Biostat 203B Homework 4

Due Mar 9 @ 11:59PM

AUTHOR Julie Lee

Display machine information:

```
sessionInfo()
```

R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.12.0 LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0

locale:

[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8

[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C

time zone: Etc/UTC

tzcode source: system (glibc)

attached base packages:

[1] stats graphics grDevices utils datasets methods base

loaded via a namespace (and not attached):

[1] htmlwidgets_1.6.4 compiler_4.4.2 fastmap_1.2.0 cli_3.6.3
[5] tools_4.4.2 htmltools_0.5.8.1 rstudioapi_0.17.1 yaml_2.3.10
[9] rmarkdown_2.29 knitr_1.49 jsonlite_1.8.9 xfun_0.50

[13] digest_0.6.37 rlang_1.1.4 evaluate_1.0.3

Display my machine memory.

```
memuse::Sys.meminfo()
```

Totalram: 62.794 GiB Freeram: 57.192 GiB

Load database libraries and the tidyverse frontend:

```
library(bigrquery)
library(dbplyr)
```

```
library(DBI)
library(gt)
library(gtsummary)
library(tidyverse)
```

```
— Attaching core tidyverse packages —
                                                             – tidyverse 2.0.0 —

✓ dplyr

            1.1.4
                      ✓ readr
                                  2.1.5
                                  1.5.1
✓ forcats
            1.0.0

✓ stringr

✓ ggplot2 3.5.1

✓ tibble

                                  3.2.1
✓ lubridate 1.9.4

✓ tidyr

                                  1.3.1
✓ purrr
            1.0.2
— Conflicts —
                                                       - tidyverse_conflicts() —
* dplyr::filter() masks stats::filter()
* dplyr::ident() masks dbplyr::ident()
* dplyr::lag()
                  masks stats::lag()
* dplyr::sql()
                  masks dbplyr::sql()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to
become errors
```

Q1. Compile the ICU cohort in HW3 from the Google BigQuery database

Below is an outline of steps. In this homework, we exclusively work with the BigQuery database and should not use any MIMIC data files stored on our local computer. Transform data as much as possible in BigQuery database and collect() the tibble **only at the end of Q1.7**.

Q1.1 Connect to BigQuery

Authenticate with BigQuery using the service account token. Please place the service account token (shared via BruinLearn) in the working directory (same folder as your qmd file). Do **not** ever add this token to your Git repository. If you do so, you will lose 50 points.

```
# path to the service account token
satoken <- "biostat-203b-2025-winter-4e58ec6e5579.json"
# BigQuery authentication using service account
bq_auth(path = satoken)</pre>
```

Connect to BigQuery database mimiciv_3_1 in GCP (Google Cloud Platform), using the project billing account biostat-203b-2025-winter.

```
# connect to the BigQuery database `biostat-203b-2025-mimiciv_3_1`
con_bq <- dbConnect(
    bigrquery::bigquery(),
    project = "biostat-203b-2025-winter",
    dataset = "mimiciv_3_1",
    billing = "biostat-203b-2025-winter"
)
con_bq</pre>
```

```
<BigQueryConnection>
```

Dataset: biostat-203b-2025-winter.mimiciv 3 1

Billing: biostat-203b-2025-winter List all tables in the mimiciv_3_1 database.

```
dbListTables(con_bq)
```

```
[1] "admissions"
                           "caregiver"
                                                 "chartevents"
 [4] "d hcpcs"
                           "d icd diagnoses"
                                                 "d icd procedures"
[7] "d_items"
                           "d labitems"
                                                 "datetimeevents"
                                                 "emar"
[10] "diagnoses_icd"
                           "drgcodes"
[13] "emar detail"
                           "hcpcsevents"
                                                 "icustavs"
[16] "ingredientevents"
                           "inputevents"
                                                 "labevents"
[19] "microbiologyevents" "omr"
                                                 "outputevents"
[22] "patients"
                           "pharmacy"
                                                 "poe"
[25] "poe_detail"
                           "prescriptions"
                                                 "procedureevents"
[28] "procedures icd"
                           "provider"
                                                 "services"
[31] "transfers"
```

Q1.2 icustays data

Connect to the icustays table.

```
# full ICU stays table
icustays_tble <- tbl(con_bq, "icustays") |>
    arrange(subject_id, hadm_id, stay_id) |>
    show_query() |>
    print(width = Inf)
```

```
<S0L>
SELECT `icustays`.*
FROM `icustays`
ORDER BY `subject id`, `hadm id`, `stay id`
# Source:
              SQL [?? x 8]
# Database:
              BigQueryConnection
# Ordered by: subject_id, hadm_id, stay_id
   subject id hadm id stay id first careunit
                 <int>
                          <int> <chr>
        <int>
     10000032 29079034 39553978 Medical Intensive Care Unit (MICU)
 1
     10000690 25860671 37081114 Medical Intensive Care Unit (MICU)
     10000980 26913865 39765666 Medical Intensive Care Unit (MICU)
     10001217 24597018 37067082 Surgical Intensive Care Unit (SICU)
     10001217 27703517 34592300 Surgical Intensive Care Unit (SICU)
     10001725 25563031 31205490 Medical/Surgical Intensive Care Unit (MICU/SICU)
 7
     10001843 26133978 39698942 Medical/Surgical Intensive Care Unit (MICU/SICU)
     10001884 26184834 37510196 Medical Intensive Care Unit (MICU)
     10002013 23581541 39060235 Cardiac Vascular Intensive Care Unit (CVICU)
10
     10002114 27793700 34672098 Coronary Care Unit (CCU)
   last careunit
                                                     intime
```

```
<chr>
                                                     <dttm>
 1 Medical Intensive Care Unit (MICU)
                                                     2180-07-23 14:00:00
 2 Medical Intensive Care Unit (MICU)
                                                     2150-11-02 19:37:00
 3 Medical Intensive Care Unit (MICU)
                                                     2189-06-27 08:42:00
 4 Surgical Intensive Care Unit (SICU)
                                                     2157-11-20 19:18:02
 5 Surgical Intensive Care Unit (SICU)
                                                     2157-12-19 15:42:24
 6 Medical/Surgical Intensive Care Unit (MICU/SICU) 2110-04-11 15:52:22
 7 Medical/Surgical Intensive Care Unit (MICU/SICU) 2134-12-05 18:50:03
 8 Medical Intensive Care Unit (MICU)
                                                     2131-01-11 04:20:05
 9 Cardiac Vascular Intensive Care Unit (CVICU)
                                                     2160-05-18 10:00:53
10 Coronary Care Unit (CCU)
                                                     2162-02-17 23:30:00
  outtime
                         los
   <dttm>
                       <dbl>
 1 2180-07-23 23:50:47 0.410
 2 2150-11-06 17:03:17 3.89
 3 2189-06-27 20:38:27 0.498
 4 2157-11-21 22:08:00 1.12
 5 2157-12-20 14:27:41 0.948
 6 2110-04-12 23:59:56 1.34
 7 2134-12-06 14:38:26 0.825
 8 2131-01-20 08:27:30 9.17
 9 2160-05-19 17:33:33 1.31
10 2162-02-20 21:16:27 2.91
# i more rows
```

Q1.3 admissions data

Connect to the admissions table.

```
admissions_tble <- tbl(con_bq, "admissions") |>
  arrange(subject_id, hadm_id) |>
  show_query() |>
  print(width = Inf)

<SQL>
<SQL>
```

```
SELECT `admissions`.*
FROM `admissions`
ORDER BY `subject_id`, `hadm_id`
# Source:
             SQL [?? x 16]
# Database:
              BigQueryConnection
# Ordered by: subject id, hadm id
   subject_id hadm_id admittime
                                           dischtime
                                                                deathtime
        <int>
                 <int> <dttm>
                                           <dttm>
     10000032 22595853 2180-05-06 22:23:00 2180-05-07 17:15:00 NA
1
     10000032 22841357 2180-06-26 18:27:00 2180-06-27 18:49:00 NA
 2
     10000032 25742920 2180-08-05 23:44:00 2180-08-07 17:50:00 NA
     10000032 29079034 2180-07-23 12:35:00 2180-07-25 17:55:00 NA
 5
    10000068 25022803 2160-03-03 23:16:00 2160-03-04 06:26:00 NA
 6
     10000084 23052089 2160-11-21 01:56:00 2160-11-25 14:52:00 NA
 7
     10000084 29888819 2160-12-28 05:11:00 2160-12-28 16:07:00 NA
```

3/7/25, 12:16 AM Biostat 203B Homework 4

```
10000108 27250926 2163-09-27 23:17:00 2163-09-28 09:04:00 NA
9
     10000117 22927623 2181-11-15 02:05:00 2181-11-15 14:52:00 NA
10
     10000117 27988844 2183-09-18 18:10:00 2183-09-21 16:30:00 NA
                     admit provider id admission location
   admission type
                                                               discharge location
   <chr>
                     <chr>
                                                               <chr>
 1 URGFNT
                     P49AFC
                                        TRANSFER FROM HOSPITAL HOME
 2 EW EMER.
                                        EMERGENCY ROOM
                     P784FA
                                                               HOME
 3 EW EMER.
                     P19UTS
                                        EMERGENCY ROOM
                                                               HOSPICE
 4 EW EMER.
                                        EMERGENCY ROOM
                     P060TX
                                                               HOME
 5 EU OBSERVATION
                     P39NW0
                                        EMERGENCY ROOM
                                                               <NA>
 6 EW EMER.
                                       WALK-IN/SELF REFERRAL
                     P42H7G
                                                               HOME HEALTH CARE
 7 EU OBSERVATION
                     P35NE4
                                        PHYSICIAN REFERRAL
                                                               <NA>
 8 EU OBSERVATION
                     P40JML
                                        EMERGENCY ROOM
                                                               <NA>
 9 FU OBSERVATION
                                        EMERGENCY ROOM
                                                               <NA>
                     P47FY8
10 OBSERVATION ADMIT P13ACE
                                       WALK-IN/SELF REFERRAL HOME HEALTH CARE
   insurance language marital_status race edregtime
   <chr>
             <chr>
                      <chr>
                                      <chr> <dttm>
                                      WHITE 2180-05-06 19:17:00
 1 Medicaid English WIDOWED
 2 Medicaid English WIDOWED
                                     WHITE 2180-06-26 15:54:00
 3 Medicaid English WIDOWED
                                     WHITE 2180-08-05 20:58:00
 4 Medicaid English WIDOWED
                                     WHITE 2180-07-23 05:54:00
 5 <NA>
             Enalish SINGLE
                                     WHITE 2160-03-03 21:55:00
 6 Medicare English MARRIED
                                     WHITE 2160-11-20 20:36:00
                                     WHITE 2160-12-27 18:32:00
 7 Medicare English MARRIED
             Enalish SINGLE
                                     WHITE 2163-09-27 16:18:00
 8 <NA>
 9 Medicaid English DIVORCED
                                     WHITE 2181-11-14 21:51:00
10 Medicaid English DIVORCED
                                     WHITE 2183-09-18 08:41:00
   edouttime
                       hospital_expire_flag
   <dttm>
                                       <int>
 1 2180-05-06 23:30:00
                                           0
 2 2180-06-26 21:31:00
                                           0
 3 2180-08-06 01:44:00
                                           0
 4 2180-07-23 14:00:00
                                           0
 5 2160-03-04 06:26:00
                                           0
 6 2160-11-21 03:20:00
                                           0
 7 2160-12-28 16:07:00
                                           0
8 2163-09-28 09:04:00
                                           0
 9 2181-11-15 09:57:00
                                           0
10 2183-09-18 20:20:00
# i more rows
```

Q1.4 patients data

Connect to the patients table.

```
patients_tble <- tbl(con_bq, "patients") |>
  arrange(subject_id) |>
  show_query() |>
  print(width = Inf)
```

```
<S0L>
SELECT `patients`.*
FROM `patients`
ORDER BY `subject_id`
# Source:
              SQL [?? x 6]
# Database:
              BigQueryConnection
# Ordered by: subject id
   subject_id gender anchor_age anchor_year anchor_year_group dod
        <int> <chr>
                                       <int> <chr>
                          <int>
                                                                <date>
    10000032 F
                                        2180 2014 - 2016
                                                               2180-09-09
 1
                              52
 2
    10000048 F
                             23
                                        2126 2008 - 2010
                                                               NA
 3
    10000058 F
                             33
                                        2168 2020 - 2022
                                                               NA
                                        2160 2008 - 2010
 4
    10000068 F
                             19
                                                               NA
 5
                                        2160 2017 - 2019
                                                               2161-02-13
    10000084 M
                             72
     10000102 F
                             27
                                        2136 2008 - 2010
 6
                                                               NA
 7
    10000108 M
                             25
                                        2163 2014 - 2016
                                                               NA
 8
    10000115 M
                             24
                                        2154 2017 - 2019
                                                               NA
 9
    10000117 F
                             48
                                        2174 2008 - 2010
                                                               NA
10
     10000161 M
                             60
                                        2163 2020 - 2022
                                                               NA
# i more rows
```

Q1.5 labevents data

Connect to the labevents table and retrieve a subset that only contain subjects who appear in icustays_tble and the lab items listed in HW3. Only keep the last lab measurements (by storetime) before the ICU stay and pivot lab items to become variables/columns. Write all steps in *one* chain of pipes.

```
labevents_tble <- tbl(con_bq, "labevents") |>
 filter(itemid %in% c(50912, 50971, 50983, 50902,
                       50882, 51221, 51301, 50931)) |>
 arrange(subject_id, charttime, itemid) |>
  inner join(tbl(con bg, "icustays"), by = "subject id") |>
 filter(storetime < intime) |>
 mutate(valuenum = as.numeric(valuenum)) |>
 group_by(subject_id, stay_id, itemid) |>
  slice_max(order_by = storetime, n = 1, with_ties = FALSE) |>
  ungroup() |>
  select(subject_id, stay_id, itemid, valuenum) |>
  pivot_wider(names_from = itemid, values_from = valuenum) |>
  rename(
    bicarbonate = `50882`,
    chloride = 50902,
    creatinine = `50912`,
   glucose = `50931`,
   potassium = `50971`,
    sodium = `50983`,
   hematocrit = `51221`,
   wbc = 51301,
  select(subject_id, stay_id, bicarbonate, chloride, creatinine,
```

3/7/25, 12:16 AM Biostat 203B Homework 4

```
glucose, potassium, sodium, hematocrit, wbc) |>
arrange(subject_id, stay_id)
```

Warning: ORDER BY is ignored in subqueries without LIMIT

i Do you need to move arrange() later in the pipeline or use window_order() instead?

```
labevents_tble
```

Warning: ORDER BY is ignored in subqueries without LIMIT

i Do you need to move arrange() later in the pipeline or use window_order() instead?

```
SQL [?? x 10]
# Source:
# Database:
              BigQueryConnection
# Ordered by: subject_id, stay_id
   subject_id stay_id bicarbonate chloride creatinine glucose potassium sodium
        <int>
                  <int>
                              <dbl>
                                        <dbl>
                                                   <dbl>
                                                            <dbl>
                                                                      <dbl> <dbl>
    10000032 39553978
                                 25
                                           95
                                                      0.7
                                                              102
                                                                         6.7
                                                                                126
 1
     10000690 37081114
                                                                         4.8
                                 26
                                          100
                                                      1
                                                               85
                                                                                137
 2
     10000980 39765666
                                 21
                                                      2.3
                                                                         3.9
                                          109
                                                               89
                                                                                144
     10001217 34592300
                                 30
                                          104
                                                     0.5
                                                               87
                                                                         4.1
                                                                                142
    10001217 37067082
 5
                                 22
                                          108
                                                     0.6
                                                              112
                                                                         4.2
                                                                                142
     10001725 31205490
                                           98
                                                    NA
                                                                         4.1
                                                                                139
 6
                                 NA
                                                               NA
 7
     10001843 39698942
                                           97
                                                      1.3
                                                                         3.9
                                 28
                                                              131
                                                                                138
     10001884 37510196
 8
                                  30
                                           88
                                                      1.1
                                                              141
                                                                         4.5
                                                                                130
    10002013 39060235
                                  24
                                          102
                                                      0.9
                                                              288
                                                                         3.5
                                                                                137
```

i more rows

10

i 2 more variables: hematocrit <dbl>, wbc <dbl>

```
labevents_tble |> summarise(row_count = n())
```

3.1

95

6.5

125

Warning: ORDER BY is ignored in subqueries without LIMIT

18

i Do you need to move arrange() later in the pipeline or use window_order() instead? ORDER BY is ignored in subqueries without LIMIT

NA

i Do you need to move arrange() later in the pipeline or use window_order() instead?

