Outline

Lesson 21: Know Your Graph Algorithms

Weighted graph algorithms, Minimum spanning tree, Prim, Kruskal, shortest path, Dijkstra

AICE1005

Algorithms and Analys

Graph Algorithms

- ullet We consider a graph algorithm to be **efficient** if it can solve a graph problem in $O(n^a)$ time for some fixed a
- That is, an efficient algorithm runs in polynomial time
- A problem is hard if there is no known efficient algorithm
- This does not mean the best we can do is to look through all possible solutions—see later lectures
- In this lecture we are going to look at some efficient graph algorithms for weighted graphs

AICE1005

Algorithms and Analys

Greedy Strategy

- We consider two algorithms for solving the problem
 - ★ Prim's algorithm (discovered 1957)
 - * Kruskal's algorithm (discovered 1956)
- Both algorithms use a **greedy strategy**
- Generally greedy strategies are not guaranteed to give globally optimal solutions
- There exists a class of problems with a matroid structure where greedy algorithms lead to globally optimal solutions
- Minimum spanning trees, Huffman codes and shortest path problems are matroids

AICE1005

Algorithms and Analys

Prim's Algorithm

- Prim's algorithm grows a subtree greedily
- Start at an arbitrary node
- Add the shortest edge to a node not in the tree |

1. Minimum Spanning Tree

- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

AICE1005 Algorithms a

Minimum spanning tree

 A minimal spanning tree is the shortest tree which spans the entire graph

AICE1005

Algorithms and Analysis

Outline

- 1. Minimum Spanning Tree
- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

AICE1005

AICE1005

Algorithms and Analysis

```
Pseudo Code
```

```
\operatorname{PRIM}\left(G=(\mathcal{V},\mathcal{E},\boldsymbol{w})\right) \blacksquare \{
    for i {\leftarrow} 1 to |\mathcal{V}|
                                      \\ Minimum 'distance' to subtree
    endfor
                                      \\ Set of edges in subtree
                                    \ initialise an empty priority queue \ where v_1 \in \mathcal{V} is arbitrary
    PQ.initialise()
         \textbf{for } \mathbf{k} \, \in \{v \in \mathcal{V} | (\mathtt{node}, v) \in \mathcal{E}\} \ \backslash \backslash \ \mathbf{k} \ \text{is a neighbours of } \mathbf{node}
             if ( w_{\rm node,k} < d_{\rm k} )
                  PQ.add( (d_k, (node, k)) )
             endif
         endfor
             (a\_node, next\_node) \leftarrow PQ.getMin()
         until (d_{\text{next\_node}} > 0)
         \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(a\_nod_{\underline{\bullet}}, next\_nod_{\underline{\bullet}})\}
         node ←next_node
     endfor
     return \mathcal{E}_T
```

Algorithms and Analysis

E1005 Algorithms and Analy

Prim's Algorithm in Detail

d[] 0 1 2 3 4 5 6 7 d[] 0 0 0 05 05 40 0 0 05 08

eigh**laddrædgen (61,6) I tadMSI**Ito PQ

AICE1005 Algorithms and Analysis

Proof by induction

- We want to show that each subtree, T_i , for $i=1,2,\cdots,n$ is part of (a subgraph) of some minimum spanning tree
- \bullet In the base case, T_1 consists of a tree with no edges, but this has to be part of the minimum spanning tree!
- \bullet To prove the inductive case we assume that T_i is part of the minimum spanning tree!
- \bullet We want to prove that T_{i+1} formed by adding the shortest edge is also part of the minimum spanning tree!
- We perform the proof by contradiction—we assume that this added edge isn't part of the minimum spanning tree

AICE1005 Algorithms and Analysis

```
Loop Counting
```

```
PRIM(G=(\mathcal{V},\mathcal{E},oldsymbol{w})) {
       d_i \leftarrow \infty
    endfor
    PQ.initialise()
    for i\leftarrow 1 to |\mathcal{V}|-1
                                                          // loop 1 O(|\mathcal{V}|)
        \texttt{for} \ \mathbf{k} \ \in \{v \in \mathcal{V} | (\mathtt{node}, v) \in \mathcal{E}\} \ \textit{//inner loop} \ O(|\mathcal{E}|/|\mathcal{V}|)
            if ( w_{node,k} < d_k )
                PQ.add( (d_k, (\text{node}, k)) ) //Oig(\log(|\mathcal{E}|)ig)
            endif
        endfor
             (a_node, next_node) ←PQ.getMin()
        until (d_{next\_node} > 0)
        \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(\text{node, next\_node})\}
        node ←next_node
    endfor
    return \mathcal{E}_T
```

Outline

- 1. Minimum Spanning Tree
- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

Why Does This Work?

- Clearly Prim's algorithm produces a spanning treel
 - * It is a tree because we always choose an edge to a node not in
 - \star It is a spanning tree because it has $|\mathcal{V}|-1$ edges
- Why is this a minimum spanning tree?
- Once again we look for a proof by induction

AICE1005 Algorithms and Analysis 10

Contrariwise

AICE1005 Algorithms and Analysis 12

Run Time

• The worst time is

$$O(|\mathcal{V}|) \times O\left(\frac{|\mathcal{E}|}{|\mathcal{V}|}\right) \times O\left(\log(|\mathcal{E}|)\right) \mathbb{I} = O\left(|\mathcal{E}|\log(|\mathcal{E}|)\right) \mathbb{I}$$

- Note that $|\mathcal{E}| < |\mathcal{V}|^2$
- \bullet Thus, $\log(|\mathcal{E}|) < 2\log(|\mathcal{V}|) = O\left(\log(|\mathcal{V}|)\right)$
- \bullet Thus the worst case time complexity is $|\mathcal{E}|\log(|\mathcal{V}|)$

AICE1005 Algorithms and Analysis

Kruskal's Algorithm

• Kruskal's algorithm works by choosing the shortest edges which don't form a loop!

Pseudo Code

```
 \begin{cases} \text{RRUSKAL}(G = (\mathcal{V}, \mathcal{E}, \boldsymbol{w})) \\ \\ \text{PQ.initialise}() \\ \text{for edge} \in |\mathcal{E}| \\ \text{PQ.add}( (w_{edge}, \text{ edge}) ) \\ \text{endfor} \\ \\ \mathcal{E}_T \leftarrow \emptyset \\ \text{noEdgesAccepted} \leftarrow 0 \\ \\ \text{while} (\text{noEdgesAccepted} < |\mathcal{V}| - 1) \\ \text{edge} \leftarrow \text{PQ.getMin}() \\ \text{if } \mathcal{E}_T \cup \{\text{edge}\} \text{ is acyclic} \\ \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{\text{edge}\} \\ \text{noEdgesAccepted} \leftarrow \text{noEdgesAccepted} + 1 \\ \text{endif} \\ \text{endwhile} \\ \\ \text{return } \mathcal{E}_T \\ \end{cases}
```

AICE1005

Algorithms and Analysi

Cycling

- For a path to be a cycle the edge has to join two nodes representing the same subtree!
- To compute this we need to quickly find which subtree a node has been assigned to
- Initially all nodes are assigned to a separate subtree!
- When two subtrees are combined by an edge we have to perform the union of the two subtrees
- This is a tricky but standard operation known as union-find

AICE1005 Algorithms and Analysi

Union-Find

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets $\mathcal{S}_1, \mathcal{S}_2, \dots$
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to **find** the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

AICE1005 Algorithms and Analysis

The Union-Find Dilemma

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- \bullet However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations).
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is O(n log(n))
- Fast finds seems to give slow(ish) unions
- What about the other way around?

Analysis

- Kruskal's algorithm looks much simpler than Prim's
- The sorting takes most of the time, thus Prim's algorithms is $O(|\mathcal{E}|\log(|\mathcal{E}|)) = O(|\mathcal{E}|\log(|\mathcal{V}|))$
- We can sort the edges however we want—we could use quick sort rather than heap sort using a priority queuel
- But we haven't specified how we determine if the added edge would produce a cycle!

E1005 Algorithms and Analysis

Outline

- 1. Minimum Spanning Tree
- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

AICE1005 Algorithms and Analysis

DisjointSets

We want to create a class

```
class DisjointSets
{
    DisjointSets(int numElements) {/* Constructor */}
    int find(int x) {/* Find root */}
    void union(int root1, int root2) {/* Union */}

    private:
    int[] s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs tol
- The array s contains labelling information to implement find(x)

AICE1005 Algorithms and Analysis

Fast Union

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree!
- The cost of find depends on the depth of the tree
- To make unions efficient we make the shallow tree a subtree of the deeper tree!

AICE1005 Algorithms and Analysis 23 AICE1005 Algorithms and Analysis

Putting it Together find(6)=7 0 2 3 4 5 6 8 9 7 0 7 7 7 7 7 7 -3 7 7

AICE1005 Algorithms and Analysis 25

Path Compression

 To speed up find we relabel all nodes we visit during find by the root label

AICE1005 Algorithms and Analysis 27

Time Complexity of Union-Find

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big) {\rm I\!I}$
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 11
- \bullet In practice $\log_2^*(N) \leq 5$ for all conceivable $N \hspace{-0.8mm} \text{\Large I}$

• The proof of this time complexity is rather involved

AICE1005 Algorithms and Analysis

Shortest path

- We can efficiently compute the shortest path from one vertex to any other vertex
- This defines a spanning tree, but where the optimisation criteria is that we choose the vertex that are closest to the source!
- To find this spanning tree we use Dijkstra's algorithm where we successively add the nearest node to the source which is connected to the subtree built so far!
- This is very close to Prim's algorithm and has the same complexity

Smart Union

