Lógica, Apenas Lógica

Renan Aparecido Stuchi*

2021, v-1.2.1

Resumo

Neste artigo pretende-se introduzir uma teoria a respeito da origem de tudo. O objetivo inicial é responder se existe algo ao invés de nada. Essa pergunta vem incomodando a filosofia e a ciência até os dias de hoje. A resposta a essa pergunta está na compreensão de que a lógica em sua essência remete ao nada (NÃO É - NEGA A SI - NEGA SER). A negação de si, essência lógica, gera expansões lógicas que caracterizam os fundamentos do teorema central do limite. Os passos da expansão lógica regidos pela probabilidade descrita no teorema central do limite correspondem à consciência, a maior onda lógica de uma população e seus aspectos: infinito, ondas, tempo, espaço, forças fundamentais, matéria escura, energia escura, antimatéria e buraco negro. Em outras palavras, a infinita negação de si da lógica gera expansões lógicas que probabilisticamente irão formar ondas lógicas e suas sub-ondas, estabelecendo qual é a natureza fundamental da realidade, do conhecimento e da existência. As expansões lógicas acontecem na ausência de tempo, o que define a essência lógica como uma infinita recursão generalizada, uma constante, análogo aos infinitos números ou pontos que compõem o intervalo de uma reta qualquer.

Palavras-chaves: lógica. nada. tudo. expansão lógica. teorema central do limite. consciência. infinito. ondas. tempo. espaço. forças fundamentais. matéria escura. energia escura. antimatéria. buraco negro. observador e a vida.

Abstract

This article aims to introduce the theory about the origin of everything. The initial goal is to answer if there is something instead of nothing. This question has been bothering philosophy and science to this day. The answer to this question lies in the understanding that logic in its essence refers to nothing (NOT TO BE - SELF-NEGATION - DENIES BEING). Self-negation, the logical essence, generates logical expansions that characterize the foundations of the central limit theorem. The steps of the logical expansion governed by the probability described in the central limit theorem corresponds to consciousness, the largest logical wave of a population and its aspects: infinity, waves, time, space, fundamental forces, dark matter, dark energy, antimatter and black hole. In other words, the infinite self-negation of logic generates logical expansions that will probabilistically form logical waves and their subwaves, establishing what is the fundamental nature of reality, knowledge and existence. Logical expansions happen in the absence of time, which defines the logical essence as an infinite generalized recursion, a constant, analogous to the infinite numbers or points that make up the interval of any given line.

Keywords: logic. nothing. all. logical expansion. central limit theorem. consciousness. infinite. waves. time. space. fundamental forces. dark matter. dark energy. antimatter. black hole. observer and life.

^{*}E-mail: ren.stuchi@gmail.com | GitHub: private repo https://github.com/RenStu/logic

Introdução

O raciocínio deste texto surgiu como resposta à pergunta mais essencial que a filosofia pode formular e que a ciência até então não foi capaz de responder plenamente, que é: se existe algo ao invés de nada ou porque existe algo ao invés de nada? Essa pergunta foi feita pela primeira vez pelo filosofo Gottfried Wilhelm Leibniz em uma carta de 1697 e é frequentemente descrita como a maior questão filosófica (LEIBNIZ, 1697).

A resposta a essa pergunta vem da resposta do que é a lógica. Ao explorar o que a lógica é e o que ela NÃO É, deu origem a uma teoria a respeito da origem de tudo, de todas as coisas. A lógica em sua essência remete ao nada, que NÃO É, ou seja, nega a si (nega ser). A autonegação da lógica (negação de si) pôde ser abstraída recursivamente (nega ser, infinitamente) em três axiomas que são a base do teorema núcleo dessa teoria.

A lógica NÃO SER é consonante com o NADA, pois se por um lado a lógica $NÃO \stackrel{.}{\underline{E}}$, por outro $\stackrel{.}{\underline{E}}$ seu contrário, ou seja, ilógica e imutável. Nessa dualidade, tem-se a existência fundamentada pela lógica que $NÃO \stackrel{.}{\underline{E}}$, enquanto $\stackrel{.}{\underline{E}}$ ilógica, imutável e inexistente.

O texto está disposto na seguinte hierarquia:

1. Lógica

- 1.1. Expansão lógica
- 1.2. Teorema central do limite
- 1.3. Consciência
 - 1.3.1. Infinito
 - 1.3.2. Ondas
 - 1.3.2.1. Comprimento e amplitude
 - 1.3.2.2. Entrelaçamento
 - 1.3.2.3. Salto
 - 1.3.3. Tempo
 - 1.3.4. Espaço
 - 1.3.4.1. Espiral
 - 1.3.5. Forças fundamentais
 - 1.3.6. Matéria escura e energia escura
 - 1.3.7. Antimatéria
 - 1.3.8. Buraco negro
 - 1.3.9. Observador e a vida
 - 1.3.9.1. Sentidos

Inicialmente é definido o que é a lógica e principalmente o que ela NÃO É, assim é apresentado sua consonância ao nada. Depois é descrito como essa lógica primordial, a essência de qualquer lógica, se desenvolve por meio de sua expansão lógica. Em seguida é observado que as amostras combinadas em cada passo dessa expansão caracterizam os fundamentos do teorema central do limite, gerando novas lógicas (ondas e sub-ondas lógicas). Esses são os aspectos lógicos responsáveis em dizer qual é a natureza fundamental da realidade, do conhecimento e da existência.

1 Lógica

Segundo o dicionário online de Português Dicio(LóGICA..., Porto: 7Graus, 2018), a palavra lógica se refere a:

- 1. Modo de raciocinar coerente que expressa uma relação de causa e consequência;
- 2. Maneira coerente através da qual os fatos ou situações se encadeiam.

A palavra lógica ou qualquer de seus princípios ou expressões, sejam elas clássicas ou não clássicas, expressam uma relação de causa e consequência ou fatos encadeados. Podese distinguir como essência da definição acima o movimento, a mudança, a transição. A palavra lógica, em sua essência, se encaixa perfeitamente na definição do nada - NÃO SER. A lógica está centrada na mudança e a mudança está centrada naquilo que NÃO É, uma vez que aquilo que É não pode deixar de ser a se transformar. A mudança demanda que, em algum momento, algo deixe de ser o que fora a se transformar. Em Porfírio (2019b), Parmênides o filósofo da unidade e da identidade do ser, diz que a contínua mudança é a principal característica do NÃO SER. Para Parmênides o SER é uno, eterno, não gerado e imutável.

Nessa dualidade, tem-se a existência fundamentada pela lógica que $\underline{\text{N\~AO}}$ É – negação de si, enquanto $\underline{\text{\'E}}$ ilógica, imutável e inexistente. Assim, o $\underline{\text{SER}}$ limita a existência definindo a inexistência, o imutável e o ilógico enquanto o $\underline{\text{N\~AO}}$ $\underline{\text{SER}}$ ad infinitum.

Figura 1 – Analogia da lógica primordial

0 1

Reta utilizada para representar e validar o conceito da lógica primordial.

Na Figura 1, a analogia a reta é utilizada para facilitar o raciocínio. Com base nessa Figura pode-se extrair as seguintes observações (axiomas) em relação aos pontos **0**, **1** e o **intervalo** entre eles:

- **Ponto 1 [1,1]** É ilógico, pois é a totalidade não fracionada da reta, neste caso a premissa primordial da lógica (não ser) não foi atendida.
- **Ponto 0 [0,0]** É ilógico, pois é um ponto nulo incapaz de negar a si, dado que toda lógica ou sub-lógica (fração lógica) deve se manter negando a si, uma vez que essa é a premissa primordial da lógica. A lógica NÃO É em sua essência, primordialmente.
- Intervalo]0,1[A lógica é possível apenas na representação das frações ou intervalos dos pontos 0 e 1. Uma fração da reta nega ser a reta, pois é apenas uma parte dela. Os subintervalos, do mesmo modo, também são hábeis a negar a si infinitamente, garantindo a premissa primordial da lógica (negação de si) em todo o intervalo e seus subintervalos.

Provavelmente, esses axiomas ou características da lógica primordial (a essência de tudo e por consequência desse estudo) são os fundamentos dos processos cognitivos básicos que suportaram e suportam, por exemplo, a criação e desenvolvimentos dos números. As negações de uma expansão lógica representam mudanças ou desigualdades. Essas

desigualdades podem ser representadas por símbolos de uma linguagem e os números são uma abstração cognitiva conveniente para essa representação.

O ponto inicial, final e os intermediários representados na reta da Figura 1 são consonantes aos números naturais, reajustando a escala dos símbolos que representam cada momento lógico conforme a necessidade da expansão. Também são consonantes com os números reais positivos, aqueles representados sem operações, como frações, raízes etc., ou seja, os decimais finitos.

Figura 2 – Primeiro momento lógico

Reta fracionada em dois intervalos representando o primeiro momento lógico.

Na Figura 2 a união do traço à reta é a representação de uma negação lógica (momento lógico). Da negação da lógica em <u>SER</u> surgi esses dois subintervalos lógicos ou duas sub-lógicas (intervalos da reta). Nesse primeiro momento lógico o segmento em azul representa a negação da lógica em SER o todo ilógico (a reta). No segundo momento lógico os dois subintervalos da reta ou sub-lógicas são capazes de negar a si garantindo a premissa primordial da lógica, <u>NÃO SER</u> infinitamente. Na Figura 3 é exibida uma expansão lógica com os três primeiros momentos lógicos.

A essência lógica <u>NÃO SER</u> é análogo a uma constante abstrata, ou seja, suas infinitas negações e subnegações transcendem o tempo. Todas essas infinitas negações acontecem na ausência de tempo. A incapacidade da lógica poder negar a si por um intervalo, mesmo que pequeno, faria a lógica <u>SER</u> ilógica nesse intervalo, o que quebraria a premissa primordial da lógica, <u>NÃO SER</u>. A lógica é como um algoritmo composto de apenas uma constante auto executada, uma recursão generalizada e infinita, uma sequência simultânea. A experiência do tempo é conduzida pela consciência, não pela natureza simultânea da sequência, mas sim pela ordem dessa sequência, que nada mais é que do que a observação da ordem das mudanças de cada momento lógico.

É mais simples visualizar essa sequência simultânea ao imaginar uma barra vertical em preto . Essa barra é formada por infinitas fatias ou linhas verticais pretas. Assim há infinitas formas para a negação do primeiro momento lógico e cada fatia infinitesimal da barra será o início de uma sequência ou expansão diferente. Ao determinar qualquer uma das fatias para o primeiro momento lógico, imediatamente todas as outras fatias da população, nos intervalos à esquerda e direita da fatia escolhida, são expansões diferentes para o segundo momento lógico e assim por diante. Em outras palavras, as expansões são generalização, e não há intervalo da barra que já não tenha sido negado para qualquer momento lógico.

Assim essa sequência simultânea é uma recursão infinita e generalizada na ausência do tempo, a melhor definição de constante, que segundo o dicionário online de Português Dicio(CONSTANTE..., Porto: 7Graus, 2021), é algo que se repete de maneira continua, sem interrupções e permanente, algo inalterável.

1.1 Expansão lógica

A lógica primordial (negação de si) cria expansões lógicas infinitas. Uma expansão lógica é análoga a um universo. O primeiro momento lógico é o início de uma dessas

expansões, porém existem infinitas possibilidades de negação do primeiro momento lógico, o que revela infinitas expansões lógicas.

