第二十二届(2011年)"希望杯"全国数学邀请赛培训题

初中二年级

一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内)

1. 如图 1,数轴上的四个点 ABCD分别代表整数 abcd.若

3. 下列各数中,最大的是(

(A)
$$\sqrt{3} + \sqrt{7}$$
 (B) $2 + \sqrt{6}$ (C) $\sqrt{20}$ (D) $\sqrt{4\frac{1}{2}} + \sqrt{5\frac{1}{2}}$

- **4.** 已知 a 是实数,并且 $a^2 2010a + 4 = 0$ 则代数式 $a^2 2009a + \frac{8040}{a^2 + 4} + 5$ 的值是 (A) 2009 (B) 2010 (C) 2011 (D) 2012
- **5.** Given two non-zero real numbers a and b, satisfy

$$|2a-4+b+2+\sqrt{(a-3)^2b}| +4 =$$
, then the value of a+b is ()
(A) -1 (B) 0 (C) 1 (D) 2

6. If the linear function y = ax + b passes through the point (-2, 0), but not the first Quadrant, then the solution set for ax > b is ()

(A) x > -2 (B) x < -2 (C) x > 2 (D) x < 2

7. 已知反比例函数
$$y = \frac{k}{r}$$
 的图像经过点 $\left(\frac{1}{a}, -b\right)$,那么它可能不经过点(

(A)
$$\left(-\frac{1}{a}, b\right)$$
 (B) $\left(\frac{1}{b}, -a\right)$ (C) $\left(-b, \frac{1}{a}\right)$ (D) $\left(b, -\frac{1}{a}\right)$

翔文学习 22nd 希望杯初二数学培训题 xiangwenjy@gmail.com **8.** 已知 a 是实数,关于 x、y 的二元一次方程组 $\begin{cases} 2x-3y=5a \\ x+2y=1-2a \end{cases}$ 的解不可能出现的情况 是() (A) x、y都是正数 (B) x、y都是负数 (C) x是正数、y是负数 (D) x是负数、y是正数 **9.** If a and b are non-zero real numbers and (1-99a)(1+99b)=1, then the value for $\frac{1}{-1} - \frac{1}{1} + 1$ is (

- 11. 在直角坐标系上,点 (x_1,y_1) 关于点 (x_2,y_2) 的对称点坐标是(
 - (A) $(x_2 2x_1, y_2 2y_1)$ (B) $(x_1 2x_2, y_1 2y_2)$
 - $(C)_{-}(2x_1-x_2,2y_1-y_2)$
- (D) $(2x_2-x_1,2y_2-y_1)$
- 一个长方体盒子的最短边长 50cm,最长边长 90cm.则盒子的体积可能是(
 - (A) 4500 cm³

- (B) $180000 \,\mathrm{cm}^3$ (C) $90000 \,\mathrm{cm}^3$ (D) $360000 \,\mathrm{cm}^3$
- 若两个角可以构成内错角,则称为"一对内错角".四条直线两两相交,且任意三 条直线不交于同一点.那么,在这个几何图形中,可以构成的内错角的两个角的对数是
 - (A) 12
- (B) 24
- (C) 36
- (D) 48
- 14. 如图 3,已知 \triangle ABC 中, $AB = AC \angle BAC$ 和 $\angle ACI$ 的角平分线相交于D点,

 $\angle ADC = 130^{\circ}$,那么 $\angle CAB$ 的大小是 ()

- (A) 80°
- (B) 50° (C) 40° (D) 20°

- Given \triangle ABC with $\angle ACB = 90^{\circ}$, $\angle ABC = 15^{\circ}$, AC = 1, then the length of BC is () 15.
 - (A) $2 + \sqrt{3}$
- (B) $3+\sqrt{2}$ (C) $3-\sqrt{2}$
- (D) $\sqrt{2} + \sqrt{3}$

- 已知三角形三边的长分别为a,b,c,且a,b,c均为整数,若b=7,a< b,则满足条 件的三角形的个数是(
 - (A) 30
- (B)36
- (C) 40 (D) 45
- 三角形三边的长分别为 a,b,c,且 $\frac{a}{b} + \frac{a}{c} = \frac{b+c}{b+c-a}$,则三角形是()

- (A) 等边三角形
 (B) 直角三角形

 (C) 以a 为腰的等腰三角形
 (D) 以a 为底的等腰三角形
- 18. 有 4 个命题:
 - 一组对边相等,一组对角相等的四边形是平行四边形;
 - 一组对边平行,一组对角相等的四边形是平行四边形;
 - O是四边形 ABCD 内一点,若 AO=BO=CO=DO,则四边形 ABCD 是矩形;

