#### 2022년 한국디지털포렌식학회 동계학술대회

# 메타마스크(MetaMask) 암호화폐 지갑 아티팩트 분석

2022. 12. 05

손지훈, 박정흠

hunjison@korea.ac.kr



## 목차



□ 연구 배경

### □ 메타마스크 아티팩트 식별 및 해석

- 연구 범위 및 실험 환경 구성
- 지갑 정보 분석
- 사용자 행위 분석
- 니모닉 코드 복호화 및 검색

□ 구현 및 평가



#### 암호화폐와 이더리움

- 암호화폐를 이용하는 경우들이 점점 많아짐
  - 개인 간 거래, NFT(Non Fungible Token), P2E(Play to Earn) 게임 등
- 이더리움 블록체인
  - 이더리움은 '플랫폼 코인'으로 불리며 무한한 확장성을 지님
  - DApp(Decentralized App), Smart Contract, DeFi(Decentralized Finance) 등
- 범죄 및 자금세탁의 수단, 암호화폐
  - 범죄에 따른 암호화폐 총 피해액은 2021년 140억 달러로, 작년대비 79% 증가
  - 러그풀(Rug Pull) 수법은 이더리움 블록체인 기반의 ERC-20 토큰을 이용함
  - 자금세탁 서비스(Uniswap, Tornado Cash) 역시 이더리움 블록체인 내에서 동작함



**NFT** 



**Tornado Cash** 



#### 메타마스크(MetaMask)

#### ■ 메타마스크 지갑

- 이더리움 및 토큰들을 보관, 거래할 수 있는 암호화폐 지갑
- DeFi, DAO, NFT 등 탈중앙화 서비스 이용을 위해 지갑 연동이 필요함
- 브라우저 확장 형태로 설치되며 크롬·엣지·파이어폭스 등 브라우저 지원

#### • 연구의 필요성

- 메타마스크 사용자는 3000만 명을 돌파하였고, 2년 만에 38배 증가함
- 이더리움 네트워크 내에서 메타마스크의 점유율은 약 85%로 추정
- 주요 거래소들에서도 브라우저 확장 형태의 지갑을 새롭게 출시하였음
- 브라우저 확장 형태의 지갑 분석 방법에 대해 국내외에 연구된 바 없음



메타마스크







코인베이스 브라우저 확장



#### 선행 연구

### • 암호화폐 트랜잭션과 지갑에 대한 디지털 포렌식 연구들

| 분류                  | 연도   | 연구 내용 요약                                           |  |  |
|---------------------|------|----------------------------------------------------|--|--|
|                     | 2018 | 불법 거래로 의심되는 비트코인 거래의 추적 및 모니터링 방법                  |  |  |
| 공개 트랜잭션 분석          | 2020 | 비트코인 트랜잭션 수사를 위한 extended safe Petri Net 기반의 분석 방법 |  |  |
|                     | 2021 | 비트코인 트랜잭션의 UTXO 데이터 분석을 통한 거래 추적 방법                |  |  |
|                     | 2015 | Base58 형식의 비트코인 지갑 주소, 개인키 검색도구 개발                 |  |  |
| 비트크이 되가 보서          | 2018 | 범죄 시나리오를 기반으로 한 비트코인 지갑 수사 방법 제시                   |  |  |
| 비트코인 지갑 분석<br> <br> | 2019 | 비트코인 아티팩트와 분석 방법의 제시 및 정규표현식 기반의 분석 도구 개발          |  |  |
|                     | 2022 | 비트코인 지갑 4종에 대한 아티팩트 분석 도구 개발                       |  |  |
| 지갑 메모리 분석           | 2020 | 하드웨어 지갑의 메모리 아티팩트 분석 및 시각화 프레임워크 개발                |  |  |
|                     | 2022 | 하드웨어 지갑 Ledger, Trezor에 대한 아티팩트 분석 및 추출 도구 개발      |  |  |

#### • 기존 연구들의 한계

- 로컬 아티팩트 분석 결과가 공개 트랜잭션 데이터와 차별화되지 않음
- 이더리움 지갑 및 브라우저 확장 형태의 지갑에 대해 고려하지 않음
- 니모닉 코드 복호화 알고리즘에 대해 연구된 바 없음

