Aalto University

Problem set 4

Department of Mathematics and Systems Analysis MS-C1541 — Metric spaces, 2021/III

K Kytölä & D Adame-Carrillo

(Exercise sessions: 4.-5.2.2021) Hand-in due: Tue 9.2.2021 at 23:59

Fill-in-the-blanks 1. Let (X, d) be a metric space and $(\mathsf{V}, \| \cdot \|)$ a normed space. On V , we use the metric induced by the norm, $\mathsf{d}_{\mathsf{V}}(u, v) = \|v - u\|$ for $u, v \in \mathsf{V}$. Complete the proof of the following statement.

Claim. If $f, g: X \to V$ are two continuous functions, then the function $f + g: X \to V$ is also continuous.

Remark: The function $f + g \colon X \to \mathsf{V}$ is the pointwise sum of the vector valued functions f and g, defined by the formula (f+g)(x) = f(x) + g(x) (the right hand side is vector addition in vector space V).

Proof. First fix $x \in X$. Let us show that f + g is continuous at the point x. Let $\varepsilon > 0$. Then also $\frac{\varepsilon}{2} > 0$, and since by assumption f is continuous at x, there exists a

such that we have $||f(x') - f(x)|| < \frac{\varepsilon}{2}$ whenever $x' \in X$ and

_____.

Similarly, since g is also continuous at x by assumption, there exists a

such that

Now let $\delta =$ _____ > 0.

Then whenever $x' \in X$ and $\mathsf{d}(x,x') < \delta$, we have both

 $d(x, x') < \underline{\hspace{1cm}}$ and $d(x, x') < \underline{\hspace{1cm}}$, so

||(f+g)(x') - (f+g)(x)|| =______

< ____ = ε .

This implies that f + g is continuous at x. Since $x \in X$ was arbitrary, f + g is therefore a continuous function. \square

Fill-in-the-blanks 2. Complete the proofs of the following statements.

a) Claim. If (X, d) is a metric space and $(x_n)_{n \in \mathbb{N}}$ is a convergent sequence in the space X, then the sequence $(x_n)_{n\in\mathbb{N}}$ is bounded. **Proof.** Let $(x_n)_{n\in\mathbb{N}}$ be a convergent sequence in X and denote its limit by $a = \lim_{n \to \infty} x_n.$ Apply the definition of limit by choosing $\varepsilon = 1$. Then there exists an $n_1 \in \mathbb{N}$, such that $\underline{\hspace{1cm}}$ < 1 whenever $\underline{\hspace{1cm}}$. Since $x_1, x_2, \ldots, x_{n_1-1}$ is a finite list of points, we can define $R = \max\{1, d(x_1, a), \underline{\qquad}, \dots, \underline{\qquad}\} < \infty.$ Then for all members x_k of the sequence we have $\mathsf{d}(x_k,a) \leq \underline{\hspace{1cm}},$ so the members of the sequence are contained in the closed ball This proves that the sequence is bounded. b) Claim. Consider the metric space $(\mathbb{R}, d_{0/1})$, where on the real line \mathbb{R} we use the discrete 0/1-metric $\mathsf{d}_{0/1}$. Then the sequence $(x_n)_{n\in\mathbb{N}}$ in $(\mathbb{R}, \mathsf{d}_{0/1})$ defined by the formula $x_n = \frac{1}{n}$ does not have 0 as its limit. **Proof.** For all $n \in \mathbb{N}$ we have so there does not exists _____ such that The defining condition of limit therefore is not fulfilled for $\varepsilon = 1/2$, so

the sequence $(x_n)_{n\in\mathbb{N}}$ does not converge to 0.