IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

"les

HEATH, et al.

Serial No.: 08/699,716

Filed: 27 August 1996

For: RECOMBINANT F1-V PLAGUE VACCINE

Art Unit: 1645

Examiner: Duffy, Patricia Ann

Atty. Dckt: 003/029/SAP

AFFIDAVIT OF ARTHUR M. FRIEDLANDER

- 1. I, Arthur M. Friedlander, an inventor of the above-referenced application and resident of Gaithersburg, MD, declare the following:
- 2. My curriculum vitae is attached.
- 3. David G. Heath, George W. Anderson, Jr., Susan L. Welkos and I are joint inventors of the subject matter disclosed in the above-referenced application.
- 4. From 1992 to 1998, I was in charge of the development of a plague vaccine.

MAR 1 9 2007

- 5. Sometime during the second or third week of [redacted date which is before 13 March 1996], but before [redacted date which is before 13 March 1996], during an Army Plague Vaccine Group weekly meeting, I decided that we should make a fusion protein comprising the F1 and V antigens (F1-V fusion) of Yersinia pestis for use as a new plague vaccine. I asked for a volunteer and David G. Heath volunteered. This is evidenced by Heath's laboratory notebook page dated [redacted date which is before 13 March 1996], page 44 of notebook #3487 which shows the primers and PCR plan to create the fusion protein. See Exhibit AF1.
- 6. From [redacted date which is before 13 March 1996] to the time of filing the above-referenced application with the U.S. Patent & Trademark Office, we conducted research and development of a plague vaccine comprising an F1-V fusion protein.
- 7. Since about the beginning of [redacted date which is before 13 March 1996] to about the filing date of the above-referenced application, members of the Army Plague Vaccine Group of the U.S. Army Medical Research and Materiel Command (USAMRMC) have been collaborating with the inventors of the Titball Patent (US 5,985,285) on a variety of plague vaccines. This is evidenced by Welkos' Army Plague Meeting Notes dated [redacted date which is before 13 March 1996]. See Exhibit AF2 (SW3). This is also evidenced by an excerpt of a letter from CBDE which was faxed to me on [redacted date which is before 13 March 1996] and catalogued in Anderson's notebook #3598. See Exhibit AF3.
- 8. Prior to 21 May 1995, the Army Plague Vaccine Group developed and purified a fusion protein containing all of the F1 antigen fused to part of the V antigen (F1-V partial) and a fusion protein containing all of the F1 antigen fused to all of the V antigen (F1-V whole). Since we observed that F1-V partial confers protection against wild-type Yersinia pestis, but does not provide protection against F1 mutant Yersinia pestis, we then decided to determine whether F1-V whole confers protection against F1 mutant Yersinia pestis. This is evidenced by Welkos' Army Plague Vaccine Group meeting notes dated [redacted date which is before

13 March 1996]. See Exhibit AF4 (SW4).

J'e.

- 9. On about 21-25 May 1995, I attended the American Society of Microbiology Meeting in Washington, DC, where I met with Richard Titball of CBDE. When I met with Richard Titball, I told him in confidence that the Army Plague Vaccine Group had constructed and purified the F1-V whole and believe that it will confer protection against F1 mutant Yersinia pestis. I noted this discussion in the Invention Disclosure I prepared and submitted on 16 April 1996 to the Office of Research and Technology Applications (ORTA) of USAMRMC. See Exhibit AF5.
- 10. Some time before 16 April 1996, I compiled the research and data of the Army Plague Vaccine Group relating to F1-V fusion proteins and prepared and submitted an Invention Disclosure. See Exhibit AF5.
- 11. Shortly after the Invention Disclosure was forwarded from ORTA to the outside contract attorney, Sana Pratt, I began working with Sana Pratt to prepare the application which was filed on 27 August 1996.
- 12. From just prior to 13 March 1996 to 27 August 1996, David G. Heath, George W. Anderson, Jr., Susan L. Welkos and I did not abandon, suppress or conceal the invention as disclosed and claimed in the above-referenced application.
- 13. I have reviewed and analyzed the Titball patent and the three priority documents, UK 9505059, UK 9518946, and UK 9524825, and PCT/GB96/00571.
- 14. It is my opinion that prior to 13 March 1996, the filing date of PCT/GB96/00571, the inventors of the Titball patent had not conceived and/or reduced to practice a plague vaccine comprising <u>purified</u> F1 antigen fused to all or part of V antigen as nowhere do UK 9505059, UK 9518946, and UK 9524825 disclose <u>isolating</u> or <u>purifying</u> a protein comprising F1 antigen fused to all or part of V antigen from the host cell and other cellular components and/or administering a purified protein comprising F1 antigen fused to all or part of V antigen to a subject.
 - a. In fact, UK 9518946 is the first disclosure indicating a genetic vaccine or how a host organism may be transfected with DNA for F1 antigen and V antigen to result in a live vaccine, i.e. an attenuated host organism (such as Salmonella) which produces the antigen when administered to a subject.
 - b. As described in UK 9518946, the genetic vaccine or the live vaccine is administered to a subject such that the protein/antigen of interest is then produced in the subject.
 - c. UK 9518946 does not describe isolating the protein/antigen of interest from the host organism and purifying the protein/antigen of interest from other cellular components prior to administration to a subject.
 - d. The genetic vaccine or live vaccine described in UK 9518946 is not a <u>purified</u> protein comprising F1 antigen fused to all or part of V antigen which is isolated and purified from cells and other cellular components as claimed in the above-referenced application.
- 15. I have reviewed and analyzed the experiments and data of the Army Plague Vaccine Group and it is my opinion that the Army Plague Vaccine Group:

- a. Conceived of a fusion protein comprising F1 antigen fused to part of V by at least [redacted date which is before 13 March 1996].
- b. Conceived of a fusion protein comprising F1 antigen fused to all of V by at least [redacted date which is before 13 March 1996].
- c. Conceived of and reduced to practice a <u>purified</u> fusion protein comprising F1 antigen fused to part of V by at least [redacted date which is before 13 March 1996].
- d. Conceived of and reduced to practice a <u>purified</u> fusion protein comprising F1 antigen fused to all of V by at least [redacted date which is before 13 March 1996].
- e. Conceived of and reduced to practice a vaccine against plague comprising a <u>purified</u> fusion protein comprising F1 antigen fused to part of V by at least [redacted date which is before 13 March 1996].
- f. Conceived of and reduced to practice a vaccine against plague comprising a <u>purified</u> fusion protein comprising F1 antigen fused to all of V by at least [redacted date which is before 13 March 1996].
- 16. I declare that all statements made herein of my own knowledge are believed to be true, and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under §1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

Date: 15 March 2007

Arthur M. Friedlander

REDACTED

Pick single colony worlded of antique LCR-6VH-police B/E and of Pestides (CR-6VH police B/E (2 of each)

- grew up 15 ml cultures ON - will have dam make Vergin plasmid DNA & sequence using invitat & removeral prime or perhaps just unwood prime

REDACTED Rattito were flad by VAID personnel. Jork serum

and stored & 4°C.

Designed primers to segment part of V. to Fl Capache
had Kristin make 4 primers:

BAMHIFIS' S'AAA AHA GAA TCA CAG GAT CCT 77C 3'

ELERIFIKEN S'CTC GAA ITC TTG FIT AGH TAC GGT 3'

V/68 For S'CAK GAA TTC TCA GTT ATT CAA GCC & 3'

Varskar S' 6TG GGT CGA CTC AAT CCG AGC AGG TGGT 5'

Basic plan is to YCR PYPRI to get Fl operon from

Brom HT site to very end of Fl capache gene

B

Got V here from 168 to 275 among acids

"s Soil I Stop codon

fe get a B/sal pragment. Hun lighte into B/sal digestion of Bhuescript

- then light new black piece to Els small

per now light into E sal digited policienjet

y grow at 30 or 37°c

REDACTED

Had some de livejer Plasmid welation of 4 recombinante E LCR-6VH operon. He then digisted E E/B + ran oh against the also seefisened insert using reverse & forward planers

Results: The four isolate look like they have about the right sized inset a 2.1 KB.

REDACTED set up Duchterling
using nattrt sera vs. F1

nob. 141 CAnti plague rabbit

nob. 150 You

lain 4 week post injection sona (ale: 1 boost & and week)

Rabbit# 2 = 7F7DID3A12 Rabbit# 2 = 7F7DID716A

Exhibit AF3

Dear Dr Friedlander

CBDE/USAMRIID COLLABORATIVE RESEARCH INTO PROTECTIVE EFFICACY ()F RECOMBINANT V-ANTIGEN AGAINST PARENTERAL AND AEROSOL CHALLENGE WITH YERSINIA PESTIS

As you are aware, CBDE has data to suggest that the V-antigen of the plague causing organism *Yersinia pestis*, when used as an immimogen, is highly protective against plague. The V-antigen could therefore be a major component of an improved plague vaccine to be developed in the future by CBDE.

