1 The Vanilla System

First, we present the top-level system, which is easy to understand.

1.1 Grammar

$$P, \ Q \qquad ::= \qquad \qquad \text{positive types}$$

$$\mid \quad \alpha^+ \\ \mid \quad \downarrow N \\ \mid \quad \exists \alpha^-.P$$

$$N, \ M \qquad ::= \qquad \qquad \text{negative types}$$

$$\mid \quad \alpha^- \\ \mid \quad \uparrow P \\ \mid \quad \forall \alpha^+.N \\ \mid \quad P \rightarrow N$$

1.2 Declarative Subtyping

 $\Gamma \vdash N \simeq_0^{\leq} M$ Negative equivalence

$$\frac{\Gamma \vdash N \leqslant_0 M \quad \Gamma \vdash M \leqslant_0 N}{\Gamma \vdash N \simeq_0^{\leqslant} M} \quad \text{D0NDEF}$$

 $\Gamma \vdash P \simeq_0^{\leqslant} Q$ Positive equivalence

$$\frac{\Gamma \vdash P \geqslant_0 Q \quad \Gamma \vdash Q \geqslant_0 P}{\Gamma \vdash P \simeq_0^{\varsigma} Q} \quad \text{D0PDEF}$$

 $\Gamma \vdash N \leqslant_0 M$ Negative subtyping

$$\frac{\Gamma \vdash \alpha^- \leqslant_0 \alpha^-}{\Gamma \vdash P \approx_0^{\leqslant} Q} \quad \text{D0ShiftU}$$

$$\frac{\Gamma \vdash P \approx_0^{\leqslant} Q}{\Gamma \vdash \uparrow P \leqslant_0 \uparrow Q} \quad \text{D0ShiftU}$$

$$\frac{\Gamma \vdash P \quad \Gamma \vdash [P/\alpha^+] N \leqslant_0 M \quad M \neq \forall \beta^+.M'}{\Gamma \vdash \forall \alpha^+.N \leqslant_0 M} \quad \text{D0ForallL}$$

$$\frac{\Gamma, \alpha^+ \vdash N \leqslant_0 M}{\Gamma \vdash N \leqslant_0 \forall \alpha^+.M} \quad \text{D0ForallR}$$

$$\frac{\Gamma \vdash P \geqslant_0 Q \quad \Gamma \vdash N \leqslant_0 M}{\Gamma \vdash P \to N \leqslant_0 Q \to M} \quad \text{D0Arrow}$$

 $\overline{|\Gamma \vdash P \geqslant_0 Q|}$ Positive supertyping

$$\frac{\Gamma \vdash \alpha^{+} \geqslant_{0} \alpha^{+}}{\Gamma \vdash N \simeq_{0}^{\leq} M} \quad D0PVAR$$

$$\frac{\Gamma \vdash N \simeq_{0}^{\leq} M}{\Gamma \vdash \downarrow N \geqslant_{0} \downarrow M} \quad D0SHIFTD$$

$$\frac{\Gamma \vdash N \quad \Gamma \vdash [N/\alpha^{-}]P \geqslant_{0} Q \quad Q \neq \exists \alpha^{-}.Q'}{\Gamma \vdash \exists \alpha^{-}.P \geqslant_{0} Q} \quad D0EXISTSL$$

$$\frac{\Gamma, \alpha^{-} \vdash P \geqslant_{0} Q}{\Gamma \vdash P \geqslant_{0} \exists \alpha^{-}.Q} \quad D0EXISTSR$$

2 Multi-Quantified System

2.1 Grammar

$$N,\ M$$
 ::= multi-quantiff
$$\begin{vmatrix} \alpha^- \\ | & \uparrow P \\ | & P \rightarrow N \\ | & \forall \alpha^+.N \\ | & (N) & \mathsf{S} \end{vmatrix}$$

2.2 Declarative Subtyping

 $\Gamma \vdash N \simeq M$ Negative equivalence on MQ types

$$\frac{\Gamma \vdash N \leqslant_1 M \quad \Gamma \vdash M \leqslant_1 N}{\Gamma \vdash N \simeq_1^{\leqslant} M} \quad \text{D1NDEF}$$

 $\Gamma \vdash P \simeq_1^{\leq} Q$ Positive equivalence on MQ types

$$\frac{\Gamma \vdash P \geqslant_1 Q \quad \Gamma \vdash Q \geqslant_1 P}{\Gamma \vdash P \simeq_1^{\varsigma} Q} \quad \text{D1PDEF}$$

 $\Gamma \vdash N \leq_1 M$ Negative subtyping

$$\frac{\Gamma \vdash \alpha^{-} \leqslant_{1} \alpha^{-}}{\Gamma \vdash P \leqslant_{1}^{*} Q} \quad D1\text{NVAR}$$

$$\frac{\Gamma \vdash P \approx_{1}^{*} Q}{\Gamma \vdash \uparrow P \leqslant_{1}^{*} \uparrow Q} \quad D1\text{ShiftU}$$

$$\frac{\Gamma \vdash P \geqslant_{1} Q \quad \Gamma \vdash N \leqslant_{1} M}{\Gamma \vdash P \to N \leqslant_{1} Q \to M} \quad D1\text{Arrow}$$

$$\frac{\Gamma, \overrightarrow{\beta^{+}} \vdash P_{i} \quad \Gamma, \overrightarrow{\beta^{+}} \vdash [\overrightarrow{P}/\overrightarrow{\alpha^{+}}]N \leqslant_{1} M}{\Gamma \vdash \forall \overrightarrow{\alpha^{+}}.N \leqslant_{1}^{*} \forall \overrightarrow{\beta^{+}}.M} \quad D1\text{Forall}$$

 $\overline{|\Gamma \vdash P \geqslant_1 Q|}$ Positive supertyping

2.3 Declarative Equivalence

 $|N \simeq_1^D M|$ Negative multi-quantified type equivalence

$$\frac{\alpha^{-} \simeq_{1}^{D} \alpha^{-}}{\alpha^{-} \simeq_{1}^{D} Q} \quad (VAR^{-} \simeq_{1}^{D})$$

$$\frac{P \simeq_{1}^{D} Q}{\uparrow P \simeq_{1}^{D} \uparrow Q} \quad (\uparrow \simeq_{1}^{D})$$

$$\frac{P \simeq_{1}^{D} Q \quad N \simeq_{1}^{D} M}{P \to N \simeq_{1}^{D} Q \to M} \quad (\to \simeq_{1}^{D})$$

$$\frac{\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv}\, M = \varnothing \quad \mu : (\{\overrightarrow{\beta^+}\} \cap \mathbf{fv}\, M) \leftrightarrow (\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv}\, N) \quad N \overset{\mathbf{n}}{\simeq_1^D} [\mu] M}{\forall \overrightarrow{\alpha^+}. N \overset{\mathbf{n}}{\simeq_1^D} \forall \overrightarrow{\beta^+}. M} \quad (\forall^{\overset{D}{\simeq_1^D}})$$

