Example. Maximize

$$z = 3x_1 + x_2$$

subject to:

$$-x_1 + x_2 \le 1$$

$$x_1 \le 3$$

$$2x_1 + x_2 \le 7$$

$$x_1, x_2 > 0$$

×1, ×2, 3, 5, 5, 9, 7

We want to maximize

$$z = 3 \times_1 + \times_2 + \frac{0}{9} + \frac{0}{9} + \frac{0}{9} + \frac{0}{9}$$

Coefficients of basic variables are all 0.

Note: By selling the free variables to O we get a basic fearible solution:

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ y_1 = 1 \\ y_2 = 3 \\ y_2 = 7 \end{cases}$$
 this gives: $z = 0$

Goal: Look for other basic feasible solutions that make the value of z larger.

Simplex tableau

The current basic feasible solution:

free
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ S_1 = 1 \\ S_2 = 3 \\ S_3 = 7 \end{cases} \mapsto Z = 0$$

The pivot step:

- i) We can increase the value of z by increasing either x_1 or x_2 . Let's try to increase x_2 , keep $x_1 = 0$.
- 2) Change of x_z will affect the values of the bosic variables s_1 , s_{z_1} s_3 . These variables must stay >0, which restricts possible values of x_z .

Since by assumption x1=0 we have:

All these conditions are satisfied if $x_2 \le 1$. For the biggest increase of z we set $x_2 = 1$ which makes $s_1 = 0$. Since we mant free variables to have value 0, and basic variables to have non-zero values, we want to make x_2 into a basic variable and make s_1 free,

The new basic feasible solution

free
$$\begin{cases} \begin{cases} x_1 = 0 \\ s_1 = 0 \end{cases} \\ \Rightarrow z = 1 \end{cases} \Rightarrow \begin{cases} z = 1 \\ z = 3 \end{cases}$$
 for $z = 1$

The pivot step:

The free variables are x, and s.

Increasing s, will decrease 2,

but increasing x, will increase Z.

Thus we will increase x, while keeping x_2 , s_2 , $s_3 > 0$. (Note: we keep $s_1 = 0$)

$$- \times_{1} + \times_{2} = 1 \Rightarrow \times_{2} = 1 + \times_{1} \geqslant 0 - \text{no restriction on } \times_{1} \times_{1} + S_{2} = 3 \Rightarrow S_{2} = 3 - \times_{1} \geqslant 0 = 0$$
: $\times_{1} + S_{3} = 6 \Rightarrow S_{3} = 6 - 3 \times_{1} \geqslant 0 = 0 = 3 \times_{1} \leqslant 6$

$$\times_{1} \leq 2$$

The biggest value of x_1 satisfying all conditions is $x_1 = 2$ Then $s_3 = 0$, so s_3 becomes free and x_1 basic.

<i>X</i> ₁	<i>x</i> ₂	<i>S</i> ₁	s ₂	s ₃	
<u>-1</u>	1	1	0	0	1
1	0	0	1	0	3
3	0	-1	0	1	1 3 6
4	0	-1	0	0	z — 1

<i>X</i> ₁	<i>x</i> ₂	<i>s</i> ₁	s ₂	s ₃	
0	1	<u>2</u> 3	0	<u>1</u>	3
0	0	$\frac{1}{3}$	1	$-\frac{1}{3}$	1
1	0	$-\frac{1}{3}$	0	1 3	2
0	0	<u>1</u>	0	$-\frac{4}{3}$	z – 9

Geometric interpretation of the simplex method

Recall: Maximize

$$z = 3x_1 + x_2$$

subject to:

$$-x_1 + x_2 \le 1$$

$$x_1 \le 3$$

$$2x_1 + x_2 \le 7$$

$$x_1, x_2 \ge 0$$

