

Ampliación de Matemáticas Ecuaciones Diferenciales de Segundo Orden (1)

EDO lineal general de segundo orden

$$rac{d^2w}{dz^2}(z)=p(z)rac{dw}{dz}(z)+q(z)w(z)+r(z)$$

Decimos que la EDO es homogénea cuando r(z)=0.

Teorema: Toda solución de la EDO general se escribe como $w = w_p + w_h$, donde w_p es una solución particular de la ecuación completa y w_h es una solución de la homogénea. Además, las soluciones de la homogénea son un espacio vectorial de dimensión dos.

Clasificación de los puntos

Decimos que z_0 es:

• Un **punto ordinario** cuando p(z) y q(z) son analíticas en un entorno de z_0 . Si R es el menor radio de convergencia de sus series de potencias, la solución w(z) tiene un desarrollo válido en $D(z_0,R)$, y por recurrencia podemos obtener los coeficientes:

$$w(z) = \sum c_n z^n = \sum n(n-1)c_n z^{n-2} = \ (\sum a_n z^n)(\sum c_n n z^{n-1}) + (\sum b_n z^n)(\sum c_n z^n)$$

Donde a_n son los coeficientes de p(z) y b_n los de q(z)

- Un **punto singular** en caso contrario. Puede ser:
- Un **punto singular regular** cuando zp(z) y $z^2q(z)$ son analíticas en z_0 .
- Un **punto singular irregular** en caso contrario. Estos puntos no se tratan en la asignatura.

Puntos singulares regulares

Escribimos la EDO homogénea de la siguiente manera:

$$\frac{d^2w}{dz^2}(z) = \frac{b(z)}{z}\frac{dw}{dz}(z) + \frac{a(z)}{z^2}w(z)$$

La situación depende de los autovalores de la siguiente matriz, λ_1 y λ_2 , con $\lambda_1 \geq \lambda_2$

$$egin{bmatrix} 0 & 1 \ a(0) & b(0)+1 \end{bmatrix}$$

• Caso 1: $\lambda_1 \neq \lambda_2$ y $\lambda_1 - \lambda_2 \notin \mathbb{N}$. En este caso, la solución general de la homogénea es:

$$c_1 z^{\lambda_1} p_1(z) + c_2 z^{\lambda_2} p_2(z)$$

Donde $c_1, c_2 \in \mathbb{C}$ cualesquiera y p_1, p_2 son funciones analíticas en z_0 que cumplen $p_1(0) = p_2(0) = 1$. Los coeficientes se pueden determinar por recurrencia.

• Caso 2: $\lambda_1 = \lambda_2$. En este caso, la solución general de la homogénea es:

$$c_1z^{\lambda_1}p_1(z)+c_2\left[z^{\lambda_1}p_1(z)\ln(z)+z^{\lambda_2}p_2(z)
ight]$$

Donde $c_1,c_2\in\mathbb{C}$ cualesquiera y p_1,p_2 son funciones analíticas en z_0 que cumplen $p_1(0)=1$, $p_2(0)=0$ (p_2 puede ser nula). Los coeficientes se pueden determinar por recurrencia.

• Caso 3: $\lambda_1 \neq \lambda_2$ y $\lambda_1 - \lambda_2 \in \mathbb{N}$. En este caso, la solución general de la homogénea es:

$$c_1 z^{\lambda_1} p_1(z) + c_2 \left[lpha z^{\lambda_1} p_1(z) \ln(z) + z^{\lambda_2} p_2(z)
ight]$$

Donde $c_1,c_2\in\mathbb{C}$ cualesquiera, $\alpha\in\mathbb{C}$ (puede ser 0) y p_1,p_2 son funciones analíticas en z_0 que cumplen $p_1(0)=1$ ($p_2(0)$ puede o no ser nulo, al igual que p_2 puede ser nula). Los coeficientes se pueden determinar por recurrencia.