北京师范大学信息科学与技术学院 黄勇

• 社交网络分享者声誉的问题引入

- PageRank、HITS等当前研究方法
- 作者提出新的分享者声誉评估模型

社交网络分享者声誉的问题引入

- 社交网络能非常方便地和好友之间相 互分享内容、好内容能获得更好赞誉
- 能为用户推荐高质量的内容阅读,分享者能对内容进行过滤,读者也能从高质量的内容中受益
- 发现好的分享者、为好内容条目排序

- 当前社交网络数据是充满偏差,不利于评估分享者的声誉。
- 声誉定义基于一个随机用户对于话题兴趣,社交网络内容是选择性地分享给好友等相关用户,产生选择偏差
- 用户知道分享者的身份,由于上下级、 亲密度等因素进行回复,产生回复偏差

• 社交网络分享者声誉的问题引入

- PageRank、HITS等当前研究方法
- 作者提出新的分享者声誉评估模型

当前的研究方法

- PageRank-V算法分享内容回复的总数作为有向边的权重
- PageRank-R算法回复占浏览的比例作为有向边的权重
- HITS算法

• 问答系统和答案排序

• 社交网络分享者声誉的问题引入

- PageRank、HITS等当前研究方法
- 作者提出新的分享者声誉评估模型

作者提出新的方法

基本假设

- 阅读分享内容的用户随机的
- 分享者的身份 被隐藏
- 保证对内容的 评价是无偏的

数据选择

- LT:匿名推荐 的数据
- UPS:好友的信 息流更新
- 个人页面中分享过的信息

挑战和优势

- 用户行为数据 是聚集的
- 用户回复数据 是分散的
- 结合两者构建 了层次模型

模型的参数和模型的概括

Symbol	Description
Observation	
z_{sij}	User i 's response to item j shared by sharer s
y_{ij}	User i's response on item j
$\frac{y_{ij}}{\mathcal{J}_s}$ \mathcal{S}_j	The set of items shared by sharer s
S_j	The set of sharers who shared item j
η_{ik}	User i's interest in topic k
x_s	Feature vector for sharer s
x_{si}	Feature vector between sharer s and user i
Variables to be learned	
μ_{sk}	Unbiased reputation score for sharer s on topic k
α_{sk}	Uncalibrated reputation score for sharer s on topic k
p_{jk}	Item j's attractiveness in topic k
ϕ_k, θ_k	Topic-specific regression coefficients
	between μ_{sk} and α_{sk}
β	Regression coefficients for a bias term for z _{sij}
\boldsymbol{b}	Bias for y_{ij}
Table 1: Definitions of the symbols.	

Figure 2: Graphical Representation of our model (variance components are not shown)

无偏数据的建模过程

• 无偏的用户行为建模

• 用户回复内容服从二项分布

• 用户的声誉服从正态分布

• 稀疏数据采用先验概率补全

User action model. For the unbiased user action data, we assume the mean of the binary response y_{ij} for user i on item j is a function of user i's interest vector η_{ik} for different topics k, and the attractiveness p_{jk} of item j for users interested in different topics k. More specifically,

$$y_{ij} \sim \text{Bernoulli}(\text{probability} = \sigma(\sum_k \eta_{ik} p_{jk} + b)),$$
 (1)

Aggregation of user reputation. We connect attractiveness of items to user reputation through modeling the attractiveness p_{jk} of item j for users interested in different topics k as the average of reputation scores μ_{sk} of the sharers $s \in S_j$ of item j; i.e.,

$$p_{jk} \sim \mathcal{N}(\text{mean} = \frac{1}{|\mathcal{S}_j|} \sum_{s \in \mathcal{S}_j} \mu_{sk}, \text{ var} = \frac{1}{\lambda_1 |\mathcal{S}_j|})$$
 (2)

有偏数据的建模过程

• 未调整偏差的回复数据的声誉模型

• 社交回复数据服从二项分布

基于线性回归,利用有偏差数据和 无偏差数据,调整模型偏差 Social response model. In the biased social response data, we assume that each response z_{sij} represents whether user i would respond positively to item j shared by sharer s, and it is modeled as a function of user i's interest vector η_{ik} and the "uncalibrated reputation score" α_{sk} of sharer s on different topics k; i.e.,

$$z_{sij} \sim \text{Bernoulli}(\text{probability} = \sigma(\sum_{k} \eta_{ik} \alpha_{sk} + \beta' x_{si})),$$
 (5)

Regression-based calibration. We model the relationship between α_{sk} and μ_{sk} through a linear regression, where the regression coefficients depend on user features; i.e.,

$$\mu_{sk} \sim \mathcal{N}(\text{mean} = (\phi'_k x_s)\alpha_{sk} + \theta'_k x_s, \text{ var} = 1/\lambda_3),$$
 (6)

构建联合的概率模型

• 构建联合模型

• Y和Z分别代表有偏差和无偏差的模型

• 采用先验概率消除稀疏的数据

Y and Z are conditionally independent:

$$Pr(Y, Z|\Theta) = Pr(Y | \{p_{jk}\}, \{\eta_{ik}\}) \cdot Pr(Z | \{\alpha_{sk}\})$$

· Joint prior on latent variables:

$$Pr(\{p_{jk}\}, \{\mu_{sk}\} | \{\alpha_{sk}\}) = Pr(\{p_{jk}\} | \{\mu_{sk}\}) \cdot Pr(\{\mu_{sk}\} | \{\alpha_{sk}\}, \phi_k, \theta_k)$$

where $Pr^{CSH-MRF}(\{\mu_{sk}\})$ is the co-sharing Markov random field prior. Note that the prior on $[\{\mu_{sk}\}]$ is proportional to

$$Pr^{CSH-MRF}(\{\mu_{sk}\}) \cdot Pr(\{\mu_{sk}\}|\{\alpha_{sk}\}, \phi_k, \theta_k).$$

• 社交网络分享者声誉的问题引入

- PageRank、HITS等当前研究方法
- 作者提出新的分享者声誉评估模型

数据集的收集

• 选用LinkedIn在2012年5月到8月的数据

• 选择LinkedIn Today模块和Network Update Stream模块数据

• 将5月的数据作为训练集合、其他月份的数据作为测试集合

选用数据集和度量方法

• 选用LinkedIn在2012年5月到8月的数据

选择LinkedIn Today模块和Network
Update Stream模块数据的CTR和日志

将5月的数据作为训练集合、其他月份的数据作为测试集合

• 基于Kendall秩和检验: 计算分享者声 誉排序和LT CTR是否有一致性

计算平均点击率最高的k个人和所有分享者内容的点击率是否有差别

新模型和基准模型的比较

(b) Users with cold-start

Figure 4: Box plots of the distributions of Kendall's τ for the top 20 industries. R: PageRank-Rate, V: PageRank-Volume, Y: Model (only Y), Z: Model (only Z), M: Full Model.

(a) All users

Figure 5: Improvement in Kendall's τ for each industry by Full Model compared to the best baseline. The bar width is proportional to the number of test users in the industry

(b) Users with cold-start

结果分析和评价

- 模型比PageRank方法有巨大提升,考虑到数据分为有偏差的和无偏差的两种类型
- 考虑到数据的冷启动问题,适于发现高质量分享内容少的用户、扩大模型的覆盖面
- 基于先验概率处理缺失值,在没有大量数据情况下,能更好估计分享者声誉

北京师范大学信息科学与技术学院 黄勇