Фамилия И.О., группа:

4 4	1.0	0	0	4	_	0	-			-	OTTOTTTO
1.1	1.2	2	3	4	5	6	7	8	9	Σ	оценка

<u>Необоснованные ответы не оцениваются!</u> Если в задаче требуется построение алгоритма, то нужно построить оптимальный алгоритм (за неэффективность снижается оценка), доказать его корректность и оценить время работы (если не в условии не оговорено иное).

- 1 (2+4). В памяти хранится массив из n чисел со значениями от 1 до n-1.
- 1. Постройте алгоритм, который находит любое из чисел, которое встречается в массиве хотя бы два раза (число n известно).

2. Решите ту же задачу, но при условии, что массив доступен только для чтения и разрешено использовать $O(\log n)$ битов памяти.

2 (2). Укажите лучшие верхние и нижние оценки вида $O(n^k)$ и $\Omega(n^k)$, $k \in \mathbb{N}_0$ для функций: **a)** $f(n) = \frac{7n^3 + 5n^2 + 3n}{10n^2 + 1005000n}$; **6)** $g(n) = n^4 \log^2 n$.

- **3** (2). Найдите асимптотику роста функций, полагая, что $T(n) = \Theta(1)$ при малых n:
- a) $T(n) = 256T(\frac{n}{16}) + n^2$; 6) $T(n) = 256T(\frac{n}{16}) + 2n^{1.99} \log n$.

- **4** (3). На вход задачи подаются 2n чисел. Постройте алгоритм, который разбивает их на пары так, что максимальная сумма чисел в паре минимальна.
- 6 (2+2). В оперативной памяти хранятся два двоичных дерева поиска (не обязательно сбалансированных) высоты h_1 и h_2 соответственно (значения высот не подаются на вход и не хранятся в памяти), при этом все ключи в первом дереве меньше, чем ключи во втором. Постройте алгоритм, который возвращает двоичное дерево поиска, содержащее ключи обоих деревьев за а) $O(\max(h_1,h_2))$; б) $O(\min(h_1,h_2))$.

5 (3). В оперативной памяти хранится k односвязных списков, ключи в которых упорядочены по возрастанию; общее число ключей (суммарно во всех списках) равно n. Постройте алгоритм, который возвращает список, состоящий из ключей всех списков, в котором элементы также упорядочены по возрастанию. Сложность алгоритма $O(n \log k)$.

- 7 (3). В оперативной памяти хранится массив a, в котором n элементов. i-й элемент массива называется пиком, если $a[i] \geqslant a[i+1]$ и $a[i-1] \leqslant a[i]$. При i=0 выполняется только условие $a[0] \geqslant a[1]$, а при i=n только $a[n-1] \leqslant a[n]$. Постройте алгоритм, который находит пик массива.
- 9 (6). На вход задачи подаётся число n и n чисел в диапазоне от 1 до n^2 . Постройте алгоритм, который сортирует числа за время O(n).

8 (5). В оперативной памяти хранится натуральное число a, двоичная запись которого (без ведущих нулей) имеет длину 2^m . Вам нужно проверить, является ли число a палиндромом, т.е. если развернуть биты a, то число не изменится. При этом разрешено использовать только целочисленные переменные и следующие операции: сложение, вычитание, умножение, деление с остатком, побитовый сдвиг (на k битов) влево или вправо, сравнение числа с нулём. Каждая из описанных операций выполняется за O(1).