Question Number	Scheme	Marks	
1.	Shape unchanged Point	B1 B1 (2)	
	(b) Shape Point	B1 B1 (2)	
	(c) $(-2,4)$ y $(2,4)$ $(2,4)$ $(-2,4)$ $(-2,4)$	B1 B1 B1 (3) [7]	

Question Number	Scheme	Marks
2.	$\frac{x^2 - x - 2 = (x - 2)(x + 1)}{\frac{2x^2 + 3x}{(2x + 3)(x - 2)}} = \frac{x}{(2x + 3)(x - 2)} = \frac{x}{x - 2}$ $\frac{2x^2 + 3x}{(2x + 3)(x - 2)} - \frac{6}{x^2 - x - 2} = \frac{x(x + 1) - 6}{(x - 2)(x + 1)}$ $= \frac{x^2 + x - 6}{(x - 2)(x + 1)}$ $= \frac{(x + 3)(x - 2)}{(x - 2)(x + 1)}$ $= \frac{x + 3}{x + 1}$ At any stage	B1 B1 M1 A1 A1 A1 (7)
	Alternative method $x^{2} - x - 2 = (x - 2)(x + 1) $ At any stage $(2x + 3) \text{ appearing as a factor of the numerator at any stage}$ $\frac{2x^{2} + 3x}{(2x + 3)(x - 2)} - \frac{6}{(x - 2)(x + 1)} = \frac{(2x^{2} + 3x)(x + 1) - 6(2x + 3)}{(2x + 3)(x - 2)(x + 1)}$ $= \frac{2x^{3} + 5x^{2} - 9x - 18}{(2x + 3)(x - 2)(x + 1)} $ can be implied $= \frac{(x - 2)(2x^{2} + 9x + 9)}{(2x + 3)(x - 2)(x + 1)} $ or $\frac{(2x + 3)(x^{2} + x - 6)}{(2x + 3)(x - 2)(x + 1)} $ or $\frac{(x + 3)(2x^{2} - x - 6)}{(2x + 3)(x - 2)(x + 1)} $ Any one linear factor × quadratic $= \frac{(2x + 3)(x - 2)(x + 3)}{(2x + 3)(x - 2)(x + 1)} $ Complete factors $= \frac{x + 3}{x + 1}$	[7] B1 B1 M1 A1 A1 A1 (7)

Question Number	Scheme	Marks
3.	$\frac{dy}{dx} = \frac{1}{x}$ accept $\frac{3}{3x}$ At $x = 3$, $\frac{dy}{dx} = \frac{1}{3}$ \Rightarrow $m' = -3$ Use of $mm' = -1$	M1 A1
	a. c	M1
	$y - \ln 1 = -3(x - 3)$	M1
	y = -3x + 9 Accept $y = 9 - 3x$	A1 (5) [5]
	$\frac{dy}{dx} = \frac{1}{3x}$ leading to $y = -9x + 27$ is a maximum of M1 A0 M1 M1 A0 = 3/5	[6]
4.	(a) (i) $\frac{d}{dx} \left(e^{3x+2} \right) = 3e^{3x+2} \left(\text{or } 3e^2 e^{3x} \right)$ At any stage	B1
	$\frac{dy}{dx} = 3x^2 e^{3x+2} + 2x e^{3x+2}$ Or equivalent	M1 A1+A1
	CA .	(4)
	(ii) $\frac{d}{dx} \left(\cos \left(2x^3 \right) \right) = -6x^2 \sin \left(2x^3 \right)$ At any stage	M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-18x^3 \sin\left(2x^3\right) - 3\cos\left(2x^3\right)}{9x^2}$	M1 A1 (4)
	Alternatively using the product rule for second M1 A1	
	$y = \left(3x\right)^{-1}\cos\left(2x^3\right)$	
	$\frac{dy}{dx} = -3(3x)^{-2}\cos(2x^3) - 6x^2(3x)^{-1}\sin(2x^3)$	
	Accept equivalent unsimplified forms	
	(b) $1 = 8\cos(2y+6)\frac{dy}{dx} \text{or} \frac{dx}{dy} = 8\cos(2y+6)$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8\cos(2y+6)}$	M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8\cos\left(\arcsin\left(\frac{x}{4}\right)\right)} \left(=(\pm)\frac{1}{2\sqrt{(16-x^2)}}\right)$	M1 A1 (5)
		[13]

