Objective 2 Analysis

Chance Robinson 9/27/2019

Contents

Explorate	ory	yΙ)a	ta	Α	n	al	ys	is										 				 					1
2011																												
2012										 									 				 					51
Submit										 									 				 					100

Exploratory Data Analysis

Library Imports

Load the csv data

```
train <- read_csv('../../data/train.csv')
test <- read_csv('../../data/test.csv')</pre>
```

Data Dictionary

Column Name	Type Description	
1. datetime	Date	YYYY-MM-DD HH24 (example: 2011-01-01 04:00:00)
2. season	Integer	(1-4)
3. holiday	Integer	(0 or 1)
4. workingday	Integer	(0 or 1)
5. weather	Integer	(1-4)
6. temp	Float	temparture in Celcius
7. atemp	Float	"feels like" temperature in Celsius
8. humidity	Integer	relative humidity
9. windspeed	Float	wind speed
10. casual	Integer	count of casual users
11. registered	Integer	count of registered users
12. count	Integer	count of total users response variable

Factors

- season
 - $-1 = \text{Dec } 21 \sim \text{March } 20 \text{ (Spring)}$
 - $-2 = March 21 \sim Jun 20 (Summer)$
 - $-3 = \text{June } 21 \sim \text{Sept } 20 \text{ (Fall)}$
 - -4 =Sept $21 \sim$ Dec 20(Winter)
- holiday
 - -0 = No
 - -1 = Yes
- workingday
 - -0 = No
 - -1 = Yes

```
train$season <- factor(train$season, labels = c("Spring", "Summer", "Fall", "Winter"))</pre>
test$season <- factor(test$season, labels = c("Spring", "Summer", "Fall", "Winter"))</pre>
table(train$season)
##
## Spring Summer
                    Fall Winter
     2686
            2733
                    2733
                           2734
train$holiday <- factor(train$holiday, labels = c("No", "Yes"))</pre>
test$holiday <- factor(test$holiday, labels = c("No", "Yes"))</pre>
table(train$holiday)
##
##
      No
           Yes
## 10575
           311
train$workingday <- factor(train$workingday, labels = c("No", "Yes"))</pre>
test$workingday <- factor(test$workingday, labels = c("No", "Yes"))</pre>
table(train$workingday)
##
     No Yes
## 3474 7412
train$weather <- factor(train$weather, labels = c("Great", "Good", "Average", "Poor"))</pre>
test$weather <- factor(test$weather, labels = c("Great", "Good", "Average", "Poor"))</pre>
# table(train$weather)
```

Split Date-Time (Both)

• Year, Month, Day and Hour

Convert Months to Ordered Factor (Both)

```
train$month <-month(train$datetime, label = TRUE, abbr = FALSE)
test$month <-month(test$datetime, label = TRUE, abbr = FALSE)</pre>
```

```
# need to convert the datetime column to a string for rbind function
train$datetime <-as.character(train$datetime)
test$datetime <-as.character(test$datetime)</pre>
```

Modeling

- psuedo code
- Loop through years (train and test)
- Loop through months (train and test)
- fit AR model
- Forcast x number of observations based on nrow from test dataframe and impute the count from the time

2011

January

```
train1 <- train %>%
  filter(year == '2011' & month == 'January') %>%
  select(datetime, count)

test1 <- test %>%
  filter(year == '2011' & month == 'January') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train1)
# head(test1)

AR24 <- arima(train1$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")
number = nrow(test1)
acf(AR24$residuals)</pre>
```


Lag


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 14.338, df = 3, p-value = 0.00248
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```

residuals


```
# point estimate (mean)
test1$count <- round(fcst$mean)
# test1

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train1$count)
## [1] 0.7602042</pre>
```

February

```
train2 <- train %>%
  filter(year == '2011' & month == 'February') %>%
  select(datetime, count)

test2 <- test %>%
  filter(year == '2011' & month == 'February') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train2)
# head(test2)

AR24 <- arima(train2$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")

number = nrow(test2)</pre>
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 15.914, df = 3, p-value = 0.001181
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test2$count <- round(fcst$mean)

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train2$count)
## [1] 0.7576135</pre>
```

