.76E 05 :	
5442	DECODER	B-2 18	CFPK 16	150C IN.A. 775 I N.A.	LIFE V STGLIFF		55/ 0 : 5.50F 04 :	
5450	GATE	A-2 6	CFPK 14	150C N.A. 775 N.A.	LIFE V		32/ 0: 3.20E 04:	
5450	GATE	A-2 6	CFPK 14	129C N.A. 775 N.A.	LIFE V		32/ 0 : 3.20E 04 :	
5450	GATE	# B-1 # 6	CDIP 14	150C =N.A. 774 = N.A.	LIFE V		70/ 0 : 7.00E 04 :	
5450	GATE	i R−1 i 6	CDIP 14	129C IN.A. 7/4 I N.A.	ELIFE V		121/ 0 1.21E 05	
5450	GATE	: C-I : 6	CFPK 14	150C IN.A.	LIFF V		55/ 0 : 5.50E 04 :	
5450	: GATE	: C-1 : 6	CFPK 14	129C IN.A.	LIFE V PINCONT		: 77/ 0 : 7.70 04 :	
5450	GATE	: C-1 : 6	CDIP 14		: LIFF V : STOLIFF		55/ 0 : 5.50F 04 :	
5450	# GAIE #	: C-1 : 6	: CDIP 14:	129C IN.A.	E LIFE V E PINCONT		17/ 0 1 1.70E 04 1	
5450	: CAIE	C-2	: CFPK 14	150C 11.A. 175 1 N.A.	: LIFE V : STGLIFE		: 55/ 0 : : >.50F 04 :	
5450	GATE	NONE 6	: Chpk 14 :	150C :N.A.	LIFF V		: 55/ 0 : : 5.50F 04 :	
5450	GATE	: DONE : 6	: CFP< 14		: LIFE V : RIPGCNT		1 77/ 0 : 1 7.705 04 :	
5400	: GATE	1 6 1 HONI	COIP 14		LIFF V STGLIFF		: 55/ 0 : 5.50E 04 :	
5450	GAIL B	I NONE 6	CDIP 14		ILIFE V RIPGCTT	1250 ION%	1 7// 0 1 1 7.70F 04 1	
5453	GATL 1	# B-1 # 5	# CHPK 14 #	: /74 : ".A.	: LIFF V : STGLIFF	: :	1 63/ 0 1 1 6,80° 04 1	
5453	GAIE :	1 B-1 1 5	: CFPK 14 :	/74 : N.A.	: LIFE V : PINGCNT :	t :	1 1217 0 1 1 1.21F 00 1	
5403	# GAIE #	NONE 5	: CEPK 14	773 : N.A.	I.IFF V STGLIFF	:	1 68/ 0 1 1 6,80F 04 1	
5493	I GALE I	1 110/11; 1 5	CFPK 14		: LIFE V : PINGCNT :	1250 IM%	: 2107 0 :	
5454	GAIL	# B=1	CHIP 14		LIFT V		* 687 0 * 6.80E 04 *	

ITT TTL		MANUFACTO OPERATION	IAL TYPE					NALYSIS CENTER
PART NU.	DEVICE FUNCTION	SCRN. CLASS	PACKAGE/	JC1.* = EOUIP. TEMP TYPE	DATA CLASS.	STRESS	#TESTED/ : #FAILED :	REMAPKS :
:			CHIP :			: :	* PART * * HOURS *	1
1 15454 1	GATE	1	CDIP 14		LIFE V RINGCNT	: : 1250 100% :	: 121/ 0 : : 1.21E 05 :	
\$ \$5470	# FLIP FLOP	: B-1 : : B1 :	CDIP 14	150C =N.A. 774 = N.A.	LIFE V		: 117/ 0: : 1.17E 05:	:
5470	FLIP FLOP	B-1	CDIP 14	1.73C *N.A. 774 * N.A.	LIFE V RINGCNT		253/ 0 2•53E 05	:
15472	FLIP FLOP	8-1 10	CDIP 14	150C =N.A. 774 = N.A.	LIFE V STGLIFE		72/ 0 7.20E 04	:
\$5472 •	FLIP FLUP	± B−1 ± 10	CDIP 14	131C H.A. 774 H.A.	LIFE V RINGCHT		: 135/ 0 : : 1.35E 05 :	
15472	FLIP FLOP	C-1 10	COIP 14	153C P.A. 774 N.A.	LIFE V STGLIFE		34/ 0 3.40E 04	:
15472 1	FLIP FLOP	C-1 10	CDIP 14	131C =N.A. 7/4 = N.A.	LIFE V		105/ 0 1.05E 05	:
:54/2	FLIP FLOP	C-2	COIP 14	131C IN.A. 775 I H.A.	LIFE V		25/ 0 2.50E 04	:
154/2 1	* FLIP FLOP * JK	NUNE 10	CDIP 14	150C IN.A.	LIFE V STGLIFE		34/ 0 3.40i, 04	:
:5472	FLIP FLOP	HONE 10	CDIS 14	131C III.A. 772 : 7.A.	LIFE V		1057 0 1.05E 05	
15473	FLIP FLOP	A-2 20	CFPK 14	150C :N.A. 175 : N.A.	LIFE V STGLIFE		15/ 0 : 1.50F 04 :	1
15473	FLIP FLOP	: A-2 : 20	CFPK 14	137C :N.A.: /75 : 11.A.	LIFS V		297 0 2,901 04	1
15473 1	FLIP FLOP	: B-1 : 20	CFPK 14	150C 19.A.	LIFI. V		7// 0 : 7,70E 04 :	:
154/3	FLIP FLUP	8~1 20	CHPK 14	13/C =N.A. - //4 = 1.A.	LIFE V		176/ 0 1.76F 05	:
54/3	FLIP FLUP	B-1 20	CDIP 14	1572 IN.A. 774 I II.A.	LIFE V STGLIFE		55/ 0 5,50E 04	:
154/3	FLIP FLOP	B-1 20	CDIP 14	137C H.A. 774 H.A.	LIFE V		71/ 0 1.70E 04	1 1
154/3	: FLIP FLUP	: C-1 : 20	CDIP 14	150C IN.A. 174 I N.A.	LIFE V STGLIFE		130/ 0 1 1.30° 0 3	1
15473	* FL1r FLOP * Jk	: C-1 : 2′)	CDIP 14		ETHI V FRIFOCUT		1 77/ 0 1	1
154/3 1	FLIP FLOP	# 1701E # 20	COIP 14	: //3 : '\.\.	Lint V		130/ 0 i 1.00/ 05 i	:
15473	: FLIr FLUP : Jk	# I-ONE # 20		137C = N.A. 1 773 = V.A.	-	: 1250 100 s :	/// ? :/.IOE C4	
:54/4	FLIP FLOP	: (-1 : 12	COIP 14	150°C ***.A.	LIE. V		5.20 (d	
154/4 1	FLIP FLOP	: 3-1 : 12	Cu15 11	1350 M.A. 7/4 M.A.	: PIRGG I	: 1250 170 ₀ .	7.70E C4	
54/4	FELL FLOR	C-1	onte ta		Clef V STOLIFF		2227 1 i i 1.50r 05 i	12/4 3/9/0/110/.
154/4	: elle eloe : D	1 C-1 1 12	COID 14			1250 IM ₆	1 2.90/ 1 1 1 2.90/ 1 1 1	

I TT TTL		ANUFACTI PERATION					RELIAPILITY AN	ALYSIS CENTER
PART . YU.		SCRN.		JCT.* : EQUIP. : TEMP. : TYPE	DATA CLASS.	• • • • • • • • • • • • • • • • • • • •	* #TESTED/ : * #FAILED :	REMARKS
:			CHIP PRUTECT.		TEST TYPE		PART F HGUPS F	
54/4	# FLIP FLOP :	C-2	CDIP 14	: : : : : : : : : : : : : : : : : : :	LIFE V		: 52/ 2 : : 5.20E 04 :	
: :5474 :	* +LIP +LOP :	NONE :	CDIP 14	150 C +N.A. 1 773 : N.A.	LIFE V STGLIFE		150/ 0 : 1.10E 05 :	
: :5474 :	* FLIP FLOP	NONE 12	CDIP 14	135C IN.A. 1	LIFE V RINGCNT		154/ 0 1 1.546 05 1	
5476	FLIP FLOP	6−1 .0	CD15-16	150C 4N.A.	LIFE V		52/ 0 : 5.20E 04 :	
\$5476 \$	FLIP FLUP	8 −1 20	CDIP 16		LIFE V RINGCHT		1 1/6/ 0 1 1 1.76/ Co 1	
5482	* ADDEP * pINARY	B-1 21	CFPK 14	1500 N.A. 774 N.A.	LIFE V STOLIFF		124/ 0 1.24F 05	
5482	ATDER BINARY	H-1 21	CFPK 14	1 /74 # 11.A. :	LIFE V		221/) : 2.21[05 :	
5482	* ADDLR * BINARY	8+2 21	CFPK 14		LIFE V STOLIFE		40/ 0 : 4.00E 04 :	
5490	COUNTER DECADE	C-1 15	CDIP 14		LIFF V STGLIFF		34/ 0 : 3,40E 04 :	
5490	COUNTER DECADE	C-1 15	CDIP 14	144C III.A. 774 III.A.	LIFE V PINGC II		105/ 0 1.05/ 05	
5490	DECAPE	NONE 15	ENTP 14		LIFE V STGLIFE		: 34/ 0 : : 3,40F 04 :	
5490	COUNTLR DECADE	NUNE 15	EDIP 14		LIFF V PINGCUT	1250 1m;	: 105/ 0: : 1.05: 05:	
5492	COUNTER	C-1 26	COIP 14	1500 19.A. 274 5.A.	LIFE V STOLIFE		34/ 1: 3.40F 04:	
15492	CLUNTER	C-1 26	CDIP 14		Linf V		1 05/ 0 1 1 05F 05 1	
5492	COUNTER	C-2 26	CHIP 14	750 th.s. 775 to 1.8.	LIFE V STOLIFE		22/ n : 2,20 04 :	
15492	CUUNTER	140NE 25	CDIP 14	150C :N.A. 772 : N.A.	llet V		: 34/ 0: :3.40 04:	
15472	COPUL-	.UNI: 26	CDIP 14	1440 17.4. //2 N.A.	Lieb v Trochi	1250 IM	105/ 0:	
1)444 1	STIFT REGIST	P-2 16	CrPK 16	1 //5 1 N.A.	LIHI V ST(LIHE		227 O I	
15471 1	shiri Pbilsi	B-2 to	Crrs 16	1 146C 14.1.	LIFF V		-57 0 i	
1740 1	-	1 R-? 1	: CDEP 14	1500 11.1.	LIP v Slotter		1.47 0 i	
1 (A K)	PAIR	B-2	: CDIP 14		Lin v		1/5Z 0 1 1.09F 05 1	
174 b,	1 QA1.	: ('-/ : 4	: (" - 4 :		i lle v i Sittles		57 5 1 4 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	
1/47)	GATE	(a)Ni -	: COLP 14	175 1 1.1.	i lle∈V: →MLlei		1 1 V 1 1 1 1 1 de (55 1	
1/470	i FAU :	1 H ts 4	: CI(P 14	1 130C IN.A.	:		1627 3	

1 TT TIL		MANUFACTU OPERATION		morrae versee va		า	ELIABILITY A	MALYSIS CENTER
: PARI		SCRN.		JCT.* : EQUIP. TEMP. : TYPE	DATA CLASS.	STPESS LEVEL	: /TESTED/ : : #FAILED :	REMARKS :
:						t t	PART :	-
‡7490 ‡	GATE	HONE 4	EDIP 14	150C :N.A. 75 : N.A.	LIFE V		207/ 0 2.07F 05	
7400	GATE	NONE	EDIP 14		LIFE V RINGCNT		1326/ 0: 5.83E 06	
7401	GATE	NONE	EDIP 14	150C 11.A. 175 1 N.A.	LIFE V : STGLIFF :		፡ 96/ 0 ፡ ፡ 9.6ባት 04 ፡	:
:7401	GATE	NONE 4	EDIP 14	90C :N.A.	LIFE V : HUVLIFE	: 0850, 85%RH :	: 104/ 0 : : 5.20F 04 :	:
*7401	: GATE	NONE	EDIP 14	: 130C :N.A. : /72 : N.A.	: LIFF V : RINGCNI		: 77/ \: : 7.79F 04:	1/PEGRAPATION :
:7403 :	GAII:	: B-2 : 4	COIP 14	150C 1 A. 175 1 1.A.	LIFE V		11/) 1.106 G4	:
7405	INVERTER	C-1	CDIP 14		LIFE V		75/ 0 : 7.50E 04	:
2/405	INVERTER	C-2	CDIP 14	132C :N.A. 175 : 1.A.	FIFF V		52/ 1: 5.20: 04:	:
7405	INVERIE.	: 2006 : 6 :	CDIP 14		LIFE V STGLIFI		75/ 0 : 7.50F 04 :	:
:/410	GAIL	: NO!!- :	EDIP 14	150C #1.A. 775 1 7.A.	Link V		105/ 0 1.05E 05	
‡7410	υAlb	NUNE :	EDIP 14	129C IN.A. 775 1 N.A.	LIE V RINGCHI		52/ 0 : 5.20: 04 :	:
: اار 741	JULTI PLEXER	: 50 : : NONF :	EDI 24	: 103C :N. \. : /75 : 1.A.	LIFE V HUALIFE		104/ 2 5.20F 04	
:/4161 :	CCJALTE	NONE :	2015 10	: 1560 : V.A. : 775 : V.A.	LIFE V GC'IT		52/ 0 : 5.20 04 :	:
‡742′)	GATE	B-2	CDIP 14	100 H.A. 100 H.A.	LIFT V		55/ 0: 5001-04:	:
1/420	UAII	: L-2 :	0012 14 I	1270 H.A.	LIF. v : RINGCHT :		55/ 0 : 1.15: 05 :	:
1745 ⁽	: 2\11	: 1 : KON : : 1	nip 14:	150 C 18.1. 775 F 1.A.	LIFT V		27/ 0:	:
; ;/ :	MATE.	: VUNE :	Eni. 14	#60 #N.A. 775 # 1.1.	: Liet V : Purtir	: : 0450 85% att	: 104/ 0 : : 5.20] ((4 :	:
1 / /i 3:	011.	: 1337 1 : 1337 1		1 09//3 1 1.A.	FIFE A		1057 0 : 1.057 0 :	
1/41	OA11	: 11071 <u>6</u> 1	14 dlu-1	1200 IN.A. 170 I N.A.	Libi v Il GC II		52/ 0 i	
: /:: 37 :	:	: [a/1 -] : 4		1/5 : 1.A.	lle. V Sictie		: 3./ h : : 3./ h :	
	i soreta i	6-2 5-2	Chir 14	1500 19.A. 1751 1.A.	: 	:	: 105/) : : 1,05 % :	
: :/11 :		: 1,-2 : 2	€12-14	1 1310 17.A. 1 7/5 1 7.1.	: LIFT V : PITGOTT		: 1^2/ 1 : : 1. 10 / 1 :	
* / / / 1	Omrack	: 2 :	:	1500 17.A. 1 49/73 1 1.A.	: Lipt V : Si lipt :		70/ 04	
1/440	:	: 3 Mar : 1 - 2 :	:	1310 11.A. 1697/3 1 1.1.	1 9 [M: CHE.	1 1350 170 1	103/ 01 1.04 00	1

THE PARTY OF THE P

	ITT TIL		ANUFACTI PERATIO	NAL TYPE					RFLIABILITY A	MALYSIS CENTEP
1	PART NO.		SCRN. CLASS	PACKAGE/		EQUIP.	DATA CLASS.	STRESS	* #TESTED/ : #FAILED :	
:				CHIP PROTECT.			TEST TYPE	 	PART PHOURS	
;	7440	BUFFER	NONE :	EPIP 14		IN.A.	LIFE V		75/ 0 : 7.50E C4 :	
:	/440	BUFFER	NONE 2	EDIP 14			: LIFE V :	1250 100%	101Z 0	: : : : : : : : : : : : : : : : : : :
:		GATE Expandable	NONE 6	COIP 14			LIPE V STGLIFE		72/ 0 7.20F 04	* ************************************
		GATE EXPANDABLE	NUIII:	CDIP 14		. N.A.	LIFE V		105/ 1 1.05F 05	INDEGRAPATION :
:	7450	GATE EXPANDABLE	NONE 6	EDID 14		:N.A. : V.A.	LIFE V		105/ 0 1 1.05E 05	:
:	7450	GATE EXPANDABLE	FAINE 6	EOIP 14		: N.A.	LIFE V		105/ 0 1.05E 05	* * * * * * * * * * * * * * * * * * *
:	7451	GATE	NUNE 6	ENIP 14		*N. A. * N. A.	LIFE V		11/ 0 1.10E 04	; ;
;	7451	GATE	NONE 6	ENIP 14			LIFE V		1057 0 5.25F 04	
;	7453	GATE	NONE 5	COIN 14		H.A. N.A.	LIFE V		387 0 3.80E 04	: : :
;	7453	GATE	NONE 5	CDIP 14			LIFE V		52/ 0 5.20E 04	\$ \$
;		FLIP FLOP JK	NONE 11	EI)] P 14		N.A.	LIFE V		75/ 0 7.50E 04	\$ •
:		FLIP FLOP JK	NONE	EDIP 14			LIFE V		105/ 0 1.05E 05	* * * * * * * * * * * * * * * * * * *
		FLIP FLUP JK	B-2 10	CDIP 14		: V. A.	LIFE V		22/ 0 2.20L 04	:
:		FLIP FLOP JK	B-2 10	CDIP 14	131C 7/5		LICE V		22/ 0 2.20E 04	
		rLIP FLOP	340H	E015 14		. Ν.Λ.	ः । ।। । ः अग्राजीसः		1057 0 1.05F 05	: :
		FLIP FLOP	NOME 10	EDIP 14	1310 275		EIF V		1 1057 0 1 1.05! 05	: :
		FEIP FLOP	* NONE * 12	EDIP 14			: Ili v : STGLIH		1.80Z 1 1 1.80Z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * * * * * * * * * * * * * * * * *
	14/4	- 4115 FEO5	12	EDI2 14			LIm V :		1 204Z 0 1 1 1.02E 05 1	
	1414	i D	12	EDIP 14	//5	* N.A.	* Lim v * PitGCVI		1577 05 t	
:		∙ JF	NUNE 20	# 6012 16 i	97C 775	: N.A.	: TIPE V : : MMLIFF :		210/ 4 : 1.05: 05 :	
	1490		190N.	EDIP 14	1040	*N.A.	* tift v : * hU/tir		1 210/ 2 1 1 1-05F 05	
	74/100	SAIE	NONE 4	LOIP 14		:N.A. : I.A.	Lie' V		109/ 0 1.05/ 05	
:	740100	OATE	FONE 4	.01P 14	/75	14. A.	t Tir V t altro.5		1057 0 i	
:	74/40	GALI		101P 14	1/5	: 'I.A.	* Lint V * STOLING		1 105/ 0 1 1 1.05/ 05 1	
									-	-

Reproduced from best available copy.

117 17L		MANUFACTI OPERATIO		THOTTAL NEVICE '			RELIABILITY AND	ALYSIS CENTER
* PARC * NU.	DEVICE FUNCTION	SCRN.		JCT.* : EQUIP. : TEMP. : TYPE	DATA :	STRESS LEVEL	* #TESTEP/ : : #CAILED :	BENVLK2 :
:	:				TEST TYPE		PART : HOURS :	:
# #74H10	GATE	NONE :	ENIP 14	: 133C =N.A. : /75 : N.A.	LIFE V		: 105/ 0: : 5.25E 04:	:
9000	FLIP FLOP	: C-1 : 6	CDIP 14	****	LIFE V STGLIFE		75/ 0 : : 7.50E 04 :	‡ ‡
9001	: FLIP FLOP	NONE	CDIP 14	150C :N.A. 69/74 : N.A.	LIFE V		150/ I 1.50E 05	: :
19001 1	FLIP FLOP	NONE 8	CDIP 14	135C = N.A. 69/74 = N.A.	LIFE V RINGCNT		210/ 0: 2.10E 05:	:
19002 1	GATE	NONE 4	CDIP 14	150C :N.A. 772 : N.A.	LIFE V		204/ 0 : 1.28E 05 :	:
19003 1	GATE :	* NONE * 3	EDIP 14	15°C +N.A. 1/3 + N.A.	LIFE V STGLIFE		34/ 0 1 3,409 04 1	: :
190)3 1	: GATE :	NONE :	EDIP 14		Ller V : RINGC'/T :		: 105/ 0: : 1.05E 05:	:
19004	GAIH I	: C-I	CDIP 14	150C :N.A.	: LIFF V : STOLIFF		: 75/ 0 : : /.50E 04 :	:
19004 1	GATE :	: C-1	CDIP 14		LIFE V :		1057 0 1 11.051 05 1	:
19004 1	# GA1E #	: C-2 : 2	CDIP 14	775 # 4.A.	: liff V : : STGLIFL :		: 22/ O : : 2.20F (14 :	:
#9004 #	: GATE :	: NONE :	COIP 14	128C #N.A. 7/2 # N.A.	LinF v PIMGCMT		1 057 0 1 1 co FCo.1	:
1 1 1 1 1 1 1 1 1 1 1	F GATE F	: C-1 : 6	CDI5 14	150C 111.A.	LIFE V : STCLIFF :		: 7.5% 04 :	:
19(V)5 1	≇ 50A11 1	: (,-) : : 6 :	CLIP 14		STOLIF	1500	: 5.50E 04 :	:
1 1 1900 >	: GA[i. : :	: C-2	001P 14		Libe V : Pirocut :		: 52/ 0: :5.20 04:	: :
19005 1	F GAfi: F	* MIII :	Culb 14	150C ***A* 5 //2 * N.A.	: Libé v : STOLibi :		: /s/ 0 : : /•50E 01 :	:
:50)/ :	∓ GAI≀ t	: C-1 :			: Liet V : : STOLIE! :		: 36/ 0 : : 3.60[04 :	:
:90)/ :	: : OAIE	* C-1 :	001P 14 1		: LIF. V : : TYPONT :		1 57 7 1 1 200 00 1	:
; ;	: 0/1c :	1 (lu) 1	i 1414 14 1	1.70 1 1.1.	V H 		1 3.40 0 1 1 3.40 0 1	:
	1 (5A1) 1	* ************************************			: [' '(''') :	: 1250 - 1007 :	: 1(5/ : 1.65_) :	:
1 1 1	: ,/, ; :	1 ('-1) 1 1 '0 1	CAP 4 	//4 : :.A.	: Llet v : : >(CLlet :		1 3,60F (1 1 1 3,60F (1 1	:
\$947) \$: 15A1+ :	1 (-1 1	i cuth ia i	110 1 10%	: Lir. V : : ellocul :		1 5.70E (2.1 1 5.70E (2.1 1	; ; ;
19017 1	: Itv:Pile :	: (-1	' [r 14	1500 th.A. 277 th.A.	: '1E' V : : '4F(LIFT :		1 387) 1 1 10 104,5 1 1	: :
#901 <i>c</i> #	: It vErrich :	1 C-1 1	1 CND 14 :	//4 1 1. 1.	LIN V		i 5.20 4 i	: :
1/010 1	: Isvalia : :	1 (a) () 1	COLD IN		: [fr v : : 10 fr: :		: 3./ 14 : : 3., of 14 : :	:

I TT TTL		KANUFACTI DPERATION					RELIABILITY	ANALYSIS CENTER
PART NO.		SCRN.		JCT.* : EQUIP. : TEMP. : TYPE	DATA CLASS.	STRESS Lavel	#TLSTED	
1			CHIP PROTECT.	,,		: :	PART HOUPS	: :
\$ \$9016 \$	INVERTER	NONE 1	CDIP 14	780 °N.A.	LIFE U		: 32/ (: 3.20£ 04	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
\$ \$9016	INVERTER	NONE 6	CDIP 14	123C +N.A. 772 + N.A.	LIFE V		52/ (5.20E 04	
9024	FLIP FLUP	C-1 16	CDIP 14	150 C = N.A. 274 = N.A.	LIFE V STGLIFE		34/ (3.40E 0	
9024	FLIP FLOP	C-1 16	CDIP 14	142C = N.A. 774 = N.A.	LIFE V RINGCNT		105/ 0	
19024	* FLIP FLOP * JK	NOME	CDIP 14	150C :N.A. 772 : N.A.	LIFE V STGLIFE		34/ 6 3.40E 0	
\$9024 \$: FLIP FLUP : JK	NONE	CDIP 14	142C :N.A. 172 : N.A.	LIFE V	125C 100%	105/ 1.05E 0	
\$9300 \$	SHIFT REGIST	B-2	CDIP 16	150C :N.A. 175 : N.A.	LIFE V STGLIFE		1.05/ 0	
¥9300	SHIFT REGIST	NONE	CDIP 16	100C IN.A.	LIFE U SOLDER	260C	23/)
\$;	1 1	: :		i i i i	REVBIAS	970C	23/ 2.30F 0	
: 9300 :	SHIFT REGIST	NONE	EDIP 16	1500 :N.A. 775 : N.A.	LIFE V STGLIFE		1 1.88E 0	
\$9300 \$	SHIFT REGIST	NONE :	EDIP 16	121C :N.A. 175 : N.A.	LIFE V HUPLIFF	: 0≻5C 25%RH :	104/ 5.20F 0	
:9300 :	: SHIFT REGIST	NONE	EDIP 16	161C 11.A. 175 1 1.A.	LIPH V RINGCNT		: 52/ 6 : 5.20E 0) : : : : : : : : : : : : : : : : : : :
:9371 :	DECUDEP	C-1 18	CUIP 16	1500 IN.A. 174 I N.A.	LIFF V STGLIFE		34/ 3.40E 0	
#9301 #	* DECODER	C-1 : 18	COIP 16	140C :N.A. : /74 : N.A.	LIFE V		1 105/ 1.05E 0	1 : I/DEGRAPATION :
19316 1	* COUNTER * BINARY	8-2 57	CFPK 16	161C IN.A. 775 : N.A.	· LIFF V		: 11/ 0 : 1.10F 0	
#9601 #	FLIP FLOP FOR OSTABLE	: β−2 : 10 :	CDIP 14	150C :N.A. : /75 : N.A.	LIFF V STGLIFI		: 22/ (: 2.20E ()	
1960 I	FLIP FLOP GNOSTABLE	: B-2 : 10	: CDIP 14	135C 14.A.	LIFE V		: 2.20F 0	
: 40.) 	FLIP FLOP WONOSTABLE	: C-1 : 10	: CEPK 14	: 150C : N.A. : /74 : N.A.	LIFE V STGLIFE	•	\$ 3.80F 0	0 : : 4 : :
19601 1	* FLIP FLOP * MUNOSTABLE	: C-1 : 10	: CFPK 14 :	: /74 : 11.A.	* LIFF V * PINGCUT	1250 100% 1	# 3.80F 0	
:9601 :	FLIP FLOP FUGBUSTABLE	: C-1 : IC	: COIP 14 :	774 : 1.1.	: LIFF V : STCLIFF		# 208/ # 2.0% C	
# yo 0 1	* cLIP FLOP * NONOSTABLE *	# C=1 # 10	COIP 14		LIFE V PINGCAT		# 2597 # 2.597 0	
#9601 #		: C-2 : н	: CFPK 14 :	: /75 : 11.A.	: LIFE V : STGLIFE :		: 34/ : 3.40[0	
\$ 9601 \$ \$	* FLIP FLUP * VUNOSTABLE	: C=2 : '1	: CFPK 14 :		FILED V		: 34/ : 3./0E 0	
t t tAU.) [# PONUSTABLE	: C-2 : 1)	•		: LIFE V : >I'' -CNT :		# 55/ # 5.50E (

	IT(TTL	*MANUFACTURER *OPERATIONAL TYPE														RELIABILITY ANALYSIS CENTER				
:	PAPI NU.	:					PACKAGF/ PINS										#TI'STED/ #FAILED		REMAINS :	
:		:					CHIP PROTECT.				APPL. ENV.		TEST Type	:		:	PART FOURS	:	:	
\$ \$9	/601		FLIP FLOP VUNOSTABLE		NONE 10		CFPK 14		80C 69/73						-055C 070C 2CYC 10 HR E	:	/ 0 1.46E 05	:	:	
* 5	601		FLIP FLOP MCNOSTABLE		NONE	:	CFPK 14								-055C 07CC 3CYC 19 "R E	:	7 0 3.29F 05	:	:	
: 9	7601		FLIP FLOP MUNUSTABLE	:	HONE 10	:	CDIF 14				.A.V		LIFE V RIMGCNT				157/ 0 1.57E C5		:	

Reproduced from best available copy.

MUTUR TTL	ar agad en 12 14 1 5	MANUFACT OPERATIO	NAL TYPE				*******	ELIABILITY AN	SHEERREENS:	
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/			DATA CLASS.		* TESTED/ *	REPAPKS	
	1		CHIP PROTECT.	TEST		TFST TYPE		PART : HGUPS :	u vo-	
2051	# GATE		* CFPK 14				070C 1∩0≭	: / I : : 5.30E 05 :		
2173	FLIP FLOP	# B-1 # 10	CFPK 14 :	53C 70/71		CHX U		/ 0 9.02E 03		
2173	FLIP FLUP	# B-1 # 10	CFPK 14	53C 70/71		CHK O OPFRATE		6.01E 03		
2173	FLIP FLOP		CFPK 14 GLASS	70//1	# Gd		-0550 0720 2410Y2.2683%	2.33E 04		
2173	FLIP FLOP	# B=1 # 10	CFPK 14		* COFACT4 :	TCVIRPC	-0550 0720 2410Y 83%	/ n 7.01E 05		
2173	FLIP FLOP	B-1 10	CFPK 14 GLASS	73C 72/73	CUPTOTN AI	FLD G		2.00F 03		
21/5	FLIP FLOP	# B-1 # 21	F CFPK 14 FGLASS	38C 70/71		CPK U UPFPATE		3.01E 03		
21 75	FLIP FLOP	: B−1 : 21	CFPK 14	38C 70/71		CHY O OPERATE		6.01F 03		
2175	FLIP FLOP	i h-1 i 21	CFPK 14	anc 70/71			-055C 072C 241CY2.2G83X	2.33E 04		
2175	* 4FIb 4F0b	# B-1 # 21	CFPK 14	30C 70/71	CUE-ICTH	REL Q TCVIBPC	-055C 072C 241CY 83*	7.01E 05		
2175	FLIP FLOP	# B-1 # 21	FOR TA	58C 72/73		FLD G		2.00E 03		
2175	FLIP FLUP	NONE 21	CIPK 14			FLD U	0700 1004	/ 0 4.77E 06		
3100	GATE	: A-1 : 4	CDIP 14 GLASS	34C 72/74		FLD U		/ 0 2.1/5 05		
3100	GATE	B-1	CDIP 14	64C 73/73			=0540 0550 830Y2.2667M	8.00F 03		
3101	OATE	. A-1 . 4	CUIN 14	34C 72/74	COMBIN SF	FLD U		/ n : : 1.24E 05 :		
3105	GATE	# B-1 # 3	COIP 14		COLUCIA		-054C 055C : 33CY2.2G67:	4.005 03		
3110	GATE	. A-1 	# CDIP 14 #GLASS	29C 72//4	COMPT:	FLD U		1.555.04		
3115	CALE		# CP.P 14 #GLA 35	27C 72/14		FLD U	: 025C	3.11 04		
3124	₽ BUHFER			13/15		FLD C	1 125C	1.04E 05		
3125	# GA1:	* A-1	# CDIP 14		*CUTSIN	FLD U	1 0250 1	1.565 04		
3126	F GALL	A-1 2		2 72/74	*CO (31)	FLD U		/ n : 4.671- 04 :		
3126	: G115		# CDIP 14		*COMPULE	FLD G		2.09[0]		
3151	FLIP FLOP	A-1		12/14	* CO 8315	FID U		6.27 0		
3131	FITP FLUP	# B-1	# CDIP 14	: 600 : 73/73	FCOTICTO F AI		# +05+0 0550 # 330Y2+2667	4.00" 03		
	:	:	1	:	1	:	1	:		

Reproduced from best available copy.

