Math 202 Exercises on Landau's Big-Oh and Little-Oh Notations

- 301. For $c \in \mathbb{R}$, a <u>neighborhood</u> of c is any interval of the form $(c \varepsilon, c + \varepsilon)$, where $\varepsilon > 0$. For $c = +\infty$, a <u>neighborhood</u> of c is any interval of the form $(a, +\infty)$, where $a \in \mathbb{R}$. For $c = -\infty$, a <u>neighborhood</u> of c is any interval of the form $(-\infty, a)$, where $a \in \mathbb{R}$.
 - (a) Prove that if N_1 and N_2 are neighborhoods of c, then $N_1 \cap N_2$ is also a neighborhood of c.
 - (b) Let I be an interval of positive length that contains c or has c as an endpoint. Let f(x) and g(x) be functions on I. In some books, the phrase "f(x) = O(g(x)) as $x \to c$ " is defined as there exist a neighborhood N of c and $A \in \mathbb{R}$ such that for every $x \in I \cap N$, we have $|f(x)| \leq A|g(x)|$.

In that case, prove that $O(g(x)) \pm O(g(x)) = O(g(x))$ and $o(g(x)) \pm O(g(x)) = O(g(x))$ as $x \to c$.

- 302. (a) Prove that $o(g(x)) \pm o(g(x)) = o(g(x))$ as $x \to c$.
 - (b) Prove that $o(g(x)) \pm O^*(g(x)) = O^*(g(x))$ as $x \to c$.
 - (c) Prove that $o(g_1(x))o(g_2(x)) = o(g_1(x)g_2(x))$ as $x \to c$.
 - (d) Prove that $o(g_1(x))O^*(g_2(x)) = o(g_1(x)g_2(x))$ as $x \to c$.
- 303. In this exercise, f(x) = O(g(x)) refers to the meaning stated in lecture and not that of exercise 301 above.
 - (a) Prove that $O(g_1(x))O(g_2(x)) = O(g_1(x)g_2(x))$.
 - (b) Prove that for every p > 0, $O(g(x))^p = O(g(x)^p)$.
 - (c) Prove that for every $r \in \mathbb{R}$, $O^*(g(x))^r = O^*(g(x)^r)$ as $x \to c$ whenever the r-th power can be defined on both sides.
 - (d) Prove that $o(g_1(x))O(g_2(x)) = o(g_1(x)g_2(x))$ as $x \to c$.
- 304. (a) Prove that for every $\varepsilon > 0$, $\ln x = o(\frac{1}{x^{\varepsilon}})$ as $x \to 0$ on $I = (0, +\infty)$.
 - (b) Prove that for every $\varepsilon > 0$, $\ln x = o(x^{\epsilon})$ as $x \to +\infty$ on $I = (0, +\infty)$.
 - (c) Prove that $\sqrt{x+\sqrt{x+\sqrt{x}}} \sim \sqrt[8]{x}$ as $x\to 0$ on $I=(0,+\infty)$.
 - (d) Prove that $\sqrt{x+\sqrt{x+\sqrt{x}}} \sim \sqrt{x}$ as $x \to +\infty$ on $I = (0,+\infty)$.
- 305. Find real numbers a, b and c such that as $x \to 0$, $\ln(\frac{\sin x}{x}) = ax^2 + bx^4 + cx^6 + o(x^6)$ on $I = (-\pi, \pi)$.
- 306. Find $\lim_{x \to +\infty} \left((x^3 x^2 + \frac{x}{2})e^{1/x} \sqrt{x^6 1} \right)$.
- 307. Find real numbers a and b such that as $x \to 0$, $x = (a + b \cos x) \sin x + O^*(x^5)$.
- 308. Prove that for every $k \in \mathbb{R}$, $\sum_{n=1}^{\infty} \sin(\pi \sqrt{n^2 + k^2})$ converges.
- 309. For which $p \in \mathbb{R}$, will $\sum_{n=3}^{\infty} \left(\ln \sec \frac{\pi}{n}\right)^p$ converges? (*Hint*: $\tan x \sim x$ and $\ln(1+x) \sim x$ as $x \to 0$.)
- 310. Determine with proof if $\sum_{n=1}^{\infty} \left(\cos \frac{1}{n}\right)^{n^3}$ converges or not. (*Hint*: $(\cos a)^b = e^{b \ln \cos a}$.)

