1.4 LED circuits

LED ON with output HIGH

$$R = \frac{Vcc - V_{OL} - V\gamma}{I_{NEEDED}}$$

$$R = \frac{V_{OH} - V\gamma}{I_{NEEDED}}$$

1.4. 7 segment display

Common-cathode configuration

Common-anode configuration

1.4 Photodiodes

- They work in the opposite way to LEDs
 - A reverse current is obtained from light
- The light must reach the diode junction
 - Part of the package is translucent

Real photodiodes

4. Photodiodes

- The photodiode must be in reverse bias mode
- Reverse current (I_D=-I_S) is proportional to brightness of the received light.
 - H: Light brightness
 [fotons/s] [mW/cm²]
- Test circuit:

 I_{D}

Characteristic curves

1.4 Applications of LEDs and photodiodes (I)

Application to data transmission by optical fiber

FITH: Fiber To the Home

1.4 Applications of LEDs and photodiodes (II)

Reading CDs, DVDs and Blu-ray

Information placement

◆ How the bits are recorded:

- "Pits": ("Bumps" on another side)
 - 0.5 μm wide
 - 0.83 μm long (mín.)
 - o 125 nm high
- 。In DVD **∦**Blu-ray these values are lower (more density

 Tands"

 Tands"

INFORMATION DENSITY/CAPACITY

CD 0.7 Gbyte

Track Pitch: 1,6 micron
Minimum Pit Length: 0,8 μm
Storage Density: 0,41 Gb/inch²

DVD 4.7 Gbyte

Track Pitch: 0,74 micron
Minimum Pit Length: 0,4 μm
Storage Density: 2,77 Gb/inch²

Blu-ray Disc 25 Gbyte

Track Pitch: 0,32 micron
Minimum Pit Length: 0,15 µm
Storage Density: 14,73 Gb/inch²

1.4 Applications of LEDs and photodiodes (II)

- Reading CDs, DVDs and Blu-ray
- Reading system:

How the reading system work?

http://static.howstuffworks.com/flash/cd-read.swf