You recently indicated to us that USAMRIID wished to collaborate in testing the protective capacity of the V-antigen against parenteral and aerosol challenge with virulent plague. We agreed that such a collaboration would be desirable because it could generate valuable data which would be of benefit to both CBDE and USAMRIID. We therefore decided that the collaboration should, in the future, be the subject of a Project Arrangement under the Memorandum of Understanding between the Secretary of Defense (US) and the Secretary of State for Defence (UK) concerning Technology Research and Development Projects (which is currently still under negotiation).

However, we also agreed that any delay in the collaboration would reduce the benefit of the resulting data, and therefore it would be desirable to commence work in advance of a more formal Project Arrangement.

Accordingly, this letter sets out below the respective duties, rights and responsibilities of each of us under the collaboration, pro tem, pending the negotiation of a more comprehensive arrangement:

1. SCOPE OF WORK

- a. CBDE will supply to USAMRIID, for the purposes described in (b), the following:
 - i. 30 mg of recombinant Yersinia pestis V-antigen.
 - ii. Protocols detailing the immunisation route, doses and schedules used at CBDE.
 - iii. Polyclonal antisera raised against the V antigen of Yersinia pestis.
 - 1v. Details of the CBDE challenge route, challenge strain and protection data afforded by the V-antigen vaccine against parenteral challenge with Yersinic, pestis.

b. USAMRIID will:

- i. Immunisc groups of animals parenterally with the following:
 - V-antigen in combination with Alhydrogel.

REDACTED Plague Review Exhibit AF4 Proportion Severy

Flowerpoulation vaccin explo Kende's carrier 3'

(A) I shot immunity in an

48 days challeng (at d. 44)

Dox:

Nug Fl in microsymb + 10 ug Fl is fee (gave higher and Fl tites)

il. & Challeng vs. 67 1050' St Challery vs. 67 LDSD's

good prokehon

skenle immind in speens, at 28 days post chieley (G) Aerosol Chellery w/ increased do 1 shot F1 alone - your "" " encapsulated - not help 1 us. 2 doses F1 + alhyings - much better w/ adore in no clearcut evidence that minoregulation but help us across chillen 2. Calaborative with ul British (CBE) Antigen is Recombine V & from British & U.

10 yg: day 0 + 30 - with Alhydood A.

Chilly: day 58 Alhydrogel U. good laccine OFFE O 61 → 10 LD 50 s Chillery SC - good Survived

Offenosol - good protection again! Tat d 28 /

59-971 LD50s chiller

all:5ter:lespleers 28 days gost Chelley E12 i excellent justetin, si challery along not as high, not 1/8-low dea chillens :84 Con 9/10-high dea (193 Con Pullem did Ich. Tarmon. In Al tite

Exhibit AF5

FROM ORTA: 16 AP	R 96				•	
LOG NUMBER: RIID	9608					
REDACTED						
-					•	ð
			•			
		•				
				·	·	

APPENDIX A

DEPARTMENT OF THE ARMY UNITED STATES OF AMERICA

INVENTION DISCLOSURE

PATENT ACTIVITIES

ASSIGNED TO:

16-08

IVITIES DOCKET NO.

(THIS FORM AND ACCOUPANYING DRAWING AND DESCRIPTION SHEETS ARE TO BE COMPLETED FOR EACH INVENTION PROMPTLY FORWARDED TO THE PATENT ACTIVITYM)

		FORWARDED TO THE PATERY ACTIVITYES				
SHORT TITLE OF INVENTION	•					
Recombinant Fl		cine				
FULL NAME(S) OF INVEN		HOME ADDRESS(ES)	(DUTY) TEL. NO. AREA CODE			
David G.	Heath	Bacteriology Division	(301) 619-7341			
Arthur M.	Friedlander	USAMRIID, Bldg, 1425				
George W.	Anderson	Fort Detrick	4612 2			
Susan J.	Welkos	Frederick, MD 21702-501				
INFORMATION		OU FIRST THINK OF THIS INVENTION	(WHAT RECORDS SHOW THIS?)			
AND DATES	1,47		Laboratory Notebook			
CONCERNING	GIVE DATE OF AND IL	GIVE DATE OF AND IDENTIFY EARLIEST SKETCH OF GRAPING				
this invention	REDACTED					
MEEDED IN THE EVENT OF A CON-	WHEN/WHERE AND TO	WHOM DID YOU MAKE THE FIRST DISCLOSE	RE TO OTHERS OF THE INVENTION			
TEST OF PRIORITY OF INVENTIOR IN THE US. PATENT AND TRADE-	(6) See enclo					
MARK OFFICE, ALL RECORDS CITED SHOULD BE DATED AND	DESCRIBE DETAILS O	F ANY WORK OF TESTS DONE TO PRODUCE	OR OPERATE THE INVENTION			
SIGNED BY TWO MOEPENDENT WITHESSES WHO HAVE READ	GIAE UTALE THE MILE	FR PAGES IF HECESSARY)				
AND UNDERSTOOD THE MAT- ERIAL.	L INCOMO LED	VER AT ANY AVERS SUFFICION SOCIETA	OR REPORTS PERTIMENT TO THIS INVENTION			
	(4)	TIES OF ANY CINER SKEICHES, DRABINGS	OR REPORTS PERTINERT TO THIS INVENTION			
	UF MIVENTION HAS BEE	SOLO OR USED FOR PROPIT- WHEN AND TO W	HOM DISCLOSED OR WHEN AND NOW USED 2			
USE, SALE OR	kes	or used for profit				
PUBLICATION NEEDED TO ESTABLISH THE DATE	MAS A DESCRIPTION O	F THIS INVENTION BEEN MADE AVAILABLE	TO PERSONS OUTSIDE THE ARMY? (WRITTEN OR			
OF ANY PRINTED PUBLICATION. PUBLIC USE OR SALE. SINCE NO	IORAL) IF SO, HOW AS	ND WHEN AND WAS USE RESTRICTED ?				
PATENT APPLICATION MAY BE FILED AFTER ONE YEAR FROM	See enclos	sure				
SUCH DATE.						
POTENTIAL MARKET	DESCRIBE ANY POTENT	TIAL OR EXISTING MARKET FOR SALE OR LI	CENSE OF THIS INVENTION			
INFORMATION	A. GOVERNMENT: T	Vaccine against plague				
NEEDED FOR POSSIBLE MARKET- ING INVESTIGATIONS AND AS AM	1					
AID TO POTENTIAL LICENSING	J. COMMERCIAL.	accine against plague				
		OWN FIRMS OR VENDORS WHO MAY BE INTER	FOTED IN THE INVENTION			
	Greer Labo	oratories, Lenoir, NC				
CONTRACT	IF THIS INVENTION WAS	FIRST CONCEIVED OR CONSTRUCTED IN CON	NECTION WITH:			
INFORMATION		OVERHIEIT EMPLOYEE				
A DETERMINATION OF RIGHTS IN THIS INVENTION WILL BE NECES-	B. MY WORK UNRELATE	TED TO MY DUTIES AS A GOVERNMENT EMPLO	YEE (PRIVATE, OFF DUTY ACTIVITIES)			
ARY. (SEE AR 27-60)		OVERHUENT EMPLOYEE & WORKING WITH	CONTRACTOR			
	D. HEITHER A.S OR	C, EXPLAIN				
			·			
EODEICH EI ING	INDIGATE THE POTENT	IAL FOR USING THIS INVENTION IN FOREIGN	COUNTRIES			
FOREIGN FILING CONSIDERATION	(1 3)					
-	POOR					
IEEDED TODETERMINE THE POTENTIAL WORLDWIDE USE FOR THE INVENTION.	D 6000					
	S EXCELLENT					
SECURITY	PLEASE INDICATE THE S	ECURITY CLASSIFICATION IF KNOWN				
CLASSIFICATION	CLASSIFIED					
	LEVEL	•				
1	UHCLASSIFIED	· · · · · · · · · · · · · · · · · · ·				
	C CLASSIFICATION	URKN OWN				

DEPARTMENT OF THE ARMY UNITED STATES OF AMERICA

INVENTION DISCLOSURE

PATENT ACTIVITIES DOCKET NO.

