I/O管理

I/O管理要完成哪些功能?

状态跟踪	要能实时掌握外部设备的状态		
设备存取	要实现对设备的存取操作		
设备分配	在多用户环境下,负责设备的分配与回收		
设备控制	包括设备的驱动,完成和故障的中断处理		

I/O软件层次结构

四种结构 (常考点)

	<u>定义</u> <u>举例</u>	
1.用户层 I/O软件	•用户通过统一的接口发送命令	• 如发送read命令 • 如讲二进制整数转换为ascii码的格式打印
2.设备独立性软件	•对用户的命令进行解析,把逻辑信息转换 为物理信息,例如查FAT表或者inode信息, 但不是更具体的物理信息	・如解析read命令・如检查用户是否有权使用设备(即设备保护)・如进行缓冲管理
3.设备驱动程序	负责执行OS发出的I/O命令针对不同的硬件将命令解析为指令若更换物理设备,只需要修改设备驱动程序,不需要修改应用程序	如将解析好的read命令转换为指令如计算磁盘的柱面号,磁头号,扇区号如设备寄存器写命令如将逻辑块号转换为物理地址
4.中断处理程序	•中断正在运行的进程,转而执行用户命令	• 如中断当前进程,执行相关指令

层次结构的特点

- 每层都是利用其下层提供的服务,完成输入/输出功能中的某些子功能
- 屏蔽子功能实现的细节,向高层提供服务
- 仅最底层才涉及硬件的具体特性

应用程序I/O接口分类

字符设备接口	字符设备是指数据的存取和传输都是以字节为单位的设备字符设备都属于独占设备
块设备接口 • 块设备是指数据的存取和传输都是以数据块为单位的设备,如磁盘 • 磁盘设备的I/0常使用DMA方式	
网络设备接口	• 许多0S提供的网络I/0接口为网络套接字接口
阻塞/非阻塞 I/O	•大多数OS提供的 I/O接口都是采用阻塞 I/O

设备的分类

按信息交换的单 位分类	块设备	・ 传输速度较高+ <mark>可寻址</mark> +可随机读/写任一块 ・ 属于 <mark>有结构设备</mark> ;如磁盘,硬盘,USB			
	字符设备	• 传输速率低+不可寻址+时常采用中断I/0方式 • 属于无结构类型;如交互式终端机,打印机,鼠标			
	低速设备	键盘,鼠标			
按传输速度分类	中速设备	激光打印机			
	高速设备	磁盘机, 光盘机	<u>磁盘机</u> , 光盘机		
按设备特性分类	独占设备	一个时段只能分配给一个进程所有字符设备都是独占设备速度慢,利用率低如输入机、打印机、磁带机等			
	共享设备	一段时间内允许多个进程同时访问的设备共享设备必须是可寻址和可随机访问的设备软硬盘、磁盘、光盘等块设备都是共享设备			
	虚拟设备	・通过虚拟软件技术将<mark>独占设备改造成共享设备</mark>・如通过 SPOOLing技术将一台打印机虚拟成多台打印机・其实质上还是独占设备			
	可以	顺序访问的	磁带		
按访问顺序	可以随机访问的(直接访问)		光盘,磁盘,U盘		
	两者都可以的		光盘,磁盘,磁盘		

设备控制器(I/O接口)

1.设备控制器主要功能

- 接受和识别CPU发来的命令
- •数据交换(设备和控制器的数据交换+控制器和主存数据交换)
- 标识和报告设备的状态,以供CPU处理
- •地址识别;数据缓冲;差错控制
- 设备控制器不属于操作系统范畴, 它是属于硬件

2.设备控制器的组成

3.设备控制器有三种寄存器

(设备控制器中可被CPU直接访问的寄存器,也叫I/O端口)

数据寄存器	CPU 向 I/O 设备写入需要传输的数据		
命令/控制寄存器	 比如要打印的内容是「Hello」, CPU 就要先发送一个 H 字符给到对应的 I/O 设备 CPU 发送一个命令,告诉 I/O 设备,要进行输入/输出操作,于是就会交给 I/O 设备去工作 任务完成后,会把状态寄存器里面的状态标记为完成 		
状态寄存器	目的是告诉 CPU 现在已经在工作或工作已经完成如果已在工作状态, CPU 再发送数据或者命令过来,都是没有用的直到前面的工作已经完成,状态寄存标记成已完成, CPU 才能发送下一个字符和命令		

4.CPU与I/O端口的通信方式

端口 I/O (独立编制)	・毎个控制寄存器被分配一个 I/O 端口・可以通过特殊的汇编指令操作这些寄存器・比如 in/out 类似的指令
内存映射 I/O (统一编制)	将所有控制寄存器映射到内存空间中这样就可以像读写内存一样读写数据缓冲区

设备控制方式 (I/O控制方式)

- 外围设备和内存之间的控制方式
- 用于控制设备和内存或CPU之间的数据传送

1.程序直接控制方式

• 一种轮待询等的方法, 让 CPU 一直查寄存器的状态, 直到状态标记为完成

2.中断驱动程序

- 有一个硬件的中<mark>断控制器</mark>,当设备完成任务后触发中断到中断控制器,中断控制器就通知 CPU,<mark>例如键盘</mark>
- 一个中断产生了, CPU 需要停下当前手里的事情来处理中断
 - 软中断,例如代码调用 INT 指令触发
 - 硬件中断,就是硬件通过中断控制器触发的
- 中断的方式对于频繁读写数据的磁盘,并不友好,这样 CPU 容易经常被打断,会占用 CPU 大量的时间,使用DMA解决

