Serial Ro.: 09/841, 614

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年 7月 7日

出願番号

Application Number:

特顧2000-206914

出 願 人
Applicant(s):

株式会社オハラ

2001年 4月27日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 F418

【あて先】 特許庁長官殿

【国際特許分類】 C03C 10/00

【発明者】

【住所又は居所】 神奈川県相模原市小山1丁目15番30号 株式会社オ

ハラ内

【氏名】 南川 弘行

【発明者】

【住所又は居所】 神奈川県相模原市小山1丁目15番30号 株式会社オ

ハラ内

【氏名】 大原 和夫

【特許出願人】

【識別番号】 000128784

【住所又は居所】 神奈川県相模原市小山1丁目15番30号

【氏名又は名称】 株式会社オハラ

【代表者】 油谷 純正

【手数料の表示】

【予納台帳番号】 002451

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

低膨張透明結晶化ガラス

【特許請求の範囲】

【請求項1】 1530 \mathbb{C} 以下の熔融温度で得られる原ガラスを熱処理することにより得られる結晶化ガラスであって、 $100\sim300$ \mathbb{C} における線熱膨張係数 (α) が $+10\times10^{-7}\sim+35\times10^{-7}$ / \mathbb{C} の範囲にあり、80%光線透過波長(T80)が600 \mathbb{C} \mathbb{C}

【請求項2】 主結晶として β - 石英又は β - 石英固溶体を含有することを 特徴とする、請求項1記載の低膨張透明結晶化ガラス。

【請求項3】 酸化物基準の質量%で、1.5~3.5%のLi₂0を含有することを特徴とする、請求項1又は2記載の低膨張透明結晶化ガラス。

【請求項4】 リチウムイオン溶出量が $0.0050 \mu g/cm^2$ 未満であることを特徴とする、請求項 $1\sim3$ のうちいずれか一項記載の低膨張透明結晶化ガラス。

【請求項5】 酸化物基準の質量%で、3~6%のTiO₂を含有することを特徴とする、請求項1~4のうちいずれか一項記載の低膨張透明結晶化ガラス。

【請求項6】 酸化物基準の質量%で、RO(但し、RはMg、Ca、Sr、Ba又はZn)成分中、0.5%以上の成分を3種類以上含有することを特徴とする、請求項1~5のうちいずれか一項記載の低膨張透明結晶化ガラス。

【請求項7】 酸化物基準の質量%で、RO成分中、ZnO成分を最も多く 含有することを特徴とする、請求項1~6のうちいずれか一項記載の低膨張透明 結晶化ガラス。

【請求項8】 酸化物基準の質量%で、RO成分の合計量を3.5%以上含有することを特徴とする、請求項1~7のうちいずれか一項記載の低膨張透明結晶化ガラス。

【請求項9】 酸化物基準の質量%で、R'O(但し、R'はMg、Ca、Ba又はSr)成分の合計量を3~13%含有することを特徴とする、請求項1~8のうちいずれか一項記載の低膨張透明結晶化ガラス。

【請求項10】 酸化物基準の質量%で、 SiO_2 50~65%、 Al_2O_3 20~30%、MgO 0.5~2%、CaO 0.5~2%、SrO 0~10%、BaO 1~5%、ZnO 0.5~15%、 Li_2O 1.5~3.5%、 TiO_2 3~6%、 ZrO_2 1~5%、 Nb_2O_5 0~5%、 La_2O_3 0~5%、 Y_2O_3 0~5%、 As_2O_3 および/または Sb_2O_3 0~2%の組成を含有することを特徴とする、低膨張透明結晶化ガラス。

【請求項11】 酸化物基準の質量%で、 SiO_2 50~65%、 Al_2O_3 20~30%、MgO 0.5~2%、CaO 0.5~2%、SrO 0~10%、BaO 1~5%、ZnO 0.5~15%、 Li_2O 1.5~3.5%、 TiO_2 3~6%、 ZrO_2 1~5%、 Nb_2O_5 0~5%、 La_2O_3 0~5%、 Y_2O_3 0~5%、 As_2O_3 および/または Sb_2O_3 0~2%の組成を含有するガラス原料を1530℃以下で熔融し、その後冷却して得た原ガラスを熱処理することにより β 一石英又は β 一石英固溶体結晶を析出させることを特徴とする、結晶化ガラスの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、低膨張性及び透明性を有する、低膨張透明結晶化ガラスに関する。

