Lógica de Primeira Ordem: resolução

Alexandre Rademaker

March 30, 2017

Linguagem

Símbolos lógicos:

- \bullet "(", ")", \rightarrow , \neg , \land , \lor .
- Variáveis
- Símbolo de igualdade

Parâmetros:

- Símbolos quantificadores: ∀ e ∃
- Símbolos predicativos de aridade n. Exemplo: pai².
- Símbolos de constantes (aridade zero). Exemplo: z⁰
- Símbolos de funções de aridade n. Exemplo: $+^2$.

Semântica

Se σ é uma sentença. Como dizer que " σ é verdade em $\mathfrak A$ "? Sem a necessidade de traduzir σ para português?

$$\models_{\mathfrak{A}} \sigma$$

Para uma WFF qualquer, precisamos de:

$$s: V \rightarrow |\mathfrak{A}|$$

Para então, informalmente definir " $\mathfrak A$ satisfaz σ com s" representado por:

$$\models_{\mathfrak{A}} \sigma[s]$$

se e somente se da tradução de σ determinada por \mathfrak{A} , onde a variável x é traduzida por s(x) se x é livre, é verdade.

Interpretação de termos

Definimos a função:

$$\overline{s}: T \to |\mathfrak{A}|$$

que mapea termos para elementos do universo de a. Como:

- **1** Para cada variável x, $\overline{s}(x) = s(x)$.
- Para cada constante c, $\overline{s}(c) = c^{2}$.
- **3** Se t_1, \ldots, t_n são termos e f é uma fução, então

$$\overline{s}(f(t_1,\ldots,t_n))=f^{\mathfrak{A}}(\overline{s}(t_1),\ldots,\overline{s}(t_n))$$

 \overline{s} depende de \mathfrak{A} e s. Notação alternativa para $\overline{s}(t)$ poderia ser $t^{\mathfrak{A}}[s]$.

Interpretação de fórmulas

Fórmulas atômicas. Definimos explicitamente, dois casos:

 Igualdade onde = significa =, não é um parâmetro aberto à interpretações.

$$\models_{\mathfrak{A}} t_1 = t_2 [s] \text{ sse } \overline{s}(t_1) = \overline{s}(t_2)$$

Para um predicado n-ário P:

$$\models_{\mathfrak{A}} P(t_1,\ldots,t_n) \ [s] \ \operatorname{sse} \ \langle \overline{s}(t_1),\ldots,\overline{s}(t_n) \rangle \in P^{\mathfrak{A}}$$

Interpretação de fórmulas

Outras WFF. Definimos recursivamente:

- $\bullet \models_{\mathfrak{A}} \phi \to \psi$ [s] sse ou $\not\models_{\mathfrak{A}} \phi$ [s] ou $\models_{\mathfrak{A}} \psi$ [s] ou ambos.

- **⑤** $\models_{\mathfrak{A}} \forall x \psi$ [s] sse para todo $d \in |\mathfrak{A}|$, temos $\models_{\mathfrak{A}} \psi$ [s(x|d)].

Onde s(x|d) é a função s com uma diferença, para a variável x, ela retorna d.

$$s(x|d)(y) = \begin{cases} s(y) & \text{se } y \neq x \\ d & \text{se } y = x \end{cases}$$

Pragmatics

- Em geral, não lidamos diretamente com a interpretação, mas com teorias que limitem as interpretações que estamos interessados.
- Seja α e β duas sentenças quaisquer e γ a setença $\neg(\beta \land \neg \alpha)$. Suponha $\mathcal I$ uma interpretação que torne α verdadeira, em $\mathcal I$ a fórmula γ também será verdadeira, por que?
- Não precisamos para isso entender nenhum dos símbolos não lógicos de α ou γ .
- Dizemos que $\alpha \models \gamma$ (γ é consequência lógica de α).
- As letras α , γ e β são 'esquemas' de fórmulas.

Consequência Lógica

 $S \models \alpha$ onde S é um conjunto de sentenças. S <u>logically entails</u> α . Se e somente se (sss)

para toda interpretação \mathcal{I} se $\mathcal{I} \models \mathcal{S}$ então $\mathcal{I} \models \alpha$. Em outras palavras, todo modelo de S satisfaz α .

