```
2 adm: ikize Bolme Meladu popilir.
SAYISAL ANALIZ
                                                                                                                   Knorloma Horbis
                                                        f(1) = cosx forksignen moclosin oculimini sifinder fatti ilk 3
                                                                                                                                                                         1 ikrosyn: 4/+ 1 0+1 = 0.5 f(0.5)= -0,625
Soyusal Analiz Nedir ?
                                                                                                                  - 27, 35254316=27,35
                                                         temini bulunt.
                                                                                                                  virgildan sonna iki bosomok olocok sekilde istenlise;
                                                                                                                                                                                         - Kile a.5 ile 1 aralığında kile olduşundan
-Analitik Girbini olmogan derldemlerin sogusal detembler
                                                                                                                                                                             2 to 5 le 1 maligna baldingonia
                                                                                            f(x) = -sinx
                                                         1. terim: f(0) = 1
                                                                                                                    27.35 ign to bosomogniden some pelen som sten
ile xullank gaennlah bulunman itembrih batinone
                                                        2 teim : f'(0) (x-0) = 0.x=0
                                                                                            f"(x) = - cosx
                                                                                                                    kickithe 5 depilmet open ball, both yo de egithe
Source onalize deals
                                                                                           frila) = sinx
                                                        3 kim: f"(0) (x-0)=-1 x2=-x2
                                                                                                                                                                        2 Hoogen: 05 095 1 2=075 f(075)=0,98,345
                                                                                                                    bir ortholp 22,36 yeller.
                                                                                           f (x) = cox
· Analitik usomi olan;
                                                        ( +c.ju. t., (0) (x-0) 3 0 13 = 0
                                                                                                                  - Yworloma holosi = (Gerger depet)- (yworloma sonucu)
                                                                                                                                                                        3. Hosgon: of OFF OFF OF 7=060 F(0,607)=
 x2-3x+2=0=)(x-2).(x+1)=0
                                                        5 tein: (0) 1x-04 = 1 x4 x4
· Analitik görünü olmogn;
                                                                                                                  Asoptobil soulor virgilder soma is bosonde olocok
                                                                                                                                                                        lkize Bölme Melodunda Durma Kosulları
                                                            COSX = 1- 12+ 14+--- 11
 x2-5x. cosx + ex=0
                                                                                                                   sekilde holy hesoplyin,
 x=1 ich, 1-5. cal+ e1 +0
                                                                                                                                                                                        Dama Kosullan
                                                                                                                   · 1,352471 = 1,352
x=0 1011, 0-0+00+0
                                                                                                                    Y.h= 1,352471-1,252=0,000471
                                                         etit depulni 3 derereden moclorin sei acullimini kullanosie
                                                         hecoplaying. Ortage whom kesme hotosini buluna.
Hata Kovramı ve Hata Cesitleri
                                                                                                                                                                                                      Gergek kök veilmedifilide
                                                                                                                  · 2,0235846 = 2,024
                                                                                                                                                                        Garage Köle verildiplinde
                                                                                                                    V.h = 2,0235846 - 2,024 = -0,0004154
                                                              elis = 1+1,5 + (15) = 4,1875
                                                                                                                                                                                                       - 6-a < Haka
- Hola - Gerrek deper - Helophron deger
                                                                                                                                                                       - IX-XN/ Hata
                Habi Cesitleri
                                                                                                                                                                                                       n = iteracyon sopus
                                                         Wesne halos = (ets in gener) _ 3 derected machin orthing
                                                                                                                  Linear Olmogry Bir Bilinmagerli Davelom Nedir?
                                                                                                                                                                        X = gerrele libe
                                                                                                                                                                                                       b = n. iterasyondola ist sinir
                                                                        depert / (ile hexaplatan deper
                                                                                                                                                                       Xn= n. Herosyondolei elde
                                                                                                                                                                                                       a= 1. iteosymbici alt sinc
                                                                                                                  ·2x-3=0 - liner bir bilinmanli delklem
                                                                                                                                                                          ediler kole
                                                                      =4.48168807 -4.1875
                                                                                                                  · yi-4 = 0 - lineer olmogen bir bilinmeyorli dorklenn
                                                                                                                                                                       -Bopil hate weither;
                                                                      = 0.29414907
                                                                                                                  · 14-513+2+1 - lineer alongen bir bilinmegali daklen
                                                                                                                                Andithe Gating vor
                                                                                                                                                                         (x-Yn) < Bopil Hota
                                                                                                                                  Anolitic you've yole.
Kerne Iblas
                                                         cost inin depenini 4 descreden mouloin sei oculum yopo-
- Toylor ve Machin Soil Acalimbn; sonue della tirev-
                                                                                                                  Linear Olmogen Bir Bilinneynli Dovelenheide Götüm Wimmler
                                                        rak heroplogumis. Orloga culton kesme holosing buluna
                                                                                                                                                                        F(1)= x2-7x2+14x-6=0 developminin [Ort] kopali andigun-
lenebalen fanksiyonlon bir noldada (x=xo) seri halline
                                                                                                                                   Gotin Donates
                                                                                                                                                                        da 152 holodon of closele felilide yelderle kölini bulunut.
gettime famillative tylor autimion desir.
                                                                                                  - COSK ) X=0
                                                             COSX = 1 - 12 + 14
                                                                                                                                                                         a) Gerek kök veildiginde -= 2-17
-f(Y)'in x=xo ida bylor acılımı;
  f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + f''(x_0) (x - x_0)^2 + ...
                                                                                                                                                                         b) Gorale tile verlinedipilde
                                                             (NE)= 1-100 + (E) = 0,909288
                                                                                                                                               Agile Analyle Melotlor
                                                                                                                  Kopalu Arothe Melotlar
                                                                                                                                                - Teknorloma Metodu
          -++ f (1/2) (x-1/2) } ----
                                                                                                                                                                         a) 1x- xn/ < 0,01
                                                                                                                  - ikize Poline Meladu
                                                                                                                                                                          1.adam: fil)=x3-7x1414x-6 to foreign [0,1] hopole
                                                                                                                                               - Neuton - Rophson Metadu
                                                                                                                  - Doğumlar inter Pologon Metadu
                                                         Kerne holosi =0,809016994 - 0,809288
                                                                                                                                                - Will Yantemi
                                                                                                                                                                                   adipanda soreklidir.
                                                                                                                                                -x=a rape bider fizhe
som depti our. Ardik
f(x) = ex in x=1 de for sei aculmun popula.
                                                                                                                  - [a,5] oralizanda vide oldigu
                                                                      = -0,000271
                                                                                                                                                                                   f(0)=-6
                                                                                                                  tespit edilir
                                                                                                                                                  joktur.
