Frequency-dependent regularization arises from a noisy-channel processing model

Anonymous CogSci submission

Abstract

Language often has different ways to express the same or similar meanings. Despite this, however, people seem to have preferences for some ways over others. For example, people overwhelmingly prefer *bread and butter* to *butter and bread*. Previous research has demonstrated that these ordering preferences grow stronger with frequency (i.e., frequency-dependent regularization). In this paper we demonstrate that this frequency-dependent regularization can be accounted for by noisy-channel processing models (e.g., Gibson, Bergen, & Piantadosi, 2013; Levy, 2008). We also show that this regularization can only be accounted for if the listener infers more noise than the speaker produces. Finally, we show that the model can account for the language-wide distribution of binomial ordering preferences.

Keywords: Frequency-dependent regularization; Noisy-channel processing; Psycholinguistics.

Introduction

Speakers are often confronted with many different ways to express the same meaning. A customer might ask whether a store sells "radios and televisions", but they could have just as naturally asked whether the store sells "televisions and radios." However, despite conveying the same meaning, speakers sometimes have strong preferences for one choice over competing choices (e.g., preference for *men and women* over *women and men*, Benor & Levy, 2006; Morgan & Levy, 2016a). These preferences are driven to some extent by generative preferences (e.g., preference for short words before long words), however they are sometimes violated by idiosyncratic preferences (e.g., *ladies and gentlemen* preferred despite a general men-before-women generative preference, Morgan & Levy, 2016b).

Interestingly, ordering preferences for certain constructions, such as binomial expressions, are often more extreme for higher frequency items (e.g., bread and butter). That is, higher-frequency items typically have more polarized preferences (Liu & Morgan, 2020, 2021; Morgan & Levy, 2015, 2016b, 2016a). This phenomenon is called *Frequency-dependent regularization*, and while there is evidence of it in several different constructions, it is still unclear what processess this phenomenon is driven by. For example, it could be a consequence of learning processes or a consequence of sentence processing more broadly. In the present paper we examine whether a noisy-channel processing model (Gibson et al., 2013) combined with transmission across generations (Reali

& Griffiths, 2009) can account for frequency-dependent regularization.

Frequency-dependent regularization

Frequency-dependent regularization has been documented for a variety of different constructions in English (Liu & Morgan, 2020, 2021; Morgan & Levy, 2015, 2016b). For example, Morgan & Levy (2015) demonstrated that more frequent binomial expressions (e.g., *bread and butter*) are more strongly regularized (i.e., are preferred in one order overwhelmingly more than the alternative). These ordering preferences are also not simply a result of abstract ordering preferences (e.g., short words before long words, Morgan & Levy, 2016a).

Additionally, Liu & Morgan (2020) demonstrated this effect holds true for the dative alternation in English (e.g., *give the ball to him* vs *give him the ball*). Specifically, they demonstrated higher frequency verbs have more polarized preferences with respect to the dative alternation. Similarly, Liu & Morgan (2021) showed that Adjective-Adjective-Noun orderings also show frequency-dependent regularization. That is, adjective-adjective-Nouns with higher overall frequencies show stronger ordering preferences, even after taking into account generative preferences of adjective orderings.

How does this polarization for high-frequency items arise? One possibility is that it occurs as a consequence of imperfect transmission between generations. For example, as speakers transmit the language from one generation to the next, it is possible that the next generation may infer the probability of each ordering imperfectly. Indeed, Morgan & Levy (2016b) demonstrated this possibility in an iterated-learning paradigm. They showed that frequencydependent regularization can arise from an interaction between a frequency-independent bias and transmission across generations. Specifically, they used an iterated learning paradigm (following Reali & Griffiths, 2009) and demonstrated that by introducing a frequency-independent regularization bias, after several generations the model predicted frequency-dependent regularization. They argued that frequency-dependent regularization emerges because for lowfrequency items, the regularization bias cannot overcome the prior. Despite the evidence of frequency-dependent regularization, however, it is unclear what process in language is analogous to the frequency-independent bias.

