Results of Forecast Reconciliation with Subset Selection

Xiaoqian Wang

2023-05-23

1 Forecast Reconciliation with Subset Selection

With two unbiasedness conditions, the trace minimization (MinT) problem can be reformulated in terms of a linear equality constrained least squares problem as follow:

$$\min_{\boldsymbol{G}} \quad \frac{1}{2} \left(\hat{\boldsymbol{y}}_h - \boldsymbol{S} \boldsymbol{G} \hat{\boldsymbol{y}}_h \right)' \boldsymbol{W}_h^{-1} \left(\hat{\boldsymbol{y}}_h - \boldsymbol{S} \boldsymbol{G} \hat{\boldsymbol{y}}_h \right) \quad \text{s.t. } \boldsymbol{G} \boldsymbol{S} = \boldsymbol{I}_{n_b}.$$

If we consider the optimization problem with ℓ_0 , ℓ_1 , and ℓ_2 penalizations, we have:

$$\min_{\boldsymbol{G}} \quad \frac{1}{2} \left(\hat{\boldsymbol{y}}_h - (\hat{\boldsymbol{y}}_h' \otimes \boldsymbol{S}) \operatorname{vec}(\boldsymbol{G}) \right)' \boldsymbol{W}_h^{-1} \left(\hat{\boldsymbol{y}}_h - (\hat{\boldsymbol{y}}_h' \otimes \boldsymbol{S}) \operatorname{vec}(\boldsymbol{G}) \right) \\
+ \lambda_0 \sum_{j=1}^n \|\boldsymbol{G}_{\cdot j}\|_0 + \lambda_1 \left\| \operatorname{vec} \left(\boldsymbol{G} - \boldsymbol{G}^0 \right) \right\|_1 + \lambda_2 \left\| \operatorname{vec} \left(\boldsymbol{G} - \boldsymbol{G}^0 \right) \right\|_2^2 \\
\text{s.t.} \quad \boldsymbol{G} \boldsymbol{S} = \boldsymbol{I}_{n_b},$$

where G^0 can be a benchmark G matrix estimated by MinT or other methods, such as bottom-up and top-down. The optimization problem can be formulated to a Big-M based MIP formulation, which is a Mixed Integer Quadratic Program (MIQP).

1.1 Small hierarchy

Estimate the whole G matrix.

1.1.1 Data simulation

Structure:

• Top: Total

• Middle: A, B

• Bottom: AA, AB, BA, BB

The bottom-level series were generated using the basic structural time series model

$$\boldsymbol{b}_t = \boldsymbol{\mu}_t + \boldsymbol{\gamma}_t + \boldsymbol{\eta}_t$$

where μ_t, γ_t , and η_t are the trend, seasonal, and error components, respectively,

$$egin{aligned} oldsymbol{\mu}_t &= oldsymbol{\mu}_{t-1} + oldsymbol{v}_t + oldsymbol{arrho}_t, & oldsymbol{arrho}_t &\sim \mathcal{N}\left(oldsymbol{0}, \sigma_{arrho}^2 oldsymbol{I}_4
ight), \ oldsymbol{v}_t &= oldsymbol{v}_{t-1}^{s-1} + oldsymbol{\zeta}_t, & oldsymbol{\zeta}_t &\sim \mathcal{N}\left(oldsymbol{0}, \sigma_{\zeta}^2 oldsymbol{I}_4
ight), \ oldsymbol{\gamma}_t &= -\sum_{i=1}^{s-1} oldsymbol{\gamma}_{t-i} + oldsymbol{\omega}_t, & oldsymbol{\omega}_t &\sim \mathcal{N}\left(oldsymbol{0}, \sigma_{\omega}^2 oldsymbol{I}_4
ight), \end{aligned}$$

and ϱ_t, ζ_t , and ω_t are errors independent of each other and over time.

- $\sigma_{\rho}^2 = 2, \sigma_{\zeta}^2 = 0.007$, and $\sigma_{\omega}^2 = 7$.
- s = 4 for quarterly data, n = 180, h = 16.
- The initial values for $\mu_0, v_0, \gamma_0, \gamma_1, \gamma_2$ were generated independently from a multivariate normal distribution with mean zero and covariance matrix, $\Sigma_0 = I_4$.
- Each component of η_t was generated from an ARIMA(p, 0, q) process with p and q taking values of 0 and 1 with equal probability.
- The bottom-level series were then appropriately summed to obtain the data for higher levels.
- This process was repeated 500 times.

