Measure Energy Consumption

Development - 2

Project Goal:

The goal of this phase is to process the energy consumption data for time series forecasting, you'll typically need to perform several steps, including data loading, cleaning, and transformation.

Dataset:

In this document we guys are here to discuss the loading and preprocessing of the dataset to make a better prediction in the future.

Source of Data:

We got our dataset from the SKILL UP website for this project

Exploratory Data Analysis (EDA):

- Perform basic data exploration to understand the data's characteristics.
- Visualize the time series data to identify trends and patterns.

Feature Engineering:

- Create additional features, such as lag features (past values) or rolling statistics.
- These features can provide more information for forecasting.

Time Series Forecasting:

- Choose a time series forecasting model, such as ARIMA, Exponential Smoothing, or LSTM.
- Split the data into training and testing sets.
- Train the selected model on the training data and evaluate it on the test data.

Python Script:

Step 1: Setup

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import xgboost as xgb from sklearn.metrics import mean_squared_error

customize the style

pd.options.display.float_format = '{:.5f}'.format pd.options.display.max_rows = 12

#Load the data

filepath = '../input/hourly-energy-consumption/PJME_hourly.csv' df = pd.read_csv(filepath)

print("Successfully Uploaded")

Step 2: Explore the data

turn data to datetime

df = df.set_index('Datetime')
df.index = pd.to_datetime(df.index)

create the plot

```
df.plot(style='.',
    figsize=(15, 5),
    title='PJM Energy (in MW) over time')
plt.show()
```


Step 2: Split the data

train / test split

train = df.loc[df.index < '01-01-2022'] test = df.loc[df.index >= '01-01-2022'] unfold_lessHide code In [5]: Linkcode

fig, ax = plt.subplots(figsize=(15, 5))
train.plot(ax=ax, label='Training Set', title='Train/Test Split')
test.plot(ax=ax, label='Test Set')
ax.axvline('01-01-2022', color='black', ls='--')
ax.legend(['Training Set', 'Test Set'])
plt.show()

After exploring the data, you need to prepare it for analysis, which involves

- Exploratory Data Analysis (EDA):
- * Feature Engineering:
- Time Series Forecasting:

Setting up the data for analysis is crucial to ensure that it's in the right format and condition for modeling. It's the foundation for accurate predictions in the next steps of your project, which typically involve selecting a forecasting model and training it.

Step 3: Feature Engineering

We're going to create some time features using the Datetime index. After that, we'll explore the distributions of Hourly and Monthly megawatt usage.

feature creation

```
def create_features(df):
  df = df.copy()
  df['hour'] = df.index.hour
  df['dayofweek'] = df.index.dayofweek
  df['quarter'] = df.index.quarter
  df['month'] = df.index.month
  df['year'] = df.index.year
  df['dayofyear'] = df.index.dayofyear
  df['dayofmonth'] = df.index.day
  df['weekofyear'] = df.index.isocalendar().week
  return df
df = create_features(df)
# visualize the hourly Megawatt
fig, ax = plt.subplots(figsize=(10, 8))
```

```
sns.boxplot(data=df, x='hour', y='PJME_MW')
ax.set_title('MW by Hour')
plt.show()
```


We can see here that after midnight, the use of energy go down and it gets higher from around 6AM to 6PM and then go down again.

viaualize the monthly Megawatt

```
fig, ax = plt.subplots(figsize=(10, 8))
sns.boxplot(data=df, x='month', y='PJME_MW', palette='Blues')
ax.set_title('MW by Month')
plt.show()
```


The monthly usage tends to peak here two times in the winter season, then in the fall and sprint it has lower and another peak in the middle of summer.

Step 4: Modelling

XGBoost is good and reliable model for regression and time series analysis as well. Also, for the metrics, we'll use mean squared error

Prepare the data

```
# preprocessing
```

```
train = create_features(train)
test = create_features(test)
features = ['dayofyear', 'hour', 'dayofweek', 'quarter', 'month', 'year']
target = 'PJME_MW'
X_train = train[features]
y_train = train[target]
X_test = test[features]
y_test = test[target]
```

Build the model

XGBRegressor

```
XGBRegressor(base_score=0.5, booster='gbtree', callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=50, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.01, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=3, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=1000, n_jobs=None, num_parallel_tree=None, objective='reg:linear', predictor=None, ...)
```

Features importance

We need to see how much these features were used in each of the trees built by XGBoost model.