(DRAWING AND DESCRIPTION SHEET)

(14) PROVIDE THE FOLLOWING INFORMATION CONCERNING THE DISCLOSED INVENTION AND IN THE INDICATED SEQUENCE:

- A. SPECIFICALLY DESCRIBE THE INVENTION AND ITS OPERATION. YOU MAY USE AND ATTACH COPIES OF SKETCHES, PRINTS, PHOTGRAPHS, PAPERS AND ILLUSTRATIONS, WHICH SHOULD BE SIGNED, WITHESSED AND DATED. USE NUMBERS AND DESCRIPTIVE NAMES IN DESCRIPTIONS AND DRAWINGS.
- B. STATE THE ADVANTAGES OF THE INVENTION OVER PRESENTLY KNOWN DEVICES, SYSTEMS OR PROCESSES.
- C. DISCUSS THE PROBLEMS WHICH THE INVENTION IS DESIGNED TO SOLVE, REFERRING TO ANY PRIOR INVENTION OF A SIMILAR NATURE WITH WHICH YOU MAY BE FAMILIAR.
- D. LIST ALL KNOWN AND OTHER POSSIBLE USES FOR THE INVENTION.
- E. LIST THE FEATURES OF THE INVENTION THAT ARE BELIEVED TO BE NOVEL.
 USE AS MANY OF THESE SHEETS AS NECESSARY AND ATTACH TO COMPLETED INVENTION DISCLOSURE

See attached enclosure

SIGNATURE(S) AND ORGANIZATION OF INVENTOR(S) (USE INK)	THE DESCRIBED INVENTION HAS BEEN DATE: WITNESSED, READ, AND UNDERSTOOD BY:	DATE:
ORGANIZATION USAMPTED	(19)	
(16) both he fidence	(19)	
ORGANIZATION USAMAII)	(20)	
ORGANIZATION WATERING (18) Sum 7 Wellow Without 19		
# HOTE: THIS FORM AND ANY ONITTED INFORMATION SECONI	MA AVAILABLE STALLATER THE GUIDA B DE CONTRACTOR	
HODA CHEF, INTELLECTUAL PROPETY DIV. OFFICE OF THE JUDGE ADVOCATE SEMERAL DEPT. OF THE ARMY WASHINGTON, D.G. 20310		ATTH: PATENT COUNSEL

~-- ~- ~-~

Invention Disclosure: Recombinant F1-V plague vaccine

(6) First disclosure was in a conversation with Richard Titball, CBDE, Porton Down, England during the American Soc. of Microbiology Meeting sometime during 21-25 May, 1995 in Washington, DC

(10)

- a. oral communication in confidence to Richard Titball, American Soc. of Microbiology Meeting sometime during 21-25 May, 1995 in Washington, DC
- b. approximately 1/15/96, written abstract sent to Tom Schwan, Rocky Mountain Labs, Hamilton, MT; Kathleen McDonough, David Axelrod Institute, Albany, NY; Dorothy Pierson, University of Colorado, Denver, CO in confidence for review of Army Plague Research program
 - c. written communication 1/24/96 submitted to the journal Nature
- d. oral presentation on 2/15/96 at review of Army Plague Research program, Frederick, MD
 - e. written communication 3/19/96 submitted to the journal Science

(14)

A recombinant Yersinia pestis-derived F1 capsule and V antigen fusion protein.

A. The invention is a fusion protein made up of two proteins derived from Yersinia pestis: the F1 capsule antigen (F1) and the V antigen. The process of constructing the fusion protein required several intermediate steps. The first step called for creating a polymerase chain reaction (PCR) product consisting of part of the F1 operon and the F1 structural gene (caf1) open reading frame (ORF) from which the stop codon was removed (Figure 1A). The Bam HI/Eco RI restricted, F1-containing, PCR product was then ligated into the smaller isolated Eco RI/Bam HI fragment of pYPRI to create pF1LZ (Figure 1B). Next, a small internal segment of the V antigen ORF (Figure 1C) was generated by PCR and ligated into the Eco RI (partial digest) and Sal I digested pF1LZ to create pF1V3a (Figure 1D). pF1V3a then served as the template DNA in a PCR reaction to create a PCR product containing the F1 structural gene ORF fused, in frame, with the

internal V segment. This PCR product was restricted with *Nde* I and *Bam* HI and ligated into pET19b (Novagen, Inc.) to create pF1Vs (Figure 1E). The V segment and the small *Bam* HI/Pst I fragment from the original plasmid vector, pET19b were removed from pF1Vs (Figure 2A) and replaced with the entire V antigen ORF (Figure 2 B) in a ligation reaction (Figure 2C) which also included the small *Bam* HI/Pst I fragment from pET19b to create pF1V (Figure 2D). pF1V DNA was used to transform *Escherichia coli* strain BLR (Novagen) and expression of the fusion protein was then shown to occur upon induction with isopropylthio-β-galactoside (IPTG). Expression of a protein of the appropriate size for this fusion protein (58 kDa) was demonstrated by SDS-polyacrylamide gel electrophoresis (Figure 3A). The invention has been designated F1-V.

1. To purify the F1-V fusion protein, E. coli strain BLR containing the plasmid pF1V was grown overnight in a small shaking flask using 5 ml of LB broth containing 100 µg/ml of carbenicillin. The overnight culture was then centrifuged at 5000 x g to pellet the cells and resuspended in fresh LB/carbenicillin. One ml of the fresh suspension was used to inoculate 1 liter of LB/carbenicillin and the culture was rotated at 225 rpm and allowed to grow at 37° C for 4 to 5 hr (OD₆₀₀ = 1). The temperature was then lowered to 26°C and IPTG was added to 1 mM final concentration at which time the culture was allowed to rotate at 225 rpm for an additional 2 hr. The cell culture was then centrifuged and cell pellets were resuspended in 40 ml of 1 x Binding Buffer (Novagen, Inc.). The suspension was then subjected to sonication (six 30 sec bursts) and the cell debris was removed by high-speed centrifugation (39,000 x g) for 20 minutes. The supernatant was removed and subjected to ultrafiltration (0.45µ filter) after which it was divided into 10 ml aliquots for storage at - 70°C. The frozen supernatant was allowed to thaw on ice and subjected to fast protein liquid chromatography (FPLC) using a Ni2+ chelation resin (Novagen, Inc.). The bound fusion protein was released from the resin after exposure to an imidazole gradient and fractions containing the fusion protein were pooled and buffer exchanged, by dialysis, into 20mM Tris, pH 7.6, 0.5 mM EDTA. The pooled protein was then subjected to a further round of FPLC (to remove endotoxin) using a Mono Q (Pharmacia) ion-exchange column. The purified fusion protein was then tested for endotoxin content using the Limulus amebocyte lysate assay (Sigma). The purified F1-V purified protein was subsequently shown to bind antibody

directed against either the F1 antigen or antibody directed against V antigen (Figure 3b, 3c).

2. The value of the F1-V protein was demonstrated by its ability to protect experimental animals against infection with *Yersinia pestis*, the causative agent of plague. Most forms of naturally occurring plague are due to F1 capsule containing (F1+) strains of *Y. pestis.* However, F1- or deficient plague strains have been isolated from natural sources and from a human case, and are virulent in experimental infections of mice and non-human primates.

In two separate experiments (Table 1), mice immunized with 13.6 μg of F1-V were protected (90-100% survival) against a subcutaneous challenge with a moderate (57 LD_{50}) or high (1.1 x 106 LD_{50}) dose of an F1-Y. pestis strain, C12, while all control animals died. Animals given 10 μg of V (equivalent to the same amount of V as in 13.6 μg of F1-V) were afforded the same degree of protection (90% survival) against the high-dose challenge. Another group of animals immunized with 27.2 μg of F1-V completely (100%) survived the high-dose challenge. In a separate experiment (Table 3), animals given just one immunization of 60 μg of F1-V were completely protected against subcutaneous challenge with a high dose of C12, while the licensed human vaccine gave no protection.

We next determined the efficacy of F1-V against pneumonic plague induced by an aerosol challenge (Table 2). Groups of mice immunized with 13.6 or 27.2 μ g of F1-V were completely protected (100% survival) against a moderate (91 LD₅₀) or high (545-636 LD₅₀) aerosol challenge dose of the F1-Y. pestis strain, C12. In marked contrast, the current human, whole-cell plague vaccine USP, failed to prevent fatal pneumonic plague; none of eight challenged animals survived.