1.1.2 Model specification

1. Hyperparameter:

- Set $\lambda_1 = \lambda_2 = 0$
- λ_0 is selected by minimizing sum of squared residuals in the training set.
 - Set λ_{\max} to $\frac{1}{n_b} \frac{1}{2} \hat{\boldsymbol{y}}_h' \boldsymbol{W}_h^{-1} \hat{\boldsymbol{y}}_h$.
 - Similarly to the glmnet package, we select a minimum value $\lambda_{\min} = \epsilon \lambda_{\max}$, and construct a sequence of K-1 values of λ decreasing from λ_{\max} to λ_{\min} on the log scale. $\epsilon = 10^{-4}$ and K=20.
 - Select the best value of λ_0 from $0, \lambda_{\min}, \dots, \lambda_{\max}$ by minimizing the sum of squared reconciled forecast errors in the training set, even though fitted values are often not true one-step ahead forecasts. (Avoid cross-validation)

2. Four scenarios:

- S0: ETS
 - ETS models are used to generate base forecasts.
- S1: D-AA
 - Base forecasts (and also fitted values) of **series AA** multiplied by 1.5 to achieve deterioration.
- S2: D-A
 - Base forecasts (and also fitted values) of **series A** multiplied by 1.5 to achieve deterioration.
- S3: D-Total
 - Base forecasts (and also fitted values) of series Total multiplied by 1.5 to achieve deterioration.

1.1.3 Results

1.1.3.1 SO: ETS

1. RMSE results

		Γ	Гор			Mi	ddle			Bot	tom			Ave	rage	
Method	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16
Base	9.61	10.73	12.59	15.58	6.33	7.26	8.61	10.83	4.20	4.92	5.93	7.52	5.58	6.41	7.65	9.62
BU	9.51	10.78	12.67	15.68	6.32	7.25	8.62	10.83	4.20	4.92	5.93	7.52	5.56	6.42	7.66	9.63
OLS	9.54	10.71	12.59	15.59	6.33	7.23	8.59	10.80	4.20	4.91	5.92	7.51	5.57	6.40	7.63	9.60
OLS-subset	9.55	10.72	12.60	15.60	6.33	7.23	8.59	10.81	4.21	4.91	5.92	7.51	5.58	6.40	7.64	9.61
WLSs	9.52	10.71	12.60	15.60	6.32	7.23	8.59	10.80	4.20	4.91	5.92	7.51	5.56	6.40	7.64	9.61
WLSs-subset	9.53	10.73	12.62	15.62	6.32	7.24	8.60	10.81	4.20	4.91	5.92	7.51	5.57	6.41	7.64	9.61
WLSv	9.52	10.72	12.60	15.61	6.32	7.23	8.59	10.80	4.20	4.91	5.92	7.51	5.56	6.40	7.64	9.61
WLSv-subset	9.53	10.73	12.62	15.62	6.31	7.24	8.60	10.81	4.20	4.91	5.92	7.52	5.57	6.41	7.64	9.61
MinT	9.54	10.74	12.62	15.62	6.31	7.25	8.61	10.82	4.22	4.92	5.93	7.52	5.58	6.42	7.65	9.62
MinT-subset	9.54	10.74	12.62	15.62	6.31	7.25	8.61	10.82	4.22	4.92	5.93	7.52	5.58	6.42	7.65	9.62
MinTs	9.52	10.72	12.60	15.60	6.31	7.23	8.59	10.80	4.20	4.91	5.92	7.51	5.56	6.40	7.64	9.61
MinTs-subset	9.52	10.72	12.60	15.60	6.31	7.23	8.59	10.80	4.20	4.91	5.92	7.51	5.56	6.40	7.64	9.61

