

INSTITUTE OF TECHNOLOGY - TRALEE

SUMMER EXAMINATIONS AY 2012 - 2013

Computer Architecture

COMP61003 CRN 43828

External Examiner: Mr. Michael Godley
Internal Examiner: Ms. Mairead O'Sullivan

Duration of Exam: 2 hours

Instructions to Candidates: Answer any three questions.

Question One (33 Marks)

- (i) Convert the binary number 10111100 to its decimal **and** hexadecimal equivalent. (8 Marks)
- (ii) Show the logic symbol **and** the truth table for: (8 Marks)
 - (i) NAND gate (2 input) (ii) XOR gate
- (iii) Complete the truth table for the expression below: (9 Marks)

$$Z = \overline{A}(B \oplus C) + (\overline{C + D})$$

(iv) Draw the circuit for the expression below: (8 Marks)

$$Z = A\overline{C} + \overline{B \oplus D}$$

Question Two (33 Marks)

(i) Write an expression for the circuit given in *Figure 1*:

Figure 1 (9 Marks)

(ii) A minority function of three inputs is TRUE when two or more inputs are FALSE.

Use A, B, C as the inputs and let the result be M

- (a) Do the truth table for M
- (b) Write the Equation for M and simplify
- (c) Draw the circuit in its most simplified form.

(12 *Marks*)

(iii) Write an expression for Z below. Simplify the expression if possible and draw the circuit.

(12 *Marks*)

A	В	С	Z
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Page 2 of 4

Question Three (33 Marks)

(i) Show the truth table for the Full-Adder. Hence or otherwise, write the equation for the Full-Adder and show the logic circuits required to implement it.

(12 *Marks*)

(ii) Demonstrate how a Full-Adder can be composed from two half adders and some additional logic. Use a diagram to support your answer.

(10 Marks)

(iii) Write a short note on Random Access Memory (RAM), discussing Static-RAM and Dynamic-RAM and highlighting the differences between them. How does ROM differ from RAM?

(11 *Marks*)

Question Four (33 Marks)

(i) Name the buses associated with a CPU. Explain the function and direction of each bus.

(12 *Marks*)

(ii) Write a note on the *Instruction Cycle* of the CPU.

(12 *Marks*)

(iii) Show how four flip-flops can be connected to form a serial-in serial-out register. Show how 1100 would be loaded and read from such a register.

(11 Marks)

Rules of Boolean Algebra

1	A + O = A
2	A + 1 = 1
	A . O = O
	A . 1 = A
	A + A = A
	A + A = 1
	A . A = A
	A . A = O
	$\overline{A} = A$
10	A + AB = A
11	A + AB = A + B
12	(A + B)(A + C) = A + BC

Laws of Boolean Algebra

Commutative	A + B = B + A AB = BA
Associative	A + (B + C) = (A + B) + C A(BC) = (AB)C
Distributive	A(B + C) = AB + AC