Korektnosť a úplnosť výrokovologických tabiel

5. prednáška Logika pre informatikov a Úvod do matematickej logiky

<u>Ján Kľuka</u>, Ján Mazák, Jozef Šiška

Letný semester 2023/2024

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Obsah 5. prednášky

Dôkazy a výrokovologické tablá

Výrokovologické tablá – opakovanie

Korektnosť tabiel

Testovanie nesplniteľnosti, splniteľnosti a falzifikovateľnosti

Úplnosť

Nové korektné pravidlá

Rekapitulácia a plán

Minulý týždeň:

- Sformalizovali sme dôkazy sporom pomocou tabiel.
- Vyslovili, ale nedokázali tvrdenie o korektnosti tabiel: uzavreté tablo dokazuje výrokovologickú nesplniteľnosť
- a dôsledky pre dokazovanie vyplývania a tautológií.

Dnes:

- Dokážeme korektnosť tabiel.
- Preskúmame, čo vedia tablá povedať o splniteľnosti.
- Dokážeme úplnosť tabiel.

Dôkazy a výrokovologické tablá

Dôkazy a výrokovologické tablá

Výrokovologické tablá - opakovanie

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú
 - Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly

- a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:
 Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú
 - formulu A^+ z S^+ je tablom pre S^+ . • Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj
 - Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé **priame** rozšírenie \mathcal{T} ktorýmkoľvek z pravidiel:

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly

- a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:
 Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú
 - formulu A^+ z S^+ je tablom pre S^+ . Nech \mathcal{T} je tablo pre S^+ a v je nejaký jeho list. Potom tablom pre S^+ je aj
 - Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé priame rozšírenie \mathcal{T} ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly

- a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:
 Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú
 - formulu A^+ z S^+ je tablom pre S^+ . • Nech \mathcal{F} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj
 - Nech $\mathcal T$ je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé **priame rozšírenie** $\mathcal T$ ktorýmkoľvek z pravidiel:
 - α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - α_1 alebo α_2 . β : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je

- binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:
 - Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .
 - Nech \mathcal{F} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj
 - každé priame rozšírenie \mathcal{T} ktorýmkoľvek z pravidiel: α : Ak sa na vetve π_{ν} (ceste z koreňa do y) vyskytuje nejaká označená
 - formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - β : Ak sa na vetve π_v (ceste z koreňa do y) vyskytuje nejaká označená formula β , tak ako deti ν pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - S^+ : Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly

formulu A^+ z S^+ je tablom pre S^+ .

 α_1 alebo α_2 .

- a ktorý je skonštruovaný podľa nasledovných induktívnych pravidiel:

 Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú
 - Nech \mathcal{F} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{F} ktorýmkoľvek z pravidiel:
 - aždé priame rozšírenie \mathcal{T} ktorýmkoľvek z pravidiel: α : Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci
 - $m{\beta}$: Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula $m{\beta}$, tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať $m{\beta}_1$ a pravé $m{\beta}_2$.
- dieťa bude obsahovať β_1 a pravé β_2 . S^+ : Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$. Nič iné nie ie tablom pre S^+ .

Tablá a tablové pravidlá

Legenda: y je list v table \mathcal{T}, π_{v} je cesta od koreňa k y

Tablá a tablové pravidlá (pokračovanie)

Pôvodné tablo Možné priame rozšírenie Pravidlá a označené formuly v nich

Legenda: y je list v table \mathcal{T} , π_y je cesta od koreňa k y

Uzavretosť a otvorenosť vetvy a tabla

Definícia 5.2

Vetvou tabla \mathcal{F} je každá cesta od koreňa \mathcal{F} k niektorému listu \mathcal{F} .

Označená formula X^+ sa vyskytuje na vetve π v $\mathcal T$

vtt X^+ sa nachádza v niektorom vrchole na π .

Skrátene to budeme zapisovať $X^+ \in \text{formulas}(\pi)$.

Tablo ~ dôkaz sporom. Vetvenie ~ rozbor možných prípadov. ⇒ Spor musí nastať vo všetkých vetvách.

Definícia 5.3

 \emph{Vetva} π tabla $\mathcal T$ je $\emph{uzavretá}$ vtt na π sa súčasne vyskytujú označené formuly $\mathbf F X$ a $\mathbf T X$ pre nejakú formulu X.

Inak je π otvorená.

Tablo \mathcal{T} je uzavreté vtt každá jeho vetva je uzavretá.

Naopak, $\mathcal T$ je otvorené vtt aspoň jedna jeho vetva je otvorená.