We next determined the efficacy of the F1-V protein in protecting mice against infection with plague strains containing the F1 capsule. Table 3 shows that a single dose of 60 ug of F1-V completely protected mice against a subcutaneous challenge with the F1+ CO92 strain. In contrast the licensed human vaccine protected only 4 of 10 animals. Moreover, while previous data showed that 2 doses of the current human plague vaccine significantly protects mice against a subcutaneous challenge with CO92, it does not protect animals after an aerosol challenge but just delays the time to death (Pitt et al. 1994 Annual Meeting, Amer. Soc. Micro. Abstract #E45, Las Vegas, NV). Furthermore,

the same study showed that the licensed vaccine did not even delay the time to death in non-human primates exposed by aerosol to CO92. Table 2 shows that immunization with 2 doses of F1-V completely protects animals against an aerosol challenge with an F1+ Y. pestis strain, CO92, with 10 of 10 animals surviving. Thus the F1-V vaccine, in contrast to the current licensed vaccine, protects mice against pneumonic plague with both F1+ and F1-Y. pestis strains, a more difficult form of the disease to protect against.

- B. The invention was designed to be used in a vaccine affording protection against plague, due to exposure to the infectious agent *Yersinia pestis*. The advantages of using this fusion protein over the present whole cell vaccine are as follows:
- 1. The current licensed vaccine does not protect mice against subcutaneous challenge with F1- strains of *Y. pestis*, which have been shown to cause fatal disease in both humans and experimental animals infected by a peripheral, non-respiratory route. The new F1-V vaccine does protect mice against bubonic plague caused by subcutaneous challenge with F1- organisms.
- 2. The current licensed vaccine does not protect mice against pneumonic plague induced by aerosol challenge with F1- strains of Y. pestis. The new F1-V vaccine does protect mice against pneumonic plague caused by aerosol challenge with F1- strains.
- 3. The current licensed vaccine does not protect mice against pneumonic plague when challenged by the respiratory route with F1+ strains of *Y. pestis*. The new F1-V vaccine does protect mice against pneumonic plague caused by aerosol challenge with F1+ strains.
- 4. The new F1-V vaccine is expected to protect humans against pneumonic plague produced by strains of *Y. pestis*, either naturally occurring or genetically engineered, which may be altered in their content or composition of V antigen, but which still contain F1. This is because the F1-V vaccine also contains F1. The current licensed vaccine does not protect against pneumonic plague induced by either F1- or F1+ organisms when given by the aerosol route.
- 5. The new F1-V vaccine is composed of two antigens, both of which have been shown to be protective. It is anticipated that the combination of both antigens may provide better protection against F1+ strains than

either F1 or V when used alone as vaccines. This is possible because the immunity induced by F1 and by V occur by different mechanisms which may be additive or synergistic.

- 6. Approximately 8% of humans immunized with the current licensed human plague vaccine fail to develop an immune response to F1 (Marshall et al. J. Inf. Dis. 129:S26-S29, 1974). These non-responders may well be at risk for development of plague. The inclusion of two different protective antigens in the same vaccine will help to eliminate the problem of non-responders and so increase the overall efficacy of vaccination in a human population.
- 7. The new F1-V vaccine is composed of highly purified recombinant proteins which are very well defined. This contrasts with the present human licensed vaccine composed of whole bacteria. The nature of the protective immunogen(s) in the present vaccine is completely unknown. The present vaccine in known to contain and induce antibodies to F1 but it does not induce antibodies to V antigen in mice, suggesting that V antigen is absent. Furthermore, it is anticipated that the highly purified new F1-V vaccine will be significantly less reactogenic in humans than the present human licensed vaccine, which may contain unnecessary bacterial components responsible for its untoward side effects.
- 8. The F1-V protein was constructed so that a single protein could be purified as a vaccine component rather than having to purify F1 and V antigen separately. The purification of a single protein as opposed to two separate proteins could result in considerable savings when manufacturing a vaccine.
- C. This invention is designed to solve the problem of protecting humans against both bubonic and pneumonic forms of plague caused by infection by the subcutaneous and aerosol routes, respectively, with either F1+ or F1-plague organisms, or with strains which may vary in their V antigen.

The current licensed human vaccine protects mice against subcutaneous challenge with F1+ strains, but only delays the time to death of mice challenged by the aerosol route. The vaccine has no protective effect and does not delay the time to death in the non-human primate exposed to F1+ organisms.

The current licensed human vaccine has no significant effect on survival of mice challenged with the F1- C12 strain by either the subcutaneous or the aerosol route.

Thus the current licensed human vaccine would be expected to be ineffective against pneumonic plague caused by either F1+ or F1- strains, or bubonic plague produced by F1- strains of *Y. pestis*.

- D. Known or possible uses of this invention include the following: 1) The fusion protein could be used as a vaccine to protect against bubonic or pneumonic plague due to both F1+ and F1- strains of *Y. pestis* or strains which may vary in their V antigen content.
- E. This invention is novel because it is a single constructed protein composed of two unique proteins, the entire F1 capsule antigen and V antigen. It induces an immunological response against both the F1 protein and V antigen. It is also novel because it includes 2 protective immunogens in the same vaccine.

TABLE 1 Efficacy of F1-V vaccination against a lethal subcutaneous Y. pestis infection of mice

Treatment Groupa	Strain	LD ₅₀ b	Survivors/Total
Alhydrogel alone	C12	57	0/10
13.6 μg F1-V	u	u	10/10
Alhydrogel alone	. n	1.1x10 ⁶	0/10
10 μg V	11	II .	9/10
13.6 μg F1-V	. 11	11	9/10
27.2 μg F1-V	ti	ti	10/10

^a For all groups, 8-10 week old female Swiss Webster (Hsd:ND4) mice (Harlan Sprague Dawley) were immunized subcutaneously on day 0 and day 28 with 0.2 ml of the indicated vaccine preparation. The F1-V and V proteins were each separately adsorbed to Alhydrogel, 1.3% (aluminum hydroxide gel adjuvant, Superfos Biosector).

^b Mice were challenged with the F1⁻, C12 strain, prepared as previously described (Welkos et al. Contrib. Microbiol. Immunol. 13:298-305, 1995), at day 78 after the initial antigen administration.

TABLE 2. Efficacy of F1-V vaccination against a lethal aerosol Y. pestis infection of mice

				Geometric mean antibody titer ^c	
			•		
Treatment Group ^a	Strain	LD ₅₀ b	Survivors/Total	F1	V
Alhydrogel alone	C12	91	0/9	NTd	NT
13.6 μg F1-V	11	ti	10/10	NT	NT
Alhydrogel alone	11	545-636	0/14	<640	<640
10 μg V ^e	u	545-636	8/10	NT	655,360
13.6 μg F1-V	u	545-636	10/10	66,540	432,376
27.2 μg F1-V	u	545-636	10/10	108,094	432,376
Plague USP ^f	u	545-636	0/8	55,738	<640
Alhydrogel alone	CO92	761	1/10	NT	NT
13.6 μg F1-V	CO92	761	10/10	NT	NT

^aFor all groups, 8-10 week old female Swiss Webster (Hsd:ND4) mice were immunized subcutaneously on day 0 and day 28 with 0.2 ml of the indicated vaccine preparation.

bMice were challenged with inocula prepared as described in Table 1 at day 78 after the initial antigen administration. Aerosol exposures were performed in a nose-only exposure chamber with a dynamic small-particle aerosol as previously described (Welkos et al. Contrib. Microbiol. Immunol. 13:298-305, 1995). The apparatus was configured to challenge a maximum of 27 mice per exposure. Mice from several groups were divided between exposure runs to minimize differences among the treatment groups resulting in a dose challenge range.

^cSerum obtained on day 58 after the initial immunization was assayed for anti-F1 and anti-V IgG antibody by ELISA on individual animals and group geometric mean titers determined. Titers were determined as the reciprocal of the maximum dilution giving an absorbance greater than 0.1 units after subtraction of nonspecific binding in normal serum.

⁹Because F1-V was exposed to urea during purification, we also exposed this preparation of V to urea. V in PBS was buffer exchanged into 1x Binding Buffer

(Novagen) containing 6 M urea and placed at 4°C for 4 h after which urea was removed by dialysis as indicated for F1-V. V concentration was then determined and V was adsorbed to Alhydrogel.

^fThe licensed, human, whole-cell plague vaccine United States Pharmacopeia (USP) was obtained from Greer Laboratories (Lenoir, NC).

TABLE 3. Survival of outbred mice after a single subcutaneous immunization followed by subcutaneous challenge.

