Logica — 2-7-2019

Tutte le risposte devono essere adeguatamente giustificate

1.	Per ognuna	delle seguenti	domande segnare	TUTTE le ris	sposte corrette:
					1

- (a) Sia Pla formula proposizionale $(A \to (\neg A \to A)) \to \neg A$
 - \square P è soddisfacibile.
 - $\square \neg P$ è soddisfacibile.
 - \square P è vera se e solo se A è vera.
 - \square Il valore di verità di P non dipende dal valore di verità di A.
- (b) Sia $\mathcal{L} = \{R, f, c\}$, con R simbolo relazionale binario, f simbolo funzionale binario, c simbolo di costante. Sia

$$\varphi: \exists c (\forall y R(f(t,y),c) \land (R(c) \rightarrow f(c,c) = c))$$

- $\square \varphi$ è una \mathcal{L} -formula.
- \square ($\mathbb{R}, \leq, \cdot, \sqrt{\pi}$) è una \mathcal{L} -struttura.
- \Box Ogni $\mathcal{L}\text{-enunciato}$ soddisfacibile ha come conseguenza logica ogni $\mathcal{L}\text{-enunciato}$ valido.
- \square Ogni $\mathcal{L}\text{-enunciato}$ valido è logicamente equivalente a ogni $\mathcal{L}\text{-enunciato}$ soddisfacibile.

2. Si considerino le formule proposizionali

$$P: \neg A \land (A \rightarrow B), \qquad Q: A \rightarrow \neg B$$

Si determini se:

- (a) $P \models Q$
- (b) $Q \models P$
- (c) $P \equiv Q$
- 3. Sia $\mathcal{L} = \{D, M, S, A, C\}$ un linguaggio del prim'ordine, dove D, M, S sono simboli relazionali unari e A, C sono simboli relazionali binari. Si consideri la seguente interpretazione di \mathcal{L} :
 - -D(x): x è un docente;
 - -M(x): $x \in mediocre;$
 - -S(x): x è uno studente;

-A(x,y): x apprezza y;

-C(x,y): X è collega di y.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

- 1. I docenti che apprezzano qualche studente mediocre sono mediocri.
- 2. I docenti che hanno solo colleghi mediocri sono mediocri.
- 3. I colleghi di un docente che apprezza solo i mediocri sono mediocri.
- 4. Sia $\mathcal{L}=\{f,g\}$ un linguaggio del prim'ordine, dove f è simbolo funzionale unario e g è simbolo funzionale binario. Si considerino gli enunciati

$$\varphi : \forall x \exists y \ f(x, x) = g(y), \qquad \psi : \exists x \forall y \ f(x, y) = g(y)$$

Si definisca una \mathcal{L} -struttura

$$\mathcal{A} = (A, f^{\mathcal{A}}, g^{\mathcal{A}})$$

tale che \mathcal{A} soddisfi esattamente uno tra φ e ψ .

Svolgimento

- 1. Per ognuna delle seguenti domande segnare TUTTE le risposte corrette:
 - (a) Sia P la formula proposizionale $(A \to (\neg A \to A)) \to \neg A$
 - \blacksquare P è soddisfacibile.
 - $\blacksquare \neg P$ è soddisfacibile.
 - \square P è vera se e solo se A è vera.
 - \Box Il valore di verità di P non dipende dal valore di verità di A.
 - (b) Sia $\mathcal{L} = \{R, f, c\}$, con R simbolo relazionale binario, f simbolo funzionale binario, c simbolo di costante. Sia

$$\varphi: \exists c(\forall y R(f(t,y),c) \land (R(c) \rightarrow f(c,c) = c))$$

- $\square \varphi$ è una \mathcal{L} -formula.
- \blacksquare ($\mathbb{R}, \leq, \cdot, \sqrt{\pi}$) è una \mathcal{L} -struttura.
- \blacksquare Ogni \mathcal{L} -enunciato soddisfacibile ha come conseguenza logica ogni \mathcal{L} enunciato valido.
- \square Ogni \mathcal{L} -enunciato valido è logicamente equivalente a ogni \mathcal{L} -enunciato soddisfacibile.
- 2. (a) Sia i un'interpretazione tale che i(P)=1; in particolare, $i(\neg A)=1$, cioè i(A)=0. Pertanto i(Q)=1. Quindi $P\models Q$.
 - (b) Sia i un interpretazione tale che i(A) = i(B) = 1. Allora i(Q) = 1, i(P) = 0. Quindi $Q \not\models P$.
 - (c) Poiché $Q \not\models P$, si ha $P \not\equiv Q$.
- **3.** 1. $\forall x (D(x) \land \exists y (S(y) \land M(y) \land A(x,y)) \rightarrow M(x))$
 - 2. $\forall x(D(x) \land \forall y(C(x,y) \to M(y)) \to M(x))$
 - 3. $\forall x (\exists y (C(x,y) \land D(y) \land \forall z (A(y,z) \rightarrow M(z))) \rightarrow M(x))$
- 4. Si osservi che c'è un'imprecisione nel testo: f è simbolo funzionale binario, g è simbolo funzionale unario.

Interpretati in una \mathcal{L} -struttura \mathcal{A} :

– L'enunciato φ asserisce che la restrizione della funzione $f^{\mathcal{A}}$ alla diagonale $\{(a,a) \mid a \in |\mathcal{A}|\}$ ha immagine contenuta nell'immagine della funzione $g^{\mathcal{A}}$.

– L'enunciato ψ asserisce che per qualche $a \in |\mathcal{A}|$ la funzione $v \mapsto f^{\mathcal{A}}(a, v)$ coincide con la funzione $g^{\mathcal{A}}$.

Sia $A = \{0, 1\}$. si definiscano:

$$- f^{\mathcal{A}}(0,0) = f^{\mathcal{A}}(1,1) = 0,$$

$$f^{\mathcal{A}}(0,1) = f^{\mathcal{A}}(1,0) = 1$$

$$- q^{\mathcal{A}}(0) = q^{\mathcal{A}}(1) = 0$$

Allora l'immagine della restrizione di $f^{\mathcal{A}}$ a $\{(0,0),(1,1)\}$ e l'immagine di $g^{\mathcal{A}}$ coincidono, perché sono entrambe uguali a $\{0\}$.

Inoltre né la funzione $v\mapsto f^{\mathcal{A}}(0,v)$, né la funzione $v\mapsto f^{\mathcal{A}}(1,v)$ coincidono con la funzione $g^{\mathcal{A}}$, perché

$$f^{\mathcal{A}}(0,1) \neq g^{\mathcal{A}}(1)$$
 e $f^{\mathcal{A}}(1,0) \neq g^{\mathcal{A}}(0)$

Quindi

$$\mathcal{A} \models \varphi, \qquad \mathcal{A} \not\models \psi$$