

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application Serial No. 60/481,408, filed September 22, 2003.

Horizontal Binocular Microscope for vertically gravitated and floating samples.

DESCRIPTION

Detailed description

[Para 1] The apparatus consists of the stand for holding the binocular and stand for holding the test tubes. The process is consisting in visual analysis of gravitationally separated fractions of particles continuously, in sample of varying granulometrical consistency. Below are the detail description of the apparatus and process:

[Para 2] 1. The vertical to horizontal change in focusing of binocular microscope is achieved by device on FIG. 2. This device is consisting of rotating in horizontal plain bushing 29, with horizontal rotating bar 26, both holding on vertical sliding bushing 25. This device is easily attachable to conventional binocular microscope and without space or time sacrificing completes the conversion.

[Para 3] 2. Apparatus on FIG. 1 achieves the vertical holding of test tube. The

base of the device is vertical travel bar 113. The test tube holding plate 114 with the vertical guiding hole 115. The test tube is fixed by rubber ring 120, which is placed in holding groove 121 with slight tension.

[Para 4] 3. The vertical positioning of the test tube plate 114 is achieved by a Page 1 of 7

device, consisting of a vertical screw 111 moving the sliding vertical bushing 112 attached to the plate 114. The rotation is set by vertical movement handle 110.

[Para 5] 4. The process consists of horizontally focusing on the visual sample and analyzing it in liquid. The difference from conventional process of sample analyzing is that in vertical position the gravitationally separated fractions of the sample will be not disturbed during the analysis and study of the sample.

CROSS REFERENCE TO RELATED APPLICATIONS

[Para 6] References Cited: US Patent application 10/710840 Kosta Zamfes August 05, 2004.

Field of invention

[Para 7] The invention is related to apparatus and process for visual analyses of gravitationally separated fractions of granular sample in liquid. This apparatus and process are necessary for micro-granulometry analyses that is main part of field and well site analyses of unconsolidated fractions of the formations in sub-strata. Obtaining the quantitative and qualitative degree of fractional separation of particles is beneficial for the physical and petrophysical analyses and formation log interpretation of the formation drilled for Oil and Gas or other targets.

FIELD OF INVENTION

[0002] The invention is related to apparatus and process for visual analyses of gravitationally separated fractions of granular sample in liquid. This apparatus and process are necessary for micro-granulometry analyses that is main part of field and well site analyses of unconsolidated fractions of the formations in sub-strata. Obtaining the quantitative and qualitative degree of fractional separation of particles is beneficial for the physical and petrophysical analyses and formation log interpretation of the formation drilled for Oil and Gas or other targets.

Background of invention

[Para 8] — During drilling of a well the knowledge of micro-granulometrical properties of the unconsolidated formations is one of the primary information in Oil and Gas exploration. The gravitationally separated fractions are easily disturbed if the vertical position of sample is changed to horizontal. For proper Microgranulometry analysis it is necessary to position the sample in the tube and hold it firmly with capability of vertical movement, in front of the Horizontally Focusable Binocular Microscope. Conventionally some of the cutting analyses are done under the vertically focused binocular microscope with great difficulty and low quality. Especially difficult are to analyze the sands and silts within clay matrices and sandy and silty clays/shales. We disclose the ways to obtain the visual analysis of gravitationally separated fractions continuously in sample of varying granulometrical consistency.

BACKGROUND OF INVENTION

[0003] During drilling of a well the knowledge of micro-granulometrical properties of the unconsolidated formations is one of the primary information in Oil and Gas exploration. The gravitationally separated fractions are easily disturbed if the vertical position of sample is changed to horizontal. For proper Microgranulometry analysis it is necessary to position the sample in the tube and hold it firmly with capability of vertical movement, in front of the Horizontally Focusable Binocular Microscope. Conventionally some of the cutting analyses are done under the vertically focused binocular microscope with great difficulty and low quality. Especially difficult are to analyze the sands and silts within clay matrices and sandy and silty clays/shales. We disclose the ways to obtain the visual analysis of gravitationally separated fractions continuously in sample of varying granulometrical consistency.

Summary of invention

[Para 9] Apparatus and process of this invention are provided for obtaining the horizontal focusing on binocular microscope and vertical holding of the gravitationally separated sample in the tube for visual analyses of separated fractions of particles without disturbing the sequences.

[Para 10] 1. The vertical to horizontal change in focusing of binocular microscope is achieved by device on FIG. 2. This device is consisting of rotating in horizontal plain bushing 29, with horizontally rotating bar 26, both holding on vertical sliding bushing 25.

[Para 11] 2. Apparatus on FIG. 1 achieves the vertical holding of test tube. The base of the device is vertical travel bar 113. The test tube holding plate 114 with the vertical guiding hole 115. The test tube is fixed by rubber ring 120, which is placed in holding groove 121 with slight tension.

