Homework assignment #8 – Solutions Due on Tuesday 04/26/2016

Problem 8.4

8.4
$$C = \left(\frac{P}{P}\right)^{\frac{1}{2}} = \left(\frac{30000}{2}\right)^{\frac{1}{2}} = 122.4745 \text{ m/s}$$

Time taken = $\frac{300}{122.4745} = 2.4495 \text{ s}$

Problem 8.17

8.17 (a)
$$u(x,t) = \left(\frac{A}{L} \cos \frac{\omega x}{C} + \frac{B}{L} \sin \frac{\omega x}{C} \right) \left(C \cos \omega t + D \sin \omega t \right)$$

At $x = 0$: $M_1 \frac{\partial^2 u}{\partial t^2} = AE \frac{\partial u}{\partial x}$

$$-\omega^2 M_1 \frac{\partial}{\partial t^2} = AE \frac{\partial}{\partial x}$$

At $x = l$: $M_2 \frac{\partial^2 u}{\partial t^2} = -AE \frac{\partial}{\partial x}$

$$-\omega^2 M_2 \left(\frac{A}{L} \cos \frac{\omega^2}{C} + \frac{B}{L} \sin \frac{\omega^2}{C} \right) = -AE \frac{\omega}{C} \left(-\frac{A}{L} \sin \frac{\omega^2}{C} + \frac{B}{L} \cos \frac{\omega^2}{C} \right)$$

i.e. $A \left(-\omega^2 M_2 \cos \frac{\omega^2}{C} + \frac{AE \omega}{C} \sin \frac{\omega^2}{C} \right) = B \left(-\frac{AE \omega}{C} \cos \frac{\omega^2}{C} + \frac{\omega^2}{M_2} \sin \frac{\omega^2}{C} \right)$

i.e. $G^2 M_2 \cos \frac{\omega^2}{C} + \frac{AE \omega}{C} \sin \frac{\omega^2}{C} + \frac{\omega M_1 C}{AE} \left(-\omega^2 M_2 \sin \frac{\omega^2}{C} + \frac{AE \omega}{C} \cos \frac{\omega^2}{C} \right) = 0$

This is the gregorancy equation.

(b) $u(x,t) = \left(\frac{A}{L} \cos \frac{\omega x}{C} + \frac{B}{L} \sin \frac{\omega x}{C} \right) \left(\frac{C}{L} \cos \omega t + D \sin \omega t \right) - --(E)$

At $x = 0$, $K_1 u = AE \frac{\partial u}{\partial x} \Rightarrow B = \frac{K_1 C}{AE \omega} A - --(E_2)$

At $x = l$, $K_2 u = -AE \frac{\partial u}{\partial x}$

$$\Rightarrow K_2 \left(\frac{A}{L} \cos \frac{\omega^2}{C} + \frac{B}{L} \sin \frac{\omega^2}{C} \right) = -AE \frac{\omega}{C} \left\{ -\frac{A}{L} \sin \frac{\omega^2}{C} + \frac{B}{L} \cos \frac{\omega^2}{C} \right\}$$

Substituting (E_2) into (E_3) , we get

$$A \left[\left(\frac{K_2 - \frac{k_1 C}{AE \omega}}{AE \omega} \right) \cos \frac{\omega^2}{C} + \left(\frac{K_1 K_2 C}{AE \omega} - \frac{AE \omega}{C} \right) \sin \frac{\omega^2}{C} \right] = 0$$

Problem 8.20

8.17 (a)
$$u(x,t) = \left(\frac{A}{c} \cos \frac{\omega x}{c} + \frac{B}{c} \sin \frac{\omega x}{c} \right) \left(\frac{C}{c} \cos \omega t + \frac{D}{c} \sin \omega t \right)$$

At $x = 0$: $M_1 \frac{\partial^2 u}{\partial t^2} = AE \frac{\partial u}{\partial x}$

$$-\omega^2 M_1 A = AE \frac{\omega}{c} B \Rightarrow B = -\left(\frac{\omega M_1 c}{AE} \right) A$$

At $x = l$: $M_2 \frac{\partial^2 u}{\partial t^2} = -AE \frac{\partial u}{\partial x}$

$$-\omega^2 M_2 \left(\frac{A}{c} \cos \frac{\omega l}{c} + \frac{B}{c} \sin \frac{\omega l}{c} \right) = -AE \frac{\omega}{c} \left(-\frac{A}{c} \sin \frac{\omega l}{c} + \frac{B}{c} \cos \frac{\omega l}{c} \right)$$

i.e. $A \left(-\omega^2 M_2 \cos \frac{\omega l}{c} - AE \frac{\omega}{c} \sin \frac{\omega l}{c} \right) = B \left(-\frac{AE\omega}{c} \cos \frac{\omega l}{c} + \omega^2 M_2 \sin \frac{\omega l}{c} \right)$

i.e. $\omega^2 M_2 \cos \frac{\omega l}{c} + \frac{AE\omega}{c} \sin \frac{\omega l}{c} + \frac{\omega M_1 c}{AE} \left(-\omega^2 M_2 \sin \frac{\omega l}{c} + \frac{AE\omega}{c} \cos \frac{\omega l}{c} \right) = 0$

This is the greguency equation.

