Trabajo Final: Módulos

Estructuras Algebraicas

Nicolas Silva Nash

UNCO

Definición de Módulo

Sea R un anillo. Un R-módulo por derecha M es

- (I) un grupo abeliano aditivo (M, +) junto con
- (II) una aplicación

$$M \times R \rightarrow M$$
 con $(m, r) \mapsto mr$,

llamada multiplicación de módulo, para la cual tenemos

- Ley asociativa: $(mr_1)r_2 = m(r_1r_2)$.
- 2 Leyes distributivas:

$$(m_1+m_2)r = m_1r + m_2r, \quad m(r_1+r_2) = mr_1 + mr_2.$$

3 Ley unitaria: $m \cdot 1 = m$.

Con m, m_1 , m_2 elementos arbitrarios de M y r, r_1 , r_2 elementos arbitrarios de R.

Módulos

Algunas observaciones:

- 1 Podemos definir de manera análoga un R-módulo por izquierda.
- Notamos M_R al R-módulo por derecha y _RM al R-módulo por izquierda.
- \odot Si un módulo verifica ambas condiciones para anillos R (por derecha) y S (por izquierda), y además verifica:

$$s(mr) = (sm)r, \quad \forall s \in S, r \in R$$

decimos que es un S-R-bimódulo al que notamos ${}_{S}M_{R}$.

- Si 0_M es el cero de M, 0_R es el cero de R, entonces:
 - $0_M \cdot r = 0_M$
 - $m \cdot 0_R = 0_M$, $\forall m \in M$, $r \in R$

Submódulos

Definición: Sea M un R-módulo por derecha. Un subconjunto A de M se llama un submódulo de M, notacionalmente $A \hookrightarrow M$ (o también $A_R \hookrightarrow M_R$) si A es un R-módulo por derecha con respecto a la restricción de la suma y la multiplicación de módulo de M a A.

Usamos la notación $A \hookrightarrow M$ para la relación de submódulo, para tener disponible $A \subseteq M$ para la inclusión en teoría de conjuntos. Además, denotamos $A \hookrightarrow_{\neq} M$ si y sólo si A es un submódulo propio de M.

Notamos $A \not\hookrightarrow M$ si A no es un submódulo de M. Observamos que de $A \not\hookrightarrow M$ no necesariamente se sigue que $A \nsubseteq M$.

Submódulos

Lema:

Sea M un R-módulo por derecha. Si A es un subconjunto de M y $A \neq \emptyset$, entonces las siguientes afirmaciones son equivalentes:

- ② A es un subgrupo del grupo aditivo de M y para todo $a \in A$ y todo $r \in R$, tenemos $ar \in A$ (donde ar es la multiplicación de módulo en M).
- 3 Para todos $a_1, a_2 \in A$, $a_1 + a_2 \in A$ (con respecto a la suma en M) y para todo $a \in A$ y todo $r \in R$, tenemos $ar \in A$.

Submódulos: Ejemplos y observaciones

- Todo módulo M posee los submódulos triviales 0 y M, donde 0 es el submódulo que contiene solo el elemento cero de M.
- ② Sea M arbitrario y sea $m_0 \in M$.

$$m_0R = \{m_0r \mid r \in R\}$$

es un submódulo de M que se llama el submódulo cíclico de M generado por m_0 .

- **3** Si M_K es un espacio vectorial sobre el campo K, entonces los submódulos se laman subespacios (lineales).
- lacktriangle En el anillo $\mathbb Z$ de los números naturales, cada ideal es cíclico.
- Los ideales cíclicos de un anillo se llaman ideales principales y un anillo conmutativo se llama anillo de ideales principales si cada ideal es un ideal principal.
- **1** Un campo K tiene solo los ideales triviales 0 Y K.

Submódulos: Definiciones

(1) Un módulo $M=M_R$ se llama *cíclico* si y solo si

$$\exists m_0 \in M: M = m_0 R$$

(2) Un anillo R se llama simple si y solo si

$$\forall A \hookrightarrow R : A = 0 \text{ or } A = R$$
,

es decir, 0 y R son los únicos ideales bilaterales de R.

(3) Un submódulo $A \hookrightarrow M$ se dice un *submódulo minimal* de M si y solo si

$$0 \hookrightarrow B \hookrightarrow A \Rightarrow B = 0 \circ B = A$$
,

(4) Un submódulo $A \hookrightarrow M$ se dice un *submódulo maximal* sí y solo si

$$A \hookrightarrow B \hookrightarrow M \Rightarrow B = A \circ B = M$$
.

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ 夕久(*)

Submódulos

Lema. *M* es simple si y solo si

- $M \neq 0$

Prueba.

- (\Rightarrow): Supongamos que M es simple. Sea $m \in M$, $m \neq 0$. Entonces $m = m \cdot 1 \in mR$, luego $mR \neq 0$. Como $mR \subset M$ y M es simple, tenemos que necesariamente mR = M.
- (\Leftarrow): Sea A tal que $0 \hookrightarrow_{\neq} A \hookrightarrow_{\neq} M$ y sea $a \in A$, $a \neq 0$. Luego $aR \in A$. Además, por la hipótesis, $a \in M$ implica aR = M. Sigue que $aR = M \subset A$, luego A = M.

Ejemplos

- **1** \mathbb{Z} no contiene ideales minimales (simples), ya que si $n\mathbb{Z} \neq 0$, entonces $2n\mathbb{Z}$ es un ideal no nulo contenido dentro de $n\mathbb{Z}$.
- ② Los ideales maximales de $\mathbb Z$ son exactamente los ideales primos $p\mathbb Z$, donde p es un número primo. La prueba de esto sigue del hecho de que

$$m\mathbb{Z} \hookrightarrow n\mathbb{Z} \iff n \mid m.$$

$$0 \hookrightarrow_{\neq} 2a\mathbb{Z} \hookrightarrow_{\neq} a\mathbb{Z} \hookrightarrow A \hookrightarrow \mathbb{Q}.$$

Por lo tanto, A no puede ser minimal. Más adelante veremos que no existen submódulos maximales.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Definición de Álgebra

Aprovechamos esta oportunidad para recordar la definición de un álgebra.

Definición. Un álgebra es un par (R, K), donde

- (I) R es un anillo.
- (II) K es un anillo conmutativo.
- (III) R es un módulo derecho sobre K para el cual se cumple

$$\forall r_1, r_2 \in R, k \in K : (r_1 r_2) k = r_1(r_2 k) = (r_1 k) r_2.$$

Hemos definido a R con un elemento unitario y a K actuando unitariamente sobre R. El par (R,K) también se denomina K-álgebra o álgebra sobre K.

No tiene sentid definir a R como una "álgebra derecha sobre K". Dado que K es conmutativo, podemos, a partir de la definición

$$kr := rk$$
, $\forall r \in R, k \in K$,

Nicolas Silva Nash (UNCO)