Algorithmen & Datenstrukturen

Decrease-and-Conquer-Algorithmen

Literaturangaben

Diese Lerneinheit basiert größtenteils auf dem Buch "The Design and Analysis of Algorithms" von Anany Levitin.

In dieser Einheit behandelte Kapitel:

- 4 Decrease-and-Conquer
- 4.1 Insertion Sort
- 4.2 Topological Sorting
- 4.3 Algorithms for Generating Combinatorial Objects (Auszug)
- 4.4 Decrease-by-a-Constant-Factor Algorithms (Auszüge)
- 4.5 Variable-Size-Decrease Algorithms (Auszüge)

Decrease-and-Conquer Strategie

- Reduziere das Problem auf ein gleichartiges Problem geringerer Größe
- Löse das kleinere Problem (top-down oder bottom-up)
- Erweitere die Lösung des kleineren Problems zur Lösung des größeren Problems

Alternative Namen:

- Induktiver Ansatz
- Inkrementeller Ansatz

Drei Typen von Decrease-and-Conquer

- Reduktion um Konstante (meist 1)
 - Insertion Sort
 - Topologische Sortierung
 - Generierung von Permutationen, Teilmengen

- Reduktion um konstanten Faktor (meist 2)
 - Binäre Suche
 - Potenzieren durch Quadrieren
 - Multiplikation à la Russe
- Reduktion um variable Größe
 - Euklidischer Algorithmus
 - Selektionsproblem
 - Algorithmen auf binären Suchbäumen
 - Interpolations suche

Reduktion um Konstante

Reduktion um konstanten Faktor

Decrease-and-Conquer

Reduktion um Konstante

Insertion-Sort

Grundidee

Um das Array A[0..n-1] zu sortieren, sortiere zunächst das Array A[0..n-2] rekursiv und füge dann A[n-1] an der richtigen Stelle von A[0..n-2] ein

- Implementierung
 Üblicherweise bottom-up (nicht-rekursiv)
- Beispiel:

```
Sortiere 7, 2, 8, 4, 5
```

Pseudocode Insertion-Sort

```
ALGORITHM InsertionSort(A[0..n-1])
    //Sorts a given array by insertion sort
    //Input: An array A[0..n-1] of n orderable elements
    //Output: Array A[0..n-1] sorted in nondecreasing order
    for i \leftarrow 1 to n-1 do
         v \leftarrow A[i]
         j \leftarrow i - 1
         while j \geq 0 and A[j] > v do
              A[j+1] \leftarrow A[j]
              j \leftarrow j - 1
         A[j+1] \leftarrow v
```

Analyse Insertion-Sort

- Zeiteffizienz:
 - $T_{worst}(n) = n(n-1)/2 \rightarrow T(n) \in O(n^2)$
 - $T_{best}(n) = n-1 \rightarrow T(n) \in \Omega(n)$
 - $T_{avg}(n) \approx n^2/4$
- Speicherplatzeffizienz: in-place
- Insgesamt bestes elementares
 Sortierverfahren
- Mögliche Optimierung: Binäres Insertion Sort

DAGs und topologisches Sortieren

- DAG: Directed Acyclic Graph
 - Gerichteter Graph ohne (gerichtete) Zyklen

- Anwendungen: Modellierung von Problemen mit Abhängigkeiten/Vorbedingungen
 (z. B. Konstruktionsprojekte, Versionskontrollsysteme)
- Topologisches Sortieren:
 - Lineare Anordnung der Knoten, so dass die Startknoten aller Kanten vor ihren Endknoten liegen

Topologisches Sortieren: Beispiel

Bestimmen Sie eine korrekte Ankleidefolge

Topologische Sortierung mit Tiefensuche

- 1) Führe auf dem Graphen eine **Tiefensuche** aus
- Vermerke die Reihenfolge, in der die Knoten vom Stack gelöscht werden
- 3) Die umgekehrte Reihenfolge ist eine Lösung des Problems
- Effizienz
 - Tiefensuche $\Theta(|V|+|E|)$ bzw. $\Theta(|V|^2)$
 - Ausgabe in umgekehrter Reihenfolge ⊖(|V|)

Topologische Sortierung durch Entfernung von Einstiegspunkten

• Einstiegspunkt:

- Knoten, zu dem keine Kante führt
- Ein DAG besitzt mindestens einen Einstiegspunkt

Algorithmus

- 1) Ermittle alle Einstiegspunkte
- 2) Entferne alle Einstiegspunkte und die von ihnen ausgehenden Kanten
- 3) Wiederhole Schritt 1 und 2 bis es keine Knoten mehr gibt
- 4) Die Reihenfolge, in der die Einstiegspunkte gefunden werden, ist eine Lösung des Problems
- Effizienz: Wie beim Algorithmus mit Tiefensuche

Permutationen erzeugen

Permutationen mit minimalen Veränderungen

- Wenn n = 1 gebe 1 zurück, sonst
- generiere rekursiv die Liste aller Permutationen von 12...n-1 und
- füge n an jede Stelle dieser Permutationen ein.
- Arbeite dabei zunächst von rechts nach links und ändere bei jeder neuen Permutation die Arbeitsrichtung.

