Relatividad especial

1.1 Transformación de vectores

Digamos que un vector transforma

$$X_i' = a_{ij}X_j$$

de manera que se verifique que las leyes físicas sean invariantes frente a rotaciones propias.

Einstein postula que:

- Todos los sistemas inerciales son equivalentes.
- La velocidad de la luz en un sistema inercial es constante. No depende del estado de movimiento del observador.

Sea un sistema S' que se mueve con velocidad ${\bf v}$ de otro S en forma paralela a un eje (ver figura).

Figura 1.1

Se verifica entonces la transformación de Lorentz

$$x^{1'} = x^1$$

 $x^{2'} = x^2$
 $x^{3'} = \gamma [x^3 - \beta x^0]$
 $x^{0'} = \gamma [x^0 - \beta x^3]$

donde son

$$\gamma = \frac{1}{(1 - v^2/c^2)^{1/2}} \qquad x^0 = ct$$

A la transformación [1] se le puede dar forma de rotación en funciones hiperbólicas como sigue

$$x^{0'} = x^0 \cosh(\eta) - x^3 \sinh(\eta)$$
$$x^{3'} = -x^0 \sinh(\eta) + x^3 \cosh(\eta)$$

donde seguimos viendo que las leyes son lineales en las coordenadas (el espacio es isótropo)

Debiéramos dar ideas de estas cosas importantes de relatividad especial

$$\begin{pmatrix} x^{0'} \\ x^{3'} \end{pmatrix} = \begin{pmatrix} \cosh(\eta) & \sinh(\eta) \\ -\sinh(\eta) & \cosh(\eta) \end{pmatrix} \begin{pmatrix} x^0 \\ x^3 \end{pmatrix}$$

y no es otra cosa que una rotación en eje $\hat{0},\hat{3}$ con el ángulo $\eta=atanh(\beta)$. Notemos que se verifica la invariancia del módulo de la transformación

$$(x^{0'})^2 - ((x^{1'})^2 + (x^{2'})^2 + (x^{3'})^2) = (x^0)^2 - ((x^1)^2 + (x^2)^2 + (x^3)^2)$$

o en una notación más feliz

$$(ct')^2 - (x'^2 + y'^2 + z'^2) = (ct)^2 - (x^2 + y^2 + z^2)$$

Este espacio 4D es el de Minkowski y no es euclídeo.

$$\begin{pmatrix} x^{0'} \\ x^{1'} \\ x^{2'} \\ x^{3'} \end{pmatrix} = \begin{pmatrix} \gamma & 0 & 0 & -\beta\gamma \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\beta\gamma & 0 & 0 & \gamma \end{pmatrix} \begin{pmatrix} x^0 \\ x^1 \\ x^2 \\ x^3 \end{pmatrix}$$

La transformación inversa se obtiene tomando los reemplazos

$$x^{i'} \to x^i$$
 , $x^i \to x^{i'}$, $\beta \to -\beta$

El elemento invariante de línea es

$$ds^{2} = (dx^{0})^{2} - (dx^{1})^{2} - (dx^{2})^{2} - (dx^{3})^{2} = ds'^{2}$$

o bien

$$ds^2 = g_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

que es el tensor de la métrica. Se verifica

$$g_{\alpha\beta} = g^{\alpha\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Cuadrivectores en el espacio 4D

Un cuadrivector contravariante es

$$A^{\mu} = (A^0, \mathbf{A})$$

mientras que el covariante es

$$A_{\mu}=(A^0,-{\bf A})$$

y vemos que las partes temporales son las mismas cambiando el signo de la espacial. Las reglas de transformación son

$$A'^{\alpha} = \frac{\partial x'^{\alpha}}{\partial x^{\beta}} A^{\beta} \qquad A'_{\alpha} = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} A_{\beta}$$

luego el producto interno es

$$\widetilde{A} \cdot \widetilde{B} \equiv A_{\alpha} B^{\alpha}$$

donde estamos usando convención de suma de Einstein, que significa que

$$\widetilde{A} \cdot \widetilde{B} = A^0 B^0 - \mathbf{A} \cdot \mathbf{B}$$

que es invariante por ser un escalar de Lorentz,

$$A_{\alpha}B^{\alpha} = A'_{\alpha}B'^{\alpha}$$

Intervalos entre eventos

Los intervalos deben ser invariantes relativistas y de Lorentz, si el intervalo es temporal se tiene

