

Lecture 6: Probability and Distributions

Yi, Yung (이용)

Mathematics for Machine Learning https://yung-web.github.io/home/courses/mathml.html KAIST EE

April 2, 2021

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

April 2, 2021 1 / 77 April 2, 2021 2 / 77

Roadmap

KAIST EE

What Do We Want?

KAIST EE

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

Modeling: Approximate reality with a simple (mathematical) model

Experiment

- Flip two coins
- Observation: a random outcome
- for example, (H, H)

All outcomes

- $\circ \{(H,H),(H,T),(T,H),(T,T)\}$
- Our goal: Build up a probabilistic model for an experiment with random outcomes
- Probabilistic model?
 - Assign a number to each outcome or a set of outcomes
- Mathematical description of an uncertain situation
- Which model is good or bad?

Goal: Build up a probabilistic model. Hmm... How?

The first thing: What are the *elements* of a probabilistic model?

Elements of Probabilistic Model

- 1. All outcomes of my interest: Sample Space Ω
- 2. Assigned numbers to each outcome of Ω : Probability Law $\mathbb{P}(\cdot)$

Question: What are the conditions of Ω and $\mathbb{P}(\cdot)$ under which their induced probability model becomes "legitimate"?

The set of all outcomes of my interest

- 1. Mutually exclusive
- 2. Collectively exhaustive
- 3. At the right granularity (not too concrete, not too abstract)
- 1. Toss a coin. What about this? $\Omega = \{H, T, HT\}$
- 2. Toss a coin. What about this? $\Omega = \{H\}$
- 3. (a) Just figuring out prob. of H or T. $\implies \Omega = \{H, T\}$
 - (b) The impact of the weather (rain or no rain) on the coin's behavior.

$$\Longrightarrow \Omega = \{(H, R), (T, R), (H, NR), (T, NR)t\},\$$

where R(Rain), NR(No Rain).

L6(1) April 2, 2021 5 / 77

L6(1)

April 2, 2021 6 / 77

Examples: Sample Space Ω

KAIST EE

Probability Law

- *Discrete case:* Two rolls of a tetrahedral die
- $\Omega = \{(1,1), (1,2), \dots, (4,4)\}$

• Continuous case: Dropping a needle in a plain

$$-\Omega = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x, y \le 1\}$$

- Assign numbers to what? Each outcome?
- What is the probability of dropping a needle at (0.5, 0.5) over the 1×1 plane?
- Assign numbers to each subset of Ω : A subset of Ω : an event
- $\mathbb{P}(A)$: Probability of an event A.
 - This is where probability meets set theory.
 - Roll a dice. What is the probability of odd numbers?

 $\mathbb{P}(\{1,3,5\})$, where $\{1,3,5\}\subset\Omega$ is an event.

- Event space A: The collection of subsets of Ω . For example, in the discrete case, the power set of Ω .
- Probability Space $(\Omega, \mathcal{A}, \mathbb{P}(\cdot))$

- In reality, many outcomes are numerical, e.g., stock price.
- Even if not, very convenient if we map numerical values to random outcomes, e.g., '0' for male and '1' for female.

- Mathematically, a random variable X is a function which maps from Ω to \mathbb{R} .
- Notation. Random variable X, numerical value x.
- Different random variables X, Y,, etc can be defined on the same sample space.
- For a fixed value x, we can associate an event that a random variable X has the value x, i.e., $\{\omega \in \Omega \mid X(w) = x\}$
- Generally,

$$\mathbb{P}_X(S) = \mathbb{P}(X \in S) = \mathbb{P}(X^{-1}(S)) = \mathbb{P}\Big(\{\omega \in \Omega : X(w) \in S\}\Big)$$

L6(1)

April 2, 2021 9 / 77

L6(1)

April 2, 2021 10 / 77

Conditioning: Motivating Example

Conditional Probability

- Pick a person a at random
 - event A: a's age ≤ 20
- event B: a is married
- (Q1) What is the probability of *A*?
- (Q2) What is the probability of A, given that B is true?
- Clearly the above two should be different.
- Question. How should I change my belief, given some additional information?
- Need to build up a new theory, which we call conditional probability.

- $\mathbb{P}(A \mid B)$: $\mathbb{P}(\cdot \mid B)$ should be a new probability law.
- Definition.

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}, \quad \textit{for} \quad \mathbb{P}(B) > 0.$$

- Note that this is a definition, not a theorem.
- All other properties of the law $\mathbb{P}(\cdot)$ is applied to the conditional law $\mathbb{P}(\cdot|B)$.
- For example, for two disjoint events A and C,

$$\mathbb{P}(A \cup C \mid B) = \mathbb{P}(A \mid B) + \mathbb{P}(C \mid B)$$

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

- The values that a random variable *X* takes is discrete (i.e., finite or countably infinite).
- Then, $p_X(x) := \mathbb{P}(X = x) := \mathbb{P}\Big(\{\omega \in \Omega \mid X(w) = x\}\Big)$, which we call probability mass function (PMF).
- Examples: Bernoulli, Uniform, Binomial, Poisson, Geometric

L6(2)

April 2, 2021 13 / 77

L6(2)

April 2, 2021 14 / 77

Bernoulli X with parameter $p \in [0, 1]$

Uniform X with parameter a, b

Only binary values

$$X = \begin{cases} 0, & \text{w.p.}^1 \quad 1 - p, \\ 1, & \text{w.p.} \quad p \end{cases}$$

In other words, $p_X(0) = 1 - p$ and $p_X(1) = p$ from our PMF notation.

- Models a trial that results in binary results, e.g., success/failure, head/tail
- Very useful for an indicator rv of an event A. Define a rv 1_A as:

$$1_A = egin{cases} 1, & ext{if } A ext{ occurs}, \ 0, & ext{otherwise} \end{cases}$$

- Choose a number of $\Omega = \{a, a+1, \dots, b\}$ uniformly at random.
- $p_X(i) = \frac{1}{b-a+1}, i \in \Omega.$

• Models complete ignorance (I don't know anything about X)

[•] integers a, b, where $a \le b$

 $^{^{1}}$ with probability

- Models the number of successes in a given number of independent trials
- n independent trials, where one trial has the success probability p.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- Binomial(n, p): Models the number of successes in a given number of independent trials with success probability p.
- Very large n and very small p, such that $np = \lambda$

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, \dots$$

• Is this a legitimate PMF?

$$\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \left(1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} \dots \right) = e^{-\lambda} e^{\lambda} = 1$$

• Prove this:

$$\lim_{n\to\infty} p_X(k) = \binom{n}{k} (1/n)^k (1-1/n)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$

L6(2) April 2, 2021 17 / 77 L6(2) April 2, 2021 18 / 77

Geometric X with parameter p

KAIST EE

Joint PMF

- Experiment: infinitely many independent Bernoulli trials, where each trial has success probability p
- Random variable: number of trials until the first success.
- Models waiting times until something happens.

$$p_X(k) = (1-p)^{k-1}p$$

• Joint PMF. For two random variables X, Y, consider two events $\{X = x\}$ and $\{Y = y\}$, and

$$p_{X,Y}(x,y) := \mathbb{P}(\lbrace X=x \rbrace \cap \lbrace Y=y \rbrace)$$

- $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$
- Marginal PMF.

$$p_X(x) = \sum_y p_{X,Y}(x,y),$$

$$p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

Example.

$$p_{X,Y}(1,3) = 2/20$$

$$p_X(4) = 2/20 + 1/20 = 3/20$$

$$\mathbb{P}(X = Y) = 1/20 + 4/20 + 3/20 = 8/20$$

Conditional PMF

KAIST EE

Continuous RV and Probability Density Function (PDF)

- Many cases when random variable have "continuous values", e.g., velocity of a car

A rv X is continuous if \exists a function f_X , called probability density function (PDF), s.t.

 $\mathbb{P}(X \in B) = \int_{B} f_X(x) dx$

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have

Conditional PMF

$$p_{X|Y}(x|y) := \mathbb{P}(X = x|Y = y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

for y such that $p_Y(y) > 0$.

- $\sum_{x} p_{X|Y}(x|y) = 1$
- Multiplication rule.

$$p_{X,Y}(x,y) = p_Y(y)p_{X|Y}(x|y)$$
$$= p_X(x)p_{Y|X}(y|x)$$

• $p_{X,Y,Z}(x,y,z) =$ $p_X(x)p_{Y|X}(y|x)p_{Z|X,Y}(z|x,y)$

$$p_{X|Y}(2|2) = \frac{1}{1+3+1}$$

$$p_{X|Y}(3|2) = \frac{3}{1+3+1}$$

$$\mathbb{E}[X|Y=3] = 1(2/9) + 2(4/9) + 3(1/9) + 4(2/9)$$

- $\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$ $f_X(x) \ge 0$, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

L6(2)

• $\mathbb{P}(a \le X \le b) = \sum_{x:a \le x \le b} p_X(x)$ • $p_X(x) \ge 0$, $\sum_x p_X(x) = 1$

continuous counterparts

 $p_X(x)$

Continuous Random Variable

April 2, 2021 22 / 77

L6(2)

April 2, 2021 21 / 77

PDF and Examples

KAIST EE

Cumulative Distribution Function (CDF)

KAIST EE

- $\mathbb{P}(a \leq X \leq a + \delta) \approx |f_X(a) \cdot \delta|$
- $\mathbb{P}(X = a) = 0$

Examples

- Discrete: PMF, Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event $\{X < x\}$
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

- Non-decreasing
- $F_X(x)$ tends to 1, as $x \to \infty$
- $F_X(x)$ tends to 0, as $x \to -\infty$

• A rv X is called exponential with λ , if

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, & x \geq 0 \ 0, & x < 0 \end{cases} ext{ or } F_X(x) = 1 - e^{-\lambda x}$$

- Models a waiting time
- CCDF $\mathbb{P}(X \ge x) = e^{-\lambda x}$ (waiting time decays exponentially)
- $\mathbb{E}[X] = 1/\lambda$, $\mathbb{E}[X^2] = 2/\lambda^2$, $\text{var}[X] = 1/\lambda^2$
- (Q) What is the discrete rv which models a waiting time?

