Definiciones y Ejemplos

Prof. Jhon Fredy Tavera Bucurú

2025

Presentación

EDO de primer orden EDO lineal de primer orden

Definición de Ecuación Diferencial Ordinaria (EDO)

Definición EDO

Una **ecuación diferencial ordinaria de** *n***-ésimo orden** es aquella que describe una relación entre:

- La variable independiente x,
- La función desconocida y(x),
- Sus *n* primeras derivadas: y'(x), y''(x), ..., $y^{(n)}(x)$.

De manera general, se puede escribir como:

$$F(x, y, y', y'', ..., y^{(n)}) = 0.$$

Ejemplo

La ecuación

$$y''' + 2e^y + y' = x^4$$

es una ecuación diferencial de tercer orden, pues la máxima derivada presente es y'''.

$$F(x, y, y'.y'', y''') = y''' + 2e^{y} + y' - x^{4}$$

Definición Grado

El grado de una ecuación diferencial es el exponente al cual está elevada la derivada de mayor orden que aparece en la ecuación. Si dicha derivada está elevada a un exponente que no es un número natural o forma parte del argumento de una función trascendente (por ejemplo, sin, ln, exp, etc.), el grado de la ecuación no está definido.

Ejemplos

- 1. $x^2 y''' + 2x^2 y' + 3x y' + 4x = 0$ Es una ecuación diferencial ordinaria de **tercer orden** y **primer grado**.
- 2. $(y')^2 = \sin(x) + y e^x$ Es una ecuación diferencial ordinaria de **segundo orden** y **grado 2**.
- 3. $e^{\frac{d^2y}{dx^2}} + \frac{dy}{dx} = \sin(x)$, es un ejemplo de ecuación diferencial de segundo orden *Nótese que en este ejemplo no tiene sentido hablar del grado de la ecuación*.

Definición (Linealidad)

Una **ecuación diferencial ordinaria** es **lineal** si puede escribirse en la forma:

$$a_n(x)\frac{d^ny}{dx^n}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdots+a_1(x)\frac{dy}{dx}+a_0(x)y+g(x)=0,$$

donde $a_i(x)$ y g(x) son funciones que **no dependen** de la función incógnita y ni de sus derivadas. Si la ecuación diferencial no puede llevarse a esta forma, se dice que la ecuación es **no lineal**.

Ejemplos

EDO Lineal (Ecuación de Bessel):

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0,$$

EDO de segundo orden y lineal.

EDO No Lineal (Ecuación del Péndulo):

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin(\theta) = 0,$$

donde $\theta(t)$ es el ángulo que forma el péndulo con la vertical, g la aceleración gravitatoria y I la longitud del péndulo.

Solución de una Ecuación Diferencial Ordinaria

Definición (Solución EDO)

Sea la EDO

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

Una función ϕ se denomina **solución** de la EDO sobre el intervalo (α, β) si existen todas las derivadas $\phi', \phi'', \dots, \phi^{(n)}$ y se satisface

$$F(x, \phi, \phi', \phi'', \ldots, \phi^{(n)}) = 0$$

para toda x en $\alpha < x < \beta$.

Ejemplo: Verificación de una Solución

Ecuación Diferencial

Considérese la EDO:

$$x^2y'' - 3xy' + 4y = 0, x > 0.$$

Solución Propuesta

$$\phi_1(x) = x^2 \ln(x).$$

Verificaremos que $\phi_1(x)$ satisface la ecuación diferencial.

Cálculo de Derivadas

$$\phi_1'(x) = \frac{d}{dx} [x^2 \ln(x)] = 2x \ln(x) + x,$$

$$\phi_1''(x) = \frac{d}{dx} [2x \ln(x) + x] = 2 \ln(x) + 2 + 1 = 3 + 2 \ln(x).$$

Verificación

Al sustituir en la EDO:

$$x^2 \phi_1''(x) - 3x \phi_1'(x) + 4 \phi_1(x),$$

se obtiene

$$x^{2}(3+2\ln(x)) - 3x(x+2x\ln(x)) + 4(x^{2}\ln(x)),$$

= $3x^{2} + 2x^{2}\ln(x) - 3x^{2} - 6x^{2}\ln(x) + 4x^{2}\ln(x) = 0.$

Por lo tanto, $\phi_1(x) = x^2 \ln(x)$ es solución de la ecuación diferencial.

Ejemplo solución No Definida en Todo ${\mathbb R}$

Ecuación Diferencial

$$\frac{dy}{dx} + \tan(x) y = 0$$

Solución

La función

$$y(x) = K \cos(x)$$

es una solución. Note que pese a que $y(x)=K\cos(x)$ es una función que es posible definirla en todos los reales, es solución solamente en intervalos que no incluyan los puntos $x=\frac{\pi}{2}+k\pi$ $k\in\mathbb{Z}$ donde $\tan(x)$ no está definida.

