

ANNEX A1

INDICES FROM THE STUDENT AND SCHOOL CONTEXT QUESTIONNAIRE

Explanation of the indices

This section explains the indices derived from the PISA 2015 student and school context questionnaires used in this volume.

Several PISA measures reflect indices that summarise responses from students, their parents, teachers or school representatives (typically principals) to a series of related questions. The questions were selected from a larger pool of questions on the basis of theoretical considerations and previous research. The PISA 2015 Assessment and Analytical Framework (OECD, 2016) provides an in-depth description of this conceptual framework. Structural equation modelling was used to confirm the theoretically expected behaviour of the indices and to validate their comparability across countries. For this purpose, a model was estimated separately for each country and collectively for all OECD countries. For a detailed description of other PISA indices and details on the methods, see the PISA 2015 Technical Report (OECD, forthcoming).

There are three types of indices: simple indices, new scale indices, and trend scale indices.

Simple indices are the variables that are constructed through the arithmetic transformation or recoding of one or more items in exactly the same way across assessments. Here, item responses are used to calculate meaningful variables, such as the recoding of the four-digit ISCO-08 codes into "Highest parents' socio-economic index (HISEI)" or teacher-student ratio based on information from the school questionnaire.

New and trend scale indices are the variables constructed through the scaling of multiple items. Unless otherwise indicated, the index was scaled using a two-parameter item response model (a generalised partial credit model was used in the case of items with more than two categories) and values of the index correspond to Warm likelihood estimates (WLE) (Warm, 1985). For details on how each scale index was constructed, see the *PISA 2015 Technical Report* (OECD, forthcoming). In general, the scaling was done in three stages:

- 1. The item parameters were estimated from equally-weighted samples of students from all countries and economies; only cases with a minimum number of three valid responses to items that are part of the index were included. In the case of **trend indices**, a common calibration linking procedure was used: countries/economies that participated in both PISA 2006 and PISA 2015 contributed both samples to the calibration of item parameters; each cycle, and, within each cycle, each country/ economy contributed equally to the estimation.
- 2. The estimates were computed for all students and all schools by anchoring the item parameters obtained in the preceding step.
- 3. For new scale indices, the Warm likelihood estimates were then standardised so that the mean of the index value for the OECD student population was zero and the standard deviation was one (countries being given equal weight in the standardisation process). Trend indices were equated so that the mean and standard deviation across OECD countries of rescaled PISA 2006 estimates and of the original estimates included in the PISA 2006 database matched. Trend indices are therefore reported on the same scale as used originally in PISA 2006, so that values can be directly compared to those included in the PISA 2006 database.

Sequential codes were assigned to the different response categories of the questions in the sequence in which the latter appeared in the student, school or parent questionnaires. Where indicated in this section, these codes were inverted for the purpose of constructing indices or scales. Negative values for an index do not necessarily imply that students responded negatively to the underlying questions. A negative value merely indicates that the respondents answered less positively than all respondents did on average across OECD countries. Likewise, a positive value on an index indicates that the respondents answered more favourably, or more positively, on average, than respondents in OECD countries did. Terms enclosed in brackets < > in the following descriptions were replaced in the national versions of the student, school and parent questionnaires by the appropriate national equivalent. For example, the term <qualification at ISCED level 5A> was translated in the United States into "Bachelor's degree, post-graduate certificate program, Master's degree program or first professional degree program". Similarly the term <classes in the language of assessment> in Luxembourg was translated into "German classes" or "French classes", depending on whether students received the German or French version of the assessment instruments.

In addition to simple and scaled indices described in this annex, there are a number of variables from the questionnaires that were used in this volume and correspond to single items not used to construct indices. These non-recoded variables have prefix of "ST" for the questionnaire items in the student questionnaire and "SC" for the items in the school questionnaire. All the context questionnaires, and the PISA international database, including all variables, are available through www.oecd.org/pisa.

Student-level simple indices

Student age

The age of a student (AGE) was calculated as the difference between the year and month of the testing and the year and month of a student's birth. Data on student's age were obtained from both the questionnaire (ST003) and the student tracking forms. If the month of testing was not known for a particular student, the median month for that country was used in the calculation.

