Optik Erişim Ağları

DR. ÖĞRETİM ÜYESİ ABDULLAH SEVİN

Amaç

Optik Erişim Ağlarını tanımak

Year	Global Internet Traffic
1992	100 GB per day
1997	100 GB per hour
2002	100 GB per second
2007	2,000 GB per second
2017	46,600 GB per second
2022	150,700 GB per second

Table 1. The Cisco VNI forecast: historical Internet context

Source: Cisco VNI, 2018.

Bayt Birimleri						
Yaygın önek				İkilik önek		
Ad	Sembol	Ondalık	İkilik	Ad	Sembol	İkilik
kilobayt	KB	10 ³	2 ¹⁰	kibibayt	KiB	2 ¹⁰
megabayt	MB	10 ⁶	2 ²⁰	mebibayt	MiB	2 ²⁰
gigabayt	GB	10 ⁹	2^{30}	gibibyte	GiB	2 ³⁰
terabayt	ТВ	10 ¹²	2 ⁴⁰	tebibayt	TiB	2 ⁴⁰
petabayt	РВ	10 ¹⁵	2 ⁵⁰	pebibayt	PiB	2 ⁵⁰
eksabayt	EB	10 ¹⁸	2^{60}	eksbibayt	EiB	2^{60}
zettabayt	ZB	10 ²¹	2 ⁷⁰	zebibayt	ZiB	2 ⁷⁰
yottabayt	YB	10 ²⁴	2 ⁸⁰	yobibayt	YiB	2 ⁸⁰

Source: Cisco VNI, 2015

Upstream/Downstream

Peak period traffic composition - upstream

Upstream/Downstream

	Upstream		Downstream		Aggregate	
Rank	Application	Share	Application	Share	Application	Share
1	BitTorrent	36.35%	Netflix	31.62%	Netflix	28.18%
2	НТТР	6.03%	YouTube	18.69%	YouTube	16.78%
3	SSL	5.87%	HTTP	9.74%	HTTP	9.26%
4	Netflix	4.44%	BitTorrent	4.05%	BitTorrent	7.39%
5	YouTube	3.63%	iTunes	3.27%	iTunes	2.91%
6	Skype	2.76%	MPEG - Other	2.60%	SSL	2.54%
7	QVoD	2.55%	SSL	2.05%	MPEG - Other	2.32%
8	Facebook	1.54%	Amazon Video	1.61%	Amazon Video	1.48%
9	FaceTime	1.44%	Facebook	1.31%	Facebook	1.34%
10 D	Dropbox	1.39%	Hulu	1.29%	Hulu	1.15%
		66.00%		76.23%		73.35%

Upstream/Downstream

Geniş Alan Ağı – Taşıyıcı Ortamlar

Teknoloji	Hız	Güvenlik	Maliyet
PSTN (Dial-up)	56 Kbps	Düşük	Düşük
X.25	64 Kbps - 2.048 Mbps	Orta	Düşük
Frame Relay	45 Mbps	Orta	Orta
ISDN (BRI – PRI)	64 Kbps - 1.544 Mbps	Orta	Düşük
T1 – T3	64 Kbps - 45 Mbps	Orta	Orta
DSL	1.544 - 52 Mbps	Orta	Orta
Cable	10 - 36 Mbps	Orta	Orta
SONET	51 Mbps - 39 Gbps	Yüksek	High
ATM	155 Mbps – 622 Mbps	Yüksek	Orta
VPN	56 Kbps	Yüksek	Düşük

