Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та общислювальної техніки

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 6

Виконав	студент	П1-13 Вдовиченко Станіслав Юрійович
		(шифр, прізвище, ім'я, по батькові)
П.,,,,,;,,,,	_	
Перевірив		(прізвище, ім'я, по батькові)

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

• **Мета** – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

• Постановка задачі (Варіант 6)

6. Визначити *n*-не число Фібоначі. Числа Фібоначі визначаються за рекурентною формулою:

$$f_0 = 0$$
, $f_1 = 1$, $f_i = f_{i-1} + f_{i-2}$, $i > 1$.

Задані перші два числа послідовності Фібоначчі. За рекурентною формулою знаходимо п-ий член послідовності. Щоб знайти будь-який член такої послідовності треба додати два попередніх члена цього ряду.

• Математична модель

Змінна	Тип	Ім'я	Призначення
Номер числа	Натуральний і 0	n	Вхідні дані
Лічильник	Натуральний	i	Параметр циклу
циклу			
Перший	Натуральний	previousComponent1	Вхідні дані
компонент			
послідовності			
(n-2)			
Другий	Натуральний	previousComponent2	Вхідні дані
компонент			
послідовності			
(n-1)			
Число	Натуральний	component	Вихідні дані

Розв'язання.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Деталізуємо дію перевірки номера числа(вхідні дані)
- Крок 3. Деталізуємо дію обчислення n-го члена послідовності Фібоначчі. Застосуємо цикл з параметром, де
- i := 1 лічильник циклу(початкове значення 1)
- і < n умова повторення (кінцеве значення). Якщо лічильник дорівнює або більше за номер числа, то закінчуємо цикл.

• і++ - збільшуємо лічильник на 1.

В тіло циклу помістимо формулу для знаходження члена послідовності:

$$C_n = C_{n-1} + C_{n-2}$$

• Псевдокод

```
Крок 1.
```

Початок

Введення даних

Декларування змінних

Перевірка вхідних даних

Обчислення числа

Виведення даних

Кінець

Крок 2.

Початок

Введення п

previousComponent1 := 0, previousComponent2 := 1;

Перевірка вхідних даних

Обчислення числа

Виведення даних

Кінець

Крок 2.

Початок

Введення п

previousComponent1 := 0, previousComponent2 := 1;

якщо (n ==
$$0 \parallel$$
 n == 1)

component := n

все якщо

Перевірка даних

Обчислення числа

Виведення даних

Кінець

```
Крок 3.
Початок
Введення п
previousComponent1 := 0, previousComponent2 := 1;
     якщо (n == 0 || n == 1)
           component := n
           інакше якщо (n < 0)
                Виведення "Змінна задана невірно"
           все інакше
     все якщо
Перевірка даних
Обчислення числа
Виведення даних
Кінець
Крок 4.
Початок
Введення п
previousComponent1 := 0, previousComponent2 := 1;
     якщо (n == 0 || n == 1)
           component := n
           інакше якщо (n < 0)
                Виведення "Змінна задана невірно"
                      інакше
                           для і від 1 до п повторити
                                 Обчислення числа
                           все повторити
                      все інакше
           все інакше
     все якщо
Виведення даних
Кінепь
```

```
Крок 5.
Початок
Введення п
previousComponent1 := 0, previousComponent2 := 1;
     якщо (n == 0 || n == 1)
           component := n
           інакше якщо (n < 0)
                Виведення "Змінна задана невірно"
                      інакше
                           для і від 1 до п повторити
                                       component := previousComponent 1 \ + \\
                                       previousComponent2;
                                       previousComponent1 :=
                                       previousComponent2;
                                       previousComponent2 :=
                                       component; i++;
                            все повторити
                      все інакше
           все інакше
     все якщо
Виведення component
```

Кінець

• Блок-схема

• Випробування алгоритму

Блок	Дія
	Початок
1	Введення n = 5;
2	previousComponent1 := 0,
	previousComponent2 : = 1.
3	Перевірка (n != 0, n!= 1, n >0)
4	(i := 1, 1 < 5), component $:= 0 + 1 = 1$;
	previousComponent1 := 1,
	previousComponent2 :=1;i++;
5	(i:= 2, 2<5), component :=
	1+1=2; previous Component $1:=1$,
	previousComponent2 :=2;i++;
6	(i:= 3, 3<5), component :=
	1+2=3; previous Component $1:=2$,
	previousComponent2 :=3;i++;
7	(i:= 4, 4<5), component :=
	2+3=5; previous Component $1:=3$,
	previousComponent2 :=5;i++;
8	(i:= 5, 5 =5)
9	Виведення component := 5
	Кінець

• Висновок

В цій лабораторній роботі я дослідив особливості роботи арифметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. Розробив алгоритм знаходження числа з послідовності Фібоначчі за його номером за допомогою арифметичного циклу. Створив псевдокод, блоксхему, випробував алгоритм, дослідив значення після кожної ітерації.