浙江工业大学 2021/2022 学年第一学期 概率论与数理统计期末考试试卷

		学号:		姓名:						
	班级:		:	任课教师:						
		题号	_	 	三	总分				
		得分								
欠) 位点数据	:								
	$\Phi(0.125)$	5) = 0.5	$\Phi(0.25)$	5) = 0.5987,	$\Phi(0.5) = 0.69$	$\Phi(1) =$	0.8413			
$\Phi(1.5) = 0.9332, \Phi(1.645) = 0.9500, \Phi(1.96) = 0.9750, \Phi(2) = 0.9772$										
$t_{0.05}(24) = 1.711, t_{0.05}(25) = 1.708, t_{0.025}(24) = 2.064, t_{0.025}(25) = 2.060$										
. Ļ	真空题(每	空 2 分	分,共 28 分)							
1.	1. 设 A, B 是随机事件, $P(A) = P(B) = 0.4$, $P(A B) = 0.2$,则 $P(A A \cup B) = $									
2.	独立重复投掷一颗均匀的骰子 2 次. 令 X 表示这二次点数之和,令 Y 表示这二次扩大点数, Z 表示出现 6 点的次数. 则 $E(X) =, P(Y = 3) =$									
	P(Z=1)	=	<u> </u>							
3.	某人在等	公交车.	他等待的时间	为 <i>X</i> 分钟. 假	设 X 服从均值	五为 10 的指数	分布. 如果他等			
	了 10 分钟	中还没等	等到公交车, 问何	也至少还需再等	等待 10 分钟的	概率是	·			
4.	设 X 和 Y 相互独立, X 服从参数为 3 的泊松分布, Y 服从参数为 1 的泊松分布. \square									
	$P(X \ge 2)$) =	P(X)	X = 1 X + Y =	2) =	·				
5.	设 X 和	Y 相互	独立, $P(X=0)$	P(X=1)	=P(X=2)=	= 1/3, Y 服从	[0,2] 上的均匀			
	分布,则	P(X +	$Y \leq 2) = \underline{\hspace{1cm}}$, P(m	$in(X,Y) \ge 1) =$	=				
6.			K_{100} 独立同分布							
			····+X ₁₀₀ . 则根抗		等式, $P(Y \ge 0$	0.1) \le	根据中心			
	极限定理	P(Y)	≥ 0.1)约为	·						

7. 设 X_1, X_2, X_3, X_4 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本. 令 $Y = \frac{X_1 + X_2}{2}$. 则 X_1 和 Y 的相关系数为 $\rho_{X_1,Y} =$ ______. 若 $\frac{a(X_3 - X_4)^2}{(X_1 - Y)^2 + (X_2 - Y)^2}$ 服从 F 分布,则常数 a = ______. 若 $b[(X_1 - X_2)^2 + (X_3 - X_4)^2]$ 是 σ^2 的无偏估计,则常数 b =

二. 选择题 (每题 3 分, 共 12 分)

1. 设 (X,Y) 的联合分布律如下表.

Y	0	1	2
-1	x	1/3	0
1	y	0	1/6

则以下说法正确的是 ()

- (A) 当 $x = \frac{1}{6}, y = \frac{1}{3}$ 时, X 和 Y 不相关
- (B) 当 $x = \frac{1}{3}, y = \frac{1}{6}$ 时, X 和 Y 不相关
- (C) 当 $x=\frac{1}{6}, y=\frac{1}{3}$ 时, X 和 Y 独立
- (D) 当 $x = \frac{1}{3}, y = \frac{1}{2}$ 时, X 和 Y 独立

- (A) a = 0, b = 3, c = 0
- (B) a = 0, b = 1, c = 1
- (C) a = 0, b = 0.2, c = 1
- (D) a = 0, b = 0.8, c = 1
- 3. 设 X_1, X_2, \cdots, X_n 是来自总体 $X \sim U(2,4)$ 的简单随机样本. 令 Y_n 表示 X_1, X_2, \cdots, X_n 中大于 3.5 的个数. 当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^n X_i^2$ 依概率收敛到 a , $\frac{Y_n}{n}$ 依概率收敛到 b . 则
 - (A) $a = 9, b = \frac{1}{2}$

(B) $a = 9, b = \frac{1}{4}$

(C) $a = \frac{28}{3}, b = \frac{1}{2}$

- (D) $a = \frac{28}{3}, b = \frac{1}{4}$
- 4. 设 X_1, X_2, X_3 是来自总体 $X \sim N(0, \sigma^2)$ 的简单随机样本, 样本方差为 S^2 . 对于估计 σ^2 , 最有效的估计量是
 - (A) $\frac{1}{2}(X_1^2 + X_2^2)$

(B) S^2

(C) $\frac{1}{3}(X_1^2 + X_2^2 + X_3^2)$

(D) $\frac{1}{4}(X_1^2 + 2X_2^2 + X_3^2)$

三. 解答题 (共 60 分)

- 1. (8分)有一个象棋俱乐部,其中 20% 为一类棋手,50% 为二类棋手,30% 为三类棋手.小李赢一类棋手、二类棋手、三类棋手的概率分别为0.4、0.5、0.6. 从这俱乐部中任选一人与小李比赛.
 - (1) 求小李获胜的概率;
 - (2) 若小李获胜,则对手是三类棋手的概率是多少?

- 2. $(12 \ \beta)$ 设随机变量 X 的概率密度函数为: $f(x) = \begin{cases} c(x+1), & -1 \le x \le 1, \\ 0, &$ 其他.
 - (1) 求常数 c; (2) 计算 X 的分布函数 F(x);
 - (3) 令 $Y = X^2$, 计算 Y 的概率密度函数.

3. (10 分) 设二维随机向量 (X,Y) 的联合概率密度函数为

$$f(x,y) = \begin{cases} 9e^{-3y}, & 0 < x < y, \\ 0, & \text{其他.} \end{cases}$$

计算 (1) $P(Y \le 3X)$; (2) X 的边缘密度函数 $f_X(x)$; (3) EY.

- 4. (10 分) 已知某车间生产的瓶装饮料重量 X (单位: 克) 服从正态分布 $N(\mu, 16)$. 现从中随机抽取 25 瓶饮料, 测得样本均值 $\overline{x} = 499$.
 - (1) 求总体均值 μ 置信水平为 0.95 的置信区间;
 - (2) 在显著水平为 0.05 下, 检验假设 $H_0: \mu \geq 500$, $H_1: \mu \leq 500$.

- 5. (10 分) 设 (X,Y) 服从二维正态分布, EX = EY = 1, Var(X) = 4, Var(Y) = 16, Cov(X,Y) = 2.
 - (1) 计算 P(X > Y + 2); (2) 计算 E[X(X + Y)];
 - (3) Y aX 与 Y 独立当且仅当常数 a 为何值? 为什么?

6. (10 分) 设总体 X 具有分布律

X	0	1	2
P	$1 - \theta$	$\frac{ heta}{2}$	$\frac{\theta}{2}$

这里 $0 \le \theta \le 1$ 未知. 设来自总体 X 的容量为 10 的简单随机样本的样本观察值 为 0,0,0,0,0,1,1,1,2.

求(1) θ 的矩估计值; (2) θ 的极大似然估计值.