Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

klimaaktiv Plus-Energie-Quartier-Deklaration: Handbuch zur Nachweisführung

Impressum

Medieninhaber, Verleger und Herausgeber:

Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK), Radetzkystraße 2, 1030 Wien

Autorinnen und Autoren:

Simon Schneider, Raphael Drexel, Thomas Zelger (FH Technikum Wien)

Gesamtumsetzung: SIR Wien, Dezember 2024

Copyright und Haftung:

Auszugsweiser Abdruck ist nur mit Quellenangabe gestattet, alle sonstigen Rechte sind ohne schriftliche Zustimmung des Medieninhabers unzulässig.

Es wird darauf verwiesen, dass alle Angaben in dieser Publikation trotz sorgfältiger Bearbeitung ohne Gewähr erfolgen und eine Haftung des BMK und der Autorin/des Autors ausgeschlossen ist. Rechtausführungen stellen die unverbindliche Meinung der Autorin/des Autors dar und können der Rechtsprechung der unabhängigen Gerichte keinesfalls vorgreifen.

Rückmeldungen: Ihre Überlegungen zu vorliegender Publikation übermitteln Sie bitte an simon.schneider@technikum-wien.at

Inhalt

1	Nachweisführung	4
2	Excel-Tool zur Nachweisführung	6
	Verfügbarkeit	6
•	Blatt Überblick	7
	Blatt Quartiersinformationen	9
	Blatt Wetter	. 12
	Blatt Gebäudehülle und Bauphysik	. 13
	Blatt Heizung	. 16
	Blatt Kühlung	18
€	Blatt Lüftung	20
\Diamond	Blatt Warmwasser	23
₹	Blatt Photovoltaik	25
Bla	att PVImport	. 26
	Blatt Energieflexibilität und Speicher	27
4	Blatt Mobilität	29
ВІ	att Global Warming Potential	31
2.1	. Ergebnisse	. 32
П	Blatt Ergebnisse	. 33
~/	Blatt Dashboard	. 38
	Zeitreihen: Energiebedarf	44
	Zeitreihen: Speicherzustände	44
$\overline{\mathbf{y}}$	Blatt Deklaration Plus-Energie-Quartier	46
$\overline{\mathbf{y}}$	Blatt Deklaration Plus-Energie-Quartier mit Mobilität	48
$\overline{\mathbf{y}}$	Blatt Deklaration klimaneutrales Plus-Energie-Quartier	50
i B	latt Überblick Modellierung und Simulation	. 52
Üh	er klimaaktiv	53

1 Nachweisführung

Dieses Handbuch beschreibt die notwendigen Schritte zur **Nachweisführung** einer Plus-Energie-Quartier **Deklaration**.

Das Handbuch geht **nicht** näher auf den wissenschaftlichen und theoretischen Hintergrund der Nachweisführung ein. Das ist Thema des **Methodenleitfadens**.¹

Die Nachweisführung ist zentraler Schritt zur Deklaration eines Plus-Energie-Quartiers und findet typischerweise nach dem Quick-Check und der Entscheidung zur Deklaration statt. Die Ergebnisse der Nachweisführung werden im Auditbericht zusammengefasst und den Expert:innen zur Plausibilitätsprüfung übermittelt. Ist diese positiv, wird das Projekt dem Beirat zur abschließenden Bewertung vorgelegt. Ist auch diese positiv, ist das Projekt erfolgreich deklariert.

Die Nachweisführung erfolgt typischerweise in folgenden Schritten:

- 1. Datenerhebung
- 2. Bei Deklarationsziel "Plus-Energie-Quartier mit Mobilität": Ermittlung Mobilitätskennzahlen mittels klima:aktiv Mobilitättool
- Ermittlung des stündlichen Ertrags erneuerbarer Energie (insbesondere PV) mittels Software der Wahl
- 4. Daten-Eingabe im Excel-Tool zur Nachweisführung
- 5. Erstellung des Auditberichts

Folgende Teile der Nachweisführung kann die vorgelagerte Verwendung zusätzlicher externer Tools notwendig machen, die im Tool zu Nachweisführung weiterverwendet werden:

¹ Die wissenschaftlichen Grundlagen sind in den Forschungsprojekten *Zukunftsquartier 2.0*, *Zukunftsquartier TakeOff, Zukunftsquartier Synergy, Zukunftsquartier Austria, Cities4PEDs* erarbeitet worde. Eine Zusammenfassung der Methodik ist im Endbericht Zukungsquartier 2.0 dargestellt: https://nachhaltigwirtschaften.at/resources/sdz pdf/schriftenreihe-2023-33-zukunftsquartier-2-0.pdf Ein detaillierter Methodenleitfaden ist auf Anfrage erhältlich.

Betrachtung	Bezeichnung*	Download
Lokale Erneuerbare Energieversorgung	PVSites / BIMSolar	https://www.pvsites.eu/software/ https://www.bim-solar.com/
Bauphysik	Energieausweistools PHPP	https://passiv.de/de/04_phpp/04_phpp.htm
Alltagsmobilität	klimaaktiv Mobilitätstool	https://www.klimaaktiv.at/gemeinden/qualitaetssicheru ng/Siedlungen/planung.html
Graue Energie	eco2soft	https://www.baubook.info/de/werkzeuge/eco2soft

^{*}Jeweils in der aktuellen Fassung

Tabelle 1: Grundsätzliche Berechnungsgrundlagen

Betrachtung	Systemgrenze	Konversionsfaktoren
Betriebsenergie	Heizwärmebedarf Warmwasserwärmebedarf Jahresertrag Solarthermie Hilfsenergie Lüftung Beleuchtung Betriebsenergie Jahresertrag Photovoltaik inkl. Graue Energie	baubook Richtwerte sowie Projekt- bzw. Länderspezifische Konversionsfaktoren für Strom und Fernwärme (im Excel Tool hinterlegt)
Alltagsmobilität	Energiebereitstellung und Fahrzeugherstellung Entsorgung nur bei PKWs berücksichtigt Jahresmobilität ohne der nicht alltäglichen Mobilität (z.B. Flugreisen; Wege länger als 3 Stunden) Siehe auch Österreich unterwegs 2013/2014	Umweltbundesamt GmbH (im klimaaktiv Mobilitätstool hinterlegt)
Graue Energie	Phasen A1-A3; B4; C1-C4 nach EN 15978 BG3. Exklusive der Grauen Energie von aufwändigen Gebäudetechniksystemen (z.B. PV) Betrachtungszeitraum 100 Jahre	baubook Richtwerte (in eco2soft hinterlegt)

2 Excel-Tool zur Nachweisführung

Die Nachweisführung erfolgt mit dem dafür vorgesehenen Excel-Tool, deren Handhabung im Folgenden erläutert wird. Die hier dargestellten Erklärungen sind größtenteils deckungsgleich mit den Blättern des Tools selbst und daher in tabellarischer Form.

Bitte beachten Sie, dass in der Erklärung einige dargestellten **Eingabe-Felder** zu Illustrationszwecken **mit Beispieldaten befüllt** sind. Diese müssen ggf. durch tatsächliche Projektwerte ersetzt werden.

Verfügbarkeit

Das Excel-Tool kann kostenfrei unter folgendem Link bezogen werden: XXX

▶ Blatt Überblick

Das Excel-Nachweistool ist in mehrere Blätter gegliedert, die in Reihenfolge der initialen Bearbeitung angeordnet sind.

