Chapitre 2 : Potentiel chimique et enthalpie libre de réaction

I- G (et F): rappels de thermophysique

L'énergie libre d'un système de température absolue T, d'énergie interne U et de d'entropie S, est : F = U - TS

Son enthalpie libre est : G = U + PV - TS = H - TS

Fonctions d'état extensives

Pourquoi énergie et enthalpie « libres » ?

Syst. subissant une transformation A→B <u>isotherme</u> tq T=cste=T_{ext} et <u>isobare</u> tq P=cste=P_{ext}

1er principe :
$$\Delta U = U_B - U_A = Q + W_{tot}$$
 avec $W_{tot} = W_P + W_{utile} = -P(V_B - V_A) + W_{utile}$

W_{utile}: travail récupérable par l'utilisateur (< 0)

$$2^{\text{ème}} \text{ principe}: \Delta S = S_B - S_A \underset{\text{rév.}}{\geq} Q/T <=> TS_B - TS_A \geq U_B - U_A + PV_B - PV_A - W_{\text{utile}}$$

$$<=> W_{\text{utile}} \geq (U_B + PV_B - TS_B) - (U_A + PV_A - TS_A)$$

$$<=> 0 \geq W_{\text{utile}} \underset{\text{rév.}}{\geq} G_B - G_A = \Delta G$$

ΔG représente l'énergie max. disponible → enthalpie « libre »

 $\Delta G \leq$: le syst. évolue vers une minimisation de G \rightarrow potentiel thermodynamique

I- G (et F) - rappels de thermophysique

Ecriture différentielle

Système fermé et de composition fixe + pas d'autre W que celui des forces de pression

$$dU = \delta Q + \delta W = TdS - PdV \qquad U(S,V)$$

$$H = U + PV \rightarrow dH = dU + PdV + VdP = TdS + VdP \qquad H(S,P)$$

$$F = U - TS \rightarrow dF = dU - TdS - SdT = -SdT - PdV \qquad F(T,V)$$

$$G = H - TS \rightarrow dG = dH - TdS - SdT = -SdT + VdP \qquad G(T,P)$$

Conséquences

•
$$V = \left(\frac{\partial G}{\partial P}\right)_T$$
 et $-S = \left(\frac{\partial G}{\partial T}\right)_P$ (relations de Maxwell)

•
$$-S = \left(\frac{\partial G}{\partial T}\right)_P$$
 et $H = G + TS = G - T\left(\frac{\partial G}{\partial T}\right)_P$

$$\rightarrow \left[\left(\frac{\partial (G/T)}{\partial T} \right)_P = -\frac{H}{T^2} \right]$$

relation de Gibbs-Helmholtz

II- Application aux réactions chimiques

II.1- Enthalpie libre de réaction

Système chimique :
$$v_1 A_1 + v_2 A_2 +$$
 $v'_1 A'_1 + v'_2 A'_2 +$

 $G = G(T, P, \xi)$: enthalpie libre du système

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,\xi} \cdot dT + \left(\frac{\partial G}{\partial P}\right)_{T,\xi} \cdot dP + \left(\frac{\partial G}{\partial \xi}\right)_{T,P} \cdot d\xi$$

$$\left(\frac{\partial G}{\partial \xi}\right)_{T,P} = \Delta_r G$$
 Enthalpie libre de réaction

Et,
$$V = \left(\frac{\partial G}{\partial P}\right)_{T,\xi}$$
 et $-S = \left(\frac{\partial G}{\partial T}\right)_{P,\xi}$ (relations de Maxwell)

$$dG = -S.dT + V.dP + \Delta_r G.d\xi$$

II.1- Enthalpie libre de réaction

Conséquences

• G = H - TS donc dG = dH - TdS - SdTA T et P fixées cela donne : $dG_{TP} = dH_{TP} - TdS_{TP}$

Si conditions standard:
$$\Delta_r G^{\circ} = \Delta_r H^{\circ} - T \cdot \Delta_r S^{\circ} \longrightarrow \Delta_r G^{\circ}(T)$$

•
$$S = -\left(\frac{\partial G}{\partial T}\right)_{P,\xi} \implies \left|\Delta_r S = -\left(\frac{\partial \Delta_r G}{\partial T}\right)_{P,\xi}\right|$$
 (Maxwell)

relation de Gibbs-Helmholtz

II.2- Potentiel chimique

Système chimique : $v_1 A_1 + v_2 A_2 +$ $v'_1 A'_1 + v'_2 A'_2 +$

On a aussi $G = G(T, P, n_1, n_2, ..., n_1, n_2, ...)$: enthalpie libre du système

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,n_i} \cdot dT + \left(\frac{\partial G}{\partial P}\right)_{T,n_i} \cdot dP + \sum_{i} \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_{j\neq i}} \cdot dn_i$$

$$G_i = \left(\frac{\partial G}{\partial n_i}\right)_{T, P, n_{j \neq i}} = \mu_i$$

 $G_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_{i\neq i}} = \mu_i$ Potentiel chimique du constituant A_i (= enthalpie libre molaire partielle de A_i)

Et,
$$V = \left(\frac{\partial G}{\partial P}\right)_{T,n_i}$$
 et $-S = \left(\frac{\partial G}{\partial T}\right)_{P,n_i}$ (relations de Maxwell)

$$dG = -S.dT + V.dP + \sum_{i} \mu_{i}.dn_{i}$$

$$\Delta_r G. d\xi = \sum_i \mu_i. dn_i$$

II.2- Potentiel chimique

(cette relation entre grandeur molaire de réaction et grandeurs molaires partielles est valable pour toute fonction d'état X)

Ecritures différentielles :

$$\begin{split} \mathsf{dG} &= \mathsf{dU} + \mathsf{PdV} + \mathsf{VdP} - \mathsf{TdS} - \mathsf{SdT} \\ \Rightarrow \mathsf{dU} &= \mathsf{dG} - \mathsf{PdV} - \mathsf{VdP} + \mathsf{TdS} + \mathsf{SdT} \\ \Rightarrow \mathsf{dU} &= -\mathsf{SdT} + \mathsf{VdP} + \sum_i \mu_i . \, dn_i - \mathsf{PdV} - \mathsf{VdP} + \mathsf{TdS} + \mathsf{SdT} \\ \Rightarrow \mathsf{dU} &= \mathsf{TdS} - \mathsf{PdV} + \sum_i \mu_i . \, dn_i = \mathsf{TdS} - \mathsf{PdV} + \Delta_r G . \, d\xi \end{split}$$

De manière analogue :

$$\begin{aligned} \mathrm{dH} &= \mathsf{TdS} + \mathsf{VdP} + \sum_i \mu_i.\, dn_i = \mathsf{TdS} + \mathsf{VdP} + \Delta_r G.\, d\xi \\ \mathrm{dF} &= -\mathsf{SdT} - \mathsf{PdV} + \sum_i \mu_i.\, dn_i = -\mathsf{SdT} - \mathsf{PdV} + \Delta_r G.\, d\xi \end{aligned}$$

 $\rightarrow \mu_i$ n'est pas une grandeur molaire partielle pour H, F et U

II.3 Identité d'Euler

G est une fonction homogène de degré 1 des variables n_i :

G (T, P,
$$\lambda n_i$$
) = λ .G (T, P, n_i)

$$\left(\frac{\partial G(T, P, \lambda n_i)}{\partial \lambda}\right)_{T, P, n_i} = \left(\frac{\partial \lambda G(T, P, n_i)}{\partial \lambda}\right)_{T, P, n_i} = G(T, P, n_i)$$

et

$$\left(\frac{\partial G(T, P, \lambda n_i)}{\partial \lambda}\right)_{T, P, ni} = \sum_{i} \left(\frac{\partial G(T, P, \lambda n_i)}{\partial \lambda n_i}\right)_{T, P, nj \neq i} \cdot \left(\frac{\partial \lambda n_i}{\partial \lambda}\right)_{T, P, ni}$$

Ainsi

$$G(T, P, n_i) = \sum_{i} \left(\frac{\partial G(T, P, \lambda n_i)}{\partial \lambda n_i} \right)_{T, P, n_{j \neq i}} . n_i$$

La relation précédente est vraie pour tout λ et en particulier pour $\lambda = 1$, ce qui donne:

$$G(T, P, n_i) = \sum_{i} \left(\frac{\partial G(T, P, n_i)}{\partial n_i} \right)_{T, P, n_i \neq i} . n_i$$

Identité d'Euler
$$G(T,P,n_i) = \sum_i \mu_i.n_i$$
Valable pour d'autres fonctions : H, U, V, F, S...