$$x^0 > x^i x_i \Rightarrow \delta s^2 > 0$$

y los eventos pueden estar conectados causalmente

$$x^0 < x^i x_i \Rightarrow \delta s^2 < 0$$

y los eventos no pueden estar conectados causalmente. Se cumple

$$\delta s^2 = (x^0)^2 - [(x^1)^2 + (x^2)^2 + (x^3)^2]$$

Operadores diferenciales

Tenemos la derivada respecto a una coordenada contravariante

$$\partial_{\alpha} \equiv \frac{\partial}{\partial x^{\alpha}} = \left(\frac{\partial}{\partial x^{0}}, \nabla\right)$$

que es la derivada covariante, y también la derivada respecto de una coordenada covariante

$$\partial^{\alpha} \equiv \frac{\partial}{\partial x_{\alpha}} = \left(\frac{\partial}{\partial x^{0}}, -\nabla\right)$$

que es la derivada contravariante. Note la asimetría entre derivo respecto de arriba y es derivada abajo y viceversa. La notación abreviada puede inducir a confusiones.

La cuadridivergencia de un cuadrivector es un invariante,

$$\partial_{\alpha}A^{\alpha} = \frac{\partial A^{0}}{\partial x^{0}} + \boldsymbol{\nabla} \cdot \mathbf{A}$$

$$\partial^{\alpha} A_{\alpha} = \frac{\partial A^{0}}{\partial x^{0}} - \boldsymbol{\nabla} \cdot (-\mathbf{A})$$

y aquí vemos $\partial_{\alpha}A^{\alpha}=\partial^{\alpha}A_{\alpha}.$ Esto nos lleva al D'Alembertiano

$$\Box \equiv \partial_{\alpha} \partial^{\alpha} = \frac{\partial^2}{\partial x^{0^2}} - \nabla^2$$

S es el intervalo entre los eventos 1 y 2, y es un invariante lorentziano

$$s^2 = c^2(t_1 - t_2)^2 - |\mathbf{x}_1 - \mathbf{x}_2|^2$$

El intervalo es temporal si $s^2 > 0$ en cuyo caso se tiene

$$c\delta t > |\mathbf{x}_1 - \mathbf{x}_2|$$

lo cual significa que existe frame inercial donde $x_1=x_2$ los eventos ocurren en el mismo sitio de manera que pueden estar conectados causalmente; puesto que $c\delta t>0$ y $t_2>t_1$. Por el contrario si $c^2<0$ se tiene

$$c\delta t<|\mathbf{x}_1-\mathbf{x}_2|$$

y existe entonces frame inercial donde los dos eventos son en el mismo sitio $x_1=x_2$ y entonces $c\delta t<0$ y $t_2< t_1$ de manera que no pueden estar conectados causalmente.

Según se interpreta claramente del gráfico de la figura [ampliar].

$$x'^0=\gamma(x^0-\beta x^3) \qquad x'^3=\gamma(x^3-\beta x^0)$$

Figura 1.2

y si ahora es $x'^0 = 0$ entonces para un observador en S' se tiene

$$0 = \gamma(x^0 - \beta x^3)$$

o bien $x^0 = \beta x^3$ y aquí es $x'^3 = 0$ de modo que

$$\frac{x^3}{\beta} = x^0$$

y entonces a de la figura puede ser causado por un suceso en el origen pero b no tiene conexión causal con el origen.

1.1.1 Transcurso del tiempo en un sistema con V grande

Sea v/c no despreciable

$$c\Delta t' = \gamma (c\Delta t - \beta \Delta z)$$
 $\gamma > 1$
$$\Delta t' = \gamma \Delta t \left(1 - \beta \frac{\Delta z}{c\Delta t} \right)$$

pero si en S^\prime la partícula está en reposo es v=dz/dt de manera que

$$\Delta t' = \gamma \Delta t (1 - \beta^2)$$

$$\Delta t' = \Delta t (1 - \beta^2)^{1/2}$$

de modo que $\Delta t' < \Delta t$, en S' el tiempo transcurre más lentamente.

Figura 1.3

Número de onda y conteo

Un proceso de conteo (discreto) es invariante lorentziano

$$x'^3 = \gamma(x^3 - \beta x^0)$$

siendo ${\bf v}$ entre sistemas SS'. El número de crestas es

$$\begin{split} \#_s &= \frac{z_1 - z}{\lambda} = \frac{k}{2\pi}(z_1 - z) = \frac{k}{2\pi}(ct - z) = \frac{1}{2\pi}(\omega t - kz) \\ \#'_s &= \frac{1}{2\pi}(\omega' t' - k' z') \end{split}$$

y se puede generalizar

$$\begin{aligned} \mathbf{k}' \cdot \mathbf{x}' - \omega' t' &= \mathbf{k} \cdot \mathbf{x} - \omega t \\ - \left(\mathbf{k}' \cdot \mathbf{x}' - \frac{\omega' x'^0}{c} \right) &= - \left(\mathbf{k} \cdot \mathbf{x} - \frac{\omega x^0}{c} \right) \end{aligned}$$

