## 2.2 Графики законов движения $\varphi_h(t)$ и $\varphi_m(t)$ за один оборот часовой стрелки (т.е. за 12 часов) показаны на рисунке



## 2.3 В заданном диапазоне времени, закон движения часовой стрелки записывается просто $\varphi_b = t$ (8)

Для описания движения минутной стрелки удобней записать ее закон движения в течение каждого часа (начиная от часа n), который изображается наклонной прямой

$$\varphi_m = 12(t-n) \qquad t \in [n, n+1] \tag{9}$$

Для определения моментов времени, когда стрелки часов совпадают, необходимо решить уравнение

$$\varphi_m = \varphi_h \quad \Rightarrow \quad 12(t-n) = t \quad \Rightarrow \quad t_n = \frac{12}{11}n$$
(10)

Эти времена можно представить в виде  $t_n = \frac{12}{11}n = n + \frac{n}{11}$ . В этой записи: n - время

встречи (часы), а величину  $\frac{n}{11}$  следует перевести в минуты. Эта добавка времени в

минутах будет равна  $\Delta t = \frac{n}{11} \cdot 60$ . Расчеты времен приведены в таблице.

|   | Время встречи |        | n  | Время встречи |        |
|---|---------------|--------|----|---------------|--------|
| n | часы          | минуты |    | часы          | минуты |
| 0 | 0             | 0      | 6  | 6             | 33     |
| 1 | 1             | 5      | 7  | 7             | 38     |
| 2 | 2             | 11     | 8  | 8             | 44     |
| 3 | 3             | 16     | 9  | 9             | 49     |
| 4 | 4             | 22     | 10 | 10            | 55     |
| 5 | 5             | 27     | 11 | 12            | 0      |

## Часть 3. Испорченные маятниковые часы.

- 3.1 Часы будут отставать, так как на некоторый угол (определяющий показания часов) они повернутся за большее время.
- 3.2 Показания часов пропорциональны числу периодов колебаний. Пусть период колебаний исправных часов равен  $T_0$ , тогда за время t показания часов будут

$$\hat{t}_0 = A \frac{t}{T_0} = t \,, \tag{11}$$

где A - некоторый коэффициент пропорциональности, зависящий от устройства часов. Для исправных часов показания часов равны истинному времени.

За тот же промежуток истинного времени испорченные часы покажут

$$\hat{t} = A \frac{t}{T} = A \frac{t}{T_0 (1 + \eta)} = \frac{t}{1 + \eta}$$
 (12)

Тогда ошибка в показаниях часов будет равна

$$\delta t = t - \hat{t} = t - \frac{t}{1+\eta} = \frac{\eta}{1+\eta} t \tag{13}$$

Подставим численные значения и вычислим

$$\delta t = \frac{\eta}{1+\eta} t = \frac{0,0100}{1+0,0100} 24 \cdot 3600 = 855c \approx 14 \text{мин}.$$
 (14)

3.3 Часы покажут точное время, когда набежит ошибка в 12 часов. Из формулы (13) находим

$$\delta t = \frac{\eta}{1+\eta} t \quad \Rightarrow \quad t = \frac{1+\eta}{\eta} \delta t = \frac{1,0100}{0,0100} 12 = 12124ac \approx 50 \partial He \ddot{u}. \tag{15}$$