CMP 334 Practice Exam 1 (Spring 2019)

- 1 a) Convert 0x9D7A to binary.
 - b) Convert 0b11010011011011100111 to hexadecimal.
 - c) Convert **725**₁₀ to binary.
 - d) Convert 0b1000111001 to decimal.
 - e) Convert 1789₁₀ to hexadecimal.
 - f) Convert 0x25AE to decimal.
- 2 a) Give the truth table (with columns for each sub-formula) for: $(\overline{ac} + a\overline{bc}) \cdot (ab + b\overline{c})$.
 - b) Draw a circuit for: $(\overline{ac} + a\overline{bc}) \cdot (ab + b\overline{c})$.
- 3) Given: X = 0xD7 and Y = 0x4B,
 - a) Convert X and Y to 8-bit binary numbers.
 - b) Compute the 8-bit sum X + Y of X and Y.
 - c) Compute $\ddot{\mathbf{Y}}$ the 8-bit two's complement of Y.
 - d) Compute the 8-bit difference X-Y of X and Y. (Use two's complement addition.)
 - e) Convert X + Y, Y, and, X Y to hexadecimal.
 - f) What are the values of the condition flags upon computing X + Y?
 - g) What are the values of the condition flags upon computing X-Y?
 - h) T or F The unsigned 8-bit sum X + Y is honest.
 - i) T or F The signed 8-bit sum X+Y is honest.
 - j) T or F The unsigned 8-bit difference X-Y is honest.
 - k) T or F The signed 8-bit difference X-Y is honest.
- 4) Use the recipe for designing combinational circuits to design a circuit that determines if a 3 bit unsigned integer is prime. (Remember: an integer N is prime if, and only if, exactly 2 distinct positive numbers, 1 and N itself, divide N with a remainder of 0.)
 - a) Draw a black box for the circuit that specifies its inputs and output.
 - b) Formalize the informal semantics of this circuit with a truth table.
 - c) Construct the boolean formula corresponding to the truth table.
 - d) Draw the circuit corresponding to the boolean formula.

- 5 a) What does a multiplexer do?
 - b) Draw the circuit for a 2-way multiplexer.
 - c) Build (draw) a **4-way** multiplexer using 1-bit multiplexers.
- 6) For each row in the following table, determine whether the assertion would hold if the indicated operation produced the indicated condition flag values.

operation		flags	assertion	T / F
A + B	unsigned	ZNCV	result is honest	
A - B	signed	ZNCV	result is honest	
A - B	unsigned	ZNCV	result is honest	
A + B	signed	ZNCV	result is honest	
A - B	unsigned	ZNCV	A > B	
A - B	signed	ZNCV	A < B	
A - B	unsigned	ZNCV	A = B	
A - B	signed	ZNCV	A > B	
A - B	unsigned	ZNCV	A < B	
A - B	signed	ZNCV	A ≥ B	
A - B	unsigned	ZNCV	A ≤ B	
A - B	signed	ZNCV	A = B	
A - B	unsigned	ZNCV	A ≥ B	
A - B	signed	ZNCV	A ≤ B	