It's About Time: On Optimal Virtual Network Embeddings under Temporal Flexibilities IPDPS 2014

Matthias Rost, Stefan Schmid, Anja Feldmann Technische Universität Berlin

> May 24th, 2014 Phoenix, Arizona

The Virtual Network Embedding Problem (VNEP)

Physical Network

The Virtual Network Embedding Problem (VNEP)

Physical Network

Virtual Network Requests

The Virtual Network Embedding Problem (VNEP)

Physical Network

Virtual Network Requests

- map virtual onto substrate nodes
- map virtual links onto substrate paths
- obeying the substrate's capacities

Embedding

Facets of the VNEP

Setting

(De)centralized

Multi-Provider

Reliability

Reconfigurations

Objectives

Access Control

Load Balancing

Energy Savings

Algorithms

Exact

Heuristic

Facets of the VNEP

Setting

Objectives

Algorithms

Exact

(De)centralized

Access Control

Multi-Provider

Load Balancing

Reliability

Energy Savings

Heuristic

Reconfigurations

Novelty: Temporality!

Our Model

Our Model

Offline scenario

Motivation #1: Business

Provider Incentives: Minimizing Load

Provider Incentives: Maximizing Utilization by Collocation

Motivation #2: Modeling Opportunities

Modeling Opportunities: Evolution of VNets

Reservation of maximal allocations over the whole time?

Modeling Opportunities: Migrations

Modeling Opportunities: Migrations

In previous work instantaneous operation!

Modeling Opportunities: Migrations

Modeling Opportunities: Fine-grained Migrations

Important Decision: Continuous-Time Model!

Important Decision: Continuous-Time Model!

Problem Statement

Notation

```
Substrate \mathcal{S} topology \mathcal{S} = (V_S, E_S) capacities c_S : V_S \cup E_S \to \mathbb{R}^+ time horizon T > 0
```

```
\begin{split} \text{Requests } \mathcal{R} &= \{\mathsf{R}_1, \dots, \mathsf{R}_n\} \\ & \text{topologies } \left( \mathsf{V}_{\mathsf{R}_i}, \mathsf{E}_{\mathsf{R}_i} \right) \\ & \text{resources } \ \ c_{\mathsf{R}_i} : \mathsf{V}_{\mathsf{R}_i} \cup \mathsf{E}_{\mathsf{R}_i} \to \mathbb{R}^+ \\ \text{temporal spec interval } \left[ t_{\mathsf{R}_i}^s, t_{\mathsf{R}_i}^e \right] \\ & \text{duration } d_{\mathsf{R}_i} \leq t_{\mathsf{R}_i}^e - t_{\mathsf{R}_i}^s \end{split}
```

Temporal Virtual Network Embedding Problem (TVNEP)

Access Control

Decide which of the requests to embed.

Resource Mapping

Map virtual onto substrate resources, obtaining

$$alloc_V: \mathcal{R} \times \mathbf{V_S} \to \mathbb{R}_{\geq 0}$$
 and $alloc_E: \mathcal{R} \times \mathbf{E_S} \to \mathbb{R}_{\geq 0}$.

Scheduling

Find start $t_{\mathsf{R}}^+ \geq \mathbf{t}_{\mathsf{R}}^s$ and end time $t_{\mathsf{R}}^- \leq \mathbf{t}_{\mathsf{R}}^e$ for $\mathsf{R} \in \mathcal{R}$, such that $t_{\mathsf{R}}^- + t_{\mathsf{R}}^+ = \mathbf{d}_{\mathsf{R}}$ holds.

