Критерий Коши

Пусть $f \colon D \to \mathbb{R}, a$ - предельная точка D.

Теорема 1. Существует конечный предел функции f(x): $\exists \lim_{x \to a} f(x) \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 : \forall x, y \in D, 0 < |x - a| < \delta \land 0 < |y - a| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$

 (\Rightarrow) Пусть $\lim_{x\to a} f(x) = A$, по определению $\forall \varepsilon > 0, \exists \delta > 0 \colon \forall x \in D, 0 < |x-a| < \delta \Rightarrow |f(x)-A| < \varepsilon$. Пусть $0 < |x-a| < \delta \land 0 < |y-a| < \delta$, оценим разность |f(x)-f(y)|:

$$|f(x) - f(y)| = |f(x) - A + A - f(y)| \le |f(x) - A| + |f(y) - A| < 2\varepsilon$$

Таким образом, условие Коши проверено.

(\Leftarrow) Пусть $x_n \to a \land x_n \neq a$. Докажем, что $f(x_n)$ - сходится: $\forall \varepsilon > 0, \exists \delta > 0$: $\forall x, y \in D, \ 0 < |x - a| < \delta \land 0 < |y - a| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$. Поскольку $x_n \to a \Rightarrow \exists N : \forall n > N, \ 0 < |x_n - a| < \delta$. Тогда по условию Коши, если взять $n, m > N \Rightarrow |f(x_n) - f(x_m)| < \varepsilon$. Следовательно, последовательность $f(x_n)$ сходится.

Проверим, что выбор x_n не влияет на значение предела:

Пусть $y_n \to a \land y_n \neq a$. Составим новую последовательность $z_n \colon x_1, y_1, x_2, y_2, \ldots \Rightarrow z_n \to a \land z_n \neq a$. Доказали, что $f(z_n)$ - сходится, $f(x_n)$ и $f(y_n)$ - подпоследовательности.

Знаем, что пределы подпоследовательностей совпадают с пределом последовательности, если эта последовательность сходится $\Rightarrow \lim_{x_n \to a} f(x_n) = \lim_{y_n \to a} f(y_n) = \lim_{z_n \to a} f(z_n) \Rightarrow$ предел не зависит от выбора x_n .

Предел по базе

Пусть $X \neq \emptyset$.

Опр: 1. <u>Базой</u> называется такой непустой набор \mathfrak{B} подмножеств X, что

- $(1) \varnothing \notin \mathfrak{B};$
- (2) $\forall U, V \in \mathfrak{B}, \exists W \in \mathfrak{B} \colon W \subset U \cap V;$

Примеры

- 1) Пусть $X=\mathbb{N},\,\mathfrak{B}=\{\,\{n\colon n>N\}\,\}.\,\,\{n\colon n>N_1\}\cap\{n\colon n>N_2\}=\{n\colon n>\max\{N_1,N_2\}\};$
- 2) Пусть $X = \mathbb{R}$, зафиксируем точку $a, \mathfrak{B} = \{(a \delta, a + \delta) \setminus \{a\}, \ \delta > 0\} = \{\mathcal{U}_{\delta}'(a), \ \delta > 0\}$ проколотая окрестность точки $a. \ \mathcal{U}_{\delta_1}'(a) \cap \mathcal{U}_{\delta_2}'(a) = \mathcal{U}_{\min\{\delta_1,\delta_2\}}'(a);$
- 3) Пусть $X=\mathbb{R},$ зафиксируем точку $a,\,\mathfrak{B}=\{(a-\delta,a+\delta),\,\delta>0\}$ легко проверяется, что это база;
- 4) Пусть $X \neq \varnothing$, зафиксируем точку a, все множества содержащие a $\mathfrak{B} = \{B \colon a \in B\}$ база.

Упр. 1. Доказать последний пример.

Пусть $f: X \to \mathbb{R}$.

Опр: 2. Число A называется пределом f по базе \mathfrak{B} , если:

$$\forall \varepsilon > 0, \ \exists \ U \in \mathfrak{B} : \forall x \in U, \ |f(x) - A| < \varepsilon$$

Обозначение $A = \lim_{\mathfrak{B}} f$.