2. Selection results

Frequency of being zeroed out

3. Hyperparameters results

Frequency of being selected as the optimal λ_0

1.1.3.2 S1: D-AA

1. RMSE results

		Т	op			Mie	ddle			Bot	tom		Average					
Method	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16		
Base	9.61	10.73	12.59	15.58	6.33	7.26	8.61	10.83	6.38	7.47	8.34	9.75	6.83	7.88	9.02	10.89		
$_{ m BU}$	15.16	18.08	19.35	21.64	10.02	11.74	12.75	14.55	6.38	7.47	8.34	9.75	8.68	10.21	11.17	12.82		
OLS	9.66	10.96	12.82	15.80	6.78	7.72	9.00	11.16	5.90	6.83	7.66	9.04	6.69	7.68	8.78	10.61		
OLS-subset	9.56	10.74	12.63	15.63	6.40	7.29	8.64	10.85	4.30	5.03	6.04	7.61	5.65	6.49	7.72	9.68		
WLSs	10.31	11.86	13.62	16.50	7.32	8.42	9.62	11.70	5.94	6.89	7.72	9.12	6.96	8.04	9.11	10.91		
WLSs-subset	10.27	11.53	13.36	16.29	7.29	8.11	9.38	11.49	5.88	6.44	7.32	8.76	6.91	7.64	8.77	10.61		
WLSv	9.70	11.04	12.89	15.87	6.62	7.57	8.88	11.06	4.74	5.50	6.44	7.97	5.98	6.88	8.06	9.98		
WLSv-subset	9.56	10.78	12.67	15.66	6.40	7.33	8.68	10.88	4.33	5.05	6.05	7.62	5.67	6.52	7.74	9.70		
MinT	9.57	10.81	12.70	15.67	6.38	7.31	8.66	10.86	4.28	4.98	5.98	7.56	5.64	6.48	7.71	9.66		
MinT-subset	9.57	10.81	12.70	15.67	6.38	7.31	8.66	10.86	4.28	4.98	5.98	7.56	5.64	6.48	7.71	9.66		
MinTs	9.52	10.79	12.69	15.66	6.37	7.30	8.65	10.85	4.28	4.97	5.98	7.56	5.63	6.47	7.70	9.66		
${\bf MinTs\text{-}subset}$	9.52	10.79	12.69	15.66	6.37	7.30	8.65	10.85	4.28	4.97	5.98	7.56	5.63	6.47	7.70	9.66		

2. Selection results

3. Hyperparameters results

Frequency of being selected as the optimal $\boldsymbol{\lambda}_0$

1.1.3.3 S2: D-A

1. RMSE results

		Т	op			Mi	ddle			Bot	tom			Ave	Average		
Method	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	
Base	9.61	10.73	12.59	15.58	12.07	14.38	15.29	16.97	4.20	4.92	5.93	7.52	7.22	8.45	9.56	11.37	
BU	9.51	10.78	12.67	15.68	6.32	7.25	8.62	10.83	4.20	4.92	5.93	7.52	5.56	6.42	7.66	9.63	
OLS	10.42	12.22	13.91	16.76	8.67	10.16	11.20	13.04	5.16	6.09	6.94	8.37	6.91	8.13	9.15	10.90	
OLS-subset	9.54	10.75	12.64	15.64	6.38	7.31	8.65	10.85	4.24	4.96	5.97	7.55	5.61	6.46	7.69	9.65	
WLSs	10.77	12.73	14.36	17.17	7.92	9.33	10.45	12.40	4.85	5.75	6.64	8.12	6.57	7.77	8.83	10.64	
WLSs-subset	9.57	10.77	12.65	15.65	6.38	7.31	8.66	10.86	4.25	4.97	5.98	7.56	5.62	6.47	7.70	9.66	
WLSv	9.53	10.97	12.82	15.83	6.48	7.50	8.82	11.00	4.27	5.01	6.00	7.58	5.65	6.57	7.78	9.74	
WLSv-subset	9.59	10.84	12.71	15.70	6.41	7.37	8.72	10.91	4.24	4.96	5.97	7.56	5.62	6.49	7.72	9.68	
MinT	9.62	10.78	12.67	15.65	6.33	7.28	8.65	10.84	4.24	4.94	5.95	7.53	5.61	6.44	7.68	9.64	
MinT-subset	9.62	10.78	12.67	15.65	6.33	7.28	8.65	10.84	4.24	4.94	5.95	7.53	5.61	6.44	7.68	9.64	
MinTs	9.57	10.76	12.65	15.64	6.32	7.26	8.63	10.83	4.23	4.93	5.94	7.52	5.59	6.43	7.67	9.63	
MinTs-subset	9.57	10.76	12.65	15.64	6.32	7.26	8.63	10.83	4.23	4.93	5.94	7.52	5.59	6.43	7.67	9.63	

