Kontinuasjonseksamen TMA 4140: Diskret Matematikk, august 2010.

Larningsforslag

Oppgave 2

Her er tabeller for henholdsvis $A,\ B$ og C :

			, 0
<u> </u>	$p \lor q$	$\neg p \land (p \lor q)$	$\neg p \land (p \lor q) \rightarrow q$
0 0	0	0	1
0 1	1	1	1
1 0	1	n	1 1
1 1	1	ň	1
II	_	V	1
$p \mid q \mid $	$p \rightarrow a$	$ n \wedge (n + \alpha) $	1
$\begin{array}{c c} p & q & \vdots \\ \hline 0 & 0 & \vdots \end{array}$	$p \to q$	$p \land (p \rightarrow q)$	$q \to (p \land (p \to q))$
0 0	$p \to q$ 1	$\begin{array}{ c c } p \land (p \rightarrow q) \\ \hline 0 \\ \end{array}$	$\frac{q \to (p \land (p \to q))}{1}$
0 0 0 1	$\frac{p \to q}{1}$	$ \begin{array}{ c c } \hline p \land (p \rightarrow q) \\ \hline 0 \\ 0 \end{array} $	$ \begin{array}{c} q \to (p \land (p \to q)) \\ \hline 1 \\ 0 \end{array} $
0 0 0 1 1 0	$ \begin{array}{c} p \to q \\ \hline 1 \\ 1 \\ 0 \end{array} $	$ \begin{array}{ c c } \hline p \land (p \rightarrow q) \\ \hline 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c c} q \to (p \land (p \to q)) \\ \hline 1 \\ 0 \\ 1 \end{array} $
0 0 0 1	$ \begin{array}{c} p \to q \\ \hline 1 \\ 1 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c c} p \land (p \rightarrow q) \\ \hline 0 \\ 0 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c c} q \to (p \land (p \to q)) \\ \hline 1 \\ 0 \\ 1 \\ 1 \end{array} $

p	q	r	$r \wedge q$	$p \vee q$	$(r \land q) \to (p \lor q)$
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	1 1	1	1 1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	1	1	1
D	1.	- 11	4	1	1

Fra disse tabellene ser vi at A og C er tautologiene, mens det ikke finnes noen selvmotsigelser.

Oppgave 3 Vi ser at alikhetene holder for n = 2. Anto alikhetene holder for k = n, Da fâr vi for henholdsais venstre og, høyre ulikhet for k = n + 1 Ved å bruke induksjonsantagelsen: $1^2 + \cdots + (n-1)^2 + n^2 < \frac{h^3}{3} + n^2 < \frac{h^3}{3} + n^2 + n + \frac{1}{3} = \frac{(h+1)^3}{3}$ $1^2 + \cdots + n^2 + (n+1)^2 > \frac{h^3}{3} + (h+1)^2 = \frac{h^3}{3} + n^2 + 2n + 1 > \frac{h^3}{3} + n^2 + n + \frac{1}{3} = \frac{(h+1)^3}{3}$

Oppgave 4 a/ m=4.5.11=220

m = 55 = 3 (mod4); 3y1 = 1 (mod4) => y1 = 3

m=44 = 4 (mod5); 4y2=1 (mod5) => y2=4

m = 20 = 9 (mod 11); 9y3 = 1 (mod 11) => y3 = 5.

En lowing er

3.55.3 + 2.44.4 + 4.20.5 = 1247.

Det finnes kun en læsning x slik at $0 \le x \le 219$, og den er gitt ved x = 1247 - 5-220 = 147

b) Den karalitenstiske ligningen er r^2-6++8=0. Rættene er 2 og 4.

Løsningen er da på formen $a_n = \chi 2^n + \beta 4^n$, der χ og β er konstanter. χ og β bestemmes av initalbetingelsen :

 $4 = a_0 = a + \beta$ = 3, $\beta = 1$ $10 = a_1 = 2x + 4\beta$

Løsningen blir:

 $a_n = 3\cdot 2^n + 4^n, n \ge 0$.

Oppgave 5

Oppgave 6 a, 1*0 {0*v01{0,13{0,13*}