ES 221 MECHANICS I (STATICS) RECITATION I

Q1)

Two forces are applied to an eye bracket as shown in the figure above. Determine F_2 - F_1 = \mathbf{R} and the angle θ between the axis and the line of action of the resultant.

Answer to Q1

$$\vec{F}_2-\vec{F}_1=\vec{F}_2+\left(-\vec{F}_1\right)$$

$$R^2 = 600^2 + 900^2 - 2 \times 600 \times 900 \times \cos 140$$

$$R=1413\ N$$

From the law of sines:

900 N

1413 N

$$\frac{\frac{1413 \, N}{\sin 140^{\circ}} = \frac{900 \, N}{\sin \alpha}}{\frac{\vec{F}_{2}}{\sin \alpha}} \qquad \alpha = 24^{\circ}$$

$$\theta = 16^{\circ} + 35^{\circ} = 51^{\circ}$$

Q2)

Determine the magnitude of the resultant \mathbf{R} and the angle θ between the x-axis and the line of action of the resultant for three forces shown above.

Answer to Q2

A 500-N force is to be resolved into components along lines a-a' and b-b'. Determine the angle β and the component along b-b' if it is known that the component along a-a' is 320 N.

Answer to Q3

Determine the magnitude ${\bf R}$ of the resultant of the four forces shown in the figure and the angle θ between the x-axis and the line of action of the resultant.

	F _x (lb)	Fy(lb)
F ₁	-61.3	51.4
\mathbf{F}_2	-20.5	56.4
F ₃	53	53
F ₄	86.1	26.3
$\mathbf{F}_{\mathbf{R}}$	57.3	187.1

