Week1-4 과제

한국 스트리밍 서비스 (왓*, 쿠*플레이, 티*)에서 시청자가 영화를 보고 남긴 리뷰를 긍정과 부정으로 나누어 볼 수 있는 대시보드를 만들려고 한다. **리뷰 긍부정 판별 모델**을 만들려고 할 때, NLP 리서처/엔지니어로서 어떤 의사 결정을 할 것인지 각 단계에 맞춰 작성해보자. (단, 수집된 리뷰 데이터의 개수가 1,000 개 미만이라고 가정하자.)

대시 보드 예시.

긍정	부정
ID:	ID:
REVIEW:	REVIEW:
ID:	ID:
REVIEW:	REVIEW:

1. 문제 정의

풀고자 하는 문제를 정의하세요. 또한 데이터 생성 시 고려해야 할 사항이 있다면 무엇인지 설명하세요. (예, 만약 긍정 리뷰가 부정 리뷰보다 많은 경우 어떻게 해야 할까?, 길이가 정말 긴 리뷰는 어떻게 전처리 해야 할까?)

문제정의: 각각의 리뷰에서 긍정과 부정의 문맥을 이해하고 분류하여야 한다. 고려사항:

- 1. 한국어의 특성상 단어하나하나보다 문맥의 흐름을 이해해야 하는데 어떤 식으로 분류를 해야 할까?
- 2. 명사를 추출하여 제거하고 사용하면 어떨까?
- 3. 각 리뷰에서 토픽 별로 분류하고 감성단어를 분류하면 어떨까? 토픽 예시:

배우(***배우님, ***역), 패션(셔츠, 드레스, 반지), 스토리(캐릭터, 영화, 스토리) 4. 의미적 분석으로 각각의 리뷰에서 긍정과 부정의 단어마다 점수를 부여하여 전체 점수로 분류하는 것을 어떨까?긍정: +1 점 / 부정: -1 점

2. 오픈 데이터 셋 및 벤치 마크 조사

리뷰 공부정 판별 모델에 사용할 수 있는 한국어 데이터 셋이 무엇이 있는지 찾아보고, 데이터 셋에 대한 설명과 링크를 정리하세요. 추가적으로 영어 데이터셋도 있다면 정리하세요.

---한국어

네이버 영화 리뷰 <u>https://github.com/e9t/nsmc</u> 네이버 영화 리뷰에 대한 자료

korean-hate-speech https://github.com/kocohub/korean-hate-speech 한국 연예뉴스의 비방, 등의 hate-speech 를 담은 자료

AI HUB 감성 대화 말뭉치 <u>https://aihub.or.kr/aidata/7978</u>

일반인 1,500 명을 대상으로 하여 음성 10,000 문장 및 코퍼스 27 만 문장 구축 및 세대별 감성 대화 텍스트 구축

AI HUB 한국어 감정 정보가 포함된 연속적 대화 데이터 셋 https://aihub.or.kr/keti data board/language intelligence

- A 열 : 발화 시작 구분자

- B 열 : 발화 본문

- C 열 : 해당 문장의 감정 정보 (행복/중립/슬픔/공포/혐오/분노/놀람) 각 대화문의 시작은 파란색 음영 및 A 열의 S 표시로 구분되어 있음 모든 대화문은 두 사람의 대화 내용이며 행이 바뀌면 발화자가 바뀜 AI HUB 한국어 감정 정보가 포함된 단발성 대화 데이터 셋

https://aihub.or.kr/keti_data_board/language_intelligence

SNS 글 및 온라인 댓글에 대한 웹 크롤링을 실시하여 문장을 선정함 7 개 감정(기쁨, 슬픔, 놀람, 분노, 공포, 혐오, 중립) 레이블링 수행

AI HUB 감정 분류용 데이터 셋

https://aihub.or.kr/opendata/keti-data/recognition-visual/KETI-01-001

감정 유추가 가능한 대화 데이터를 사람이 연기하여 결과를 저장하고, 동시에 해당 데이터의 감정 상태와 감정 주체 부여

영어

Twitter Sentiment Analysis https://www.kaggle.com/jp797498e/twitter-entity-sentiment-analysis