$$\operatorname{Exp}: V = \sum_{i} v_{i}.n_{i}$$

II.4- Relation de Gibbs-Duhem

$$G(T,P,n_i) = \sum_i \mu_i. n_i \text{ (Euler)} \implies \mathrm{d}G = \sum_i n_i. d\mu_i + \sum_i \mu_i. dn_i$$
 or
$$dG = -S. dT + V. dP + \sum_i \mu_i. dn_i$$

Par conséquent, $\sum_{i} n_{i} d\mu_{i} = -S dT + V dP$

Pour une transformation à T et P constantes, on aura donc :

$$\sum_{i} n_{i}.\,d\mu_{i} = 0$$

Avec $x_i = \frac{n_i}{n}$ fraction molaire de l'espèce A_i , cela donne : $\sum_i x_i d\mu_i = 0$

(Relation qui sera particulièrement utile pour les mélanges binaires)

II.5- Variation de μ avec P et T

 $dG = -S.dT + V.dP + \sum_{i} \mu_{i}.dn_{i}$ et G est une fonction d'état (dG est une différentielle exacte), cela implique que les dérivées croisées sont égales. Ce qui donne:

$$\left(\frac{\partial \mu_i}{\partial P}\right)_{T,n_i} = \left(\frac{\partial V}{\partial n_i}\right)_{T,P,n_{j\neq i}} = v_i \quad \text{volume molaire partiel de A}_i \\ \text{de potentiel chimique } \mu_i$$

 \longrightarrow L'influence de P sur μ_i est bien plus importante pour les gaz, et sera en comparaison, négligeable pour les phases condensées.

$$\left(\frac{\partial \mu_i}{\partial T}\right)_{P,n_i} = \left(-\frac{\partial S}{\partial n_i}\right)_{T,P,n_{j\neq i}} = -s_i \quad \text{entropie molaire partiel de A_i de potentiel chimique μ_i}$$

 \rightarrow μ_i diminue lorsque T augmente et la pente de μ_i (T) est en valeur absolue plus grande pour les gaz que pour les liquides et les solides

La relation de Gibbs-Helmholtz
$$\left(\frac{\partial (^G/_T)}{\partial T}\right)_P = -\frac{H}{T^2}$$
 donne : $\left(\frac{\partial (^{\mu_i}/_T)}{\partial T}\right)_{P,n_i} = -\frac{h_i}{T^2}$

Point de départ : $\left(\frac{\partial \mu_i}{\partial P}\right)_{Tni} = v_i$: volume molaire partiel du constituant A_i considéré

1- Cas des gaz

Un seul gaz supposé parfait

$$\left(\frac{\partial \mu^*}{\partial P}\right)_T = \nu^* = \frac{RT}{P}$$

On intègre à T fixe : $\int_{\mu^0}^{\mu^*} d\mu = \int_{P^0}^{P} \frac{RT}{P} dP = RT \ln \left(\frac{P}{P^0} \right)$ et on obtient :

$$\mu^*(T, P, GP, pur) = \mu^o(T) + RT \ln\left(\frac{P}{P^0}\right) = \mu^o(T, GP) + RT \ln(a)$$

 $\mu^0(T)$: potentiel chimique standard du <u>gaz parfait</u> pur, pris à la température T et sous la <u>pression standard</u> P°. a : activité du gaz parfait $a=\frac{P}{P^0}$

Gaz parfait dans un mélange idéal de gaz parfaits

Pour un gaz A_i du mélange sous la pression globale P : $\left(\frac{\partial \mu_i}{\partial P}\right)_{Tni} = v_i = \frac{RT}{P}$

ou encore,
$$d\mu_i = RT \frac{dP}{P} = RT \frac{dP_i}{P_i}$$
 car $P_i = \frac{n_i}{n}P = x_i P$

En considérant le composant A_i, à T et n_i fixes, on obtient donc après intégration :

$$\mu_i(T, P_i, GP, x_i) = \mu_i^o(T) + RT \ln\left(\frac{P_i}{P^o}\right) = \mu_i^o(T) + RT \ln(a_i)$$

 $\mu_i^o(T)$: potentiel chimique standard du <u>gaz parfait pris pur</u> à la température T et sous la <u>pression standard</u> P° a_i : activité du gaz parfait A_i dans le mélange idéal $a_i = \frac{P_i}{P^0}$

