日 **PATENT OFFICE**

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2000年12月27日

出願番号

Application Number:

特願2000-397756

出 Applicant(s):

コニカ株式会社

2001年 8月31日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

DMY00168

【あて先】

特許庁長官殿

【国際特許分類】

B26F 1/00

【発明者】

【住所又は居所】

東京都八王子市石川町2970 コニカ株式会社内

【氏名】

吉江 幸二

【発明者】

【住所又は居所】

東京都八王子市石川町2970 コニカ株式会社内

【氏名】

細谷 久男

【発明者】

【住所又は居所】

東京都八王子市石川町2970 コニカ株式会社内

【氏名】

平田 哲郎

【発明者】

【住所又は居所】

東京都八王子市石川町2970 コニカ株式会社内

【氏名】

河野 政信

【発明者】

【住所又は居所】

埼玉県所沢市東所沢和田1-9-4 久保田コーポ20

1

【氏名】

大橋 秀世

【発明者】

【住所又は居所】

埼玉県川越市寺尾873-10

【氏名】

淤見 和儀

【発明者】

【住所又は居所】

東京都練馬区富士見台3-30-16-102

【氏名】

後藤 優

【発明者】

【住所又は居所】

東京都小平市天神町1-228-2 オーベル花小金井

404

特2000-397756

【氏名】

長岡 友貴

【発明者】

【住所又は居所】

埼玉県川越市吉田新町3-10-13

【氏名】

福田 和晃

【特許出願人】

【識別番号】

000001270

【住所又は居所】

東京都新宿区西新宿1丁目26番2号

【氏名又は名称】

コニカ株式会社

【代表者】

植松 富司

【手数料の表示】

【予納台帳番号】

012265

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1 '

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】穿孔処理装置及び画像形成装置

【特許請求の範囲】

【請求項1】用紙の搬送方向と平行な側端部位置を検知する側端部検知センサを有し、穿孔手段を用紙の搬送方向と直交する方向に移動して用紙の中央に穿孔処理するようにした穿孔処理装置において、前記側端部検知センサは用紙の搬送方向と直交する方向に沿って移動可能に設けられ、非穿孔処理時においては、用紙先端が側端部検知センサに到達する前に、該側端部検知センサを用紙の搬送方向と平行な側端部位置よりも内側又は外側に位置するように移動待機させて用紙を通過させるようにしたことを特徴とする穿孔処理装置。

【請求項2】前記側端部検知センサは、穿孔手段と共に移動可能に設けられていることを特徴とする請求項1記載の穿孔処理装置。

【請求項3】前記側端部検知センサは、穿孔処理する用紙幅に応じて複数個 設けられていることを特徴とする請求項1又は2記載の穿孔処理装置。

【請求項4】前記側端部検知センサは、反射型又は透過型の光センサであることを特徴とする請求項1、2又は3記載の穿孔処理装置。

【請求項5】用紙に画像を記録形成する画像記録手段と、画像が記録形成された用紙を該画像記録手段より排出する排出手段とを有すると共に、該排出手段により排出された用紙に対して、請求項1~4のいずれかに記載の穿孔処理装置により穿孔処理を行うことを特徴とする画像形成装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、穿孔処理装置及び画像形成装置に関し、詳しくは、例えば複写機、 プリンタ、ファクシミリ、これらの複合機等の画像形成装置により画像が記録形 成されて排出される用紙に、ファイルに綴じ込むためのパンチ孔を穿孔形成する 穿孔処理装置及びこれを備える画像形成装置に関する。

[0002]

【従来の技術】

複写機、プリンタ、ファクシミリ、これらの複合機等の画像形成装置においては、ファイルに綴じ込むためのパンチ孔を穿孔形成する穿孔処理装置を画像形成装置と組み合わせることにより、作業効率の向上を図り得るようにすることが行なわれている。

[0003]

このパンチ孔の穿孔処理においては、パンチ孔の位置に偏りがなく、用紙をファイリングした際にその整合が良好となるように、各用紙に対して常に同一位置に行なわれることが重要である。しかし、各用紙毎の搬送時の曲がりの発生や、用紙毎の搬送方向に直交する方向への片寄りの発生等によって、各用紙毎に穿孔位置が微妙に異なることが原因となって、穿孔処理された用紙の端部を揃えてもパンチ孔の位置が不揃いとなり、一度にファイルできない或いはファイルしても用紙端部が不揃いとなって体裁が悪くなる問題がある。

