Definition:	When a and b are integers	and a is	nonzero, a	divides	b means there is	s an integer	c such
that $b = ac$.	Symbolically, $F((a,b)) =$		and i	s a predic	ate over the dom	ain	Other
(synonymous	s) ways to say that $F((a,b))$) is true:					

a is a **factor** of b a is a **divisor** of b b is a **multiple** of a a|b

When a is a positive integer and b is any integer, a|b exactly when $b \mod a = 0$ When a is a positive integer and b is any integer, a|b exactly $b = a \cdot (b \operatorname{\mathbf{div}} a)$