# **Automatic Dynamic Relevance Determination** for Gaussian process regressions with functional inputs

Luis Damiano<sup>†1</sup>, Joaquim Teixeira<sup>2</sup>, Margaret Johnson<sup>2</sup>, Jarad Niemi<sup>1</sup>

<sup>1</sup>Department of Statistics, Iowa State University <sup>2</sup>NASA Jet Propulsion Laboratory

> SIAM Conference on Uncertainty Quantification April 13th, 2022

#### Funded, in part, by

- ISU Presidential Interdisciplinary Research Initiative on C-CHANGE: Science for a Changing Agriculture
- Foundation for Food and Agriculture Research Grant ID: CA18-SS-0000000278

<sup>†</sup>Idamiano@iastate edu

#### ian process regressions witi

Overview & motivation

Functional input  $X(t): \mathcal{T} o \mathbb{R}$ 











■ Can we connect the functional input structure to a physical mechanism?



- Can we connect the functional input structure to a physical mechanism?
- Can we incorporate the functional input structure into the GP?



- Can we connect the functional input structure to a physical mechanism?
- Can we incorporate the functional input structure into the GP?
- Can we circumvent input dimension reduction?

| Output | $egin{aligned} Input \ X(t): \mathcal{T}  ightarrow \mathbb{R} \end{aligned}$ | $Index \\ t \in \mathcal{T}$ |  | Mechanism |
|--------|-------------------------------------------------------------------------------|------------------------------|--|-----------|
|--------|-------------------------------------------------------------------------------|------------------------------|--|-----------|

| Output       | $egin{aligned} Input \ X(t): \mathcal{T}  ightarrow \mathbb{R} \end{aligned}$ | $Index \\ t \in \mathcal{T}$ | $\begin{array}{l} Index \; subspaces \\ t \in \mathcal{T}_u \end{array}$ | Mechanism    |
|--------------|-------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|--------------|
| Plant growth | Phosphorus                                                                    | Depth                        | Soil layers                                                              | Root biomass |

| Output       | $egin{aligned} Input \ X(t): \mathcal{T}  ightarrow \mathbb{R} \end{aligned}$ | $Index \\ t \in \mathcal{T}$ |                 | Mechanism                                      |
|--------------|-------------------------------------------------------------------------------|------------------------------|-----------------|------------------------------------------------|
| Plant growth | Phosphorus                                                                    | Depth                        | Soil layers     | Root biomass                                   |
|              | Precipitation                                                                 | Time                         | Cycles, seasons | Germination photosynthesis nutrient absorption |

| Output       | $egin{aligned} Input \ X(t): \mathcal{T}  ightarrow \mathbb{R} \end{aligned}$ | $Index \\ t \in \mathcal{T}$ |                 | Mechanism                                            |
|--------------|-------------------------------------------------------------------------------|------------------------------|-----------------|------------------------------------------------------|
| Plant growth | Phosphorus                                                                    | Depth                        | Soil layers     | Root biomass                                         |
|              | Precipitation                                                                 | Time                         | Cycles, seasons | Germination<br>photosynthesis<br>nutrient absorption |
| Soil erosion | Elevation                                                                     | Distance                     | Up/down slope   | Water erosion                                        |
|              |                                                                               |                              |                 |                                                      |

| Output       | $egin{aligned} Input \ X(t): \mathcal{T}  ightarrow \mathbb{R} \end{aligned}$ | $\begin{matrix} Index \\ t \in \mathcal{T} \end{matrix}$ |                    | Mechanism                                            |
|--------------|-------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|------------------------------------------------------|
| Plant growth | Phosphorus                                                                    | Depth                                                    | Soil layers        | Root biomass                                         |
|              | Precipitation                                                                 | Time                                                     | Cycles, seasons    | Germination<br>photosynthesis<br>nutrient absorption |
| Soil erosion | Elevation                                                                     | Distance                                                 | Up/down slope      | Water erosion                                        |
| Radiance     | Chemical species                                                              | Elevation                                                | Atmospheric layers | Reflectivity                                         |

