COMP 585 Spring 2025

Scriber: Maryam Aliakbarpour

Instructor: Maryam Aliakbarpour Probabilistic Toolkit for Learning and Computing February 25, 2025

Lecture 11

Sub-Exponential Random Variables

In the previous lecture, we explored sub-Gaussian random variables and observed their limitations. Specifically, we encountered simple random variables that did not fall under the Additionally, we saw that Hoeffding's Lemma, while useful, has sub-Gaussian category. limitations due to its invariance to variance. To address these limitations, we now introduce the concept of sub-exponential random variables. These variables offer a more nuanced approach to characterizing random variables and their concentration properties, particularly in scenarios where sub-Gaussianity proves insufficient.

Recall from the last lecture that for $|\lambda| \leq 1/4$:

$$\mathbf{E}\Big[e^{Z^2-1}\Big] \le e^{2\lambda^2} \,,$$

where $Z \sim \mathcal{N}(0,1)$ was a standard normal distribution.

The definition of sub-exponential random variables is inspired by the behavior of \mathbb{Z}^2 . Like \mathbb{Z}^2 , sub-exponential random variables have moment generating functions (MGFs) that are bounded for a range of λ values. In fact, we define a sub-exponential random variable with this property:

Definition 1. A random variable X with mean $\mu = \mathbf{E}[X]$ is sub-exponential if and only if there are non-negative parameters (ν^2, α) such that

$$\mathbf{E}\left[e^{\lambda(X-\mu)}\right] \le e^{\nu^2 \lambda^2/2} \qquad \text{for all } \lambda \text{ for which } |\lambda| \le \frac{1}{\alpha}.$$

We write $X \in \mathsf{subE}(\nu^2, \alpha)$.

These variables also exhibit heavier tails than sub-Gaussian random variables, decaying at a rate e^{-t} , similar to that of Z^2 . This slower tail decay distinguishes sub-exponential random variables from sub-Gaussian ones and makes them suitable for modeling distributions with heavier tails.

Lemma 2. If $X \in \mathsf{subE}(\nu^2, \alpha)$, then we have:

$$\mathbf{Pr}[X - \mathbf{E}[X] \ge t] \le \begin{cases} e^{\frac{-t^2}{2\nu^2}} & 0 \le t \le \frac{\nu^2}{\alpha} \\ e^{\frac{-t}{2\alpha}} & t \ge \frac{\nu^2}{\alpha} \end{cases}$$
(1)

The same bound holds for the tail of $\mathbf{E}[X] - X$. Alternatively, we can write:

$$\Pr[X - \mathbf{E}[X] \ge t] \le \exp\left(-\min\left\{\frac{t^2}{2\nu^2}, \frac{t}{2\alpha}\right\}\right)$$

$$\le \exp\left(-\frac{t^2/2}{\nu^2 + t\alpha}\right)$$

Proof. To establish this tail bound, we employ the Cramér-Chernoff method. This method leverages the fact that for any strictly increasing function f and any $x, y \in \mathbb{R}$, $x \geq y$ if and only if $f(x) \geq f(y)$. This implies that $\mathbf{Pr}[X \geq y] = \mathbf{Pr}[f(X) \geq f(y)]$. For any $\lambda > 0$, the function $f(x) = e^{\lambda x}$ is strictly increasing. Therefore, we get:

$$\mathbf{Pr}[X - \mathbf{E}[X] \ge t] = \mathbf{Pr} \left[e^{\lambda(X - \mathbf{E}[X])} \ge e^{\lambda t} \right]$$

$$\le \frac{\mathbf{E} \left[e^{\lambda(X - \mathbf{E}[X])} \right]}{e^{\lambda t}}.$$
 (by Markov's inequality)