Príklad – vetvy a uzavretosť

*7.8

Príklad 5.4 (Vetvy a uzavretosť)

Určme vetvy v table a zistime, či sú uzavreté a či je uzavreté tablo:

1.
$$\mathbf{T}(p(A) \to (p(B) \land p(C)))$$
 S^+

2.
$$\mathbf{T}((p(B) \lor p(D)) \to p(E))$$
 S^+
3. $\mathbf{T}(p(F) \to \neg p(E))$ S^+

3.
$$\mathbf{I}(p(F) \to \neg p(E))$$
 S^+
4. $\mathbf{F}(p(A) \to \neg p(F))$ S^+

5.
$$\mathbf{T} p(\mathbf{A})$$
 $\alpha 4$ 6. $\mathbf{F} \neg p(\mathbf{F})$ $\alpha 4$

7.

$$\mathbf{T}$$
 p(F)
 α6

 8.
 \mathbf{F} p(F)
 β3
 9.
 \mathbf{T} ¬p(E)
 β3

***5.11**

9.
$$\mathbf{f} \neg p(\mathbf{E}) \beta 3$$

10. $\mathbf{f} p(\mathbf{E}) \alpha 9$

$$\begin{array}{c|cccc}
\hline
10. & \mathbf{F} \, \mathbf{p}(\mathbf{E}) & \alpha \mathbf{9} \\
\hline
11. & \mathbf{F} \, \mathbf{p}(\mathbf{A}) & \beta \mathbf{1}
\end{array}$$

13.

14. **F**(p(B) \vee p(D)) β 2 15.

12.
$$T(p(B) \land p(C))$$
 $\beta 1$
13. $Tp(B)$ $\alpha 1$

*10,15

$$\frac{\alpha 12}{\mathsf{Tp}(\mathsf{E}) \quad \beta 2}$$

Dôkazy a výrokovologické tablá

Korektnosť tabiel

Korektnosť tablového kalkulu

Veta 5.16 (Korektnosť tablového kalkulu [Smullyan, 1979])

Nech S^+ je množina označených formúl a \mathcal{T} je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Dôsledok 5.17

Nech S je výrokovologická teória a X je výrokovologická formula. Ak existuje uzavreté tablo pre $\{\mathbf{T}A\mid A\in S\}\cup \{\mathbf{F}X\}$ (skrát. $S\vdash_p X$), tak z S výrokovologicky vyplýva X ($S\vdash_p X$).

Dôsledok 5.18

Nech X je výrokovologická formula.

Ak existuje uzavreté tablo pre $\{\mathbf{F}\,X\}$ (skrátene $\vdash_{\mathbf{p}} X$), tak X je tautológia $(\vDash_{\mathbf{p}} X)$.

Korektnosť – idea dôkazu

Aby sme dokázali korektnosť tabiel, dokážeme postupne dve lemy:

K1: Ak máme tablo pre splniteľnú množinu S^+ s aspoň jednou splniteľnou vetvou, tak každé jeho priame rozšírenie má tiež splniteľnú vetvu.

K2: Každé tablo pre splniteľnú množinu S^+ má aspoň jednu splniteľnú vetvu.

Z toho ľahko sporom dokážeme, že množina, pre ktorú sme našli uzavreté tablo je nesplniteľná.

Korektnosť – pravdivosť priameho rozšírenia tabla

Všimnime si:

Vetva sa správa ako konjunkcia svojich označených formúl — všetky musia byť naraz pravdivé.

Tablo sa správa ako disjunkcia vetiev — niektorá musí byť pravdivá.

Definícia 5.19

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ , nech π je vetva tabla \mathcal{T} a nech v je výrokovologické ohodnotenie pre \mathcal{L} . Potom:

- vetva π je pravdivá vo v ($v \models_p \pi$) vtt vo v sú pravdivé všetky označené formuly vyskytujúce sa na vetve π .
- tablo 𝒯 je pravdivé vo v (v ⊧_p 𝒯) vtt niektorá vetva v table 𝒯 je pravdivá.

Korektnosť – pravdivosť priameho rozšírenia tabla

Pomocou predchádzajúcej definície sformulujeme lemu K1 takto:

Lema 5.20 (K1)

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ a nech v je výrokovologické ohodnotenie pre \mathcal{L} .

Ak S^+ a \mathcal{T} sú pravdivé vo v.

tak aj každé priame rozšírenie \mathcal{T} je pravdivé vo v.

Dôkaz lemy K1.

Nech $v \models_p S^+$ a nech $\mathcal F$ je pravdivé vo v. Potom je pravdivá niektorá vetva v $\mathcal F$. Zoberme jednu takú vetvu a označme ju π . Nech $\mathcal F_1$ je priame rozšírenie $\mathcal F$. Nastáva jeden z prípadov:

• \mathcal{F}_1 vzniklo z \mathcal{F} pravidlom α , pridaním nového dieťaťa z nejakému listu y v \mathcal{F} , pričom z obsahuje α_1 alebo α_2 pre nejakú formulu α na vetve π_v .

Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π , a teda aj \mathcal{T}_1 je pravdivé vo v.

Ak $\pi=\pi_y$, tak α je pravdivá vo v, pretože α je na π . Potom aj α_1 a α_2 sú pravdivé vo v (pozorovanie 5.8). Vetva π_z v table \mathcal{F}_1 rozširuje vetvu π pravdivú vo v o vrchol z obsahujúci ozn. formulu α_1 alebo α_2 pravdivú vo v. Preto π_z je pravdivá vo v, a teda aj tablo \mathcal{F}_1 je pravdivé vo v.

