METODOS NUMERICOS I

Nombre: Fermin Estrada Buendia.

Definición. Sea f una función definida en un conjunto X de números reales. Entonces, f tendrá por límite L en x_0 , $\lim_{x\to x_0} f(x) = L$, si dado cualquier $\varepsilon > 0$ existe tro número real $\delta > 0$ tal que |f(x) - L| siempre que $x \in X$ y $0 < |x - x_0| < \delta$

Definición. Sea $f: x \to R$ f es continua en x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$ Definición. Sea $x_n|_{n=1}^{\infty}$ una sucesión de números reales. La sucesión converge a un número x (el límite) si $\forall \ \epsilon > 0 \ \exists$ un $N(\epsilon)$ talque $n > N(\epsilon)$ implica $|x_n - x| < \epsilon$

TEOREMA.

Sea $f: x \to R$ y $x_0 \in X$ Los siguientes enunciados son equivalentes:

- a) f es continua en x_0
- b) si $x_n|_{n=1}^{\infty}$ es una sucesión en X y converge en x_0 entonces $\lim_{x\to\infty} f(x) = f(x_0)$

Definición. Si f es una función definida en un intervalo abierto que contine a x_0 , entonces f será diferenciable en x_0 si:

$$\frac{d}{dx}f(x) = \lim_{x \to x \to 0} \frac{f(x) - f(x_0)}{x - x_0} \tag{1}$$

existe.

TEOREMA

Si f es diferenciable en x_0 , entonces f es continua en x_0 .

TEOREMA DE ROLLE.

Supongamos que $f \in C[a, b]$ y que es diferenciable en (a,b). Si f(a) = f(b) = 0, entonces existirá por lo menos un número C en (a,b) con f'(c) = 0.

TEOREMA DEL VALOR MEDIO

Si $f \in C[a,b]$ y f es diferenciable en m(a,b) entonces existirá un número c en (a,b) tal que

$$f'(c) = \frac{f(b) - f(a)}{b} \tag{2}$$

TEOREMA DE TAYLOR

Supongamos que $f \in C^n[a, b]$, tal que f^{n+1} existe en [a, b] y que $x_0 \in [a, b]$. Para toca $x \in [a, b]$ habrá un número $\xi(x)$ entre x_0 y x tal que:

$$f(x) = Pn(x) + Rn(x) \tag{3}$$

donde

$$Pn(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
$$= \sum_{k=0}^n \frac{f^k}{k!}(x_0)(x - x_0)^k \text{ y } Rn(x) = \frac{f^{(n+1)}}{n+1!}(\xi(x))(x - x_0)^{n+1}$$

 $|cos| \le 1$

 $|sen| \leq 1$

TIPO DE ERRORES

Sea x_a el valor aproximado de x_T , entonces se define:

Error Absoluto.

$$e_a = |x_T - x_a|$$

Error relativo. $e_r = \frac{|x_T - x_a|}{x_T}$

Error porcentual. $e_p = \frac{|x_T - x_a|}{x_T} * 100$

ORDEN DE CONVERGENCIA

Si un método iterativo converge y existe dos constantes p $\,1\,\mathrm{y}$ c $\,0$ tales que:

$$\lim_{x \to \infty} e_p = \frac{|x_(n+1)|}{|x_{np}|} = C \tag{4}$$

entonces p se llama orden de convergencia del método y C es una constante de error asintótico.