Miniproject - Elliptic Curves

Simon Pohmann

March 12, 2022

1 Question 1

Example 1 (1(i)). Have

$$|162^2 + 6|_5 = |26250|_5 = |5^4 \cdot 7 \cdot 2 \cdot 3|_5 = 5^{-4} < 5^{-3}$$

Example 2 (1(ii)). Let

$$\alpha = 5^{-1} + 2 \cdot 5^0 + 5(1 + 4 \cdot 5) \sum_{n \ge 0} 5^{2n} \in \mathbb{Q}_5$$

Note that in \mathbb{Q}_5 we have

$$\sum_{n \ge 0} 5^{2n} = \sum_{n \ge 0} 25^n = \frac{1}{1 - 25} = -\frac{1}{24}$$

So

$$\alpha = \frac{1}{5} + 2 + 5(21)\frac{1}{24} = \frac{263}{40}$$

For the next exercises, we will slightly abuse notation and write

$$E(R) := \{(x, y) \in E \mid x, y \in R\}$$

for an Elliptic Curve E defined over k and any ring R contained in some extension field of k.

Proposition 3 (1(iii)). Consider the Elliptic Curve $E: y^2 = x^3 + 2x + 2$ defined over \mathbb{Z} . Then $E(\mathbb{Z}) = \{\mathcal{O}\}$ and

$$E(\mathbb{Z}_p) \neq \{\mathcal{O}\} \iff p \neq 3$$

Proof. First show that there exists some $(x,y) \in \tilde{E}(\mathbb{F}_p)$ with $y \neq 0$ for all primes $p \neq 3$. If $p \equiv 1, 5 \mod 8$, then -1 is a square in \mathbb{F}_p , thus there is $\alpha \in \mathbb{F}_p$ with $\alpha^2 = -1$ and so $(-1, \alpha) \in \tilde{E}(\mathbb{F}_p)$. If $p \equiv 7 \mod 8$, then (by Quadratic Reciprocity) it follows that 2 is a square in \mathbb{F}_p . Thus there is $\alpha \in \mathbb{F}_p$ with $\alpha^2 = 2$ and so $(0, \alpha) \in \tilde{E}(\mathbb{F}_p)$. Hence, consider now the case $p \equiv 3 \mod 8$. Note that

$$\Delta(E) = 4 \cdot 2^3 + 27 \cdot 2^2 = 140 = 2^2 \cdot 5 \cdot 7$$

Hence we see that $p \nmid \Delta(E)$ and so \tilde{E} is an Elliptic Curve defined over \mathbb{F}_p . Now the Hasse bound shows that

$$\#\tilde{E}(\mathbb{F}_p) \in [p+1-2\sqrt{p}, p+1+2\sqrt{p}]$$

Note that for p > 9 have $\sqrt{p} < p/3$ and thus

$$p + 1 - 2\sqrt{p} > 4$$

Thus $\tilde{E}(\mathbb{F}_p) \geq 5$ and so there must be $(x,y) \in \tilde{E}(\mathbb{F}_p)$ with $y \neq 0$, as there are at most four points on $\tilde{E}(\mathbb{F}_p)$ that do not satisfy this $(\mathcal{O} \text{ and possibly } (\alpha_i,0) \text{ with } \alpha_i \text{ a root of } x^3 + 2x + 2)$.

Now consider any prime $p \neq 2, 3$ and $(\tilde{x}, \tilde{y}) \in \tilde{E}(\mathbb{F}_p), x, y \in \mathbb{Z}$. Let $f(t) := t^2 - x^3 - 2x - 2$. Then

$$|f(y)|_p \le p^{-1}$$
 and $|f'(y)|_p = |y|_p = 1$

Thus $|f(y)|_p < |f'(y)|_p^2$ and Hensel's Lemma yields a root $\gamma \in \mathbb{Z}_p$ with $(x, \gamma) \in E(\mathbb{Z}_p)$. In the case p = 2, note that $f(t) := t^2 - 5^3 - 2 \cdot 5 - 2 = t^2 - 137$ satisfies

$$|f(1)|_2 = |-136|_2 = |-17 \cdot 2^3|_2 = 2^{-3} < (2^{-1})^2 = |2|_2^2 = |f'(1)|_2^2$$

and so Hensel's Lemma yields a point $(5, \gamma) \in E(\mathbb{Z}_2)$.