M. (2) U/1, H= (wo wx + B sin wx) (cont + 0 Atoc=0, B, U=AE JU =) B = Ric A (EL) Pro = - AEJU =) In (A cow + B sin w) = -A EW (-A mind + & coul) Substituing (E2) into (E3), we obtain: A ((P, + R, 1 coul + (R, R, C - AEW) mint 7=0 Hence the frequency equation is given by: (B2 + Pn) cosul + / thinks c - AEm mul - 0 =) from ul = \[\left[-\left(\mathbb{R}_1 + \beta_1\right) AE wc \\ \frac{\beta_1}{\beta_1} \beta_2 \cdot^2 - A^2 \beta^2 w^2 \end{array} \]

(c)
$$u(x,t) = (A \cos \frac{\omega z}{c} + B \sin \frac{\omega x}{c})(C \cos \omega t + D \sin \omega t)$$

At $x=0$, $k = AE \frac{\partial u}{\partial x} \Rightarrow B = \frac{k c}{AE \omega} A ---- (E_2)$

At $x=l$, $AE \frac{\partial u}{\partial x} = -M \frac{\partial^2 u}{\partial t^2}$
 $\Rightarrow AE(-A \frac{\omega}{c} \sin \frac{\omega l}{c} + B \frac{\omega}{c} \cos \frac{\omega l}{c})$
 $= M(A \cos \frac{\omega l}{c} + B \sin \frac{\omega l}{c}) \omega^2 ---- (E_3)$

Substituting (E_2) into (E_3) , we get

$$\frac{AE \omega}{c} A(-\sin \frac{\omega l}{c} + \frac{k c}{AE \omega} \cos \frac{\omega l}{c}) = M \omega^2 A(\cos \frac{\omega l}{c} + \frac{k c}{AE \omega} \sin \frac{\omega l}{c})$$

This gives the frequency equation
$$\frac{\omega l}{c} = \left\{ \frac{AE \omega c}{AE \omega^2 - M \omega^2 k c^2} \right\}$$

8.20 Set up two coordinates
$$x_1$$
 and x_2 as shown.

$$u_1(x_1,t) = \left(\underset{\sim}{A_1} \text{ cs } \frac{\omega x_1}{c_1} + \underset{\sim}{B_1} \text{ sin } \frac{\omega x_1}{c_1} \right) \left(\underset{\sim}{C} \text{ cs } \omega t + \underset{\sim}{D} \text{ sin } \omega t \right)$$

$$u_2(x_2,t) = \left(\underset{\sim}{A_2} \text{ cs } \frac{\omega x_2}{c_2} + \underset{\sim}{B_2} \text{ sin } \frac{\omega x_2}{c_2} \right) \left(\underset{\sim}{C} \text{ cs } \omega t + \underset{\sim}{D} \text{ sin } \omega t \right)$$

$$u_1(o,t) = 0 \Rightarrow \underset{\sim}{A_1} = 0$$

$$u_1(l_1,t) = u_2(o,t) \Rightarrow \underset{\sim}{B_1} \text{ sin } \frac{\omega l_1}{c_1} = \underset{\sim}{A_2}$$

$$\underset{\sim}{A_1E_1} \frac{\partial u_1}{\partial x_1} (l_1,t) = \underset{\sim}{A_2} E_2 \xrightarrow{\partial u_2} (o,t) = \text{ tensile force same in both oness}$$

$$\underset{\sim}{i.e.} \underset{\sim}{A_1E_1} \underset{\sim}{B_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{C_1} \text{ cs } \frac{\omega l_1}{c_1} = \underset{\sim}{A_2} E_2 \underbrace{\underset{\sim}{\omega_2}} \underset{\sim}{B_2} \Rightarrow \underset{\sim}{B_2} = \underset{\sim}{\underbrace{\underset{\sim}{A_1E_1c_2}}} \underset{\sim}{c_2} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{B_1}$$

$$u_2(x_2,t) = \underset{\sim}{B_1} \underbrace{\underset{\sim}{\sin \omega l_1}} \underset{\sim}{c_1} \text{ cs } \frac{\omega x_2}{c_2} + \underset{\sim}{\underset{\sim}{A_1E_1c_2}} \underset{\sim}{c_2} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{l_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{\omega_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{l_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{l_2} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{l_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_2} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_2} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_2} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1}} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underbrace{\underset{\sim}{\omega_1}} \underset{\sim}{u_1} \underbrace{\underset{\sim}{\omega_1}} \underbrace{\underset{\sim}{\omega_1$$

Boundary conditions are:

At
$$x=0$$
, fixed end $\Rightarrow w(0)=0$... (E_1) , $\frac{dw}{dx}(0)=0$... (E_2)

At $x=1$, free end $\Rightarrow \frac{d^2w}{dx^2}(1)=0$... (E_3) , $\frac{d^3w}{dx^2}(0)=0$... (E_4)

The deflection (normal) function is given by

 $W(x)=C_1$ or $\beta x+C_2$ sin $\beta x+C_3$ or $\beta x+C_4$ sinh βx (E_5)

from which

 $\frac{dw}{dx}(x)=\beta\begin{bmatrix}-C_1 & \sin \beta x+C_2 & \sin \beta x+C_3 & \sin \beta x+C_4 & \cosh \beta x\end{bmatrix}$ (E_5)
 E_7 s. (E_1) and (E_5) give $C_1+C_3=0$ (E_7)
 E_7 s. (E_1) and (E_5) yield (E_7) sinh (E_7) leads to

 $W(x)=C_1$ (or (E_7) and (E_7) leads to

 $W(x)=C_1$ (or (E_7) and (E_7) leads to

 $W(x)=C_1$ (or (E_7) and (E_7) leads to

 (E_7)

Use of (E_7) and (E_7) and (E_7) yields

 (E_7)
 (E_7)

For each problem, you need to show your work and circle your final answer. Please staple your homework.