Source: SQL [?? x 1]

10002114 34672098

Database: BigQueryConnection

Ordered by: subject_id, stay_id

row_count <int> 88086

Q1.6 chartevents data

Connect to chartevents table and retrieve a subset that only contain subjects who appear in icustays_tble and the chart events listed in HW3. Only keep the first chart events (by storetime) during ICU stay and pivot chart events to become variables/columns. Write all steps in *one* chain of pipes. Similary to HW3, if a vital has multiple measurements at the first storetime, average them.

Solution

```
chartevents tble <- tbl(con bg, "chartevents") |>
 filter(itemid %in% c(220045, 220179, 220180, 223761, 220210)) |>
 select(subject_id, stay_id, itemid, valuenum, storetime, charttime) |>
 inner join(
   tbl(con_bq, "icustays") |> select(subject_id, stay_id, intime, outtime),
   by = "stay id"
 ) |>
 filter(storetime >= intime & storetime < outtime) |>
 select(-subject id y) |>
 rename(subject_id = subject_id_x) |>
 group_by(subject_id, stay_id, itemid) |>
 arrange(storetime) |>
 slice_min(order_by = storetime, n = 1, with_ties = TRUE) |>
 ungroup() |>
 group by(subject id, stay id, itemid) |>
 summarize(valuenum_avg = mean(valuenum, na.rm = TRUE), .groups = "drop") |>
 pivot_wider(
   names_from = itemid, values_from = valuenum_avg,
   names_prefix = "vital_"
 ) |>
 rename(
   heart rate = vital 220045,
   non invasive blood pressure systolic = vital 220179,
   non_invasive_blood_pressure_diastolic = vital_220180,
   temperature fahrenheit = vital 223761,
   respiratory_rate = vital_220210
 ) |>
 arrange(subject id, stay id)
```

Warning: ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window_order() instead?

```
chartevents_tble
```

```
Warning: ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window_order() instead?
# Source:
              SOL [?? x 7]
# Database:
             BigQueryConnection
# Ordered by: subject_id, stay_id
   subject id stay id heart rate non invasive blood pressure...¹ respiratory rate
        <int>
                 <int>
                            <dbl>
                                                           <dbl>
                                                                            <dbl>
   10000032 39553978
                             91
                                                            48
                                                                             24
1
 2 10000690 37081114
                             78
                                                            56.5
                                                                             24.3
   10000980 39765666
                             76
                                                           102
                                                                             23.5
 3
    10001217 34592300
                             79.3
                                                            93.3
                                                                             14
 5
    10001217 37067082
                             86
                                                            90
                                                                             18
```

```
10001725 31205490
                             86
                                                                              19
 6
                                                            56
7
    10001843 39698942
                             124.
                                                            78
                                                                              16.5
    10001884 37510196
                             49
                                                            30.5
                                                                              13
   10002013 39060235
 9
                             80
                                                            62
                                                                              14
10
    10002114 34672098
                             110.
                                                            80
                                                                              21
# i more rows
# i abbreviated name: 'non_invasive_blood_pressure_diastolic
# i 2 more variables: temperature_fahrenheit <dbl>,
    non_invasive_blood_pressure_systolic <dbl>
```

```
chartevents_tble |> summarise(row_count = n())
```

Q1.7 Put things together

This step is similar to Q7 of HW3. Using *one* chain of pipes |> to perform following data wrangling steps: (i) start with the icustays_tble, (ii) merge in admissions and patients tables, (iii) keep adults only (age at ICU intime >= 18), (iv) merge in the labevents and chartevents tables, (v) collect the tibble, (vi) sort subject_id, hadm_id, stay_id and print(width = Inf).

Solution

Use the collect command only until question 7

Creating the admit_hour variable (replicating what was in Homework #3)

```
admissions_tble <- admissions_tble |>
mutate(admit_hour = hour(admittime))
```

```
by = c("subject_id", "hadm_id")) |>
left_join(chartevents_tble, by = c("subject_id", "stay_id")) |>
left_join(labevents_tble, by = c("subject_id", "stay_id")) |>
select(-intime_year) |>
collect() |>
arrange(subject_id, hadm_id, stay_id) |>
distinct() |>
print(width = Inf)
```

```
Warning: ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window order() instead?
ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window_order() instead?
ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window_order() instead?
ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window_order() instead?
ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window order() instead?
ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window order() instead?
ORDER BY is ignored in subqueries without LIMIT
i Do you need to move arrange() later in the pipeline or use window_order() instead?
# A tibble: 94,458 × 41
   subject_id hadm_id stay_id first_careunit
        <int>
                 <int>
                          <int> <chr>
 1
    10000032 29079034 39553978 Medical Intensive Care Unit (MICU)
    10000690 25860671 37081114 Medical Intensive Care Unit (MICU)
 2
    10000980 26913865 39765666 Medical Intensive Care Unit (MICU)
 3
    10001217 24597018 37067082 Surgical Intensive Care Unit (SICU)
 4
    10001217 27703517 34592300 Surgical Intensive Care Unit (SICU)
    10001725 25563031 31205490 Medical/Surgical Intensive Care Unit (MICU/SICU)
 6
 7
    10001843 26133978 39698942 Medical/Surgical Intensive Care Unit (MICU/SICU)
    10001884 26184834 37510196 Medical Intensive Care Unit (MICU)
    10002013 23581541 39060235 Cardiac Vascular Intensive Care Unit (CVICU)
    10002114 27793700 34672098 Coronary Care Unit (CCU)
10
   last_careunit
                                                    intime
   <chr>
                                                    <dttm>
 1 Medical Intensive Care Unit (MICU)
                                                    2180-07-23 14:00:00
 2 Medical Intensive Care Unit (MICU)
                                                    2150-11-02 19:37:00
 3 Medical Intensive Care Unit (MICU)
                                                    2189-06-27 08:42:00
 4 Surgical Intensive Care Unit (SICU)
                                                    2157-11-20 19:18:02
 5 Surgical Intensive Care Unit (SICU)
                                                    2157-12-19 15:42:24
 6 Medical/Surgical Intensive Care Unit (MICU/SICU) 2110-04-11 15:52:22
 7 Medical/Surgical Intensive Care Unit (MICU/SICU) 2134-12-05 18:50:03
 8 Medical Intensive Care Unit (MICU)
                                                    2131-01-11 04:20:05
9 Cardiac Vascular Intensive Care Unit (CVICU)
                                                    2160-05-18 10:00:53
10 Coronary Care Unit (CCU)
                                                    2162-02-17 23:30:00
   outtime
                         los anchor_age anchor_year anchor_year_group dod
```