(301) (a) For ceR, $(c-\epsilon,c+\epsilon) \cap (c-\epsilon',c+\epsilon') = (c-min(\epsilon,\epsilon'),c+min(\epsilon,\epsilon'))$ is a neighborhood of c. For $C=+\infty$, $(a,+\infty) \cap (a',+\infty) = (\max(a,a'),+\infty)$ is a neighborhood of $+\infty$. For $C=-\infty$, $(-\infty, a) \cap (-\infty, a') = (-\infty, \min(a, a'))$ is a neighborhood of $-\infty$. (b) Let fix=0(g(x)), f2(x)=0(g(x)), f3(x)=o(g(x)) as x>c. Then Freighborhoods NI, Nz of C and AI, AZER such that YxeInNi, Ificol = A. Ig(x) |; YxeInNz, Ifz(x) | = Az Ig(x) |. lim fs(x) =0 => I neighborhood No of C such that Vxe(INN3) \colors, (\frac{13}{9(x)})<1. Then $\forall x \in I \cap (W_1 \cap N_2)$, $|f_i(x) + f_2(x)| \leq |f_i(x)| + |f_2(x)| \leq (A_i + A_2)|g(x)|$. So $O(g(x)) \pm O(g(x)) = O(g(x))$ as $x \to c$. Also $\forall x \in I \cap (N_3 \cap N_1)$, $|f_3(x) \pm f_1(x)| \leq |f_3(x)| + |f_1(x)| + |f_1(x)| \leq |f_3(x)| + |f_1(x)| + |f_$ 302) (a) Let $f_1(x) = o(g(x))$, $f_2(x) = o(g(x))$ as $x \to c$, then $\lim_{x \to c} \frac{f_1(x)}{g(x)} = 0$, $\lim_{x \to c} \frac{f_2(x)}{g(x)} = 0$. So $\lim_{x\to c} \frac{f_i(x) \pm f_z(x)}{g(x)} = 0 \Leftrightarrow o(g(x)) \pm o(g(x)) = o(g(x)) \text{ as } x\to c$. (6) Let $f_i(x) = o(g(x))$, $f_z(x) = O^*(g(x))$ as $x\to c$, then $\lim_{x\to c} \frac{f_z(x)}{g(x)} = 0$, $\lim_{x\to c} \frac{f_z(x)}{g(x)} = k \neq 0$. So lim fi(x) ± fz(x) = ±k +0 (=) o(g(x)) ± O*(g(x)) = O*(g(x)) as x > c. (c) Let $f(x) = o(g_1(x))$, $f_2(x) = o(g_2(x))$ as $x \to c$. Then $\lim_{x \to c} \frac{f_1(x)}{g_1(x)} = o$, $\lim_{x \to c} \frac{f_2(x)}{g_2(x)} = o$. So lim $\frac{f_1(x)f_2(x)}{g_1(x)g_2(x)} = 0 \iff o(g_1(x))o(g_2(x)) = o(g_1(x)g_2(x)) as x \to c$. (d) Let $f_1(x) = o(g_1(x))$, $f_2(x) = O^*(g_2(x))$ as $x \to c$, then $\lim_{x \to c} \frac{f_1(x)}{f_2(x)} = 0$, $\lim_{x \to c} \frac{f_2(x)}{g_2(x)} = 0$ ($g_1(x)$) $O^*(g_2(x)) = o(g_1(x)g_2(x))$ as $x \to c$. (303)(a) Let fi(x)=O(gi(xi)), fi(x)=O(gi(xi)). Then JAI, AzER such that YXEI, we have $|f_{\ell}(x)| \leq A_{\ell}|g_{\ell}(x)|, |f_{\ell}(x)| \leq A_{\ell}|g_{\ell}(x)| \Rightarrow |f_{\ell}(x)|f_{\ell}(x)| \leq A_{\ell}A_{\ell}|g_{\ell}(x)|g_{\ell}(x)|.$ $So O(g_{\ell}(x)) O(g_{\ell}(x)) = O(g_{\ell}(x)|g_{\ell}(x)).$ (b) Let f(x) = O(g(x)). Then ∃AER such that YxEI, If(x) \ ∈ A |g(x)|. So |f(x) | \le A P | g(x) P | \le O(g(x)) P = O(g(x) P). (c) Let $f(x) = O^*(g(x))$. Then $\lim_{x \to c} \frac{f(x)}{g(x)} = K \Rightarrow \lim_{x \to c} \frac{f(x)^r}{g(x)^r} = K^* \neq 0 \Leftrightarrow O^*(g(x))^r = O^*(g(x))^r$.

