SUMMATIVE CAPSTONE PROJECT

by Noel Rodrigues

Will I Get A Heart Attack?

- 1. Heart attack is the major cause of morbidity and mortality
- 2. This project attempts to reduce the effort and time by automating the risk prediction with the help of a binary classifier.
- 3. Various machine learning models were used to build the classifier.
- 4. One of the resulting algorithms gave an accuracy score of 84%.

2. OBJECTIVE

To predict whether a patient is at risk of a heart attack.

This is a binary outcome.

Negative (-) = 0, patient is NOT at risk

Positive (+) = 1, patient is at risk

TARGET AUDIENCE:

Heart Centres / Cardiologists

3. METHODOLOGY

DATA SOURCE:

Kaggle

https://www.kaggle.com/nareshbhat/health-care-data-set-on-heart-attack-possibility

PREDICTION METRIC:

Classification Model

ML MODELS:

Logistic Regression Random Forest **Decision Tree**

TOOLS:

Pandas, Numpy, Seaborn and Scikit Learn via Jupyter Notebook IDE

MS SQL

Power BI

4. PROCESS FLOW

- 4.1 Imports & Data Cleaning
- 4.2 Understanding the Data
- 4.3 Exporatory Data Analysis (EDA)
- 4.4 Preprocessing the Data
- 4.5 Final Preprocessed Data

