Lezione 25 - 28/11/2022

Proposizione - Base insieme massimale di vettori linearmente indipendenti

Lemma

Proposizione

Corollario

Costruzione di una base

Teorema - Teorema del completamento a base

Teorema

Definizione - Dimensione

Corollari

Osservazione

Proposizione - Base insieme massimale di vettori linearmente indipendenti

Se $B = \{v_1, ..., v_n\}$ è una base dello spazio vettoriale V, allora B è un insieme massimale di vettori linearmente indipendenti.

<u>Dimostrazione</u>: devo verificare che per ogni $v \in V$ $v, v_1, ..., v_n$ sono **linearmente dipendenti**. Poiché B è una base, è in particolare un **insieme di generatori**, dunque esistono **scalari** $\alpha_1, ..., \alpha_n$ tali che

$$v = \alpha_1 v_1 + ... + \alpha_n v_n$$

Pertanto $\{v, v_1, ..., v_n\}$ sono linearmente dipendenti.

Lemma

Sia B un sottoinsieme finito dello spazio vettoriale V. Se $\operatorname{Span} B$ contiene un sistema di generatori per V, allora $V = \operatorname{Span} B$, cioè B è esso stesso un insieme di generatori.

 $\underline{ ext{Dimostrazione}}$: sia $A\subset \operatorname{Span} B$ tale che $\operatorname{Span} A=V$. Sia $A=\{w_1,...,w_s\}$ allora ogni $v\in V$ è del tipo

$$v = \sum_{i=1}^s a_i w_i$$

Lezione 25 - 28/11/2022 1

Ma $A\subset \operatorname{Span} B$, per cui se $B=\{v_1,...,v_r\}$,

$$w_i = \sum_{j=1}^r b_{ij} v_j$$

e dunque

$$v=\sum_{i=1}^s a_iw_i=\sum_{i=1}^s \sum_{j=1}^r a_ib_{ij}v_j$$

Proposizione

Sia $A=\{v_1,...v_k\}$ un insieme di generatori per lo spazio vettoriale V. Sia $B\subseteq A$ un insieme massimale di vettori linearmente indipendenti. Allora B è una base di V.

Corollario

Se V è finitamente generato, allora esiste una base di V.

$$\alpha w + \alpha_1 v_1 + ... + \alpha_r v_r = 0$$

Se $\alpha=0$, si ha $\alpha_1v_1+...+\alpha_rv_r=0$ che implica $\alpha_1=...=\alpha_r=0$ per l'**indipendenza lineare** dei $v_1,...,v_r$. Ma questo non è possibile, quindi $\alpha\neq 0$ e

$$w=-rac{lpha_1}{lpha}v_1...-rac{lpha_r}{lpha}v_r\in \operatorname{Span} B$$

come volevamo.

Costruzione di una base

Sia
$$A=\{v_1,...,v_r\}$$
 e $\mathrm{Span}\; A=V.$ Se $V=0$ allora OK.

2

Se V
eq 0 allora $\exists v_i \in A, v_i
eq 0$. Se $\{v_i, v_j\}$ sono linearmente dipendenti $\forall j$, $\{v_j\}$ è una **base**. Altrimenti esiste $v_j \in A$ tale che $\{v_i,v_j\}$ è **linearmente** dipendente. Se $\{v_i,v_j,v_k\}$ sono linearmente dipendenti $\forall k$ allora $\{v_i,v_j\}$ è una base. E così via.

 $oxed{ ext{N.B.}}$: Sia $A=\{v_1,...,v_n\}$ un **insieme di generatori**. Se sono linearmente indipendenti, sono una base. Altrimenti sono linearmente **dipendenti** ed esiste v_i tale che $v_i \in \mathrm{Span}(v_1,...,v_{i-1},v_{i+1},...,v_n)$. Ma $\mathrm{Span}(v_1,...,v_n) = \mathrm{Span}(v_1,...,v_{i-1},v_{i+1},...,v_n)$. Se ora $v_1,...,v_{i-1},v_{i+1},...,v_n$ sono linearmente indipendenti, sono una base. Altrimenti esiste $v_i = \mathrm{Span}(v_1,..,v_{i-1},v_{i+1},...,v_{i-1},v_{i+1},...,v_n)$ e così via.