 $P \simeq^{D}_{1} Q$

Positive multi-quantified type equivalence

$$\frac{\overline{\alpha^{+} \simeq_{1}^{D} \alpha^{+}}}{\sqrt[]{N} \simeq_{1}^{D} M} (\sqrt{\alpha^{+}})$$

$$\frac{N \simeq_{1}^{D} M}{\sqrt[]{N} \simeq_{1}^{D} \sqrt[]{M}} (\sqrt{\alpha^{-}})$$

$$\frac{\{\overrightarrow{\alpha^{-}}\} \cap \mathbf{fv} Q = \varnothing \quad \mu : (\{\overrightarrow{\beta^{-}}\} \cap \mathbf{fv} Q) \leftrightarrow (\{\overrightarrow{\alpha^{-}}\} \cap \mathbf{fv} P) \quad P \simeq_{1}^{D} [\mu]Q}{\exists \overrightarrow{\alpha^{-}} . P \simeq_{1}^{D} \exists \overrightarrow{\beta^{-}} . Q} (\exists^{\simeq_{1}^{D}})$$

 $P \simeq Q$

3 Algorithm

3.1 Normalization

3.1.1 Ordering

 $\mathbf{ord} \ vars \mathbf{in} \ N = \overrightarrow{\alpha}$

$$\frac{\alpha^{-} \in vars}{\operatorname{ord} vars \operatorname{in} \alpha^{-} = \alpha^{-}} \quad (\operatorname{VaR}_{\in}^{-})$$

$$\frac{\alpha^{-} \notin vars}{\operatorname{ord} vars \operatorname{in} \alpha^{-} = \cdot} \quad (\operatorname{VaR}_{\notin}^{-})$$

$$\frac{\operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \uparrow P = \overrightarrow{\alpha}} \quad (\uparrow)$$

$$\frac{\operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}_{1} \quad \operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}_{2}}{\operatorname{ord} vars \operatorname{in} P \to N = \overrightarrow{\alpha}_{1}, (\overrightarrow{\alpha}_{2} \setminus \{\overrightarrow{\alpha}_{1}\})} \quad (\to)$$

$$\frac{vars \cap \{\overrightarrow{\alpha^{+}}\} = \varnothing \quad \operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} V \Rightarrow \overrightarrow{\alpha}^{+}, N = \overrightarrow{\alpha}} \quad (\forall)$$

 $\mathbf{ord}\, vars \mathbf{in}\, P = \overrightarrow{\alpha}$

$$\frac{\alpha^{+} \in vars}{\operatorname{ord} vars \operatorname{in} \alpha^{+} = \alpha^{+}} \quad (\operatorname{Var}_{\in}^{+})$$

$$\frac{\alpha^{+} \notin vars}{\operatorname{ord} vars \operatorname{in} \alpha^{+} = \cdot} \quad (\operatorname{Var}_{\notin}^{+})$$

$$\frac{\operatorname{ord} vars \operatorname{in} N = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \downarrow N = \overrightarrow{\alpha}} \quad (\downarrow)$$

$$\frac{vars \cap \{\overrightarrow{\alpha^{-}}\} = \varnothing \quad \operatorname{ord} vars \operatorname{in} P = \overrightarrow{\alpha}}{\operatorname{ord} vars \operatorname{in} \overrightarrow{\beta \alpha^{-}} \cdot P = \overrightarrow{\alpha}} \quad (\exists)$$

 $\mathbf{ord} \ vars \mathbf{in} \ N = \overrightarrow{\alpha}$

$$\frac{}{\text{ord } vars \text{ in } \hat{\alpha}^- = \cdot} \quad \text{(UVAR}^-)$$

 $\operatorname{\mathbf{ord}} vars \operatorname{\mathbf{in}} P = \overrightarrow{\alpha}$

$$\frac{}{\operatorname{ord} \operatorname{varsin} \widehat{\alpha}^{+} = \cdot} \quad (UVAR^{+})$$

3.1.2 Quantifier Normalization

$$\mathbf{nf}\left(N\right) = M$$

$$\frac{\mathbf{nf}(\alpha^{-}) = \alpha^{-}}{\mathbf{nf}(P) = Q} \quad (\uparrow)$$

$$\frac{\mathbf{nf}(P) = Q}{\mathbf{nf}(\uparrow P) = \uparrow Q} \quad (\uparrow)$$

$$\frac{\mathbf{nf}(P) = Q \quad \mathbf{nf}(N) = M}{\mathbf{nf}(P \to N) = Q \to M} \quad (\to)$$

$$\frac{\mathbf{nf}(N) = N' \quad \mathbf{ord}\{\overrightarrow{\alpha^{+}}\} \mathbf{in} N' = \overrightarrow{\alpha^{+'}}}{\mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.N) = \forall \overrightarrow{\alpha^{+'}}.N'} \quad (\forall)$$

 $\mathbf{nf}\left(P\right) = Q$

$$\frac{\mathbf{nf}(\alpha^{+}) = \alpha^{+}}{\mathbf{nf}(N) = M} \qquad (\downarrow)$$

$$\frac{\mathbf{nf}(N) = M}{\mathbf{nf}(\downarrow N) = \downarrow M} \qquad (\downarrow)$$

$$\underline{\mathbf{nf}(P) = P' \quad \mathbf{ord} \{\overrightarrow{\alpha^{-}}\} \mathbf{in} P' = \overrightarrow{\alpha^{-'}}}$$

$$\underline{\mathbf{nf}(\exists \overrightarrow{\alpha^{-}}.P) = \exists \overrightarrow{\alpha^{-'}}.P'} \qquad (\exists)$$

 $\mathbf{nf}\left(N\right) = M$

$$\underline{\mathbf{nf}(\widehat{\alpha}^{-}) = \widehat{\alpha}^{-}} \quad (UVAR^{-})$$

 $\mathbf{nf}\left(P\right) = Q$

$$\frac{\mathbf{nf}(\widehat{\alpha}^{+}) = \widehat{\alpha}^{+}}{\mathbf{nf}(\widehat{\alpha}^{+})} = \widehat{\alpha}^{+}$$

3.2 Unification

 $|\Theta \models N| \stackrel{u}{\simeq} M = \widehat{\sigma}$ Negative unification

$$\frac{\Theta \vDash \alpha^{-\frac{u}{\simeq}} \alpha^{-} \dashv \cdot}{\Theta \vDash P \stackrel{u}{\simeq} Q \dashv \widehat{\sigma}} \quad \text{UNVAR}$$

$$\frac{\Theta \vDash P \stackrel{u}{\simeq} Q \dashv \widehat{\sigma}}{\Theta \vDash \uparrow P \stackrel{u}{\simeq} \uparrow Q \dashv \widehat{\sigma}} \quad \text{USHIFTU}$$

$$\frac{\Theta \vDash P \stackrel{u}{\simeq} Q \dashv \widehat{\sigma}_{1} \quad \Theta \vDash N \stackrel{u}{\simeq} M \dashv \widehat{\sigma}_{2}}{\Theta \vDash P \rightarrow N \stackrel{u}{\simeq} Q \rightarrow M \dashv \widehat{\sigma}_{1} \& \widehat{\sigma}_{2}} \quad \text{UARROW}$$

$$\frac{\Theta \vDash N \stackrel{u}{\simeq} M \dashv \widehat{\sigma}}{\Theta \vDash \forall \alpha^{+}. N \stackrel{u}{\simeq} \forall \alpha^{+}. M \dashv \widehat{\sigma}} \quad \text{UFORALL}$$

$$\frac{\widehat{\alpha}^{-}\{\Delta\} \in \Theta \quad \Delta \vdash N}{\Theta \vDash \widehat{\alpha}^{-} \stackrel{u}{\simeq} N \dashv (\Delta \vdash \widehat{\alpha}^{-} : \approx N)} \quad \text{UNUVAR}$$

 $\Theta \models P \stackrel{u}{\simeq} Q \rightrightarrows \widehat{\sigma}$ Positive unification

$$\begin{array}{c} \overline{\Theta \vDash \alpha^{+} \overset{u}{\simeq} \alpha^{+} \dashv \cdot} & \text{UPVAR} \\ \\ \underline{\Theta \vDash N \overset{u}{\simeq} M \dashv \hat{\sigma}} \\ \overline{\Theta \vDash \downarrow N \overset{u}{\simeq} \downarrow M \dashv \hat{\sigma}} & \text{USHIFTD} \\ \\ \overline{\Theta \vDash \exists \alpha^{-}.P \overset{u}{\simeq} \exists \alpha^{-}.Q \dashv \hat{\sigma}} \\ \\ \overline{\Theta \vDash \widehat{\alpha}^{+} \{\Delta\} \in \Theta \quad \Delta \vdash P} \\ \\ \overline{\Theta \vDash \widehat{\alpha}^{+} \overset{u}{\simeq} P \dashv (\Delta \vdash \widehat{\alpha}^{+} : \approx P)} & \text{UPUVAR} \end{array}$$

3.3 Algorithmic Subtyping

 $\Gamma; \Theta \models N \leqslant M \dashv \widehat{\sigma}$ Negative subtyping

$$\frac{\Gamma; \Theta \vDash \alpha^{-} \leqslant \alpha^{-} \dashv \cdot}{\Gamma; \Theta \vDash \mathsf{nf} (P) \stackrel{u}{\simeq} \mathsf{nf} (Q) \dashv \widehat{\sigma}} \quad \text{ASHIFTU}$$

$$\frac{\Theta \vDash \mathsf{nf} (P) \stackrel{u}{\simeq} \mathsf{nf} (Q) \dashv \widehat{\sigma}}{\Gamma; \Theta \vDash P \leqslant \uparrow Q \dashv \widehat{\sigma}} \quad \text{ASHIFTU}$$

$$\frac{\Gamma; \Theta \vDash P \geqslant Q \dashv \widehat{\sigma}_{1} \quad \Gamma; \Theta \vDash N \leqslant M \dashv \widehat{\sigma}_{2}}{\Gamma; \Theta \vDash P \to N \leqslant Q \to M \dashv \widehat{\sigma}_{1} \& \widehat{\sigma}_{2}} \quad \text{AARROW}$$

$$\frac{\Gamma, \overrightarrow{\beta^{+}}; \Theta, \widehat{\alpha}^{+} \{\Gamma, \overrightarrow{\beta^{+}}\} \vDash [\widehat{\alpha}^{+} / \alpha^{+}] N \leqslant M \dashv \widehat{\sigma}}{\Gamma; \Theta \vDash \forall \overrightarrow{\alpha^{+}}. N \leqslant \forall \overrightarrow{\beta^{+}}. M \dashv \widehat{\sigma} \setminus \widehat{\alpha^{+}}} \quad \text{AFORALL}$$

 $\Gamma; \Theta \models P \geqslant Q \dashv \hat{\sigma}$ Positive supertyping

$$\frac{\Gamma; \Theta \vDash \alpha^{+} \geqslant \alpha^{+} \Rightarrow \cdot}{\Gamma; \Theta \vDash \mathbf{nf}(N) \stackrel{u}{\simeq} \mathbf{nf}(M) \Rightarrow \widehat{\sigma}} \quad \text{ASHIFTD}$$

$$\frac{\Theta \vDash \mathbf{nf}(N) \stackrel{u}{\simeq} \mathbf{nf}(M) \Rightarrow \widehat{\sigma}}{\Gamma; \Theta \vDash \downarrow N \geqslant \downarrow M \Rightarrow \widehat{\sigma}} \quad \text{ASHIFTD}$$

$$\frac{\Gamma, \overrightarrow{\beta^{-}}; \Theta, \widehat{\alpha}^{-} \{\Gamma, \overrightarrow{\beta^{-}}\} \vDash [\widehat{\alpha^{-}}/\widehat{\alpha^{-}}]P \geqslant Q \Rightarrow \widehat{\sigma}}{\Gamma; \Theta \vDash \exists \widehat{\alpha^{-}}.P \geqslant \exists \overrightarrow{\beta^{-}}.Q \Rightarrow \widehat{\sigma}} \quad \text{AEXISTS}$$

$$\frac{\mathbf{upgrade} \Gamma \vdash \mathbf{nf}(P) \mathbf{to} \Delta = Q}{\Gamma; \Theta \vDash \widehat{\alpha}^{+} \{\Delta\} \geqslant P \Rightarrow (\Delta \vdash \widehat{\alpha^{+}} : \geqslant Q)} \quad \text{APUVAR}$$

3.4 Unification Solution Merge

Unification solution is represented by a list of unification solution entries. Each entry restrict an unification variable in two possible ways: either stating that it must be equivalent to a certain type $(\Delta \vdash \hat{\alpha}^+ :\approx P \text{ or } \Delta \vdash \hat{\alpha}^- :\approx N)$ or that it must be a (positive) supertype of a certain type $(\Delta \vdash \hat{\alpha}^+ :\geqslant P)$.

Definition 1 (Matching Entries). We call two entries matching if they are restricting the same unification variable.

Two matching entries can be merged in the following way:

Definition 2.

 $e_1 \& e_2 = e_3$ Unification Solution Entry Merge

$$\begin{split} \Gamma &\models P_1 \vee P_2 = Q \\ \overline{(\Gamma \vdash \widehat{\alpha}^+ : \geqslant P_1) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \geqslant P_2) = (\Gamma \vdash \widehat{\alpha}^+ : \geqslant Q)} \quad (\geqslant \& \geqslant) \\ \frac{\Gamma; \ \vdash P \geqslant Q \Rightarrow \widehat{\sigma}'}{(\Gamma \vdash \widehat{\alpha}^+ : \approx P) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \geqslant Q) = (\Gamma \vdash \widehat{\alpha}^+ : \approx P)} \quad (\simeq \& \geqslant) \\ \frac{\Gamma; \ \vdash P \geqslant Q \Rightarrow \widehat{\sigma}'}{(\Gamma \vdash \widehat{\alpha}^+ : \approx P) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \geqslant Q) = (\Gamma \vdash \widehat{\alpha}^+ : \approx P)} \quad (\Rightarrow \& \simeq) \\ \overline{(\Gamma \vdash \widehat{\alpha}^+ : \approx P) \ \& \ (\Gamma \vdash \widehat{\alpha}^+ : \approx P) = (\Gamma \vdash \widehat{\alpha}^+ : \approx P)} \quad (\simeq \& \simeq^+) \\ \overline{(\Gamma \vdash \widehat{\alpha}^- : \approx N) \ \& \ (\Gamma \vdash \widehat{\alpha}^- : \approx N) = (\Gamma \vdash \widehat{\alpha}^- : \approx N)} \quad (\simeq \& \simeq^-) \end{split}$$

To merge two unification solution, we merge each pair of matching entries, and unite the results.

