Profesor: Felipe Osorio Ayudante: Nicolás Alfaro

Contacto: nicolas.alfaro@sansano.usm.cl Semestre: 2021-2 (Primavera 2021)

AYUDANTÍA 7

12 de Octubre, 2021

PROBLEMAS

P1 Sea $X_1, X_2, ..., X_n$ un conjunto de variables aleatorias IID, tal que $X_i \sim U(0, \theta)$. Demuestre entonces que si $\hat{\theta}_n$ es el EMV de θ , entonces $n(\theta - \hat{\theta}_n)$ converge en distribución a una variable aleatoria Exponencial de parámetro θ

P2 Considerando el siguiente Teorema de Cramer-Wold

Teorema (Cramer-Wold): La distribución de un vector aleatorio n-dimensional \mathbf{X} está completamente determinada por el conjunto de todas las distribuciones uni-dimensionales de las combinaciones lineales $t^{\top}\mathbf{X}$, donde $t \in \mathbb{R}^n$ y por ende

$$\mathbf{X}_n \xrightarrow{d} \mathbf{X} \iff t^{\top} \mathbf{X}_n \xrightarrow{d} t^{\top} \mathbf{X} \quad \forall t \in \mathbb{R}^n$$

Demuestre el Teorema del Límite Central Multivariado

Teorema (Teorema del LC Multivariado): Sean X_1, X_2, \ldots, X_n vectores aleatorios pdimensionales IID con media $\boldsymbol{\mu} = \boldsymbol{E}[X_i]$ y matriz de covarianza $\boldsymbol{\Sigma} = \boldsymbol{E}[(X_i - \boldsymbol{\mu})^\top (X_i - \boldsymbol{\mu})] < \infty$. Entonces

$$rac{1}{\sqrt{n}}\sum_{i=1}^n (X_i-\mu) = \sqrt{n}(\overline{X}_i-\mu) \stackrel{d}{
ightarrow} N_p(0,\Sigma)$$

P3 Utilice el resultado anterior para demostrar que si $\hat{\sigma}^2$ es la varianza muestral sesgada, de unas observaciones Y_1, Y_2, \dots, Y_n provenientes de una distribución con primeros 4 momentos finitos, entonces

$$\sqrt{n}(\hat{\sigma}^2 - \mu_2) \xrightarrow{d} N(0, \mu_4 - \mu_2^2)$$

Donde μ_2 y μ_4 son el 2do momento central y 4to momento central respectivamente. Concluya comentando que ocurre con la varianza muestral insesgada S^2 .

 $[\mathbf{P4}]$ Sea $\{X_i\}_i^n$ una sucesión de variables aleatorias IID, donde $X_i \sim Gamma(\alpha, \theta)$ donde α corresponde al parámetro de forma y θ al parámetro de escala. Demuestre entonces que

$$\sqrt{n}(\hat{\alpha_n} - \alpha) \xrightarrow{d} N(0, \frac{\alpha}{\alpha \psi'(\alpha) - 1})$$

y que

$$\sqrt{n}(\hat{\theta_n} - \theta) \xrightarrow{d} N(0, \frac{\theta^2 \psi'(\alpha)}{\alpha \psi'(\alpha) - 1})$$

Donde $\hat{\alpha}_n$ y $\hat{\theta}_n$ Son los EMV de α y θ respectivamente.

1		

•		

1			

ſ			