Principles of Data- and Knowledge-based Systems

Torsten Schaub University of Potsdam torsten@cs.uni-potsdam.de

Logic: Overview

- 1 Introduction, Motivation, History
- 2 Signatures, Interpretations
- 3 Formulas, Models
- 4 Formulas in Databases
- 5 Implication, Equivalence
- 6 Partial Functions, Three-valued Logic
- 7 Summary

Outline

- 1 Introduction, Motivation, History
- 2 Signatures, Interpretations
- 3 Formulas, Models
- 4 Formulas in Databases
- 5 Implication, Equivalence
- 6 Partial Functions, Three-valued Logic
- 7 Summary

Introduction, Motivation (1)

Important goals of mathematical logic are

- to formalize the notion of a statement about a certain domain of discourse (logical formula),
- to precisely define the notions of logical implication and proof,
- to find ways to mechanically check whether a statement is logically implied by given statements.

Introduction, Motivation (2)

Mathematical logic is applied in databases I

- In general, the purpose of both, mathematical logic and databases, is to
 - formalize knowledge,
 - work with this knowledge (process it).
- For instance, in order to talk about a domain of discourse, symbols are needed.
 - In logic, these are defined in a signature.
 - In databases, they are defined in a DB schema.

Introduction, Motivation (2)

Mathematical logic is applied in databases II

- In order to formalize logical implication, mathematical logic had to study possible interpretations of the symbols,
 - i.e. possible situations in the domain of discourse about which the logical formulas make statements.
- Database states also describe possible situations in a certain part of the real world.
- Basically, logical interpretations and DB states are the same (at least in the "model-theoretic view").

Introduction, Motivation (3)

Mathematical logic is applied in databases III

- SQL queries are quite similar to formulas in mathematical logic, and there are theoretical query languages that are simply a version of logic.
- The idea is that.
 - a query is a logical formula with placeholders ("free variables"),
 - the database system then determines values for these placeholders that make the formula true in the given database state.

Introduction, Motivation (4)

Why it makes sense to learn mathematical logic I

- Logical formulas are simpler than SQL, and can easily be formally studied.
- Important concepts of database queries can already be learned in this simpler, purer environment.
- Experience has shown that students often make logical errors in SQL queries.

Introduction, Motivation (5)

Why it makes sense to learn mathematical logic II

- SQL changes, and becomes more and more complicated (standards: 1986, 1989, 1992, 1999, 2003).
- There are new data models (e.g., XML) with new query languages, and faster changes than SQL.
- At least some part of this course should still be valid and useful in 30 years.

History of the Field (1)

\sim 322 BC	Syllogisms [Aristoteles]		
\sim 300 BC	Axioms of Geometry [Euklid]		
\sim 1700	Plan of Mathematical Logic [Leibniz]		
1847	"Algebra of Logic" [Boole]		
1879	"Begriffsschrift" (Early Logical Formulas)		
	[Frege]		
\sim 1900	More natural formula syntax [Peano]		
1910/13	Principia Mathematica (Collection of		
	formal proofs) [Whitehead/Russel]		
1930	Completeness Theorem [Gödel/Herbrand]		
1936	Undecidability [Church/Turing]		

History of the Field (2)

1960	First Theorem Prover		
	[Gilmore/Davis/Putnam]		
1963	Resolution-Method for Theorem proving		
	[Robinson]		
\sim 1969	Question Answering Systems [Green et.al.]		
1970	Linear Resolution [Loveland/Luckham]		
1970	Relational Data Model [Codd]		
\sim 1973	73 Prolog [Colmerauer, Roussel, et.al.]		
	(Started as Theorem Prover for Natural Language Understanding) (Compare with: Fortran 1954, Lisp 1962, Pascal 1970, Ada 1979)		
1977	Conference "Logic and Databases"		
	[Gallaire, Minker]		

Outline

- 1 Introduction, Motivation, History
- 2 Signatures, Interpretations
- 3 Formulas, Models
- 4 Formulas in Databases
- 5 Implication, Equivalence
- 6 Partial Functions, Three-valued Logic
- 7 Summary

Alphabet (1) Definition

- Let *ALPH* be some infinite, but enumerable set, the elements which are called symbols.
- ALPH must contain at least the logical symbols, i.e. LOG ⊆ ALPH, where

$$LOG = \{(,\),\ ,,\ \top,\ \bot,\ =,\ \neg,\ \land,\ \lor,\ \leftarrow,\ \rightarrow,\ \leftrightarrow,\ \forall,\ \exists\}.$$

■ In addition, ALPH must contain an infinite subset $VARS \subseteq ALPH$, the set of variables. This must be disjoint to LOG (i.e. $VARS \cap LOG = \emptyset$).

Alphabet (2)

- E.g., the alphabet might consist of
 - the special logical symbols *LOG*,
 - variables starting with an uppercase letter and consisting otherwise of letters, digits, and "_",
 - identifiers starting with a lowercase letter and consisting otherwise of letters, digits, and "_".
- Note that words like "father" are considered as symbols (elements of the alphabet).
- In theory, the exact symbols are not important.

Alphabet (3)

■ If the special logical symbols are not available, use:

Symbol	Alternative	Another	Name
Т	true	T	
	false	F	
_	not	\sim	Negation
\wedge	and	&	Conjunction
V	or	1	Disjunction
\leftarrow	if	<-	
\rightarrow	then	->	
\leftrightarrow	iff	<->	
∃	exists	E	Existential Quantifier
\forall	forall	A	Universal Quantifier

Signatures (1) Definition

- A signature $\Sigma = (S, \mathcal{P}, \mathcal{F})$ consists of:
 - A non-empty and finite set S, the elements which are called sorts (data type names).
 - For each $\alpha = s_1 \dots s_n \in \mathcal{S}^*$, a finite set (of predicate symbols) $\mathcal{P}_{\alpha} \subseteq ALPH \setminus (LOG \cup VARS)$.
 - For each $\alpha \in \mathcal{S}^*$ and $s \in \mathcal{S}$, a set (of function symbols) $\mathcal{F}_{\alpha,s} \subseteq ALPH \setminus (LOG \cup VARS)$.
- For each $\alpha \in \mathcal{S}^*$ and $s_1, s_2 \in \mathcal{S}$, $s_1 \neq s_2$, it must hold that $\mathcal{F}_{\alpha,s_1} \cap \mathcal{F}_{\alpha,s_2} = \emptyset$.

Signatures (2)

- A sort is a data type name, e.g. int, string, person.
- A predicate is something that can be true or false for given input values, e.g. <, substring_of, female.
- If $p \in \mathcal{P}_{\alpha}$, then $\alpha = s_1, \dots, s_n$ are called the argument sorts of p.
- For example:
 - \bullet < $\in \mathcal{P}_{int,int}$, also written as <(int, int).
 - female $\in \mathcal{P}_{person}$, also written as female (person).

Signatures (3)

- The number of argument sorts (length of α) is called the arity of a predicate symbol, e.g.:
 - < is a predicate symbol of arity 2.</p>
 - female is a predicate symbol of arity 1.
- Predicates of arity 0 are called propositional constants, or simply propositions. E.g.:
 - the_sun_is_shining,
 - i_am_working.
- The symbol ϵ is used to denote the empty sequence. The set \mathcal{P}_{ϵ} contains the propositional constants.

Signatures (4)

- The same symbol p can be element of several \mathcal{P}_{α} (overloaded predicate), e.g.
 - \blacksquare \triangleleft $\in \mathcal{P}_{\texttt{int int}}$.
 - \blacksquare < $\in \mathcal{P}_{\mathtt{string string}}$ (lexicographic order).
- This means that there are actually two different predicates that have the same name.

