Mann-Whitney *U* test

C. Durso

Application

- Given independent samples of continuous measurements from two populations, test the null hypothesis that the two populations have the same distribution.
- The test actually is more general than this.
- It is useful in the absence of normality.

Set-up

- Two sets of numerical values, $\{x_1, x_2, ... x_{n_X}\}$ and $\{y_1, y_2, ... y_{n_Y}\}$
- Alternatively, ranks of samples $\{x_1, x_2, ... x_{n_X}\}$ and $\{y_1, y_2, ... y_{n_Y}\}$ in pooled sample $\{x_1, x_2, ... x_{n_X}, y_1, y_2, ... y_{n_Y}\}$
- Null hypothesis: population distributions X and Y are such that P(X > Y) = P(Y > X)
- If, for some c, the distributions satisfy X + c = Y, null hypothesis becomes c = 0
- Primarily a test of null hypothesis

Test Statistic

$$w = \left| \{ (i,j) | x_i < y_j \} \right| + \frac{1}{2} \left| \{ (i,j) | x_i = y_j \} \right|$$

Intuition: Model each pair (i, j) equally likely. The test statistic divided by $n_X n_Y$ is

$$P(\{(i,j)|x_i < y_j\}) + \frac{1}{2}P(\{(i,j)|x_i = y_j\}).$$

Alternative Form

Define the rank function r:

$$\{y_1,y_2,...y_{n_Y}\} o [1,n_X+n_Y]$$
 by $r(y_j)= {\rm rank\ of\ } y_j {\rm\ in\ } \{x_1,x_2,...x_{n_X},y_1,y_2,...y_{n_Y}\}.$ Then $w=\sum_{j=1}^{n_Y} r(y_j)-n_Y(n_Y+1)/2$

Justification

- The value $n_Y(n_Y+1)/2$ is the sum of the ranks of the y_i 's in just $\{y_1, y_2, ... y_{n_Y}\}$.
- Each x_i increases $r(y_j)$ by 1 for each $y_j > x_i$. Subtracting $n_Y(n_Y+1)/2$ from $\sum_{j=1}^{n_Y} r(y_j)$ leaves just these increases.

Example

- Suppose $\begin{pmatrix} x_1, & y_1, & x_2, & x_3, & y_2, & y_3, & x_4 \end{pmatrix}$ is in ascending order.
- Subscripts of the y's are their ranks in $\{y_1, y_2, y_3\}$. Values of r appear below the y's.
- Check that each $r(y_j) = j + \text{number of } x_i$'s less than y_i .

Evaluation

Calculate (with software usually) the probability q of a value of $W \ge w$ under the assumption that all assignments of the ranks to the first or second populations are equally likely.

Set
$$p = 2\min(q, 1 - q)$$
.

χ^2 Test Motivation

C. Durso

Probability of Success Large Sample Test

Given n Bernoulli trials, test if the probability of success is p:

- Binomial(n, p) approximately normal(np, np(1-p))
- Observed count k
- $\frac{k-np}{\sqrt{np(1-p)}}$ approximately normal(0,1)
- Use z-test
- Rule of thumb: np(1-p) > 3

χ^2 Distribution

Fact

The χ^2 distribution with n degrees of freedom is the distribution of $\Sigma_{i=1}^n X_i^2$ where $X_1, ... X_n$ iid normal(0,1).

The χ^2 distributions are a 1-parameter family.

χ^2 Test One Proportion

Given n Bernoulli trials, test if the probability of success is p:

- $\frac{k-np}{\sqrt{np(1-p)}}$ approximately normal(0,1)
- $\left(\frac{k-np}{\sqrt{np(1-p)}}\right)^2$ approximately χ^2 distribution with 1 degree of freedom

$(O-E)^2/E$ Representation

Fact

$$\left(\frac{k - np}{\sqrt{np(1 - p)}}\right)^2 = \frac{(k - np)^2}{np} + \frac{\left((n - k) - n(1 - p)\right)^2}{n(1 - p)}$$

The second form is a sum of $(observed - expected)^2/expected$ terms.

$$\frac{(k-np)^2}{np} + \frac{((n-k)-n(1-p))^2}{n(1-p)}$$

$$\frac{(k-np)^2}{np} + \frac{((n-k)-n(1-p))^2}{n(1-p)}$$

$$\frac{(k-np)^2(1-p)}{np(1-p)} + \frac{(n-k-n+np)^2p}{np(1-p)}$$

$$\frac{(k-np)^2}{np} + \frac{((n-k)-n(1-p))^2}{n(1-p)}$$

$$\frac{(k-np)^2(1-p)}{np(1-p)} + \frac{(n-k-n+np)^2p}{np(1-p)}$$

$$\frac{(k-np)^2(1-p)}{np(1-p)} + \frac{(-k+np)^2p}{np(1-p)}$$

$$\frac{(k-np)^2}{np} + \frac{((n-k)-n(1-p))^2}{n(1-p)}$$

$$\frac{(k-np)^2(1-p)}{np(1-p)} + \frac{(n-k-n+np)^2p}{np(1-p)}$$

$$\frac{(k-np)^2(1-p)}{np(1-p)} + \frac{(-k+np)^2p}{np(1-p)}$$

$$\frac{(k-np)^2(1-p)}{np(1-p)} + \frac{(k-np)^2p}{np(1-p)}$$

$$\frac{(k-np)^2(1-p) + (k-np)^2p}{np(1-p)}$$

$$\frac{(k-np)^2(1-p) + (k-np)^2p}{np(1-p)}$$

$$\frac{(k-np)^2}{np(1-p)}$$

Fisher's Exact Test

C. Durso

Purpose

Fisher's exact test of independence:

Applies to contingency tables, example:

	ВА	no BA
Over 60	11	93
60 or under	2	83

- Assumes row and column totals are fixed
- Does not require large expected values, unlike a χ^2 test of independence
- Is computationally intensive, unlike a χ^2 test of independence

Concept

- Calculate all probabilities of all tables assuming:
 - Row and column totals are preserved.
 - Row and column variables are independent.
- Sum probabilities of configuration as likely as or less likely than observed.
- Use sum as p-value for null hypothesis of independence.

Calculation Example: Set-up

Consider:

	Factor 1	Factor 2	Row sum
Factor X	a	b	r_1
Factor Y	С	d	r_2
Column sum	c_1	c_2	n

$$n = c_1 + c_2 = r_1 + r_2 = a + b + c + d$$

All Arrangements

- Random permutations of all observations
- $\binom{n}{c_1}$ possible locations for factor 1 observations, equally likely
- $\binom{n}{r_1}$ possible locations for factor X observations, equally likely
- $\binom{n}{c_1}\binom{n}{r_1}$ possible row and column assignments, equally likely given independence

Construct arrangements with observed cell totals

- Construct arrangements with observed cell totals
- $\binom{n}{r_1}$ possible locations for factor X observations, equally likely (others are factor Y)

- Construct arrangements with observed cell totals
- $\binom{n}{r_1}$ possible locations for factor X observations, equally likely (others are factor Y)
- $\binom{r_1}{a}$ possible locations for factor 1 intersect factor X observations, equally likely (others in row 1 are factor 2)

- Construct arrangements with observed cell totals
- $\binom{n}{r_1}$ possible locations for factor X observations, equally likely (others are factor Y)
- $\binom{r_1}{a}$ possible locations for factor 1 intersect factor X observations, equally likely (others in row 1 are factor 2)
- $\binom{r_2}{c}$ possible locations for factor 1 intersect factor Y observations, equally likely (others in row 2 are factor 2)