Broadband/Genişbant

Technology	Rate	Rate ex. overhead	Year
ADSL (G.lite)	1536/512 <u>kbit/s</u>	192/64 <u>kB/s</u>	1998
ADSL (G.dmt) ITU G.992.1	8192/1024 kbit/s	1024/128 kB/s	1999
<u>ADSL2</u> ITU G.992.3	12288/1440 kbit/s	1536/180 kB/s	2002
ADSL2+ ITU G.992.5	24576/3584 kbit/s	3072/448 kB/s	2003
VDSL ITU G.993.1	52 Mbit/s	7 MB/s	2001
VDSL2 ITU G.993.2	100 Mbit/s	12.5 MB/s	2006
VDSL2 ITU G.993.2 Amendment 1 (11/15)	300 Mbit/s	37.5 MB/s	2015
BPON (G.983) fiber optic service	622/155 Mbit/s	77.7/19.3 MB/s	2005[16]
G.fast ITU G.9700	1000 Mbit/s	125 MB/s	2014
EPON (802.3ah) fiber optic service	1000/1000 Mbit/s	125/125 MB/s	2008
DOCSIS 3.0 ^[17] (cable modem)	1216/216 Mbit/s	152/27 MB/s	2006
GPON (G.984) fiber optic service	2488/1244 Mbit/s	311/155.5 MB/s	2008 ^[18]
10G-PON (G.987) fiber optic service	10/2.5 Gbit/s	1.25/0.3125 GB/s	2012[20]
XGS-PON (G.9807.1) fiber optic service	10/10 Gbit/s	1.25/1.25 GB/s	2016
DOCSIS 3.1 Full Duplex (cable modem)	10/10 Gbit/s	1.25/1.25 GB/s	2017
NG-PON2 (G.989) fiber optic service	40/10 Gbit/s	5/1.25 GB/s	2015[21]

Mobil Ağlar (Hücresel)

Technology	Download rate		Upload rate		
GSM CSD (2G)	14.4 <u>kbit/s^[22]</u>	1.8 <u>kB/s</u>	14.4 kbit/s	1.8 kB/s	
<u>HSCSD</u>	57.6 kbit/s	5.4 kB/s	14.4 kbit/s	1.8 kB/s	
<u>GPRS (2.5G)</u>	57.6 kbit/s	7.2 kB/s	28.8 kbit/s	3.6 kB/s	
WIDEN	100 kbit/s	12.5 kB/s	100 kbit/s	12.5 kB/s	
CDMA2000 1×RTT	153 kbit/s	18 kB/s	153 kbit/s	18 kB/s	
EDGE (2.75G) (type 1 MS)	236.8 kbit/s	29.6 kB/s	236.8 kbit/s	29.6 kB/s	
UMTS 3G	384 kbit/s	48 kB/s	384 kbit/s	48 kB/s	
EDGE (type 2 MS)	473.6 kbit/s	59.2 kB/s	473.6 kbit/s	59.2 kB/s	
1×EV-DO rev. 0	2457 kbit/s	307.2 kB/s	153 kbit/s	19 kB/s	
1×EV-DO rev. A	3.1 Mbit/s	397 kB/s	1.8 Mbit/s	230 kB/s	
1×EV-DO rev. B	14.7 Mbit/s	1837 kB/s	5.4 Mbit/s	675 kB/s	
HSPA (3.5G)	13.98 Mbit/s	1706 kB/s	5.760 Mbit/s	720 kB/s	
4×EV-DO Enhancements (2×2 MIMO)	34.4 Mbit/s	4.3 MB/s	12.4 Mbit/s	1.55 MB/s	
HSPA+ (2×2 MIMO)	42 Mbit/s	5.25 MB/s	11.5 Mbit/s	1.437 MB/s	
15×EV-DO rev. B	73.5 Mbit/s	9.2 MB/s	27 Mbit/s	3.375 MB/s	
UMB (2×2 MIMO)	140 Mbit/s	17.5 MB/s	34 Mbit/s	4.250 MB/s	
LTE (2×2 MIMO)	173 Mbit/s	21.625 MB/s	58 Mbit/s	7.25 MB/s	
UMB (4×4 MIMO)	280 Mbit/s	35 MB/s	68 Mbit/s	8.5 MB/s	
EV-DO rev. C	280 Mbit/s	35 MB/s	75 Mbit/s	9 MB/s	
LTE (4×4 MIMO)	326 Mbit/s	40.750 MB/s	86 Mbit/s	10.750 MB/s	

