

Introdução ao R 5. Análise bivariada 1/21

Fúlvio Nedel

Introducã

Variável dependente numérica

numérica Variável independente categórica

dependente categórica

Introdução ao uso do

em Ciências da Saúde

5 - Análise de dados bivariada

Fúlvio Borges Nedel

Departamento de Saúde Pública – SPB Centro de Ciências da Saúde – CCS Universidade Federal de Santa Catarina – UFSC

Grups de Recerca d'Amèrica i Àfrica Llatines – GRAAL http://graal.uab.cat

19 de dezembro de 2017

Roteiro

Introdução ao R 5. Análise bivariada 2/21

Fúlvio Nedel SPB/UFSC

Introduç

Variável dependente numérica Variável

numérica Variável independente é categórica

Variável dependente categórica 1 Introdução

- 2 Variável dependente é numérica
 - Variável independente é numérica
 - Variável independente é categórica

3 Variável dependente é categórica

Introdução ao R 5. Análise bivariada 3/21

Fúlvio Nedel SPB/UFSC

Introdução

Variável dependente é numérica Variável independente é numérica Variável independente é categórica Variável dependente é categórica

■ A análise continua com uma descrição do comportamento da variável dependente de acordo com as variáveis independentes

Crie uma nova linha comentada em seu arquivo de sintaxe. Algo como:

```
### Análise bivariada
```

■ Inicie com uma sessão vazia, carregue o arquivo de dados e o pacote epiDisplay, e "attache" o banco cursoR2

```
rm(list=ls())
load('cursoR.RData')
ls()
[1] "cursoR" "cursoR2" "tabua"
library(epiDisplay)
attach(cursoR2)
```

Relembrando. . .

Introdução ao R 5. Análise bivariada 4/21

Fúlvio Nedel SPB/UFSC

Introdução

Variável
dependente é
numérica
Variável
independente é
numérica
Variável
independente é
categórica
Variável

Objetivos

Variável dependente

- Descrever o Índice de Massa Corporal (IMC) e analisar fatores associados à sua média.
- Descrever a frequência de categorias do estado nutricional e analisar fatores possivelmente associados à obesidade.

Variáveis independentes

- 1 sexo
- 2 idade
- 3 faixa etária
- 4 condição socioeconômica
- 5 participação em grupos de promoção da saúde

Variável dependente é numérica

Introdução ao R 5. Análise bivariada 5/21

Fúlvio Nedel SPB/UFSC

Introduç

Variável

dependente é numérica

numérica Variável independente é categórica

Variável dependente é categórica 1 Introdução

- 2 Variável dependente é numérica
 - Variável independente é numérica
 - Variável independente é categórica

3 Variável dependente é categórica

Var. numérica \times var. numérica $IMC \sim idade$

Introdução ao R 5. Análise bivariada

Fúlvio Nedel

Variável independente é numérica

```
■ regressão linear simples (se normal) ?cor.test
```

■ correlação

```
plot(idade, imc)
# plot(imc ~ idade)
abline(lm(imc ~ idade), col = 2)
abline(v = mean(idade).
      h = mean(imc, na.rm = T),
       col = c(3,4), lwd = 2)
```


?1m

```
cor.test(idade, imc, method = 'kendall')
Kendall's rank correlation tau
data: idade and imc
z = 0.71744, p-value = 0.4731
alternative hypothesis: true tau is not equal to 0
sample estimates:
       t a11
0.02813146
summarv(lm(imc ~ idade))
Call:
lm(formula = imc ~ idade)
Residuals:
     Min
               1Q Median
                                         Max
-10.4715 -3.6304 -0.5756 2.8711 18.0931
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 26,14111
                        1.46285 17.870
                                          <2e-16 ***
idade
             0.02536
                        0.02238
                                           0.258
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 4,969 on 297 degrees of freedom
```