es un invariante lorentziano como

$$k_{\alpha}x^{\alpha} = k^{\alpha}x_{\alpha}$$

donde el cuadrivector de onda se define

$$k^{\alpha} = \left(\frac{\omega}{c}, \mathbf{k}\right).$$

1.2 Forma covariante del electromagnetismo

Partimos de la ecuación de continuidad para la carga,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$$

la cual con la definición del cuadrivector corriente

$$J^{\mu} = (c\rho, \mathbf{J})$$

se puede escribir como

$$\partial_{\mu}J^{\mu} = \frac{\partial c\rho}{\partial ct} + \boldsymbol{\nabla}\cdot\mathbf{J} = 0.$$

La formulación covariante empleaba el gauge de Lorentz (así las ecuaciones son validas en cualquier sistema inercial), el gauge de Lorentz era

$$\frac{1}{c}\frac{\partial\phi}{\partial t} + \mathbf{\nabla}\cdot\mathbf{A} = 0$$

siendo el cuadripotencial

$$A^{\mu} = (\phi, \mathbf{A})$$

y entonces

$$\partial_{\mu}A^{\mu} = \frac{\partial \phi}{\partial ct} + \nabla \cdot \mathbf{A} = \frac{1}{c} \frac{\partial \phi}{\partial t} + \nabla \cdot \mathbf{A} = 0.$$

Se podía ver que resultan ecuaciones de onda inhomogéneas para los potenciales

$$\nabla^2 \mathbf{A} - \frac{1}{c^2} \frac{\partial^2 \mathbf{A}}{\partial t^2} = -\frac{4\pi}{c} \mathbf{J}$$

que viene a ser

$$\partial_{\mu}\partial^{\mu} = \Box \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

y para el potencial ϕ

$$\boldsymbol{\nabla}^2 \phi - \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = -4\pi \phi$$

que desemboca en

$$\partial_{\mu}\partial^{\mu} = \Box \phi = \frac{4\pi}{c}(c\rho)$$

Al aplicar el D'Alembertiano a un cuadrivector obtenemos otro cuadrivector

$$\Box A^{\mu} = \frac{4\pi}{c} J^{\mu}.$$

Los campos **E**, **B** forman parte de un tensor de segundo rango antisimétrico llamado tensor de intesidad de campo

$$F^{\alpha\beta} = \partial^{\alpha}A^{\beta} - \partial^{\beta}A^{\alpha}$$

que matricialmente se puede ver como

$$F^{\alpha\beta} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$

También se suele definir un tensor de intensidad de campo dual

$$\mathcal{F}^{\alpha\beta} = \frac{1}{2} \varepsilon^{\alpha\beta\gamma\delta} F_{\gamma\delta}$$

que no es otra cosa que

$$\mathcal{F}^{\alpha\beta} = \begin{pmatrix} 0 & -B_x & -B_y & -B_z \\ B_x & 0 & E_z & -E_y \\ B_y & -E_z & 0 & E_x \\ B_z & E_y & -E_x & 0 \end{pmatrix}$$

y donde $\varepsilon^{\alpha\beta\gamma\delta}$ es el tensor de Levi-Civita de cuatro dimensiones, que es nulo cuando se repite un índice. Entonces las ecuaciones de Maxwell en forma covariante explícita resultan

$$\partial_{\alpha} \mathcal{F}^{\alpha\beta} = 0$$
 $\qquad \qquad \partial_{\alpha} F^{\alpha\beta} = \frac{4\pi}{c} J^{\alpha}.$

1.2.1 Transformación de los campos

L transformación de Lorentz era

$$ct' = \gamma [ct - \beta \cdot \mathbf{x}]$$

 $\mathbf{x'}_{\parallel} = \gamma [\mathbf{x}_{\parallel} - \beta ct]$
 $\mathbf{x'}_{\perp} = \mathbf{x}_{\perp}$

con $\beta = \mathbf{v}/c$ y donde la transformación de los campos \mathbf{E}, \mathbf{B}

$$\mathbf{E'} = \mathbf{E}_{\parallel} + \gamma \left(\mathbf{E}_{\perp} + \boldsymbol{\beta} \times \mathbf{B} \right)$$
$$\mathbf{B'} = \mathbf{B}_{\parallel} + \gamma \left(\mathbf{B}_{\perp} - \boldsymbol{\beta} \times \mathbf{E} \right)$$