AUTUROL TTL	Α	#MANUFACTU #UPERATION							MALYSIS CENTER
PART NU.	DEVICE FUNCTION		PACKAGE/		EOUIP.		STPESS	#TESTED/ : #FAILED :	REMARKS #
: :			CHIP PROTECT.		APPL.	TEST TYPE		PAPT : HUUPS :	
	FLI? FLO? D	: A-1 : 12	COIP 14 GLASS	37C 10 72/74 1	5F 5	FLD U		/ 0 1.84E 05	
3160	FLIP FLOP	B-1 12	COIP 14 GLASS	47C = 73/73 =	AI AI		-054C 055C 33CY2.2G67%	/ 0 1.20E 04	
3162	FLIP FLOP JK		CDIP 14 GLASS	35C = 72/74 =	COUBIN SF	2.A. 11.D U		/ ሳ 1.55E 05	
401	GATE EXPANDABLE	X 5	CDIP 14 GLASS	33C :	DISPLAY GF	FLD U N.A.		7 2 8.17F 06	
404	GATE EXPANDABLE	• •	CDIP 14 GLASS	33C = 771	OF GF	FLD U		7.07E (16	=
#405 #	GATE EXPANDABLE	: X	COIP 14 GLASS	32C =1	OF OF	FLO ()		/ n 5.275 °5	
140y	EXPANDER		CDIP 14 GLASS	32C = 7/1 =	DIEPLAY GF		030C	/ n 1.17E 07	
4324	FLIP FLOP	± 16 ±	CDIP 14 GLASS	65C = 75/75 =	AI AI	PIL C TCVIBPC	-054C 050C 13CY1.3G 62%	/ n 1.54E 73	
:4324	4LIP FLO2	# B-1	CDIP 14	65C 1 75/75	AI AI		-054C 050C 17CY1.3G 62%	/ n 2.01E 03	•
₹45d	GATE	1,0,10	CFPK 14 GLASS	нзс 72/73	COMPCIN GF	FLO U	070C 1004	/ 0 1.06F 06	
:470	GATE EXPANDABLE	NONE 6	CFPK 14 GLASS	78C 72/73	COLUCTN GF		0700 100≭ C:10713	/ 0 4.77E 06	
÷525	INVERTER	# B=2 # 6	CFPK 14 GLASS	39C 71/71	GI CJimcin	PEL C OPERATE		7.97F 04	
:5400	GATE	RONE 4	CFPK 14 GLASS		1.A. 1.A.	LIFE V CHST UP		24/ 0 6.40E 04	
\$540n	GATE		CFPK 14 GLASS		N.A. N.A.	Lind V RINGC-II		1347 0 6.755 05	
\$54(X)	GA1E	. ,,,,,,,,	CFPK 14 GLASS	. 76C . 72		Life v Oingchi		64/ 0 6.4∩E 04	
±5401	ን ለ ቤ		CFPK 14		N. A. V. A.	LIFE V STOLIFI		55/ 0 5.50L 04	
5446	oUrrl!/		CDIP 14:	30C /71	NAVIGIN GB	PEL U		7.13E 04	
\$63JC \$	SELET REGIS	* 4R	EDIP 16		η.ν.	LIFE U REVELAS			IZ OPEN IZDEGRADATION :
1901A	T. AFBJ Cje	* NONE * 6	5017 14 :	7./	'I.A. 'I.A.	LIFF U		32/ n 3,201 04	; ;
•	LWIG.1	• 40NE • 56	EDIP 24 GLASS	103C	N. A. N. A.	LIFF U REVBIAS		15/ 0 1.50F 04	
19316 1	COUNTER 51 JARY	# HUNE 57	: CDIP 16 :	1000	Ν·Α. Ν·Λ.	LIFF U		25/ 0 2.50E 04	: 1

Reproduced from best available copy.

NATIONA TIL		ANUFACTU PERATION		#8 #8 # 8 # E		*****	다 *********	ELIABILITY AN	ALYSIS CENTER
PART :	DEVICE FUNCTION	SCRN. : CLASS :	PACKAGE/ PINS	JCT.* : TEMP. :	EQUIP. :	DATA : CLASS. :	7 2 1 1 2 2 2	* #TESTED/ * * #FAILED *	REWARKS
			CHIP : PRUTECT. :		APPL. : ENV. :	TEST TYPE		PART HOURS	; ;
54H10	GATE	B-1 :	CFPY 14	74/75	RADAR : AIU :	FLD G N.A.		: /): : 8.43E 04:	1 1 1
54H10	GATE	B-1 1	CFPK 14	81C 73/73	RADAR AIU		-065C 071C 32CY2.2G56X	1.54E 03	!
54H10	GATE	B-1 1	CFPK i4	81C 73/74	RADAR AIU		-054C 071C 80CY1.3G50%	1.84E 04	;
7123	MULTIPLEXER	B-1 15	M/GDIP 16	60C 75/75	COMPUTR AI		-054C 050C 13CY1.3G 52	3.30E 04	
: :7123 :	MULTIPLEXER	B-1	WZGDIP 16	60C 75/75	CUMPUTP AI		-054C 050C 17CY1.3G 62%	1 4.32E 04	
: :7160 :	E COMPARATUR	B-1 B-1	CDIP 16	72C 75/75	COMPUTE AI		-054C 050C 13CY1.3G 62%	3.78E 03 :	
: :7160 :	E CUMPARATUR	: B-1 : Y	CDIP 16	/2C 75/75	CUMPUTR AI	RLL O TCVIBPC	-054C 050C 17CY1.3G 62%	4,94E 03	
: :7200	CUMPARATUR	: NONE : 28	: :M/G91P 14 : :	143C /72		LIFI V		10/ 0 1.00E 04	
1 17214 1	* MULTIPLEXER		# #N/GDIP 16 :	60C 75/75	COMPUTP AI	REL C TCVIBPC	-054C 050C : 13CY1.3G 62%	2.97E 04	
: :7214	# MULTIPL_XEP	: : B-1 : 16	: :N/GDI2 16	: 6:1C : 75/75	COMPUTE AI	RFL O TCVIBPC	-054C 050C 17CY1.3G 62%	3.88E 04	
1 17400	GATE	NONE	# EDIP 14		: 4. A. 4. V. A.	LIFE V INTLIFE		456/ 0 2.74F 06	
: /404	: INVERTER	NONE 6	EDIP 14		1 171. A. 1 71. A.	LIFF U		38/ 0 3.89E 04	
: :7441	DECODER BODZDECINAL	: NONE	# EDIP 16		: *11. A. * 1. A.	: I.IFI V : REVBIAS		78/ 1 7.80E 04	MOTE VERNERAL INC.
: :7442	: DECUDER : BCDZDECI (AL.	: NONE : 13	# EDIS 16		: ::::::::::::::::::::::::::::::::::::	LIFL U STGLIFF		98/ 4 9.POE 04	4ZDEGRAPATION
1 442	# DECODER # BCDZDECIJAL	: NONL.	F015 19		: :!!.A. : !!.A.	# LIFL U # DYM OP	i luca lua.	24/ 0 240F C4	
1/442	* DECODER * BCDZDECIMAL	: : a0ha : 18	# EDIA 19	: 106C : /73	: :N.A. : V.A.	: LIF: U : UU! LIFE		307 T	JOI FACIACIO I INT
174/3	FLIP FEUP	: 50 : 1:0NF	: LOIP 14	: : //2	# 11. A. # 11. A.	: Ulef A : DF(Llef	: : 7,5 HIH	\$ 9607 1 \$ 6.46' 05	ATHSLADALYONT
# #7501	introperation	: (Iulle : (2)	* MZGEPK 14		: :-1. A. : 1. \.	: LIF. V : DeVicIAC	1 125C	: 607 0 : 6.001 04	
151)	i Jilet ReGIST	3	12/37[F 14	1 143C	: II. A.	: IIrt V : PFV:IAS		100 cot	
: :/5L51	1 FLIP FLOP	: B-1 : 45	i Cult ly	: 53C : 75//5	1017901 1 11		: =0540 0500 : 130Y1.30 02°	1.30 11	:
: :/5L51	# FLIP FLOP	t P-1 t 42	: CDIP 16	1 33C 1 75/75	1 V 1 CO 15H LB	# ICVITEC	# =0510 0500 # 170Y1.3G 62	1.71 64	:
*B000	t t υλίπ t	1 NJR:	: : into 14	1 1500	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t Lire v		i A-/ '	
: : :>('	i CAI'	1 NOTE		# # 1310	: : '. A. : J. \.	: ! In ' V : ! v :13'		: P.(0) 64	† †

NATIUNAL TIL		*VANUFACT *CPERATIO	TURER DNAL TYPE		RELIABILITY AMALYSIS CEN				
PART	* DEVICE * FUNCTION	SCRN. CLASS		JCT.* : EOUIP. TEMP. : TYPE	: PATA : CLASS.	STRESS LEVEL	* #TESTED/ : * #FAILED :	PEPARKS :	
:	: :	# NU. # GATES	CHIP PROTECT.	TEST : APPL. PAIE : ENV.		:	PART : HCURS :	:	
# #d002	GATE	NONE	: CDIP 14	150C :N.A. /72 : N.A.	LIFE V	: : 065C 200C : 15 CYC	53/ 0	:	
:	:	:	:			* 065C 150C * 10	53/ 0	:	
: :	: :	:	:		HOIST	* 085C 65%RH	53/ 0	:	
: :	: :	:	\$ \$		SALTAT!	* 035C 25GH * 7P 50	53/ 0	:	
: :	: :	:	:	: : : :	AUTUCLV	: 14.7 G 120C	53/ 0 :	: :	
: :	: :	: :	:	: ! : :	: 30L055	: 2600 :	: 53/ 7 : : 0.	: :	
: : :	: :	: :	: :	: : : :	STGLIFE	# #50C #	: 53/ 0 : : 5.30± 04 :	:	
: : 0004 :	INVERTER	, 9 10 ME	: CFPK 14	: 150C : N.A. : /72 : Y.A.	: LIFF V : STGLIFF		: 32/ 0 : : 3.201, 04 :	:	
: :8004 :	: INVERTER	; ; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	# CFPK 14	: : : : : : : : : : : : : : : : : : :	: LIFE V : PEVPIAS		: 32/ 0: : 3.20E 04:	:	
: เส 01 0 :	# GATE	* NINE * 3	: 30Ib 14	: 130C =N.A. : 70//2 : N.A.	: LIFE V : CNST OP	: : 1250 :	1 15/ 0 1 1 1.50F 04 1	:	
៖ : ង030 ៖	: GATE	: NONE	: CFPK 14	: 150C = N.A. : /72 : N.A.	: LIFE V : STGLIFF		: 32/ 9: : 3.29= .4:	:	
: :8030 :	# GATE	: 400E : 1	: CFrK 14	1 135C #N.A. 1 135C #N.A.	: Lirt V : PEVUIAS		: 32/ 0: : 3.20:: 04:	:	
: :8050 :	# GATE # EXPANDABLE	: NONE : 6	: CFPK 14	: 150C :N.A. : /72 : N.A.	: LInt V : STGLIED		1 31/ 0 1 1 3.10° 04 1	:	
: :8750 :	GATE EXPANDABLE	: NONE : NONE	# CFPk 14	: : 1350 = N.A. : //2 = 11.A.	: LIFE v : PEVBIAS		: 31/ 0: : 3.10F 04:	:	
: :6591 :	FLIP FLCP	NONE 20	#MZGFPK 14	1500 FN.A. 772 F V.A.	LIFE V		: 35/ 0: : 7.00E 54:	:	
: រងទី០1 :	: : FLIP FLO2 : Jt.	: NOME : NOME : 20	:#/GFPK 14	: 1350 : 1.A. : 772 : 1.A.	F LIME V		:007 0 :	: :	
៖ ខេត្តចូល៖ ៖	: JF : FLIP FLJP	: : 1 UPE : 20	1 3hly 14 :	: : 1390 : 11.1. : 772 : 11.4.	LIFE V		1	:	
: traiz :	FOR NO. CLIAL	। । 100 । 18	i 15 15	: 1500 : 1.7. : 772 : 11.4.	1 1160 . 4 31CLIn'	: : 1500 :	1 43/ 0 1 1 4.307 04 1	:	
: :3ndz :	# 75 CONOLGE (4L	1 1 11045 1 14	: "NP 16	: 1460 ****A. : //2 : '.A.	: LIFE V : "BV"IAS	: : 1250 :	1 207 4	: :	
: :y300	1 1 SPIF1 94015 1	1 * N. 196E	# TOIP 18	: :00 :N.A. : :273 : N.A.	# LIGH 0 # #EVOITS	# 0700 #	1 2.005 (4) 1 1 5.00 0 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	
: v () ^ :	1 GPIE1 92015 1 1	1 : N.PHE :	# EMP 16 #						

Reproduced from best available copy.

Same and the second of the second of the second second second second second second second second second second

RAYTHEUN * PAILUFACTURER PPLIABILITY ANALYSIS CENTER *UPERATIONAL TYPE TIL PART PENICE * SCRN. * PACKAGE/ * CLASS * FINS * JLT.* * EQUIP. * TE. . * TYPE DATA CLASS. #TESTED/ : #FAILED : STHLSS REPARKS LEVEL. : CHIP TEST * APPL. NO. TEST PART ENV. GATES : PROTECT. : DATE FOURS TYPE **-**∩55C *101 FLIP FLOP C'G-PK 14 107C #CUMMCTN JK 16 #GLASS /72 * GB TCVIBPC 34CYC 2.2G 1.27E 05 87C #CUPMCTN *101 FLIP FLUP CHEPK 14 FLO II 1.MF 04 16 *GLASS 72/73 : AI OPERATE :101 FLIP FLOP B-2 CUFPK 14 62C #CUPYCTH FLD G 4.48E 04 16 75/75 : GT *GLASS N.A. CVFPY 14 E-2 16 62C COMMETN DEI 1101 FLIP FLOP **250** 7 0 1.60E 05 OPERATE *GLASS GT 90C COPPOTE * GATE CUEPK 14 DFI. **{**} **#140** ₩055C 070C p-1 RACYC 2.20 9.10E 01 GB TCVIEPC #GLASS **140** GATE CHEPK 14 70C #COPPICTN # FLD **3590** B-1 *GLASS OPERATE 7.18F 03 ΑĪ GATE CMFPK 14 90C #COPPCTN **455C 070C** :141 B-1 PEL. 9.10F 04 *GLASS GB TCVIBPC 84CYC 2.2G CHEPK 14 70C COMMOTN 0500 GATE B-1 7.18F 03 *GLASS 72/73 : OPERATE : 151 COUNTER * P/GDIP 65C #COWNCTN -054C 055C 1.60E 04 73/73 : AI TCVIBPC 83CY2.2G67% LCD * GLASS GATE * CMEPK 14 85C + CUPTOTN CFL -055C 070C : 191 H /72 * Gi 1CVIBPC : 5.46E 04 **B4CYC** 2.20 #GLASS 65C *CUPHCTN 72/73 * AI * CMFPK GATE FLD **2500** :191 UPERATE 4.31F 03 #GLASS 1201 FLIP FLUP * CHEPK 14 BOC + COMMOTH RFL -055C 070C 13-1 JK 10 *GLASS /72 : GH TCVIBPC : **H4CYC** 1.82E 05 CIPPY 14 69C #CUHACTH **201** FILIP FLOP B-1 7 0 1.44F 04 10 *GLASS 72/73 : 41 GATE CAFPK 14 וודסגינוסו סייוו -055C 07CC **\$ 221** 1.825 05 *GLASS 772 # G3 TCVIERC # RACYC CHPK 14 BOC # COLUCTS FLD U 1221 GAIR 1.441.04 #GLA5\$ 72/73 : AI JPEPATE :240 GATE: # CIFPK 14 ROC FOU MOTH -055C 070C 84CYC 2.2G TCV I PPČ *GLA55 7/2 : 68 55C 1001110TH 172/73 1 AI # CHEPK 14 HID III :24) GAL 2500 #GLA 55 PEPATI 770 (C) 40T/ Di I # CHEPK 14 : U -0550 G(00 GAIL :261 LCA1 BbC R4CYC :GL455 CIFPK 14 SZC COUNCTN : Ht L 250C :261 GAL # GEA 55 ΑI # C3FPK 14 4C ±CJ **\$261** ELLP FEUP *6L155 TOVESPE **BACAC** C4FPK 14 1261 FLIP FLUP OPEN ATE 12/13 1 #GL1:5 13101 7.P. 14 35C #CJ#31-HIT U FELZ FLOR #GL 13S 72/14 : SH J٨ 1311 30C 101 0 1 -0950 0100 101190 1 35010 2.20 LAPANDABLE 101.415 112 1

The state has a sected to be setting to the second section. One Extended

	RAYTHE TTL	:0H	*HANUFAC*	TURER UNAL TYPE					ELIABILITY /	NALYSIS CENTER
:	PART NU.	* DEVICE	SCRN.	PACKAGE/			DATA CLASS.	STPESS LEVEL	* #TESTED/ : *#FAILED :	
:		4 \$	# NU. # GATES	: CHIP : PROTECT.	TEST		TFST TYPE	: :	PAPT : HOURS	
: 3	11	# GATE # EXPANDABLE	: : E-1 : 6	CHEPK 14	-		FLO U		2.8/6 03	
: 3	200	# GATE	A-I	* N.R. 14	35C 72/74	- 4347	FLD U	* 025C	7.7HE 04	
:3	200	FLIP FLOP	: A-1 : 6	N.R. 14 GLASS	35C 72/74		FLD U		/ C 3.421-05	
:	200	FLIP FLO	# A-1 # 6	COMP 14	32C 72/74	ECJ4BIR	FL?	0250	3.115 02	
:3	10	* INVEPTER	і н−2 6	CHEPK 14	: 75/75	t OI COLICIA	FLD C		1.66 73	•
: 4	1	# GATE	: B−1 : 2	CJFPK 14 GLASS	: ROC	*COMICTA	PFL U TCVICPC	1 0500 0700 1 24 YC 2.26	1 3,64: 94	:
: 4	1	GATE:	8-1 2	CUPK 14	60C 72/73		FLO (I :		2.8/E 03	
• 5 • 5	ı	* FLIP FLUP * Jk	: B-1 : 4	# CHEPK 14 #GLASS			HIL U	-0550 0700 : 340YC 2.26	1.82E 04	:
:5	1	FLIP FLOP	: B-1 : 4	CKEPK 14 GLASS	610 72/13		FLD U OPHRATE		/ 0 i	
:5	I	FLIP FLOR	B-2	* CMFPK 14 *GLASS	42C 71771	COMICTH	RLL Q OPEPATI		/ 0 1.5% 05	
6	1	GATE	: B-1	CHEPK 14 -			REL U	-0550 0700 940YC 2.26	7.28E 04	:
:6	1	· UAft	i B~1 i	CHEPK 14 :	72/73		FLD U :		5.74E ^3	:
16	\$	# GAIE	: HONE	CAFPK 14	15C 72/73	*CO.w.CL	FID U	0700 1005 ርዞርፒክ5	2.12F 06	1
:/	1	GALE	: B-1 : 6	CIEPK 14 :	8 94C	CONTENT		-0550 0700 440YC 2.26	/ n : : y.10= n4 :	:
	ı	# UA16	i b-1	# CMFPK IA : #GLASS	. 64C : 12/73		FLD I PF?ATI		/ 0 : 7.18F (3	
			-			-	-	•		•

				1-1011ML	DEVICE I	n.,			
SIGNET TIL	165 	* MANUFACT	URER NAL TYPE		487 1226 83		**********	RELIABILITY /	MALYSIS CENTER
PART	DEVICE FUNCTION	SCRY.	PACKAGE/	JCT.*		DATA CLASS.	STPESS LEVEL	: /TESTED/ : : /FAILED :	
:	: :		CHIP PROTECT.		* APPL. * LYV.	TI ST	t 1	# PART # PUURS	
# #400	: : GATE :	: B-2 : 4	CDIP 14		# = N.A. # H.A.	LIFE V STGLIFE		1 40/ 0 1 4,00F 04	
:	: :	1		; t	:	K3 :	: :	# 49/ 0 i	•
#400 #	GATE	8 B-2 8 4	CDIP 14	150C 71/71		LIFE V STGLIFE	150C	# 40/ 0 # # 4.00E 04 #	
:	: : :	: :	:	: :	: : :	፡	: :	* #9/ 0 :	
#402 #	GATE	# B-2 # 3	CFPK 14	150C 71/71	#N.A. # N.A.	LIFE V STOLIFE	150C	# 40/ 0 # 4.00E 04	
:	: : :	1 1	:	: :	: :	: E'I :	; ;	: 47/ n :	;
1416 1	GATE	* Y-1	!!/GFPY 14	27C 70/74	COMBIN SF	* FLD U	* 025C	1.18E 07	
#416 #	GATE	NONE	V/GFPK 14	127C 72/72		LIFE V		40/ 0 : 4.00E 04 :	
:	:	:		: :	! !	: EM	: :	: 40/ 0 : 0.	
416	GATĒ !	NUNE 2	U/GFPK 14	127C 71/71		LILE V	125C	4.00E G4	
: :	: :	1 1	:	: :	: :	: E#	: :	# 40/ 0 # # C.	i i
1417	GATE	. A−1 . 2	NZGFPK 14	27C 70/74	CO43114 SF	FLO U	175C	: / 0 : : 8.35° 06 :	
141/	GATE	1000 E	W/GFPK 14	157C 71/72		LIFF V	150C	40/ 0 4.00E 04	
:	: :	1			:	: [-!! :	; ;	# 40/ 0 # C.	1
1417	GATE:	# 100NE	NZGFPK 14	127C 12/72		LIFE V	125C	40/ 0 4.00E 04	
1	: :	:		! !	: :	: E4		: 40/ 0	1
1424	FLIP FLOP	A-1	MZGFPK 14	28C 72/74	COMBIN SF	FL7) U №.A.	025C	7 0 3.7/E 06	· -
1424 1	FLIP FLOP RS		M/GHPK 14	128C 71/71	* N.V.	LIFE V		40/ 0 4 4.ME 04	
1	; ;	:			: :	: EN :	•	40/ 0	1
:424	+LIP +LOP + 25	NONE 4	M/GFPK 14			LIFF V : P איים		40/ 0 4.00E 04	
:	: :					EM :		49/ 0	1
1 1425 1 1	FLIP FLOP	1 B-1 1 4 1	M/GFPK 14			LIFF U : RIPGONT :		# 6.40F 04 #	INMECHAPICAL :
1455 1	burfer			70/74	\$ SF	: FID U : : λ.λ. :		8.73F 06	1 1

A CONTRACTOR OF THE STATE OF

SIGHET.	ics	*PANUFACT *UPERATIO						RELIABILITY AR	ALYSIS CENTE
TRAP UK.	DEVICE FUNCTION	: SCRN. : CLASS	PACKAGEZ :	JCT.* TEMP.		DATA CLASS.	0	* *TESTEN/ : * *FAILF:	REWARKS
	: :		: CHIP : PAUTECT.				: :	PAPT : PUJPS :	
155	: BUFFER	: f:UN.: : 2	# #M/GHPK 14 #	150C 171/71		LIFE V		: 49/ 0: : 400E 94:	
	: :	:	: :	: :	: :	: EH :		: 40/ 0:	
155	: : BUFFER :	NONE 2	: :M/GFPK 14 : :			LIFE V		: 40/ 0: : 4,00[- 04:	
	: :	:	:		: :	: EN :		1 40/ 0 1	
155	* BUrFLR *	* NUNE * 2	#/GFPK 14			LIFE V		40/ 0 i	
	: :	:	: :	: :	:	: E7	: :	: 40/ ^:	
¢/0	: 0A75	: A-1 : 3	:MZGFPK 14	26C 70/74		: FLD U:	^25C	1 6.42 05	
171	# GA1g	# A+1	#MZGrPK 14	26C 70/74	*CG #319 * SF	#LD U	1250	1.42 (5 1	
4 / 1	: : 0/1E :	: 60Nc : 3	1 17/3mPK 14 1	1260 11/72	: : '\. \. : '\. A.	LIFF V		40/ 0 : 4,00° 04 :	
	:		:	:	:	: ±"	: :	: 1	
en	: GAI::	: 1:0NE : 3	#**/GEPK 14	: : 1260 : 71771		: 'IF_V : C!SI 0#		: 4°/ `:	
	:	:	:	: : :	:	: 11	: :	: 40/ 0 :	
450	: : GA16 :	; /-1 ; /-1	1 19ZGeP (= 14 = 1	: : 260 : 1714		: : FLD U : Y.A.	፤ ፤	1 13 / 1	
۱.۱	: : 311 _ :	:	1 17/6mm2 14 1	: 1260 : 71/71		: 11- v : %1-P	: : 1250 :	: /// : : // CO -// :	
	:	:	:	:	:	; , , , , , , , , , , , , , , , , , , ,	: :	^^/ `!	
46)	₽ ₽ OĂI. ₽	1 p() 1 p()	# #kZG; PC 14 #	: 15/15 : 15/15		F THE V F Chall N	: : 1250 :	4.7%	
	:	: :	:	:	:	1 '-'' 1	• •	47	
454	# + A11	: A-1 :		1 11/12		1 + 1 × 10 ·	; 525 ; 525	11, 11 (5)	
4 (1	* ·V1.		1 / 4 P 14 1	1 1776 1 7776		E STORY		1 4 / 1	
	: :	: : :	1	:			: : :	1 // 1	
461	: 171		1/2001 14 1	: 11/11	11 . A	11	:		
	!	:	1	: :		1	:		
	: : [! v + j: +	1		: 14/1.	1	# [1], v # [0.1+]		1 1 1 1 1 1	
	: : : : : : : : : : : : : : : : : : : :	: : :	:	1 2 1	:	: : " :	:	· /	

some some constructions and and the contraction of the contraction of

DIGITAL PHYICE DATA

atti barrinta etti tiritti anite egi ilida a estatonik saati batisti taniska ittinationales

SIGNET	ics	* MANUFACT		DIOITE	INIVICE IN	***		RELIABILITY A	VALYSIS CENTER
TTL PARI VU.	DEVICE	*UPERATION * SCRN. * CLASS	PACKAGE/	JCT.*		PATA :	STRESS	* *TESTFO/ *	
	1 0.00113N	# NU.		TEST	APPL.	TI-ST TYPE		PART FHOURS	
490	INVERTER	* NONE * 6	CFPK 14	150 C 74/74		LIFF V		: 45/ 0 : : 4.50E 04 :	
	: :	:	t : t :	! !	: : :	# 등년 : # 등년 :		45/ 0	
5400	GATE	A-1	: :	37C 73/74	CONSIV SF	FLD U		2.04E 04	!
5400	GATE	# JB # 4	CADID 14	157C 72/72		LIFE C		4/ n 4,000 03	
5400	GATE	# JP # 4	CHDIP 14	123C 72/72		LIFE U DYI, UP	125C 100%	28/ 0 2.80F 64	
5400	GAIL	* NONE * 4	CFPK 14			LIFE V	125C	: 40/ 7 : : 4. YOE 04 :	
	: :	:	: :	: :	1 1	៖ <u>ម</u> ។ ៖	: :	: 40/ 0 : : C. :	; ;
5401	: GATE :	: J∄ : 4	: CADIP 14 :	: 150C : 72/12		: IIFF C : STCLIFF		: 5/ 0 : : 5.00F 03 :	
5401	: GATE :	# J/s # //	: CAMP 14	1260 72/72		: LIFE 0 : "Y! !!P	: 1250 1m, :	: 27/ ^ : : 2.705 04 :	
5401	GATE	# 50'16 # 4	: CFPK 14 :	: 150C : 73/73		: LIFF V : STOLIFI	: 150C :	: 60/ 0 : : 6,005 04 :	
	: :	: :	:	: :	; ;	1 1 ⊞/{	: :	: 60/ 0 :	
5401	# GATE #	1 MJ104 1 4 1	: CrPx 14 :	: 1 3C : 73/73		1 Hei V 1 DYN (117 1	: 1290 :	# 32/ () # 3,20F 04)
	: :	: :	: :	: : :	: :	: #" : :	; ;	* 32/ 0 1 * 0. 1	
5401	# GATE # #	: LON; : 4 :	1 CHPK 14 1	1 1.33C 1.737/3 1		: LIFF v : ny: ()P :	: 125C : :	\$ 547 0 1 \$ 5,40 1 04 1	
	: :	: :	: :	: :	: :	1 (F1) 1	: :	* 5以り: * 1。 :	
5402	I GATE	: Ji : 4 :		: 12/12 :	: '.A.	FIRE C FSTCLIFE F	: :	: 3ペクロ: :3,8つ104: :	: :
5402	: GAla :	1 Jr 1 - 4 1	1	1 72/12 1	: ".A.	1 DA, (14.	: 1250 1m, :	* 2717 0 : * 2.215 (5) :	
5472	; ; ; ; ;	* !-> * 1				i Ale V i STCLIei		# do/ 0 : # do: 0 = 14 :	! !
	:	:	: :	:	:	1	: :	: ^3/ 3	: :
5403	# GAIL	3 JR 3 4	1	1 77/72 1	1. N.	: Lief C : SfCLie	: :	: 3/ 0 : : 5.00F 13 :	; ;
5413	# GALL # # Days 0740	:	1	: 12/72 :	. A. V	† DA, Ub † FJF 0	: :	1 2.60: ^4 : 1 2.60: ^4 :	
54)4	INVERTER	2	1	: 72/12 :	1 1.A.	FIFE Q	: :	* P*UJE U3	! :
5404	I Swinsin		1	: 77/72 :	: J.A.	i DAN PE	1	# 2.80E 04	1
15405 1	* 15768154	# JB # 6	t CADID 14		*N.A.	1 Linh () 1 STOLIN		: 5/ 0 : 5.00F 03	

						. 0.T.			
PART No.	DEVICE FUNCTION	: SCRN.	PACKAGE/	JCT.* TEMP.		CLASS.	STRFSS LEVEL	: #TESTED :	REMANAS
	:		CHIP PROTECT.	TEST DATE		TEST TYPE	 	PART : HOUPS :	
5405	: INVERTER	: JB :	CADIP 14	130C 72/72		LIFE O	: : 1250 100±	: 2// 0 : : 2.70E 04 :	
54107	FLIP FLUP	# JB # 20	CDIP 14	150C 12/72		LIFF 0 : STGLIFE		: 4/ 0 : : 4/ 0 : : 4/ 0 :	
54107	: FLIP FLOP : JK	JB 20	CDIP 14	131c 7277;		LIFE G	1250 100%	55/ 0 : 5.50E 04 :	
5410	GATE	ЈВ	CYDIP 14	150C 72/72		LIFE O		9/ n: 5.00F 03:	
5410	GATE:	. Jo	CADID 14	12 <i>1</i> 0 72/72		TIEC O	1250 10%	287 0 2.80+ 04	
5410	OVIE	: j:-1	COIP 14	75/75			-0540 0500 130Y1.30 624	: / O : : 3.03F 04 :	
5410	: GAIL	: is-1 : 3	CMP 14	52C 75/75	: VI : VI		-0540 0500 170Y1.30 62%	/ 0 i	
54123	FLIP FLOP	: R-1 : 20	०५ वर्ग	710 75775	* VI * VI *		-0540 0500 130Y1.30 62%	2.1/6 04	
54123	FLIP FLOP	: R-1 : 20	CDIN 19	710 75/د7	: 41 : 010010		-0540 0500 - 170Y1.36 62%	2.845 74 1	
54123	FILIP FEUP FUNCTABLE	: B-2 : 20	CDIP 16		**'. A. * V. A.	. A. O5 . Titl A	1250 1	: 25/ 0 : : 4.50/ 04 :	
	: :	:	- : :	! !	:	: :	!	45/ 7 :	
54154	* NECODPADE 0X	1 Uhr 25	CDIP >4	150C 74774		LIHL V	1500	4,5% 04 i	
	:	:	- : :	- ! !	: :	1	- : :	45/ 1	
54161	CUU ITEP • plaAky	: p-1 : 5:	: CDIS 19	790 7976			-0510 0500 13041.33 627	2.11. 01	
54161	FORTHER STATE	1-1	: CIP 16:	190 75/75	* 41 *CO"Poliv		-0940 0500 17041,36 421	2.421 (4/ :	
54161	Codoles L.A.Y	1-2	6 - C: ¹⁰ (- 14 - 1	15)c 14//4		: Tir v : Sfelire	1400	: 45/ 0 : : 1.50 02 :	
	:	:	- ; ;	- : :	:	· : _ :	- : :	^.43/ \\	
2.1%	GOULP	: : '-1 : 51	: 0915-19 :	. /90 : 75/75	#CO 2019 # A1	i set i levine	-354 500 13 1/1.30 62	1.7 03	
54167	Court	: ;-1 : 51	:		: \I		-/ 5th 1510 - 17071,270 o	: 2,14" 3:	
54164	diete de la	:) = 1 : 36	i (Mg lat)	-	105 (Path 4 41	* 914 C	-0506 1506 13071.36 6,	1. / 1	
D4174	lel6 tralic:	: ! - l : - l	: COTP 14		1 Same of the	: 114 :	-1340 0500 17071,20 62	: 1.57° C4 :	
54165	: # 117 ke o151				z v I		: =0540 0503 : 13 Y1.30 02	1 / 11	
5416	Folkland Di	! P−1 ! '2	: 01[P]* :	1 - 70 1 15775	ا إنا جارت	1 31 T	: = hath whou : Areal, Broof	· / / · · · · · · · · · · · · · · · · ·	
5012	# GOU!! # JI:480	: -1		1 /40 1 /2/17			: = 2540 0570 : 13011.3 62	1 / (1	

*MANUFACTURER *OPERATIONAL TYPE SIGNLATCS PELIAPILITY ANALYSIS CHUTF? TIL DEVICE FUNCTION * SCRN. * PACKAGE/ * CLASS * PINS * PART DATA STPESS #TESTEL/ : REPARKS M). * TEVP. * TYPE CLASS. LFVEL * #FAILED * * NO. * CHIP * TEST * GATES * PROTECT. * PATE : APPL. PAPT HOURS TYPE PFL 0 : -054C 059C TCVIPPC : 17CY1.3G 62% 154193 COUNTER 79C #COMPUTE B−1 48 CDIP 16 BINARY 5.33E 04 154C ##.A. 773 # N.A. INDEGRADATION OF 111 COUNTER \$541y3 CDIP 16 LIFE V 1250 45/ 1 4.50E 04 48 BIHARY 90 IYO :54193 COUNTER HUNE CDIP 16 1250 45/ 0 4.50E 04 BINARY 74/74 : N.A. DYP OP Eμ 45/ 0 PEL 0 : ~054C 050C TCVIBPC : 13CY1.3G 62% 68C +C042UTP 154194 SHIFT REGIST : 5-1 47 CDIP 16 7.84F 03 75/75 : AI ATUGUDS 286 **\$54194** SHIFT REGIST 6-1 47 COIP 16 RLL O ~054C 050C 17CY1.3G 62% TCVI YC : 1.02E 04 150C IN.A. 72/72 I N.A. :5420 GATE LIFL G JB CADID 14 1500 5/ n 5.ma na SiGLIFE 1270 IN.A. 5420 GATE LIFE 0 JB CADIS 14 1250 100% 25/ 0 2.80E 04 72/72 : V.A. DYN OP 150 C IN. A. **#5430** GATE JB CADIP 14 LIFE 0 150C 5.001 03 72/72 : N.A. STGLIFE 126C IN.A. . 72/72 I N.A. **\$5430** GATE JB CADID 14 LIFE 0 23/ 0 1250 100 . DYN OP -0540 0500 130Y1.30 62% 21C ±C0,0501b :5430 GATE B-1 COIP 14 TCVIBPC 75/75 : A1 1.541 04 51C ±COMPUT9 75/75 ± AI ***5430** GATE B-1 -054C 050C 17CY1,3C 62% CDIP 14 ICVIPPC : 2.010 04 :543/ bUFFED 150C =N.A. 72/72 : 41.A. JB CFPK 14 LIFE 0 : 1500 STOLIFE 1.31F 04 144C IN.A. 72//2 : V.A. DAY, ON FIER C 1543/ BUFFER JB CEPK 14 125C 100% 3ZPPUCE'S UNDETERMINABLE 150C IN.A. /2/72 : 0.4. 154 18 つりとという JB CFPK 14 LIFE O 1500 12/ 0 1.21E 04 144C 111.A. 72/12 1 N.A. €5438 TIFE O 73/ 0 7.36F 04 BUFFER JB CEPK 14 125C 1500 in. 1. 72/72 : 1.A. LIFE O : :5440 LUFFEP Jis OFFK 14 1 1500 13Z 0 1.31E 04 134C *N.A. 72//2 * N.A. LIFL O : JΝ 15440 BUFFFR **CEPK 14** 74/ 0 7.46E 04 1250 1M5 63C 1CU (PUTR 75/75 1 AT :5442 **DECUDER** REL O -0540 0500 130Y1.30 62% COIF 16 4 BCD/DECT AAL TCVIRPO y.52 03 63C #COMPUTE 15442 DECODER CDIP 16 of L -0540 0500 170Y1.30 62% 1.245 04 CONDECTANT TOVIBEC GATE EXPANDABLE LIFE O :5450 Jis COIP 14 73/73 : N.A. 1500 10/ 0 1.01F 04 127C #N.A. 73/73 # 11.A. ()ر 354 GATE EXPANDABLE CDIP 14 LIFE 0 567 0 5.64E 04 JΒ 1250 100% DYN OP 150C #F.A. 73/73 | N.A. LIFE O 15451 GAIL JB CPIP 14 1500 10/ 0 1,01E 04 127C IN.A. 15451 LIFE GALE Jis COIP 14 # 125C 54/ 73//3 : DYN OP 5.44F OJ 1

Reproduced from best available copy.

SIGNET TTL		MANUFACTU CPERATION				R	ELIABILITY A	NALYSIS CENTER
PART NU.	DEVICE FUNCTION	SCRN.		JCT.* * EQUIP. * TEMP. * TYPE	DATA CLASS.		#TESTED/ # #FAILED	REMAPKS :
:			CHIP PROTECT.		TEST TYPE		PART : HOURS :	:
	GATE EXPANDABLE	# JB #	CDIP 14	150C =N.A. 73/73 = N.A.	LIFE 0		9/ 0 : 9.07E 03 :	
₹545 3	GATE EXPANDABLE	JB 5	CDIP 14	126C *N.A. 73/73 * N.A.	LIFE O		55/ 0 5.54E 04	:
5454	GALE	Ji,	CDIP 14	150C =N.A. 73/73 = N.A.	LIFE O STGLIFE		9/ 0 9.07E 03	
\$5454 \$	GATE	JB 5	CDIP 14	126C IN.A. 73/73 I N.A.	LIFE O	125C 100%	55/ 0 5.54E 04	: :
5460	EXPANDER	5-1 2	CDIP 14	50C COMPUTE 75/75 AI		-054C 050C 13CY1.3G 62%	2.805 02	: :
5 460	EXPANDER	B-1 2	COIP 14	50C #CU4PUTP 75/75 # AT		-0540 0500 170Y1.36 62%	3.66E C2	
54/0	FLIP FLOP JK	# JS #	CDIP 14	1500 M.A. 72/72 M.A.	LIFF C		10/ 0 1.005 04	
154 70	JK FLIP FLOP	: Jb :	CDIP 14		LIPE O	1250 170%	55/ 1 5.50E 04	1
54/2	rLIP FLOP JK	. J6 :	CDIP 14	1500 11.A. 72/72 11.A.	LIFE C		9/ 0 9.00E 03	:
54/2	FLIP FLOP JK	JE 10	CDIP 14	128C IN.A. 72//2 I N.A.	LIFE C DYI' OP	1250 110%	56/ 1 5.60E 04	INDEGRADATION
*54/4	FLIP FLOP	. Jb	CDIP 14	150 C : 11. A. 72/72 : 1. A.	LIFE C		10/ 0 :	:
5474	FLIP FLUP	JB 12	CDIP 14	130C N.A. 72/72 N.A.	LIFE O		55/ 0 1 9.575 04	: :
	LATCH BISTABLE	B-1 : 24	CDIP 10	64C CUMPUTE 75/75 AT		-0540 0500 130Y1.36 62%	: / 0 : : 1.19% (-4 :	:
54/5	LATCH BISTABLE	5 5-1 5 24	CDIP 16	54C CH 1987P 75/75 AT		-0540 0500 170Y1.36 62%	/ 0 i	; ;
54/6	-1715 EFF73	. Ji:	CHDIP 16	1500 M.A. 12/72 : '.A.	LIFE O		33/ 7 3.27: 04	
54/6	FLIP FLOP	Jb 27	Cablb 19	1410 M.A. 72/72 - N.A.	LIFE C	1250 1MX	1 2.21E 05 1	TAILED STATES
5486	Oλic •	1 JB 1	CFPK 14	150C M.A. 77/73 N.A.	Liri 6		33/ 0 3.800 04	
\$54 A	JAIE	Jb :			: 1145 (2217 0 : 2.215 0 :	
15 4 36	DVIT	ا بالال الا	Crrk 10	1 15)C 15.A. 174/14 1 11.A.	: LIFE V : SICLIEE		/5/ 0 i	
:	: :	:			: : \	: :	4-7 0	: :
: :547 :	CLUATE.	ίχ ί 15	0e2K 14		. T.L. A.		: 4,00° 'V	IN CERTAIN
	DOUGHER GINARY	1 1 1 c 2 2 1	CDIP 14			-0540 0500 130Y1.36 625	1 / 1	: :
	COUNTER (1 TAPY	1 -1	CDIP 14	and the second second		-0540 0500 17071.3 - 62	. / 0 : . 1.16 - 7 :	
154 <i>P</i> ₂	.01e1 9£0151 :	: J.: :		1 /2//3 1 1.A.	· Unt o · dCLImi		1 24 UN	

******	2 22# T FOC 2 22 PC# 2	2# #### # ##		*****	222222222				= 2 # H H H H H H H H F H H H H
PARI' NU.		SCRN.	PACKAGE/	JCT.* TL4P.		PATA CLASS.	7	* #TESTED/ *	REPAPES
			CHIP PRUTECT.			_ · · · · ·	: :	PART :	
495	SHIFT REGIST	JB 37	CDIP 14	140C 73/73		LIFE C	: : 1250 1M%	221/ 0 : 2.23E 05 :	
5495	SHIFT REGIST	B-1 37	CDIP 14	45C 75/75	CUIPUTP AI		-045C 050C 17CY1.3G 62%	/ 0 1.02E 04	
5495	SHIFT REGIST	B-1 3/	CDIP 14	45C 75/75	*COMPUTR		-054C 050C 13CY' 3G 62%	/ 0 = 1.96E 04 =	
5496	SHIFT REGIST	В-1 39	CUIT 19	75C 75/75	*COMPUTD :		-054C 050C 13CY1.3G 62%	: / 0 : : 1.965 04 :	
5496	: : SHIFT REGIST :	# B-1 : # B-1 :	CUID 16	75C 75/75	COMPUTE AI		: =054C 050C : 17CY1.3G 62%	3.44E 04	
54н55	GATE EXPANDABLE		CDIP 14	52C 75/75	*COMPUTR		= -054C 050C = 13Ct1.3G 62%	/ 0 : 5.60F 02	
54H55	GATE EXPANDABLE	8 B-1 :	CULP 14	5/75	COMPUTE AI		-054C 050C 17CY1.30 52'-	/ 0: 7.32E 02:	
7400	GATE	: : in)NE : 4	CDIP 14		# 11. A. # 11. A.	፤ ፤ LIFE V ፤ ነሃር ፤	: : 125C :	: 35/ C: : 3.50E 04:	
	: :	: : :		: : :	: :	ያ ያ-ር'(ያ	: : :	: 35/ 0: : ^.	
7400	: GATE	: NONE : 4	EDIP 14	: 150 C : /4/74		: Lift v : Stalifi	: : 1500 :	: 49/ 0 : : 5.e0: 04 :	
	:	:		:		; <u>1,4</u>	: :	49/ 1	CONFAMINATI
/400	GALE	# 60% # 4	EDIF 14	150C 74/74		LIFE V STGLIFL		: 49/ 0 : : 4,60E (14 :	
	: :	:		: :	:	; ; , ,	: :	79/ 0	
74'X'	: : UAII. :	1 NOVE	FD15-14	150C 74/74		: LIEL V : STGLIEF	: : 1500 :	50/ 1:	
	: :	:		: :	:	: : '. '	: :	1 hr/ 7	
/400	: GAIF	: NOHE : 4	: nIP 14 :	: 150c : 74//4		: Lire V : STOLIFI	: 150C	: 57/ 0: : 1.008 05:	
	: :	: :	! !	: :	:	: : (` (:	: :	: 50/ 7: : 0.	
7400	: : GAIL :	: : [6] (6 : 4	nIP 14	: : 150C : /4/74	: : '. \ . : '. \ .	: : Lir! v : f(Liri		:	
	: :	: : :		; ;	: :	: :	: : :		
110	* - 541". * - 541".	: : 2'0'1'2 : 4	i i ente ia i	: 150 c : /4/74		: : 1.1a v : 5.161.11d	: : 1500 :	: 50/ 1: : 1.00 :00:	
	: :	: : :	: : :	: : :	:	: : ; ·	: : :	: '\'/) : : '\•	
ነ ቁውን	: : 041. :	: : ',U'II: : 4	: DI2-14-	: 150c : /4/74	: :''. A. : '. A.	: : Line V : TCUIF:		: 4/): : 4/):	
	:	: :	: :	: :	: :	t - + 11	: :	:	

SIGHET TTL		: MANUFACTO				RELIABILITY ANALYSIS CENTER			
PART NO.	* DEVICE	* SCRN. : * CLASS :	PACKAGE/	JCT.* TEMP.	FOUIP.	DATA :	STRESS LEVEL	: #TESTED/ : : #FAILED :	
:	:		CHIP PROTFCT.	TFST DATE		TEST TYPE	: :	* PART * HOURS *	:
1 17400 1	: CATC	: NONE :	ESTP 14	150C 14/74		: : LIFF V : : SIGLIFE :		: 44/ 0 : : 3.80E 04 :	: :
: :	: :	: :	: : : :	! !	: : :	፤	: :	: 44/ 0 : : 0.	:
1 17400 1	GATE	NONE 4	EDIP 14	150C 74/74		LIFE V		48Z 0 9.60E 04	; ;
: :	:	:			: :	Ev :		48/ 0	: :
7470	# GATE	NONE 4	=5)[P 4	150C 74/74		LIFF V		46/ 0 9.20E 04	: :
:	:	:	:		:	: F1 :	: :	46/ 0	:
:7100 :	: GATE	: YO'!E : 4	FDIP 14	150C 74/74		: LIFE V : : STGLIFE :	150C	4.50F 04	:
:	: :	:	: :	!	:	: EA	: :	: 45/ 0 : : 0.	: :
17400 1	# GATE	: 40%= : 4	: SDIP 14	150C 74/74		: LIFE V : : STGLIFE :	150°C	94/ 0 : 9.40E 04 :	
:	:	:	: :	: :	1 1 1	: EA ::	; ;	: 94/ 0 : : 0.	: :
17400	: GATE	: NONE : 4	: 501P 14 :	131C 74/74		: DYN 02 :	: 125C :	# 117/ 0 # # 1.176 05 #	: : :
:	: :	:	:	! !	:	:	: : :	: 117/ : : 0.	I/CATASTROPHIC: FLECTRO MIGR:
: 7400 :	# GATE	* YONE * 4	: FDIP 14:	131C 74/74		I CAN OS	: 125C :	# 45/ 0 : # 4.50E 04 :	: : : :
: :	:	:	: :	: :	: :	: ជហ្ :	: : :	: 45/ 0 : : 0.	: : : :
: / 100 :	# GATE	: YONE : 4	: F)[P 4 : :	131C 74/74		: LIFE V :	1 1250 1	# 45/ 0 # # 4.50E 04 #	:
: :	: :	:	: :	: :	: :	1 (TV) 1	: : :	: 45/ () : : (). :	;
:/:00 :	: GATE :	: 10NF : 4	: '')[P 4 : :	131C 73/73		: 044 05	: 1250 : :	: 48/ 0 : : 4.30° 04 :	: :
: :	: :	:	: :	: :	: :	1 52M 1 1	: :	: 48/ 0 : :). :	;
:71)) :	1 /ATE 1	: NONF : 4 :		: 131^ : 74/74 :		1 (1) AA (1) B 1	: 125/ : :	: 9.50F 04	: :
1 1 1	:	: :	: :	: : :	: :	1 e ⁴ 1	: :	: 95/ 0 : : 0.	: :
174 X) 1	: GA[:	# NO전략 # - 1 #	: F')[P 4 :	: 1310 : 74/74 :			: 125C	# 507 0 : # 1,00% 05 :	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
: :	1	:	: :	: :	: :	:	; ;	: 50/ 0 : : 0, :	: :
:/100 :/100	I GAIT I	1 (05); 1 4	1	: 74/74		:	:	: 47/ 0 : 9,40F 04 :	:
:	:	: :	1	: : :	: : :	•	: :	: 47/ O:	

2 770-4.

TTL	rics	*MANUFACTION		***	RELIABILITY AMALYSIS CE				
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/ PINS	JCT.* TEMP.		DATA CLASS.	STRESS LEVEL	* #TESTED/ * #FAILED	
	:		CHIP PROTECT.	TEST DATE			: :		t
7400	GATE	NONE 4	EDIP 14			LIFE V	125C	# 49/ 0 # 9.80E 04	; ;
		:		: :	: :	EM E	; ;	49/ 0	: :
7400	GATE	NONE	EDIF 14	131C 74/74		LIFE V DYN (P	1 125C 1	1 49/ 0 2 9.80E 04	
		\$ \$! !	:	EM	: :	# 49/ 0 # 0.	: :
400	GATE	NONE 4	EDIP 14		*N.A. * N.A.	LIFE V DYN OP	125C	50/ 0 1.00E 05	
		7		t t	: :	EM	: :	50/ 0 0.	: :
7400	GATE	NONE 4	EDIP 14	131C 74/74		LIFE V DYN OP	125C	# 48/ 0 # 9.60E 04	; ; ;
		1		2	:	EM	: :	48/ 0	: :
7400	GATE	NONE 4	EDIP 14		*N.A. * N.A.	LIFE V DYN OP	125C	50/ 0 1.00E 05	; ; ;
		1			:	EM	:	50/ 1	I/CATASTROPH WIRE BOND
7400	GA;E	NONE	SDIP 14			LIFE V STGLIFE	150C	1 153/ 0 1.53E 05	
	:	1 :			:	EM	; ;	153/ 0	
7400	GATE	* NONE :	SDIP 14			LIFE V STGLIFE		: 157/ 0 : 1.57E 05	
	1	1 1				EM	: :	157/ 0	: :
7400	GATE	NONE 4	SDIP 14	150C 72/72		LIFE V STOLIFE	150C	1 155/ 0 1.55E 05	
	1	•			:	EM	: :	1 155/ 0	
7400	GATE	NONE	SDIP 14	150C 72/72		LIFE V		: 158/ 0 : 3.16E 05	
		1				EM	! !	: 158/ 0 : 0.	:
7400	GATE	NONE	SDIP 14	150C 71/72		LIFE V STOLIFE	150C	45/ 0 4.50E 04	
	:	1 :			:	EM	1	45/ 0	
1400	GATE	NONE 4	SDIP 14	150C 72/72		LIFE V		40/ 0 4.00E 04	
	:	1		! !	:	Ex :	t :		COARENT PIN S
7400	GATE	NONE (SDIP 14	131C 72/72		LIFE V	125C	82/ 0 8.20E 04	
	† †	1 1		} !		EM	: !	82/ 0	

SIGNET. TTL	ics	* MANUFACTI * OPERATIO						RELIABILITY A	NALYSIS CENTER
PART NO.	DEVICE	# SCRN. # CLASS	PACKAGE/	JCI.* TEMP.		DATA CLASS.	STRESS LEVEL	: #TESTED/ : : #FAILED :	REMARKS :
	: :		CHIP PROTECT.			TEST TYPE	;	PART :	:
: 7490 :	: GATE :	# NONE # 4	SDIP 14	131C 72/72		LIFE V	125C	: 92/ 0 : : 9.20E 04 :	
:	: :	:			: :	: EM :	! ! :	82/ 0	:
: :7400	: GATE :	: NONE : 4	SDIP 14	131C 72/72		LIFE V	: : 125C	: 82/ 0 : : 3.20E 04 :	: :
	: :				:	EM	:	82/ 0	:
7400	GATE	NONE 4	SDIP 14	131C 72/72		LIFE V	1250	75/ 0 : 7.50E 04 :	:
:	: :		:		:	EV.	: :	75/ 0	:
7490	GATE	: 40HE	SDIP 14	131C 72/72		LIFE V	125C	74/ 0 7.40E 04	:
	:		:		:	: Çн	: :	74/ 0	:
:7400 :	GAIF	* NONE * 4	SDIP 14	131C 72/72		LIFE V	125C	75/ 0 7.50E 04	:
:	:		:		:	: FV	: :	75/ 0	:
7400	GATG	NONE 4	501P 14	131C 72/72		! IFE V : DYN OP	125C	160/ 0 3.20E 05	:
:	: :	:	: :	: :	:	: E1	:	160/ 0	i :
: 7400 :	ETAD:	NONF 4	: 501P 14 :			: OAN OS : Tief A	: : 1250 :	40/ 0 4.00E 04	:
:	:	:	:		:	: Ev	; ;	40/ 0	:
7110	SATE	* VONE * 4	S71P 14	72/72	N.A.	: LIFE V : DYN 09	-055C	169/ 0 3.29# 05	:
:	:		:		:	: EA	!	160/ 0	:
:7100	: ·,Α [**	10N5	SDIP 14			LIFF U		987 1 998 04	: :
i 7 1 1 0 0	: GAIG	1 40VF	SDIP 14		: N.A.	RHOPCYS	: -0100 0650 : श्रद्धतम	20/ 3 1.05E 05	37.0(4.3)
1747?	E GAT"	40NI 4	: FDIP 14		*N.A.	: LIF(V : STGLIFF		45/ 0 4.50E 04	
:	:	:	: :			1 F7	: :	457 0	:
17117	: `A ['	109E 4	: 3015-14 : 3015-14		: V. V. : V. A.	: TIFF 7 : STGLIFF			INIEAS. SYLASE : INIEAS. BYLASE : INIEAS. BYLASE :
11:12	SAFT	: Чоня : 4	SPIP 14		:: N.A.	: 11FF d : 20 ''YC		2857 5 i 2.45E 05 i	3/0E@9404[[0: :
17102	: : GA Γ= :	: 404E : 4	: 5')]P [4 :			: LIFF J	1 1 0450 45744 1	397 5 1 1 3.524 04 1	
1/1/)	1	: 40MF : 4 :			1N.A.	1 1168 U 1 HU (LIFE 1			: 177FGR4 1411 14 #

SIGNET TIL	rics	*MANUFACTO	URER NAL TYPE					RELIABILITY	ANALYSIS CENTI
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/ PINS	JCT.+		DATA CLASS.	STRESS LEVEL	* #TESTED/ * #FAILED	
1	t t		CHIP PROTECT.	* TEST * DATE	: APPL. : ENV.		! !		:
7403	# GATE	* MONE	SDIP 14		# #N.A. # N.A.	LIFE U		# 95/ 0 # 9,50E 04	
: :7404	INVERTER	I NONE	EDIP 14	150C	: :N.A. : N.A.		: : 150C	98/ 2 9.80E 04	: :
: :7404	INVERTER	* NONE	EDIP 14	: : 110C	EN.A.		: : 100C	56/ 0 5,60E 04	t t
: :7404 :	INVERTER	NONE O	EDIP 14	* 80C	: :N.A. : N.A.		• 070C	: 38/ 0 : 3.80E 04	1 1
: :7404 :	INVERTER	# NONE # 6	SDIP 14		: :N.A. : N.A.	LIFE V STGLIFE		# 48/ 0 # 4.80E 04	
:	: :	: :	: : :	: :	: :	: 2h	: :	: 48/ 0 : 0.	: :
: :7404 :	INVERTER	: NONE : 6	SDIP 14		: :N.A. : N.A.	LIFE V STGLIFE		\$ 45/ 0 \$ 4.50E 04	
:	: :	:	: :	: :	: :	: EM	: : :		: 1/DEGRADATI
7404	INVERTER	NONE 6	SDIP 14		N.A. N.A.	LIFE V		45/ 0 4.50E 04	
	:	:	: :	; ;		EH	: :	45/ 0	:
17404	INVERTER	NONE 6	SDIP 14		N.A. N.A.	LIFE V	125C	44/ 0 4.40E 04	
:	:		! !	: :	:	EM	:	44/ 0	: :
7404	INVERTER	NONE 6	SDIP 14		N.A. N.A.	LIFE V	125C	44/ 0 4.40E 04	
:	:	:	! !	:	:	EN :	: :	44/ 1	: I/CATASTROP
:7409	GATE	NONE 4	SDIP 14		N.A. N.A.	LIFE V		25/ 0 2.50E 04	
:	: :	1 1	: :	! :	:	# EM	: :	25/ 0	t t
#7410 #	GATE	* NONE * 3	SDIP 14 EPOXY		:N.A. : N.A.	* LIFE U * DYN OP		70/ 0 7.00E 04	
:74121 :	* FLIP FLOP * MONOSTABLE	* NONE * 8	CDIP 14		: N.A. : N.A.	: LIFF V : DYN OP	125C 1	45/ 0 4.50E 04	
:	: :	1 :	! ! !	: :	:	# EM #	: :	: 45/ 0 : 0.	: :
:74150 :	* MULTIPLEXER	* NONE * 26	FDIP 24		: N.A.	: LIFE V : STGLIFE		45/ 0 4.50F 04	
:	: :	1 1	t t	: :	1 1	E EM	: :	: 45/ 0 : 0.	: :
:74160 :	DECADE	* NONF * 60	EDIP 16			: LIFF V : STGLIFE		: 45/ 0 : 4.50E 04	
:	:	t t	: : :	: : :	: :	: EM	: : :		:

THE PROPERTY OF THE PROPERTY O

CANCEL CONTRACTOR OF THE PARTY OF THE PARTY

PART NO.		SCRY.	PACKAGE/			DATA :	STRESS LEVEL	* FAILED	
			CHIP :	TEST DATE				PART HOURS	:
	DECODER DECIMAL		SDIP 16 STLICONE			LIFE V		: 40/ 0 : 4.00F 04 :	
	:	: :	: :		: :	EA	: : :	: 40/ 1 : 0.	: IZDEGRADATION : OF Vio
1450	# GATE # EXPANDABLE	: : 4-2 : 6	: FDJP 14 :			LIFE V		* 52/ 0 : 2.509 04 :	
7450	# GATE # EXPANDABLE	: 3-2 : 5	: FDIP 14 :			HINGCAL:		: 52/ 0 : 5.20F 04	
1473	FLIP FLOP F JK	: 50 : HONE :	: FDJP 14 :	150C 14/74		LIFE V		: 45/ 7 : 4.50F 04	
	: : : : : : : : : : : : : : : : : : : :	: :	: :	! !	: :	cų.	: : :	: 45/ 0 : 9.	
1474	FLIP FLOP	: 10HF : 12	: EDIP 14 :			LIFF 9 DYN OP	: : 1700 :	98/ 4 9.30E 04	
7490	* COUNTER * DECADE	: 404c : 404c	r golb la :			LIECA	1250	: 43/ 0 : 4.30= 04	
	:	:	: :		: :	Enh	: :	43/ 0	
3162	FLIP FLOP "ONOSTABLE	: 3-1 : 2	PUZGEPK 14	50C 70771	: 08 : 03440 EN	CHK U OPERATE		6.015 03	•
9500	SHIFT REGIST		: CFPK 24	74/75	PADAR ALU	FLD G		: / 0 : 4.55= 04	
3200	SHIFT REGIST	: : 3-1 : 4-1	: CFPK 24 :	132C 13/73	: :RADAR : AIU		-065C 071C : 32CY2.2056*	1 3,43F 03	
epn s	र र आमा र•अडा -	: 3-1 : 1	: CE5K 54 :	1320 13271	: :RAPAR : \[1]		: -0540 0710 : -0540 0710	i / 0 :	
4300	SHIFT RUGISE	: 40HL : 40HL	: :''/G')[P 24 (:	1500 171/71	: ::[.A. : ::A.	: LIFT V : SIOLInt	: : 1500 :	10/ 0 1.005 04	
	:	:	:	! !	: :	***	: :	: 0.	: IZCATASTROPH :PROBABLE OYIG
જ અ	: CHIEL Amelal	: 40%; : 43	: CFPK 24 :	150°C 73/74		LIFE V	: : 1500 :	: 45/ 0 : 4.5)° 94	
	:	:	: :		:	ריי	: :	45/ 0	; ;
4302	: AHILL AFOIZE	: : 3-1 : 43	: Crr< 24 :	71/ <i>1</i> 5	RADAR UIA	+LD 3		2.9/5 05	: : :
4702	: SHIFT REGIST	: 14		73/73	: /1.1		: : -7650 0710 : 320Y2.20563	2.95E 04	
4337	i sust scotat	: 3-1 : 3-1		132° 13274	: 410		: -0540 0710 : -0540 0710 : 500Y1.3050*	; / 0 ; 3.51° 05	
٠,,٦	: SHELL MEGIST	•	# 24 מורה 24 # 11/6 מורה 24	1500		LIFE V STOLIE	: 1500 : 1500	: 40/ 0 : 4,00 04	
	: :	: :	: : : : : : : : : : : : : : : : : : :		: :	:	: :	: 10/ 0	• : :
171)	in tise, xi s		14/04-54 19 :	1 1500 1 1771	1.1.	111		1 40/) 1 1.00° 04	
	:	:	:	: :	:	; 14 ; 14	; ;	1 40Z 0	; ; ;

*MANUFACTURER *OPERATIONAL TYPE SIGNETICS TTL RELIABILITY ANALYSIS CENTER SCRN. : PACKAGE/ : CLASS : PINS : PART NO. DEVICE : JCT.* : EOUIP. : TEMP. : TYPE DATA : CLASS. : STRESS LEVEL * #TESTED/ * REMARKS * NO. * CHIP * TEST * GATES * PROTECT. * DATE # APPL. TEST PART HOURS MULTIPLEXER RADAR FLO G : **#8233** 8-1 CFPK 16 # 1.54E 05 74/75 : AIU N.A. CFPK 16 105C #RADAR CHK -065C 071C **#8233** MULTIPLEXER 8-1 2.075 04 TCVIBPC 32CY2.2G564 105C #RADAR #8233 **VULTIPLEXER** B-1 14 CFPK 16 -054C 071C 2.48F 05 TCVIBPC + 80CY1.3G50% NONE 20 #8242 GATE CDIP 14 142C :N.A. LIFE V 45/ 0 4.50E 04 74/74 : N.A. DYN OP 45/ 0 REL 0 : -054C 050C TCVIBPC : 13CY1.3G 62% #8243 9-1 70 CDIP 24 56C *COMPUTR 2.52E 03 75/75 : AI 9-1 70 REL Q : -054C 050C TCV19PC : 17CY1.3G 62% : 9243 CDIP 24 66C *COMPUTR 3.29E 03 75/75 : ΑI FLD G : **#**8261 GATE 9-1 CFPK 14 74/75 : AIU 5.62E 03 N.A. 92C :RADAR 73/73 : AIU СНК 0 : B-1 CFPK 14 -065C 071C **#8261** GATE AIU ICVIBPC : 32CY2.2G56% 5.76E 02 CFPK 14 92C FRADAR -054C 071C 18261 GATE 8-1 6.90E 03 73/74 : AIU TCV1BPC : 80CY1.3G50% *RADAR 18263 CFPK 24 FLD G *NULTIPLEXER* B−1 34 7.12E 04 74/75 : AIU N.A. CHK 0: -065C 071C TCVIBPC: 32CY2.2G56% 123C + RADAR : 9263 **VULTIPLEXER** B−1 34 CFPK 24 5.57E 03 73/73 : AIU REL 0 : -054C 071C TCVIBPC : 80CY1.3G50% 3-1 34 CFPK 24 128C FRADAR **#8263 MULTIPLEXER** 6.67E 04 73/74 : AIU 150C :N.A. 71/71 : N.A. TIES V : NONE 34 150C 40/ 0 4.00E 04 :8263 HULTIPLEXER 1/GFPK 24 STGLIFE 40/ 0 95C + COMICTN 70/71 + GB CHK U # 030C / 0 1.50E 04 COUNTER DECADE 3-1 22 :8280 #4/GFPK 14 OPERATE CHK Q : 030C : 3280 COUNTER B≁1 22 95C + CO44CTN #4/GFPK 14 2.40E 04 OPERACE DECADE GB REL 0 : -055C 072C TCVIBPC : 241CY2.2683 127C 100WCTN :9230 COUNTER * 7/GFPK 14 9.31E 04 DECADE COUNTER B−1 22 1.27C #COWMOTN -055C 072C :9289 17/GFPK 14 2.80E 06 83% DECADE ICAI 85C : 241CY 105C # COMMOTN COUNTER B−1 22 14/GFPK 14 FLD G **# 9280** 8,01E 03 DECADE CHK U : COUNTER 3-1 22 41C + COPPICIN *****8280 COIP 14 3.01# 03 DFC/ /S RFI, Q : 3+2 22 #**#230** COUNTER BOC # COMMOTN 025C 6.34E 04 GΓ OPERATE : DECADE 19291 COUNTER 14/GFPK 14 95C + COWICTN CHK U # 6.01E 03 BINARY OPERATE 4 35C + COWCTN COUNTER CHK Q # 030C 18281 B-1 ***W/GFPK 14** 6.01E 03 : 70/71 : GH OPERATE : BINARY

