RADIO TELESCOPIO INTERFERÓMETRO IMFRIIGHz

Santiago Vanegas, Universidad Nacional Giovanni Pinzón, Universidad Nacional Juan Carlos Martínez, Laboratorio de Ciencias Espaciales, Universidad de California Berkeley

Interferómetro Tipo Michelson en Frecuencia de Radio 11 GHz

CONTENIDO

- Introducción.
- Concepto de la interferencia de señales (Tipo Michelson).
- Esquema del diseño del Interferómetro.
- Sub-ensamble sistema interferómetro
- Sub-ensamble sistema Alt-Azimut
- Electrónica de manejo de Señal.
- Parametrización del Radiotelescopio en el OAN-UN.
- Primeras señales
- Próximos pasos
- Conclusiones
- Referencias

INTRODUCCIÓN

- ★ El objetivo de este radio Interferómetro es desarrollar un instrumento educacional que permita explicar los conceptos básicos de la radioastronomía, manejo de señales con antenas e Interferometría.
- ★ Este radio interferómetro será capaz de recibir información de fuentes extendidas como el Sol, y dependiendo de su configuración podrá resolver otras fuentes radio astronómicas.
- ★ Debido a las condiciones meteorológicas de Colombia¹, es conveniente buscar alternativas de desarrollo e investigación astronómicas en longitudes de onda diferentes a la ventana del óptico.

^{1.} Pinzón, G., Gonzalez, D., Ramirez A., (2016), Análisis comparativo de seis lugares de interés para la ubicación de instrumentación astronómica en Colombia.

^{4.} Imagen: NASA, ````

INTRODUCCIÓN

★ Este radio interferómetro será capaz de recibir información de fuentes extendidas como el Sol, y dependiendo de su configuración podrá resolver otras fuentes radio astronómicas.

Frecuencia: 11 GHz

Longitud de Onda: 2,7 cm

⁵. Imagen: NASA, Atmospheric electromagnetic transmittance or opacity.

INTRODUCCIÓN

★ Este radio interferómetro será capaz de recibir información de fuentes extendidas como el Sol, y dependiendo de su configuración podrá resolver otras fuentes radio astronómicas

^{6.} Imagen: Radioastrolab, How to use RAL10KIT and RAL10AP to build a Microwave Radio Telescope, Spectra of the main radio sources in the radio band

4

CONCEPTO DE LA INTERFEROMETRÍA DE LAS SEÑALES

El interferómetro de dos elementos recibe la misma señal⁷ en dos diferentes posiciones 1 y 2 :

$$\psi = (\theta - \theta_0) \tag{1}$$

$$Sin(\psi) = l/B \tag{2}$$

$$B * Sin(\psi) = l = c * \tau \tag{3}$$

$$B * Sin((\theta - \theta_0)) = l = c * \tau \tag{4}$$

$$\tau = \frac{Bsin(\theta - \theta_0)}{c} \tag{5}$$

$$\tau = \frac{B(\theta - \theta_0)}{c} \tag{}$$

⁷. Koda, J., Barrett, J., (2016), A Michelson-type radio interferometer for university education.

ESQUEMA DEL DISEÑO DEL INTERFERÓMETRO

- 1. Base para Rotación Azimutal.
- 2. Base para Rotación Inclinación.
- 3. Base deslizante de los espejos (4) y (5).
- 4. Espejos de recepción de señal.
- 5. Espejo en forma de cuña.
- 6. Plato Paraboloide.
- 7. HornLBNF.
- 8. Electrónica de manejo de señal (no mostrada).

SUB-ENSAMBLE DEL INTERFERÓMETRO

Aspen®
6600020
Digital Circular Polarity
Dual Output LNBF
Input: 11.45-12.2 GHz
Output: 950-1700MHz

3. Base deslizante de los espejos (4) y (5).

4. Espejos de recepción de señal.

5. Espejo en forma de cuña.

6. Plato Paraboloide.

7. Horn LBNF.

4

SUB-ENSAMBLE DEL INTERFERÓMETRO

Alineación de los espejos, garantizando verticalidad, ángulo de 45° respecto a la base deslizante, y verticalidad.