Question Number	Scheme	Marks
5.	(a) $2x^2 - 1 - \frac{4}{x} = 0 \qquad \text{Dividing equation by } x$ $x^2 = \frac{1}{2} + \frac{4}{2x} \qquad \text{Obtaining } x^2 = \dots$ $x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)} * \qquad \text{cso}$ (b) $x_1 = 1.41, x_2 = 1.39, x_3 = 1.39$ If answers given to more than 2 dp, penalise first time then accept awrt above. (c) $\text{Choosing } (1.3915, 1.3925) \text{ or a tighter interval}$ $f(1.3915) \approx -3 \times 10^{-3}, f(1.3925) \approx 7 \times 10^{-3} \qquad \text{Both, awrt}$	M1 A1 (3) B1, B1, B1 (3) M1 A1
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.3915, 1.3925)$ $\Rightarrow \alpha = 1.392 \text{ to 3 decimal places} *$ cso	A1 (3) [9]
6.	(a) $R\cos\alpha = 12$, $R\sin\alpha = 4$ $R = \sqrt{(12^2 + 4^2)} = \sqrt{160}$ Accept if just written down, awrt 12.6 $\tan\alpha = \frac{4}{12}$, $\Rightarrow \alpha \approx 18.43^\circ$ awrt 18.4°	M1 A1 M1, A1(4)
	(b) $\cos(x + \text{their } \alpha) = \frac{7}{\text{their } R} \ (\approx 0.5534)$ $x + \text{their } \alpha = 56.4^{\circ} \qquad \text{awrt } 56^{\circ}$ $= \dots, 303.6^{\circ} \qquad 360^{\circ} - \text{their principal value}$ $x = 38.0^{\circ}, 285.2^{\circ} \qquad \text{Ignore solutions out of range}$ If answers given to more than 1 dp, penalise first time then accept awrt above.	M1 A1 M1 A1, A1 (5)
	(c)(i) minimum value is $-\sqrt{160}$ ft their R	B1ft
	(ii) $\cos(x + \text{their } \alpha) = -1$ $x \approx 161.57^{\circ}$ cao	M1 A1 (3) [12]

Question Number	Scheme	Ma	arks
7.	(a) (i) Use of $\cos 2x = \cos^2 x - \sin^2 x$ in an attempt to prove the identity. $\frac{\cos 2x}{\cos x + \sin x} = \frac{\cos^2 x - \sin^2 x}{\cos x + \sin x} = \frac{(\cos x - \sin x)(\cos x + \sin x)}{\cos x + \sin x} = \cos x - \sin x $ cso	M1 A1	(2)
	(ii) Use of $\cos 2x = 2\cos^2 x - 1$ in an attempt to prove the identity. Use of $\sin 2x = 2\sin x \cos x$ in an attempt to prove the identity. $\frac{1}{2}(\cos 2x - \sin 2x) = \frac{1}{2}(2\cos^2 x - 1 - 2\sin x \cos x) = \cos^2 x - \cos x \sin x - \frac{1}{2} + \cos x \cos x$	M1 M1 A1	(3)
	(b) $\cos\theta(\cos\theta - \sin\theta) = \frac{1}{2}$ Using (a)(i)	M1	(3)
	$\cos^{2}\theta - \cos\theta \sin\theta - \frac{1}{2} = 0$ $\frac{1}{2}(\cos 2\theta - \sin 2\theta) = 0$ Using (a)(ii)	M1	
	$\cos 2\theta = \sin 2\theta + \cos \theta$	A1	(3)
	(c) $\tan 2\theta = 1$ $2\theta = \frac{\pi}{4}, \left(\frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}\right)$ any one correct value of 2θ	M1 A1	
	$\theta = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$ Obtaining at least 2 solutions in range The 4 correct solutions	M1 A1	(4)
	If decimals (0.393,1.963,3.534,5.105) or degrees (22.5°,112.5°,202.5°,292.5°) are given, but all 4 solutions are found, penalise one A mark only. Ignore solutions out of range.		[12]

Question Number	Scheme	Marks
8.	(a) $\operatorname{gf}(x) = e^{2(2x+\ln 2)}$ $= e^{4x}e^{2\ln 2}$ $= e^{4x}e^{\ln 4}$ $= 4e^{4x} \qquad \text{Give mark at this point, cso}$ $\left(\operatorname{Hence \ gf}: x \mapsto 4e^{4x}, x \in \square\right)$ (b)	M1 M1 M1 A1 (4)
	Shape and point O x	B1 (1)
	(c) Range is \Box 4 Accept gf $(x) > 0$, $y > 0$	B1 (1)
	(d) $\frac{d}{dx} \left[gf(x) \right] = 16e^{4x}$ $e^{4x} = \frac{3}{16}$ $4x = \ln \frac{3}{16}$ $x \approx -0.418$	M1 A1 M1 A1 (4) [10]