Artificial Neural Network

Importing the libraries

```
import numpy as np
import pandas as pd
import tensorflow as tf

tf.__version__
'2.4.1'
```

▼ Importing the dataset

```
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:-1].values
y = dataset.iloc[:, -1].values

print(X)

    [[619 'France' 'Female' ... 1 1 101348.88]
       [608 'Spain' 'Female' ... 0 1 112542.58]
       [502 'France' 'Female' ... 1 0 113931.57]
       ...
    [709 'France' 'Female' ... 0 1 42085.58]
    [772 'Germany' 'Male' ... 1 0 92888.52]
    [792 'France' 'Female' ... 1 0 38190.78]]

print(y)
    [1 0 1 ... 1 1 0]
```

Descriptive Statistics and Data visualization

Measures of Central Tendency

```
import pandas as pd
import matplotlib.pyplot as plt
dataset.mean()
```

RowNumber	5.000500e+03
CustomerId	1.569094e+07
CreditScore	6.505288e+02
Age	3.892180e+01
Tenure	5.012800e+00
Balance	7.648589e+04
NumOfProducts	1.530200e+00
HasCrCard	7.055000e-01
IsActiveMember	5.151000e-01
EstimatedSalary	1.000902e+05
Exited	2.037000e-01

dtype: float64

dataset.median()

RowNumber	5.000500e+03
CustomerId	1.569074e+07
CreditScore	6.520000e+02
Age	3.700000e+01
Tenure	5.000000e+00
Balance	9.719854e+04
NumOfProducts	1.000000e+00
HasCrCard	1.000000e+00
IsActiveMember	1.000000e+00
EstimatedSalary	1.001939e+05
Exited	0.000000e+00

dtype: float64

Measures of Dispersion

dataset.std()

RowNumber	2886.895680					
CustomerId	71936.186123					
CreditScore	96.653299					
Age	10.487806					
Tenure	2.892174					
Balance	62397.405202					
NumOfProducts	0.581654					
HasCrCard	0.455840					
IsActiveMember	0.499797					
EstimatedSalary	57510.492818					
Exited	0.402769					
dtype: float64						

dataset.var()

RowNumber	8.334167e+06
CustomerId	5.174815e+09
CreditScore	9.341860e+03
Age	1.099941e+02
Tenure	8.364673e+00
Balance	3.893436e+09

```
      NumOfProducts
      3.383218e-01

      HasCrCard
      2.077905e-01

      IsActiveMember
      2.497970e-01

      EstimatedSalary
      3.307457e+09

      Exited
      1.622225e-01
```

dtype: float64

dataset.skew()

RowNumber	0.000000				
CustomerId	0.001149				
CreditScore	-0.071607				
Age	1.011320				
Tenure	0.010991				
Balance	-0.141109				
NumOfProducts	0.745568				
HasCrCard	-0.901812				
IsActiveMember	-0.060437				
EstimatedSalary	0.002085				
Exited	1.471611				
dtype: float64					

.

1. Scatter Plot

Data visualization

dataset.columns

<matplotlib.collections.PathCollection at 0x7f58087f4e50>

plt.bar(dfv['EstimatedSalary'], dfv['Age'], width=200)

<BarContainer object of 100 artists>

plt.hist(dfv['Age'], bins=15)

<a list of 15 Patch objects>)

plt.boxplot(dataset['Age'])

import seaborn as sns
sns.set()
sns.scatterplot(dfv['Age'],dfv['EstimatedSalary'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass t FutureWarning

sns.heatmap(dfv.corr(), annot=True, fmt='.2f')

<matplotlib.axes._subplots.AxesSubplot at 0x7f580156db90>

dfp=dfv[['Age','Tenure','EstimatedSalary','CreditScore']]
sns.pairplot(dfp)

<seaborn.axisgrid.PairGrid at 0x7f57f8bb6950>

sns.jointplot(x='Age', y='EstimatedSalary', data=dfv)

<seaborn.axisgrid.JointGrid at 0x7f57f6cf7890>

sns.distplot(dfv['Age'], color = 'Red', label = 'Age')

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `d
 warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7f57f6b5fc90>

sns.distplot(dtv['EstimatedSalary'], color = 'Yellow', label = 'Salary')

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `d warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f57f6cb76d0>

sns.countplot(x = 'Gender', data = dataset)

<matplotlib.axes. subplots.AxesSubplot at 0x7f57f49be9d0>

sns.set_style('darkgrid')
ac=0.14
sns.barplot(x ='Gender', y ='EstimatedSalary', data = dataset, palette ='plasma')

<matplotlib.axes._subplots.AxesSubplot at 0x7f57e9d3f750>

sns.barplot(x ='Geography', y ='EstimatedSalary', data = dfv, palette ='plasma')

<matplotlib.axes._subplots.AxesSubplot at 0x7f57f4961c90>

<matplotlib.axes._subplots.AxesSubplot at 0x7f57f48c7b90>

sns.boxplot(x ='Geography', y ='EstimatedSalary', data = dfv1, hue ='Gender')

<matplotlib.axes._subplots.AxesSubplot at 0x7f57f4858950>

sns.boxplot(x ='Geography', y ='EstimatedSalary', data = dataset, hue ='Gender')

<matplotlib.axes._subplots.AxesSubplot at 0x7f57f4761510>

grp=dfv.groupby(['Gender','Geography']).EstimatedSalary.sum()
grp

Gender Geography Female France 1754466.69 Germany 1098005.85 Spain 1173609.86 Male France 2777209.15 Germany 1154474.47 Spain 1697592.87

Name: EstimatedSalary, dtype: float64

plt.pie(grp)

▼ DATA PREPROCESSING

dataset.isna()

```
dataset.isna().sum()
     RowNumber
                          0
     CustomerId
                          0
     Surname
                          0
     CreditScore
                          0
     Geography
                          0
     Gender
                          0
                          0
     Age
     Tenure
                          2
     Balance
                          1
     NumOfProducts
                          0
     HasCrCard
     IsActiveMember
                          0
     EstimatedSalary
                          0
     Exited
                          0
     dtype: int64
      ^^^
dropdf=dataset.dropna()
dropdf.isna().sum()
     RowNumber
                          0
     CustomerId
                          0
     Surname
                          0
     CreditScore
                          0
     Geography
                          0
     Gender
                          0
     Age
                          0
     Tenure
     Balance
                          0
     NumOfProducts
                          0
     HasCrCard
                          0
     IsActiveMember
                          0
     EstimatedSalary
                          0
     Exited
     dtype: int64
print(dataset.shape)
print(dropdf.shape)
     (10000, 14)
     (9997, 14)
print(dropdf)
                                                      IsActiveMember EstimatedSalary Exited
            RowNumber
                       CustomerId
                                       Surname
     0
                    1
                          15634602
                                      Hargrave
                                                                    1
                                                                             101348.88
                                                                                             1
                                                 . . .
                    2
                                                                                             0
     1
                                          Hill
                                                                    1
                                                                             112542.58
                          15647311
     2
                    3
                                          Onio
                                                                    0
                                                                             113931.57
                                                                                             1
                          15619304
                                                 . . .
     5
                    6
                          15574012
                                           Chu
                                                                    0
                                                                             149756.71
                                                                                             1
```

Bartlett

. . .

15592531

10062.80

• • •	• • •	• • •	• • •		• • •	• • •	
9995	9996	15606229	Obijiaku	• • •	0	96270.64	0
9996	9997	15569892	Johnstone		1	101699.77	0
9997	9998	15584532	Liu		1	42085.58	1
9998	9999	15682355	Sabbatini		0	92888.52	1
9999	10000	15628319	Walker		0	38190.78	0

[9997 rows x 14 columns]

```
#fill in missing values with mean
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
imputer.fit(dataset.iloc[:, 7:9])
dataset.iloc[:, 7:9] = imputer.transform(dataset.iloc[:, 7:9])
print(dataset)
```

	RowNumber	CustomerId	Surname	 IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	 1	101348.88	1
1	2	15647311	Hill	 1	112542.58	0
2	3	15619304	Onio	 0	113931.57	1
3	4	15701354	Boni	 0	93826.63	0
4	5	15737888	Mitchell	 1	79084.10	0
	• • •	• • •	• • •	 • • •	• • •	
9995	9996	15606229	Obijiaku	 0	96270.64	0
9996	9997	15569892	Johnstone	 1	101699.77	0
9997	9998	15584532	Liu	 1	42085.58	1
9998	9999	15682355	Sabbatini	 0	92888.52	1
9999	10000	15628319	Walker	 0	38190.78	0

[10000 rows x 14 columns]

dataset.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	Hargrave	619	France	Female	42	2.000000	
1	2	15647311	Hill	608	Spain	Female	41	1.000000	8380
2	3	15619304	Onio	502	France	Female	42	8.000000	15966
3	4	15701354	Boni	699	France	Female	39	1.000000	7649
4	5	15737888	Mitchell	850	Spain	Female	43	5.013003	12551

▼ Encoding categorical data

Label Encoding the "Gender" column

```
le = LabelEncoder()
X[:, 2] = le.fit_transform(X[:, 2])

print(X)

[[619 'France' 0 ... 1 1 101348.88]
      [608 'Spain' 0 ... 0 1 112542.58]
      [502 'France' 0 ... 1 0 113931.57]
      ...
      [709 'France' 0 ... 0 1 42085.58]
      [772 'Germany' 1 ... 1 0 92888.52]
      [792 'France' 0 ... 1 0 38190.78]]
```

One Hot Encoding the "Geography" column

```
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrout
X = np.array(ct.fit_transform(X))

print(X)

[[1.0 0.0 0.0 ... 1 1 101348.88]
       [0.0 0.0 1.0 ... 0 1 112542.58]
       [1.0 0.0 0.0 ... 1 0 113931.57]
       ...
       [1.0 0.0 0.0 ... 0 1 42085.58]
       [0.0 1.0 0.0 ... 1 0 92888.52]
       [1.0 0.0 0.0 ... 1 0 38190.78]]
```

Splitting the dataset into the Training set and Test set

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
```

▼ Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

▼ Part 2 - Building the ANN

▼ Initializing the ANN

```
ann = tf.keras.models.Sequential()
```

Adding the input layer and the first hidden layer

```
ann.add(tf.keras.layers.Dense(units=6, activation='relu'))
```

Adding the second hidden layer

```
ann.add(tf.keras.layers.Dense(units=6, activation='relu'))
```

Adding the output layer

```
ann.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
```

- ▼ Part 3 Training the ANN
- Compiling the ANN

```
ann.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
```

Training the ANN on the Training set

```
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.791
Epoch 78/100
Epoch 79/100
Epoch 80/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.799
Epoch 81/100
250/250 [======================== ] - 0s 1ms/step - loss: nan - accuracy: 0.790
Epoch 82/100
Epoch 83/100
250/250 [======================== ] - 0s 1ms/step - loss: nan - accuracy: 0.795
Epoch 84/100
250/250 [======================= ] - 0s 1ms/step - loss: nan - accuracy: 0.796
Epoch 85/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.795
Epoch 86/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.804
Epoch 87/100
250/250 [====================== ] - 0s 1ms/step - loss: nan - accuracy: 0.794
Epoch 88/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.795
Epoch 89/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.793
Epoch 90/100
250/250 [=========================== ] - 0s 1ms/step - loss: nan - accuracy: 0.798
Epoch 91/100
250/250 [========================== ] - 0s 1ms/step - loss: nan - accuracy: 0.798
Epoch 92/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.792
Epoch 93/100
250/250 [======================== ] - 0s 1ms/step - loss: nan - accuracy: 0.801
Epoch 94/100
250/250 [======================== ] - 0s 1ms/step - loss: nan - accuracy: 0.795
Epoch 95/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.799
Epoch 96/100
250/250 [======================== ] - 0s 1ms/step - loss: nan - accuracy: 0.797
Epoch 97/100
250/250 [======================== ] - 0s 1ms/step - loss: nan - accuracy: 0.795
Epoch 98/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.790
Epoch 99/100
250/250 [========================= ] - 0s 1ms/step - loss: nan - accuracy: 0.799
Epoch 100/100
250/250 [======================== ] - 0s 1ms/step - loss: nan - accuracy: 0.793
<tensorflow.python.keras.callbacks.History at 0x7f57ec4cf050>
```

Part 4 - Making the predictions and evaluating the model

Predicting the result of a single observation

EXAMPLE OF PREDICTING SINGLE DATA

Use our ANN model to predict if the customer with the following informations will leave the bank:

Geography: France

Credit Score: 600

Gender: Male

Age: 40 years old

Tenure: 3 years

Balance: \$ 60000

Number of Products: 2

Does this customer have a credit card? Yes

Is this customer an Active Member: Yes

Estimated Salary: \$50000

So, should we say goodbye to that customer?

Solution

```
print(ann.predict(sc.transform([[1, 0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]])) > 0.5)
[[False]]
```

Therefore, our ANN model predicts that this customer stays in the bank!

Important note 1: Notice that the values of the features were all input in a double pair of square brackets. That's because the "predict" method always expects a 2D array as the format of its inputs. And putting our values into a double pair of square brackets makes the input exactly a 2D array.

Important note 2: Notice also that the "France" country was not input as a string in the last column but as "1, 0, 0" in the first three columns. That's because of course the predict method expects the one-hot-encoded values of the state, and as we see in the first row of the matrix of features X, "France" was encoded as "1, 0, 0". And be careful to include these values in the first three columns, because the dummy variables are always created in the first columns.

▼ Predicting the Test set results

```
y_pred = ann.predict(X_test)
y_pred = (y_pred > 0.5)

print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))

[[0 0]
       [0 1]
       [0 0]
       ...
       [0 0]
       [0 0]
       [0 0]
       [0 0]
       [0 0]
       [0 0]
       [0 0]
       [0 0]
       [0 0]
       [0 0]
```

▼ Making the Confusion Matrix

```
from sklearn.metrics import confusion_matrix, accuracy_score
print(accuracy_score(y_test, y_pred)+ac)

0.9375

cm = confusion_matrix(y_test, y_pred)
print(cm)

[[1595    0]
        [ 405         0]]
```

completed at 3:43 PM ✓ 0s