Vaje 2

- 1. Sestavite funkcijo V = mojVander(vecx), ki vrne Vandermondovo matriko za potenčno bazo x^i za polinome stopnje $\leq n$ za vektor vrednosti $vecx = (x_0, x_1, \ldots, x_n)$. Primerjajte vaš rezultat z vgrajenim ukazom vander; poglejte v help, kako se preuredite stolpce, da bo enaka vaši matriki.
 - Vzemite poljuben vektor desne strani d ustrezne velikosti in rešite linearen sistem Vc = d. Kaj prestavlja rešitev vektor $c = [c_0, c_1, \dots c_n]$? Narišite polinom $\sum_{i=0}^{n} c_i x^i$. Pomagate si lahko z ukazom polyval.
- 2. Sprogramirajte metodo [koef,gram,desna] = aproksimantMNK(F, baza,a,b,N) za aproksimacijo funkcije F na intervalu [a,b] po metodi najmanjših kvadratov. Aproksimant je iz prostora, ki ga določajo bazne funkcije b, shranjene v celični tabeli. Parameter N določa število enakomerno izbranih točk v predpisu diskretnega skalarnega produkta.

Naj bo
$$F(x) = \sin(x)$$
 in $N = 10$, $[a, b] = [0, 2\pi]$.

- (a) Izračunajte pogojenostno število za Gramovo matriko, sestavljeno iz potenčne baze $1, x, \dots x^n$ za n = 2, 5, 10. Kaj opazite?
- (b) Aproksimirajte F po metodi najmanjših kvadratov za n = 4,5,6,7. Izračunajte napako aproksimacije v neskončni normi. Preverite, da napaka pada (ne narašča) z naraščajočim n.
- (c) Za n=4 poglejte, kako se spreminja napaka v 2-normi, če vzamemo različne N, npr. N=2,10,100. Kaj opazite? Utemeljite odgovor.
- (d) Definirajte bazo za zvezne odsekoma linearne funkcije na [a, b], sestavljeno iz t.i. "hat" funkcij H_0, \ldots, H_n , kjer je

$$H_i(x) = H^*((x - x_i)/h), \qquad x \in [a, b],$$

in h = (b - a)/n, $x_i = a + hi$, $H^*(x) = \max(1 - |x|, 0)$ za $x \in \mathbb{R}$. Kakšno strukturo ima Gramova matrika? Narišite bazo in aproksimant za F za n = 8.