The only remaining case is p=3, and a trying all 9 points in \mathbb{F}_3^2 shows that $\tilde{E}(\mathbb{F}_3)=\{\mathcal{O}\}$. This clearly shows that $E(\mathbb{Z}_3)=\{\mathcal{O}\}$ and so $E(\mathbb{Z})=\{\mathcal{O}\}$.

For the next exercise, we first summarize the techniques we have used above.

Proposition 4. Let $E: y^2 = x^3 + a_2x^2 + a_4x + a_6$ be an Elliptic Curve defined over \mathbb{Z} . Let p be a prime. Then

- If $E(\mathbb{Z}_p) \neq \{\mathcal{O}\}$ then $\tilde{E}(\mathbb{F}_p) \neq \{\mathcal{O}\}$.
- Suppose $p \neq 2$. There is $(x,y) \in \tilde{E}(\mathbb{F}_p)$ with $y \neq 0$ if and only if there is $(x,y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$.
- Suppose $p \neq 2$. If $\#\tilde{E}(\mathbb{F}_p) \geq 5$ then there is $(x,y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$.
- Suppose $p \ge 11$ and $p \nmid \Delta(E)$. Then there is $(x,y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$.

Proof. The first part is trivial and follows from the fact that any $(x,y) \in E(\mathbb{Z}_p)$ yields $(\tilde{x}, \tilde{y}) \in \tilde{E}(\mathbb{F}_p)$.

For the second part, note that by assumption, there is $(\tilde{x}, \tilde{y}) \in \tilde{E}(\mathbb{F}_p), x, y \in \mathbb{Z}$ with $|y|_p = 1$ and so

$$|y^2 - x^3 - a_2 x^2 - a_4 x - a_6|_p \le p^{-1} < 1 = 1^2 = |2y|_p$$

Hensel's Lemma now shows that there is $\gamma \in \mathbb{Z}_p$ such that $\gamma^2 = x^3 + a_2x^2 + a_4x + a_6$ and so $(x, \gamma) \in E(\mathbb{Z}_p)$. Since $|y|_p = 1$ clearly also $|\gamma|_p = 1$. The other direction is obvious and follows directly by taking the reduction modulo p.

For the third part, notice that there are at most three different points $(x, y) \in \tilde{E}(\mathbb{F}_p)$ with y = 0, as in this case x is a root of the cubic $t^3 + a_2t^2 + a_4t + a_6$. Thus, if $\#\tilde{E}(\mathbb{F}_p) \geq 5$, there must be $(x, y) \in \tilde{E}(\mathbb{F}_p)$ with $y \neq 0$ and so the claim follows by the second part.

For the fourth part, note that as above, p > 9 implies $\sqrt{p} < p/3$ and so the Hasse bound yields (since \tilde{E} is an Elliptic Curve by assumption, as $p \nmid \Delta(E)$)

$$\#\tilde{E}(\mathbb{F}_p) \ge p + 1 - 2\sqrt{p} > 4$$

thus $\#\tilde{E}(\mathbb{F}_p) \geq 5$. The claim now follows by the third part.

This already shows that we do not have to worry to much about the condition $E(\mathbb{Z}_p) \neq \{\mathcal{O}\}$ for $p \neq 2, 3, 5, 7$ prime, as we expect that it is fulfilled quite often. This gives the following condition.

