CS & IT

ENGINEERING

DPP - 04 Discussion notes

By- CHANDAN JHA SIR

What are basic gates required to implement a full adder

- A 1 EX OR gate, 1 AND gate
- B 2 EX OR gate, 1 OR gate
- C 2 EX OR gate, 2 AND gate, 1 OR gate
- D 1 EX OR gate, 2 AND gate, 2 OR gate

Question NAT

How many half adders are required to implement the following expressions.

The following multiplexer circuit is equivalent to ______.

- A implementation of sum equation of full adder
- B Implementation of carry equation of full adder
- C Implementation of borrow equation of full subtractor
- D All the above

$$y=abc+abc+abc+abc$$

= $\leq m(1,2,4,7)=a\oplus b\oplus c$
sum, Wift

A 3 line to 8 line decoder with three inputs A, B, C and two outputs y_1 and y_2 , is configured as shown below. The minimized expression of outputs will be

$$\boxed{A} y_1 = \overline{A} \, \overline{B} + AB\overline{C}; \ y_2 = \overline{A \oplus B}$$

B
$$y_1 = AB + \bar{A}\bar{B}C$$
; $y_2 = A \oplus B$

C
$$y_1 = \bar{A}B + A\bar{C}$$
; $y_2 = AB + AC$

$$D y_1 = A\bar{B} + \bar{A}C; y_2 = \bar{A}B + \bar{B}C$$

A demultiplexer of size 1×8 with active low outputs, is programmed as shown below. The circuit has three inputs x, y, z and generates two outputs y_1 , y_2 .

What is this circuit

- A Half subtractor
- B Full subtractor
- C Half adder
- D Full adder

Pw

The logic diagram of a 3 × 8 decoder with active low outputs is shown below. What is state of outputs Q_7 , Q_0 for the set of inputs $E_3 = E_1 = 1$,

$$E_2 = 0$$
, $A_2 = A_1 = 1$ and $A_0 = 0$?

- B 1011 1111
- C 1111 0111
- D 0000 0000

Question

A 3 line to 8 line decoder with active low outputs, is used to realize Boolean function involving three variables x, y and z(x is MSB and z is LSB) as shown below.

The minimized Boolean function f(x, y, z) in POS format, will be

A
$$(\bar{x} + \bar{y} + \bar{z})(x + y + z)(x + \bar{y} + \bar{z})(\bar{x} + y + \bar{z})$$

B
$$(\bar{x} + \bar{y} + z)(\bar{x} + y + z)(x + \bar{y} + z)(x + y + \bar{z})$$

Decoder

$$C(x+z)(y+z)(\bar{x}+\bar{y}+\bar{z})$$

$$\begin{array}{c}
C (x+z)(y+z)(\bar{x}+\bar{y}+\bar{z}) \\
D (\bar{x}+\bar{z})(\bar{y}+\bar{z})(x+y+z) \\
(x+z)(y+z)(x+y+z) \\
(x+z)(y+z)(x+y+z)
\end{array}$$

Two 2×4 decoders one with active low outputs and another with active high output are interconnected as shown below. The output function $f_2(x_3, x_2, x_1)$ will be

$$A f_2 = (x_1 \oplus x_2) \odot x_3$$

B
$$f_2 = (x_1 \odot x_2) \odot x_3$$

C
$$f_2 = (x_1 \oplus x_2) \oplus x_3$$

$$D f_2 = (x_1 \oplus x_2) \oplus x_3$$

Pw

Three half adders HA_1 , HA_2 and HA_3 are inter-coupled as shown below. The four output functions y_1 , y_2 , y_3 and y_4 are expressed in terms of inputs a, b and c. Which one of the following output expressions, is correct?

A
$$y_1 = (a \oplus b)c \times$$

B
$$y_2 = (a \oplus b) \oplus c^{\times}$$

$$C_{3} = ab \oplus c$$

D
$$y_4 = a(b \oplus c)$$

Determine the outputs for the circuit shown below.

A
$$\Sigma' = 1$$
, $C'_{out} = 1$

B
$$\Sigma' = 0$$
, $C'_{out} = 0$

$$C \Sigma' = 0, C'_{\text{out}} = 1$$

D Σ' = 1,
$$C'_{out} = 0$$

Question

MCQ

How many half adders, will be required to add two k bit numbers?

$$D 2(k+1)$$

Question NAT

Eight 1-bit full adders are cascaded. Each 1-bit full adder generates carry out bit in 10 ns and sum bit in 30 ns. The number of addition performed per second, will be 1×10^7

$$T = (n-1) T_{corry} + Max \{ T_{sum}, T_{corry} \}$$

$$= \{ 7 \times 10 + 30 \} \text{ ns}$$

$$T = 100 \text{ ns}$$

$$L = \frac{1}{100} \frac{10^2}{100} = \frac{100 \times 10^3}{100} = \frac{1000 \times 10^3}{100} = \frac{1000 \times 10^3}{100} = \frac{1000 \times 10^3}{100} = \frac{1000$$

Thank you

Seldiers!

