Замечание 3.2. Теорема 3.14 неверна для промежутков, не являющихся отрезками. Например, функция  $f(x) = \frac{1}{x}$  непрерывна на интервале (0,1), но не ограничена на этом интервале. Функция  $f(x)=x^2$ непрерывна на  $\mathbb{R}$ , но не ограничена на  $\mathbb{R}$ .

**Теорема 3.15** (вторая теорема Вейерштрасса). Если функция fнепрерывна на отрезке [a,b], то она достигает своих точной верхней и точной нижней граней, то есть

$$\exists \ \overline{x} \in [a, b]: \ f(\overline{x}) = \sup_{x \in [a, b]} f(x), \tag{3.28}$$

$$\exists \ \underline{x} \in [a, b]: \ f(\underline{x}) = \inf_{x \in [a, b]} f(x). \tag{3.29}$$

Доказательство. Так как непрерывная на отрезке [a,b] функция fограничена (теорема 3.14), то есть множество значений, принимаемых функцией f на отрезке [a,b], ограничено, то существуют  $\sup f(x)$  и

Докажем утверждение (3.28). Обозначим  $M = \sup_{x \in [a,b]} f(x)$ . В силу

топределения точной верхней грани выполняются условия

$$\forall x \in [a, b] \to f(x) \le M,\tag{3.30}$$

$$\forall \varepsilon > 0 \ \exists x(\varepsilon) \in [a, b] : f(x(\varepsilon)) > M - \varepsilon.$$
 (3.31)

 $\forall \varepsilon > 0 \; \exists \, x(\varepsilon) \in [a,b] : f(x(\varepsilon)) > M - \varepsilon.$  (3.31) Полагая  $\varepsilon = 1,\frac{1}{2},\frac{1}{3},\dots,\frac{1}{n},\dots,$  получим, в силу условия (3.31), последовательность  $\{x_n\}$ , где  $x_n = x\left(\frac{1}{n}\right)$ , такую, что для всех  $n \in \mathbb{N}$  выполняются условия выполняются условия

$$x_n \in [a, b], \tag{3.32}$$

$$f(x_n) > M - \frac{1}{n}. (3.33)$$

Из соотношений (3.30), (3.32) и (3.33) следует, что

$$\underbrace{M - \frac{1}{n} < f(x_n) \le M}_{n \to \infty} \forall n \in \mathbb{N},$$

$$\underbrace{\lim_{n \to \infty} f(x_n) = M}_{(3.34)}$$

откуда получаем

Как и в теореме 3.14, из условия (3.32) следует, что существуют подпоследовательность  $\{x_{n_k}\}$  последовательности  $\{x_n\}$  и точка  $\overline{x}$  такие, что

$$\lim_{k \to \infty} x_{n_k} = \overline{x}$$
, где  $\overline{x} \in [a, b]$ .

TXW CI CO

В силу непрерывности функции f в точке  $\overline{x}$   $\lim_{k \to \infty} f(x_{n_k}) = f(\overline{x}). \tag{3.35}$ 

С другой стороны,  $\{f(x_{n_k})\}$  — подпоследовательность последовательности  $\{f(x_n)\}$ , сходящейся, согласно условию (3.34), к числу M. Поэтому

$$\lim_{k \to \infty} f(x_{n_k}) = M. \tag{3.36}$$

0

В силу единственности предела последовательности из соотношений (3.35) и (3.36) заключаем, что  $f(\overline{x})=M=\sup_{x\in[a,b]}f(x).$ 

Утверждение (3.28) доказано. Аналогично доказывается утверждение (3.29).

Замечание 3.3. Теорема 3.15 неверна для интервалов: функция, непрерывная на интервале, может не достигать своих точных граней. Например, функция  $f(x)=x^2$  не достигает на интервале (0,1) своей точной нижней грани, равной нулю, и точной верхней грани, равной единице.

## § 3.9 Точки разрыва функции

Определение 3.21. Пусть функция f определена в некоторой окрестности точки  $x_0$ , кроме, быть может, самой этой точки. Точка  $x_0$  называется точкой разрыва функции f, если функция f не определена в точке  $x_0$  или если она определена в этой точке, но не является в ней непрерывной.

**Определение 3.22.** Если  $x_0$  – точка разрыва функции f и существуют конечные односторонние пределы  $f(x_0+0)$  и  $f(x_0-0)$ , то точка  $x_0$  называется точкой разрыва первого рода.

Величина  $f(x_0 + 0) - f(x_0 - 0)$  называется скачком функции f в точке  $x_0$ . Если скачок функции f в точке разрыва  $x_0$  равен нулю, т.е.  $f(x_0 + 0) = f(x_0 - 0)$ , то  $x_0$  называется точкой устранимого разрыва.