	<dttm></dttm>	<dbl></dbl>	<int></int>	<int> <ch< th=""><th>ır></th><th><date></date></th></ch<></int>	ır>	<date></date>
1	2180-07-23 23:5	50:47 0.410	52	2180 201	L4 - 2016	2180-09-09
2	2150-11-06 17:0	03:17 3.89	86	2150 200	08 - 2010	2152-01-30
3	2189-06-27 20:3	38:27 0.498	73	2186 200	08 - 2010	2193-08-26
4	2157-11-21 22:0	08:00 1.12	55	2157 201	11 - 2013	NA
5	2157-12-20 14:2	27:41 0.948	55		11 - 2013	
	2110-04-12 23:5		46		11 - 2013	
	2134-12-06 14:3		73		L7 - 2019	
	2131-01-20 08:2		68		08 - 2010	
	2160-05-19 17:3				08 - 2010	
	2162-02-20 21:1				20 - 2022	
	<pre>gender age_at_i</pre>					
		<int> <dttm></dttm></int>		<dttm></dttm>		
1	F	52 2180-07-	-23 12:35:00	2180-07-25	17:55:00	
2	F	86 2150-11-	-02 18:02:00	2150-11-12	13:45:00	
3	F	76 2189–06-	-27 07:38:00	2189-07-03	03:00:00	
4	F	55 2157-11-	-18 22:56:00	2157-11-25	18:00:00	
5	F	55 2157–12-	-18 16:58:00	2157-12-24	14:55:00	
6	F	46 2110-04-	-11 15:08:00	2110-04-14	15:00:00	
7	М	76 2134–12-	-05 00:10:00	2134-12-06	12:54:00	
8	F	77 2131-01-	-07 20:39:00	2131-01-20	05:15:00	
9	F	57 2160-05-	-18 07:45:00	2160-05-23	13:30:00	
10	М	56 2162-02-	-17 22:32:00	2162-03-04	15:16:00	
	deathtime	admissior	n_type	admi	it_provide	er_id
	<dttm></dttm>	<chr></chr>		<chi< td=""><td>^></td><td></td></chi<>	^>	
1	NA	EW EMER.		P060	XTC	
2	NA	EW EMER.		P260)Q4	
3	NA	EW EMER.		P060	XTC	
4	NA	EW EMER.		P361	LØN	
5	NA	DIRECT EN	1ER.	P276	50U	
6	NA	EW EMER.		P32V	V 56	
7	2134-12-06 12:5	54:00 URGENT		P67 <i>F</i>	ATB	
8	2131-01-20 05:1	15:00 OBSERVAT	ION ADMIT	P49 <i>i</i>	\FC	
9	NA	SURGICAL	SAME DAY ADM	MISSION P828	36C	
10	NA	OBSERVAT	ION ADMIT	P468	334	
	admission_locat	tion discha	arge_location	n insurance	language	marital_status
	<chr></chr>	<chr></chr>		<chr></chr>	<chr></chr>	<chr></chr>
1	EMERGENCY ROOM	HOME		Medicaid	English	WIDOWED
2	EMERGENCY ROOM	REHAB		Medicare	English	WIDOWED
3	EMERGENCY ROOM	HOME H	HEALTH CARE	Medicare	English	MARRIED
4	EMERGENCY ROOM	HOME H	HEALTH CARE	Private	Other	MARRIED
5	PHYSICIAN REFER	RRAL HOME H	HEALTH CARE	Private	Other	MARRIED
6	PACU	HOME		Private	English	MARRIED
7	TRANSFER FROM H	HOSPITAL DIED		Medicare	English	SINGLE
8	EMERGENCY ROOM	DIED		Medicare	English	MARRIED
9	PHYSICIAN REFER	RRAL HOME H	HEALTH CARE	Medicare	English	SINGLE
10	PHYSICIAN REFER	RRAL HOME H	HEALTH CARE	Medicaid	English	<na></na>
	race	edregt	time	edouttime	9	
	<chr></chr>	<dttm></dttm>	>	<dttm></dttm>		
1	WHITE	2180-6	07-23 05:54:0	00 2180-07-2	23 14:00:0	00
2	WHITE	2150-1	11-02 11:41:0	00 2150-11-0	02 19:37:0	00

