1. Introduction

In business, employee attrition is when employees leave the company for whatever reason, either they've found a new job or retired, and haven't been replaced immediately. For a company to be successful, it needs not only to attract top talent but it also needs to retain these talents. Employee is one of the most important resource in company, where a high attrition rate indicates that the company is unable to maintain their employees. In a short term, with high attrition rate, company must pay a great money to cover the cost of turnover. While in a long term, this will affect the company's performance as employees come and go the company's performance will decline.

2. Data

The data for this project was obtained from Kaggle, a popular online platform for machine learning and data science competitions., named "IBM HR Analytics Employee Attrition & Performance"

3. Method

The method for this project may involve using machine learning techniques to analyze the available data and build a model that can predict employee attrition. This involves a number of steps, such as:

- 1. Identify problem and collect the data
- 2. Importing necessary modules and libraries
- 3. Loading the dataset and exploring the data to understand its structure and characteristics
- 4. Preprocessing the data to prepare it for modeling, including handling missing or invalid values, encoding categorical variables, and scaling or normalizing numerical values
- 5. Splitting the data into training and test sets to evaluate the model's performance
- 6. Selecting and training a machine learning model using the training data
- 7. Evaluating the model's performance on the test set
- 8. Fine-tuning the model to improve its performance

9. Making predictions with the trained model

4. Implementation

4.1 Import module and library

```
[186] #GENERAL
     import pandas as pd
     import numpy as np
     import seaborn as sns
     import matplotlib.pyplot as plt
     #FEATURE EGNGG
     from sklearn.preprocessing import LabelEncoder
     from imblearn.over_sampling import SMOTE
     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler, MinMaxScaler, OrdinalEncoder, OneHotEncod
     #MODEL SELECTION
     from sklearn.model_selection import KFold
     from sklearn.model_selection import cross_val_score
     from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
     from sklearn.linear_model import LogisticRegression
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.svm import SVC
     from sklearn.tree import DecisionTreeClassifier
     #MODEL SCORES
     from sklearn.metrics import confusion_matrix , accuracy_score ,classification_report
     #FFATURE IMPORTANCE
     from sklearn.inspection import permutation_importance
```

4.2 Load Dataset

	head(
	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber	
3	41	Yes	Travel_Rarety	1102	Sales	1	2	Life Sciences	1	1	
ľ	49	No	Travel_Frequently	279	Research & Development	В	1	Life Sciences	1	2	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	.5	4	
5	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5	
	27	No	Travel_Rarety	591	Research & Development	2	1	Medical	1	7	

After load or read the dataset using Pandas library, we can see the top of 5 records of our dataset. Then, we'll get to see more information about our dataset:

4.3 Data Exploration

```
print("Dataset Shape = ", df.shape)

Dataset Shape = (1470, 35)
```

The dataset has 1470 rows for each employee and 35 attributes or columns with the detailed of information of each columns can be seen below

	Column	Missing values	Unique values	Data type	17	MaritalStatus	0	3	object
0	Age		43	Int64	18	MonthlyIncome	0	1349	Int64
1	Attrition	0	2	object	19	MonthlyRate	٥	1427	int64
2	BusinessTravel	0	3	object	20	NumCompaniesWorked	0	10	int64
3	DallyRate		886	Int54	21	Over18	0	1	object
4	Department	0	3	object	22	OverTime		2	object
5	DistanceFromHome	0	29		23	PercentSalaryHike		15	int64
6	Education	0	- 5	int64	24	PerformanceRating		2	int64
7	EducationFlaid	.0	- 6		25	RelationshipSatisfaction	0	4	int64
8	EmployeeCount			Int64	26	StandardHours.	0	1	int64
9	EmployeeNumber	0	1470	int64	27	StockOptionLevel	0	4	int64
10	EnvironmentSatisfaction	0	4	int64	28	TotalWorkingYears	0	40	Int64
11	Gender	5	2		29	TrainingTimesLastYear	0	7	int64
12	HourlyRate.	0	71	Int64	30	WorkLifeBalance	0	4	int64
13	Jablmolvement	0	4	int64	31	YearsAtCompany	0	37	int64
14	JobLavel	0	5	Int64	32	YearsInCurrentRole	0	19	int64
15	JohRole		9		33	YearsSinceLastPromotion	0	16	int64
16	JobSatisfaction		4	Int64	34	YearsWithCurrManager	0.	18	int64
7.00				111100					

We can see that our columns or attributes contain 26 integers and 9 objects. We can also see the statistical value of numerical data inside our data with describe()

