Clase 23

Comenzamos este nuevo capítulo estudiando la *continuidad* de una función en un punto, este concepto a veces es llamado *continuidad puntual*.

Continuidad Puntual

(a) Es posible dibujar la gráfica de la función $f(x)=x^2$ "sin despegar el lápiza del papel".

(b) La función $f(x) = \frac{x^2 + x - 2}{x - 1}$ no está defini da en c = 1.

(c) Para la función f(x) = 1, si $x \ge 0$, y f(x) = -1, si x < 0, no existe $\lim_{x \to 0} f(x)$.

(d) Para $f(x) = \frac{x^2 - 1}{x - 1}$, si $x \neq 1$ y f(1) = 0, sí existe $\lim_{x \to 0} f(x)$, pero no coincide con f(1).

Figura 1

Definición 1 Sean $f: A \longrightarrow \mathbb{R}$ una función y $c \in A$ tal que existe $(a,b) \subseteq A$ con $c \in (a,b)$. Diremos que f es continua en c si

$$\lim_{x \to c} f(x) = f(c).$$

En otro caso diremos que f es discontinua en c.

Observación 2 Para que una función f sea continua en c deben ocurrir las siguientes afirmaciones:

- (a) f está definida en c.
- (b) Existe $\lim_{x\to c} f(x)$.

(c)
$$\lim_{x \to c} f(x) = f(c).$$

Ejemplo 3 Las siguientes funciones son continuas en cada número real c:

- (1) f(x) = k, donde k es un número real fijo.
- (2) Id(x) = x.
- (3) $f(x) = x^2$

Ejemplo 4 Las siguientes funciones NO son continuas en el punto c que se indica:

(1)
$$f(x) = \frac{x^2 + x - 2}{x - 1}$$
 en $c = 1$, pues aunque $\lim_{x \to c} f(x)$ existe, f no está definida en $c = 1$.

(2)
$$f(x) = \begin{cases} 1 & \text{si } x \ge 0, \\ -1 & \text{si } x < 0. \end{cases}$$
 en $c = 0$, pues aunque f está definida en $c = 0$, no existe $\lim_{x \to c} f(x)$.

(3)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{si } x \neq 1 \\ 0 & \text{si } x = 1. \end{cases}$$
 en $c = 1$, pues aunque f está definida en $c = 1$ y $\lim_{x \to c} f(x)$ existe,
$$\lim_{x \to c} f(x) = 2 \neq 0 = f(c).$$

El siguiente teorema es consecuencia inmediata del teorema "Aritmética de los límites de funciones".

Teorema 5 Sean $f, g: A \longrightarrow \mathbb{R}$ dos funciones $y \in A$ tal que existe $(a, b) \subseteq A$ con $c \in (a, b)$. Si $f \ y \ g$ son continuas en c, entonces:

- (1) f + g es continua en c.
- (2) kf es continua en c, donde k es un número real fijo.
- (3) fg es continua en c.
- (4) $si\ g(c) \neq 0, \frac{1}{q}$ es continua en c.
- (5) si $g(c) \neq 0$, $\frac{f}{g}$ es continua en c.

Observación 6 (Continuidad en términos de ε - δ) Sean $f:A \longrightarrow \mathbb{R}$ una función $y \ c \in A$ tal que existe $(a,b) \subseteq A$ con $c \in (a,b)$. f es continua en c si para cada $\varepsilon > 0$ existe $\delta > 0$ tal que para cualquier $x \in (a,b)$ que cumple que $|x-c| < \delta$ se tiene que $|f(x)-f(c)| < \varepsilon$.

Teorema 7 Sean $f: A \longrightarrow \mathbb{R}$ una función, $c \in A$ tal que existe $(a,b) \subseteq A$ con $c \in (a,b)$, $g: B \longrightarrow \mathbb{R}$ una función tal que existe $(d,e) \subseteq B$ con $f(c) \in (c,d)$. Si f es continua en c g es continua en f(c), entonces $g \circ f$ es continua en c.

Demostración. Sea $\varepsilon > 0$. Como g es continua en f(c), existe $\delta_1 > 0$ tal que para cualquier $y \in (d,e)$ que cumple que $|y-f(c)| < \delta_1$ se tiene que $|g(y)-g(f(c))| < \varepsilon$. Ahora, por ser f continua en c, para el número positivo $\delta_2 = \min\{\delta_1, e-f(c), f(c)-d\}$ existe $\delta > 0$ tal que para cualquier $x \in (a,b)$ que cumple que $|x-c| < \delta$ se tiene que $|f(x)-f(c)| < \delta_2$. Así, si $x \in (a,b)$ cumple que $|x-c| < \delta$, se tiene que $|f(x)-f(c)| < \delta_2$ y de aquí que $|g(f(x))-g(f(c))| < \varepsilon$.

Ejemplo 8 Muestre que la función

$$f(x) = \begin{cases} x \operatorname{sen}\left(\frac{1}{x}\right) & \text{si } x \neq 0\\ 0 & \text{si } x = 0. \end{cases}$$

es continua en cada número real c.

Solución. Se tiene que $\lim_{x\to 0} x=0$ y que la función sen es acotada, así que por el Ejercicio 7 de la lista "Ejercicios de práctica sobre límites de funciones" se tiene que $\lim_{x\to 0} x \sec\left(\frac{1}{x}\right)=0$. Luego,

$$\lim_{x \to 0} x \operatorname{sen}\left(\frac{1}{x}\right) = f(0),$$

es decir, f es continua en 0.

Ahora, si $c \neq 0$, se tiene que la función $\frac{1}{x}$ es continua en c. Por otro lado, en el Teorema 5 de la Ayudantía 13 mostraron que $\lim_{x\to c} \mathrm{sen}(x) = \mathrm{sen}(c)$ para cualquier $c \in \mathbb{R}$, es decir, mostraron que la función sen es continua en cualquier $c \in \mathbb{R}$. Así, por el Teorema 7, se tiene que la función sen $\left(\frac{1}{x}\right)$ es continua en cualquier $c \neq 0$. Luego, por el inciso 3 del Teorema 5, se tiene que f es continua en cualquier $c \neq 0$. Por lo tanto, f es continua en cada número real c.

Figura 2: Se muestra la gráfica de la función $f(x) = \begin{cases} x \operatorname{sen}\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$