Machine Learning Practices

Framework (supervised)

A "Real" Machine Learning Task

• Example task: predict y, whether a string x is an email address

```
    x: "diszr@nus.edu.sg"
    x: "nusmsba"
    x: "@trump"
    y:0
    y:0
```

- If we are going to using ML models?
 - What are T, P, E?

Feature Extraction

- Question: what properties of x might be relevant for predicting y?
- Feature extractor: Given input x, output a set of (feature name, feature value) pairs.

"nus@gmail.com" A **fixed-length** vector

Feature Extraction

Question: what properties of x might be relevant for predicting y?

• Feature extractor: Given input x, output a set of (feature name, feature value)

pairs.

"nus@gmail.com"

feature
extractor

from top to down

Length > 10	1
Length < 50	1
contain "@"	1
endwith "com"	1
endwith "sg"	0
length between @ and .	5
fraction of alpha	0.85

- *Exploration
- *Transformation
- *Fea. Engineering

Modelling

Credit: Semi Koen

Agenda

- 1. Feature Engineering
- 2. Model Selection: Cross-validation
- 3. Hyperparameter Search
- 4. Hands-on Project: Cuisine Categorization

Feature Engineering

Recall that computers only understand numbers (binary)

What is Feature Engineering

- Features never fully describe the situation
 - All models are wrong, but some are useful. The practical question is how wrong do they have to be to not be useful.

George Box

Feature Engineering

- How to represent examples by feature vectors
- Suppose I would like to use examples from past to predict, at the current moment, which students will get an A in BT5153?
- Some features may be useful: eg. GPA, prior programming experience
- Other might cause me to overfit, e.g, birth month, weight.

Feature Engineering

Question u ask:

What properties of x **might be** relevant for predicting y?

This step is really important for linear models.

Feature values should appear with non-zero value more than a small handful of times in the dataset

my_device_id:8SK982ZZ1242Z

device_model:galaxy_s6

Features shouldn't take on "magic" values

(Use an additional boolean feature like is_watch_time_defined instead!)

watch_time: -1.0

watch_time: 1.023

watch_time_is_defined: 1.0

The definition of a feature shouldn't change over time.

(Beware of depending on other ML systems!)

city_id:"br/sao_paulo"

inferred_city_cluster_id:219

Distribution should not have crazy outliers

Ideally all features transformed to a similar range, like (-1, 1) or (0, 5).

Why Scaling?

- Range of values of data may vary widely
- Lots of machine learning algorithms are very sensitive to scales of features
 - K-nearest Neighbors
 - K-means
 - Logistic Regression
 - SVMs
 - Gradient Descent
 - o PCA
 - Etc

When distances of feature vector matter

How to scale data

Feature Scaling: change the range of your data

$$\hat{x} = rac{x - x_{min}}{x_{max} - x_{min}}$$

When distances measures are used in ML algorithms under the assumption that all features contribute equally

Z-score Transformation: Force the mean to be zero and std to be

one

$$\hat{x} = rac{x - x_{mean}}{\sigma}$$

When machine learning models that assume that data is normally distributed e.g.linear regression, PCA, Gaussian Naive Bayes

Good Habits: Know your data!!

- Visualize: Plot histograms, rank most to least common value.
- Debug: Duplicate examples? Missing values? Outliers?
 Data agrees with dashboards? Training and Validation data similar?
- Monitor: Feature quantiles, number of examples over time?

How about Unstructured Data?

Bag-of-Words

Steps

- Build vocab i.e., set of all the words in the corpus
- Count the occurrence of words in each document

The cat and the dog play

The cat is on the mat

and, the, cat, dog, play, on, mat, is

1	2	1	1	1	0	0
1	2	0	0	1	1	1

corpus

vocab.

countVec

N-gram model

Steps

- Build vocab, which set of all n-gram in the corpus
- Count the occurrence of n-gram in each document

The cat and the dog play

The cat is on the mat

The cat, cat and, and the, the dog, dog play, cat is, is on, on the, the mat

corpus

 1
 1
 1
 1
 1
 0
 0
 0
 0

 1
 0
 0
 0
 0
 1
 1
 1
 1

vocab.

More Advanced Approach

- Using Deep learning
 - CNN, RNN, Attention Model
 - Learn representations from text, image, video, audio signal

http://cs231n.github.io/convolutional-networks/

Cross-Validation

Which measure should we look for

model evaluation?

Let's try to train a model for this problem

How about this model?

