NASA CR-167995 PWA 5698-77

NASA-CR-167995 19850009749

NASA

STUDY OF CONTROLLED DIFFUSION STATOR BLADING II. FINAL REPORT

by

R.F. Behlke, J.D. Brooky and E. Canal

March 1983

FIBRARA ESPA

1 / 12 1835

LANGLEY RESEARCH CENTEP LIBRARY, NASA E. METON, VIRGINIA

United Technologies Corporation Pratt & Whitney Aircraft Group Commercial Engineering

Prepared for

National Aeronautics and Space Administration NASA-Lewis Research Center NAS3-22008

NF01867

All Blank Pages
Intentionally Left Blank
To Keep Document Continuity

NASA

STUDY OF CONTROLLED DIFFUSION STATOR BLADING II. FINAL REPORT

bу

R.F. Behlke, J.D. Brooky and E. Canal

March 1983

United Technologies Corporation Pratt & Whitney Aircraft Group Commercial Engineering

Prepared for

National Aeronautics and Space Administration NASA-Lewis Research Center NAS3-22008

N85-18058#

	n	
		-

	_	
1. REPORT NO. NASA-CR-167995	2. GOVERNMENT AGENCY	3. RECIPIENT'S CATALOG NO.
4. TITLE AND SUBTITLE Study of Controlled Diff	fusion Stator Blading	5. REPORT DATE March 1983
II. Final Report		6. PERFORMING ORG. CODE
7. AUTHOR(S) R.F. Behlke, J.D. Brooky	/ and E. Canal	8. PERFORMING ORG. REPT. NO. PWA-5698-77
9. PERFORMING ORG. NAME AN	ND ADDRESS	TO. WORK UNIT NO.
UNITED TECHNOLOGIES CO	DRPORATION	
Pratt & Whitney Aircra Commercial Engineering	aft Group	TT. CONTRACT OR GRANT NO. NAS3-22008
12. SPONSORING AGENCY NAME	AND ADDRESS	13. TYPE REPT./PERIOD COVERED
National Aeronautics Lewis Research Center	and Space Administration	Contractor Report
21000 Brookpark Road,	, Cleveland, Ohio 44135	14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES NASA Project Manager: Fan and Compressor Bra P&WA Program Manager: 16. ABSTRACT	anch, NASA-Lewis Research Co	hanics and Acoustic Division - enter, Cleveland, Ohio 44135
Tests were conducted of having low aspect rational designed by the control designing transonic carcular-arc airfoil so (1450 ft/sec), a hub/t stator aspect ratio of an adiabatic efficiency margin was 14%. The state percentage points. The percentage points. The surge diffusion factor root. The NAS3-22008 percents in the surge diffusion factor root.	io rotor and stator airfoil olled diffusion procedure reascade airfoils. The rotor leactions. The stage had a trip ratio of 0.597, a rotor of 1.45. At design speed the crotor efficiency exceeded the crotor efficiency was 92.4% arotor efficiency was 92.4%	aspect ratio of 1.3, and a rotor-stator stage achieved and pressure ratio. Surge e design goal by 0.6
17. KEY WORDS (SUGGESTED E	BY AUTHOR(S)) 18. DISTR	IBUTION STATEMENT
Compressor front stage		
Controlled diffusion s Low aspect ratio airfo		classified - Unlimited
High Mach numbers Highly loaded airfoils	,	
T9. SECURITY CLASS THIS (REP		(PAGE) 21. NO. PGS 22. PRICE 128
Unclassified	1 0110102211160	120

•		

FOREWORD

The work described herein was performed under the National Aeronautics and Space Administration Contract NAS3-22008 by the United Technologies Corporation, Pratt & Whitney Aircraft Group, Commercial Engineering, East Hartford, Connecticut 06180 under the direction of Mr. N.T. Monsarrat, Program Manager. The NASA Project Manager was Mr. T.F. Gelder, Fluid Mechanics and Acoustic Division - Fan and Compressor Branch, NASA-Lewis Research Center, Cleveland, Ohio 44135. The work was performed during the period June 1979 and June 1982.

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0 3.1 3.2 3.3 3.3.1 3.3.2	APPARATUS Test Compressor Stage Test Facility Instrumentation and Calibration Overall and Blade Element Instrumentation Special Instrumentation	2 2 4 4 7
4.0 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 4.2.2 4.2.3	PROCEDURES Test Procedures Shakedown Tests Pole Rake Blockage Test Inlet Guide Vane and Stator Exit Vane Optimization Test Overall and Blade Element Performance Test Data Reduction Data Reduction Procedure Traverse Data Considerations Flowfield Analysis	8 8 9 9 10 10 10 10
5.0 5.1 5.2 5.2.1 5.2.2	RESULTS AND DISCUSSION Overall Performance Blade Element Performance Comparison of Spanwise Performance Variations of Blade Element Parameters With Incidence Angle	14 14 15 15
6.0	CONCLUSIONS	20
7.0	REFERENCES	20
APPENDICIES		
Α	Symbols	63
В	Performance Parameters	67
С	Overall and Blade Element Performance Airfoil Aerodynamic Summary	71
DI STRI	BUTION LIST	123

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	<u>Page</u>
1	Controlled-Diffusion, Low-Aspect-Ratio Front Stage Test Rig	22
2	Schematic of Test Stand	23
3	Typical Instrumentation	24
4	Axial and Circumferential Location of Instrumentaion	25
5	Sample of Wake Total Pressure Ratio	26
6	Typical Circumferential Profiles of Total Pressure Ratio Distribution	27
7	Typical Circumferential Profiles of Total Temperature Ratio Distribution	28
8	Stator Trailing Edge Total Pressure	29
9	Comparison of Flowpath Blockage Factors	30
10	Stage Pressure Ratio and Adiabatic Efficiency as Functions of Corrected Inlet Flow	31
11	Rotor Pressure Ratio and Adiabatic Efficiency as Functions of Corrected Inlet Flow	32
12	Rotor Temperature Ratio as a Function of Percent Span at the Rotor Trailing Edge	33
13	Rotor Pressure Ratio as a Function of Percent Span at the Rotor Trailing Edge	33
14	Rotor Adiabatic Efficiency as a Function of Percent Span at the Rotor Trailing Edge	34
15	Rotor Loss Coefficient as a Function of Percent Span at the Rotor Trailing Edge	34
16	Rotor Incidence angle to Suction Surface as a Function of Percent Span at the Rotor Trailing Edge	35
17	Rotor Leading Edge Absolute Air Angle as a Function of Percent Span at the Rotor Trailing Edge	35

LIST OF ILLUSTRATIONS (Cont'd)

Figure	<u>Title</u>	Page
18	Rotor Turning Angle as a Function of Percent Span at the Rotor Trailing Edge	36
19	Rotor Deviation Angle as a Function of Percent Span at the Rotor Trailing Edge	37
20	Rotor Diffusion Factor as a Function of Percent Span at the Rotor Trailing Edge	37
21	Stage Pressure Ratio as a Function of Percent Span at the Stator Trailing Edge	38
22	Stage Adiabatic Efficiency as a Function of Percent Span at the Stator Trailing Edge	38
23	Stator Loss Coefficient as a Function of Percent Span at the Stator Trailing Edge	39
24	Stator Inlet Absolute Mach Number as a Function of Percent Span at the Stator Trailing Edge	39
25	Stator Deviation Angle as a Function of Percent Span at the Stator Trailing Edge	40
26	Stator Turning Angle as a Function of Percent Span at the Stator Trailing Edge	40
27	Stator Incidence Angle as a Function of Percent Span at the Stator Trailing Edge	41
28	Stator Velocity Density Ratio as a Function of Percent Span at the Stator Trailing Edge	41
29	Stator Diffusion Factor as a Function of Percent Span at the Stator Trailing Edge	42
30	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at Five Percent Span From the Hub at Design Stagger Angles	43
31	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at Ten Percent Span From the Hub at Design Stagger Angles	44

LIST OF ILLUSTRATIONS (Cont'd)

Figure	<u>Title</u>	<u>Page</u>
32	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 15 Percent Span From the Hub at Design Stagger Angles	45
33	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 30 Percent Span From the Hub at Design Stagger Angles	46
34	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 50 Percent Span From the Hub at Design Stagger Angles	47
35	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 70 Percent Span From the Hub at Design Stagger Angles	48
36	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 85 Percent Span From the Hub at Design Stagger Angles	49
37	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 90 Percent Span From the Hub at Design Stagger Angles	50
38	Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 95 Percent Span From the Hub at Design Stagger Angles	51
39	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at Five Percent Span From the Hub at Design Stagger Angles	52
40	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 11 Percent Span From the Hub at Design Stagger Angles	53

LIST OF ILLUSTRATIONS (Cont'd)

Figure	<u>Title</u>	Page
41	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 16 Percent Span From the Hub at Design Stagger Angles	54
42	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 31 Percent Span From the Hub at Design Stagger Angles	55
43	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 51 Percent Span From the Hub at Design Stagger Angles	56
44	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 71 Percent Span From the Hub at Design Stagger Angles	57
45	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 85 Percent Span From the Hub at Design Stagger Angles	58
46	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 90 Percent Span From the Hub at Design Stagger Angles	59
47	Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 95 Percent Span From the Hub at Design Stagger Angles	60
48	Stator Velocity Density Ratio as a Function of Percent Span at the Stator Trailing Edge at Design, Choke, Operating Line, and Near Stall	61

LIST OF TABLES

TABLE	<u>Title</u>	Page
I	Comparison of NAS3-22008 and NAS3-20809 Design Parameters	3
ΙΙ	Overall Performance and Blade Element Instrumentation	5
III	Special Instrumentation	8
IA	Settings for Stagger Angle Optimization Test	9
٧	Flowfield Program Parameter Input	13
VΙ	Summary of Test Results at Design Speed	14

STUDY OF CONTROLLED DIFFUSION STATOR BLADING II. FINAL REPORT

R.F. Behlke, J.D. Brooky and E. Canal Pratt & Whitney Aircraft Group

1.0 SUMMARY

Tests were conducted on a low aspect ratio, high tip speed front compressor stage using a redesigned rotor and controlled diffusion stator to demonstrate that high efficiency can be achieved at high levels of blade loading. The low aspect ratio compressor stage had a tip speed of 442 m/sec (1450 ft/sec), a hub/tip ratio of 0.597, a rotor aspect ratio of 1.3, and a stator aspect ratio of 1.45. The test stage inlet included an engine-type intermediate case and a variable inlet guide vane. The stage was similar to that tested in Contract NAS3-20809 with the only significant differences being: 1) the rotor blades were modified to increase camber, 2) the rotor-stator axial gapping was decreased to that typical of engines, and 3) the multiple-circular-arc stator was replaced by a controlled diffusion stator.

At design speed the rotor-stator stage achieved an adiabatic efficiency of 89.1 percent at design flow and pressure ratio with a surge margin of 14 percent (see table). The test stage efficiency exceeded the design goal by 0.6 percentage points. Rotor test efficiency for this point was 92.4%, exceeding design goal by 0.3 percentage points. Flow capacity and efficiency were significantly improved over the previous tests with stage efficiency showing a 2.5 percentage point increase. The recambering of the NAS3-20809 rotor resulted in 2.6 percentage point improvement in its efficiency and a 6% increase in flow. The controlled diffusion stator demonstrated a lower minimum loss than the multiple-circular-arc design from the root to 70 percent span. Surge diffusion factors of 0.72 were reached at both the rotor tip and stator root. The intent of demonstrating high efficiency and high loading levels with low aspect ratio blading and a controlled diffusion stator in the adverse front stage environment was successfully accomplished in this test.

	Design Goal	NAS3-22008 Test	NAS3-20809 Test
Corrected Inlet Flow			
Rotor Leading Edge, kg/sec (1bm/sec)	47.28 (104.2)	47.20 (104.0)	44.35 (97.8)
Rotor Pressure Ratio	1.845	1.842	1.835
Rotor Adiabatic Efficiency, %	92.1	92.4	89.8
Stage Pressure Ratio	1.81	1.805	1.800
Stage Adiabatic Efficiency, %	88.5	89.1	86.6
Surge Margin, %	10	14	12.5

2.0 INTRODUCTION

Future commercial aircraft powerplants, in order to reduce fuel consumption, will require compressors with higher pressure ratios and efficiencies than those currently in use. This implies the use of higher tip speeds and higher stage loadings to achieve the larger stage pressure ratio. Research on advanced compressor stages has shown that relatively low aspect ratio blading can provide high levels of loading while maintaining high efficiency and adequate stability margin. The high loading capability of low aspect ratio blading was demonstrated in Contract NAS3-20809 (ref. 1). It is the intent of this contract to correct the rotor deficiencies that had been identified in that test and to evaluate the controlled diffusion stator design technique in the three-dimensional high Mach number environment of the front stage.

The tip speeds required for a highly loaded front stage result in transonic and supersonic relative Mach numbers into the rotor, a condition similar to that encountered in fans. The design of highly loaded, high aspect ratio blading for the transonic/supersonic regime has been explored extensively and successfully under various NASA fan contracts (ref. 2, 3, 4). This fan experience in combination with an intrablade time-marching finite area procedure (ref. 5) was used to redesign the low aspect ratio blade.

High speed fan and compressor stages designed for high flow capacity and high loading tend to have very high flow Mach numbers entering the stator, especially in the hub region. This results in a tendency for strong shocks in the stator channels and excessive stator loss. An emerging theoretical design method has the potential to design stator channels that control diffusion to eliminate shocks or radically reduce shock strength, thus significantly reducing stator pressure loss. Stator airfoils designed by these methods have been tested in a two-dimensional cascade tunnel with encouraging results (ref. 6). This program evaluated the controlled diffusion stator design technique in the high Mach number environment of a front stage.

The total NAS3-22008 effort covered the design and fabrication of a controlled diffusion stator, the redesign and recambering of the rotor blades, and the simultaneous testing of rotor and stator. The test rig was essentially the same as used during the NAS3-20809 program, the only significant difference other than the recambered rotor blades and the controlled diffusion stator vanes was a smaller rotor-stator axial spacing.

3.0 APPARATUS

3.1 TEST COMPRESSOR STAGE

The tests were conducted on a low aspect ratio, single-stage research compressor designed to be representative of the first stage of an advanced multistage, high-pressure compressor. A detailed description of the aerodynamic and mechanical design of the low aspect ratio rotor and controlled diffusion stator was provided in the design report (ref. 7).

Design parameters (see Table I) were chosen to be compatible with existing rig hardware that accurately simulates engine conditions. This hardware, shown in Figure 1, includes an offset inlet transition duct that incorporates a preswirl vane to simulate fan stator root or low-pressure compressor exit flow, engine type intermediate case struts, and a variable inlet guide vane.

TABLE I

COMPARISON OF NAS3-22008 AND NAS3-20809 DESIGN PARAMETERS

	NAS3-22008	NAS3-20809
Corrected Speed, rpm	12210	12210
Rotor Tip Speed, m/sec (ft/sec)	442.0 (1450)	442.0 (1450)
Inlet Corrected Flow, kg/sec (lbm/sec)	47.28 (104.24)	47.28 (104.24)
Rotor Inlet Corrected Weight Flow Per Unit	195.3 (40.0)	195.3 (40.0)
Annulus Area, kg/m²-sec (lbm/ft²-sec)		
Rotor Pressure Ratio	1.845	1.845
Stage Pressure Ratio	1.81	1.81
Rotor Adiabatic Efficiency, %	92.1	92.1
Stage Adiabatic Efficiency, %	88.5	88.5
Tip Diameter, meters (inches)	0.6901 (27.2)	0.6901 (27.2)
Hub/Tip Ratio at Rotor Inlet	0.597	0.597
Rotor Tip Solidity	1.26	1.26
Rotor Aspect Ratio*	1.30	1.30
Stator Hub Solidity	1.429	1.426
Stator Aspect Ratio*	1.446	1.42
Stator Average Exit Flow Angle, degrees	22.0	16.0
Number of Rotor Blades	24	24
Number of Stator Vanes	27	30

^{*} Aspect Ratio = average airfoil length/midspan chord.

The high tip speed and inlet specific flow of the rotor were chosen to provide the desired stage pressure ratio of 1.81, which is representative of front stages of advanced core compressors. Stator exit Mach number and flow angle were chosen to be realistic values to match the assumed downstream high-pressure compressor stages. The stage reaction level was set at 0.71 in order to keep stator inlet Mach number levels below 0.9 across the span. The original flowpath (Contract NAS3-20809) was retained except for rotor-to-stator spacing and the annulus area downstream of the stator. The rotor-to-stator spacing was significantly reduced to make it representative of normal first-stages. The stator-exit duct was opened up because the original duct had been choked.

The NAS3-20809 rotor was redesigned and recambered to improve flow and efficiency. Rotor losses for the redesign were estimated by extrapolating the

blade element data from the NAS3-20809 tests to minimum loss incidence. Rotor incidence, deviation, and other design parameters were set using a combination of test data from the original contract, fan experience, and a time-marching finite-area procedure (ref. 5). Approximately three degrees of camber were added to the blade trailing edge above 15 percent span. No changes could be made in the inner ten percent span of the rotor because of the reforming process used for recambering.

In the controlled diffusion design procedure (ref. 7), which was used to design the test stator vanes, the airfoil is contoured to control peak Mach numbers to low supersonic levels in order to preclude formation of strong shock waves and to yield an unseparated boundary layer at the airfoil trailing edge throughout the incidence and Mach number range of interest. For this design, the same diffusion factor (spanwise average) was used as for the NAS3-20809 stator. This resulted in six degrees more swirl at the stator exit. as seen in Table I. Two degrees of this swirl was a result of two degrees greater swirl at the stator inlet for this design. The remaining four degrees of swirl was necessary since the flowpath convergence for the NAS3-20809 stator was greater. Controlled diffusion stator losses were estimated from the previous multiple circular arc stator loss modified by Pratt & Whitney Aircraft controlled diffusion experience, which indicated that the design stage efficiency goal, see Table I, could be exceeded by 0.7 percentage points. The stator blade element data is compared in Section 5 with this lower loss level used during the stator aerodynamic design.

3.2 TEST FACILITY

The test program was conducted in the facility shown in Figure 2. The facility is equipped with a synchronous motor with a multi-ratio gearbox to provide speed range capability. The inlet air flows first through a filter and then through a flatplate orifice and into an inlet plenum, which provides a uniform total pressure and temperature profile to the test rig. The airflow is exhausted from the rig into a toroidal collector through a set of various size valves, providing coarse and fine adjustment of backpressure, or throttling, for the test compressor and then through exhausters. The low pressure provided by the exhausters is also used to vent the rotor front cavity. Strain-gage signals from the rotor are transmitted to recording equipment by means of telemetry.

3.3 INSTRUMENTATION AND CALIBRATION

3.3.1 Overall and Blade Element Instrumentation

The airflow to the test compressor stage was measured by means of a flatplate orifice, which was designed to the specifications defined by the International Organization for Standards. All orifice related instrumentation was installed per Power Test Code 19.5, 4-1959. The flow rate measurements were accurate to within ± 1.0 percent.

Rotor speed was measured by means of an impulse type pickup through a

frequency-to-DC converter. The accuracy was within ± 0.1 percent of the indicated speed.

All temperatures were measured by means of Chromel-Alumel Type K thermocouples with an individual wire calibration applied to each sensor. Sample elements from the temperature pole rakes were calibrated over the expected Mach number range to determine recovery factor variations with yaw and pitch angle. Variations of the recovery correction with pressure were applied per NASA Technical Note 3766 and complemented by results of Pratt & Whitney Aircraft testing. Overall root mean square temperature accuracy is estimated to be $\pm 0.28 \text{K} \ (\pm 0.50 \text{F})$.

Airflow angle was measured by radially traversing 15-degree included angle wedge probes. Total pressure recovery and yaw angle deviations were calibrated as functions of Mach number and pitch angle. Accuracy was +0.5°.

Pressure measurements obtained from pole rakes and static taps were determined by means of transducers on scanivalves and were recorded by an automatic data acquisition system. The accuracy was ± 0.1 percent of the full scale value for that transducer.

Typical instrumentation is shown in Figure 3, and the axial and circumferential positions of the instrumentation are shown in Figure 4. (Note that the pressure and temperature pole rakes at the stator exit (station 5) did not share the same circumferential position.)

The overall and blade element performance instrumentation is listed in Table II.

TABLE II

OVERALL PERFORMANCE AND BLADE ELEMENT INSTRUMENTATION

Instrument Plane Location	Parameter Measured	Type and Quantity	
Station O (Inlet Flow Measuring Orifice)	P _s	4 static taps downstream and 4 static taps upstream of the inlet orifice	
	Р	$2 \Delta P$ transducers sensing the differential pressure between the upstream and downstream orifice pressures	
	T _T	6 total temperature thermocouples located upstream of the orifice	

TABLE II (Cont'd) OVERALL PERFORMANCE AND BLADE ELEMENT INSTRUMENTATION

Instrument Plane Location	Parameter Measured	Type and Quantity
Station I (Plenum Chamber)	тт	10 bare wire thermocouples located in a plane in the plenum chamber and distributed equally in the radial and circumferential direction
	Ps	6 static pressure taps circumferentially equally spaced on the plenum wall
Station 2 (Rig Inlet Duct)	P _S	3 outer and 3 inner wall static pressure taps 4 outer and 4 inner wall static pressure taps at leading edge of inlet guide vane
Station 3 (Rotor Inlet)	P _T	3 nine-element sensor rakes* to provide readings at nine radial positions (5, 10, 15, 30, 50, 70, 85, 90, and 95 percent span)
	Ps	4 outer* and 4 inner wall static pressure taps located in the same plane as the P _T rakes
	Ps	8 outer and 4 inner wall static pressure taps at the trailing edge of the inlet guide vane
	Ps	4 outer wall static pressure taps at the leading edge of the rotor
	P _T , Air Angle, Radius	2 wedge-type traverse probes* positioned to measure at 9 radial locations (5, 10, 15, 30, 50, 70, 80, 90, and 95 percent span)
	Ps	10 outer wall static pressure taps at the trailing edge of the rotor
Station 4 (Stator Inlet)	Ps	8 interstage outer wall static pressure taps between the rotor and stator rows

TABLE II (Cont'd)

OVERALL PERFORMANCE AND BLADE ELEMENT INSTRUMENTATION

Instrument Plane Location	Parameter Measured	Type and Quantity
	P _s	5 outer and 5 inner wall static pressure taps at the leading edge of the stator
Station 5 (Stator Exit)	P _T	3 nine-element sensor rakes* to provide readings at nine radial positions (5, 10, 15, 30, 50, 70, 85, 90, and 95 percent span)
	ТŢ	3 nine-element sensor rakes* to provide readings at nine radial positions (5, 10, 15, 30, 50, 70, 85, 90, and 95 percent span)
	P _S	4 outer* and 4 inner wall static pressure taps located in the same plane as the P_T and T_T rakes
	P _S	9 outer and 4 inner wall static pressure taps at the trailing edge of the stator
	P _T , Air Angle, Radius	2 wedge-type traverse probes* positioned to measure at 9 radial locations (5, 10, 15, 30, 50, 70, 85, 90, and 95 percent span)

^{*} Located in a circumferential traverse ring.

3.3.2 Special Instrumentation

Special instrumentation for indicating stall was provided at the leading and trailing edge of the rotor blade row. This instrumentation consisted of a high response thermocouple at the outer wall of the flowpath at the leading edge and static pressure taps with close mounted pressure transducers at the trailing edge. Both sensors were connected to the stand safety monitoring system, which automatically sequenced the compressor to stall recovery. This system along with the automatic data recording system was used to identify the point of instability.

Strain gages were installed on selected blades and vanes to detect excessive vibratory or flutter stresses.

Special instrumentation for measuring both aerodynamic and mechanical characteristics is listed in Table III.

TABLE III

SPECIAL INSTRUMENTATION

Instrument <pre>Plane Location</pre>	Parameter Measured	Type and Quantity
Rotor Leading Edge	T _T	2 high response bare wire thermocouples near the outer wall
Rotor Trailing Edge	P _s	2 static pressure taps on the outer wall and connected to high frequency response transducers
Inlet Guide Vane	Stress	2 strain gages on each of 3 vanes
Rotor	Stress	16 strain gages distributed on each of 8 blades and 2 strain gages on the disk
Stator	Stress	14 strain gages distributed on each of 4 vanes

4.0 PROCEDURES

4.1 TEST PROCEDURES

4.1.1 Shakedown Tests

Shakedown tests were conducted to establish the mechanical integrity of the test rig, to locate stress boundaries that might limit the test operating range, and to verify the performance of the instrumentation and data reduction system. The shakedown tests were performed with the inlet guide vane and stator at the design stagger positions.

A stress survey from 50 to 105 percent of design speed did not indicate any significant integral order blade stresses in any mode. Other tests indicated that stresses were essentially unaffected by inlet guide vane or stator angle position, probe configuration (fixed or traversing), stage pressure ratio, or airflow rate. Flutter (nonintegral vibration) did not occur at any condition, and all other mechanical monitoring instrumentation indicated that the rig was

operating within established limits.

4.1.2 Pole Rake Blockage Test

All pole rake instrumentation was removed from station 3 (rotor inlet) after the pole rake blockage test. Steady state and circumferential traverse data were acquired with a wide open throttle at 100 and 105 percent speed. In addition, steady state data, circumferential traverse data and radial traverse data were obtained at the design operating point and at an above-design operating point for 100 percent speed.

The data showed that the station 3 pole rakes caused an unacceptable blockage and interfered with downstream instrumentation. The pole rakes were therefore removed from station 3 for the remainder of the test. The rotor inlet pressure for post test data reduction was calculated using a loss curve generated from data obtained during the shakedown test.

4.1.3 Inlet Guide Vane and Stator Exit Vane Optimization Test

Both the inlet guide vane and the stator were tested over a range of stagger angle settings, as shown in Table IV. All data were acquired at 100 percent of design speed on or above the operating line. The design stagger was chosen for the inlet guide vane since that angle resulted in the stage meeting its design flow and pressure ratio. The design stagger was also selected for the stator vane for all performance documentation testing, no overall stage performance difference being discerned at either the open or closed settings.

TABLE IV
SETTINGS FOR STAGGER ANGLE OPTIMIZATION TEST

Stagg	ger Angle		
<u>I GV</u>	Stator	<u>Purpose</u>	Type of Data Taken
0°	0°	Calibration of Vane Position	Circumferential and Radial Traverse Data
0°	0°	Baseline for IGV Optimization	Steady State Data
-4°	0°	IGV Optimization	Steady State Data
+4°	0°	IGV Optimization	Steady State Data
0°	- 2°	Stator Stagger Optimization	Circumferential Traverse Data
0°	+2°	Stator Stagger Optimization	Circumferential Traverse Data
0°	0°	Assess Interaction, Confirm Combined Performance of Best Stagger Settings	Circumferential and Radial Traverse Data

4.1.4 Overall and Blade Element Performance Tests

Overall and blade element performance data points were recorded for documentation on speedlines of 70, 95, 100, and 105 percent of design speed. Each data point consisted of fixed steady state, circumferential, and radial traverse data. Surge points were acquired at each speed to document surge margin.

After each surge point, a design operating line point was acquired at 100 percent of design speed. These "health points" showed that surge did not deteriorate performance.

4.2 DATA REDUCTION

4.2.1 Data Reduction Procedure

An automated data reduction and analysis program conditioned, organized, and processed the raw data into engineering units and performed circumferential mass averaging for subsequent use in flowfield synthesis computer programs.

All steady state performance data were automatically recorded in millivolts and converted to engineering units. Thermocouple signals were converted to temperature measurements, wire calibrations being used for individual sensors. These temperature measurements were converted into total temperature using calibrations of total temperature recovery versus Mach number for individual sensors and a pressure level correction. Total and static pressure signals were converted to pressure measurements by means of scanivalve transducer calibrations. Wedge probes were used to measure airflow angle, which was corrected for yaw deviation by means of a Mach number calibration for individual probes.

Circumferentially mass-flow averaged total temperatures and total pressures for each selected radial position were calculated by means of measured circumferential distributions of total pressure and temperature. A constant circumferential static pressure was utilized in determining the dynamic head at each radial position. This constant circumferential static pressure was obtained by linearly interpolating between static pressure measurements from inner and outer wall static pressure taps.

4.2.2 Traverse Data Considerations

The test compressor rig was fitted with an engine type inlet duct which had large struts and inlet guide vanes that distorted the rotor inlet pressure field and with stator vanes and stator exit probes that backpressured the rotor. As a consequence the instrumentation for the traverse stage and rotor data reduction procedures had to be chosen with special care to ensure adequate isolation of stage and rotor performance. A discussion follows.

Rotor Inlet Traverse

Rotor inlet conditions were defined by circumferentially traversed total pressure pole rakes and radially traversed air angle probes at station 3 (rotor inlet) and by the plenum chamber total temperature probes.

A total pressure traverse of the rotor inlet plane (station 3) was used to isolate rotor and stage pressures from the losses generated by the representative engine transition duct. Traverse probes were positioned to assess the wakes of the inlet guide vanes and struts at nine radial positions that ranged from 5 to 95 percent span. Figure 5 shows a typical sample of wake measurements for each of the three pole rakes at midspan as a function of inlet guide vane gap and intermediate case strut gap. These three pole rakes in combination measured three inlet guide vane gaps and one strut gap, or one-ninth of the entire circumference, providing a mass-flow average inlet loss. Loss was defined at each of the nine spans from data obtained during the shakedown test covering the range of test flows, and these losses were used to isolate rotor and stage pressure ratio for all points presented. The measured loss of the inlet guide vane, intermediate case, and struts from the previous test (ref. 1) duplicated the losses measured during this test (ref. 7, Fig. 7).

The airflow angle at the rotor leading edge was measured by two radially traversed wedge probes positioned circumferentially midway between inlet guide vane wakes. The flow angle input into the stream line analysis program was the arithmetical average of the two probes at each of the nine radial positions.

Stator Exit Traverse

To measure rotor and stator exit temperature and pressure, three temperature and three pressure pole rakes, each with nine radial elements, were traversed across two stator vane gaps at the stator exit. These three probes were positioned so their total circumferential traverse would measure six stator vane gaps, two full strut gaps, and six inlet guide vane gaps. Figures 6 and 7 show typical circumferential profiles of the pressure and temperature distributions at the stator trailing edge station. At this station the wakes from the inlet case struts and from the inlet guide vanes have undergone considerable mixing and are no longer visible. The pressure traverse profiles are dominated by vane wakes and pressure fluctuations caused by the rotor being backpressured by the stator leading edge flowfield. The temperature profiles are typical of rotor temperature wakes measured at the stator trailing edge.

From this and a subsequent Pratt & Whitney Aircraft funded test where extensive probe interchanging had been performed, it was concluded that an exit flow distortion problem was present. The distortion was traced to the backpressure effect of the stator exit probes.

The data from the Pratt & Whitney Aircraft funded test showed that only a relatively small circumferential efficiency variation resulted when the pressure and temperature probes sampled the same segment of the backpressure

distortion (either high or low). Based on this, two matched pairs of pressure and temperature probes were used to obtain the data presented in this report. The probes included the 46-degree pressure probe and the 193-degree temperature probe, which were in high backpressure areas, and the 20-degree temperature probe and 140-degree pressure probe, which were in low backpressure areas. The total pressures and total temperatures were circumferentially mass-flow averaged for each of the four probes. These pressure and temperature mass-flow averaged values were then, respectively, arithmetically averaged to obtain a single radial distribution of pressure and temperature to represent stator exit conditions for use in the streamline analysis program. These probes provided a balanced, accurate measurement of rotor and stage performance, with rotor efficiency agreeing closely with the results of the Pratt & Whitney Aircraft test of the same rotor measured by four sets of coincident pressure and temperature probes.

The probe measurements eliminated from this report were the 287-degree temperature probe, which sampled a low backpressure region, and the 313-degree pressure probe, which sampled a high backpressure region. Inclusion of these two measurements would have biased the results in the direction of an unrealistically higher efficiency by approximately 0.8 percentage points.

A second flowfield distortion present in this test rig produced a requirement to modify the method of extracting rotor pressure from the stator exit traverse results relative to that used in the initial NAS3-20809 program. Because of the close spacing between rotor and stator—typical of engine designs—the stator leading edge flowfield locally backpressured the rotor. Evidence of this stator—induced distortion field is indicated in Figure 8a by the static pressure measurements obtained at the stator leading edge outer wall 2.3 cm from the rotor exit (1.7 cm from the stator inlet). Because of this stator induced rotor backpressuring, the peak midgap value method of determining rotor pressure employed during the NAS3-20809 tests (Figure 8b) could not be used.* Rotor exit pressure for the present test was determined by analyzing each wake traverse to isolate stator core from stator wake pressures for the nine measured spans for each data point, as seen in Figure 8c.

Stator exit airflow angles were measured by two radially traversed wedge probes positioned circumferentally between stator wakes. The flow angle input to the streamline analysis program was the arithmetic average of the probes at each of the nine radial positions.

4.2.3 Flowfield Analysis

Overall and blade element performance parameters were determined by an analysis of the stage flowfield. An axisymmetrically averaged model of the flowfield was produced from measured traverse results as input to a streamline computer program, with boundary conditions based on test data. The computer program solved the equations of continuity, energy, and radial equilibrium using the streamline curvature technique, including enthalpy and entropy gradient terms and assuming axisymmetric flow. The input to the computer program, as listed in Table V, included measured temperatures, pressures, and

^{*} Because of the large spacing employed during the NAS3-20809 program, rotor back pressuring was insignificant.

airflow angles and a flow blockage factor derived from static pressures measured by means of wall taps.

TABLE V

FLOWFIELD PROGRAM PARAMETER INPUT

Location Parameters Compressor Inlet (Station 1) Corrected mass flow 2) Corrected rotor speed Rotor Inlet (Station 3) Total pressure ratio versus radius 2) Absolute air angle versus radius 3) Constant radial blockage factor determined by wall static pressure measurements Rotor Exit (Station 4) 1) Constant radial blockage factor determined by wall static pressure measurements Stator Exit (Station 5) 1) Total pressure ratio versus radius 2) Total temperature ratio versus radius 3) Absolute air angle versus radius 4) Stator free stream total pressure ratio versus radius Constant radial blockage factor determined by wall static pressure measurements

Analysis of the test results showed that a single blockage factor could be selected at specific axial stations to closely represent both inner and outer wall static pressure measurements over the entire testing flow range. These blockage factors were generated from a sampling of data points that represented each tested speed and operating line conditions.

The blockage factors for this test (solid line) are compared in Figure 9 with those used in the design (dashed line) and those in the NAS3-20809 test (dotted line). The design blockage factors for this test program were based on the NAS3-20809 results and other front stage experience. The blockage factors for this test were lower than those used for design and for the NAS3-20809 tests. The reduced blockage at the rotor inlet can be attributed to the removal of the four inlet traverse probes at the rotor leading edge, which had not been removed during the NAS3-20809 tests. This probe removal may also account for the reduced blockage at the rotor exit and part of the reduction in stator exit blockage. Part of the reduced blockage at the stator exit may also be attributed to the smaller axial spacing between the rotor and stator, allowing less distance for boundary layer growth and blade wake dispersion.

All static pressure distributions and air angles behind the rotor were calculated by the streamline flowfield computer program. Aerodynamic conditions at the blade leading and trailing edges were calculated by translating the measured data from the instrument plane along streamlines to the blade edges, based on conservation of momentum. Blade element parameters were calculated for airfoil sections lying on conical surfaces defined by the intersection of design streamlines and the blade edges. Calculations were made on design streamlines passing through the rotor trailing edge at 5, 10, 15, 30, 50, 70, 85, 90, and 95 percent of the passage height. In addition to the blade element parameters calculated using the Appendix B definitions, the output of the flowfield analysis program included overall performance of the rotor and stator. All these performance data are tabulated in Appendix C. Symbols are defined in Appendix A.

5.0 RESULTS AND DISCUSSION

5.1 OVERALL PERFORMANCE

Stage and rotor overall performance are compared in Figures 10 and 11 with design goals and with the performance from the NAS3-20809 test (ref. 1). The operating line data point for this test is compared with design and the peak stage efficiency point of the NAS3-20809 test in Table VI. The inlet guide vane for this test was set at nominal. For the NAS3-20809 test, it was set at nominal and also unintentionally closed two degrees from nominal during part of the program (ref. 1).

TABLE VI SUMMARY OF TEST RESULTS AT DESIGN SPEED

	Program Design Goal	(40-10-06) NAS3-22008 Operating Line	(104-10-02) NAS3-20809 Peak Stage Efficiency	(104-10-01) NAS3-20809 Peak Rotor Efficiency
Corrected Inlet Flow				
Rotor Leading Edge, kg/sec (1bm/sec)	47.28 (104.2)	47.20 (104.0)	44.35 (97.8)	45.14 (99.5)
Rotor Pressure Ratio	1.845	1.842	1.836	1.814
Rotor Adiabatic Efficiency	92.1%	92.4%	89.8%	90.1%
Stage Pressure Ratio	1.81	1.805	1.800	1.769
Stage Adiabatic Efficiency	88.5%	89.1%	86.6%	86.0%
Surge Margin	10%	14%	12.5%	16.6%

At design speed the stage achieved an adiabatic efficiency of 89.1% at design flow and pressure ratio, exceeding design goal by 0.6 percentage points. The rotor efficiency for this point was 92.4%, exceeding design goal by 0.3 percentage points. Peak rotor and stage efficiency at design speed occurred below the operating line and exceeded design goals by 0.4 and 1.0 percentage points, respectively. Although the gain in rotor efficiency from the operating line to below operating line was small, the significant gain in stage efficiency indicates that the stator on a span average was operating on the stall side of minimum loss at the near-design operating point.

A peak off-design rotor and stage efficiency of 94.5% and 92.0% occurred at 70 percent of design speed: a gain in rotor efficiency of 2.0 percentage points and a gain in stage efficiency of 2.5 percentage points over the peak design speed efficiency. The increase in efficiency at low speed is attributed to very low or nonexistent shock losses in the rotor, which had an inlet relative Mach number below 0.9 at 70 percent of design speed. At 105 percent of design speed, rotor and stage efficiency fell 1.2 and 1.4 percentage points, respectively, from the design speed peak. This decrease in efficiency can be attributed to increased shock losses and to the rotor approaching maximum flow capacity.

Design speed surge margin relative to the operating line was 14%, exceeding the design goal of 10%. Overspeed surge margin remained at 14% while surge margin at 95 percent speed increased to 18% relative to the representative high-pressure compressor operating line.

Recambering the rotor corrected the efficiency and flow deficiencies of the NAS3-20809 program. Design point test rotor and stage efficiencies were, respectively, 2.3 and 2.5 percentage points higher than the NAS3-20809 peak rotor and stage efficiencies, almost all improvement in performance occurring in the rotor. A 0.2 percentage point improvement in stage efficiency can be attributed to the controlled diffusion stator. The minimum span average efficiency loss for the controlled diffusion stator occurred below the operating line and was 2.8 percentage points. This was a 0.4 percentage point improvement over the NAS3-20809 stator minimum efficiency loss. Surge margin from the design operating line at design speed and 105 percent of design speed was five percentage points less than had been achieved in the earlier program (ref.1), but surge margin at 95 and 70 percent speeds was higher.

5.2 BLADE ELEMENT PERFORMANCE

5.2.1 Comparison of Spanwise Performance

The following section compares rotor and stator spanwise performance parameters with design and with the NAS3-20809 parameters. The design operating line data point and the peak stage efficiency point from the previous program, which was close to design pressure ratio, are compared with the design intent of this program. The overall performance parameters for these data points are compared in Table VI.

The spanwise variation of rotor performance parameters are presented in Figures 12 through 20. These figures show that rotor spanwise performance was very close to design across the entire span, thus, recambering corrected the NAS3-20809 rotor performance deficiencies.

Figures 12 and 13 show that the rotor temperature and pressure ratios closely match design. Recambering corrected the higher than design temperature ratios above 50 percent span and the falloff in pressure ratio at the tip. Near the hub where the blade could not be recambered, the pressure and temperature ratios are similar to those of the earlier program. The spanwise rotor efficiency profiles (Figure 14) show the improvements in efficiency: efficiency at the tip increased by eight percentage points, closely matching design; below 50 percent span, efficiency exceeded design and the NAS3-20809 test efficiency. Rotor loss coefficient in Figure 15 also shows this dramatic improvement.

Rematching incidence closer to minimum loss reduced rotor losses. The increased camber produced more pressure ratio, pulling more flow and reducing incidence (Figure 16) to within one degree of design. The one degree difference is attributable to the higher than design inlet air angle produced by the inlet guide vane (Figure 17) and the slightly lower rotor inlet flowpath blockage (see Figure 9). Although the small differences in rotor incidence between the current test and design can be explained in this manner, it should be noted that the differences in inlet air angle are within the accuracy of air angle measurements and the stagger settings of the inlet guide vane.

Rotor turning (Figure 18) and rotor deviation (Figure 19) also agreed closely with design. This close agreement between design and test results shown in Figure 19 confirm the higher design deviation of the modified rotor relative to the NAS3-20809. Rotor diffusion factor (Figure 20) also met design intent over the span. The diffusion factors shown for this test are less than in the previous test because the NAS3-20809 data point in the figure is on a higher operating line.

Spanwise performance parameters for the stage and stator are presented in Figures 21 through 29. The controlled diffusion stator met design loss goals and exhibited lower minimum efficiency loss than the original multiple-circular-arc stator on a span average. The stator demonstrated less than design loss below 50 percent span for the near-design test point and met design loss over 70 percent of the span when matched at each section's demonstrated minimum loss. This is discussed further in the following blade element section. Section 5.2.2.

Stage pressure ratio and efficiency were close to design (Figures 21 and 22), the small differences being caused by the stator not attaining its design loss profile (Figure 23). Stator loss at the root was less than design and also less than the NAS3-20809 results and contributed to the high stage pressure ratio and efficiency at the root. Although stator loss near the tip was higher than that of the NAS3-20809 stator, stage efficiency in this region was greater, because of the better rotor efficiency.

The match of stator inlet Mach number with design (Figure 24) was also much better from 10 percent span to the tip, reflecting the improved rotor performance. Stator Mach numbers were lower than those of NAS3-20809 because of the larger flowpath annulus at the stator leading edge, resulting from the reduction in rotor-to-stator spacing.

Stator deviation and turning angles (Figures 25 and 26) were near design from the hub to 15 percent span and at the tip. Deviation was significantly greater than design and turning significantly less from 30 to 90 percent span. The stator spans that had higher than design deviation and lower turning generally had greater than design loss.

A small portion of this radial redistribution of loss and deviation relative to design can be attributed to the variation of stator incidence relative to design (Figure 27). Stator incidence ranged from one degree below design in the hub region where the losses were lower than design to one degree above design near the tip where loss and deviation exceeded design. Evaluation of this indicates that although this variation in incidence can explain up to one-third of this difference in loss, it cannot explain all of it. The major influence is more likely that the design radial distribution of loss and deviation were not precisely duplicated by the test, producing a radial redistribution of streamtube convergence that limits the potential performance of each section.

The exceptionally low loss and deviation of the rotor and stator hub sections drew more flow toward the stator hub than had been expected, as shown in the stator Mach number plot (Figure 24), resulting in greater than design velocity density ratios (streamtube convergence). This had the opposite effect above 20 percent span, resulting in lower than design velocity density ratios. The low streamtube convergence increases loading, loss, and deviation in that region. The test stator velocity-density ratio is compared with design in Figure 28, illustrating the two distinct regimes.

Stator diffusion factor (Figure 29) was below design level in the hub region where low levels of loss and deviation increased flow and streamtube convergence relative to design. Tip region loading was necessarily opposite to the hub and above design levels, following the spanwise trend of loss and turning.

The following section on the variation of blade element performance with incidence provides further evidence of the connection between the radial distribution of streamtube convergence and the radial spanwise performance.

5.2.2 <u>Variations of Blade Element Parameters With Incidence Angle</u>

Blade element plots are presented in Figures 30 through 47 for loss coefficient, diffusion factor, and deviation angle versus suction surface incidence angle at nine radial locations. The rotor plots are in Figures 30 through 38 and the stator plots in Figures 39 through 47. The stator loss scale is expanded 2.5 time that of the rotor loss scale, for clarity. Blade

element data from the current program are compared with design and with data from the previous program.*

The rotor minimum loss was lower in the current program than in the NAS3-20809 program from midspan through the tip, demonstrating as much as a 50 percent reduction in loss in the tip region. This was also apparent in Figure 15. The NAS3-20809 rotor operated on the stall side of minimum loss from midspan through the tip at all speeds. Adding camber to the outer spans of the rotor pulled more flow and permitted minimum loss incidence to be achieved.

Below midspan, where the loss versus incidence curves were fairly flat as a result of the decreased shock losses, minimum loss of the two tests is similar. Rotor blade element characteristics are also similar in the lower spans since the blades were not recambered in the hub area.

The design speed operating line point (third circle from right) was near minimum loss at all spans, ideally located between the sharp deviation increase at negative incidence and the loss increase shown in these curves at stalled incidence. A slight improvement in loss could be achieved at the tip with about one-half degree more negative incidence for the operating line point. Because the rotor relative Mach numbers were subsonic at 70 percent speed, the loss near the tip region shown in this data was significantly lower than the design speed test loss.

Peak rotor diffusion factors for the subject test occurred at or near the rotor tip for all speeds, indicating that the rotor tip was probably responsible for stage surge. Peak rotor diffusion factor was 0.65 at 95 percent span at 95 percent speed. Extrapolating to the surge line indicates a surge diffusion factor of 0.72 at 95 percent span, which is quite close to the peak diffusion factor of 0.73 obtained when extrapolating NAS3-20809 to surge and which also occurred at 95 percent span but at 100 percent speed. This similarity suggests that the rotor tip set surge and demonstrates the high loading capability of the low aspect ratio rotor. In addition it is doubtful that the stator could cause surge except by backpressuring the rotor. Diffusion factors at equivalent incidences were higher for the current test because of the additional blade camber.

Rotor deviation at minimum loss incidence was within one degree of design at all spans: deviation was slightly lower than design at the hub and higher at the tip. The test results confirm the design deviation levels, which were based on the previous test and other Pratt & Whitney Aircraft experience. The significant increase in deviation at choke incidence in the outer spans was caused by high choke shock losses. The previous test did not exhibit this strong increased deviation since that rotor was always operating on the stall side of minimum loss.

The low loss potential of the controlled diffusion stator design was demonstrated in this test in the high Mach number stator root-to-midspan region (Figures 39 to 43). The minimum loss levels in this region were lower

^{*} The stator deviation angles for the previous test are not shown since the stator exit air angles, from which they were derived, were considered suspect due to interference of the angle measurement by adjacent probes (ref. 1).

than design and the loss levels obtained with multiple-circular-arc airfoils during the previous test. Minimum loss levels in the stator tip region (Figures 45, 46, and 47) were higher than either design or the previous test. Although design-speed deviation angles were near design levels in the stator root and tip, deviation angles in the midspan exceeded design.

These results suggest that the superior performance at the root of this stator caused a radial redistribution of flow towards the root, as evidenced by the increased velocity-density ratio (streamtube convergence). This in turn caused an opposite streamtube expansion in the tip region which is responsible for its poor performance. This radial redistribution changed rapidly with operating point (Figure 48) because of the sharp rise in loss in the stator root as incidence was increased from the minimum loss operating line point. Loss, deviation, and loading below midspan responded as a stalled characteristic in Figures 39 through 43. Deviation in the tip region also had a stalled shape with incidence, but stator tip loss dropped as incidence was increased, suggesting a choked characteristic in Figures 45 to 47.

This apparent contradiction of the tip-region loss and deviation characteristics is a further response to the changing radial distribution of streamtube convergence. As shown in Figure 48, the stalled root characteristic reduced streamtube convergence as the stage was throttled up a speedline. This impressed an opposing swing at the tip toward more convergence. Cascade testing has shown that streamtube contraction changes cause the loss and turning buckets to shift with incidence. In this case, the increasing streamtube contraction with throttling in the tip region shifted the loss bucket in the positive incidence direction faster than the operating point incidence increased with throttling, causing the section to have a choked loss characteristic. Lower than design streamtube contraction can also result in higher loss and may be responsible for the high tip loss at low stator incidence angles.

The resultant characteristic shapes depended on the change of incidence and streamtube contraction from point to point and their relative effects on the section in question. The broader deviation and loading characteristics were not changed as dramatically as the loss curve, but were influenced by this complex interaction.

In summary, the controlled diffusion stator demonstrated excellent low loss capability below midspan, but was probably operating too close to stall in that region for good overall performance. Overall stator performance could be improved by a radial redesign, recognizing the results of this test. The lack of a measurable performance improvement in the stator restagger tests early in this program is further evidence that a radial redesign was needed.

Stator diffusion factors at design incidence were slightly lower than design from the root through 71 percent span and near design above 71 percent span. A peak stator diffusion factor of 0.69 was achieved at the stator root. Extrapolating the diffusion factors to the surge line results in a surge diffusion factor of 0.72, exceeding the extrapolated diffusion factor of 0.69 of the previous test and nearly matching the rotor diffusion factor of 0.72 for this test.

6.0 CONCLUSIONS

- 1. The NAS3-22008 tests demonstrated that high efficiency can be achieved at high loading levels with low aspect ratio blading in an adverse front stage environment.
- 2. The rotor exceeded design efficiency goals at design flow and pressure ratio, demonstrating a significant increase in efficiency over the original tests. The shortfall in flow and efficiency of the original program, identified as caused by incorrect design flowpath blockages, was corrected in the redesign, permitting the rotor to operate at minimum loss incidence and to meet or exceed all design goals.
- 3. The low loss potential of the controlled diffusion stator at near design turning was demonstrated in the high Mach number stator root, with loss levels significantly lower than the multiple-circular-arc stator of the original program. Although the full potential of the controlled diffusion stator was not realized, a significant improvement in span averaged loss and turning could result by redesigning the stator to the minimum loss incidence and spanwise velocity-density ratios detemined by the test.
- 4. To measure the most consistent sampling of pressure and temperature, probes downstream of a rotor should be placed with pressures and temperatures at the same circumferential location or probes should be small enough not to significantly backpressure the rotor.

7.0 REFERENCES

- 1. Behlke, R.F.; Brooky, J.D.; and Canal, E. Jr: "Study of Blade Aspect Ratio on a Compressor Front Stage--Final Report," NASA CR-159556, PWA-5583-58, 1980.
- 2. Sulam, D.H.; Keenan, M.J.; and Flynn, J.T.: "Single Stage Evaluation of Highly Loaded High Mach Number Compressor Stages II. Data and Performance, Multiple-Circular-Arc Rotor," NASA CR-72694, PWA-3772, 1970.
- 3. Harley, K.G. and Burdsall, E.A.: "High Loading Low Speed Fan Study--Data and Performance--Unslotted Blades and Vanes," NASA CR-72667, PWA-3663, 1970.
- 4. Messenger, H.E. and Kennan, M.J.: "Two-Stage Fan II. Data and Performance with Redesigned Second Stage Rotor, Uniform and Distorted Inlet Flows," NASA CR-134710, PWA-5087, 1974.
- 5. McDonald, P.W.: "The Computation of Transonic Flow Through Two-Dimensional Gas Turbine Cascades," ASME Paper No. 71-GT-89, 1971.

- 6. Stephens, H.E. and Hobbs, D.E.: "Design and Performance Evaluation of Supercritical Airfoils for Axial Flow Compressors, Final Report," Naval Air Systems Command, Contract NO0019-77-0546, 1979
- 7. Canal, E.; Chisholm, B.C.; Lee, D.; and Spear, D.A.: "Study of Controlled Diffusion Stator Blading--Aerodynamic and Mechanical Design Report," NASA CR-165500, PWA-5698-28, 1981.

Figure 1 Controlled-Diffusion, Low-Aspect-Ratio Front Stage Test Rig

Figure 2 Schematic of Test Stand

Total Pressure Rake

Total Temperature Rake

Traverse Wedge Probe

Figure 3 Typical Instrumentation

Figure 4 Axial and Circumferential Location of Instrumentaion

Figure 5 Sample of Wake Total Pressure Ratio for Each of Three Pole Rakes at Midspan as a Function of Inlet-Guide-Vane Gap and Inlet Strut Gap - Station 3 Rotor Leading Edge Pole Rake Traverse at Fifty Percent Span, Design Speed

Figure 6 Typical Circumferential Profiles of Total Pressure Ratio Distribution - Station 5 Stator Trailing Edge Pole Rake Traverse at Fifty Percent Span, Design Speed Operating Line

Figure 7 Typical Circumferential Profiles of Total Temperature Ratio Distribution - Station 5 Stator Trailing Edge Pole Rake Traverse at Fifty Percent Span, Design Speed Operating Line

(a) Stator Inlet Static Pressure Profile (NAS3-22008)

(b) Stator Exit Traverse From Previous Test Showing Flat Rotor Pressure Between Stator Wakes as a Result of the Large Spacing Between Rotor and Stator (NAS3-20809)

(c) Stator Exit Traverse Showing Peaked rotor Pressure Between Stator Wakes (NAS3-22008)

Figure 8 Stator Trailing Edge Total Pressure - Station 5, Pole Rake Traverse at Fifty Percent Span, Design Speed Operating Line - Methods to Determine Rotor Exit Total Pressure Shown

Figure 9 Comparison of Flowpath Blockage Factors Used in Data Reduction With Those Assumed for Design and Values From NAS3-20809 Tests

Figure 10 Stage Pressure Ratio and Adiabatic Efficiency as Functions of Corrected Inlet Flow

Figure 11 Rotor Pressure Ratio and Adiabatic Efficiency as Functions of Corrected Inlet Flow

Figure 12 Rotor Temperature Ratio as a Function of Percent Span at the Rotor Trailing Edge

Figure 13 Rotor Pressure Ratio as a Function of Percent Span at the Rotor Trailing Edge

Figure 14 Rotor Adiabatic Efficiency as a Function of Percent Span at the Rotor Trailing Edge

Figure 15 Rotor Loss Coefficient as a Function of Percent Span at the Rotor Trailing Edge

Figure 16 Rotor Incidence angle to Suction Surface as a Function of Percent Span at the Rotor Trailing Edge

Figure 17 Rotor Leading Edge Absolute Air Angle as a Function of Percent Span at the Rotor Trailing Edge

Figure 18 Rotor Turning Angle as a Function of Percent Span at the Rotor Trailing Edge

Figure 19 Rotor Deviation Angle as a Function of Percent Span at the Rotor Trailing Edge

Figure 20 Rotor Diffusion Factor as a Function of Percent Span at the Rotor Trailing Edge

Figure 21 Stage Pressure Ratio as a Function of Percent Span at the Stator Trailing Edge

Figure 22 Stage Adiabatic Efficiency as a Function of Percent Span at the Stator Trailing Edge

Figure 23 Stator Loss Coefficient as a Function of Percent Span at the Stator Trailing Edge

Figure 24 Stator Inlet Absolute Mach Number as a Function of Percent Span at the Stator Trailing Edge

Figure 25 Stator Deviation Angle as a Function of Percent Span at the Stator Trailing Edge

Figure 26 Stator Turning Angle as a Function of Percent Span at the Stator Trailing Edge

Figure 27 Stator Incidence Angle as a Function of Percent Span at the Stator Trailing Edge

Figure 28 Stator Velocity Density Ratio as a Function of Percent Span at the Stator Trailing Edge

Figure 29 Stator Diffusion Factor as a Function of Percent Span at the Stator Trailing Edge

Figure 30 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at Five Percent Span From the Hub at Design Stagger Angles

43

NAS3-22008 NAS3-20809 Δ 70% SPEED ▼ DESIGN 105% SPEED □ 105% SPEED 100% SPEED o 100% SPEED 95% SPEED ♦ 95% SPEED 70% SPEED DEVIATION, 8°~DEGREES 14.000 -6.000 -2.000 0.0 6-000 12.000 8.000 -4.000 2.000 4-000 10.000 DIFFUSION FACTOR, D 12.000 -4-000 -2.000 0 0 2 000 6.000 9.000 10.000 4.000 LOSS COEFFICIENT, 6 6.000 12.000 -4.000 4.000 -2.000 0.0 2.000 8.000 8.000 10.000

Figure 31 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at Ten Percent Span From the Hub at Design Stagger Angles

INCIDENCE TO SUCTION SURFACE, $\rm I_{SS} \sim DEGREES$

Figure 32 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 15 Percent Span From the Hub at Design Stagger Angles

Figure 33 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 30 Percent Span From the Hub at Design Stagger Angles

Figure 34 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 50 Percent Span From the Hub at Design Stagger Angles

Figure 35 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 70 Percent Span From the Hub at Design Stagger Angles

Figure 36 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 85 Percent Span From the Hub at Design Stagger Angles

Figure 37 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 90 Percent Span From the Hub at Design Stagger Angles

Figure 38 Rotor Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 95 Percent Span From the Hub at Design Stagger Angles

NAS3-22008 NAS3-20809 **▼** DESIGN Δ 70% SPEED 105% SPEED □ 105% SPEED 100% SPEED o 100% SPEED 95% SPEED 95% SPEED 70% SPEED DEVIATION, 8°~DEGREES 10.000 Φ Ø Ø Ø -27.000 -11-000 -7.000 -3-000 8-000 -15.000 1.000 5.000 -23.000 -19-000 0.700 DIFFUSION FACTOR, D 0.200 -27.000 8'000 -15.000 -11.000 -7.000 1.000 6.000 -23.000 -19-000 -3-000 凹 0.160 -27.000 -11-000 8-000 -29.000 -15-000 -7.000 -9.000 1.000 £.000 INCIDENCE TO SUCTION SURFACE, $I_{ss} \sim DEGREES$

Figure 39 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at Five Percent Span From the Hub at Design Stagger Angles

Figure 40 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 11 Percent Span From the Hub at Design Stagger Angles

NAS3-22008 NAS3-20809 ▼ DESIGN Δ 70% SPEED 105% SPEED □ 105% SPEED 100% SPEED o 100% SPEED 95% SPEED ♦ 95% SPEED 70% SPEED DEVIATION, 8° ~ DEGREES 10.000 <u>п</u>п -27.000 -23.000 -19-000 -15.000 -11.000 -7.000 -3-000 1-000 8.000 5.000 00.700 DIFFUSION FACTOR, D ф, -27.000 -23-000 -18.000 -11-000 -7.000 5-000 9-000 -15-000 -3-000 1.000 0.180 LOSS COEFFICIENT, &

Figure 41 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 16 Percent Span From the Hub at Design Stagger Angles

-11-000

INCIDENCE TO SUCTION SURFACE, $I_{ss} \sim DEGREES$

-7-000

-9.000

1-000

£-000

8-000

-27.000

-23.000

-19-000

-15-000

Figure 42 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 31 Percent Span From the Hub at Design Stagger Angles

Figure 43 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 51 Percent Span From the Hub at Design Stagger Angles

Figure 44 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 71 Percent Span From the Hub at Design Stagger Angles

Figure 45 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 86 Percent Span From the Hub at Design Stagger Angles

Figure 46 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 90 Percent Span From the Hub at Design Stagger Angles

Figure 47 Stator Blade Element Plots Showing Deviation Angle, Diffusion Factor, and Loss Coefficient as Functions of Suction Surface Incidence Angle at 95 Percent Span From the Hub at Design Stagger Angles

Figure 48 Stator Velocity Density Ratio as a Function of Percent Span at the Stator Trailing Edge at Design, Choke, Operating Line, and Near Stall

APPENDIX A

SYMBOLS	
А	area, meters ² (inches ²)
Cp	specific heat at constant pressure, joule/kg-K (Btu/lbm- ^Q R)
D	diffusion factor
9 _C	conversion factor, 32.17 lbm-ft/lbf-sec ²
i _m	incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, degrees
i _{ss}	incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, degrees
I GV	inlet guide vane
J	conversion factor, 1.00m-kg/joule (778 ft-1bf/Btu)
N	rotor speed, rpm
PT	total pressure, N/m ² or lbf/ft ²
PS	static pressure, N/m ² or 1bf/ft ²
R	gas constant for air
r	radius measured from rig centerline, meters (inches)
SL	streamline number
τ_{T}	total temperature, K (OR)
T_{S}	static temperature, K (OR)
U	rotor speed, m/sec (ft/sec)
V	air velocity, m/sec (ft/sec)
v _m	meridional velocity $(V_F^2+V_Z^2)^{1/2}$, m/sec (ft/sec)
$V_{m{ heta}}$	tangential velocity, m/sec (ft/sec)
W	mass flow rate, kg/sec (lbm/sec)

SYMBOLS (Con't)

z	axial distance - meters (inches)
β	absolute air angle, $\cot^{-1} (v_m/v_{\theta})$, degrees
β΄	relative air angle, \cot^{-1} (v_m/v_{θ}^{-1}) , degrees
Δβ	air turning angle, degrees
γ	ratio of specific heats for air
δ	ratio of total pressure to standard pressure of 1.01325 x 10^5 N/m ² (2.116 x 10^3 lbf/ft ²)
δο	deviation angle, exit air angle minus tangent to blade mean camber line at trailing edge, degrees
€	angle between tangent to streamline projected on meridional plane and axial direction, degrees
η	efficiency
θ	ratio of total temperature to standard temperature of 288.16K (518.7°R)
ρ	mass density - kg/m^3 ($1bm/ft^3$)
σ	solidity, ratio of aerodynamic chord to gap between blades
ω	angular velocity of rotor, radians/sec
$\bar{\omega}$	total pressure loss coefficient

SUPERSCRIPTS

relative to rotor

* blade metal angle

SUBSCRIPTS

ad adiabatic

des. design

in inlet

m meridional direction

SUBSCRIPTS (Cont'd)

p	polytropic or profile
r	radial direction; radius
r	ratio (e.g., P _{T,r} = total pressure ratio)
RLE	rotor leading edge
RTE	rotor trailing edge
SLE	stator leading edge
STE	stator trailing edge
ss	suction surface
z	axial component
θ	tangential component
0	inlet flow measuring orifice
1	plenum chamber
2	instrument plane upstream of intermediate case strut
3	instrument plane upstream of rotor
4	instrument plane downstream of rotor
5	instrument plane downstream of stator

	-		

APPENDIX B

PERFORMANCE PARAMETERS

a) Relative total temperature

$$T'_{T,RLE} = T_{S,RLE} \left[1 + \frac{\gamma - 1}{2} (M'_{RLE})^2 \right]$$
 (rotor) IN

$$T'_{T, RTE} = T'_{T, RLE} + \begin{bmatrix} (\omega_r)_{RTE}^2 - (\omega_r)_{RLE}^2 \\ \hline \frac{2 \gamma}{\gamma - 1} Rg_c \end{bmatrix}$$
 (rotor) OUT

b) Incidence angle based on mean camber line

$$i_m = \beta^*_{RLE} - \beta^*_{RLE}$$
 (rotor)

$$i_m = \beta_{SLE} - \beta_{SLE}^*$$
 (stator)

Incidence angle based on suction surface metal angle

$$i_{ss} = \beta'_{RLE} - \beta^*_{ss,RLE}$$
 (rotor)

$$i_{ss} = \beta_{SLE} - \beta_{ss,SLE}^*$$
 (stator)

c) Deviation angle

$$\delta^{\,\circ} = \beta'_{\,RTE} - \beta^{\,\star}_{\,RTE} \tag{rotor}$$

$$\delta^{\circ} = \beta_{STE} - \beta^{*}_{STE}$$
 (stator)

d) Diffusion factor

$$D = 1 - \frac{V'_{RTE}}{V'_{RLE}} + \frac{r_{RTE}V_{\theta RTE} - r_{RLE}V_{\theta RLE}}{(r_{RTE} + r_{RLE})\sigma V'_{RLE}}$$
(rotor)

$$D = 1 - \frac{V_{STE}}{V_{SLE}} + \frac{r_{SLE}V_{\theta SLE} - r_{STE}V_{\theta STE}}{(r_{SLE} + r_{STE})_{\theta V_{SLE}}}$$
 (stator)

e) Loss coefficient

$$\bar{\omega} = \frac{P'_{T,RLE} \begin{bmatrix} T'_{T,RTE} \\ \hline T'_{T,RLE} \end{bmatrix} - P'_{T,RTE}}{P'_{T,RLE} - P_{S,RLE}}$$
(rotor)

$$\bar{\omega} = \frac{P_{T,SLE} - P_{T,STE}}{P_{T,SLE} - P_{S,SLE}}$$
 (stator)

f) Loss parameter

$$\frac{\bar{\omega} \cos^{\beta}_{RTE}}{2\sigma} \tag{rotor}$$

$$\frac{\bar{\omega} \cos \beta \text{ STE}}{2 \sigma}$$
 (stator)

g) Polytropic efficiency

$$\eta_{p} = \frac{\begin{array}{c} \gamma - 1 \\ \hline \gamma \end{array} \begin{array}{c} P_{T,RTE} \\ \hline P_{T,RLE} \end{array}}{\text{In} \\ \hline \\ \hline In \\ \hline \hline T_{T,RLE} \end{array}$$
(rotor)

$$\eta_{p} = \frac{\begin{array}{c} \gamma - 1 \\ - \gamma \end{array} \quad \begin{array}{c} P_{T,STE} \\ \hline \gamma \end{array}}{\begin{array}{c} T_{T,RLE} \end{array}}$$
(stage)

h) Adiabatic efficiency

$$\eta_{\text{ad}} = \frac{\left[\frac{P_{\text{T}, RTE}}{P_{\text{T}, RLE}}\right] \frac{\gamma - 1}{\gamma} - 1}{\left[\frac{T_{\text{T}, RTE}}{T_{\text{T}, RLE}}\right] - 1}$$
(rotor)

$$\eta_{ad} = \frac{\begin{bmatrix} P_{T,STE} \\ \hline P_{T,RLE} \end{bmatrix} \frac{\gamma - 1}{\gamma} - 1}{\begin{bmatrix} T_{T,STE} \\ \hline T_{T,RLE} \end{bmatrix} - 1}$$
 (stage)

i) Surge margin

$$SM = \left[\frac{\left(\frac{P_{T,STE}/P_{T,RLE}}{W\sqrt{\theta} / \delta} \right) \left(\frac{W\sqrt{\theta} / \delta}{P_{T,STE}/P_{T,RLE}} \right) \right]$$
Reference
Point or
Operating Point

APPENDIX C Overall and Blade Element Performance Airfoil Aerodynamic Summary

COMPUTER TABLE SYMBOL TRANSLATION

AIRFOIL AERODYNAMIC SUMMARY PRINT xx PERCENT DESIGN SPEED (ROTOR PERFORMANCE) RUN NO XXX SPEED CODE XX POINT NO X V-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC RADIAN RADIAN 2
3 VRLE Vm,RLE VO,RLE URLE V'RLE V'O,RLE PVm,RLE ϵ_{RLE} 4 VRTE Vm,RTE VO,RTE URTE V'A,RTE PVm,RTE €RTE 8 8-2 8'-1 '8'-2 M-1 M-2 M'-1 M'-2 INCS IYCM DEV TURN D'FAC OMEGA-8 LOSS-P PO2/ XEFF-A XEFF-P DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL PO1 TOTAL TOTAL TOTAL DEGREE DEGREE DEGREE 1 <u>ವ cosβ</u>t RTE β_{RLE} β_{RLE} MRLE M'RLE 1ss δ° 1_m $\eta_{\,\mathrm{p}}$ MRTE $\Delta \beta'$ β_{RTE} β'_{RTE} M'RTE $\bar{\omega}$ RTE 5 PT,RLE 6 7 RTE 8 9 V-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 PCT TE FT/SEC FT/SE ϵ_{RLE} 3 VRLE Vm,RLE VO,RLE UKLE V'RLE V'O,RLE PVm,RLE % span YRTE Ym,RTE YH,RTE URTE 4 V'RTE V'O.RTE hoYm,RTE ϵ_{RTE} 5 RTE 7 8 9 WC1/A1 WC1/A1 LBM/SEC KG/SEC SQFT SQM WAS AA BA T02/T01 P02/P01 EFF-AD ROTOR ROTOR TT.RTE PT.RTE η_{ad} η_{p}

TT,RLE PT.RLE

COMPUTER TABLE SYMBOL TRANSLATION

ARFOIL AERODYNAMIC SUMMARY PRINT RUN NO XXX SPEED CODE XX FGINT NO X V-1 V-2 VM-1 VM-2 VO-1 VO-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN M-2 INCS INCM DEV TURN D-FAC OMEGA-B LOSS-P PO2/ PO/PO TO/TO %2FF-A %2FF-P TOTAL TOTAL TOTAL PO1 STAGE STAGE TOT-STG TOT-STG 8-1 8-2 DEGREE DEGREE 1 2 3 B SLE BSTE $\frac{\overline{\omega}\cos\beta}{2\sigma}$ STE M STE PT, STE MSLE η_{ad} Δβ η_{p} TT,STE $\overline{\omega}$ 5 6 7 8 9 PT.STE Y-1 Y-7 VM-1 YM-2 VO-1 VO-2 RHOVM-1 RHOVM-2 PCT TE FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN $v_{\text{STE}} = v_{\text{m,SLE}} = v_{\text{m,STE}} = v_{\text{0,SLE}} = v_{\text{0,STE}} = v_{\text{m,SLE}} = \rho v_{\text{m,STE}}$ € STE WCORR WCORR INLET INLET KG/SEC W/D TO/TO PO2/PO1 PO/PO EFF-AD EFF-P STAGE STAGE STAGE \$ NCORR RPM N $\frac{\text{Tr,ste}}{\text{Tr,RLE}} \underbrace{\frac{P_{\text{T,STE}}}{P_{\text{T,SLE}}}}_{P_{\text{T,PLE}}}$ $\eta_{\rm ad}$ $\eta_{\rm p}$ W√S RLE

RLE

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 5 POINT NO 8

7 105 PERCENT SPEED (ROTOR PERFORMANCE)

ŞL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	U-2	۷'-1	V'-2		VO'-2	RHOVM-1	RHO\	/M-2	EPSI -1	EPSI-2	
_	M/SEC	II/SEL	II/SEC	M/SEC	H/SEC	M/SEC	II/SEC	M/SEC	H/SEC		M/SEC		KG/M2 SE			RADIAN	RADIAN	
2	200.9	J22.7 316.2	199.6 206.3	219.6 216.0	22.8 28.4	236.4	287.9 298.4	296.8 305.0	331.8 339.8		-265.1 -270.0	-60.4 -74.1	197.18 204.24	274. 274.		0.0366 0.0187	0.0860	
3	211.7	311.8	200.3	211.2	32.7	229.4	308.6	313.2	346.1		-275.8		204.24	274.			0.0607	
4	215.4	302.0	211.6	204.5	40.2	222.3	338.5	337.7	365.7		-298.3		208.91	270		0.0381		
5	216.0	285 9	210.7	191.0	47.6	212.7	377.3	370.4	391.3		-329.7		207.81	259	.61 -	0.0879 -	-0.0388	
6	213.8	266.8	206.6	171.1	54.7	204.7	414.1	403.2	414.5		-359.4		204.54	237.		0.1273 -		
7	209.6	253.8	201.8	157.3	56.6	199.2	440.2		433.4		-383.6		200.18	220		0.1464		
8		247.4	198.5	150.2	55.3		448.5 456.3	435.9	440.5		-393.2 -402.6		196.59 192.34	210. 205		0.1505 · 0.1539 ·		
9	202.0	240.2	194.7	146.2	53.7	190.6	450.5	444.1	447.2	292.0	-402.0	-253.5	192.34	203	.07 -	0.1555	-0.1333	
SL	B-1	8-2	8'-1	B'-2	M-1	11-2	M'-1	11'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B				SEFF-P
,		DEGREE			0 (110	0 0000		0 6560	DEGREE				0.5110	TOTAL	TOTAL		TOTAL	
2	6.5	47.1	52.95 52.58			0.9299			-4.30 -2.86	1.98 3.25	12.84 11.57			0.0878 0.0925	0.0255			
3	7.8 8.9	46.9 47.4	52.80			0.8965			-1.88	4.08	11.48	33.63 31.14		0.0923	0.0289			
4	10.8	47.4	54.67			0.8646			-0.02	5.63	12.85			0.0869	0.0251			
5	12.7	48.0	57.46			0.8130			0.72	5.59	12.22			0.0861	0.0234			
6	14.8	50 O	60.13	49.14	0 6544	0.7534	1.2690	0.7401	0.99	5.22	11.38			0.1016			6 88.55	89.45
7	15.7	51.6	62.24			0.7124			1.03	4.53	10.56	6.90		0.1170	0.0257			
8	15.5	52.5	63.20			0.6920			1.06	4.29	10.94	5.42		0.1275				
9	15.4	52.4	64.18	59.95	0.6156	0.6708	1.3629	0.8171	0.83	3.81	11.08	4.23	0.4633	0.1166	0.0230	1.777	1 85.95	87.03
SL	V-1	V-2	VM-1	VH-2	VO-1	V0-2	U-1	U-2	۱-' <i>۱</i>	٧٠-2	VO'-1	VO'-2	RHOVM-	1 RHO	VI1-2	EPSI-1	EPSI-2	PCT TE
													LBM/FT2S			DEGREE	DEGREE	
]		1058.6	654.9	720.4		775.7						-198.1	40.38	-	.29	2.094		0.0499
2		1037.5	676.7	708.8	93.1				1114.8			-243.1	41.83		.23	1.074		0.1000
4	706.6	1023.1	686.2 694.2	693.0 671.0					1135.7 1199.8						.56 .34	0.189		0.1501 0.3000
5	708.8		691.4	626.8					1283.9						.17	-5.038	-2.221	
6	701.4	875.4	678.0	561.5				1322.8				-651.2	41.89		.54	-7.294	-4.957	
7	687.7	832.8	662.2	516.1					1422.0				41.00		.09	-8.386	-6.628	
8	676.1	811.8	651.4	492.7	181.3	645.2	1471.4	1430.1	1445.2	926.7	-1290.0	-784.9	40.26	43	.06	-8.625	-7.094	0.9000
9	662.8	788.1	639.0	479.6	176.2	625.4	1497.2	1457.0	1467.4	960.0	-1321.0	-831.6	39.39	42	.12	-8.817	-7.751	0.9500
	ı	/C1/A1	WC1/A1						T02/T01	PO2/P	O1 EFF	-AD F	FF-P					
		BM/SEC	KG/SEC						.02, 10				OTOR					
		SQFT	SQM								oy No		Or NO					
		41.80	203.98	3					1.210	1.83	36 89	.99 9	0.80					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 5 POINT NO 8

105 PERCENT SPEED (STATOR PERFORMANCE)

SL 1 2 3 4 5 6 7 8 9	V-1 H/SEC 332.5 326.8 312.1 295.8 274.7 260.7 254.3 247.7	228.6 230.6 232.7 232.9	VIA-1 II/SEC 235.8 232.9 228.5 221.1 205.2 181.9 105.9 158.7 155.5	VM-2 II/SEC 219.9 221.6 222.2 216.4 200.4 181.7 165.2 159.2	V0-1 M/SEC 234.5 229.3 228.0 221.8 213.1 205.9 201.1 198.7 192.8	VO-2 IV SEC 62.7 63.6 69.2 86.1 102.2 105.6 94.1 89.2 84.6	RHOVN- KG/M2 S 287.29 287.67 285.11 284.05 272.23 247.50 228.93 219.09 215.55	SEC KG/M 325 330 3325 3325 3325 303 275 348 238	NII-2 12 SEC 1.02 1.15 1.30 1.87 1.18 1.07 1.07 1.09 1.85	EPSI-1 RADIAN 0.1031 0.0838 0.0654 0.0239 -0.0211 -0.0582 -0.0874 -0.0979 -0.1083	0.0219 -0.0181 -0.0570 -0.0872 -0.0974					
SL	B-1	B-2	14-1	11-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	P0/P0	T0/T0	%EFF-A	%FFF_D
	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	
1	44.8	15.9	0.9635	0.6327	-8.70	-6.09	6.00	28.92	0.4882	0.0876	0.0297	0.9607	1.8415	1.2188	87.06	88.12
2	44.5	16.0	0.9467	0.6400	-8.51	-5.81	5.47	28.53	0.4724		0.0220	0.9723	1.8251	1.2132	87.90	88.87
3	44.9	17.3	0.9336	0.6467	-7.95	-5.18	6.06	27.61		0.0466		0.9800	1.8281	1.2124	88.50	89.43
4	45 0		0.9014	0.6476	-8.19	-5.21	7.72	23.37	0.4219		0.0138	0.9847	1.8338	1.2112	89.49	90.35
5	46.1	27.0	0.8452	0.6244	-8.96	-5.73	8.78	19.07	0.3965		0.0128	0.9876	1.8134	1.2087	88.78	89.67
6	48.6	30.2	0.7785	0.5811	-8.90	-5.43	9.17	18.38	0.4038		0.0172	0.9860	1.7713	1.2063	85.95	87.03
7	50.5	29.7	0.7337	0.5220	-9.22	-5.58	6.80	20.82	0.4724		0.0497	0.9651	1.7191	1.2086	80.21	81.65
3	51.4	29.3	0.7132	0.4995	-9.51	-5.80	5.35	22.14	0.4979		0.0373		1.7104	1.2103	78.77	80.30
9	51.1	28.5	0.6937	0.4859	-11.75	-8.00	2.64	22.66		0.1289	0.0570			1.2073	80.27	81.70
SL	V-1	V-2	VH-1	VI1-2	VO-1	VO-2	DUOVIA	3 840		D.) T TE						
76	FT/SEC	FT/SEL	FT/SEC	FT/SEC	FT/SEC		RHOVM-	EC LBII/F	VM-2	PCT TE	EPSI-1	EPSI-2				
1	1091.0	750.2	773.6	721.4	769.2	205.8	58.84	CC LBII/F	.57	SPAN 0.0543	DEGREE	DEGREE				
2	1072.2	756.5	764.0	727.1	752.3	208.7	58.92				5.907	4.868				
3	1059.2		749.7	729.0	748.2	227.1	58.39			0.1078 0.1601	4.799	4.062				
4	1027.4	764.2	725.4	710.1	727.6	282.5	58.18				3.750	3.299				
5	970.5	738.0	673.2	υ57.5	699.1	335.3	55.76			0.3140 0.5124	1.371	1.254				
6	901.4	689.5	596.7	596.0	675.6	346.6	50.69			0.7091	-1.207	-1.037				
7	855.3	ō23.7	544.4	542.0	659.7	308.6	46.89			0.8564	-3.337	-3.265				
8	834.5	598.6	520.7	522.2	652.1	292.6	44.87			0.9050	-5.009	-4.995				
g	812.7	582.2	510.0	511.8	632.7	277.5	44.15			0.9531	-5.609	-5.582				
				J.,.0	002.7	2,,,,	77.13	47	.03	0.3331	-6.203	-6.162				
		NCORR INLET RPM	WCORR INLET LBM/SEC	WCORR INLET KG/SEC			TO/TO STAGE	P02/P01	PU/PO STAGE	EFF-AD STAGE	EFF-P STAGE					
		12820.00	108.41	49.17			1.2101	0.9788	1.7947	% 86.54	% 87.59					

V'-1 V'-2 VO'-1 VO'-2 SL V-1 RHOVM-1 RHOVH-2 EPSI-1 EPSI-2 V-2 VH-1 VII-2 YU-1 V0-2 U-1 U-2 RADIAN RADIAN M/SEC M/SEC M/SEC II/SEC M/SEC II/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC 198.2 213.3 22.7 239.3 287.9 296.8 331.1 220.9 -265.2 -57.5 196.32 271.14 0.0370 0.0862 320.6 270.80 0.0196 0.0740 2 206.7 314.0 204.8 209.8 28.2 233.7 298.4 305.0 339.0 221.6 -270.1 -71.3 203.25 308.5 207.9 205.1 32.6 230.4 308.6 313.2 345.5 221.2 -275.9 -82.8 206.35 267.86 0.0045 0.0611 214.4 301.1 210.6 197.6 40.1 227.1 338.5 337.7 365.2 226.5 -298.4 -110.6 208.37 265.50 -0.0356 0.0188 47.5 220.7 377.3 370.4 391.2 239.4 -329.8 -149.7 207.63 259.07 -0.0843 -0.0357 215.6 289.1 210.3 186.8 272.5 206.7 168.5 54.6 214.2 414.1 403.2 414.6 253.2 -359.5 -189.0 204.54 239.18 -0.1242 -0.0825 213.8 209.9 260.3 202.2 154.5 56.6 209.6 440.2 427.7 433.6 267.3 -383.6 -218.1 200.41 221.90 -0.1445 -0.1136 8 206.5 255.2 199.0 149.2 55.2 207.1 448.5 435.9 440.7 273.1 -393.2 -228.8 196.89 214.71 -0.1492 -0.1230 9 202.5 248.7 195.2 144.4 53.7 202.5 456.3 444.1 447.5 281.4 -402.7 -241.6 192,68 -0.1533 -0.1351 208.71 SL B-1 B'-2 M-1 M-2 M'-1 M'-2 INCS D FAC OMEGA-B LOSS-P B-2 B'-1 INCM DEV TURN PO2/ %EFF-A %EFF-P DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 48.3 53.14 15.08 0.6075 0.9216 1.0080 0.6351 -4.10 0.5339 0.0828 2.18 12.54 6.5 38.06 0.0241 1.9441 93.89 48.1 52.79 18.79 0.6311 0.9022 1.0349 0.6366 -2.65 3.47 11.42 33.99 0.5357 0.0870 0.0253 1.9034 93.14 93.73 48.3 52.98 22.01 0.6434 0.8848 1.0563 0.6345 -1.70 4.26 11.82 30.97 0.5413 0.0902 0.0263 1.8827 92.56 93.19 10.8 49.0 54.80 29.24 0.6565 0.8589 1.1183 0.6461 0.11 25.56 0.5495 0.0874 92.83 5.77 12.64 0.0253 1.8972 92.22 12.7 49.7 57.51 38.67 0.6606 0.8194 1.1984 0.6784 0.77 5.64 11.38 18.84 0.5422 0.0822 0.0226 1.9056 92.65 91.95 60.12 48.17 0.6544 0.7668 1.2693 0.7124 51.7 0.99 5.21 10.41 11.95 0.5296 0.0940 0.0233 1.8810 90.84 89.99 53.5 62.20 54.58 0.6417 0.7275 1.3254 0.7469 0.98 4.48 9.80 7.62 0.5163 0.1117 0.0250 1.8712 63.15 56.79 0.6303 0.7108 1.3453 0.7608 1.00 4.24 9.95 6.36 0.5110 0.1182 0.0253 1.8738 86.87 54.4 64.12 59.05 0.6171 0.6911 1.3639 0.7820 0.77 3.75 10.18 5.07 0.4988 0.1144 0.0232 1.8763 87.14 EPSI-1 EPSI-2 PCT TE SL Y-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 FT/SEC LBM/FT2SEC LBM/FT2SEC DEGREE DEGREE SPAN 1 654.7 1052.0 650.4 700.0 74.5 785.3 944.5 973.8 1086.3 724.9 -870.0 -188.5 40.21 55.53 2.121 4.940 0.0499 2 678.3 1030.3 671.9 688.3 92.7 766.7 979.0 1000.7 1112.2 727.0 -886.3 -234.0 41.63 55.46 1.123 4.238 0.1000 690.5 1012.0 682.1 672.9 107.0 755.9 1012.4 1027.6 1133.6 725.7 -905.4 -271.7 42.26 54.86 0.260 3.500 0.1501 1.078 0.3000 703.4 987.8 691.0 648.3 131.5 745.2 1110.5 1108.1 1198.3 743.0 -978.9 -362.9 42.68 54.38 -2.037 5 707.4 948.7 690.0 612.8 155.9 724.2 1238.0 1215.4 1283.4 785.4-1082.1 -491.2 42.52 53.06 -4.827 -2.045 0.5000 6 701.4 894.2 678.1 553.0 179.2 702.8 1358.6 1322.8 1360.4 830.8-1179.4 -620.0 41.89 48.99 -7.114 -4.726 0.7000 663.3 506.8 185.6 687.6 1444.2 1403.3 1422.7 876.9-1258.6 -715.7 688.8 854.2 41.05 45.45 -8.277 -6.511 0.8499 652.8 489.4 181.2 679.4 1471.4 1430.1 1445.9 896.2-1290.2 -750.7 40.33 -8.549 -7.048 0.9000 677.5 837.3 43.97 9 664.3 816.0 640.6 473.8 176.1 664.4 1497.2 1457.0 1468.2 923.4-1321.1 -792.6 39.46 42.74 -8.782 -7.740 0.9500 T02/T01 P02/P01 EFF-AD EFF-P WC1/A1 WC1/A1

WC1/A1 WC1/A1 LBM/SEC KG/SEC SQFT SQM 41.75 203.75 T02/T01 P02/P01 EFF-AD EFF-P ROTOR ROTOR % % 1.2200 1.8925 90.82 91.60

AIRFOIL AERODYNAMIC SUMMARY PRINT

105 PERCENT SPEED (STATOR PERFORMANCE)

RUN NO 40 SPEED CODE 5 POINT NO 12

													•			
SL	V-1	V-2	VH-1	VI1-2	VO-1	V0-2	RHOVN-1	DHU	VI4-2	EPSI-1	EPSI-2					
-	M/SEC	M/SEC	M/SEC	II/SEC	M/SEC	11/SEC	KG/I12 SE		2 SEL	RADIAN	RADIAN					
1	328.2	213.1	226.7	204.8	237.3	59.0	282.32	314		0.1041	0.0852					
2	322.3	215.1	223.8	206.4	232.0	60.6	282.61	319		0.0853	0.0713					
3	317.2	217.3	219.5	207.0	229.0	65.8	280.24		.85	0.0676	0.0582					
4	310.4	220.6	212.2	202.3	226.6	87.8	278.49		.20		0.0332					
5	298.4	218.9	200.3	193.4	221.1	102.4	271.88	304		-0.0186						
6	280.7	207.7	179.9	177.1	215.4	108.6	250.71		.52	-0.0563						
7	267.9	189.5	164.5	163.5	211.5	95.8	232.55		.23	-0.0849						
8	263.0	183.1	159.3	159.3	209.3	90.3	225.68	248		-0.0952						
9	257.2	179.0	155.4	157.0	204.9	85.9	220.81		.36	-0.1064						
SL	B-1	B-2	M-1	11-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	P0/P0	TU/TU	EFF-A	%EFF-P
_	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	
1	46.3	16.0	0.9474		-7.23	-4.61	6.15	30.25	0.5362	0.0854	0.0289	0.9626	1.8676	1.2221	87.93	88.94
2	46.0	16.3	0.9300	0.5933	-7.03	-4.33	5.81	29.67	0.5188	0.0599	0.0208	0.9744	1.8509	1.2161	88.94	89.83
3	46.1	17.6	0.9140	0.6001	-6.68	-3.90	6.40	28.56	0.5010	0.0388	0.0137	0.9838	1.8524	1.2141	89.90	90.74
4	46.8	23.4	0.8897	0.6089	-6.39	-3.41	9.48	23.41	0.4627	0.0368	0.0134	0.9853	1.8708	1.2179	89.88	90.73
5	47.8	27.9	0.8493	0.6034	-7.22	-3.99	9.66	19.92	0.4351	0.0319	0.0121	0.9881	1.8809	1.2199	89.91	90.77
6	50.2	31.6	0.7924	0.5706	-7.31	-3.84	10.53	18.61	0.4368	0.0368	0.0145	0.9876	1.8567	1.2199	87.88	88.88
7	52.2	30.4	0.7511	0.5169	-7.57	-3.92	7.51	21.76	0.5062	0.1050	0.0441	0.9674	1.8101	1.2239	82.47	83.86
8	52.7	29.6	0.7348	0.4980	-8.19	-4.48	5.64	23.16	0.5314		0.0521	0.9637	1.8062	1.2264	81.22	82.70
9	52.8	28.7	0.7170	0.4864	-10.05	-6.30	2.86	24.14	0.5411	0.1147	0.0507	0.9668	1.8142	1.2258	82.10	83.53
cı	v 1	v 0	V44 7	VIII 0												
SL	V-1 FT/SEC	V-2 FT/SEC	VM-1	VII-2	VO-1	VO-2	RHOVM-1	RHO	VI1-2	PCT TE	EPSI-1	EPSI-2				
,	1077.0		FT/SEC	FT/SEC	FT/SEC	FI/SEC	LBM/FT2SE			SPAN	DEGREE	DEGREE				
2	1077.5	699.2 705.8	743.9 734.2	671.9 677.3	778.7	193.6	57.82			0.0543	5.965	4.879				
3	1040.7	712.8	720.2	679.3	761.1 751.3	198.8	57.88			0.1078	4.886	4.085				
4	1018.5	723.7	696.1	663.9	743.5	216.0 288.1	57.40 57.04			0.1601	3.876	3.336				
5	979.0	718.2	657.3	634.7	725.6	336.1	55.68			0.3140	1.395	1.327				
6	920.8	681.6	590.1	580.9	706.9	356.4	51.35			0.5124	-1.068	-0.940				
7	879.1	621.8	539.6	536.4	694.0	314.4	47.63			0.7091	-3.226	-3.152				
8	862 9	600.8	522.7	522.6	u86.6	296.4	46.22			0.8564 0.9050	-4.865	-4.901				
ğ	843.8	587.3	509.8	515.2	672.4	281.9	45.22			0.9531	-5.454	-5.505				
•	0.0.0	307.3	307.0	313.2	0/2.4	201.3	45.22	50	.23	0.9551	-6.095	-6.113				
		NCORR	WCORR	WCORR			TO/TO P	02/201	PO / PO	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE	027.01	STAGE	STAGE	STAGE					
			LBM/SEC	KG/SEC					Jinat	31AGE	2					
	1	2820.00	108.29	49.12			1.2200	0.9802	1.8551		88.73					

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUN NO 40 SPEED CODE 5 POINT NO 13 105 PERCENT SPEED (ROTOR PERFORMANCE)

SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	U-2	V'-1	V'-2	VO'-1		RHOVH-1				EPSI-2	
,	M/SEC 198.7	M/SEC 319.7	11/SEC 197.4	M/SEC 211.2	M/SEC 22.6	M/SEC 240.0	11/SEC 287.9	M/SEC 296.8	M/SEC 330.6		M/SEC -265.3	M/SEC -56.8	KG/M2 SE 195.80	.C KG/M2 269			RADIAN 0.0856	
2	206.0	313.9	204.1	208.7	28.1	234.4	298.4	305.0	338.7		-270.2		202.95	270			0.0727	
3	209.6	308.4	207.1	203.9	32.5	231.3	308.6	313.2	345.1		-276.1	-81.9	205.91	267			0.0594	
4	213.6	300.7	209.9	195.5	40.0	228.5	338.5	337.7	364.9		-298.5		207.95	263		0.0325		
5 6	215.0 213.8	289.8 274.9	209.8	185.2 168.3	47.4 54.6	222.9	377.3 414.1	370.4 403.2	391.0 414.7		-330.0 -359.5		207.30 204.63	258 240		0.0796 - 0.1196 -		
7	210.2	262.7	202.5	153.3	56.5	217.4	440.2				-383.7		200.60	222		0.1424 -		
· 8	206.8	257.7	199.3	148.1	55.2	210.9	448.5	435.9	440.9		-393.3		197.11	214		0.1482 -		
9	202.9	251.0	195.7	142.0	53.6	207.0	456.3	444.1	447.7	276.4	-402.7	-237.1	193.00	206	.72 -	0.1530 -	0.1311	
SL	B-1	B-2	B'-1	B'-2	M-1	M-2	И'-1	11'-2	INCS	INCM	DEV	TURN	D FAC O					%EFF-P
,		DEGREE			0 6046	0 0100		0 5000	DEGREE					TOTAL	TOTAL	P01	TOTAL	
2	6.5 7.8	48.7 48.3	53.28 52.89			0.9183			-3.97 -2.55	2.31 3.57	12.52 11.32			0.0853	0.0249			
3	8.9	48.6	53.10			0.8839			-1.58	4.38	11.71	31.21		0.0884	0.0258			
4	10.8	49.5	54.90			0.8570			0.21	5.87	12.60		0.5571	0.0884	0.0256			
5	12.7	50.2				0.8203			0.83	5.71	11.20			0.0821	0.0227			
6	14.8	52.1	60.10			0.7724			0.97	5.19	9.97			0.0912	0.0228			
7 8	15.6 15.5	54.1 54.8	62.16 63.11			0.7330			0.94 0.96	4.45 4.20	9.50 9.67			0.1121 0.1187	0.0253			
9	15.3	55.4	64.07			0.6960			0.72	3.70			0.5142		0.0243			
SL	٧-1	V-2	r-nv	VM-2	VO-1	VO-2	บ-1	U-2	۷'-1	۷'-2	VO'-1	VO'-2	RHOVM-1	I RHO	VM-2	EPSI-1	EPSI-2	PCT TE
													LBM/FT2SE			DEGREE	DEGREE	
1		1049.0	647.6	693.1		787.4						-186.4	40.10		.17	2.182	4.904	
2		1029.8	669.7	684.8				1000.7				-231.6			.42	1.226		0.1000
3	700.9	1011.7 986.5	679.5 688.5	668.9 641.3				1027.6	1132.3			-268.6			.78 .06	0.385 -1.861		0.1501 0.3000
5	705.6		688.2	607.7					1282.8							-4.558	-1.844	
6	701.6	901.9	678.3	552.0					1360.7			-609.6				-6.850	-4.395	
7	689.7	862.0	664.3	503.1	185.4				1423.3			-703.3			.47	-8.162	-6.052	
8	678.5	845.6	653.9	485.9					1446.6			-738.0			.01	-8.492	-6.677	
9	665.7	823.5	642.0	466.0					1469.0	906.8	-1321.2	-777.9	39.53	42	.34	-8.765	-7.511	0.9500
	1	WC1/A1	WC1/A	1					T02/T0	1 PO2/P	01 EFF	-AD E	FF-P					
	1	_BM/SEL	KG/SE(OTOR					
		SQFT	192						1 000		% 33 00		% 					
		41.72	203.59	9					1.223	1.91	21 90	.94 9	1.73					

AIRFOIL AERODYNAMIC SUMMARY PRINT

105 PERCENT SPEED (STATOR PERFORMANCE)

RUN NO 40 SPEED CODE 5 POINT NO 13

SL	Y-1	V-2	VM-1	VH-2	¥0-1	¥0-2	RHOVM-1	RHO	VM-2	EPSI-1	EPSI-2					
_	M/SEL	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE	C KG/M	2 SEC	RADIAN	RADIAN					
1	326.5	208.6	223.5	200.8	238.0	56.7	279.89	311.	.17	0.1018	0.0854					
2	321.3	210.8	221.6	202.9	232.7	57.3	281.67	316	.94	0.0850	0.0718					
3	316.3	212.9	217.2	203.2	230.0	63.7	279.13	318.	.88	0.0702	0.0589					
4	309.3	216.4	209.1	197.0	227.9	89.6	276.40	310.	. 81	0.0306						
5	298.6	216.9	198.3	190 8	223 3	103.0	271.08	303		-0.0158						
6	283.0	207.7	179.8	176.3	218.6	109.9	252.63	281		-0.0568						
7	270.6	190.4	163.9	163.8	215.3	97.2	233.39	260		-0.0366						
8	265.8	184.4	158.8	160.0	213.2	91.7	226.66	253		-0.0963						
9	259.8	180.3	153.7	157.9	209.5	87.0	219.84	249		-0.1072						
SL	B-1	B-2	M- 3	M-2	THEC	TUCH	DEV	TUDA	D 540	011505 5						
JL	DEGREE		11-1	11-2	INCS Degree	INCM DEGREE	DEV DEGREE	TURN	D-FAC	OMEGA-B		P02/	PO/PO	TO/TO	%EFF-A	
1	46.8		0.9411	0.5724	-6.74			DEGREE	0 5500	TOTAL	TOTAL	P01	STAGE	STAGE		TOT-STG
2	46.3	15.7	0.9263			-4.13	5.84		0.5509		0.0278	0.9644	1.8744	1.2230	88.12	
3	46.6		0.9203		-6.06	-3.96	5.22		0.5356		0.0216	0.9736	1.8573	1.2172	89.04	89.95
4	47.4	24.4	0.8853		-6.25	-3.47	6.17		0.5168		0.0147	0.9827	1.8588	1.2154	89.92	
5	48.4	28.4	0.8488		-5.80	-2.82	10.48		0.4741		0.0146	0.9838	1.8783	1.2199	89.67	90.54
6	50.6				-6.65	-3.42	10.12		0.4455			0.9872		1.2234	90.05	
7	52.8		0.7982		-6.88	-3.41	10.93		0.4450			0.9868		1.2246	88.38	
			0.7573		-6.97	-3.32	7.83		0.5125		0.0412	0.9690		1.2295	83.06	84.44
8	53.3	29.8	0.7416		-7.59	-3.89	5.91	23.49			0.0481	0.9659	1.8403	1.2322	81.90	83.38
9	53.7	28.9	0.7228	0.4885	-9.15	-5.40	3.01	24.89	0.5480	0.1027	0.0453	0.9699	1.8484	1.2328	82.36	83.81
SL	٧-١	V-2	V#4-3	VM-2	VO-1	V0-2	RHOVM-1	RHOV	VI1-2	PCT TE	EPSI -1	EPSI-2				
	FT/SEC		FT/SEC	FT/SEC	FT/SEC		LBM/FT2SE			SPAN	DEGREE	DEGREE				
1	1071.2		733.3	658.7	780.9	185.9	57.32			0.0543	5.833	4.895				
2	1054.3	691.6	727.0	665.6	763.5	187.9	57.69			0.1078	4.873	4.113				
3	1037.9	698.6	712.6	666.6	754.5	209.0		65		0.1601	4.024	3.373				
4	1014.9	710.1	686.1	646.3	747.8	294.0	56.61			0.3140	1.754	1.366				
วั	979.8	711.5	650.5	626.1	732.7	338.0	55.52			0.5124	-0.903	-0.936				
6	928.7	681.5	589.8	578.4	717.3	360.6	51.74			0.7091	-3.253	-3.151				
7	887.8		537.6	537.3	706.5	318.9	47.80			0.8564	-4.961	-4.876				
8	872.2		521.1	524.9	699.4	300.9	46.42			0.9050	-5.519	-5.476				
9	852.4	591.4	504.3	518.0	687.2	285.3	45.03			0.9531	-6.145	-6.088				
		исова	IWARA	10000												
		NCORR	WCORR	WCORR				02/P01	PO/PO	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
	,		LBM/SEC	KG/SEC						%	%					
		12820.00	108.20	49.08			1.2236	0.9799	1.8737	87.84	88.86					

RUN NO 40 SPEED CODE 5 POINT NO 15

105 PERCEN	T SPEED	(ROTOR	PERFO	RMANUE)												_	
SL V-1 HVSEC 1 197.1 2 204.4 3 208.0 4 212.1 5 213.9 6 212.8 7 209.1 8 205.7 9 201.8	Y-2 M/SEC 317.4 312.0 306.7 299.2 292.0 280.7 270.0 265.2	VM-1 M/SEC 102.5 205.5 208.4 208.6 205.8 201.4 198.3 194.6	VM-2 M/SEC 205.3 203.9 198.9 189.8 182.0 167.4 152.0 145.5 138.6	VO-1 M/SEC 22.5 28.0 32.3 39.7 47.1 54.3 56.2 54.9 53.4	Y0-2 M/SEC 242.1 236.1 233.5 231.3 228.4 225.4 225.1 221.6 219.3	U-1 M/SEC 287.9 298.4 308.6 338.5 377.3 414.1 440.2 448.5 456.3	U-2 M/SEC 296.8 305.0 313.2 337.7 370.4 403.2 427.7 435.9	V'-1 11/SEC 329.8 337.8 344.3 364.2 390.6 414.5 433.6 440.7 447.5	212.5 215.2 214.3 217.6 230.8 244.2 254.8 259.0	M/SEC -265.4 -270.4 -276.2 -298.7 -330.2 -359.8 -383.9	-54.7 -68.9 -79.7 -106.5 -142.1 -177.8 -204.6 -214.2			2 SEC .76 .55 .15 .51 - .74 - .62 - .81 -	EPSI-1 RADIAN 0.0383 0.0217 0.0072 0.0314 0.0783 0.1196 0.1436 0.1494 0.1537	RADIAN 0.0866 0.0748 0.0622 0.0216 -0.0296 -0.0746 -0.1062 -0.1178	
SL B-1 DEGREE 1 6.5 2 7.9 3 8.9 4 10.8 5 12.7 6 14.8 7 15.6 8 15.5 9 15.3 SL V-1 FT/SEC 1 646.6 2 670.7 3 682.5 4 695.9 5 701.7	B-2 DEGREE D 49.7 49.6 50.6 51.4 53.3 55.6 57.6 V-2 FT/SEC F 1041.4 1023.6 1006.4 981.7 958.1	B'-1 EGREE 53.51 53.13 53.33 55.12 57.74 60.23 62.30 64.21 VM-1 T/SEC 642.4 664.4 664.4 664.4	B'-2 DEGREE 14.94 18.69 21.85 29.29 37.93 46.60 53.25 55.68 58.26	0.6235 0.6353 0.6489 0.65513 0.6391 0.6278 0.6149 V0-1 FT/SEC 73.8 91.8 106.0 130.4	0.9095 0.8940 0.8775 0.0507 0.8245 0.7505 0.7342 0.7154 V0-2 FT/SEC 794.2	1.0304 1.0516 1.1142 1.1957 1.2684 1.3249 1.3448 1.3635 U-1 FT/SEC 944.5 979.0 1012.4 1110.5 1238.0	0.6088 0.6167 0.6130 0.6188 0.6518 0.6844 0.7171 0.7284 U-2 FT/SEC 973.8 1000.7 1027.6 1027.6 1108.1 1215.4	1108.3 1129.6 1195.0 1281.5	2.54 3.80 4.61 6.08 5.87 5.33 4.59 4.34 3.84 V'-2 FT/SEC 697.1 706.1 703.1 714.1 801.2-	12.40 11.31 11.67 12.69 10.64 8.85 8.47 8.84 9.39 VO'-1 FT/SEC -870.7 -887.1 -906.4 -980.1 1083.4	38.57 34.44 31.48 25.83 19.81 13.64 9.06 7.57 5.95 YO'-2 FT/SEC -179.6 -226.0 -261.5 -349.3 -466.1 -583.3	0.5603 0.5552 0.5627 0.5761 0.5700 0.5610 0.5570 0.5525 RHOVM-1 LBM/FT2SE 39.92 41.37 41.98 42.41 42.32 41.80	TOTAL 0.0869 0.0852 0.0886 0.0788 0.0867 0.1141 0.1261 0.1342 RHO EC LBM/F 54 54 54	TOTAL 0.0253 0.0238 0.0256 0.0219 0.0222 0.0263 0.0277 0.0278 VM-2 T2SEC .23 .80 .10 .15	1.958 1.927 1.910 1.927 1.980 1.984 1.989 EPSI-1 DEGREE 2.192 1.243 0.410 -1.800 -4.489 -6.855	TOTAL 1 93.70 5 93.78 1 93.15 4 92.35 8 92.66 3 91.35 2 88.26 7 86.99	TOTAL 94.27 94.33 93.74 93.02 93.32 92.14 89.33 88.18 87.38 PCT TE SPAN 0.0499 0.1501 0.1501 0.3000 0.5000
7 686.2 8 675.0 9 662.1 W	885.8 870.0 851.0 C1/A1 BM/SEC SQFT	661.0 650.5	498.6 477.5 454.6	184.5 180.2 175.1	732.1 727.2	1444.2 1471.4 1497.2	1403.3 1430.1 1457.0	1422.6	849.8- 866.4- P02/P0	.1291.2 .1322.0 .13 EFF- ROT	TOR R	40.97 40.25 39.41 FF-P OTOR % 2.03	43	.96	-8.558	-6.749 C	0.9000

	LINGEN	. 0. 225 ,			•											
SL 1 2 3 4 5 6 7 8 9	V-1 M/SEC 323.0 318.2 313.4 306.7 300.2 288.9 278.1 273.6 268.5	V-2 M/SEC 196.3 198.7 200.8 205.7 212.5 207.9 193.6 189.0 185.5	VM-1 M/SEC 216.1 215.1 210.7 202.2 194.5 179.1 163.1 157.1 151.2	VM-2 M/SEC 189.0 191.1 190.1 187.2 185.1 173.9 164.4 162.1 160.7	V0-1 M/SEC 240-1 234-4 232-1 230-7 228-8 226-6 225-2 224-0 221-9	VO-2 M/SEC 53.1 54.3 64.7 85.2 104.2 113.9 102.2 97.2 92.5	RHOVM-1 KG/M2 SEI 274.60 277.82 275.01 271.35 270.14 255.88 236.14 227.70 219.34	C KG/M 299 305 305	.46 .13 .47 .37	RADIAN 0.1029 0.0865 0.0713 0.0339 -0.0115 -0.0516 -0.0808 -0.0918	0.0856 0.0723					
SL	B-1	B-2	14-1	14-2	INCS	INCM	DEV	TURN	D-FAC		LOSS-P	P02/	PO/PO	TO/TO STAGE	%EFF-A TOT-STG	%EFF-P
SL	DEGREE	DEGREE	•••		DEGREE	DEGREE		DEGREE		TOTAL	TOTAL 0.0280	P01 0.9648	STAGE 1.8873	1.2254	88.23	89.23
1	48.0	15.7	0.9282	0.5361	-5.53	-2.91	5.79		0.5905		0.0234	0.9719	1.8704	1.2193	89.28	90.18
2	47.4	15.8	0.9147	0.5445	-5.60	-2.91	5.32		0.5521		0.0170	0.9802	1.8712	1.2179	89.91	90.75
2 3	47.7	18.8	0.8997	0.5509	-5.11	-2.34	7.56 10.49	24.29	0.5143			0.9823	1.8957	1.2236	89.60	90.48
4	48.7	24.4	0.8753	0.5637	-4.50	-1.52 -2.19	11.14		0.4700		0.0138	0.9861	1.9449	1.2310	90.54	91.38
5	49.6	29.4	0.8511	0.5816	-5.41 -5.77	-2.19	12.22	18.46	0.4629		0.0166	0.9849	1.9516	1.2361	89.08	90.05
6	51.7	33.3	0.8125	0.5670 0.5242	-5.64	-1.99	8.99	22.21	0.5231	0.0910	0.0377	0.9702	1.9211	1.2440	83.95	85.35
7	54.1	31.9	0.7756	0.5100	-5.96	-2.26	7.02	24.01			0.0414	0.9690	1.9233	1.2485	82.61	84.12
8	55.0	31.0 29.9	0.7434	0.4993	-7.15	-3.40	4.10	25.80	0.5570	0.0905	0.0395	0.9722	1.9343	1.2520	82.23	83.79
9	55.7	29.9	0.7434	0.4333	-7.10	••••	***									
~	Y-1	V-2	YM-1	VM-2	YO-1	VO-2	RHOVIA-1			PCT TE	EPSI-1	EPSI-2				
ST	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE	C LBM/F	T2SEC	SPAN	DEGREE	DEGREE				
1	1059.6	644.1	708.9	620.0	787.6	174.3	56.24	61	.44	0.0543	5.897	4.905				
ż	1043.9	651.9	705.9	627.1	769.1	178.2	56.90			0.1078	4.954 4.087	4.143 3.432				
3	1028.4	658.9	691.2	623.7	761.5	212.4	56.32			0.1601	1.942	1.500				
4	1006.4	674.8	663.4	614.2	756.8	279.5	55.58			0.3140 0.5124	-0.657	-0.735				
5 6	985.1	697.0	638.0	607.4	750.6	342.0	55.33			0.7091	-2.955	-2.894				
6	947.7	682.0	587.5	570.4	743.6	373.8	52.41 48.36			0.8564	-4.627	-4.638				
7	912.3	635.2	535.3	539.5	738.8	335.3 318.8	46.64			0.9050	-5.262	-5.284				
8	897.7	620.1	515.5	531.8 527.3	734.9 728.1	303.6	44.92			0.9531	-5.989	-5.978				
9	881.0	608.5	496.0	527.5	720.1	303.0	77.52	• •								
		NCORR INLET	WCORR INLET LBM/SEC	WCORR INLET KG/SEC			TO/TO POSTAGE		STAGE	EFF-AD STAGE %	STAGE %					
		RPM 12820.00	107.82	48.91			1.2322	0.9792	1.9193	88.12	89.15					

105 PERCENT SPEED (ROTOR PERFORMANCE)

AIRFOIL AERODYNAMIC SUNMARY PRINT RUN NO 4 SPEED CODE 5 POINT NO 21

		5. 225	(110101															
SL 1	V-1 M/SEC 181.0	Y-2 M/SEC 308.9	VII-1 II/SEC 179.8	VH-2 M/SEC 191.1	VO-1 II/SEC 20.9	VO-2 II/SEC 242.7	U-1 M/SEC 287.9		V'-1 M/SEC 321.9	M/SEC	VO'-1 M/SEC -267.0	H/SEC	KG/H2 S	EC KG/N	12 SEC		EPSI-2 RADIAN 0.0883	
2	188.1	301.1	186.3	185.8	26.0	236.9	298.4	305.0	330.0	197.9	-272.4	-ú8.1	191.91	249	9.55	0.0220	0.0797	
3 4	191.5 195.4	297.0 291.2	189.1 191.9	182.6 175.1	30.0 36.9	234.2 232.7	308.6 338.5	313.2 337.7			-278.6 -301.6			245	5.11	-0.0302		
5 6	197.3 196.3		192.4 189.7	170.1 159.4	43 8	235.0 239.0					-333.5 -363.6					-0.0777 - -0. 219 -		
7	192.3		185.1	142.8	52.2	242.2	440.2	427.7	429.9	234.1	-388 0	-185.5	189.99	214	.22	-0.1494 -	-0.1019	
3 9	188.9 185.0		181.9 178.2	130.8 121.6	51.0 49.6	242.6 241.1			437.1 444.1		-397.5 -406.8					-0.1551 - -0.1572 -		
SL	B-1	B-2	B'-1	B'-2	11-7	М-2	H'-1		INCS	INCM	DEV	TURN	D FAC	OMEGA-B	LOSS-I	P P02/	%EFF <i>-F</i>	%EFF-P
-		DEGREE							DEGREE					TOTAL	TOTAL		TOTAL	
1	6.6	51.8			0.5476						13.28			0.1012				
2	7.9				0.5702					6.27	12.77			0.1110				
3	9.0				0.5813					7.08	13.24			0.1070				
4	10.9				0.5940					8.51	14.37			0.1062				
5	12.8		60.04		0.6002					8.17	11.18			0.1017	0.028			
6	14.9				0.5968					7.56	7.95			0.1181				
7	15.8				0.5841					6.78	7.48			0.1612				
8	15.7				0.5728					6.51	8.95			0.1874				
9	15.5				0.5603					5.97	10.15			0.2007			3 81.33	
SL		V-2			VO-1		U-1		V '-1						2-11VC		EPSI-2	
_													LBM/FT2			DEGREE	DEGREE	
		1013.5							1056.3						1.84	2.192		0.0499
2		987.9		609.5					1082.7						1.11	7.258		0.7000
3	628.3		620.5	599.0					1104.7						0.86	0.447		0.1501
4	641.1			574.5					1172.7						0.20	-1.730		0.3000
5		951.8							1263.3						0.46	-4.453	-0.964	
6			622.3						1345.7						8.49	-6.985	-3.686	
7				468.4					1410.4						3.87	-8.559	-5.837	
8			596.7	429.1					1434.2						0.17	-8.886	-6.849	
9	607.0	886.1	584.8		•				1457.1			-665.	9 37.3	6 3	7.46	-9.007	-8.326	0.9500
		WC1/A1 LBIVSEC		1 C					T02/T01	P02/P0	O1 EFF RO	TOR	EFF-P Rotor					
		SQFT 39.47	192.60	0					1.2489	2.01	81 89		% 90.17					