L6(2)

April 2, 2021 25 / 77

L6(2)

26 / 77

April 2 2021

Continuous: Joint PDF and CDF (1)

KAIST EE

Continuous: Joint PDF and CDF (2)

Jointly Continuous

Two continuous rvs are jointly continuous if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for every subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

1. The joint PDF is used to calculate probabilities

$$\mathbb{P}((X,Y)\in B)=\iint_{(X,Y)\in B}f_{X,Y}(x,y)dxdy$$

Our particular interest: $B = \{(x, y) \mid a \le x \le b, c \le y \le d\}$

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

3. The joint CDF is defined by $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$, and determines the joint PDF as:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{x,y}}{\partial x \partial y}(x,y)$$

4. A function g(X, Y) of X and Y defines a new random variable, and

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

- $p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$
- Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) \frac{dx}{dx} = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

L6(2) April 2, 2021 29 / 77

• Sum Rule

$$p_X(x) = \begin{cases} \sum_{y \in \mathcal{Y}} p_{X,Y}(x,y) & \text{if discrete} \\ \int_{y \in \mathcal{Y}} f_{X,Y}(x,y) dy & \text{if continuous} \end{cases}$$

• Generally, for $X = (X_1, X_2, \dots, X_D)$,

$$p_{X_i}(x_i) = \int p_X(x_1,\ldots,x_i,\ldots,x_D) d\mathbf{x}_{-i}$$

- Computationally challenging, because of high-dimensional sums or integrals
- Product Rule

$$p_{X,Y}(x,y) = p_X(x) \cdot p_{Y|X}(y|x)$$

joint dist. = marginal of the first \times conditional dist. of the second given the first

• Same as $p_Y(y) \cdot p_{X|Y}(x|y)$

L6(3) April 2, 2021 30 / 77

Bayes Rule

KAIST EE

Bayes Rule for Mixed Case

- X: state/cause/original value $\rightarrow Y$: result/resulting action/noisy measurement
- Model: $\mathbb{P}(X)$ (prior) and $\mathbb{P}(Y|X)$ (cause \to result)
- Inference: $\mathbb{P}(X|Y)$?

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$

$$= p_Y(y)p_{X|Y}(x|y)$$

$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{p_Y(y)}$$

$$p_Y(y) = \sum_{x'} p_X(x')p_{Y|X}(y|x')$$

$$p_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$$

$$f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$$

$$f_{Y}(y) = \int_{y|X} f_X(x')f_{Y|X}(y|x')dx'$$

K: discrete, Y: continuous

Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• Inference of Y given K

$$f_{Y|K}(y|k) = \frac{f_Y(y)p_{K|Y}(k|y)}{p_K(k)}$$
$$p_K(k) = \int f_Y(y')p_{K|Y}(k|y')dy'$$

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

Occurrence of A provides no new information about B. Thus, knowledge about A
does no change my belief about B.

$$\mathbb{P}(B|A) = \mathbb{P}(B)$$

• Using $\mathbb{P}(B|A) = \mathbb{P}(B \cap A)/\mathbb{P}(A)$,

Independence of A and B, $A \perp \!\!\!\perp B$

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B)$

- Q1. A and B disjoint ⇒ A ⊥ B?
 No. Actually, really dependent, because if you know that A occurred, then, we know that B did not occur.
- Q2. If $A \perp \!\!\!\perp B$, then $A \perp \!\!\!\perp B^c$? Yes.

L6(4) April 2, 2021 33 / 77

L6(4)

April 2, 2021 34 / 77

KAIST EE

 $A \perp \!\!\!\perp B \rightarrow A \perp \!\!\!\perp B | C?$

Conditional Independence

- Remember: for a probability law $\mathbb{P}(\cdot)$, given, say B, $\mathbb{P}(\cdot|B)$ is a new probability law.
- Thus, we can talk about independence under $\mathbb{P}(\cdot|B)$.
- ullet Given that C occurs, occurrence of A provides no new information about B.

$$\mathbb{P}(B|A\cap C)=\mathbb{P}(B|C)$$

Conditional Independence of A and B given C, $A \perp \!\!\!\perp B \mid C$

$$\mathbb{P}(A \cap B|C) = \mathbb{P}(A|C) \times \mathbb{P}(B|C)$$

- Q1. If $A \perp \!\!\!\perp B$, then $A \perp \!\!\!\perp B | C$? Suppose that A and B are independent. If you heard that C occurred, A and B are still independent?
- Q2. If *A* ⊥⊥ *B*|*C*, *A* ⊥⊥ *B*?

- Two independent coin tosses
 - \circ H_1 : 1st toss is a head
 - H_2 : 2nd toss is a head
 - D: two tosses have different results.
- $\mathbb{P}(H_1|D) = 1/2, \, \mathbb{P}(H_2|D) = 1/2$
- $\mathbb{P}(H_1 \cap H_2|D) = 0$,
- No.

