LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

Motivation

Truth tables are not an efficient decision procedure for satisfiability and by duality for validity!

- we need something better
- idea: decompose an arbitrary formula into smaller formulae

Literals and Complements

Definition

A literal is an atom or its negation. The atom is called positive literal and the negation is called negative literal. The set $\{p, \neg p\}$ for an atom p is called complementary pair of literals. Analogously $\{\varphi, \neg \varphi\}$ is called a complementary pair of the formula φ .

How do literals help for satisfiability?

Consider
$$\varphi = p \land (\neg q \lor \neg p)$$
.

○ By definition of \land we know $\beta(p) = \text{true}$.

How do literals help for satisfiability?

Consider
$$\varphi = p \land (\neg q \lor \neg p)$$
.

- By definition of \land we know $\beta(p) = \text{true}$.
- By definition of \lor we know $\beta(\neg q)$ = true or $\beta(\neg p)$ = true.

How do literals help for satisfiability?

Consider
$$\varphi = p \land (\neg q \lor \neg p)$$
.

- By definition of \land we know $\beta(p) = \text{true}$.
- By definition of \vee we know $\beta(\neg q) = \text{true or } \beta(\neg p) = \text{true}$.
- Combining both yields $\{p, \neg q\}$ needs to be satisfiable or $\{p, \neg p\}$ needs to be satisfiable

Satisfiability of Literal-Sets

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

Satisfiability of Literal-Sets

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

The proof is postponed since we need to talk about contradiction proofs.

 \dots or the power of dualism.

... or the power of dualism.

 $\ \bigcirc$ in the world of classical logic we only have true and false and they are complementary

- ... or the power of dualism.
 - in the world of classical logic we only have true and false and they are complementary
 - each statement is either true or false

- ... or the power of dualism.
 - in the world of classical logic we only have true and false and they are complementary
 - each statement is either true or false
 - if we want to prove that a statment is true we have basically two options

- ... or the power of dualism.
 - in the world of classical logic we only have true and false and they are complementary
 - each statement is either true or false
 - if we want to prove that a statment is true we have basically two options
 - 1. starting with our axiom and deducing true smaller things step by step until we reach our claim

- ... or the power of dualism.
 - in the world of classical logic we only have true and false and they are complementary
 - each statement is either true or false
 - if we want to prove that a statment is true we have basically two options
 - 1. starting with our axiom and deducing true smaller things step by step until we reach our claim
 - 2. Contradiction: suppose that the negation of the statement is true, deduce whatever you can until you find a contradiction (something excluded by the axioms or the definition etc.)

 $\, \bigcirc \,$ the words can be used interchangeably

- the words can be used interchangeably
- in math we have a convention:

- the words can be used interchangeably
- in math we have a convention:
 - assume if you don't want to get a contradiction

- the words can be used interchangeably
- in math we have a convention:
 - o assume if you don't want to get a contradiction
 - **suppose** if you want to get a contradiction

- the words can be used interchangeably
- in math we have a convention:
 - assume if you don't want to get a contradiction
 - suppose if you want to get a contradiction
- advantage: the reader knows immediately in which direction the proof is going

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

Proof of \Rightarrow .

Ψ satisfiable set of literals

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- Ψ satisfiable set of literals
- **Suppose:** there exists an atom p with p, $\neg p \in \Psi$

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- Ψ satisfiable set of literals
- **Suppose:** there exists an atom p with p, $\neg p \in \Psi$
 - Ψ satisfiable \rightsquigarrow there exists interpretation β with $\beta(q) = \text{true}$ for all atoms $q \in \Psi$

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- Ψ satisfiable set of literals
- **Suppose:** there exists an atom p with p, $\neg p \in \Psi$
 - Ψ satisfiable \sim there exists interpretation β with $\beta(q)=$ true for all atoms $q\in\Psi$
 - ∘ $p \in \Psi \leadsto \beta(p) = \text{true}$

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- Ψ satisfiable set of literals
- **Suppose:** there exists an atom p with p, $\neg p \in \Psi$
 - Ψ satisfiable \leadsto there exists interpretation β with $\beta(q) = \text{true}$ for all atoms $q \in \Psi$
 - $p \in \Psi \leadsto \beta(p) = \text{true}$
 - $\neg p \in \Psi \leadsto \beta(\neg p) = \text{true} \text{ and thus } \beta(p) = \text{false}$ Contradiction!

