Capital and Income Inequality: an Aggregate-Demand Complementarity

Florin O. Bilbiie, Diego R. Känzig and Paolo Surico SED Annual Meeting, July 2021

Motivation

- Capital is central to macro: growth, inequality, optimal taxation, business cycles
- But for monetary transmission mechanism, capital traditionally plays side show
 - Workhorse model: New Keynesian (NK): No K?
 - Ingredient in DSGE versions, but back seat for consumption
- Growing literature on heterogeneous agent NK models (TANK & HANK)
 - What role does capital play in these models?

Our Results

- Heterogeneity puts capital front and center in NK
- Isolate two **amplification channels** for monetary policy:
 - Cyclical income inequality (Bilbiie, 2008)
 - Unequal capital expenditures (this paper)
- Show that they are complementary

Effects of monetary policy on consumption					
No income inequality Income Inequality					
No capital inequality	representative agent	small			
Capital inequality small LARGE					

• Joint effect much larger than individual effects combined

Our Results

- Role of redistribution: key which income
 - Opposite effects of redistributing capital income vs. profits
 - · Cyclicality of income matters!
- Complementarity robust to adding wage rigidity, idiosyncratic risk, ...
- Novel analytics for tractable HANK model with capital (and RANK)

Related Literature

- Empirical: Campbell and Mankiw (1989); Kaplan, Violante, and Weidner (2014); Cloyne, Ferreira, and Surico (2020); Coibion et al. (2017)
- RANK with capital: Dupor (2001); Sveen and Weinke (2005); Woodford (2005); Rupert and Šustek (2019)
- 2000s TANK: Galí, López-Salido, and Vallés (2007); Bilbiie (2008)
- 2010s HANK with focus on C: Kaplan, Moll, and Violante (2018); Gornemann, Kuester, and Nakajima (2016); Bayer et al. (2019); Luetticke (forthcoming); Auclert (2019); Auclert and Rognlie (2018); Debortoli and Galí (2018); Guerrieri and Lorenzoni (2017); McKay, Nakamura, and Steinsson (2016); Challe et al. (2017); Hagedorn et al. (2019); Werning (2015); Ravn and Sterk (2020); Cui and Sterk (2019); Bilbiie (2018) . . .
- Now: HANK with focus on K: Auclert, Rognlie, and Straub (2020); Alves et al. (2019); this paper

A Tale of Two Inequalities

Generic budget constraint

$$C^j + S^j = Y^j$$

Two inequalities

• Capital inequality: unequal savings/capital expenditure (LHS)

$$C^j + S^j = Y$$

• Income inequality: unequal incomes, e.g. labor vs. financial (RHS)

$$C^j = Y^j$$

A Simple Model

• $1 - \lambda$ savers *S* with bonds Euler

$$c_t^S = E_t c_{t+1}^S - r_t,$$

isoelastic investment

$$i_t = \eta y_t,$$

and budget constraint

$$C_Y c_t^S + \frac{I_Y}{1 - \lambda} i_t = Y_Y^S y_t^S$$

• λ hand-to-mouth H:

$$c_t^H = y_t^H = \chi y_t,$$

where χ is an $income\ distribution\ model$

Isolating Capital Inequality

• Assume that income is **perfectly redistributed** $\chi=1$

$$C_Y c_t^S + \frac{I_Y}{1 - \lambda} i_t = Y_Y^S y_t$$
$$c_t^H = y_t$$

Aggregate Euler

$$c_t = E_t c_{t+1} - \underbrace{\frac{1 - \lambda}{1 - \lambda \frac{1 - l_Y}{1 - \eta l_Y}}}_{ ext{Multiplier} (= 1 ext{ in RA})} r_t$$

- Keynesian-cross style multiplier if $\eta > 1$
 - \Rightarrow the savings rate (of S) acts as an MPC (of H)
 - S investment o Capital income, redistribution o H consumption \uparrow
 - Channel likely to operate in any HA model with some net saving, micro-foundation of Samuelson (1939)'s famous multiplier-accelerator
 - Increasing in λ as long as $\lambda \frac{1-l_Y}{1-nl_Y} < 1$