Multiple R-squared: 0.004304, Adjusted R-squared: 0.000951 F-statistic: 1.284 on 1 and 297 DF, p-value: 0.2581

(1 observation deleted due to missingness)

Var. numérica × var. numérica

Introdução ao R 5. Análise bivariada 7/21

Fúlvio Nedel SPB/UFSC

Introduc

dependente é numérica

Variável independente é numérica

independente é categórica

Variável

Teste de Shapiro-Wilk para normalidade H_0 : a variável tem distribuição normal

hist(imc)

shapiro.test(imc)

Shapiro-Wilk normality test

data: imc

W = 0.97272, p-value = 1.864e-05

shapiro.qqnorm(imc)

hist(idade)

shapiro.test(idade)

Shapiro-Wilk normality test

data: idade

W = 0.98656, p-value = 0.006751

shapiro.qqnorm(idade)

Var. numérica × var. numérica MC ∼ idade

Introdução ao R 5. Análise bivariada 8/21

Fúlvio Nedel SPB/UFSC

Introduç

dependente é numérica

Variável independente é numérica

independente é categórica

Variável dependente é ■ correlação

~

■ regressão linear simples (se normal)

?cor.test

?lm

cor.test(idade, imc, method = 'kendall')

Kendall's rank correlation tau

data: idade and imc

z = 0.71744, p-value = 0.4731

alternative hypothesis: true tau is not equal to 0 sample estimates:

tau

0.02813146

Var. numérica \times var. numérica $IMC \sim idade$


```
Introdução ao R
   5. Análise
   hivariada
```

Fúlvio Nedel

Variável independente é numérica

```
■ correlação
■ regressão linear simples (se normal)
```

summary(lm(imc ~ idade)) Call:

lm(formula = imc ~ idade)

Residuals:

Min 1Q Median 3Q

-10.4715 -3.6304 -0.5756 2.8711 18.0931

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 26.14111 1.46285 17.870 <2e-16 ***

idade

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 4.969 on 297 degrees of freedom

(1 observation deleted due to missingness) Multiple R-squared: 0.004304, Adjusted R-squared: 0.000951

0.02536 0.02238 1.133 0.258

F-statistic: 1.284 on 1 and 297 DF, p-value: 0.2581

?cor.test

?1m

Max

5. Análise

Var. numérica \times var. categórica dicotômica

 $IMC \sim sexo$

Introdução ao R

bivariada 10/21 Fúlvio Nedel

Variável independente é

categórica

A função tapply

library(e1071) (media = tapply(imc, sexo, mean, na.rm = T))

Feminino Masculino 27.50779 28.26534

(dp = tapply(imc, sexo, sd, na.rm = T))

Feminino Masculino 4.650701 5.529724

(assim = tapply(imc, sexo, skewness, na.rm = T)) Feminino Masculino

0.5069652 0.6976254

(curto = tapply(imc, sexo, kurtosis, na.rm = T)) Feminino Masculino

0.06725562 0.06663441 (mediana = tapply(imc, sexo, median, na.rm = T))

Feminino Masculino 6.148597 7.580262

Feminino Masculino

26.95312 27.44598 (p2575 = cbind(P25 = tapply(imc, sexo, quantile, probs = .25, na.rm = T),

P75 = tapply(imc, sexo, quantile, probs = .75, na.rm = T))) P25 P75

Feminino 24.21875 30.36735 Masculino 23.96126 31.54152 (iiq = tapply(imc, sexo, IQR, na.rm = T))

Análise por estratos

■ A função tapply permite a execução de uma função sobre uma variável em grupos separados de outra.

