Class 13: Pathway Analysis from RNA-Seq Results

Elena

Table of contents

Ba	ackground	1
1.	Read countData and colData	2
2.	Fix countData QC with PCA	3
3.	DESeq Analysis	5
4.	Add Gene Annotation	7
5.	Pathway AnalysisGO Analysis	

Background

- Read countData and colData
- Check and fix countData if required
- DESeq Analysis
- Visualization
- Gene Annotation
- Pathway Analysis

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

1. Read countData and colData

```
colData <- read.csv("GSE37704_metadata.csv", row.names=1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names=1)
head(colData)

condition
SRR493366 control sirna</pre>
```

SRR493366 control_sirna SRR493367 control_sirna SRR493368 control_sirna SRR493369 hoxa1_kd SRR493370 hoxa1_kd SRR493371 hoxa1_kd

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
		_				

ENSG00000279928 0 ENSG00000279457 46 ENSG00000278566 0 ENSG00000273547 0 ENSG00000187634 258

2. Fix countData

```
#Get rid of length column in countData
countData <- countData[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Make sure the colData column names matches the countData row names:

```
all(rownames(colData) == colnames(countData))
```

[1] TRUE

Looks good, apart from the 0 count genes. Remove:

```
keep.inds <- rowSums(countData) != 0 #Get indices that do not equal 0
counts <- countData[keep.inds,] #Keep only indices that do not equal 0
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

```
nrow(counts)
```

[1] 15975

QC with PCA

The prcomp() function in base R is often used to check:

```
pca <- prcomp(t(counts),scale=T)
summary(pca)</pre>
```

Importance of components:

PC3 PC4 PC1 PC2 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 6.648e-13 Proportion of Variance 0.06774 0.05332 0.000e+00 0.4817 0.3365 0.06074 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00

```
plot(pca$x[,1], pca$x[,2], col=as.factor(colData$condition), pch=16)
```


The major variance in this dataset is consistent with different condition.

3. DESeq Analysis

```
library(DESeq2)
  dds <- DESeqDataSetFromMatrix(countData = counts,</pre>
                                colData = colData,
                                design = ~condition,)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  res <- results(dds)
  head(res)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                   pvalue
                                                                <numeric>
                <numeric>
                               <numeric> <numeric> <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216 0.551863 5.81042e-01
                               0.4264571 0.1402658
ENSG00000187634 183.2296
                                                     3.040350 2.36304e-03
                            -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000188976 1651.1881
```

```
ENSG00000187961 209.6379
                                0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.2551
                                0.0405765 0.2718928 0.149237 8.81366e-01
                                0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642
                 11.9798
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                  : 4349, 27%
LFC < 0 (down)
                  : 4396, 28%
outliers [1]
                   : 0, 0%
low counts [2]
                   : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
  #Colour vector for all genes
  mycols <- rep("gray", nrow(counts))</pre>
  \#If \log 2FC > 2 \text{ or } < -2, colour blue; if padj > 0.05, colour grey
  mycols[res$log2FoldChange > 2] <- "blue"</pre>
  mycols[res$log2FoldChange < -2] <- "blue"</pre>
  mycols[res$padj > 0.05] <- "grey"</pre>
  plot(res$log2FoldChange, -log(res$padj), col=mycols)
  abline(v=c(-2,+2))
```


4. Add Gene Annotation

```
library(AnnotationDbi)
library(org.Hs.eg.db)
columns(org.Hs.eg.db)
```

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

Use mapIDs() to add SYMBOL and ENTREZID annotation to our results.

'select()' returned 1:many mapping between keys and columns

head(res)

```
\log 2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 7 columns
```

```
baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                   pvalue
                               <numeric> <numeric> <numeric>
                <numeric>
                                                                <numeric>
ENSG00000279457
                 29.9136
                               0.1792571 0.3248216
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
                               0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187961
                209.6379
                               0.0405765 0.2718928
ENSG00000187583
                 47.2551
                                                    0.149237 8.81366e-01
ENSG00000187642
                 11.9798
                               0.5428105 0.5215598 1.040744 2.97994e-01
                                 symbol
                      padj
                 <numeric> <character>
ENSG00000279457 6.86555e-01
                                 SAMD11
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
                                 NOC2L
ENSG00000187961 1.13413e-07
                                 KLHL17
ENSG00000187583 9.19031e-01
                                PLEKHN1
ENSG00000187642 4.03379e-01
                                 PERM1
```

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 8 columns

```
ENSG00000279457
                29.9136
                              0.1792571 0.3248216 0.551863 5.81042e-01
ENSG00000187634 183.2296
                              0.4264571 0.1402658 3.040350 2.36304e-03
ENSG00000188976 1651.1881
                             -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                              0.7297556 0.1318599 5.534326 3.12428e-08
ENSG00000187583 47.2551
                              0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187642
                 11.9798
                              0.5428105 0.5215598 1.040744 2.97994e-01
                                symbol
                                            entrez
                      padj
                 <numeric> <character> <character>
ENSG00000279457 6.86555e-01
                                    NA
                                               NA
ENSG00000187634 5.15718e-03
                                            148398
                                SAMD11
ENSG00000188976 1.76549e-35
                                NOC2L
                                             26155
ENSG00000187961 1.13413e-07
                                            339451
                                KLHL17
ENSG00000187583 9.19031e-01
                               PLEKHN1
                                             84069
ENSG00000187642 4.03379e-01
                                             84808
                                 PERM1
  res$genenames <- mapIds(org.Hs.eg.db,
                      keys = rownames(counts),
                       keytype = "ENSEMBL",
                       column = "GENENAME",
                       multiVals="first")
```

