Inverses

Any square matrix $\overrightarrow{A}_{n\times n}$ is **invertible** if $\exists \overrightarrow{C}_{n\times n} \ni \overrightarrow{C}\overrightarrow{A} = \overrightarrow{A}\overrightarrow{C} = \overrightarrow{I}_n$. If such a matrix \overrightarrow{C} does exist, it is called the **inverse** of \overrightarrow{A} , and can be expressed as \overrightarrow{A}^{-1} .

Theorem: Given a square matrix $\overrightarrow{A}_{n\times n}$, if \overrightarrow{A}^{-1} exists it is unique.

Proof. Assume \vec{B} and \vec{C} are both inverses of \vec{A} . Then, $\vec{B} = \vec{B}\vec{I} = \vec{B}(\vec{A}\vec{C}) = (\vec{B}\vec{A})\vec{C} = \vec{I}\vec{C} = \vec{C}$. Therefore, \vec{A} cannot have two distinct inverses.

It is trivial to show that for any 2×2 matrix $\overrightarrow{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \ \forall \ a,b,c,d \ni ad \neq bc$, $\overrightarrow{M}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. The number ad-bc is called the **determinant** of \overrightarrow{M} , written as $det(\overrightarrow{M})$ or $|\overrightarrow{M}|$.

Theorem: Given $\overrightarrow{A}_{n\times n}$, if \overrightarrow{A}^{-1} exists then the system $\overrightarrow{A}\overrightarrow{x}=\overrightarrow{b}$ always has a unique solution.

$$\overrightarrow{A} \overrightarrow{x} = \overrightarrow{b} \implies \overrightarrow{A}^{-1} \overrightarrow{A} \overrightarrow{x} = \overrightarrow{A}^{-1} \overrightarrow{b} \implies \overrightarrow{I} \overrightarrow{x} = \overrightarrow{A}^{-1} \overrightarrow{b} \implies \overrightarrow{x} = \overrightarrow{A}^{-1} \overrightarrow{a} \implies \overrightarrow{x} = \overrightarrow{A}^{-1} \overrightarrow{x} = \overrightarrow{A}^{-1} \overrightarrow{x} \Rightarrow \overrightarrow{x} = \overrightarrow{A}^{-1} \overrightarrow{x} \Rightarrow \overrightarrow{x} = \overrightarrow{x} = \overrightarrow{x} \Rightarrow \overrightarrow{x} \Rightarrow \overrightarrow{x} = \overrightarrow{x} \Rightarrow \overrightarrow{x$$

Properties of the inverse

- 1. If \overrightarrow{A} is invertible, then \overrightarrow{A}^{-1} is also invertible. In fact, $(\overrightarrow{A}^{-1})^{-1} = \overrightarrow{A}$.
- 2. If $\overrightarrow{A}_{n \times n}$, $\overrightarrow{B}_{n \times n}$ are invertible, then \overrightarrow{AB} is also invertible. In fact, $(\overrightarrow{AB})^{-1} = \overrightarrow{B}^{-1} \overrightarrow{A}^{-1}$.
- 3. If \overrightarrow{A} is invertible, then \overrightarrow{A}^T is also invertible: $(\overrightarrow{A}^T)^{-1} = (\overrightarrow{A}^{-1})^T$.

Proof. For the first property, if \overrightarrow{A} is invertible, $\overrightarrow{A}\overrightarrow{A}^{-1} = \overrightarrow{A}^{-1}\overrightarrow{A} = \overrightarrow{I}$, so \overrightarrow{A}^{-1} is invertible and \overrightarrow{A} is its inverse. Next, $(\overrightarrow{AB})(\overrightarrow{B}^{-1}\overrightarrow{A}^{-1}) = \overrightarrow{A}(\overrightarrow{BB}^{-1})\overrightarrow{A}^{-1} = \overrightarrow{A}\overrightarrow{I}\overrightarrow{A}^{-1} = \overrightarrow{I}$. By a similar process, $(\overrightarrow{B}^{-1}\overrightarrow{A}^{-1})(\overrightarrow{AB}) = \overrightarrow{I}$. Finally, to prove the third property [put this in]

If $\overrightarrow{A}_{n \times n}$ is invertible, then:

1. $\overrightarrow{A}\overrightarrow{x} = \overrightarrow{b}$ has unique solutions for all \overrightarrow{b} .

- 2. \overrightarrow{A} has pivots in all rows.
- 3. The reduced row echelon form of \vec{A} is \vec{I}_n .

Elementary row operations

In fact, elementary row operations can be modelled by matrix multiplication. This can be illustrated by using

$$\vec{E}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix}$$

$$\vec{E}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\vec{E}_3 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Given $\overrightarrow{A}_{3\times n}$, the product $\overrightarrow{E}_1\overrightarrow{A}$ is equivalent to replacing R_3 with R_3+kR_1 . $\overrightarrow{E}_2\overrightarrow{A}$ multiplies R_2 by a factor k, and finally $\overrightarrow{E}_3\overrightarrow{A}$ interchanges R_2 and R_1 . We know that elementary row operations are reversible, therefore \overrightarrow{E}_1 , \overrightarrow{E}_2 and \overrightarrow{E}_3 are all invertible. Now assume that there is some sequence of elementary row operations $\left\{\overrightarrow{E}_1, \overrightarrow{E}_2, \overrightarrow{E}_3, \cdots, \overrightarrow{E}_n\right\}$ that reduces \overrightarrow{A} to \overrightarrow{I} , the identity matrix. This can be expressed as:

$$\left(\prod_{i=0}^{n} \vec{E}_{i}\right) \vec{A} = \vec{I}$$

but we know that, by definition, $\overrightarrow{A}^{-1}\overrightarrow{A} = \overrightarrow{I}$. Therefore, we get the amazing inference that $\prod_{i=0}^n \overrightarrow{E}_i = \overrightarrow{A}^{-1}$! Also, wknow that, by the definition of the identity matrix \overrightarrow{I} , that $(\prod_{i=0}^n \overrightarrow{E}_i)\overrightarrow{I} = \prod_{i=0}^n \overrightarrow{E}_i = \overrightarrow{A}^{-1}$. Therefore, if we find out the set of row operations needed to reduce \overrightarrow{A} to \overrightarrow{I} , and apply them to \overrightarrow{I} , the result will be \overrightarrow{A}^{-1} ! Applying this fact, we get a straightforward way of finding out, for any matrix \overrightarrow{A} , whether it is invertible, and if it is, finding \overrightarrow{A}^{-1} : construct the augmented matrix $[\overrightarrow{A} \quad \overrightarrow{I}]$, and row reduce the left half that is \overrightarrow{A} . If the end result is \overrightarrow{I} , then the right half of the matrix will have transformed into \overrightarrow{A}^{-1} ; if the result is different then \overrightarrow{A} is not invertible.

To see this from another point of view, assume that for a matrix $\vec{A}_{n\times n}$ there exists \vec{A}^{-1} , where

$$\vec{A}^{-1} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

therefore, $\overrightarrow{A}\overrightarrow{A}^{-1} = \overrightarrow{I}$ can be written as

$$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \overrightarrow{A}\overrightarrow{x}_1 & \overrightarrow{A}\overrightarrow{x}_2 & \cdots & \overrightarrow{A}\overrightarrow{x}_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \overrightarrow{e}_1 & \overrightarrow{e}_2 & \cdots & \overrightarrow{e}_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

So, to find \vec{A}^{-1} we need to solve the linear systems $\vec{A} \vec{x}_i = \vec{e}_i \, \forall \, 0 < i \leq n$. This requires creating a set of augmented matrices $\{ [\overrightarrow{A} \quad \overrightarrow{e}_1], [\overrightarrow{A} \quad \overrightarrow{e}_2], \cdots, [\overrightarrow{A} \quad \overrightarrow{e}_n] \}$. This can be solved in one computation, simply by row reducing the following matrix:

$$[\overrightarrow{A} \quad \overrightarrow{e}_1 \quad \overrightarrow{e}_2 \quad \cdots \quad \overrightarrow{e}_n] = [\overrightarrow{A} \quad \overrightarrow{I}]$$

Is a matrix invertible?

A square matrix $\vec{A}_{n \times n}$ can be invertible (non-singular) or non-invertible (singular). For any $\overrightarrow{A}_{n\times n}$, all of the following statements are equivalent, that is, if one is true then all of them are true:

- 1. \vec{A} is invertible (non-singular).
- 2. \vec{A} is row equivalent to \vec{I} .
- 3. \vec{A} has *n* pivot positions.
- 4. $\overrightarrow{A}\overrightarrow{x} = \overrightarrow{0}$ has only the trivial solution.
- 5. The columns of \vec{A} are linearly independent.
- 6. $\overrightarrow{x} \mapsto \overrightarrow{A} \overrightarrow{x}$ is injective. 7. $\overrightarrow{A} \overrightarrow{x} = \overrightarrow{b}$ has solutions $\forall \overrightarrow{b} \in \mathbb{R}^n$.
- 8. $\vec{x} \mapsto \vec{A}\vec{x}$ is surjective.
- 9. The span of the columns of \overrightarrow{A} is \mathbb{R}^n .

 10. $\exists \overrightarrow{C}_{n \times n} \ni \overrightarrow{CA} = \overrightarrow{I}$.

 11. $\exists \overrightarrow{D}_{n \times n} \ni \overrightarrow{AD} = \overrightarrow{I}$.

 12. \overrightarrow{A}^T is invertible.

The concept of matrix inverses can be interpreted in the context of linear maps. Given a linear map $T: \mathbb{R}^m \to \mathbb{R}^n, \vec{x} \mapsto \vec{A}\vec{x}$, iff there exists a map $T: \mathbb{R}^n \to \vec{A}\vec{x}$ $\mathbb{R}^m \ni S \circ T = \overrightarrow{x} \ \forall \ \overrightarrow{x} \in \mathbb{R}^n, T \circ S = \overrightarrow{x} \ \forall \ \overrightarrow{x} \in \mathbb{R}^m, \text{ then } \overrightarrow{A} \text{ is invertible.}$ This is easy to show, as the inverse map to $T: \overrightarrow{x} \mapsto \overrightarrow{A} \overrightarrow{x} \text{ is } S: \overrightarrow{x} \mapsto \overrightarrow{A}^{-1} \overrightarrow{x}$, which exists iff \vec{A} is invertible.