Pozorovanie 5.8: $v \models_{p} \alpha \text{ vtt}$ $v \models_{p} \alpha_{1} \text{ a } v \models_{p} \alpha_{2}.$

Dôkaz lemy K1.

Nech $v \models_p S^+$ a nech $\mathcal F$ je pravdivé vo v. Potom je pravdivá niektorá vetva v $\mathcal F$. Zoberme jednu takú vetvu a označme ju π . Nech $\mathcal F_1$ je priame rozšírenie $\mathcal F$. Nastáva jeden z prípadov:

• \mathcal{F}_1 vzniklo z \mathcal{F} pravidlom β , pridaním detí z_1 a z_2 nejakému listu $y \vee \mathcal{F}$, pričom z_1 obsahuje β_1 a z_2 obsahuje β_2 pre nejakú formulu β na vetve π_y .

Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π , a teda aj \mathcal{T}_1 je pravdivé vo v.

Ak $\pi=\pi_y$, tak $v\models_p\beta$, pretože β je na π . Potom $v\models_p\beta_1$ alebo $v\models_p\beta_2$ (poz. 5.11).

 $\mathsf{Ak}\ v \models_{\mathsf{p}} \beta_1$,

 $\mathsf{tak}\ v \models_{\mathsf{p}} \pi_{z_1}, \mathsf{a}\ \mathsf{teda}\ v \models_{\mathsf{p}} \mathcal{T}_1.$

Ak $v \models_{p} \beta_{2}$, tak $v \models_{p} \pi_{z_{2}}$, a teda $v \models_{p} \mathcal{T}_{1}$. Pozorovanie 5.11: $\upsilon \models_{\mathrm{p}} \beta \text{ vtt}$ $\upsilon \models_{\mathrm{p}} \beta_1 \text{ alebo } \upsilon \models_{\mathrm{p}} \beta_2.$

Dôkaz lemy K1.

Nech $v \models_p S^+$ a nech $\mathcal F$ je pravdivé vo v. Potom je pravdivá niektorá vetva v $\mathcal F$. Zoberme jednu takú vetvu a označme ju π . Nech $\mathcal F_1$ je priame rozšírenie $\mathcal F$. Nastáva jeden z prípadov:

 • T₁ vzniklo z T pravidlom S+, pridaním nového dieťaťa z nejakému listu y v T,
 pričom z obsahuje formulu A+ ∈ S+.

Ak $\pi \neq \pi_y$, tak \mathcal{T}_1 obsahuje π , a teda aj \mathcal{T}_1 je pravdivé vo v.

Ak $\pi=\pi_y$, tak π_z v table \mathcal{T}_1 je pravdivá vo v, pretože je rozšírením vetvy π pravdivej vo v o vrchol z obsahujúci formulu A^+ pravdivú vo v (pretože $v \models_p S^+$ a $A^+ \in S^+$). Preto tablo \mathcal{T}_1 je pravdivé vo v.

Korektnosť — pravdivosť množiny a tabla pre ňu

Lema 5.21 (K2)

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ a nech v je ohodnotenie pre \mathcal{L} .

Ak S^+ je pravdivá vo υ , tak aj $\mathcal T$ je pravdivé vo υ .

Dôkaz lemy K2.

Nech S^+ je množina označených formúl, nech v je ohodnotenie a nech $v \models_p S^+$. Úplnou indukciou na počet vrcholov tabla $\mathcal T$ dokážeme, že vo v je pravdivé každé tablo $\mathcal T$ pre S^+ .

Ak má $\mathcal T$ jediný vrchol, tento vrchol obsahuje formulu $A^+ \in S^+$, ktorá je pravdivá vo v. Preto je pravdivá jediná vetva v $\mathcal T$, teda aj $\mathcal T$.

Ak $\mathcal T$ má viac ako jeden vrchol, je priamym rozšírením nejakého tabla $\mathcal T_0$, ktoré má o 1 alebo o 2 vrcholy menej ako $\mathcal T$.

Podľa indukčného predpokladu je \mathcal{F}_0 pravdivé vo v.

Podľa lemy K1 je potom vo v pravdivé aj \mathcal{T} .

Korektnosť – dôkaz

Dôkaz vety o korektnosti 5.16.

Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ .

Sporom: Predpokladajme, že existuje ohodnotenie, v ktorom je S^+ pravdivá. Označme ho v.

Potom podľa lemy K2 je vo v pravdivé tablo \mathcal{T} , teda vo v je pravdivá niektorá vetva π v \mathcal{T} .

Pretože $\mathcal T$ je uzavreté, aj vetva π je uzavretá. Na π sa teda nachádzajú označené formuly $\mathbf TX$ a $\mathbf FX$ pre nejakú formulu X. Pretože π je pravdivá vo v, musia byť vo v pravdivé všetky formuly na nej. Ale $v \models_{\mathbf p} \mathbf TX$ vtt $v \models_{\mathbf p} X$ a $v \models_{\mathbf p} \mathbf FX$ vtt $v \not\models_{\mathbf p} X$.

