

Présentation Intelligence Artificielle

Alexandre Audinot Dan Seeruttun--Marie 5 INFO

Contents

- I. Généralités sur le jeu
- II. Notre Intelligence Artificielle
- III. Difficultés
- IV. Démonstration
- V. Améliorations possibles

I) Généralités sur le jeu

- Jeu créé par Antoine Bauza en 2010
- De 3 à 7 joueurs
- Jeu primé
- Jeu de cartes de stratégie
- Bâtir votre civilisation autour d'une des 7 merveilles du monde

I) Généralités sur le jeu : le principe

- 3 âges
 - Les cartes varient entre les âges
 - Draft des cartes
- Achat de cartes via ressources
- Le gagnant est celui qui totalise le plus de points de victoire à la fin du jeu
- Beaucoup de façons d'amasser des points

I) Généralités sur le jeu : les cartes

I) Généralités sur le jeu : les cartes

I) Généralités sur le jeu : règles sélectionnées

Il est possible:

- D'acheter une/des ressource au voisin
- De se défausser
 - o Rapporte 3
- De construire un étage de sa merveille
 - Coûts/Gains Variable
 - Le joueur se défausse
 - o 1 seule merveille implémentée
- Jeu stratégique

2) Notre Intelligence Artificielle : MCTS

Monte-Carlo Tree Search (MCTS):

- Fonctionnement
 - Algorithme de recherche heuristique
 - o Développement d'une branche choisie aléatoirement
 - Analyse jusqu'à la fin du jeu
 - Choix de la branche basé sur cette analyse
- Algorithme très efficace sur le jeu de Go

2) Notre IA: MCTS Selection

Selection

- A partir de la racine, sélectionner :
- Choisir le noeud selon la formule mathématique UCT :

$$v_i + C \times \sqrt{\frac{\ln N}{n_i}}$$

-> Étape Expansion

2) Notre IA: MCTS Expansion

Expansion

- Tant que le noeud ne résulte pas dans la fin du jeu :
 - Créer un nouveau fils
 - itérer à nouveau
- -> Étape Simulation

2) Notre IA: MCTS Simulation

- Jouer une simulation aléatoire
- Aller jusqu'à la fin du jeu
- -> Étape Backpropagation

2) Notre IA: MCTS Backpropagation

Backpropagation

- Utiliser le résultat de la simulation précédente
- Actualiser
 - Le noeud simulé
 - Tous les noeuds jusqu'à la racine
- -> Étape Sélection

3) Difficultés

- L'algorithme classique de MCTS utilise seulement 2 joueurs
 - Les joueurs IA sont alliés ensemble
- L'ensemble de coups possibles est important
 - o 21 coups au pire
 - Jeu d'une carte
 - Défausse
 - Construction d'un étage de merveille
 - 441 pour deux IA
 - o 85 766 121 pour six IA
- On ne peut pas utiliser l'algorithme MinMax

3) Difficultés

- Compilation de GCC
- Problèmes de linkage avec Visual Studio
- Affichage difficile à organiser avec
 - 18 cartes par joueur
 - o 7 cartes de la main du joueur
 - Statistiques diverses
 - Affichage de videoprojecteur 800*600
- Règles complexes

IV) Démonstration

V) Améliorations possibles

- Améliorer l'algorithme de MCTS
- Ajouter plus de joueurs au MCTS
- Intégration des vrais niveaux des merveilles
- Interface graphique dynamique

Conclusion

- Nous avons modélisé les règles principales de 7 Wonders
- 7 Wonders
 - Très intéressant au niveau stratégie d'IA
 - Mais difficile à modéliser
- Notre MCTS fonctionne avec alliance entre les joueurs IA
 - Amélioration en ignorant cette alliance est primordiale

Merci de votre attention, Avez vous des questions?

