- 1. (6.3)
 - (a) First let T_1 and T_2 be UMP tests for corresponding to α_1 and α_2 respectively. Then for the sake of contradiction, assume that $c(\alpha_1) < c(\alpha_2)$. By Neyman-Person our two tests are given by the following

$$T_{1} = \begin{cases} 1 & f_{1}(x) > c(\alpha_{1})f_{0}(x) \\ \gamma_{1} & f_{1}(x) = c(\alpha_{1})f_{0}(x) \\ 0 & f_{1}(x) < c(\alpha_{1})f_{0}(x) \end{cases} \qquad T_{2} = \begin{cases} 1 & f_{1}(x) > c(\alpha_{2})f_{0}(x) \\ \gamma_{1} & f_{1}(x) = c(\alpha_{2})f_{0}(x) \\ 0 & f_{1}(x) < c(\alpha_{2})f_{0}(x) \end{cases}$$

Define $LR(x) = \frac{f_1(x)}{f_0(x)}$. We now argue by cases

- $LR(x) < c(\alpha_1)$: In this case $T_1(x) = 0$ and $T_2(x) = \text{so } T_1(x) \ge T_2(x)$
- $LR(x) = c(\alpha_1)$: In this case $T_1(x) = \gamma_1$ and $T_2(x) = 0$ so $T_1(x) \ge T_2(x)$
- $c(\alpha_1) < LR(x) < c(\alpha_2)$: In this case $T_1(x) = 1$ and $T_2(x) = 0$ so $T_1(x) \ge T_2(x)$
- $LR(x) = c(\alpha_2)$: In this case $T_1(x) = 1$ and $T_2(x) = \gamma_2$ so $T_1(x) \ge T_2(x)$
- $c(\alpha_2) < LR(x)$: In this case $T_1(x) = 1$ and $T_2(x) = 1$ so $T_1(x) \ge T_2(x)$

In any case we note that $T_1(x) \geq T_2(x)$. Hence $\mathbb{E}_0(T_1) \geq \mathbb{E}_0(T_2)$ but recall this, by definition, is just the type I error corresponding to α_i . That is we see that $\mathbb{E}_0(T_1) = \alpha_1 \geq \alpha_2 = \mathbb{E}_0(T_2)$. But recall $\alpha_1 < \alpha_2$ so we have a contradiction. Therefore, we conclude that $c(\alpha_1) \geq c(\alpha_2)$

- (b) We look to show that $1 \mathbb{E}_1(T_1) \geq 1 \mathbb{E}_1(T_2)$. Hence, it suffies to show that $\mathbb{E}_1[T_1] \leq \mathbb{E}_1[T_2]$. Well recall that $\mathbb{E}_1[T_*]$ is maximized at $T_* = T_2$ where T_* are all tests such that $\mathbb{E}_0[T_*] \leq \alpha_2$. But $\mathbb{E}_0[T_1] = \alpha_1 < \alpha_2$. Hence $\mathbb{E}_1[T_1] \leq \mathbb{E}_1[T_2]$ by definition of UMP.
- 2. (6.4) Let T_* be UMP for size α with power $\beta < 1$ for testing H_0 vs H_1 . Define $T_{**} = 1 T_*$. We look to show that this test is UMP for testing H_1 vs H_0 with size 1β . We must show two things (i) T_{**} is of size β and (ii) for any test \tilde{T}_{**} with $\mathbb{E}_1(\tilde{T}_{**}) \leq \beta$ we have that $\mathbb{E}_0[\tilde{T}_{**}] \leq \mathbb{E}_0[T_{**}]$.
 - (i) First note that $\mathbb{E}_1[T_{**}] = 1 \mathbb{E}_1[T_*]$. Note this is just the power of T_* when H_1 is true which we defined to be β . Hence $\mathbb{E}_1[T_{**}] = 1 \mathbb{E}_1[T_*] = 1 \beta$. Hence T_{**} is of size 1β .
 - (ii) Let \tilde{T}_{**} be a test with $\mathbb{E}_1[\tilde{T}_{**}] \leq 1 \beta$. Recall that T_* is UMP of level α for H_0 vs H_1 . By the contrapositive, we have that for any test δ with $\mathbb{E}_1[\delta] > \mathbb{E}_1[T_*]$ implies $\mathbb{E}_0[\delta] > \mathbb{E}_0[T_*]$. But notice that we have $\mathbb{E}_1[1 \tilde{T}_{**}] \geq \beta = \mathbb{E}_1[T_*]$ so by the contrapositive $\mathbb{E}_0[1 \tilde{T}_{**}] \geq \alpha$. Upon rearranging, we have that $\mathbb{E}_0[\tilde{T}_{**}] \leq 1 \alpha = 1 \mathbb{E}_0[T_*] = \mathbb{E}_0[1 T_*]$.