| Output       | $egin{aligned} Input \ X(t): \mathcal{T}  ightarrow \mathbb{R} \end{aligned}$ | $Index \\ t \in \mathcal{T}$ | $\begin{array}{l} Index  subspaces \\ t \in \mathcal{T}_u \end{array}$ | Mechanism                                            |
|--------------|-------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
| Plant growth | Phosphorus                                                                    | Depth                        | Soil layers                                                            | Root biomass                                         |
|              | Precipitation                                                                 | Time                         | Cycles, seasons                                                        | Germination<br>photosynthesis<br>nutrient absorption |
| Soil erosion | Elevation                                                                     | Distance                     | Up/down slope                                                          | Water erosion                                        |
| Radiance     | Chemical species                                                              | Elevation                    | Atmospheric layers                                                     | Reflectivity                                         |

Index subspaces can provide a meaningful representation of the physical process

| Output       | $egin{aligned} Input \ X(t): \mathcal{T}  ightarrow \mathbb{R} \end{aligned}$ | $\begin{array}{l} Index \\ t \in \mathcal{T} \end{array}$ |                    | Mechanism                                            |
|--------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------|------------------------------------------------------|
| Plant growth | Phosphorus                                                                    | Depth                                                     | Soil layers        | Root biomass                                         |
|              | Precipitation                                                                 | Time                                                      | Cycles, seasons    | Germination<br>photosynthesis<br>nutrient absorption |
| Soil erosion | Elevation                                                                     | Distance                                                  | Up/down slope      | Water erosion                                        |
| Radiance     | Chemical species                                                              | Elevation                                                 | Atmospheric layers | Reflectivity                                         |

Index subspaces can provide a meaningful representation of the physical process

Can we establish an explicit link  $X(t) \xrightarrow{f} y$  for UQ?

Automatic Oynamic Relevance Determination for Gaussian process regressions with functional inputs

From relevance to dynamic relevance

April 13th, 2022

Some inputs matter more than others

 $x_1$  vs  $x_2$ 

Screening

(exploration

& diagnostics)

Permutation Feature

Importance

Model tuning (learning)

Automatic Relevance Determination

<sup>[1]</sup> Forthcoming paper

Some inputs matter more than others  $x_1 \ \textit{vs} \ x_2$ 

Some index subspaces  $\rightarrow$  matter more than others  $X(t_1)$  vs  $X(t_2)$ 

Screening (exploration

& diagnostics)

Feature Importance

Permutation

Model tuning (learning)

Automatic Relevance Determination

<sup>[1]</sup> Forthcoming paper

Some inputs matter more than others  $x_1$  vs  $x_2$ 

→ mat

Some index subspaces matter more than others  $X(t_1)$  vs  $X(t_2)$ 

Screening (exploration & diagnostics)

Permutation Feature Importance

 $\rightarrow$ 

Permutation Feature *Dynamic Importance*<sup>[1]</sup>

Model tuning (learning)

Automatic Relevance Determination

<sup>[1]</sup> Forthcoming paper



Some index subspaces  $\rightarrow$  matter more than others  $X(t_1)$  vs  $X(t_2)$ 

Screening (exploration & diagnostics)

Permutation Feature Importance Permutation
→ Feature

Dynamic Importance[1]

Model tuning (learning)

Automatic Relevance Determination

Automatic

Dynamic Relevance

Determination

<sup>[1]</sup> Forthcoming paper

Model tuning (learning)

Automatic Relevance Determination

Distance  $d(X_i, X_i)$ 

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

$$\ell_1^{-2},\cdots,\ell_{\mathsf{K}}^{-2} > 0$$

Model tuning (learning)

Automatic Relevance Determination  $\longrightarrow$ 

Automatic

Dynamic Relevance

Determination

Distance  $d(X_i, X_j)$ 

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

Weights (relevance)

$$\ell_1^{-2},\cdots,\ell_{\mathit{K}}^{-2}\,>\,0$$

Model tuning (learning)

Automatic Relevance Determination → Automatic

→ Dynamic Relevance

Determination

Distance  $d(X_i, X_j)$ 

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 \mathrm{d}t$$

Weights (relevance)

$$\ell_1^{-2},\cdots,\ell_{\mathit{K}}^{-2}\,>\,0$$

Model tuning (learning)