Signatures (5)

- A function is something that returns a value for given input values, e.g. +, age, first_name.
- A function symbol in $\mathcal{F}_{\alpha,s}$ has argument sorts α and result sort s, e.g.
 - \blacksquare + $\in \mathcal{F}_{\texttt{int int. int.}}$, also written as +(int, int): int.
 - \blacksquare age $\in \mathcal{F}_{\mathtt{person.\,int}}$, also written as age(person): int

Signatures (6)

- A function with 0 arguments is called a constant.
- Examples of constants:
 - 1 ∈ $\mathcal{F}_{\epsilon, \mathtt{int}}$, also written as 1: int.
 - lacktriangleright 'Ann' $\in \mathcal{F}_{\epsilon, \mathtt{string}}$, also written as 'Ann': string.
- For data types (e.g., int, string), it is usual that every possible value can be denoted by a constant.

Signatures (7)

- A signature specifies the application-specific symbols that are used to talk about the domain of discourse (a part of the real world that is to be modeled in the database).
- The above definition is for a multi-sorted (typed) logic.
 One can also use an unsorted logic.

Signatures (8)

- lacksquare $\mathcal{S} = \{ person, string \}.$
- lacksquare $\mathcal F$ consists of
 - constants of sort person, e.g. arno, birgit, chris.
 - infinitely many constants of sort string, e.g. ", 'a', 'b', ..., 'Arno',
 - function symbols first_name(person): string and last_name(person): string.
- \mathbf{P} consists of
 - a predicate married_to(person, person).
 - predicates male(person) and female(person).

Signatures (9) Definition

- A signature $\Sigma' = (\mathcal{S}', \mathcal{P}', \mathcal{F}')$ is an extension of a signature $\Sigma = (\mathcal{S}, \mathcal{P}, \mathcal{F})$ iff
 - $\mathcal{S} \subseteq \mathcal{S}'$,
 - for every $\alpha \in \mathcal{S}^*$: $\mathcal{P}_{\alpha} \subseteq \mathcal{P}'_{\alpha}$,
 - for every $\alpha \in \mathcal{S}^*$ and $s \in \mathcal{S}$: $\mathcal{F}_{\alpha,s} \subseteq \mathcal{F}'_{\alpha,s}$.
- I.e. an extension of Σ' adds new symbols to Σ .

Interpretations (1)

- Let a signature $\Sigma = (S, \mathcal{P}, \mathcal{F})$ be given.
- A Σ -interpretation \mathcal{I} defines:
 - a set $\mathcal{I}(s)$ for every $s \in \mathcal{S}$ (domain),
 - a relation $\mathcal{I}(p,\alpha) \subseteq \mathcal{I}(s_1) \times \cdots \times \mathcal{I}(s_n)$ for every $p \in \mathcal{P}_{\alpha}$, and $\alpha = s_1 \dots s_n \in \mathcal{S}^*$.
 - **a** function $\mathcal{I}(f,\alpha)$: $\mathcal{I}(s_1) \times \cdots \times \mathcal{I}(s_n) \to \mathcal{I}(s)$ for every $f \in \mathcal{F}_{\alpha,s}$, $s \in \mathcal{S}$, and $\alpha = s_1 \dots s_n \in \mathcal{S}^*$.
- In the following, we write $\mathcal{I}[...]$ instead of $\mathcal{I}(...)$.

Interpretations (2)

- Empty domains cause certain problems, therefore it is usual to exclude them.
- But in databases, domains can be empty (e.g. a set of persons when the database was just created).

Interpretations (3)

- The relation $\mathcal{I}[p]$ is also called the extension of p (in \mathcal{I}).
- Formally, predicate and relation are not the same, but isomorphic notions.
- For instance, married_to(X, Y) is true in \mathcal{I} if and only if $(X, Y) \in \mathcal{I}[\text{married_to}]$.
- Another Example: $(3,5) \in \mathcal{I}[<]$ means simply 3 < 5.

Interpretations (4)

Example interpretation for signature on Slide 79

- Arr [person] is the set of Arno, Birgit, and Chris.
- $lacktriang \mathcal{I}[\mathtt{string}]$ is the set of all strings, e.g. 'a'.
- I[arno] is Arno.
- lacksquare For the string constants, $\mathcal I$ is the identity mapping.
- $\mathcal{I}[\texttt{first_name}]$ maps e.g. Arno to 'Arno'.
- $ullet \mathcal{I}[\texttt{last_name}]$ maps all three persons to 'Schmidt'.
- $\mathcal{I}[\text{married_to}] = \{(\text{Birgit}, \text{Chris}), (\text{Chris}, \text{Birgit})\}.$
- $t \mathcal{I}[male] = \{(Arno), (Chris)\}, \mathcal{I}[female] = \{(Birgit)\}.$

Relational Databases (1)

- A DBMS defines a set of data types, such as strings and numbers, together with constants, data type functions (e.g. +) and predicates (e.g. <).
- For these, the DBMS defines names (in a signature Σ) and their meaning (in an interpretation \mathcal{I}).
- For every value $d \in \mathcal{I}[s]$, there is at least one constant c with $\mathcal{I}[c] = d$.
- The DB schema in the relational model then adds further predicate symbols (relation symbols).
- The DB state interprets these by finite relations.

Relational Databases (2)

Example

- In a relational database for storing homework results, there might be three predicates/relations:
 - student(int SID, string FName, string LName)
 - exercise(int ENO, int MaxPoints)
 - result(int SID, int ENO, int Points)
- Here, we treat the "domain calculus" version of the relational model.

Outline

- 1 Introduction, Motivation, History
- 2 Signatures, Interpretations
- 3 Formulas, Models
- 4 Formulas in Databases
- 5 Implication, Equivalence
- 6 Partial Functions, Three-valued Logic
- 7 Summary

Variable Declaration (1)

Definition

- Let $\Sigma = (S, \mathcal{P}, \mathcal{F})$ be a signature.
- lacktriangle A variable declaration for Σ is a partial mapping $\nu \colon \mathit{VARS} o \mathcal{S}$

Remark

- The variable declaration is not part of the signature because it is locally modified by quantifiers (see below).
- The signature is fixed for the entire application, the variable declaration changes even within a formula.

Variable Declaration (2)

Example

A variable declaration simply defines which variables are available and what are their sorts, e.g.

```
\nu = \{ \text{SID/int, Points/int, E/exercise} \}.
```

• Of course, each variable must have a unique sort.

Variable Declaration (3)

Definition

- Let ν be a variable declaration, $X \in VARS$, and $s \in S$.
- Then we write $\nu\langle X/s\rangle$ for the modified variable declaration ν' with

$$\nu'(V) := \begin{cases} s & \text{if } V = X \\ \nu(V) & \text{otherwise.} \end{cases}$$

Remark

■ Both is possible: ν might have been defined before for X or it might be undefined.

Terms (1)

- Terms are syntactic constructs that can be evaluated to a value (a number, a string, an exercise).
- There are three kinds of terms:
 - constants, e.g. 1, 'abc', arno,
 - variables, e.g. X,
 - composed terms, consisting of a function symbol applied to argument terms, e.g. last_name(arno).
- In programming languages, terms are also called expressions.