Feasibility

For each point in time $t \in [0, T]$ ensure:

$$\forall \textit{N}_{\textit{s}} \in \textit{\textbf{V}}_{\textit{S}}. \; \textit{\textbf{c}}_{\textit{S}}(\textit{N}_{\textit{s}}) \geq \sum_{\substack{\mathsf{R} \in \mathcal{R} \; \text{with} \\ t \in (t_{\mathsf{R}}^+, t_{\mathsf{R}}^-)}} \textit{alloc}_{\textit{V}}(\mathsf{R}, \textit{N}_{\textit{s}}) \; ,$$

$$orall L_s \in \mathsf{E_S}. \ \mathbf{c_S}(L_s) \geq \sum_{\substack{\mathsf{R} \in \mathcal{R} \ \mathsf{with} \\ t \in (t_{\mathsf{P}}^+, t_{\mathsf{P}}^-)}} \mathsf{alloc}_{\mathsf{E}}(\mathsf{R}, L_s) \ .$$

Local Embedding

For sake of simplicity, treat mapping as a black box (see e.g.[1]).

Classic VNEP Task

Access Control Decide which of the requests to embed: $x_{\mathcal{R}}: \mathcal{R} \to \mathbb{B}$.

Resource Mapping Map virtual onto substrate resources, obtaining

 $\mathit{alloc}_V: \mathcal{R} imes \mathsf{V_S} o \mathbb{R}_{\geq 0}$ and

 $alloc_E : \mathcal{R} \times \mathbf{E_S} \to \mathbb{R}_{>0}.$

Overview

Overview

Contributions

- Ontinuous-time Mixed-Integer Programming formulations for TVNEP
- \odot c Σ -Model utilizes state-space and symmetry reductions to render solving TVNEP (computationally) feasible
- **3** Greedy polynomial time heuristic which is based on $c\Sigma$ -Model
- Initial computational evaluation

Why Mixed-Integer Programming?

- TVNEP is a novel problem: baseline for further work
- Offline scenario: trade-off runtime with solution quality

Mixed-Integer Programming Models

Standard VNEP

Access Control Decide which of the requests to embed: $x_{\mathcal{R}}: \mathcal{R} \to \mathbb{B}$.

Resource Mapping Map virtual onto substrate resources, obtaining $alloc_V: \mathcal{R} \times \mathbf{V_S} \to \mathbb{R}_{\geq 0}$ and $alloc_E: \mathcal{R} \times \mathbf{E_S} \to \mathbb{R}_{> 0}$.

Novel: Continuous-Time Scheduling

Scheduling Find start $t_{R_i}^+ \ge t_{R_i}^s$ and end time $t_{R_i}^- \le t_{R_i}^e$, such that

 $t_{R_i}^- + t_{R_i}^+ = \mathbf{d}_{R_i}$ holds.

Feasibility For each point in time $t \in [0, T]$:

$$\forall \textit{N}_{\textit{s}} \in \textit{\textbf{V}}_{\textit{S}}. \; \textit{c}_{\textit{S}}(\textit{N}_{\textit{s}}) \geq \quad \sum \quad \textit{alloc}_{\textit{V}}(\textit{R}, \textit{N}_{\textit{s}}) \; ,$$

 $R \in \mathcal{R}$ with $t \in (t_{P}^+, t_{P}^-)$

$$orall L_s \in \mathbf{E_S}. \ \mathbf{c_S}(L_s) \geq \sum_{\substack{\mathsf{R} \in \mathcal{R} \ \mathsf{with} \\ t \in (t_\mathsf{R}^+, t_\mathsf{R}^-)}} \mathsf{alloc}_{\mathsf{E}}(\mathsf{R}, L_s) \ .$$

Assume for now:

Local embeddings and start / end times are fixed.

Local Embedding on Substrate

Check the feasibility of the $2 \cdot |\mathcal{R}| - 1$ states.

