

Dr. Sameer Saran

Head, Geoinformatics Department, RSGG Indian Institute of Remote Sensing (ISRO) Dehradun, sameer@iirs.gov.in

Contents

Background

- •Need & Motivation of 3D City Models
- •3D Data Models and Data Types
- •General Taxonomy

CityGML

- Overview
- •Multi-scale modeling
- •Spatial-Semantic Coherence

IIRS Initiatives using 3D City Models

- •Estimation of Solar Irradiation
- •Traffic Noise Modeling
- Interoperability Model
- •Indoor Logistics: Mapping, Navigation, Positioning & pattern analytics

Need and Motivation behind 3D City Models iirs

- A 3D city model is a representation of an urban environment with a threedimensional geometry of common urban objects and structures, with buildings as the most prominent feature.
- 3D City Models may be applied in a multitude of application domains for environmental simulation and decision support

3D Data Models

3D Data Models are of 2 types:

- **Geometrical Models**: defines the geometric objects and elements types. They consist of different spatial objects (points, linestrings, etc.) with the representation of their properties.
 - e.g. COLLADA, VRML, X3D, etc.
- •Semantic Models: defines entities and their nonspatial characteristics and relationships among the entities.
 - e.g. CityGML, IFC, gbXML, etc.

3D Data Types

iirs

Main 3D data types to used in 3D data models:

- •3D objects are represented by its boundaries (B-Rep),
- 3D objects are represented by voxel elements,
- •3D objects are represented by a combination of *the 3D basic block (CSG)*.

General Taxonomy of 3D Use Case

Category	3D Analysis	Application	Representation
1.	Applications based on Geometry	Estimation of the shadow	
2.	Analysis based only on geometry and semantic information	Estimation of the solar potential	
3.	Analysis based on domain specific extension and external data	Noise emission calculation	15/00 m

But categories are not mutually exclusive in all cases

CityGML

Features:

- Open data model.
- XML-based format.
- CityGML •Used for storing and exchanging virtual 3D objects and city models among applications.
- Has both Geometrical & Semantic model of information.
- •Implemented as an application schema for the Geography Markup Language 3 (GML3).
- ·Supports Multi-Scale Modeling according to the details level required in different applications.

Multi scale modeling of IIRS Campus & Gymnasium

- •LOD-0 : A 2D footprint.
- •LOD-1 : Block Model of Building.
- •LOD-2 : Adds differentiated roof structure and thematically differentiated surfaces.
- •LOD-3 : Architectural model with detailed wall and roof structure.
- *LOD-4 : Adds interior structures for 3D objects like rooms, interior doors & stairs, etc.

Illustration of LoD3 building: spatial representation (left) and CityGML feature structure as UML instance diagram (right)

IIRS Initiatives

Kumar K., Sameer Saran and A. Senthil Kumar, 2015. "CityGML based Interoperability for the transformation of 3D Data Models" Transaction in GIS (in Press).

3D City Modeling for harnessing solar energy to develop solar cities

- To estimate effective percentage of roof/wall/window of a building contribute to harness solar energy
- •To simulate solar heat potentials of buildings on monthly/daily or hourly basis considering sun-earth geometry

- Building footprints captured from Cartosat-1
- 3D model of LoD 3 created using sketch-up/ CityEngine
- Conversion of sketch-up to Collada model (*.dae)
- Transformation of Collada model to CityGML using Feature Manipulation Engine (FME)
- Loading CityGML to PostgreSQL/ PostGIS and storing semantic information into RDBMS for semantic queries
- Solar Energy Estimation
 Conversion of CityGML to (green building)
- gbXML
- Enrichment of semantic information with additional energy simulation class attributes
- Simulation of building information model (BIM) into solar energy estimation using Sun-Earth geomatry

Saran, S., P. Wate, S.K. Srivastav and Y.V.N Krishnamurthy, 2015 "CityGML at semantic level for energy conservation strategies" *Annals of GIS*, Vol. 21, No. 1, 27-41. (doi:10.1080/19475683.2014.992370)

Wate, P. and Sameer Saran, 2015 "Design of CityGML Energy ADE for integration of Urban Solar potential Indicators using UML "Geocarto International. http://dx.doi.org/10.1080/10106049.2015.1034192.

3D GIS - Indoor Mapping, Routing & Navigation

3D Indoor Routing of IIRS Campus

- □ 3D Models of buildings created in Sketch and imported as Collada Model into ArcSc •
- ☐ 3D Network dataset created in ArcScene, including pathways and staircases, inside and outside the buildings.
- Pathways
- Staircases

3D Network Dataset

- ☐ Points Chosen as starting and end points.
- ☐ Routing model designed in Model Builder of ArcScene.
- ☐ Optimal Route shown by the Network Analyst. Optimal Route

 - Start Point
 - **End Point**

Route between two rooms in two buildings

THANK YOU

sameer@iirs.gov.in, saraniirs@gmail.com