2. Selection results

Frequency of being zeroed out

3. Hyperparameters results

Frequency of being selected as the optimal λ_0

1.1.3.4 S3: D-Total

1. RMSE results

		Т	op			Mi	iddle			Bot	tom		Average					
Method	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16	h=1	1-4	1-8	1-16		
Base	25.01	30.26	30.88	32.34	6.33	7.26	8.61	10.83	4.20	4.92	5.93	7.52	7.78	9.20	10.26	12.01		
BU	9.51	10.78	12.67	15.68	6.32	7.25	8.62	10.83	4.20	4.92	5.93	7.52	5.56	6.42	7.66	9.63		
OLS	16.30	19.50	20.55	22.59	9.20	10.93	11.85	13.55	5.36	6.39	7.19	8.55	8.02	9.56	10.43	11.99		
OLS-subset	9.49	10.81	12.72	15.76	6.31	7.28	8.64	10.86	4.21	4.93	5.94	7.54	5.56	6.44	7.68	9.66		
WLSs	12.27	14.39	15.84	18.35	7.45	8.71	9.86	11.83	4.60	5.47	6.39	7.89	6.51	7.67	8.73	10.51		
WLSs-subset	9.50	10.80	12.71	15.75	6.32	7.28	8.64	10.86	4.21	4.93	5.94	7.54	5.57	6.44	7.68	9.66		
WLSv	9.72	11.08	12.95	15.91	6.40	7.38	8.72	10.91	4.23	4.96	5.97	7.55	5.63	6.53	7.75	9.71		
WLSv-subset	9.59	10.86	12.74	15.74	6.35	7.30	8.65	10.86	4.21	4.93	5.94	7.53	5.59	6.45	7.69	9.66		
MinT	9.48	10.81	12.68	15.66	6.32	7.30	8.65	10.85	4.23	4.94	5.95	7.53	5.58	6.45	7.68	9.64		
MinT-subset	9.48	10.81	12.68	15.66	6.32	7.30	8.65	10.85	4.23	4.94	5.95	7.53	5.58	6.45	7.68	9.64		
MinTs	9.46	10.78	12.66	15.65	6.32	7.28	8.64	10.84	4.21	4.93	5.94	7.52	5.56	6.44	7.67	9.63		
MinTs-subset	9.45	10.78	12.66	15.65	6.31	7.28	8.64	10.83	4.21	4.93	5.94	7.52	5.56	6.44	7.67	9.63		

2. Selection results

3. Hyperparameters results

Frequency of being selected as the optimal λ_0

1.2 Large hierarchy

1.2.1 Strategy 1: direct

Idea: Directly estimate the whole G matrix.

- MIP solvers: Lack of scalability. The best subset selection is an NP-hard problem, which is computationally intensive.
- L0Group: \boldsymbol{W}_h^{-1} and unbiasedness constraints.
- L0Group modification
 - Branch-and-Bound algorithm

1.2.2 Strategy 2: indirect

Idea: Let $G = G^*A$, where G^* is MinT solution, and A is an $n \times n$ diagonal matrix. Then the aim is to estimate diagonal elements of A.

Setup: λ_0 and λ_2 $(10^{-4}, 10^{-2}, 10^0, 10^2, 10^4)$ are selected by minimizing sum of squared residuals, $\lambda_1 = 0$

- 1. Under unbiasedness constraints.
- Small hierarchy

- **Results:** For simulation data (S1, S2, and S3), the method did not play a role in subset selection, thus giving same results as corresponding MinT methods.
- It is extremely difficult to get a solution of A other than I.

