《基础物理实验》实验报告

实验名	称_			示波器等的使用	指导表	教师 <u>丰家峰</u>	
姓	名	陈苏	_ 学号_	2022K8009906009	组号0)1-1 号 (例: 01-1)	
实验日	期	2023年 09	月 11 日	了实验地点 教学楼 702	调课/补课 □是	成绩评定	

一. 实验内容与实验记录

使用实验设备为:信号发生器: RIGOL-DG4162; 示波器: RIGOL-MSO1104; 信号板: RIGOL-DS1000D; 直流电源: RIGOL-DP832; 万用表: FLUKE-17B+。

1. 信号发生器与示波器的使用

调节信号发生器,CH1 通道输出频率为f=1.000kHz,峰峰值电压 $V_{pp}=4.000$ V的正弦信号。将信号发生器的 CH1 通道输出信号接到示波器的 CH1 通道输入上,按示波器上的 Auto 键,示波器显示稳定的波形。旋转调节垂直控制按钮,波形随之上下平移;旋转调节水平控制按钮,波形随之左右平移。调节输出信号的频率和幅值,观察波形的变化。

调节信号发生器,CH1 通道分别输出频率为f=1.000kHz,峰峰值电压 $V_{pp}=4.000$ V的方波信号,三角波信号或射频信号,调节输出信号的频率,幅值和相位,观察波形的变化。

用示波器测量上述信号的峰峰值电压, 频率和上升下降时间(或占空比,或对称性),记录如下。

表 1	测试信号的峰峰值电压	和频率测量值表
1 L		

信号类型	信号发生器	 暑輸出			示波器输入测量			
	频 率 f/	峰峰值电	上升时间	下降时间	频 率 f/	峰峰值电	上升时间	下降时间
	kHz	压V _{pp} /V	$t_1/\mu s$	$t_2/\mu s$	kHz	压 $V_{pp}/{ m V}$	$t_1/\mu s$	$t_2/\mu s$
正弦波	1.000	5.000			1.00	4.98		
正弦波	10.000	8.000			10.0	8.08		
方波	1.000	5.000	占空比 20.000%		1.000	5.07	占空比 19.	80%
方波	20.000	8.000	占空比 50.000%		20.8	7.98	占空比 50.	00%
三角波	1.000	5.000	对称性 20.	000%	1.00	4.96	154.0	600.0
三角波	20.000	8.000	对称性 50.000%		19.2	7.91	19.30	19.30
射频	1.000	5.000	占空比 30.000%		1.00	5.00	74.00	1.900
射频	20.000	8.000	占空比 50.	000%	20.0	7.95	2.050	2.050

调节信号发生器,CH1 和 CH2 通道分别输出频率,峰峰值电压和相位不同的的正弦信号。将信号发生器的 CH1 和 CH2 通道输出信号分别接到示波器的 CH1 和 CH2 通道输入上,按示波器上的 Auto 键,示波器显示两个稳定的波形。用示波器的 Math 模式中的相加(A+B),相减(A-B),相乘(AB)和相除(A/B)模式计算两个波形的和,差,积和商。

表 2 Math 模式正弦波测试值表

信号发生器	输入		示波器 Math 计算 A+B				
CH1 (A)			CH2 (B)		频 率 f/	峰峰值电	
频 率 f/	峰峰值电	相位 φ /°	频 率 f/	峰峰值电	相位 φ /°	kHz	压 $V_{pp}/{ m V}$
kHz	压 V_{pp} /V		kHz	压 V_{pp} /V			
1.000	1.500	0.000	3.000	1.800	30.000	1.00	2.93

1.000	1.500	0.000	2.000	1.800	30.000	1.00	2.90
1.000	1.500	0.000	1.000	1.800	30.000	1.00	2.87
1.000	1.500	0.000	1.500	1.800	30.000	1.00	2.82

将示波器的时基 X-Y 调整为 CH1-CH2,观察李萨如图形,记录如下。

表 3 不同频率比的正弦信号对应的李萨如图形表

CH1 CH2 相 位 差 李萨如图形									
CH1		CH2	CH2		李萨如图形				
频 率 f/	峰峰值电	频 率 f/	峰峰值电	$\Delta arphi/^{\circ}$					
kHz	压 V_{pp}/V	kHz	压 V_{pp}/V						
1.000	2.500	1.000	1.800	30.000	CHOOL CORNE CONTROL OF THE CONTROL O				
1.000	1.500	2.000	1.800	30.000	NGOU GOME TO THE PARTY OF THE P				
1.000	2.500	2.000	1.800	30.000	RIGOL STATE AND THE STATE AND				

将信号板接到 USB 接口上,用示波器测量不同接口输出波形,频率,峰峰值电压和上升下降时间。

表 4 信号板的输出波形测量值表

输出接口	波形	频率 f	峰峰值电压Vpp/	上升时间 t_1	下降时间 t_2
			V		
Triangle	三角波	502Hz	2.92	705.0 μs	705.0 μs
Sine	正弦波	502Hz	3.46	565.0µs	565.0µs
Glitch	毛刺	46.9kHz	4.94		
Pulse	脉冲	1.00kHz	4.62	203.0ns	203.0ns
Square	方波	501Hz	4.96		

通过触发设置区旋钮调节触发电平, 查看波形的显示变化。

2. 万用表的使用

将万用表调到电阻档,测量两手之间的人体电阻。

用万用表测量金属电阻,测得 $R=11.8\Omega$ 。用万用表测量同轴信号线的电阻,测得对侧电阻为 $R_1=1.8\Omega$,同侧电阻 $R_2=\infty$ 。

将示波器 CH1 通道输入一端接到手上,测量输入信号的波形,频率和峰峰值电压。再将另一端接地,观察波形的变化。

表 5 人手信号的测量值表

	频率f/Hz	峰峰值电压Vpp/V	波形
不接地	50.0	2.10	RIGOL WITH A PARK AND
接地	50.0	2.12	

3. 直流电源的使用

将发光二极管两端接到直流电源 CH1 通道两极。将直流电源调整为恒压模式,将 CH1 通道的输出电压从零开始逐渐升高,观察发光二极管的亮度变化。

将一个大功率金属电阻接到 CH1 通道两极。将 CH1 通道的输出电压从零开始逐渐升高,观察输出电压和输出电流的关系。观察到当电源输出功率为 $P_0=15.450$ W时,输出电压为 $U_0=29.89$ V。

二. 实验思考与心得

这次实验学习了示波器,信号发生器,万用表和直流电源的用法,了解了电学的仪器和实验方法。实验前要做好预习,正确操作仪器,实验后认真整理实验数据。