The expected value in the numerator is the moment generating function (MGF) of the centered random variable $X - \mathbf{E}[X]$. Since X is sub-exponential, we can bound this MGF as follows:

$$\mathbf{Pr}[X - \mathbf{E}[X] \ge t] \le \frac{\mathbf{E}\left[e^{\lambda(X - \mathbf{E}[X])}\right]}{e^{\lambda t}} \le \frac{e^{\frac{\nu^2 \lambda^2}{2}}}{e^{\lambda t}} = \exp\left(\frac{\nu^2 \lambda^2}{2} - \lambda t\right).$$

This bound holds for all $\lambda \in (0, \frac{1}{\alpha}]$. Thus, we have:

$$\mathbf{Pr}[X - \mathbf{E}[X] \ge t] \le \inf_{\lambda \in (0, \alpha^{-1}]} \exp\left(\frac{\nu^2 \lambda^2}{2} - \lambda t\right).$$

To obtain the tightest upper bound, we minimize the exponent over this range. The exponent is a quadratic function in λ :

$$g(\lambda) := \frac{\nu^2 \lambda^2}{2} - \lambda t = \lambda \left(\frac{\nu^2}{2} \lambda - t\right).$$

This quadratic has roots at $\lambda = 0$ and $\lambda = \frac{2t}{\nu^2}$, and it attains its minimum at the midpoint, $\lambda_{\min} = \frac{t}{\nu^2}$. Now, we consider two cases based on whether λ_{\min} is in $(0, \alpha^{-1}]$ or not:

Case 1: $\lambda_{\min} \leq \frac{1}{\alpha}$. In this case, the minimum is within the allowed range for λ , and we have:

$$\Pr[X - \mathbf{E}[X] \ge t] \le \exp\left(\frac{\nu^2 \lambda_{\min}^2}{2} - \lambda_{\min} t\right) = \exp\left(-\frac{t^2}{2\nu^2}\right).$$

Case 2: $\lambda_{\min} > \frac{1}{\alpha}$. Here, the minimum falls outside the allowed range. Since $g(\lambda)$ is decreasing for $\lambda < \lambda_{\min}$, the minimum value within the allowed range is achieved at $\lambda = \frac{1}{\alpha}$:

$$\Pr[X - \mathbf{E}[X] \ge t] \le \exp\left(\frac{\nu^2}{2\alpha^2} - \frac{t}{\alpha}\right) \le \exp\left(\frac{t}{2\alpha} - \frac{t}{\alpha}\right) \quad \text{(using } t > \frac{\nu^2}{\alpha}\text{)}$$
$$= \exp\left(-\frac{t}{2\alpha}\right).$$

The above bounds together imply Equation (1). To see that the same bound applies to the other tail, $\Pr[\mathbf{E}[X] - X \ge t]$, we simply note that if X is sub-exponential, then so is -X with the same parameters. Applying the above argument to -X yields the desired bound.

The alternative form of the bound can be easily derived from the above cases, and we leave its proof as an exercise. \Box

This lemma reveals that sub-exponential random variables exhibit tail behavior similar to sub-Gaussian random variables near their mean. However, as we move further away from the mean, their tail behavior transitions to an e^{-t} decay. The parameter ν acts as a variance parameter, while α serves as an inverse width parameter, controlling the range over which the sub-Gaussian-like tail behavior holds.

It is worth noting that alternative definitions of sub-exponential random variables exist (e.g., Section 2.7 in [Ver18]), using roughly the same parameters for both ν and α . For these alternative definitions, we have an analogous lemma to sub-Gaussians establishing equivalent properties.

Lemma 3 (Equivalent Properties of Sub-Exponential Random Variables). The following properties are equivalent (up to constant factors, with the C_i 's differing by at most an absolute constant factor) for a random variable X:

1. **Tail Bound:** The tail probability of X satisfies

$$\Pr[|X| \ge t] \le 2 \exp(-t/C_1)$$
 for all $t \ge 0$.

2. Moment bound: The moments of X satisfy

$$||X||_{L_p} := (\mathbf{E}[|X|^p])^{1/p} \le C_2 p$$
 for all $p \ge 1$.

3. $MGF ext{ of } |X|$: The moment generating function of |X| satisfies the following bound:

$$\mathbf{E}\left[e^{\lambda|X|}\right] \leq \exp\left(C_3\lambda\right) \quad \text{for all } \lambda \text{ such that } 0 \leq \lambda \leq \frac{1}{C_3}.$$

4. **MGF** of |X|: The moment generating function of |X| is bounded at some point. For some C_4 , we have:

$$\mathbf{E} \left[e^{|X|/C_4} \right] \le 2.$$

5. **MGF** of X: If X is centered ($\mathbf{E}[X] = 0$), then the moment generating function of X satisfies:

$$\mathbf{E}\left[e^{\lambda X}\right] \le \exp\left(C_5^2 \lambda^2\right) \quad \text{for all } \lambda \text{ such that } |\lambda| \le \frac{1}{C_5}.$$

Deriving MGF Bound from Moment Bound: Proof of $2 \Rightarrow 5$

Proof. Suppose X is a zero mean random variable with bounded moments. For all $p \ge 1$, we have:

$$||X||_{L_p} := (\mathbf{E}[|X|^p])^{1/p} \le C_2 p.$$

Our goal is to bound the moment generating function of X. We start by the Taylor expansion of the exponential function:

$$e^x = \sum_{p=0}^{\infty} \frac{x^p}{p!} \,.$$

Using this, we can write the MGF of X as:

$$\mathbf{E}\left[e^{\lambda X}\right] = \mathbf{E}\left[\sum_{p=0}^{\infty} \frac{(\lambda X)^p}{p!}\right] \le \mathbf{E}\left[1 + \lambda X + \sum_{p=2}^{\infty} \frac{(\lambda X)^p}{p!}\right]$$
$$= 1 + \lambda \mathbf{E}[X] + \sum_{p=2}^{\infty} \frac{\lambda^p \mathbf{E}[X^p]}{p!} = 1 + \sum_{p=2}^{\infty} \frac{\lambda^p \mathbf{E}[X^p]}{p!},$$

where we used the fact that $\mathbf{E}[X] = 0$ in the last equality. Now, we can use the moment bound to bound the terms in the summation:

$$\mathbf{E}\left[e^{\lambda X}\right] \leq 1 + \sum_{p=2}^{\infty} \frac{\lambda^{p} \mathbf{E}[X^{p}]}{p!} \leq 1 + \sum_{p=2}^{\infty} \frac{\lambda^{p} (C_{2} p)^{p}}{p!}$$

$$\leq 1 + \sum_{p=2}^{\infty} \frac{(\lambda C_{2} p)^{p}}{(p/e)^{p}} \qquad \text{(using Stirling's approximation: } p! \geq (p/e)^{p})$$

$$= 1 + \sum_{p=2}^{\infty} (C_{2} \lambda e)^{p} = 1 + \frac{(C_{2} \lambda e)^{2}}{1 - C_{2} \lambda e} \qquad \text{(for } |C_{2} \lambda e| < 1)$$

Note that the series in the last line converges only when $|C_2 \lambda e|$ is bounded away from one. The denominator in the last term can get arbitrary close to zero which makes the bound useless. Here, we set λ is a way that the denominator is a constant. (rember that here we have controle in determining the range of λ . Let's assume λ is in a range for which we have: $|C_2 \lambda e|$ is at most 1/2. Then, we obtain:

$$\mathbf{E}\left[e^{\lambda X}\right] \le 1 + 2(C_2 \lambda e)^2 \le \exp\left(2(C_2 \lambda e)^2\right) \qquad \text{(for all } |\lambda| < \frac{1}{2C_2 e})$$

$$\le \exp\left((2 e C_2)^2 \lambda^2\right).$$

This shows that the MGF of X is bounded by as described in Definition 5 for $C_5=2\,C_2\,e$. $\ \square$

Bibliographic Note

The content of this lecture was derived from Section 2.7 of [Ver18], and the lecture notes of Prof. Sasha Rakhlin for "Mathematical Statistics: A Non-Asymptotic Approach", which can be found here.

References

[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge University Press, 2018.