Eingabeblätter	Тур	Beschreibung
► - Überblick	Info	Informationen zum Tool
🜃 - Quartier	Eingabe	Beschreibung des Quartiers und des Projekts
🐎 - Wetter	Eingabe	Wetterdatensatz
🛜 - Bauphysik	Eingabe	Gebäudehülle und Bauphysik
🖒 H - Heizung	Eingabe	Heizung
🛞 K - Kühlung	Eingabe	Kühlung
€L - Lüftung	Eingabe	Lüftung
∆ww	Eingabe	Warmwasser
€\$PV	Eingabe	Lokale Erneuerbare (PV, Solarthermie, etc)
PVimport	Eingabe	Stündliche Zeitreihen von PV-Ertragsprofilen
🗍 - Speicher	Eingabe	Speicher- und Energieflexibilitätsmaßnahmen
A Mobilität	Eingabe	Nur bei Deklaration PEQ+M: Mobilität
~~		
Treibhauspotential	Eingabe	Nur bei Deklaration KN PEQ: THP
	Eingabe	Nur bei Deklaration KN PEQ: THP
	Тур	Nur bei Deklaration KN PEQ: THP Beschreibung
Treibhauspotential		
Treibhauspotential Ausgabeblätter ✓ Dashboard Inl Ergebnisse	Typ Ergebnis Ergebnis	Beschreibung Diagramme der Simulationsergebnisse Simulationsergebnisse in Tabellarischer Form
Treibhauspotential Ausgabeblätter ✓ Dashboard Inl Ergebnisse	Typ Ergebnis Ergebnis	Beschreibung Diagramme der Simulationsergebnisse
■ Treibhauspotential Ausgabeblätter ☑ Dashboard III Ergebnisse Vorformattierte Ergebniss	Typ Ergebnis Ergebnis se zur Übernahme	Beschreibung Diagramme der Simulationsergebnisse Simulationsergebnisse in Tabellarischer Form im Deklarations-Auditbericht: Deklarationsergebnis
Treibhauspotential Ausgabeblätter ✓ Dashboard Inl Ergebnisse	Typ Ergebnis Ergebnis	Beschreibung Diagramme der Simulationsergebnisse Simulationsergebnisse in Tabellarischer Form im Deklarations-Auditbericht: Deklarationsergebnis Plus-Energie-Quartier
■ Treibhauspotential Ausgabeblätter ☑ Dashboard III Ergebnisse Vorformattierte Ergebniss	Typ Ergebnis Ergebnis se zur Übernahme	Beschreibung Diagramme der Simulationsergebnisse Simulationsergebnisse in Tabellarischer Form im Deklarations-Auditbericht: Deklarationsergebnis Plus-Energie-Quartier Deklarationsergebnis
■ Treibhauspotential Ausgabeblätter ☑ Dashboard III Ergebnisse Vorformattierte Ergebniss ☑ PEQ	Typ Ergebnis Ergebnis se zur Übernahme Ergebnis	Diagramme der Simulationsergebnisse Simulationsergebnisse in Tabellarischer Form im Deklarations-Auditbericht: Deklarationsergebnis Plus-Energie-Quartier Deklarationsergebnis Plus-Energie-Quartier mit Mobilität
■ Treibhauspotential Ausgabeblätter ☑ Dashboard III Ergebnisse Vorformattierte Ergebniss ☑ PEQ	Typ Ergebnis Ergebnis se zur Übernahme Ergebnis	Beschreibung Diagramme der Simulationsergebnisse Simulationsergebnisse in Tabellarischer Form im Deklarations-Auditbericht: Deklarationsergebnis Plus-Energie-Quartier Deklarationsergebnis Plus-Energie-Quartier mit Mobilität Deklarationsergebnis
■ Treibhauspotential Ausgabeblätter ☑ Dashboard III Ergebnisse Vorformattierte Ergebniss ☑ PEQ ☑ PEQ+M	Typ Ergebnis Ergebnis se zur Übernahme Ergebnis Ergebnis	Diagramme der Simulationsergebnisse Simulationsergebnisse in Tabellarischer Form im Deklarations-Auditbericht: Deklarationsergebnis Plus-Energie-Quartier Deklarationsergebnis Plus-Energie-Quartier mit Mobilität

▶ Blatt Überblick

Erklärung

Eingabe und Formatierung

Eingaben sind prinzipiell nur in den dafür vorgesehenen Zellen möglich. Alle anderen Zellen sind für eine Eingabe **gesperrt**. Eingabe-Zellen haben eine entsprechende Formatierung:

Eingabefeld	Eingabe	Diese Felder sind verpflichtend auszufüllen bzw. zu prüfen
Defaultwert	Optional	Defaultwerte sind optional überschreibbar, können aber auch übernommen werden, falls nicht näher bekannt.
Deklarationswert	Fixiert	Achtung: Für eine Deklaration muss dieser Wert unverändert übernommen werden
Weitere Formattierungen: Berechnung		Anzeige von Zwischenrechnungsergebnissen

Das Tool beinhaltet im Hintergrund noch eine Anzahl weiterer Blätter, die zusätzliche Detaileingaben ermöglichen. Diese Blätter dürfen zur Nachweisführung im Allgemeinen nicht verändert werden! FürZwecke

des Debuggings und der Analyse können diese Blätter bei Bedarf eingeblendet werden

Erklärungen, Beschriftungen und Einheiten

Blatt-Farbschema	Wer?	Zweck von Anpassungen	Änderungen de- klarierbar?
Allgemeine Informationen	Alle Nutzer	Nachweis der klimaaktiv Deklaration	✓
Eingabe	Alle Nutzer	Nachweis der klimaaktiv Deklaration	✓
Zeitreihen (Eingabe)	Alle Nutzer	Nachweis der klimaaktiv Deklaration	✓
Ergebnis PEQ	Alle Nutzer	Nachweis der klimaaktiv Deklaration	✓
Nur bei PEQ+M	Alle Nutzer	Nachweis der klimaaktiv Deklaration	✓
Nur bei KN PEQ	Alle Nutzer	Nachweis der klimaaktiv Deklaration	✓
		1	
	Expert	Variantenanalyse	\triangle
Zeitreihen (Defaultwerte)	Expert	Forschung, Detailanalyse	\triangle
	Expert	Forschung, Detailanalyse	\triangle
Stündliche Simulationen	Maintainer	Tool Fehlerbehebung, Weiterentwick- lung	\Diamond
Ya Veraltet	Maintainer		\triangle \triangle
☆ Maschinenraum	Maintainer	Tool Fehlerbehebung, Weiterentwick- lung	\Diamond

Blatt Quartiersinformationen

Grundlegende Eingabedaten zum Quartier beinhalten eine Projektbeschreibung, Standort und die Festlegung der Nutzflächen, die Größe des Quartiers und den Sanierungs-Antei. Diese Daten werden verwendet, um das Projekt in der Datenbank abzulegen.

Projektbeschreibung

Name des Projekts	Neues Projekt	
Website / URL		Falls vorhanden
Erstellungsdatum	01.01.2024	
Projektbeschreibung		

Standort

Adresse des Quartiers Musterstraße 3

Bitte wählen Sie die Gemeinde, in der sich das Quartier befindet, aus der Liste aus. Die Postleitzahl wird automatisch ergänzt.

Gemeinde Wien-Floridsdorf
Postleitzahl

Wetter

Wetterdatensatz

Das Tool verwendet zur Ermittlung der thermischen Energieflüsse einen stündlichen Wetterdatensatz. Sie können hier einen der bereits hinterlegten Datensätze auswählen, wenn das Quartier in derselben Gemeinde liegt:

Hohe Warte 2010

Dropdown-Auswahl

Falls kein passender Datensatz verfügbar ist, kann ein entsprechender Datensatz hier hinzugefügt werden:

Link: Blatt WETTER

Quartier

Bruttogrundflächen (BGF)

Das Nachweistool stellt **6 vordefinierte Nutzungen** zur Verfügung, die den jährlichen Energiebedarf für Nutzerstrom, Warmwasser und Beleuchtung, und deren Tages- und Wochenverlauf definieren. Geben Sie hier die Bruttogrundflächen (BGF) je Nutzung im Quartier an.

Es können KEINE zusätzliche Nutzungen angelegt werden: Falls zusätzlich andere Nutzungen im Quartier vorhanden sind, können Sie diese gemeinsam mit oder statt nicht verwendeter Nutzungen eintragen, und die nutzungsspezifischen Eingaben des Energiebedarfs für Nutzerstrom, WW, Beleuchtung, später entsprechend

Stellen Sie sicher, dass die Berechnung der Nettogrundflächen (NGF) möglichst genau sind, indem Sie ggf. die NGF/BGF Verhältnisse im folgenden Abschnitt anpassen.

	Bruttogrund-	ľ	letto-Grundflä-
Nutzung	fläche	C	he
Wohnen	20 000 m ²	56%	16 000 m ²
Büro	12 000 m ²	34%	9 600 m²
Kindergarten und Primäre Bildundseinrichtung	1 000 m²	3%	800 m²
Sekundäre Bildungseinrichtung oder Universität		0%	
Lebensmittelhandel		0%	
Handel	2 500 m ²	7%	2 000 m ²
Sonstige Nutzungen		0%	
Quartier (Summe)	35 500 m ²		28 400 m ²

Raumhöhen und Nettogrundflächen

Für die energetischen Berechnungen wird das effektive Innenvolumen der Räume verwendet, das sich aus der Nettogeschosshöhe und der konditionierten Nettogrundfläche (NGF) ergibt, das mit dem Verhältnis von Netto- zu Bruttogrundfläche berechnet wird. "Lebensmittelhandel" entspricht Nutzung als Supermarkt mit hohen internen Lasten, Kühl- und Beleuchtungsbedarfen. "Handel" sind andere Geschäfte mit entsprechend geringerem Nutzenergiebedarf und geringeren Belegungen.

			vernaturis
Nutzung	Nettoraumhöhe	e [m]	NGF/BGF
Wohnen	2,60 m	\(\)	80%
Büro	3,00 m	\$	80%
Kindergarten und Primäre Bildundseinrichtung	4,00 m	\$	80%
Sekundäre Bildungseinrichtung oder Universität	3,00 m	\$	80%
Lebensmittelhandel	4,00 m	\$	80%
Handel	4,00 m	\$	80%
Sonstige	3,00 m	\$	80%

Varhältnis

Quartier (Durschnitt)

2,87 m

80%

Quartiersfläche

Die Quartiersfläche ist zentral für die Ermittlung der Dichte des Quartiers in Form der Geschoßflächenzahl, und damit der Bewertung der Plus-Energie-Bilanz: Quartiere mit hoher baulicher Dichte bekommen in der Bilanz einen Bonus.

