江苏大学 硕士研究生入学考试样题

科目名称: _数据结构	两分: <u>150</u> 分			
注意:①认真阅读答题纸上的注意事项;②所有答案必须写在	答题纸上,写在本试题纸			
或草稿纸上均无效;③本试题纸须随答题纸一起装入试	题袋中交回!			
一、单项选择题(每小题 1 分,共 10 分)				
1. 以下说法正确的是()。				
(A) 数据元素是数据的最小单位				
(B) 数据项是数据的基本单位				
(C) 数据结构是带有结构的各数据项的集合				
(D) 数据结构是带有结构的数据元素的集合				
2. 给定有 n 个元素的一维数组, 建立一个有序单链表的时间复	夏杂度是()。			
(A) $O(n^2)$ (B) $(nlog_2^n)$ (C) $O(n)$				
3. 一个栈的输入序列为 1, 2, 3, 4, 5, 则下列序列中不可				
()。				
(A) 54132 (B) 23415 (C) 23145	(D) 15432			
4. 以下说法正确的是()。				
(A) 队列是先进后出的线性表				
(B) 队列是线性表的一种特殊存储结构				
(C) 队列可以通过两个栈来模拟实现				
(D) 对于插入或删除较为频繁的操作,链队列比循环队列系				
5. 将含 100 个结点的完全二叉树从根这一层开始, 每层从左线				
结点的编号为 1。编号为 59 的结点 W 的双亲编号为(
(A) 28 (B) 29 (C) 30				
6. 设有一个二维数组 D[m][n], 假设按行为主序把 D[0][0]存放	位置在600 ₍₁₀₎ ,而D[3][3]			
存放位置在 678 ₍₁₀₎ ,每个元素占一个空间,请问 D[2][4]存放	(在()位置?(脚			
注 ₍₁₀₎ 表示用 10 进制表示,m>3)。				
(A) $653_{(10)}$ (B) $654_{(10)}$ (C) $663_{(10)}$	(D) 664 ₍₁₀₎			
7. 下列哪一种图的邻接矩阵一定是对称矩阵?()。				
(A) AOV 网 (B) AOE 网 (C) 有向图	(D) 无向网			
8. 下面关于哈希(散列)查找的说法正确的是()。	- 1			
(A) 哈希函数构造的越复杂越好,因为这样随机性好,冲穿	き 小			
(B) 不存在特别好与坏的哈希函数,要视情况而定				
(C) 除留余数法是所有哈希函数中最好的 (D) 若需在哈希表中删去一个元素,不管用何种方法解决为				
(D) 若需在哈希表中删去一个元素,不管用何种方法解决冲突都只要简单的将该元素删去即可				
WAWA CH. 1.3				

科目代码: 851

满分: <u>150</u> 分

9. 在等概率情况下,对长度为 n 的线性表进行顺序查找的平均查找长度 ASL 为
()。
(A) n (B) $(n-1)/2$ (C) $n/2$ (D) $(n+1)/2$
10. 归并排序中,归并的趟数是()。
(A) $O(nlog_2n)$ (B) $O(n)$ (C) $O(log_2n)$ (D) $O(n^2)$
二、填空题(每小题2分,共10分)
1. 下列程序段的时间复杂度是 O ()。
int $i=1$, $j=1$;
while $(i \le n \& j \le n) \{ i = i+1 ; j = j+i ; \}$
2. 对特殊矩阵和稀疏矩阵进行压缩存储目的是。
3. 顺序存储结构的队列是利用一维数组存储的,在入队操作时往往会发生 现
象,为此常常把队列设计成(顺序)循环队列。
4. 设双向循环链表的结点的数据成员包括 data (数据域)、prior (指向前驱结点的指针
域) next (指向后继续占的控针域) 则太观点纸环放射中 咖啡 医股份性
域)、next(指向后继结点的指针域),则在双向循环链表中,删除 p 所指向的结点的操作依次是: : delete p:
, dolote p,
5. 在有 n 个顶点的有向图中, 若要使任意两点间是强连通的, 则至少需要条弧。
三、应用题(共 80 分)
1. (5 分)已知某二叉树的先序遍历序列是 FDBACEJKLXY, 后序遍历序列是
ACBEDKXYLJF,而且该二叉树的每个结点的度,要么为0,要么为2。请画出该二
叉树。
2. (15分)已知树如图 1 所示,要求:
(1) 面山树的双尖 孩子来二次的东西

- (1) 画出树的双亲-孩子表示法的存储结构图。
- (2) 将该树转换成对应的二叉树。
- (3) 对转换得到的二叉树进行中序全线索化,画出中序全线索二叉链表。

图 1 树

- 3. (12 分)设递增有序表 L={22, 26, 30, 34, 39, 42, 49, 53, 58, 62, 69, 73, 76, 89}。试画出对 L 进行折半查找时的扩充二叉树,并计算在等概率情况下查找成功的平均查找长度。
- 4. (12 分)请给出结点的平衡因子的定义。已知关键字序列 $F=\{60, 15, 30, 85, 40, 50, 36, 90, 12, 80, 95\}$,请给出以此序列 F 构造一棵平衡二叉树的过程,并注明平衡调整的旋转类型。
- 5. (7 分)已知非连通图 G 的顶点集为{V0, V1, V2, V3, V4, V5, V6, V7, V8, V9}, 图采用邻接矩阵表示法, 顶点表为 vertexes, 邻接矩阵为 arcs, 如图 2 所示。若以如下深度优先遍历算法对图 G 进行深度优先遍历(其中 DFS 为深度优先搜索算

