МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Машинное обучение»

Тема: Понижение размерности пространства признаков

Студент гр. 6307	 Новиков Б.М.
Преподаватель	 Жангиров Т.Р.

- 1.Загрузить датасет по ссылке: https://www.kaggle.com/uciml/glass . Данные представлены в виде csv таблицы.
- 2.Создать Python скрипт. Загрузить датасет в датафрейм.

Out[311]:

	RI	Na	Mg	Al	Si	K	Ca	Ba	Fe	Type
0	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
1	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
2	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
3	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
4	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

Разделить данные на описательные признаки и признак отображающий класс.

```
var_names = list(df.columns) #получение имен признаков
labels = df.to_numpy('int')[:,-1] #метки классов
data = df.to numpy('float')[:,:-1] #описательные признаки
```

3. Провести нормировку данных к интервалу [0 1]

data = preprocessing.minmax scale(data)

4. Построить диаграммы рассеяния для пар признаков. Самостоятельно определите соответствие цвета на диаграмме и класса в датасете

Цвет — Класс:

- красный 1
- желтый 2
- зеленый 3
- голубой 4 (не используется)
- синий 5
- фиолетовый 6
- красный 7

1. Используя метод главных компонент (РСА). Проведите понижение размерности пространства до размерности 2

```
pca = PCA(n_components = 2)
pca_data = pca.fit(data).transform(data)
```

2. Выведите значение объясненной дисперсии в процентах и собственные числа соответствующие компонентам print(pca_test.explained_variance_ratio_) print(pca_test.singular_values_)

```
[0.45429569 0.17990097 0.12649459 0.09797847]
[5.1049308 3.21245688 2.69374532 2.3707507 ]
```

3. Постройте диаграмму рассеяния после метода главных компонент

4. Проанализируйте и обоснуйте полученные результаты

Уменьшение линейной размерности с использованием разложения данных по сингулярным значениям для проецирования их в пространство с меньшей размерностью. Входные данные центрируются, но не масштабируются для каждой функции перед применением SVD.

5. Изменяя количество компонент, определите количество при котором компоненты объясняют не менее 85% дисперсии данных

```
pca_test = PCA(n_components = 4)
pca_test_data = pca_test.fit(data).transform(data)print(f"при
{pca_test.n_components} объяснено {np.sum(pca_test.explained_variance_ratio_)}")
```

при 4 объяснено 0.8586697305102717

6. Используя метод inverse_transform восстановите данные, сравните с исходными prev_data = pca.inverse_transform(pca_data)

Как говорилось ранее, было объяснено только 60% данных, поэтому на графиках мы наблюдаем потери.

7. Исследуйте метод главных компонент при различных параметрах svd solver

auto: при 2 объяснено 0.6341966621042778 за 0.0008883476257324219

full: при 2 объяснено 0.6341966621042778 за

0.0005629062652587891

arpack: при 2 объяснено 0.634196662104278 за

0.0022330284118652344

randomize: при 2 объяснено 0.6341966621042778 за

0.0017657279968261719

auto: при 3 объяснено 0.7606912558548662 за

0.0004870891571044922

full: при 3 объяснено 0.7606912558548662 за

0.0005779266357421875

arpack: при 3 объяснено 0.7606912558548664 за

0.0014243125915527344

randomize: при 3 объяснено 0.7606912558548665 за

0.0048673152923583984

auto: при 4 объяснено 0.8586697305102717 за

0.0006194114685058594

full: при 4 объяснено 0.8586697305102717 за

0.0005605220794677734

arpack: при 4 объяснено 0.8586697305102717 за

0.0010724067687988281

randomize: при 4 объяснено 0.8586697305102716 за

0.001171112060546875

```
0.0005259513854980469
full:
                 при 5 объяснено 0.9272937149511479 за
0.00045561790466308594
                 при 5 объяснено 0.9272937149511477 за
arpack:
0.0012247562408447266
randomize:
                 при 5 объяснено 0.9272937149511488 за
0.001383066177368164
                 при 6 объяснено 0.9694347221994033 за
auto:
0.00045943260192871094
full:
                 при 6 объяснено 0.9694347221994033 за
0.0004661083221435547
arpack:
                 при 6 объяснено 0.9694347221994032 за
0.0017657279968261719
randomize:
                 при 6 объяснено 0.969434722199403 за
0.0019042491912841797
auto:
                 при 7 объяснено 0.9955326243472864 за
0.0005545616149902344
                 при 7 объяснено 0.9955326243472864 за
full:
0.0005307197570800781
arpack:
                 при 7 объяснено 0.9955326243472861 за
0.0016689300537109375
randomize:
                 при 7 объяснено 0.9955326243472872 за
0.002304553985595703
                 при 8 объяснено 0.9998605862637865 за
auto:
0.0006623268127441406
full:
                 при 8 объяснено 0.9998605862637865 за
0.0007853507995605469
arpack:
                 при 8 объяснено 0.9998605862637863 за
0.0019965171813964844
                 при 8 объяснено 0.9998605862637874 за
randomize:
0.0026693344116210938
```

при 5 объяснено 0.9272937149511479 за

auto:

Для данного датасета не наблюдается разницы в общей объясненной дисперсии при любом количестве компонент, но зато есть разница во времени исполнения: лучше всех себя показывает full.

1. По аналогии с PCA исследуйте KernelPCA для различных параметров kernel и различных параметрах для ядра

linear

poly

rbf

sigmoid

cosine

По графикам можно заметить , что данные распределены одинаковым образом, но их масштаб и центр не совпадают.

2. Определите, при каких параметрах KernelPCA работает также как PCA При linear, как видно по графику.

3. Аналогично исследуйте SparcePCA lars

cd

4. Проанализируйте и обоснуйте полученные результаты

lars:	lars: при 2 за 0.021564483642578125					
cd:	прі	1 2	за	0.008909	463882	446289
lars:	прі	1 3	за	0.025670	528411	865234
cd:	прі	1 3	за	0.010800	600051	879883
lars:	прп	1 4	за	0.028514	623641	967773
cd:				0.013376		
lars:	пап	15	за	0.034071	.445465	08789
cd:	•			0.011635		
lars:	пап	16	за	0.086734	294891	35742
cd:	•			0.035430		
lars:	прі	1 7	за	0.093938	827514	64844

cd: при 7 за 0.03470182418823242

lars: при 8 за 0.0957038402557373 cd: при 8 за 0.03627443313598633

Метод cd работает в разы быстрее lars.

1. Проведите понижении размерности используя факторный анализ FactorAnalysis

lapack

randomized