Definition 3. $\hat{\sigma}_1 \& \hat{\sigma}_2 = \{e_1 \& e_2 \mid e_1 \in \hat{\sigma}_1, e_2 \in \hat{\sigma}_2, s.t. \ e_1 \ matches \ with \ e_2\}$

3.5 Least Upper Bound

 $\overline{\Gamma \models P_1 \lor P_2 = Q}$ Least Upper Bound (Least Common Supertype)

$$\frac{\Gamma \models \alpha^{+} \lor \alpha^{+} = \alpha^{+}}{\Gamma \models \lambda^{+} & \wedge A^{+} = \alpha^{+}} \quad \text{LUBVAR}$$

$$\frac{\Gamma, \cdot \models \downarrow N \stackrel{a}{\simeq} \downarrow M = (\Xi, P, \hat{\tau}_{1}, \hat{\tau}_{2})}{\Gamma \models \downarrow N \lor \downarrow M = \exists \alpha^{-}. [\overrightarrow{\alpha^{-}}/\Xi]P} \quad \text{LUBSHIFT}$$

$$\frac{\Gamma, \overrightarrow{\alpha^{-}}, \overrightarrow{\beta^{-}} \models P_{1} \lor P_{2} = Q}{\Gamma \models \exists \alpha^{-}. P_{1} \lor \exists \overrightarrow{\beta^{-}}. P_{2} = Q} \quad \text{LUBEXISTS}$$

 $\mathbf{upgrade}\,\Gamma \vdash P\,\mathbf{to}\,\Delta = Q$

3.6 Antiunification

$$\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \Rightarrow (\Xi, Q, \hat{\tau}_1, \hat{\tau}_2)$$

$$\frac{\Gamma \vDash \alpha^{+} \stackrel{a}{\simeq} \alpha^{+} \dashv (\cdot, \alpha^{+}, \cdot, \cdot)}{\Gamma \vDash \lambda_{1} \stackrel{a}{\simeq} \lambda_{2} \dashv (\Xi, M, \widehat{\tau}_{1}, \widehat{\tau}_{2})} \quad \text{AUPShift}$$

$$\frac{\Gamma \vDash N_{1} \stackrel{a}{\simeq} N_{2} \dashv (\Xi, M, \widehat{\tau}_{1}, \widehat{\tau}_{2})}{\Gamma \vDash \downarrow N_{1} \stackrel{a}{\simeq} \downarrow N_{2} \dashv (\Xi, \downarrow M, \widehat{\tau}_{1}, \widehat{\tau}_{2})} \quad \text{AUPShift}$$

$$\frac{\{\overrightarrow{\alpha^{-}}\} \cap \{\Gamma\} = \varnothing \quad \Gamma \vDash P_{1} \stackrel{a}{\simeq} P_{2} \dashv (\Xi, Q, \widehat{\tau}_{1}, \widehat{\tau}_{2})}{\Gamma \vDash \exists \overrightarrow{\alpha^{-}} . P_{1} \stackrel{a}{\simeq} \exists \overrightarrow{\alpha^{-}} . P_{2} \dashv (\Xi, \exists \overrightarrow{\alpha^{-}} . Q, \widehat{\tau}_{1}, \widehat{\tau}_{2})} \quad \text{AUPEXISTS}$$

 $\Gamma \vDash N_1 \stackrel{a}{\simeq} N_2 = (\Xi, M, \hat{\tau}_1, \hat{\tau}_2)$

$$\frac{\Gamma \vDash \alpha^- \stackrel{a}{\simeq} \alpha^- \dashv (\Xi, \alpha^-, \cdot, \cdot)}{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \dashv (\Xi, Q, \widehat{\tau}_1, \widehat{\tau}_2)} \quad \text{AUNSHIFT}$$

$$\frac{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \dashv (\Xi, Q, \widehat{\tau}_1, \widehat{\tau}_2)}{\Gamma \vDash \uparrow P_1 \stackrel{a}{\simeq} \uparrow P_2 \dashv (\Xi, \uparrow Q, \widehat{\tau}_1, \widehat{\tau}_2)} \quad \text{AUNSHIFT}$$

$$\frac{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \dashv (\Xi_1, Q, \widehat{\tau}_1, \widehat{\tau}_2) \quad \Gamma \vDash N_1 \stackrel{a}{\simeq} N_2 \dashv (\Xi_2, M, \widehat{\tau}_1', \widehat{\tau}_2')}{\Gamma \vDash P_1 \to N_1 \stackrel{a}{\simeq} P_2 \to N_2 \dashv (\Xi_1 \cup \Xi_2, Q \to M, \widehat{\tau}_1 \cup \widehat{\tau}_1', \widehat{\tau}_2 \cup \widehat{\tau}_2')} \quad \text{AUNARROW}$$

$$\frac{\text{if any other rule is not applicable} \quad \Gamma \vdash N \quad \Gamma \vdash M}{\Gamma \vDash N \stackrel{a}{\simeq} M \dashv (\widehat{\alpha}_{\{N,M\}}^-, \widehat{\alpha}_{\{N,M\}}^-, (\widehat{\alpha}_{\{N,M\}}^-, \widehat{\alpha}_{\{N,M\}}^-, \widehat{\alpha}_$$

4 Proofs

4.1 Overview

Algorithm	Soundness	Completeness	Initiality
Ordering	$\overline{\{\mathbf{ord}vars\mathbf{in}N\}}\equiv vars\cap\mathbf{fv}N$	$\frac{N \simeq_1^D M}{\operatorname{ord} \operatorname{vars} \operatorname{in} N = \operatorname{ord} \operatorname{vars} \operatorname{in} M}$ $N \simeq_1^D M$	_
Normalization	$\overline{N \simeq_{1}^{D} \mathbf{nf}(N)}$	$\frac{N \simeq_{1}^{D} M}{\mathbf{nf}(N) = \mathbf{nf}(M)}$	_
Uppgrade	$\frac{\operatorname{\mathbf{upgrade}} \Gamma \vdash P \operatorname{\mathbf{to}} \Delta = Q}{Q \text{ is sound} \begin{cases} \Delta \vdash Q \\ \Gamma \vdash Q \geqslant_1 P \end{cases}}$	$\frac{\exists \text{ sound } Q'}{\exists Q \text{ s.t. } \mathbf{upgrade} \Gamma \vdash P \mathbf{to} \Delta = Q}$	$\frac{Q' \text{ is sound}}{\operatorname{\mathbf{upgrade}} \Gamma \vdash P \operatorname{\mathbf{to}} \Delta = Q}$ $\Delta \vdash Q' \geqslant_1 Q$
LUB	$\frac{\Gamma \vDash P_1 \lor P_2 = Q}{Q \text{ is sound} \begin{cases} \Gamma \vdash Q \\ \Gamma \vdash Q \geqslant_1 P_1 \\ \Gamma \vdash Q \geqslant_1 P_2 \end{cases}}$	$\frac{\exists \text{ sound } Q'}{\exists Q \text{ s.t. } \Gamma \vDash P_1 \lor P_2 = Q}$	$\frac{Q' \text{ is sound}}{\Gamma \vdash P_1 \lor P_2 = Q}$ $\frac{\Delta \vdash Q' \geqslant_1 Q}$
Anti-unification	$\frac{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \dashv (\Xi, Q, \hat{\tau}_1, \hat{\tau}_2)}{(\Xi, Q, \hat{\tau}_1, \hat{\tau}_2)} \begin{cases} \Xi \text{ is negative} \\ \Gamma; \Xi \vdash Q \\ \Gamma; \cdot \vdash \hat{\tau}_i : \Xi \\ [\hat{\tau}_i] Q = P_i \end{cases}$	$\frac{\exists \text{ sound } (\Xi', Q', \hat{\tau}_1', \hat{\tau}_2')}{\exists (\Xi, Q, \hat{\tau}_1, \hat{\tau}_2) \text{ s.t.}}$ $\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 = (\Xi, Q, \hat{\tau}_1, \hat{\tau}_2)$	$(\Xi', Q', \widehat{\tau}'_1, \widehat{\tau}'_2) \text{ is sound}$ $\frac{\Gamma \vDash P_1 \stackrel{a}{\simeq} P_2 \Rightarrow (\Xi, Q, \widehat{\tau}_1, \widehat{\tau}_2)}{\exists \Gamma; \Xi \vdash \widehat{\tau} : \Xi' \text{ s.t. } [\widehat{\tau}] Q' = Q}$
Unification (matching)	$\frac{\Theta \models P \stackrel{u}{\simeq} Q \dashv \widehat{\sigma}}{\widehat{\sigma} \text{ is sound} \begin{cases} \Theta \vdash \widehat{\sigma} \\ [\widehat{\sigma}] P = Q \end{cases}}$	$\frac{\exists \text{ sound } \widehat{\sigma}'}{\exists \widehat{\sigma} \text{ s.t. } \Theta \vDash P \overset{u}{\simeq} Q \rightrightarrows \widehat{\sigma}}$	_
Subtyping	$\frac{\Gamma; \Theta \vDash N \leqslant M \rightrightarrows \widehat{\sigma}}{\widehat{\sigma} \text{ is sound } \begin{cases} \Theta \vdash \widehat{\sigma} \\ \Gamma \vdash [\widehat{\sigma}] N \leqslant_{1} M \end{cases}}$	$\frac{\exists \text{ sound } \widehat{\sigma}'}{\exists \widehat{\sigma} \text{ s.t. } \Gamma; \ \Theta \vDash N \leqslant M \dashv \widehat{\sigma}}$	_

4.2 Variable Ordering

Definition 4 (Collision free bijection). We say that a bijection $\mu: A \leftrightarrow B$ between sets of variables is collision free on sets P and Q if and only if

1.
$$\mu(P \cap A) \cap Q = \emptyset$$

2.
$$\mu(Q \cap A) \cap P = \emptyset$$

Lemma 1 (Soundness of variable ordering). Variable ordering extracts precisely used free variables.

- $\{ \mathbf{ord} \ vars \mathbf{in} \ N \} \equiv vars \cap \mathbf{fv} \ N \ (as \ sets)$
- $+ \{ \mathbf{ord} \ vars \mathbf{in} \ P \} \equiv vars \cap \mathbf{fv} \ P \ (as \ sets)$

Proof. Straightforward mutual induction on **ord** vars **in** $N = \vec{\alpha}$ and **ord** vars **in** $P = \vec{\alpha}$

Corollary 1 (Additivity of ordering). Variable ordering is additive (in terms of set union) with respect to its first argument.

- $\{ \mathbf{ord} (vars_1 \cup vars_2) \mathbf{in} N \} \equiv \{ \mathbf{ord} \ vars_1 \mathbf{in} \ N \} \cup \{ \mathbf{ord} \ vars_2 \mathbf{in} \ N \} \ (as \ sets)$
- $+ \{\mathbf{ord}(\mathit{vars}_1 \cup \mathit{vars}_2) \, \mathbf{in} \, P\} \equiv \{\mathbf{ord} \, \mathit{vars}_1 \, \mathbf{in} \, P\} \cup \{\mathbf{ord} \, \mathit{vars}_2 \, \mathbf{in} \, P\} \, (\mathit{as} \, \mathit{sets})$

Corollary 2 (Weakening of ordering). Extending the first argument of the ordering with unused variables does not change the result.

- ord $(vars \cap \mathbf{fv} N)$ in N =ord vars in N
- + $\operatorname{ord}(vars \cap \operatorname{fv} P) \operatorname{in} P = \operatorname{ord} vars \operatorname{in} P$

Lemma 2 (Distributivity of renaming over variable ordering). Suppose that μ is a bijection between two sets of variables $\mu: A \leftrightarrow B$.

- If μ is collision free on vars and $\mathbf{fv} N$ then $[\mu](\mathbf{ord} \ vars \mathbf{in} \ N) = \mathbf{ord} \ ([\mu] \ vars) \mathbf{in} \ [\mu] N$
- + If μ is collision free on vars and $\mathbf{fv} P$ then $[\mu](\mathbf{ord} \ vars \mathbf{in} P) = \mathbf{ord} ([\mu] \ vars) \mathbf{in} [\mu] P$

Proof. Mutual induction on N and P.

Case 1. $N = \alpha^-$

let us consider four cases:

 $a. \ \alpha^- \in A \text{ and } \alpha^- \in vars$

Then
$$[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^{-})$$

$$= [\mu]\alpha^{-} \qquad \text{by Rule } (\operatorname{Var}_{\in}^{+})$$

$$= \beta^{-} \qquad \text{for some } \beta^{-} \in B \text{ (notice that } \beta^{-} \in [\mu] \operatorname{\mathit{vars}})$$

$$= \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \beta^{-} \qquad \text{by Rule } (\operatorname{Var}_{\in}^{+}), \text{ because } \beta^{-} \in [\mu] \operatorname{\mathit{vars}}$$

$$= \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu]\alpha^{-}$$

b. $\alpha^- \notin A$ and $\alpha^- \notin vars$

Notice that $[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^-) = \cdot \text{ by Rule } (\operatorname{Var}_{\notin}^+)$. On the other hand, $\operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu] \alpha^- = \operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^- = \cdot \text{ The latter equality is from Rule } (\operatorname{Var}_{\notin}^+)$, because μ is collision free on $\operatorname{\mathit{vars}}$ and $\operatorname{\mathbf{fv}} N$, so $\operatorname{\mathbf{fv}} N \ni \alpha^- \notin \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}} \supseteq [\mu] \operatorname{\mathit{vars}}$.

 $c. \ \alpha^- \in A \text{ but } \alpha^- \notin vars$

Then $[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} \alpha^-) = \cdot$ by Rule $(\operatorname{Var}_{\notin}^+)$. To prove that $\operatorname{\mathbf{ord}} [\mu] \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} [\mu] \alpha^- = \cdot$, we apply Rule $(\operatorname{Var}_{\notin}^+)$. Let us show that $[\mu]\alpha^- \notin [\mu]\operatorname{\mathit{vars}}$. Since $[\mu]\alpha^- = \mu(\alpha^-)$ and $[\mu]\operatorname{\mathit{vars}} \subseteq \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}}$, it suffices to prove $\mu(\alpha^-) \notin \mu(A \cap \operatorname{\mathit{vars}}) \cup \operatorname{\mathit{vars}}$.