[0002]

【従来の技術】

従来、低膨張透明結晶化ガラスとしては、結晶核形成剤を含有する ${
m Si0}_2$ - ${
m Al}_2{
m O}_3$ - ${
m Li}_2{
m O}$ 系組成をベースとした原ガラスを熔融し、熱処理することにより得られるものが幾つか知られている。

[0003]

例えば米国特許第3499773号公報には、 TiO_2 、 ZrO_2 、 SnO_2 の一種以上を核剤として含有し、任意の少量のMgO、CaO、SrO、BaO等の成分を添加し得る SiO_2 $-Al_2O_3$ - Li_2O 系原ガラスから得られる、選択的に不透明部分を与えた低膨張透明結晶化ガラスが開示されている。ここに開示された結晶化ガラスの製造において、熔融温度は $1537\sim1593$ C(実施例 $1:2800\sim2900$ °F)であった。また、米国特許第4341543号公報には、 TiO_2 及び ZrO_2 を核剤として含有する SiO_2 - Al_2

03-Li₂0系原ガラスから得られる透明結晶化ガラスが開示されている。ここに開示された結晶化ガラスの製造において、熔融温度は1650℃であった。

[0004]

しかし、これらの公報明細書中に記載された結晶化ガラスは、原ガラスの熔融 には比較的高温を必要とし、光学的均質性に優れた結晶化ガラスを量産しがたい 欠点がある。

[0005]

米国特許第3681102号公報では、スピネル結晶を主結晶相としたSiO $_2$ -A 1_2 O $_3$ -ZnO $_3$ の結晶化ガラスであって線熱膨張係数 $\alpha=25\times10^{-7}\sim40\times10^{-7}$ / $_1$ Cの透明結晶化ガラスを1650~1800 $_1$ Cの熔融温度で得ている。また、特開平 11-335139号公報では、同じくスピネル結晶を主結晶相としたSiO $_2$ -Al $_2$ O $_3$ -ZnO $_3$ の結晶化ガラスであって線熱膨張係数 $\alpha=33\times10^{-7}\sim40\times10^{-7}$ / $_1$ Cの透明結晶化ガラスを1600~1625 $_1$ Cの熔融温度で得ている。しかし、これらの結晶化ガラスは、原ガラスの熔融温度が1600C以上と高いことに加えて、非常に硬い結晶として知られているガーナイトZnAl $_2$ O $_4$ を含むため、研磨加工性に問題があった。

[0006]

更に、比較的低温の熔解温度で、低膨張の結晶化ガラスを得た文献として、特開平10-321759号公報、特開平10-321760号公報があるが、これらに記載された結晶化ガラスは全て白色結晶化ガラスであって、透明な結晶化ガラスは得られていない。

[0007]

【発明が解決しようとする課題】

最近は、低膨張透明結晶化ガラスに対して、ますます高度な諸特性が要求され つつある。

- (1)原ガラスの熔融清澄が容易であって、そのため材料中に脈理、泡および異物(インクルージョン)等を含有せず、高度の光学的均質性を有すること。
- (2) 析出結晶が微細であり、材料の透明性、特に可視光領域における光線透過率に優れていること。

- (3)材料中にアルカリイオン、特にNa₂O及びK₂O成分を含有すると、使用の際、各種処理工程中でこれらのイオンが拡散して特性が変化し、トラブルが生ずるため実質的にNa₂O及びK₂O成分を含有しないこと。
- (4) 一般に低膨張透明結晶化ガラスは、その必要特性を得るために、比較的高い割合のSiO2成分を含み、その結果、1600℃以上の比較的高い熔融温度が必要となる場合が多い。一方、製造工程の設計及び品質の管理上、熔融温度は低い方が好ましい。

[0008]

すなわち、本発明の目的は、従来技術に見られる前記諸欠点を改善し、更に、 これらを満たす結晶化ガラスの熔融温度は高温になり易いとの両者の矛盾を解消 して、比較的低温の熔融温度、具体的には1530℃以下熔融温度で得られる、 低膨張透明結晶化ガラスを提供することにある。

[0009]

【課題を解決するための手段】

[0010]

