The physics package

Sergio C. de la Barrera physics.tex@gmail.com

December 12, 2012

Contents

1	\mathbf{Befc}	ore you start
	1.1	The purpose of this package
		Other required packages
		Using physics in your IATEX document
2	List	of commands
	2.1	Automatic bracing
	2.2	Vector notation
	2.3	Operators
	2.4	Quick quad text
	2.5	Derivatives
	2.6	Dirac bra-ket notation
	2.7	Matrix macros

1 Before you start

1.1 The purpose of this package

The goal of this package is to make typesetting equations for physics simpler, faster, and more human-readable. To that end, the commands included in this package have names that make the purpose of each command immediately obvious and remove any ambiguity while reading and editing physics code. From a practical standpoint, it is handy to have a well-defined set of shortcuts for accessing the long-form of each of these commands. The commands listed below are therefore defined in terms of their long-form names and then shown explicitly in terms of the default shorthand command sequences. These shorthand commands are meant make it easy to remember both the shorthand names and what each one represents.

1.2 Other required packages

The physics package requires xparse and amsmath to work properly in your LATEX document. The amsmath package comes standard with most LATEX distributions and is loaded by physics for your convenience. You may also already have xparse installed on your system as it is a popular package for defining LATEX macros, however, if you are unsure you can either install it again using your local package manager (comes with most distributions) or by visiting the CTAN online package database, or you could even just try to use physics

without worrying about it. Many modern LATEX compilers will locate and offer to download missing packages for you.

1.3 Using physics in your LATEX document

To use the physics package, simply insert \usepackage{physics} in the preamble of your document, before \begin{document} and after \documentclass{class}:

```
\documentclass{class}
...
\usepackage{physics}
...
\begin{document}
content...
\end{document}
```

2 List of commands

2.1 Automatic bracing

\quantity	$\qty(\typical) o (\centsymbol{lack}) \ \qty(\tall) o (\centsymbol{lack})$	automatic () braces
	$\forall (\forall x) (\forall x) \rightarrow (\forall x)$	
	$\begin{tabular}{ll} $\langle qty[\typical] \to [\top] \\ \qty[\typical] \to [\top] \\ \qty[\typical] \to \{\top] \\ \qty[\top] &\to \{\top] \\ \qty[\top] &\to \{\top] \\ \end{tabular}$	automatic [] braces automatic [braces automatic {} braces manual sizing (works with any of the above bracket types)
	$\displaystyle \left. \begin{array}{l} \text{\ensuremath{\sc '}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	↔ \qty() ↔ \qty[] ↔ \qty	alternative syntax; robust and more $\mbox{\sc IAT}_{\mbox{\sc E}}\mbox{X-friendly}$
\absolutevalue	$\Bar{1} \leftrightarrow \Py{1} \ \abs{a} \to a \ \abs{Big{a}} \to a \ \abs{Big{a}} \to a \ \abs{Big{a}} \to a \ \abs{Big{a}} \ \abs{Big{a}} \to a \ \abs{Big{a}} \ B$	automatic sizing; equivalent to \qty a inherits manual sizing syntax from \qty
	$\abs*{\grande} \rightarrow $	star for no resize
\norm	$\texttt{\norm{a}} \to \ a\ $	automatic sizing
	$\verb norm Big{a} \to \left\ a \right\ __$	manual sizing
	$\verb norm*{\grande} \to \ \ $	star for no resize
\evaluated	$\label{eq:conde} $$\operatorname{\norm}^*{\grande} \to \ \ \ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	vertical bar for evaluation limits

2.2 Vector notation

The default del symbol ∇ used in physics vector notation can be switched to appear with an arrow $\vec{\nabla}$ by including the option arrowdel in the document preamble \rightarrow \usepackage[arrowdel]{physics}.