Noisy-channel Processing

One possibility is that frequency-dependent regularization arises as a product of noisy-channel processing (Gibson et al., 2013). Listeners are confronted with a great deal of noise in the form of perception errors (e.g., a noisy environment) and even production errors (speakers don't always say what they intended to, Gibson et al., 2013). In order to overcome these errors, a processing system must take into account the noise of the system.

Indeed, there is evidence that our processing system does take noise into account. For example, Ganong (1980) found that people will process a non-word as being a word under noisy conditions. Additionally, Albert Felty, Buchwald, Gruenenfelder, & Pisoni (2013) demonstrated that when listeners do misperceive a word, the word that they believe to have heard tends to be higher frequency than the target word. Further, Keshev & Meltzer-Asscher (2021) found that in Arabic, readers will even process ambiguous subject/object relative clauses as the more frequent interpretation, even if this interpretation compromises subject-verb agreement. These results taken together suggests that misperceptions may sometimes actually be a consequence of noisy-channel processing (rather than a failure of our perceptual system). ¹

In order to account for findings like these, Gibson et al. (2013) developed a computational model that demonstrated how a system might take into account noise (see Levy, 2008 for a similar approach). Specifically, their model operationalizes noisy-channel processing as a Bayesian process where a listener estimates the probability that their perception matches the speaker's intended utterance. Specifically, this is operationlized as being proportional to the prior probability of the intended utterance multiplied by the probability of the intended utterance being corrupted to the perceived utterance (See Equation 1):

$$P(S_i|S_p) \propto P(S_i)P(S_i \to S_p)$$
 (1)

where $P(S_i|S_p)$ is the probability that the intended utterance was actually the utterance that was perceived, $P(S_i)$ is the prior probability of the intended utterance, and $P(S_i \rightarrow S_p)$ is the probability that the intended utterance was corrupted by noise.

Gibson et al. (2013)'s model made a variety of interesting predictions. For example, the model predicted that when people are presented with an implausible sentence (e.g., the mother gave the candle the daughter), they should be more likely to interpret the plausible version of the sentence (e.g., the mother gave the candle to the daughter) if there is increased noise (e.g., by adding syntactic errors to the filler items, such as a deleted function word). Their model also predicted that increasing the likelihood of implausible events (e.g., by adding more filler items that were implausible, such as the girl was kicked by the ball) should increase the rate

of implausible interpretations of the sentence. Interestingly both of these results were born out in their experimental data, suggesting that humans do utilize a noisy-channel system in processing.

Present Study

Given the evidence of noisy-channel processing, it is possible that the frequency-dependent regularization that Morgan & Levy (2016b) saw is a product of listeners' noisy-channel processing. That is, perhaps the regularization bias responsible for the regularization across generations is a consequence of noisy-channel processing. Thus, the present study examines whether Gibson et al. (2013)'s noisy-channel processing model can also predict frequency-dependent regularization across generations of language transmission.

Dataset

Following Morgan & Levy (2016b), Morgan & Levy (2015)'s corpus of 594 binomial expressions. This corpus has been annotated for various phonological, semantic, and lexical constraints that are known to affect binomial ordering preferences. The corpus also includes estimated generative preferences for each binomial, which are the ordering preferences estimated from the above constraints (e.g., preference for short before long). Additionally, it contains the observed binomial orderings preferences (hereafter: observed preferences) which are the proportion of binomial orderings that are in alphabetical form for a given binomial. A visualization of the distribution of observed preferences and compositional preferences is included below in Figure 1, on the left and right respectively.

Model

Following Morgan & Levy (2016b), we use a 2-alternative iterated learning paradigm. At very step, learners hear N to-kens with some in alphabetical (AandB) and some in nonal-phabetical (BandA) order. After hearing a single token, learners compute $P(S_i = AandB|S_p)$ and update their beliefs about prior probability of the ordering for a given binomial, $P(S_i)$. The size of the update is proportional to how probable the learner believes the binomial ordering is.