Parents' level of education

Students' responses on questions ST005, ST006, ST007, and ST008 regarding parental education were classified using ISCED 1997 (OECD, 1999). Indices on parental education were constructed by recoding educational qualifications into the following categories: (0) None, (1) <ISCED level 1> (primary education), (2) <ISCED level 2> (lower secondary), (3) <ISCED level 3B or 3C> (vocational/pre-vocational upper secondary), (4) <ISCED level 3A> (general upper secondary) and/or <ISCED level 4> (non-tertiary post-secondary), (5) <ISCED level 5B> (vocational tertiary) and (6) <ISCED level 5A> and/or <ISCED level 6> (theoretically oriented tertiary and post-graduate). Indices with these categories were provided for a student's mother (MISCED) and father (FISCED). In addition, the index of highest education level of parents (HISCED) corresponds to the higher ISCED level of either parent. The index of highest education level of parents was also recoded into estimated number of years of schooling (PARED). The correspondence between education levels and years of schooling is available in the *PISA 2015 Technical Report* (OECD, forthcoming).

Parents' highest occupational status

Occupational data for both the student's father and the student's mother were obtained from responses to open-ended questions. The responses were coded to four-digit ISCO codes (ILO, 2007) and then mapped to the international socio-economic index of occupational status (ISEI) (Ganzeboom & Treiman, 2003). In PISA 2015, as in PISA 2012, the new ISCO and ISEI in their 2008 version were used rather than the 1988 versions that had been applied in the previous four cycles (Ganzeboom, 2010). Three indices were calculated based on this information: father's occupational status (BFMJ2); mother's occupational status (BMMJ1); and the highest occupational status of parents (HISEI) which corresponds to the higher ISEI score of either parent or to the only available parent's ISEI score. For all three indices, higher ISEI scores indicate higher levels of occupational status.

Immigrant background

The PISA database contains three country-specific variables relating to the students' country of birth, their mother and father (COBN_S, COBN_M, and COBN_F). The items ST019Q01TA, ST019Q01TB and ST019Q01TC were recoded into the following categories: (1) country of birth is the same as country of assessment and (2) other. The index of immigrant background (IMMIG) was calculated from these variables with the following categories: (1) non-immigrant students (those students who had at least one parent born in the country), (2) second-generation immigrant students (those born in the country of assessment but whose parent(s) were born in another country) and (3) first-generation immigrant students (those students born outside the country of assessment and whose parents were also born in another country). Students with missing responses for either the student or for both parents were assigned missing values for this variable.

Language spoken at home

Students indicated what language they usually speak at home (ST022), and the database includes a derived variable (LANGN) containing a country-specific code for each language. In addition, an internationally comparable variable (ST022Q01TA) was derived from this information with the following categories: (1) language at home is the same as the language of assessment for that student and (2) language at home is another language.

Grade repetition

The grade repetition variable (REPEAT) was computed by recoding variables ST127Q01TA, ST127Q02TA, and ST127Q03TA. REPEAT took the value of "1" if the student had repeated a grade in at least one ISCED level and the value of "0" if "no, never" was chosen at least once, given that none of the repeated grade categories were chosen. The index is assigned a missing value if none of the three categories were ticked in any levels.

Study programme

PISA collects data on study programmes available to 15-year old students in each country. This information is obtained through the student tracking form and the student questionnaire. In the final database, all national programmes are included in a separate derived variable (PROGN) where the first six digits represent the National Centre code, and the last two digits are the nationally specific programme code. All study programmes were classified using the International Standard Classification of Education (ISCED) (OECD, 1999). The following indices were derived from the data on study programmes:

- Programme level (ISCEDL) indicates whether students were at the lower or upper secondary level (ISCED 2 or ISCED 3).
- Programme designation (ISCEDD) indicates the designation of the study programme (A = general programmes designed to give access to the next programme level, B = programmes designed to give access to vocational studies at the next programme level, C = programmes designed to give direct access to the labour market, M = modular programmes that combine any or all of these characteristics).

