Soccer Analytics with Two Pieces of Paper and a Pencil

Michael A. Rutter, Ph.D.

Associate Professor of Statistics Associate Director, School of Science Penn State Behrend

JSM 2019 (7/31/19)

Alternative Titles

- "What Happens When a Statistician is Asked to do Statistics for a Varsity Soccer Team"
- "Please Stop Shooting From There"

Introduction Shot Percentages Expected Goals Conclusion

- Located in NE Erie County in NW Pennsylvania
- 10 wins, 8 losses, and 2 ties in 2018
- Region 4 co-champions, Lost in District 10 2A semi-finals
- Budget for statistics: \$0

- Located in NE Erie County in NW Pennsylvania
- 10 wins, 8 losses, and 2 ties in 2018
- Region 4 co-champions, Lost in District 10 2A semi-finals
- Budget for statistics: \$0

- Located in NE Erie County in NW Pennsylvania
- 10 wins, 8 losses, and 2 ties in 2018
- Region 4 co-champions, Lost in District 10 2A semi-finals
- Budget for statistics: \$0

- Located in NE Erie County in NW Pennsylvania
- 10 wins, 8 losses, and 2 ties in 2018
- Region 4 co-champions, Lost in District 10 2A semi-finals
- Budget for statistics: \$0

Typical Soccer Statistics

DATE		TIME										GΑ	ME CARI	D STATS
REFEREE		AR1		_	AR2		_		номе	AWAY	FIELD			
	OURTEAL	м											OPPONENT	
\$\text{SHOTS ON GOAL}\$ 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 10TAL	, PLE	FER NAME	SHOTS GOALS	ASSISTS O	FK CX PK F	O YC RC		,	PLAYER NAME	SHOTS G	DALS ASSISTS C	OFIX CX	PK F O YC RC	SHOTS ON GOAL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 10TAL
GK SAVES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 10TAL														GR SW15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 TOTAL
0 IRECT KOCKS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 10 TAL	TEA	M TOTAL							TEAM TOTAL					1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
INDIRECT KICKS 1 2 3 4 5 6 7 8 9 10 11 12	# GO#	ALKEEPER	SHOTS AT GOAL	SAVES	GOALS IN FO	OULS YC RC		,	GOALKEEPER	SHOTS AT C	VOAL SAVES	GOALS	N FOULS YC RC	INDIRECT IXXXS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
13 14 15 16 17 18 19 20 21 22 23 24 TOTAL	TEAM OURS	1ST HALF	SCORESUMM 2ND HALF		SHOOT OUT	FINAL		DFK CK PK	DIRECT FREE KICK CORNER KICK PENALTY KICK	F 0	CFFSIDE	YC RC	YELLOW CARD RED CARD	13 14 15 16 17 18 19 20 21 22 23 24 TOTAL

https://www.brantwojack.com

My Version

My Version

- Digitized each shot recorded for season
- Labeled "Miss" or "Goal", team, and game number
- Did not distinguish type of shot (header, etc.)
- Used "WebPlotDigitizer" (https: //automeris.io/WebPlotDigitizer)
- Manipulated data using R (github: marutter/NEsoccer)

- Digitized each shot recorded for season
- Labeled "Miss" or "Goal", team, and game number
- Did not distinguish type of shot (header, etc.)
- Used "WebPlotDigitizer" (https: //automeris.io/WebPlotDigitizer)
- Manipulated data using R (github: marutter/NEsoccer)

- Digitized each shot recorded for season
- Labeled "Miss" or "Goal", team, and game number
- Did not distinguish type of shot (header, etc.)
- Used "WebPlotDigitizer" (https: //automeris.io/WebPlotDigitizer)
- Manipulated data using R (github: marutter/NEsoccer)

- Digitized each shot recorded for season
- Labeled "Miss" or "Goal", team, and game number
- Did not distinguish type of shot (header, etc.)
- Used "WebPlotDigitizer" (https: //automeris.io/WebPlotDigitizer)
- Manipulated data using R (github: marutter/NEsoccer)

- Digitized each shot recorded for season
- Labeled "Miss" or "Goal", team, and game number
- Did not distinguish type of shot (header, etc.)
- Used "WebPlotDigitizer" (https: //automeris.io/WebPlotDigitizer)
- Manipulated data using R (github: marutter/NEsoccer)

All Shots Recorded

- Of 680 shots, 101 were goals (14.9% success rate)
- This ignores location
- Divide the pitch into six zones
- First introduced by Jacob Beckett
 (@jacobbeckett22) on the "American Soccer Analysis" blog

- Of 680 shots, 101 were goals (14.9% success rate)
- This ignores location
- Divide the pitch into six zones
- First introduced by Jacob Beckett
 (@jacobbeckett22) on the "American Soccer Analysis" blog

- Of 680 shots, 101 were goals (14.9% success rate)
- This ignores location
- Divide the pitch into six zones
- First introduced by Jacob Beckett
 (@jacobbeckett22) on the "American Soccer
 Analysis" blog