Terms (2)

- Let $\Sigma = (S, \mathcal{P}, \mathcal{F})$ be a signature and ν a variable declaration for Σ .
- The set $TE_{\Sigma,\nu}(s)$ of terms of sort s is recursively defined as follows:
 - Every variable $V \in VARS$ with $\nu(V) = s$ is a term of sort s.
 - Every constant $c \in \mathcal{F}_{\epsilon,s}$ is a term of sort s.
 - If t_1 is a term of sort s_1, \ldots, t_n is a term of sort s_n , and $f \in \mathcal{F}_{\alpha,s}$ with $\alpha = s_1 \ldots s_n$, $n \ge 1$, then $f(t_1, \ldots, t_n)$ is a term of sort s.
 - Nothing else is a term of sort s.
- Each term can be constructed by a finite number of applications of the above rules.
- Let $TE_{\Sigma,\nu} := \bigcup_{s \in S} TE_{\Sigma,\nu}(s)$ be the set of all terms.

Terms (3)

- Certain functions are also written as infix operators, e.g. X+1 instead of the official notation +(X,1).
- Functions of arity 1 can be written in dot-notation, e.g. "X.first_name" instead of "first_name(X)".
- Such "syntactic sugar" is useful in practice, but not important for the theory of logic.
- In the following, the above abbreviations are used.

Terms (4)

Terms can be visualized as operator trees ("||" is in SQL the function for string concatenation):

Terms (5)

Exercise

- Which of the following are legal terms (given the signature on slide 79 and a variable declaration ν with $\nu(X) = \text{string}$)?
 - □ arno
 - _ first_name
 - ☐ first_name(X)
 - firstname(arno, birgit)
 - married_to(birgit, chris)
 - ___ X

Atomic Formulas (1)

■ Formulas are syntactic expressions that can be evaluated to a truth value (true or false), e.g.

$$1 < X \land X < 10$$
.

- Atomic formulas are the basic building blocks of such formulas (comparisons etc.).
- Atomic formulas can have the following forms:
 - A predicate symbol applied to terms, e.g. married_to(birgit, X).
 - An equation, e.g. X = chris.
 - The logical constants \top (true) and \bot (false).

Atomic Formulas (2)

Definition

- Let $\Sigma = (S, \mathcal{P}, \mathcal{F})$ be a signature and ν a variable declaration for Σ .
- An atomic formula is an expression of one of the following forms:
 - $p(t_1, ..., t_n)$ with $p \in \mathcal{P}_{\alpha}$, $\alpha = s_1 ... s_n \in \mathcal{S}^*$, and $t_i \in TE_{\Sigma, \nu}(s_i)$ for i = 1 ... n.
 - $t_1 = t_2$ with $t_1, t_2 \in TE_{\Sigma,\nu}(s)$, $s \in S$.
 - \blacksquare \top and \bot .
- Let $AT_{\Sigma,\nu}$ be the set of atomic formulas for Σ,ν .

Atomic Formulas (3)

- For some predicates, one traditionally uses infix notation, e.g. X > 1 instead of >(X, 1).
- For propositional constants, the parentheses can be skipped, e.g. one can write p instead of p().
- Of course, it would be possible to treat "=" as a normal predicate, and some authors do that.

Formulas (1)

- Let $\Sigma = (S, \mathcal{P}, \mathcal{F})$ be a signature and ν a variable declaration for Σ .
- The sets $FO_{\Sigma,\nu}$ of (Σ,ν) -formulas are defined recursively as follows:
 - Every atomic formula $F \in AT_{\Sigma,\nu}$ is a formula.
 - If F and G are (Σ, ν) -formulas, so are $(\neg F)$, $(F \land G)$, $(F \lor G)$, $(F \leftarrow G)$, $(F \rightarrow G)$, $(F \leftrightarrow G)$.
 - $(\forall s \, X \colon F)$ and $(\exists s \, X \colon F)$ are in $FO_{\Sigma,\nu}$ if $s \in S$, $X \in VARS$, and F is a $(\Sigma, \nu \langle X/s \rangle)$ -formula.
 - Nothing else is a (Σ, ν) -formula.

Formulas (2)

- The intuitive meaning of the formulas is as follows:
 - $p(t_1 ... t_n)$: The predicate p is true for the values of the terms $t_1, ..., t_n$.
 - $\blacksquare \neg F$: "Not F" (F is false).
 - $F \wedge G$: "F and G" (F and G are both true).
 - \blacksquare $F \lor G$: "F or G" (at least one of F and G is true).
 - $F \leftarrow G$: "F if G" (if G is true, F must be true).
 - $F \rightarrow G$: "if F, then G"
 - $F \leftrightarrow G$: "F if and only if G".
 - $\forall s X : F$: "for all X (of sort s), F is true".
 - $\exists s X : F$: "there is an X (of sort s) such that F".

Formulas (3)

- Above, many parentheses are used in order to ensure that formulas have a unique syntactic structure.
- One uses the following rules to save parentheses:
 - The outermost parentheses are never needed.
 - ¬ binds strongest, then \land , then \lor , then \leftarrow , \rightarrow , \leftrightarrow (same binding strength), and last \forall , \exists .
 - Since \wedge and \vee are associative, no parentheses are required for e.g. $F_1 \wedge F_2 \wedge F_3$.

Formulas (4)

Abbreviations for Quantifiers

- When there is only one possible sort of a quantified variable, one can leave it out, i.e. write $\forall X : F$ instead of $\forall s X : F$ (and the same for \exists).
- If one quantifier immediately follows another quantifier, one can leave out the colon.
- Instead of a sequence of quantifiers of the same type, e.g. $\forall X_1 \dots \forall X_n : F$, one can write $\forall X_1 \dots X_n : F$.

Formulas (5)

- Abbreviation for Inequality
 - $t_1 \neq t_2$ can be used as an abbreviation for $\neg (t_1 = t_2)$.
- Note
 - Some people say "formulae" instead of "formulas".
- Exercise
 - Given a signature with $\leq \in \mathcal{P}_{\mathsf{int} \; \mathsf{int}}$ and $1, 10 \in \mathcal{F}_{\epsilon, \mathsf{int}}$, and a variable declaration with $\nu(X) = \mathsf{int}$.
 - Is $1 \le X \le 10$ a syntactically correct formula?

Formulas (6)

Exercise

• Which of the following are syntactically correct formulas (given the signature on Slide 79)?

```
    ∀X,Y: married_to(X,Y) → married_to(Y,X)
    ∀person P: ∨ male(P) ∨ female(P)
    ∀person P: arno ∨ birgit ∨ chris
    male(chris)
    ∀string X: ∃person X: married_to(birgit,X)
    married_to(birgit, chris) ∧ ∨ married_to(chris, birgit)
```

Closed Formulas

- Definition
 - Let ∑ be a signature.
 - A closed formula (for Σ) is a (Σ, ν) -formula for the empty variable declaration ν .
- Exercise
 - Which of the following are closed formulas?
 - \exists female(X) $\land \exists$ X: married_to(chris, X)
 - ☐ female(birgit) ∧ married_to(chris, birgit)
 - $\exists X: married_to(X, Y)$

Variables in a Term

Definition

- The function *vars* computes the set of variables that occur in a given term *t*.
 - If t is a constant c: $vars(t) := \emptyset$.
 - If t is a variable V: $vars(t) := \{V\}$.
 - If t has the form $f(t_1 ... t_n)$: $vars(t) := \bigcup_{i=1}^n vars(t_i)$.

Free Variables in a Formula

Definition

- The function *free* computes the set of free variables (not bound by a quantifier) in a formula *F*:
 - If F is an atomic formula $p(t_1 ... t_n)$ or $t_1 = t_2$: $free(F) := \bigcup_{i=1}^n vars(t_i)$.
 - If F is \top or \bot : $free(F) := \emptyset$.
 - If F has the form $(\neg G)$: free(F) := free(G).
 - If F has the form $(G_1 \wedge G_2)$, $(G_1 \vee G_2)$, etc.: $free(F) := free(G_1) \cup free(G_2)$.
 - If F has the form $(\forall s X : G)$ or $(\exists s X : G)$: $free(F) := free(G) \setminus \{X\}$.