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- \bigcirc Ψ satisfiable set of literals
- **Suppose:** there exists an atom p with p, $\neg p \in \Psi$
 - Ψ satisfiable \leadsto there exists interpretation β with $\beta(q)=$ true for all atoms $q\in\Psi$
 - $p \in \Psi \leadsto \beta(p) = \text{true}$
 - $\neg p \in \Psi \leadsto \beta(\neg p) = \text{true} \text{ and thus } \beta(p) = \text{false}$ Contradiction!
- there does not exist an atom p with p, $\neg p \in \Psi$

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

Proof of \Leftarrow .

 \bigcirc Ψ does not contain an atom p and its complementary

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- \bigcirc Ψ does not contain an atom p and its complementary
- for each $q \in \Psi$ set $\beta(q) = \text{true}$

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- \bigcirc Ψ does not contain an atom p and its complementary
- for each $q \in \Psi$ set $\beta(q) = \text{true}$
- for each $\neg q \in \Psi$ set $\beta(q) = \text{false}$

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- \bigcirc Ψ does not contain an atom p and its complementary
- for each $q \in \Psi$ set $\beta(q) = \text{true}$
- for each $\neg q \in \Psi$ set $\beta(q) = \text{false}$
- \bigcirc since Ψ is complementary-free, β is well-defined

Theorem

A set of literals is satisfiable iff it does not contain a complementary pair of literals.

- \bigcirc Ψ does not contain an atom p and its complementary
- for each $q \in \Psi$ set $\beta(q) = \text{true}$
- for each $\neg q \in \Psi$ set $\beta(q) = \text{false}$
- \bigcirc since Ψ is complementary-free, β is well-defined
- Ψ is satisfiable

Negation Normal Form

Definition

A formula $\varphi \in \Phi$ is in negation normal form if \neg occurs only directly in front of atoms.

Negation Normal Form

Definition

A formula $\varphi \in \Phi$ is in negation normal form if \neg occurs only directly in front of atoms.

EXAMPLE

 $(\neg p \lor q) \land r \land \neg s$ is in NNF, while $\neg (p \lor q)$ is not

Negation Normal Form

Definition

A formula $\varphi \in \Phi$ is in negation normal form if \neg occurs only directly in front of atoms.

EXAMPLE

 $(\neg p \lor q) \land r \land \neg s$ is in NNF, while $\neg (p \lor q)$ is not

Lemma

For each formula $\phi \in \Phi$ exists an equivalent formula in NNF.

Algorithm for Constructing a Semantic Tableau

Input: formula $\varphi \in \Phi$ in NNF Let \mathcal{T} be a tree with one unmarked node labeled with $\{\varphi\}$.

Repeat the following steps as long as possible:

- 1. Choose an unmarked leaf ℓ with the label $\Psi(\ell)$
- 2. Apply one of the following rules
 - 2.1 If $\Psi(\ell)$ only contains literals, mark it closed (×) if it contains a complementary pair of literals and open (\circ) otherwise.
 - 2.2 If $\Psi(\ell)$ is not a set of literals, choose a formula $\psi \in \Psi$ that is not a literal and
 - **2.2.1** If $\psi = \chi_1 \wedge \chi_2$ then create a child ℓ' of ℓ and label it with $\Psi(\ell) \setminus \{\varphi\} \cup \{\chi_1, \chi_2\}$
 - 2.2.2 If $\psi = \chi_1 \vee \chi_2$ then create two children ℓ' and ℓ'' of ℓ labeled with $\Psi(\ell) \setminus \{\varphi\} \cup \{\chi_1\}$ and $\Psi(\ell) \setminus \{\varphi\} \cup \{\chi_2\}$ resp.

Open and Closed Tableaux

Definition

A tableau whose construction has terminated is called a completed tableau. A completed tableau is closed if all leaves are closed and open otherwise.

When we present an algorithm what do we have to do?

 $\, \bigcirc \,$ Persuade the people that the algo works by threatening?

- O Persuade the people that the algo works by threatening?
- Begging the people to believe that the algo works as intended?

- O Persuade the people that the algo works by threatening?
- Or Begging the people to believe that the algo works as intended?
- NO! we have to prove a couple of things!

- O Persuade the people that the algo works by threatening?
- Begging the people to believe that the algo works as intended?
- NO! we have to prove a couple of things!
 - Termination

- O Persuade the people that the algo works by threatening?
- Begging the people to believe that the algo works as intended?
- NO! we have to prove a couple of things!
 - Termination
 - Completeness: if the input is correct, the algo returns a correct output

- O Persuade the people that the algo works by threatening?
- Begging the people to believe that the algo works as intended?
- NO! we have to prove a couple of things!
 - Termination
 - Completeness: if the input is correct, the algo returns a correct output
 - Soundness: if the algo returns a correct output, the input have been correct

When we present an algorithm what do we have to do?

- O Persuade the people that the algo works by threatening?
- Begging the people to believe that the algo works as intended?
- NO! we have to prove a couple of things!
 - Termination
 - Completeness: if the input is correct, the algo returns a correct output
 - Soundness: if the algo returns a correct output, the input have been correct
 - Complexity: time and space

Correctness means sound and complete.

Sketch of Proof:

 $\, \bigcirc \,$ in step 2.1 sets of literals are marked

- in step 2.1 sets of literals are marked
- the algorithm terminates if all leaves are marked

- in step 2.1 sets of literals are marked
- the algorithm terminates if all leaves are marked
- In step 2.2 leaves with strictly shorter formulae are attached

- in step 2.1 sets of literals are marked
- the algorithm terminates if all leaves are marked
- In step 2.2 leaves with strictly shorter formulae are attached
- getting strictly shorter implies that at some point the literals are reached

- in step 2.1 sets of literals are marked
- the algorithm terminates if all leaves are marked
- In step 2.2 leaves with strictly shorter formulae are attached
- getting strictly shorter implies that at some point the literals are reached
- $\bigcirc \sim$ termination

Soundness

We have to prove

Lemma

If \mathcal{T}_{ϕ} is closed then ϕ is unsatisfiable.

Soundness

We have to prove

Lemma

If \mathcal{T}_{φ} is closed then φ is unsatisfiable.

we are going to prove something more general:

Lemma

If the subtree \mathcal{T}_n rooted at node n is closed, then the label U(n) at n is unsatisfiable.

 \bigcirc Induction on height h_n of node n

- \bigcirc Induction on height h_n of node n
- \bigcirc $h_n = 0$ implies that n is a leaf

- \bigcirc Induction on height h_n of node n
- \bigcirc $h_n = 0$ implies that n is a leaf
- \bigcirc leaf closed \rightsquigarrow label is unsatisfiable

- \bigcirc Induction on height h_n of node n
- \bigcirc $h_n = 0$ implies that n is a leaf
- \bigcirc leaf closed \rightarrow label is unsatisfiable
- Assume that for all m < n, the label of \mathcal{T}_m is unsatisfiable if \mathcal{T}_m is closed, for a fixed but arbitrary $n \in \mathbb{N}$.

- \bigcirc Induction on height h_n of node n
- \bigcirc $h_n = 0$ implies that n is a leaf
- \bigcirc leaf closed \rightsquigarrow label is unsatisfiable
- Assume that for all m < n, the label of \mathcal{T}_m is unsatisfiable if \mathcal{T}_m is closed, for a fixed but arbitrary $n \in \mathbb{N}$.
- \bigcirc *n* not a leaf \rightarrow *n* has one child or two children

 \bigcirc the label of n contains $\varphi_1 \wedge \varphi_2$ and a set of formulae Ψ_0

- \bigcirc the label of n contains $\varphi_1 \wedge \varphi_2$ and a set of formulae Ψ_0
- \bigcirc the label n' of the child contains $\Psi_0 \cup \{\varphi_1, \varphi_2\}$

- \bigcirc the label of *n* contains $\varphi_1 \land \varphi_2$ and a set of formulae Ψ_0
- the label n' of the child contains $\Psi_0 \cup \{\varphi_1, \varphi_2\}$
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n'}$ closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1, \varphi_2\}$ unsatisfiable by (IH)

- \bigcirc the label of *n* contains $\varphi_1 \land \varphi_2$ and a set of formulae Ψ_0
- the label n' of the child contains $\Psi_0 \cup \{\varphi_1, \varphi_2\}$
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n'}$ closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1, \varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable

- \bigcirc the label of *n* contains $\varphi_1 \land \varphi_2$ and a set of formulae Ψ_0
- the label n' of the child contains $\Psi_0 \cup \{\varphi_1, \varphi_2\}$
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n'}$ closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1, \varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\bullet \to \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable

- \bigcirc the label of *n* contains $\varphi_1 \land \varphi_2$ and a set of formulae Ψ_0
- the label n' of the child contains $\Psi_0 \cup \{\varphi_1, \varphi_2\}$
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n'}$ closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1, \varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\bullet \hookrightarrow \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable
- \bigcirc case 2: Ψ_0 satisfiable

- \bigcirc the label of *n* contains $\varphi_1 \land \varphi_2$ and a set of formulae Ψ_0
- the label n' of the child contains $\Psi_0 \cup \{\varphi_1, \varphi_2\}$
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n'}$ closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1, \varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\bullet \hookrightarrow \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable
- \bigcirc case 2: Ψ_0 satisfiable
 - $\circ \sim \{\varphi_1, \varphi_2\}$ unsatisfiable

- \bigcirc the label of *n* contains $\varphi_1 \land \varphi_2$ and a set of formulae Ψ_0
- the label n' of the child contains $\Psi_0 \cup \{\varphi_1, \varphi_2\}$
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n'}$ closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1, \varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\bullet \hookrightarrow \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable
- \bigcirc case 2: Ψ_0 satisfiable
 - $\circ \sim \{\varphi_1, \varphi_2\}$ unsatisfiable
 - \sim w.l.o.g. φ_1 unsatisfiable

- \bigcirc the label of *n* contains $\varphi_1 \land \varphi_2$ and a set of formulae Ψ_0
- the label n' of the child contains $\Psi_0 \cup \{\varphi_1, \varphi_2\}$
- \bigcirc \mathcal{T}_n closed $\leadsto \mathcal{T}_{n'}$ closed $\leadsto \Psi_0 \cup \{\varphi_1, \varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\bullet \to \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable
- \bigcirc case 2: Ψ_0 satisfiable
 - $\circ \sim \{\varphi_1, \varphi_2\}$ unsatisfiable
 - \sim w.l.o.g. φ_1 unsatisfiable
 - $\rightsquigarrow \varphi_1 \land \varphi_2$ unsatisfiable $\rightsquigarrow \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable

 $\bigcirc\,$ the label contains $\phi_1 \vee \phi_2$ and a set of formulae Ψ_0

- \bigcirc the label contains $\varphi_1 \lor \varphi_2$ and a set of formulae Ψ_0
- \bigcirc the labels of the children n_1 , n_2 contain $\Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ resp.

- \bigcirc the label contains $\varphi_1 \lor \varphi_2$ and a set of formulae Ψ_0
- the labels of the children n_1 , n_2 contain $\Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ resp.
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n_1}$, \mathcal{T}_{n_2} closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ unsatisfiable by (IH)

- \bigcirc the label contains $\varphi_1 \lor \varphi_2$ and a set of formulae Ψ_0
- the labels of the children n_1 , n_2 contain $\Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ resp.
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n_1}$, \mathcal{T}_{n_2} closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable

- \bigcirc the label contains $\varphi_1 \lor \varphi_2$ and a set of formulae Ψ_0
- \bigcirc the labels of the children n_1 , n_2 contain $\Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ resp.
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n_1}$, \mathcal{T}_{n_2} closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\bullet \to \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable

- \bigcirc the label contains $\varphi_1 \vee \varphi_2$ and a set of formulae Ψ_0
- the labels of the children n_1 , n_2 contain $\Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ resp.
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n_1}$, \mathcal{T}_{n_2} closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\circ \rightsquigarrow \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable
- \bigcirc case 2: Ψ_0 satisfiable

Proof of Soundness: 2 Children

- \bigcirc the label contains $\varphi_1 \lor \varphi_2$ and a set of formulae Ψ_0
- the labels of the children n_1 , n_2 contain $\Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ resp.
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n_1}$, \mathcal{T}_{n_2} closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\circ \rightsquigarrow \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable
- \bigcirc case 2: Ψ_0 satisfiable
 - $\circ \sim \{\varphi_1\}$ and $\{\varphi_2\}$ unsatisfiable

Proof of Soundness: 2 Children

- \bigcirc the label contains $\varphi_1 \lor \varphi_2$ and a set of formulae Ψ_0
- the labels of the children n_1 , n_2 contain $\Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ resp.
- \mathcal{T}_n closed $\rightsquigarrow \mathcal{T}_{n_1}$, \mathcal{T}_{n_2} closed $\rightsquigarrow \Psi_0 \cup \{\varphi_1\}$ and $\Psi_0 \cup \{\varphi_2\}$ unsatisfiable by (IH)
- \bigcirc case 1: Ψ_0 unsatisfiable
 - $\circ \sim \Psi_0 \cup \{\varphi_1 \land \varphi_2\}$ unsatisfiable
- \bigcirc case 2: Ψ_0 satisfiable
 - $\circ \sim \{\varphi_1\}$ and $\{\varphi_2\}$ unsatisfiable
 - $\rightsquigarrow \varphi_1 \lor \varphi_2$ unsatisfiable $\rightsquigarrow \Psi_0 \cup \{\varphi_1 \lor \varphi_2\}$ unsatisfiable

Completeness

We have to prove

Lemma

If ϕ is unsatisfiable then all semantic trees are closed.

Completeness

We have to prove

Lemma

If φ is unsatisfiable then all semantic trees are closed.

Before we can prove this lemma, we have to talk about contraposition.

Contraposition

○ Contraposition is a proving technique for implications.

Contraposition

- Contraposition is a proving technique for implications.
- \bigcirc Consider $A \rightarrow B$.

Contraposition |

- O Contraposition is a proving technique for implications.
- \bigcirc Consider $A \rightarrow B$.
- We know by truth table: $A \rightarrow B \equiv \neg B \rightarrow \neg A$

Contraposition

- Contraposition is a proving technique for implications.
- \bigcirc Consider $A \rightarrow B$.
- We know by truth table: $A \rightarrow B \equiv \neg B \rightarrow \neg A$
- \bigcirc thus we can also prove $\neg B \rightarrow \neg A$ instead of proving $A \rightarrow B$

Contraposition

- O Contraposition is a proving technique for implications.
- \bigcirc Consider $A \rightarrow B$.
- We know by truth table: $A \rightarrow B \equiv \neg B \rightarrow \neg A$
- \bigcirc thus we can also prove $\neg B \rightarrow \neg A$ instead of proving $A \rightarrow B$
- this is often easier especially if we have to deal with general statements

We are going to prove

Lemma

If one not closed semantic tree exists, ϕ is satisfiable.

We are going to prove

Lemma

If one not closed semantic tree exists, ϕ is satisfiable.

Plan for the Proof:

We are going to prove

Lemma

If one not closed semantic tree exists, ϕ is satisfiable.

Plan for the Proof:

 \bigcirc if the semantic tree is not closed \leadsto there is an open leaf

We are going to prove

Lemma

If one not closed semantic tree exists, ϕ is satisfiable.

Plan for the Proof:

- \bigcirc if the semantic tree is not closed \leadsto there is an open leaf
- \bigcirc we are extending the interpretation for the leaf to an interpretation of φ

We are going to prove

Lemma

If one not closed semantic tree exists, ϕ is satisfiable.

Plan for the Proof:

- \bigcirc if the semantic tree is not closed \leadsto there is an open leaf
- $\ \bigcirc$ we are extending the interpretation for the leaf to an interpretation of φ
- \bigcirc we do this by induction on the length of the branch

We have four steps in the proof:

1. Define a property of sets of formulae.

We have four steps in the proof:

- 1. Define a property of sets of formulae.
- 2. Show that the union of the formula labeling nodes in an open branch has this property.

We have four steps in the proof:

- 1. Define a property of sets of formulae.
- 2. Show that the union of the formula labeling nodes in an open branch has this property.
- 3. Prove that any set having this property is satisfiable.