(d) Let
$$f_i(x) = o(g_i(x))$$
 as $x > c$ and $f_z(x) = O(g_z(x))$. Then $\lim_{x \to c} \frac{f_i(x)}{g_i(x)} = o$ and $f_z(x) = o(g_z(x))$. So $\lim_{x \to c} \frac{f_i(x)}{g_i(x)} = o(g_z(x)) = o(g_z(x)$

(304) (a)
$$\lim_{x\to 0} \frac{\ln x}{\frac{1}{x^{\epsilon}}} = \lim_{x\to 0} \frac{\frac{1}{2}(\epsilon \ln x)}{\frac{1}{x^{\epsilon}}} = \frac{1}{2} \lim_{x\to 0} \frac{\ln x^{\epsilon}}{\frac{1}{2}} = \frac{1}{2} \lim_{x\to 0} \frac{\ln y}{\frac{1}{2} \to +\infty}$$

$$= \frac{1}{2} \lim_{y\to 0} \frac{y/y}{-y/y^{2}} = \frac{1}{2} \lim_{y\to 0} (-y) = 0 \quad \text{if } x = o(\frac{1}{x^{\epsilon}}) \text{ as } x\to 0$$

(b)
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\epsilon}} = \frac{1}{\epsilon} \lim_{y \to +\infty} \frac{\ln y}{y} = \frac{1}{\epsilon} \lim_{y \to +\infty} \frac{1/y}{1} = 0$$
. $\lim_{x \to +\infty} (x^{\epsilon}) = 0$.

(c)
$$\lim_{X\to 0} \frac{\sqrt{x} + \sqrt{x} + \sqrt{x}}{\sqrt{x}} = \lim_{X\to 0} \frac{\sqrt{x} + \sqrt{x} + \sqrt{x}}{\sqrt{x}} = \lim_{X\to 0} \sqrt{x} + \sqrt{x} +$$

(d)
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x}} = \lim_{x \to +\infty} \frac{\sqrt{x} + \sqrt{x + \sqrt{x}}}{\sqrt{x}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + \sqrt{x + \sqrt{x}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}}}{\sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}}} = \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x +$$

$$\frac{305}{x} = \lim_{x \to \infty} \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + o(x^7)}{x} = \lim_{x \to \infty} \left(1 + \left(-\frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^6)\right)\right)$$

$$= \left(-\frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^6)\right) - \frac{1}{2}\left(-\frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^6)\right)^2 + \frac{1}{3}\left(-\frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^6)\right) + o(x^6)$$

$$= -\frac{x^2}{6} + \left(\frac{1}{120} - \frac{1}{72}\right)x^4 + \left(-\frac{1}{5040} + \frac{1}{720} + \frac{1}{3\cdot6^3}\right)x^6 + o(x^6)$$

$$= -\frac{x^2}{6} - \frac{x^4}{180} - \frac{x^6}{2835} + o(x^6) \quad \text{as } x \to 0.$$

$$(36) A_{5} \times \rightarrow +\infty, (x^{3} - x^{2} + \frac{x}{2})e^{1/x} - \sqrt{x^{6} - 1} = (x^{3} - x^{2} + \frac{x}{2})(1 + \frac{1}{x} + \frac{1}{2x^{2}} + \frac{1}{6x^{3}} + o(\frac{1}{x^{3}}) - x^{3}(1 - \frac{1}{x^{6}})^{1/2}$$