Geben Sie hier nur die Fläche der bebaubaren Grundstücke im Quartier ein, ohne Flächen für andere Nutzungen, wie etwa Grün- oder Verkehrsflächen, Parks oÄ. Die Fläche beinhaltet die gesamte bebaubaren Grundstücksflächen, nicht nur den Anteil der tatsächlich bebaut werden darf.

Gebäudeüberhang: Überbaute Flächen außerhalbder Grundstücksgrenzen (Gehsteige, Straßen, etc.), werden hier nicht berücksichtigt.

Bebaubare Grundstücksfläche	10 000 m ²
Geschoßflächenzahl	3,55

Sanierung oder Neubau

Sanierungsprojekte erhalten eine **Gutschrift in der Energie-Bilanz-Bewertung**, um den höheren Aufwand in Bezug auf die thermische Hüllqualität auszugleichen. Projekte mit beiden Teilen Sanieund Neubauanteil erhalten eine flächenbezogen-anteilige Bitte definieren Sie je Nutzung den Sanierungs-Anteil an der BGF:

Nutzung	Sanierungsanteil	Neubau- Anteil
Wohnen	50%	50%
Büro	0%	100%
Kindergarten und Primäre Bildundsein- richtung	0%	100%
Sekundäre Bildungseinrichtung oder Universität	0%	100%
Lebensmittelhandel	0%	100%
Handel	0%	100%
Sonstige	0%	100%
Quartier (Durschnitt)	28%	72%

Blatt Wetter

Eigene Wetterdaten können im Blatt hinzufügt werden: Die Daten müssen in folgendem stündlichen Format vorliegen:

- Globalstrahlung Horizontal in W/m²
- Globalstrahlung Ost in W/m²
- Globalstrahlung Süd in W/m²
- Globalstrahlung West in W/m²
- Globalstrahlung Nord in W/m²
- Außentemperatur in °C
- Rel. Luftfeuchte in 0-100

Eine passende Datenreihe bietet das Ausgabeformat **HELIOS-PC der Meteonorm Softwar**e.

Fügen Sie ihre Daten in einen der 10 Slots , und wählen Sie das Profil im Blatt 🌉 aus.

Blatt Gebäudehülle und Bauphysik

Hier wird die Gebäudehülle und die bauphysikalischen Eigenschaften des Quartiers dokumentiert. Die ökologische Bewertung der Aufbauten findet im Kapitel/Blatt **Graue Energie** statt

Thermische Gebäudehülle

Hier werden die Flächen der thermischen Hülle eingegeben. Es wird zwischen Außenwand, Dach, Kellerdecke/Fundament sowie Fenster unterschieden. Die Fensterflächen sind (inkl. Rahmen) als absolute Fläche einzugeben und erscheinen zur Selbstkontrolle als Fensterflächenanteil (gesamt Fensterfläche pro Fassadenfläche). Besteht das Quartier aus mehreren verschiedenen Baukomponenten mit unterschiedlichen U-Werten, verwenden Sie bitte den flächengewichteten Durchschnitt der Konstruktionen.

Opake Bauteile

Die Eingaben beziehen sich prinzipiell auf die Flächen der thermischen Hülle. Vereinfacht können dazu jene Bauteile angenommen werden, durch die der größte Temperaturabfall entsteht. Außenwände sind exklusive Fensterflächen einzutragen. Das Bauteil "Dach" entspricht bei unbeheizten Dachstühlen der obersten Geschossdecke. Analog ist bei Keller/Fundament jene Fläche einzutragen, die der thermischen Hülle entspricht. U-Werte unterschiedlicher Bauteile gleicher Orientierung sind flächengewichtet zu mitteln. Flächen zu unbeheizten Pufferzonen wie Garagen, unbeheizten Dachstühlen und Kellern können mit einem entsprechenden Temperaturfaktor beabschlagt werden (Reduktion der effektive Fläche). Geneigte Dächer werden zu 100% dem Dach zugeordnet, nicht der Fassade.

Bauteil	Fläche		S U-Wert	
Außenwände (exkl. Fenster)	6 000 m ²	brutto	0,17	W/m²K
Dach	7 000 m ²	brutto	0,11	W/m^2K
Kellerdecke/ Fundament	3 700 m ²	brutto	0,20	W/m^2K

Transluzente Bauteile

Die Fensterflächen sind **inklusive Rahmenanteil** einzugeben. Jede Fläche wird den 4 Himmelsrichtungen und Horizontaler Ausrichtung **flächenanteilig** zugeordnet. Beispiel: Eine 45° nord-ost-orientierte Fensterfläche wird zu 50% Norden und Osten zugeordnet. Ein Dachfenster mit 30% Neigung in Süd-Ausrichtung wird den Orientierungen Horizontal und Süden trigonometrisch (cos(30°) und sin(30°)) zugeordnet, um solare Gewinne ausreichend genau zu berücksichtigen.

Blatt Gebäudehülle und Bauphysik

Fenster Horizontal	20 m ² brutto
Fensterflächen (Summe)	4 320 m ²
Fensterflächenanteil	42%

Strahlungs- und Wärmedurchgang		S U-Wert	
Fenster Nord	0,395	0,756	W/m²K
Fenster Ost	0,395	0,756	W/m²K
Fenster Süd	0,395	0,756	W/m²K
Fenster West	0,395	0,756	W/m²K
Fenster Horizontal	0,395	0,756	W/m²K

Ψ Wärmebrücken

Der Transmissionsleitwert der Hüllflächen wird anteilig um einen zuschlag zur Berücksichtigung geometrischer Wärmebrücken ergänzt.

Defaultwert = 10% gemäß DIN4108

Wärmebrückenzuschlag	10%	
Transmissionsleitwert	0,2236	W/m² _{NGF} K

E Luftdichtheit

Hier kann ein mittlerer n50-Wert aus z.B. einem Blower-Door-Test eingegeben werden.

		1 -1
n ₅₀ -Wert	0,70	h-1

N Verschattung

Die Verschattung der Gebäude wird wie in PHPP über Abminderungsfaktoren der Einstrahlung im Heizfall und dessen relativer Änderung für den Kühlfall abgebildet. Abminderungsfaktoren können im PHPP ermittelt und hier direkt übernommen werden. Die Faktoren können vereinfacht durch die Auswahlfelder ermittelt werden. Diese Vorschläge müssen händisch in die Felder für die Faktoren übernommen werden (Werte kopieren)

Fremdverschattung	Keine - Grüne	Keine - Grüne Wiese, EFH Siedlung		
Horizontale Überstände		Keine		
	🖶 Winter	mer	W/S	
Vorschlag Fenster Nord	100%	100%	100%	
Vorschlag Fenster Ost	100%	100%	100%	
Vorschlag Fenster Süd	100%	100%	100%	
Vorschlag Fenster West	100%	100%	100%	
Vorschlag Fenster Horizontal	100%	100%	100%	
	1 ggf. diese Werte	1 ggf. diese Werte in den Block da-		
	runter kopieren 🕽			

Blatt Gebäudehülle und Bauphysik

		🕸 Som-	
Verschattungsfaktoren	🖶 Winter	mer	S/W
Fenster Nord	100%	100%	100%
Fenster Ost	100%	100%	100%
Fenster Süd	100%	100%	100%
Fenster West	100%	100%	100%
Fenster Horizontal	100%	100%	100%

Mobiler Sonnenschutz	Kein Sonnenschutz	
	100%	1 ggf. in
		Zelle darunter
Vorschlag Fc-Wert		kopieren
Fc-Wert	100%	

Thermisch wirksame Speichermasse der Gebäude

Die Bauweise beeinflusst die Gebäudemasse und -trägheit, und damit auch die Aufheiz- und Auskühlgeschwindigkeit der Gebäude. Ein Gebäude mit einer höheren thermischen Masse hat ein größeres Energieflexibilitätspotenzial. Die Bauweise kann entweder als schwer, mittel oder leicht angegeben werden

	schwer (Stahlbeton, Zie-
Auswahl Bauweise	gel,)
Vorschlag	204 ggf. in Zelle darunter kopieren
Spezifisch Wirksame Wärmekapazität	204 Wh/m²K

Blatt Heizung

Dieser Abschnitt definiert die gebäudetechnischen Anlagen der Energiedienstleistungen Heizen. Eine hybride Versorgung durch mehrere Erzeuger ist möglich, erfolgt durch eine Begrenzung der thermischen Leistung der jeweiligen Erzeugung und von prioritär von links nach rechts. Der Hilfsstrom wird für die Raumkonditionierung, die WW-Bereitung und die Be- und Entlüftung ermittelt. Der Hilfsstrombedarf für die Raumkonditionierung und die WW-Bereitung wird jeweils als Anteil des Nutzenergiebedarfs für ebenjene Anwendungen berechnet.

