

Bioinformatical analysis of omics expression data Part 5

Dr. Michael Turewicz^{1,2}

¹Institut für Klinische Biochemie und Pathobiochemie,

Deutsches Diabetes-Zentrum, Leibniz-Zentrum für Diabetesforschung an der Heinrich-Heine-Universität, Düsseldorf, Deutschland
²Deutsches Zentrum für Diabetesforschung (DZD), München-Neuherberg, Deutschland

Course schedule

- Part 1 (25.10.23)
 - Introduction (omics, example data, programming)
 - Data preprocessing (data inspection, normalization, missing values)
 - Exercises: R programming tutorial (part 1)
- Part 2 (08.11.23)
 - Differential expression analysis (statistics, volcano plot)
 - Exercises: R programming tutorial (part 2)
- Part 3 (15.11.23)
 - Machine learning I: Clustering (clustering, PCA)
 - Exercises: Customized hierarchical clustering & PCA in R
- Part 4 (22.11.23)
 - Overrepresentation analysis (GO, Reactome)
 - Exercises: Own GO- & Reactome analysis in R & other tools
- Part 5 (29.11.23)
 - Network analysis (STRING, Cytoscape)
 - Exercises: Own network analysis in R & STRING
- Part 6 (06.12.23)
 - Machine learning II: Classification algorithms

Recap of previous part

Gene Ontology (GO)

- Organism-specific hierarchy of curated biol. terms
- → directed acyclic graph (DAG) of terms (= nodes)
- → edges: "is a"- & "part of"-relationships
- close to DAG-"root" general terms & terminal nodes most specific
- Organized in 3 GO domains (separate DAGs): biological components.
 process, molecular function, cellular component

Overrepresentation analysis (ORA)

- · Basic idea:
 - Annotate input genes/proteins with the terms with which they are annotated in a biological database
 - 2. Return terms that are statistically significantly (→ p-value) overrepresented in input
- <u>Statistical tests:</u> based on the urn model, e.g. Fisher's exact test, Kolmogorov-Smirnov test, (...)
- Popular biological knowledge DBs: GO, Reactome, KEGG, WikiPathways, PhosphoSitePlus, (...)
- Programming (example: R)
- Own GO- & Reactome-based ORA + visualization in R & online tools

List of candidates: what's next?

- We have learned to find a list of statistically significant differential candidates with p-values and fold changes
- How can we interpret these biologically?
- Are there biological connections that could explain a common occurrence?
- Can a common function be assumed?

Motivation: Protein-protein interactions (PPIs)

Example: Photosynthetic electron transport chain of the thylakoid membrane.

PPI networks: basic concepts

PPI networks

Constructed from DBs

PPI networks can be constructed using knowledge from biological databases. Popular tools include:

- STRING (free) STRING
- IntAct (free)
- Ingenuity Pathway Analysis (commercial)
- (\dots)

Inferred from omics data

- 1) PPI prediction via amino acid sequences, esp. based on conserved sequences & well known PPIs in other species (not discussed today)
- 2) PPI prediction via the co-expression of genes/proteins. → (weighted) gene/protein co-expression network analysis (WGCNA)

Networks from DBs: STRING

- STRING (https://string-db.org/):
 - online tool for PPI network analysis (& more).
 - widely used & free.
- STRING is a DB of known & predicted PPIs.
- Interactions are derived from:
 - Genomic context predictions
 - High-throughput lab experiments
 - (Conserved) co-expression
 - Text mining (PubMed, OMIM, ...)
 - Knowledge in DBs (Reactome, DIP, BioGRID, MINT, Gene Ontology, KEGG, PDB, UniProt, ...)
- Version 11.0:
 - 5090 organisms
 - > 24.6 millions proteins
 - > 3,000 millions interactions
- → Search for PPIs for single or multiple proteins & visualization as a network.

STRING: search form

DDZ
Deutsches Diabetes-Zentrum

STRING: network (evidence view)

STRING: basic settings

interactors from STRING DB can be added.

STRING: network (confidence view)

STRING: lax settings

Settings: "low confidence (0.150)" & all kinds of interactions

STRING: strict settings

DDZ
Deutsches Diabetes-Zentrum

Settings: "highest confidence (0.900)" & only known interactions (DBs & experiments)

STRING: network statistics & ORA

PPI networks: basic concepts

PPI networks

Constructed from DBs

PPI networks can be constructed using knowledge from biological databases. Popular tools include:

- STRING (free)
- IntAct (free)
- Ingenuity Pathway Analysis (commercial)
- (...)