4.1 Imports & Data Cleaning

Connect to SQL view

```
import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, confusion_matrix, precision_score, recall_score, f1_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```

data.head(15)

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	num
28	1	2	130	132	0	2	185	0	0.00	0
29	1	2	140	167	0	0	170	0	0.00	0
29	1	2	120	243	0	0	160	0	0.00	0
30	0	1	170	237	0	1	170	0	0.00	0
31	0	2	100	219	0	1	150	0	0.00	0
31	1	4	120	270	0	0	153	1	1.50	1
32	0	2	105	198	0	0	165	0	0.00	0
32	1	2	110	225	0	0	184	0	0.00	0
32	1	2	125	254	0	0	155	0	0.00	0
32	1	4	118	529	0	0	130	0	0.00	1
33	0	4	100	246	0	0	150	1	1.00	1
33	1	3	120	298	0	0	185	0	0.00	0
34	1	1	140	156	0	0	180	0	0.00	1
34	0	2	130	161	0	0	190	0	0.00	0

data.tail(15)

age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	num
66	1	4	140	280	0	0	94	1	1.00	1
65	1	4	170	263	1	0	112	1	2.00	1
65	1	4	130	275	0	1	115	1	1.00	1
65	1	4	140	306	1	0	87	1	1.50	1
63	1	4	150	223	0	0	115	0	0.00	1
62	0	1	160	193	0	0	116	0	0.00	0
62	1	2	140	271	0	0	152	0	1.00	0
61	1	4	125	292	0	1	115	1	0.00	0
61	0	4	130	294	0	1	120	1	1.00	0
60	1	3	120	246	0	2	135	0	0.00	0
60	1	4	100	248	0	0	125	0	1.00	1
59	1	4	130	164	0	0	125	0	0.00	1
59	0	2	130	188	0	0	124	0	1.00	0
59	1	3	180	213	0	0	100	0	0.00	0

4.2 Understanding the Dataset

- 1. age: #
- 2. **sex**: (binary, 1 = male, 0 = female)
- 3. cp: Chest Pain (ordinal, 1 = typical angina, 2 = atypical angina, 3 = non-anginal pain, 4 = asymptomatic)
- 4. **trestbps**: Resting Blood Pressure (#, normal blood pressure = > 120/80 mm)
- 5. **chol**: Serum Cholesterol (#, normal serum cholesterol = > 200 mg/dL)
- 6. **fps**: Fasting Blood Sugar (binary, > 120 mg/dl, 1 = true; 0 = false]
- 7. **restecg**: Resting Electrocardiographic Results (0 = normal, 1 = abnormal, 2 = ventricular hypertrophy)
- 8. **thalach**: Maximum Heart Rate Achieved (#)
- 9. **exang**: Exercise-induced Angina (binary, 1 = yes, 0 = no)
- 10. **oldpeak**: ST Depression induced by Exercise Relative to Rest (#)
- 11. **slope**: The Slope of the Peak Exercise ST Segment (ordinal, 1 = upsloping, 2 = flat, 3 = downsloping)
- 12. ca: Number of Major Vessels Coloured by Fluoroscopy (ordinal, 0-3,)
- 13. **thal**: Maximum Heart Rate Achieved (Ordinal, 3 = normal, 6 = fixed defect, 7 = reversable defect]
- 14. **num**: Diagnosis of Heart Disease (binary, 0 = < 50% diameter narrowing, 1 = > 50% diameter narrowing)

data.dtypes

age	int64		
sex	int64		
ср	int64		
trestbps	int64		
chol	int64		
fbs	int64		
restecg	int64		
thalach	int64		
exang	int64		
oldpeak	float64		
num	int64		
dtype: object			

4.3 EDA

age

Real number (R≥0)

Distinct	38
Distinct (%)	12.9%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	47.826530

Minimum	28
Maximum	66
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	2.4 KiB

sex

Categorical

Distinct	2
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Memory size	2.4 KiB

b

Categorical

HIGH	CORRELATION
HIGH	CORRELATION
HIGH	CORRELATION
HIGH	CORRELATION

trestbps

Real number (R>0)

Distinct	31	Minimum	92
Distinct	10.5%	Maximum	200
(%)		Zeros	0
Missing	0	Zeros (%)	0.0%
Missing (%)	0.0%	Negative	0
Infinite	0	Negative (%)	0.0%
Infinite (%)	0.0%	Memory	2.4 KiB
Mean	132.6428571		

chol

Real number ($\mathbb{R}_{\geq 0}$)

Distinct	153
Distinct (%)	52.0%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	248.1734694

85

603

0

0

0.0%

0.0%

2.4

KiB

Minimum

Maximum

Zeros (%) Negative

Negative

Memory

(%)

size

Zeros

fbs

Categorical

Distinct	2
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Memory size	2.4 KiB

4.3 EDA

restecg

Categorical

Distinct	3
Distinct (%)	1.0%
Missing	0
Missing (%)	0.0%
Memory size	2.4 KiB

)		236	
1	52		
2	6		

thalach

Real number ($\mathbb{R}_{\geq 0}$)

Distinct	71
Distinct (%)	24.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	139.0986395

Minimum	82
Maximum	190
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory	2.4
size	KiB

exang

Categorical

HIGH	CORRELATION
HIGH	CORRELATION

Distinct	2
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Memory	2.4
size	KiB

0		205
1	89	

oldpeak

Real number (R≥0)

HIGH CORRELATION HIGH CORRELATION HIGH CORRELATION HIGH CORRELATION ZEROS

Distinct	10	Minimum	0
Distinct	3.4%	Maximum	5
(%)		Zeros	189
Missing	0	Zeros (%)	64.3%
Missing (%)	0.0%	Negative	0
Infinite	0	Negative (%)	0.0%
Infinite (%)	0.0%	Memory	2.4 KiB
Mean	0.5860544218		

num

Categorical

HIGH	CORRELATION
HIGH	CORRELATION

2
0.7%
0
0.0%
2.4
KiB

0	188	
1	106	

4.3 EDA

oldpeak (ST depression induced by exercise relative to rest), **exang** (exercise-induced angina), and **cp** (chest pain) have the most correlation with **num** (diagnosis of heart disease)

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

-0.4

4.4 Preprocessing the Data

Scaling a few attributes using normal scaler, to allow better algorithm convergence.

4.5 Final Preprocessed Data

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	target
0	28	1	2	-0.150199	-1.742241	0	2	1.951972	-0.658898	0.0	0
1	29	1	2	-0.718518	-0.077586	0	0	0.888838	-0.658898	0.0	0
2	29	1	2	0.418120	-1.217350	0	0	1.314091	-0.658898	0.0	0
3	30	0	1	2.123077	-0.167567	0	1	1.314091	-0.658898	0.0	0
4	31	0	2	-1.855155	-0.437511	0	1	0.463584	-0.658898	0.0	0
5	32	0	2	-1.570996	-0.752446	0	0	1.101465	-0.658898	0.0	0
6	32	1	2	-1.286836	-0.347530	0	0	1.909446	-0.658898	0.0	0
7	32	1	2	-0.434358	0.087380	0	0	0.676211	-0.658898	0.0	0
8	33	1	3	-0.718518	0.747243	0	0	1.951972	-0.658898	0.0	0
9	34	0	2	-0.150199	-1.307331	0	0	2.164598	-0.658898	0.0	0

5 DATA PREPARATION

5.1 Splitting the Data into Training and Testing Datasets

```
y = data['target']
X = data.drop('target',axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state = 0)
#80% Train and 20% Test Data

# Checking if the data is equally splitted or not, otherwise it will cause data imbalance.
from collections import Counter

print(y_test.unique())
Counter(y_train)
[1 0]
Counter({0: 155, 1: 80})
```

5.2 Training the Models

Using these Machine Learning models:

- 1. Logistic Regression
- 2. Random Forest
- 3. Decision Tree