若四边形的两条对角线互相垂直,则这个四边形是菱形。

- 其中正确的命题个数是()
- (A) 0
- (B)1
- (C) 2 (D) 3

19. 如图 4, 正方形 ABCD 的面积是 486, 点 P_0 在 AD 上, 点 P_1 在 P_0 上, 且 P_0 $P_1 = \frac{1}{2}P_1$ P_2 点 P_2 在 P_1 C上 ,且 $P_1P_2 = \frac{1}{2} P_2C$;点 P_3 在 P_2B 上 ,且 $P_2P_3 = \frac{1}{2} P_3B$;…; 点 P_6 在 P_5 C上 ,且 $P_5P_6 = \frac{1}{2}P_6C$,则 $\triangle P_6BC$ 的面积是(

- (A) 81

- (B) $\frac{81}{2}$ (C) $\frac{64}{3}$ (D) $\frac{128}{3}$

如图 5,四边形 ABCD 中, $\angle ABC = 135^{\circ}, \angle BCD = 120^{\circ}, AB = \sqrt{6}, BC = 5 - \sqrt{3},$ *CD* = 6,则 AD 的长是(

- (A) $5 + \sqrt{3}$

- (B) 8 (C) $2\sqrt{13}$ (D) $2\sqrt{19}$

21.已知函数 y = (1-a)x + a + 4 的图像不经过第四象限,则满足题意的整数 a 的个数是

- (A) 4
 - (B)5
- (C) 6
- (D) 7

22 .	If the fig	gure 6 is c	compos	ed of 24	equila	teral t	riangles	, then ho	w ma	any non-co	ongr	uent
	_	triangles	with	vertices	on th	ne int	ersectin	g points	are	possible	in	this
figur	e?() (A) 3		(B)4		(C)	5	(D)	6	*			>
23 .	若在 1,	2,3,,201	10 前任	意添加-	一个正	号或者	皆负号,	则()	figure	6	
]的和是奇]的和是偶							J	X		
	(C) 若有	育数个负	5号,贝									
		百奇数个负					若有偶氮	数个负号	,则	它们的和	是奇	·数
24.	方程27	7x + 81y =	9999 辪)					
	(A) 0	((B)1		(C)	2	(D)	多于2				
25 .	将 3,4,5	5,6,7,8 这	六个数	从左到右	□写成-	一排,	使得每	相邻的两	万个数	女的和都是	是质数	数,
25 . 将 3,4,5,6,7,8 这六个数从左到右写成一排,使得每相邻的两个数的和都是质数,则这样的写法的种数是()												
	(A) 6				(C)	18	(D)	24				
26.	某农户着	三 了鸡和兔	.各若日	-, 如果-	平均每	个动物	勿有 2.5	只腿, 那	『么ヹ	8的数量与 8的数量与	5条.6	的数
量的	比等于 () 2				() 3 (2) 3		(D) 3.5				· > C.	. • > > •
27 .	一个人步	₹行从 A 由	也出发,	匀速向	B地規	是去.同	时另一	个人骑鹰	E 托车	E从 B 地台	出发	, 匀
他在	途中所用	三人在这 的时间是 5步行者速	他从 I	3 地直接	驶往							
	A) 2:1		(B)3:1		((C) 4:1	l	(D) 5:1				
28. 12 页书的页码用 15 个数码: 1,2,3,4,5,6,7,8,9,1,0,1,1,1,2.												
		[码的个数)		
29 . 方程 $2u+v+x+y+z=3$ 的非负整数解 (u,v,x,y,z) 有几组?												
(A) 10	((B)20		(C	24	(D) 30				

30. 老师问 5 个学生, 昨天晚上你们有几个复习数学了?

张:没有人

李: 一个人

王:两个人

赵: 三个人

刘: 四个人

老师知道昨天我岸上它们有人复习数学了,也有人没有复习数学,复习了的人说的 是真话,那么这 5 个学生中复习了数学的人数是()

