Логарифмические уравнения и неравенства

Логарифмические уравнения и неравенства — это уравнения и неравенства, в которых переменная величина находится под знаком логарифма. Данная статья посвящена основным приёмам решения логарифмических уравнений и неравенств.

Рассмотрим уравнение $\log_3 x = 2$. Оно имеет корень x = 9. Других корней нет, что хорошо видно на рис. 1. Функция $y = \log_3 x$ монотонно возрастает и тем самым принимает каждое своё значение ровно один раз.

Рис. 1. Единственный корень уравнения $\log_3 x = 2$

Вообще, пусть имеется простейшее логарифмическое уравнение

$$\log_a x = b \tag{1}$$

(напомним, что по определению логарифма a>0 и $a\neq 1$). Логарифмическая функция монотонна и может принимать любые значения (область значений логарифма есть множество \mathbb{R}). Поэтому уравнение (1) при любом b имеет единственный корень $x=a^b$.

Логарифмические уравнения

При решении **логарифмических уравнений** мы постоянно используем отмеченные выше свойства логарифмической функции: она монотонна и может принимать любые значения. Кроме того, необходимо следить за областями определения логарифмов:

- 1. переменный аргумент логарифма должен быть положительным;
- 2. переменное основание логарифма должно быть положительным и не равным единице.

Задача 1. Решить уравнение: $\log_2(x-2) + \log_2(x-3) = 1$.

Решение. Оба логарифма одновременно определены при выполнении системы неравенств:

$$\begin{cases} x - 2 > 0, \\ x - 3 > 0, \end{cases}$$

то есть при x > 3.

Напомним, что пересечение областей определения всех функций, входящих в уравнение или неравенство, называется областью допустимых значений (OД3) данного уравнения или неравенства. Таким образом, OД3 нашего уравнения есть множество x > 3.

Найдя ОДЗ, переходим к преобразованиям уравнения. Имеем:

$$\log_2(x-2)(x-3) = 1,$$

откуда

$$(x-2)(x-3) = 2.$$

Раскрывая скобки и приводя подобные, получаем квадратное уравнение

$$x^2 - 5x + 4 = 0$$

с корнями 1 и 4. При этом число 1 не принадлежит ОДЗ и поэтому не является корнем исходного уравнения. Число 4 входит в ОДЗ и, следовательно, будет корнем исходного уравнения.

Ответ: 4.

Замечание. Искать ОДЗ здесь было не обязательно. Можно, минуя нахождение ОДЗ, найти корни преобразованного уравнения (1 и 4) и затем просто подставить каждый из них в исходное уравнение, выяснив, кто годится, а кто — нет. Действительно, легко проверить, что при x=4 исходное уравнение превращается в верное числовое равенство, а при x=1 получаются отрицательные числа под логарифмами.

Задача 2. Решить уравнение:

$$\lg(x^2 + 2x - 5) - \lg(x - 1) = 2\lg 3. \tag{2}$$

Решение. При нахождении ОДЗ нас поджидает первая (пусть и небольшая) неприятность: корни трёхчлена $x^2 + 2x - 5$ иррациональны. Но это ещё полбеды. Главная неприятность состоит в другом: корни преобразованного уравнения окажутся такими, что проверка их на вхождение в ОДЗ или непосредственная подстановка их в исходное уравнение потребуют громоздких вычислений.

Но, к счастью, указанные неприятности можно обойти. Мы пойдём ещё одним путём, где объём вычислений будет минимален.

Заметим, что исходное уравнение (2) равносильно системе:

$$\begin{cases} \lg \frac{x^2 + 2x - 5}{x - 1} = 2\lg 3, \\ x - 1 > 0. \end{cases}$$
 (3)

В самом деле, всякий корень уравнения (2) удовлетворяет системе (3). Обратно, пусть x_0 есть решение системы (3). Тогда, согласно определению логарифма, выполнено неравенство

$$\frac{x_0^2 + 2x_0 - 5}{x_0 - 1} > 0.$$

С учётом неравенства $x_0 - 1 > 0$ получаем отсюда $x_0^2 + 2x_0 - 5 > 0$, так что x_0 будет корнем уравнения (2).

Итак, нам нужно решить уравнение системы (3) и отобрать те его корни, которые удовлетворяют неравенству x-1>0.

Записываем уравнение системы (3) в виде:

$$\lg \frac{x^2 + 2x - 5}{x - 1} = \lg 9.$$

В силу монотонности функции $y = \lg x$ получаем отсюда:

$$\frac{x^2 + 2x - 5}{x - 1} = 9.$$

Преобразуя, приходим к квадратному уравнению

$$x^2 - 7x + 4 = 0$$
.

корни которого равны:

$$x_1 = \frac{7 + \sqrt{33}}{2}, \quad x_2 = \frac{7 - \sqrt{33}}{2}.$$

(О чём и говорилось выше. Согласитесь, что проверять эти корни на вхождение в ОДЗ с иррациональными границами или подставлять их в исходное уравнение с целью выяснить, получится ли верное ли числовое равенство, — не самое приятное занятие.)

Нам остаётся выяснить, удовлетворяют ли числа x_1 и x_2 неравенству x-1>0.

Число x_1 удовлетворяет этому неравенству очевидным образом, поскольку $x_1 > 7/2$. Следовательно, x_1 — корень исходного уравнения (2).

Проверяем x_2 :

$$x_2 - 1 = \frac{7 - \sqrt{33}}{2} - 1 = \frac{5 - \sqrt{33}}{2} = \frac{\sqrt{25} - \sqrt{33}}{2} < 0.$$

Таким образом, x_2 не является корнем исходного уравнения.

Omsem: $\frac{7+\sqrt{33}}{2}$.

Задача 3. Решить уравнение: $\log_4^2 x + \log_4 \sqrt{x} - 1,5 = 0.$

Peшение. Заметим, что $\log_4 \sqrt{x} = \log_4 x^{\frac{1}{2}} = \frac{1}{2} \log_4 x$. Имеем, таким образом:

$$\log_4^2 x + \frac{1}{2}\log_4 x - \frac{3}{2} = 0.$$

Замена $t = \log_4 x$ приводит к квадратному уравнению относительно t:

$$2t^2 + t - 3 = 0,$$

корни которого равны 1 и -3/2. Обратная замена:

$$\begin{bmatrix} \log_4 x = 1, \\ \log_4 x = -\frac{3}{2} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 4, \\ x = 4^{-\frac{3}{2}} = (2^2)^{-\frac{3}{2}} = 2^{-3} = \frac{1}{8}.$$

Omeem: $4, \frac{1}{8}$.

Задача 4. Решить уравнение: $\log_9 x - \log_3 x = \log_{\frac{1}{27}} 5$.

Решение. Приведём все логарифмы к основанию 3. Для этого запишем:

$$\log_{3^2} x - \log_3 x = \log_{3^{-3}} 5,$$

или

$$\frac{1}{2}\log_3 x - \log_3 x = -\frac{1}{3}\log_3 5,$$

откуда

$$\log_3 x = \frac{2}{3}\log_3 5 = \log_3 5^{\frac{2}{3}} = \log_3 \sqrt[3]{25}.$$

Следовательно, $x = \sqrt[3]{25}$.

Oтвет: $\sqrt[3]{25}$.

Задача 5. Решить уравнение: $\log_x 2 - \log_4 x + \frac{7}{6} = 0$.

Решение. Переходим к основанию 2:

$$\frac{1}{\log_2 x} - \frac{1}{2}\log_2 x + \frac{7}{6} = 0.$$

Замена $t = \log_2 x$:

$$\frac{1}{t} - \frac{t}{2} + \frac{7}{6} = 0,$$

или

$$\frac{3t^2 - 7t - 6}{6t} = 0.$$

Полученное уравнение имеет корни $t_1 = 3$ и $t_2 = -\frac{2}{3}$. Обратная замена:

$$\begin{bmatrix} \log_2 x = 3, \\ \log_2 x = -\frac{2}{3} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 8, \\ x = 2^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{4}}. \end{bmatrix}$$

Omsem: 8, $\frac{1}{\sqrt[3]{4}}$.

Задача 6. Решить уравнение: $\log_3(3^x - 8) = 2 - x$.

Решение. В силу определения логарифма это уравнение равносильно следующему:

$$3^x - 8 = 3^{2-x}$$
.

Замена $t = 3^x$ приводит к уравнению

$$t - 8 = \frac{9}{t},$$

то есть

$$\frac{t^2 - 8t - 9}{t} = 0.$$

Корни полученного уравнения: $t_1 = -1$ и $t_2 = 9$. Уравнение $3^x = -1$ не имеет решений. Уравнение $3^x = 9$ имеет единственный корень x = 2.

Ответ: 2.

Задача 7. Решить уравнение: $\log_{x^2} 16 + \log_{2x} 64 = 3$.

Решение. Переходим к основанию 2:

$$\frac{\log_2 16}{\log_2 x^2} + \frac{\log_2 64}{\log_2 (2x)} = 3,$$

или

$$\frac{4}{\log_2 x^2} + \frac{6}{\log_2(2x)} = 3.$$

Все решения нашего уравнения удовлетворяют условию x>0. Но при x>0 выполнено равенство:

$$\log_2 x^2 = 2\log_2 |x| = 2\log_2 x,$$

поэтому наше уравнение равносильно следующему:

$$\frac{2}{\log_2 x} + \frac{6}{1 + \log_2 x} = 3.$$

Делаем замену $t = \log_2 x$:

$$\frac{2}{t} + \frac{6}{1+t} = 3.$$

Полученное уравнение сложностей не представляет. Его корни равны $t_1=2$ и $t_2=-\frac{1}{3}$. Обратная замена:

$$\begin{bmatrix} \log_2 x = 2, \\ \log_2 x = -\frac{1}{3} & \Leftrightarrow \end{bmatrix} \begin{bmatrix} x = 4, \\ x = 2^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{2}}. \end{bmatrix}$$

Omsem: $4, \frac{1}{\sqrt[3]{2}}$.

Задача 8. Решить уравнение: $3^{\log_3^2 x} + x^{\log_3 x} = 162$.

Решение. Согласно основному логарифмическому тождеству имеем $x = 3^{\log_3 x}$. Тогда наше уравнение преобразуется следующим образом:

$$3^{\log_3^2 x} + \left(3^{\log_3 x}\right)^{\log_3 x} = 162 \quad \Leftrightarrow \quad 3^{\log_3^2 x} + 3^{\log_3^2 x} = 162 \quad \Leftrightarrow \quad 3^{\log_3^2 x} = 81.$$

Отсюда

$$\log_3^2 x = 4,$$

то есть

$$\log_3 x = \pm 2.$$

Следовательно, x=9 или $x=\frac{1}{9}$.

Omeem: $9, \frac{1}{9}$.

Задача 9. Решить уравнение: $\log_{x+1}(x^2 + 4x + 1) = 1$.

Решение. Следствием данного уравнения является уравнение

$$x^2 + 4x + 1 = x + 1$$
,

то есть

$$x^2 + 3x = 0$$
.

Его корни равны 0 и -3. Однако если x=0, то основание логарифма равно единице, а если x=-3, то основание логарифма отрицательно (и то, и другое вопреки определению логарифма). Следовательно, данное уравнение не имеет корней.

Ответ: нет корней.

Логарифмические неравенства

При решении **логарифмических неравенств** мы используем следующие известные вам факты: логарифмическая функция $y = \log_a x$ определена при x > 0, монотонно возрастает при a > 1 и монотонно убывает при 0 < a < 1.

Рассмотрим, например, простейшее логарифмическое неравенство $\log_2 x > 3$. Запишем его как $\log_2 x > \log_2 8$. Логарифмическая функция $y = \log_2 x$ монотонно возрастает, поэтому большему значению функции отвечает большее значение аргумента: x > 8.

