# Lecture 8 Metric Learning and Siamese Nets

#### Learning Pairwise Similarity Scores

#### Reference:

- Bromley et al. Signature verification using a Siamese time delay neural network. In NIPS. 1994.
- Koch, Zemel, & Salakhutdinov. Siamese neural networks for one-shot image recognition. In ICML, 2015.

#### Training Set



**Positive Samples** 

#### **Positive Samples**



#### **Positive Samples**





#### **Positive Samples**





#### **Positive Samples**













#### **Positive Samples**

#### **Negative Samples**











1)





1)

#### **Positive Samples**

















#### **Positive Samples**

#### **Negative Samples**















1)





1)

#### **Positive Samples**

#### **Negative Samples**





























0)

#### CNN for Feature Extraction







 $\mathbf{X}_2$ 



























- 6-way 1-shot prediction: support set has 6 test classes; each class has 1 sample.
- The training data (for the Siamese network) does not contain the 6 classes.

#### **Support Set:**



**Query:** 



#### **Support Set:**









One-Shot Predictic Query:



sim = 0.2

sim = 0.9

sim = 0.7

sim = 0.5

sim = 0.3

sim = 0.4

Fox



**Squirrel** 



Rabbit



Hamster



Otter



Beaver



# One-Shot Predictic Query:



sim = 0.2

sim = 0.9

sim = 0.7

sim = 0.5

sim = 0.3

sim = 0.4

Fox



**Squirrel** 



**Rabbit** 



Hamster



Otter



Beaver



#### Triplet Loss

#### **Reference:**

• Schroff, Kalenichenko, & Philbin. Facenet: A unified embedding for face recognition and clustering. In *CVPR*, 2015.

#### Data for Training Siamese Network

#### **Training Set**



#### Data for Training Siamese Network

#### **Training Set**

































**x**+ (positive)



**X**a (anchor)



(negative)

















$$\begin{array}{c}
\mathbf{x} - \\
\text{(negative)}
\end{array}
\qquad \mathbf{f}(\mathbf{x} - \mathbf{x})$$









**X**a (anchor)



**X** - (negative)







**X**a (anchor)



**X** - (negative)



**X**+ (positive)



**X**a (anchor)



(negative)







- Encourage  $d^+ = ||\mathbf{f}(\mathbf{x}+) \mathbf{f}(\mathbf{x}a)||_2^2$  to be small.
- Encourage  $d^- = ||\mathbf{f}(\mathbf{x}^a) \mathbf{f}(\mathbf{x}^-)||_2^2$  to be big.



**X**a (anchor)



**X** - (negative)





 $\mathbf{x}^a$ (anchor)



- Encourage  $d^+ = ||\mathbf{f}(\mathbf{x}+) \mathbf{f}(\mathbf{x}a)||_2^2$  to be small.
- Encourage  $d^- = ||\mathbf{f}(\mathbf{x}a) \mathbf{f}(\mathbf{x}-)||_2^2$  to be big.
- If  $d^+ \ge d^- + \alpha$ , then no loss. ( $\alpha > 0$  is margin.)
- Otherwise, the loss is  $d^+ + \alpha d^-$ .





 $\mathbf{x}^{a}$ anchor)



**X** - (negative)

- Encourage  $d^+ = ||\mathbf{f}(\mathbf{x}+) \mathbf{f}(\mathbf{x}a)||_2^2$  to be small.
- Encourage  $d^- = ||\mathbf{f}(\mathbf{x}a) \mathbf{f}(\mathbf{x}-)||_2^2$  to be big.
- If  $d^+ \ge d^- + \alpha$ , then no loss. ( $\alpha > 0$  is margin.)
- Otherwise, the loss is  $d^+ + \alpha d^-$ .
- Loss(xa, x+, x-) = max{0,  $d^+ + \alpha d^-$ }.
- Update the CNN (function f) to decrease the loss.

One-Shot Predictic Query:









#### One-Shot Prediction

**Query:** 



dist = 231

dist = 19

dist = 138

dist = 76

dist = 122

dist = 94

Fox



**Squirrel** 



**Rabbit** 



Hamster



Otter



Beaver



# One-Shot Predictic Query:



dist = 231

dist = 19

dist = 138

dist = 76

dist = 122

dist = 94

Fox



**Squirrel** 



**Rabbit** 



Hamster



Otter



**Beaver** 



# Summary

# Basic Idea of Few-Shot Learning

- Train a Siamese network on large-scale training set.
- Given a support set of k-way n-shot.
  - *k*-way means *k* classes.
  - n-shot means every class has n samples.
  - The training set does not contain the k classes.
- Given a query, predict its class.
  - Use the Siamese network to compute similarity or distance.

# Siamese Network for Pairwise Similarity



# Siamese Network with Triplet Loss

