A Short Tour of Machine Learning

Michael Mathioudakis

Covve, Athens, 2017-08-02

:HELVIA

today

- part 1: machine-learning algorithms
 - a. basic concepts and the ML pipeline
 - b. algorithms
- part 2: platforms and software
- part 3: hands-on session

part 1: machine learning algorithms

what is machine learning?

'learning'

what do we *learn*?

a description of the data

a 'model' that tells us how the data are distributed

why? to make *predictions* and *decisions*

example

the patient's temperature has just exceeded 40C we supply a drug and observe their temperature change after 2 hours

ok, we 'learned' - then what?

predict what happens to temperature if we supply 0.20mg?

decide minimum dose to achieve at least 2.5C temp drop?

can do with the model without the data

example

digit recognition

classification

example

clustering

density estimation

'machine' learning

why do we need the machines?

to make learning automated and efficient

big data complex models

example: language

task: complete the sentence

language is complex basic rules (syntax and grammar) do not suffice for good predictions requires complex models

<u>data</u> ns/billions of sentend

millions/billions of sentences/queries user features session attributes

ML pipeline

outline

- what is machine learning
 - examples of tasks: regression, classification, clustering
 - data, learning, prediction, decision; probability
- probability
- algorithms
 - regression
 - classification
 - clustering
- deep learning

probability

'proposition'

how much we believe that something is true **GIVEN** some information

VERY IMPORTANT!

0: impossible 1: certain

probability

a ball drops out of the box

it is green

probability

this shape is '1'

ML pipeline

assign probabilities to propositions

probability :: prediction

what is the probability that a dose of 300mg drops temperature more than 2C?

the value for this probability is provided by the model!

ML pipeline

assign probabilities to models

probability :: learning

model M1

what is the probability that the right model is M1 / M2 / ...?

model M2

probability :: learning

from Bayes' Rule, this is proportional to

likelihood

prior

model M2

we choose the model of maximum probability (do we have to?)

ML pipeline

ML pipeline – the Bayesian way

in what follows...

outline

- what is machine learning
 - examples of tasks: regression, classification, clustering
 - data, learning, prediction, decision; probability
- probability
- algorithms
 - regression
 - classification
 - clustering
- deep learning

regression

build model that provides dp(Y = y | X = x; Model M) for real-valued Y

regression methods differ in the set of model candidates they consider

each method has corresponding algorithm(s)

to search for best model

some regression methods

linear regression line + error

segmented regression k segments + errors

multinomial regression curve + error

this is where methods differ

$$p(M \mid data; I) \propto p(data \mid M; I) \times p(M \mid I)$$

linear regression

$$Y = E(Y|X_1, ..., X_p) + \varepsilon$$
$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + \varepsilon,$$

solved with linear algebra if the data points are more than the dimensions

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$

ridge regression

ridge regression

$$\hat{eta}^{ ext{ridge}} = \operatorname*{argmin}_{eta} \Bigl\{ \sum_{i=1}^N \bigl(y_i - eta_0 - \sum_{j=1}^p x_{ij} eta_j ig)^2 + \lambda \sum_{j=1}^p eta_j^2 \Bigr\}.$$

$$\hat{eta}^{ ext{ridge}} = rgmin_{eta} \sum_{i=1}^N \Bigl(y_i - eta_0 - \sum_{j=1}^p x_{ij} eta_j \Bigr)^2,$$
 subject to $\sum_{j=1}^p eta_j^2 \leq t,$

lasso

$$\hat{\beta}^{\text{lasso}} = \operatorname*{argmin}_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

$$\hat{eta}^{ ext{lasso}} = \operatorname*{argmin} \sum_{i=1}^N \Big(y_i - eta_0 - \sum_{j=1}^p x_{ij} eta_j \Big)^2$$
 subject to $\sum_{j=1}^p |eta_j| \le t$.

linear regression with shrinkage

the penalty on the size of β expresses a prior

decision trees

predict the value of the leaf

build tree to minimize error (e.g., square error) subject to restrictions

random forests

build many decision trees on random subset of data random subset of features

combine predictions

neural networks

idea

apply a linear model on a non-linear transformation of the input

$$h_i = g(\boldsymbol{x}^{\! op} \boldsymbol{W}_{:,i} + c_i)$$
 $g(z) = \max\{0, z\}$