Automatic Relevance Determination Automatic

→ Dynamic Relevance

Determination

Distance  $d(X_i, X_j)$ 

$$\sum_{k=1}^{K} \frac{(x_{i,k} - x_{j,k})^2}{\ell_k^2}$$

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

Weights (relevance)

$$\ell_1^{-2}, \cdots, \ell_K^{-2} > 0$$

$$\omega(t) : \mathcal{T} \to \mathbb{R}^+$$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda \kappa^{s} s\right\}$$

$$s = \operatorname{sign}(t - \tau), \ \tau > 0, \ \lambda > 0, \ \kappa > 0, \ \mathcal{T} = [0, 1]$$



■ The input is most relevant at  $\tau$  (relevance peak)



- The input is most relevant at τ (relevance peak)
- Relevance increases at a  $\lambda_1 = \lambda \kappa^{-1}$  rate from t=0 to the peak



- The input is most relevant at τ (relevance peak)
- Relevance increases at a  $\lambda_1 = \lambda \kappa^{-1}$  rate from t=0 to the peak
- Relevance decreases at a  $\lambda_2 = \lambda \kappa$  rate from the peak to t=1





- The input is most relevant at τ (relevance peak)
- Relevance increases at a  $\lambda_1 = \lambda \kappa^{-1}$  rate from t=0 to the peak
- Relevance decreases at a  $\lambda_2 = \lambda \kappa$  rate from the peak to t=1
- $\blacksquare$  To predict the output, look for input profiles that are similar everywhere but especially near au



- The input is most relevant at τ (relevance peak)
- Relevance increases at a  $\lambda_1 = \lambda \kappa^{-1}$  rate from t = 0 to the peak
- Relevance decreases at a  $\lambda_2 = \lambda \kappa$  rate from the peak to t=1
- To predict the output, look for input profiles that are similar everywhere but especially near  $\tau$  circumvent input dimension reduction

$$\mathbf{y} \sim \mathcal{N} \left( 0, \sigma_f^2 \ \mathbf{R}_f + \sigma_\varepsilon^2 \mathbf{I} \right) \tag{1}$$
$$\mathbf{r}_{ii} = \exp \left\{ -0.5 \phi^{-2} \ d_f(\mathbf{X}_i, \mathbf{X}_i) \right\} \tag{2}$$

$$(R_f)_{ij} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_j)\right\}$$

(3)

 $\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \mathbf{R}_f + \sigma_e^2 \mathbf{I}\right)$  $(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_j)\right\}$ 

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$(X_i(t) - X_j(t))^2 dt$$

(1)

(2)

(3)

$$\sigma_{\varepsilon}^2 > 0$$
,  $\sigma_f^2 > 0$ ,  $\phi > 0$ ,  $i, j = 1, \dots, N$   
 $\omega(t) : \mathcal{T} \to (0, \infty)$ 

$$\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \ \mathbf{R}_f + \sigma_\varepsilon^2 \mathbf{I}\right)$$
$$(\mathbf{R}_f)_{ii} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_i)\right\}$$

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$(t)(X_i(t)-X_j(t))^{-}dt$$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\}$$

(1)

(2)

$$\sigma_{\varepsilon}^2 > 0$$
,  $\sigma_f^2 > 0$ ,  $\phi > 0$ ,  $i, j = 1, \dots, N$   
 $\omega(t) : \mathcal{T} \to (0, \infty)$ 

 $\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \ \mathbf{R}_f + \sigma_{\varepsilon}^2 \mathbf{I}\right)$  $(\mathbf{R}_f)_{ii} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_i)\right\}$ 

$$\int_{-\infty}^{\infty} (-0.5\varphi - \mathbf{u}_f(X_i, X_j))^2 dx$$

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\}$$

Weak priors 
$$\phi \sim \text{InvGamma}(\cdot, \cdot)$$
,  $\tau \sim \text{Beta}(\cdot, \cdot)$ ,  $\lambda \sim \text{N}^+(\cdot, \cdot)$ ,  $\log(\kappa) \sim \text{N}(\cdot, \cdot)$ 

$$\sigma_{\varepsilon}^2 > 0, \ \sigma_f^2 > 0, \ \phi > 0, \ i, j = 1, \dots, N$$
 $\omega(t): \mathcal{T} \to (0, \infty)$ 

(1)

(2)

(3)

(4)