SIGNE TTL		*MANUFACT *OPERATIO					A	ELIABILITY	ANAIYSIS CENTER
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/ PINS	JCT.* TEMP.		DATA CLASS.	STRESS Level	* #TESTED/ * #FAILED	
: :	:		: CHIP : PROTECT.	TEST DATE		TEST TYPE	:	PART HOURS	: :
8231	: COUNTER : BINARY		। अ/GFPK 14	127C 70/71	CONNCTN GB		-055C 072C 241CY2.2G83%	: / 0 : 2.33E 04	:
8281	COUNTER BINARY	# B−1 # 21	*4/GFPK 14	127C 70/71	COVINCTN GB	REL O	-055C 072C 241CY 93%	. / 0 . 7.01E 05	: : :
8281	COUNTER BINARY	: B-1 : 21	**/GFPK 14	105C 72/73	* VI SAND	FLD G	050C	2.00E 03	: : :
9281 1	COUNTER BINARY	* NONE * 22	: CFPK 14 :	107C 69/73	E GB		-050C 070C 2CYC 19 HR E	: / 0 : 3.36E 03	: : :
: :8281 :	COUNTER BINARY	* NONE * 22	: CFPK 14	107C 69/73	: COMMCTN GB		: -055C 070C : 3CYC 19 HR E	: / 0 : 1.88E 04	: :
8290 8	COUNTER DECADE	: 9-1 : 44	: N/GFPK 14	87C 70/71	COMMETN GB	: CHK U : : OPERATE :		* / 0 * 6.01E 03	: :
9290	COUNTER DECADE	: 8-1 : 44	COIP 14	61C 75/75	: :COMPUTR : AI		-054C 050C 13CY1.3G 62%	: / 0 : 1.26E 03	•
3290	COUNTER DECADE	: 3-1 : 44	CDIP 14	61C 75/75	ECOMPUTR AI		-054C 050C 17CY1.3G 62	: / 0 : 1.65F 03	: : :
4581	COUNTER BINARY	: 8-1 : 43	CDIP 14	61C 75/75			: 054C 050C : 13CY1.3G 62¥	: / 0 : 3.40 02	: : :
13291	COUNTER BINARY	: '3-1 : 43	: CDIP 14	61C 75/75	: :COMPUTR : AI		: -054C 050C : 17CY1.3G 62%	* / 0 * 1.105 03	: :
3815	GATE	: 70M;	: CFPK 14	76C 69/73	COMVCTN G3		-055C 070C 2CYC 19 HR S	: / n : 3.025 03	: :
9915	GATE	: NONE : 2	: CFPK 14 :	76C 69/73	COMMETA GB		-055C 070C 3 3CYC 10 HR F	: / 0 : 1.135 04	: : :
3326	FLIP FLOP	: : 3-2 : 9	: "ZGFPK 14 :	37C 71/71	COMMCTN GT	REL OF		: / 0 : 1.27@ 05	: : :
3375	GATE	: NONE : 3	: CFPK 14 :	16C 69/73	COMMCTN GB		-055C 070C 2CYC 19 HR E	: / 0 : 5.02 ° 03	; ; ;
9375	# GATE	: 40ME	: CFPK 14 :	76C 69/73	COMMCTN GB		-055C 070C 3CYC, 19 HR E	* / 0 * 1.13E 04	7 ; }
ત્રન્સ 1	: CATE	NONE :	SDIP 14	27C 73/75	COMPUTR : GBC	FLD G	025C	: / 0 : 1.22E 05	: : :
9016	INVERTER	: 10NE : 6	: SDIP 14 :		: :N.A. : N.A.	: LIFE U : : REVBIAS :		: 32/ 0 : 3.20E 04	: :
9370	SHIFT REGIST	រ ។0។ជ រ ។0។ជ រ 40	: : የ!.R. 16 : :	950 71	: :N.A. : N.A.	LIFE U	2600	: : 25/ 0 : 1.	: : :
	:	:	: : : : :		: :	REVBIAS	070C	25/ 1 2.30F 04	I IV OPEN

SGS AT	TES	*MANUFACTO *OPERATIO		 			RELIABILITY ANA	LISIS CENTEN
PART NO.	* DEVICE * FUNCTION		PACKAGE/			STRESS LEVEL	: JTESTED/ : : #FAILED :	REMARKS :
:	:	# NO. # GATES	PROTECT.	# APPL. # ENV.		:	* PART * HOURS *	:
19016	1 INVERTER	NONE	SDIP 14		LIFE U		32/ 0 : 3.20E 04 :	:

on on one of the second of the

*MANUFACTURER *OPERATIONAL TYPE STEWART WARNER RELIABILITY ANALYSIS CENTER * SCRN. : PACKAGE/ * JCT.* * EQUIP. * CLASS * PINS * TEMP. * TYPE PART NO. DEVICE FUNCTION DATA : CLASS. : STRESS * FAILED * REMARKS * NO. * CHIP * TEST * GATES * PROTECT. * DATE APPL. TEST TYPE PART HOURS 90C *COMMCTN /72 * G8 REL U : TCVIBPC : :1439 FLIP FLOP 9-1 CFPK 14 / 0 3.64E 04 60C 1COMMCTN 172/73 1 AI 1 : 1439 FLIP FLOP FLD 050C / 0 2.87 = 03 OPERATE # REL U : -055C 070C TCVIBPC : 84CYC 2.2G 80C + COVACTN 1630 GATE FPK 14 2.91E 05 EXPANDABLE /72 : GB 6G2 *COMMCTN * 72/73 * AI * / 0 2.30E 04 GATE 11530 FPK 14 EXPANDABLE OPERATE # REL U : -055C 070C : ROC COMMOTN : * IVPIN 3 MON*T *SHIFT: "ELTED *METALLIZATION * IVINPUT SHORE GATE FPK14 :1646 4.36E 05 *EXCESSIVE REV. TO THEIRNATE ECOTO TUPNIE 60C #COVECTH 11546 GATE B-1 FPK 14 / 0 3.44E 04 72/73 : AI / 0 4.555 04 FLIP FLOP FPK 14 30C +COMICTH + 2.20 10 /72 : G9, TCVIBPC : 84CYC 7.19E 03 :5472 FLIP FLOP 60C + COWICTN : 10 72/73 : 41 OPERATE : / 1 2.189 05 # 1/ OPEN # MFTAL FLIP FLOP 30C : CUYICTN : -055C 070C 2.20 TCVIBPC : 84CYC 20 /72 # GB 60C +COMMCTH + FLD U # 0500 15473 FLIP FLOP JK 72/73 : 41 OPERATE :

THE MENTER OF THE PROPERTY OF

and the state of t

on and the contraction of the co

SYLVA TTL	HIA	*'ANUFACTURER *OPERATIONAL TYPE							
PART NO.	# DEVICE # FUNCTION	# SCRN. # PACKAGE # CLASS # PINS	V : JCT.* : EDUIP : TERP. : TYPE		: *TESTED/: REMARKS : : #FAILED :				
:	t :		: TEST : APPL. : DATE : ENV.		: : TRA9 : : : : : : : : : : : : : : : : : : :				
: :7400 :	: GATE	: 408E : COIP (# LIFE V # -010C 065C # RHOPC'IS # 29%'HI	: 29/ 2: 2/DEGRADATION : : 1.05F 05 : :				

... Elamen

TEXAS INSTRUMENTS : "MANUFACTURER RELIABILITY ANALYSIS CENTER"

TTL		*OPERATIO	NAL TYPE				···		
PART N/.	DEVICE FUNCTION	SCRN.	PACKAGE/	JCT.* TEMP.		DATA CLASS.	STRESS LEVEL	: #TESTED/ : #FAILED	
:	:	NO. GATES	: CHIP : PROTECT.	TEST DATE		TEST TYPE	: :	PART HOURS	: :
: :5330	GATE	: A-1 : 2	I I'I/GFPK 10 IGLASS	28C 70/74	COMBIN SF	: : FLD U : N.A.	: : 025C	: / 0 : 3.57E 04	
5350	INVERTER	A-1	SU/GFPK 10	31C 70/74	COMBIN SF	FLD U	025C	. / 0 : 3.579)4	: :
\$5400 \$	GATE	: A-1 : 4	N.R. 14	35C 72/74	COMBIN SF	፡ FLD ሀ ፡ ቫ.አ.		9.335 04	
5400 1	GATE	: 4-1 : 4	: CDIP 14 :GLASS	29C 72/74	COMBIN SF	: FLD U : N.A.	: 025C	. / 0 . 4.67E 04	: : : :
15470 15470	GATE	: 4 : 4	INJOEPK 14 IGLASS	76C 71/73	*516PROC * 63	REL U		: / 0 : 5.43 ° 05	: :
:5401 :5401	GAT'	4-1 4-1	INVGERK 14	30C 72/74	: SE :COA:IM	FLD U	: 025C	: /) : 3.11E 04	•
±5401	GAT ^C	* NONE * 4	197GEPK 14 19LASS	75C 69/73	CONMOTA G3		: -055C 070C : 2CYC 19 HR E	2.51F 03	: :
: 3401 : 3401	GAIF	i none	#WOFPK 14 #GLASS	75C 69/73	COMMICTN GB		: -0550 0700 : 30YC 19 HR E	. / 0 . 5.64F 03	•
:540 <i>4</i>	INAGRIES	: 3-1 : 6	: COIP 14 : GLASS	600 73/73	COPTOTN AI		: : -0540 0550 : 830Y2.2967%	. / 0 . 4.00E 03	•
:5405 :	INVERTER	: A-I : 6	MZGFPK 14 : IGLASS	72/74	# COMBIN # SF	: FLD U	: : 025 :	: / 0 : 3.11	
\$ \$5405 \$	INVERTER	: 3-1 : 6	CDIP 14 :	35C /73	CONTROL	CHK U			: "TEST DURATIO" : : : : : : : : : : : : : : : : : : :
54107 •	FLIP FLOP	: A-1 : 20	N.R. 14	35C 72/74	COMBIN SF	: FLD U:	025C	/ 0 4.56F 04	; ; ;
194107 194107	FLIP FLOP	A-1 20	COIP 14	34C 72/74	LOMBIN SF	FLD U		. / 0 : 1.718 05	
: :54107	FLIP FLOP	: 3-1 : 20	: CDIP 14 :SI02	59C 75/75	COMPUTE :		: -0540 0500 : 130Y1.30 624	. / 0 : 1.725 04	: : : :
: :54107 :	FLIP FLOP	: 9-1 : 20	# CDIP 14 :	59°; 75/75	*COMPUTR * AI		: -0540 0500 : 170Y1.39 62%	/ 0 2.25E 04	: : : :
: :51 :	FLIP FLOP	; 3-1 ; 16	1 COLD 19	61C 75/75	* COMPUTH :		: -054C 050C : 13CY1.30 62"	/ 0 1.40F 03	: : :
# #54111 #	FLIP FLOP		: COIP 16 :	610 75/75	* COMPUTE :		: -3540 0500 : 170Y1,30 62%	: / 0 : 1.93E 03	: : :
: :5:121 :	FLIP FLOP FUNDSTABLE	: 4-1 : 3	# U.R. 10 : #GLASS :	35C 72/74		U CLIF		7.73F 04	: : :
1	1	1		t .	1 !			•	

TEXAS INSTRUMENTS :"ANUFACTURER RELIABILITY AMALYSIS OF ITE?

TTL		OPERATIO					ч	FLIABILITY K	WEARIN CHIES
PART HO.	DEVICE FUNCTION	SCRN.	PACKAGE/			DATA CLASS.	STRESS LEVEL	: /TGS[GD/:	PETARKS
	:		PROFECT.	TEST DATE		TEST TYPE		PART : HOURS :	
54121	: FLIP FLOP : MONOSTABLE		***/GFPK 14 ** *GLASS	37C 72/74	: :C043111 : SF	FLD U	025C	: / 0: : 1.395 05:	
54121	FLIP FLOP MONOSTABLE		COLD 14	330 72/74	SE COARIN	FLD U	0250	/ 0 : 2.02E 05 :	
51121	FLIP FLOP WOMOSTABLE		CDIP 14	74/75	SIGPRAC	FLD G		/ 0 : 6.835 03 :	
5413	: GATE		: CDIP 14 : :SIO2	74/75	*COMPUTE *AIU	FLの つ: N.A.		: / 0 : : 2,689 03 :	
5413	FOATE		# C')[P 14 : #S102	79C 773	* VIA *COMBALG		-054C 071C 4CY .90 634	: / 0: : 1.92F 02:	
5413	# GATE	: 9-1 : 2	: C')[P 14 : :SIO2	797 73/73	* VIA *COAPALA *		: -0540 0710 : 5150Y.90 633	: / 0 : : 1.13E 01 :	
54150	: MULTIPLEXER		COIP 24	650 73/73	#COTTICE!		: -0540 0550 : 83CY2.2367∜	: / 0 : : 3.00° 03 :	
54150	: MOLTIPLEXES	: 3-1 : 26	# CDIP 24 #OLASS	- • -	*CONSUTS	CHK 0	-054C 071C 3CY 93%	: / 0 : : 2,885 02 :	
54157	. "ULTIPLEXER	: B-1 : 26	CDIP 24		COMPUIR AU		: -054C 071C : 707CY 16 56°	: / 0 : : 3,815 04 :	
54151	# MULTIPLEXER		COIP 16	37C 73/73	* 63	F CHK Q : F OPERATE :		: / O: : 9.75E 04:	
54151	* MULTIPLEXES	: 3-1 : 11	: CDIP 16 :GLASS	42C 73/73	COYACTN GF		: : 030C V.STP : 90 100 110%	: / O: : 1.59E 05:	
54152	: unftlbfckes	1 1 3-2 1 15	: OFPK 14 : DIATE	: 420 : 75/75	1 GL 1 COH 1 C LH	FID G	1 1 0250 1	: / 0: : 1.66E 03:	
51153	# MULTIPLEYER	: : 3-1 : 16	: CDIP 16	: : 390 : 73/73	* 04 *C0n4CIII	E CHK 2 : OPTRATE :	1 1 0250 1M2 1	: / 0 : : 9.50F 04 :	
54153	: "AFLIBEEXES	: 1-1 : 16	: CDIP 16	: 44C : 73/73	* OH *COAGCIN :		: : 030C V.STP : 97 100 110~	: / 0 : : 1.72	
54153	: "ULTIPLEXER		: : COIP 16 :SIO2	: : 74/75	* VIA *COMBALG *	: FLD G:	: : :	1 / 0 : 1,615 04 :	
: :54153 :	: AOL'LISPAXES	: : 3-: : 16	# COIP 16 #SIO2		*COMPUTR * AIU		: -0540 0710 : 40Y .9G 633	: / n: : 5.76 n2 :	
51153	: APFUBFEXEE	: : 3-1 : 16	#2105 # 0315-19	1 1 55° 173/73	: COMPUTR : AIU		: -0540 0710 : 5150Y.96 63~	: / 0 : : 3,40° 04 :	
54154	: JuddubNobintX		: : CMP 24 :SI02	: 690 : 75/75			: : -05 to 0500 : 130Y1.33 62~	: / 0 : : 3,2°° 03 :	
: 194 54 	* ORCODRADEMUX		: CDIP 24 :SIO2	: 600 : 75/75	\$C045013	: 8cl 0	:	1 / 0 1	
: :54154	* DECOBANDERRY		# CDIP 24 #SID2		1 VIJ	# TUATHEC	: -054C 071C : 3CY -442	1 3.405 02 1	:
: : 541454 :	# DECODENDERBY	: 3~1		: 41C	*COMPUTA	: : 85L 0		/); + 4,7/', 04 i	: : :
74154 1	* DECODENDERALLY	: 3-1	: CDIP 24		-	: :		1 7.09F 02 1	
,4151	: DECODENDERNA	:	1 COTE 24 15102	: : 310	: :C0'\2Ufa	: CF(0	:	1 / 71	:
	•	:	1	:	1	:	:		

The state of the s

TEXAS INSTRUMENTS *MANUFACTURER RELIABILITY ANALYSIS CENTER OPERATIONAL TYPE SCRN. : PACKAGE/ : JCT.* : EQUIP. DATA PART DEVICE STRESS * #TESTED/ * REWARKS FUNCTION CLASS : PINS FAILED * YO. * CHIP TEST APPL. TEST PART GATES : PROTECT. : DATE TYPE HOURS 154154 DECODR/DEMUX : CDIP 24 SIC #COMPUTR REL ***S102** 73/73 : AIU TCVIBPC : 515CY.9G 63% 5.66E 03 60C COMPUTE REL Q : -054C 050C TCVIBPC : 13CY1.3G 62% 154155 DECODR/DE4UX : 8-1 CDIP 16 *SI02 9.94E 03 75/75 : AI DECODR/DEMUX : 8-1 60C #COMPUTR REL 0 : -054C 050C TCVIBPC : 17CY1.3G 62% 154155 CDIP 16 75/75 : AI *SI02 1.30E 04 60C *COMPUTR 75/75 * AI REL 0 : -054C 050C TCVIBPC : 13CY1.3G 62% **#54156** DECODR/DEMUX CDIP 16 1.06F 04 ***SIO2** REL Q : -054C 050C TCVIBPC : 17CY1.3G 62% CDIP 16 60C *COMPUTR 75/75 * AI 154156 DECODR/DEMUX 1.39E 04 ***SIO2** IA : \$54161 COUNTER NONE EDIP 16 LIFE U 260C 23/ 0 *GLASS /71 : N.A. BINARY SOLDER REVBIAS : 070C 23/ 0 2.30E 04 154164 SHIFT REGIST : **DIP 14** SOC #COMMICTN CHK U 025C 100% / 0 4.50E 04 #GLASS 50C ± COMMOTN ± REL 154164 SHIFT REGIST : DIP 14 0 / 6.18E 05 GLASS *COMPUTR FLD G CDIP 14 154164 SHIFT REGIST : / 0 5.36E 03 15102 74/75 : AIU N.A. SHIFT REGIST : CDIP 14 86C *COMPUTR CHK -054C 071C 154164 1.92E 02 ***SIO2** /73 : AIU TCVIBPC : S6C #COMPUTR DEL -054C 071C 515CY.9G 63* 154164 SHIFT REGIST : CDIP 14 1.135 04 TCVIBPC 73/73 : AIU 3-1 36 37C #COYMOTN CdK 154175 FLIP FLOP CDIP 16 025C 1007 2.08F 05 73/73 : 68 OPERACE 154175 FLIP FLOP B-1 36 COIP 16 42C #COM CTN ΩFI 030C V.SFP 90 100 1104 3.76F 05 OPFRATE -054C 050C 13CY1.3C 62% 154175 FLIP FLOP ช−1 36 CDIP 16 62C #COMPUTR 7.28E 04 TCV I 35C 62C #COMPUTR -054C 050C 154175 FLIP FLOP CDIP 16 9.52E 04 36 TCV18PC 17CY1.3G 62% CONVERTER 35C #COPACTN CHK 1250 100% 151135 DIP 16 6.72° 02 BINARY/9CD OPERATE 35C + CO MICTN REL U 154195 COMVERTER DIP 16 9.23F 03 COBNYRAPIS OPERACE 51C #COVICIN CHK 2 COUNTER 0250 100% 154191 3-1 59 COIP 16 7 0 2,50F 04 1-8 8c 56C #C0""CT!! 030C V.STP 90 100 110: COS TER REL 154191 COID 19 4.54E 04 OPERATE 3-1 76C + CONPUTR 75/75 + AT TC TBSC -0540 0500 130Y1.30 624 151191 COUNTER 91 4160 1.515.04 -0540 0500 17071.30 62* RHI D :51191 CONATES COIP 16 76C #CO%2UTR 1.931 04 COUNTER COIP 16 21C ±00.64CD1 CHK J 9250 100% 151193 2.69E 03 43 73/73 : 63 41AS (90 RAPLIE #GLASS COULTER SIC #COTTCTU # 7 0 3.64 24 #GLASS

OPERALE 4

TUARY

TEXAS INSTRUMENTS # 4ANUFACTURER # 10PSRATIONAL TYP"

RELIABILITY ANALYSIS CENTER

TIL	31	ONTRATIO	MAL TANG						
PART		SCRII.	PACKAGE/	JCT.*		DATA :		* #TES COD * * #FAILE) *	REMARKS :
		: YO. : GATES	: CHP : PROTECT.	: [FST : DATE				* PART * * HOURS *	:
54195	SHIFT REGIST		: CDIP 16 :SI02	: 56C : 75/75			: -054C 050C : 13CY1.3G 624	: / 0 : : 6.72E 03 :	: :
54195	SHIFT REGIST	: : 3-1 : 53	: CDIP 16	46C 75/75	E CO™PUER E AI		-054C 050C 17CY1.3G 62*	: / 0 : : 3.7a □ 03 :	:
54197	COUNTER	: H-1 : 34	* COIP 14 :				-054C 071C 4CY .9G 63*	/ 0 2.88£ 02	:
54197	COUNTER	B-1 34	COIP 14	93C 73/73			-054C 071C 515CY.9G 63*	1.70= 94	:
5423	GAT9	3-1 ?	CDIP 16	54C 75/75	*COMPUER :		-054C 050C 13CY1.3G 624	1.405 03	; ;
5423	GATE	'3-1 2	COIP 16	24C 75/75	COMPUTP :		-054C 050C 17CY1.3G 62%	/ 0 1.93E 03	:
5425	GATE	9-1 2	CDIP 14	52C 75/75	COMPUTR AI		-054C 050C 130Y1.3G 62%	/ 0 : 2.31 = 04 :	:
5425	GA [F	B-1 2	COIP 14 ISI02	52C 75/75	COMBALS		-054C 050C 17CY1.3G 62%	3.115 04	:
5427	GATI-	3-1	* CJE 14	56° 75/75	COMPUER AT		-054C 050C 13CY1.3G 62/	2.140 04	:
5427	GAT'-	3-1	* CDIP 14 :	56C 75/75	*COMPUTR * AT		-0540 0500 170Y1.30 62%	/ 0 2.40F 04	:
5430	CATE	; ; ;;~ ; ; ;	CFPK 14	74/75	#RADAR # ATU	FLD G		/ 0 : : 2,33° 0. ;	:
5#30	: GATF	3-1	* OFPK 14	31C 73/73	*RADAR * ATU		-063C 071C 32CY2.2C563	3.015 01	:
5430	GAT"	: 3-1 : 3-1	* CE2K 14 *GLASS	31C 13/74	* RADAR * AIU		-054C 071C	3.61. 09	:
5440	: AUFFER	\-1 : \-1	# COIP 14 : #GLACS :	300	# Sh	FED 0	0250	3.110 04	:
5 140	: aurreq	: 3-2	: 4015 14 :	: 300 : 73/73	* @ *Con. GL1 *	. UNLUVI.: : . CIK 0 :	9250 F007		:
5110	: :UAPER	; ; 3-2 ; 2	:	300 73/75	*C0"'^F	i (L) 3 i			:
° 110	* (MI) (R	: 1-2 : 2	: "DIP 14:	: 33/3 : 73/73			1 0300 V.SIP 1 0300 V.SIP	: / n : : 4, 14" n ? :	:
h, 14 <u>2</u>	\$ - \(\alpha \) \(\beta \) \(\bet	: :	ा । इ. ११८।वः इत्रिक्ष	1 130 1 //3	z zCrssy-rof : z	17		: / ^ :T· : 1.10 Ol :'.	\$1.00 K/J = 1 3.47 U = 1
	:	:	:	:	:	: ;	:	: :	:

TEXAS INSTRUMENTS * "A"IUFACTURER RELI BILITY ANALYSIS CFIFER SOPERATIONAL TYPE DEVICE DATA REMARKS + CLASS + PINS * TE'IP. * TYPE NO. FUNCTION CLASS. : LEVEL * #FAILED * TEST * SATES * PROTECT. * DATE * ENV. TYPE 909125 C4K U: 025C 100* * GATE : N.R. 0: 35C #COTTCTN # 154512 *GLASS 1.615 04 73/73 # GB OPERATE 4 REL U : 0250 35C +COPPICIN # 154512 GATE 0 : 5.538 04 #GLASS 73/73 : GB * OPERATE * 29/ 0 5.80£ 04 15470 FLIP FLOP #4/GFPK 14 # LIFE U : 1250 . JK #GLASS /72 : N.A. REVBIAS : FL7 U : 025C :5470 FLIP FLOP 31C #C09819 4.675 04 #GLASS N.A. 15472 350 +00'91'1 FLD U : 025C / 0 9,335 04 FLIP FLOP # GLASS 72/74 : SF 4.A. : **\$5472** FLIP FLOP t"/GFPK 14 32C #C04814 FLD U # 025C 2.798 05 JK 10 #GLASS 72/74 : SF 35C #C019111 FLD U : 0230 FLIP FLOP #OLASS FLIP FLOP 83C + COMMOTN + REL U : -255C 070C :5473 #GLASS /72 : G3 # TCV[8/C # 84CYC 2.20 FLIP FLOP 63C #C039CT9 # 2.745 03 :5473 #4/GFPK 14 72/73 : AT *GLASS CHK U : 0300 O :3.3 MINUTE TEST FITA EFOA CPIP 14 39C #COMFROL # :5473 VI ITANUO: OC "CO.c 101,155 SERVING. REL U : -0550 0700 TCVIBPC : 84CYC 2. *5474 FLIP FLOP 11/JGEPK 14 31C #COPPICTH # 2.405.05 /72 : G3 12 *GLASS FLD !! : 0500 61C #COPPCTN # 15474 FLIP FLOP 1"ZGEPK 14 1.532 04 # OPTRATE # 12 #SLASS 72/73 : AI 58C +COMPUTE + RFL 0 : -0540 0500 15476 FLIP FLOP * COIP 16 : TCV[3PC : 13CY1.30 62. : 75/75 : AI 2,521 03 20 #GLASS Sel. 15476 FLIP FLOP * COIP 16 58C + COME JT? + 0 : -0540 0500 * TCVIBEC + 17CY1.39 62% + 20 #GLASS 75/75 : AI REL Q # +0540 0500 ADD ID 19 1104502 1 395 15 172 CDIP 14 * TOVERPC * 130Y1.30 12" 21 #5102 75/75 + AT FULL 아크. 0 : -0510 0900 SEC TOURSULE TO 15482 ADDER # CDIP 14 21 #5102 + ICVI30C + 17CY1.73 673 + 75/75 : AI FULL C4K 0 : -054C 071C 154H2 APPER 37C #COMPU ' # * TCVIBPC * 3CV 7.20= 01 FULL 21 #5102 /74 : AU : CDIP 14 : 37C + COMPUTE + REL 0 + -054C 071C ADDER + [CVIBEC + 707CY 19 547 + 9.517 03 + : FULL 21 #8102 /74 : AU

TEXAS INSTRUPENTS STRUVENTS : "ANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER STRESS : JTESTED/ : REMARKS

THE STATE OF THE S

# NO.	* FUNCTION	CLASS	PINS	TEMP. : TYPF	: CLASS.	. LEVFL	* /FAILED	:
t t				TEST : APPL. DATE : ENV.			PART HOURS	; ;
1 15483 1	* ADDER * FULL		: COIP 16 : :SI02	: 75C :COMPUTA : 75/75 : A1		: : -0540 0500 : 130Y1.30 624	: / 0 : 4.40E 02	: :
•5433 •	* ADDER * FULL	* 9~1 * 36	* COIP 16 :	750 COMPUTA 75/75 A1		-054C 050C 17CY1.3G 62*	1.105 03	:
:5496 :	# GATS		* COIP 14 : *S102	64C :COMPUTE 75/75 : AI		-054C 050C 13CY1.36 62%	: / 0 : 1.41= 04	: :
: :5436 :	# GATE	: -}-1 : -4	* CDIP 14 : *S102	64C *COYPUD 75/75 * AI		: -054C 050C : 17CY1.3G 6%	: / ^ : 1.85= 04	; ;
: :5490	COUNTER DECADE	: 4-1 : 15	: ".R. 14 :	35C :COUSIN 72/74 : SF	: FLO U	• 025C	. / n : 3.115 04	; ; ; ; ;
:5490	* COUNTER * DECAPS		: "/GFPK 14 #GLASS	460 ±00%19 72/74 ± 3F	# FLO U		/ 0 : 4.67= 04	
15400 15400	COUNTER DECADE	3-1 11	COIP 14 :	14C COPTROL 773 "GB		2 0300 REMARY	1.90-01	TEST NUMBERON :
:5493	COUNTER BIRARY	3-1 25	COIP 14	590 ±0014014 73773 = AT		-0540 0550 330YC2.2G67*	/ n 3.00F n3	: :
±5493	COUNTER BIMARY	9-1 : 25	COIP 14	44C COTTROL 773 TOB	CRC U	2 030C	/ 0 / 00 00	
*5495 *	SHIFT RECIST		COIP 14	490 ±009319 72/74 = SE	FLD U		. / () : 1.56F 04	: :
: :5405 :	SHIFT REGIST		COIP 14	240 100 PUTE 771 1 AU	: 10A1350 : 08K 0	-0540 0710 : 30Y	/ 0 - y, 35% ^2	: :
: :5195 :	SHIET REGIST		COIP 14	04C :C0 90€9 Z74 : Ad		: -0:40 0710 : 7070Y 10 554	1.4F05	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
: :54L01 :	: IAAuBLiff		: :"ZOEPK 14 :OLASS	27C (COUSIN 73Z74 55	FLD U		· / 0 · 1.329 05	
:7400 :	: GAΓ ⁻	: Y : 4	: 551P 14 : : 20XY	340 FOLSPLAY 271 F Sh	FLO	: 030C :	; / 3; ; 5.76- 07	: :
: :7490 :	: 34 L _d	: 10]17 : 4	ODIP 14	690 11.A. 271 11.A.	Figure 2	: -0100 0550 : 95.88	: 207 1 : 1.167 0	: 1707 (A M 110) :
: :7100 :	CATE	: 10"T	#	773 : Y.A.	: lirr V : 517LH		: 1607 1 : 1-127 06	: :
: 7477 :	: CATE		: COIP 14: : GLA S	1790 IN.A.	V HILL Trong Is		: 490,1 4 : 5,115 06	
:7100 :	i uvlin	: 104E : 4	: FMP (4)		LIFE V	: =0100 0550 : 93~3H		:
: :/4')^ :	: 'A (''	: : 1045 : 4	: FOIP 14 :	1 29/ 15[6/49/9] 1 771 1 6	i overvit. Forestit		: / 7 : 1.96~ J6	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
: :/1)? :	1 -3A ["	: : NO : : 4	1 501P 14 1 POXY	: 360 : HSPLA: : 771 : C	'	: 03)(°	: : / 13 : 1.ºɔ= ^/	
: :71′)2 :	1 13A [H	: : ?!?)*[~ : 4	1 714 14 1 714 14 1	:	: : R L V : OP 724. (: / 0 : , 10 05	•

THE PARTY AND ACCORDING TO THE PROPERTY OF THE PARTY OF T

THE SHOP THE SAME STATES OF THE SECOND SECON

TEXAS INSTRUMENTS * MANUFACTURER RELIABILITY ANALYSIS CENTER *OPERATIONAL TYPE >10 15.10 : STEATS : PROGRAGEN : JOT. + : FOULP. : TO P. : TYPE DAT4 STAGSS LEVEL * #TESTED/ *
* #FAILTO * ‴⊓. CLVSS rarditor # NO. # CHIP # TEST # GATES # PROTECT. # DATE TFST TYPE # APPL. PART HOURS GATE EDIP 14 150C IN.A. LIFE U **\$7403** 23/ 0 *GLASS /73 : N.A. STOLIFE 2.80E 04 COIP 14 104C IN.A. LIFE U : 23/ 0 ***7403** CATE 40012 #GLASS /73 * N.A. DAM OS 2.80E 04 890 IN.A. 273 I N.A. EDIP 14 LIFF U : 10/ 0 £7103 GATE 1015 085C 85%RH HUVLIFE 1.60E 04 *GLASS НОИЕ SDIP 14 / 57 3.10E 07 INVERTER 36C #DISPLAY FLD U : :7404 030C EPOXY /71 * GF 1.A. 13/ 0 1.30E 04 76C *N.A. /72 * N.A. :7404 INVERTER NONE EDIP 14 LIFE U : 0700 *GLASS REVBIAS & / 17 3.64E 07 40C #DISPLAY COIP 14 FL7 U : 030C : 74107 FLIP FLOP 10VE JK 20 ELOXA N.A. ***7410** GATE SDIP 14 33C #DISPLAY FLD U : 030C / 35 3.53= 07 FAON **EPOXY** /71 # GF Y.A. 23/ 0 2.30= 04 88C :N.A. /71 : N.A. 1741.5 SHIFT REGIST FOIP 16 LIFE U : 260C *GLASS SOLDer 23/ 0 2.30E 04 REVBIAS : 070C NONE :7420 GATE SDIP 14 32C #DISPLAY FLD U : 030C / 0 1.095 07 FPOXY /71 # GF 11.4. FLD U : 030C :7430 GATE 初柱 SDIP 14 31C #DISPEAY / 1 1.94E 06 Y.A. Ebuxx አባጸ። 35C IDESPLAY :7440 BUFFER SD[P 14 FLD U : 030C ذ ∕ 06 €55,9 **EPOXY** /71 : OF N.A. REL V : 025C 901P 14 :7440 SUFFER NOME 30C #STOPRIA / 0 2,645 06 *GL455 /71 : GJ นาหะ 43C IDISPLAY FLD 9 : 0300 / 33 1.57° 07 :7442 DECODES SDIP 16 HCD/DECTHAL 18 **EPOXY** /71 1 OF N.A. :7450 GAIF EXPANDABLE SDIP 14 # 33C FOISPLAY FL7 U : 030C / 15 9.555 05 **TPAXY** I.A. /71 ≇ Gr 230 | STOPROC | 771 | 93 | OBEAVE : 052C CATT FDIP 14 # / 0 1.32E 06 *14*51 HOME TXPAHDABLE #GLASS ייארוי 32C | DISPLAY | 771 | G | 1 FLO U : 0300 CAL SDIP 14 / 0 2.72:05 17153 PARAMOAGLE CPOXY 1.1. * ""TP 14 * 31/55 27C #51GK30C # 001 V : 0250 17454 CATE 100 / 0 2.645 06 OPERALS : OSEBVE: 0500 191P 14 300 ±ST62-ROC ± 271 ± 98 ± 17412 ECTA BEOM 107F 4.40F 05 #UL\33 50[P 14 350 ISTOPROC I 015 V ± 0250 0148A1€ ± 17473 ette ftoe 3046 0 N 40 POB. 390 ±01381 \Y ± 771 ± 3e = ± HUN J # 0300 11, E SDIP 44 HLIP FLOR 3.24° 07 17474 FPOXY 110 J : 0300 14C POISPLAY 1 SDIP 16 : LATCH BISEARLE 1/1/5 PPOXY 390 ISTOPROC : mth 16 RHL V + 0250 TAICH : 717) 40.00 OPERATE # SISTABL 4GL453 FLD U : 0300)5C ()15PLAY (ADO NO 501P 16 # ያላ ተበዛ። 17433 $C^{n}_{ij}(X)$ BLIANA

