Verificación and Validación de Modelos de Simulación

Verificación and Validación de Modelos de Simulación

Propósito

- Objetivos del proceso de Validación:
 - Producir un modelo que represente un verdadero comportamiento del sistema
 - Incrementar Credibilidad
- Validación es una parte integral del desarrollo del modelo
 - Verificación construcción correcta del modelo...
 - Validación construcción del modelo correcto …

Construcción del modelo

Verificación [Verificación]

- Propósito: asegurar que el modelo conceptual sea adecuadamente implementado.
- Sugerencias de sentido común:
 - Chequear el modelo con otras personas.
 - Diagramas de flujo.
 - Salidas vs. Entradas.
 - Corroborar los parámetros de entrada en la salida.
 - Hacer el modelo operacional tan autodocumentado como sea posible.
 - □ Uso de trazas.
 - □ Etc.

Examinando las salidas

- Ejemplo: sup. un modelo de un complejo sistema de red de colas.
 - Tiempos de respuestas como interés principal.
 - Otros estadísticos.
 - Contenido corriente, cantidad total.
 - Calcular las medidas de perfomance a largo plazo, ej. La utilización del servidor y comparar con resultados de la simulación.

Calibración y Validación

- Validación: el proceso de comparar el modelo y su comportamiento con el sistema real.
- Calibración: proceso iterativo de comparar el modelo al sistema real y hacer ajustes.

Calibración y Validación

- Ningun modelo es una representación perfecta de la realidad.
 - Revisión -> involucra costos.
- Tres pasos:
 - Construir un modelo con alta validez externa o credibilidad.
 - □ Validar los supuestos del modelo.
 - Comparar las transformaciones de entrada-salida con las correspondientes (datos) del sistema real.

Alta Validez Externa

- Los potenciales usuarios deberían estar involucrados en las construcción del modelo (conceptualización e implementación).
- Hacer Análisis de Sensibilidad.
 - Ejemplos.

Validar Suposiciones del Modelo

Dos clases:

- Estructurales: Como opera el sistema.
- Datos: confiabilidad de los datos y sus análisis estadísticos.

Ejemplo de un Banco:

- Estructurales: clientes esperan en una linea o en muchas líneas, servicios FIFO versus prioridad.
- □ Datos: tiempo de interarribo de los clientes, tiempos de servicios para cuentas comerciales, etc..
 - Test de correlación para los datos.

Validar Transformación de Entrada-Salida

- Meta: En esta face de Validación el modelo es visto como una Transformación de entrada-salida
 - □ Es el único test objetivo del modelo.
- Un posible método: usar el historial de datos.
- Criterios: usar respuestas de interés.

Ejemplo: Servicio de autobanco

- Ejemplo: Una ventana de atención servida por un cajero, solo una o dos transacciones son permitidas.
 - □ Datos recolectados: 90 clientes durante las 11 am y la 1 pm.
 - Tiempos de servicio {S_i, *i* = 1,2, ..., 90}.
 - Tiempos de interarribos $\{A_i, i = 1, 2, ..., 90\}$.
 - Del análisis de los datos se concluye que:
 - Tiempos de Interarribos son exponencialmente distribuidos con tasa λ = 45/hora
 - Tiempos de servicios: *N*(1.1, 0.2²)

"Caja negra"

- Un modelo fue desarrollado en cjto. con la gente del banco
- Suposiciones del modelo fueron validadas
- Modelo resultante es visto como una "caja negra":

Comparación con los datos del sistema real

- Comparar el retardo promedio del modelo Y_2 con el actual retardo del sistema real Z_2 :
 - \square Z_2 = 4.3 minutes, consideramos a este como el verdadero valor medio μ_0 = 4.3.
 - \square Se espera que Y_2 sea cercano o consistente a Z_2 .
 - Como puede comprobarse esta consistencia?
 - Seis corridas independientes del modelo se efectúan de 2 horas de duración.
 - La independencia estadística es garantizada por el uso de conjuntos de números aleatorios no superpuestos producidos por el generador.

Test de validación: Pruebas de Hipótesis

$$H_0$$
: $E(Y_2) = 4.3$ minutos
 H_1 : $E(Y_2) \neq 4.3$ minutos

- Si H_0 no es rechazada, ent. no hay razones para considerar al modelo como inválido.
- Si H₀ es rechazada, la versión corriente del modelo es rechazada.

