Composite Theories and Distributive Laws

Aloïs Rosset joint work with Maaike Zwart, Helle Hvid Hansen, and Jörg Endrullis

15 April 2024, SYCO 12

This talk

Monads ←⇒ Algebraic Theories

Distributive laws $\underset{\text{Piróg, Staton'17}}{\overset{\text{Cheng'20}}{\rightleftharpoons}}$ Composite Theories

Monads ←⇒ Algebraic Theories

Distributive laws Cheng'20 Composite Theories Piróg, Staton'17

Weak distributive laws $\stackrel{?}{\Longleftrightarrow}$ Weak composite theories?

Monads ←⇒ Algebraic Theories

Distributive laws zwart'20 Composite Theories

Weak distributive laws $\stackrel{?}{\Longleftrightarrow}$ Weak composite theories?

Preliminaries

Monads are

functor
$$S: C \to C$$
 List \mathcal{P}
unit $\eta: id \Rightarrow S$ $x \mapsto [x]$ $x \mapsto \{x\}$
multiplication $\mu: SS \Rightarrow S$ concat

S-algebras are $(X, SX \xrightarrow{\alpha} X)$

$$\begin{array}{cccc} X \xrightarrow{\eta_X} \mathsf{SX} & \mathsf{S^2X} \xrightarrow{\mu_X} \mathsf{SX} \\ & \downarrow^{\alpha} & \mathsf{S\alpha} \downarrow & \downarrow^{\alpha} \\ X & \mathsf{SX} \xrightarrow{\alpha} X \end{array}$$

Distributive laws are $\lambda : ST \Rightarrow TS$ E.g. multiplication over addition

Algebraic theories

Preliminaries 0000

Algebraic theories S are

- \blacksquare signature $\Sigma_{\mathbb{S}} = \{f^{(2)}, g^{(1)}, \ldots\}$
- \blacksquare equations $E_{\mathbb{S}} = \{(s,t),\ldots\}$

S-algebras are $(X, \{X^2 \xrightarrow{f} X, \ldots\})$ satisfying equations:

$$[\![s]\!]_{\sigma} = [\![t]\!]_{\sigma} \qquad \forall (s,t) \in E, \forall \text{var. assign. } \sigma$$

$$\mathsf{Set} \xrightarrow[]{\mathcal{T}(\Sigma_{\mathbb{S}},-)/E_{\mathbb{S}}} \mathsf{Alg}(\mathbb{S}) \quad \Longrightarrow \ \textit{free algebra monad} \ \mathsf{T}_{\mathbb{S}}$$

0000 Algebraic presentation

Preliminaries

S is an algebraic presentation of S if

$$T_{\mathbb{S}} \cong S$$
 or equivalently $Alg(\mathbb{S}) \cong_{conc} EM(S)$

For instance

Rewriting

String rewriting	Term rewriting
$ab \rightarrow c$	$f(x,g(y)) \to f(x,x)$
bc o a	$h(x) \rightarrow f(g(x), g(x))$
$ca \rightarrow a$	

Rewriting

Strir	ng rewriting Term r	ewriting
		$0) \rightarrow f(x,x)$ g(x), g(x))
Termination (SN)	Local Confluence (W	CR) Confluence (CR)
$\cdots \rightarrow \cdots \rightarrow \cdots \rightarrow \cdots \rightarrow$	3 7 7 A	= # #=

Rewriting

St	ring rewriting	Term rewriti	ng
	$ab \rightarrow c$	$f(x,g(y)) \to f(x,g(y))$	•
	$bc \rightarrow a$	$h(x) \to f(g(x), g(x))$	g(x))
	$ca \rightarrow a$		
Termination (SN)	Local Con	fluence (WCR)	Confluence (CR)
$\cdot \to \cdot \to \ldots \to \cdot \not \to$	× ×	·	· **
,	·. 3	∄ F∃	3 4 序 3

- \blacksquare SN \land CR \implies terms rewrite to unique normal forms (no more steps).
- Newman's Lemma: $SN \land WCR \implies CR$
- Critical pairs are rules that overlap $\begin{array}{ccc}
 & \overline{abc} \\
 & aa
 \end{array}$ CC
- \blacksquare Critical Pair's Lemma: WCR \iff all critical pairs converge.