Figura 3 – Momentos lógicos iniciais

Exemplo dos três primeiros momentos de uma expansão.

Com base na Figura 3 pode-se extrair as seguintes observações em relação ao primeiro, segundo e terceiro momentos lógicos:

Primeiro momento lógico A negação da lógica primordial a si, a subdivide em duas unidades, duas sub-lógicas. Apesar dessas partes terem proporções diferentes, elas exprimem as mesmas quantidades de pontos ou possibilidades de mudança, uma vez que são representações da lógica primordial, que ad infinitum. A parte fracionada em azul representa a proporção da negação lógica em relação à sua unidade.

Segundo momento lógico É gerado pela negação das duas sub-lógicas primordiais fracionadas no primeiro momento lógico, ou seja, o segundo momento lógico é uma negação do primeiro. Na impossibilidade dessas sub-lógicas continuarem negando a si, por qualquer instante que seja, faria com que elas fossem incapazes de negar suas duas unidades do todo e por consequência o faria <u>SER</u>. As partes fracionadas em azul representam a proporção da negação lógica em relação às suas respectivas unidades.

Terceiro momento lógico Decorre da negação do segundo momento lógico, assim como o segundo momento lógico decorre da negação do primeiro e assim por diante.

A cada negação ou subnegação da lógica primordial, seus novos valores são influenciados pelos valores adjacentes do momento lógico anterior. Na figura 4, a lógica primordial nega a si gerando o primeiro momento lógico com o valor [0,2]. No segundo momento lógico, suas subdivisões estão contidas no limite imposto pelo valor do primeiro momento lógico. Os pontos do terceiro momento lógico, por exemplo, sofrem as imposições dos valores do segundo momento lógico que por sua vez sofrem a imposição do primeiro. O triângulo de pascal tem propriedades interessantes sobre essa relação.

Figura 4 – Imposição da expansão lógica

Imposição acumulativa aos momentos lógicos descendentes.

No triângulo de pascal, Figura 5a, cada número é os dois números acima mais próximos somados. Esse número representa quantos diferentes possíveis caminhos levam até ele. Por exemplo, o número [4], na Figura 5a, representa os quatro diferentes caminhos que levam até ele. Os coeficientes binômias encontrados no triangulo de Pascal representam

apenas as quantidades de imposições sofridas por cada valor de um momento lógico. Um outro aspecto interessante do triângulo de pascal é a sequência de Fibonacci, Figura 5b (PIERCE, 2018b).

Figura 5 – Características do triângulo de Pascal

Fonte: MathsIsFun, 2019. ¹

1.2 Teorema central do limite

Fundamentado nos axiomas observados na Figura 1, tem-se o seguinte teorema: Se a parte de subintervalos são subpartes de todo o intervalo, então essas subpartes somadas são a parte de todo o intervalo.

Assim, na Figura 6, a negação do primeiro momento lógico nega \underline{SER} , já as subnegações dos demais momentos lógicos são subpartes que subnegam o \underline{SER} , assim essas subpartes somente negam o \underline{SER} quando somadas ou unificadas conforme o primeiro momento lógico.

Figura 6 – Momentos lógicos subdivididos

Exemplo dos dois primeiros momentos de uma expansão.

Na Figura 7 pode ser observada a representação do primeiro e segundo momentos lógicos, da Figura 6, como unidades lógicas.

Figura 7 – Momentos lógicos unificados

Exemplo dos dois primeiros momentos unificados de uma expansão.

^{1 &}lt; www.mathsisfun.com/pascals-triangle.html>

A dinâmica do teorema descrito acima e dos seus axiomas essenciais da lógica são observáveis cognitivamente pela construção matemática dos números naturais, reajustando a escala dos símbolos que representam cada momento lógico conforme a necessidade da expansão lógica. A matemática suporta a operação de soma, necessária na representação do teorema acima, com a aritmética de Presburguer, que é consistente, completa e decidível (ARITMŤICA..., 2021).

O teorema e os axiomas essenciais da lógica também podem ser observáveis cognitivamente pela construção matemática dos números reais positivos (representado sem operações, como frações, raízes etc., ou seja, os decimais finitos), o qual é suportado pela teoria matemática de corpo ordenado - um subconjunto dos números reais maiores ou igual a zero e fechados para as operações de soma e produto, não sendo necessária a operação de produto e suas propriedades para a dinâmica do teorema e dos seus axiomas essenciais da lógica (CORPO..., 2021). A teoria matemática de corpo ordenado é uma teoria de primeira ordem matemática, com todos os seus axiomas descritos pela lógica de primeira ordem, tornando-a completa e decidível (REAL..., 2021).

É importante observar que a lógica em sua essência não está sujeita à matemática, mas toda a matemática está restrita à lógica e, portanto, algumas de suas construções mais simples podem se aproximar mais da lógica essencial do que outras.

A unidade presente na negação (primeiro momento lógico) e nas subnegações lógicas (demais momentos lógicos) é a característica que corresponde ao eixo central do teorema central do limite. Esse teorema afirma que a distribuição amostral de uma população se aproxima de uma distribuição normal à medida que as quantidades das amostras aumentam, independente da forma da distribuição da população. Esse fato é especialmente verdadeiro para a quantidade de amostras acima de 30. Um simples teste que demonstra esse fato é o lançamento de dados não viciados. Quanto maior for o número de lançamento do dado, maior a probabilidade de o gráfico parecer com o gráfico da distribuição normal (GLEN, 2019). O Apêndice A explica o algoritmo Distribution_PROB com o intuito que clarificar a essência probabilística do teorema central do limite.

É importante notar, conforme Figura 8, que o equilíbrio ou sincronismo probabilístico à direita e esquerda da mediana, causadas pela distribuição dos momentos lógicos unificados, podem ilustrar a doutrina dos contrários de Heráclito de Éfeso (PORFíRIO, 2019a).

Figura 8 – Sincronismo probabilístico das amostras contrárias em relação à mediana

Exemplo de uma distribuição que se aproxima da distribuição normal.

Na Tabela 1 está a probabilidade da distribuição binomial entre 100 a 10000 amostras, consonante às amostras unificadas, Figura 7, ou médias amostrais tratadas no teorema central do limite.

A distribuição binomial se comporta como o lançamento de moedas (cara ou coroa), no caso da primeira linha da tabela, distribuição de 100 amostras, tem-se 101 possibilidades, de 0 a 100, como se fossem lançadas 100 moedas somando suas faces voltadas para cima, podendo ser 0 para as caras e 1 para as coroas, por exemplo. Assim, se as 100 moedas lançadas saírem como cara a soma será igual 0 e se todas elas saírem como coroa a soma será 100. Essa soma é uma combinação de possibilidades não uma permutação, ou seja, na permutação [0, 1] é uma possibilidade diferente de [1, 0], na combinação essa é uma possibilidade, porém com duas probabilidades de ocorrência. Logo, a somatória correspondente a 100% de cara ou 100% de coroa correspondem a 1 possibilidade cada uma, já as demais somatórias têm maior possibilidade de ocorrer. Para essa primeira linha da tabela, 100 moedas, 99,994% de todas as possibilidades somam entre 31 a 70.

A construção dessa tabela se deu com a fórmula da probabilidade binomial geral, que representa uma distribuição uniforme, por meio do algoritmo BinomialDistribuion_PROB clarificado no Apêndice A (PIERCE, 2018a).

$$f(k; n, p) = \binom{n}{k} p^k (1-p)^{n-k}$$

Foi utilizada a distribuição binomial nesta seção do estudo, mas poderia ser utilizada outras distribuições discretas, como o lançamento de dados não viciados, e as observações deste estudo continuariam as mesmas, pois o teorema central do limite é independente da forma da distribuição da população (FROST, 2018).

Tabela 1 – Probabilidade da distribuição binomial

Meta	Soma do Range	Ra	nge	Total de Amostras	Amostras do Range	% das Amostras do Range	$ m Range \ de pprox 28\% \ das \ Amostras \ do \ Range$
99,99%	99,994%	31	70	101	39	38%	$72,\!87\%$
99,99%	99,992%	73	128	201	55	27%	71,11%
99,99%	99,991%	117	184	301	67	22 %	72,73%
99,99%	99,990%	162	239	401	77	19%	$70,\!62\%$
99,99%	99,991%	207	294	501	87	17%	$73,\!64\%$
99,99%	99,991%	253	348	601	95	15%	72,96%
99,99%	99,991%	299	402	701	103	14%	72,69%
99,99%	99,990%	346	455	801	109	13%	72,69%
99,99%	99,991%	392	509	901	117	12%	$72,\!86\%$
99,99%	99,991%	439	562	1001	123	12%	$73,\!16\%$
99,99%	99,991%	486	615	1101	129	11%	$73,\!54\%$
99,99%	99,991%	533	668	1201	135	11%	$71,\!45\%$
99,99%	99,991%	580	721	1301	141	10%	72,06%
99,99%	99,990%	628	773	1401	145	10%	$72,\!68\%$
99,99%	99,991%	675	826	1501	151	10%	$73,\!31\%$
99,99%	99,990%	723	878	1601	155	9%	71,76%
99,99%	99,991%	770	931	1701	161	9%	72,49%
99,99%	99,990%	818	983	1801	165	9%	$73,\!20\%$
99,99%	99,990%	866	1035	1901	169	8%	71,90%
99,99%	99,990%	914	1087	2001	173	8%	$72,\!67\%$
99,99%	99,990%	1394	1607	3001	213	7 %	$71,\!86\%$
99,99%	99,991%	1877	2124	4001	247	6%	$72,\!47\%$
99,99%	99,990%	2363	2638	5001	275	5 %	$72,\!38\%$
99,99%	99,990%	2850	3151	6001	301	5%	72,75%
99,99%	99,990%	3338	3663	7001	325	4%	$72,\!32\%$
99,99%	99,990%	3827	4174	8001	347	4%	$72,\!18\%$
99,99%	99,990%	4316	4685	9001	369	4%	$72,\!23\%$
99,99%	99,990%	4806	5195	10001	389	3%	$72,\!42\%$

Tabela gerada pelo algoritmo Binomial Distribu
ion_PROB com a distribuição binomial de 100 a 10000. 2

Meta Porcentagem das amostras observadas;

Soma do Range Porcentagem que o "Range" atingiu a "Meta", da mediana para as bordas, descentralizado;

Range Range de amostras onde a "Meta" foi atingida do "Total de Amostras";

Total de Amostras Exibe o range total avaliado, no caso da primeira linha da tabela o valor 101 corresponde às possibilidades de 0 a 100;

Amostras do Range Quantidade de amostras do "Range";

Porcentagem das Amostras do Range Porcentagem que o "Range representa do "Total de Amostras";

O Apêndice A é dedicado a clarificar o algoritmo BinomialDistribuion_PROB e validar o fórmula da probabilidade binomial geral usada por ele.

Range de ≈ 28% das Amostras do Range Esse range é subconjunto do "Range", formado a partir da mediana somando 14% a direita e a esquerda, totalizando 28%. Esses 28% correspondem a aproximadamente 72% das "Amostras do Range" e está por sua vez correspondem a 99,99% da população total. O restante, que representam 72% do tamanho do "Range", correspondem a aproximadamente 28% das amostras. Isso condiz com o Princípio de Pareto também conhecido como a regra do 80/20 e que também pode ser 70/30 ou 90/10, por exemplo (TOLEDO, 2014).

