# Using ML to Predict Social Impact Bond Outcomes

Serena Yin, Nadia Bozeman, Cyra Alesha, Sophie Hollowell

## Table of Contents



01

Problem & Data

# Introduction

Our project seeks to develop a trading strategy that impact investors can utilize to maximize return and profit when investing in Social Impact Bonds.

# Background

#### **Social Impact Bonds**

- Financing mechanism used to fund social programs
- Private investors are not paid back until the social program is "successful"
- Complex to structure and evaluate
- Relatively few have reached maturity globally



### Problem Statement

How can we develop a trading strategy to help advise impact investors when investing in Social Impact Bond to maximize return?



What is the likelihood of the "success" of an SIB?

If an SIB is successful, what is the expected internal rate of return?

#### Data

#### **Data Overview**

- Indigo Impact Bond Dataset
- Curated by the Government Outcomes Lab at the University of Oxford
- Includes records of individual SIB projects globally

#### **Data Features**

- Project Characteristics
  - Name, development stage, # of beneficiaries, SDG goals, etc.
- Outcomes and Results
  - Outcome metrics, targets, validation methods, etc.
- Investments and Repayments
  - Investment instruments, repayment structures, etc.
- Timeline and Status
  - Project duration, start and end dates, etc.

#### Data

#### **Data Quality**

- Very few social impact bonds within dataset have reached maturity
- Dataset was sparse and didn't allow for robust analysis due to lack of data points

#### **ChatGPT Supplement**

- Generated 4 linked datasets:
  - Projects
  - Outcome Metrics
  - Investments
  - Outcome Payments
- Preserved original project IDs and names for consistency
- Used controlled randomization & domain-informed logic to simulate realistic relationships

# Preventing Data Leakage



2

3

# Pre-Investment Data

Simulate real-world conditions using only preinvestment data

# Outcome-based Features

Removed fields that directly reflect project performance

# Pre-Contractual Features

Curated inputs limited to pre-contractual or projected values

# Methodology

# SIB Success Prediction Methodology



## SIB Success Models

| Model                             | Rationale                                                                              | Details                                                           |  |
|-----------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Logistic Regression<br>With Lasso | Used as a baseline to compare performance of other models                              | Uses the success feature in the test set as the prediction        |  |
| Random Forest                     | Captures complex nonlinear patterns and interactions between features, reducing noise  | Used 100 estimators and default parameters                        |  |
| XGBoost                           | Uses gradient boosting to optimize predictions and tends to outperform on tabular data | Trained with n_estimators=100, max_depth=4, and learning_rate=0.1 |  |

#### SIB Success Feature Selection

#### **Feature Selection**

#### Ensemble / Consensus Feature Selection

- Manually filtered out leaky or postinvestment features
- 2. Selected only features available prior to investment decisions
- Trained logistic regression with Lasso (L1 penalty) to shrink unimportant features
- 4. Trained Random Forest and XGBoost, extracted top features
- 5. Final set = safe, statistically important features

#### **Model Inputs**

- Maximum Potential Loss of a Project
- Maximum Potential Return of a Project
- Maximum Potential Outcome Payment
- Potential Return to Loss
- Targeted Number of Service Users
- Return on Investment Estimate

#### **Model Output**

Success (binary target feature)

# IRR Prediction Methodology



## IRR Models

| Model                   | Rationale                                                                       | Details                                                             |  |
|-------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Naïve Average Predictor | Used as a baseline to compare performance of other models                       | Uses the average IRR in the test set as the prediction              |  |
| Linear Regression       | Easily interpretable and implementable                                          | Input features were standardized using StandardScaler               |  |
| Lasso Regression        | Applied to perform feature selection                                            | Optimized alpha = 0.001                                             |  |
| Ridge Regression        | Address potential overfitting issues                                            | Optimized alpha = 10                                                |  |
| Decision Tree           | Simple, interpretable nonlinear model                                           | Tree depth = 1   Min. Sample Leaves = 39                            |  |
| Bagged Trees            | Bagging applied to decision tree to address potential overfitting               | Number of Trees = 50                                                |  |
| Random Forest           | Handle noisy features and improve generalization performance                    | Num of Trees = 50   Max Tree Depth = 5  <br>Min. Sample Leaves = 58 |  |
| XGBoost                 | Gradient boosting method to capture complex nonlinear patterns and interactions | Max Depth = 3, N Estimators = 50                                    |  |

