Real Variables: Problem Set IV

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set IV of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 4.31. Solution.

Question 2. Royden 4.44. Solution.

Question 4. Royden 4.52.

Solution. (a) Consider the following family of functions:

$$\mathscr{F} = \{ n\chi_{[0,\frac{1}{n}]} \}_{n=1}^{\infty}.$$

Observe that for each $n, n\chi_{[0,\frac{1}{n}]}$ is integrable and $\int_0^1 |n_\chi[0,\frac{1}{n}]| = 1$. The family \mathscr{F} , however, fails to be uniformly integrable. Fix $\epsilon = \frac{1}{2}$. Then, for any $\delta > 0$, by the Archimedean property of the reals, there exists n, such that $\frac{1}{n} < \delta$. Since the interval $[0,\frac{1}{n}]$ is measurable, has a measure smaller than δ , and $\int_0^{\frac{1}{n}} n\chi_{[0,\frac{1}{n}]} = 1 > \frac{1}{2}$, we have that \mathscr{F} is not uniformly integrable. Hence, by a counter example, we have shown that under the given assumptions, the family of functions need not be uniformly integrable.

(b) We claim that $\mathscr F$ with the given assumption is uniformly integrable. Note that continuity implies integrability. Fix $\epsilon>0$. Let $f\in\mathscr F$. Then, for any measurable set $E\subseteq[0,1]$ with $mE<\delta$ with, by using the $|f|\leq 1$ bound, we obtain

$$\int_{E} f \leq \int_{E} |f|$$

$$\leq \int_{E} 1$$

$$= mE$$

$$\leq \delta$$

By letting $\delta=\epsilon$, we have $\int_E f \leq \epsilon$. Since ϵ and f were arbitrary, we have shown that $\mathscr F$ is uniformly integrable.

(c) Let \mathscr{F} be the family of functions f on [0,1], each of which is integrable over [0,1] and has $\int_a^b |f| \leq b-a$ for all $[a,b] \subseteq [0,1]$. We claim that \mathscr{F} is uniformly integrable. Fix $\epsilon>0$ and fix $f\in\mathscr{F}$. Let $A\subseteq [0,1]$ be a measurable set such that $mA<\delta$ By the outer approximation of measurable set by open sets, there exists an open set O such that $A\subseteq O$ and $m(O\setminus A)\leq \frac{\epsilon}{2}$. Observe that O can be written as a countable union of disjoint open intervals, which gives $O=\cup_{i=1}^\infty (a_i,b_i)$. From the monotonicity and excision property of measure, and countable additivity over domain property of integration, it follows that

$$\int_{A} |f| \leq \int_{O} |f|$$

$$\leq \int_{\bigcup_{i=1}^{\infty} (a_{i}, b_{i})} |f|$$

$$= \sum_{i=1}^{\infty} \int_{(a_{i}, b_{i})} |f|$$

$$\leq \sum_{i=1}^{\infty} \int_{[a_{i}, b_{i}]} |f|$$

$$\leq \sum_{i=1}^{\infty} b_{i} - a_{i}$$

$$= mO$$

$$= m(O \setminus A) + m(A)$$

$$\leq \frac{\epsilon}{2} + \delta.$$

Define $\delta=\frac{\epsilon}{2}$ then, we have if A is measurable, and $mA<\delta$, then $\int_A|f|<\epsilon$. Since ϵ and f were arbitrary, we have that $\mathscr F$ is uniformly integrable. \qed