

MAT 3007 — Optimization The Interior Point Method and Nonlinear Programming

Lecture 11

July 2nd

Andre Milzarek

iDDA / CUHK-SZ

Interior Point Method

Start: A New Perspective on Solving LPs

- ▶ We have studied duality theory for linear optimization.
- ▶ We now consider the simplex method from a new perspective.

We start with the optimality conditions for LPs (in standard form):

- 1. Primal Feasibility: Ax = b, $x \ge 0$.
- 2. Dual Feasibility: $A^{\top}y \leq c$.
- 3. Complementarity: $x_i \cdot s_i = x_i \cdot (c_i A_i^\top y) = 0$ for each i.

These conditions are necessary and sufficient for x and y being the optimal solutions of the primal and dual problems.

Review of the Simplex Method

In the simplex method, we search among basic feasible solutions:

→ We always maintain primal feasibility!

For any basis B, define $y = (A_B^{-1})^{\top} c_B$. Note that the reduced costs are by $c^{\top} - y^{\top} A$. For basic variables, the reduced costs are zero. Consequently:

$$x_i \cdot (c_i - A_i^\top y) = 0 \quad \forall i.$$

The complementarity conditions are always satisfied!

Review of the Simplex Method

During the simplex method, the reduced costs may be negative:

- ▶ Hence, the dual solution $y = (A_B^{-1})^{\top} c_B$ may not always satisfy the constraint $A^{\top} y \leq c$.
- ▶ The method stops whenever the reduced costs are nonnegative.
- ▶ We seek y satisfying $A^T y \leq c$, i.e., dual feasibility.

Proposition: Optimality Properties of the Simplex Method

During each iteration, the simplex method maintains primal feasibility and the complementarity conditions. It seeks a solution that is dual feasible.

What if we choose to maintain the other two conditions?

► This will result in the dual-simplex method and the interior point method.

The Dual Simplex Method

One can view the dual simplex method to as a simplex method applied to the dual problem of an LP.

- ▶ It maintains dual feasibility.
- It maintains the complementarity conditions.
- ► However, primal feasibility does not need to be satisfied during the iterations. It seeks for primal feasible BFS.

The tableau can be seen as a rotated variant of the primal one.

There are cases where using the dual simplex method can be more convenient:

- ▶ If a dual BFS is available (but we don't have a primal BFS).
- ▶ We have mentioned a scenario in the discussion of the sensitivity analysis (when *b* is changed by a large amount or a constraint is added)

The Interior Point Method

Optimality Conditions for LPs:

- 1. Primal Feasibility: Ax = b, $x \ge 0$.
- 2. Dual Feasibility: $A^{\top}y \leq c$.
- 3. Complementarity: $x_i \cdot s_i = x_i \cdot (c_i A_i^\top y) = 0$ for each i.

The interior point method maintains both primal feasibility and dual feasibility during its iterations and seeks for a pair of solutions that satisfy the complementarity conditions.

High-Level Idea

We want to find x, y and s such that:

$$Ax = b, \quad x \ge 0$$

$$A^{\top}y + s = c, \quad s \ge 0$$

$$x_i \cdot s_i = 0, \quad \forall i.$$

This is a set of nonlinear equations. It is not obvious to find a solutions of this system.

High-Level Idea: Continued

We consider a relaxed version of the problem.

$$Ax = b, \quad x \ge 0$$

$$A^{\top}y + s = c, \quad s \ge 0$$

$$x_i \cdot s_i \le \mu, \quad \forall i.$$

We call $\mu > 0$ the complementarity gap.

Idea: If we have found a solution for a certain μ , then it might be possible to find a solution for a smaller μ . Then we keep decreasing μ until we can find a solution of the LP.

► The essential step in the interior point method is to show that this is indeed doable – the approach is similar to Newton's method, which we discuss in the second half of the semester.

Why "Interior Point" Method?

Figure: Central path in an interior point method

- ▶ In the simplex method, we only search among the extreme points (at the boundary of the polytope).
- ▶ In the interior point method, we start in the interior of the feasible region.
- ▶ Until we reach an optimal solution, we keep x > 0 and s > 0.
- The optimal solution recovered by the interior point method may not be a BFS (if the solution is unique, it must be a BFS).

Interior Point Method: Initialization & Complexity

We also need to resolve the issue of finding an initial basic solution in the interior point method:

► This can be resolved by solving an auxiliary problem (called the homogeneous self-dual problem).

Complexity: The interior point method is a polynomial-time algorithm with overall complexity $\approx O(n^{3.5})$.

- ► There are several variants of the interior point method. The one we introduced is called the <u>primal-dual</u> type of interior point method.
- ► The main ideas of other variants are similar, i.e., going through the interior of the feasible region and seeking complementarity.

Practical Performance

On average, the speed of the simplex method is comparable with the speed of the interior point method despite their difference in theoretical complexity.

- ► For some problems, simplex method can be very fast (within a few iterations); for other problems, the simplex method requires some extra time (worst-case exponential).
- In contrast, the running time of the interior point method is quite stable, it does not vary much from problem to problem (given a fixed size).

Property of the Interior Point Method

Theorem: Quality of Solutions

The interior point method will always find the optimal solution with the maximum possible number of non-zeros.

Consider a simple case:

minimize_x
$$x_1 + x_2 + x_3$$

s.t. $x_1 + x_2 + x_3 = 1$
 $x_1, x_2, x_3 \ge 0$.

- ▶ The simplex method will give a BFS as optimal solution (one of (1,0,0), (0,1,0) and (0,0,1)).
- ▶ The interior point method will return (1/3, 1/3, 1/3).

Discussion

In the case of multiple optimal solutions:

- ▶ If we want a high-rank solution (with the maximum possible non-zeros), then choose the interior point method.
- If we want a low-rank solution (with small number of non-zeros), then choose the simplex method.
- ► The optimal solution output of the simplex method may depend on the initial solution (as well as on the pivoting rules).

High-Rank vs. Low-Rank

Either situation could be desirable in practice.

High-rank:

▶ In the multi-firm alliance problem, a high-rank (fair) allocation.

Low-rank:

- ▶ In portfolio problems, we want to minimize the number of stocks chosen (reduce the transaction cost).
- ▶ In graph problems, we want to use fewer nodes/edges.
- ▶ In other cases, we prefer integer solutions over fractional solutions (given that their objective values are equal). This usually corresponds to low-rank solutions.

Software Choices

Both the simplex method and the interior point method are used in major commercial software:

- ► In MATLAB, we can specify which method we want to use in the function called linprog.
- Same in CPLEX.
- CVX uses the interior point method.
- Excel uses the simplex method.

Nonlinear Programming

Introduction to Nonlinear Optimization

So far we have discussed linear optimization problems. However, in practice, there are many interesting optimization problems that do not take a linear form.

In general, we can write a nonlinear optimization problem as:

minimize_x
$$f(x)$$

s.t. $x \in \Omega$

We call Ω the feasible set and $x \in \Omega$ are feasible points.

In the following, we study such nonlinear optimization problems:

- Geometric properties and optimality conditions.
- ▶ How can we find the optimal solution?
- ▶ We always assume that we are solving a minimization problem.

Recap: Global and Local Optima

Let $\Omega \subseteq \mathbb{R}^n$ be a nonempty set and let $f: \Omega \to \mathbb{R}$ be given. We define $B_{\varepsilon}(y) := \{x \in \mathbb{R}^n : ||x - y|| < \varepsilon\}$ to be the open ball in \mathbb{R}^n with center y and radius $\varepsilon > 0$.

The point $x^* \in \mathbb{R}^n$ is said to be a:

- ▶ local minimizer, if $x^* \in \Omega$ and there exists $\varepsilon > 0$ such that $f(x) \ge f(x^*)$ for all $x \in \Omega \cap B_{\varepsilon}(x^*)$.
- ▶ strict local minimizer, if $x^* \in \Omega$ and there is $\varepsilon > 0$ with $f(x) > f(x^*)$ for all $x \in (\Omega \cap B_{\varepsilon}(x^*)) \setminus \{x^*\}$.
- ▶ global minimizer, if $x^* \in \Omega$ and we have $f(x) \ge f(x^*)$ for all $x \in \Omega$.
- ▶ strict global minimizer, if $x^* \in \Omega$ and we have $f(x) > f(x^*)$ for all $x \in \Omega \setminus \{x^*\}$.
- ▶ Remark: global minimizer \equiv global solution \equiv optimal sol.
- ▶ The def. for maximizer is identical, changing: $\geq /> \rightarrow \leq /<$.

Example: Minimizer

We consider the unconstrained problem

minimize_{$$x \in \mathbb{R}$$} $f(x) := x^4 - 9x^2 + 4x - 1$.

Review: Gradient, Hessian Matrix and Taylor Expansion

Assume $f(\mathbf{x}) = f(x_1, x_2, ..., x_n)$ is continuously differentiable. Then we denote the gradient of f by (an $n \times 1$ vector):

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}; \frac{\partial f}{\partial x_2}; ...; \frac{\partial f}{\partial x_n}\right)$$

The first-order Taylor expansion yields:

$$f(x+td) = f(x) + t\nabla f(x)^{\top}d + o(t), \quad t \to 0.$$

▶ If f is twice continuously differentiable, then the Hessian of f (an $n \times n$ matrix) is given by:

$$\nabla^2 f(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j}$$

By a second-order Taylor expansion, we obtain:

$$f(x+td) = f(x) + t\nabla f(x)^{\top} d + \frac{1}{2}t^2 d^{\top} \nabla^2 f(x) d + o(t^2), \quad t \to 0.$$

Example

Suppose:

$$f(x_1, x_2, x_3) := x_1^2 + x_1x_2 + x_1e^{x_3} + x_2\log x_3$$

Then:

$$\nabla f(x) = \left(2x_1 + x_2 + e^{x_3}, x_1 + \log x_3, x_1 e^{x_3} + \frac{x_2}{x_3}\right)^{\top}$$

and

$$\nabla^2 f(x) = \begin{pmatrix} 2 & 1 & e^{x_3} \\ 1 & 0 & \frac{1}{x_3} \\ e^{x_3} & \frac{1}{x_3} & x_1 e^{x_3} - \frac{x_2}{x_3^2} \end{pmatrix}.$$

Optimality Conditions

Optimality Conditions

In the following, we first study what conditions an optimal solution has to satisfy:

- → First- and second-order optimality conditions.
 - ▶ We will first start with local optimal solutions.

Optimality Conditions: Unconstrained Problems

Let us fix $\Omega = \mathbb{R}^n$ (unconstrained problems).

What are the optimality conditions for local minimizers for unconstrained problems?

Claim: We must have:

$$\nabla f(x) = 0$$

Reason: If $\nabla f(x) \neq 0$, then we can find a vector d such that $\nabla f(x)^{\top} d < 0$. Therefore, by Taylor expansion:

$$f(x+td) = f(x) + t\nabla f(x)^{\top} d + o(t), t \to 0.$$

By choosing t small enough, we can find a point $\bar{x} = x + td$ in the neighborhood of x such that $f(\bar{x}) < f(x)$.

First-Order Optimality Conditions

First-Order Necessary Conditions (FONC)

First-Order Necessary Conditions

If x^* is a local minimizer of the unconstr. problem $\min_{x \in \mathbb{R}^n} f(x)$, then we must have $\nabla f(x^*) = 0$.

Remark:

▶ Points x with $\nabla f(x)$ are all candidates for local minimizers.