Teda $\mathbf{T}X$ a $\mathbf{F}X$ nemôžu byť obe pravdivé, čo je spor.

Dôkazy a výrokovologické tablá

Testovanie nesplniteľnosti, splniteľnosti

a falzifikovateľnosti

Úplná vetva a tablo

Príklad 5.22

Zistime tablom, či

$$\begin{split} & \big\{ \big(\big(rychly(p) \lor spravny(p) \big) \land \big(citatelny(p) \lor rychly(p) \big) \big) \big\} \\ & \vDash_p \big(rychly(p) \land \big(spravny(p) \lor citatelny(p) \big) \big). \end{split}$$

Vybudujeme tablo pre množinu označených formúl:

```
\begin{split} S^+ &= \big\{ \mathbf{T} \big( \big( \mathtt{rychly}(\mathtt{p}) \lor \mathtt{spravny}(\mathtt{p}) \big) \land \big( \mathtt{citatelny}(\mathtt{p}) \lor \mathtt{rychly}(\mathtt{p}) \big) \big), \\ &\quad \mathbf{F} \big( \mathtt{rychly}(\mathtt{p}) \land \big( \mathtt{spravny}(\mathtt{p}) \lor \mathtt{citatelny}(\mathtt{p}) \big) \big) \big\} \end{split}
```

Podarí sa nám ho uzavrieť?

Úplná vetva a tablo

Nech v príklade tablové pravidlá používame akokoľvek,

- nenájdeme uzavreté tablo, ale
- ak pravidlá nepoužívame opakovane na rovnakú formulu v rovnakej vetve, po čase vybudujeme úplné a otvorené tablo.

Definícia 5.23 (Úplná vetva a úplné tablo)

Nech S^+ je množina označených formúl a \mathcal{T} je tablo pre S^+ .

Vetva π v table \mathcal{T} je úplná vtt má všetky nasledujúce vlastnosti:

- pre každú označenú formulu α , ktorá sa vyskytuje na π , sa obidve označené formuly α_1 a α_2 vyskytujú na π ;
- pre každú označenú formulu β , ktorá sa vyskytuje na π , sa aspoň jedna z označených formúl β_1 , β_2 vyskytuje na π ;
- každá $X^+ \in S^+$ sa vyskytuje na π .

Tablo \mathcal{T} je úplné vtt každá jeho vetva je buď úplná alebo uzavretá.

Otvorené tablo a splniteľnosť

Z otvoreného a úplného tabla pre S^+ môžeme vytvoriť ohodnotenie v:

- 1. nájdeme otvorenú vetvu π ,
- 2. pre každý atóm A
 - ak sa na π nachádza **T** A, definujeme v(A) = t;
 - ak sa na π nachádza ${\bf F} A$, definujeme v(A)=f;
 - inak definujeme v(A) ľubovoľne.

V tomto v je pravdivá π , a preto je v ňom pravdivá aj S^+ (všetky formuly z S^+ sa vyskytujú na π , lebo π je úplná).

Otázka

- Dá sa vždy nájsť úplné tablo pre S⁺?
- Naozaj sa z úplného otvoreného tabla dá vytvoriť model S⁺?

Existencia úplného tabla

Lema 5.24 (o existencii úplného tabla)

Nech S^+ je konečná množina označených formúl.

Potom existuje úplné tablo pre S^+ .

Dôkaz.

Vybudujme tablo \mathcal{T}_0 pre S^+ tak, že do koreňa vložíme niektorú formulu z S^+ a opakovaním spravidla S^+ postupne doplníme ostatné.

Potom tablo postupne rozširujeme tak, že vyberieme ľubovoľný list y tabla \mathcal{F}_i , ktorého vetva π_v je otvorená a nie je úplná.

Potom nastane aspoň jedna z možností:
• Na
$$\pi_v$$
 sa nachádza nejaká formula α ,

ale nenachádza sa niektorá z formúl α_1 a α_2 .

• Na π_y sa nachádza nejaká formula β ,

ale nenachádza sa ani jedna z formúl β_1 a β_2 .

Ak platí prvá alebo obe možnosti, aplikujeme pravidlo α .

Ak platí iba druhá možnosť, aplikujeme pravidlo β . Získame tablo \mathcal{T}_{i+1} , s ktorým proces opakujeme.

Tento proces po konečnom počte krokov (prečo?) vytvorí nejaké tablo \mathcal{T}_n , v ktorom už neexistuje vetva, ktorá by bola otvorená a nebola úplná.

v ktorom uz neexistuje vetva, ktora by bola otvorena a nebola upina. Teda každá vetva v \mathcal{T}_n je buď uzavretá alebo úplná, čiže \mathcal{T}_n je úplné. \Box

Úplnosť

Dôkazy a výrokovologické tablá

Nadol nasýtené množiny a Hintikkova lemma

Definícia 5.25

Množina označených formúl S^+ sa nazýva nadol nasýtená vtt platí:

 H_0 : v S^+ sa nevyskytujú naraz $\mathsf{T} A$ a $\mathsf{F} A$ pre žiaden predikátový atóm A;

 H_1 : ak $\alpha \in S^+$, tak $\alpha_1 \in S^+$ a $\alpha_2 \in S^+$;

 H_2 : ak $\beta \in S^+$, tak $\beta_1 \in S^+$ alebo $\beta_2 \in S^+$.