After hearing a token, learners compute $P(S_i = AandB|S_p)$ proportional to $P(S_i) \cdot P(S_i \rightarrow S_p)$. $P(S_i \rightarrow S_p)$ is a fixed noise parameter, which we will call P(noise). P(noise) represents the probability of the perceived binomial ordering being swapped by the learner (i.e., AandB being swapped to BandA or vice versa). $P(S_i)$ represents the learner's belief of the probability of the intended order of the binomial.

To initialize $P(S_i)$ before the learner hears any data, we used the mean and concentration parametrization of the beta distribution. The mean (μ) represents the expectation of the distribution (the mean value of draws from the distribution). The concentration parameter (ν) describes how dense the distribution is.

Before the learner hears any data, μ is equal to the generative preference for the binomial (taken from Morgan & Levy,

¹Changing v does not qualitatively change the pattern of the results for any simulations in the paper, as long as it's greater than

Figure 1: The left plot is a plot of the observed orderings of binomials in the corpus data from @morganModelingIdiosyncraticPreferences2015, the right is the plot of the generative preferences of binomials in the same corpus. The x-axis is proportion of occurrences in alphabetical order and the yaxis is the probability density.

2016b). v is a free parameter, set to 10 for all simulations in this paper.²

We then use $P(S_i)$ and P(noise) to compute $P(S_i|S_n)$. If the perceived binomial is alphabetical (AandB), we compute the unnormalized probability of the alphabetical and nonalphabetical orderings according to the below equations.

$$P_{raw}(S_i = AandB|S_p = AandB) = P(S_i = AandB) \cdot (1 - P(noise))$$
(2)

$$P_{raw}(S_i = BandA|AandB) = 1 - P(S_i = AandB) \cdot P(noise)$$
(3

In particular, $P(S_i = AandB) = \mu$, where $\mu = \alpha_1 / (\alpha_1 + \alpha_2)$ in the pseduco count parametrization. In fact, for updating we use the pseudocount parametrization, where $\alpha_1 = \mu \cdot v$ and $\alpha_2 = 1 - \mu \cdot \nu$.

After calculating the unnormalized (raw) probabilities, they are then normalized:

$$\hat{P}(\alpha) = \frac{P_{raw}(S_i = AandB|S_p = AandB)}{P_{raw}(S_i = AandB|S_p = AandB) + P_{raw}(S_i = BandA|S_p = \overline{AandB})} = \frac{5), \text{ nowever a larger relative difference between the speaker}}{(A) \text{ https://github.com/znhoughton/Noisy-Channel-Iterated}}$$

$$\hat{P}(\neg \alpha) = 1 - \hat{P}(\alpha) \tag{5}$$

We then update α'_1 and α'_2 to be used as the pseudocount parameters of $P(S_i)$ when the learner hears the next token. This update is done according to the following equation (note that for the update we use the pseudo count parametrization):

$$\alpha_1' = \alpha_1 + \hat{P}(\alpha) \tag{6}$$

$$\alpha_2' = \alpha_2 + \hat{p}(\neg \alpha) \tag{7}$$

When the learner hears the next token, they use α'_1 and α'_2 to compute $P(S_i)$. Note that when learner hear AandB, they update their beliefs about the probability of both the alpahabetical and nonalphabetical forms of the binomial.

When the learner is done hearing N tokens and updating their beliefs of $P(S_i)$ for a given binomial, they then produce N tokens for the next generation of learners. These are generated binomially, where $\theta_1 = P(S_i = AandB)$ is the inferred probability of the alphabetical form of a given binomial:

$$P(x_1|\theta_1) = \binom{N}{x_1} \theta^{x_1} (1 - \theta_1)^{N - x_1}$$
 (8)

When producing each token, there is also a possibility that the speaker makes an error and produces an unintended ordering of the binomial. In order to model this, the speaker produces a token in the unintended order with probability P(SpeakerNoise). This is a fixed parameter in the model and remains constant across binomials and generations.³

This process continues iteratively for *ngen* generations.