Example:
$$f(x) = x_1^2 - x_1x_2 + x_2^2 - 3x_2$$
.

The FONC is:

$$2x_1 - x_2 = 0$$
, $-x_1 + 2x_2 = 3$.

There is a unique solution $(x_1 = 1, x_2 = 2)$, which turns out to be the global minimizer of f.

Example: Least Squares Problem

Assume a variable y is affected by n factors $x_1, ..., x_n \in \mathbb{R}^m$. We know that they approximately have a linear relationship:

$$y \approx \beta_1 x_1 + \dots + \beta_n x_n = \begin{bmatrix} | & & | \\ x_1 & \dots & x_n \\ | & & | \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}.$$

Now, we want to specify this relationship (find parameters β).

▶ We have m observations (m > n):

$$\{(x_{i1},...,x_{in}),y_i\}, i=1,...,m.$$

- ▶ Ideally, we want to find $\beta = (\beta_1, ..., \beta_n)^{\top}$ such that $y = X\beta$.
- \rightarrow However, this may not be possible (the equation $y = X\beta$ is an overdetermined linear system).
 - ▶ Usually the observations do not follow $y = X\beta$ exactly \leadsto noisy observations.

Example: Least Squares - Continued

Instead, we try to minimize the sum of the squared errors:

minimize_{$$\beta$$} $\sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} \beta_j x_{ij} \right)^2$

The matrix form of this problem is:

$$\mathsf{minimize}_{\beta} \quad ||X\beta - y||^2 = \beta^\top X^\top X \beta - 2\beta^\top X^\top y + y^\top y$$

where
$$||w||^2 = w^\top w = w_1^2 + \dots + w_n^2$$
.

Facts:

- ▶ If $f(x) = x^{\top} Mx$ (M is symmetric), then: $\nabla f(x) = 2Mx$.
- ▶ If $f(x) = c^{\top}x$, then $\nabla f(x) = c$.

Therefore, the FONC for the least squares problem is:

$$X^{\top}X\beta - X^{\top}y = 0.$$

Solving this equation gives candidates for local minimizer.

FONC is Not Sufficient

Example: $f(x) := x^4 - 9x^2 + 4x - 1$. The FONC is

$$f'(x) = 4x^3 - 18x + 4 = 0$$

with solutions $x_1 = -1 - \sqrt{6}/2$, $x_2 = -1 + \sqrt{6}/2$, and $x_3 = 2$.

We see that FONC is not sufficient!

- In fact, each local maximum also satisfies the FONC!
- ▶ Or it could be neither a local minimum nor maximum (x^3) .

Second-Order Necessary Conditions

Second-Order Necessary Condition

Consider the Taylor expansion again but to the 2nd order (assuming f is twice continuously differentiable):

$$f(x + td) = f(x) + t\nabla f(x)^{\top} d + \frac{1}{2}t^2 d^{\top} \nabla^2 f(x) d + o(t^2).$$

When the first-order necessary condition holds, we have:

$$f(x + td) = f(x) + \frac{1}{2}t^2d^{\top}\nabla^2 f(x)d + o(t^2).$$

In order for x to be a local minimizer, we also need $d^{\top}\nabla^2 f(x)d$ to be nonnegative for every $d \in \mathbb{R}^n$.

Second-Order Necessary Condition (SONC)

Theorem: Second-Order Necessary Conditions

If x^* is a local minimizer of f, then it holds that:

- 1. $\nabla f(x^*) = 0$;
- 2. For all $d \in \mathbb{R}^n$: $d^\top \nabla^2 f(x^*) d \geq 0$.

Definition: Semidefiniteness

We call a (symmetric) matrix A positive (negative) semidefinite (PSD/NSD) if and only if for all x we have $x^TAx \ge 0$ (≤ 0).

Remark:

▶ Therefore, the second-order necessary condition requires the Hessian matrix at x^* to be PSD. In the one-dim. case, this is equivalent to $f''(x^*) \ge 0$.