[Para 12] 3. The device consisting of vertical screw 111, which is moving the sliding vertical bushing 112 attached to the plate 114, achieves the vertical positioning of the test tube plate 114. The rotation of screw 111 is set by vertical movement handle 110.

SUMMARY OF INVENTION

[0004] Apparatus and process of this invention are provided for obtaining the horizontal focusing on binocular microscope and vertical holding of the gravitationally separated sample in the tube for visual analyses of separated fractions of particles without disturbing the sequences.

[0005] The vertical to horizontal change in focusing of binocular microscope is achieved by device on FIG. 2. This device is consisting of rotating in horizontal plain bushing 29, with horizontally rotating bar 26, both holding on vertical sliding bushing 25.

[0006] Apparatus on FIG. 1 achieves the vertical holding of test tube. The base of the device is vertical travel bar 113. The test tube holding plate 114 with the vertical guiding hole 115. The test tube is fixed by rubber ring 120, which is placed in holding groove 121 with slight tension.

[0007] The device consisting of vertical screw 111, which is moving the sliding vertical bushing 112 attached to the plate 114, achieves the vertical positioning of the test tube plate 114. The rotation of screw 111 is set by vertical movement handle 110.

BRIEF DESCRIPTION OF DRAWINGS

[Para 13] FIG. 1. is a schematic of horizontally focused binocular for vertically gravitated and floating particles samples.

[Para 14] FIG. 2. is a schematic of Assembly for changing the vertical focusing to horizontal.

[Para 1 5] FIG. 3. is a schematic of Vertical test tube holding.

[Para 16] FIG. 4. is a schematic of Elastic side holder for vertically placed test tubes.

BRIEF DESCRIPTION OF DRAWINGS

[0008] FIG. 1. is a schematic of horizontally focused binocular for vertically gravitated and floating particles samples.

[0009] FIG. 2. is a schematic of Assembly for changing the vertical focusing to horizontal.

[0010] FIG. 3. is a schematic of Vertical test tube holding.

[0011] FIG. 4. is a schematic of Elastic side holder for vertically placed test tubes.

DETAILED DESCRIPTION

[0012] The apparatus consists of the stand for holding the binocular and stand for holding the test tubes. The process is consisting in visual analysis of gravitationally separated fractions of particles continuously, in sample of varying granulometrical consistency. Below are the detail description of the apparatus and process:

[0013] The vertical to horizontal change in focusing of binocular microscope is achieved by device on FIG. 2. This device is consisting of rotating in horizontal plain bushing 29, with horizontal rotating bar 26, both holding on vertical sliding bushing 25. This device is easily attachable to conventional binocular microscope and without space or time sacrificing completes the conversion.

[0014] Apparatus on FIG. 1 achieves the vertical holding of test tube. The base of the device is vertical travel bar 113. The test tube holding plate 114 with the vertical guiding hole 115. The test tube is fixed by rubber ring 120, which is placed in holding groove 121 with slight tension.

[0015] The vertical positioning of the test tube plate 114 is achieved by a device, consisting of a vertical screw 111 moving the sliding vertical bushing 112 attached to the plate 114. The rotation is set by vertical movement handle 110.

[0016] The process consists of horizontally focusing on the visual sample and analyzing it in liquid. The difference from conventional process of sample analyzing is that in vertical position the gravitationally separated fractions of the sample will be not disturbed during the analysis and study of the sample.

ABSTRACT

We disclose an apparatus and process for visual observation and measurement of aggregated, granular and floating or suspended particles samples, which are gravitationally separated. The first part of apparatus is the horizontally focused binocular microscope with vertical positioning. The second part of the apparatus is the revolving test tube holder with vertical positioning and rubber ring for soft tube position fixing. The process is consisting in horizontal focusing on the visual sample analyzing it in liquid. The difference from conventional process of sample analyzing is that in vertical position the gravitationally separated fractions of the sample will be not disturbed during the analysis and study of the sample. This will make possible to study the micro-granulometry samples under horizontally focused binocular microscope. Microgranulometry is disclosed in US Patent application 10/710840 August 05, 2004 by the author. This will make also possible to use different liquids for gravitational separation of particles and granules without contaminating the environments and degrading working conditions.

ABSTRACT

An apparatus and process for visual observation and measurement of aggregated, granular and floating or suspended particles samples, which are gravitationally separated is disclosed. The first part of apparatus is the horizontally focused binocular microscope with vertical positioning. The second part of the apparatus is the revolving test tube holder with vertical positioning and rubber ring for soft tube position fixing. The process is consisting in horizontal focusing on the visual sample analyzing it in liquid. The difference from conventional process of sample analyzing is that in vertical position the gravitationally separated fractions of the sample will be not disturbed during the analysis and study of the sample. This will make possible both to study the micro-granulometry samples under horizontally focused binocular microscope and to use different liquids for gravitational separation of particles and granules without contaminating the environments and degrading working conditions.