

$$(4) \int d\vec{v} \cdot g\vec{v} \cdot B^{2} = \int r dr dz d\theta \cdot g\vec{v} \cdot \frac{\vec{k} \cdot \vec{z}^{2}}{4\pi^{2} t^{2}} = \frac{\vec{J}^{2}}{2\pi^{2}} \int_{a}^{b} \vec{v} dr dz d\theta$$

$$= \frac{\vec{J}^{2}}{5\pi^{2}} \int_{a}^{b} \log \left(\frac{b}{a} \right) \cdot 2\pi \cdot \left[\beta dz \right)$$

$$\therefore \frac{\vec{J}^{2}}{5\pi^{2}} \int_{a}^{b} \log \left(\frac{b}{a} \right) \cdot 2\pi \cdot \left[\beta dz \right)$$

$$\therefore \frac{\vec{J}^{2}}{5\pi^{2}} \int_{a}^{b} \log \left(\frac{b}{a} \right) \cdot 2\pi \cdot \left[\beta dz \right]$$

$$(5) \vec{E} = \frac{1}{2} L \vec{I}^{2} \cdot ... \quad L = \frac{2}{2\pi} \times \frac{\vec{J}^{2}}{7\pi} \int_{a}^{b} \left(\frac{b}{a} \right) \cdot \frac{\vec{J}^{2}}{4\pi} \int_{a}^{b} \left(\frac{b}{a} \right) \cdot \frac{\vec{J}^{2}}{4\pi}$$

[B]
$$[A]$$

(I) $A(A) = -(1) + (1 - (1)) = -2$ (\$\(\frac{1}{2}\)\)\\

(2) $A^{-1} = -1$ \[
\frac{1}{1} \cdot \frac{1} \cdot \frac{1}{1} \cdot \frac{1} \cdot \frac{1}{1} \cdot

														_	
														_	
														1	
														_	
														#	