- Two coins: Blue and Red. Choose one uniformly at random, and proceed with two independent tosses.
- $\mathbb{P}(\text{head of blue}) = 0.9$ and $\mathbb{P}(\text{head of red}) = 0.1$ H_i : i-th toss is head, and B: blue is selected.
- *H*₁ ⊥⊥ *H*₂|*B*? Yes

$$\mathbb{P}(H_1 \cap H_2|B) = 0.9 \times 0.9, \quad \mathbb{P}(H_1|B)\mathbb{P}(H_2|B) = 0.9 \times 0.9$$

$$\begin{split} \bullet \ \, H_1 \perp \!\!\! \perp H_2? \ \, \text{No} \\ \mathbb{P}(H_1) &= \mathbb{P}(B)\mathbb{P}(H_1|B) + \mathbb{P}(B^c)\mathbb{P}(H_1|B^c) \\ &= \frac{1}{2}0.9 + \frac{1}{2}0.1 = \frac{1}{2} \\ \mathbb{P}(H_2) &= \mathbb{P}(H_2) \quad \text{(because of symmetry)} \\ \mathbb{P}(H_1 \cap H_2) &= \mathbb{P}(B)\mathbb{P}(H_1 \cap H_2|B) + \mathbb{P}(B^c)\mathbb{P}(H_1 \cap H_2|B^c) \\ &= \frac{1}{2}(0.9 \times 0.9) + \frac{1}{2}(0.1 \times 0.1) \neq \frac{1}{2} \end{split}$$

Two rvs

$$\mathbb{P}(\{X = x\} \cap \{Y = y\}) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y), \text{ for all } x, y$$
$$p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$$

$$\mathbb{P}(\{X = x\} \cap \{Y = y\} | C) = \mathbb{P}(X = x | C) \cdot \mathbb{P}(Y = y | C), \text{ for all } x, y$$
$$p_{X,Y|C}(x,y) = p_{X|C}(x) \cdot p_{Y|C}(y)$$

• Notation: $X \perp \!\!\! \perp Y$ (independence), $X \perp \!\!\! \perp Y | Z(conditional independence)$

L6(4)

April 2, 2021 37 / 77

L6(4)

April 2, 2021 38 / 77

Expectation/Variance

KAIST EE

• Expectation

$$\mathbb{E}[X] = \sum_{x} x p_X(x), \quad \mathbb{E}[X] = \int_{x} x f_X(x) dx$$

- Variance, Standard deviation
- Measures how much the spread of $\ensuremath{\mathsf{PMF}}/\ensuremath{\mathsf{PDF}}$ is

$$var[X] = \mathbb{E}[(X - \mu)^2]$$

$$\sigma_X = \sqrt{var[X]}$$

Properties

- $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$
- $var[aX + b] = a^2 var[X]$
- var[X + Y] = var[X] + var[Y] if X ⊥⊥ Y (generally not equal)

- Goal: Given two rvs X and Y, quantify the degree of their dependence
 - Dependent: Positive (If $X \uparrow, Y \uparrow$) or Negative (If $X \uparrow, Y \downarrow$)
 - \circ Simple case: $\mathbb{E}[X] = \mu_{\mathsf{X}} = 0$ and $\mathbb{E}[Y] = \mu_{\mathsf{Y}} = 0$
- What about $\mathbb{E}[XY]$? Seems good.
- $\circ \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] = 0 \text{ when } X \perp \!\!\!\perp Y$
- More data points (thus increases) when xy > 0 (both positive or negative)

• Solution: Centering. $X \to X - \mu_X$ and $Y \to Y - \mu_Y$

Covariance

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])]$$

- After some algebra, $cov(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- $X \perp \!\!\!\perp Y \Longrightarrow cov(X,Y) = 0$
- $cov(X, Y) = 0 \Longrightarrow X \perp\!\!\!\perp Y$? NO.
- When cov(X, Y) = 0, we say that X and Y are uncorrelated.

• $p_{XY}(1,0) = p_{XY}(0,1) = p_{XY}(-1,0) = p_{XY}(0,-1) = 1/4$.

- $\mathbb{E}[X] = \mathbb{E}[Y] = 0$, and $\mathbb{E}[XY] = 0$. So, cov(X, Y) = 0
- Are they independent? No, because if X = 1, then we should have Y = 0.

L6(4) April 2, 2021 41 / 77 L6(4) April 2, 2021 42 / 77

Properties

Correlation Coefficient: Bounded Dimensionless Metric

cov(X,X)=0

$$cov(aX + b, Y) = \mathbb{E}[(aX + b)Y] - \mathbb{E}[aX + b]\mathbb{E}[Y] = a \cdot cov(X, Y)$$

$$cov(X, Y + Z) = \mathbb{E}[X(Y + Z)] - \mathbb{E}[X]\mathbb{E}[Y + Z] = cov(X, Y) + cov(X, Z)$$

$$var[X + Y] = \mathbb{E}[(X + Y)^2] - (\mathbb{E}[X + Y])^2 = var[X] + var[Y] - 2cov(X, Y)$$

- Always bounded by some numbers, e.g., [-1,1]
- Dimensionless metric. How? Normalization, but by what?