                                                                                                                                                                                  f(0) f(1) co ordigenda voice vorder.
                                                        Bopil Hata
 1. lein: f(1)= e
                                                         - Bopil Hole = Gerele depar - hesoplanon depar
                                                                                                                  Ikige Boline Melodu
 2 tolm: f(1) (4-1) - e (4-1)
                                                                                                                                                                         1. Hough : - 1 - 1 - 0+1 = 0.5 (0.6) = - 0,625
                                                                                                                                                                          2.odem
 3 tein : f(1).(x-1)2 e.(x-1)2
                                                                                                                  - fir) in (a,12) kopali oraliganda kokunon olmo forti
                                                                             Gugek deper
                                                                                                                  f(1) on oralleta strebbi ve f(0) f(6) co olmalidir
                                                        f(1)= x3 bolesignu veilliper. Bir signarci x=2 kiln hesoplama
 4-lein: f"(1). (x-1)3 e. (x-1)3
                                                        Johns is somen f(x)=10 primition. Notion possil programment
                                                                                                                                                                          Directoria > 1/2-12) -0.51 2 0,01
                                                                                                                                                                                            0,0858 < 0,01 × Devon edilli
    ex= e+e(x-1)+ e(x-1)2+ e(x-1)3+ .... 11
                                                         Bopt hata = 8-6 = 2 = 4 = 0,25 = 0/25
                                                                                                                                                                          2. Known: 2 05 07 1 054 00 1(0) = 0198437
                                                        Muttak Hola
                                                                                                                                                                           Duras bouls + 1(2-12) - 0.75 (0,01
f(x)=ex in match sell authority points
                                                         - Mutble Abla = | Bopil Hota |
                                                                                                                   f(x) = x3-7x2+14x-6=0 denterminin (0,1) topali ora-
                                                                                                                                                                                             0,1642 60,01 x Dean
                   y=o'doki toplar soi
                                                                                                                   lipindaki kolcini Wung.
                                                         Sinely 23x devident withor x=2 deprint heloplayor Livi 10
                                                                                                                                                                        b) a siekunda yapılar adımbr popilir sode duna kazılında
1 tim= f(0)=1
                                                                                                                   1. adim: file) foresijonu bition leet soyalarda sieklidir.
                                                        Wilyar & Elemdeki mittak hola redir.
2. frim= f(0). (4.0) = x
                                                                                                                            Bu nederle [0,1] vopalu oralizinada soelelidir
                                                                                                                                                                            Kullendipinit fornel depisis
3 tom = f(0) (x-0)2 = x2
                                                            Muttak hola = \ -2-10 \ = \ -12 \ = 6 = 96600
                                                                                                                                                                             1 iteroson icin de -> 1-0 < 0,01 x Decom
                                                                                                                            A0)=-6
4 telm = f 10 (x-0)3
                                                                                                                                                                             2 illegger lain de -> 1-0.5 20101 X Decen
                                                                                                                            f(1) = 2
                                                                                                                             f(0). f(1) 20 oldganda bu arollick, köle undil
```

```
Dogrusal Interpologian Metadu
                                                     2. adin .
                                                                                                             ömele
                                                                                                                                                                   b) f(5)=?
                                                                                                                                                                      f(4F) = 016532125
- Iking bölne metadundan tek fortu, kölcin orta ndeksini
                                                     1. Hoogn: 41/206 3
                                                                                4-45) = 9
                                                                                                                                                                      f(5x)= 0174 03627 f(4x)
                                                                                                              Dognusal interpolación metadene kullanorale x=4 icin
forkly formal ite kulturak bulung
                                                                               f(2,56)=-1,367576384
                                                                                                              y depert verter (214) ve (6,7) nokolarni kultanorde
                                                                                                                                                                     f(5,5)-f(4,6) f(5)-f(4,5)
                                                      DK- 1P-256/ 60,01 x bean
                                                                                                              bulunue
                                                                                                                                                                       (3,5) 419 = 5-415
    x= af(b) - b f(a)
                                                     2. Hoogen 276 467 3 256. f(3) - 3 f(2,56) = 2,668(244)
                                                                                                                                    2.2
            f(b)-f(a)
                                                                                                                                                                     0.5f(5,5) + 0,5f(1,5) = f(5)
                                                                2,56 2,67 3
                                                                               f(2,67) = -10,2343 37684
                                                                                                                                                                          FIG) = 0,6367876
one
                                                                                                                                                                          1682 0 19 67876
                                                      x2-2167
 f(x) = x3-7x2+14x-6 denkleminin [O1] oralizindeki
                                                      DK + 1p-21846 and x Devon
                                                                                                                                                                  (2) a sikki isin bopil hot = 0,69897-0,000
                                                                                                                                           4 f(4) = 22
 tokini blung
                                                      3 1 borgen 2 26 268 3 268 4(3) - 3 f(268) = 21687318-
 1 adm: first factions beton seek someode sometiding
                                                                                                                                                                                           = 01012709415
           Bu nederle [Oil] kapoli oroliginda streklidir.
                                                                                                                                                                                           = 0/6 1, 77-03 4 1528,
                                                                                                               M= 2-4 = 3
                                                       X3=2169
                                                                                                                                                                      6 sieta tah 60011 hota = 0,68897 -0,6267846
                                                       DE-11-268/20101 V
           f(1) = 2
           f(0). f(1) co oldugunda bu arclicha kisk mode
                                                                                                               y-70= m (x-x)
                                                      102 hapadon of ille like - 2,687318278
                                                                                                                y-4= 2 (x-2)
                                                                                                                                                                                            = 0,00312130854
2 odem . Doğuml interpologen meladu godu
                                                                                                                                                                                            - 960,312230874
                                                                                                                 y= 3 (4-2)+4
  1 Hough : 0 0.2-1-6 8-0.75
                                                      Interpolationa Ciris
                                                                                                                f(1) = 3 (1-2)+4
                                                                                                                                                                  Dognisal interpologian Metado örnet Sonu-2
                                                      - Bir veri gimbunda eksik verileri , veri gimbundari diper
                                                                                                                f(4) = 2.2+4
                            f(0,77) = 0,98 4375
                                                                                                                                                                                         Yorda fix) forksignu ikin
                                                      veile pridingla elde etmere hterpologen desir
                                                                                                                                                                    x \mid t(x)
                                                                                                                 f(4)=11 211
                           0. f(075) - 0.75. f(0) = 0,644 255
                                                                                                                                                                                         box deposter veilmistr.