De outra forma, não existe interpretação \mathcal{I} tal que $\mathcal{I} \models \mathcal{S} \cup \{\neg \alpha\}$. Dizemos que $\mathcal{S} \cup \{\neg \alpha\}$ é insatisfatível (unsatisfiable) neste caso.

<u>Valid</u> é um caso especial de <u>entailment</u>: Uma sentença é <u>válida</u> quando $\models \alpha$, ou seja, é consequência lógica de um conjunto vazio. Neste caso, para toda interpretação \mathcal{I} , temos $\mathcal{I} \models \alpha$. Ou $\neg \alpha$ é unsat.

Entailment se reduz para valid: if $S = \{\alpha_1, \dots, \alpha_n\}$ então $S \models \alpha$ sss a sentença $s_1 \wedge \dots \wedge \alpha_n \rightarrow \alpha$ é válida.

Resolução

Dada uma KB e uma sentença α , queremos um procedimento para decidir se $KB \models \alpha$. Se $\beta(x_1, \ldots, x_n)$ é uma fórmula com variáveis livres, queremos ainda um procedimento para para achar termos t_i , se eles existirem, tal que $KB \models \beta(t_1, \ldots, t_n)$.

Mas como veremos, nenhum método computacional poderá sempre nos dar a resposta desejada. Mas queremos um método o mais correto e completo possível.

Lembrando que $KB \models \alpha$ iff $\models (\alpha_1 \land \ldots \land \alpha_n) \rightarrow \alpha$ iff $KB \cup \{\neg \alpha\}$ não é 'satisfatível' iff $KB \cup \{\neg \alpha\} \models \neg TRUE$.

Caso Proposicional

Toda fórmula α pode ser convertida em uma fórmula α' equivalente, na forma de uma conjunção de dijunções de literais, onde literais são átomos ou negação de átomos.

Dizemos que α e α' são equivalentes logicamente e α' está na forma CNF (conjuntive normal form).

$$(p \vee \neg q) \wedge (q \vee r \vee \neg s \vee p) \wedge (\neg r \vee q)$$

Procedimento para CNF

- Eliminar →, ≡ usando o fato destas serem abreviações para fórmulas expressas com ∨, ∧, ¬.
- mover ¬ para dentro, até que aparece apenas em frente a um átomo, usando equivalências:

$$\models \neg \neg \alpha \equiv \alpha
\models \neg (\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)
\models \neg (\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$$

O Distribuir ∧ em ∨ usando

$$\models (\alpha \lor (\beta \land \gamma)) \equiv ((\beta \land \gamma) \lor \alpha) \equiv ((\alpha \lor \beta) \lor (\alpha \lor \gamma))$$

Coletar termos usando

$$\models(\alpha \land \alpha) \equiv \alpha$$
$$\models(\alpha \lor \alpha) \equiv \alpha$$

Example

$$(P \rightarrow Q) \rightarrow R$$

Formula Clausal

Forma abreviada de CNF. Conjunto finito de clausulas onde clausulas são conjuntos finitos de átomos.

Entendidas como a conjunção das clausulas. Onde as clausulas são a dijunção dos literais.

Se p é um literal, usamos \overline{p} para seu complemento. $\overline{p} = \neg p$ e $\neg \overline{p} = p$.

Examples: $[p, \neg q, r]$ e $\{[p, \neg q, r], [q]\}$ e $[\neg p]$ (unit clause)

Importante: {} (fórmula clausal vazia) é diferente de {[]} (fórmula contendo apenas uma cláusula vazia). A [] (clausula vazia) é entendida como $\neg TRUE$ (dijunção não possível) e logo, {[]} é $\neg TRUE$. Mas {} é uma conjunção sem 'constraints', logo TRUE.

Procedimento

Colocar as fórmulas de KB e a fórmula α na forma CNF.

Determinar se o conjunto resultante é SAT.

Entailment então se reduz a SAT do conjunto de fórmulas em CNF.