すなわち、請求項1に記載の発明は、1530 \mathbb{C} 以下の熔融温度で得られる原ガラスを熱処理することにより得られる結晶化ガラスであって、 $100\sim300$ \mathbb{C} における線熱膨張係数 (α) が $+10\times10^{-7}\sim+35\times10^{-7}/\mathbb{C}$ の範囲にあり、80% 光線透過波長(T80)が600 \mathbb{C} $\mathbb{C$

請求項2に記載の発明は、主結晶としてβ-石英又はβ-石英固溶体を含有する ことを特徴とする、請求項1記載の低膨張透明結晶化ガラスであり、 請求項3に記載の発明は、酸化物基準の質量%で、 $1.5\sim3.5\%$ の Li_20 を含有することを特徴とする、請求項1又は2記載の低膨張透明結晶化ガラスであり

請求項4に記載の発明は、リチウムイオン溶出量が 0.0050μ g/cm 2 未満であることを特徴とする、請求項 $1\sim3$ のうちいずれか一項記載の低膨張透明結晶化ガラスであり、

請求項 5 に記載の発明は、酸化物基準の質量%で、 $3\sim6$ %の $Ti0_2$ を含有することを特徴とする、請求項 $1\sim4$ のうちいずれか一項記載の低膨張透明結晶化ガラスであり、

請求項6に記載の発明は、酸化物基準の質量%で、RO(但し、RはMg、Ca、Sr、Ba又はZn)成分中、0.5%以上の成分を3種類以上含有することを特徴とする、請求項1~5のうちいずれか一項記載の低膨張透明結晶化ガラスであり、

請求項7に記載の発明は、酸化物基準の質量%で、RO成分中、ZnO成分を最も多く含有することを特徴とする、請求項1~6のうちいずれか一項記載の低膨 張透明結晶化ガラスであり、

請求項8に記載の発明は、酸化物基準の質量%で、RO成分の合計量を3.5%以上含有することを特徴とする、請求項1~7のうちいずれか一項記載の低膨張透明結晶化ガラスであり、

請求項9に記載の発明は、酸化物基準の質量%で、R'O(但し、R'はMg、Ca、Ba又はSr)成分の合計量を3~13%含有することを特徴とする、請求項1~8のうちいずれか一項記載の低膨張透明結晶化ガラスであり、

請求項10に記載の発明は、酸化物基準の質量%で、 SiO_2 50~65%、 Al_2O_3 20~30%、MgO 0.5~2%、CaO 0.5~2%、SrO 0~10%、 BaO 1~5%、ZnO 0.5~15%、 Li_2O 1.5~3.5%、 TiO_2 3~6%、 ZrO_2 1~5%、 Nb_2O_5 0~5%、 La_2O_3 0~5%、 Y_2O_3 0~5%、 As_2O_3 および/または Sb_2O_3 0~2%の組成を含有することを特徴とする、低膨張透明結晶化ガラスであり、

請求項11に記載の発明は、酸化物基準の質量%で、 SiO_2 50~65%、 Al_2O

 $_3$ 20~30%、MgO 0.5~2%、CaO 0.5~2%、SrO 0~10%、BaO 1~5%、ZnO 0.5~15%、Li $_2$ O 1.5~3.5%、TiO $_2$ 3~6%、ZrO $_2$ 1~5%、Nb $_2$ O $_5$ 0~5%、La $_2$ O $_3$ 0~5%、 Y_2 O $_3$ 0~5%、As $_2$ O $_3$ および/またはSb $_2$ O $_3$ 0~2%の組成を含有するガラス原料を1530℃以下で熔融し、その後冷却して得た原ガラスを熱処理することにより β 一石英又は β 一石英固溶体結晶を析出させることを特徴とする、結晶化ガラスの製造方法である。

[0011]

初めに、本発明の低膨張透明結晶化ガラスの線熱膨張係数について説明する。シリコン基板に透明結晶化ガラスを直接接合させる場合、透明結晶化ガラスの線熱膨張係数はシリコンと同程度の $\alpha=3.0\times1.0^{-7}\sim3.5\times1.0^{-7}/\mathbb{C}$ が好ましく、またアモルファスシリコン薄膜を透明結晶化ガラス基板に蒸着する際は、 $\alpha=1.5\times1.0^{-7}\sim2.5\times1.0^{-7}/\mathbb{C}$ が好ましい。そして、合成石英の代替材として半導体分野等で使用される場合、透明結晶化ガラスの線熱膨張係数は $\alpha=1.0\times1.0^{-7}\sim3.5\times1.0^{-7}/\mathbb{C}$ 、より好ましくは $\alpha=1.0\times1.0^{-7}\sim2.5\times1.0^{-7}/\mathbb{C}$ 、特に好ましくは、 $\alpha=1.0\times1.0^{-7}\sim2.0\times1.0^{-7}/\mathbb{C}$ である。

