Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL COEF*FGI COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 76.25

Figure 1: Outline of path 1

2.1.1 Oxidation of primary alcohols with DMP

Substrates:

 $1. \ \, \hbox{$2$-phenylbut-3-en-1-ol}$

Products:

1. 2-phenyl-but-3-enal

Typical conditions: DMP.DCM.0-25 $\rm C$

Protections: none

Reference: 10.1016/j.bmc.2020.115469 p. 3, 9 and

10.1021/acs.jmedchem.8b01878 SI p. S43

Retrosynthesis ID: 50426

2.1.2 Condensation of esters with aldehydes

Substrates:

1. 2-phenyl-but-3-enal

2. 4-ethenyloxolan-2-one - available at Sigma-Aldrich

Products:

1. C=CC1COC(=O)/C1=C/C(C=C)c1ccccc1

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-final content of the content of

4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

2.1.3 Ring-Closing Metathesis

Substrates:

 $1. \ C{=}CC1COC({=}O)/C1{=}C/C(C{=}C)c1ccccc1$

Products:

1. O=C1OCC2C=CC(c3cccc3)C=C12

 $\textbf{Typical conditions:} \ \ \text{catalyst e.g.} \ \ \text{Hoveyda-Grubbs} \ \ . \ \ \text{solvent e.g.} \ \ \text{CH2Cl2}$

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and 10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

Retrosynthesis ID: 31014187

2.1.4 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

1. 4-Iodobenzonitrile - available at Sigma-Aldrich

2. O=C1OCC2C=CC(c3cccc3)C=C12

3. Acetyl chloride - available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(c1ccccc1)C2c1ccc(C\#N)cc1$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.2 Path 2

Score: 106.04

Figure 2: Outline of path 2

2.2.1 Appel Reaction

Substrates:

1. Furan-3-methanol - available at Sigma-Aldrich

Products:

1. 3-(bromomethyl)furan - available at Sigma-Aldrich

Typical conditions: PPh3.CBr4

Protections: none

Reference: 10.1021/ja800574m and 10.1016/j.tet.2012.05.010 and

10.1016/j.tet.2004.09.021 (experimental)

Retrosynthesis ID: 9990037

2.2.2 Grignard reaction with acyl chlorides

Substrates:

1. 3-(bromomethyl)furan - available at Sigma-Aldrich

2. Benzoyl chloride - available at Sigma-Aldrich

Products:

1. C12H10O2

Typical conditions: 1.i-PrMgCl.LiCl 2.ZnCl2 3. CuCl

Protections: none

Reference: 10.1016/0040-4039(94)85361-4 and 10.1016/0040-4039(96)00258-4

and 10.1021/jo3005556 AND 10.1016/0040-4039(96)00689-2

2.2.3 Oxidation furans to 2-(5H)-furanones

Substrates:

1. C12H10O2

Products:

1. 2-phenacyl-2-buten-4-olide

Typical conditions: 1. NBS.CHCl3.EtOH.rt 2. HCl.acetone.H2O.rt

 ${\bf Protections:}\ {\rm none}$

Reference: DOI: 10.1055/s-2005-869865

Retrosynthesis ID: 50717

2.2.4 Olefination of ketones followed by hydrolysis

Substrates:

1. 2-phenacyl-2-buten-4-olide

2. triphenylphosphonium methoxymethylide

Products:

1. O=CC(CC1=CCOC1=O)c1ccccc1

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.2.5 Iodoolefination of aldehydes

Substrates:

1. O=CC(CC1=CCOC1=O)c1ccccc1

2. Diiodomethane - available at Sigma-Aldrich

Products:

1. $O=C1OCC=C1CC(/C=C\setminus I)c1ccccc1$

Typical conditions: 1.PPh3.2.NaN(TMS)2.HMPA.THF

Protections: none

Reference: 10.1021/ja00171a035 and 10.1039/C00B00977F and WO2009033499

(p.25)

2.2.6 Heck Reaction

Substrates:

1. $O=C1OCC=C1CC(/C=C\setminus I)c1ccccc1$

Products:

1. O=C1OCC2C=CC(c3cccc3)C=C12

Typical conditions: Pd (cat). ligand. base e.g DIPEA.solvent

Protections: none

Reference: DOI: 10.1021/jo00270a011 or DOI: 10.1021/ar00049a001 or DOI: 10.1021/ja00206a034 or DOI: 10.1021/cr020039h or DOI: 10.1039/C1CS15101K or DOI: 10.1002/9780470716076