                                                                                                                                                                       1-0,90927
                               f(077)-f(0)
              דהם שמושום ס
                                                                                                                                                                                        a) f(2) depoint x=1 ve x=3
                                                                                                              Doğusal interpologyon Metadu Örnek Sonu-1
                                                           17345
                            flowers = 01381767
                                                                                                                                                                         -018414H
                                                                                                                                                                                         tullonande dopousal interpologon
                                                                                                                                  Yonda f(r) = log(r) forksigenun
Dognisal Interpolación Middedada Durma Kosullare
                                                                                                                                                                                         metadu ile buluna.
                                                                                                                                                                            0
                                                                                                                    fix) = log(x)
                                                                                                                                 oldigi boti depoter wilmitte
                                                                                                                                                                                         b)f(1) departing x=-2 ve x=6
                                                                                                                     0,60206
                                                                                                                                                                           0,841471
                Dura Kopullar
                                                                                                                                                                                          Euthororale dogueal interpologen
                                                                                                                                   Buna gare;
                                                                                                                    0,6532125
                                                                                                                                                                           0,1411 20
                                                                                                                                                                                          meladu ile bulunut.
                                                                        Estiget Yoklosim
                                                                                                               5,5 0,7403627
                                                                                                                                                                          1-0,756805
                                                       Dogmisal Yoklosim
                              Gerde tok veilmezse
                                                                                                Polinonw
Geree kok veilinge
                                                         Metodu
                             -mox {xn-an, bn-xn} < Hoba
                                                                                                                                                                          1-0,279415
                                                                                                                   0,7784543
- 1x-xn/ < Hota
                             xa= n. ileogradde elde
                                                     Dopusal Interpologian Metadu
                                                                                                               a) logs in depositul x=4 ve x=6 iain dogrusal
                                                                                                                                                                  a) t(5)=3
X = somer wike
                                 ediler we
xn= n-jtrojundoli elde
                             bnon iteragendali cil sinc
                                                                                                                                                                      f(1) = 0, PY147
                                                                           (1, f(1)) ve (12, f(12)) robblon
                                                                                                                 interpologian bellmode believe.
    edilen kok
                                                                                                               6) logs in depoint x=4,5 ve x=5,5 with depotal
                                                                                                                                                                      f(3) = 0,141120
                                                                                                                                                                                     t15) -t(1)
                                                                                                                                                                      t13)- +(1)
                                                                                                                 interpologyen kullenasse huling.
                             -f(xn) < Hota
                                                                                     XIL XZLYZ
                                                                                                                                                                                - =
                                                                                                              c) are b sixbanda bulunon condor ich bojil hoty
                                                                                                                                                                         3-1
                             - | Yn - Xn-1 | 2 Hote,
                                                                                         t/4)=;
                                                                                                                                                                       9(3)-f(1) = 2f(2)-2f(1)
                                                             44 X3 X2
                                                                                                                  heaploying. ( log5 = 0,69897)
                                                                                                                                                                          t(3) = f(3) +f(1)
                              - Ixn-xn-1) & Hota
                                                       1 tol: Veilen iki noktoden dispur denklemi gardir.
                                                                                                                                                                           78851 6410 = 12)4
                                                             J-20=w(xx0)
                                                                                                              a) f(5)=?
                                                                                                                  +(4) = 0,60006 fm)
Dogow Interpologyon Metadu Ginele Sow-1
                                                              M= 370 = AY
                                                                                                                                                                  6) fm-?
                                                                                                                   F(6) = 0,7741513 f(u)
                                                                                                                                                                     f(-2) = -0,90977
                                                              m= f(h)-f(4)
Dogoveal interpolation metadu kullanonse x22x25=0
                                                                                                                                                                      f16) = - 9 275415
                                                                      12 - YA
                                                                                                                   f(6)-f(6) f(5)-f(6)
developmenta (2,3) ordigenda 102 holodon of olovale biclimde
                                                                                                                                                                       \frac{f(6)-f(-2)}{6-(-2)} = \frac{f(2)-f(2)}{2-(-2)}
                                                                                                                     6-4
goldopie bir kakini bulunut. (Centre tide p=2,69064744707)
                                                                                                                                5-4
                                                             Epim cerhden
                                                                                                                   f(6) - f(4) = 2f(x) - 2f(4)
1 odim: fix)=122x2-5 fortipte (23) odiprode scendir
                                                                               f(1/3)-f(1/4)
                                                              f(12)-f(1)
                                                                                                                     f(5) = f(6) + f(4)
                                                                                                                                                                      4 f(6) - 4 f(-2) = 8 f(2) - 9 f(-2)
                                                                 ×2- ×2
                                                                                                                     F15)=0,6900865
                                                                                                                                                                        49(6)+49(-2)=89(2)
          f(2) =-5
                                                                                                                     105=0,6900PLF
                                                                                                                                                                                 F(2) = -0,59 43425
          f13) = 4
         f(2), f(3) 20 orollyanda kiek vorder.
```

Comparison of the property o	Equisel interpologien Metodu	Epithel interpolaryon Meladu Oinele Sonu-L	$62 = \frac{f(4) - f(3)}{4 - 3} - \frac{f(3) - f(1)}{2 - 2}$	f(x) = x-x1 x-12 f(x0) + x-x0 x-12 f(x1)+
The property The		ömek		
$ \begin{array}{c} \begin{array}{c} \text{the simple law signific and without } \\ the simple law signific and without law signific and with law signific and without law signific and with law signific a$		v i fill=lati) Vanda flat=log(x) forksignuna ait	4-1	X1-40 X1-11
$ \frac{dx_{i}^{2}}{dx_{i}^{2}} \frac{dx_{i}^{2}}{d$	(Xoryo), (4171), (Y2178) notetion	the same book depoter veilmisting	192 - 291	C 12 - (x-11). (x-12) (x-12) f(12) +
5 () () () () () () () () () (30 - Slinips	TIE 1016 12 121 (270 12 12 14) depoint x=410, x=510,	= 115-2151 - 1114	+3(x)= (x +1) (x-x) (x-x)
	6 6 6	- 1-21 02/22 ve x=6 kin spiller into polosion	7	(x0-x1) (x-x1) (x-x3) f(x1) +
$ \begin{aligned} & \text{dist}^2 + \text{bish} + (-\frac{\pi}{2}) \\ & \text{dist}^2 + \text{bish}^2 + (-\frac{\pi}{2}) \\ & \text{dist}^2 + (-\frac{\pi}$		The state of the s		-+ (x-x3) (x4-x3)
$ \begin{aligned} & & & & & & & & & & & & & & & & & & $			2-0174	(x-x0) (x-x1) (x-x1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ax2+byo+ (= 40	(1095 = 0169884)	(1-3) n. 12 + 111. (4-1) - 074 (x-1) (x-3)	+ (x-x0) (x x0) (x2-x0)
Of billings of deleten site with cities a filter of the property of the prope	9/12+ byx + C = 11		0122-012+114-034	(x2-x0) (x2-x2) E(x-)
Figure 19 show the deplete larger 19 shows always a point of spice (1) shows the deplete larger 15 shows $t = 1/(1 - t/4)$ by $t = 1/($			t(T)=0/02+1/04+0/14	+ (x-x0) (x-x) (x2-x2)
Description of the deliance temps T_2 is already by T_1 in the polarity of the polarity o	Un bilinmajorli ou derkton sistemini godip astre c	f(515)=0,7403677	+(1)=0.1	(x2-x9) (x3-x1) (x3-x2)
		t(e) = 01+166212	interplated Pallacertad	Ella) irin oon kilmina x'den xo hoig dipertaini Glest-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	and demone who 13 source	bo = fu5) = 0,657005	Cognage Mapoint 1 somemon	throws, popula kisminda yo'dan hepsi alkanyinga
$ b_{1} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{2} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{3} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{5} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{7} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{1} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{1} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{2} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{3} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{1} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{2} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{2} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{3} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{1} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{2} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{2} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{3} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = \frac{f(1) - \frac{1}{1}(0)}{V_{1} - \frac{1}(0)}{V_{1} - \frac{1}{1}(0)} $ $ b_{4} = f($	الإد	N= f(55) - f(45) = 67403673 - 0,65 3715 0,087 1502	[(iv) = \$ 110)] = (112) -	
$b_{0} = \frac{f(t_{0}) - f(t_{0})}{V_{1} - V_{0}}$ $b_{1} = \frac{f(t_{0}) - f(t_{0})}{V_{1} - V_{0}}$ $b_{2} = \frac{f(t_{0}) - f(t_{0})}{V_{1} - V_{0}}$ $b_{3} = \frac{f(t_{0}) - f(t_{0})}{V_{1} - V_{0}}$ $b_{4} = \frac{f(t_{0}) - f(t_{0})}{V_{1} - V_{0}}$ $c_{4} = \frac{f(t_{0}) - f(t_{0})}{V_{1} - V_{0}}$ $c_{5} = \frac{f(t_{0}) - f(t_{0})}{V_{1} - V_{0}}$ $c_{6} = \frac{f(t_{0}) - f(t_{0}$	[f(x) = m + p1(x-x0)+ m(x-x0)(x-x0)	0.04.00	- Turki - South Andrew	other many political interpolation politicalism
$b_{1} = \frac{f(r_{1} - \frac{1}{2}(r_{2})}{\sqrt{r_{1} - \frac{1}{2}(r_{2})}} + \frac{f(r_{1} - \frac{1}{2}(r_{2})}{\sqrt{r_{2} - \frac{1}{2}(r_{2})}} + \frac{f(r_{1} - \frac{1}{2}(r_{2})}{\sqrt{r_{2}}(r_{2})} + \frac{f(r_{1} - \frac{1}{2}(r_{2})}{\sqrt{r_{2}}(r_{2})} + f($			I devel (n=1) = digital introduction	
$b_{1} = \frac{f(x_{1} - f(x_{1}))}{x_{1} - x_{1}} - \frac{f(x_{1}) - f(x_{2})}{x_{1} - x_{2}} - \frac{h(x_{1}) - h(x_{2})}{x_{1} - x_{2}} - \frac{h(x_{1}) - h(x_{2})}{x_{1} - x_{2}} - \frac{h(x_{1}) - h(x_{2})}{x_{2} - x_{2}} - \frac{h(x_{1}) - h(x_{1})}{x_{2} - x_{2}$	po=t(10)	650 30-45		1 4175 a 11. devece kidn (1/0=3, 1/4=5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6-45	(You Kan 1/2 1/25 -)	2 (505 b) 2. dorece icin (Xo=2, X1=3, X2=5)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- 020 41613 - 103403457 0.0121102	using upope to limb 1 exists commen	() 3. derece (with (10=2,14=3, 12=3)
Explore $f(f)$ finishers display allows $f(f)$ finishers display $f(f)$ be here $f(f)$ finishers display $f(f)$ be here $f(f)$ for $f(f)$ be here $f(f)$ finishers display $f(f)$ be here $f(f)$ finishers $f(f)$ be a finisher $f(f)$ finishers $f(f)$ be a finisher $f(f)$ finishers $f(f)$ f		0,5		
Explore $f(f)$ finishers display allows $f(f)$ finishers display $f(f)$ be here $f(f)$ finishers display $f(f)$ be here $f(f)$ for $f(f)$ be here $f(f)$ finishers display $f(f)$ be here $f(f)$ finishers $f(f)$ be a fixed finishers $f(f)$		ALT	-U(1)= X1-17 11 = 3.4.5	x-x1 (11) 1 x-x- (11)
defidence tagop by behavior of the polaries when the polaries when the polaries when the polaries when the polaries behavior to the polaries beha	Ristory P(1) fint Hamma who stress always to departie	=0,0077153	(2+0)	a) fi(1) = x0x4
	delilere topp by bulen			f. (4) = 4-5 f(5) + 4-3 f(5)
The expectation of the expectat	from the same of t	f(x)= bo + by (x-45) + b2 (x-45) + 000 (A53 (0.5) . (-0.5)	· n=1 win logrange interpolation melodu;	7-5
The expectation of the expectat		tiel= arezzue + alortiass (an)	flx) = = win fly) = win + (xo) + yxx + xxx)	和1= 元(5) + 元(5)