Pruebas de Hipótesis

- Realizar un Test t de Student:
 - Elegir el nivel de significancia (α = 0.05 (error de tipo I)) y un tamaño de la muestra (n = 6), (ver resultados de la Tabla 10.2. libro, pag. 403)
 - Calcular la media muestral y la desviación muestral sobre las n replicas:

licas:

$$\bar{Y}_2 = \frac{1}{n} \sum_{i=1}^{n} Y_{2i} = 2.51 \text{ minutos}$$

$$\sum_{i=1}^{n} (Y_{2i} - \bar{Y}_2)^2 = 0.81 \text{ minutos}$$

Calcular el estadístico de prueba:

$$|t_0| = |\frac{Y_2 - \mu_0}{S/\sqrt{n}}| = |\frac{2.51 - 4.3}{0.9/\sqrt{6}}| = 4.87 > t_{\alpha/2, n-1} = 2.571$$
 (para un test de 2 colas)

- En este caso, H₀ es rechazada. El modelo es inadecuado.
- Por el teorema central del límite las retardos (Y_{2i}) siguen una distr. normal e independiente.

Pruebas de Hipótesis

$$Y_4 \leftrightarrow Z_4$$
, $Y_5 \leftrightarrow Z_5$, $y Y_6 \leftrightarrow Z_6$

Error de tipo II

- O puede ser expresado como: Probabilidad [detectar un modelo inválido] = $1 \beta = 1 P(error tipo II)$.
- \square β = P(error de tipo II) = P(fallo en el rechazo de $H_0|H_1$ es true)
- \square El modelador debería desear que β sea pequeño.
- \square Los valores de β depende de:
 - Tamaño de la muestra, *n*
 - La verdadera diferencia , δ , entre E(Y) y μ :

$$\delta = \frac{|E(Y) - \mu|}{\sigma}$$

• En general, el mejor método para controlar el error β es:

- \square Especificar la diferencia crítica, δ .
- □ Elegir un tamaño de muestra, *n*, haciendo uso de una curva Característica de Operación (OC) aproximada (gráficas Pag. 603).

Error de Tipo I y Error de Tipo II

- Error de Tipo I (α):
 - Error de rechazar un modelo válido.
 - \square Controlado especificando un nivel de significancia α bajo.
- Error de Tipo II (β):
 - Error de aceptar un modelo como válido cuando en realidad es inválido.
 - Controlado especificando diferencias críticas y calculando los n necesarios.
- Para un tamaño de muestra fijo n, el incremento de α decrementará β .

Intervalos de Confianza

- Testing de Intervalo de Confianza: evalúa si la simulación y el sistema real son lo suficientemente cercanos.
- SI Y es la salida de la simulación, y $\mu = E(Y)$, el intervalo de confianza (I.C.) para μ es:

$$\overline{Y} \pm t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}$$

- El método intenta acotar la diferencia | μ μ_0 | ≤ ε.
- Validando el modelo:
 - □ Suponemos que el I.C. no contiene a μ_{o} :
 - Si el error en el mejor caso es $> \varepsilon$, el modelo debe ser refinado.
 - Si el error en el peor caso es $\leq \varepsilon$, el modeloe es aceptado.
 - Si el error en el mejor caso es $\leq \varepsilon$, réplicas adicionales son necesarias.
 - □ Suponemos que el I.C. contiene a $\mu_{\mathcal{O}}$:
 - Si el error en el mejor o peor caso es > ε , réplicas adicionales son necesarias.
 - Si el error en el peor caso es $\leq \varepsilon$, el modelo es aceptad 9

Testing de Intervalo de Confianza

- Ejemplo del Banco: $\mu_0 = 43$ y "suficientemente cercano" es $\varepsilon = 1$ minuto de retardo de espera de los clientes.
 - Un intervalo de confianza del 95%, basado sobre las 6 ejecuciones es [1.65, 3.37] porque:

$$\bar{Y} \pm t_{0.025,5} S / \sqrt{n}$$

2.51 \pm 2.571(0.82/\sqrt{6})

 \square $\mu_{\mathcal{O}}$ queda fuera del I.C., el mejor caso |3.37 - 4.3| = 0.93 < 1, pero el peor caso |1.65 - 4.3| = 2.65 > 1, indica que ejecuciones adicionales son necesitadas.

Usando Datos Históricos

- Utilizar un registro de datos históricos.
- Conducir la simulación con los datos históricos registrados y luego comprar la salida del modelo con los del sistema real.
- □ En el ejemplo del banco, usar los interarribos y tiempos de servicios registrados por el gerente $\{A_n, S_n, n = 1, 2, ...\}$.
- Los procesos y métodos de validación son los mismos vistos anteriormente.

Usando un test de Turing

- Uso adicional a un test estadístico, o cuando no es posible aplicar ningún test estadístico.
- Utilza el conocimiento de las personas a cerca de el sistema.

Por ejemplo:

- Se presentan 10 informes de la perfomance del sistema al gerente. Cinco son calculados del sistema real y los otros cinco son resultados "falsos" de un modelo de simulación..
- Si la persona identifica un número sustacial de informes "falsos", el modelo debe ser mejorado.
- Si la persona no puede distinguir entre los reportes falsos y los reales con consistencia, se concluye que el test no da evidencia de un modelo inadecuado.