INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES), DHANBAD Monsoon Mid-Semester Examination, Session 2017-18

Examination: III B.Tech + Dual (CSE) Time: 2 Hours
Subject: Discrete Mathematics (CSC13103) Max. Marks: 60

Instructions: (i) Answer ALL questions.

- (ii) Attempt all sub-parts of a same question at same place and in order.
- (iii) Assume suitable data wherever not provided.

Q. No.	Question	Mark
1. (a)	There are two restaurants next to each other. One has a sign that says, "Good food is not cheap," and the other has a sign that says, "Cheap food is not good." A customer read these sings and understood that these two signs saying the same thing. Justify customer's understanding using propositional calculus.	6
(b)	Thirty cars were assembled in a factory. The options available were a radio, an air conditioner, and white-wall tires. It is known that 15 of the cars have radios, 8 of them have air conditioners, and 6 of them have white-wall tires. Moreover, 3 of them have all three options. Calculate at least how many cars do not have any options at all.	6
2. (a)	Use rules of inference to show that if $\forall x (P(x) \lor Q(x))$, $\forall x (\sim Q(x) \lor S(x))$, $\forall x (R(x) \to \sim S(x))$, and $\exists x \sim P(x)$ are true, then $\exists x \sim R(x)$ is also true, where the domains of quantifiers are the same.	6
(b)	Let p , q , and r stand for the following propositions: p : It is raining. q : I have a headache. r : I attend the lecture. The proposition $P = (\neg p \land \neg q) \rightarrow r$ is rendered in English as follows: "If it is not raining and I do not have a headache, then I attend the lecture."	3+3
	i. Write in English the negation of P.ii. Write in English the contrapositive of P.	
3. (a)	Use mathematical induction to prove that $(\cos(x) + i\sin(x))^n = \cos(nx) + i\sin(nx)$, where x is a complex number and n is a positive integer.	6
(b)	If $A = A_1 \cup A_2 \cup A_3$, where $A_1 = \{1, 2\}$, $A_2 = \{2, 3, 4\}$, and $A_3 = \{5\}$, define relation R on A by $x R y$ if x and y are in the same subset of A_i , for $1 \le i \le 3$. Is R an equivalence relation? Justify your answer.	6
4. (a)	Let $(A,)$ be a poset in which " " be the relation on A defined as " x divides y ", written as $x y$. Draw the Hasse diagram and determine which of the following posets is lattice and why? i. $A = \{1, 2, 3, 4, 6, 12\}$ ii. $A = \{1, 2, 3, 4, 6\}$	3+3
(b)	Let $f_1(x) = x + 4$, $f_2(x) = x - 4$, and $f_3(x) = 4x$ for $x \in \mathbb{R}$, where \mathbb{R} is the set of real numbers. Find $f_1 \circ f_3$; $f_3 \circ f_1$; and $f_1 \circ f_3 \circ f_2$.	6
5.	For $n \ge 0$, let $S = \{1, 2, 3,, n\}$ (when $n = 0$, $S = \emptyset$), and let a_n denotes the number of subsets of S that contain no consecutive integers. Find and solve a recurrence relation for a_n .	6+6