- (i) If there is an element $x \in A \cap vars$ such that $\mu x = \mu \alpha^-$, then $x = \alpha^-$ by bijectivity of μ , which contradicts with $\alpha^- \notin vars$. This way, $\mu(\alpha^-) \notin \mu(A \cap vars)$.
- (ii) Since μ is collision free on vars and $\mathbf{fv} N$, $\mu(A \cap \mathbf{fv} N) \ni \mu(\alpha^{-}) \notin vars$.
- $d. \ \alpha^- \notin A \text{ but } \alpha^- \in vars$

 $\operatorname{\mathbf{ord}}[\mu]vars\operatorname{\mathbf{in}}[\mu]\alpha^- = \operatorname{\mathbf{ord}}[\mu]vars\operatorname{\mathbf{in}}\alpha^- = \alpha^-$. The latter is by Rule $(\operatorname{Var}_{\notin}^+)$, because $\alpha^- = [\mu]\alpha^- \in [\mu]vars$ since $\alpha^- \in vars$. On the other hand, $[\mu](\operatorname{\mathbf{ord}} vars\operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} vars\operatorname{\mathbf{in}} \alpha^-) = [\mu]\alpha^- = \alpha^-$.

```
Case 2. N = \uparrow P
```

$$[\mu](\mathbf{ord}\ vars\ \mathbf{in}\ N) = [\mu](\mathbf{ord}\ vars\ \mathbf{in}\ P)$$

$$= [\mu](\mathbf{ord}\ vars\ \mathbf{in}\ P) \qquad \text{by Rule } (\uparrow)$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]P \qquad \text{by the induction hypothesis}$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ \uparrow [\mu]P \qquad \text{by Rule } (\uparrow)$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]\uparrow P \qquad \text{by the definition of substitution}$$

$$= \mathbf{ord}\ [\mu]vars\ \mathbf{in}\ [\mu]N$$

Case 3.
$$N = P \rightarrow M$$

 $[\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} N) = [\mu](\operatorname{\mathbf{ord}} \operatorname{\mathit{vars}} \operatorname{\mathbf{in}} P \to M)$

$$= [\mu](\vec{\alpha}_1, (\vec{\alpha}_2 \setminus \{\vec{\alpha}_1\})) \qquad \text{where } \mathbf{ord} \ vars \mathbf{in} \ P = \vec{\alpha}_1 \text{ and } \mathbf{ord} \ vars \mathbf{in} \ M = \vec{\alpha}_2$$

$$= [\mu]\vec{\alpha}_1, [\mu](\vec{\alpha}_2 \setminus \{\vec{\alpha}_1\})$$

$$= [\mu]\vec{\alpha}_1, ([\mu]\vec{\alpha}_2 \setminus [\mu]\{\vec{\alpha}_1\}) \qquad \text{by induction on } \vec{\alpha}_2; \text{ the inductive step is similar to case 1. Notice that } \mu \text{ is collision free on } \{\vec{\alpha}_1\} \text{ and } \{\vec{\alpha}_2\} \text{ since } \{\vec{\alpha}_1\} \subseteq vars \text{ and } \{\vec{\alpha}_2\} \subseteq \mathbf{fv} \ N$$

$$= [\mu] \overrightarrow{\alpha}_{1}, ([\mu] \overrightarrow{\alpha}_{2} \setminus \{[\mu] \overrightarrow{\alpha}_{1}\})$$

$$(\mathbf{ord} [\mu] vars \mathbf{in} [\mu] N) = (\mathbf{ord} [\mu] vars \mathbf{in} [\mu] P \to [\mu] M)$$

$$= (\overrightarrow{\beta}_{1}, (\overrightarrow{\beta}_{2} \setminus \{\overrightarrow{\beta}_{1}\})) \qquad \text{where } \mathbf{ord} [\mu] vars \mathbf{in} [\mu] P = \overrightarrow{\beta}_{1} \text{ and } \mathbf{ord} [\mu] vars \mathbf{in} [\mu] M = \overrightarrow{\beta}_{2}$$

$$\text{then by the induction hypothesis, } \overrightarrow{\beta}_{1} = [\mu] \overrightarrow{\alpha}_{1}, \overrightarrow{\beta}_{2} = [\mu] \overrightarrow{\alpha}_{2},$$

$$= [\mu] \overrightarrow{\alpha}_{1}, ([\mu] \overrightarrow{\alpha}_{2} \setminus \{[\mu] \overrightarrow{\alpha}_{1}\})$$

Case 4.
$$N = \forall \overrightarrow{\alpha^+}.M$$

$$[\mu](\mathbf{ord}\ vars\,\mathbf{in}\ N) = [\mu]\mathbf{ord}\ vars\,\mathbf{in}\ \forall \overrightarrow{\alpha^+}.M$$

$$= [\mu]\mathbf{ord}\ vars\,\mathbf{in}\ M$$

$$= \mathbf{ord}\ [\mu]vars\,\mathbf{in}\ [\mu]M \qquad \text{by the induction hypothesis}$$

$$\begin{aligned} (\mathbf{ord}\,[\mu] \mathit{vars}\,\mathbf{in}\,[\mu] N) &= \mathbf{ord}\,[\mu] \mathit{vars}\,\mathbf{in}\,[\mu] \forall \overrightarrow{\alpha^+}. M \\ &= \mathbf{ord}\,[\mu] \mathit{vars}\,\mathbf{in}\, \forall \overrightarrow{\alpha^+}. [\mu] M \\ &= \mathbf{ord}\,[\mu] \mathit{vars}\,\mathbf{in}\,[\mu] M \end{aligned}$$

Lemma 3 (Completeness of variable ordering). Variable ordering is invariant under equivalence.

- For $N \simeq_{1}^{D} M$ and any vars, ord vars in N = ord vars in M (as lists)
- + For $P \simeq_{1}^{D} Q$ and any vars, ord vars in P = ord vars in Q (as lists)

Proof. Mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$.

4.3 Normaliztaion

Lemma 4. Set of free variables is invariant under equivalence.

- If $N \simeq_1^D M$ then $\mathbf{fv} N \equiv \mathbf{fv} M$ (as sets)
- + If $P \simeq_1^D Q$ then $\mathbf{fv} P \equiv \mathbf{fv} Q$ (as sets)

Proof. Straightforward mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$

Lemma 5. Free variables are not changed by the normalization

- $-\mathbf{fv} N \equiv \mathbf{fv} \, \mathbf{nf} \, (N)$
- $+ \mathbf{fv} P \equiv \mathbf{fv} \, \mathbf{nf} \, (P)$

Proof. By straightforward induction on $\mathbf{nf}(N) = M$.

Lemma 6 (Commutativity of normalization and renaming). Normalization of a term commutes with renaming. Suppose that μ is a bijection between two sets of variables $\mu: A \leftrightarrow B$. Then

- $\mathbf{nf}([\mu]N) = [\mu]\mathbf{nf}(N)$
- + $\mathbf{nf}([\mu]P) = [\mu]\mathbf{nf}(P)$

Here equality means alpha-equivalence.

Proof. Mutual induction on N and P.

Case 1. $N = \alpha^-$

 $\mathbf{nf}([\mu]N) = \mathbf{nf}([\mu]\alpha^-) = [\mu]\alpha^-$. The latter follows from the fact that $[\mu]\alpha^-$ is a variable, and thus, Rule (Var⁻) is applicable. $[\mu]\mathbf{nf}(N) = [\mu]\mathbf{nf}(\alpha^-) = [\mu]\alpha^-$.