Kablosuz Ağlar

Standard	Ra	Year	
Classic WaveLAN	2 Mbit/s	250 <u>kB/s</u>	1988
<u>IEEE 802.11</u>	2 Mbit/s	250 kB/s	1997
RONJA (full duplex)	10 Mbit/s	1.25 <u>MB/s</u>	2001
IEEE 802.11a	54 Mbit/s	6.75 MB/s	1999
<u>IEEE 802.11b</u>	11 Mbit/s	1.375 MB/s	1999
IEEE 802.11g	54 Mbit/s	6.75 MB/s	2003
<u>IEEE 802.16</u> (WiMAX)	70 Mbit/s	8.75 MB/s	2004
IEEE 802.11g with Super G by Atheros	108 Mbit/s	13.5 MB/s	2003
IEEE 802.11g with 125 High Speed Mode by Broadcom	125 Mbit/s	15.625 MB/s	2003
<u>IEEE 802.11n</u> (aka Wi-Fi 4)	600 Mbit/s	75 MB/s	2009
<u>IEEE 802.11ac</u> (aka Wi-Fi 5)	6.8-6.93 Gbit/s	850-866.25 MB/s	2012
<u>IEEE 802.11ad</u>	7.14–7.2 <u>Gbit/s</u>	892.5-900 MB/s	2011
<u>IEEE 802.11ax</u> (aka Wi-Fi 6)	11 <u>Gbit/s</u>	1375 MB/s	2019

Son kullanıcı

- ■Son kullanıcılar:
- Laptoplar, Telefonlar, IoT vb. akıllı cihazlar farklı ortamlardan (WiFi, Ethernet, Hücresel ağ) internete bağlanabilmektedir.

Erişim Ağı

- □Erişim Ağı (<20 km), Birkaç km
- Bir erişim ağı, merkezi bir anahtarlama tesisinden bireysel işletmelere, kurumlara ve evlere uzanan bağlantıları kapsar.
- ☐ Kullanıcılar yüksek bantgenişliği talep ediyor. Ama mevcut teknolojiler (WiFi, DSL, ADSL, Ethernet, Hücresel ağ) yavaş
- □ PON (Passive Optical Networks) –FTTx

Erişim Ağı

- \Box **FTTx** (Fiber to the x)
- □ **FTTH** (fiber-to-the-home):
- □ FTTB (fiber-to-the-building, -business, or -basement):
- □ FTTC / FTTK (fiber-to-the-curb/kerb, -closet, or -cabinet):
- □ FTTN / FTTLA (fiber-to-the-node, -neighborhood):

Active optical network

- AON'lar, bir anahtar veya yönlendirici gibi bir sinyali dağıtmak için elektrikle çalışan ağ ekipmanına dayanır.
- Normal olarak, sinyaller, AON'in bir optik-elektriksel (optik dönüşüm) gerekir.

Passive optical network (PON)

Pasif bir optik ağ (PON), tek bir optik fiberin 128 müşteriye hizmet vermesini sağlamak için güçsüz optik ayırıcıların kullanıldığı, çok noktadan çok noktalı bir FTTP ağ mimarisidir.

Pasif Optik Ağlar (PON)

- □ONT bir ITU-T terimidir, buna karşılık ONU IEEE terimidir.
- □ONT, fiber optik ışık sinyallerini elektrik sinyallerine dönüştürür (Fiber optik hattın sonlandığı düğüm)
- □OLT'den gelen sinyalleri bileşen parçalarına (voice telephone, TV, Internet erişimi) demultiplex (ayrıştırma) gerçekleştirir.

Key: A - Data or voice for a single customer. • Video for multiple customers.

PON

Ayırıcı (Splitter):
Güç gerektirmiyor.
Ama güç kaybı oluyor

ONT (Optical Network Terminal) ONU (Optical Network Units)

- □ONT bir ITU-T terimidir, buna karşılık ONU IEEE terimidir.
- ✓ ONT (Optik Ağ Terminali), ONU (Optik Ağ Birimi)
- ONT, fiber optik ışık sinyallerini elektrik sinyallerine dönüştürür.
- OLT'den gelen sinyalleri bileşen parçalarına (voice telephone, TV,Internet access) demultiplex (ayrıştırma) gerçekleştirir. Bu elektrik sinyalleri daha sonra bireysel abonelere gönderilir.
- □ Fiber optik hattın sonlandığı düğüm
- Ayrıca, ONU, kullanıcılardan gelen farklı veri türlerini gönderebilir, toplayabilir ve damgalayabilir ve OLT'ye geri gönderebilir.

Optical Line Terminal/Termination (OLT)

- ☐ Telekom ofisinin içerisinde bulunur. iki temel görevi vardır.
- 1. Kullanıcılardan topladığı verileri Metro ağına iletir (Metro ağından gelenleri de erişim ağına iletir). Erişim ağı ile Metro ağı arasındadır.
- -Servis sağlayıcının ekipmanı tarafından kullanılan elektrik sinyalleri ile pasif optik ağ tarafından kullanılan fiber optik sinyaller arasında dönüştürme yapmak
- 2. PON ağın uç düğümündeki (ONU)' lar arasındaki çoklamayı koordine etmek.
- □ Kullanıcılara 1490 nanometrede (nm) veri sinyali iletebilir. Bu sinyal, optik ayırıcılar kullanarak 12.5 mil mesafeye kadar 128 ONT'ye kadar hizmet verebilir.
- □ Bileşenleri; Merkezi işlem birimi (CPU), passive optical network cards, gateway router (GWR), voice gateway (VGW) uplink cards..

ODN (Optik Dağıtım Ağı/ Optical Distribution Network)

- □PON sisteminin ayrılmaz bir parçası olan ODN, ONU'ların OLT'lerle fiziksel bağlantısı için optik iletim ortamı sağlar.
- Ulaşımı 20 km veya daha fazladır.
- ODN, dağıtım fiberlerinden ve tüm optik optik dağıtım elemanlarından (özellikle de optik ayırıcılardan ve / veya dalga boyu seçici elemanlardan (WDM filtreleri)) oluşur.

PON

- □Uzun erişim: 0-20 km
- ☐ Fiber yapılar uzun yaşam süreleri vardır (~20 yıl)
- ☐ Yeni ekipmanlar yerleştirmeden (yani yerin altından fiberleri çıkarmadan) yeni teknolojilere uyumlu olmalı ve ölçeklenebilmelidir.
- Kısa mesafeli kablosuz ağları, uzun mesafe erişim avantajını kullanarak rahatlatabilir
- □PON (FTTx): PON' da sadece arada splitter var. Güç gerektirmiyor.
- ☐ Ethernet PON (EPON): Genelde kullanılan teknoloji...
- □Çeşitleri: APON (ATM PON), BPON (Broadband PON-Genişbant), GPON(Gigabit PON), WDM PON

PON standards

PON

- □Noktadan-noktaya bağlantılar
 - ■N fiber hattı
 - ■2N transceiver (alıcı/verici)
- ☐ Mahallede toplama anahtarı
 - ☐1fiber hat
 - □ Elektrik gücü gerektiriyor
 - □2N+ 2 transceivers
- □PON –bir dağıtımlı anahtar
 - □1 fiber hat
 - ■N + 1 transceivers
 - ☐ Yol saydamlığı (Kime hangi bilgi gidiyor belli değil.)
 - ☐ Bütün dalgaboyları hepsine gidiyor. Alıcı filtreliyor.

PON Topolojileri

PON Tipleri

- □ APON (ATM Passive Optical Networks)
- ■BPON (Broadband PON)
- ☐ Ethernet PON (E-PON)
- ☐GPON (Gigabit Ethernet PON)
- ■WDM-PON
- ■TDM-PON

PON

☐Geleneksel olmayan bağlanırlılığa sahip bir ağ yapısı

□ Downstream: broadcast

☐ Upstream: Noktadan-noktaya, fakat çarpışma mümkün

□ Upstream kanalları ayrılmalı. Nasıl?

