Write a simple function with tail recursion * (0/10 Puan)

2

Show the trace (list the nodes visited) when searching for 34 in the binary seach tree * (0/10 Puan)

25-20-36-10-22-30-40-5-12-28-38-48

Show the results of the following sequence of events, by drawing the state of the data structure: add(2) add(5) add(1) add(7) add(8), add(8), remove(), remove()
Where add and remove are the operations that correspond to the basic operations in a stack * (0/5 Puan)

251

4

What is the most important difference between the abstract class and an interface. * (0/5 Puan)

if you use abstract class you can want method but interface must use interface method

5

In terms of Big-O complexity analysis what is the complexity of the term 3 log n + n + 5* (0/5 Puan)

--

Write a recursive method for removing all the elements from a list * (0/10 Puan)

7

For the arithmetic expression 1-6*2+7<(12-(4*3))+8 construct a binary tree and represent it in an array that can be used for the calculation of the result with the postorder traversal. Keep in mind operator \leq has lower precedence than +/- and * has precedence over +/-. Your answer is just the content of the array (Ex: -12*678) * (0/10 Puan)

--

8

For growable Array-based Array List implementation compare incremental strategy and the doubling strategy by analyzing the total time T(n) needed to perform a series of 20 push operations. Assume initial array size is 2. How many operations are required for each case. * (0/10 Puan)

--

The number of operations executed by algorithms A and B is 20*n*logn and $2*n^3$, respectively. Determine n0 such that A is better than B for $n \ge n0$. * (0/10 Puan)

--

10

What is the complexity/growth rate of the following java function?

```
public static void printAll(double[] x , int a) {
  int n = x.length;
  for (int j=0; j < a; j++) {
    for (int k=0; k < a; k++) {
        System.out.print(x[j] + x[k]);
      }
  }
}
(0/5 Puan)</pre>
```

n^2

11

Show the results of the following sequence of events, by drawing the state of the data structure: add(2) add(5) add(1) add(7) add(8), add(8), remove(), remove()

Where add and remove are the operations that correspond to the basic operations in a queue

(5/5 Puan)

1788

12

Write a recursive algorithm to compute the sum of all elements in an $n \times n$ (two-dimensional) array of integers. What is your running time and space usage? * (0/15 Puan)

n^2