Beispiel: n=3

Start:	1		
2 in 1 von rechts nach links einfügen:	12	21	
3 in 12 von rechts nach links einfügen:	123	132	312
3 in 21 von links nach rechts einfügen:	321	231	213

Decrease-and-Conquer

Reduktion um konstanten Faktor

Beispiel: Binäre Suche

Algorithm *BinarySearch*(*A*[0..*n*-1], *K*)

```
// Implements nonrecursive binary search
// Input: An array A[0..n-1] sorted in ascending order and search key K
// Output: An index of the array's element that is equal to K or -1 if there
           is no such element
l \leftarrow 0, r \leftarrow n - 1
while l \le r do
        m \leftarrow \lfloor (l+r)/2 \rfloor
        if K = A[m] return m
         else if K < A[m] r \leftarrow m - 1
         else l \leftarrow m + 1
return -1
```

Binäre Suche: Analyse

Zeiteffizienz:

$$T_{worst}(n) = T_{worst}([^{n}/_{2}]) + 1$$
, $T_{worst}(1) = 1$
Lösung: $T_{worst}(n) = [log_{2}(n+1)]$

- $T(n) \in O(\log n)$ (sehr schneller Algorithmus)
- Optimal für sortierte Arrays
- Einschränkung: Arbeitet nur mit sortierten Arrays (nicht mit verketteten Listen)

Multiplikation à la Russe

Problem

Berechne das Produkt zweier positiver Ganzzahlen m und n

- Lösungsansatz
 m halbieren und n verdoppeln bis m = 1
- Es gilt

$$m*n = \frac{m}{2}*2n$$
 falls m gerade $m*n = \frac{(m-1)}{2}*2n+n$ falls m ungerade und $m>1$ $m*n = n$ falls $m=1$

Multiplikation à la Russe: Beispiel

Berechne 22 * 27

m	n	+
22	27	
11	54	54
5	108	108
2	216	
1	432	432
		594

 Reduktion auf die Addition aller n-Werte, bei denen m ungerade ist

Decrease-and-Conquer

>>> Reduktion um variable Größe

Beispiel: Euklidscher Algorithmus

 Problem: Finde den größten gemeinsamen Teiler (ggT) zweier positiver Ganzzahlen m und n

Idee:

- Sei m > n (sonst vertausche m und n)
- $ggT(m,n) = ggT(n, m \mod n)$

Beispiel:

• ggT(91,52) = ggT(52,39) = ggT(39,13) = ggT(13,0) = 13

Effizienz:

- Nach zwei Schritten hat sich n mindestens halbiert
- $T_{\text{euklid}}(n) \in O(\log n)$

Selection Problem (Auswahlproblem)

Ziel

Finde das k-t kleinste (z. B. viert kleinste) Element in einer Liste von n Elementen

Sonderfälle

k = 1: Minimum

k = n: Maximum

k = n/2: Median (Zentralwert)

Lösungsansätze

- Auswahl nach Sortierung
- Wiederholte Minimum- oder Maximumsuche
- Wiederholte Partitionierung, z. B. Quickselect (Decreaseand-Conquer-Algorithmus mit Reduktion um variable Größe)

Algorithmen auf binären Suchbäumen

 Eine Reihe von Algorithmen auf binären Suchbäumen erfordern nur die Verarbeitung eines Unterbaums

Beispiele

- Schlüsselsuche
- Schlüssel einfügen
- größten/kleinsten Schlüssel bestimmen
- Die entsprechenden Algorithmen sind typischerweise Decrease-and-Conquer-Algorithmen mit Reduktion um eine variable Größe

Suche in binären Suchbäumen

ALGORITHM BinaryTreeSearch(x, v) // Sucht im binären Suchbaum mit der Wurzel x // nach einem Knoten dessen Schlüsselwert // gleich v ist if x = NIL return -1 else if v = k(x) return x else if v < k(x) return BinaryTreeSearch(left(x), v) else return BinaryTreeSearch(right(x), v)</pre>

Effizienz

- Worst case: $T(n) \in O(n)$
- Average case: $T(n) \approx 2 \ln n \approx 1.39 \log_2 n$

Interpolationssuche

- Ähnlich binärer Suche: durchsucht sortierte Arrays
- Schätzt/interpoliert die Position des Suchschlüssels innerhalb der Grenzen A[I] und A[r]
- Hilfreich bei in etwa linear wachsenden Werten

Analyse der Interpolationssuche

Effizienz

- Durchschnittlicher Fall: T(n) < log₂(log₂(n + 1))
- Schlechtester Fall: T(n) = n

Binärer Suche vorzuziehen

- bei SEHR großen Arrays
- bei teuren Vergleichsoperationen