Variable Assignment (1)

Definition

- A variable assignment \mathcal{A} for \mathcal{I} and ν is a partial mapping $\nu \colon VARS \to \bigcup_{s \in \mathcal{S}} \mathcal{I}[s].$
- It maps every variable V, for which ν is defined, to a value from $\mathcal{I}[s]$, where $s := \nu(V)$.

Remark

■ I.e. a variable assignment for \mathcal{I} and ν defines values from \mathcal{I} for the variables that are declared in ν .

Variable Assignment (2)

Example

- Consider the following variable declaration ν :
- $\nu = \{ \texttt{X/string}, \texttt{Y/person} \}.$
- One possible variable assignment is $A = \{X/abc, Y/Chris\}.$

Variable Assignment (3)

- Definition
 - $\mathcal{A}\langle X/d\rangle$ denotes a variable assignment \mathcal{A}' that agrees with \mathcal{A} except that $\mathcal{A}'(X) = d$.
- Example
 - Given the variable declaration on the last slide, $\mathcal{A}\langle Y/Birgit \rangle$ is: $\mathcal{A}\langle Y/Birgit \rangle = \{X/abc, Y/Birgit\}.$

Value of a Term

Definition

- Let Σ be a signature, ν a variable declaration for Σ, \mathcal{I} a Σ-interpretation, and \mathcal{A} a variable assignment for (\mathcal{I}, ν) .
- The value $\langle \mathcal{I}, \mathcal{A} \rangle[t]$ of a term $t \in TE_{\Sigma,\nu}$ is defined recursively as follows:
 - If t is a constant c, then $\langle \mathcal{I}, \mathcal{A} \rangle[t] := \mathcal{I}[c]$.
 - If t is a variable V, then $\langle \mathcal{I}, \mathcal{A} \rangle[t] := \mathcal{A}(V)$.
 - If t has the form $f(t_1 ... t_n)$, with t_i of sort s_i :

$$\langle \mathcal{I}, \mathcal{A} \rangle [t] := \mathcal{I}[f, s_1 \dots s_n] (\langle \mathcal{I}, \mathcal{A} \rangle [t_1], \dots, \langle \mathcal{I}, \mathcal{A} \rangle [t_n]).$$

Truth of a Formula (1)

Definition

- Let Σ be a signature, ν a variable declaration for Σ, \mathcal{I} a Σ-interpretation, and \mathcal{A} a variable assignment for (\mathcal{I}, ν) .
- The truth value $\langle \mathcal{I}, \mathcal{A} \rangle [F] \in \{f, t\}$ of a formula F in $(\mathcal{I}, \mathcal{A})$ is defined as follows (f means false, t true):
 - If F is an atomic formula $p(t_1 ... t_n)$ with terms t_i of sort s_i :

$$\langle \mathcal{I}, \mathcal{A} \rangle [F] := \left\{ \begin{array}{ll} t & \text{if } \left(\langle \mathcal{I}, \mathcal{A} \rangle [t_1], \ldots, \langle \mathcal{I}, \mathcal{A} \rangle [t_n] \right) \in \mathcal{I}[\rho, s_1 \ldots s_n] \\ f & \text{otherwise}. \end{array} \right.$$

(continued on next three slides)

Truth of a Formula (2)

Definition, continued

- Truth value of a formula, continued:
 - If F is an atomic formula $t_1 = t_2$:

$$\langle \mathcal{I}, \mathcal{A} \rangle [F] := \left\{ egin{array}{ll} \mathsf{t} & \mathsf{if} \ \langle \mathcal{I}, \mathcal{A} \rangle [t_1] = \langle \mathcal{I}, \mathcal{A} \rangle [t_2] \\ \mathsf{f} & \mathsf{else}. \end{array} \right.$$

- If F is \top : $\langle \mathcal{I}, \mathcal{A} \rangle [F] := \mathsf{t}$.
- If F is \bot : $\langle \mathcal{I}, \mathcal{A} \rangle [F] := f$.
- If F is of the from $(\neg G)$:

$$\langle \mathcal{I}, \mathcal{A} \rangle [F] := \left\{ egin{array}{ll} t & \mbox{if } \langle \mathcal{I}, \mathcal{A} \rangle [G] = 0 \\ f & \mbox{else}. \end{array} \right.$$

Truth of a Formula (3)

Definition, continued

- Truth value of a formula, continued:
 - If F is of the from $(G_1 \wedge G_2)$, $(G_1 \vee G_2)$, etc.:

G_1	G_2	\wedge	V	\leftarrow	\rightarrow	\leftrightarrow
f	f	f	f	t	t	t
f	t	f	t	f	t	f
t	f	f	t	t	f	f
t	t	t	t	t	t	t

■ E.g. if $\langle \mathcal{I}, \mathcal{A} \rangle [G_1] = \mathsf{t}$ and $\langle \mathcal{I}, \mathcal{A} \rangle [G_2] = \mathsf{f}$ then $\langle \mathcal{I}, \mathcal{A} \rangle [(G_1 \wedge G_2)] = \mathsf{f}$.

Truth of a Formula (4)

Definition, continued

- Truth value of a formula, continued:
 - If F has the form $(\forall s X : G)$:

$$\langle \mathcal{I}, \mathcal{A} \rangle [F] := egin{cases} \mathsf{t} & \text{if } \langle \mathcal{I}, \mathcal{A} \langle X/d \rangle \rangle [G] = \mathsf{t} \\ & \text{for all } d \in \mathcal{I}[s] \\ \mathsf{f} & \text{otherwise.} \end{cases}$$

• If F has the form $(\exists s X : G)$:

$$\langle \mathcal{I}, \mathcal{A} \rangle [F] := egin{cases} \mathsf{t} & \text{if } \langle \mathcal{I}, \mathcal{A} \langle X/d \rangle \rangle [G] = \mathsf{t} \\ & \text{for at least one } d \in \mathcal{I}[s] \\ \mathsf{f} & \text{otherwise.} \end{cases}$$

Model (1) Definition

- If $\langle \mathcal{I}, \mathcal{A} \rangle [F] = t$, one also writes $\langle \mathcal{I}, \mathcal{A} \rangle \models F$.
- Let F be a (Σ, ν) -formula.

A Σ -interpretation \mathcal{I} is a model of the formula F (written $\mathcal{I} \models F$) iff $\langle \mathcal{I}, \mathcal{A} \rangle [F] = t$ for all variable declarations \mathcal{A} .

- If $\mathcal{I} \models F$, one says that \mathcal{I} satisfies F.
- A Σ -interpretation \mathcal{I} is a model of a set Φ of Σ -formulas, written $\mathcal{I} \models \Phi$, iff $\mathcal{I} \models F$ for all $F \in \Phi$.

Model (2) Definition

- A formula F or set of formulas Φ is called consistent iff there is an interpretation \mathcal{I} and a variable assignment \mathcal{A} such that $(\mathcal{I}, \mathcal{A}) \models F$ (it has a model).

 Otherwise it is called inconsistent.
- A (Σ, ν) -formula F is called a tautology iff for all Σ -interpretations \mathcal{I} and (Σ, ν) -variable assignments \mathcal{A} , we have $(\mathcal{I}, \mathcal{A}) \models F$.

