0.1 内积空间的基本概念

定义 0.1 (Euclid 空间)

设 V 是实数域上的线性空间, 若存在某种规则, 使对 V 中任意一组有序向量 $\{\alpha, \beta\}$, 都唯一地对应一个实数, 记为 (α, β) , 且适合如下规则:

- (1) $(\beta, \alpha) = (\alpha, \beta)$;
- (2) $(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$;
- $(3)(c\alpha,\beta)=c(\alpha,\beta),c$ 为任一实数;
- $(4)(\alpha,\alpha) \ge 0$ 且等号成立当且仅当 $\alpha = 0$,

则称在 V 上定义了一个内积. 实数 (α, β) 称为 α 与 β 的内积. 线性空间 V 称为**实内积空间**. 有限维实内积空间称为 **Euclid 空间**, 简称为**欧氏空间**.

定义 0.2 (酉空间)

设 V 是复数域上的线性空间, 若存在某种规则, 使对 V 中任意一组有序向量 $\{\alpha, \beta\}$, 都唯一地对应一个复数, 记为 (α, β) , 且适合如下规则:

- (1) $(\beta, \alpha) = \overline{(\alpha, \beta)}$;
- (2) $(\alpha + \beta, \gamma) = (\alpha, \gamma) + (\beta, \gamma)$;
- (3) $(c\alpha, \beta) = c(\alpha, \beta), c$ 为任一复数;
- $(4)(\alpha,\alpha) \ge 0$ 且等号成立当且仅当 $\alpha = 0$,

则称在 V 上定义了一个内积. 复数 (α, β) 称为 α 与 β 的内积. 线性空间 V 称为**复内积空间**. 有限维复内积空间称为**酉空间**.

注实内积空间的定义与复内积空间的定义是相容的. 事实上, 对一个实数 $a, \overline{a} = a$, 故定义 0.1 中的 (1) 与定义 0.2 中的 (1) 是一致的. 因此, 我们经常将这两种空间统称为内积空间, 在某些定理的叙述及证明中也不区分它们, 而统一作为复内积空间来处理. 但是, 需要注意的是对复内积空间,定义 0.2 中的 (1), (3) 意味着:

$$(\alpha, c\beta) = \overline{c}(\alpha, \beta).$$

定义 0.3 (标准内积)

1. 设 \mathbb{R}^n 是 n 维实列向量空间, $\alpha = (x_1, x_2, \dots, x_n)', \beta = (y_1, y_2, \dots, y_n)',$ 定义

$$(\alpha, \beta) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n,$$

则在此定义下 \mathbb{R}^n 成为一个欧氏空间,上述内积称为 \mathbb{R}^n 的标准内积,

2. 设 \mathbb{C}^n 是 n 维复列向量空间, $\alpha = (x_1, x_2, \dots, x_n)', \beta = (y_1, y_2, \dots, y_n)',$ 定义

$$(\alpha, \beta) = x_1 \overline{y_1} + x_2 \overline{y_2} + \dots + x_n \overline{y_n},$$

则在此定义下 \mathbb{C}^n 成为一个酉空间, 上述内积称为 \mathbb{C}^n 的标准内积.

注 对 n 维实或复行向量空间, 我们也可同样定义标准内积.

例题 0.1

1. 设 V 是由 [a,b] 区间上连续函数全体构成的实线性空间, 设 $f(t),g(t) \in V$, 定义

$$(f,g) = \int_{-b}^{b} f(t)g(t)dt,$$

则不难验证这是一个内积,于是 V 成为内积空间. 这是一个无限维实内积空间.

2. (1) 设 $V \neq n$ 维实列向量空间, $G \neq n$ 阶正定实对称阵, 对 $\alpha, \beta \in V$, 定义

$$(\alpha, \beta) = \alpha' G \beta$$
,

则这是一个内积,并且 V 在上式的定义下成为欧氏空间.

(2) 设 $U \in n$ 维复列向量空间, 若有正定 Hermite 矩阵 H, 对 $\alpha, \beta \in U$, 定义:

$$(\alpha, \beta) = \alpha' H \overline{\beta}.$$

则这个U上的一个内积,并且U在上式的定义下成为酉空间.

证明

- 1. 由内积空间的定义不难验证.
- 2. (1)定义 0.1中的 (2), (3) 显然成立. 对 (1), 注意到 $\alpha'G\beta$ 是实数, 其转置仍是它自己, 而 G 是对称阵, 故

$$(\alpha,\beta)=\alpha'G\beta=(\alpha'G\beta)'=\beta'G'\alpha=\beta'G\alpha=(\beta,\alpha).$$

又从 G 是正定阵即可知道 (4) 成立.

(2) 根据内积和酉空间的定义不难验证.

$$(\alpha, \beta) = \alpha' \beta.$$

对实行向量空间,标准内积也可表示为

$$(\alpha, \beta) = \alpha \beta'$$
.

当 $H = I_n$ 为单位阵时,U 上内积就是标准内积. 对复列向量空间, 标准内积可用矩阵乘法表示为

$$(\alpha, \beta) = \alpha' \overline{\beta}.$$

对复行向量空间,标准内积也可表示为

$$(\alpha, \beta) = \alpha \overline{\beta}'.$$

定义 0.4 (范数)

设V是实或复的内积空间, α 是V中的向量,定义 α 的**长度**(或**范数**)为

$$\|\alpha\| = (\alpha, \alpha)^{\frac{1}{2}},$$

即实数 (α, α) 的算术平方根.

