

Chapter 2

Atoms, Molecules, and Ions

- The atom contains:
 - Electrons found outside the nucleus; negatively charged.

 Protons – found in the nucleus; positive charge equal in magnitude to the electron's negative charge.

The number of protons in an atom is called the atomic number, (Z).

 Neutrons – found in the nucleus; no charge; virtually same mass as a proton.

- The nucleus is:
 - Small compared with the overall size of the atom.
 - Extremely dense; accounts for almost all of the atom's mass.

Nuclear Atom Viewed in Cross Section

© Cengage Learning, All Rights Reserved.

Isotopes

- Atoms with the same number of protons but different numbers of neutrons.
- Show almost identical chemical properties; chemistry of atom is due to its electrons.
- In nature most elements contain mixtures of isotopes.

Two Isotopes of Sodium

- Isotopes are identified by:
 - Atomic Number (Z) number of protons
 - Mass Number (A) number of protons plus number of neutrons

Periodic Table of The Elements

EXERCISE!

A certain isotope X contains 23 protons and 28 neutrons.

- What is the mass number of this isotope?
- Identify the element.

Mass Number = 51 Vanadium

EXERCISE!

A certain isotope X⁺ contains 54 electrons and 78 neutrons.

What is the mass number of this isotope?

Chemical Bonds

- Covalent Bonds
 - Bonds form between atoms by sharing electrons.
 - Resulting collection of atoms is called a molecule.

Chemical Bonds

- Ionic Bonds
 - Bonds form due to force of attraction between oppositely charged ions.
 - lon atom or group of atoms that has a net positive or negative charge.
 - Cation positive ion; lost electron(s).
 - Anion negative ion; gained electron(s).

CONCEPT CHECK!

Which of the following statements regarding Dalton's atomic theory are still believed to be true?

- I. Elements are made of tiny particles called atoms.
- II. All atoms of a given element are identical.
- III. A given compound always has the same relative numbers and types of atoms.
- IV. Atoms are indestructible.

Section 2.7 An Introduction to the Periodic Table

The Periodic Table

- Metals vs. Nonmetals
- Groups or Families elements in the same vertical columns; have similar chemical properties
- Periods horizontal rows of elements

Section 2.7 An Introduction to the Periodic Table

The Periodic Table

Section 2.7 An Introduction to the Periodic Table

Groups or Families

 Table of common charges formed when creating ionic compounds.

Group or Family	Charge
Alkali Metals (1A)	1+
Alkaline Earth Metals (2A)	2+
Halogens (7A)	1—
Noble Gases (8A)	0

Naming Compounds

- Binary Compounds
 - Composed of two elements (CO, H₂O, CCl₄, NH₃)
 - Ionic and covalent compounds included
- Binary Ionic Compounds
 - Metal—nonmetal (Mg₃N₂, NaCl)
- Binary Covalent Compounds
 - Nonmetal—nonmetal (SF₆)

2.8 Naming Simple Compounds (Chemical nomenclature)

-nomenclature of some simple inorganic compounds

Ionic Compounds (Most ionic compounds contain metal + nonmetal atoms)

Cations

- Positively charged ions
- Formed from metals
- Atoms lose electrons
- **e.g.**, **Na** has 11 *e* and 11 *p*

Examples:

NaCl K₂SO₄

Exception: NH₄CI

Na+ has 10 *e*- and 11 *p*

Anions

- Negatively charged ions
- Formed from non-metals
- Atoms gain electrons

e.g., CI has 17 *e* and 17 *p*

CI-has 18 *e*-and 17 *p*

^{*}Elements shown in color do not normally form compounds having monatomic ions.

Rules for Predicting the Charges on Monatomic Ions:

- 1. In most main-group **metallic** elements: charge = group number in the periodic table (the Roman numeral).
- 2. Some metallic elements of high atomic number have more than one cation:
- (i) Common cations, charge = (group number 2)
- (ii) Charge = group number.

Example (Pb): common ion Pb2+ in addition to Pb4+

- 3. Most transition elements form more than one monatomic cation.
- -Most of these elements have one ion with a charge of 2+.
 - Examples: (Fe) has common cations Fe²⁺ and Fe³⁺.
 - (Cu) has common cations Cu⁺ and Cu²⁺.
 - 4. Charge on a monatomic anion for a **nonmetallic main-group element.**

Example: (O) has the monatomic anion $O^{2^{-}}$. (The group number is 6; the charge is [(6-8)= -2]

> Rules for Naming Monatomic Ions

1. Monatomic cations are named after the element if there is only one such ion.

Example: Al³⁺ is called aluminum ion; Na⁺ is called sodium ion.

