Lecture 11

February 16, 2019

Anders Sundheim asundheim@wisc.edu

Last Time

$$\int f \cdot d\alpha = \int \nabla \Psi \cdot d\alpha = \Psi(y) - \Psi(x)$$

$$\oint f \cdot d\alpha = \oint \nabla \cdot d\alpha = 0$$

Example

Compute path integral with
$$f(x_1, x_2) = (x_1, x_2) : \mathbb{R}^2 \to \mathbb{R}^2$$
 and $\alpha(t) = (t^5 \cos^{2019}(t), t^{2020}), 0 \le t \le 1$
Note: $f(x_1, x_2) = (x_1, x_2) = \nabla \Psi(x_1, x_2)$, where
$$\Psi(x_1, x_2) = \frac{x_1^2}{2} + \frac{x_2^2}{2}$$
Then, $\int f \cdot d\alpha = \int \nabla \Psi \cdot d\alpha = \Psi(\alpha(1)) - \Psi(\alpha(0)) = \Psi(\cos^{2019}(1), 1) - \Psi(0, 0) = \frac{\cos^{4058}(1)}{2} + \frac{1}{2}$

1st Fundamental Theorem of Line Integrals

Let $U \subset \mathbb{R}^n$ be open and connected Let $f: U \to \mathbb{R}^n$ be a continuous vector field (If path integrals $\int f \cdot d\alpha$ are independent of the paths, then f is a gradient vector field) Assume path integrals $\int f \cdot d\alpha$ are independent of paths. Denote by $\Phi(x) = \int f \cdot d\alpha$ for x connects z to x for z fixed in UThen, $f(x) = \nabla \Psi(x)$

Proof

Proof. We'll show that at every $x \in U$

$$f(x) = (f_1(x), \dots, f_n(x)) = (\Psi_{x_1}(x), \dots, \Psi_{x_n}(x))$$

Let's just show $f_1(x) = \Psi_{x_1}(x)$

Assume $x \in U$ open, we can find r > 0 s.t. $B(x,r) \subset U$

For |s| < r, we'll compare values of $\Psi(x + se_1)$ with $\Psi(x)$

Define
$$\gamma: [0, s] \to U$$
 s.t. $\gamma(r) = x + re_1$

Then,
$$\Psi(x + se_1) - \Psi(x) = (\int f \cdot d\alpha + \int f \cdot d\gamma) - \int f \cdot d\alpha$$

$$\Rightarrow \Psi(x + se_1) - \Psi(x) = \int f \cdot d\gamma = \int_0^s f(x + re_1) \cdot \gamma'(r) dr$$

$$= \int_0^s f(x + re_1) \cdot e_1 dr = \int_0^s f_1(x + re_1) dr$$
We get $\frac{\Psi(x + se_1) - \Psi(x)}{s} = \frac{1}{s} \int f_1(x + re_1) dr$

Let $s \to 0$, we get

$$\lim_{s \to 0} \frac{1}{s} \int_0^s f_1(x + re_1) dr = f_1(x)$$

$$\Rightarrow \boxed{\Psi_{x_1}(x) = f_1(x)}$$

Fun Fact

Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function

Then,
$$\lim_{s \to 0} \frac{1}{s} \int_{x}^{x+s} g(r)dr = g(x)$$

Proof

Proof. Define:
$$G(y) = \int_{x}^{y} g(r)dr \to G'(y) = g(y)$$

LHS
$$\int_{x}^{x+s} g(r)dr = \frac{G(x+s) - G(x)}{s}$$

$$G'(y) \stackrel{x}{=} g(z)$$
 for some z in $[x, x + s]$

$$\lim_{s\to 0} \frac{1}{s} \int_{r}^{x+s} g(r)dr = g(x) \text{ as } z\to x, s\to 0$$

Corollary

If $\oint f \cdot d\alpha = 0$ for all closed paths α , then f is a gradient vector field