Eksamensdato

Kandidatnummer:	
Nanuluallullillet.	

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

3. desember 2012

Eksamenstid	0900–1300				
Sensurdato	3. januar 2013				
Språk/målform	Bokmål				
Kontakt under eksamen	Magnus Lie Hetland (tlf. 91851949)				
Tillatte hjelpemidler	Ingen trykte/håndskrevne; bestemt, enkel kalkulator				
Les alle oppgavene før du begynner, disponer tiden og forbered spørsmål til faglærer ankommer lokalet. Gjør antagelser der det er nødvendig. Skriv kort og konsist på angitt sted. Lange forklaringer og utledninger som ikke direkte besvarer oppgaven tillegges liten eller ingen vekt.					
Algoritmer kan beskrives med tekst, pseudokode eller programkode, etter eget ønske, så lenge det klart fremgår hvordan den beskrevne algoritmen fungerer. Korte, abstrakte forklaringer kan være vel så gode som utførlig pseudokode, så lenge de er presise nok. Kjøretider oppgis med asymptotisk notasjon, så presist som mulig.					
Obs: Se vedlegg bakerst for ekst	ra informasjon som kan brukes til å løse oppgavene.				
a) Vis, ved å finne konstantene fra definisjonen, at $sin(n)$ er $O(1)$.					
Svar (6%):					
b) En måte å unngå konsekvent worst-case-atferd på i hashing går ut på å velge hashfunksjonen tilfeldig. Hva kalles dette?					
Svar (6%):					
c) En teknikk brukt i dynamisk programmering går ut på å lagre returverdien til en funksjon første gang den kalles med et gitt sett med parametre, og så bare returnere/bruke denne verdien direkte hvis funksjonen kalles med disse parametrene igjen. Hva kalles dette?					
Svar (6%):					
d) Tegn et eksempel på en urettet, sammenhengende graf med en markert startnode, der bredde-først-søk vil finne korteste veier til de andre nodene, mens dybde-først-søk garantert ikke vil det, samme hvilken rekkefølge naboene besøkes i. (Det vil si, dybdeførst-søk må finne <i>minst én</i> gal sti.) Bruk så få noder som mulig.					
Svar (6%):					

e)	I læreboka (Cormen et al.) argumenteres det for at det er meningsløst å tillate negative
	sykler i korteste veier. Hvis vi begrenser oss til å kun lete etter korteste veier uten sykler
	(såkalte simple paths), hvorfor er det likevel problematisk om grafen vår inneholder
	negative sykler (som kan nås fra startnoden)?

Svar (6%):

f) I ryggsekkproblemet (0-1 *knapsack*), la c[i, w] være optimal verdi for de i første objektene, med en kapasitet på w. La v_i og w_i være henholsvis verdien og vekten til objekt i. Fyll ut rekurrensen for c[i, w], hvis vi antar at i > 0 og $w_i \le w$.

Svar (6%): $c[i, w] = \max\{$, }.

g) Edmonds-Karp er en implementasjon av Ford-Fulkerson som garanterer polynomisk kjøretid. Hva gjøres i Edmonds-Karp som gir denne garantien?

Svar (6%):

h) Konstruer et Huffman-tre for tegnene A, B, C, D og E med frekvenser på henholdsvis 10, 11, 23, 12 og 13. La alltid det minste av to deltrær være til venstre. Tegn treet nedenfor.

Svar (6%):

En venn av deg har et problem som består i å avgjøre om en graf G inneholder en sykel av lengde k (målt i antall kanter), for et gitt heltall k. Vennen din vil vise at problemet er NP-komplett, og vil gjøre det ved å la grafen H være en sykel av lengde k, og så løse sykelproblemet ved hjelp av subgrafisomorfismeproblemet.

i) Hva er galt med tankegangen til vennen din?

Svar (6%):

j) Du vil sortere nodene i en rettet, asyklisk graf slik at alle kantene peker «fra venstre til høyre» (altså til noder senere i rekkefølgen). Hvis grafen har *n* noder og *m* kanter, hva blir kjøretiden for denne sorteringen?