2. If there is more than one monatomic cation of an element→Rule 1 is not sufficient →Use *Stock system* Example: Fe²⁺ is called iron(II) ion and Fe³⁺ is called iron(III) ion.

-Older system of nomenclature, such ions are named by adding the suffixes *-ous* and *-ic* to a stem name of the element to indicate the ions of lower and higher charge, respectively.

Examples:

- Fe²⁺ (ferrous ion) and Fe³⁺ (ferric ion) Cu⁺ (cuprous ion) and Cu²⁺ (cupric ion)
- -Few transition metal cations, such as Zn, have only a single ion
 → usually name them by just the metal name.
- -Also, It's not wrong to name Zn2+ as zinc(II) ion.
- 3. The names of the monatomic **anions** are obtained from a stem name of the element followed by the suffix *-ide*.
- Example: Br⁻ is called **bromide** ion, from the stem name *brom-* for bromine and the suffix *-ide*.

TABLE 2.4 Common Cations o		f the Transition Elements				
lon	Ion Name		lon	Ion Name	lon	Ion Name
Cr ³⁺	Chromiu	m(III) or chromic	Co ²⁺	Cobalt(II) or cobaltous	Zn^{2+}	Zinc
Mn^{2+}	Mangane	se(II) or manganous	Ni ²⁺	Nickel(II) or nickel	Ag^+	Silver
Fe ²⁺	Iron(II) o	r ferrous	Cu ⁺	Copper(I) or cuprous	Cd^{2+}	Cadmium
Fe ³⁺	Iron(III)	or ferric	Cu ²⁺	Copper(II) or cupric	Hg^{2+}	Mercury(II) or mercuric

> Polyatomic Ions

(oxoanions)

TABLE 2.5 Some Common Polyatomic Ions						
Name	Formula	Name	Formula			
Mercury(I) or mercurous	Hg_2^{2+}	Permanganate	$\mathrm{MnO_4}^-$			
Ammonium	$\mathrm{NH_4}^+$	Nitrite	NO_2^-			
Cyanide	CN ⁻	Nitrate	NO_3^-			
Carbonate	CO_3^{2-}	Hydroxide	OH^-			
Hydrogen carbonate (or bicarbonate)	HCO ₃	Peroxide	O_2^{2-}			
Acetate	$C_2H_3O_2^-$	Phosphate	PO_4^{3-}			
Oxalate	$C_2O_4^{\ 2-}$	Monohydrogen phosphate	HPO_4^{2-}			
Hypochlorite	ClO ⁻	Dihydrogen phosphate	$H_2PO_4^-$			
Chlorite	ClO_2^-	Sulfite	SO_3^{2-}			
Chlorate	ClO ₃	Sulfate	SO_4^{2-}			
Perchlorate	ClO ₄	Hydrogen sulfite (or bisulfite)	${\rm HSO_3}^-$			
Chromate	CrO_4^{2-}	Hydrogen sulfate (or bisulfate)	${ m HSO_4}^-$			
Dichromate	$\operatorname{Cr_2O_7}^{2-}$	Thiosulfate	$S_2O_3^{2-}$			

Binary Ionic Compounds (Type I)

- 1. The cation is always named first and the anion second.
- 2. A monatomic cation takes its name from the name of the parent element.
- 3. A monatomic anion is named by taking the root of the element name and adding –*ide*.

Binary Ionic Compounds (Type I)

Examples:

KCl Potassium chloride

MgBr₂ Magnesium bromide

CaO Calcium oxide

Binary Ionic Compounds (Type II)

- Metals in these compounds form more than one type of positive ion.
- Charge on the metal ion must be specified.
- Roman numeral indicates the charge of the metal cation.
- Transition metal cations usually require a Roman numeral.
- Elements that form only one cation do not need to be identified by a roman numeral.

