CS 3100, Models of Computation, Spring 20, Lec 10

Ganesh Gopalakrishnan School of Computing University of Utah Salt Lake City, UT 84112

bit.ly/3100s20Syllabus

Lecture 10, covering Ch 1-9 ©

• Walk the Kleene-Pipeline

The Postage-Stamp Problem

Walk the Kleene-Pipeline

The Postage-Stamp Problem

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Number Theory > Integer Relations >

Number Theory > Diophantine Equations >

Discrete Mathematics > Combinatorics > Partitions >

Frobenius Postage Stamp Problem

SEE:

Coin Problem, McNugget Number, Postage Stamp Problem

RE → NFA examples

What are RE?

- Epsilon
- ☐ a in Sigma
- ☐ If R1 and R2 are RE, then R1 + R2 is an RE
- ☐ If R1 and R2 are RE, then R1 R2 is an RE
- ☐ If R is an RE, then (R) is an RE
- ☐ If R is an RE, then R* is an RE
- ☐ Nothing else is an RE

- Epsilon
- ☐ a in Sigma
- ☐ If R1 and R2 are RE, then R1 + R2 is an RE
- ☐ If R1 and R2 are RE, then R1 R2 is an RE
- ☐ If R is an RE, then (R) is an RE
- ☐ If R is an RE, then R* is an RE
- ☐ Nothing else is an RE

- Epsilon
- ☐ a in Sigma
- ☐ If R1 and R2 are RE, then R1 + R2 is an RE
- ☐ If R1 and R2 are RE, then R1 R2 is an RE
- ☐ If R is an RE, then (R) is an RE
- ☐ If R is an RE, then R* is an RE
- ☐ Nothing else is an RE

- Epsilon
- ☐ a in Sigma
- ☐ If R1 and R2 are RE, then R1 + R2 is an RE
- ☐ If R1 and R2 are RE, then R1 R2 is an RE
- ☐ If R is an RE, then (R) is an RE
- ☐ If R is an RE, then R* is an RE
- ☐ Nothing else is an RE

- Epsilon
- ☐ a in Sigma
- ☐ If R1 and R2 are RE, then R1 + R2 is an RE
- ☐ If R1 and R2 are RE, then R1 R2 is an RE
- ☐ If R is an RE, then (R) is an RE
- ☐ If R is an RE, then R* is an RE
- ☐ Nothing else is an RE

- Epsilon
- ☐ a in Sigma
- ☐ If R1 and R2 are RE, then R1 + R2 is an RE
- ☐ If R1 and R2 are RE, then R1 R2 is an RE
- ☐ If R is an RE, then (R) is an RE
- ☐ If R is an RE, then R* is an RE
- ☐ Nothing else is an RE

- Epsilon
- ☐ a in Sigma
- ☐ If R1 and R2 are RE, then R1 + R2 is an RE
- ☐ If R1 and R2 are RE, then R1 R2 is an RE
- ☐ If R is an RE, then (R) is an RE
- ☐ If R is an RE, then R* is an RE
- ☐ Nothing else is an RE

NFA to RE conversion

What is the language of this NFA?

Let's convert this to an RE and check our work against this RE

NFA to RE conversion

(space for work)

NFA to RE conversion: Results

Another example of NFA to RE

(space for work)

One more example of RE -> NFA -> DFA

ac* + acd*, simplified as a(c*+cd*)

Postage-stamp problems

- For relatively prime numbers a,b what is the largest integer not expressible as a linear combination of a, b?
 - Let a = 2, b = 3
 - (for larger numbers, let's use a tool)
- How about for more pairwise relatively prime numbers a,b,c
- How about non relatively-prime numbers?

Review

Find the strings in the language of these RE

```
• (00*1 + 11*01)*
```

- ((00*1)* + 11*01)*
- (00*1 + (11*01)*)*

: True

- Find out by developing a min DFA
 - Use iso_dfa

Compare these RE pairwise

```
• ( 00*1 )*
```

```
• ( 0 (0+1)* 1 )*
```

Compare these RE pairwise