[0012]

本発明の低膨張透明結晶化ガラスは、良好な均質性と透明性を有する。 80% 光線透過波長 (T_{80}) が 600 nm以下であり、より好ましくは 580 n m以下である。

[0013]

ここで、80%光線透過波長(T₈₀)とは、10mmの厚さに両面研磨したサンプルにおける光透過率の波長依存性測定において光透過率80%に対応する最も短波長側の光波長をいう。

[0014]

本発明の低膨張透明結晶化ガラスの一態様として、主結晶として β - 石英又は β - 石英固溶体を含有することを特徴とする。ここで、上記 β - 石英固溶体は、 β 石英の結晶構造を保ったまま、異種原子が一部置換又は侵入した固溶体結晶をいう。 β - 石英固溶体には、 β - ユークリプタイト($\text{Li}_2\text{O-Al}_2\text{O}_3\text{-2SiO}_2$)及び、そ

れに、MgO、ZnO等が一部置換又は侵入した β - ユークリプタイト固溶体を含む。 【0015】

本発明の低膨張透明結晶化ガラスの、好ましい組成範囲について説明する。各組成は酸化物基準の質量%で表現する。まず、SiO₂成分は、原ガラスの熱処理により、種結晶としてβー石英及び/又はβ石英固溶体を生成する、極めて重要な成分である。結晶化ガラスの結晶粒径の粗大化を防ぎ、良好な透明性を確保するために、SiO₂成分は50%以上が好ましい。また、比較的低温条件下で原ガラスの熔融清澄性を確保し、結晶化ガラスの光学的均質性を良好に保つために、65%以下が好ましい。

[0016]

 AI_2O_3 成分は、 β 一石英固溶体の構成成分となると共に、比較的多量にすることによって熔融温度を下げる効果を持つ、極めて重要な成分である。熔融温度を下げる効果を充分に発揮し、且つ、均質で乳白性のない結晶化ガラスを得るために AI_2O_3 成分量は $2O_3$ 以上が好ましく、また、原ガラスの熔融性及び失透性の悪化を防止するために、 $3O_3$ 以下が好ましい。

[0017]

本発明の結晶化ガラスにおいて、RO(但し、RはMg、Ca、Ba、Sr又はZn)成分の含有量及びその成分比は、透明性を損なうことなく、原ガラスの熔融性改善と共に結晶化ガラスの光学的均質性を著しく向上させる点で重要な成分である。上記効果を得るために、RO成分の合計量は、3.5%以上が好ましく、6%以上がより好ましく、7%以上が特に好ましい。RO成分の合計量としては25%以下が好ましく、20%以下がより好ましく、15%以下が特に好ましい。RO成分中、ZnO成分が最も重要な成分である。本発明の結晶化ガラスは、ROの5成分中、ZnO成分を最も多く含有することがより好ましい。上記の効果を良好に発現するために、ZnO成分の量は、0.5%以上が好ましく、2%以上がより好ましく、3%以上が特に好ましい。ただし、原ガラスの熔融性及び失透性の悪化を防止し結晶化ガラスの光学的均質性を容易に保つために、ZnO成分の量は、15%以下が好ましく、13%以下がより好ましく、11%以下が特に好ましい。

[0018]

本発明の結晶化ガラスは、原ガラスの熔融温度を下げるために、多種類のRO成分を含有することが好ましい。RO成分中、0.5%以上の成分を3種類以上含有することが好ましく、0.5%以上の成分を4種類以上含有することがより好ましい。

[0019]

本発明の結晶化ガラスは、同じく原ガラスの熔融温度を下げるために、R'O(但し、R'はMg、Ca、Ba又はSr)成分の合計量を3%以上含有することが好ましい。またR"O(但し、R"はMg、Ca又はBa)の合計量を3%以上含有することが好ましい。

[0020]

