comparison of methods for clustering citation networks

Lovro Šubelj University of Ljubljana Faculty of Computer and Information Science Nees Jan van Eck Leiden University Centre for Science and Technology Studies Ludo Waltman Leiden University Centre for Science and Technology Studies

NetSci-X '16

study overview

problem

grouping publications into clusters based on citation relations

means

graph partitioning/community detection methods on citation networks

goals

clusters of topically related publications or research areas

wishes

experts should recognize cluster topics

small differences in cluster sizes limited number of tiny clusters robustness to small perturbations reasonable computational complexity

citation networks

data

in-house version of Web of Science database of CWTS

networks

citation networks represented as simple undirected graphs

field	period	# publications	# nodes	# links
Scientometrics	2009-2013	2,402	1,998	5,496
L&IS	1996-2013	43,741	32,628	131,989
Physics	2004-2013	1,314,458	1,233,542	9,838,008
WoS	2004-2013	11,780,132	11,063,916	122,148,955

Scientometrics — journals Journal of Informetrics, Scientometrics and JASIST

L&IS — Information Science & Library Science journal subject category

Physics — eight Physics journal subject categories and Astronomy & Astrophysics

WoS — all journal subject categories in Web of Science

clustering methods

methods

30 basic/derived graph partitioning/community detection methods

class	method	description
Spectral analysis	Graclus(S L)	k-means clustering iteration
	METIS(S L)	multi-level k-way partitioning
Map equation	Infomap	information flows compression
	Hiermap	hierarchical flows compression
Modularity optimization	Louvain	greedy hierarchical optimization
	Mouvain	multi-level hierarchical optimization
	SLM	smart local moving optimization
Statistical methods	OSLOM	order statistics local optimization method
Label propagation	LPA	label propagation algorithm
	BPA	balanced propagation algorithm
	DPA	diffusion-propagation algorithm
	HPA	hierarchical propagation algorithm
	COPRA	community overlap propagation algorithm
Random walks	Walktrap	random walks hierarchical clustering
Link clustering	Links(S L)	link similarity hierarchical clustering
Graph models	BigClam(S L)	cluster affiliation matrix factorization
	CoDA(S L)	communities through directed affiliations
Ego-networks	DEMON	democratic estimate of modular organization
Cliques	SCP	sequential clique percolation
	GCE	greedy clique expansion
2-step methods	Metilus	METIS+Graclus
	Gracmap	Graclus+Infomap
	Metimap	METIS+Infomap
	Louvmap	Louvain+Infomap
	Labmap	LPA+Infomap

2-step — second method applied to clusters obtained by first method S|L — small|large clusters

clustering distances

clusterings distances between clusterings by considered methods

10/15 selected representative methods

distance — normalized variation of information of clusterings

clustering distributions

SiZES
size distributions of clusterings by representative methods
from homogeneous to inhomogeneous distributions

clustering degeneracy

ranges

degeneracy diagrams of clusterings by representative methods

narrowing effective ranges from left to right

7/15

clustering metrics

metrics

standard metrics of clusterings by representative methods

 \approx 1500 clusters and decreasing Flake score from top/bottom

method	# clusters	degree	expansion	Flake	modularity
Graclus	2175	2.4	5.8	52%	0.29
OSLOM	1914	3.8	4.4	37%	0.45
Infomap	1871	5.0	3.2	19%	0.60
Louvain	488	6.8	1.2	3%	0.73
Walktrap	1127	6.5	1.6	7%	0.69
BPA	1002	7.0	1.0	3%	0.66
COPRA	3826	6.8	1.2	15%	0.65
Links	2933	6.4	1.8	20%	0.09
SCP	1969	4.9	3.2	37%	0.22
GCE	682	4.1	4.0	29%	0.43

degree — average node intra-cluster or internal degree expansion — average node inter-cluster or external degree Flake — % nodes with larger external than internal degree

clustering bibmetrics

bibmetrics

bibliometric metrics of clusterings by representative methods

orders $\gg 1$ and increasing coverage from top/bottom

method	size	orders	diameter	coverage	uncertainty
Graclus	15.0	1.1	3.4	29%	0.42
OSLOM	16.0	2.6	4.8	46%	0.36
Infomap	17.3	2.7	4.3	62%	0.13
Louvain	66.7	3.3	9.1	85%	0.19
Walktrap	29.0	3.4	7.8	80%	0.00
BPA	32.0	3.6	7.3	86%	0.21
COPRA	8.8	4.0	6.9	85%	0.22
Links	10.1	4.3	11.1	78%	0.05
SCP	16.6	4.2	23.1	61%	0.02
GCE	47.8	3.3	12.0	50%	0.24

orders — orders of magnitude spanned by cluster sizes diameter — average within cluster effective diameter uncertainty — variation of information of clusterings coverage — % links covered by clusters

clustering tool

assessment tool

CitNetExplorer for analyzing citation networks

freely available at www.citnetexplorer.nl

clustering resolution

clusterings for L&IS by representative methods

hands-on expert assessment for scientometrics using CitNetExplorer

low resolution Walktrap and BPA

BPA returns one cluster covering scientometrics

high resolution Graclus(S|L) and METIS(S|L)

Graclus returns four clusters covering h-index

topics resolution
OSLOM, Louvain, Metimap and Infomap

OSLOM, Louvain return ambigous/heterogeneous clusters

clustering assessment

expert assessment

largest scientometrics clusters by Metimap and Infomap methods identified research topics of clusters covering $\approx 75\%$ publications

clustering WoS

clustering metrics for WoS by fastest methods

method	size	orders	degree	coverage	Flake	complexity
Metilus	50.0	2.3	5.9	27%	69%	30 min
Metimap	33.2	3.6	10.3	47%	45%	94 min
Louvain	334.4	5.7	18.5	84%	5%	52 min
BPA	105.4	6.2	18.5	84%	7%	66 min

post-processing

tiny clusters < 15 nodes merged by maximizing likelihood

method	size	orders	degree	coverage	Flake	complexity
Metilus+post.	51.5	2.2	5.9	27%	69%	34 min
Metimap+post.	58.9	3.6	10.3	47%	45%	99 min
Louvain+post.	320.9	4.9	15.2	69%	17%	79 min
BPA+post.	167.1	6.2	18.0	82%	9%	114 min

giant clusters $> 10^4$ nodes repartitioned by same method

study summary

conclusions

methods return substantially different clusterings no method performs satisfactory by all criteria straightforward post-processing performs poorly

map equation methods provide good trade-off

limitations

limitations of expert assessment of clusterings limited number of methods with default parameters no directed, overlapping, multi-resolution, principled methods no equivalence clusters or co-citation and bibliographic coupling

arXiv:1512.09023

Lovro Šubeli University of Ljubljana

lovro.subelj@fri.uni-lj.si lovro.lpt.fri.uni-lj.si

Nees Jan van Eck Leiden University

ecknjpvan@cwts.leidenuniv.nl www.neesjanvaneck.nl

Ludo Waltman Leiden University

waltmanlr@cwts_leidenuniv_nl www.ludowaltman.nl