Математическая логика

Совершенная дизъюнктивная нормальная форма (СДНФ)

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Курс математической логики

	Наименование	Содержание раздела
п/п	раздела дисциплины	
1.	Введение в алгебру	Прямое произведение множеств. Соответствия и функции. Алгебры.
	логики	Функции алгебры логики. Суперпозиции и формулы. Булева Алгебра.
		Принцип двойственности. Совершенная дизьюнктивная нормальная
		форма (СДНФ). Совершенная конъюнктивная нормальная форма
		(СКНФ). Разложение булевых функций по переменным. Построение
		СДНФ для функции, заданной таблично.
2.	Минимизация Проблема минимизации. Порождение простых имплик	
	булевых функций	Алгоритм Куайна и Мак-Клоски. Таблицы простых импликантов.
3.	3. Полнота и Замкнутые классы. Класс логических функций, сохра	
	замкнутость систем	константы 0 и 1. Определение и доказательство замкнутости. Класс
	логических функций	самодвойственных функций. Определение и лемма о
		несамодвойственной функции. Класс монотонных функций.
		Определение и лемма о немонотонной функции. Класс линейных
		функций. Определение и лемма о нелинейной функции.
4.	Исчисление Общие принципы построения формальной теории. Интерпретаци	
	высказываний и	общезначимость, противоречивость, логическое следствие. Метод
предикатов резолюций для исчисления		резолюций для исчисления высказываний. Понятие предиката.
		Кванторы. Алфавит. Предваренная нормальная форма. Алгоритм
		преобразования формул в предваренную нормальную форму.
		Скулемовская стандартная форма. Подстановка и унификация.
		Алгоритм унификации. Метод резолюций в исчислении предикатов.

Литература

- Зарипова Э.Р., Кокотчикова М.Г., Севастьянов Л.А. Лекции по дискретной математике: Учеб. пособие. Математическая логика. Москва: РУДН, 2014. 118 с.
- Светлов В.А., Логика: учебное пособие, изд-во: Логос, 2012 г. 429 с.
- Микони С.В., Дискретная математика для бакалавра. Множества, отношения, функции, графы. СПб., Изд-во Лань, 2013 г., 192 с.
- Горбатов В.А., Горбатов А.В., Горбатова М.В., Дискретная математика, М.: АСТ, 2014 г, 448 с.
- Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- Учебный портал РУДН, раздел «Математическая логика» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26522

Обозначения

Введем обозначения $x^0 = \overline{x}$, $x^1 = x$.

Пусть
$$\delta \in \{0,1\}$$
. Тогда $x^{\delta} = \begin{cases} x, \delta = 1 \\ \overline{x}, \delta = 0. \end{cases}$

Составим таблицу Кэли для x^{δ} .

x^{δ}	$\delta = 0$	$\delta = 1$
x = 0		
x=1		

Обозначения

Таблица Кэли для x^{δ} :

χ^{δ}	$\delta = 0$	$\delta = 1$
x = 0	1	0
x=1	0	1

Очевидно, что $x^{\delta} = 1 \Leftrightarrow x = \delta$.

Элементарная конъюнкция

Выражение вида $x_1^{\delta_1} x_2^{\delta_2} ... x_n^{\delta_n}$ называется элементарной конъюнкцией (ЭК).

Членами конъюнкции являются либо сами переменные $x_1, ..., x_n$, либо их отрицания.

Пример. Примеры конъюнкций:

$$x_1 x_2$$
, $x_3 \overline{x}_4$, $x_1 x_2 \overline{x}_4 x_5$.

Основная элементарная конъюнкция

Элементарная конъюнкция, в которую включены все переменные, называется основной элементарной конъюнкцией (ОЭК).

Пример. Основные элементарные конъюнкции от 5 переменных.

$$n = 5$$
; $K_1 = x_1 x_2 \overline{x}_3 x_4 \overline{x}_5$, $K_2 = \overline{x}_1 \overline{x}_2 \overline{x}_3 x_4 x_5$.

В элементарные конъюнкции K_1 и K_2 входят все пять переменных.

Лемма об элементарной конъюнкции

Лемма.

$$x_1^{\delta_1}x_2^{\delta_2}...x_n^{\delta_n} = \begin{cases} 1, ecnu \ \delta_1 = x_1,..., \delta_n = x_n, \\ 0, ecnu \ \delta_i \neq x_i \ xoms \ бы \ для \ odhoгo \ i. \end{cases}$$

Док-во. 1) Пусть $\delta_1 = x_1, ..., \delta_n = x_n$.

