INTERAKTIVNA RAČUNALNA GRAFIKA ZADACI ZA VJEŽBU – 1. CIKLUS 2009/2010

by Hellingen

1. Za pravce G1 i G2 zadane u parametarskom obliku odredite sjecište u homogenom prostoru.

G1 =
$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ -2 & -1 & -2 & 1 \end{bmatrix}$$

G2 =
$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 1 & 1 & 1 & -1 \end{bmatrix}$$

$$G_1 = T_1 L = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} \begin{bmatrix} T_{E2} - T_{S2} \\ T_{S2} \end{bmatrix} = T_{S2} = \begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 & 1 \end{bmatrix}$$

$$T_{E2} = \begin{bmatrix} 2 & 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} -2 & 0 & -2 & 1 \end{bmatrix}$$

$$b_2 = \begin{bmatrix} t_2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & -1 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix}$$

- trazimo presjek:

1)
$$t_1 \cdot 2 + 1 \cdot (-1) = t_2 \cdot (-1) + 1 \cdot (-1) = 7 + 2 \cdot 1 - 2 = -t_1 - 1$$

2)
$$t_1 \cdot 1 + 1 \cdot (-1) = t_2 \cdot 1 + 1 \cdot (-1)$$
 => $t_1 - 1 = t_2 - 1$ => $t_1 = t_2$

$$-sjecište:$$
1) $-t_1-1=-\frac{4}{3}-1=-\frac{4}{3}$

1)
$$-t_1-1=-\frac{1}{3}-1=-\frac{4}{3}$$

2)
$$t_1 - 1 = \frac{1}{3} - 1 = -\frac{2}{3}$$

3)
$$-t_1-1=-\frac{1}{3}-1=-\frac{4}{3}$$

$$T_{P} = \begin{bmatrix} -\frac{4}{3} & -\frac{2}{3} & -\frac{4}{3} & 1 \end{bmatrix} = \begin{bmatrix} -4 & -2 & -4 & 3 \end{bmatrix}$$

2. Kolika je površina trokuta omeđenog točkama: t1=(11,1,5), t2(4,1,7), t3(3,19,6)?

$$V_{0} = (41, 1, 5)$$

$$V_{1} = (4, 1, 7)$$

$$V_{2} = (3, 13, 6)$$

$$V_{1} = \sqrt{3}, \frac{1}{2}, \frac{1}{6}$$

$$V_{2} = \sqrt{3}, \frac{1}{2}, \frac{1}{6}$$

$$V_{3} = \sqrt{3}, \frac{1}{2}, \frac{1}{6}$$

$$V_{4} = \sqrt{3}, \frac{1}{2}, \frac{1}{6}$$

$$V_{4} = \sqrt{3}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6},$$

3. Zadane su točke V_1 (-3,-7), V_2 (4,4), V_3 (6,5), T(-6,-3). Izračunajte jednadžbe bridova trokuta i upišite je u donju tablicu. Jednadžba brida je sljedećeg oblika: a*x + b*y + c = 0. Dodatno je potrebno odrediti odnos točke T i svakog pojedinog brida (da li je točka ispod ili iznad brida). Orijentacija poligona je L (V_1 , V_2 , V_3).

brid	а	b	С	iznad/ispod
brid1	-11	7	16	1ENAD
brid2	-1	2	-4	12600
brid3	12	-9	-27	15800

$$B_{1} = V_{1} \times V_{2} = \begin{bmatrix} i & j & k \\ -3 & -7 & 1 \\ 4 & 4 & 1 \end{bmatrix} = \begin{bmatrix} i & j & k \\ -(-3 - 4) & -(-3 - 4) & -(-3 - 4) \\ -12 & + 128 \end{bmatrix} = \begin{bmatrix} i & j & k \\ -(-3 - 4) & -12 & + 128 \end{bmatrix} = \begin{bmatrix} i & j & k \\ -14 & + 128 \end{bmatrix} = \begin{bmatrix} i & j & k \\ -14 & + 128 \end{bmatrix} = \begin{bmatrix} i & j & k \\ -14 & -6 & -24 \\ -4 & -6 & -24 \end{bmatrix} = \begin{bmatrix} i & j & k \\ -4 & -6 & -24 \\ -4 & -6 & -24 \end{bmatrix} = \begin{bmatrix} i & j & k \\ -4 & -6 & -24 \\ -3 & -7 & -27 \end{bmatrix} = \begin{bmatrix} 12 & j & k \\ -23 & -24 \end{bmatrix} = \begin{bmatrix} 12 & j & k \\ -3 & -7 & 1 \end{bmatrix} = \begin{bmatrix} 12 & j & k \\ -3 & -7 & 1 \end{bmatrix} = \begin{bmatrix} 12 & j & k \\ -3 & -7 & 1 \end{bmatrix} = \begin{bmatrix} 12 & j & k \\ -3 & -7 & 1 \end{bmatrix} = \begin{bmatrix} 12 & j & k \\ -3 & -7 & 1 \end{bmatrix} = \begin{bmatrix} 12 & j & k \\ -41 & +15 \end{bmatrix} = \begin{bmatrix}$$