Примеры

1) $X = \mathbb{N}, f: \mathbb{N} \to \mathbb{R}, f(n) = a_n, \mathfrak{B} = \{ \{n: n > N\} \}$. Тогда $\forall \varepsilon > 0, \exists \{n: n > N\} \Leftrightarrow \exists N: \forall n \in \{n: n > N\} \Leftrightarrow \forall n > N \Rightarrow |a_n - A| < \varepsilon$

Получили в точности определение предела последовательности.

2)
$$X=\mathbb{R},\ f\colon\mathbb{R}\to\mathbb{R},\ \mathfrak{B}=\{\mathcal{U}_{\delta}'(a),\ \delta>0\}.$$
 Тогда
$$\forall \varepsilon>0, \exists\,\mathcal{U}_{\delta}'(a)\Leftrightarrow 0<|x-a|<\delta\colon\forall x\in\mathcal{U}_{\delta}'(a)\Rightarrow|f(x)-A|<\varepsilon$$

Получили в точности определение предела функции по Коши.

Упр. 2. Что даст пример 3) и 4).

Утв. 1. Если $\lim_{\mathfrak{B}} f = A \wedge \lim_{\mathfrak{B}} f = B \Rightarrow A = B$.

 $\square \quad \forall \varepsilon > 0, \exists \, U \in \mathfrak{B} \colon \forall x \in U \Rightarrow |f(x) - A| < \varepsilon \text{ и } \forall \varepsilon > 0, \exists \, V \in \mathfrak{B} \colon \forall x \in V \Rightarrow |f(x) - B| < \varepsilon. \text{ По условию } \exists \, W \neq \varnothing \colon W \subset U \cap V \Rightarrow \forall x \in W \Rightarrow |A - B| \leq |A - f(x)| + |f(x) - B| < 2\varepsilon$

Если $A \neq B$, то при $\varepsilon = \frac{A-B}{2}$ получаем противоречие: |A-B| < |A-B|.

Утв. 2. Пусть $\lim_{\mathfrak{R}} f = A \wedge \lim_{\mathfrak{R}} g = B$. Тогда $\forall \alpha, \beta \in \mathbb{R}$, $\lim_{\mathfrak{R}} (\alpha f + \beta g) = \alpha A + \beta B$.

 $\Box \quad \forall \varepsilon > 0, \exists \, U \in \mathfrak{B} \colon \forall x \in U \Rightarrow |f(x) - A| < \varepsilon \text{ и } \exists \, V \in \mathfrak{B} \colon \forall x \in V \Rightarrow |g(x) - B| < \varepsilon. \text{ По свойству базы } \\ \exists \, W \neq \varnothing \colon W \subset U \cap V \Rightarrow \forall x \in W \Rightarrow |\alpha f(x) + \beta g(x) - (\alpha A + \beta B)| \leq |\alpha| |f(x) - A| + |\beta| |g(x) - B| \leq (|\alpha| + |\beta|) \varepsilon$

Утв. 3. (Монотонность): Пусть $\lim_{\mathfrak{R}} f = A \wedge \lim_{\mathfrak{R}} g = B$ и $\exists U \in \mathfrak{B} \colon \forall x \in U, \ f(x) \leq g(x) \Rightarrow A \leq B$.

 $\Box \forall \varepsilon > 0, \exists U_1 \in \mathfrak{B} : \forall x_1 \in U_1 \Rightarrow |f(x_1) - A| < \varepsilon \land \exists U_2 \in \mathfrak{B} : \forall x_2 \in U_2 \Rightarrow |g(x_2) - A| < \varepsilon$. По свойству базы: $\exists W \subset U_1 \cap U_2 \cap U$ (для трех множеств можно получить утверждение циклически: найти элемент базы в пересечении двух множеств, затем пересечь этот элемент с третьим множеством).

$$\forall x \in W \Rightarrow A - \varepsilon < f(x) \le g(x) < B + \varepsilon \Rightarrow A < B + 2\varepsilon$$

Если A>B, то при $\varepsilon=\frac{A-B}{2}>0$ мы получаем $A< B+2\varepsilon=B+A-B\Rightarrow A< A\Rightarrow$ противоречие $\Rightarrow A< B$.

