PRVI ISPITNI ROK IZ EKSTREMALNE KOMBINATORIKE

24.02.2016.

1. (12 bodova)

Neka su $n, k, q \in \mathbb{N}$ takvi da je $n \geq k \geq q$. Metodom dvostrukog prebrojavanja dokažite identitete:

a)
$$\binom{n}{k}\binom{k}{q} = \binom{n}{q}\binom{n-q}{k-q}$$
, b) $\sum_{k=q}^{n}\binom{n}{k}\binom{k}{q} = 2^{n-q}\binom{n}{q}$.

2. (12 bodova)

Dokažite da za Stirlingove brojeve druge vrste vrijedi:

a)
$$S(n, n-1) = \binom{n}{2}$$
, za $n \ge 2$,

b)
$$S(n,2) = 2^{n-1} - 1$$
, za $n \ge 2$,

c)
$$S(n,3) = \frac{1}{2}(3^{n-1}+1) - 2^{n-1}$$
, za $n \ge 3$.

3. (10 bodova)

- a) Neka je $A = (a_1, a_2, \ldots, a_n)$ konačan niz od n različitih realnih brojeva. Pridružimo svakom članu a_i niza A uređeni par prirodnih brojeva (x_i, y_i) gdje je x_i broj članova najduljeg rastućeg podniza od A koji završavaju članom a_i , a y_i broj članova najduljeg padajućeg podniza od A koji započinju članom a_i . Dokažite da je $(x_i, y_i) \neq (x_i, y_i)$ kad god je $i \neq j$:
- b) Dokažite Erdős-Szekeresov teorem: ako je $n \ge sr + 1$ tada A ima rastući podniz duljine s + 1 ili padajući podniz duljine r + 1 (ili oboje).
- **c)** Dokažite ako je n > srp onda bilo koji niz od n realnih brojeva ima ili rastući podniz duljine barem s+1 ili padajući podniz duljine barem r+1 ili konstantan podniz duljine barem p+1.

4. (12 bodova)

- a) Neka je R latinski pravokutnik $r \times n$ i r < n. Za $j = 1, \ldots, n$ neka je S_j skup brojeva $1, 2, \ldots, n$ koji ne pripadaju j-tom stupcu od R. Dokažite da skupovi S_1, S_2, \ldots, S_n imaju sustav izrazitih predstavnika.
- b) Koristeći ovaj rezultat dokažite Ryserov teorem: ako je r < n, onda se bilo koji latinski pravokutnik $r \times n$ može nadopuniti do latinskog pravokutnika $(r+1) \times n$.

5. (8 bodova)

Navedite primjer jednog suncokreta. Koliko najmanje i koliko najviše elemenata može imati unija skupova S_1, S_2, \ldots, S_k suncokreta s k latica u s-uniformnoj familiji?

6. (12 bodova)

- a) Navedite primjer i Hasseov dijagram jednog (konačnog) parcijalno uređenog skupa.
- **b)** Koliko najviše zajedničkih elemenata mogu imati jedan lanac i jedan antilanac u parcijalno uređenom skupu? Obrazložite odgovor.
- **c)** Neka je \mathcal{F} antilanac u 2^X , |X| = n koji se sastoji od skupova kardinalnog broja najviše k, gdje je $k \leq n/2$. Koristeći LYM nejednakost dokažite da je $|\mathcal{F}| \leq \binom{n}{k}$.

7. (12 bodova)

- a) Neka su bridovi klike K_9 obojani u dvije boje: crvenu i plavu. Metodom suprotnog dokažite da tada postoji vrh V s barem 6 crvenih incidentnih bridova ili barem 4 plava incidentna brida.
- **b)** Koristeći R(3,3) = 6 i prethodni rezultat dokažite da svako 2-bojanje bridova klike K_9 u crvenu i plavu boju sadrži ili crvenu podkliku K_4 ili plavu K_3 , tj. da je $R(4,3) \leq 9$.

8. (12 bodova)

Brijeg n-permutacije $p=p_1p_2\cdots p_n$ je svaki p_i za kojeg je $i\in\{2,3,\ldots,n-1\}$ i za kojeg vrijedi

$$p_{i-1} < p_i > p_{i+1}$$
.

Vjerojatnosnom metodom (Dirichletovim svojstvom za očekivanje) dokažite da postoji n-permutacija s najmanje $\frac{n-2}{3}$ brijegova.

Dozvoljena je upotreba podsjetnika za ispit (sa web stranice predmeta) i kalkulatora. Ispit se piše 150 minuta.

RJEŠENJA 1. ISPITNOG ROKA IZ EKSTREMALNE KOMBINATORIKE

24.02.2016.