°C

Minimale Raumsolltemperatur 21

Abgabesystem

Die zuführbare Heizleistung ist durch das raumseitige Abgabesystem begrenzt. Geben Sie hier die raumseitigen Wärmeabgabesystem maximale Leistung des ein. Richtwerte: Hochtemperatur-Heizkörper: 100-150 W/m^2 Niedertemperatur-Heizkörper: 50-75 W/m^2 Fußbodenheizung: 30-50 W/m^2 Bauteilaktivierung: 20-30 W/m²

23.7 W/m² raumseitig Maximale Abgabeleistung

Heizsysteme

Das Quartier kann bis zu vier Heizsysteme beinhalten, die kaskadisch zum Einsatz kommen: Zuerst System 1 bis zu dessen maximaler Heizleistung, dann System 2 und so weiter. System 1 und 3 sind immer elektrisch betrieben, System 2 und 4 sind thermisch, mit auswählbaren Energieträgern. Damit lassen sich unterschiedliche Kombinationen aus Grund- und Spitzenlastsystemen konzipieren. Beispielsweise lässt sich eine Fernwärme Grundlast mit System 2 und Wärmepumpen-Spitzenlast als System 3 abbilden - System 1 ist dann durch eine maximale Leistung von Null auszuschalten.

100,00 W/m² Maximale raumseitige Heizleistung aller 4 Systeme

Wirkungsgrad Erzeugung

Der Wirkungsgrad entspricht dem Verhältnis von erzeugter Wärme zu eingesetzer Endenergie. Bei Wärmepumpen kann näherungsweise die JAZ eingegeben werden.

✓ Verteilverluste

Die Verteilverluste werden als Anteil der tatsächlich im Raum ankommenden Wärme angegeben, die zusätzlich als Verteilverluste anfallen und vom Heizsystem aufgebrachtw erden müssen.

Hilfsstromanteil

Anteil der Heizenergie, die als elektrische Hilfsenergie für Pumpen, Steuerung, etc. benötigt wird.

Heizsystem 1: Elektrisch Strom Energieträger

Maximale Heizleistung25,00W/m² raumseitig⊚ Wirkungsgrad Erzeugung460%✓ Verteilverluste5%✔ Hilfsstromanteil2%

Heizsystem 2: Thermisch optional

	Fernwärme	
Energieträger	Wien	
BMaximale Heizleistung	25,00	W/m² raumseitig
Wirkungsgrad Erzeugung	95%	
✓ Verteilverluste	5%	
// Hilfsstromanteil	2%	

Heizsystem 3: Elektrisch

Energieträger

Maximale Heizleistung

W/m² raumseitig

Wirkungsgrad Erzeugung

Verteilverluste

Hilfsstromanteil

Heizsystem 4: Thermisch	optional	
Energieträger	Erdgas	
B Maximale Heizleistung	25,00	W/m² raumseitig
Wirkungsgrad Erzeugung	0%	
✓Verteilverluste	5%	
// Hilfsstromanteil	0%	

Aktive Kühlung kann für das gesamte Quartier oder nur Teilflächen einzelner Nutzungen modelliert werden.

Geben Sie hier den Anteil der NGF je Nutzung an, der gekühlt werden soll.

Die **maximale Raumsolltemperatur** bezieht sich nur auf aktiv gekühlte Flächen. Nicht-gekühlten Flächen können diesen Wert überschreiten.

Nachtauskühlung über Fensterlüftung wird im Blatt Lüftung (€ L) eingegeben.

Maximale Raumsolltemperatur	25]℃
Nutzung	Kühlung	
Wohnen	100%	56%
Büro	100%	34%
Kindergarten und Primäre Bildundseinrich-		3%
tung	100%	
Sekundäre Bildungseinrichtung oder Universi-		0%
tät	100%	
Lebensmittelhandel	100%	0%
Handel	100%	7%
Sonstige Nutzungen	0%	0%

Kühlystem

Dieser Abschnitt definiert die gebäudetechnischen Anlagen der Energiedienstleistungen Kühlen. Eine hybride Versorgung durch mehrere Erzeuger ist möglich, erfolgt durch eine Begrenzung der thermischen Leistung der jeweiligen Erzeugung.

Das Quartier kann bis zu **drei aktive Kühlsysteme abbilden,** die kaskadisch zum Einsatz kommen: Zuerst System 1 bis zu dessen maximaler Heizleistung, dann System 2 und so weiter. System 1 und 3 sind immer elektrisch betrieben, System 2 uist thermisch mit auswählbaren Eneraieträgern.

Zusätzlich kann vor der aktiven Kühlung noch FreeCooling zum Einsatz gebracht werden.

Maximale raumseitig	ge Kühlleistung a	aller 3 Systeme

25,33 W/m²

FreeCooling ist eine energieeffiziente Kühlmethode, bei der die natürliche Außenluft oder kaltes Wasser als Kühlquelle genutzt wird, um die Gebäudetemperatur zu senken – ohne den Einsatz von mechanischen Kältemaschinen.

von mechanischen Kantemaschinen.		
BMaximale Kühlleistung	0,00	W/m² raumseitig
✓Verteilverluste		

∜ Kühlsy	stem	1:	Ele	ektriscl	h

Energieträger Strom

Maximale KühlleistungWirkungsgrad Erzeugung✓ Verteilverluste✓ Hilfsstromanteil	25,33	W/m² raumseitig JAZ
👸 Kühlsystem 2: Thermisch	optional	
Energieträger Maximale Kühlleistung Wirkungsgrad Erzeugung Verteilverluste Hilfsstromanteil		W/m² raumseitig
	optional	
 CHAPTER STEP STEP STEP STEP STEP STEP STEP STEP	optional Strom	W/m² raumseitig
Energieträger BMaximale Kühlleistung Wirkungsgrad Erzeugung		W/m² raumseitig ►
Energieträger Maximale Kühlleistung Wirkungsgrad Erzeugung Hilfsstromanteil Abgabesystem	Strom	
Energieträger Maximale Kühlleistung Wirkungsgrad Erzeugung Verteilverluste Hilfsstromanteil	Strom Strom	esystem begrenzt. Geben Sie hier

Blatt Lüftung

Die Lüftung kann **je Nutzung** anhand folgender Parameter definiert werden: Luftwechsel gibt an, welcher Luftwechsel zu Betriebs- bzw. Nutzungszeiten modelliert wird. Dies ist Maximalwert des zeitlichen Es gibt zwei Arten Lüftung, deren Anteil je Nutzung spezifiert werden kann: Fensterlüftung: Der je Nutzung definierte Luftwechsel muss entweder durch Fensterlüftung oder mechanische Lüftung erfolgen. Nutzungen ohne Fensterlüftung werden automatisch als mechanisch belüftet modelliert. Optional Fensterstellung für **Nachtauskühlung** festgelegt werden. kann eine Aktive Lüftungsanlage: Flächen, die keine Fensterlüftung aufweisen, werden mit aktiv mit einer mechanischen Anlage belüftet. Hier muss der Grad der Wärmerückgewinnung und der spezifische Strombedarf der Anlage definiert werden.

S Luftwechsel

Einstellung des zu Betriebs- bzw. Nutzungszeiten mindestens notwendingen hygienischen Luftwechsels.

Nutzung	Luftwechsel		Wochenprofil
Wohnen	0,4	h ⁻¹	
Büro	0,3	h ⁻¹	D D D D D D
Kindergarten und Primäre Bildunds-		h ⁻¹	10000
einrichtung	1,0		
Sekundäre Bildungseinrichtung oder		h ⁻¹	
Universität	1,0		10000
Lebensmittelhandel	0,5	<i>h</i> ⁻¹	
Handel	0,5	<i>h</i> ⁻¹	
Sonstige Nutzungen	-	h ⁻¹	

Mechanische Lüftungsanlage

Alle Flächen werden mit dem oben eingestellten Luftwechsel modelliert. Dieser kann je Nutzung teilweise durch eine **mechanische Lüftungsanlage** oder passiv durch **Fensterlüftung** realisiert werden. Geben Sie hier den Anteil der Flächen mit aktiver mechanischer Lüftung an - der Rest wird automatisch durch Fensterlüftung modelliert, der entsprechende Anteil rechts indikativ angezeigt.

Nutzung	mechanische Lüftung	Flächenanteil im Quartier	Fenster-
Wohnen	100%	56%	0%
Büro	100%	34%	0%
Kindergarten und Primäre		3%	0%
Bildundseinrichtung	100%		
Sekundäre Bildungseinrichtung		0%	0%
oder Universität	100%		
Lebensmittelhandel	100%	0%	0%
Handel	100%	7%	0%

Sonstige Nutzungen 100% 0%

Wärmerückgewinnung

Geben Sie hier an, welcher Anteil der im mechanisch ausgetauschten Luftwechsel enthaltenen Wärme rückgewonnen wird. Sie können die Angaben je Betriebszeitraum spezifizieren oder für Alle denselben Wert angeben.

