18.100B: Problem Set 3

Dmitry Kaysin

January 13, 2020

Problem 1

In vector spaces, metrics are usually defined in terms of norms which measure the length of a vector. If V is a vector space defined over \mathbb{R} , then a norm is a function from vectors to real numbers, denoted by $\|\cdot\|$ satisfying:

- $||x|| \ge 0$ and $||x|| = 0 \iff x = 0$
- For any $\lambda \in \mathbb{R}, \|\lambda x\| = |\lambda| \|x\|$
- $||x + y|| \le ||x|| + ||y||$.

Prove that every norm defines a metric.

Proof. For given two vectors $p,q\in V$ and a norm $\|\cdot\|$, metric on V can be defined as $d(p,q)=\|p-q\|$. We will check the following properties of this metric:

- d(p,q) > 0 if $p \neq q$; d(p,p)=0
- d(p,q) = d(q,p)
- $d(p,q) \le d(p,r) + d(r,q)$

for $p, q, r \in V$.

We first check that for $p \neq q$: d(p,q) = ||p-q|| = ||x|| > 0 for some $x \in V$. We also note that d(p,p) = ||p-p|| = ||0|| = 0.

We then check that $d(p,q) = \|p-q\| = \|-1\cdot(q-p)\| = |-1|\|q-p\| = d(q,p)$. Finally, we check that

$$d(p,q) \le d(p,r) + d(r,q)$$

 ${\rm Indeed}$

$$||p-q|| \le ||p-r|| + ||r-q||$$

$$||(p-r) + (r-q)|| \le ||p-r|| + ||r-q||$$

which is true by the triangle inequality for norms.

Problem 2

Let M be a metric space with metric d. Show that d_1 defined by

$$d_1(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

is also a metric on M.

Proof. We will check whether d_1 satisfies properties of a metric. Let $p, q, r \in M$. Denote a = d(p, q).

We first check that for $p \neq q : d_1(p,q) = 0$.

$$d_1(p,q) = \frac{d(x,y)}{1+d(x,y)} = \frac{a}{1+a} > 0$$

We also check that for $p = q : d_1(p, q) = 0$.

$$d_1(p,q) = \frac{0}{1+0} = 0$$

We then check that $d_1(p,q) = d_1(q,p)$.

$$d(p,q) = d(q,p) = a$$

$$d_1(p,q) = \frac{a}{1+a} = d_1(q,p)$$

We finally check the triangle inequality for d_1 :

$$d_1(p,q) \le d_1(p,r) + d_1(r,q)$$

Let d(p,q) = a, d(p,r) = b, d(r,q) = c. We now prove that

$$\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c}$$

$$a(1+b)(1+c) \le (1+a)(b+c+2bc)$$

$$a + ab + ac + abc \le b + c + 2bc + ab + ac + 2abc$$

$$a \leq b+c+bc+abc$$

Since d is a metric: $a \le b + c$:

$$a \le a + bc + abc$$

$$0 \le bc + abc$$

Which is always true because a, b, c > 0.

Since function d_1 satisfies all properties of a metric, it is a metric.

Observe that M itself is bounded in this metric.

Proof. We notice that set $D = \{d_1(p,q) : p,q \in \mathbb{R}_{\geq 0}\}$ is bounded. D is bounded from below by 0 since metric has a property of non-negativity. D is clearly bounded from above by 1.

Problem 3

Let A and B be two subsets of a metric space M. Recall that A° , the interior of A, is the set of interior points of A. Prove the following: a) $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}$

Proof. Consider $a \in A^{\circ}$ and $b \in B^{\circ}$. By definition of interior point we can find open neighbourhoods $N(a) \subset A$ and $N(b) \subset B$.

For any sets S, X, Y:

$$S \subset X \Rightarrow Y \subset (X \cup Y)$$

Therefore, $N(a) \subset A \cup B$ and $N(b) \subset A \cup B$. Thus, both points a and b are interior points of $A \cup B$. This should hold not only for metric spaces.

b)
$$A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$

Proof. A point belongs to intersection of two sets if and only if it belongs to both sets. Consider point x that belongs to intersection of interiors of A and B ($x \in A^{\circ}, x \in B^{\circ}$). By definition of interior point we can find open neighbourhoods $N_a(x) \subset A$ and $N_b(x) \subset B$. Thus intersection of neighbourhoods $N_a(x) \cap N_b(x)$ lies within $A \cap B$. Thus, point x is an interior point of $A \cap B$, or:

$$A^{\circ} \cap B^{\circ} \subset (A \cap B)^{\circ} \tag{1}$$

Now consider y, interior point of intersection of A and B ($y \in (A \cap B)^{\circ}$). Since y is interior, we can find an open neighbourhood $N_{ab}(y) \in (A \cap B)$. Furthermore, $N_{ab}(y)$ must be a subset of both A and B and thus has open neighbourhoods in A and in B. Therefore y is an interior point of both A and B, or:

$$(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ} \tag{2}$$

Considering expressions 1 and 2, we conclude that $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$. This should hold not only for metric spaces.

