Structure of IPv6 Addresses and Networks (1/5)

- IPv6 addresses have a length of 128 bits (16 bytes)
 - Therefore, $2^{128} \approx 3.4 * 10^{38}$ addresses can be represented
- The introduction is useful because of the limited address space of IPv4
- Problem: The decimal notation is confusing
 - For this reason, IPv6 addresses are represented in hexadecimal format
 - Groups of 4 bits are represented as a hexadecimal number
 - Goups of 4 hexadecimal numbers are merged into blocks
 - The blocks are separated by colonsExample: 2001:0db8:85a3:08d3:1319:8a2e:0370:7344
- The last 4 bytes (32 bits) of an IPv6 address may also be written in decimal notation
- This is useful to embed the IPv4 address space into the IPv6 address space ⇒ see slide 47

Structure of IPv6 Addresses and Networks (2/5)

- Rules for simplification (RFC 5952):
 - Leading zeros within a block may be omitted
 - Successive blocks with value 0 (= 0000), may be omitted exactly 1 time within an IPv6 address
 - If blocks are omitted, this is indicated by 2 consecutive colons
 - If several groups of null blocks exist, it is recommended to shorten the group with the most null blocks
- Example:
 - The IPv6 address of j.root-servers.net is: 2001:0503:0c27:0000:0000:0000:0002:0030 ⇒ 2001:503:c27::2:30

Notation of IPv6 addresses (URLs)

- IPv6 addresses are enclosed in square brackets
- Port numbers are appended outside the brackets http://[2001:500:1::803f:235]:8080/
- This prevents the port number from being interpreted as part of the IPv6 address

Structure of IPv6 Addresses and Networks (3/5)

• IPv6 addresses consist of 2 parts

64 Bits	64 Bits		
Network Prefix	Interface Identifier		
2001.620.200.af24	.0.ff.fa00.65		

- Prefix (Network Prefix)
 - Identifies the network
- Interface identifier (Interface ID)
 - Identifies a network device in a network
 - Can be manually set, assigned via DHCPv6 or calculated from the MAC address of the network interface
 - If the interface identifier is calculated from the MAC address, it is called Extended Unique Identifier (EUI)
 - When this is done, the MAC address (48 bits) is converted into a 64-bit address => modified EUI-64 address format (see slide 45)

Some address spaces

fe80::/10 \implies Link local addresses. They are only valid in the local network and are therefore not forwarded by Routers 2000::/3 \implies (2000... until 3fff...) Global unicast addresses. Routers forward them ff00::/8 \implies All addresses ff... are multicast addresses. Since IPv6 has no broadcast addresses, multicast addresses implement the broadcast functionality. The addresses ff01::1 and ff02::1 address all nodes in the local network and the addresses ff01::2, ff02::2 and ff05::2 address all local Routers 2001:db8::/32 \implies Addresses only for documentation purposes

Structure of IPv6 Addresses and Networks (4/5)

- Converting a MAC address in the modified EUI-64 address format
 - 1 The MAC address is split into 2 parts of 24 bits
 - The 1st part becomes the first 24 hits
 - The 2nd part becomes the final 24 bits of the modified FUI-64 address
 - The free 16 bits in the middle of the EUI-64 address have the following bit pattern: 1111 1111 1111 1110 (hex: FFFE)
 - Finally, the value of the seventh bit from the left is inverted

Extended Unique Identifier (64 Bits)

Structure of IPv6 Addresses and Networks (5/5)

- (Sub-)netmasks do not exist in IPv6
 - The subdivision of address ranges into subnets is done by specifying the prefix length
- IPv6 networks are specified in CIDR notation
 - The address of a single device sometimes has /128 attached
 - An example is the loopback address of IPv6: ::1/128
 - All bits except the last one have value 0 (For IPv4, the loopback address is: 127.0.0.1)
 - Internet Providers (ISPs) or operators of large networks get the first 32 or 48 bits assigned from a Regional Internet Registry (RIR)
 - The ISPs or network operators split this address space into subnets
 - End users usually get a /64 or even a /56 network assigned

 If a user gets a /56 network assigned, the 8 Bits between the Prefix and the Interface Identifier are the Subnet Prefix

Embedd IPv4 Addresses into IPv6 (IPv4 mapped)

- A globally routed (unicast) IPv4 address can be represented as an IPv6 address and thus integrated into the IPv6 address space
 - In literature, this approach is called IPv4 mapped
- The IPv4 address gets a 96 bytes long prefix:

0:0:0:0:0:FFFF::/96

80 Bits				16 Bits	32 Bits	
0000	0000	0000	0000	0000	FFFF	IPv4 address

 The IPv4 address may be represented in hexadecimal or decimal notation

Example

IPv4 address: 131.246.107.35

IPv6 address: 0:0:0:0:0:FFFF:83F6:6B23

Shorter notation: ::FFFF:83F6:6B23

::FFFF:131.246.107.35

Structure of IPv6 Packets

 The size of the IPv6 header is fixed (320 bits
⇒ 40 bytes)

 The field next header points to an extension header field or identifies the Transport Layer protocol (e.g. TCP = type 6 or UCP = type 17) which is carried in the payload of the packet

Concept: Simplified (reduced) package structure, but simple option to add additional (new) features with a chain of extension headers

Extension Headers

- Hop-By-Hop Options (type 0, RFC 2460)
 - Contains optional information that must be examined by every node along the delivery path of the packet
- Routing (type 43, RFC 2460)
 - Can be used to specify the route of the packet though the network
- Fragment (type 44, RFC 2460)
 - Contains parameters for the fragmentation of packets
- Encapsulating Security Payload (type 50, RFC 4303)
 - Contains encrypted data for secure communication
- Authentication Header (type 51, RFC 4302)
 - Contains information used to verify the authenticity parts of the packet
- No Next Header (type 59, RFC 2460)
 - Placeholder to indicates that that there is nothing following that header
- Destination Options (type 60, RFC 2460)
 - Options that need to be examined only by the destination network device of the packet