256B: Algebraic Geometry

Nir Elber

Spring 2023

CONTENTS

How strange to actually have to see the path of your journey in order to make it.

—Neal Shusterman, [Shu16]

Co	Contents				
1	Curves				
	1.1	January 18	4		
		1.1.1 House-Keeping	4		
		1.1.2 Serre Duality Primer	4		
		1.1.3 Divisors Refresher	5		
	1.2		6		
		1.2.1 Linear Systems	6		
		1.2.2 Riemann–Roch for Curves	8		
	1.3	January 23	8		
	1.0	1.3.1 Applications of Riemann–Roch	8		
	1.4		11		
	1.7		11		
	1.5		13		
	1.5	<i>'</i>	13		
	1.6		15		
	1.0		15		
	1 7	, 3	17		
	1.7		17 17		
			18		
			18		
	1 0	5	19		
	1.0		19		
	1.0	,	20		
	1.9		21		
		, ,	21		
	1.10	·	23		
		9	23		
		1.10.2 Hyperelliptic Curves	24		

Bibliography	26
List of Definitions	27

256B: ALGEBRAIC GEOMETRY

CONTENTS

THEME 1 CURVES

Every person believes that he knows what a curve is until he has learned so much mathematics that the countless possible abnormalities confuse him.

—Felix Klein, [Kle16]

1.1 January 18

Here we go.

1.1.1 House-Keeping

Here are some notes on the course.

- We will continue to use [Har77]. Note that [Vak17] is also popular, as is [SP].
- Office hours will probably be after class on Wednesday and Friday.
- There is a bCourses.
- In the course, we plan to cover curves, some coherent cohomology (and maybe on Zariski sheaves), and some surfaces if we have time.
- Grading will be homework and a term paper. Homework will be challenging, so collaboration is encouraged.

In this course, we will discuss coherent cohomology, but we will begin by talking about curves.

1.1.2 Serre Duality Primer

For the next few weeks, we will focus on non-singular curves over an algebraically closed field. Here is our definition.

Definition 1.1 (curve). Fix a field k. A k-curve is an integral, proper, normal scheme of dimension 1. Note that being normal is equivalent to being smooth, so we are requiring our curves to be smooth!

We will want to talk about genus a little. Here is a working definition.

Definition 1.2 (arithmetic genus). Fix a projective k-variety X. Then the arithmetic genus $p_a(X)$ is defined

Definition 1.3 (geometric genus). Fix an irreducible k-variety X. Then the *geometric genus* is $p_g(X) := \dim_k \Gamma(X, \omega_X)$, where ω_X is the canonical sheaf. Explicitly, ω_X is the top exterior power of the sheaf of differential forms on X.

In general, the above notions are not the same, but they will be for curves.

Proposition 1.4. Fix a k-curve X. Then $p_g(X) = p_a(X)$. We denote this genus by g(X) or g when the curve is clear.

We would like to actually compute some genera, but this is a bit difficult. One goal of the class is to build a cohomology theory $H^i(X, \mathcal{F})$ for coherent sheaves \mathcal{F} on X, and it turns out we can use these cohomology groups to compute the genus of X. Roughly speaking, we will derive (on the right) the left-exact functor $\Gamma(X, \cdot)$, so the cohomology will in some sense measure the difference between global sections and local sections. For example, flasque sheaves will have trivial cohomology.

For now, we will black-box various things. Here is an example of something we will prove.

Proposition 1.5. Fix a projective k-variety X, and let \mathcal{F} be a coherent sheaf. Then $H^i(X,\mathcal{F})=0$ for $i>\dim X$, and $H^i(X,\mathcal{F})$ are finite-dimensional k-vector spaces for all $i\geq 0$.

To show the Riemann–Roch theorem, we will black-box Serre duality, which we will prove much later. In the case of curves, it says the following.

Theorem 1.6 (Serre duality). Fix a k-curve X. Then, for any vector bundle \mathcal{L} on X, there is a duality

$$H^i(X, \mathcal{L}^{\vee} \otimes \omega_X) \otimes_k H^{1-i}(X, \mathcal{L}) \to k,$$

where $i \in \{0, 1\}$.

Remark 1.7. Notably, we see $p_a(X) = \dim_k \Gamma(X, \omega_X) = \dim_k H^0(X, \omega_X) = \dim_k H^1(X, \mathcal{O}_X)$.

We will also want the following fact.

Proposition 1.8. Fix a closed embedding $i \colon X \to Y$ of schemes. Given a sheaf \mathcal{F} of abelian groups on Y, then

$$H^i(X, i_*\mathcal{F}) = H^i(Y, \mathcal{F}).$$

1.1.3 Divisors Refresher

We also want to recall a few facts about divisors. We begin with Weil divisors.

Definition 1.9 (Weil divisor). Fix an irreducible k-variety X. A Weil divisor $\mathrm{Div}(X)$ are \mathbb{Z} -linear combinations of codimension-1 irreducible closed subschemes. Then the *principal divisors* are the image of the map $\mathrm{div}\colon K(X)\to \mathrm{Div}(X)$, where div takes rational functions to poles. The class group $\mathrm{Cl}\,X$ is the quotient.

More generally, we have Cartier divisors.

Definition 1.10 (Cartier divisor). Fix a scheme X. A Cartier divisor in $\operatorname{CaDiv} X$ is a global section of $\Gamma(X, \mathcal{K}^{\times}/\mathcal{O}_X^{\times})$, where K^{\times} is the sheafification of the presheaf $U \mapsto \operatorname{Frac} \mathcal{O}_X(U)$. The principal divisors are the image of $\Gamma(X, \mathcal{K}^{\times})$, and the class group $\operatorname{CaCl} X$ is the quotient.

Notably, if X is an integral sheaf, then $\mathcal K$ is the constant sheaf K(X). Then a global section is given by the pair $(\{U_i\},\{f_i\})$ where the U_i cover X, and $f_i\in K(X)^\times$ so that $f_i/f_j\in \mathcal O_X(U_i\cap U_j)^\times$. (The coherence condition allows the Cartier divisors to glue.) Notably, each $f\in K(X)$ grants a principal divisor $(\{X\},\{f\})$, which are exactly the principal divisors.

Here is the main result on these divisors.

Proposition 1.11. If X is an integral, separated, Noetherian, and locally factorial (notably, regular in codimension 1), then Weil divisors are in canonical isomorphism with Cartier divisors. Further, the principal divisors are in correspondence, and so the class groups are also isomorphic.

Example 1.12. Non-singular k-curves have all the required adjectives. Namely, codimension-1 means we are looking at points, and being smooth implies being regular, so all the local rings are dimension-1 regular local rings, which are discrete valuation rings. Notably, discrete valuation rings are

Yet another connection to divisors comes from invertible sheaves. Namely, for integral schemes X, the group of invertible sheaves $\operatorname{Pic} X$ is isomorphic to $\operatorname{CaCl} X$. The point here is that invertible shaves can be embedded into \mathcal{K}^{\times} when X is integral.

We will be interested in some special divisors.

Definition 1.13 (effective). Fix a k-curve X. Then an effective Weil divisor is a $\mathbb{Z}_{\geq 0}$ linear combination of closed points of X. Note that the collection of effective Weil divisors forms a submonoid of $\operatorname{Div} X$. We might be interested in knowing how many effective divisors are equivalent to some given divisor; the set of these is denoted |D|.

When our schemes X have enough adjectives, we note that the above correspondences tell us that there is a way to send a Cartier divisor $(\{U_i\}, \{f_i\})$ to a line bundle $\mathcal L$ embedded in $\mathcal K^{\times}$. Explicitly, we build $\mathcal L(D)$ by $\mathcal L(D)|_{U_i} \cong \mathcal O_X|_{U_i} \subseteq \mathcal K$, where the last isomorphism is by sending $1 \mapsto f_i^{-1}$. Notably, if D is effective, then the global section 1 of $\mathcal K^{\times}$ can be pulled back along to a nonzero global section on $\mathcal L(D)$ which is f_i on each U_i .

1.2 January 20

We continue moving towards Riemann–Roch.

1.2.1 Linear Systems

Let's discuss linear systems. Let X be a non-singular projective irreducible variety over a field k, and let D be a divisor of X.

Recall that a Cartier divisor $D=\{(U_i,f_i)\}$ on X is associated to the line bundle $\mathcal{L}(D)$ which is locally trivial on each U_i , given as $f_i^{-1}\mathcal{O}_X|_{U_i}$. Conversely, suppose that \mathcal{L} is a line bundle on X. Then we pick up some nonzero global section $\Gamma(X,\mathcal{L})$. Give \mathcal{L} a trivializing open cover $\{U_i\}$, where we are given isomorphisms $\varphi_i\colon \mathcal{L}|_{U_i}\simeq \mathcal{O}_X|_{U_i}$. Setting $f_i\coloneqq \varphi_i(s)$ recovers an (effective) Cartier divisor $\{(U_i,f_i)\}$ on X. We call this line bundle $\operatorname{div}(\mathcal{L},s)$.

This thinking gives the following result.

Proposition 1.14. Let X be a non-singular projective integral variety over a field k. Given a Cartier divisor D_0 , and let $\mathcal{L} := \mathcal{L}(D_0)$ be the corresponding line bundle.

- (a) For each nonzero section $s \in \Gamma(X, \mathcal{L})$, the divisor $\operatorname{div}(\mathcal{L}, s)$ is an effective divisor linearly equivalent to D_0 .
- (b) Every effective divisor linearly equivalent tot D_0 is obtained in this way.
- (c) If k is algebraically closed, we have $\operatorname{div}(\mathcal{L},s)=\operatorname{div}(\mathcal{L},s')$ if and only if s and s' differ by a scalar in k^{\times} .

The above result essentially says that we can study $\Gamma(X,\mathcal{L})$ as a k-vector space instead of trying to understand linear equivalence of divisors. For example, if $\Gamma(X,\mathcal{L})=0$, then D is not equivalent to any effective divisor!

Proof. We go one at a time.

(a) Embed $\mathcal{L} \subseteq \mathcal{K}_X$ as usual. Then $s \in \Gamma(X, \mathcal{L})$ becomes a rational function in K(X). By the construction of \mathcal{L} , we have an open cover $\{U_i\}$ and some f_i so that $\mathcal{L}|_{U_i} = f_i^{-1}\mathcal{O}_X|_U$. Because we have a global section, we may write $\varphi_i(s) = f_i f$ for some fixed f, and then tracking through our Cartier divisor, we get

$$\operatorname{div}(\mathcal{L}, s) = D_0 + \operatorname{div}(f),$$

as needed.

- (b) Suppose D is an effective divisor with $D=D_0+\operatorname{div}(f)$. Then we see $(f)\geq -D_0$, so f determines a nonzero global section of $\mathcal{LL}(D_0)$ by tracking through the above constructions: namely, set $s|_{U_i}=f_i^{-1}f$ and glue. (In particular, $(f)\geq -D_0$ means $f/f_i\in \mathcal{O}_X(U_i)$ for each i.) So we see $D=\operatorname{div}(\mathcal{L},s)$.
- (c) One can see directly that s=cs' for $c\in k^\times$ will have $\operatorname{div}(\mathcal{L},s)=\operatorname{div}(\mathcal{L},s)$. Conversely, if $\operatorname{div}(\mathcal{L},s)=\operatorname{div}(\mathcal{L},s')$, then under the embedding $\mathcal{L}\subseteq\mathcal{K}_X$, we may correspond s and s' to $f,f'\in K(X)^\times$. Thus, $f/f'\in\Gamma(X,\mathcal{O}_X^\times)$. But because k is algebraically closed and X is proper over k, we have $\Gamma(X,\mathcal{O}_X)=k$, so we are done.

Remark 1.15. More generally, we have the following: let k be a field, and let X be a proper, geometrically reduced scheme over k. Then $\Gamma(X, \mathcal{O}_X) = k$ if and only if X is geometrically reduced.

So we have the following.

Corollary 1.16. Let X be a non-singular projective integral variety over a field k. The set $|D_0|$ of effective divisors linearly equivalent to a given divisor D_0 is in natural bijection with $(\Gamma(X, \mathcal{L}(D)) \setminus \{0\})/k^{\times}$.

With this in mind, we set the following notation.

Notation 1.17. Let X be a non-singular projective integral variety over a field k. Given a divisor D_0 of X, we define $\ell(D_0) \coloneqq \dim_k \Gamma(X, \mathcal{L}(D))$ and $\dim D_0 \coloneqq \ell(D_0) - 1$.

The Riemann–Roch theorem is interested in the values of $\ell(D_0)$. Here is a quick lemma.

Lemma 1.18. Let X be a non-singular projective integral variety over a field k. Fix a divisor D of X.

- (a) If $\ell(D) \neq 0$, then $\deg D \geq 0$.
- (b) If $\ell(D) \neq 0$ and $\deg D = 0$, then D is linearly equivalent to 0.

Proof. Note $\ell(D) \neq 0$ enforces $D \sim D_0$ for some effective divisor D, so $\deg D = \deg D_0 \geq 0$, which shows (a). Then for (b), we note $\deg D_0 = 0$ forces $D_0 = 0$.

1.2.2 Riemann-Roch for Curves

We now force $\dim X=1$, meaning that X is a curve. Let $\Omega_{X/k}$ denote the sheaf of differentials, which is equal to the canonical sheaf $\omega_X=\bigwedge^{\dim X}\Omega_{X/k}$. Any divisor linearly equivalent to $\Omega_{X/k}$ will be denoted K and is called the "canonical divisor." Note that the canonical divisor is really a canonical divisor class.

Theorem 1.19 (Riemann–Roch). Let D be a divisor on a k-curve X, and let g be the genus of X. Further, suppose k is algebraically closed. Then

$$\ell(D) - \ell(K - D) = \deg D + 1 - g.$$

Proof. Set $\mathcal{L} := \mathcal{L}(D)$ for brevity. Note $\mathcal{L}(K-D) \cong \omega_X \otimes \mathcal{L}^{\vee}$, so Serre duality implies

$$\ell(K-D) = \dim_k \Gamma(\omega_X \otimes \mathcal{L}^{\vee}) = \dim_k H^1(X, \mathcal{L}).$$

Thus, our left-hand side is $\chi(\mathcal{L}) \coloneqq \dim H^0(X, \mathcal{L}) - \dim H^1(X, \mathcal{L})$. Quickly, note D = 0 can be seen directly by

$$\dim_k H^0(X, \mathcal{O}_X) - \dim_k H^1(X, \mathcal{O}_X) = \dim k - g = 1 - g,$$

which is what we wanted.

We now perturb D by a point. We show the formula holds for D if and only if the formula holds for D+p, where $p \in X$ is some closed point. Note we have a short exact sequence

$$0 \to \mathcal{L}(-p) \to \mathcal{O}_X \to k(p) \to 0$$
,

where k(p) refers to the skyscraper sheaf which is the structure sheaf about p. Tensoring with $\mathcal{L}(D+p)$, we get

$$0 \to \mathcal{L}(D) \to \mathcal{L}(D+p) \to k(p) \to 0.$$

Now, χ is additive in short exact sequences by using the long exact sequence in cohomology, so

$$\chi(\mathcal{L}(D)) = \chi(\mathcal{L}(D+p)) + \chi(k(P)),$$

but $\chi(k(p)) = \dim_k \Gamma(X, k(p)) = \dim_k k = 1$ because k is algebraically closed. The conclusion now follows because $\deg(D+p) = \deg D + 1$.

1.3 January 23

Today we apply the Riemann–Roch theorem.

Remark 1.20. Here is a quick hint for the homework: fix a Weil divisor $D = \sum_P n_P P$ on a k-curve X, where k is algebraically closed. Then $\Gamma(X, \mathcal{O}_X(D))$ can be described as space of rational functions f on X such that $D + \operatorname{div}(f)$ is effective. In other words, for each point $P \in X$, we see f has a pole of order at worse n_P at P.

1.3.1 Applications of Riemann–Roch

Let's give a few applications of Theorem 1.19.

Example 1.21. Fix a k-curve X, where k is algebraically closed. Further, let g be the genus of X and K the canonical divisor. We can compute $\deg K$ as follows: plugging into Theorem 1.19, we see

$$q-1 = \ell(K) - \ell(0) = \deg K - 1 + q$$

so $\deg K = 2g - 2$.

¹ This is the Euler characteristic of $\mathcal{L}(D)$ because our higher cohomology groups vanish.

Remark 1.22. More generally, we can see that plugging in K-D into Theorem 1.19 is only able to deduce $\deg K = 2g - 2$.

Example 1.23. Let D be a divisor on a k-curve X, where k is algebraically closed. Further, let g be the genus of X and K the canonical divisor. We would like to study $\dim |nD| = \ell(nD) - 1$ for $n \in \mathbb{Z}^+$. We have the following cases.

- If $\deg D < 0$, then $\deg(nD) < 0$ still, so $\ell(nD) = 0$, so $\dim |nD| = -1$ always.
- If $\deg D=0$, then there are two possibilities. Namely, if nD is linearly equivalent to 0, then $\ell(nD)=1$, so $\dim |nD|=0$; otherwise, D will not be linearly equivalent to any effective divisor (the only effective divisor with degree 0 is 0), so $\dim |nD|=-1$.
- If $\deg D>0$, then for n large enough, we see $\deg(K-nD)<0$, so $\ell(K-nD)=0$, so Theorem 1.19 implies $\ell(nD)=n\deg D+1-g$, so $\dim |nD|=n\deg D-g$. Here, "n large enough" is just $n>\deg K/\deg D$.

Here is a more interesting corollary.

What?

Lemma 1.24. Let X be a k-curve, where k is algebraically closed. Suppose that two distinct closed points P and Q produce linearly equivalent Weil divisors. Then $X \cong \mathbb{P}^1_k$.

Proof. We are given that $\operatorname{div}(f) = P - Q$ for some $f \in K(X)$. Thus, we induce a map $k(t) \to K(X)$ given by $t \mapsto f$, where we view k(t) as the fraction field of \mathbb{P}^1_k . Notably, t has a zero at 0 and a pole at ∞ , and f has a zero at Q and a pole at P. This will induce a finite map $g \colon X \to \mathbb{P}^1$, which we can compute to have degree 1 by the following discussion (notably, the pull-back of the divisor [0] is [P]), so g is a birational map and hence an isomorphism.

Now, for any finite map of curves $g\colon X\to Y$, recall there is a map on divisors $g^*\colon\operatorname{Cl}(Y)\to\operatorname{Cl}(X)$ as follows: given point $P\in Y$ inside an affine open subscheme $V\subseteq Y$, we can take the pre-image to X to produce a Weil divisor. More formally, we send P to

$$g^*(P) \coloneqq \sum_{Q \in g^{-1}(\{P\})} v_Q(t)Q,$$

where t is a uniformizer parameter for $Q_{X,P}$, and $v_Q(t)$ is its valuation at the local ring $\mathcal{O}_{X,Q}$.

In fact, we showed the following last semester, which we used in the proof above.

Proposition 1.25. Let $g: X \to Y$ be a finite map of k-curves. For any divisor D on Y, we have $\deg g^*D = (\deg g)(\deg D)$.

Proof. Let's recall the proof: it suffices to show this in the case where D=P is a point. Plugging into the definition of g^* , we are showing that

$$\sum_{Q \in g^{-1}(\{P\})} v_Q(t) = \deg g^* P \stackrel{?}{=} \deg g.$$

This statement is local at P, so we may assume that $Y = \operatorname{Spec} B$, whereupon taking the pre-image along g enforces $X = \operatorname{Spec} A$ for some A. For dimension-theory reasons, we see that g is dominant, so the induced map $B \to A$ is injective.

Localizing, we set $A' := A \otimes_B \mathcal{O}_{Y,P}$, so we are really interested in the map $\mathcal{O}_{Y,P} \to A'$, which is still injective. It follows that A' is a finite (by g) torsion-free (by this injectivity argument) module over $\mathcal{O}_{Y,P}$. But

² Alternatively, one can view this operation as the pullback g^* : $\operatorname{Pic} Y \to \operatorname{Pic} X$ and then recall that each element of the class group corresponds to an isomorphism class in Pic .

 $\mathcal{O}_{Y,P}$ is a principal ideal domain, so we may appeal to the structure theorem. Namely, we want to compute the rank of A' over $\mathcal{O}_{Y,P}$, for which it suffices to take fraction fields everywhere and instead compute

$$\operatorname{rank}_{\mathcal{O}_{Y,P}} A' = [\operatorname{Frac} A' : \operatorname{Frac} \mathcal{O}_{Y,P}] = [\operatorname{Frac} A : \operatorname{Frac} B].$$

On the other hand, given uniformizer t of $\mathcal{O}_{X,P}$, we can compute the corresponding rank of A'/tA' over k=k(P) is $\deg g$. However, $\operatorname{Spec} A'/tA'$ is the pre-image of P, so we go ahead and note A'/tA' is a product of local Artinian rings which are quotients corresponding to points in $g^{-1}(\{P\})$. In particular, for each $Q\in g^{-1}(P)$, we see $v_Q(t)=m$ means that $\mathcal{O}_{X,Q}$ appears in A'/tA' as $\mathcal{O}_Q/(\varpi_Q)^m$, where ϖ_Q is a uniformizer at Q. So we can write

$$A'/tA' = \prod_{Q \in g^{-1}(\{P\})} \mathcal{O}_{X,Q}/(\varpi_Q)^{v_Q(t)}.$$

But the k-rank of this is $\deg g^*(\{P\})$ by definition of g^* , which must equal the $\mathcal{O}_{Y,P}$ -rank of A', so we are done.

This proposition finishes justifying the first paragraph of the proof.

Corollary 1.26. Let X be a k-curve of genus 0, where k is algebraically closed. Then X is isomorphic to \mathbb{P}^1_k .

Proof. As an aside, we note that \mathbb{P}^1_k is certainly a k-curve of genus 0.

Quickly, choose any two points P and Q on X. As such, we take $D \coloneqq P - Q$ so that $\deg(K - D) = -2 < 0$, so $\ell(K - D) = 0$. Thus, Theorem 1.19 implies $\ell(D) = 1$. Thus, D is linearly equivalent to an effective divisor, but the only effective divisor with degree 0 is 0 itself, so we see that P - Q is linearly equivalent to 0. This is enough to conclude that $X \cong \mathbb{P}^1_k$ by Lemma 1.24; note that $X \cong \mathbb{P}^1_k$ being a curve requires X to have infinitely many points and thus distinct points.

Lastly, let's give a corollary for elliptic curves.

Definition 1.27 (elliptic). A (proper) k-curve X is elliptic if and only if X has genus 1.

Corollary 1.28. Let X be an elliptic k-curve, where k is algebraically closed. We give X(k) a group law arising from $\operatorname{Pic} X$.

Proof. Let K be a canonical divisor for X, and we see $\deg K=0$ by Example 1.21. However, $\ell(K)=1$ is the genus, so K is linearly equivalent to some effective divisor, so as usual we note that K is linearly equivalent to 0.

Quickly, we note that the group structure on the Picard group $\operatorname{Pic} X$ of isomorphism classes of line bundles on X(k) induces a group law on X. Indeed, fix some k-point $P_0 \in X$. We now claim that the map $X(k) \to \operatorname{Pic}^0 X$ given by

$$P \mapsto \mathcal{O}_X(P - P_0)$$

is a bijection. (Here, $\operatorname{Pic}^0 X$ is the subgroup of degree-0 line bundles.) This will give X(k) a group law by stealing it from $\operatorname{Pic} X$.

Because we already know that $\operatorname{Pic} X$ is in bijection with divisors more generally, it's enough to show that any divisor D of degree 0 is linearly equivalent to a divisor of the form $P-P_0$ for $P\in X(k)$. Well, we use Theorem 1.19 with $D+P_0$, which yields

$$\ell(D+P_0) - \ell(K-D-P_0) = 1 + 1 - g = 1,$$

but $K-D-P_0$ has degree -1 and so $\ell(K-D-P_0)=0$. Thus, $\dim |D+P_0|=0$, so there is a unique effective divisor of degree 1 linearly equivalent to $D+P_0$. However, an effective divisor of degree 1 is just a point P, so we are done.

1.4 January 25

Today we discuss ramification.

1.4.1 Ramification

Given a finite morphism $f: X \to Y$ of k-curves, there are some numbers we can attach to f. For example, we have the degree $\deg f \coloneqq [K(X):K(Y)]$. Additionally, for each $y \in Y$, we have a map

$$\mathcal{O}_{Y,y} \to \prod_{x \in f^{-1}(\{y\})} \mathcal{O}_{X,x}.$$

Each of these discrete valuation rings have residue field k, so when k is algebraically closed, this is pretty simple to understand. Indeed, this gives rise to "ramification" information.

Definition 1.29 (ramification). Let $f: X \to Y$ be a morphism of k-curves. Then for $x \in X$, we define the *ramification index* as $e_x \coloneqq v_x(t_y)$, where $t_y \in \mathcal{O}_{Y,y}$ is a uniformizer for $\mathcal{O}_{Y,y}$, and $v_x(t_y)$ refers to the valuation of t_y embedded in $\mathcal{O}_{X,x}$.

Note $e_x > 0$ because $\mathcal{O}_{Y,y} \to \mathcal{O}_{X,x}$ is a map of local rings.

When k is not algebraically closed, things get a little more complicated, and we will also want to keep track of the degree of the corresponding residue field extension.

Definition 1.30 (ramification). Let $\varphi \colon (A, \mathfrak{m}) \to (B, \mathfrak{n})$ be a map of discrete valuation rings. Fix a uniformizer $\varpi \in \mathfrak{m}$, and define $e \coloneqq v_B(\varphi(\varpi))$ and $f \coloneqq [B/\mathfrak{n} : A/\mathfrak{m}]$ and $p \coloneqq \operatorname{char}(A/\mathfrak{m})$.

- φ is unramified if and only if e=1 and B/\mathfrak{n} is separable over A/\mathfrak{m} .
- φ is tamely ramified if and only if $p \nmid e$ and B/\mathfrak{n} is separable over A/\mathfrak{m} .
- Otherwise, φ is wildly ramified.

Remark 1.31. Algebraic number theory has a lot to say about how the above process works for local fields (or even just number rings).

When k is algebraically closed, we see that the extension $\mathcal{O}_{Y,y}/\mathfrak{m}_{Y,y} = \mathcal{O}_{X,x}/\mathfrak{m}_{X,x} = k$, so this extension is of course separable, so Definition 1.30 simplifies somewhat in our situation.

Definition 1.32. Let $f\colon X\to Y$ be a finite morphism of k-curves. Then we say that $x\in X$ is unramified/tamely ramified/wildly ramified if and only if the corresponding map $f^\sharp\colon \mathcal{O}_{Y,y}\to \mathcal{O}_{X,x}$ is unramified/tamely ramified/wildly ramified.

Notably, last class we recalled that

$$f^*[y] = \sum_{x \in f^{-1}(\{y\})} e_x[x].$$

Now, even in our algebraically closed situation, we will want to care about separable extensions.

Definition 1.33 (separable). Let $f: X \to Y$ be a finite morphism of k-curves. Then f is *separable* if and only if the extension $K(Y) \subseteq K(X)$ is separable.

Now, we would like to keep track of our ramification information all at once.

Lemma 1.34. Let $f: X \to Y$ be a finite separable morphism of k-curves. Then

$$0 \to f^*\Omega_{Y/k} \to \Omega_{X/k} \to \Omega_{X/Y} \to 0$$

is an exact sequence of line bundles on X.

Proof. We know from last semester that this map is exact on the right, so we need the map $f^*\Omega_{Y/k} \to \Omega_{X/k}$ is injective. Well, we may check exactness of quasicoherent sheaves on affine open subschemes, so we may assume that $X = \operatorname{Spec} A$, where the map looks like $A \to A$. Letting I denote the kernel of this map, we get an embedding $A/I \subseteq A$, but if I is nontrivial, then this means that the map $A \to A$ is zero at the generic point.

Thus, we want to check that the map $A \to A$ is nonzero at the generic point. Everything is compatible with localization, so we are now looking at

$$f^*\Omega_{K(Y)/k} \to \Omega_{K(X)/k} \to \Omega_{K(X)/K(Y)} \to 0.$$

Thus, to show that the map on the left is nonzero, it suffices to show that $\Omega_{K(X)/K(Y)} = 0$. We now use the fact that K(X)/K(Y) is separable, for which the statement is true.

The point here is that $\Omega_{X/Y}$ precisely measures the "difference" between $\Omega_{Y/k}$ and $\Omega_{X/k}$.

In what follows, we fix the following notation. Let $f\colon X\to Y$ be a finite morphism of k-curves. Given $x\in X$ and y:=f(x), let ϖ_x be a uniformizer for $\mathcal{O}_{X,x}$ and ϖ_y be a uniformizer for $\Omega_{Y,y}$. Then we note $d\varpi_x$ generates $(\Omega_{X/k})_x$, and $d\varpi_y$ generates $(\Omega_{Y/k})_y$, and we have a map

$$(f^*\Omega_{Y/k})_x \to (\Omega_{X/k})_x \simeq \mathcal{O}_{X,x}$$

by sending $f^*: d\varpi_y \mapsto d\varpi_y/d\varpi_x \cdot d\varpi_x$, where $d\varpi_y/d\varpi_x$ is an element of $\mathcal{O}_{X,x}$. (This is the definition of $d\varpi_y/d\varpi_x$.)

Proposition 1.35. Let $f: X \to Y$ be a finite separable morphism of k-curves.

- (a) $\Omega_{X/Y}$ is supported on exactly the set of ramification points of f, so the set of ramified points is finite.
- (b) For each $x \in X$, we have $(\Omega_{Y/X})_x$ is a principal $\mathcal{O}_{X,x}$ -module of length $v_x(d\varpi_y/d\varpi_x)$.
- (c) If f is tamely ramified at x, then the length of $(\Omega_{Y/X})_x$ is $e_x 1$; if it's wildly ramified, then the length is larger.

Proof. We show these one at a time. As a warning, all uniformizers might be swapped here.

(a) Recall that $\Omega_{Y/X}$ is generically zero. Now, $(\Omega_{Y/X})_p = 0$ if and only if the map

$$(f^*\Omega_{Y/k})_x \to (\Omega_{X/k})_x$$

is an isomorphism, which means that a uniformizer for $\mathcal{O}_{Y,f(x)}$ is going to a uniformizer of $\mathcal{O}_{X,x}$, which is equivalent to f being unramified at x. The point here is that the set of ramified points correspond to some dimension-zero subset and is therefore finite.

(b) The length of $(\Omega_{Y/X})_p$ is its k-dimension, which we can compute as

$$\operatorname{length}(\Omega_{X/k})_x - \operatorname{length}(f^*\Omega_{Y/K})_x$$

which we can compute is e_x by hand. Notably, this has to do with how we identify $(\Omega_{X/k})_x$ with $\mathcal{O}_{X,x}$.

What?

(c) Letting e denote our ramification index, we may set $\varpi_y = a\varpi_x^e$ where $a \in \mathcal{O}_{X,x}^{\times}$, which upon taking differentials reveals

$$d\varpi_y = ea\varpi_x^{e-1}d\varpi_x + \varpi_x^e da.$$

Now, if f is tamely ramified at x, we see $\operatorname{char} k \nmid e$, so we see that the valuation here is in fact $e_x - 1$. The statement for wild ramification follows similarly.

Remark 1.36. The length of the modules here coincides with the dimension as a k-vector space. This is because $\mathcal{O}_{X,x}$ is a discrete valuation ring with residue field k.

1.5 January 27

There is homework due tonight. Today we keep talking towards the Riemann-Hurwitz formula.

1.5.1 The Riemann-Hurwitz Formula

Throughout, $f: X \to Y$ is a finite separable morphism of k-curves, where k is algebraically closed.

Definition 1.37 (ramification divisor). Let $f: X \to Y$ be a finite separable morphism of k-curves, where k is algebraically closed. Then the *ramification divisor* is the divisor

$$R(f) := \sum_{x \in X} \operatorname{length}(\Omega_{Y/X})_x x.$$

Note that there are only finitely many ramified points, so this is indeed a divisor.

In particular, in tame ramification, this length is in fact exactly our ramification.

Lemma 1.38. Let $f: X \to Y$ be a finite separable morphism of k-curves, where k is algebraically closed. Further, let K_X and K_Y denote the canonical divisors. Then K_X is linearly equivalent to $f^*K_Y + R$.

Proof. We can see by hand that the structure sheaf \mathcal{O}_R of R as a closed subscheme is exactly $\Omega_{Y/X}$, so the exact sequence

$$0 \to f^*\Omega_{Y/k} \to \Omega_{X/k} \to \Omega_{Y/X} \to 0$$

can be tensored with $\Omega_{X/k}^{-1}$ to give

What?

$$0 \to f^*\Omega_{Y/k} \otimes \Omega_{X/k}^{-1} \to \mathcal{O}_X \to \mathcal{O}_R \to 0.$$

Now, we see $\mathcal{O}_R = \mathcal{O}_X(-R)$ by unwinding definitions, so $f^*\Omega_{Y/k} \otimes \Omega_{X/k}^{-1} = \mathcal{O}_X(-R)$, which is what we wanted.

Theorem 1.39 (Hurwitz). Let $f: X \to Y$ be a finite separable map of k-curves, where k is algebraically closed. Letting $n := \deg f$, we have

$$2q(X) - 2 = n \cdot (2q(Y) - 2) + \deg R(f).$$

Proof. Take degrees of Lemma 1.38.

Let's derive some corollaries.

Definition 1.40 (étale). A morphism locally of finite presentation $f: X \to Y$ of schemes is étale at $x \in X$ if and only if the following conditions hold.

- f is flat at x. In other words, $\mathcal{O}_{X,x}$ is flat as an $\mathcal{O}_{Y,f(x)}$ -module.
- $\mathcal{O}_{X,x}/\mathfrak{m}_{f(x)}\mathcal{O}_{X,x}$ is a field and separable over k(f(x)). Equivalently, we are requiring $\mathfrak{m}_{f(x)}\mathcal{O}_{X,x} = \mathfrak{m}_x$ and for the residue field extension to be separable.

Then f is étale if and only if f is étale at all points.

Remark 1.41. The locus of points for which a morphism is étale is open essentially because this is true for both conditions individually.

Remark 1.42. If the morphism of k-curves $f\colon X\to Y$ is étale, then it is unramified because we are essentially saying $\operatorname{length}\Omega_{X/Y}=0$. In fact, unramified morphisms are étale, which should roughly be our intuition. Flatness is a bit mysterious, but such is life.

Remark 1.43. Equivalently, a morphism $f \colon X \to Y$ is étale if and only if f is a smooth morphism of relative dimension 0. For example, if both X and Y are varieties, then we are asking for the varieties to have the same sheaf of differentials.

Geometrically, we imagine finite étale morphisms as covering space maps. This motivates the following definition.

Definition 1.44 (simply connected). A finite étale morphism $f\colon X\to Y$ is *trivial* if and only if X is a disjoint union of copies of Y, and f is a disjoint union of automorphisms. Then a curve Y is *simply connected* if and only if all finite étale morphisms $X\to Y$ are trivial.

Roughly speaking, we are trying to say that the fundamental group is trivial.

Proposition 1.45. Let k be an algebraically closed field. Then \mathbb{P}^1_k is simply connected.

Example 1.46. We can see that the sphere $\mathbb{P}^1_{\mathbb{C}}$ is simply connected.

Proof. Fix some finite étale morphism $f\colon X\to Y$. By breaking this morphism into connected components, we may assume that X is connected. We show that $X=\mathbb{P}^1_k$. Because f is smooth, we see that the structure map $X\to Y\to k$ is smooth, so X is a (smooth) curve. (In particular, we can also see that X is irreducible.) Now, because f is étale, it is étale at the generic point, so f is also separable.

We are now ready to apply Theorem 1.39. Here, R(f) = 0 and g(Y) = 0, so we are left with

$$2g(X) - 2 = (\deg f)(0 - 2) = -2 \deg f.$$

However, $g(X) \ge 0$ and $\deg f \ge 1$, so we must have g(X) = 0 and $\deg f = 1$, so f is in fact an isomorphism $X \cong \mathbb{P}^1_k$.

Remark 1.47. In characteristic 0, we will have \mathbb{A}^1_k is simply connected. However, in positive characteristic, this is no longer true; indeed, $\pi_1^{\text{\'et}}(\mathbb{A}^1_{\mathbb{F}_n})$ is infinite.

1.6 January 30

Homework was assigned and still due on Friday, sadly.

Remark 1.48. Let k be an algebraically closed field of positive characteristic p. It turns out $G := \pi_1^{\text{\'et}}(\mathbb{A}^1_k)$ is profinite but not topologically finitely generated—it's very large. In fact, one can show that any finite p-group arises as a quotient of $\pi_1^{\text{\'et}}(\mathbb{A}^1_k)$. More generally, any finite quasi-p-group is a quotient, where a quasi-p-group is a finite group generated by its Sylow p-subgroups cover G.

1.6.1 Everything Is Frobenius

Thus far we roughly understand finite separable morphisms of curves. We now investigate the purely inseparable case. In particular, today k will be an algebraically closed field of positive characteristic p. Note there is a canonical embedding $\mathbb{F}_p \hookrightarrow k$, which gives rise to the Frobenius automorphism as follows.

Definition 1.49 (Frobenius). Let k be a field of characteristic p>0. Given a k-scheme X, we define the Frobenius automorphism $F\colon X\to X$ as being the identity on topological spaces and being the pth-power map $F_U^\sharp\colon \mathcal{O}_X(U)\to \mathcal{O}_X(U)$ for all open $U\subseteq X$.

We can see that this map takes units of $\mathcal{O}_{X,x}$ to units of $\mathcal{O}_{X,x}$ for any $x \in X$, so we have defined a morphism of locally ringed spaces.

Example 1.50. Let $X = \operatorname{Spec} A$ be an \mathbb{F}_p -scheme. Then the ring homomorphism $F \colon A \to A$ given by the pth power map is the Frobenius $F \colon X \to X$. To show the map is the identity on the topological space, we note $a^p \in \mathfrak{p}$ is equivalent to $a \in \mathfrak{p}$ for $a \in A$, where we are using the primality of \mathfrak{p} . Thus, $F^{-1}(\mathfrak{p}) = \mathfrak{p}$ for any prime $\mathfrak{p} \in \operatorname{Spec} A$.

The Frobenius map defined above is not k-linear because it is the pth power map on k too. To make this k-linear, we essentially cheat.

Definition 1.51. Fix a scheme X over a field k of characteristic p. Then we define the k-scheme X_p which is equal to X as a scheme but whose structure morphism to $\operatorname{Spec} k$ is given by

$$X_p \to \operatorname{Spec} k \xrightarrow{F} \operatorname{Spec} k.$$

The point is that the diagram

$$X_{p} \xrightarrow{F} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec} k \xrightarrow{F} \operatorname{Spec} k$$

$$(1.1)$$

commutes, so we do genuinely have a Frobenius morphism $F \colon X_p \to X$.

Remark 1.52. Explicitly, for each affine open $\operatorname{Spec} A \subseteq X$, we get an identical affine open $\operatorname{Spec} A_p \subseteq X_p$, but if the k-algebra structure on A is given by $g \colon k \to A$, then the k-algebra structure on A is given by $g_p(x) \cdot \alpha \coloneqq g(x^p) \cdot \alpha$.

Namely, with everything being contravariant on functions, we see that

$$\begin{array}{ccc} A \xleftarrow{F} & A \\ \uparrow & & \uparrow \\ k \xleftarrow{F} & k \end{array}$$

commutes.

Why?

Remark 1.53. Certainly $X_p \cong X$ as schemes because they are literally the same data. If k is perfect, then $X_p \cong X$ is an isomorphism of k-schemes because the pth-power map on k is an isomorphism.

Example 1.54. Let k be a perfect field of characteristic p>0. Set $X=\mathbb{A}^1_k=\operatorname{Spec} k[t]$. Then $F\colon X_p\to X$ is given by the morphism $k[t_p]\to k[t]$ by $f\mapsto f^p$. Thus, to witness our isomorphism of k-schemes, we note that we can post-compose $k[t_p]\to k[t]$ with the morphism which extends $k\cong k$ by $a^p\mapsto a$ by $t_p\mapsto t_p$, so we have made a k-linear isomorphism. One can essentially extend this construction to work in general when k is perfect.

Example 1.55. Let k be a field of characteristic p>0, and let X be an integral k-scheme. Then $F\colon X_p\to X$ is given by a morphism $K(X)\to K(X_p)$ by $\alpha\mapsto\alpha^p$. (Yes, this is k-linear because the k-action on $K(X_p)$ is by pth powers.) As such, we have defined an embedding of K(X) into an algebraic extension $K(X_p)$: namely, every $\alpha\in K(X_p)$ is a root of the polynomial $t^p-\alpha^p=0$ in K(X)[t].

Conversely, $t^p - \beta \in K(X)[t]$ always has a root in $K(X_p)$ because $\beta \in K(X)$ embeds into $K(X_p)$ as β^p , so this polynomial "looks like" $t^p - \beta^p$ in $K(X_p)$, where β is our root. Thus,

$$K(X_p) = K(X)^{1/p}.$$

The point is that a k-curve X will have the Frobenius morphism $X_p \to X$ induced by the embedding $K(X) \to K(X)^{1/p}$.

Now, here is our main result.

Theorem 1.56. Let k be an algebraically closed field of characteristic p>0. Further, let $f\colon X\to Y$ be a finite map of k-curves which induces a purely inseparable extension $f^\sharp\colon K(Y)\to K(X)$. Then f is some iterate of the Frobenius morphism. In particular, X and Y are isomorphic as schemes and thus have the same genus.

Proof. Note $\deg f = [K(X):K(Y)]$ is a power of p, which we call p^{ν} . Being purely inseparable then enforces $K(X) \subseteq K(Y)^{1/p^{\nu}}$; namely, the minimal polynomial if all elements $\alpha \in K(X)$ must be the minimal polynomial of the form $x^{p^r} - \beta = 0$, for otherwise there is a separable subextension, violating our pure inseparability.

Now, consider iterated Frobenius morphisms

$$Y_{p^{\nu}} \to Y_{p^{\nu-1}} \to \cdots \to Y_p \to Y,$$

which corresponds to the inclusion of fields

$$K(Y) \subseteq K(Y)^{1/p} \subseteq \cdots \subseteq K(Y)^{1/p^{\nu-1}} \subseteq K(Y)^{1/p^{\nu}},$$

where the inclusions have reversed.

Thus, to conclude, we would like to show $K(X) = K(Y)^{1/p^{\nu}}$. By degree arguments, it's enough to conclude $\left[K(Y)^{1/p^{\nu}}:K(Y)\right] = p^{\nu}$. By induction, it's enough to show $\left[K(Y)^{1/p}:K(Y)\right] = p$. We now must use the fact that Y is a smooth k-curve, so we will push its proof into the following lemma.

Lemma 1.57. Let k be an algebraically closed field of characteristic p>0. If Y is a smooth k-curve, then $\left[K(Y)^{1/p}:K(Y)\right]=p$.

Proof. Equivalently, we would like to show that $[K(Y):K(Y)^p]=p$. Note that $\Omega_{K(Y)/k}$ is a K(Y)-vector space of dimension 1; we refer to Theorem II.8.6.A, where the point is that k being perfect tells us K(Y)/k is separably generated, so $\dim_k \Omega_{K(Y)/k}$ is the transcendence degree of K(Y) over k, which is 1.

We now note that dx generates $\Omega_{K(Y)/k}$ if and only if $x \in K(Y)$ yields a power basis $\{1, x, \dots, x^{p-1}\}$ of K(Y) over $K(Y)^p$, which completes the proof.

It remains to show that the genus does not change. Well, $g = \dim_k H^1(X, \mathcal{O}_X)$, and we see that the only difference between X and Y is the structure morphism, and this dimension does not change if we change the structure morphism.

Remark 1.58. The above proof basically shows that the Frobenius morphism $F: X_p \to X$ in our setting is a finite morphism of degree p. In particular, it cannot be an isomorphism.

1.7 February 1

We continue discussing the Frobenius morphism.

1.7.1 Relative Frobenius

We begin class with a few remarks on the Frobenius automorphism when k is not perfect. Roughly speaking, the issue is that a Frobenius morphism $F\colon X_p\to X$ is not p. In general, one sees $[K(X):kK(X)^p]=p$ (note we have taken the composite with p!), so the extension $[K(X):K(X)^p]>p$.

The idea is to generalize (1.1). Namely, we construct our Frobenius $X^{(p)}$: X by pullback in the following square.

Here $F_{X/k}$ is the relative Frobenius. Notably, when k is perfect, we see that the canonical projection $X^{(p)} \to X$ is an isomorphism of k-schemes because the Frobenius on the bottom is an isomorphism. One can even make this isomorphism explicit by arguing as in Example 1.54.

We guickly check that this roughly generalizes our earlier construction.

Example 1.59. Set $X = \operatorname{Spec} A$ for a k-algebra A. We track the diagram in this case.

Proof. Then $X^{(p)} = \operatorname{Spec}(A \otimes_k k)$, where the k-action on k is given by the Frobenius $F \colon k \to k$. Thus, when k is perfect, we are indeed looking k acting on k by $k \in A$, where the k-action is given by

$$g^{(p)}(\alpha)a = g(\alpha^{1/p})a,$$

where $g: k \to A$ is the structure morphism.

To understand the relative Frobenius $X^{(p)} \to X$, we note that it sends $f \otimes \alpha \mapsto \alpha f^p$ by tracking the diagram. As such, when k is perfect, we may think of our morphism as

$$\alpha^{1/p} f \mapsto \alpha f^p$$
,

so the map is in fact k-linear.

Remark 1.60. Thus, when k is not perfect, we see that $X^{(p)}$ need not be isomorphic to X, even absolutely. For example, take $A=k[x]/\left(x^2-\alpha\right)$ for some $\alpha\in k$. In $A\otimes_k k$, we see that

$$(x \otimes 1)^2 = \alpha \otimes 1 = 1 \otimes \alpha^p.$$

Thus, $A \otimes_k k$, even though it is a two-dimensional k-algebra, is isomorphic to $k[x_p]/\left(x_p^2-\alpha^p\right)$, which is not the same as A when k is not perfect!

Anyway, let's see the analogue of Theorem 1.56 in our setting.

Theorem 1.61. Fix a finite morphism $f \colon X \to Y$ of (smooth, proper, integral) k-curves, where k is a field of characteristic p > 0. Further, suppose that $f^{\sharp} \colon K(Y) \to K(X)$ is purely inseparable of degree p. Then $Y \cong X^{(p)}$ for some r, and f is the relative Frobenius under this isomorphism.

1.7.2 Inseparability for Fun and Profit

We will not prove this, but it's fun to know.

Corollary 1.62. Fix a finite morphism $f \colon X \to Y$ of k-curves, where k is algebraically closed. Then $g(X) \ge g(Y)$.

Proof. Factor the field extension $K(Y) \subseteq K(X)$ into a purely inseparable extension followed by a separable extension. Genus does not change when we are dealing with an inseparable extension by Theorem 1.56, so it suffices to show that the genus does not fall with separated morphisms. Well, by Theorem 1.39, we see

$$2q(X) - 2 = (\deg f)(2q(Y) - 2) + \deg R \ge 2q(Y) - 2,$$

so $g(X) \ge g(Y)$ follows.

Remark 1.63. For our equality cases, we see that one either has an isomorphism or an unramified finite morphism of elliptic curves. Such unramified maps of elliptic curves (which are not isomorphisms) do exist.

1.7.3 Embeddings of Curves

We now return to the case where k is algebraically closed. Our next goal is to show that every k-curve can be embedded into \mathbb{P}^3_k . As such, we are roughly speaking interested in showing that certain linear systems separate points (which means that we are base-point-free) and tangent vectors.

Let's begin by discussing being base-point-free.

Lemma 1.64. Fix a divisor D on a k-curve X. Then $\mathcal{O}_X(D)$ is base-point-free if and only if

$$\dim |D| = \dim |D - P| + 1.$$

Proof. We are essentially showing $\ell(D) = \ell(D-P) + 1$. Notably, we do always have $\ell(D) \le \ell(D-P) + 1$ by staring at the short exact sequence

$$0 \to \mathcal{O}_X(-P) \to \mathcal{O}_X \to k(P) \to 0$$

and then tensoring by $\mathcal{O}_X(D)$ to give

$$0 \to \mathcal{L}(D-P) \to \mathcal{L}(D) \to k(P) \to 0.$$

We now discuss the equality. Note $\ell(D)=\ell(D-P)+1$ is just telling us that there is a global section in $\Gamma(X,\mathcal{O}_X(D))\setminus\Gamma(X,\mathcal{O}_X(D-P))$. In other words, we have some $f\in K(X)$ such that $D+\operatorname{div}(f)$ is effective, but $D-P+\operatorname{div}(f)$ is not. Thus, we see that we are saying P is not in the support of f, so P is not a base-point for D.

Next time we will make a similar dimension condition to be ample and very ample.

1.8 February 3

We continue discussing the theory of things which go bump in the night.

1.8.1 Line Bundle Review

We begin by recalling a couple of facts.

Proposition 1.65. Fix an A-scheme X, where A is an affine scheme. We recall that a morphism $X \to \mathbb{P}^n_A$ has equivalent data to giving a line bundle \mathcal{L} on X together with global sections (s_0, \ldots, s_n) which generate \mathcal{L} .

Recall that the global sections generate \mathcal{L} if and only if the induced map $\mathcal{O}_X^{n+1} \to \mathcal{L}$ is surjective, which means that the global sections generate all the talks of \mathcal{L} .

Remark 1.66. If A=k is a field, then defining a morphism $X\to \mathbb{P}^n_k$ can be defined (up to automorphism on \mathbb{P}^n_k), then it suffices to just provide a globally generated line bundle \mathcal{L} , and the precise choice of spanning set (s_0,\ldots,s_n) merely adds an automorphism.

Remark 1.67. The chosen global sections technically need not fully span $\Gamma(X, \mathcal{L})$.

Remark 1.68. We remark that the pullback of the line bundle $\mathcal{O}_{\mathbb{P}^n_A}(1)$ under $X \to \mathbb{P}^1_A$ is (canonically) \mathcal{L} , and the pullback of the global section x_i is s_i . Explicitly, there is morphism $x_i \colon \mathcal{O}_{\mathbb{P}^n_A} \to \mathcal{O}_{\mathbb{P}^n_A}(1)$ which will pull back to $s_i \colon \mathcal{O}_X \to \mathcal{L}$ upon applying φ^* .

We might want to upgrade Proposition 1.65 to give a closed embedding into projective space. Here are the corresponding conditions.

Proposition 1.69. Fix an algebraically closed field k and a k-variety X. Fix a morphism $\varphi \colon X \to \mathbb{P}^n_k$ corresponding to the line bundle \mathcal{L} equipped with global sections $s_0, \ldots, s_n \in \Gamma(X, \mathcal{L})$. Further, set $V = \operatorname{span}(s_0, \ldots, s_n)$. Then φ is a closed immersion if and only if V satisfies the following.

- Separates points: for any distinct $x, x' \in X$, there is a section $s \in V$ such that $x \in \operatorname{supp}\operatorname{div}(\mathcal{L}, s)$ but $x' \notin \operatorname{supp}\operatorname{div}(\mathcal{L}, s)$ (i.e., $s \in \mathfrak{m}_x \mathcal{L}_x \setminus \mathfrak{m}_{x'} \mathcal{L}_{x'}$).
- Separates tangent vectors: for every $x \in X$, the set

$$\{s \in V : s \in \mathfrak{m}_x \mathcal{L}_x\}$$

spans the Zariski tangent place $\mathfrak{m}_x \mathcal{L}_x/(\mathfrak{m}_x \mathcal{L}_x)^2$.

Notably, when X is a curve, our Zariski tangent space has dimension 1, so we just want some section to show up in there.

We will also want the following definitions.

Definition 1.70 (ver ample). A line bundle $\mathcal L$ on a scheme X is very ample relative to a scheme Y if and only if there is a locally closed embedding $\iota\colon X\to \mathbb P^n_Y$ for some n>0 such that $\mathcal L=\iota^*\mathcal O_{\mathbb P^n_Y}(1)$.

Remark 1.71. In the case where X is a k-curve, because X is proper, any locally closed embedding $\iota \colon X \to \mathbb{P}^n_k$ is automatically closed. As such, in this situation we may as well talk about closed embeddings.

Definition 1.72 (ample). A line bundle \mathcal{L} on a scheme X is *ample* if each coherent sheaf \mathcal{F} on X makes $\mathcal{F} \otimes \mathcal{L}^n$ globally generated for n sufficiently large.

Here is how these notions relate.

Proposition 1.73. Fix a scheme X of finite type over a Noetherian ring A. Then a line bundle \mathcal{L} on X is ample if and only if \mathcal{L}^n is very ample (relative to A) for some n > 0.

1.8.2 Projective Embeddings for Curves

We now return to talk about curves. We quickly extend our definition of ample.

Definition 1.74 (ample, very ample). Fix a k-curve X. Then a divisor D on X is ample or very ample if and only if $\mathcal{O}_X(D)$ is as well.

So let's translate what we know about projective embeddings into our language of divisors.

Proposition 1.75. Fix a divisor D on a k-curve X.

(a) The complete linear system |D| is base-point-free if and only if

$$\dim |D| = \dim |D - P| + 1$$

for all closed points $P \in X$.

(b) The divisor *D* is very ample if and only if

$$\dim |D| = \dim |D - P - Q| + 2$$

for all $P, Q \in X$.

Roughly speaking, (a) asks for us to separate points somehow, and (b) asks if we can separate points with the right multiplicity. Namely, we're asking for something to be in \mathfrak{m}_P but not \mathfrak{m}_P^2 .

Proof. We have two parts to show.

(a) Note $\dim |D| = \dim |D - P| + 1$ is equivalent to

$$\ell(D) = \ell(D - P) + 1,$$

which is equivalent to $\mathcal{O}_X(D)(X)\setminus\mathcal{O}_X(D-P)(X)$ being nonempty. (Recall that $\dim\mathcal{O}_X(D)\leq\mathcal{O}_X(D-P)+1$ at the very least.) Thus, we are saying there is $f\in K(X)$ such that $P\in\operatorname{supp} D$ but $P\in\operatorname{supp}(D+(f))$, so we have a global section f which does not vanish at P. Repeating this for all points P shows that |D| is base-point-free, and running this argument in reverse gives us the converse implication.

(b) Certainly if D is very ample, then $\mathcal{L}(D)$ is base-point-free. Additionally, note that the conclusion of (b) implies the conclusion of (a) because

$$\dim |D - P - Q| + 2 \le \dim |D - P| + 1 \le \dim |D|,$$

so equalities must hold everywhere and in particular on the right inequality. In particular, we can assume that |D| is base-point-free in either direction.

As such, in either direction, we already know that D determines a morphism to projective space, so we need to check that we have defined a closed embedding.

• Separate points: for every distinct $P,Q\in X$, some $s\in \Gamma(X,\mathcal{O}_X(D))$ has $P\in\operatorname{supp}\operatorname{div}(\mathcal{L},s)$ but $Q\in\operatorname{supp}\operatorname{div}(\mathcal{L},s)$ (namely, we vanish at P) is equivalent to $\operatorname{div}(\mathcal{L},s)\in\Gamma(X,\mathcal{O}_X(D-P))$ but Q is not a base-point of $\mathcal{O}_X(D-P)$ at s (namely, we do not vanish at Q). Hitting this with (a) again, we are asking for

$$\dim |D - P| = \dim |D - P - Q| + 1.$$

We already have (a), so we conclude $\dim |D| = \dim |D - P - Q| + 2$. Running this argument in reverse gets the other implication.

• Separates tangent vectors: for every $P \in X$, we are asking for $s \in \Gamma(X, \mathcal{O}_X(D))$ which vanishes at order 1 at P. (Indeed, this is saying $s \in \mathfrak{m}_P \mathcal{L}_P/\mathfrak{m}_P^2 \mathcal{L}_P$ is nonzero.) Arguing as above, we are asking for P to not be a base-point for D-P. So we can again hit this condition with (a) to say that we are asking for

$$\dim |D - P| = \dim |D - P - P| + 1$$

and use the fact that *D* is base-point-free already to finish.

The above discussion completes the proof.

Corollary 1.76. Fix a divisor D on a k-curve X of genus g.

- (a) If $\deg D \ge 2g$, then D is base-point-free.
- (b) If $\deg D \ge 2g+1$, then D is very ample.

Proof. We use Theorem 1.19. Recall $\deg K = 2q - 2$, where K is the canonical divisor for X.

(a) Note $\deg(K-D) \leq 0$ and $\deg(K-(D-P)) \leq 0$, so $\ell(K-D) = \ell(K-D-P) = 0$, so we conclude that

$$\ell(D) = \deg D + 1 - G = 1 + \deg(D - P) + 1 - g = 1 + \ell(D - P),$$

so we are done by Proposition 1.75.

(b) Here, we also get $\deg(K-(D-P-Q)) \leq 0$, so $\ell(K-(D-P-Q)) = 0$ again, so arguing as above completes the proof by Proposition 1.75.

In particular, we see that every k-curve X has a closed embedding into projective space with a morphism of degree at most 2g + 1.

1.9 February 6

As is to be expected, we sleep with one eye open.

Remark 1.77. The next homework will be due Sunday night. The hope is that it is fun.

1.9.1 Small Projective Embeddings

We are still trying to embed curves into \mathbb{P}^3_k . Our main tool continues to be Proposition 1.75.

Corollary 1.78. Fix a divisor D on a k-curve X is ample if and only if $\deg D > 0$.

Proof. Certainly if $\deg D \leq 0$, then $\deg(nD) = 0$ and thus $\ell(nD) = 0$ for all positive integers n, so nD is never very ample, so D is not ample. (Alternatively, if nD is very ample, then nD is the pull-back of $\mathcal{O}_{\mathbb{P}^1_k}(1)$ some closed embedding $f\colon X\to \mathbb{P}^1_k$ and hence has positive degree.) Conversely, if $\deg D>0$, then $\deg(2g+1)D\geq 2g+1$, so (2g+1)D is very ample by Corollary 1.76, so D is ample.

K algebraically

closed?

Example 1.79. With $X=\mathbb{P}^1_k$, we note that $\mathcal{O}_{\mathbb{P}^1_k}(1)$ is very ample by the (identity) embedding $X\cong\mathbb{P}^1_k$. It follows that $\mathcal{O}_{\mathbb{P}^1_k}(n)$ are all very ample (and hence ample) for all n>0. By Corollary 1.78, these are all the ample divisors of X.

Remark 1.80. It turns out that a very ample divisor D on X yielding a closed embedding $f: X \to \mathbb{P}^n_k$ has $\deg D = \deg f(X)$. Here, $\deg f(X)$ is defined using some intersection theory; for example, if n=2, then this degree is the degree of the polynomial cutting out X. For example, if g(X)=1 and D is a divisor of degree 3 (and hence very ample by Corollary 1.78). Further,

$$\ell(D) = \ell(K - D) + \deg D + (1 - g) = 0 + 3 + 0 = 3,$$

so we define a closed embedding to \mathbb{P}^2_k . We conclude that X has an embedding as a cubic curve in \mathbb{P}^2_k . Conversely, Exercise I.7.2(b) in [Har77] tells us that any cubic plane curve has genus $\frac{1}{2}(3-1)(3-2)=1$. Note that adjusting the divisor's linear equivalence class can give us different embeddings to \mathbb{P}^2_k (which are not the same up to an automorphism of \mathbb{P}^2_k).

Anyway, we are now almost ready to prove our main result.

Theorem 1.81. Fix a k-curve X. Then X has an embedding to \mathbb{P}^3_k .

The outline here is as follows. To begin, fix some closed embedding $X \to \mathbb{P}^n_k$ for some n > 0. Then if n > 3, we will show that we can project down from \mathbb{P}^n_k to \mathbb{P}^{n-1}_k in a way which preserves us having a closed embedding. Inducting n downwards like this will complete the proof.

We know how to do this first step by Corollary 1.76, so we focus on the second step.

Proposition 1.82. Fix a k-curve X embedded into \mathbb{P}^n_k for some positive integer n. Given $O \in \mathbb{P}^n_k \setminus X$, then the projection $\varphi \colon X \to \mathbb{P}^{n-1}_k$ from O is a closed embedding if and only if the following both hold.

- O does not belong on any secant line.
- O does not belong on any tangent line.

Note that the line we are projecting from O onto does not matter so much because it merely adjusts the map by an automorphism of the ambient space \mathbb{P}^n_k , which turns into an automorphism of \mathbb{P}^{n-1}_k on the embedding.

Example 1.83. One can compute that the projection from $O = [0 : \cdots : 0 : 1]$ in \mathbb{P}_k^n to $V(x_n)$ is given by the projection

$$[a_0:\cdots:a_n]\mapsto [a_0:\cdots:a_{n-1}].$$

Namely, the line connecting O and $[a_0:\cdots:a_{n-1}]$ is parameterized by $[t_0:t_1]\mapsto [t_0a_0:\cdots:t_0a_{n-1}:t_1a_n]$, which tells us what the intersection with $V(x_n)$ should be.

In our theory of linear systems, we note that the global sections x_0,\dots,x_{n-1} span some subspace $V\subseteq\Gamma(\mathbb{P}^n_k,\mathcal{O}_{\mathbb{P}^n_k}(1))$, and we can see that the only base-point here is the point O because this is the only point of simultaneous vanishing. Thus, our theory grants us a morphism $(\mathbb{P}^n_k\setminus\{0\})\to\mathbb{P}^{n-1}_k$ given by the above formula! Explicitly, on the affine chart $U_i\subseteq\mathbb{P}^n_k$ where $x_i\neq x_0$ doesn't vanish, we are looking at the ring map

$$k\left[\frac{y_0}{y_i},\dots,\frac{y_{n-1}}{y_i}\right] \to k\left[\frac{x_0}{x_i},\dots,\frac{x_n}{x_i}\right]$$

given by $y_i/y_i \mapsto x_i/x_i$.

Proof. Roughly speaking, we don't want O to be on any secant line so that the projection doesn't send two

points to the same point. Additionally, we don't want O to be on any tangent line so that the closed embedding separates tangent vectors. We omit the remainder of the proof aside from this general intuition.

We now turn to the proof of Theorem 1.81.

Proof of Theorem 1.81. By Corollary 1.76, we have some closed embedding $X \to \mathbb{P}^n_k$ for some n large enough. Now, if n > 3, we use Proposition 1.82 to project down to \mathbb{P}^{n-1}_k . Thus, it suffices to find a point O not on any secant line or tangent line. Well, the "secant variety" $\operatorname{Sec} X$ defined by the image of the obvious map

$$(X \times X \setminus \Delta_X) \times \mathbb{P}^1_k \to \mathbb{P}^n_k$$

we can see has dimension of the image at most 3. Explicitly, on points, this map is given by

$$([a_0:\cdots:a_n],[b_0:\cdots:b_n],[t_0:t_1])\mapsto [a_0t_0+b_0t_1:\cdots:a_nt_0+b_nt_1].$$

Similarly, the "tangent variety" $\operatorname{Tan} X$ defined by the image of the obvious map

$$X \times \mathbb{P}^1_k \to \mathbb{P}^n_k$$

we can see has dimension of the image at most 2. Thus, with n>3, these closed subschemes are proper and so have dense complement, meaning that we can find can point O in the complement of these varieties. This completes the proof.