Retrosynthesis ID: 8584

2.2.7 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

1. 4-Iodobenzonitrile - available at Sigma-Aldrich

 $2. \ O{=}C1OCC2C{=}CC(c3ccccc3)C{=}C12$

3. Acetyl chloride - available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(c1ccccc1)C2c1ccc(C\#N)cc1$

 $\textbf{Typical conditions:}\ 1. RCuLi. 2. AcCl. HMPA$

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.3 Path 3

Score: 106.04

Figure 3: Outline of path 3

2.3.1 NHC-catalyzed Grignard allylic substitution

Substrates:

1. cinnamyl chloride

2. (furan-3-ylmethyl)magnesium chloride

Products:

1. C=CC(Cc1ccoc1)c1ccccc1

 $\textbf{Typical conditions:} \ \, \text{RMgCl.THF.NHC-complex}$

Protections: none

Reference: 10.1016/j.tetlet.2012.12.124

Retrosynthesis ID: 1171

2.3.2 Ozonolysis

Substrates:

 $1. \ C{=}CC(Cc1ccoc1)c1ccccc1$

Products:

1. O=CC(Cc1ccoc1)c1ccccc1

 $\textbf{Typical conditions:} \ \ O3. MeOH. CH2Cl2. PPh3 \ or \ Me2S. low \ temperature$

Protections: none

Reference: 10.1016/j.tet.2017.03.039

2.3.3 Iodoolefination of aldehydes

Substrates:

 $1. \ O{=}CC(Cc1ccoc1)c1ccccc1$

2. Diiodomethane - available at Sigma-Aldrich

Products:

1. $I/C=C\setminus C(Cc1ccoc1)c1ccccc1$

 $\textbf{Typical conditions:}\ 1.PPh 3.2.NaN (TMS) 2.HMPA.THF$

Protections: none

Reference: 10.1021/ja00171a035 and 10.1039/C0OB00977F and WO2009033499

(p.25)

Retrosynthesis ID: 10001773

2.3.4 NBS-promoted oxidation of furans to lactones

Substrates:

1. $I/C=C\setminus C(Cc1ccoc1)c1ccccc1$

Products:

1. $O=C1OCC=C1CC(/C=C\setminus I)c1ccccc1$

Typical conditions: NBS.MW.MeOH

Protections: none

Reference: DOI: 10.1016/S0040-4039(01)01261-8

Retrosynthesis ID: 49766

2.3.5 Heck Reaction

Substrates:

1. $O=C1OCC=C1CC(/C=C\setminus I)c1ccccc1$

Products:

1. O=C1OCC2C=CC(c3cccc3)C=C12

Typical conditions: Pd (cat). ligand. base e.g DIPEA.solvent

Protections: none

Reference: DOI: 10.1021/jo00270a011 or DOI: 10.1021/ar00049a001 or DOI: 10.1021/ja00206a034 or DOI: 10.1021/cr020039h or DOI: 10.1039/C1CS15101K

or DOI: 10.1002/9780470716076

${\bf 2.3.6} \quad {\bf Conjugated\ addition\ of\ organocuprate-acylation\ of\ enones\ and} \\ {\bf enoate\ esters}$

Substrates:

1. 4-Iodobenzonitrile - available at Sigma-Aldrich

2. O=C1OCC2C=CC(c3cccc3)C=C12

3. Acetyl chloride - available at Sigma-Aldrich

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(c1ccccc1)C2c1ccc(C\#N)cc1$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 12521

2.4 Path 4

Score: 106.04

Figure 4: Outline of path 4

2.4.1 Condensation of esters with aldehydes

Substrates:

- 1. 4-ethenyloxolan-2-one available at Sigma-Aldrich
- 2. a-Tolyaldehyde available at Sigma-Aldrich

Products:

1. C=CC1COC(=O)/C1=C/Cc1cccc1

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

2.4.2 Allylic Oxidation of Alkenes

Substrates:

1. C=CC1COC(=O)/C1=C/Cc1cccc1

Products:

1. C=CC1COC(=O)/C1=C/C(=O)c1ccccc1

Typical conditions: tBuOOH.Pd(OH)2/C or PhI(OAc)2 or SeO2

Protections: none

Reference: 10.1021/ja0340735 and 10.1021/ol100603q and 10.1016/j.tetlet.2016.05.063 (Scheme 2)

Retrosynthesis ID: 2583

2.4.3 Olefination of ketones followed by hydrolysis

Substrates:

- 1. triphenylphosphonium methoxymethylide
- 2. C=CC1COC(=O)/C1=C/C(=O)c1ccccc1

Products:

 $1. \ C{=}CC1COC({=}O)/C1{=}C/C(C{=}O)c1ccccc1\\$

Typical conditions: KHMDS.THF hydrolysis: pTsOH.water.acetone

Protections: none

Reference: 10.1002/anie.201811403 and 10.1002/anie.201809130 and 10.1002/anie.201705809 and 10.1002/anie.201409038 and 10.1021/ol3028994 (SI)