PON

TDM-PON

- ☐ Alıcı ve elektronik ekipmanlar yüksek hızda çalışırlar
- ☐Zaman senkronizasyonu gerekiyor. Dinamik yapıya sahip değil.
- Her düğüm sırasını bekliyor (Diğerlerinin paketi olmasada)

WDM-PON

- ☐ Her ONU farklı bir dalgaboyuna sahip olmalı
- OLT, bu durumda bir alıcı dizesine (bütün dalgaboylarını filtrelemek için) sahip olmalı
- Pahalı

TWDM / NG-PON2 (Next-Generation Passive Optical Network 2)

- Dalgaboyu bölmeli çoklama, downstream yönünde OLT lazerlerinden gelen dalga boylarını çoklayıcı (Multiplexer) ile birleştirilerek aşağı yönde gönderir.
- □ Işık sinyali daha sonra her bir ONU'da, yalnızca istenen dalga boyunu alıcısına geçiren aktif olarak ayarlanabilen bir filtre ile filtrelenir.
- □ Upstream yönünde, her ONU'daki ayarlanabilir lazerler dinamik olarak bir dalga boyuna atanır. Tüm ONU'lardan elde edilen fiberler pasif bir mux/ayırıcı ile birleştirilmiştir.
- □Zaman bölmeli çoğullama, her bir ONU'da patlama/burst lazerleri kullanılarak upstream yönünde sağlanır. (Aynı dalgaboyuna sahip sinyaller için)

TWDM / NG-PON2 (Next-Generation Passive Optical Network 2)

GPON

EPON

- ■EPON tek bir fiber kullanır (yerleştirme ve bakım/onarım maliyetleri az)
- Downstream ve upstream yolları WDM kullanılarak ayrılmışlardır.
- ONU sadece OLT'den gelen trafiği görür, birbirlerinden gelen trafiği görmezler.
- ☐ Tek bir seferde yalnızca bir ONU upstream kanalına iletim yapabilir.

EPON

- □IEEE 802.3 frame formatını kullanır. Mevcut MAC protokollerini kullanır (mevcut Ethernet'i EPON haline getirmek kolaydır).
- □ EPON, şifreleme için advanced encryption standard (AES) tabanlı mekanizma kullanır
- ■Standart 802.3 hat hızında (1Gbps) çalışır.
- □ Dünya çapında 1 milyara yakın Ethernet portu kurulmuştur (Tüm anahtar portlarının yaklaşık %95'i)

IEEE 802.3ah frame format

EPON Downstream iletimi

- Downstream kanalı broadcast.
- ■802.3 Frame'leri ONU'lar tarafından çıkartılır

EPON Upstream iletimi

- □Upstream zaman bölmeli
- ☐ Paketler bütün olarak ilerler
- ☐Çarpışma olmaz

PON Fiber kopmalarına karşı koruma

(a) Yedek gövdeli ağaç

(b) Tam yedekli ağaçPahalı fakat tam koruma(Şirketler vb. için önemli..)

Çok-Noktalı Kontrol Protokolü Multi-Point Control Protocol(MPCP)

- ☐MPCP, noktadan-çok-nokta segmentine bağlı master/slave üniteleri arasında (OLT/ONU) verimli veri iletimi için kontrol mekanizmasını tanımlar.
- ☐ MPCP, MAC Kontrol katmanında uygulanır.
- ☐MPCP iki MAC kontrol mesajını kullanır: GATE ve REPORT
- □ Farklı üreticilerin, farklı bantgenişliği atama ve zamanlama algoritmaları vardır. (IPACT vb..)

GATE mesaji

- OLT, ONU'lara zaman slotları atamak için GATE mesajı gönderir.
- ☐GATE mesajı bir MAC kontrol mesajıdır.
- ☐GATE mesajı şunları içerir;
 - □Zaman damgası (Timestamp)
 - ☐Slot başlangıç zamanı
 - ■Slot uzunluğu
- □OLT atanan zaman slotlarında çakışma olmayacağını garantiler (yani kanal çarpışması oluşmaz).

GATE İşlemi

REPORT mesaji

- ONU, yerel durumunu (kuyruk uzunluğu –queue length) bildirmek için OLT'ye bir REPORT mesajı gönderir.
- □REPORT mesajı şunları kapsar;
 - ☐Zaman damgası
 - ☐ Kuyruk uzunluğu
- ONU, bu REPORT mesajını kendine atanmış zaman slotunda gönderir.
- REPORT mesajı önetkin olarak ve OLT'in isteği üzerine gönderilebilir.

REPORT İşlemi

Gecikme telafisi (Delay Compensation)

ONU'lar farklı yayılım gecikmelerine sahiptir (hepsi OLT'den eşit uzaklıkta değildir.)

