

Bayesian learning

Probability theory and Bayesian models

Outline

Probability theory

- prior and posterior probability
- maximum a posterior (MAP) and maximum likelihood (ML)

Bayes optimal classifier

- Bayesian learning in discrete spaces
- Bayesian learning in numeric data spaces

Naïve Bayes classifier

- conditional independence
- classification with naïve Bayes
- estimating probabilities in small samples

Outline

- Probability theory
 - prior and posterior probability
 - maximum a posterior (MAP) and maximum likelihood (ML)
- Bayes optimal classifier
 - Bayesian learning in discrete spaces
 - Bayesian learning in numeric data spaces
- Naïve Bayes classifier
 - conditional independence
 - classification with naïve Bayes
 - estimating probabilities in small samples

Uncertainty

- A key concept in the field in machine learning is uncertainty
 - noise on measurements
 - finite size of data sets
- Probability theory provides a consistent framework to quantify and handle uncertainty
 - a central foundation in pattern recognition

Kolmogorov's axioms of probability (1933)

 \blacksquare To each sentence a, a numerical degree of belief between 0 and 1 is assigned

$$0 \le p(a) \le 1$$

 $p(\text{true}) = 1$, $p(\text{false}) = 0$

The probability of disjunction is given by

$$p(a \lor b) = p(a) + p(b) - p(a \land b)$$

Where do numerical degrees of belief come from?

- Humans believe in a subjective viewpoint from experience
 - this approach is called Bayesian
- [subjectivist] For a finite sample we can estimate the probability of a given phenomenon
 - count the frequency of the event in a sample
 - frequentist approach
 - do not know the true value because we cannot access the whole population of events
- [objectivist] From the true nature of the universe, e.g. the probability of heads in a fair coin is 0.5
 - Platonic world of ideas!
 - we can never verify whether a fair coin exists

Posterior probability

- If Ω is the set of all possible events, $p(\Omega) = 1$
 - $card(\Omega)$ is the number of elements of the set Ω
 - consider occurrences $a, b \subseteq \Omega$, then

$$p(a) = \frac{card(a)}{card(\Omega)}$$
 $p(a \wedge b) = \frac{card(a \wedge b)}{card(\Omega)}$

- ... knowing
$$p(a|b) = \frac{card(a \wedge b)}{card(b)}$$

- ... we get
$$p(a|b) = \frac{p(a \wedge b)}{p(b)}$$

Bayes' rule

■ From...

$$p(a|b) = \frac{p(a \land b)}{p(b)} \qquad p(b|a) = \frac{p(a \land b)}{p(a)}$$

— ... we can infer the Bayes' rule

$$p(b|a) = \frac{p(a|b) \cdot p(b)}{p(a)}$$

Reverent Thomas Bayes (1702-1761) He set down his findings on probability in "Essay Towards Solving a Problem in the Doctrine of Chances" (1763)

Law of total probability

• For mutually exclusive events b_1, \dots, bn with

$$\sum_{i=1}^{n} p(b_i) = 1$$

— ... the law of total probability is represented by

$$p(a) = \sum_{i=1}^{n} p(a) \wedge p(b_i) = \sum_{i=1}^{n} p(a, b_i)$$

$$p(a) = \sum_{i=1}^{n} p(a|b_i) \cdot p(b_i)$$

Rules of probability

Rules of probability
$$p(X) = \sum_{Y} p(X,Y)$$
 product rule $p(X,Y) = p(Y|X)p(X)$

product rule
$$p(X,Y) = p(Y|X)p(X)$$

Conditional probability: prior and posterior

- prior probability: before the evidence is obtained
 - -p(a) the prior probability that the proposition is true, e.g. p(cavity) = 0.1
- posterior probability: after the evidence is obtained
 - -P(a|b), the probability given that we know b, e.g. P(cavity|toothache) = 0.8

Bayes theorem

- Bayes rule can be used to determine the prior total probability p(h) of hypothesis h given data D
 - example: what is the probability of infection given certain symptoms?

$$p(h|D) = \frac{p(D|h) \cdot p(h)}{p(D)}$$

- -p(h) = prior probability of hypothesis <math>h 20% of patients are infected
- -p(D)= prior probability of training data $D=\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}-$ 40% of patients have identical symptoms
- -p(D|h) = probability that the hypothesis h generates the data D
 - probability that infection generates the symptoms? 70% infected patients show identical symptoms

$$-p(h|D)$$
 = probability of h given $D - \frac{0.7 \times 0.2}{0.4} = 35\%$ probability of being infected given my symptoms

Maximum a Posteriori (MAP)

- Given data *D* and Bayes rule assumption...
 - what is the most probable hypothesis h out of a set of possible hypothesis h_1, h_2, \dots ?
 - to determine the maximum a posteriori hypothesis h_{MAP} we maximize

$$h_{MAP} = \underset{h}{\operatorname{argmax}} p(h|D)$$

$$h_{MAP} = \underset{h}{\operatorname{argmax}} \frac{p(D|h) \cdot p(h)}{p(D)}$$

-p(D) is the same for every hypothesis, hence...

$$h_{MAP} = \underset{h}{\operatorname{argmax}} p(D|h) \cdot p(h)$$

Maximum Likelihood (ML)

- Assuming every hypothesis has the same probability
 - same priors $p(h_1) = p(h_2) = \cdots$
 - useful to prevent biases towards specific hypotheses (e.g., having or not having a disease)
 - we can further simplify and choose the maximum likelihood (ML) hypothesis

$$h_{ML} = \underset{h}{\operatorname{argmax}} p(D|h)$$

- posterior \propto likelihood \times prior
- -p(D|h) is evaluated using the observed data D and is called *likelihood function*

Outline

- Probability theory
 - prior and posterior probability
 - maximum a posterior (MAP) and maximum likelihood (ML)
- Bayes optimal classifier
 - Bayesian learning in discrete spaces
 - Bayesian learning in numeric data spaces
- Naïve Bayes classifier
 - conditional independence
 - classification with naïve Bayes
 - estimating probabilities in small samples

Bayesian Learning

• For each hypothesis h in H, calculate the posterior probability

$$p(h|\mathbf{x}) = \frac{p(\mathbf{x}|h) \cdot p(h)}{p(\mathbf{x})}$$

• Return the hypothesis h_{MAP} with the highest posterior probability

$$h_{MAP} = \underset{h}{\operatorname{argmax}} \ p(h|\mathbf{x})$$

- Exercise: does patient have cancer or not?
 - a patient takes a lab test and the result comes back positive
 - the test returns a correct positive result (+) in only 98% of the cases in which the disease is present ... and a correct negative result (-) in only 97% of the cases in which the disease is not present
 - 0.008 of the entire population have this cancer

Suppose a positive result is returned...

$$P(cancer) = 0.008$$
 $P(\neg cancer) = 0.992$ $P(+|cancer) = 0.98$ $P(-|cancer) = 0.02$ $P(+|\neg cancer) = 0.03$ $P(-|\neg cancer) = 0.97$

$$P(+|cancer| \cdot P(cancer) = 0.98 \cdot 0.008 = 0.0078$$

 $P(+|\neg cancer| \cdot P(\neg cancer) = 0.03 \cdot 0.992 = 0.0298$

$$h_{MAP} = \neg cancer$$

$$P(cancer \mid +) = \frac{0.0078}{0.0078 + 0.0298} = 0.20745$$

$$P(\emptyset cancer \mid +) = \frac{0.0298}{0.0078 + 0.0298} = 0.79255$$

The result of Bayesian inference strongly depends on prior probabilities, which must be representative in order to apply the MAP

Estimating p(h)

Let us draw some principles to estimate

$$p(h|\mathbf{x}) = \frac{p(\mathbf{x}|h) \cdot p(h)}{p(\mathbf{x})}$$

- Let us first start with p(h)
 - given no prior knowledge that *one hypothesis is more likely* than another
 - -p(h) can be assumed to be uniformly distributed

$$\forall_{h \in H} \ p(h) = \frac{1}{|H|}$$

otherwise, estimate the prior base on the observed frequency

Estimating p(D|h)

If data is discrete:

- probability of each possible occurrence using class-conditional probability mass function
 - we can use the frequentist approach introduced in the first lectures
 - e.g. I observe 2 out of 10 individuals with blue eyes and brown in shift A and 1 out of 8 in shift B, then $p(\mathbf{x} = [blue\ eyes, brown]|A) = 0.2$ and $p(\mathbf{x} = [blue\ eyes, brown]|B) = 0.125$

If data is real-valued:

- probability based on class-conditional probability density function
 - we can use empirical or theoretical distributions
 - e.g. assuming age and height to be independent and uniformly distributed in class A, where age~U(20,30) and height~U(150,180), then $p(\mathbf{x} = [22.3 years, 154 cm]|A) = \frac{1}{10} \times \frac{1}{30}$

If data is mixed:

- similarly to the above cases, the probability is drawn from the class-conditional joint distribution

Bayesian optimal classifier

What is the most probable classification of the new instance given the training data?

$$h_{MAP} = \arg\max_{h} p(h|\mathbf{x}_{new}) = \arg\max_{h} \frac{p(\mathbf{x}_{new}|h)p(h)}{p(\mathbf{x}_{new})} = \arg\max_{h} p(\mathbf{x}_{new}|h)p(h)$$

- ... where the hypotheses correspond to our classes
- we ignore the denominator as it does not alter decision
- The Bayesian classifier has as many parameter as:
 - the number of priors minus 1
 - we can deduce one prior from the remaining ones
 - e.g. given h_1 , h_2 and h_3 , $p(h_3) = 1 p(h_2) p(h_1)$
 - the number of parameters associated with the class-conditional distributions, $p(\mathbf{x}|h)$

Bayesian optimal classifier: example

- Learning the Bayesian model given by priors and posteriors
 - priors $p(c = 0) = \frac{4}{7}$, $p(c = 1) = 1 p(c = 0) = \frac{3}{7}$
 - for each combination of possible values, learn the posteriors

$$-p(c = 0 \mid v_{1} = 0, v_{2} = A, v_{3} = 0) = \frac{p(c=0)p(v_{1}=0, v_{2}=A, v_{3}=0|c=0)}{p(v_{1}=0, v_{2}=A, v_{3}=0)}$$

$$-p(c = 0 \mid v_{1} = 0, v_{2} = A, v_{3} = 1) = \frac{p(c=0)p(v_{1}=0, v_{2}=A, v_{3}=1|c=0)}{p(v_{1}=0, v_{2}=A, v_{3}=1)}$$

$$- \dots$$

$$-p(c = 1 \mid v_{1} = 1, v_{2} = C, v_{3} = 1) = \frac{p(c=1)p(v_{1}=1, v_{2}=C, v_{3}=1|c=1)}{p(v_{1}=1, v_{2}=C, v_{3}=1)}$$

	y_1	y_2	y_3	class
X ₁	1	С	1	1
X ₂	1	С	1	0
X ₃	0	В	1	0
X ₄	0	Α	0	0
X ₅	1	С	1	1
X ₆	0	В	1	1
X ₇	0	Α	0	1

- from data $p(v_1 = 0, v_2 = A, v_3 = 0 | c = 0) = 1/3, ..., p(v_1 = 1, v_2 = C, v_3 = 1 | c = 1) = 2/4$
- Now we can classify new observations, e.g. $x_{new} = [1, C, 1]$

$$-p(c=1 \mid v_1=1, v_2=C, v_3=1) = \frac{1}{p(v_1=1, v_2=C, v_3=1)} \times p(c=1)p(v_1=1, v_2=C, v_3=1 \mid c=1) = \frac{1}{p(v_1=1, v_2=C, v_3=1)} \times \frac{4}{7} \times \frac{2}{4}$$

$$-p(c=1 \mid v_1=1, v_2=C, v_3=1) = \frac{1}{p(v_1=1, v_2=C, v_3=1)} \times p(c=0)p(v_1=1, v_2=C, v_3=1 \mid c=0) = \frac{1}{p(v_1=1, v_2=C, v_3=1)} \times \frac{3}{7} \times \frac{1}{3}$$

 $-\mathbf{x}_{\text{new}}$ is classified with class 1

Recall: Gaussian distribution

Gaussian or normal distribution Defined by the probability

$$p(x|\mu,\sigma^2) = N(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-u)^2\right)$$

Multivariate Gaussian distribution in m-dimensional spaces

$$p(\mathbf{x}|\mathbf{\mu}, \Sigma) = N(\mathbf{x}|\mathbf{\mu}, \Sigma) = \frac{1}{(2\pi)^{m/2} \sqrt{|\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u})^T \cdot \Sigma^{-1} \cdot (\mathbf{x} - \mathbf{u})\right)$$

where...

- u is the m-dimensional mean vector
- $-\Sigma$ is a $m \times m$ covariance matrix
- $-|\Sigma|$ is the determinant of Σ

Multivariate Gaussian distribution in m-dimensional spaces

- Gaussian distribution over a m=2 dimensional space with
 - average $\mu = (0,0)^T$
 - covariance matrix $\Sigma = \begin{pmatrix} 2 & 0.5 \\ 0.5 & 1 \end{pmatrix}$
 - (a) two-dimensional and (b) three-dimensional plots of the Gaussian

Multivariate Gaussian: covariances

$$\Sigma = \begin{pmatrix} cov(y_1, y_1) & cov(y_1, y_2) \\ cov(y_1, y_2) & cov(y_2, y_2) \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$

$$cov(y_1, y_2) = \frac{\sum_{i=1}^n (x_{1i} - \overline{y_1}) \cdot (x_{2i} - \overline{y_2})}{n}$$
population n versus

sample (n-1)

Multivariate Gaussian: example

Approximate a multivariate Gaussian distribution using the following points:

$$X = \{(-2,2), (-1,3), (0,1), (-2,1)\}$$

maximum likelihood parameters

$$- \mu = \frac{1}{4} \left(\begin{bmatrix} -2 \\ 2 \end{bmatrix} + \begin{bmatrix} -1 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -1.25 \\ 1.75 \end{bmatrix}$$

$$- \Sigma_{00} = \frac{1}{4-1} [(-2+1.25)(-2+1.25) + (-1+1.25)(-1+1.25) + (0+1.25)(0+1.25) + (-2+1.25)(-2+1.25)] \approx 0.92$$

$$- \Sigma = \begin{pmatrix} \Sigma_{00} & \Sigma_{10} \\ \Sigma_{01} & \Sigma_{11} \end{pmatrix} = \begin{pmatrix} 0.92 & -0.083 \\ -0.083 & 0.92 \end{pmatrix}$$

$$- \Sigma^{-1} = \begin{pmatrix} 1.1 & 0.1 \\ 0.1 & 1.1 \end{pmatrix}$$

– we can write the Gaussian expression for a two–dimensional input $\mathbf{x} = [x_1 \ x_2]^T$ as follows

$$-N(\mathbf{x}|\mathbf{\mu},\Sigma) = \frac{1}{(2\pi)^{2/2}\sqrt{0.083}} \exp\left(-\frac{1}{2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{bmatrix} -1.25 \\ 1.75 \end{pmatrix}^T \begin{bmatrix} 1.1 & 0.1 \\ 0.1 & 1.1 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{bmatrix} -1.25 \\ 1.75 \end{bmatrix}\right)\right)$$

Multivariate Gaussian: example

- What is the shape of the previous 2-dimensional Gaussian?
 - fixing μ and Σ inspection...

• What is the probability of observing $\mathbf{x} = (0,0)^T$?

$$-N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \middle| \mu, \Sigma\right) = \frac{1}{2\pi\sqrt{0.083}} exp\left(-\frac{1}{2}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1.25 \\ 1.75 \end{bmatrix}\right)^T \begin{bmatrix} 1.1 & 0.1 \\ 0.1 & 1.1 \end{bmatrix} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1.25 \\ 1.75 \end{bmatrix}\right)\right) = 0.0145$$

Bayesian optimal classifier: example

- Consider a population of 100 individuals
 - 30 individuals have phenotype A, 30 have B, and remaining ones have C
 - the expression of three genes (variables) are characterized by the following 3-dimensional Gaussians

$$N_{A}\left(\mathbf{\mu}_{A} = \begin{bmatrix} 0.375 \\ 0.875 \\ 0.25 \end{bmatrix}, \Sigma_{A} = \begin{bmatrix} 3.41 & 1.34 & 2.6 \\ 1.34 & 2.125 & 1.18 \\ 2.6 & 1.18 & 2.8 \end{bmatrix}\right), N_{B}\left(\mathbf{\mu}_{B} = \begin{bmatrix} 0.5 \\ 0.125 \\ 0.875 \end{bmatrix}, \Sigma_{B} = \begin{bmatrix} 0.286 & 0.07 & -0.07 \\ 0.07 & 0.125 & 0.018 \\ -0.07 & 0.018 & 0.125 \end{bmatrix}\right), N_{C}\left(\mathbf{\mu}_{C} = \begin{bmatrix} 0 \\ -0.125 \\ 0.125 \end{bmatrix}, \Sigma_{C} = \begin{bmatrix} 1.7 & 1.14 & 1 \\ 1.14 & 1.55 & 0.73 \\ 1 & 0.73 & 0.98 \end{bmatrix}\right)$$

- classify observations $\mathbf{x}_1 = [0, 1.1, -0.8]$ and $\mathbf{x}_2 = [-0.3, 0.1, -0.3]$
 - to facilitate the calculus of class-conditional probabilities, $p(\mathbf{x}|N)$, we can use scipy or other package

$$-p(A|\mathbf{x}_1) = \frac{p(A)p(\mathbf{x}_1|A)}{p(\mathbf{x}_1)} = \frac{1}{p(\mathbf{x}_1)} \times \frac{30}{100} \times 0.019 = 0.0057, p(B|\mathbf{x}_1) = \frac{1}{p(\mathbf{x}_1)} \times \frac{30}{100} \times 5.4E - 14, p(C|\mathbf{x}_1) = \frac{1}{p(\mathbf{x}_1)} \times \frac{40}{100} \times 0.0088 = 0.0035$$

$$-p(A|\mathbf{x}_2) = \frac{p(A)p(\mathbf{x}_2|A)}{p(\mathbf{x}_2)} = \frac{1}{p(\mathbf{x}_2)} \times \frac{30}{100} \times 0.0266 = 0.008, p(B|\mathbf{x}_2) = \frac{1}{p(\mathbf{x}_2)} \times \frac{30}{100} \times 6.8E - 6, p(C|\mathbf{x}_2) = \frac{1}{p(\mathbf{x}_2)} \times \frac{40}{100} \times 0.068 = 0.027$$

 $-\mathbf{x}_1$ is classified with phenotype A and \mathbf{x}_2 is classified with phenotype C

Bayes optimal classifier

Advantages

- when data distributions are well-approximated, provides highly accurate results
- priors can be easily neglected to not bias posteriors

Disadvantages

- requires a good amount of data to estimate joint distributions
 - impracticable in the presence of high-dimensional data
- can be computationally expensive
 - discrete data: need to compute the posterior probability for every hypothesis
 - numeric data: need to approximate distributions
 - e.g. fitting multivariate Gaussians can be expensive due covariance matrix inversion

Outline

- Probability theory
 - prior and posterior probability
 - maximum a posterior (MAP) and maximum likelihood (ML)
- Bayes optimal classifier
 - Bayesian learning in discrete spaces
 - Bayesian learning in numeric data spaces
- Naïve Bayes classifier
 - conditional independence
 - classification with naïve Bayes
 - estimating probabilities in small samples

Joint distribution

- A joint distribution for toothache, cavity, catch dentist's probe catches in my tooth 🕾
 - we need to know the conditional probabilities of the conjunction of toothache and cavity
 - what can a dentist conclude if the probe catches in the aching tooth?

$$P(cavity \mid toothache \land catch) = \frac{P(toothache \land catch | cavity) \cdot p(cavity)}{P(toothache \land catch)}$$

– Problem?

– For m possible variables there are 2^m possible combinations

	toothache		no toothache	
	catch	no catch	catch	no catch
cavity	0.108	0.012	0.072	0.008
no cavity	0.016	0.064	0.144	0.576

Conditional independence

- Once we know that the patient has cavity we do not expect the probability of the probe catching to depend on the presence of toothache
 - independence

$$P(catch|cavity \land toothache) = P(catch|cavity)$$
 $P(a|b) = P(a)$
 $P(toothache|cavity \land catch) = P(toothache|cavity)$ $P(b|a) = P(b)$

■ The decomposition of large probabilistic domains into weakly connected subsets via conditional independence is one of the most important developments in the recent history of AI

```
P(a \land b) = P(a)P(b)

P(toothache, catch, cavity, Weather = cloudy) = P(Weather = cloudy)P(toothache, catch, cavity)
```

Naive Bayes Classifier

- In contrast with optimal Bayes, naïve Bayes places conditional assumption!
 - known to work well, even the assumption is not true!
 - a single cause directly influence a number of conditionally independent effects

$$P(\text{cause}, \text{effect}_1, \text{effect}_2, \dots \text{effect}_n) = P(\text{cause}) \prod_{i=1}^n P(\text{effect}_i | \text{cause})$$

- Along with decision trees, neural networks, nearest neighbors, a widely used learning approaches
- When to use?
 - moderate or large training set available
 - variables describing instances are (class-conditionally) independent
- Successful applications
 - classifying text documents
 - diagnosis

Recall: Bayes classifier

- Assume target function $f: X \longrightarrow \Sigma$
 - where each instance **x** is described by features $x_1, x_2 \dots x_m$
 - the most probable value of $f(\mathbf{x})$ is

$$h_{MAP} = \underset{h}{\operatorname{argmax}} p(h|\mathbf{x})$$
 $h_{MAP} = \underset{h}{\operatorname{argmax}} \frac{p(\mathbf{x}|h) \cdot p(h)}{p(\mathbf{x})}$

$$h_{MAP} = \underset{h}{\operatorname{argmax}} p(\mathbf{x}|h) \cdot p(h)$$

Naïve assumption

Naive Bayes assumption:

$$p(h|\mathbf{x}) = p(h|y_1 = x_1, y_2 = x_2, \dots, y_m = x_m) = \prod_{j=1}^m p(h|y_j = x_j)$$

- ... yielding

the naïve Bayes classifier:

$$h_{MAP} = \underset{h}{\operatorname{argmax}} p(h) \prod_{j=1}^{m} p(y_j = x_j | h)$$

- for each target value h: estimate p(h)
- for each attribute value x_i : estimate $p(x_i|h)$
- are frequentist views the only possibility to estimate these probabilities?

$$h_{MAP} = \underset{h}{\operatorname{argmax}} \, \hat{p}(h) \prod_{j=1}^{m} \hat{p}(y_j = x_j | h)$$