Give an example of two subsets A and B of the real line such that $A^{\circ} \cup B^{\circ} \neq (A \cup B)^{\circ}$.

Answer: $A = \mathbb{Q}, B = \mathbb{R} \setminus \mathbb{Q}$.

Proof. Since \mathbb{Q} is dense in \mathbb{R} , every neighbourhood of every point of both sets \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ contains infinitely many points of both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$. This means that no point of these sets is interior:

$$\mathbb{Q}^{\circ} = \emptyset$$
, $(\mathbb{R} \setminus \mathbb{Q})^{\circ} = \emptyset$

However, interior of the union of these sets is \mathbb{R} :

$$(\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}))^{\circ} = \mathbb{R}^{\circ} = \mathbb{R}$$

Therefore, $\mathbb{Q}^{\circ} + (\mathbb{R} \setminus \mathbb{Q})^{\circ} \neq (\mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q}))^{\circ}$.

Problem 4

Let A be a subset of a metric space M. Recall that \overline{A} , the closure of A, is the union of A and its limit points. Recall that a point x belongs to the boundary of A, ∂A , if every open ball centered at x contains points of A and points of A^c , the complement of A. Prove that:

a)
$$\partial A = \overline{A} \cap \overline{A^c}$$

Proof. Note: We shall prove validity of claims a)-d) for general topological spaces that do not necessarily have a metric.

Consider point $p \in \partial A$. Every neighbourhood of p must contain points of both A and A^c . Thus every neighbourhood of p must contain points of A, so $p \in \overline{A}$. Every neighbourhood of p must also contain points of A^c , so $p \in \overline{A^c}$. Since p is both an element of set \overline{A} and of set $\overline{A^c}$, p must be an element of $\overline{A} \cap \overline{A^c}$, so:

$$\partial A \subseteq \overline{A} \cap \overline{A^c} \tag{3}$$

Now consider point $p \in \overline{A} \cap \overline{A^c}$. Point p must belong to the set \overline{A} , thus every open neighbourhood of p must contain elements of A. Point p must also belong to the set $\overline{A^c}$, thus every open neighbourhood of p must contain elements of A^c . We can see that every open neighbourhood of p must contain elements of both A and A^c m so p must lie in the boundary of A, or:

$$\overline{A} \cap \overline{A^c} \subseteq \partial A \tag{4}$$

Considering expressions 3 and 4 we can see that $\partial A = \overline{A} \cap \overline{A^c}$.

b) $p \in \partial A \iff p$ is in \overline{A} but not in A° (symbolically, $\partial A = \overline{A} \setminus A^{\circ}$)

Proof. Consider $p \in \partial A$. Every open neighbourhood of p must contain both points of A and points of A^c . Since every open neighbourhood of p must contain points of A, p must be an element of \overline{A} , so:

$$A \subseteq \overline{A}$$

Furthermore, since every open neighbourhood of p must contain points of A^c , such neighbourhood cannot be a subset of A, so p cannot be a interior point. Therefore

$$A \not\subseteq A^{\circ}$$

We conclude that

$$\partial A \subseteq \overline{A} \setminus A^{\circ} \tag{5}$$

Now consider $p \in \overline{A} \setminus A^{\circ}$. Since p is an element of \overline{A} , every neighbourhood of p must contain points of A. Since p cannot be an element of A° , every neighbourhood of p includes points that belong to A^{c} . Therefore every neighbourhood of p includes both points of A and points of A^{c} and we conclude that

$$\overline{A} \setminus A^{\circ} \subseteq \partial A \tag{6}$$

Considering expressions 5 and 6 we can see that $\partial A = \overline{A} \setminus A^{\circ}$.

c) ∂A is a closed set

Proof. Set ∂A is closed if it contains all its limit points. If the set of limit points of ∂A is not \emptyset , consider an arbitrary limit point p of ∂A . Now we will prove that p is a boundary point of A. Consider N(p), an arbitrary open neighbourhood of p. Since p is a limit point, N(p) must contain points of ∂A other than p. Denote $q:q\in\partial A, q\in N(p)$ one of these points. Every open neighbourhood of q must contain points that lie in A and in A^c by definition of boundary. Notice that N(p) is an open neighbourhood of q. Thus N(p) must include points that lie in A and in A^c . Therefore, p is a boundary point of A. We conclude that all limit points of ∂A lie in ∂A , or set ∂A is closed.