Упр. 3. Записать с помощью определения по базе предел: $\lim_{x\to +\infty} f(x) = A$. Подсказка: рассмотреть в качестве элементов базы $\{x\colon x>a\}$ и выписать определение предела по базе.

Упр. 4. Записать с помощью определения по базе предел: $\lim_{x \to -\infty} f(x) = A$.

Упр. 5. Записать с помощью определения по базе предел: $\lim_{x \to \infty} f(x) = A$.

Непрерывность

Пусть $f: D \to \mathbb{R}$, $a \in D$, то есть f определена в точке a.

Опр: 3. Функция f - непрерывна в точке a по множеству D, если

$$\forall \varepsilon > 0, \exists \delta > 0 \colon \forall x \in D, |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Выбор множества *D* имеет решающее значение, если например рассмотрим функцию Дирихле:

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

она не является непрерывной в 0 (всюду разрывна). Но если рассматривать её на множестве рациональных чисел - это будет всюду непрерывная функция. Аналогично, на множестве иррациональных чисел.

Rm: 1. Если a - изолированная точка D (т.е. в некоторой окрестности, других точек кроме точки a там нет) и f - определена в a, то f - непрерывна в точке a.

$$-\frac{\delta}{a}$$

Рис. 1: а - изолированная точка.

Пример: У функции в области определения могут быть изолированные точки $f(x) = \sqrt{x^2(x^2 - 1)}$. Она определена на множестве $(-\infty, -1) \cup \{0\} \cup (1, +\infty) \Rightarrow 0$ - изолированная точка.

Рис. 2: Область определения функции $f(x) = \sqrt{x^2(x^2 - 1)}$. 0 - изолированная точка.

В изолированной точке a верно $|f(a) - f(a)| = 0 < \varepsilon$.

Теорема 2. Следующие утверждения равносильны:

- $(1)\ f$ непрерывна в точке a множества D;
- (2) $\forall x_n \in D, x_n \to a \Rightarrow f(x_n) \to f(a);$
- (3) a изолированная точка или a предельная точка D и $\lim_{x \to a} f(x) = f(a)$;

- $(1)\Rightarrow (2)$: $\forall \varepsilon>0, \exists \, \delta>0$: $\forall x\in D, \, |x-a|<\delta\Rightarrow |f(x)-f(a)|<\varepsilon$. Пусть $x_n\to a\Rightarrow$ по определению предела $\exists \, N\colon \forall n>N, \, |x_n-a|<\delta\Rightarrow |f(x_n)-f(a)|<\varepsilon\Rightarrow f(x_n)\to f(a)$.
- $(2)\Rightarrow (3)$: a изолированная точка \Rightarrow ничего доказывать не нужно. Если a предельная точка, то надо показать, что $\lim_{x\to a} f(x) = f(a)$: Распишем определение по Гейне $\Rightarrow \forall x_n \colon x_n \to a \land x_n \neq a \Rightarrow f(x_n) \to f(a) \Rightarrow (2)$ более общее, чем $(3) \Rightarrow$ верно.
- $(3)\Rightarrow (1)$: Если a изолированная точка, то f непрерывна в ней. Пусть a предельная точка, тогда по определению Коши: $\forall \varepsilon>0, \exists \, \delta>0 \colon \forall x\in D, \, 0<|x-a|<\delta\Rightarrow |f(x)-f(a)|<\varepsilon$. Хотим доказать, что $\forall \varepsilon>0, \exists \, \delta>0 \colon \forall x\in D, \, |x-a|<\delta\Rightarrow |f(x)-f(a)|<\varepsilon$. Если $x=a\Rightarrow |f(a)-f(a)|=0<\varepsilon$.