- Construct arrangements with observed cell totals
- $\binom{n}{r_1}$ possible locations for factor X observations, equally likely (others are factor Y)
- $\binom{r_1}{a}$ possible locations for factor 1 intersect factor X observations, equally likely (others in row 1 are factor 2)
- $\binom{r_2}{c}$ possible locations for factor 1 intersect factor Y observations, equally likely (others in row 2 are factor 2)
- $\binom{n}{r_1}\binom{r_1}{a}\binom{r_2}{c}$ equally likely assignments of factor X, factor Y, factor 1, and factor 2 produce the observed counts in each cell

Probability of Observed Counts

$$\frac{\binom{n}{r_1}\binom{r_1}{a}\binom{r_2}{c}}{\binom{n}{r_1}\binom{n}{c_1}}$$

Probability of Observed Counts

$$\frac{\binom{n}{r_1}\binom{r_1}{a}\binom{r_2}{c}}{\binom{n}{r_1}\binom{n}{c_1}}$$

$$\frac{\binom{r_1}{a}\binom{r_2}{c}}{\binom{n}{c_1}}$$

Probability of Observed Counts

$$\frac{\binom{n}{r_1}\binom{r_1}{a}\binom{r_2}{c}}{\binom{n}{r_1}\binom{n}{c_1}}$$

$$\frac{\binom{r_1}{a}\binom{r_2}{c}}{\binom{n}{c_1}}$$

$$\frac{(a+b)! (c+d)! (a+c)! (b+d)!}{a! \, b! \, c! \, d! \, n!}$$

p-value

The p-value for the null hypothesis that factor X and factor 1 are independent: sum of all probabilities $\frac{(a'+b')!(c'+d')!(a'+c')!(b'+d')!}{(a'+b')!(c'+d')!}$ with:

$$\frac{(a'+b')!(c'+d')!(a'+c')!(b'+d')!}{a'!b'!c'!d'!n'!}$$
 with:

- Original row and column sums: $a'+b'=r_1$, $c'+d'=r_2$, $a'+c'=c_1$, $b'+d'=c_2$
- Lower or equal than probability of observed counts:

$$\frac{(a'+b')!(c'+d')!(a'+c')!(b'+d')!}{a'!b'!c'!d'!n'!} \le \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{a!b!c!d!n!}$$

Covariance

C. Durso

Sample Covariance

Definition

If $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ are two vectors of numerical data values, the sample covariance of $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ is $cov(\vec{x}, \vec{y}) = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n-1}$ where \bar{x} and \bar{y} are the sample means of their respective vectors.

Alternate Form of Sample Covariance

Theorem

The sample covariance of $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ is equal to

$$\frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} * \bar{y}}{n-1}$$

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1} = \frac{\sum_{i=1}^{n} (x_i y_i - x_i \bar{y} - \bar{x} y_i + \bar{x} * \bar{y})}{n-1}$$

Alternate Form of Sample Covariance

Theorem

The sample covariance of $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ is equal to

$$\frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} * \bar{y}}{n-1}$$

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1} = \frac{\sum_{i=1}^{n} (x_i y_i - x_i \bar{y} - \bar{x} y_i + \bar{x} * \bar{y})}{n-1}$$

$$= \frac{\sum_{i=1}^{n} x_{i} y_{i}}{n-1} - \frac{2n\bar{x} * \bar{y}}{n-1} + \frac{n\bar{x} * \bar{y}}{n-1}$$

Alternate Form of Sample Covariance

Theorem

The sample covariance of $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ is equal to

$$\frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} * \bar{y}}{n-1}$$

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1} = \frac{\sum_{i=1}^{n} (x_i y_i - x_i \bar{y} - \bar{x} y_i + \bar{x} * \bar{y})}{n-1}$$

$$= \frac{\sum_{i=1}^{n} x_i y_i}{n-1} - \frac{2n\bar{x} * \bar{y}}{n-1} + \frac{n\bar{x} * \bar{y}}{n-1}$$

$$= \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} * \bar{y}}{n-1}$$

Population or Distribution Covariance

Definition

Given a probability space (S, M, P) and functions $X: S \to \mathbb{R}$ and $Y: S \to \mathbb{R}$ giving rise to jointly distributed random variables, the covariance of X and Y is the expected value of

$$(X - E[X])(Y - E[Y]), E[(X - E[X]), (Y - E[Y])] = Cov[X, Y]$$

Note that the covariance may not be well-defined. The sum or integral may not converge.