'select()' returned 1:many mapping between keys and columns

head(res)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	pad	j symbol	entrez		genenames
	<numeric< td=""><td>> <character></character></td><td><character></character></td><td></td><td><character></character></td></numeric<>	> <character></character>	<character></character>		<character></character>
ENSG00000279457	6.86555e-0	1 NA	NA		NA
ENSG00000187634	5.15718e-0	3 SAMD11	148398	sterile al	lpha motif

```
ENSG00000188976 1.76549e-35 NOC2L 26155 NOC2 like nucleolar ..
ENSG00000187961 1.13413e-07 KLHL17 339451 kelch like family me..
ENSG00000187583 9.19031e-01 PLEKHN1 84069 pleckstrin homology ..
ENSG00000187642 4.03379e-01 PERM1 84808 PPARGC1 and ESRR ind..
```

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

5. Pathway Analysis

We can use gage() with KEGG and GO.

```
library(gage)
library(gageData)
library(pathview)
```

What gage() wants as input is that vector of importance - in our case, that will be the log2 FC values. This vector should have names() that are ENTREZ IDs.

```
foldchange <- res$log2FoldChange
names(foldchange) <- res$entrez
head(foldchange)

1266    54855    1465    51232    2034    2317
-2.422719    3.201955 -2.313738 -2.059631 -1.888019 -1.649792

data(kegg.sets.hs)
data(sigmet.idx.hs)

keggres = gage(foldchange, gsets=kegg.sets.hs)

head(keggres$greater,5)</pre>
```

```
p.geomean stat.mean
hsa04060 Cytokine-cytokine receptor interaction 9.131044e-06 4.358967
hsa05323 Rheumatoid arthritis 1.809824e-04 3.666793
hsa05146 Amoebiasis 1.313400e-03 3.052596
hsa05332 Graft-versus-host disease 2.605234e-03 2.948229
```

```
hsa04640 Hematopoietic cell lineage
                                                2.822776e-03 2.833362
                                                       p.val
                                                                   q.val
hsa04060 Cytokine-cytokine receptor interaction 9.131044e-06 0.001917519
hsa05323 Rheumatoid arthritis
                                                1.809824e-04 0.019003147
hsa05146 Amoebiasis
                                                1.313400e-03 0.091937999
hsa05332 Graft-versus-host disease
                                                2.605234e-03 0.118556573
                                                2.822776e-03 0.118556573
hsa04640 Hematopoietic cell lineage
                                                set.size
                                                                 exp1
hsa04060 Cytokine-cytokine receptor interaction
                                                     177 9.131044e-06
hsa05323 Rheumatoid arthritis
                                                      72 1.809824e-04
hsa05146 Amoebiasis
                                                      94 1.313400e-03
hsa05332 Graft-versus-host disease
                                                      22 2.605234e-03
hsa04640 Hematopoietic cell lineage
                                                      55 2.822776e-03
```

head(keggres\$less,5)

			p.geomean	stat.mean
hsa04110	Cell cycle		8.995727e-06	-4.378644
hsa03030	DNA replication		9.424076e-05	-3.951803
hsa05130	Pathogenic Escherichia coli inf	ection	1.405864e-04	-3.765330
hsa03013	RNA transport		1.375901e-03	-3.028500
hsa03440	Homologous recombination		3.066756e-03	-2.852899
			p.val	q.val
hsa04110	Cell cycle		8.995727e-06	0.001889103
hsa03030	DNA replication		9.424076e-05	0.009841047
hsa05130	Pathogenic Escherichia coli inf	ection	1.405864e-04	0.009841047
hsa03013	RNA transport		1.375901e-03	0.072234819
hsa03440	Homologous recombination		3.066756e-03	0.128803765
			set.size	exp1
hsa04110	Cell cycle		121 8.99	95727e-06
hsa03030	DNA replication		36 9.42	24076e-05
hsa05130	Pathogenic Escherichia coli inf	ection	53 1.40)5864e-04
hsa03013	RNA transport		144 1.37	75901e-03
hsa03440	Homologous recombination		28 3.06	66756e-03

pathview(gene.data=foldchange, pathway.id="hsa04110")

Top 5 downregulated pathways:

```
keggrespathwaysless5 <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathwaysless5, start=1, stop=8)
keggresids

[1] "hsa04110" "hsa03030" "hsa05130" "hsa03013" "hsa03440"

pathview(gene.data=foldchange, pathway.id=keggresids, species="hsa")</pre>
```


GO Analysis

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchange, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GD:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                                         113 8.519724e-05
                                          0.1951953
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                                         424 1.432451e-04
                                          0.1951953
GO:0007610 behavior
                                                         427 2.195494e-04
                                          0.2243795
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                         257 5.932837e-04
GO:0035295 tube development
                                                         391 5.953254e-04
                                          0.3711390
$less
                                            p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                                           352 4.286961e-15
                                         5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.658603e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178402e-07
                                                            84 1.729553e-10
$stats
                                                        exp1
                                          stat.mean
GO:0007156 homophilic cell adhesion
                                           3.824205 3.824205
GD:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                           3.643242 3.643242
GO:0007610 behavior
                                           3.530241 3.530241
GO:0060562 epithelial tube morphogenesis
                                           3.261376 3.261376
                                           3.253665 3.253665
GO:0035295 tube development
```

Reactome

We can use the online version

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

What pathway has the most significant "Entities p-value"?

- Endosomal/vacuolar pathway
- Antigen presentation (MHC class I)
- Cell cycle, Mitotic
- Mitotic spindle checkpoint
- etc.

Do the most significant pathways listed match your previous KEGG results?

• For the most part, seems to match the downregulated KEGG pathways. Not so much the upregulated KEGG pathways.

What factors could cause differences between the two methods?

• Perhaps different annotations for genes, or different categorizations.