Tornando a Soberania Pessoal Mais Acessível: Avanços em Clientes Leves

Agenda

- Por que rodar um node?
- Quais são os desafios em rodar um:
 - Espaço em disco,
 - Longa espera,
 - Necessidade de um servidor dedicado.
- Clientes leves: vantagens e desvantagens
- Reduzindo espaço em disco com pruning e utreexo
- Skipping IBD
- Busque o seu balanço privadamente
- Nodes embarcados

Por que rodar um node

- Bitcoin é uma rede p2p
 - Não existem servidores centrais
 - Nem entes centrais que a controlam
- A rede é formada por nodes, que de forma
- Independente participam da mesma
- Caso você não rode seu próprio node, você utilizará o node de terceiros

Por que rodar um node

O resultado é a perda de:

- Segurança: O node que você confia pode mentir
- Privacidade: Ele pode ligar todas as suas transações à sua pessoa
- Descentralização: A rede fica menos resiliente, pois menos pessoas estão validando

Porém, existem desafios

- Rodar um node pode ser custoso, consumir tempo e n\u00e3o ser muito pratico
- Nodes utilizam muito recurso computacional
 - o Disco
 - Rede
 - CPU
- Além de serem complexos para usuários leigos
 - Instalar o Bitcoin Core
 - Instalar um Electrum Server
 - o Tailscale ou TOR para acessar de fora de casa

Porém, existem desafios

Clientes leves

- Um cliente leve é aquele que consegue entregar um nível satisfatório de privacidade e segurança, sem requerer a mesma quantidade de recursos que um node.
- O tipo de cliente leve mais comum, conhecido como SPV, possui alguns problemas
 - Inseguros em caso de um ataque de 51%
 - Não definem como encontrar transações para sua wallet
- Mas possui como vantagens
 - Consumir menos de um GB de dados e disco
 - Quantidade negligível de CPU
 - Sync em alguns minutos

Entram clientes leves

- Com o tempo, algumas tecnologias foram desenvolvidas para melhorar esse tipo de cliente, garantindo mais privacidade e segurança
 - Pruning
 - Compact Block Filters
 - Utreexo
 - PoW Fraud Proofs
- Ainda existem desafios
 - Reduzir a banda utilizada
 - Disco
 - Tempo de rescan

Pruning

- Técnica já estabelecida
- Consiste em descartar dados de transações já confirmadas
- Esta informação é redundante para a validação dos próximos blocos
- Reduz o espaço necessário de ~600GB para meros ~10GB

Compact Block Filters

- Uma forma de verificar se existem transações destinadas a sua carteira, de forma local
- Requer ~15GB de filtros ao invés dos 600GB da blockchain
- Ótima privacidade

Utreexo

- O UTXO set, além de relativamente grande, requer muito I/O
- Utreexo reduz o UTXO set para menos de 1kb, e não requer nenhuma forma de I/O
- Blocos e transações precisam de uma prova de inclusão para serem validados

Proof of Work Fraud Proofs

- Permite "pular" o *IBD*
- Seguro enquanto ao menos x% dos mineradores forem honestos
 - o X pode ser um valor qualquer, sendo 20% o valor utilizado na prática
- Requer o download da cadeia de cabeçalhos.

Implementação - Floresta

- Implementa todas as tecnologias citadas
- Pode ser utilizado como dependência em outros projetos
 - O node roda ao lado da sua aplicação, no mesmo dispositivo
 - Informações são servidas via protocolo Electrum ou JSON-RPC
 - Carteira somente leitura integrado
- Possível de utilizar em dispositivos de baixo poder computacional, como smartphones
- Homepage: https://github.com/vinteumorg/Floresta

Implementação - Neutrino

- Focado em Compact Block Filters
- Segurança SPV clássica
- Também pode ser utilizado como biblioteca
- Homepage: https://github.com/lightninglabs/neutrino

Implementação - Kyoto

- Similar ao neutrino, porém escrito em Rust, com suporte a outras linguagens via bindings
- WIP integração com BDK
- Homepage: https://github.com/rustaceanrob/kyoto

Conclusão

- Clientes leves podem levar melhor privacidade e segurança para mais pessoas
- Avanços estão sendo feitos para melhorar a UX dos mesmos
- Já existem projetos em ponto de produção que podem ser utilizados por usuários finais e desenvolvedores

Agradecimentos