Nutzung	Winter	Übergangszeit	Sommer 🔅
Wohnen	0%	0%	0%
Büro	0%	0%	0%
Kindergarten und Primäre			
Bildundseinrichtung	0%	0%	0%
Sekundäre Bildungseinrichtung			
oder Universität	0%	0%	0%
Lebensmittelhandel	0%	0%	0%
Handel	0%	0%	0%
Sonstige Nutzungen	0%	0%	0%

Lüfterstrom

Lüfterstrom: Elektrischer Bedarf zum Betrieb der Lüfter/Ventilatoren. Richtwerte: Mechanische Be- und Entlüftung mit Wärmerückgewinnung (ohne sonderliche Effizienz): 100%

Abluftanlage (ohne sonderliche Effizienz): 50%

Nutzung	Skalierung Lüfters	trom	Lüfterstrom
Wohnen			kWh/m²
Büro			kWh/m²
Kindergarten und Primäre			kWh/m²
Bildundseinrichtung			
Sekundäre Bildungseinrichtung			kWh/m²
oder Universität			
Lebensmittelhandel			kWh/m²
Handel			kWh/m²
Sonstige Nutzungen			kWh/m²

Blatt Lüftung

Fensterlüftung

Bei Fensterlüftung wird der notwendige Luftwechsel direkt durch Austausch mit der Umgebungsluft modelliert, abhängig vom Nutzungsprofil und dem oben eingestellten maximalen Luftwechsel.

Fensterstellung für Nachtauskühlung

Flächen ohne aktive mechanische Lüftung können Fensterlüftung für Nachtauskühlung verwenden. Sind die Fenster für Nachtauskühlung gekippt oder geöffnet, wird über die Kühlsaison - sofern die Außenluft mindestens 2K kühler als die Raumluft ist - eine Fensterlüftung durch gekippte oder gänzlich geöffnete Fenster modelliert, wodurch die Raumluft entsprechend der Temperagekühlt turdifferenz wird.

Diese Funktion wird **nur zwischen 20:00 und 8:00 und bei bestehendem Kühlbedarf** verwendet.

Nutzung	Fensterstellung Luftwechs		
Wohnen	geschlossen	56% 0,0	h ⁻¹
Büro	geschlossen	34% 0,0	h ⁻¹
Kindergarten und Primäre		3% 0,0	h ⁻¹
Bildundseinrichtung	geschlossen		
Sekundäre Bildungseinrichtung		0% 0,0	h⁻¹
oder Universität	geschlossen		
Lebensmittelhandel	geschlossen	0% 0,0	h ⁻¹
Handel	geschlossen	7% 0,0	h ⁻¹
Sonstige Nutzungen	geschlossen	0% 0,0	h ⁻¹

Zur Deckung des Warmwasserbedarfs können bis zu zwei Systeme im Quartier definiert werden, die zueinander kompementär sind. Die Verwendung der beiden Systeme kann je Nutzung anteilsmäßig definiert werden. Dh. wenn eine Nutzung zu 30% mit System 1 versorgt wird, sind die restlichen 70% automatisch System 2. Beide Systeme werden über folgende Parameter charakterisiert: Energieträger, Wirkungsgrad der Wärmeerzeugung, Effizienz der Verteilung (1-Verteilverluste), Effizienz der Speicherung (1-Speicherverluste pro Stunde) Der jährliche Warmwasser-Wärmebedarf ist per default je Nutzung gemäß ÖNORM definiert. Reduktionensmaßnahmen wie Nutzersensibilisierung oder Ähnliches können im Blatt "Nutzung" festgelegt werden.

Warmwasser-System 1

<u> </u>		
Energieträger	Strom	
Wirkungsgrad Erzeugung	169%	JAZ
⊠ Effizienz Verteilsystem	100%	
Speicherverluste	5,0%	pro Stunde

Warmwasser-System 2

E nergieträger	Strom	
Wirkungsgrad Erzeugung	100%	JAZ
⊠ Effizienz Verteilsystem	0%	
Speicherverluste	5,0%	pro Stunde

×

Wahl des Warmwassersystems

Nutzung	System 1	System 2
Wohnen	100%	0%
Büro	100%	0%
Kindergarten und Primäre Bildunds-		0%
einrichtung	100%	
Sekundäre Bildungseinrichtung oder		0%
Universität	100%	
Lebensmittelhandel	100%	0%
Handel	100%	0%
Sonstige Nutzungen	100%	0%
Qartier (Durchschnitt)	100,00%	0%

Minimale WW-Speichertemperatur

⚠ Minimale **Speichertemperatur** 60 °C

Blatt Photovoltaik

Zentrales Element der PEQ Betrachtung ist die stündliche Verteilung der lokalen erneuerbaren Energieerzeugung in Form von Photovoltaik. Das Tool benötigt dafür stündliche Zeitreihen der zu modellierden PV-Erträge.

Diese können mittels Software wie BIMsolar oder Archelios ermittelt werden. Die projektspezifischen Zeitreihen der geplanten PV werden im **Blatt PVimort** hinterlegt und sind in (kWh/h bzw. kW). Die Zeitreihen sind durch Eingabe zusätzlicher Kennzahlen zu vervollständigen: (Installierte Leistung [kWp], [m²] Modulfläche, Art der solaraktiven Fläche, etc.). Dabei ist es wichtig zwischen unterschiedlichen Systemen (z.B. Fassadenintegriert und Flachdach Aufdachanlage) zu unterscheiden. Die Kennzahlen und Informationen sind neben Dokumentationszwecken auch notwendig um die **graue Energie der Gebäudetechnik** zu ermitteln. Zur Verwendung in der Deklaration kann dann aus der Tabelle die geplante Gesamt-PV zusammengestellt werden.

Allgemeine Angaben zur Nutzung lokaler erneuerbarer Energien

PV Nutzung Auswahl PV Profil Skalierung

WAHR	
Standard PV-Profil Fassade	
	100%

Verfügbare Standard-Profile:	kWp		kWh/kWp
1 Standard PV-Profil Fassade		1	881,3
2 Standard PV-Profil Fassade		1	881,3
40 Roof tilt: 0° (Vienna)		1	1152,8
41 Roof tilt: 15° (Vienna)		1	1128,3
42 Roof tilt: 30° South (Vienna)		1	1371,0
43 Facade south vertical		1	936,8
44 Facade south 30°Tilt		1	1369,6

Weitere Parameter

Falls in der gegebenen Planungsphase keine Ertragsdaten inklusive Verluste durch Wechselrichter, Verkabelung und etwaige Verschmutzungen vorhanden sind kann hier ein Abschlagsfaktor für eben diese angegeben werden.

Effizienz (Konversion, Verschnutzung, etc)

90%

Blatt PVImport

Zentrales Element der PEQ Betrachtung ist die stündliche Verteilung der lokalen erneuerbaren Energieerzeugung in Form von Photovoltaik. Das Tool bietet dafür die Möglichkeit, direkt stündliche Zeitreihen zu verwenden. Diese lassen sich mittels Software wie BIMsolar oder Archelios ermitteln. Die projektspezifischen Zeitreihen der geplanten PV können rechts in die Look-Up-Tabelle importiert/kopiert werden (stündliche Ertragswerte in kWh/h) und durch die darüberliegenden Kennzahlen (kWp, m²Modulfläche, Name der PV-Variante) vervollständigt werden. Zur Verwendung in der Simulation kann dann aus der Look-Up-Tabelle die geplante PV-Variante über die Prozentwerte der "Zusammensetzung der Quartiers-PV" zusammengestellt werden. Die daraus resultierende Ertragsreihe ist rechts ersichtlich.

Falls in der gegebenen Planungsphase keine Ertragsdaten inklusive Verluste durch Wechselrichter, Verkabelung und etwaige Verschmutzungen vorhanden sind kann hier ein

Abschlagsfaktor für eben diese angegeben werden.

PV-Ertragszeitreihen müssen extern in stündliche Auflösung generiert werden. Mehrere Systeme können kombiniert verwendet werden.

- Simulation der geplanten
 Photovoltaikanlagen in externem Tool. z.B.
 BimSolar
- Import der Zeitreihen (stündliche Auflösung) in kWh/h (blaue Zellen)
- Ergänzung der Anlagenkennwerte (orange Zellen)
- prozentuelle Zusammensetzung der gesamten Quartiersanlage
- Abschlagsfaktor durch z.B. AC/DC Verluste, Kabelverluste, Verschmutzung

	PV-Profil
Zusammensetzung der	4.000/
Quartiers-PV	100%
Modultyp	
Modulleistung (Wpeak)	
Ausrichtung	
sonstige Anmerkungen	
Spezifischer PV-Ertrag	44.0
(kWh/m²BGF/a)	14.9
Installierte Leistung (kWp)	133
Spezifischer Ertrag (kWh/kWp)	986.5
PV-Fläche (m²)	
Flächeneffizienz	
(kWp/m²Dachfläche)	0.1
Ertragskurve (Jahr)	
	Neufinal Flachdach
	Steildach
Name des PV-Profils	Terrassen DG1
	Geländer/Brüstunge
	n
kWh/h	0.00
0	0.00
1	0.00
2	0.00
3	0.00

Blatt Energieflexibilität und Speicher

Blatt Energieflexibilität und Speicher

Die Energieflexibilität eines Quartiers wird durch Demand Side-Management-Maßnahmen in der stündlichen Simulation modelliert: Thermische und elektrische Speicher nehmen flexibel, also dynamisch abhöngig von stündlicher Verfügbarkeit mehr Energie aus erneuerbaren Quellen als zu diesem Zeitpunkt notwendig auf und speichern diese passiv für Zeiten mit geringerem Angebot an Erneuerbaren.

