Ho trovato le equazioni di Navier-Stokes per un fluido non-comprimibile formulate come:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{v}$$
 (0.0.1)

$$\nabla \mathbf{v} = 0 \tag{0.0.2}$$

Dove ν è la viscosità, e immagino \mathbf{v} sia la velocità, p la pressione, ρ la densità. Torna tutto a livello dimensionale, ma non capisco il significato di $(\mathbf{v}\nabla)\mathbf{v}$: è diverso scrivere $\mathbf{v}\nabla$ rispetto a $\nabla\mathbf{v}$? Rappresenta il gradiente o altre operazioni, e se è il gradiente, come si fa a fare il gradiente di un campo vettoriale?

Poi,