Возьмём теперь неравенство $\log_2 x < 3$. Здесь надо соблюдать осторожность. Ввиду монотонного возрастания функции $y = \log_2 x$ мы получаем x < 8, но не забываем, что логарифм определён при x > 0. Поэтому решение данного неравенства: 0 < x < 8.

Решим неравенство $\log_{\frac{1}{3}} x \leqslant -2$. Запишем его в виде $\log_{\frac{1}{3}} x \leqslant \log_{\frac{1}{3}} 9$. Логарифмическая функция $y = \log_{\frac{1}{3}} x$ монотонно убывает, поэтому меньшему значению функции отвечает большее значение аргумента: $x \geqslant 9$.

Теперь решим неравенство $\log_{\frac{1}{3}} x \geqslant -2$. Вследствие убывания функции $y = \log_{\frac{1}{3}} x$ получаем $x \leqslant 9$ и не забываем про область определения логарифма: x > 0. Решение неравенства, таким образом: $0 < x \leqslant 9$.

Задача 10. Решить неравенство: $\log_3(2x-1) \geqslant 3$.

Решение. Вследствие монотонного возрастания функции $y = \log_3 x$ наше неравенство равносильно неравенству $2x - 1 \ge 27$, то есть $x \ge 14$. (Обратите внимание, что искать ОДЗ здесь не потребовалось, поскольку величина 2x - 1 больше 27 и потому автоматически положительна.) Ответ: $[14; +\infty)$.

Задача 11. Решить неравенство: $\log_{\frac{1}{2}}(x^2 - 4x + 3) \geqslant -3$.

Решение. Вследствие убывания функции $y = \log_{\frac{1}{2}} x$ наше неравенство равносильно двойному неравенству $0 < x^2 - 4x + 3 \leqslant 8$, которое удобнее записать как систему:

$$\begin{cases} x^2 - 4x + 3 > 0, \\ x^2 - 4x + 3 \le 8. \end{cases}$$

Эту систему вы легко решите.

Omeem: $[-1;1) \cup (3;5]$.

Задача 12. Решить неравенство: $\lg(3x-6) < \lg(x+4)$.

Решение. Ввиду монотонного возрастания логарифмической функции $y = \lg x$ логарифмы отбрасываются без изменения знака неравенства, так что наше неравенство равносильно системе:

$$\begin{cases} 3x - 6 < x + 4, \\ 3x - 6 > 0. \end{cases}$$

(Почему мы не требуем выполнения неравенства x+4>0? Да потому что оно будет выполнено автоматически: ведь x+4 больше величины 3x-6, которая должна быть положительной.)

Решая данную систему, находим: 2 < x < 5.

Omeem: (2;5).

Задача 13. Решить неравенство: $\log_{0.2}^2 x - \log_{0.2} x - 2 < 0$.

Решение. Замена $t = \log_{0.2} x$ приводит к квадратному неравенству относительно t:

$$t^2 - t - 2 < 0,$$

решения которого: -1 < t < 2. Делаем обратную замену:

$$\begin{cases} \log_{0,2} x > -1, \\ \log_{0,2} x < 2. \end{cases}$$

Вследствие монотонного убывания функции $y = \log_{0,2} x$ логарифмы отбрасываются c изменением знака неравенства:

$$\begin{cases} x < 5, \\ x > \frac{1}{25}. \end{cases}$$

Omsem: $\left(\frac{1}{25};5\right)$.

Задача 14. Решить неравенство:

$$\log_{\frac{x}{2}} 8 + \log_{\frac{x}{4}} 8 < \frac{\log_2 x^4}{\log_2 x^2 - 4} \,.$$

Решение. Ищем решения на множестве x > 0 (только при таких x определены логарифмы в левой части неравенства). Для положительных x справедливы равенства

$$\log_2 x^4 = 4\log_2 x$$
, $\log_2 x^2 = 2\log_2 x$.