SUB-ENSAMBLE DEL PIER ALT-AZIMUT

(1) Base para Rotación Azimutal. (2) Base para Rotación Inclinación.

ELECTRÓNICA DE MANEJO DE MOTORES

- 1. Fuente 24 Voltios DC
- 2. Puente H, Control Motor paso Azimut
- 3. Arduino 1, Stepping Motor de Paso Azimut.
- 4. Placa de cambio de polaridad motor DC 12V, Inclinación.
- 5. Fuente 5 Voltios DC (No mostrada).

ELECTRÓNICA DE MANEJO DE LA SEÑAL

- 1. Recepción de señal RF
- 2. 75-50 Ohm Adaptor.
- 3. Amplifier 501/2 0.5 to 2.5 GHz.
- 4. Attenuator SMA 3GHz 50 Ohm 10dB.
- 5. Attenuator SMA 3GHz 50 Ohm 6dB.
- 6. Bandpass Filter 1350 to 1450 MHz.
- 7. Square-Law Detector 1.0-15.0 GHz.
- 8. Microprocesador ESP.
- 9. Conversor Análogo Digital 16 Bit.
- 10. Puerto salida digital USB.

7) (6

)(

)(

2

1

ELECTRÓNICA DE MANEJO DE LA SEÑAL


```
In [1]: %matplotlib notebook
         import serial
         import numpy as np
         import sys
         from matplotlib import pyplot as plt
In [3]: ser = serial.Serial('/dev/ttvUSB0', 115200 ,timeout=1)
In [2]: plt.ion()
         fig1 = plt.figure()
         start time = 0
         timepoints = []
         ydata = []
         yrange = [-0.12, 1]
         view time = 3600 # seconds of data to view at once
         duration = 24000 # total seconds to collect data
         #fig1 = plt.figure()
         #fig1.suptitle('live updated data', fontsize='18', fontweight='bold')
plt.xlabel('time, seconds', fontsize='14', fontstyle='italic')
         plt.vlabel('potential, volts', fontsize='14', fontstyle='italic')
         plt.axes().grid(True)
         line1, = plt.plot(ydata,marker='o',markersize=2,markerfacecolor='red')
         plt.ylim(yrange)
         plt.xlim([0.view time])
         linel.set xdata(timepoints)
         linel.set vdata(vdata)
                                             Flaure 1
               0.8
           vo/ts
           potential,
               0.0
                                                    2000
                                                             2500
                                                                      3000
                                           time, seconds
```


https://hackaday.io/projects/hacker/253172

ENSAMBLE DEL RADIOTELESCOPIO INTERFERÓMETRO

ENSAMBLE DEL RADIOTELESCOPIO

INTERFERÓMETRO

PARAMETRIZACIÓN DEL INTERFERÓMETRO

PRIMERAS SEÑALES

Datos a diferentes Baseline

Datos a diferentes Baseline

PRÓXIMOS PASOS

- 1. Caracterizar el Radiotelescopio Interferómetro variando la inclinación de 0° 90° (Zenith), para diferentes ángulos de azimuth.
- 2. Identificar el paso de una fuente extendida (Sol, Luna), para diferentes baselines (Distancia entre los espejos de recepción.)
- 3. Realizar mediciones a diferentes resoluciones del Interferómetro, realizando un barrido en azimuth sobre la fuente extendida para obtener el diámetro del Sol a 11 GHz.

⁶. Imagen Sun Diameter, Kundu MR, Solar Radio Astronomy, Wiley (New York), 1965

CONCLUSIONES

- 1. Es necesario desarrollar en las universidades e instituciones del país trabajos y estudios en Radioastronomía, por sus posibilidades y condiciones atmosféricas.
- 2. Es posible desarrollar y construir un RadioTelescopio Interferómetro con baja inversión y que sea funcional a nivel educativo e instrumental.
- 3. El Interferómetro IMFR11GHz logra recibir señal de fuentes extendidas y con la posterior parametrización resolverá fuentes extendidas.

