Carbon-Pricing Instruments

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #31: Monday, April 5 2021

Perspectives on Market-Based Regulations

Market-Based Regulations

- Most economists (liberal & conservative) favor putting a price on greenhouse gas emissions.
 - Cap-and-trade:
 - Require a permit for every ton of fossil fuels
 - Issue a limited number of permits
 - Companies can buy and sell permits

Carbon tax:

- Charge a tax on every ton of fossil fuels
- Price equal to social cost of carbon emissions
- In principle, cap-and-trade and carbon tax are equivalent if costs and benefits are known accurately.
 - M. Weitzman, 1974. "Prices vs. Quantities," Rev. Econ. Studies 41, 477–491.
 https://doi.org/10.2307/2296698
 - Different consequences for inaccuracies in costs or benefits.

Considerations about Market-Based Regulations

- They work best when the total amount of pollution matters, but it doesn't matter who emits it, or where.
 - The impact is spread over large areas, regardless where the emissions happen.
 - Not appropriate when the biggest effects are local: lead pollution, mercury from power plants, urban smog, ...
- They work best when it's easy to monitor pollution and track the sources.
 - Sulfur pollution (acid rain) was emitted from large power plants and factories.
 - CO₂ from fossil fuels: fossil fuel production is already well-monitored
 - If we had to monitor every car's tailpipe, it wouldn't work.
 - Doesn't work for illegal dumping (pouring motor oil down sewer drains)
 - The largest source of dioxin (a dangerous cancer-causing chemical) is people in rural areas burning plastic trash in their back yards
- Market-based regulations do not address the distribution of costs and benefits:
 - One group may pay most of the costs and another may enjoy most of the benefits.
 - The distribution of costs may be regressive, with low-income people paying a disproportionate share.

Optimum Emissions Abatement

- Optimum emissions = E*
- EPA issues permits for E* tons of emissions
- Free-trading in permits reduces emissions to E* at minimal cost
- Total net benefits are maximized

Uncertainty and Errors

Market-Based Regulations and Uncertainty

- Cap-and-trade:
 - Maximum quantity of pollution is known
 - Cost to polluters is uncertain
- Emissions taxes
 - Cost to polluters is known
 - Quantity of pollution is uncertain

Imperfect Emissions Abatement

- Optimum emissions = E*
- EPA underestimates benefits of emissions (cost of cutting emissions)
 - Issues permits for E' instead of E*

Deadweight Losses

- Optimum emissions = E*
- EPA underestimates benefits of emissions (cost of cutting emissions)
 - Issues permits for E' instead of E*
- Deadweight loss (blue triangle) = difference between actual net benefit and optimum net benefit.

Imperfect Emissions Abatement

- Optimum emissions = E*
- EPA overestimates benefits of emissions (cost of cutting emissions)
 - Issues permits for E' instead of E*

Deadweight Loss with Carbon Tax

- Optimum emissions = E*
 - This corresponds to a price P*
- EPA overestimates benefits of emissions (cost of cutting emissions)
 - Sets the price at P' instead of P*
 - Actual emissions are where the price P' intersects the actual benefit curve
- When benefit curve is linear and steeper than the cost curve, then taxes produce better results under uncertainty
 - Taxes may be worse if:
 - The cost curve is steeper than the benefit curve
 - or if the benefit or cost curve is sharply nonlinear near the optimum

Market-Based Regulations in Action

1990 Clean Air Amendments

- Acid rain, mostly from sulfate and nitrate chemicals emitted by burning coal
- Market-based regulation (cap-and-trade)
 - Permits sold at auction
 - Companies could buy and sell permits with each other
- Environmentalists complained about selling the right to pollute
- Industry groups worried permits would be too expensive

How Things Went

- Plan:
 - Gradually reduce emissions by 37% during 1990s
 - Big reductions start in 2000 to reduce pollution 70%
- Predictions:
 - Industry: costs would be \$3–7 billion per year in 1990s, \$7–25 billion per year after 2000
 - EPA: costs would be \$1.9–5.5 billion per year
- Actual costs:
 - \$0.8 billion per year during 1990s, \$1 billion per year after 2000.
 - Emission reductions met 1999 goals in 1995, four years ahead of schedule.

Broader Patterns in Environmental Regulation

- An economic study of the costs of environmental regulations found:
 - 50% cost at least 25% less than predicted
 - 40% cost roughly as much as predicted
 - 10% cost at least 25% more than predicted
- A 2017 audit of the Clean Air Act by the Office of Management and Budget under President Donald Trump found that out of 55 clean-air regulations they studied,
 - 46 had benefits that were greater than the costs
 - Only 2 had costs greater than the benefits.
- A 2003 report from the Office of Management and Budget under President George H.W. Bush found that clean-air regulations produced benefits between 3 and 4 times greater than the costs of compliance.

Discuss different approaches to policy

Emissions Trading Game

Emissions Trading Game

- What is the optimum amount of emissions?
- What is the total (gross) cost of emissions?
- What is the total (gross) benefit to society?
- What is the net benefit?

CO ₂ emissions	Marginal cost	Marginal benefit
0		
1	20	120
2	40	90
3	60	60
4	80	30
5	100	0

Emissions Trading Details

CO ₂ emissions	Marginal cost	Marginal benefit	Gross cost	Gross benefit	Net benefit
0			0	0	0
1	20	120	20	120	100
2	40	90	60	210	150
3	60	60	120	270	150
4	80	30	200	300	100
5	100	0	300	300	0

- Gross (cumulative) costs and benefits are the sum of marginal costs and benefits from zero to the current level.
- Net benefit is the gross benefit minus the gross cost.
- What is the optimal number of permits to issue?
- What is the optimal emissions tax?

Two Companies

Emissions	MB
0	_
1	100
2	80
3	60
4	40
5	20

Emissions	MB
0	_
1	125
2	100
3	75
4	50
5	25

Emissions	MC
0	_
1	20
2	40
3	60
4	80
5	100
6	120
7	140
8	160
9	180
10	200

Two Companies

Emissions	Company	МВ	МС	Gross Benefits	Gross Costs	Net Benefits
1	В	125	20	125	20	105
2	A	100	40	225	60	165
3	В	100	60	325	120	205
4	А	80	80	405	200	205
5	В	75	100	480	300	180
6	А	60	120	540	420	120
7	В	50	140	590	560	30
8	А	40	160	630	720	-90
9	В	25	180	655	900	-245
10	А	20	200	675	1100	-425

- Benefits depend on which company produces the emissions
- Costs only depend on the total emissions
- Put emissions in descending order of marginal benefit.
- What is the optimum emissions level?
- What is the optimum emissions tax?