$$= x^{3} + \frac{1}{6} + o(1) - x^{3}(1 - \frac{1}{2x^{6}} - o(\frac{1}{x^{6}})) = \frac{1}{6} + o(1), \quad So \quad limit is \frac{1}{6}.$$

$$\begin{array}{l} (307) \times -(a+b\cos x)\sin x = x - a\sin x - \frac{b}{2}\sin 2x \\ = \chi - a\left(x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + O(x^{7})\right) - \frac{b}{2}\left(2x - \frac{(2x)^{3}}{3!} + \frac{(2x)^{5}}{5!} + O(x^{7})\right) \\ = ((-a-b)x + (\frac{a}{6} + \frac{2b}{3})x^{3} - (\frac{a}{120} + \frac{2b}{15})x^{5} + O(x^{7}) \\ (-a-b-o) + (\frac{a}{6} + \frac{2b}{3})x^{3} - (\frac{a}{120} + \frac{2b}{15})x^{5} + O(x^{7}) \\ = \frac{a}{6} + \frac{2b}{3} = 0 \end{array}$$

(In sec $\frac{\pi}{n}$) = $\left(\ln\left(1+\tan^2\frac{\pi}{n}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} = \frac{1}{2}\left(\ln\left(1+\tan^2\frac{\pi}{n}\right)\right)^{\frac{2}{2}} \sim \frac{1}{2} \tan^2\frac{\pi}{n} \sim \frac{1}{2$

(cos $\frac{1}{n}$) $\frac{1}{n^3} = (\cos \frac{1}{n})^n = e^{n^3 \ln \cos \frac{1}{n}} = e^{n^3 \ln (1 - \frac{1}{2n^2} + O(\frac{1}{n^4}))} = e^{n^3 \left(-\frac{1}{2n^2} + O(\frac{1}{n^4})\right)}$ $= e^{-\frac{n}{2} + O(\frac{1}{n})} - \frac{n}{2}$ Since $\lim_{n \to \infty} O(\frac{1}{n}) = \lim_{n \to \infty} \frac{O(\frac{1}{n})}{1 - n} = \lim_{n \to \infty} \frac{O(\frac{1}{n^4})}{n} = 0 \Rightarrow \lim_{n \to \infty} e^{O(\frac{1}{n^4})}$ $\sum_{n=1}^{\infty} e^{-\frac{n}{2}} = \sum_{n=1}^{\infty} (e^{\frac{1}{n^2}})^n$ Converges by geometric series test. $\sum_{n=1}^{\infty} (\cos \frac{1}{n})^n$ converges.

