Python 3 玩火转机器学习 liuyubobobo

点课^网分类算法的评价 油师·hinyub 最极地流荡。

版权所有

分类准确度的迥

一个癌症预测系统,输入体检信息,可以判断是否有癌症

预测准确度: 99.9%

是好? 是坏?

分类准确度的问题

一个癌症预测系统,输入体检信息,可以判断是否有癌症

预测准确度: 99.9%

如果癌症产生的概率只有0.1%

我们的系统预测所有人都是健康,即可达到99.9%的准确率

分类准确度的短

一个癌症预测系统,输入体检信息,可以判断是否有癌症

预测准确度: 99.9%

如果癌症产生的概率只有0.01%

我们的系统预测所有人都是健康,可达到99.99%的准确率

分类准确度的题

对于极度偏斜(Skewed Data)的数据,

只使用分类准确度是远远不够的

使用混淆矩阵做进一步的分析

对于二分类问题

对于二分类问题

对于二分类问题

对于二分类问题

列代表预测值

对于二分类问题

列代表预测值

对于二分类问题

列代表预测值

0 - Negative

1 - Positive

对于二分类问题

列代表预测值

0 - Negative

1 - Positive

对于二分类问题

0 预测negative正确 TN

列代表预测值

0 - Negative

1 - Positive

对于二分类问题

0 预测negative正确 预测positive错误

列代表预测值

0 - Negative

1 - Positive

对于二分类问题

0 预测negative正确 预测positive错误 FP

列代表预测值

0 - Negative

1 - Positive

对于二分类问题

0	预测negative正确 TN	预测positive错误 FP
	预测negative错误	

列代表预测值

0 - Negative

1 - Positive

对于二分类问题

0 预测negative正确 预测positive错误 FP 预测negative错误 FN

列代表预测值

0 - Negative

1 - Positive

对于二分类问题

o 预测negative正确 预测positive错误 FP 预测negative错误 FN 预测positive正确

列代表预测值

0 - Negative

1 - Positive

对于二分类问题

0 预测negative正确 预测positive错误 FP 预测negative错误 所测positive正确 TP

列代表预测值

0 - Negative

1 - Positive

有10000个人

混淆矩阵 Confusion Matrix 有10000个人

真实\预测		
0	9978	12
	2	8

点课网精准率和召回率 讲师·liuyub。 版权所有

真实\预测		
0	9978	12
	2	8

真实\预测	0	
0	9978	12
1	2	8

精准率

$$precision = \frac{TP}{TP + FP}$$

真实\预测	0	
0	9978 TN	12 FP
1	2 FN	18 TP

精准率

$$precision = \frac{TP}{TP + FP}$$

精准率 = 8 / (8+12) = 40%

真实\预测	0	
0	9978 TN	12 FP
1	2 FN	18 TP

精准率

$$precision = \frac{TP}{TP + FP}$$

精准率 = 8 / (8+12) = 40%

真实\预测	0	
0	9978 TN	12 FP
	2 FN	18 TP

召回率

$$recall = \frac{TP}{TP + FN}$$

真实\预测	0	
0	9978 TN	12 FP
1	2 FN	18 TP

召回率

$$recall = \frac{TP}{TP + FN}$$

精准率和温囱率

真实\预测	0	
0	9978 TN	12 FP
1	2 FN	18 TP

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

精准率和强团率

relevant elements

How many relevant items are selected?

selected elements

精准率和强炮率

有10000个人,我们预测所有的人都是健康的

真实\预测		
0	9990	0
	10	0

精准率和强团率

有10000个人,我们预测所有的人都是健康的

真实\预测	0	
	9990	
	10	0

准确率 = 99.9%

精准率 = 0 / (0+0) 无意义

召回率 = 0 / (10+0) = 0

实践:编写混淆矩阵,精准率和召回率

概拟所有

F1.Sebre 版权所有

精准率和温囱率

真实\预测	0	
0	9978 TN	12 FP
1	2 FN	18 TP

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

精准率和强炮率

有的时候我们注重精准率。如股票预测

0	预测negative正确 TN	预测posotive错误 FP
	预测negative错误 FN	预测positive正确 TP

精准率

$$precision = \frac{TP}{TP + FP}$$

精准率和强炮率

有的时候我们注重召回率。如病人诊断

0	预测negative正确 TN	预测posotive错误 FP
	预测negative错误 FN	预测positive正确 TP

召回率

$$recall = \frac{TP}{TP + FN}$$

F1 Score

二者都兼顾: F1 Score

$$F1 = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

F1 Score

F1 Score 是 precision 和 recall 的调和平均值

$$\frac{1}{F1} = \frac{1}{2} \left(\frac{1}{precision} + \frac{1}{recall} \right)$$

F1 Score

$$\frac{1}{F1} = \frac{1}{2} \left(\frac{1}{precision} + \frac{1}{recall} \right)$$

$$\frac{1}{F1} = \frac{1}{2} \left(\frac{precision + recall}{precision \cdot recall} \right)$$

$$F1 = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

点课网实践:。后かScore 据域以序标制,是被以必要。

逻辑回归 Logistic Regression

$$\hat{p} = \sigma(\theta^T \cdot x_b) = \frac{1}{1 + e^{-\theta^T \cdot x_b}}$$

$$\hat{p} = \sigma(\theta^T \cdot x_b) = \frac{1}{1 + e^{-\theta^T \cdot x_b}}$$

$$\hat{y} = \begin{cases} 1, & \hat{p} \ge 0.5 & \theta^T \cdot x_b \ge 0 \\ 0, & \hat{p} < 0.5 & \theta^T \cdot x_b < 0 \end{cases}$$

$$\theta^T \cdot x_b \ge 0$$

$$\theta^T \cdot x_b < 0$$

决策边界

$$\boldsymbol{\theta}^T \cdot \boldsymbol{x}_b = 0$$

逻辑回归 Logistic Regression 决策边界 $\theta^T \cdot x_b = 0$

Precision-Recall 的平衡

Precision-Recall的平衡

精准率: 4/5=0.80 精准率: 2/2=1.00

召回率: 4/6=0.67

召回率: 2/6=0.33

Precision-Recall 的平衡

精准率: 6/8=0.75 精准

精准率: 4/5=0.80

精准率: 2/2=1.00

召回率: 6/6=1.00

召回率: 4/6=0.67

召回率: 2/6=0.33

实践课Scikit-learn中调节threshold

版权所有

实践: Precision-Recall曲线 摄拟脉带

Precision-Recall 曲线

Precision-Recall 曲线

Precision-Recall 曲线

黑湖 ROG 曲线 版权所有

ROC曲线

Receiver Operation Characteristic Curve

描述TPR和FPR之间的关系

TPRE 3/1

真实\预测		
0	9978 TN	12 FP
	2 FN	18 TP

$$recall = \frac{TP}{TP + FN}$$

TPR = Recall

FPR: 511

真实\预测	
0	$FPR = \frac{FP}{TN + FP}$
1	2 8 TP

TPR TIFPR

真实\预测		
	9978 TN	12 FP
1	2 FN	18 TP

$$FPR = \frac{FP}{TN + FP}$$

$$TPR = \frac{TP}{TP + FN}$$

TPR和FPR的关系

源实践:实现TPR, FPR 讲师·hinyun 版权所有

源课实践:实现内OC曲线 版权所有,是权以完

ROC曲线

实践。多分类问题中的混淆矩阵

版权所有。

其他。

欢迎大家关注我的个人公众号:是不是很酷

Python 3 玩火转机器学习 liuyubobobo