If the set of limit points of ∂A is \emptyset we note that $\emptyset \subseteq \partial A$. In this case, vacuously, ∂A is a closed set.

d) A is closed $\iff \partial A \subseteq A$

Proof. Consider b, a boundary point of a closed set A. Consider an arbitrary open neighbourhood of b: N(b). Since b is a boundary point, N(b) contains at least one point of A and at least one point of A^c . Consider an arbitrary point $p \in A$ that lies in N(b). Either p = b or $p \neq b$. If p = b, then $p = b \in A$, so b, a boundary point of A, is an element of A. If $p \neq b$, then b must be a limit point. But then we know that a closed set contains all its limit points, thus b, a boundary point of A, is an element of A. We conclude that if A is closed then $\partial A \subseteq A$.

Now consider a set A such that $\partial A \subseteq A$. Suppose p is a limit point of A such that $p \notin A$. Then $p \in A^c$. Therefore each open neighbourhood of p must include points of A (since it is a limit point of A) and at least one point of A^c , specifically p. But then p must be a boundary point of A and since $\partial A \subseteq A$, p must be an element of A, which presents a contradiction. Therefore, p, a limit point of A must be a point of A. We conclude that if $\partial A \subseteq A$ then A is closed.

Thus, A is closed $\iff \partial A \subseteq A$.

Problem 5

Show that, in \mathbb{R}^n with the usual (Euclidean) metric, the closure of the open ball $B_R(p), R > 0$, is the closed ball

$$\{q \in \mathbb{R}^n : d(p,q) \le R\}.$$

Proof. We claim that for every metric space M with metric that is induced by a norm, closure of an open ball is a closed ball:

$$\overline{B_R(p)} = B_R[p]$$

where

$$B_R(p) = \{r : d(p,r) < R\}$$

$$B_R[p] = \{r : d(p,r) \le R\}$$

and d(p,r) = ||p-r|| for some norm $||\cdot||$; R > 0.

Set $B_R[p]$ is closed since it contains all its limit points. Suppose, there exists x, a limit point of $B_R[p]$, that belongs to $B_R[p]^c = \{r : d(p,r) > R\}$. Set $B_R[p]^c$ is open, so all its points internal to itself. This means that for such x we can find an open ball that is a subset of $B_R[p]^c$. But then, it cannot contain points of $B_R[p]$, which is a contradiction with x being a limit point of $B_R[p]$. Thus, $B_R[p]$ contains all its limit points and is closed. We also note that set $B_R(p)m \subseteq B_R[p]$. Closure of $B_R(p)$ is the smallest closed subset that includes $B_R(p)$, therefore it is a subset of any closed set that includes $B_R(p)$, including $\subseteq B_R[p]$:

$$\overline{B_R(p)} \subseteq B_R[p]$$

Consider $r \in B_R[p]$. We will prove that $r \in \overline{B_R(p)}$. We need to prove that r is either an element or a limit point of $B_R(p)$. All r such that d(p,r) < R

are clearly elements of $B_R(p)$. The set of remaining points is $B_R[p] \setminus B_R(p)$. All points of this set are given by $\{r: d(p,r) = R\}$. Point r is a limit point of $B_R(p)$ if every open ball $B_{\epsilon}(r)$ contains at least one point x such that $x \in B_R(p) \iff d(p,x) < R$. We can find such x explicitly, provided M is a normed vector space, which follows from existence of norm $\|\cdot\|$ for M.

We claim that

$$x = r + \frac{\epsilon}{2} \frac{1}{d(p,r)} (p - r)$$

is such a point. To prove this we show that $d(r,x) < \epsilon$ and d(p,x) < R.

$$d(r,x) = ||r - x|| = \left| ||r - r|| + \frac{\epsilon}{2} \frac{1}{d(p,r)} (p - r)|| = \left| \frac{\epsilon}{2} \frac{1}{d(p,r)} (p - r)|| = \frac{\epsilon}{2} \frac{||p - r||}{d(p,r)} = \frac{\epsilon}{2} < \epsilon.$$

Thus x lies in $B_{\epsilon}(r)$.

$$\begin{split} d(p,x) &= \|p-x\| = \left\|p-r - \frac{\epsilon}{2} \frac{1}{d(p,r)} (p-r)\right\| = \\ &= \left\|(p-r) \left(1 - \frac{\epsilon}{2} \frac{1}{d(p,r)}\right)\right\| = \left(1 - \frac{\epsilon}{2} \frac{1}{d(p,r)}\right) d(p,r) = \\ &= d(p,r) - \frac{\epsilon}{2} \le R - \frac{\epsilon}{2} < R. \end{split}$$

Thus x lies in $B_R(p)$.

