ЗНАКОПОСТОЯННЫЕ РЯДЫ $\sum_{n=1}^{\infty} a_n$.

Необходимый признак сходимости:

Eсли ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n = 0$.

<u>Следствие</u>: $E c \pi u \lim_{n \to \infty} a_n \neq 0$, то ряд расх-ся.

Достаточные признаки сходимости:

1. Признак сравнения.

Eсли для членов рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ справедливо

неравенство $a_n \leq b_n$, то

1) если
$$\sum_{n=1}^{\infty} b_n$$
 сх-ся, значит и $\sum_{n=1}^{\infty} a_n$ сх-ся;

2) если
$$\sum_{n=1}^{\infty} a_n$$
 расх-ся, значит и $\sum_{n=1}^{\infty} b_n$ расх.

2. Предельный признак сравнения.

Eсли для членов рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ существует

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$
, $L \neq 0, L \neq \infty$, то ряды $\sum_{n=1}^{\infty} a_n$ и

 $\sum_{n=1}^{\infty} b_n$ сх-ся или расх-ся одновременно.

3. Признак Д`Аламбера

Пусть для ряда $\sum\limits_{n=1}^{\infty}a_{n}$ существует предел

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=k. To \partial a:$$

- 1) если k<1, то ряд сходится;
- 2) если k>1, то ряд расходится;
- 3) если k=1-?.

4. Признак Коши

Пусть для ряда $\sum_{n=1}^{\infty} a_n$ существует предел

$$\lim_{n\to\infty} \sqrt[n]{a_n} = k \cdot To \partial a$$
:

- 1) если к<1, то ряд сходится;
- 2) если k>1, то ряд расходится;
- 3) если k=1-?.

5. Интегральный признак Коши

Eсли члены ряда $\sum_{n=1}^{\infty} a_n$ имеют вид $a_n = f(n)$, где

f(n) – интегрируемая на промежутке [1;+ ∞)

функция, то ряд $\sum_{n=1}^{\infty} a_n$ и несобственный интеграл

$$\int_{1}^{+\infty} f(x)dx \, cx$$
-ся или расх-ся одновременно.

Основные ряды, выбираемые для сравнения:

I. $\underline{\Gamma ap M o H u u e c \kappa u u p n d} \sum_{n=1}^{\infty} \frac{1}{n} - \underline{pac x o d u m c n}$

Ia.
$$\underline{P}$$
яд $\underline{\mathcal{I}}$ ирихле $\sum_{n=1}^{\infty} \frac{1}{n^p}$.

Он сх-ся при p>1 и расх-ся при $p \le 1$.

II. <u>Геометрическая прогрессия</u> $\sum_{n=1}^{\infty} q^n$.

Он сх-ся при q<1 и расх-ся при q ≥ 1.

ЗНАКОЧЕРЕДУЮЩИЕСЯ РЯДЫ $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$.

- сходится абсолютно;
- сходится условно;
- расходится.

Признак Лейбница

Если все члены знакочередующегося ряда

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$
 удовлетворяют условиям:

- $I) \lim_{n\to\infty} a_n = 0;$
- 2) $a_1 \ge a_2 \ge a_3 \ge \dots$

то ряд $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ сходится.

Разложения в ряд Маклорена

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}, -\infty < x < +\infty;$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

 $-\infty < x < +\infty$;

3.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

 $-\infty < x < +\infty$

4.
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n, -1 < x < 1;$$

5.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
,

 $-1 < x \le 1$;

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \cdots,$$

 $-1 \le x \le 1$;

7.
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)}$$
,

$$-1 < x < 1$$

ЗНАКОПОСТОЯННЫЕ РЯДЫ $\sum_{n=1}^{\infty} a_n$.

Необходимый признак сходимости:

Eсли ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n\to\infty} a_n = 0$.

<u>Следствие</u>: $Ecnu \lim_{n\to\infty} a_n \neq 0$, то ряд расх-ся.

Достаточные признаки сходимости:

5. Признак сравнения.

Eсли для членов рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ справедливо

неравенство $a_n \leq b_n$, то

1) если
$$\sum_{n=1}^{\infty} b_n$$
 сх-ся, значит и $\sum_{n=1}^{\infty} a_n$ сх-ся;

2) если
$$\sum_{n=1}^{\infty} a_n$$
 расх-ся, значит и $\sum_{n=1}^{\infty} b_n$ расх.

6. Предельный признак сравнения.

Eсли для членов рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ существует

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$
, $L \neq 0, L \neq \infty$, то ряды $\sum_{n=1}^{\infty} a_n$ и

 $\sum_{n=1}^{\infty} b_n$ сх-ся или расх-ся одновременно.

7. Признак Д Аламбера

Пусть для ряда $\sum\limits_{n=1}^{\infty}a_{n}$ существует предел

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=k. To \partial a:$$

- 4) если k<1, то ряд сходится;
- 5) если k>1, то ряд расходится;
- 6) если k=1-?.

8. Признак Коши

Пусть для ряда $\sum_{n=1}^{\infty} a_n$ существует предел

$$\lim_{n \to \infty} \sqrt[n]{a_n} = k \cdot Tor\partial a$$

- 1) если к<1, то ряд сходится;
- 2) если k>1, то ряд расходится;
- 3) если k=1-?.

5. Интегральный признак Коши

Eсли члены ряда $\sum_{n=1}^{\infty} a_n$ имеют вид $a_n = f(n)$, где

f(n) – интегрируемая на промежутке [1;+ ∞)

функция, то ряд $\sum_{n=1}^{\infty} a_n$ и несобственный интеграл

 $\int_{-\infty}^{+\infty} f(x)dx \, cx\text{-}cя \, uли \, pacx\text{-}cя \, oдновременно.$

Основные ряды, выбираемые для сравнения:

I. $\underline{\Gamma ap M o H u u e c \kappa u u p n d} \sum_{n=1}^{\infty} \frac{1}{n} - \underline{pac x o d u m c n}$

Ia.
$$\underline{P}$$
яд $\underline{\mathcal{I}}$ ирихле $\sum_{n=1}^{\infty} \frac{1}{n^p}$.

Он сх-ся при p>1 и расх-ся при $p \le 1$.

II. <u>Геометрическая прогрессия</u> $\sum_{n=1}^{\infty} q^n$.

Он сх-ся при q<1 и расх-ся при q ≥ 1.

ЗНАКОЧЕРЕДУЮЩИЕСЯ РЯДЫ $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$.

- сходится абсолютно;
- сходится условно;
- расходится.

Признак Лейбница

Если все члены знакочередующегося ряда

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$
 удовлетворяют условиям:

- $1) \lim_{n\to\infty} a_n = 0;$
- 2) $a_1 \ge a_2 \ge a_3 \ge \dots$

то ряд $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ сходится.

Разложения в ряд Маклорена

1.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}, -\infty < x < +\infty;$$

2.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

 $-\infty < x < +\infty$;

3.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

4.
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n, -1 < x < 1;$$

5.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
,

 $-1 < x \le 1$:

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \frac{m(m-1)(m-2)}{3!}x^3 + \cdots,$$

-1 \le x \le 1;

7.
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)}$$
,

$$-1 < x < 1$$