■ Veja a família apply: ?apply, ?tapply, ?sapply, ?mapply

Introdução ao R 5. Análise

bivariada

Var. numérica × var. categórica dicotômica

 $\mathsf{IMC} \sim \mathsf{sexo}$

par(mfrow = c(1,3))
hist(imc[sexo == 'Masculino'], main = 'Homens')
hist(imc[sexo == 'Feminino '], main = 'Mulheres')
plot(imc ~ sexo, ylab = 'imc')

Fúlvio Nedel SPB/UFSC

Introdução

Variavel dependente é numérica Variável independente é

Variável independente é categórica

Variável dependen

Mulheres

	media	dp	assimetria	curtose	mediana	P25	P75	iiq
Feminino	27,51	4,65	0,51	0,07	26,95	24,22	30,37	6,15
Masculino	28,27	5,53	0,70	0,07	27,45	23,96	31,54	7,58

Var. numérica \times var. categórica dicotômica

 $\mathsf{IMC} \sim \mathsf{sexo}$

G R A A

Introdução ao R 5. Análise bivariada 12/21

Fúlvio Nedel SPB/UFSC

Introduç

dependente é numérica Variável independente

Variável independente é categórica

Variável dependente é categórica Comparação de médias: testes paramétricos

■ Comparação de medianas: testes não paramétricos

```
t.test(imc ~ sexo)
```

Welch Two Sample t-test

data: imc by sexo

t = -1.1837, df = 176.34, p-value = 0.2381

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

-2.0205603 0.5054524

sample estimates:

mean in group Feminino mean in group Masculino 27.50779 28.26534

kruskal.test(imc, sexo)

Kruskal-Wallis rank sum test

data: imc and sexo

Kruskal-Wallis chi-squared = 0.48678, df = 1, p-value = 0.4854

Var. numérica \times var. categórica politômica

IMC \sim condição socioeconômica

Introdução ao R 5. Análise hivariada

Fúlvio Nedel

Variável independente é categórica

ANOVA

bartlett.test(imc ~ abep2)

Bartlett test of homogeneity of variances

data: imc by abep2

Bartlett's K-squared = 1.3948, df = 2, p-value = 0.4979

anova(aov(imc ~ abep2))

Analysis of Variance Table

Response: imc

Df Sum Sq Mean Sq F value Pr(>F)

0.4 0.1894 0.0074 0.9926 abep2 Residuals 278 7089.2 25.5008

pairwise.wilcox.test(imc, abep2)

Pairwise comparisons using Wilcoxon rank sum test

data: imc and abep2

A/B C D/E 1

P value adjustment method: holm

?pairwise.t.test

plot(imc ~ abep2)

Variável dependente é categórica

Introdução ao R 5. Análise bivariada 14/21

Fúlvio Nedel SPB/UFSC

Introduçã

numérica
Variável
independente é
numérica
Variável
independente é

Variável dependente é categórica 1 Introdução

- 2 Variável dependente é numérica
 - Variável independente é numérica
 - Variável independente é categórica

3 Variável dependente é categórica

Var. categórica \times var. numérica $_{\text{Obesidade}} \sim _{\text{idade}}$

Introdução ao R 5. Análise bivariada 15/21

Fúlvio Nedel SPB/UFSC

Introduçã

dependente é numérica
Variável independente numérica
Variável independente categórica

Variável dependente é categórica

```
Já vimos como descrever a associação entre uma variável numérica e uma categórica

round(tapplu(idade, obeso, mean, na rm = T) 2) plot(obeso, idade,
```

```
round(tapply(idade, obeso, mean, na.rm = T), 2)
    sim    não
64.02 64.11
round(tapply(idade, obeso, sd, na.rm = T), 2)
    sim    não
12.97 12.85
round(tapply(idade, obeso, median, na.rm = T), 2)
    sim    não
65.5 64.0
round(tapply(idade, obeso, IQR, na.rm = T), 2)
    sim    não
18.25 18.00
```

vlab = 'idade')

kruskal.test(idade, obeso)