Teorema - Teorema del completamento a base

Sia $B = \{v_1, ..., v_n\}$ una **base** di uno **spazio vettoriale** V e siano $w_1,...,w_p,\ p\leq n$ vettori **linearmente indipendenti**. Allora esistono n-p vettori di B che insieme a $w_1,...,w_p$ formano una base di V.

Dimostrazione: procediamo per **induzione** su p.

Sia p=1. Poiché $v_1,...,v_n$ è una base di V, esistono **scalari** $lpha_1,...,lpha_n$ tali che

$$w_1 = \alpha_1 v_1 + ... + \alpha_n v_n$$
 (*)

Per ipotesi $\{w_1\}$ è **indipendente**, cioè $w_1
eq 0$, quindi gli $lpha_i$ **non sono tutti nulli** e possiamo assumere $\alpha_1 \neq 0$, quindi

$$v_1=rac{1}{lpha_1}w_1-rac{lpha_2}{lpha_1}v_2-rac{lpha_3}{lpha_1}v_3...-rac{lpha_n}{lpha_1}v_n$$

Dunque $B\subset \mathrm{Span}(w_1,v_2,...,v_n)$. Per il **lemma**, $\{w_1,v_2,...,v_n\}$ è un **insieme** di generatori. Dimostriamo che sono linearmente indipendenti. Sia

$$eta_1 w_1 + eta_2 w_2 + ... + eta_n v_n = 0$$

Dobbiamo dimostrare che $\beta_1 = \beta_2 = ... = \beta_n = 0$. Per faremo usiamo (*). Otteniamo

3 Lezione 25 - 28/11/2022

$$eta_1(lpha_1v_1 + ... + lpha_nv_n) + eta_2v_2 + ... + eta_nv_n = 0 \ eta_1lpha_1v_1 + (eta_1lpha_1 + eta_2)v_2 + ... + (eta_1lpha_n + eta_n)v_n = 0$$

Ma $\{v_1,...,v_n\}$ è un insieme **linearmente indipendente**, quindi

$$egin{cases} eta_1=0 \ eta_1lpha_2+eta_2=0 \ dots \ eta_1lpha_n+eta_n=0 \end{cases} egin{cases} eta_1=0 \ eta_2=0 \ dots \ eta_n=0 \end{cases}$$

Supponiamo ora la **tesi vera** per p-1 vettori e dimostriamola per p vettori.

Per **ipotesi induttiva**, possiamo trovare n-(p-1)=n-p+1 vettori, che a meno di cambiare nome possiamo assumere essere $v_p,...,v_n$, tali che

$$\{w_1,...,w_{p-1},v_p,...,v_n\}$$

è una **base** di V. Come prima

$$w_p = \alpha_1 w_1 + ... + \alpha_{p-1} w_{p-1} + \alpha_p v_p + ... + \alpha_n v_n$$

Gli α_i con $p \leq i \leq n$ non sono tutti nulli, altrimenti troveremo una relazione di dipendenza tra $w_1,...,w_p$. Supponiamo allora $\alpha_p \neq 0$ e scriviamo

$$v_p=rac{1}{lpha_p}w_p-rac{lpha_1}{lpha_p}w_1...-rac{lpha_{p-1}}{lpha_p}w_{p-1}-rac{lpha_{p+1}}{lpha_p}v_{p+1}...-rac{lpha_n}{lpha_p}v_n$$

Dunque $v_p \in \mathrm{Span}(w_s,...,w_p,v_{p+1},...,v_n)$, pertanto tali vettori sono un insieme di **generatori**. Per provare l'**indipendenza lineare**, scriviamo

$$\beta_1 w_1 + ... + \beta_p w_p + \beta_{p+1} v_{p+1} + ... + \beta_n v_n = 0$$

dove $w_p=lpha_p v_p+lpha_1 w_1+...+lpha_{p-1} w_{p-1}+lpha_{p+1} v_{p+1}+...+lpha_n v_n$. Quindi

$$egin{aligned} (eta_1 + eta_p lpha_1) w_1 + ... + (eta_{p-1} + eta_p lpha_{p-1}) w_{p-1} + eta_p lpha_p v_p \ &+ (eta_{p+1} + eta_p lpha_{p+1}) v_{p+1} + ... + (eta_n + eta_p lpha_n) v_m n = 0 \end{aligned}$$