- Gaz réel pur ou en mélange

Si le gaz n'est pas parfait, on conserve la même forme pour μ_i , l'activité a_i devenant :

$$a_i = \gamma_i \frac{P_i}{P^0} = \frac{f_i}{P^0}$$

f_i: fugacité du gaz réel

 γ_i : coefficient d'activité du gaz réel \rightarrow exprime un écart à l'idéalité, il est d'autant plus différent de 1 que le comportement du gaz s'éloigne de celui du gaz parfait.

$$\mu_{i}(T, P_{i}, gaz \, r\acute{e}el, x_{i}) = \mu_{i}^{o}(T) + RTln(a_{i}) = \mu_{i}^{o}(T) + RTln\left(\frac{f_{i}}{P^{0}}\right)$$

$$\mu_{i}(T, P_{i}, gaz \, r\acute{e}el, x_{i}) = \mu_{i}^{o}(T) + RTln\left(\frac{P_{i}}{P^{0}}\right) + RTLn\gamma_{i}$$

 $\mu_i^o(T)$: potentiel chimique standard du gaz pris parfait et pur à la température T et sous la pression standard P°

<u>Remarque</u>: Pour un gaz parfait: $\gamma_i = 1$ et $f_i = P_i$

 $\lim_{P_i \to 0} \gamma_i = 1 \rightarrow$ tout gaz réel devient parfait lorsque la pression tend vers 0.

2- Cas des phases condensées

a. un seul corps condensé pur

 $\left(\frac{\partial \mu^*}{\partial P}\right)_T = v^*$ volume molaire du constituant condensé pur, en général faible et pouvant être négligé devant celui des gaz.

On intègre à T fixe et on obtient :

$$\mu^*(T, P, cd, pur) = \mu^o(T) + v^*(P - P^o) \approx \mu^o(T)$$

 $\mu^0(T)$: potentiel chimique standard du <u>corps condensé pur</u>, pris à la température T et sous la <u>pression standard</u> P°.

b. constituant condensé dans un mélange idéal

Un mélange est idéal si, pour tout constituant A_i, on a :

$$\mu_i^{id\acute{e}al}(T,P,cd,x_i) = \mu_i^*(T,P,cd,pur) + RTLn(x_i) = \mu_i^*(T,P,cd,pur) + RTLn(a_i)$$

x_i: fraction molaire du constituant A_i

 a_i : activité du constituant condensé A_i dans le mélange idéal $a_i = x_i$

$$\rightarrow \mu_i^{id\acute{e}al}(T,P,cd,x_i) \approx \mu_i^o(T) + RTLn(x_i) \approx \mu_i^o(T) + RTLn(a_i)$$

 $\mu_i^o(T)$: potentiel chimique standard du <u>constituant condensé pris pur</u>, à la température T et sous la <u>pression standard</u> P°.

14

c. corps condensé pur dans un mélange non idéal

La relation : $\mu_i(T, P, cd, x_i) = \mu_i^*(T, P, cd, pur) + RTLn(a_i)$ est de la même forme que pour le mélange idéal sauf qu'ici : $a_i = \gamma_i x_i$

 γ_i : coefficient d'activité du corps condensé A_i dans le mélange non idéal.

Le coefficient d'activité γ_i doit vérifier : $\lim_{x_i \to 1} \gamma_i = 1$.

$$\rightarrow \mu_i(T, P, cd, x_i) \approx \mu_i^o(T) + RTLn(a_i)$$

 $\mu_i^o(T)$: potentiel chimique standard du <u>constituant condensé pris pur</u>, à la température T et sous la <u>pression standard</u> P°.

d. cas d'une solution diluée

A₂: solvant, espèce majoritaire, quantité n₂

A₁: soluté, espèce minoritaire, quantité n₁

i. le solvant

La très faible quantité de soluté ne modifie pratiquement pas l'entourage d'une molécule de solvant. Il en résulte que le comportement du solvant A_2 est peu affecté par la présence du soluté A_1 (et des autres solutés s'il y en a) \rightarrow le solvant a un <u>comportement idéal.</u> (Cette propriété est d'autant mieux vérifiée que la quantité de soluté est plus faible.)