• Large hierarchy

- Results: For tourism data (Total/State/Zone/Region: 4 levels, 111 series in total), only
 OLS_subset did subset selection (remove 6 bottom-level series: indices 40, 49, 53, 98, 99, 100), but it achieved the same RMSE performance as OLS for every horizon.
- It is difficult to get a solution of A other than I. Even when we get an estimate of A with some of the diagonal elements being zero, the initial weights on the "removed" series are assigned to other time series in the hierarchy to obtain updated bottom-level series. This means the "removed" series are represented using the linear combination of other series.

$$egin{aligned} oldsymbol{G} oldsymbol{\hat{y}} &= \left[oldsymbol{g}_{\cdot 1}, oldsymbol{g}_{\cdot 2}, \cdots, oldsymbol{g}_{\cdot n}
ight] egin{aligned} a_1 \hat{y}_1 \ a_2 \hat{y}_2 \ & \dots \ a_n \hat{y}_n \end{aligned}
ight].$$

		Т	op.			St	ate			Ze	one			Reg	ion		Average				
Method	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	
Base	1158.16	716.62	1279.50	1907.61	452.68	323.31	349.92	424.77	165.52	163.62	160.69	179.71	100.80	89.43	88.25	94.11	148.26	127.87	133.11	152.12	
BU	2189.97	1667.97	1962.73	2708.64	431.95	356.46	409.53	508.37	167.29	159.70	161.40	181.55	100.80	89.43	88.25	94.11	156.68	137.58	143.19	165.06	
OLS	1103.20	714.05	1286.29	1935.26	438.89	310.65	344.21	418.35	162.12	156.78	151.75	166.20	101.79	89.07	86.56	91.13	146.75	125.14	129.48	146.64	
OLS-subset	1103.20	714.05	1286.29	1935.26	438.89	310.65	344.21	418.35	162.12	156.78	151.75	166.20	101.79	89.07	86.56	91.13	146.75	125.14	129.48	146.64	
WLSs	1448.95	1111.95	1546.09	2271.59	381.21	307.05	362.27	451.23	155.70	154.71	153.10	170.80	100.60	88.72	86.85	92.07	143.85	127.76	133.48	153.51	
WLSs-subset	1448.95	1111.95	1546.09	2271.59	381.21	307.05	362.27	451.23	155.70	154.71	153.10	170.80	100.60	88.72	86.85	92.07	143.85	127.76	133.48	153.51	
WLSv	1600.65	1262.35	1657.96	2395.97	374.05	313.35	374.44	466.85	157.23	156.62	155.64	173.97	96.61	88.01	86.66	92.16	142.40	129.49	135.74	156.44	
WLSv-subset	1600.65	1262.35	1657.96	2395.97	374.05	313.35	374.44	466.85	157.23	156.62	155.64	173.97	96.61	88.01	86.66	92.16	142.40	129.49	135.74	156.44	
MinTs	1397.23	1101.06	1555.74	2270.36	352.16	300.15	362.01	451.41	145.46	152.82	152.55	170.11	95.41	87.07	85.82	91.15	135.50	125.63	132.71	152.71	
MinTs-subset	1397.23	1101.06	1555.74	2270.36	352.16	300.15	362.01	451.41	145.46	152.82	152.55	170.11	95.41	87.07	85.82	91.15	135.50	125.63	132.71	152.71	

2. Remove unbiasedness constraints.

Results based on tourism data (Total/State/Zone/Region: 4 levels, 111 series in total)

• OLS_subset, WLSs_subset, and WLSv_subset did subset selection. They give almost the same performance as the corresponding MinT methods for h = 1, but extremely worse performance for h > 1.

		Т	op			St	ate			Ze	ne			Reg	gion		Average				
Method	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	
Base	1158.16	716.62	1279.50	1907.61	452.68	323.31	349.92	424.77	165.52	163.62	160.69	179.71	100.80	89.43	88.25	94.11	148.26	127.87	133.11	152.12	
BU	2189.97	1667.97	1962.73	2708.64	431.95	356.46	409.53	508.37	167.29	159.70	161.40	181.55	100.80	89.43	88.25	94.11	156.68	137.58	143.19	165.06	
OLS	1103.20	714.05	1286.29	1935.26	438.89	310.65	344.21	418.35	162.12	156.78	151.75	166.20	101.79	89.07	86.56	91.13	146.75	125.14	129.48	146.64	
OLS-subset	1103.20	832.57	1568.89	2233.61	438.89	453.24	837.32	863.36	162.12	241.85	354.25	372.58	101.79	191.86	273.84	289.59	146.75	226.27	340.60	363.47	
WLSs	1448.95	1111.95	1546.09	2271.59	381.21	307.05	362.27	451.23	155.70	154.71	153.10	170.80	100.60	88.72	86.85	92.07	143.85	127.76	133.48	153.51	
WLSs-subset	1448.95	2095.59	3539.62	4246.34	381.21	479.40	737.56	808.70	155.70	205.17	292.73	306.46	100.60	119.07	149.95	152.44	143.85	180.54	252.28	268.17	
WLSv	1600.65	1262.35	1657.96	2395.97	374.05	313.35	374.44	466.85	157.23	156.62	155.64	173.97	96.61	88.01	86.66	92.16	142.40	129.49	135.74	156.44	
WLSv-subset	1600.65	1333.64	1429.02	2073.60	374.05	418.79	590.88	644.37	157.23	228.36	298.70	311.99	96.58	132.14	166.29	174.47	142.38	184.45	236.65	254.66	
MinTs	1397.23	1101.06	1555.74	2270.36	352.16	300.15	362.01	451.41	145.46	152.82	152.55	170.11	95.41	87.07	85.82	91.15	135.50	125.63	132.71	152.71	
MinTs-subset	1397.23	1101.06	1555.74	2270.36	352.16	300.15	362.01	451.41	145.46	152.82	152.55	170.11	95.41	87.07	85.82	91.15	135.50	125.63	132.71	152.71	

