UNIVERSITY OF TORONTO Faculty of Arts and Science

APRIL / MAY 2016 EXAMINATIONS

CSC320H1S: Introduction to Visual Computing

Duration: 2 hours

No aids allowed

There are 10 pages total (including this page)

Given name(s):	
Family name:	
Student number:	

Question	Marks
1	/30
2	/25
3	/30
4	/15
5	/20
Total	/120

1 Short-Answer Questions (30 marks total)

_		The word Queenous (e.e. marries count)				
Give a short answer to each of the following questions (1-2 sentences or mathematical expressions).						
(a)		Which of the following three operations will <i>not</i> affect the gradient of an image I : (1) multiplying by the same constant c ; (2) adding to every pixel the same constant c ; (3) rotating the image by 90				
(b)	[6 Marks]	Why does RANSAC-based polynomial fitting confer robustness to outliers?				
(c)	[6 Marks]	Give the definition of a <i>separable</i> 2D filter $w(r, c)$.				

(d)	[6 Marks]	What representation does the SIFT <i>keypoint detector</i> use for keypoints?				
(e)	[6 Marks]	Give the expression for the homogeneous coordinates of the intersection \mathbf{p} of two lines \mathbf{l}_1 and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection $\mathbf p$ of two lines $\mathbf l_1$ and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection $\mathbf p$ of two lines $\mathbf l_1$ and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection $\mathbf p$ of two lines $\mathbf l_1$ and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection ${\bf p}$ of two lines ${\bf l}_1$ and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection ${\bf p}$ of two lines ${\bf l}_1$ and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection ${\bf p}$ of two lines ${\bf l}_1$ and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection ${\bf p}$ of two lines ${\bf l}_1$ and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection ${\bf p}$ of two lines ${\bf l}_1$ and				
(e)	[6 Marks] l ₂ .	Give the expression for the homogeneous coordinates of the intersection ${\bf p}$ of two lines ${\bf l}_1$ and				

2 2D Curves (25 marks total)

(a) [15 Marks] Derive the tangent (5 marks), normal (5 marks) and curvature (5 marks) of a circle of radius r. Be sure to show all your calculations, including intermediate steps.

(b) [10 Marks] Suppose we have painstakingly measured the log-inverse camera response function of 100 different camera brands and models using Debevec *et al.*'s algorithm, and stored each as a 256-dimensional vector $\mathbf{g}^{\mathbf{i}} = (g_0^i, g_1^i, \dots, g_{255}^i)$, where *i* denotes the *i*-th camera.

We would now like to somehow use this "database" of log-inverse response functions to help us estimate the log-inverse response of a new camera we haven't seen before without making too many measurements. In particular, suppose the new camera has index i=101 and that we are given just four elements, $g_{10}^i, g_{55}^i, g_{151}^i, g_{250}^i$, of vector $\mathbf{g^i}$.

Suggest an algorithm to compute the vector's 252 unknown elements by taking advantage of the available database.

3 Multi-Scale Image Representations (30 marks total)

- (a) The Laplacian pyramid representation depends on a one-dimensional, five-element filter $\hat{w}(n)$ that defines the representation's EXPAND() and REDUCE() functions.
 - (a1) [5 Marks] Explain why this filter must satisfy $\sum_{n=1}^{5} \hat{w}(n) = 1$. Be as specific as possible.

(a2) **[10 Marks]** Give the expression for the filter's *equal contribution criterion* and explain its purpose in the context of the *REDUCE()* function. Your explanation should include the relevant diagram(s).

(b) [15 Marks] Pictured below is a partially-completed 2D image and its partially-completed 2D (unnormalized) Haar wavelet transform. Complete both the image and its transform by filling the blank entries.

 Image

 8
 -8
 -16

 8
 -8
 -8

 -32
 16
 16

8

-8

0

-8

8

2D Haar Transform							
0	1	3					
0		-1	-1				
0	2	2	2				
0	-8	12	-4				

4 Image Interpolation (15 marks total)

You are given a *three-dimensional* grayscale image I whose intensity at the discrete locations $(0,0,0),\ldots,(N,M,K)$ is known.

(a) [10 Marks] Using sum notation, give the mathematical expression for the intensity I'(x,y,z) at a non-integer location (x,y,z) that is computed from I using a 3D Gaussian interpolation kernel of standard deviation σ . *Hint:* While we haven't covered interpolation of 3D images in class, you should be able to generalize the expression from the 1D case we did cover.

I'(x, y, z) =

(b) **[5 Marks]** The Gaussian and the linear interpolation kernels are both symmetric about zero. Why would *non*-symmetric kernels be a poor choice for image interpolation?

5 Image Noise (20 marks total)

In order to take a photo of a stationary object we mount our camera on a tripod, focus on the object, and expose the camera's sensor for T seconds. Suppose that during this exposure period, light fell onto sensor pixel ${\bf p}$ at a rate of Φ photons per second.

(a) **[6 Marks]** Give the expression for the *mean intensity* at that pixel, in units of Digital Numbers (DNs). Be sure to take into account all three sources of noise discussed in class and to define all terms and/or constants you introduce. You may assume that the sensor's quantum efficiency is equal to 1.

$$\operatorname{mean}\{I(\mathbf{p})\} =$$

(b) [8 Marks] Give the expression for the variance of the pixel's intensity, again in units of Digital Numbers.

variance{
$$I(\mathbf{p})$$
 } =

(c) **[6 Marks]** Suppose that the photo we took in (a) and (b) used a lens aperture with a circular shape of radius r. We now double the aperture radius to 2r and take a second photo I'. How would your answers to (a) and (b) change for the newly-captured photo?

$$mean\{ I'(\mathbf{p}) \} =$$

variance
$$\{ I'(\mathbf{p}) \} =$$