Arrays Lecture 4

Wednesday, 17 July 2024

6:05 AM

Find the maximum element in an array with minimum number of comparisions.

Linear Fraversal

7 comparisions

Tournament method

Sorting

nlogn compansions

max = ATY [0]

n-1 comparisions

if (max < arrti]) {

max = arrti]

z

$$T(n) = \begin{cases} 2T(n/2) + 2 \\ 1, & n = 2 \\ 0, & n = 1 \end{cases}$$

$$T(n) = \begin{cases} T(\lfloor \frac{n}{2} \rfloor) + T(\lfloor \frac{n}{2} \rceil) + 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(\lfloor \frac{n}{2} \rfloor) + T(\lfloor \frac{n}{2} \rceil) + 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(\lfloor \frac{n}{2} \rfloor) + T(\lfloor \frac{n}{2} \rceil) + 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases} T(n) = \frac{3n}{2} - 2 \\ 2 & m, m \end{cases}$$

$$T(n) = \begin{cases}$$

v =8

even case

$$(3,7)$$
 $(1,8)$
 $(3,7)$
 $(1,8)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $(3,7)$
 $($

Sorting

Terminology

- > In-place / Internal Sorting: It uses constant extra Space
 It sorts the array by only modifying the orders
 Of the elements within the list.
- > Out-of-place/ External sorting: It uses extra space other than the array itself.
- > Stable Sorting: when two same data appear in some order, then in sorted array also, the same data appears in same order.

 $3, 2, 2, 1, 5 \rightarrow 1, 2, 2, 3, 5$

2,1,3,2,1,2,3

> Unstable Sorting: when two same data appear in different relative ordering after Sorting.

Selection sort

Is simple and efficient sorting algorithm which repeatedly selects the smallest (or largest) element from the unsorted portion of the list and moves it to the sorted portion of the list.

Selection- Sort (A, n) {

for $(k: 1 \rightarrow n-1)$ {

min = A(k)loc $\leftarrow k$ for $(j: k+1 \rightarrow n)$ {

if $(min \rightarrow A[j])$ {

min = A[j]loc $\leftarrow j$ }

Swap (A[k], A[Joz])

3, 1, 4, 6, 2, 8, 5, 7 1, 3, 4, 6, 2, 8, 5, 7 1, 3, 4, 6, 2, 8, 5, 7 1, 2, 4, 6, 3, 8, 5, 7 1, 2, 4, 6, 3, 8, 5, 7 1, 2, 4, 6, 3, 8, 5, 7 Time Complexity: Best Case: O(n2)

Worst Case: O(n2)

In place / Out-q-place: Inplace

Stable / Unstable: Unstable

3 3 1 = 1 3 3

Bubble Sort

This is the simplest sorting algorithm that works by repeatedly Swapping the adjacent elements if they were in wrong order.

BubbleSort (A, n) { \Rightarrow for ($x: 1 \rightarrow n-1$) { \Rightarrow for ($j: 1 \rightarrow n-k$) { \Rightarrow if (A[j] > A[j+1])

Swap (A[j], A[j+1]) \Rightarrow \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow if (A[j], A[j+1]) \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow if (A[j], A[j+1]) \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow if (A[j], A[j+1]) \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow if (A[j], A[j+1]) \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow if (A[j], A[j+1]) \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow if (A[j], A[j+1]) \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow if (A[j], A[j+1]) \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow for ($x: 1 \rightarrow n-k$) { \Rightarrow for ($x: 1 \rightarrow n-k$) { $x: 1 \rightarrow n-k$) { $x: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ } $y: 1 \rightarrow x \rightarrow x \rightarrow x$ }

```
BubbleSort (A, n) {

> for (x:1-n-1) {

flag=0

for (j:1-n-k) {

if (A[j] > A[j+1]) {

Swap (A[j], A[j+1]

flag=1 3

if (flag=0) break;

}

Jn-place | Ovd-of-place: Inplace

Stable | Unstable: Stable
```