Forecasting on test data

compare the prediction with the actual values.

```
test['prediction'] = reg.predict(X_test)
df = df.merge(test[['prediction']], how='left', left_index=True, right_index=True)
ax = df[['PJME_MW']].plot(figsize=(15, 5))
df['prediction'].plot(ax=ax, style='.')
plt.legend(['Truth Data', 'Predictions'])
ax.set_title('Raw Dat and Prediction')
plt.show()
```


RMSE Score

score = np.sqrt(mean_squared_error(test['PJME_MW'], test['prediction']))
print(f'RMSE Score on Test set: {score:0.2f}')

RMSE Score on Test set: 3721.75

#R2 Score

from sklearn.metrics import r2_score r2 = r2_score(test['PJME_MW'], test['prediction']) print("R-squared (R2) Score:", r2)

R-squared (R2) Score: 0.6670230260104328

The result is not that good, but it's a great starting point for your future model.

Logs

Time	#	Log Message
7.2s	1	Now, you're ready for step one
11.9s	2	[19:42:36] WARNING:/src/objective/regression_obj.cu:213: reg:linear is now deprecated in favor of reg:squarederror.
11.9s	3	[0] validation_0-rmse:32605.13860 validation_1-rmse:31657.15907
14.1s	4	[100] validation_0-rmse:12581.21569 validation_1-rmse:11743.75114
16.2s	5	[200] validation_0-rmse:5835.12466 validation_1-rmse:5365.67709
18.3s	6	[300] validation_0-rmse:3915.75557 validation_1-rmse:4020.67023
20.4s	7	[400] validation_0-rmse:3443.16468 validation_1-rmse:3853.40423
22.6s	8	[500] validation_0-rmse:3285.33804 validation_1-rmse:3805.30176
24.7s	9	[600] validation_0-rmse:3201.92936 validation_1-rmse:3772.44933
26.8s	10	[700] validation_0-rmse:3148.14225 validation_1-rmse:3750.91108
28.9s	11	[800] validation_0-rmse:3109.24248 validation_1-rmse:3733.89713
31.1s	12	[900] validation_0-rmse:3079.40079 validation_1-rmse:3725.61224
33.2s	13	[999] validation_0-rmse:3052.73503 validation_1-rmse:3722.92257
35.8s	14	RMSE Score on Test set: 3721.75
35.8s	15	R-squared (R2) Score: 0.6670230260104328
38.8s	16	/opt/conda/lib/python3.10/site-packages/traitlets/traitlets.py:2930: FutureWarning: Exporter.preprocessors=["remove_papermill_header.RemovePapermillHeader"] for containers is deprecated in traitlets 5.0. You can pass `Exporter.preprocessors item` multiple times to add items to a list.
38.8s	17	warn(
38.8s	18	[NbConvertApp] WARNING Config option `kernel_spec_manager_class` not recognized by `NbConvertApp`.
38.8s	19	[NbConvertApp] Converting notebooknotebooknotebook
39.3s	20	[NbConvertApp] Writing 428033 bytes tonotebookipynb
41.0s	21	/opt/conda/lib/python3.10/site-packages/traitlets/traitlets.py:2930: FutureWarning: Exporter.preprocessors=["nbconvert.preprocessors.ExtractOutputPreprocessor"] for containers is deprecated in traitlets 5.0. You can pass `Exporter.preprocessors item` multiple times to add items to a list.
41.0s	22	warn(
41.0s	23	[NbConvertApp] WARNING Config option `kernel_spec_manager_class` not recognized by `NbConvertApp`.
41.0s	24	[NbConvertApp] Converting notebooknotebookipynb to html
41.9s	25	[NbConvertApp] Support files will be inresultsfiles/
41.9s	26	[NbConvertApp] Making directoryresultsfiles
41.9s	27	[NbConvertApp] Making directoryresultsfiles
41.9s	28	[NbConvertApp] Making directoryresultsfiles
41.9s	29	[NbConvertApp] Making directoryresultsfiles
41.9s	30	[NbConvertApp] Making directoryresultsfiles
41.9s	31	[NbConvertApp] Making directoryresultsfiles
41.9s	32	[NbConvertApp] Writing 314131 bytes toresultshtml

Conclusion	
In conclusion, the measure-based consumption system using AI represents a significant step	
forward in the efficient utilization of resources and the promotion of sustainability. By harnessing the	
capabilities of artificial intelligence, we have developed a powerful tool that not only measures	
consumption but also empowers individuals and organizations to make informed decisions and take	
steps toward a more sustainable and cost-effective future. This project demonstrates the	
transformative potential of AI in addressing critical challenges related to resource consumption and	
environmental conservation.	