	Age	Dailykate	DistanceFrommone	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	JobInvolvement	Jobtevel	
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	1470.000000	1470 000000	
nean	36 923810	802.485714	9.192517	2.912925	1.0	1024.065306	2.721769	65.891156	2.729932	2.063946	
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	0.711561	1.106940	
min	18.000000	102.000000	1.000000	1.000000	1.0	1,000000	1.000000	30.000000	1.000000	1.000000	
25%	30 000000	465.000000	2,000000	2.000000	1.0	491.250000	2.000000	48.000000	2.000000	1.000000	
50%	36.000000	802 000000	7 000000	3 000000	1.0	1020 500000	3.000000	66.000000	3.000000	2.000000	
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555 750000	4.000000	83.750000	3.000000	3.000000	
max	60.000000	1499 000000	29.000000	5 000000	1.0	2068.000000	4.000000	100.000000	4 000000	5 000000	

And by using seaborn, we plot the outcome of our data to check the distribution of the target in our data.

```
plt.figure(figsize =(14,5))
plt.subplot(1,2,1)
print(df['Attrition'].value_counts())
sns.countplot(x='Attrition',data=df, palette='winter_r')
plt.subplot(1,2,2)
plt.pie(df['Attrition'].value_counts() ,colors =['r' ,'c'] ,explode =[0,0.1] ,autopct = '%.2f' ,labels =['No' ,'Yes'])
plt.title('Attrition')
       1233
Yes
        237
Name: Attrition, dtype: int64
Text(0.5, 1.0, 'Attrition')
                                                                                           Attrition
   1200
   1000
    800
    400
    200
                   Yes
                                             Νo
                              Attrition
```

Almost 84% of the employees in the dataset have not left the company. We also can observe that number of "No" is far more than "Yes" which indicates that our data is imbalanced. We'll work on this imbalanced problem later.

Let's Plotting the distribution of all features and how see how they affect Attrition.

Gender

We can clearly see that the majority of the employees are males, so attritions are higher but slightly. I don't think gender is too significant a factor behind attritions.

• Department

Most attritions are from the research & development department only for sales department to come second by a small margin. Human resources has the least number of attritions. But we need to keep in mind that R&D has a lot more employees than sales and HR. If we considered percentage of attritions per department, we would see that the HR department has most attritions.

• BussinessTravel

Most employees who travel rarely don't leave the company. From the plot we can tell, sending employees on business travels or not doesn't really make much of a difference and doesn't have a significant effect on attrition.

JobRole

Among job roles, most laboratory technicians have departed from their jobs, only for research scientists, sales executives and sales representatives (% wise) to trail behind. We could look into salaries of each job roles and see if that may be the reason.

As doubted, laboratory technicians, research scientists and sales representatives and executives have very low salary and this could be a major factor behind attritions.

Also, as we had seen earlier, the HR department had the most attritions and we can see they have very low salaries as well so once again, this is something to think about.

• EducationField

I don't think the degrees of employees really matter here as most of the number of attritions are similar.

OverTime

Employees who have overtimes quit job more often.

• Environtment Satisfaction

Employees with low EnvironmentSatisfaction quit job more often, while employees with high EnvironmentSatisfaction quit job less often.

JobSatisfaction

Employees with lowest JobSatisfaction quit job more often, while employees with highest JobSatisfaction quit job less often.

YearsAtCompany

Most employees remain in the company for 3-9 years with median being 5 years.

-MaritalStatus

Single employees quit job more often. I think it's because married people have responsibilities and changes in their lives take longer to plan. Similar situation could be with divorced people, because thy could have kids from marriage that they are responsible for.

Age

We can also see the number of employees that left and stayed by age.

4.4 Data Preparation

We've seen that there's no missing values in the dataset. So, in the first step of preprocessing, we'll drop columns with little to no useful information.

4.4.1 Drop Unecessary Columns

Then, we have to split the datase into X dan y. This is done because we'll work with the X or features more in this preprocessing.

```
# Splitting Dataset
X = df.drop('Attrition', axis = 1)
y = df.Attrition
```

In this dataset, as mentioned earlier, there are not only numerical features but also categorical. In ML, they can't process categorical features, that's why in this step we'll do encode to that categorical features.

4.4.2 Categorical Encoding

4.4.2.1 Binary Features Encoding

```
#Binary Features Encoding

y_n_type = []
others =[]
for col in df.select_dtypes('object').columns:
    if(len(df[col].unique()) ==2):
        y_n_type.append(col)

y_n_type

['Attrition', 'Gender', 'OverTime']

df['Gender'].replace({'Male':1 ,'Female':0} ,inplace = True)
df['OverTime'].replace({'Yes':1 ,'No':0} ,inplace = True)
df['Attrition'].replace({'Yes':1 ,'No':0} ,inplace = True)
```

4.4.2.2 Categorical Features Encoding

Now, let's thee the types of each columns or variables or features in our dataset:

Dutu	coramis (cocar so coramis	<i>,</i> •	
#	Column	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	BusinessTravel	1470 non-null	float64
2	DailyRate	1470 non-null	int64
3	Department	1470 non-null	int8
4	DistanceFromHome	1470 non-null	int64
5	Education	1470 non-null	float64
6	EducationField	1470 non-null	int8
7	EnvironmentSatisfaction	1470 non-null	float64
8	Gender	1470 non-null	int64
9	HourlyRate	1470 non-null	int64
10	JobInvolvement	1470 non-null	float64
11	JobLevel	1470 non-null	int64
12	JobRole	1470 non-null	int8
13	JobSatisfaction	1470 non-null	float64
14	MaritalStatus	1470 non-null	int8
15	MonthlyIncome	1470 non-null	int64
16	MonthlyRate	1470 non-null	int64
17	NumCompaniesWorked	1470 non-null	int64
18	OverTime	1470 non-null	int64
19	PercentSalaryHike	1470 non-null	int64
20	PerformanceRating	1470 non-null	float64
21	RelationshipSatisfaction	1470 non-null	float64
22	StockOptionLevel	1470 non-null	int64
23	TotalWorkingYears	1470 non-null	int64
24	TrainingTimesLastYear	1470 non-null	int64
25	WorkLifeBalance	1470 non-null	float64
26	YearsAtCompany	1470 non-null	int64
27	YearsInCurrentRole	1470 non-null	int64
28	YearsSinceLastPromotion	1470 non-null	int64
29	YearsWithCurrManager	1470 non-null	int64

There are no categorical variables any more.

4.4.3 Feature Scaling

Now, we'll try to scale the features using StandardScaler.

Now, we're done working with the X.

4.5 Split Data into Training and Test Sets

```
# Splitting data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3)
print('X train size: ', len(X_train))
print('X test size: ', len(X_test))
print('y train size: ', len(y_train))
print('y test size: ', len(y_test))

X train size: 1726
X test size: 740
y train size: 1726
y test size: 740
```

The training set is used to fit the model, while the test set is used to evaluate the model's performance on unseen data. The purpose of splitting the data into training and test sets is to have a way to measure how well the model generalizes to new data.

4.6 Handling Imbalance Problem

Before modeling, we have to handle the imbalanced problem as mentioned earlier. In this project, we use oversampling SMOTE and have a 50/50 distribution for both classes during training

4.7 Model Selection

Cross-validation is a resampling procedure used to evaluate the performance of machine learning model. Here, we'll use k-fold. In k-fold cross-validation, the dataset is divided into k folds, and the model is trained and evaluated k times, with a different fold used as the test set each time. The performance of the model is then averaged across all k iterations.

By using k-fold on some models, we could see the neg_mean_squared_error and also its standard deviation

We can see that the best model is Random Forest.

4.8 Modeling

We'll use Random Forest to train our model but I want to see the performance of other methods.

```
models = [('Logistic Regression', LogisticRegression()),
          ("KNN" , KNeighborsClassifier()),
          ('Random Forest', RandomForestClassifier()),
          ("SVM", SVC()),
          ("XGBoost", XGBClassifier())]
# Create an empty list to store the dictionaries representing each model
data = []
# Loop through the models and calculate the accuracy score for each one
for name, model in models:
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)
 accuracy = accuracy_score(y_test, y_pred)
 f1=f1_score(y_test, y_pred)
 auc = roc_auc_score(y_test, y_pred)
 data.append({'model': name, 'accuracy': accuracy, 'f1 score':f1, "roc auc score":auc})
# Create a dataframe from the list of dictionaries
df = pd.DataFrame(data)
# View the first few rows of the dataframe
df.head()
```

Here are the predictions of each models and its metrix. Here, we also use F1 Score and AUC Score considering our data is imbalanced so the accuracy score is not right and enough in this case.

	model	accuracy	f1 score	roc auc score
0	Logistic Regression	0.831081	0.828532	0.831434
1	KNN	0.821622	0.848624	0.819361
2	Random Forest	0.924324	0.923077	0.924712
3	SVM	0.860811	0.859097	0.861132
4	XGBoost	0.901351	0.898752	0.901863

We could see that Randon Forest indeed shows best performance, following by XGBoost and SVM.

4.9 Fine-tune Model

Let's use RandomSearchCV to tune our models and see if we can improve our results.

4.9.1 Tuning XGBoost

[Text(0, 0.5, '0'), Text(0, 1.5, '1')]

4.9.2 Tuning SVM

4.9.3 Tuning Random Forest

	precision	recall	f1-score	support
0	0.89	0.95	0.92	365
1	0.94	0.89	0.91	375
accuracy			0.92	740
macro avg	0.92	0.92	0.92	740
weighted avg	0.92	0.92	0.92	740

[Text(0, 0.5, '0'), Text(0, 1.5, '1')]

Feature Importance

5. Conclusion

In conclusion, the results of this study indicate that the Random Forest model performed the best among the three tested models in terms of both accuracy and f1-score when no hyperparameters were used. The XGBoost model also showed good performance, but was slightly outperformed by the Random Forest model. The SVM model performed the worst among the three models without hyperparameters. However, when hyperparameters were used, the SVM model outperformed the other two models in terms of accuracy, with the Random Forest and XGBoost models showing similar performance. These results suggest that the SVM model may be the most suitable for this problem when hyperparameters are properly tuned. Further research and evaluation will be needed to confirm these findings and to explore other potential applications.