Composite theories

Example

Example: Monoids, Abelian group, and Rings.

$$\Sigma_{AbGrp} := \{ \cdot^{(2)}, 1^{(0)} \}$$

$$\Sigma_{AbGrp} := \{ 0^{(0)}, +^{(2)}, -^{(1)} \}$$

$$E_{AbGrp} := \begin{cases} (x \cdot y) \cdot z = x \cdot (y \cdot z), \\ 1 \cdot x = x, \\ x \cdot 1 = x \end{cases}$$

$$E_{AbGrp} := \begin{cases} (x + y) + z = x + (y + z), \\ x + (-x) = 0, \\ x + y = y + x, \\ x + 0 = x \end{cases}$$

Then:

$$\Sigma_{\text{Ring}} := \Sigma_{\text{Mon}} \uplus \Sigma_{\text{AbGrp}} \qquad E_{\text{Ring}} := E_{\text{Mon}} \cup E_{\text{AbGrp}} \cup \left\{ \begin{aligned} x(y+z) &= (xy) + (xz), \\ (y+z)x &= (yx) + (zx) \end{aligned} \right\}.$$

We can distribute everything, so every Ring term is equal to an AbGrp term with Monoid terms substituted.

Composite Theories of $\mathbb T$ after $\mathbb S$

Definition

Algebraic theories $\mathbb{S}, \mathbb{T} \subseteq \mathbb{U}$.

- U-term is **separated** if of the form $t[s_x/x]$.
- Two separated terms $t[s_x]$ and $t'[s_y']$ are **equal modulo** (S, T) if

$$\overline{t[\overline{s_x}^{\mathbb{S}}]}^{\mathbb{T}} = \overline{t'[\overline{s_y'^{\mathbb{S}}}]}^{\mathbb{T}} \quad (\text{in } \mathit{TSV})$$

Composite Theories of $\mathbb T$ after $\mathbb S$

Definition

Algebraic theories $\mathbb{S}, \mathbb{T} \subseteq \mathbb{U}$.

- U-term is **separated** if of the form $t[s_x/x]$.
- Two separated terms $t[s_x]$ and $t'[s_y']$ are **equal modulo** (\mathbb{S}, \mathbb{T}) if

$$\overline{t[\overline{s_x}^{\mathbb{S}}]}^{\mathbb{T}} = \overline{t'[\overline{s_y'^{\mathbb{S}}}]}^{\mathbb{T}} \quad (\text{in } TS\mathcal{V})$$

- \blacksquare U is a *composite theory* of \mathbb{T} after \mathbb{S} if
 - ▶ every \mathbb{U} -term u has a **separation** $u =_{\mathbb{U}} t[s_x/x]$
 - ▶ any $t[s_x] =_{\mathbb{U}} t'[s'_x] \implies t[s_x]$ and $t'[s'_x]$ must be equal modulo (\mathbb{S}, \mathbb{T}) .

Composite Theories of \mathbb{T} after \mathbb{S}

Definition

Algebraic theories $\mathbb{S}, \mathbb{T} \subset \mathbb{U}$.

- U-term is **separated** if of the form $t[s_x/x]$.
- \blacksquare Two separated terms $t[s_x]$ and $t'[s'_v]$ are **equal modulo** (\mathbb{S}, \mathbb{T}) if

$$\overline{t[\overline{s_x}^{\mathbb{S}}]}^{\mathbb{T}} = \overline{t'[\overline{s_y'}^{\mathbb{S}}]}^{\mathbb{T}} \quad (\text{in } TSV)$$

- \blacksquare U is a *composite theory* of T after S if
 - ightharpoonup every \mathbb{U} -term u has a **separation** $u =_{\mathbb{I}} t[s_x/x]$
 - ▶ any $t[s_x] =_{\mathbb{I}} t'[s'_x] \implies t[s_x]$ and $t'[s'_x]$ must be equal modulo (\mathbb{S}, \mathbb{T}) .

Example of equal modulo (S, T): $\overline{0}^{AbGrp} = \overline{(\overline{1 \cdot x}^{Mon}) + (-(\overline{x \cdot 1}^{Mon}))}^{AbGrp}$

- $\blacksquare x + (-x) =_{AbGrp} 0$
- $\blacksquare x \cdot 1 =_{Monoid} 1 \cdot x$

Dist. Laws \iff Composite Th.

Theorem (D.L ← Comp. Th. Zwart'20)

Monads S, T presented by theories \mathbb{S}, \mathbb{T} .

