Lecture Notes for Neural Networks and Machine Learning

Fully Convolutional Learning II: Object Detection

Logistics and Agenda

- Logistics
 - Lab grading update
- Agenda
 - Lab Town Hall Review and Final Project (if needed)
 - Upsampling
 - Full Convolutional Architectures
 - Semantic Segmentation Basics (last time)
 - Object Detection (this time):
 - RCNN, YOLO
 - Instance Segmentation (next time, probably):
 - Mask-RCNN, YOLACT

Town Hall Revisited

Final Project

Me: Predicts the next word correctly

- I have biometric data for pilots...
- Perhaps something to use for the final project...

Basics: Upsampling Layers

Shit Academics Say @Academi... · 22h · · · · not wrong

monstera adansonii @yourn... · 2d

everything is peer reviewed if your friends are judgmental enough

Last Time

Decoder Network

Some researcher started calling this **deconvolution**.

If you use that term in this class, you fail.

This is upsampling and then convolution, but **now the interpolation filters are learned**!!

Integer Upsampling via Interpolation

Image Upsampling, Integer Factor

- Insert Zeros
- Convolve

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

5
9

0.25	0.5	0.25	
0.5	1	0.5	
0.25	0.5	0.25	

Bilinear Filtering

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

Learned Upsampling after Zero Insertion

Learning the interpolation filter has some caveats:

Bias needs to account for both when different numbers of pixels overlap with the kernel

Multiple of stride ensures that same number of active pixels overlap the kernel.

Stride = 2

Image Upsampling, Integer Factor

Nearest Neighbor
UpSampling2D()

UpSampling2D(interpolation='bilinear')

Upsample 2D activations, Cx(uH)x(uW)

Bicubic

Many Types of Upsampling, with varying computational cost:

area, bicubic, gaussian, lanczos3, lanczos5, mitchellcubic

What about transpose convolution?

Transpose Convolution: Strides

Strided Convolution as Matrix Multiplication

Transpose

 $\begin{array}{ccc}
ay \\
ax+bz \\
b \\
c \\
bx+cz \\
cy \\
\end{array}$

13

Stride=2

Χ

This time... Object Detection Methods

- Semantic segmentation has good mIoU values (up to 90%) but this is exaggerated by background recognition, many classes are <40%
- How to adapt these techniques to get bounding boxes, not semantic segmentations?
 - Could this be easier? More stable?
 - More consistent labeling?
 - Suitable for "higher risk" tracking applications?

Object Detection with RCNN

Research!

A history in naming one network five different times with five different papers each time changing one thing about the architecture

General Structure

2014: R-CNN

- Too Slow to Be Useful
- SVM and BBox Regression Trained Separately
- Fine Tuned Existing ConvNet (for Warped Images)
- ~50 Seconds per Image when Deployed

2015: Fast R-CNN

- Fast! 2.3 seconds per image (not ~50)
- But still not real time...

2015: Faster R-CNN

Highly Accurate

2015: Faster R-CNN, Training

- activations from backbone classifier
- Regress multiple bounding boxes (usually k proposals)
- Regress "object-ness" of each box
- Train Fast R-CNN on generated ROI proposals
- Fix weights of classifier pipeline, fine tune RPN
- Fix RPN and fine tune classifier

Rinse, repeat fine tuning
$$l_{box} = \sum_{c} \hat{p}_{i} \left[(x - \hat{x}_{i})^{2} + (y - \hat{y}_{i})^{2} + (\log w - \log \hat{w}_{i})^{2} + (\log h - \log \hat{h}_{i})^{2} \right]$$

$$l_{class} = \sum_{c} CE(c, \hat{c})$$

$$l_{obj} = \sum_{c} CE(p_{i}, \hat{p}_{i})$$

of box proposal

to ground truth

Predicted

Actual, Labeled

BBox

Ground Truth Boxes