Programme orientation (ISCEDO) indicates whether the programme's curricular content was general, pre-vocational
or vocational.

Science-related career expectations

In PISA 2015, students were asked to answer a question (ST114) about "what kind of job [they] expect to have when [they] are about 30 years old". Answers to this open-ended question were coded to four-digit ISCO codes (ILO, 2007), in variable OCOD3. This variable was used to derive the index of science-related career expectations.

Science-related career expectations are defined as those career expectations whose realisation requires further engagement with the study of science beyond compulsory education, typically in formal tertiary education settings. The classification of careers into science-related and non-science-related is based on the four-digit ISCO-08 classification of occupations.

Only professionals (major ISCO group 2) and technicians/associate professionals (major ISCO group 3) were considered to fit the definition of science-related career expectations. In a broad sense, several managerial occupations (major ISCO group 1) are clearly science-related: these include research and development managers, hospital managers, construction managers, and other occupations classified under production and specialised services managers (submajor group 13). However, it was considered that when science-related experience and training is an important requirement of a managerial occupation, these are not entry-level jobs and 15-year-old students with science-related career expectations would not expect to be in such a position by age 30.

Several skilled agriculture, forestry and fishery workers (major ISCO group 6) could also be considered to work in science-related occupations. The United States O*NET OnLine (2016) classification of science, technology, engineering and mathematics (STEM) occupations indeed include these occupations. These, however, do not typically require formal science-related training or study after compulsory education. On these grounds, only major occupation groups that require ISCO skill levels 3 and 4 were included among science-related occupational expectations.

Among professionals and technicians/associate professionals, the boundary between science-related and non-science related occupations is sometimes blurred, and different classifications draw different lines.

The classification used in this report includes four groups of jobs: 1

- 1. *Science and engineering professionals:* All science and engineering professionals (submajor group 21), except product and garment designers (2163), graphic and multimedia designers (2166).
- 2. *Health professionals:* All health professionals in submajor group 22 (e.g. doctors, nurses, veterinarians), with the exception of traditional and complementary medicine professionals (minor group 223).
- 3. ICT professionals: All information and communications technology professionals (submajor group 25).
- 4. Science technicians and associate professionals, including:
 - physical and engineering science technicians (minor group 311)
 - life science technicians and related associate professionals (minor group 314)
 - air traffic safety electronic technicians (3155)
 - medical and pharmaceutical technicians (minor group 321), except medical and dental prosthetic technicians (3214)
 - telecommunications engineering technicians (3522).

How this classification compares to existing classifications

When three existing classifications of 15-year-olds' science career expectations, all based on the International Standard Classification of Occupations (ISCO), 1988 edition (ISCO-88), are compared to the present classification, based on ISCO-08, a few differences emerge. Some are due to the updated version of occupational codings (as discussed in the next section); the remaining differences are summarised in Table A1.1.

Developing a comparable classification for ISCO-88

The same open-ended question was also included in the PISA 2006 questionnaire (ID in 2006: ST30), but students' answers were coded in the PISA 2006 database according to ISCO-88. It is not possible to ensure a strictly comparable classification. To report changes over time, the correspondence described in Table A1.2 was used to derive a similar classification based on PISA 2006 data.

Table A1.1 ■ Differences in the definition of science-related career expectations

	This classification	OECD (2007)	Sikora and Pokropek (2012)	Kjærnsli and Lie (2011)
Science-related managerial jobs	out	in	in	out
Psychologists	out	in	in	out
Sociologists and social work professionals	out	in	out	out
Photographers and image and sound recording equipment operators, broadcasting and telecommunications equipment operators	out	in	in	out
Statistical, mathematical and related associate professionals	out	out	in	out
Aircraft controllers (e.g. pilots, air traffic controllers)	out	in	in	out
Ship controllers (Ships' desk officers, etc.)	out	out	in	out
Medical assistants, dental assistants, veterinary assistants, nursing and midwifery associate professionals	out	in	in	out
Computer assistants, computer equipment operators and industrial robot controllers	out	out	out	in
Air traffic safety electronic technicians	in	in	in	out
Pharmaceutical technicians and assistants	in	in	in	out
Dieticians and nutritionists	in	in	in	out

