Prof. Martin Hofmann, PhD Dr. Ulrich Schöpp Sabine Bauer

Ludwig-Maximilians-Universität München Institut für Informatik 15. November 2017

3. Übung zur Vorlesung Grundlagen der Analysis

Aufgabe 3-1 (Grenzwerte; 4 Punkte) Berechnen Sie die folgende Grenzwerte.

- a) $\lim_{x\to 4} \frac{x^3-4x}{\sqrt{x}}$
- b) $\lim_{x\to 2} \frac{x^2+5x-14}{x^2-2x}$

Hinweis: Wenn ein Polynom p eine Nullstelle x_0 hat, dann kann man $(x - x_0)$ ausklammern, d.h. man kann p als $(x-x_0) \cdot q$ für ein Polynom q schreiben.

c) $\lim_{x\to 5} \frac{x-\sqrt{4x+5}}{5-x}$

Hinweis: Die Gleichung $(x-y)(x+y)=x^2-y^2$ kann hilfreich sein, um den Zähler zu vereinfachen.

Aufgabe 3-2 (Logarithmengesetz) Beweisen Sie die Formel $\log_x y = \frac{\ln y}{\ln x}$ unter Zuhilfenahme der Rechenregeln für Logarithmen und Potenzen.

Aufgabe 3-3 (Rechnen mit Logarithmen) Vereinfachen Sie mithilfe der in der Vorlesung behandelten Rechenregeln folgende Ausdrück soweit wie möglich:

a)
$$\ln x^2 - \ln x$$

c)
$$\log 1 - 2(\log 2 + \log 8)$$

b)
$$\ln x^3 - 6 \ln x + \ln(6x^4 + 3x^3)$$

d)
$$\frac{\log(\sqrt{a})^3}{0.5 \log a} \cdot \log a^{-1}$$

Dabei ist $\log x := \log_{10} x$ und $\ln x := \log_e x$.

Aufgabe 3-4 (Exponentialfunktion; 4 Punkte) Lösen Sie folgende Gleichungen nach

a)
$$e^{-0.3x} = 27$$

b)
$$e^{2 \ln x} = 4$$

c)
$$e^{\sqrt{x}} = y^2$$

a)
$$e^{-0.3x} = 27$$
 b) $e^{2 \ln x} = 4$ c) $e^{\sqrt{x}} = y^2$ d) $e^x = e^{y^2} \cdot e^{2y+1}$

Aufgabe 3-5 (Grenzwerte; 4 Punkte)

- a) Angenommen $\lim_{n\to\infty}\left|\frac{f(n)}{g(n)}\right|<\infty$. Zeigen Sie, dass eine Zahl C>0 mit folgender Eigenschaft existiert: Es gibt ein N, so dass $|f(n)|< C\cdot |g(n)|$ für alle n>N gilt.
- b) Geben Sie für $f(n) = n^2$ und $g(n) = e^n$ ein konkretes C > 0 mit der Eigenschaft aus a) an. Begründen Sie.

Abgabe: Sie können Ihre Lösung bis zum Freitag, den 24.11. um 10 Uhr über UniWorX abgeben. Es werden Dateien im txt-Format (reiner Text) oder im pdf-Format akzeptiert.