—Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ЭНЕРГИТИЧЕСКИЙ ИНСТИТУТ» (ФГБОУ ВО «НИУ «МЭИ»)

Институт радиотехники и электроники им. В.А. Котельникова Кафедра формирования и обработки сигналов

Отчет по лабораторной работе № 1 «Фазовая автоподстройка частоты»

Дисциплина: Формирование радиосигналов

Студент: Резепов Д.С.

Группа: Эрэ-18-21

Преподаватель: Плутешко А.В.

Задание для подготовки к работе в лаборатории:

Таблица 3: Исходные данные для расчёта кольца ФАПЧ

$E_{\rm m}$, B	$K_{\Gamma \mathbf{y} \mathbf{H}}, \frac{\kappa \Gamma \mathbf{u}}{\mathrm{B}}$	
+5	200	

При выполнении задания использовать уравнения из раздела 1, в первую очередь(11) и (10).

Таблица 4: Постоянные времени Φ НЧ T_i

i	T_i , MKC
1	0,5
2	0,6
3	0,7
4	2,0

- 1. Построить переходные процессы $E_{\Phi, \Pi}(t)$ при скачке опорной частоты на +375 к Γ_{Π} из стационарного режима с $\varphi^+=\frac{\pi}{8}$ (задача, аналогичная решённой на рисунке 6):
 - для $T \to 0$;
 - для любого T_i , i=1...3 (выбирается студентами так, чтобы у собригадников T_i не совпадали).

$$i = 3; T_i = 0.7$$

$$\tau \frac{d^2}{dx^2} \varphi + \frac{d}{dx} \varphi - \varphi = \frac{\pi}{2} + \Delta, \quad \varphi < 0$$
.

где
$$au=rac{T}{T_{\Phi \Lambda \Pi \Psi}},\, \Delta=T_{\Phi \Lambda \Pi \Psi}\,(\omega_{on}-\omega_{\Gamma Y H_0}),$$
а (9) переходит в

$$\tau \tfrac{d^2}{dx^2} \varphi + \tfrac{d}{dx} \varphi + \varphi = \tfrac{\pi}{2} + \Delta, \quad \varphi > 0 \ .$$

- - для $T \rightarrow 0$;
 - для любого $T_i, i=1...3$ (выбирается студентами так, чтобы у собригадников T_i не совпадали);
 - для T₄.

3. Изобразите осциллограммы, которые должны наблюдаться при выполнении п. 5.2.

Как они изменятся, если при внешнем параметре шаг в 2 раза не изменять величину Duty2, которая является величиной, обратной скважности?

Рассуждение:

- Например, если Duty2 = 50%, то скважность равна 2.
- Формула определения Duty2: $\mathrm{Duty2} = \frac{t_{\mathtt{unut}}}{T} \times 100\%$ где $t_{\mathtt{илит}}$ длительность импульса, а T период.
- При Duty2 = 50% форма сигнала будет симметричной.
- Если Т увеличивается в 2 раза, но Duty2 сохраняется, длительность импульса также увеличится в 2 раза.
- График представлен в виде треугольного сигнала, показывающего изменение напряжения во времени.

4. Изобразите осциллограммы, которые должны наблюдаться при выполнении п. 5.4.

Исходные данные:

- R₁ = 300 O_M
- Полосы частот:

1.
$$R_1 \cdot C_2 = 300 \cdot 2.200 imes 10^{-12}$$
 = 660 нс $ightarrow f pprox 340.6$ к Γ ц

2.
$$R_1 \cdot C_6 = 300 \cdot 8600 imes 10^{-12}$$
 = 2.04 мкс $ightarrow f pprox 148$ к Γ ц

Система ФАПЧ (Фазовая Автоматическая Подстройка Частоты) при воздействии шумов повторит форму сигнала. Значение полосы задержки определяется выражением: $\gamma = \frac{f_{\text{зап}}}{f_{\text{полт}}}$

Анализ зависимости γ от t:

- При уменьшении значения t видно, что f увеличивается.
- Следовательно, по отношению $f_{\text{зад}}$ к $f_{\text{полн}}$ начальная ширина уменьшается, что оставляет зону стабильной.
- Высшие гармоники становятся более выраженными.

ЗАДАНИЕ ДЛЯ ВЫПОЛНЕНИЯ В ЛАБОРАТОРИИ ИЗМЕРЕНИЕ ХАРАКТЕРИСТИКИ ФД

Подадим колебание от внешнего генератора на вход опорной частоты. Форма напряжения — синусоидальная. Частота 8 МГц. Средний уровень 1,6 В. Размах от минимума до максимума 3,0 В.

Рисунок 1 — Осциллограмма $E_{\Phi \text{Д}}(t)$ и $E_{\text{упр}}(t)$ при положении переключателя 5

ИЗМЕРЕНИЕ ХАРАКТЕРИСТИКИ ГУН

Установим частоту равной 8 МГц. Замкнем кольцо ФАПЧ. Изменяя опорную частоту с шагом ± 100 кГц, заполним таблицу 1. В таблицу будем вносить только значения, соответствующие режиму синхронизма.

$f_{\text{оп}}$,	6.8	6.9	7	7.1	7.2	7.3	7.4	7.5	7.6
МΓц	min								
$f_{\Gamma m YH},$	6.4	6.5	6.59	6.7	6.8	6.87	6.96	7.06	7.15
МГц									
Е _{упр} , В	0.363	0.805	1.21	1.58	1.94	2.28	2.614	2.94	3.26

$f_{\text{оп}}$,	7.7	7.8	7.9	8	8.1
МΓц					max
<i>f</i> _{гун} , МГц	7.25	7.34	7.44	7.53	7.62
Е _{упр} , В	3.57	3.87	4.15	4.45	4.74

ИЗМЕРЕНИЕ ПОЛОСЫ ЗАХВАТА

Рассчитаем крутизну характеристики управления частотой:

$$K_{\Gamma \text{YH}} = \frac{f_{\text{on}} \cdot 16 - f_{\text{on}} \cdot 16}{E_{\text{ynp2}} - E_{\text{ynp1}}} = \frac{7.4 \cdot 16 - 7.3 \cdot 16}{2.614 - 2.28} = 4.79 \frac{\text{M}\Gamma \text{U}}{\text{B}}$$

Меняя положение переключателя в поле RC-ФИЛЬТР, ознакомимся с изменением формы осциллограммы $E_{\Phi \text{Д}}(t)$ при изменении постоянной времени фильтра.

Рисунок 2 – Осциллограмма $E_{\Phi Д}(t)$ при положении переключателя 4

Рисунок 3 – Осциллограмма $E_{\Phi Д}(t)$ при положении переключателя 6

ИЗМЕРЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ ПО ЧАСТОТЕ

Настроим ЧМ модуляцию. Форма модуляции – меандр. Частота модуляции 5 кГп.

Меняя положение переключателя в поле RC-ФИЛЬТР, ознакомимся с изменением формы переходных процессов $E_{\Phi Д}(t)$ при увеличении постоянной времени фильтра.

Рисунок 4 — Осциллограмма $E_{\Phi \text{Д}}(t)$ и $E_{\text{упр}}(t)$ при положении переключателя 1

Рисунок 5 — Осциллограмма $E_{\Phi \text{Д}}(t)$ и $E_{\text{упр}}(t)$ при положении переключателя

Рисунок 6 — Осциллограмма $E_{\Phi Д}(t)$ и $E_{ynp}(t)$ при положении переключателя

ИЗМЕРЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ ПО ФАЗЕ

Выключим выход внешнего генератора и выключим модуляцию. Настроим внешний генератор. Форма напряжения — меандр. Частота 5 кГц. Средний уровень 1,75 В. Размах от минимума до максимума 3,5 В. Выберем в качестве опорного колебание от внутреннего опорного генератора 8МГц.