Figura 2.4

que se pueden poner como

$$\mathbf{E}' = -\frac{\gamma^2}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \mathbf{E}) + \gamma (\mathbf{E} + \boldsymbol{\beta} \times \mathbf{B})$$

$$\mathbf{B'} = -\frac{\gamma^2}{\gamma + 1} \boldsymbol{\beta} (\boldsymbol{\beta} \cdot \mathbf{B}) + \gamma \left(\mathbf{B} - \boldsymbol{\beta} \times \mathbf{E} \right)$$

y recordemos que la transformación de Galileo era

$$\mathbf{E'} = \mathbf{E} + \frac{1}{c}\mathbf{V} \times \mathbf{B}$$
 $\mathbf{B'} = \mathbf{B} - \frac{1}{c}\mathbf{V} \times \mathbf{E}$

siendo el segundo término el que da origen a las corrientes de Foucault al mover un conductor en el seno de un campo ${\bf B}$.

Figura 2.5

Según la figura superior la transformación de los campos satisface

$$\begin{split} E_x' &= \gamma (E_x - \beta B_y) \qquad B_x' = \gamma (B_x + \beta E_y) \\ E_y' &= \gamma (E_y + \beta B_x) \qquad B_y' = \gamma (B_y - \beta E_x) \\ E_z' &= E_z \qquad B_z' = B_z \end{split}$$

Las contracciones del producto escalar entre el tensor de intensidad son

invariantes. Así, por ejemplo,

$$\begin{split} F^{\alpha\beta}F_{\alpha\beta} &= 2(B^2 - E^2) \\ \mathcal{F}^{\alpha\beta}\mathcal{F}_{\alpha\beta} &= 2(E^2 - B^2) \\ \mathcal{F}^{\alpha\beta}F_{\alpha\beta} &= -4\,\mathbf{B}\cdot\mathbf{E} \end{split}$$

Sea

$$\mathcal{F}^{\alpha\beta}F_{\alpha\beta} = -4\,\mathbf{B}\cdot\mathbf{E} = 0,$$

entonces $\mathbf{E} \perp \mathbf{B}$ o alguno de los campos es nulo en todo sistema inercial. Para una carga que se mueve con velocidad \mathbf{v} se tiene $\mathbf{B} = 0$ en un sistema en el que q está en reposo de manera que

$$\mathbf{B} \cdot \mathbf{E} = \mathbf{B'} \cdot \mathbf{E'} = 0$$

siempre y entonces $\mathbf{E}' \perp \mathbf{B}'$ para cualquier sistema inercial S'.

Un sistema electromagnético dependiente del tiempo intercambiará ${\bf p}$ con el campo entonces no vale el principio de acción y reacción ,

$$\frac{d\mathbf{P}_{M}}{dt} + \frac{d\mathbf{P}_{c}}{dt} = \int_{S(v)} \overline{T} \cdot d\mathbf{S}$$

mientras que

$$\frac{d\mathbf{P}_c}{dt} = \frac{d}{dt} \left(\frac{1}{4\pi c} \int \mathbf{E} \times \mathbf{B} dV \right)$$

1.2.2 Covarianza con medios materiales

En presencia de medios materiales puede definirse

$$G^{\alpha\beta} = \begin{pmatrix} 0 & -D_x & -D_y & -D_z \\ D_x & 0 & -H_z & H_y \\ D_y & H_z & 0 & -H_x \\ D_z & -H_y & H_x & 0 \end{pmatrix}$$

y

$$F^{\alpha\beta} \to G^{\alpha\beta}, \quad E_i \to D_i, \quad B_i \to H_i$$

si las relaciones constitutivas son

$$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P} \qquad \qquad \mathbf{H} = \mathbf{B} - 4\pi \mathbf{M}$$

desde

$$G^{\alpha\beta} = F^{\alpha\beta} + R^{\alpha\beta}$$

y con

$$\partial_{\alpha}G^{\alpha\beta} = \frac{4\pi}{c}J^{\beta}$$

donde la información de P_i y M_i está en el tensor $R^{\alpha\beta}$. Recordemos que los campos transforman según

$$\mathbf{P'} = \mathbf{P}_{\parallel} + \gamma \left(\mathbf{P}_{\perp} - \boldsymbol{\beta} \times \mathbf{M} \right)$$

$$\mathbf{M'} = \mathbf{M}_{\parallel} + \gamma \left(\mathbf{M}_{\perp} + \boldsymbol{\beta} \times \mathbf{P} \right)$$

Entonces de un sistema inercial a otro una P da origen a una M y viceversa.

1.3 Principio de Hamilton y relatividad

1.4 Especie de tiro oblicuo

Figura 4.6

1.5 cuadrivelocidad

Figura 5.7