TTL		*OPERATIO						HELIABILITY /	ARALYSIS CETTER
PART	DSVICE FUNCTION		PACKAGE/			DATA CLASS.		: JTESTEN/ : JFAILED	
:	:		CHIP PROTECT.			: TEST : TYPE	:	# PART # HOURS	:
‡ ‡7486	: GATE	avcu :	SDIP 14 : EPOXY		DISPLAY GF	: : FLD U : N.A.	: 030C	1 / 2 1.94E 06	
:7490	COUNTER DECADE	NONE 15	SDIP 14		DISPLAY GF	FLD U	030C	2.36E 06	
7492	COUNTER BINARY	៖ NO lu 26	SDIP 14		DISPLAY GF	FLD U	030C	9.70E 05	
7493	COUNTER BINARY	NONE 25	SDIP 14		DISPLAY	FLD U	030C	3.88F 06	•
:7493 :	COUNTER BINARY		EDIP 14		SIGPROC GB	REL V		2.64E 06	
27496 2	SHIFT REGIS		: EDIP 16	52C /71	INTSPLAY GF	FLD U	0300	9.97E 06	· : : : : : : : : : : : : : : : : : : :

TRANS!	ITRON	* MANUFACT * OPERATIO						RE	LIABILITY	ANALYSIS CENTER
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/	JCT.* TEMP.			TA ASS.		#TESTED/	
1	:		CHIP PROTECT.		: APPL. : ENV.	: TE		\$ \$	PART HOURS	: :
: :5404 :	INVERTER	: 9-1 : 6	CDIP 14		# CONTROL # 4GB	E CH		: 030C :3.34INUTE TEST		* INTERCONNECT*
:5442 :5	DECODER BCD/DECIMAL	: 9-1 : 18	CDIP 16	40C /73	CONTROL MGB	CH N	K U	* 030C REMARK		*TO LEAD FRAME : *TEST DURATION : *3.3 MIMUTES :
5473	FLIP FLOP	9-1 20	CDIP 14	40C /73	CONTROL MG3		K U	D30C REMARK		TEST DURATION ::3.3 MINUTES
:5490 :	COUNTER DECADE	# 8-1 # 37	CDIP 14		CONTROL MGB			O300 3.3MINUTE TEST		: 3/SHORT : : INTERCONNECT: : 2/DEGRADATION : :SURFACE LEAKAGE: : 1/OXIDE :
: :5493 :	COUNTER BINARY	8-1 25	CDIP 14	40C /73	*CONTROL * MGB			O30C 3.34INUTE TEST		: 3/SHORT : INTERCONNECT:

VARIOU TTL	10	MAYUFACTO OPERATION	NAL TYPE					NALYSIS CENTER
PART NO.			PACKAGE/	JCT.* : EQUIP.		s STRESS	*TESTED/ *	
:						: :	PART :	
: :141 :	DECDR/DRIVER S	9-2 43	FPK 14		REL Q:		: / 6 : : 1.96E 94 :	
: :151	DECDR/DRIVER DECADE	: : -3-2 : 44 :	FPK 14		REL Q		5.28E 04	: :
190	GATE	8-1 3	FPK 14		REL U TCVIBPC	-055C 070C 84CYC 2.2G	/ 0 1.825 04	
190	GATE	8-1 3	FPK 14	60C CONVETN 72/73 AI	FID U OPERATE		/ 0 1.44E 03	· •
20	ADDER	3-2 14	FPK 14		FLD G	025C	/ 0 4.99E 03	
20	ADDER	9-2 14	FPK 14	35C COPPICTN : 71/71 : GT	REL O		/ 0 1.53E 04	
12124	FLIP FLOP	8-1 20	FPK 14	# RADAR 74/75 # Alu	FLD G	: :	1.168 05	
12124	FLIP FLOP	d−1 20	FPK 14	BIC FRADAR 73/73 # AIU		-065C 071C 32CY2.2056%	8.83E 03	
	FLIP FLOP	8−1 20	.7PK 14	BIC FRADAR 73/74 = AIU		-054C 071C	1.06 05	
222	GATE	9-1 4	DIP 14		REL U	025C	/ 0 i 2,85€ 03 i	
#242 #	GAT [©]	B-1 2	ን[P 14	350 #NAVIGTH : 771 # 68	RFL U	025C	/ 0 8.56£ 03	
:507 :	H.A. LINE DRVR	9+1 2	FPK 14			-065C 071C 3?CY2.2G561	/ 0 1,09E 04	; ;
1507 1	H.A.	3→,	FPK 14	RIC #RADAR 73/74 # AIU		-054C 071C 80CY1.3G50%	/ 0 i	· ·
15400	GATF	J3 4	DIP 14	· -	FLD G	: :	/ 0 8.54€ 03	
5400	GATE	લ~1 4	FPK 14	-	FLO G		7 0 9.58° 05	
5400	GATF	3-1 4	FPK 14	91C #RADAR 73/73 # AIU		-065C 071C 32CY2.2G56~	/ 0 1.08년 05	
15400 1	PIAD	3-1 4	FPK 14	310 FRADAR 173/74 F ATU		-054C 071C 30CY1.3G50~	/ 0 1.30= 06	
15499 1	. JVLa	4−1 1 4	9[P 14	75/75 : 41 1		-0540 0500 - 130Y1.39 627	/ 0 : : 3,35° 04 :	1
15400 1	1 GΛ [" 1	H-1		60C +COMPUTR 75/75 + AT				
15400 1	GA1T	3-1 4)[P 14	'IC #COMPUTE (LCALBSC 4	-054C 071C	/ 0 80 #sp.,c	
15479 1	3A CC	3−1 : 4 :	OIP 14	TUC +COPOUT?	i c J∃⊱ i	-0340 0710 - 7070Y 10 56*	: °.67¤ 05 :	IZ opin (IR: 30) (ISI (0:0 6-6) 14
15300	GA I'I	}-1 1 1)]P [4 :	#COMPUTR # 74/75 # AIU #		}		APPAR (PPO) 1 PARA
15 100 : 1	TATE	3-1	')]P 14 :			-0540 0/10 1 40Y .90 634	4.61F 03	1
15470 :	,λT ^r	3-1		10 COMPUTE 4			/ 0 : 2.72" 05 :	

* MANUFACTURER **VARIOUS** RELIABILITY ANALYSIS CENTER TIL *OPERATIONAL TYPE DEVICE FUNCTION SCRN. : PACKAGE/ : CLASS : PINS : DATA STRESS LEVEL PART #TESTED/ REMARKS TEMP. : TYPE CLASS. PFAILED NO. : CHIP : TEST GATES : PROTECT. : DATE PART HOURS # APPL. TEST TYPE 15400 GATE DIP 14 35C *HAVIGTN * REL U : 025C /71 : G8 N.A. 4.56E 06 60C *COMPUTR * FLD U : 0 2/4ECHANICAL :5400 GATE WIRE BOND 1/DIFF. PIPE 1/SURFACE 3/SURFACE **OPERATE** 3.38E 07 : 2/MECHANICAL WIRE REL I : TEMPCYC : -055C 0707 2CYC 19 HR E :5400 GATE NONE FPK 14 80C # COMMCTN / 0 1.40E 05 -055C 070C 3CYC 19 HR E 80C #COMMOTN REL / 0 3.16E 05 **\$5400** GATE NONE TEMPCYC : FLD G FPK 14 ***5401** GATE / 0 5.62E 03 74/75 : AIU N.A. CHK 0 : -065C 071C TCVIBPC : 32CCY2 15401 GATE FPK 14 81C *RADAR / 0 5.76E 02 81C *RADAR 73/74 * AIU REL Q : ~054C 071C 80CY1.3G50% 15401 FPK 14 6.90E 03 GATE 60C COMPUTE 69/72 1 AI ELD II 1/BONDING PAD 050C 15401 GATE FPK 14 1.63É 06 OPERATE FLD G *SIGPROC ***5402** GATE DIP 14 1.20E 04 74/75 I AU N.A. FLD G *RADAR 74/75 * AIU :5402 GATE FPK 14 / 0 7.87E 04 81C FRADAR 73/73 F ALU -065C 071C 32CY2.2G56% CHK Q : **\$5402** GATE FPK 14 TCVIBPC : 2.09E 04 81C RADAR 73/74 AIU -054C 071C 80CY1.3G50~ **FPK 14** RFL GATE :5402 2.51E 05 ICVIBPC : -054C 050C DIP 14 60C COMPUTE :5402 GATE 6.295 04 TCVIBPC : 60C #COMPUTE -054C 050C DIP 14 **\$5402** GATE 9.04E 04 TCVIBPC : 17CY1.3G 62% **DIP 14** 31C #COMPUTE -054C 071C :5402 GATE 7.92E 02 TCVIBPC : :5402 GATE DIP 14 81C COMPUTE : -054C 071C 707CY 1G 56% 1.05E 05 TCVIBPC : COMPUTE FLD G 5402 PTAD DIP 14 5.09E 04 74/75 : AIU 31C *COMPUTR /73 * AIM CHK 3 -054C 071C 4CY .9G 63. 5402 DIP 14 GATE 1.326 03 TCVIBPC : : 5402 GATE DIP 14 aic acoachils a REL O -054C 071C 515CY.9G 63" 1.085 05 CCVIBPC + 7/73 : AIU 80C #COMICTN # -055C 070C 2CYC 19 HR E DEI :5472 GATE AONE FPK 14 TEMPCYC : 4.60E 04 BOC #COMICTN # -055C 070C 3CYC 19 HR E :5402 CATE BROK DEL 1.035 05 TE TPCYC 60C #COMPUTS # RFL -054C 050C ***5403** GAIT DIP 14 4.62E 03 # REL Q # -054C 050C # / 0 # FCVIBPC # 17CY1.3G 62% # 6.04F 03 # 60C +COMPUTR + 15403 GAIE DIP 14 # 75/75 : AI

VARIOU: TTL		MAMUFACTI OPERATION					FLIABILITY AND	
PART	FUNCTION	: SCRN. : CLASS		JCI.* : EDUIP.			≠ ₹FAILED :	s de. Voks sammenamen
							PART :	:
: :5404	I NAEGLES	: : JH : 6	DIP 14	: : : :SIGPROC : 74/75 : AU	FLD 3		: / 0: : 2.73= 94:	: :
\$:5404 :	I NASKLES I NASKLES	: : 3-1 : 6	FPK 14	: : : : : : : : : : : : : : : : : : :	FLD G		: / 0 : : 7-219 05 :	: :
5404	INVERTER	: 3-1 : 6	FPK 14			-065C 071C	· / 0 · · · · · · · · · · · · · · · · ·	:
:54')4	INVERTER	9-1	БРК 14	31C #RADAR 73/74 # ALU		-054C 071C 90CY1.3G50*	7.99 05	:
:5404	INAERIEB	3-1 5	ባ[ት 14	50C #CCPUTR 75/75 # AT		-0510 0500 130Y1.36 62*		:
15104	14VERTE9	: 3-1 : 5	DIP 14.	59C *CONPUTA 75/75 * AI		-0540 0500 170Y1.30 623	1.277 75	:
#5404 #	I HVERTEY	: ∃-1 : 6	DIP 14		CAIBEC	-054C 071C	1.513 03	:
#5404	INVERTER	1 °°1 ;	DIP 14	810 ±00"2"UTR 		-0540 0710 7070 19 544	/ 0 2.009 05	; ;
15404	INAESTES	3~1 5 6	DIP 14	*COMPUTP 74/75 * AIU	FLD G		2.09E 04	:
5404	INVERTER	: 3-1 : 6	DTP 14			-9540 0710 407 .96 63**	7 7 1.42° 73	:
\$5404 1	INVERTER	: B-1 :	019-14	41C +COMPUTR 73/73 + 41U		-0840 0710 51307.99 631	/ 0 1.035 05	:
:5405	INVERTER	: 8 -1	DI: 14	00 454 to 1777	ir.) .		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	:
5105	INVERTER	3-1 6)Ib lq		CHK 3	-0940 0710 407 .03 631	/ 0 2.31 02	:
15405	Invebteb	: -1-1 : 6	Al dlu			-0.40 0710 5150Y+90 63"	1.75 04	:
15408	F1 AG	1 3-1 : 1 -1 :	119 14 קור	15102200 1 74275 1 AU	4.7.		1.37 04	:
:5409	GV 1 _{te}	: 3-1 : 4	AB 14	73/75 + AI		-0510 0500 130Y1.30 625	3.93 74	:
15103	GATO	3 3-1 : : 4 :	012 14			-0540 0540 17041-30 621	/ 0 i : 5,209 04 i	:
	FLTP FLOP JK	. J ¹¹ 1		**************************************	FLO 3	: :	1.71')3 :	:
	17,	: 3-1 : 20 :		*C *C *!!!!! * 17475 * A1げ **	. V.A.		, 36 13 i	:
	eL18 (110) U(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) [P 44 :			-0510 0710 40Y -05 434		:
	HELP FLOP UX	: 3-1 i	')]P 14 2 1		- ICAIDSC :	-0.140 0710 5150Y.96 637		:
15110	GA [T	: J; ;)[P 14 : :	#\$[G#300 17473 A'! 1			1.025 (4)	:
15110 : : : :	ሪ ∀ ቢ.•	: }- : : } ;	FPK 14 :	14//5 1 14//5 14//5 1 14//5			1.65	: :
1 0410 1 1 1	CAPT	: -3-1			LUAL IN. 1		/ 0 : : 1.42 = 04 :	:

VARIOU TTL		MANUFACTU OPERATION					ELIABILITY /	NALYSIS CEVIER
PART		SCRN.		JCT.* : EQUIP. : TEMP. : TYPE	DATA	STRESS	#TESTED/ : #FAILED	
:					TEST :		PART HOURS	:
; :5410 ;	: GATE	8-1 : 3 :	FPK 14	# # # # # # # # # # # # # # # # # # #		: -054C 071C : 80CY1.3G50%	: / 0 : : 5.29F 05 :	
: :5410 :	: GATE	1 9-1 1 1 9-1 1	OIP 14	91C COMPUTE 774 1 AU	CHK 2	-054C 071C 3CY 894	7.92E 02	; ;
5410 :	GATE	9-1 3	DIP 14	BIC COMPUTE 774 AU		-054C 071C 707CY 1G 56%	/ 0 : 1.05° 05	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
5410 •	CATE	3-1	PJP 14	COMPUTR 74/75 ATU	FLD 3		7.77" 04	:
:5410 :	: GATE	: 3-1 : 3 :	DIP 14			-051C 071C 4CY .9G 63%	2.78° 03	:
25410 2	GATE	: 3-1 : : 3 :	DIP 14	91C = COMPUTA : 73/73 = ALU		-054C 071C 515CY.99 63%	1.64E 05	:
\$5410 \$	GATE	3-1 3 3	DIP 14	350 *VAVIGTN /71 * GB	REL U		9.07E 05	: 1
#5410 #	GATE	X 3	FPK 14		FLD U		1.06E 07	HOLJANINA LLOOM
15410 1	GATE	NOT'E	FPK 14	80C COWMCTN 69/73 GB		-055C 070C 2CYC 19 HR F	/ 0 i 6.945 04	
15410 1	GATE	NOME 3	FPK 14			-055C 070C	1.56F 05	: :
15411 1	GATE	1 B-1 1	DIP 16	60C *COMPUTR : 75/75 * A1		-054C 050C 13CY1.3G 62%	1.96E 03	:
#5411 #	GATE:	8-1	DIP 16			-054C 050C 17CY1.3G 62%	2.56E 03	: :
	FLIP FLOP MONOSTABLE	3-1 8	DIP 14			-054C 050C	5.72E 03	
154121 1	FLIP FLOP MONOSTABLE	8-1	DIP 14	60C *COMPUTR : 75/75 * 41		-054C 050C	1.015 04	:
151121 1	FLIP FLOP FONOSTABLE	: 3-1 : : 8 :	DIP 14		FLD 6		0 : 5.36F 03	:
154121 1	FLIP FLOP TONOS FABLE	: 3-1 : : 8 :	DIP 14 i			-054C 071C 40YC .9 63;	1.92 02	; ;
#54121 #	FLIP FLOP FLOYOSTABLE	: 3-1 : : 3-1 :)	: 310 : COMPUTR : : 73/73 : AIU		= -0540 0710 = 5150Y.90 63.	1 / () 1 1.13' 04 1	-
:	FLIP FLOP FONOSTABLE	: J8 : : 20 :		#SIGPROC	FLO 3 :		: / 0 : : 3,54' 03 :	•
	FLIP FLOP FONOSIANLE	: 3-1 : 20 :		15/75 + AT = 3		1 -0510 0500 1 130Y1,36 62 1	: / 0 : : 1.25产 03 :	
1	FLIR FLOP MONOSTABLE	: B−1 : : 20 :	019 16	7 // 75 + AI : 1		= -0540 0500 = 170Y1.30 524	: / 1 : : 1.45 03 :	
		: 3-1 : : 17 :			: FLO 3 :		1.94F 05	
151151 1	* "ULTIPLEXER *	: 3-1 : : 17 :	018 16			-0540 0500 1 130Y1.3 / 62 /	1 / 0 : : 1.426)4 :	
154 A	: off LISPLARS	: 3-1 : : 1, :	91P 46			: -0540 0500 : 170Y1.3 62	: / : : '. `' ()4 :	
#51151 #	•	: -1 : : 17 :		1 /71 1 1 ,	1 VIV		: / . : : /	:

227778		****						## E288## C####	33 228246 2 X
PART NO.		SCRN.	PACKAGE/	JCT.*		DATA CLASS.	STRESS LEVEL	: FTESTED/ :	REMARKS
			CHIP PROTECT.			TEST :	: :	* PART * * HOURS *	
54151	* ANTIBLEXES	: : д-1 : : 17 :	DIP 16	31C			: -054C 071C : 707CY 1G 56%	1	
54153	* WULTIPLEXER	3-1 16	OIP 16	35C 73/75	COVICTN OF	FLD G		2.10E 06	
54153	HULTIPLEXER	3-1 16	DIF 16		COMPUTE AU	CAT35C	-054C 071C 3CY 93;	5.045 02	
54153	* MULTIPLEXER	9-1 16	61 PIG		COMPUTR AU		-954C 071C 797CY 10 55%	/ 0 : 6.685 04 :	
54155	* DECODR/DEMUX	3-1 15	DIP 16		COMPUTA AU	CHK O	-054C 071C 3CY 93%	7.203 CI	
54155	* DECODRADEMUX	3-1 15	DIP 16		COMPUTR		707CY 1G 56"	/ 0 9.545 03	
54155	XUFACANDOSC	8-1 15	DIP 16	74/75	RADAR Alu	FLO G		/ 0 1.50E 04	
54157	MULTIPLEXER	3-1 15	DIP 16	60C 75/75	COMPUTR :		-054C 050C	5.175 04	
54157	* HULTIPLEXER	8-1 15	DIP 16	50C 75/75	COMPUTE A1		-051C 050C 17CY1.3G 624	/ 0 : 6.75E 04 :	
54161	* ADDER	: 3-1 : 57	DIP 16			TCATRSC CRK 7	-054C 071C 3CY 334	/ C : 1.44E 02 :	
54161	* ADOER	3-1 57	01 41C		COMPUTA :		-054C 071C 707CY 16 56%	1.91" 04	
54164	: SHIFT PEGIST	: JB : 36	DIP 14	74/75	STOPROC	FLD G		1.20 (1	
54164	SHIFT REGISE	: 3-1 : 36	DIP 16			LCATURE CAK 0	= -054C 071C = 3CY - 314	5.76 0?	
54164	SHIFT REGIST	: 1−1 : 36	: :)IP 16				-054C 071C 7070Y 16 56%	1 / 0 1 1 / 53 0 0 4 1	
54165	* SHIFT POIST	J:: 62	DIP 16	500 73/73	COTTOTI	CHK O	0250 100~	1.00= 04	
o4165	siller votst	. Jo : 62	- OIP 16	900 73/75	: COM	FLO 3		1.29:06	
54145	SHEL PROISE	: Јв : 62 :	01P 16	950 73/73	COTTCTT		0300 V.STP	1.639 05	
541 66	SHIFT PROISE	: 1-1 : 100	: 01 41C			E LCAI 측C CHK 의	-0510 0710 30Y 434	1 2.04 O2 1	
5 1 66	* SHET & GISL	: 3-1 : 120	: 7[P 16 :		# \ ";		: -0540 0710 : 7070Y 15 →6"	1 3, 3 7 04 1	
51174	FLIP FLOP	: -3−1 : -36	: 012 16	75/75	* AI		1 -0510 0,00 1 130Y1.30 621	1 7.905 04 1	
51174	+ HLT2 FLOP	: 3-1 : 36 :	i - 51 916 - i		* /1		r =0340 0 100 r 17071.3 / 62	: : 1.), ", : :	
51174	: FLIP FLOP :)	: 3-1 : 36 :	: : Jid 19 :			E LCALING CAR O	: -0510 0710 : 30Y	: /.27· 11 :	
51174	: ILIP FLOD	i :-1 i 36	: 61 PTC :	1 /74	; 411	: ICAID5C	: -0540 0710 : 7070Y 10 55	: ".54" 03 ;	
51175	: LIP FLOP	: 3-1 : 24	i ula le	350 73/75		: (ta 3) : И.Х.		1 / 0 1	

PART	DEVICE		PACKAGE/					#TESTED/ :	REMARKS
NO.	FUNCTION			TEST #	APPL.	CLASS.		PART : HOURS :	
54175	: FLIP FLOP	# B-1 # 24	DIP 16			CHK O	-054C 071C	/ 0 : 7.20E 01 :	*****
54175	* FLIP FLOP * D	8 8 B-1 8 24	9IP 16		COMPUTE :		: -054C 071C : 707CY 1G 56%	/ 0 # 9.54E 03 #	
54176	: COUNTER : DECANE	: 3-1 :	DIP 14		COMPUTE :	CHK Q	: -054C 071C : 3CY 88%	/ 0 4.322 02	
54176	COUNTER PECADE	: 3-1 :	DIP 14				-054C 071C 707CY 1G 56X	/ 0 5.72E 04	
54177	COUNTER BINARY	B-1	DIP 14		COMPUTR AU	CHK O	-054C 071C 3CY 89%	/ 0 1.15E 03	
54177	COUNTER BINAR	8-1	DIP 14		COMPUTR AU	REL Q TCVIBPC	-054C071C 707CY 1G 56%	/ 0 1.53£ 05	
54180	GENERATOR	B-1	N.R. 14	60C 75/75	COMPUTR AI		-054C 050C 13CY1.3G 62%	/ 0 3.96E 04	
54180	GENERATOR	B-1 14	N.R. 14	60C 75/75	COMPUTR AI		-054C 050C 17CY1.3G 62%	/ 0 5.18E 04	
54180	GENERATOR	8-1 14	DIP 14	74/75	SIGPROC AU	FLD G N.A.		/ 0 / 3.42E 03	
54182	GENERATOR	JB 19	DIP 16	35C 73/73	COMMCIN GB	CHK Q OPERATE	025C 100%	/ 0 6.50E 03	
54182	GENERATOR	JB 19	DIP 16	35C 73/75	COWICTN GF	FLD G		/ 0 7.19E 05	
54182	GENERATOR	јв 19	DIP 16	40C 73/73	COMMOTN GF		030C V.STP 90 100 110%	/ 0 5.90E 04	:
54182	GENERATOR	B=1	N.R. 16	60C 75/75			-0540 0500 130Y1.30 62%	, 0 1.82F 03	
54182	GENERATOR	B-1	N.R. 16	60C 75/75	COMPUTR AI		-054C 050C 17CY1.3G 62%	/ 0 2.38E 03	
54191	COUNTER	B-1	DIP 16	35C 73/75	COMMICTN GF	FLD G	025C	/ 0 5.53E 05	! •
54193	COUNTER	8-1 48	DIP 16	74/75	SIGPROC AU	FLD G		/ 0 1.71E 03	1
54193	COUNTER	B-1 43	DIP 16	75C 75/75	COMPUTR AI		-054C 050C 17CY1.3G 62%	/ 0 2.01E 03	! !
5420	GATE	JB 2		74/75	AU	FLD G		/ 0 3.42F 03	
5420	GATE	B-1 2	FPK 14	74/75	RADAR	FLD G		2.87E 05	I/ OPEN
5420	GATE	B-1 2		81C 73/73		CHK 0	-065C 071C 32CY2	/ 0 3.135 04	
5420	GATE .	3-1	t :	91C 73/74			-054C 071C 80CY1.3G50%	/ 0 3.75E 05	
5420	GATE	B-1 2	# DIP 14	60C 75/75			-054C 050C 13CY1.3C 62%	/ 0 1.79E 04	
5420	GATE	3-1	DIP 14	60C 75/75	COMPUTR AI	RFL 2 TCVIBPC	-054C 050C	/ 0 2.34E 04	
5420	GATF	: II-1 : 2	DIP 14		: COMPUTR : AU	CHK 7	: -054C 071C : 3CY 33%	/ 0 3.60E 02	

REMARKS	* TESTED/ :			T. * : GOUIP.		* SCRN.	* DEVICE * FUNCTION	PART
	PART :			ST * APPI.		* NO.	* FUNCTION	NO.
			REI. O	81C *COMPUTR	DIP 14	# B-1 # 2	# GATE	5420
	/ 0 t		FLD G		DIP 14	# 8-1 # 2	# GATE	5420
	/ 0 t 4.302 02 t	: -054C 071C : 4CY .9G 63%		91C #COMPUTR : /73 # AIU	DIP 14	# B-1 :	GATE	5420
	/ 0 t 2.83E 04 t	: -054C 071C : 515CY.9G 63%		31C *COMPUTR : 273 * AIU :	DIP 14	# 8-1 : # 2 :	GATE	5420
	/ 0 : 3.49E G5 :		REL U	35C #NAVIGTH : 71 # GB :	DIP 14	# 3~1 : # 2 :	# GATE	5420
	/ 0 I 6.39E 06 I		FLD U OPERATE	60C *COMPUTR :	FPK 14	1 X 1	GATE	5420
	/ 0 : 2.76E 04 :	-055C 070C 2CYC 19 HR E		90C *CORPORTH (773 * GB	FPK 14	* VONE	GATE	5420
	/ 0 : 4.135 04 :	-055C 070C		BOC COMMETN S	FPK 14 2	NONE :	GATE	5420
	/ 0 : 3.42E 03 :		FLD G	SIGHROC S	DIP 14	JB 2	GATE	5425
	/ 0 : 1.87F 03 :	: 	FLD G	*RADAR 1	FPK 14	1-1	# GATE # EXPANDABLE	3425
	/ 0 : 2.69E 03 :		FLD G	COMPUTR AIU	DIP 14	3-1	GATE	5430
	/ 0 : 9.60° 01	-054C 071C		31C COMPUTE 73 ALU	DIP 14	3-1	GATE	5430
	/ 0 5.66E 03	-054C 071C 515CY.9G 63*		91C COMPUTE 773 Alu	DIP 14	9-1	ETAD	5430
	/ 0 1.04F 06		REL U	35C NAVIGIN	DIP 14 1	3-1	# GATE	5430
	/ 1 : 1.32 © 06 ±		: FLD U : OPERATE :	SOC COMPUTA	FPT 14 :	X	· cY.Lc	5 4 30
	/ 0 : 3.34° 03 :	-0550 0700 20Y0 19 HR 3		30C COMICTN 773 0B	FPK 14 :	: 1 : HOHE :	# GATIF	5430
	7.520 03	-0550 0700 30Y0 19 HR F		30C COTTOTH 773 GB	FPK 14 :	lous	FTAD	3130
	2.05 [©] 04	1		SIGPROC 75 AU	DIP 14 :	: 3-1	E SATE	112
		-0540 0500 130Y1.30 62%				3-1	ETAC:	5432
	2.035 04	-0540 0500 170Y1.30 62~				: 3-1 : 4 :	: GATE	5432
	/ 0 : // 03 :	! !		\$19280C : 775 : AU :	OTP 14 :	: JR :	:	137
	3.325 04	-954C 050C 13CY1.3G 52*			DIP 14	3-1	: : 3UFFFR :	437
	. , .	-054C 050C 17CY1.3G 62%			DIP 14	3-1	: 7025FR	437
	/ 0 : 1.44% 03 :	-0540 0710 :	CAT35C :)[P 4 ;	3-1	: : BUFF58 :	M37

VARIO		*OPERATIO						ELIABILITY .		
PART NO.	# DEVICE # FUNCTION	SCRN.	PACKAGE/	JCT.* .: TEMP. :	EOUIP.		STRESS	#TESTED/ #FAILED		
·	:		CHIP PROTECT.		APPL.	TEST TYPE		PART HOURS	! !	
5437°	BUFFER	# B-1 # 4	DIP 14	81C 1 /74 1	COMPUTE :		~054C 071C 707CY 1G 56X	1.91E 05		
5438	BUFFER	8-1	DIP 14	60C ±	COMPUTR AI		-054C 050C 13CY1.3G 62%	. / 0	*THIN CROSS-SEC *AREA # BOND HER *	
5438	BUFFER	8-1	DIP 14	60C 75/75			-054C 050C 17CY1.3G 62X	6.04E 03		
5440	BUFFER	B-1 2	DIP 14		COMPUTR AIU		-054C 071C 4CY .9G 63%	9.60E 01	: :	
5440	* BUFFER	8 B-1 8 2	DIP 14	81C 1 73/73	COMPUTE :		-054C 071C 515CY.9G 63X	5.66E 03		
5440	BUFFER	B-1 2	DIP 14	35C 1	MAVI GTN GB	REL U		1.08E 06		
5440	BUFFER	NONE 2	FPK 14	80C 1 69/73 1	COMMETN GB	REL I TEMPCYC	-055C 070C 2CYC 19 HR E	3.68E 04		
5440	BUFFER	NONE 2	FPK 14	80C 1 69/73	COMMCTN GB		-055C 070C 3CYC 19 HR E	9.28E 04		
5442	DECODER BCD/DECIMAL	: JB : 18	DIP 16	74/75	SIGPROC :	FLD G	;	1.71E 03		
5442	DECODER BCD/DECIMAL	# B-1 # 18	DIP 16	74/75	COMPUTR AIU	FLD G		2.14E 04		
5442	DECODER BCD/DECIMAL	# B-1 # 18	DIP 16		COMPUTR :		-054C 071C 4CY .9G 63%	7.68E 02		
5442	DECODER BCD/DECIMAL	# 8-1 # 18	DIP 16	81C : 73/73 :	COMPUTE	REL O	-054C 071C 515CY.9G 63%	4.53E 04		
5450	# GATE # EXPANDABLE	# B-1 # 6	DIP 14 :	60C 1 75/75 1	COMPUTR :		-054C 050C 13CY1.3G 62%	1.54E 03		
5450	EXPANDABLE	: B-1 : 6	DIP 14 (60C : 75/75 :	COMPUTR AI		-054C 050C 17CY1.3G 62%	2.01E 03		
5450	# GATE # EXPANDABLE	# B-1 # 6	* DIP 14 :	/74 :		TCVIBPC	3 -054C 071C	6.48E 02		
5450	# GATE # EXPANDABLE	# B=1 # 6	* DIP 14 :	/74 :		TCVIBPC	-054C 071C 707CY 16 56%	8.58E 04		
5450	# GATE # EXPANDABLE	: 3-1 : 6	DIP 14 :	74/75		N.A.		4.02E 04		
5450	* GATE * EXPANDABLE	# B-1 # 6	DIP 14 :	/73	UIA	TOVIBRU	-054C 071C 4CY .9G 63%	1.44E 03		
5450	# GATE # EXPANDABLE	# 8-1 # 6	# DIP '4 :	73/73		TCVIBPC	-054C 071C 515CY.9G 63%	*	:	
5450	# GATF # EXPANDABLE	: 3-1 : 6	DIP 14	/71 :		N.A. :		7.93E /J5	: :	
5451	GATE	# B-1 # 6	FPK 14	74/75		FLD G	.	2.32E 05	t :	
5451	# GATE	: B-1 : 6	1	73/73	AIU	TCVIBPC	1	2.15E 04	1 1	
5451	# GATE	: B-1 : 6	t :	73/74	UIA	TCVIBPC	80CY1.3G50%	2.58E 05	:	
5451	# GATE	: B-1 : 4	1 DIP 14	71,/75		FLD G		. / 0 . 4.02E 04		