$$\mu_2(T, P, solvant) = \mu_2^o(T) + RTLn(x_2) \approx \mu_2^o(T)$$

 $\mu_2^o(T)$: potentiel chimique standard du <u>solvant pris pur</u>, à la température T et sous la <u>pression standard P</u>°.

ii. le soluté

Pour le soluté A₁, on postule que :

$$\mu_1(T, P, solut\acute{e}) = \mu_1^{\infty}(T, P) + RTLn(a_1) \approx \mu_1^0(T) + RTLn(a_1)$$

a₁: l'activité du soluté,

 $\mu_1^{\infty}(T,P)$: le potentiel chimique de référence du soluté, défini comme étant celui du soluté dilué à la <u>concentration molaire c°=1 mol/l</u>, se comportant comme en solution infiniment diluée, à la température T et sous la <u>pression P</u>,

 $\mu_1^o(T)$: le potentiel chimique standard du soluté, défini comme étant celui du soluté dilué à la <u>concentration molaire c°=1 mol/l</u>, se comportant comme en solution infiniment diluée, à la température T et sous la <u>pression standard P°</u>

$$\rightarrow \mu_1^{\infty}(T,P) \approx \mu_1^{o}(T)$$

La situation du soluté est tout à fait différente de celle du solvant. L'entourage d'une molécule A_1 est constitué presque exclusivement de molécules A_2 (car $n_1 <<<< n_2$), donc ici $\mu_1 \neq \mu_1^o$.

T et P constantes, on applique la relation de Gibbs-Duhem au mélange solvant-soluté :

$$\int x_1 d\mu_1 + x_2 d\mu_2 = 0$$

Or,
$$d\mu_2 = d(\mu_2^o + RTLn(x_2)) = d(\mu_2^o + RTLn(1 - x_1))$$

$$Ln(1-x_1)\sim -x_1$$
 (DL d'ordre 1 car x_1 est très faible)

Donc,
$$d\mu_2 = d(\mu_2^o - RTx_1) = -RTdx_1$$

Par ailleurs,
$$d\mu_1 = d(\mu_1^o + RTLn(a_1)) = RTdLn(a_1)$$

$$\rightarrow x_1RTdLn(a_1) - x_2RTdx_1 = 0$$
; comme $x_2 \sim 1$ alors $dLn(a_1) = \frac{dx_1}{x_1} \rightarrow a_1 = \alpha.x_1$

$$c_1 = \frac{n_1}{V} = \frac{n_1}{n_1 v_1 + n_2 v_2}$$
 avec c₁, concentration molaire du soluté, V₁ volume molaire partiel du solvant.

$$c_1 \sim \frac{n_1}{n_2 v_2} \sim \frac{x_1}{v_2} \rightarrow a_1 = \alpha . v_2 . c_1$$

Si l'on considère le soluté dans son état standard, alors dans ce cas : $a_1=1$ et $c_1=c^o$

Ce qui donne dans ce cas : $1 = \alpha . v_2 . c^o \rightarrow \alpha . v_2 = \frac{1}{c^o}$

$$ightharpoonup$$
 L'activité \mathbf{a}_1 du soluté est donc : $a_1 = \frac{c_1}{c^o}$ et $\mu_1(T, P, soluté) = \mu_1^o(T) + RTLn\left(\frac{c_1}{c^o}\right)$

Expression générale pour un soluté A_i :

$$\mu_i(T, P, soluté, c_i) = \mu_i^o(T) + RTLn(a_i)$$

 $a_i = \gamma_i \frac{c_i}{c^o}$: activité du soluté

 γ_i : facteur d'activité du soluté

 $\mu_i^o(T)$: potentiel chimique standard du soluté A_i pris dilué à la <u>concentration</u> molaire c°=1 mol/l, à la température T et sous la <u>pression standard P°</u>.

La solution est diluée idéale si pour tous les solutés, les facteurs d'activité γ_i sont égaux à 1, ce qui correspond au cas où $c_i \to 0$, solution infiniment diluée. Dans ce cas, $a_i = \frac{c_i}{c^o}$

On considère un système subissant une transformation physico-chimique telle que T=cste=T_{ext} et P=cste=P_{ext} à tout moment.