Isolating Income Inequality

• Assume that there is **no capital investment** $I_Y = 0$

$$c_t^S = \frac{1 - \lambda \chi}{1 - \lambda} y_t$$
$$c_t^H = \chi y_t$$

Aggregate Euler

$$c_t = E_t c_{t+1} - \underbrace{\frac{1-\lambda}{1-\lambda\chi}}_{\text{Multiplier (= 1 in RA)}} r_t$$

- Another Keynesian-cross style multiplier if $\chi > 1$: countercyclical inequality
 - $\triangle AD \rightarrow \triangle Y \rightarrow \triangle demand of H \rightarrow \triangle AD$
 - Well understood (Bilbiie, 2008, 2018; Auclert, 2019; Patterson, 2019) and present in many HA models
 - Increasing in λ as long as $\lambda \chi < 1$

8

The Multiplier ... of the Multiplier

Allow for capital and income inequality

$$\left| \frac{\partial c_t}{\partial r_t} \right| = \frac{1 - \lambda}{1 - \lambda \chi \frac{1 - l_Y}{1 - \eta l_Y}}$$

• Complementarity iff income inequality is countercyclical $\chi>1$ and investment is more than one-to-one procyclical $\eta>1$:

$$\left| \frac{\partial c_t}{\partial r_t} \Big|_{K, \text{ no redist}} \right| > \left| \frac{\partial c_t}{\partial r_t} \Big|_{\textit{no } K, \text{ no redist}} \right| \times \left| \frac{\partial c_t}{\partial r_t} \Big|_{K, \textit{ redist}} \right|.$$

9

Multiplier (Samuelson, 1948)

$$\frac{1}{1-x}$$

ullet x is the aggregate MPC

The Multiplier ... of the Multiplier

• Abstracting from direct effect that only $1-\lambda$ agents react directly to interest rates, the multiplier reads:

$$\frac{1}{1 - \lambda \chi \frac{1 - l_Y}{1 - \eta l_Y}}$$

- The income and capital inequality channels compound the aggregate MPC
 ⇒ The two indirect effects interact non-linearly at each round, multiplying each other
- This is the multiplier of the multiplier

A Picture Worth 1/(1-x) Words

Multipliers as a function of share of hand-to-mouth λ (I_Y = 0.235, η = 2, and χ = 1.75).

Testable Predictions

1. Income and consumption inequality:

$$y_t^S - y_t^H = \frac{1 - \chi}{(1 - \lambda)Y_Y^S} y_t$$
 $c_t^S - c_t^H = \frac{1 - \chi C_Y - \eta I_Y}{(1 - \lambda)C_Y} y_t$

Both are **countercyclical** iff $C_Y(\chi - 1) + I_Y(\eta - 1) > 0$

2. Consumption inequality more countercyclical than income inequality if investment is more than one-to-one procyclical $\eta>1$

Compare to available evidence (e.g. Coibion et al., 2017) Details

A Tractable HANK model with Capital

Households

- λ hand-to-mouth: only have labor income and consume everything
- $1-\lambda$ savers: get labor, capital and profits income, choose consumption intertemporally
- Idiosyncratic risk: household switch between types $S \overset{1-s}{\underset{1-h}{\rightleftarrows}} H$

$$\lambda = \frac{1-s}{2-s-h}$$

- Liquidity: liquid bonds; capital and stocks illiquid
- Model matches micro moments: iMPCs, income risk etc.

