

Motivation

The problem of separation arises when the binary responses can be separated into all 0s and all 1s as a linear function of the predictors, as in the image below.

The Maximum Likelihood Estimation (MLE) does not exist when the data is perfectly separable. The likelihood always increases with the magnitude of the estimated coefficients. To solve this issue, we need to use regularization.

Regularization in Logistic Regression

Based on the Likelihood framework, a loss function can be determined based on the log-likelihood function. We saw in linear regression that maximizing the log-likelihood is equivalent to minimizing the sum of squares.

$$rg \min \sum_{i=1}^n \left(y_i - \hat{y_i}
ight)^2 = rg \min \sum_{i=1}^n \left(y_i - (eta_0 + eta_1 x_{1i} + \ldots + eta_p x_{pi})
ight)^2$$

And a regularization approach was to add a penalty factor to this equation, which for Ridge Regression becomes:

$$rg\min\left[\sum_{i=1}^n\left(y_i-\left(eta_0+\sum_{i=1}^n\left(eta_jx_{ji}
ight)
ight)^2+\lambda\sum_{i=1}^peta_j^2
ight]$$

Note: this penalty shrinks the estimates towards zero, and has the analogue of using a Normal prior centered at zero in the Bayesian paradigm.

A similar approach can be used in logistic regression. Here, maximizing the log-likelihood is equivalent to minimizing the following loss function:

$$rg \min \left[-\sum_{i=1}^{n} \left(y_i \ln \left(p_i
ight) + \left(1 - y_i
ight) \ln \left(1 - p_i
ight)
ight)
ight]$$

where

$$p_i = \left(1 - e^{-eta_0 + eta_1 x_{1i} + ... + eta_p x_{pi}}
ight)^{-1}$$

A penalty factor can then be added to this loss function and results in a new loss function that penalizes large values of the parameters:

$$rg \min \left[-\sum_{i=1}^{n} \left(y_i \ln \left(p_i
ight) + \left(1 - y_i
ight) \ln \left(1 - p_i
ight)
ight) + \lambda \sum_{j=1}^{p} eta_j^2
ight]$$

The result is just like in linear regression: it shrinks the parameter estimates towards zero. In practice, the intercept is usually not part of the penalty factor. Note: the sklearn package uses a different tuning parameter: instead of λ they use a constant that is essentially $C=1/\lambda$.

Just like in linear regression, the shrinkage factor must be chosen. Through building multiple training and test sets (cross-validation), we can select the best shrinkage factor to mimic out-of-sample prediction.

- Class 0
- Class 1
- Unregularized Log Reg
- Regularized Log Reg

Discussion Board (External resource)

Click OK to have your username and e-mail address sent to a 3rd party application.

ок

⟨ Previous Next >

© All Rights Reserved

edX

About Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code Privacy Policy

Accessibility Policy Trademark Policy Sitemap Cookie Policy Your Privacy Choices

Connect

<u>Blog</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved. 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>