We have four steps in the proof:

- 1. Define a property of sets of formulae.
- 2. Show that the union of the formula labeling nodes in an open branch has this property.
- 3. Prove that any set having this property is satisfiable.
- 4. Note that the formula labeling the root is in the set.

Definition

A set $\Psi \subseteq \Phi$ is a Hintikka set iff

- 1. for each atom p in a formula in Ψ , either $p \notin \Psi$ or $\neg p \notin \Psi$
- 2. If $\varphi_1 \land \varphi_2 \in \Psi$ implies $\varphi_1, \varphi_2 \in \Psi$ and if $\neg \neg \varphi_1 \in \Psi$ then $\varphi_1 \in \Psi$
- 3. If $\varphi_1 \vee \varphi_2 \in \Psi$ implies $\varphi_1 \in \Psi$ or $\varphi_2 \in \Psi$.

Lemma

Let ℓ be an open leaf in a tableau for φ . Set $\Psi = \bigcup_i \Psi(i)$ where i runs over the set of nodes on the branch from the root to ℓ . Then Ψ is a Hintikka set.

Lemma

Let ℓ be an open leaf in a tableau for φ . Set $\Psi = \bigcup_i \Psi(i)$ where i runs over the set of nodes on the branch from the root to ℓ . Then Ψ is a Hintikka set.

Proof.

Lemma

Let ℓ be an open leaf in a tableau for φ . Set $\Psi = \bigcup_i \Psi(i)$ where i runs over the set of nodes on the branch from the root to ℓ . Then Ψ is a Hintikka set.

Proof.

 \bigcirc if one $\Psi(i)$ contains a literal, all labels of the children contain this literal

Lemma

Let ℓ be an open leaf in a tableau for φ . Set $\Psi = \bigcup_i \Psi(i)$ where i runs over the set of nodes on the branch from the root to ℓ . Then Ψ is a Hintikka set.

Proof.

- \bigcirc if one $\Psi(i)$ contains a literal, all labels of the children contain this literal
- \bigcirc ℓ open \leadsto no Ψ(i) contains a complementary pair (condition 1)

Lemma

Let ℓ be an open leaf in a tableau for φ . Set $\Psi = \bigcup_i \Psi(i)$ where i runs over the set of nodes on the branch from the root to ℓ . Then Ψ is a Hintikka set.

Proof.

- \bigcirc if one $\Psi(i)$ contains a literal, all labels of the children contain this literal
- \bigcirc ℓ open \leadsto no $\Psi(i)$ contains a complementary pair (condition 1)
- by the definition of the semantic tableau condition 2. and
 3. hold

Lemma (Hintikka)

 $Every\ Hintikka\ set\ is\ satisfiable.$

Lemma (Hintikka)

Every Hintikka set is satisfiable.

Proof.

Lemma (Hintikka)

Every Hintikka set is satisfiable.

Proof.

 \bigcirc Ψ Hintikka set, A_{Ψ} set of all atoms occurring in a formula of Ψ

Lemma (Hintikka)

Every Hintikka set is satisfiable.

Proof.

- \bigcirc Ψ Hintikka set, A_{Ψ} set of all atoms occurring in a formula of Ψ
- $\bigcirc \text{ define } \beta \text{ by } \beta(p) = \begin{cases} \text{true} & \text{if } p \in \Psi \lor (p \notin \Psi \land \neg p \notin \Psi) \\ \text{false} & \text{if } \neg p \in \Psi. \end{cases}$

Lemma (Hintikka)

Every Hintikka set is satisfiable.

Proof.

- \bigcirc Ψ Hintikka set, A_{Ψ} set of all atoms occurring in a formula of Ψ
- $\bigcirc \text{ define } \beta \text{ by } \beta(p) = \begin{cases} \text{true} & \text{if } p \in \Psi \lor (p \notin \Psi \land \neg p \notin \Psi) \\ \text{false} & \text{if } \neg p \in \Psi. \end{cases}$
- \bigcirc we have to prove by structural induction $\hat{\beta}(\varphi) = \text{true}$

$$\bigcirc \varphi \text{ atom } \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$$

$$\bigcirc \varphi \text{ atom } \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$$

$$\bigcirc \ \varphi = \neg p \leadsto \hat{\beta}(\varphi) = \mathsf{true}$$

$$\bigcirc \varphi \text{ atom } \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$$

$$\bigcirc \varphi = \neg p \leadsto \hat{\beta}(\varphi) = \text{true}$$

$$\bigcirc \ \varphi = \varphi_1 \land \varphi_2 \leadsto \hat{\beta}(\varphi) = \mathsf{true} \ \mathsf{iff} \ \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \mathsf{true}$$

