CAPSTONE PROJECT

Cardiovascular-Risk-Prediction

TEAM MEMBERS

KIRTESH VERMA
PRAVIN BEJJO
SAHIL PARDESHI

→ STEPS

- Problem statement
- Overview of the data
- ♦ EDA
- Data Preprocessing
- Evaluation of Models
- Conclusion

→ PROBLEM STATEMENT

- Heart disease is one the major cause of morbidity and mortality globally. A
 heart attack happens when the flow of oxygen-rich blood to a section of
 heart muscle suddenly becomes blocked and the heart can't get oxygen. If
 blood flow isn't restored quickly, the section of heart muscle begins to die.
- The dataset is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts.
- Our goal is to predict whether the patient has a 10-year risk of future coronary heart disease (CHD) based on their present health conditions using different Machine Learning Techniques.

→ DATA OVERVIEW

Breakdown of Our Features:

- Sex: male or female("M" or "F")
- Age: Age of the patient; (Continuous Although the recorded ages have been truncated to whole numbers, the concept of age is continuous) Behavioral
- is_smoking: whether or not the patient is a current smoker ("YES" or "NO")
- Cigs Per Day: the number of cigarettes that the person smoked on average in one day.(can be considered continuous as one can have any number of cigarettes, even half a cigarette.) Medical(history)
- BP Meds: whether or not the patient was on blood pressure medication (Nominal)
- Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal)
- Prevalent Hyp: whether or not the patient was hypertensive (Nominal)
- Diabetes: whether or not the patient had diabetes (Nominal) Medical(current)
- Tot Chol: total cholesterol level (Continuous)
- Sys BP: systolic blood pressure (Continuous)
- Dia BP: diastolic blood pressure (Continuous)

DATA OVERVIEW(Contin...)

- BMI: Body Mass Index (Continuous)
- Heart Rate: heart rate (Continuous In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.)
- Glucose: glucose level (Continuous)

Predict variable (desired target)

10-year risk of coronary heart disease CHD(binary: "1", means "Yes", "0" means "No") -DV

→ DATA OVERVIEW(Contin...)