March

```
train3 <- train %>%
  filter(year == '2011' & month == 'March') %>%
  select(datetime, count)

test3 <- test %>%
  filter(year == '2011' & month == 'March') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train3)
# head(test3)

AR24 <- arima(train3$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")

number = nrow(test3)</pre>
```

acf(AR24\$residuals)

Series AR24\$residuals


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 10.342, df = 3, p-value = 0.01587
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```

residuals

Lag


```
# point estimate (mean)
test3$count <- round(fcst$mean)
# test3

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train3$count)
## [1] 0.8099865</pre>
```

April

```
train4 <- train %>%
  filter(year == '2011' & month == 'April') %>%
  select(datetime, count)

test4 <- test %>%
  filter(year == '2011' & month == 'April') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train4)
# head(test4)

AR24 <- arima(train4$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test4)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 16.514, df = 3, p-value = 0.0008894
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```

Lag

residuals


```
# point estimate (mean)
test4$count <- round(fcst$mean)

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train4$count)
## [1] 0.8225528</pre>
```

May

```
train5 <- train %>%
  filter(year == '2011' & month == 'May') %>%
  select(datetime, count)

test5 <- test %>%
  filter(year == '2011' & month == 'May') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train5)
# head(test5)

AR24 <- arima(train5$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")

number = nrow(test5)</pre>
```

acf(AR24\$residuals)

Series AR24\$residuals


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 17.175, df = 3, p-value = 0.0006504
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test5$count <- round(fcst$mean)
# test5

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train5$count)
## [1] 0.7820472</pre>
```

June

```
train6 <- train %>%
  filter(year == '2011' & month == 'June') %>%
  select(datetime, count)

test6 <- test %>%
  filter(year == '2011' & month == 'June') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train6)
# head(test6)

AR24 <- arima(train6$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test6)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 29.762, df = 3, p-value = 1.549e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test6$count <- round(fcst$mean)

# test6

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train6$count)
## [1] 0.6827719</pre>
```

July

```
train7 <- train %>%
  filter(year == '2011' & month == 'July') %>%
  select(datetime, count)

test7 <- test %>%
  filter(year == '2011' & month == 'July') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train7)
# head(test7)

AR24 <- arima(train7$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test7)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 29.837, df = 3, p-value = 1.494e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test7$count <- round(fcst$mean)

# test7

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train7$count)
## [1] 0.6671488</pre>
```

August

```
train8 <- train %>%
  filter(year == '2011' & month == 'August') %>%
  select(datetime, count)

test8 <- test %>%
  filter(year == '2011' & month == 'August') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train8)
# head(test8)

AR24 <- arima(train8$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test8)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 37.588, df = 3, p-value = 3.455e-08
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test8$count <- round(fcst$mean)
# test8

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train8$count)
## [1] 0.7082002</pre>
```

September

```
train9 <- train %>%
  filter(year == '2011' & month == 'September') %>%
  select(datetime, count)

test9 <- test %>%
  filter(year == '2011' & month == 'September') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train9)
# head(test9)

AR24 <- arima(train9$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test9)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 13.656, df = 3, p-value = 0.003413
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test9$count <- round(fcst$mean)
# test9

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train9$count)
## [1] 0.7600216</pre>
```

October

```
train10 <- train %>%
  filter(year == '2011' & month == 'October') %>%
  select(datetime, count)

test10 <- test %>%
  filter(year == '2011' & month == 'October') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train10)
# head(test10)

AR24 <- arima(train10$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test10)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 29.574, df = 3, p-value = 1.696e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test10$count <- round(fcst$mean)

# test10

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train10$count)
## [1] 0.6762384</pre>
```

November

```
train11 <- train %>%
  filter(year == '2011' & month == 'November') %>%
  select(datetime, count)

test11 <- test %>%
  filter(year == '2011' & month == 'November') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train11)
# head(test11)

AR24 <- arima(train11$count, order=c(25,0,0))
# tsdisplay(residuals(AR24), lag.max=25, main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test11)
acf(AR24$residuals)
```