Рисунок 7 — Осциллограмма $E_{\Phi \mbox{\scriptsize Π}}(t)$ и $E_{
m ynp}(t)$ при положении переключателя

Рисунок 8 — Осциллограмма $E_{\Phi \text{Д}}(t)$ и $E_{\text{упр}}(t)$ при положении переключателя 3

Рисунок 9 — Осциллограмма $E_{\Phi Д}(t)$ и $E_{ynp}(t)$

Обработка результатов измерений:

$$K_{\Gamma \text{УН}} = \frac{f_{\text{оп}} \cdot 16 - f_{\text{оп}} \cdot 16}{E_{\text{упр2}} - E_{\text{упр1}}} = \frac{7.4 \cdot 16 - 7.3 \cdot 16}{2.614 - 2.28} = 4.79 \frac{\text{М}\Gamma \text{Ц}}{\text{B}}$$

Рисунок 10 — Характеристика управления частотой ГУН $f_{\Gamma \text{УН}}(E_{\text{упр}})$ Значение $K_{\Phi \text{Д}}$ и $T_{\Phi \text{А}\Pi \text{Ч}}$ определим по следующим формулам:

$$K_{\Phi extstyle \Pi} = rac{ extstyle E_{\Pi}}{\pi} = rac{4.75}{\pi} = 1.51 ext{ B/рад}$$
 $T_{\Phi extstyle \Pi extstyle \Pi} = rac{ extstyle 16}{2 \cdot \pi \cdot 4.79 \cdot 10^6 \cdot 1.51} = 0.352 ext{ мкс}$

Пункт №4. Определим величину γ для конфигураций кольца ФАПЧ, использованных в разделе «ИЗМЕРЕНИЕ ПОЛОСЫ ЗАХВАТА», и сравним с теоретическими значениями из графика зависимости нормированной полосы захвата γ от нормированной постоянной времени ФНЧ τ . Результат представим в виде таблицы

	-		
i	$R_{1,}$ Ом	$C_{i,\Pi}\Phi$	$ au_{ m \phi \scriptscriptstyle HY,}$ МКС
4	300	2200	0.66
6	300	6800	2.04

Рисунок 11 — графический расчёт ${\rm E}_{\Phi {\Brown}}(t)$ при положении переключателя 4; $t=t/10^3$ мс — время на графике.

Рисунок 12 – графический расчёт ${\rm E}_{\Phi {\rm Д}}(t)$ при положении переключателя 6

$$t = t/10^3$$
м $c - время на графике$

определим значения полосы захвата и полосы синхронизма для положений переключателей 4 и 6 соответственно:

$$\gamma = \frac{\Pi_{\text{захвата}}}{\Pi_{\text{синхронизма}}} = \frac{0.24}{1} = 0.24$$

$$\gamma = \frac{\Pi_{\text{3ахвата}}}{\Pi_{\text{синхронизма}}} = \frac{0.19}{1} = 0.19$$

Для определения теоретического значения γ по графику зависимости нормированной полосы захвата γ от нормированной постоянной времени ФНЧ τ , найдём значение τ по следующей формуле для положений 4 и 6 соответственно:

$$\tau_4 = \frac{\tau_{4\phi \text{HY}}}{T_{\phi \text{anY}}} = \frac{0.66 \cdot 10^{-6}}{0.352 \cdot 10^{-6}} = 1.875$$

$$\tau_6 = \frac{\tau_{6\phi^{\text{HY}}}}{T_{\phi^{\text{anY}}}} = \frac{2.04 \cdot 10^{-6}}{0.352 \cdot 10^{-6}} = 5.795$$

i	Teop. γ	Расчёт ү
4	0.5	0.24
6	0.3	0.19

Вывод: Различия между экспериментальными данными и результатами моделирования могут быть объяснены несколькими факторами. Во-первых, начальные условия, заданные для моделирования, отличались от реальных условий эксперимента. Во-вторых, при построении временных зависимостей переходных процессов на основе дифференциальных уравнений использовалась математическая модель, которая, несмотря на свою точность, не может полностью учесть все нюансы реального физического процесса, наблюдаемого в лабораторных условиях. Кроме того, при обработке экспериментальных данных был учтен делитель частоты в кольце ФАПЧ, равный 16, что также могло повлиять на расхождения.