

Innovations in RNA-seq alignment software

- Read pair alignment
- Consider base call quality scores
- Sophisticated indexing to decrease CPU and memory usage
- Map to genetic variants
- Resolve multi-mappers using regional read coverage
- Consider junction annotation
- Two-step approach (junction discovery & final alignment)

Input: sequence reads (FASTQ format)

```
@HWI-ST1018:7:1101:16910:46835#0/1
\tt CTTCATTTCCCTCCAGTCCCTGGAGGGGCTTCTAGTATTACTGGGACAATGACCACGCTGCCTGTTTGTCTGTGAGTTACGGGCAACCAGCCTCTTCAGCC
@HWI-ST1018:7:1101:2937:53143#0/1
{\tt CGACCAGCTGATCGTGTCTCCAAGGGCAGAAGCACAAGCGGGGAGGCTGGGGTGGCTGCAGCGAGGTCCTCCCTAAGTAGGGCAGGGGAGCCCCCAGGTGG}
bbbeeeeeggfggihihiiiiiiiiiiiiiiiiiihiiiiihiigadcccdcccZaa^^ acccc ac bcccccbb^bYabbcbc]a]aET]acaaMW^BBB
@HWI-ST1018:7:1101:14544:66521#0/1
bbaeeeeegggggiifghiiiiiihfhfhihiifhigihhiiihigggdcecc^acccccccccccccccccbbaacba`Y`cT^ ]]
@HWI-ST1018:7:1101:15405:122666#0/1
bbbeeeeegggggiiiiiiihiigieghiii eU ^cbceghffdhhiiicg`\XaZ`ggcdecebcdbb`bcaW ]bbbbbbcbc^`bbbb`bb ^W
@HWI-ST1018:7:1101:14326:133684#0/1
^\\ccc^Y[Ybee^bfcegagX ^aeehhheebZPbf RZeO^ ea]`Ye`[WYY^Q Xab]ZZ^Z\ aY[GY^aNROW^PQXQX`a`XY`P^aW^ aWO
```

Goal: reads mapped to genome

HWI-ST1018:7:1206:3667:137198	#0 97	chr1	1508120	84	255	47M2769	N47M7S	chr2	7330060	2
HWI-SC1018 7 3308:11 = 3205	an at	- 1 77	chr12	1307034	4	255	11S90M	chr2	7330846	1
HWI S=1018: 1205:18018-988#		d hr12	5163710	9	255	96M5S	chr2	7330256	7	0
HWI-ST1018:7:1103:2457:70159#	0 129	chr19	4550479	9	255	101M	chr2	7331554	2	0
HWI-ST1018:7:1107:14230:14650	5#0	99	chr2	7330051	0	255	101M	=	7330057	2
HWI-ST1018:7:1106:16800:63390	#0 163	chr2	7330052	4	255	101M	=	7330065	2	229
HWI-ST1018:7:2306:19900:62130	#0 99	chr2	7330054	7	255	101M	=	7330072	9	283
HWI-ST1018:7:2305:8697:195892	#0 163	chr2	7330056	1	255	4S97M	=	7330068	0	224
HWI-ST1018:7:1208:10024:50258	#0 99	chr2	7330056	3	255	98M3S	=	7330066	2	200
HWI-ST1018:7:1107:14230:14650	5#0	147	chr2	7330057	2	255	101M	=	7330051	0
HWI-ST1018:7:1208:10123:71500	#0 99	chr2	7330059	3	255	101M	=	7330068	4	192
HWI-ST1018:7:2107:11555:46214	#0 163	chr2	7330059	3	255	101M	=	7330065	5	163
HWI-ST1018:7:1102:12130:87067	#0 73	chr2	7330059	4	255	101M	=	7330059	4	0
HWI-ST1018:7:1102:12130:87067	#0 133	chr2	7330059	4	0	*	=	7330059	4	0
HWI-ST1018:7:1206:3667:137198	#0 145	chr2	7330060	2	255	101M	chr1	1508120	84	0
HWI-ST1018:7:1208:16138:88503	#0 99	chr2	7330060	3	255	101M	=	7330073	3	231
HWI-ST1018:7:2206:7742:86872#	0 163	chr2	7330062	1	255	101M	=	7330063	0	110
HWI-ST1018:7:1308:14606:19516	#0 99	chr2	7330062	3	255	1S100M	=	7330080	1	280
HWI-ST1018:7:2301:14871:81110	#0 99	chr2	7330062	3	255	101M	=	7330072	9	207
HWI-ST1018:7:2201:13683:64077	#0 145	chr2	7330062	3	255	11S90M	=	7330062	5	112

. . .

Spliced alignment

Introns can be very large!

Human introns (Ensembl)

Limited sequence signals at splice sites

Multi-mapping reads and pseudogenes

Note:

- An aligner may report both alignments or either
- Some search strategies and scoring schemes give preference to unspliced alignments

How important is mapping accuracy?

Depends what you want to do:

Identify novel genetic variants or RNA editing

Allele-specific expression

Genome annotation

Gene and transcript discovery

Differential expression

Current RNA-seq aligners

TopHat2	Kim et al. <i>Genome Biology</i> 2013
HISAT2	Kim et al. Nature Methods 2015
STAR	Dobin et al. <i>Bioinformatics</i> 2013
GSNAP	Wu and Nacu Bioinformatics 2010
OLego	Wu et al. Nucleic Acids Research 2013
HPG aligner	Medina et al. DNA Research 2016
MapSplice2	http://www.netlab.uky.edu/p/bioinfo/MapSplice2

Compute requirements

Program	Run time (min)	Memory usage (GB)
HISAT×1	22.7	4.3
HISATx2	47.7	4.3
HISAT	26.7	4.3
STAR	25	28
STARx2	50.5	28
GSNAP	291.9	20.2
0Lego	989.5	3.7
TopHat2	1,170	4.3

Run times and memory usage for HISAT and other spliced aligners to align 109 million 101-bp RNA-seq reads from a lung fibroblast data set. We used three CPU cores to run the programs on a Mac Pro with a 3.7 GHz Quad-Core Intel Xeon E5 processor and 64 GB of RAM.

Two-step RNA-seq read mapping

2nd run of HISAT to align reads by making use of the list of splice sites collected above

Accuracy for 20 million simulated human 100 bp reads with 0.5% mismatch rate

Kim et al. Nature Methods 2015

Mapping accuracy for reads with

Kim et al. Nature Methods 2015

Novel junctions are typically supported by few alignments

Each curve represents one RNA-seq read mapping protocol (program + settings).

Engström et al. Nature Methods 2013

Recommendations

- Use STAR, HISAT2 or GSNAP
- STAR and HISAT2 are the fastest
- HISAT2 uses the least memory
- If you want to run Cufflinks, use TopHat2 (but don't)
- Consider 2-pass read mapping (default in HISAT2 and TopHat2)
 - No need to supply annotation to mapper
 - Check that junction discovery criteria are conservative
- HISAT2 and GSNAP can use SNP data, which may give higher sensitivity
- For long (PacBio) reads, STAR, BLAT or GMAP can be used
- Don't trust novel introns supported by single reads
- Always check the results!

Initial steps in RNA-seq data processing

(for species with a reference genome)

- 1. Quality checks on reads
- 2. Trim 3' adapters (optional)
- 3. Index reference genome
- 4. Map reads to genome (output in SAM or BAM format)
- 5. Convert results to a sorted, indexed BAM file
- 6. Quality checks on mapped reads
- 7. Visualize read mappings on the genome

Followed by further analyses...

Browsing your results

Two main browsers:

Integrative Genomics Viewer (IGV)

- + Fast response (runs locally)
- + Easy to load your data (including custom genomes)
- Limited functionality
- User interface issues

UCSC Genome Brower

- Sluggish (remote web site)
- Need to place data on web server (e.g. UPPMAX webexport)
- + Much public data for comparison
- + Good for sharing your data tracks (e.g. using track hubs)