0.00 -0.05 **-**

-0.10

20 -

```
20
        Ö
                     10
               5
                           15
                                       25
                                                              -100
                                                                              100
                                                                                      200
                                                                       0
                         Lag
                                                                   residuals
##
##
   Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 49.722, df = 3, p-value = 9.156e-11
##
                   Total lags used: 29
## Model df: 26.
fcst <- forecast(AR24, h=number)</pre>
autoplot(fcst)
```



```
# point estimate (mean)
test11$count <- round(fcst$mean)

# test11

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train11$count)
## [1] 0.7449703</pre>
```

December

```
train12 <- train %>%
  filter(year == '2011' & month == 'December') %>%
  select(datetime, count)

test12 <- test %>%
  filter(year == '2011' & month == 'December') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train12)
# head(test12)

AR24 <- arima(train12$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test12)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 29.7, df = 3, p-value = 1.596e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test12$count <- round(fcst$mean)

# test12

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train12$count)
## [1] 0.6857358</pre>
```

2012

January

```
train13 <- train %>%
  filter(year == '2012' & month == 'January') %>%
  select(datetime, count)

test13 <- test %>%
  filter(year == '2012' & month == 'January') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train13)
# head(test13)

AR24 <- arima(train13$count, order=c(25,0,0))</pre>
```

```
# tsdisplay(residuals(AR24), lag.max=25, main="AR(24) Resid. Diagnostics")
number = nrow(test13)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 19.095, df = 3, p-value = 0.0002613
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test13$count <- round(fcst$mean)
# test13

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train13$count)
## [1] 0.7707937</pre>
```

February

```
train14 <- train %>%
  filter(year == '2012' & month == 'February') %>%
  select(datetime, count)

test14 <- test %>%
  filter(year == '2012' & month == 'February') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train14)
# head(test14)

AR24 <- arima(train14$count, order=c(25,0,0))
# tsdisplay(residuals(AR24), lag.max=25, main="AR(24) Resid. Diagnostics")

number = nrow(test14)</pre>
```

acf(AR24\$residuals)

Series AR24\$residuals


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 34.488, df = 3, p-value = 1.563e-07
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test14$count <- round(fcst$mean)

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train14$count)
## [1] 0.8620118</pre>
```

March

```
train15 <- train %>%
  filter(year == '2012' & month == 'March') %>%
  select(datetime, count)

test15 <- test %>%
  filter(year == '2012' & month == 'March') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train15)
# head(test15)

AR24 <- arima(train15$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")

number = nrow(test15)</pre>
```

acf(AR24\$residuals)

Series AR24\$residuals


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 42.759, df = 3, p-value = 2.769e-09
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test15$count <- round(fcst$mean)
# test15

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train15$count)
## [1] 0.8112976</pre>
```

April

```
train16 <- train %>%
  filter(year == '2012' & month == 'April') %>%
  select(datetime, count)

test16 <- test %>%
  filter(year == '2012' & month == 'April') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train16)
# head(test16)

AR24 <- arima(train16$count, order=c(25,0,0))
# tsdisplay(residuals(AR24), lag.max=25, main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test16)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 34.022, df = 3, p-value = 1.96e-07
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test16$count <- round(fcst$mean)

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train16$count)
## [1] 0.775059</pre>
```

May

```
train17 <- train %>%
  filter(year == '2012' & month == 'May') %>%
  select(datetime, count)

test17 <- test %>%
  filter(year == '2012' & month == 'May') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train17)
# head(test17)

AR24 <- arima(train17$count, order=c(25,0,0))
# tsdisplay(residuals(AR24), lag.max=25, main="AR(24) Resid. Diagnostics")

number = nrow(test17)</pre>
```

acf(AR24\$residuals)

Series AR24\$residuals


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 28.85, df = 3, p-value = 2.407e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test17$count <- round(fcst$mean)

# test5

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train17$count)
## [1] 0.7627352</pre>
```

June

```
train18 <- train %>%
  filter(year == '2012' & month == 'June') %>%
  select(datetime, count)

test18 <- test %>%
  filter(year == '2012' & month == 'June') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train18)
# head(test18)

AR24 <- arima(train18$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test18)
acf(AR24$residuals)
```


-0.10 **-**1

5

10

15

20

25


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 27.266, df = 3, p-value = 5.178e-06
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```

0 - **1** -400

-200

*****1111, 11 1 11

200

0


```
# point estimate (mean)
test18$count <- round(fcst$mean)

