

UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

Máster Universitario en Ingeniería de Telecomunicación

Entregable 2 Síndrome CBL

PSCA

Autor:
Andrés Ruz Nieto

VALENCIA, 2021

TELECOM UPV VL(La matriz generadora de un código bloque lineal (6,3) es:

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \tag{1}$$

Este es un código de repetición (la redundancia es el mensaje que se quiere enviar).

Para cada uno de los posibles síndromes enumere los patrones de error asociados y por cada fila de la siguiente tabla señale el/los más probable(s) en rojo

Síndrome	el	e2	e3	e4	e5	e6	e7	e8
000	000000	001001	010010	011011	100100	101101	110110	111111
001	000001	001000	010011	011010	100101	101100	110111	111110
010	000010	001011	010000	011001	100110	101111	110100	111101
011	000011	001010	010001	011000	100111	101110	110101	111100
100	000100	001101	010110	011111	100000	101001	110010	111011
101	000101	001100	010111	011110	100001	101000	110011	111010
110	000110	001111	010100	011101	100010	101011	110000	111001
111	000111	001110	010101	011100	100011	101010	110001	111000

Tabla 1: Patrones de error

2. Si la palabra recibida es y=(001110)

a) ¿y es palabra código?

$$s_j = yH^T = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$$
 (2)

al obtener un síndrome distinto a (000) se deduce que y no es palabra código

b) ¿Cuál(es) es(son) la(s) palabra(s) código más cercana(s) a la palabra recibida?

$$c = mG = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$
(3)

Si se realiza un XOR entre y y el las filas de la matriz c se puede observar que todas las distancias son de 3 por lo que todas las palabras son igual de cercanas e y no se podrá decodificar correctamente.