Math 2031 Exercises on Stolz' Theorem

- 311. Let b > a > 0 and d > 0. Let $x_n = \frac{a(a+d)(a+2d)\cdots(a+nd)}{b(b+d)(b+2d)\cdots(b+nd)}$. Show $\lim_{n\to\infty} x_n$ exists, then find its value. (*Hint*: for value of limit, consider $(nx_n)/n$.)
- 312. Let $\lim_{n\to\infty} a_n = a$. Find $\lim_{n\to\infty} (a_n + \frac{1}{2}a_{n-1} + \frac{1}{4}a_{n-2} + \dots + \frac{1}{2^n}a_0)$.
- 313. Let $x_n = \sum_{k=1}^n \ln \binom{n}{k}$, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Find $\lim_{n \to \infty} \frac{x_n}{n^2}$.
- 314. Let $\{a_n\}$ be a sequence satisfying $\lim_{n\to\infty}(a_{n+1}-\frac{a_n}{2})=0$. Use Stolz' theorem to prove that $\lim_{n\to\infty}a_n=0$. (*Hint*: $2^na_n/2^n$.)
- 315. Let $\{x_n\}$ be a sequence satisfying $\lim_{n\to\infty}(x_n-x_{n-2})=0$. Use Stolz' theorem to prove that $\lim_{n\to\infty}\frac{x_n-x_{n-1}}{n}=0$. (*Hint*: Intertwine sequence.)
- 316. Let $\{x_n\}$ be a sequence and let $y_1 = 0$ and $y_n = x_{n-1} + 2x_n$ for $n = 2, 3, 4, \ldots$ If $\{y_n\}$ converges to y, then use Stolz' theorem to prove that $\{x_n\}$ also converges. (*Hint*: Intertwine and $4^n x_{2n}/4^n$.)
- 317. If $a_n > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a$, then prove that $\lim_{n \to \infty} \sqrt[n]{a_n} = a$.
- 318. (a) Prove that $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}-\ln n=\gamma$ exists. This is called <u>Euler's constant</u>. (Hint: $\int_k^{k+1}(\frac{1}{k}-\frac{1}{x})dx$.)
 - (b) Find $\lim_{n \to \infty} n \left(\sum_{k=1}^{n} \frac{1}{k} \ln n \gamma \right)$.
- 319. Let $\sum_{n=1}^{\infty} a_n$ converge and $\{p_n\}$ be strictly increasing with limit $+\infty$.
 - (a) Prove that $\lim_{n\to\infty} \frac{p_1 a_1 + p_2 a_2 + \dots + p_n a_n}{p_n} = 0$. (*Hint*: $A_n = a_1 + \dots + a_n$.)
 - (b) Prove that if $\lim_{n\to\infty} na_n$ exists, then it is 0.
- 320. (a) Let $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$. Prove that $\lim_{n \to \infty} \frac{x_1 y_n + x_2 y_{n-1} + \dots + x_n y_1}{n} = xy$. (*Hint*: Note $\frac{\sum_{i=1}^n x_i y_{n-i+1}}{n} = \frac{\sum_{i=1}^n (x_i x) y_{n-i+1}}{n} + x \frac{\sum_{i=1}^n y_i}{n}$.)
 - (b) Let $\sum_{n=1}^{\infty} a_n = a$ and $\sum_{n=1}^{\infty} b_n = b$. Let $c_n = a_1b_n + a_2b_{n-1} + \cdots + a_nb_1$. (The sequence $\{c_n\}$ is called the

<u>convolution</u> of $\{a_n\}, \{b_n\}$. The series $\sum_{n=1}^{\infty} c_n$ is called the <u>Cauchy product</u> of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$.) If $\sum_{n=1}^{\infty} c_n$

converges, then $\sum_{n=1}^{\infty} c_n = ab$.

$$\begin{array}{c} (a) \forall x \in [k_1k+1], \quad \underset{k \neq 1}{\overset{\perp}{\vdash}} = \overset{\perp}{\downarrow} = \overset{\perp}{\downarrow} \Rightarrow 0 \leq \overset{\times}{\underset{k=1}{\overset{\sim}{\vdash}}} \overset{(k+1)}{\underset{k=1}{\overset{\sim}{\vdash}}} dx \leq \overset{\times}{\underset{k=1}{\overset{\sim}{\vdash}}} \overset{(k+1)}{\underset{k=1}{\overset{\sim}{\vdash}}} dx = 1 \\ \Rightarrow \underset{n \neq 0}{\overset{\sim}{\vdash}} (\overset{\wedge}{\underset{k=1}{\overset{\sim}{\vdash}}} \overset{\wedge}{\underset{k=1}{\overset{\sim}{\vdash}}} - \underset{n \neq 0}{\overset{\wedge}{\vdash}} \overset{\wedge}{\underset{k=1}{\overset{\sim}{\vdash}}} \overset{\wedge}{\underset{k=1}{\overset{\sim}{\vdash}}} - \underset{n \neq 0}{\overset{\wedge}{\underset{k=1}{\overset{\sim}{\vdash}}}} \overset{(k+1)}{\underset{n \neq 0}{\overset{\sim}{\vdash}}} dx = 1 \\ \Rightarrow \underset{n \neq 0}{\overset{\sim}{\vdash}} (\underset{n \neq 0}{\overset{\sim}{\vdash}} (k_{n+1}) - k_{n+1}) = \underset{n \neq 0}{\overset{\sim}{\vdash}} (k_{n+1}) + k_{n+1} = 1 + k_{n+1} = 1$$

(6) Let xn= a,+az+...+an, y,=0, yn=b,+...+bn-1 for n>1, then xn→a, yn→b. Let Zn=x, yn+...+xnyr, then