Тогда
$$x_1^{\delta_1} \cdots x_n^{\delta_n} = x_1^{x_1} \cdots x_n^{x_n} = 1 \cdots 1 = 1$$
.

2) Пусть $\delta_k \neq x_k$, для некоторого $k: 1 \leq k \leq n$.

Тогда

$$x_1^{\delta_1}\cdots x_k^{\delta_k}\cdots x_n^{\delta_n}=x_1^{x_1}\cdots x_k^{\overline{x_k}}\cdots x_n^{x_n}=1\cdots 1\cdot 0\cdot 1\cdots 1=0$$
. \square

Определение ДНФ и СДНФ

Формула $\Phi = k_1 \lor k_2 \lor ... \lor k_m$, где k_i – элементарные конъюнкции, называется дизъюнктивной нормальной формой (ДНФ).

Если все k_i являются основными элементарными конъюнкциями, то ДНФ называется совершенной (СДНФ).

Примеры ДНФ и СДНФ

Пример.

Для функций трех переменных ниже приведены ДНФ и СДНФ.

$$n = 3$$
; $x_1 x_2 \lor x_1 \overline{x}_3 \lor \overline{x}_2 \overline{x}_3 - ДНФ$, $x_1 x_2 x_3 \lor \overline{x}_1 x_2 x_3 - СДНФ$.

Отличие заключается в том, что в СДНФ обязательно должны участвовать все три переменные одновременно, а для ДНФ нет.

Теорема о разложении функций по *m* переменным

Теорема. Каждую функцию алгебры логики $f(x_1,...,x_n)$ при любом m, $1 \le m \le n$, можно представить в следующей форме:

$$f(x_{1},...,x_{m},x_{m+1},...,x_{n}) =$$

$$= \bigvee_{\delta_{1},...,\delta_{m}} x_{1}^{\delta_{1}} \cdots x_{m}^{\delta_{m}} f(\delta_{1},...,\delta_{m},x_{m+1},...,x_{n}),$$

где дизъюнкция берется по всем возможным наборам значений переменных $x_1, ..., x_m$.

Это представление называется разложением функции по m переменным $x_1, ..., x_m$.

Теорема о разложении функций по *m* переменным

Док-во. Теорема доказывается подстановкой в обе части равенства произвольного набора $(\alpha_1,...,\alpha_m,\alpha_{m+1},...,\alpha_n)$ всех n переменных.

Левая часть равенства дает значение функции на наборе $f(\alpha_1,...,\alpha_n)$.

Правая
$$\bigvee_{\delta_1,...,\delta_m} \alpha_1^{\delta_1} \cdots \alpha_m^{\delta_m} f(\delta_1,...,\delta_m,\alpha_{m+1},...\alpha_n) =$$
 $= \alpha_1^{\alpha_1} \cdots \alpha_m^{\alpha_m} f(\alpha_1,...,\alpha_m,\alpha_{m+1},...,\alpha_n) = f(\alpha_1,...,\alpha_n)$. Получаем, что левая и правая части равны. \square

Следствие 1 теоремы о разложении функций

Следствие 1. Разложение по одной k -ой переменной:

$$f(x_1,...,x_{k-1},x_k,x_{k+1},...,x_n) =$$

$$= x_k f(x_1,...,x_{k-1},1,x_{k+1},...,x_n) \vee$$

$$\vee \overline{x}_k f(x_1,...,x_{k-1},0,x_{k+1},...,x_n)$$

Следствие 2 теоремы о разложении функций

Следствие 2. Разложение по всем n переменным:

$$f(x_1,...,x_n) = \bigvee_{\delta_1,...,\delta_n} x_1^{\delta_1} \cdots x_n^{\delta_n} f(\delta_1,...,\delta_n).$$

Но
$$f(\delta_1,...,\delta_n) = 0$$
 либо $f(\delta_1,...,\delta_n) = 1$.

