## **Mathematical Experiments**

# 图论算法

——最短路径



重庆大学数学与统计学院

















基本概念 B C 一个算例

### 定义:

- 1) 设P(u,v)是加权图G中从u到v的路径,则 该路径上的边权之和称为该路径的权或长度, 记为w(P)。
- 2) 从u到v可能有多条路径,其中权最小的那条路径 P\*(u,v)称为u到v的最短路径,该最短路径的权称为u到v的距离,记为d(u,v)。





# 计算机如何表示图?

加权图的带权邻接矩阵: $W=(w_{ij})\upsilon\times\upsilon$  , 其中 $w_{ij}$  ( $i\neq j$  )是边  $(v_i,v_j)$  (若有这条边 )上的权 , 若不存在边  $(v_i,v_j)$  , 则 $w_{ij}$  为无穷大 , W的对角线上的元素为0。



|         | $V_1$ |   | $V_2$    | $V_3$ | $V_4$    |
|---------|-------|---|----------|-------|----------|
| $V_1$   |       | 0 | 5        | 6     | 3        |
| $V_2$   | ļ     | 5 | 0        | 4     | $\infty$ |
| $V_3$   |       | 6 | 4        | 0     | 7        |
| $V_{4}$ | L     | 3 | $\infty$ | 7     | 0        |

## 最短路径算法

# Dijkstra算法 (E.W.Dijkstra, 1959) 使用范围:

- 1) 寻求从一固定顶点到其余各点的最短路径;
- 2) 有向图、无向图和混合图;
- 3) 权非负.

时间复杂度O(n²),是一个多项式时间算法,有效算法,

迭代算法



依据:最短路径上的任一子段也是最短路径。

算法思想:按与 1<sub>0</sub>的距离由近及远地逐个求出各顶点的最短路径和长度。

算法思路:设置一个集合5,存放已求出其最短路径长度的顶点。

- 1)  $S \leftarrow \{v_0\}$ ;
- 2) 求出S' = V-S 中与  $v_0$  距离最近的顶点u,将u加入到S中;
- 3)重复2)直到S'为空集。

- 【(v): v的标记,记录从v₀到v的当前最短路径长度;
- f(v): 该路径上v的前一个点(称为v的父亲点),用以确定最短路径。

## 算法步骤

输入加权图的带权邻接矩阵 $w = [w(v_i, v_j)]_{nxn}$ .

- 2) 更新l(v), f(v): 对S'中所有顶点v,
  - a) 若 l(v)>l(u)+w(u,v), 则 l(v)←l(u)+w(u,v), f(v)←u;
  - b) 否则, I(v), f(v) 不变
- 3) 更新S, u:在S'中找到使l(u)最小的顶点u, 把u加入到S中;
- 4) 重复步骤2), 3), 直到所有顶点都在S中为止.

例:用Dijkstra算法求下图从1号顶点到6号顶点的最短路径。

解:初始化u=1, S={1}

| V     | 1 | 2        | 3        | 4        | 5        | 6        |
|-------|---|----------|----------|----------|----------|----------|
| /( v) | 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ |



第一次迭代:  $S' = \{2,3,4,5,6\}$ 中顶点的新标号由公式  $f(v) = \min\{f(v),f(u) + w(u,v)\}$ 确定,修正f(v),并为f(v)赋值

| V     | 1 | 2 | 3        | 4 | 5 | 6        |
|-------|---|---|----------|---|---|----------|
| /( v) | 0 | 6 | $\infty$ | 5 | 8 | $\infty$ |
| f(v)  |   | 1 |          | 1 | 1 |          |

\*表中红色数字表示本次迭代更 新了的标记I和父亲点f

$$u=4$$
  $S \leftarrow S \cup \{u\}, S = \{1,4\}$ 

第二次迭代:S'={2,3,5,6} 中顶点的新标号由公式 /(v)=min{/(v),/(u)+w(u,v)}确定,修正/(v),并为f(v)赋值

| V     | 1 | 2 | 3 | 4 | 5 | 6  |
|-------|---|---|---|---|---|----|
| /( v) | 0 | 6 | 7 | 5 | 8 | 12 |
| f(v)  |   | 1 | 4 | 1 | 1 | 4  |