\vectorbold	$\verb \vb{a} \to a$	upright/no Greek
	$\verb+\vb*{a}+, \verb+\vb*{\theta}+ \rightarrow a, \theta$	italic/Greek
\vectorarrow	$\operatorname{va{a}} o ec{\mathrm{a}}$	upright/no Greek
	$\texttt{\va*\{a\}},\texttt{\va*\{\theta\}}\to\vec{\bm{a}},\vec{\bm{\theta}}$	italic/Greek
\vectorunit	$\mathbf{vu}\{\mathbf{a}\} o \hat{\mathbf{a}}$	upright/no Greek
	$\text{vu*{a}}, \text{vu*{\theta}} o \hat{m{a}}, \hat{m{ heta}}$	italic/Greek
\dotproduct	$\forall \mathbf{v} dot \rightarrow \cdot as in \mathbf{a} \cdot \mathbf{b}$	note: \dp is a protected TEX primitive
\crossproduct	$\colon cross \to \mathbf{x} ext{ as in } \mathbf{a} \times \mathbf{b}$	alternate name
	\c \rightarrow \times as in $\mathbf{a} \times \mathbf{b}$	shorthand name
\gradient	$\grad o oldsymbol{ abla}$	
	$\P \rightarrow \nabla \Psi$	default mode
	$\texttt{\grad(\Psi+\tall)} \to \boldsymbol{\nabla} \Big(\Psi + \boldsymbol{\square} \Big)$	long-form (like \qty but also handles spacing)
	$\texttt{\grad[\Psi+\tall]} \to \boldsymbol{\nabla} \Big[\Psi + \blacksquare \Big]$	
\divergence	extstyle ext	note: $amsmath symbol \div renamed$
		\divisionsymbol
	$\texttt{\div}\{\texttt{\vb\{a\}}\} \to \boldsymbol{\nabla} \boldsymbol{\cdot} \mathbf{a}$	default mode
	$\operatorname{div}(\operatorname{vb{a}++tall}) o oldsymbol{ abla} \cdot \left(\mathbf{a} + oldsymbol{oldsymbol{b}} ight)$	long-form
	$\operatorname{div}[\operatorname{vb{a}+ all}] o oldsymbol{ a} \cdot \left[\mathbf{a} + oldsymbol{a} ight]$	
\curl	$ackslash au oldsymbol{ abla} imes oldsymbol{ abla} imes$	
	$\operatorname{\mathbb{Q}} \to \nabla \times \mathbf{a}$	default mode
	$\verb \curl(\vb{a}+\tall) \to \nabla \times \Big(\mathbf{a} + \blacksquare\Big)$	long-form

2.3 Operators

The standard set of trig functions is redefined in physics to provide automatic braces that behave like \qty(). In addition, an optional power argument is provided. This behavior can be switched off by including the option notrig in the preamble \rightarrow \usepackage[notrig]{physics}.

Example trig redefinitions:

```
\sin \sin(\grande) \rightarrow \sin automatic braces; old \sin renamed \sine \\sin[2](x) \rightarrow \sin^2(x) optional power \\sin x \rightarrow \sin x can still use without an argument
```

The full set of available trig functions in physics includes:

```
\sin(x)
             \sinh(x)
                            \arcsin(x)
                                              \arraycolored
                                                                            sinh(x)
                                                                                         \arcsin(x)
                                                                                                        asin(x)
                                                                 \sin(x)
\cos(x)
             \cosh(x)
                            \arccos(x)
                                              \acos(x)
                                                                 \cos(x)
                                                                            \cosh(x)
                                                                                         \arccos(x)
                                                                                                        acos(x)
\tan(x)
             \tanh(x)
                            \arctan(x)
                                              \lambda(x)
                                                                 tan(x)
                                                                            tanh(x)
                                                                                         \arctan(x)
                                                                                                       atan(x)
\cc(x)
                            \arccsc(x)
                                              \acsc(x)
                                                                            \operatorname{csch}(x)
                                                                                         \operatorname{arccsc}(x)
             \csch(x)
                                                                 \csc(x)
                                                                                                        acsc(x)
\sec(x)
             \sch(x)
                            \arcsec(x)
                                               \acksim (x)
                                                                 sec(x)
                                                                            \operatorname{sech}(x)
                                                                                         \operatorname{arcsec}(x)
                                                                                                        \operatorname{asec}(x)
\cot(x)
             \coth(x)
                            \arccot(x)
                                              \acot(x)
                                                                 \cot(x)
                                                                            \coth(x)
                                                                                         \operatorname{arccot}(x)
                                                                                                        acot(x)
```