Model (3)

Exercise

- Consider the interpretation on Slide 84:
 - $\mathcal{I}[person] = \{Arno, Birgit, Chris\}.$
 - Imarried_to] = {(Birgit, Chris), (Chris, Birgit)}.
 - I[male] = {(Arno), (Chris)},
 I[female] = {(Birgit)}.
- Which of the following formulas are true in *I*?
 - $\exists \quad \forall \ \mathsf{person} \ \mathsf{X} \colon \mathtt{male}(\mathsf{X}) \leftrightarrow \neg \mathsf{female}(\mathsf{X})$
 - $\exists \quad \forall \ \mathsf{person} \ \mathtt{X} \colon \mathtt{male}(\mathtt{X}) \lor \neg \mathtt{male}(\mathtt{X})$
 - $\exists \ \mathsf{person} \ \mathsf{X} \colon \mathsf{female}(\mathsf{X}) \land \neg \exists \ \mathsf{person} \ \mathsf{Y} \colon \mathsf{married_to}(\mathsf{X},\mathsf{Y})$
 - \square \exists person X, person Y, person Z: X=Y \land Y=Z \land X \neq Z

Outline

- 1 Introduction, Motivation, History
- 2 Signatures, Interpretations
- 3 Formulas, Models
- 4 Formulas in Databases
- 5 Implication, Equivalence
- 6 Partial Functions, Three-valued Logic
- 7 Summary

Databases and Logic (1)

Data values

- The DBMS defines a datatype signature $\Sigma_{\mathcal{D}}$ together with an interpretation $\mathcal{I}_{\mathcal{D}}$, to stipulate the following:
 - For each data type (sort), name and a (non-empty) domain of admissible values.
 - Names of constants (e.g. 123, 'abc') interpreted by a corresponding elements in their data type domain.
 - Names of functions on data types (e.g. +, strlen) together with their domain and range sorts, interpreted by corresponding functions on domain and range.
 - Names of predicates on data types (e.g. <, odd), interpreted by corresponding relations on domain and range.

Databases and Logic (2)

- Two formal query languages for the relational model:
 - tuple calculus (with variables for whole tuples)
 - domain calculus (with variables for data values)
- Both are rooted in mathematical logic and portray formal perspectives on relational models.
- Both are equivalent in expressive power but use different logical constructs.
- We consider tuple and domain calculus as restricted variants of first order logic.
- The relational model is formally embedded in first order logic.
- This embedding determines the required restrictions on signatures and interpretations.

Relational Databases (1)

In relational databases, data is stored as tables, e.g.

Student				
SID	FirstName	LastName		
101	Lisa	Weiss		
102	Michael	Schmidt		
103	Daniel	Sommer		
104	Iris	Meier		

Rows are often seen formally as "tuples".

Relational Databases (2)

- In logic, we can formally define the access to table rows in two different ways:
 - Domain Calculus (DC)

A table with n rows corresponds to an n-ary predicate:

$$p(t_1,\ldots,t_n)$$
 is true iff

$$t_1 \mid \cdots \mid t_n$$

is a row in the table.

■ Tuple Calculus (TC)

A table with n rows corresponds to a sort with n (access) functions that map to the values of the columns.

Relational Databases (3)

Example

- DC would use a predicate student:
 - student(101, 'Lisa', 'Weiss') would be true
 - student(200, 'Martin', 'Mueller') false
- TC would use a sort student accompanied by (access) functions sid, first_name, last_name.
 - For an X of sort student, we then have that: sid(X)=101, first_name(X)='Lisa'. and last_name(X)='Weiss'.

Relational Databases (1)

Domain Calculus

- A DBMS defines a set of data types, such as strings and numbers, together with constants, data type functions (e.g. +) and predicates (e.g. <).
- For these, the DBMS defines names (in a signature Σ) and their meaning (in an interpretation \mathcal{I}).
- For every value $d \in \mathcal{I}[s]$, there is at least one constant c with $\mathcal{I}[c] = d$.

Relational Databases (2)

Domain Calculus

- The DB schema in the relational model then adds further predicate symbols (relation symbols).
- The DB state interprets these by finite relations.
- Thus, the main restrictions of the relational model are:
 - No new sorts (types),
 - No new function symbols and constants,
 - New predicate symbols can only be interpreted by finite relations.

Relational Databases (3)

Domain Calculus, Example

- In a relational database for storing homework results, there might be three predicates/relations:
 - student(int SID, string FName, string LName)
 - exercise(int ENO, int MaxPoints)
 - result(int SID, int ENO, int Points)

Relational Databases (4)

Domain Calculus

Student				
SID	FirstName	LastName		
101	Lisa	Weiss		
102	Michael	Schmidt		
103	Daniel	Sommer		
104	Iris	Meier		

Result				
SID	ENO	Points		
101	1	10		
101	2	8		
102	1	9		
102	2	9		
103	1	5		

Exercise		
ENO	MaxPt	
1	10	
2	10	

Relational Database (1)

Tuple Calculus

- In TC, a DBMS also defines a set of data types (with constants, functions, predicates).
- The DB schema adds the following:
 - sorts, one per relation (table)
 - unary functions, each mapping from a sort to a data type, one function per column

Relational Databases (2)

Tuple Calculus, Example

E.g, in the exercise-results DB there is sort student with the functions

```
■ sid(student): int
```

■ first_name(student): string

last_name(student): string

Relational Databases (3) Tuple Calculus

lacktriangle E.g. $\mathcal{I}[\mathtt{student}]$ contains tuple

$$t = (101, "Lisa", "Weiss")$$

- Then, we have $\mathcal{I}[\operatorname{sid}](t) = 101$.
- As usual, these new sorts are also finite (possibly empty) sets.

Formulas in Databases

- The DBMS defines a signature $\Sigma_{\mathcal{D}}$ and an interpretation $\mathcal{I}_{\mathcal{D}}$ for the built-in data types (string, int, ...).
- Then the database schema extends $\Sigma_{\mathcal{D}}$ to the signature Σ of all symbols that can be used in, e.g., queries.
- A database state is then an interpretation $\mathcal I$ for the extended signature Σ .
- Formulas are used in databases as:
 - Integrity constraints
 - Queries
 - Definitions of derived symbols (views).

Integrity Constraints (1)

- Not all interpretations are reasonable DB states.
- For instance, in the old world, a person could only be male or female, but not both.

Therefore, the following two formulas must be satisfied:

- ∀person X: male(X) ∨ female(X)
- $\forall \text{ person } X : \neg \text{ male}(X) \lor \neg \text{ female}(X)$
- These are examples of integrity constraints.

Integrity Constraints (2)

- An integrity constraint is a closed formula.
- A set of integrity constraints is specified as part of the database schema.
- A database state (an interpretation) is called valid iff it satisfies all integrity constraints.

Integrity Constraints (3) Keys I

- Objects are often identified by unique data values (numbers, names).
- For example, there should never be two different objects of type student with the same sid (in TC):

$$\forall$$
 student X, student Y: $sid(X) = sid(Y) \rightarrow X = Y$

Alternative, equivalent formulation:

$$\neg \exists$$
 student X, student Y: $sid(X) = sid(Y) \land X \neq Y$

Integrity Constraints (4) Keys II

- In the relational schema (in DC on Slide 86) a predicate of arity 3 is used to store the student data.
- The first argument (SID) uniquely identifies the values of the other arguments (first name, last name):

```
\forall int ID, string F1, string F2, string L1, string L2: student(ID,F1,L1) \land student(ID,F2,L2) \rightarrow F1 = F2 \land L1 = L2
```

■ Since keys are so common, each data model has a special notation for them (one does not actually have to write such formulas).

Queries (1) Domain Calculus

In DC, a query is an expression of the form

$$\{s_1 X_1, \ldots, s_n X_n \mid F\},\$$

where F is a formula for the given DB signature Σ and the variable declaration $\{X_1/s_1, \ldots, X_n/s_n\}$.