Следовательно, при $f(x_1,...,x_n) \neq 0$ оно может быть преобразовано к виду:

$$\bigvee_{\delta_{1},...,\delta_{n}} x_{1}^{\delta_{1}} \cdots x_{n}^{\delta_{n}} f(\delta_{1},...,\delta_{n}) = \bigvee_{\substack{\delta_{1},...,\delta_{n} \\ f(\delta_{1},...,\delta_{n}) = 1}} x_{1}^{\delta_{1}} \cdots x_{n}^{\delta_{n}}, \text{ T.e.}$$

$$f(x_{1},...,x_{n}) = \bigvee_{\substack{\delta_{1},...,\delta_{n} \\ f(\delta_{1},...,\delta_{n}) = 1}} x_{1}^{\delta_{1}} \cdots x_{n}^{\delta_{n}} - C \Pi H \Phi.$$

Построение СДНФ для функции, заданной таблицей

Следствие 2 позволяет по таблице функции построить СДНФ (если $f \neq 0$).

- 1) СДНФ функции f содержит ровно столько конъюнкций, сколько единиц в таблице f.
- 2) Каждому «единичному» набору $(\delta_1, ..., \delta_n)$, т.е. набору, на котором значение функции равно 1, соответствует конъюнкция всех переменных, в которой x_i взято с отрицанием, если $\delta_i = 0$, и без отрицания, если $\delta_i = 1$.

Построение СДНФ для функции, заданной таблицей

Пример. Найти СДНФ для функции $x_1 \rightarrow x_2$.

x_1	\mathcal{X}_2	$x_1 \rightarrow x_2$	Основные элементарные конъюнкции (ОЭК)
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Построение СДНФ

Найти СДНФ для функции $x_1 \rightarrow x_2$.

X_1	\mathcal{X}_2	$x_1 \rightarrow x_2$	Основные элементарные конъюнкции (ОЭК)
0	0	1	$\overline{x}_1\overline{x}_2$
0	1	1	$\overline{x}_1 x_2$
1	0	0	-
1	1	1	X_1X_2

Полученные ОЭК записываем в ответ через дизъюнкции, получаем СДНФ.

$$f(x_1, x_2) = x_1^0 x_2^0 \vee x_1^0 x_2^1 \vee x_1^1 x_2^1 = \overline{x_1} \overline{x_2} \vee \overline{x_1} x_2 \vee x_1 x_2.$$

Представление логической функции булевой формулой

Представить логическую функцию булевой формулой — это значит представить f в виде формулы через отрицание, конъюнкцию и дизъюнкцию.

Если
$$f(x_1,...,x_n) \not\equiv 0$$
, то по следствию 2 $f(x_1,...,x_n) = \bigvee_{\substack{\delta_1,...,\delta_n \\ f(\delta_1,...,\delta_n)=1}} x_1^{\delta_1} \cdots x_n^{\delta_n} - CДНФ.$

Если же
$$f(x_1,...,x_n) \equiv 0$$
, то $f(x_1,...,x_n) = x_1 \overline{x}_1$.

Элементарные дизъюнкции

Выражение вида $x_1^{\delta_1} \vee x_2^{\delta_2} \vee ... \vee x_n^{\delta_n}$ называется элементарной дизъюнкцией ЭД.

Членами дизъюнкции являются либо переменные $x_1,...,x_n$, либо их отрицания.

Пример. Примеры элементарных дизъюнкций:

$$x_1 \vee x_2$$
, $x_3 \vee \overline{x}_4$, $x_1 \vee x_2 \vee \overline{x}_4 \vee x_5$.

Основные элементарные дизъюнкции

Элементарная дизъюнкция, в которую включены все переменные, называется основной элементарной дизъюнкцией (ОЭД).

Пример. Примеры для функции пяти переменных основных элементарных дизъюнкций.

$$n = 5$$
; $x_1 \lor x_2 \lor \overline{x}_3 \lor x_4 \lor \overline{x}_5$, $\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3 \lor x_4 \lor \overline{x}_5$.

КНФ и СКНФ

Формула $\Phi = D_1 \cdot D_2 \cdots D_m$, где D_i – элементарные дизъюнкции, называется конъюнктивной нормальной формой (КНФ).

Если все D_i являются основными элементарными дизъюнкциями, то КНФ называется совершенной (СКНФ).

КНФ и СКНФ

Пример.

Для функции 3 переменных приведем примеры КНФ и СКНФ.

$$n = 3$$
; $(x_1 \lor x_2)(x_1 \lor \overline{x}_3)(\overline{x}_2 \lor \overline{x}_3)$ - КНФ,
 $(x_1 \lor x_2 \lor x_3)(\overline{x}_1 \lor x_2 \lor x_3)$ - СКНФ.

В отличие от КНФ в СКНФ в каждой скобке участвуют все три переменные.

Тема следующей лекции:

«Совершенная конъюнктивная нормальная форма (СКНФ)».