МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №3

по дисциплине: «Архитектура вычислительных систем»

Выполнил: ст. группы ПВ-211

Чувилко Илья Романович

Проверил:

Осипов Олег Васильевич

Арифметические команды центрального процессора

Вариант 6

Цель работы: изучение арифметических команд центрального процессора для работы с целыми числами.

		F – word	вычитание
6	$fa+\frac{f}{g}-\frac{g^3}{g^3}$	g– dword	16 байт
	$10^{6}h$ h^{2}	h – byte	

Задания для выполнения к работе

- 1. Написать программу для вычисления значения арифметического выражения согласно варианту задания. Все переменные, используемые в программе, требуется использовать как знаковые и расширять до размерности двойного слова. Результат должен быть записан в регистр EAX. Если результат содержит остаток от деления, оставить его в регистре EDX. Подобрать набор тестовых данных (не менее 3).
- 2. Написать программу для сложения или вычитания целых беззнаковых чисел большой размерности (размерность и операция зависят от варианта задания). Младшие байты при этом хранить по младшему адресу. Подобрать наборы тестовых данных (не менее 3). Для выполнения этого задания изучить теоретический материал главы «Вычитание и сложение операндов большой размерности», начиная со страницы 176 учебника Юрова «Assembler».

Ход работы

Задание 1

Код программы:

```
; Тип процессора
.MODEL FLAT, STDCALL ; Модель памяти и стиль вызова подпрограмм
OPTION CASEMAP: NONE; Чувствительность к регистру
INCLUDE windows.inc
INCLUDE kernel32.inc
INCLUDE user32.inc
INCLUDE msvcrt.inc
.DATA
    f DW 5
    g DD 10
    h DB 2
    result DD 0
.CODE
START:
    ; f * g
    MOV AX, f
    CWDE
    IMUL EAX, g
    MOV result, EAX
    ; (f * g) / (10<sup>6</sup> * h)
    MOV EAX, 1000000
    IMUL h
    CDQ ; Use CDQ to sign-extend EAX into EDX:EAX
    IDIV result
    MOV result, EAX
    ; f^3 / h^2
    MOV AX, f
    CWDE
    IMUL f
    IMUL f
    MOVZX EBX, h
    CWDE
    IDIV EBX
      CDQ
    IDIV EBX
    ADD result, EAX
    ; (f * g) / (10<sup>6</sup> * h) - f<sup>3</sup> / h<sup>2</sup>
    SUB result, EAX
    ; Exit the program
```

END START

Тестовые данные:

f	g	h	Результат	Результат hex
5	10	2	19632	0x4CB0
-100	-20	5	1169	0x491
-5	1000	2	-2147483480	0xFFFFFF58

Задание 2

```
Код программы
.686
             ; Тип процессора
.MODEL FLAT, STDCALL ; Модель памяти и стиль вызова подпрограмм
OPTION CASEMAP: NONE ; Чувствительность к регистру
INCLUDE C:\masm32\include\kernel32.inc
INCLUDELIB C:\masm32\lib\kernel32.lib
.DATA
   05h ; 16 байт
   b db 02h, 01h, 03h, 01h, 05h, 06h, 0h, 02h, 01h, 00h, 05h, 05h, 05h, 05h, 02h,
01h ; 16 байт
   r db 16 dup(?)
.CODE
START:
   CLC
   MOV ECX, 0
   ; Начало цикла
   L1:
      MOV AL, [a + ECX]
      MOV BL, [b + ECX]
       SBB AL, BL
       MOV [r + ECX], AL
       INC ECX
       ; Условие завершения цикла
       CMP ECX, 16
       JL L1
   ; Завершаем программу
   PUSH 0
   CALL ExitProcess
```

END START

Тестовые данные

a	b	Результат
05 05 05 05 05 05 05 05 05 05 05	02 01 03 01 05 06 04 02 01 00	03 04 02 04 00 FF 00 03 04
05 05 05 05 05	05 05 05 05	05 00 00 00 00 03
FF 05 A5 11 05 95 1A 05 05	02 21 73 01 25 1B 00 02 01	FD E4 31 10 E0 79 1A 03 04
0F 75 05 05 05 F1	00 FF 05 05 95 02	0F76FFF6FEE
FF 15 A5 21 05 95 2A 25 03	A2 21 73 52 35 1B 02 02 01	5D F4 31 CF CF 79 28 23 02
0F 15 09 03 05 F1	$00 \; \mathrm{FF} \; 00 \; 06 \; 95 \; \mathrm{A2}$	0F 16 08 FD 6F 4E

Вывод: в ходе лабораторной работы мы изучили арифметические команды центрального процессора для работы с целыми числами.