Can't Get No Satisfaction

Lorenzo Cappetti, Fabio Sucameli

03/06/2025

P and NP Problems

- A problem is said to belong to the class P if there exists a polynomial-time algorithm to solve it.
- NP problems (nondeterministic polynomial time) are decision problems for which no
 polynomial-time algorithm is known, but there is also no proof that such an
 algorithm cannot exist. However, a proposed solution can be verified in polynomial
 time.
- NP-complete problems are a special class of NP problems: if a polynomial-time algorithm could be found for even just one of them, that algorithm could be adapted to solve all problems in NP.

SAT and 3-SAT

- The satisfiability problem, or SAT, consists in determining whether there exists an assignment of values to variables that makes a given Boolean formula true.
- Boolean expressions are usually written in a format called Conjunctive Normal Form (CNF).
- A specific case of the SAT problem where each clause in the Boolean formula contains exactly three literals.
- Example:

$$(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor x_4 \lor x_5) \land (\neg x_2 \lor \neg x_3 \lor x_6)$$

• 3-SAT was the first problem proven to be NP-complete.

Clause-to-Variable Ratio

- Complexity analysis is based on worst-case scenarios; for this reason, examining the distribution of easy and hard cases across the problem space is of great interest.
- The clause-to-variable ratio (M/N) has proven to be a crucial parameter in determining the distribution of easy and hard instances of the 3-SAT problem.
 - Low $rac{M}{N}
 ightarrow$ high probability that the formula is satisfiable
 - High $rac{M}{N}
 ightarrow$ high probability that the formula is unsatisfiable

Backtracking

 The basic strategy involves exploring a branch of the solution tree until a dead end is reached. At that point, the algorithm backtracks to a previous decision point to try a different branch. If that path also fails, it backtracks further to an earlier choice. This process continues until a solution is found or all possible branches have been exhausted.

Instance Generation

• To generate a clause in a random 3-SAT instance, three distinct variables are selected from the total set of N variables. Each selected variable is then either negated or left positive with a probability of $\frac{1}{2}$. To construct a 3-SAT formula with M clauses, this process is repeated M times.

Heuristics

- A heuristic is a practical approach to problem solving that uses methods based on experience or intuition to find solutions more quickly, even though it does not guarantee optimality.
- Unit Propagation Heuristic:
 - If a clause has only one unassigned literal, then that literal must be true to satisfy the clause.
 - Remove the clause in which the literal appears.
 - Remove the negation of the literal from all other clauses.
- This technique can trigger **deterministic cascades of simplifications**, drastically reducing the search space and computational time.

Experimental Setup

- We generated random 3-SAT instances with N = 10, 20, 30, 40 variables.
- For each value of M/N from 1 to 9, we generated k random CNF formulas.
- Three solving methods were compared:
 - Backtracking without heuristics
 - Backtracking with heuristic unit propagation
 - MiniSat (external industrial solver)
- Goals: compare execution time, percentage of satisfiable formulas, and average computational cost.

Average Execution Time

- Execution time increases with M/N, reaching a peak near $M/N \approx 4.2$.
- MiniSat is significantly faster than the other two methods.
- The heuristic reduces the execution time, especially in the critical region.
- Satisfiable Unsatisfiable

(a) Without heuristic

(b) With heuristic (Unit Propagation)

(c) MiniSat

Percentage of Satisfiable Formulas

- The transition curve from "almost always satisfiable" to "almost never" is clearly visible.
- The results are consistent across all algorithms: the transition is observed in every case.
- As *N* increases, the transition becomes sharper.

(d) Without heuristic

(e) With heuristic (Unit Propagation)

(f) MiniSat

Average Computational Cost

- The cost is minimal in both underconstrained and overconstrained regions.
- A peak appears near the critical region ($M/N \approx 4.2$).
- The use of heuristics significantly reduces the number of computational steps.

(g) Without heuristic

(h) With heuristic (Unit Propagation)

MiniSAT

- MiniSAT turned out to be the best-performing method.
- We compared its performance by increasing both the number of variables.
- For MiniSAT the results of the paper come out for a very large number of variables

Phase Transition

 In 3-SAT, as the clause-to-variable ratio increases, instances exhibit a sharp transition from satisfiable to unsatisfiable: a phenomenon strikingly similar to the phase transition in physical systems like the Ising model, where magnetization abruptly vanishes beyond a critical temperature.

Experimental Conclusions

- All the methods analyzed confirm the presence of a **phase transition** in the 3-SAT problem: as the M/N ratio increases, instances abruptly shift from satisfiable to unsatisfiable.
- The unit propagation heuristic significantly reduces both the execution time and the computational cost, making the search more manageable in the critical region.
- MiniSat proved to be the most efficient method tested, thanks to advanced optimizations and internal pruning strategies.
- The numerical results reflect well-known phenomena from statistical physics, such as phase transitions, highlighting the interdisciplinarity between theoretical computer science and physical models.

References

Franco Bagnoli.

Lecture slides for statistical physics and complex systems.

Course material, University of Florence, 2025.

Personal lecture notes, accessed during the course.

Niklas Eén and Niklas Sörensson.

Minisat: A sat solver with conflict-clause minimization.

http://minisat.se, 2003.

Brian Hayes.

Can't get no satisfaction.

American Scientist, 85(2):108-112, 1997.

Can't Get No Satisfaction

Thank you for listening!