Retrosynthesis ID: 31014861

2.4.4 Tebbe Olefination

Substrates:

1. C=CC1COC(=O)/C1=C/C(C=O)c1ccccc1

Products:

 $1. \ C{=}CC1COC({=}O)/C1{=}C/C(C{=}C)c1ccccc1$

 ${\bf Typical\ conditions:}\ {\bf Cp2TiCl2.AlMe3.toluene}$

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.4.5 Conjugated addition of organocuprate-acylation of enones and enoate esters

Substrates:

1. 4-Iodobenzonitrile - available at Sigma-Aldrich

 $2. \ C{=}CC1COC({=}O)/C1{=}C/C(C{=}C)c1ccccc1$

3. Acetyl chloride - available at Sigma-Aldrich

Products:

 $1. \ C = CC(c1ccccc1)C(c1ccc(C\#N)cc1)C1(C(C) = O)C(=O)OCC1C = C$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 20524

2.4.6 Ring-Closing Metathesis

Substrates:

 $1. \ C=CC(c1ccccc1)C(c1ccc(C\#N)cc1)C1(C(C)=O)C(=O)OCC1C=C$

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(c1ccccc1)C2c1ccc(C\#N)cc1$

Typical conditions: catalyst e.g. Hoveyda-Grubbs . solvent e.g. CH2Cl2

Protections: none

Reference: DOI: 10.1002/anie.200800693 and 10.1021/acs.orglett.8b04003 and 10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102

2.5 Path 5

Score: 107.50

Figure 5: Outline of path 5

2.5.1 Appel Reaction

Substrates:

1. a-Vinylbenzyl alcohol - available at Sigma-Aldrich

Products:

1. 3-bromo-3-phenyl-propene

Typical conditions: PPh3.CBr4

Protections: none

 $\textbf{Reference:} \quad 10.1016/j.j fluchem. 2015.03.009 \ \ \, \text{and} \quad 10.1016/j.tet. 2005.12.006 \ \ \ \text{and} \quad 10.1016/j.tet. 200$

10.1021/jm00161a029 and $10.1055/s\hbox{-}1995\hbox{-}5215$

Retrosynthesis ID: 9990042

2.5.2 Condensation of esters with aldehydes

Substrates:

1. 4-Cyanobenzaldehyde - available at Sigma-Aldrich

 $2. \ \, \text{4-ethenyloxolan-2-one} \, \text{-} \quad \, \text{available at Sigma-Aldrich}$

Products:

1. C=CC1COC(=O)/C1=C/c1ccc(C#N)cc1

Typical conditions: 1.LDA.2RCHO

Protections: none

Reference: 10.1021/jo970387x AND 10.1021/jo00076a051 AND 10.1016/S0040-

4039(97)10827-9 AND 10.1055/s-2002-25767 AND 10.1039/P19920003277

${\bf 2.5.3} \quad {\bf Conjugated\ addition\ of\ organocuprate-acylation\ of\ enones\ and} \\ {\bf enoate\ esters}$

${\bf Substrates:}$

- 1. C=CC1COC(=O)/C1=C/c1ccc(C#N)cc1
- 2. 3-bromo-3-phenyl-propene
- 3. Acetyl chloride available at Sigma-Aldrich

Products:

 $1. \ C = CC(c1ccccc1)C(c1ccc(C\#N)cc1)C1(C(C) = O)C(=O)OCC1C = C$

Typical conditions: 1.RCuLi.2.AcCl.HMPA

Protections: none

Reference: 10.3987/COM-99-S143 AND 10.1021/ja00148a023 AND

10.1016/S0040-4039(01)80891-1

Retrosynthesis ID: 20523

2.5.4 Ring-Closing Metathesis

Substrates:

 $1. \ C = CC(c1ccccc1)C(c1ccc(C\#N)cc1)C1(C(C) = O)C(=O)OCC1C = C$

Products:

 $1. \ \ CC(=O)C12C(=O)OCC1C=CC(c1cccc1)C2c1ccc(C\#N)cc1$

 $\textbf{Typical conditions:} \ \, \text{catalyst e.g. Hoveyda-Grubbs} \,\, . \,\, \text{solvent e.g. CH2Cl2}$

Protections: none

 $\textbf{Reference:} \ \ DOI: \ \textit{10.1002/anie.200800693} \ \ \text{and} \ \ \textit{10.1021/acs.orglett.8b04003} \ \ \text{and}$

10.1021/jo0264729 and 10.1021/ja072334v and 10.1002/ejoc.201001102