Alternate Form of Covariance of Jointly Distributed Distributions

Theorem

$$Cov[X,Y] = E[XY] - E[X]E[Y]$$

Proof

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])]$$

= $E[XY] - E[XE[Y]] - E[E[X]Y] + E[E[X]E[Y]]$
= $E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]$
= $E[XY] - E[X]E[Y]$

Sample Variance of $\vec{x} + \vec{y}$

Theorem

Given two vectors $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ of numerical data values, the sample variance of $\langle x_1 + y_1, x_2 + y_2, ... x_n + y_n \rangle$ equals $var(\vec{x}) + 2cov(\vec{x}, \vec{y}) + var(\vec{y})$ where $var(\vec{w})$ denotes the sample variance of the vector \vec{w} .

$$var(\vec{x} + \vec{y}) = \frac{\sum_{i=1}^{n} (x_i + y_i)^2 - n(\overline{x + y})^2}{n - 1} = \frac{\sum_{i=1}^{n} (x_i^2 + 2x_i y_i + y_i^2) - n(\overline{x} + \overline{y})^2}{n - 1}$$

Sample Variance of $\vec{x} + \vec{y}$

Theorem

Given two vectors $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ of numerical data values, the sample variance of $\langle x_1 + y_1, x_2 + y_2, ... x_n + y_n \rangle$ equals $var(\vec{x}) + 2cov(\vec{x}, \vec{y}) + var(\vec{y})$ where $var(\vec{w})$ denotes the sample variance of the vector \vec{w} .

$$var(\vec{x} + \vec{y}) = \frac{\sum_{i=1}^{n} (x_i + y_i)^2 - n(\overline{x} + \overline{y})^2}{n-1} = \frac{\sum_{i=1}^{n} (x_i^2 + 2x_i y_i + y_i^2) - n(\overline{x} + \overline{y})^2}{n-1}$$
$$= \frac{\sum_{i=1}^{n} (x_i^2 + 2x_i y_i + y_i^2) - n(\overline{x}^2 + 2\overline{x} * \overline{y} + \overline{y}^2)}{n-1}$$

Sample Variance of $\vec{x} + \vec{y}$

Theorem

Given two vectors $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ of numerical data values, the sample variance of $\langle x_1 + y_1, x_2 + y_2, ... x_n + y_n \rangle$ equals $var(\vec{x}) + 2cov(\vec{x}, \vec{y}) + var(\vec{y})$ where $var(\vec{w})$ denotes the sample variance of the vector \vec{w} .

$$var(\vec{x} + \vec{y}) = \frac{\sum_{i=1}^{n} (x_i + y_i)^2 - n(\overline{x + y})^2}{n - 1} = \frac{\sum_{i=1}^{n} (x_i^2 + 2x_i y_i + y_i^2) - n(\overline{x} + \overline{y})^2}{n - 1}$$

$$= \frac{\sum_{i=1}^{n} (x_i^2 + 2x_i y_i + y_i^2) - n(\overline{x}^2 + 2\overline{x} * \overline{y} + \overline{y}^2)}{n - 1}$$

$$= \frac{\sum_{i=1}^{n} x_i^2 - n\overline{x}^2 + 2\sum_{i=1}^{n} 2x_i y_i - 2n\overline{x} * \overline{y} + \sum_{i=1}^{n} y_i^2 - n\overline{y}^2}{n - 1}$$