$b_{0} = f(1) = 2$ $b_{1} = \frac{f(2) - f(1)}{2 - 1} = \frac{-1 - 62}{2 - 1} + 1$ $b_{2} = \frac{f(3) - f(1)}{2 - 1} = \frac{4 - 1}{2 - 1} + \frac{4}{2 - 2}$ $b_{3} = \frac{f(3) - f(1)}{2 - 1} = \frac{4 - 1}{2 - 1} + \frac{4}{2 - 2}$ $b_{4} = \frac{f(3) - f(1)}{2 - 1} = \frac{4 - 1}{2 - 1} + \frac{4}{2 - 2}$ $b_{5} = \frac{f(3) - f(1)}{2 - 1} = \frac{4 - 1}{2 - 2} + \frac{4}{2 - 2}$ $b_{7} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{4}{2 - 2}$ $b_{7} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{4}{2 - 2}$ $b_{7} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{4}{2 - 2}$ $b_{7} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{4}{2 - 2}$ $b_{7} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{4}{2 - 2}$ $c_{1} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(3) - f(1)}{2 - 2} - \frac{f(3) - f(1)}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(1) - f(2)}{2 - 2} - \frac{f(3) - f(3) + 2}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(1) - f(2)}{2 - 2} - \frac{f(3) - f(3) + 2}{2 - 2} - \frac{f(3) - f(3) + 2}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(1) - f(2)}{2 - 2} - \frac{f(3) - f(3) + 2}{2 - 2} - \frac{f(3) - f(3) + 2}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(1) - f(2) - f(2) + 2}{2 - 2} - \frac{f(3) - f(3) + 2}{2 - 2} + \frac{2}{2 - 2}$ $c_{1} = \frac{f(1) - f(2) - f(2) + 2}{2 - 2} - \frac{f(3) - f(3) + 2}{2 - 2} + \frac{f(4) - f(2) + 2}{$	(1-2) (Mortant point interpolation metado ite		100	= 1215
$b_1 = \frac{f(2) - f(1)}{2 - 1} = \frac{-1 - f(2)}{2 - 1} = \frac{1}{4} = $	1-7.5 despine would gelen y depichi bulunut	1042 - 0102 CAR 11 105	LO(x) = TT - X0-14	N-11) (x-12) (1x) + (x-12) + (x) +
$b_1 = \frac{f(2) - f(1)}{2 - 1} = \frac{-1 - f(2)}{2 - 1} = \frac{1}{4} = $		2 1 16 = 0,69897 - 0,698+1640 = 0,00362	(640)	b) f(x) = (4-10) 1/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	bo= f(1)=-2		1 x-15 = x-10	+ (x-10)(x-x1) f(1/2)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	b4 = f(2)-+(1) = -1-1-1		4(1) = 11 - 11-47 14-40	(t2-10) (t2-11) 2 (1) (12) 2 · 1 + (5)
$ \begin{cases} f(f) = bo + bq \cdot (f - k_0) + bz \cdot (k - k_0) + bz \cdot ($	(m) f(n)-f(0 = 4-1-1-1=4-2	= 40,05627.501 Anu-2	(7+1)	(1)= 1.(-1) f(2) + 1.(-2) + 3.2
$ \begin{cases} f(f) = bo + bq \cdot (f - k_0) + bz \cdot (k - k_0) + bz \cdot ($	62=+161-+161- 2-1 3-2 2	Eprised interpolation Meladu Office Const	4-4 (14) 1-40 f(4)	-2 5351+ 2 1935
$ \begin{array}{l} f(1) = bo + b_1(1-k_0) + b_2(1-k_0) + (k-1) + $	3-1	cinele ich has doorlar wilerich	fold = x0-11 + 101 + x4-10	= = 2
$f(x) = -2 + 4(x-1) + 2(x-1) \cdot (x-1)$ $= -2 + 4(x-1) + 2(x-1) \cdot ($	(x > 1 (x - x) (x - x) (x - x)			= -7+2,72+6,00
$f(x) = \frac{1}{2} \frac{1}{(x-1)} + \frac{1}{2} \frac{1}{(x-1)} + \frac{1}{2} \frac{1}{(x-1)} \frac{1}{$	f(n= bo+b4(1-10) 102 (1-1) (K-2)		· n=2 win logurge interpretar metal	
$f(x) = x + \frac{1}{2} $ $f(x) = \frac{1}{2} $ $f(x) =$	f(n) = -2 + (x-n) + 2 (n-21-x+2)	3 1 de la contraction de contraction de la contr	5(11) = 3 (11). f(xi) = 6(1). f(6) + (16) + (16) + (16)	- (4-42) CH2 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A + (4-1) + A	4 11.13	T 1=0	() f3(x) = (x-4)(1-1)(x-1) + (10) +
1/3 = 2291 f(x) = 1183 L1(x) = 2	- 2/1-9k+	f17=?	1011- # X-11. X-12	(x0-x1)(x0-x2)(x-x2) f(11)
f(x)=1833		00-065	200 x1-x1 x1-x5	-+(x-x)(x-x)(x4-x3)
bo = f(1) = 0,13 b1 = f(3) - f(1) = 2,91 - 0,13 = 1,14 b2(4) = \frac{11}{12} \frac{1-10}{12}		A(2) 2 (4/)	1 12 2 x-16 x-12	(1 12 (x-14) (x-12) f(h)
bo = F(1) = 0,65 b1 = \frac{F(3)}{3-1} = \frac{2(3)}{2} = 1114 \[\begin{array}{c} \begin{array}{c} \frac{1}{2} \\ \frac{1}{			-1 (x) = 2=0 x1-x0 x1-x5	- + (x - xa)(x - x3 (x2 - x3)
1= f(3)-111 = 2 = 1114		bo= f(1)= 0165	(5+1)	1 x 3/4-x1 (x-x5) f(p)
(1+5)		b1= f(3)-f(1) = 2/31 - 1/14	12(1) = th 2-10 7-14	42-12(12-12)(12-12)
		,	(J+2)	6.70.

```
f_3(4) = \frac{1.60.620}{(-0).(-5)(-4)}f(2) + \frac{2.(-0)(-2)}{1.(-2)(-5)}f(3) + \dots
                                                                                                                                                                           Newton Raption Metodu
                                                        Logrange interpologyon Polinambin Ginele Son-?
                                                                                                                   Cogrange Interpologian Polinomber Somer Som-4
                                                                                                                    x 10 17 13 14]
                                                                                                                                           Yonda verten ful depertenii
                                                                                                                                                                          - Xn+1 = Xn - f(xn)
                                                                     Yonda flx) foresignu juin both degeller
          - 2.1.(-2) f19+ 2.1(-1) f (6)
                                                                                                                                           kullonorak f(0,3) depenhi
                                                                     verilmistir. Veilen bu veilei tullaname
                                                                                                                   FIX) 1 3 49/129
                                                                                                                                           logrange interpolaryon fornalina
        = -2.4+4.620+-41977+2.36
                                                                     f (4) degathi logrange interpolation polinam
                                                                                                                                                                         omele
                                                      13 15
                                                                                                                                           Kullonoiale billimit
                                                                      gordiniyla bulunia.
                                                      25 25
                                                                                                                                                                            x3-7x2+14x-6=0 deikleminin nauton lophon
        = -0,66+3.7+13,167-12
                                                                                                                   f3(x) = f(x6). (x-x1)(x-x2)(x-x3) + ---
                                                                                                                                                                            metadin kullarade [0,1] oraliginda 106 olar ot
                                                                                                                                  (x0x)(x0-4)(x0-43)
         = 4,007
                                                                                                                                                                            hata ile bulunt.
                                                                                                                            -- + f(x1) (x-x0) (x-x2) (x-x3)
Logrange Interpolation Polinamba Ornele Sonu-1
                                                                                                                                                                             f(x)=3-7x7+14x-6
                                                                                                                                       (x4-x0)(x4-x2)(x4-x2)
                                                       - (1/2) - (1/2) (x-x)(x-x)(x-x3)(x-x4) +
                                                                                                                                                                            f(x)= 32-14x+14
                                                                                                                            --+ ((x2)-K-x9 8-x1)(x-x3) +--
(1:2) ve (2:4) nockdonndon geren dogwal lagrange
                                                                                                                                                                             No=0 Boxlanging notchamiz
                                                                                                                                        (12-10)(x2-11)(x2-12)
                                                               ---+ f(xx) (x-x3)(x-x3)(x-x3)(x-x4) + ---
interpologyer polinamum bulina.
                                                                                                                            ---+ f(+2) (x-x0)(x-14)(x-x2)
                                                                                                                                                                             n=0 ich
                                                                                                                                        (x3-x0) (x3-x1) (x3-x2)
 f_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_0 - x_0} f(x_1)
                                                               ---+f(x2) (x-xd(x-x)(x-x3)x-x4) +--
                                                                             (x2-x4(x2-x) 42-x3)(x2-x4)
                                                                                                                    f3(0.3)=1.(-0A).(-2A).(-3A) + 3.(0.3).(-7A)(-3A)
                                                                                                                                                                             4=0- f(0)
       =\frac{x-3}{4-3}.2+\frac{x-1}{3-1}.4
                                                                                                                                                      1.(-2).(-3)
                                                               --- + f(x3) (x-x3/(x-x1/(x-x2)(x-x4)) +--
                                                                                                                             --+ 49. (0.31-(077)-(237)+129 03-(-97)-(-77)
                                                                             (x3-x)(x3-x1)(x2-x1)(x3-x1)
        = 2x-6 + 4x-4
                                                                                                                              = -6,993 + 8,991 + 38,073 + 75,143
                                                                --- + f(x+) (x-x9(x-x9(x-x))x-x)
                                                                                                                                                                             X= == 0,4295HUZ.
                                                                             (x4-x9(x4-x1)(x4-x3)(x4-x3)
         = 4+1
                                                                                                                                                                         Not:
                                                                                                                                                                                         Durma Kosullan
                                                                                                                              - 1,831
Lagrange Interpolation Polinamba Ornele Sonu-2
                                                          follo= 10. 1. +1) +4)(-8) + 15. 2. +11. +(4). +8)
                                                                                                           +-- other
                 Yonda f(x) forksistens ight book
                                                                     (-1). (-3). (-6). (to) 1. (2). (5). (5)
                                                                                                                                        Yorda f(x) = log(x) forksizaruna
                                                                                                                                                                         Gerek role veildighde
                                                                                                                                                                                                           Gerry hole veilmedifilde
  x / t(x)
                                                                                                                     x 1 f(x) = 10g(x)
                                                                                                                                        alt born depoter veilinisti
                  deselles veilmight.
                                                                 --+ 25. 2.1. (4). (8) + 8. 2.1. (1). (8) + --
                  Buna gare, fizz) degrini veillen degelleri
                                                                                                                                                                         - IP-XnH/ < Tolors
                                                                                                                                                                                                           - | Xn+1- Yn | CTologs
                                                                                                                  x= 4 0,6020600
                                                                                                                                        Buna pare, f(r) dequihi verilen
          0,63
                                                                                                                  445 0,6532125
                 kulonorak logionge interpolonyoni
                                                                                                                                                                                                           - Booth halo willine;
                                                                                                                                        tim degeter cultonoral cognose
                                                                                                                                                                         P: gorger with
                                                                                                                  455 01740367
         2,81
                                                                                                                                        interpologon formalini kullonoroke
                 polinomu le bulunos
                                                                                                                  13 6 07781513
                                                                                                                                                                                                             KnH - Kn1 < Tolons
                                                                  --+ 60. 2.1(1).(4)
12 4 1183
                                                                             10.9.7.4
                                                                                                                                         bulinut.
f2(x)= f(x0). (x-x)(x-x) + f(x)(x-x)(x-x) + ...
                                                                                                                                        (log5=0,69977)
                                                                 = 10 \cdot \frac{(32)}{180} + 17 \cdot \frac{(64)}{(90)} + 27 \cdot \frac{64}{16} + 1 \cdot \frac{16}{200} + 60 \cdot \frac{8}{2520}
                                    (x-+x)(x--x)
                                                                                                                                                                          Durma kapulu kentroli:
                 (x0-x1)(x0-x)
                                                                                                                    f(s) = 0,600,600, 05.605)(1) + ---
         -- + f/h)(x-x) x-x1)
                                                                                                                                                                          1×1-x0/< 10-6
                                                                                                                                      (-05.(4.5).(-2)
                                                                = 32 + 36 + 4600 - 25 + 48
                                                                                                                            -- + 0,6532125 1.(-08).(1) + ---
                   (x-4)(x-4)
                                                                                                                                                                          10000001 - 1416282410
                                                                                                                                                                          0,42877142 (0,000001 x devan
       = 0/23 \cdot \frac{(+1) \cdot (-1)}{(-2) \cdot (-3)} + 2/31 \cdot \frac{1 \cdot (-2)}{2 \cdot (-1)} + 1/33 \cdot \frac{1 \cdot (-1)}{3 \cdot 1}
                                                                                                                            --+ 07403677 1.05.1-1)+--
        = 0,63. = + 2,91. = + 1,93 =
                                                                                                                                              (1.5) . 1. (-or5)
                                                                                                                                                                          x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}
                                                                                                                             ---+ 0,7784513. 1.0,5(-05)
        =0121 + 281 -0,61
                                                                                                                                                                          x5= 0145864115- - Fla45867115-1
                                                                                                                                                2. 4.7) (05)
                                                                                                                                                                                            F'(014295742-)
        ~ 251
                                                                                                                            =0,1003(3333+0,435)75+-
                                                                                                                                                                          x2 -08972383 ---
                                                                                                                           -+0,4957575 -0,773631983
                                                                                                                                                                          Durma koçulu kontidi:
                                                                                                                           = 0,699014916
                                                                                                                                                                          12-412106
                                                                                                                       log 5= 0,699014916
                                                                                                                                                                          0,4672383_-0,4287442 < 0,000001 × denom
                                                                                                                      Bopal Hola = 2,69 PA - 0,699014916
                                                                                                                                 =-0,0003504958113
                                                                                                                                 =900,03,904958713
```

Newton Rophson Metadu Ölnek Sonu-1	Klik Metodu	Teknorlama Metodu	0 < 0,1158253 15 - (0,842162813) × 1 V
3-2x25=0 developmin (2,3) oralizanda 104 holadan	- Newton Rophson metodonda f'(rn) yezne apoptablei	(1,07 o 1-x+xn)	1 (- 0/1/85015
at clocale sexible policies bir tolerino bilinut.	formal sosilit;		5 odim:
Boslogace nowace darde You2 'yi kullonine.	$f'(xn) = f(x_{n-1}) - f(xn)$	[x2-8x-10=0 [-8,1]	Xi=1
(P = 2,63064744802878)	Xn-1-Xn	V 012	
	[0X-10X] (0X)2 1 -	fulso - shir popor x'i origenue.	X1=0115952815 Sulmon daper sireless gle) 'e konvlook bir sonoki litroson elde abil
t(1) = x2-513-2=0	$- x_{n+1} = x_n - \frac{f(x_n) \cdot (x_{n-1} - x_n)}{f(x_{n-1}) - f(x_n)}$	7 x=g(x) f(x)=x-g(x)=0	12 = 0164 21 34 161
$f'(x) = 3 A - \alpha x$	1(N-1) - F(NN)	HXMIS-=X	x3=-sino184+1 = 01253934103
X0=2	ómez	2 2 2 24	× × 1.