The standard trig functions (plus a few that are missing in amsmath) are available without any automatic bracing under a new set of longer names:

```
\sine
             \hypsine
                             \arcsine
                                             \asine
             \hypcosine
                             \arccosine
\cosine
                                              \acosine
\tangent
             \hyptangent
                             \arctangent
                                              \atangent
\cosecant
             \hypcosecant
                             \arccosecant
                                              \acosecant
\secant
             \hypsecant
                             \arcsecant
                                              \asecant
                                             \acotangent
\cotangent
             \hypcotangent
                             \arccotangent
```

Similar behavior has also been extended to the following functions:

```
\exp(\tall)
                                              \exponential
               exp(
\log(\tall)
               log(
                                              \logarithm
\ln(\tau)
               ln (
                          old definitions \Rightarrow
                                              \naturallogarithm
\det(\tall)
                                              \determinant
               \det(
\Pr(\tall)
               Pr(
                                              \Probability
```

New operators:

```
\trace or \tr
                              \forall \text{tr} \land \text{rho} \rightarrow \text{tr} \rho \text{ also } \forall \text{tr}(\forall \text{tall}) \rightarrow \text{tr}()
                                                                                                 trace; same bracing as trig functions
                              \Tr\rho 	o Tr 
ho
\Trace or \Tr
                                                                                                 alternate
\rank
                              matrix rank
                              \operatorname{\mathsf{Verf}}(x) \to \operatorname{\mathsf{erf}}(x)
                                                                                                 Gauss error function
\erf
\Res
                              \operatorname{Res}[f(z)] \to \operatorname{Res}[f(z)]
                                                                                                 residue; same bracing as trig functions
\principalvalue
                              \pv{\int f(z) \dd{z}} \rightarrow \mathcal{P} \int f(z) dz
                                                                                                 Cauchy principal value
                              \P \left( z \right) \ dd\{z\} \rightarrow P.V. \int f(z) dz
                                                                                                 alternate
```

\Re	$\Re\{z\} \to \operatorname{Re}\{z\}$	old \Re renamed to \real $ ightarrow \Re$
\Im	$\operatorname{Im}\{z\} o \operatorname{Im}\{z\}$	old \Im renamed to \imaginary $ o \Im$

2.4 Quick quad text

This set of commands produces text in math-mode padded by \quad spacing on either side. This is meant to provide a quick way to insert simple words or phrases in a sequence of equations. Each of the following commands includes a starred version which pads the text only on the right side with \quad for use in aligned environments such as cases.

General text:

```
\qq{\qq{word or phrase} → _ word or phrase_ general quick quad text with argument normal mode; left and right \quad \qq*{word or phrase} → word or phrase_ starred mode; right \quad only
```

Special macros:

```
\label{lem:comma} $\operatorname{qc} \to \ c.c. ... $$ right \quad only $$ complex conjugate; left and right \quad unless starred \\ qif \to \ if. $$ left and right \quad unless starred \\ qif* \to if... $$
```

Similar to \qif:

\qthen, \qelse, \qotherwise, \qunless, \qgiven, \qusing, \qassume, \qsince, \qlet, \qfor, \qall, \qeven, \qodd, \qinteger, \qand, \qor, \qas, \qin

2.5 Derivatives

The default differential symbol d which is used in \differential and \derivative can be switched to an italic form d by including the option italicdiff in the preamble $\rightarrow \usepackage[italicdiff]{physics}$.