• Naturally, when implementing subset selection on forecasts for each horizon, they give almost the same performance as the corresponding MinT methods for all horizons.

1.2.3 Strategy 3: two-step

Idea: Implement selection first, and then estimation. (MIP solvers are not scalable, but QP solvers are scalable.)

- Step 1: obtain output of binary variables z using Strategy 2 without unbiasedness constraints.
- Step 2: directly use \hat{z} to solve the QP problem with unbiasedness constraints.

Results: Sometimes cannot find the estimated G in step 2 using the z of step 1. Even if step 2 can find the estimated G, it performs worse than the corresponding MinT methods, but its forecasts for large horizons are still in a reasonable range.

		T	op			St	ate			Ze	ne			Reg	ion			Ave	rage	
Method	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12	h=1	1-4	1-8	1-12
Base	1158.16	716.62	1279.50	1907.61	452.68	323.31	349.92	424.77	165.52	163.62	160.69	179.71	100.80	89.43	88.25	94.11	148.26	127.87	133.11	152.12
BU	2189.97	1667.97	1962.73	2708.64	431.95	356.46	409.53	508.37	167.29	159.70	161.40	181.55	100.80	89.43	88.25	94.11	156.68	137.58	143.19	165.06
OLS	1103.20	714.05	1286.29	1935.26	438.89	310.65	344.21	418.35	162.12	156.78	151.75	166.20	101.79	89.07	86.56	91.13	146.75	125.14	129.48	146.64
OLS-subset	1158.16	716.62	1279.50	1907.61	650.81	413.35	415.88	478.21	204.59	186.03	183.47	198.35	115.63	100.90	98.68	104.23	180.41	146.86	149.95	166.96
WLSs	1448.95	1111.95	1546.09	2271.59	381.21	307.05	362.27	451.23	155.70	154.71	153.10	170.80	100.60	88.72	86.85	92.07	143.85	127.76	133.48	153.51
WLSs-subset	1158.16	716.62	1279.50	1907.61	496.80	352.46	383.51	442.86	170.77	186.86	187.77	211.08	102.03	98.30	97.91	104.90	153.16	141.44	148.42	168.28
WLSv	1600.65	1262.35	1657.96	2395.97	374.05	313.35	374.44	466.85	157.23	156.62	155.64	173.97	96.61	88.01	86.66	92.16	142.40	129.49	135.74	156.44
WLSv-subset	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MinTs	1397.23	1101.06	1555.74	2270.36	352.16	300.15	362.01	451.41	145.46	152.82	152.55	170.11	95.41	87.07	85.82	91.15	135.50	125.63	132.71	152.71
MinTs-subset	1397.23	1101.06	1555.74	2270.36	352.16	300.15	362.01	451.41	145.46	152.82	152.55	170.11	95.41	87.07	85.82	91.15	135.50	125.63	132.71	152.71

Frequency of being zeroed out

1.2.4 Other potential strategies

- Grouped version of forward/backward stepwise.
- Group regularizers: Grouped Lasso, MCP (minimax concave penalty), SCAD (smoothly clipped absolute deviation).
- Unconstrained reconciliation using in-sample observations and fitted values.