

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	81.59	80.94	80.71	81.12	81.5	80.74	81.19	81.06	81.29
A	Medição 2	81.05	80.97	81.61	81.06	81.31	81.9	81.46	81.71	81.04
	Medição 3	81.44	81.38	81.08	81.24	81.69	81.59	80.8	81.45	81.61
	Medição 1	80.9	81.64	81.11	81.22	80.98	81.37	81.33	81.59	80.56
В	Medição 2	80.98	81.36	81.3	81.07	81.16	81.46	81.54	81.94	81.01
	Medição 3	80.46	81.32	81.17	81.18	81.34	81.24	81.45	81.25	81.13
С	Medição 1	81.19	81.97	81.07	81.37	81.65	80.76	80.86	81.37	81.54
	Medição 2	81.21	81.47	81	81.25	81.56	80.99	81.13	80.98	81.1
	Medição 3	81.14	81.02	80.96	81.35	81.39	81.43	81.28	81.54	81.33

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)								
Comprimento l (cm)	4.34	5.19	5.57	5.71	8.26	9.42	9.47	9.88

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 25°C e 26°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	11.36	8.9	8.68	10.44	8.19	8.98	9.32	11.12
$I_a (mA)$	114.115	88.139	85.901	104.981	81.751	89.857	92.702	111.852

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza
20mA	$\pm (0.8\% + 3D)$
200mA	$\pm (1.2\% + 4D)$
20A	$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.