REPORT

January 26, 2025

Clouds Course

Name:	
Brice Robert	
Email:	
robert@eurecom.fr	
Run Locust for 3	minutes each on:
(i) locally deploy	ed numericalintegral,
(ii) VM scaleset	with 2 VMs where you shutdown the VM running the workload after 1 min
(iii) autoscale we	bapp initially configured with 1 instance and max 3,
(iv) autoscale fur	action. Save locust output.
Plot a graph of n	number of successful requests/seconds with one line
for each of the fo	ur cases above.
Paste the graph	below.
Your answer:	
□ Locust File E	xtractions
	tractions from Local, WebApp, Function, ScaleSet are explaine here $/ setrar/Clouds/tree/main/Labs/Azure/lab2/locust$
using CSV, DataF	rames, Plots
# Load the data	from all three sources
	<pre>// read("locust/logs/locust_log-local-u10r2t3.csv_stats.csv",</pre>

```
data_webapp = CSV.read("locust/logs/locust_log-webapp-u10r2t3.csv_stats.csv", __
 →DataFrame)
data_function = CSV.read("locust/logs/locust_log-function-u10r2t3.csv_stats.")
→csv", DataFrame)
# Extract the Requests/s field for all sources
requests_local = data_local. "Requests/s"[1] # Assuming we take the aggregated_
\rightarrow row
requests_webapp = data_webapp. "Requests/s"[1] # Assuming we take the aggregated_
requests_function = data_function. "Requests/s"[1] # Assuming we take the
\rightarrow aggregated row
# Create labels for the deployments (as x-axis points)
deployments = [1, 2, 3] # Assign numeric labels for Local, Web App, Function
deployment_labels = ["(i) Local Deployment", "(iii) Web App Deployment", "(iv)_
→Function Deployment"]
# Create the corresponding requests/s values
requests = [requests_local, requests_webapp, requests_function]
# Plot the data as a line
plot(
    deployments,
    requests,
    xlabel="Deployment Type",
    xticks=(deployments, deployment_labels),
    ylabel="Requests per Second",
    title="Requests per Second for Different Deployments",
    label="Requests/s",
    lw=2,
    marker=:circle,
    grid=true
```

Γ17:

Requests per Second for Different Deployments


```
[2]: using CSV, DataFrames, Plots
     # Load the data for all three sources
    data_local = CSV.read("locust/logs/locust_log-local-u10r2t3.csv_stats_history.
     →csv", DataFrame)
    data_webapp = CSV.read("locust/logs/locust_log-webapp-u10r2t3.csv_stats_history.")
     data_function = CSV.read("locust/logs/locust_log-function-u10r2t3.")
     # Convert timestamps from Unix time to seconds relative to the start of the test
    timestamps_local = data_local.Timestamp .- minimum(data_local.Timestamp)
    timestamps_webapp = data_webapp.Timestamp .- minimum(data_webapp.Timestamp)
    timestamps_function = data_function.Timestamp .- minimum(data_function.Timestamp)
    # Extract Total Average Response Time for all sources
    avg_response_time_local = data_local."Total Average Response Time"
    avg_response_time_webapp = data_webapp."Total Average Response Time"
    avg_response_time_function = data_function."Total Average Response Time"
    # Plot Total Average Response Time for Local Deployment
    plot(
        timestamps_local,
```

```
avg_response_time_local,
    xlabel="Time (seconds)",
    ylabel="Total Average Response Time (ms)",
    title="Total Average Response Time Different Deployments",
    label="Local Deployment (10 users)",
    lw=2,
   marker=:circle,
    grid=true,
   size = (800,500)
)
# Add Total Average Response Time for Web App Deployment
plot!(
   timestamps_webapp,
    avg_response_time_webapp,
    label="Web App Deployment (10 users)",
   marker=:square,
   linestyle=:dash
# Add Total Average Response Time for Function Deployment
plot!(
   timestamps_function,
    avg_response_time_function,
    label="Function Deployment (1 user)",
    lw=2,
   marker=:diamond,
   linestyle=:dot
```

[2]:

What is the address of	of the numerical integrap webapp where we can access your site?
Your answer: https://v	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
What is the address of	of the numerical integrap function deployment?
Your answer: https://c	
What is the address of	of the mapreduce durable function deployment where can invoke it?
Your answer: https://c	clouds 25 brlab 2 mr fnc. az ure websites. net/

Your answer:

• Source Code for all IaC management

What is the gitlab URL where you have saved your assignment code?

https://github.com/setrar/Clouds/tree/main/Labs/Azure/lab2

• Source Code for Numerical Integration (used by the Local App and the WebApp)

https://github.com/setrar/CloudsNumericalIntegration

• Source Code for Numerical Integration Function

https://github.com/setrar/CloudsNIFunction

• (attempted) Source Code for MR function

https://github.com/setrar/CloudsMRFunction

[]: