Chương 7

Phụ thuộc hàm và Chuẩn hóa cơ sở dữ liệu

Nội dung trình bày

- Phụ thuộc hàm.
- Các dạng chuẩn.
- Một số thuật toán chuẩn hóa.

Phụ thuộc hàm (1)

- R(U), U={A₁, A₂,..., A_n}, phụ thuộc hàm giữa hai tập thuộc tính X, Y \subseteq U
 - Ký hiệu: $X \to Y$ là $\forall r \in R, \ \forall \ t_1, \ t_2 \in r \ \text{n\'eu} \ t_1[X] = t_2[X] \ \text{thì} \ t_1[Y] = t_2[Y]$
 - Có nghĩa là: nếu 2 bộ có cùng giá trị X thì có cùng giá trị Y
 - X là vế phải của pth, Y là vế trái của pth.
- Phụ thuộc hàm được suy ra từ những quy tắc dữ liệu khi ta khảo sát yêu cầu của bài toán
 - Ví dụ: Từ MaNV, ta có thể suy ra được tên của nhân viên (MaNV → Ho). Từ MaDA, ta có thể suy ra tên và vị trí của dự án (MaDA → {TenDA, DiaDiem})
- Nếu K là khóa của R thì K xác định hàm tất cả các tập thuộc tính của R.

Phụ thuộc hàm (2)

NHANVIEN_PHONGBAN TenNV MaNV NgSinh Diachi MaPB TenPB TrPhong † | † † †

MaNV → TenNV

MaNV → MaPB

MaPB → {TenPB, TrPhong}

Luật dẫn – Hệ tiên đề Armstrong

- Cho R(U), U là tập thuộc tính, F là tập các phụ thuộc hàm được định nghĩa trên quan hệ R. Ta nói phụ thuộc hàm A → B được suy diễn logic từ F nếu mọi trạng thái r ∈ R thỏa các phụ thuộc hàm trong F thì cũng thỏa phụ thuộc hàm A → B.
 - Ví dụ: F = {MaNV → TenNV, MaPB → {TenPB, TrPhong}, MaNV → MaPB}. Ta có phụ thuộc hàm MaNV → {TenPB, TrPhong} là phụ thuộc hàm được suy diễn từ F.

Luật dẫn – Hệ tiên đề Armstrong

- Hệ tiên đề Armstrong được sử dụng để tìm ra các phụ thuộc hàm được suy diễn từ F
 - Phản xa: $Y \subseteq X \Rightarrow X \rightarrow Y$.
 - Tăng trưởng: $X \to Y \Rightarrow XZ \to YZ$, với $XZ = X \cup Z$.
 - Bắc cầu: $X \to Y$, $Y \to Z \Rightarrow X \to Z$.
- Các luật khác:
 - Phân rã: $X \rightarrow YZ \Rightarrow X \rightarrow Y, X \rightarrow Z$.
 - Hợp: $X \rightarrow Y$, $X \rightarrow Z \Rightarrow X \rightarrow YZ$.
 - Bắc cầu giả: X → Y, WY → Z ⇒ WX → Z.
- Nhân xét
 - Hệ luật Armstrong là đầy đủ.

Bao đóng của tập PTH

- Ta gọi f là một phụ thuộc hàm được suy dẫn từ F nếu tồn tại một chuỗi phụ thuộc hàm: f_1 , f_2 , ..., f_n sao cho $f_n = f$ và mỗi f_i là một thành viên của F hay được suy diễn từ những phụ thuộc hàm j = 1, ..., i-1 trước đó nhờ vào luất dẫn.
- Bao đóng của F, ký hiệu F+, là tập hợp các phụ thuộc hàm được suy diễn từ F nhờ vào hệ tiên đề Armstrong.
 - F ⊆ F+.
 - F gọi là đầy đủ nếu F = F+.

Bao đóng của tập thuộc tính

- Bao đóng của tập thuộc tính X xác định trên tập phụ thuộc hàm F ký hiệu là X_F⁺ là tập hợp tất cả các thuộc tính có thể suy ra từ X.
 - $X_{F^+} = \{A \in U \mid X \to A \in F^+\}$
- Nhận xét
 - Bài toán xác định một phụ thuộc hàm có được suy diễn từ tập phụ thuộc hàm cho trước?
 - $X \rightarrow Y \in F^+ \Leftrightarrow Y \subseteq X_{F^+}$.

Thuật toán tìm bao đóng của tập thuộc tính

- Nhập: U, F và X ⊆ U
- Xuất: X_F+
- Thuật toán 7.1
 - X + = X;
 - Repeat

```
oldX^{+} = X^{+};
```

For (mỗi phụ thuộc hàm $Y \to Z \in F$) do if $(Y \subseteq X^+ và Z \not\subset X^+)$ then $X^+ := X^+ \cup Z$;

• Until (old $X^+ = X^+$).