4. Zadane su Afine transformacije M1, M2 i M3. Provedite transformacije nad prikazanim tijelom.

$$M1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad M2 = \begin{bmatrix} \cos(90^\circ) & \sin(90^\circ) & 0 \\ -\sin(90^\circ) & \cos(90^\circ) & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad M3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -3 & 1 \end{bmatrix}$$

a) skaliranje M1

b) rotacija M2

c) translacija M3

5. Odredite koje su transformacije obavljene i u tablicu upišite parametre tih transformacija. Originalni objekt iscrtan je crnom bojom, a objekt dobiven transformacijama kombinacijom boja. U slučaju rotacije, kut upisivati u treći stupac tablice, a četvrti ostaviti prazan.

Redni broj	Transformacija	Faktor za x os	Faktor za y os
1.	Translacija	-1.0	0.0
2.	Rotacija	-45	
3.	Translacija	-4.0	-5.0

- 6. U dvostruki spremnik upisuju se okviri za koje je potrebno vrijeme t1=17ms, t2=19ms, t3=16ms, t4=9ms. Nakon toga se sekvenca t1-t4 periodički ponavlja. Osvježavanje se obavlja frekvencijom 100.0 Hz. U trenutku t0 u spremnik 0 već je upisan nulti okvir. Nacrtati oba spremnika za jedan ciklus t1 t4 (faze upiši/prikaži):
- a) ako ne postoji sinkronizacija
- b) ako postoji sinkronizacija s frekvencijom osvježavanja

bez sinkronizacije:

- frekvencija osvježavanja se uopće ne gleda, idući okvir se prikazuje čim je potpuno upisan,a dotle se prikazuje prošli okvir

sa sinkronizacijom:

 gleda se frekvencija osvježavanja, upisani okvir čeka idući period kako bi se mogao prikazati (T=10 ms)

- 7. Horizontalna frekvencija osvježavanja CRT jedinice je 75kHz. Rezolucija je 1024x768. Potrebno je izračunati za zadanu jeidnicu:
- a) vertikalnu frekvenciju
- b) frekvenciju osvježavanja slikovnih elemenata
- c) kolika je potrebna pojasna propusnost prema memoriji (engl. memory bandwidth) ako se svaki slikovni element prikazuje s 4 bajta (crveni, zeleni, plavi i alfa kanal), memorija je dvo-pristupna (z-spremnik se ne koristi)?

a)
$$f_{H} = 75 \text{ hHz}$$
 $f_{V} = \frac{f_{H}}{BRY} = \frac{75 \cdot 10^{3}}{768} = 97.65 \text{ Hz}$
 $g_{V} = 768$

8. Matrično opisati 2D transformacije pomaka, rotacije, skaliranja i smika. U što se preslika linija određena točkama u radnom prostoru V_1 =(10,10) i V_2 =(35,20) ako je translatiramo za Δx =5 i rotiramo za kut ϕ =30° oko ishodišta. Homogena koordinata je h=1.

$$\begin{aligned}
&-\text{translacija:} \\
&T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix} \\
&-\text{rotacija:} \\
&R = \begin{bmatrix} \cos f & \sin f & 0 \\ -\sin f & \cos f & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos 30^{\circ} & \sin 70^{\circ} & 0 \\ -\sin 40^{\circ} & \cos 30^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{15}{2} & \frac{1}{2} & 0 \\ -\sin 40^{\circ} & \cos 30^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{15}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\
&V_1 \cdot T = \begin{bmatrix} 10 & 10 & 1 \end{bmatrix} \cdot T = \begin{bmatrix} 15 & 10 & 1 \end{bmatrix} \\
&V_1 \cdot T = \begin{bmatrix} 35 & 20 & 1 \end{bmatrix} \cdot T = \begin{bmatrix} 15 & 10 & 1 \end{bmatrix} \\
&V_1 \cdot T = \begin{bmatrix} 35 & 20 & 1 \end{bmatrix} \cdot T = \begin{bmatrix} 15 \cdot \frac{15}{2} - 5 & \frac{15}{2} + 5 \cdot \frac{15}{3} & 1 \end{bmatrix} \\
&V_1 \cdot T = \begin{bmatrix} 35 & 20 & 1 \end{bmatrix} \cdot R = \begin{bmatrix} 20 \cdot \sqrt{5} - 10 & 20 + 10 \cdot \sqrt{5} & 1 \end{bmatrix}
\end{aligned}$$

9. Zadan je pravac točkama u homogenom prostoru V_0 =(2,1,0,3) i V_1 =(1,0,2,4) i ravnina R=(1,1,1,1) T . Odrediti da li pravac probada ravninu i ako probada, u kojoj točki?

10. Zadana su dva 2D pravca u parametarskom obliku. Odrediti njihovo sjecište.

$$G1 = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 0 \\ -2 & 1 & 1 \end{bmatrix}$$

$$G2 = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

1)
$$-t_1 - 2 = 2(2t_1 - 1) + 1$$
 $t_2 = 2 \cdot (-\frac{1}{5}) - 1$
 $-t_1 - 2 = 4t_1 - 2 + 1$ $t_2 = -\frac{2}{5} - 1$
 $-5t_1 = 1$ $t_2 = -\frac{7}{5}$

1)
$$2t_2+1=\frac{-14}{5}+1=-\frac{9}{5}$$

2)
$$t_1 + 2 = -\frac{1}{5} + 2 = \frac{3}{5}$$

$$T_{p} = \begin{bmatrix} -\frac{9}{5} & \frac{3}{5} & 1 \end{bmatrix} = \begin{bmatrix} -9 & 3 & 5 \end{bmatrix}$$

11. Odrediti sve moguće vrijednosti a, b, c tako da matrica predstavlja isključivo rotaciju u 2D prostoru. Koji su pripadni kutevi rotacije ϕ ? (paziti na homogenu koordinatu)

$$M = \begin{bmatrix} a & b & 0 \\ -1 & c & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$M = 2 \cdot \begin{bmatrix} \frac{a}{2} & \frac{b}{2} & 0 \\ -\frac{1}{2} & \frac{c}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & 0 \\ -\sin \beta & \cos \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} \cos \beta & \sin \beta & \cos \beta & \cos \beta \\ -\sin \beta & \cos \beta & \cos \beta \\ 0 & \cos$$

12. Zadan je objekt A i pripadni transformirani objekt B na slici. Odrediti niz elementarnih transformacijskih matrica 3x3 (translacija, rotacija, skaliranje, smik) i ukupnu matricu transformacije koja transformira vrhove objekta A u vrhove objekta B.

13. Zadane su dvije ravnine R1=[-8, -10, -8, -9]^T i R2=[3, 4, 3, 2]^T. Odrediti presjecište ravnina. Rezultat upisati kao parametarsku jednadžbu pravca. Parametarski oblik pravca izgleda ovako: $[X,Y,Z]^T = \lambda [A,B,C]^T + [X_0,Y_0,Z_0]^T$.

Α	В	С	Xo	Y ₀	Z_0
-1	0	1	-8	5,5	0

R1 ...
$$-8x - 10y - 8z - 9 = 0$$

R2 ... $3x + 4y + 3z + 42 = 0$
 $-8x - 10y = 8z + 19$
 $3x + 4y = -3z - 2 / \frac{5}{2}$
 $-8x - 10y = 8z + 19$
 $3x + 4y = -3z - 2 / \frac{8}{3}$
 $-8x - 10y = 8z + 19$
 $-8x - 10$

14. Zadana je ravnina točkama V_0 =(1,3,-2), V_1 =(2,4,7), V_2 =(4,-5,3). Odrediti odnos točke zadane u radnom prostoru koordinatama V_3 =(3,2,4) i navedene ravnine, uz pretpostavku da normala na ravninu ima negativnu z-koordinatu.