Table A1.2 ISCO-08 to ISCO-88 correspondence table for science-related career expectations

Group	ISCO-08	ISCO-88
Science and engineering professionals	21xx (except 2163 and 2166)	21xx (except 213x), 221x
Health professionals	22xx (except 223x)	22xx (except 221x), 3223, 3226
ICT professionals	25xx	213x
Science technicians and associate professionals	311x, 314x, 3155, 321x (except 3214), 3522	311x, 3133, 3145, 3151, 321x, 3228

The main differences between ISCO-88 and ISCO-08, for the purpose of deriving the index of science-related career expectations, are the following:

- Medical equipment operators (ISCO-88: 3133) correspond to medical imaging and therapeutic equipment technicians in ISCO-08; air traffic safety technicians (ISCO-88: 3145) correspond to air traffic safety electronics technicians in ISCO-08; building and fire inspectors (ISCO-88: 3151) mostly correspond to civil engineering technicians in ISCO-08.
- Dieticians and nutritionists (ISC0-88: 3223) are classified among professionals in ISCO-08. For consistency, this ISCO-88 occupation was classified among health professionals.
- Physiotherapists and related associate professionals (ISCO-88: 3226) form two distinct categories in ISCO-08, with
 physiotherapists classified among professionals. Given that students who expect to work as physiotherapists far outnumber those
 who expect to work as related associate professionals, this ISCO-88 occupation was classified among health professionals.
- Several health-related occupations classified as "modern health associate professionals" in ISCO-88 are included among health professionals in ISCO-08 (e.g. speech therapist, ophthalmic opticians). While health professionals are, in general, included among science-related careers, health associate professionals are not included among science-related careers. In applying the classification to ISCO-88, the entire code was excluded from science-related careers.
- Telecommunications engineering technicians (ISCO-08: 3522) do not form a separate occupation in ISCO-88, where they
 can be found among electronics and telecommunications engineering technicians (ISCO-88: 3114).
- Information and communications technology professionals form a distinct submajor group (25) in ISCO-08 but are classified among physical, mathematical and engineering science professionals in ISCO-88.

Student-level scale indices

New scale indices

Interest in science

The index of broad interest in science topics (INTBRSCI) was constructed using students' responses to a new question developed for PISA 2015 (ST095). Students reported on a five-point Likert scale with the categories "not interested", "hardly interested", "interested", "highly interested", and "I don't know what this is", their interest in the following topics: biosphere (e.g. ecosystem services, sustainability); motion and forces (e.g. velocity, friction, magnetic and gravitational forces); energy and its transformation (e.g. conservation, chemical reactions); the Universe and its history; how science can help us prevent disease. The last response category ("I don't know what this is") was recoded as a missing for the purpose of deriving the index INTBRSCI. Higher values on the index reflect greater levels of agreement with these statements.

Epistemic beliefs about science

The index of epistemic beliefs about science (EPIST) was constructed using students' responses to a new question developed for PISA 2015 about students' views on scientific approaches (ST131). Students reported, on a four-point Likert scale with the answering categories "strongly disagree", "disagree", and "strongly agree", their agreement with the following statements: A good way to know if something is true is to do an experiment; Ideas in
 stroad science> sometimes change; Good answers are based on evidence from many different experiments; It is good to try experiments more than once to make sure of your findings; Sometimes

science> scientists change their minds about what is true in science; and The ideas in

broad science> science books sometimes change. Higher levels on the index correspond to greater levels of agreement with these statements.

Trend scale indices

Enjoyment of science

The index of enjoyment of science (JOYSCIE) was constructed based on a trend question (ST094) from PISA 2006 (ID in 2006: ST16), asking students on a four-point Likert scale with the categories "strongly agree", "agree", "disagree", and "strongly disagree" about their agreement with the following statements: I generally have fun when I am learning
 science> topics; I like reading about
broad science>; I am happy working on
broad science> topics; I enjoy acquiring new knowledge in
broad science>; and I am interested in learning about
broad science>. The derived variable JOYSCIE was equated to the corresponding scale in the PISA 2006 database, thus allowing for a trend comparison between PISA 2006 and PISA 2015. Higher values on the index reflect greater levels of agreement with these statements.