AIRFOIL AERODYNAMIC SUNNARY PRINT

. .----

2 50 8 17.4 0.8649 0.4368 -2.23 0.46 6 86 33.41 0.6866 0.1673 0.0576 0.9352 1.7981 1.2232 81.69 83 3 50.9 19.6 0.8534 0.4423 -1.96 0.82 8.39 31.28 0.6704 0.1588 0.0553 0.9397 1.7962 1.2214 82.21 83.6	105	PERLEN	T SPEED (STATOR P	ERFORMA	ICE)	AIRFO	OIL AERODY		UINIARY RUN NO		CODE 5	POINT N	0 21			
DEGREE DEGREE 1 50.7 16.9 0.8863 0.4415 -2.76 -0.14 7.06 33.82 0.6882 0.1757 0.0592 0.9296 1.8232 1.2280 82.05 83 3 50.9 19.6 0.8534 0.4423 -1.96 0.82 8.39 31.28 0.6704 0.1588 0.0553 0.9397 1.7961 1.2232 81.69 83 52.4 30.7 0.8369 0.4807 -1.60 1.38 11.72 25.96 0.5980 0.1151 0.0410 0.9576 1.8510 1.2268 84.72 85 52.4 30.7 0.8347 0.5528 -2.68 0.54 12 41 2.171 0.4995 0.0483 0.0178 0.9823 1.9742 1.2416 88.69 89 652.4 30.7 0.8369 0.4807 -1.60 1.38 11.72 25.96 0.5202 0.0793 0.0323 0.9296 2.0380 1.2574 87.54 88 59.4 32.5 0.7807 0.5568 -2.21 1.43 10.34 24.29 0.5202 0.0793 0.0323 0.9726 2.0451 1.2572 82.31 83 9 60.8 31.9 0.7641 0.5144 -2.14 1.61 6.06 28.85 0.5678 0.0874 0.0373 0.9714 2.0426 1.2836 79.72 81 1019.4 535.6 644.8 512.3 789.6 16.3 53.06 51.32 0.0543 6.220 5.104 52.95 0.0543 0.0543 0.0573 0.9719 2.0473 1.2906 78.07 80 1019.4 535.6 644.8 512.3 789.6 16.3 53.06 51.32 0.0543 6.220 5.104 52.95 0.0543 0.0543 0.0780 0.9719 2.0473 1.2906 78.07 80 1019.4 535.6 644.8 512.3 789.6 16.3 53.06 51.32 0.0543 6.220 5.104 52.95 0.0543 6.220 5.104 52.95 0.0543 6.220 5.104 52.95 0.0543 6.220 5.104 52.95 0.0543 6.220 5.104 52.95 0.0543 6.220 5.104 52.95 0.956 50.2 629.3 504.9 771.7 158.3 52.46 50.82 0.1078 5.411 4.525 5.104 52.95 0.956 50.2 629.3 504.9 771.7 158.3 52.04 53.86 0.3140 3.202 2.473 5.973.4 667 4 594.4 574.1 770.8 340.3 52.90 59.84 0.1078 5.411 4.525 5.994 60.8 50.4 574.1 770.8 340.3 52.90 59.84 0.1078 5.411 4.525 5.994 60.8 50.4 574.1 770.8 340.3 52.90 59.84 0.1078 5.411 4.525 5.994 60.8 50.4 574.1 770.8 340.3 52.90 59.84 0.1078 5.411 4.525 5.994 60.904 50.94	1 2 3 4 5 6 7 8	M/SEC 310 7 303.5 299.8 295.5 296.7 294.9 289.2	M/SEC 163.3 161.3 163.1 178.1 203.4 210.1 204.0 198.8	M/SEC 196.5 191.8 189.1 183.4 181.2 171.4 155.2 144.4	M/SEC 156.1 153.9 153.6 160.5 175.0 172.6 170.6 167.6	M/SEC 240.7 235.2 232.7 231.7 234.9 239.9 244.0 244.9	H/SEC 47.6 48.2 54.8 77.2 103.7 119.7 111.8 107.0	KG/M2 SE 259.09 256.16 255.43 254.07 258.29 250.35 228.97 212.77	250 KG/M 250 248 248 262 292 291 286 280	2 SEC 1.55 3 12 3.80 2.96 3.15 .33 3.64	RADIAN 0.1086 0.0944 0.0837 0.0559 0.0143 -0.0290 -0.0019 -0.0726	RADIAN 0.0891 0.0790 0.0696 0.0432 0.0071 -0.0323 -0.0671 -0.0814					
FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE 1 1019.4 535.6 644.8 512.3 789.6 156.3 53.06 51.32 0.0543 6.220 5.104 2 995.8 529.2 629.3 504.9 771.7 158.3 52.46 50.82 0.1078 5.411 4.525 3 983.7 535.2 620.4 504.1 763.4 179.7 52.31 50.96 0.1601 4.795 3.988 4 969.7 584.3 601.8 526.6 760.3 253.3 52.04 53.86 0.3140 3.202 2.473 5 973.4 667 4 594.4 574.1 770.8 340.3 52.90 59.84 0.5124 0.817 0.408 6 967.5 689.3 562 5 566.4 787.2 392.7 51.27 59.67 0.7091 -1.663 -1.848 7 949.0 669.4 509.4 559.9 800.7 366.9 46.90 58.71 0.8564 -3.545 -3.844 8 932.9 652.4 473.9 550.0 803.6 350.9 43.58 57.35 0.9050 -4.159 -4.661 9 917.1 635.5 447.6 539.4 800 5 335.9 41.21 56.01 0.9531 -4.938 -5.623	1 2 3 4 5 6 7 8	DEGREE 50.7 50.8 50.9 51.6 52.4 54.4 57.5	DEGREE 16.9 17.4 19.6 25.7 30.7 34.7 33.2 32.3	0.8863 0.8649 0.8534 0.8369 0.8347 0.8228 0.7987	0.4415 0.4368 0.4423 0.4837 0.5528 0.5683 0.5468 0.5304	DEGREE -2.76 -2.23 -1.96 -1.60 -2.68 -3 03 -2.21 -1.48	DEGREE -0.14 0.46 0.82 1.38 0.54 0.43 1.43 2.22	7.06 6 86 8.39 11.72 12 41 13.70 10.34 8.59	DEGREE 33.82 33.41 31.28 25.96 21.71 19.71 24.29 26.92	0.6882 0.6866 0.6704 0.5980 0.4995 0.4747 0.5202 0.5457	TOTAL 0.1757 0.1673 0.1588 0.1151 0.0483 0.0454 0.0793 0.0854	TOTAL 0 0592 0.0576 0.0553 0.0410 0.0178 0.0173 0.0323 0.0357	P01 0.9296 0.9352 0.9397 0.9576 0.9823 0.9836 0.9726 0.9714	STAGE 1.8232 1.7981 1.7962 1.8510 1.9742 2.0380 2.0451 2.0426	STAGE 1.2280 1.2232 1.2214 1.2268 1.2416 1.2574 1.2752 1.2836	TOT-STG 82.05 81.69 82.21 84.72 88.69 87.54 82.31 79.72	TOT-STG 83.49 83.13 83.60 85.97 89.71 88.71 83.99 81.64
RPM LBH/SEC KG/SEC \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 2 3 4 5 6 7 8	FT/SEC 1019.4 995.8 983.7 969.7 973.4 967.5 949.0 932.9 917.1	FT/SEC 535.6 529.2 535.2 584.3 667.4 689.3 669.4 652.4 635.5 NCORR INLET RPM	FT/SEC 644.8 629.3 620.4 601.8 594.4 562.5 509.4 473.9 447.6 WCORR INLET LBM/SEC	FT/SEC 512.3 504.9 504.1 526.6 574.1 566.4 559.9 550.0 539.4 WCORR INLET KG/SEC	FT/SEC 789.6 771.7 763.4 760.3 770.8 787.2 800.7 803.6	FT/SEC 156.3 158.3 179.7 253.3 340.3 392.7 366.9 350.9	LBM/FT2SE 53.06 52.46 52.31 52.04 52.90 51.27 46.90 43.58 41.21	EC LBM/F 51 50 50 53 59 58 57 56 P02/P01	T2SEC .32 .82 .96 .86 .84 .67 .71 .35 .01 P0/P0 STAGE	SPAN 0.0543 0.1078 0.1601 0.3140 0.5124 0.7091 0.8564 0.9050 0.9531 EFF-AD STAGE	DEGREE 6.220 5.411 4.795 3.202 0.817 -1.663 -3.545 -4.159 -4.938 EFF-P STAGE	DEGREE 5.104 4.525 3.988 2.473 0.408 -1.848 -3.844 -4.661				

RUN NO 4 SPEED CODE 5 POINT NO 23 05 PERCENT SPEED (ROTOR PERFORMANCE) EPSI-1 EPSI-2 Y'-2 Y0'-1 Y0'-2 SL V-1 **V-2** Vi1-2 VO-1 V0-2 U-1 U-2 Y'-1 RHOVM-1 RHOVH-2 VM-1 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/112 SEC RADIAN RADIAN M/SEC M/SEC M/SEC H/SEC M/ SEC M/SEC KG/M2 SEC 188.4 309.2 187.2 194.1 21.7 240.6 287.9 296.8 325.4 202.1 -266.2 -56.2 189.64 256.23 0.0388 0.0870 0.0229 0.0783 203.1 -271.4 -70.7 196.71 255.28 195.6 302.0 193.7 190.5 27.0 234.3 298.4 305.0 333.5 199.2 296.6 196.7 184.9 31.1 231.9 308.6 313.2 340.1 202.0 -277.4 -81.3 199.70 250.61 0.0091 0.0676 203.5 291.1 199.8 178.1 38 3 230.2 338.5 337.7 360.6 208.1 -300.1 -107.5 202.07 248.83 -0.0275 0.0277 -0.0743 -0.0213 175.9 45.5 230.4 377.3 370.4 387.8 224.9 -331.8 -140.1 202.12 255.20 205.8 289.9 200.7 -0.1173 -0.0683 205.3 282.4 162.1 52.5 231.3 403.2 412.5 236.3 -361.6 -171.9 199.83 241.47 198.4 414.1 201.8 275.1 194.3 148.5 54.4 231.6 440.2 427.7 432.0 246.0 -385.8 -196.1 195.85 224.08 -0.1441 -0.1029 435.9 439.2 246.8 -395.4 -204.0 192.39 -0.1506 -0.1159 191.1 448 5 209.45 198.4 270.3 138.9 53.1 231.9 9 194.5 264.6 187.6 129.3 51.6 230.8 456.3 444.1 446.1 249.4 -404.7 -213.2 188.36 195.18 -0.1548 -0.1323 B'-2 11-1 M-2 M'-1 M'-2 INCS D FAC OMEGA-B LOSS-P P02/ %EFF-A %F B-1 B-2 B'-1 INCM DEV TURN DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 TOTAL 6.6 51.1 54.82 16.15 0.5714 0.8825 0.9868 0.5769 -2.43 3.85 13.61 38.67 0.5855 0.0860 0.0249 1.9571 93.90 7.9 50.9 54.44 20.38 0.5947 0.8613 1.0139 0.5794 -1.00 5.11 13.00 34.06 0.5848 0.0886 0.0256 1.9178 93.28 9.0 51.5 54.64 23.76 0.6063 0.8443 1.0353 0.5750 -0.04 5.92 13.58 30.87 0.5929 0.0957 0.0275 1.9005 92,45 10.9 52.3 56.35 31.12 0.6204 0.8241 1.0994 0.5891 1.66 7.32 14.52 25.23 0.5983 0.0906 0.0257 1.9315 92.36 38.46 0.6281 0.8158 1.1836 0.6329 2.10 6.97 11.18 20.37 12.8 52.6 58.84 0.5853 0.0693 0.0192 2.0127 46.55 0.6262 0.7882 1.2585 0.6594 2.11 6.34 8.79 14.70 0.5848 0.0852 0.0218 2.0470 14.8 54.8 61.24 15.6 57.2 63.26 52.71 0.6148 0.7613 1.3163 0.6806 2.04 5.54 7.93 10.55 0.5852 0.1147 0.0268 2.0673 88.83 2.05 15.5 59.0 64.19 55.62 0.6037 0.7439 1.3365 0.6793 5.28 8.78 8.57 0.5932 0.1379 0.0304 2.0703 86.57 ∂ 15.4 60.7 65.13 58.68 0.5912 0.7247 1.3556 0.6831 1.78 4.76 9.82 6.45 0.5958 0.1545 0.0317 2.0741 84.96 8 VI1-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 PC V-2 VM-1 FT/SEC LBM/FT2SEC LBM/FT2SEC DEGREE DEGREE SE 1 618.2 1014.4 614.1 636.9 71.1 789.5 944.5 973.8 1067.7 663.1 -873.4 -184.3 38.84 52.48 2.225 4.986 0 L 2 641.8 990.8 635.7 624.9 88.4 768.9 979.0 1000.7 1094.1 666.5 -890.5 -231.9 40.29 52.28 4.483 0.1 1.312 102.1 760.8 1012.4 1027.6 1115.9 662.7 -910.3 -266.7 3 653.5 973.1 645.5 606.7 40.90 51.33 0.521 3.871 0.1 125.7 755.3 1110.5 1108.1 1183.0 682.7 -984.7 -352.8 667.6 955.0 655.7 584.4 41.39 1.585 0 J 50.96 -1.574675.3 951.1 658.6 577.2 149.3 755.9 1238.0 1215.4 1272.4 737.8-1088.7 -459.5 41.40 52.27 -4.256 -1.219 0.3 758.8 1358.6 1322.8 1353.4 775.2-1186.5 -564.0 673.4 926.6 651.1 531.8 172.1 40.93 49.46 -6.723 -3.915 0 7 178.3 759.9 1444.2 1403.3 1417.3 807.0-1265.9 -643.3 662.0 902.7 637.5 487.3 40.11 45.89 -8.254 -5.893 O c 8 650.9 886.8 627.2 455.6 174.2 760.8 1471.4 1430.1 1440.9 809.7-1297.2 -669.3 39.40 42.90 **-8.631 -6.642** 0 9 615.4 424.2 169.3 757.3 1497.2 1457.0 1463.5 818.2-1327.8 -699.7 38.58 39.98 -8.867 -7.579 0.4 9 638.3 868.0 WC1/A1 WC1/A1 T02/T01 P02/P01 EFF-AD EFF-P LBM/SEC KG/SEC ROTOR ROTOR SQFT SQM O/ AD 2 40.59 198.08 1.2394 2.0012 91.48 92.27

AIRFOIL AERODYNAMIC SUMMARY PRINT

105	PERCEN'	r speed (STATOR P	ERFORMAN	ICE)				RUN NO		CODE 5	POINT N	0 23			
SL	V-1 M/SEC	V-2 M/SEC	VM-1 M/SEC	VM-2 11/SEC	VO-1 M/SEC	VO-2 M/SEC	RHOVM-	RHO	VM-2		EPSI-2 RADIAN					
1	312.2	175.2	201.3	168.0	238.6	49.7	263.70		.50		0.0871					
2	305.6	174.0	198.2	166.5	232.6	50.3	263.30		.75		0.0752					
3	300.8	176.2	193.3	166.3	230.4	58.0	259.37		.55	0.0758	0.0640					
4	296.6	188.8	187.9	170.8	229.5	80.3	259.01		.56		0.0327					
5	297.0	206.7	187.2	178.7	230.6	103.8	267.09		.05		-0.0053					
6	290.3	207.3	174.0	171.5	232.4	116.4	254.66		.31	-0.0409	-0.0433					
7	283.5	198.7	160.6	167.0	233.6	107.5	238.05		.67	-0.0724						
8	279.1	195.0	151.9	165.6	234.2	103.1	224.88		.92	-0.0847						
9	274.2	191.9	143.6	164.5	233.6	98.9	212.64	274	.19	-0.1002	-0.1013					
SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	T0/T0	%EFF-A	%EFF-P
,	DEGREE	DEGREE	0 0000	0 4750	DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE		TOT-STG	TOT-STG
1	49.8 49.5	16.4		0.4758	-3.68	-1.06	6.55	33.40	0.6465	0.1187	0.0401	0.9521		1.2250		87.53
2 3	50.0	16.8 19.2	0.8733 0.8580	0.4/35	-3.48 -2.87	-0.79 -0.09	6.25	32.//	0.6411	0.1084	0.0375	0.9575		1.2190	86.50	87.60
4	50.7	25.1		0.5148	-2.56	0.42	8.00 11.21	25.51	0.0214	0.0892 0.0632	0.0312		1.8357	1.21//	87.01	88.07
5	50.9	30.2	0.8387		-4.13	-0.90	11.92	20.76	0.5567	0.0406		0.9850	1.8857 1.9813			89.67
6	53.2	34.2			-4.29	-0.83	13.13			0.0426		0.9850	2.0147		89.89	92.34 90.83
7	55.5	32.8			-4.24	-0.59	9.89			0.0830			2.0089	1.2581	85.30	86.66
8	57.0	31.9	0.7712	0.5235	-3.89	-0.18	7.97	25.12	0.5386	0.0837		0.9726	2.0132	1.2655	83.27	84.82
9	58.4	31.0	0.7541	0.5133	-4.48	-0.74	5.17			0.0731		0.9770	2.0260	1.2720	82.08	83.76
SL	V -1	V-2	VM-1	VM-2	VO-1	VU-2	RHOVM-	1 nuo	VM-2	PCT TE	CDCI I	rnet a				
-	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		I RM/FT29	EC LBM/F	T)5EC	SPAN		EPSI-2 DEGREE				
1	1024.3	574.9	660.5	551.3	782.9	163.0	54.01			0.0543	6.133	4.989				
2	1002.8	570.8	650.4	546.4	763.3	165.0	53.93			0.1078	5.131	4.308				
3	986.9	578.0	634.3	545.8	756.0	190.4	53.12			0.1601	4.343	3.668				
4	973.0	619.4	616.3	560.5	752.9	263.6	53.05			0.3140	2.568	1.874				
ĩ	974.5	678.0	614.3	586.2	756.5	340.7	54.70		.25	0.5124	0.033	-0.301				
6	952.6	680.1	570.9	562.8	762.5	381.8	52.16			0.7091	-2.345	-2.479				
7 8	930.1 915.9	651.8 639.9	526.9	548.1	766.5	352.8	48.75			0.8564	-4.146	-4.296				
9	899.7	629.7	498.2 471.2	543.2 539.7	768.5 766.4	338.3	46.06			0.9050	-4.853	-4.996				
,	055.7	023.7	4/1.2	333.7	700.4	324.4	43.55	ם כ	.16	0.9531	-5.741	-5.802				
		NCORR	WCORR	WCORR				P02/P01	P0/P0	EFF-AD						
		INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
		RPM 12820.00	LBM/SEC				3 2204	0.9764		%	%					
		14020.00	105.27	47.75			1.2394	0.9/64	1.9539	88.02	89.08					

40.88

199,48

AIRFOIL AERODYNAMIC SUMMARY PRINT

100 PERCENT SPEED (ROTOR PERFORMANCE) RUN NO 40 SPEED CODE 10 POINT NO 1 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 VO-2 SL V-1 V-2 VM-1 VM-2 VO-1 M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN 226.8 -252.1 -61.0 266.83 0.0372 0.0856 193.2 311.3 192.0 218.5 22.0 221.7 274.2 282.7 316.9 192.76 2 200.3 305.6 198.4 216.4 27.4 215.8 284.2 290.5 324.5 229.0 -256.8 -74.7 199.68 268.25 0.0199 0.0727 229.0 -262.2 -87.1 265.23 0.0047 0.0595 3 203.7 299.2 201.3 211.8 31.6 211.2 293.9 298.3 330.6 202.52 236.9 -283.5 -117.6 4 207.5 289.7 203.8 205.7 38.9 204.0 322.4 321.7 349.2 204.52 263.98 -0.0362 0.0148 250.7 -313.3 -158.4 203.59 255.74 -0.0864 -0.0392 208.4 274.9 203.2 194.3 46.1 194.4 359.4 352.8 373.5 206.2 255.0 199.3 175.0 53.0 185.4 394.4 384.0 395.3 264.6 -341.4 -198.5 200.28 233.63 -0.1278 -0.0854 419.2 407.3 278.8 -364.4 -227.3 195.81 217.00 -0.1483 -0.1145 202.0 241.8 194.4 161.4 54.8 180.0 413.0 233.7 191.1 150.8 53.5 178.5 427.1 415.1 419.7 280.6 -373.6 -236.6 192.22 201.98 -0.1524 -0.1206 198.4 52.0 171.8 434.6 422.9 426.0 290.5 -382.6 -251.2 196.38 -0.1550 -0.1324 9 194.4 225.4 187.4 146.0 188.04 11-1 M-2 M'-1 M'-2 INCS INCM DEV TURN D FAC OMEGA-B LOSS-P PO2/ %EFF-A %EFF-P B-1 B-2 B'-1 B'-2 DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 TOTAL TOTAL 45.4 52.65 15.60 0.5869 0.9020 0.9626 0.6573 -4.60 1.68 13.06 37.04 0.4781 0.0908 0.0264 1.7946 92.96 93.51 6.5 19.07 0.6101 0.8857 0.9883 0.6636 -3.18 2.93 11.69 7.9 44.9 52.26 33.19 0.4759 0.0877 0.0255 1.7611 92,70 93,26 22.36 0.6212 0.8660 1.0080 0.6630 -2.21 3.75 0.0893 0.0259 44.9 52.47 12.17 30.11 0.4795 1.7358 92.17 92.75 10.8 44.8 54.30 29.77 0.6337 0.8357 1.0663 0.6834 -0.39 5.26 13.16 24.53 0.4784 0.0761 0.0219 1.7299 92.64 93.18 12.8 45.0 57.07 39.14 0.6366 0.7889 1.1408 0.7194 0.33 5.20 11.85 17.93 0.4674 0.0688 0.0188 1.7095 92.45 93.00 46.6 59.76 48.51 0.6293 0.7275 1.2066 0.7551 0.63 0.0847 0.0209 1.6570 4.85 10.76 11.25 0.4532 89.61 90.31 48.0 61.93 54.50 0.6155 0.6862 1.2587 0.7911 0.71 9.72 15.7 4.21 7.43 0.4394 0.1033 0.0231 1.6347 86.69 87.57 49.7 62.91 57.37 0.6039 0.6600 1.2772 0.7927 0.77 15.6 4.00 10.54 5.53 0.4446 0.1277 0.0269 1.6200 83.47 84.54 49.5 63.91 59.74 0.5909 0.6361 1.2947 0.8198 15.5 0.56 3.53 10.87 4.17 0.4260 0.1156 0.0230 1.6125 84.61 85.60 V-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 PCT TE FT/SEC LBM/FT2SEC LBM/FT2SEC DEGREE DEGREE SPAN 1 633.9 1021.2 629.8 716.8 72.3 727.4 899.6 927.5 1039.8 744.2 -827.3 -200.1 39.48 54.65 2.133 4.904 0.0499 2 657.2 1002.7 651.0 710.1 89.9 707.9 932.4 953.1 1064.7 751.2 -842.5 -245.2 54.94 1.139 40.90 4.168 0.1000 3 668.4 981.5 660.3 695.1 103.8 693.0 964.2 978.7 1084.6 751.5 -860.4 -285.7 41.48 54.32 0.269 3,408 0,1501 680.9 950.5 668.8 674.8 127.6 669.5 1057.6 1055.3 1145.6 777.3 -930.1 -385.9 41.89 54.06 -2.073 0.848 0.3000 683.7 901.9 666.8 637.5 151.1 638.0 1179.1 1157.6 1225.3 822.4-1028.0 -519.6 41.70 52.38 -4.950 -2.244 0.5000 6 676.5 836.5 653.8 574.1 173.8 608.4 1294.0 1259.8 1297.0 868.3-1120.2 -651.4 41.02 47.85 **-7.323 -4.895 0.7000** 662.7 793.4 637.8 529.7 179.8 590.7 1375.5 1336.5 1355.2 914.7-1195.7 -745.8 40.10 44.44 -8.494 -6.561 0.8499 39.37 651.1 766.7 627.0 494.8 175.5 585.6 1401.4 1362.1 1376.9 920.7-1225.9 -776.4 41.37 -8.732 -6.912 0.9000 9 638.0 739.7 614.7 479.1 170.6 563.6 1425.9 1387.6 1397.8 953.2-1255.4 -824.1 38.51 40.22 -8.880 -7.584 0.9500 T02/T01 P02/P01 EFF-AD EFF-P WC1/A1 WC1/A1 LBM/SEC KG/SEC ROTOR ROTOR SOFT SQM

oy KO 9 1.1797 1.6951 90.55 91.22

AIRFOIL AERODYNAMIC SUMMARY PRINT

100 PERCENT SPEED (STATOR PERFORMANCE)

RUN NO 40 SPEED CODE 10 POINT NO 1

											-					
SL	Y-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1	i RHO	VM-2	EPSI-1	EPSI-2					
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	IV/SEC	KG/M2 SE		2 SEC	RADIAN	RADIAN					
1	321.6	244.7	234.7	232.4	219.8	76.7	278.83	316		0.1016	0.0849					
2	316.7	247.9	233.2	237.9	214.2	69.6	280.79		.12	0.0825	0.0707					
3	310.7	249.7	229.1	239.1	209.9	72.0	278.36		.76	0.0649	0.0570					
4	301.5	247.6	222.4	228.3	203.6	96.0	277.29		.70							
5	285.7	239.1	209.0	212.3	194.8	109.9	268.20		.32	-0.0249						
6	263.7		186.4	190.1	186.6	114.6	244.21		.78	-0.0596						
7	249.4	203.8	170.7	175.4	181.7	103.7	225.98		.76	-0.0878						
8	241.2	194.7	160.0	168.1	180.4	98.3	211.13		.29	-0.0996						
9	233.6	187.1	156.2	162.2	173.7	93.3	206.83		.55	-0.1105						
21										*******	00,000					
SL	B-1	B-2	H-1	M-2	INCS	INCM	DEV	TURN	D-FAC		LOSS-P	P02/	PO/PO	T0/T0	%EFF-A	%EFF-P
,	DEGREE		0.0070	0 5005	DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STG
]	43.1			0.6885	-10.41	-7.80	8.34				0.0323	0.9583	1.7158	1.1948	85.61	86.65
2	42.5		0.9231	0.7004	-10.50	-7.80	5.74		0.3748		0.0208	0.9747	1.7104	1.1882	88.03	88.90
3	42.4		0.9049	0.7071	-10.39	-7.61	5.53		0.3549		0.0096	0.9888		1.1847	90.15	90.87
4	42.4			0.7015	-10.81	-7.83	8.83	19.64	0.3133		0.0097	0.9897	1.7098	1.1824	90.77	91.44
5 6	43.0 45.1		0.8242		-12.05	-8.83	9.12		0.2849		0.0097	0.9910	1.6871	1.1782	90.39	91.07
7	45.1		0.7552		-12.42	-8.95	10.07		0.2835	0.0359	0.0142	0.9889	1.6359	1.1732	87.16	88.01
á	48.5				-12.91	-9.26	7.72	16.21		0.0909	0.0381	0.9744	1.5898	1.1745	81.15	82.34
9	48.1		0.6832		-12.47	-8.76	6.40	18.13	0.3625		0.0437		1.5742		78.29	79.63
,	40.1	29.9	0.6611	0.5216	-14.82	-11.07	4.10	18.14	0.3758	0.1078	0.0471	0.9727	1.5679	1.1725	79.48	80.73
SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	RHOVM-1	n n	VM-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2SE	C LRM/F	T2SEC	SPAN	DEGREE	DEGREE				
1	1055.0		770.0	762.5	721.3	251.6	57.11			0.0543	5.821	4.865				
2	1038.9	813.3	765.2	780.7	702.8	228.2	57.51			0.1078	4.727	4.048				
3	1019.5	819.2	751.6	784.4	688.8	236.3	57.01			0.1601	3.721	3.268				
4	989.3	312.5	729.8	748.9	667.9	315.0	56.79			0.3140	1.228	1.203				
5	937.5	784.4	685.8	696.6	639 2	360.5	54.93			0.5124	-1.424	-1.045				
6	865.2		611.5	623.8	612.1	376 0	50.02			0.7091	-3.416	-3.169				
7	818.1	668.6	560.2	575.6	596.3	340.2	46.28			0.8564	-5.031	-4.856				
8	791.3	638.8	525.1	551.5	592.0	322.4	43.24			0.9050	-5.706	-5.475				
9	766.4	613.9	512.4	532.0	570.0	306.3	42.36			0.9531	-6.332	-6.109				
									• • • •		0.002	-0.103				
		NCORR	WCORR	WCORR			T0/T0 I	P02/P01	PO/PO	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
		RP14	LBIV SEC							%	%					
		12210.00	106.02	48.09			1.1797	0.9835	1.6671	87.48	88.35					

AIRFOIL AERODYNAMIC SUMMARY PRINT

100 PERCENT SPEED (ROTOR PERFORMANCE) RUN NO 40 SPEED CODE 10 POINT NO 2 V'-2 VO'-1 VO'-2 RHOVM-2 EPSI-1 EPSI-2 V'-1 RHOVM-1 V - 1 **V-2** VM-1 V/1-2 V0-2 U-1 U-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN N/SEC M/SEC M/SEC M/SEC M/SEC 214.7 -252.3 -57.0 259.12 0.0384 0.0892 190.9 306.2 189.7 207.0 21.9 225.7 274.2 282.7 315.6 191.25 219.5 290.5 323.3 216.9 -257.0 -71.0 198.33 260.45 0.0221 0.0769 300.3 196.3 205.0 27.2 284.2 198.1 260.27 0.0077 0.0617 329.5 218.9 -262.5 -83.5 201.29 201.7 295.1 199.2 202.4 31.4 214.8 293.9 298.3 -0.0316 0.0128 205.8 287.0 321.7 348.4 226.7 -283.7 -112.7 203.50 260.32 202.2 196.7 38.7 209.0 322.4 352.8 373.1 237.5 -313.5 -148.9 203.02 251.30 -0.0811 -0.0282 207.4 275.3 202.3 185.0 45.8 203.9 359.4 395.4 251.0 -341.6 -185.2 384.0 200.17 234.45 -0.1234 -0.0782 205.9 261.2 199.1 169.4 52.8 198.7 394.4 -0.1436 -0.1158 202.2 250.3 194.7 156.8 54.7 195.1 419.2 407.3 413.3 263.9 -364.6 -212.2 196.04 219.30 53.4 427.1 415.1 420.0 270.0 -373.7 -222.3 192.62 214.71 -0.1484 -0.1143 8 198.9 246.4 191.6 153.3 192.8 426.4 276.9 -382.7 -234.4 -0.1529 -0.1255 434.6 422.9 206.98 9 195.1 239.4 188.1 147.5 51.9 188.6 188.60 M-2 M'-1 M'-2 D FAC OMEGA-B LOSS-P PO2/ %EFF-A %EFF-P SL B-1 B-2 B'-1 B'-2 M-1 INCS INCM DEV TURN DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE TOTAL TOTAL P01 TOTAL TOTAL 15.41 0.5795 0.8833 0.9580 0.6193 -4.25 0.0873 0.0254 1.8195 93.40 93.93 47.5 52.99 12.87 37.58 0.5181 6.6 2.03 19.14 0.6030 0.8662 0.9839 0.6258 -2.86 3.26 11.76 33.44 0.5146 0.0844 0.0245 1.7865 93.17 93.71 47.0 52.58 0.0221 1.7700 9.0 46.7 52.77 22.43 0.6146 0.8509 1.0041 0.6311 -1.91 4.05 12.25 30.34 0.5119 0.0762 93.52 94.02 0.0592 29.80 0.6282 0.8244 1.0632 0.6513 5.50 13.20 24.73 0.5106 0.0170 1.7779 94.50 94.93 10.8 46.7 54.54 -0.15 38.77 0.6334 0.7858 1.1394 0.6778 12.8 47.7 57.19 0.45 5.32 11.49 18.42 0.5107 0.0637 0.0175 1.7787 93.46 93.96 14.9 47.44 0.6285 0.7408 1.2066 0.7121 0.65 4.88 9.68 12.35 0.4996 0.0759 0.0191 1.7591 91.50 92.14 49.4 59.78 8.46 0.4891 0.0948 0.0218 1.7528 89.00 89.82 15.7 51.1 61.88 53.43 0.6163 0.7056 1.2596 0.7439 0.67 4.17 8.65 55.26 0.6054 0.6927 1.2784 0.7593 0.70 3.93 7.58 0.4829 0.0997 0.0222 1.7572 88.36 89.24 15.6 51.4 62.84 8.43 15.4 51.8 63.82 57.70 0.5930 0.6714 1.2962 0.7766 0.47 3.45 8.84 6.11 0.4735 0.1003 0.0211 1.7537 88.12 89.01 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 PCT TE FT/SEC LBM/FT2SEC LBM/FT2SEC DEGREE DEGREE SPAN 1 626.4 1004.6 622.3 679.0 71.8 740.4 899.6 927.5 1035.6 704.3 -827.8 -187.1 5.111 0.0499 39.17 53.07 2.199 2 650.1 985.2 644.0 672.5 89.3 720.0 932.4 953.1 1060.9 711.7 -843.1 -233.1 40.62 53.34 1.265 4,407 0,1000 3 661.8 968.3 103.1 704.8 964.2 978.7 1081.1 718.2 -861.1 -273.8 3.536 0.1501 653.7 664.0 41.23 53.31 0.443 675.4 941.7 663.4 645.5 126.8 685.6 1057.6 1055.3 1143.0 743.9 -930.8 -369.7 41.68 53.32 -1.810 0.734 0.3000 903.4 669.0 1179.1 1157.6 1224.2 779.2-1028.7 -488.6 -1.616 0.5000 680.5 663.7 607.0 150.4 41.58 51.47 -4.648 -4.480 0.7000 675.7 856.9 653.1 555.9 173.2 652.1 1294.0 1259.8 1297.2 823.6-1120.8 -607.7 41.00 48.02 -7.073 514.5 179.3 640.1 1375.5 1336.5 1356.0 865.8-1196.2 -696.3 40.15 44.91 -8.228 -6.636 0.8499 663.5 821.3 638.8 652.6 808.3 628.7 503.1 175.1 632.7 1401.4 1362.1 1378.0 886.0-1226.3 -729.4 39.45 43.97 -8.502 -6.550 0.9000 640.1 785.4 617.1 483.9 170.2 618.7 1425.9 1387.6 1399.1 908.6-1255.7 -769.0 38.63 42.39 -8.762 -7.193 0.9500 WC1/A1 WC1/A1 T02/T01 P02/P01 EFF-AD EFF-P LBM/SEC KG/SEC ROTOR ROTOR

WCI/AI WCI/AI LBM/SEC KG/SEC SQFT SQM 40.77 198.96 102/101 P02/P01 EFF-AD EFF-P ROTOR ROTOR 3 % 1.1925 1.7713 92.15 92.75

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 10 POINT NO 2

100 PERCENT SPEED (STATOR PERFORMANCE)

									_							
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVI1-1	RHO	V11-2	EPSI-1	EPSI-2					
	M/SEC	M/SEC	IV SEC	M/SEC	M/SEC	II/SEC	KG/M2 SE		2 SEC	RADIAN						
1	314.4	219.5	220.8	208.7	223.8	68.1	270.68	303		0.1017						
2	309.3	221.5	219.6	212.9	217.9	61.0	272.67	312		0.0736						
3	304.6	223.6	217.3	214.7	213.5	62.7	272.89	317		0.0680						
4	296.9	225.0	211.4	207.9	208.5	86.0	273.14	309								
5	285.1	221.8	198.8	197.7	204.3	100.5	264.03	295		-0.0234						
6	269.4	211.7	180.6	181.9	199.9	108.3	245.52	273		-0.0516						
7	257.9	196.5	166.5	169.8	197.0	99.0	229.24	253		-0.0849						
8	253.9	189.1	162.7	163.8	194.9	94.5	224.45	243		-0.1038						
9	247.5	184.1	157.6	160.4	190.8	90.4	217.68	238		-0.1145						
SL	B-1	B-2	M-1	и о	THEE	T11011	554									
JL	DEGREE	DEGREE	13-1	M-2	INCS	INCM	DEV	TURN	U-FAC	ONEGA-B		P02/	PO/PO	TO/TO	%EFF-A	
1	45.3	18.0	0.9109	0.6109	DEGREE -8.17	DEGREE -5.55		DEGREE	0 4700	TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	
ż	44.7	15.9	0.8964	0.6186	-8.31	-5.62	8.14	27.33		0.0748			1.7600	1.1990		88.95
3	44.4	16.2	0.8825		-8.39	-5.61	5.43 5.05		0.4606		0.0171	0.9800	1.7461	1.1924	89.70	90.48
4	44.5	22.4	0.8570	0.6299	-8.67	-5.69			0.4436		0.0095		1.7499	1.1889		92.36
5	45.8	26.9	0.8171	0.6197	-9.26	-6.03	8.49	44.14	0.4017	0.0283	0.0104	0.9893	1.7599	1.1892	92.61	93.17
6	47.9	30.8	0.7668	0.5896	-9.56	-6.09	8.71			0.0242		0.9915	1.7619	1.1914	91.75	92.38
7	49.8	30.3	0.7292		-9.50 -9.91	-6.27	9.75 7.39	17.14		0.0304			1.7413	1.1915		90.39
8	50.2	30.0		0.5215	-10.74	-7.04	6.05	19.55	0.4263		0.0384		1.7056	1.1957		85.30
ğ	50.5	29.4	0.6962		-12.41	-8.66	3.58		0.4548		0.0519		1.6967	1.1981	82.29	83.55
-		23.1	0.0302	0.50/1	-12.41	-0.00	3.30	21.00	0.4643	0.1111	0.0487	0.9694	1.6995	1.1974	82.84	84.06
SL	V-1	V-2	VM-1	VII-2	VO-1	Y0-2	RHOVM-1	RHO	VI1-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE	C LBM/F	T2SEC	SPAN	DEGREE	DEGREE				
1	1031.6	720.2	724.6	684.7	734.2	223.3	55.44			0.0543	5.828	4.819				
2	1014.9	726.7	720.4	698.6	714.8	200.1	55.85	64		0.1078	4.216	3.971				
3	999.5	733.8	712.9	704.3	700.6	205.8	55.89	65	.01	0.1601	3.899	3.182				
4	974.3	738.1	693.7	682.0	684.1	282.1	55.94	63	.36	0.3140	1.522	1.145				
5	935.2	727.6	652.2	648.6	670.3	329.8	54.08	60	.57	0.5124	-1.339	-1.080				
6	883.8	694.6	592.5	596.9	655.8	355.2	50.28	55	.94	0.7091	-2.956	-3.164				
7	846.2	644.7	546.3	557.0	646.2	324.8	46.95	51	.90	0.8564	-4.862	-4.905				
8	833.1	620.5	534.0	537.5	639.5	310.0	45.97	49	.89	0.9050	-5.947	-5.513				
9	812.0	604.0	517.1	526.2	626.0	296.6	44.58	48	.85	0.9531	-6.560	-6.113				
		NCORR	WCORR	WCORR			T0/T0 P	02/P01	PO/PO	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE	02/101	STAGE	STAGE	STAGE					
		RPI1	LBIA/SEC	KG/SEC			Jirias		JIAGE	31705	31 AGE					
	1	2210.00	105.74	47.96			1.1925	0.9842	1.7433	89.38	90.17					
											20.17					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 10 POINT NO 4