- **1. a)** Prebrojavanjem na dva načina svih parova (L, K) podskupova od $\{1, 2, 3, \ldots, n\}$, takvih da vrijedi $L \subseteq K$, |L| = q, |K| = k.
- **b)** Prebrojavanjem na dva načina svih parova (L, K) podskupova od $\{1, 2, 3, \ldots, n\}$, takvih da vrijedi $L \subseteq K \subseteq \{1, 2, 3, \ldots, n\}$, |L| = q (bez uvjeta na kardinalnost podskupa K).
- **2. a)** Broj particija skupa $\{1, \ldots, n\}$ na n-1 dijelova (blokova) jednak je $\binom{n}{2}$ jer od n-1 blokova svi su jednočlani, osim jednog dvočlanog.
- **b)** Svaki podskup A od $\{1, \ldots, n\}$ osim praznog skupa i cijelog $\{1, \ldots, n\}$ određuje jednu particiju tog skupa u dva bloka A i \overline{A} . Takvih podskupova A ima $2^n 2$. Ali kako A i \overline{A} na ovaj način određuju istu particiju $2^n 2$ treba još podijeliti s 2.
- c) $3! \cdot S(n,3)$ je broj surjekcija iz n-članog u 3-člani skup. Svih funkcija iz n-članog u 3-člani skup ima 3^n , od toga ih 3 imaju jednočlanu sliku, a dvočlanu sliku ih ima $3(2^n-2)$. Slijedi da je $3! \cdot S(n,3) = 3^n 3(2^n-2) 3$, odnosno $S(n,3) = \frac{1}{2}(3^{n-1}+1) 2^{n-1}$.
 - **3. a)** Postoje dvije mogućnosti $a_i < a_j$ ili $a_i > a_j$.
- -ako je $a_i < a_j$, najdulji rastući podniz koji završava članom a_i se može produljiti dodavanjem posljednjeg člana a_j (pa je $x_i < x_j$),
- -ako je $a_i > a_j$, najdulji padajući podniz koji započinje članom a_j može produljiti dodavanjem prvog člana a_i (pa je $y_i > y_j$).
- b) Napravimo sada mrežu od n^2 kvadratića. Smjestimo svaki član a_i u kvadratić s koordinatama (x_i, y_i) , gdje je $1 \le x_i, y_i \le n$ za sve i = 1, ..., n. U svakom kvadratiću je najviše jedan član niza A, pa kako je $|A| = n \ge sr + 1$ prema Dirichletovom načelu jedan će član niza a_i biti izvan osjenčene $s \times r$ podmreže. Zato je $x_i \ge s + 1$ ili $y_i \ge r + 1$ pa tvrdnja slijedi.
- c) Prema Dirichletovom načelu ako nemamo više od sr različitih vrijednosti ovog niza, onda se neka od tih vrijednosti pojavljuje više od p puta u nizu. Ako imamo više od sr različitih vrijednosti primijenimo Erdős-Szekeresov teorem.

- **4. a)** Kako svaki skup S_j ima točno n-r elemenata, a svaki element je u točno r stupaca, pa pripada istom broju n-r skupova S_1, S_2, \ldots, S_n , prema korolaru 0.1 (iz podsjetnika) skupovi S_1, S_2, \ldots, S_n imaju sustav izrazitih predstavnika.
- **b)** Elementi (r+1). retka su upravo elementi sustava izrazitih predstavnika skupova S_1, S_2, \ldots, S_n . Na taj način se i dalje svaki od brojeva $1, 2, \ldots, n$ pojavljuje točno jednom u svakom retku i najviše jednom u svakom stupcu.
- **5.** Unija skupova S_1, S_2, \ldots, S_k suncokreta s k latica u s-uniformnoj familiji najmanje može imati s-1+k elemenata (kada je s-1 elemenata u jezgri), a najviše sk (kada je jezgra prazna).
- **6.** b) Lanac i antilanac u parcijalno uređenom skupu mogu imati najviše jedan zajednički element, jer dva elementa ne mogu istovremeno biti usporediva i neusporediva
 - c) Zbog $\binom{n}{|A|} \leq \binom{n}{k}$ za svaki $A \in \mathcal{F}$ i gdje je $k \leq n/2$ imamo

$$\sum_{A \in \mathcal{F}} \binom{n}{|A|}^{-1} \ge |\mathcal{F}| \cdot \binom{n}{k}^{-1}$$

pa nejednakost $|\mathcal{F}| \leq \binom{n}{k}$ direktno slijedi iz LYM nejednakosti

$$|\mathcal{F}| \cdot {n \choose k}^{-1} \le \sum_{A \in \mathcal{F}} {n \choose |A|}^{-1} \le 1.$$

- 7. a) U suprotnom svih 9 vrhova bi imalo po točno 5 crvenih incidentnih bridova i 3 plava, pa zbroj stupnjeva svih vrhova u crvenom podgrafu 9.5 = 45 nebi bio paran broj.
- b) U prvom slučaju, označimo sa A skup od 6 vrhova crvenih bridova incidentnih s V i različitih od V. Zbog R(3,3) = 6 znamo da A sadrži ili plavi ili crveni trokut, pa uključimo li i vrh V, graf K_9 sadrži ili plavi trokut ili crvenu kliku K_4 .

U drugom slučaju za 4 plava incidentna brida s V, označimo s B skup od njihova 4 vrha različita od V. Ako su svi bridovi od B crveni, onda imamo crvenu kliku K_4 . Ako nisu, postoji plavi brid koji zajedno s vrhom V daje plavi trokut.

8. Neka su Y_2, Y_3, \dots, Y_{n-1} indikatorske slučajne varijable definirane na skupu svih n-permutacija p

$$Y_i(p) = \begin{cases} 1, & \text{ako je } i \text{ brijeg,} \\ 0, & \text{inače.} \end{cases}$$

Za $2 \le i \le n-1,$ vjerojatnost da je p_i najveći u skupu $\{p_{i-1},p_i,p_{i+1}\}$ jednaka je 1/3za svaki $p_i.$ Zato je

$$\mathbf{E}(Y_i) = \frac{1}{3}, \ i = 2, \dots, n-1.$$

Definiramo li $Y=Y_2+Y_3+\cdots+Y_{n-1}$ onda je $Y\left(p\right)$ broj brijegova permutacije p i očekivani broj "brijegova" permutacije p je

$$\mathbf{E}(Y) = \sum_{i=2}^{n-1} \mathbf{E}(Y_i) = \frac{n-2}{3}.$$

Zato prema Dirichletovom svojstvu za očekivanje postoji permutacija za koju je $Y\left(p\right)\geq\mathbf{E}\left(Y\right)$ odnosno koja ima najmanje $\frac{n-2}{3}$ brijegova.