- (A) 0
- (B)1
- (C) 2
- (D) 3

二、填空题

- **31**. 已知x 为正整数,设 $A=x^3+3x^2-45x-175$,若 A 为完全平方数,则 A 的最小值是_____
- **32**. 若 5⁸ -1 能被 20 至 30 之间的两个整数整除,则这两个整数分别是和_____.
- **34.** $\text{if } \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + \dots + \sqrt{1 + \frac{1}{2010^2} + \frac{1}{2011^2}} = \underline{ }$
- **35**. 若点 P 的坐标(a,b)满足 $a^2b^2 + a^2 + b^2 + 10ab + 16 = 0$,则点 P 的坐标为_____
- 36. 己知:

$$2 + \frac{2}{3} = 2^{2} \times \frac{2}{3},$$

$$3 + \frac{3}{8} = 3^{2} \times \frac{3}{8},$$

$$4 + \frac{4}{15} = 4^{2} \times \frac{4}{15},$$

$$10 + \frac{b}{a} = 10^{2} \times \frac{b}{a}, (其中a, b \text{ 是满足条件的最小正整数}),$$

37. 若关于x的分式方程 $\frac{m(x+1)-5}{2x+1} = m-3$ 无解,则m =______

38. 当
$$\frac{3}{2} \le x \le 2$$
时,化简 $\sqrt{x + \sqrt{2x - 3} - 1} + \sqrt{x - \sqrt{2x - 3} - 1} =$ ______

39. 若
$$a < 0 < b, |a| < |b|, 且 $a^2 + b^2 = -8ab, 则 \frac{a+b}{a-b} =$$$

42. 若
$$x + y + z = 6$$
, $xy + yz + zx = 11$, $xyz = 6$, 则 $\frac{x}{yz} + \frac{y}{zx} + \frac{z}{xy} = \frac{1}{2}$

- **43**. 如果(x+3)(x+a)-2可以因式分解为(x+m)(x+n)(其中m,n均为整数),则a的值是_____

46. 设正整数
$$x \neq y$$
, 且满足 $\frac{1}{x} + \frac{1}{y} = \frac{2}{5}$, 则 $x^2 + y^2$ 的值是______

47.
$$\Box$$
 $\frac{3x+5}{x^2-4} = \frac{A}{x-2} + \frac{B}{x+2}$, $\mathbb{R} \angle A^2 + B^2 = \underline{\hspace{1cm}}$

- **48**. 已知 5 个互不相同的正整数的平均数是 18,中位数 25,那么这 5 个正整数中最大数的最大值是_____
- 49. 先阅读材料:

若整数 a 是整系数方程 $x^3 + px^2 + qx + r = 0$ 的解,则 $-r = a(a^2 + pa + q)$,说明 a 是 r 因数。

根据以上材料,可求得 $x^3 + 4x^2 - 3x - 2 = 0$ 的整数解为x =______

51. 若关于
$$x$$
的不等式组 $\begin{cases} 5-2x>0, \\ 3x+a\geq 0 \end{cases}$ 无实数解,则 a 的取值范围是______

- **52**. 已知 a 是正整数,若关于 x 的方程 $2x-a\sqrt{1-x^2}-a+4=0$ 至少有一个整数根,则 a 的值是_____
- **53**. 如果三角形三边的长分别为 1, k, 4,代数式 $|2k-5| \sqrt{k^2 12k + 36}$ 的值为 m ,则 m 的取值范围是
- **55**. 如图 7 所示,要从 80cm×160cm 的长方形布料上裁下 2 个半径相等的半圆,那么裁下的半圆最大直径是______ cm。

图 7

56. 如图 8 所示,点 P 在 \triangle ABC 的 BC 边上,且 PC = 2PB,若 $\angle ABC = 45^{\circ}$, $\angle APC = 60^{\circ}$,则 $\angle ACB$ 的度数是

57. 如图 9 所示, 在等腰 \triangle ABC 中, $AB = AC, \angle BAC = 100^{\circ}$,延长 AB 到 D, 使

AD = BC,连接DC,则∠BCD的度数是

58. 如图 10 所示, △ABC 是等边三角形, 点 P 在△ABC 内, PE //AC 交 AB 于 E, PF//AB 交 BC 于 F, PD//BC 交 AC 于 D,已知△ABC 的周长是 12cm,

则 PD+PE+PF = cm

59. 如图 11 所示,在△ABC中,AB=7,AC=11,点 M 是 BC的中点,AD 是∠BAC的

角平分线,MF//AD,则 FC=____

60. 如图 12 所示,在 \triangle ABC 中,AC = BC, $\angle ACB = 80^{\circ}$, 在 \triangle ABC 内取一点M,使得

∠*MBA* = 30°, ∠*MAB* = 10°, 那么 ∠*AMC* 的度数是

61. 如图 13 所示,P是长方形 ABCD内一点,已知PA=3, PB=4, PC=5 ,则 PD^2 的

值为_____

62. 如图 14 所示, 在梯形 ABCD 中,

AB//DC,AD=DB,AB=AC, ∠ACD=30°,则∠BAD的度数是

63. 如图 15 所示,点E,F分别是矩形 ABCD的边 AB,BC的中点,连接 AF,EC交于点G,

则 $\frac{S_{\text{四边形}BFGE}}{S_{\text{见边形}AGCD}} =$ ______

64. 如图 16 所示, 在平面直角坐标系内放置一个直角梯形 AOCD,已知 AD=3,AO=8,OC=5,若点 P 在梯形内且 $S_{\triangle PAD}=S_{\triangle POC}$, $S_{\triangle PAD}=S_{\triangle PCD}$,那么点 P 的坐标是______