Science self-efficacy

The index of science self-efficacy (SCIEEFF) was constructed based on a trend question (ST129) that was taken from PISA 2006 (ID in 2006: ST17). Students were asked, using a four-point answering scale with the categories "I could do this easily", "I could do this with a bit of effort", "I would struggle to do this on my own", and "I couldn't do this", to rate how they would perform in the following science tasks: recognise the science question that underlies a newspaper report on a health issue; explain why earthquakes occur more frequently in some areas than in others; describe the role of antibiotics in the treatment of disease; identify the science question associated with the disposal of garbage; predict how changes to an environment will affect the survival of certain species; interpret the scientific information provided on the labelling of food items; discuss how new evidence can lead you to change your understanding about the possibility of life on Mars; and identify the better of two explanations for the formation of acid rain. Responses were reverse-coded so that higher values of the index correspond to higher levels of science self-efficacy. The derived variable SCIEEFF was equated to the corresponding scale in the PISA 2006 database, thus allowing for a trend comparison between PISA 2006 and PISA 2015.

Science activities

The index of science activities (SCIEACT) was constructed based on a trend question (ST146) from PISA 2006 (ID in 2006: ST19). Students were asked to report on a four-point scale with the answering categories "very often", "regularly", "sometimes", and "never or hardly ever" how often they engaged in the following science-related activities: watch TV programmes about
 should be a considered activities of the constant o science>; borrow or buy books on
broad science> topics; visit web sites about
broad science> topics; read
broad science> magazines or science articles in newspapers; attend a <science club>; simulate natural phenomena in computer programs/ virtual labs; simulate technical processes in computer programs/virtual labs; visit web sites of ecology organisations; and follow news of science, environmental, or ecology organizations via blogs and microblogging. Responses were reverse-coded so that higher values of the index correspond to higher levels of students' science activities. The derived variable SCIEACT was equated to the corresponding scale in the PISA 2006 database, thus allowing for a trend comparison between PISA 2006 and PISA 2015.

Instrumental motivation to learn science

The index of instrumental motivation to learn science (INSTSCIE) was constructed based on a trend question (ST113) from PISA 2006 (ID in 2006: ST35). Students reported on a four-point Likert scale with the categories "strongly agree", "agree", "disagree", and "strongly disagree" about their agreement with the statements: Making an effort in my <school science> subject(s) is worth it because this will help me in the work I want to do later on; What I learn in my <school science> subject(s) is important for me because I need this for what I want to do later on; Studying my <school science> subject(s) is worthwhile for me because

what I learn will improve my career prospects; and Many things I learn in my <school science> subject(s) will help me to get a job. Responses were reverse-coded so that higher values of the index correspond to higher levels of instrumental motivation. The derived variable INSTSCIE was equated to the corresponding scale in the PISA 2006 database, thus allowing for a trend comparison between PISA 2006 and PISA 2015.

Scaling of indices related to the PISA index of economic social and cultural status

The PISA index of economic, social and cultural status (ESCS) was derived, as in previous cycles, from three variables related to family background: parents' highest level of education (PARED), parents' highest occupation status (HISEI), and home possessions (HOMEPOS), including books in the home. PARED and HISEI are simple indices, described above. HOMEPOS is a proxy measure for family wealth.

Household possessions

In PISA 2015, students reported the availability of 16 household items at home (ST011) including three country-specific household items that were seen as appropriate measures of family wealth within the country's context. In addition, students reported the amount of possessions and books at home (ST012, ST013).

HOMEPOS is a summary index of all household and possession items (ST011, ST012 and ST013). The home possessions scale for PISA 2015 was computed differently than in the previous cycles, to align the IRT model to the one used for all cognitive and non-cognitive scales. Categories for the number of books in the home are unchanged in PISA 2015. The ST011-Items (1="yes", 2="no") were reverse-coded so that a higher level indicates the presence of the indicator.