Proposition 5. Let $f_0, f_1, f_2 \in \mathbb{Z}$ and consider the Elliptic Curve $E: y^2 = x^3 + f_2x^2 + f_1x + f_0$. Let $p \in \{3, 5, 7\}$. Then there is no $(x, y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$ if and only if

$$p = 3 \implies n^3 + f_2 n^2 + f_1 n + f_0 \equiv 0, 2 \mod 3$$

 $p = 5 \implies n^3 + f_2 n^2 + f_1 n + f_0 \equiv 0, 2, 3 \mod 5$
 $p = 7 \implies n^3 + f_2 n^2 + f_1 n + f_0 \equiv 0, 3, 5, 6 \mod 7$

for all $n \in \mathbb{Z}$.

In particular, this is necessary for E to satisfy the desired properties, i.e. there is $(x,y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$ if and only if $p \neq 3,5,7^{-1}$.

Proof. Let $p \in \{3, 5, 7\}$. Assume there is some $(\tilde{x}, \tilde{y}) \in \tilde{E}(\mathbb{F}_p), x, y \in \mathbb{Z}$ with $\tilde{y} \neq 0$. Then have

$$y^2 \equiv x^3 + f_2 x^2 + f_1 x + f_0 \mod p$$

and so $x^3 + f_2x^2 + f_1x + f_0$ is a quadratic residue modulo p. By checking all elements in \mathbb{F}_3 , \mathbb{F}_5 and \mathbb{F}_7 , one finds

> n quadratic residue modulo $3 \Leftrightarrow n \equiv 0, 1 \mod 3$ n quadratic residue modulo $5 \Leftrightarrow n \equiv 0, 1, 4 \mod 5$ n quadratic residue modulo $7 \Leftrightarrow n \equiv 0, 1, 4, 2 \mod 7$

Except for $n \equiv 0 \mod p$, these cases have been excluded by assumption. However we assumed that $y \not\equiv 0 \mod p$, so $y^2 \not\equiv 0 \mod p$ and the claim follows.

The other direction follows by reversing the above computation. The claim now follows from Proposition 4.

¹I understood the task here to be "if and only if". As mentioned later, this interpretation is probably wrong, and I will discuss the other case next.

However, there is one problem here. Using a computer, one can easily find (e.g. by trying all possibilities) that there are no $f_0, f_1, f_2 \in \mathbb{Z}$ such that the above conditions are (simultaneously) fulfilled for 3, 5 and 7. This seems to indicate that I have indeed misunderstood the task, and we only look for Elliptic Curves $E: y^2 = x^3 + f_2x^2 + f_1x + f_0$ such that there is $(x, y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$ for every $p \neq 3, 5, 7$, and do not require further properties for $E(\mathbb{Z}_3), E(\mathbb{Z}_5)$ and $E(\mathbb{Z}_7)$.

So instead consider a strengthening of the last part of Proposition 4.

Proposition 6. Let $p \ge 11$ be a prime and $E: y^2 = x^3 + f_2x^2 + f_1x + f_0$ an Elliptic Curve with $f_0, f_1, f_2 \in \mathbb{Z}$. Then there is $(x, y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$.

Proof. If $p \geq 11$ and $p \nmid \Delta(E)$ then \tilde{E} is an Elliptic Curve over \mathbb{F}_p and the claim follows from Proposition 4.

So assume now that $p \mid \Delta(E)$, hence $x^3 + f_2x^2 + f_1x + f_0$ factors as

$$x^{3} + \tilde{f}_{2}x^{2} + \tilde{f}_{1}x + \tilde{f}_{0} \equiv (x - \alpha)^{2}(x - \beta)$$

