1. Given a multivariate Gaussian with mean vector $\mu = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$, obtain the square of the Mahalonobis distance of $x = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$ from the mean.

Answer: 1.375

- 2. Given a multivariate Gaussian distribution over variables X_1, X_2, X_3 with a zero mean vector and covariance matrix $\Sigma = \begin{bmatrix} 1 & 0.5 & 0.3 \\ 0.5 & 1 & 0.4 \\ 0.3 & 0.4 & 1 \end{bmatrix}$, which pair of variables are most strongly correlated?
 - (a) All are equally correlated.
 - (b) X_2 and X_3
 - (c) X_1 and X_2
 - (d) X_1 and X_3

Answer: (c)

- 3. A bivariate Gaussian distribution has covariance matrix $\Sigma = \begin{bmatrix} 2 & 0.8 \\ 0.8 & 8 \end{bmatrix}$. What is the correlation coefficient between the two variables?
 - (a) 0.05
 - (b) 0.2
 - (c) 0.04
 - (d) 0.8

Answer: (b)

4. Consider a bivariate Gaussian distribution with mean vector $\mu = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$ and covariance matrix $\Sigma = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$. What is the largest variance along any direction in this distribution?

Answer: 5

- 5. Which of the following conditions are individually sufficient for the independence of 2 random variables?
 - (a) Their joint probability density is the product of their individual probability densities at all sample points.
 - (b) Their joint cumulative distribution is the product of their individual cumulative distributions at all sample points.
 - (c) Their covariance across the sample space is zero.
 - (d) They are uncorrelated with all other variables in the distribution.

Answer: (a), (b)

- 6. What does $\Sigma_{i,j}$ of the covariance matrix represent in a multivariate Gaussian distribution?
 - (a) $\mathbb{E}[X_i X_j] \mathbb{E}[X_i] \mathbb{E}[X_j]$
 - (b) $\mathbb{E}[(X_i \mathbb{E}[X_i])(X_j \mathbb{E}[X_j])]$
 - (c) $\mathbb{E}[(X_i \mathbb{E}[X_i])^2 \mid X_j]$
 - (d) None of the above.

Answer: (a), (b)

- 7. Suppose a 3 dimensional multivariate Gaussian has a covariance matrix $\Sigma =$
 - $\begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. Compute the conditional variance of X_1 given $X_2 = 0$.

Answer: 2.67