[0004]

そこで従来、穿孔手段を用紙の搬送方向と直交する方向に沿って移動可能に設けると共に、該穿孔手段に導入される用紙の搬送方向に平行な側端部位置を検知するための側端部検知センサ(光センサ)を設け、該側端部検知センサを用紙の搬送方向と直交する用紙幅方向に移動させて用紙の側端部位置を検知し、その検知情報に基づいて穿孔手段を用紙中央に移動させて穿孔処理するようにした技術が提案されている(特開平10-279170号)。

[0005]

【発明が解決しようとする課題】

用紙の側端部位置を検知するための側端部検知センサは、用紙側端部位置を速やかに検知できるようにするため、予め穿孔手段に向けて搬送されてくる用紙の側端部近傍に位置して待機していることが望ましい。

[0006]

しかし、側端部検知センサが用紙の側端部近傍に位置して待機していると、特に側端部検知センサが移動動作を行なわない非穿孔処理時において用紙詰まり(ジャム)を発生し易いという不具合がある。これは、通常、用紙を穿孔手段に円滑に導くために用紙の搬送路を上下から挟むように案内板が配設されており、側

端部検知センサはそのセンサ光を案内板に開設されたセンサ穴を通して用紙に向けて投光するようにしているが、側端部検知センサを用紙の側端部近傍に位置させると、案内板に開設されているセンサ穴も用紙の側端部近傍に位置するため、 穿孔手段に搬送されてくる用紙の先端角部がこのセンサ穴に引っ掛かり易くなることに原因がある。

[0007]

そこで、本発明の第1の課題は、非穿孔処理時における用紙詰まりの発生をなくし、用紙搬送の信頼性を向上させた穿孔処理装置を提供することにある。

[0008]

また、本発明の第2の課題は、非穿孔処理時における用紙詰まりの発生をなく し、用紙搬送の信頼性を向上させた穿孔処理装置を備えた画像形成装置を提供す ることにある。

[0009]

【課題を解決するための手段】

上記第1の課題を解決する請求項1記載の発明は、用紙の搬送方向と平行な側端部位置を検知する側端部検知センサを有し、穿孔手段を用紙の搬送方向と直交する方向に移動して用紙の中央に穿孔処理するようにした穿孔処理装置において、前記側端部検知センサは用紙の搬送方向と直交する方向に沿って移動可能に設けられ、非穿孔処理時においては、用紙先端が側端部検知センサに到達する前に、該側端部検知センサを用紙の搬送方向と平行な側端部位置よりも内側又は外側に位置するように移動待機させて用紙を通過させるようにしたことを特徴とする穿孔処理装置である。

[0010]

請求項2記載の発明は、前記側端部検知センサは、穿孔手段と共に移動可能に 設けられていることを特徴とする請求項1記載の穿孔処理装置である。

[0011]

請求項3記載の発明は、前記側端部検知センサは、穿孔処理する用紙幅に応じて複数個設けられていることを特徴とする請求項1又は2記載の穿孔処理装置である。

[0012]

請求項4記載の発明は、前記側端部検知センサは、反射型又は透過型の光センサであることを特徴とする請求項1、2又は3記載の穿孔処理装置である。

[0013]

上記第2の課題を解決する請求項5記載の発明は、用紙に画像を記録形成する画像記録手段と、画像が記録形成された用紙を該画像記録手段より排出する排出手段とを有すると共に、該排出手段により排出された用紙に対して、請求項1~4のいずれかに記載の穿孔処理装置により穿孔処理を行うことを特徴とする画像形成装置である。

[0014]

【発明の実施の形態】

以下、本発明の実施の形態について図面に基づいて説明する。

[0015]

図1は、本発明に係る画像形成装置の一例を示す全体構成図であり、Aは画像 形成装置本体、Bは画像読み取り装置、Cは穿孔処理装置を示している。

[0016]

画像形成装置本体Aは、回転する像担持体としての感光体1の周囲に、帯電手段2、像露光手段(書き込み手段)3、現像手段4、転写手段5A、除電手段5B、分離爪5C、及びクリーニング手段6を配置し、帯電手段2によって感光体1の表面に一様帯電を行った後に、像露光手段3のレーザービームによって原稿から読み取られた画像データに基づくレーザービーム走査を行うことによって潜像を形成し、該潜像を現像手段4により反転現像して感光体1の表面にトナー像を形成する。

