卷积神经网络的压缩技术

讲师 龚轩

1. 认识神经网络

2. 神经网络压缩技术发展状况

3. 神经网络压缩技术介绍

认识神经网络

- 生物神经元结构及数学模型
- 从BP神经网络到卷积神经网络
- 深度神经网络面临的问题
- 近几年神经网络的统计数据

生物神经元的结构

• 神经元的状态: 兴奋、抑制

神经元数学模型

□ 卷积1943年,麦克洛奇和皮兹提出M-P模型。一般模型

从BP神经网络到卷积神经网络 - BP网络结构

从BP神经网络到卷积神经网络 - BP神经网络的改进

特征提取不充分

权值共享

Image

Convolved Feature

全连接结构,参数过多

从BP神经网络到卷积神经网络 - 卷积和子采样

• 通常卷积和子采样的过程如图

从BP神经网络到卷积神经网络 - LeNet-5

Layer	Input	Filter size	Feature map size	Number of unit	Training parameters	Remark
C1	32 x 32	5 x 5 x 1 ->6	28 x 28	28 x 28 x 6	156	(5 x 5 +1) x 6
S2	28 x 28	2 x 2(sampling zero)	14 x 14	14 x 14 x 6	12	2 x 6
C3	14 x 14	5 x 5x1->16	10 x 10	10 x 10 x 16	1516	6* (3*5x5+1) +6* (4*5x5+1) +3* (4*5x5+1) + (5x5*6+1)
S4	10 x 10	2 x 2(sampling zero)	5 x 5	5 x 5 x16	32	2*16
C5	5x5	5x5x1->120	1 x 1	1 x 1x120	48120	120* (16*5*5+1)
F6	84 node				10164	7x12*(120+1)

深度神经网络所面临的问题

□ 深度神经网络面临的问题

□ 深度神经网络面临的这些问题,同时也制约着神经网络在嵌入式系统中的应用。

近几年神经网络的统计数据

□ 下表展示了近年来神经网络的统计数据

年份	网络模型	网络层数	参数大小
2012	AlexNet	5+3	60M
2013	Clarifai	5+3	60M
2014	MSRA	5+3	200M
2014	VGG-19	16+3	143M
2014	GoogleNet	22	6.8M
2015	ResNet	152	19.4M

神经网络压缩技术发展状况

- 模型加速与压缩分类
- 网络加速和压缩的论文统计

神经网络压缩方法分类

- Low-Rank
- Pruning
- Quantization
- Knowledge Distillation
- Compact Network Design

网络加速和压缩的论文统计

- · Quantization becomes popular
 - efficient training using quantization
 - low-bit representation
 - binary convolutional neural networks
- Pruning is still a hot topic
- small accuracy drop
- efficient structured pruning
- · Few low-rank based method
 - tensor decomposition is not efficient for current network structure

• 引自程健博士《让机器"删繁就简":深度神经网络加速与压缩》

神经网络压缩技术

- 神经网络压缩遵循的基本原则
- 紧凑网络模型举例(compact net)
- 网络剪枝(pruning)
- 参数量化(quantization)

神经网络压缩遵循的基本原则

■ 神经网络压缩技术力求遵循一个基本的原则,即精准度和效率的平衡;效率问题主要是模型的存储问题和模型进行预测的速度问题。

- □可从下面几个角度衡量压缩效率
- 精准度
- 计算资源和存储资源占用
- 模型体量
- 硬件或平台依赖性

几种轻量化网络模型

- 轻量化模型设计主要思想在于设计更高效的网络计算方式(主要针对卷积方式),从而使网络参数减少的同时,不损失网络性能。.
- □ 仅几年来诞生的轻量化网络模型如下:

Network model	Publication	Auther	Key technology
SqueezeNet	ICLR-2017	Han.etc.(Berkeley&Stanford)	引入fire module, 用1*1的卷积核压缩特征图(feature maps)数量
MobileNet	CVPR-2017	Google	Depth-wise convolution (depth-wise convolution + pointwise convolution)
ShuffleNet	CVPR-2017	Face++	Depth-wise convolution (Group convolution + channel shuffle)
Xception	N/A	Google	总体基于Depth-wise convolution的思想