Точка разрыва функции, не являющаяся ее точкой разрыва первого рода, называется точкой разрыва второго рода.

## § 3.10 Непрерывность сложной функции

**Теорема 3.16.** Пусть функция  $f: X \to Z$  непрерывна в точке  $x_0 \in X$ , а функция  $g: Z \to Y$  непрерывна в соответствующей точке

 $\lim_{49} \frac{1}{x} = -\infty$   $\lim_{x \to -0} \frac{1}{x} = -\infty$   $\lim_{x \to -0} \frac{1}{x} = +\infty$   $\lim_{x \to +0} \frac{1}{x} = +\infty$ 

A 100

 $\lim_{x\to x_0^+} f(x) = A$   $\lim_{x\to x_0^+} f(x) = A$   $\lim_{x\to x_0^+} f(x) = A$ 

 $z_0 = f(x_0)$ . Тогда сложная функция y = g(f(x)) непрерывна в точке

Доказательство. По условию теоремы функция g непрерывна в точке  $z_0$ , то есть  $\forall \varepsilon > 0 \ \exists \sigma = \sigma(\varepsilon) > 0$  такое, что

$$\forall z \in Z, \ |z - z_0| < \sigma \to |g(z) - g(z_0)| < \varepsilon. \tag{3.37}$$

В силу непрерывности функции f в точке  $x_0$  для указанного  $\sigma>0$ найдется  $\delta = \delta(\sigma) > 0$  такое, что

$$\delta(\sigma) > 0$$
 такое, что  $\forall x \in X, |x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \sigma.$  (3.38)

32=267>0:

Полагая в (3.37) z = f(x),  $z_0 = f(x_0)$  и учитывая (3.38), получаем, что  $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{такое, что}$ 

$$\forall x \in X, |x - x_0| < \delta \to |g(f(x)) - g(f(x_0))| < \varepsilon.$$

Это означает, в силу определения непрерывности, что функция g(f(x)) непрерывна в точке  $x_0$ .

## § 3.11 Равномерная непрерывность

0 < 3¥ **Определение 3.23.** Функция  $f: X \to \mathbb{R}$  называется равномерно

**Пемма 3.4.** Всякая равномерно непрерывная на множестве X функция непрерывна на нем.

Доказательство. В определении равномерной непрерывности зафиксируем точку  $x_2$ , получим определение непрерывности в этой точ-

**Теорема 3.17** (Кантор). Функция, непрерывная на отрезке [a, b], равномерно непрерывна на нем.

Доказательство. Докажем теорему от противного. Допустим, что на отрезке [a,b] существует непрерывная, однако не равномерно непрерывная на нем функция f. Это означает, что существует такое  $\varepsilon > 0$ , что для любого  $\delta>0$  найдутся такие точки  $x'\in[a,b]$  и  $x''\in[a,b]$ , что

x', X<del>\_</del>[a,6]

hemp hair. les. jobs. verp. na R. JX, X, ER, 1×1-X2) < 5-



юся подпоследовательность  $\{x'_{n_k}\}$ . Обозначим ее предел  $x_0$ :

$$\lim_{k \to \infty} x'_{n_k} = x_0.$$

Поскольку  $a \le x'_{n_k} \le b, \ k = 1, 2, ...,$  то  $a \le x_0 \le b.$  Функция f непрерывна в точке  $x_0$ , поэтом

$$\begin{cases}
\lim_{k \to \infty} f(x'_{n_k}) = f(x_0).
\end{cases}$$
(3.39)

Подпоследовательность  $\{x_{n_k}''\}$  последовательности  $\{x_n''\}$  также сходится к точке  $x_0$ , ибо при  $k \to \infty$ 

$$|x_{n_k}'' - x_0| \le |x_{n_k}'' - x_{n_k}'| + |x_{n_k}' - x_0| < \frac{1}{n_k} + |x_{n_k}' - x_0| \to 0.$$

Поэтому

$$\lim_{k \to \infty} f(x_{n_k}'') = f(x_0). \tag{3.40}$$

 $\lim_{k \to \infty} \left[ f(x'_{n_k}) - f(x''_{n_k}) \right] = f(x_0) - f(x_0) = 0,$ 

это противоречит условию, что при всех  $k=1,2,\dots$  выполняется неравенство

$$|f(x'_{n_k}) - f(x''_{n_k})| \ge \varepsilon > 0.$$

Полученное противоречие доказывает теорему.

**Определение 3.24.** Колебанием функции  $f: X \to \mathbb{R}$  на множестве X называется величина

$$w(f;X) = \sup_{x_1,x_2 \in X} |f(x_1) - f(x_2)|.$$