 $Z_{n+1} - Z_n = \chi_i(y_{n+1} - y_n) + \chi_z(y_{n-1} - y_{n-1}) + \dots + \chi_n(y_2 - y_1) + \chi_{n+1}y_1$ $= a_1 b_n + (a_1 + a_2) b_{n-1} + \dots + (a_1 + a_2 + \dots + a_n) b_1$ $= (a_1 b_n + a_2 b_{n-1} + \dots + a_n b_1) + (a_1 b_{n-1} + \dots + a_{n-1}b_1) + \dots + a_1b_1$ $= C_n + C_{n-1} + \dots + C_1$

By (a), ab = lin Zn Stolz lin (Zn+1-Zn) = 2 Cn

Homework #4 – Due Tuesday, May 3, 2010 at 10:30am

Be sure to write your name (as shown on your student ID card) and your tutorial session number on the homework! Show work. Answers are worth very little. Make a copy of your homework and submit the original.

- 1. (a) Let $c \in (a,b)$ and n be a positive integer. Let $f:(a,b) \to \mathbb{R}$ be n-1 times differentiable on (a,b) and n times differentiable at c. Using l'Hopital's rule, prove that as $x \to c$, $f(x) = f(c) + \frac{f'(c)}{1!}(x-c) + \cdots + \frac{f^{(n)}(c)}{n!}(x-c)^n + o((x-c)^n)$.

 Remark. The term $o((x-c)^n)$ in the above expansion is called the <u>Peano remainder</u>.

 (b) Let $0 < x_1 < \pi/2$ and $x_{n+1} = \sin x_n$ for $n \ge 1$. Prove that $\{x_n\}$ is decreasing and $\lim_{n \to \infty} x_n = 0$. Use Stolz' theorem to do $\lim_{n \to \infty} \frac{n}{1/x_n^2}$, then show $x_n^2 \sim 3/n$ as $n \to \infty$.
- 2. Let $g:(a,b]\to\mathbb{R}$ be bounded and $S_g=\{x\in(a,b]:g\text{ discontinuous at }x\}$ be of measure 0. Let $f:[a,b]\to\mathbb{R}$ be a function such that f(x)=g(x) for all $x\in(a,b]$.
 - (a) Prove that f is Riemann integrable on [a, b].
 - (b) Prove that the value of $\int_a^b f(x) dx$ does not depend on the value of f(a).
 - (c) Prove that the improper integral $\int_a^b g(x) dx$ is equal to $\int_a^b f(x) dx$.

<u>Remarks.</u> Thus, we may treat $\int_0^1 \frac{\sin x}{x} dx$, $\int_0^1 x^x dx$, ... as proper integrals.

- 3. (a) Prove the improper integral $\int_0^\infty \sin(x^2) dx$ converges. (*Hint*: Substitute $t = x^2$.)
 - (b) Show that the improper integral $\int_0^\infty \frac{du}{1+u^4}$ converges to $\frac{\pi}{2\sqrt{2}}$. (*Hint*: Consider $\int_0^\infty = \int_0^1 + \int_1^\infty$ and substitute $t = \frac{1}{u}$ in \int_1^∞ . Then $y = u \frac{1}{u}$ for $\int_0^1 \frac{1+u^2}{1+u^4} du$.)
 - (c) Show that $\int_0^\infty \sin(x^2) dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$ formally by writing the integral as a double integral, then interchanging the order of integration. (*Hint*: From the example $\int_0^\infty e^{-u^2} du = \frac{\sqrt{\pi}}{2}$ done in class, get $\frac{1}{\sqrt{t}} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-tu^2} du$. Consider part (a).)
- 4. Use the integral criterion to show every increasing function $f:[a,b] \to \mathbb{R}$ is Riemann integrable on [a,b].