100	O I LIWE	11 5	, ,,,,,,,,		•												EPSI-2	
					YO-1	V0-2	U-1	U-2	V'-1	V'-2	VO'-1	VO'-2	RHOVM-					
SL	.V-1	V-2	VM-1	VM-2	M/ SEC	M/ SEC	H/ SEC		M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 S			RADIAN	RADIAN	
	M/ SEC	-	M/SEC	M/ SEC		228.1	274.2		314.9	211.1	-252.5	-54.6	190.32		• • • •	• • • • •	0.0874	
1	189.4	306.0	188.1	204.0	21.7		284.2	290.5	322.5	212.6	-257.2	-69.1	197.33				0.0741	
2	196.5		194.7	201.0	27.0			298.3	328.7	214.5	-262.7	-81.8		258			0.0595	
3	200.0	293.6	197.6	198.3	31.2		293.9	321.7	347.6	222 0	-284.0			258	.28 -	0.0327	0.0168	
4	204.0	286.4	200.4	192.9	38.4	211.7	322.4		372.4	232 7	-313.9	-144.7	201.90	250	.82 -	0.0810 -	-0.0336	
5	205.5	276.7	200.4	182.3	45.5	208.1	359.4	352.8	394.9	245 3	-342.0	-179.5			.82 -	0.1217 -	-0.0773	
6	204.3	264.1	197.4	167.1	52.4	204.4	394.4	384.0	413.0	265 6	-364.9	-204 6	195.31		.31 -	0.1428 -	-0.1092	
7	200.8	254.2	193.3	153.3	54.3	202.8	419.2			261 4	-374.2	_214 2			.98 -	0.1480 -		
8	197.4	250.7	190.1	149.9	53.0		427.1		419.7	267.1	-383.1	-224 8			.42 -	0.1528 -	-0.1299	
9	193.6	245.1	186.6	144.3	51.5	198.2	434.6	422.9	426.2	207.1	-303.1	-224.0	107.70					
_	15010	_,,,,,									2511	*****	D C40	01/EGA-B	1055-6	P02/	%FFF-A	%EFF-P
SL	B-1	8-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN		TOTAL	TOTAL		TOTAL	
JL		DEGREE		DEGREE					DEGREE				0 5307	0.0763				
1	6.6	48.2	53.23	15.00	0.5745	0.8815	0.9551	0.6083	-4.01	2.26	12.46			0.0763	0.0225			
'	7.9	47.8	52.83	18.98	0.5977	0.8614	0.9809	0.6122	-2.61	3.51	11.60				0.0200			
2	9.0	47.5	53.03	22 43	0.6092	0.8451	1.0010	0.6174	-1.65	4.31	12.25		0.5261	0.0687	0.0200			
		47.7	54.81	20 68	0.6222	0.8213	1.0600	0.6367	0.12	5.77	13.07			0.0548				
4	10.8		57.47	29.00	0.6270	0.7880	1.1363	0.6628	0.73	5.60	11.11			0.0593	0.0164			
5	12.8	48.7	60.01	16.03	0.6270	0.7471	1 2044	0.6940	0.88	5.10	9.18	13.08	0.5189	0.0734	0.0187			
6	14.9	50.6	62.07	E2 02	0.0230	0.7140	1 2580	0.7180	0.85	4.36	8.24	9.05		0.1025	0.0238			
7	15.7	52.8		CA 07	0.6004	0.7022	1 2768	0.7322	0.90	4.14	8.04	8.17		0.1074	0.0241	1.8112		:
8	15.6	53.1	63.04	54.07 57.20	0.0007	0.6844	1 2947	0.7458	0.67	3.64	8.33	6.82	0.5053	0.1121	0.0240	1.8146	3 87.47	00.47
9	15.4	53.8	64.02	37.20	0.3002	0.0011	,	•••									CDCT 2	DCT TE
			1/14 1	VI4-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	YO'-1	VO'-2	RHOVM-	1 RHC		EPSI-1	EPSI-2 DEGREE	SDAN
SL	Y-1	Y-Z	CT/CCC	ET/CCC	ET/SEC	ET/SEC	FT/SEC	FT/SFC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	: LBM/FT2S	EC LBM/F	TESEC	DEGREE	5.005	0.0499
_	FI/SEC	F 1/3EC	C17.3EC	669.2	71.3	749 3	899.6	927.5	1033.0						.94	2.176	4.246	0.0455
]		1003.9	617.3		88.7	726.5	932.4	953.1	1058.2	697.4	-843.7	-226.6	40.41		.95	1.225	3.408	0.1000
2	644.8		638.7	659.6	102.3	710.5	064 2	978 7	1078.5	703.8	-861.9	-268.3	41.02		.87	0.392	3.400	0.1301
3	656.3	963.3	648.3	650.6		604 7	1057.6	1055.3	1140.4	728.5	-931.8	-360.7	41.46			-1.872	0.965	
4	669.4	939.8	657.5	633.0	125.9	600.0	1170 1	1157.6	1221 8		1029.8			51		-4.639	-1.924	0.5000
5	674.2	907.7	657.5	598.0	149.3	082.9	11/9.1	1259.8	1205 6	804 8-	1122.0	-589.1	40.81	48		-6.973	-4.427	0.7000
6	670.2	866.4	647.8	548.4	172.0	6/0.8	1294.0	1239.0	1255.0	039.7	1197.3	-671.2	40.00	44			-6.257	0.8499
7	658.9	834.0	634.4	502.9	178.1	665.3	13/5.5	1330.5	1355.0	057 B	1227.6	-702.7	39.27	43		-8.478	-6.699	0.9000
8	647.6	822.6	623.8	491.9	173.8	659.4	1401.4	1302.1	1377.0		1257.0	_737.F			2.07	-8.752	-7.443	0.9500
9	635.2	804.3	612.3	473.5	168.9	650.1	1425.9	1387.6	1398.2	0/0.4-	- 1237 .0	-/3/						
-									TO 0 / TO 3	D/12/0/) EFF	. AD .	FF-P					
	!	WC1/A1	WC1/A	i					T02/T01	PUZ/PU	DU.		OTOR					
		LBM/SEC	KG/SE								ко %		% %					
	•	SQFT	SQM							1 000			3.07					
		40.56	197.9						1.1990	1.806	9 92	.47 9	3.07					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 10 POINT NO 4

SL 1 2 3 4 5 6 7 8 9	Y-1 M/SEC 313.0 306.8 301.7 295.1 285.5 272.1 261.9 258.6 253.7	V-2 M/SEC 211.3 212.9 214.6 217.5 216.6 209.0 195.6 190.2 186.3	VM-1 W/SEC 216.4 214.0 211.4 206.1 194.9 178.1 163.4 160.1 155.3	VII-2 W SEC 203.1 204.7 199.8 191.2 178.1 167.4 163.8 161.6	Y0-1 M/ SEC 226.2 219.8 215.2 211.3 208.6 205.6 204.7 203.1 200.6	VO-2 M/SEC 58.4 58.6 64.6 86.0 101.8 109.4 101.2 96.6 92.8	RHOVM- KG/M2 SI 269.30 269.88 269.79 270.27 262.92 245.96 227.98 223.84 217.43	EC KG/M 302 307 309 303 292 273 255 249	.53 .39 .97 .63 .66	-0.0177 -0.0561 -0.0853	EPSI-2 RADIAN 0.0848 0.0706 0.0574 0.0227 -0.0162 -0.0536 -0.0844 -0.0952 -0.1061					
SL	B-1	B-2	M-1	M-2	INCS DEGREE	INCM DEGREE	DEV DEGREE	TURN DEGREE	D-FAC	OMEGA-B TOTAL	LOSS-P TOTAL	P02/ P01	PO/PO STAGE	TO/TO STAGE	TOT-STG	TOT-STG
	DEGREE	DEGREE	0.9051	0.5859	-7.30	-4.68	6.13		0.5073		0.0273	0.9668	1.7773	1.2015	88.60	89.48 90.99
1	46.2	16.0	0.8870	0.5924	-7.30 -7.29	-4.59	5.42	29.79	0.4892		0.0180	0.9792	1.7618	1.1945	90.25	
2	45.7	15.9 17.5	0.8718	0.5985	-7.38	-4.60	6.27	27.98	0.4680	0.0315	0.0111	0.9878	1.7636	1.1909	92.14	92.74 93.50
3	45.4	23.3	0.8497	0.6066	-7.57	-4.59	9.32	22.39	0.4277		0.0114	0.9883	1.7805	1.1927	92.95 92.09	92.71
4 5	45.7 46.9	28.0	0.8164	0.6027	-8.11	-4.88	9.80	18.89	0.4006		0.0115	0.9893	1.7936	1.1972	89.95	90.73
	49.1	31.6	0.7724	0.5793	-8.35	-4.89	10.55	17.54	0.3972		0.0141	0.9884	1.7838	1.1998	84.14	85.34
6 7	51.4	31.2	0.7379	0.5385	-8.30	-4.65	8.29	20.26	0.4493		0.0365	0.9735	1.7548	1.2071	82.71	84.01
	51.8	30.5	0.7266	0.5219	-9.14	-5.44	6.61	21.24	0.4729		0.0470	0.9675	1.7534	1.2103		83.88
8 9	52.3	29.9	0.7107	0.5102	-10.63	-6.88	4.04	22.38	0.4841	0.1056	0.0461	0.9699	1.7600	1.2122	82.56	03.00
3	52.5	23.3	0.7107	0.0.02	10100											
a	V-1	V-2	VM-1	VI1-2	VO-1	Y0-2	RHOVM-			PCT TE	EPSI-1	EPSI-2				
SL	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBWFT2S	EC LBM/F	T2SEC	SPAN	DEGREE	DEGREE				
,	1027.0	693.4	710.0	666.4	742.1	191.7	55.15	61	.95	0.0543	5.441	4.858				
2	1006.5	698.6	702.1	671.7	721.2	192.2	55.27		•••	0.1078	4.906	4.046 3.290				
3	989.8	704.3	693.7	671.6	706.1	211.9	55.25			0.1601	4.030					
4	968.4	713.6	676.3	655.4	693.1	282.3	55.35			0.3140	1.645	1.298 -0.928				
5	936.7	710.7	639.6	627.3	ь84.3	334.1	53.85			0.5124	-1.017	-3.071				
6	892.7	685.6	584.5	584.2	674.7	358.9	50.38			0.7091	-3.213	-3.071 -4.835				
7	859.3	641.9	536.1	549.4	671.6	332.0	46.69			0.8564	-4.886 -5.617	-5.455				
8	848.6	624.0	525.3	537.5	666.4	317.0	45.85		• • •	0.9050 0.9531	-6.267	-6.080				
9	832.4	611.3	509.7	530.1	658.1	304.4	44.53	50	.30	0.5551	-0.207	-0.00				
		NCORR INLET RPM	NCORR INLET LBM/SEC	NCORR INLET KG/SEC			TO/TO STAGE		PO/PO STAGE	EFF-AD STAGE %	EFF-P STAGE					
		12210.00	105.20	47.72			1.1990	0.9829	1.7760	89.55	90.36					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 10 POINT NO 6 100 PERCENT SPEED (ROTOR PERFORMANCE)

SL	Y -1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2		VO'-2	RHOVM-			EPSI-1		
	H/SEC	M/SEC	M/SEC	M/SEC	M/SEC		M/SEC	M/SEC	II/SEC		M/SEC		KG/M2 SI			RADIAN	RADIAN	
j	186.2	305.7	184.9	200.5	21.4	230.8	274.2	282.7	313.2		-252.8		188.30			0.0380	0.0884	
2	193.3	299.2	191.4	198.5	26.6		284.2	290.5	320.9		-257.6		195.29				0.0760	
3 4	196.7 200.7	292.6 285.4	194.3 197.1	194.0	30.7	219.1	293.9	298.3	327.1		-263.2		198.21	255		0.0069	0.0627	
-	202.3	277.6	197.1	187.4 178.3	37.8 44.8	215.2 212.9	322.4 359.4	321.7 352.8	346.1 371.3		-284.6 -314.5		200.37 200.01	253 248		0.0321 0.0815 -	0.0178	
5 6	200.8	267.0	194.1	164.1	51.6		394.4	384.0	393.9		-342.8		197.13			0.0813		
7	196.9	258.3	189.6	150.9	53.4			407.3	412.0		-365.8		192.83			0.1464		
á	193.6		186.4	144.9	52.1				418.8		-375.0		189.39			0.1509		
9	189.8		182.9	138.1	50.7	206.9	434.6				-383.9		185.41	198		0.1543		
•		,			••••	20013		,,,,,		200.0	***************************************			100				
SL	B-1	B-2	B'-1	B'-2	11-1	M-2	M'-1	11'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B				
		DEGREE							DEGREE					TOTAL	TOTAL		TOTAL	TOTAL
1	6.6	49.0			0.5641					2.77		39.21		0.0689	0.0201			95.40
2	7.9	48.5			0.5870				-2.10	4.01		34.76		0.0650	0.0190			95.34
3	9.0	48.5	53.53		0.5983				-1.14	4.82		31.30		0.0660	0.0192			95.01
4 5	10.9 12.8	49.0 50.0	55.31 57.93		0.6112				0.62	6.28		25.71		0.0599	0.0173			95 10
6	14.9	52.0	60.50		0.6166				1.19	6.06		19.84		0.0603	0.0167			94.65 92 38
7	15.7	54.1	62.61		0.5990				1.37	5.59 4.89		14.06 10.07			0.0197			89.65
8	15.6	55.1	63.55		0.5881				1.41	4.65	7.70			0.1002	0.0249			
9	15.5	56.2	64.52		0.5759				1.17	4.15	8.44					1.862		87.15
-		*****	•	57.51	0.0703	0.0311	1.2502	0.7120	1.17	7.13	0.77	7.41	0.5505	0.1510	0.0200	1.002	• 03.33	07.13
SL	V-1	V-2	VII-1	VM-2	VO-1	VO-2	U-1		V'-1				RHOVM-			EPSI-1	EPSI-2	
_													LBM/FT2S			DEGREE	DEGREE	•
1		1003.0		657.9					1027.7				38.57		.69	2.179	5.067 (
2	634.1	981.7		651.4	87.3				1052.9		-845.1		40.00		.97	1.227	4.354 (
3	645.4	960.1	637.5	636.5	100.8				1073.3				40.60		.34	0.397	3.590 (
4	658.4	936.3	646.6	614.7							-933.7		41.04		.94	-1.839	1.018	
5 6	663.8 658.9	910.9 876.2	647.3	584.9	147.1						-1032.0		40.96		.90	-4.669	-1.728	
7	646.1	847.4	636.8 621.9	538.4	169.3 175.2			1259.8			-1124.7				.81	-7.149	-4.259	
8	635.1	833.3	611.7	495.0 475.5				1336.5	1374.0		-1200.3 -1230.3		39.49 38.79		.41 .69	-8.389	-6.668	
9	622.8		600.1						1374.0		-1230.3 -1259.6				.69 .72	-8.645 -8.841	-6.962 (-7.402 (
,	022.0	010.1	000.1						1333.3	041.4	-1239.0	-700.9	37.97	40	. / 4	-0.041	-7.402	3.3300
	1	WC1/A1	WC1/A1	i					T02/T01	P02/P	O1 EFF	-AD E	FF-P					
		LBM/SEC	KG/SE	2					,				OTOR					
		SQFT	SQM								%		2					
		40.12	195.77	7					1.2062	1.84	18 92	.40 9	3.02					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 10 POINT NO 6

100 PERCENT SPEED (STATOR PERFORMANCE)

SL	V-1	V-2	VM-1	VM-2	Y0-1	¥0-2	RHOVM-1	RHO	VM-2	EPSI -1	EPSI-2					
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE		2 SEC	RADIAN	RADIAN					
1	312.3	202.8	212.5	194.5	228.8	57.3	268.05	295	.62	0.0935	0.0848					
2	306.4	204.5	210.9	196.3	222.2	57.3	269.84	300	.89	0.0880	0.0708					
3	300.0	205.5	206.4	195.7	217.7	62.6	266.98	301	.65	0.0769	0.0577					
4	293.4	209.0	199.9	191.6	214.7	83.6	265.55	296	.94	0.0294	0.0235					
5	286.0	211.7	190.6	185.3	213.2	102.3	260.70	289	.25	-0.0150	-0.0134					
6	274.5	206.6	174.6	174.0	211.8	111.4	244.40	273		-0.0500						
7	265.6	193.8	160.6	163.8	211.6	103.6	227.30	255	.47	-0.0737	-0.0793					
8	261.6	190.1	154.8	161.4	210.8	100.4	219.25	250	.95	-0.0927	-0.0910					
9	257.0	187.1	148.9	160.3	209.4	96.5	210.91	248	.82	-0.1098	-0.1037					
SL	B-1	B-2	И-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	P0/P0	T0/T0	%EFF-A	%EFF-P
	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STG
1	47.1	16.4	0.9013	0.5600	-6.45	-3.83	6.49	30.69	0.5379	0.0920	0.0311	0.9624	1.7917	1.2045	88.62	89.51
2	46.4	16.2	0.8844	0.5666	-6.55	-3.86	5.72	30.22	0.5204	0.0666	0.0231	0.9736	1.7765	1.1975	90.30	91.05
3	46.5	17.7	0.8650	0.5705	-6.34	-3.56	6.51	28.79	0.5009	0.0415	0.0146	0.9841	1.7752	1.1941	91.76	92.39
4	47 0	23 5	0.8421	0.5800	-6.22	-3.24	9.59	23.47	0.4617	0.0419	0.0152	0.9845	1.7941	1.1974	92.01	92.64
5	48.2	28.9	0.8155	0.5863	-6.83	-3.61	10.67	19.30	0.4258	0.0398	0.0150	0.9859	1.8224	1.2038	91.73	92.39
6	50.5	32.7	0.7769	0.5701	-6.95	-3.49	11.62	17.87	0.4185	0.0402	0.0157	0.9868	1.8256	1.2088	89.83	90.65
7	52.8	32.3	0.7459	0.5307	-6.92	-3.28	9.44	20.48	0.4725	0.0953	0.0392	0.9706	1.8005	1.2176	84.05	85.31
8	53.7	31.9		0.5189	-7.21	-3.50	7.95	21.83	0.4871		0.0414	0.9705	1.8044	1.2221	82.65	84.01
9	54.6	31.0	0.7163	0.5095	-8.30	-4.55	5.20	23.56	0.4984	0.0892	U.0385	0.9742	1.8144	1.2260	82.04	83.47
SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	RHOVM-1	RHO	VM-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE	C LBM/F	T2SEC	SPAN	DEGREE	DEGREE				
1	1024.6	665.4	697.2	638.3	750.8	188.0	54.90	60	.55	0.0543	5.355	4.861				
2	1005.2	670.9	691.9	644.0	729.1	188.0	55.27	61	.62	0.1078	5.043	4.054				
3	984.3	674.3	677.1	642.2	714.4	205.5	54.68	61	.78	0.1601	4.403	3.306				
4	962.6	685.8	655.9	628.6	704.6	274.2	54.39			0.3140	1.682	1.347				
5	938.3	694.5	625.3	607.9	699.6	335.8	53.39			0.5124	-0.860	-0.770				
6	900.7	677.9	572.8	570.8	695.0	365.6	50.05			0.7091	-2.866	-2.796				
7	871.6	635.9	526.9	537.4	694.3	339.9	46.55			0.8564	-4.222	-4.542				
8	858.3		508.1	529.6	691.7	329.4	44.90			0.9050	-5.313	-5.213				
9	843.1	613.9	488.7	526.0	687.1	316.5	43.20	50	.96	0.9531	-6.291	-5.940				
		NCORR	WCORR	WCORR			T0/T0 F	P02/P01	P0/P0	EFF-AD						
		INLET	INLET	INLET			STAGE		STAGE	STAGE						
			LBM/SEC	KG/SEC						%	%					
		12210.00	104.05	47.20			1.2062	0.9803	1.8055	89.13	89.99					

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUN NO 40 SPEED CODE 10 POINT NO 9 100 PERCENT SPEED (ROTOR PERFORMANCE)

SL.	V-1	V-2	VM-T	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2		VO'-2	RHOVM-1				EPSI-2	
,	M/SEC	M/SEC	M/SEL	M/SEC 195.5	M/SEC	M/SEC	M/SEC	M/SEC 282.7		M/SEC	M/SEC -253.3	M/SEC -49.5	KG/M2 SE 185.46	C KG/M 253			RADIAN 0.0865	
2	181.8 188.8	304.3 298.2	180.6 187.0	193.3	20.9 26.0	233.1	274.2 284.2	290.5	311.1 318.8		-253.3	-64.4	192.46				0.0751	
3	192.2	290.9	189.9	189.5	30.0	220.6	293.9	298.3	325.0		-263.8		195.35	252			0.0619	
4	195.9	284.4	192.4	182.4	36.9	218.2	322.4	321.7	344.2		-285.4		197.36	250		0.0332	0.0213	
5	197.2	278.4	192.3	174.2	43.8	217.2	359.4	352.8	369.5			-135.6	196.86	245		0.0813 -	-	
6	195.9	268.9	189.3	159.3	50.5	216.6	394.4	384.0				-167.4	194.06			0.1223 -		
7 8	192.2 188.9		185.0	145.9	52.2		419.2	407.3			-367.0		189.87			0.1454 -		
9	185.2		181.9 178.4	139.2 132.0	51.0 49.6	215.8 214.9	427.1 434.6	415.1 422.9				-199.3 -208.0	186.44 182.54			0.1508 - 0.1545 -		
,	103.2	232.2	170.4	132.0	43.0	214.3	737.0	722.3	444.7	240.4	-303.0	-200.0	102.34	152	.07	0.1545	0.1000	
SL	B-1	B-2	B'-1	B'-2	11-11	11-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	DMEGA-B	LOSS-P			%EFF-P
_		DEGREE								DEGREE				TOTAL	TOTAL		TOTAL	
1	6.6	50.0			0.5501						11.68			0.0675	0.0198			
2	7.9	49.3	54.03		0.5728					4.71	10.97	35.68		0.0590	0.0172			
3	9.0 10.3	49.4 50.1	54.24 56.03		0.5837 0.5956				-0.44 1.34	5.52 7.00	12.12 12.96	31.94 26.47		0.0599	0.0174			
	12.9	51.2			0.5999					6.80	10.57			0.0634	0.0174			
6	14.9	53.5			0.5956					6.28	8.54			0.0855	0.0220			
7	15.8	55.9			0.5836					5.53	7.72			0.1165	0.0274			
8	15.7	57.1	64.18		0.5729					5.28	8.10		0.5684	0.1329	0.0298			
ğ	15.5	58.4	65.13		0.5610				1.78	4.76	8.65	7.61	0.5695					
SŁ	V-1	V-2	VH-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1			VO'-2	RHOVM-		VII-2		EPSI-2	
													LBM/FT2SI			DEGREE	DEGREE	
2	596.5 619.6		592.6 613.7	641.5 637.7	85.4				1020.7			-162.5	37.98 39.42		.01 .55	2.175 1.211		0.0499 0.1000
3	630.7		622.9	621.8			932.4		1046.0			-211.3 -254.8	40.01		.81	0.363		0.1501
4	642.7		631.1	598.6					1129.2				40.42		.20	-1.904		0.3000
5	647.1	913.4	630.9	571.5					1212.4).35	-4.658	-1.715	
6	642.7			522.7					1288.0			-549.2			.04	-7.005	-4.299	
7	630.6			478.6					1348.4						.52	-8.332	-6.115	
8	619.7			456.7					1370.8			-653.9			.56	-8.641	-6.835	
9	607.6	827.5	585.5	433.1	162.7				1392.3			-682.6		39	.45	-8.851	-7.669	0.9500
			1103 44	_					T00 (T0)	. Doo (5)			rc 0					
		WC1/A1	WC1/A						1.213	1 PO2/PO	OI EFF		FF-P					
	l	LBM/SEC SQFT	KG/SE								RO %		OTOR %					
		39.49	3QM 192.6						1 212	3 1 97	70 50 02		2.83					
		33.73	132.0	J					1.613	. 1.0/			L.03					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 10 POINT NO 9

					-								•			
SL	Y-1	٧-2	VIII-1	VI1-2	10-1	VO-2	RHOVM-1		VM-2		EPSI-2					
	M/SEC		M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE		2 SEC	RADIAN	RADIAN					
1	309.6		205.9	184.6	231.2	54.4	263.80	286	.45	0.1032	0.0859					
2	304.0		205.1	186.2	224.4	54.8	266.76	291	.46	0.0866	0.0728					
3	297.2		200.6	185.4	219.3	59.5	263.62		.75	0.0719	0.0607					
4	291.4		193.8	182.1	217.6	81.4	261.23	288	3.13	0.0358	0.0279					
5	285.8		185.4	177.1	217.5	103.2	257.28	282	.49	-0.0082	-0.0093					
6	276.2		169.8	170.2	217.8	110.2	240.97	272	2.89	-0.0484						
7	268.1		155.8	161.3	218.2	103.1	223.52	257	'.11	-0.0782	-0.0786					
8	264.4		149.5	159.5	218.1	100.1	214.59	253	1.29	-0.0894	-0.0904					
9	260 5	185.5	143 3	158.0	217.5	97.2	205.75	250	.30	-0.1028	-0.1033					
SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	P0/P0	T0/T0	%EFF-A	%FFF-P
	DEGREE				DEGREE	DEGREE	• DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	
1	48.3	16.4	0.8911	0.5292	-5.22	-2.60	6.51		0.5735		0.0340	0.9595		1.2074	88.44	
2	47.5	16.3	0.8755	0.5356	-5.47	-2.77	5.84		0.5569		0.0278	0.9685	1.7882	1.2004	90.08	90.85
3	47.5	17.7	0.8547	0.5381	-5.32	-2.55	6.56		0.5387		0.0185	0.9801	1.7853	1.1964	91.68	92.33
4	48.3	24.0	0.8340	0.5509	-4.94	-1.96	10.11		0.4976			0.9812	1.8089	1.2014	91.56	92.23
5	49.6	30.2	0.8125	0.5650	-5.49	-2.26	11.98		0.4540		0.0173	0.9836		1.2102		92.06
6	52.1	32.9	0.7787	0.5564	-5.40	-1.93	11.90	19.15	0.4481			0.9861	1.8655	1.2182	89.32	90.21
7	54.5	32.6	0.7499	0.5214	-5.24	-1.59	9.71		0.4992		0.0379	0.9712		1.2283	83.84	85.16
8	55.6	32.1	0.7366	0.5111	-5.35	-1.65	8.19		0.5137		0.0401		1.8522	1.2339	82.25	83.71
9	56.6	31.6	0.7228	0.5022	-6.27	-2.52	5.77			0.0920		0.9729	1.8625	1.2393	81.20	
SL	٧-١	V-2	VM-1	VI1-2	VO-1	V0-2	RHOVM-1	חטח	VI1-2	DCT TC	EPSI-1	CDCT 0				
92	FT/SEC		FT/SEC	FT/SEC	FT/SEC		LBM/FT2SE		T2CCC	PCT TE SPAN		EPSI-2				
1	1015.7		675.4	605.7	758.6	178.6	54.03	CLDIVE		0.0543	DEGREE	DEGREE				
ż	997.5		672.8	611.1	736.4	179.7	54.63				5.915	4.920				
3	975.0		658.0	608.2	719.5	195.2	53.99			0.1078 0.1601	4.964	4.173				
4	956.0		635.7	597.5	714.0	267.1	53.50			0.3140	4.122	3.476				
5	937.8		608.3	581.2	713.7	338.5	52.69			0.5124	2.049 -0.467	1.596				
6	906.1		557.1	558.4	714.7	361.4	49.35			0.7091		-0.534				
7	879.7		511.1	529.2	716.0	338.2	45.78			0.7091	-2.771	-2.689				
8	867.6		490.5	523.2	715.6	328.4	43.76			0.8364	-4.480	-4.501				
9	854.7		470.2	518.5	713.7	319.0	42.14			0.9531	-5.120	-5.177				
_	05 1.7			310.3	713.7	313.0	42.14	31	.20	0.9551	-5.890	-5.918				
		NCORR	WCORR	WCORR			TO/TO P	02/P01	PO/PO	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
			LBM/SEC				1.2133			%	%					
		12210.00	102.41	46.45			1.2133	0.9784	1.8344	88.68	89.60					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 10 POINT NO 27 100 PERCENT SPEED (ROTOR PERFORMANCE)

SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	U-2	V'-1		V0'-1		RHOYM-			EPSI-1		
,	1V SEC 172.4	M/SEC 300.4	M/SEC 171.2	M/SEC 187.7	M/SEC 19.9	M/SEC 234.5	M/SEC 274.2	M/SEC 282.7	1VSEC 306.6		M/SEC -254.3	M/SEC -48.2	KG/M2 SI 178.98				RADIAN 0.0871	
2	172.4	295.1	177.5	186.8	24.8	228.5	284.2	290.5	314.3		-259.4		185.90			0.0370		
3	182.5	289.7	180.2	182.3	28.6	225.1	293.9	298.3	320.7		-265.2		188.75	247			0.0631	
4	185.7	282.8	182.4	175.7	35.2		322.4	321.7	340.2		-287.2		190.59	244		0.0370	-	
3	186.7	279.4	182.0	166.9	41.7	224.1	359.4	352.8	366.1		-317.7		189.92	239		U.0866 -		
6	185.0	273.4	178.6	152.1	47.9	227.2	394.4	384.0	389.8		-346.4		186.81	222		0.1286 -	-0.0828	
7	180.9	266.4	174.0	135.3	49.6	229.5	419.2	407.3	408.6	223.4	-369.7	-177.9	182.31	200	.06 -	0.1512 -	-0.1138	
8	177.6	262.0	170.9	126.3	48.4	229.5	427.1	415.1	415.5	224.5	-378.8	-185.6	178.83			0.1557 -		
9	173.8	256.6	167.3	116.9	47.0	228.4	434.6	422.9	422.2	227.0	-387.6	-194.6	174.84	173	.17 -	0.1574	-0.1361	
SL	B-1	8-2	B'-1	B'-2	11-1	M-2	м'-1	M¹-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B				%EFF-P
_		DEGREE			0 5200	0.000	0.0240		DEGREE				0 5022	TOTAL	TOTAL 0.0209		TOTAL 9 95.07	
2	6.6 7.9	51.3 50.8				0.8598			0.13	5.01 6.25		41.58 37.19	0.5832 0.5763	0.0716	0.0182			
3	9.0	51.0	55.78			0.8278			1.11	7.07		33.89	0.5703	0.0649	0.0189			
4	10.9	51.6	57.60			0.8040			2.91	8.57	13.08			0.0623	0.0180			
5	12.9	53.3	60.23			0.7882			3.49	8.36				0.0775	0.0217			
6	15.0	56.1				0.7641			3.62	7.85	8.01			0.1073	0.0279		9 90 00	90 89
7	15.9	59.4	64.80	52.63	0.5473	0.7371	1.2359	0.6183	3.59	7.09	7.85	12.18	0.6198	0.1516	0.0355	1.977	4 85.65	86.95
8	15.8	61.1				0.7216			3.58	6.82	8.81	10.07		0.1727	0.0380			
9	15.7	62.8	66.65	58.93	0.5246	0.7035	1.2741	0.6224	3.30	6.28	10.06	7.73	0.6284	0.1887	0.0384	1.983	7 82.15	83.77
ST.	V -1	V-2	VM-1	VM-2	VO-1	V0-2	U-1	U-2	V'-1	V'-2	VO'-1	VO'-2	RHOVII-	1 RHO	VII-2	EPSI-1	EPSI-2	PCT TE
		FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC			FT/SEC	FT/SEC	FT/SEC	LBM/FT2S			DEGREE	DEGREE	
1	565.6	985.5	561.8			769.5			1005.9			-158.0	36.66		.76	2.120		0.0499
2	588.0	968.3	582.4		81.3			953.1				-203.4	38.07		.34	1.111		0.1000
3	598.7	950.4	591.3	598.0		738.7		978.7				-240.0	38.66		.64	0.228		0.1501
4	609.4	927.7	598.4	576.5				1055.3					39.03).14	-2.122		0.3000
5	612.6	916.8	597.1	547.6		735.4							38.90		3.99	-4.961	-1.881	
6 7	606.9 593.7	897.1 874.0	586.1 571.0	499.2		745.4						-514.4	38.26		6.65 9.97	-7.370 -8.665	-4.742 -6.520	
8	582.7	859.6	560.6			752.9 753.1						-583.6 -608.9	37.34 36.63		3.27	-8.920	-7.060	
9	570.3		549.0					1387.6				-638.3	35.81		.47	-9.017	-7.800	
,														3.	• • • • •	-3.017	-7,000	0.3000
		WC1/A1	WC1/A	1					T02/T0	P02/P			FF-P					
	,	LBM/SEC	KG/SE	آ.									OTOR					
		SQFT	SQM	,					3 005		%		% 1 00					
		38.01	185.4	,					1.225	3 1.92	41 91	.03 9	1.82					

AIRFOIL AERODYNAMIC SUMMARY PRINT

100 PERCENT SPEED (STATOR PERFORMANCE)

RUN NO 40 SPEED CODE 10 POINT NO 27

SL	V-1	V-2	VH-1	VM-2	¥0-1	VO-2	RHOVM-1	RHO	VI1-2	EPSI -1	EPSI-2					
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE	C KG/M	2 SEC	RADIAN	RADIAN					
1	300.1	172.4	189.7	163.5	232.6	54.5	250.72	261	.63	0.0978	0.0881					
2	295.7	172.7	189.7	163.7	226.8	55.0	254.20	263	.71	0.0791	0.0774					
3	291.0	173.7	186.0	162.5	223.7	61.1	251.63	262	.92	0.0632	0.0676					
4	286.1	182.0	182.0	163.9	220.8	79.0	251.57		.64	0.0321	0.0406					
5	285.4	193.1	176.5	164.9	224.3	100.5	249.61	271	.62	-0.0016	0.0070					
6	281.1	197.1	164.1	165.8	228.3	106.5	236.44		.96	-0.0388						
7	274.9	189.4	148.2	157.9	231.5	104.5	215.39		.07	-0.0709						
8	270.9	184.8	140.0	154.6	231.9	101.1	203.48		.47	-0.0834						
9	266.1	181.0	131.9	152.4	231.1	97.6	191.75		.89	-0.0988	-0.0991					
SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	P0/P0	T0/T0	%EFF-A	%FFF-P
	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE		TOT-STG
1	50.7	18.4	0.8590	0.4707	-2.77	-0.15	8.51		0.6292		0.0381	0.9565	1.8094	1.2100	87.86	88.82
2	50.0	18.5	0.8466	0.4728	-2.98	-0.28	8.01		0.6207		0.0374	0.9591	1.7906	1.2046	88.47	89.37
3	50.2	20.6	0.8321	0.4760	-2.64	0.13	9.38	29.61	0.6051		0.0322	0.9660	1.7889	1.2025	89.22	90.07
4	50.5	25.7	0.8149	0.4991	-2.75	0.23	11.76	24.77	0.5559		0.0233	0.9768	1.8253	1.2062	90.95	91.68
5	51.8	31.4	0.8072	0.5281	-3.26	-0.03	13.12	20.43	0.5063		0.0176	0.9832	1.8883	1.2196	90.65	91.45
6	54.3	32.7	0.7884	0.5364	-3.19	0.28	11.66	21.60	0.4992		0.0150	0.9870	1.9317	1.2336	88.55	89.55
7	57.4	33.5	0.7633	0.5109	-2.36	1.29	10.61		0.5391		0.0305	0.9759	1.9285	1.2493	82.70	
8	58.9	33.2	0.7488	0.4965	-2.06	1.64	9.23		0.5615		0.0354		1.9281	1.2563	80.42	84.21 82.13
9	60.3	32.6	0.7325	0.4846	-2.62	1.13	6.80		0.5781		0.0344		1.9351	1.2623	79.04	80.88
SL	V-1	V-2	VI. 1	VIII 0	VO 3	VO 0								112020	,,,,,,	00.00
3L	FT/SEC		VM-1	VM-2	VO-1	V0-2	RHOVM-1	RHO	VM-2	PCT TE	EPSI-1	EPSI-2				
1	984.8		FT/SEC	FT/SEC	FT/SEC		LBM/FT2SE	C LBM/F	TZSEC	SPAN	DEGREE	DEGREE				
1	970.2	565.5 566.7	622.6	536.5	763.0	178.8	51.35			0.0543	5.602	5.047				
	954.7		622.4	537.2	744.2	180.3	52.06			0.1078	4.533	4.433				
3 4	938.8	569.8	610.4	533.3	734.1	200.6	51.54			0.1601	3.623	3.873				
			597.0	537.8	724.6	259.2	51.52			0.3140	1.842	2.323				
5 6	936.5	633.5	579.2	541.0	735.9	329.7	51.12			0.5124	-0.094	0.402				
	922.5	646.5	538.4	544.1	749.0	349.3	48.43			0.7091	-2.224	-1.819				
7	901.8	621.3	486.2	518.0	759.5	343.0	44.11			0.8564	-4.062	-3,923				
8	888.8		459.5	507.4	760.9	331.8	41.68			0.9050	-4.779	-4.744				
9	873.2	593.7	432.8	499.9	758.4	320.3	39.27	50	.98	0.9531	-5.661	-5.678				
		NCORR	WCORR	WCORR			T0/T0 F	02/P01		EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE		STAGE	STAGE	STAGE					
		RPM	LBM/SEC	KG/SEC						%	%					
		12210.00	98.57	44.71			1.2253	0.9771	1.8781	87.51	88.56					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 95 POINT NO 1

9	5 PE	ERCENT	SPEED	(ROTOR	PERFORI	ANCE)		AIF	RFUIL AE	RODYNAM				DE 95 POIN	T NO 1			
SI	_	V-1 N/SEC	V-2 M/SEC	VII-1 II/SEC	VM-2 M/SEC	VO-1 M/SEC	VO-2 M/SEC	U-1 M/SEC	U-2 M/SEC	V'-1 M/SEC	V'-2 M/SEC	VO'-1 M/SEC	VO'-2 M/SEC	RHOVM-1 KG/M2 SE		EPSI-1 RADIAN		
		180.0	293.5	178.8	200.6	20.7	214.2	260.5	268.6	299.0	207.8		-54.3	184.21			0.0907	
		187.0	287.1	185.2	198.5	25.8	207.5		276.0			-244.2		191.18		0.0222		
	3 1	190.4	281.3	188.1	196.4	29.8	201.4	279.2		312.3	212.8	-249.4	-82.0	194.13	250.83	0.0079	0.0620	
		194.3	272.2	190.8	190.7	36.7	194.1	306.2		330.3			-111.5	196.33			0.0129	
		195.9	260.8	191.0	180.7	43.5	188.1	341.4		353.8			-147.1	196.00		0.0796 -		
			247.7	188.1	166.4	50.2	183.4	374.7					-181.3	193.31		0.1212 -		
		191.3 188.1	238.8 234.9	184.1 181.2	153.7 150.2	51.9	182.7 180.6	398.3 405.8		392.2 398.6			-204.3 -213.8	189.31 186.00		·0.1427 - ·0.1476 -		
		184.5	228.8	177.8	146.0	50.7 49.3	176.1	412.9					-213.6	182.18		0.1476 -		
	7	104.5	220.0	177.0	140.0	43.3	170.1	412.3	401.0	404.7	200.0	-303.0	-223.7	102.10	201.54	0.1524		
S	L	B-1	8-2	B'-1	B'-2	M-1	M-2	м'-1	M'-2	INCS	INCM	DEV	TURN	D FAC 0	MEGA-B LOSS-F	P02/	%EFF-A	%EFF-P
	DE		DEGREE	DEGREE							DEGREE				TOTAL TOTAL		TOTAL	
]	6.6	46.9	53.22			0.8493					12.63			0.0752 0.0219			
	2	7.9	46.3	52.78			0.8309				3.46	11.68			0.0732 0.0213			
	3 4	9.0 10.9	45.8 45.5	52.96 54.72			0.8138 0.7850				4.24 5.69	12.50 13.70			0.0607 0.0176 0.0434 0.0124			
	5	12.9	46.1				0.7485				5.49	11.81	18.26		0.0414 0.0114			
	ő	14.9	47.7	59.91			0.7069			0.77	5.00	9.59			0.0538 0.0136			
	7	15.7	49.8	61.99			0.6770				4.28	8.14	9.07	0.4734	0.0856 0.0199			
	8	15.6					0.6644				4.04	7.95	8.16		0.0900 0.0202			
	9	15.5	50.2	63.92	57.00	0.5589	0.6459	1.2258	0.7588	0.57	3.55	8.14	6.92	0.4560	0.0860 0.0185	1.6592	2 89.40	90.13
S	_	y -1	V-2	VM-1	VII-2	VO-1	V0-2	U-1	U-2	V'-1			VO'-2			-	EPSI-2	
																	DEGREE	
		590.5	962.9	586.6	658.2	68.1				981.2			-178.3		51.21	2.203		0.0499
		613.4 624.7	942.1 922.9	607.6 617.0	651.2 644.3	84.7 97.8				1005.4			-224.7 -269.0		51.34 51.37	1.273 0.455		0.1000 0.1501
	-	637.5	892.9	626.0	625.8				1002.6		724.8				51.16	-1.784		0.3000
		642.6	855.8	626.6	592.8					1160.9			-482.5		49.67	-4.563	-1.977	
	6	638.8	812.6	617.3	545.9	164.6	601.9	1229.3	1196.9	1230.7	807.5-	1064.7	-595.0	39.59	46.50	-6.942	-4.389	0.7000
		627.6	783.4	604.0						1286.9					43.22	-8.174	-6.492	
			770.6	594.4	492.9					1307.9					42.31	-8.459	-6.822	
	9	605.5	750.5	583.5	4/8.9	161.8	5//.9	1354.7	1318.3	1328.0	881.8-	1192.9	-740.4	37.31	41.24	-8.730	-7.405	0.9500
			/C1/A1	WC1/A1	1					T02/T01	P02/P0)1 EFF	-AD F	FF-P				
			BM/SEL	KG/SEC						. 0 . , 10				OTOR				
			SQFT	SQM								2		2				
			39.31	191.8	1					1.1692	2 1.673	34 93	.64 9	4.08				

AIRFOIL AERODYNAMIC SUMMARY PRINT

95 PERCENT SPEED (STATOR PERFORMANCE)

RUN NO 40 SPEED CODE 95 POINT NO 1

SL 1 2 3 4 5 6 7 8 9	V-1 M/SEC 301.2 295.5 289.9 281.2 270.2 256.0 246.7 243.0 237.4	V-2 M/SEC 221.8 223.6 224.7 223.8 220.3 211.0 199.9 191.8 185.9	VM-1 H/SEC 213.6 211.9 209.6 203.9 193.5 177.5 163.9 160.5 156.9	VM-2 M/SEC 212.9 214.9 215.5 206.7 196.7 182.8 173.1 166.3 162.0	VO-1 M/SEC 212.4 206.0 200.2 193.7 188.5 184.5 184.5 182.5	VO-2 M/SEC 62.2 61.6 63.7 85.8 99.2 105.3 100.0 95.5 91.1	RHOVM-1 KG/M2 SE 261.06 262.16 262.34 261.53 254.48 238.03 221.49 217.22 212.88		.09 .97 .36 .97 .05 .56	EPSI-1 RADIAN 0.0866 0.0843 0.0688 0.0236 -0.0228 -0.0590 -0.0842 -0.0984 -0.1113	-0.0555 -0.0860 -0.0968					
SL	B-1	B-2	11-11	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	T0/T0	%EFF-A	%EFF-P
	DEGREE	DEGREE			DEGRÉÉ	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STG
1	44.8	16 2	0.8750	0.6231	-8.74	-6.12	6.37	28.52	0.4327	0.0889	0.0301	0.9652	1.6675	1.1794	87.68	88.53
2	44.1	15.9	0.8586	0.6306	-8.87	-6.17	5.45	28.19	0.4119	0.0562	0.0195	0.9786	1.6562	1.1723	89.99	90.68
3	43.6	16.4	0.8421	0.6355	-9.21	-6.44	5.23	27.19	0.3922	0.0308	0.0109	0.9886	1.6573	1.1676	92.66	93.16
4	43.5	22.5	0.8145	0.6332	-9 75	-6.77	8.56	20.97	0.3512	0.0315	0.0115	0.9890	1.6586	1.1659	93.72	94.15
5	44 3	26.7	0.7785		-10.79	-7.56	8.51	17.51	0.3243	0.0278	0.0106	0.9909	1.6595	1.1663	93.61	94.05
6	46.1	30.0	0.7333	0.5941	-11.33	- 7.87	8.92	16.19	0.3204		0.0133	0.9901	1.6422	1.1664	91.49	92 07
7	48.4	30.1		0.5591	-11.32	-7.67	7.17	18.35	0.3600	0.0773	0.0326	0.9784	1.6208	1.1733	85.34	86.30
8	48.7	29.9	0.6895	0.5347	-12.22	-8.52	5.94	18.82	0.3915	0.1168	0.0502	0.9683	1.6082	1.1752	82.99	84 08
9	48.7	29.3	0.6726	0.5176	-14.22	-10.47	3.51	19.32	0.4056	0.1222	0.0536	0.9681	1.6061	1.1739	83.33	84.40
SL	V-1	V-2	r-NV	VII-2	Y0-1	VO-2	RHOVM-1	RHO	VM-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2SE			SPAN	DEGREE	DEGREE				
1	988.3	727.6	700.7	698.4	697.0	204.1	53.47			0.0543	4.960	4.804				
2	969.5	733.6	695.1	705.2	675.9	202.2	53.69			0.1078	4.827	3.947				
3	951.0	737.4	687.9	707.1	656.7	209.0	53.73			0.1601	3.941	3.161				
4	922.7	734.4	669.0	678.3	635.5	281.5	53.56			0.3140	1.352	1.132				
5	886.4	722.9	634.9	645.5	618.6	325.3	52.12			0.5124	-1.308	-1.092				
6	840.1	692.2	582.4	599.9	605.4	345.3	48.75			0.7091	-3.378	-3.182				
7	809.6	655.9	537.7	567.8	605.3	328.2	45.36			0.8564	-4.826	-4.930				
8	797.2	629.3	526.4	545.7	598.7	313.3	44.49			0.9050	-5.638	-5.548				
9	779.0	609.8	514.7	531.6	584.8	298.8	43.60			0.9531	-6.377	-6.140				
	1	NCORR INLET RPM 11600.00	WCORR INLET LBIVSEC	WCORR INLET KG/SEC 46.24			TO/TO F	-	PO/PO STAGE	EFF-AD STAGE	EFF-P STAGE					
			101.34	40.44			1.1692	U.9041	1.0408	90.51	91.15					

AIRFOIL AERODYNAMIC SUMMARY PRINT 95 PERCENT SPEED (ROTOR PERFORMANCE) RUN NO 40 SPEED CODE 95 POINT NO 2

			-		-													
SL	V-1	V-2	VM-1	VH-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	VO*-1	VO'-2	RHOVM-	1 RHO	/M-2	EPSI-1	EPSI-2	
-	M/SEC	H/SEC	M/SEC	M/ SEC	M/SEC	M/SEC		M/SEC				M/SEC	KG/M2 S			RADIAN	RADIAN	
1	172.1	291.1	171.0	191.2	19.9	219.5	260.5	268.6	295.2		-240.6		178.72				0.0872	
2	179.1	284.8	177.3	189.6	24.8	212.6	270.0	276.0	302.6		-245.2		185.72				0.0758	
2	182.4		180.2	185.0		207.1			308.6		-250.6		188.67				0.0621	
3		277.7			28.6	•	279.2											
4	186.0	269.9	182.6	180.1	35.2	201.1	306.2	305.6	326.8		-271.0		190.74			0.0314		
5	187.5	262.4	182.7	171.9	41.8	198.2	341.4	335.2	350.9		-299.6		190.44			0.0793		
6	186.3	253.4	180.0	158.7	48.2	197.6	374.7	364.8	372.8			-167.2	187.79			0.1205		
7	183.0	246.3	176.0	145.7	49.9	198.6	398.3	387.0	390.4		-348.4		183.78			0.1441		
8	179.8	241.9	173.1	139.6	48.7		405.8	394.4	396.8			-196.9	180.48			0.1496 -		
9	176.3	236.7	169.8	133.4	47.3	195.5	412.9	401.8	403.1	245.7	-365.6	-206.3	176.71	189	.02 -	·0.1537 ·	-0.1363	
SL	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B	LOSS-F	P02/	%EFF-A	%EFF-P
	DEGREE	DEGREE	DEGREE	DEGREE					DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	. PO1	TOTAL	TOTAL
1	6.6	49.0	54.53	14.38	0.5192	0.8392	0.8903	0.5690	-2.72	3.56	11.84	40.15	0.5389	0.0660	0.0193	1.768	7 95.23	95.59
2	7.9	48.3	54.08	18.51	0.5413	0.8211	0.9148	0.5762	-1.36	4.76	11.13	35.57	0.5332	0.0608	0.0177	1.737	7 95.26	95,62
3	9.0	48.2	54.26			0.7996				5.54	12.25			0.0615	0.0179			95.30
4	10.9	48.1	56.04			0.7746			1.35	7.01		25.91		0.0460	0.0132			
5	12.9	49.0	58.64			0.7485			1.90	6.77	11.21	20.14		0.0482	0.0133			
6	15.0	51.1	61.14			0.7182			2.00	6.23	8.63			0.0691	0.0177			
7	15.8	53.6	63.19			0.6928			1.97	5.47	7.37			0.1063	0.0252			
8	15.7	54.6	64.13			0.6780			1.98	5.22	7.70			0.1200	0.0272			88.04
ğ	15.6	55.6	65.08			0.6613			1.73	4.70	8.16		0.5344			1.760		87.08
,	13.0	33.0	03.00	37.03	0.5524	0.0013	1.41/4	0.0003	1.73	4.70	0.10	0.00	0.5320	0.1291	0.0277	1.700	00.02	87.08
SŁ	V-1	V-2	VM-1	VM-2	V0-1	VA 2	U-1	11 2	V'-1	v · o	VO! 1	V0! 2	RHOVM-	1 nun	VM-2	EPSI-1	EPSI-2	OCT TE
													LBM/FT2S			DEGREE	DEGREE	
1	564.8			627.4		720.3						-160.8	36.60		.08	2.202	4.997	
2	587.5	934.5	581.8	621.9														
									992.9						.35	1.264	4.340	
3	598.5	911.2	591.1	607.1		679.4						-250.3	38.64		.65	0.439	3.557	
4	610.2	885.7	599.2	591.0		659.7						-343.0	39.07		.57	-1.797	1.153	
5	615.0	860.8	599.5	563.9					1151.4				39.00		.51	-4.546		
Ģ	611.4	831.4	590.6	520.7					1223.3				38.46		.60	-6.906	-4.299	
7	600.3	808.2	577.6	478.0					1280.8				37.64		.16	-8.254	-6.212	
8	590.0	793.6	567.9	458.1					1302.0				36.96		.45	-8.571	-7.001	
9	578.4	776.7	557.1	437.7	155.3	641.6	1354.7	1318.3	1322.5	806.0	-1199.4	-676.8	36.19	38	.71	-8.806	-7.810	0.9500
	- 1	WC1/A1	WC1/A1						T02/T01	P02/P0	OI EFF	-AD E	FF-P					
	Į	LBM/SEC	KG/SEC	;							RO	TOR R	OTOR					
		SQFT	SQM								%		%					
		38.15	186.16	5					1.1847	7 1.74	12 92	.95 9	3.47					
				•														

AIRFOIL AERODYNAMIC SUMMARY PRINT 95 PERCENT SPEED (STATOR PERFORMANCE) RUN NO 40 SPEED CODE 95 POINT NO 2 VO-1 VO-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 V - 1 V-2 VM-1 VM-2 M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN M/SEC M/SEC M/SEC II/SEC M/SEC 57.4 0.1023 0.0848 193.9 217.7 255.17 285.48 297.4 202.2 202.7 0.0834 0.0707 291.7 203.4 201.4 195.4 211.0 56.6 256.89 290.11 0.0679 0.0575 285.0 203.7 197.2 194.3 205.8 61.4 253.90 289.98 253.62 248.10 0.0308 0.0226 -0.0140 -0.0156 282.87 277.7 205.5 200.6 82.5 192.1 188.2 270.1 206.5 183.1 180.4 198.6 100.6 272.77 260.5 202.7 168.5 169.8 198.7 110.7 232.95 257.98 -0.0526 -0.0519 215.66 253.2 193.1 154.7 163.0 200.4 103.5 246.20 -0.0794 -0.0819 207.87 239.50 -0.0899 -0.0931 8 249.1 187.4 149.1 159.2 199.6 98.8 200.67 -0.1032 -0.1049 244.6 182.7 143.8 156.7 197.9 93.9 235.29 B-2 M-2 D-FAC OMEGA-B LOSS-P P0/P0 TO/TO %EFF-A %EFF-P SL B-1 M-1 INCS INCM DEV TURN P02/ DEGREE DEGREE DEGREE DEGREE DEGREE P01 STAGE STAGE TOT-STG TOT-STG DEGREE TOTAL TOTAL 47.0 16.4 0.8600 0.5630 -6.49 -3.876.56 30.58 0.5038 0.0896 0.0303 0.9657 1.7053 1.1852 88.93 89.73 0.8437 0.5683 -6.72 0.4866 0.0634 0.0220 90.78 46.3 16.1 -4.03 5.60 30.18 0.9765 1.6916 1.1785 91.43 46.2 17.5 0.8235 0.5703 -6.66 -3.89 6.30 28.67 0.4667 0.0354 0.0125 0.9874 1.6887 1.1745 92.52 93.05 0.0352 0.0127 0.7996 0.5755 -7.04 -4.05 22.55 0.9880 93.60 94.06 46.2 23.6 9.69 0.4247 1.7014 1.1751 47.3 29.1 0.7732 0.5770 -7.71 -4.49 10.91 18.18 0.3907 0.0361 0.0135 0.9883 1.7211 1.1805 92.95 93.47 49.7 33.1 0.7405 0.5641 -7.75 -4.29 12.08 16.62 0.3804 0.0380 0.0147 0.9884 1.7278 1.1867 90.55 91.24 0.5334 -7.38 -3.73 0.9762 1.7138 1.1970 52.3 32.4 0.7141 9.55 19.91 0.4279 0.0828 0.0340 84.43 85.56 31.8 0.7002 0.5158 30.9 0.6855 0.5018 21.43 0.4530 0.1001 -7.67 0.0421 8 53.3 -3.96 7.89 0.9721 1.7039 1.2009 83.58 82.31 54.0 -8.89 -5.14 5.11 23.06 0.4722 0.1051 0.0454 0.9717 1.7107 1.2039 81.29 82.64 VO-1 V-1 **V-2** VM-1 VH-2 VU-2 RHOVM-1 RHOVM-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE 975.9 663.4 664.9 636.1 714.3 188.2 52.26 58.47 0.0543 5.861 4.860 957.1 667.5 660.7 641.1 185.6 52.61 692.4 59.42 0.1078 4.776 4.051 935.1 668.5 646.9 637.4 675.3 201.4 52.00 59.39 0.1601 3.891 3.293 911.2 674.4 630.3 617.6 658.0 270.8 57.93 0.3140 1.296 51.94 1.765 677.6 600.6 651.7 -0.892 886.2 591.8 330.1 50.81 55.87 0.5124 -0.803 552.8 854.8 665.1 557.2 652.0 363.1 47.71 52.84 0.7091 -3.015 -2.973 830.8 633.6 534.9 657.7 0.8564 -4.695 507.7 339.7 44.17 50.42 -4.552 614.7 522.3 817.4 489.0 654.9 324.1 42.57 49.05 0.9050 -5.149 -5.335 599.5 802.7 471.8 514.2 649.4 0.9531 -6.010 308.2 41.10 48.19 -5.913 WCORR NCORR WCORR TO/TO P02/P01 P0/P0 EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE STAGE

1.1847 0.9829 1.7114 89.83

%

90.56

LBM/SEC

98.94

RPM

11600.00

KG/SEC

44.88

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 95 POINT NO 3

95 PERCENT SPEED (ROTOR PERFORMANCE)

- --

SL	V-1	V-2	VM-1	VM-2	YO-1	V0-2	U-1	U-2	Y'-1	V'-2		VO'-2	RHOVM-				EPSI-2	
	M/SEC	M/SEC	M/SEC		KG/M2 SI				RADIAN 0.0396									
2	167.9 174.7	289.6 284.5	166.7 173.0	186.4 186.4	19.4 24.2	221.6 214.9	260.5 270.0	268.6 276.0	293.1 300.6		-241.1 -245.8	-47.0 -61.1	175.65 182.60				0.0390	
3	177.9	277.2	175.7	181.6	27.9	209.5	279.2	283.4	306.6		-251.2		185.50				0.0617	
4	181.3	269.6	178.0	175.4	34.4	204.7	306.2	305.6	325.0		-271.9		187.43			0.0336		
5	182.4	263.3	177.8	166.8	40.8	203.7	341.4	335.2	349.3		-300.7		186.92			0.0822 -		
6	181.0	256.2	174.8	154.1	46.9	204.6	374.7	364.8	371.5			-160.2	184.06			0.1240 -		
7	177.4	249.8	170.6	140.1	48.6	206.8	398.3	387.0	389.1	228.3	-349.7	-180.2	179.89	200	.28 -	0.1476 -	0.1085	
8	174.2		167.6	132.7	47.4	206.3	405.8	394.4	395.6		-358.4		176.52			0.1526 -		
9	170.6	240.1	164.3	125.2	46.1	204.9	412.9	401.8	401.9	233.3	-366.8	-196.9	172.68	179	.23 -	0.1555 -	0.1390	
SL	8-1	8-2	8'-1	B'-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B				%EFF-P
,		DEGREE			0 5056				DEGREE				0.5560	TOTAL	TOTAL			TOTAL
١	6.6	50.0				0.8331				4.30				0.0611	0.0179			
2	7.9 9.0	49.1 49.1	54.82 55.01			0.8189			-0.62 0.33	5.49 6.29	10.79 11.98		0.5454 0.5483	0.0474	0.0139			
4	10.9	49.4	56.80			0.7718			2.11	7.77	13.29			0.0302	0.0140			
5	12.9	50.6	59.43			0.7488			2.69	7.56	10.91			0.0549	0.0152			
6	15.0	52.9				0.7234			2.81	7.04	8.23			0.0800	0.0207			
7	15.9	55.7	63.99			0.6994			2.77	6.28		11.99		0.1234	0.0293			88 39
8	15.8	57.1	64.93	54.68	0.5258	0.6841	1.1942	0.6422	2.79	6.02	7.84	10.25	0.5713	0.1415	0.0319	1.8037	85.52	86.67
9	15.7	58.5	65.87	57.48	0.5143	0.6673	1.2117	0.6483	2.53	5.50	8.61	8.39	0.5719	0.1551	0.0329	1.8059	84.11	85.36
SL	V-1	V-2	VM-1	VH-2	VO-1	VO-2	U-1		V'-1				RHOVM-				EPSI-2	
													LBM/FT2S			DEGREE	DEGREE	
1	550.7			611.5	63.6			881.1				-154.1	35.97		.44	2.182	5.135	
2	573.1	933.4	567.6		79.3				986.2				37.40		.21	1.220	4.346	
3	583.8	909.6	576.6	595.7	91.7				1006.0			-242.4	37.99		.40	0.369	3.537	
4 5	594.8 598.5		584.0 583.3	575.6 547.3	112.7 133.8			1002.6				-330.9	38.39 38.28		.90 .65	-1.922 -4.710	1.188	
6	593.9		573.6	505.7	154.0				1146.0 1218.7			-431.4	37.70			-7.104	-4.269	
7	582.1	819.5	559.9	459.7	159.3			1269.7				-523.5	36.84				-6.215	
8	571.5		550.0	435.5								-617.3	36.15		.88	-8.744	-7.054	
9	559.8		539.0						1318.7				35.37		5.71	-8.907	-7.964	
	1	WC1/A1	WC1/A1	ļ					T02/T01	P02/P0	OI EFF	-AD EI	FF-P					
	1	LBM/SEC	KG/SEC	;						-	RO	TOR R	OTOR					
		SQFT	SQM								%		2					
		37.41	182.53	3					1.1924	1.774	19 92	.54 93	3.11					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 95 POINT NO 3

SL	V-1 M/SEC	V-2 M/SEC	VII-1 M/SEC	VM-2 M/SEC	VO-1 M/SEC	VO-2 M/SEC	RHOVM-		VH-2		EPSI-2					
1	294.9	191.8	196.6	182.9	219.7	57.7	KG/M2 S 251.41		12 SEC	RADIAN 0.1002	RADIAN 0.0855					
ż	290.3	193.0	196.9	184.2	213.3	57.5	255.42		.63	0.0840						
3	283.5	193.0	192.4	183.6	208.2	59.4	251.82		.25	0.0713	0.0598					
4	276.3	195.9	186.1	177.1	204.2	83.6	249.54		2.00		0.0272					
õ	270.3	199.0	177.3	171.6	204.0	100.7	243.59		.38	-0.0080						
6	263.0	198.2	163.8	166.7	205.8	107.2	229.31		.08	-0.0470						
7	256 4	189.5	149.1	158.9	208.6	103.2	210.35	245	.44	-0.0747						
8	252.3	184.2	142.2	155.2	208.4	99.1	200.59		3.78	-0.0851						
9	247.8	179.8	135.6	153.3	207.4	94.0	191.35	235	.05	-0.0994	-0.1027					
SL	B-1	B-2	M-1	И-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B		P02/	PO/PO	T0/T0	%EFF-A	%EFF-P
1	DEGREE		0.0505	0 5310	DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STG
2	48.1 47.2	17.4 17.3	0.8505 0.8380		-5.37	-2.75	7.57	30.69	0.5371		0.0324	0.9637	1.7185	1.1877	89.13	89.92
3	47.2			0.5377	-5.78 -5.62	-3.08 -2.84	6.78	29.94	0.5226		0.0283	0.9698	1.7048	1.1814	90.73	91.39
4	47.6	25.2	0.7933		-5.61	-2.63	6.69 11.30	29.33	0.5077		0.0192	0.9807		1.1776	92.27	92.83
5	49.0	30.4	0.7711		-6.04	-2.81	12.15	22.37 18.62	0.4607		0.0174	0.9835	1.7181	1.1798	92.96	93.47
6	51.5	32.8	0.7446		-5.98	-2.52	11.73	18.74	0.4275		0.0165 0.0157	0.9855 0.9876	1.7476	1.1876	92.12	92.71
7	54.4	33.0	0.7200		-5.28	-1.64	10.13	21.43	0.4653		0.0137	0.9878	1.7675	1.1966	89.87 83.59	90.65
8	55.7	32.6		0.5037	-5.24	-1.53	8.62	23.13	0.4895		0.0403	0.9727	1.7542		81.29	84.83 82.70
9	56 8	31.5	0.6906	0.4902	-6.08	-2.33	5.69	25.29	0.5103		0.0424	0.9730	1.7570		79.92	81.44
SL	٧-1	V-2	VM-1	VI1-2	VO-1	VO-2	RHOVM-	1 RHO	VI4-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2S	EC LBM/F	T2SEC	SPAN	DEGREE	DEGREE				
1	967.4	629.3	645.0	600.2	721.0	189.2	51.49	56		0.0543	5.742	4.898				
2	952.5	633.1	646.1	604.3	699.9	188.6	52.31			0.1078	4.812	4.136				
3	930.0	633.3	631.1	602.6	683.1	194.9	51.57			0.1601	4.083	3.429				
4	906.6	642.6	610.7	581.1	670.0	274.4	51.11			0.3140	2.024	1.559				
5	886.8	652.8	581.7	563.1	669.4	330.2	49.89			0.5124	-0.458	-0.510				
6	862.8	650.2	537.3	546.8	675.1	351.7	46.96			0.7091	-2.696	-2.601				
7 8	841.4	621.7	489.3	521.3	684.5	338.7	43.08			0.8564	-4.279	-4.420				
9	827.8	604.3	466.6	509.3	683.8	325.2	41.08		.90	0.9050	-4.874	-5.116				
9	813.1	589.9	444.9	502.8	680.5	308.5	39.19	48	3.14	0.9531	-5.697	-5.882				
		NCORR	WCORR	WCORR			T0/T0	P02/P01	P0/P0	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE	-	STAGE	STAGE	STAGE					
			LBM/SEC	KG/SEC						%	%					
		11600.00	97.01	44.00			1.1924	0.9804	1.7401	89.09	89.90					

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUN NO 40 SPEED CODE 95 POINT NO 6 95 PERCENT SPEED (ROTOR PERFORMANCE)

SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2		V0'-2	RHOVM-				EPSI-2	
	M/SEC	H/SEC	IV/SEC	M/SEC	M/SEC	M/SEC	M/SEC	HV SEC	M/SEC	M/SEC							RADIAN	
2	156.6 163.1	284.2 277.5	155.5	177.0	18.1	222.3	260.5	268.6	288.0 295.4		-242.4	-46.2 -58.2	167.05 173.79	233 229			0.0900	
3	166.2	277.5	161.5 164.1	172.1 169.1	22.6 26.2		270.0 279.2	276.0 283.4	301.6		-247.3 -253.0		175.79	229			0.0655	
4	169.4	268.0	166.3	165.7	32.2	210.7	306.2	305.6	320.6		-274.1		178.61	229		0.0055		
5	170.3	266.1	166.0	159.0	38.2	213.4	341.4	335.2	345.7			-121.8	178.03			0.0865 -		
6	168.4	261.9	162.6	145.1	43.9	218.1	374.7	364.8	368.6			-146.7	174.76			0.0305 0.1315 -		
7	164.2	256.8	157.8	128.6	45.3	222.3	398.3	387.0	386.6			-164.7	170.03			0.1569 -		
8	160.8			117.2	44.2		405.8	394.4	393.3			-171.6	166.49			0.1612 -		
9	157.1	246.2	151.2	107.6	43.0	221.5	412.9	401.8	399.6		-369.9		162.54			0.1606 -		
SL	B-1	B-2	B'-1	B'-2	M-1	14-2	и'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B	LOSS-P	P02/	2FFF-A	%EFF-P
-		DEGREE							DEGREE				ם ואס	TOTAL	TOTAL	P01	TOTAL	
1	6.6	51.5			0.4701	0.8150	0.8645	0.5247					0.5826	0.0680				
2	8.0	51.7	56.81			0.7948			1.38	7.49	11.33			0.0813	0.0237			
3	9.1	51.8	57.01	22.18	0.5003	0.7814	0.9080	0.5224	2.33	8.29	12.00			0.0772	0.0224	1.7515	5 94.13	94.57
4	11.0	51.8	58.77	29.82	0.5105	0.7636	0.9661	0.5440	4.08	9.73	13.22	28.94	0.5887	0.0623	0.0179			95 24
5	13.0	53.3				0.7529			4.60	9.47	10.11			0.0754	0.0211			
6	15.1		63.86			0.7345				8.96	7.43			0.1154	0.0303			
/	16.0	59.8				0.7131			4.72	8.22	7.10			0.1684	0.0401			85.55
8	16.0	62.2	66.87			0.6955			4.73	7.96	8.74			0.1948	0.0430			83.29
9	15.9	64.1	67.79	59.21	0.4/19	0.6775	1.2000	0.5///	4.44	7.42	10.34	8.58	0.6477	0.2108	0.0426	1.879	8 80.26	81.92
ŞL		V-2	VM-1	VI1-2	VO-1	VO-2	U-1		V'-1							EPSI-1	EPSI-2	
_													LBM/FT2S			DEGREE	DEGREE	
Ĭ	513.7								944.8						.82	2.142		0.0499
2	535.1	910.6	529.9			714.5						-191.0			.02	1.167 0.318		0.1000 0.1501
3 4	545.2 555.7	896.2 879.3	538.4 545.6	554.9 543.5	85.9 105.6				989.5 1051.8			-226.0 -311.4			.71 5.95	-2.012		0.3000
-	558.8		544.5	521.5					1134.2						.19	-4.957	-1.363	
5 6	552.5		533.4	476.1					1209.3				35.79		2.83	-7.537	-3.994	
7	538.8		517.9						1268.5						3.16	-8.991		0.8499
8									1290.3						.78	-9.236		0.9000
9				352.9					1311.2						.98	-9.204		0.9500
	,	WC1/A1	WC1/A	1					T02/T01	P/12/D	NI FFF	-AD E	FF-P					
		LBM/SEC	KG/SE						102/10	. 02/1			OTOR					
		SOFT	MOS								or or		2					
		35.49	173.1						1.2069	1.82			1.27					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 95 POINT NO 6

SL	V-1	V-2	VH-1	VM-2	VO-1	V0-2	RHOVM-1	RHO	VM-2	EPSI-1	EPSI-2					
	M/SEC		M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE	C KG/M	2 SEC	RADIAN	RADIAN					
1	287.0	165.4	183.8	155.7	220.5	55.6	240.75	243	.54	0.1056	0.0881					
2	280.9	163.7	179.3	154.3	216.2	54.8	237.47		.18	0.0882						
3	276.9	163.6	176.7	153.6	213.2	56.4	236.32		.95	0.0795	0.0667					
4	272.6		173.9	155.3	210.0	73.7	238.14		.82	0.0484						
5	272.0		168.6	159.2	213.5	90.5	236.10		.17		0.0030					
6	268.2		154.9	159.2	218.9	101.9	220.38		.79	-0.0298						
7	263.3		138.3	155.5	224.1	100.3	197.91		.54							
8	258.6		127.6	151.1						-0.0586						
9	253.7				224.9	97.7	182.39		.04	-0.0652						
9	255.7	175.1	118.8	146.9	224.2	95.3	169.99	233	.48	-0.0706	-0.0964					
SL	B-1	8-2	И-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	T0/T0	%EFF-A	%FFF_D
	DEGREE	DEGREE			DEGREE	DEGREE		DEGREE	5 1715	TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	
1	50.2	19.6	0.8241	0.4548	-3.34	-0.73		30.56	0.6206		0.0363	0.9606	1.7202	1.1899	88.26	89.12
2	50.3	19.5	0.8056		-2.73	-0.03		30.77	0.6195		0.0340	0.9653	1.6991	1.1863	87.76	88.63
3	50.3	20 1	0.7934		-2.52	0.25		30.17	0.6136		0.0332	0.9675	1.6949	1.1845	88.15	88.99
4	50.3		0.7783	0.4741	-2.88	0.11	11.42	24.99	0.5626		0.0332	0.9736	1.7275	1.1876	90.06	90.79
5	51.7		0.7716	0.5038	-3.34	-0.11	11.38	22.08	0.5168		0.0249	0.9782	1.7848	1.2000		
6	54.7		0.7541	0.5176	-2.77	0.70		22.08	0.4946		0.0243				89.94	90.73
7	58.3		0.7331	0.5024	-1.43	2.21	9.92	25.49	0.5287			0.9870	1.8313	1.2144	87.98	88.95
8	60.4	32.9		0.4862	-0.52						0.0278	0.9794	1.8414	1.2317	82.20	83.65
9	62.0		0.7000			3.18			0.5530		0.0317	0.9777	1.8379	1.2393	79.33	81.00
,	02.0	33.0	0.7000	0.4714	-0.88	2.87	7.12	29.06	0.5716	0.0757	0.0320	0.9787	1.8398	1.2453	77.51	79.34
SL.	V-1	Y-2	V/1-1	VM-2	VO-1	V0-2	RHOVM-1	RHO	VII-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2SE			SPAN	DEGREE	DEGREE				
1	941.7	542.6	602.9	511.0	723.4	182.5	49.31			0.0543	6.053	5.045				
2	921.6		588.4	506.1	709.3	179.7	48.64			0.1078	5.056	4.410				
3	908.5	536.9	579.8	504.0	699.4	185.1	48.40			0.1601	4.555	3.824				
4	894.4		570.4	509.6	688.9	241.9				0.3140	2.775	2.278				
5	892.5		553.1	522.4	700.5	297.1	48.36			0.5124	0.611	0.457				
6	880.0		508.3	522.2	718.3	334.5	45.14									
7	863.9		453.7	510.2	735.1	329.1	40.53			0.7091	-1.705	-1.610				
8	848.5		418.5	495.6	738.1					0.8564	-3.356	-3.638				
9	832.4					320.5				0.9050	-3.733	-4.492				
9	032.4	5/4.4	389.7	481.9	735.5	312.6	34.82	4/	.82	0.9531	-4.047	-5.522				
		HCORR	WCORR	WCORR			TO/TO P	02/P01	P0/P0	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE	,	STAGE	STAGE	STAGE					
		RPM	LBM/SEC	KG/SEC			317102		JIMAL	3170	31AGL	•				
		11600.00	92.04	41.75			1.2069	n 9769	1 7820		87.73					
			32.07	71.73			1.5003	0.3/03	1.7020	, 50.70	07.73					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 95 POINT NO 9

SL	٧-1	V- 2	V11-1	VM-2	Y0-1	VO-2	U-1	U-2	V'-1		۷0'-1	VO'-2	RHOVM-	I RHO	VM-2	EPSI-1	EPSI-2	
	M/SEC	M/SEC	M/SEC	M/SEC	H/SEC	M/SEC	M/SEC	14/SEC	M/SEC	M/SEC	M/SEC						RADIAN	
1	175.0	290.6	173.8	193.3	20.2	217.0	260.5	268.6	296.5		-240.2	-51.6					0.0892	
2	182.0	284.4	180.2	191.8	25.2	210.0	270.0				-244.8	-66.0					0.0763	
3	185.4	278.0	183.1	188.6	29.1	204.2	279.2		309.9		-250.1	-79.2		244			0.0608	
4	189.1	269.7	185.7	183.8	35.8	197.4	306.2	305.6	328.1		-270.4					-0.0306		
5	190.8 189.8	260.6	186.0	174.8	42.5	193.2	341.4	335.2	352.1		-298.9			238		-0.0787 - -0.1207 -		
6 7	186.4	250.4 243.0	183.3 179.4	161.8 149.5	49.0 50.7	191.1 191.6	374.7 398.3	364.8 387.0	373.8 391.1		-325.7 -347.6					-0.1207 - -0.1429 -		
8	183.3	239.3		145.7	49.5	189.8	405.8				-356.3					-0.1423 -		
9	179.8	233.7		140.5	48.1	186.8	412.9				-364.8					0.1527 -		
,	173.0	233.7	175.2	140.5	40.1	100.0	416.5	701.0	403.0	230.5	-304.0	-215.0	173.07	137	•23	0.1327	0.1230	
SL	B-1	B-2	B'-1	B'-2	M-1	14-2	H'-1	M'-2	INCS	INCM	DEV	TURN		OMEGA-B				%EFF-P
_		DEGREE							DEGREE					TOTAL	TOTAL		TOTAL	
1	6.6	48.3	54.04			0.8385				3.07	12.41	39.09		0.0772	0.0225			
2	7.9	47.6	53.60			0.8206				4.27	11.64			0.0707	0.0206			
3	9.0	47.3	53.77			0.8016				5.05	12.61	30.98		0.0643	0.0186			
4 5	10.9 12.9	47.0 47.8	55.53 58.13			0.7755			0.84	6.50	13.88			0.0439	0.0125			
6	15.0	47.6	60.63			0.7451 0.7118			1.39	6.26	11.74	19.10		0.0438	0.0120			
7	15.8	51.9	62.69			0.6860			1.50	5.73 4.97	9.15 7.67	13.73 10.24		0.0597 0.0937	0.0152			
8	15.7	52.4	63.63			0.6735			1.47	4.72	7.58			0.1002	0.0227			
9	15.5	52.9	64.59			0.6560			1.24	4.22	7.88			0.1042				
-			05	00.70		0.0000	112203	0.,		****	,,,,	,.0	0.4337	0.1012	0.022	,		
SL	V-1	V-2	VM-1	VM-2	VO-1	V 0-2	U-1	U-2	V'-1	V'-2	10'-1	VO'-2	RHOVM-	1 RHO	VI1-2	EPSI-1	EPSI-2	PCT TE
													LBM/FT2S			DEGREE	DEGREE	
1	574.2		570.4						973.0		-788.2				.09	2.209		0.0499
2	597.0	933.0	591.3	629.2	82.6				997.3		-803.2				.40	1.281		0.1000
3	608.2	912.0	600.6	618.7	95.4			929.8			-820.6				.09	0.467		0.1501
4	620.6		609.4	603.2					1076.4						1.12	-1.752		0.3000
5	626.0		610.2	573.5	139.5			1099.8		738.8					8.87	-4.512	-1.806	
6	622.6		601.5	530.8					1226.3						.02	-6.918	-4.293	
8	611.6 601.4	797.4 785.0	588.5 579.0	490.4 478.1					1283.3		-1140.4				2.83	-8.187	-6.411	
9	589.8	766.7	568.3	460.8				1294.0	1324.8		-1168.9 -1196.8				.82).40	-8.483 -8.748	-6.817	0.9500
9	309.0	/00./	308.3	400.8						842.7	-1190.0	-/05.0	30.08	40	1.40	-8.740	-7.438	0.9500
		WC1/A1	WC1/A	ì					T02/T01	P02/P	O1 EFF	-AD F	FF-P					
		LBM/SEC	KG/SE										ROTOR					
		SQFT	SQM								%		%					
		38.62	188.47						1.1776	1.71	12 93	.39	3.87					
										-		_						

AIRFOIL AERODYNAMIC SUMMARY PRINT

95 PERCENT SPEED (STATOR PERFORMANCE) RUN NO 40 SPEED CODE 95 POINT NO 9 V - 1 V-2 VM-1 VM-2 VO-1 V0-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC M/SEC M/SEC M/SEC M/SEC M/SEC KG/M2 SEC KG/M2 SEC RADIAN RADIAN 297.4 208.1 205.3 199.6 215.2 255.49 58.7 288.95 0.0878 0.0842 291.8 209.4 204.2 201.2 208.4 58.0 257.41 293.69 0.0840 0.0697 285.7 210.1 201.1 201.4 202.9 256.08 59.8 295.83 0.0710 0.0561 278.0 211.4 196.3 194.7 196.9 82.5 256.43 287.91 0.0282 0.0208 269.2 210.4 187.0 186.3 193.7 97.7 250.50 277.27 -0.0196 -0.0176 258.2 204.9 172.4 176.0 192.3 235.59 -0.0541 -0.0538 104.9 262.89 250.5 194.3 159.2 166.6 193.4 100.0 219.40 247.29 -0.0814 -0.0843 246.9 187.8 155.4 161.3 191.8 96.3 214.64 238.53 -0.0940 -0.0953 9 241.9 183.1 150.9 157.9 189.0 92.7 208.65 233.38 -0.1090 -0.1062 SL B-1 M-1 B-2 M-2 INCS INCM DEV TURN D-FAC OMEGA-B LOSS-P P02/ PO/PO T0/T0 %EFF-A %EFF-P DEGREE DEGREE DEGREE DEGREE DEGREE DEGREE STAGE TOTAL TOTAL P01 STAGE TOT-STG TOT-STG 46.3 16.3 0.8611 0.5811 -7.24 -4.63 6.45 29.94 0.4793 0.0803 0.0271 0.9692 1.6897 1.1825 88.59 89.40 45.5 16.0 0.8452 0.5869 -7.49 -4.79 5.54 29.48 0.4612 0.0531 0.0184 0.9802 1.6762 1.1754 90.64 91.29 45.2 16.5 0.8269 0.5902 28.72 0.4436 -7.62 -4.84 5.29 0.0272 0.0096 0.9902 1.6752 1.1711 92.79 93.30 45.0 22.9 0.8024 0.5943 -8.18 -5.20 22.12 0.3988 0.0261 0.0095 0.9910 8.97 1.6855 1.1706 94.29 94.69 46.0 27.7 0.7726 0.5903 -9.04 -5.81 9.42 18.35 0.3706 0.0267 0.0101 0.9913 1.6965 1.1739 93.74 94.18 48.1 30.8 0.7363 0.5728 -9.33 -5.86 9.79 17.33 0.3649 0.0305 0.0121 0.9908 1.6948 1.1777 91.55 92.16 7 50.6 31.0 0.7091 0.5393 -9.16 -5.51 8.10 19.58 0.4101 0.0832 0.0348 0.9764 1.6757 1.1868 85.05 86.09 8 51.0 30.9 0.6970 0.5198 -9.93 -6.23 6.93 20.13 0.4348 0.1102 0.0469 0.9695 1.6687 1.1894 83.17 84.33 51.4 30.4 0.6811 0.5059 -11.48 -7.73 4.59 20.99 0.4478 0.1111 0.0482 0.9704 1.6703 1.1905 82.82 84.01 SL V-1 V-2 **VM-1** V0-2 VM-2 VO-1 RHOVM-1 RHOVII-2 PCT TE EPSI-1 EPSI-2 FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC FT/SEC LBM/FT2SEC LBM/FT2SEC SPAN DEGREE DEGREE 975.9 682.7 673.7 655.0 706.0 192.5 52.33 59.18 0.0543 5.029 4.826 957.4 686.9 670.1 660.0 683.8 190.4 52.72 60.15 0.1078 4.814 3.991 937.3 689.4 659.7 660.9 665.9 196.1 52.45 60.59 0.1601 4.069 3.214 912.2 693.7 644.0 638.7 646.1 270.5 52.52 58.97 0.3140 1.613 1.190 883.2 690.3 613.4 611.4 635.4 320.4 51.31 56.79 0.5124 -1.121 -1.007 847.2 672.1 565.5 577.3 630.8 344.2 48.25 53.84 0.7091 -3.097 -3.085 821.9 637.5 522.2 546.7 634.7 328.0 44.94 50.65 0.8564 -4.664 -4.833 810.0 616.3 510.0 529.1 629.3 316.0 43.96 48.85 0.9050 -5.385 -5.460 793.6 600.9 495.1 518.1 304.2 620.2 42.73 47.80 0.9531 -6.244 -6.085 NCORR WCORR WCORR TO/TO PO2/PO1 PO/PO EFF-AD EFF-P INLET INLET INLET STAGE STAGE STAGE STAGE

1.1776 0.9851 1.6857 90.58

%

%

91.25

RPH

LBM/SEC KG/SEC

11600.00 100.17 45.44

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 95 POINT NO 10

SL 1 2 3 4 5 6 7 8	Y-1 M/SEC 176.5 183.5 186.9 190.9 192.7 191.5 187.9 184.7 181.1	V-2 M/SEC 290.6 284.6 278.4 270.1 260.3 249.8 241.6 236.9 231.6	VM-1 M/SEC 175.4 181.7 184.6 187.5 187.9 185.0 180.8 177.8 174.5	VM-2 M/SEC 194.7 193.3 190.5 185.8 176.6 164.0 151.1 146.4 142.4	VO-1 M/SEC 20.4 25.4 29.3 36.1 42.9 49.4 51.1 49.9 48.5	Y0-2 M/SEC 215.8 208.9 203.1 196.0 191.2 188.4 188.6 186.3 182.7	U-1 M/SEC 260.5 270.0 279.2 306.2 341.4 374.7 398.3 405.8 412.9	U-2 M/SEC 268.6 276.0 283.4 305.6 335.2 364.8 387.0 394.4 401.8	V'-1 M/SEC 297.3 304.7 310.7 328.8 352.8 374.2 391.4 397.8 404.0	204.6 206.7 215.7 227.8 240.9 249.4 254.5		-144.0 -176.4 -198.4 -208.1	RHOVM- KG/M2 SI 181.84 188.82 191.79 194.09 193.96 191.24 187.10 183.76 179.93		2 SEC .08 .76 .92 .31 - .03 - .57 - .97 -	0.0386 0.0226	RADIAN 0.0877 0.0744 0.0603 0.0145 -0.0282 -0.0740 -0.1167 -0.1262	
SL 1	B-1 DEGREE 6.6	B-2 DEGREE 48.0			M-1	M-2 0.8391	11'-1	M'-2	INCS DEGREE -3.46	INCM DEGREE 2.81	DEV DEGREE 12.63			TOTAL	TOTAL	P01	TOTAL	
ż	7.9	47.3	53.76			0.8331			-2.10			38.61 34.18		0.0806 0.0733	0.0235			
3	9.0	46.9	53.51			0.8035			-1.16	4.80		30.63		0.0643	0.0186			
4	10.9	46.5				0.7772			0.56	6.22	13.93	24.72		0.0421	0.0120		96.05	
5	12.9	47.2				0.7452			1.10	5.97	11.85			0.0402	0.0110			
6 7	14.9 15.8	48.8	60.38 62.48	46.96	0.5814	0.7113	1.1361	0.6858	1.25	5.48	9.20			0.0544	0.0138			
8	15.7	51.7	63.43			0.6831			1.26 1.29	4.77	7.82	9.88		0.0906	0.0212			
9	15.5	52.0	64.40			0.6515			1.05	4.53 4.03	7.93 8.04	8.66 7.49		0.0976	0.0220			
_			• • • • • • • • • • • • • • • • • • • •	00.31	0.0475	0.0313	1.2221	0.7551	1.03	4.03	0.04	7.49	0.4000	0.0904	0.0208	1.6988	88.68	89.4 9
SL	Y-1	V-2	VM-1	VII-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	VO'-1	V0'-2	RHOVM-	RHO'	VM-2	EPSI-1	EPSI-2	PCT TE
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SI	EC LBM/F	T2SEC		DEGREE	
1	579.2	953.5	575.3	638.7	67.0			881.1			-787.6		37.24		.19	2.214	5.026	
2	602.1 613.4	933.7 913.4	596.3	634.1	83.4	685.4	885.8		999.7		-802.4		38.67		.54	1.294	4.265	
4	626.4	886.1	605.8 615.1	624.9 609.6	96.2 118.5				1019.3		-819.8		39.28		.37	0.487	3.457	
5	632.3	854.0	616.5	579.4	140.7			1002.6	1157.4		-886.3 -979.5		39.75 39.72			-1.728	0.829	
6	628.3	819.6	607.1	538.2					1227.9				39.72				-1.614 -4.240	
7	616.5	792.7	593.3	495.7	167.7				1284.3		-1139.1		38.32				-6.685	
8	606.0	777.4	583.5	480.4		611.2	1331.4	1294.0	1305.3		-1167.6		37.64				-7.228	
9	594.2	759.9	572.5	467.1	159.2			1318.3			-1195.5		36.85			-8.766	-7.761	
		IC1/A1 .BM/SEC SQFT 38.85	WC1/A1 KG/SEC SQM 189.57	;					T02/T01	P02/P0	ROT	TOR RO	FF-P OTOR % 4.08					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 95 POINT NO 10

SL	٧-1	V-2	VM-1	VM-2	VO-1	٧0-2	RHOVM-	nua f	VM-2	EPSI-1	EPSI-2					
	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/112 S		2 SEC	RADIAN	RADIAN					
1	297.9	212.2	207.2	203.6	214.0	60.0	256.27		.39	0.0959	0.0836					
2	292.4		206.2	205.2	207.4	59.4	258.35		.35	0.0840						
3	286.6	214.5	203.5	205.6	201.8	61.3	257.73		.70	0.0698						
4	278.9		198.9	198.3	195.5	83.8	258.45		.93		0.0190					
5	269.2	213.7	189.1	189.3	191.6	99.2	252.13		.64	-0.0219						
6	257.4	206.7	174.2	178.5	189.4	104.3	236.92		.76	-0.0500						
7	248.6	195.7	160.0	168.7	190.3	99.2	219.28		.84	-0.0773						
8	244.2	188.6	155.5	162.9	188.3	94.9	213.43		.52	-0.0893						
9	239.4	183.6	152.1	159.0	184.9	91.7	209.27		.70	-0.1047						
SL	B-1	B-2	F-11	11-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	TO/TO	%EFF-A	
,	DEGREE		0.0600		DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STG
1	45.9		0.8632	0.5939	-7.64	-5.02	6.51		0.4630		0.0267	0.9697	1.6814	1.1812	88.32	89.14
2	45.1	16.1	0.8477	0.6001	-7.91	-5.21	5.59	29.01	0.4443		0.0182	0.9804	1.6685	1.1741	90.44	91.10
3	44.7		0.8305	0.6040	-8.13	-5.35	5.35	28.15	0.4263		0.0098	0.9900	1.6680	1.1697	92.74	93.24
4 5	44.5		0.8060	0.6063	-8.77	-5.79	8.92	21.59	0.3829	0.0305	0.0111	0.9894		1.1688	94.12	94.53
6	45.4		0.7738	0.6012	-9.68	-6.45	9.42	17.71	0.3521		0.0105	0.9910	1.6843	1.1710	93.94	94.37
7	47.4 50.0		0.7351	0.5795	-10.06	-6.60	9.30	17.08	0.3514		0.0138	0.9896	1.6769	1.1735	91.72	92.30
8	50.5		0.7048	0.5447	-9.77	-6.12	7.58		0.3951		0.0343	0.9770	1.6564	1.1820	85.18	86.19
9	50.6		0.6902 0.6754	0.5232 0.5085	-10.47	-6.77	6.31	20.21	0.4207		0.0457		1.6475	1.1840		84.42
,	30.0	30.0	0.0754	0.5085	-12.33	-8.58	4.14	20.59	0.4337	0.1136	0.0495	0.9702	1.6483	1.1843	83.26	84.38
SL	V -1	V-2	1-11	VM-2	VO-1	V0-2	RHOVM-	1 RHO	VI4-2	PCT TE	EPSI-1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2S			SPAN	DEGREE	DEGREE				
1	977.4	696.3	679.9	667.9	702.1	196.9	52.49			0.0543	5.497	4.792				
2	959.5	701.0	676.6	673.4	680.4	194.9	52.91			0.1078	4.810	3.928				
3	940.3		667.8	674.6	662.1	201.0	52.79			0.1601	3.998	3.132				
4	915.2	706.2	652.7	650.5	641.6	274.8	52.93			0.3140	1.482	1.089				
5	883.3	701.3	620.6	621.1	628.6	325.5	51.64			0.5124	-1.254	-1.051				
6	844.4		571.6	585.5	621.6	342.4	48.52			0.7091	-2.867	-3.028				
7	815.8		524.9	553.7	624.4	325.4	44.91			0.8564	-4.427	-4.775				
8	801.1		510.1	534.6	617.7	311.5	43.71			0.9050	-5.119	-5.430				
9	785.5	602.2	499.0	521.7	606.6	300.8	42.86			0.9531	-5.996	-6.079				
		NCORR	ucone	UCODO			TO /TO	000/00-	DO /DO							
		INLET	WCORR	WCORR			T0/T0	P02/P01	P0/P0	EFF-AD	EFF-P					
			INLET LBM/SEC	INLET KG/SEC			STAGE		STAGE	STAGE	STAGE					
		11600.00	100.75				3 3744	0.0047	1 (700	%	%					
		11000.00	100.75	45.70			1.1/44	0.9847	1.6/20	90.69	91.34					

AIRFOIL AERODYNAMIC SUMMARY PRINT

70 PERCENT SPEED (ROTOR PERFORMANCE)

RUN NO 40 SPEED CODE 70 POINT NO 1

SL V-1 V-2 VM-1 VM-2 VO-1 VO-2 U-1 U-2 V'-1 V'-2 VO'-1 VO'-2 RHOVM-1 RHOVM-2 EPSI-1 EPSI-2 M/SEC M/S

1 2 3 4	M/SEC 131.0 136.7 139.3 141.7	M/SEC 225.7 222.4 219.3 209.3	130.1 135.3 137.6	170.7 169.3	15.3 19.1 22.1	M/SEC 147.7 144.1 139.4 131.4	191.9 198.9 205.7	197.9	219.4 225.1 229.4	177.9 179.4 183.0	M/SEC -176.6 -179.8 -183.6 -198.5	-50.1 -59.2 -69.4	KG/M2 SI 145.41 151.41 153.94 155.49	204 203 205 199	.10 .89 .21 .18 -	0.0373 0.0200 0.0045 -0.0369		
5 6	142.3	194.7 181.0		152.5 141.9	32.2 37.1	121.1	251.6 276.1	247.0 268.8	259.4 275.1			-125.9 -156.4	154.83 152.41	188 176		-0.0839 - -0.1205 -		
7 8	138.8 136.3	172.6	133.4	134.3 130.5	38.4 37.5	108.5	293.5 299.0	285.1 290.6	287.8 292.5			-176.6 -183.9	149.15 146.43	167	.21 -	-0.1418 - -0.1477 -		
9	133.5	160.9	128.5		36.4	100.7		296.1					143.35			0.1527 -		
SL	B-1	B-2 DEGREE	B'-1	B'-2	14-1	M-2	111-1	M'-2	INCS	INCM DEGREE	DEV	TURN	D FAC	OMEGA-B TOTAL	LOSS-F		%EFF-A TOTAL	
1	6.7				0.3908	0.6624	0.6544	0.5220			13.83		0.3752		0.0168			
2	8.0	40.4				0.6525					11.92		0.3769		0.0170			
3	9.1	39.5	53.14	22.31	0.4164	0.6439	0.6857	0.5374	-1.54	4.42	12.13	30.82	0.3650	0.0352	0.0102	2 1.3159	96.51	
4	11.1	38.9				0.6133				5.96	13.32		0.3681		0.0106			
5	13.1	38.4				0.5695				5.88	12.21	18.25	0.3574		0.0110			
6	15 2	38.3				0.5286				5.40	9.93	12.62	0.3313		0.0086			
/	16.0	38.8	62.37			0.5032				4.66	7.84	9.76	0.3196		0.0107			
8	15.9 15.8	39 1 38.7				0.4906				4.45	7.67	8.85	0.3177 0.3016		0.0121			
-										3.99	8.33	7.16				,		
SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	U-1			۷'-2			RHOVM-				EPSI-2	
													LBM/FT2S				DEGREE	
2	429.9 448.4		444.0	560.0 555.6								-164.5			.80	2.136		0.0499
2	457.1	719.5	451.3			457.2			752.8			-194.4 -227.8	31.01 31.53		.76 .03	1.144 0.260		0.1000 0.1501
4	465.0	686.6	456.4									-307.5	31.85		.79	-2.117		0.3000
5	466.8	638.9	454.6	500.3	105.8			810.3				-412.9	31.71		.53	-4.808	-2.353	
6	463.5	593.9	447.2					881.9					31.21		.12		-4.763	
7	455.4	566.5	437.6					935.5					30.55		.25		-6.219	
8	447.3		430.1	428.3	122.9	350.0	981.0	953.4	959.8	740.0	-858.1	-603.5			.27	-8.461		
9	438.1	527.9	421.5	411.2	119.4	331.0	998.2	971.3	974.6	761.0	-878.7	-640.3	29.36	32	.00	-8.747	-7.545	0.9500

WC1/A1 WC1/A1 LBM/SEC KG/SEC SQFT SQM 30.90 150.77 T02/T01 P02/P01 EFF-AD EFF-P
ROTOR ROTOR
%
1.0756 1.2731 94.50 94.69

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 70 POINT NO 1

SL	V-1	V-2	V#1-1	VM-2	VO-1	VO-2	RHOVM-	1 RHO	VI1-2	EPSI-1	EPSI-2					
	M/SEC	H/SEC	M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 SE	EC KG/M	2 SEC	RADIAN	RADIAN					
1	233.0	215.4	181.1	205.8	146.5	63.7	213.55	245		0.0994	0.0850					
2	230.1	217.9	180.3	208.5	143.0	63.2	213.80									
3	227.4	216.6	180.3	207.1	138.5	63.4	215.15	249		0.0647						
4	217.5	210.1	173.6	198.4	131.1	69.1	209.12				0.0218					
5	202.6	198.5	162.2	182.2	121.3	78.8	197.43	221		-0.0268						
6	187.9	186.0	150.1	167.0	113.0	81.8	184.44		.52	-0.0675						
7	178.8	177.6	141.3	156.5	109.5	83.8	174.33			-0.0938						
8	174.8	171.9	137.6	150.2	107.8	83.6	169.59				-0.0989					
9	167.6	164.4	133.0	143.4	102.0	80.4	164.24	174	.69	-0.1102	-0.1083					
SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	TO/TO	%EFF-A	%EFF-P
	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE		TOT-STG
1	38.9	17.1	0.6856	0.6298	-14.58	-11.97	7.27	21.78	0.1944			0.9776	1.3046	1.0905		87.75
2	38.4	16.8	0.6775	0.6386	-14.64	-11.94	6.32		0.1711			0.9883	1.3053	1.0871	90.87	91.20
3	37.5	17.0	0.6697	0.6356	-15.37	-12.59	5.77	20.49	0.1618			0.9900	1.3006	1.0841	92.80	93.06
4	37.0	19.2	0.6396	0.6163	-16.22	-13.24	5.22	17.84	0.1370			0.9926	1.2848	1.0801	92.77	93.02
5	36.8	23.4	0.5940	0.5815	-18.26	-15.03	5.16	13.38	0.1018			0.9925	1.2579	1.0743		91.55
6	37.0	26.1	0.5498	0.5441	-20.47	-17.00	5.08	10.90	0.0833			0.9897	1.2321	1.0686		89.97
7	37.8	28.2	0.5221	0.5183	-21.92	-18.27	5.31	9.61	0.0767			0.9872	1.2197	1.0681		
8	38.1	29.1	0.5096	0.5009	-22.81	-19.10		8.99	0.0837			0.9838	1.2125	1.0683		83.34
9	37.5	29.3	0.4886	0.4789	-25.39	-21.64	3.46	8.21	0.0833	0.1133	0.0498	0.9831	1.2027	1.0644	84.13	84.54
SL	V -1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-			PCT TE	EPSI-1	EPSI-2				
	FT/SEC		FT/SEC	FT/SEC	FT/SEC		LBM/FT2S			SPAN	DEGREE	DEGREE				
1	764.4	706.8	594.3	675.2	480.7	208.9	43.74			0.0543	5.696	4.871				
2	755.1	714.8	591.5	684.0	469.3	207.5	43.79			0.1078	4.634	4.057				
3	746.0	710.7	591.6	679.6	454.4	207.9	44.06			0.1601	3.708	3.301				
4	713.7	689.4	569.6	651.1	430.1	226.7	42.83			0.3140	1.276	1.251				
5	664.6	651.2	532.3	597.7	397.9	258.7	40.44			0.5124	-1.537	-1.154				
6	616.3	610.2	492.5	548.1	370.6	268.3	37.78			0.7091	-3.867	-3.420				
7	586.6	582.6	463.8	513.6	359.3	275.0	35.71			0.8564	-5.373	-5.105				
8	573.4	564.1	451.3	492.9	353.6	274.4	34.73			0.9050	-5.827	-5.664				
9	550.0	539.4	436.4	470.5	334.6	263.8	33.64	35	5.78	0.9531	-6.312	-6.203				
		NCORR	WCORR	WCORR				P02/P01		EFF-AD						
		INLET	INLET	INLET			STAGE		STAGE	STAGE						
		RPM	LBIVSEC	KG/SEC						%	°,					
		8547.00	80.13	36.35			1.0756	0.9890	1.2590	90.01	90.34					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 70 POINT NO 2 70 PERCENT SPEED (ROTOR PERFORMANCE)

SL	V-1	V-2	VH-1	VII-2	¥0-1	VO-2	U-1	U-2	V'-1	٧'-2	VO'-1	VO'-2	RHOVM-1	RHOVH-2	EPSI-1	EPSI-2
	M/SEC		M/SEC	IV/SEC	M/SEC	M/SEC	M/SEC	M/SEC	M/SEC	IV/SEC	M/SEC	M/SEC	KG/M2 SE	C KG/M2 SEC	RADIAN	RADIAN
1	120.3	218.9	119.5	155.3	14.1	154.3	191.9	197.9	214.2	161.3	-177.8	-43.5	135.40	191.88	0.0368	0.0903
2	125.6	214.0	124.3	152.3	17.6	150.4		203.3	219.9		-181.3	-52.9	141.12	189.31		0.0747
3	128.1	210.5	126.4	151.7	20.4	145.9		208.8	224.4		-185.4		143.52	189.78		0.0567
4	130.3	203.0	127.9	146.9	25.0	140.1	225.6	225.2	237.9		-200.6		145.04		-0.0371	
5	130.9	191 4	127.5	137.5	29.7	133.2		247.0	255.9		-221.8		144.50	•	-0.0856 -	
6 7	129.8 127.4		125.3	127.2	34.2	127.0		268.8	272.4		-241.9		142.07		-0.1242 -	
8	127.4	173.0 170.5	122.4	119.6 117.6	35.3	124.9	293.5	285.1	285.7		-258.1		138.85		-0.1426 -	
9	122.4	165.3	117.8	114.7	34.5	123.4			290.6		-264.5		136.28		-0.1473 -	
,	142.4	103.3	117.0	114.7	33.5	119.1	304.2	296.1	295.2	210.9	-2/0./	-177.0	133.33	148.61	-0.1522 -	.0.1293
SL	B-1	8-2	B'-1	B'-2	14-1	14-2	M'-1	М'-2	INCS	INCM	DEV	TURN	D FAC O	MEGA-B LOSS-	P P02/	%EFF-A %EFF-
,		DEGREE							DEGREE					TOTAL TOTA	L P01	TOTAL TOTA
ı	6.7	44.8	56.04		0.3579					5.07				0.0425 0.012		
2	8.0	44.7	55.51		0.3741				0 08	6.19	11.81			0.0547 0.015		
3	9.1	43.9	55.68		0.3817				1 00	6.96	12.34			0.0373 0.010		
4 5	11.1	43.6	57.50		0.3887				2.81	8.47	13.46	27.43		0.0342 0.009		
6	15.3	44.1 44.8	60.15	39.50	0.3904	0.5559	0 /631	0.5181	3.41	8.28				0.0440 0.012		
7	16.1	46.1	64.62		0.3872				3.50	7.73	10.23			0.0515 0.012		
8	16.0	46.2			0.3797				3.40 3.40	6.90				0.0715 0.016		
9	15.9	46.0	66.48		0.3644				3.40	6.63 6.11	7.91 8.09	10.79 9.53		0.0755 0.017		
•	10.5	10.0	00.40	30.30	0.3044	0.4703	0.0703	0.0073	3.13	0.11	0.09	9.55	0.3965	0.0666 0.014	3 1.3011	90.24 90.5
SL	V-1	V-2	VM-1	VII-2	VO-1	VO-2	U-1	U-2	V'-1	٧'-2	VO'-1	VO'-2	RHOVI4-1	RHOVM-2	EPSI-1	EPSI-2 PCT TE
_	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE	C LBM/FT2SEC	DEGREE	DEGREE SPAN
1	394.6	718.3	391.9	509.4	46.2	306.4			702.9			-142.9	27.73	39.30	2.111	5.174 0.049 9
2	412.1	702.3	408.0	499.6	57.8			667.2	721.4			-173.7	28.90	38.77	1.110	4.283 0 1000
3 4	420.2 427.6		414.8	497.8	66.8			685.1	736.2			-206.2	29.39	38.87	0.235	3.248 0.1501
5	427.0	666.1 628.1	419.6	482.1	82.2			738.7	780.6			-279.0	29.70	38.06	-2.128	0.794 0.3000
6	429.5	589.8	418.3 411.0	451.1 417.4	97.5 112.2	437.1		810.3	839.4			-373.2	29.59	36.00	-4.902	-2.492 0.5000
7	418.0	567.5	401.6	392.4	116.0	416 7 409.9		881.9 935.5	893.7			-465.2	29.10	33.57	-7.118	-4.607 0.700 0
8	410.4		394.5	385.8		404.9			937.2 953.3		-846.9 -867.9		28.44	31.66	-8.173	-6.439 0.8499
9	401.7		386.3	376.3		390.7	998.2	971.3	968.7		-888.3		27.91	31.14	-8.441	-6.740 0.900L
•	101.7	372.7	300.3	370.3	103.0	330.7	330.2	3/1.3	900.7	091.9	-000.3	-580.7	27.31	30.44	-8.719	-7.409 0.9 500
	١	WC1/A1	WC1/A1	1					T02/T01	P02/P0	Ol EFF	-AD ER	F-P			
	t	_BM/SEC	KG/SEC	:						-	RO	TOR RO	TOR			
		SQFT	SQM								%		%			
		28.77	140.40)					1.0885	1.322	29 94	.14 94	1.36			

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 70 POINT NO 2

SL	V-1	V-2	VM-1	VM-2	YO-1	VO-2	RHOVM-1	RHO	VM-2	EPSI-1	EPSI-2					
-	IN/ SEC	M/SEC	MYSEC	M/SEC	M/SEC	M/SEC	KG/112 SE		2 SEC	RADIAN	RADIAN					
1	224.7	180.4	164.5	172.7	153.0	52.1	201.05	223		0.0765	0.0848					
2	220.2	182.5	161.8	175.1	149.3	51.6	198.86	227	.43	0.0944	0.0702					
3	216.5	182.1	160 8	174.5	145.0	52.1	198.93	227		0.0760	0.0568					
4	209.1	178.5	155.6	169.0	139.8	57.4	194.65	220		0.0211	0.0220					
5	197.7	171.7	145.8	158.4	133.5	66.2	184.49	207		-0.0268						
6	185.4	162.8	134.3	146.9	127.7	70.1	171.54	193		-0.0623						
7	178.1	156.0	125.8	137.4	126.1	73.8	161.31	180		-0.0922						
ä	175.6	149.7	123.6	131.4	124.7	71.7	158.67	172		-0.1038						
9	170.8	143.4	121.2	126.0	120.4	68.3	155.80	164		-0.1128						
•	170.0	170.7	121.2	120.0	120.4	00.5	155.00	101		-0.1120	-0.1002					
SL	8-1	B-2	И-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OMEGA-B	LOSS-P	P02/	PO/PO	T0/T0	%EFF-A	%EFF-P
	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	TOT-STG
1	42.8	16.7	0.6573	0.5201	-10.67	-8.05	6.87	26.09	0.3485	0.0777	0.0262	0.9805	1.3364	1.0959	90.16	90.56
2	42.7	16.4	0.6439	0.5272	-10.34	-7.64	5.88	26.29	0.3239	0.0352	0.0122	0.9915	1.3350	1.0928	92.81	93.10
3	42.0	16.6	0.6333	0.5266	-10.82	-8.05	5.39	25.42	0.3115	0.0234	0.0083	0.9945	1.3331	1.0904	94.78	94.99
4	41.9	18.7	0.6104	0.5159	-11.34	-8.35	4.79	23.15	0.2962	0.0238	0.0089	0.9948	1.3269	1.0891	94.56	94.78
5	42.5	22.7	0.5752	0.4956	-12.56	-9.33	4.43	19.82	0.2739	0.0181	0.0072	0.9964	1.3157	1.0874	93.40	93.65
6	43.6	25.5	0.5378	0.4692	-13.88	-10.41	4.50	18.07	0.2659	0.0197	0.0082	0.9965	1.3013	1.0853	91.64	
7	45.1	28.2	0.5152	0.4483	-14.60	-10.96	5.36	16.88	0.2700	0.0448	0.0192	0.9926	1.2935	1.0876	87.20	87.66
8	45.3	28.6	0.5073	0.4295	-15.63	-11.92	4.70	16.66	0.2991	0.0911	0.0396	0.9854	1.2854	1.0884	84.18	84.73
9	44.8	28.5	0.4932	0.4110	-18.05	-14.30	2.65	16.36	0.3163	0.1110	0.0491	0.9831	1.2785	1.0863	84.32	84.86
SL	V-1	V-2	VM-1	VM-2	VO-1	٧٥-2	RHOVM-			PCT TE	EPSI -1	EPSI-2				
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC		LBM/FT2SI			SPAN	DEGREE	DEGREE				
1	737.1	592.0	539.7	566.8	502.1	171.0	41.18			0.0543	4.380	4.858				
2	722.3	598.8	530.8	574.4	489.9	169.4	40.73			0.1078	5.406	4.023				
3	710.4	597.6	527.6	572.6	475.8	171.0	40.74			0.1601	4.356	3.256				
4	686.2	585.7	510.4	554.5	458.6	188.4	39.87	45	.26	0.3140	1.206	1.262				
5	648.6	563.3	478.3	519.7	438.1	217.1	37.78	42	.55	0.5124	-1.535	-0.992				
6	608.2	534.1	440.7	482.0	419.1	230.0	35.13	39	.54	0.7091	-3.570	-3.224				
7	584.5	511.8	412.7	450.9	413.9	242.0	33.04	36	5.93	0.8564	-5.283	-5.036				
8	576.2	491.2	405.7	431.3	409.3	235.2	32.50	35	.23	0.9050	-5.948	-5.642				
9	560.5	470.4	397.6	413.5	395.1	224.3	31.91	33	3.79	0.9531	-6.463	-6.199				
		NCOOD	LICADO	1 COOC			TO /TO	002/001	DO / DO	רכר גי	בכב פ					
		NCORR	WCORR	WCORR			10/10	ru2/101	PO/PO	EFF-AD						
		INLET	INLET	INLET			STAGE		STAGE	STAGE						
		RPM	LBM/SEC	KG/SEC			1 0005	0.0020	1 2120	% : 01 63	200.05					
		8547.00	74.62	33.85			1.0885	0.9929	1.3135	91.63	91.95					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 70 POINT NO 3

SL 1 2 3 4 5 6 7 8 9	V-1 M/SEC 117.6 122.9 125.3 127.5 128.0 126.9 124.5 122.2 119.6	Y-2 M/SEC 217.2 212.5 209.2 202.3 191.4 179.8 172.6 169.8 165.1	VM-1 M/SEC 116.8 121.7 123.8 125.2 124.6 122.4 119.6 117.5 115.0	VM-2 M/SEC 151.9 148.8 148.4 143.9 135.3 124.0 115.0 112.5 109.8	VO-1 M/SEC 13.7 17.2 19.9 24.5 29.1 33.5 34.6 33.7 32.7	V0-2 M/SEC 155.3 151.6 147.4 142.1 135.3 130.1 128.7 127.2 123.2	U-1 M/SEC 191.9 198.9 205.7 225.6 251.6 276.1 293.5 299.0 304.2	U-2 M/SEC 197.9 203.3 208.8 225.2 247.0 268.8 285.1 290.6 296.1	Y'-1 M/SEC 213.1 218.7 223.2 236.9 255.0 271.7 285.2 290.1 294.8	157.8 157.6 160.6 166.1 175.4 186.0 194.2 198.3	Y0'-1 M/SEC -178.2 -181.7 -185.8 -201.1 -222.5 -242.6 -258.9 -265.3 -271.5	-42.6 -51.7 -61.4 -83.0 -111.6 -138.6 -156.4 -163.4	RHOVM-1 KG/M2 SE 132.87 138.55 140.93 142.42 141.75 139.33 136.16 133.60 130.67		2 SEC .75 .08 .74 .18 - .12 - .77 - .53 -	0.0370	RADIAN 0.0846 0.0702 0.0556 0.0123 -0.0398 -0.0828 -0.1087 -0.1183	
SL	B-1	B-2	B'-1	B'-2	м-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	DME GA-B	LOSS-F	P02/	%EFF-A	%EFF-P
	DEGREE	DEGREE				=			DEGREE					TOTAL	TOTAL		TOTAL	
1	6.7	45.6	56.68			0.6335			-0.57	5.71		41.02	0.4640	0.0443	0.0129			
2	8.0	45.5	56.15			0.6193			0.71	6.83	11.80		0.4718	0.0559	0.0163			
3	9.1	44.8	56.31			0.6098			1.63	7.59	12.29			0.0379	0.0110			
4	11.1	44.6	58.13			0.5883			3.43	9.09	13.39			0.0343	0.0099			
5 6	13.1 15.3	45.0	60.78			0.5550			4.04	8.91	12.19		0.4576 0.4452	0.0432	0.0118			
7	16.1	46.3 48.1	63.24 65.19			0.5197			4.11 3.97	8.33 7.47	10.34 8.75			0.0390	0.0199			
8	16.0	48.4	66.10			0.4974			3.96	7.19	8.49			0.0307	0.0204			88.1
9	15.9	48.2	67.03			0.4747			3.68	6.66	8.60			0.0838	0.0178			
SL.	V-1	V-2	V11-1	VM-2	VO-1	V0-2	U-1	U-2	V'-1	V1-2	1-104	VO'-2	RHOVM-	1 RHO	VM-2	EPSI-1	EPSI-2	PCT TE
													LBM/FT2S			DEGREE	DEGREE	
1	386.0		383.3		45.1	509.5	629.7				-584.6		27.21		.66	2.121		0.0499
2	403.2	697.1	399.2		56.5		652.7		717.5		-596.2		28.38		.11	1.122		0.1000
3	411.3	686.4	406.0		65.3		674.9		732.4		-609.6		28.86		.25	0.242		0.1501
4	418.4	663.6	410.6	472.2	80.4	466.3	740.3	738.7	777.3		-659.9		29.17		.52	-2.132		0.3000
5 6	419.8 416.3	627.9 589.8	408.9 401.6	444.0 406.8	95.4 109.8	444.1 427.0	825.4 905.8	810.3 881.9	836.7 891.6		-730.0 -796.0		29.03 28.54		.66 .93	-4.877 -7.024	-2.282 -4.745	
7	408.5	566.5	392.5	377.5		427.0	962.8	935.5	935.7			-454.9 -513.2	27.89		.62	-7.024 -8.174	-6.229	
8	400.9	557.2	385.4									-536.0	27.36		.95	-8.466	-6.780	
9	392.3		377.3									-567.0	26.76		.32	-8.736	-7.552	
		MC1/A1 BM/SEC SQFT 28.22	WC1/A KG/SE0 SQM 137.7	1					T02/T01		RO %	TOR R	FF-P OTOR % 3.90					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 70 POINT NO 3

SL	V-1 M/SEC	V-2 M/SEC	VII-1 M/SEC	VI1-2 M/SEC	YO-1 11/SEC	VO-2 M/SEC	RHOVM-1 KG/M2 SE		VIA-2 2 SEC	EPSI-1 RADIAN						
1	222.0	173.8	159 9	167.4	154.0	46.8	196.96	219		0.1002						
ż	217.8	175.6	157.4	169.4	150.5	46.3	194.87	222		0.1002						
3	214.8	175.7	157.0	169.3	146.6	47.0	195.62	223			0.0588					
4	208.2	172.9	152.5	164.2	141.8	54.4	192.10	217			0.0388					
5	197.3	166.6	143.3	153.4	135.6	65.0	182.63		.63	-0.0217						
6	185.2	158.4	130.9	142.7	130.9	68.9	168.35		.72		-0.0559					
7	177.7	151.1	121.2	133.0	130.0	71.8	156.30	176		-0.0029						
8	174.9	144.8	118.6	127.2	128.6	69.3	153.08	168		-0.1006						
9	170.6	139.2	116.4	122.1	124.7	66.8	150.59	161		-0.1008						
•	,,,,,	103.2	110.7	122.1	167.7	00.0	130.33	101	.55	-0.1097	-0.1080					
SL	B-1	B-2	M-1	M-2	INCS	INCM	DEV	TURN	D-FAC	OHEGA-B	LOSS-P	P02/	P0/P0	T0/T0	%EFF-A	%EFF-P
	DEGREE	DEGREE			DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL	P01	STAGE	STAGE	TOT-STG	
1	43.9	15.6	0.6486	0.4999	-9.63	-7.02	5.70	28.29	0.3809		0.0258	0.9813	1.3411	1.0968		90.81
2	43.7	15.2	0.6360	0.5059	-9.35	-6.65	4.73	28.43	0.3601	0.0400		0.9905	1.3387	1.0940	92.49	92.79
3	43.0	15.5	0.6274	0.5067	-9.87	-7.09	4.29	27.47	0.3481		0.0100	0.9935	1.3380	1.0919	94.47	94.70
4	42.9	18.3	0.6069	0.4985	-10.36	-7.38	4.36	24.56	0.3301	0.0291	0.0109		1.3343	1.0911	94.33	94.56
5	43.4	23.0	0.5733	0.4796	-11.63	-8.40	4.71	20.47	0.3064		0.0098	0.9951	1.3249	1.0899		93.47
Ó	45.0	25.8	0.5363	0.4553	-12.44	-8.98	4.77	19.23	0.2999		0.0088	0.9963	1.3129	1.0890	90.91	91.26
7	47.1	28.4	0.5127	0.4329	-12.68	-9.03	5.51	18.66	0.3116		0.0203	0.9923	1.3040	1.0921	85.60	86.13
8	47.4	28.6	0.5041	0.4139	-13.57	-9.87	4.66	18.76	0.3431		0.0401	0.9854	1.2960	1.0931	82.63	83.26
9	47.0	28.7	0.4913	0.3977	-15.92	-12.17	2.88	18.26		0.1094	0.0483	0.9834	1.2909	1.0914	82.83	83.44
CI	W 3	· · ·														00077
SL	V-1	V-2	VM-1	VM-2	VO-1	VO-2	RHOVM-1		VH-2	PCT TE	EPSI-1	EPSI-2				
,	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2SE			SPAN	DEGREE	DEGREE				
2	728.5	570.4	524.8	549.3	505.3	153.6	40.34			0.0543	5.742	4.901				
	714.5	576.1	516.4	555.8	493.8	151.8	39.91			0.1078	4.721	4.110				
3 4	704.8	576.5	515.3	555.5	480.9	154.3	40.06			0.1601	3.829	3.367				
j	683.2 647.4	567.4	500.3	538.6	465.2	178.4	39.34			0.3140	1.478	1.375				
, 6	607.5	546.5	470.2	503.2	444.9	213.1	37.40			0.5124	-1.244	-0.932				
7	583.0	519.8	429.6	468.0	429.6	226.1	34.48			0.7091	-3.604	-3.205				
8	573.9	495.9 475.1	397.5	436.3	426.4	235.6	32.01			0.8564	-5.258	-5.019				
9	559.7		389.1	417.2	421.9	227.2	31.35			0.9050	-5.761	-5.627				
9	559.7	456.7	382.0	400.6	409.0	219.3	30.84	33	.09	0.9531	-6.288	-6.189				
		NCORR	WCORR	WCORR			T0/T0 P	02/P01	P0/P0	EFF-AD	EFF-P					
		INLET	INLET	INLET			STAGE	02/101	STAGE	STAGE	STAGE					
			LBM/SEC	KG/SEC			JINGL		JINGL	2	2					
		8547.00	73.20	33.20			1.0913	0.9922	1.3220		91.34					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 70 POINT NO 4