Gecikme telafisi olmadan ONU'lara atanan slotlar, OLT'ye vardıklarında çakışabilirler

Gecikme telafisi

- ☐Gecikme telafisi OLT tarafında yapılır;
- OLT kanalın boşalacağı T zamanını hesaplar (en son zamanlanan ONU_{i-1}'den gelecek son bitin tahmini alınma zamanı)
- □OLT, ONU_i'ye GATE mesajını gönderirken Slot başlangıç zamanına SlotStart=T-RTT_iyazar.
- □RTT_i=Round-Trip Time, yani ONU_i ve OLT arasındaki gidip gelme süresi.
- □ Bu durumda OLT her bir ONU için RTT'yi bilmek zorundadır.

RTT Ölçümü

- OLT, T1 zamanında zaman damgası T1 olan bir GATE mesajı yollar
- 2. ONU ,GATE mesajınıalır ve yerel zamanını T1'e ayarlar
- 3. ONU,T2 zamanında zaman damgası T2 olan bir REPORT mesajı yollar
- 4. OLT, T3'de REPORT mesajını alır
- 5. OLT hesaplar: RTT = T3 T2

$$RTT = (T3-T1) - (T2-T1) = T3-T2$$

Bantgenişliği ataması

- ☐ Statik (durağan/sabit) atama
- □Slot boyutu ve slot periyodu değişmez.
- ☐ Her aboneye sabit sanal devreler verilir.
- ☐ Genellikle şirketler tarafından kullanılır.
- Ağın durumlarından ve/veya kullanıcı taleplerinden bağımsız olarak bantgenişliği verilir.
- □ Dinamik atama
- □Slot boyutu ve slot periyodu kullanıcın taleplerine göre veya ağ durumuna göre değişiklik gösterir.

Statik atamadaki problemler

- □ Veri/video trafiği kendine-benzerdir (self-similar), yani birçok zaman ölçeği için yığınlı bir yapıya sahiptir. Bu nedenle optimum sabit slot boyutu mevcut değildir.
- Birçok slot ya fazla yüklenmiştir yada kapasitesinin altında kullanılmıştır.

▲ Overutilized

▼ Underutilized

Dinamik Atama

- Daha fazla servisi/uygulamayı karşılamak için bantgenişliği, boşduran ONU'lardan gönderecek çok şeyi olan ONU'lara yeniden dağıtılmalıdır.
- □Nasıl?
 - □Arz/Talep planı kullanılabilir.
 - ☐ Her ONU'ya, o ONU'daki kuyruk boyutuna göre bir slot atanır.
- Problemler:
 - ☐ Yayılım zamanlarının birikimi
- □Çözüm:
 - Uyarlanabilir Devir Zamanı ile Sırayla Birleştirilmiş Kuyruklama (Interleaved Polling with Adaptive Cycle Time -IPACT)
 - ☐ Yayılım zamanlarından kazanmak için farklı ONU'lara sıralı ve aralıklı bir şekilde arz gönderme

- ☐ Bir kuyruklama tablosunun oluşturulduğunu varsayalım
- 1. ONU1 için 6000 byte'lık Arz (Gate mesajı) gönder
- 2. ONU1 6000 Byte'ı gönderir ve 550 byte'lık yeni **Talep (Report mesajı)** gönderir.

ONU	Bytes	RTT
1	6000	20
2	3200	17
З	1800	12

Kuyruklama tablosu (Polling table)

$$ONU3 \frac{Tx}{Rx} \longrightarrow$$

- x -x slot boyutunda arz
- y **y** slot boyutunda talep
- z Kullanıcı verisi (**z** boyutunda çoklu Ethernet paketi)

- 1. RTT1=20 μs olsun
- 2. 6000 byte'lık verinin gönderim zamanı T= 48 μs hesaplanır
- 3. ONU1'den gelen mesaj 68. μs de tamamlanır
- 4. ONU2'ye 68-RTT2 zamanında gate mesajı gider yani 68-17=51. μs de