Binary Ionic Compounds (Type II)

Examples:

CuBr

Copper(I) bromide

FeS

Iron(II) sulfide

PbO₂

Lead(IV) oxide

Polyatomic Ions

- Must be memorized (see Table 2.5 on pg. 65 in text).
- Examples of compounds containing polyatomic ions:

NaOH Sodium hydroxide

 $Mg(NO_3)_2$ Magnesium nitrate

 $(NH_4)_2SO_4$ Ammonium sulfate

- NO₂ nitr<u>ite</u> ion
 NO₃ nitr<u>ate</u> ion
 ClO hypochlorite ion
 ClO₂ chlorite ion
 ClO₃ chlorate ion
 ClO₄ perchlorate ion
- > Naming an Ionic Compound from Its Formula
 - (Q) Name the following compounds:

Metal → nonmetal

Mg₃N₂: magnesium nitride

CrSO₄: chromium(II) sulfate

PbCrO₄: Lead(II) chromate

FeCl₂: Iron (II) chloride

FeCl₃: Iron (III) chloride

Cr₂S₃: chromium(III) sulfide

'Criss-cross "rule

- K₂O potassium oxide
- NH₄ClO₃ ammonium chlorate
- $Mg(C_2H_3O_2)_2$ magnesium acetate
- Cr_2O_3 chromium(III) oxide
- ZnBr₂ zinc bromide

(Q) Determine The Formula of the following compounds:

Calcium hydroxide	Ca(OH) ₂
Manganese(II) bromide	MnBr ₂
Ammonium phosphate	$(NH_4)_3PO_4$
Mercury(I) Fluoride	Hg_2F_2
Mercury(II) Fluoride	HgF_2
Mercury(I) nitride	$(Hg_2)_3N_2$
Iron(II) phosphate	$Fe_3(PO_4)_2$
Titanium(IV) oxide	TiO ₂
Thallium(III) nitrate	$TI(NO_3)_3$

- (Q) Which is the correct name for Cu₂S?
 - A. copper sulfide
 - B. copper(II) sulfide
 - C. copper(II) sulfate
 - D. copper(I) sulfide
 - E. copper(I) sulfite
 - (Q) Which is the correct formula for ammonium sulfite?
 - A. NH₄SO₃
 - B. $(NH_4)_2SO_3$
 - C. (NH₄)₂SO₄
 - D. NH₄S
 - E. $(NH_4)_2S$

 For each of the following binary compounds, decide whether the compound is expected to be ionic or molecular.

A) SeF₄

Molecular

B) LiBr

Ionic

C) SiF₄

Molecular

D) Cs₂O

Ionic

(Q) Name the following compounds:

(a) $Fe(NO_3)_2$ iron(II) nitrate

(b) Na₂HPO₄ Sodium hydrogen phosphate

(c) $(NH_4)_2(C_2O_4)$ Ammonium oxalate

(Q) Write chemical formulas for the following compounds:

(a) cesium sulfide Cs₂S

(b) calcium phosphate $Ca_3(PO_4)_2$

Binary Covalent Compounds (Type III):

(Non-metal + Non-metal) or (Non-metal + Metalliod)

- **-binary compounds:** *composed of only two elements e.g.* NaCl, MgCl₂ (ionic). CO, H₂O, CCl₄, NH₃ (molecular)
- -Order of Elements in the Formula: In ionic compounds: metal → non-metal NaCl not ClNa

In molecular compounds:

> Rules for Naming Binary Molecular Compounds

- 1. The name of the compound has the elements in the order given in the previous formula.
- 2. Name the first element using the exact element name.
- 3. Name the second element by writing the stem name of the
- element with the suffix -ide
- 4. You add a prefix, derived from the Greek, to each element name to denote the subscript of the element in the formula. Note: the prefix *mono-* is not used, unless it is needed to distinguish two compounds of the same two elements.
 - N₂O₃ dinitrogentrioxide
 - HCI hydrogen chloride NOT monohydrogen monochloride

CO carbon monoxide CO₂ carbon dioxide

 SF_4 sulfur tetrafluoride CIO_2 chlorine dioxide SF_6 sulfur hexafluoride CI_2O_7 dichlorine heptoxide¹⁸

H₂S dihydrogen sulfide NO nitrogen monoxide

common name: hydrogen sulfide common name: nitric oxide

H₂O water

NH₃ ammonia

N₂O₄ dinitrogen tetroxide

P₄O₆ tetraphosphorus hexoxide

Cl₂O₆ dichlorine hexoxide

PCl₃ phosphorus trichloide

PCl₅ phosphorus pentachloide

disulfur dichloride tetraphosphorus trisulfide carbon disulfide sulfur trioxide S_2Cl_2

 P_4S_3

 CS_2

 SO_3

nitrogen dioxide

Chlorine monofluoride

Boron trifluoride

Hydrogen selenide Or dihydrogen selenide

 $GaBr_3$ $GeBr_4$ $CaBr_2$ $Hg_2(NO_2)_2.H_2O$ Gallium (III) bromide
Germanium tetrabromide
Calcium bromide
Mercury(I) nitrite monohydrate

Prefixes Used to Indicate Number in **Chemical Names**

Table 2.6 Prefixes Used to **Indicate Number** in Chemical Names

Prefix	Number Indicated
mono- di- tri- tetra- penta- hexa- hepta- octa- nona-	1 2 3 4 5 6 7 8 9
deca-	10

© Cengage Learning. All Rights Reserved.