Ví dụ tìm bao đóng X+

- Cho:
 - $F = \{AB \rightarrow C, BC \rightarrow D, D \rightarrow EG\}.$
 - X = BD.
- Tính X+:
 - X+ = BD.
 - Lặp 1:
 - old $X^+ = X^+ = BD$
 - D → EG, thêm EG vào X+ ta được X+ = BDEG.
 - Lặp 2:
 - oldX+ = X+ = BDEG
 - Không thể mở rộng thêm X+.
 - Vậy X+ = BDEG.

Bài toán xác định phụ thuộc hàm suy diễn

- Cho F = {AB \rightarrow C, A \rightarrow D, D \rightarrow E, AC \rightarrow B}
- Hai phụ thuộc hàm AB → E và D → C có được suy diễn từ F hay không?

Х	X _F +	
AB	ABCDE	 AB → E Được suy diễn từ F
D	DE	</td

Tập phụ thuộc hàm tương đương

- Tập phụ thuộc hàm F được nói là phủ tập phụ thuộc hàm G nếu tất cả các phụ thuộc hàm trong G có thể được suy diễn từ F.
 - F phủ $G \Leftrightarrow G \subset F^+$.
 - $\forall X \rightarrow Y \in G$, nếu $Y \subseteq X_{F^+}$ thì F phủ G.
- Hai tập phụ thuộc hàm F và G là tương đương nếu tất cả các phụ thuộc hàm trong F có thể được suy diễn từ G, và tất cả các phụ thuộc hàm trong G có thể được suy diễn từ F.
 - F và G tương đương ⇔ F+ = G+.
 - F và G là tương đương ⇔ F phủ G và G phủ F.

Tập phụ thuộc hàm tối thiểu

- Vấn đề thừa phụ thuộc hàm
 - {A → B, B → C, A → C}, vì A → C được suy diễn từ {A → B, B → C}
 A → B, B → C ⇒ A → C (luật bắc cầu).
- Vấn đề thừa thuộc tính
 - {A → B, B → C, A → CD}, vì A → CD được suy diễn từ {A → B, B → C, A → D}
 A → B, B → C ⇒ A → C (luật bắc cầu)
 A → C, A → D ⇒ A → CD (luật hợp).
 - {A → B, B → C, AC → D}, vì AC → D được suy diễn từ {A → B, B → C, A → D}
 - $A \rightarrow B$, $A \rightarrow D \Rightarrow A \rightarrow BD$ (luật hợp)
 - $A \rightarrow BD \Rightarrow AC \rightarrow BCD$ (luật tăng trưởng)
 - $AC \rightarrow BCD \Rightarrow AC \rightarrow D$ (luật phân rã).

Tập phụ thuộc hàm tối thiểu

- Tập phụ thuộc hàm F là tối thiểu nếu nó thỏa các điều kiện sau:
 - Mọi phụ thuộc hàm của F chỉ có một thuộc tính ở vế phải.
 - Không thể thay thế bất kỳ phụ thuộc hàm X → A nào trong F bằng phụ thuộc hàm Y → A, với Y ⊂ X mà vẫn có được một tập phụ thuộc hàm tương đương với F (tức là, không có thuộc tính dư thừa trong phụ thuộc hàm)
 - Không thể bỏ đi bất kỳ một phụ thuộc hàm nào trong F mà vẫn có được một tập phụ thuộc hàm tương đương với F (tức là, không có phụ thuộc hàm dư thừa).
- Phủ tối thiểu của tập phụ thuộc hàm F là tập phụ thuộc hàm tối thiểu tương đương với F.
 - Tất cả các tập phụ thuộc hàm đều có ít nhất một phủ tối thiếu.

Thuật toán tìm phủ tối thiểu

- Nhập: tập phụ thuộc hàm F.
- Xuất: phủ tối thiểu F.
- Thuật toán 7.2
 - *B*1: G := ∅.
 - B2: Với mỗi $X \rightarrow Y \in F$, $Y = \{A_1, ..., A_k\}$, $A_i \in U$ $G := G \cup \{X \rightarrow A_i\}$.
 - B3: (Loại bỏ thuộc tính thừa trong các phụ thuộc hàm)
 Với mỗi X → A ∈ G, với mỗi thuộc tính B ∈ X nếu A ∈ (X B)_G+ thì
 G := (G {X → A}) ∪ {(X B) → A}.
 - B4: (Loại bỏ phụ thuộc hàm thừa)

Với mỗi
$$X \to A \in G$$

$$G' := G - \{X \to A\}$$
 Nếu $A \in X_{G'}$ thì $G := G - \{X \to \{A\}\}.$

Ví dụ tìm phủ tối thiểu

- Tìm phủ tối thiểu của $F = \{A \rightarrow BC, A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$
 - *B*1: G = ∅.
 - B2: $G = \{A \rightarrow B, A \rightarrow C, B \rightarrow C, AB \rightarrow C\}$.
 - B3: Xét AB \rightarrow C (B)_G⁺ = BC G = {A \rightarrow B, A \rightarrow C, B \rightarrow C}.
 - B4: A → C thừa.
 G = {A → B, B → C}.