Substrate State

Abstract Event Model

Modeling Continuous-Time: Abstract Event Model

Mapping Variables

$$\mathcal{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_{2 \cdot |\mathcal{R}|}\}$$

$$\forall R \in \mathcal{R}. \ \chi_R^+ : \mathcal{E} \to \mathbb{B}$$

$$\forall R \in \mathcal{R}. \ \chi_R^- \colon \mathcal{E} \to \mathbb{B}$$

Bijective Mapping

$$\forall \mathsf{R} \in \mathcal{R}. \sum_{i} \chi_{\mathsf{R}}^{+}(\mathbf{e}_{i}) = 1 \land \sum_{i} \chi_{\mathsf{R}}^{-}(\mathbf{e}_{i}) = 1$$

$$\forall \mathbf{e}_i \in \mathcal{E}. \sum_{\mathsf{R} \in \mathcal{R}} \chi^+_\mathsf{R}(\mathbf{e}_i) = 1 \wedge \sum_{\mathsf{R} \in \mathcal{R}} \chi^-_\mathsf{R}(\mathbf{e}_i) = 1$$

Δ -Model

Reconstructing States: Δ -Model

Idea

• Compute state changes via mapping variables $\chi_{\rm R}^+(e_i), \chi_{\rm R}^-(e_i)$

Reconstructing States: Δ-Model

Idea

• Compute state *changes*: $\Delta_{\mathbf{e}_i}: \mathbf{V_S} \cup \mathbf{E_S} \to \mathbb{R}$ via $\chi^+_{\mathsf{R}}(e_i), \chi^-_{\mathsf{R}}(e_i)$

Reconstructing States: Δ -Model

Idea

- Compute state *changes*: $\Delta_{\mathbf{e}_i}: \mathbf{V_S} \cup \mathbf{E_S} \to \mathbb{R}$ via $\chi^+_{\mathsf{R}}(e_i), \chi^-_{\mathsf{R}}(e_i)$
- 2 Enforce $\sum_{i=1}^{i} \Delta_{\mathbf{e}_i} \leq c_{\mathbf{S}}$ for each state

Δ -Model: Computing State Changes

Conditional Assignment

 $\forall \mathbf{e}_i \in \mathcal{E}. \ \forall N_s \in \mathbf{V}_{\mathbf{S}}.$

$$\Delta_{\mathbf{e}_i}(\textit{N}_s) = \begin{cases} +\textit{alloc}_V(R_j, \textit{N}_s) & \text{, if } \chi_{R_j}^+(\mathbf{e}_i) = i \\ -\textit{alloc}_V(R_j, \textit{N}_s) & \text{, if } \chi_{R_j}^-(\mathbf{e}_i) = i \end{cases} \\ \vdots \\ +\textit{alloc}_V(R_k, \textit{N}_s) & \text{, if } \chi_{R_k}^+(\mathbf{e}_i) = i \\ -\textit{alloc}_V(R_k, \textit{N}_s) & \text{, if } \chi_{R_k}^-(\mathbf{e}_i) = i \end{cases}$$

Δ-Model: Computing State Changes

Conditional Assignment via Big-M Constraints

$$\forall R \in \mathcal{R}. \ \forall e_i \in \mathcal{E}. \ \forall N_s \in V_S.$$

$$\Delta_{\mathbf{e}_i}(N_s) \le + alloc_V(\mathsf{R}, N_s) + c_S(N_s)(1 - \chi_\mathsf{R}^+(\mathbf{e}_i))$$

$$\Delta_{\mathbf{e}_i}(N_s) \ge + \operatorname{alloc}_V(\mathsf{R}, N_s) - \mathbf{c_S}(N_s)(1 - \chi_\mathsf{R}^+(\mathbf{e}_i)) \cdot 2$$

$$\Delta_{\mathbf{e}_i}(\textit{N}_s) \leq -\textit{alloc}_V(\mathsf{R},\textit{N}_s) + c_{\mathsf{S}}(\textit{N}_s)(1-\chi_{\mathsf{R}}^-(\mathbf{e}_i)) \cdot 2$$

$$\Delta_{\mathbf{e}_i}(N_s) \ge - \operatorname{alloc}_V(\mathsf{R},N_s) - \operatorname{c}_{\mathsf{S}}(N_s)(1 - \chi_\mathsf{R}^-(\mathbf{e}_i))$$

