UNIVERSITÉ DE MONTRÉAL

Devoir n°2

Par
Lenny SIEMENI TCHOKOTE
Julien KIANG

Baccalauréat Informatique

Faculté des arts et des sciences Département d'Informatique et Recherche Opérationnelle

Travail présenté à Alena Tsikhanovich

Dans le cadre du cours IFT1227 Architecture des Ordinateurs

Question 1:

I. L'automate en utilisant le modèle de Melay :

*Note : Pour passer de S4 à S5, il suffit de lire 0 ou 1 et la sortie sera 0 dans les deux cas

II. La table de transition du détecteur de séquence :

Current State	Input	Next State	Output
S0	0	S0	0
S0	1	S1	0
S1	0	S2	0
S1	1	S1	0
S2	0	S3	0
S2	1	S4	0
S3	0	S0	0
S3	1	S1	1
S4	0	S5	0
S4	1	S5	0
S5	0	S3	0
S5	1	S1	0

III. La table de transition d'état en encodage Binaire :

Current State	Input	Next State	Output
S2 S1 S0	Х	S2' S1' S0'	Υ
000	0	000	0
000	1	001	0
001	0	010	0
001	1	001	0
010	0	011	0
010	1	100	0
011	0	000	0
011	1	001	1
100	0	101	0
100	1	100	0
101	0	011	0
101	1	001	0
Autres	Х	XXX	X

State	Encoding	
S0	000	
S1	001	
S2	010	
S3	011	
S4	100	
S5	101	

IV. La table de transition d'état encodage « One-hot » :

Current State	Input	Next State	Output
S5 S4 S3 S2 S1 S0	X	S5' S4' S3' S2' S1' S0'	Υ
000001	0	000001	0
000001	1	000010	0
000010	0	000100	0
000010	1	000010	0
000100	0	001000	0
000100	1	010000	0
001000	0	000001	0
001000	1	000010	1
010000	0	100000	0
010000	1	010000	0
100000	0	001000	0
100000	1	000010	0

State	Encoding	
S0	000001	
S1	000010	
S2	000100	
S3	001000	
S4	010000	
S5	100000	

Question 2 : Le circuit de l'afficheur du « 7 segment display » tel qu'affiché dans Quartus II :

Synthèses des circuits séquentiels, entrées VHDL:

Le diagramme d'état du générateur de séquence cyclique. Notes sur le diagramme plus bas :

Pour passer à un état suivant, on doit lire 1 en entré correspondant à la valeur de l'horloge. Dans chaque état, on devrait avoir la sortie de marquée puisque c'est un automate de Moore. Par souci d'ergonomie, nous retrouverons les valeurs des sorties dans la table de transitions d'états. Mais nous sommes parfaitement conscient que nous devrions avoir la sortie affichée dans chaque état et la valeur 1 sur chaque arc de transition.

b) la table de transition d'états :

Current State	Input	Next state	Output	Output en DCB 5 bits
S0	1	S1	-16	10000
S1	1	S2	-15	10001
S2	1	S3	-14	10010
S3	1	S4	-13	10011
S4	1	S5	-12	10100
S5	1	S6	-11	10101
S6	1	S7	-10	10110
S7	1	S8	-9	10111
S8	1	S9	-8	11000
S9	1	S10	-7	11001
S10	1	S11	-6	11010
S11	1	S12	-5	11011
S12	1	S13	-4	11100
S13	1	S14	-3	11101
S14	1	S15	-2	11110
S15	1	S16	-1	11111
S16	1	S17	0	00000
S17	1	S18	1	00001
S18	1	S19	2	00010
S19	1	S20	3	00011
S20	1	S21	4	00100
S21	1	S22	5	00101
S22	1	S23	6	00110
S23	1	S24	7	00111
S24	1	S25	8	01000
S25	1	S26	9	01001
S26	1	S27	10	01010
S27	1	S28	11	01011
S28	1	S29	12	01100
S29	1	S30	13	01101
S30	1	S31	14	01110

S31	1	S0	15	01111
J T		30	1 1 2	0 2 2 2 2 2

On notera que lorsque l'input est de zéro, on reste dans l'état courant, par soucis de lisibilité on n'a pas mis les états de transition lorsque l'input est de 0. Puisque on ne change d'état que sur un input de 1. On en a discuté et montré a Alena Tsikhanovich et accepte ce résultat.

Le circuit synthétisé 2.II

c) L'automate tel qu'affiché dans Quartus II :

Question 3 : Conception des circuits combinatoires en description structurelle

Le circuit tel qu'affiché dans Quartus II:

devoir_2_iii:1