Siêu khóa và khóa

- Cho R(U) và tập phụ thuộc hàm F xác định trên R
 - Tập thuộc tính S ⊆ U là siêu khóa nếu ∀r ∈ R,
 ∀t₁, t₂ ∈ r, t₁ ≠ t₂ thì t₁[S] ≠ t₂[S].
 - Tập thuộc tính K ⊆ U là khóa nếu K là siêu khóa và nếu bỏ đi một thuộc tính bất kỳ trong K thì tập còn lại không còn là siêu khóa.
- Nhận xét
 - S là siêu khóa của $R \Leftrightarrow S_{F^+} = U$.
 - R có thể có nhiều khóa.

Thuật toán tìm khóa

- Nhập: R(U) và tập phụ thuộc hàm F.
- Xuất: khóa K của R.
- Thuật toán 7.3.1
 - B1: $K = U = \{A_1, ..., A_n\};$ i = 1;
 - *B2*:

```
Nếu U \subseteq (K - A<sub>i</sub>)<sub>F</sub>+ thì K = K - A<sub>i</sub>.

i = i + 1;
```

Nếu i > n thì sang B3. Ngược lại, tiếp tục B2.

 B3: Xuất K.

Ví dụ tìm khóa

- Cho R(U), U = {A, B, C, D, E, F, G}.
 - $F = \{B \rightarrow A, D \rightarrow C, D \rightarrow BE, DF \rightarrow G\}.$
- Tìm khóa của R
 - B1: K = ABCDEFG.
 - B2:
 - Lặp 1: (BCDEFG)_F⁺ = BCDEFGA ⇒ K = BCDEFG.
 - Lặp 2: (CDEFG)_F+ = CDEFGBA ⇒ K = CDEFG.
 - Lặp 3: (DEFG)_F+ = DEFGCBA ⇒ K = DEFG.
 - Lặp 4: (EFG)_F+ = EFG.
 - Lặp 5: $(DFG)_{F}^+$ = DFGCBEA \Rightarrow K = DFG.
 - Lặp 6: (DG)_F⁺ = DGCBEA.
 - Lặp 7: $(DF)_{F}^+$ = DFCBEAG \Rightarrow K = DF.
 - B3:

Khóa là K = DF.

Thuật toán tìm tất cả khóa

- Nhập: tập PTH F xác định trên lược đồ R(U).
- Xuất: tất cả khóa của R.
- Thuật toán 7.3.2
 - B1: Xây dựng $2^n - 1$ tập con khác rỗng của $U = \{A_1, ..., A_n\};$ $S = \{\};$
 - B2:
 Với mỗi tập con ∅ ≠ X ⊆ U
 Tính bao đóng X_F+;
 - Nếu U \subseteq X_F+ thì S = S \cup {X}.
 - B3:
 ∀K₁, K₂ ∈ S, nếu K₁ ⊂ K₂ thì S = S K₂.
 - B4:
 S là tập các khóa của R.

Ví dụ tìm tất cả khóa

- Cho R(U), U = {A, B, C, D, E, F}.
 - $F = \{AE \rightarrow C, CF \rightarrow A, BD \rightarrow F, AF \rightarrow E\}.$
- Tìm tất cả khóa của R

X	X _F ⁺	Siêu khóa	Khóa
Α	Α		
В	В		
AE	AEC		
ABD	ABDFEC	ABD	ABD
BCD	BCDFAE	BCD	BCD
A D C D	ADCDEE	A D C D	

Tập siêu khóa S = {ABD, BCD, ABCD, ABDE, BCDE, ABCDE, ABDF, BCDF, ABCDF, ABCDF,

Thuật toán tìm tất cả các khóa cải tiến

- Tập hợp các thuộc tính ở vế trái các PTH của F : VT_F
- Tập hợp các thuộc tính ở vế phải các PTH của F : VP_F
- Tập nguồn là tập các thuộc tính không xuất hiện ở vế phải các PTH của F : TN = U – VP_F
- Tập đích là tập các thuộc tính có xuất hiện ở vế phải và không xuất hiện ở vế trái các PTH của F : TD = U − (TN ∪ VT_F)
- Tập trung gian là tập các thuộc tính vừa xuất hiện trong vế trái, vừa xuất hiện trong vế phải của các PTH của F : L = U – (TN ∪ TD)
- Nếu K là khóa của R thì tồn tại L_i ⊆ L sao cho K = TN ∪ L_i.

Ví dụ tìm tất cả khóa cải tiến

- VT_F = {A, B, C, D, E, F}
- $VP_F = \{A, C, E, F\}$
- TN = $U VP_F = \{B, D\}$
- TD = U (TN \cup VT_F) = \emptyset
- $L = U (TN \cup TD) = \{A, C, E, F\}$

L _i	Li ∪ TN	(Li ∪ TN) _F ⁺	Siêu khóa	Khóa
Ø	BD	BDF		
Α	ABD	ABDFEC	ABD	ABD
С	CBD	CBDFAE	CBD	CBD
E	EBD	EBDF		
F	FBD	FBD		
AC	ACBD	ABCDEF	ABCD	