PRATICA S10L4

Esercizio Teorico: Cloud, Backup e RAID

Gli studenti impareranno i concetti fondamentali del cloud computing, delle strategie di backup e della configurazione RAID, applicando queste conoscenze in un esercizio teorico.

Istruzioni:

Introduzione al Cloud Computing:

- 1. Ricerca sui principali fornitori di servizi cloud:
 - Effettuare una ricerca sui principali fornitori di servizi cloud (AWS, Azure, Google Cloud).
 - o Descrivere brevemente ciascun fornitore e le sue caratteristiche principali.
- 2. Descrizione dei Modelli di Servizio Cloud:
 - o Descrivere i tre modelli principali di servizio cloud: laaS, PaaS e SaaS.
 - IaaS (Infrastructure as a Service): Fornire un esempio e descrivere i vantaggi.
 - PaaS (Platform as a Service): Fornire un esempio e descrivere i vantaggi.
 - SaaS (Software as a Service): Fornire un esempio e descrivere i vantaggi.
- 3. Opzionale Creazione di un Account di Prova:
 - o Scegliere uno dei fornitori di servizi cloud e creare un account di prova.
 - o Documentare i passaggi per la creazione dell'account.

Introduzione al Cloud Computing

Il **cloud computing** è un modello tecnologico che consente l'accesso on-demand, tramite Internet, a un insieme condiviso di risorse informatiche — come server, storage, database, reti, software e servizi — senza la necessità di gestire fisicamente l'infrastruttura sottostante. In altre parole, le risorse IT diventano disponibili come servizi virtuali, scalabili e configurabili in base alle esigenze dell'utente.

Questa architettura ha trasformato radicalmente il modo in cui le organizzazioni progettano, implementano e mantengono i propri sistemi informativi. In passato, ogni azienda doveva acquistare, installare e mantenere hardware e software localmente. Oggi, grazie al cloud, è possibile:

- Allocare risorse in tempo reale, pagando solo per ciò che si utilizza
- Ridurre i costi di capitale legati all'acquisto e alla manutenzione di server fisici
- Aumentare la resilienza e la disponibilità dei servizi, grazie a data center distribuiti

 Accelerare l'innovazione, implementando nuove soluzioni in pochi minuti anziché settimane

1. Ricerca sui principali fornitori di servizi cloud

Nel panorama del cloud computing, tre provider dominano il mercato globale per diffusione, innovazione e varietà di servizi offerti: **Amazon Web Services (AWS)**, **Microsoft Azure** e **Google Cloud Platform (GCP)**. Ciascuno presenta caratteristiche distintive che lo rendono più adatto a specifici contesti aziendali e tecnici.

Fornitore	Caratteristiche Principali
AWS (Amazon Web Services)	È il pioniere del cloud pubblico e il leader indiscusso per varietà di servizi (oltre 200). Offre soluzioni robuste per IaaS, PaaS e SaaS. I servizi chiave includono: EC2 per la gestione di macchine virtuali, S3 per lo storage oggetti, Lambda per l'elaborazione serverless, RDS per database relazionali gestiti. Ha una documentazione estremamente dettagliata e una vasta community di sviluppatori e architetti cloud.
Microsoft Azure	Si distingue per l'integrazione nativa con l'ecosistema Microsoft (Windows Server, Active Directory, Microsoft 365). È particolarmente adatto per ambienti ibridi e enterprise. Tra i servizi principali: Azure Virtual Machines per laaS, Azure Functions per computing serverless, Cosmos DB per database distribuiti multi-modello. Supporta DevOps, CI/CD e offre strumenti avanzati per la governance e la sicurezza.
Google Cloud Platform (GCP)	È noto per le sue capacità avanzate in ambito data analytics, machine learning e intelligenza artificiale. È molto apprezzato da startup, sviluppatori e data scientist. I servizi principali includono: BigQuery per analisi dati su larga scala, App Engine per PaaS, Cloud Functions per serverless, Kubernetes Engine per orchestrazione container. GCP si distingue per l'efficienza, la velocità e l'innovazione continua.