Positive Semidefinite Matrices

Here are some useful facts about PSD matrices:

- We usually only talk about PSD properties for symmetric matrices.
- ▶ If a matrix A is not symmetric, we use $\frac{1}{2}(A + A^{\top})$ to define the PSD properties (because $x^{\top}Ax = \frac{1}{2}x^{\top}(A + A^{\top})x$).
- ► A symmetric matrix is PSD if and only if all the eigenvalues are nonnegative.
- ► A symmetric matrix is PSD if and only if all the principal submatrices have nonnegative determinants.
- ▶ For any matrix A, $A^{T}A$ is a (symmetric) PSD matrix.

Example Continued

For $f(x) := x^4 - 9x^2 + 4x - 1$, the second-order condition is:

$$f''(x) = 12x^2 - 18 \ge 0$$

Only $x_1=-1-\sqrt{6}/2$ and $x_3=2$ satisfy the condition. But for the point $x_2=-1+\sqrt{6}/2$, we obtain $f''(x_2)=12(1-\sqrt{6})<0$ (thus, x_2 is not a local minimizer).

In the example of least squares problem, we use the following fact:

▶ If
$$f(x) = x^{\top} Mx$$
 (M is symmetric), then $\nabla^2 f(x) = 2M$.

Therefore, the Hessian matrix in that problem is $2X^{T}X$, which is always a PSD matrix. Therefore, the SONC always holds!

SONC is Not Sufficient

However, even if both the first- and second-order necessary conditions hold, we still can not guarantee that the candidate is a local minimum!

Example: Consider $f(x) = x^3$ at 0.

- f'(0) = f''(0) = 0, thus FONC and SONC hold.
- ▶ But 0 is not a local minimum
- A point x satisfying $\nabla f(x) = 0$ is called critical point or stationary point.
- ► The SONC can used to verify that a stationary point is not a local minimizer.
- → By modifying the SONC, we can get a sufficient condition.

Second-Order Sufficient Conditions

Second-Order Sufficient Condition (SOSC)

Theorem: Second-Order Sufficient Conditions

Let f be twice continuously differentiable. If x^* satisfies:

- 1. $\nabla f(x^*) = 0$;
- 2. For all $d \in \mathbb{R}^n \setminus \{0\}$: $d^\top \nabla^2 f(x^*) d > 0$;

then x^* is a strict local minimum of f.

Definition: Definite Matrices

We call a (symmetric) matrix A positive (negative) definite (PD/ND) if and only if for all $x \neq 0$: $x^{T}Ax > 0$ (< 0).

- ▶ A PD matrix must be PSD (thus PD is a stronger notion).
- ▶ A symmetric matrix is PD ⇔ all its eigenvalues are positive.

For Maximization Problems

Our conditions are derived for minimization problems. For maximization problems, we just change the inequalities. Let $f \in C^2$.

Theorem: FONC for Maximization

If x^* is a local (unconstrained) maximizer of f, then we must have $\nabla f(x^*) = 0$.

Theorem: SONC for Maximization

If x^* is a local maximizer of f, then we must have 1.) $\nabla f(x^*) = 0$; 2.) $\nabla^2 f(x^*)$ is negative semidefinite.

Theorem: SOSC for Maximization

If x^* satisfies 1.) $\nabla f(x^*) = 0$; 2.) $\nabla^2 f(x^*)$ is negative definite, then x^* is a strict local maximizer.

Optimality Conditions

Optimality Conditions for Unconstrained Problems:

- First-order necessary condition.
- Second-order necessary condition.
- Second-order sufficient condition.

In many cases, we can utilize these conditions to identify local and global optimal solutions.

General Strategy:

- ► Use FONC and SONC to identify all possible candidates. Then, use the sufficient conditions to verify.
- ▶ If a problem only has one stationary point and one can reason that the problem must have a finite optimal solution, then this point must be the (global) optimum.

Questions?