Monotonic BART and outlier detection

Rodney Sparapani
Associate Professor of Biostatistics
Medical College of Wisconsin

September 16, 2025

Chronically ill children and potential height outliers

- ► This data is from the electronic health records (EHR) of a large regional children's health care system
- ► Chronically ill children are often at high risk for malnutrition
- ► Typically this is assessed by comparison to US Centers for Disease Control (CDC) growth chart benchmarks (or WHO)
- ► CDC inputs are age, gender, height and weight
- ► Age and gender are extremely reliable
- ► However, height and weight are prone to EHR outliers and there is practically NO quality control for these measures i.e., the ground truth of height outliers is largely unknown
- ► Based on a UK study, there are an order of magnitude more height (3%) than weight outliers (0.2%) per measurement (Phan et al. 2020 Scientific Reports)
- ► Determining malnourishment requires height outlier detection
- ► Furthermore, this method should be robust to weight outliers that are harder to identify (yet fortunately less prevalent)

https://www.cdc.gov/growthcharts

Monotonic BART (mBART)

Chipman et al. 2021 Bayesian Analysis

- $ightharpoonup f \stackrel{\text{prior}}{\sim} \text{mBART}$
- A function f is monotone with respect to x_j if f satisfies $f(\ldots,x_{j-1},x_j+\Delta x,x_{j+1},\ldots) \geq f(\ldots,x_{j-1},x_j,x_{j+1},\ldots)$ for all $\Delta x > 0$ (increasing/nondecreasing) or for all $\Delta x < 0$ (decreasing/nonincreasing)
- Constraint Conditions for Tree Monotonicity
 A tree function g(x; T, M) will be monotone in coordinate x_j if the leaf value of each of its terminal node regions is
 (a) not greater than the minimum level of all of its above-neighbor regions with respect to x_j and
 (b) not less than the maximum level of all of its below-neighbor regions with respect to x_j

Monotonic BART (mBART)

- ▶ dichotomous covariates are monotonic in the trivial sense
- for continuous outcomes, we can restrict to monotonicity
- ightharpoonup e.g, assume age, t, is monotonic with respect to height, y
- ightharpoonup do we want to assume the same for age, t, and weight, w?
- we can relax this restriction like so: x = (t, u, v, w, -w)
- yet from here on, we assume that weight is monotonic

Monotonic example: increasing in x_1 and x_2

Monotonic BART (mBART)

Chipman et al. 2021 Bayesian Analysis

- ► The leaf prior for BART $\mu_j | \mathcal{T}^{\text{prior}} \sim \mathrm{N}(0, \sigma_{\mu}^2)$
- ► Consider the simplest case of two monotonic leaves in mBART (relying on the results of Azzalini 1985 *Scand J Stat*)

$$\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \stackrel{\text{prior}}{\sim} N_2 \left(\vec{0}_2, \ c^2 \sigma_{\mu}^2 I_2 \right) I(\mu_1 < \mu_2) \text{ where } c^2 = \frac{\pi}{\pi - 1} \approx 1.47$$

Equivalent to skew Normal marginals where $V[\mu_1] = V[\mu_2] = \sigma_{\mu}^2$

$$\begin{split} & \mu_1 \overset{\text{prior}}{\sim} \phi \left(\frac{\mu_1}{c \sigma_\mu} \right) \Phi \left(\frac{-\mu_1}{c \sigma_\mu} \right) & \quad & \mathbb{E} \left[\mu_1 \right] = \frac{-\sigma_\mu}{\sqrt{\pi - 1}} \\ & \mu_2 \overset{\text{prior}}{\sim} \phi \left(\frac{\mu_2}{c \sigma_\mu} \right) \Phi \left(\frac{\mu_2}{c \sigma_\mu} \right) & \quad & \mathbb{E} \left[\mu_2 \right] = \frac{+\sigma_\mu}{\sqrt{\pi - 1}} \end{split}$$