Treatment Group ^a	Strain	LD ₅₀ ^b Survivors/Total		
Alhydrogel alone	CO92	5,750	0/10	
Plague USP (Greer)	65	a	4/10	
60.0 μg F1-V	C6	a	10/10	
Alhydrogel alone	C12	16,300	0/10	
Plague USP (Greer)	ш	u	0/10	
60.0 μg F1-V	ű	4	10/10	

^aFor all groups, Hsd:ND4 Swiss Webster female 8-9 week old mice were immunized subcutaneously on day 0 with 0.2 ml of the vaccine preparation. ^bChallenge was at day 44 postimmunization.

CURRICULUM VITAE

Arthur M. Friedlander, M.D.

Birthplace:

Brooklyn, New York

Education:

Harvard College, A.B., 1961

University of Pittsburgh, M.D., 1965

Academic and Other Professional Positions:

7/65-6/66	Medical Intern, Downstate Medical Center, SUNY, Brooklyn, New York
7/66-6/67	Medical Resident, Downstate Medical Center, SUNY, Brooklyn, New York
7/67-6/69	Research Associate, National Cancer Institute, NIH, Bethesda, MD
7/69-6/72	NIH Postdoctoral Research Fellow, Infectious Diseases, University of California School of Medicine, San Diego, CA (Abraham I. Braude, M.D., Ph.D.)
7/71-6/72	Clinical Instructor of Medicine and Research, University of California School of Medicine, San Diego, CA
7/72-6/79	Assistant Professor of Medicine, University of California School of Medicine, San Diego, CA
7/79-7/86	Principal Research Investigator, U. S. Army Medical Research Institute of Infectious Diseases, Frederick, MD
8/86-12/88	Chief, Airborne Diseases Division, U. S. Army Medical Research Institute of Infectious Diseases, Frederick, MD
1/89-6/90	Chief, Department of Pathobiology, Pathology Division, U. S. Army Medical Research Institute of Infectious Diseases, Frederick, MD
7/90-7/98	Chief, Bacteriology Division, U. S. Army Medical Research Institute of Infectious Diseases, Frederick, MD
8/98-1/02	Senior Military Scientist, U. S. Army Medical Research Institute of Infectious Diseases, Frederick, MD
2/02-	Senior Scientist, U. S. Army Medical Research Institute of Infectious Diseases, Frederick, MD

Clinical, Teaching, and Administrative Positions:

Lecturer and Laboratory Instructor, Medical Microbiology Course, University of California School of Medicine, San Diego, CA, 1972-1979

Attending Physician, Internal Medicine, University of California Medical Center, San Diego, CA, 1972-1979

Attending Physician, Infectious Diseases, University of California Medical Center, San Diego, CA, 1972-1979

Chairman, Hospital Infection Control Committee, University of California Medical Center, San Diego, CA, 1976-1978

Attending Physician, Infectious Diseases, Walter Reed Army Medical Center, Washington, D.C., 1980, 1982, 1984-1991

Clinical Associate Professor of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 1991-1998

Adjunct Professor of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 1998-present

Director, AMEDD Course on Medical Defense Against BW and Infectious Diseases, 1984-1991

Lecturer, AMEDD Course on Medical Defense Against BW and Infectious Diseases, 1980-1995

Chairman, Human Scientific Review Committee, USAMRIID, Frederick, MD, 1990-2002

Member, Infectious Diseases Society of America Committee on Emerging Infections and Bio-Defense

Medical Licensure:

Maryland

Military Service:

LCDR, USPHS, National Institutes of Health, Bethesda, MD, 7/67-7/69

MAJ, U. S. Army, MC, USAMRIID, Frederick, MD, 7/79-7/80 LTC, U. S. Army, MC, USAMRIID, Frederick, MD, 7/80-7/86 COL, U. S. Army, MC, USAMRIID, Frederick, MD, 7/86-3/02

Honors and Fellowships:

Nerve-Muscle Research Fellow (Stephen Kuffler), Marine Biological Laboratories, Woods Hole, MA 6/64-9/64

Alpha Omega Alpha (Medical School Honor Society)

NIH (NIAID) Postdoctoral Fellowship, 7/69-7/71

Fellow, Infectious Diseases Society of America

Army Research & Development Achievement Award

Order of Military Merit

Jay P. Sanford Memorial Award for Excellence in Military Infectious Diseases from the Armed Forces Infectious Diseases Society (2005)

Patents Filed

- 1. Development of an attenuated strain of *Bacillus anthracis* for production of a recombinant anthrax vaccine.
- 2. Method of making a vaccine for anthrax.

- 3. An improved recombinant F1-V fusion protein vaccine against plague.
- 4. Polyglutamic acid depolymerase therapeutic for anthrax.

Other

Testimony before House Committee on Government Reform Hearing on Anthrax

Vaccine Immunization Program: 3 Oct 2000

Testimony before Senate Intelligence Committee: 25 Oct 2001 Testimony before House Intelligence Committee: 31 Oct 2001

Testimony before House Committee on Government Reform: 28 Feb 2002

BIBLIOGRAPHY

Articles

- 1. Friedlander, A. M. and Buonassisi, V. 1970. Pseudouridine content of rapidly synthesized 4S RNA from adrenal tumor cell cultures. Biochim. Biophys. Acta 204:272.
- 2. Friedlander, A. M. and Buonassisi, V. 1970. Kinetics of synthesis of cytoplasmic RNA with transfer properties in culture of adrenal tumor cells. Biochim. Biophys. Acta 213:101.
- 3. Friedlander, A. M. and Braude, A. I. 1972. Experimental prostatitis: Relationship to pyelonephritis. J. Infect. Dis. 126:645.
- 4. Friedlander, A. M. and Braude, A. I. 1974. Production of bladder stones by human T-mycoplasma. Nature 247:67.
- 5. Williams, T. W., Friedlander, A. M., Lyons, J. M. and Braude, A. I. 1974. Cellular immunity in pyelonephritis. Cellular Immunology 14:33.
- 6. Friedlander, A. M. 1975. DNA release as a measure of microbial killing. I. Serum bactericidal activity. J. Immunology 115:1404.
- 7. Williams, T. W., Friedlander, A. M., Lyons, J. M. and Braude, A. I. 1976. Cellular immunity in pyelonephritis: identification of suppressor cell activity of spleen cells in response to concanavalin A and inhibition of lymphocyte mediated L cell cytotoxicity. J. Immunology 116:778.
- 8. Lamm. D. L., Johnson, S., Friedlander, A. M. and Gittes, R. F. 1977. Medical therapy of experimental infectious stones. Urology 10:418.
- 9. Friedlander, A. M. 1978. DNA release as a direct measure of microbial killing by phagocytes. Infection & Immunity 22:148.
- 10. Friedlander, A. M., Jahrling, P. B., Merrill, P. and Tobery, S. 1984. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the arenavirus Pichinde. Infection & Immunity 43:283.
- 11. O'Brien, J., Friedlander, A., Dreier, T., Ezzell, J. and Leppla, S. 1985. Effect of anthrax toxin components on human neutrophils. Infection & Immunity 47:306.
- 12. Friedlander, A. M. 1986. Macrophages are sensitive to anthrax lethal toxin through an acid dependent process. J. Biol. Chem. 261:7123.
- 13. Welkos, S. L. and Friedlander, A. M. 1988. Pathogenesis and genetic control of resistance to the Sterne strain of *Bacillus anthracis*. Microbial Pathogenesis 4:53.
- 14. Welkos, S. L. and Friedlander, A. M. 1988. Comparative safety and efficacy against *Bacillus anthracis* of protective antigen and live vaccine in mice. Microbial Pathogenesis 5:127.
- 15. Leppla, S. H., Friedlander, A. M. and Cora, E. M. 1988. Proteolytic activation of anthrax toxin bound to cellular receptors. In Bacterial Protein Toxins. (Fehrenbach, F. et al., eds) Zbl. Bakt. Suppl. 17:111.
- 16. Bhatnagar, R., Singh, Y., Leppla, S. and Friedlander, A. 1989. Calcium is required for expression of anthrax lethal toxin cytotoxicity. Infection & Immunity 57:2107.
- 17. Singh, Y., Leppla, S., Bhatnagar, R. and Friedlander, A. 1989. Internalization and processing of *Bacillus anthracis* lethal toxin by toxin sensitive and resistant cells. J. Biol. Chem. 264:11099.