```
DisjointSets::DisjointSets(int numElements)
       new int[numElements];
    for(int i=0; i<s.length; i++)
s[i] = -1;</pre>
                                     // roots are negative number
void DisjointSets::union(int root1, int root2)
    if (s[root2] < s[root1]) {</pre>
                                       root2 is deeper
        s[root1] = root2;
                                     // make root2 the root
    } else {
        if (s[root1] == s[root2])
        s[root1]--;
s[root2] = root1;
                                        update height if same
                                       make root1 new root
s[] -A -B
                      root
```

Mazes

- Union-Find is a data structure which can occur in very different applications
- One application is building a mazel
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4
5	6	7	8	9
		12		
		17		
		22		
25				
30	31	32	33	34
35	36	37	38	39
40				
45	46	47	48	49

AICE1005 Algorithms and Analysis

Outline

- 1. Minimum Spanning Tree
- 2. Prim's Algorithm
- 3. Kruskal's Algorithm
- 4. Union Find
- 5. Shortest Path

AICE1005 Algorithms and Analysis 3

Dijkstra's Algorithm

CE1005 Algorithms and Analysis 31 AICE1005 Algorithms and Analysis

```
for i \leftarrow 0 to |\mathcal{V}|
                                    \\ Minimum 'distance' to source
       d \in -\infty
    endfor
                                   \\ Set of edges in subtree
    PQ.initialise() \\ initialise an empty priority queue node \( -source \)
    d_{node} \leftarrow 0
    \begin{aligned} & \text{for } \mathbf{i} \leftarrow 1 \text{ to } |\mathcal{V}| - 1 \\ & \text{for } \mathbf{k} \in \{v \in \mathcal{V} | (\text{node}, v) \in \mathcal{E}\} \\ & \text{if } (w_{node, k} + d_{node} < d_k) \end{aligned}
                d_k \leftarrow w_{node,k} + d_{node}
                PQ.add( (d_k, (node, k)) )
             endif
         endfor
         do
              (a_node, next_node) ←PQ.getMin()
         while next_node not in subtree
        \begin{aligned} \mathcal{E}_T &\leftarrow & \mathcal{E}_T \cup \{(\texttt{a\_node, next\_node}) \,\} \\ &\texttt{node} &\leftarrow & \texttt{next\_node} \end{aligned}
    endfor
return \mathcal{E}_T
```

Dijkstra Details

- \bullet Dijkstra is very similar to Prim's (it differs in the distances that are used) $\hspace{-0.4em}\rule{0.8em}{0.8em}\hspace{0.4em}$
- It has the same time complexity

AICE1005

- It can be viewed as using a greedy strategy
- It can also be viewed as using the dynamic programming strategy (see lecture 22)


```
for i\leftarrow 1 to |\mathcal{V}|
    d_i \leftarrow \infty
                                          \\ Minimum 'distance' to subtree
endfor
\mathcal{E}_T \leftarrow \emptyset
                                          \\ Set of edges in subtree
PQ.initialise() \\ initialise an empty priority queue node \leftarrow v_1 \\ where v_1 \in \mathcal{V} is arbitrary
for i\leftarrow 1 to |\mathcal{V}|-1
    If 1 \leftarrow 1 \leftarrow 0 |v| d_{\text{node}} \leftarrow 0 |v| d_{\text{node}} \leftarrow 0 |v| |v|
                PQ.add( (d_{\mathtt{k}}, (node,\mathtt{k})) )
           endif
      endfor
           (a\_node, next\_node) \leftarrow PQ.getMin()
      until (d_{\text{next\_node}} > 0)
     \mathcal{E}_T \leftarrow \mathcal{E}_T \cup \{(\texttt{a\_node}, \texttt{next\_node})\}
node \leftarrow \texttt{next\_node}
endfor
\texttt{return} \ \mathcal{E}_T
```

AICE1005 Algorithms and Analysis

Lessons

- ullet There are many efficient (i.e. polynomial $O(n^a)$) graph algorithms
- Some of the most efficient ones are based on the Greedy strategy
- These are easily implemented using priority queues
- Minimum spanning trees are useful because they are easy to compute!
- Dijkstra's algorithm is one of the classics

AICE1005 Algorithms and Analysis 35 AICE1005 Algorithms and Analysis 3