DFRC - Korea-based Digital Forensics Think Tank

연구 범위 및 실험 환경 구성



#### 연구 범위

- 메타마스크 지갑 정보
  - 지갑 주소, 지갑 잔액, 트랜잭션 로그 등
- 사용자 행위 추적
  - 시나리오 기반 아티팩트의 생성 과정 분석
  - 공개된 트랜잭션 정보 이외의 사용자 행위 로그, 타임스탬프 등
- 사용자 지갑 확보(니모닉 코드 획득)
  - 니모닉 코드 복호화
  - 니모닉 코드 검색



#### 실험 환경 구성

- 서로 다른 브라우저에서의 아티팩트 분석
  - 메타마스크는 여러 대의 PC, 모바일, 브라우저에서 동시에 로그인 가능
  - 같은 지갑 주소(지갑 2)에 대해 Chrome, Edge에서 각각 데이터 수집



| 순서 | 행위       | 연구 내용 요약               |  |  |
|----|----------|------------------------|--|--|
| 1  | (다)      | 지갑 2에 이더리움 0.1 ETH 전송  |  |  |
| 2  | (가)      | 브라우저 실행                |  |  |
| 3  | (가)      | 메타마스크 로그인              |  |  |
| 4  | (나)      | (다)에 이더리움 0.01 ETH 전송  |  |  |
| 5  | (가)      | (다)에 이더리움 0.02 ETH 전송  |  |  |
| 6  | (라)      | 지갑 2에 이더리움 0.03 ETH 전송 |  |  |
| 7  | (가), (나) | 브라우저 종료 후 다시 로그인       |  |  |

지갑 정보 분석



#### 지갑 정보 분석

- 메타마스크 LevelDB 저장 경로
  - Chrome: {Chrome Local Path}\User Data\{Profile}\Local Extension Settings\{ID}
    - Edge: {Edge Local Path}\User Data\{Profile}\Local Extension Settings\{ID}
    - PROFILE: 유저 프로필(Default 등), ID: 브라우저 확장 웹스토어에서 검색 가능

- 브라우저 개발자 도구를 이용한 분석
  - 확장 프로그램 개발자 도구가 별도로 존재
  - 스크립트 실행시 LevelDB 객체 반환됨

chrome.storage.local.get('data', function(value){console.log(value)});





### 지갑 정보 분석

## ■ LevelDB 키에 대한 분석(일부 생략)

| 키 이름                              | 세부 항목                | 종류     | 설명                                           |
|-----------------------------------|----------------------|--------|----------------------------------------------|
| AddressBookController             | addressBook          | 거래 기록  | 해당 지갑에서 <mark>송신</mark> 했던 이더리움 <b>지갑 주소</b> |
| IncomingTransactionsController    | incomingTransactions | 거래 기록  | 이더리움 <mark>수신</mark> 트랜잭션 기록                 |
| MetaMetricsController             | fragments            | 거래 기록  | <b>송신</b> 트랜잭션 <b>실패 기록</b> (실패시간, 사유)       |
| TransactionController             | transactions         | 거래 기록  | 이더리움 <mark>송신</mark> 트랜잭션 기록                 |
| AppStateController                | browserEnvironment   | 지갑 정보  | 브라우저 정보(Win, Mac)                            |
| CachedBalancesController          | cachedBalances       | 지갑 정보  | 네트워크별 계좌의 이더리움 <b>잔액</b>                     |
| PreferencesController             | identities           | 지갑 정보  | 해당 계정이 가지고 있는 <b>지갑 목록</b>                   |
| PreferencesController             | selectedAddress      | 지갑 정보  | 사용자의 선택한 <b>지갑 주소</b>                        |
| TokensController                  | allTokens            | 지갑 정보  | 사용자의 토큰 목록                                   |
| KeyringController                 | vault                | 니모닉 코드 | 니모닉 코드 복구에 사용되는 데이터                          |
| PermissionController              | subjects             | 사용자 행위 | 메타마스크의 <b>외부 권한 허가</b> 기록                    |
| SubjectMetadataController         | subjectMetadata      | 사용자 행위 | 사용자가 <b>최근에 방문했던 웹사이트</b>                    |
| CurrencyController conversionDate |                      | 사용자 행위 | 환율 동기화 시각( <b>사용자 최종 접속 시간</b> )             |
| firstTimeInfo                     | date                 | 사용자 행위 | 사용자의 메타마스크 첫 설치 시각                           |

