is a field? with two binary openations addition and multiplecation.

Answer of Clean Q = Y P. P. Q EZ, Q = 07 with order y addition and multiplecedion is field

Proof, we verify the field oxioms.

A wall-definedows of operations (boxef remote)

A radional rumber is an encuralmen class of pairy (P, n) with $n \neq 0$ under $f = f' \iff ph = fa$ The reveal formulas,

Proof of the second and $\frac{P}{S} = \frac{PS + room}{PS}$, $\frac{P}{N} = \frac{PN}{N}$ $\frac{P}{S} = \frac{PN}{$

3. Association of 1 and

Associatively follows from associatively in z and the formular for sum/product of traction.

4. Commutativity of
$$+$$
 and.

From commutativity of $+$ and.

 $\frac{p}{n} + \frac{r}{s} = \frac{rs + rar}{rs} = \frac{rr + rs}{sr} = \frac{r}{s} + \frac{r}{a}$

5. Identities is

Additive inverses,

For $\frac{p}{n} \in Q$ the additive inverse is $\frac{p}{n} = \frac{p}{n}$

For
$$\frac{1}{2}$$
 \in Q the additive inverse is $\frac{1}{2}$ $=$ $\frac{1}{2}$ Since, $0=\frac{1}{2}$ for any $\frac{1}{2}$

$$\frac{p}{a} + \frac{o}{1} = \frac{p \cdot 1 + o \cdot n}{a \cdot 1} = \frac{p}{1}$$

Multiplication identity
$$31 = \frac{1}{4}$$
 For any $\frac{P}{a}$. $\frac{1}{4} = \frac{P \cdot I}{A \cdot I} = \frac{P}{a}$

6. Addition inverses:

For
$$\frac{1}{2}$$
 & Q the adde the invosein $-\frac{1}{2} = \frac{1}{2}$

$$\frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0$$

7. Multiplicative inverses

If
$$G \in Q$$
 and $G \neq O$ then $P \neq O$

The inverse is $(G = Q)^{-1} = G$ and indeed

 $G = G = G$