VARIOU:		*MANUFACTO *OPER/TIO		DIGITAL DEVICE DA		R	ELIABILITY .	ANALYSIS CENTER
PART NO.	DEVICE FUNCTION	SCRN.		JCT.* : EQUIP.	DATA CLASS.		* #TESTED/ * #FAILED	
1	; ;				TEST TYPE			; ;
\$ \$5451 \$	GATE	# B-1 :	DIP 14			-054C 071C 4CY .9G 63%	. / 0 . 1.44E 03	•
#5451	GATE	# B-1 :	DIP 14			-054C 071C 515CY.9G 63%	9.50E 04	: :
5451	GATE	χ 6	FPK 14		FLD U OPERATE		/ 1 1.34E 07	INCOLUMNIA ATHAT TOH
5451	GATE	NONE 6	FPK 14	80C COMMCTN 69/73 GB		-055C 070C 2CYC 19 HR E	/ 0 1.34E 04	; ;
\$5451 *	GATE	NONE	FPK 14			-055C 070C 3CYC 19 HR E	3.01E 04	
5453	GATE EXPANDABLE	8-1 5	DIP 14	35C *NAVIGTN 771 * GB	REL U N.A.		/ 0 2.32E 06	
5453	GATE	8-1 5	DIP 14			-054C 050C 13CY1.3G 62%	/ 0 2.80E 02	
5453	GATE	9-1 5	DIP 14	60C COMPUTR 75/75 AI		-054C 050C 17CY1.3G 62%	/ 0 3.66E 02	
5453/25	GATE	8-1 5	DIP 14	35C *NAVIGTN /71 * GB	REL U N.A.		/ 0 2.96E 05	
15454	GATE	# B-1 # 5	FPK 14	RADAR 74/75 AIU	FLD G		/ 0 1.69E 05	
15454	GATE	3-1	FPK 14	81C *RADAR 73/73 * A1U		-065C 071C 32CY2.2G56%	/ 0 3.14E 03	
15454	GATE	# 8-1 # 5	FPK 14	BIC RADAR 73/74 AIU		-054C 071C 80CY1.3G50%	7.36F 04	•
15454 1	ATE	X 5	FPK 14	60C CGMPUTR 69/72 : AI	FLD U OPERATE		/ 0 7.43E 06	
15454 1	GATE	NONE 5	FPK 14			-055C 070C 2CYC 19 HR F	/ 0 2.42E 04	:
15454	GATE	NONE 5	FPK 14	90C +CDH4CTN + 69/73 + GB +		-055C 070C 3CYC 19 IR E	/ 0 5.4 E 04	
5470	FLIP FLOP JK	8-1 11	DIP 14	35C *NAVIGIN 271 * GB	REL U		/) 4.33° 06	•
5470	FLIP FLOP JK	YONE 11	FPK 14			-053C 070C 2CYC 19 HR Is	/ 0 2.514 03	
	FLIP FLOP JK	* 40HE	FPK 14	69/73 : GB		-055C 070C 3CYC 19 HR F	7 C 5.64E 03	
	FLIP FLOP JK	3-1	FPK 14	· · · · · · · · · · · · · · · · · · ·	FLD G		7.49F 04	
‡ 5472	FLIP FLOP	3-1 10	FPK 14	81C *RADAR 73/73 * AIU		00.50 771	/ 0 1.365 04	
	FLTP FLOP J(3-1	FPK 14	31C TRADAR 73/74 ATU		-054C 071C 80CY1.3G50%	/ 0 1.63F 05	
	FLIP FLOP JK	3-1	DIP 14	350 #NAVIGIN # 771 # 63 #	REL U		2.34F 06	: :
15473	FFIS EFOS	1-1 20	FPK 14		FLD G		7 0 2.02" 05	
15473	FLIP FLOP JK	3-1 20	FPK 14	73/73 : 410 :		-0650 0710 320Y2,2956Y	/ 0 i	

DIGITAL DEY:CE DATA

PART	* DEVICE			JCT.* : EQUIP.			#TESTED/ :	REMARKS
NO.	* FUNCTION		CHIP	TEST : APPL.	TEST		PART :	
	· 	1 OATES	PROJECT	UAIE ENV.	• 11FE •		HOURS :	
473	* FLIP FLOP * JK	# B-1 # .20	FPK 14	81C *RAPAR 73/74 * AIU		-054C 071C 80CY1.3G50%	2.12E 05 :	
473	FLIP FLOP	# B+1 # 20	DIP 14	60C COMPUTE 71/75 AI		-054C 050C 13CY1.3G 62%	/ 0 2.73E 04	
473	FLIP FLOP	8-1 20	DIP 14	SOC COMPUTE 75/75 AI		-054C 050C 17CY:.3G 62%	, 0 3.57E 04	
474	FLIP FLOP	JB 12	DIP 14	35C COM/ACTN 73/73 GB	CHK Q	025C 100%	/ 0 3.85E 04	
474	FLIP FLOP	JB :	DIP 14	35C COMMCTN 73/75 GF	FLD G	025C	/ 0 4.26E 06	
474	: FLTP FLOP : D	. JB 12	DIP 14	40C COM4CTN 73/73 GF		030C V.STP 90 100 110%	/ 0 3.49E 05	
474	FLIP FLOP	JB 12	DIP 14	SIGPROC 74/75 AU	FLD G		3.42E 03	
474	FLIP FLOP	B-1 12	FPK 14	81C RADAR 73/73 AIU		-065C 071C 32CY2.2G56X	/ 0 7.87E 03	
474	FLIP FLOP	1 3-1 1 12	FPK 14	81C RADAR 73/74 AIU		-054L 071C	9.43E 04	
474	FLIP FLOP	8-1 12	DIP 14	60C COMPUTR 75/75 AI		-054C 050C	/ 0 1.21E 05	
474	FLIP FLOP	8-1 12	DIP 14	60C COMPUTR 75/75 AI		-054C 050C 17CY1.3G 62X	/ 0 1.58E 05	
474	FLIP FLOP	9-1 12	DIP 14	81C COMPUTR /74 AU	CHK Q TCVIBPC	-054C 071C 3CY 88%	/ 0 1.22E 03	
474	FLIP FLOP	8-1 12	DIP 14	81C COMPUTR /74 AU		-054C 071C 707CY 10 56%	/ 0 1.62E 05	
474	FLIP FLOP	8-1 12	DIP 16	COMPUTR 74/75 AIU	FLD G		2.68E 04	
474	FLIP FLOP	8-1 12	DIP 16			-054C 071C 4CY .9G 63%	/ 0 1.25E 03	
474	FLIP FLOP	B-1 12	DIP 16			-054C 071C 515CY.9G 63%	7.36É 04	
474	FLIP FLOP	NONE	FPK 14	80C COMMCTN 69/73 GB		-055C 070C 2CYC 19 HR E	9.78E 04	
474	FLIP FLOP	NONE 1 12	FPK 14			-055C 070C 3CYC 19 HR E	/ 0 2.19E 05	
475	LATCH BISTABLE	# B-1 # 24	DIP 16	81C COMPUTE /74 AU	CHK O		7.20E 01	
475	LATCH BISTABLE	8-1 24	DIP 16	81C COMPUTR /74 AU	REL Q TCVIBPC	-054C 071C 707CY 1G 56%	9.54E 03	
475	LATCH BISTABLE	8-1 24	DIP 16	COMPUTR 74/75 ATU			4.82E 04	
475	LATCH BISTABLE	B-1 24	DIP 16			-054C 071C 4CY .9G 63~	/ 0 1.73E 03	
475	LATCH BISTABLE	# B-1 # 24	DIP 16			-054C 071C 515CY.9G 63%	/ 0 1.02E 05	
476	: FLIP FLOP	: : B-1 : 20	DIP 16		CHK Q		/ 0 : 7,20E 01 :	

LASS HANGEMAN STRAINS AND ASSESSMENT

A Commence

VARIOUS *MANUFACTURE? RELIABILITY ANALYSIS CENTER SOPERATIONAL TYPE * SCRN. * PACKAGE/ * JCT.* * EQUIP. * CLASS * PINS * TEMP. * TYPE DEVICE DATA STRESS * #TESTED PART REMARKS FUNCTION CLASS LEVEL #FAILED : 40. * CHIP TEST APPL. TEST PART * GATES * PROTECT. * DATE # ENV. TYPE HOURS 31C COMPUTE REL 9 : -054C 071C TCVIBPC : 707CY 16 56% :5476 FLIP FLOP 3-1 DIP 15 20 9.545 03 /74 : AU JK 350 #AVIGT!! 771 # G3 REL U: 3-1 20 025C :5476 FLIP FLOP DIP 16 2.23E 06 N.A. 60C + COMPUTE FPK 14 FID II: 0000 ***5480** ADDER X 1.045 05 FULL 16 69/72 : AI OPERATE # ADDER FID 3 \$5492 3-1 FPK 14 * RAPAR 74/75 : AIU 1.765 05 FULL. 21 M.A. SIC FRADAR CHK 9 # ADDER FPK 14 -065C 071C 3-1 :5432 73/73 : AIU 2.80F 04 FULL TCVIBPC : 32CY2.2056% ADDER 3-1 31C FRADAR RFL -054C 071C **FPK 14** :5492 FULL 73/74 : AI'J TCVIBPC : 39CYC1.350% 3.36E 05 ADDER 75C *COMPUTE -054C 050C 8-1 DIP 16 15483 75/75 : AL ICVIBAC : 13CY1.3G 62% 9.575 04 FULL 15C + COMPUTE ADDER 3-1 DIP 16 # -054C 050C : 5483 75/75 : 41 FULL ICV19PC : 17CY1.3G 62% 1.12E 05 ADDER 01 PIC 96C + COMPUTR -054C 071C :5493 3+1 FULL /74 * A'I TCVIBPC : 3CY 333 7.20E 01 96C #C04rUT4 15433 ADDER 3-1 DIP 16 -054C 071C 9.545 03 FUU. /74 : AU ICALBSC : 707CY 16 53% FLD G # APDER DIP 16 *COMPUTR 15433 13-1 74/75 # AIU il.A. 5.36E 03 FULL ADDER 96C + COMPUTS -054C 071C DIP 16 :5493 1.925 02 FULL /73 : AIU ICVIBPC : 4CY .9G 63% :5483 **ADDER** 3-1 51 AIC 960 #COMPUTR -054C 071C 1.137 04 FULL 36 73/73 : AIU LCA135C # 515CY.90 63. 350 ±00 "(CT1 GATE JR CHK Q # 2001 عد 02 ***5436** DIP 14 2.20 01 73/73 : 69 OPERATE # GATE JB ')IP 14 35C #00""CT" # FLO 6 # 0250 2.435 05 73/75 : OF M.A. 277 :5486 GATE J" MP 14 100 100 1011 OBOC V.STP OPPEARS: ده ۱۵۵۰ د 73/13 : 90 90 100 110. FLD G # *** 1 -H2 13 4810%00C 2.73- 03 71/75 1 18 4.1. DIP 14 HC #CO PUTR -054C 071C SALE 3-1 13145 1.205.01 ICALIDOC : 3CY /74 : AU -054C 071C 707CY 16 56~ 31C #C0"PUTR GAT 1 015-11 :5406 9.545 03 /74 & A'J ICA135C # ~7540 0710 307 33% C.IK 2 : COUNTER PECA YE TO COMPUTA : DIP 14 # 1.44" 02 /74 : AII **ICALanc** 30Y 1.5 ~9540 3710 7370Y 13 563 £5420 COULTER DIP 14: 34 C ± CO MALK ± DUCTUE 13 /71 : (i) ICALASC 4 FLD G : ,490 COULTER MP 14 #CO PUTS 74/75 : AIU 36 م 36، د 3.4. 15 JeC/ve F PTUSPICO: OFF CHK -054C 071C COUPTER DIP 14 # :5490 1.925 05 TCALLAG # 15 DicCVJi ALC #COLLAR # RFL 0 # -0546 0710 :5490 COULTER 3-1 DID 14 1 10V[3PC + 5150Y.90 63 + 1.13F 04 73/73 * ATU PECADE -15

VARIOUS TTL		IANUFACTU PERATION	IAL TYPE		4 may 237 23	RELIABILITY ANALYSIS CENTER				
PART NO.		SCRN. CLASS	PACKAGE/		EQUIP. :		STRESS	#TESTED/ : #FAILED :		
1			CHIP PROTECT.	TEST : DATE :		TEST : TYPE :		PART : HOURS :		
5491 1	SHIFT REGIST	X 67	FPK 14	75C ±0		FLD U		/ 1 1.69E 06	1NoX1DE	
5492	COUNTER	B-1 26	DIP 14		COMPUTR AIU			/ 0 5.36E 03		
5492	COUNTER	B−1 26	DZP 14	31C 10			-054C 071C 4CY .9G 63%	/ 0 1.925 02		
5492	COUNTER	3−1 26	DIP 14	81C 10			-054C 071C 515CY.9G 63%	/ C 1.13E 04		
5493	COUNTER BINARY	B−1 25	DIP 14	81C = (C!IK Q TCVIBPC	-054C 071C 3CY 88%	/ 0 4.32F 02		
493ر	COUNTER BINARY	9-1 25	DIP 14	31C = (COMPUTR :	REL O TCVIBPC	-054C 071C 707CY 1G 56%	/ 0 5.725 04		
5493	COUNTER BINARY	3-1 25	DIP 14	74/75	COMPUTR :	FLD G		/ 0 3.22E 04		
5493	COUNTER BINARY	8-1 25	DIP 14	91C :			-054C 071C 4CY .9G 63%	/ 0 1.15E 03		
5493	COUNTER BINARY	მ−1 25	DIP 14	81C ±0			-054C 071C 515CY.99 63%	/ 0 6.805 04		
5496	SHIFT REGIST	7-1 39	DIP 14	96C = 774 =	COMPUTR :	CHK 2 TCVIBPC	-054C 071C 3CY E37	/ 0 2.98F 02		
5496	SHIFT REGIST	3-1 39	DIP 14	96C 1	COMPUTR :		-7540 0710 7770Y 16 56%	7 () 3.91E 04		
541104	INVERTER	ઇ-1 6	FPK 14	74/75	RADAR AIU	FLD G		/ 0 2.10E 05		
541104	INVERTER	В-1 6	FPK 14	31C : 73/73 :			-065C 071C 32CY2.2G56\$	/ 0 7.49E 03		
54!104	INVERTER	B−1 6	FPK 14	81C : 73/74 :			-054C 071C	/ 0 9,97⊑ 04		
541120	GY L⊏	B-1 2	FPK 14	74/75	RADAR Alu	FLD G	: :	2.43° 04	! :	
54/120	GATE	B-1 2	FPK 14	Я1С : 73/73 :			-045C 071C 32CY2.2G566	1.54E 03		
541120	GVE	ਲ−1 2	FPK 14	31C : 73/74 :	AIU		-0510 0710 800Y1.36503	: / 0 : : 1.845 04 :		
54.121	GA FE	3-,	PK 14	74/75		FLD G	:	4.29E 05		
	GAT :	3-1		91C : 73/73 :				/ 0 ! 5.43 ° 04 !		
54:12 1	· CATE	9-1 2		81C : 73/74 :	AIU			7 0 1 7.51 7 05		
	FLIP FLOP	8-1 12	FPK 14		RADAR	FLD G	1	1.97E 05		
	FLIP FLOP	: 3-1 : 12		31C 73./73	AIU		-0650 0710 320Y2,2G56%	: / O : : 1.04E 04 :		
	FLIP FLOP	3-1 12		81) 73/7	RADAR 4, I U	REL O	-054C 071C 80CY1.3G50%	1.245 05		
54L30	GATF	: 8-1 : 1		60C : 75/75 :	COMPUTR	: ICALBEC	-054C 050C 13CY1.3G 62%	7 0 1 3.545 03		

DIGITAL DEVICE DATA

				DIGITAL DEVICE OF	ATA			
VARIOUS TTL		MANUFACTO OPERATION		* = = = = = = = = = = = = = = = = = = =	*****		ELIABILITY AN	ALYSIS CENTER
PART NO.		SCRN.		JCT.* : SOUIP. TEMP. : TYPE		STRESS LEVEL	* *TESTED/ : * JEAILED :	REMARKS :
1 :				TEST : APPL.	TEST TYPE	; ;	PART : LOURS :	:
\$ \$\$4 L 30	GATE	: : B-1 : 1	DIP 14			-054C 050C 17CY1.3G 62*	: / 0 : : 1.12 ⁻ 04 :	:
54L85	COMPARATOR	ಕ~1 33	61 41G			-054C 050C 13CY1.3G 62.	1.32E 04	:
54L85	COMPARATOR	3-1 33	D[P 16			-054C 050C	1.725 04	:
:7093	: : Buffer :	: : 3-1 : : 9 :	DIP 14			-0540 0500 130YF.39 62~	6.015 04	:
7093	BUFFER	: 3−1 : 3−1	01P 14	60C COMPUIN 75/75 AI		-054C 050C	7.95= 04	:
7094	EUFFFR	т тβ−1 : т В	DTP 14			-034C 950C 13CY1.36 62%	2.97= 04	:
#7094 #	BUFFLX	; 3-1 ; 3-1	7IP 14			-054C 050C 17CY1.3G 623	/ 0 3.23= 04	:
7121	"ULTIPLEXSR	3-1	JIP 16			-054C 050C 13CY1.3G 62%	/ 0: 8.96E 03:	:
7121	: MULTIPLEXER	: 9-1 : 17	918-19	60C *COPPUTR 75/75 * AI		-0540 0500 170Y1.30 620	1.17. 04	:
17.51	FLIP FLOP	: 3−1 : 45)IP 16	750 COSPUSR 75/75 : AI		-0510 0500 130Y1.30 620	1.101.03	:
7551	FLIP FLOP	; }-1 ; 4	AL 10	75C (COMPUTA 75Z75 AT		-0510 0000 17071.30 5%	1.44));	:
13241	F BATE	: ∃=1 : 20 :	FP3 10	1940AR 74/73 : NU	FL)		/ 01	:
3241	•	: 1-1 : 2)	FPK 16	31C PADAR 73Z73 : ATU		-)auC 0710 320Y2.20pg~	1.09 04	:
13241	GA ("	50 : :-1	72. TA	10 TRAJAR 73/74 = ALJ	10VI wh	-0540 5740 -071.3050	1.31 05	:
: 1214	COJ4(=-{	: (=) : (=)	er3k 14	11// = C//17			1 3,31 M	:
1.231	C011c:R	: ,-1 : 4	12 (14	76C 1030AR 13713 : (11)		-1550 1/10 320/2.2355	1.44 01	:
1974A	COU 17 TO	; ;-) ;	52K 14			-0>10 0/10	1.73 0	:
:	TITE HIND J:	; ;=1 ;	FPK 16	7077 : MJ	1		,,, / ,)	:
:	Cite stos UC	; '-1 ;	±2√16			23.43. A	: ./:	:
:	: 10 : 10 (10)	; '- ;				-0510 07Hn 13741.3750	: / ^: :::1	: :
1 1 2/1 1	i (n., ≥ 131.	: '-1 : : '-1 :	P" 16	: /1// : 1//	:		: 3.75 %:	:
10 Km		: 1, :		1373 : 711	i 0 k) i	-)>>0)/10 3>0Y2.1 >6	1 / 11	:
: : , , , , , ;	: Hr. : 313.	: :- : : :- :	F 12 . 16 4			+),** 1/1(+ /1.3 -)	/)	•
: 1 1 1 1 1 1 1 1 1 1	i (NC) (1 ML) i (NC) (1 ML)	:			:		; / 1; ; 1. %; ;	:

VARIOUS *MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER TTI PART DEVICE SCRN. : PACKAGE/ : REMARKS FUNCTION . CLASS . PINS * TEMP. * TYPE CLASS. LEVEL #FAILED CHIP TEST PART TYPE # GATES # PROTECT. # DATE HOURS * ENV. 81C *RADAR -065C 071C 32CY2.2G56% 19301 FPX 16 CHK DECODER 8-1 73/73 + AIU TCVIBPC : 1.23E 04 BCD/DECIMAL 18 DECODER 81C *RADAR -054C 071C 10301 FPK 16 RFI. TCVI BPC . BCD/DECIMAL is 73/74 : AIU 80CY1.3G50% 1.47E 05 JB 35C COMMOTN CHK 025C 100% 19304 ADDER **DIP 16** 1.30E 04 FULL OPERATE ADDER 35C COMMOTN FLD G : 025C 19304 JB **DIP 16** FULL 1.44E 06 N.A. 40C #COMMCTN REL Q : 030C V.STP 19304 ADDER JB **DIP 16 FULL** OPERATE * 90 100 110% 1.18E 05 19309 MULTIPLEXER 8-1 FPK 16 * RADA R FLD G 3.86E 05 74/75 : AIU N.A. BIC . RADAR CHK Q -065C 071C 19309 M''LTIPLEXER TCVIBPC : 4.07E 04 16 73/73 : AIU 32CY2.2G56% 81C *RADAR -054C 071C :0379 MULTIPLEXER 9-1 **FPK 16** TCVIBPC : 4.83E 05 80CY1.3G50% NO:4E POC #COMICTN -055C 070C **FPK 16** REL 19 109 MULTIPI.EXER TEMPCYC 2CYC 19 HR E 6.69E 03 80C + COMMOTN NONE FPK 16 19309 MULTIPLEXER TEMPCYC 3CYC 19 HR E 1.50E 04 FLD G 19312 MULTIPLEXER 4.27E 05 74/75 + AIU N.A. FPK 16 BIC #RADAR CHK Q -055C 071C 19312 HULTIPLEXER 32CY2.2G56% 7.32E 04 TCVIBPC : 73/73 : AIU SIC # RADAR -054C 071C 80CY1.3G50% 19312 MULTIPLEXER 8-1 FPK 16 3.76E 05 TCVIBPC : 17 73/74 : AIU FLD G 19314 LATCH B-1 FPK 16 74/75 : AIU 3.755 03 N.A. 26 FLD G :9316 COUNTER FPK 16 * RADAR 74/75 : AIU 4.035 05 57 BINARY 96C *RADAR 73/73 * AIU COUNTER BIMARY CHK -065C 071C 19316 3-1 57 **FPK 16** 32CY2.2G56% 3.655 04 TCV1 BPC 96C FRADAR -054C 071C B−1 57 FPK 16 :9316 COUNTER 4.375 05 73/74 : AIU BINARY ICVI BPC 80CY1.3G50% FLD G *RADAR ENCODER 8-1 #931R tr. 16 74/75 : AIU 1.12E 04 7.A.F 19318 FNCODER 3-1 FPK 16 31C *RADAR -065C 071C 73/73 : AIU TCV18PC 32CY 971C 1.159 03 31C *RADAR FPK 16 : 9318 SHOODER B-1 1.38F 04 73/74 : ALU TCVIBPC : 80CY1.3050% RULTIPLEXER *COMPUTR FLD G 19322 91P 16 1.075 04 74/75 : AIU H.A. 31C #CO%PUTR CHK Q I :9322 "ULTIPLEXER DIP 16 -054C 071C 6.72E 02 /73 : AIU TCVIBPC : 4CY .9G 63% 31C #COMPUTR -054C 071C 515CY.9G 63% REL. 0.4 19322 **MULTIPLEXED** DIP 16 3.96E 04 TCVIBPC + 73/73 : AIU I/CATASTROPHIC: 1932R SHIFT REGIST * RADAR FLD G FPK 16 2.879 05 74/73 : AIU 72 N.A.

ATAC SOLVEC JAT 1910

	AGIOU TL		TA JUFACT OPERA FIO						JELIVBILITA	VIIVE ASTS COSTECT
	ART O.	FUNCTION	: SCRN. : CLASS	PACKAGGY	: JCT,* : TE"P.	: EUAIb.	: DATA : CLASS.	STPESS	# "TOS (CO)	
:	; ;		: YO. : GATES	: CHIP : PROTECT.	: TEST : DATE	: APPL. : ENV.		:	1 PAR 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	: :
: :932	8 1	SHIFT REGIST	# B-1 # 72	: FPK 16	960 73/73	RADAR UIA		: -065C 071C : 32CY2.2G56%	: / 0 : 4,74E 04	: :
:932:	3	SHIFT REGIST	: 3-1 : 72	FPK 16	96C 73/74	RADAR UIA	REL O	: -054C 071C : 900Y1.3650%	* / 0 * 5.699 05	: : :
\$950	1	FLIP FLOP MONOSTABLE	# B-1 # 10	FPK 14	74.115	RADAR AIU	FLD G	: :	: / O: : 5.43F 94:	: : :
\$9601 \$		FLIP FLOP MOMOSTABLE	: 8-1 : 10	FPX 14	91C 73/73	RADAR AIU		-065C 071C 32CY2.2G564	* / 0 : * 5.95= 03 :	
#9601		FLIP FLOP MONOSTABLE	: 3-1 : 10	FPK 14	73,174			1 0540 0710 1 800Y1.3850:	* / 0 : * 7.13= 04 :	:
19602		FLIP FLOP MONOSTABLE	: 3-1 : 13	FP.(16	74/75	SANAR :	FLD G		· / 0 : · 9.37 · 03 :	
9672	2 ;	FLIP FLOP 'OMOSTABLE	: 4 - 2 : 18 :	rPK 16	35C 75/75	emariciti			: / 0 : : 0.70F 02 :	
:0302		FLIP FLOP MOMOSTABLE	; }-1 ;	01 F 10	74/75	: COMPUT 7 :	rLD 3		· / 0 1 · 2.04 ~ 03 1	:
:2692 :		FLIP FLOP "OMOSTABLE	: -1 : 19 :	712-16				: : - 0540 0710 : 407 . 90 -637	: / ^ :	: :
:0502	-	FLIP FLOP MONOS FABLE	'3-1 1 ·	019 16 i	7.17			-0540 0710 5 5150Y.90 63.	: / O : : 1.70F 04 :	

-	HIGH SPEED	OPERATION						40 22 <u>22</u> 22422
PART NO.	DEVICE FUNCTION	SCRN. CLASS		JCT.* : EQUIP. : TEMP. : TYPE	DATA CLASS.	STRESS LEVEL	#TESTED/ ####################################	REMARKS
	:		CHIP PROTECT.	100		: :	PART : HOURS :	
54H00	GATE	NONE 4	CDIP 14		LIFE V	125C 100%	48/ 0 : 4.80E 04 :	
74H51	GATE	NONE 6	CDIP 14		LIFE V	125C 100%	77/ 0 7.70E 34	
PHO4	INVERTER	NONE 6	EDIP 14		LIFE V		38/ 0 2.80E 04	
PH04	INVERTER	NONE 6	EDIP 14	142C IN.A. 773 I N.A.	LIFE V		77/ 0 7.70E 04	
PH06	INVERTER	NONE 6	EDIP 16	150C :N.A. 773 : N.A.	LIFE V		38/ 0 3.80E 04	
PH06	INVERTER	NONE :	EDIP 16	141C N.A. /73 : N.A.	LIFE V		77/ 0 7.70E 04	
ню	GATE	NONE	CDIP 14	150C 11.A. /73 : N.A.	LIFE V		38/ 0 3.805 04	
9 4 10	GATE	NONE 3	CDIP 14	/73 : N.A.	LIFE V		77/ 0 : 7.70E 04 :	
PH40	BUFFER	NONE	EDIP 14	/73 : N.A.	LIFE V		: 38/ 0 : : 3.80T 04 :	
PH40	BUFFER	* 1011E	EDIP 14	136C :N.A. //3 : N.A.	LIFE V		77/ 0 : 7.70E 04 :	
H53	: GATE : EXPANDABLE	NONE 5	CDIP 14		LIFE V		77/ 0 : 7.70E 04 :	
H74	FLIP FLOP	: NONE :	EDIP 14	1500 IN.A. 773 I N.A.	LIFE V STGLIFE		38/ 1 3.80E 04	
H74	: FLIP FLOP : D	: 10NE :	EDIP 14	/73 · N.A.	LIFE V		77/ 0 7.70E 04	
1178	FLIP FLOP	: 10NF :	CDIP 14		LIFE V		: 38/ 0 : : 3.30E 04 :	

PART NO.	DEVICE FUNCTION	SCRN.		JCT.* * EOUIP. TEMP. * TYPE		STRESS	#TESTED/	
NU.	* FUNCTION	* NO.	CHIP	TEST : APPL.	TEST	1	* #FAILED *	
	: 	* GATES	PROTECT.		TYPE	: 	+ FOUR5 +	
4H06	GATE	C-1	CDIP 14	150C IN.A.	LIFE V		55/ 0 5.50± 04	
4H00	GATE	C-1	COIP 14		LIFE V	125C 100%	77/ 0 /.70L 04	
64Hu0	GATE	NONE 4	CDIP 14	150C :N.A. 773 : N.A.	LIFE V		55/ 0 1 5.50± 04	
64H00	GATE	NONE 4	COIP 14		LIFE V		77/ 0 1.70± 04	
4H00	GATE	NONE	ENIP 14	150C N.A. 775 N.A.	LIFE V		100/ 1 1.00E 05	
341100	GATE	# HONE # 4	EDIP 14		LIFE V		105/ 0 1.05E 05	
54H00	# GATE	WONE 4	FDIP 14	136C IN.A.	LIFE V		52/ 1 5.20± 04 0	
54H10	GATE	: H-2 : 3	CFPK 14	150C IN.A. 775 I N.A.	LIFE V		55/ 0 5.50E 04	
54H1O	GATE:	B-2 3	CFPK 14	133C IN.A.	LIFE V RINGCHI		* 55/ 0 * 5.50E 04	
54H3O	GATE	# B=1 # 1	CDIP 14	150C IN.A.	LIFE V		1 105/ 1 1 1 1.05 a 05 1	
54H3O	GATE	# R=1	CDIP 14	128C IN.A.	LIFE V		176/ 1 1.76E 05	
o4H73	FLIP FLOP	C-1	CDIP 14	150 C IN.A.	LIFE V		34/ 0 i	
54H/3	FLIP FLOP	# C-1	CDIP 14		LIFE V		105/ 0 1.05E 05	
74H4O	BUFFER	NONE 2	EDIP 14	150C IN.A.	LIFE V		34/ 0 3.40:: 04	
74!'40	BUFFER	NONE 2	• FDIP 14		LIFE V		100/ 0 1.05± 05	
74H73	FLIP FLOP JK	C-2	CDIP 14	156C 14.A.	LIFE V		22/ 0 2.20± 04	
74H73	FLIP FIOP	ONE 16	EDIP 14		LIFF V STGLIFE		34/ 0 3.40r 04	
74H73	FLIP HOP	10)NF 16	: FDIP 14		FRINGCHI	1250 100%	1057 0 1.05c 05	
2 000	FUIP FUOP	C-2	CDIP 14		TIFE V		# 11/ 0 # 1.10£ 04	
2002	GATH	C-2	CDIP 14		LIFE V STOLIFE		1 2.157 () 1 2.15e ()5	
2002	GATE	C-2	CDIP 14	175 ! N.A.	LIFE V		1 52/ 0 1.doe 05	
2003	GAT:	100NF	CDIP 14	150 C IN.A.	FIFE V		# 12// 0 # 1.2/m 05	
2(X)3	GATE	* 1'0NI * 3	CDIP 14	129C IN.A. 175 I H.A.	LIFE V RINGCNI		1 531/ 2 1 /.43e 05	
2 008	GATE EXPANDABLE	C-2	F CDIP 14		I LIFE V I RINGCNI		53/ 0 530: 04	

ITT TTL, H	IGH SPEED	*MANUFACTURER *OPERATIONAL TYP			RELIABILITY	ANALYSIS CENTER
PART NO.	DEVICE FUNCTION	* SCRN. * PACKA * CLASS * PINS		OUIP. DATA :	STRESS : #TESTED/ LEVEL : #FAILED	REMARKS &
1	:	NO. CHIP GATES PROTE		APPL. : TEST : ENV. : TYPE :	PART HOURS	1 1
9016	INVERTER	* NONE * CFP	14 : 78C :CO		-055C 070C	i i
9016	INVERTER	NONE CFP	14 78C CO		-055C 070C	

RAYTHEOUTIL, HIC		*MANUFACTURER *OPERATIONAL TYPE						RELIABILITY ANALYSIS CENTER			
7 PART :	DEVICE FUNCTION	SCRN.				DATA CLASS.	STRESS LEVEL		ILFD SIFD		:
1 1			CHIP PROTECT.			IEST TYPE	:	: PA : HO		:	:
3220	GATE		: N.P. 14 : : GLASS	35C 72/74		: F1D U	025C		/ 0 2E 05		:
13240	GATE		N.R. 14	35C 72/14		FLD U	025C	: 1.8	/ 0 3E 05		:
54R150	MULTIPLEXER		M/GFPK 24			LIFE V		-	12/ 0 10E 04		:
154R150	MULTIPLEXER		N/GERK 24 F			LIFE V	125C 100%		5/ 0 0± 04		:
154R74	FLIP FLOP		CDIP 14			LIFE V	125C 100%		5/ 0 0E 04		:
174R00	GATE	NONF	SDIP 14			LIFE V			02/ 0 01/ 04		:
174R00 :	GATE	* NONE * 4	: SDIP 14 :			LIFE V CNST OP			6/ G 0E 04		:

TO THE PARTY OF TH

SIGNETICS TTL, HIGH SPEED *MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER

PART NO.		SCRN.		JCT.* * EQUIP. * TE /P. * TYPE	DATA CLASS.		#TESTED/ :	REMARKS
	t t		CHIP PROTECT.	TEST : APPL. : DATE : ENV.			PART : HOURS :	
i4H00	GATE	# JB #	CFPK 14	150C :N.A. 1 72/72 : N.A.	LIFE O		7/ 0 4 7.00E 03	
4H00	GATE	JB 1	CFPK 14		LIFE O	125C 100%	44/ 0 : 4.40E 04 :	
54H00	GATE	# B-1 #	CDIP 14	55C *COMPUTR : 75/75 * AI		-054C 050C 13CY1.3G 62%	/ 0 = 1.62E 04 =	
4H00	GATE	# B-1 :	CDIP 14			-054C 050C	/ 0 = 2.12E 04 =	
4H04	INVERTER	JB :	CFPK 14	150C *N.A. 72/72 * N.A.	LIFE O STGLIFE		7/ 0 7.00E 03	
4H04	: INVERTER	JB :	CFPK 14		LIFE O	125C 100%	44/ 0 : 4.40E 04 :	
4H04	INVERTER	B-1 6	CDIP 14	58C COMPUTE 75/75 : AI		-054C 050C	/ 0 5.04E 03	
4H04	INVERTER	# B-1 # 6	CDIP 14	58C *COMPUTR : 75/75 * AI		-054C 050C 17CY1.3G 62%	036	
4H08	GATE	B-1	CDIP 14	60C COMPUTR		-054C 050C	/ 0 = 2.58E 04	
4H08	GATE	1 B-1 1 B-1	CDIP 14	60C COMPUTR 75/75 3 AI		-054C 050C	/ 0 : 3.37E 04 :	
4H103	* FLIP FLOP	: B-1 : 18	CDIP 1"	52C COMPUTR : 75/75 AI		- 34C 050C - 3CY1.3G 62%	/ 0 4.34E 03	
4H1 03	FLIP FLOP JK	# B-1 # 18	CDIP 14	52C •COMPUTR : 75/75 • AI		-054C 050C	/ 0 5.67E 03	
4H106	FLIP FLOP	1 7-1 20	CDIP 16	68C *COMPUTR 75/75 * A1		-054C 050C 13CY1.3G 62%	/ 0 2.80± 02	
4H1 06	FLIP FLOP	: 20	CDIP 16	68C COMPUTE 75/75 4 AI		-054C 050C	/ 0 3.66E 02	
64H1O	GATE	# JB	CFPK 14	150C IN.A. 72/72 I N.A.	LIFE O		8/ 0 8.00E 0J	
54H1 O	GATE	# JB	CFPK 14	137C *N.A. 72/72 * N.A.	LIFE O	125C 100%	44/ 0 : 4.40E 04 :	
4H10	GATE	# B-1 # 3	CDIP 14	54C *COMPUTR 75/75 * AI		-054C 050C	/ 0 : 1.54E 03 :	
4H10	GATE	# B-1 # 3	: CDIP 14	54C *COMPUTR 75/75 * AI		-054C 050C 17CY1.3G 62%	/ 0 : 2.01E 03 :	
4H2O	€ GA [™] .	: : J8 : 2			LIFE Q : STGLIFE :		8/ 0 : 8,00E 03 :	
4H2O	GATE	: : JB : 2		1 133C #N.A. 1 72/72 # N.A.		125C 100%	44/ 0 : 4.40E 04 :	
4H2O	GATE	# B-1 # 2	CDIP 14			-054C 050C	/ 0 : 2.52E 03	
4H2O	GATE	: : 5-1 : 2	CDIP 14			-054C 050C 17CY1.3G 62%	7 0 : 3.29 ± 03 :	
4H2 1	GATE	# B-1 # 2	CDIP 14	: : : 55C *COMPUTR : 75/75 : AI	REL Q : TCVIBPC :	-054C 050C 13CY1.3G 62%	/ 0 : 5.32E 03 :	
54H2 I	GATE	B-1	CDIP 14	550 COMPUTE	REL O	1	1 / 0 1	

SIGNET TTL, H	ICS IGH SPEED	*MANUFACT	DEAL TYPE	RELIABILITY ANALYSIS CENTER				
PAPT NO.	* DEVICE * FUNCTION	SCRN.	* PACKAGE/	: JCT.* : EQUIP. : TEMP. : TYPE		* STRESS	#TESIED/ # #FAILED #	REMARKS :
:	: :	* NO. * GATES	: CPIP : PROTECT.	: TEST : APPL. : DATE : ENV.	: II-ST : TYPE	:	* PARI : * POURS :	:
\$ \$54H30 \$: GATE	# # JB # T	: CFPK 14	: 150C :N.A. : 72/72 : H.A.	: Life o		1 8/ 0 1 1 3.00± 03 1	:
154H30	GATE	. J9 . 1	CFPK 14	129C IN.A. 72/72 I N.A.		125C 100%	45/ 0 : 4.50r 04 :	:
54H30	GATE	1 H-1	CDIP 14	51C COMPUTE 75/75 AT		* -054C 050C * 13CY1.3G 62%	3.78E 03:	:
54H30	: GATE	* * B-1 * 1	CDIP 14	51C + COMPUTS 75/75 + AI		# -054C 050C # 17CY1.3G 62%	: / 0 : : 4.94c	:
54H40	GATE	# R-1	CDIP 14	55C *COMPUTR 75/75 * A1		: -054C 050C : 13CY1,3C 62%	: / 0 : : 1.54± 03 :	: :
: :54H40 :	GATE	# B-1 # 2	t CDIP 14	: 55C *COMPUTA : 75/75 : A1		: -0540 0500 : 170Y1.30 62%	: / n: : 2.01± 03:	: :
:54H53	: GATE : EXPANDABLE	: 8-1 : 5	CDIF 14	52C *COMPUTR 575/75 * AI		: -054C 050C : 13CY1.36 62%	: / 0 : : /.98E 03 :	:
154H53	: GATE LEXPANDABLE	# # 8-1 # 5	# CDIP 14 :	: 52C *COMPUTR : 75//5 : Al		: -054C 05CC : 17CY1.3G 62%	: / () : : 1.04± 04 :	:
:54H73	FIIP FLOP JK	# B-1 # 16	CDIP 14	: : : : : : : : : : : : : : : : : : :		: -0540 0500 : 130Y1.30 62%	:	:
# 54H73	FLIP F1 /P JK	# B-1 # 16	: COIP 14 :	60C *COMPUTR		: -0540 0500 : 17011.36 62%	:	:
# #### ###############################	GATF	: : 8-1 : 2	# M/GFPK 14	36C *COMMCTN 70//1 * Gb	2	: : 030C	: / 0 : : 6.01 ± 03 :	:
1 18H16 1	GATE	: : B-1 : 2	: M/GFPK 14	# 36C #COMMCT# # 702/1 # 3B	1 :	: : ∪300	1 / 0 1 1 0.011 03 1	:
#8H16	GATE	: R-1 : 2	:M/GFPK 14	# 78C #COMMCTN 107/1 # Gb		: -0550 0720 : 2410Y2.2083#	1 / U 1 1 2.33 c 04 1	: :
#8H16	υλ1Ε L	: : B-1 : 2	: :M/UF+K 14 :	78C #COM#CTN 70//1 # 36	1 :	-0550 0720	: / 0:	:
1 18416 1	GATE	: : R-1	: P/GFPK 14	· t	1 :	•	1 / 0 1	:
13H80	GATH	8-1 1 4	M/GFPK 14	36C #COMMCTN			1 / 0 1 1 / 0 1 4 6.01	:
म् असस्य इ	OATE:	1	1 17/0FPK 14	30C +COMMCIN	:	: - 0300	i / 0 i	:
: : सन्धः)	GATE	: : 3-1	V/GF¤K 14	18C +COMMCTA	* REL 0 *	5 -055C 012C	1 / 0 1	:
t 3 1180	IFAU	1 4 1 B-1	: MZGFPK 14 :	78C +COVACTN	# # # # # # # # # # # # # # # # # # #	2410Y2.2G837 1 -0550 0720	1 / () 1	:
1 1 1 1445(* 1	GA [H	# 4 # B=1	i NNC bk 14 i i i i i	990 ±0084014			i /.01: 05 i	; ;
: :		: 4	: :	72//3 : AI	: I.A. :	1	1 7,00, 03 1	1

TEXAS INSTRUMENTS TTL, HIGH SPEED

154H30

*54H30

154H73

*54H74

154H76

154H76

74H11

GATE

GATE

FLIP FLOP

FLIP FLOP

FLIP FLOP

FLIP FLOP

GATE

*MANUFACTURER *OPERATIONAL TYPE Salaran British British British British British

RELIABILITY ANALYSIS C'NTER

SCRN. : PACKAGE/ : JCT.* : EQUIP. CLASS : PINS : TEMP. : TYPE PART NO. DEVICE FUNCTION DATA CLASS STRESS # #TFSTED/ # #FAILED # KEMARKS LEVEL TEST Mit. : CHIP TEST. APPL. PART MR. : CHIP : TEST . APPL GATES : PROTECT. : DATE : ENV. HOURS :M/GFPK 14 # COUNTER 46C + COMBIN FLD U : 025C ***5493** / 0 : . BINARY 1.71E 05 25 #GLASS 72/74 * SF N.A. 36C +CGMBIN / 0 : GATE M/GFPK 14 **\$54H00** FLD U # 025C *GLASS 72/74 : SF n.A. 7.30E 05 33C *COMBIN 72/74 * SF FLO 9 : 025C \$54H00 GATE CDIP 14 *GLASS 3.11E 04 N.A. CFPK 14 FLD G / 0 1.76E 05 GATE *RADAR 154H00 74/75 : AIU #GLASS BIC PRADAR / 0 1.02E 04 CHK 0 : -065C 071C **\$54H00** GATE CFPK 14 TCV18PC + 32CY2.2G56% *GLASS 81C *RADAR REL O : -054C 071C ***54H00** GATE CFPK 14 / 0 1.22E 05 TCVIBPC : 80CY1.3G5C% # GLASS W/GFPK 14 31C #COMBIN FLD U : 025C 154H20 GATE 1.56E 04 N.A. FLD U 025C ₹54H30 GATE 27C +COMBIN / 0 1.56E 04 72/74 : SF #GLASS / 0 4.50£ 04 FLD G **₹54H30** GATE CFPK 14 *RADAR 74/75 + AIU #GLASS N.A.

> 81C *RADAR 73/73 * AIU

73/74 : A1U

81C FRADAR

46C COMBIN

39C | COMBIN 72/74 | SF

58C +COMPUTR

58C COMPUTE

42C IDISPLAY

75/75 : AI

/71 : Gr

CLASS

*GLASS

*GLASS

16

16

CFPK 14

CDIP 14

CDIP 16

CDIP 16

EPOXY

M/GFPK 14

CHK O :

REL Q :

TCVIBPC :

FLD U

REL

FLD U # 0250

FLD U : 030C

-065C 071C 32CY2.2G56%

-054C 071C 80CY1.3G50%

-054C 050C

-054C 050C

TCV1BPC + 13CY1.3G 62%

TCVIBE: 17CY1.3G 62%

/ 0 1.54E 03

1.84E 04

3.11E 04

3.11E 04

3.36E 03

4.39 c 03 : / 8 : 2.67 c 07 :

'ARIOUS TTL, JIGH SPEED		*MANUFACTO	NAL TYPE				RELIABILITY ANALYSIS CENTER		
PART NO.	DEVICE FUNCTION		PACKAUE/	JCT.*	# EQUIP.	PATA	• STRESS	* #TESTED *	REMARKS :
1	; ;		CHIP PPOTECT.		: APPL. : ENV.		: :	PART : HOURS :	:
1 154H00 1	GATE	t t Jh t 4	DIP 14	1 1 1 74/75		FLD G		: / 0: : 1.71:: 03:	:
\$ \$54H04 \$	INVERIFR	: JB : 6	PIP 14	74/75		FLD G		1 / 0 : 1.71± 03 :	: :
: :54H04 :	: INVERTER	: B-1 : 6	DIP 14	: : 14/75		FLD G		: / 0 : : 1.34n 04 :	:
\$ \$54H04 \$	INVERTER	# B-1 # 6	DIF 14				-054C 071C 4CY .9G 63%		:
: :54H04 :	INVERTER	: B=1 : : 6 :		13/73	: AIU		: -054C 071C : 515CY.9G 63:	: / 0 : : 2.83E 04 :	:
: :54H11 :	GATE	# 8-1 : # 3 :	DIP 14		#STGPROC : #AU :			: / 0 : : 3.42E 03 :	:
: : 54421 :	: GATE	: H-1 :	DIP 14	74/75	#\$15PROC : # AU :	HD G		/ 0 : 1.71c 03 :	:
541 ¹ 40	GATE	1 3-1 : 1 3-1 :	FPK 14	74//5	# AEU :	HID o		t / 0 t t 4.8/c 04 t	:
541140	GATE	: B-1 :	FPK 14	81C 73/73			-065C 071C 32CYz.2G56%	/ 0 : 1.34E 04 :	:
54H40	: GATE	1 B-1 1 1 P-1	FPK 14	73/74	· AIU :		: -054C 071C : HOCY1.3G507	i / 0 i i 1.61t 05 i	:
154H51	: GATE :	1 B-1 1	DIP 14		* SIGPROC : * AU	FLD G		: / 0 : : 1.71 ± 03 :	:
: :54h62 :	E EXPANDER	1 H-1 1	6 17 14 1 1 17 14 1	74/75	* AIU :	HTD GI		: / 0 : : 2.14± 04 :	:
: :54H62 -	I XPANDER	: 3-1 : 3-1	DIP 14				-054C C/1C 4CY .9G 63x		:
: :54H62 :	E EXPANDER	# R=1 :					-054C 0/1C 515CY.9G 63%		:
: :54H7? :	: : FLIP FEOP : JK	: H-1 :	DIP 14	600 75/75			-054C 050C	/ 0 : 5.60: 02 :	* *
54472	# FLIP FLOP # JK	1	91P 14	600 75775			-0540 U500 170YL30 62~	7.321.02	: : : : : : : : : : : : : : : : : : : :

		ED MICRO DEV #1 DW POWER #0	RELIABILITY A	ANALYSIS GENTER					
1	PART :			PACKAGE/				* #TESTID/ * #FirLED	
1				CHIP PROTECT.	# APPL. # ENV.	TEST TYPE		# P'AT # AOURS	:
1	931 00	SHIFT REGIST	C-1 40			LIFE V STGLIFE		38/ 0 3.80E 04	
1	93L00	SHIFT REGIST	C-1 40	CDIP 16		LIFE V		76/ 0 7.60E 04	

AMELCO TTL, LOW POWER		*MANUFACT		ı	RELIABILITY ANALYSIS CENTER			
PART NO.	DEVICE FUNCTION	: SCRN. : CLASS	PACKAGE/	JCT.* : FOUIP. : TEMP. : TYPE	CLASS.	STRESS LEVEL	* #TESIED/ : * #FAILED :	REMARKS :
:	:	NO. GATES	CHIP PROTECT.	TEST : APPL. PATE : ENV.	TEST TYPE	; ;	PARI : HOURS :	1
500	GATE	# A-1		: 35C :COMBIN : 70/74 : SF	: FLD U :		* / 0 ; * 3.57± 04 *	:
501	GATE	. A-1 . 4	CWFPK 14	70/74 : SF	FLD ()		: / 0 : : 2.23E 06 :	:
503	GATE	* A-1 * 3	CWFPK 14	35C = COMBIN 70/74 = SF	FLD U :		: / 0 : : 1.07E 05 :	:
504	GATE	* A-1 * 2	CWFPK 14	73/74 : SF	# FID U : # N.A. :		: / 0 : : 3.06E 04 :	1
505	GATE	ι A-1 ι 4	CMFPK 14	70/74 : SF	: FLD U :		: / 0 : : 9.43± 05 :	:
507	GATE	1 A-1		35C COMBIN 73/74 SF	FLD U		1.02± 05	1
509	FLIP FLOP	2 A-1 2 A-1	CMFPK 14	10/74 1 SF	FLD U		3.64E 06	:
530	GATE	: A-1 : 2	CMFPK 14	70/74 1 SF	FI,D U		/ 0 : 1.78± 05 :	:
531	GAIF	A1	CMFPK 14	70/74 * SF	FLO U		/ 0 ! ! 1.42± 05 !	1
535	GATE	1 A-1 1 A-1	CMFPK 14	73/74 # SF	FLD U		1.42E 05	:
537	GATE	: A-1 : 3	CMFPK 14	35C *COMBIN 73/74 * SF	FLD U		/ 0 i	
575	GATE	: A-1 : 4	CMFPK 14	35C COMBIN 70/74 : SF	FID U	025C	. / O	:

				DIGITAL DEVICE D	A TA			
FAIRCHILD **MANUFACTURE:: RELIABILITY ANALYSIS CENTER TTL, LOW POWER **OPERATIONAL TYPE **THE CONTROL OF THE C								
PART NO.		SCRN.		JCT.* : EQUIP. : TEMP. : TYPE	DATA CLASS.	STRESS LEVEL	* #TESTED/ : * #FAILED :	REMARKS 8
:		• NO. • GATES	· CHIP · PROTECT.			: : 	PART HOURS 4	:
93L00	SHIFT REGIST	# B=1 # 40	CDIP 16		CHK U		2.70E 03	\$ 3
193Lu0	SHIFT PEGIST	8 9-, 8 4	CDIP 16	33C *COMMCTN 73/73 * GB	REL U		/ 0 3.68E 04	•
193L00	SHIFT REGIST	NO E 40	CUIP 16		LIFE V		123/ 0 : 1.23E 05 :	
93L00	SHIFT REGIST	NON, 40	CDIP 16	133C :N.A. /73 : N.A.	LIFE V		319/ 0 1 3.19E 05	:
93L00	SH!FI REGIST	NONE 40	CFPK 16	150C IN.A. 773 I N.A.	LIFE V		4.00E 04	:
90L00	SHIFT REGIST	NONE 40	CFPK 16	134C N.A. 773 N.A.	LIFE V REVBIAS	1250 100%	55/ 0 5.50E 04	;
1/3L00	SHIFT REGIST	: NONE : 40	CFPK 16	134C N.A. 72/73 N.A.	LIFE V		71/ 0 : 7.10E 04 :	
1931.08 1	LATCH	NONE 52	CDIP 24	131C N.A. /72 N.A.	LIFE V	125C 100%	28/ 0 : 2.80E 04 :	:
931.08	I ATCH	NONE 52	CFPK 24	150C N.A. /73 N.A.	LIFE V STGLIFE		17/ 0 1.70£ 04	1
93108	LATCH	NONE 52	CFPK 24	1340 N.A. 773 N.A.	LIFE V	125C 100%	32/ 0 3.20E 04	:
93L09	MULTIPLEXER	NONE 16	CDIP 16	150C N.A. 773 N.A.	LIFE V		74/ 0 1 7.40E 04	:
:93L09	· PULTIPLEXER	NONE 16	CDIP 16		LIFE V	125C 100%	105/ 0:	:
	COUNTER DECADE	8-1 54	CDIP 16	SIGPROC 74/75 AU	FLD G		1.71E 03	:
	COUNTEP DECADE	NONE 54	CDIP 16	150C N.A. 773 N.A.	LIFE V STGLIFE		40/ 0 4.00E 04	1
193L10	COUNTEP DECADE	NONE 54	CDIP 16	134C IN.A. 773 I N.A.	LIFE V REVBIAS	125C 100%	47/ 0 4.70± 04	
193L11	DECODER	NON5 25	CDIP 24	150C *N.A. 773 * N.A.	LIFE V STGLIFE		667 0 6.80£ 04	
1931 1	i 11 Gaut o	NONE 25	CDIP 24	128C #N.A. 773 # N.A.	LIFE V REVBIAS		262/ 0 2.67£ 05	
193L11	DECODER	NONE 25	CFPK 24	130C IN.A.	LIFE V REVRIAS		67/ 0 6.70E 04	
1931.12	MULTIPLEXER	NONE 17	CDIP 16		LIFE V STOLIFE		30/ 0 8.00E 04	:
193[12	MULTIPLEXER	NONE 17	CDID 19	477 4	LIFE V REVBIAS	1250 100%	47/ 0 : 4.70L 04 :	:
193L16	COUNTER BINARY	8-1 54	CDIP 16	- · · · · · · · · · · · · · · · · · · ·			/ 0 1.71L C4	:
	COULITER BINARY	NONE 54	CDIP 16	150C IN.A. 7/3 : N.A.	LIFE V STGLIFE		40/ 0 4.00E 04	:
	COUNTER BI JARY	NONE 1	CDIP 16		IIFF V REVBIAS	1250 100%	25/ 0 2.50L 04	1 1 1
193L18	ENCODER	B-1 24	CDIP 16	*SIGPROC 74//5 AU			1.71E 03	:

*MANUFACTURER *OPERATIONAL TYPE FAIRCHILD TTL. LOW POWER MELIABILITY ANALYSIS CENTER PART NO. DEV. CE SCRN. # PACKAGE/ CLASS # PINS : JCT.* : EQUIP. : TEMP. : TYPE #TESSED/ ##FAILED # DA TAC STRESS REMARKS FUNCTION CLASS. : LEVEL 1EST TYPE NO. : CHIP : TEST GATES : PROTECT. : DATE APPL. PAR C HOURS B-1 19 *SIGPROC 93L22 PULTIPLEXER CDIP 16 FLD G 74/75 : AU 5.12E 03 B-1 28 *SIGPROC * COMPARATOR CDIP 16 FLD G 193L24 1.71E 03 74/75 * AU 34/ 0 3.40± 04 193L2+ COMPARATOR NONE CDIP 16 150C IN.A. LIFE V # 150C /72 : N.A. STULIFE . 65/ 0 6.50E 04 130C IN.A. /72 I N.A. LIFE V : REVBIAS : 193L24 COMPARATOR NONE CDIP 16 125C 100% I IFE V : STOLIFE : 34/ 0 3.40± 04 150C IN.A. /72 : N.A. 193L24 COMPARATOR NONE CFPK 24 150C LIFE V : REVBIAS : 6.70 € 04 130C =N.A. //2 = N.A. 193L24 COMPARATOR NONE CFPK 24 125C 100% 28 126C IN.A. LIFE V : 145/ 0 9L00 GATE NONE CDIP 14 125C 1.45E 05 /73 : N.A. REVBIAS # 52/ 0 5 5.20± 04 150C *N.A. /72 * N.A. *9L86 GATE NONE CDIP 14 1.1 FF V # 1500 STGLIFE # 52/ 0 ± 5.20E 04 ± 128C IN.A. LIFE V : 125C 19L86 # GATE NONE CDIP 14 100% /72 : N.A. REVBIAS :

NATIONAL *MANUFACTURER
TIL. LOW POWER *OPERATIONAL TYPE

RELIABILITY ANALYSIS CENTER

TTL, L		OPERATION	DNAL TYPE				•	RELIABILITY AN	WELDID CENTER
PART NO.	DEVICE FUNCTION	SCRN.	PACKACE/	JCT.* TEMP.		DATA CLASS.	STRESS LEVEL	* #TESTED/ *	REMARKS #
1	:	NO. GATES	: CHIP : PROTECT.		* APPL. 4 ENV.	TEST TYPE	t	PART : HOURS :	1
54L00	GATE	8-2 4	# #/GFPK 14	: : 35C : 75/75	COMMCTN GT	FLD G	025C	/ 0 : 8.60E 04 :	:
54L00	GATE	B-2	M/GFPK 14	35C 71/71	COMMOTN	REL Q		/ 0 : 8.08E 05 :	1 1
154L10	GATE	B-2	M/GFPK 14	35C 75/75	COMMOTN GT	FLD G	025C	/ 0 : 3.87E 04 :	: :
54L10	GATE	B-2 3	M/GFPK 14		*COMMCTN * GT	REL O OPERATE		: / 0 : : 2.54E 05 :	: :
:54L20	GATE	B-2	: #M/GFPK 14		COMMOTN GT	FLD G	: 025C	1 / 0 1 1 4.30£ 04 1	:
54L20	GATE	B-2	# M/GFPK 14	35C 71/71	COMMCTN GT	REL O OPERATE		1 / 0 1 1.74E 05 :	:
154L30	GATE	8-2 1	# M/GFPK 14	35C 75/75	COMMCTN GT	FLD G	: 025C	: / 0: : 9.9/E 03:	1 1
: :54L30	GATE	: : B-2 : I	: M/GFPK 14	35C 71/71	COMMETN GT	REL Q OPERATE		: / 0 : : 2.91E 04 :	: :
54L30	: GATE :	# 8-2 # 1	# M/GFPK 14	45C 71/71	COMMCTN GT	REL Q		: / O : : 2.62E 03 :	:
: :54L51 :	GATE	B-2 6	: :M/GFPK 14	35C 75/75	COMMOTH GT	FLD G	025C	1 / 0 1 1 4.98E 03 1	:
: :54L51	: GATE :	: : B-2 : 6	# M/GFPK 14 1	35C 71/71	COMMOTN GT	REL Q : OPERATE :		: / 0 : : 3.17E 04 :	:
154L54	GATE	# # B~2 # 5	# M/GFPK 14	35C 75/75	COMMETN GT	FLD G	025C	* / 0 * 5.08E 33 *	:
: :54L54 :	GATF	# # 8~2 # 5	: :W/GFPK 14 :	35C 71/71	COMMCTN GI	REL O		1 / 0 1 1 6.34± 04 1	:
: :541./2	FLIP FLOP	: : B-2 : 13	# / CFPK 14 !	35C 75/75	COMMOTN :	FLD G	075C	9.97E 03	: :
154L72	: FLIP FLOP JK	: : 3-2 : 13	# M/GFPK 14 1	35C 71/71	COMMCTN : GI	REL Q		: / 0 : : 1.58± 04 :	: :
: :54L73	FLIP FLOP	в В-2 в 14	# M/GFPK 14 #	35C 75/75	COMMCTN :	FLD G		1 / 0 1 1 1.99£ 04 1	1 1
154L73	FLIP FLOP	t t B~2 t 14	# W/GFPK 14	35C 71/71	COMMICTN :	1		1 / 0 : 1.5%E 05 :	:
1 154L93	COUNTER BINARY	t t B+1 t 33	CDIP 14	51C 75/75		REL Q	-054C 050C	. / 0 .	: :
	COUNTER BINARY			51C 75/75	# COMPUTE !	REL Q	-054C 050C	1 / 0 1	: :
1 54L95 1	SHIFT REGIST	8-2_	: :		COMMOTN	FLD G	025C	# / 0 # # 5.68E 04 #	1 1
: :541.95	SHIFT PEGIST	# # B−2	: :N/GFPK 14 : :	50C	*COMMCTN *	REL Q	025C	1 / 0 : 1.74E 05 :	3 8 1
70L00	GATE	: : A-1	M/GFPK 14 :	35C	*COMBIN	FLD U	025C	/ 0: 3.06± 05:	1 1 1
70L00	GATE	NONE	M∕GFPK 14 :	135C	: 1	LIFE V	125C	90/ 0 9.00± 04	•
70L10	GATE	:	I IN/GFPK 14 I	35C 73/74	COMBIN :	FLD U :	025C	/ 0 1.08± 04	: : :

HATIONAL TIL, LON POMER		*MANUFACTURES: *OPERATIONAL TYPE						RELIABILITY ANALYSIS CENTER			
* PART * * NO. *			PACKAGE/ :					#TESIED/ #FAILED			
: :			CHIP :				t	F PARI :	:		
70L20 : 6/	ATE :	A-1 1	k/GFPK 14	35C 73/74		FLD U	025C	1 / 0 : 1.53E 05 :			
70L20 G/	ATE	B-I 2	M/GFPK 14			LIFE U		32/ 0 : 6.40			
70L30 G/	ATE :	A-1 1	W/GFPK 14 2	35C 73/74		FLD U	0250	1 / 0 : 1 / 14 = 04 :			
70L30 6/	ATE	NONE :	EDIP 14 1			LIFE V		# 397 0 : # 1.95g 04 :			
74L86 G	ATE :	1000E	N/OFPK 14			I TIFE V : REVRIAS :		1 1027 0 1 1 1.02			
751.73 FI		A-1 = 20 =	W/GFPK 14	35C 73/74		FLD N	0250	1 / 0 : 1.94s 05 :			
:751.73 : Fi		NONE 20	#/GHPK 14 :			: LIFE V : : REVBIAS :		: 90/ 0 : 9.00E 04 :			

الكوالهوائد والموال والمراد والمراط والمراط والمعارفة والمواجعة والمراد والماران والمراد والمراد والمراد والمراط والمراط والمارك والمراط والم

TEXAS INSTRUMENTS *MANUFACTUPER RELIABILITY ANALYSIS CENTER OPERATIONAL TYPE PART NO. SCRN. : PACKAGE/ CLASS : PINS * JCT.* * EQUIP. * TEMP. * TYPE DATA CLASS. DEVICE STRESS #TESTED/ : REMARKS FUNCTION LEVEL #FAILED NO. : CHIP : TEST : APPL. GATES : PROTECT. : DATE : ENV. TEST PART TYPE HOURS 35C *COMBIN FLD U : 025C *54L00 GATE N.R. 14 *GLASS 9.33E 04 72/74 : SF N.A. 26C *COMBIN 72/74 * SF GATE *M/GFPK 14 FLD U # 025C *54L00 1.13E 06 • GLASS N.A. 25C *COMBIN 72/74 * SF CDIP 14 FLD U # 025C \$54L00 GATE / 0 1.39E 05 #GLASS N.A. 150C *N.A. /72 * N.A. LIFE U : 150C 50/ 0 1.00E 05 #M/GFPK 14 NONE *54L00 GATE STGLIFE * GLASS 86C :N.A. /72 : N.A. LIFE U : 085C 85%RH MONE #M/GFPK 14 5/ *1-OXIDE PINHOLE #54L00 GATE 1.00E 03 PIN 9 SHORTED *GLASS HUMLIFE TO GROUND FLD U # 025C N-R. 14 35C + COMBIN INVERTER \$541 C4 #GLASS 3.11E 04 N.A. FLD U # 025C * M/GFPK 14 26C *COMBIN / 0 7.77£ 05 *54L04 INVERTER #GLASS N.A. 33C + COMBIN CDIP 14 FLD U # 025C INVERTER / 0 1.70± 05 #54L04 #GLASS **#54L10** GATE N. R. 14 35C + COMBIN FLD U : 025C / 0 3.11E 04 *GLASS #MZCFPK 14 25C + COMBIN FLD U : 154L10 GATE 0250 / 0 3.57t 05 57C *COMPUTR REL CDIP 16 -054C 050C #54L153 MULTIPLEXER 6.72E 03 TCVIBPC : 13CY1.3G 62% 57C *COMPUTR REL -054C 050C *54L153 MULTIPLEXER CDIP 16 8.78E 03 **\$5102** 75/75 : AI TCVIBPC : 17CY1.3G 62% -054C 050C 13CY1.3G 62% * CDIP 14 *S102 REL Q : TCVIBPC : #54L164 SHIFT REGIST B-1 36 65C COMPUTE 1.39± 04 REL Q : -054C 050C 54L164 SHIFT REGIST CDIP 14 65C #COMPUTR / U 17CY1.3G 62% 75/75 : Al 36 15102 154L20 GATE # N.P. 14 35C *COMBIN FLD U 025C / 0 1.56E 04 72/74 1 N.A. 25C + COMBIN 15.L20 GATE * M/GFPK 14 FLD U 0250 / 0 2.33± 05 72/74 1 # GLASS N.A. 25C +C MBIN FLD U CDIP 14 025C 154L20 GATE / 0 1.56E 04 #GLASS N.A. 35C + COMBIN FLD U 0250 154L30 GATE / 0 4.67± 04 # GLASS 25C COMSIN HLD U 1 N / GEPK 14 GATE *54L30 *GLASS N.A. 3.96% 05 #M/GFPK 14 *54L30 GATE # GLASS 71/72 : N.A. STGLIFE 2.19E 06 61C #COMPUTE REL Q 1 DECODER CDIP 16 -054C 050C \$54L42 3.92E 03 TCVIBPC : 13CY1.3G 62% BCD/DECIMAL 18 15102 75/75 : AI REL 0 : -054C 050C TCVIBPC : 17CY1. CG 62% 61C #COMPUTR # DECODER CDIP 16 # 154L42 **BCD/DECIMAL** 18 #S102 75/75 * AI 5,12E 03