■ The query asks for all variable assignments \mathcal{A} for the result variables X_1, \ldots, X_n that make the formula F true in the given database state \mathcal{I} .

Queries (2)

Domain Calculus, Examples I

- Consider the schema on Slide 86:
 - student(int SID, string FName, string LName)
 - exercise(int ENO, int MaxPoints)
 - result(int SID, int ENO, int Points)
- Who got at least 8 points for Homework 1?

```
{string FName, string LName | \exists int SID, int P: student(SID, FName, LName) \land result(SID, 1, P) \land P \geq 8}
```

Queries (1)

Domain Calculus, Examples I

The formulas student(S, FirstName, LastName) and result(S, 1, P) correspond to the table lines:

Student			
SID	FirstName	LastName	
S	FirstName	LastName	

Result			
SID	ENO	Points	
S	1	Р	

■ By the same variable S the entries are "joined" in the two tables. They must refer to the same student.

Queries (3) Domain Calculus, Examples II

Print all results for Ann Smith:

```
 \{ \texttt{int ENO}, \, \texttt{int Points} \mid \exists \, \texttt{int SID} \colon \\ \texttt{student}(\texttt{SID}, \, '\texttt{Ann'}, \, '\texttt{Smith'}) \land \\ \texttt{result}(\texttt{SID}, \, \texttt{ENO}, \, \texttt{Points}) \}
```

■ Who has not yet submitted Exercise 2?

```
{string FName, string LName | \exists int SID: student(SID, FName, LName) \land \neg \exists int P: result(SID, 2, P)}
```

Queries (1) Tuple Calculus

■ In TC, a query is an expression of the form

$$\{t_1,\ldots,t_k\ [s_1\ X_1,\ldots,s_n\ X_n]\ |\ F\},\$$

where F is a formula and the t_i are terms for the given DB signature Σ and the variable declaration $\{X_1/s_1, \ldots, X_n/s_n\}$.

■ The DBMS will print the values $\langle \mathcal{I}, \mathcal{A} \rangle [t_i]$ of the terms t_i for every variable assignments \mathcal{A} for the result variables X_1, \ldots, X_n such that $\langle \mathcal{I}, \mathcal{A} \rangle \models F$.

Queries (2)

Tuple Calculus, Example

- Consider the schema on Slide 130 in TC:
 - Sort student with access functions for rows: sid(student): int, first_name(student): string, last_name(student): string.
 - Sort result with functions sid, eno, points.
 - Sort exercise with functions eno, maxpt.

Queries (3) Tuple Calculus

■ Who has at least 8 points for homework 1?

```
 \begin{aligned} \{ &S. \texttt{first\_name}, \ S. \texttt{last\_name} \ [\texttt{student S}] \ | \\ &\exists \ \texttt{result R:} \ R. \texttt{eno} = 1 \land \\ &R. \texttt{sid} = S. \texttt{sid} \land R. \texttt{points} \ge 8 \} \end{aligned}
```

- Variables run in tuple calculus over table rows (tuples).
- Equations are typically used to link table rows.

Queries (4) Tuple Calculus

■ We could have formulated the question with a variable for the task itself (who has at least 8 points for homework 1):

■ This is logically equivalent.

Queries (5) Tuple Calculus, Example II

■ Who hasn't submitted exercise 2 yet?

```
 \begin{aligned} & \{ \texttt{S.first\_name}, \ \texttt{S.last\_name} \ [\texttt{student S}] \mid \\ & \neg \exists \ \texttt{result R:} \ \ \texttt{R.sid} = \texttt{S.sid} \land \texttt{R.eno} = 2 \} \end{aligned}
```

Other possible solution:

Another solution:

$$\begin{aligned} & \{ \texttt{S.first_name}, \ \texttt{S.last_name} \ [\texttt{student} \ \texttt{S}] \ | \\ & \forall \ \texttt{result} \ \texttt{R} \colon \ \texttt{R.eno} = 2 \to \texttt{R.sid} \neq \texttt{S.sid} \end{aligned}$$

Queries (6) Tuple Calculus

■ The tuple calculus is very close to SQL.
E.g. who has ≥ 8 points for homework 1?

```
 \begin{split} & \{ \texttt{S.first\_name}, \ \texttt{S.last\_name} \ [\texttt{student S}, \ \texttt{result R}] \ | \\ & \texttt{R.eno} = 1 \land \\ & \texttt{R.sid} = \texttt{S.sid} \land \texttt{R.points} \geq 8 \} \end{split}
```

■ Same query in SQL:

```
SELECT S.FirstName, S.LastName
FROM Student S, Result R
WHERE R.ENO = 1
AND R.SID = S.SID
AND R.Points >= 8
```

Queries (7) Tuple Calculus

Variant with explicit existential quantifier:

```
 \begin{split} \{ &S. \texttt{first\_name}, \ S. \texttt{last\_name} \ [\texttt{student S}] \ | \\ &\exists \ \texttt{result R:} \ \ \texttt{R.eno} = 1 \land \\ & \text{R.sid} = S. \texttt{sid} \land \texttt{R.points} \geq 8 \} \end{split}
```

A subquery corresponds to this in SQL:

```
SELECT S.FirstName, S.LastName
FROM Student S
WHERE EXISTS (SELECT *
FROM Result R
WHERE R.ENO = 1
AND R.SID = S.SID
AND R.Points >= 8)
```

Boolean Queries

- \blacksquare A Boolean query is a closed formula F.
- The system prints "yes" if $\mathcal{I} \models F$ and "no" otherwise.

Outline

- 1 Introduction, Motivation, History
- 2 Signatures, Interpretations
- 3 Formulas, Models
- 4 Formulas in Databases
- 5 Implication, Equivalence
- 6 Partial Functions, Three-valued Logic
- 7 Summary

Implication

Definition/Notation

- A formula or set of formulas Φ (logically) implies a formula or set of formulas G iff every model $\langle \mathcal{I}, \mathcal{A} \rangle$ of Φ is also a model of G.
- In this case we write $\Phi \vdash G$.

Equivalence (1)

■ Two (sets of) (Σ, ν) -formulas F_1 and F_2 are (logically) equivalent iff for every Σ -interpretation $\mathcal I$ and every $(\mathcal I, \nu)$ -variable assignment $\mathcal A$

$$(\mathcal{I}, \mathcal{A}) \models F_1 \iff (\mathcal{I}, \mathcal{A}) \models F_2.$$

■ In this case we write $F_1 \equiv F_2$.

Equivalence (2)

- F_1 and F_2 are equivalent iff $F_1 \vdash F_2$ and $F_2 \vdash F_1$.
- "Equivalence" of formulas is an equivalence relation, i.e. it is reflexive, symmetric, and transitive.
- Suppose that G_1 results from G_2 by replacing a subformula F_1 by F_2 and let $F_1 \equiv F_2$. Then $G_1 \equiv G_2$.
- If $F \vdash G$, then $F \land G \equiv F$.