- $\bigcirc \varphi \text{ atom } \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \neg p \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \varphi_1 \land \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{true iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{true}$
- \bigcirc by condition 2. $\varphi_1, \varphi_2 \in \Psi$ and by IH $\hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{true}$ $\Rightarrow \hat{\beta}(\varphi) = \text{true}$

- $\bigcirc \varphi \text{ atom } \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \neg p \leadsto \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \varphi_1 \land \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{true iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{true}$
 - by condition 2. $\varphi_1, \varphi_2 \in \Psi$ and by IH $\hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{true}$ $\Rightarrow \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \varphi_1 \lor \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{false iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{false}$

- $\bigcirc \varphi \text{ atom } \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \neg p \leadsto \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \varphi_1 \land \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{true iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{true}$
- by condition 2. $φ_1, φ_2 ∈ Ψ$ and by IH $\hat{β}(φ_1) = \hat{β}(φ_2) = true$ $\Rightarrow \hat{β}(φ) = true$
- $\bigcirc \varphi = \varphi_1 \lor \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{false iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{false}$
- \bigcirc by condition 2. φ_1 or φ_2 are elements of Ψ

- $\bigcirc \varphi \text{ atom } \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \neg p \leadsto \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \varphi_1 \land \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{true iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{true}$
- by condition 2. $φ_1, φ_2 ∈ Ψ$ and by IH $\hat{β}(φ_1) = \hat{β}(φ_2) = true$ $\Rightarrow \hat{β}(φ) = true$
- \bigcirc $\varphi = \varphi_1 \lor \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{false iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{false}$
- \bigcirc by condition 2. φ_1 or φ_2 are elements of Ψ
- \bigcirc by IH $\hat{\beta}(\varphi_1)$ = true or $\hat{\beta}(\varphi_2)$ = true

- $\bigcirc \varphi \text{ atom } \rightsquigarrow \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \neg p \leadsto \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \varphi_1 \land \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{true iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{true}$
 - by condition 2. $\varphi_1, \varphi_2 \in \Psi$ and by IH $\hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{true}$ $\Rightarrow \hat{\beta}(\varphi) = \text{true}$
- $\bigcirc \varphi = \varphi_1 \lor \varphi_2 \leadsto \hat{\beta}(\varphi) = \text{false iff } \hat{\beta}(\varphi_1) = \hat{\beta}(\varphi_2) = \text{false}$
- \bigcirc by condition 2. φ_1 or φ_2 are elements of Ψ
- \bigcirc by IH $\hat{\beta}(\varphi_1)$ = true or $\hat{\beta}(\varphi_2)$ = true
- $\bigcirc \leadsto \hat{\beta}(\varphi) = \mathsf{true}$

Proof of Completeness.

 \bigcirc ${\mathcal T}$ open tableau for φ

Proof of Completeness.

- \bigcirc ${\mathcal T}$ open tableau for φ
- union of the labels from open node to branch is Hintikka set

Proof of Completeness.

- \bigcirc \Im open tableau for φ
- union of the labels from open node to branch is Hintikka set
- \odot the union of the labels is the label of the roots, thus ϕ

Proof of Completeness.

- \bigcirc \Im open tableau for φ
- union of the labels from open node to branch is Hintikka set
- \odot the union of the labels is the label of the roots, thus ϕ
- $\bigcirc \varphi$ satisfiable

Consequences from Correctness

Corollary

 φ is satisfiable iff ${\mathfrak T}$ is open.

Consequences from Correctness

Corollary

 φ is satisfiable iff T is open.

Corollary

 φ is valid iff $\mathcal{T}_{\neg \varphi}$ is closed.

Consequences from Correctness

Corollary

 φ is satisfiable iff T is open.

Corollary

 φ is valid iff $\mathcal{T}_{\neg \varphi}$ is closed.

Corollary

Semantic Tableaux is a decision procedure for validity in propositional logic.

