Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo

Ziang Niu, Johanna Meier, François-Xavier Briol

ziangniu@sas.upenn.edu

Intractable Generative Models

- · Likelihood function is intractable.
- · Sampling is possible.
- $u_i \sim \mathcal{U}([0,1]^s), G_{\theta}(u_i) \sim \mathbb{P}_{\theta}.$
- Examples include VAE, GANs.

Minimum Distance Estimators (MDE)

- $\{y_j\}_{j=1}^m \stackrel{\text{IID}}{\sim} \mathbb{Q} \in \mathcal{P}(\mathcal{X}).$
- one can construct an estimator through the framework of MDE:

$$\widehat{\theta}_m^D = \arg\min_{\theta \in \Theta} D(\mathbb{P}_{\theta}, \mathbb{Q}^m)$$

where
$$\mathbb{Q}^m = \frac{1}{m} \sum_{j=1}^m \delta_{y_j}(x)$$
.

• \mathbb{P}_{θ} is unknown. Require a good approximation $D(\mathbb{P}_{\theta}^{n},\mathbb{Q}^{m})$.

Integral Probability Metrics (IPMs)

• An IPM is a probability metric which takes the form:

$$D_{\mathcal{F}}(\mathbb{P}, \mathbb{Q}) := \sup_{f \in \mathcal{F}} \left| \int_{\mathcal{X}} f(x) \mathbb{P}(\mathrm{d}x) - \int_{\mathcal{X}} f(x) \mathbb{Q}(\mathrm{d}x) \right|$$

- Popular metrics include:
 - Maximum Mean Discrepancy (MMD)
 - Wasserstein Distance
- Other popular divergences (not in IPMs) include:
 - Sinkhorn divergence $S_{c,p,\lambda}$
 - Sliced Wasserstein Distance.

Sample Complexity

Consider D is a metric.

- We want $D(\mathbb{P}_{\theta}, \mathbb{Q}^m)$ but what we can get is $D(\mathbb{P}_{\theta}^n, \mathbb{Q}^m)$.
- We could like make $|D(\mathbb{P}^n_{\theta},\mathbb{Q}^m) D(\mathbb{P}_{\theta},\mathbb{Q})|$ to be as small as possible.
- By basic concentration inequality, we know

$$|D(\mathbb{P}_{\theta}^{n},\mathbb{Q}^{m}) - D(\mathbb{P}_{\theta},\mathbb{Q}^{m})| \leq D(\mathbb{P}_{\theta}^{n},\mathbb{P}_{\theta})$$

Sample complexity $D(\mathbb{P}_{\theta}^{n}, \mathbb{P}_{\theta})$ plays a key role here!

• Issue with Previous Method: Monte Carlo point set only guarantees $D(\mathbb{P}^n_{\theta}, \mathbb{P}_{\theta}) = O_p(n^{-1/2}).$

Enhancing Sample Complexity via Quasi-Monte Carlo

• QMC: generate a more "diverse" set of samples from the model.

• **IDEA:** Replace MC points to estimate discrepancies with QMC/RQMC points.

Numerical Results: Inference for Multivariate g-and-k Models

The generator for g-and-k model is

$$G_{\theta}(u) := \theta_1 + \theta_2 \left(1 + 0.8 \frac{(1 - \exp(-\theta_3 z))}{(1 + \exp(-\theta_3 z))} \right) (1 + z^2)^{\theta_4} z$$

where $z=\Sigma^{\frac{1}{2}}\Phi^{-1}(u)^{\top}, u\sim \mathrm{Unif}([0,1]^d).$ Σ is a symmetric Toepliz matrix with diagonal entries equal to 1 and subdiagonals equal to θ_5 and Φ^{-1} is the inverse CDF of Gaussian.

More Applications: generative neural network

- Generative models widely used in modern machine learning are parametrized by neural network.
- Consider $G_{\theta}: \mathcal{U} \to \mathcal{X}$ with $\mathcal{U} = [0,1]^2$ and $\mathcal{X} = [0,1]^{784}$ (i.e. s=2 and d=784) of the form:

$$\mathbf{G}_{\theta}(\mathbf{u}) = \phi_{2}(\phi_{1}(\phi_{1}(\mathbf{u}^{\top}\mathbf{W}^{1} + \mathbf{b}^{1})^{\top}\mathbf{W}^{2} + \mathbf{b}^{2})^{\top}\mathbf{W}^{3} + \mathbf{b}^{3})$$

where heta is a parameter vector containing all entries of the weight matrices and

- $\phi_1(x) = \log(\exp(x) + 1)$ (a softplus activation function)
- $\phi_2(x) = (1 + \exp(-x))^{-1}$ (a logistic activation function)

More Applications: generative neural network

Theory: Assumptions

Assumption 1(QMC points set)

Given a model \mathbb{P}_{θ} with generative process $(\mathsf{Unif}([0,1]^s), G_{\theta})$, we assume we have access to $x_i = G_{\theta}(u_i)$ for $i = 1, \ldots, n$ where $\{u_i\}_{i=1}^n \subset [0,1]^s$ form a QMC or RQMC point set for some $\alpha_s > 0$. Furthermore, we write $\mathbb{P}_{\theta}^n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$.

Assumption 2(Smoothness condition)

Assume that the domain $\mathcal{X}\subset\mathbb{R}^d$ is a compact space and that the generator is a map $G_\theta:[0,1]^{\mathsf{s}}\to\mathcal{X}$ where:

- 1. $\partial^{(1,\ldots,1)}(\mathsf{G}_{\theta})_j \in \mathcal{C}([0,1]^{\mathfrak{s}})$ for all $j=1,\ldots,d$.
- 2. $\partial^{\nu}(G_{\theta})_{j}(\cdot:1_{-\nu}) \in L^{p_{j}}([0,1]^{|\nu|})$ for all $j=1,\ldots,d$ and $\nu\in\{0,1\}^{s}\setminus(0,\ldots,0)$, where $p_{j}\in[1,\infty]$ and $\sum_{j=1}^{d}p_{j}^{-1}\leq1$.

Theory: Results

Theorem

Let $k \in \mathcal{C}^{s,s}(\mathcal{X})$, $\mathbb{P}_{\theta} \in \mathcal{P}_k$ and suppose Assumptions 1-2 hold. Then,

$$\mathrm{MMD}(\mathbb{P}_{\theta},\mathbb{P}_{\theta}^{n})=\mathrm{O}(n^{-1}(\log n)^{\alpha_{\mathfrak{s}}}).$$

Corollary

Suppose the conditions in above Theorem hold. Then,

$$|\mathrm{MMD}(\mathbb{P}_{\theta},\mathbb{Q}^m) - \mathrm{MMD}(\mathbb{P}_{\theta}^n,\mathbb{Q}^m)| = O(n^{-1}(\log n)^{\alpha_{\mathfrak{s}}}).$$

More Details

Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte Carlo

Ziang Niu^{1,*}, Johanna Meier^{2,*}, François-Xavier Briol^{3,†}

 1 Renmin University of China, 2 Leibniz Universität Hannover, 3 University College London, * contributed equally, † corresponding author.

ArXiv Link: https://arxiv.org/pdf/2106.11561.pdf

