## Taxes, Debts, and Redistribution

Anmol Bhandari, David Evans, Mikhail Golosov, Thomas J. Sargent

September 2013

## 3 Questions

- 1. How costly are government debts?
- 2. How do concerns for redistribution affect tax smoothing motives?
- 3. Quantify how should tax, transfer and debt policies respond to aggregate shocks that change inequality?

# Point of Departure: Representative agent models

#### **Debt levels:**

▶ Higher levels of debt are generally "more" distortionary.

### Tax smoothing:

- ▶ LS: With complete markets tax rates should be smooth.
- Werning: Extends the LS insights to heterogeneous agents by establishing an aggregation result.
- ► AMSS: With a risk free bond, tax rates are eventually smooth and all aggregate shocks are financed using transfers.

## Implicit and explicit redistribution

- Representative agent models implicitly model redistribution as a non-negativity constraint on lump sum transfers.
- Hardwires a discontinuity in the costs of fluctuating transfers around zero.
  - 1. The Ramsey planner either uses state-contingent securities to hedge aggregate shocks.

or

Accumulates a war chest of assets big enough to finance expenditures using returns on assets plus only positive transfers.

We begin with explicit redistribution motives and let the government set transfers optimally.

# Key ingredients

- ► **Heterogeneity:** Agents are heterogeneous in productivities and assets
- ▶ **Instruments:** A tax system that is affine in labor income
- Markets: All agents trade a single security whose payoffs can depend on aggregate shocks

## Answers to the 3 questions

#### 1. Invariance of debt level:

Absent borrowing constraints, Ricardian equivalence holds. Borrowing constraints weakly increase welfare

#### 2. Invariant distribution of tax rates:

- Has wide support
- ► The mean and variance of tax rates are driven by market incompleteness. The "covariances" that matter are
  - + Between returns on the asset and aggregate shocks (Public sector)
  - + Between consumption and ( pre-tax) earnings (Private sector)
- 3. **Business cycle dynamics:** (Preliminary) With countercyclical payoffs, tax rate and transfers increases with aggregate TFP.

## **Environment**

- Uncertainty: Markov aggregate shocks s<sub>t</sub>
- Demography: Continuum of infinitely lived agents plus a benevolent planner
- ▶ **Technology**: Output  $\int \theta_{i,t} I_{i,t} di$  is linear in labor supplies.
- Preferences (Households)

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t U^i \left( c_{i,t}, l_{i,t} \right)$$

▶ **Preferences** (Planner): Given Pareto weights  $\{\omega_i\}$ 

$$\mathbb{E}_0 \int \omega_i \sum_{t=0}^{\infty} \beta^t U_t^i(c_{i,t}, l_{i,t}) di$$

**Asset markets**: A "risky" bond with payoffs  $P_t = \mathbb{P}(s_t|s_{t-1})$ 

## Environment, II

► Affine Taxes: Agent i's tax bill

$$-T_t + \tau_t \theta_{i,t} I_{i,t}$$

- ▶ Budget constraints Let  $R_{t-1,t} = \frac{P_t}{q_{t-1}}$ 
  - Agent i:  $c_{i,t} + b_{i,t} = (1 \tau_t) \theta_{i,t} I_{i,t} + R_{t-1,t} b_{i,t-1} + T_t$
  - ▶ Government:  $g_t + B_t + T_t = \tau_t \int \theta_{i,t} I_{i,t} di + R_{t-1,t} B_{t-1}$
- Market Clearing
  - Goods:  $\int c_{i,t} di + g_t = \int \theta_{i,t} l_{i,t} di$
  - Assets:  $\int b_{i,t} di + B_t = 0$
- ▶ **Initial conditions**: Distribution of assets, productivities  $(\Psi_0(b_{i,-1},\theta_{i,-1}),B_{-1},s_{-1})$

## Ramsey Problem

### Definition

Allocation, price system, government policy: Standard

### Definition

**Competitive equilibrium**: Given  $(\Psi_0(b_{i,-1},\theta_{i,-1})_i,B_{-1},s_{-1})$  and  $\{\tau_t,T_t\}_{t=0}^{\infty}$  all allocations are chosen optimally, markets clear

### Definition

**Optimal competitive equilibrium**: A welfare-maximizing competitive equilibrium for a given  $(\Psi_0(b_{i,-1},\theta_{i,-1}),B_{-1},s_{-1})$ 

Recursive formulation

## Ricardian Equivalence

- ➤ **Result**: A large set of transfers and asset profiles support the same competitive allocation

  Taking away a unit of all agents' assets and increasing transfers by a unit leaves budget sets unchanged
- Implication: Ceteris paribus, an economy with higher level of initial government debt but same relative holdings has the same welfare
- ▶ **Corollary:** Exogenous borrowing constraints of the form  $b_{it} > \underline{b}_i$  are not restrictive

If some borrowing constraints bind, the planner can change transfers to slacken all of them

Thus, Ricardian equivalence holds with distortionary taxes and ad hoc borrowing limits

### Active channels

- 1. Varying labor taxes imposes dead weight losses.
- 2. Effects of taxes on redistribution depends on cross sectional heterogeneity of consumption and earnings.
- Fluctuating transfers is costly because of concerns for redistribution.
- 4. The benefits of fluctuating transfers depend of limits to fiscal hedging.

# Simple Example: 2 Agent QL economy

## Consider a "seemingly" AMSS economy

- 1. Two classes of agent with constant productivities  $\theta_1 > 0, \theta_2 = 0$
- 2. Preferences given by  $U(c, l) = c \frac{l^{1+\gamma}}{1+\gamma}$
- 3. Pareto weights  $\{\omega, 1-\omega\}$
- 4. Only i.i.d aggregate shocks to g(s)

### In this example,

- Costs of transfers will come from Pareto weights
- ▶ Hedging motive will be controlled using payoffs P(s)

## Case 1: Risk free bond

Normalize the assets of the unproductive agent to zero and let  $b_t$  denote the debt issued by the government.

### **Theorem**

Let 
$$\omega > \bar{\omega}$$
 and suppose  $P(s) = 1$ ,  $\lim_t \tau_t = -\infty$ ,  $\lim_t b_t = -\infty$  a.s

## Corollary

Suppose we augment our problem with a constraint  $b_t \geq \underline{b}$ . Then with risk-free debt there is an invariant distribution  $\psi$ . Morever, for any  $\hat{b} \in (\underline{b}, \overline{b}_n)$ ,  $\psi\left(\left[\underline{b}, \hat{b}\right]\right) > 0$  and  $\psi\left(\left[\hat{b}, \overline{b}_n\right]\right) > 0$ .

The invariant distribution of taxes is wide as fluctuations in transfers are costly

# Case 2: Perfect hedging

#### **Theorem**

Let  $\omega > \bar{\omega}$  and suppose  $\bar{b} < \bar{b}_n$  and payoffs satisfy

$$P(s) = 1 - rac{eta}{\overline{b}}(g(s) - \mathbb{E}g)$$

then for all  $b_{-1}$ ,  $b_t o \overline{b}$  a.s

## Corollary

The invariant distribution of b (and also tax rates) is degenerate with  $\bar{b} = -\beta \frac{\text{var}[g(s)]}{\text{cov}[P(s),g(s)]}$ 

The limiting allocation corresponds to a complete market Ramsey problem

# Case 3: Imperfect hedging

### Decompose payoffs

$$P(s) = \hat{P}(s) + \bar{P}(s)$$

where  $\overline{P}(s)=1-rac{\beta}{\overline{b}}(g(s)-\mathbb{E}g)$  and  $\hat{P}(s)$  is orthogonal to g(s).

#### **Theorem**

For  $\omega > \bar{\omega}$ , the ergodic distribution of debt of the policy rules linearized around  $(\bar{b}, \bar{P}(s))$  will have mean  $\bar{b}$  and and coefficient of variation

$$\frac{\sigma_b}{\overline{b}} \le \sqrt{\frac{\operatorname{var}(\hat{P})}{\operatorname{var}(\overline{P})}}$$

The speed of convergence to the ergodic distribution given by

$$\frac{\mathbb{E}_{t-1}(b_t - \overline{b})}{(b_{t-1} - \overline{b})} = \frac{1}{1 + |\text{cov}(P(s), g(s))|}$$

# More generally

#### 1. Risk aversion

- Endogenous component to covariance between payoffs and expenditure needs.
- Costs of transfers come from spreads in marginal utilities.

### 2. Idiosyncratic risk

- Joint distribution of consumption and pre-tax earnings drives the mean level of taxes
- ► The spread of taxes is mainly a determined by public sector's fiscal hedging abilities

## Numerical example

#### Features:

- Continuum of agents
- Pre tax wage earnings with transitory and persistent component
- ▶ IID aggregate TFP shocks

#### Calibration:

- For now innovation to aggregate and idiosyncratic wages are orthogonal
- Initial distribution of wages and earnings calibrated to broadly match Daz-Gimnez et al

Study responses to aggregate shocks

# **Findings**

- 1. As before tax rates can drift in the long run.
- 2. In the short run what matters is how needs for redistribution change over business cycle.
  - ► The heterogeneity in wealth effect drives how aggregate shocks affect the distribution of labor earnings
  - The cylicality of interest rate affect needs and costs of increasing transfers

## **Bond Economy**



Figure: This plots a simulation for taxes and transfers for 100 periods. The dotted (bold) line is the economy with (without) i.i.d aggregate shocks

## **Bond Economy**



Figure: This plots a "impulse response" (5 period of high aggregate TFP followed by no aggregate shocks) for taxes, transfers. The dotted (bold) line is the economy with (without) idiosyncratic risk

# Changes in inequality: Bond Economy



Figure: Path for (cross-sectional) coefficient of variation after 5 periods of "High" TFP followed by no shocks

## Procyclical payoffs



Figure: This plots a "impulse response" (5 period of high aggregate TFP followed by no aggregate shocks) for taxes, transfers. The dotted (bold) line is the economy with (without) idiosyncratic risk

# Changes in inequality: Procyclical payoffs



Figure: Path for (cross-sectional) coefficient of variation after 5 periods of "High" TFP followed by no shocks

# Conclusions/Next Steps

- Size of the debt alone does not matter
- Optimal tax and transfer scheme balance
  - 1. welfare losses from fluctuating taxes
  - 2. welfare losses from fluctuating transfers
- Limits to fiscal hedging are key for dynamics of taxes and transfers

## **Next Step:**

- Calibrate a richer model for idiosyncratic risk that allows for higher moments to vary systematically over business cycle
- More richer taxation scheme

# Ramsey problem: Recursive formulation

### Split into two parts

- 1.  $\mathbf{t} \geq \mathbf{1}$ : Ex-ante continuation problem with state variables  $\{\Gamma_{t-1}(x_{i,t-1},m_{i,t-1},\theta_{i,t-1}),s_{t-1}\}$ , where
  - ▶ Scaled assets:  $x_{i,t-1} = u_{c,i,t-1}b_{i,t}$
  - ▶ Scaled "market weights":  $m_{i,t-1} \propto \frac{1}{u_{c,i,t-1}}$
- 2.  $\mathbf{t} = \mathbf{0}$ : Ex-post initial problem with state variables  $(\Psi_0(b_{i,-1}), s_0)$

# Bellman Equation for $t \geq 1$

$$V(\Gamma_{\scriptscriptstyle{-}},s_{\scriptscriptstyle{-}}) = \max_{\substack{c_i(s),l_i(s),x_i(s),m_i(s)\\\tau(s),T(s),\alpha_1,\alpha_2(s)}} \sum_s \Pr(s|s_{\scriptscriptstyle{-}}) \left[ \int \omega_i u(c_i(s),l_i(s)) di + \beta V(\Gamma(s),s) \right]$$

where the maximization is subject to

$$\frac{x_{i,-}u_{i,c}(s)P(s|s_{-})}{\beta \mathbb{E}_{s_{-}}^{i}u_{i,c}(s)P(s|s_{-})} = u_{i,c}(s)[c_{i}(s) - T(s)] + u_{i,l}(s)l_{i}(s) + x_{i}(s)$$

$$\alpha^{1} = m_{i,-}\mathbb{E}_{s_{-}}^{i}u_{i,c}(s)$$

$$\alpha^{2}(s) = m_{i}(s)u_{i,c}(s)$$

$$- u_{i,l}(s) = [(1 - \tau(s)]u_{i,c}(s)\theta_{i}(s)$$

$$\int m_{i}(s)di = 1$$

$$\int l_{i}(s)\theta_{i}(s)di = \int c_{i}(s)di + g(s)$$

## Bellman equation for t = 0

$$V_{0}\left(\Psi_{0}(b_{i,-1}), s_{0}\right) = \max_{\substack{c_{i,0}, l_{i,0}, x_{i,0}, m_{i,0} \\ \tau_{0}, T_{0}}} \int \omega_{i} U^{i}(s_{0}) + \beta V\left(\Gamma_{0}, s_{0}\right)$$

where the maximization is subject to

$$b_{i,-1}u_{i,c,0}=u_{i,c,0}[c_{i,0}-T_0]+u_{i,l,0}l_{i,0}+x_{i,0}$$
  $-u_{i,l,0}=(1- au_0)u_{i,c,0} heta_{i,0}$   $\int m_{i,0}di=1$   $\int l_{i,0} heta_{i,0}di=\int c_{i,0}di+g_0$ 

