Homework #4: KNN, Naïve Bayes, and Banknote Authentication

In this assignment, you have <u>two</u> tasks to complete using the *Banknote Authentication* dataset:

- 1) Use your ML / DM tool of choice (e.g., KNIME) to experiment with the **K-Nearest Neighbor** and **Naive Bayes** classifiers on the *training* dataset (i.e., banknote_train.csv). Submit a short description (with screenshots) explaining your experimentation. E.g.,
 - What algorithm parameters did you try?
 - Did you use K-fold cross-validation?
 - What were the results (accuracy, precision, and recall)?
- 2) Once you determine the "best" algorithm and parameters (e.g., K), implement the classification workflow in **Python** to classify the *test* dataset (i.e., banknote_test.csv). Submit your Python code.
 - You can hard-code input files "banknote_train.csv" and "banknote_test.csv"
 - You must write the *class predictions* to a file named **<lastname>.csv**
 - i. Please include each *row* of test data with class label in your output

EXAMPLES (task 2 only)

```
UNIX> ls *.csv
banknote test.csv
                    banknote train.csv
UNIX> head -n 1 banknote test.csv
4.2586, 11.2962, -4.0943, -4.3457
//use python script(s) to predict banknote test data
UNIX> python KNN_workflow.py
UNIX> python NB workflow.py
UNIX> ls *.csv
banknote test.csv
                    rubin knn.csv
banknote train.csv rubin nb.csv
//examine the first prediction made
UNIX> head -n 1 rubin knn.csv
4.2586,11.2962,-4.0943,-4.3457,0.0000
UNIX> head -n 1 rubin nb.csv
4.2586,11.2962,-4.0943,-4.3457,0.0000
```

HINTS

- Task #1
 - o K-folds cross validation
 - o accuracy, prediction, recall
 - o KNIME specific:
 - CSV Reader
 - Number To String
 - X-partitioner
 - X-aggregator
 - Predictor
 - Learner
 - Scorer
- Task #2
 - o Python **scikit-learn** module
 - o numpy module
 - o numpy genfromtxt(...)
 - o numpy savetxt(...)