CB N°8 - INTEGRALES A PARAMETRE - SUJET 1

Exercice 1

On considère la fonction $f: x \mapsto \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$

On note g la fonction définie sur $\mathbb{R}^+ \times \mathbb{R}^+$ par $g(x,t) = \frac{e^{-xt^2}}{1+t^2}$.

- **1.** Montrer que f est définie et continue sur \mathbb{R}^+ .
 - Pour tout $x \in \mathbb{R}^+, t \mapsto g(x, t)$ est continue sur $\mathbb{R}+$.
 - Pour tout $t \in \mathbb{R}^+, x \mapsto g(x, t)$ est continue sur \mathbb{R}^+ .
 - Hypothèse de domination :

$$\forall (x,t) \in \mathbb{R}^+ \times \mathbb{R}^+, |g(x,t)| \le \frac{1}{1+t^2} = \varphi(t).$$

La fonction φ est intégrable sur $[0, +\infty[$ (c'est une intégrale de référence).

Le théorème de continuité sous le signe intégral donne f continue sur \mathbb{R}^+ .

- **2.** Montrer que f est dérivable sur \mathbb{R}_+^* .
 - Le travail de la question précédente donne pour tout $x \in \mathbb{R}_+^*, t \mapsto g(x,t)$ intégrable sur $[0, +\infty[$.
 - Pour tout $t \in \mathbb{R}^+, x \mapsto g(x,t)$ est de classe C^1 sur \mathbb{R}^*_+ , et $\forall (x,t) \in \mathbb{R}^*_+ \times \mathbb{R}^+, \frac{\partial g}{\partial x}(x,t) = \frac{-t^2 \mathrm{e}^{-xt^2}}{1+t^2}$.
 - Pour tout $x \in \mathbb{R}_+^*, t \mapsto \frac{\partial g}{\partial x}(x, t)$ est continue sur \mathbb{R}^+ .
 - Hypothèse de domination :

Soit
$$[a, b] \subset]0, +\infty[$$
, $(0 < a < b)$; $\forall (x, t) \in [a, b] \times \mathbb{R}^+, \left| \frac{\partial g}{\partial x}(x, t) \right| \le e^{-at^2} = \varphi_{a,b}(t)$. $\varphi_{a,b}$ est intégrable sur $[0, +\infty[$ (c'est une intégrale de référence).

Le théorème de dérivation sous le signe intégral donne f de classe C^1 sur \mathbb{R}_+^* .

De plus la formule de Leibniz donne :
$$f'(x) = \int_0^{+\infty} \frac{-t^2 e^{-xt^2}}{1+t^2} dt$$
.

3. Montrer que f est solution sur \mathbb{R}_+^* de l'équation différentielle : $y - y' = \frac{\sqrt{\pi}}{2\sqrt{x}}$.

On donne, pour
$$a > 0$$
:
$$\int_0^{+\infty} e^{-ax^2} dx = \frac{\sqrt{\pi}}{2\sqrt{a}}.$$

Pour tout x > 0, on a : $f(x) - f'(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt - \int_0^{+\infty} \frac{-t^2 e^{-xt^2}}{1+t^2} dt = \int_0^{+\infty} e^{-xt^2} dt = \frac{\sqrt{\pi}}{2\sqrt{x}}$, par linéarité des intégrales généralisées.

Exercice 2

Pour
$$n \in \mathbb{N}^*$$
, on considère $F_n : x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{(x^2 + t^2)^n}$.

1. Montrer que F_n est dérivable sur $]0, +\infty[$, et exprimer sa dérivée à l'aide de F_{n+1} .

Pour $n \in \mathbb{N}^*$, on note f_n la fonction définie sur $\mathbb{R}_+^* \times \mathbb{R}^+$ par $f_n(x,t) = \frac{1}{(x^2 + t^2)^n}$. On fixe $n \in \mathbb{N}^*$.

- Soit $x \in \mathbb{R}_+^*$.
 - \rightarrow La fonction $t \mapsto f_n(x,t)$ est continue sur \mathbb{R}^+ donc localement intégrable.

 $\operatorname{Sp\acute{e}}\operatorname{PT}\operatorname{B}$

 \rightarrow En $+\infty$

On a $f_n(x,t) \sim \frac{1}{t^{2n}}$, (avec n > 0) donc par comparaison à une intégrale de Riemann convergente, $t \mapsto f_n(x,t)$ est intégrable sur $[1,+\infty[$.

Finalement pour tout $x \in \mathbb{R}_+^*$, $t \mapsto f_n(x,t)$ est intégrable sur $[0,+\infty[$.

- Pour tout $t \in \mathbb{R}^+, x \mapsto f_n(x,t)$ est de classe C^1 sur \mathbb{R}_+^* et $\forall (x,t) \in \mathbb{R}_+^* \times \mathbb{R}^+$, $\frac{\partial f_n}{\partial x}(x,t) = \frac{-2nx}{(x^2 + t^2)^{n+1}}.$
- Pour tout $x \in \mathbb{R}_+^*, t \mapsto \frac{\partial f_n}{\partial x}(x, t)$ est continue sur \mathbb{R}^+ .
- Hypothèse de domination :

$$\overline{\text{Soit } [a,b] \subset]0, +\infty[, (0 < a < b), \forall (x,t) \in [a,b] \times R^+, \left| \frac{\partial f_n}{\partial x}(x,t) \right| \leq \frac{2bn}{(a^2 + t^2)^{n+1}} = \varphi_{a,b}(t).$$

 \rightarrow La fonction $t \mapsto \varphi_{a,b}(t)$ est continue sur \mathbb{R}^+ donc localement intégrable.

 \rightarrow En $+\infty$:

On a $\varphi_{a,b}(t) \sim \frac{2bn}{t^{2(n+1)}}$, (avec n > 0) donc par comparaison à une intégrale de Riemann convergente, $t \mapsto \varphi_{a,b}(t)$ est intégrable sur $[1, +\infty[$.

Finalement $\varphi_{a,b}$ est intégrable sur $[0, +\infty[$.

Le théorème de dérivation sous le signe intégral donne F_n de classe C^1 sur \mathbb{R}_+^* , et la formule de Leibniz donne : $F'_n(x) = -2nxF_{n+1}(x)$.

2. En déduire la valeur de $\int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^3}$.

On a:
$$\int_0^{+\infty} \frac{dt}{(1+t^2)^3} = F_3(1).$$

Pour
$$x > 0$$
, on a : $F_1(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{x^2 + t^2} = \left[\frac{1}{x} \operatorname{Arctan}\left(\frac{t}{x}\right)\right]_0^{+\infty} = \frac{\pi}{2x}$, donc la formule établie

précédemment donne $F_2(x) = \frac{\pi}{4x^3}$, puis $F_3(x) = \frac{3\pi}{16x^5}$.

Finalement,
$$\int_0^{+\infty} \frac{dt}{(1+t^2)^3} = F_3(1) = \frac{3\pi}{16}$$
.

CB N°8 - INTEGRALES A PARAMETRE - SUJET 2

Exercice 1

On considère la fonction $f: x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t^2} dt$.

On note g la fonction définie sur $\mathbb{R}_+^* \times \mathbb{R}^+$ par $g(x,t) = \frac{e^{-xt}}{1 \perp t^2}$.

- **1.** Montrer que f est de classe C^2 sur \mathbb{R}_+^* .
 - Montrons tout d'abord que f est de classe C^1 sur \mathbb{R}_+^* .
 - Soit $x \in \mathbb{R}_+^*$.
 - \rightarrow La fonction $t \mapsto g(x,t)$ est continue sur \mathbb{R}^+ donc localement intégrable.
 - \rightsquigarrow En $+\infty$:

On a $|g(x,t)| \leq e^{-xt}$ avec x > 0, donc par comparaison à une intégrale de référence convergente, $t \mapsto g(x,t)$ est intégrable sur \mathbb{R}^+ .

