Informed Search algorithms

Chapter 4, Sections 1-2

Chapter 4, Sections 1–2 1

Chapter 4, Sections 1–2 2

Best-first search

Idea: use an evaluation function for each node - estimate of "desirability"

 \Rightarrow Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search A* search

Outline

- A* search
- ♦ Heuristics

Romania with step costs in km

Best-first search

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure $fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)$ $\mathbf{loop}\;\mathbf{do}$

if fringe is empty then return failure

 $node \leftarrow \texttt{Remove-Front}(fringe)$

if GOAL-TEST[problem] applied to STATE(node) succeeds return node

 $fringe \leftarrow InsertAll(Expand(node, problem), fringe)$

A strategy is defined by picking the order of node expansion

Greedy search

Evaluation function h(n) (heuristic)

= estimate of cost from n to the closest goal

E.g., $h_{\mathrm{SLD}}(n) = \mathrm{straight}\text{-line}$ distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Chapter 4, Sections 1–2 3 Chapter 4, Sections 1–2 6

Greedy search example

Greedy search example

Chapter 4, Sections 1–2 7

Chapter 4, Sections 1–2 10

Chapter 4, Sections 1–2 11

Greedy search example

Properties of greedy search

Complete??

Chapter 4, Sections 1–2 8

Greedy search example

Properties of greedy search

 $\label{eq:complete} $\underbrace{\mbox{Complete}??}$ \mbox{No-can get stuck in loops, e.g., with Oradea as goal,} \\ \mbox{lasi} \to \mbox{Neamt} \to \mbox{lasi} \to \mbox{Neamt} \to \\ \mbox{Complete in finite space with repeated-state checking}$

Time??

Properties of greedy search

 $\frac{\text{Complete}?? \text{ No-can get stuck in loops, e.g.,}}{\text{lasi} \rightarrow \text{Neamt} \rightarrow \text{lasi} \rightarrow \text{Neamt} \rightarrow}$

Complete in finite space with repeated-state checking

Time?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space??

Chapter 4, Sections 1–2 13

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \mathrm{cost} \ \mathrm{so} \ \mathrm{far} \ \mathrm{to} \ \mathrm{reach} \ n$

h(n) =estimated cost to goal from n

 $f(n)={\it estimated total cost of path through }n{\it to goal}$

 A^* search uses an admissible heuristic

i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the ${\bf true}$ cost from n. (Also require $h(n) \geq 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

Chapter 4, Sections 1–2 16

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

 A^* search example

Chapter 4, Sections 1-2 14 Chapter 4, Sections 1-2 17

Properties of greedy search

Complete?? No-can get stuck in loops, e.g.,

 $\mathsf{lasi} \to \mathsf{Neamt} \to \mathsf{lasi} \to \mathsf{Neamt} \to$

Complete in finite space with repeated-state checking

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A* search example

Chapter 4, Sections 1-2 15 Chapter 4, Sections 1-2 15

A^* search example

Arad Timisoara 447=118+329 Zerind 449=75+374

A^* search example

Chapter 4, Sections 1–2 19

Chapter 4, Sections 1–2 22

A^* search example

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

since $h(G_2) = 0$ $f(G_2) = g(G_2)$ $> g(G_1)$ since G_2 is suboptimal since h is admissible $\geq f(n)$

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion

Chapter 4, Sections 1–2 20

Chapter 4, Sections 1–2 23

A^* search example

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers) Contour i has all nodes with $f=f_i$, where $f_i < f_{i+1}$

Properties of A*

Complete??

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal??

Chapter 4, Sections 1–2 25

Chapter 4, Sections 1–2 28

Properties of A*

 $\underline{\mbox{Complete}??} \mbox{ Yes, unless there are infinitely many nodes with } f \leq f(G) \\ \underline{\mbox{Time}??}$

Properties of A*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Chapter 4, Sections 1–2 26

Chapter 4, Sections 1–2 29

Properties of A*

 $\underline{\text{Complete}} \ref{Complete} \ref{Complete} \ref{Complete} \textbf{ Yes, unless there are infinitely many nodes with } f \leq f(G)$

<u>Time</u>?? Exponential in [relative error in $h \times$ length of soln.]

Space??

Proof of lemma: Consistency

A heuristic is consistent if

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

 $\frac{h_1(S)}{h_2(S)} = ??$

Chapter 4, Sections 1–2 31

Relaxed problems

Admissible heuristics can be derived from the **exact** solution cost of a **relaxed** version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Chapter 4, Sections 1–2 34

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired location of each tile)

 $h_1(S) = ?? 8$ $h_2(S) = ?? 3+1+2+2+3+3+2 = 18$

Chapter 4, Sections 1–2 32

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP) Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in $O(n^2)$ and is a lower bound on the shortest (open) tour

Chapter 4, Sections 1–2 35

Chapter 4, Sections 1–2 36

Dominance

If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is usually better for search

Typical search costs:

 $\begin{array}{ll} d=14 & \text{IDS}=3,473,941 \text{ nodes} \\ & \mathsf{A}^*(h_1)=539 \text{ nodes} \\ & \mathsf{A}^*(h_2)=113 \text{ nodes} \\ d=24 & \text{IDS}\approx 54,000,000,000 \text{ nodes} \\ & \mathsf{A}^*(h_1)=39,135 \text{ nodes} \\ & \mathsf{A}^*(h_2)=1,641 \text{ nodes} \end{array}$

Given any admissible heuristics h_a , h_b ,

 $h(n) = \max(h_a(n), h_b(n))$

is also admissible and dominates h_a , h_b

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest \boldsymbol{h}

- incomplete and not always optimal

 A^* search expands lowest g+h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems