

Universidade de Lisboa Instituto Superior Técnico

Thesis Title that describes the subject studied.

Optional Subtitle

Full Name

Supervisor : Doctor Full Name Co-Supervisor : Doctor Full Name

Thesis specifically prepared to obtain the PhD Degree in Mechanical Engineering

Draft

November 2017

Abstract

The Objective of this Work ... (English)

Keywords

Keywords (English)

Resumo

O objectivo deste trabalho ... (Português)

Palavras Chave

Palavras-Chave (Português)

Acknowledgments

I would like to thank the Academy, bla bla bla..

Contents

1	Intro	oduction	1
	1.1	Motivation	2
	1.2	State of The Art	2
		1.2.1 Dummy Subsection A	2
		1.2.2 Dummy Subsection B	2
	1.3	Original Contributions	2
	1.4	Thesis Outline	2
2	A C	hapter	3
	2.1	Section A	4
		2.1.1 Subsection A	2
		2.1.2 Subsection B	2
	2.2	Section B	4
		2.2.1 Subsection A	4
		2.2.2 Subsection B	4
3	Con	nclusions and Future Work	7
Bi	bliog	graphy A-	-1
Αŗ	pen	dix A Title of AppendixA A	-1

List of Figures

2.1	Dummy Figure Caption for List of Figures.		4
-----	---	--	---

List of Tables

21	Dummy Table.	C
۲.۱	Dullilly Table.	 •

Acronyms

COP Coefficient of Performance. 4

 COP_{HP} Heat Pump Coefficient of Performance. 4

Notation

Latin Letters .

- A Cross-sectional area [m²]. 4
- $\it a$ Total surface area per unit length [m]. 4
- \mathcal{C}_d Drag coefficient []. 4

Greek Letters .

```
\gamma Adiabatic index \frac{c_p}{c_V} [J \rm kg^{-1}~K^{-1}/(J\,kg^{-1}~K^{-1})]. 4
```

Subscripts .

- $_{p}$ Related to the pump.. 4
- $_v$ Vapour. 4

Rates .

 \dot{m} Mass flow rate [kg s⁻¹]. 4

Ratios .

- Eu Euler number $\Delta P/(\rho_v u_v^2)$, where ΔP is the pressure difference between the absorber and the evaporator [Pa/Pa]. 4
- $u_{v/s}$ Slip ratio $\frac{u_v}{u_s}$ [m/s/m/s]. 4

1

Introduction

Contents

1.1	Motivation	2
1.2	State of The Art	2
1.3	Original Contributions	2
1.4	Thesis Outline	2

1.1 Motivation

Motivation Section.

1.2 State of The Art

State of The Art Section.

1.2.1 Dummy Subsection A

State of Art Subsection A

1.2.2 Dummy Subsection B

State of Art Subsection B

1.3 Original Contributions

Contributions Section.

1.4 Thesis Outline

Outline Section.

2

A Chapter

Contents

2.1	Section A	4
2.2	Section B	4

Present the chapter content.

2.1 Section A

2.1.1 Subsection A

This would be a citation [?].

The Coefficient of Performance (COP) defines the performance of the machine.

Heat Pump's performance is given by the Heat Pump Coefficient of Performance (COP_{HP}) , a COP for heat pumps.

Now, an example on notation: Eu and $u_{v/s}$. Also C_d .

As seen in [?]. Enfatizar

2.1.2 Subsection B

Figure 2.1: Dummy Figure Caption.

Remember you can change the reference style. Another dummy citation [?].

2.2 Section B

2.2.1 Subsection A

The model described can also be represented as

$$\dot{\mathbf{x}}(t) = \mathbf{T}\mathbf{z}(y), \ \mathbf{y}(0) = \mathbf{y}_0, \ z \ge 0$$

where

$$\mathbf{A} = \begin{bmatrix} -(a_{12} + a_{10}) & a_{21} \\ a_{12} & -(a_{21} + a_{20}) \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (2.2)

Also, using glossaries in the math environment, you can write

$$A = \frac{\dot{m}_v}{\rho u} \tag{2.3}$$

Note that A is not a.

2.2.2 Subsection B

Another example for the notation section: think about γ . And γ_p with a subscript.

Table 2.1: Dummy Table.

Vendor Name	Short Name	Commercial Name	Manufacturer
	ABC	ABC [®]	ABC SA
Text in Multiple Row	DEF	DEF [®]	DEF SA
	GHF	GHF®	GHF SA
Text in Single Row	IJK	IJK [®]	IJK SA
Frescos SA	LMN	LMN®	LMN SA
Carros Lda.	Text in Multiple Column		

Conclusions and Future Work

Conclusions Chapter

Title of AppendixA