Correlation Coefficient

$$\rho(X,Y) = \mathbb{E}\left[\frac{(X - \mu_X)}{\sigma_X} \cdot \frac{Y - \mu_Y}{\sigma_Y}\right] = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}[X]\text{var}[Y]}}$$

- $-1 \le \rho \le 1$
- $|
 ho|=1\Longrightarrow X-\mu_X=c(Y-\mu_Y)$ (linear relation, VERY related)

Extension to Random Vectors
$$\boldsymbol{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}$$

•
$$\mathbb{E}(oldsymbol{X}) := egin{pmatrix} \mathbb{E}(X_1) \\ \vdots \\ \mathbb{E}(X_n) \end{pmatrix}$$

• Covariance of $\boldsymbol{X} \in \mathbb{R}^n$ and $\boldsymbol{Y} \in \mathbb{R}^m$

$$\operatorname{\mathsf{cov}}(oldsymbol{X},oldsymbol{Y}) = \mathbb{E}(oldsymbol{X}oldsymbol{Y}^\mathsf{T}) - \mathbb{E}(oldsymbol{X})\mathbb{E}(oldsymbol{Y})^\mathsf{T} \in \mathbb{R}^{n imes m}$$

• Variance of X: $var(X) = cov(X, X) \in \mathbb{R}^{n \times n}$, often denoted by Σ_X (or simply Σ):

$$oldsymbol{\Sigma}_{oldsymbol{X}} := \mathsf{var}[oldsymbol{X}] = egin{pmatrix} \mathsf{cov}(X_1, X_1) & \mathsf{cov}(X_1, X_2) & \cdots \mathsf{cov}(X_1, X_n) \\ dots & dots & dots \\ \mathsf{cov}(X_n, X_1) & \mathsf{cov}(X_n, X_2) & \cdots \mathsf{cov}(X_n, X_n) \end{pmatrix}$$

 \circ We call $\Sigma_{\pmb{X}}$ covariance matrix of \pmb{X} .

L6(4)

April 2, 2021 45 / 77

L6(4)

April 2, 2021 46 / 77

Data Covariance Matrix

Properties

뒤에 나올 data covariance matrix를 여기서 한번 보여준다.

•

For two random vectors $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^n$,

•
$$\mathbb{E}(\boldsymbol{X} + \boldsymbol{Y}) = \mathbb{E}(\boldsymbol{X}) + \mathbb{E}(\boldsymbol{Y}) \in \mathbb{R}^n$$

•
$$\operatorname{var}(\boldsymbol{X} + \boldsymbol{Y}) = \operatorname{var}(\boldsymbol{X}) + \operatorname{var}(\boldsymbol{Y}) \in \mathbb{R}^{n \times n}$$

• Assume
$$\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$$
.

$$\circ \ \mathbb{E}(\mathbf{Y}) = \mathbf{A}\mathbb{E}(\mathbf{X}) + \mathbf{b}$$

$$\circ$$
 var $(\mathbf{Y}) = \text{var}(\mathbf{AX}) = \mathbf{A} \text{var}(\mathbf{X})\mathbf{A}^{\mathsf{T}}$

$$\circ \operatorname{\mathsf{cov}}(oldsymbol{X},oldsymbol{Y}) = oldsymbol{\Sigma}_{oldsymbol{X}}oldsymbol{A}^\mathsf{T}$$
 (Please prove)

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

- Why important?
 - ∘ Central limit theorem (중심극한정리)
 - One of the most remarkable findings in the probability theory
 - Convenient analytical properties
 - · Modeling aggregate noise with many small, independent noise terms
- Standard Normal $\mathcal{N}(0,1)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- $\mathbb{E}[X] = 0$
- var[X] = 1

• General Normal $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

- $\mathbb{E}[X] = I$
- $var[X] = \sigma^2$

L6(5)

April 2, 2021 49 / 77

L6(5)

April 2, 2021 50 / 77

Gaussian Random Vector

Power of Gaussian Random Vectors

- $m{X} = (X_1, X_2, \cdots, X_n)^\mathsf{T}$ with the mean vector $m{\mu} = \begin{pmatrix} \mathbb{E}(X_1) \\ \vdots \\ \mathbb{E}(X_n) \end{pmatrix}$ and the covariance matrix $m{\Sigma}$.
- A Gaussian random vector $\boldsymbol{X} = (X_1, X_2, \cdots, X_n)^T$ has a joint pdf of the form:

$$f_{m{X}}(m{x}) = rac{1}{\sqrt{(2\pi)^n |m{\Sigma}|}} \exp\left(-rac{1}{2}(m{x}-m{\mu})^\mathsf{T}m{\Sigma}^{-1}(m{x}-m{\mu})
ight),$$

where Σ is symmetric and positive definite.

• We write $m{X} \sim \mathcal{N}(m{\mu}, m{\Sigma}),$ or $p_{m{X}}(m{x}) = \mathcal{N}(m{x} \mid m{\mu}, m{\Sigma}).$

- Marginals of Gaussians are Gaussians
- Conditionals of Gaussians are Gaussians
- Products of Gaussian Densities are Gaussians.
- A sum of two Gassuaians is Gaussian if they are independent
- Any linear/affine transformation of a Gaussian is Gaussian.

