4. Lecture 4: Canonical Heights in Families & Specialization Theorems

Example: A family of elliptic curves and points:

$$E_T: y^2 = x^3 + T^2x - 1, \quad P_T = (1, T).$$

We can plug in values $T \in \mathbb{Q}$ and compute (using PARI, where D = 2(O)):

					/	355/113
$\hat{h}_{E_t}(P_t)$	0	0.93	2.51	7.11	3.24	5.68

Questions:

- Is P_t a non-torsion point for all $0 \neq t \in \mathbb{Q}$?
- How does $\hat{h}_{E_t}(P_t)$ vary as a function of $t \in \mathbb{Q}$?

For a general result, we need some preliminary setup.

FIGURE 1. A family of elliptic curves

 \overline{K} a number field.

C/K a smooth projective curve C/K.

A/K(C) an abelian variety defined over K(C).

 (\mathcal{A}, π) a family of abelian varieties $\pi : \mathcal{A} \to C$ with generic fiber is A.

P a point $P \in A(K(C))$.

 \mathcal{P} the associated section $\mathcal{P}: C \to \mathcal{A}$.

Definition: For $t \in C(\bar{K})$, the associated *specialization map* is

$$S_t: A(\bar{K}(C)) \longrightarrow A_t(\bar{K}), \quad S_t(P) = \mathcal{P}_t.$$

Specialization Theorem: Assume that $A/\bar{K}(C)$ has no "constant part," i.e., no part coming from an abelian variety B/\bar{K} . Then there is a constant H_0 such that

$$t \in C(\bar{K}) \text{ and } h_C(t) \geq H_0$$

 $\Longrightarrow S_t : A(\bar{K}(C)) \to \mathcal{A}_t(\bar{K}) \text{ is injective.}$

The proof uses:

Height Limit Theorem: Let $D \in \text{Div}(A/K)$, and let $\mathcal{D} \in \text{Div}(A/K)$ be its closure. Fix a Weil height function h_C on $C(\bar{K})$ associated to a divisor of degree 1. Then

$$\lim_{\substack{t \in C(\bar{K}) \\ h_C(t) \to \infty}} \frac{\hat{h}_{\mathcal{A}_t, \mathcal{D}_t}(\mathcal{P}_t)}{h_C(t)} = \hat{h}_{A, D}(P). \tag{*}$$

Proof Sketch Height Theorem \Rightarrow Specialization Theorem: We have several heights and height pairings:

- Function field canonical height $\hat{h}_{A,D}$ on $A(\bar{K}(C))$.
- Number field canonical heights \hat{h}_{A_t,D_t} on each fiber $A_t(\bar{k})$.
- Number field height on $C(\bar{K})$.

The theorem gives the formula

$$\lim_{\substack{t \in C(\bar{K}) \\ h_C(t) \to \infty}} \frac{\langle P_t, Q_t \rangle_{\mathcal{A}_t, \mathcal{D}_t}}{h_C(t)} = \langle P, Q \rangle_{A, D}.$$

Let $P_1, \ldots, P_r \in A(\bar{K}(C))$ generate modulo torsion. Then

$$\lim_{\substack{t \in C(\bar{K}) \\ h_C(t) \to \infty}} \frac{\operatorname{Reg}_{\mathcal{D}_t} \left(\mathsf{S}_t(P_1), \dots, \mathsf{S}_t(P_r) \right)}{h_C(t)^r} = \underbrace{\operatorname{Reg}_D(P_1, \dots, P_r)}_{\text{Positive since } P_1, \dots, P_r \text{ independent.}}$$

Hence

$$h_C(t)$$
 sufficiently large $\implies \mathsf{S}_t(P_1), \ldots, \mathsf{S}_t(P_r)$ are independent.

(Additional argument to deal with torsion part of $A(\bar{K}(C))$.)

Generalizations and Strengthenings:

• Higher dimensional bases: Consider $\mathcal{A} \to B$ with $\dim(B) \geq 2$.

• Rank Jumps: We proved

$$\operatorname{rank} A_t(K) \ge \operatorname{rank} A(K(C))$$

for $t \in C(K), h_C(t) \gg 1$.

How frequently can the rank of $A_t(K)$ be strictly larger? By how much?

• Unlikely Intersections: If $\dim(A) \geq 2$, a dimension count suggests that there is a finite set $\Sigma \subset C(\bar{K})$ such that

$$t \in C(\bar{K}) \setminus \Sigma \implies$$

 $\mathsf{S}_t : A(\bar{K}(C)) \to \mathcal{A}_t(\bar{K}) \text{ is injective.}$

• Improved Asymptotics: We proved

$$\hat{h}_{\mathcal{A}_t,\mathcal{D}_t}(\mathcal{P}_t) = \hat{h}_{A,D}(P) \cdot h_C(t) + o(h_C(t)).$$

Various people have shown that one can replace the $o(h_C(t))$ with:

- $-O(h_C(t)^{2/3})$ in general.
- $-O(h_C(t)^{1/2})$ if $C = \mathbb{P}^1$ or $\dim(A) = 1$.
- O(1) if $C = \mathbb{P}^1$ and $\dim(A) = 1$.

