Part F

CHAPTER 3

Architecture and Organization

Alan Clements

1

These slides are provided with permission from the copyright for CS2208 use only. The slides must not be reproduced or provided to anyone outside the class.

All downloaded copies of the slides are for personal use only.

Students must destroy these copies within 30 days after receiving the course's final assessment.

ADC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Add with carry $Rd \leftarrow Rn + Op2 + Carry$

ADD $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Add $Rd \leftarrow Rn + Op2$

 $MLA\{cond\}\{S\}\ Rd, Rm, Rs, Rn\ Multiply\ Accumulate \ Rd \leftarrow (Rm \times Rs) + Rn$

 $MUL\{cond\}\{S\}\ Rd, Rm, Rs$ Multiply $Rd \leftarrow Rm \times Rs$

MOV $\{cond\}\{S\}\ Rd,Op2$ Move register or constant Rd \leftarrow Op2

NEG{cond}{S} Rd,Rn Negate the value in a register Rd ← - Rn

RSB $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Reverse Subtract Rd \leftarrow Op2 - Rn

RSC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Reverse Subtract with Carry Rd \leftarrow Op2 - Rn - 1 + Carry

SBC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Subtract with Carry Rd \leftarrow Rn - Op2 - 1 + Carry

SUB $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Subtract Rd \leftarrow Rn - Op2

AND $\{cond\}\{S\}\{Rd,\}Rn,Op2$ AND Rd \leftarrow Rn AND Op2

BIC $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Bit Clear Rd \leftarrow Rn AND NOT Op2

 $ORR\{cond\}\{S\}\{Rd,\}Rn,Op2 OR Rd \leftarrow Rn OR Op2$

EOR $\{cond\}\{S\}\{Rd,\}Rn,Op2\}$ Exclusive OR Rd \leftarrow Rn \oplus Op2

MVN $\{cond\}\{S\}\ Rd,Op2$ Move not $Rd \leftarrow 0xFFFFFFF \oplus Op2$

CMN{cond} Rn,Op2 Compare Negative CPSR flags ← Rn + Op2

CMP{cond} Rn,Op2 Compare CPSR flags ← Rn - Op2

TEQ{cond} Rn,Op2 Test bitwise equality CPSR flags ← Rn ⊕ Op2

TST{cond} Rn,Op2 Test bits CPSR flags ← Rn AND Op

Computer Organization and Architecture: Themes and Variations, 1st Edition

Clements

ARM Assembly Instructions Summary

B{cond} address

Branch

R15 ← address

BL{cond} address

Branch with Link

 $R14 \leftarrow R15$, $R15 \leftarrow address$

Computer Organization and Architecture: Themes and Variations, 1st Edition

Clements

ARM Assembly Instructions Summary

ADR{cond}Rd,label

Load address

Rd ← The address of the label

STR{cond}{B} Rd,address Store register to memory

[address] ← Rd

LDR{cond}{B} Rd,address Load register from memory

Rd ← [address]

LDR{cond} Rd,=expr

Load a 32-bit immediate value Rd ← expr

LDR{cond} Rd,=label

Load a 32-bit address

Rd ← The address of the label

Computer Organization and Architecture: Themes and Variations, 1st Edition

Clements

ARM Assembly Instructions Summary

LDM{cond}{IA|IB|DA|DB}{cond} Rn{!},reglist

Load Multiple registers/Stack pop

LDM{cond}{FD|FA|ED|EA}{cond} Rn{!},reglist

Load Multiple registers/Stack pop

STM{cond}{IA|IB|DA|DB}}{cond} Rn{!},reglist

Store Multiple registers/Stack push

STM{cond}{FD|FA|ED|EA}}{cond} Rn{!},reglist

Store Multiple registers/Stack push

ADR $\{cond\}Rd,label$ Load address Rd \leftarrow The address of the label

B{cond} addressBranchR15 \leftarrow addressBIC{cond}{S} {Rd,}Rn,Op2Bit ClearRd \leftarrow Rn AND NOT Op2BL{cond} addressBranch with LinkR14 \leftarrow R15, R15 \leftarrow address

CMN{cond} Rn,Op2 Compare Negative CPSR flags \leftarrow Rn + Op2 CMP{cond} Rn,Op2 Compare CPSR flags \leftarrow Rn - Op2

EOR $\{cond\}\{S\}\{Rd,\}Rn,Op2$ Exclusive OR Rd \leftarrow Rn \oplus Op2

 $LDM\{cond\}\{IA|IB|DA|DB\}\{cond\}\ Rn\{!\}, reglist \\ LOad\ Multiple\ registers/Stack\ pop \\ LDM\{cond\}\{FD|FA|ED|EA\}\{cond\}\ Rn\{!\}, reglist \\ Load\ Multiple\ registers/Stack\ pop \\$

LDR{cond} Rd,=label Load a 32-bit address Rd ← The address of the label

 $\mathsf{MLA}\{\mathsf{cond}\}\{\mathsf{S}\}\ \mathsf{Rd}, \mathsf{Rm}, \mathsf{Rs}, \mathsf{Rn} \qquad \mathsf{Multiply}\ \mathsf{Accumulate} \qquad \qquad \mathsf{Rd} \leftarrow (\mathsf{Rm} \times \mathsf{Rs}) + \mathsf{Rn}$

$$\label{eq:moverage} \begin{split} &\text{MOV}\{\text{cond}\}\{\text{S}\}\ \text{Rd},\text{Op2} & \text{Move register or constant} & \text{Rd} \leftarrow \text{Op2} \\ &\text{MUL}\{\text{cond}\}\{\text{S}\}\ \text{Rd},\text{Rm},\text{Rs} & \text{Multiply} & \text{Rd} \leftarrow \text{Rm} \times \text{Rs} \end{split}$$