11/21

3/7/25, 12:16 AM Biostat 203B Homework 4

```
3 BLACK/AFRICAN AMERICAN 2189-06-27 06:25:00 2189-06-27 08:42:00
 4 WHITE
                            2157-11-18 17:38:00 2157-11-19 01:24:00
 5 WHITE
                            NA
                                                  NA
 6 WHITE
                            NA
                                                  NA
 7 WHITE
                            NA
                                                  NA
 8 BLACK/AFRICAN AMERICAN 2131-01-07 13:36:00 2131-01-07 22:13:00
 9 OTHER
                            NA
10 UNKNOWN
                            2162-02-17 19:35:00 2162-02-17 23:30:00
   hospital_expire_flag heart_rate non_invasive_blood_pressure_diastolic
                   <int>
                               <dbl>
                                                                         <dbl>
1
                                91
                                                                          48
                        0
 2
                        0
                                78
                                                                          56.5
 3
                        0
                                76
                                                                         102
 4
                        0
                                86
                                                                          90
 5
                        0
                                79.3
                                                                          93.3
 6
                        0
                                86
                                                                          56
 7
                        1
                               124.
                                                                          78
 8
                                49
                                                                          30.5
                        1
 9
                        0
                                80
                                                                          62
10
                        0
                               110.
                                                                          80
   respiratory_rate temperature_fahrenheit non_invasive_blood_pressure_systolic
               <dbl>
                                        <dbl>
                                                                                 <dbl>
                24
                                         98.7
                                                                                  84
1
2
                24.3
                                         97.7
                                                                                 106
 3
                23.5
                                                                                 154
                                         98
 4
                18
                                         98.5
                                                                                 151
 5
                14
                                         97.6
                                                                                 156
 6
                19
                                         97.7
                                                                                  73
 7
                16.5
                                         97.9
                                                                                 110
 8
                                         98.1
                                                                                 174.
                13
 9
                14
                                         97.2
                                                                                  98.5
10
                21
                                         97.9
                                                                                 112
   bicarbonate chloride creatinine glucose potassium sodium hematocrit
         <dbl>
                   <dbl>
                               <dbl>
                                        <dbl>
                                                   <dbl> <dbl>
                                                                       <dbl> <dbl>
             25
                       95
                                  0.7
                                          102
                                                     6.7
                                                             126
                                                                        41.1
                                                                                6.9
1
 2
             26
                      100
                                           85
                                                     4.8
                                                             137
                                                                        36.1
                                                                                7.1
                                  1
 3
                                                                        27.3
             21
                      109
                                  2.3
                                           89
                                                     3.9
                                                             144
                                                                                5.3
 4
             22
                      108
                                  0.6
                                          112
                                                     4.2
                                                             142
                                                                        38.1 15.7
 5
             30
                                 0.5
                                           87
                                                     4.1
                                                                        37.4
                                                                                5.4
                      104
                                                             142
 6
             NA
                       98
                                NA
                                           NA
                                                     4.1
                                                             139
                                                                        NA
                                                                              NA
 7
             28
                       97
                                  1.3
                                          131
                                                     3.9
                                                             138
                                                                        31.4 10.4
8
             30
                       88
                                  1.1
                                          141
                                                     4.5
                                                             130
                                                                        39.7
                                                                              12.2
9
             24
                      102
                                  0.9
                                          288
                                                     3.5
                                                             137
                                                                        34.9
                                                                               7.2
                                                     6.5
10
             18
                      NA
                                  3.1
                                           95
                                                             125
                                                                        34.3 16.8
```

Q1.8 Preprocessing

i 94,448 more rows

Perform the following preprocessing steps. (i) Lump infrequent levels into "Other" level for first_careunit, last_careunit, admission_type, admission_location, and discharge_location. (ii) Collapse the levels

of race into ASIAN, BLACK, HISPANIC, WHITE, and Other. (iii) Create a new variable los_long that is TRUE when los is greater than or equal to 2 days. (iv) Summarize the data using tbl_summary(), stratified by los_long. Hint: fct_lump_n and fct_collapse from the forcats package are useful.

Hint: Below is a numerical summary of my tibble after preprocessing:

Not Found

1. Lump infrequent levels into "Other" level for first_careunit, last_careunit, admission_type, admission_location, and discharge_location

```
# Step 1: Lump infrequent levels into "Other"
mimic_icu_cohort_2 <- mimic_icu_cohort_2 %>%
mutate(
    first_careunit = fct_lump_n(
        first_careunit, n = 4, other_level = "Other"
),
    last_careunit = fct_lump_n(
        last_careunit, n = 4, other_level = "Other"
),
    admission_type = fct_lump_n(
        admission_type, n = 4, other_level = "Other"
),
    admission_location = fct_lump_n(
        admission_location = fct_lump_n(
        admission_location, n = 3, other_level = "Other"
```

```
),
  discharge_location = fct_lump_n(
    discharge_location, n = 4, other_level = "Other"
)
)
```