Kruskal-Wallis rank sum test

data: idade and obeso

Kruskal-Wallis chi-squared = 0.0104, df = 1, p-value = 0.9188

Var. categórica \times var. categórica Obesidade \sim sexo

299

G R A A L

Introdução ao R 5. Análise bivariada 16/21

Fúlvio Nedel SPB/UFSC

Introduçã

Variável dependente é numérica Variável independente numérica

Variável dependente é categórica

library(gmodels)		
CrossTable(sexo, obeso,		
prop.chisq = F,		
chisq = T, fisher	=	Τ

Cell Contents

N	N	/	Col	N Total Total Total

Total Observations in Table:

	obeso		
sexo	sim	não	Row Total
Feminino	54 0.274 0.643 0.181	143 0.726 0.665 0.478	197 0.659
Masculino	30 0.294 0.357 0.100	72 0.706 0.335 0.241	102 0.341
Column Total	84 0.281	215	299

Var. categórica \times var. categórica Obesidade \sim sexo

299

Introdução ao R 5. Análise bivariada 16/21

Fúlvio Nedel

Variável dependente é categórica

library (gmodels)		
<pre>CrossTable(sexo, obeso,</pre>		
<pre>prop.chisq = F,</pre>		
chisq = T, fisher	=	Ί

Cell Contents

	obeso		
sexo	sim	não	Row Total
Feminino	54 0.274 0.643 0.181	143 0.726 0.665 0.478	197 0.659
Masculino	30 0.294 0.357	72 0.706 0.335	102 0.341

0.241

0.719

215

0.100

0.281

Column Total

Total Observations in Table: 299

N / Row Total N / Col Total N / Table Total

Statistics for All Table Factors

Pearson's Chi-squared test

 $Chi^2 = 0.1331494$ d.f. = 1 p = 0.7151887

Pearson's Chi-squared test with Yates' continuity correction

 $Chi^2 = 0.05253029$ d.f. = 1 p = 0.8187175

5. Anál bivaria 16/2: Fúlvio N library(gmodels)

0.6932558

Introdução ao R CrossTable(sexo, obeso,

Var. categórica \times var. categórica Obesidade \sim sexo

G R A A

ilise ida	<pre>prop.chisq = F, chisq = T, fisher = T)</pre>	sexo	sim	não	Row Total			
	chisq - 1, lisher - 1)	Feminino	54	143	197	ĺ		
ledel FSC	Cell Contents		0.274 0.643 0.181	0.726 0.665 0.478	0.659			
	N / Row Total N / Rol Total N / Col Total N / Table Total	Masculino 	30 0.294 0.357 0.100	72 0.706 0.335 0.241	102 0.341			
		Column Total	84 0.281	215 0.719	299			
	Total Observations in Table: 29	99						
e é	Statistics for All Table Factors							
	Fisher's Exact Test for Count Data							

obeso

	Total Observations in Table: 299
Variável dependente é	Statistics for All Table Factors
categórica	Fisher's Exact Test for Count Data
	Sample estimate odds ratio: 0.9065962
	Alternative hypothesis: true odds ratio is not equal to 1 p = 0.786248 95% confidence interval: 0.5186835 1.601355
	Alternative hypothesis: true odds ratio is less than 1 p = 0.407084 95% confidence interval: 0 1.467891

Alternative hypothesis: true odds ratio is greater than 1

95% confidence interval: 0.5637979 Inf

Var. categórica \times var. categórica Obesidade $\sim sexo$

Introdução ao R 5. Análise bivariada

Fúlvio Nedel

Variável dependente é categórica

tabpct(sexo, obeso)

obeso

Row percent

sexo	sim	não	Total
Feminino	54	143	197
	(27.4)	(72.6)	(100)
Masculino	30	72	102
	(29.4)	(70.6)	(100)

Column percent obeso

sexo	sim	%	não	%
Feminino	54	(64.3)	143	(66.5)
Masculino	30	(35.7)	72	(33.5)
Total	84	(100)	215	(100)

