Summarization of Optimization Methods

Qinghua Ding

March 2018

1 Nonlinear Optimization

• Gradient Method. $x_{k+1} = x_k - h_k f'(x_k)$

• Newton Method. $x_{k+1} = x_k - [f''(x_k)]^{-1} f'(x_k)$

• Damped Newton Method(divergence). $x_{k+1} = x_k - h_k [f''(x_k)]^{-1} f'(x_k)$

• Quasi-Newton Method(degenerate). $x_{k+1} = x_k - h_k H_k f'(x_k)$

 $H_{k+1}(f'(x_{k+1}) - f'(x_k)) = x_{k+1} - x_k$

• Conjugate Gradient. $x_k = \arg\min\{f(x)|x \in x_0 + L_k\}$

• Penalty Function(constrained). $x_{k+1} = \arg\min_{x \in R} \{f_0(x) + t_k \Phi(x)\}$

• Barrier Function(constrained). $x_{k+1} = \arg\min_{x \in Q} \{f_0(x) + \frac{F(x)}{t_k}\}$ Require Slater condition: $\exists x, \forall i, f_i(x) < 0$

2 Smooth Convex Optimization

• Gradient Descent. $O(\frac{1}{\epsilon})$ for $F_L^{1,1}(R^n)$

 $O(\ln \frac{1}{\epsilon})$ for $S_{\mu,L}^{1,1}(R^n)$

 \bullet Optimal Methods. $O(\ln \frac{1}{\epsilon}) \text{ for } S^{1,1}_{\mu,L}(R^n)$

Based on Global Estimate Sequence

• Gradient Mapping(minmax). $g_Q(x;\gamma) = \gamma(x - x_Q(x;\gamma))$

• Sequential Quadratic Optimization(constrained).

3 Nonsmooth Convex Optimization

• Basic Ideas. Subgradient; Separation Theorem

• Subgradient. $O(\frac{1}{\epsilon^2})$

• Cutting Plane Method with Center Gravity. $O(nln\frac{1}{\epsilon})$

• Ellipsoid Method. $O(n^2 ln^{\frac{1}{6}})$

• Kelly Method. Unstable for Practice

• Level Method. $\Omega(\frac{1}{\epsilon^2})$

• Optimal Method. $O(nln\frac{1}{\epsilon})$

4 Extenions of Convex Optimization

- Cubic Regularization
- Trust Region Method