\differential	$\backslash dd \rightarrow d$	
	$\d x \to \mathrm{d} x$	no spacing (not recommended)
	$\d(x) \rightarrow dx$	automatic spacing based on neighbors
	$\d[3] \{x\} \rightarrow \mathrm{d}^3 x$	optional power
	$\d(\cos\theta) \to d(\cos\theta)$	long-form; automatic braces
\derivative	$\operatorname{dv}\{x\} \to \frac{\mathrm{d}}{\mathrm{d}x}$	one argument
	$\det\{f\}\{x\} \to \frac{\mathrm{d}f}{\mathrm{d}x}$	two arguments
		optional power
	$\operatorname{dv}\{x\}(\operatorname{grande}) \to \frac{\mathrm{d}}{\mathrm{d}x}\Big($	long-form; automatic braces, spacing
	$dv*\{f\\{x\}} \to df/dx$	inline form using \flatfrac
\partialderivative	$\dx {f}{x} \rightarrow df/dx$ $\pderivative{x} \rightarrow \frac{\partial}{\partial x}$	alternate name
	$\pdv{x} \to \frac{\partial}{\partial x}$ $\pdv{f}{x} \to \frac{\partial f}{\partial x}$ $\pdv[n]{f}{x} \to \frac{\partial^n f}{\partial x^n}$	shorthand name
	$\pdv{f}{x} o rac{\partial f}{\partial x}$	two arguments
	$\operatorname{pdv}[n]{f}{x} o rac{\partial^n f}{\partial x^n}$	optional power

	$\pdv{x}(\pdv{x}) \rightarrow \frac{\partial}{\partial x}$	long-form
	$\pdv{f}{x}{y} \to \frac{\partial^2 f}{\partial x \partial y}$	mixed partial
	$\pdv*{f}{x} o \partial f/\partial x$	inline form using \flatfrac
\variation	$\operatorname{Var}\{\mathtt{F}[\mathtt{g}(\mathtt{x})]\} o \delta F[g(x)]$	functional variation (works like \dd)
	$ extstyle ag{E-TS} o \delta(E-TS)$	long-form
\functionalderivative	$\texttt{fdv}\{\texttt{g}\} \to \frac{\delta}{\delta g}$	functional derivative (works like \dv)
	$\begin{array}{c} \delta g \\ \delta F \\ \delta g \\ \delta V (E-TS) \rightarrow \frac{\delta}{\delta V} (E-TS) \end{array}$	
	$\footnote{V}(E-TS) o rac{\delta}{\delta V}(E-TS)$	long-form
	$fdv*{F}{x} \rightarrow \delta F \delta x$	inline form using \flatfrac

2.6 Dirac bra-ket notation

The following collection of macros for Dirac notation contains two fundamental commands, \bra and \ket, along with a set of more specialized macros which are essentially combinations of the fundamental pair. The specialized macros are both useful and descriptive from the perspective of generating physics code, however, the fundamental commands are designed to contract with one another algebraically when appropriate and are thus suggested for general use. For instance, the following code renders correctly¹

$$\beta \rightarrow \langle \phi | \psi \rangle$$
 as opposed to $\langle \phi | \psi \rangle$

whereas a similar construction with higher-level macros will not contract in a robust manner

$$\mathbf{\phi} \cdot \mathbf{xi} \rightarrow \langle \phi | \psi \rangle \langle \xi | .$$

On the other hand, the correct output can be generated by sticking to the fundamental commands,

$$\beta \simeq \{\phi \mid \psi \mid \xi \}$$

allowing the user to type out complicated quantum mechanical expressions without worrying about bra-ket contractions. That being said, the high-level macros do have a place in convenience and readability, as long as the user is aware of rendering issues that may arise due to an absence of automatic contractions.

\ket	$\left\{ \left\{ \right\} \rightarrow \left[\right] \right\}$	automatic sizing
	$\text{ket*}\{\text{tall}\} \rightarrow \bigcirc\rangle$	no resize
\bra	$\hat{\beta} \rightarrow \langle \hat{\beta} \rangle$	automatic sizing
	$\text{\table} \rightarrow \langle$	no resize
	$\operatorname{\hat{\langle phi \rangle}} \left(\overline{psi} \right) o \left\langle \phi \psi \right\rangle$	automatic contraction
	$\hat{\phi}$	contraction inherits automatic sizing
	$\hat{\langle \phi }$	a star on either term in the contraction
	$\bra*{\phi}\$	prohibits resizing
	$\bra*{\phi}\$	
\innerproduct	\hat{a}	two-argument braket
	$\texttt{\braket{a}} \rightarrow \langle a a\rangle$	one-argument (norm)

¹Note the lack of a space between the bra and ket commands. This is necessary is order for the bra to find the corresponding ket and form a contraction.

