Vortex Æther Model: Core Equations and Constants

Omar Iskandarani

February 19, 2025

Symbol	Description		
\overline{V}	Mass of liquid in circular motion (Vortex)		
Γ	Vortex circulation strength: $\oint \mathbf{v} \cdot d\mathbf{s}$		
ω	Vorticity magnitude $\nabla \times \mathbf{v}$		
Φ	Vorticity-induced potential function, satisfying $\nabla^2 \Phi = -\omega$.		
R	Characteristic vortex radius, representing the scale of rotation.		
λ	Vortex core parameter, related to the characteristic decay length of vorticity.		
L	Rotational vortex core length		
Ψ	Stream function of vortex motion $\mathbf{v} = \nabla \times \Psi$.		
Ψ_k	Vortex knot function describing topological structures in the Æther.		
$ ho_{ ext{ iny e}}$	Local Æther density, assumed to be incompressible in the model.		
P	Pressure in the Æther model, often governed by Bernoulli-like principles.		
H	Helicity, a measure of the knottedness of vortex tubes: $H = \int \mathbf{v} \cdot \omega dV$.		
K	Enstrophy, representing rotational energy density: $K = \frac{1}{2} \int \omega^2 dV$.		
\mathbf{v}	Velocity vector field		
$oldsymbol{\Omega}$	Angular velocity vector		
\mathbf{A}	Vector potential, where $\mathbf{B} = \nabla \times \mathbf{A}$ in magnetohydrodynamic analogies.		
J	Vortex current density, defined by $\mathbf{J} = \nabla \times \omega$.		

Table 1: Glossary of Terms for Incompressible Non-Viscous Liquid Æther

Symbol	Value	Unit	Quantity
C_e	1.09384563×10^6	${ m m~s^{-1}}$	Vortex-Core Tangential Velocity
F_c	29.053507	N	Coulomb Force
r_c	$1.40897017 \times 10^{-15}$	m	Vortex-Core Radius
R_e	$2.8179403262 \times 10^{-15}$	m	Classical Electron Radius
c	2.99792458×10^{8}	$\mathrm{m}\ \mathrm{s}^{-1}$	Speed of Light in Vacuum
α_g	1.7518×10^{-45}	-	Gravitational Coupling Constant
G	6.67430×10^{-11}	${ m m}^3{ m kg}^{-1}{ m s}^{-2}$	Newtonian Constant of Gravitation
h	$6.62607015 \times 10^{-34}$	$\rm J~Hz^{-1}$	Planck Constant
α	$7.2973525643 \times 10^{-3}$	-	Fine-Structure Constant
a_0	$5.29177210903 \times 10^{-11}$	m	Bohr Radius
M_e	$9.1093837015 \times 10^{-31}$	kg	Electron Mass
$M_{\rm proton}$	$1.67262192369 \times 10^{-27}$	kg	Proton Mass
$\dot{M_{ m neutron}}$	$1.67492749804 \times 10^{-27}$	kg	Neutron Mass
k_B	1.380649×10^{-23}	$\rm J~K^{-1}$	Boltzmann Constant
R	8.314462618	$\mathrm{J} \; \mathrm{mol}^{-1} \mathrm{K}^{-1}$	Gas Constant
λ_c	$2.42631023867 \times 10^{-12}$	m	Electron Compton Wavelength

Table 2: List of Physical Constants Used in the Vortex Æther Model (VAM)