Verfügbare Speicherpotentiale: Thermische Gebäudemasse, Warmwasserspeicher, Elektrische Batterien, Batterien von E-Fahrzeugen

Verwendbare Erneuerbare: Lokale PV Produktion, Externe Flexibilitätssignale

Die Reihenfolge der Be- und Entladung ist:

Speicher-Beladung:

Flexible Nutzung erneuerbarer Energien

Lokale PV Überschüsse verwenden

WAHR

Externe Flexibilitätssignale

Freigabesignal gemäß PEQ-Methodik: Wenn Wind zu einem Zeitpunkt mehr als x% der installierten Nennleistung erbringt, wird das als guter Zeitpunkt interpretiert (Signal), um ZUSÄTZLICHEN Windstrom aus dem Netz im Quartier zu verwenden und damit die thermischen und elektrischen Speicher zu laden. Für die Deklaration muss ein Defaultwert von 40% angenommen werden. Die maximale Ladeleistung in W/m^2NGF ist ebenfalls ein Deklarationswert.

Signal verwenden Externes Freigabesignal maximale Leistung

Gemäß der Methodik Zukunftsquartier wird das Freigabesignal aktiviert, wenn Windkraft zu einem Zeitpunkt mehr als x% der installierten Nennleistung erreicht. Dieser Zeitpunkt wird als geeignet interpretiert, um zusätzlichen Windstrom aus dem Netz im Quartier zu verwenden, insbesondere zur Beladung der thermischen und elektrischen Speicher. Der Standardwert für x beträgt 40 %.

Thermischer Speicher der Gebäudemasse ("Nutzerflexibilität")

Bei dieser Form der Speicherung wird flexibel verfügbarer Strom aus lokalen Erneuerbaren oder externen Signalen (siehe oben) für die **ZUSÄTZLICHE** Heizung / Kühlung des Quartiers **ÜBER** die eingestellten Sollwerte hinaus verwendet, sofern das Heiz/Kühlsystem elektrisch betrieben ist. Geben Sie hier die maximale zulässige Überschreitung der Soll-Innentemperatur in Kelvin an. Diese Flexible "Vor-Konditio-

Blatt Energieflexibilität und Speicher

nierung" findet **nur einseitig**, also über die Sollwerte hinaus statt - der Mindest-Sollwert im Winter wird dabei nie unterschritten, und der maximale Sollwert im Sommer nicht überschritten.

Maximal zulässige Überschreitung der Innenraum-Solltemperatur

Heizfall	4	Kelvin	dh. von 21 bis maximal 25°C
Kühlfall	2	Kelvin	dh. von 25 bis maximal 23°C

Batteriespeicher

Batteriespeicher im Quartier werden verwendet, um vorhandene lokale Erneuerbare Überschüsse und flexible externe Stromspitzen zu speichern und die elektrischen Mindestbedarfe zu decken, wenn keine erneuerbaren Quellen vorhanden sind.

Falls ein elektrischer Speicher im Quartier vorhanden ist, setzen Sie die Flag auf "WAHR/TRUE". Die verfügbare Batteriekapazität ist absolut in kWh anzugeben - die installierte Leistung der PV Anlage in kWp dient als Dimensionierungshilfe (1 kWh Batterie \sim =1 kWp PV). Die maximale Be- und Entladeleistung wird als Anteil der Batteriekapazität angegeben, die pro Stunde be- bzw. entladen werden kann.

Der Wirkungsgrad von Ladung und Entladung kann separat eingegeben werden, multipliziert ergibt sich der "Round-Trip-Wirkungsgrad" (RTW), oder Zykluswirkungsgrad. Die Verluste der Batterie durch Selbstentladung können aus allgemeinen Kennwerten berechnet werden - der Defaultwert von 2% pro Woche entspricht einem stündlichen Verlust von 0.00012 1/h.

Batterie verwenden

FALSCH

Batteriegröße

Als Faustregel kann 1kWh Batterie pro 1 kWp PV-Anlage zugrundegelegt werden.

Falls ausreichend erneuerbare Energien lokal oder durch ein Flexibilitätssignal vorhanden sind, können sie als elektrische Antriebsenergie für eine zusätzliche Temperatursteigerung der vorhandenen Warmwasser-Speicher im Quartier verwendet werden. Dafür wird die Solltemperatur der Speicher temorär auf den unten angegebenen Wert gesetzt. Falls diese Form von Flexibilisierung verwendet werden soll, muss die Flag hier auf "WAHR/TRUE" gesetzt werden.

Dynamische WW-Speicherung

Maximale Speichertemperatur

Blatt Mobilität

Für die Deklarationen "Plus-Energie-Quartier mit Mobilität" und "Klimaneutrales Plus-Energie-Quartier" muss auch die individuelle motorisierte Alltagsmobilität in der Primär-Energieund Treibhausgas-Bilanz berücksichtigt werden.

Dazu wird dem Quartier gemäß Standort und Nutzungsmischung ein Anteil des statistischen Österreichischen Zielverkehrs zugeordnet, der im Rahmen der Bilanzierung zu Decken ist. Gleichzeitig kommt eine national einheitliche Gutschrift als virtuelle Deckung, bzw. Kontextfaktor Mobilität hinzu, die sich automatisch aus der Nutzungsmischung ergibt. Im Rahmen der Deklaration ist anzugeben, welcher Teil der individuellen motorisierten Alltagsmobilität mittels E-Cars realisiert wird.

Standort

Wien-Floridsdorf Standort Mobilitätsregion Jährliche Verkehrsleistung MIV Pkm/Jahr Mobilitäts-Budget bzw. Kontext-Faktor kWhPE/m²NGFQ

L Mobilitätsmaßnahmen

Die Jährliche Verkehrsleistung des MIV kann durch konkrete Maßnahmen im Mobilitätsbereich reduziert werden, falls ein entsprechender Nachweis durch Eingabe im klimaaktiv Mobilitätstool erbracht werden kann. Übertragen Sie in diesem Fall den ermittelten Reduktionsfaktor der Jahreskilometer des MIV in folgende Eingabe.

Reduktionsfaktor JPkm MIV

100%

Blatt Mobilität

🖎 E-Mobilität

Die Abbildung der E-Mobilität erfolgt als aggregierter Speicher im Quartier und wird ausschließlich **uni-direktional** betrieben, also flexibel **be**laden, aber **nicht ent**laden. Die Entladung erfolgt ausschließlich durch Fahrten.

Der Anteil an Elektrischen Fahrzeugen an der gesamten individuellen motorisierten Alltagsmobilität darf bei Deklaration 70% nicht überschreiten, außer es werden zusätzliche projektspezifische Nachweise erbracht.

Zusätzliche Parameter sind optional.

EV Energieverbrauch

	E-Mobilität berücksichtigen?	WAHR	
	Anteil E-Mobilität	<=70%	
	Elektrische Fahrzeuge		
	Anzahl	100	E-Fahrzeuge
	Vorschlag aus Personendichte, Stellplatzschlüs-	169	
	sel und EV-Anteil		E-Fahrzeuge
	Minimaler Ladestand vor Fahrtantritt	50%	
	Batterie-Selbstentladung	2%	pro Woche
	Batterie-Effizienz Beladung	90%	

17%

kWh/km

△ Blatt Global Warming Potential

Für den Nachweis Klimaneutrales Plusenergiequartier geben Sie hier das Global Warming Potential (GWP100) von Baustoffen, technischer Gebäudeausstattung und des motorisierten Individualverkehrs ein.