Binary Covalent Compounds (Type III)

- Formed between two nonmetals.
- 1. The first element in the formula is named first, using the full element name.
- 2. The second element is named as if it were an anion.
- Prefixes are used to denote the numbers of atoms present.
- 4. The prefix *mono* is never used for naming the first element.

Binary Covalent Compounds (Type III)

Examples:

 CO_2

Carbon dioxide

SF₆

Sulfur hexafluoride

 N_2O_4

Dinitrogen tetroxide

Naming Hydrates

- Hydrate is a compound that contains water molecules weakly bound in the crystals
 - 1. Name ionic compound
 - 2. Give number of water molecules in formula using Greek prefixes

Ca(SO₄).2H₂O calcium sulfate dihydrate

CoCl₂.6H₂O cobalt(II) chloride hexahydrate

Fel₃.3H₂O iron(III) iodide trihydrate

Fe(NO₂)₃.9H₂O iron(III) nitrite nonahydrate

TABLE 2.6 Greek Prefixes for Naming Compounds		
Number	Prefix	
1 2 3 4 5 6 7 8	mono- di- tri- tetra- penta- hexa- hepta- octa-	
9	nona- deca-	

Flowchart for Naming Binary Compounds

Overall Strategy for Naming Chemical Compounds

Acids

- Acids can be recognized by the hydrogen that appears first in the formula—HCl.
- Molecule with one or more H⁺ ions attached to an anion.

Acids

Hollo troot t'C + acid

If the anion does <u>not</u> contain oxygen, the acid is named with the prefix <u>hydro</u>—and the suffix <u>-ic</u>.

Examples:

HCl Hydrochloric acid

HCN Hydrocyanic acid

H₂S Hydrosulfuric acid

et.

if anion (oppr)

-> Hydro +ic+ rud

if lagh

ts Pe I

Acids

- If the anion does contain oxygen:
 - The suffix -ic is added to the root name if the anion name ends in -ate.
- Examples:

HNO ₃	Nitric acid
H ₂ SO ₄	Sulfuric acid
$HC_2H_3O_2$	Acetic acid

Nos Cos

Acids

- If the anion does contain oxygen:
 - The suffix <u>-ous</u> is added to the root name if the anion name ends in <u>-ite</u>.
- Examples:

HNO₂ Nitrous acid

H₂SO₃ Sulfurous acid

HClO₂ Chlorous acid

> Acids and Corresponding Anions

lable 2.8	Some Oxoanions and Their Corresponding Oxoacids		
Oxoanion		Oxoacid	
CO_3^{2-}	Carbonate ion	H_2CO_3	Carbonic acid
NO_2^-	Nitrite ion	HNO_2	Nitrous acid
NO_3^-	Nitrate ion	HNO_3	Nitric acid
PO ₄ ³⁻	Phosphate ion	H_3PO_4	Phosphoric acid
SO ₃ ²⁻	Sulfite ion	H_2SO_3	Sulfurous acid
SO ₄ ²⁻	Sulfate ion	H_2SO_4	Sulfuric acid
ClO	Hypochlorite ion	HC10	Hypochlorous acid
ClO ₂	Chlorite ion	HClO ₂	Chlorous acid
ClO ₃	Chlorate ion	HClO ₃	Chlor <i>ic acid</i>
ClO ₄	Perchlorate ion	HClO ₄	Perchloric acid

Binary Compound

HBr(g), hydrogen bromide HF(g), hydrogen fluoride

Acid Solution

hydrobromic acid, HBr(aq) hydrofluoric acid, HF(aq)

Selenium has an oxoacid, H₂SeO₄, called selenic acid. What is the formula and name of the corresponding anion?

Selenate SeO₄²-

Exercise

What are the name and formula of the anion corresponding to perbromic acid, HBrO₄?

BrO₄ perbromate

Flowchart for Naming Acids

EXERCISE!

Which of the following compounds is named incorrectly?

a) KNO ₃	potassium nitrate
b) TiO ₂	titanium(II) oxide
c) Sn(OH) ₄	tin(IV) hydroxide
d) PBr ₅	phosphorus pentabromide
e) CaCrO ₄	calcium chromate