NEURAL COMPUTER GRAPHICS

OUTLINE

- 1. Background: Computer Graphics
 - 1. Applications
 - 2. Terminology
 - 3. Rendering algorithms
 - 4. Ray tracing
 - 5. Representing shapes
 - 6. Implicit representations
- 2. Neural Computer Graphics
 - 1. Neural implicit representations
 - 2. Training a neural shape
 - 3. Adding details
 - 4. Final pipeline
- 3. My research

APPLICATIONS

Videogames Movies Architecture

TERMINOLOGY

Final 2D Image

3D Scene

RENDERING ALGORITHMS

- Rasterization
 - Fast, approximated
- Ray Tracing
 - Slow, photorealistic

Cast rays from the camera through each pixel

- Cast rays from the camera through each pixel
- Find intersections (slow)

- Cast rays from the camera through each pixel
- Find intersections (slow)
- Sum the color to the corresponding pixel

- Cast rays from the camera through each pixel
- Find intersections (slow)
- Sum the color to the corresponding pixel
- Compute the next bounce(s)

- Cast rays from the camera through each pixel
- Find intersections (slow)
- Sum the color to the corresponding pixel
- Compute the next bounce(s)
- Sum shadow and reflection colors to the pixel

REPRESENTING SHAPES

Explicit: mesh **Implicit:** signed distance functions (SDFs)

Shape representation: Explicit vs Implicit

- Explicit representations: the 3D model «as is»
 - Graph $G = \{V, E\}$, Set of edges and vertices
 - Hard to manipulate
- Implicit representations: we only know how far the model is from us.
 - Signed Distance Functions: d = f(x, y, z)
 - When rendering, we use the distances to discover its properties.

IMPLICIT REPRESENTATIONS

Work well with ray tracing

Q: How do we detect intersections?

A: If SDF(p) = 0

We only need to evaluate a function

https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

EXAMPLE: IMPLICIT SPHERE

$$SDF(x, y, z) = \sqrt{x^2 + y^2 + z^2} - 1$$

SDF(1,0,0) = 0 On the surface

SDF(0,0,0.5) = -0.5 *Inside*

SDF(0,3,0) = 2 Outside

NEURAL IMPLICIT REPRESENTATIONS

SDFs are functions!

We can learn them with a neural network

$$SDF_{sphere}(x, y, z) = \sqrt{x^2 + y^2 + z^2} - 1$$
 \approx $MLP_{\theta}(x, y, z)$

We can learn very complex SDFs

NEURAL IMPLICIT REPRESENTATIONS

SDFs are functions!

We can learn them with a neural network

$$SDF_{sphere}(x, y, z) = \sqrt{x^2 + y^2 + z^2} - 1$$
 \approx $MLP_{\theta}(x, y, z)$

We can learn very complex SDFs

Random points

$$\vec{p} = (x, y, z)$$

ADDING DETAILS

- We decompose the input vector into a set of frequencies (cosine and sine)
- $w_1, \dots w_n$ are learned
- The model is forced to extract the high frequencies
 - High frequencies encode fine details (also in images)

$$\phi(\vec{p}) = [\cos(2\pi w_1 \vec{p}), \sin(2\pi w_1 \vec{p}), \dots, \cos(2\pi w_n \vec{p}), \sin(2\pi w_n \vec{p})]^T$$

- Those features are called Fourier features
- https://arxiv.org/abs/2006.10739

FINAL PIPELINE

EXPLAINABLE GENERATIVE MODELS

Current 3D generative models are not explainable

3D artists want to manipulate the generated shapes

- «I want a taller bottle»
- «I want a thicker cup»

APPLYING OPERATORS TO THE SHAPES

Operators

 Implicit representations offer trivial way to combine primitives

$$s_1(p, c, r) = dist(p, c) - r$$

 $s_1(p, c, r) = dist(p, c) - r$
 $s_1 \cup s_2 = min(s_1, s_2)$
 $s_1 \cap s_2 = max(s_1, s_2)$
 $s_1 \cup s_2 = min(-s_1, s_2)$

MORE COMPLEX OPERATIONS

We can blend primitives to get more detail


```
float opSmoothUnion( float d1, float d2, float k )
{
    float h = clamp( 0.5 + 0.5*(d2-d1)/k, 0.0, 1.0 );
    return mix( d2, d1, h ) - k*h*(1.0-h);
}

float opSmoothSubtraction( float d1, float d2, float k )
{
    float h = clamp( 0.5 - 0.5*(d2+d1)/k, 0.0, 1.0 );
    return mix( d2, -d1, h ) + k*h*(1.0-h);
}

float opSmoothIntersection( float d1, float d2, float k )
{
    float h = clamp( 0.5 - 0.5*(d2-d1)/k, 0.0, 1.0 );
    return mix( d2, d1, h ) + k*h*(1.0-h);
}
```

CONSTRUCTIVE SOLID GEOMETRY

Create a detailed 3D model using basic building blocks

EXAMPLE TASK: MODEL RECONSTRUCTION

From a given 3D mesh (explicit representation), **predict** the constructive solid geometry tree. The root node is still an SDF, but it's **explainable**.

RESULTS

NOTEBOOK

https://colab.research.google.com/drive/109t 1n8Nv7SiepqEKx8tHJyydF_baxF8H