

Math 1552

Sections 10.3, 10.4 and 10.5:
Convergence Tests for
Infinite Series

Math 1552 lecture slides adapted from the course materials

By Klara Grodzinsky (GA Tech, School of Mathematics, Summer 2021)

Learning Goals

"tests"

- Learn how to apply the integral, comparison, limit comparison, ratio and root series *tests* to determine whether an infinite series converges or diverges
- Learn when to apply which test
- Summarize the results into a formal mathematical justification

Quick review...

- The harmonic series

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

DIVERGES.

(important to remember)

even though

$$\lim_{k \rightarrow \infty} \frac{1}{k} = 0, \text{ the series still}$$

diverges

Quick review...

- The harmonic series

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

DIVERGES.

- Telescoping series CONVERGE. Find the sum using partial fraction decompositions.

$$\sum_{n=0}^{\infty} \frac{1}{(n+a)(n+b)}$$

Quick review...

- The harmonic series

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

DIVERGES.

- Telescoping series CONVERGE. Find the sum using partial fraction decompositions.

- A geometric series

$$\sum_{k=0}^{\infty} r^k$$

converges to $\frac{1}{1-r}$ when $|r| < 1$

diverges when $|r| \geq 1 \rightarrow$ when
 $r \leq -1$ or
 $r \geq 1$

$$-1 < r < 1$$

Divergence (n^{th} term) Test

Sequence - a_N
Series - $\sum_{N=0}^{\infty} a_N$

Given $\sum_{k=0}^{\infty} a_k$, first find $\lim_{n \rightarrow \infty} a_n$.

If $\lim_{n \rightarrow \infty} a_n \neq 0$, then the series **DIVERGES!**

Otherwise, the test is **INCONCLUSIVE**

and you must try **another test**.

↳ we will have many tests to choose from

Integral Test

Let f be a continuous, positive, and decreasing function. Then:

$\sum_{k=1}^{\infty} f(k)$ converges if and only if $\int_1^{\infty} f(x)dx$ converges,

and diverges if and only if $\int_1^N f(x)dx \rightarrow \infty$ as $N \rightarrow \infty$.

$$\int_1^{\infty} f(x)dx \text{ diverges}$$

OR $\lim_{N \rightarrow \infty} \int_1^N f(x)dx = +\infty$ (diverges)

Example 1:

Use the integral test to determine whether the series converges:

$$\sum_{k=2}^{\infty} \frac{1}{k \ln k} = S$$

$\rightarrow S$ converges if $I = \int_2^{\infty} \frac{dx}{x \ln(x)}$

Converges, and diverges if I diverges.

(apply the integral test to $f(k) = \frac{1}{k \ln(k)}$:

- positive for $k \geq 2$
- decreasing
- continuous)

→ so we need to evaluate I

$$I = \lim_{b \rightarrow \infty} \int_2^b \frac{dx}{x \ln(x)}$$

→ evaluate the indefinite integral:

u-sub: $u = \ln(x)$

$$du = \frac{dx}{x}$$

$$\begin{aligned} \int \frac{dx}{x \ln(x)} &= \int \frac{du}{u} = \ln|u| + C \\ &= \ln|\ln x| + C \end{aligned}$$

$$I = \lim_{b \rightarrow \infty} \left(\ln |\ln x| \right) \Big|_2^b$$

$$= \lim_{b \rightarrow \infty} \ln |\ln b| - \ln |\ln(2)|$$

as $b \rightarrow \infty$ $|\ln b| \rightarrow \infty$

so the limit is the same as

$$\lim_{x \rightarrow \infty} \ln(x) = +\infty$$

So $I = +\infty$, and the series diverges by the integral test.

Example II:

When does a p-series converge? $S_p = \sum_{k=1}^{\infty} \frac{1}{k^p}$ (p-series)

harmonic series
is a p-series
with $p=1$
(recall)

$$\rightarrow f(k) = \frac{1}{k^p} : \begin{array}{l} \text{• gts} \\ \text{• decreasing} \\ \text{• positive} \end{array}$$

\rightarrow then S_p will converge when

$$I_p = \int_1^{\infty} \frac{dx}{x^p} \text{ converges, and diverge}$$

when $I_p = +\infty$ (diverges)

$$\rightarrow I_p = \lim_{b \rightarrow \infty} \int_1^b \frac{dx}{x^p}$$

→ let's look at three cases:

(1) $p=1$

(2) $p < 1$

(3) $p > 1$

Case (1): $I_1 = \lim_{b \rightarrow \infty} \int_1^b \frac{dx}{x} = \lim_{b \rightarrow \infty} \ln|b| - \ln|1|$

$= +\infty$

So by the integral test, S_1 diverges
(S_1 is the same as the harmonic series ✓)

Case (2): ($p < 1$)

$$I_p = \lim_{b \rightarrow \infty} \int_1^b \frac{dx}{x^p} = \lim_{b \rightarrow \infty} \frac{x^{1-p}}{1-p} \Big|_1^b = \lim_{b \rightarrow \infty} \frac{1}{1-p} \cdot \frac{1}{b^{p-1}}$$

~~$\frac{1}{1-p}$~~ Some constant

when $p < 1$, $p-1 < 0 \iff -(p-1) > 0$

so the limit is: $\frac{1}{1-p} \lim_{x \rightarrow \infty} x^{\text{something positive}} = +\infty$

So in this case, if $P < 1$, $\sum p$ diverges by the integral test.

case(3): ($P > 1$)

$$\begin{aligned} I_P &= \lim_{b \rightarrow \infty} \left\{ \int_1^b \frac{dx}{x^P} \right\} = \lim_{b \rightarrow \infty} \left[\frac{1}{(1-P)x^{P-1}} \right]_1^b \\ &= \frac{1}{1-P} \left[\lim_{b \rightarrow \infty} \frac{1}{b^{P-1}} - 1 \right] \\ &= 0 \end{aligned}$$

So I_P converges when $P > 1$, and so by the integral test, $\sum p$ converges when $P > 1$

Summary:

→ a p-series is an infinite series
of the form $\sum_{k=1}^{\infty} \frac{1}{k^p}$

→ a p-series converges when $p > 1$,
and diverges for any $p \leq 1$.

