Trabalho - Modelo de Pequenos Sinais

Prof. Tiago Oliveira Weber

2017

1 Objetivos

1.1 Objetivo Geral

• Compreender a criação e utilização do modelo de pequenos sinais para análise de circuito do tipo fonte comum;

1.2 Objetivos Parciais

- Fazer simulações para obter a curva Id-V_{GS} do transistor;
- Estudar o circuito do tipo fonte comum;
- Obter a transcondutância (gm) do transistor para um determinado ponto de operação;
- Obter a resistência de saída (r_o) do transistor para um determinado ponto de operação;
- Desenhar o modelo de pequenos sinais do circuito;
- Calcular e simular o ganho do circuito;
- Comparar resultados obtidos por cálculo manual e obtidos com simulador elétrico;
- Estudar os efeitos de variações dos parâmetros no ganho;

2 Descrição

O modelo de transistor utilizado para este trabalho é o modelo N_1u (modelo de canal longo) e está disponível em www.cmosedu.com (arquivo $cmosedu_models.txt$). Este trabalho envolverá o uso do simulador elétrico LTspice ou qualquer outro que seja capaz de trabalhar com o modelo utilizado. Para as análises, considere o circuito do tipo fonte comum (mostrado na figura a seguir).

A fonte de tensão entre a porta e a fonte em c.c. é chamada $V_{\rm GS}$ e a fonte de pequenos sinais entre a porta e a fonte é chamada $v_{\rm gs}$. Para nossos testes, considere:

- $V_{DD} = 5V;$
- $R_D = 10 \text{k } \Omega;$
- $\bullet \ v_{gs}$ seja descrita por uma função seno com offset = 0 e frequência de 1kHz.

2.1 Parte 1

A primeira análise a ser feita é do tipo "DC Sweep". Considere que:

- \bullet a fonte v_{gs} tenha amplitude zero
- O transistor tenha comprimento L (length) igual a 1,5 μm e largura W (width) igual a 3 μm .
- V_{GS} varie de 0 até 5V

Os resultados a serem obtidos são:

- gráfico da curva Id por V_{GS} para a varredura de V_{GS} simulada.
- gráfico da curva V_{out} por V_{GS} para a varredura de V_{GS} simulada.

Descreva o que está acontecendo em cada região do gráfico, identificando as regiões de operação do transistor.

2.2 Parte 2

Gere a curva de transcondutância (gm) do transistor em função da variação de V_{GS} .

Observação: para plotar a derivada de um sinal no LTSPICE em função da análise sendo realizada, plot o sinal de interesse, clique com o segundo botão do mouse e edite sua função para "d $(NOME_DO_SINAL)$ ". Exemplo: d(Id(M1)) para mostrar a derivada da corrente de dreno de um transistor M1.

Analise:

- Para qual V_{GS} há a maior transcondutância?
- Analisando a fórmula da transcondutância para região de saturação, isso condiz com a simulação?

2.3 Parte 3

Repita as partes 1 e 2 utilizando utilizando um valor modificado da largura do canal (W) do transistor. O valor W (em micrometros) será igual aos dois últimos dígitos de sua matrícula divididos por 10, desde que este valor seja maior que $3.5 \ \mu m$. Caso seja menor, utilize $3.5 \ \mu m$.

2.4 Parte 4

Faça uma curva Id por V_{DS} do transistor com as dimensões da parte 3 do trabalho e calcule a resistência incremental entre Dreno e Fonte do transistor. Utilize o V_{GS} simulado em que há a transcondutância máxima (encontrado na parte 3). Considere pontos em que o transistor esteja na região de saturação. Considere esta resistência de saída incremental como sendo $\frac{\Delta V_{DS}}{\Delta I_{DS}}$.

2.5 Parte 5

Discuta o que é o modelo de pequenos sinais, sua utilidade e como ele é elaborado. Após, desenhe o modelo de pequenos sinais para o circuito da

parte 3. Considerando que a polarização do transistor é feita utilizando o V_{GS} onde há maior transcondutância (encontrado anteriormente), substitua no modelo os valores de gm e r_o previamente encontrados (passos 3 e 4).

 Analisando o circuito em pequenos sinais, defina a fórmula do ganho e qual será seu valor;

2.6 Parte 6

Considere que a tensão de saída total é chamada de V_{out} e que seja composta de uma parte DC (aqui chamada V_{OUT}) e uma parte AC (aqui chamada v_{out}). Utilizando o mesmo ponto de operação da parte 5, faça a fonte senoidal v_{gs} ter uma amplitude de 50 mV e mostre o gráfico da saída v_{out} (apenas a parte alternada de V_{out}). Qual é o ganho encontrado para pequenos sinais? Discuta os resultados.

O que ocorrerá se v_{gs} tiver uma amplitude de 500 mV? Mostre os resultados e discuta.

2.7 Parte 7

A partir dos resultados obtidos na parte 6 do trabalho, avalie o efeito no ganho ao variar os parâmetros descritos na tabela a seguir. Considere que os campos da tabela que tem "P6", devem ser preenchidos com os mesmos valores utilizados na parte 6 do trabalho. Os valores que dizem uma porcentagem são relativos aos valores da parte 6 do trabalho. Discuta os resultados avaliando o impacto da alteração de cada parâmetro no ganho. Considere v_{qs} com uma amplitude de 50 mV.

W	L	R_{D}	V_{GS}	Ganho
P6	P6	P6	P6	
10% maior	P6	P6	P6	
10% menor	P6	P6	P6	
P6	10% maior	P6	P6	
P6	10% menor	P6	P6	
P6	P6	10% maior	P6	
P6	P6	10% menor	P6	
P6	P6	P6	20% maior	
P6	P6	P6	20% menor	