 $\label{eq:mvn} \mbox{MVN} \mbox{cond} \mbox{S} \mbox{ Rd}, \mbox{Op2} \qquad \mbox{Move not} \qquad \mbox{Rd} \leftarrow \mbox{OxFFFFFFF} \oplus \mbox{Op2}$

Negate the value in a register

 $Rd \leftarrow -Rn$

NOP No operation No operation

 $ORR\{cond\}\{S\}\{Rd,\}Rn,Op2$ OR $Rd \leftarrow Rn OR Op2$

RSB{cond}{S}{ Rd,}Rn,Op2 Reverse Subtract Rd ← Op2 - Rn

 $RSC\{cond\}\{S\}\ \{Rd,\}Rn,Op2 \qquad \qquad Reverse\ Subtract\ with\ Carry \qquad \qquad Rd \leftarrow Op2-Rn-1+Carry$

 $SBC\{cond\}\{S\} \{Rd,\}Rn,Op2 \qquad Subtract with Carry \qquad Rd \leftarrow Rn - Op2 - 1 + Carry$

 $STM\{cond\}\{IA|IB|DA|DB\}\}\{cond\}\ Rn\{!\}, reglist \\ STM\{cond\}\{FD|FA|ED|EA\}\}\{cond\}\ Rn\{!\}, reglist \\ Store\ Multiple\ registers/Stack\ push \\ Store\ Multiple\ reg$

 $\begin{array}{lll} STR\{cond\}\{B\}\ Rd,address & Store\ register\ to\ memory & [address] \leftarrow Rd \\ SUB\{cond\}\{S\}\ \{Rd,\}Rn,Op2 & Subtract & Rd \leftarrow Rn-Op2 \\ \end{array}$

TEQ{cond} Rn,Op2Test bitwise equalityCPSR flags \leftarrow Rn \oplus Op2TST{cond} Rn,Op2Test bitsCPSR flags \leftarrow Rn \rightarrow Op2

{S} → Update condition flags if S present

NEG{cond}{S} Rd,Rn

{cond} → (to be omitted for unconditional execution)

Refer to the table below for the meaning of the {cond} field.

Meaning of {condition} field

Encoding	Mnemonic	Branch on Flag Status	Execute on Condition
0000	EQ	Z set	Equal (i.e., zero)
0001	NE	Z clear	Not equal (i.e., not zero)
0010	CS	C set	Unsigned higher or same
0011	CC	C clear	Unsigned lower
0100	MI	N set	Negative
0101	PL	N clear	Positive or zero
0110	VS	V set	Overflow
0111	VC	V clear	No overflow
1000	HI	C set and Z clear	Unsigned higher
1001	LS	C clear or Z set	Unsigned lower or same
1010	GE	N set and V set, or N clear and V clear	Greater or equal
1011	LT	N set and V clear, or N clear and V set	Less than
1100	GT	Z clear and N set and V set, or	Greater than
		Z clear and N clear and V clear	
1101	LE	Z set, or N set and V clear,	Less than or equal
		or N clear and V set	
1110	AL		Always (default)
1111	NV		Never (reserved)

225

Instruction Encoding Formats

Conversion Tables

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024 \quad (Kilo)$
 $2^{11} = 2048$
 $2^{12} = 4096$
 $2^{13} = 8192$
 $2^{14} = 16384$
 $2^{15} = 32768$
 $2^{16} = 65536$
 $2^{17} = 131072$
 $2^{18} = 262144$
 $2^{19} = 524288$
 $2^{20} = 1048576 \quad (Mega)$

```
(0)_{16} = (0)_{10} = (0000)_{2}
(1)_{16} = (1)_{10} = (0001)_{2}
(2)_{16} = (2)_{10} = (0010)_{2}
(3)_{16} = (3)_{10} = (0011)_{2}
(4)_{16} = (4)_{10} = (0100)_{2}
(5)_{16} = (5)_{10} = (0101)_{2}
(6)_{16} = (6)_{10} = (0110)_{2}
(7)_{16} = (7)_{10} = (0111)_{2}
(8)_{16} = (8)_{10} = (1000)_{2}
(9)_{16} = (9)_{10} = (1001)_{2}
(A)_{16} = (10)_{10} = (1010)_{2}
(B)_{16} = (11)_{10} = (1011)_{2}
(C)_{16} = (12)_{10} = (1100)_{2}
(D)_{16} = (13)_{10} = (1101)_{2}
(E)_{16} = (14)_{10} = (1110)_{2}
(F)_{16} = (15)_{10} = (1111)_{2}
```

```
ASCII Table
'∩' → 0x30
'1' → 0x31
'2' → 0x32
'8' → 0x38
'9' → 0x39
'A' → 0x41
'B' → 0x42
'C' → 0x43
'D' → 0x44
'E' → 0x45
'F' → 0x46
'X' → 0x58
'Y' → 0x59
'Z' → 0x5A
'a' → 0x61
'b' → 0x62
'c' → 0x63
'd' → 0x64
'e' → 0x65
'f' → 0x66
'x' → 0x78
'v' → 0x79
'z' → 0x7A
```

227