E2-212 MATRIX THEORY: ASSIGNMENT 6

Question 1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $U \subseteq \mathbb{C}^n$ be an \mathbf{A} -invariant subspace, i.e., $\mathbf{A}\mathbf{x} \in U \ \forall \mathbf{x} \in U$.

- (a) Prove that there exists a vector $\mathbf{u} \in U$ and $\lambda \in \mathbb{C}$ such that $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$. (4 points)
- (b) Let $\mathbf{0} \neq \mathbf{x} \in \mathbb{C}^n$ and k be the smallest integer such that $\{\mathbf{x}, \mathbf{A}\mathbf{x}, \dots, \mathbf{A}^k\mathbf{x}\}$ is a dependent set. Prove that $V = \text{span}\{\mathbf{x}, \mathbf{A}\mathbf{x}, \dots, \mathbf{A}^{k-1}\mathbf{x}\}$ is \mathbf{A} -invariant. (2 points)

Question 2. For $\mathbf{C} \in \mathbb{C}^{n \times n}$, prove that $\det(\exp(\mathbf{C})) = \exp(\operatorname{Tr}(\mathbf{C}))$. (4 points)