\*表中红色数字表示本次迭代更新了的标记I和父亲点

### 2号顶点是S'中标记最小的顶点

$$u=2, S \leftarrow S \cup \{u\}, S=\{1, 4, 2\}$$

第三次迭代:  $S' = \{3,5,6\}$ 中顶点的新标号由公式  $f(v) = \min\{f(v), f(u) + w(u,v)\}$ 确定,修正f(v),并为f(v)赋值

| V     | 1 | 2 | 3 | 4 | 5 | 6  |
|-------|---|---|---|---|---|----|
| /( v) | 0 | 6 | 7 | 5 | 8 | 12 |
| f(v)  |   | 1 | 4 | 1 | 1 | 4  |



#### 3号顶点是S'中标记最小的顶点

$$u=3$$
,  $S \leftarrow S \cup \{u\}$ ,  $S = \{1,4,2,3\}$ 

第四次迭代:  $S' = \{5,6\}$  中顶点的新标号由公式  $f(v) = \min\{f(v), f(u) + w(u,v)\}$ 确定,修正f(v),并为f(v)赋值

| V     | 1 | 2 | 3 | 4 | 5 | 6  |
|-------|---|---|---|---|---|----|
| /( v) | 0 | 6 | 7 | 5 | 8 | 10 |
| f(v)  |   | 1 | 4 | 1 | 1 | 3  |



\*表中红色数字表示本次迭代更新了的标记I和父亲点f

$$u=5, S \leftarrow S \cup \{u\}, S=\{1,4,2,3,5\}$$

第五次迭代:  $S' = \{6\}$ 中顶点的新标号由公式  $f(v) = \min\{f(v), f(u) + w(u, v)\}$ 确定,修正f(v),并为f(v)赋值

| V     | 1 | 2 | 3 | 4 | 5 | 6  |
|-------|---|---|---|---|---|----|
| /( v) | 0 | 6 | 7 | 5 | 8 | 10 |
| f(v)  |   | 1 | 4 | 1 | 1 | 3  |



$$u=6, S \leftarrow S \cup \{u\},\$$
  
 $S=\{1,4,2,3,5,6\}$ 



例:用Dijkstra算法求下图从1号顶点到6号顶点的最短路径。

#### 最终的标记和父亲点记录:

| V    | 1 | 2 | 3 | 4 | 5 | 6  |
|------|---|---|---|---|---|----|
| /(V) | 0 | 6 | 7 | 5 | 8 | 10 |
| f(v) |   | 1 | 4 | 1 | 1 | 3  |



$$f(6)=3$$
,

$$f(3)=4,$$

$$f(4) = 1$$

从1号顶点到6号顶点的最短路径  $6 \leftarrow 3 \leftarrow 4 \leftarrow 1$ 

其长度为1(6)=10



例:用Dijkstra算法求下图从1号顶点到6号顶点的最短路径。

总 每次迭代:S'中顶点的新标号由公式 ((v)=min{/(v),/(u)+w(u,v)} 确定,并为f(v)赋值,然后找出S'中标记最小的顶点加入到S中。

|   | S           | S'        | <b>l(2)</b> | <b>I(3)</b> | <b>I(4)</b> | <b>I(5)</b> | <b>l</b> (6) |  |
|---|-------------|-----------|-------------|-------------|-------------|-------------|--------------|--|
| 1 | 1           | 2,3,4,5,6 | 6           | $\infty$    | 5           | 8           | $\infty$     |  |
| 2 | 1,4         | 2,3,5,6   | 6           | 7           |             | 8           | 12           |  |
| 3 | 1,4,2       | 3,5,6     |             | 7           |             | 8           | 12           |  |
| 4 | 1,4,2,3     | 5,6       |             |             |             | 8           | 10           |  |
| 5 | 1,4,2,3,5   | 6         |             |             |             |             | 10           |  |
| 6 | 1,4,2,3,5,6 |           |             |             |             |             |              |  |





每次迭代: 求出一个离1号顶点最近的顶点u

I(u)称为永久标记

将u加入到S中.

### 永久父子关系(红色)的形成过程





- 如何去求每对顶点的最短路径及距离
- 如何去求两点之间第2、第3、...、第k短的路径
- 如何去求带约束的最短路径比如,包含一些指定顶点的最短路径包含一些指定边的最短路径
- 如何去求路径权为其上边权的其他函数形式时的最小(或最大权)路径

如,路径权为其上边权之积。

# Thanks

●重庆大学数学与统计学院