轻量化网络模型举例-SqueezeNet (基本策略)

□ SqueezeNet (Iandola等人设计) SqueezeNet设计目标不是为了得到最佳的CNN识别精度,而是希望简化 网络复杂度,同时达到public网络的识别精度。所以SqueezeNet主要是为了降低CNN模型参数数量而设计 的

□ 为达到以上目的而遵循的三个基本策略:

策略三:延后降采样操作以便卷积层有大的 激活图(更大的激活图保留了更多的信息, 可以提供更高的分类准确率)

一个采用3x3卷积核的卷积层,该层所有卷积 参数的数量(不考虑偏置)为: P=(输入通道数)*(滤波器数)*3*3

的 ·

策略二:减少输入通道数量: (这一部分使用squeeze layers来实现)

策略一:用1 x 1的卷积和替换3x3的卷积核;参数减少为原来的1/9

策略一和策略二主要是在保持精准度不变的情况 下减少网络参数;而策略三主要是在参数数量受 限的情况下提高准确率。

紧凑网络模型举例-SqueezeNet(Fire module)

- □ Fire module:将原来简单的一层conv层变成两层: squeeze层+expand层,各自带上Relu激活层。
- 使用Fire module的过程中,令s1x1 < e1x1 + e3x3,这样squeeze layer可以限制输入通道数量(也就是前面提到的策略二)

Figure 1: Microarchitectural view: Organization of convolution filters in the **Fire module**. In this example, $s_{1x1} = 3$, $e_{1x1} = 4$, and $e_{3x3} = 4$. We illustrate the convolution filters but not the activations.

紧凑网络模型举例-SqueezeNet(网络结构和规模)

■ 网络结构和规模

Table 1: SqueezeNet architectural dimensions. (The formatting of this table was inspired by the Inception2 paper (Ioffe & Szegedy, 2015).)

layer name/type	output size	filter size / stride (if not a fire layer)	depth	Slxl (#1x1 squeeze)	e _{lxl} (#1x1 expand)	e _{3x3} (#3x3 expand)	S _{1x1} sparsity	e _{1x1}	e _{3x3} sparsity	# bits	#parameter before pruning	#parameter after pruning
input image	224x224x3											-
conv1	111x111x96	7x7/2 (x96)	1				1	100% (7x7)	6bit	14,208	14,208
maxpool1	55x55x96	3x3/2	0				10					
fire2	55x55x128		2	16	64	64	100%	100%	33%	6bit	11,920	5,746
fire3	55x55x128		2	16	64	64	100%	100%	33%	6bit	12,432	6,258
fire4	55x55x256		2	32	128	128	100%	100%	33%	6bit	45,344	20,646
maxpool4	27x27x256	3x3/2	0									
fire5	27x27x256		2	32	128	128	100%	100%	33%	6bit	49,440	24,742
fire6	27x27x384		2	48	192	192	100%	50%	33%	6bit	104,880	44,700
fire7	27x27x384		2	48	192	192	50%	100%	33%	6bit	111,024	46,236
fire8	27x27x512		2	64	256	256	100%	50%	33%	6bit	188,992	77,581
maxpool8	13x12x512	3x3/2	0									
fire9	13x13x512		2	64	256	256	50%	100%	30%	6bit	197,184	77,581
conv10	13×13×1000	1×1/1 (×1000)	1					20% (3x3)		6bit	513,000	103,400
avgpool10	1x1x1000	13x13/1	0									
	activations		pa	arameters				compress	ion info	/blog	1,248,424 ((total) et	421,098 (total)

紧凑网络模型举例-SqueezeNet(参数计算举例)

□ 以前一节表中的fire2为例, 计算这 一层的参数规模。

紧凑网络模型举例-SqueezeNet(验证对比)

■ SqueezeNet与AlexNet在精度和模型大小方面做了对比,如下:

Table 2: Comparing SqueezeNet to model compression approaches. By *model size*, we mean the number of bytes required to store all of the parameters in the trained model.