Inferred from omics data

- 1) PPI prediction via amino acid sequences, esp. based on conserved sequences & well known PPIs in other species (<u>not discussed today</u>)
- 2) PPI prediction via the co-expression of genes/proteins. → (weighted) gene/protein co-expression network analysis (WGCNA)

- Hepatocellular carcinoma (HCC) → liver cancer
- 19 HCC vs. 19 controls (C) → healthy samples
- Obtained from Naboulsi et al., J. Proteome Res. 2016
- PRIDE: PXD002171
- Label-free quantification of 2,736 proteins via Progenesis QI software

Q15029 and Q15020 vs. P13797

Q15029 and Q15020 vs. P13797

DDZ

Protein expression profiles

Q15029 and Q15020 vs. P13797

Measure for co-expression: Spearman's rho

DDZ

r = 0.9515 (both are involved in pre-mRNA splicing)

Q15020 vs. Q15029

Measure for co-expression: Spearman's rho

DDZ
Deutsches Diabetes-Zentrum

r = 0.951 (both are involved in pre-mRNA splicing)

Measure for co-expression: Spearman's rho

DDZ Deutsches Diabetes-Zentrum

P13797 vs. Q15020

Protein co-expression network inference

Deutsches Diabetes-Zentrum

- Let $P = \{p_1, ..., p_5\}$ be a set of protein expression profiles (from quant. proteomics)
- Consider pairs of protein expression profiles p_i , $p_i \in P$.
- Correlation-based measure for co-expression: $a_{ij} = |cor(p_i, p_j)|^{\beta}$, $\beta \in \{1, 2, 3, ...\}$

• Adjacency matrix:
$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{15} \\ \vdots & \ddots & \vdots \\ a_{51} & \cdots & a_{55} \end{pmatrix}$$

• Unweighted network:
$$G = (P, A)$$
 after setting $a_{ij} = \begin{cases} 1 \ \forall a_{ij} \ge \tau \\ 0 \ \forall a_{ij} < \tau \end{cases}$ 1 = "edge" 0 = "no edge"

		p_1	p_2	p_3	p_4	p_5		
computing A	p_1	1	0.3	0.6	0.4	0.81		
	p_2	0.3	1	0.5	0.3	0.94		
	p_3	0.6	0.5	1	0.6	0.86		
	p_4	0.4	0.3	0.6	1	0.87		
	p_5	0.81	0.94	0.86	0.87	1		
	1							

		p_1	p_2	p_3	p_4	p_5
	p_1	1	0	0	0	1
	p_2	0	1	0	0	1
	p_3	0	0	1	0	1
	p_4	0	0	0	1	1
	p_5	1	1	1	1	1
				4		

Protein co-expression networks

- Module: Cluster of interconnected (i.e., coexpressed) proteins.
- Modules can represent <u>pathways</u> & <u>hub proteins</u> (most interconnected proteins) can represent their modulators.
- <u>Topological Overlap:</u> Similarity measure for the "interconnectedness" between two proteins based on the number of shared neighbors.
- TOM (Topological Overlap Matrix): Matrix $\Omega = [\omega_{ij}]$ containing the topological overlap between all proteins. Used for the detection of modules.

$$\omega_{ij} = \frac{\sum_{u} a_{iu} a_{uj} + a_{ij}}{\min\{k_i, k_j\} + 1 - a_{ij}}$$

Distance metric for clustering.

Comparing group-specific networks

DDZ
Deutsches Diabetes-Zentrum

Comparing group-specific networks

DDZ
Deutsches Diabetes-Zentrum

Comparing group-specific networks

(Sub-)network visualization

Network interpretation (STRING)

Enrichment results (adjusted p-values):

- GO (cellular component): "proteasome core complex, alpha subunit comples" (p = 3.66e-14)
- KEGG pathway: "proteasome" (p = 1.54e-12)
- PFAM domains: "proteasome subunit" (p = 1.3e-17)
- INTERPRO domains: "Proteasome, subunit alpha/beta" (p = 2.77e-17)

Components of the ubiquitinproteasome pathway are known targets for cancer therapy (proteasome inhibitors) – also in discussion for HCC...

Network interpretation

Potential reasons for co-expression:

- Direct protein-protein interaction
- Target protein ←→ protease
- Target protein ←→ kinase/phosphorylase
- Receptor protein ←→ effector protein
- Signaling complexes
- Scaffold protein complexes
- Target protein ←→ transcription factor
- (...)

Elucidation by:

- Best way: experiments!
- Protein annotation (e.g., GO-/Reactome-ORA)
- PPI annotation
- Protein module identification & characterization
- Identification & characterization of hub proteins
- Differential network analysis
- (...)

Hands on part!

Exercises

• Exercise 5

- https://drive.google.com/drive/folders/1vmewprs0gkpakU8idbgtexDIwmGVUJz3? usp=sharing
- Use our example dataset from GitHub for the following exercises
- Exercise 5.1: Perform an own STRING network analysis in R using differential candidates and confidence view (confidence threshold = 0.7). Visualize the network without not connected nodes.
- Exercise 5.2: Perform an own WCGNA in R and find an biologically interesting module. You can use STRING analysis (via searching the UniProt IDs in the STRING web application) to quickly check whether a module is interesting (i.e. highly confident STRING interactions & interesting ORA results in STRING).
- Please send me your solutions as an ".R"-file

Thank you!