with $\alpha, \beta \in \overline{\mathbb{F}}_p$. However, note that \mathbb{F}_p is perfect, so $(x-\alpha)^2(x-\beta)$ cannot be irreducible over \mathbb{F}_p , otherwise $\mathbb{F}_p[x]/\langle (x-\alpha)^2(x-\beta)\rangle$ would be a non-separable field extension of \mathbb{F}_p . Thus, either $\alpha \in \mathbb{F}_p$ or $\beta \in \mathbb{F}_p$. If $\alpha \in \mathbb{F}_p$, then clearly also $\beta = -2\alpha - \tilde{f}_2 \in \mathbb{F}_p$. If $\beta \in \mathbb{F}_p$, then also $(x-\alpha)^2 \in \mathbb{F}_p[x]$ and again by perfectness of \mathbb{F}_p , note that $\alpha \in \mathbb{F}_p$. So $\alpha, \beta \in \mathbb{F}_p$.

Now note that for $t \in \mathbb{F}_p$ have

$$(t^2 + \beta, \ t(t^2 + \beta - \alpha)) \in \tilde{E}$$

Hence, we find a function

$$\phi: \mathbb{F}_p \to \tilde{E}(\mathbb{F}_p) \setminus \{\mathcal{O}\}, \quad t \mapsto \left(t^2 + \beta, \ t(t^2 + \beta - \alpha)\right)$$

If there is $\gamma \in \mathbb{F}_p$ with $\gamma^2 = \alpha - \beta$, then

$$\phi|_{\mathbb{F}_p\setminus\{-\gamma\}}:\mathbb{F}_p\setminus\{-\gamma\}\to \tilde{E}(\mathbb{F}_p)$$

is injective, otherwise ϕ is injective. Hence, we see that $\#(\tilde{E}(\mathbb{F}_p) \setminus \{\mathcal{O}\}) \geq \#\mathbb{F}_p - 1 \geq 4$ and so $\#\tilde{E}(\mathbb{F}_p) \geq 5$. It follows that there is $(\tilde{x}, \tilde{y}) \in \tilde{E}(\mathbb{F}_p)$ with $\tilde{y} \neq 0$. By a Hensel-lifting argument as in Proposition 4, we now see that there is $\gamma \in \mathbb{Z}_p$ with $(x, \gamma) \in E(\mathbb{Z}_p)$ and $|\gamma|_p = 1$.

The above proposition shows that constructing Elliptic Curves $E: y^2 = x^3 + f_2x^2 + f_1x + f_0$ such that there is $(x, y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$ for all primes $p \neq 3, 5, 7$ is indeed quite simple, as almost all curves satisfy this. This only case that can fail is p = 2, but here, the condition is fulfilled quite often, so we can just try different choices.

Example 7. Let

$$E_1: y^2 = x^3 + 2x$$

$$E_2: y^2 = x^3 + 2x^2 + 6x + 5$$

$$E_3: y^2 = x^3 + 6x + 1$$

Note that

$$1^2 \equiv 3^3 + 2 \cdot 3 = 33 \mod 8$$

$$1^2 \equiv 2^3 + 2 \cdot 2^2 + 6 \cdot 2 + 5 = 33 \mod 8$$

$$1^2 \equiv 4^3 + 6 \cdot 4 + 1 = 89 \mod 8$$

so Hensel's Lemma yields points $(x,y) \in E_i(\mathbb{Z}_2)$ with $|y|_2 = 1$ for $i \in \{1,2,3\}$. By Proposition 6, we have points $(x,y) \in E(\mathbb{Z}_p)$ with $|y|_p = 1$ for all $p \ge 11$.

Finally, note that trying all points shows

$$\tilde{E}_1(\mathbb{F}_3) = \{(0,0), (1,0), (2,0), \mathcal{O}\}
\tilde{E}_1(\mathbb{F}_5) = \{(0,0), \mathcal{O}\}
\tilde{E}_2(\mathbb{F}_7) = \{(1,0), (5,0), (6,0), \mathcal{O}\}$$

so there is no point $(x,y) \in E_i(\mathbb{Z}_p)$ with $|y|_p = 1$ for $p \in \{3,5,7\}$ and a suitable i.