Computation of ESCS

For the purpose of computing the PISA index of economic, social and cultural status (ESCS), values for students with missing PARED, HISEI or HOMEPOS were imputed with predicted values plus a random component based on a regression on the other two variables. If there were missing data on more than one of the three variables, ESCS was not computed and a missing value was assigned for ESCS.

The PISA index of economic, social and cultural status was derived from a principal component analysis of standardised variables (each variable has an OECD mean of zero and a standard deviation of one), taking the factor scores for the first principal component as measures of the PISA index of economic, social and cultural status. All countries and economies (both OECD and partner countries/economies) contributed equally to the principal component analysis, while in previous cycles, the principal component analysis was based on OECD countries only. However, for the purpose of reporting the ESCS scale has been transformed with zero being the score of an average OECD student and one being the standard deviation across equally weighted OECD countries.

Principal component analysis was also performed for each participating country or economy separately, to determine to what extent the components of the index operate in similar ways across countries or economy.

Computation of a trend-ESCS index

While an index of economic, cultural and social status (ESCS) was included in all past PISA databases, the components of ESCS and the scaling model changed over cycles, meaning that ESCS scores are not comparable across cycles directly. In order to enable a trends study, in PISA 2015 the ESCS was computed for the current cycle and also recomputed for the earlier cycles using a similar methodology.²

Before trend scores could be estimated, slight adjustments to the three components had to be made:

- As in PISA 2012, the occupational coding scheme involved in the process of forming HISEI changed from ISCO-88 to ISCO-08, the occupational codes for previous cycles were mapped from the former to the current scheme (see also PISA 2012 Technical Report, Chapter 3).
- In order to make the PARED component comparable across cycles, the same ISCED to PARED mapping scheme was employed for all the cycles.
- To make the HOMEPOS component more comparable across cycles, the variable *Books in the home* (ST013Q01TA) was recoded into a four-level categorical variable (fewer than or equal to 25 books, 26-100 books, 101-500 books, more than 500 books). The trend HOMEPOS scale was constructed in three steps. In the first step, international item parameters for all items (except country-specific items, i.e. ST011Q17NA, ST011Q18NA and ST011Q19NA) administered in PISA 2015 were obtained from a concurrent calibration of the 2015 data. Except for the recoding of variable ST013Q01TA, this step is identical with the regular scaling of HOMEPOS in PISA 2015 (see above). In the second step, unique items from all previous cycles (i.e., 2000-2012) were scaled, fixing most items administered in 2015 to their 2015 parameters, while allowing a limited set of item parameters to be freely estimated but constrained to be equal across countries within cycles. National items (i.e. ST011Q17NA, ST011Q18NA and ST011Q19NA) received unique (country- and cycle- specific) parameters throughout. In the third and final step, index values (WLEs) were generated for all students from previous cycles (2000-2012). Because 17 out of 27 items involved in the computation of the trend HOMEPOS have the same item parameters across cycles, the trend HOMEPOS scores can be regarded to be on a joint scale, allowing for comparisons of countries across cycles and thus allowing to be used in the calculation of trend ESCS.

The principal component analysis for obtaining trend-ESCS scores was then calculated as described above, except that the calculation was done across all cycles using these three comparable components (trend HISEI, trend PARED, and trend HOMEPOS).

School-level scale indices

School resources

PISA 2015 included a question with eight items about school resources, measuring the school principals' perceptions of potential factors hindering the provision of instruction at school ("Is your school's capacity to provide instruction hindered by any of the following issues?"). The four response categories were "not at all", "very little", "to some extent", to "a lot". A similar question was used in previous cycles, but items were reduced and reworded for 2015 focusing on two derived variables. The index on staff shortage (STAFFSHORT) was derived from the four items: a lack of teaching staff; inadequate or poorly qualified teaching staff; a lack of assisting staff; and inadequate or poorly qualified assisting staff. The index of shortage of educational material (EDUSHORT) was scaled using the following four items: a lack of educational material (e.g. textbooks, IT equipment, library or laboratory material); inadequate or poor quality educational material (e.g. textbooks, IT equipment, library or laboratory material); a lack of physical infrastructure (e.g. building, grounds, heating/cooling, lighting and acoustic systems); and inadequate or poor quality physical infrastructure (e.g. building, grounds, heating/cooling, lighting and acoustic systems). Positive values on these indices mean that schools principals view the amount and/or quality of resources in their schools as an obstacle to providing instruction to a greater extent than the OECD average; negative values reflect the perception that the school suffers from a lack or inadequacy of resources to a lesser extent than the OECD average.