Pozorovanie 5.26

Nech π je úplná otvorená vetva nejakého tabla $\mathcal{F}.$

Potom množina všetkých označených formúl na π je nadol nasýtená.

Lema 5.27 (Hintikkova)

Každá nadol nasýtená množina S^+ je splniteľná.

Dôkaz Hintikkovei lemv.

Chceme dokázať, že existuje ohodnotenie v. v ktorom sú pravdivé všetky označené formuly z S^+ . Definujme v pre každý predikátový atóm A takto:

$$v(A) = \begin{cases} t, & \text{ak } \mathbf{T}A \in S^+; \\ f, & \text{ak } \mathbf{F}A \in S^+; \\ t, & \text{ak ani } \mathbf{T}A \text{ ani } \mathbf{F}A \text{ nie sú v } S^+. \end{cases}$$

v je korektne definované vďaka H_0 (každému atómu priradí t alebo f, žiadnemu nepriradí obe).

- Indukciou na stupeň formuly dokážeme, že vo v sú pravdivé všetky formuly z S^+ :
- 1° Všetky označené predikátové atómy (formuly stupňa 0) z S^+ sú praydivé vo v.

Nech
$$X^+ \in S^+$$
 a nech platí IP: Vo v sú pravdivé všetky formuly z S^+ nižšieho stupňa ako X^+ X^+ je huď α aleho β :

stupňa ako X^+ , X^+ ie buď α alebo β : Ak X^+ je α , potom obidve $\alpha_1, \alpha_2 \in S^+$ (H₁), sú nižšieho stupňa ako X^+ .

a teda podľa indukčného predpokladu sú pravdivé vo v. preto (podľa poz. 5.8) je v ňom pravdivá aj α .

Ak X^+ je β , potom aspoň jedna z β_1 , β_2 je v S^+ (H₂). Nech je to ktorákoľvek, má nižší stupeň ako X^+ , teda podľa IP ie pravdivá vo v. a preto (podľa poz. 5.11) je vo v pravdivá aj β .

Úplnosť

Úplnosť kalkulu neformálne:

Ak je nejaké tvrdenie pravdivé, tak existuje jeho dôkaz v kalkule.

Veta 5.28 (o úplnosti tablového kalkulu [Smullyan, 1979])

Nech S^+ je konečná nesplniteľná množina označených formúl. Potom existuje uzavreté tablo pre S^+ .

Dôsledok 5.29

Nech S je konečná teória a X je formula.

 $\mathsf{Ak}\,S \vDash_{\mathsf{p}} X$, $\mathsf{tak}\,S \vdash_{\mathsf{p}} X$.

Dôsledok 5.30

Nech X je formula. Ak $\models_p X$, tak $\vdash_p X$.

Úplnosť platí aj pre nekonečné množiny, ale dôkaz je ťažší.

Úplnosť – dôkaz

Dôkaz vety o úplnosti.

Zoberme ľubovoľnú konečnú nesplniteľnú množinu označených formúl S^+ .

Podľa lemy o existencii úplného tabla vieme pre S^+ nájsť úplné tablo \mathcal{T} , teda také, že každá vetva je buď uzavretá alebo úplná.

Ak by niektorá vetva bola otvorená, potom musí byť úplná, a teda nadol nasýtená. Podľa Hintikkovej lemy by bola splniteľná. Pretože obsahuje všetky formuly z S^+ , bola by aj S^+ splniteľná, čo je spor s nesplniteľnosťou S^+ .

Preto musia byť všetky vetvy tabla $\mathcal T$ uzavreté.

Nové korektné pravidlá

Dôkazy a výrokovologické tablá

Problémy so základnými pravidlami

Základné tablové pravidlá sú jednoduché, ľahko overiteľné a analytické — z (ne)pravdivosti zloženej formuly odvodzujú (ne)pravdivosť jej priamych podformúl.

Nie sú ale úplne pohodlné ani prirodzené, hlavne β .

Príklad 5.31

Dokážme, že pre všetky formuly A, B, C, X, Y, Z:

$$\{(A \to C), (B \to C), (C \to X), (C \to Y), ((X \land Y) \to Z)\}$$
$$\vdash_{p} ((A \lor B) \to Z)$$

Všimnime si:

- časté použitia pravidla β na implikáciu, kde sa jedna vetva ihneď uzavrie;
 - opakovanie jedného podstromu dôkazu.