Per ipotesi induttiva $w_1,...,w_{p-1},v_p,v_{p+1},...,v_n$ sono una base di V, pertanto

Lezione 25 - 28/11/2022 4

$$egin{cases} eta_1 + eta_p lpha_1 = 0 \ dots \ eta_{p-1} + eta_p lpha_{p-1} = 0 \ eta_p lpha_p = 0 & eta_p lpha_p = 0 \ dots \ eta_n + eta_p lpha_n = 0 \end{cases}$$
 Risostituendo $egin{cases} eta_1 = 0 \ dots \ eta_{p-1} = 0 \ eta_p = 0 \ dots \ eta_n = 0 \end{cases}$

Teorema

Se V è uno **spazio vettoriale** finitamente generato, due qualsiasi basi hanno lo **stesso numero di elementi**.

Definizione - Dimensione

Il numero di elementi di una qualsiasi base di uno spazio vettoriale V finitamente generato si chiama dimensione di V e si denota con $\dim V$.

<u>Dimostrazione (Teorema)</u>: Siano B_1, B_2 due **basi** di V, con $|B_1| = h, |B_2| = k$. Se per assurdo h > k, il **teorema** dice che esistono h - k vettori di B_1 che aggiunti a B_2 danno una base. Ma B_2 è **già una base**, quindi un **insieme massimale** di vettori linearmente indipendenti.

Corollari

- 1. Se $\dim V = n$, n vettori indipendenti sono una base.
- 2. Se $\dim V = n$, n generatori sono una base.
- 3. Se $\dim V=n, w_1,...,w_p\in V$. Se $p>n,w_1,...,w_p$ sono linearmente dipendenti.

Osservazione

La notazione di **dipendenza** e **indipendenza lineare** dipende in modo **essenziale** da \mathbb{K} . In effetti è più corretto scrivere che i vettori $v_1,...,v_n$ sono **linearmente indipendenti su** \mathbb{K} se

$$lpha_1v_1+...+lpha_nv_n=0\Rightarrowlpha_1=...=lpha_n=0\quad (lpha_i\in\mathbb{K})$$

Lezione 25 - 28/11/2022 5

In particolare la **dimensione** di V dipende da $\mathbb K$ ed è più corretto scriverle come $\dim_{\mathbb K} V$.

Esempio:

• $V=\mathbb{C},\ \mathbb{K}=\mathbb{C}.$ Una **base** può essere data da $\{1\}:$

$$z = z \cdot 1$$
vettore scalare vettore

• $V=\mathbb{C},\ \mathbb{K}=\mathbb{R}.$ Una **base** di \mathbb{C} su \mathbb{R} è data da $\{1,i\}$:

$$z = \underbrace{a}_{ ext{scalare reale}} \cdot \underbrace{1}_{ ext{vettore}} + \underbrace{b}_{ ext{scalare reale}} \cdot \underbrace{i}_{ ext{vettore}}$$

Si ha: $\dim_{\mathbb{C}}\mathbb{C}=1,\ \dim_{\mathbb{R}}\mathbb{C}=2.$

Similarmente $\dim_{\mathbb{C}} M_2(\mathbb{C}) = 4, \ \dim_{\mathbb{R}} M_2(\mathbb{C}) = 8$:

• Su $\mathbb C$

$$egin{pmatrix} i & 2 \ 3 & 4i \end{pmatrix} = i egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} + 2 egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} + 3 egin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix} + 4i egin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$$

• Su $\mathbb R$

$$\begin{pmatrix} i & 2 \\ 3 & 4i \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix} + 2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + 4 \begin{pmatrix} 0 & 0 \\ 0 & i \end{pmatrix}$$

$$\begin{pmatrix} a+ib & * \\ * & * \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix} + \dots$$