- 18. Leppla, S. H., Friedlander, A. M., Singh, Y., Cora, E. M. and Bhatnagar, R. 1990. A model for anthrax toxic action at the cellular level. Salisbury Medical Bulletin 68:41.
- 19. Welkos, S., Becker, D., Friedlander, A. and Trotter, R. 1990. Pathogenesis and host resistance to *Bacillus anthracis*: a mouse model. Salisbury Medical Bulletin 68:49.
- 20. Little, S. F., Leppla, S. H., and Friedlander, A. M. 1990. Production and characterization of monoclonal antibodies against the lethal factor component of *Bacillus anthracis* lethal toxin. Infection & Immunity 58:1606.
- 21. Friedlander, A., Bhatnagar, R., Leppla, S., Singh, Y. 1990. Basis of macrophage sensitivity and resistance to anthrax lethal toxin. In Bacterial Protein Toxins. (Rappuoli, R. et al., eds) Zbl. Bakt. Suppl. 19:407.
- 22. Kelly, D. J., Chulay, J. D., Mikesell, P. and Friedlander, A. M. 1992. Serum concentrations of penicillin, doxycycline and ciprofloxacin during prolonged therapy in rhesus monkeys. J. Infect. Dis. 166:1184.
- 23. Novak, J. M., Stein, M.-P., Little, S. F., Leppla, S. H., and Friedlander, A. M. 1992. Functional characterization of protease-treated *Bacillus anthracis* protective antigen. J. Biol. Chem. 267:17186.
- 24. Friedlander, A. M., Bhatnagar, R., Leppla, S. H., Johnson, L. and Singh, Y. 1993. Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infection & Immunity 61:245.
- 25. Friedlander, A. M., Welkos, S. L., Pitt, M. L. M., et al. 1993. Postexposure prophylaxis against experimental inhalation anthrax. J. Infect. Dis. 167:1239.
- 26. Little, S. F., Leppla, S. H., Burnett, J. W., and Friedlander, A. M. 1994. Structure function analysis of *Bacillus anthracis* edema factor by using monoclonal antibodies. Biochem. Biophys. Res. Comm. 199:676.
- 27. Bhatnagar, R. and Friedlander, A. M. 1994. Protein synthesis is required for expression of anthrax lethal toxin cytotoxicity. Infection & Immunity 62:2958.
- 28. Hoover, D. L., Friedlander, A. M., Rogers, L. C., Yoon, I.-K., Warren, R. L., and Cross, A. S. 1994. Anthrax edema toxin differentially regulates lipopolysaccharide-induced monocyte production of tumor necrosis factor alpha and interleukin-6 by increasing intracellular cyclic AMP. Infection & Immunity 62:4432.
- 29. Taylor, D. N., Killeen, K. P., Hack, D. C., Kenner, J. F., Coster, T. S., Beattie, D. T., Ezzell, J., Hyman, T., Trofa, A., Shogren, M. H., Friedlander, A., Mekalanos, J. J., and Sadoff, J. C. 1994. Development of a live, oral, attenuated vaccine against El Tor Cholera. J. Infect. Dis. 170:1518.
- 30. Friedlander, A. M., Welkos, S. L., Worsham, P. L., Andrews, G. P., Heath, D. G., Anderson, G. W., Jr., Pitt, M. L. M., Estep, J., and Davis, K. 1995. The relationship between virulence and immunity as revealed in recent studies of the F1 capsule of *Yersinia pestis*. Clin. Infect. Dis. 21:S178.
- 31. Fritz, D. L., Jaax. N. K., Lawrence, W. B., Davis, K. J., Pitt, M. L. M., Ezzell, J. W., and Friedlander, A. M. 1995. Pathology of experimental inhalation anthrax in the Rhesus monkey. Lab. Invest. 73:691.
- 32. Ivins, B., Fellows, P., Pitt, L., Estep, J., Farchaus, J., Friedlander, A., and Gibbs, P. 1995. Experimental anthrax vaccines: efficacy of adjuvants combined with protective antigen against an aerosol *Bacillus anthracis* spore challenge in guinea pigs. Vaccine 13:1779.

- 33. Welkos, S. L., Davis, K. M., Pitt, M. L. M., Worsham, P. L., and Friedlander, A. M. 1995. Studies on the contribution of the F1 capsule-associated plasmid pFra to the virulence of *Yersinia pestis*. Contrib. Microb. Immunol. 13:299.
- 34. Davis, K. J., Fritz, D. L., Pitt, M. L., Welkos, S. L., Worsham, P. L., and Friedlander, A. M. 1996. Pathology of experimental pneumonic plague produced by fraction 1-positive and fraction 1-negative *Yersinia pestis* in African Green monkeys (Cercopithecus aethiops). Arch. Pathol. Lab. Med. 120: 156.
- 35. Little, S. F., Novak, J. M., Lowe, J. R., Leppla, S. H., Singh, Y., Klimpel, K. R., Lidgerding, B. C., and Friedlander, A. M. 1996. Characterization of lethal factor binding and cell receptor binding domains of protective antigen of *Bacillus anthracis* using monoclonal antibodies. Microbiology 142:707.
- 36. Hoover, T., Chatmon, S., and Friedlander, A. 1996. Analysis of Tn917 transposition in *Bacillus anthracis*. Salisbury Medical Bulletin 87:S97.
- 37. Little, S. F., Ivins, B. E., Fellows, P. F. and Friedlander, A. M. 1996. Protection against experimental anthrax infection using fragments of protective antigen. Salisbury Medical Bulletin 87:S129.
- 38. Ivins, B. E., Fellows, P., Pitt, L. Estep, J., Welkos, S., Worsham, P., and Friedlander, A. 1996. Efficacy of standard human anthrax vaccine against *Bacillus anthracis* aerosol spore challenge in rhesus monkeys. Salisbury Medical Bulletin 87:S125.
- 39. Pitt, M. L. M., Ivins, B., Estep, J. E., Farchaus, J. and Friedlander, A. M. 1996. Comparison of the efficacy of purified protective antigen and MDPH to protect non-human primates from inhalation anthrax. Salisbury Medical Bulletin 87:S130.
- 40. Andrews, G. P., Heath, D. G., Anderson, G. W. Jr., Welkos, S. L., and Friedlander, A. M. 1996. Fraction 1 capsular antigen (F1) purification from *Yersinia pestis* CO92 and from an Escherichia coli recombinant strain and efficacy against lethal plague challenge. Infection & Immunity 64:2180.
- 41. Anderson, G. W. Jr., Leary, S. E. C., Williamson, E. D., Titball, R. W., Welkos S. L., Worsham, P. L., and Friedlander, A. M. 1996. Recombinant V antigen protects mice against pneumonic and bubonic plague caused by F1-capsule-positive and -negative strains of *Yersinia pestis*. Infection & Immunity 64:4580.
- 42. Anderson, G. W., Jr., Worsham, P. L., Bolt, C. R., Andrews, G. P., Welkos, S. L., Friedlander, A. M., and Burans, J. P. 1997. Protection of mice from fatal bubonic and pneumonic plague by passive immunization with monoclonal antibodies against the F1 protein of *Yersinia pestis*. Am. J. Trop. Med. Hyg. 56:471.
- 43. Davis, K. J., Vogel, P, Fritz, D. L., Steele, K. E., Pitt, M. L., Welkos, S. L., Friedlander, A. M., and Byrne, W. R. 1997. Bacterial filamentation of *Yersinia pestis* by B-lactam antibiotics in experimentally infected mice. Arch. Pathol. Lab. Med. 121:865.
- 44. Franz, D. R., Jahrling, P. B., Friedlander, A. M., McClain, D. J., Hoover, D. L., Byrne, W. R., Pavlin, J. A., Christopher, G. W., and Eitzen, E, M., Jr., 1997. Clinical recognition and management of patients exposed to biological warfare agents. JAMA 278:399.
- 45. Welkos, S. L., Friedlander, A. M., and Davis, K. J. 1997. Studies on the role of plasminogen activator in systemic infection by virulent *Yersinia pestis* strain CO92. Microb. Pathogenesis 23:211.