CNN architecture	Compression Approach	Data	Original →	Reduction in	Top-1	Top-5
	All a landalista	Type	Compressed Model	Model Size	ImageNet	ImageNet
		3.8	Size	vs. AlexNet	Accuracy	Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al., 2014)	32 bit	$240\text{MB} \rightarrow 48\text{MB}$	5x	56.0%	79.4%
AlexNet	Network Pruning (Han et al., 2015b)	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%
AlexNet	Deep Compression (Han et al., 2015a)	5-8 bit	$240MB \rightarrow 6.9MB$	35x	57.2%	80.3%
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%

几种轻量化网络模型-深度可分离卷积(Deepwise Separable Convolution)

□ 下图显示了传统的卷积滤波器能够被深度可分离卷积所替换:

(a) Standard Convolution Filters

计算代价:

$$D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F$$

深度可分离卷积相对于传统的卷积操作的计算代价:

$$\frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F}$$

$$= \frac{1}{N} + \frac{1}{D_K^2}$$

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

网络剪枝 (pruning)

- □ 通过剪枝处理,在减小模型复杂度,还能有效防止过拟合,提升模型泛化性。
- 进入到深度学习时代后,如何对大型深度神经网络进行高效的剪枝,成为了 一个重要的研究课题。尽管各种剪纸算法的具 体细节不尽相同,但所采用的基本框架却是相似的。给定一个预训练好的网络 模型,常用的剪枝算法一般都遵从如下的操作流程:

网络剪枝(pruning)-剪枝策略

网络剪枝(pruning)-验证对比

□ 下表显示了剪枝前后的压缩统计数据(来自Han等人的deep compression)

The compression pipeline can save $35 \times$ to $49 \times$ parameter storage with no loss of accuracy.

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref LeNet-300-100 Compressed	1.64% 1.58%	(H)	1070 KB 27 KB	40×
LeNet-5 Ref LeNet-5 Compressed	0.80% 0.74%	-	1720 KB 44 KB	39×
AlexNet Ref AlexNet Compressed	42.78% 42.78%	19.73% 19.70%	240 MB 6.9 MB	35×
VGG-16 Ref VGG-16 Compressed	31.50% 31.17%	11.32% 10.91%	552 MB 11.3 MB	49×

网络剪枝(pruning)-以滤波器级别的剪指为例(一)

可使用不同方式来估计滤波器的相关性,例如可通过计算权重的方式计算滤波器权重的 L1 范数,即所有滤波器权重的绝对值之和。

网络剪枝(pruning)-以滤波器级别的剪指为例(二)

当卷积之后是批量归一化(BN)时,必须从批量归一化参数中去除这些通道

参数量化(quantization)

- ■权重量化与共享 使用 k-means聚类来标识训练网络中的共享权值。
- •将连续分布的权值离散化,从而减小需要存储的权值数量。
- •让许多连接共享同一权重, 使原始存储整个网络权重变为只需要存储码本(有效的权重)和索引;

剪枝、量化和哈夫曼编码

■ 通过将剪枝,量化和哈夫曼编码运用在不同阶段以达到有效的压缩率。

(来自Han等人的deep compression)

Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

Layer	#Weights	Weights% (P)	Weight bits (P+Q)	Weight bits (P+Q+H)	Index bits (P+Q)	Index bits (P+Q+H)	Compress rate (P+Q)	Compress rate (P+Q+H)
conv1	35K	84%	8	6.3	4	1.2	32.6%	20.53%
conv2	307K	38%	8	5.5	4	2.3	14.5%	9.43%
conv3	885K	35%	8	5.1	4	2.6	13.1%	8.44%
conv4	663K	37%	8	5.2	4	2.5	14.1%	9.11%
conv5	442K	37%	8	5.6	4	2.5	14.0%	9.43%
fc6	38M	9%	5	3.9	4	3.2	3.0%	2.39%
fc7	17M	9%	5	3.6	4	3.7	3.0%	2.46%
fc8	4M	25%	5	4	4	3.2	7.3%	5.85%
Total	61M	$11\%(9\times)$	5.4	4	4	3.2	$3.7\% (27 \times)$	$2.88\% (35 \times)$

■ 基于ImageNet ILSVRC-2012数据集的统计结果。

-Thanks!-

Q & A