Results

Speaker vs Listener Noise

First we demonstrate that frequency-dependent regularization does not arise when there is no listener or speaker noise.⁴ Instead we see convergence to the prior, which is expected. That is, Griffiths & Kalish (2007) demonstrated that when learners sample from the posterior, as the number of iterations increases, the stationary distribution converges to the prior. In other words, without any noise, each generation of learners produces data that is more and more similar to the prior, until convergence is reached (Figure 2).

However, when we introduce noise (Figure 3), we see that the model can predict frequency-dependent regularization across generations.

Further, the disparity of the noise affects the rate of regularization. Increased noise results in weaker regularization (i.e., less regularization for lower frequency items, see Figure 5), however a larger relative difference between the speaker

https://github.com/znhoughton/Noisy-Channel-Iterated

²Changing v does not qualitatively change the pattern of the results for any simulations in the paper, as long as it's greater than

⁴All code and results can be found publicly available here: https://github.com/znhoughton/Noisy-Channel-Iterated -Learning

Figure 2: A plot of the distribution of simulated binomials at the 500th generation, varying in frequency. The top value represents N. On the x-axis is the predicted probability of producing the binomial in alphabetical form. On the y-axis is probability density. Speaker and listener noise was set to 0. The generative preference was 0.6, and nu was set to 10. 1000 chains were run. Note that there is no frequency-dependent regularization apparent.

and listener noise parameters increases both the strength and the speed of the regularization (see Figure 4).

Interestingly this regularization disappears if the listener's noise parameter is less than or equal to the speaker's noise parameter (Figure 6).

It is useful to revisit here what the speaker and listener noise parameters represent. The speaker noise parameter is how often the speaker produces an error and the listener noise parameter is the listeners' belief of how noisy the environment is. Framed this way, it is perhaps unsurprising that we do not see regularization when the parameters equal eachother, since they essentially cancel eachother out (everytime a speaker makes an error, the listener is accounting for it, thus we get convergence to the prior).

Thus our model makes a novel prediction: In order to account for frequency-dependent regularization, listeners must be inferring more noise than speakers are actually producing (according to our model).

Corpus Data

Finally, we now demonstrate that our model also predicts the language-wide distribution of binomial preference strengths seen in the corpus data. Specifically, we show that with ν set to 10, listener noise set to 0.02, and speaker noise set to 0.005, our model does a pretty good job of approximating the

Figure 3: A plot of the distribution of simulated binomials at the 500th generation, varying in frequency. The top value represents N. On the x-axis is the predicted probability of producing the binomial in alphabetical form. On the y-axis is probability density. Speaker noise was set to 0.001, listener noise was set to 0.01, the generative preference was 0.6, and nu was set to 10. 1000 chains were run. Note how for the binomials with large N, the ordering preferences tend to be more extreme.

distribution in the corpus data (See Figure 7).

Conclusion

Our results demonstrate the frequency-dependent regularization emerges from a noisy-channel processing model (Gibson et al., 2013) in an iterative-learning paradigm (Morgan & Levy, 2016b; Reali & Griffiths, 2009) when listeners assume more noise in the environment than the speakers actually produce.

Further our results suggest that in order to account for frequency-dependent regularization, listeners are inferring more noise than speakers are producing. An interesting avenue for future research is whether this prediction is born out in experimental work.

References

10 Albert Felty, R., Buchwald, A., Gruenenfelder, T. M., & Pisoni, D. B. (2013). Misperceptions of spoken words: Data from a random sample of american english words. *The Journal of the Acoustical Society of America*, 134(1), 572–585.