Given composite theory $\mathbb U$ of $\mathbb T$ after $\mathbb S$, then

$$\begin{array}{c} \lambda_{\mathcal{V}}: \mathit{STV} \to \mathit{TSV}: \\ \overline{\mathit{S[\overline{t_x}^{\scriptscriptstyle T}/x]}}^{\scriptscriptstyle S} \mapsto \overline{t'[\overline{s_x'}^{\scriptscriptstyle S}/x]}^{\scriptscriptstyle T} \ (a \ separation) \end{array}$$

is a distributive law with monad $T \circ_{\lambda} S$ presented by \mathbb{U} .

Proof.

 λ well-defined by equality modulo (S, T). Straightforward but tedious.

Theorem (D.L \Longrightarrow Comp. Th.)

Monads S, T presented by theories \mathbb{S} , \mathbb{T} .

Distributive law $\lambda : ST \Rightarrow TS$.

$$E_{\lambda} := \left\{ \left(s[t_{x}/X], t[s_{y}/y] \right) \mid \lambda_{\mathcal{V}} \left(\overline{s[\overline{t_{x}}^{\mathbb{T}}/X]}^{\mathbb{S}} \right) = \overline{t[\overline{s_{y}}^{\mathbb{S}}/y]}^{\mathbb{T}} \right) \right\}.$$

$$\Sigma_{\mathbb{U}^{\lambda}} := \Sigma_{\mathbb{S}} \uplus \Sigma_{\mathbb{T}},$$

$$E_{\mathbb{U}^{\lambda}} := E_{\mathbb{S}} \cup E_{\mathbb{T}} \cup E_{\lambda}.$$

Then, \mathbb{U}^{λ} is a composite theory of \mathbb{T} after \mathbb{S} .

More tools needed for the proof.

■ Define function type that give \mathbb{U}^{λ} -terms a corresponding $\{S, T\}^*\mathcal{V}$. E.g. for $f^{(2)} \in \Sigma_{\mathbb{S}}$, and $g^{(1)} \in \Sigma_{\mathbb{T}}$:

■ Define function type that give \mathbb{U}^{λ} -terms a corresponding $\{S, T\}^*\mathcal{V}$. E.g. for $f^{(2)} \in \Sigma_{\mathbb{S}}$, and $g^{(1)} \in \Sigma_{\mathbb{T}}$:

type(u) := STSV.

$$\overline{u}^{STS} := \overline{f(f(\overline{x}^{\mathbb{S}^{T}}, \overline{g(\overline{x}^{\mathbb{S}})^{T}}), \overline{g(\overline{f(x,x)}^{\mathbb{S}})^{T}})}^{\mathbb{S}}.$$

■ Define function type that give \mathbb{U}^{λ} -terms a corresponding $\{S, T\}^*\mathcal{V}$. E.g. for $f^{(2)} \in \Sigma_{\mathbb{S}}$, and $g^{(1)} \in \Sigma_{\mathbb{T}}$:

■ Apply $\lambda, \mu^{S}, \mu^{T}$ to \overline{u}^{STS} until we reach TSV, TV or SV

■ Define function type that give \mathbb{U}^{λ} -terms a corresponding $\{S,T\}^*\mathcal{V}$. E.g. for $f^{(2)} \in \Sigma_{\mathbb{S}}$, and $g^{(1)} \in \Sigma_{\mathbb{T}}$:

type(u) := STSV.

$$\overline{u}^{STS} := \overline{f(f(\overline{x}^{\mathbb{S}^{T}}, \overline{g(\overline{x}^{\mathbb{S}})^{T}}), \overline{g(\overline{f(x,x)}^{\mathbb{S}})^{T}})}^{\mathbb{S}}.$$

 \blacksquare Apply $\lambda, \mu^{\rm S}, \mu^{\rm T}$ to $\overline{u}^{\rm STS}$ until we reach $\mathit{TSV}, \mathit{TV}$ or SV

Definition (c.f. rewrite category Kozen'19)

Functor rewriting system (FRS) (Σ, \mathcal{R}) consist of

- ▶ $\Sigma := \{F_i \mid i \in I\}$, set of functors
- ▶ $\mathcal{R} := \{\alpha_j : w_j \to w_j' \mid w_j, w_j' \in \Sigma^*, j \in J\}$, set of natural transformations