- Pour tout $t \in \mathbb{R}^+, x \mapsto g(x,t)$ est de classe C^1 sur \mathbb{R}^*_+ et $\forall (x,t) \in \mathbb{R}^*_+ \times \mathbb{R}^+$, $\frac{\partial g}{\partial x}(x,t) = \frac{-te^{-xt}}{(1+t^2)}$
- Pour tout $x \in \mathbb{R}_+^*, t \mapsto \frac{\partial g}{\partial x}(x, t)$ est continue sur \mathbb{R}^+ . <u>Hypothèse de domination</u>:

$$\overline{\text{Soit } [a,b] \subset]0, +\infty[, \ (0 < a < b), \ \forall (x,t) \in [a,b] \times R^+, \left| \frac{\partial g}{\partial x}(x,t) \right| \leq t e^{-at} = \varphi_{a,b}(t).$$

- \rightarrow La fonction $t \mapsto \varphi_{a,b}(t)$ est continue sur \mathbb{R}^+ donc localement intégrable.
- \rightsquigarrow En $+\infty$:

On a $\varphi_{a,b}(t) = o\left(\frac{1}{t^2}\right)$, (par croissances comparées) donc par comparaison à une intégrale de Riemann convergente, $t \mapsto \varphi_{a,b}(t)$ est intégrable sur $[1, +\infty[$.

Finalement $\varphi_{a,b}$ est intégrable sur $[0, +\infty[$.

Le théorème de dérivation sous le signe intégral donne f de classe C^1 sur \mathbb{R}_+^* , et la formule de Leibniz donne: $f'(x) = \int_{0}^{+\infty} \frac{-te^{-xt}}{1+t^2} dt$.

- Montrons que f' est de classe C^1 sur \mathbb{R}_+^* , nous aurons ainsi f de classe C^2 sur \mathbb{R}_+^* .

On note g_1 la fonction définie sur $\mathbb{R}_+^* \times \mathbb{R}^+$ par $g_1(x,t) = \frac{-te^{-xt}}{1+t^2}$ (c'est $\frac{\partial g}{\partial x}$).

- Soit $x \in \mathbb{R}_+^*$. D'après le résultat précédent, la fonction $t \mapsto g_1(x,t)$ est intégrable sur $[0,+\infty[$.
- Pour tout $t \in \mathbb{R}^+, x \mapsto g_1(x,t)$ est de classe C^1 sur \mathbb{R}_+^* et $\forall (x,t) \in \mathbb{R}_+^* \times \mathbb{R}^+$, $\frac{\partial g_1}{\partial x}(x,t) = \frac{t^2 e^{-xt}}{(1+t^2)}.$
- Pour tout $x \in \mathbb{R}_+^*, t \mapsto \frac{\partial g_1}{\partial x}(x, t)$ est continue sur \mathbb{R}^+ . <u>Hypothèse de domination</u>:

Soit
$$[a, b] \subset]0, +\infty[$$
, $(0 < a < b), \forall (x, t) \in [a, b] \times \mathbb{R}^+, \left| \frac{\partial g_1}{\partial x}(x, t) \right| \leq e^{-at} = \psi_{a,b}(t).$
 $\psi_{a,b}$ est intégrable sur $[0, +\infty[$ (c'est une intégrale de référence).

Le théorème de dérivation sous le signe intégral donne f' de classe C^1 sur \mathbb{R}_+^* , donc f de classe C^2 sur \mathbb{R}_+^* , et la formule de Leibniz donne : $f''(x) = \int_0^{+\infty} \frac{t^2 e^{-xt}}{1+t^2} dt$.

Spé PT B

2. Montrer que f est solution sur \mathbb{R}_+^* de l'équation différentielle : $y'' + y = \frac{1}{x}$.

Pour tout x > 0, on a:

$$f''(x) + f(x) = \int_0^{+\infty} \frac{e^{-xt}}{1 + t^2} dt + \int_0^{+\infty} \frac{t^2 e^{-xt}}{1 + t^2} dt = \int_0^{+\infty} e^{-xt} dt = \left[\frac{-e^{-xt}}{x} \right]_0^{+\infty} = \frac{1}{x},$$

Exercice 2

Pour $n \in \mathbb{N}^*$, on considère $F_n : x \mapsto \int_0^{+\infty} \frac{\mathrm{d}t}{(\mathrm{e}^x + t^2)^n}$.