Δ -Model: Computing State Changes

Big-M Assignment of Start

 $\forall R \in \mathcal{R}. \ \forall e_i \in \mathcal{E}. \ \forall N_s \in V_S.$

$$\Delta_{\mathbf{e}_i}(N_s) \leq + \operatorname{alloc}_V(R, N_s) + \mathbf{c}_{\mathbf{S}}(N_s)(1 - \chi_{\mathrm{R}_1}^+(\mathbf{e}_i))$$

$$\Delta_{\mathbf{e}_i}(N_s) \geq + \operatorname{alloc}_V(R, N_s) - \mathbf{c}_{\mathbf{S}}(N_s)(1 - \chi_{\mathrm{R}_1}^+(\mathbf{e}_i)) \cdot 2$$

$$\chi_{\rm R}^{+}({\bf e}_i)=0$$

$$\Delta_{\mathsf{e}_i}(\mathit{N}_s) \leq + \mathit{alloc}_V(\mathsf{R}, \mathit{N}_s) + \mathsf{c}_{\mathsf{S}}(\mathit{N}_s)$$

$$\Delta_{\mathbf{e}_i}(N_s) \ge + alloc_V(\mathsf{R}, N_s) - 2 \cdot \mathbf{c_S}(N_s)$$

unbounded

$$\Delta_{\mathbf{e}_i}(N_s) \leq c_{\mathbf{S}}(N_s)$$

$$\Delta_{\mathbf{e}_i}(N_s) \geq - c_{\mathbf{S}}(N_s)$$

Δ -Model: Computing State Changes

Big-M Assignment of Start

 $\forall R \in \mathcal{R}. \ \forall e_i \in \mathcal{E}. \ \forall N_s \in V_s.$

$$\Delta_{\mathbf{e}_i}(N_s) \le + \operatorname{alloc}_V(R, N_s) + \operatorname{c}_{\mathbf{S}}(N_s)(1 - \chi_{R_1}^+(\mathbf{e}_i))$$

$$\Delta_{\mathbf{e}_i}(N_s) \ge + \operatorname{alloc}_V(R, N_s) + \operatorname{c}_{\mathbf{S}}(N_s)(1 - \chi_{R_1}^+(\mathbf{e}_i)) + \operatorname{c}_{\mathbf{S}}(N_s)(1 - \chi_{R_1}^+(\mathbf{e}_i))$$

$$\Delta_{\mathbf{e}_i}(N_s) \ge + alloc_V(R, N_s) - \mathbf{c_S}(N_s)(1 - \chi_{\mathrm{R}_1}^+(\mathbf{e}_i)) \cdot 2$$

$$\chi_{\mathsf{R}}^{+}(\mathsf{e}_{i}) = 1$$

$$\Delta_{\mathsf{e}_{i}}(N_{\mathsf{s}}) \leq + \operatorname{alloc}_{V}(\mathsf{R}, N_{\mathsf{s}})$$

$$\Delta_{\mathsf{e}_{i}}(N_{\mathsf{s}}) > + \operatorname{alloc}_{V}(\mathsf{R}, N_{\mathsf{s}})$$

$$\rightarrow$$

equal
$$\Delta_{\mathbf{e}_i}(N_s) = alloc_V(\mathsf{R}, N_s)$$

Δ -Model Issue: LP Smearings!

LP Relaxation Example

$$\chi_{\mathrm{R}_{\mathrm{j}}}^{+}(\mathbf{e}_{j}) = 0.5 \text{ for } j \in \{1, 2\}$$
:

$$-c_{S}(N_{s}) + alloc_{V}(R_{i}, N_{s}) \leq \Delta_{e_{i}}(N_{s}) \leq alloc_{V}(R_{i}, N_{s}) + 0.5 \cdot c_{S}(N_{s})$$

Δ -Model Issue: LP Smearings!

