

Durée: 1h30

Physique pour l'ingénieur

(Session Janvier 2022)

Exercice 1

Considérons un système physique dont l'espace des états \mathcal{E} est de dimension infinie. Soit $\{|n\rangle\}$ une base orthonormée de \mathcal{E} formée par les vecteurs propres $|1\rangle, |2\rangle, |3\rangle \dots$ de l'hamiltonien H_0 associés respectivement aux valeurs propres E_1, E_2, E_3, \dots :

$$H_0|n\rangle = E_n|n\rangle$$
 ; $n = 1,2,3,...$

avec $E_1 < E_2 < E_3 < \cdots$

À l'instant t = 0, l'état du système est décrit par le ket normé $|\Psi(0)\rangle = \sum_{n=1}^{+\infty} c_n |n\rangle$, où les coefficients c_n sont des nombres complexes.

- 1- Trouver une relation entre les coefficients c_n .
- 2- Donner l'état du système $|\Psi(t)\rangle$ à un instant t.
- 3- Déterminer la probabilité $P_n(t)$ de trouver le système à l'instant t dans l'état $|n\rangle$ d'énergie E_n .
- 4- Déduire la probabilité $P_{>}(t)$ de trouver le système à l'instant t dans un état $|n\rangle$ d'énergie $E_n > E_2$.
- 5- Lorsque $P_{>}(t) = 0$, réécrire $|\Psi(t)\rangle$ et trouver une relation entre les coefficients c_n non nuls.

Exercice 2

Soit un système physique à deux niveaux d'énergie dont l'espace des états admet comme une base orthonormée les vecteurs propres $|1\rangle$ et $|2\rangle$ de l'hamiltonien non perturbé H_0 associés respectivement aux valeurs propres $\epsilon_1 = \hbar \omega$ et $\epsilon_2 = -\hbar \omega$.

$$H_0 \simeq \begin{pmatrix} \hbar \omega & 0 \\ 0 & -\hbar \omega \end{pmatrix}$$
 , $|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|2\rangle \simeq \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Le problème consiste à évaluer les modifications qui apparaissent lorsqu'on introduit une perturbation représentée par l'opérateur W qui s'écrit dans la base $\{|1\rangle, |2\rangle\}$ comme suit :

$$W = \begin{pmatrix} 0 & \hbar\Omega \\ \hbar\Omega & 0 \end{pmatrix}$$

οù ω et Ω sont deux constantes réelles et positives.

Le système présente donc un hamiltonien total $H = H_0 + W$.

1- Ecrire H et déterminer ses valeurs propres E_1 et $E_2 < E_1$.

Les vecteurs propres $|\varphi_1\rangle$ et $|\varphi_2\rangle$ de H associés respectivement aux valeurs propres E_1 et E_2 s'écrivent :

$$\begin{split} |\varphi_1\rangle &= \cos\left(\frac{\theta}{2}\right)|1\rangle + \sin\left(\frac{\theta}{2}\right)|2\rangle \quad \text{et} \quad |\varphi_2\rangle = -\sin\left(\frac{\theta}{2}\right)|1\rangle + \cos\left(\frac{\theta}{2}\right)|2\rangle \\ &\cos(\theta) = \frac{\omega}{\sqrt{\omega^2 + \Omega^2}} \quad , \quad \sin(\theta) = \frac{\Omega}{\sqrt{\omega^2 + \Omega^2}} \end{split}$$

- 2- La base {|1>, |2>} est orthonormée, quelles relations doivent satisfaire |1> et |2>?
- 3- Calculer les produits scalaires $\langle 2|\varphi_1\rangle$ et $\langle 2|\varphi_2\rangle$.
- **4-** Exprimer $|1\rangle$ et $|2\rangle$ dans la base $\{|\varphi_1\rangle, |\varphi_2\rangle\}$.

À l'instant t = 0, l'état du système est décrit par le ket $|\Psi(0)\rangle = |1\rangle$.

- 5- Ecrire $|\Psi(t)\rangle$ à l'instant t.
- 6- Calculer $\langle 2|\Psi(t)\rangle$.
- 7- Déterminer la probabilité $P_2(t)$ de trouver le système à l'instant t dans l'état $|2\rangle$ en fonction de ω et Ω .
- 8- Tracer $P_2(t)$ en fonction de t.