(=> transf quasi-statique mais pas forcément réversible où l'on néglige d'office l'irréversibilité d'origine « physique »)

1^{er} principe: $dU = \delta Q + \delta W$ avec $\delta W = -PdV$ (on suppose que pas d'autre W que W_P)

$$2^{\text{ème}}$$
 principe : $dS \geq \delta Q/T$ $\Leftrightarrow \delta Q \leq TdS$ $\Leftrightarrow dU + PdV - TdS \leq 0$

or $dU = TdS - PdV + \sum_{i} \mu_{i} dn_{i}$ (tjs valable !)

$$\Leftrightarrow$$
 $\sum_{i} \mu_{i}. dn_{i} \overset{\text{irrév.}}{\leq} 0$ Critère d'évolution du système

Il y a équilibre si $\sum_i \mu_i dn_i = 0$ => dans ce cas, transformation réversible

Autrement, le syst. évolue spontanément de façon à ce que $\sum_i \mu_i dn_i < 0$ et cette évolution est irréversible.

Si réaction chimique

$$v_1 A_1 + v_2 A_2 + \dots$$
 $v_1 A_1 + v_2 A_2 + \dots$

Dans ce cas, on a : $\sum_i \mu_i . dn_i = \Delta_r G. d\xi$

Et le critère d'évolution peut aussi s'écrire sous la forme :

$$\Delta_r G.d\xi \stackrel{\text{irrév.}}{\leq} 0$$

Critère d'évolution du système

- Si $\Delta_r G < 0$, alors $d\xi > 0 =>$ évolution irréversible dans le sens 1 (formations des « produits »
- Si $\Delta_r G > 0$, alors $d\xi < 0 =>$ évolution irréversible dans le sens 2 (formations des « réactifs »
- Si $\Delta_r G = 0 \Rightarrow$ équilibre réversible

Remarques:

ightharpoonup Affinité chimique $\mathcal{A}.d\xi = -\Delta_r G.d\xi = -\sum_i \mu_i.dn_i$

> Si T et P constantes : dG = $Δ_rG$. $dξ = Σ_i μ_i$. dn_i La condition d'évolution se traduit alors par dG ≤ 0 \rightarrow étude de **G(ξ) à T et P fixées**

Au point M: $\Delta_r G = \left(\frac{\partial G}{\partial \mathcal{F}}\right)$

 $= \tan \alpha < 0$

sens 1

V- Equilibre de phases

V.1- Equilibre physique entre différentes phases d'un corps pur

Système composé d'un corps pur initialement sous 2 phases :

phase 1 (n_1) et phase 2 (n_2) .

Le système est fermé, donc la quantité de matière totale est constante :

$$n = n_1 + n_2 = cte$$
.

(Approximation : on suppose négligeables les interactions entre phases à l'interface 1-2).

Hypothèse:

Système initialement hors équilibre, donc, à T_0 fixé et $P \neq P_{\text{éq}}$ (T_0) fixée aussi.

Le système va évoluer spontanément par transfert de matière d'une phase vers l'autre = changement d'état

→ dans quel sens va se faire le changement d'état ?

Critère d'évolution : $\sum_i \mu_i dn_i \leq 0$

L'évolution du système impose donc que : $\mu_1(T_0,P).dn_1 + \mu_2(T_0,P).dn_2 \le 0$

Pas d'échange de matière avec l'extérieur donc n=cte et dn = $dn_1 + dn_2 = 0$

⇒ condition d'évolution : $[\mu_2(T_0,P) - \mu_1(T_0,P)].dn_2 \le 0$

V.1- Equilibre de phases du corps pur

$$\rightarrow$$
 condition d'évolution : $[\mu_2(T_0,P) - \mu_1(T_0,P)].dn_2 \le 0$

- 2 se transforme en 1 \Leftrightarrow dn₂ < 0 \Leftrightarrow $\mu_2(T_0,P) > \mu_1(T_0,P)$
- 1 se transforme en 2 \Leftrightarrow dn₂ > 0 \Leftrightarrow $\mu_2(T_0,P) < \mu_1(T_0,P)$
- Condition d'équilibre réversible : μ₂ (T₀,P) = μ₁ (T₀,P)
 → système à l'équilibre à T₀ et P₀= Péゅ (T₀)

Un système fermé constitué d'un corps pur sous deux phases hors équilibre, évolue à T et P constants dans le sens de l'appauvrissement de la phase dont le potentiel chimique est le plus grand. Un système fermé constitué d'un corps pur sous deux phases est à l'équilibre à T et sous la pression d'équilibre P_{éq}(T), si les potentiels chimiques des deux phases sont égaux.