Nonparametric outlier detection

- Monotonicity provides additional robustness to outliers since f can't just go up before an outlier and back down after (or vice versa)
- ▶ We have *population* predictions of the form $\hat{y}_{ij} = E[y_{ij}] = \hat{f}(x_{ij})$ where $j = 1, ..., n_i$
- ▶ But these expectations are biased except for the average child
- We need to adjust these up or down for a given subject
- So let $m_i = \text{median}_j(y_{ij} \hat{y}_{ij})$ (median rather than mean to be robust to outliers)
- Now, we make *personalized* predictions $\tilde{y}_{ij} = m_i + \hat{y}_{ij}$
- lacktriangle We define the *relative error* of these as $d_{ij} = (y_{ij} \tilde{y}_{ij})/\tilde{y}_{ij}$
- ▶ Outliers are defined as $|d_{ij}| > \delta$ where δ can be determined from the Receiver Operating Characteristic (ROC) curve
- ► And the discriminating performance of the method is assessed by the area under the ROC curve

Friedman's partial dependence function and the Synthetic Approximation marginal

- ightharpoonup t for age, u for sex, v for race and w for weight
- ► To do this right, first consider the likely monotonic relationship between age, sex and weight $E[w|t,u] = \tilde{f}(t,u)$
- So we need to fit an intermediate mBART model first $w_i = \tilde{f}(t_i, u_i) + \tilde{\epsilon}_i$ where $\tilde{f} \stackrel{\text{prior}}{\sim} \text{mBART}$
- ► The Synthetic Approximation marginal for dependent variables

$$\begin{split} f_{t,u}(t,u) &= \mathbb{E}_v \left[f(t,u,v,w^*) | t,u,w^* = \mathbb{E}[w|t,u] \right] \\ &= \mathbb{E}_v \left[f(t,u,v,\tilde{f}(t,u)) | t,u \right] \end{split}$$

Returning to the real data example

Sparapani et al. 2022 JPGN

- Constructed two independent cohorts of chronically ill children
 - ► 2-8 years old
 - measured at least every 120 days on average
 - ► followed for at least 2 years
- ► Training cohort: 1376 children with height outliers unknown 39491 measurements: 28.7/child on average
- ➤ Validation cohort: 318 children 7378 measurements: 23.2/child on average manually reviewed to determine height outliers however, the *ground truth* is fallible it is retrospective: we can't just re-measure these children
- ► Heights in the training cohort fit with mBART to age, sex, race/ethnicity and weight

Returning to the real data example

- ▶ Outlier detection conducted for the Validation cohort
- ► The area under the Receiver Operating Characteristic (ROC) curve was excellent: 0.841
- ▶ By comparison, if you use the CDC height by age growth chart, the area is only 0.776
- ► Based on ROC curve, two relative error cutoffs considered Aggressive, 0.075; and Conservative, 0.085

Real data summary

	Training		Vali	dation
	1376		318	
Children	n	(%)	n	(%)
Female	594	(43.2%)	132	(41.5%)
Black	313	(22.7%)	66	(20.8%)
White	783	(56.9%)	189	(59.4%)
Other	280	(20.3%)	63	(19.8%)
Children with outliers	N/A		101	(31.8%)
Measurements	m		m	
Height (cm)	39491		7378	
	Mean	(SD)	Mean	(SD)
Measurements/child	28.7		23.2	
First visit age 2	86.4	(8.8)	84.5	(6.6)
Last visit age 5	111.3	(8.4)	109.5	(9.4)
	%		%	
mBART R ²	82.2%		75.3%	

FPD marginal of age: assuming Independence

SA marginal of age: assuming **Dependence**

FPD marginal of weight: assuming Independence

SA marginal of weight: assuming Dependence

Receiver Operating Characteristic (ROC) curve

Aggressive cutoff 0.075

- ▶ B: mBART outlier detection
- ► C: clinical review ground truth
- ► Outlier: 0 (False), 1 (True)

	B=0	B=1	
	TN=172		1
C=1	FN=29	TP=72	Q=101
	N=201	P=117	T=318

Sensitivity or Recall =
$$P[B = 1 | C = 1] = \frac{TP}{Q} = \frac{72}{101} = 0.713$$

