Quiz 18.3 – Gibbs Energy and Equilibrium

Name: Keny

Question 1

Consider the reaction at
$$25.0 \,^{\circ}C$$
: $N_2(g) + O_2(g) \implies 2 \, NO(g)$ $\Delta G^{\circ} = 175.2 \, \frac{kJ}{mol}$

 $\circ~$ Find ΔG if $P_{\rm N_2}=0.250~atm,$ $P_{\rm O_2}=0.100~atm,$ and $P_{\rm NO}=3.50~atm$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
 $Q = \frac{3.50^{\circ}}{0.250 \cdot 0.10^{\circ}} = 7490$

o Find the equilibrium constant for this reaction

$$K = e^{-\Delta G} = 1.95 \cdot 10^{-3/2}$$

Question 2

Consider the reaction at
$$25.0~^{\circ}C$$
: 2 NO(g) + O₂(g) \implies 2 NO₂(g) $K=6.4\times10^9$

• Find ΔG° for this reaction

 $\circ~$ Find the value of Q for this reaction which gives $\Delta G = 3.14 \, \frac{kJ}{mol}$