Relations de Clausius-Clapeyron

2 états d'équilibre voisins d'un corps pur sous deux phases 1 et 2 :

- en (T,
$$P_{\acute{e}q}$$
): μ^*_{2} (T, $P_{\acute{e}q}$) = μ^*_{1} (T, $P_{\acute{e}q}$) (1)

- en (T+dT, $P_{\acute{e}q}$ +d $P_{\acute{e}q}$):

$$\mu^*_{2}(T+dT, P_{\acute{e}q}+dP_{\acute{e}q}) = \mu^*_{1}(T+dT, P_{\acute{e}q}+dP_{\acute{e}q})$$
 (2)

$$\begin{split} (2)\text{-}(1): \quad & \mu^*_2(T + dT, P_{\acute{e}q} + dP_{\acute{e}q}) - \mu^*_2(T, P_{\acute{e}q}) = \mu^*_1(T + dT, P_{\acute{e}q} + dP_{\acute{e}q}) - \mu^*_1(T, P_{\acute{e}q}) \\ & \Rightarrow d\mu^*_2(T, P_{\acute{e}q}) = d\mu^*_1(T, P_{\acute{e}q}) \quad \text{or, } d\mu^*_i = -s^*_i dT + v^*_i dP \\ & \Rightarrow -s^*_2(T, P_{\acute{e}q}).dT + v^*_2(T, P_{\acute{e}q}).dP_{\acute{e}q} = -s^*_1(T, P_{\acute{e}q}).dT + v^*_1(T, P_{\acute{e}q}).dP_{\acute{e}q} \\ & \Rightarrow (v^*_2(T, P_{\acute{e}q}) - v^*_1(T, P_{\acute{e}q})).dP_{\acute{e}q} = (s^*_2(T, P_{\acute{e}q}) - s^*_1(T, P_{\acute{e}q})).dT \end{split}$$

$$\frac{dP}{dT}\Big|_{1\to 2} = \frac{s_2^* - s_1^*}{v_2^* - v_1^*} = \frac{1}{T} \times \frac{\Delta_{1\to 2}H}{v_2^* - v_1^*}$$

Relations de Clausius-Clapeyron

En notant v_1^* et v_2^* les volumes molaires du corps pur sous les phases 1 et 2, l'enthalpie molaire de changement de phase est liée à la pente de la courbe d'équilibre P(T), par la relation :

$$\left(\frac{dP}{dT}\right)_{1\to 2} = \frac{1}{T} \times \frac{\Delta_{1\to 2}H}{\mathbf{v^*}_2 - \mathbf{v^*}_1}$$

• $\underline{\text{liquide-vapeur}}$: $v_{\text{liq}} <<< v_{\text{vap}}$ (tant qu'on est loin du point C)

$$\longrightarrow \left(\frac{dP}{dT}\right)_{\text{liq}\to\text{gaz}} \approx \frac{1}{T} \times \frac{\Delta_{vap}H}{v_{g}^{*}(T,P_{\acute{e}q})} > 0 \quad \text{pente positive et faible}$$

• <u>solide-vapeur</u>: $v_{sd} <<< v_{vap}$

$$\longrightarrow \left(\frac{dP}{dT}\right)_{\text{sd}\to\text{gaz}} \approx \frac{1}{T} \times \frac{\Delta_{sub}H}{v_{g}^{*}(T,P_{\acute{e}q})} > 0 \quad \text{pente positive et faible}$$

• <u>solide-liquide</u>: $\left| \left(\frac{dP}{dT} \right)_{\text{sd} \to \text{liq}} \right| = \frac{1}{T} \times \frac{\Delta_{fus^H}}{v^*_{\text{liq}} - v^*_{\text{sd}}}$ pente grande en valeur absolue et en général > 0

et en général > 0

Système étudié

Equilibre isotherme (T est fixe) entre deux phases liquide et vapeur. Chacune de ces deux phases comprend les deux mêmes constituants chimiques B₁ et B₂. La phase liquide est supposée correspondre à une solution très diluée où B₁ joue le rôle de soluté et B₂ celui de solvant.

$$B_1(liq) \iff B_1(gaz)$$
 et $B_2(liq) \iff B_2(gaz)$

 x_1 et x_2 : fractions molaires de B_1 et B_2 dans le liquide.

 y_1 et y_2 : fractions molaires de B_1 et B_2 dans le gaz.

