```
In [1]: # import libaries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [71]: x=pd.read\_csv(r"C:\Users\user\Downloads\4\_drug200 - 4\_drug200.csv")

## Out[71]:

|     | Age | Sex | ВР     | Cholesterol | Na_to_K | Drug  |
|-----|-----|-----|--------|-------------|---------|-------|
| 0   | 23  | F   | HIGH   | HIGH        | 25.355  | drugY |
| 1   | 47  | М   | LOW    | HIGH        | 13.093  | drugC |
| 2   | 47  | М   | LOW    | HIGH        | 10.114  | drugC |
| 3   | 28  | F   | NORMAL | HIGH        | 7.798   | drugX |
| 4   | 61  | F   | LOW    | HIGH        | 18.043  | drugY |
|     |     |     |        |             |         |       |
| 195 | 56  | F   | LOW    | HIGH        | 11.567  | drugC |
| 196 | 16  | М   | LOW    | HIGH        | 12.006  | drugC |
| 197 | 52  | М   | NORMAL | HIGH        | 9.894   | drugX |
| 198 | 23  | М   | NORMAL | NORMAL      | 14.020  | drugX |
| 199 | 40  | F   | LOW    | NORMAL      | 11.349  | drugX |
|     |     |     |        |             |         |       |

200 rows × 6 columns

In [72]: x=x.head(100)

## Out[72]:

|    | Age | Sex | ВР     | Cholesterol | Na_to_K | Drug  |
|----|-----|-----|--------|-------------|---------|-------|
| 0  | 23  | F   | HIGH   | HIGH        | 25.355  | drugY |
| 1  | 47  | М   | LOW    | HIGH        | 13.093  | drugC |
| 2  | 47  | М   | LOW    | HIGH        | 10.114  | drugC |
| 3  | 28  | F   | NORMAL | HIGH        | 7.798   | drugX |
| 4  | 61  | F   | LOW    | HIGH        | 18.043  | drugY |
|    |     |     |        |             |         |       |
| 95 | 36  | М   | LOW    | NORMAL      | 11.424  | drugX |
| 96 | 58  | F   | LOW    | HIGH        | 38.247  | drugY |
| 97 | 56  | F   | HIGH   | HIGH        | 25.395  | drugY |
| 98 | 20  | М   | HIGH   | NORMAL      | 35.639  | drugY |
| 99 | 15  | F   | HIGH   | NORMAL      | 16.725  | drugY |

100 rows × 6 columns

```
In [73]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 100 entries, 0 to 99
          Data columns (total 6 columns):
                             Non-Null Count Dtype
           #
               Column
           0
                             100 non-null
                                              int64
               Age
           1
                                              object
               Sex
                             100 non-null
           2
               BP
                                              object
                             100 non-null
           3
               Cholesterol 100 non-null
                                              object
           4
               Na_to_K
                             100 non-null
                                              float64
           5
               Drug
                             100 non-null
                                              object
          dtypes: float64(1), int64(1), object(4)
          memory usage: 4.8+ KB
In [74]:
Out[74]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
In [75]: d=x[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']]
Out[75]:
                            BP Cholesterol Na_to_K
              Age
                  Sex
                                                    Drug
               23
                     F
                          HIGH
                                     HIGH
                                             25.355 drugY
           0
           1
               47
                           LOW
                                     HIGH
                                             13.093 drugC
                    Μ
           2
                           LOW
                                             10.114 drugC
               47
                                     HIGH
                    M
                                             7.798 drugX
           3
               28
                     F NORMAL
                                     HIGH
           4
               61
                     F
                           LOW
                                     HIGH
                                             18.043 drugY
           ...
                    ...
                           LOW
                                  NORMAL
           95
               36
                    Μ
                                             11.424 drugX
                     F
                           LOW
          96
               58
                                     HIGH
                                             38.247 drugY
          97
               56
                     F
                          HIGH
                                     HIGH
                                             25.395 drugY
                          HIGH
                                  NORMAL
                                             35.639 drugY
          98
               20
                    M
                     F
          99
               15
                          HIGH
                                  NORMAL
                                             16.725 drugY
```

100 rows × 6 columns

In [76]:

Out[76]:

|       | Age        | Na_to_K    |
|-------|------------|------------|
| count | 100.000000 | 100.000000 |
| mean  | 43.770000  | 16.823000  |
| std   | 16.367531  | 7.257723   |
| min   | 15.000000  | 7.285000   |
| 25%   | 30.500000  | 11.031250  |
| 50%   | 43.000000  | 15.025500  |
| 75%   | 58.000000  | 20.020250  |
| max   | 74.000000  | 38.247000  |

In [77]:

Out[77]: <seaborn.axisgrid.PairGrid at 0x22d2ca8d730>



In [78]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[78]: <AxesSubplot:xlabel='Age', ylabel='Density'>



In [79]:

In [80]:

Out[80]: <AxesSubplot:>



In [82]: x=x1[['Age', 'Na\_to\_K']]

```
In [83]: # to split my dataset into traning and test date
         from sklearn.model_selection import train_test_split
In [84]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[84]: LinearRegression()
In [85]:
         -7.105427357601002e-15
In [86]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[86]:
                   Co-efficient
             Age 6.733537e-18
          Na_to_K 1.000000e+00
In [87]: prediction=lr.predict(x_test)
Out[87]: <matplotlib.collections.PathCollection at 0x22d2d1944f0>
          35
          30
          25
          20
          15
          10
                        15
                 10
                               20
                                      25
                                            30
                                                   35
In [88]: L
Out[88]: 1.0
In [89]: __
Out[89]: 1.0
In [90]:
```

```
In [91]: rr=Ridge(alpha=10)
    rr.fit(x_train,y_train)

Out[91]: 0.9999913048703735

In [92]: la=Lasso(alpha=10)
Out[92]: Lasso(alpha=10)

In [93]:

Out[93]: 0.9571797827752848

In []:
```