Lecture 1.2

Evolutionary Models

Popular phylogenetic methods

- 1. Maximum parsimony
- 2. Distance-based methods
- 3. Maximum likelihood
- 4. Bayesian inference

Model-based methods

Maximum Parsimony

Maximum parsimony

Maximum parsimony

- Identifies the tree topology that can explain the sequence data, using the smallest number of inferred substitution events
- Commonly used for morphological data
- Now rarely used for analysing genetic data
 - Cannot estimate evolutionary rates or timescales
 - Effects of multiple substitutions

Observed substitutions

Actual substitutions

A	A	A	A	A
A	\mathbf{T}	\mathbf{T}	\mathbf{T}	T
C	C	G	G	G
A	A	A	A	A
T	T	T	T	T
T	T	T	T	T
A	A	A	A	A
G	G	G	G	G
T	T	\mathbf{T}	A	C

- Maximum parsimony does not correct for multiple substitutions at the same site
- This leads to a problem known as long-branch attraction
 - Long branch = many substitutions
 - Similarities arise by chance
 - Long branches cluster together

Long-branch attraction

We can correct for multiple hits using substitution models

Substitution Models

Nucleotide substitution models

Rate Matrix

Base Frequencies

$$\pi_A + \pi_C + \pi_G + \pi_T = 1$$

JC

HKY

GTR

$$\pi_A = \pi_C = \pi_G = \pi_T$$

a=b=c=d=e=f a=c=d=f, b=e

$$\pi_A$$
, π_C , π_G , π_T

a, b, c, d, e, f

$$\pi_A$$
, π_C , π_G , π_T

Equal rates among sites

Proportion of invariable sites (+I models)

• Gamma-distributed rate variation across sites (+G models)

Rate variation among sites

 Gamma-distributed rate variation across sites and a proportion of invariable sites (+G+I models)

Nucleotide substitution models

Rate Matrix $\mathbf{A} \stackrel{\mathsf{b}}{\longleftrightarrow} \mathbf{G}$

Site Rates

$$\begin{array}{ccc}
A & \longleftrightarrow & G \\
\downarrow & \downarrow & \downarrow & \downarrow \\
C & \longleftrightarrow & T
\end{array}$$

$$\pi_A + \pi_C + \pi_G + \pi_T = 1$$

JC

$$\pi_{\text{A}}\text{=}\pi_{\text{C}}\text{=}\pi_{\text{G}}\text{=}\pi_{\text{T}}$$

HKY

$$\pi_A$$
, π_C , π_G , π_T

GTR

a, b, c, d, e, f

$$\pi_A$$
, π_C , π_G , π_T

GTR+I+G

a, b, c, d, e, f

$$\pi_A$$
, π_C , π_G , π_T
I, G

Nucleotide substitution models

Rate Matrix

Base Frequencies

Site Rates

$$\begin{array}{ccc}
A & \longleftrightarrow G \\
\uparrow & \swarrow & \uparrow \\
C & \longleftrightarrow T
\end{array}$$

$$\pi_A + \pi_C + \pi_G + \pi_T = 1$$

#Models

203

X

15

X

4

= 12,180

In phylogenetics, we typically consider a small subset of these

Proportion of invariable sites

- Often overestimated in analyses of intraspecific data
- Unable to distinguish between:
 - Sites that are invariable and unable to change
 - Sites that are constant and by chance have not mutated
- Not biologically meaningful
- Slowly evolving sites taken into account by +G

Use +G models to account for rate variation across sites

Fundamental assumptions

Reversible

Stationary

$$\pi_A + \pi_C + \pi_G + \pi_T = 1$$

CGTTAGTACACT

CGATAGTTCACT

CGTTAGTTTACC

CATTGGTTTACT

Homogeneous

Independent across sites

Amino acid substitution matrices

- 20x20 matrix of substitution probabilities
- Too many parameters to estimate
 - GTR model for DNA: 6 parameters
 - GTR model for proteins: 190 parameters
- Estimate substitution probabilities using large data set
 - PAM
 - BLOSUM
 - JTT
 - WAG

1. Subjective model selection

- Pick a model that seems sensible
- Balance the number of parameters against the amount of data
- Biological motivation

2. Objective model selection

- Use information theory and let a computer do it for you
- Statistical motivation

- Adding more parameters always improves the fit of the model to the observed data
- But more parameters leads to greater variance in the estimates of those parameters

Is the improvement in likelihood worth the cost of adding a parameter?

- Likelihood-ratio test (LRT)
 Used to compare nested models
- Akaike information criterion (AIC)
 AIC = -2ln(likelihood) + 2k
- Bayesian information criterion (BIC) BIC = $-2\ln(\text{likelihood}) + k\ln(n)$

Data partitioning

Separate substitution model for each gene and codon position?

Biological

- Genome
- Genes
- Codon positions
- RNA stems vs loops
- Hydrophobic vs hydrophilic

Statistical

PartitionFinder

- Too many possible partitioning schemes
 - 15 schemes for 4 genes
 - 52 schemes for 5 genes
 - 203 schemes for 6 genes

PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses

Robert Lanfear,*,1 Brett Calcott,1,2 Simon Y. W. Ho,3 and Stephane Guindon4

2012 – Molecular Biology and Evolution, 29: 1695–1701.

Substitution models in practice

- Phylogenetic estimates are usually robust to choice of model
- GTR+G is fine for most data sets
- Sensible data partitioning (e.g., by codon position)

Useful references

- Model selection in phylogenetics
 Sullivan & Joyce (2005) Annual Review of Ecology, Evolution, and Systematics, 36: 445–466.
- The effects of partitioning on phylogenetic inference
 Kainer & Lanfear (2015) Molecular
 Biology and Evolution, 32: 1611–1627.