Benor, S. B., & Levy, R. (2006). The chicken or the egg? A probabilistic analysis of english binomials. *Language*, 233278.

Figure 4: A plot of simulations with different noise parameters at 500 (top plots) and 2000 (bottom plots) generations. For the left plots, the speaker noise was set to 0.009 and the listener noise parameter was set to 0.01. For the right plots, the speaker noise was set to 0.0075 and the listener noise parameter was set to 0.01. For both plots, the generative preference was set to 0.6 and nu was set to 10.

Ganong, W. F. (1980). Phonetic categorization in auditory word perception. *Journal of Experimental Psychology: Human Perception and Performance*, 6(1), 110. Retrieved from https://psycnet.apa.org/record/1981-07020-001

Gibson, E., Bergen, L., & Piantadosi, S. T. (2013). Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. *Proceedings of the National Academy of Sciences*, 110(20), 8051–8056. http://doi.org/10.1073/pnas.1216438110

Griffiths, T. L., & Kalish, M. L. (2007). Language evolution by iterated learning with bayesian agents. *Cognitive Science*, 31(3), 441–480. http://doi.org/10.1080/15326900701326576

Keshev, M., & Meltzer-Asscher, A. (2021). Noisy is better than rare: Comprehenders compromise subject-verb agreement to form more probable linguistic structures. *Cognitive Psychology*, 124, 101359. http://doi.org/10.1016/j.cogpsych.2020.101359

Levy, R. (2008). A noisy-channel model of human sentence comprehension under uncertain input. In (p. 234243). Retrieved from https://aclanthology.org/D08-1025.pdf

Liu, Z., & Morgan, E. (2020). Frequency-dependent regularization in constituent ordering preferences. In. Retrieved from https://www.cognitivesciencesociety

Figure 5: A plot of simulations with different noise parameters, but the same relative difference between the speaker and listener noise parameters. The top plot For the top plot, the speaker noise was set to 0.091 and listener noise was set to 0.1. For the bottom plot, the speaker noise was set to 0.001 and listener noise was set to 0.01. Note that the relative difference between the listener and speaker noise parameters for both plots was the same (0.009).

.org/cogsci20/papers/0751/0751.pdf

Liu, Z., & Morgan, E. (2021). Frequency-dependent regularization in syntactic constructions. In (p. 387389). Retrieved from https://aclanthology.org/2021.scil-1.41.pdf

Morgan, E., & Levy, R. (2015). Modeling idiosyncratic preferences: How generative knowledge and expression frequency jointly determine language structure, 1649–1654.

Morgan, E., & Levy, R. (2016a). Abstract knowledge versus direct experience in processing of binomial expressions. *Cognition*, 157, 384–402. http://doi.org/10.1016/j.cognition.2016.09.011

Morgan, E., & Levy, R. (2016b). Frequency-dependent regularization in iterated learning. *The Evolution of Language: Proceedings of the 11th International Conference.*

Reali, F., & Griffiths, T. L. (2009). The evolution of frequency distributions: Relating regularization to inductive biases through iterated learning. *Cognition*, *111*(3), 317–328. http://doi.org/10.1016/j.cognition.2009.02.012

Figure 6: A plot of the distribution of simulated binomials at the 500th generation, varying in frequency. The top value represents N. On the x-axis is the predicted probability of producing the binomial in alphabetical form. On the y-axis is probability density. Speaker noise was set to 0.01, listener noise was set to 0.001, the generative preference was 0.6, and nu was set to 10. 1000 chains were run. Note how regularization does not appear to be present in this graph.

Figure 7: A plot of the distribution of ordering preferences after 500 generations of our iterated learning model (left) and the distribution of ordering preferences in the corpus data from Morgan & Levy (2015). For our simulations, the binomial frequencies and generative preferences were matched with the corpus data. u was set to 10, listener noise was set to 0.02, and speaker noise was set to 0.005.