More data

Which measure should we look for model evaluation?

Training performance is not suitable

Generalization

- In ML, a model is used to fit the data
- Once trained, the model is applied upon new data
- Generalization is the prediction capability of the model on live/new data

Which model is better?

SPAM VS Not SPAM

Model Complexity

source: stackoverflow

The Big Picture

- Goal: predict well on new data drawn from (hidden) true distribution.
- Problem: we don't see the truth.
 - We only get to sample from it.
- If model *h* fits our current sample well, how can we trust it will predict well on other new samples?

Is the model overfitting?

- Intuition: Occam's Razor principle
 - The less complex a model is, the more likely that a good empirical result is not just due to the peculiarities of our samples.

Theoretically:

- Interesting field: generalization theory
- Based on ideas of measuring model simplicity / complexity

William of Occam

Is the model overfitting?

- Empirically:
 - Key point: will our model be good on new samples?
 - Evaluate: get new samples of data (test set)
 - If test set is large enough and we do not cheat by using test set over and over, the good performance on test set can be a useful indicator of model's generalization capability

Training/Test Splitting

- If models do much better on the training set than the testing set, then models are likely overfitting.
- How do we divide?
 - Randomization for splitting
 - Larger training data size -> better model
 - Larger testing data size -> more confident in model's evaluation
 - One practical rule: 10-15% left for testing, the rest for training

Training Evaluation v.s. Test Evaluation

How about this workflow?

Pick model that does best on Test Set.

Partition Data Sets

Training Set Validation Set Test Set

Better Workflow: Use a validation set

Pick model that does best on Validation Set Confirm results on Test Set

Cross-validation

- If we have a small dataset: CV can be conducted
- Idea is simple but smart:
 - Use your initial training data to generate multiple mini train-test splits.
 Use these splits to evaluate your model
 - K is a hyper-parameters. K is equal to the number of generated train-test splits.

Cross-validation

- Partition data into k subsets, i.e., folds
- Iteratively train the model on k-1 folds while using the remaining fold as the test set (hold-out set)
- Compute the average performances over the K folds

Summary

- Divide into three sets
 - training set
 - validation set
 - test set
- Classic gotcha: only train the model on training data
 - Getting surprisingly low loss?
 - Check the whole procedure

How to detect overfitting

- After training/testing splitting, training loss is much less than testing loss.
- Start with a simple model as the benchmark
 - When add model complexity, you will have a reference point to see whether the additional complexity is worthy.

How to prevent overfitting

- Train with more data
 - Filter noisy data (outlier)
- Remove features
 - Remove irrelevant features
- Regularization
 - Control model complexity
 - Different machine learning models have their own regularization methods.

As a Summary

- What should be the targets set for Machine Learning
 - Minimize loss on the training set
 - Minimize loss on the validation set
 - Minimize loss on the test set
 - Minimize loss on unseen future examples

sklearn.linear_model.Ridge

class sklearn.linear_model. $Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None)$ [source]

Linear least squares with I2 regularization.

Minimizes the objective function:

$$||y - Xw||^2_2 + alpha * ||w||^2_2$$

This model solves a regression model where the loss function is the <u>linear least squares</u> function and <u>regularization</u> is given by the I2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape (n_samples, n_targets)).

Read more in the User Guide.

Alpha is the controlling parameter, which is also hyperparameter

Hyperparameter Optimization

Hyperparameters

- Machine learning algorithms usually have two kinds of weights:
 - Parameters: learned by data during training such as slope of linear regression, layer weights of neural networks
 - Hyperparameters: left to us to select beforehand such as K in KNN, number of layers in neural networks

Hyperparameters

```
>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
                                       Hyperparameters should be passed
Ridge()
                                       when you initialize the machine
                                       learning model before training
```

Searching is Iterative, then Expensive

Grid Search

- Define a grid on n-dimensions, where each of these maps for an hyperparameter
- For each dimension, define the range of possible values
- Search for all combinations and select the best one

Random Search

- Randomly pick the point from the configuration space
- The rest is the same as grid search

Good on high-dim spaces

From Bergstra and Bengio

Advanced Search Algorithms

- For grid and random search, the previous trials can not contribute to each new guess.
- Try to model the hyperparameter search as a machine learning task
 - Tree-structured Parzen Estimator
 - Gaussian Process
 - Other bayesian optimization methods

Main idea: based on the distribution of the previous results, decide which set of parameters should be explored firstly