## Inverse function



Given a function f, the *inverse* of f is another function g with the property that

$$g(f(x)) = x$$

for every x in the domain of f. If it is also true that

$$f(g(x)) = x$$

for every x in the domain of g then the functions form a pair of inverses.

The inverse function for f is denoted by  $f^{-1}$ . The function f has to be a bijection to possess an inverse. The domain of  $f^{-1}$  will be the range of f and vice versa.

For example:

- If f(x) = x + a,  $x \in \mathbb{R}$ , then  $f^{-1}(x) = x a$ ,  $x \in \mathbb{R}$ .
- The function  $f(x) = \cos x$ ,  $x \in \mathbb{R}$  has no inverse, as it is not bijective. However, the function  $f(x) = \cos x$ ,  $0 \le x \le \pi$  has inverse  $f^{-1}(x) = \cos^{-1} x$ ,  $-1 \le x \le 1$ .
- If  $f(x) = e^x$ ,  $x \in \mathbb{R}$ , then  $f^{-1}(x) = \ln x$ ,  $x \in \mathbb{R}$ .



Note that the graph of  $y = f^{-1}(x)$  is a reflection of y = f(x) in the line y = x.