■ Define function type that give \mathbb{U}^{λ} -terms a corresponding $\{S, T\}^* \mathcal{V}$. E.g. for $f^{(2)} \in \Sigma_{\mathbb{S}}$, and $g^{(1)} \in \Sigma_{\mathbb{T}}$:

$$\mathsf{type}(u) := \mathit{STSV}.$$

$$\overline{u}^{STS} := \overline{f(f(\overline{X}^{\mathbb{S}^{T}}, \overline{g(\overline{X}^{\mathbb{S}})}^{\mathbb{T}}), \overline{g(\overline{f(x,x)}^{\mathbb{S}})}^{\mathbb{T}})}^{\mathbb{S}}.$$

lacksquare Apply $\lambda, \mu^{\rm S}, \mu^{\rm T}$ to $\overline{u}^{\rm STS}$ until we reach TSV , TV or SV

Definition (c.f. rewrite category Kozen'19)

Functor rewriting system (FRS) (Σ, \mathcal{R}) consist of

- ▶ $\Sigma := \{F_i \mid i \in I\}$, set of functors
- ▶ $\mathcal{R} := \{\alpha_j : w_j \to w_j' \mid w_j, w_j' \in \Sigma^*, j \in J\}$, set of natural transformations

We define: $\mathcal{R}^{sep} = (\Sigma, R)$, where

- $\triangleright \Sigma := \{S, T\}$
- $ightharpoonup R := \{\lambda : ST \to TS, \ \mu^S : SS \to S, \ \mu^T : TT \to T\}$

Properties of FRS

Definition Local Confluence-commuting (WCRO) Confluence-commuting (CRO)

Properties of FRS

Definition

Local Confluence-commuting (WCR)

Confluence-commuting (CR ♂)

Lemma (FRS Newman's Lemma)

 $SN \land WCR \circlearrowleft \Longrightarrow CR \circlearrowleft$

Lemma (FRS Critical Pair's Lemma)

WCR $\circlearrowleft \iff$ all critical pairs converge with a commuting diagram.

Properties of \mathcal{R}^{sep}

Lemma

$$\mathcal{R}^{sep} = (\{S, T\}, \{\lambda, \mu^S, \mu^T\})$$
 is SN and CR \circlearrowleft .

Proof.

■ SN: polynomial interpretation over \mathbb{N} . [S](x) := 2x + 1, [T](x) := x + 1

$$[[ST]](x) = 2x + 3 > 2x + 2 = [[TS]](x),$$

 $[[SS]](x) = 4x + 3 > 2x + 1 = [[S]](x),$
 $[[TT]](x) = x + 2 > x + 1 = [[T]](x).$

■ WCR⊘: exactly 4 critical pairs:

Consequences of $\mathcal{R}^{\textit{sep}}$ being SN and CR \circlearrowleft

For \mathbb{U}^{λ} -term u, define sep(u) separated and $u =_{\mathbb{U}^{\lambda}} sep(u)$, thanks to:

- Unique normal form (TS, S or T)
- Any paths to normal form are equal.

Lemma

Every \mathbb{U}^{λ} -term can be separated. \checkmark

Finishing the proof

Lemma

Any two separated terms equal in \mathbb{U}^{λ} are equal modulo (S, T).

Sketch of proof.

Induction on proof-tree.

Each u = u', we prove sep(u), sep(u') are equal modulo (\mathbb{S}, \mathbb{T})

$$\frac{(s,t) \in E_{\mathbb{S}}}{s=t} \text{ Ax.} \qquad \text{E.g. } \overline{\text{sep(s_1)}^{\mathbb{S}}} = \overline{s_1}^{\mathbb{S}} = \overline{s_2}^{\mathbb{S}} = \overline{\text{sep(s_2)}}^{\mathbb{S}}$$

$$\frac{u}{u=u} \text{ Refl.} \qquad \overline{\text{sep(u)}}^{\mathsf{TS}} = \overline{\text{sep(u)}}^{\mathsf{TS}}$$

$$\frac{u_1 = u_2}{u_2 = u_1} \text{ Sym.} \qquad \text{IH = goal}$$

Sketch of proof continued.