$$= var(\vec{x}) + 2cov(\vec{x}, \vec{y}) + var(\vec{y})$$

Population or Distribution Variance of X + Y

Theorem

If X and Y are jointly distributed random variables and Var[X + Y] is defined, then Var[X + Y] = Var[X] + 2cov[X,Y] + Var[Y]

$$Var[X + Y] = E[(X + Y)^{2}] - E[X + Y]^{2}$$

$$= E[X^{2}] + E[2XY] + E[Y^{2}] - (E[X] + E[Y])^{2}$$

$$= E[X^{2}] - E[X]^{2} + 2E[XY] - 2E[X]E[Y] + E[Y^{2}] - E[Y]^{2}$$

$$Var[X] + 2Cov[X, Y] + Var[Y]$$

Correlation

C. Durso

Correlation

Definition

If $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ are two vectors of numerical data values, the sample correlation of $\langle x_1, x_2, ... x_n \rangle$ and $\langle y_1, y_2, ... y_n \rangle$ is $Cor[\vec{x}, \vec{y}] = \frac{Cov[\vec{x}, \vec{y}]}{\sqrt{var[\vec{x}]} \sqrt{var[\vec{y}]}}$

Definition

If *X* and *Y* are jointly distributed random variables,

$$Cor[x,y] = \frac{Cov[x,y]}{\sqrt{var[x]}\sqrt{var[y]}}$$

Correlation Range

Both sample correlation and distribution correlation take values in [-1,1]. The fact underlying these restrictions is the Cauchy-Schwarz Inequality:

Theorem

(from Wikipedia) If u and v are vectors in a vector space \mathbb{F} with an inner product $\langle u, v \rangle$ and corresponding norm $||u||^2 = \langle u, u \rangle$, then $\langle u, v \rangle^2 \le ||u||^2 ||v||^2$ with equality only if u and v are linearly dependent.

Assume
$$v$$
 does not equal 0. Set $\lambda = \frac{\langle u, v \rangle}{\|v\|}$

$$0 \le ||u - \lambda v||^2$$
, with equality only if $u - \lambda v = 0$

$$= \langle u - \lambda v, u - \lambda v \rangle = \langle u, u \rangle - 2\lambda \langle u, v \rangle + \lambda^2 \langle v, v \rangle$$

$$= ||u||^{2} - 2\frac{\langle u, v \rangle}{||v||^{2}}\langle u, v \rangle + \left(\frac{\langle u, v \rangle}{||v||^{2}}\right)^{2} ||v||^{2} = ||u||^{2} - 2\frac{\langle u, v \rangle}{||v||^{2}} + \frac{\langle u, v \rangle^{2}}{||v||^{2}}$$

$$= ||u||^2 - \frac{\langle u,v \rangle^2}{||v||^2}$$
, so $\frac{\langle u,v \rangle^2}{||v||^2} \le ||u||^2$. Multiplying through by $||v||^2$ gives the desired conclusion.

Link

For the sample correlation, take the vector $u = \langle x_1 - \bar{x}, x_2 - \bar{x}, ... x_n - \bar{x} \rangle$ and $v = \langle y_1 - \bar{y}, y_2 - \bar{y}, ... y_n - \bar{y} \rangle$. Then the Cauchy-Schwarz Inequality become $\left((n-1)cov(\bar{x},\bar{y}) \right)^2 \leq (n-1)var(\bar{x})(n-1)var(\bar{y})$.

Interpretation

- Since equality occurs only if $\langle x_1 \bar{x}, x_2 \bar{x}, ... x_n \bar{x} \rangle$ and $\langle y_1 \bar{y}, y_2 \bar{y}, ... y_n \bar{y} \rangle$ are colinear, the correlation is 1 or -1 if the scatter plot of \vec{x} and \vec{y} is a line.
- Correlation indicates the extent to which \vec{x} and \vec{y} lie along a line.
- Values near 1 or −1 indicate a high degree of colinearity.
- Values near 0 indicating a low degree of colinearity.

Interpretation

Note that very diverse relationships can produce equal correlations.