	tric mobile killerage f(x) = EX x forksyonen kökünü	$\chi = \frac{d}{\sqrt{1-10}}$ day	Telcostoma Melodunda Duma Kosullari
n=o kin	hesoplaying. Bostongen degree obrak xy=0 ve xo=1 kelbur.	x=19x+10	onge
$x_{k} = x_{0} - \frac{f(x_{0})}{f(x_{0})}$			15+x-3=0, (1,3) kopale oraliginda kákúné bilalim.
† (No)	1=0 icily 11/1 17 17 +(1)=0-1=-016308	- f(x)=0 verler fittiggiv (sterber); 1.adim: x=g(x) 2.adim: g(x), [a/b] cralipinda belli sorber loploska,	
Y1= 2- (c)	$\frac{x_1 = x_0 - \frac{f(x_0) \cdot [x_{-1} - x_0]}{f(x_{-1}) - f(x_0)} \qquad f(0) = e^{-0} = 1}{f(0) = e^{-0} = 1}$	1 odim: x=g(x) Co h7 contracts hall souther footens	1. odini x = 3-x5 = 513-x
Y4 = 3.25			8(1) = 3-X2
	XA = 1 - (-0,65208).(-1)	2. odim: xi+1 = 9(Xi), Xi & (a1b)	
Duran kosulu kontroli:	1 - (-963201)	- x=g(x) in tetrational metado tam varun dup obradipini	2 adin:
18-x1 < 10-4	×4= 0,61269384	believes with once flat the co we tall we gray	f(3)= 243
1p-329 < 0,0001 × deven		Latialist Cort Southing [aib]	f(1). f(3) c 0 (1) oralganda travalentila.
	1 -1 ich 1 -1 ich	oralisandon per nota seglede x= 6/1) refractioner	thing by (1132 and
n=1 iuin	$\frac{\chi_2=\eta_1-\frac{1}{f(\chi_0)-f(\chi_1)}}{f(\chi_0)-f(\chi_1)}$	(g'(a)(c) we (g'(b))(c) seglete x= e(g) telerational metado (gin kullanlabili)	3. adum
$x_2 = x_1 - \frac{f(x_1)}{x_1}$	((a) - T(1)	ha go or la(xi) - 3(xith) so 1 xie(aip) about	(30) - 6
f(11)	X2=0161269984 - f(0,61269984). [1-(0,61269984)]	xi - xi+1 54	4(1)= -2x4
X2 = 3,25 - +13,25)	-0,63208 f(0,64265984)		3'(1)=-5
4(371)	12=0,563833439	orner	B'(1)/21 V
xz=21511036793		Sinx + x+1 =0 don't lemin (0,1) analytinda y-blogic	9/13) = -405
Durma kosulu kentrali:	$ \begin{array}{c c} $	kölda hund	(0,10 oraliginale her nutta Losgagas doors testilebility
	x3= x2- (1/2) - f(1/2)	1.odem	(01) overflower in their and the
1p-1/2/2 104 1p-218/1036783 < 0,0001 x dean		$x = -\sin x + 1$	
/b- siarra	43=015677036	2/1/ = -3/n1+4	1 adm: 11.53 ordifinder cectife
n=2 luln	xu= 0,5674234	2.dim:	XIO
$x_3 = x_2 - \frac{f(x_2)}{f(x_1)}$	X= 0,56714323 - 161 456	f(0)= siho+o-1=-1	1(H = 2(U))
7 = 12 - F(h)	16 = 0,06 H 4729 ogn with	t(0) t(1) < 0 ~ 1	14-9(1)=3-15=2
13=2169 7995209		this we shill coill analythida accommending	12= 3(2) = -29
Disno kapilu lantroli:	X=0,7644329	401 06 801 0 113	Dumm Kosullar
Diction Kalina Comment		1-odim:	
1p- x3/2 104 x devan	Kills Metadu Ölnek Sonu-1	(3/x)= (x/1/x+1)'	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$g'(x) = -\omega(x)$	- Nitrossen Gereek kole verldiptide Gereek kole veilmedi
n=3iam +1h)	F(1)= ex - SMX +2x-10 faktyonum kökenz herophyrna. **X	9'(0)=-100=-1	topolis - (p-xi+1/2 Tologs - XIH - XI/2 Tolog
$x_4 = x_3 - \frac{f(x_3)}{f'(x_3)}$	Bostorfia depai closes 1-1-1	igion c1 x	Ynikólebbbl p: gerezekide XiH = kóleinnit
xu=21630677236	11-2 et sint 2 et 200 - 79.71	9'(1) = -0014 = 0154 19'(1) < 1 V	edelit Xiala kakince
X Y S Y S Y S Y S Y S Y S Y S Y S Y S Y	1= 0 (4) (1/2) [x-1-x0] +(1)= = 10 1111/2 10-10=1113	Colf and penda her nother hospital olorale sectlement.	