Distribution of obeso by sexo

$$RP_{m/f} = \frac{29, 4}{27, 4} = 1,073$$

 $OR_{m/f} = \frac{29, 4/70, 6}{27, 4/72, 6} = \frac{0,416}{0,377} = 1,103$

?chisq.test(sexo, obeso)

Var. categórica × var. categórica Obesidade ~ sexo

0.0835

```
Introdução ao R
5. Análise
bivariada
18/21
```

Fúlvio Nedel SPB/UFSC

Variável
dependente é
numérica
Variável
independente
numérica

Variável dependente é categórica

```
Epi::twoby2(sexo, obeso)
2 by 2 table analysis:
Outcome : sim
Comparing: Feminino vs. Masculino
         sim não P(sim) 95% conf. interval
Feminino 54 143
                0.2741 0.2164 0.3406
Masculino 30 72 0.2941 0.2139 0.3895
                                 95% conf. interval
           Relative Risk: 0.9320
                                   0.6393
                                           1.3586
        Sample Odds Ratio: 0.9063
                                   0.5342
                                           1.5376
Conditional MLE Odds Ratio: 0.9066
                                   0.5187
                                           1.6014
```

Probability difference: -0.0200 -0.1307

Exact P-value: 0.7862
Asymptotic P-value: 0.7152

Var. categórica \times var. categórica Obesidade $\sim sexo$


```
Introdução ao R
   5. Análise
   hivariada
    19/21
```

Fúlvio Nedel

Variável dependente é categórica

```
epiR::epi.2by2(table(sexo,obeso))
```

	Outcome +	Outcome -	Total	<pre>Inc risk *</pre>
Exposed +	54	143	197	27.4
Exposed -	30	72	102	29.4
Total	84	215	299	28.1
	Odds			
Exposed +	0.378			
Exposed -	0.417			
Total	0.391			

Point estimates and 95 % CIs:

```
0.93 (0.64, 1.36)
Inc risk ratio (W)
Odds ratio (W)
                                              0.91 (0.53, 1.54)
Attrib risk (W) *
                                              -2.00 (-12.82, 8.82)
Attrib risk in population (W) *
                                              -1.32 (-11.52, 8.89)
Attrib fraction in exposed (%)
                                              -7.30 (-56.41, 26.39)
Attrib fraction in population (%)
                                              -4.69 (-33.40, 17.84)
```

X2 test statistic: 0.133 p-value: 0.715

W: Wald confidence limits

* Cases per 100 population units

Var. categórica \times var. categórica Obesidade $\sim sexo$


```
Introdução ao R
   5. Análise
   hivariada
    20/21
```

Fúlvio Nedel

sexo

Sum

Variável dependente é categórica

Tabela 2 por 2 bolero(independente, dependente, dec=2, dnn)

barplot(table(sexo.obeso), beside = T. Var. dependente : obeso = sim

Var. independente: sexo = Feminino

Rcoisas::bolero(sexo, obeso)

obeso sim não Sum Feminino 54 143 197 Masculino 30 72 102

84 215 299

Proporções (%) obeso sim não Feminino 27.4 72.6

sexo Masculino 29.4 70.6

xlab = 'Obesidade'.

legend.text = levels(sexo), args.legend = list(x="topleft"))

IC95% (exato) : 0.60 1.36 Razão de Odds : 0.91 : IC95% (exato) : 0.52 1.60

Valor-p: Pearson, Yates: 0.819; Fisher: 0.786

Introdução ao R 5. Análise bivariada

Fúlvio Nedel

Descrição bivariada

- Descreva a relação entre o peso e a altura (estão no banco cursoR)
- Descreva a relação entre o IMC e a participação em grupos
- Descreva a relação entre o IMC e a condição socioeconômica em sete categorias (variável abepcls, em cursoR)
- Descreva a relação entre a obesidade e a participação em grupos de promoção à saúde
- Descreva a relação entre a obesidade e a condição socioeconômica