

대 한 민 국 특 허 청 KOREAN INTELLECTUAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호 : Application Number 특허출원 2000년 제 70579 호

PATENT-2000-0070579

출 원 년 월 일 Date of Application 2000년 11월 24일 NOV 24, 2000

출 원

삼성전자 주식회사

SAMSUNG ELECTRONICS CO., LTD.

Applicant(s)

인

2001 _년 10 _월 11 _일

CERTIFIED COPY
PRIORITY DOCUM

특 허 청

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0005

【제출일자】 2000.11.24

【국제특허분류】 H04M

【발명의 명칭】 이동통신시스템에서 물리 하향 공유 채널의 전송

안테나 어레이를 위한 통신 수행 장치 및 방법

【발명의 영문명칭】 Apparatus and method of transmit antenna arrays

for Physical Downlink Shared Channel in mobile

communication system

【출원인】

【명칭】 삼성전자 주식회사

【출원인코드】 1-1998-104271-3

【대리인】

【성명】 이건주

[대리인코드] 9-1998-000339-8

【포괄위임등록번호】 1999-006038-0

【발명자】

【성명의 국문표기】 김성진

【성명의 영문표기】 KIM,Sung-Jin

【주민등록번호】 690116-1830014

【우편번호】 442-470

【주소】 경기도 수원시 팔달구 영통동 404-1201

【국적】 KR

【발명자】

【성명의 국문표기】 이용석

【성명의 영문표기】 LEE, Young-Suk

【주민등록번호】 730425-1347934

【우편번호】 442-470

【주소】 경기도 수원시 팔달구 영통동 154-1203

【국적】 KR

【발명자】

【성명의 국문표기】 이현우

【성명의 영문표기】 LEE,Hyun Woo

【주민등록번호】 630220-1709811

【우편번호】 441-390

【주소】 경기도 수원시 권선구 권선동 택산 아파트 806동

901호

【국적】 KR

【발명자】

【성명의 국문표기】 황승오

【성명의 영문표기】HWANG, Sung-Oh【주민등록번호】720911-1405224

【우편번호】 449-840

【주소】 경기도 용인시 수지읍 벽산아파트 203동 501호

【국적】 KR

【발명자】

【성명의 국문표기】 곽병재

【성명의 영문표기】KWAK,Byung-Jae【주민등록번호】670729-1473517

【우편번호】 463-030

【주소】 경기도 성남시 분당구 분당동 68번지 장안타운 건

영아파트 103-1201 호

【국적】 KR >

【발명자】

【성명의 국문표기】 곽용준

【성명의 영문표기】KWAK, Yong Jun【주민등록번호】751210-1063411

【우편번호】 449-840

【주소】 경기도 용인시 수지읍 죽전리 339 대진1차아파트

101동1601호

【국적】 KR

【발명자】

【성명의 국문표기】 최성호

【성명의 영문표기】 CHOI.Sung Ho

【주민등록번호】 700405-1268621

【우편번호】 463-010

【주소】 경기도 성남시 분당구 정자동 느티마을 306동 302

호

【국적】 KR

【발명자】

【성명의 국문표기】 박상환

【성명의 영문표기】PARK, SANG HWAN【주민등록번호】660817-1788311

【우편번호】 441-390

【주소】 경기도 수원시 권선구 권선동 1265 보성아파트

609-1206

【국적】 KR

【우선권주장】

 【출원국명】
 KR

 【출원종류】
 특허

【출원번호】 10-2000-0059869

【출원일자】 2000.10.11

【증명서류】 첨부

【취지】 특허법 제42조의 규정에 의하여 위와 같이 출원합

니다. 대리인 이건주 (인)

[수수료]

【기본출원료】 20 면 29,000 원

 【가산출원료】
 26
 면
 26,000
 원

 【우선권주장료】
 1
 건
 26,000
 원

 [심사청구료]
 0
 항
 0
 원

【합계】 81,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

1020000070579

출력 일자: 2001/10/12

【요약서】

【요약】

본 발명은 이동통신 시스템에 관한 것으로서, 특히 비동기 방식을 사용하는 이동통신 시스템의 소프트 핸드오버 영역에서 하향 공유 채널의 전송 안테나 어레이를 제어하는 장치 및 방법에 관한 것이다.

본 발명은 이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 제어하는 방법에 있어서, 단말기가 현재 통신하고 있는 제1기지국으로부터 임의의 제2기지국으로 소프트 핸드오버할 경우, 상기 제2기지국은 상기 단말기로 설정되는 하향 공유 채널에 대해 시공간 블록 다이버시티 모드 또는 단일 안테나모드를 적용시켜 상기 단말기로 전송하는 과정과, 상기 단말기는 상기 제1기지국으로부터 수신되는 공통 파일럿 채널 신호를 수신하여 가중치를 결정하고, 상기결정된 가중치를 상기 제1기지국으로 전송할 전용 채널의 가중치로 적용시켜 전송하는 과정으로 이루어진다.

【대표도】

도 4a

【색인어】

전송 안테나 어레이, 가중치, 전용 채널, 하향 공유 채널, STTD, SA

1020000070579

출력 일자: 2001/10/12

【명세서】

【발명의 명칭】

이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 위한 통신 수행 장치 및 방법{Apparatus and method of transmit antenna arrays for Physical Downlink Shared Channel in mobile communication system}

【도면의 간단한 설명】

도 1a는 이동통신시스템의 물리 하향 공유 채널(PDSCH)의 구조를 도시한 도면

도 1b는 도 1a의 물리 하향 공유 채널(PDSCH)에 대응하여 단말기(UE)에게 할당되는 DL_DPCH의 구조를 도시한 도면

도 2는 하향 공유 채널(DSCH)을 수신하는 단말기(UE)가 소프트 핸드오버 지역에 위치할 경우 순방향 및 역방향 신호 흐름을 도시한 도면

도 3은 종래의 소프트 핸드오버 방식을 사용하는 전송 안테나 어레이의 동 작을 나타내는 도면

도 4a는 본 발명의 제1 실시예에 따른 전송 다이버시티 제어 과정을 도시한 도면

도 4b는 본 발명의 제2 실시예에 전송 다이버시티 제어 과정을 도시한 도면 도 4c는 본 발명의 제3 실시예에 전송 다이버시티 제어 과정을 도시한 도면 도 4d는 본 발명의 제4 실시예에 전송 다이버시티 제어 과정을 도시한 도면

도 4e는 본 발명의 제5 실시예에 전송 다이버시티 제어 과정을 도시한 도면 도 4f는 본 발명의 일 실시예에 따른 전송 안테나 어레이 채널 측정 장치의 내부 구성을 도시한 도면

도 5는 도 4a에 도시한 전송 다이버시티 제어과정에 따른 실행 절차를 도시한 순서도

도 6은 도 4a에 도시한 전송 다이버시티 제어 절차를 수행하는 단말기 수신 기 구조를 도시한 블록도

도 7은 도4d를 수행하기 위한 단말 장치의 실시예를 도시한 도면 도 8은 도4d를 수행하기 위한 기지국 장치의 실시예를 도시한 도면

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 이동통신 시스템에 관한 것으로서, 특히 비동기 방식을 사용하는 이동통신 시스템의 소프트 핸드오버 영역에서 하향 공유 채널의 전송 안테나 어 레이를 제어하는 장치 및 방법에 관한 것이다.
- 의반적으로, 제3세대(3rd Generation) 이동통신 방식 중 유럽에서 사용하는 비동기 이동 통신 방식인 WCDMA에서 사용하는 물리 하향 공유 채널(PDSCH:

Physical Downlink Shared Channel - 이하 'PDSCH'라 칭함)은 다수의 사용자 혹은 단말기들이 공유하는 채널을 말한다. 상기 PDSCH는 10[ms] 라디오 프레임(Radio

Frame) 단위로 사용자 혹은 단말기(UE: User Equipment - 이하 'UE'라 칭함)에게 패킷 데이터(Packet Data) 혹은 기타 고속 데이터를 송신하기 위해 할당되는 채 널로서, 다수의 UE가 공통적으로 사용하는 채널이다. 상기 PDSCH는 프레임 (frame) 단위로 전송하는 데이터의 전송율을 다르게 할 수 있으며, WCDMA방식에 서 기지국(NodeB)과 UE사이에 설정되는 전용 채널(Dedicated Channel : 이하 ' DCH'라 칭함)과 마찬가지로 슬랏(slot) 단위로 전송 안테나 어레이의 가중치 조 절 및 전력 제어(Power Control)가 가능한 채널이다. 상기 라디오 프레임은 WCDMA방식에서 신호를 전송하는 기본 단위이며 길이는 10[ms]이고, 15개의 슬랏 이 모여 하나의 라디오 프레임을 구성한다. 또한 상기 PDSCH는 순수하게 사용자 데이터(User Data)만 전송하는 채널이며, 상기 PDSCH의 전력제어를 위해 상기 PDSCH가 UE에게 할당될 때 이와 동시에 하향 전용 물리 채널(Downlink Dedicated Physical Channel : 이하 'DL_DPCH'라 칭함.)을 상기 Œ에 할당하고, 상기 DL_DPCH는 상기 PDSCH의 전력제어를 위한 채널이 된다. 상기 PDSCH는 하나의 UE 혹은 사용자에게 연속적으로 몇 개의 프레임동안 전송될 수 있으며, 단 한 개의 프레임만이 전송될 수도 있고, 또한 여러 UE에게 언제 상기 프레임을 전송할 것 인지에 대한 것은 상위 계층의 스케쥴링(scheduling)에 의해 결정된다.

- <17> 상기 PDSCH의 구조 및 이에 대응하여 UE에 할당되는 DL_DPCH 구조를 도 1a 및 도 1b를 참조하여 설명하기로 한다.
- 상기 도 1a는 이동통신시스템의 물리 하향 공유 채널(PDSCH)의 구조를 도시한 도면이며, 상기 도 1b는 상기 물리 하향 공유 채널(PDSCH)에 대응하여

 단말기(UE)에게 할당되는 DL DPCH의 구조를 도시한 도면이다.

전저, 상기 도 1a를 참조하면, 상기 도 1a에 도시되어 있는 바와 같이 상기 PDSCH의 하나의 라디오 프레임(radio frame)(101)은 10[ms] 이며, 상기 라디오 프레임은 15개의 슬랏(Slot#0, Slot#1, Slot#2, ..., Slot#i, ..., Slot#14)으로 구성된다. 여기서, 상기 하나의 슬랏, 일 예로 Slot#i(103)는 2560 칩(Chip)의 길이를 가지며, 상기 하나의 Slot#i(103)을 통해 전송되는 정보의 양은 상기 PDSCH 슬랏에 사용되는 확산율(SF: Spreading Factor, 이하 'SF'라 칭함)에 반 비례하며, 상기 SF는 4부터 256까지의 값을 가지고 상기 SF의 값에 따라 전송되는 정보의 데이터를 확산하게 된다. 그리고, 상기 PDSCH를 통해서는 오직 사용자 데이터(Data)만이 전송된다.

다음으로, 상기 도 1b를 참조하면, 상기 도 1a에서 설명한 바와 같이 PDSCH를 사용할 경우 기지국에 의해 상기 PDSCH에 대응되는 DL_DPCH가 해당 UE에게 할당된다. 상기 DL_DPCH의 라디오 프레임(111) 역시 15개의 슬랏(Slot#0, Slot#1, Slot#2, ..., Slot#i, .. , Slot#14)으로 구성된다. 여기서, 상기 하나의 슬랏은 상기 도 1b에 도시되어 있는 바와 같이 Datal(113), 송신전력제어(TPC:Transmit Power control, 이하 'TPC'라 칭함) 비트(112)와, 전송율 정보(TFCI: Transmit Format Combination Indicator, 이하 'TFCI'라 칭함) 비트(114)와, Data2(115), 그리고 파일럿(Pilot)(116)으로 구성된다. 상기 DL_DPCH의 한 슬랏은 상기 슬랏을 구성하는 Data1, TPC, TFCI, Data2, Pilot의 길이에 따라 여러 가지 구조를 가질 수 있다.

<21> 여기서, 상기 Data1(113)과 Data2(115)는 하향 전용 물리 데이터 채널
(Downlink Dedicated Physical Data Channel : 이하 'DL_DPDCH'라 칭함)을 통해

전송되며, 상기 DL_DPDCH를 통해서는 사용자 데이터와 상위 계층의 시그널링 (signaling) 정보가 전송된다. 또한 TPC(112), TFCI(114). 파일럿(Pilot)(116)은 하향 전용 물리 제어 채널 (Downlink Dedicated Physical Control Channel : 이하 'DL_DPCCH'라 칭함)을 통해 전송되며, 상기 TPC(112)는 UE로부터 기지국 (NodeB)으로 전송되는 상향(Uplink) 채널들의 송신 전력을 조절하는 명령어를 전송하는 필드이며, 상기 TFCI(114)는 상기 DL_DPCH로 데이터 레이트가 서로 다른 트랜스포트 채널(Transport channel)들이 전송되는 경우 이를 알려주는 부호어를 전송하는 필드이며, 파일럿(Pilot)(116)은 상기 UE가 수신하는 하향 신호의 전력 제어를 위해 UE가 하향 신호의 전송 전력을 측정할 수 있도록 해주는 필드이다. 여기서, 상기 트랜스포트 채널은 실제적으로 데이터의 전송을 담당하는 물리 계층과 상위 계층을 연결하는 역할을 하는 채널이다.

<23> 여기서, 상기 DSCH를 수신하는 UE가 소프트 핸드오버(soft handover) 지역에 위치하게 될 경우 순방향 및 역방향 신호 흐름을 도 2를 참조하여 설명하기로한다.

- <24> 상기 도 2는 하향 공유 채널(DSCH)을 수신하는 단말기(UE)가 소프트 핸드오 버 지역에 위치할 경우 순방향 및 역방향 신호 흐름을 도시한 도면으로서, 설명 상 편의를 위해 두 개의 기지국만을 고려하기로 한다.
- 일단, 상기 소프트 핸드오버(SOH: Soft Handover 이하 'SHO'라 칭함) 과정에서는 이동중인 UE가 기존에 통신중인 기지국에서 점점 멀어져 다른 기지국으로부터 신호를 받을 수 있는 지역까지 이동하였을 경우, 현재 통신중인 기존의기지국만이 아니라 다른 기지국에서도 신호를 수신하여 일정시간 동안 기존 기지국과 통신 중에 신호의 품질이 적정 수준에 이르지 못하게 된다. 그래서 상기 UE는 상기 신호의 품질이 적정 수준에 이르지 못하는 기존 기지국과 설정되어 있는채널을 해제하고, 상기 수신 신호의 품질이 좋은 다른 기지국으로 채널을 설정하여 통신중인 통화가 절단되지 않고 계속 수행된다.
- *26> 상기 도 2에 도시되어 있는 바와 같이 UE(211)이 현재 통신하고 있는 기존기지국을 기지국(Node B1)(201)이라고 할 때, 상기 기지국(NodeB1)(201)은 상기 UE(211)에게 PDSCH와 이에 대응하는 DL_DPCH를 전송하고 있다. 기지국(Node B2)(203)은 상기 UE(211)의 위치 이동으로 인해, 즉 상기 UE(211)가 상기기지국(NodeB2)(203)의 서비스 영역으로 접근함에 따라 상기 UE(211)에게 하향 전용 물리 채널(DL_DPCH)만을 전송하는 신규 기지국이다. 이와 같이 상기

UE(211)가 SHO 영역에 존재하게 될 경우, 상기 UE(211)로 동시에 신호를 전송하 도록 설정된 기지국들의 집합을 활성집합(Active set)이라고 한다.

◇가 기존 기지국(NodeB1)(201)으로부터 PDSCH를 수신하고 있는 UE(211)가 소프트 핸드오버 지역에 위치하고 있을 경우 발생되는 문제점은 상기 기지국 (Node B1)(201)으로부터는 PDSCH와 DL_DPCH를 수신하지만, 상기 신규 기지국 (Node B2)(203)으로부터는 DL_DPCH만을 수신하는 것에서 발생된다. 여기서, 상기 PDSCH가 소프트 핸드오버를 지원하지 않는 이유는 여러 가지가 있지만 대표적인 것으로 PDSCH가 DL_DPCH에 비해 상대적으로 고속 데이터를 천송하기 때문에 기지 국의 채널자원을 많이 사용하여 시스템 용량에 영향을 미치기 때문이다. 또한 비 동기 방식을 사용하는 이동 통신 시스템에서는 각 기지국 사이에 동기를 알 수 없음으로 인해 타이밍 문제가 발생할 수 있으며, 상기 DSCH는 다수의 UE들이 공 통적으로 사용하고 있는 채널이라 각 UE가 사용하는 시점에 대한 정교한 스케쥴 링이 이루어지는데 이 스케쥴링을 고려하여 다른 기지국에서 UE에게 DSCH를 천송하기 위해서는 구현상의 어려움이 발생하기 때문이다.

한편, 상기 기지국(Node B1)(201)과 기지국(Node B2)(203)에서 각각 전송되어, 상기 UE(211)로 수신되는 DL_DPCH들은 연결합(Soft Combining)되는 것으로, 상기 연결합이라 함은 상기 UE(211)에게 서로 다른 경로를 통해 수신된 각각의 신호들을 결합한다는 것을 의미한다. 따라서, 상기 기지국으로부터 수신되는 CPICH의 위상차를 구한 후, 이를 보상함으로써 상기 UE(211)에서 수신한 신호에 대한 영향

을 미치는 페이딩(fading)과 잡음(noise)의 영향을 감소시키는 것이 가능하게 된다. 여기서, 상기 연결합은 상기 UE(211)에게 동일한 정보가 서로 다른 기지국에서 오고 있을 경우에만 가능하며, 서로 다른 정보가 각각의 기지국에서 상기 UE(211)로 전송되어, 상기 UE(211)에서 상기 서로 다른 정보를 수신하고 있는 경우에는 상기 연결합을 수행한다 하더라도 잡음 성분으로 인식되어, 결국은 신호에 잡음 성분만이 증가되기 때문에 상기 연결합은 불가능하다.

- 상기 DL_DPCH의 해석에서 각각의 기지국, 즉 기지국(NodeB1)(201)과 기지국(Node B2)(203)로부터 상기 UE(211)로 전송되는 하향 신호들은 상기 도 1b에서 설명한 TPC(112) 비트만을 제외하고는 연결합되어 해석된다. 상기 TPC(112)가 연결합되어 해석되지 않고 따로 해석되는 이유는 상기 UE(211)의 위치가 일정하기 않기 때문에 기지국(Node B1)(201)이 수신하는 UE(211)의 신호는 강하고, 상기 기지국(Node B2)(103)이 수신하는 UE(211)의 신호는 약한 경우가 발생할 수 있으며, 혹은 그 반대의 경우가 발생할 수 있기 때문에 각각의 기지국으로부터 상기 UE(211)로 수신되는 TPC는 값이 다를 수가 있기 때문이다. 그래서, 상기 TPC(112)에 대해서는 연결합을 사용하지 않고 다수 기지국을 위한 별도의 TPC 해석 알고리즘을 통해 해석한다.
- 성기 도 2에서는 UE가 소프트 핸드오버 지역에 위치할 경우 순방향 및 역방향 신호들 및 그 해석에 대해서 설명하였으며, 상기 소프트 핸드오버에 따른 전송 안테나 어레이의 동작을 도 3을 참조하여 설명하기로 한다.
- <31> 도 3은 종래의 소프트 핸드오버 방식을 사용하는 전송 안테나 어레이의 동 작을 나타내는 도면이다.

상기 도 3에 도시한 바와 같이, UE(311)이 통신 중에 이동하여 소프트 핸드오버 영역에 위치하게 되면, 원활하게 통화이양이 될 수 있도록 일단 상기
UE(311)로 신호를 송신하고 있는 기지국(301,303)의 송신 전력을 최소로 낮추면
서도 상기 UE(311)의 수신 SINR을 최대화하도록 양 기지국에서 전송되는 CPICH의
위상차를 이용하여 가중치를 구한 후, 기존 기지국과 새로이 신호가 수신되는
상대편 기지국의 DL_DPCH 및 PDSCH에 동일한 상기 가중치를 기지국으로 피이드백
(feedback)한다.

- 상기 UE(311)는 상기 도 3에 도시되어 있는 상향 전용 채널(Uplink Dedicated Physical Channel: 이하 'UL_DPCH'라 칭한다.)의 FBI(Feedback Information) 필드를 통해 전송되는 가중치는 상기 두 기지국(Node B1, B2)(301, 303)에서 수신된 신호들을 합할 경우 그 수신 신호의 SINR이 최대가 되도록 결정한다. 상기와 같이, 상기 두 기지국(Node B1, B2)(301, 303)에서 수신된 신호를 결합한 신호의 SINR을 최대화 되도록 피이드백 가중치를 결정하기 때문에, 소프트 핸드오버 지역에서 한 기지국, 일예로 기지국(301)에서 송신하도록 규정하고 있는 DSCH 최적 가중치 가중에서 다음과 같은 문제가 발생한다.
- (34) 즉, UE(311)가 소프트 핸드오버 지역이 아닌 곳에 위치하고 있다면, 상기 UE(311)로 전송되는 PDSCH와 DL_DPCH의 전송 안테나 가중치는 상호 동일한 것을 사용한다. 결국 상기 DL_DPCH에 연동되어 PDSCH의 전송 안테나 어레이 가중치가 결정되는 것으로, DL_DPCH의 두 안테나 위상이나 크기비가 바뀌어 가중치 값이 변경되면, DSCH도 동일한 채널로 송신되고 있으므로 가중치를 동일하게 변경하게된다. 이런 이유 때문에 DSCH의 가중치는 연관된 DL_DPCH의 가중치를 사용한다.

그러나, UE(311)가 소프트 핸드오버 지역에 위치하고 있으면, UE(311)가 UL_DPCH로 전송하는 가중치는 UE(311)에게 PDSCH를 송신하는 기지국뿐만 아니라 활성집합(Active Set)내의 다른 기지국간 CPICH(의 위상차)를 측정하여 나온 가 중치를 이용하여 DL_DPCH와 DL_PDSCH의 전송 안테나 어레이가 동일하게 결정된다. 이를, 상기 3을 참조하여 설명하면, 상기 PDSCH의 전송 안테나 어레이 가중치는 UE(311)와 기지국(Node B1)(301)과의 채널 환경을 고려해서 결정하는데 반해, DL_DPCH의 전송 안테나 어레이 가중치는 UE(311)와 기지국(Node B1)(301)과의 채널 환경을 각각 고려해서 결정되어야 한다.

○ 결국, 상기에서 설명한 바와 같이 상기 종래 소프트 핸드오버 방식에 따른 상기 PDSCH의 전송 안테나 가중치는 DL_DPCH의 전송 안테나 가중치와 동일한 값을 사용하도록 제안되어 있기 때문에, 상기와 같은 문제점 즉, 소프트 핸드오버지역에서 UE(311)에게서 전송되어오는 가중치는 UE(311)와 Node B2(303)간의 채널 환경까지 고려한 가중치이기 때문에 이를 그대로 적용한다면 PDSCH는 적정 전송 안테나 어레이의 가중치와 차이가 있는 가중치가 적용된다는 문제점이 발생된다. 따라서 소프트 핸드오버 지역이 아닌 곳에서 DL_DPCH와 PDSCH에 사용하던 방법과 같이 동일한 가중치를 적용하여 전송 안테나 어레이 가중치를 적용하는 방법은 사용할 수 없게 된다. 그러므로, 소프트 핸드오버 지역에서 PDSCH의 적절한 전송 안테나 어레이를 제어하는 장치 및 방법의 필요성이 대두되게 되었다.

1020000070579

【발명이 이루고자 하는 기술적 과제】

- <37> 따라서, 본 발명의 목적은 소프트 핸드오버 지역에서 UE가 PDSCH의 전송 안 테나 어레이를 제어할 수 있는 장치 및 방법을 제공함에 있다.
- <38> 본 발명의 다른 목적은 소프트 핸드오버 지역에서 UE가 PDSCH의 다이버시티에 대한 최적의 가중치를 결정하여 PDSCH의 전송 안테나 어레이를 제어할 수 있는 장치 및 그 방법을 제공함에 있다.
- 본 발명의 또 다른 목적은 PDSCH를 수신하는 UE가 소프트 핸드오버 지역에서 UL_DPCCH의 FBI D 필드를 이용하여 PDSCH의 전송 안테나 어레이를 제어할 수 있는 장치 및 방법을 제공함에 있다.
- 본 발명의 또 다른 목적은 소프트 핸드오버 지역에서 PDSCH를 수신하는 UE
 가 DL_DPCH와 연동되지 않도록 상기 PDSCH에 대하여 다른 전송 안테나 다이버시
 티 방식을 사용하여 PDSCH 전송 안테나 어레이를 제어할 수 있는 장치 및 방법을
 제공함에 있다.
- 본 발명의 또 다른 목적은 소프트 핸드오버 지역에서 PDSCH와 DL_DPCH가 동시에 전송되는 프라이머리 기지국은 전송 안테나 어레이를 사용하고, PDCSH없이 DL_DPCH만 전송되는 나머지 기지국들은 STTD와 같은 개루프 전송 안테나 다이버시티를 사용하는 장치 및 방법을 제공함에 있다.
- 본 발명의 또 다른 목적은 소프트 핸드오버 지역에서 PDSCH와 DL_DPCH가 동시에 전송되는 프라이머리 기지국은 전송 안테나 어레이를 사용하고, PDCSH없이

DL_DPCH만 전송되는 나머지 기지국들은 전송 안테나 다이버시티 없이 단일 안테나로 전송하는 장치 및 방법을 제공함에 있다.

- 본 발명의 또 다른 목적은 PDSCH를 수신하는 UE가 소프트 핸드오버 지역에서 DSCH 핸드오버가 이루어지는 경우, 기지국별로 전송 안테나 다이버시티 모드를 변환하는 프로시져를 제공함에 있다. 이때, 상기 프로시져는 PDSCH를 보냈던 이전 기지국은 전송 안테나 어레이 사용을 중지하여 개루프 전송 안테나 다이버시티 모드 또는 싱글 안테나 모드로 들어가는데 반해 PDSCH를 새롭게 보내게 된 기지국은 개루프 전송 안테나 다이버시티 모드 또는 싱글 안테나 모드에서 전송 안테나 어레이를 사용하는 모드로 전환하도록 구성한다.
- 본 발명의 또 다른 목적은 PDSCH를 수신하는 UE가 핸드오버 지역에 위치할 경우, 하향 공통 채널을 위한 궤환 정보와 물리 전용 제어 채널을 위한 궤환 정 보를 별도의 상향 전용 물리 제어 채널을 통해 각각 전송하는 방법을 제공함에 있다.
- 생기한 목적들을 달성하기 위한 본 발명은, 본 발명은 이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 제어하는 방법에 있어서, 단말기가 현재 통신하고 있는 제1기지국으로부터 임의의 제2기지국으로 소프트 핸드오버할 경우, 상기 제2기지국은 상기 단말기로 설정되는 하향 공유 채널에 대해 시공간 블록 다이버시티 모드 또는 단일 안테나 모드를 적용시켜 상기 단말기로 전송하 는 과정과, 상기 단말기는 상기 제1기지국으로부터 수신되는 공통 파일럿 채널 신호를 수신하여 가중치를 결정하고, 상기 결정된 가중치를 상기 제1기지국으로

전송할 전용 채널의 가중치로 적용시켜 전송하는 과정으로 이루어짐을 특징으로 한다.

【발명의 구성 및 작용】

- 이하, 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 하기의 설명에서는 본 발명에 따른 동작을 이해하는데 필요한 부분만 이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
- 도 4a는 본 발명의 제1 실시예에 따른 전송 다이버시티 제어 과정을 도시한 도면이고, 도 4b는 본 발명의 제2 실시예에 전송 다이버시티 제어 과정을 도시한 도면이고, 도 4c는 본 발명의 제3 실시예에 전송 다이버시티 제어 과정을 도시한 도면이고, 도 4d는 본 발명의 제4 실시예에 전송 다이버시티 제어 과정을 도시한 도면이고, 도 4e는 본 발명의 제5 실시예에 전송 다이버시티 제어 과정을 도시한 도면이고, 도 4f는 본 발명의 일 실시예에 따른 전송 안테나 어레이 채널 측정 장치의 내부 구성을 도시한 도면이다.
- 전저, 상기 도 4a 내지 도 4f를 설명함에 있어 다음과 같은 점에서 동일하
 제 적용됨을 유의하여야한다.
- 이하 설명에서 본 발명의 이해를 돕기 위해 활성집합(active set)의 내의 기지국(Node B) 개수를 설명상 편의를 위해 2개로 한정하여 설명하기로 한다. 여기서, 상기 기지국(Node B)은 비동기 방식을 사용하는 시스템으로서, 동기 방식

을 사용하는 cdma 시스템의 BTS와 동일한 기능을 수행한다. 상기 기지국(Node B1)(401)은 현재 단말기(User Equipment, 이하 'UE'라 칭함)(411)와 통신을 수행하고 있는, 즉 상기 UE(411)에게 하향 전용 물리 채널(DL_DPCH)과 물리 하향 공유 채널(PDSCH)을 전송하는 기지국이다. 그리고, 기지국(Node B2)(403)은 활성집합으로 새로이 포함된 기지국으로서, 즉 상기 UE(411)이 소프트 핸드오버 지역에위하는 경우 상기 UE(411)에게 DL_DPCH를 전송하는 신규 기지국이다. 상기UE(411)는 상기 기지국(Node B1)(411)으로부터 DSCH와 DL_DCH를 수신하고, 상기기지국(Node B2)(403)으로부터는 DL_DPCH를 수신하며, 상기기지국(Node B1)(401)과 기지국(Node B2)(403)에게는 상향물리 전용 채널(UL_DPCH)에 포함되어 있는 정보들을 전송한다. 상기 UL_DPCH는 상기 UE(411)가 기지국(Node B)의구별 없이 전송하는 신호이며, 기지국(Node B1)(401)과 기지국(Node B2)(403)은 상기 UE(411)로부터 전송된 UL_DPCH를 수신하여 해석한다.

- <50> 도 4a는 본 발명의 제1 실시예에 따른 전송 다이버시티 제어 과정을 도시한 도면이다.
- 상기 도 4a에서는 UE(411)이 소프트 핸드오버 지역에 위치하여 신호를 수신하는 기지국(403), 즉 활성집합의 기지국(403)의 DL_DPCH 신호를 TxAA 모드가 지원 가능하더라도, STTD(Space Time block coded Tx Diversity: 시공간 블록 다이버시티) 또는 SA(Single Antenna) 모드로 전송하도록 한다. 즉, 상기 STTD는 개루프 안테나 다이버시티임으로 피이드백이 이루어지지 않음으로 양 기지국 CPICH의 연결합에 따른 DSCH 신호의 손실이 없게된다. 또한, 상기 SA는 한 개의 안테나임으로 다이버시티를 사용하지 않는다. 여기서, UL_DPCCH 정보중 FBI D-field

의 TxAA 가중치 정보는 사실상 기지국(Node B1)(401)에게만 유효하다. 그러므로 이때 가중치 정보는 상기 기지국(Node B1)(401)에서 전송한 공통 파일럿 채널 (Common PIilot CHannel, 이하 'CPICH'라 칭함)로부터 구해진다. 이렇게 하는 이유는 종래의 소프트 핸드 오버 방식에 있어서 기존 기지국(401)과 신규 기지국 (403) 모두를 TxAA 전송하도록 하여 두 기지국(401, 403) 각각으로부터 수신한 정보를 가산한 정보로부터 가중치를 구하고, 상기 구해진 가중치를 상기 기지국 (401)의 DSCH 가중치로 적용하도록 함으로써 생기는 문제, 즉 실제 적정 가중치와 차이가 있는 가중치를 DSCH에 적용하는 문제를 해결하기 위함이다. 즉, 규정상 상기 DSCH는 관계되어 있는 DL_DPCH의 전송 안테나 가중치와 동일한 값을 가중하도록 설정되어 있기 때문에, 두 기지국(401, 403) 모두에서 사용하는 가중치로 DSCH 신호를 가중했을 경우, 실제 적정 가중치와 차이가 있는 가중치를 상기 DSCH에 적용하게 되어 TxAA 동작이 그 성능을 발휘하지 못하는 경우를 제거하기 위함이다.

따라서, 상기 기지국(Node B1)(401)에서 송신되는 DSCH가 상기 기지국(Node B2)(403)으로 핸드오버되어 넘어가면, 상기 도 4A에 도시된 바와 같이 DSCH를 포함한 상기 기지국(Node B2)(403)의 DL_DPCH가 TxAA 모드로 송신되고, 이전 기지국(Node B1)(401)에 남겨진 DL_DPCH는 TxAA 모드에서 STTD/SA 모드로 전환되는 것이다. 한편, 상기 SA 모드와 STTD 모드가 기지국에서 같이 사용될 수 있다면, SA모드보다는 STTD모드를 사용할 것을 바람직한 실시예로 드는데, 그 이유는 극히 저속이 아닌 경우라면 STTD 방식의 안테나 다이버시티도 TxAA 못지않거나 더우수한 다이버시티 효과를 내기 때문이다. 심지어 저속이라 할지라도 TxAA와

1020000070579

STTD의 차이는 운영상의 차이가 있겠지만 최대 2dB 정도를 넘지 않는 정도의 차이가 있을 뿐 H/W는 더 단순하게 구성이 가능하다.

- (Open Loop Mode) 방식증의 하나이며, 데이터 신호 A가 전송 다이버시티 부호화 구간 T₁에 심벌 S₁, 전송 다이버시티 부호화 구간 T₂에 심벌 S₂이 순차적으로 입력되는 형태일 경우, 상기 STTD 인코딩을 수행하게 되면 상기 연속된 S₁S₂ 심벌은 안테나 1을 통해 S₁S₂로, 안테나 2를 통해 -S₂*S₁*로 출력된다. 또한, 상기 설명한 심벌 STTD 인코딩을 채널 비트 단위로 다시 설명하면, 상기 STTD 인코딩에서 설명한 바와 같이 상기 전송 다이버시티 부호화 시구간에 따라 입력되는 각각의 심벌들 S₁, S₂이 각각 b₀b₁, b₂b₃의 채널비트로 생성된다고 가정할 때 상기 심벌 S₁S₂, 즉 b₀b₁b₂b₃의 채널비트가 입력된다. 상기 b₀b₁b₂b₃의 채널비트를 STTD 인코딩하면 상기 안테나1로 채널 비트 b₀b₁b₂b₃(S₁S₂)를, 상기 안테나 2로 채널 비트 -b₂b₃b₀-b₁(-S₂*S ₁*)를 출력하는 것이다. 여기서, 상기 안테나 1은 기준 안테나이며, 상기 안테나 2는 다이버시티 안테나이다.
- <54> 도 4b는 본 발명의 제2 실시예에 전송 다이버시티 제어 과정을 도시한 도면이다.
- 상기 도 4b에는 DSCH를 포함하는 임의의 하향 채널이 소프트 핸드오버 지역으로 들어가게 되면 DL_DPCH는 기지국(Node B1)(421), 기지국(Node B2)(423)에 상관없이 STTD/SA로 전송되고, 상기 기지국(Node B1)(421)에서만 전송되고 있는 DSCH

는 TxAA로 송신한다. 즉, DL_DPCH의 성능은 감소하더라도 대부분의 데이터 전송에 이용되는 DSCH에만 TxAA를 이용함으로써 전체적으로 DSCH 신호의 손실이 감소되어 데이터의 신뢰성 있는 전송을 가능하게 하는 것이다. 여기서, 상기 기지국 (Node B1)(421)의 DL_DPCH에 포함되어 오는 dedicated pilot은 DSCH 복조 (demodulation)를 위한 정보를 부가적으로 포함해야 한다. 상기 dedicated pilot은 DSCH 복조(demodulation)를 위한 정보를 부가적으로 포함하는 방법은 TDM/CDM/FDM/Coded-DM/additional또는 modify field 방법 등이 있으며, 특히 DSCH를 수신하는 UE가 저속이라는 특성상 TDM이 바람직하게 고려된다.

- <56> 도 4c는 본 발명의 제3 실시예에 따른 전송 다이버시티 제어 과정을 도시한 도면이다.

1020000070579

제와 피이드백(feedback) 오류나 지연(delay) 오류 등과 같은 문제가 더해져서 SA 경우보다도 성능이 더 떨어지게 되므로 상기 TxAA 사용보다 STTD 또는 SA 방법을 사용하는 것이 더 바람직하다.

- <58> 도 4d는 본 발명의 제4 실시예에 따른 전송 다이버시티 제어 과정을 도시한 도면이다.
- 상기 도 4d에서 UE(471)이 소프트 핸드오버 지역에 들어오게 되면, 즉 기지
 국(Node B1)(461)이 전송하는 DSCH를 동반하는 DL_DPCH 채널이 소프트 핸드오버
 지역에 들어가는 경우 DSCH를 위한 별도의 FBI field2를 UL_DPCCH에 만들어 상기
 기지국(Node B1)(461)으로 전송하는 것이다. 즉, 상기 UE(471)는 두 개의 서로
 다른 가중치를 계산하여 각각 같은 UL_DPCH 안에 DCH를 위한 FBI field1 및 DSCH
 를 위한 FBI field2로 전송한다. 이 역시 부가적으로 FBI field를 만드는 방법은
 TDM/CDM/FDM/ /additional또는 modify field 방법 등이 있으며, DSCH를 수신하는
 단말이 저속이라는 특성상 TDM(time division multiplex)이 바람직하다.
- (60) 여기서, 상기 FBI field를 TDM으로 구분하여 FBI field1과 FBI field2를 보내는 구체적인 방법은 하기 표2와 같다. 종래의 방법은 하기 표1과 같으며 종래에 한 개의 FBI 필드를 사용하기 때문에 가중치 심벌의 I,Q 값을 두 slot으로 번같아 가며 전송했으며, 본 발명의 바람직한 실시예에 따른 표 2와 같은 방법은 두 개의 심볼을 연속으로 보내야 하기 때문에 IO, I1, QO, Q1과 같은 방법으로 전송한다. 단, I0+Q0는 DL_DPCH의 TxAA 가중치 심벌이고 I1+Q1는 PDSCH의 TxAA 가중치 심벌이다. 그리고, 하기 표에서는 DL_DPCH의 가중치 정보와 PDCSH의 가중

1020000070579

치 정보의 데이터량이 1:1로 동일한 경우의 하나 이는 일 예로 나타낸 것이며, 모드나 채널 환경에 따라 그 비율은 바뀌어야 한다.

또한, 하기 표 3은 상기와 같이 DSCH의 FBI filed를 이용하여 다른 기지국의 가중치를 보낼 경우에 슬랏 포맷을 나타내고 있다. 이 경우 UL_DPCCH에 TxAA가중치를 전송하기 위한 field를 추가적으로 설정해야 한다. 이 추가는 SSDT 필드 또는 pilot 필드 중 1비트 등을 사용하도록 구성하면 된다.

<62> 【班 1】

	Slot #	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
ſ	D 필드	I ₀	Q_0	I ₀	Q_{O}	Io	Q_0	I ₀	Q_0	Io	Q_{O}	I ₀	Q_0	Io	Q_{O}	I ₀

<63> 【丑 2】

Slot #	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
D 필드	Io	I_1	Q_0	Q_1	I ₀	I ₁	Q_{O}	Q_1	I ₀	I ₁	Q_{O}	Q_1	I ₀	I_1	Q_0

<64> 【丑 3】

	Slot #	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
ſ	D ₁ field	I ₀	Q_0	I ₀	Q_0	I ₀	Q_0	I ₀	Q_{O}	I_0	Q_0	I ₀	Q_0	I ₀	Q_0	Io
ĺ	D ₂ field	I ₁	Q_1	I ₁	Q_1	I ₁	Q_1	I ₁	Q_1	I ₁						

- <65> 도 4e는 본 발명의 제5 실시예에 따른 전송 다이버시티 제어 과정을 도시한 도면이다.
- '66' 상기 도 4e는 UE(491)가 소프트 핸드오버 지역에 들어오게 되면, 즉 기지국 (Node B1)(481)이 전송하는 DSCH가 소프트 핸드오버 지역에 들어가는 경우 DSCH

1020000070579

를 전송 가중치 적용 방식이 기존 방식과 동일하게 동작하되, 단 SSDT 시그날링을 사용하여 프라이머리 기지국인지 판별하고, 추가적으로 DSCH 송신파워를 높여 전송할 것인지, 아니면 높이지 않고 그대로 유지시켜 전송할 것인지를 결정한다. 물론 종래에는 전송 다이버시티(Tx Diversity)의 가중치는 한 개의 가중치 정보로부터 기존 방식과 동일하게 두 기지국에서 DL_DPCH는 물론 DSCH 기지국 모두에서 사용한다.

*67> 상기 SSDT 시그날링은 SSDT를 사용하는 경우에만 적용하는 것이 아니고, DSCH를 포함한 DL_DPCH가 소프트 핸드오버 지역에 들어갈 경우에도 사용되어야 하며, SSDT 시그널링을 통해 primary cell이라는 정보가 상기 기지국(Node B1)(481)으로 들어올 경우 추가적으로 송신 파워를 높이지 않고 DSCH를 전송하고, primary cell이 아니라는 정보가 들어오면, DSCH에 파워 오프셋 (offset)을 주어서 전송한다. 그런데 상기 송신 파워 오프셋(offset)은 상기 DSCH가 TxAA를 사용하는 경우보다 높은 파워 오프셋(offset)을 사용한다. 결론적으로 DSCH 채널의 전송 다이버시티 모드에 따라 SA를 위한 송신 파워 오프셋 (offset), STTD를 위한 송신 파워 오프셋(offset) 그리고 TxAA를 위한 송신 파워 오프셋(offset)이 각기 독립적인 값을 가지도록 설정해야만 한다는 것이다.

여기서, 상기 SSDT의 동작 원리를 설명하면 다음과 같다. 상기 SSDT는 소프 트 핸드오버 지역에 위치한 UE(491)가 상기 UE(491)의 활성집합에 있는 각각의 기지국들, 즉 기지국(481)과 기지국(483) 각각의 기지국들에 대해 임시 식별자 (Temporary Identification)를 부여한 후, 상기 기지국들 중에서 상기 UE(491)의 수신신호 품질을 가장 크게 만족시킬 수 있는 기지국을 선택한다. 그리고 상기

1020000070579

선택된 기지국, 일 예로 기지국(481)에만 상기 UE(491)에 DL_DPDCH를 전송하고, 상기 선택된 기지국(481) 이외의 다른 기지국(483)은 DL_DPCCH만을 전송하게 함으로써 활성 집합 내의 모든 기지국들이 소프트 핸드오버(SHO)를 지원하기 위한 동작을 수행함으로써 발생되는 간섭 신호의 양을 줄이게 되는 것이다. 상기 SSDT의 사용에 있어서 DL_DPDCH를 전송하는 기지국을 프라이머리 (Primary) 기지국이라고 하며, 상기 프라이머리 기지국은 UE(491)의 측정 정보에 의해 주기적으로 갱신된다. 상기 프라이머리 기지국을 갱신하는 방법은 UE(491)가 프라이머리 기지국의 임시 식별자를 활성집합 내의 다른 모든 기지국으로 전송하는 것이다.

상기 도 4e에서 SSDT 시그널링을 사용하여 전송 다이버시티(Tx Diversity) 가 적용되는 PDSCH 송신 전력을 제어하는 방법을 다시 한번 자세히 설명하면 다음과 같다. 상기 UE(491)는 기지국(Node B1)(481)과 기지국(Node B2)(483)에서 각각 전송되는 공통 파일럿 채널(CPICH)을 수신하여 CPICH의 파일럿 신호 세기를 비교한 후, 상기 CPICH의 파일럿 신호 세기를 비교한 결과를 가지고 프라이머리 기지국을 결정한다. 그리고 상기 UE(491)는 상기 결정된 프라이머리 기지국에 대해 미리 설정되어 있는 임시 식별자를 나머지 각 기지국들, 즉 기지국(483)으로 전송한다. 상기 도 4e의 기지국(Node B1)(481)은 상기 UE(491)에게 DL_DPCH와 PDSCH를 전송하는 기지국이고, 상기 도 4e의 기지국(Node B2)(483)은 상기 UE(491)의 활성집합에 새로이 포함된 기지국으로서 상기 UE(491)에게 DL_DPCH만을 건송하고 있다.

<70> 상기 UE(491)가 전송한 프라이머리 기지국에 대한 임시 식별자를 송신하게되면, 상기 기지국(Node B1)(481)은 PDSCH의 송신 전력을 DL_DPCH의 TPC를 적용

하여 결정하는 등 TxAA 가중치에 따른 영향이 최소라 보고 일반적인 송신 파워로 기존과 동일하게 전송한다. 즉 UE(491)가 전송한 TPC에 의해 PDSCH의 송신 파워의 증가 혹은 감소를 결정하는 것이고, 결국 상기 기지국(Node B1)(481)이 프라이머리 기지국이 되는 경우 상기 PDSCH의 TxAA 동작을 포함한 송신 파워의 제어는 상기 UE(491)가 소프트 핸드 오버 지역에 위치하고 있지 않을 경우와 동일하게 되는 것이다.

- 이렇게 상기 기지국(481)이 프라이머리 기지국으로 동작하고 있는 도중에, 상기 기지국(Node B2)(483)이 프라이머리 기지국으로 결정되면, 상기 기지국 (Node B1)(481)은 상기 UE(491)와의 거리가 멀어지거나 혹은 채널 환경이 열악하다는 추정을 하고, 상기 DSCH의 송신 파워에 고정된 파워 오프셋(offset)을 적용하여 상기 UE(491)에게 전송한다. 그리고 나서, 상기 프라이머리 기지국의 정보가 갱신되는 주기동안 UE(491)가 전송하는 TPC에 따라 DSCH의 송신 전력을 조절한다. 단, 상기 TxAA가 소프트 핸드오버 지역에 있는 DSCH에 사용될 경우, 그 고정된 파워 오프셋이 다이버시티 모드에 따라 다른 값이 사용되어야 한다는 점에유의하여야 한다.
- <72> 또한, 본 발명의 제6실시예에 따른 전송 다이버시티 방법을 설명하기로 한다.
- 상기 본 발명의 제6실시예는 DSCH를 수신하는 UE 가 소프트 핸드오버 지역에 존재하고, PDSCH를 전송하는 기지국이 폐루프 전송 안테나 다이버시티를 사용하여 상기 PDSCH를 전송할 경우, 상기 UE가 전송하는 UL_DPCCH를 신규로 하나 더할당하여 사용하는 방법이다. 여기서, 설명상 편의를 위하여 상기 UE가 상기

DSCH를 최초로 사용하게 되었을 때 기지국으로 전송하는 UL_DPCCH를 UL_DPCCH1이라 칭하고, 상기 UE가 상기 소프트 핸드오버 지역에 위치하고 있을 경우 신규로 추가 사용하는 UL_DPCCH를 UL_DPCCH2라 칭하기로 한다.

<74> 상기 제6실시예를 상세히 설명하기로 한다.

상기 UE가 사용하는 UL_DPCCH들은 3세대(3rd) 이동 통신 표준안인 WCDMA방 <75> 식에서는 확산율 256을 갖는 OVSF(Orthogonal Variable Spreading Factor: 이하 OVSF라 칭함)부호 256개 중에서 제일 첫 번째 OVSF 부호, 즉 길이 256에 부호비 트가 갖는 값이 모두 1인 OVSF 부호로 확산하도록 규정되어 있으며, 상기 UE로부 터 송신될 경우에도 반드시 Q-채널을 통해 전송될 수 있도록 규정되어 있다. 상 기 Q-채널을 통해 상기 UL_DPCCH가 전송되는 이유는 WCDMA 방식에서 규정한 것으 로서 상기 UE가 호 설정이 된 후 상향으로 전송할 데이터가 없을 경우에도 UL_DPCCH를 지속적으로 송신할 수 있도록 하여 상향 신호의 불연속적인 송신을 방지함으로서 전자기간섭장애를 막기 위함에 그 목적이 있는 것이다. 상기 UL_DPCCH와 같이 전송되는 UL_DPDCH는 확산율 4부터 256까지 사용할 수 있다. 상 기 UL_DPDCH는 최대 6개까지 전송될 수 있고, 상기 6개까지 전송되는 경우에는 확산율 4를 사용하며, I-채널을 통해 3개의 UL_DPDCH, Q-채널을 통해 3개의 UL_DPDCH가 전송되고, 상기 I-채널과 Q-채널을 통해 수신되는 데이터들은 기지국 수신기에서 각각 독립적으로 해석될 수 있기 때문에 상기 I-채널과 Q-채널에서 동일한 OVSF 부호를 사용함으로 인해 상기 전송되는 UL DPDCH들 상호간에 미치는 영향은 없다. 상기 UE가 UL_DPCCH를 신규로 하나 더 사용함에 있어서 상기 UE가 UL_DPCCH에 사용할 OVSF 부호를 결정하는 방법은 다수개가 가능할 수 있다.

1020000070579

76> 그 첫 번째 예로 현재 UL_DPCCH, 즉 UL_DPCCH1이 설정되어 있는 경우, 기본적으로 사용되는 OVSF부호인 확산율 256의 모든 부호비트의 값이 1인 부호와 동일한 OVSF부호를 새로 할당되는 UL_DPCCH, 즉 UL_DPCCH2에 할당하여 I-채널을 통해 전송하는 방법이 있다. 그리고, 두 번째 예로 상기 새로 할당되는 UL_DPCCH2에 사용할 OVSF부호를 현재 UE가 사용하고 있는 UL_DPCCH와 같은 OVSF 브랜치(branch)에서 생성되는 OVSF 부호들 중 하나를 선택하는 방법이 있다. 또한, 세번째 예로 상기 새로 할당되는 UL_DPCCH2에 사용할 OVSF 부호의 확산율을 128로 변경하여 사용하는 방법이 있다.

상기에서 설명한 바와 같이, 상기 DSCH를 수신하는 UE가 UL_DPCCH를 2개 사용하는 폐루프 안테나 다이버시티를 사용하여 하향 채널들을 전송하는 기지국과 통신하는 경우 상기 UE와 기지국간 통신을 설명하면 다음과 같다. 상기 UE가 핸드오버 지역에 위치하기 이전에 사용하던 UL_DPCCH, 즉 UL_DPCCH1의 궤환 정보 필드를 통해서는 상기 UE가 핸드오버지역에 들어옴으로 인해 생성된 UE의 활성 집합(active set)안의 기지국들이 전송하는 하향 DPCH의 폐루프 안테나 이득을 조정하는 궤환 정보를 전송하고, 새로 사용하는 UL_DPCCH, 즉 UL_DPCCH2의 궤환 정보 필드를 통해서는 상기 DSCH만을 위한 궤환 정보를 상기 DSCH를 전송하는 기지국으로 전송함으로써, 상기 DSCH의 각 안테나 전송 이득이 적정하게 조절되는 것이다. 그래서, 상기 UE가 DSCH를 수신함에 있어 폐루프 안테나 다이버시티 이 득을 충분히 얻을 수 있도록 하는 것이 가능하다. 상기와 같이 UL__ DPCCH1을 하향 DPCH의 안테나 전송 파라미터를 조절하는 궤환 정보를 전송하는데 사용할 수도 있고, 그 반대의 경우도 가능하다. 즉 새로 사용하는 UL_DPCCH2의 궤환 정보

1020000070579

필드에 하향 DPCH의 안테나 전송 파라미터를 조절하는 궤환 정보를 전송할 수도 있다.

- 《78》 상기와 같이 DSCH용 궤환 정보와 하향 DPCH용 궤환 정보를 따로 전송하는 경우, DSCH용 궤환 정보를 생성하는 기준은 첫 번째로 상기 DSCH를 전송하는 기 지국의 공통 파일럿 채널 혹은 하향 DPCH의 파일럿 필드, 혹은 DSCH를 직접 측정 하여 생성할 수 있다. 그리고 두 번째로, 하향 DPCH용 궤환 정보는 상기 UE의 활 성집합내의 각 기지국으로부터 전송되는 공통 파일럿 채널들을 합하여 최적의 안 테나 이득 파라미터를 가지고 생성할 수 있다.
- 도 4f는 본 발명의 일 실시예에 따른 전송 안테나 어레이 채널 측정 장치의 내부 구성을 도시한 도면으로서, 특히 소프트 핸드오버 지역에서 전송 안테나 어레이(TxAA)를 사용하는 DSCH 수신 UE의 TxAA 채널 측정 장치의 내부 구성을 도시한 도면이다. 현재 DSCH가 연결되어 있는 제 1기지국이 프라이머리 기지국일 경우, 상기 제 1기지국으로부터 수신되는 CPICH의 수신 파워에 의해 상기 TxAA에 적용되는 가중치가 결정되기 때문에 가중치의 두 factor [a1, a2]는 모두 1로 설정하고, 상기 제1기지국이 프라이머리 기지국이 아닌 경우, 상기 DSCH에 사용되는 TxAA 가중치의 신뢰도를 높이기 위해 a1 > a2인 값으로 CPICH 값들을 가중한후 가중치 결정 장치(495)를 수행한다. 즉, 상기 TxAA 가중치 결정 장치(495)는모든 활성 집단 셀에 보낼 가중치를 상황에 따라 차별적으로 생성하는 것이다.이상과 같이 제안한 TxAA를 사용하는 DSCH 수신 UE의 TxAA 채널 측정 장치를 수식으로 나타내면 하기 수학식 1과 같다.

<80> 【수학식 1】 P=a,||H,w||²+a,||H,w||²

1020000070579

- 성기 수학식 1에서, 상기 H_i는 채널 매트릭스(Channel Matrix)이며, w는 안 테나 가중치이고, a_i는 기지국별 가중 팩터이다. (단 i는 기지국 구별 번호)
- <82> 도 5는 상기 도 4a에 도시한 전송 다이버시티 제어과정에 따른 실행 절차를 도시한 순서도이다.
- <83> 먼저, UE(411)가 기지국(401)에 대한 통신을 수행하고 있는 일반적인 상태 에서, 즉 소프트 핸드오버 영역에 있지 않은 일반 통신 수행 상태(500단계)에서, 상기 UE(411)는 상기 기지국(401)로부터 수신되는 PDSCH를 포함하는 DL_DPCH 채 널과 DSCH 채널이 전송 안테나 어레이(TxAA) 모드로 동작하는지를 검사한다(503 단계). 상기 검사 결과 상기 DSCH 채널과 상기 DL_DPCH 채널이 TxAA 모드로 동작 하지 않을 경우 상기 UE(411)는 상기 500단계로 되돌아간다. 만약 상기 검사 결 과 상기 DSCH 채널과 상기 DL_DPCH 채널이 TxAA 모드로 동작할 경우 상기 UE(411)는 자신이 위치하고 있는 지역이 소프트 핸드오버 지역인가를 검사한다 (505단계). 상기 검사 결과 상기 UE(411) 자신이 위치하고 있는 지역이 소프트 핸드오버 지역이 아닐 경우 상기 UE(411)는 상기 500단계로 되돌아간다. 만약 검 사 결과 상기 UE(411) 자신이 위치하고 있는 지역이 소프트 핸드오버 지역일 경 우 상기 UE(411)는 현재 통신을 수행하고 있는 상기 기지국(401) 외에 다른 기지 국, 즉 제2 기지국(403)의 DL_DPCH이 활성 집단에 추가되었는지를 검사한다(507 단계).
- '84' 상기 검사 결과 상기 기지국(403)의 DL_DPCH이 활성 집단에 추가되지 않았을 경우 상기 UE(411)는 513단계로 진행하고, 만약 상기 검사 결과 상기 기지국 (403)의 DL_DPCH이 활성 집단에 추가되었을 경우 상기 UE(411)는 상기 DL_DPCH이

1020000070579

추가된 기지국이 TxAA 운영 가능한지를 검사한다(509단계). 상기 검사 결과 상기 DL_DPCH이 추가된 기지국이 TxAA 운영 가능하지 않을 경우 상기 UE(411)는 513단계로 진행한다. 만약 검사 결과 상기 DL_DPCH이 추가된 기지국이 TxAA 운영 가능할 경우 상기 UE(411)는 상기 DL_DPCH 추가된 기지국이 TxAA 대신 STTD 또는 SA모드를 사용하도록 한다(511단계). 다음으로 상기 UE(411)는 DSCH가 핸드오버 되었는지를 검사한다(513단계). 상기 검사 결과 상기 DSCH가 핸드오버 되지 않았을 경우 상기 UE(411)는 519단계로 진행한다. 만약 상기 검사 결과 상기 DSCH가 핸드오버 되었을 경우 상기 UE(411)는 519단계로 진행한다. 만약 상기 검사 결과 상기 DSCH가 핸드오버 되었을 경우 상기 UE(411)는 상기 제1기지국이 TxAA 사용하고 있는지 검사한다(515단계).

- <6> 도 6은 도 4a에 도시한 전송 다이버시티 제어 절차를 수행하는 단말기 수신
 기 구조를 도시한 블록도이다.

전저, UE(411)로 수신된 신호는 안테나(701)를 통해 수신되고, 상기 안테나(701)를 통해 수신된 신호는 다운 컨버터(down converter)(702)로 출력된 다. 상기 다운 컨버터(702)는 상기 수신신호를 합성된 주파수(f_c)와 믹싱하여 다 운 컨버팅한 후 저역 통과 필터(LPF: Low Pass Filter)(703)로 출력한다. 상기 저역 통과 필터(703)는 상기 다운 컨버터(702)에서 출력한 다운 컨버팅된 신호를 입력하여 필터링하여 그 필터링된 기저대역 신호를 아날로그/디지털 변환기(A/D Converter)(704)로 출력한다. 상기 아날로그/디지털 변환기(704)는 상기 저역 통 과 필터(703)에서 출력한 신호를 입력하여 디지털변환하고 상기 디지털 변환된 신호를 finger1로 전송한다.

생기 finger1은 상기 아날로그/디지털 변환기(704)에서 출력한 디지털 신호를 TxAA와 STTD에서 공통으로 수행하는 기능을 수행하는 공통 수행 장치(Common Processing)(705)에서 처리한 후 스위치(706)로 출력한다. 상기 스위치(706)는 전송 안테나 다이버시티 모드 제어기(Transmit Diversity mode selection controller for DL_DPCH/PDSCH during SHO)(710)의 제어에 따라 상기 공통 수행 장치(705)의 출력을 TxAA 장치(707) 또는 STTD/SA 장치(708)로 출력하도록 스위 칭하고, 상기 스위칭된 신호는 DSP(Digital Signal Processor)(709)로 출력된다. 여기서, 상기 전송 안테나 다이버시티 모드 제어기(710)는 상기 도 5에서 설명한 순서에 따른 알고리즘에 따라 동작된다. 그리고, 상기 도 6에 도시되어 있는 finger2 및 finger3 등 각 finger 내부 동작은 상기 설명한 finger 1의 동작과 동일하다. 그리고, 상기 DSP(709)는 상기 TxAA 장치(707) 또는 STTD/SA 장치

1020000070579

(708)에 의해 생성되는 결과를 이용하여 UE(411)가 필요로 하는 서비스에 맞는데이터를 디지털 처리하여 상위계층으로 전송한다.

또 7은 상기 도4d를 수행하기 위한 단말 장치의 실시예이다. 단말기로 들어 은 신호는 안테나(801), down converter(802), LPF(803) 그리고 A/D(804)를 지나 기저대역의 디지털신호로 되어 finger 1로 전송되고, 그 결과는 channel compensator & combiner(810)로 출력된다. 상기 finger 1에서는 상기 디지털신 호를 data demod(805), descramber-1(806)과 descramber-2(808)을 통과시키고, descramber-1(806)과 descramber-2(808)의 결과는 각각 despreader-1(807)과 despreader-2(809)를 통과시킨다. Data demod(805)의 클력 신호는 channel compensator & combiner(810)로 출력, despreader-1(807)의 결과는 channel compensator & combiner(810)와 TxAA weight generator(811)로 출력, despreader-1(807)의 결과는 channel compensator & combiner(810), TxAA weight generator(811)와 TxAA weight generator(812)로 출력한다. TxAA weight generator(811)와 TxAA weight generator(812)로 출력한다. TxAA weight generator(811)와 TxAA weight generator(812)는 각각 DPCH, PDSCH를 위한 가중 치 w1과 w2를 출력한다.

도 8은 상기 도4d를 수행하기 위한 기지국 장치의 실시예이다. 기지국은 UL_DPCCH로부터 받은 두 종류의 가중치를 구분하여 각각 DPCH와 PDSCH 채널에 가중한 후 그 결과를 각 안테나 신호별로 더한후 두 안테나로 출력한다. UL_DPCCH로부터 두 개의 서로 다른 가중치를 받는 장치(852)와 서로 다른 가중치를 구분하여 가중치를 생성하는 장치(851)가 기존 장치에 더해져야 한다.

한편 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나,
본 발명의 범위에서 벗어나지 않는 한도내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며
후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해정해져야 한다.

【발명의 효과】

- 상술한 바와 같은 본 발명은, 소프트 핸드오버 지역에서 UE가 PDSCH의 전송 안테나 어레이를 제어하는 것을 가능하게 하여 적정한 전송 안테나 가중치 적용 을 가능하게 한다는 이점을 가진다.
- 또한, 소프트 핸드오버 지역에서 PDSCH의 전송 안테나 가중치와 DL_DPCH의 전송 안테나 가중치를 차별화하여 적용하는 것을 가능하게 함으로써, 종래의 소프트 핸드오버 지역에서 PDSCH의 전송 안테나 가중치와 DL_DPCH의 전송 안테나 가중치가 동일한 값을 사용하여 PDSCH는 적정 전송 안테나 가중치와 차이가 있는 가중치가 적용된다는 문제점을 제거한다는 이점을 가진다.

【특허청구범위】

【청구항 1】

이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 제어하는 방법에 있어서,

단말기가 현재 통신하고 있는 제1기지국으로부터 임의의 제2기지국으로 소프트 핸드오버할 경우, 상기 제2기지국은 상기 단말기로 설정되는 하향 공유 채널에 대해 시공간 블록 다이버시티 모드 또는 단일 안테나 모드를 적용시켜 상기단말기로 전송하는 과정과,

상기 단말기는 상기 제1기지국으로부터 수신되는 공통 파일럿 채널 신호를 수신하여 가중치를 결정하고, 상기 결정된 가중치를 상기 제1기지국으로 전송할 전용 채널의 가중치로 적용시켜 전송하는 과정으로 이루어짐을 특징으로 하는 방법.

【청구항 2】

이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 제어하는 방법에 있어서,

단말기가 현재 통신하고 있는 제1기지국으로부터 임의의 제2기지국으로 소프트 핸드오버할 경우, 상기 제1기지국 및 제2기지국 모두는 하향 전용 물리 채널에 대해 시공간 블록 다이버시티 모드 또는 단일 안테나 모드를 적용시켜 상기 단말기로 전송하는 과정과.

상기 제1기지국은 상기 단말기에 설정되어 있는 하향 공유 채널에 대해서는 전송 안테나 어레이 모드를 적용시켜 상기 단말기로 전송하는 과정으로 이루어짐 을 특징으로 하는 방법.

【청구항 3】

제1항에 있어서.

상기 제1기지국은 상기 하향 전용 물리 채널에 상기 하향 공유 채널 신호 복조를 위한 전용 파일럿을 포함하여 전송함을 특징으로 하는 방법.

【청구항 4】

이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 제어하는 방법에 있어서,

단말기가 현재 통신하고 있는 제1기지국으로부터 임의의 제2기지국으로 소프트 핸드오버할 경우, 상기 제1기지국은 상기 단말기에 설정되어 있는 하향 공유 채널에 대해 시공간 블록 다이버시티 모드 또는 단일 안테나 모드를 적용시켜 상기 단말기로 전송하는 과정으로 이루어짐을 특징으로 하는 방법.

【청구항 5】

이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 제어하는 방법에 있어서,

단말기가 현재 통신하고 있는 제1기지국으로부터 임의의 제2기지국으로 소 프트 핸드오버할 경우, 상기 단말기가 하향 공유 채널에 대한 피드백 정보를 생 성하는 과정과,

상기 생성된 피드백 정보를 상기 제1기지국과 설정되어 있는 상향 물리 전용 제어 채널에 포함시켜 전송하는 과정으로 이루어짐을 특징으로 하는 방법.

【청구항 6】

이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 제어하는 방법에 있어서,

단말기가 현재 통신하고 있는 제1기지국으로부터 임의의 제2기지국으로 소 프트 핸드오버할 경우, 상기 단말기는 상기 제1기지국 및 제2기지국으로부터 수 신되는 하향 물리 전용 채널을 각각을 합하여 가중치 정보를 결정하는 과정과,

상기 단말기는 상기 제1기지국과 제2기지국 각각으로부터 수신되는 공통 파일럿 채널의 파일럿 신호 세기를 비교하고, 그 비교결과를 가지고 프라이머리 기지국을 결정하는 과정과,

상기 결정된 프라이머리 기지국에 대한 식별자를 상기 프라이머리 기지국 이외의 기지국으로 전송하는 과정과,

상기 프라이머리 기지국은 상기 단말기로 상기 단말기가 소프트 핸드오버 영역에 있지 않을 경우와 동일하게 전송 안테나 어레이 모드를 적용하는 과정으로 이루어짐을 특징으로 하는 방법.

【청구항 7】

이동통신시스템에서 물리 하향 공유 채널의 전송 안테나 어레이를 제어하는 방법에 있어서,

단말기가 현재 통신하고 있는 제1기지국으로부터 임의의 제2기지국으로 소프트 핸드오버할 경우, 상기 단말기는 상기 제1기지국에 기설정되어 있는 제1상 향 전용 물리 제어 채널외에 신규로 제2상향 전용 물리 제어 채널을 추가 설정하는 과정과,

상기 제1상향 전용 물리 제어 채널의 궤환 정보 필드를 통해 하향 전용 물리 채널의 궤환 정보를 전송하는 과정과,

상기 제2상향 전용 물리 제어 채널의 궤환 정보 필드를 통해 하향 공유 채널의 궤환 정보를 전송하는 과정으로 이루어짐을 특징으로 하는 방법.

【청구항 8】

제7항에 있어서,

상기 하향 공유 채널 궤환 정보는 상기 하향 공유 채널을 전송하는 기지국 의 공통 파일럿 채널을 측정하여 생성함을 특징으로 하는 방법.

【청구항 9】

제7항에 있어서,

상기 하향 전용 물리 채널의 궤환 정보는 상기 단말기의 활성집합 내 기지 국들 각각이 전송하는 하향 전용 물리 채널의 폐루프 안테나 이득을 조정하기 위 한 정보이며, 상기 기지국들 각각으로부터 수신되는 공통 파일럿 채널들 합산하 여 생성함을 특징으로 하는 방법.

「左目】 Data (N_{data} bits) T_{atot} = 2560 chips. 20+2* bite(k=0.....6) Slot #0 Slot #1 Slot #2 Slot #i Slot #14

Cell	TxAA weights	Tx power offset
Primary	FBI field (no modify)	No offset
Non	FBI field	Higher offset
Primary	(no modify)	than single antenna case

【도 5】

[도 6]

【도 7】

[도 8]