```
trained_records = []
model = LogisticRegression()
import time
start = time.time()
# Train model
model.fit(X_train,y_train)
train_time = time.time() - start
# Test model
y_pred = model.predict(X_test)
# Get model name
model_name = model.__class__._name__
test_precision = precision_score(y_test, y_pred, pos_label=1)
test_recall = recall_score(y_test, y_pred, pos_label=1)
test_f1score = f1_score(y_test, y_pred, pos_label=1)
test_acc_score = accuracy_score(y_test, y_pred)
# Print Accuracy Scores
print("Accuracy of Logistic Regression: {:.3f}".format(test_acc_score*100),'%\n')
print(classification_report(y_test,y_pred))
# Store record into trained dist
trained_records.append({
    'model': model_name,
    'train time': train time,
    'r2': test_precision,
    'recall': test_recall,
    'flscore': test flscore,
    'acc_score': test_acc_score
trained_records
```

5.2 Training the Models

1. LOGISTIC REGRESSION

Accuracy of Logistic Regression: 84.746 %

	precision	recall	f1-score	support
0 1	0.85 0.84	0.88 0.81	0.87 0.82	33 26
accuracy macro avg weighted avg	0.85 0.85	0.84 0.85	0.85 0.84 0.85	59 59 59

2. RANDOM FOREST

Accuracy of Random Forest: 83.051 %

	precision	recall	f1-score	support
0 1	0.81 0.86	0.91 0.73	0.86 0.79	33 26
accuracy macro avg weighted avg	0.84 0.83	0.82 0.83	0.83 0.82 0.83	59 59 59

3. DECISION TREE

Accuracy of Decision Tree: 81.356 %

	precision	recall	f1-score	support
0 1	0.78 0.89	0.94 0.65	0.85 0.76	33 26
accuracy macro avg weighted avg	0.83 0.83	0.80 0.81	0.81 0.80 0.81	59 59 59

5.3 Evaluation of Models

```
trained_records
trained_records = pd.DataFrame(trained_records,columns=['model','train_time','r2','recall','f1score','acc_score'])
trained records
# Store results into SQL
trained_insert = '''
    insert into params
    values (?, GETDATE(), ?, ?, ?, ?)
for rec in trained_records.iterrows():
   values = (
        rec[1]['model'],
        rec[1]['train_time'],
        rec[1]['r2'],
        rec[1]['recall'],
        rec[1]['f1score'],
                                                                       model train_time
                                                                                                   r2
                                                                                                          recall
                                                                                                                   f1score
                                                                                                                            acc_score
        rec[1]['acc_score'])
    cursor.execute(trained insert, values)
                                                   0
                                                            LogisticRegression
                                                                                 0.031517  0.840000  0.807692  0.823529
                                                                                                                              0.847458
conn.commit()
# cursor.close()
                                                      RandomForestClassifier
                                                                                 0.125773
                                                                                           0.863636
                                                                                                      0.730769
                                                                                                                 0.791667
                                                                                                                              0.830508
                                                         DecisionTreeClassifier
                                                                                 0.003075  0.904762  0.730769  0.808511
                                                                                                                              0.847458
                                                    2
```

5.4 Test Best Model

From the above results, Logistic Regression has the highest Accuracy Score of 84%. So we will use Logistic Regression to predict the test set.

```
best_model = DecisionTreeClassifier()
best_model.fit(X_train,y_train)
y_pred = best_model.predict(X_test)

test_pred = pd.DataFrame({'Actual':y_test, 'Predicted':y_pred})
test_pred = test_pred.rename_axis('number')
test_pred

# Insert best test model record into SQL
testPred_insert = '''
    INSERT INTO test_pred
    values(?, GETDATE(), ?, ?)

for rec in test_pred.iterrows():
    values = (rec[0], rec[1]['Actual'], rec[1]['Predicted'])
    cursor.execute(testPred_insert, values)
conn.commit()
# cursor.close()
```

	Actual	Predicted
number		
216	1	0
212	1	0
45	0	0
230	1	1
22	0	0
239	1	1
184	0	1
199	1	1
59	0	0
73	0	0
15	0	0
12	0	0
288	1	1
129	0	0
139	0	0
263	1	1
89	0	1
144	0	0
124	0	0
157	0	0
118	0	1
207	1	1
74	0	0
210	1	0
213	1	0
284	1	1
101	0	0
8	0	0
245	1	1
276	1	1
111	0	0
153	0	0
264	1	1
176	0	0

6. CONCLUSION

- 1. Logistic Regression gives the best accuracy compared to other models.
- 2. Exercise-induced angina and chest pain are major symptoms of heart attack.
- 3. Based on these parameters and my cardiological report, I am NOT at risk of suffering a heart attack today.

ACKNOWLEDGEMENT

- A.M. Aditya
 Gouri Choudhury
- 3. Fredi Tantri
- 4. Tongwei Wang
- 5. Adrian Sim
- 6. Billy Chua
- 7. Christopher Simon
- 8. Tay An Ting 9. Hui Ching
- 10. Kenny Lim
- 11. Lindawati Hendrawan
- 12. Michelle Michael
- 13. Nor Aza Hussain
- 14. Zaleha Ali