- X and Y are Gaussians with mean vectors μ_X and μ_Y , respectively.
- Gaussian random vector $\mathbf{Z} = \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$ with $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu_X} \\ \boldsymbol{\mu_Y} \end{pmatrix}$ and the covarance matrix

$$oldsymbol{\Sigma}_{oldsymbol{Z}} = egin{pmatrix} oldsymbol{\Sigma}_{oldsymbol{X}} & oldsymbol{\Sigma}_{oldsymbol{X}oldsymbol{Y}} \\ oldsymbol{\Sigma}_{oldsymbol{Y}oldsymbol{X}} & oldsymbol{\Sigma}_{oldsymbol{Y}} \end{pmatrix}, ext{ where } oldsymbol{\Sigma}_{oldsymbol{X}oldsymbol{Y}} = ext{cov}(oldsymbol{X}, oldsymbol{Y}).$$

- Marginal

$$f_{m{X}}(m{x}) = \int f_{m{X},m{Y}}(m{x},m{y}) dm{y} \sim \mathcal{N}(m{\mu}_{m{x}},m{\Sigma}_{m{X}})$$

- Conditional. $X \mid Y \sim \mathcal{N}(\mu_{X|Y}, \Sigma_{X|Y})$

$$\mu_{X|Y} = \mu_X + \Sigma_{XY}\Sigma_Y^{-1}(Y - \mu_Y)$$

 $\Sigma_{X|Y} = \Sigma_X - \Sigma_{XY}\Sigma_Y^{-1}\Sigma_{YX}$

L6(5)

- Lemma. Up to recaling, the pdf of the form $\exp(-\frac{1}{2}ax^2 2bx + c)$ is $\mathcal{N}(\frac{b}{2}, \frac{1}{2})$.
- Using the above Lemma, the product of two Gaussians $\mathcal{N}(\mu_0, \nu_0)$ and $\mathcal{N}(\mu_1, \nu_1)$ is Gaussian up to rescaling.

Proof.

$$\begin{split} &\exp\left(-(x-\mu_0)^2/2\nu_0\right) \times \exp\left(-(x-\mu_1)^2/2\nu_1\right) \\ &= \exp\left[-\frac{1}{2}\left(\left(\frac{1}{\nu_0} + \frac{1}{\nu_1}\right)x^2 - 2\left(\frac{\mu_0}{\nu_0} + \frac{\mu_1}{\nu_1}\right)x + c\right)\right] \\ &\implies \mathcal{N}\left(\overbrace{\frac{1}{\nu_0^{-1} + \nu_1^{-1}}}^{=\nu}, \nu\left(\frac{\mu_0}{\nu_0} + \frac{\mu_1}{\nu_1}\right)\right) = \mathcal{N}\left(\frac{\nu_1\mu_0 + \nu_0\mu_1}{\nu_0 + \nu_1}, \frac{\nu_0\nu_1}{\nu_0 + \nu_1}\right) \end{split}$$

L6(5) April 2 2021

Product of Two Gaussian Densities for Random Vectors

April 2, 2021

53 / 77

Formula: Conditional and Marginal Gaussians

- Similar results for the matrix version.
- The product of the densities of two Gaussian vectors $\mathcal{N}(\mu_0, \Sigma_0)$ and $\mathcal{N}(\mu_1, \Sigma_1)$ is Gaussian up to rescaling.
- The resulting Gaussian is given by:

$$\mathcal{N}\Bigg(\Sigma_1(\Sigma_0+\Sigma_1)^{-1}\mu_0+\Sigma_0(\Sigma_0+\Sigma_1)^{-1}\mu_1,\Sigma_1(\Sigma_0+\Sigma_1)^{-1}\Sigma_0\Bigg)$$

Compare the above to this:

$$\mathcal{N}\left(\frac{\nu_1\mu_0 + \nu_0\mu_1}{\nu_0 + \nu_1}, \frac{\nu_0\nu_1}{\nu_0 + \nu_1}\right)$$

Bishop책에서 공식을 찾아서. 여기에 한 페이지로 정리해 놓는다

L6(5) April 2, 2021 55 / 77 L6(5) April 2 2021

- ullet $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu_X}, oldsymbol{\Sigma_X})$ and $oldsymbol{Y} \sim \mathcal{N}(oldsymbol{\mu_Y}, oldsymbol{\Sigma_Y})$
- $\implies a\mathbf{X} + b\mathbf{Y} \sim \mathcal{N}(a\mu_{\mathbf{X}} + b\mu_{\mathbf{Y}}, a^2\Sigma_{\mathbf{X}} + b^2\Sigma_{\mathbf{Y}})$

- $f_1(x)$ is the density of $\mathcal{N}(\mu_1, \sigma_1^2)$ and $f_2(x)$ is the density of $\mathcal{N}(\mu_2, \sigma_2^2)$
- Question. What are the mean and the variance of the random variable Z which has the following density f(x)?