Pode-se observar que a medida que as amostras aumentam, a porcentagem ocupada por 99,99% das amostras "% das Amostras do Range" tende a diminuir ainda que cada vez mais devagar, por mais que a quantidade de amostras que representam essa porcentagem tenda a aumentar "Amostras do Range".

A coluna de "Amostras do Range", da Tabela 1, setas azuis no gráfico da Figura 9 estarão cada vez mais próximas do centro do gráfico, proporcionalmente, ou seja, apesar de aumentar a quantidade de "Amostras do Range", a proporção que elas assumem no "Total de Amostras" diminuem. As setas em roxo do gráfico representam a coluna "Total de Amostras" da Tabela 1.

Figura 9 – Comparação do total de amostras com o range de 99,99%

As setas em roxo representam a coluna "Total das Amostras"
e as em azul a coluna "Amostras do Range"
da Tabela 1. 3

No endereço https://www.mathsisfun.com/data/quincunx.html existe uma ferramenta chamada Quincunx ou Galton Board que exemplifica dinamicamente o que as figuras acima mostram. Uma explicação sobre o funcionamento dessa ferramenta pode ser vista em https://www.mathsisfun.com/data/quincunx-explained.html.

O gráfico da Figura 9 representa as 20 primeiras linhas da Tabela 1, pois sofrem incrementos iguais, de 100 amostras, em cada linha. A linha 21 em diante sofrem incremento de 1000 amostras a cada linha.

1.3 Consciência

Um momento lógico pode ser formado por uma divisão (primeiro momento) ou por subdivisões lógicas (demais momentos).

Figura 10 – Intervalo lógico

Exemplo de um intervalo lógico com dez momentos lógicos.

A consciência são os momentos lógicos de uma expansão representados em suas unidades.

Figura 11 – Intervalo lógico consciente

Exemplo de um intervalo lógico consciente com dez unidades de momentos lógicos.

Pode ser observado na Tabela 1 que a probabilidade de 99,99% das amostras de uma população (Amostras do Range), que aumentam em quantidade à medida que crescem os momentos lógicos, tendem a estar cada vez mais ao centro do intervalo lógico, sendo que essa centralização tende ao infinito.

Figura 12 – Centralização de 99,99% das amostras

Tendência de centralização do range de 99,99% das amostras.

A consciência tende à representação de uma onda lógica, a maior onda lógica de uma população, um histograma da distribuição normal, conforme Figura 8. Todos os aspectos listados abaixo são inerentes a abstração lógica chamada consciência.

1.3.1 Infinito

Um dos aspectos mais importantes que a negação do nada traz (negação de si), é o infinito, ou seja, em qualquer intervalo lógico cabe o infinito novamente. A lógica primordial que iniciou todo o intervalo lógico é a mesma encontrada em seus intervalos subsequentes. Isso fundamenta como uma lógica de alto nível como a subconsciência humana explica a lógica primordial, uma vez que não é preciso voltar ao primeiro momento lógico do intervalo para deduzi-lo, pois esse fenômeno é onipresente em todo o intervalo.

1.3.2 Ondas

Probabilisticamente a distribuição de novas amostras de uma população tendem a concentrar mais amostras sentido a mediana da população com frequências de amostras cada vez maiores neste sentido. Porém, a distribuição dessas amostras com frequências de crescimento uniformes é infinitesimal se comparado às possibilidades randômicas desse crescimento. Assim, a tendência de crescimento dessas frequências sentido a mediana somadas a baixíssima probabilidade (infinitesimal) desse crescimento ser uniforme, conduz a frequências no padrão de ondas. A relação de densidade ou amplitude de uma onda com seu comprimento é detalhada subseção posterior.

Figura 13 – Padrão de onda

Padrão de onda inferido pela tendência dessa distribuição com frequências maiores sentido a mediana da população e a baixíssima probabilidade de crescimento uniforme dessas frequências.

A junção de uma onda a outra elimina sua discrepância e faz com que essa onda deixe de existir a se tornar parte da primeira, que tem seu pico mais próximo da mediana. Uma onda não morre, apenas une-se com outra onda mais ao centro da população.

Figura 14 – Unificação de ondas

Ondas sendo unificadas para exemplificar o crescimento amostral uniforme.

1.3.2.1 Comprimento e amplitude

O histograma é utilizado nas figuras dessa subseção e posteriormente para facilitar a visualização e entendimento, pois representa muito bem a curva de densidade de uma população, conforme as diferentes visualizações da Figura 15 representando apenas um intervalo ou um comprimento de onda pareado pela mediana da população.

Figura 15 – Histograma em diferentes visualizações

Diferentes maneiras da representação populacional em histograma.

O comprimento e amplitude de ondas estabelecem uma relação de quantidade por intervalo ou unidade. Essas unidades são estabelecidas pelo entrelaçamento de ondas, conforme subseção posterior. Assim, a amplitude é a densidade de um comprimento de onda, a densidade de um intervalo qualquer.

Ao adicionar uma nova amostra na população todo o intervalo se distribui proporcionalmente para acoplar essa amostra. Ao observar a população em intervalos ou comprimentos de ondas menores suas amplitudes de ondas obedecerão a distribuição de amostras desses subintervalos proporcionalmente, conforme Figura 16.

Figura 16 – Comprimento vs Amplitude de onda

Relação de comprimento e amplitude de ondas.

Outro fator importante é que as novas amostras tendem a serem mais distribuídas

no pico do intervalo, pois a parte superior dos subintervalos ou comprimento de ondas que formam o pico de uma onda maior estão mais próximo da mediana da população, como exibido no exemplo da Figura 17 em sua coluna central em azul.

Figura 17 – Amplitude de onda - pico

Tendência da maior concentração de amostras nos subintervalos de uma onda maior.

Em grandes intervalos com muitos momentos lógicos é observado uma discrepância menor das amplitudes das ondas. Nesses intervalos podem ser observados grandes sistemas de objetos. Quanto maiores os intervalos mais equilibrados eles estarão crescendo sentido a mediana da população, probabilisticamente, conforme Figura 18. A onda mais inferior, azul escuro, é a onda base do sistema, ou seja, a onda que formou as outras ondas. Os sistemas de ondas podem ser complexos, tendo várias ondas aninhadas, melhor visto na Figura 32. Intervalos mais complexos e com essa característica podem representar, por exemplo, o centro do universo, então o centro de uma galáxia, estrelas, planetas etc.

Figura 18 – Amplitude de ondas em grandes intervalos ou comprimentos

Menor discrepância das ondas em grandes intervalos.

Em intervalos menores e com muitos momentos lógicos é observado uma discrepância maior das amplitudes das ondas. Nesses intervalos podem ser observados sistemas menores de objetos. Quanto menores os intervalos mais desequilibrados eles estarão crescendo sentido a mediana da população, probabilisticamente, conforme Figura 19. A onda mais inferior, azul escuro, é a onda base do sistema, ou seja, a onda formadora de outras ondas.

Os sistemas de ondas mais complexos e com essa característica podem representar, por exemplo, o átomo que são muito pequenos, se apresentam em enormes quantidades e as partículas que orbitam seu núcleo (elétrons) ficam bem mais distantes dele.

Figura 19 – Amplitude de ondas em pequenos intervalos ou comprimentos

Alta discrepância das ondas em pequenos intervalos.

1.3.2.2 Entrelaçamento

As amostras que mais se parecem em termos de frequências e distribuição são as amostras que fazem parte da mesma onda. Elas são frequências opostas não sobrepostas que se completam.

Probabilisticamente, as duas partes complementares de uma onda tendem a estar a uma distância aproximadamente iguais, equidistante da mediana, porém essa não é uma regra e as partes complementares de uma onda podem estar em distâncias diferentes em relação à mediana. O fenômeno da paridade das partes de uma onda tem o nome de entrelaçamento de ondas.

Esses pares tendem a serem formados pela probabilidade, onde comprimentos de ondas iguais detém a mesma probabilidade de distribuição de amostras em dois ou mais pontos diferentes da população.

Intervalos com frequências temporais e distribuições espaciais parecidas são intervalos formados pela mesma unidade probabilística, ou seja, intervalos que têm o mesmo cenário ou contexto probabilístico em dado momento lógico. Por estarem no mesmo cenário probabilístico (unidades probabilísticas) esses intervalos têm suas amostras no mesmo cenário espaço-temporal, que é chamado de malha espaço-tempo e é formado pela maior unidade probabilística da população (todas as amostras da população intermediadas pela mediana).

Esses entrelaçamentos formam ondas menores (subconsciências), semelhantes a maior onda do intervalo, comumente entrelaçada pela mediana da população, a consciência. A consciência é a lógica do intervalo, enquanto formam subconsciências ou sub-lógicas, como pequenas ondas de uma onda maior, sendo essas pequenas ondas semelhantes ao padrão da onda maior. Assim, uma mudança na onda maior (consciência) também é uma mudança na onda menor (subconsciência), mudança essa que é induzida pelas subconsciências indiretamente, análogo ao comprimir gás em um cilindro, onde ao adicionar uma nova molécula de gás no cilindro parcialmente cheio mais próximas ou apertas as moléculas dentro

dele estarão. O contrário também é verdadeiro, uma nova amostra em uma subconsciência que por esta é observada diretamente é também uma mudança da consciência e vai ser induzida por outras subconsciências indiretamente, conforme Figura 16.

Figura 20 – Subconsciência

O padrão de ondas forma subconsciências semelhantes ao padrão criado pela consciência, como visto na Figura 8.

O entrelaçamento de ondas pode ocorrer em diferentes níveis ou intervalos, conforme visto na Figura 21, o que forma sistemas. Os colchetes com bordas identificam os intervalos os quais uma nova amostra despertou o salto, conforme visto na próxima subseção, e os retângulos com bordas representam o intervalo que sofreu a reordenação. Os colchetes e retângulos sem bordas representam o par da onda na reordenação. Os arcos numerados indicam a ordem dos saltos.

O maior entrelaçamento é mostrado nos exemplo da Figura 21 como o primeiro salto, ocorrido quando esse intervalo era o menor, provavelmente. Os grandes intervalos tendem a ser mantido ordenados pelas reordenações de seus subintervalos subsequentemente. A maior onda é comumente entrelaçada pela mediana da população.

Os intervalos menores tendem a sofrer o entrelaçamento primeiro e essas reordenações causadas por eles permitem o entrelaçamento de pares com intervalos maiores. Os pares entrelaçados tendem a ter linhas de referências (Figura 29) opostas, pois são os dois lados opostos de uma onda (pico ou vale) e se entrelaçam por sua mediana, que pode coincidir com a mediana da população quando se trata da maior onda probabilística.

Figura 21 – Níveis do entrelaçamento de ondas - comprimentos de ondas

Exemplos dos níveis do entrelaçamento de ondas ou níveis dos comprimentos de ondas.