(use this as a fact in combination
with other tests for converge)

Series we know:

- The harmonic series
- A geometric series

$$\sum_{k=0}^{\infty} r^k$$

- A p-series

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

DIVERGES.

(a p-series
for P=1)

converges to $\frac{1}{1-r}$ when $|r| < 1$

diverges when $|r| \geq 1$

(Put this on your short review sheet
of topics we have seen so far for quiz 3)

Some Convergence Theorems

(1) If $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge, then $\sum_{k=1}^{\infty} (a_k \pm b_k)$ also converges.

(2) If $\sum_{k=1}^{\infty} a_k$ converges, then $\sum_{k=1}^{\infty} ca_k$ also converges for any $c \in \mathbb{R}$.

(3) If $\sum_{k=j}^{\infty} a_k$ converges, so does $\sum_{k=0}^{\infty} a_k$.

$$\sum_{k=0}^{\infty} a_k = \sum_{k=0}^{J-1} a_k + A_J = \text{finite sum} + A_J$$

if A, B converge,
then $\sum_{k=1}^{\infty} (a_k \pm b_k)$
converges ($A \pm B$)

Math 1552

Section 10.4: Comparison Tests for Infinite Series

Math 1552 lecture slides adapted from the course materials
By Klara Grodzinsky (GA Tech, School of Mathematics, Summer 2021)

Recap of last class:

$$\text{e.g. } \lim_{k \rightarrow \infty} a_k \neq 0$$

- *Divergence test*: if the limit is not 0, the series diverges (*nth term test*)
- *Integral test*: use with a function that has an “easy” antiderivative

$$\sum_{k=2}^{\infty} \frac{1}{k \ln k}$$

f

conditions:

f is positive, cts, and
decreasing

Basic Comparison Test: Part (a)

Let $\sum_k a_k$ be a series with $a_k \geq 0$ for all k .

If we can find a series $\sum_k c_k$ such that

$\sum_k c_k$ converges and $0 \leq a_k \leq c_k$ for all but

finitely many terms, then $\sum_k a_k$ must also

converge.

[means: if for all large k we have $0 \leq a_k \leq c_k$,
and $C < \infty$, then $0 \leq A \leq C < \infty$,
e.g., $A < \infty$ (converges).]

Basic Comparison Test: Part (b)

Let $\sum_k^A a_k$ be a series with $a_k \geq 0$ for all k .

If we can find a series $\sum_k^D d_k$ such that

$\sum_k^D d_k$ diverges and $a_k \geq d_k \geq 0$ for all but

finitely many terms, then $\sum_k^A a_k$ must also

diverge.

Means: if for all large k we have that $a_k \geq d_k \geq 0$ and $D = +\infty$ (diverges), then since $A \geq D = +\infty$, $A = +\infty$ (diverges)

Example: Does this series converge?

$$(A) \sum_{k=1}^{\infty} \frac{1}{1+2^k} = S$$

→ try a basic comparison test

$$\rightarrow \sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}} = 1 \quad (\text{converges as a geometric series with } r = \frac{1}{2})$$

$$\rightarrow \text{define: } a_k = \frac{1}{1+2^k}, b_k = \frac{1}{2^k}$$

$$1+2^k \geq 2^k \quad \text{for } k \geq 1$$

$$\frac{1}{2^k} \geq \frac{1}{1+2^k} \quad \text{for } k \geq 1$$

→ so basic comparison test part(a)

tells us that S converges if

$$\sum_{k=1}^{\infty} b_k \text{ converges } \checkmark$$

→ so the series S converges.

Example: Does this series converge?

$$(B) \sum_{k=2}^{\infty} \frac{1}{\sqrt{k}-1} = S \quad \begin{array}{l} \text{(looks almost like a p-series with} \\ \text{p=1/2, so expect to diverge?)} \end{array}$$

→ let's try to apply a basic comparison test

→ Note that $\sum_{k=2}^{\infty} \frac{1}{\sqrt{k}}$ diverges as a p-series with $p=1/2$

$$\rightarrow \underline{\text{define}}: a_k = \frac{1}{\sqrt{k}-1}, d_k = \frac{1}{\sqrt{k}}$$

\rightarrow Notice that $\sqrt{k} \geq \sqrt{k}-1$ for $k \geq 2$
this means that $\frac{1}{\sqrt{k}-1} \geq \frac{1}{\sqrt{k}}$ for $k \geq 2$

or: $a_k \geq d_k$ for $k \geq 2$

\Rightarrow we have that $\sum_{k=2}^{\infty} d_k = +\infty$ (diverges),

by the basic comparison test part (b),
the series $S = \sum_{k=2}^{\infty} a_k$ diverges.