REFERENCIAS

- 1. Pinzón, G., Gonzalez, D., Ramirez A., (2016), Análisis comparativo de seis lugares de interés para la ubicación de instrumentación astronómica en Colombia.
- 2. Chaparro, G., Ramirez, O., Restrepo O., Martínez A., (2017), Low Dimensional Embedding of Climate Data for Radio Astronomical Site Testing in the Colombian Andes.
- 3. Guevara, J., Calvo, B., Martinez, J., (2017), FiCoRi: First Colombian Radio Interferometer.
- 4. Imagen: NASA, Atmospheric electromagnetic transmittance or opacity.
- 5. Koda, J., Barrett, J., (2016), A Michelson-type radio interferometer for university education.
- 6. Imagen Sun Diameter, Kundu MR, Solar Radio Astronomy, Wiley (New York), 1965.
- 7. T.L. Wilson, K. Rohlfs, S. Huttemeister, "Tools of Radio Astronomy". 5Ft Edicion.
- 8. John Simonetti, "Radio Astronomy Fundamentals I", Spring 2012.
- 9. Burke and Graham-Smith [1997] B. F. Burke and F. Graham-Smith. An Introduction to Radio Astronomy. Cambridge University Press, Cambridge, UK, 1997.
- 10. T. K. DAS, H. SARKARandA. K.SEN., (1999), THE RATIO OF THE RADIO AND OPTICAL DIAMETERS OF THE SUN AT CENTIMETER WAVELENGTHS.

GRACIAS!.

RADIO TELESCOPIO INTERFERÓMETRO IMFRIIGHz

Ite		Cantida		
m	Descripción	d	Manufacturer	Total COP
1	Lev-O-Gage	1	Empire	COP 0
2	Power Inserter	2	PDI	COP 80.507
3	75-50 Ohm Adaptor	1	PASTERNACK	COP 433.776
4	Amplifier 501/2 0.5 to 2.5 GHz	1	Mini-Circuits	COP 288.894
5	Attenuator SMA 3GHz 50 Ohm 10db	1	Crystek	COP 90.613
6	Attenuator SMA 3GHz 50 Ohm 6db	1	Crystek	COP 90.613
7	Bandpass Filter 1350 to 1450 MHz	1	Mini-Circuits	COP 184.446
	Square-Law Detector 1.0-15.0 GHz Omni Spectra, Mode: 20760 (PN.2086-6000-13),			
8	1~15GHz, RF Detector	1	Omni Spectra	COP 190.987
9	5X OP-Amp	1	Custom built	COP 63.223
10	IC Buck Converter Mod 5.0V SIP3	1	ROHM	COP 49.042
11	Linear Actuator 12inch 12Volts	1	WindyNation	COP 246.456
	TOTAL	12		COP 1.718.556

Item	Descripcion	Cantidad	Manufacturer	Precio COP	Total COP
1	Aluminio Espejos	1	Alumarket	COP 182.582	COP 182.582
2	Perfil cuadrado Acero	18	Ferreteria	COP 4.000	COP 72.000
	Motorreductor Paso a				
3	paso	1	VESTA	COP 100.000	COP 100.000
4	Angulo Aluminio	7	Rubens Ltda	COP 7.323	COP 51.261
5	Fuente 24V 4 amp	1	Olfatronic	COP 53.500	COP 53.500
6	Microswitch	4	Olfatronic	COP 1.000	COP 4.000
	Sistema Sinfin-Corona				
7	AVEO	1	N/A	COP 75.000	COP 75.000
8	Cableado	30	N/A	COP 3.500	COP 105.000
9	Cajas de paso	2	N/A	COP 15.000	COP 30.000
10	Joystick	1	N/A	COP 25.000	COP 25.000
11	Cable RF	6	Microlink	COP 3.500	COP 21.000
12	Goniometro	1	Amazon	COP 22.000	COP 22.000
13	Freno magnetico	1	N/A	COP 69.000	COP 69.000
14	Acoples rapidos	6	N/A	COP 2.500	COP 15.000
15	Acoples Joystick	3	N/A	COP 3.500	COP 10.500
	TOTAL	32			COP 835.843