3.DMA方式 (Direct Memory Access)

概念	可以使得设备在 CPU 不参与的情况下,能够自行完成把设备 I/O 数据放入到内存要实现 DMA 功能要有 DMA 控制器硬件的支持		
工作方式	 CPU 需对 DMA 控制器下发指令,告诉它想读取多少数据,读完的数据放在内存的某个地方就可以了; 接下来,DMA 控制器会向磁盘控制器发出指令,通知它从磁盘读数据到其内部的缓冲区中,接着磁盘控制器将缓冲区的数据传输到内存; 当磁盘控制器把数据传输到内存的操作完成后,磁盘控制器在总线上发出一个确认成功的信号到 DMA 控制器; DMA 控制器收到信号后,DMA 控制器发中断通知 CPU 指令完成,CPU 就可以直接用内存里面现成的数据了 		
工作流程	1. 初始化DMA控制器并启动磁盘 2. 从磁盘传输一块数据到内存缓冲区 3. DMA控制器发送中断请求 4. 执行DMA结束中断服务程序		
特性	整个过程仅仅在开始和结束时需要CPU干预每个DMA控制器对应一台设备与内存传递数据DMA方式主要用于块设备、磁盘是典型的块设备		
示例图	① CPU 对 DMA 编程 ② DMA 请求磁盘控制器 将数据放入到内存 DMA 控制器 控制寄存器 ② DMA 请求磁盘控制器 将数据放入到内存 磁盘 ③ 磁盘控制器 将数据放入到内存		

4.通道控制方式

四种方式的比较

I/O控制方式	过程	CPU干 预频率	每次传输 数据的单位	数据流向	优缺点
程序直接控制 方式	CPU发出指令后需要不断轮 询。	极高	字	设备-CPU-内存 内存-CPU-设备	每一个阶段的
中断驱动方式	CPU发出I/O指令后可以做 其他事,本次I/O完成后设 备控制器发出中断信号。	高	字	设备-CPU-内存 内存-CPU-设备	优点都是解决 上一个缺点。是 最大,就是PU对 I/O过程的干预, 把CPU从斯事中的I/O控制事来, 以便更脱出地生务。 完成其他任务。
DMA方式	CPU发出I/O命令后可以做 其他事,本次I/O完成后 DMA控制器发出中断信号。	中	块	设备-内存 内存-设备	
通道控制方式	CPU发出I/O指令后可以做 其他事。通道会执行通道程 序以完成I/O,完成后通道 向CPU发出中断信号。	低	一组块	设备-内存 内存-设备	

设备分配

- 设备分配指根据用户的I/O请求分配所需的设备
- 计算机系统为每台设备确定一个设备的绝对号以便区分和识别设备

设备分配的策略

分配的原则	 设备固有属性决定了设备的使用方式(充分发挥设备的使用效率,尽可能让设备忙碌) 设备独立性可以提高设备分配的灵活性和设备的利用率(设备独立性是指用户使用设备的透明性,即用户程序与实际使用的物理设备无关) 设备安全性可以保证分配设备时不会导致永久阻塞(要避免造成进程死锁) 	
设备分配的方式	 静态分配→对独占设备的分配→在作业执行前分配→不会出现死锁→设备的使用率低 动态分配→在进程执行中分配,通过系统调用发送请求,根据具体策略分配设备→分配算法不好时会出现死锁→设备利用率高 	
设备分配算法	先请求先分配,优先级高者分配(类比调度算法)	

设备分配的安全性

定义	• 设备分配安全性是指设备分配中应防止发生进程死锁		
安全分配方式	 为进程分配一个设备后就将该进程阻塞,本次I/0完成后才将进程唤醒 安全分配方式在一个时间段内每个进程只能使用一个设备。 优点:破坏了请求等待条件,不会死锁。 缺点:对于一个进程来说,CPU和I/0设备只能串行工作,系统资源利用率低。 		
不安全分配方式	 ・进程发出I/0请求后,系统为其分配I/0设备,进程可继续执行,之后还可以发出新的I/0请求,只有某个I/0请求得不到满足时才将进程阻塞 ・不安全分配方式一个进程可以同时使用多个设备 ・优点:进程的计算任务和I/0任务可以并行处理,使进程推进。 ・缺点:有可能发生死锁。 		

逻辑设备名到物理设备名的映射

目的	为了提高设备分配的灵活性和利用率→分别实现I/0重定向→所有引入了设备独立性		
定义	 设备独立性:指应用程序独立于具体使用的物理设备/用户在编程序时使用的设备与实际设备无关 逻辑设备表LUT:将逻辑设备名映射为物理设备名 LUT表项包括:逻辑设备名,物理设备名,设备驱动程序入口地址 		
分类	・ 两种方式设置逻辑设备表・ 1. 整个系统只设置一张LUT→适用于单用户系统・ 2. 每个用户设置一张LUT→用户登陆时,系统为用户建立一个进程,同时建立一张LUT		
好处	・ 方便用户编程・ 使程序运行不受具体机器环境的限制・ 便于程序移植		