MgO成分量は、上記効果を良好に得るために 0.5%以上が好ましく、また、結晶化ガラスの透明性の劣化を防止するために 2%を以下が好ましい。CaO成分量は、上記効果を良好に得るために 0.5%以上が好ましく、また、結晶化ガラスの透明性の劣化を防止するために 2%を以下が好ましい。SrO成分は、10%を越えない範囲で導入することができる。BaO成分は、上記効果を良好に得るために 1%以上が好ましく、また、原ガラスの熔融性及び失透性の悪化を防止し、結晶化ガラスの光学的均質性を容易に保っために、5%以下が好ましい。

[0021]

原ガラスの熔融性及び失透性の悪化を防止し、結晶化ガラスの光学的均質性を容易に保つために、R'O成分の合計量は、 $3\sim13\%$ が好ましく、 $3\sim5\%$ 又は $6\sim13\%$ がより好ましい。ZnO量は、 $0.5\sim10\%$ が好ましく、 $0.5\sim5\%$ 又は $6\sim10\%$ がより好ましい。ZnO量に対するR'Oの合計量の比は、 $0.3\sim2.0$ が好ましく、 $0.30\sim0.67$ 又は $0.8\sim2.0$ がより好ましい。

[0022]

 ${
m Li}_20$ 成分は、 ${
m Si0}_2$ 及び ${
m Al}_2{
m O}_3$ 成分とともに ${
m \it B}$ -石英固溶体の構成要素となる重要成分である。 ${
m Li}_2{
m O}$ 成分量は、原ガラスの熔融性の悪化を防止し、結晶化ガラスの光学的均質性を容易に保ち、又は、所要量の微結晶が析出し易いようにするた

めに、1.5%以上が好ましい。また、結晶粒径の粗大化を防止し、結晶化ガラスの透明性を良好にするために、 ${\rm Li}_2{\rm 0}$ 成分量は3.5%以下が好ましく、3.5%未満がより好ましい。また、アルカリイオンによる各種処理工程でのトラブルを防ぐために、 ${\rm Li}_2{\rm 0}$ 成分量は3.0%以下が好ましく、3.0%未満がより好ましく、2.7%以下が特に好ましい。アルカリ溶出量は低い方が低い方が好ましい。特に、リチウムイオン溶出量は0.0050 μ g/cm²未満であることが好ましく、0.0045 μ g/cm²未満であることが持に好ましい。

[0023]

TiO₂成分は、熱膨張係数を調節し、核形成剤としての働きをする重要な成分である。所望の熱膨張係数を得るために、TiO₂成分の量は3%以上が好ましく、3.5以上がより好ましい。また、原ガラスの失透性の悪化を防止し、結晶化ガラスの光学的均質性を容易に保ち、透明性を良好にするために、TiO₂成分の量は6%以下が好ましい。

[0024]

 $Zr0_2$ 成分は、核形成剤としての働きをする。所望の結晶を生成させるために、 $Zr0_2$ 成分の量は1%以上が好ましい。また、原ガラスの失透性の悪化を防止し、結晶化ガラスの光学的均質性を容易に保ち、透明性を良好にするために、 $Zr0_2$ 成分の量は5%以下が好ましい。

[0025]

 ${
m Nb}_2{
m O}_5$ 、 ${
m La}_2{
m O}_3$ 、 ${
m Y}_2{
m O}_3$ 成分は、 ${
m RO}$ 成分と共に導入することにより、それぞれ原ガラスの熔融性を改善し、且つ、結晶化ガラスの透明性及び均質性を著しく向上させることを見いだした成分である。ただし、これらの成分の過剰な添加は原ガラスの熔融性を悪化させ、結晶化ガラスの均質性を損なう。したがって、これらの成分は何れも、5%以下が好ましく、3%以下がより好ましい。また、 ${
m Nb}_2{
m O}_5$ 、 ${
m La}_2{
m O}_3$ 、 ${
m Y}_2{
m O}_3$ 成分の合計量も、5%以下が好ましく、3%以下がより好ましい。

[0026]

 As_2O_3 及び/又は Sb_2O_3 成分は、均質な結晶化ガラスを得るため原ガラス熔融の際の清澄剤として添加し得る。これらの成分の合計量は2%以下で十分である。

[0027]

なお、上記本発明の結晶化ガラスの、所望の特性を損なわない範囲で、上記以外の成分を添加することができる。例えば、 B_2O_3 、 GeO_2 、 F_2 、 Gd_2O_3 、 SnO_2 成分の1種または2種以上を合計で5%まで添加させることができる。ただし、 P_2O_5 については、低膨張透明結晶化ガラスの品質を安定して製造するためには含有しない方が好ましい。