[0017]

一方、用紙収納手段7Aから給紙された転写紙である用紙Sは転写位置へと送られる。転写位置において転写手段5Aにより前記トナー像が用紙S上に転写される。その後に、用紙Sは除電手段5Bにより裏面の電荷が消去され、分離爪5Cにより感光体1から分離され、中間搬送部7Bにより搬送され、引き続き定着手段8により加熱定着され、排紙ローラ7Cにより排出される。

[0018]

用紙Sの両面に画像形成を行う場合には、定着手段8により加熱定着された用紙Sを、搬送路切替案内部材7Dにより通常の排紙通路から分岐し、反転搬送7 Eにおいてスイッチバックして表裏反転した後、転写位置へ搬送され、表面と同様転写、分離、定着を経て排紙ローラ7Cにより装置外に排出される。排紙ローラ7Cにより画像形成装置本体Aから排出された用紙Sは、該画像形成装置本体Aに隣接して配置された穿孔処理装置Cに送り込まれる。

[0019]

一方、感光体1の画像処理後の表面は、分離爪5Cの下流においてクリーニング手段6により表面に残留している現像剤が除去され、次の画像形成に備える。

[0020]

画像形成装置本体Aの上部には、原稿移動露光型読み取り方式の自動原稿送り 装置を備えた画像読み取り装置Bが設置されている。

[0021]

穿孔処理装置Cは、画像形成装置本体Aの排紙ローラ7Cから排出された用紙を受け入れ、その搬送方向の後端側にファイルに綴じ込むためのパンチ孔を穿孔形成するための穿孔手段10と、該穿孔手段10によりパンチ孔が穿孔形成された用紙を短い距離で搬送排出する第一の搬送路20及び長い距離で搬送排出する第二の搬送路30とを有し、これら第一の搬送路20と第二の搬送路30を切替案内部材40の操作により選択的に切り替えるようになっている。

[0022]

なお、穿孔手段10の下方にはパンチ屑を収容するパンチ屑受け50が配設されている。

[0023]

穿孔手段10の詳細を図2及び図3に示す。図2は穿孔手段10の平面図、図3はその側面図である。

[0024]

穿孔手段10は、用紙Sの搬送方向と直交する方向に沿って配置されると共に、それぞれ上下方向(図3において矢印で示す)に移動可能な適宜数のパンチ刃

11 (図示例では2つ) と、該パンチ刃11の下方に用紙Sの搬送路Pを挟んで 対向するように配置されたダイ12を有している。

[0025]

パンチ刃11の上方には、同じく用紙Sの搬送方向と直交する方向に沿うように、図示しない駆動手段の駆動力により回転する回転軸13がケーシング14に横架されると共に、該回転軸13にはパンチ刃11の上端に当接するように力ム13aが設けられている。なお、パンチ刃11は図示しない付勢手段により、その上端がカム13aに当接するように付勢されている。これにより回転軸13が回転することによって、カム13aのカム面がパンチ刃11の上端を摺動し、該カム13aの作用によりパンチ刃11をダイ12に向けて押圧下動させ、画像形成装置本体Aの排紙ローラ7Cによって搬送路Pを搬送される用紙Sを一時停止させた際に、その搬送方向後端側にパンチ孔を穿設するようになっている。

[0026]

パンチ刃11の下方には、用紙Sの搬送路Pの上側に沿って上部案内板15aが設けられ、また、ダイ12には、用紙Sの搬送方向上流側に下部案内板15bが設けられており、これら上部案内板15a及び下部案内板15bが搬送路Pを上下から挟むように対向していることにより、用紙Sを搬送路Pに円滑に案内する。

[0027]

この穿孔手段10において、パンチ刃11、ダイ12、回転軸13及び各ガイド板15a、15bは、同一のケーシング14に一体に構成されており、ケーシング14の一端にはラックギヤ14aが取り付けられている。ラックギヤ14aは、駆動モータ16に設けられたピニオンギヤ16aと噛合しており、駆動モータ16が正逆方向に回転駆動すると、その駆動力がピニオンギヤ16a及びラックギヤ14aを介してケーシング14に伝達され、これにより穿孔手段10全体が用紙Sの搬送方向と直交する方向(図2に示す矢印方向)に移動可能とされている。