- 46. Little, S. F., Ivins, B. E, Fellows, P. F., and Friedlander, A. M. 1997. Passive protection studies against *Bacillus anthracis* infection in guinea pigs using monoclonal and polyclonal antibodies. Infection & Immunity 65:5171.
- 47. Pullen, J. K., Anderson, G. W. Jr., Welkos, S. L., and Friedlander, A. M. 1998. Analysis of the *Yersinia pestis* V protein for the presence of linear antibody epitopes. Infection & Immunity 66:521.
- 48. Pile, J. C., Malone, J. D., Eitzen, E. M., and Friedlander, A. M. 1998. Anthrax as a potential biological warfare agent. Arch. Int. Med. 158:429.
- 49. Byrne, W. R., Welkos, S. L. Pitt, J. L., Davis, K. J., Brueckner, R. P., Ezzell, J. W., Nelson, G. O., Vaccaro, J. R., Battersby, L. C., and Friedlander, A. M. 1998. Antibiotic treatment of experimental pneumonic plague in mice. Antimicrobial Agents and Chemotherapy. 42:675.
- 50. Welkos, S. L., Friedlander, A. M., McDowell, D., Weeks, J., and Tobery, S. 1998. V antigen of *Yersinia pestis* inhibits neutrophil chemotaxis. Microbial Pathogenesis 24:185-196.
- 51. Anderson, G. W., Jr., Heath, D. G., Bolt, C. R., Welkos, S. L., and Friedlander, A. M. 1998. Short- and long-term efficacy of single-dose subunit vaccines against *Yersinia pestis* in mice. Amer. J. Trop. Med. 58:793.
- 52. Heath, D. G., Anderson, G. W., Jr., Mauro, J. M., Welkos, S. L., Andrews, G. P., Adamovicz, J., and Friedlander, A. M. 1998. Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine. Vaccine 16:1131.
- 53. Ivins, B. E., Pitt, M. L. M., Fellows, P. F., Farchaus, J. W., Benner, G. E., Waag, D. M., Little, S. F., Anderson, G. W., Jr., Gibbs, P. H., and Friedlander, A. M. 1998. Comparative efficacy of experimental anthrax vaccine candidates against inhalation anthrax in rhesus monkeys. Vaccine 16:1141.
- 54. Brandler, P., Saikh, K. U., Heath, D., Friedlander, A., and Ulrich, R. G. 1998. Weak anamnestic responses of inbred mice to *Yersinia* F1 genetic vaccine are overcome by boosting with F1 polypeptide while outbred mice remain nonresponsive. J. Immunol. 161:4197.
- 55. Zaucha, G. M., Pitt, M. L. M., Estep, J., Ivins, B. E., Friedlander, A. M. 1998. The pathology of experimental anthrax in rabbits exposed by inhalation and subcutaneous inoculation. Arch. Pathol. Lab. Med. 122:982.
- 56. Barnard, J. B. and Friedlander, A. M. 1999. Vaccination against anthrax with attenuated strains of *Bacillus anthracis* that produce protective antigen. Infection & Immunity 67:562.
- 57. Andrews, G. P., Strachan, S. T., Benner, G. E., Sample, A. K., Anderson, Jr., G. W., Adamovicz, J. J., Welkos, S. L., Pullen, J. K., and Friedlander, A. M. 1999. Protective efficacy of recombinant *Yersinia* outer proteins (Yops) against bubonic plague caused by encapsulated and non-encapsulated *Yersinia pestis*. Infection & Immunity 67:1533.
- 58. Benner, G. E., Andrews, G. P., Byrne, W. R., Strachan, S. D., Sample, A. K., Heath, D. G., and Friedlander, A. M. 1999. Immune response to *Yersinia* outer proteins and other *Y. pestis* antigens after experimental plague infection in mice. Infection & Immunity. 67:1922.
- 59. Inglesby, T. V., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E.,

- Friedlander, A. M., et al. 1999. Anthrax as a Biological Weapon: Medical and Public Health Management. JAMA. 281:1735.
- 60. Friedlander, A. M., Pittman, P. R., and Parker, G. W. 1999. Anthrax Vaccine: Evidence for Safety and Efficacy Against Inhalational Anthrax. JAMA. 282:2104.
- 61. Inglesby, T. V., Henderson, D. A., Bartlett, J. G., Dennis, D. T., Ascher, M. S., Eitzen, E., Friedlander, A. M., et al. 2000. Plague as a Biological Weapon: Medical and Public Health Management. JAMA. 283:2281.
- 62. Adair, D. M., Worsham, P. L., Hill, K. K., Klevytska, A. M., Jackson, P. J., Friedlander, A. M. and Keim, P. 2000. Diversity in a Variable-Number Tandem Repeat from *Yersinia pestis*. J. Clin. Microbiol. 38:1516.
- 63. Pittman, P. R., Mangiafico, J. A., Rossi, C. A., Cannon, T. L., Gibbs, P. H., Parker, G. W., and Friedlander, A. M. 2001. Anthrax vaccine: increasing intervals between the first two doses enhances antibody response in humans. Vaccine 19:213.
- 64. Fellows, P.F., Linscott, M. K., Ivins, B. E., Pitt, M. L. M., Rossi, C. A., Gibbs, P. H. and Friedlander, A. M. 2001. Efficacy of a human anthrax vaccine in guinea pigs, rabbits, and rhesus macaques against challenge by *Bacillus anthracis* isolates of diverse geographical origin. Vaccine 19:3241-7.
- 65. Welkos, S.L., Little, S.F., Friedlander, A.M., Fritz, D.L., and Fellows, P.F. 2001. The role of antibodies to *Bacillus anthracis* and anthrax toxin components in inhibiting the early stages of infection by anthrax spores. Microbiology 147:1677.
- 66. Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Layton M, Lillibridge SR, McDade JE, Osterholm MT, O'Toole T, Parker G, Perl TM, Russell PK, Tonat K. 2001. Tularemia as a biological weapon: medical and public health management. JAMA 285(21):2763.
- 67. Erwin JL, DaSilva LM, Bavari S, Little SF, Friedlander AM, Chanh TC. 2001. Macrophage-derived cell lines do not express proinflammatory cytokines after exposure to Bacillus anthracis lethal toxin. Infection & Immunity 69(2):1175.
- 68. Pitt, M.L.M. Little, S.F., Ivins, B.E., Fellows, P., Barth, J., Hewetson, J., Gibbs, P., Dertzbaugh, M., and Friedlander, A.M. 2001. In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine 19:4768-73.
- 69. Friedlander, A. M. 2001. Tackling anthrax. Nature 414:160.
- 70. Pittman, P. R., Gibbs, P. H., Cannon, T. L., and Friedlander, A. M. 2002. Anthrax vaccine: short-term safety experience in humans. Vaccine 20:972-8.
- 71. Pittman, P. R., Kim-Ahn, G, Pifat, DY, Coonan K, Gibbs, P, Little, S., Pace-Templeton J. G., Myers, R., Parker G. W., and Friedlander, A. M. 2002. Anthrax vaccine: immunogenicity and safety of a dose-reduction, route-change comparison study in humans. Vaccine 20:1412-20.
- 72. Inglesby, T. V., O'Toole, T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Friedlander, A. M., et al. 2002. Anthrax as a Biological Weapon, 2002: Updated recommendations for management. JAMA. 287:2236-52.
- 73. Pittman, P. R., Hack, D., Mangiafico, J., Gibbs, P., McKee, K. T., Jr., Friedlander, A. M., and Sjogren, M. H. 2002. Antibody response to a delayed booster dose of anthrax vaccine and botulinum toxoid. Vaccine 20:2107-15.
- 74. Welkos, S., Pitt, M. L. M., Martinez, M., Friedlander, A., Vogel, P., and Tammariello, R., 2002. Determination of the virulence of the pigmentation-deficient and