$$\frac{u_1 = u_2 \qquad u_2 = u_3}{u_1 = u_3} \quad \text{Trans.} \qquad \overline{\text{sep}(u_1)}^{\text{TS}} = \overline{\text{sep}(u_2)}^{\text{TS}} = \overline{\text{sep}(u_3)}^{\text{TS}}$$

$$\frac{\text{E.g. when op } \in \Sigma_{\mathbb{T}}:}{\overline{\text{sep}(\text{op}(u_1, \dots, u_n))}^{\text{TS}}} = \mu^{\text{TS}} \left(\overline{\text{op}(t_1[s_1], \dots, t_n[s_n])}^{\text{TTS}} \right)$$

$$= \mu^{\text{TS}} \left(\overline{\text{op}(t_1[s_1], \dots, t_n[s_n])}^{\text{TS}} \right)$$

$$= \overline{\text{sep}(\text{op}(u_1, \dots, u_n))}^{\text{TS}}$$

$$= \mu^{\text{TS}} \left(\overline{\text{op}(t_1[s_1], \dots, t_n[s_n])}^{\text{TS}} \right)$$

$$= \overline{\text{sep}(\text{op}(u_1, \dots, u_n))}^{\text{TS}}$$

$$= \overline{\text{sep}(\text{op}(u_1, \dots, u_n)}^{\text{TS}}$$

$$= \overline{\text{sep}(\text{op}(u_1, \dots, u_n)}^{\text{TS}})}^{\text{TS}}$$

$$= \overline{\text{sep}(\text{op}(u_1, \dots, u_n)}^{\text{TS}}$$

$$= \overline{\text{sep}(\text{op}(u_1, \dots, u_$$

Theorem (Zwart'20)

The monad $T \circ_{\lambda} S$ is presented by \mathbb{U}^{λ} .

Proof updated.

Shortcut **EM**(TS) \cong_{conc} Alg(λ).

 λ -algebras are triples (X, σ, τ) , such that

- \blacksquare (X, σ) is an S-algebra
- \blacksquare (X, τ) is a T-algebra

 λ -algebra morphisms are $f: X \to Y$ such that

- $f: (X, \sigma_X) \to (Y, \sigma_Y)$ is S-algebra morphism.
- $f: (X, \tau_X) \to (Y, \tau_Y)$ is *T*-algebra morphisms.

$$\begin{array}{ccc}
STX & \xrightarrow{\lambda} & TSX \\
s_{\tau} \downarrow & & \downarrow^{T_{\sigma}} \\
SX & & TX & \Box
\end{array}$$

Axiomatisation \mathbb{U}^λ

Axiomatisation example

Main theorem requires E_{λ} to contain all distributivity equations.

Example (Ring) $\lambda : \mathsf{Mon} \cdot \mathsf{AbGrp} \Rightarrow \mathsf{AbGrp} \cdot \mathsf{Mon}$ $x = x \qquad (x+y)z = xz + yz \qquad x \cdot 0 = 0 \qquad (-x)y = -(xy)$ $x = x+0 \qquad x(y+z) = xy + xz \qquad 0 \cdot x = 0 \qquad x(-y) = -(xy)$ $x = 0+x \quad (x+y)(z+w) = xz + xw + yz + yw \quad 0 \cdot x = 0+0 \quad (-x)(-y) = xy$ $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$

Goal: Find minimal axiomatisation ⇒ general tools

Definition

ST-layers of term $s[t_x/x] \in \Sigma_{\mathbb{S}}^* \Sigma_{\mathbb{T}}^* \mathcal{V}$, are pair $(m, n) \in \mathbb{N}^2$

$$\begin{cases} m := \operatorname{depth}(s) \\ n := \max\{\operatorname{depth}(t_x) \mid x \in \operatorname{var}(s)\} \end{cases}$$
 (const. depth 1)

Example (Ring, S = Mon, \mathbb{T} = AbGrp)

ST-Layers	(0,0)	(0,1)	(1, 0)	(1, 1)	(0,2)
Examples	X	0	1	x · 0	x + 0
	У	x + y	$x \cdot y$	$(x+y)\cdot(y+z)$	(x+y)+z

Lemmas

Lemma

For all $E' \subset E_{\lambda}$ such that for each $f^{(n)} \in \Sigma_{\mathbb{S}}$, $g^{(m)} \in \Sigma_{\mathbb{T}}$ and each $i \in \{1, ..., n\}$, E' contains one equation of the form l = r, where

- $I = f(x_1, \dots, x_{i-1}, q(\vec{v}), x_{i+1}, \dots, x_n)$
- $\blacksquare r \in \lambda_{\mathcal{V}}(\overline{l}^{ST}).$

If the TRS ($\Sigma_{\mathbb{T}^{\lambda}} = \Sigma_{\mathbb{S}} \uplus \Sigma_{\mathbb{T}}, E'$) is terminating (SN), then congruence by $E_{\mathbb{S}} \cup E_{\mathbb{T}} \cup E' = \text{congruence by } E_{\mathbb{S}} \cup E_{\mathbb{T}} \cup E_{\lambda}$.