Caratteristiche comuni tra i provider

Tutti e tre i provider condividono funzionalità fondamentali che definiscono il cloud moderno:

- Modello di pagamento pay-as-you-go: si paga solo per le risorse effettivamente utilizzate
- Sicurezza avanzata: crittografia dei dati, gestione delle identità (IAM), firewall, conformità con standard internazionali (ISO, GDPR, HIPAA)
- Alta disponibilità e ridondanza geografica: distribuzione su più regioni e zone di disponibilità per garantire continuità operativa
- Supporto per automazione e DevOps: strumenti per CI/CD, monitoraggio, gestione tramite API e infrastruttura come codice (IaC)

2. Descrizione dei Modelli di Servizio Cloud

Nel cloud computing, i modelli di servizio si distinguono in base al **grado di controllo** che l'utente mantiene sull'infrastruttura e al **livello di astrazione** offerto dal provider. I tre modelli principali sono: **IaaS**, **PaaS** e **SaaS**. Ogni modello risponde a esigenze diverse, dalla gestione completa dell'ambiente IT alla semplice fruizione di software via web.

laaS - Infrastructure as a Service

• **Esempio**: Amazon EC2 (Elastic Compute Cloud)

Descrizione: Il provider mette a disposizione risorse hardware virtualizzate — come CPU, RAM, storage e rete — che l'utente può configurare e gestire in autonomia. È come avere un data center remoto, accessibile via Internet, su cui installare e amministrare sistemi operativi, middleware e applicazioni.

Vantaggi:

- Controllo totale sull'ambiente: dall'OS al firewall
- Possibilità di creare architetture personalizzate e modulari
- Scalabilità automatica o manuale in base al carico
- Ideale per ambienti di test, sviluppo e produzione

Uso tipico:

- Hosting di server web e database
- · Ambienti di test e staging
- Disaster recovery e backup off-site
- Infrastrutture virtuali per applicazioni legacy

PaaS - Platform as a Service

• **Esempio**: Google App Engine

Descrizione: Il provider gestisce l'intera infrastruttura sottostante (server, rete, storage, runtime), offrendo un ambiente preconfigurato per lo sviluppo, il testing e il deployment delle applicazioni. L'utente si concentra solo sul codice e sulla logica applicativa.

Vantaggi:

- Nessuna gestione di server, patch o aggiornamenti
- Deployment semplificato con strumenti CI/CD integrati
- Supporto per diversi linguaggi e framework (Python, Node.js, Java, Go, ecc.)
- Riduzione dei tempi di sviluppo e rilascio

Uso tipico:

- Applicazioni web scalabili
- Microservizi e API RESTful
- Backend per app mobile
- Progetti DevOps e Continuous Delivery

SaaS – Software as a Service

• **Esempio**: Microsoft 365

Descrizione: L'utente accede a software già installato, configurato e mantenuto dal provider, tramite browser o app. Non è necessario gestire alcuna infrastruttura: tutto è pronto all'uso, con aggiornamenti e backup inclusi.

Vantaggi:

- Accesso immediato da qualsiasi dispositivo connesso
- Aggiornamenti automatici e gestione centralizzata
- Collaborazione in tempo reale tra utenti

• Costi prevedibili e ridotti per licenze e manutenzione

Uso tipico:

- Email aziendale (Outlook, Gmail)
- Gestione documentale (Google Drive, OneDrive)
- CRM (Salesforce, HubSpot)
- ERP e gestione risorse (SAP Cloud, Oracle NetSuite)

Considerazioni Finali

Questi modelli non sono **mutualmente esclusivi**, ma **complementari**. Le aziende moderne adottano spesso una **strategia multi-layer**, combinando laaS per la flessibilità infrastrutturale, PaaS per accelerare lo sviluppo, e SaaS per semplificare la produttività quotidiana.

La scelta del modello dipende da:

- Livello di controllo desiderato: più controllo con IaaS, meno con SaaS
- Competenze interne: sysadmin e sviluppatori possono gestire IaaS e PaaS, mentre SaaS è pensato per utenti finali
- Obiettivi di business: time-to-market, costi operativi, sicurezza, scalabilità

Conclusione

Questo esercizio ha fornito una panoramica chiara e strutturata sul cloud computing, evidenziando i principali provider, i modelli di servizio (IaaS, PaaS, SaaS) e le loro applicazioni pratiche. L'eventuale creazione di un account di prova ha permesso di familiarizzare con l'interfaccia e i servizi offerti da una piattaforma cloud reale.

Comprendere questi concetti è fondamentale per chiunque operi nel settore IT, poiché il cloud rappresenta oggi la base per infrastrutture moderne, scalabili e sicure. Le conoscenze acquisite saranno utili anche per affrontare le prossime sezioni dedicate al backup e alla configurazione RAID, completando così il quadro delle tecnologie essenziali per la gestione dei dati e dei sistemi.