Quiz 2 Practice Problems

10-606

September 17, 2025

1 Matrix Inverses

- 1. True/False: If AB = I, then BA = I.
- 2. Prove or disprove: Every square diagonal matrix is invertible.
- 3. Compute the inverse of $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$.
- 4. Suppose A is invertible. Show that $(A^T)^{-1} = (A^{-1})^T$.
- 5. Explain, without resorting to calculation, why a matrix with two identical rows cannot be invertible.
- 6. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$. Is A invertible?
- 7. If A is invertible, does Ax = b has a unique solution for all b?
- 8. If Ax = b has no solution, show that ABx = b has no solution for any matrix B.
- 9. A set of vectors $\{v_1,\ldots,v_n\}$ in \mathbb{R}^n are orthonormal if $v_i^\intercal v_j=1$ if i=j and 0 otherwise. A matrix $Q\in\mathbb{R}^{n\times n}$ is orthonormal if its column and row vectors are orthonormal. If Q is orthonormal, show that $Q^\intercal=Q^{-1}$.

Linear Systems

- 1. Can the following system be solved? $\{x + y = 2, 2x + 2y = 5\}$.
- 2. How many solutions are there to $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} x = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$.

- 3. Row-reduce $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix}$.
- 4. For which a is $\begin{bmatrix} 1 & a \\ 2 & 4 \end{bmatrix}$ invertible?
- 5. Solve the system: $\{x + y + z = 6, x y + z = 2, 2x + z = 5\}.$
- 6. True/False: If the equation Ax = 0 has only the trivial solution x = 0, then the columns of A form a basis for \mathbb{R}^n .
- 7. Solve Ax = b where $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 11 \end{bmatrix}$.
- 8. Construct 3 equations in 3 unknowns with no solutions.

Eigenvalues and Eigenvectors

- 1. Find the characteristic polynomial of $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ for any $a \in \Re$ (i.e., compute $\det(A \lambda I) = 0$).
- 2. What sort of geometric action does the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ correspond to?
- 3. What sort of geometric action does the matrix $\begin{bmatrix} -3 & 0 \\ 0 & 3 \end{bmatrix}$ correspond to?
- 4. Prove that an orthogonal matrix (see Section 1) always has eigenvalues of magnitude 1.
- 5. If 0 is an eigenvalue of A, what does this tell you about the rank of A?
- 6. Let A have eigenvectors v_1, v_2 with eigenvalues λ_1, λ_2 . Suppose $x = 3v_1 2v_2$. What is Ax in terms of v_1, v_2 ? Explain geometrically what happened to x.