Solutions to Homework #4 (Math 202, Spring 2005-2006) (1) (a) Let g(x) = f(x)-f(c)-f(c)-f(c)-(x-c)-...-f(c) (x-c) and -h(x)=(x-c)^n. Then $\frac{g'(x)}{-k(x)} = \frac{f'(x) - f'(c) - \frac{f'(c)}{1!}(x-c) - \cdots + \frac{f'(c)}{(h-1)!}(x-c)}{n(x-c)^{n-1}}, \quad \frac{g^{(n-1)}(x)}{-k(x)} = \frac{f^{(n-1)}(x) - f^{(n-1)}(x)}{n(h-1)\cdots 2(x-c)}$ are all of o form as x>c. However, $\lim_{x\to c} \frac{g^{(n-1)}(x)}{h^{(n-1)}(x)} = \lim_{x\to c} \frac{1}{n!} \left(\frac{f^{(n-1)}(x) - f^{(n-1)}(c)}{x-c} - f^{(n-1)}(c) \right) = 0.$ By l'Hopatal's rule, ling(x) = 0, which is equivalent to the required condition by the Little-oh notation (b) For Θε(0,π), 0 < 25m 2 < Q. So for xε (0, Ξ), 0 < 5in x < x.

Hence O < xn+1=sin xn < xn By. the monotone Sequence theorem, $x = l_{n} \times n$ exists and $x \in [0, \pm)$. Then $x = l_{n} \times n + 1 = l_{n} \times n \times n = 5$ in x = 5 in x = 0. Next, we apply Stolz theorem to compute Next, we apply store theorem to compute $\lim_{n\to\infty} n \times n = \lim_{n\to\infty} \frac{N^{\frac{2}{2}}}{\sqrt{\chi_{n}^{2}}} = \lim_{n\to\infty} \frac{(h+1)-n}{\sqrt{\chi_{n}^{2}}-\sqrt{\chi_{n}^{2}}} = \lim_{n\to\infty} \frac{\chi_{n}^{2} \times \chi_{n}^{2}}{\chi_{n}^{2}-\chi_{n+1}^{2}} = \lim_{n\to\infty} \frac{\chi_{n}^{2} \times \chi_{n}^{2}}{\chi_{n}^{2}-\chi_{n}^{2}} = \lim_{n\to\infty} \frac{\chi_{n}^{2} \times \chi_{n}^{2}$ to compute the last limit, we apply the sequential limit theorem to the fact $\lim_{x\to 0} \frac{x^2 \sin x}{x^2 \sin x} = \lim_{x\to 0} \frac{x^2 (x - \frac{1}{6}x^3 + o(x^3))^2}{x^2 - (x - \frac{1}{6}x^3 + o(x^3))^2} = \lim_{x\to 0} \frac{x^4 + o(x^4)}{\frac{1}{3}x^4 + o(x^4)} = 3$ $\left(\text{or } \lim_{x \to 0} \frac{\chi^2 \sin^2 x}{\chi^2 - \sin^2 x} = \lim_{x \to 0} \left(\frac{\chi^3}{\chi - \sin x} \right) \left(\frac{\chi}{\chi + \sin x} \right) \frac{\sin^2 x}{\chi^2} = \lim_{x \to 0} \left(\frac{3x^2}{1 - \cos x} \right) \left(\frac{1}{1 + \cos x} \right) \left(\frac{6x}{1 + \cos x} \right) \left(\frac{6x}{1 + \cos x} \right) \left(\frac{1}{1 + \cos x} \right) = \lim_{x \to 0} \frac{6x}{\sin x} \frac{1}{2} \cdot (1 = 3)$ So $\lim_{n\to\infty} n \times n^2 = 3$ $\iff \lim_{n\to\infty} \frac{x_n^2}{3/n} = 1$ $\iff x_n^2 \sim \frac{3}{n}$ as $n\to\infty$. (2) Groof of fis Riemann integrable on [a,b]) Since g is bounded on (a,b], say 1g(x)1 < K for all a ∈ (a,b], so for every such f, we have If(x) < max(K, If(a) 1) for all x ∈ [a, b]. So f is bounded on [a, b]. Next Sq E Sq U {a} and Sq is of measure O imply Sq is of measure O. By Lebesque's theorem, f is Riemann integrable on [a,b]. (b) (Knoof of Jaf6x) dx does not depend on the value of f(a)). Let f, and fz be two such f. Then how = filx |- fzlx |= f0 rfx \in (a,b]