LP Relaxation Example

$$\chi_{\rm R_j}^+({\bf e}_j) = 0.5 \text{ for } j \in \{1,2\}$$
:

$$-c_{\textbf{S}}(\textit{N}_{\textit{s}}) + \textit{alloc}_{\textit{V}}(\textit{R}_{j},\textit{N}_{\textit{s}}) \leq \Delta_{\textbf{e}_{\textit{j}}}(\textit{N}_{\textit{s}}) \leq \textit{alloc}_{\textit{V}}(\textit{R}_{j},\textit{N}_{\textit{s}}) + 0.5 \cdot c_{\textbf{S}}(\textit{N}_{\textit{s}})$$

Implications

- $oldsymbol{\Delta}_{\mathbf{e}_{j}}(s) \leq 0$ is always feasible when $\chi^{+}_{\mathrm{R}_{i}}(\mathbf{e}_{j}) = 0.5$ for $j \in \{1,2\}$
- 2 $\Delta_{\mathbf{e}_i}(s) = -\mathbf{c}_{\mathbf{S}}(N_s)$ possible if $alloc_V(R_i, N_s) = 0$

Δ -Model Issue: LP Smearings!

LP Relaxation Example

$$\chi_{{
m R}_{
m j}}^+({f e}_j)=$$
 0.5 for $j\in\{1,2\}$:

$$-c_{S}(\textit{N}_{\textit{s}}) + \textit{alloc}_{\textit{V}}(\mathsf{R}_{j},\textit{N}_{\textit{s}}) \leq \Delta_{e_{\textit{j}}}(\textit{N}_{\textit{s}}) \leq \textit{alloc}_{\textit{V}}(\mathsf{R}_{j},\textit{N}_{\textit{s}}) + 0.5 \cdot c_{S}(\textit{N}_{\textit{s}})$$

Implications

- $oldsymbol{\Delta}_{\mathbf{e}_{i}}(s) \leq 0$ is always feasible when $\chi_{\mathrm{R}_{i}}^{+}(\mathbf{e}_{j}) = 0.5$ for $j \in \{1,2\}$
- $\Delta_{\mathbf{e}_i}(s) = -\mathbf{c_S}(N_s)$ possible if $alloc_V(\mathbf{R}_i, N_s) = 0$

Necessitates more explicit representation of states.

 Σ -Model

Σ-Model: Intuition

Requirement

Resource allocations must materialize in the substrate's state.

Σ-Model: Intuition

$$\forall R \in \mathcal{R}. \forall e_i \in \mathcal{E}.$$

$$\Sigma(R, \mathbf{e}_i) = \sum_{i=1,\dots,i} \chi_{\mathsf{R}}^+(\mathbf{e}_j, \mathsf{R}) - \sum_{i=1,\dots,i} \chi_{\mathsf{R}}^-(\mathbf{e}_j, \mathsf{R})$$

Σ-Model

Request allocations are computed for each state

- States $\mathcal{S} = \{\mathsf{s}_1, \dots, \mathsf{s}_{2 \cdot |\mathcal{R}| 1}\}$
- $\forall R \in \mathcal{R}. \forall s_i \in \mathcal{S}. \forall N_s \in V_s$.

$$a_{\mathsf{R}}(\mathsf{s}_i, N_{\mathsf{s}}) \geq alloc_V(\mathsf{R}, N_{\mathsf{s}}) - c_{\mathsf{V}}(N_{\mathsf{s}}) \cdot (1 - \Sigma(R, e_i))$$

• $\forall s_i \in \mathcal{S}. \forall r \in V_S$.

$$c_S(\textit{N}_s) \geq \sum_{R \in \mathcal{R}} a_R(s_i, \textit{N}_s)$$

 $\forall R \in \mathcal{R}. \forall e_i \in \mathcal{E}.$

$$\Sigma(R, \mathbf{e}_i) = \sum_{j=1,\dots,i} \chi_{\mathsf{R}}^+(\mathbf{e}_j, \mathsf{R}) - \sum_{j=1,\dots,i} \chi_{\mathsf{R}}^-(\mathbf{e}_j, \mathsf{R})$$

 $c\Sigma$ -Model

cΣ-Model: Overview

Computational Trade-Off

- The Σ -Model is provably stronger than Δ -Model.
- However, the Σ -Model uses (approximately) $2 \cdot |\mathcal{R}|$ more variables!

Σ -Model can be strengthened: $c\Sigma$ -Model

State compactification Consider only *partial* event order. Yields *state-space* and *symmetry reductions*.

User cuts Use temporal information to reduce *state-space* and strengthen formulation.

cΣ Optimization: State Compactification

$c\Sigma$ -Model: State Compactification

No need to check feasibility at *end* of a request. Halves the number of variables (approximately): State-space reduction.

Same order as before!

Local Embedding on Substrate

Theorem

Compactification is symmetry reduction.

The Last Bit: Incorporating Time

cΣ-Model: Incorporating Time

$$orall \mathbf{e}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}.$$
 $\mathbf{t}_{\mathbf{e}_i} \leq \mathbf{t}_{\mathbf{e}_{i+1}}$

$$orall R \in \mathcal{R}.$$
 $\mathbf{d}_R = \mathbf{t^-}_R - \mathbf{t^+}_R$

$$\begin{aligned} \forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \{\mathbf{e}_1, \dots, \mathbf{e}_{|\mathcal{R}|}\}. \\ t_\mathsf{R}^+ &\leq \mathrm{t}_{\mathbf{e}_i} + (1 - \sum\limits_{j=1,\dots,i} \chi_\mathsf{R}^+(\mathbf{e}_j, \mathsf{R})) \cdot \mathsf{T} \\ t_\mathsf{R}^+ &\geq \mathrm{t}_{\mathbf{e}_i} - (1 - \sum\limits_{j=i,\dots,|\mathcal{E}|} \chi_\mathsf{R}^+(\mathbf{e}_j, \mathsf{R})) \cdot \mathsf{T} \end{aligned}$$

$$\begin{aligned} \forall \mathsf{R} \in \mathcal{R}. \forall \mathbf{e}_i \in \{\mathbf{e}_2, \dots, \mathbf{e}_{|\mathcal{R}|+1}\}. \\ t_\mathsf{R}^- \leq \mathrm{t}_{\mathbf{e}_i} + (1 - \sum\limits_{j=2,\dots,i} \chi_\mathsf{R}^-(\mathbf{e}_j, \mathsf{R})) \cdot \mathsf{T} \\ t_\mathsf{R}^- \geq \mathrm{t}_{\mathbf{e}_{i-1}} - (1 - \sum\limits_{j=i,\dots,|\mathcal{E}|} \chi_\mathsf{R}^-(\mathbf{e}_j, \mathsf{R})) \cdot \mathsf{T} \end{aligned}$$

Figure: Temporal Dependency Graph

Figure: Temporal Dependency Graph

By computing maximal distances we obtain:

- Start of R_1 : e_1
- Start of R₂: e₂
- Start of R_3 : e_3

- End of R_1 : e_2 , e_3 , e_4
- End of R_2 : e_3 , e_4

State-space Reduction via

 $\forall v \in V_{dep}$.

$$rac{|\mathcal{R}|+1-|\mathit{dist}_{\mathsf{max}}^{-}(v)|}{\sum\limits_{i=|\mathit{dist}_{\mathsf{max}}^{+}(v)|+1}\chi_{\mathit{Event}}(\mathbf{e}_{i},v)=1$$

User Cuts:

If R was embedded at e_i , then successor w must have been embedded ...

$$\forall v \in V_{dep}. \forall w \in \mathit{dist}^+_{\mathsf{max}}(v). \forall \mathbf{e}_i \in \mathcal{E}, \mathit{dist}_{\mathsf{max}}(v, w) + 1 \leq i \leq |\mathcal{R}|.$$

$$\sum_{j=1}^{i} \chi_{\mathit{Event}}(\mathbf{e}_j, w) \leq \sum_{\substack{\mathbf{e}_j \in \mathcal{E} \\ \mathsf{with} \ j \leq i - \mathit{dist}^-_{\mathsf{max}}(v, w)}} \chi_{\mathit{Event}}(\mathbf{e}_j, v)$$

Greedy Heuristic $c\Sigma_A^G$

Greedy Heuristic c Σ_A^G

Setting

Node placements are fixed.

