

Sistemas Embarcados

O que são os sistema embarcados e tecnologias habilitadoras.

Sobre o Instrutor

- Graduado em Engenharia Elétrica pela Universidade Federal do Amazonas UFAM (2006). Atua em pesquisa e desenvolvimento na área de eletrônica e automação industrial. Possui vasta experiência em desenvolvimento de hardware, mais especificamente, placas de circuito impresso, dentre elas: placas de instrumentação analógica e digital utilizadas em sistemas de testes, placas processadoras baseadas em microcontroladores de diversos fabricantes, placas utilizadas em sistemas de comunicação digital com tecnologias cabeadas como RS485, RS422, Ethernet e tecnologias sem fio como Wi-fi 802.11, Zigbee 802.15 dentre outras. Possui experiência em desenvolvimento de firmware em diversas plataformas dentre elas: Intel 8088, 8051, Atmel, Microchip, ESP8266, Arduino.
- http://lattes.cnpq.br/5067803336101638

Ementa

- Sistemas computacionais;
- O que são microcontroladores;
- Periféricos;
- Portas de entrada e saída;
- Cuidados de manuseio;
- Características elétricas;
- Memórias;
- Como são programados;
- Circuitos auxiliares;
- Ambientes de desenvolvimento IDE;
- Desenvolvimento do primeiro programa.

Um sistema computacional é composto de

Integração de sistemas

 Os computadores mais antigos apresentavam seus blocos funcionais em diferentes componentes que podiam ser localizados facilmente em suas placas e tinham suas características físicas distintas.

- Esse tipo de arquitetura ainda é utilizada até hoje, mas tente a desaparecer.
- A maior quantidade de componentes em uma placa acarreta em diversos problemas, dentre eles: o maior consumo de energia, a maior probabilidade de falhas de montagem e o aumento da complexidade do sistema.

Computador antigo

Memória RAM

Sistemas computacionais

• O mercado de produtos exigiu o surgimento de sistema computacionais menores que pudessem ser utilizados em eletrodomésticos e aparelhos do dia a dia.

Sistemas computacionais

• A área industrial também necessitava desse tipo de equipamento.

Sistemas computacionais

- Poderia ter menor capacidade de processamento;
- Tamanho reduzido;
- Menor consumo de energia;
- Executar tarefas repetitivas de forma confiável;

Integração de Sistemas

- Com o avanço da tecnologia foi possível a criação de sistemas cada vez mais compactos e permitiu também que alguns periféricos fossem incorporados a CPU.
- As placas modernas possuem menos componentes, Portanto diminuem quantidade de processos de montagem.
- Quando um periférico é incorporado ao chip da CPU isso permite uma maior velocidade de comunicação entre a CPU e o periférico.
 Podemos notar tal diferença de velocidade quando observamos em um processador moderno e comparamos a velocidade de acesso uma memória cache (interna) e a velocidade de uma memória RAM DDR, por exemplo.

O que são microcontroladores

 Microcontrolador é um pequeno computador (SoC) num único circuito integrado o qual contém um núcleo de processador, memória e periféricos programáveis de entrada e de saída.

Disponível em:

https://pt.wikipedia.org/wiki/Microcontrolador

• SoC – (System On Chip) Sistema em um chip

Microcontroladores

• Atualmente o mercado nos oferece processadores para as mais diversas aplicações, com os periféricos necessários para resolver os mais diversos problemas.

Características dos Microcontroladores

Arquitetura de processamento

- CISC (Complex Instruction Set Computer) Computador com conjunto de instruções complexas. As instruções levam geralmente mais de um ciclo de máquina para serem executadas.
- RISC (Reduced Instruction Set Computer) Computador com conjunto de instruções reduzidas. A maioria das instruções é executada em apenas um ciclo de máquina.

Características dos Microcontroladores

Resolução "Quantidade de bits"

 A quantidade de bits de um processador significa o tamanho das palavras binárias que podem ser processadas de uma vez só, também influencia na quantidade de endereços de memória que um determinado processador poderá mapear.

- \bullet 2^16 = 65.536
- $2^3 = 4.294.967.296$
- $2^64 = 18.446.744.073.709.551.616$

Características dos Microcontroladores

Quantidade de núcleos

• É a quantidade de CPUs que existem dentro dos microcontroladores.

Clock

- É a frequência em que um processador executa suas operações.
- Os microcontroladores modernos podem trabalhar em frequências que chegam a GHz.
- Todos os microcontroladores necessitam de uma fonte de clock, geralmente o clock é gerado por um cristal de quartzo presente na placa.

Tolerância ao aquecimento

• É a faixa de temperatura a qual o componente poderá ser submentido, todo processador gera calor devido ao processamento e em certos casos dissipadores deverão ser aplicados ao projeto. Componentes automotivos e militares suportam uma faixa mais ampla de temperatura.

Quantidade de pinos

• Existe uma gama imensa de microcontroladores com os mais diversos tamanhos e com as mais diversas quantidades de pinos. Portanto, a quantidade de pinos de um microcontrolador vai depender da aplicação para qual o mesmo é destinada.

Alimentação

• É importante verificar qual é a tensão de alimentação do dispositivo, os mais comuns são os de 3,3v e os de 5V. Alguns microcontroladores suportam uma ampla faixa de operação, mas sempre devemos verificar o datasheet para avliarmos esses parâmetros.