Proportion of missing observations for variables used in this volume

Unless otherwise indicated, no adjustment is made for non-response to questionnaires in analyses included in this volume. The reported percentages and estimates based on indices refer to the proportion of the sample with valid responses to the corresponding questionnaire items. Table A1.3, available online, reports the proportion of the sample covered by analyses based on student or school questionnaire variables. Where this proportion shows large variation across countries/economies or across time, caution is required when comparing results on these dimensions.

Table available online

Table A1.3. Weighted share of responding students covered by analyses based on questionnaires (http://dx.doi.org/10.1787/888933433112)

Notes

- 1. In the United Kingdom (excluding Scotland), career expectations were coded to the three-digit level only. As a result, the occupations of product and garment designers (ISCO08: 2163) and graphic and multimedia designers (2166) are included among science and engineering professionals, medical and dental prosthetic technicians (3214) are included among science technicians and associate professionals, while telecommunications engineering technicians (3522) are excluded. These careers represent a small percentage of the students classified as having science-related career expectations, such that results are not greatly affected.
- 2. As a result of this procedure, two indices exist for 2015 (ESCS and trend-ESCS). The Pearson correlation between the two indices is r=.989 across all PISA 2015 participating countries and economies. This includes 22 countries/economies where the correlation was r>.990; another 50 countries/economies where the correlation was r=.960, .990]; and another country (Georgia) where it was r=.946. In Chapters 6 and 7, in order to maintain consistency across tables, results for 2015 relating to trends in ESCS employ the 2015 ESCS index rather than the 2015 trend-ESCS index.

References

Ganzeboom, H.B.G. (2010), "A new international socio-economic index [ISEI] of occupational status for the International Standard Classification of Occupation 2008 [ISCO-08] constructed with data from the ISSP 2002-2007; with an analysis of quality of occupational measurement in ISSP." Paper presented at Annual Conference of International Social Survey Programme, Lisbon, May 1 2010.

Ganzeboom, H. B.G. and D.J. Treiman (2003), "Three Internationally Standardised Measures for Comparative Research on Occupational Status", pp. 159-193 in J.H.P. Hoffmeyer-Zlotnik and C. Wolf (Eds.), Advances in Cross-National Comparison: A European Working Book for Demographic and Socio-Economic Variables, Kluwer Academic Press, New York.

Kjærnsli, M. and S. Lie (2011), "Students' Preference for Science Careers: International Comparisons Based on PISA 2006", International Journal of Science Education, Vol. 33/1, pp. 121-44, http://dx.doi.org/10.1080/09500693.2010.518642.

OECD (forthcoming), PISA 2015 Technical Report, PISA, OECD Publishing, Paris.

OECD (2016), PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy, PISA, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264255425-en.

OECD (2007), PISA 2006: Science Competencies for Tomorrow's World, OECD Publishing, Paris, http://dx.doi.org/10.1787/9789264040014-en.

OECD (1999), Classifying Educational Programmes: Manual for ISCED-97 Implementation in OECD Countries, OECD Publishing, Paris.

Sikora, J. and A. Pokropek (2012), "Gender Segregation of Adolescent Science Career Plans in 50 Countries", Science Education, Vol. 96/2, pp. 234-64, http://dx.doi.org/10.1002/sce.20479.

Warm, T.A. (1985), "Weighted Maximum Likelihood Estimation of Ability in Item Response Theory with Tests of Finite Length", Technical Report CGI-TR-85-08, U.S. Coast Guard Institute, Oklahoma City.

O*NET OnLine (n.d), "All STEM disciplines", webpage, www.onetonline.org/find/stem?t=0, (accessed 4 October 2016).