

# Algorithms and Programming

Lecture 11 – Problem solving methods (II)

Camelia Chira

### Course content

Programming in the large

Programming in the small

- Introduction in the software development process
- Procedural programming
- Modular programming
- Abstract data types
- Software development principles
- Testing and debugging
- Recursion
- Complexity of algorithms
- Search and sorting algorithms
- Problem solving methods
  - Generate and test, Backtracking, Divide et impera
  - Dynamic programming, Greedy
- Recap

### Last time

- Problem solving methods
  - Types
  - Techniques
    - Exact methods
    - Heuristic methods
  - Algorithms
    - Backtracking
    - Divide and conquer

# Today

- Exact methods
  - Dynamic programming

- Heuristics methods
  - Greedy algorithms

### Recap: the problem solving loop

- Step in solving a problem
  - Problem definition
  - Problem analysis
  - Choose problem solving technique
    - Search
    - Knowledge representation
    - Abstraction



### Problem solving by search

- Solving problems by search using standard methods
  - Exact methods
    - Generate and test
    - Backtracking
    - Divide and conquer
    - Dynamic programming
  - Heuristic methods
    - Greedy method

### Dynamic Programming (DP)

#### Basic idea:

- Break the problem in overlapping sub-problems which are similar to the initial problem but are smaller in size
- Solve the sub-problems
- Compute the final solution by combining the sub-solutions
- Applicable in solving problems where:
  - Problems where one needs to find the best decisions one after another
  - The solution is the result of a sequence of decisions dec1; dec2; ...; decn.
  - The principle of optimality holds (whatever the initial state is remaining decisions must be optimal with regard the state following from the first decision)

### DP: Mechanism

- Break the problem in nested sub-problems P(P1(P2(P3(...(Pn))...)
- Solve the most inner sub-problem P<sub>n</sub> and store the partial result
- Solve the sub-problem  $P_{n-1}$  based on the solution found for sub-problem  $P_n$  and store the partial result
- Solve the sub-problem  $P_{n-2}$  based on the solution found for sub-problem  $P_{n-1}$  and store the partial result
- •
- Solve the sub-problem P<sub>1</sub> based on the solution found for sub-problem P<sub>2</sub> and store the partial result
- Solve the problem P based on the solution found for sub-problem P<sub>1</sub> and store the final result

### Dynamic Programming

- When DP can be used?
  - Problem P (optimization problem) with input data D can be solved by solving the same problem P but with input data d, where d < D</li>
  - Solution is the result of a sequence of decisions dec1, dec2, ...
  - The problem can be divided in overlapping problems
  - The solutions of the sub-problems can be stored for future uses
  - The principle of optimality
- Features
  - Always gives the optimal solution
  - Polynomial run time

### Dynamic Programming

- Notations
- We consider states so, s1, ... sn
  - s<sub>0</sub> is the initial state
  - sn is the final state
  - States are obtained by successively applying the sequence of decisions dec<sub>1</sub>, dec<sub>2</sub>,..., dec<sub>n</sub> (using the decision d<sub>i</sub> we pass from state s<sub>i-1</sub> to state s<sub>i</sub>)

$$s_0 \xrightarrow{\mathsf{dec}_1} s_1 \xrightarrow{\mathsf{dec}_2} s_2 \xrightarrow{\mathsf{dec}_n} s_{\mathsf{n-1}} \xrightarrow{\mathsf{dec}_n} s_{\mathsf{r}}$$

### DP: Principle of optimality

- Principle of optimality
  - The general optimum implies the local / partial optimum
  - In an optimal sequence of decisions, each decision is optimum
  - The principle does not hold true for any problem
- Formally, a sequence of decisions  $dec_1$ ,  $dec_2$ ,...,  $dec_n$  optimally leads from state  $s_0$  to state  $s_n$  if at least one of the following conditions is satisfied:
  - $dec_k$ ,  $dec_{k+1}$ ,...,  $dec_n$  is a sequence of decisions that optimally leads from state  $s_{k-1}$  to state  $s_n$  for any k,  $1 \le k \le n$  (**forward** method)
  - $dec_1$ ,  $dec_2$ ,...,  $dec_k$  is a sequence of decisions that optimally leads from state  $s_0$  to state  $s_k$  for any k,  $1 \le k \le n$  (backward method)
  - $dec_{k+1}$ ,...,  $dec_n$  and  $dec_1$ ,  $dec_2$ ,...,  $dec_k$  are two sequences of decisions that optimally lead from state  $s_{k-1}$  to state  $s_n$  and from state  $s_0$  to state  $s_k$  for any k,  $1 \le k \le n$  (**mixed** method)

### Principle of optimality

- In solving a problem, we have to make a sequence of n decisions
- If this sequence is optimal then the last k decisions (1<k<n) must be optimal



### DP: Algorithm

- Verify the principle of optimality
- Establish the structure of the solution
  - Break the problem in sub-problems
  - Overlapping sub-problems break down the problem into sub-problems which are reused multiple times
- Memoization
  - Store the solutions to the sub-problems for later use
- Based on the principle of optimality, the value of the optimal solution is recursively defined
- The value of the optimal solution is computed in a bottom-up manner, starting from the smallest cases for which the value of the solution is known

• **Problem**: find the longest increasing subsequence from a list of integer numbers.

| i    | 1 | 2 | 3 | 4 | 5  |
|------|---|---|---|---|----|
| list | 2 | 1 | 9 | 6 | 12 |

- Solution
  - For each i, calculate the length of the longest increasing subsequence that can be formed
  - In the end, select the element where the longest subsequence is formed

| i    | 1                          | 2                                | 3                | 4             | 5              |
|------|----------------------------|----------------------------------|------------------|---------------|----------------|
| list | 2                          | 1                                | 9                | 6             | 12             |
| L    | <b>3</b> 2,9,12 sau 2,6,12 | <b>3</b><br>1,9,12 sau<br>1,6,12 | <b>2</b><br>9,12 | <b>2</b> 6,12 | <b>1</b><br>12 |

• **Problem**: find the longest increasing subsequence from a list of integer numbers.

| i    | 1 | 2 | 3 | 4 | 5  |
|------|---|---|---|---|----|
| list | 2 | 1 | 9 | 6 | 12 |

- Step 1: The principle of optimality
  - The principle of optimality is verified in its forward variant
  - The longest subsequence that starts at position i has k elements => the subsequences that can be formed from it (with k-1, k-2,...elements) are increasing subsequences and have maximal length

• **Problem**: find the longest increasing subsequence from a list of integer numbers.

| i    | 1 | 2 | 3 | 4 | 5  |
|------|---|---|---|---|----|
| list | 2 | 1 | 9 | 6 | 12 |

- Step 2: The structure of the optimal solution
  - Break the problem in sub-problems
  - Problem: determine the longest increasing subsequence
  - Sub-problem: determine the longest increasing subsequences that starts with list[i] for i =n, n-1, n-2,..., 1. These subsequences have the length at most 1,2,...,n.
  - Solution: the longest subsequence from the n subsequences.

| DP: Example | 5 |
|-------------|---|
|-------------|---|

| i    | 1 | 2 | 3 | 4 | 5  |
|------|---|---|---|---|----|
| list | 2 | 1 | 9 | 6 | 12 |

• **Problem**: longest increasing subsequence

- Step 3: Determine the global optimum based on the partial optimas
  - Let L<sub>i</sub> be the length of the longest subsequence that starts with list[i]
  - The increasing sub-sequences that start with list[i] are obtained by adding the element list[i] in front of an increasing subsequence that starts with list[j] if list[i] ≤ list[j]

$$L_i = 1 + \max_{j=i+1,n} \{L_j, list[i] \le list[j]\}, for i = n-1, ..., 1$$

• Optimal solution:  $L_{max} = \max_{i=i,n} \{L_i\}$ 

•  $L_n = 1$ 

```
def long_seq(s):
   L = [0] * len(s)
    ind = [0] * len(s) #index of the successor of list[i] in the long seq
   #compute vector L
   L[len(s) - 1] = 1
   ind[len(s) - 1] = -1
   for i in range(len(s) - 2, -1, -1):
        ind[i] = -1
        L[i] = 1
        for j in range(i+1, len(s)):
            if (s[i] <= s[j]):
                if (L[i] <= L[j] + 1):</pre>
                    L[i] = L[j] + 1
                    ind[i] = i
    #determine position max elem from L
   \max pos = 0
   for i in range(1, len(s)):
        if (L[i] > L[max pos]):
            \max pos = i
   #construct the solution
    sol = []
   i = max pos
                                     def test long seq():
   while (i != -1):
                                         assert long seq([2,1,9,6,12]) == [2, 6, 12]
        sol.append(s[i])
                                         assert long seq([0,-2,3,1,0,-1,2,5,-5,5,-8.10,7,-3,1]) == [0,0,2,5,5,7]
        i = ind[i]
    return sol
```

**Stagecoach problem** (TSP with less roads due to hostile territory)



#### Costs:



10

- There are n step
- Decision regarding state in step n is  $x_n$
- From state s in step n choose  $x_n$  the next state:  $f_n(s, x_n)$  is the cost of best decision for all remaining steps
- $x_n^*(s)$  is value of  $x_n$  that minimizes  $f_n(s,x_n)$  and  $f_n^*(s)$  is the minimum corresponding value
- The objective is to find  $f_1^*(s)$ 
  - To do that, first we need to find  $f_4^*(s)$ ,  $f_3^*(s)$ ,  $f_2^*(s)$



 $f_4^*(s) = ?$ For which  $x_4$  is  $f_4(s, x_4)$  min?  $x_4$  can be only 10 ...

$$\begin{array}{c|cccc}
s & f_4^*(s) & x_4^*(s) \\
\hline
8 & 3 & 10 \\
9 & 4 & 10
\end{array}$$

$$f_2^*(s) = ?$$
  
 $f_2(s, x_2) = cost(s, x_2) + f_3^*(x_2)$ 

$$f_3^*(s) = ?$$
  
 $f_3(s, x_3) = cost(s, x_3) + f_4^*(x_3)$   
 $x_3$  can be 8 or 9  
s can be 5, 6 or 7

| s | $f_3(s,8)$ | $f_3(s, 9)$ | $ f_3^*(s) $ | $x_{3}^{*}(s)$ |
|---|------------|-------------|--------------|----------------|
| 5 | 4          | 8           | 4            | 8              |
| 6 | 9          | 7           | 7            | 9              |
| 7 | 6          | 7           | 6            | 8              |

$$f_1^*(s) = ?$$

#### Solutions (cost 11):

### Greedy method

#### Basic idea

- Break the problem in successive sub-problems similar to the initial problem but of smaller dimensions
- Solve the sub-problems and determine the final solution by successively selecting the best sub-solutions
- Global optimum = a sequence of local optimas

#### Mechanism

- Divide the problem in successive sub-problems P1, P2, ...Pn
- Progress to the final solution by selecting at each step the best decision

### Greedy method

- When to use Greedy?
  - Problem P (optimization)
  - Solution is the result of a successive selections of local optima
  - Problems with solution represented by subsets or chartesian products that achieve a certain optimum (minum or maximum) of an objective function
- Features
  - Can reach the optimal solution
  - Builds the solution step by step
  - Offers a single solution (unlike backtracking)
  - Polynomial run time
- Disadvantages: Short-sighted and non-recoverable

### Greedy Algorithm

• Let S be a solution to the problem and C the set of local optima for each sub-problem (candidate elements of the solution)

```
def greedy(C):
    S = Φ
    while (not isSolution(S)) and (C≠Φ):
        el = selectMostPromissing(C)
        C.remove(el)
        if acceptable(el, S):
            S.append(el)
    if isSolution(S):
        return S
    else:
        return None
```

### Greedy - Example of Problems



#### Coins Problem

 Consider a sum of money and a set of coins units. The problem is to establish a modality to pay the sum of money using a minimum number of coins.

#### Knapsack Problem

• Consider a set of objects, each having a value and weight, and a knapsack able to support a total weight of W. Place in the knapsack some of the objects, such that the total weight of the objects is not larger than W and the objects have max value.

#### General Problem

- Let us consider the given set C of candidates to the solution of a given problem P.
- The objective is to provide a subset B to full certain conditions (called internal conditions) and to maximize (minimize) a certain objective function.

### Greedy strategy

- Greedy algorithm finds the solution in an incremental way
- Greedy strategy
  - Successively incorporate elements that realize the local optimum
  - No second thoughts are allowed on already made decisions
- Generally, the required elements of a greedy strategy are:
  - A candidate set (from which a solution is created)
  - A selection function (selects the best candidate to be added to the solution)
  - A feasibility function (determines if a candidate can be used in a solution)
  - An objective function (assigns a value to a solution, or a partial solution)
  - A solution function (checks if a complete solution has been found)

### Greedy: Coins Problem

 Problem: Find a way to pay a sum of money using a minimum number of coins (different values of coins are available).

- Data: Sum = 80, Coins = [1, 5, 10, 25, 50]
- Results: 80 = 50 + 25 + 5
- Data: Sum = 10, Coins = [1, 2, 3, 4]
- Results: 10 = 4 + 3 + 2 + 1
- Data : Sum = 10, Coins = [2, 3, 4, 5]
- Results: 10 = 5 + 3 + 2

### Greedy: Example

- Solution
  - C list of available coins
  - isSolution(sol)
    - If the sum of coins selected in sol is equal to the desired sum
  - selectMostPromissing(C)
    - Select the highest value coin in C
  - acceptable(el,sol)
    - If the sum of coins in sol + el is not over the desired sum

```
def sum(1):
                                          def test greedy coins():
    s = 0
                                               assert greedy coins([1, 5, 10, 25, 50], 80) == [50, 25, 5]
   for el in l:
                                               assert greedy_coins([1, 2, 3, 4], 10) == [4, 3, 2, 1]
        s = s + el
                                              \#assert greedy\_coins([1, 2, 3, 4, 5], 10) == [5, 3, 2]
   return s
                                               assert greedy coins([2, 3, 4, 5], 10) == None
def isSolution(solution, limit):
                                          test greedy coins()
   return sum(solution) == limit
def selectMostPromissing(candidates):
   return max(candidates)
def acceptable(element, solution, limit):
   return sum(solution) + element <= limit</pre>
def greedy coins(coins, sumOfMoney):
    sol = []
    while (not isSolution(sol, sumOfMoney)) and (coins != []):
        el = selectMostPromissing(coins)
        coins.remove(el)
        if acceptable(el, sol, sumOfMoney):
            sol.append(el)
    if isSolution(sol, sumOfMoney):
        return sol
    else:
        return None
```

## Knapsack problem

- Each object has a value (v) and a weight (w).
- Place objects of total maximum value without going over the total weight W allowed.

maximize 
$$\sum_{i=1}^n v_i x_i$$
 subject to  $\sum_{i=1}^n w_i x_i \leq W$  and  $x_i \in \{0,1\}$ .

- Greedy Solution
  - Max value vs. Min weight vs. Max value/weight



- > 0/1 Knapsack
- > Fractional Knapsack

### Stagecoach problem

**Stagecoach problem** (TSP with less roads due to hostile territory)



|   | 2 | 3 | 4 |
|---|---|---|---|
| 1 | 2 | 4 | 3 |

|   | 5 | 6 | 7 |
|---|---|---|---|
| 2 | 7 | 4 | 6 |
| 3 | 3 | 2 | 4 |
| 4 | 4 | 1 | 5 |

#### **DP Solutions (cost 11):**

#### **Greedy Solution:**

- 1 -> 2 (cost 2)
- 2 -> 6 (cost 4)
- 6 -> 9 (cost 3)
- 9 -> 10 (cost 4)

=> Cost 13 !!

### Dynamic Programming vs Greedy

Both techniques are applied in optimization problems

- DP is applicable to problems in which the general optimum implies partial optima
- Greedy is applicable to problems for which the general optimum is obtained from partial (local) optima

- DP always provides the optimal solution
- Greedy does not guarantee finding the optimal solution

### Example

- Example: take the problem of finding the optimal path between two vertices i and j of a graph
- The principle of optimality is verified
  - If the path from i to j is optimal and it passes through node x, then the path from i to x is optimal and also the path from x to j is optimal.
- The fact that the general optimum implies partial optima does not mean that partial optima also implies the general optimum
  - if the paths i -> x and x -> j are optimal, there is no guarantee that the path from i to j that passes through x is also optimal
- Greedy , DP

### Recap today

Problem solving methods

- Dynamic programming
- Greedy

### Reading materials and useful links

- 1. The Python Programming Language <a href="https://www.python.org/">https://www.python.org/</a>
- 2. The Python Standard Library <a href="https://docs.python.org/3/library/index.html">https://docs.python.org/3/library/index.html</a>
- 3. The Python Tutorial <a href="https://docs.python.org/3/tutorial/">https://docs.python.org/3/tutorial/</a>
- 4. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.
- MIT OpenCourseWare, Introduction to Computer Science and Programming in Python, <a href="https://ocw.mit.edu">https://ocw.mit.edu</a>, 2016.
- K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002. <a href="http://en.wikipedia.org/wiki/Test-driven\_development">http://en.wikipedia.org/wiki/Test-driven\_development</a>
- 7. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999. <a href="http://refactoring.com/catalog/index.html">http://refactoring.com/catalog/index.html</a>