Assignment 1 2022-June

Session-06-27-2022-shift-1:16-30

EE24BTECH11049 Patnam Shariq Faraz Muhammed

MCQ

1)	Five numbers x_1, x_2, x_3, x_4, x_5 are randomly selected from the numbers $1, 2, 3, \dots, 18$
	and are arranged in the increasing order $(x_1 < x_2 < x_3 < x_4 < x_5)$. The probability
	that $x_2 = 7$ and $x_4 = 11$ is:

(2022-Jun-27-S1)

1

2)	Let X	be a	random	variable	having	binomial	distribution	B $(7, p)$.	If P (X=3) =
	$\mathbf{5P}(X=4)$ then the sum of the mean and the variance of X is:									

(2022-Jun-27-S1)

a)
$$\frac{105}{16}$$

a) $\frac{1}{136}$

b)
$$\frac{7}{16}$$

b) $\frac{1}{72}$ c) $\frac{1}{68}$

c)
$$\frac{77}{36}$$

d)
$$\frac{49}{16}$$

d) $\frac{1}{34}$

3) The value of

$$\cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

is equal to;

(2022-Jun-27-S1)

a)
$$-1$$

b)
$$-\frac{1}{2}$$

b)
$$-\frac{1}{2}$$
 c) $-\frac{1}{3}$

d)
$$-\frac{1}{4}$$

4)

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \tan^{-1}\left(\tan\frac{3\pi}{4}\right)$$

is equal to;

(2022-Jun-27-S1)

- a) $\frac{11\pi}{12}$
- b) $\frac{17\pi}{12}$
- c) $\frac{31\pi}{12}$
- d) $-\frac{3\pi}{4}$
- 5) The boolean expression $(\sim (p \land q)) \lor q$ is equivalent to:

(2022-Jun-27-S1)

a) $q \to (p \land q)$

c) $p \to (p \to q)$

b) $p \rightarrow q$

d) $p \to (p \lor q)$

INTEGER

1) let $f : \mathbf{R} \mapsto \mathbf{R}$ be a function defined by

$$f(x) = \frac{2e^{2x}}{e^{2x} + e^x}$$
 then $f\left(\frac{1}{100}\right) + f\left(\frac{2}{100}\right) + f\left(\frac{3}{100}\right) + \dots + f\left(\frac{99}{100}\right)$

is equal to _____

(2022-Jun-27-S1)

2) If the sum of all the roots of the equation

$$e^{2x} - 11e^x - 45e^{-x} + \frac{81}{2} = 0$$

is $\log_e p$, then p is equal to _____

(2022-Jun-27-S1)

3) The positive value of the determinant of the matrix A, whose

$$adj (adj (A)) = \begin{pmatrix} 14 & 28 & -14 \\ -14 & 14 & 28 \\ 28 & -14 & 14 \end{pmatrix},$$

is _____

(2022-Jun-27-S1)

4) The number of ways, 16 identical cubes, of which 11 are blue and rest are red, can be placed in a row so that between any two red cubes there should be at least 2 blue cubes, is _____

(2022-Jun-27-S1)

5) If the coefficient of x^{10} in the binomial expansion of

$$\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}} + \frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$$

is $5^k l$ where $l, k \in \mathbb{N}$ and l is co-prime to 5, then k is equal to _____(2022-Jun-27-S1)

6)

$$A_1 = \{(x, y) : |x| \le y^2, |x| + 2y \le 8\}$$
 and $A_2 = \{(x, y) : |x| + |y| \le k\}$.

if $27Area(A_1) = 5Area(A_2)$, then k is equal to:

(2022-Jun-27-S1)

7) If the sum of the first ten terms of the series

$$\frac{1}{5} + \frac{2}{65} + \frac{3}{325} + \frac{4}{1025} + \frac{5}{2501} + \dots \text{ is } \frac{m}{n}$$

where m and n are co-prime numbers, then m + n is equal to _____

(2022-Jun-27-S1)

8) A rectangle R with end points of one of its sides as (1,2) and (3,6) s inscribed in a circle. If the equation of a diameter of the circle is 2x - y + 4 = 0, then the area of R is _____

(2022-Jun-27-S1)

9) A circle of radius 2 unit passes through the vertex and the focus of the parabola $y^2 = 2x$ and touches the parabola $y = \left(x - \frac{1}{4}\right)^2 + \alpha$ where $\alpha > 0$. Then $(4\alpha - 8)^2$ is equal to _____

(2022-Jun-27-S1)

10) Let the mirror image of the point (a, b, c) with respect to the plane 3x-4y+12z+19=0 be $(\alpha-6,\beta,\gamma)$. if a+b+c=5, then $7\beta-9\gamma$ is equal to _____

(2022-Jun-27-S1)