© Saniye

Katı	Adı	Sembol	Katı	Adı	Sembol
10 ⁰	saniye	S			
10 ¹	dekasaniye	das	10 ⁻¹	desisaniye	ds
10 ²	hektosaniye	hs	10-2	santisaniye	cs
10 ³	kilosaniye	ks	10 ⁻³	milisaniye	ms
10 ⁶	megasaniye	Ms	10 ⁻⁶	mikrosaniye	μs
10 ⁹	gigasaniye	Gs	10 ⁻⁹	nanosaniye	ns
10 ¹²	terasaniye	Ts	10 ⁻¹²	pikosaniye	ps
10 ¹⁵	petasaniye	Ps	10 ⁻¹⁵	femtosaniye	fs
10 ¹⁸	egzasaniye	Es	10 ⁻¹⁸	attosaniye	as
10 ²¹	zettasaniye	Zs	10 ⁻²¹	zeptosaniye	ZS
10 ²⁴	yottasaniye	Ys	10 ⁻²⁴	yoktosaniye	ys

- OLT, ONU 1'den veri almaya başlamadan önce ONU 2'ye de **Arz** gönderir.
- Yeni Arz gönderilirken ONU1 ve ONU2 arasında veri çarpışması olmayacak şekilde gönderilir.

ONU	Bytes	RTT
1	6000	20
2	3200	17
3	1800	12

Kuyruklama tablosu (Polling table)

- 1. 3200 byte'lık verinin gönderim zamanı T= 25.6 μs hesaplanır
- 2. ONU2'den gelen mesaj 68+25,6=93,6. μs de tamamlanır
- 3. ONU3'e 93,6-RTT3 zamanında gate mesajı gider yani 93,6-12=81,6. μs de

- Benzer bir şekilde ONU2'den veri alımı yapılmaya başlamadan önce ONU3'e **Arz** gönderilir.
- ONU1'den ilk bit alındığında tablo RTT verisi için güncellenir.
- ONU1'den REPORT mesajı alındığında tablo kuyruk boyutu için güncellenir.

- 1. 1800 byte'lık verinin gönderim zamanı T= 14.4 μs hesaplanır
- 2. ONU3'den gelen mesaj 93,6+14,4=108. μs de tamamlanır
- 3. ONU1'e 108-RTT1 zamanında gate mesajı gider yani 108-20=88. μs de

- ONU2'den ilk bit alındığında tablo RTT verisi için güncellenir.
- ONU2'den REPORT mesajı alındığında tablo kuyruk boyutu için güncellenir.
- OLT Alıcı (Receiver) kanalı neredeyse %100 kullanıldı.

■En son adımda ONU1'e gate mesajı gönderir. Polling tablosu boş olsa bile. Gönderimler arası biriken mesaj olabilir.

Sistem Parametreleri

Parametre	Açıklama	Değer			
N	ONU sayısı	16			
R_U	Kullanıcı hat hızı	100 Mbps cycle			
R_N	EPON hat hızı	1000 Mbps ONU 1 R _U Mbps R _U Mbps			
Q	ONU buffer boyutu	10 Mb			
В	Koruma aralığı	$5 \mu s$			
Τ	Devir zamanı	2 ms* OLT R _N Mbps			
*Sabit atama için sabit devir zamanı (Aynı ONU^ya dönüş zamanı); Dinamik atama için maksimum devir zamanı					

Uzun-Erişimli PON/Long-Reach PON (LR-PON)

- Kapsama alanının genişletilmesi
 - Optik fiberdeki kayıpları azaltarak (Optical budget)

(ve OA ile yükselterek);

- □20km'den100km veya daha fazlasına
- □Aktif bölgeler azaltılıyor.
- □Daha etkili bir ağ
 - □Daha yüksek bantgenişliği
 - □ Daha fazla son kullanıcı
 - ■Yüksek enerji verimliliği
 - □Düşük maliyet

Long-Reach PON (LR-PON)

☐ EDFA ile yükseltme

 \square Optik enerji hesabı; LT = α L + Lc + Ls

Tanım: LT - Total loss

 α - Fiber attenuation

L - Length of fiber

Lc - Connector loss

Ls - Splice loss

Uzun-Erişim Genişbant Erişim Long-Reach Broadband Access

Kablosuz Optik Genişbant Erişim Ağları Wireless Optical Broadband Acess Networks -WOBAN

