Project - 5 (DATASET: Online Retail) The transactions

made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9, 2011, are all included in the transnational data set known as online retail. The company primarily offers one-of-a-kind gifts for every occasion. The company has a large number of wholesalers as clients. Company ObjectiveUsing the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to target.

In [1]:

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [3]:

df=pd.read_csv(r"C:\Users\sruth\Downloads\OnlineRetail1.csv")
df

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0
541909 i	rows × 8 co	lumns					
4							•

In [4]:

df.head()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4								•

In [5]:

df.tail()

Out[5]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0
4							

```
In [6]:
```

```
df['InvoiceNo'].value_counts()
Out[6]:
573585
           1114
581219
            749
581492
            731
580729
            721
558475
            705
           ...
554023
              1
554022
              1
554021
              1
               1
554020
C558901
              1
Name: InvoiceNo, Length: 25900, dtype: int64
In [7]:
df['CustomerID'].value_counts()
Out[7]:
17841.0
           7983
14911.0
           5903
14096.0
           5128
12748.0
           4642
14606.0
           2782
15070.0
              1
15753.0
               1
17065.0
16881.0
16995.0
               1
Name: CustomerID, Length: 4372, dtype: int64
In [8]:
df['Quantity'].value_counts()
Out[8]:
 1
          148227
 2
           81829
 12
           61063
 6
           40868
           38484
-472
               1
               1
-161
-1206
               1
                1
-272
-80995
Name: Quantity, Length: 722, dtype: int64
```

In [9]:

```
plt.scatter(df["CustomerID"],df["Quantity"])
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[9]:

Text(0, 0.5, 'Quantity')

In [10]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

Duca	CO_U	a							
#	Column	Non-Null Count	Dtype						
0	InvoiceNo	541909 non-null	object						
1	StockCode	541909 non-null	object						
2	Description	540455 non-null	object						
3	Quantity	541909 non-null	int64						
4	InvoiceDate	541909 non-null	object						
5	UnitPrice	541909 non-null	float64						
6	CustomerID	406829 non-null	float64						
7	Country	541909 non-null	object						
dtype	<pre>dtypes: float64(2), int64(1), object(5)</pre>								
memory usage: 33.1+ MB									

```
In [11]:
```

```
df.isnull().sum()
```

Out[11]:

InvoiceNo 0
StockCode 0
Description 1454
Quantity 0
InvoiceDate 0
UnitPrice 0
CustomerID 135080
Country 0

dtype: int64

In [12]:

```
df.fillna(method='ffill',inplace=True)
```

In [13]:

```
df.isnull().sum()
```

Out[13]:

InvoiceNo 0 StockCode 0 Description 0 Quantity 0 InvoiceDate 0 UnitPrice 0 CustomerID 0 Country 0 dtype: int64

In [14]:

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[14]:

```
▼ KMeans
KMeans()
```

In [15]:

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

Out[15]:

array([0, 0, 0, ..., 2, 2, 2])

In [17]:

```
df["cluster"]=y_predicted
df.head()
```

Out[17]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4								•

In [18]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[18]:

Text(0, 0.5, 'Quantity')

In [19]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[19]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	17850.0	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	17850.0	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	17850.0	Unite Kingdor
4								•

```
In [20]:
```

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df.head()
```

Out[20]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
4								•

K-MeansClustering

```
In [22]:
```

```
km=KMeans()
```

```
In [23]:
```

```
y_predicted=km.fit_predict(df[["CustomerID","Quantity"]])
y_predicted
```

C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

```
Out[23]:
```

```
array([1, 1, 1, ..., 6, 6, 6])
```

In [24]:

df["New Cluster"]=y_predicted
df.head()

Out[24]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500037	01-12-2010 08:26	2.55	0.926443	Unite Kingdor
1	536365	71053	WHITE METAL LANTERN	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500049	01-12-2010 08:26	2.75	0.926443	Unite Kingdor
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500037	01-12-2010 08:26	3.39	0.926443	Unite Kingdor
4								•

In [25]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[25]:

Text(0, 0.5, 'Quantity')

In [26]:

```
km.cluster_centers_
```

Out[26]:

In [27]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["CustomerID"],df1["Quantity"],color="red")
plt.scatter(df2["CustomerID"],df2["Quantity"],color="green")
plt.scatter(df3["CustomerID"],df3["Quantity"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("CustomerID")
plt.ylabel("Quantity")
```

Out[27]:

Text(0, 0.5, 'Quantity')

In [28]:

```
k_rng=range(1,10)
sse=[]
```

```
In [29]:
```

```
for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[["CustomerID","Quantity"]])
    sse.append(km.inertia_)
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
```

- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(
- C:\Users\sruth\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:87
 0: FutureWarning: The default value of `n_init` will change from 10 to 'a uto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

[46374.84553398371, 11336.06582016775, 4921.040005132341, 2723.5169350354 81, 1695.0703798884356, 1178.5471813165186, 903.0078177312912, 677.262375 9205824, 528.3702588048828]

Out[29]:

Text(0, 0.5, 'Sum of Squared Error')

above dataset we will take customer id and quantity based on that we make the clusters. When the K-value is low error rate is more and the K-value is high error rate is very high. So, finally we can Conclude the above dataset is bestfit for K-Means.

In []: