WHE HAN					<u> </u>
题号	_			四	总成绩
得分					

阅卷教师签字:

说明:(1)本试卷共四页,16道题;

- (2) 试卷中 A^T 表示矩阵 A 的转置, A^{-1} 表示可逆方阵 A 的逆矩阵, A^* 表示方阵 A 的伴随矩阵。
- 一、选择题(5小题,每小题4分,共20分)

1. 设
$$f(x) = \begin{vmatrix} a+x & b & c \\ a & b+x & c \\ a & b & c+x \end{vmatrix}$$
, 其中 $a+b+c \neq 0$, 则 $f(x) = 0$ 的根为()

(A)
$$0, a+b+c;$$

(A)
$$0, a+b+c;$$
 (B) $0, -(a+b+c);$

(C)
$$0$$
, abc ;

(C)
$$0, abc;$$
 (D) $abc, -(a+b+c).$

- 2. 设 $A \times B$ 均为 n 阶可逆方阵,则下列结论正确的是 ()

(A)
$$AB=BA$$
; (B) $(A+B)^{-1}=A^{-1}+B^{-1}$;

(C)
$$(AB)^* = B^*A^*$$
:

(C)
$$(AB)^* = B^*A^*$$
; (D) $|A + B| = |A| + |B|$.

3. 设
$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ a \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 2 \\ 3 \\ b \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 0 \\ 2 \\ c \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ d \end{pmatrix}$, 其中 a,b,c,d 为任意实数,则()

- (A) $\alpha_1, \alpha_2, \alpha_3$ 线性无关; (B) $\alpha_1, \alpha_2, \alpha_3$ 线性相关;

第1页 共4页

$\{C\}$ $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性元大; $\{D\}$ $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相	(C)	$\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关;	(D) $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性相关
---	-----	--	---

4. 下列实向量的集合, () 构成 \mathbb{R}^3 的子空间.

(A)
$$V = \{(x_1, x_2, x_3)^T \mid x_1 + x_2 + x_3 = 1\};$$

(B)
$$V = \{(x_1, x_2, x_3)^T \mid x_1 x_2 x_3 = 0\};$$

(C)
$$V = \{(x_1, x_2, x_3)^T \mid x_1 + x_2 + x_3 = 0\};$$

(D)
$$V = \{(x_1, x_2, x_3)^T \mid |x_1| = |x_2| = |x_3| \}$$
.

5. 下列各组方阵相似的是()

(A)
$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix};$$
 (B) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix};$

(C)
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix};$$
 (D) $\begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$

二、填空题(5小题,每小题4分,共20分)

- 6. 如果可逆矩阵 A 的每行元素之和均为 a,则 A^{-1} 的每行元素之和为
- 7. 设A为3阶方阵,若存在3阶非零方阵B,使得AB=O,则行列式|A|=
- 8. 已知 α_1 , α_2 是线性无关二维向量,A为二阶方阵,且 $A\alpha_1=0$, $A\alpha_2=2\alpha_1+\alpha_2$,则A的非零特征根为______;
- 9. 已知 3 阶方阵 A 的特征值为 1,-1,2 ,则行列式 $|A^2+A+E|=$ _____ ;

10. 设
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4 \end{vmatrix}$$
, 则 D 中所有元素的代数余子式之和为______.

三、计算题(5小题, 共计52分)

11. (8 分) 设有向量组
$$A$$
: $\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 4 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 0 \\ 7 \\ 14 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ k \end{pmatrix}$, k 为参数,求向量

组 A 的秩和一个极大线性无关组.

12.
$$(8 分)$$
 设 $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ -1 & 2 \\ 0 & -3 \end{pmatrix}$, 矩阵 X 满足 $AX = 2X + B$, 求 X .

13. (10 分) 已知线性方程组
$$\begin{cases} x_1+x_2+2x_3+3x_4=1\\ x_1+3x_2+6x_3+x_4=3\\ x_1-5x_2-10x_3+12x_4=\mu\\ 3x_1-x_2+\lambda x_3+15x_4=3 \end{cases}$$
 有解且系数矩阵的秩为 3,

请完成: (1) 求参数 λ,μ ; (2) 求该方程组的通解.

14. (12 分) 设 3 阶实对称阵
$$A$$
 的特征值为 $6,3,3$,若对应于 6 的特征向量为 $p_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,

对应于特征值 3 的一个特征向量 $p_2 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$,请完成:

- (1) 求对应于特征值 3 的一个特征向量 p_3 , 使得 p_2 , p_3 正交;
- (2) 求方阵 A;

(3) 若
$$\beta = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$
, 求 $A^{-1}\beta$.

- 15. (14 分) 设二次型 $f = 6x_1^2 + 9x_2^2 + 6x_3^2 4x_1x_2 + 8x_1x_3 + 4x_2x_3$, 请完成:
 - (1) 写出该二次型的矩阵 A;
 - (2) 求一个正交变换x = Qy,将其化成标准形;

(3) 写出二次型f在该正交变换下的标准形.

四、证明题(1小题,共计8分)

16. 已知 A 是 n 阶 正 定 矩 阵 , n 维 非 零 列 向 量 $\alpha_1,\alpha_2,...,\alpha_s$ 满 足 $\alpha_i^T A \alpha_j = 0$ $(i \neq j,i,j=1,2,...,s,s \leq n) \text{ , 证明向量组 } \alpha_1,\alpha_2,...,\alpha_s \text{ 线性无关}.$