Solución Explícita

Definición (Solución Explícita)

Una solución explícita de la ecuación diferencial

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

es una función y = f(x) donde y está escrita **explícitamente** en términos de x. Es decir, se ha **despejado** y como función de x.

Ejemplo

Como los vistos anteriormente

Solución Implícita

Definición (Solución Implícita)

Una solución implícita de la ecuación diferencial

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

en un intervalo I está dada por una relación g(x, y) = 0 que cumple:

- 1. g(x,y)=0 define implícitamente a y como función de x en I. Es decir, existe $\phi(x)$ tal que $(x,\phi(x))$ satisface g(x,y)=0 para todo $x\in I$.
- 2. $\phi(x)$ es *n* veces diferenciable en *I* y, al sustituir $\phi(x)$ y sus derivadas en la EDO, ésta se verifica en todo *I*.

En otras palabras, la ecuación g(x,y)=0 determina una familia de soluciones $\phi(x)$ sin que se haya aislado explícitamente la función y.

Ejemplo de Solución Implícita

Ejemplo

Sea C > 0 un número real. la relación:

$$x^2 + y^2 = C,$$

determina una solución implícita de la EDO

$$y\frac{dy}{dx} + x = 0$$

en el intervalo $(-\sqrt{C}, \sqrt{C})$

Verificación

- Differenciando implícitamente $x^2 + y^2 C = 0$, se obtiene $2x + 2y \frac{dy}{dx} = 0$.
- ▶ Dividiendo entre 2, $x + y \frac{dy}{dx} = 0$
- Las funciones $\phi(x) = \pm \sqrt{C x^2}$ (definidas en $(-\sqrt{C}, \sqrt{C})$) satisfacen la relación original y su derivada cumple con la EDO en dicho intervalo.

Por lo tanto, $x^2 + y^2 = C$ determina soluciones implícitas de la ecuación diferencial en $(-\sqrt{C}, \sqrt{C})$.

Definición de Problema de Valor Inicial (PVI)

Definición (Problema de Valor Inicial)

Sea una ecuación diferencial ordinaria de orden *n*:

$$F(x, y, y', y'', ..., y^{(n)}) = 0.$$

Un **problema de valor inicial (PVI)** consiste en buscar una solución definida en un intervalo I que satisfaga **condiciones iniciales** en un punto $x_0 \in I$, de la forma:

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1},$$

donde $y_0, y_1, \ldots, y_{n-1}$ son constantes dadas. Al conjunto de la ecuación y las n condiciones iniciales se le denomina **problema de Cauchy** o **problema de valor inicial**.

Ejemplo de PVI

Consideremos la ecuación diferencial de primer orden:

$$\frac{dy}{dx} - \frac{y}{x} = x e^x, \quad x \neq 0,$$

y la condición inicial:

$$y(1) = e - 1.$$

Se busca la solución particular que satisfaga dicho valor inicial.

Solución General

Una familia de soluciones para esta ecuación es:

$$y(x) = x e^x + c x, \quad c \in \mathbb{R}.$$

Al derivar e insertar en la ecuación se verifica que cumple la EDO para cualquier c.

1

¹familia de soluciones

Solución Particular

Para hallar c que satisfaga y(1) = e - 1:

$$y(1) = 1 \cdot e^1 + c \cdot 1 = e + c.$$

Entonces:

$$e + c = e - 1 \implies c = -1$$
.

Por lo tanto, la solución particular del PVI es:

$$y(x) = x e^x - x.$$

Definición: Ecuación Diferencial Lineal de Primer Orden

Forma General

Sea una ecuación diferencial ordinaria (EDO) de primer orden

$$y' = f(x, y)$$

si f es lineal con respecto a la variable y, es decir se puede escribir de la forma

$$\frac{dy}{dx} + p(x)y = g(x),$$

donde p(x) y g(x) son funciones dadas, continuas en un intervalo de la variable independiente x. Decimos que es una EDO lineal de primer orden.

Ejemplo: EDO Lineal de Primer Orden

$$\frac{dy}{dx} + \frac{1}{2}y = \frac{3}{2},$$

$$\frac{\frac{dy}{dx}}{y - 3} = -\frac{1}{2}$$

$$\frac{d}{dx} \ln|y - 3| = -\frac{1}{2}$$

$$\ln|y - 3| = -\frac{x}{2} + C,$$

$$|y - 3| = e^{C} e^{-x/2}$$

$$y = 3 + ce^{-x/2}$$

Observación

Note que si multiplicamos a $y = 3 + ce^{-x/2}$ por $e^{\frac{x}{2}}$ obtenemos

$$y e^{\frac{x}{2}} = 3 e^{\frac{x}{2}} + c,$$

y al derivar con respecto a x, se obtiene

$$(y' + \frac{1}{2}y) e^{x/2} = \frac{3}{2}e^{x/2}$$
$$\frac{dy}{dx} + \frac{1}{2}y = \frac{3}{2},$$

lo que muestra que $e^{\frac{x}{2}}$ actúa como **factor integrante** adecuado. Integrando, se llega a la solución de la ecuación original. Este procedimiento es aplicable a toda ecuación lineal de primer orden, multiplicando por $\mu(x) = \exp(\int p(x) \, dx)$.