$$\eta = (v_1 - v_0) \times (v_1 - v_0) = (1 \ 1 \ 3) \times (3 \ -8 \ 5)$$

$$\eta = \begin{vmatrix} i & j & k \\ 4 & 1 & 9 \\ 3 & -8 & 5 \end{vmatrix} = i(5 + 7i) - j(5 - 27) + l(-3 - 3)$$

$$\eta = 77i + 22j - 11k = 7i + 2j - k$$

$$A_{\chi} + B_{\gamma} + C_{\chi} + D = 0$$

$$- v_{\gamma} + 2i + 2i + 3i = 0$$

$$- v_{\gamma} + 3i + 2i + 3i = 0$$

$$- v_{\gamma} + 4i + 2i + 3i = 0$$

$$7 + 6 + 1i = 0$$

$$0 + 7i + 4i + 4i = 0$$

$$0 + 7i + 4i + 4i = 0$$

$$0 + 7i + 4i = 0$$

$$0 + 7i$$

15. Zadan je pravac $G1=[-1 \dots 4 \dots -10]^T$ i točka $X=[3 \dots 2 \dots 1]$. Treba odrediti udaljenost točke do pravca.

$$\begin{array}{lll}
-x + 4y & -10 = 0 & \lambda^{2} = (\chi - 3)^{2} + (\gamma - 2)^{2} & d = \sqrt{(\chi - 3)^{2} + (\gamma - 2)^{2}} \\
\chi = 4y - 10 & d^{2} = (4y - 10 - 3)^{2} + (y - 2)^{2} & d = \sqrt{0.087 + 1.384} \\
\chi = 4 \cdot \frac{54}{17} - 10 & d^{2} = (4y - 13)^{2} + (y - 2)^{2} & d = \sqrt{0.087 + 1.384} \\
\chi = \frac{46}{17} & 0 = 32y - 104 + 11y - 4 \\
34y = 108 & y = \frac{54}{17}
\end{array}$$

16. Zadana su dva pravca, potrebno je nači sjecište!

P1 =
$$[4...2...0; 6...2...1]$$
P1 ... $2 \times -4 \times -4 = 0$

P2 = $2x + 5y + 2 = 0$
 $2 \times -4 \times -4 = 0$
 $2 \times +4 = 0$

17. Zadana je točka V(1,1). U koju če se točku ta točka preslikati ako se nad njom izvrše sljedeće transformacije: translacija x-koordinate za 2, translacija y-koordinate za 1 te rotacija za 180°?

$$V(1,1) \rightarrow V'(3,2)$$

$$-rotacija$$

$$V'(3,2) \rightarrow V''(-3,-2)$$

18. Zadan je poligon s koordinatama: V1(0,8), V2(3,11), V3(6,12), V4(11,7), V5(5,3). Potrebno je odrediti broj lijevih bridova n1, broj desnih bridova n2 te L i D (uzmemo da je y=9). Izračunati n2 - n1 + D - L .

$$n_1 = 3$$
 $L = 4$ $n_2 = 2$ $n_3 = 9$

19. Bresenhamovim algoritmom nacrtati trokut koji ima vrhove: V1(2,1), V2(10,1) i V3(10,7). Ako su stranice trokuta crni pikseli koliko ima bijelih piksela unutar trokuta? ⊅ > ○

$$X_0 = 2$$
 $X_1 = 10$ $dX = 8$
 $Y_0 = 1$ $Y_1 = 7$ $dY = 6$
 $dD = \frac{dY}{dx} = 0.75$

$$X = 2, Y = 1$$

 $Y = 2$
 $Y = 2$
 $Y = 3, Y = 2$
 $Crtaj(3, 2)$
 $Y = 3, Y = 2$
 $Crtaj(3, 2)$
 $Y = 3, Y = 2$
 $Crtaj(3, 2)$
 $Y = 3, Y = 2$
 $Crtaj(3, 2)$

$$x = 6$$
, $y = 4$
 $x = 7$, $y = 7$
 $x = 7$
 x

$$x = 6$$
, $y = 4$
 $x = 7$, $y = 5$
 $x = 8$, $y = 5$
 $x = 9$, $y = 6$
 $x = 7$, $y = 7$
 $x = 7$, $y = 6$
 $x = 7$, $y = 7$
 $x = 7$, $y = 7$
 $x = 7$
 x

13 BISELIH PLUSELA

20. Zadane su dvije ravnine R1=[4, 3, 6, -7]^T i R2=[-1, -10, -6, -10]^T. Odrediti presjecište ravnina. Rezultat upisati kao parametarsku jednadžbu pravca. Parametarski oblik pravca izgleda ovako: $[X,Y,Z]^T = \lambda [A,B,C]^T + [X_0,Y_0,Z_0]^T$.