DFRC - Korea-based Digital Forensics Think Tank



- 메타마스크 로그인 이전(순서 1, 순서 2)
  - 로그인 이전에는 트랜잭션 정보가 갱신되지 않음
  - 사용자가 브라우저를 이용해도 아티팩트 변화 없음

- 메타마스크 로그인(순서 3)
  - 트랜잭션이 잔액에 반영되며, 트랜잭션 로그 생성
  - 메타마스크 확장 프로그램을 실행하는 도중에는 주기적으로 지갑 계좌 정보가 동기화됨



| 순서 | 행위       | 연구 내용 요약               |  |  |  |
|----|----------|------------------------|--|--|--|
| 1  | (다)      | 지갑 2에 이더리움 0.1 ETH 전송  |  |  |  |
| 2  | (가)      | 브라우저 실행                |  |  |  |
| 3  | (가)      | 메타마스크 로그인              |  |  |  |
| 4  | (나)      | (다)에 이더리움 0.01 ETH 전송  |  |  |  |
| 5  | (가)      | (다)에 이더리움 0.02 ETH 전송  |  |  |  |
| 6  | (라)      | 지갑 2에 이더리움 0.03 ETH 전송 |  |  |  |
| 7  | (가), (나) | 브라우저 종료 후 다시 로그인       |  |  |  |



- 이더리움 송신(순서 4, 순서 5)
  - 송신 트랜잭션 로그는 송신한 지갑에 고유하게 남음
    → 해당 지갑에서의 이더리움 송신을 입증 가능함
  - 트랜잭션 실패, 취소 역시 송신한 지갑에만 생성







| 순서 | 행위       | 연구 내용 요약               |  |  |  |
|----|----------|------------------------|--|--|--|
| 1  | (다)      | 지갑 2에 이더리움 0.1 ETH 전송  |  |  |  |
| 2  | (가)      | 브라우저 실행                |  |  |  |
| 3  | (가)      | 메타마스크 로그인              |  |  |  |
| 4  | (나)      | (다)에 이더리움 0.01 ETH 전송  |  |  |  |
| 5  | (가)      | (다)에 이더리움 0.02 ETH 전송  |  |  |  |
| 6  | (라)      | 지갑 2에 이더리움 0.03 ETH 전송 |  |  |  |
| 7  | (가), (나) | 브라우저 종료 후 다시 로그인       |  |  |  |



- 이더리움 수신(순서 6)
  - 수신 트랜잭션 로그는 모든 지갑에 생성됨
  - 송신 트랜잭션과 달리 양쪽 모두에 기록됨
    - 트랜잭션 횟수는 총 4회이지만 3회만 기록됨







| 순서 | 행위       | 연구 내용 요약               |  |  |  |
|----|----------|------------------------|--|--|--|
| 1  | (다)      | 지갑 2에 이더리움 0.1 ETH 전송  |  |  |  |
| 2  | (가)      | 브라우저 실행                |  |  |  |
| 3  | (가)      | 메타마스크 로그인              |  |  |  |
| 4  | (나)      | (다)에 이더리움 0.01 ETH 전송  |  |  |  |
| 5  | (가)      | (다)에 이더리움 0.02 ETH 전송  |  |  |  |
| 6  | (라)      | 지갑 2에 이더리움 0.03 ETH 전송 |  |  |  |
| 7  | (가), (나) | 브라우저 종료 후 다시 로그인       |  |  |  |