$$e = \frac{\lambda_c}{2\pi} \alpha$$

$$e = \frac{e^2}{4\pi \varepsilon_0 M_e c^2}$$

$$e = 2R_c$$

$$e = \alpha^2 a_0$$

$$e = \frac{e^2}{4\pi \varepsilon_0 m_c c^2}$$

$$e = \frac{e^2}{8\pi \varepsilon_0 F_{\text{max}} R_c}$$

$$R_x = N \frac{F_{\text{max}} R_c^2}{M_e Z C_e^2}$$

$$e = \frac{\sqrt{16\pi F_{\text{max}} R_c^2}}{\mu_0 c^2}$$

$$e^2 = 16\pi F_{\text{max}} \xi_0 R_e^2$$

$$e = \frac{\sqrt{2\alpha h}}{\mu_0 c}$$

$$e = \frac{\sqrt{4C_e h}}{\mu_0 c}$$

$$R^2 = \frac{NF_{\text{max}} R_c}{4\pi^2 f^2 m_e}$$

$$R^2 = \frac{4\pi F_{\text{max}} R_c^2}{3\pi^2 M_e f_e}$$

$$\frac{1}{R_c} = \frac{c^2}{a_0 2 C_e^2}$$

$$L_{planck} = \sqrt{\frac{hG}{c^3}}$$

$$L_{planck} = \sqrt{\frac{hG}{c^3}}$$

$$L_{planck} = \sqrt{\frac{hf_p^2 C_e c^2}{2F_{\text{max}} R_c^2}}$$

$$G = \frac{C_e c^3 l_p^2}{2F_{\text{max}} R_c^2}$$

$$G = \frac{C_e c^3 l_p^2}{R_c m_e}$$

$$G = \frac{F_{\text{max}} \alpha (ct_p)^2}{R_c^2}$$

$$G = \frac{C_e c^3 l_p^2}{R_c M_e}$$

1 Validated VAM Equations

$$R_e = \frac{e^2}{4\pi\varepsilon_0 M_e c^2}$$

(3)

$$R_e = 2r_c \tag{4}$$

$$R_e = \alpha^2 a_0 \tag{5}$$

$$R_e = \frac{e^2}{4\pi\varepsilon_c m_c c^2} \tag{6}$$

$$R_e = \frac{e^2}{8\pi\varepsilon_0 F_{\text{max}} r_c} \tag{7}$$

$$R_x = N \frac{F_{\text{max}} r_c^2}{M_e Z C_e^2} \tag{8}$$

$$e = \frac{\sqrt{16\pi F_{\text{max}} r_c^2}}{\mu_0 c^2} \tag{9}$$

$$e^2 = 16\pi F_{\text{max}} \xi_0 R_e^2 \tag{10}$$

$$e = \frac{\sqrt{2\alpha h}}{\mu_0 c} \tag{11}$$

$$e = \frac{\sqrt{4C_e h}}{\mu_0 c^2} \tag{12}$$

$$R^2 = \frac{NF_{\text{max}} r_c}{4\pi^2 f^2 m_e} \tag{13}$$

$$R^2 = \frac{4\pi F_{\text{max}} r_c^2}{C_e} \frac{1}{8\pi^2 M_e f_e}$$
 (14)

$$\frac{1}{r_c} = \frac{c^2}{a_0 2C_e^2} \tag{15}$$

 $R_e = \frac{\lambda_c}{2\pi} \alpha(16)$

$$R_e = \frac{e^2}{4\pi\varepsilon_0 M_e c^2} \tag{17}$$

$$R_e = 2r_c (18)$$

$$R_e = \alpha^2 a_0 \tag{19}$$

$$R_e = \frac{e^2}{4\pi\varepsilon_c m_c c^2} \tag{20}$$

$$R_e = \frac{e^2}{8\pi\varepsilon_0 F_{\text{max}} r_c} \tag{21}$$

$$R_x = N \frac{F_{\text{max}} r_c^2}{M_e Z C_e^2} \tag{22}$$

$$e = \frac{\sqrt{16\pi F_{\text{max}} r_c^2}}{\mu_0 c^2} \tag{23}$$

$$e^2 = 16\pi F_{\text{max}} \xi_0 R_e^2 \tag{24}$$

$$e = \frac{\sqrt{2\alpha h}}{\mu_0 c} \tag{25}$$

$$e = \frac{\sqrt{4C_eh}}{\mu_0 c^2} \tag{26}$$

$$R^2 = \frac{NF_{\text{max}} r_c}{4\pi^2 f^2 m_e} \tag{27}$$

$$R^2 = \frac{4\pi F_{\text{max}} r_c^2}{C_e} \frac{1}{8\pi^2 M_e f_e}$$
 (28)

$$\frac{1}{r_c} = \frac{c^2}{a_0 2 C_e^2} \tag{29}$$