Non Parametric Test:

1. Wilcoxon:

Its is used to compare two paired samples

H0: There is no significant difference between employees Years Since Last Promotion and Years With Current Manager.

H1: There is significant difference between employees Years Since Last Promotion and Years With Current Manager.

```
import pandas as pd
dataset = pd.read_csv("general_data.csv")
dataset.head()
Out[3]:
```

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0	51	No	0	0
1	31	Yes	1	4
2	32	No	0	3
3	38	No	7	5
4	32	No	0	4

[5 rows x 24 columns]

from scipy.stats import Wilcoxon stats,p = wilcoxon(dataset.YearsSinceLastPromotion,dataset.YearsWithCurrManager) print(stats,p) 699082.5 7.578916343856332e-279

Since p < 0.05, Ho is rejected.

Hence proved There is significant difference between employees Years Since Last Promotion and Years With Current Manager.

2. Friedman:

Its is used to compare more than two paired samples

H0: There is no significant difference between employees number of companies work, total working years and years at company.

H1: There is significant difference between employees number of companies work, total working years and years at company.

from scipy.stats import friedmanchisquare stats,p = friedmanchisquare(dataset.NumCompaniesWorked,dataset.YearsAtCompany, dataset.TotalWorkingYears) print(stats,p) 5100.159963317181 0.0

Since p < 0.05, Ho is rejected.

Hence proved There is significant difference between employees number of companies work, total working years and years at company.

3. Mann-whitney:

Its is used to compare two independent samples

HO: There is no significant difference between Education Field and Job Role.

H1: There is significant difference between Education Field and Job Role.

from scipy.stats import mannwhitneyu stats,p = mannwhitneyu(dataset.EducationField,dataset.JobRole) print(stats,p) 8566884.0 8.531789873710365e-23

Since p < 0.05, Ho is rejected.

Hence proved There is significant difference between employees Education Field and Job Role.

4. Kruskal-walls:

Its is used to compare more than two independent samples

HO: There is no significant difference between Department, Education Field and Job Role.

H1: There is significant difference between Department, Education Field and Job Role.

from scipy.stats import Kruskal stats,p = kruskal(dataset.EducationField,dataset.JobRole, dataset.Department) print(stats,p) 2079.6462052037637 0.0

Since p < 0.05, Ho is rejected.

Hence proved There is significant difference between Department, Education Field and Job Role.

5. Chi-square:

It is used to check the dependency between categorical variables.

HO: There is no significant difference between Attrition and Gender.

H1: There is significant difference between Attrition and Gender.

from scipy.stats import chi2_contingency chitable = pd.crosstab(dataset.Attrition,dataset.Gender) stats,p,dof,expected = chi2_contingency(chitable) print(stats,p) 1.349904410246582 0.24529482862926827

Since p > 0.05, Ho is accepted.

Hence proved There is no significant difference between Attrition and Gender.

Parametric Test:

6. One sample t-test:

It is used to compare sample mean with population mean

H0: There is no significant difference between training time of employee and standard training time as 3.

H1: There is significant difference between training time of employee and standard training time as 3.

from scipy.stats import ttest_1samp
stats,p = ttest_1samp(dataset.TrainingTimesLastYear,3)
print(stats,p)
-10.338997107228291 8.987949368189617e-25

Since p < 0.05, Ho is rejected.

Hence proved There is significant difference between training time of employee and standard training time as 3.

7. Two sample paired t-test:

It is used to compare mean of two paired samples

H0: There is no significant difference between Monthly Income and years at company.

H1: There is significant difference between Monthly Income and years at company.

from scipy.stats import ttest_rel stats,p = ttest_rel(dataset.MonthlyIncome,dataset.YearsAtCompany) print(stats,p) 91.73768218543985 0.0

Since p < 0.05, Ho is rejected.

Hence proved There is significant difference between There is significant difference between Monthly Income and years at company.

8. Two sample Independent:

It is used to compare mean of two independent samples

HO: There is no significant difference between Stock Option Level and Job Level.

H1: There is significant difference between Stock Option Level and Job Level.

from scipy.stats import ttest_ind
stats,p = ttest_ind(dataset.StockOptionLevel,dataset.JobLevel)
print(stats,p)
-60.391685443496 0.0

Since p < 0.05, Ho is rejected.

Hence proved There is significant difference between Stock Option Level and Job Level.