[1.1]

2.2 a)
$$U_{++} - c^2 U_{XX} = 0$$
 where $0 = 0$ and $0 = \frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2}$ is the since $\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2} = \left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x}\right)$, where $\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2}$ is the since $\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2} = \left(\frac{\partial}{\partial t} + c \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} - c \frac{\partial}{\partial x}\right)$,

$$\left(\frac{\partial^{2}}{\partial t^{2}} - C^{2} \frac{\partial^{2}}{\partial x^{2}}\right) U = \left(\frac{\partial}{\partial t} - C \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + C \frac{\partial}{\partial x}\right) Y$$

$$= \left(\frac{\partial}{\partial t} - C \frac{\partial}{\partial x}\right) \left(U_{t} + C U_{x}\right) \quad |c_{t}| \quad V = U_{t} + C U_{x}$$

$$= \left(\frac{\partial}{\partial t} - C \frac{\partial}{\partial x}\right) \left(V\right)$$

$$= \left(V_{t} - C V_{x}\right)$$

fuus Utt-c2 Mxx is equivalent to V= M++CMx 1/1 - CVx = 0

b) $V_{+}-CV_{\times}=0$ gives $V_{-}(X_{+})=V_{-}(X_{+})$ U4 + CUx=V becomes U++cux = hcx+ct) non solve by looking for solutions of the form: U=Unon+Up where Up is a partizular solution and 4non solves the homogenous equation 4+1 (450 The general solutions to U++ CUx=0 gives Unon = 9 (X-C+)

Then guess a particular solutions of the form Up= f(x+c+) and plugging it in gives f'(=)= h(=) so the whole solution u= Unon+up has the general form u(+,×)= g(x-c+)+f(x+c+)

1.3

2.3 a)
$$U_{xx} - 3U_{x4} - 4U_{x4} = 0$$
, $U(0_{x}) = X^{2}$, $U_{x}(0_{x}) = e^{x}$

$$\psi(x) = x^{2} \quad \Psi(x) = e^{x}$$

$$U(x) = 0 \quad \text{where } 0 = \frac{\partial^{2}}{\partial x^{2}} - 3\frac{\partial}{\partial x} \frac{\partial}{\partial x} - 4\frac{\partial^{2}}{\partial x^{2}}$$

$$= (\frac{\partial}{\partial x} - 4\frac{\partial}{\partial x})(\frac{\partial}{\partial x} + \frac{\partial}{\partial x})U = (\frac{\partial}{\partial x} - \frac{\partial}{\partial x})(u_{x} + u_{x}) \quad |e^{x} = u_{x} + u_{x}$$

$$= (\frac{\partial}{\partial x} - 4\frac{\partial}{\partial x})U$$

$$= (\frac{\partial}{\partial x} - 4\frac{$$

 $\begin{array}{ll}
\mathbb{O} U(0,x) = F(x) + G(x) = \phi(x) & \mathbb{D} U_{+}(0,x) = -4F(x) - G'(x) = \psi(x) \\
& \text{integrale 1} \\
& \text{Add 0 and 0} & \int_{0}^{x} -4F'(x) - G'(x) = \psi(x) \\
& -3F(x) = \phi(x) - \int_{0}^{x} \psi(x) dx - A & \mathbb{O}(x) = \int_{0}^{x} \psi(x) dx - A \\
& \text{(4) = 7} F(x) + \frac{1}{4}G(x) = -\frac{1}{1} \int_{0}^{x} \psi(x) dx + A
\end{array}$

Subtract D and 9

 $-\frac{3}{4}(5(x)=\phi(y)+\frac{1}{4}\int_{0}^{\infty}\Psi(x)dx-4$ $F(x+4+)+G(x-+)=-\frac{1}{3}\phi(x+4+)+\frac{1}{3}\int_{0}^{x+4+}\Psi(x)dx-\frac{4}{3}\phi(x+1)-3\int_{0}^{x-4}\Psi(x)dx$ $\int_{0}^{x+4}=-\frac{1}{3}(x+4+)^{2}+\frac{1}{3}\int_{0}^{x+4+}\Psi(x)dx-\frac{4}{3}\phi(x+1)^{2}-3\int_{0}^{x+4}e^{x}dx$

the shaded triangle chans the Lomain of sependence X+4+ C X0 C X-+

3.1

$$= \int_{-\infty}^{\infty} u_{+} \left(u_{++} - C^{2} u_{xx} \right) dx$$

$$= -\int_{-\infty}^{\infty} a u_{+}^{2} dx \leq 0$$

by part a, since Euch so, Euch so for all +20 fureing by def. Ey(+) 30 + herefore Eu(+) =0 for all +20 we can conclude that U+= 0= Ux and since U(+,x)=(

for some constant C and by assumption,
$$u(0,x)=0$$
,
 $C=0$. Then $u(t,x)=0$ and thus $v(x,t)=w(x,t)$

2.5 a)
$$U_{++}$$
 - $U_{xx} = 0$, $U(0, x) = o(x)$ and $U_{+}(0, x) = 0$

$$U(1, x) = \left\{ \left(\phi(x - c + 1) + \phi(x + c + 1) \right) \right\}$$

$$= \frac{1}{2} \left[\sigma(x-t) + \sigma(x+t) \right]$$

See mathematica for plots

$$U(t, X) = \frac{1}{2} \begin{pmatrix} x_{1} + \sigma(z) dz & \text{when} & X < 0 \\ x_{2} + \sigma(z) dz & \text{when} & X < 0 \end{pmatrix}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$(U, X) = \frac{1}{2} \begin{cases} x_{t+1} \\ 0 \\ d = 0 \end{cases}$$

$$U(+,X) = \frac{1}{2} \int_{X-t}^{X+t} \sigma(2) d2 \quad \text{when} \quad X > 0$$

$$4.3$$

$$= \frac{1}{2} \int_{x-t}^{x+t} 2 dz = \frac{1}{2} (x+t - x + t)$$

$$= \frac{1}{2} (2t) = t$$

se mathematica

Index of comments

1.1	PS2: 33/39
1.2	2.1: 6/6
1.3	+5/5
1.4	+5/5
2.1	+3/5: Your function F should be a function of $x + (1/4)$ t instead of $x + 4t$. I'm not completely following your algebra to obtain the solution from the initial conditions. I would take a second look at your solution to the system of equations. You should evaluate the integrals involved in the solution.
3.1	+2/2
3.2	+5/5
4.1	+4/5: Can you justify why we have zero initial conditions for u?
4.2	+2/2
4.3	+1/2: Missing Mathematica plot
4.4	+0/2