[0028]

本発明の低膨張結晶化ガラスは、酸化物基準の質量%で、 SiO_2 50~65%、 AI_2O_3 20~30%、MgO 0.5~2%、CaO 0.5~2%、SrO 0~10%、BaO 1~5%、ZnO 0.5~15%、 Li_2O 1.5~3.5%、 TiO_2 3~6%、 ZrO_2 1~5%、 Nb_2O_5 0~5%、 La_2O_3 0~5%、 Y_2O_3 0~5%、 As_2O_3 および/または Sb_2O_3 0~2%の組成を含有するガラス原料を1530℃以下で熔融し、その後冷却して得た原ガラスを熱処理することにより β 一石英又は β 一石英固溶体結晶を析出させることにより得ることができる。

[0029]

原ガラスから β 一石英又は β 一石英固溶体結晶を析出させる際の熱処理条件としては、 $680\sim730$ $\mathbb{C}\times2\sim10$ 時間の核形成熱処理を与えた後、 $740\sim790$ $\mathbb{C}\times2\sim10$ 時間の結晶化熱処理の2段階を経ることが好ましい。

[0030]

【発明の実施の形態】

次に、本発明の低膨張透明結晶化ガラスにかかる好適な実施例について、比較 例とともに説明する。

[0031]

表 $1\sim4$ に、本発明の結晶化ガラス、及び比較例の結晶化ガラスの、組成、線 熱膨張係数 (α)、原ガラスの熔融温度、80%光線透過波長 (T_{80}) 及び原ガラスの熔融性、リチウムイオン溶出量を示した。

[0032]

実施例、比較例では、何れも、所定の熔融温度でガラスを熔融し、冷却後の原 ガラスを再加熱し、核形成熱処理(条件:700℃×5h)を行った後、結晶化

熱処理(条件:750 $\mathbb{C} \times 5$ h)を施して、実施例 $1 \sim 12$ 、及び比較例 $1 \sim 4$ の結晶化ガラスを得た。また、核形成熱処理及び結晶化熱処理条件を変えて、実施例 $13 \sim 18$ の結晶化ガラスを得た。実施例 $1 \sim 18$ 及び比較例1、2 の結晶化ガラスでは、何れも、主結晶相として、 β - 石英固溶体が確認された。比較例3、4 の結晶化ガラスでは、主結晶相としてガーナイト($2nAl_2O_4$)が確認された。

[0033]

ここで、熔融性の判定は原ガラス作製の際の熔融温度と時間、粘性、脱泡性、 清澄性等を肉眼で観察し、総合的に評価したもので、良を○、可を△、不可を× とした。

[0034]

リチウムイオン溶出量については、フィルムパックに超純水80m1(室温) とディスク(直径65mmφ×厚さ0.625mm)をパックし、約30℃、3 時間保持した後、溶出したリチウムイオンをイオンクロマトグラフィーにより測 定することにより算出した。

 \neg [0035]

表5に、実施例5、12、2の透明結晶化ガラスの各種物性を示した。

[0036]

【表1】

実施例 No. 組成 質量(%)	1	2	3	4	5	6
SiO ₂	51.7	52.0	51.2	54.0	54.2	51.2
Al_2O_3	25.6	25.5	27.5	25.7	25.5	27.5
MgO	1.0	1.0	1.0	1.0	1.0	0.5
SrO						
BaO	1.0	1.0	1.0	1.0	1.0	1.0
CaO	1.3	1.0	1.5	1.0	1.3	2.0
ZnO	10.7	10.5	8.5	8.5	7.7	8.5
Li ₂ O	2.2	2.5	2.7	2.5	2.7	2.7
TiO ₂	4.0	4.0	4.1	4.0	4.1	4.1
ZrO ₂	2.0	2:0	2.0	1.8	2.0	2.0
La_2O_3						
Y_2O_3						
As_2O_3	0.5	0.5	0.5	0.5	0.5	0.5
熔配温度(℃)	1500	1500	1500	1520	1500	1500
核形成温度(℃)	700	700	700	700	700	700
結晶化温度(℃)	750	750	750	750	750	750
線熱膨脹系数						
(10 ⁷ /°C)	30	22	19	28	17	17
(100~300°C)						
80%光線透過波	440	505	500	460	480	510
長 (nm)						
熔融性	0	0	0	0	0	. 0
Liイオン溶出量	0.21	0.23	0.26	0.22	0.25	0.26
(μg/Disk)						
Liイオン溶出量	0.0031	0.0034	0.0038	0.0033	0.0037	0.0038
$(\mu \text{g/cm}^2)$						

