

쉽게 배우는 데이터 통신과 컴퓨터 네트워크

학습목표

- ✔ 암호화 원리를 바탕으로 대체 암호화와 위치 암호화를 이해
- ✓ 암호화 알고리즘인 DES, RSA의 구조를 이해
- ✓ 전자 서명의 필요성과 방법을 이해
- ✓ 네트워크 보안의 개념과 관련 이슈를 이해
- ✓ 라우터와 프록시로 구현한 방화벽의 원리를 이해

□암호화 관련 용어

- 네트워크: 개방형 시스템
- 외부침입자(intruder, attacker)의 위해 행동
 - → 메시지 읽기, 전송방해, 메시지 수정
- 메시지 읽기 (Eavesdropping)
 - 전송 선로의 신호를 도청
 - 암호화 기법으로 해결
- 전송 방해 (Denial Of Service)
 - 메시지가 수신자에게 도착하지 못하도록 방해
 - 분산형 전송방해 행위도 있음(DDoS)
- 메시지 수정 (Modification)
 - 전송 메시지를 수정하여 메시지 의미를 왜곡

- □ 정보에 대한 보안 목표 : CIA
 - 기밀성(Confidentiality), 무결성(Integrity), 가용성(Availability)으로 정의

- □ 기밀성을 위협하는 공격
 - 도청(eavesdropping) 트래픽 분석(traffic analysis) 등
- □ 무결성을 위협하는 공격
 - 메시지 변경(modification) 혹은 삭제(deletion), 재사용(replaying),
 부인(repudiation) 등
- □ 가용성을 위협하는 공격
 - 서비스 거부 공격(Denial of Service, DoS)

- □ 기밀성 유지를 위한 방법 : 암호화
- □암호화 관련 용어
 - 암호화 용어 [그림 13-1]
 - 암호화(Encryption): 메시지 내용을 변형하여 원래의 의미를 알 수 없도록 변형
 - 해독(Decryption): 암호화된 문서를 원래의 원어로 복원
 - 원문서(P): 암호화되기 전의 원본 문서
 - 암호문(C): 암호화된 문서
 - 암호키(k): 암호문을 작성하는 과정에서 사용하는 임의의 패턴

그림 17-1 암호화와 해독 과정

□암호화 관련 용어

- 암호화 알고리즘
 - 암호키(k_E): 암호화 과정에서 사용하는 키
 - 해독키(k_D): 해독 과정에서 사용하는 키
 - 대칭키(Symmetric key) 방식: 암호키 = 해독키
 - 비대칭키(Asymmetric key) 방식: 암호키 ★ 해독키

□대칭 키(비밀 키) 암호 시스템

□비대칭 키(공개 키) 암호 시스템

- □ 대칭 키(비밀 키) 암호 시스템
 - 고대 사회부터 시작 Caesar 암호
 - Vigenere 암호
 - 제 2차 세계 대전에 사용된 ENIGMA 등
 - 1977년 미국의 상무성 표준국(National Institute of Standard and Technology, NIST)에서 암호 알고리즘 표준으로 DES(Data Encryption Standard) 선정
 - 2000년이후 ~ AES(Advanced Encryption Standard)가 국제 표준

- □ 대칭 키 암호 기본 원리
 - 대체(Substitution)와 전치(Transposition)를 이용
- □대체 암호화(Substitution Cipher) 대칭 키 암호
 - 특정 문자를 다른 문자로 1:1 대응
 - 시저 암호화(Caesar Cipher)
 - 알파벳 문자를 순차적으로 세 문자씩 오른쪽으로 이동
 - 암호 키(테이블)

```
원문 ABCDEFGHIJKLMNOPQRSTUVWXYZ
암호문 defghijklmnopqrstuvwxyzabc
```

그림 17-3 시저 암호화에서 사용하는 문자 변환표

• 암복호의 예

원문 NETWORK TECHNOLOGY 암호문 qhwzrun whfkqrorjb

그림 17-4 시저 암호화를 이용한 암호화 예

- □대체 암호화 (Substitution Cipher))- 대칭 키 암호
 - 키워드 암호화(Keyword Cipher)
 - 키워드로 지정된 단어의 문자를 먼저 적고, 나머지 문자를 알파벳 순으로 기술
 - 암호키: seoul

그림 17-5 키워드 암호화에서 사용하는 문자 변환표

v 이후의 평문은 암호문과 동일한 취약성

- □ 전치 혹은 치환 암호화(Transposition Cipher) 대칭 키 암호
 - 문자들의 배열 순서를 변경
 - 컬럼 암호화(Column Cipher)-방법 1
 - 전체 문장을 컬럼(열)을 기준으로 다시 배치
 - 예: 컬럼의 길이가 7 인 경우
 - 원문서: HEAVEN HELPS THOSE WHO HELP THEMSELVES
 - 암호문1: hesle elepl apwtv vshhe etoes nhhm hoes

- □전치 혹은 치환 암호화(Transposition Cipher) 대칭 키 암호
 - 키워드 암호화(Keyword Cipher)
 - 임의의 단어를 이용하여 컬럼의 순서를 결정
 - 예: NETWORK

(a) 원문서	HEAVEN H	ELP	S TI	HOSE	WH	Ю Н	ELP	TH	EMSELVES
	키워드	N	Е	T	W	0	R	K	
(b) 암호화 과정	순서	3	1	6	7	4	5	2	
		Н	Е	Α	V	Е	N	Н	
		Е	L	P	S	T	Н	0	
		S	Ε	W	Н	0	Н	Е	
		L	Р	Т	Н	Ε	M	S	
		Е	L	V	Е	S	Z	Z	
(c) 암호문	elepl hoesz	he	sle	etoes	nh	hmz	apv	vtv	vshhe

그림 17-9 키워드 암호화 예