- Of 680 shots, 101 were goals (14.9% success rate)
- This ignores location
- Divide the pitch into six zones
- First introduced by Jacob Beckett (@jacobbeckett22) on the "American Soccer Analysis" blog

Introduction Shot Percentages Expected Goals Conclusion

Scoring Zones

Percentages by Scoring Area

Zone	Goals	Misses	Goal %	MLS Goal %
1	22	21	51.2%	31.1%
2	42	128	24.7%	17.7%
3	27	154	14.9%	7.1%
4	7	136	4.9%	5.3%
5	3	95	3.1%	2.3%
6	0	45	0.0%	3.5%

- This data set is much smaller than the MLS data set (680 vs. 8335 shots)
- Results are correlated based on the team
- Estimated the probability of a goal using a mixed logistic model
- All shots by the same team in the same game were assumed correlated

- This data set is much smaller than the MLS data set (680 vs. 8335 shots)
- Results are correlated based on the team
- Estimated the probability of a goal using a mixed logistic model
- All shots by the same team in the same game were assumed correlated

- This data set is much smaller than the MLS data set (680 vs. 8335 shots)
- Results are correlated based on the team
- Estimated the probability of a goal using a mixed logistic model
- All shots by the same team in the same game were assumed correlated

- This data set is much smaller than the MLS data set (680 vs. 8335 shots)
- Results are correlated based on the team
- Estimated the probability of a goal using a mixed logistic model
- All shots by the same team in the same game were assumed correlated

Updated Percentages

Zone	Goals	Misses	Goal %	Mixed Goal %
1	22	21	51.2%	54.0%
2	42	128	24.7%	24.9%
3	27	154	14.9%	15.1%
4	7	136	4.9%	5.0%
5	3	95	3.1%	3.0%
6	0	45	0.0%	0.0%

- Especially for high school soccer teams, shots attempted may not be a good metric of the quality of offensive play
- Ten shots from zones five and six are not the same as ten shots from zones one and two
- Given the number of shots per zone, the expected goals can be calculated
- $\bullet E_g = \sum_{z=1}^6 p_z n_z$

- Especially for high school soccer teams, shots attempted may not be a good metric of the quality of offensive play
- Ten shots from zones five and six are not the same as ten shots from zones one and two
- Given the number of shots per zone, the expected goals can be calculated
- $\bullet E_g = \sum_{z=1}^6 p_z n_z$

- Especially for high school soccer teams, shots attempted may not be a good metric of the quality of offensive play
- Ten shots from zones five and six are not the same as ten shots from zones one and two
- Given the number of shots per zone, the expected goals can be calculated
- $\bullet E_g = \sum_{z=1}^6 p_z n_z$

- Especially for high school soccer teams, shots attempted may not be a good metric of the quality of offensive play
- Ten shots from zones five and six are not the same as ten shots from zones one and two
- Given the number of shots per zone, the expected goals can be calculated
- $\bullet E_g = \sum_{z=1}^6 p_z n_z$

Game vs. Conneaut, Ohio

- $E_G = 4.5$ (from 36 shots)
- Actual score: 2-2 (Conneaut had 6 shots)

Game vs. Conneaut, Ohio

- $E_G = 4.5$ (from 36 shots)
- Actual score: 2-2 (Conneaut had 6 shots)

Game vs. Titusville

- $E_G = 4.2$ (from 18 shots)
- Actual score: 4-3 (Tittusville had $E_G = 1.7$)

Game vs. Titusville

- $E_G = 4.2$ (from 18 shots)
- Actual score: 4-3 (Tittusville had $E_G = 1.7$)

- As in professional soccer, all shots in high school soccer are not the same quality
- High school players suffer from "selection bias" in terms of long distance shots due to highlight packages
- Expected goals based on zones useful data for both strategy discussions and post-game analysis
- Data set is small, but this shows usefulness of data collected by hand
- Questions?

- As in professional soccer, all shots in high school soccer are not the same quality
- High school players suffer from "selection bias" in terms of long distance shots due to highlight packages
- Expected goals based on zones useful data for both strategy discussions and post-game analysis
- Data set is small, but this shows usefulness of data collected by hand
- Questions?

- As in professional soccer, all shots in high school soccer are not the same quality
- High school players suffer from "selection bias" in terms of long distance shots due to highlight packages
- Expected goals based on zones useful data for both strategy discussions and post-game analysis
- Data set is small, but this shows usefulness of data collected by hand
- Questions?

- As in professional soccer, all shots in high school soccer are not the same quality
- High school players suffer from "selection bias" in terms of long distance shots due to highlight packages
- Expected goals based on zones useful data for both strategy discussions and post-game analysis
- Data set is small, but this shows usefulness of data collected by hand
- Questions?

- As in professional soccer, all shots in high school soccer are not the same quality
- High school players suffer from "selection bias" in terms of long distance shots due to highlight packages
- Expected goals based on zones useful data for both strategy discussions and post-game analysis
- Data set is small, but this shows usefulness of data collected by hand
- Questions?