法), 请给出遍历得到的结点的序列, 以及深度优先生成森林。

//深度优先遍历图 G 算法

- (1) int i,n;
- (2) n=图的顶点个数;
- (3) int * visited = new int [n];//定义访问标记数组 visited
- (4) for (i = 0; i < n; i++) visited[i]= 0;//访问标记数组 visited 初始化
- (5) for (i = 0; i < n; i++) if (!visited [i]) DFS (G, i, visited);//对图 G 中的每一个未被访问的顶点进行深度优先搜索 DFS
- (6) delete []visited; //释放访问标记数组 visited

		0	1	2	3	4	5	6	7	8	9
vertexes=		V0	VI	V2	V3	V4	V5	V6	V7	V8	V9
		O	1	2	3	4	5	6	7	8	9
$arcs = \begin{cases} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{cases}$	0	0	1	1	1	o	O	O	O	o	o
	1	1	O	O	1	1	o	O	O	O	Q
	2	1	O	O	1.	O	O	O	O	0	o
	3	1	1	1	O	1	O	O	0	0	0
	4	0	1.	0	1	O	o	O	0	O	0
	5	0	O	0	O	O	O	1	1	1	1
	6	0	0	O	O	0	1	0	O	1	o
	7	O	O	O	O	O	1	O	o	1	o
	s	0	0	O	O	o	1	1	1	0	1
	9	0	O	O	O	o	1	o	O	1	0

图 2 顶点表和邻接矩阵

- 6. (11分)请完成以下要求:
 - (1) 已知连通网络 G 如图 3 所示,请根据普利姆(Prim)方法构造出从顶点 V4 出发的任意一棵最小生成树,写出构造过程。

图 3 连通网络 G

- (2) 假设具有 n 个顶点的连通网络为 N=(V, E), V 是顶点集合, E 为边的集合, 最小生成树为 T=(V, TE), TE 为 T 的边的集合。请给出用克鲁斯卡尔(Kruskal) 方法构造最小生成树的算法的基本思想。
- 7. (18分)请完成以下要求:
 - (1) 已知关键字序列 $F=\{13, 23, 17, 31, 9, 29, 5, 11, 21, 7, 19\}$,要求最后排序结果是按关键字从小到大的次序排列,请给出增量序列 $D=\{5, 3, 1\}$ 的希尔排序第一趟和第二趟排序结果。
 - (2) 已知关键字序列 F={58, 41, 39, 12, 14, 35, 49, 76, 8}, 请把该序列变成一个最小堆序列, 写出构造最小堆的过程。

四.	简答题	(#30	44)
		177 20	JJ /

- 1. (8分) 当一个具有 n 个顶点的 AOV-网用带入度域的邻接表表示时,可按下列方法进行拓扑排序,并判断该 AOV-网有无回路,请补充(1)、(2)、(3)、(4)处的空白。
- (i)查找邻接表,将______的顶点全部进栈;
- (ii) 若栈不空,则重复步骤①和步骤②,否则转步骤(iii)
 - ①输出栈顶元素 V_j, 并退栈, 同时 m 加 1; (m 为输出顶点数计数器, 初始为 0)
 - ②查 V_j 的所有直接后继 V_k ,对 V_k 作入度处理,处理方法是: ____(2)____,若_____(3)_____,则 V_k 进栈;

(iii)拓扑排序结束,此时当______时,说明该 AOV-网有回路,否则说明该 AOV-网不存在回路。

- 2. (8 分)线性表可以用顺序存储结构(简称顺序表)存储,也可以用链式存储结构 (简称链表)存储。试问:
 - (1) 如果有 n 个线性表同时并存,并且在处理过程中各表的长度会动态变化,线性表的总数也会自动地改变。在此情况下,应选用哪种存储结构?为什么?
 - (2) 若线性表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取线性表中的元素,那么应采用哪种存储结构?为什么?
- 3. (7分)汉诺塔问题是:设有3根标号为A、B、C的柱子,在A柱上放着n个盘子,每一个都比下面的略小一点,要求把A柱上的盘子全部移到C柱上。移动的规则是:
 - (1) 一次只能移动一个盘子;
 - (2) 移动过程中大盘子不能放在小盘子上面:
 - (3) 在移动过程中盘子可以放在 A、B、C 的任意一个柱子上。

请给出解决具有 n 个盘子的汉诺塔问题的递归算法思想(或步骤)。

4. (7分) 已知一棵度为 k 的树有 n_1 个度为 1 的结点, n_2 个度为 2 的结点,……, n_k 个度为 k 的结点,并且每个结点都具有 k 个指针域,则该树中有多少个指针域为空?请给出推导过程。

五、算法设计题(共20分)

1. (10分)已知线性表中元素以值非递减有序排列,并以带头结点的单链表作存储结构。试编写一高效的算法,删除表中所有值相同的多余元素(使得操作后的线性表中所有元素的值均不相同),同时释放被删除的结点空间。

注意:

- (1) 请简要描述你的算法思想。
- (2) 可采用类 C 语言或 C 语言或 C++语言描述你的算法, 关键之处请给出简要注释。
- (3) 你的算法中可以使用下面给出的单链表的定义,也可以使用你自己定义的单链表,但必须给出你的存储结构的描述。

//单链表的类定义

template <class type> class linklist; //单链表前视声明

template <class type> class node{//单链表结点类

friend class linklist <type>; //定义单链表类 linklist <type>为结点类的友元 private:

node <type> *next; //链指针域

2. (10分)荷兰国旗问题:设有一个仅由红、白、蓝三种颜色的条块组成的条块序列,请编写一个时间复杂度为 O(n)的算法,使得这些条块按照红、白、蓝的顺序排好,即排成荷兰国旗图案。

注意:

- (1) 请简要描述你的算法思想。
- (2) 可采用类 C 语言或 C 语言或 C++语言描述你的算法, 关键之处请给出简要注释。
- (3) 请给出你的算法中使用的存储结构的描述。