Лекция 5 Оценки качества в задачах регрессии и классификации

Габдуллин Р.А., Макаренко В.А.

МГУ им. М.В. Ломоносова

16 февраля 2021

Обозначения

- ℓ размер обучающей выборки.
- y_i ответ на i-м объекте.
- \hat{y}_i предсказание на i-м объекте.
- $Y = \{y_1, y_2, \dots, y_\ell\}.$
- $\hat{Y} = \{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_\ell\}.$

Метрики в задаче классификации

Рис.: Источник: javatpoint.com

Confusion matrix

True Positive:

$$\mathsf{TP}(Y, \hat{Y}) = \sum_{i=1}^{\ell} [y_i = 1, \hat{y}_i = 1].$$

False Positive:

$$\mathsf{FP}(Y, \hat{Y}) = \sum_{i=1}^{\ell} [y_i = 0, \hat{y}_i = 1].$$

• False Negative:

$$FN(Y, \hat{Y}) = \sum_{i=1}^{\ell} [y_i = 1, \hat{y}_i = 0].$$

• True Negative:

$$\mathsf{TN}(Y, \hat{Y}) = \sum_{i=1}^{\ell} [y_i = 0, \hat{y}_i = 0].$$

Confusion matrix

Рис.: Источник: towardsdatascience.com

Доля верных ответов (accuracy)

Доля верных ответов (ассигасу):

$$\mathsf{Accuracy}(Y, \hat{Y}) = \frac{1}{\ell} \cdot \sum_{i=1}^{\ell} [y_i = \hat{y}_i] = \frac{\mathsf{TP} + \mathsf{TN}}{\mathsf{TP} + \mathsf{FP} + \mathsf{FN} + \mathsf{TN}}.$$

- Метрика применима и для множественной классификации.
- Метрика плохо интерпретируема в случае дисбаланса классов.

Чувствительность и специфичность

Чувствительность (True Positive Rate):

$$TPR(Y, \hat{Y}) = \frac{TP}{TP + FN}.$$

Специфичность (True Negative Rate):

$$\mathsf{TNR}(Y, \hat{Y}) = \frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}}.$$

Точность (precision) и полнота (recall)

Точность классификации (положительного класса):

$$\mathsf{Precision}(Y, \hat{Y}) = \frac{TP}{TP + FP}.$$

Полнота классификации (положительного класса):

$$\mathsf{Recall}(Y, \hat{Y}) = \frac{TP}{TP + FN}.$$

- Неинформативны по отдельности (как максимизировать Precision? Recall?)
- Легко обобщается для большего числа классов.
- Не возникает проблем с дисбалансом классов.
- Часто фиксируют желаемую точность и максимизируют полноту.

Точность (precision) и полнота (recall)

F_1 -мера (F_1 -score)

Среднее гармоническое Precision и Recall:

$$F_1(Y, \hat{Y}) = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}.$$

ROC-кривая

Рис.: Источник: medium.com

ROC-кривая

Пусть в выборке m объектов положительного класса и n объектов отрицательного класса. Построение ROC-кривой:

- Разбиваем единичный квадрат вертикальными и горизонтальными прямыми на *m* вертикальных и *n* горизонтальных блоков.
- Упорядочиваем объекты по убыванию «уверенности» позитивного класса.
- Начинаем рисовать кривую с точки (0,0).
- Если встречаем объект позитивного класса, то делаем шаг вверх.
- Если встречаем объект негативного класса, то делаем шаг вправо.
- Если несколько объектов имеют одну и ту же «уверенность», то делаем а шагов вверх и b шагов вправо, где а и b соответственно количество объектов положительного и отрицательного классов.
- В итоге оказываемся в точке (1, 1).
 Габдуллин Р.А., Макаренко В.А.

ROC-кривая

id	оценка	класс
4	0.6	1
1	0.5	0
6	0.3	1
3	0.2	0
5	0.2	1
2	0.1	0
7	0.0	0

Рис.: Источник: dyakonov.org

• Как будет выглядеть ROC-кривая?

ROC AUC

ROC AUC – площадь под ROC-кривой.

- Количество блоков: mn.
- Количество пар <объект положительного класса, объект отрицательного класса>: mn.
- Если блок под ROC-кривой, то объект положительного класса оказался выше (по уверенности) объекта отрицательного класса.
- Если блок над ROC-кривой, то объект отрицательного класса оказался выше (по уверенности) объекта положительного класса.
- ROC AUC доля пар <объект положительного класса, объект отрицательного класса>, которые алгоритм упорядочил правильно.

Метрики в задаче регрессии

Рис.: Источник: datascience.stackexchange.com

Среднеквадратическая ошибка (MSE)

Среднеквадратическая ошибка (mean square error):

$$MSE(Y, \hat{Y}) = \frac{1}{\ell} \cdot \sum_{i=1}^{\ell} (y_i - \hat{y}_i)^2.$$

Корень из среднеквадратической ошибки (root mean square error):

$$\mathsf{RMSE}(Y, \hat{Y}) = \sqrt{\mathsf{MSE}(Y, \hat{Y})}.$$

- Возникает в методе наименьших квадратов (ошибки нормально распределены)
- Метрика неустойчива к выбросам.

Средняя абсолютная ошибка (МАЕ)

Средняя абсолютная ошибка (mean absolute error):

$$\mathsf{MAE}(Y, \hat{Y}) = rac{1}{\ell} \cdot \sum_{i=1}^{\ell} |y_i - \hat{y}_i|$$
 .

- Возникает в методе наименьших модулей (ошибки имеют распределение Лапласа).
- Метрика устойчива к выбросам.

Средняя абсолютная процентная ошибка (МАРЕ)

Средняя абсолютная процентная ошибка (mean absolute percent error):

$$\mathsf{MAPE}(Y, \hat{Y}) = \frac{1}{\ell} \cdot \sum_{i=1}^{\ell} \left| \frac{y_i - \hat{y}_i}{y_i} \right|.$$

Квантильная метрика

Эмпирический риск в задаче квантильной регрессии:

$$\frac{1}{\ell}\sum_{i=1}^{\ell}\rho_{\tau}(y_i-\hat{y}_i),$$

где

$$\rho_{\tau}(u) = \begin{cases} \tau u, & u \geqslant 0, \\ -(1-\tau)u, & u < 0. \end{cases}$$

• По-разному штрафуем за «недопрогноз» и «перепрогноз».

Коэффициент детерминации (R^2)

Коэффициент R^2 :

$$\mathsf{R}^2(Y,\,\hat{Y}) = 1 - \frac{\sum_{i=1}^\ell (y_i - \hat{y}_i)^2}{\sum_{i=1}^\ell (y_i - \overline{y})^2},$$

где
$$\overline{y} = \frac{1}{\ell} \cdot \sum_{i=1}^{\ell} y_i$$
.

• Показывает долю объясненной дисперсии.

Резюме лекции

- Метрики в задаче классификации
 - Confusion matrix
 - Accuracy
 - Precision, Recall
 - F-мера
 - ROC-кривая
 - ROC AUC
- Метрики в задаче регрессии
 - MSE
 - MAE
 - MAPE
 - Квантильная метрика
 - R²