Periféricos

 São dispositivos com funções diversas que poderão estar incorporados em um determinado microcontrolador.

• Os periféricos determinam a especialização do microcontrolador, geralmente os microcontroladores são desenvolvidos para atender um determinado nicho de necessidade. (automotivo, médico, militar, etc...)

• Existem periféricos que aparecem em quase todos os microcontroladores.

- Periféricos comuns (aparecem em quase todos os uC)
 - Timers.
 - Conversores AD (Analógico para Digital).
 - PWM (Pulse Width Modulation) Modulação por largura de pulso.
 - UART (Universal Asynchrounous Receiver/Transmiter) Receptor transmissor assíncrono digital. RS232.
 - SPI (Serial Periferal Interface) Interface serial de periféricos.
 - I2C (Inter-Integrated Circuit) Comunicação entre circuitos integrados.

Vamos analisar o datasheet de um microcontrolador?

Como definir o melhor microcontrolador?

 A regra geral para definição de um microcontrolador para um determinado projeto é a escolha de um componente que resolva o problema computacional com o menor custo possível.

• Devemos levar em consideração os parâmetros apresentados nas características dos microcontroladores.

Portas de entrada e saída – I/O

Portas de entrada e saída – I/O

 Um dos parâmetros mais importantes quando definimos um tipo de I/O é a capacidade de fornecimento de corrente que esse pino possui. No chip em questão temos:

	112021 pill 40 ii 0	*CC 5.5 *	3.5 v CC	* CC + 3.3	
V _{OL}	Output Low Voltage ⁽³⁾ except RESET pin	I_{OL} = 20 mA, V_{CC} = 5V I_{OL} = 10 mA, V_{CC} = 3V		0.9 0.6	V
V _{OH}	Output High Voltage ⁽⁴⁾ except Reset pin	I_{OH} = -20 mA, V_{CC} = 5V I_{OH} = -10 mA, V_{CC} = 3V	4.2 2.3		V

Cuidados com manuseio

 Os microcontroladores são dispositivos eletrônicos sensíveis a descargas eletrostáticas, portanto é necessário, principalmente em ambientes refrigerados, e com baixa umidade, o uso de equipamentos EPI (luvas, calcanheiras, pulseiras) para mitigar a ação de tais fenômenos.

• O enclausuramento dos dispositivos em caixas totalmente fechadas podem causar um aumento de temperatura indesejado a ponto de queimar o chip.

Características

 T_A = -40°C to 85°C, V_{CC} = 1.8V to 5.5V (unless otherwise noted)

Symbol	Parameter	Condition	Min.	Typ. ⁽²⁾	Max.	Units
Icc	Power Supply Current ⁽¹⁾	Active 1 MHz, V _{CC} = 2V		0.3	0.5	mA
		Active 4 MHz, V _{CC} = 3V		1.9	2.5	mA
		Active 8 MHz, V _{CC} = 5V		6.8	9	mA
		Idle 1 MHz, V _{CC} = 2V		0.06	0.15	mA
		Idle 4 MHz, V _{CC} = 3V		0.4	0.7	mA
		Idle 8 MHz, V _{CC} = 5V		1.6	2.7	mA
	Power-save mode ⁽³⁾⁽⁴⁾	32 kHz TOSC enabled, V _{CC} = 1.8V		0.75	1.6	μА
		32 kHz TOSC enabled, V _{CC} = 3V		0.85	2.6	μА
	Power-down mode ⁽³⁾	WDT enabled, V _{CC} = 3V		4.2	8	μA
		WDT disabled, V _{CC} = 3V		0.18	2	μA

- Notes: 1. Values with "Minimizing Power Consumption" enabled (0xFF).
 - 2. Typical values at 25°C. Maximum values are test limits in production.
 - 3. The current consumption values include input leakage current.

- High Endurance Non-volatile Memory Segments
 - 4/8/16/32K Bytes of In-System Self-Programmable Flash program memory (ATmega48P/88P/168P/328P)
 - 256/512/512/1K Bytes EEPROM (ATmega48P/88P/168P/328P)
 - 512/1K/1K/2K Bytes Internal SRAM (ATmega48P/88P/168P/328P)
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - Programming Lock for Software Security

Como são programados

- Geralmente os microcontroladores possuem uma memória flash interna que guarda o firmware (firmware é o nome dado ao software embarcado).
- Os microcontroladores em geral são distribuídos com suas respectivas ferramentas de gravação, a partir de 2008 a grande maioria dos chips passaram a possuir o método de gravação in-circuit onde não há a necessidade da retirada do chip da placa para realização da gravação.

Exemplos de gravadoras

Como são programados

- Um outro método muito utilizado é a gravação via bootloader.
- O bootloader é um pequeno software residente que programa uma interface de comunicação e permite que o chip seja gravado a partir dessa interface
- Geralmente a gravação é realizada via interface serial.

- A programação dos sistemas embarcados são bastante dependentes do microcontrolador;
- Mesmo que a programação dos dispositivos seja diferente, o conceito de funcionamento dos diversos hardwares que compõem os sistemas é o mesmo;
- Um dos objetivos do curso é fornecer ao aluno ferramentas que possibilitem a programação de sistemas embarcados independente do fabricante, explorando as semelhanças entre os sistemas.

