Task №1

Щербаков Алексей Б01-908

16 September 2019

1

х,у,z — целые числа, для которых истинно высказывание $\neg(x=y) \land ((y < x) \to (2z > x)) \land ((x < y) \to (x > 2z))$ Чему равно x, если z=7,y=16? Решение

Если высказывание истинно, то:

$$\begin{cases} x \neq y \\ ((y < x) \rightarrow (2z > x)) \\ ((x < y) \rightarrow (x > 2z)) \end{cases}$$

Если x>16, то y< x и 2z< x, следовательно, второе выражение ложно. Если x<14< y, то 2z> x, следовательно, третье выражение ложно. Если x=15, то x< y и x>2z, следовательно все выражения истинны. Ответ: 15

2

Постройте таблицу истиности для $\neg((x \land \neg y) \land z)$

z res
) 1
1 1
) 1
1 1
) 1
1 0
) 1
1 1

3

Докажите, что
$$1 \oplus x_1 \oplus x_2 = (x_1 \to x_2) \land (x_2 \to x_1)$$
 Построим таблицы истинности

\mathbf{x}_1	x_2	res	\mathbf{x}_1	x_2	res
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Таблицы совпадают, следовательно равенство выполняется.

4

Выполняется ли дистрибутивность для следующих операций:

a)
$$x \land (y \to z)?(x \land y) \to (x \land z)$$

X	у	\mathbf{z}	res	X	у	\mathbf{z}	res
0	0	0	0	0	0	0	1
1	0	0	1	1	0	0	1
1	1	0	0	1	1	0	0
1	1	1	1	1	1	1	1
0	1	0	0	0	1	0	1
0	0	1	0	0	0	1	1
0	1	1	0	0	1	1	1
1	0	1	0	1	0	1	0

Таблицы не совпадают, следовательно дистрибутивноть не выполняется.

$$6) x \oplus (y \leftrightarrow z)?(x \oplus y) \leftrightarrow (x \oplus z)$$

x	У	\mathbf{z}	res	X	У	\mathbf{z}	res
0	0	0	1	0	0	0	1
1	0	0	0	1	0	0	1
1	1	0	1	1	1	0	0
1	1	1	0	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	1	1	1	0	1	1	1
1	0	1	1	1	0	1	0

Таблицы не совпадают, следовательно дистрибутивноть не выполняется.

5

а) Выполняется ли для импликации коммутативность?

Очевидно, что $x \to y$ не равно $y \to x$ (пример x = 1, y = 0)

б) Выполняется ли для импликации ассоциативность?

$$(x \to y) \to z?x \to (y \to z)$$

Нет, пример x=0,y=0,z=0, левая часть 0, правая 1.

6

Указать существенные и фиктивные переменные а) f(x1,x2,x3)=00111100

\mathbf{x}_1	x_2	Х3	res
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

z - фиктивная, x и y - существенные

6)
$$g(x_1, x_2, x_3 = (x_1 \to (x_1 \lor x_2) \to x_3)$$

x_1	x_2	Х3	res
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

х, у, z - существенные

7

Докажите формулу разложения:

$$f(x_1,...,x_n) = (x_1 \lor f(0,x_2,...,x_n)) \land (\neg x_1 \lor f(1,x_2,...,x_n))$$

Если $x_1 = 0$, то $(\neg x_1 \lor f(1,x_2,...,x_n)) = 1, (x_1 \lor f(0,x_2,...,x_n)) = f(x_1,...,x_n)$

Если $x_1=1$, то $(x_1\vee f(0,x_2,...,x_n))=1, (\neg x_1\vee f(1,x_2,...,x_n))=f(x_1,...,x_n)$ чтл

8

Если функция истинна, то каждая $x_n^{\alpha}=1$, следовательно при замене любого, хотя бы одного α , данный х обращается в 0, и вся функция обращается в 0 чтд

9

```
\begin{array}{l} (x_1\vee x_2\vee\ldots\vee x_n)\wedge(\bar x_1\wedge\bar x_2\wedge\ldots\wedge\bar x_n)=(x_1\wedge\bar x_1)\vee(x_1\wedge\bar x_2)\ldots\\ \text{Так как }(x_i\wedge\bar x_i)=0,\text{ to:}\\ (x_1\vee x_2\vee\ldots\vee x_n)\wedge(\bar x_1\wedge\bar x_2\wedge\ldots\wedge\bar x_n)=(x_1\wedge\bar x_2)\vee(x_2\wedge\bar x_1)\vee(x_2\wedge\bar x_3)\vee(x_3\wedge\bar x_2)\vee\ldots=\\ =(x_1\oplus x_2)\vee(x_2\oplus x_3)\vee\ldots)\text{ чтд.} \end{array}
```