Tutorial 5 – Systems in three dimensions. Poincaré L'application de Poincaré

Three dimensional systems

1. Rikitake model. The Rikitake equations are given by

$$\dot{x} = -\nu x + yz, \quad \dot{y} = -\nu y + (z - a)x, \quad \dot{z} = 1 - xy,$$
 (1)

where $a, \nu > 0$ are parameters. These equations were proposed in 1958 as a model for the generation of the earth's magnetic field by the currents in the mantle.

- (a) Show that the system is dissipative, meaning that volumes degrease over time.
- (b) Show that the equilibriums are $(\pm k, \pm k^{-1}, \nu k^2)$ where k is a solution of $\nu(k^2 k^{-2}) = a$. Classify these equilibria.

Numerical simulations show that the model exhibits chaotic behaviour for certain parameter values. This behaviour is similar to the irregular reversals in the earth's magnetic field. A solution of the model is shown in Figure 1.

FIGURE 1 – Orbit of a solution of the Rikitake model with $a=2, \nu=1/6$ and and initial condition $(x_0, y_0, z_0) = (0, 1, 0)$.

- 2. Lorenz System for Large Reynolds Numbers. We will investigate the Lorenz system in the limit $r \to \infty$. By taking this limit in a particular way we can make the dissipative terms disappear.
 - (a) We will let $\epsilon = r^{-1/2}$. In the limit $r \to \infty$ we have $\epsilon \to 0$. Find a change of variables $x, y, z, t \to X, Y, Z, \tau$ dependant on ϵ as $\epsilon \to 0$ the lorenz system becomes:

$$\dot{X} = Y, \quad \dot{Y} = -XZ, \quad \dot{Z} = XY. \tag{2}$$

- (b) Show that the new system is not dissipative: That it conserves volumes over time.
- (c) Find two conserved quantities for the new system (these are E = E(X, Y, Z) where $\dot{E} = 0$.) Discuss the consequences of the existence of the existence of these conserved quantities.

Poincaré Sections

3. Logistic equation with a periodic forcing. In this exercise we consider a model for the evolution of a population. The equation is given by $\dot{x} = f(t, x)$ with

$$f(t,x) = ax(1-x) - h(1+\sin 2\pi t)$$
(3)

where a, h > 0 are constants. The first term corresponds to growth rate given by the logistic equation. The second term represents a diminishing term of the population which varies with time t.

- (a) Show that if x(t) is a solution of the differential equation then x(t+1) is also a solution. Show that it is sufficient to constrain the solutions between $0 \le t \le 1$.
- (b) Given $\phi(t, x_0) = \phi^t(x_0)$ is a unique solution with the initial condition x_0 at t = 0. We define a *Poincaré section* by $p(x_0) = \phi(t = 1, x_0)$. Show that if x_0 is a fixed point, i.e. $p(x_0) = x_0$ then the solution is a periodic solution of period T = 1.
- (c) Show that

$$\frac{\partial \phi(t, x_0)}{\partial x_0} = \exp\left(\int_0^t f_x(s, \phi(s, x_0)) ds\right) \tag{4}$$

where $f_x(t,x) = \partial f(t,x)/\partial x$ is a partial derivative of f with respect to x. Show that $p'(x_0) > 0$.

- (d) By differentiating (4) with respect to x_0 , and show that $p''(x_0) < 0$. Show that the Poincaré section has at least two fixed points. *Hint*: It is useful to make $p(x_0)$ as a function of x_0 .
- (e) Show that $p(x_0)$ is dependent on the value of h. Deduce that there exists a unique value $h = h_c$ where this Poincaré section that has exactly one fixed point. For $h > h_c$, no fixed point exists. What is the significance for the evolution of the population?

The behaviour of the solutions for $h < h_c$ is shown in Figure ??.

,û,

 $,\!\hat{\mathbf{u}},\!,\!\hat{\mathbf{u}},$