Therefore, $1 - T_*$ is UMP for H_1 vs H_0 with level $1 - \beta$.

3. (6.7) Suppose that $\phi_* \in \mathcal{T}_0$ is given by equation (6.9). We derive a useful result for later in the proof.

$$\int (\phi_* - \phi) \sum_{i=1}^m c_i f_i d\nu = \int \sum_{i=1}^m c_i f_i \phi_* d\nu - \int \sum_{i=1}^m c_i f_i \phi d\nu$$

$$= \sum_{i=1}^m c_i \left\{ \int \phi_* f_i d\nu - \int \phi f_i d\nu \right\}$$

$$= \sum_{i=1}^m c_i \left\{ 0 - 0 \right\}$$

$$= 0$$

Where the thrid line justified by the definition of \mathcal{T}_0 . Now, define the following quantity

$$g(x)h(x) = (\phi_* - \phi)(f_{m+1} - \sum_{i=1}^m c_i f_i)$$

Now notice by defintion of ϕ_* if h(x) > 0 then g(x) > 0 and $g(x)h(x) \ge 0$. Moroever, if h(x) < 0, then g(x) < 0 as $\phi_* = 0$ and $0 \le \phi \le 1$. In either cases we have that

$$(\phi_* - \phi)(f_{m+1} - \sum_{i=1}^m c_i f_i) \ge 0$$

Using this, we can write

$$(\phi_* - \phi)(f_{m+1} - \sum_{i=1}^m c_i f_i) \ge 0$$

$$(\phi_* - \phi)f_{m+1} \ge (\phi_* - \phi) \sum_{i=1}^m c_i f_i$$

$$\int (\phi_* - \phi)f_{m+1} d\nu \ge \int (\phi_* - \phi) \sum_{i=1}^m c_i f_i d\nu$$

$$\int \phi_* f_{m+1} d\nu - \int \phi f_{m+1} d\nu \ge 0$$

$$\int \phi_* f_{m+1} d\nu \ge \int \phi f_{m+1} d\nu$$

Hence, ϕ_* maximizes this quantity over all possible $\phi \in \mathcal{T}_0$.

Now, consider $\phi \in \mathcal{T}$. Then, by the same argument as above, we have that

$$\int (\phi_* - \phi) f_{m+1} d\nu \ge \int (\phi_* - \phi) \sum_{i=1}^m c_i f_i d\nu$$

$$\int (\phi_* - \phi) f_{m+1} d\nu \ge \sum_{i=1}^m c_i \left\{ \int \phi_* f_i d\nu - \int \phi f_i d\nu \right\}$$

$$\int (\phi_* - \phi) f_{m+1} d\nu \ge \sum_{i=1}^m c_i \left\{ t_i - \int \phi f_i d\nu \right\}$$

Recall, by definition of \mathcal{T} that $s_i := \int \phi f_i d\nu \leq t_i$. Therefore, along with the assumption that $c_i \geq 0$ we have

$$\sum_{i=1}^{m} c_i \left\{ t_i - \int \phi f_i d\nu \right\} \ge \sum_{i=1}^{m} c_i \left\{ t_i - s_i \right\} \ge 0$$

Thus

$$\int (\phi_* - \phi) f_{m+1} d\nu \ge 0$$

$$\int \phi_* f_{m+1} d\nu \ge \int \phi_* f_{m+1} d\nu$$

Therefore, if $c_i \geq 0$ for all i then ϕ_* maximizes this quantity over all $\phi \in \mathcal{T}$.