习题测试(一)

一、选择题

1. 设 $X = \{a, b, c\}$,下列集族中,() 是 X 上前	1.	设 $X = \{a, b, c\}$,	下列集族中,	()	是 X	上的拓扑.
--	----	-----------------------	--------	-----	-------	-------

A $T = \{X, \emptyset, \{a\}, \{a,b\}, \{c\}\}\};$ B $T = \{X, \emptyset, \{a\}, \{a,b\}, \{a,c\}\}\};$

C $T = \{X, \emptyset, \{a\}, \{b\}, \{a,c\}\}\}$; D $T = \{X, \emptyset, \{a\}, \{b\}, \{c\}\}\}$.

2. 己知 $X = \{a,b,c,d\}$, 拓扑 $\mathcal{T} = \{X,\emptyset,\{a\}\}$, 则 $\overline{\{b\}} = ($

A \varnothing :

B X:

C $\{b\}$; D $\{b, c, d\}$.

3. 设X是一个拓扑空间,A,B是X的子集,则下列关系中错误的是(

A $d(A \cup B) = d(A) \cup d(B)$; B $\overline{A \cup B} = \overline{A} \cup \overline{B}$;

C $d(A \cap B) = d(A) \cap d(B)$; D $\overline{A} = \overline{A}$.

4. 离散空间的任一子集为()

A 川集;

B 闭集;

C 既开又闭;

D 非开非闭.

5. 设X是拓扑空间, $\{x_k\}$ 是X中的收敛序列,则下而正确的命题是()

A 对于任何拓扑空间X, $\{x_k\}$ 的极限唯一;

B 若 X是 Hansodorff 空间,则 $\{x_k\}$ 的极限唯一;

C 若X是第一可数的,则 $\{x_k\}$ 的极限唯一;

D 若X是正则的,则 $\{x_k\}$ 的极限唯一.

二、填空题

1. 设 $X = \{a, b, c\}$,则X的平庸拓扑为_____。

2. 设 X, Y 是两个拓扑空间, $f: X \to Y$ 是一个映射, 若 X 中任何一个闭集 U 的 象集 f(U) 是 Y 中的一个闭集,则称映射 f 是一个。

3. 设 $X = \{1,2,3\}$, $\mathcal{T} = \{\emptyset, X, \{1,2\}, \{1,3\}, \{1\}, \{2\}\}$ 是X的拓扑, $A = \{1,2\}$,则X的子空

问 A 的拓扑为	<i>l</i> y;	
4. 若拓扑空	问 X 中有一个可数子集 D 满足 $\overline{D} = X$,则 X 称为的	空间。
5. 正规空间	对于(开或闭)子空间遗传。	
6. 拓扑空间	(X,T)的子集 U 称为点 x 的邻域,如果	_ 0
7. 点 <i>x</i> 是拓	扑空间 (X,T) 的子集 A 的聚点是指。	
8. 正规的	空间称为 T_4 空间。	
9. 拓扑学的	中心任务是研究。	
10. 称 <i>X</i> 是 \$ 三、证明题	桑 致空间,若。	
1. 设 <i>X</i> 是一	个集合, $\mathcal{T}=\left\{U\middle X-U$ 是 X 的一个可数子集 $\right\}\cup\left\{\varnothing\right\}$,证明: \mathcal{T} 是 X	的一个
拓扑。		
 设Τ₁与Τ₂ 若不是举出反 	$oldsymbol{\mathcal{L}}_2$ 是 X 上的两个拓扑, $oldsymbol{\mathcal{T}}_1\capoldsymbol{\mathcal{T}}_2$, $oldsymbol{\mathcal{T}}_1\cupoldsymbol{\mathcal{T}}_2$ 是否为 X 上的拓扑?若是反例。	请给出证明,
3. 证明: 拓	扑空间 X 是 T_1 的当且仅当 X 的每个单点集都是闭集的。	
4. 证明: 每:	个正则的 7。空间都是 73 空间。	

5. 证明:设 $\boldsymbol{\mathcal{B}}$ 是拓扑空间(X, $\boldsymbol{\mathcal{T}}$)的一个开集族,证明: $\boldsymbol{\mathcal{B}}$ 是拓扑空间(X, $\boldsymbol{\mathcal{T}}$)的一个

基当且仅当对于任意的 $x \in X$ 及 X 的任一邻域 U_x ,都存在 $V_x \in \mathcal{B}$,使得 $x \in V_x \subset U_x$ 。