Roll No-1710301/ Economics Assignment

1.

Max.
$$Z = 6x_1 + 8x_2$$

Subject to $30x_1 + 20x_2 \le 300$
 $5x_1 + 10x_2 \le 110$
 $x_1, x_2 > 0$

Converting inequality to equality

Zman = 6x, +8x2 + 05, + 05_

Çį	Basic Var.	Quantity	6 X,	(8 X2)	0 S ₁	0 52
0	51	300	30	20	1	0
	Zi.	((0	5	0	0	
	$C_j - Z_j$		6	8	٥	ð

pivat column -> X2

honc	e Sz is	replaced	with	r.	0	^
Ci	Basic Vav.	Quanti by	X	X2	Si	52
0	5	280	20	0	0	-2)
8	X2		V2		0	8-1/16
	7;	88	4	8	0	415
Accelerate and the	$C_i - Z_j$		2	Q	Ó	-915

All Ci-Z; are sither zero or negative hence optimal solution is a

6

0

-1/10 -3/5

X1=4, X2=9, #Z;=96

Zmin = 5x, +6x2 2x, +5x2 7,1500 & 3x, + x2 7,1200

2X1 + 5X1+ A1-51=1500 3X1 + X2 + A2 - 52 = 1200

96

Zj

 $C_j - 2_j$

2.

2min = 5x, +6x2+MA, + MA2-05, -052

Cj 5 6 M MO 0 Var. Oty. XI X2 A1 AZ S, 1500 2 5 1 0 -1 0 AI 1200 3 1 0 1 0 7 M Az 2700M SM 6M m -m -m Z_{j} M -(Ci-Zj) 0 -M - M SM-5 6M-6 0

Now A1 13 replaced with x2 50 A1 is artificial variable which is replaced so it does not appear.

Now Ar is replaced with X1,A2 gets eliminated. Cj 5 6 0 0 Var. C; Qty. XI Xz 5, 52 6 Xn 2100/13 -1/13 2/13 0 1 XI 4500/13 0 -5/13 1113 7; 35100/13 5 -1113 -12;-Ci 0 -1/13 -1

all (2; - (i) value) are either zero or -ve hence optimal solution is rached-

$$X_1 = \frac{4500}{13}$$
, $X_2 = \frac{2100}{19}$, $Z_j = 2700$