Riešenie príkladu 5.31

Tablo pre

$$\begin{split} S^+ = & \{ \, \mathsf{T}(A \to C), \mathsf{T}(B \to C), \mathsf{T}(C \to X), \mathsf{T}(C \to Y), \mathsf{T}((X \land Y) \to Z), \\ & \mathsf{F}((A \lor B) \to Z) \} \\ & \begin{array}{c} 1.\mathsf{T}(A \to C) & S^+ \\ 2.\mathsf{T}(B \to C) & S^+ \\ 3.\mathsf{T}(C \to X) & S^+ \\ 4.\mathsf{T}(C \to Y) & S^+ \\ 5.\mathsf{T}((X \land Y) \to Z) S^+ \\ 6.\mathsf{F}((A \lor B) \to Z) S^+ \\ 7.\mathsf{T}(A \lor B) & \alpha 6 \\ 8.\mathsf{F}Z & \alpha 6 \\ \end{split}$$

	$9.\mathbf{F}(X \wedge Y)\beta 5$								
		10. T A β7		19. ΤΒ β7				* 8, 28	
11. F A β1	12. T C β1			20. F <i>B</i> β2	21. T C β2				
* 10,11	13. F C β3	14. T <i>X</i> β3		* 19, 20	22. F C β3	23. T <i>X</i> β3			
	* 12, 13	15. F C β4	16. T Υβ4		* 21, 22	24. F C β4	25.1	Υβ4	
		* 12,15	17. F <i>X</i> β9 18. F <i>Y</i> β9			* 21, 24	26. F X β9	27. F Υ β9	
			* 14, 17 * 16, 18				* 23, 26	* 25,27	

Odstránenie problémov – nové pravidlá

Keby tablový kalkul obsahoval napríklad veľmi prirodzené pravidlá modus ponens, modus tolens a rez:

$$\begin{array}{c|c} T(X \to Y) & TX \\ \hline TY & \\ \hline T(X \to Y) & FY \\ \hline FX & \\ \hline TX & FX \\ \hline \end{array}$$
 (MP)

dôkaz v príklade by sa dal sprehľadniť a odstránila by sa duplicita.

Riešenie príkladu 5.31 s modus ponens a modus tolens

1. $T(A \rightarrow C)$	S^+
2. $T(B \rightarrow C)$	S^+
3. $\mathbf{T}(C \to X)$	S^+
4. $\mathbf{T}(C \to Y)$	S^+
5. $\mathbf{T}((X \wedge Y)$	$\rightarrow Z) S^+$
6. $\mathbf{F}((A \vee B)$	$\rightarrow Z) S^+$
7. $\mathbf{T}(A \vee B)$	α6
8. F Z	α6
9. $\mathbf{F}(X \wedge Y)$	MT 5, 8
10. T A β7	16. T Β β7
11. T C MP1,10	17. T C MP 2, 16
12. T X MP 3, 11	18. T X MP 3, 17
13. T Y MP4,11	19. T Y MP4,17
14. F X β9 15. F Y β9	20. F <i>X</i> β9 21. F <i>Y</i> β9
* 12, 14	* 18,20
1	

Riešenie príkladu 5.31 s rezom, modus ponens a modus tolens

```
1. \mathbf{T}(A \to C)
                  2. T(B \rightarrow C) S^+
                  3. \mathbf{T}(C \to X) S^+
                  4. T(C \rightarrow Y) S^+
                   5. \mathbf{T}((X \wedge Y) \to Z) S^+
                   6. \mathbf{F}((A \lor B) \to Z) S^+
                   7. \mathbf{T}(A \vee B)
                                        \alpha6
                   8. FZ
                                        α6
                   9. F(X \wedge Y) MT 5, 8
    10. TC cut
                                          15. F C cut
    11. TX MP 3, 10
                                                18. TB β7
                             16. TA β7
    12. TY MP 4, 10
                             17. TC MP1,16 19. FB MT2,15
13. FX \beta 9 14. FY \beta 9
                                  * 15, 17
                                                      * 18, 19
    * 11, 13 | * 12, 14
```

Ingrediencie korektnosti a úplnosti tabiel

Všimnite si:

Na dokázanie korektnosti tablového kalkulu stačilo, aby mali pravidlá vlastnosť:

$$\begin{array}{c|c} \frac{\alpha}{\alpha_1} & \frac{\alpha}{\alpha_2} \\ \hline \beta & \beta_1 & \beta_2 \end{array} \xrightarrow{A^+} A^+ \in S^+$$

Nech v je ľubovoľné ohodnotenie, v ktorom je pravdivá S^+ .

Ak je vo υ pravdivá premisa, tak je vo υ pravdivý aspoň jeden záver.

- Vďaka tejto vlastnosti zo splniteľnej množiny S⁺ skonštruujeme iba splniteľné tablá.
- Netreba opačnú implikáciu
 (ak je vo v pravdivý aspoň jeden záver, tak je vo v pravdivá premisa).

Na dôkaz **úplnosti** stačili pravidlá (S^+), α , β , pretože stačia na vybudovanie úplného tabla.

