线性代数 中国科学技术大学 2023 春 向量与数域

主讲: 杨金榜

地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

2023年3月7号

课程考核方式

- 考核成绩为平时成绩、期中成绩和期末成绩加权平均.例如, 去年的比重是 2:4:4. 具体权重会由线性代数课题组根据期中 和期末考试的难易度来确定.
- ② 平时成绩包含作业成绩和上课考勤两部分.

什么是线性代数 (linear algebra)?

线性代数是关于向量空间和线性映射的一个数学分支。

——维基百科

线性代数的方法广泛的用在数学其他分支、物理化学、计算机科 学、经济学等学科中。例如

- ❶ 泛函分析 (研究函数组成的空间);
- ② 量子力学(波函数,密度泛函理论);
- ③ 科学计算(天气预报);
- 机器学习(运动学正解);
- ⑤ 数据传输 (编码理论);
- 6 ...

什么是向量

我们初中学习过一些物理量包括速度、位移、力等等.

数学上的抽象总结:

向量=既有大小,又有方向的量.

向量加法

速度,力的合成 ————— 向量的加法

向量加法的基本性质

性质(向量加法的基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- **3** 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$;
- **③** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$;

定义(向量的减法)

$$\vec{a} - \vec{b} := \vec{a} + (-\vec{b}).$$

向量的数乘

向量的数乘

定义(向量的数乘)

令 \vec{a} 为一向量, λ 为一实数.

- 若 $\lambda \ge 0$, 则 $\lambda \vec{a}$ 定义为长度为 $\lambda |\vec{a}|$ 且方向与 \vec{a} 相同的向量.
- 若 λ < 0, 则 $\lambda \vec{a}$ 定义为长度为 $-\lambda |\vec{a}|$ 且方向与 \vec{a} 相反的向量.

记号: 若 $\vec{a} \neq \vec{0}$, 则记 $\vec{a}^0 := \frac{1}{|\vec{a}|} \vec{a}$. 即, \vec{a}^0 为方向与 \vec{a} 相同的单位向量.

注:零向量: $|\vec{a}|=0$. 规定任意方向都为零向量的方向.

向量数乘的基本性质

性质(向量数乘的基本性质)

- ⑤ 数乘单位元: $1\vec{a} = \vec{a}$;
- **③** 数乘结合律: $\lambda(\mu \vec{a}) = (\lambda \mu)\vec{a}$;
- ② 左分配律: $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- ③ 右分配律: $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$;

线性运算

定义(线性运算)

向量的加法和数乘运算统称为向量的线性运算.

性质(向量集合上线性运算的八条基本性质)

- ① 加法交换律: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$:
- ② 加法结合律: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- ③ 存在零元: $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$:
- **①** 存在负元: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$:
- **⑤** 数乘单位元: $1\vec{a} = \vec{a}$:
- **⑤** 数乘结合律: $\lambda(\mu\vec{a}) = (\lambda\mu)\vec{a}$;
- **②** 左分配律: $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- **③** 右分配律: $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$:

注: 我们将通过这八条性质来公理化地定义一般的线性空间或向 量空间 (第五章).

空间与全体向量集

例

设成为一个非零向量。则

过原点与 \vec{a} 平行的直线 $\stackrel{1:1}{\longleftrightarrow} \{\lambda \vec{a} \mid \lambda \in \mathbb{R}\}.$

线性组合

定义(线性组合)

设 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 为一组向量, $\lambda_1, \lambda_2, \dots, \lambda_m$ 为一组实数. 称向量

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m$$

为向量 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 的线性组合.

也就是说,一组向量的线性组合就是从这组向量出发通过线性运 算能够获得的向量.

线性相关与线性无关

定义(线性相关,线性无关)

给定一组向量 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$.

• 如果存在一组不全为零的实数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 使得

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots + \lambda_m \vec{a}_m = 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 线性相关.

• 反之, 若对任意一组不全为零的实数 $\lambda_1, \lambda_2, \cdots, \lambda_m$ 都有

$$\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \cdots \lambda_m \vec{a}_m \neq 0,$$

则称向量组 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_m$ 的线性无关.

特别地,设 $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_m$ 线性无关. 若 $\lambda_1 \vec{a}_1 + \lambda_2 \vec{a}_2 + \dots + \lambda_m \vec{a}_m = 0$,则 $\lambda_1 = \lambda_2 = \dots = \lambda_m = 0$.

例

向量组 $\vec{a} + \vec{b} + \vec{c}$, $\vec{a} - \vec{b} - \vec{c}$, $\vec{a} + 2\vec{b} + 2\vec{c}$ 线性相关。

线性相关的几何解释

- ① 一个向量 \vec{a} 线性相关 \iff $\vec{a} = 0$;
- ② 两个向量 \vec{a} , \vec{b} 线性相关 \iff \vec{a} 与 \vec{b} 平行 (共线);
- ③ 三个向量 \vec{a} , \vec{b} , \vec{c} 线性相关 ⇔ \vec{a} , \vec{b} , \vec{c} 共面;
- 四个及四个以上的向量一定线性相关.

仿射坐标系

为了推广笛卡尔坐标系到坐标轴不相互垂直的情形,

我们需要引入向量的基本定理.

定理(向量的基本定理)

设 \vec{e}_1 , \vec{e}_2 , \vec{e}_3 为空间中的三个不共面的向量, 则对每个向量 \vec{a} 都存 在唯一的三元有序实数组 (x_1, x_2, x_3) , 使得

$$\vec{a} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3.$$

仿射坐标系

定义(基、坐标)

称不共面的三个向量 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 为一组基. 若

$$\vec{a} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3,$$

则称 (x_1, x_2, x_3) 为向量 \vec{a} 在基 $\vec{e}_1, \vec{e}_2, \vec{e}_3$ 下的(仿射) 坐标.

仿射坐标系 = 点
$$O + \overline{\mathbf{k}}\vec{e}_1, \vec{e}_2, \vec{e}_3$$
 记作 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$.

推论(一一对应)

若给定仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$, 则有如下一一对应

空间
$$\stackrel{1:1}{\longleftrightarrow}$$
 全体向量集 $\stackrel{1:1}{\longleftrightarrow}$ $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ $P \longmapsto \overrightarrow{OP} \longmapsto$ 坐标 (x_1, x_2, x_3)

向量的坐标运算

给定仿射坐标系 $[O; \vec{e}_1, \vec{e}_2, \vec{e}_3]$, 我们用 (x_1, x_2, x_3) 表示向量 $x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3$. 则我们有

性质

- \bullet $(x_1, x_2, x_3) + (y_1, y_2, y_3) = (x_1 + y_1, x_2 + y_2, x_3 + y_3);$
- $\bullet \ \lambda(x_1, x_2, x_3) = (\lambda x_1, \lambda x_2, \lambda x_3).$