Case 2. If the type is formed by \rightarrow , \uparrow , or \downarrow , the required equality follows from the congruence of the normalization and substitution, and the induction hypothesis. For example, if $N = P \rightarrow M$ then

$$\begin{aligned} \mathbf{nf} \left([\mu] N \right) &= \mathbf{nf} \left([\mu] (P \to M) \right) \\ &= \mathbf{nf} \left([\mu] P \to [\mu] M \right) & \text{By the congruence of substitution} \\ &= \mathbf{nf} \left([\mu] P \right) \to \mathbf{nf} \left([\mu] M \right) & \text{By the congruence of normalization, i.e. Rule } (\to) \\ &= [\mu] \mathbf{nf} \left(P \right) \to [\mu] \mathbf{nf} \left(M \right) & \text{By the induction hypothesis} \\ &= [\mu] (\mathbf{nf} \left(P \right) \to \mathbf{nf} \left(M \right)) & \text{By the congruence of substitution} \\ &= [\mu] \mathbf{nf} \left(P \to M \right) & \text{By the congruence of normalization} \\ &= [\mu] \mathbf{nf} \left(N \right) \end{aligned}$$

Case 3.
$$N = \forall \overrightarrow{\alpha^{+}}.M \longrightarrow$$

$$[\mu] \mathbf{nf}(N) = [\mu] \mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.M)$$

$$= [\mu] \forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}(M) \quad \text{Where ord } \{\overrightarrow{\alpha^{+}}\} \mathbf{in} \mathbf{nf}(M) = \overrightarrow{\alpha^{+'}}$$

$$\mathbf{nf}([\mu]N) = \mathbf{nf}([\mu]\forall \overrightarrow{\alpha^{+}}.M)$$

$$= \mathbf{nf}(\forall \overrightarrow{\alpha^{+}}.[\mu]M) \quad \text{Assuming } \{\overrightarrow{\alpha^{+}}\} \cap A = \emptyset \text{ and } \{\overrightarrow{\alpha^{+}}\} \cap B = \emptyset$$

$$= \forall \overrightarrow{\beta^{+}}.\mathbf{nf}([\mu]M) \quad \text{Where } \mathbf{ord}\{\overrightarrow{\alpha^{+}}\}\mathbf{in}\mathbf{nf}([\mu]M) = \overrightarrow{\beta^{+}}$$

$$= \forall \overrightarrow{\alpha^{+'}}.\mathbf{nf}([\mu]M) \quad \text{As } \overrightarrow{\beta^{+}} = \overrightarrow{\alpha^{+'}} \text{ (see below)}$$

Notice that μ is free of collisions on $\{\overrightarrow{\alpha^+}\}$ and $\mathbf{fv} \, \mathbf{nf} \, (M)$ because

(i)
$$\mu(A \cap \{\overrightarrow{\alpha^{+}}\}) \cap \mathbf{fv} \, \mathbf{nf} \, (M) = \varnothing \cap \mathbf{fv} \, \mathbf{nf} \, (M) = \varnothing \, \mathbf{nd}$$

(ii) $\mu(A \cap \mathbf{fv} \, \mathbf{nf} \, (M)) \cap \{\overrightarrow{\alpha^{+}}\} \subseteq B \cap \{\overrightarrow{\alpha^{+}}\} = \varnothing$
 $\overrightarrow{\beta^{+}} = \mathbf{ord} \, \{\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, \mathbf{nf} \, ([\mu]M)$
 $= \mathbf{ord} \, \{\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, [\mu] \mathbf{nf} \, (M)$ By the induction hypothesis
 $= \mathbf{ord} \, \{[\mu]\overrightarrow{\alpha^{+}}\} \, \mathbf{in} \, [\mu] \mathbf{nf} \, (M)$ Since $\{\overrightarrow{\alpha^{+}}\} \cap A = \varnothing$

$$= [\mu] \mathbf{ord} \{ \overrightarrow{\alpha^+} \} \mathbf{in} \mathbf{nf} (M) \qquad \text{by lemma 2}$$

$$= \mathbf{ord} \, \{ \overrightarrow{\alpha^+} \} \, \mathbf{in} \, \mathbf{nf} \, (M) \qquad \qquad \mathbf{Since} \, \{ \mathbf{ord} \, \{ \overrightarrow{\alpha^+} \} \, \mathbf{in} \, \mathbf{nf} \, (M) \} \, \cap A \subseteq \{ \overrightarrow{\alpha^+} \} \, \cap A = \varnothing$$

 $=\overrightarrow{\alpha^{+\prime}}$

To show alpha-equivalence of $[\mu] \forall \overrightarrow{\alpha^{+\prime}}.\mathbf{nf}(M)$ and $\forall \overrightarrow{\alpha^{+\prime}}.\mathbf{nf}([\mu]M)$, we can assume that $\{\overrightarrow{\alpha^{+\prime}}\} \cap A = \emptyset$, and $\{\overrightarrow{\alpha^{+\prime}}\} \cap B = \emptyset$. Then $[\mu] \forall \overrightarrow{\alpha^{+\prime}}.\mathbf{nf}(M) = \forall \overrightarrow{\alpha^{+\prime}}.\mathbf{nf}([\mu]M)$, the latter follows from the induction hypothesis.

Case 4.
$$P = \overrightarrow{\exists \alpha}$$
. Q

Same as for case 3.

Lemma 7 (Soundness of quantifier normalization).

$$-N \simeq_{1}^{D} \mathbf{nf}(N)$$

+
$$P \simeq_1^D \mathbf{nf}(P)$$

Proof. Mutual induction on $\mathbf{nf}(N) = M$ and $\mathbf{nf}(P) = Q$. Let us consider how this judgment is formed:

Case 1. (Var^-) and (Var^+)

By the corresponding equivalence rules.

Case 2. (\uparrow) , (\downarrow) , and (\rightarrow)

By the induction hypothesis and the corresponding congruent equivalence rules.

Case 3. (\forall) , i.e. $\mathbf{nf}(\forall \overrightarrow{\alpha^+}.N) = \forall \overrightarrow{\alpha^{+\prime}}.N'$

From the induction hypothesis, we know that $N \simeq_1^D N'$. In particular, by lemma 4, $\mathbf{fv} N \equiv \mathbf{fv} N'$. Then by lemma 1, $\{\overrightarrow{\alpha^{+'}}\} \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N' \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N$, and thus, $\{\overrightarrow{\alpha^{+'}}\} \cap \mathbf{fv} N' \equiv \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} N$.

To prove $\forall \overrightarrow{\alpha^+}. N \simeq_1^D \forall \overrightarrow{\alpha^{+\prime}}. N'$, it suffices to provide a bijection $\mu : \{\overrightarrow{\alpha^{+\prime}}\} \cap \mathbf{fv} \ N' \leftrightarrow \{\overrightarrow{\alpha^{+}}\} \cap \mathbf{fv} \ N$ such that $N \simeq_1^D [\mu] N'$. Since these sets are equal, we take $\mu = id$.

Case 4. (\exists) Same as for case 3.

Lemma 8 (Completeness of quantified normalization). Normalization returns the same representative for equivalent types.

- If
$$N \simeq_{1}^{D} M$$
 then $\mathbf{nf}(N) = \mathbf{nf}(M)$

+ If
$$P \cong_{1}^{D} Q$$
 then $\mathbf{nf}(P) = \mathbf{nf}(Q)$

(Here equality means alpha-equivalence)

Proof. Mutual induction on $N \simeq_1^D M$ and $P \simeq_1^D Q$.