Naïve Bayes: example

Goal

- learn NB classifier and classify $\mathbf{x}_{new} = (\text{age} \le 30, \text{income} = medium, \text{student} = yes, \text{rating} = fair)$

age	income	student	credit rating	buys computer
≤30	high	no	fair	no
≤30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
≤30	medium	no	fair	no
≤30	low	yes	fair	yes
>40	medium	yes	fair	yes
≤30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayes: example

- $p(\text{buys_computer=}yes)=9/14 \text{ and } p(\text{buys_computer=}no)=5/14$ Class-conditional distributions p(x|h) $-p(\text{age}= \le 30 \mid \text{buys_computer=}yes) = 2/9=0.22$ $-p(\text{age}= \le 30 \mid \text{buys_computer=}no) = 3/5=0.6$ $-p(\text{income=}medium \mid \text{buys_computer=}yes) = 4/9=0.44$ $-p(\text{income=}medium \mid \text{buys_computer=}no) = 2/5=0.4$ $-p(\text{student=}yes \mid \text{buys_computer=}yes) = 6/9=0.67$ $-p(\text{student=}yes \mid \text{buys_computer=}no) = 1/5=0.2$ $-p(\text{credit_rating=}fair \mid \text{buys_computer=}yes) = 6/9=0.67$ $-p(\text{credit_rating=}fair \mid \text{buys_computer=}no) = 2/5=0.4$
- $\mathbf{x}_{new} = (age \le 30, income = medium, student = yes, rating = fair)$
 - $-p(\mathbf{x}|c_1)$: $p(\mathbf{x}|buys_computer=yes) = 0.222 \times 0.444 \times 0.667 \times 0.0.667 = 0.044$
 - $p(\mathbf{x}|c_2)$: $p(\mathbf{x}|buys_computer=no) = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$
 - $-p(\mathbf{x}|c_1) \times p(c_1)$: $p(\mathbf{x}|\text{buys_computer=}yes) \times p(\text{buys_computer=}yes) = 0.028$
 - $-p(\mathbf{x}|c_2) \times p(c_2)$: $p(\mathbf{x}|\text{buys_computer}=no) \times p(\text{buys_computer}=no)=0.007$
- x belongs to class buys_computer=yes, $p(c_1|x) = 0.028/(0.028+0.007)$

Estimating probabilities in small samples

- We have estimated probabilities based on the times an event occurs, n_a , over total opportunities, n
 - however n_a estimate can be poor when n is small
 - **problem**: what if none of the training instances with a target h have the value α ?
 - $-n_a$ is 0 which will rewrite the joint probability $p(\mathbf{x}|h)$ as 0, irrespective of other features

Solution?

– when n_a is very small:

from
$$p(y_j = a|h) = \frac{n_a}{n}$$
 to $\hat{p}(y_j = a|h) = \frac{n_a + d \times p(h)}{n + d}$

- -n is number of training examples
- $-n_a$ number of a occurrences from observations with target h
- -p(h) is the prior estimate
- -d is the weight given to the prior: the number of "virtual" examples, generally $d \ll n$

Naïve Bayes: comments

Advantages

- easy to implement
- good results obtained in most of the cases

Disadvantages

- class conditional independence assumption
 - loss of accuracy
 - dependencies exist among variables (e.g. symptoms)
- How to deal with these dependencies?
 - Bayesian Belief Networks
 - relaxes independence assumption towards sets of variables

Outline

Probability theory

- prior and posterior probability
- maximum a posterior (MAP) and maximum likelihood (ML)

Bayes optimal classifier

- Bayesian learning in discrete spaces
- Bayesian learning in numeric data spaces

Naïve Bayes classifier

- conditional independence
- classification with naïve Bayes
- estimating probabilities in small samples

Thank You

rmch@tecnico.ulisboa.pt andreas.wichert@tecnico.ulisboa.pt