PROBABILITÉS CONDITIONNELLES E01C

EXERCICE N°1 Remise en forme

Dans son garage, Julien range des bidons et des bouteilles, qui peuvent être avec ou sans étiquette, selon la répartition ci-après :

	Bidon	Bouteille	Total
Avec étiquette	2	9	11
Sans étiquette	6	3	9
Total	8	12	20

Il prend un de ses récipients au hasard et on considère les événements :

A: « Le récipient a une étiquette. »

D: « Le récipient est un bidon. »

1) Déterminer les probabilités P(A) et P(D).

$$P(A) = \frac{11}{20}$$
, $P(D) = \frac{8}{20} = \frac{2}{5}$

2) Décrire chacun des événements $A\cap D$, $A\cup D$, $\overline{A}\cap D$, par une phrase et donner sa probabilité.

• $\overline{A} \cap D$: Le récipient est un bidon avec étiquette.

$$P(A \cap D) = \frac{2}{20} = \frac{1}{10}$$

 $A \cap D$ est l'événement, c'est à dire « une chose décrite par une phrase »

 $P(A \cap D)$ est la probabilité, c'est à dire un nombre compris entre 0 et 1.

• $A \cup D$: Le récipient est un bidon ou possède une étiquette.

$$P(A \cup D) = \frac{2+6+9}{20} = \frac{17}{20}$$

(En utilisant directement le tableau)

$$P(A \cup D) = P(A) + P(D) - P(A \cap D) = \frac{11}{20} + \frac{8}{20} - \frac{2}{20} = \frac{17}{20}$$

(En utilisant la formule du crible)

• $\overline{A} \cap D$: Le récipient est un bidon ET n'a pas d'étiquette.

$$P(\overline{A} \cap D) = \frac{6}{20} = \frac{3}{10}$$

3) Écrire l'événement « Le récipient est une Bouteille sans étiquette » à l'aide des événements A et D.

$$\overline{A} \cap \overline{D}$$

4) Associer les événements suivants à la valeur qui correspond :

Probabilité qu'une bouteille ait une étiquette.

Probabilité qu'un récipient avec étiquette est une bouteille.

Probabilité qu'un récipient soit une bouteille avec étiquette.

PROBABILITÉS CONDITIONNELLES E01C

EXERCICE N°2 Remise en forme n°2

On considère une urne contenant 3 jetons numérotés de 1 à 3.

On tire un jeton dans cette urne puis **on le remet dans l'urne** et on en tire un second : le résultat de l'expérience aléatoire est le produit des deux nombres obtenus.

1) Représenter cette expérience aléatoire par un arbre puis par un tableau.

Étape 1 Étape 2	1	2	3
1	1	2	3
2	2	4	6
3	3	6	9

2) Donner la loi de probabilité associée à cette expérience aléatoire.

Issue	1	2	3	4	6	9	total
Probabilité	<u>1</u> 9	<u>2</u> 9	<u>2</u> 9	<u>1</u> 9	<u>2</u> 9	<u>1</u> 9	1

3) Quelle est la probabilité que le résultat de cette expérience aléatoire soit pair ?

$$P(2)+P(4)+P(6) = \frac{2}{9} + \frac{1}{9} + \frac{2}{9} = \frac{5}{9}$$

Ainsi la probabilité que le résultat de cette expérience aléatoire soit pair vaut

PROBABILITÉS CONDITIONNELLES E01C

EXERCICE N°3 Remise en forme n°3

Dans un parc d'attractions, à un manège, le temps d'attente annoncé est 5 , 10 , 15 et 20 minutes avec les probabilités suivantes :

Temps d'attente (en min)	5	10	15	20
Probabilité	0,3	0,1	0,15	

1) Déterminer la probabilité d'attendre 20 minutes.

Dans une expérience aléatoire, la somme des probabilités des issues vaut 1, donc :

$$P(20) = 1 - (0.3 + 0.1 + 0.15) = 0.45$$

Ainsi la probabilité d'attendre 20 minutes vaut 0,45

2) Déterminer la probabilité d'attendre au plus 10 minutes.

$$P(5) + P(10) = 0.3 + 0.1 = 0.1$$

Ainsi, la probabilité d'attendre au plus 10 minutes vaut 0,4

« au plus » signifie « On prend tout jusque » et correspond à « ≤ ». (en lisant de gauche à droite)

3) Déterminer la probabilité d'attendre plus de 10 minutes.

$$P(15) + P(20) = 0.15 + 0.45 = 0.6$$
.

Ainsi, la probabilité d'attendre plus de 10 minutes vaut 0,6 .

« plus de » signifie : « On prend ce qui est strictement au dessus » et correspond à « > ». (en lisant de gauche à droite)

4) Déterminer la probabilité d'attendre au moins 10 minutes.

$$P(10) + P(15) + P(20) = 0.1 + 0.15 + 0.45 = 0.7$$

Ainsi, la probabilité d'attendre au moins 10 minutes vaut 0,7.

« au moins » signifie : « On prend à partir de » et correspond à « ≥ ». (en lisant de gauche à droite)

5) Déterminer la probabilité d'attendre moins de 10 minutes.

$$P(5) = 0.1$$
.

Ainsi, la probabilité d'attendre moins de 10 minutes vaut 0,1

« moins de » signifie : « On prend ce qui est strictement en dessous » et correspond à « < ». (en lisant de gauche à droite)