$$Z_n \sim N(0,1)$$
.

Zone di rigetto e p-value:

- 1. bilatero $H1: \theta \neq \theta_0 \mapsto$ zona rigetto: $|Z_n| > \phi_{1-\frac{\alpha}{2}}$, p-value: $2(1-F_Z(|Z_n|))$
- 2. unilatero a sx $H1: \theta < \theta_0 \mapsto$ zona rigetto: $Z_n < \phi_\alpha$, p-value: $F_Z(Z_n)$
- 3. unilatero a dx $H1: \theta > \theta_0 \mapsto$ zona rigetto: $Z_n > \phi_{1-\alpha}$, p-value: $1 F_Z(Z_n)$.

Alcuni Z-test

• Media con varianza nota (confronto la media di un campione di numerosità n con una media nota μ_0):

$$Z_n = \frac{\overline{X}_n - \mu_0}{\sigma} \sqrt{n}$$

• Test proporzione (confronto la probabilità di successo di un campione di numerosità n con una nota p_0):

$$Z_n = \frac{\overline{X}_n - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n}$$

• Test media di coppie di popolazioni (confronto le medie di due popolazioni indipendenti X di numerosità n, Y di numerosità m):

$$Z_{n} = \frac{\overline{X}_{n} - \overline{Y}_{m} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n} + \frac{\sigma_{2}^{2}}{m}}}$$

t-Test

$$T_n \sim t(n-1)$$
.

Zone di rigetto e p-value:

- 1. bilatero $H1:\theta\neq\theta_0\mapsto$ zona rigetto: $|T_n|>t_{1-\frac{\alpha}{2}},$ p-value: $2(1-F_T(|T_n|))$
- 2. unilatero a sx $H1: \theta < \theta_0 \mapsto$ zona rigetto: $T_n < t_\alpha,$ p-value: $F_T(T_n)$
- 3. unilatero a dx $H1: \theta > \theta_0 \mapsto \text{zona rigetto: } T_n > t_{1-\alpha}, \text{ p-value: } 1 F_T(T_n).$

Alcuni T-test

• Media con varianza ignota (confronto la media di un campione di numerosità n con una nota μ_0):

$$T_n = \frac{\overline{X}_n - \mu_0}{S} \sqrt{n}$$

• Test dati accoppiati (confronto le medie di due popolazioni accoppiate – a ogni X associo un Y):

$$T_n = \frac{\overline{D}_n}{S},$$

dove abbiamo definito $D_i = X_i - Y_i$ e S^2 la varianza campionaria si D_i .

Test
$$\chi^2$$

$$W_n \sim \chi^2(n-1)$$
.

Zone di rigetto:

1. bilatero $H1:\theta\neq\theta_0\mapsto$ zona rigetto: $W_n<\chi^2_{\frac{\alpha}{2}}$ o $W_n>\chi^2_{1-\frac{\alpha}{2}}$

2. unilatero a sx $H1: \theta < \theta_0 \mapsto$ zona rigetto: $W_n < \chi^2_{\alpha}$

3. unilatero a d
x $H1:\theta>\theta_0\mapsto$ zona rigetto: $W_n>\chi^2_{1-\alpha}.$

Alcuni Test χ^2

• Test varianza (confronto la varianza di un campione di numerosità n con una nota σ_0^2):

$$W_n = \frac{S^2(n-1)}{\sigma_0^2}$$

• Test χ^2 per la multinomiale (confronto le probabilità del mio processo con alcune note p_k^0):

$$W_n = n \sum_{k=1}^m \frac{(\overline{p}_k - p_k^0)^2}{p_k^0} \sim \chi^2(m-1),$$

dove n è la numerosità del campione e m il numero di esiti possibili. Il test vale per $n\gg 30$.