Lemma

If R is a set rules of the form $s[t_x/x] \to t[s_y/y]$ such that

- \blacksquare s[t_x/x] has ST-layers (1, 1)
- \blacksquare t[s_v/y] has TS-layers (*,1)
- \blacksquare s_v is linear¹ in $Z = \{t_x \mid t_x \text{ is a variable}\},$

then R is terminating.

¹Linear in a TRS sense, i.e. variables appearing at most once.

Axiomatisation examples

Example

■ Ring from λ : Mon · AbGrp \rightarrow AbGrp · Mon.

$$(x + y)z = xz + yz$$
:

- ► RHS TS-layers (1,1) ✓
- ▶ linearity ✓

■ $\lambda : \mathcal{D}R \to R\mathcal{D}$ (distribution over reader): for each $p \in [0,1]$

$$f(x_1,\ldots,x_n)\oplus_p y=f(x_1\oplus_p y,\ldots,x_n\oplus_p y).$$

■ $\lambda : \mathcal{MD} \to \mathcal{DM}$ (multiset over distribution): for each $p \in [0,1]$

$$(x_1 \oplus_p x_2) \cdot y = (x_1 \cdot y) \oplus_p (x_2 \cdot y).$$

■ λ : Mon⁺Mon⁺ \rightarrow Mon⁺Mon⁺ (non-empty list over itself)

$$a*(b*c) = a*b$$
$$(a*b)*c = a*c.$$

Counterexample

Note: $E' \subseteq E_{\lambda}$ not terminating \implies conclusion not guaranteed.

Example (Famous $ab \rightarrow bbaa$ TRS example)

Define two theories and a distributive law:

$$\begin{cases} \Sigma_{\mathbb{S}} := \{a^{(1)}\} & \frac{\lambda \colon ST\mathcal{V}}{a^n \overline{b^m x}^{\mathbb{T}^S}} \to \frac{TS\mathcal{V}}{b^2 \overline{a^2 x}^{\mathbb{S}^T}}, & \text{for } n, m \in \{1, 2\} \\ E_{\mathbb{S}} := \{aaa = aa\} & \overline{a^n \overline{x}^{\mathbb{S}^S}} \mapsto \overline{a^n \overline{x}^{\mathbb{S}^T}}, & \text{for } n \in \{1, 2\} \end{cases}$$

$$\begin{cases} \Sigma_{\mathbb{T}} := \{b^{(1)}\} & \overline{b^n x}^{\mathbb{T}^S} \mapsto \overline{b^n \overline{x}^{\mathbb{S}^T}}, & \text{for } n \in \{1, 2\} \end{cases}$$

$$E_{\mathbb{T}} := \{bbb = bb\} & \overline{x}^{\mathbb{T}^S} \mapsto \overline{x}^{\mathbb{S}^T}$$

However $E' = \{ab = b^2a^2\}$ cannot derive $(aab, bbaa) \in E_{\lambda}$.

$$a\underline{ab} =_{E'} \underline{ab}baa =_{E'} bba\underline{ab}aa =_{E'} bbabb\underline{aaaa} =_{E_{\mathbb{S}}} bb\underline{ab}baa =_{E'} \underline{bbbb}aabaa =_{E_{\mathbb{T}}} bbaabaa =_{E'} \dots (loop)$$

Conclusion

Conclusion

Contribution:

- Proved constructively: Distributive Laws ⇔ Composite Theories. More than the result: it's the proof strategy.
- Gave criteria for minimal axiomatisation $E' \subset E_{\lambda}$.

Future work:

- More TRS criteria for $E' \subseteq E_{\lambda}$ termination.
- Extend correspondence further:
 - ▶ non-finitary monads
 - ▶ change base category Set
 - ▶ weak composite theories?
 - multi-sorted distributive laws?