中国计量大学 2020 - 2021 学年第 一 学期 《概率论与数理统计 A》课程考试试卷 (A)

J	开课二级 《	学院 : 理等	<u>学院</u> ,考记	、时间: <u>2021</u>	年 _1_月_	12 日 9 時
Ź	考试形式:	闭卷√、开	F卷□,允许常	‡	计算器	入场
Ź	考生姓名:		学号:	专业:	班	级:
	题序	1	=	=	四	总分
	得分					
	评卷人					

桨

- 一、填空题(共40分)
- 2、设 A, B 是两个事件, P(A) = 0.5 , P(A-B) = 0.2 , P(B | A) = _____
- 3、设D(X) = 25,D(Y) = 36,相关系数 $\rho_{XY} = 0.4$,则协方差Cov(X,Y) =______
- 4、事件 A,B 相互独立, $P(A)=\alpha$, P(B)=0.3 , $P(\overline{A}\cup B)=0.7$,则 $\alpha=$ ______
- 5、在 $1\sim 2000$ 的整数中随机地取一个数,则取到的整数既不能被 6 整除,又不能被 8 整除的概率是_____
- 6、设 $X \sim B(n, p)$,且E(X) = 2,D(X) = 1.92,则n =
- 7、设总体 $X \sim U(0,\theta)$, θ 未知, $X_1,X_2,\cdots X_n$ 是来自 X 的样本,则 θ 的矩估计量 $\hat{\theta} =$ _____
- 8、设总体 $X\sim N(\mu,0.3^2)$, $X_1,X_2\cdots X_9$ 是容量为 9 的样本,均值 $\overline{x}=5$,则未知参数 μ 的

9、设随机变量(X, Y)的密度为: $f(x,y) = \begin{cases} 12y^2, & 0 \le y \le x \le 1 \\ 0, &$ 其它 $, y \ne 0 \end{cases}$

线

10、设总体 X 的密度为 $f(x,\theta) = \begin{cases} \frac{2x}{3\theta^2}, & \theta < x < 2\theta \\ 0, & 其它 \end{cases}$,其中 θ 为未知参数, $X_1, X_2, \cdots X_n$ 是

来自X的样本,若 $\operatorname{c}\sum_{i=1}^{n}X_{i}^{2}$ 为 θ^{2} 的无偏估计量,则c=_____

- 二、计算题(共54分)
- 1、(8分)有两箱同种类的零件,第一箱 50 只,其中 10 只一等品;第二箱 30 只,其中 18 只一等品。今从两箱中任取一箱,然后再从该箱中任取一只,求:1)取到的是一等品的概率;2)若取到的是一等品,它是来自第一箱的概率。

2、(6 分)设 $x_1, x_2, \cdots x_n$ 为总体的一个样本,总体 X 的密度函数为 $f(x) = \begin{cases} \theta C^{\theta} x^{-(\theta+1)}, x > C \\ 0, 其他 \end{cases}$

其中C > 0为已知, $\theta > 1$, θ 为未知参数。求: θ 的最大似然估计值。

3、(6 分) 设某次考试的学生成绩服从正态分布,从中随机地抽取 36 位学生,算得平均成绩为 66. 5,标准差为 15 分,问在显著水平 $\alpha=0.05$ 下,是否可以认为这次考试考生成绩的方差为 16^2 ? $\left[t_{0.05}(35)=1.6896,t_{0.025}(35)=2.031,\chi_{0.025}^2(35)=53.15,\chi_{0.975}^2(35)=20.06\right]$

4、(8分) 设随机变量 X 的分布律为:

求: (1) X 的分布函数 F(x); (2) D(X)

X	0	1	2
P	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

5、(6分) 设 E(X)=3, E(Y)=1, D(X)=4, D(Y)=9, $\rho_{XY}=0.25$, Z=5X-Y+15, 求: E(Z)和D(Z)。

6、(6 分) 一整数 N 等可能地在 $1,2,3\cdots$,10 十个值中取一个值,设 D=D (N) 是能整除 N 的正整数的个数,F=F(N) 是能整除 N 的素数的个数(注意 1 不是素数),求 D 和 F 的联合分布律。

7、(8分)设二维离散型随机变量(X, Y)的联合概率分布为

求: (1) 相关系数 ρ_{XY} ; (2) 判定 X,Y 是否独立?

X Y	-1	0	1
0	0.1	0.1	0.1
1	0.3	0.1	0.3

8、(6 分)设 X 的密度函数为 $f_X(x) = \begin{cases} 1,0 \le x \le 1 \\ 0, 其它. \end{cases}$,Y 的密度函数为 $f_Y(y) = \begin{cases} e^{-y}, y > 0 \\ 0, 其它. \end{cases}$,且 X,Y相互独立,求随机变量 Z = X + Y 的概率密度。

三、证明题: (6分)

设随机变量 X, Y 相互独立, 且服从同一分布, 试证明:

$$P{a < \min{X, Y} \le b} = [P{X > a}]^2 - [P{X > b}]^2; \quad (a \le b)$$