There are 5 data files in csv format (comma separated value).

Some quick notes:

- The model runs from 800 to 1350 in annual time steps. So the year variable is from 800 to 1350.
- The landscape is defined on a map of 80 × 120 cells (Figure 1 from "Understanding Artificial Anasazi" paper). Each cell represents a 100m × 100m space.

Black: General Valley Floor Red: North Valley Floor White: Mid and North Dunes Gray: Midvalley Floor Yellow: Nonarable Uplands Blue: Arable Uplands Pink: Kinbiko Canyon

Figure 1. Different zones of land cover

File 1/5: map.csv

Contains information about the zones along with other attributes like colours so you can re-create Figure 1.

Column	Type	Possible values	Note
х	int	0-79	x coordinate in the simulation
У	Int	0-119	y coordinate in the simulation
color	string	"white" "yellow" "pink" "blue" "red" "black" "gray"	match with Figure 1
zone	string	"Empty" "Natural" "Kinbiko" "Uplands" "North" "General" "North Dunes" "Mid Dunes" "Mid"	
maize.zone	string	"Empty" "No_Yield" "Yield_1" "Yield_3" "Yield_2" "Sand_dune"	Coressponding to the yield levels for different zones (Table 3 in "Understanding Artificial Anasazi" paper) • "Yield_1" is "North and Mid Valley, Kinbiko Canyon" column. • "Yield_2" is "General Valley" column. • "Yield_3" is "Arable Uplands" column. • "Sand_dune" is "Dunes" column.

Table 2. The	المنتما المامني		41:66		- E DDCI
Table 3: The	yieia ievei	s for the	amerent	vaiues	וכשיו וט

	Zones			
PDSI	North and Mid Valley, Kinbiko Canyon	General Valley	Arable Uplands	Dunes
[-∞,-3]	617	514	411	642
3,-1]	719	599	479	749
1,1)	821	684	547	855
,3)	988	824	659	1030
3,∞)	1153	961	769	1201

File 2/5: settlements.csv

Historical settlements data (real world settlements to compare to our simulated settlements).

You may ignore this for now. We plan to post-process this dataset and provide a time series of the real world settlements.

Column	Туре	Note
SARG		an ID number relating to data collected by the
number		"Southwestern Anthropological Research Group"
		(unused by the simulation, left for reference)
meter north	int	real world location measurements
meter east	int	real world location measurements
start date	int	historical start date
end date	int	historical end date
median date	int	historical median date
settlement		extra data (unused)
type		
settlement		extra data (unused)
size		
description		extra data (unused)
room count		extra data (unused)
elevation		extra data (unused)
baseline		baseline number of households
households		
number of		"current" number of households
households		
х	int	x coordinate in the simulation
У	int	y coordinate in the simulation

File 3/5: water.csv

Location of water sources

Column	Type	Note
id number	int	an ID number (unused)
meter north	int	real world location measurements
meter east	int	real world location measurements
type	int	1 = conditional on zones and year.
		2 = always a water source.
		3 = water source when the current year is between start
		and end date.
start date	int	historical start date
end date	int	historical end date
Х	int	x coordinate in the simulation
У	int	y coordinate in the simulation

Pseudo code for water sources:

```
//NOTE: 1 is TRUE, 0 is FALSE
if ((year >= 280 and year < 360) or (year >= 800 and year < 930) or (year >= 1300
and year < 1450)
       existStreams = 1
else
       existStreams = 0
if (((year >= 420) and (year < 560)) or ((year >= 630) and (year < 680)) or
((year >= 980) \text{ and } (year < 1120)) \text{ or } ((year >= 1180) \text{ and } (year < 1230)))
       existAlluvium = 1
else
       existAlluvium = 0
for each location {
       water-source = 0
      if (existAlluvium == 1) and ((zone == "General") or (zone == "North") or
(zone == "Mid") or (zone == "Kinbiko")) {
             water-source = 1
       if (existStreams == 1) and (zone == "Kinbiko") {
        water-source = 1
}
```

File 4/5: pdsi.csv

The adjust PDSI (Palmer Drought Severity Index) for each zone over time (corresponding to the PDSI column of Table 3).

There are 7 columns: the year columns (800 to 1350) and the 6 columns for 6 zones.

File 5/5: hydro.csv

Water availability for each zones (value from 0 to 10). This is the level of water (different to "whether there is water" from water.csv which is either 0 or 1).

There are 7 columns: the year columns (800 to 1350) and the 6 columns for 6 zones.

Note: After finding a new farm location, the household will settle to a nearby location that is not a farm and has hydro<=0.