### **IRR Model Parameters**

| Model            | Parameters Tuned                                                                                                       |  |  |
|------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Lasso Regression | <ul><li>Optimal stepsize</li><li>GridSearch CV with 5-fold cross validation</li></ul>                                  |  |  |
| Ridge Regression | <ul><li>Optimal stepsize</li><li>GridSearch CV with 5-fold cross validation</li></ul>                                  |  |  |
| Decision Tree    | <ul> <li>Tree Depth &amp; Min. Samples in Each Leaf</li> <li>GridSearch CV with 5-fold cross validation</li> </ul>     |  |  |
| Bagged Trees     | <ul><li>Number of Trees</li><li>GridSearch CV with 5-fold cross validation</li></ul>                                   |  |  |
| Random Forest    | <ul> <li>Number of Trees &amp; Min. Samles in Each Leaf</li> <li>GridSearch CV with 5-fold cross validation</li> </ul> |  |  |
| XGBoost          | <ul> <li>Learning rate, max depth, n estimators</li> <li>GridSearch CV with 5-fold cross validation</li> </ul>         |  |  |



## IRR Model Feature Selection

#### **Feature Selection**

#### Ensemble / Consensus Feature Selection

- 1. Trained all models with all features
- Extracted feature importance for all models
- Combined rankings of feature importance by taking union of top 10 from each model
- 4. Used the union of top features as final features selected

#### **Model Inputs**

- Anticipated Project Duration
- Outcome Metric Definition and Target
- Primary SDG goal and targets
- Secondary SDG goal and targets
- Targeted population and # of beneficiaries
- Jurisdiction/geography

#### **Model Output**

Latest Internal Rate of Return

# 03

# Results

## SIB Success Models

| Model      | Accuracy | Precision<br>(Class 1) | Recall<br>(Class 1) | F-1 Score<br>(Class 1) | ROC AUC<br>Score |
|------------|----------|------------------------|---------------------|------------------------|------------------|
| Logistic   | 0.87     | 0.87                   | 1.00                | 0.93                   | 0.7477           |
| Regression |          |                        |                     |                        |                  |
| Random     | 0.89     | 0.89                   | 1.00                | 0.94                   | 0.5682           |
| Forest     |          |                        |                     |                        |                  |
| XGBoost    | 0.73     | 0.88                   | 0.8                 | 0.84                   | 0.5159           |
|            |          |                        |                     |                        |                  |

- XGBoost underperforms relative to the other models
  - May be overfitting, poorly tuned, or not suited to this dataset
- Random Forest shows strongest overall performance
  - Highest accuracy, perfect recall, and strong precision

# Baseline Comparisons

| Model       | Accuracy | No. of projects invested in | Estimated<br>Return | Notes                                    |
|-------------|----------|-----------------------------|---------------------|------------------------------------------|
| Naïve       | 87.30%   | 63                          | \$4M                | High return and accuracy reflects the    |
| Classifier  |          |                             |                     | class imbalance in the dataset.          |
| Monte Carlo | 87.21%   | 18 (random)                 | ~ \$1.2M            | Important to learn from project features |
|             |          |                             |                     | rather than investing randomly.          |
| Logistic    | 89.83%   | 59                          | ~\$3.57M            | Correctly identified 53 projects as      |
| Regression  |          |                             |                     | successful.                              |
| Random      | 89.13%   | 46                          | ~\$2.7M             | Correctly identified 41 projects as      |
| Forest      |          |                             |                     | successful.                              |
| XGBoost     | 88.89%   | 36                          | ~\$2.23M            | Conservative nature likely limited       |
|             |          |                             |                     | returns.                                 |

# Baseline Comparisons Reflections

- ML models consistently outperform naive and random baselines in both accuracy and return
- Logistic Regression provided the best return-to-risk balance
- Naïve accuracy is misleading due to class imbalance true learning matters
- XGBoost was most selective, but possibly too conservative
- Results reinforce the value of data-driven project evaluation for impact investing

## **IRR Model Predictions**



## IRR Model Evaluation Metrics

| Model    | Train MSE | Train RMSE | Test MSE | Test RMSE | Train R- | Test R-   |
|----------|-----------|------------|----------|-----------|----------|-----------|
|          |           |            |          |           | squared  | squared   |
| Bagging  | 0.000358  | 0.018918   | 0.000299 | 0.017305  | 0.043143 | -0.026616 |
| Random   | 0.000366  | 0.019134   | 0.000302 | 0.017389  | 0.021125 | -0.036647 |
| Forest   |           |            |          |           |          |           |
| Naïve    | N/A       | N/A        | 0.000303 | 0.017403  | N/A      | -0.038309 |
| Average  |           |            |          |           |          |           |
| Lasso    | 0.000365  | 0.019092   | 0.000308 | 0.017553  | 0.025400 | -0.056338 |
| Ridge    | 0.000340  | 0.018436   | 0.000309 | 0.017591  | 0.091290 | -0.060918 |
| XGBoost  | 0.00324   | 0.017993   | 0.000314 | 0.01778   | 0.134424 | -0.075037 |
| Decision | 0.000350  | 0.018713   | 0.000336 | 0.018317  | 0.063782 | -0.150214 |
| Tree     |           |            |          |           |          |           |
| Linear   | 0.000283  | 0.016810   | 0.000443 | 0.021039  | 0.244540 | -0.517514 |
|          |           |            |          |           |          | Ι ,       |