Baustoffe

Außenwand (exkl. Fenster)	GWP 100S (kg _{CO2equiv} /m² _{NGF} a)
Fenster	GWP 100S (kgco2equiv/m²NGFa)
Dachflächen	GWP 100S (kgco2equiv/m²NGFa)
Decke gegen Erdreich / Keller	GWP 100S (kg _{CO2equiv} /m² _{NGF} a)
Zwischengeschoßdecken	GWP 100S (kgco2equiv/m²NGFa)
Bauliche Maßnahmen Allgemein	GWP 100S (kg _{CO2equiv} /m² _{NGF} a)

O Technische Gebäudeausstattung

PV-Anlage	GWP 100S (kgco2equiv/m²NGFa)
Erdwärmesonden	GWP 100S (kgco2equiv/m²NGFa)
Komfortlüftung	GWP 100S ($kg_{CO2equiv}/m^2_{NGF}a$)
Solarthermie	GWP 100S (kgco2equiv/m²NGFa)
TGA Allgemein	GWP 100S (kgco2equiv/m²NGFa)

Mobilität

MIV Konventionell	5	t CO2/Fahrzeug
-------------------	---	----------------

2.1 Ergebnisse

Die Ergebnisse der Modellierung und Simulation sind folgenden Blättern zusammengefasst:

Тур	Beschreibung
Ergebnis	Diagramme der Simulationsergebnisse
Ergebnis	Simulationsergebnisse in Tabellarischer
	Form
e zur Übernahme	im <mark>Deklarations-Auditbericht</mark> :
Frgehnis	Deklarationsergebnis
	Plus-Energie-Quartier
Frachnic	Deklarationsergebnis
Ligebilis	Plus-Energie-Quartier mit Mobilität
Function	Deklarationsergebnis
Ergebnis	Klimaneutrales Plus-Energie-Quartier
	Ergebnis Ergebnis

Blatt Ergebnisse

Das Blatt Ergebnisse gibt einen Überblick über die Ergebnisse der Energie-Simulation:

Nutzenergiebedarfe

		zfall er - April)	Kühlfall (Mai-September)		
Wärmebilanz	Verluste	Gewinne	Verluste	Gewinne	
Transmissionswärmeverl.	20,9		4,5		
Lüftungswärmeverluste	28,7		8,0		
Sonstige	1,8		0,1		
Solare Gewinne		9,5		4,0	
Innere Wärmen		23,6		25,8	
Heizwärmebedarf		18,2			
Kühlbedarf (KB)			17,2		

Warmwasserwärmebedarf

Warmwasserwärmebedarf

12,7 $kWh/m^2_{NGF}a$

III Blatt Ergebnisse

Deckung Endenergie und Überschüsse

	kWh/m² _{NGF} a kWh/m² _{NGF} a
PV Direktdeckung 15,5	kWh/m² _{NGF} a
PV Überdeckung (ohne E-Batterie) 3,3	kWh/m² _{NGF} a
E-Batterie PV E-Batterie Netzdienlichkeit E-Batterie Netzdienlichkeit Direkt- und Überdeckung (ohne E-Batte-	kWh/m² _{NGF} a kWh/m² _{NGF} a kWh/m² _{NGF} a kWh/m² _{NGF} a
	kWh/m² _{NGF} a kWh/m² _{NGF} a
	kWh/m ² _{NGF} a kWh/m ² _{NGF} a
PV-Produktion PV-Überschüsse 0,6	kWh/m² _{NGF} a kWh/m² _{NGF} a

Energiekennzahlen

Energieautonomie	60,0%
Eigenverbrauchsanteil	96,9%
Energieautarkie	59,0%

III Blatt Ergebnisse

Strombedarf nach Nutzung [kWh/m²NGFa]

	Haus- halts- strom	Hei- zen	Küh- len	Warm- wasser	WW E-Stab	e- Spei- cher Bela- dung	E-Car La- dung	Summe	Summe ohne Spei- cher
Endenergiebedarf	32,8	5,4	4,7	9,4	-	-	9,7	62,0	62,0
Deckung Endenergie									
PV Direktdeckung PV Überdeckung (ohne e-	12,9	0,0	0,2	2,1	-	-	0,4	15,5	15,5
Batterie)	-	0,2	2,0	0,1	-	-	0,9	3,3	3,3
PV	12,9	0,2	2,2	2,2	-		1,3	18,8	18,8
E-Batterie PV E-Batterie Netzdienlich-	-	-	-	-	-	-	-	-	-
keit	-	-	-	-	-	-	-	-	-
E-Batterie		_		_		_	_	-	
Netzdienlichkeit Direkt- und Überdeckung (ohne									
E-Batterie)	4,4	4,3	2,2	1,5	-	-	5,4	17,7	17,7
Netzstrom	15,5	0,9	0,3	5,7			3,0	25,4	25,4

III Blatt Ergebnisse

Abwärme		-	-	-	-	-	-	-	-	-
	Summe	32,8	5,4	4,7	9,4	_	-	9,7	62,0	62,0

Netzdienlichkeit

	absolut [h] 1	relativ [%]
Stunden mit Freigabe, Jahr	845	21,1
Stunden mit Freigabe, Winter (Okt-Apr)	308	25,7
Stunden mit Freigabe, Sommer (Mai-Sep)	537	14,6
Längster Freigabezeitraum, Winter	66	-
Längster Freigabezeitraum, Sommer	68	-

Leistung

В	е	-	
d	а		F

Max. Heizleistung (thermisch)	23,7	W/m² _{NGF}
Max. Heizleistung inkl. Hilfsstrom (elektrisch)	5,4	W/m² _{NGF}
Max. Kühlleistung (thermisch)	25,3	W/m² _{NGF}
Max. Kühlleistung inkl. Hilfsstrom (elektrisch)	4,9	W/m² _{NGF}
Max. Warmwasser thermisch (exkl. Heizpatrone)	3,3	W/m² _{NGF}
Max. Warmwasser elektrisch inkl. Hilfsstrom (exkl. Heizpatrone)	2,5	W/m² _{NGF}
Max. WW Heizpatrone		- <i>W/m</i> ² _{NGF}
Max. E-Cars Laden	24,6	W/m² _{NGF}
Max. Batterie (Laden)		- W/m² _{NGF}
Max Lüferstrom		W/m^2_{NGF}

Norm-Ausle-

gung

Heizlast Kühllast 17,95 32,42

III Blatt Ergebnisse

Deckung

Max. Deckung durch PV (Direkt- und Überdeckung)	15,9	W/m² _{NGF}
Max. Deckung durch Batterie (Entladen) Max. Deckung durch Netzdienlichkeit inkl. E-Batterie Laden (Direkt- und Über-	-	W/m² _{NGF}
deckung)	44,6	W/m² _{NGF}
Max. Deckung durch konv. Netzstrom	15,8	W/m² _{NGF}
Max. Deckung durch Netzstrom gesamt (konv.+Netzdienlichkeit)	44,6	W/m² _{NGF} W/m² _{NGF}
Max. PV-Produktion		W/m² _{NGF}
Max. PV-Überschuss	9,5	W/m^2_{NGF}

☑ Blatt Dashboard

Das Blatt bietet einen Überblück über alle simulierten Ergebnisse auf einen Blick. Folgende Diagramme werden angezeigt:

Zeitreihen: Energiebedarf

Die Endenergieflüsse können im hier im Zeitverlauf dargestellt werden. Wählen Sie dazu den gewünschten Zeitraum in der Konsole durch direkte Auswahl der gewünschten Zeiträume in der horizontalen Leiste. Oben links in der Konsole kann zwischen unterschiedlichen Aggregationszeiträumen geschalten werde. Für die Anzeige von stündlichen Daten ist ein Zeitraum von einer Woche bis zu einem Monat empfohlen.

Bei Nutzung von energieflexiblen Speichern wird auch der Referenzenergiebedarf ohne flexible Maßnahmen zum Vergleich als punktierte Linie dargestellt.

Zeitreihen: Speicherzustände

☑ Blatt Dashboard

Blatt Deklaration Plus-Energie-Quartier

In diesem Blatt wird das Deklarationsergebnis des Standards **Plus-Energie-Quartier** dargestellt. Der Standard beinhaltet alle Energiedienstleistungen für den **Betrieb (Heizung, Kühlung, Warmwasser, Allgemeinstrom) und die Nutzung (Nutzerstrom, Beleuchtung)** der Gebäude im Quartier. Die Deklaration ist erfüllt, wenn deren Primärenergie-Bedarfe durch lokale Erneuerbare Erzeugung, Energieflexibilitätsmaßnahmen oder projektspezifische Kontextfaktoren überdeckt ist.

Dazu muss die unten dargestellte Differenz zwischen Projektwert und Grenzwert positiv sein.

Primärenergiebilanz	Wert	Einheit	Erläuterung	
Primärenergie-Import	-39,1	kWh _{PEges.} /m ² _{NGF} a	Summe an Primärenergie, die im Jahresverlauf über die Systemgrenze in das Quartier importiert wird (Netzstrom, Fernwärme, Erdgas) Summe an Primärenergie, die im Jahresverlauf über die Systemgrenze aus dem Quartier exportiert wird (Photovoltaik)	
Primärenergie-Export	1,7	kWh _{PEges.} /m ² NGFa		
Saldo Projektwert	-37,4	kWh _{PEges.} /m ² _{NGF} a	Summe aus obigen Primärenergie-Im- porten und Primärenergie-Exporten	
Grenzwert Plus-Energie- Quartier	-41,2	kWh _{PEges.} /m ² NGFa	Dieser Grenzwert muss für eine positive Deklaration überschritten werden.	
Differenz zwischen Pro- jektwert und Grenzwert	3,8	kWh _{PEges.} /m ² NGFa	Standard ist erfüllt, falls dieser Wert positiv ist.	