$$f(x) = \alpha f_1(x) + (1 - \alpha) f_2(x)$$

Answer:

$$\mathbb{E}(Z) = \alpha \mu_1 + (1 - \alpha)\mu_2$$

$$\text{var}(Z) = \left(\alpha \sigma_1^2 + (1 - \alpha)\sigma_2^2\right) + \left(\left[\alpha \mu_1^2 + (1 - \alpha)\mu_2^2\right] - \left[\alpha \mu_1 + (1 - \alpha)\mu_2\right]^2\right)$$

L6(5) April 2, 2021 57 / 77

L6(5)

April 2, 2021

58 / 77

Linear Transformation

Linear Transformation for Random Vectors

• Linear transformation² preserves normality

Linear transformation of Normal

If $X \sim \mathcal{N}(\mu, \sigma^2)$, then for $a \neq 0$ and b, $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

- Thus, every normal rv can be standardized: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Y = \frac{X \mu}{\sigma} \sim \mathcal{N}(0, 1)$
- Thus, we can make the table which records the following CDF values:

$$\Phi(y) = \mathbb{P}(Y \le y) = \mathbb{P}(Y < y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$$

•
$$m{X} \sim \mathcal{N}(m{\mu}, m{\Sigma})$$

•
$$\mathbf{Y} = \mathbf{AX} + \mathbf{b}$$
, where $\mathbf{X} \in \mathbb{R}^n$, $\mathbf{Y}, \mathbf{b} \in \mathbb{R}^m$, and $\mathbf{A} = \mathbb{R}^{m \times n}$

$$\implies$$
 Y $\sim \mathcal{N}(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^{\mathsf{T}})$

²Strictly speaking, this is affine transformation.

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

• Bayesian Inference

$$\underbrace{p(\theta \mid D)}_{\text{posterior}} = \underbrace{\frac{p(D \mid \theta)}{p(D)}}_{\substack{p(D) \\ \text{ovidence}}}$$

- The forms of likelihood and prior come from a model.
- Question. Given a form of likelihood, how can I choose a prior such that the resulting posterior has the same form as the prior?
 - Such prior is called conjugate prior (to the given likelihood)
 - Pros: Algebraic calculation of posterior and even analytical description is often possible.
 - Cons: A restricted form of prior, which may lead to distorted understanding about data interpretation.

L6(6) April 2, 2021 61 / 77

L6(6)

April 2, 2021

62 / 77

Conjugate Priors: Definition and Examples

Beta Distribution

- Definition. A prior is conjugate for the likelihood function if the posterior is of the same form/type as the prior.
- Representative conjugate priors

Likelihood	Prior	Posterior
Poisson	Gamma	Gamma
Bernoulli	Beta	Beta
Binomial	Beta	Beta
Normal	Normal/inverse Gamma	Normal/inverse Gamma
Normal	Normal/inverse Wishart	Normal/inverse Wishart
Exponential	Gamma	Gamma
Multinomial	Dirichlet	Dirchlet

Beta distribution

A continuous rv Θ follows a beta distribution with integer parameters $\alpha, \beta > 0$, if

$$f_{\Theta}(\theta) = egin{cases} rac{1}{B(lpha,eta)} heta^{lpha-1} (1- heta)^{eta-1}, & 0 < heta < 1, \ 0, & ext{otherwise,} \end{cases}$$

where $B(\alpha, \beta)$, called Beta function, is a normalizing constant, given by

$$B(\alpha,\beta) = \int_0^1 \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = \frac{(\alpha-1)!(\beta-1)!}{(\alpha+\beta-1)!}$$

- Beta distribution models a continuous random variable over a finite interval [0,1].
- A special case of Beta(1,1) is Uniform[0,1]

L6(6) April 2, 2021 63 / 77 L6(6) April 2, 2021 64 / 77

- Assume that the parameter $\Theta \sim \text{Beta}(\alpha, \beta)$ (prior): $p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$
- $\theta \sim \Theta$ and $X \sim \text{Bin}(N, \theta)$. Thus, $p(x \mid \theta) = \binom{N}{x} \theta^x (1 \theta)^{N-x}$ (likelihood)
- Posterior ∝ (likelihood) × (prior)

$$\rho(\theta \mid x = h) \propto \binom{N}{h} \theta^{h} (1 - \theta)^{N - h} \times \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \\
= \theta^{h + \alpha - 1} (1 - \theta)^{(N - h) + \beta - 1} \\
\sim \text{Beta}(h + \alpha, N - h + \beta)$$

L6(6) April 2, 2021 65 / 77

- A statistic of a random variable **X** is a deterministic function of **X**.
- Example. For $\mathbf{X} = \begin{pmatrix} X_1 & X_2 & \dots & X_n \end{pmatrix}^\mathsf{T}$, the sample mean $T(\mathbf{X}) = \frac{1}{N}(X_1 + \dots + X_n)$ is a statistic.
- Question. Does a statistic contain all the information for the inference from data?
 (e.g., the parameter estimation of a distribution based on data)
- Sufficient statistics: carry all the information for the inference
- Definition. A statistic $T = T(\mathbf{X})$ is said to be sufficient for \mathbf{X} with its pdf or pmf $p_{\mathbf{X}}(\mathbf{x};\theta)$, if the conditional distribution of \mathbf{X} given $T(\mathbf{X}) = t$ is independent of θ for all t.