[0028]

17は、用紙Sの搬送方向に対して平行な側端部位置を検知するための用紙側

端部検知手段である。この用紙側端部検知手段17は、反射型の光センサS1~S5からなり、穿孔処理される各種サイズの用紙幅に対応するように、用紙Sの搬送方向と直交する方向に沿って複数個(図示例では5個)が上部案内板15aに取り付けられている。それ故、後述する用紙側端部検知のために、穿孔手段10全体を移動する際、その移動量を小さくすることができ、穿孔処理の効率が向上する。

[0029]

用紙側端部検知手段17は、駆動モータ16の駆動によって穿孔手段10と共に移動可能とされている。これにより用紙のサイズ(幅方向の長さ)が変わってもパンチ刃11が用紙幅の中央位置に配置される。なお、本実施形態においては、各センサS1~S5は、各種サイズの用紙Sの理想位置、すなわち片寄りのない位置での一方側端部の内側5mmの位置にくるように設定されている態様を示しているが、これに限定されず、各用紙サイズの一方側端部の内側近傍位置又は外側近傍位置に配置されていればよい。また、センサの個数は、必ずしも装置で処理し得る全ての用紙サイズに対応している必要はなく、それよりも少ない数とすることもでき、少なくとも1個あれば機能することができる。

[0030]

上部案内板15aには、各センサS1~S5に対応して開口15cが形成されており、各センサS1~S5は開口15cを通して下部案内板15bに投光し、その反射光の強弱によって用紙Sの側端部の検知を行うようになっている。すなわち、穿孔手段10が図2の矢印方向に移動することにより、上部案内板15aに設けられた用紙Sのサイズに対応する用紙側端部検知手段17(センサS1~S5のいずれか)が、用紙Sの一方の側端部を内側から外側(又は外側から内側)へ向けて横切り、このときの反射光の強弱により用紙Sの側端部位置を検知することが可能である。

[0031]

このように用紙側端部検知手段17が、用紙Sの一方の側端部を内側から外側 (又は外側から内側)へ向けて横切る方向を固定することにより、検知誤差を少なくできるという利点がある。すなわち、同一の検知手段で、側端部位置の検知 を行う際に、内側から外側へ向けて横切る場合と外側から内側へ向けて横切る場合とが混在していると、検知位置に差が出易いという不具合があるが、本実施形態においてはこの問題を解消できる。

[0032]

また、用紙側端部検知手段17は、搬送路Pを搬送されてくる用紙Sの後端通過を検知することによって、該用紙Sの後端部を検知することも可能である。この用紙Sの後端部の検知は、複数のセンサS1~S5のうちの最も内側のセンサS5を用いることが好ましい。最も内側のセンサS5は用紙Sの中央部に近いため、用紙Sに曲がりが生じた場合、用紙Sの搬送方向に対する用紙Sの後端からのパンチ孔位置ずれを小さく抑えられるという利点がある。また、全ての用紙サイズに対して共通に後端検知を行うことが可能である。

[0033]

また、用紙側端部検知手段17によって、搬送路Pを搬送されてくる用紙Sの 先端通過を検知することによって、該用紙Sの先端部を検知することも可能であ る。本発明の用紙先端検知手段としては、別途センサを設けてもよいが、センサ S5で兼用した方がコスト安になり好ましい。

[0034]

穿孔手段10の下流側には、図4に示すように、レジストローラ対60が配置されている。このレジストローラ対60は、画像形成装置本体Aから排出されて穿孔手段10の搬送路Pを通過してきた用紙Sの先端部をその間に突き当て、該レジストローラ対60の入口側に配設された上部案内板61aと下部案内板61bとの間に、画像形成装置本体Aの排紙ローラ7Cの搬送力によって用紙Sのたわみを形成し、その搬送曲がりを矯正する。なお、このレジストローラ対60は、図示しない駆動モータにより回転駆動されるが、少なくとも用紙Sが穿孔手段10に搬送されてきたときには駆動モータを停止することにより停止状態にあり、用紙Sの先端が突き当たるようになっている。この用紙Sの先端が突き当たることにより、用紙Sの搬送曲がりを矯正するようになっている。

[0035]

切替案内部材40はレジストローラ対60の下流側に配置されており、レジス

トローラ対60により曲がりが矯正され、該レジストローラ対60が回転することにより搬送された用紙Sを、そのサイズに応じて、図示しないソレノイドの作動により短い距離で搬送排出する第一の搬送路20又は長い距離で搬送排出する第二の搬送路30にその搬送路を切り替えるように機能する。また、用紙Sに対して穿孔処理しない場合には、用紙Sを第一の搬送路20により速やかに排出する。

[0036]

次に、かかる穿孔処理装置Cの穿孔動作について説明する。

[0037]

画像形成装置本体Aにおいて所定の画像が記録形成された用紙Sが排紙ローラ7Cによって穿孔処理装置Cに排出されると、該用紙Sの先端部が上部案内板15a及び下部案内板15bの間から、予め決められた基準位置に位置して待機する穿孔手段10の搬送路Pに案内される。搬送路Pに案内された用紙Sは、穿孔手段10の下流側に配置されている停止状態のレジストローラ対60間に突き当たり、搬送曲がりが矯正された後、レジストローラ対60の回転開始により、第一の搬送路20又は第二の搬送路30に搬送される。

[0038]

一方、搬送路Pに案内された用紙Sの先端部の通過が用紙側端部検知手段17の最も内側のセンサS5により検知されると(図5)、所定時間後(搬送曲がり矯正後)に、レジストローラ対60によって用紙Sが搬送される過程で、駆動モータ16を駆動させ、用紙Sのサイズに応じたセンサ(ここでは用紙SのサイズがA3サイズの場合の例として、用紙側端部検知手段17の最も外側のセンサS1)が用紙Sの側端部を検知するまで、センサS1が用紙Sの内側から外側に向けて移動するように穿孔手段10全体を移動させる(図6)。なお、図5において用紙先端検知手段として機能していたセンサS5は、この穿孔手段10全体の移動が開始されるまでの間に、用紙検知のためのアルゴリズムを切り換える等により、用紙側端部の検知に備える。

[0039]

用紙Sのサイズに応じたセンサ(ここではセンサS1)により用紙Sの側端部

が検知されると、駆動モータ16を逆方向に回転させ、再度センサS1が用紙Sの側端部を検知するまで、センサS1が用紙Sの外側から内側に向けて移動するように穿孔手段10全体を移動させる(図7)。これにより用紙Sの側端部位置を検出する。

[0040]

この用紙Sの側端部位置の検出の後、穿孔手段10のパンチ刃11の中央が用紙Sの中央にくるようにするための該側端部位置からの移動量を図示しないCP U等の演算手段により割り出し、駆動モータ16を制御して穿孔手段10を移動させ、パンチ刃11の中央が用紙Sの中央にくるように位置決めする(図8)。

[0041]

次いで、用紙Sの後端を検知すべく備えられたセンサS5が用紙Sの後端を検知した後、用紙Sの所定距離搬送後に、レジストローラ対60の回転を停止させて用紙Sの搬送を一時停止させ、所定のタイミングでパンチ刃11を下動させて、用紙Sの所定位置に穿孔を行う(図9)。これにより用紙Sの中央位置に精度良くパンチ孔を形成することができる。

[0042]

パンチ孔が形成された用紙Sは、再度レジストローラ対60の回転開始により 搬送され、穿孔処理装置Cから排出される。

[0043]

一方、画像形成装置本体A側の設定操作により非穿孔処理モードが選択された場合、用紙Sの先端が側端部検知手段17に到達する前に、予め駆動モータ16を回転駆動させて穿孔手段10を用紙Sの内側又は外側に向けて移動させ、該穿孔手段10に設けられた側端部検知手段17のいずれのセンサS1~S5も、搬送されてくる用紙Sの側端部に位置しないようにして待機させる(図10)。

[0044]

これにより、用紙Sが側端部検知手段17の下方を通過する際、その搬送方向と平行な側端部は、S1~S5のいずれのセンサの直下も通過しないため、上部案内板15aに各センサS1~S5に対応してそれぞれ開設されたセンサ穴15 cの直下通過が避けられ、用紙Sの先端角部Saがセンサ穴15cに引っ掛かる

ような事態を招くことなく用紙 S を穿孔手段 1 0 から搬送排出させることができ 、用紙搬送の信頼性を向上させることができる。

[0045]

なお、図10に示す態様では、非穿孔処理時に、各センサS1~S5の全て(側端部検知手段17全体)が用紙Sの内側に位置するように穿孔手段10を移動させて待機させるようにしているが、各センサS1~S5の全て(側端部検知手段17全体)が用紙Sの外側に位置するように穿孔手段10を移動させて待機させるようにしてもよい。

[0046]

また、側端部検知手段17が、本実施形態に示すように複数個のセンサS1~S5からなる場合には、図11に示すように、用紙Sの搬送方向に平行な側端部が各センサS1~S5のうちのいずれかのセンサ間に位置するように穿孔手段10を移動させて待機させるようにしても、同様に用紙Sの先端角部がセンサ穴15c直下を通過することが避けられ、ジャム発生の虞れなく用紙Sを穿孔手段10から搬送排出させることができる。

[0047]

以上の説明では、用紙側端部検知手段17を反射型の光センサを用いた例を示したが、これに限定されない。例えば、下部案内板15bに受光部を配置し、上部案内板15aに配置された投光部からの光を、搬送路Pを挟んで下部案内板15bの受光部によって受光することにより用紙Sの側端部位置を検出する透過型の光センサであってもよい。

[0048]

また、画像形成装置は、穿孔処理装置Cから排出された用紙Sに対して、例えばステープリング、ソーティング等の後処理を更に行なうための後処理装置を備えるようにしてもよい。

[0049]

【発明の効果】

本発明によれば、非穿孔処理時における用紙詰まりの発生をなくし、用紙搬送の信頼性を向上させた穿孔処理装置を提供することができる。

[0050]

また、本発明によれば、非穿孔処理時における用紙詰まりの発生をなくし、用紙搬送の信頼性を向上させた穿孔処理装置を備えた画像形成装置を提供することができる。

【図面の簡単な説明】

- 【図1】画像形成装置の概略を示す構成図
- 【図2】穿孔手段の概略構成を示す平面図
- 【図3】穿孔手段の概略構成を示す側面図
- 【図4】穿孔装置の要部構成を示す側面図
- 【図5】穿孔手段による穿孔動作を示す説明図
- 【図6】穿孔手段による穿孔動作を示す説明図
- 【図7】穿孔手段による穿孔動作を示す説明図
- 【図8】穿孔手段による穿孔動作を示す説明図
- 【図9】穿孔手段による穿孔動作を示す説明図
- 【図10】穿孔手段による非穿孔処理時の動作を示す説明図
- 【図11】穿孔手段による非穿孔処理時の動作を示す説明図

【符号の説明】

A:画像形成装置本体

B:画像読み取り装置

C:穿孔処理装置

10:穿孔手段

11:パンチ刃

12:ダイ

13:回転軸

13a:カム

14:ケーシング

15a:上部案内板

15b:下部案内板

15c:センサ穴

特2000-397756

16:駆動モータ

16a:ピニオンギヤ

17: 側端部位置検知手段

20:第一の搬送路

30:第二の搬送路

40: 切替案内部材

50:パンチ屑受け

60: レジストローラ対

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【書類名】

要約書

【要約】

【課題】非穿孔処理時における用紙詰まりの発生をなくし、用紙搬送の信頼性を向上させた穿孔処理装置の提供。

【解決手段】用紙Sの搬送方向と平行な側端部位置を検知する側端部検知センサ 17を有し、穿孔手段10を用紙Sの搬送方向と直交する方向に移動して用紙の中央に穿孔処理するようにした穿孔処理装置において、前記側端部検知センサ17は用紙の搬送方向と直交する方向に沿って移動可能に設けられ、非穿孔処理時においては、用紙先端が側端部検知センサ17に到達する前に、該側端部検知センサ17を用紙の搬送方向と平行な側端部位置よりも内側又は外側に位置するように移動待機させて用紙を通過させる。

【選択図】

図10

特2000-397756

認定・付加情報

特許出願の番号

特願2000-397756

受付番号

50001691419

書類名 🕶

特許願

担当官

第三担当上席 0092

作成日

平成12年12月28日

<認定情報・付加情報>

【提出日】

平成12年12月27日

出願人履歷情報

識別番号

[000001270]

1. 変更年月日

1990年 8月14日

[変更理由]

新規登録

住 所

東京都新宿区西新宿1丁目26番2号

氏 名

コニカ株式会社