[0037]

【表2】

実施例 No. 組成 質量(%)	7	8	9	10	11	12
SiO ₂	53.4	54.0	54.5	54.5	54.0	54.5
Al_2O_3	25.6	24.0	24.0	24.0	23.5	24.0
MgO	1.0	1.0	1.0	1.0	0.5	1.0
SrO			2.0	1.5	2.0	2.2
BaO	1.0	1.0	2.0	1.5	2.0	2.0
CaO	1.3	1.3	1.0	1.0	1.5	1.0
ZnO	6.7	6.5	4.0	5.0	4.5	3.8
Li ₂ O	2.5	2.7	2.5	2.5	2.7	2.5
TiO_2	4.0	4.0	4.0	4.0	3.8	4.0
ZrO_2	2.0	2.0	2.0	2.0	1.5	2.0
La_2O_3			2.0		3.0	2.0
Y_2O_3				2.0		
$\mathrm{Nb_{2}O_{5}}$	2.0	2.0				
As_2O_3	0.5	0.5	1.0	1.0	1.0	1.0
熔晶温度(℃)	1510	1520	1520	1520	1500	1520
核形成温度(°C)	700	700	700	700	700	700
結晶化温度(°C)	750	750	750	750	750	750
線熱膨脹係数 (10 ⁷ /℃)	24	19	19	20	22	20
(100~300°C)			• 4			
80%光線透過波	535	540	580	570	555	585
長 (nm)						
熔融性	0	0	0	0	0	0
Liイオン溶出量	0.24	0.25	0.23	0.22	0.24	0.23
(μg∕Disk)						
Liイオン溶出量	0.0035	0.0037	0.0034	0.0033	0.0035	0.0034
$(\mu \mathrm{g/c} \mathrm{m}^2)$					· · · · · · · · · · · · · · · · · · ·	

[0038]

【表3】

実施列 No.	13	14	15	16	17	18
組成	(1)	(2)	(3)	(5)	(8)	(12)
質量(%)	(1)	(4)	(0)	(0)	(0)	(12)
SiO ₂	51.7	52.0	51.2	54.2	54.0	54.5
Al_2O_3	25.6	25.5	27.5	25.5	24.0	24.0
MgO	1.0	1.0	1.0	1.0	1.0	1.0
SrO						2.2
BaO	1.0	1.0	1.0	1.0	1.0	2.0
CaO	1.3	1.0	1.5	1.3	1.3	1.0
ZnO	10.7	10.5	8.5	7.7	6.5	3.8
Li ₂ O	2.2	2.5	2.7	2.7	2.7	2.5
$\mathrm{TiO}_{\!2}$	4.0	4.0	4.1	4.1	4.0	4.0
ZrO ₂	2:0	2.0	2.0	2.0	2.0	2.0
$\mathrm{La_2O_3}$	X					2.0
Y_2O_3						
Nb205					2.0	
As_2O_3	0.5	0.5	0.5	0.5	0.5	1.0
熔融温度(℃)	1500	1500	1500	1500	1520	1520
核形成温度(℃)	720	715	720	710	715	720
結晶化温度(°C)	770	760	760	760	765	770
線熱膨脹系数						
(10 ⁷ /°C)	25	19	16	15	15	17
(100~300°C)				•		
80%光線透過波	460	540	535	510	510	530
長 (nm)						
熔融性	0	0	0	0	0	0
Liイオン溶出量	0.20	0.21	0.26	0.25	0.24	0.22
(μg/Disk)						
Liイオン溶出量	0.0030	0.0031	0.0038	0.0037	0.0035	0.0033
$(\mu \text{ g/cm}^2)$						

[0039]