Outline

- Order requests according to their earliest start time.
- $\ensuremath{ 2 \hspace{-0.8mm} \bullet \hspace{-0.8mm} }$ Iteratively try to embed requests as soon as possible using $c\Sigma\textsc{-}Model$
 - 1 If the request was embedded: fix start and end time.

Greedy Heuristic $c\Sigma_A^G$

Setting

Node placements are fixed.

Outline

- Order requests according to their earliest start time.
- 2 Iteratively try to embed requests as soon as possible using $c\Sigma$ -Model
 - If the request was embedded: fix start and end time.

Theorem

 $c\Sigma_{\Delta}^{G}$ is polynomial-time algorithm.

Important

All link allocations are re-computed in each iteration.

Computational Evaluation

Scenario: One day workload

- ullet 20 requests (star-graphs) are to be embedded on 4 imes 5 grid
- Expected inter-arrival time of one hour [Poisson]
- Expected duration of 3.5 hours [Weibull: heavy-tailed]
- Node-mappings are fixed to concentrate on temporal aspects
- Link-mappings are not fixed
- Increasing temporal flexibility: 0, 30, 60, ..., 300 minutes.

Computational Setup

- 24 independently generated scenarios
- Limited runtime of one hour for MIPs [Gurobi]

Task: Maximize revenue $\propto \mathsf{load} \cdot \mathsf{duration}$

- Decide which requests to embed (access control).
- ② Find time-invariant embedding (routing of data).
- 3 Decide when to embed the requests.

Objective Gap: MIP Formulations

Runtime: MIP Formulations

Benefit of Flexibility

Performance of $c\Sigma_A^G$

Performance of $\mathsf{c}\Sigma_\mathsf{A}^\mathsf{G}$

Fast: runtime of few seconds.

Related Work

Chemical plants [3] Utilize similar event abstraction, but no resource sharing.

Business Perspective [4] Marketplace based on temporal flexibilities.

MapReduce [5] Consider temporally predictable jobs (MapReduce-like) and allow for temporally interleaved resource sharing.

VNet Survey [2] There is no comparable work on TVNEP.

Google B4 [6] Software-defined network (wide-area) connecting data centers. Only some dozen locations.

Future Work / Discussion

Modeling

- Consider flexible duration of requests.
- Consider delay-tolerant VNets.
- Consider more complex scenarios, e.g. migrations.

Algorithmic

- Incorporate other heuristical embedding approaches.
- Develop local-search algorithms for the TVNEP.

The End

- Abstract event point model
- \bigcirc Δ -, Σ and c Σ -Model
 - state-space reductions
 - symmetry reduction
- **3** Greedy heuristic $cΣ_A^G$ based on cΣ
- Initial computational evaluation
 - $\Delta \ll \Sigma < c\Sigma$
 - cΣ: near optimal solutions within one hour
 - $c\Sigma_A^G$ only approx. 5-10% off optimum

References I

- N. Chowdhury, M. Rahman, and R. Boutaba.
 Virtual network embedding with coordinated node and link mapping. In *Proc. of the IEEE INFOCOM '09*, 2009.
- [2] A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach. Virtual network embedding: A survey. 2013.
- [3] C. A. Floudas and X. Lin. Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review. Computers & Chemical Engineering, 28(11), 2004.
- [4] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and D. Zufferey. A marketplace for cloud resources. In Proc. of the ACM EMSOFT '10, 2010.
- [5] L. Mai, E. Kalyvianaki, and P. Costa. Exploiting time-malleability in cloud-based batch processing systems. In Proceeding of the ACM SIGOPS LADIS Workshop '13, 2013.