Factor Integrante en EDO Lineal de Primer Orden

Planteamiento General

Considérese la ecuación diferencial

$$y'+p(x)y=g(x).$$

Multiplicamos ambos lados por una función $\mu(x)$, el **factor integrante**, de modo que

$$\mu(x) y' + \mu(x) p(x) y = \mu(x) g(x).$$

El objetivo es que el lado izquierdo sea la **derivada** de $\mu(x)$ y:

$$\frac{d}{dx}(\mu(x)y) = \mu'(x)y + \mu(x)y'.$$

Note que si sumamos y restamos en el término de la izquierda

$$\begin{split} \mu(x) \left[y' + p(x) \, y \right] &= \mu(x) \, y' \, + \, \mu(x) \, p(x) \, y \\ &= \underbrace{\left[\mu(x) \, y' + \mu'(x) \, y \right]}_{\text{derivada de } \mu(x) \, y} - \underbrace{\left[\mu'(x) \, y \, - \, \mu(x) \, p(x) \, y \right]}_{\text{término agregado y restado}}. \end{split}$$

Para que el segundo corchete sea cero, se impone

$$\mu'(x) y - \mu(x) p(x) y = 0 \implies \mu'(x) = p(x) \mu(x).$$

De esta forma,

$$\mu(x)[y'+p(x)y] = \mu(x)y'+\mu'(x)y = \frac{d}{dx}[\mu(x)y],$$

cumpliendo así la condición que hace integrable el primer miembro de la ecuación.

Factor Integrante

si asumimos $\mu(x) > 0$. Entonces,

$$\frac{\mu'(x)}{\mu(x)} = p(x)$$

$$\frac{d}{dx} \ln \mu(x) = p(x)$$

$$\ln \mu(x) = \int p(x) \, dx + k$$

donde k es una constante. Al elegir k=0 para simplificar, se obtiene

$$\mu(x) = \exp\left(\int p(x) dx\right).$$

Observaciones

▶ Bajo esta forma, $\mu(x)$ permanece **positiva** para todo x, tal como se supuso y Cualquier otra elección de k solo multiplicaría $\mu(x)$ por una constante positiva, sin afectar el resultado final de la integración en la ecuación lineal

Reemplazo en la Ecuación Original

De esta forma, el lado izquierdo se convierte en la derivada:

$$\frac{d}{dx}[\mu(x)y] = \mu(x)g(x).$$

Integración e Inserción del Factor Integrante

Integrando ambos lados respecto a x:

$$\mu(x) y = \int \mu(x) g(x) dx + C.$$

Finalmente, se despeja y:

$$y = \frac{1}{\mu(x)} \Big(\int \mu(x) g(x) dx + C \Big).$$

Esta expresión representa la **solución general** de la ecuación lineal de primer orden.

Ejemplo de Problema de Valor Inicial (PVI)

Ecuación y Condición Inicial

$$\frac{dy}{dx} + 2y = e^{-x}, \quad y(0) = 0.75.$$

Solución General EDO lineal primer orden

$$\mu(x) = \exp(\int 2 dx) = e^{2x}.$$

luego,

$$y = \frac{1}{e^{2x}} \int e^{2x} e^{-x} dx + C = e^{-x} + C e^{-2x}.$$

Solución Particular

Impuesta la condición y(0) = 0.75:

$$y(0) = e^0 + C e^0 = 1 + C = 0.75 \implies C = -0.25.$$

Por lo tanto, la solución del PVI es

$$y(x) = e^{-x} - 0.25 e^{-2x}$$
.

Solución Particular EDO lineal primer orden

Dado el problema de valor inicial $y(x_0) = y_0$ tome convenientemente a x_0 como el limite inferior en la integral del factor integrante.

$$\mu(x) = \exp\left(\int_{x_0}^x p(t) dt\right) \tag{6}$$

Entonces $\mu(x_0) = 1$, es así que evaluando en x_0

$$y(x) = \frac{\int_{x_0}^x \mu(s)g(s)\,ds + c}{\mu(x)}$$

se tiene $y(x_0) = c$.

$$y = \frac{\int_{x_0}^{x} \mu(s)g(s) \, ds + y_0}{\mu(x)} \tag{7}$$

2

²decmos

³calculadora EDO