Spezifikationsvortrag zum Softwareprojekt im Sommersemester 2014

Julian Baumann, Xenia Kühling, Sebastian Ruder

27. Mai 2014

Einführung

Einführung

Einführung

- **BART**
- 3 Stanford Sieves
- Module und Aufgaben
 - Module
 - Aufgaben
- Zeitplan
- 6 Softwarespezifikation
- 7 Quellen

John Simon, Chief Financial Officer of Prime Corp since 1986 saw his pay jump 20 percent, to 1.3 million dollar, as the 37-year-old also became the financial service company's president.¹

- Unterschiedliche Beschreibungen beziehen sich auf gleiche Entitäten
 - John Simon
 - he
 - the 37-year-old

¹Beispiele von Yannick Versley

Softwarespezifikation

Anwendungen: Information Extraction

Towards the end of the war, under extreme pressure from the Nazi Party, **Furtwängler** fled to Switzerland. [...] He died in 1954 in Ebersteinburg close to Baden-Baden.

Q: Wann starb Furtwängler?

→ Wie kann man Koreferenz auflösen?

- Beautiful Anaphora Resolution Toolkit
- Entstanden im Projekt
 Exploiting Lexical and Encyclopedic Resources For Entity
 Disambiguation im John Hopkins Summer Workshop 2007
- System f
 ür automatische Koreferenzresolution
- Weiterentwicklungen im Rahmen von shared tasks, für verschiedene Sprachen (Italienisch, Chinesisch)

Wie funktioniert BART?

- Modularer Aufbau:
- Vorverarbeitungsphase
- Extraktion NP- Kandidaten, NP- Merkmale, Kandidatenpaare

Wie funktioniert BART?

- Resolution mit Soon Algorithmus
- Kandidatenpaare werden paarweise anhand ihrer Merkmale verglichen
- Ergebnisse

- Koreferenzresolution in BART mit neuem Ansatz:
 - Vorwiegend regelbasiertes System der Stanford-NLP-Gruppe
 - Bestes Ergebnis bei CoNLL-2011 shared task

Softwarespezifikation

BART

Aufbau des Stanford Systems

Einführung

 $[John]_1^1$ is $[a musician]_2^2$. $[He]_3^3$ played $[a new song]_4^4$. [A girl] $_{5}^{5}$ was listening to [the song] $_{6}^{6}$. "[$lt]_7^7$ is $[[my]_0^1$ favorite] $_8^8$," $[John]_{10}^1$ said to $[her]_{11}^{11}$.

Generelle Architektur

DiscourseEntity

mentions : set<Mention>

nextID : int discourseID : ID

genders : set < Gender >

numbers : set < G
words : set < String >
heads : set < String >
first Mention : Mention

representativeMention: Mention

DiscourseEntity(Mention m)

mergeEntities(Mention m) : void

getMostRepresentativeMention():void

Aufgabenverteilung

bis 10.06.: Aufteilung der Pipeline

- DiscourseEntity: Julian Baumann
- Sieve & StringMatchSieve: Xenia Kühling
- SieveDecoder: Sebastian Ruder

ab 10.06.: Aufteilung der Sieves

- RelaxedStringMatchSieve, PreciseConstructsSieve, (SpeakerIdentificationSieve)
- StrictHeadMatch[ABC]Sieve, RelaxedHeadMatch
- ProperHeadNounMatch, PronounMatch

Softwarespezifikation

Softwarespezifikation

- Datenformate
- Interfaces
- Datenstrukturen
- Ressourcen
 - Korpus
- Programmierumgebung
 - Eclipse 4.3.2 mit lvyDE (dependency management und EGit und GitHub zur Versionskontrolle

GitHub, ivyde egit