Weak priors 
$$\phi \sim \text{InvGamma}(\cdot, \cdot)$$
,  $\tau \sim \text{Beta}(\cdot, \cdot)$ ,  $\lambda \sim \text{N}^+(\cdot, \cdot)$ ,  $\log(\kappa) \sim \text{N}(\cdot, \cdot)$  Multiple inputs e.g., correlation product

 $d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$ 

 $\omega(t) = \exp\{-(t-\tau)\lambda\kappa^{s}s\}$ 

 $\mathbf{v} \sim \mathcal{N} \left( 0, \sigma_{\mathbf{f}}^2 \mathbf{R}_{\mathbf{f}} + \sigma_{\mathbf{c}}^2 \mathbf{I} \right)$ 

 $(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$ 

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\}$$

$$\sigma_{\varepsilon}^2 > 0$$
,  $\sigma_f^2 > 0$ ,  $\phi > 0$ ,  $i, j = 1, \dots, N$   
 $\omega(t) : \mathcal{T} \to (0, \infty)$ 

(1)

(2)

(3)

(4)

Weak priors 
$$\phi \sim \text{InvGamma}(\cdot, \cdot)$$
,  $\tau \sim \text{Beta}(\cdot, \cdot)$ ,  $\lambda \sim \text{N}^+(\cdot, \cdot)$ ,  $\log(\kappa) \sim \text{N}(\cdot, \cdot)$   
Multiple inputs e.g., correlation product

 $\mathbf{v} \sim \mathcal{N} \left( 0, \sigma_{\mathbf{f}}^2 \mathbf{R}_{\mathbf{f}} + \sigma_{\mathbf{c}}^2 \mathbf{I} \right)$ 

 $d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$ 

 $\omega(t) = \exp\{-(t-\tau)\lambda\kappa^{s}s\}$ 

 $(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$ 

Multiple inputs e.g., correlation product

Complex index spaces e.g., spatio-temporal spectral structures AKA tesseract

$$\sigma_{\varepsilon}^2 > 0$$
,  $\sigma_f^2 > 0$ ,  $\phi > 0$ ,  $i, j = 1, \dots, N$   
 $\omega(t) : \mathcal{T} \to (0, \infty)$ 

 $\omega(t): \mathcal{T} \to (0, \infty)$ 

(1)

(2)

(3)

(4)

### Functional Input Gaussian Process (fiGP)

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$\omega(t) = \exp\left\{-(t - \tau)\lambda \kappa^s s\right\}$$

 $\mathbf{v} \sim \mathcal{N} \left( 0, \sigma_{\mathbf{f}}^2 \mathbf{R}_{\mathbf{f}} + \sigma_{\mathbf{c}}^2 \mathbf{I} \right)$ 

 $(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$ 

Weak priors  $\phi \sim \text{InvGamma}(\cdot, \cdot)$ ,  $\tau \sim \text{Beta}(\cdot, \cdot)$ ,  $\lambda \sim N^+(\cdot, \cdot)$ ,  $\log(\kappa) \sim N(\cdot, \cdot)$ 

Multiple inputs e.g., correlation product

Complex index spaces e.g., spatio-temporal spectral structures AKA tesseract

Flexibility no need to match input-output structure nor index space  $\frac{\sigma_{\varepsilon}^2 > 0, \ \sigma_f^2 > 0, \ \phi > 0, \ i,j=1,\ldots,N}{\sigma_{\varepsilon}^2 > 0, \ \sigma_f^2 > 0, \ \phi > 0, \ i,j=1,\ldots,N}$ 

 $\omega(t): \mathcal{T} \to (0, \infty)$ 

$$j, j = 1, \dots, N$$

(1)

(2)

(3)

(4)

# NASA's Microwave Limb Sounder

#### Data structure



Credit: NASA Aura





#### Implementation

- 8 training, 8 test complementary sets
- 1,000 soundings each
- One model fit separately per input-output pair
- Fully Bayesian inference
- Hamiltonian Monte Carlo using Stan
- 1 long chain
- Extensive search for an initial value
- 500 post-warmup iterations
- 1,500 posterior samples