Household Behavior

Savers

$$(C_{t}^{S})^{-\frac{1}{\sigma}} = \beta E_{t} \left\{ \frac{1 + r_{t}^{n}}{1 + \pi_{t+1}} \left[s(C_{t+1}^{S})^{-\frac{1}{\sigma}} + (1 - s)(C_{t+1}^{H})^{-\frac{1}{\sigma}} \right] \right\}$$

$$Q_{t} = \beta E_{t} \left\{ \left(\frac{C_{t+1}^{S}}{C_{t}^{S}} \right)^{-\frac{1}{\sigma}} \left[(1 - \tau^{K}) R_{t+1}^{K} + Q_{t+1} \left(1 - \delta + \Phi_{t+1} - \frac{I_{t+1}}{K_{t+1}} \Phi_{t+1}' \right) \right] \right\}$$

with
$$Q_t = \left(\Phi'\left(rac{I_t}{K_t}
ight)
ight)^{-1}$$
.

Hand-to-mouth

$$C_t^H = \frac{W_t}{P_t} N_t^H + T_t^H$$

Firms and Government

Firm Behavior

- Phillips curve: $\pi_t = \beta E_t \pi_{t+1} + \psi m c_t$
- Factor prices: $\frac{K_t}{N_t} = \frac{\alpha}{1 \alpha} \frac{W_t}{P_t R_t^K}$

$$\frac{MC_t}{P_t} = (1 - \alpha)^{\alpha - 1} \alpha^{-\alpha} \left(R_t^K \right)^{\alpha} \left(\frac{W_t}{P_t} \right)^{1 - \alpha}$$

Government

- Monetary policy: $r_t^n = \phi_\pi \pi_t + \varepsilon_t$
- Fiscal **redistribution**: $\lambda T_{H,t} = \tau^D D_t + \tau^K r_t^K K_t$
 - No income inequality $\chi=1$ under perfect redistribution with $\tau^D=\tau^K=\lambda$

Parameteriza tion

Parameter	Value	Description
α	0.33	Capital share of output
δ	0.025	Depreciation rate per quarter
ω	10	Elasticity of investment to Q
β	0.99	Discount factor
S	1 / 0.98	Probability of staying unconstrained
σ	1	Intertemporal elasticity of substitution
1/arphi	1.00	Frisch elasticity
λ	0 / 0.27	Share of hand-to-mouth
$ au^D, au^K$	$= \begin{cases} 0 & \text{no redistribution} \\ \lambda & \text{full redistribution} \end{cases}$	Taxes on profits and capital
ψ	0.050	Slope of PC
$\psi_{\sf w}$	∞ / 0.075	Slope of PC wages
ϕ_π	1.50	Taylor rule coefficient
ϕ_i	0.00	Interest rate smoothing
ρ_i	0.60	Persistence MP shock

Amplification of the Monetary Policy Effects on Consumption

	Rep. agent	Heterogeneous agents		
		Prop. incomes	Inequality	
No capital	1.00	1.00	1.51	
Capital	0.66	1.11	2.25	

• Dampening in RANK with capital (real rate channel)

	Rep. agent	Heterogeneous agents		
		Prop. incomes	Inequality	
No capital	1.00	1.00	1.51	
Capital	0.66	1.11	2.25	

- Dampening in RANK with capital (real rate channel)
- Capital inequality amplifies even under no income inequality

	Rep. agent	Heterogeneous agents		
		Prop. incomes	Inequality	
No capital	1.00	1.00	1.51	
Capital	0.66	1.11	2.25	

- Dampening in RANK with capital (real rate channel)
- Capital inequality amplifies even under no income inequality
- Income inequality can also lead to substantial amplification

	Rep. agent	Heterogeneous agents		
		Prop. incomes	Inequality	
No capital	1.00	1.00	1.51	
Capital	0.66	1.11	2.25	

- Dampening in RANK with capital (real rate channel)
- Capital inequality amplifies even under no income inequality
- Income inequality can also lead to substantial amplification
- Channels are strongly **complementary**: $2.25 \gg 1.11 * 1.51$

	Rep. agent	Heterogeneous agents		
		Prop. incomes	Inequality	Inequality and risk
No capital	1.00	1.00	1.51	1.60
Capital	0.66	1.11	2.25	2.62