Nové pravidlo

Čo sa stane, ak pridáme nové pravidlo, napríklad modus ponens:

$$\frac{\mathbf{T}(X \to Y) \quad \mathbf{T}X}{\mathbf{T}Y} \qquad ? \tag{MP}$$

Upravíme definíciu priameho rozšírenia:

Úprava definície tabla

... Nech $\mathcal T$ je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* $\mathcal T$ ktorýmkoľvek z pravidiel:

MP: Ak sa na vetve π_y nachádzajú *obe* formuly $\mathbf{T}(X \to Y)$ a $\mathbf{T}X$, tak ako jediné dieťa y pripojíme nový vrchol obsahujúci $\mathbf{T}Y$.

Nové pravidlo vs. korektnosť a úplnosť

Korektnosť tabiel s MP:

Pri dôkaze lemy K1

Nech S^+ je množina označených formúl v jazyku $\mathcal L$, nech $\mathcal T$ je tablo pre S^+ a v je ohodnotenie pre $\mathcal L$. Ak sú S^+ a $\mathcal T$ pravdivé vo v, tak je vo v pravdivé aj každé priame rozšírenie tabla $\mathcal T$.

využijeme

Tvrdenie 5.32 (Korektnosť pravidla MP)

Nech X a Y sú ľubovoľné formuly a v je ľubovoľné ohodnotenie.

Ak sú vo v pravdivé $\mathbf{T}(X \to Y)$ a $\mathbf{T}X$, tak je vo v pravdivá $\mathbf{T}Y$.

Dôkaz.

 $\mathsf{Ked\check{z}e}\ \upsilon\models_{\mathsf{p}} \mathbf{T}(X\to Y), \mathsf{tak}\ \upsilon\models_{\mathsf{p}} (X\to Y), \mathsf{teda}\ \upsilon\not\models_{\mathsf{p}} X\ \mathsf{alebo}\ \upsilon\models_{\mathsf{p}} Y.$

Pretože ale $v \models_{p} \mathbf{T}X$, tak $v \models_{p} X$. Takže $v \models_{p} Y$, a teda $v \models_{p} \mathbf{T}Y$.

Dôkaz lemy K2 a samotnej vety o korektnosti — bez zmeny.

Úplnosť – bez zmeny, úplné tablo vybudujú základné pravidlá.

Tablové pravidlá vo všeobecnosti — problém

Zadefinovať vo všeobecnosti, čo je pravidlo a kedy je korektné, nie je také jednoduché.

Potrebujeme zachytiť, že pravidlo:

- má premisy, ktoré nejaký tvar a zdieľajú nejaké podformuly, napr. moduls tolens (MT) má premisy T(X → Y) a FY;
- odvodzuje z nich závery, ktoré tiež zdieľajú podformuly s premisami, napr. FX (alebo medzi sebou v prípade rezu).

pre všetky možné zdieľané podformuly, v našom príklade X a Y.

Tablové pravidlá vo všeobecnosti – vzor

Pravidlo sa dá predstaviť nasledovne:

Pravidlo má vzor — dvojicu tvorenú vzormi premís a záverov, kde spoločné podformuly predstavujú konkrétne atómy, napr. vzor pravidla MT:

$$\frac{\mathbf{T}(\mathbf{p}(\mathbf{c}) \to \mathbf{q}(\mathbf{c})) \quad \mathbf{F}\,\mathbf{q}(\mathbf{c})}{\mathbf{F}\,\mathbf{p}(\mathbf{c})}$$

Tablové pravidlá vo všeobecnosti — inštancia

Každý konkrétny prípad — inštancia pravidla vznikne substitúciou ľubovoľných formúl za atómy vo vzore:

$$\begin{split} T(p(c) &\to q(c))_{[p(c)|(sedan(a) \land biely(a)), \ q(c)|kupi(B, a)]} \\ &= Fq(c)_{[p(c)|(sedan(a) \land biely(a)), \ q(c)|kupi(B, a)]} \\ \hline &Fp(c)_{[p(c)|(sedan(a) \land biely(a)), \ q(c)|kupi(B, a)]} \\ &= \frac{T((sedan(a) \land biely(a)) \to kupi(B, a))}{F(sedan(a) \land biely(a))} \end{split}$$

Tablové pravidlá vo všeobecnosti — pravidlo

Samotné pravidlo je množina všetkých inštancií vzoru:

$$\mathsf{MT} = \left\{ \begin{array}{c} \mathbf{T}(\mathbf{p}(\mathsf{c}) \to \mathbf{q}(\mathsf{c}))_{[\mathbf{p}(\mathsf{c})|X,\ \mathbf{q}(\mathsf{c})|Y]} \\ & \mathbf{F}\,\mathbf{q}(\mathsf{c})_{[\mathbf{p}(\mathsf{c})|X,\ \mathbf{q}(\mathsf{c})|Y]} \\ \hline & \mathbf{F}\,\mathbf{p}(\mathsf{c})_{[\mathbf{p}(\mathsf{c})|X,\ \mathbf{q}(\mathsf{c})|Y]} \end{array} \right| X, Y \in \mathcal{E}_{\mathcal{L}} \right\}$$