### Weight function posterior samples



#### fiGP vs a vector-input GP



- + High dimensional inputs with no dimension reduction
  - ► Reduce unknowns 3 << K
  - $\triangleright$  Scales up for applications with higher input resolution  $\uparrow K$

<sup>[1]</sup> Forthcoming paper

- + High dimensional inputs with no dimension reduction
  - ► Reduce unknowns 3 << K
  - $\triangleright$  Scales up for applications with higher input resolution  $\uparrow K$
- + Explicit link between output correlation and input functional structure
  - Can incorporate domain-specific knowledge
  - Tangible for prior elicitation
  - Interpretation  $\rightarrow$  insight?
  - Smooths out erratic relevance patterns

- + High dimensional inputs with no dimension reduction
  - ► Reduce unknowns 3 << K
  - $\blacktriangleright$  Scales up for applications with higher input resolution  $\uparrow K$
- + Explicit link between output correlation and input functional structure
  - Can incorporate domain-specific knowledge
  - ► Tangible for prior elicitation
  - ► Interpretation → insight?
  - Smooths out erratic relevance patterns
- $+\,$  Similar predictive power as vector-input GP in the case study $^{[1]}$

<sup>[1]</sup> Forthcoming paper

- High dimensional inputs with no dimension reduction
  - $\triangleright$  Reduce unknowns 3 << K
  - $\triangleright$  Scales up for applications with higher input resolution  $\uparrow K$
- + Explicit link between output correlation and input functional structure
  - Can incorporate domain-specific knowledge
  - Tangible for prior elicitation
  - Interpretation  $\rightarrow$  insight?
  - Smooths out erratic relevance patterns
- Similar predictive power as vector-input GP in the case study<sup>[1]</sup>
- Extensible to complex index spaces, e.g., spatio-temporal spectral inputs<sup>[2]</sup>

[1] Forthcoming paper

### Acknowledgments

The MLS team at JPL, California Institute of Technology

## Thank you!

Idamiano@iastate.edu

repo https://github.com/luisdamiano/SIAMUQ22

**Appendix** 

Automatic Dynamic Relevance Determination for Gaussian process regressions with functional inputs

#### References

#### Trapezoidal approximation

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt \approx \sum_{k=2}^{K} (t_k - t_{k-1}) \frac{\Delta_{i,j,k} + \Delta_{i,j,k-1}}{2}$$
 (5)

$$\Delta_{i,j,k} = \omega(t_{k-1})(x_{i,k} - x_{j,k})^2$$
 (6)

#### Out-of-sample prediction

|       | H2O | HNO3 | N2O | О3  | Temp | Mean |          | H2O  | HNO3 | N2O  | О3  | Temp | Mean |
|-------|-----|------|-----|-----|------|------|----------|------|------|------|-----|------|------|
| SE    | .34 | .48  | .44 | .32 | .25  | .37  | SE       | 273  | 614  | 585  | 138 | -7   | 323  |
| ARD   | .31 | .47  | .43 | .30 | .25  | .35  | ARD      | 196  | 619  | 581  | 92  | -13  | 295  |
| FPCA  | .67 | .91  | .99 | .46 | .54  | .71  | FPCA     | 1024 | 1320 | 1406 | 637 | 802  | 1038 |
| FFPCA | .46 | .54  | .46 | .38 | .33  | .44  | FFPCA    | 535  | 646  | 630  | 295 | 268  | 475  |
| Edn   | .33 | .47  | .44 | .29 | .25  | .36  | $E_{DN}$ | 261  | 623  | 585  | 90  | 4    | 312  |
| SDE   | .31 | .47  | .44 | .29 | .25  | .35  | SDE      | 202  | 623  | 585  | 85  | 4    | 300  |
| ADE   | .31 | .47  | .43 | .29 | .25  | .35  | ADE      | 202  | 610  | 581  | 87  | 2    | 297  |
| Mean  | .39 | .55  | .52 | .33 | .31  | .42  | Mean     | 385  | 722  | 708  | 204 | 152  | 434  |

Mean validation statistics: RMSE (left) and negative posterior predictive log-density (right). Smaller values are better. Bold: best in column. EDN  $\tau=0, \kappa=1$ ; SDE  $\tau=0$ ; ADE  $\tau,\kappa,\lambda$  all free; ARD as many free parameters as measurements per vertical profile.