DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE **End Semester Examination – May 2019**

Course: B. Tech Sem: III

Subject Code: BTBSC301 Subject Name: Engineering Mathematics-III

Max Marks: 60 Date: 28-05-2019 Duration: 3 Hr.

Instructions to the Students:

- 1. Solve ANY FIVE questions out of the following.
- 2. The level question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.

3. Use of non-programmable scientific calculators is allowed.4. Assume suitable data wherever necessary and mention it clearly.			3675
	4. Assume suitable data wherever necessary and mention in clearly.	(Level/CO)	Marks
Q. 1	Attempt any three.		12
A)	Find $L\{f(t)\}$, where $f(t) = t^2 e^{-3t} \sinh at$	Understand	4
B)	Express $f(t)$ in terms of Heaviside's unit step function and hence find its Laplace transform where $f(t) = \begin{cases} cost, & 0 < t < \pi \\ sint, & t > \pi \end{cases}$	Understand	4
C)	Find $L\{f(t)\}\$, where $f(t) = 2^t \int_0^t \frac{\sin 3u}{u} du$	Understand	4
D)	By using Laplace transform evaluate $\int_0^\infty e^{-t} \left(\frac{1-\cos 2t}{t}\right) dt$	Evaluation	4
Q. 2	Attempt the following.		12
A)	Using convolution theorem find $L^{-1}\left\{\frac{s^2}{(s^2+4)^2}\right\}$	Application	4
B)	Find $L^{-1}\{\bar{f}(s)\}$, where $\bar{f}(s) = \cot^{-1}(\frac{s+3}{2})$	Application	4
(C)	Using Laplace transform solve $y'' - 3y' + 2y = 12e^{-2t}$; $y(0) = 2$, $y'(0) = 6$	Application	4
Q. 3 A)	Attempt any three. Express $f(t) = \begin{cases} 1, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as a Fourier sine integral and hence	Evaluation	12 4

deduce that $\int_0^\infty \frac{1 - \cos \pi \lambda}{\lambda} \sin \pi \lambda \, d\lambda = \frac{\pi}{4}.$

B) Using Parseval's identity for cosine transform, prove that **Application**

$$\int_0^\infty \frac{\sin at}{t(a^2+t^2)} dt = \frac{\pi}{2} \left(\frac{1-e^{-a^2}}{a^2} \right)$$

undefined

Find the Fourier transform of
$$f(x) = \begin{cases} 1 - x^2, & \text{if } |x| \le 1 \\ 0, & \text{if } |x| > 1 \end{cases}$$
. Hence prove that $\int_0^\infty \left(\frac{x\cos x - \sin x}{x^3}\right) \cos \frac{x}{2} dx = -\frac{3\pi}{16}$

D) Find Fourier sine transform of
$$5e^{-2x} + 2e^{-5x}$$
 Understand 4

Q. 4 Attempt the following.

A) Form the partial differential equation by eliminating arbitrary function
$$f$$
 Synthesis from $f(x + y + z, x^2 + y^2 + z^2) = 0$

12

12

12

B) Solve
$$xz(z^2 + xy)p - yz(z^2 + xy)q = x^4$$
 Analysis 4

C) Find the temperature in a bar of length two units whose ends are kept at zero Application temperature and lateral surface insulated if the initial temperature is
$$sin \frac{\pi x}{2} + 3 sin \frac{5\pi x}{2}.$$

Q. 5 Attempt Any three.

A) If the function
$$f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$$
 is analytic, Understand 4 find the values of the constants a, b, c and d .

B) If
$$f(z)$$
 is an analytic function with constant modulus, show that $f(z)$ is Understand 4 constant.

C) Find the bilinear transformation which maps the points
$$z = 0, -i, -1$$
 into Understand 4 the points $w = i, 1, 0$.

D) Prove that the function
$$u = e^x(x\cos y - y\sin y)$$
 satisfies the Laplace's Synthesis 4 equation. Also find the coresponding analytic function.

Q. 6 Attempt ANY TWO of the following.

A) Evaluate
$$\oint_C \frac{z+4}{z^2+2z+5} dz$$
, where C is the circle $|z+1-i|=2$. Evaluation

B) Find the residues of
$$f(z) = \frac{\sin z}{z \cos z}$$
 at its poles inside the circle $|z| = 2$. Understand 6

C) Evaluate
$$\oint_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$$
, where C is the circle $|z| = 3$. Evaluation 6

*** End ***