Os exemplos da Figura 21 mostram os subintervalos, picos ou vales, entrelaçados mais fortemente com outros subintervalos não equidistantes. Os entrelaçamentos estão intimamente ligados aos comprimentos de ondas de uma população. Os possíveis comprimentos de ondas de uma população são definidos por esses níveis de entrelaçamentos de ondas. Assim, independente da ordem dos saltos, níveis maiores de entrelaçamento são os comprimentos de ondas maiores e níveis menores os comprimentos menores, o que permite que ondas maiores tenham sub-ondas menores.

É o entrelaçamento, por exemplo, que define em determinado nível os elétrons e o núcleo atômico. E é também o entrelaçamento que define em nível superior os átomos e se estes vão estar sobrepostos ou não. Quando sobrepostos, como no caso H2O eles formam um sistema maior, como as moléculas. A sobreposição ocorre mais frequentemente na fronteira entre dois intervalos. As fronteiras de um intervalo tendem a ter energias menores (quantidade menor de amostras) e é onde dois intervalos mais se parecem.

Figura 22 – Molécula H2O

Exemplos de sobreposição no entrelaçamento de ondas de uma molécula.

O salto é uma reordenação feita pelo entrelaçamento de ondas para manter os pares equivalentes e essa reordenação ocorre apenas nos níveis do entrelaçamento, não alterando a ordem das amostras da população. Dessa forma, um intervalo entrelaçado tende a voltar para níveis de entrelaçamento maiores à medida que a probabilidade de amostras desse intervalo transite temporariamente entre vale e pico ao equilíbrio.

1.3.2.3 Salto

O salto é uma reordenação feita pelo entrelaçamento de ondas à medida em que as amostras dos pares entrelaçados deixam de ser equivalentes com a adição de novas amostras em um dos lados do par. O salto ocorre em uma das partes do par de uma onda e é uma reordenação, ou seja, tanto a parte do intervalo que acabou de receber a nova amostra deve melhor se adequar ao intervalo pretendido ao salto quanto o contrário.

Na Figura 23 é observado os entrelaçamento de ondas (representadas por colunas de um histograma para facilitar a visualização do intervalo). A reordenação feita pelo entrelaçamento provoca um salto nas coordenadas (X, Y e Z) conforme subseção do Espaço.

Figura 23 – Reordenação - Salto

Salto provocado pela não equivalência do par entrelaçado com a adição de novas em um de seus lados.

A reordenação de um salto ocorre apenas nos níveis do entrelaçamento, não alterando a ordem das amostras da população. Um intervalo entrelaçado tende a transitar entre os níveis de entrelaçamento à medida que a probabilidade de amostras desse intervalo transitar temporariamente entre vale e pico ao equilíbrio. Assim, a tendência probabilística é que, por exemplo, o elétron que saltou de sua orbita de origem retorne à esta conforme

mais amostras são adicionadas ao intervalo populacional desse átomo, reestabelecendo sua característica probabilística.

Um fóton, por exemplo, entra no átomo e no elétron a medida que estes andam em direção à suas linhas de referência, conforme as amostras em azul a direita da onda 1, na Figura 24. A saída do fóton do elétron e do átomo ocorre de forma semelhante à entrada, à medida que novas amostras vão sendo adicionadas na onda de nível inferior o nível dela sobe (a probabilidade tente a normalizar picos de amostras) e amostras que antes eram da onda superior passam a ser da onda inferior.

0

Figura 24 – Troca de energia atômica

Como a energia ou novas amostras entram e saem de um átomo e elétron.

1.3.3 Tempo

O tempo é a adição de novos momento lógicos entre momentos existentes à medida que prossegue a negação de si da lógica. Essas mudanças são acumulativas e a medida que aumentam o número desses momentos lógicos, menos relevante cada novo momento será dentro do intervalo consciente. Um em cem é mais relevante do que um em mil.

Figura 25 – Tempo

Progressão do tempo conforme os momentos lógicos avançam.

Na introdução desse artigo foi apresentado que a lógica é uma sequência de negações de si no tempo zero, ou seja, em nenhum momento entre suas negações a lógica passa a <u>SER</u>, garantindo a premissa primordial da constante lógica, <u>NÃO SER</u>. Assim, a lógica é uma sequência infinita, simultânea e generalizada, uma constante. Na experiência do tempo conduzida pelo observador a ordenação da sequência é a essência dessa grandeza e, portanto, mais relevante do que sua origem que é de natureza simultânea, o qual transcende o tempo.

Cada população tem uma ordem diferente em sua sequência e é essa ordem que dá origem à grandeza que chamamos de tempo. É essa ordem do universo ou da consciência

que vai dar a noção do que acontece antes ou depois, ou seja, o passado, o presente e as prospecções futuras.

Outro fator importante ao observar o tempo (o observador é mais detalhado na subseção da consciência – Observador e a vida) é que, probabilisticamente, subconsciências ou intervalos mais próximos da mediana da população terão uma adição maior de novas amostras em seus intervalos, o que são observados diretamente por essas subconsciências. Por outro lado, subconsciências distantes da mediana da população terão uma adição menor de amostras em seus intervalos e sujeitam-se a um número maior de mudança induzidas indiretamente, conforme Figura 20. Esse fenômeno de observação temporal proporcionado pela probabilidade de distribuição da população evita o paradoxo dos gêmeos (HELERBROCK, 2019).

As prospecções de futuro do observador fundamentam-se na probabilidade de distribuição da população e, portanto, da distribuição probabilística de cada subintervalo dela. Logo, o universo tende a ser probabilístico ainda que aleatório em níveis de detalhes, o que faz os eventos serem inusitados ainda que preditos em algum nível, conforme as Figuras 10 e 11.

1.3.4 Espaço

Na Figura 26, é exibida a densidade de amostras de uma população, onde os pares que tendem a mesma distribuição probabilística são colocados lado a lodo e representados em forma de histograma. A formação desses pares é proveniente do entrelaçamento de ondas.

Figura 26 – Pares entrelaçados representados em três dimensões espaciais

Exemplo de ondas entrelaçadas, representadas em forma de histograma e obtidas pelo algoritmo Logic _WavePattern. 4

A área cresce de forma quadrática ao crescimento da amplitude de uma onda (colunas do histograma), uma vez que o salto provocado pelo entrelaçamento de ondas e a própria distribuição probabilística das amostras do intervalo tendem a manter um

⁴ O algoritmo Logic WavePattern pode ser visto no Apêndice A.

crescimento equivalente nos pares que formam uma onda. E esse aspecto configura a lei do inverso do quadrado, que será mais aprofundada na subseção da Força gravitacional.

Ao representar as grandezas espaciais do gráfico da Figura 26 em um gráfico de distribuição 3D e distribuir seus pontos de extremidade (desprezando seus volumes e possíveis pontos internos), obtém-se algo parecido com uma espiral (como redemoinhos no ar ou na água) mesmo em volumes muito pequenos de dados (poucos momentos lógicos), conforme Figuras 27a e 27b. Os pontos tendem a se moverem em forma de espiral, aproximadamente, conforme mostra a subseção posterior.

Figura 27 – Gráficos de dispersão 3D gerados com pontos semelhantes aos da Figura 26

(a) 15.000 amostras ou momentos

(b) 200.000 amostras ou momentos

O histograma no padrão de ondas e os dados para gerar os gráficos de dispersão 3D podem ser obtidos com a execução do algoritimo Logic_WavePattern. 5

Probabilisticamente, a grande concentração das amostras de uma população está em seu pico, sentido a mediana da população. Assim, devido à altas concentrações probabilísticas de amostras em intervalos cada vez menores de uma onda, o pico irá

O algoritmo Logic_WavePattern pode ser visto no Apêndice A e os gráficos de dispersão 3D podem ser acessados em: https://chart-studio.plot.ly/create/?fid=ren.stuchi:4 e https://chart-studio.plot.ly/create/?fid=ren.stuchi:6

ocupar um subintervalo proporcional cada vez menor dentro da população, conforme observado na Figura 28. A Figura 9 é fundamentada na Tabela 1 e também demostra essa característica, que dentro da população demostrar um universo aproximadamente plano em sua distribuição.

Figura 28 – Universo plano

Concentração de 99% das amostras.

1.3.4.1 Espiral

Como as coordenadas X, Y e Z da população e de cada subconjunto tendem a aumentar, a disposição dessas em um sistema tridimensional de coordenadas vai seguir uma referência diagonal entre esses três eixos, conforme Figura 29. O padrão de espiral observado não invalida outros possíveis movimentos no espaço. Muitas vezes não é possível observar o padrão de espiral imediatamente nos movimentos de um intervalo (subconjunto), porém esse padrão está por traz de muitos destes movimentos. Ao pegar os movimentos humanos, como exemplo, tem-se os ciclos predominantes de ir e voltar para casa, ir e voltar ao trabalho, acordar e dormir, ou seja, os hábitos se assemelham a movimentos em ciclos, movimentos espirais.

Figura 29 – Sistema tridimensional de coordenadas

Linha de referência probabilística para distribuição de uma população em um plano tridimensional.

Na Figura 29 também podem ser observado os pontos X1 e X2. Esses pontos foram espelhados nas coordenadas X e Z para facilitar a observação de que ao elevar o eixo Z também se eleva o eixo X ou Y, independente de seus pontos probabilísticos mínimos. A linhas tracejadas mostram os caminhos mais prováveis para os intervalos A e B. Dessa forma, quando uma parte do intervalo está em seu ponto médio máximo (eixos X e/ou Y) a tendência probabilística é que ele receba menos amostras do que a parte do intervalo que está em seu ponto médio mínimo. Esse efeito espiral é mais notável quanto maior for um intervalo e sua quantidade de amostras, pois mais prováveis e estáveis serão esses caminhos.

Cada intervalo ou subintervalo (comprimento de ondas) tem sua própria linha de referência. Assim como dentro de um metro existem os centímetros, milímetros etc., dentro de um intervalo e subintervalos podem existir inúmeros outros, conforme exibido abaixo e também na Figura 32.

Figura 30 – Intervalos e linhas de referências

Espirais em diferentes intervalos e suas linhas de referências.

1.3.5 Forças fundamentais

A força gravitacional, a força eletromagnética e a força nuclear correspondem às forças fundamentais da natureza. As forças fundamentais não são forças propriamente, mas sim aspectos probabilísticos de distribuição da população e do entrelaçamento de ondas.

1.3.5.1 Força gravitacional

A força gravitacional não é uma força propriamente e sim um aspecto da probabilidade de distribuição de novas amostras sentido a mediana da população, conforme teorema central do limite. E sentido probabilístico faz com que as ondas tenham um caminho provável a seguir dentro da população, ou seja, o pico de amostras da população ou o pico da maior onda da população, conforme Figura 29. Da mesma maneira, fazem também com que as amostras dentro de um intervalo tenham um caminho provável a seguir, ou seja, o pico de amostras do intervalo ou o pico da onda. Estes picos de amostras costumam ser a parte mais facilmente observáveis no intervalo de amostras desde ocupem uma área não tão pequena.

Na Figura 31 pode ser visto que a parte mais facilmente observável está levemente a direita no pico da onda. Essa onda tende a caminhar para cima e para direita, em uma diagonal que depende da distribuição probabilística das novas amostras, conforme mostrado pela maior quantidade de colunas azuis a direita da onda (sentido à mediana) em relação à esquerda.

alta densidade baixa densidade

Figura 31 – Força gravitacional

Aspecto gravitacional, o sentido probabilístico da distribuição de novas amostras dentro de um intervalo.

