Rank-76356 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_0^2 X_3 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(4)$ is 1503225178

General information

Number of lines	3
Number of points	29
Number of singular points	0
Number of Eckardt points	1
Number of double points	0
Number of single points	12
Number of points off lines	16
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{3}
Type of lines on points	$3, 1^{12}, 0^{16}$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\begin{split} \ell_0 &= \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{356} = \left[\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]_{356} = \mathbf{Pl}(0,1,0,0,0,0)_1 \\ \ell_1 &= \left[\begin{array}{cccc} 1 & 0 & 0 & \omega^2 \\ 0 & 0 & 1 & 0 \end{array} \right]_{268} = \left[\begin{array}{cccc} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{array} \right]_{268} = \mathbf{Pl}(0,3,1,0,0,0)_8 \end{split}$$

$$\ell_2 = \left[\begin{array}{cccc} 1 & 0 & 0 & \omega \\ 0 & 0 & 1 & 0 \end{array} \right]_{184} = \left[\begin{array}{cccc} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{array} \right]_{184} = \mathbf{Pl}(0, 2, 1, 0, 0, 0)_7$$

Rank of lines: (356, 268, 184)

Rank of points on Klein quadric: (1, 8, 7)

Eckardt Points

The surface has 1 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 12 single points: The single points on the surface are:

$0: P_3 = (0,0,0,1)$ lies on line ℓ_0	7: $P_{55} = (2, 0, 2, 1)$ lies on line ℓ_1
$1: P_{24} = (2,0,0,1)$ lies on line ℓ_1	8: $P_{56} = (3, 0, 2, 1)$ lies on line ℓ_2
$2: P_{25} = (3,0,0,1)$ lies on line ℓ_2	9: $P_{69} = (0,0,3,1)$ lies on line ℓ_0
$3: P_{38} = (0,0,1,1)$ lies on line ℓ_0	10: $P_{71} = (2,0,3,1)$ lies on line ℓ_1
4: $P_{40} = (2, 0, 1, 1)$ lies on line ℓ_1	11: $P_{72} = (3,0,3,1)$ lies on line ℓ_2
$5: P_{41} = (3,0,1,1)$ lies on line ℓ_2	
6: $P_{53} = (0, 0, 2, 1)$ lies on line ℓ_0	

The single points on the surface are:

Points on surface but on no line

The surface has 16 points not on any line: The points on the surface but not on lines are:

$0: P_1 = (0, 1, 0, 0)$	$9: P_{64} = (3, 2, 2, 1)$
$1: P_4 = (1, 1, 1, 1)$	$10: P_{65} = (0, 3, 2, 1)$
$2: P_{17} = (2, 2, 1, 0)$	11: $P_{66} = (1, 3, 2, 1)$
$3: P_{22} = (3,3,1,0)$	12: $P_{77} = (0, 2, 3, 1)$
$4: P_{27} = (1, 1, 0, 1)$	13: $P_{78} = (1, 2, 3, 1)$
$5: P_{42} = (0, 1, 1, 1)$	$14: P_{82} = (1, 3, 3, 1)$
$6: P_{48} = (3, 2, 1, 1)$	15: $P_{83} = (2, 3, 3, 1)$
$7: P_{51} = (2,3,1,1)$	
$8: P_{62} = (1, 2, 2, 1)$	

Line Intersection Graph

$$\begin{array}{c|c} & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_2	P_2

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_2	P_2

The surface has 29 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	10: $P_{40} = (2, 0, 1, 1)$	$20: P_{65} = (0, 3, 2, 1)$
$1: P_2 = (0, 0, 1, 0)$	$11: P_{41} = (3,0,1,1)$	$21: P_{66} = (1, 3, 2, 1)$
$2: P_3 = (0,0,0,1)$	$12: P_{42} = (0, 1, 1, 1)$	$22: P_{69} = (0,0,3,1)$
$3: P_4 = (1, 1, 1, 1)$	13: $P_{48} = (3, 2, 1, 1)$	$23: P_{71} = (2,0,3,1)$
$4: P_{17} = (2, 2, 1, 0)$	$14: P_{51} = (2,3,1,1)$	$24: P_{72} = (3, 0, 3, 1)$
$5: P_{22} = (3, 3, 1, 0)$	15: $P_{53} = (0, 0, 2, 1)$	$25: P_{77} = (0, 2, 3, 1)$
$6: P_{24} = (2,0,0,1)$	$16: P_{55} = (2,0,2,1)$	$26: P_{78} = (1, 2, 3, 1)$
$7: P_{25} = (3,0,0,1)$	17: $P_{56} = (3, 0, 2, 1)$	$27: P_{82} = (1, 3, 3, 1)$
$8: P_{27} = (1, 1, 0, 1)$	18: $P_{62} = (1, 2, 2, 1)$	$28: P_{83} = (2, 3, 3, 1)$
$9: P_{38} = (0,0,1,1)$	19: $P_{64} = (3, 2, 2, 1)$	