Samozrejme, konkrétne pravidlo vieme zapísať aj bez substitúcie:

$$\mathsf{MT} = \left\{ \begin{array}{c|c} \mathbf{T}(X \to Y) & \mathbf{F} Y \\ \hline \mathbf{F} X & \end{array} \middle| X, Y \in \mathcal{E}_{\mathcal{L}} \right\}$$

Tablové pravidlá vo všeobecnosti

Definícia 5.33 (Vzor tablového pravidla)

Nech $n \ge 0$ a k > 0 sú prirodzené čísla, nech $P_1^+, ..., P_n^+, C_1^+, ..., C_n^+$ sú označené formuly.

Dvojicu tvorenú n-ticou (P_1^+,\dots,P_n^+) a k-ticou (C_1^+,\dots,C_k^+) a zapisovanú

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

nazývame vzorom tablového pravidla.

Označené formuly $P_1^+, ..., P_n^+$ nazývame vzory premís, označené formuly $C_1^+, ..., C_k^+$ nazývame vzory záverov.

Tablové pravidlá vo všeobecnosti

Definícia 5.34 (Tablové pravidlo a jeho inštancia)

Nech

$$\begin{array}{c|cccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

je vzor tablového pravidla a $a_1, ..., a_m$ sú všetky atómy, ktoré sa vyskytujú v označených formulách $P_1^+, ..., P_n^+, C_1^+, ..., C_{\nu}^+$.

Tablové pravidlo R je množina

$$R = \left\{ \frac{P_1^{+}_{[a_1|X_1,\dots,a_m|X_m]} \cdots P_n^{+}_{[a_1|X_1,\dots,a_m|X_m]}}{C_1^{+}_{[a_1|X_1,\dots,a_m|X_m]} \mid \dots \mid C_k^{+}_{[a_1|X_1,\dots,a_m|X_m]}} \right| X_1,\dots,X_m \in \mathcal{E}_{\mathcal{L}} \right\},$$

Každý prvok množiny R nazývame inštanciou pravidla R.

Nové pravidlá vo všeobecnosti

Keď už vieme, čo je pravidlo, môžeme povedať, kedy je korektné:

Definícia 5.35 (Tablové pravidlo a jeho korektnosť)

Tablové pravidlo *R* je **korektné** vtt pre každú inštanciu pravidla *R*

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

a pre každé ohodnotenie v platí, že ak sú vo v pravdivé všetky premisy $P_1^+, \ldots, P_n^+,$ tak je vo v pravdivý niektorý záver C_1^+, \ldots, C_{ν}^+ .

Nové pravidlá vo všeobecnosti

Úprava definície tabla

• • •

- ...
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktorýmkoľvek z pravidiel:
 - :

R: Ak sa pre nejakú inštanciu pravidla R

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

na vetve π_y nachádzajú všetky premisy $P_1^+,\dots,P_n^+,$ tak k uzlu y pripojíme k nových vrcholov obsahujúcich postupne závery $C_1^+,\dots,C_k^+.$

Príklad: korektnosť rezu

To, že rez

 $TX \mid FX$

je korektné pravidlo, dokážeme veľmi ľahko:

Tvrdenie 5.36 (Korektnosť pravidla rezu)

Nech X je ľubovoľná formula a υ je ľubovoľné ohodnotenie. Potom je vo υ pravdivý niektorý zo záverov pravidla rezu $\mathbf{T}X$ alebo $\mathbf{F}X$.

Dôkaz.

Formula X je vo v buď pravdivá alebo nepravdivá. V prvom prípade $v \models_p \mathbf{T} X$. V druhom prípade $v \models_p \mathbf{F} X$. Teda v oboch prípadoch platí, že vo v je pravdivý niekto

Teda v oboch prípadoch platí, že vo v je pravdivý niektorý zo záverov $\mathbf{T}X$ alebo $\mathbf{F}X$ pravidla rezu.

Príklad: zložitejšie pravidlá

Príklady zložitejších pravidiel:

• Viacnásobné pravidlá β :

$$\begin{array}{c|c} \mathbf{T}(A_1 \vee A_2 \vee \cdots \vee A_n) \\ \hline \mathbf{T}A_1 & \mathbf{T}A_2 & \cdots & \mathbf{T}A_n \end{array} \qquad \begin{array}{c|c} \mathbf{F}(A_1 \wedge A_2 \wedge \cdots \wedge A_n) \\ \hline \mathbf{F}A_1 & \mathbf{F}A_2 & \cdots & \mathbf{F}A_n \end{array}$$

• Pravidlo konštruktívnej dilemy:

$$\begin{array}{c|ccc} \mathbf{T}(P \to Q) & \mathbf{T}(R \to S) & \mathbf{T}(P \lor R) \\ \hline \mathbf{T} Q & & \mathbf{T} S \end{array}$$

Zistite, či sú tieto pravidlá korektné.

Literatúra

Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.