Specificity = $P[B = 0 | C = 0] = \frac{TN}{M} = \frac{172}{217} = 0.793$
PPV or Precision = $P[C = 1 | B = 1] = \frac{TP}{P} = \frac{72}{117} = 0.615$
NPV = $P[C = 0 | B = 0] = \frac{TN}{N} = \frac{172}{201} = 0.856$

Conservative cutoff 0.085

- ► B: mBART outlier detection
- ► C: clinical review ground truth
- ► Outlier: 0 (False), 1 (True)

	B=0	B=1	
C=0	TN=186	FP=31	M=217
C=1	FN=37	TP=64	Q=101
	N=223	P=95	T=318

Sensitivity or Recall =
$$P[B = 1 | C = 1] = \frac{TP}{Q} = \frac{64}{101} = 0.634$$

Specificity = $P[B = 0 | C = 0] = \frac{TN}{M} = \frac{186}{217} = 0.857$
PPV or Precision = $P[C = 1 | B = 1] = \frac{TP}{P} = \frac{64}{95} = 0.674$
NPV = $P[C = 0 | B = 0] = \frac{TN}{N} = \frac{186}{223} = 0.834$

Aggressive cutoff: targeted smoothing BART with monotonic weight

Starling et al. Annals of Applied Statistics 2020

- ▶ B: mBART outlier detection
- ► C: clinical review ground truth
- ► Outlier: 0 (False), 1 (True)

Sensitivity or Recall =
$$P[B=1|C=1] = \frac{TP}{Q} = \frac{74}{101} = 0.732$$

Specificity = $P[B=0|C=0] = \frac{TN}{M} = \frac{165}{217} = 0.760$
PPV or Precision = $P[C=1|B=1] = \frac{TP}{P} = \frac{74}{126} = 0.587$
NPV = $P[C=0|B=0] = \frac{TN}{N} = \frac{165}{192} = 0.859$

Aggressive cutoff: females only

- ▶ B: mBART outlier detection
- ► C: clinical review ground truth
- ► Outlier: 0 (False), 1 (True)

	B=0	B=1	
	TN=70		
C=1	FN=11	TP=31	Q=42
	N=81	P=51	T=132

Sensitivity or Recall =
$$P[B = 1|C = 1] = \frac{TP}{Q} = \frac{31}{42} = 0.738$$

Specificity = $P[B = 0|C = 0] = \frac{TN}{M} = \frac{70}{90} = 0.778$
PPV or Precision = $P[C = 1|B = 1] = \frac{TP}{P} = \frac{31}{51} = 0.608$
NPV = $P[C = 0|B = 0] = \frac{TN}{N} = \frac{70}{81} = 0.864$

Aggressive cutoff: non-whites only

- ▶ B: mBART outlier detection
- ► C: clinical review ground truth
- ► Outlier: 0 (False), 1 (True)

	B=0	B=1	
C=0	TN=60	FP=19	M=79
C=1	FN=11	TP=39	Q=50
	N=71	P=58	T=129

Sensitivity or Recall =
$$P[B=1|C=1] = \frac{TP}{Q} = \frac{39}{50} = 0.780$$

Specificity = $P[B=0|C=0] = \frac{TN}{M} = \frac{60}{79} = 0.759$
PPV or Precision = $P[C=1|B=1] = \frac{TP}{P} = \frac{39}{58} = 0.672$
NPV = $P[C=0|B=0] = \frac{TN}{N} = \frac{60}{71} = 0.845$

True Positives

False Positives

False Negatives

Conclusions

- ► We constructed our new outlier detection methodology based on nonparametric machine learning with monotonic BART
- ► This automated method's performance was deemed to be adequate via an indpendent validation cohort
- Modern methodology leads to a simply-tuned single rule as opposed to complex simultaneous tuning of multiple rules that have been proposed (by others) based on classic methods
- For EHR heights/weights, the ground truth is unknown prospective corrections are rarely performed and retrospective attempts to identify outliers manually are fallible
- ► For covariates that have dependent relationships, we provide an extension to compute the marginal effects for one, or more, of these variables at a time: this extension has wide applicability in nonparametric/machine learning regression

True Positives

False Positives

False Negatives