Α	В	С	Xo	Yo	Z ₀
- 42	-18	37	2.7	-1.27	0

$$T = \left(\frac{100}{37} - \frac{47}{37} - 0\right)$$

$$C = -42i - 182 + 37k$$

21. Kolika je povrsina trokuta omedenog tockama: t1=(4, 5, 5) t2=(7,7,8) t3=(16, 16, 6)?

$$V_{0} = (4, 5, 5)$$

$$V_{1} = (3, 7, 8)$$

$$V_{2} = (16, 16, 6)$$

$$V_{1} - V_{0} = [3, 2, 3]$$

$$V_{1} - V_{0} = [12, 11, 1]$$

$$V_{1} - V_{0} = [12, 11, 1]$$

$$V_{1} - V_{0} = [12, 11, 1]$$

$$V_{2} - V_{0} = [12, 11, 1]$$

$$V_{1} - V_{0} = [12, 11, 1]$$

$$V_{2} - V_{0} = [12, 11, 1]$$

$$V_{1} - V_{0} = [12, 11, 1]$$

$$V_{1} - V_{0} = [3, 2, 3]$$

$$V_{1} - V_{1} - V_{1} = [3, 2, 3]$$

$$V_{1} - V_{1} = [3, 2, 3]$$

22. Zadane su Afine transformacije M1, M2 i M3. Provedite transformacije nad prikazanim tijelom.

$$\mathbf{M1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{M2} = \begin{bmatrix} \cos(135^\circ) & \sin(135^\circ) & 0 \\ -\sin(135^\circ) & \cos(135^\circ) & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{M3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 1 & 1 \end{bmatrix}$$

Nakon transformacija:

- 23. U dvostruki spremnik upisuju se okviri za koje je potrebno vrijeme t1=17ms, t2=17ms, t3=17ms, t4=13ms. Nakon toga se sekvenca t1-t4 periodički ponavlja. Osvježavanje se obavlja frekvencijom 100.0 Hz. U trenutku t0 u spremnik 0 već je upisan nulti okvir. Nacrtati oba spremnika za jedan ciklus t1 t4 (faze upiši/prikaži):
- a) ako ne postoji sinkronizacija
- b) ako postoji sinkronizacija s frekvencijom osvježavanja

bez sinkronizacije:

- frekvencija osvježavanja se uopće ne gleda, idući okvir se prikazuje čim je potpuno upisan,a dotle se prikazuje prošli okvir

sa sinkronizacijom:

 gleda se frekvencija osvježavanja, upisani okvir čeka idući period kako bi se mogao prikazati (T=10 ms)

24. Odredite koje su transformacije obavljene i u tablicu upišite parametre tih transformacija. Originalni objekt iscrtan je crnom bojom, a objekt dobiven transformacijama kombinacijom boja. U slučaju rotacije, kut upisivati u treći stupac tablice, a četvrti ostaviti prazan.

Redni broj	Transformacija	Faktor za x os	Faktor za y os
1.	Translacija	1.0	2.0
2.	Rotacija	-30	
3.	Translacija	4.0	-1.0

25. Bresenhamovim algoritmom nacrtati liniju na rasteru između zadanih točaka T0 i T1. U kućice upisati vrijednost parametra D iz algoritma. Vrijednost u kućici mora biti jednaka vrijednosti D prije "IF" grananja. Podatke za T0 i T1 nije potrebno unositi.

Rješenje:

26. Za zadane točke nacrtajte poligon čiji će bridovi zadovoljavati uvjete navedene u tablici. Prikazane točke ne pripadaju poligonu (nisu vrhovi poligona i ne leže na bridovima poligona).

Točka	X	Y
1	9.0	9.0
1 2 3 4 5	4.0	7.0
3	-1.0	0.0
4	8.0	1.0
5	-10.0	2.0
6	-7.0	-4.0

Brid \ Točka	1	2	3	4	5	6
a	IZNAD	IZNAD	IZNAD	IZNAD	IZNAD	IZNAD
b	ISPOD	ISPOD	IZNAD	ISPOD	IZNAD	IZNAD
С	ISPOD	ISPOD	IZNAD	IZNAD	IZNAD	IZNAD
d	IZNAD	IZNAD	IZNAD	IZNAD	ISPOD	IZNAD
е	IZNAD	IZNAD	IZNAD	IZNAD	IZNAD	IZNAD

Rješenje:

