Homework 6 Report -Text Sentiment Classifation

學號:B04501095 系級: 土木三 姓名:黃平瑋

1. (1%)請比較有無normalize的差別。並說明如何normalize.

normalization的方法是將train data 85萬筆的rating資料做標準化的處理, 並將標準差和平均值 先儲存起來, 在predict時在套用到testing set上面

	training rmse	public rmse	testing rmse
有normalize	0.6933	0.85989	0.85338
無normalize	0.6157	0.85637	0.85432

(training rmse 因為有除以標準差, 所以比testing資料低了些, 資料的標準差大約為1.1)由上表可以看出, 我的model在經過標準化的處理後, 其實差異沒有太大

2. (1%)比較不同的embedding dimension的結果。

dimension	training rmse	public rmse	testing rmse
16	0.6523	0.87063	0.86424
64	0.6833	0.85989	0.85338
128	0.6725	0.85894	0.85345
256	0.6659	0.86200	0.85626

(training rmse 因為有除以標準差, 所以比testing資料低了些, 資料的標準差大約為1.1) 由上表可以看出不同的embedding dimension其實差距沒有太大, 擁有相近的誤差, 唯一比較大 的差距是較高維的latent vector需要較多的epoch才能收斂

3. (1%)比較有無bias的結果。

	training rmse	public rmse	testing rmse
有bias	0.6833	0.85989	0.85338
無bias	0.5256	0.86365	0.85668

(training rmse 因為有除以標準差, 所以比testing資料低了些, 資料的標準差大約為1.1) 在我的實做的model中有加入bias後的表現比沒有加bias的結果稍微好了一點, 但兩者的差異並不大, 而有加bias的需要較少的epoch即可收斂

4. (1%)請試著將movie的embedding用tsne降維後,將movie category當作 label來作圖。

我將幾個類別相近的電影劃分成一群, 總共有六群電影的類別, 取出model input layer 和 movie 的embedding layer將3800筆電影embed成64維的向量, 再使用tSNE降維到二維平面, 結果如下圖:

color	genre
red	Animation, Children's, Comedy
green	Adventure, Action, Western
blue	Romance, Drama, Musical
black	Documentary, War
yellow	Fantasy, Sci-Fi
orange	Crime, thriller, Horror, Mystery, Film-Noir

可以看出不同群的data幾乎是沒有分開的,推測會有這樣的結果,是因為model在訓練的target 是rating, 所以embedding layer會去maxmize不同電影和**rate**之前的關係 所以就沒有有效的涵蓋到不同種類電影所隱含的feature,造成最後cluster的結果欠佳

5. (1%)試著使用除了rating以外的feature, 並說明你的作法和結果,結果好壞不會影響評分。

除了使用rating做matrix factorization預測外, 我還加入了其他的feature如age, gender, occupation, genre, 以下是各個feature的處理方法

- **genre**透過one-hot encoding 轉換成18維的向量, 再透過一層dense layer轉換成和 embedding dimension相同的維度
- age每隔10歲當作一個區間, 大於60歲算一個區間, 透過one-hot encoding可以變成一個 7維的向量, 再透過一層dense layer轉換成scalar
- **gender**為0或1的scalar
- occupation我也是利用one hot encoding將其劃分成8個區間, 再透過一層dense layer 轉換成和embedding dimension相同的維度

將user_id, movie_id, genre, occupation四個向量兩兩彼此做內積, 最後在通過兩層Dense layer

dimension	training rmse	public rmse	testing rmse
64	0.6523	0.88537	0.89284
128	0.6833	0.90061	0.90677
256	0.6725	0.90119	0.90691

這是最後DNN在不同維度上的結果,可以看到在幾個維度中都沒有比matrix factorization的結果還要好,可能是network參數過多使得model overfit