- Dampening in RANK with capital (real rate channel)
- Capital inequality amplifies even under no income inequality
- Income inequality can also lead to substantial amplification
- Channels are strongly complementary: 2.25 ≫ 1.11 * 1.51
- Idiosyncratic risk reinforces complementarity

Analytical Solution

• Novel analytical solution: (under $\delta=1,\,\omega=\infty,\,\sigma=1,\,\varphi=0,\,s=1,$ cont. PC and $\phi_\pi=1$)

$$\frac{\partial c_t}{\partial \left(-\varepsilon_t\right)} = \frac{1-\lambda}{1-\lambda \chi_{\kappa}} \left\{ 1 + \frac{\lambda \alpha \beta}{(1-\lambda)(1-\alpha \beta)} \frac{(1-\alpha)}{1+\alpha \frac{\lambda (\chi_{\kappa}-1)}{1-\lambda \chi_{\kappa}} \left(1 + \frac{1-\alpha \beta}{1-\alpha}\right)} \right\}$$

with $\chi_{\scriptscriptstyle K}=1+rac{1-lpha}{1-lphaeta}$.

Full-redistribution

$$\frac{\partial c_t}{\partial \left(-\varepsilon_t\right)} = 1 + \frac{\left(1 - \alpha\right)\lambda\alpha\beta}{\left(1 - \lambda\right)\left(1 - \alpha\beta\right)}$$

No capital

$$\frac{\partial c_t}{\partial \left(-\varepsilon_t\right)} = \frac{1-\lambda}{1-\lambda \chi_{\scriptscriptstyle noK}},$$

with $\chi_{nok} = 2 - \alpha$.

Role of Redistribution

Redistribution	Profit	income	
		Yes	No
Comital income	Yes	1.15	4.34
Capital income	No	0.50	2.62

- Profits are countercyclical $\rightarrow Y_H$ less cyclical \rightarrow dampening
- Capital income strongly procyclical o Y_H more cyclical o Amplification

Role of Redistribution

Redistribution	Profit	income	
		Yes	No
Carital income	Yes	1.15	4.34
Capital income	No	0.50	2.62

- Profits are countercyclical $\rightarrow Y_H$ less cyclical \rightarrow dampening
- Capital income strongly procyclical $o Y_H$ more cyclical o **Amplification**
- Less stark with sticky wages as profits less countercyclical

Sticky wages

Amplification of the Monetary Policy Effects on Consumption

	Rep. agent	Heterogeneous agents			
		Prop. incomes	Inequality	Inequality and risk	
No capital	1.00	1.00	1.01	1.02	
Capital	0.94	1.53	1.77	1.95	

• Amplifies capital inequality channel

Sticky wages

Amplification of the Monetary Policy Effects on Consumption

	Rep. agent	Heterogeneous agents			
		Prop. incomes	Inequality	Inequality and risk	
No capital	1.00	1.00	1.01	1.02	
Capital	0.94	1.53	1.77	1.95	

- Amplifies capital inequality channel
- Dampens income inequality channel

Sticky wages

Amplification of the Monetary Policy Effects on Consumption

	Rep. agent	Heterogeneous agents			
		Prop. incomes	Inequality	Inequality and risk	
No capital	1.00	1.00	1.01	1.02	
Capital	0.94	1.53	1.77	1.95	

- Amplifies capital inequality channel
- Dampens income inequality channel
- Complementarity robust

Conclusion

- Further step towards Macro convergence
 - Bring capital back to policy-relevant, monetary models
 - Bridge quantitative and tractable HANK models
- Complementarity of capital and income inequality channel
 - Through a multiplier of the multiplier
- Key for monetary policy what income is redistributed
 - Optimal policy?

Thank you!

Aggregate responses

Testable Predictions

Distributional effects (Coibion et al., 2017)

- Consumption and income inequality are countercyclical with
- Consumption inequality *more* so

Testable Predictions

• Only model with capital and income inequality can generate this

Back

Amplification in analytically tractable case

Multipliers as a function of share of hand-to-mouth λ .

Robustness

Robustness