References II

[6] S. Jain et al.

B4: experience with a globally-deployed software defined wan. In *Proc. of the ACM SIGCOMM '13*, 2013.

[7] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang.

Proteus: A topology malleable data center network.

In Proc. of the ACM SIGCOMM HotNets Workshop '10, 2010.

Standard VNEP Access Control & Resource Mapping

Variables

Access Control $x_{\mathcal{R}}: \mathcal{R} \to \mathbb{B}$

Node Mapping $\forall R \in \mathcal{R}. \ x_V : V_R \times V_S \to \mathbb{B}$

Link Mapping $\forall R \in \mathcal{R}. \ x_E : E_R \times E_S \rightarrow [0, 1]$

Node mapping

Map each virtual onto a substrate node, if the request is embedded.

Link mapping

Map each virtual link onto multiple paths in the substrate (splittable flows).

Macro alloc_V(
$$R$$
, N_s): $\forall R \in \mathcal{R}. \forall N_s \in \mathbf{V_S}$
alloc_V(R , N_s) = $\sum_{N_v \in \mathbf{V_R}} c_R(N_v) \cdot x_V(N_v, N_s)$

Macro $alloc_V(R, N_s)$: $\forall R \in \mathcal{R}. \forall L_s \in \mathbf{E_S}$ $alloc_E(R, L_s) = \sum_{L_v \in \mathbf{E_P}} \mathbf{c_R}(L_v) \cdot \mathbf{x}_E(L_v, L_s)$

Standard VNEP Access Control & Resource Mapping

Variables

Access Control $x_{\mathcal{R}}: \mathcal{R} \to \mathbb{B}$

Node Mapping $\forall R \in \mathcal{R}. \ x_V : V_R \times V_S \to \mathbb{B}$

Link Mapping $\forall R \in \mathcal{R}. x_E : \mathbf{E}_R \times \mathbf{E}_S \rightarrow [0,1]$

Node mapping: $\forall R \in \mathcal{R}. \ \forall N_v \in \mathbf{V}_R.$

$$\mathbf{x}_{\mathcal{R}}(\mathsf{R}) = \sum_{\textit{N}_{\textit{s}} \in \textit{V}_{\textit{S}}} \mathbf{x}_{\textit{V}}(\textit{N}_{\textit{v}},\textit{N}_{\textit{s}})$$

Link mapping: $\forall R \in \mathcal{R}. \forall L_v = (N_v^+, N_v^-) \in \mathbf{E}_R. \forall N_s \in \mathbf{V}_S$

$$\sum_{L_s \in \delta^+(N_s)} \mathrm{x}_E(L_v, L_s) - \sum_{L_s \in \delta^-(N_s)} \mathrm{x}_E(L_v, L_s) = \mathrm{x}_V(N_v^-, N_s) - \mathrm{x}_V(N_v^+, N_s)$$

Macro alloc_V (R, N_s) : $\forall R \in \mathcal{R}. \forall N_s \in V_S$ $alloc_V(R, N_s) = \sum_{N_v \in \mathbf{V_R}} \mathbf{c}_R(N_v) \cdot \mathbf{x}_V(N_v, N_s)$

Macro alloc_V (R, N_s) : $\forall R \in \mathcal{R}. \forall L_s \in \mathbf{E_S}$ $alloc_E(R, L_s) = \sum_{L_v \in \mathbf{F}_D} \mathbf{c}_R(L_v) \cdot \mathbf{x}_E(L_v, L_s)$

May 24th, 2014

Applications

Data center

- e.g. MapReduce cycles through different phases, traffic only during 30-60% of execution [7]
- price incentives for customers and providers to allow for / harness temporal flexibility [5]

Wide area networks

- Google uses SDN in the WAN to connect data centers [6]
- scheduling of bandwidth-intensive synchronizations
 - is necessary to achieve good utilization and resource isolation
 - is enabled by central SDN control