Drag kojulu hostoli;	+(1-1)- +(10)	Colit prouburge	
10-X412104	x1=4,931924 # 150	Leaden :	
0,00002971-2104	12=3,M96 + 10 5 10	Yi=1	
-012278.		xit1 = 9(xi) = 311) = 0,15852915	
x= 2,69067728/A	14 7.17.1303 19 = 1.17.13003	3(016)=0184216283	
	x=2,543003/		

13.07 2020 Vize Sinau	₾.⑥.③	(D, (B, Q)	(2).(D)
0	Bir robeth dopm hit v=uln(mo-qt)-gt	Bir köpni ve bir porcinin stunktonnı ölemeniz isterijor.	In(1)=0
f(x)= ln(x41) falsigonun x=1 notabsında Taylor serbi medir?	bopintisi ile hesoplanmaktadir. Mo-94/ Burada Verlocomis, u=2200mis, mo=160000tg,	Oliom sonucinda Loglorni sirosiyla 9999 ve scm buldpuniou vorsojalim. Eper gercek degester sirosiyla	In(4)=1.3862844 In(6)=1.7517895 old.gare; Xo=1, X1=6 olnowsa
$f'(x) = \frac{1}{x+1} = (x+1)^{x}$	a-zuenkolc, a- 9.41 mill old.eare + dependent	10000 ve 10 cm ise copri olano gener 90 hop,	ing) we 90 hada kouth? (10(2) = 0,6934(He)
5"(a)1(xel)-2	It is no owings are volter wellen in Til	percin ókita iula gorrez do hata ve poraha ókini iula percele hata nedis?	$\frac{f(x)-f(1)}{6-1} = \frac{f(x)-f(1)}{2-1}$
Em(x) = -1 -5 -3 (x+1)-4	iterosymoldei kalui nodi!?		e-1 5-1
$t_{\nu}(x) = (\nu - \nu)' \cdot (-1)_{\nu - 1} \cdot (x + 1)_{\nu}$	$f(t) = (2200) \ln \left(\frac{160000}{160000 - 2680} \cdot t \right) - 8,81 \cdot t - 1000$	Köpnű gerkek % hata = 1000-9393 x100=0,01	t(e)+4t(1)= t(e)
	1 odim	Perain general of hote = 10-9 x100=10	5 fm = 0.3583519
Of(1)=cosx bikshown maclorin outlinus 4 teimi reddi?	f(15)=-510,528715		1457-0-3283213
f'(1) = - sinx	f(40)=1046.677774	Peruin gereek haba = $\frac{10-9}{10} = 0.1$	96 hote = 0169314718-0.3583519x100=964833
$f'''(x) = c_{M}x$	2 odim	00	-
(uterimo f"(0). N-03 0 B	(Hoote): (+ 12/4 10 (13/4) = 53/2	(3) + (3) + (3) + (3) + (3) = 0 developments (4.2) cooling and a bir	(3) In(1)=0
(.teln.f"(0), 12-03 = 0.13 = 0	4(342)=88'385JA5	visiting like bolime metadu kullanarak 4 ve s	In(L)=1.3862844
0,0	2. Heary	iterosyn ile hesoplondipunda sanua ne olu?	(n(6) = 1.79 175 95 old gare; x 0=1 1x1 = 6 dings
P=3,1417927 ve \$=3.1416 departoi ich muttok hobe ve	141 5/36 CAD	f(1)= 1+4-10 =-5	
both hole nedit.	3. Herostar 21/342124 E(51/332)= - 84135-	f(x) = 8+16-10 = 14	$\frac{f(q)-f(1)}{q-1}=\frac{f(q)-f(1)}{2-1}$
Muttale hate = 3,1415 927 - 3,1416 = 7.3 x156	+ + + + + + + + + + + + + + + + + + +	1. Hoosen: 4 15 2 F117 = 2,37	f(u) -f(1) = 3f(2) - 3f(1)
= 0,0000073//	4. iteosgen: 21,355 21,5 =-	2 Hough : CT / + f(4/25)= -1.736.	f(u)+2f(1)=f(2)
Boal hole = 13.1417927-3.1416		1 1/1/2 1/2	1115= 01/12038133
Boot pop = 3.11/2853-3.11/10	5. Hosen 277345 24.7	3. Hoose : CI + + + + + + + + + + + + + + + + + +	
= 0,000001377.		(. 14007) = -0.8/e-	0 0
= 0,00000000	x= que y= 4 segularin à basamold bir sithende	10MJ	In(1)=0 In(4)=1.2862 344
P= 2 ve p-3.414 ight book hedi?		2. Harolder: CT + +>	In(b) = 1.79.75585 old pore logrange enter polospan willowed in we begin hota locati?
	1/2/6WI Adriobage 1Etchieribiumen	was water	(nz = 0,68314718)
8-501 hap = 12-3, 414	x-y= 9/2 - 1/3 = 0.38095 = 0.38095 x 10	96	10=1, x1=4, x2=6
= 1/4/4062751,	x+y= 5/+ 4 13 = 0,12803- = 0,12803 x 10 x+y= 5/+ 1/3 = 2,142857143 = 0,21428x101	f(1) = x4-92-2x2+120x-130 egilliphi (12) ora- lipinda billimereledir. Bu kökü iktye bölme mebodunu	$f_2(x) = \frac{(x - x_1) \cdot (x - x_2)}{(x_0 - x_1) \cdot (x_0 - x_2)} \cdot F(x_0) + \frac{(x - x_0) \cdot (x - x_2)}{(x_1 - x_0) \cdot (x_1 - x_2)} \cdot F(x_1) + \dots$
(a) I make it to book hade nedil?	x/3 = 171 3	billmode 2 ve 4 Heorge 12 British	
© p=81 ve 6=39900 degerbrikin bopil noth nodil?	1= 5/2 ve 1= } saylbring 5 bosonakle wir sikleride	1-9-2+02-122=10	$\cdots + \frac{(x-x_0) \cdot (x-x_1)}{(x_2-x_1)} f(x_2)$
Bopil hole = 81-39900	I semil edildistale x/y depent kesme went of	f(2)=16-72-9+240-12 - 4	= 1-21 (-4) 0 + (1) (-4) . ln(4+
=0,01047666611	hesoplodiamita mittol hota ne olir? Mittole hota = 12,1428 7743 - 2,14281 Mittole hota = 521,28714 x 157	1. Horogen = 1 1,5/2 + 6(1,5)= 20,1875	(3/5)
		2. ikos.pn = 6+ + + + + + + + + + + + + + + + + +	-+ (1)(2) In(6)
	=0,571_x104	3. ikospa = 27 1-127 125 f(1,05)= -47438	=0,565944366
			Bopil holi = 12-0.565844366=0,18365913911
		4. ikrotyon= city tox	Inz
		Time	6