# test18

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train18$count)
## [1] 0.6855907</pre>
```

July

```
train19 <- train %>%
  filter(year == '2012' & month == 'July') %>%
  select(datetime, count)

test19 <- test %>%
  filter(year == '2012' & month == 'July') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train19)
# head(test19)

AR24 <- arima(train19$count, order=c(25,0,0))
# tsdisplay(residuals(AR24), lag.max=25, main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test19)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 37.927, df = 3, p-value = 2.929e-08
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test19$count <- round(fcst$mean)

# test19

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train19$count)
## [1] 0.7432611</pre>
```

August

```
train20 <- train %>%
  filter(year == '2012' & month == 'August') %>%
  select(datetime, count)

test20 <- test %>%
  filter(year == '2012' & month == 'August') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train20)
# head(test20)

AR24 <- arima(train20$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test20)
acf(AR24$residuals)
```


-0.05 **-**

20 -

0 -

```
-0.10 -
                                                                                 200
               5
                     10
                           15
                                 20
                                                             -200
                                       25
                                                                          0
                                                                   residuals
                         Lag
##
##
   Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 35.45, df = 3, p-value = 9.786e-08
##
                   Total lags used: 29
## Model df: 26.
fcst <- forecast(AR24, h=number)</pre>
autoplot(fcst)
```



```
# point estimate (mean)
test20$count <- round(fcst$mean)

# test20

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train20$count)
## [1] 0.7654981</pre>
```

September

```
train21 <- train %>%
    filter(year == '2012' & month == 'September') %>%
    select(datetime, count)

test21 <- test %>%
    filter(year == '2012' & month == 'September') %>%
    mutate(count = NA) %>%
    select(datetime, count)

# head(train21)
# head(test21)

AR24 <- arima(train21$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test21)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 33.797, df = 3, p-value = 2.186e-07
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test21$count <- round(fcst$mean)

# test21

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train21$count)
## [1] 0.7018709</pre>
```

October

```
train22 <- train %>%
  filter(year == '2012' & month == 'October') %>%
  select(datetime, count)

test22 <- test %>%
  filter(year == '2012' & month == 'October') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train22)
# head(test22)

AR24 <- arima(train22$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test22)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 19.986, df = 3, p-value = 0.0001709
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test22$count <- round(fcst$mean)

# test22

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train22$count)
## [1] 0.8302162</pre>
```

November

```
train23 <- train %>%
  filter(year == '2012' & month == 'November') %>%
  select(datetime, count)

test23 <- test %>%
  filter(year == '2012' & month == 'November') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train23)
# head(test23)

AR24 <- arima(train23$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test23)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 24.672, df = 3, p-value = 1.808e-05
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```

Lag

residuals


```
# point estimate (mean)
test23$count <- round(fcst$mean)

# test23

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train23$count)
## [1] 0.747518</pre>
```

December

```
train24 <- train %>%
  filter(year == '2012' & month == 'December') %>%
  select(datetime, count)

test24 <- test %>%
  filter(year == '2012' & month == 'December') %>%
  mutate(count = NA) %>%
  select(datetime, count)

# head(train24)
# head(test24)

AR24 <- arima(train24$count,order=c(25,0,0))
# tsdisplay(residuals(AR24),lag.max=25,main="AR(24) Resid. Diagnostics")</pre>
```

```
number = nrow(test24)
acf(AR24$residuals)
```



```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(25,0,0) with non-zero mean
## Q* = 56.929, df = 3, p-value = 2.661e-12
##
## Model df: 26. Total lags used: 29
fcst <- forecast(AR24, h=number)
autoplot(fcst)</pre>
```



```
# point estimate (mean)
test24$count <- round(fcst$mean)

# test24

RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train24$count)
## [1] 0.6427754</pre>
```

Combine all of the individual data frames

RMSLE: Root Mean Squared Logarithmic Error Loss

```
# RMSLE(y_pred = floor(ifelse(fcst$fitted < 0, 0, round(fcst$fitted))), y_true = train2$count)
```

Submit

```
# Kaggle Score: RMSLE = 1.33332
score = (1 - (3008 / 3251)) * 100

# We only beat ~7% of all submissions
score
```

[1] 7.474623