First Mid Term Examination 2013-14

Title of Question Paper: Mathematics-II

Paper Code: AHM-102

Time: 90 Minutes

Max Marks: 20

Notes:-

1. Attempt all sections.

- 2. All questions of the particular section should be answered collectively at one place.
- Answers should be to-the-point and wherever required, be supplemented with neat sketches.
- 4. Any missing data may be assumed suitably giving proper justification.
- 5. Figures on the right hand side margin indicate marks.

Section A (Attempt all questions)

01*05=05

- 1. If R is any region in the plane (\mathbb{R}^2), what does the double integral $\iint_{\mathbb{R}^2} 1.dA$ represent?
- 2. Find the value of $\beta(2,1) + \beta(1,2)$.
- 3. Find the value of $\Gamma(-1/2)$.
- 4. Evaluate \(\int \sum_{zyzdxdydz} \).
- 5. While expanding a function in fourier series in $[-\pi,\pi]$ what will be four Dirichlet's conditions?

Section B (Attempt any three questions)

02*03=06

- 1. Consider the region bounded by the curves determined by $-2x + y^2 = 6$ and -x + y = -1
 - a. Sketch the region R in the plane.
 - b. Set up and evaluate an integral of the form $\iint_{\mathbb{R}} dA$ that calculates the area of R.
- 2. Let f be continuous on [0,1] and let R be the triangular region with vertices (0,0), (1,0) and (0,1). Show that $\iint_{\mathbb{R}} f(x+y)dA = \int_{0}^{1} uf(u)du$
- 3. Evaluate $\int_{a}^{\infty} \frac{x^a}{a^x} dx$, where a > 1.

4. The region inside the curve $r=2+Sin3\theta$ and outside the curve $r=3-Sin3\theta$ consists of three pieces. Evaluate the double integral $\iint rdrd\theta$ in the shaded region (one of these pieces in first quadrant).

Section C (Attempt any three questions)

03*03=09

- 1. Sketch the graph of f(x) = |x| and compute the fourier series for f(x) on $-\pi \le x \le \pi$.
- 2. Apply Dirichlet's integral to find the volume of the solid bounded by the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- 3. Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.
- 4. The function $P(x) = e^{-x^2}$ is fundamental in probability.
 - a. Sketch the graph of P(x). Explain why it is called a "bell curve".
 - b. Evaluate $I = \int_{-\infty}^{\infty} e^{-x^2} dx$ using the following brilliant strategy of Gauss.
 - i. Instead of computing I, compute $I^2 = \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right) \left(\int_{-\infty}^{\infty} e^{-y^2} dy\right)$.
 - ii. Rewrite I^2 as in integral of the form $\iint_R f(x,y)dxdy$ where R is the entire Cartesian plane.
 - iii. Convert that integral to polar coordinates.
 - iv. Evaluate to find I².