Case 1.
$$(\forall^{\simeq_1^D})$$

From the definition of the normalization,

- $\mathbf{nf}(\forall \overrightarrow{\alpha^+}.N) = \forall \overrightarrow{\alpha^+}'.\mathbf{nf}(N) \text{ where } \overrightarrow{\alpha^+}' \text{ is } \mathbf{ord}\{\overrightarrow{\alpha^+}\}\mathbf{in}\mathbf{nf}(N)$
- $\mathbf{nf}(\forall \overrightarrow{\beta^+}.M) = \forall \overrightarrow{\beta^+}'.\mathbf{nf}(M)$ where $\overrightarrow{\beta^+}'$ is $\mathbf{ord}\{\overrightarrow{\beta^+}\}$ in $\mathbf{nf}(M)$

Let us take $\mu: (\{\overrightarrow{\beta^+}\} \cap \mathbf{fv} M) \leftrightarrow (\{\overrightarrow{\alpha^+}\} \cap \mathbf{fv} N)$ from the inversion of the equivalence judgment. Notice that from lemmas 1 and 5, the domain and the codomain of μ can be written as $\mu: \{\overrightarrow{\beta^{+\prime}}\} \leftrightarrow \{\overrightarrow{\alpha^{+\prime}}\}$.

To show the alpha-equivalence of $\forall \overrightarrow{\alpha^{+\prime}}$. $\mathbf{nf}(N)$ and $\forall \overrightarrow{\beta^{+\prime}}$. $\mathbf{nf}(M)$, it suffices to prove that (i) $[\mu]\mathbf{nf}(M) = \mathbf{nf}(N)$ and (ii) $[\mu]\overrightarrow{\beta^{+\prime}} = \overrightarrow{\alpha^{+\prime}}$.

(i) $[\mu]\mathbf{nf}(M) = \mathbf{nf}([\mu]M) = \mathbf{nf}(N)$. The first equality holds by lemma 6, the second—by the induction hypothesis.

(ii)
$$[\mu]\overrightarrow{\beta^{+\prime}} = [\mu]\operatorname{ord}\{\overrightarrow{\beta^{+}}\}\operatorname{in}\operatorname{nf}(M)$$
 by the definition of $\overrightarrow{\beta^{+\prime}}$

$$= [\mu]\operatorname{ord}(\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}\operatorname{nf}(M) \qquad \text{from lemma 5 and corollary 2}$$

$$= \operatorname{ord}[\mu](\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}[\mu]\operatorname{nf}(M) \qquad \text{by lemma 2, because } \{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N \cap \operatorname{fv}\operatorname{nf}(M) \subseteq \{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} M = \emptyset$$

$$= \operatorname{ord}[\mu](\{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M)\operatorname{in}\operatorname{nf}(N) \qquad \text{since } [\mu]\operatorname{nf}(M) = \operatorname{nf}(N)\operatorname{ is proved}$$

$$= \operatorname{ord}\{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N)\operatorname{in}\operatorname{nf}(N) \qquad \text{because } \mu\operatorname{ is a bijection between } \{\overrightarrow{\alpha^{+}}\} \cap \operatorname{fv} N \operatorname{ and } \{\overrightarrow{\beta^{+}}\} \cap \operatorname{fv} M$$

$$= \operatorname{ord}\{\overrightarrow{\alpha^{+}}\}\operatorname{in}\operatorname{nf}(N) \qquad \text{from lemma 5 and corollary 2}$$

$$= \overrightarrow{\alpha^{+\prime}} \qquad \text{by the definition of } \overrightarrow{\alpha^{+\prime}}$$

Case 2. $(\exists^{\simeq_1^D})$ Same as for case 1.

Case 3. Other rules are congruent, and thus, proved by the corresponding congruent alpha-equivalence rule, which is applicable by the induction hypothesis.

4.4 Upper Bounds

Lemma 9 (Shape of the Supertypes). Let us define the set of upper bounds of a positive type UB(P) in the following way:

$\Gamma \vdash P$	$UB(\Gamma \vdash P)$
$\Gamma \vdash \beta^+$	$\{\exists \overrightarrow{\alpha^-}.\beta^+ \mid for some \overrightarrow{\alpha^-}\}$
$\Gamma \vdash \exists \overrightarrow{\beta^-}.P$	$UB(\Gamma \vdash P)$
$\Gamma \vdash \downarrow M \qquad \left\{ \exists \overrightarrow{\alpha}^{-}. \downarrow M \right\}$	$ I' \mid \overrightarrow{[N/\alpha^{-}]} \downarrow M' \simeq_{1}^{D} \downarrow M $ $for some \Gamma \vdash N_{i} $
Then $UB(\Gamma \vdash P) \equiv \{Q\}$	$\mid \Gamma \vdash Q \geqslant_1 P \}.$

Lemma 10 (Normalized Shape of the Supertypes). For a normalized positive type $P = \mathbf{nf}(P)$, let us define the set of normalized upper bounds in the following way:

$$\begin{split} & \frac{\Gamma \vdash P}{\Gamma \vdash \beta^+} & \text{NFUB}(\Gamma \vdash P) \\ & \Gamma \vdash \beta^+ & \{\beta^+\} \end{split}$$

$$& \Gamma \vdash \exists \overrightarrow{\beta^-}.P & \text{NFUB}(\Gamma \vdash P) \\ & \Gamma \vdash \downarrow M & \left\{ \overrightarrow{\exists \alpha^-}. \downarrow M' \; \middle| \begin{array}{c} \overrightarrow{[N/\alpha^-]} \downarrow M' = \downarrow M \\ for \; some \; \Gamma \vdash N_i \end{array} \right\} \\ & hen \; \text{NFUB}(\Gamma \vdash P) \equiv \{ \mathbf{nf} \; (Q) \; \middle| \; \Gamma \vdash Q \geqslant_1 P \}. \end{split}$$

Lemma 11 (Soundness of the Least Upper Bound). For types $\Gamma \vdash P_1$, and $\Gamma \vdash P_2$, if $\Gamma \models P_1 \lor P_2 = Q$ then

- (i) $\Gamma \vdash Q$
- (ii) $\Gamma \vdash Q \geqslant_1 P_1$ and $\Gamma \vdash Q \geqslant_1 P_2$

Lemma 12 (Completeness of the Least Upper Bound). For types $\Gamma \vdash P_1$, $\Gamma \vdash P_2$, and $\Gamma \vdash Q'$ such that $\Gamma \vdash Q' \geqslant_1 P_1$ and $\Gamma \vdash Q' \geqslant_1 P_2$, there exists Q s.t. $\Gamma \models P_1 \lor P_2 = Q$, and $\Gamma \vdash Q' \geqslant_1 Q$

Lemma 13 (Soundness of Upgrade). For $\Delta \subseteq \Gamma$, suppose that $\operatorname{\mathbf{upgrade}} \Gamma \vdash P \operatorname{\mathbf{to}} \Delta = Q$. Then

(i)
$$\Delta \vdash Q$$

(ii)
$$\Gamma \vdash Q \geqslant_1 P$$

Lemma 14 (Completeness of Upgrade). For $\Delta \subseteq \Gamma$, $\Gamma \vdash P$ and $\Delta \vdash Q'$, such that $\Gamma \vdash Q' \geqslant_1 P$, there exists Q s.t. $\mathbf{upgrade} \Gamma \vdash P \mathbf{to} \Delta = Q$, and $\Delta \vdash Q' \geqslant_1 Q$.