트위터의 엔터티 레벨 감성 분석 데이터셋 긍정. 부정 및 중립의 세 가지 클래스

AI HUB 트위터에서 수집 및 정제한 대화 시나리오 데이터 셋

https://aihub.or.kr/keti_data_board/language_intelligence
다수의 turn(질문, 답변 1 회)으로 구성된 연속 대화 시나리오

IMDb Movie Reviews https://paperswithcode.com/dataset/imdb-movie-reviews

긍정적 또는 부정적으로 분류된 IMDb(Internet Movie Database)의 50,000 개 리뷰

부정적인 리뷰는 10 점 만점에 4 점 이하, 긍정적인 리뷰는 10 점 만점에 7 점 이상

영화당 30 개 이하의 리뷰가 포함

3. 모델 조사

Paperswithcode(https://paperswithcode.com/)에서 리뷰 공부정 판별 모델로 사용할수 있는 SOTA 모델을 찾아보고 SOTA 모델의 구조에 대해 <u>간략하게</u> 설명하세요. (모델 논문을 자세히 읽지 않아도 괜찮습니다. 키워드 중심으로 설명해 주세요.)

Sentiment Classification Using Document Embeddings Trained with Cosine Similarity

Task	Dataset	Model	Metric Name	Metric Value	Global Rank	Uses Extra Training Data	Benchmark
Sentiment Analysis	IMDb	NB-weighted-BON + dv-cosine	Accuracy	97.4	#1	✓	Compare

cosine similarity 를 사용하여 training document embeddings 함.

Figure 1: Proposed Architecture.

4. 학습 방식

- 딥러닝 (Transfer Learning)

사전 학습된 모델을 활용하는 (transfer - learning)방식으로 학습하려고 합니다. 이 때학습 과정을 간략하게 서술해주세요. (예. 데이터 전처리 \rightarrow 사전 학습된 모델을 00 에서 가져옴 \rightarrow ...)

데이터 불러오기 -> 불러온 데이터의 review 부분을 tokenize -> 데이터 전처리 및데이터 탐색 -> 사전 학습된 모델 NB-weighted-BON + dv-cosine 에서 가져옴 -> 새로운 데이터로 결과 예측 및 평가지표확인 -> 결과 저장

- (Optional, 점수에 반영 X) 전통적인 방식

Transfer Learning 이전에 사용했던 방식 중 TF-IDF 를 이용한 방법이 있습니다. TF-IDF 를 이용한다고 했을 때, 학습 과정을 간략하게 서술해주세요.

데이터 불러오기 -> 데이터 전처리 후 말뭉치 생성/ BoW 벡터/단어 분포 탐색 -> 단어 별 빈도 분석 및 상위 빈도수 단어 출력 -> TF-IDF 변환/벡터-단어 맵핑/ 중요 단어 추출 Top 3 TF-IDF

-

5. 평가 방식

긍부정 예측 task 에서 주로 사용하는 평가 지표를 최소 4 개 조사하고 설명하세요.

__

True Positive(TP): 실제 True 인 정답이 True 라고 예측(정답)

False Positive(FP) : 실제 False 인 정답이 True 라고 예측(오답)

False Negative(FN): 실제 True 인 정답이 False 라고 예측(오답)

True Negative(TN): 실제 False 인 정답이 False 라고 예측(정답)

1. 정확도 Accuracy: 전체 사례 중 예측이 맞은 비율

$$Accuracy = \frac{TN + TP}{TN + TP + FN + FP}$$

2. 정밀도 Precision: 모델이 True 라고 분류한 것 중에서 실제 True 인 것의 비율

$$Precision = \frac{TP}{(TP + FP)}$$

3. 재현율 Recall: 실제 True 인 것 중에서 모델이 True 라고 예측한 것의 비율

$$Recall = \frac{TP}{(TP + FN)}$$

4. F1 스코어 F-measure:

보통가중치를 가진 조화평균

Precision 과 Recal 의 트레이드 오프를 잘 통합하여 정확성을 한번에 나타내는 지표

$$F_1 = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$