2. Collapsing the levels of race into ASIAN, BLACK, HISPANIC, WHITE, and Other

Examining the Unique Entries of Race and their Count:

```
mimic_icu_cohort_2 %>%
  count(race, sort = TRUE)
```

```
# A tibble: 33 \times 2
   race
                                        n
   <chr>
                                    <int>
 1 WHITE
                                    58888
 2 BLACK/AFRICAN AMERICAN
                                     8677
 3 UNKNOWN
                                     8457
 4 OTHER
                                     3134
 5 WHITE - OTHER EUROPEAN
                                     2310
 6 UNABLE TO OBTAIN
                                     1881
 7 HISPANIC/LATINO - PUERTO RICAN 1214
 8 ASTAN
                                     1095
 9 ASIAN - CHINESE
                                     1062
10 WHTTE - RUSSTAN
                                      980
# i 23 more rows
```

```
mimic icu cohort 2 <- mimic icu cohort 2 %>%
 mutate(
    race = fct collapse(
     race,
     ASIAN = c(
        "ASIAN", "ASIAN - CHINESE", "ASIAN - KOREAN",
       "ASIAN - SOUTH EAST ASIAN", "ASIAN - ASIAN INDIAN"
      ),
      BLACK = c(
        "BLACK/AFRICAN AMERICAN", "BLACK/CAPE VERDEAN",
        "BLACK/CARIBBEAN ISLAND", "BLACK/AFRICAN"
      ),
     HISPANIC = c(
        "HISPANIC/LATINO - PUERTO RICAN", "HISPANIC OR LATINO",
        "HISPANIC/LATINO - DOMINICAN", "HISPANIC/LATINO - CENTRAL AMERICAN",
        "HISPANIC/LATINO - GUATEMALAN", "HISPANIC/LATINO - COLUMBIAN",
        "HISPANIC/LATINO - CUBAN", "HISPANIC/LATINO - HONDURAN",
       "HISPANIC/LATINO - MEXICAN", "HISPANIC/LATINO - SALVADORAN"
      ),
     WHITE = c(
        "WHITE", "WHITE - OTHER EUROPEAN", "WHITE - RUSSIAN",
        "WHITE - EASTERN EUROPEAN", "WHITE - BRAZILIAN"
```

```
),
Other = c(
"UNKNOWN", "OTHER", "UNABLE TO OBTAIN",
"MULTIPLE RACE/ETHNICITY", "PATIENT DECLINED TO ANSWER",
"PORTUGUESE", "NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER",
"AMERICAN INDIAN/ALASKA NATIVE", "SOUTH AMERICAN"
)
)
)
)
```

Double checking that races were collasped correctly:

```
mimic_icu_cohort_2 %>%
  count(race, sort = TRUE)
```

```
# A tibble: 5 × 2
race n
<fct> <int>
1 WHITE 62671
2 Other 14921
3 BLACK 10385
4 HISPANIC 3595
5 ASIAN 2886
```

3. Creating a new variable los_long that is TRUE when los is greater than or equal to 2 days

```
mimic_icu_cohort_2 <- mimic_icu_cohort_2 %>%
  mutate(los_long = los >= 2)
```

4. Summarizing the data using 'tbl_summary()', stratified by 'los_long'

```
summary_table <- mimic_icu_cohort_2 %>%
select(
   first_careunit, last_careunit, los, admission_type,
   admission_location, discharge_location, insurance, language,
   marital_status, race, hospital_expire_flag, gender, dod,
   chloride, creatinine, sodium, potassium, glucose, hematocrit,
   wbc, bicarbonate, non_invasive_blood_pressure_systolic,
   non_invasive_blood_pressure_diastolic, respiratory_rate,
   temperature_fahrenheit, heart_rate, age_at_intime, los_long
) %>%
tbl_summary(by = los_long)
```

14 missing rows in the "los_long" column have been removed.
The following errors were returned during `tbl_summary()`:
* For variable `dod` (`los_long = FALSE`) and "p75" statistic: * not defined for "Date" objects

```
summary_table
```

Characteristic	TRUE N = 46,337 ¹	FALSE N = 48,107 ¹	
first_careunit			
Cardiac Vascular Intensive Care Unit (CVICU)	7,353 (16%)	7,416 (15%)	
Medical Intensive Care Unit (MICU)	9,837 (21%)	10,862 (23%)	
Medical/Surgical Intensive Care Unit (MICU/SICU)	6,667 (14%)	8,780 (18%)	
Surgical Intensive Care Unit (SICU)	6,434 (14%)	6,574 (14%)	
Other	16,046 (35%)	14,475 (30%)	
last_careunit			
Cardiac Vascular Intensive Care Unit (CVICU)	7,353 (16%)	7,416 (15%)	
Medical Intensive Care Unit (MICU)	9,837 (21%)	10,862 (23%)	
Medical/Surgical Intensive Care Unit (MICU/SICU)	6,667 (14%)	8,780 (18%)	
Surgical Intensive Care Unit (SICU)	6,434 (14%)	6,574 (14%)	
Other	16,046 (35%)	14,475 (30%)	
los	3.9 (2.7, 6.8)	1.1 (0.8, 1.5)	
admission_type			
EW EMER.	23,012 (50%)	25,337 (53%)	
OBSERVATION ADMIT	7,393 (16%)	6,638 (14%)	
SURGICAL SAME DAY ADMISSION	4,001 (8.6%)	5,543 (12%)	
URGENT	8,691 (19%)	6,683 (14%)	
Other	3,240 (7.0%)	3,906 (8.1%)	
admission_location			
EMERGENCY ROOM	17,058 (37%)	20,443 (42%)	
PHYSICIAN REFERRAL	11,013 (24%)	12,684 (26%)	
TRANSFER FROM HOSPITAL	13,904 (30%)	10,400 (22%)	
¹ n (%); Median (Q1, Q3)			

Characteristic	TRUE N = 46,337 ¹	FALSE N = 48,107 ¹
Other	4,362 (9.4%)	4,580 (9.5%)
discharge_location		
DIED	6,884 (15%)	4,436 (9.4%)
HOME	6,879 (15%)	15,210 (32%)
HOME HEALTH CARE	10,620 (23%)	13,422 (28%)
SKILLED NURSING FACILITY	8,785 (19%)	7,489 (16%)
Other	13,092 (28%)	6,779 (14%)
Unknown	77	771
insurance		
Medicaid	6,768 (15%)	7,469 (16%)
Medicare	26,330 (58%)	25,485 (54%)
No charge	5 (<0.1%)	3 (<0.1%)
Other	1,091 (2.4%)	1,237 (2.6%)
Private	11,515 (25%)	13,018 (28%)
Unknown	628	895
language		
American Sign Language	29 (<0.1%)	34 (<0.1%)
Amharic	14 (<0.1%)	9 (<0.1%)
Arabic	87 (0.2%)	62 (0.1%)
Armenian	12 (<0.1%)	13 (<0.1%)
Bengali	22 (<0.1%)	12 (<0.1%)
Chinese	550 (1.2%)	611 (1.3%)
English	41,563 (90%)	43,483 (91%)
French	18 (<0.1%)	14 (<0.1%)
Haitian	375 (0.8%)	252 (0.5%)
¹ n (%); Median (Q1, Q3)		

