Jadr Health Insights: Capstone Project

Introductions

Justin Bartell

Bachelor's degree in Chemical-Biomedical Engineering (May 2019)

Darrell Gerber

Bachelor's and Master's degrees in Aerospace Engineering (June 1993)

Abbey Guilliat

Bachelor's degree in Astronomy & Astrophysics (May 2021)

Regina Huber

Bachelor's degree in Mathematical Sciences (May 2020)

Project Purpose

Provide local asthma risk assessments for health professionals and individuals with asthma via a Power BI dashboard

Initial Questions

- 1. What are the relationships between:
 - Environmental air quality factors
 - Local industry activity
 - Asthma-induced emergency department visits
- 2. What machine learning model can **predict asthma incidence** rates for a given county based on local air quality metrics?

Research Process

Datasets Chosen

California Department of Public Health's Asthma Emergency Department Visit Rates US Environmental
Protection Agency's
National Air Quality
Data API

US Census Survey of Business Owners

2015-2019 Annual Summary 2015-2019 and 2021 Annual Summary 2012 Annual Summary

Industry Dataset

Data Platform

SQL Entity Relationship Diagram

Exploratory Analysis: Asthma Rates and Air Quality

Exploratory Analysis: Asthma Rates and Census Industries

Exploratory Analysis: Air Quality and Census Industries

Manufacturing Industry Revenue vs. Average PM2.5 Measure for US Counties

Expectation

Reality

California

Utah

Machine Learning

Models Developed

Linear Regression

Lasso

Random Forest

AdaBoost

Support Vector Regression

Voting Regression

Final Machine Learning Model

Predictors - EPA air quality measurements averaged annually

California counties 2015 to 2019

(mean, 1st max, 2nd max, 99 percentile, standard deviation)

- Ozone
- Very small particulate matter (PM2.5)
- SO₂

Outcome - Age-adjust asthma emergency department visits averaged annually California counties 2015 to 2019

Imputing- Drop missing values

Model - Voting Regression using AdaBoost and Support Vector Regression

Model Accuracy Results

Testing

Model Predictions

Power BI Report

Highlights and Predictions

US Average Annual Prediction of Age-Adjusted Asthma Emergency Department Visits

63.473

% Age-Adjusted * 10,000

Relative Risk Assessment:

High

	Top Industries by County (2012)	
Number of Firms	Industry	
9208	Other services (except public administration)	
7915	Health care and social assistance	
6546	Professional, scientific, and technical services	
6315	Retail trade	
5339	Administrative and support and waste management and remediation services	
4924	Real estate and rental and leasing	
4609	Construction	
4177	Transportation and warehousing	
2045	Finance and insurance	
1905	Accommodation and food services	
1745	Arts, entertainment, and recreation	
1571	Wholesale trade	
1077	Manufacturing	
	ex a x x x	

	Air Quality Annual Averages in 202									
Year	Lead	NO2	Ozone	₽M10	PM25	SO2				
2021		1,583.34	4.72		1,628.03	29.44				
Total		1,583.34	4.72		1,628.03	29.44				

Asthma Rates and Air Quality in California

On this page, "asthma rate" refers to the age-adjusted number of asthma-related emergency department visits per 10,000 people.

Total Revenue for All Manufacturing Firms:

118.4M

(USD\$)

Filter by State: Alabama

- Arizona
- California
 Colorado
- Connecticut
- Florida
- Georgia
- Idaho
- Illinois
- Indiana
- lowa
- Kentucky
- Louisiana
- Massachusetts
- Michigan
- Minnesota
- ☐ Nebraska ☐ New Jersev
- New York

Impact of Manufacturing on Air Quality

County

7.80Average PM25 (μg/m³)

0.042Average Ozone (ppm)

\leftarrow

Select Industry: Construction Finance and insurance Health care and social assistance Information Manufacturing Professional, scientific, and technical services Retail trade Total for all sectors Transportation and warehousing Wholesale trade

Machine Learning Model

For our machine learning model, we have developed an ensemble voting regressor which incorporates both the Adaboost and Support Vector Regression algorithms. Our model fits each of these algorithms to the data and averages the individual predictions to make a final prediction. For this model, we have focused on air quality measures of Ozone, PM25, and SO2.

Final Thoughts

Recommendations

Daily Asthma and AQ Data

More Asthma
Datasets

Additional Predictor Variables

Conclusion

- Extracted and loaded data to a SQL database in order to explore relationships between
 1) air quality 2) industry activity 3) asthma ED visits
- Developed an ensemble voting regressor, incorporating both Adaboost and Support
 Vector Regression machine learning algorithms
- Designed Power BI dashboard to provide countywide asthma risk assessments based on local air quality measurements
- Access to more data resources would improve the accuracy and significance of our ML results

Any Questions?

Learn more about our project @ https://github.com/jlb14n/Capstone !

References

- California Department of Public Health. (2019). Asthma ED Visit Rates by County (November 10, 2021). Retrieved from https://data.chhs.ca.gov/dataset/asthma-emergency-department-visit-rates. Accessed February 3, 2022.
- 2. US Environmental Protection Agency. Air Quality System Data Mart [internet database] available via https://www.epa.gov/outdoor-air-quality-data. Accessed February 10, 2022.
- 3. SB1200CSA05 Statistics for All US Firms by Industry, Gender, and Receipts Size of Firm for the US and States: 2012. (2015, December 15). Retrieved February 4, 2022, from https://data.census.gov/cedsci/table?q=SB1200CSA05&tid=SB0CS2012.SB1200CSA05.