Кроме того, в левой части переходим к основанию 2:

$$\frac{\log_2 8}{\log_2 \frac{x}{2}} + \frac{\log_2 8}{\log_2 \frac{x}{4}} < \frac{4\log_2 x}{2\log_2 x - 4}\,,$$

или

$$\frac{3}{\log_2 x - 1} + \frac{3}{\log_2 x - 2} < \frac{2\log_2 x}{\log_2 x - 2} \,.$$

Замена $t = \log_2 x$:

$$\frac{3}{t-1} + \frac{3}{t-2} < \frac{2t}{t-2} \,.$$

После простых преобразований получаем рациональное неравенство:

$$\frac{2t^2 - 8t + 9}{(t - 1)(t - 2)} > 0.$$

Квадратный трёхчлен в числителе имеет отрицательный дискриминант и потому положителен при всех t. Поэтому остаётся решить равносильное неравенство

$$(t-1)(t-2) > 0.$$

Это легко: t < 1 или t > 2. Теперь обратная замена:

$$\begin{bmatrix} \log_2 x < 1, \\ \log_2 x > 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 0 < x < 2, \\ x > 4. \end{bmatrix}$$

Omeem: $(0; 2) \cup (4; +\infty)$.

Задача 15. Решить неравенство: $\log_{\frac{1}{7}} \log_8(x^2 - 1) \geqslant 0$.

Решение. Обратите внимание: логарифм по основанию 8 служит аргументом логарифма по основанию 1/7. Сначала отбрасываем внешний логарифм и переходим к равносильному двойному неравенству

$$0 < \log_8(x^2 - 1) \leqslant 1.$$

А это неравенство, в свою очередь, равносильно неравенству

$$1 < x^2 - 1 \le 8$$
,

то есть

$$2 < x^2 \leqslant 9.$$

Решения полученного неравенства: $-3 \leqslant x < -\sqrt{2}$ или $\sqrt{2} < x \leqslant 3$.

Omsem: $[-3; -\sqrt{2}) \cup (\sqrt{2}; 3].$

Задача 16. Решить неравенство: $\log_{x^2}(x+2) < 1$.

Решение. Ищем решения при условии x + 2 > 0, то есть на множестве

$$x > -2. (4)$$

Запишем наше неравенство в виде:

$$\log_{x^2}(x+2) < \log_{x^2} x^2.$$

Логарифмы отбрасываются либо без изменения знака неравенства, либо с изменением — в зависимости от того, больше единицы основание логарифма или меньше единицы. Мы видим, что множество (4) допускает оба этих случая.

1. $x^2 > 1$, то есть x > 1 или x < -1. Таким образом, с учётом (4) мы ищем решения на множестве

$$-2 < x < -1, \quad x > 1.$$
 (5)

Логарифмы отбрасываются без изменения знака неравенства:

$$x + 2 < x^2$$
.

или

$$x^2 - x - 2 > 0$$

Решения этого неравенства: x < -1, x > 2. Пересекая с множеством (5), получаем решения в рассматриваемом случае:

$$-2 < x < -1, \quad x > 2.$$

2. $0 < x^2 < 1$, то есть

$$-1 < x < 0, \quad 0 < x < 1.$$
 (6)

В данном случае мы находимся целиком внутри множества (4), так что решения ищутся на множестве (6).

Логарифмы отбрасываются с изменением знака неравенства:

$$x + 2 > x^2,$$

или

$$x^2 - x - 2 < 0$$
.

Решения данного неравенства: -1 < x < 2. Пересекая с множеством (6), получаем решения в рассматриваемом случае:

$$\boxed{-1 < x < 0, \quad 0 < x < 1.}$$

Остаётся объединить решения в «рамочках», полученные в каждом из двух рассмотренных случаев.

Omsem:
$$(-2; -1) \cup (-1; 0) \cup (0; 1) \cup (2; +\infty)$$
.

В следующей статье «Метод рационализации» мы рассмотрим другой способ решения этого неравенства, который в случае более сложных неравенств оказывается гораздо эффективнее.