Therefore all points in $B_R[p]$ are either elements of $B_R(p)$ or its limit points, thus are elements of the closure of $B_R(p)$:

$$B_R[p] \subseteq \overline{B_R(p)}$$

We conclude that:

$$\overline{B_R(p)} = B_R[p]$$

Give an example of a metric space for which the corresponding statement is false.

This may not be the case for metrics that are not induced by a norm. For example, for discreet metric on \mathbb{R} , which is not induced by a norm,

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 1, & \text{if } x \neq y \end{cases}$$

open ball $B_1(0) = 0$, closed ball $B_1[0] = \mathbb{R}$ and closure of $\overline{B_1(0)} = 0$. Clearly

$$\overline{B_1(0)} \subseteq B_1[0]$$

but

$$\overline{B_1(0)} \neq B_1[0].$$

Problem 6

Prove directly from the definition that the set $K \subseteq \mathbb{R}$ given by

$$K = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\right\}$$

is compact.

Proof. Let C be an open cover of K, i.e. a collection of open sets such that:

$$K\subseteq\bigcup_{S\in C}S$$

For each $k \in K$ we can find a set within the collection C that contains k (not necessarily unique). Denote such open set C(k).

Specifically, for $0 \in K$ there must exist open set C(0). Since C(0) is open, it must contain some open ball $B_{\epsilon}(0)$. We notice that $B_{\epsilon}(0)$ contains all points of K that are less than ϵ :

$$x \in K : x < \epsilon \Rightarrow x \in B_{\epsilon}(0)$$

We can see that there are only finitely many points of K that are greater than or equal to ϵ . Such points can be covered by union of finitely many open sets C(k). The rest of the points of K can be covered by $B_{\epsilon}(0)$.

Therefore the following finite collection covers K:

$$\{C(k): k \in K, k \ge \epsilon\} \cup \{B_{\epsilon}(0)\}$$

We conclude that K is compact.

Problem 7

Let K be a compact subset of a metric space M, and let $\{\mathcal{U}_{\alpha}\}_{{\alpha}\in A}$ be an open cover of K. Show that there is a positive real number δ with the property that for every $x\in K$ there is some $\alpha\in A$ with

$$B_{\delta}(x) \subseteq \mathcal{U}_{\alpha}$$

Proof. Since all sets in collection \mathcal{U} are open, for each $x \in K$ there must exist an open ball $B_{\epsilon(x)}(x)$ where $\epsilon(x) > 0$ that is a subset of some \mathcal{U}_{α} , $\alpha \in A$. Open ball with half the radius, $B_{\epsilon(x)/2}(x)$, is also a subset of the same \mathcal{U}_{α} . Collection of such open balls with half the radius, \mathcal{H} , is an open cover of K since each $x \in K$ belongs to at least one of the open sets in collection \mathcal{H} .

Since K is compact, there must exist a finite subcover $\mathcal{F} \in \mathcal{H}$ that covers K. Since collection \mathcal{F} is finite, we can enumerate all its sets:

$$B_{\epsilon(x_1)/2}(x_1), B_{\epsilon(x_2)/2}(x_2), \dots, B_{\epsilon(x_N)/2}(x_N)$$

where $N \in \mathbb{N}$. Radius of each of these open balls must be strictly greater than zero. Find the minimum of these radii:

$$\delta = \min\{\epsilon(x_n)/2 : n \in \mathbb{N}, 1 \le n \le N\},\$$

which will be also strictly greater than zero. We claim that δ satisfies the desired property for K and \mathcal{U} .

We prove that for any $x \in K$ open ball $B_{\delta}(x)$ is a subset of at least one of the sets of the collection \mathcal{U} . Indeed, every $x \in K$ must belong to at least one of the sets of its open cover \mathcal{F} ; denote such set $B_{\epsilon(x_k)/2}(x_k)$. We notice that

$$B_{\epsilon(x_k)/2}(x_k) \subset B_{\epsilon(x_k)}(x_k)$$

and since $\delta \leq \epsilon(x_k)/2$:

$$B_{\delta}(x) \subset B_{\epsilon(x_k)}(x_k) \subseteq \mathcal{U}_{\alpha}$$
, for some $\alpha \in A$

Therefore, there exists $\delta > 0$ such that for any point in K there exists an open ball with radius δ that is a subset of at least one set of an open cover of K.