Im folgenden ist die Bilanz aus Primärenergiebedarfen und -Deckungen im Quartier ausgewiesen. Die Energiebedarfe sind mit den Konversionsfaktoren der externen Energiequellen dargstellt, der Eigenverbrauch an lokaler erneuerbarer Energie (mittel- und unmittelbar) ist mit Netzkonversionsfaktoren dargestellt, um die Größenordnung der vermiedenen Bezüge darzustellen.

Bilanz Bedarf-Deckung	Bedarf Deck	ung Einheit
Betriebsenergie	64,0	kWh _{PEges.} /m² _{NGF} a
Mobilität (MIV)		kWh _{PEges.} /m ² _{NGF} a
Lokale Erneuerbare		29,0 kWh _{PEges.} /m ² NGFa
Energieflexibilität		28,2 kWh _{PEges.} /m ² NGFa
Kontext bauliche Dichte	7,0	26,2 kWh _{PEges.} /m ² NGFa
Kontext Mobilität		kWh _{PEges.} /m ² _{NGF} a
Kontext Sanierung		15,0 kWh _{PEges.} /m ² NGFa
Saldo		kWh _{PEges.} /m ² NGFa

☑ Blatt Deklaration Plus-Energie-Quartier

Die Pfeile in Rot und Grün sind so anzupassen, dass sie die Differenz aus Bedarf und Deckung inklusive aller Kontextfaktoren abbilden.

Platt Deklaration Plus-Energie-Quartier mit Mobilität

In diesem Blatt wird das Deklarationsergebnis des Standards Plus-Energie-Quartier mit Mobilität dargestellt. Der Standard beinhaltet alle Energiedienstleistungen von PEQ im Betrieb und zusätzlich die motorisierte individuelle Alltagsmobilität (MIV), die in Form von Zielverkehr von Standort und Nutzung des Quartiers induziert wird. Die Deklaration ist erfüllt, wenn deren Primärenergie-Bedarfe durch lokale Erneuerbare Erzeugung, Energieflexibilitätsmaßnahmen oder projektspezifische Kontextfaktoren überdeckt ist. Dazu muss die unten dargestellte Differenz zwischen Projektwert und Grenzwert positiv sein.

Bilanz Import-Export	Wert	Einheit
Primärenergie-Import	-39,1	kWh _{PEges.} /m ² NGFa
Primärenergie-Export	1,7	kWh _{PEges.} /m ² _{NGF} a
Saldo Projektwert	-37,4	kWh _{PEges.} /m ² _{NGF} a
Zielwert Plus-Energie-Quartier	-41,2	kWh _{PEges.} /m ² _{NGF} a
Differenz zwischen Projektwert und Zielwert	3,8	kWh _{PEges.} /m ² NGFa

Im folgenden ist die Bilanz aus Primärenergiebedarfen und -Deckungen im Quartier ausgewiesen. Die Energiebedarfe sind mit den Konversionsfaktoren der externen Energiequellen dargstellt, der Eigenverbrauch an lokaler erneuerbarer Energie (mittel- und unmittelbar) ist mit Netzkonversionsfaktoren dargestellt, um die Größenordnung der vermiedenen Bezüge darzustellen.

Bilanz Bedarf-Deckung	Bedarf	Deckung	Einheit
Betriebsenergie	64,0		kWh _{PEges.} /m ² _{NGF} a
Mobilität (MIV)	26,6		$kWh_{PEges.}/m^2_{NGF}a$
Lokale Erneuerbare		29,0	$kWh_{PEges.}/m^2_{NGF}a$
Energieflexibilität		28,2	$kWh_{PEges.}/m^2_{NGF}a$
Kontext bauliche Dichte	7,0	26,2	$kWh_{PEges.}/m^2_{NGF}a$
Kontext Mobilität		14,1	$kWh_{PEges.}/m^2_{NGF}a$
Kontext Sanierung		15,0	$kWh_{PEges.}/m^2_{NGF}a$
Saldo			

🛂 Blatt Deklaration Plus-Energie-Quartier mit Mobilität

Die Pfeile in Rot und Grün sind so anzupassen, dass sie die Differenz aus Bedarf und Deckung inklusive aller Kontextfaktoren abbilden.

☑ Blatt **Deklaration klimaneutrales Plus-Energie-Quartier**

In diesem Blatt wird das Deklarationsergebnis des Standards Klimaneutrales Plus-Energie-Quartier dargestellt. Der Standard beinhaltet denselben zu übertreffenden Primärenergie-Bilanz-Grenzwert wie der Standard PEQ+M, die unten dargestellt ist. Zusätzlich muss die Treibhausgas-Bilanz des Quartiers unter dem projektspezifischen THG-Emissionsbudget bleiben. Die THG-Bilanz setzt sich aus den Emissionen der Bereiche Gebäudebetrieb und Nutzung, Motorisierte Individuelle Alltagsmobilität und der Grauen Emissionen der Errichtung/Sanierung der Gebäude, der TGA und der Mobilität zusammen

THG-Bilanz Verursacher - Budget	Emissionen	Budget	Einheit
Gebäudebetrieb	28,0		kgCO2eq/m ² _{NGF}
Mobilität	102,0		kgCO2eq/m² _{NGF}
Errichtung Gebäude, TGA & Mobilität	93,0		kgCO2eq/m ² NGF
THG Budget		320	kgCO2eq/m² _{NGF}
Saldo		97,0	kgCO2eq/m² _{NGF}

PE-Bilanz Import-Export	Wert	Einheit
Primärenergie-Import	-39,1	kWh _{PEges.} /m ² _{NGF} a
Primärenergie-Export	1,7	kWh _{PEges.} /m ² NGFa
Saldo Projektwert	-37,4	kWh _{PEges.} /m ² _{NGF} a

Zielwert Plus-Energie-Quartier	-41,2	kWh _{PEges.} /m ² _{NGF} a
Differenz zwischen Projektwert und Zielwert	3,8	kWh _{PEges.} /m ² NGFa

PE-Bilanz Bedarf-De- ckung	Bedarf	Deckung		Einheit
Betriebsenergie	64,0			$kWh_{PEges.}/m^2_{NGF}a$
Mobilität (MIV)	26,6			$kWh_{PEges.}/m^2_{NGF}a$
Lokale Erneuerbare			29,0	$kWh_{PEges.}/m^2_{NGF}a$
Energieflexibilität			28,2	$kWh_{PEges.}/m^2_{NGF}a$
Kontext bauliche Dichte	7,0		26,2	$kWh_{PEges.}/m^2_{NGF}a$
Kontext Mobilität			14,1	$kWh_{PEges.}/m^2_{NGF}a$
Kontext Sanierung			15,0	$kWh_{PEges.}/m^2_{NGF}a$
Saldo				

i Blatt Überblick Modellierung und Simulation

Wesentliche Anforderung an das Simulationsmodell der Nachweisführung ist die stündliche Auflösung aller beteiligten Energieflüsse .Das Nachweistool implementiert eine stündliche Energiesimulation für ein thermisches Ein/Zweizonen-Modell (Heiz/Kühlfall) mit folgenden Komponenten:

Über klimaaktiv

klima**aktiv** ist die Klimaschutzinitiative des Bundesministeriums für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK). Seit 2004 bietet sie in den Themenschwerpunkten "Bauen und Sanieren", "Energiesparen", "Erneuerbare Energie" und "Mobilität" ein umfassendes, ständig wachsendes Spektrum an Information, Beratung sowie Weiterbildung und setzt Standards, die international Vorbildcharakter haben.

klima**aktiv** zeigt, dass jede Tat zählt: Jede und jeder in Kommunen, Unternehmen, Vereinen und Haushalten kann einen aktiven Beitrag zur Erreichung der Klimaziele leisten. Damit tragt die Initiative zur Umsetzung des nationalen Energie- und Klimaplans (NEKP) für Österreich bei. Näheres unter klimaaktiv.at

klima**aktiv** bietet Informationen, Beratungen und Begleitungen zum Thema klimaneutrale und lebenswerte Siedlungen und Quartiere an. Der klimaaktiv Standard für Siedlungen und Quartiere unterstützt Gemeinden, Projektentwickler und Bauträger bei der Planung, Errichtung und den Betrieb. Wer nach diesen Qualitätskriterien plant und baut, leistet einen wesentlichen Beitrag zur Umsetzung des nationalen Energie- und Klimaplans (NEKP) für Österreich.

Kontakt

Strategische Gesamtsteuerung klima**aktiv**Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie
Sektion Klima und Energie
Stabstelle Dialog zu Energiewende und Klimaschutz
Stubenbastei 5, 1010 Wien

Programmmanagement klima**aktiv** Siedlungen und Quartiere SIR – Salzburger Institut für Raumordnung und Wohnen GmbH Oskar Mair am Tinkhof oskar.mairamtinkhof@salzburg.gv.at klimaaktiv.at/siedlungen

