Chapter 9

Homework problems

150

9.1 Problem Set 1: Limits of functions, differentiability

Submit on Gradescope by 17:00, Friday 11 February 2022

- 1. Let $D \subseteq \mathbb{R}$. Write down precise mathematical formulations of the following statements, using quantifiers (\forall, \exists) :
 - (a) D is bounded above.
 - (b) D has a maximum element.
 - (c) D does not have a maximum element.
- 2. Prove from first principles (i.e. give a direct ε -N proof) that the following sequence converges:

$$a_n = \frac{3n+1}{2n-1}.$$

- 3. Prove Proposition 1.28: $a \in \mathbb{R}$ is a cluster point of a set $D \subseteq \mathbb{R}$ if and only if there exists a sequence (x_n) in $D \setminus \{a\}$ which converges to a.
- 4. Give a direct ε - δ proof that

$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2} = \frac{1}{2\sqrt{2}}.$$

Interpret this result in terms of differentiability.

- 5. Give a direct $\varepsilon \delta$ proof that $\lim_{x \to 0} \frac{|x|}{x}$ does not exist. Interpret this result in terms of differentiability.
- 6. Give a direct ε - δ proof that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4$ is differentiable at 1.

9.2 Problem Set 2: Differentiability on an interval

Submit on Gradescope by 17:00, Friday 4 March 2022

- 1. Prove that, for all $x \in \mathbb{R}$, $|\sin x| \le |x|$.
- 2. Prove that the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^7 14x^4 + 30x 17$, is injective.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = 2x^4 + x^4 \sin(1/x)$ if $x \neq 0$, and f(0) = 0.
 - (a) Prove that f attains a minimum at 0. (Hint: no need for calculus!)
 - (b) Prove that f is differentiable (everywhere), and that f'(0) = 0. (Hint: you can reduce the work involved using the Localization Lemma, Lemma 2.24.)
 - (c) Prove that, for all $\varepsilon > 0$, f' takes both positive and negative values on $(-\varepsilon, \varepsilon)$.
- 4. (a) Construct the first Taylor approximant to $f:(-1,1)\to\mathbb{R},\ f(x)=\sin^{-1}x$ about $a=\frac{1}{2}$.
 - (b) Use this approximant, and Taylor's Theorem, to find upper and lower bounds on $\sin^{-1}(3/4)$.
- 5. In each of the following cases, either write down a function with the specified properties, or explain why no such function exists.
 - (a) An unbounded function $f:[0,1]\to\mathbb{R}$.
 - (b) An unbounded differentiable function $f:[0,1]\to\mathbb{R}$.
 - (c) A bounded differentiable function $f: \mathbb{R} \to \mathbb{R}$ whose derivative $f': \mathbb{R} \to \mathbb{R}$ is unbounded.
 - (d) A differentiable function $f:(0,1)\to\mathbb{R}$ which is unbounded above but whose derivative is bounded.

9.3 Problem Set 3: Integration

Submit on Gradescope by 17:00, Friday 18 March 2022

- 1. Let $A = \{x + \frac{1}{n} : x \in (0,1), n \in \mathbb{Z}^+\}$. Determine the supremum and infimum of A, if they exist. Rigorously justify your answers.
- 2. Let $f: [-1,2] \to \mathbb{R}$, f(x) = |x|, and $\mathcal{D} = \{-1,0,1/2,2\}$.
 - (a) Draw the graph of f.
 - (b) Compute the lower and upper Riemann sums $l_{\mathscr{D}}(f)$, $u_{\mathscr{D}}(f)$.
- 3. (a) Prove that $\sum_{j=1}^{n} j^3 = \frac{1}{4}n^2(n+1)^2$.
 - (b) Evaluate $\int_0^1 x^3 dx$ directly from the definition, without using the Fundamental Theorem of the Calculus. (Hint: use Lemma 4.18 or Theorem 4.21.)
- 4. Let $f:(-1,1)\to \mathbb{R}, f(x)=(1+x^3)^{-3}$. Compute $g':(0,1)\to \mathbb{R}$ where

(a)
$$g(x) = \int_0^x f$$
.

(b)
$$g(x) = \int_{-x}^{x} f$$
.

(c)
$$g(x) = \int_0^{f(x)} f$$
.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be Riemann integrable on every interval $[a, b] \subset \mathbb{R}$ and define $g: \mathbb{R} \to \mathbb{R}$ by $g(x) = \int_0^x f$. Prove that g is continuous. (Warning: you may **not** assume that f is continuous.)

9.4 Problem Set 4: Uniform convergence

Submit on Gradescope by 17:00, Friday 29 April 2022

1. For each $n \in \mathbb{Z}^+$ let $f_n : \mathbb{R} \to \mathbb{R}$ be the function

$$f_n(x) = \frac{nx}{n|x|+1}.$$

- (a) Prove that (f_n) converges pointwise to some function $f: \mathbb{R} \to \mathbb{R}$.
- (b) Prove that (f_n) does not converge uniformly.
- 2. Construct a sequence of unbounded functions $g_n:[0,1]\to\mathbb{R}$ that converges pointwise to a bounded function $g:[0,1]\to\mathbb{R}$.
- 3. For each $n \in \mathbb{Z}^+$ let $f_n : [0, \frac{1}{2}] \to \mathbb{R}, f_n(x) = 1/(1+x^n)$.
 - (a) Prove that (f_n) converges uniformly.
 - (b) Compute the limit $\lim_{n\to\infty}\int_0^{1/2}f_n$, rigorously justifying your answer.
- 4. For each $n \in \mathbb{Z}^+$ let $f_n : \mathbb{R} \to \mathbb{R}$ be the function

$$f_n(x) = \sum_{k=1}^n \frac{1}{k^2} \cos(kx).$$

Prove that (f_n) is uniformly Cauchy, and hence converges uniformly.

- 5. (a) Let $f, g: D \to \mathbb{R}$ be bounded functions. Prove that $||fg|| \le ||f|| ||g||$.
 - (b) Assume $f_n: D \to \mathbb{R}$ converges uniformly to f and $g_n: D \to \mathbb{R}$ converges uniformly to g. Prove that $(f_n g_n)$ converges uniformly to fg.

9.5 Problem Set 5: Power series

Submit on Gradescope by 17:00, Friday 6 May 2022

- 1. Compute the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^{3n+7}}{2^n+1}$.
- 2. Prove that $\sum_{n=1}^{\infty} \frac{1}{2^n n} = \ln 2$. [Hint: integrate the geometric series.]
- 3. (a) Prove that the series $\sum_{n=0}^{\infty} \frac{1}{2^n} \sqrt{1 + e^{nx}}$ converges uniformly on $(-\infty, 0]$. (Hint: Weierstrass M Test!)
 - (b) Determine the subset $E\subseteq\mathbb{R}$ on which the series converges. Rigorously justify your answer.