Proof Sketch of the Height Limit Theorem: (as time allows)

We start with the triangle inequality

$$\left| \hat{h}_{\mathcal{A}_t, \mathcal{D}_t}(\mathcal{P}_t) - \hat{h}_{A, D}(P) \cdot h_C(t) \right| \tag{a}$$

$$\leq \left| \hat{h}_{\mathcal{A}_t, \mathcal{D}_t}(\mathcal{P}_t) - h_{\mathcal{A}, \mathcal{D}}(\mathcal{P}_t) \right|$$
 (b)

$$+ \left| h_{\mathcal{A},\mathcal{D}}(\mathcal{P}_t) - h_{A,D}(P) \cdot h_C(t) \right|$$
 (c)

+
$$|h_{A,D}(P) - \hat{h}_{A,D}(P)| \cdot h_C(t)$$
. (d)

For (b), we know in general that

$$\hat{h}_{\mathcal{A}_t, \mathcal{D}_t} = h_{\mathcal{A}, \mathcal{D}} + O(1),$$

but the O(1) depends on t. One can make the t-dependence explicit (interesting argument using blow-up to resolve a rational map, see notes):

$$\hat{h}_{\mathcal{A}_t,\mathcal{D}_t} = h_{\mathcal{A},\mathcal{D}} + O(h_C(t))$$
 on $\mathcal{A}_t(\bar{K})$, (b') where the big O constant does not depend on t .

The key to estimating (c) is to use the fact that

$$\mathcal{P}:C\longrightarrow\mathcal{A}$$

is a morphism. (Here is where we use $\dim(C) = 1$.) So by functoriality of heights:

$$h_{\mathcal{A},\mathcal{D}}(\mathcal{P}_t) = h_{C,\mathcal{P}^*\mathcal{D}}(t) + O_{\mathcal{P}}(1)$$
 for $t \in C(\bar{K})$. (c')

For (d), the function field version says

$$\hat{h}_{A,D} = h_{A,D} + O(1)$$
 on $A(\bar{K}(C))$, (d')

Substituting (b'), (c'), and (d') into (a) and dividing by $h_C(t)$ yields

$$\left| \frac{\hat{h}_{\mathcal{A}_t, \mathcal{D}_t}(\mathcal{P}_t)}{h_C(t)} - \hat{h}_{A,D}(P) \right| \le \left| C_1 + \frac{C_2}{h_C(t)} \right|$$

$$+ \left| \frac{h_{C, \mathcal{P}^*\mathcal{D}}(t)}{h_C(t)} + \frac{C_3(P)}{h_C(t)} - h_{A,D}(P) \right| + C_4. \quad (e)$$

For any effective $\Delta_1, \Delta_2 \in \text{Div}(C)$, we have (another height property)

$$\lim_{\substack{t \in C(\bar{K}) \\ h_C(t) \to \infty}} \frac{h_{C,\Delta_1}(t)}{h_{C,\Delta_2}(t)} = \frac{\deg(\Delta_1)}{\deg(\Delta_2)},$$

and hence

$$\lim_{\substack{t \in C(\bar{K}) \\ h_C(t) \to \infty}} \frac{h_{C,\mathcal{P}^*\mathcal{D}}(t)}{h_C(t)} = \underbrace{\deg(\mathcal{P}^*\mathcal{D}) = h_{A,D}(P) + O(1)}_{\text{Height via intersection theory over } \bar{K}(C)}.$$

Using this in (e) yields

$$\lim_{\substack{t \in C(\bar{K}) \\ h_C(t) \to \infty}} \left| \frac{\hat{h}_{\mathcal{A}_t, \mathcal{D}_t}(\mathcal{P}_t)}{h_C(t)} - \hat{h}_{A, D}(P) \right| \le C_5.$$
 (f)

Key Observation: The constant C_5 does not depend on P. We know that

$$\hat{h}_{\mathcal{A}_t,\mathcal{D}_t}([m]\mathcal{P}_t) = m^2 \cdot \hat{h}_{\mathcal{A}_t,\mathcal{D}_t}(\mathcal{P}_t),$$
$$\hat{h}_{A,D}([m]P) = m^2 \cdot \hat{h}_{A,D}(P),$$

so replacing P by [m]P in (f) gives

$$\lim_{\substack{t \in C(\bar{K}) \\ h_C(t) \to \infty}} \left| \frac{\hat{h}_{\mathcal{A}_t, \mathcal{D}_t}(\mathcal{P}_t)}{h_C(t)} - \hat{h}_{A, D}(P) \right| \le \frac{C_5}{m^2} \quad \text{for all } m \ge 1.$$

Let $m \to \infty$ to complete the proof.

Mathematics Department, Box 1917, 151 Thayer Street, Brown University, Providence, RI 02912 USA

 $Email\ address: {\tt joseph_silverman@brown.edu}$