#### IRR Model Evaluation







#### Test MSE

Only Bagging and Random Forest Models performed better than the Naïve Average Predictor

#### Low R-squared

R-squared values are close to 0, indicating low predictive power of selected features

#### Overfitting

Linear regression had signs of overfitting, while other models had lower errors on the test set than the training set

# Overall Investment Strategy

- 1. Use logistic regression with lasso regularization to predict success of the bond.
- 2. Utilize Bagging or Random Forest models to predict IRR.
  Otherwise, investors should assume the historical average for the IRR of SIB.
- 3. Based on investors' risk appetite, investors can choose to invest in the Social Impact Bond based on whether the bond would achieve their return goals.

04

# Conclusion

### Reflections

#### The Challenges



Data Quality



Class Imbalance



Small Dataset Size



Weak Predictive Signal

#### **Our Responses**

- In-depth pre-processing
- Implementation of a variety of techniques
- Tested many model types
- Robust pipeline of preinvestment features

# Key Takeaways

Simpler Models
Can Outperform
on Imperfect,
Real-World Data

2

Framing ML
Through an
Investor Lens
Enhances
Relevance

3

Robustness to Imbalance and Noise Can Matter More than Accuracy Alone

# Potential Next Steps

#### **Quantify Prediction Confidence**

Integrate uncertainty estimates within current models to better represent the confidence that an investor should have in SIB predictions to guide their investing strategy

#### **Enrich Dataset**

Expand the current dataset or feature coverage by adding external macroeconomic, policy context, or geographic features that may influence SIB outcomes

#### **Bridge to Real-World Use**

Develop investing integration through creating tools to make models applicable to decision-making

# Thank You!

# Appendix

# Further Exploratory Models

| Model                  | Rationale                                                                                       | Details                                                 |  |
|------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| OLS Linear Regression  | Used as a baseline due to its simplicity and interpretability                                   | Used calculated irrAchievedRatio as the target variable |  |
| Lasso Regression       | Reducing noise of redundant information                                                         | Optimized alpha = 0.001                                 |  |
| Ridge Regression       | Reduce model variance and mitigate multicollinearity                                            | Optimized alpha = 0.1                                   |  |
| Feedforward MLP        | Learn feature interactions and capture hidden patterns not handled by linear models             | I I Wo hidden layers and 30 enochs                      |  |
| MLP With Dropout Layer | With Dropout Layer  Address overfitting which might occur due to small dataset  Dropout layer w |                                                         |  |

# Further Exploratory Models

| Model  | Train MSE | Train RMSE | Test MSE | Test RMSE | Train R-<br>squared | Test R-<br>squared |
|--------|-----------|------------|----------|-----------|---------------------|--------------------|
| Linear | 0.028031  | 0.167425   | 0.028699 | 0.169407  | 0.136786            | 0.054612           |
| Lasso  | 0.028411  | 0.168556   | 0.027655 | 0.166298  | 0.125084            | 0.088992           |
| Ridge  | 0.028399  | 0.168518   | 0.027667 | 0.166334  | 0.125467            | 0.088599           |

#### **Linear Model Evaluation**

- MSE and RMSE similar across models suggests minimal overfitting
- $R^2$  is very low ( $\sim$ 0.09) suggests that linear models explain little of the variation in IRR
- Features lack predictive signaling for IRR suggests that a linear model may not be suitable

### Feedforward MLP

| Test MSE | Test MAE | R-squared     |
|----------|----------|---------------|
|          |          | •             |
| _        |          |               |
| 0.8815   | 0.7549   | 0.0571        |
|          |          |               |
|          |          |               |
| 0.8997   | 0.7690   | 0.0375        |
|          |          |               |
|          | 0.8815   | 0.8815 0.7549 |



- Neither MLP Model outperformed the linear model
- Adding a dropout layer further reduced performance
- Dropout is designed to prevent overfitting but in this case, **underfitting** was the bigger issue
- Dataset size (only **314 samples**) likely limits the model's ability to extract deeper patterns

# Exploratory Model Reflections

#### **Investment Strategy Evaluation**

- Strategy: invest in the top 8 projects
   by predicted IRR Ratio
- This improved average return per project from ~\$64K to ~\$100k

#### **Limitations and Considerations**

- Top-N performance boost is likely due to granularity of IRR Ratio predictions, not model precision
- The match between top-ranked predictions and high-return projects may be coincidental
- Narrow top-N selection can create an illusion of strong performance even with weak models