Some Equivalences (1)

- Commutativity (for and, or, iff):
 - $F \wedge G \equiv G \wedge F$
 - $F \lor G \equiv G \lor F$
 - $F \leftrightarrow G \equiv G \leftrightarrow F$
- Associativity (for and, or, iff):
 - $F_1 \wedge (F_2 \wedge F_3) \equiv (F_1 \wedge F_2) \wedge F_3$
 - $F_1 \vee (F_2 \vee F_3) \equiv (F_1 \vee F_2) \vee F_3$
 - $\blacksquare F_1 \leftrightarrow (F_2 \leftrightarrow F_3) \equiv (F_1 \leftrightarrow F_2) \leftrightarrow F_3$

Some Equivalences (2)

- Distribution Law:
 - $F \wedge (G_1 \vee G_2) \equiv (F \wedge G_1) \vee (F \wedge G_2)$
 - $F \lor (G_1 \land G_2) \equiv (F \lor G_1) \land (F \lor G_2)$
- Double Negation:
 - $\neg (\neg F) \equiv F$
- De Morgan's Law:
 - $\neg (F \land G) \equiv (\neg F) \lor (\neg G).$
 - $\neg (F \lor G) \equiv (\neg F) \land (\neg G).$

Some Equivalences (3)

- Replacements of Implication Operators:
 - $F \leftrightarrow G \equiv (F \rightarrow G) \land (F \leftarrow G)$
 - $F \leftarrow G \equiv G \rightarrow F$
 - $F \rightarrow G \equiv \neg F \lor G$
 - $F \leftarrow G \equiv F \vee \neg G$
- Together with De Morgan's Law this means that e.g. $\{\neg, \lor\}$ are sufficient, all other logical junctors $\{\land, \leftarrow, \rightarrow, \leftrightarrow\}$ can be expressed with them.

Some Equivalences (4)

Removing Negation:

- $\neg (t_1 < t_2) \equiv t_1 \geq t_2$
- $\neg (t_1 = t_2) \equiv t_1 \neq t_2$

- $\neg (t_1 > t_2) \equiv t_1 \leq t_2$

Some Equivalences (5)

Law of the excluded middle:

```
■ F \lor \neg F \equiv \top (always true)
■ F \land \neg F \equiv \bot (always false)
```

- Simplifications of formulas with logical constants \top (true) and \bot (false):
 - $F \land T \equiv F \quad F \land \bot \equiv \bot$
 - $F \lor \top \equiv \top \quad F \lor \bot \equiv F$
 - $\neg \top \equiv \bot \neg \bot \equiv \top$

Some Equivalences (6)

Replacements for quantifiers:

```
 \forall s X : F \equiv \neg (\exists s X : (\neg F)) 
 \exists s X : F \equiv \neg (\forall s X : (\neg F))
```

Moving logical junctors over quantifiers:

```
 \neg (\forall s X : F) \equiv \exists s X : (\neg F)
```

$$\neg (\exists s X : F) \equiv \forall s X : (\neg F)$$

$$\forall s X : (F \land G) \equiv (\forall s X : F) \land (\forall s X : G)$$

$$\exists s X : (F \vee G) \equiv (\exists s X : F) \vee (\exists s X : G)$$

Some Equivalences (7)

- Moving quantifiers: If $X \notin free(F)$:
 - $\forall s X : (F \vee G) \equiv F \vee (\forall s X : G)$
 - $\exists s X : (F \wedge G) \equiv F \wedge (\exists s X : G)$

If in addition $\mathcal{I}[s]$ cannot be empty:

- $\forall s X : (F \wedge G) \equiv F \wedge (\forall s X : G)$
- $\exists s X : (F \vee G) \equiv F \vee (\exists s X : G)$
- Removing unnecessary quantifiers: If $X \notin free(F)$ and $\mathcal{I}[s]$ cannot be empty:
 - $\forall s X : F \equiv F$
 - $\exists s X : F \equiv F$

Some Equivalences (8)

- **Exchanging quantifiers:** If $X \neq Y$:
 - $\forall s_1 X : (\forall s_2 Y : F) \equiv \forall s_2 Y : (\forall s_1 X : F)$
 - $\exists s_1 X \colon (\exists s_2 Y \colon F) \equiv \exists s_2 Y \colon (\exists s_1 X \colon F)$
- Renaming bound variables: If $Y \notin free(F)$ and F' results from F by replacing every free occurrence of X in F by Y:
 - $\forall s X : F \equiv \forall s Y : F'$
 - $\exists s X : F \equiv \exists s Y : F'$

Some Equivalences (9)

- Equality is an equivalence relation:
 - $t = t \equiv \top$ (reflexivity)
 - $t_1 = t_2 \equiv t_2 = t_1$ (symmetry)
 - $lacktriangledown t_1 = t_2 \wedge t_2 = t_3 \equiv t_1 = t_2 \wedge t_2 = t_3 \wedge t_1 = t_3$ (transitivity)
- Compatibility to function and predicate symbols:
 - $f(t_1,...,t_n) = t \wedge t_i = t'_i \equiv f(t_1,...,t_{i-1},t'_i,t_{i+1},...,t_n) = t \wedge t_i = t'_i$
 - $p(t_1,...,t_n) \wedge t_i = t'_i \equiv p(t_1,...,t_{i-1},t'_i,t_{i+1},...,t_n) \wedge t_i = t'_i$

Normal Forms (1) Definition

■ A formula F is in Prenex Normal Form iff it is closed and has the form

$$\Theta_1 s_1 X_1 \ldots \Theta_n s_n X_n : G$$

where $\Theta_1, \dots, \Theta_n \in \{ \forall, \exists \}$ and G is quantifier-free.

■ A formula *F* is in Disjunctive Normal Form iff it is in Prenex Normal Form, and *G* has the form

$$(G_{1,1} \wedge \cdots \wedge G_{1,k_1}) \vee \cdots \vee (G_{n,1} \wedge \cdots \wedge G_{n,k_n}),$$

where each $G_{i,j}$ is an atomic formula or a negated atomic formula.

Normal Forms (2)

 Conjunctive Normal Form is like disjunctive normal form, but G must have the form

$$(G_{1,1} \vee \cdots \vee G_{1,k_1}) \wedge \cdots \wedge (G_{n,1} \vee \cdots \vee G_{n,k_n}).$$

Under the assumption of non-empty domains, every formula can be equivalently translated into prenex normal form, disjunctive normal form, and conjunctive normal form.

Outline

- 1 Introduction, Motivation, History
- 2 Signatures, Interpretations
- 3 Formulas, Models
- 4 Formulas in Databases
- 5 Implication, Equivalence
- 6 Partial Functions, Three-valued Logic
- 7 Summary

Motivation

- Functions are often only partially defined e.g.
 - division by 0,
 - square root of a negative number,
 - integer overflow.
- Often, table columns, i.e., attributes of objects are missing values e.g. not every customer
 - has a fax machine or
 - discloses his birthday.
- Hence, partial function are relevant in real-life.

Interpretation

■ Formally, a function symbol $f(s_1, ..., s_n)$: s is interpreted as function

$$\mathcal{I}[f]: \ \mathcal{I}[s_1] \times \cdots \times \mathcal{I}[s_n] \ \rightarrow \ \mathcal{I}[s] \cup \{null\},$$

where *null* is a designated value (different from all elements in $\mathcal{I}[s]$).

■ For term evaluation, *null*-values are propagated in a "bottom-up"-fashion: if a function has argument "*null*", it returns "*null*".

Example (1)

Suppose we also record the semester of students which might not always be known:

Student							
SID	FirstName	LastName	Semester				
101	Lisa	Weiss	3				
102	Michael	Schmidt	5				
103	Daniel	Sommer					
104	Iris	Meier	3				

Consider the following query:

$$\{ \mbox{S.first_name}, \mbox{S.last_name} \quad [\mbox{student S}] \mid \\ \mbox{S.semester} \leq 3 \}$$

Example (2)

- With SQL semantics, this query would not return Daniel Sommer.
- This is also the case, when querying students in later semesters:

■ This is (also in SQL) equivalent to query:

```
{S.first_name, S.last_name [student S] | \neg(S.semester < 3)}
```

Example (3)

Daniel Sommer would also be omitted by the answer of this query:

- This violates the law of the excluded middle.
- A two-valued logic with truth-values "true" and "false" does not suffice in this situation.
- A third truth-value, "undefined" (or "null"), is required.