- 65. 直线 $y = -\frac{3}{4}x + 6$ 上的点 A 的横坐标为 2, 线段 AB 在直线 $y = -\frac{3}{4}x + 6$ 上, 且 AB = 5, 线段 AB 向右平移 2 个单位后,点 B 的坐标为
- 66. 一次函数 y = -2x + 6 的图像与 x轴、y轴 分别相交于点 A、B,点P在线段 AB 上,OP (O 是坐标原点)将 \triangle 0AB 分成面积为 1:2 的两部分,则过点 P的反比例函数解析式为
- 68. 已知整数 a₁, a₂, a₃, a₄, a₅ 使 a₁+a₂+a₃+a₄+a₅=9,若 *b* 是关于 *x* 的方程 (x-a₁)(x- a₂)(x- a₃)(x- a₄)(x- a₅)=2009 的整数根,则 *b* 的值是______
- 69. 已知 a,b,c 都是-3 到 3 之间的非零整数,且 $\left(b+\sqrt{2}\right)^2 = \left(a+\sqrt{2}\right)\left(c+\sqrt{2}\right)$,则符合条件的 a,b,c 有_____组.
- **71**. 将一枚六个面的编号分别为 1,2,3,4,5,6 的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为 a,第二次掷出的点数为 b,则使关于 x,y 的方程组 $\begin{cases} ax+by=3\\ x+2y=2 \end{cases}$ 有正整数的概率为_____

- **72**. 先将 100 个杯子排成一列,杯口朝上。从左向右从 1 数到 100,数列 3 的倍数时把杯子翻过来;再从右向左从 1 数到 100,数到 7 的倍数时把杯子翻过来,那么最后有个杯子杯口朝上。
- **73**. 已知 a,b,c,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当 |a-b|+|b-c|+|c-d|+|d-a| 取得最大值时,这个四位数的最小值是______
- **74**. 若对于所有的实数 x ,都有 $f(2^x) + xf(2^{-x}) = x^2$,则 f(2) =______

三、解答题

- **76**. 某化工厂现有甲种原料 290kg,乙种原料 212kg,计划用这两种原料生产 A、B两种产品共 80 件。生产一件 A产品需要甲种原料 5kg,乙种原料 1.5kg,生产成本是 120元;生产一件 B产品需要甲原料 2.5kg,乙种原料 3.5kg,生产成本是 200元.
 - 1) 该化工厂现有原料能否保证生产? 若能保证生产,有几种生产方案?
 - 2) 设生产 A、 B两种产品的总成本为 y 元,其中一种产品的生产件数为 x,试写出 y 与 x 的函数关系式,并利用函数的性质说明(1)中哪种生产方案总成本最低,最低生产总成本是多少?

77. 若方程组
$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$
的解为 $\begin{cases} x = 2 \\ y = 3 \end{cases}$.求方程组 $\begin{cases} 4a_1x + 3b_1y = 7c_1 \\ 4a_2x + 3b_2y = 7c_2 \end{cases}$ 的解

78. 如图 17, 在△ABC 中, ∠ABC=3∠C, ∠1=∠2, BE⊥AE, 求证: AC-AB=2BE

- 79. 将编号从1到10的10个白球排成一行,现按照如下要求涂色:
 - 1)涂色的球有2个;
 - 2)被涂色的2个球的编号之差大于2.那么不同的涂色方法有几种?
- **80**. 直线 y=kx+4 分别于 x 轴、y 轴相交于点 A,B,O 是坐标原点,A 点的坐标为(4,0), P 是 OB 上 (O,B 两点除外)的一点,过 P 作 PC L y 轴交直线 AB 于 C,过点 C 作 CD L x 轴, 垂足为 D,设线段 PC 的长为 l,点 P 的坐标为 (0, m)
 - 1) 求 k 的值;
 - 2) 如果点 P 在线段 OB (O, B 两点除外)上移动,求1于 m 的函数关系式,并写出自变量 m 的取值范围;
 - 3)当点 P 运动到线段 OB 的中点时,四边形 OPCD 为正方形,将正方形 OPCD 沿着 x 轴的正方向移动,设平移的距离为 a (0<a<4),正方形 OPCD 于 \triangle AOB 重叠部分的面积为 S.试求 S 与 a 的函数关系式.