	$\hat{a}_{a} \rightarrow \langle a \rangle$	automatic sizing
	$\braket*{a}{\tall} \rightarrow \langle a b \rangle$	no resize
	$acksim \{a\}\{b\} o \langle a b angle$	shorthand name
\outerproduct	$\texttt{\dyad\{a\}\{b\}} \to a\rangle\!\langle b $	two-argument dyad
	$\displaystyle \operatorname{dyad}\{a\} o a\rangle\!\langle a $	one-argument (projector)
	$\displaystyle \operatorname{dyad}\{a\}\{\hat{a}\}\}$	automatic sizing
	$\forall a = (a)$	no resize
	$\hat{b} \rightarrow a\rangle\langle b $	alternative name
	$\operatorname{lop\{a\}\{b\}} o a\rangle\!\langle b $	shorthand name
\expectationvalue	$\texttt{\expval{A}} \rightarrow \langle A \rangle$	implicit form
	$\verb \expval{A}{\P} \to \langle \Psi A \Psi\rangle$	explicit form
	$\texttt{\ev{A}}\{\texttt{\Psi}\} \to \langle \Psi A \Psi\rangle \ \ _$	shorthand name
	\ev{\grande}{\Psi} $ ightarrow \langle \Psi oxedsymbol{\Psi} angle$	default sizing ignores middle argument
		single star does no resizing whatsoever
	$\texttt{\ev**{\grande}{\Psi}} \rightarrow \left\langle \Psi \rule{0mm}{2mm} \Psi \right\rangle$	double star resizes based on all parts
\matrixelement	$(n)_{A} \{ \mathbf{m} \} \to \langle n A m \rangle$	requires all three arguments
	$\mathbf{n}_{A} \in \langle n A m \rangle$	shorthand name
	$\mathbf{mel}_n \leq \mathbf{m} \rightarrow \langle n m \rangle$	default sizing ignores middle argument
	$\mathbf{mel}*\{n\}\{\{n\}\}\}$	single star does no resizing whatsoever
	$\mathbf{mel}**\{n\}{\left(\mathbf{m} \rightarrow \left\langle n \right m \right\rangle}$	double star resizes based on all parts

2.7 Matrix macros

The following matrix macros produce unformatted rows and columns of matrix elements for use as separate matrices as well as blocks within larger matrices. For example, the command \identitymatrix{2} which has also has the shortcut \imat{2} produces the elements of a 2×2 identity matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ without braces or grouping. This allows the command to also be used within another matrix, as in:

$$\begin{array}{lll} \begin{array}{lll} \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & 0 \\ & 1 \end{array} \\ & \begin{array}{lll} & 1 \end{array} \\ & \begin{array}{lll} & a & b \end{array} \end{array} \end{array} \Rightarrow \left(\begin{array}{lll} & 0 \\ & 1 \\ & a \end{array} \right) \end{array}$$

To specify elements on the right of left sides of our \imat{2} sub-matrix we use the grouping command \matrixquantity or \mqty to effectively convert \imat{2} into a single matrix element of a larger matrix:

The extra \mbox{mqty} groups were required in this case in order to get the a and b elements to behave as a single element, since $\mbox{mqty}{\mbox{mqty}}$ also acts like a single matrix element (the same can be said of the grouped c and d elements). Finally, the outermost pmatrix environment could have also been replaced with the physics macro $\mbox{mqty}()$, allowing the above example to be written on one line:

\matrixquantity	\mqty{a & b \\ c & d} $ ightarrow rac{a}{c} rac{b}{d}$	groups a set of matrix elements into a single object
	\mqty(a & b \\ c & d) $ ightarrow egin{pmatrix} a & b \ c & d \end{pmatrix}$	parentheses
	\mqty*(a & b \\ c & d) $\rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix}$	alternate parentheses
	\mqty[a & b \\ c & d] $ ightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ \mqty[a & b \\ c & d] $ ightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	square brackets
	\mqty a & b \\ c & d $\rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	vertical bars
	↔ \mqty() ↔ \mqty*() ↔ \mqty[]	alternative syntax; robust and more LATEX-friendly
\smallmatrixquantity	$eq:continuous_continuous$	the smallmatrix form of \mqty small version of \mqty() small version of \mqty*() small version of \mqty[] small version of \mqty
\matrixdeterminant	\mdet{a & b \\ c & d} $ ightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix}$	matrix determinant
\identitymatrix	\smdet{a & b \\ c & d} $ ightarrow$ $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ \imat{n}	small matrix determinant elements of $n \times n$ identity matrix
	$\operatorname{smqty}(\operatorname{imat}\{3\}) \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	formatted with \mqty or \smqty
\xmatrix	\xmat{x}{n}{m}	elements of $n \times m$ matrix filled with x
,	$\operatorname{smqty}(\operatorname{1}{2}{3}) \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	formatted with \mqty or \smqty
	$\operatorname{smqty}(\operatorname{xmat}*\{a\}\{3\}\{3\}) \to \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$	star for element indices
	$ \begin{array}{l} \ \text{\smqty(\xmat{1}{2}{3})} \to \left(\begin{smallmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{smallmatrix} \right) \\ \ \text{\smqty(\xmat*{a}{3}{3})} \to \left(\begin{smallmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{smallmatrix} \right) \\ \ \text{\smqty(\xmat*{a}{3}{1})} \to \left(\begin{smallmatrix} a_{1} & 1 & 1 \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \end{smallmatrix} \right) \\ \ \text{\smqty(\xmat*{a}{3}{1})} \to \left(\begin{smallmatrix} a_{1} & 1 & 1 \\ a_{21} & a_{22} & a_{23} \\ a_{23} & a_{23} & a_{23} \\ a_{24} & a_{24} & a_{24} \\ a_{24} & a_{24} & a_{24} \\ a_{25} & a_{25} & a_{25} \\ a_{25} & a_{25} \\ a_{25} & a_{25} \\ a_{25} & a_{25} \\ a_{25} & a_{$	as a vector with indices
	\lambda \text{smqty} \lambda \text{kmate* \(\begin{array}{c} a_3 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	as a vector with indices
\zeromatrix		$n \times m$ matrix filled with zeros
(2010maulin	\smqty(\zmat{2}{2}) $\rightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	equivalent to \xmat{0}{n}{m}
\paulimatrix	\pmat{n}	$n^{ m th}$ Pauli matrix
	$\operatorname{smqty}(\operatorname{pmat}\{0\}) \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$n \in \{0, 1, 2, 3 \text{ or } x, y, z\}$
	\smqty(\pmat{1}) $\rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	
	$\begin{array}{l} \texttt{\smaty(\pmat{2})} \to \begin{pmatrix} 0 & -i \\ i & 0 \\ \end{pmatrix} \\ \texttt{\smaty(\pmat{3})} \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{array}$	
\diagonalmatrix	\dmat{a,b,c,}	specify up to eight diagonal or block di-
		agonal elements
	$\label{eq:mqty(dmat{1,2,3})} \rightarrow \begin{pmatrix} 2 \\ 3 \end{pmatrix}$	
	$\texttt{\mathered}(\texttt{\mathered}(0) \{1,2\}) \to \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	optional argument to fill spaces
	$\label{eq:local_state} $$ \operatorname{mqty(\operatorname{log}\{1,2,3\})} \to \begin{pmatrix} 1 & 2 & 3 \\ & 2 & 3 \end{pmatrix} $$ \operatorname{mqty(\operatorname{log}\{1,2\})} \to \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} $$ \operatorname{mqty(\operatorname{log}\{1,2\&3\backslash4\&5\})} \to \begin{pmatrix} 1 & 2 & 3 \\ & 2 & 3 \\ & 4 & 5 \end{pmatrix} $$$	enter matrix elements for each block as a single diagonal element
\antidiagonalmatrix	\admat{a,b,c,}	same as syntax as \dmat
	$\label{eq:mqty(admat{1,2,3})} \rightarrow \begin{pmatrix} & 1 \\ 2 & \\ 3 & \end{pmatrix}$	