Truth of a Formula (1)

- If F is an atomic formula of form $p(t_1, \ldots, t_n)$ or $t_1 = t_2$, and one of its argument terms t_i evaluates to *null*, then F evaluates to the third truth value u.
- If F is of form $\neg G$, then its truth value is depends on the truth value of G as follows:

G	$\neg G$	
f	t	
u	u	
t	f	

Truth of a Formula (2)

Logical binary connectives are evaluated as follows:

G_1	G ₂	\land	V	\leftarrow	\rightarrow	\leftrightarrow
f	f	f	f	t	t	t
f	u	f	u	u	t	u
f	t	f	t	f	t	f
u	f	f	u	t	u	u
u	u	u	u	u	u	u
u	t	u	t	u	t	u
t	f	f	t	t	f	f
t	u	u	t	t	u	u
t	t	t	t	t	t	t

Truth of a Formula (3)

- The principle is simple: the truth value u is passed on, if the value of the formula is not already determined by the other input value.
- E.g. is $u \wedge f = f$, because it does not matter whether the left input value is t or f.
- In other words: A partial condition, which evaluates to u, should not affect the overall truth value as much as possible.

Truth of a Formula (3)

■ An existential statement $\exists s \ X : G$ is true under $\langle \mathcal{I}, \mathcal{A} \rangle$, iff there exists a value in $d \in \mathcal{I}[s]$ such that

$$\langle \mathcal{I}, \mathcal{A}\langle X/d \rangle \rangle [G] = \mathsf{t}.$$

- Otherwise, false in SQL semantics.
- *null* must not be substituted for X: $null \notin \mathcal{I}[s]$.

Truth of a Formula (4)

- Accordingly, a universal statement \forall s X: G is true under $\langle \mathcal{I}, \mathcal{A} \rangle$ iff for each $d \in \mathcal{I}[s]$:
 - $\langle \mathcal{I}, \mathcal{A}\langle X/d \rangle \rangle [G] = \mathsf{t} \mathsf{or}$
 - $\langle \mathcal{I}, \mathcal{A}\langle X/d \rangle \rangle [G] = \mathsf{u}.$
- Such a statement is only false if there exists an variable assignment \mathcal{A}' such that $\langle \mathcal{I}, \mathcal{A}' \rangle [G] = f$, where \mathcal{A}' only differs from \mathcal{A} by the value assigned to X.
- Hence, it holds: $\forall s X : G \equiv \neg \exists s X \neg G$.

Equivalences

- Note that some equivalences from two-valued logic do not apply:
 - \bullet t = t is not a tautology: if t = null, the equation evaluates to u.
 - $F \vee \neg F$ (law of excluded middle).
 - **E**quivalences with quantifiers that require $\mathcal{I}[s]$ to be not empty.

Check for Null

- To check whether a term evaluates to *null*, one needs another form of atomic formulas.
- t is null is true (t) under $\langle \mathcal{I}, \mathcal{A} \rangle$ iff $\langle \mathcal{I}, \mathcal{A} \rangle[t] = null$ and false (f), otherwise.
- For better readability, we may also write t is not null instead of $\neg(t \text{ is null})$.

Total Functions

- Since all functions are partial in this context, one has to explicitly enforce by integrity constraints that a distinct function is total.
- e.g. the last name of students is mandatory

∀ student S: S.last_name is not null.

Since this is very common, data models usually provide a shorthand, e.g. in SQL we can declare a table row as "NOT NULL".

Outline

- 1 Introduction, Motivation, History
- 2 Signatures, Interpretations
- 3 Formulas, Models
- 4 Formulas in Databases
- 5 Implication, Equivalence
- 6 Partial Functions, Three-valued Logic
- 7 Summary

Summary

- Signature and formulas
- Interpretations and models
- Database signature
 - Datatype signature
 - Domain calculus
 - Tuple calculus
- Integrity constraints (and keys)
- Queries
- Equivalence
- Incomplete information

Bibliography

■ The following list of references is compiled from the open source bibliography available at

https://github.com/krr-up/bibliography

■ Feel free to submit corrections via pull requests!

- S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
- [2] C. Aggarwal, editor. Data Streams — Models and Algorithms, volume 31 of Advances in Database Systems. Springer-Verlag, 2007.
- [3] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, chapter 2, pages 89–148. Morgan Kaufmann Publishers, 1987.
- [4] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases.

- In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'99), pages 68–79. ACM Press, 1999.
- [5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.
- [6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems.

In L. Popa, editor, *Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'02)*, pages 1–16. ACM Press, 2002.

[7] C. Baral.

Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.

- [8] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag, 1990.
- [9] R. Elmasri and S. Navathe. Fundamentals of database systems. Addison-Wesley, 1994.
- [10] R. Fagin, J. Ullman, and M. Vardi. On the semantics of updates in databases. preliminary report. In *Proceedings of the Second ACM Conference SIGACT-SIGMOD*, pages 352–365, 1983.
- [11] H. Gallaire, J. Minker, and J. Nicolas. Logic and databases: A deductive approach. Computing Surveys, 16(2):153–185, 1984.
- [12] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero, T. Schaub, and S. Thiele.

Potassco User Guide.

- University of Potsdam, 2 edition, 2015.
- [13] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers, 2012.
- [14] M. Gelfond and Y. Kahl. Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, 2014.
- [15] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New Generation Computing, 9:365–385, 1991.
- [16] H. Katsuno and A. Mendelzon. On the difference between updating a knowledge database and revising it.

In J. Allen, R. Fikes, and E. Sandewall, editors, *Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR'91)*, pages 387–394. Morgan Kaufmann Publishers, 1991.

[17] V. Lifschitz.

Closed-world databases and circumscription.

Artificial Intelligence, 27:229–235, 1985.

[18] V. Lifschitz.

Nonmonotonic databases and epistemic queries.

In J. Myopoulos and R. Reiter, editors, *Proceedings of the International Joint Conference on Artificial Intelligence*, pages 381–386. Morgan Kaufmann Publishers, 1991.

[19] V. Lifschitz. Introduction to answer set programming. Unpublished draft, 2004.

[20] V. Lifschitz, F. van Harmelen, and B. Porter, editors.

Handbook of Knowledge Representation. Elsevier Science, 2008.

[21] L. Liu and M. Özsu, editors. Encyclopedia of Database Systems. Springer-Verlag, 2009.

[22] V. Marek and M. Truszczyński. Nonmonotonic logic: context-dependent reasoning. Artifical Intelligence. Springer-Verlag, 1993.

[23] J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann Publishers, 1988.

[24] R. Reiter.

On closed world data bases.

In H. Gallaire and J. Minker, editors, *Logic and Databases*, pages 55–76. Plenum Press. New York, 1978.

[25] R. Reiter.

Towards a logical reconstruction of relational database theory. In M. Brodie, J. Myopoulos, and J. Schmidt, editors, *On conceptual modeling: Perspectives from Artificial Intelligence, Databases and*

Programming Languages, pages 191–233. Springer-Verlag, 1984.

[26] R. Reiter.

On asking what a database knows.

In J. Lloyd, editor, *Computational Logic*, pages 96–113. Springer-Verlag, 1990.

[27] J. Ullman.

Principles of Database Systems.

Computer Science Press, Rockville MD, 1982.

[28] J. Ullman.

Principles of Database and Knowledge-Base Systems.

Computer Science Press, 1988.