Poisson Example

Fisher-Neyman Factorization Theorem

- X_1, X_2 : independent Poisson variables with common parameter λ which is the expectation.
- Claim. $T(X) = X_1 + X_2$ is a sufficient statistic for inference of λ .
- Joint distribution

$$\mathbb{P}(x_1, x_2) = \frac{\lambda^{x_1 + x_2}}{x_1! x_2!} e^{-2\lambda}$$

ullet Conditional dist. of X_1 given $X_1+X_2=t$

$$\mathbb{P}(x_1|X_1+X_2=t) = \frac{1}{x_1!(t-x_1)!} \left(\frac{1}{\sum_{y=0}^t \frac{1}{y!(t-y)!}}\right)^{-1}$$

• Independent of $\lambda \implies T$ is a sufficient statistic.

Factorization Theorem

A necessary and sufficient condition for a statistic T to be sufficient for X with its pdf or pmf $p_X(x;\theta)$ is that there exist non-negative functions g_θ and h such that

$$p_{\mathbf{X}}(\mathbf{x};\theta) = g_{\theta}(T(\mathbf{x}))h(\mathbf{x}).$$

• Example. Continuing the Poisson example, suppose that X_1, \ldots, X_n are iid according to a Poisson distribution with parameter λ . Then, with $\mathbf{X} = (X_1, \ldots, X_n)$,

$$\mathbb{P}_{\mathbf{X}}(x_1,\ldots,x_n) = \lambda^{\sum x_i} e^{-n\lambda} / \prod (x_i!)$$

• $T(X) = \sum X_i$ is a sufficient statistic.

³The parameter can be a vector, but we do not use θ for simplicity.

April 2, 2021 66 / 77

Exponential Family: Definition

- Three levels of abstraction when we use a distribution to model a random phenomenon
- L1. Fix a particular named distribution with fixed parameters
 - \circ Example. Use a Gaussian with zero mean and unit variance, $\mathcal{N}(0,1)$
- L2. Use a parametric distribution and infer the parameters from data
 - Example. Use a Gaussian with unknown mean and variance, $\mathcal{N}(\mu, \sigma^2)$, and infer (μ, σ^2) from data
- L3. Consider a family of distributions which satisfy "nice" properties
 - Example. Exponential family

L6(6) April 2, 2021 69 / 77

Exponential Family

An exponential family if a family of probability distributions, parameterized by $\theta \in \mathbb{R}^D$, of the form

$$p_{\mathbf{X}}(\mathbf{x}; \boldsymbol{\theta}) = h(\mathbf{x}) \exp \left(\langle \boldsymbol{\theta}, T(\mathbf{x}) \rangle - A(\boldsymbol{\theta}) \right),$$

where $\mathbf{X} \in \mathbb{R}^n$ and $T(\mathbf{x}) : \mathbb{R}^n \mapsto \mathbb{R}^D$ isavectorofsufficientstatistics.

- Nothing but a a particular form of $g_{\theta}(\cdot)$ in the F-N factorization theorem
- $\langle \theta, T(x) \rangle$ is an inner product, e.g., the standard dot product.
- Essentially, it is of the form: $p_{\mathbf{X}}(\mathbf{x}; \theta) \propto \exp(\theta^{\mathsf{T}} T(\theta))$
- $A(\theta)$: normalization constant, called log-partition function.
- Why Useful?

L6(6)

 Parametric form of conjugate priors (see pp. 190 in the text), offering sufficient statistics, etc.

Example

Roadmap

April 2, 2021

70 / 77

• Gaussian as exponential family, a random variable $X \sim \mathcal{N}(\mu, \sigma^2)$.

• Let
$$T(\mathbf{x}) = \begin{pmatrix} \mathbf{x} \\ \mathbf{x}^2 \end{pmatrix}$$
 and $\boldsymbol{\theta} = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} \frac{\mu}{\sigma^2} \\ -\frac{1}{2\sigma^2} \end{pmatrix}$

$$p(\mathbf{x} \mid \boldsymbol{\theta}) \propto \exp\left(\boldsymbol{\theta}^{\mathsf{T}} T(\mathbf{x})\right) = \exp\left(\frac{\mu x}{\sigma^2} - \frac{x^2}{2\sigma^2}\right) = \exp\left(-\frac{1}{2\sigma^2}(x - \mu)^2\right)$$

- (1) Construction of a Probability Space
- (2) Discrete and Continuous Probabilities
- (3) Sum Rule, Product Rule, and Bayes' Theorem
- (4) Summary Statistics and Independence
- (5) Gaussian Distribution
- (6) Conjugacy and the Exponential Family
- (7) Change of Variables/Inverse Transform

L6(7)

April 2, 2021 73 / 77

KAIST EE

L6(7)

April 2, 2021 74 / 77

Figuring Out Distributions: Change of Variables

KAIST EE

Questions?

1)

L6(7) April 2, 2021 77 / 77