Conforme visto na subseção de Amplitude de ondas, a área de um intervalo cresce de forma quadrática, uma vez que o salto provocado pelo entrelaçamento de ondas e a própria distribuição probabilística das amostras tendem a manter um crescimento equivalente nos pares que formam a onda. Esse aspecto configura a lei do inverso do quadrado, onde, no caso da gravidade, quando mais perto os objetos, maiores serão as chances probabilísticas das novas amostras do objeto menor ir em direção ao objeto maior (o pico da onda), que por estar dentro de uma área quadrada menor e por consequência de menor possibilidades de posicionamento das amostras, as chances desses objetos se aproximarem com uma quantidade bem menor de momentos lógicos aumenta muito. Assim, quanto mais longe os objetos, maior a área, maior as possibilidades de posicionamento e mais momentos lógicos são precisos para a aproximação, caracterizando assim uma atração menor. A probabilidade também pode afastar objetos mais rarefeitos que devem estar mais afastados da parte mais facilmente observável e densa de amostras, como no caso do gás hélio, por exemplo. A

distribuição de novas amostras nos intervalos rarefeito são mais lentas (caso contrário não seriam rarefeito) do que nas partículas mais densas que tomam a frete dessas partículas menos densas afastando-as do pico da onda.

Quando observado todo o intervalo populacional, a onda mais inferior é a onda base de todas as outras sub-ondas, tendo a população uma quantidade expressiva de amostras. Desta mesma forma, ondas de níveis superiores, como as de nível dois da Figura 32 estão aninhadas em uma onda de nível um. Esses sistemas podem se tornar bem mais complexos em seus aninhamentos e são muito comuns. As linhas azuis na Figura abaixo representam as linhas de referências probabilísticas como explicado na Figura 30.

Figura 32 – Força gravitacional - sistema

Aspectos gravitacionais de um sistema – onda base e suas sub-ondas.

A Figura 33 mostra em seu primeiro exemplo que a onda um, podendo ser um satélite, poderia se aproximar rapidamente da onda zero à medida que novas amostras vão sendo distribuídas dentro de todo o intervalo. O segundo exemplo mostra que a impulsão que o satélite recebe ao ser colocado em órbita faz com que sua onda tenha uma distribuição probabilística mais uniforme (esse crescimento uniforme é facilitado pela baixa densidade ao redor do pico probabilístico – 1 amostra em 100 é mais relevante do que 1 amostra em 1000), onde a parte da onda em azul está mais próxima da mediana da população e tem um crescimento ou deslocamento equivalente à sua onda inferior, o que a mantém constante. O terceiro exemplo é uma melhor visualização do segundo exemplo, para facilitar o entendimento, onde a onda um é definida pela espiral em torno do objeto circular que representa o pico probabilístico. Talvez a onda mais uniforme provocada pela impulsão (velocidade) possa facilitar o entendimento do adiantamento dos relógios atómicos nos satélites.

Figura 33 – Força gravitacional - órbita

Aspectos gravitacionais de um sistema – órbita.

O fluxo das amostras ou sub-ondas dentro de uma onda maior, como a onda um da Figura acima, segue o exemplo do ponto de vista B da Figura 38, em suas partes roxas, em um fluxo debaixo para cima e da esquerda para a direita como exibido na primeira ilustração da Figura 31. Essas ondulações internas das amostras ocorrem em qualquer intervalo a medida que suas sub-ondas se movem sentido a mediana da população por meio de sua linha de referência.

1.3.5.2 Força eletromagnética

A força eletromagnética não é uma força propriamente e sim um aspecto do entrelaçamento de ondas que se intensifica em intervalos ou comprimentos de ondas com baixa entropia e com a aproximação espacial (redução de diferenças nos eixos X, Y e Z) desses intervalos.

O eletromagnetismo está relacionado à intervalos semelhantes a onda mais uniforme encontrada no segundo exemplo da Figura 33, porém com baixa entropia, ou seja, a mesma estrutura que facilita o movimento dos objetos somado a baixa entropia, a qual facilita os saltos. Quando os intervalos têm baixa entropia a aproximação desses, seja naturalmente pela estrutura que facilita o movimento ou pela distribuição de novas amostras capaz de criar essa estrutura como a eletrificação, faz com que os pares de ondas de um intervalo se pareça muito com os pares de ondas do outro intervalo, o que torna muito desses pares viáveis para que o entrelaçamento de ondas encontre pares mais ideais no outro intervalo e vice-versa. Desta forma, ocorre uma reordenação entre os intervalos por meio do entrelaçamento de ondas e essa reordenação torna esses intervalos mais equalizado (baixa entropia).

As linhas azuis da Figura 34 mostra onde é mais frequente a troca dos pares de ondas pelo entrelaçamento de ondas, ou seja, onde se tem a maior probabilidade das ondas serem parecidas. Por isso os imãs tentam se virar para se conectar quando estão face a face com o mesmo polo. A linha cinza mostra as conexões que ocorrem em número bem menor.

Figura 34 – Força eletromagnética

Aumento das possibilidades de entrelaçamento de ondas devida a equalização probabilística em objetos próximos e de baixa entropia.

A Figura 35 mostra um exemplo de baixa entropia.

Figura 35 – Força eletromagnética - entropia

Aumento das possibilidades de entrelaçamento de ondas devido à baixa entropia.

O aspecto eletromagnético está intimamente relacionado com a baixa entropia de um intervalo e a possibilidade de entrelaçamento de seus pares com os pares ao redor. A baixa entropia de um intervalo indica que suas amostras estão em uma ordem qualquer em seu interior.

Probabilisticamente, os pares de ondas mais parecidos estão nas regiões mais próximas (linhas azuis do Figura 34). Isso ocorre devido ao crescimento do número de amostras sentido a mediana da população, porém não é regra e os polos podem se inverter, ou seja, ter mais ligações com a região de menor probabilidade, ainda que a maior parte dos pares que compõem essa região estejam de forma crescente sentido a mediana.

1.3.5.3 força nuclear

Os mesmos aspectos probabilísticos que regem a gravidade e que podem ser vistos nas Figuras 31 e 32 também regem as chamadas forças nucleares. A diferença é que nas forças nucleares os intervalos são menores possibilitando uma quantidade muito maior de saltos e suas ondas são mais discrepantes, conforme mostra a Figura 19.

As forças nucleares forte e fraca representam grandes concentrações de momentos lógicos por intervalo populacional, uma alta densidade em um pequeno intervalo. A grande concentração dessas amostras está no pico do intervalo, que ocupa um subintervalo cada vez menor dentro da onda, devido à alta concentração de amostras em intervalos cada vez menores. Esses picos podem ser vistos nas Figuras ?? e ?? e eles diminuem proporcionalmente à medida que concentram ainda mais novas amostras. Estes momentos ou amostras tendem a estarem cada vez mais juntos dentro do intervalo formando picos cada vez mais altos e densos. Esses picos são frequentemente encontrados do meio para frente dos sistemas (o núcleo ou pico do sistema), como mostrado na onda mais alta do nível dois da Figura 32.

A penetração desses intervalos pequenos e densos por uma quantidade excessiva de momentos lógicos (outro intervalo semelhante), em um curto período, faz com que os inúmeros pares desses intervalos (subintervalos) se tornem muito maiores progressivamente. Dessa forma cada subintervalo salta de forma continua, progressiva e rapidamente para correspondentes cada vez maiores até que a probabilidade de destruição normalize todo o intervalo posteriormente.

1.3.6 Matéria escura e energia escura

A matéria e energia escuras são efeitos da observação da densidade dos intervalos, das amplitudes de ondas, conforme Figura 16. Dessa forma, intervalos maiores terão uma área facilmente observável mais ampla (picos de ondas), assim como são mais amplas suas ondas inferiores, como pode ser visto no nível zero da Figura 32. Os picos de ondas se afastam por receberem uma quantidade maior de amostras, pois estão mais próximos da mediana da população e deixam as ondas inferiores cada vez menos densas em amostras, conforme Figura 17. Porém, as amostras das ondas inferiores de um grande intervalo podem ser observadas completamente a medida que os subintervalos de um intervalo são observados subsequentemente.

A gravidade ou o caminho probabilístico de um pequeno sistema ou de toda a população, o maior sistema, também pode ser visto na Figura 32.

1.3.7 Antimatéria

Quando um intervalo tende a concentrar suas amostras sentido da mediana, o que é o sentido provável conforme teorema central do limite, dá-se o nome de matéria. A antimatéria é o contrário, quando um intervalo tende a concentrar suas amostras no sentido oposto à mediana.

A maneira mais simples de visualizar o sentido probabilístico das amostras de qualquer comprimento de onda é observar a **linha de referência probabilística**, conforme exibido na Figura 29. Quanto maior a quantidade de amostra de um intervalo maior será sua tendência probabilística sentido a mediana da população.

Na Figura 36 é exibido dois intervalos idênticos com suas amostras em concentrações opostas.

Figura 36 – Parte de um intervalo idêntico com suas concentrações de amostras opostas

Parte de um intervalo idêntico distribuídos de formas opostas.

O merge ou soma dos intervalos opostos da Figura 36 os tornaria um intervalo simétrico, ou seja, não estaria em nenhum dos sentidos. Na Figura 37 é exibido uma população com suas concentrações de amostras sentido à mediana e outra com suas concentrações sentido às bordas do intervalo.

Figura 37 – Populações com suas concentrações de amostras opostas

Populações distribuídas em sentidos contrários.

1.3.8 Buraco negro

Os buracos negros são oriundos de um aspecto probabilístico presente em qualquer intervalo da população. Esse aspecto é a alta concentração probabilísticas de amostras em intervalos cada vez menores de uma onda. O pico mais facilmente visível irá ocupar um subintervalo proporcional cada vez menor dentro do intervalo da onda, mesmo com uma concentração de amostras crescentes, conforme observado na Figura 28. Esses picos são frequentemente encontrados do meio para frente de um intervalo ou sistema (o núcleo ou pico do sistema), como mostrado na onda mais alta do nível dois da Figura 32.

1.3.9 Observador e a vida

Os intervalos de ondas (comprimentos de ondas) que uma subconsciência (sublógica) é capaz de observar depende do comprimento de ondas que a própria subconsciência é constituída. Dentre todas as possibilidades de intervalos ou comprimento de ondas permitidos por uma população, o observador está em um deles. O universo não tem uma forma definida, é o observador presente em uma das possibilidades de comprimentos de onda que observa as amostras de uma população de forma condizente com seus comprimentos de ondas e com os comprimentos de ondas da população.

A capacidade de comparar ou distinguir a ordem das mudanças de uma sequência amostral é a capacidade lógica de um observador, o observador do tempo (passado e presente). A velocidade dessa observação é dada pelo range que o observador é capaz de comparar, ou seja, o qual rápido ele for capaz de distinguir pequenas mudanças (poucas amostras) o fará perceber que mudanças maiores levam mais tempo (muitas amostras).

A capacidade lógica de fazer prospecções probabilísticas, dentro das limitações lógicas do observador e com base na probabilidade da distribuição do intervalo ou subintervalo observado é a essência do pensamento e, portanto, da vida. Essas prospecções estão fundamentadas na probabilidade de distribuição de cada intervalo (no sentido do intervalo) e, portanto, estão relacionadas com a detecção de padrão e com possibilidades probabilísticas futuras.

