# The R package trioClasses for definition of the class FamilyExperiment, an extension of SummarizedExperiment, for use in trio based analyses of genetic data.

Samuel G. Younkin

March 16, 2013

## 1 Packages & Data

```
> library("trioClasses")
> data("sample")
> data("8q24-european-all.sm")
```

### 2 SummarizedExperiment

# 3 Pedigree

> ped <- PedClass(ped.DF)

# 4 FamilyExperiment

```
> (ste <- FamilyExperiment(se, pedigree = ped))

class: FamilyExperiment
dim: 8951 960
exptData(0):
assays(1): geno
rownames(8951): chr8:129296000 chr8:129296113 ...
    chr8:130354703 chr8:130354790
rowData metadata column names(0):
colnames(960): H_ME-DS10776_2-DS10776_2
    H_ME-DS10776_3-DS10776_3 ... H_ME-DS11313_3-DS11313_3
    H_ME-DS11313_1-DS11313_1
colData names(1): id
pedigree(4139): famid id fid mid sex dx
complete trios(320):</pre>
```

#### 5 Methods

#### 5.1 ScanTrio

```
> (ste.rare <- ste[!(MAF(ste) >= 0.01 | is.na(MAF(ste)))])
class: FamilyExperiment
dim: 6397 960
exptData(0):
assays(1): geno
rownames(6397): chr8:129296113 chr8:129296185 ...
  chr8:130354703 chr8:130354790
rowData metadata column names(0):
colnames(960): H_ME-DS10776_2-DS10776_2
  H_ME-DS10776_3-DS10776_3 ... H_ME-DS11313_3-DS11313_3
 H_ME-DS11313_1-DS11313_1
colData names(1): id
pedigree(4139): famid id fid mid sex dx
complete trios(320):
> window <- rowData(ste.rare) + 250000</pre>
> system.time(scan.trio <- ScanTrio(object = ste.rare,
     window = window, block = range(rowData(ste.rare))))
           system elapsed
    user
18502.82
            17.41 18522.39
> scan.trio
DataFrame with 6397 rows and 7 columns
            lr minor.in major.in minor.out major.out mendel.in
     <numeric> <integer> <integer> <integer> <integer> <integer>
1
      2.453997
                     1478
                               1699
                                         3970
                                                    4315
                                                                 0
2
      2.453997
                    1478
                               1699
                                         3970
                                                    4315
                                                                 0
3
      2.453997
                    1478
                               1699
                                         3970
                                                    4315
                                                                 0
4
      2.453997
                    1478
                               1699
                                         3970
                                                    4315
                                                                 0
5
      2.453997
                    1478
                               1699
                                         3970
                                                    4315
                                                                 0
6
     2.453997
                    1478
                               1699
                                         3970
                                                    4315
                                                                 0
7
      2.129824
                    1483
                               1699
                                         3965
                                                    4315
                                                                 Ω
8
      2.129824
                    1483
                               1699
                                         3965
                                                    4315
                                                                 0
9
      2.182580
                    1483
                               1700
                                         3965
                                                                 0
                                                    4314
                     . . .
                                                    . . .
                                . . .
                                          . . .
6389 1.622246
                    1270
                               1449
                                         4178
                                                    4565
                                                                 0
6390 1.589757
                    1270
                               1448
                                         4178
                                                    4566
                                                                 0
6391 1.572905
                    1266
                               1443
                                         4182
                                                    4571
                                                                 0
6392 1.485017
                    1266
                               1440
                                         4182
                                                    4574
                                                                 0
6393 1.464183
                    1264
                                         4184
                                                    4577
                                                                 0
                               1437
6394 1.581660
                    1255
                               1431
                                         4193
                                                    4583
                                                                 0
6395 1.585349
                    1254
                               1430
                                         4194
                                                    4584
                                                                 0
6396 1.625565
                    1252
                               1429
                                         4196
                                                    4585
                                                                 0
6397 1.625565
                    1252
                               1429
                                         4196
                                                    4585
                                                                 0
    mendel.out
```

|      | <integer></integer> |
|------|---------------------|
| 1    | 0                   |
| 2    | 0                   |
| 3    | 0                   |
| 4    | 0                   |
| 5    | 0                   |
| 6    | 0                   |
| 7    | 0                   |
| 8    | 0                   |
| 9    | 0                   |
|      |                     |
| 6389 | 0                   |
| 6390 | 0                   |
| 6391 | 0                   |
| 6392 | 0                   |
| 6393 | 0                   |
| 6394 | 0                   |
| 6395 | 0                   |
| 6396 | 0                   |
| 6397 | 0                   |

<sup>&</sup>gt; save(scan.trio, file = "./../data/scan-trio.RData")



# ${\bf 5.2}\quad {\bf Holger-style~Genotype~Matrix}$

Coercion to matrix for trio

```
> geno <- as(ste, "matrix")
> aTDT(geno[, 1:5])
```

Or apply the aTDT method to the Family Experiment directly.

```
> aTDT(ste[1:5])
```

# A Count of Transmission of Variants (TransCount())

#### A.1 Window

```
> window <- gr[100] + 10000
> window2 <- gr[100] + 1000
> block <- range(rowData(ste))
> TransCount(ste, window)
```

#### A.2 Not in window, but in block

> TransCount(ste, setdiff(block, window))

#### A.3 In the whole block

> TransCount(ste, block)

#### A.4 In both windows

> TransCount(ste, GRangesList(window, window2))

#### A.5 Not "In both windows," but in block

# B Count of Transmission of Rare Variants (TransCount())

- B.1 In both windows
- B.2 Not "In both windows," but in block

#### C Classes

#### C.1 SnpMatrix, DataFrame, GRanges

The four key ingredients are the SNP matrix, the pedigree information as a DataFrame, position of the SNPs given by a GRanges object, and covariate data given as a DataFrame.

```
> sm
> ped.DF
> gr
```

#### C.2 SummarizedExperiment

We combine three of the key ingredients when we create the SummarizedExperiment object.

#### C.3 FamilyExperiment

Now, we include the pedigree information as an object of class PedClass. We keep PedClass independent of FamilyExperiment for flexibility.

```
> ped <- PedClass(ped.DF)
> ste <- FamilyExperiment(se, pedigree = ped)</pre>
```

Here is the show method.

> ste

And now we verify that it is indeed an extension of SummarizedExperiment.

> getClass("FamilyExperiment")

#### C.4 PedClass

Now we investigate the pedigree slot of the FamilyExperiment object.

```
> class(pedigree(ste))
> getClass("PedClass")
> pedigree(ste)
```

#### C.5 geno accessor

```
> class(geno(ste))
> getClass("SnpMatrix")
> geno(ste)
```

#### C.6 RowData

> rowData(ste)

#### C.7 ColData

## D Validity