 P_1 et P_2 : pressions partielles de B_1 et B_2 .

Autrement dit : $P_1 = y_1^* P_{tot}$ et $P_2 = y_2^* P_{tot}$

Etude du solvant

$$B_2(liq) \stackrel{T}{\Longleftrightarrow} B_2(gaz)$$

Dans la phase liquide, le solvant B_2 se comporte comme dans un mélange idéal. Son potentiel chimique s'écrit donc : $\mu_2(T, liq, x_2) = \mu_2^{\circ}(T, liq) + RT Ln(x_2)$

Et dans le gaz, $\mu_2(T, gaz, P_2) = \mu_2^{\circ}(T, gaz) + RT Ln(P_2/P^{\circ})$

L'<u>équilibre</u> se traduit par $\mu_2(T, liq, x_2) = \mu_2(T, gaz, P_2)$

Ainsi, μ_2 °(T, liq) + RT Ln(x_2) = μ_2 °(T, gaz) + RT Ln(P_2/P °)

Ce qui donne :
$$\frac{P_2}{x_2P^o} = \exp\left(\frac{\mu_2^o(T,liq) - \mu_2^o(T,gaz)}{RT}\right) = K_2^o(T)$$

Formule valable pour tout x_2 , et K_2 ° constante qui ne dépend que de T fixée.

En particulier, pour la valeur limite $x_2=1$ qui correspond au solvant B_2 pur, $P_2=P_2*$ $(P_2*: pression de vapeur saturante de <math>B_2$ pur à T)

et on obtient donc : $K_2^\circ = P_2^*/P^\circ$.

Ainsi, à T fixée,
$$\frac{P_2}{x_2P^o} = \frac{P_2^*}{P^o}$$
, ce qui donne : $P_2 = x_2$. P_2^* Loi de Raoult

Etude du soluté (infiniment dilué)

$$B_1(liq) \stackrel{T}{\Longleftrightarrow} B_1(gaz)$$

Les potentiels chimiques de B₁ dans le gaz et dans le liquide, s'écrivent :

$$\mu_1(\mathsf{T},\mathsf{gaz},\mathsf{P}_1) = \mu_1^\circ(\mathsf{T},\mathsf{gaz}) + \mathsf{RT}\,\mathsf{Ln}(\mathsf{P}_1/\mathsf{P}^\circ)\,,$$
 ou encore : $d\mu_1(gaz) = RT\frac{dP_1}{P_1}$
$$\mu_1(\mathsf{T},\mathsf{solut\acute{e}},\mathsf{c}_1) = \mu_1^\circ(\mathsf{T},\mathsf{solut\acute{e}},\mathsf{c}^\circ) + \mathsf{RT}\,\mathsf{Ln}(\mathsf{c}_1/\mathsf{c}^\circ)\,,$$
 ou encore : $d\mu_1(liq) = RT\frac{dc_1}{c_1}$

Etant donné que $c_1 \sim \frac{x_1}{V}$ (avec V volume molaire du solvant), on peut aussi écrire :

$$d\mu_1(liq) = RT \frac{dx_1}{x_1}$$

L'<u>équilibre</u> se traduit par $\mu_1(T, liq, x_2) = \mu_1(T, gaz, P_2)$ et $d\mu_1(liq) = d\mu_1(gaz)$

Cela donne alors : $RT \frac{dx_1}{x_1} = RT \frac{dP_1}{P_1}$ et donc, après intégration :

$$P_1 = x_1 \cdot k_1$$
 Loi de Henry

(k₁, constante de Henry, dépend de T fixée)

$$\frac{HM}{HN} = \frac{P_2}{P_2^* \cdot x_2} = \gamma_2^R(x_2)$$

 γ_2^R : coefficient d'activité traduisant l'écart de B_2 en solution à la loi de Raoult (\rightarrow réf. solvant pur)

$$\frac{HM}{HQ} = \frac{P_2}{k_2 \cdot x_2} = \gamma_2^H(x_2)$$

 γ_2^H : coefficient d'activité traduisant l'écart de B_2 en solution à la loi de Henry (\rightarrow réf. soluté infiniment dilué)