$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$$

outline

- what is machine learning
 - examples of tasks: regression, classification, clustering
 - data, learning, prediction, decision; probability
- probability
- algorithms
 - regression
 - classification
 - clustering
- deep learning

naïve-bayes

within each class, features are distributed independently

$$\mathsf{p}(\mathsf{X} \mid \mathsf{C} = \mathsf{j}) = f_j(X) = \prod_{k=1}^p f_{jk}(X_k).$$

$$\log \operatorname{tr} \frac{\Pr(G = \ell | X)}{\Pr(G = J | X)} = \log \frac{\pi_{\ell} f_{\ell}(X)}{\pi_{J} f_{J}(X)}$$

$$= \log \frac{\pi_{\ell} \prod_{k=1}^{p} f_{\ell k}(X_{k})}{\pi_{J} \prod_{k=1}^{p} f_{J k}(X_{k})}$$

$$= \log \frac{\pi_{\ell}}{\pi_{J}} + \sum_{k=1}^{p} \log \frac{f_{\ell k}(X_{k})}{f_{J k}(X_{k})}$$

$$= \alpha_{\ell} + \sum_{k=1}^{p} g_{\ell k}(X_{k}).$$

classification

build model that provides p(Y = y | X = x; Model M) for categorically-valued Y

classification methods differ in the set of model candidates they consider

each method has corresponding algorithm(s)
to search for best model

what is X and Y for digit recognition?

logistic regression

$$\Pr(Y_i = c) = rac{e^{oldsymbol{eta}_c \cdot \mathbf{X}_i}}{\sum_{k=1}^K e^{oldsymbol{eta}_k \cdot \mathbf{X}_i}}$$

decision trees & random forests

very similar to regression methods leafs assign probabilities to classes

neural networks

idea

apply a linear model on a non-linear transformation of the input

$$h_i = g(\boldsymbol{x}^{\! op} \boldsymbol{W}_{:,i} + c_i)$$
 $g(z) = \max\{0, z\}$

$$f(\boldsymbol{x}; \boldsymbol{W}, \boldsymbol{c}, \boldsymbol{w}, b) = \boldsymbol{w}^{\top} \max\{0, \boldsymbol{W}^{\top} \boldsymbol{x} + \boldsymbol{c}\} + b.$$

evidence for one class

support-vector machines

separate the classes with hyperplanes

outline

- what is machine learning
 - examples of tasks: regression, classification, clustering
 - data, learning, prediction, decision; probability
- probability
- algorithms
 - regression
 - classification
 - clustering
- deep learning

supervised and unsupervised learning

the methods we saw for regression and classification are cases of 'supervised' learning

build model that provides $p(Y = y \mid X = x; Model M)$

other data features

some data features

build model that provides p(X = x, Y = y; Model M)

'unsupervised' learning

unsupervised learning

build model that provides

p(X = x, Y = y; Model M)

find structure in the data

k-means clustering

clustering

assign points to clusters so that total distance from cluster center is minimized

k-means
assign points to cluster of nearest center
compute centers from assigned points
repeat

PCA

project the data on orthogonal system so that successive dimensions maximize remaining variance

outline

- what is machine learning
 - examples of tasks: regression, classification, clustering
 - data, learning, prediction, decision; probability
- probability
- algorithms
 - regression
 - classification
 - clustering
- deep learning

deep learning

basically another name for 'neural networks' with many layers and generalized structure

rebranded due to efficiency and good results on difficult tasks

language (translation, sentence completion) image recognition

recurrent neural networks

convolutional neural networks

convolutional neural networks

part 2: platforms and software

outline

- scikit-learn
- deep-learning libraries
- ML on the cloud
 - amazon, azure, google
- apache spark

scikit-learn

python ML library on top of scipy stack

many general ML algorithms standardized pipeline ideal for fast prototyping on moderate datasets

deep learning :: tensorflow

deep learning library uses computation graphs

deep learning :: other

torch.ch

open source machine learning library scientific framework, programming language (Lua) used by Facebook Research

theano

http://deeplearning.net/software/theano/ deep learning with efficient numerical operations

microsoft cognitive toolkit (cntk)

https://cntk.ai/ tensorflow alternative

keras

simpler tensorflow, theano, cntk in python

cloud :: google

Cloud ML Engine

basically offers the ML pipeline with Deep Learning models as implemented in Tensorflow

other services
trained models for other applications
speech, video or image tagging, translation
https://cloud.google.com/products/machine-learning/
pricing: about 0.5\$ per hour

cloud :: other

amazon aws

classification and regression with logistic and linear regression

microsoft azure

'cortana intelligence'

ML pipeline

apache spark

machine learning algorithms on top of Spark

iterative optimization

part 3: hands-on session

outline

- scikit-learn
- tensorflow

scikit-learn

http://scikit-learn.org/

tensorflow

https://www.tensorflow.org/

the end...

ML pipeline