니모닉 코드 복호화 및 검색



#### 니모닉 코드 복호화

- 니모닉 코드와 지갑 확보
  - 사건을 조사할 때에 암호화폐 지갑과 지갑 속 잔액을 확보할 필요가 있음
  - 니모닉 코드를 이용하면 지갑 계정에 포함된 모든 지갑을 복구할 수 있음
- 기존의 공개된 자료
  - 메타마스크에서는 브라우저를 이용한 복호화 방안을 제시
  - 따라서 활성 시스템에서만 니모닉 코드 복호화가 가능하다는 단점이 존재
- 복호화 알고리즘 연구
  - 유저의 계정 패스워드 필요
  - LevelDB 내의 Vault 값 필요



#### 니모닉 코드 검색

- 니모닉 코드 복호화의 한계
  - 복호화를 위해서는 유저의 패스워드가 필요함
- 니모닉 코드의 규칙성
  - 길이가 3 이상 8 이하인 영단어
  - 영단어가 최소 12개에서 최대 24개 반복
  - 영단어 목록은 미리 정의됨(BIP-0039 표준)
- 검색 방법
  - 디스크 및 메모리에서 검색 가능함
  - 정규 표현식 탐색 → 단어 목록 포함 여부 검증





### 도구 구현

■ 메타마스크 분석 도구의 동작 방식



DFRC - Korea-based Digital Forensics Think Tank



### 도구 평가(공개 트랜잭션과의 비교)

- 타임라인 획득
  - 더 자세한 사용자 행위 타임라인 구성 가능
    - 메타마스크 설치 시간, 사용자의 마지막 접근 시간, 이더리움 송신 요청/실패 시간 등



| 순서 | 시간       | 로컬 아티팩트               | 공개 트랜잭션        |
|----|----------|-----------------------|----------------|
| 이전 | 12:36:08 | 메타마스크 프로그램 설치         |                |
| 이전 | 12:36:50 | "Account 1" 계정 선택     |                |
| 1  | 12:47:48 | 이더리움 수신 트랜잭션 1(동일)    |                |
| 4  | 13:12:00 |                       | 이더리움 송신 트랜잭션 1 |
| 5  | 13:31:39 | 이더리움 송신 요청, dropped   |                |
| 5  | 13:31:57 | 이더리움 송신 요청, confirmed |                |
| 5  | 13:32:12 |                       | 이더리움 송신 트랜잭션 2 |
| 6  | 13:45:12 | 이더리움 수신 트랜잭션 2(동일)    |                |
| 이후 | 13:45:33 | 사용자의 마지막 접속 시각        |                |

DFRC - Korea-based Digital Forensics Think Tank



# 도구 평가(공개 트랜잭션과의 비교)

### ■ 사용자 행위 분석

| 분류     | 내용                    | 로컬 아티팩트 | 공개 트랜잭션 | 비고                   |
|--------|-----------------------|---------|---------|----------------------|
| 거래 기록  | 이더리움 수신 트랜잭션          | 0       | 0       |                      |
| 거래 기록  | 이더리움 송신 트랜잭션          | Δ       | 0       | 해당 지갑에서 송신한 경우 획득 가능 |
| 거래 기록  | 이더리움 송신 지갑 특정         | 0       | X       |                      |
| 거래 기록  | 이더리움 송신 실패 기록(시간, 사유) | 0       | X       |                      |
| 지갑 정보  | 지갑 주소                 | 0       | X       |                      |
| 지갑 정보  | 이더리움 잔액               | 0       | 0       |                      |
| 지갑 정보  | 토큰 목록, 잔액             | Δ       | 0       | 토큰 잔액은 획득 불가         |
| 지갑 정보  | 지갑 브라우저 정보            | 0       | X       |                      |
| 지갑 정보  | 같은 계정에 포함된 지갑 목록      | 0       | X       |                      |
| 사용자 행위 | 메타마스크 외부 권한 허가 기록     | 0       | X       |                      |
| 사용자 행위 | 사용자가 최근 방문한 사이트       | 0       | X       |                      |
| 사용자 행위 | 사용자의 마지막 접속 시간        | 0       | X       |                      |
| 사용자 행위 | 메타마스크 첫 설치 시각         | 0       | X       |                      |

SE DFRC - Korea-based Digital Forensics Think Tank





forensic.korea.ac.kr hunjison(at)korea.ac.kr

Questions?