1.10 February 8

Last class we showed that every curve can be embedded into \mathbb{P}^3_k .

Remark 1.84. We will not show this, but one can show with a little more work that any curve is birational to a curve in the plane with at worst nodes as singularities.

1.10.1 The Canonical Embedding

Throughout, X is a k-curve, where k is algebraically closed. We will set $g \coloneqq g(X)$ and let K denote the canonical divisor.

Example 1.85. Notably, g(X) = 0 forces $\dim |K| = -1$, so |K| is empty. (After all, $X \cong \mathbb{P}^1_k$.)

Example 1.86. If g(X) = 1, then we are looking at $\dim |K| = 0$, and here $\deg K = 0$, so we are just looking at the mapping from X to a point.

In higher genus, things get more interesting.

Lemma 1.87. Fix a k-curve X with $g(X) \ge 2$. Then the canonical divisor K is base-point-free.

Proof. By Proposition 1.75, it suffices to show that $\ell(K-P)=\ell(K)-1=g-1$ for any $P\in X$. Now, because $g(X)\geq 2>0$, we know that $X\not\cong \mathbb{P}^1_k$, so $\dim |P|=0$ is forced. Now, using Theorem 1.39, we solve

$$\ell(P) = \ell(K - P) + \deg(P) + (1 - q),$$

so $\ell(K-P)=g-1$, which is what we wanted.

What?

In our study of curves, the following curves will make a somewhat large class.

Definition 1.88 (hyperelliptic). A k-curve X is hyperelliptic if and only if it admits a degree-2 map to \mathbb{P}^1_k .

Remark 1.89. Given any divisor D on X with $\ell(D)=2$ and $\deg D=2$, one gets a rational map $X \dashrightarrow \mathbb{P}^1_k$ determined by D. (One can show that all such divisors are base-point-free using Proposition 1.75.) Notably, D is linearly equivalent to an effective divisor.

Remark 1.90. If g(X)=2, then X is hyperelliptic. This was shown on the homework. In brief, K is base-point-free and has degree 2, so it determines a degree-2 map $X \to \mathbb{P}^1_k$.

One can improve Lemma 1.87 as follows.

Proposition 1.91. Fix a k-curve X with $g(X) \ge 2$. Then K is very ample if and only if X is not hyperelliptic.

Proof. By Proposition 1.75, we are interested in the condition

$$\ell(K - P - Q) = \ell(K) - 2 \stackrel{?}{=} g - 2$$

for any $P, Q \in X$. As such, by Theorem 1.39, we compute

$$\ell(P+Q) = \ell(K-P-Q) + \deg(P+Q) + (1-g) = \ell(K-P-Q) + 3 - g,$$

so $\ell(K-P-Q)=g-2$ is equivalent to

$$\ell(P+Q)=1.$$

Now, if X is hyperelliptic, then one can find a divisor D with $\dim |D|=1$ and $\deg D=2$, so D linearly equivalent to an effective divisor which looks like P+Q. But then $\ell(P+Q)=2>1$, which is a problem. In the other direction, if X is not hyperelliptic, then each effective divisor D with degree 2 must have D=P+Q, which forces $\ell(P+Q)<2$ to retain being not hyperelliptic.

Thus, we are interested in the embedding induced by this canonical divisor.

Definition 1.92 (canonical morphism). Fix a k-curve X of genus $g(X) \geq 2$. Then the canonical divisor K determines the canonical morphism $X \to \mathbb{P}^{g-1}_k$ by Lemma 1.87. If X is not hyperelliptic curves, then we in fact get a canonical embedding by Proposition 1.91.

Remark 1.93. If $\deg \mathcal{L} = d$, and \mathcal{L} is very ample, then \mathcal{L} grants a closed embedding of X to \mathbb{P}^{r-1}_k where $r \coloneqq \dim_k \Gamma(X, \mathcal{L})$ (using the canonical embedding), and this embedding retains X as a curve of degree d.

1.10.2 Hyperelliptic Curves

We will spend the rest of class understanding hyperelliptic curves. The following is our statement.

Theorem 1.94. Fix a hyperelliptic curve X of genus $g(X) \geq 2$.

- (a) Then X has a unique divisor g_2^1 yielding the double-cover $\pi\colon X\to \mathbb{P}^1_k$.
- (b) The canonical morphism $f\colon X\to \mathbb{P}^{g-1}$ can be written as

$$X \to \mathbb{P}^1_k \to \mathbb{P}^{g-1},$$

where the last map is the (g-1)-uple embedding.

(c) Every effective canonical divisor can be written as the sum of (g-1) effective divisors linearly equivalent to g_2^1 .

Proof. For brevity, let X' be the image f(X), and we fix some g_2^1 on X yielding a double-cover $X \to \mathbb{P}^1_k$. Now, for any effective divisor P+Q linearly equivalent to g_2^1 , then we claim Q is a base-point of K-P: indeed, we know $\ell(K-P)=g-1$ because K is base-point-free by Lemma 1.87, but K is not very ample witnessed by P and Q by the proof of Proposition 1.91, so $\ell(K-P-Q)=\ell(K-P)$ is forced. Thus, Q is in fact a base-point.

We now have two cases.

- In the case where $P \neq Q$, we see that K does not separate the points P and Q. Explicitly, we see that $s \in \Gamma(X, \mathcal{O}_X(K-P))$ is equivalent to $s \in \Gamma(X, \mathcal{O}_X(K-P-Q))$ is equivalent to $s \in \Gamma(X, \mathcal{O}_X(K-Q))$ (by symmetry). In other words, we are saying that any divisor $K + \operatorname{div}(s)$ which retains P in its support will also retain Q in its support.
 - It follows that f(P)=f(Q): otherwise $f(P)\neq f(Q)$ lets us separate the two points in \mathbb{P}^{g-1}_k and hence find a basis of $\Gamma(\mathbb{P}^{g-1}_k,\mathcal{O}_{\mathbb{P}^{g-1}}(1))$ separating them. But then we can pull back this basis to $\Gamma(X,\mathcal{O}_X)$ to find sections separating P and Q.
- Otherwise, we in the case where P=Q, we are now given that P is a base-point of K-P. Explicitly, we know that $s\in \Gamma(X,\mathcal{O}_X(K-P))$ is equivalent to $s\in \Gamma(X,\mathcal{O}_X(K-2P))$, which now means that f does not separate tangent vectors at P—namely, the image of $\Gamma(X,\mathcal{O}_X(K))$ does not generate $\mathfrak{m}_P\mathcal{O}_X(K)_P/\mathfrak{m}_P/\mathcal{O}_X(K)_P$. However, $\mathcal{O}_{\mathbb{P}^{g-1}_k}^{g-1}(1)$ does separate these tangent spaces by hyperplanes, so f is again not a closed embedding at the local ring at P.

By adjusting P+Q appropriately in its linear equivalence class, we see that f fails to be a closed embedding at infinitely many points, so f is not a birational morphism.

As such, $\mu \coloneqq \deg f$ is at least 2. However, letting d denote the degree of $X' \subseteq \mathbb{P}^{g-1}_k$, we claim

$$d\mu \stackrel{?}{=} 2g - 2.$$

For this, we must understand $d=\deg X'$, which we note is the number of intersections (counted with multiplicity) of a hyperplane section of \mathbb{P}^{g-1}_k intersecting $Y=X'\setminus \operatorname{Sing} X'$, where $\operatorname{Sing} X'$ is the singular locus. Letting $H\cap Y$ denote such an intersection (with d points and hence degree d as a divisor), we restrict $f\colon X\to X'$ to $f\colon U\to \widetilde{X'}$ where $U\coloneqq f^{-1}(Y)$, granting

$$\deg(f|_U)^*(H\cap Y) = (\deg f)d = \mu d$$

by explicitly writing down what does f^* does on points on the finite morphism of smooth curves $f|_{\widetilde{X'}}$. We will finish this proof next class.

BIBLIOGRAPHY

- [Har77] Robin Hartshorne. *Algebraic Geometry*. Graduate Texts in Mathematics, No. 52. New York: Springer-Verlag, 1977.
- [Kle16] Felix Klein. Elementary Mathematics from a Higher Standpoint. Trans. by Gert Schubring. Vol. II. Springer Berlin, Heidelberg, 2016.
- [Shu16] Neal Shusterman. Scythe. Arc of a Scythe. Simon & Schuster, 2016.
- [Vak17] Ravi Vakil. The Rising Sea: Foundations of Algebraic Geometry. 2017. URL: http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf.
- [SP] The Stacks project authors. The Stacks project. https://stacks.math.columbia.edu. 2022.

LIST OF DEFINITIONS

```
ample, 20, 20
                                                         hyperelliptic, 24
arithmetic genus, 5
                                                         ramification, 11, 11
canonical morphism, 24
                                                         ramification divisor, 13
Cartier divisor, 6
curve, 4
                                                         separable, 11
effective, 6
                                                         simply connected, 14
elliptic, 10
étale, 14
                                                         ver ample, 19
                                                         very ample, 20
Frobenius, 15
geometric genus, 5
                                                         Weil divisor, 5
```