【表4】

比較例 No. 組成 質量(%)	比較例1	比較例2	比較例3	比較例4
SiO_2	67.7	68.5	58.8	63.0
Al_2O_3	18.9	18.6	20.4	17.8
MgO	1.1	2.2	5.0	4.2
SrO				- 8-
BaO	0.9	1.2		
CaO				
ZnO	1.6		6.8	5.7
Li ₂ O	3.5	3.0		_
TiO_2	3.0	3.9	3.0	5.0
ZrO ₂	2.0	2.0	5.0	3.0
Na2O	0.2			
K2O	0.2			
Nb_2O_5				
As_2O_3	0.9	0.6		0.5
熔融温度(℃)	1650	1650	1600	1625
核形成温度(℃)	700	700	700	700
結晶化温度(℃)	750	750	750	750
線熱膨脹係数				
(10 ⁷ /°C)	-0.9	-0.9	37.1	33.7
(100~300℃)				
熔融性	×	×	×	×
Liイオン溶出量	0.39	0.34	0.00	0.00
(μg∕Disk)				
Liイオン溶出量	0.0057	0.0050	0.0000	0.0000
$(\mu \text{ g/cm}^2)$				L

[0040]

【表5】

実施例					
評価項目			5	12	2
	熱脑張係数(10 ⁷ /℃)		1 7	20	22
熱的性質	(30~500℃)				
	転移点 (℃)		710	761	700
	屈伏点	(°C)	826	834	820
	比重		2.80	2.71	2.82
	ヤング率(GPa)	97.6	96.2	99.0
	剛性率 (GPa)		38.0	38.6	35.1
機械的性質	ポアソン比		0.265	0.247	0.270
	ヌープ硬度 Hk		680	620	720
	ピッカース硬度 Hv		730	660	780
	摩耗度 Aa		55	51	48
	屈折率 nd		1.5854	1.5711	1.5871
光学的性質	アッペ数 νd		51.2	50.6	51.5
	耐水性(粉	沫 法)	0.03	0.0	0.02
化学的性質	耐酸性 (粉末法)		0.04	0.04	0.05
	耐アルカリ性 (粉末法)		0.09	0.10	0.12
	誘電正接	25℃	2.5	2.1	3.0
電気的性質	(×10³)	200℃	1.5	0.9	2.2
	誘電率	25℃	8.8	9.6	9.7
	(1 MH z)	200℃	28.0	31.0	32.5
	体積抵抗	25℃	6.2×10^{13}	3.8×10^{13}	3.5×10^{13}
	$(Q \cdot c m)$	200℃	8.1×10 ⁸	4.8×10 ⁸	4.0×10 ⁸

[0041]

[0042]

【発明の効果】

以上、述べたとおり、本発明の低膨張透明結晶化ガラスは、 $(Ti0_2+Zr0_2)$ 成分

を核形成剤としたSiO₂-Al₂O₃-Li₂O系組成に所定量のRO成分およびLa₂O₃、Y₂O₃等を導入し、原ガラスの熔融清澄性が飛躍的に向上し、前記所定の低い線熱膨張係数を有するとともに、機械的強度に優れ、且つ加工性に優れ、透明性に優れ、光学的均質性も一段と優れている。これは、光学部品材料、基板材料、各種電子材料はもちろんのこと、通常、シリコンや合成石英等が用いられるダミーウェハ(集積回路製造の拡散工程や減圧CVD工程などにおいて炉内のガスの流れや温度の均一性を保つために用いられるもの)にも代替材として、好適に用いることができる。

【書類名】

要約書

【要約】

【解決手段】 80%光線透過波長が600nm以下であり、主結晶として β 一石英固溶体を含有し、酸化物基準の質量%で、 SiO_2 50~65%、 Al_2O_3 20~30%、MgO 0.5~2%、CaO 0.5~2%、SrO 0~10%、BaO 1~5%、ZnO 0.5~15%、 Li_2O 1.5~3.5%、 TiO_2 3~6%、 ZrO_2 1~5%、 Nb_2O_5 0~5%、 La_2O_3 0~5%、 Y_2O_3 0~5%、 As_2O_3 5%よび/または Sb_2O_3 0~2%の組成を含有することを特徴とする、低膨張透明結晶化ガラス。

【選択図】

なし

認定・付加情報

特許出願の番号

特願2000-206914

受付番号

50000858648

書類名

特許願

担当官

東海 明美

7069

作成日

平成12年 7月11日

<認定情報・付加情報>

【提出日】

平成12年 7月 7日

出願人履歷情報

識別番号

[000128784]

1. 変更年月日

1990年 8月15日

[変更理由]

新規登録

住 所

神奈川県相模原市小山1丁目15番30号

氏 名

株式会社オハラ