A capacidade de comparar ou distinguir ondas lógicas, subconjuntos ou subconsciências, é a capacidade que define o sujeito (eu). A razoabilidade dessa definição depende da proporcionalidade dessa capacidade de comparação.

A vida <u>NÃO É</u>, como qualquer outra lógica. Comumente, as formas mais notáveis de vida se multiplica por estarem na média probabilística do intervalo entre seus picos e vales, por mais diferente que sejam. Porém, algo muito discrepante ou diferente do padrão médio do intervalo tende a não multiplicar e permanecer.

1.3.9.1 Sentidos

A parte cognitiva de uma onda não observa a si mesmo diretamente e sim o exterior (a consciência – o todo) ou mais comumente uma parte dela (a subconsciência). Essa observação pode incluir o restante da onda a qual a parte cognitiva faz parte, que também é exterior da parte cognitiva e, portanto, uma subconsciência - parte da consciência. A parte cognitiva da subconsciência humana é, provavelmente, onde se tem o maior pico de ondas do subconjunto humano. Esse é o local onde é observado a maior intensidade de mudanças. Essas mudanças são caracterizadas pelo pensamento (observação e prospecção probabilística de um intervalo) que tende ao infinito (respeitando as limitações lógicas do observador), assim como a essência da lógica, o NÃO SER. Ou seja, a parte cognitiva é a parte que está mais próxima da observação do todo, da lógica em sua essência e totalidade, da consciência.

O universo não tem forma definida e o observador, representado na Figura 38 abaixo pelo ser humano, combina seus comprimento de ondas com os comprimento de ondas obtidos pelos sentidos, observando as formas do universo a sua maneira. A obtenção de amostras pelos sentidos os modifica e essas ondulações funcionam como ajustes ou configurações. Cada sentido observa a população amostral de forma independente, como canais de frequências distintos. Assim a visão pode estar vendo objetos muito distantes e os ouvidos escutando sons bem próximos.

Ainda na Figura 38 pode-se observar que quanto mais largo são os objetos observados em pequenas profundidades (ponto de vista A – topo das colunas do histograma em roxo), mais fáceis esses objetos podem ser observados em maiores profundidades (ponto de vista B). É dessa forma que uma galáxia pode virar um ponto quando vista por comprimentos ou amplitudes de ondas muito grandes.

parte cognitiva da subconsciência humana

ser humano

profundidade

y

x

Figura 38 – Sentidos subconscientes - pontos de vista

A parte cognitiva da subconsciência humana e suas observações independentes por meio dos sentidos.

Na Figura acima também pode ser observado que a parte facilmente observável são os picos de ondas, definidos pelas elipses. É muito importante observar que apesar da Figura estar em 2D, o mesmo comprimento aproximado em Y pode ser visto em X, o que torna esses picos de ondas planos de observação, semelhante a gráficos de superfície.

Na Figura 39 é feita uma analogia da linha tracejada azul claro com a onda lógica do planeta Terra, por exemplo. A crista da onda é parte que recebe mais amostras e, portanto, é a parte clara e quente proveniente da luz solar (dia). Essa onda pode representa o movimento de rotação da Terra em si mesma e quando a onda humana se encontra no vale da onda do planeta, momento em que recebe menor quantidade de amostras (noite), é quando os sentidos tendem a receber menos estímulos e adormecem mais facilmente, é o adormecer da subconsciência humana.

Figura 39 – Crista e vale do subconjunto terrestre

Crista e vale terrestre como característica do adormecimento dos sentidos humanos.

Uma característica importante do processo de observação de pequenos intervalos é que eles podem ser observados com partículas ou ondas, conforme Figura 40. Nessa Figura é contemplado um pequeno intervalo, análogo a um fóton, como exemplo. Na observação como partícula o observador acompanha um intervalo representado por um par entrelaçado, observando sua forma e movimento consistentes no espaço. No efeito partícula,

a consistência da forma e seus movimentos são estabelecidas pelo par entrelaçado, visto que o salto ocorre em um lado do par de cada vez, garantido estabilidade nas mudanças.

Na Figura abaixo também é contemplado o intervalo observado como onda, onde o observador fixa em um intervalo representado por uma das partes que compõe pares entrelaçados e acompanha seus movimentos e saltos, uma vez que os saltos são frequentes em pequenos intervalos. A adição de novas amostras na população faz com que ela se distribua proporcionalmente para acoplar essas novas amostras, o que movimenta as amostras deste pequeno intervalo, conforme visto na Figura 16. No efeito de onda, os movimentos saltam e transitam entre picos e vales com altas frequências ou vibrações devido ao pequeno tamanho do intervalo e aos saltos provocados pelas novas amostras dentro desse intervalo e pelas mudanças feitas pela distribuição proporcionalmente de novas amostras na população.

Figura 40 – Observador - onda-partícula

Características da observação de uma pequena parte de um subconjunto.

Talvez não seja possível observar o efeito onda sem entrelaçar seu par. A alta frequência desse intervalo faz com que ele ocupe ou transite rapidamente em uma área ao seu redor, o que pode facilitar o colapso da onda em um ponto específico e então observar o seu efeito partícula (semelhante ao olho humano) ou em um local mais amplo e observar seu efeito onda com o colapso de muitas amostragens.

1.4 Observações

Núcleo A negação de si da lógica (ou nada) deu origem a três axiomas que são a base do teorema núcleo dessa teoria e a base para a existência. Teorema esse que dá origem as ondas e a seu principal atributo, o entrelaçamento de ondas.

Rigidez lógica Se a rigidez física e suas leis parecem ser intransponíveis, abaixo dela está à lógica, ainda mais rígida e intransponível, pois fora da lógica o que se tem é o inexistente, o ilógico. A existência está contida nas possibilidades do que é lógico.

Matemática A lógica em sua essência não está sujeita à matemática, mas toda a matemática está restrita à lógica e, portanto, algumas de suas construções mais simples podem se aproximar mais da lógica essencial do que outras.

Bem e mal O bem e o mal dependem do observador e são apenas possibilidades válidas dentre infinitas outras (talvez a grande justiça do universo ou da lógica – a não

exclusão de qualquer caminho). Ou seja, se está claro a negação tende a escurecer, se está calor a esfriar etc. É a briga dos contrários de Heráclito de Éfeso.

Perfeição A lógica primordial é a mais simples das lógicas, é a essência da existência. Uma lógica tão simples quanto eficiente, tão eficiente quanto perfeita:

Onipotente A essência de todas as possibilidades lógicas, ou seja, a essência da existência, pois fora das possibilidades lógicas está o ilógico, o inexistente;

Onisciente Fluxo de todas as abstrações lógicas desde a consciência às subconsciências; Onipresente Suas frações (negações) estão em toda a existência.

Essas observações remetem a Deus, a consciência das subconsciências. Em última análise Deus é Lógica desde sua ínfima autonegação à sua infinita grandeza. Deus é amor e a essência do amor é a atração que também está presente nas "forças" fundamentais.

Realidade Como possibilidade lógica, o sonho é tão real quando a "realidade". Talvez o estudo das possibilidades lógicas leve a caminhos onde os sonhos possam ser tão reais quanto à realidade, já que os dois não passam de lógica, como sonhos lúcidos, por exemplo (TOLEDO, 2014). Isso talvez explique por que outras possíveis formas de vidas "inteligentes", quando evoluídas, deixam de buscar esse tipo de vida em um possível vasto universo à procurarem dentro de si, onde se pode encontrar algo bem maior que o universo, o infinito.

Convergência O salto e o entrelaçamento quânticos são comportamentos que desafiam o mundo físico, podendo ser o ponto convergente com o novo paradigma.

Considerações Finais

Este é um estudo da lógica primordial que resultou em uma teoria a respeito da origem de tudo. Todas as linhas de raciocínio deste estudo podem ser aprofundadas e detalhadas.

Eventualmente pode ser considerado um estudo filosófico e/ou científico, entretanto a base desses dois importantes ramos é a lógica, o núcleo dessa teoria.

A resposta da pergunta central desse estudo (se existe algo ao invés de nada) vem da lógica. O estudo da lógica deu origem a uma teoria a respeito da origem de todas as coisas. Essa teoria reponde o que é a consciência, as ondas, o infinito, o tempo, o espaço, as forças fundamentais, a matéria escura, a energia escura, a antimatéria, o buraco negro e o observador e a vida.

Que o modelo desse estudo seja o início de uma nova era. Uma era onde o ser humano possa desenvolver a si e observar que é o hospedeiro do infinito. Que essa evolução possa transformar os sonhos em realidade e que seja possível observar que a realidade não é diferente de um sonho, uma vez que ambas são apenas lógicas.

Pensar que algo físico tenha surgido do nada se faz incoerente com a natureza do nada.

Referências

ARITMTICA Presburger. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2021. Disponível em: https://pt.wikipedia.org/wiki/Aritmética_de_Presburger>. Acesso em: 10 mar 2021. Citado na página 7.

CONSTANTE. In: DICIO, Dicionário Online de Português. Porto: 7Graus, 2021. Dicionário Online. Disponível em: https://www.dicio.com.br/constante. Acesso em: 22 mar 2021. Citado na página 4.

CORPO Ordenado. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2021. Disponível em: https://pt.wikipedia.org/wiki/Corpo_ordenado. Acesso em: 07 mar 2021. Citado na página 7.

FROST, J. Central Limit Theorem Explained. 2018. Website Statistics By Jim. Disponível em: https://statisticsbyjim.com/basics/central-limit-theorem. Acesso em: 05 nov 2019. Citado na página 8.

GLEN, S. Central Limit Theorem: Definition and Examples in Easy Steps. 2019. Website Statistics How To. Disponível em: https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/normal-distributions/central-limit-theorem-definition-examples. Acesso em: 01 nov 2019. Citado na página 7.

HELERBROCK, R. *Paradoxo dos gêmeos*. 2019. Website Brasil Escola. Disponível em: https://brasilescola.uol.com.br/fisica/paradoxo-dos-gemeos.htm. Acesso em: 16 dez 2019. Citado na página 20.

LEIBNIZ, G. W. SOBRE A ORIGEM FUNDAMENTAL DAS COISAS. 1697. Leibniz Brasil. Disponível em: https://leibnizbrasil.pro.br/leibniz-traducoes/sobre-origem-fundamental-das-coisas.htm>. Acesso em: 25 nov 2019. Citado na página 2.

LóGICA. In: DICIO, Dicionário Online de Português. Porto: 7Graus, 2018. Dicionário Online. Disponível em: https://www.dicio.com.br/logica. Acesso em: 05 abr 2018. Citado na página 3.

PARKER, D. BigDecimal - C# implementation of an arbitrary size, arbitrary precision decimal number class, with relevant mathematical operations. 2018. GitHub - proprietário software. Disponível em: https://github.com/dparker1/BigDecimal/blob/3e0a4f1ba4c72c0b28d6571fcc6259558be104bd/BigDecimal/BigDecimal.cs. Acesso em: 27 nov 2019. Citado na página 37.

PIERCE, R. *The Binomial Distribution*. 2018. Website Math is Fun. Disponível em: http://www.mathsisfun.com/data/binomial-distribution.html>. Acesso em: 05 nov 2019. Citado 2 vezes nas páginas 8 e 35.