1. Montrer que F_n est dérivable sur $[0, +\infty[$, et exprimer sa dérivée à l'aide de F_{n+1} .

Pour $n \in \mathbb{N}^*$, on note f_n la fonction définie sur $\mathbb{R}^+ \times \mathbb{R}^+$ par $f_n(x,t) = \frac{1}{(e^x + t^2)^n}$. On fixe $n \in \mathbb{N}^*$.

- Soit $x \in \mathbb{R}^+$.
 - \rightarrow La fonction $t \mapsto f_n(x,t)$ est continue sur \mathbb{R}^+ donc localement intégrable.
 - $\rightsquigarrow \operatorname{En} + \infty$:

On a $f_n(x,t) \sim \frac{1}{t \to +\infty} \frac{1}{t^{2n}}$, (avec n > 0) donc par comparaison à une intégrale de Riemann convergente, $t \mapsto f_n(x,t)$ est intégrable sur $[1,+\infty[$.

Finalement pour tout $x \in \mathbb{R}^+$, $t \mapsto f_n(x,t)$ est intégrable sur $[0,+\infty[$.

- Pour tout $t \in \mathbb{R}^+, x \mapsto f_n(x,t)$ est de classe C^1 sur \mathbb{R}^+ et $\forall (x,t) \in \mathbb{R}^+ \times \mathbb{R}^+$, $\frac{\partial f_n}{\partial x}(x,t) = \frac{-ne^x}{(e^x + t^2)^{n+1}}.$
- Pour tout $x \in \mathbb{R}^+, t \mapsto \frac{\partial f_n}{\partial x}(x, t)$ est continue sur \mathbb{R}^+ .
- Hypothèse de domination

 $\overline{\text{Soit } [a,b] \subset [0,+\infty[,\ (0< a < b),\ \forall (x,t) \in [a,b] \times R^+, \left| \frac{\partial f_n}{\partial x}(x,t) \right| \leq \frac{n e^b}{(1+t^2)^{n+1}} = \varphi_{a,b}(t).}$

- \rightarrow La fonction $t \mapsto \varphi_{a,b}(t)$ est continue sur \mathbb{R}^+ donc localement intégrable.
- $\rightsquigarrow \operatorname{En} + \infty$:

On a $\varphi_{a,b}(t) \sim \frac{ne^o}{t^{2(n+1)}}$, (avec n > 0) donc par comparaison à une intégrale de Riemann convergente, $t \mapsto \varphi_{a,b}(t)$ est intégrable sur $[1, +\infty[$.

Finalement pour tout $\varphi_{a,b}$ est intégrable sur $[0, +\infty[$.

Le théorème de dérivation sous le signe intégral donne F_n de classe C^1 sur \mathbb{R}_+^* , et la formule de Leibniz donne : $F'_n(x) = -ne^x F_{n+1}(x)$.

2. En déduire la valeur de $\int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^3}$.

On a:
$$\int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^3} = F_3(0).$$

Pour $x \ge 0$, on a : $F_1(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{\mathrm{e}^x + t^2} = \left[\frac{1}{\mathrm{e}^{\frac{x}{2}}} \mathrm{Arctan}\left(\frac{t}{\mathrm{e}^{\frac{x}{2}}}\right)\right]_0^{+\infty} = \frac{\pi \mathrm{e}^{\frac{-x}{2}}}{2}$, donc la formule établie précédemment donne $F_2(x) = \frac{\pi}{4} \mathrm{e}^{\frac{-3x}{2}}$, puis $F_3(x) = \frac{3\pi}{16} \mathrm{e}^{\frac{-5x}{2}}$.

Finalement, $\int_{0}^{+\infty} \frac{dt}{(1+t^2)^3} = F_3(0) = \frac{3\pi}{16}$.

Spé PT B Page 4 sur 4