DIGITAL DEVICE DATA

TEXAS INSTRUMENTS *MANUFACTURER *OPERATIONAL TYPE RELIABILITY ANALYSIS CENTER TTL, LO- POWER PART NO. DEVICE FUNCTION * SCRN. * PACKAGE/ * CLASS * PINS * DATA CLASS. * #TESTED/ * немаркѕ * TEXP. * TYPE LEVEL * NO. * CHIP * TEST * GATES * PROTECT. * DATE * APPL TEST PAR1 TYPE HOURS * ENV. 25C + COMB 19 73//4 + SF 154L51 # GATE *N/GFPK 14 FLD U : 025C 9.18L 04 * GLASS N.A. 300C 19.A. 71//2 1 N.A. 154L55 GATE NONE LIFE V : 53/ C 5.19E 04 **DIP 14** 300C STGL IFE 1007 0 **\$541.55** GATE 210C IN.A. LIFE V NONE DIP 14 200C REVBLAS 1.63: 04 26C *COMpIN 72/74 * Sr HD 0 : 154L72 FLIP FLOP * #/GFPK 14 0250 1.40: 05 #GLASS \$54L/3 FLIP FLOP 35C (COMBIN FLD U # N. R. 14 025C 1.502 05 #GLASS P.A. 26C + COMBIN 72/74 + 5r #54L73 HD 0 + FLIP FLOP 17/GFPK 14 025C 7 0 1.30£ 06 ۸-! ۱4 *GLASS 151C IN.A. /72 I N.A. 154L/3 FLIP FLOP NONE 1 N/GFPK 14 #GLASS FX.. LEAD 90 4YG 4.50c 04 t 154L/3 FLIP FLOP (K)NE *M/GFPK 14 126C *N.A. /72 * N.A. LIFE U 110/ 2.20% 05 *GLASS 90 AYG 26C + COMBIN 72/74 + SE 154L74 HD U FLIP FLOP A-1 12 CDIP 0250 6.22t 04 #GLASS N.A. 27C +COMBIN 73/14 + 5F FLD U t ‡54L91 SHIFT REGIST A-1 67 1 M/GFPK 14 0250 5.10± 04 #GLASS h.A. 270 COWICIN 75/75 GI FLD G : 154L91 SHIFT REGIST *#/OFPK 14 U25C CLASS 8.31: 03 2/C COMMCTN /1/71 = GT 154L91 SHIFT REGIST 4 LM/GFPK 14 REL O I 025C 7 0 3.1/L 04 *GLASS OPERATE # 154L95 27C *COMBIN FLO U : 0250 SHIFT REGIST #M/GFPK 14 1.5/2 05 N.A. *GLAS5 107 0 1.006 04 \$54L95 SHIFT REGIST 40NF 1500 H.A. LIFF V * #GLASS 771 : U.A. CIST OF # £74H21 3RC #DISHEAY FLD 0 # 030C UATE: 3.202 06 1

				DIGITAL DEVICE				
		MANUFACT				RELIABILITY ANALYSIS CENTE		
# FAF # NO.		SCRN.		JCT.* * EQUIP TEMP. * TYPE		STRESS LEVEL	: #TESTED/:	REMARKS
1	t t			TEST : APPL. DATE : ENV.	TEST TYPE	t :	PARI : HOURS :	
: :54L00	GATE	* B-1 * 4	: DIP 14	: : : 60C :COMPUT : 75/75 : AI		: -054C 050C : 13CY1.3G 62%	1	
54L00	GATE	# B-1 # 4	5 DIP 14	: 60C :COMPUT : 75/75 : AI		: -054¢ 050¢ : 17CY1.3G 62%	: / O : : 4.43E 04 :	
54L02	GATE	* B-1 * 4	DIP 14	: 60C :COMPUT : 75/75 : AI		: -054C 050C : 13CY(.3G 62%	2.00E 04	
:54L02	GATE	# B-1 # 4	DIP 14	60C COMPUT		: -054C 050C : 17CY1.3G 62%	2.62E 04	
54L03	GATE	JB 4	DIP 14	SIGPRO 74/75 AU	C FLD G		/ 0: 3.42± 03:	
54L04	INVERTER	8-1	DIP 14	: 75/75 : Al	* TCVIBPC	-054C 050C	/ 0 2.67E 04	
54L04	INVERTER	B-1 6	DIP 14	60C *COMPUT 75/75 * AI	R . REL O	: -054C 050C : 17CYI.3G 62%	/ 0 : 3.50E 04 :	
54L10	GATE	# B-1	DIP 14	60C COMPUT 75/75 : AI		: -054C 050C : 13CY1.3G 62%	/ 0 : 1.1dE 04 :	
54L10	GATE	8-1 : 3 :	DIP 14	60C #COMPUT 75/75 # A1		-054C 050C 17CY1.3G 62%	, / O : 1.54E 04 :	
54L19	3 COUNTER	# B-1	DIP 16	60C COMPUT		-054C 050C 13CY1.3G 62%	/ 0 : 2.80E 02 :	
54L19	3 COUNTER	R-1	DIP 16	60C COMPUT		-054C 050C 17CY1.3G 62%	7 0 1 3.66£ 02	
54L20	GATE	B-1	DIP 14	60C COMPUT		-054C 050C	/ 0 : 3.925 03 :	
541.20	GATE	B-1 2	DIP 14	60C COMPUTE 75/75 AI	* 1CVIBPC	-054C 050C	5.12± 03	
541.51	GATE	B-1	DIP 14	75/75 # AI	R # REL Q # ICVIBPC	13CY1.30 62%		
54L51	GATE	B-1	DIP 14	75/75 : Al	: LCAIREC	•	/ 0 1.70E 04	
54L73	FLIP FLOP JK	B-1 1 14	DIP 14	75/75 : AI		-054C 050C 13CY1.3G 62%	/ 0 3.32E 04	
54L73	FLIP FLOP JK	B-1	DIP 14	60C *COMPUTS 75/75 * AI	REL O	17CY1.3G 62%		
54L74		В-1 16	DIP 14			-054C 050C		
54L/4	* JK	B-1	DIP 14	60C *COMPUTF 75/75 * AI		-054C 050C	2.12E 04 :	
:54L76	* FLIP FLOP * JK	3-1 16	011 14 4	75/15 : AI			/ 0 : 6.30± 03 :	
*54L78	* FLIP FLOP * JK	: 9-1 : 16	.,	75/75 : Al		~054C 050C 17CY1.3G 62%		
54Ld6	# CATE	B-I I	DIP 14 #	60C + COMPUTE 75/75 + A1	RFL Q I	-054C 050C	/ 0 # 9.665 03 #	
‡54L86		: 8-1 : : 4 :	DIP 14 :	60C + COMPUTE		-054C 050C		

VARIO	DUS LON PONER	*MANUFACT	Flioch DNAL TYPE		 		RELIABILITY	ANALYSIS CENTER
PART NO.			PACKAGE/				*TESTED/ *FAILED	
!	:		* CHIP * PPOTECT.				* PARI * HOURS	: :
:54L91	SHIFT REGIS	ST : B-1		60C		: -054C 050C : 17CY1.3G 62%	: / 0 : 9.ddt 03	
54L93	COUNTER BINARY	B-I 25		60C 75/75		-054C 050C 13CY1.3G 62%	9.80c 03	•
\$54L93	* COUNTER * BINARY	# B-1 # 25		60C 75/75		* -054C 050C * 17CY1.3G 62%	1.2n£ 04	
54L95	SHIFT REGIS	ST # B-1 # 37		75C 75/75		* -0540 0500 * 130Y1.3G 62≭	/ 0 2.305 04	
54L95	SHIFT REGIS	ST # B-1 # 37		75C 75/75		-0540 0500 17041.30 62%	/ 0 : 3.00: 04	

*MANUFACTURER *OPERATIONAL TYPE SIGNETICS TTL, LOW POWER SCHOTTKY RELIABILITY ANALYSIS CENTER PART NO. DEVICE FUNCTION * SCRN. * PACKAGE/ * JCT.* * EOUIP. * CLASS * PINS * TEMP. * TYPE DATA CLASS. STRESS LEVEL . TESTED/ : REMARKS #FAILED APPL : NO. : CHIP : TEST : GATES : PROTECT. : DATE TEST TYPE FART HOURS 126C *N.A. 74/74 * N.A. LIFE V NONE 4 *74LS00 GATE EDIP 14 49/ 0 4.90E 04 125C ЕM 49/ NONE 6 300C :N.A. 74/74 : N.A. 174LS04 INVERTER CDIP 14 LIFE V 300¢ 60/ 0 4.65E 04 STOLIFE EM *1-BOND WIRE *TOUCHING DIE 60/ 150C IN.A. 74/74 I N.A. 174LS04 INVERTER NONE LIFE V EDIP 14 150C 48/ STOLIFE 2.40E 03 *1-BOND WIRE *TOUCHING DIE * EDGE LIFE V 48/ 0 2.40E 05 74LS04 INVERTER NONE EDIP 14 127C *N.A. 74/74 * N.A. 125C 0.48/ N.A. 174LS10 GAT# NONE 3 LIFE V 50/ 0 5.00E 04 EDIP 14 125C EM 50/ 174LS10 GATE 126C #N.A. NONE EDIP 14 LIFE V 125C 50/ 0 74/74 1 N. A. DYN OP 5.00£ 04 50/ : 0.

FAIRCH TTL, S	ILD CHOTTKY	*MANUFACTUREP *OPERATIONAL TY	PE			R	ELIABILITY A	YSIS CENTER
PART NO.	DEVICE FUNCTION	# SCRN. # PACF # CLASS # PINS	AGE/ : JCT.* : TEMP.	· EQUIP. • TYPE	: UATA : CLASS.	STRESS LEVEL	* #TESTED/ : * #FAILED :	REWAPKS #
:	: :	* NO. * CHIF * GATES * PROT	: TEST ECT. : DATE	: APPL. : FNV.	: TYPE		FINDUMS F	:
: :54S04 :	: : INVERTER :	* ************************************	. 14 i 300C	IN.A.	: LIFE V : STGLIFE		57/ 0 : 5.70= 04 :	; ;
\$54S04	INVERTER	NONE N. F	. 14 : 135C : /73	N.A.	I LIFE V		: 50/ () : : 50/ () : : 5.00 : 04 :	: :
54504	INVERTER	NONE N.F	. 14 : 260C	:N.A. : N.A.	ITFE V :	250C	: 16/ 0: : 1.80::04:	: :
\$54505 \$	INVERTER	NONE N.H	. 14 : 300C : /73	M.A.	SIGNIFE		: 53/ 1 : : 5.30: 04 :	I/ WINE :
154505	INVEPTER	HONE N.R	. 14 : 135C : //3	τ	LIFE V	125C	49/ 0 : 4.90c 04 :	:
\$54S05	INVERTER	NONE N.R	. 14 : 260C : /73	\$14.A.	HEVBIAS	250C	: 1// 0 : : 1./0: 04 :	: :
9504	INVERTER	WONE CDI	P 14 1 141C	# 14. A.	REVBIAS :		1 1037 0 : 1 1.86= 05 :	: :
1005	INVERTER	NOHE CDI	P 14 : 150C	IN.A.	51611HL #	1500	: 104/ 0 : : 1.04c 05 :	:
:9S20	GATE	IP)HE CDI	P 14 : 150c : /72	*II.A. I	SIGLIFE #	150C	627 0 i 628 04 i	: :
9540	BUFFFR	40NF CUI		N.A.	LIFE V :	1	1827 2 ± 1,646 05 ±	: :
	FLIP FLOP	: NONE : CD1	14 + 141C	*N.A. *	* SVIBARE:	1250 100% (1 192/ 0 : 1 1.92c (5) :	: :
	FLIP FIOP	: J)NF : CDI	7 16 : 136C : 773	ih.A.	REVELAS :		527 0 : 528 0 : 5.206 04 :	: : :

INTEL TTL, SC		MANUFACT OPERATIO			RELIABILITY ANALYSIS CENTER			
PART :	DEVICE FUNCTION	SCHN.	PACKAGE/ PINS		DATA CLASS.		* #TESSED/ * #FAILED	
:			CHIP PROTECT.		TEST	: :	PART HOURS	; ;
	DECODER BINARY		E CNDIP 16	* N.A.	LIFE V STOLIFE		25/ 0 2.50E 04	1 1
	DECODER BINARY		CMDIP 16	 : : :N.A.	SDF EM LIFE V DYN OP	: : : 125C 100%	25/ 0 0. 25/ 1 2.50E 04	: I/SHORT :

SIGNETICS TTL, SCHOTT	*MANUFAC KY *OPERATI	TURER ONAL TYPE				H	ELIABILITY .	ANALYSIS CENTER
		PACKAGE/			DATA CLASS.		* #TFS(ED/	
: :		: CHIP : PROTECT.		* APPL. * ENV.			PART HOURS	; ; ;
:74S00 : GAT	E & AONE		154C 73/73		LIFE V		\$ 25/ 0 \$ 2.50E 04	
		:		:		: :	25/ 0	:
74500 GAT	E HONE	CDIP 14			DAN Ob	125C	45/ 0 4.50E 04	
		:			EM :		45/ 0	
74500 GAT	E NONE	SDIP 14			LIFE V CNST OP		25/ 0 5.00£ 04	
	:	1 1		:	: : F#		25/ 0	:
174500 GAT	E NONE	SDIP 14	137C 71/71		LIFE V	1250	40/ () 4.00± ()4	
	* * *	1 1			: EM:		40/ 0	:
74510 GAT	E WINE	CDIP 14	131C 74/74		LIFE V		45/ 0 4.50m 04	
	: :	1 1	! !	•	: EM	- ! !	45/ 0	: : : : : : : : : : : : : : : : : : :

TEXAS INSTRUMENTS *MANUFACTURER *OPERATIONAL TYPE RELIABILITY AMALYSIS CENTER STRESS PART DEVICE FUNCTION #TESTED/ # * SURN. * PACKAGE/
* CLASS * PINS JCT. * * FOULD. DATA REMARKS TEMP. : TYPE CLASS. LEVEL #FAILED # w) . TEST * CHIE A PPT. PART GATES : PROTECT. DATE . ENV. TYPE HOURS 154500 GATE 35C #COMMCTN CHK U # 025C 100% OPFRATE # 2.22E 04 *GLASS 73/73 : GB REL U # 025C OPERATE # / 0 3.05t 04 **\$54500** GATE DIP 14 35C *COMMCTN #GLASS 73/73 1 GB CHK U : OPERATE : 35C *COMMCTN 73/73 * GB \$54504 INVERTER DIP 14 025C 100% / 0 2.49± 04 GLASS REL U DIP 14 35C + COMPCTN 54504 INVERTER 025C / 0 3.40± 05 GLASS OPERATE : 73/73 : GB 60C *COMPUTA 54504 INVERTER CDIP 14 REI. -054C 050C 1.05k 05 15102 TCVIBPC : 13CY1.3G 62% 54504 INVERTER CDIP 14 60C COMPUTE REL O -054C 050C ***SIO2** ICAIBLC : 17CY1.3G 62% 1.3/E 05 54510 GATE 35C #COMMOTN 025C 100% 2.69E 03 #GLASS **OPERATE** 54510 35C #COWICTN 3.6HE 04 # GLASS OPERATE 55C #COMPUTE REL Q 1 -054C 050C TCVIBPC 1 3CY1.3G 62% **\$54\$10** GATE CDIP 14 4.09 04 18102 75/75 + AI REL. Q : -054C 050C TCVIBPC : 17CY1.3G 62% 55C COMPUTE 154510 GATE CDIP 14 \$SI02 5.341 04 *COMMCTN 1545112 FLIP FLOP DIP 16 CHK U 4.3/E 04 #GLASS 73/73 * GB OPERATE : *545112 FLIP FLOP 35C COMMOTN REL OPERATE #GLASS 5.98E 05 62C # COMPUTR \$54S112 FLIP FLOP CDIP 16 -054C 050C TCVIBPC : **#\$102** 75/75 # 13CY1.3G 62% 2.24E 04 1545112 FUIP FIOR CDIP 16 62C *COMPUTR -054C 050C TCVIBPC ***\$102** 75/75 1 17CY1.3G 62% 2.93t 04 1545113 FLIP FLOP 64C ≠COMPUT® 054C050C 15102 75/75 : TCVIBPC 17CY1.3G 62% 5.12E 03 FLIP FIOP 1 CDIP 64C + COMPUTE 75/75 + AI -054C 050C 13CY1.3G 62% 1545113 TCVIRPC 3.921 03 154511 GATE: CDIP 14 58C *COMPUTE -054C 050C 15102 75/75 1 ICVIBPC 13CY1.3C 62% 4.1/1 04 ΑĪ 58C #COMPUTR 154511 GATE CDIP 14 -054C 050C 15102 75/75 * AI TCVIBPC 17CY1.3G 62% 5.45L 04 545133 GATE CDIP 16 52C #COMPUTE -054C 050C 15102 75/15 : AI LCV1BPC 13CY1.3G 62% 7.93₺ 03 1545133 52C *COMPUT? 12105 75/75 : AI LCA 195C 17CY1.3G 62% 1.04t 04 1545153 **PULTIPLEXER** 68C +COMPUTR -054C 056C *****\$102 75/75 : AI ICAIBLC : 13CY1.3G 62% 1.12F 04 111153 **AULTIPLEXER** # CDIP 16 68C #COWPUTR REL Q : ICVINPC : -054C 050C 17CY1.36 62% 75775 + AL 1.40E 04 1945198 66C *COMPUTR 75/75 * AI BUILTIPLEXER COTP 16 REI -054C 050C 15102 130Y1.30 62% TCV18PC ರ.82೬ ೧3 ₹545158 MULTIPLEXER CD1P 16 # 66C #COMPUTR # REL 0 # -0540 0500 15102 TCVIBPC + 17CY1.3G 624

PART NO.		SCRN. CLASS	PACKAGE/			DATA : CLASS.	STRESS LEVEL	#TESTED/ :	PEFARKS
			* CHIP * PPCTECT.	TEST DATE	* APPL. : * ENV. :	TESF 1	 	PART :	
645195	SHIFT REGIST			84C 75/75			-054C 050C 13CY1.3C 624	: / 0 : : 5.60± 02 :	
45195	SHIFT REGIST		# CDIP 14 #SI02	84C 757/5			~0540 0500 170Y1.30 62%	/ 0 : /.32	
64520	GATE:		CDIP 14	53C 75/75			-054C 050C 13CY1.3G 62%	/ G 2.73± C4	
4\$20	# GATE	B-1 2	: CDIP 14 : :SI02 :	53C 75/75			-0540 0500 170Y1.30 62%	3.5/c 04 t	
4520	# GATH	H-1 2	CDIF 14	74/75		FLD G		0 i o.04e 03 i	
4520	GATE	9-1 2	CDIP 14 SI02				-0540 0710 40Y .9G 63%	/ 0 2.83E 92	
4520	# GATE	B-1 2					-054C 071C	/ 0 1 1./0r 04 1	
4540	# BUFFEP	B-1 2	DIP 14 :	35C 73//3		CHK U	0250 100%	2.62£ 04	
4540	BUFFFR	8-1 1 2	: DIP 14 : GLASS			REL U : OPERATE :		1 / 0 1 1 3.586 (2) 1	
4564	GATF	1 1 R-1 1 5	# CDIP 14 : #S102				: -0540 0500 : 13011.36 62%	* / 0 * 8.26E 03 *	
4554	# GATh	1 1	: CDIP 14 : S102	60C 75775			-054C 050C 17CY1.3G 62%	1.03E 04	
45/4	# FLIP FLOP # 1	1 B-1 12		1 5xC 1 75/75			: -0540 0500 : 130Y1.36 62%	3.03L 04	
4 > / 4	# FLIP F10P : 1 D	1 1	t CDIP 14 : t5102	1 580 1 757/5			: -0540 0500 : 170Y1.30 62.	# / 0 # # 4.03c 04 #	
41 / 3	# ADDFR	1 1 B-1 1	t CDIP 16 t5102	600 15/15			: -0540 0500 : 130Y1,36 62~	: / J : : /, 3/E 04 :	
45N3	ADDLE FULL	: : !}=] :	1 CDIE 16 : 15[02	60C 15775			: : -0540 0500 : 170Y1.30 624	: / O : : 3.09± 04 :	
الاسلام	: GATH	der ()e. ∃ A	# FDIP 14 #GLASS			LIFF G CLST OP	: 150C 1C0×	: 100/ 0 : : 3,53£ 0/ :	

VARIOUS	S CHOTTKY	*MANUFACT *OPERATIO	-					RELIABILITY	ANALYSIS CENTER
PART NO.		SCRN.		JCT.*	EQUIP.	DATA CLASS.	STRESS LEVEL	* #TESTED/ * #FAILED	
:	:		CHIP PROTECT.				: :	# PART # HOURS	: :
\$54S00	GATE	8 8 B-1 8 4	: DIP 14				: -054C 050C : 13CY1.3G 62X		
#54S00	S GATE	# B-1 # 4	DIP 14	60C 15/75			• - 054C 050C • 17CY1.3G 62X	/ 0 1.21E 05	
\$ 54S157	• MULTIPLEXER	# B-1 # 15	DIP 16	60C 75/75			-054C J50C 13CY1 3G 622	/ 0 3.43E 04	
545157	* MULTIPLEXER	B-1	DIP 16	60C 75/75			-054C 050C 17CY1.3G 62x	/ 0 4.48E 04	
54S174	FLIP FLOP	B-1 36	DIP 16				-054C 050C 13CY1.3G 62X	/ 0 1.26£ 05	
545174 1545174	FLIP FLOP	# B-1 # 36		75C 75/75			-054C 050C 17CY1.3G 629	/ 0 1.64E 05	

	HEON SU:			ANLFACT ERATIO		RER AL TYPE	 	_	 			!	REL	IABILIT	Υ .	ANALYSIS CENTER
PART NO.		DEVICE FUNCTION								DATA CLASS.		STRESS LEVEL		#TESILO #FAILED		
:	:					CHIP PROTECT.							:	PARI HOURS		; ;
121	:	GATE	:	B-2	:	CMFPK 14	30C 71/71			REL Q OPERATE		025C	:	3.14:: 0	•	
371	:	I # ERTER	:	B-2 6	:	CMFPK 14	52C 75/75		:	FLD G	:	U25C	:	4.48E 0	_	
371	:	NVERTER	:	B-2 6	:	CMFPK 14	52C 71/71			REL O OPERATE		025C	:	1.2/E 0		
380	:	INVERTER	:	B-2 6	:	CMFPK 14	65C 75/75		:	FLD G	:	025C	:	/ 4.95E 0	-	
80	:	GATE	:	B-2	:	CMFPK 14	43C 75/75		:	FLD G	:	025C	:	6.64= 0		
90	:	GATE	:	B-2 2	:	CMFPK 14	43C 71/71			REL Q OPERATE		025C	:	7.57± 0	-	

VARIOUS TTL *MANUFACTURER *OPERATIONAL TYPE

RELIABILITY AMALYSIS CHUTER

PART HO.		SCRN. CLASS		JCT.* * EQUIP. * TEMP. * TYPE			#TESTED/ : #FAILED :	
: :				TEST : APPL.	TEST TYPE		PART HOURS	
: :5491 :	SHIFT REGISE	X 67	FPK 14		FLD U		/ 1 : 1.69E 06 :	1NoX1Dz
5492	COUNTER	B-1 26	DIP 14	COMPUTR 74/75 : AIU	FLD G		/ 0 5.36E 03	
5492	COUNTER	B−1 26	DZP 14			-054C 071C 4CY .9G 63%	/ 0 1.925 02	
5492	COUNTER	3-1 26	DIP 14			-054C 071C 515CY.9G 63%	/ C 1.13E 04	:
5493	COUNTER BINARY	B~1 25	DIP 14		CHK Q TCVIBPC	-054C 071C 3CY 88%	/ 0 4.32F 02	
493د	COUNTER BINARY	8~1 25	DIP 14			-054C 071C	/ 0 5.72F 04	•
5493	COUNTER BINARY	3-1 25	DIP 14		FLD G		/ 0 3.22E 04	
5493	COUNTER BINARY	9-1 25	DIP 14			-054C 071C 4CY .9G 63%	/ 0 1.15E 03	
5493	COUNTER BINARY	მ~1 25	DIP 14			-0540 0710 51507.99 63%	/ 0 6.805 04	
5496	SHIFT REGIST	9−1 39	DIP 14		CHK 2	-054C 071C 3CY E3%	/ 0 2.98F 02	
5496	SHIFT REGIST	3−1 39	DIP 14	96C #COMPUTR #		-0540 0710 7070Y 16 56%	/ () 3.91E 04	
541104	INVERTER	ઇ-I ઇ	FPK 14	RADAR 74/75 AIU	FLD G		/ 0 2.10E 05	
541104	INVERTER	B-1 6	FPK 14	31C :RADAR 73/73 : AIU		-065C 071C 32CY2.2G56%	/ 0 7.495 03	
541104	INVERTER	B−1 6	FPK 14	81C PADAR 73/74 : AIU		-054C 071C	/ 0 4.97F 04	
54H2O	GYLE	B−1 2	FPK 14	RADAR 74/75 AIU	FLD G		/ 0 2.43 ° 04	
54/120	GATE	B−1 2	FPK 14	81C FRADAR 73/73 : AIU		-050 0710 320Y2،26564	/ 0 1.54E 03	
541120	erte	ਲ−। 2	FPK 14	31C FRADAR 73/74 : AIU		-0510 0710 800Y1.30503	/ 0 1.84= 04	
54.121	GA LE	3 - ,	₹PK 14	#RADAR 74/75 * AIU	FLD G		ノ 0 4 . 29官 05	
51321	7A1 :	3-1		91C RADAR 73/73 AIU		~065C 071C 32CY2.3G56%	/ 0 5.43= 04	
541121	OATE	3-1	FPK 14	81C RADAR 73/74 AIU		-054C 071C 80CY1.3G50Y	/ 0 4.51° 05	
	FLIP FLOP D	8-1 12	FPK 14	RADAR 74/75 AIU	FLD G		/ 0 1.97E 05	
:	FLIP FLOP D	8-1 12	FPK 14			-065C 071C 32CY2.2G56%	/ 0 1.04E 04	
	FLIP FLOP	3-1 12		73/7 : 410 :		-054C 071C 80CY1.3G50Y	/ 0 1.245 05	
541,30	OA [F	8-1		60C + COMPUTR + 75/75 + AI		13CY1.46 62%		

	VARIOUS TTL, SUHL		URER NAL TYPE	28 28 22 22 22		4 3a xa caca•	T-C	RELIABILITY ANALYSIS CENTER		
PART NO.	DEVICE UNCTION		PACKAGE/	JCT.*			STRESS LEVEL	* #TESTED/		
	t t	* NO. * GATES	CHIP PROTECT.	TEST			t :	* PARI * HOURS	: :	
100	FLIP FLOP JK	# B-2 # 11	FPK 14		COVECTA UI	FLD G	:	: : / O : 1.49c O4		
100	FLIP FLOP	8-2 11	FPK 14	35C 71/71		REL O OPERATE		2.64E 04		
101	# GATE # EXPANDABLE	8-2 4	FPK 14	35 C 75/75		HLD G		/ 0 8.31E 03		
101	# GATE # EXPANDABLE	9-2 4	FPK 14	35C 71771		REL O OPERATE		1.00± C4		
121	FLIP FLOP	8-2 1 16	FPK 14	71/71		PEL O OPERATE		/ 0 6.96E 02		
121	FLIP FLOP	3-2 16	FPK 14	•	*COM/CTN	REL O OPERATE		9.8/E 03		
130	* FLIP FIOP * JK	B-2	FPK 14	35C 71/71		REL O		/ 0 1.13b 04		
131	* FLIP FLOP	8-2 16	FPK 14	35C 71/71		REL O		1.00g 04		
140	GATE	8-2	FPK 14			FLD G		2.99E 04		
140	GATE	B-2 1	FPK 14 *	350 71/71		RFL O OPERATE		: 2.46± 05	I I OPEN I MIRE ROND ISYLVANIA ISG140 FAILED	
141	: • GATE	t 4-2 t		35C 75/75		FID G		i / 0 i 1.84L 05		
141	: : GATE :	1 B-2 1	FPK 14 :	35C 71/71		REL Q (OPERATe (: / 0 : d.91a 05		
190	GATE	1 4-2 1 1 3 1	FPK 14	35C 71/71		REL OF		1 / 0 1 1.00c 04		
191	GATE	3-2 3	FPK 14 1	35C 75775		LD G		5.40L 04		
71	# GATr	B-2	FPK 14	35C 71/71		REL O		2.00L 05		
P(X)	FLIP FLOP	R-1 1	FPK 14			REL U TOVIBPO	-0550 0700 340YC 2.20	1.62= 04		
)(X)	* * FLIP FLOP * JK	B-1 10	FPK 14 :	60C 72/73	F AI :	FID U	•	1.44. 03	1	
	* * FLIP FIOP * JK	H-2	1	71/71	COMCT4	RET 0	02×C	1 / U :	l	
2/) [* HITP PLOP * JK	18-2 10	FPK 14 "		COM CTT	HEL OF	0250	: / J : 3.1/c 04		
) fr	FLIP FLOP	1 1-2		15/75	00019	F10 6 1		1 4.9.6 03	1	
	: : FLIP FLOP : JK	1 R-2 1		35C	COX" CTN	REL OF		1 / 0 1 1.06L 04	i I	

TTL, SUHL		OPERATIO				*********			200 X 2 X 2 X 2 X 4 M 4 M 6 M		
PART NO.	DEVICE FUNCTION	SCRN.	PACKAGE/	JCT.* TEMP.	EQUIP.	DATA CLASS	STRESS LEVEL	* FAILED *	REMARKS		
	:		CHIP PROTECT.	TEST DATE		lest Type		PART : HOURS :			
211	* * FLIP FLOP * JK	# B-2 # 14	FPK 14	35C 71/71	COMMETN	REL O		1 / 0 1 1 3.07 £ 04 1			
2125	FLIP FLOP	B-1 10	FPK 14	74/75	BRADAH BAIU	FLD G		/ 0 7.30± 04			
2125	FLIP FLOP	8-1 10	FPK 14	81C 73/73		TCVIBPC	-065C 071C 32CY2.2G56%	/ 0 1.46E 04			
2125	FLIP FLOP	8-1 10	FPK 14		RADAR AIU	REL Q	-054C 071C 80CY1.350X	/ 0 : 1.75: 05 :			
220	GATE	B-2	FPK 14	35C	COMMETN	REL O OPERATE		1.00E 04			
221	GATE	B-2	FPK 14	35C	COMMCTN G1	REL O OPERATE		1.06E 04			
30	FLIP FLOP	8-2	FPK 14	35C 71/71		REL O OPERATE		1.06E 04			
31	FLIP FLOP	9-2 8		71/71	: GI	PEL Q OPERATE		/ 0 1.88E 05			
40	# GATE	B-2 2	FPK 14	35C 75/75	COMMOTN GT	FLD 3	025C	1.66E 03			
40	GATE	B-2	FPK 14	35C 71/71	COMMCTA GT	REL Q OPERATE		/ 0 1.94F 04			
41	GATE	B-2	FPK 14	35C 75/75	COMMETN :	FLD G		1.99É 04			
41	GATE	B-2 2	FPK 14	35C 71/71	COMMCTN GT	REL Q OPERATE		/ 0 d.65E 04			
50	FLIP FLOP	B-2	FPK 14	35 C 75 / 75	COMMCTN GT	FLD G		9.70E 03			
50	FLIP FLOP	B-2	FPK 14	35C 71/71		REL O OPERATE		/ 0 1.39E 03			
50	FLIP FLOP	B-2 10	FPK 14	35C 71/71	COMMETN GT	HEL O		/ 0 1.9/E 04			
51	FLIP FLOP	B-2	FPK 14	35C 75/75	COMMOTN GT			/ 0 5.32E 04			
51	FLIP FLOP	B-2 10	FPK 14	35C 71//1		REL O OPERATE		1.64h 05			
50	# GATE	1 B-2 1 1	FPK 14	35C 71//1		REL O OPERATE		/ 0 1.06± 04			
61	GATE	# B-2	1	75/75	# GI	FLD G N.A.	1	/ 0 1.66± 04			
51	# GATE	# B-2 # 1	FPK 14	35C 71/71	COWICTN GE	RFL O OPERATE		0.69= 04			
61	FLIP FLOP	# B=2 # 14	FPK 14	35C 71/71	COMMCTN:	REL O OPERATE		/ 0 3.14b J3			
51	LATCH	# R-2 # 25	FPK 14	35C 71/71	COMMCTN :	REL O		/ 0 /.05£ 04			
70	SHIFT REGIST	# B-2 # 24	1	71/71	COWNCTN GT	REL O OPERATE	1	/ 0 1.27£ 05			
7 t	# GATE # EXPANDABLE	# B-2 # 6	FPK 14	35 C	*COMMCTN	RFL O	0250	1 / 0 : 1,06E 04 :			

VARIO		*MANUFACTI *OPERATION						RELIABILITY A	AMALYSIS CENTER
PART NO.	DEVICE FUNCTION		PACKAGE/ PINS					#TESTED/	REMARKS 8
:	1	NO. GATES	CHIP PROTECT.		APPL. ENV.	TEST TYPE	i	PARI 4 HOURS	:
‡71	LATCH	8 B-2 1 24		35C 75/75		FLD G	025C	8.31E 03	
371 371	LATCH	8 B-2 8 24	FPK 14	35C (REL O		3.36E 04	
: :81	GATE EXPANDABLE	B-2	FPK 14	35C 75/75	COMMCTN GT	FLD G	025C	2.33± 04	
81	GATE EXPANDABLE	8-2		35C 71/71	COMMCTN GT	REL O		/ 0 5.38£ 04	
G341	GATE	# B-2 # 4	FPK 14	35C 75/75	CO WYNTN GT	FLD G	025C	/ 0 9.97上 03	

