Natural Numbers

1

```
n = 0
while True:
   print(n)
   n = n+1
```

A recursive (inductive) definition of natural Numbers

- $1. 0 \in \mathbb{N}$
- 2. if $n \in \mathbb{N}$ then natural numbers $\in \mathbb{N}$
- 3. Nothing else is in \mathbb{N}

$$S = \{-1, 0, 1, 2, \dots\}$$

Another recursive definition of \mathbb{N} (natural numbers)

- 1. $0 \in \mathbb{N}$ and $i \in \mathbb{N}$
- 2. If $n \in \mathbb{N}$ then $n+2 \in \mathbb{N}$

A recursive definition of \mathbb{Z} (all integers)

- 1. $-1 \in \mathbb{Z}$ and $0 \in \mathbb{Z}$
- 2. If $x \in \mathbb{Z}$ and x < 0 then $x 1 \in \mathbb{Z}$; If $x \in \mathbb{Z}$ and $x \ge 0$ then $x + 1 \in \mathbb{Z}$
- 3. Nothings else in \mathbb{Z}

A recursive definition of the set of fully paranthesized arithmetic $expressions^1$ on the real numbers, A

- 1. If $X \in \mathbb{R}$ then $x \in A$
- 2. If $x, y \in A$ then $(-x) \in A$; $(x + y) \in A$, $(x y) \in A$, $(x * y) \in A$
- 3. Nothing else in A

$$(-((9.5-2)x(100-4)))$$

If S and T are sets, then S=T exactly when S and T have the same elements

If S and T are sets then S is a subset of T exactly when each element of S is also an element of T

S "is a subset of" T is abbreviated as $S \subseteq T$

 $S\subseteq T$

 $^{^1}$ italicized - bad handwriting from prof

S is a proper subset of T exactly when $S\subseteq T$ and $S\neq T$

"s is a proper subset of T " is abbreviated as $S\subset T$

 $S\subset T$