- pigmentation-/plaminogen activator-deficient strains of *Yersinia pestis* in non-human primate and mouse models of pneumonic plague. Vaccine 20:2206-14.
- 75. Friedlander, A. M. 2002. Diagnosis and treatment of cutaneous anthrax. JAMA 288:43-4. (letter to editor)
- 76. Welkos, S., Friedlander, A., Weeks, S., Little, S., and Mendelson, I. 2002. In vitro characterisation of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J. Med. Microbiol. 51:821-31.
- 77. Weeks, S., Hill, J., Friedlander, A., and Welkos, S. 2002. Anti-V antigen antibody protects macrophages from *Yersinia pestis*-induced cell death and promotes phagocytosis. Microbial Pathogenesis 32:227-37.
- 78. Read, T. D., Peterson, S. N., Tourasse, N, et al including Friedlander, A. M. 2003. The genome sequence of *Bacillus anthracis* Ames and comparison to closely related bacteria. Nature 423: 81-6.
- 79. Ariel, N., Zvi, A., Makarova, K. S., Chitlaru, T., Elhanany. E., Velan, B., Cohen, S., Friedlander, A. M., and Shafferman, A. 2003. Genome-based bioinformatic selection of chromosomal *Bacillus anthracis* putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infection & Immunity 71:4563-79.
- 80. Matyas, G. R., Friedlander, A. M., Glenn, G. M., Little, S., Yu, J., and Alving, C. R. 2004. Needle-free skin patch vaccination method for anthrax. Infection & Immunity 72:1161-3.
- 81. Mohamed, N., Li, J., Ferreira, C. S., Little, S. F., Friedlander, A. M., Spitalny, G. L., Casey L. S. 2004. Enhancement of anthrax lethal toxin cytotoxicity: a subset of monoclonal antibodies against protective antigen increases lethal toxin-mediated killing of murine macrophages. Infect. Immun. 72:3276-83.
- 82. Rocke T.E., Mencher J., Smith S.R., Friedlander A.M., Andrews G.P., Baeten L.A. Recombinant F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against virulent Yersinia pestis infection. 2004. J Zoo Wildl Med. 35:142-6.
- 83. Mendelson, I, Tobery, S., Scorpio, A., Bozue, J., Shafferman, A., and Friedlander, A. M. 2004. The NheA component of the non-hemolytic enterotoxin of *Bacillus cereus* is produced by *Bacillus anthracis* but is not required for virulence. Microb Pathog. 2004 37:149-54.
- 84. Chabot, D., Scorpio. A., Tobery, S., Little, S. F., Norris, S. L. and Friedlander, A. M. 2004. Anthrax capsule vaccine protects against experimental infection. Vaccine 23:43-7. 85. Bozue, J. A., Parthasarathy, N., Phillips, L. R., Cote, C. K., Fellows, P. F.,
- Mendelson, I., Shafferman, A., Friedlander, A. M. 2005. Construction of a rhamnose mutation in *Bacillus anthracis* affects adherence to macrophages but not virulence in guinea pigs. Microbial Pathogenesis 38:1-12.
- 86. Shoop W.L., Xiong Y., Wiltsie J., Woods A., Guo J., Pivnichny J.V., Felcetto T., Michael B.F., Bansal A., Cummings R.T., Cunningham B.R., Friedlander A.M., Douglas C.M., Patel S.B., Wisniewski D., Scapin G., Salowe S.P, Zaller D.M., Chapman K.T., Scolnick E.M., Schmatz D.M., Bartizal K., Maccoss M., Hermes J. 2005. Anthrax lethal toxin inhibition. Proc. Natl. Acad. Sci. 102:7958-63.
- 87. Joyce, J., Cook, J., Chabot, D., Hepler, R., Shoop, W., Xu, Q., Stambaugh, T., Aste-Amezaga, M., Wang, S., Indrawati, L., Bruner, M., Friedlander, A., Keller, P., Caulfield, M. 2006. Immunogenicity and protective efficacy of *Bacillus anthracis* poly-gamma-D-

- glutamic acid capsule covalently coupled to a protein carrier using a novel triazine-based conjugation strategy. J. Biol. Chem. 281:4831-43.
- 88. Xiong, Y., Wiltsie, J., Woods, A., Guo, J., Pivnichny, J.V., Tang, W., Bansal, A., Cummings, R.T., Cunningham, B.R., Friedlander, A.M., Douglas, C.M., Salowe, S.P., Zaller, D.M., Scolnick, E.M., Schmatz, D.M., Bartizal, K., Hermes, J.D., Maccoss, M., Chapman, K.T. 2006. The discovery of a potent and selective lethal factor inhibitor for adjunct therapy of anthrax infection. Bioorg Med Chem Lett. 16:964-8.
- 89. Ribot, W.J., Powell, B.S., Ivins, B.E., Little, S.F., Johnson, W.M., Hoover, T.A., Norris, S.J., Adamovicz, J.J., Friedlander, A.M., Andrews, G.P. 2006. Comparative vaccine efficacy of different isoforms of recombinant protective antigen against *Bacillus anthracis* spore challenge in rabbits. Vaccine 24:3469-76.
- 90. Vietri, N. J., Purcell, B. K., Lawler, J. V., Leffel, E. K., Rico, P., Gamble, C. S., Twenhafel, N. A., Ivins, B. E., Heine, H. S., Sheeler, R., Wright, M. E., Friedlander, A. M., 2006. Short-course postexposure antibiotic prophylaxis combined with vaccination protects against experimental inhalational anthrax. PNAS 103:7813-6.
- 91. Ribot, W. J., Panchal, R. G., Brittingham, K. C., Ruthel, G., Kenny, T. A., Lane, D., Curry, B., Hoover, T. A., Friedlander, A. M., Bavari, S. 2006. Antrhax lethal toxin impairs innate immune functions of alveolar macrophages and facilitates Bacillus anthracis survival. Infect Immun 74:5029-34.
- 92. Scorpio, A., Chabot, D. J., Day, W. A., O'Brien, D. K., Vietri, N. J., Itoh, Y., Mohamadzadeh, M., Friedlander, A. M. 2007. Poly-{gamma}-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob Agents Chemother. 51:215-22.

Book Chapters

- 1. Friedlander, A. M. 1990. The Anthrax Toxins. In Trafficking of Bacterial Toxins. (Saelinger, C., ed.) p.122, CRC Press, Inc., Boca Raton.
- 2. Friedlander, A. M. 1997. Anthrax. In Textbook of Internal Medicine. (Kelley, W. N., ed.) p. 1623, J. B. Lippincott, Philadelphia.
- 3. Heath, D. G., Anderson, G. W., Jr., Welkos, S. L., Andrews, G. P., Friedlander, A. M., and Mauro, J. M. 1997. A recombinant capsular F1-V antigen fusion protein vaccine protects against experimental bubonic and pneumonic plague. In Vaccines 97. (Brown, F., Burton, D., Doherty, P., Mekalanos, J. and Norrby, E., eds.) p. 197, Cold Spring Harbor Laboratory Press.
- 4. Friedlander, A. M. 1997. Anthrax. In Textbook of Military Medicine. (Sidell, F. R., Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, Washington, DC.
- 5. McGovern, T. W. and Friedlander, A. M. 1997. Plague. In Textbook of Military Medicine. (Sidell, F. R., Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, Washington, DC.
- 6. Hoover, D. L. and Friedlander, A. M. 1997. Brucellosis. In Textbook of Military Medicine. (Sidell, F. R., Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, Washington, DC.

- 7. Evans, M. E., and Friedlander, A. M. 1997. Tularemia. In Textbook of Military Medicine. (Sidell, F. R., Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, Washington, DC.
- 8. Brachman, P. and Friedlander, A.M. 1999. Anthrax. In Vaccines. (Plotkin, S. A. and Orenstein, W. A., eds.) p. 629, W. B. Saunders, Philadelphia.
- 9. Friedlander, A. M. 1999. Zoonosis. In McGraw-Hill Yearbook of Science and Technology 2000. P. 448. McGraw-Hill, New York.
- 10. Friedlander, A. M., and Longfield, R. 2000. Anthrax. In Hunter's Tropical Medicine and Emerging Infectious Diseases. (Strickland, G. T., ed.) 8th Edition. P. 384. W. B. Saunders, Philadelphia.
- 11. Friedlander, A. M. 2000. Anthrax-Clinical Features, Pathogenesis, and Potential Biological Warfare Threat. In Current Clinical Topics in Infectious Diseases, Volume 20 (Remington, J. S. and Swartz, M. N., eds.) p. 335-349. Blackwell Science, Inc., Malden, MA
- 12. Franz, D. R., Jahrling, P. J., McClain, D. J., Hoover, D. L., Byrne, W. R., Pavlin, J. A., Christopher, G. W., Cieslak, T. J., Friedlander, A. M., Eitzen, E. M., Jr. 2001. Clinical Recognition and Management of Patients Exposed to Biological Warfare Agents. In Clinics in Laboratory Medicine, Vol. 21, pp. 435-474.
- 13. Friedlander, A. M., Welkos, S. L., Ivins, B. E. 2002. Anthrax Vaccines. In Current Topics in Microbiology and Immunology (Koehler, T., ed.), Springer-Verlag, New York 14. Friedlander, A. M., and Heine, H. 2002. *Bacillus anthracis* (Anthrax). In Antimicrobial Therapy and Vaccines (Yu, V. L., Weber, R., and Raoult, D., eds.) pp. 67-72. Apple Tree Production, LLC, New York, NY
- 15. Friedlander, A. M. 2004. Anthrax. In Vaccines: Preventing Disease Protecting Health (de Quadros, C. A. ed) pp. 287-290. Pan American Health Organization, Washington, DC.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	•
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
□ SKEWED/SLANTED IMAGES	-
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	•

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.