注 注意由定义 0.1和定义 0.2中的规则 (4) 可知, (α,α) 总是非负实数. 从长度的定义知, $\|\alpha\| = 0$ 当且仅当 $\alpha = 0$. 当 $V = \mathbb{R}^n$ 且内积为标准内积时, 若 $\alpha = (x_1, x_2, \cdots, x_n)$, 则

$$\|\alpha\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

定义 0.5 (两个向量的距离)

定义内积空间中两个向量的距离. 设 $\alpha, \beta \in V$, 定义 $\alpha \in \beta$ 的距离为

$$d(\alpha, \beta) = \|\alpha - \beta\|.$$

显然 $d(\alpha, \beta) = d(\beta, \alpha)$.

定理 0.1 (范数的基本性质)

设V是实或复的内积空间, $\alpha,\beta \in V,c$ 是任一常数(实数或复数),则

- (1) $||c\alpha|| = |c|||\alpha||$;
- (2)(Cauchy Schwarz不等式) $|(\alpha, \beta)| \le ||\alpha|| \cdot ||\beta||$;

(3)(三角不等式) $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.

 \circ

证明

- (1) $||c\alpha||^2 = (c\alpha, c\alpha) = c\overline{c}(\alpha, \alpha) = |c|^2 ||\alpha||^2$, $\text{th} ||c\alpha|| = |c|||\alpha||$.
- (2) 若 $\alpha = 0$, 则 $(0, \beta) = (0 + 0, \beta) = 2(0, \beta)$, 故 $(0, \beta) = 0$, 因此 (2) 成立. 若 $\alpha \neq 0$, 令

$$v = \beta - \frac{(\beta, \alpha)}{\|\alpha\|^2} \alpha,$$

则 $(v, \alpha) = 0$, 且

$$\begin{aligned} 0 &\leq \|v\|^2 = \left(\beta - \frac{(\beta, \alpha)}{\|\alpha\|^2} \alpha, \beta - \frac{(\beta, \alpha)}{\|\alpha\|^2} \alpha\right) \\ &= (\beta, \beta) - \frac{(\beta, \alpha)}{\|\alpha\|^2} (\alpha, \beta) \\ &= \|\beta\|^2 - \frac{|(\alpha, \beta)|^2}{\|\alpha\|^2}, \end{aligned}$$

由此即可得 (2).

(3) 我们有

$$\begin{aligned} \|\alpha + \beta\|^2 &= (\alpha + \beta, \alpha + \beta) \\ &= \|\alpha\|^2 + (\alpha, \beta) + (\beta, \alpha) + \|\beta\|^2 \\ &= \|\alpha\|^2 + \|\beta\|^2 + (\alpha, \beta) + \overline{(\alpha, \beta)}. \end{aligned}$$

由 (2) 得 $|(\alpha, \beta)| \le ||\alpha|| ||\beta||$, $\overline{|(\alpha, \beta)|} \le ||\alpha|| ||\beta||$, 故 $||\alpha + \beta||^2 \le ||\alpha||^2 + ||\beta||^2 + 2||\alpha|| ||\beta|| = (||\alpha|| + ||\beta||)^2$.

定义 0.6 (向量的夹角)

当V是实内积空间时,定义非零向量 α,β 的夹角 θ 之余弦为

$$\cos \theta = \frac{(\alpha, \beta)}{\|\alpha\| \|\beta\|}.$$
 (1)

当 V 是复内积空间时, 定义非零向量 α , β 的夹角 θ 之余弦为

$$\cos\theta = \frac{|(\alpha, \beta)|}{\|\alpha\| \|\beta\|}.$$

内积空间中两个向量 α , β 若适合 $(\alpha, \beta) = 0$, 则称 α 与 β 垂直或正交, 我们用记号 $\alpha \perp \beta$ 来表示. 显然, 我们 有以下结论:

- 1. 零向量和任何向量都正交;
- 2. 若 α 与 β 正交,则 β 也与 α 正交;
- 3. 两个非零向量 α, β 正交时夹角为 90°.

推论 0.1

1. (勾股定理) 在范数的基本性质 (3)的证明中我们可看出: 若 α 与 β 正交, 则 (α,β) = (β,α) = 0, 因此

$$\|\alpha + \beta\|^2 = \|\alpha\|^2 + \|\beta\|^2$$
.

上式通常称为勾股定理, 它是平面几何中勾股定理的推广.

2. (Cauchy 不等式) 设 V 是 n 维实行向量空间, 内积取标准内积, 从范数的基本性质 (2)立即可得到下列

Cauchy 不等式:

$$(x_1y_1 + x_2y_2 + \dots + x_ny_n)^2 \le (x_1^2 + x_2^2 + \dots + x_n^2)(y_1^2 + y_2^2 + \dots + y_n^2).$$

3. (Schwarz 不等式) 设 V 是由 [a,b] 区间上连续函数全体构成的实线性空间, 内积如例题 0.1(1), 则从范数的基本性质 (2)可得下列 Schwarz 不等式:

$$\left(\int_a^b f(t)g(t)dt\right)^2 \le \int_a^b f(t)^2 dt \int_a^b g(t)^2 dt.$$

 \Diamond