Notes on "Scales in $L(\mathbb{R})$ "

Stefan Mesken

January 14, 2019

1 Quick Reference

1.1 §0. Introduction

- 1. Background theory: ZF + DC.
- 2. Variables $z, y, x, w \dots$ range over \mathbb{R} .
- 3. Variables $\alpha, \beta, \gamma, \delta, \dots$ range over Ord.
- 4. A point class is a class of subsets of \mathbb{R} closed under recursive substitution.
- 5. A boldface point class is a class of subsets of $\mathbb R$ closed under continuous substitution.
- 6. For a pointclass Γ

(a)

2 Notes

2.1 §1. The fine structure of $L(\mathbb{R})$

Claim 2.1 (Lemma 1.7). h is a Skolem function.

Proof. Let $\emptyset \neq S \in \Sigma_n(J_\alpha(\mathbb{R}), a)$ for some $a \in J_\alpha(\mathbb{R})$. Let $n < \omega$ be such that

$$S = \{ s \in J_{\alpha}(\mathbb{R}) \mid J_{\alpha}(\mathbb{R}) \models \phi_n[s, a] \}$$

Let ψ be the following Σ_n -formula

$$\psi(p,H) \equiv \exists texistsz \in \mathbb{R} \colon p = (t,z) \land f_{\alpha}(H,z >> 2) = (s,a) \land \phi_{z(1)}[s,a]$$

Since

$$f_{\alpha} \colon [\omega \alpha]^{<\omega} \times \mathbb{R} \twoheadrightarrow J_{\alpha}(\mathbb{R})$$