Q1)

Considering the above HMM model write the expression for $P(\{0t\}_{t=1}^T)$, where O_t are the observation and S_t are the states. Consider you have the following HMM parameters available $P(S_1)$, $P(S_t|S_{t-1})$, $P(O_t|S_t)$ [2 marks]

Q2) Answer the following based on state transition diagram below.

[1+1+1+2]

- 1. Find $P(X_4=3|X_3=2)$
- 2. Find $P(X_3=1|X_2=1)$
- 3. If we know $P(X_0=1)=\frac{1}{3}$ find $P(X_0=1,X_1=2)$
- 4. If we know $P(X0=1)=\frac{1}{3}$ find P(X0=1,X1=2,X2=3)

Question 3)

A casino has two dice, one fair and another loaded (unfair).

Fair die $P(1) = P(2) = P(3) = P(5) = P(6) = \frac{1}{6}$

Loaded die P(1) = P(2) = P(3) = P(5) = 1/10 P(6) = $\frac{1}{2}$

Casino player switches back-&-forth between fair and loaded die once every 20 turns Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

GIVEN: A sequence of rolls by the casino player: 6,2,6

- 1. How likely is this sequence, given our model of how the casino works? [3 marks]
- 2. What portion of the sequence was generated with the fair die, and what portion with the loaded die? [5 marks]