

Table of Contents

01

Overview

04

Krebs Cycle

02

Glycolysis

05

Electron Transport Chain 03

Intermediate step

06

Anaerobic Respiration/ Fermentation

Energy Sources

- ATP (Adenosine triphosphate)
 - Substrate-level phosphorylation: Gains ATP as a byproduct
 - Oxidative phosphorylation: Gains ATP from ETC
 - Activated/deactivated by kinases
- NAD+/NADH (Nicotinamide adenine dinucleotide)
 - ~2.5 ATP (3)
 - Niacin (B3)
 - Activated/deactivated by NADH dehydrogenase
- **FAD/FADH2** (Flavin adenine dinucleotide)
 - ~1.5 ATP (2)
 - Riboflavin (B2)

O2 Glycolysis

Glucose \rightarrow 2 Pyruvate

Glucose + 2 NAD⁺ + 2 ADP + 2 $P_i \rightarrow$ 2 Pyruvate + 2 NADH + 2 H^+ + 2 ATP + 2 H2O

ATP
$$+2 \rightarrow 2$$

NADH $+2 \rightarrow 2$
FADH₂ $+0 \rightarrow 0$

03 Intermediate Step

 $ATP + 0 \rightarrow 4$

 $NADH + 2 \rightarrow 4$

 $FADH_2 + 0 \rightarrow 0$

()4Krebs/Citric Acid/Tricarboxylic Acid Cycle

 $Acetyl-CoA + 3 NAD^{+} + FAD + GDP + P_{i} + 2H_{2}O = CoA-SH + 3 NADH + FADH_{2} + 3 H+ + GTP + 2CO_{2}$

CAIKS SFMO

 $ATP + 2 \rightarrow 4$

NADH + $6 \rightarrow 10$

 $FADH_2 + 2 \rightarrow 2$

O5 Electron Transport Chain

Electron Transport Chain

INSUAL SKILLS Compare the position of the electrons in VADH (see Figure 9.3) at the top of the chain with that in H_2O , at the bottom. Describe why the electrons in H_2O have less votential energy, using the term electronegativity.

ATP Synthase

ATP totals

Oxidative Phosphorylation

 $ATP + 34 \rightarrow 38$

NADH $-10 \rightarrow 0$

 $FADH_2 - 2 \rightarrow 0$

Key	CO ₂	ATP	NADH	FADH ₂
Glycolysis	0	-2 +4	+2	0
Total	О	2	2	0
Intermediate	+2	О	+2	0
Total	2	2	4	0
Krebs	+4	+2	+6	+2
Total	6	4	10	2
ETC	0	+34	-10	-2
Total	6	38	0	0
Net Total w/ transport	6	38 - 2 36	0	0

()6Anaerobic Respiration/ Fermentation

Anaerobic Respiration

- The same as aerobic respiration, but using a different electron acceptor instead of oxygen
 - Sulfate (SO_4^{2-}) \rightarrow Hydrogen sulfide (H_2S) $CO_2 \rightarrow CH_4$ (methanogens)

Fermentation

Recycles NAD⁺