Svar (6%):

Betrakt følgende pseudokode. Anta at A er en tabell med lengde $n \ge 1$, der n er en heltallspotens av 2. Anta at PARSUM til å begynne med kalles med i = 0 og j = n - 1. Funksjonen floor(x) returnerer det største heltallet y slik at $y \le x$.

```
PARSUM(A, i, j):

if i < j

k = floor((i + j) / 2)

return PARSUM(A, i, k) + PARSUM(A, k + 1, j)

else

return A[i]
```

k) Hva er parallellitetsgraden (*parallelism*) til algoritmen PARSUM, som funksjon av *n*? Oppgi svaret med asymptotisk notasjon.

Svar (7%):

l) Løs rekurrensen T(n) = T(2n)/2 - n, T(1) = 1. Oppgi svaret med asymptotisk notasjon.

Svar (7%):

(00/)

Du skal finne korteste/billigste veier i en rettet graf der vektene ligger i *nodene* heller enn i kantene. Det vil si, hver node v har en vekt w(v). Du representerer dette som et vanlig korteste-vei-problem ved å gi alle kantene inn til en gitt node v en vekt på w(v) og ignorerer vekten i noden. Du bruker nå Dijkstras algoritme for å finne korteste vei fra en gitt startnode til alle andre noder. Grafen har n noder og m kanter.

m) I verste tilfelle, hvor mange ganger vil du måtte gjøre endringer i tabellen med avstandsestimater, d? (Det er altså snakk om oppdateringer i estimatet etter initialiseringen.) Oppgi svaret med asymptotisk notasjon. Begrunn svaret kort.

Svar (8%):		

Betrakt følgende pseudokode.

```
GLYMPHID(anx, gerb):

for bith in 701, 301, 132, 57, 23, 10, 4, 1

for chiss = bith to gerb-1

ewok = anx[chiss]

while chiss \geq bith and anx[chiss - bith] < ewok

anx[chiss] = anx[chiss - bith]

chiss = chiss - bith

anx[chiss] = ewok
```

n) Hvilket problem løser algoritmen GLYMPHID?

Anta at du får oppgitt to heltallstabeller $A = [a_0, a_1, \ldots, a_{n-1}]$ og $B = [b_0, b_1, \ldots, b_{m-1}]$. Du vil avgjøre om tabellen A kan deles opp (partisjoneres) i sammenhengende, ikke-tomme, ikke-overlappende segmenter slik at hvert segment summerer til ett av tallene i B. Alle tallene i A skal være del av nøyaktig ett segment. Flere segmenter kan summere til samme tall i B og ikke alle tallene i B trenger å brukes.

```
Eksempel: A = [2, 4, 5, 1, 2, 2, 9, -5], B = [6, 8].
Svaret er her ja. (Mulig partisjon: sum(2, 4) = 6, sum(5, 1, 2) = 8, sum(2, 9, -5) = 6.)
```

Merk: Du trenger ikke finne selve partisjonen. Du trenger bare avgjøre hvorvidt en slik partisjon er mulig eller ikke.

o) Beskriv en algoritme som løser problemet så effektivt som mulig. Hva blir kjøretiden i verste tilfelle? (Oppgi svaret med asymptotisk notasjon.)

Svar (10%):	
Kjøretid:	

Vedlegg

Hvis alle nøklene er kjent i det man bygger en hashtabell er det mulig å forbedre *worst-case*-kjøretiden for oppslag til å bli det samme som vanlig *average-case*-kjøretid. Dette kalles *perfekt hashing*. Anta at en slik perfekt (kollisjonsfri) hashtabell over *n* elementer kan bygges i O(n) tid.

To grafer er isomorfe hvis de har samme struktur – dvs. de er like om man ser bort fra merkelappene på nodene. Subgrafisomorfismeproblemet består i å avgjøre om en gitt graf H er isomorf med en eller annen subgraf i en annen gitt graf G. Dette problemet er NP-komplett.