Characteristic	TRUE $N = 46,337^{1}$	FALSE N = 48,107 ¹	
Hindi	24 (<0.1%)	21 (<0.1%)	
Italian	101 (0.2%)	107 (0.2%)	
Japanese	5 (<0.1%)	7 (<0.1%)	
Kabuverdianu	301 (0.7%)	345 (0.7%)	
Khmer	50 (0.1%)	37 (<0.1%)	
Korean	40 (<0.1%)	32 (<0.1%)	
Modern Greek (1453-)	102 (0.2%)	88 (0.2%)	
Other	152 (0.3%)	153 (0.3%)	
Persian	42 (<0.1%)	35 (<0.1%)	
Polish	36 (<0.1%)	38 (<0.1%)	
Portuguese	351 (0.8%)	314 (0.7%)	
Russian	601 (1.3%)	659 (1.4%)	
Somali	8 (<0.1%)	15 (<0.1%)	
Spanish	1,472 (3.2%)	1,429 (3.0%)	
Thai	21 (<0.1%)	22 (<0.1%)	
Vietnamese	151 (0.3%)	129 (0.3%)	
Unknown	210	186	
marital_status			
DIVORCED	3,377 (8.0%)	3,555 (8.0%)	
MARRIED	20,557 (49%)	21,344 (48%)	
SINGLE	12,745 (30%)	14,039 (31%)	
WIDOWED	5,319 (13%)	5,752 (13%)	
Unknown	4,339	3,417	
race			
Other	8,036 (17%)	6,880 (14%)	
¹ n (%); Median (Q1, Q3)			

Characteristic	TRUE N = 46,337 ¹	FALSE N = 48,107 ¹
ASIAN	1,369 (3.0%)	1,516 (3.2%)
BLACK	4,933 (11%)	5,452 (11%)
HISPANIC	1,687 (3.6%)	1,908 (4.0%)
WHITE	30,312 (65%)	32,351 (67%)
hospital_expire_flag	6,831 (15%)	4,512 (9.4%)
gender		
F	20,106 (43%)	21,471 (45%)
М	26,231 (57%)	26,636 (55%)
dod	2155-09-06 (2135-07-16, 2175-10-08)	2155-12-18 (2136-04-26, NA)
Unknown	25,846	30,639
chloride	102 (98, 105)	102 (98, 105)
Unknown	6,184	5,167
creatinine	1.00 (0.80, 1.60)	1.00 (0.80, 1.40)
Unknown	4,541	3,486
sodium	138.0 (135.0, 141.0)	139.0 (136.0, 141.0)
Unknown	6,167	5,163
potassium	4.20 (3.90, 4.70)	4.20 (3.90, 4.60)
Unknown	6,200	5,187
glucose	122 (100, 159)	118 (98, 154)
Unknown	6,340	5,314
hematocrit	35 (29, 40)	36 (30, 41)
Unknown	3,857	2,894
wbc	9.7 (7.0, 13.8)	9.0 (6.6, 12.6)
Unknown	3,906	2,944
bicarbonate	24.0 (21.0, 27.0)	24.0 (21.0, 27.0)
¹ n (%); Median (Q1, Q3)		

Characteristic	TRUE N = 46,337 ¹	FALSE N = 48,107 ¹
Unknown	6,272	5,277
non_invasive_blood_pressure_systolic	119 (104, 137)	122 (107, 138)
Unknown	348	1,022
non_invasive_blood_pressure_diastolic	67 (57, 79)	68 (58, 80)
Unknown	351	1,024
respiratory_rate	19.0 (16.0, 23.0)	18.0 (15.0, 22.0)
Unknown	15	183
temperature_fahrenheit	98.20 (97.70, 98.80)	98.10 (97.60, 98.60)
Unknown	231	1,444
heart_rate	87 (75, 102)	84 (73, 99)
Unknown	1	85
age_at_intime	67 (56, 77)	66 (54, 77)
¹ n (%); Median (Q1, Q3)		

Q1.9 Save the final tibble

Save the final tibble to an R data file mimic_icu_cohort.rds in the mimiciv_shiny folder.

Note to self Change the mimic_icu_cohort_2 to mimic_icu_cohort

```
# make a directory mimiciv_shiny
if (!dir.exists("mimiciv_shiny")) {
    dir.create("mimiciv_shiny")
}
# save the final tibble
mimic_icu_cohort_2 |>
    write_rds("mimiciv_shiny/mimic_icu_cohort.rds", compress = "gz")
```

Close database connection and clear workspace.

```
if (exists("con_bq")) {
  dbDisconnect(con_bq)
}
rm(list = ls())
```

3/7/25, 12:16 AM Biostat 203B Homework 4

Although it is not a good practice to add big data files to Git, for grading purpose, please add mimic_icu_cohort.rds to your Git repository.

Q2. Shiny app

Develop a Shiny app for exploring the ICU cohort data created in Q1. The app should reside in the mimiciv_shiny folder. The app should contain at least two tabs. One tab provides easy access to the graphical and numerical summaries of variables (demographics, lab measurements, vitals) in the ICU cohort, using the mimic_icu_cohort.rds you curated in Q1. The other tab allows user to choose a specific patient in the cohort and display the patient's ADT and ICU stay information as we did in Q1 of HW3, by dynamically retrieving the patient's ADT and ICU stay information from BigQuery database. Again, do **not** ever add the BigQuery token to your Git repository. If you do so, you will lose 50 points.