SL.	V-1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	U-2	V'-1	V'-2	V0'-1				VM-2 2 SEC	EPSI-1 RADIAN	EPSI-2 RADIAN	
	M/SEC	M/SEC	H/SEC	M/SEC	M/SEC	M/SEC	H/SEC 191.9	M/SEC 197.9	M/SEC 215.4	M/SEC	M/SEC -177.6		137.75			0.0369	0.0909	
1	122.8	220.3	121.9	158.6 156.0	14.4 18.0	152.9 148.8	191.9	203.3	221.0	165.3	-181.0		143.52	•		0.0195	0.0755	
2	128.1 130.7	215 6 212.2	126.9 129.0	155.4	20.8	144.5	205.7	208.8	225.5	168.2	-185.0	-64.3	145.96	193		0.0042		
J	132.9	203.5	130.5	149.6	25.5	137.8	225.6		238.9	173.2	-200.1	-87.3	147.46			-0.0370		
5	133.6	191.8	130.1	140.7	30.3	130.3	251.6	247.0	256.6	182.7	-221.2	-116.6	146.96			-0.0850		
6	132.6	180.1	127.9	130.8	34.9	123.7	276.1	268.8	273.0			-145.1	144.62			-0.1233 · -0.1424 ·		
7	130.2	172.8	125.1	123.4	36.1	121.0	293.5		286.2			-164.1	141.41 138.81			-0.1472		
8	127.8	169.4	122.9	120.2	35.2		299.0		291.0	209.2	270 0	-171.2 -181.3	135.81	•		-0.1520		
9	125.1	164.5	120.4	117.9	34.2	114.8	304.2	296.1	295.6	210.2	-270.0	-101.5	133.01	,		••••		
CI	B-1	B-2	B'-1	B'-2	м-1	M-2	M'-1	M'-2	INCS	INCM	DEV	TURN	D FAC	OMEGA-B	LOSS-	P P02/		%EFF-P
SL		DEGREE			14-1	11-6	•• •		DEGREE	DEGREE	DEGREE	DEGREE		TOTAL	TOTAL			TOTAL 96.72
1	6.7	44.0	55.45	15.86	0.3655	0.6436	0.6413	0.4817	-1.79	4.49		39.59		0.0433	0.0126			
ż	8.0	43.7	54.92	19.28	0.3819	0.6300	0.6588	0.4829	-0.52	5.60	11.90	35.64	0.4375	0.0525	0.015			
3	9.1	42.9	55.08	22.50	0.3897	0.6200	0.6726	0.4915	0.40	6.36	12.32		0.4285	0.0361	0.010		_	
4	11.1	42.7	56.91	30.26	0.3967	0.5933	0.7128	0.5052	2.22	7.88	13.66		0.4311	0.0358 0.0414	0.0113	-		
5	13.1	42.8	59.58	39.62	0.3986	0.5577	0.7660	0.5314	2.84	7.71	12.33			0.0414	0.0110			
6	15.3	43.3	62.07	47.85	0.3957	0.5225	0.8146	0.5669	2.94	7.16	10.09 8.16			0.0440	0.0142	-		
7	16.1	44.3	64.07			0.5002			2.85 2.86	6.35 6.09	7.96		0.3902	0.0683	0.0154			
8	16.0	44.7	65.00	54.80	0.3810	0.4896 0.4753	0.8674	0.6045	2.61	5.59	7.99		0.3726	0.0554				91.72
9	15.8	44.1	65.96	50.80	0.3727	0.4/53	0.0007	0.0247	2.01	3.33	, ,,,,	3	*****					
SL.	Y-1	V-2	VM-1	VM-2	1-04	VO-2	U-1	U-2	V'-1	V'-2	۷0'-1	VO'-2	RHOVM-		VM-2	EPSI-1	EPSI-2	
JL.	FT/SEC	FT/SEC	FT/SEC	FT/SFC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2S	EC LBM/F	T2SEC	DEGREE	DEGREE	
1	402.8	722.6	400.0	520.3	47.1	501.5	629.7	649.2	/06./	540.8	-502.0	-14/./	20.41	3,	•00	2.117		0.0499 0.1000
2	420.4	707.5	416.3	512.0	58.9	488.3	652.7		725.1	542.4	-593.8	-178.9	29.39		.49	1.119 0.243		0.1501
ã	428.7	696.2	423.3	509.9	68.1	474.0	674.9	685.1	739.9			-211.1	29.89		.57 .50	-2.121		0 3000
4	436.2	667.5	428.0	491.0	83.8	452.3	740.3	738.7	783.8			-286.5	30.20 30.10		.58	-4.870	-2.352	
5	438.2	629.2	426.8	461.6	99.5	427.7	825.4		842.1			-382.7 -476.0			.29	-7.066	-4.659	
6	435.1	590.8	419.7	429.3	114.5	405.9	905.8		895.7			-538.4	28.96		.43	-8.160	-6.402	
7	427.1	567.0	410.4	404.8	118.4	397.1	962.8	935.5 953.4	938.9 954.8			-561.7	28.43		.59	-8.435		
8	419.4	555.9	403.2	394.3	115.5	391.8 376.6						-594.8			.07	-8.711	-7.439	
9	410.5	539.8	394.9	386.8					570.0	,05.5	500.0							
	L.	IC1/A1	NC1/A1	Ì					T02/T0	P02/P0			FF-P					
		.BM/SEC	KG/SEC										OTOR					
		SQFT	SQM								%		.%					
		29.28	142.90)					1.0854	1 1.312	21 94	.50 9	4.71					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 70 POINT NO 4

SL 1 2 3 4 5 6 7 8	Y-1 M/ SEC 226.4 222.2 218.6 210.0 198.3 185.8 178.1 174.7 170.3	V-2 M/SEC 187.3 189.4 189.0 184.1 176.4 167.3 160.0 154.0	VM-1 M/SEC 168.2 166.0 164.9 158.8 149.2 138.0 129.6 126.4 124.6	YM-2 M/SEC 179.2 181.6 181.0 174.5 162.8 151.0 141.4 135.6 130.1	VO-1 M/ SEC 151.6 147.7 143.6 137.5 130.6 124.4 122.2 120.7 116.0	VO-2 M/SEC 54.3 54.1 54.5 58.8 67.9 72.1 75.0 73.2 70.3	RHOVM- KG/M2 SE 204.10 202.55 202.55 197.14 187.37 175.02 165.03 160.93 159.05	228 232 232 232 225 210 195 183	WM-2 12 SEC 1.38 1.67 1.71 1.04 1.66 1.86 1.15 1.22	-0.0296	-0.0572 -0.0881 -0.0986					**
SL	B-1 DEGREE	B-2 DEGREE	M-1	M-2 0.5413	INCS DEGREE -11.58	INCM DEGREE -8.96	DEV DEGREE 6.94	TURN DEGREE 25.12	D-FAC 0.3175	TOTAL	LOSS-P TOTAL 0.0256	P02/ P01 0.9806	PO/PO STAGE 1.3310	TO/TO STAGE 1.0940	TOT-STG 90.03	TOT-STG 90.42
- 1	41.9	16.8	0.6632				6.03	25.10	0.2921	0.0335	0.0116	0.9917	1.3300	1.0914	92.95	93.24
2	41.6	16.5	0.6507	0.5487	-11.37	-8.68			0.2795		0.0074	0.9950	1.3279	1.0889	94.96	95.15
3	41.0	16.7	0.6404	0.5480	-11.83	-9.05	5.52	24.28				0.9957	1.3180	1.0868	94.62	94.83
4	40.8	18.6	0.6139	0.5336	-12.38	-9.40	4.65	22.25	0.2648		0.0074	0.9962	1.3038	1.0843	93.47	93.72
5	41.2	22.6	0.5779	0.5107	-13.84	-10.61	4.38	18.58	0.2416		0.0074	0.9960	1.2885	1.0815	92.17	92.45
6	42.1	25.5	0.5402	0.4838	-15.41	-11.94	4.51	16.53	0.2295			0.9927	1.2793	1.0829	88.00	88.41
7	43.4	28.0	0.5163	0.4615	-16.37	-12.72	5.08		0.2324		0.0192		1.2717	1.0836		85.61
	43.7	28.4	0.5058	0.4434	-17.20	-13.50	4.44	15.35	0.2545	0.0782	0.0341	0.9876		1.0811	85.77	86.24
8 9	43.0	28.4	0.4928	0.4253	-19.91	-16.16	2.56	14.58	0.2691	0.1026	0.0455	0.9844	1.2652	1.0011	03.77	00.24
,	43.0	20.4	0.4525	J	•							5067 3				
CI	V-1	Y-2	VH-1	VM-2	VO-1	VO-2	RHOVM-1			PCT TE	EPSI-1	EPSI-2				
SL	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBWFT2SE	EC LBM/F	T2SEC	SPAN	DEGREE	DEGREE				
		614.5	551.8	588.1	497.3	178.2	41.80	46	.77	0.0543	4.415	4.844				
Ĭ	742.9	621.6	544.5	595.7	484.7	177.4	41.48	47	.65	0.1078	5.196	4.003				
2	729.0		541.0	593.8	471.0	178.8	41.48	47	.66	0.1601	4.333	3.233				
3	717.4	620.1	520.9	572.5	451.2	192.9	40.38	46	.09	0.3140	1.471	1.223				
4	689.2	604.1		534.3	428.5	222.7	38.38		.14	0.5124	-1.695	-1.071				
5	650.6	578.8	489.6		408.2	236.5	35.85			0.7091	-3.660	-3.279				
6	609.7	549.0	452.9	495.4	400.2	246.0	33.80			0.8564	-5.354	-5.047				
7	584.5	525.0	425.3	463.9		240.0	32.96			0.9050	-5.948	-5.649				
8	573.3	505.4	414.7	444.8	395.9	230.6	32.57			0.9531	-6.431	-b.206				
9	558.7	485.0	408.9	426.7	380.7	230.0	32.37	31	• • •	••••						
		NCORR INLET	WCORR INLET	WCORR INLET KG/SEC			TO/TO E	P02/P01	PO/PO STAGE	EFF-AD STAGE %	EFF-P STAGE %					
		RPM 8547.00	LBM/SEC 75.94	34.45			1.0854	0.9931	1.3031	92.01	92.31					

AIRFOIL AERODYNAMIC SUMMARY PRINT

70 PERCENT SPEED (ROTOR PERFORMANCE) RUI

RUN NO 40 SPEED CODE 70 POINT NO 5

70	FERGER	1 34 660	(1101011													CDCT 1	EPSI-2	
			V14 1	VM-2	VO-1	V0-2	U-1	U-2	V'-1	₹'-2	YO'-1	VO'-2	RHOVM-)YM-2	EPSI-1		
SL	V-1	V-2	VM-1 IV/SEC	M/SEC	IV SEC		M/SEC		M/SEC	M/SEC	M/SEC	M/SEC	KG/M2 S		2 SEC	RADIAN	RADIAN 0.0857	
_	M/ SEC			140.7	12.2	160.7	191.9	197.9	207.9	145.6	-179.7	-37.1	120.79		.95			
1	105.3	213.7	104.6 108.9	138.2	15.4	157.2	198.9	203.3	213.4	145.7	-183.6	-46.2	125.91		.89		0.0694	
2	110.0	209.3		136.7	17.8	154.1	205.7		218.1	147.2	-187.9	-54.7	127.90			• • • • • •	0.0541	
3	112.0	206.0	110.6		21.8	150.6		225.2	232.3	152.8	-203.9	-74.6	128.79				0.0087	
4	113.5	201.2	111.4	133.4	25.8	146.0	251.6	247.0	251.3	161.6	-225.8	-101.0	127.51		.96 -	0.1063 -	-0.0474	
5	113.3	192.9	110.3	126.1	29.4	147.0	276.1	268.8	268.7	163.2	-246.6	-121.7	123.64			0.1521 -	0.092/	
6	110.7	182.8	106.7	108.6		150.9	293.5	285.1	282.5	161.4	-263.2	-134.3	119.21			0.1686 -		
7	107.1	175.4	102.8	89.5	30.3	150.2			287.6	164.3	-269.5	-140.4	116.49		.44 -	-0.1670 -	-0.1382	
8	104.7	172.7	100.4	85.4	29.5		304.2		292.5	170.2	-275.6	-148.3	113.52	109	.30 -	0.1620 -	-0.1606	
9	102.0	169.7	97.9	83.5	28.6	147.7	304.2	230.1	272.5	.,								
							ul 1	M'-2	INCS	INCM	DEV	TURN	D FAC	01ÆGA-B	LOSS-F	P02/		A %EFF-P
SL	B-1	B-2	B'-1	B'-2	M-1	M-2	M'-1	n -2	DEGREE	DEGREE	DEGREE		_ ,,,,,	TOTAL	TOTAL	L POI	TOTAL	
		DEGREE	DEGREE	DEGREE		0 0000	0 6160	0 4230		8.76	12.24	44.95	0.5197	0.0634	0.0189			
1	6.6	48.8	59.73	14.78	0.3124	0.6208	0.0109	0.4230	3.83	9.95	11.10			0.0671	0.0196			
2	8.0	48.7	59.27	18.48	0.3266	0.6079	0.0330	0.4234	4.82	10.78	11.62			0.0593	0.0173			
3	9.1	48.4	59.50	21.80	0.3328	0.5981	0.0470	0.4474	6.68	12.33	12.60			0.0554	0.0160			
4	11.1	48.5	61.37	29.21	0.33/4	0.5826	0.0904	0.4443	7.30	12.17	11.38			0.0712	0.0196			
5	13.2	49.1	64.04	38.66	0.3365	0.5567	0.7407	0.4003	7.56	11.79	10.43			0.1427	0.0354			
6	15.5	53.5	66.69	48.18	0.3288	0.5243	0.7981	0.4073	7.52	11.02	11.44	12.52	0.5924	0.2203	0.0473			
7	16.5	59.2		56.22	0.3179	0.4996	0.0531	0.4530	7.46	10.69	11.81	10.96	0.5905	0.2314	0.0470			
8	16.4	60.3	69.60	58.64	0.3105	0.4911	0.0531	0.4072	7.11	10.08	11.77	9.82	0.5758	0.2293	0.0444	1.3547	7 74.91	75.96
9	16.3	60.5	70.46	60.63	0.3025	0.4819	0.8072	0.4034	7.11	10.00		J						
				•	I	V0 0		U-2	γ'-1	V'-2	vo'-1	YO'-2	RHOVM-	1 RHO)VM-2		EPSI-2	
SL.	Y - 1	V-2	VM-1	VM-2	VO-1	VO-2	U-1	CT/CEC	EI/SEC	FT/SEC	FT/SEC	FT/SEC	LBM/FT2S 24.74	EC LBIL/F	T2SEC	DEGREE	DEGREE	SPAN
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	11/2FC	F1/3EC	620 7	640 2	682.2	477 6	-589.6	-121.8	24.74	36	.45	1.980	4.908	0.0499
1	345.5	701.0	343.2		40.1	527.4	629.7		700.3	479.1	-602.3	-151.5	25.79	36	.02	0.856	3.976	0.1000
2	360.9	686.7	357.4		50.4		652.7		715.5	183 1	-616.6	-179.3	26.19	35	.83	-0.132		0.1501
3	367.6	676.0	362.9	448.6	58.3	505.7	674.9	738.7	762.3	501 4	-668.9	-244.7	26.38	35	3.38	-2.826	0.500	0.3000
4	372.6	660.0	365.6		71.4	494.1	740.3		824.5	530 1	_740.8	-331.4	26.11	33	3.79	-6.093	-2.716	0.5000
5	371.6	632.9	361.8	413.8	84.5	478.9	825.4	810.3	881.7	535.1	_809.2	-399.4	25.32		.12	-8.714	-5.312	0.7000
6	363.2	599.8	350.2		96.6	482.4	905.8		926.9	533.3 520 A	.863.5	-440.6	24.42		.91	-9.659	-6.765	0.8499
7	351.5	575.5	337.1	293.6	99.4	494.9		935.5		523.4 520.2	884 2	-460.7	23.86		2.82	-9.571	-7.916	0.9000
8	343.4	566.8	329.5	280.1	96.8				943.6 959.6	559.2	904.2	-486.7	23.25		2.38	-9.284	-9.201	0.9500
9	334.7	556.8	321.3	274.0	94.0	484.7	998.2	971.3	959.0	330.3	-304.2	-40017						
									T02/T01	002/00	1 EFF	AD F	FF-P					
	1	UC1/A1	NC1/A						102/101	702/70			OTOR					
	1	LBM/SEC	KG/SE								%		%					
		SQFT	SQM						1 1053	1.365			9.03					
		25.19	122.9	3					1.1052	1.303	4 00	.54 0.						

SL 1 2 3 4 5 6 7 8 9	Y-1 M/SEC 217.3 213.4 210.4 205.9 197.5 186.8 178.8 176.2 173.5	V-2 M/SEC 149.1 150.1 151.7 152.2 147.7 139.7 131.8 127.6 123.3	VM-1 M/ SEC 147.7 145.5 144.2 140.7 132.7 113.8 93.7 89.6 88.0	VM-2 W/SEC 143.3 144.1 145.3 141.9 133.8 122.1 111.4 106.6 102.8	Y0-1 W/SEC 159.4 156.1 153.3 150.2 146.3 148.0 152.3 151.7 149.5	Y0-2 M/ SEC 41.2 41.9 43.4 54.8 62.7 67.8 70.4 70.1 68.2	RHOVM-1 KG/M2 SE 185.49 183.84 183.08 180.79 172.28 148.10 121.59 116.39 114.56	C KG/M 195 197 199 195 185 168 152	.66	EPSI-1 RADIAN 0.1007 0.0850 0.0713 0.0326 -0.0082 -0.0452 -0.0738 -0.0785 -0.0858	-0.0284 -0.0659 -0.0824					
SL.	B-1	B-2	M-1	M-2	INCS	INCM	DEA	TURN	D-FAC	01/EGA-B TOTAL	LOSS-P TOTAL	P02/ P01	PO/PO STAGE	TO/TO STAGE	%EFF-A TOT-STG	
	DEGREE	DEGREE			DEGREE	DEGREE		DEGREE 31.13	0.4998		0.0273	0.9809	1.3561	1.1015		90.04
1	47.1	16.0	0.6323	0.4250	-6.36	-3.74	6.14 5.66	30.78	0.4845		0.0202	0.9867	1.3528	1.0994	90.77	91.16
2	46.9	16.2	0.6206	0.4283	-6.06	-3.36 -3.35	5.41	30.09	0.4675		0.0133	0.9916	1.3561	1.0982	92.60	92.91
	46.7	16.6	0.6117	0.4333	-6.13 -6.40	-3.41	7.14	25.74	0.4407		0.0137	0.9920	1.3617	1.0997	92.53	92.85
4	46.8	21.]	0.5971	0.4344	-7.27	-4.04	6.85	22.69	0.4330		0.0138	0.9930	1.3598	1.1012	90.72	91.12
5	47.8	25.1	0.5709	0.3964	-5.03	-1.56	8.02	23.40	0.4510		0.0099	0.9956	1.3516	1.1068	84.26	84.92
6	52.4	29.1	0.5362 0.5096	0.3715	-1.33	2.32	9.38	26.14	0.4900	0.0330	0.0136	0.9946	1.3442	1.1173		76.20 73.85
7	58.4	32.3 33.3	0.5015	0.3588	-1.51	2.20	9.40	26.08	0.5115		0.0229	0.9912	1.3412	1.1203		73.07
8 9	59.4 59.5	33.5	0.4932	0.3465	-3.41	0.33	7.71	25.94	0.5308	0.0749	0.0314	0.9885	1.3392	1.1210	71.94	/3.0/
,	33.3	33.3	0.7332	0.0.00	••••						-nor 1	coct 2				
SL	V-1	V-2	VM-1	VM-2	VO-1	V0-2	RHOVM-1			PCT TE	EPSI-1	EPSI-2 DEGREE				
JL	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	LBWFT2SE	C LBM/F	TZSEC	SPAN	DEGREE 5.772	5.022				
1	713.0	489.2	484.6	470.2	523.0	135.3	37.99		• • •	0.0543	4.868	4.360				
ż	700.1	492.4	477.4	472.8	512.0	137.4	37.65			0.1078 0.1601	4.084	3.736				
3	690.3	497.7	473.0	476.9	502.9	142.6	37.50			0.3140	1.869	2.090				
4	675.4	499.2	461.7	465.7	493.0	179.8	37.03 35.28			0.5124	-0.470	0.286				
5	648.1	484.8	435.5	439.0	480.0	205.6 222.6	30.33			0.7091	-2.588	-1.627				
6	612.7	458.3	373.5	400.7	485.7	230.9	24.90			0.8564	-4.227	-3.774				
7	586.5	432.4	307.3	365.6	499.6 497.9	230.3	23.84			0.9050	-4.499	-4.721				
8	578.2	418.5	294.0	349.6 337.3	490.6	223.7	23.46			0.9531	-4.915	-5.720				
9	569.2	404.7	288.8	337.3	430.0	220.7	20110		-							
		NCORR INLET RPM	WCORR INLET LBM/SEC	WCORR INLET KG/SEC			STAGE	P02/P01	PO/PO STAGE	EFF-AD STAGE %	EFF-P STAGE					
		8547.00	65.33	29.63			1.1052	0.9918	1.3541	86.09	86.67					

70 PERCENT SPEED (ROTOR PERFORMANCE)

AIRFOIL AERODYNAMIC SUMMARY PRINT
RUN NO 40 SPEED CODE 70 POINT NO 6

SL 12 3 4 5 6 7 8	V-1 M/ SEC 113.6 118.7 121.0 123.0 123.2 121.8 119.2 116.8 114.2	215.8 210.9 207.9	VM-1 M/SEC 112.8 117.5 119.5 120.7 120.0 117.5 114.5 112.3	147.6	13.3 16.6 19.2 23.6 28.0 32.2 33.2	V0-2 M/SEC 157.5 153.9 150.3 145.4 139.0 134.7 134.8 133.6 129.9	191.9 198.9 205.7 225.6 251.6 276.1 293.5	208.8 225.2 247.0 268.8 285.1 290.6	211.3 216.9 221.5 235.3	V'-2 M/SEC 153.0 152.4 155.1 161.0 169.7 179.9 185.5 188.6 194.2	M/SEC -178.7 -182.3 -186.5 -202.0 -223.5 -243.9 -260.2 -266.6	M/SEC -40.4 -49.4 -58.5 -79.7 -107.9	KG/M2 S 128.99 134.48 136.73 138.00 137.23 134.50 131.09	SEC KG/N 184 3 181 3 181 3 187 3 169 3 156 3 141	.80 5.72 .87 5.37	0.0181 0.0023	-0.0870 -0.1143 -0.1211	
SL	B-1	B-2	в'-1	B*-2	M-1	M-2	M'-1	M'-2	INCS	INCM	DEY	TURN		OMEGA-B TOTAL	LOSS- TOTA		%EFF-A	%EFF-P TOTAL
	DEGREE	DEGREE	DEGREE	DEGREE					DEGREE	ULGKLL	DEGKEE	UEUKEE	0.4060	0.0493	0.014		6 96.36	96.52
1	6.7	46.9	57.65	15.31	0.3376	0.6285	0.6279	0.4455	0.41	6.69	12.77	42.34			0.018			
-	8.0	46.9	57.15	18.94	0.3530	0.6137	0.6452	0.4435	1./1		11.57	38.21						
2	9.1	46.3	57.33	22.19	0.3601	0.6049	0.6591	0.4513	2.65	8.61	12.00			0.0465	0.013			
		46.1	59.17	20 68	0.3661	0.5860	0.7006	0.4676	4.48	10.14	13.08	29.49		0.0391	0.011			
4	11.1		23.17 21 02	20.45	0.3669	0.5529	0.7554	0.4912	5.08	9.95	12.16	22.37	0.4844		0.014			
5	13.2	46.7	01.04	40 07	0.3626	0.5325	0.8058	0.5191	5.18	9.40	10.31	16.24	0.4742	0.0723	0.018			
6	15.3	48.2	64.31	40.07	0.3546	0.3203	0.0050	0.5326		8.55	9.27	12.21	0.4825	0.1159	0.026			
7	16.2	51.0		54.05	0.3540	0.4970	0.0407	0.5320	5.02	8.25	9.43	10.89		0.1277	0.027			
8	16.1	51.9	67.16	56.27	0.3474	0.4009	0.0001	0.3403	4.73	7.71	9.83	9.38		0.1255	0.025	57 1.3248	83.82	84.45
9	16.0	52.1	68.08	58.70	0.3393	0.4/0/	0.8738	0.5502	4.73	7.71	7.00	3.00	•••••					
									y'-1	٧'-2	vn'_3	VO'-2	RHOVM-	-1 RHC)VM-2	EPSI-1	EPSI-2	
ZL.	V-1	V-2	AW-J	VM-2	VO-1	VO-2	U-1	U-2	CT /CCC	ET/SEC	ET/SEC	FT/SEC	LBM/FT29	SEC LBM/F	T2SEC	DEGREE	DEGREE	SPAN
	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FT/SEC	FI/SEC	F 1/3EC	F1/3EC	502.0	506 2	-172 5	26.42	37	.82	2.073	4.989	0.0499
1	372.8	708.1	370.2	484.2	43.5	510./	029.7	047.6	055.5	500.0					1.17	1.038		0.1000
2	389.4	691.9	385.6	473.0	54.6	505.0		667.2		500.0	-390.1	102.2			.26	0.131	3.152	0.1501
3	397.0	682.0	391.9	471.2	63.1	493.0			726.6	508.9	-0110-	-134.1			5.74	-2.335		0.3000
4	403.4	662.1	395.9	459.0	77.5	477.2	740.3	738.7		528.3	-662.8	-201.0			.78	-5.209	-2.482	
Ė	404.3	626.8	393.7	429.8	91.9	456.2	825.4		832.4	556.8	-/33.4	-354.1				-7.444	-4.983	0.7000
6	399.7	592.0	385.5	393.8	_	442.0	905.8	881.9	888.2	590.4	-800.2	-439.9	27.55		2.10	-8.531	-6.549	0.8499
7	391.1	567.8	375.5	356.2	109.1	442.2		935.5	932.7	608.5	-853.8	-493.4	26.85		.06	-8.737	-6.940	0.0100
′	383.3		368.3	342.5	106.3	438.2	-		949.0	618.7	-874.6	-515.2	26.32	-	.93		-7.548	0.3000
8			360.1	330.2		426.3				637.2	-895.0	-545.0	25.71	26	5.97	-8.883	-/.540	0.5500
9	374.6	539.2	300.1	330.2	103.2	720.0	3301-											
		MC1/A1 .BM/SEC	HC1/A	3					T02/T01		ROT	TOR R	FF-P OTOR %					
		SQFT 27.28	SQM 133.1						1.0958	1.345	0 92		2.61					

AIRFOIL AERODYNAMIC SUMMARY PRINT RUN NO 40 SPEED CODE 70 POINT NO 6

. •		•														
SL 1 2 3 4 5 6 7 8 9	Y-1 WSEC 220.0 215.5 212.8 207.1 196.5 185.5 177.8 174.3 169.5	Y-2 M/ SEC 164.6 166.1 166.9 165.4 159.6 152.5 144.5 137.8 131.9	VM-1 M/SEC 155.0 152.0 151.5 147.7 138.5 126.6 114.4 110.2	VM-2 M/SEC 158.5 160.1 160.6 156.4 146.7 135.9 126.3 120.1 115.3	VO-1 W/SEC 156.2 152.8 149.4 145.1 139.3 135.6 136.1 135.0 131.5	V0-2 IV SEC 44.5 44.2 45.2 53.8 62.9 69.1 70.1 67.5 63.9	RHOVM-1 KG/M2 SE 192.42 189.78 190.24 187.71 177.98 163.95 148.46 142.98 138.91		.07 .47 .47 .92 .58 .91	RADIAN 0.0926 0.0846 0.0678 0.0256 -0.0213	-0.0114 -0.0499 -0.0826 -0.0943	,				
SL	B-1 DEGREE	8-2 DEGREE	M-1	M-2	INCS DEGREE	INCM DEGREE	DEV Degree	TURN DEGREE	D-FAC	ONEGA-B TOTAL	LOSS-P TOTAL	P02/ P01	PO/PO STAGE	TO/TO STAGE 1.0986	%EFF-A TOT-STG 90.20	%EFF-P TOT-STG 90.60
•	45.2	15.6	0.6417	0.4717	-8.35	-5.73	5.75	29.53	0.4246	0.0784	0.0266	0.9811	1.3473		91.85	92.18
,	45.1	15.4	0.6283	0.4767	-7.92	-5.22	4.88	29.70	0.4053		0.0155	0.9896	1.3444	1.0961	93.77	94.03
2	44.5	15.7	0.6202	0.4795	-8.29	-5.52	4.50	28.84	0.3917		0.0110	0.9930	1.3456	1.0944	93.77	94.13
	44.4	18.9	0.6024	0.4750	-8.79	-5.81	5.00	25.48	0.3709		0.0119	0.9931	1.3457	1.0944	92.50	92.81
4 5	45.2	23.2	0.5698	0.4577	-9.88	-6.65	4.96		0.3529		0.0099	0.9950	1.3383	1.0939	89.76	90.16
6	47.0	27.0	0.5360	0.4364	-10.46	-7.00	5.95	20.03	0.3457		0.0083	0.9964		1.0993	83.10	83.75
7	50.0	29.1	0.5112	0.4118	-9.75	-6.10	6.18		0.3712		0.0189	0.9928	1.3196	1.1007	79.96	80.71
8	50.8	29.4	0.5003	0.3919	-10.12	-6.41	5.43	21.44	0.4041	0.0807	0.0348	0.9874	1.3057	1.0998	79.38	80.15
9	50.9	29.0	0.4860	0.3747	-11.99	-8.24	3.15	21.92	0.4267	0.0956	0.0421	0.9858	1.3057	1.0550	75.50	00
SL 1 2 3 4	Y-1 FT/SEC 721.9 707.2 698.1 679.4	V-2 FT/SEC 540.1 545.0 547.6 542.7	VII-1 FT/SEC 508.5 498.8 497.1 484.7	VM-2 FT/SEC 520.0 525.3 527.1 513.2	VO-1 FT/SEC 512.4 501.3 490.1 476.1	145.9 145.0 148.4 176.5	RHOVM-1 LBM/FT2SE 39.41 38.87 38.96 38.44	C LBM/F 43 43 44 44	T2SEC .21 .84 .13 .11	PCT TE SPAN 0.0543 0.1078 0.1601 0.3140 0.5124	EPSI-1 DEGREE 5.307 4.849 3.882 1.464 -1.221	EPSI-2 DEGREE 4.919 4.153 3.435 1.539 -0.653				
5	644.7	523.6	454.6	481.3	457.2	206.3	36.45			0.7091	-3.461	-2.856				
6	608.7	500.2	415.3	445.8	445.0	226.8	33.58			0.8564	-5.073	-4.730				
7	583.3	474.0	375.4	414.4	446.5	230.2 221.6	30.40 29.28			0.9050	-5.653	-5.406				
8	571.8	452.1	361.6	394.1	443.0	209.6	28.45			0.9531	-6.298	-6.070				
9	556.0	432.6	350.8	378.5	431.4	209.0	20.43	٠,		• • • • • • • • • • • • • • • • • • • •						
		NCORR INLET RPM 8547.00	NCORR INLET LBM/SEC 70.74	NCORR INLET KG/SEC 32.09			TO/TO P STAGE 1.0958		PO/PO STAGE 1.3347	EFF-AD STAGE % 89.81	EFF-P STAGE % 90.21					

DISTRIBUTION LIST

1.	NASA-Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135 Attn:		
	Report Control Office Technical Utilization Office Library Fluid Mechanics & Acoustics Div. Fan & Compressor Branch C. L. Ball T. F. Gelder N. L. Sanger L. Reid W. A. Rostafinski D. M. Sandercock Acquisition Division N. T. Musial W. R. Britsch R. D. Hager C. C. Ciepluch A. J. Strazisar	MS 60-1 MS 7-3 MS 60-3 MS 60-2 MS 60-5 MS 60-5 MS 60-5 MS 60-5 MS 60-5 MS 60-5 MS 500-305 MS 500-318 MS 301-2 MS 301-4 MS 77-5	1 1 2 1 5 1 1 1 1 1 1
2.	NASA Scientific and Technical Information Facili P. O. Box 8757 Baltimore/Washington International Airport Maryland 21240 Attn: Accessioning Dept.	ity	25
3.	NASA Headquarters Washington, D.C. 20546 Attn: RTP-6/G. Banerian		1
4.	NASA-Langley Research Center Hampton, VA 23665 Attn: S. J. Morris L. Hasel	MS 249B MS 407	1
5.	U.S. Army Research & Technology Laboratories Director Applied Technology Laboratory Fort Eustis, VA 23604 Attn: DAVDL-EU-TA, J. White		1

6.	Headquarters Wright-Patterson AFB, OH 45433 Attn: E. E. Bailey, AFAPL/DO R. P. Carmichael, ASD/XRHI S. Kobelak, AFAPL/TBP A. J. Wennerstrom, AFAPL/TBX M. A. Stibich, AFAPL/TBC]]]]
7.	Naval Air Systems Command NASAIR/52022 Technical Support Branch Washington, D. C. 20362 Attn: R. A. Retta		1
8.	U.S. Navy Ship/Engineering Center Code 6141 Washington, D. C. 20362 Attn: G. L. Graves		7
9.	Naval Air Propulsion Test Center Trenton, NJ 08628 Attn: V. Labosky J. Pichtelberger P. Piscopo	PE-7 PE-7 PE-42]]]
10.	Pratt & Whitney Aircraft Government Products Division P. O. Box 2691 West Palm Beach, FL 33402 Attn: J. Brent R. E. Davis J. A. Fligg B. A. Jones R. W. Rockenbach H. D. Stetson		1 1 1 1 1 1 1
11.	Pratt & Whitney Aircraft 400 Main Street East Hartford, CT 06108 Attn: T. J. Gillespie N. T. Monsarrat R. E. Pallatine A. W. Stubner H. D. Weingold D. J. Hopwood W. M. Foley (UTRC) Library (CPD) Library (UTRC)	1 18-26 1 18-26 1 18-26 1 18-26 1 18-26 1 18-26]]]]]

12.	Detroit Diesel Allison Division, GMC Department 8894, Plant 8 P. O. Box 894 Indianapolis, IN 46206 Attn: R. F. Alverson J. L. Dettner R. L. Jay G. E. Holbrook P. Tramm Library	U-28 U-28 W-16 T-22 U-27 S-5	1 1 1 1
13.	Northern Research and Engineering 219 Vassar Street Cambridge, MA 02139 Attn: K. Ginwala		1
14.	General Electric Company Flight Propulsion Division Cincinnati, OH 45215 Attn: J. F. Klapproth C. C. Koch J. W. McBride Marlen Miller D. E. Parker D. Prince L. H. Smith J. B. Taylor J. S. Keith D. C. Wisler Technical Information Center	K-221 H-4 E-198 K-69 H-43 H-48 H-4 J-40 H-4 H-4	111111111111111111111111111111111111111
15.	General Electric Company 1000 Western Avenue Lynn, MA 01910 Attn: D. P. Edkins F. F. Ehrich L. H. King R. E. Neitzel	M.D. 24048 M.D. 24505 M.D. 240G M.D. 24502	1 1 1
16.	Curtiss-Wright Corporation Wright Aeronautical Wood-Ridge, NJ 07075 Attn: R. Cole S. Lombardo		1
17.	AiResearch Manufacturing Company P. O. Box 5217 Phoenix, AZ 85010 Attn: J. Dodge G. L. Perrone D. Seyler J. Switzer	M.S. 503-4R]]]

18.	AiResearch Manufacturing Company 2525 West 190th Street Torrance, CA 90509 Attn: R. Carmody R. Jackson L. W. Pearson Library]
19.	Union Carbide Corporation Nuclear Division Oak Ridge Gaseous Diffusion Plant P. O. Box P Oak Ridge, TN 37830 Attn: J. L. Petty, K1401	MS 385	1
20.	AVCO Corporation Lycoming Division 550 South Main Street Stratford, CT 06497 Attn: C. Kuintzle Library		1
21.	Teledyne, CAE 1330 Laskey Road Toledo, OH 43612 Attn: Eli H. Benstein Howard C. Walch		1
22.	Solar 2200 Pacific Highway San Diego, CA 92138 Attn: P. A. Pitt J. Watkins	A-5 C-5]
23.	Goodyear Atomic Corporation Box 628 Piketon, OH 45661 Attn: C. O. Langebrake		7
24.	Hamilton Standard Division of United Technologies Corporation Windsor Locks, CT 06096 Attn: Mr. C. Rohrback, Chief, Aerodynamics & Hydrodynamics	MS 1A-3-6	7
25.	Westinghouse Electric Corporation Combustion Turbine System Division Lester, PA 19113	MS 4703	7

26.	Williams Research Corporation P. O. Box 95 Walled Lake, MI 48088 Attn: J. Richard Joy R. A. Horn, Jr.]
27.	Eaton Research Center P. O. Box 766 Southfield, MI 48037 Attn: Librarian		7
28.	Chrysler Corporation Research Office Department 9510 P. O. Box 1118 Detroit, MI 48288 Attn: Ronald Pampreen	CIMS 418-37-18	1
29.	Elliott Company Jeannette, PA 15644 Attn: John W. Schlirf Vice President of Engineering		1
30.	Caterpillar Tractor Company Research Dept. Technical Center, Bldg. F Peoria, IL 61629 Attn: J. Wiggins		1
31.	BMAD Boeing Aerospace Co. P. O. Box 3999 Seattle, WA 98124 Attn: A. D. Welliver	MS 41-52	1
32.	Douglas Aircraft Company 3855 Lakewood Blvd. Long Beach, CA 90801 Attn: Dr. Albert C. Munson, 3557		7
33.	Lockheed Missile and Space Company P. O. Box 504 Sunnyvale, CA 94088 Attn: Technical Information Center Dept. 52-50, Bldg. 106		1
34.	California Institute of Technology Pasadena, CA 91125 Attn: Professor Duncan Rannie Dr. Frank Marble	205-45 205-45	1

35.	Iowa State University of Science and Technology Ames, IA 50010 Attn: Professor G. K. Serovy Dept. of Mech. Engrg.	1
36.	Massachusetts Institute of Technology Cambridge, MA 02139 Attn: Dr. J. McCune	•
37.	University of Notre Dame Notre Dame, IN 46556 Attn: Engineering Library	1
38.	Penn State University Department of Aerospace Engineering 153H Hammond Building University Park, PA 16802 Attn: Prof. B. Lakshminarayana	7
39.	University of Tennessee Space Institute Tullahoma, TN 37388 Attn: Dr. M. Kurosaka Dr. J. Caruthers	7
40.	University of Delaware Newark, DE 19711 Attn: Prof. Barry Seidel Dept. of Mech. & Aero. Engrg.	1
41.	Naval Postgraduate School Monterey, CA 93940 Attn: R. P. Shreeve, Director Turbopropulsion Laboratory	1