Switching f, and fz if necessary we may assure (c) = (fila)-fila) if x=a. Switching f, and f≥ if necessary, we may assume fi(a) ≥ f≥(a) so that &(x)≥0 on [a,b]. For a partition P= {a, xi, b}, Uth, Px) = (file)-feles)(xi-a). Now we have $0 \le \int_{a}^{b} f_{i}(x) dx - \int_{a}^{b} f_{i}(x) dx = \int_{a}^{b} R(x) dx = \inf\{U(R, P): Pparkting [a, b]\} \le \inf\{U(R, P_{x_{i}}): acx_{i}dy\}$... Sa filixidx = Sa filixidx.

Solution 2 Before the fundamental theorem of Calculus, we showed $F(t) = \int_a^t f(x) dx$ is uniformly Continuous on [a,b]. So $\int_a^b f(x) dx = \int_a^b f(x) dx - \int_a^t f(x) dx$ is continuous at a. By the uniqueness of limit, for all such f, $\int_a^b f(x) dx$ equals $\lim_{t \to a^+} \int_a^b f(x) dx$, which is unique. (c) (Proof of Saglx)dx = Saflx)dx). Again, Since $F(t) = \int_{a}^{t} f(x) dx$ is uniformly Continuous on [a,b], so $\int_{t}^{b} f(x) dx = \int_{a}^{b} f(x) dx - \int_{a}^{t} f(x) dx$ is Continuous on [a,b]. Now $S_{g} \cap [t,b]$ is of measure O implies g is locally integrable on (a,b], then $\int_{a}^{b} g(x) dx = \lim_{t \to a^{t}} \int_{t}^{b} f(x) dx = \int_{a}^{b} f(x) dx$. (3) (a) Since sin(x²) is continuous on [0,1], $\int sn(x²) dx < \infty$. Next, $\int_{-\infty}^{\infty} sn(x²) dx = \int_{-\infty}^{0.2} \frac{sint}{2\sqrt{t}} dt = \frac{cost}{2\sqrt{t}} \Big|_{t}^{0.2} + \int_{-\infty}^{0.2} \frac{cost}{4t^{3/2}} dt$. Since $\left|\frac{cost}{4t^{3/2}}\right| \le \frac{1}{4t^{3/2}}$ on [1, + ∞] and $\int_{1}^{1} \frac{1}{t^{3/2}} dt < \infty$ by p-test, by absolute convergence test and companion test, we get $\int_{1}^{\infty} \frac{\cos t}{4t^{3/2}} dt < \infty$, $\int_{0}^{\infty} \int_{1}^{\infty} \frac{\cos t}{4t^{3/2}} dt < \infty$, and $\int_{0}^{\infty} \sin(x^{2}) dx < \infty$. $= \int_{0}^{1} \frac{dz+1}{dz+u^{2}} du = \int_{-\infty}^{0} \frac{dy}{y^{2}+2} = \frac{1}{\sqrt{z}} Avctan \frac{y}{\sqrt{z}} \Big|_{-\infty}^{0} = 0 - \left(\frac{1}{\sqrt{z}} \left(-\frac{\pi}{z}\right)\right) = \frac{\pi}{2\sqrt{z}}.$ Alternatively, we can also compute $u^4 + 1 = (u^4 + 2u^2 + 1) - 2u^2 = (u^2 + \sqrt{2}u + 1)(u^2 + \sqrt{2}u + 1)$

 $\int_{0}^{\infty} \frac{du}{1+u^{4}} = \int_{0}^{1} \frac{1+u^{2}}{1+u^{4}} du = \frac{1}{2} \int_{0}^{1} \frac{du}{u^{2}+\sqrt{2}u+1} + \frac{1}{2} \int_{0}^{1} \frac{du}{u^{2}-2\sqrt{u}+1}$ as before

=
$$\sqrt{z}$$
 $\frac{\pi}{2}$ Since $\sqrt{z}+1=\frac{1}{\sqrt{z}-1}$ implies
Arctar($\sqrt{z}+1$) + Arctar($\sqrt{z}-1$) = $\frac{\pi}{2}$