DATA INSIGHTS

- The given dataset has 17 columns and 3390 entries.
- The columns belonging to data type 'Object' are 'sex' and 'is_smoking'.
- There are 7 columns in the dataset containing null values. They are 'education', 'cigsPerDay', 'BPMeds', 'totChol', 'BMI', 'heartRate', 'glucose'.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3390 entries, 0 to 3389
Data columns (total 17 columns):
     Column
                      Non-Null Count
                                      Dtype
     id
                      3390 non-null
                                       int64
 0
                                       int64
 1
     age
                      3390 non-null
     education
                      3303 non-null
                                      float64
                                       object
     sex
                      3390 non-null
     is smoking
                                       object
                      3390 non-null
 4
                                       float64
     cigsPerDay
                      3368 non-null
     BPMeds
                      3346 non-null
                                       float64
     prevalentStroke 3390 non-null
                                       int64
     prevalentHyp
                      3390 non-null
                                       int64
 8
     diabetes
                      3390 non-null
                                       int64
    totCho1
                                       float64
 10
                      3352 non-null
                                       float64
 11
     SVSBP
                      3390 non-null
    diaBP
                                       float64
 12
                      3390 non-null
 13
    BMT
                      3376 non-null
                                      float64
    heartRate
                                       float64
                      3389 non-null
     glucose
                                       float64
                      3086 non-null
    TenYearCHD
                      3390 non-null
                                       int64
dtypes: float64(9), int64(6), object(2)
memory usage: 450.4+ KB
```

→ EXPLORATORY DATA ANALYSIS

→ NULL VALUES

→ NULL VALUE SUMMARY

NaN Value Summary						Cardi	ovascular Risk rate
Feature	Total Counts	Total NaN Value Count	Minority Class having NaN Value	Percentage			
Education	3390	87	13	0.38%	Non Risk		
Cigsperday	3390	22	1	0.03%			
BPMeds	3390	44	7	0.21%			15%
totChol	3390	38	7	0.21%			
вмі	3390	14	7	0.21%			
heartrate	3390	1	1	0.03%			
glucose	3390	304	39	1.15%			
		510	75	2.21%			

Dropping the NaN values will lead to 2.21% loss of the minority set, which is already at 15%

→ DISTRIBUTION PLOT (NUMERICAL FEATURES)

→ INSIGHTS

- Glucose and totalChol are highly right skewed.
- cigsPerDay, sysBP and BMI are moderately right skewed.
- Ages, diaBP and heartRate are somewhat normally distributed.

→ DISTRIBUTION PLOT (CATEGORICAL FEATURES)

The total count of people who are on BP meds, who previously had a stroke and people who have diabetes is very less.

→ Age wise distribution of Population

- Number of people belonging to middle age (between 40-55) group are highest in the given dataset followed by elderly age (above 55) group.
- Number of people belonging to young age group (between 29-40) are least.

→ Gender Prone to CHD

- The number of males and females which are at risk of CHD is equal.
- The number of females who are not at risk is higher than that of male.

→ Sex wise smoking ratio

- Number of male smokers is higher than female smoker even though the total count of male is less than female.
- Number of non-smoking female is higher than number of non-smoking male.

→ Smoker and Non-Smokers

Age plays an important role in cardiovascular risk irrespective of the person smokes or not.

→ Previous Heart Stroke

The person who previously had a heart stroke are more at risk to CHD than those who did not.

→ Patients on BP medication

Patients on BP medication are more prone to CHD where as those who are not on BP medication has severely less chances of getting CHD.

→ Diabetic Patients

Diabetic patients have higher risk of CHD than non-diabetic patients.

→ Hypertensive Patients

- Out of all the people who are not Hypertensive, the number of people getting CHD is very less.
- People who are hypertensive has more chances of getting CHD.

→ HEAT MAP

- sysBP and diaBP shows strongest positive correlation of 0.78 with one another.
- Is_smoking and cigsPerDay has a positive correlation of 0.76.

- 0.8 - 0.6 - 0.4 - 0.2 - 0.0

→ DATA PREPROCESSING

- There are 7 features in the dataset containing null values. They are education, cigsPerday, BPMeds, totChol, BMI, heartRate and glucose.
 We filled the null values with their respective median and mode.
- We did label encoding for categorical features like 'sex' and 'is_smoking'.
- As sysBP, diaBP are highly correlated with one another we feature engineered a new feature by adding both the features and dividing by 2.
 We named it 'avgBP' and dropped both the columns.

→ DATA PREPROCESSING (Conti...)

Handling class imbalance

- Number of people who have CHD is very less .i.e. Only 15%. Even our machine learning model gives high accuracy it could be misleading.
- To balance our highly imbalanced class we use the oversampling technique called SMOTE i.e. Synthetic Minority Over-sampling Technique."

→ EVALUATION

- The model that performed best on the given dataset is XGBoost with an accuracy and f1 score of 0.94 followed by Random Forest.
- KNN and SVM with hyperparameter tuning both have almost same level of accuracy and recall.
- Logistic Regression model performed the worst among all with 0.67 accuracy and f1 score.

	Model	Accuracy	Precision	Recall	F1 Score
7	XGBoost	0.943287	0.970516	0.914352	0.941597
6	Random Forest	0.882523	0.890201	0.872685	0.881356
4	KNN with hyperparameter tuning	0.820023	0.898148	0.776777	0.833065
2	SVM with hyperparameter tuning	0.802083	0.836806	0.782468	0.808725
0	Decision Tree	0.780671	0.821192	0.717593	0.765905
3	K Nearest Neighbour	0.755787	0.855324	0.713320	0.777895
1	Support Vector Machines	0.730324	0.775463	0.711253	0.741971
5	Logistic Regression	0.674190	0.673611	0.674392	0.674001

→ FEATURE IMPORTANCE (XGBoost)

- heartRate is the most important feature in predicting the CHD.
- totChol and glucose have the somewhat same level of importance.
- BMI, avgBP and age are other important features.

→ CONCLUSION

- Number of people belonging to middle age group are highest whereas number of people belonging to young age group are lowest
- Male and female both are equally prone to CHD
- Number of male smoker is higher than female smokers.
- Age is an important aspect in predicting the CHD. Middle and older age people are more prone to CHD than young people. Young people are least likely to get CHD.
- People who suffered previously from a heart stroke have severely high chances of getting CHD.
- People on BP medication, diabetic patients and hypertenisve patients have higher chance of getting a CHD than other people.
- XGBoost performed the best among all other models with highest accuracy and f1 score of 94%.
- heartRate is the most important feature in predicting the CHD followed by totChol and glucose.

THANK YOU!