

Co-Sim

March, 2017

Use Mode

AMS Designer

AMSUltra & AMS Spectre
AMS-APS

IC61_Inst_Dir/tools/dfII/samples/tutorials/AMS

INCISIVE_Inst_Dir/tools/amsd/samples/aium

AMS-ADE

AMS-ADE Flow

Example:PLL_160MHz

PLL_160MHZ_PDIV & PLL_160MHZ_MDIV are verilog description.

VerilogIn/VHDL In

From the CIW, File->Import->Verilog... (or VHDL)

```
module PLL 160MHZ PDIV (DIV, CLK, VDD, VSS);
module PLL 160MHZ MDIV (CLK160, CLKFB, CLKVCO, VDD, VSS);
    output CLK160;
                                                                                                             output DIV;
    output CLKFB:
                                                                                                             input CLK;
    input CLKVC0;
                                                                                                             input VDD;
    input VDD;
                                                                                                             input VSS;
    input VSS;
                                                                                                             req DIV;
                                                                  C Virtuoso@ 6.1.4 - Log: /home/bobr/CDS.log
    integer i;
                                                                                                             integer i;
    reg CLKFB, CLK160;
                                              File Tools Options Help
                                                 New
                                                                                                             initial
    initial
                                                 Open.
                                                                                                                  begin
         begin
                                                                                          EDIF200.
                  CLKFB=0;
                                                                                                                      DIV=0;
                                                 Export
                                                 Refresh..
                  CLK160=0;
                                                                                                                      i=0;
                                                                                          VHDL..
                                                 Make Read Only.
                  i=0;
                                                                                                                   end
                                                                                          Spice..
         end
                                                 Bookmarks
                                                                                          DEF...
                                                                                          LEF...
                                               1 VFS_AMS_PHY180_sims aeq_ac_sim schematic
                                                                                                             always @( posedge CLK)
    always @( posedge CLKVC0)
                                                                                          Stream...
                                               2 VFS_AMS_PHY180_sims aeq_ac_sim config_ams
                                                                                                                   begin
                                                                                          Netlist View.
         begin
                                                          "4V180_sims_aeq_ac_sim_
                                                                                                                      if (i==0)
                  CLK160 = \sim CLK160;
                                                                                                                            DIV = 1:
            if (i==0)
                                                                                                                      else
                  CLKFB = 1:
                                                                                                                            DIV = 0;
            else
                  CLKFB = 0;
                                                                                                                      i=i+1;
            i=i+1;
            if (i==64) i=0;
         end
                                                                                                                      if (i==5) i=0;
                                                                                                                   end
endmodule
                                                                                                        endmodule
```


Complete mix-signal design in schematic

Configed Schematic

Hierarchy Editor

AMS in ADE

ADE->Simulator/Directory/Host ...

ADE->Simulation->Solver

ca dence

Easily Multi Voltage Setup

Waveform Display

Save and Restart

SAVE AND RESTART OPTIONS								
☐ Restart from:								
Snapshot prefix	my_new_snapshot							
Save time(s)	40n 60n 80n (100n my100nSnapShot)							
Save incr	20n Start time 20n Stop time 200n							

AMS-IRUN

AMS-irun flow

Verilog(ams) on Top

SPICE on Top

SPICE netlist
Power/ground Sources
External Components
Dummy Transistors

Vin in 0 5V
Gnd Agnd 0 0
Cout out 0 0.2p
Xamp inp inn....

Port_map example

irun Use Model

```
irun ./source/digital/*.v \
./amscf.scs \
-solver aps \
-timescale 1ns/100ps \
-input probe.tcl
```

```
********

** amscf.scs

*********
include "./source/analog/PLL.sp"
include "./models/gpdk_model.scs" section=tt

include "acf.scs"

amsd {
    portmap subckt=pll_top file="pll_top.pb"
    config cell="pll_top" use=spice
    ie vsup=1.8
    }
}
```

```
*******

** acf.scs
*********

.tran lns 400ns

.probe v(testbench.pll_top.vcom)
```


Verilog and spice interoperation

Port Mapping--- port_map file

Use model(Two Steps)
Firstly build mapping file between spice and verilog ports(file name: analog_top.pb)

Port Mapping--- port_map file

Then point to the mapping file in AMS control block/or prop.cfg

```
include "analog_top.sp"
amsd{
    portmap file="analog_top.pb"
    config cell=analog_top use=spice
}

Analog Control Block

Analog Control Block
```


AMS-XPS-MS

Use Model (AIUM Command-line Flow)

Enable AMS-XPS-MS post-layout flow

- Add irun command line option:
 - -spectre_args "+ms +postlayout +speed=(1|2)"
- Using +speed=3 is not recommended
- All the APS post-layout simulation techniques are also enabled with "+postlayout" for transistor analog partition

WREAL

Analog vs. Digital simulation – Root cause of Performance Gap

- Digital solver solves logical expressions in a sequential manner based on triggering events
- Time and values are discrete

One computation per clock edge

- The analog simulator must solve the entire analog system matrix at every simulation step
- Time and values are continuous

Many computations per clock edge

The wreal data type in Verilog-AMS

- Wreal data type declares a real net that has a real-valued connection
 - Wreal is time-discrete (event based)
 - Wreal wires can be used as ports
 - Infinite number of values real

```
`timescale 1ns/1ps
module vco(vin, clk);
input vin; wreal vin;
output clk;
reg clk=0;

parameter real center_freq=1M,
    vco_gain=center_freq*0.3;
real freq,
```


Design Project: 15-bit CMOS Pipelined ADC

15-bit PADC: Traditional Design Flow

- Models for top level verification:
 - Clock generator: verilogA
 - Sample and Hold: verilogA
 - 9-level flash ADC: verilogA
 - MDAC0 (single stage): transistors/passive components
 - Ideal 16bit DAC: verilogA
 - Rest standard modules: verilogA
- Verification performance
 - 1 hour / 1 us

15-bit PADC: Traditional Design Flow

- Verification Targets:
 - Full-cycle functional verification (30M+ steps)including calibration
 - Timing control between stages is critical to get correct functionality
- Verification Challenges:
 - Pure digital simulation will take about 12 hours
 - Analog design and testbench in verilogA (simplified digital part)
 - 1us transient simulation takes 1 hour
 - For total 250ms+ simulation (30M+ steps):

250000 hours=10416 days=28.54 years

15-bit PADC: Real Number Modeling

Models changed:

- Clock generator: wreal
- Sample and Hold: wreal
- 9-level flash ADC: wreal
- MDAC0 (single stage): wreal
- Ideal 16bit DAC: wreal
- Rest standard modules: Verilog
- Modeling effort: 7-day man work
 - Understand the design specs
 - Convert/build wreal models from scratch
 - Debug/Verify wreal models with schematics/specs

15-bit PADC: Real Number Modeling

Performance: Wreal models vs. VerilogA models

Seven-stage simulation (2us/2ms simulation)

	Seven-s						
	2us simulation			2ms simulation			
	performance	Analog Step	Simulator Profile	performance	Analog Step	Simulator Profile	Note
VerilogA models	33m32s	214911	Analog 99.8% Digital 0.2%	too slow	N/A	N/A	Peripheral in VerilogA
Wreal models	89.437ms	54	Digital 100%	1m21s	54	Digital 100%	Peripheral in Verilog/Wreal
Speed up	22496.3X						

Note: optimized verilogA model makes 1us/16m

15-bit PADC: Real Number Modeling

16-bit ideal DAC output overlay

cādence™