Prob. 3) Color coordinates: Using the results of Prob.2, find the coordinates of cx in terms of {c₁, c₂, c₃}

- First find c_{x23} as a function of c_2 and c_3 in terms of respective coordinates (xi,yi, i= 0, 1, 2, 3) or in terms of relative distances $d(c_i, c_i)$. Recall the line equation y = ax + b
- Then find the line equation connecting c_1 and c_{x23} ; You can then find the intersection of the lines (c_2 , c_3) and (c_1 , c_x) to find the location of c_{x23}

Prob. 8) **Understanding the color cube:** Do all three parts, even a. For part c, make a difference whether one end of edge contains W or B.

RGB

000	001	010	011	100	101	110	111
black	blue	green	cyan	red	magenta	yellow	white

CMY

000	001	010	011	100	101	110	111
white	yellow	magenta	red	cyan	green	blue	black

6.15 Solid color squares: When you plotting the HIS values of the squares, scale your 8 quanta levels to the range (0, 255).

6.16 Display of HIS components: For the saturation display, take into consideration that these are spectral colors.