Overheads: - Outline

Recap Monday: S_N2 Reactions

NOTE: "2" \neq 2 steps! $S_N 2 = 1$ step, $S_N 1 = 2$ steps

How do we know if a reaction was $S_N 2$? (not $S_N 1$)

- 1) <u>Kinetics</u>: rate = Δ [R-Br]/ Δ t = k[R-Br][OH⁻] (if double either conc., rate doubles)
- \Rightarrow Do kinetics <u>experiments</u> to see if rate depends on <u>both</u> (2nd order) <u>must be S_N2</u>

2) Stereochemistry:

$$\begin{array}{c} \text{CH}_{3} \overset{\text{H}}{\underset{\mathbb{Z}}{\Vdash}} \overset{\text{H}}{\underset{\mathbb{Z}}{\Vdash}} \overset{\text{H}}{\underset{\mathbb{Z}}{\vdash}} \overset{\text{CH}_{3}}{\underset{\mathbb{Z}}{\vdash}} \\ \text{HO} & \overset{\text{H}}{\underset{\mathbb{Z}}{\vdash}} \overset{\text{CH}_{3}}{\underset{\mathbb{Z}}{\vdash}} & \overset{\text{H}}{\underset{\mathbb{Z}}{\vdash}} & \overset{\text{H}}{\underset{\mathbb{Z}}{\vdash}} & \overset{\text{CH}_{3}}{\underset{\mathbb{Z}}{\vdash}} & \overset{\text{H}}{\underset{\mathbb{Z}}{\vdash}} & \overset{\text{CH}_{3}}{\underset{\mathbb{Z}}{\vdash}} & \overset{\text{H}}{\underset{\mathbb{Z}}{\vdash}} & \overset{\text{CH}_{3}}{\underset{\mathbb{Z}}{\vdash}} & \overset{\text{H}}{\underset{\mathbb{Z}}{\vdash}} & \overset{$$

- flips inside out like umbrella

⇒ stereochemistry is <u>inverted</u> (reverses) aka inversion of stereochemistry

$$\begin{bmatrix} R & \longrightarrow & S \\ S & \longrightarrow & R \end{bmatrix}$$
 stereospecific reaction

3) Effect of Sterics:

<u>Leaving Groups</u>: Halides = most common (others in Ch. 11)

- ⇒ anything that likes to leave! (with e pair)
- \Rightarrow X must be stable (X = Electronegative)

What makes a good LG?

⇒ the easier it is to break C-LG bond, the better the LG (*ie* weaker bond)

General Rule: Weaker base = better LG

→ worse e donor :: doesn't want to give back e

* if base is stronger than F⁻, very bad LG!

e.g. OH stronger base : terrible LG

but:
$$-\mathbf{C}$$
 $-\mathbf{OH}$ $-\mathbf{H}^+$ $-\mathbf{C}$ $-\mathbf{OH}$ $-\mathbf{H}$ $-\mathbf{C}$ $-\mathbf{OH}$ $-\mathbf{H}$ $-\mathbf{C}$ $-\mathbf{OH}$ $-\mathbf{H}$ $-\mathbf{C}$ $-\mathbf{OH}$ $-\mathbf{H}$ $-\mathbf{C}$ $-\mathbf{OH}$ $-\mathbf{CH}$ $-\mathbf{C$

Nucleophiles: - love $H^+/\delta^+ \equiv base$ - must have lone pair of e⁻ to donate - can be anionic (H-Ö:) or neutral (H₂Ö:) General Rule: stronger base = better Nu - opposite of LG ⇒ makes sense: Nu⁻ in / LG out! $OH^- > H_2O \implies$ stronger base \implies anions generally better $Nu^ CH_3^- > NH_2^- > OH^- > F^$ acidity increases \rightarrow (for HA) \therefore basicity increases \leftarrow (for A⁻) F stronger base F > Cl > Br > I(AND I bigger : more steric hinderance) true in aprotic solvent (no OH or NH); e.g. acetone or ether BUT, in protic solvent, trend reversed H-bonding increases size of Nu F^- H-bonds more than $Cl^- > Br^- > I^-$ ∴ get big shell of H₂O's → F very big ∴ steric hinderance