PIERCE, R. *Pascal's Triangle*. 2018. Website Math is Fun. Disponível em: http://www.mathsisfun.com/pascals-triangle.html>. Acesso em: 05 nov 2019. Citado na página 6.

PORFíRIO, F. *Heráclito*. 2019. Website Brasil Escola. Disponível em: https://brasilescola.uol.com.br/filosofia/heraclito.htm>. Acesso em: 01 nov 2019. Citado na página 7.

PORFíRIO, F. *Parmênides*. 2019. Website Brasil Escola. Disponível em: https://brasilescola.uol.com.br/filosofia/parmenides.htm>. Acesso em: 01 nov 2019. Citado na página 3.

REAL closed field. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2021. Disponível em: https://en.wikipedia.org/wiki/Real_closed_field. Acesso em: 07 mar 2021. Citado na página 7.

TOLEDO, M. Pareto: o mínimo de esforço para o máximo de resultado. 2014. Website Administradores. Disponível em: https://administradores.com.br/artigos/pareto-o-minimo-de-esforco-para-o-maximo-de-resultado. Acesso em: 17 nov 2019. Citado 2 vezes nas páginas 10 e 33.

APÊNDICE A - Algoritmos

BinomialDistribution_PROB e Distribution_PROB

O algoritmo BinomialDistribution PROB tem como resultado a probabilidade de distribuição de um range e utiliza a fórmula da probabilidade binomial geral abaixo. Esse algoritmo tem o mesmo resultado do algoritmo Distribution_PROB, porém a execução do BinomialDistribution PROB é muito mais rápida e tem maior capacidade por usar números grandes como o BigInteger e o BigDecimal. Ambos os algoritmos foram feitos em C# com o LINQPad 5 6 . Na Figura 41 é mostrado o resultado dos algoritmos para o range de 0 a 10, análogo ao lançamento de 10 moedas ao chão, somando os valores de caras e coras, podendo a coroa ter o valor um e a cara o valor dois. O algoritmo Distribution PROB soma cada uma das 1024 possibilidades [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] e agrupa esses valores somados. No algoritmo Distribution_PROB esse conjunto de possibilidades é um produto cartesiano das possíveis combinações, o que torna esse algoritmo lento, porém ele é importante para validar e facilitar o entendimento da a fórmula da probabilidade binomial geral utilizada no algoritmo BinomialDistribution PROB (PIERCE, 2018a). Na Figura 41, a tabela no interior de Distribution_PROB mostra esse agrupamento e o total de possibilidades, 1024. Ao dividir cada valor agrupado pelo total tem-se o resultado probabilístico alcançado pela fórmula empregada no BinomialDistribution_PROB. Por exemplo, a probabilidade do somatório das 10 moedas lançadas ser 12 é igual a 45/1024, que é 0.0439453125 ou 4.39%.

$$f(k; n, p) = \binom{n}{k} p^k (1 - p)^{n-k}$$

⁶ O LINQPad 5 é encontrado em <www.linqpad.net> e pode ser utilizado em sua versão livre, Standard edition, sem expiração.

BinomialDistribution_PROB Distribution_PROB nal> (11 items) > BigDecimal .0009765625 .009765625 .0439453125 ry<Int32,Int32> (11 ite 11 12 45 120 13 210 14 252 210 17 120 18 45 .205078125 10 19 20 .1171875 .0439453125 .009765625 .0009765625

Figura 41 – Resultado dos algoritmos BinomialDistribution_PROB e Distribution_PROB

O algoritmo Distribution_PROB tem o intuito que clarificar a essência probabilística do teorema central do limite.

O algoritmo Distribution_PROB também pode ser utilizado para o lançamento de 5 dados de 6 lados ou 6 dados de 5 lados, por exemplo. Como pode ser observado na Figura abaixo, a distribuição das probabilidades no lance dos dados é semelhante à distribuição binomial, das moedas.

Figura 42 – Resultados do algoritmo Distribution_PROB

	Key
1	5
5	6
15	7
35	8
70	9
126	10
205	11
305	12
420	13
540	14
651	15
735	16
780	17
780	18
735	19
651	20
540	21
420	22
305	23
205	24
126	25
70	26
35	27
15	28
5	29
1	30
7776	

(a) 5 dados de 6 lados

(b) 6 dados de 5 lados

A distribuição das probabilidades no lance dos dados é consonante à distribuição binomial.

BinomialDistribution_PROB [Code]

Para execução deste trecho de código é necessário a implementação do BigDecimal, um exemplo dessa implementação, pode ser observado, obedecendo os direitos de licença de software proprietários em (PARKER, 2018). Este estudo não distribui e nem se responsabiliza pela porção do código referente à implementação do BigDecimal, ficando essas responsabilidades à cargo do executor deste trecho de software.

```
//https://www.mathsisfun.com/data/quincunx-explained.html
void Main()
    BinomailDistribuition.Possibilities = 10;
    var results = new List<BigDecimal>();
    results.Load();
    results.Print(true); //send false to print Table 1.
public static class BinomailDistribuition
    public static int Possibilities = 0;
    static int middleLeft = 0;
static int middleRight = 0;
    static int resultCount = 0;
    public static void Load(this List<BigDecimal> results)
         for (int i = 0; i <= Possibilities; i++)</pre>
              var fatorLeft = Fatorial(Possibilities);
              var fatorRight = BigInteger.Multiply(Fatorial(i), Fatorial(Possibilities - i));
BigInteger fat = BigInteger.Divide(fatorLeft, fatorRight);
              var powLeft = new BigDecimal(1, 0, 1000000000);
var powRight = new BigDecimal(1, 0, 1000000000);
                   powLeft = BigDecimal.Pow(new BigDecimal(5, 1, 1000000000), i);
```

```
if (i != Possibilities)
                   powRight = BigDecimal.Pow(new BigDecimal(5, 1, 1000000000), (Possibilities -
                        i));
              var prob = new BigDecimal(fat) * powLeft * powRight;
              results.Add(prob);
    7
    public static BigInteger Fatorial(int value)
         BigInteger fatorial = 1;
         for (int n = 1; n <= value; n++)
              fatorial *= n;
         return fatorial;
    public static void Print(this List<BigDecimal> results, bool printTableProbability)
         if (!printTableProbability)
              var sum = results.Sum();
              var middle = (middleRight - middleLeft) / 2;
              var middlePercent = ((middleRight - middleLeft) * 14) / 100;
var list = results.Where((x, i) => i >= middleLeft && i <= middleRight).ToList();
var listPareto = list.Where((x, i) => i >= (middle - middlePercent) && i <=</pre>
                    (middle + middlePercent)).ToList();
              var percentOfSum = (middleRight - middleLeft) * 100 / resultCount;
              var sumPercent = sum * new BigDecimal(100, 0, 10000000000);
var paretoResult = new BigDecimal(0, 0, 1000000000);
listPareto.ForEach(x => { paretoResult = paretoResult + x; });
              sumPercent.Dump("sum");
              middleLeft.Dump("middleLeft");
              middleRight.Dump("middleRight");
              (middleRight - middleLeft).Dump("itens of sum");
              percentOfSum.Dump("percent of sum");
resultCount.Dump("total");
              paretoResult.Dump("20/80");
         }
         else
         {
              results.Dump(); //Valid Binomial distribution
    }
    public static BigDecimal Sum(this List<BigDecimal> results)
         resultCount = results.Count;
middleLeft = resultCount / 2;
middleRight = middleLeft * 2 < resultCount ? middleLeft + 1 : middleLeft;</pre>
         var sum = middleLeft != middleRight ? results[middleLeft] + results[middleRight] :
               results[middleRight];
         while ((sum * new BigDecimal(100, 0, 1000000000)) < new BigDecimal(9999, 2,
               1000000000))
              middleLeft --;
              middleRight++;
              if (middleLeft >= 0)
              sum = sum + results[middleLeft];
if (middleRight <= Possibilities)</pre>
                   sum = sum + results[middleRight];
         return sum;
    }
//Exemple of BigDecimal class - https://github.com/dparker1/BigDecimal/blob/
//3e0a4f1ba4c72c0b28d6571fcc6259558be104bd/BigDecimal/BigDecimal.cs
```

Distribution_PROB [Code]

}

```
//https://exercicios.brasilescola.uol.com.br/exercicios-matematica/
//exercicios-sobre-probabilidade-condicional.htm#questao-1
void Main()
```

```
var dice = 2; //Binomial distribution, dice = 2;
    var events = 10;
    var sampling = Math.Pow(dice, events);
    var cartesianProduct = dice.ToArrays(events).CartesianProduct();
    cartesianProduct.PrintGroup(events, dice);
public static class CartesianProductContainer
    public static IEnumerable < IEnumerable < int >> CartesianProduct (this
         IEnumerable < IEnumerable < int >> sequences)
        IEnumerable < IEnumerable < int >> emptyProduct = new[] { Enumerable . Empty < int > () };
        var result = sequences.Aggregate(
             emptyProduct,
             (accumulator, sequence) =>
                 from accseq in accumulator
                 from item in sequence
                 select new[] { accseq.Concat(new[] { item }).Sum() });
        return result;
    public static IEnumerable <List <int>> ToArrays(this int dice, int events)
        var result = new List<List<int>>():
        for (int j = 1; j <= events; j++)
             var array = new List<int>();
             for (int i = 1; i <= dice; i++)</pre>
                 array.Add(i);
            result.Add(array);
        return result;
    7
    public static void PrintGroup(this IEnumerable < IEnumerable < int >> list, int events, int
         dice)
    {
        var listCountDict = Enumerable.Range(1, dice * events).ToDictionary(x => x);
        Group(listCountDict, list);
listCountDict.Dump("Values");
    public static void Group(Dictionary<int, int> dict, IEnumerable<IEnumerable<int>> list)
        foreach (var key in dict.Keys.ToList())
             dict[key] = 0;
        foreach (var item in list)
            dict[item.First()]++;
        var zeroKey = 0;
        foreach (var item in dict)
            if (item.Value == 0)
   zeroKey = item.Key;
             else continue;
        for (int i = 1; i <= zeroKey; i++)</pre>
             dict.Remove(i);
    }
}
```

Logic_WavePattern

O algoritmo Logic_WavePattern tem como resultado a exibição de um histograma que assume o padrão de ondas quando colocados lado a lado cada uma das barras do lado esquerdo e direito da mediana. Este histograma é gerado a partir da randomização de valores conforme Figura 10 e Figura 11, seguindo o teorema central do limite.

Figura 43 – Histograma em padrão de ondas do algoritmo Logic_WavePattern

Resultado gerado randomicamente e exibido pelo algoritmo Logic_WavePattern.

Outro resultado do algoritmo Logic_WavePattern é obtido a partir do console do LINQPad 5, onde se tem como saída um arquivo no formato ".csv"que pode ser importado no Chart Studio da Plotly https://chart-studio.plot.ly/create> para geração de um gráfico de dispersão 3D. O mais importante do gráfico são os pontos que representam a parte mais facilmente visível e que são mais prováveis na parte superior de cada barra do histograma da Figura anterior. As linhas são usadas para facilitar a visualização das espirais que já começam a se formar mesmo com volumes muito baixo de dados.

Figura 44 – Gráfico de dispersão 3D do algoritmo Logic_WavePattern

 $O\ exemplo\ pode\ ser\ acessado\ em: < https://chart-studio.plot.ly/create/?fid=ren.stuchi: 5\&fid=ren.stuchi: 4>.$

Logic_WavePattern [Code]

```
[STAThread]
void Main()
  Application.EnableVisualStyles();
  Application.Run(new MainForm());
public partial class MainForm : Form
  public MainForm()
   InitializeComponent();
  private const int LENGHT = 30000;
  private const int GROUP = 2;
  private double m_dZoomscale = 1.0;
 public static double s_dScrollValue = .25;
private Point MouseDownLocation;
  private Matrix transform = null;
 private NumbsOfCentralLimitTheorem.HistogramResult histogramResult = null;
 private bool printed = false;
  private void MainForm_Load(object sender, EventArgs e)
   histogramResult = GetHistogramOfCentralLimitTheorem(LENGHT, GROUP);
   RectangleF data_bounds = new RectangleF(0, 0, histogramResult.Size,
        histogramResult.MaxValue * 2);
   PointF[] points =
       new PointF(0, pictHistogram.ClientSize.Height),
new PointF(pictHistogram.ClientSize.Width, pictHistogram.ClientSize.Height),
       new PointF(0, 0)
     }:
    transform = new Matrix(data_bounds, points);
  private void pictHistogram_Paint(object sender, PaintEventArgs e)
    DrawHistogram(e.Graphics, pictHistogram.BackColor, histogramResult,
     pictHistogram.ClientSize.Width, pictHistogram.ClientSize.Height);
  private void pictHistogram_Resize(object sender, EventArgs e)
   pictHistogram.Refresh();
  private void DrawHistogram(Graphics gr, Color back_color,
   NumbsOfCentralLimitTheorem.HistogramResult histogramResult, int width, int height)
   PrintResult();
   gr.Clear(back_color);
    gr.Transform = transform;
   FillRectangle(gr, Color.Gray, histogramResult.Down, histogramResult.MaxValue, false);
FillRectangle(gr, Color.Gray, histogramResult.Down, histogramResult.MaxValue, true);
  private void PrintResult()
    if (!printed)
    {
      printed = true;
      var listTuple = new List<(float x, float y, float z)>();
      float previousValueOfZ = 0;
      for (int i = 0; i < histogramResult.Up.Count(); i++)</pre>
        if (histogramResult.Up[i] != 0.0001f && histogramResult.Down[i] != 0.0001f)
        {
          if (histogramResult.Up[i] % 1 == 0)
           previousValueOfZ = (int)(previousValueOfZ + 1f);
          else
           previousValueOfZ += 0.1f;
          var tuple = (x: histogramResult.Up[i], y: histogramResult.Down[i], z:
              previousValueOfZ);
         listTuple.Add(tuple);
       }
      Console.WriteLine("x,y,z");
      foreach (var tuple in listTuple)
```

```
Console.WriteLine(tuple.x.ToString() + "," + tuple.y.ToString() + "," +
             tuple.z.ToString());
   }
  protected void FillRectangle(Graphics gr, Color color, float[] arrayValues, float maxValue,
      bool down)
    using (Pen thin_pen = new Pen(color, 0))
      for (int i = 0; i < histogramResult.Down.Length; i++)</pre>
        RectangleF rect;
        if (!down)
          rect = new RectangleF(i, maxValue, 1, arrayValues[i]);
        else
          rect = new RectangleF(i, maxValue - arrayValues[i], 1, arrayValues[i]);
        using (Brush the_brush = new SolidBrush(color))
          gr.FillRectangle(the_brush, rect);
          gr.DrawRectangle(thin_pen, rect.X, rect.Y, rect.Width, rect.Height);
      }
   }
  protected void pictHistogram_OnMouseWheel(object sender, MouseEventArgs mea)
    pictHistogram.Focus();
    if (pictHistogram.Focused == true && mea.Delta != 0)
      ZoomScroll(mea.Location, mea.Delta > 0);
  private void ZoomScroll(Point location, bool zoomIn)
    transform.Translate(-location.X, -location.Y);
    if (zoomIn)
      m_dZoomscale = m_dZoomscale + s_dScrollValue;
    else
    m_dZoomscale = m_dZoomscale - s_dScrollValue;
transform.Translate(location.X, location.Y);
   pictHistogram.Invalidate();
  private void pictHistogram_MouseDown(object sender, MouseEventArgs e)
    if (e.Button == System.Windows.Forms.MouseButtons.Left)
      MouseDownLocation = e.Location;
  private void pictHistogram_MouseMove(object sender, MouseEventArgs e)
    if (e.Button == System.Windows.Forms.MouseButtons.Left)
      transform.Translate((e.Location.X - MouseDownLocation.X)
        / 40, (e.Location.Y - MouseDownLocation.Y) / 40, MatrixOrder.Append);
      this.Refresh();
   \textbf{private} \quad \texttt{NumbsOfCentralLimitTheorem.HistogramResult} \quad \texttt{GetHistogramOfCentralLimitTheorem(into the contral theorem)} \\
      length, int group)
    var numbsOfCentralLimitTheorem = new NumbsOfCentralLimitTheorem();
    numbsOfCentralLimitTheorem.RandomResult(length);
    return numbsOfCentralLimitTheorem.GenerateHistogram(group);
partial class MainForm
  private System.ComponentModel.IContainer components = null;
  protected override void Dispose(bool disposing)
    if (disposing && (components != null))
  components.Dispose();
    base.Dispose(disposing);
  private void InitializeComponent()
    this.pictHistogram = new System.Windows.Forms.PictureBox();
```

```
((System.ComponentModel.ISupportInitialize)(this.pictHistogram)).BeginInit();
    this.SuspendLayout();
    this.pictHistogram.Anchor =
         ((System. Windows. Forms. AnchorStyles)((((System. Windows. Forms. AnchorStyles. Top
            System.Windows.Forms.AnchorStyles.Bottom)
           | \  \, {\tt System.Windows.Forms.AnchorStyles.Left})
    | System.Windows.Forms.AnchorStyles.Right)));
this.pictHistogram.BackColor = System.Drawing.Color.White;
    this.pictHistogram.Cursor = System.Windows.Forms.Cursors.Cross;
    this.pictHistogram.Location = new System.Drawing.Point(8, 6);
    this.pictHistogram.Name = "pictHistogram";
this.pictHistogram.Size = new System.Drawing.Size(550, 250);
this.pictHistogram.TabIndex = 1;
    this.pictHistogram.TabStop = false;
this.pictHistogram.Resize += new System.EventHandler(this.pictHistogram_Resize);
    this.pictHistogram.Paint += new
         System.Windows.Forms.PaintEventHandler(this.pictHistogram_Paint);
    this.pictHistogram.MouseWheel += new
         System. Windows. Forms. MouseEventHandler (this.pictHistogram OnMouseWheel);
    this.pictHistogram.MouseDown += new
         System.Windows.Forms.MouseEventHandler(this.pictHistogram_MouseDown);
    this.pictHistogram.MouseMove += new
         System.Windows.Forms.MouseEventHandler(this.pictHistogram_MouseMove);
    this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);
    this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
    this.ClientSize = new System.Drawing.Size(563, 262);
this.Controls.Add(this.pictHistogram);
    this.Name = "MainForm";
this.Text = "Logic_WavePattern";
    this.Load += new System.EventHandler(this.MainForm_Load);
    ((System.ComponentModel.ISupportInitialize)(this.pictHistogram)).EndInit();
    this.ResumeLayout(false);
 internal System.Windows.Forms.PictureBox pictHistogram;
public class NumbsOfCentralLimitTheorem
 public float[] ResultList { get; set; }
 public int ResultLength { get; set; }
public float[] LastList { get; set; }
  public float[] CurrentList { get; set; }
  public int SizeLastList { get; set; }
 public Dictionary<int, float> Histogram { get; set; }
  public NumbsOfCentralLimitTheorem()
    SizeLastList = 2;
    StartLastList();
    StartCurrentList();
  public float[] RandomResult(int length)
    ResultLength = length;
    ResultList = new float[length];
Random rnd = new Random();
    for (int x = 0; x < length; x++)
      float lineSum = 0;
      for (int i = 1; i < SizeLastList; i++)</pre>
        var lastValueLeft = LastList[i - 1]:
        var lastValueRight = LastList[i];
var rndValue = (float)rnd.NextDouble(lastValueLeft, lastValueRight);
         lineSum = lineSum + (rndValue - lastValueLeft);
         CurrentList[i] = rndValue;
      if (lineSum != 0)
        ResultList[x] = lineSum;
      SizeLastList++;
      LastList = CurrentList;
      StartCurrentList();
    return ResultList;
  public HistogramResult GenerateHistogram(int group)
    Histogram = new Dictionary < int , float > ();
var minValue = ResultList.Min();
    var maxValue = ResultList.Max():
```

```
var rangeValue = maxValue - minValue;
    var amountOfGroups = ResultLength / group;
var intervalValue = rangeValue / amountOfGroups;
    foreach (var value in ResultList)
      int key = (int)(value / intervalValue);
      if (!Histogram.ContainsKey(key))
        Histogram[key] = 0;
      Histogram[key]++;
    var histogramResult = HistogramResult.Get(Histogram);
    return histogramResult;
  private void StartCurrentList()
    var sizeCurrentList = SizeLastList + 1;
    CurrentList = new float[sizeCurrentList];
CurrentList[0] = 0;
    CurrentList[sizeCurrentList - 1] = float.MaxValue / 2;
  private void StartLastList()
    LastList = new float[SizeLastList];
    LastList[0] = 0;
    LastList[SizeLastList - 1] = float.MaxValue / 2;
  public class HistogramResult
    public int Size { get; set; }
    public float MaxValue { get; set; }
public float[] Up { get; set; }
public float[] Down { get; set; }
    public static HistogramResult Get(Dictionary<int, float> histogram)
      var histogramOrdered = histogram.OrderBy(k => k.Key);
      var result = new HistogramResult();
      var lengthOdd = histogram.Count % 2 > 0;
      var middle = histogram.Count / 2;
      var middleValue = histogramOrdered.ElementAt(middle).Key;
      result.Size = middleValue:
      result.MaxValue = histogram.OrderBy(k => k.Value).Last().Value;
      result.Up = ArrangeArray(new float[middleValue]);
      result.Down = ArrangeArray(new float[middleValue]);
      for (int i = 0; i < middle; i++)</pre>
        var keyValue = histogramOrdered.ElementAt(i);
        result.Up[keyValue.Key] = keyValue.Value;
      for (int i = lengthOdd ? middle + 2 : middle + 1; i < histogram.Count; i++)
        var totalValue = middleValue * 2;
        var keyValue = histogramOrdered.ElementAt(i);
        result.Down[totalValue - keyValue.Key] = keyValue.Value;
      return result;
    private static float[] ArrangeArray(float[] array)
      for (int i = 0; i < array.Length; i++)</pre>
        array[i] = 0.0001F;
      return array;
 }
public static class rndExtension
  public static double NextDouble(this Random rng, double minimum, double maximum)
    return rng.NextDouble() * (maximum - minimum) + minimum;
 }
```

7

}