

Name:	
Matrikelnummer:	

Hochschule Karlsruhe – Technik und Wirtschaft Klausur Technische Informatik I (SS 2015)

Aufgabe	1	2	3	4	5	Summe
Punkte	14	10	16	8	12	60
Erreicht						

Ergebnis:

Note	
------	--

Zeit: 60 Minuten

Erlaubte Hilfsmittel: keine

Tragen Sie auf das **Titelblatt Ihren Namen und auf alle Blätter Ihre Matrikelnummer** ein. Fragen Sie bei Unklarheiten in der Aufgabenstellung sofort nach. Tragen Sie Ihre Lösungen in die Aufgabenblätter ein und verwenden Sie auch die Rückseite. Sollte der Platz nicht ausreichen, so erhalten Sie weitere Blätter. Lösungen auf eigenem Papier werden nicht akzeptiert. Alle Aufgabenblätter müssen abgegeben werden. Verwenden Sie **keinen Bleistift** und auch **keinen roten Stift**.

Viel Erfolg!

SS 2015

Prof. Dr. Dirk Hoffmann

Name:	

Matrikelnummer:

Aufgabe 1: Aussagenlogik (14 Punkte)

In dieser Aufgabe geht es um die folgende Herleitung eines bekannten aussagenlogischen Gesetzes:

$x \lor (y \lor z)$	
$= (x \lor (y \lor z)) \land 1$	(N)
$= (x \vee (y \vee z)) \wedge (x \vee \overline{x})$	(I)
$= [(x \lor (y \lor z)) \land x] \lor [(x \lor (y \lor z)) \land \overline{x}]$	(D)
$= [x] \vee [(x \vee (y \vee z)) \wedge \overline{x}]$	(AB)
$= [x \lor (x \land z)] \lor [(x \lor (y \lor z)) \land \overline{x}]$	(AB)
$= [(x \land (x \lor y)) \lor (x \land z)] \lor [(x \lor (y \lor z)) \land \overline{x}]$	(AB)
$= [x \wedge ((x \vee y) \vee z)] \vee [(x \vee (y \vee z)) \wedge \overline{x}]$	(D)
$= [((x \lor y) \lor z) \land x] \lor [(x \lor (y \lor z)) \land \overline{x}]$	()
$= [((x \lor y) \lor z) \land x] \lor [\overline{x} \land (x \lor (y \lor z))]$	(K)
$= [((x \lor y) \lor z) \land x] \lor [(\overline{x} \land x) \lor (\overline{x} \land (y \lor z))]$	(D)
$= [((x \lor y) \lor z) \land x] \lor [0 \lor (\overline{x} \land (y \lor z))]$	(I)
$= [((x \lor y) \lor z) \land x] \lor [\overline{x} \land (y \lor z)]$	(N)
$= [((x \lor y) \lor z) \land x] \lor [(\overline{x} \land y) \lor (\overline{x} \land z)]$	(D)
$= [((x \lor y) \lor z) \land x] \lor [(0 \lor (\overline{x} \land y)) \lor (\overline{x} \land z)]$	()
$= [((x \lor y) \lor z) \land x] \lor [((\overline{x} \land x) \lor (\overline{x} \land y)) \lor (\overline{x} \land z)]$	()
$= [((x \lor y) \lor z) \land x] \lor [(\overline{x} \land (x \lor y)) \lor (\overline{x} \land z)]$	()
$= [((x \lor y) \lor z) \land x] \lor [\overline{x} \land ((x \lor y) \lor z)]$	(D)
$= [((x \lor y) \lor z) \land x] \lor [((x \lor y) \lor z) \land \overline{x}]$	(K)
$= ((x \lor y) \lor z) \land [x \lor \overline{x}]$	(D)
	(I)
	(N)

Lesen Sie erst den Teilaufgabentext auf der nächsten Seite, bevor Sie auf diesem Blatt Antworten eintragen!

SS 2015

Name:	

Prof. Dr. Dirk Hoffmann Matrikelnummer: _____

			dieser Geser		ngen N, I, D, AB	
	N:					
	I:					
	D :					
	AB:					
	K:					
b)	Die gez der!	zeigte Able	tungsseque	nz enthält l	Lücken. Ergänze	n Sie die leergelassenen Fel-
c)	Wie he	ißt das bew	iesene auss	agenlogiscl	he Gesetz?	
d)	Vereinf weit wi		die Formel	(a ightarrow (b ightarrow	$(\cdot 0)) \rightarrow 0$ durch	rechnerische Umformung so
		ic mognen:				
		e mognen:				
		e mognen:				
		ic mognen:				
		e mognen:				
		e mognen:				
		e mognen:				
		e mognen:				
		e mognen:				
		e mognen:				

SS 2015

Prof. Dr. Dirk Hoffmann

Name: _____

Matrikelnummer: _____

Aufgabe 2: Schaltnetzanalyse (10 Punkte)

Gegeben sei das folgende Schaltnetz:

a) Übersetzen Sie das Schaltnetz in eine Wahrheitstabelle:

x_1	x_2	x_3	у
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

b) Wie lautet der Name der implementierten Funktion?

c) Bauen Sie einen 2:1-Multiplexer mithilfe von UND-Gattern, ODER-Gattern und Negationen auf. Verwenden Sie so wenig Bauteile wie möglich:

1					
1					

SS 2015

Prof. Dr. Dirk Hoffmann

Name: _____

Matrikelnummer: _____

Aufgabe 3: Minimierung (16 Punkte)

a) Was unterscheidet einen Primblock von einem Block? Was ist ein Implikant?

I I	
I I	

b) Gegeben seien die folgenden beiden Formeln:

$$\phi_1 = \overline{b}\,\overline{c}\,\overline{d} \vee \overline{a}\,\overline{b}\,\overline{d} \vee b\,c\,d \vee \overline{a}\,\overline{b}\,d$$

$$\psi_1 = \overline{a}\,\overline{b}\,\overline{c} \vee a\,\overline{c}\,\overline{d} \vee a\,b\,c \vee \overline{a}\,c\,d$$

Tragen Sie die Formel ϕ_1 in das linke und die Formel ψ_1 in das rechte Diagramm ein:

c) Handelt es sich bei den Formeln ϕ_1 und ψ_1 um disjunktive Minimalformen? Begründen Sie Ihre Antwort.

SS 2015

Prof. Dr. Dirk Hoffmann

Name: _____

Matrikelnummer:

d) Gegeben seien die folgenden beiden Formeln:

$$\phi_2 = (\overline{a} \vee \overline{d})(b \vee c \vee d)(\overline{a} \vee b \vee d)(b \vee \overline{a} \vee \overline{d})$$

$$\psi_2 = (\overline{b} \vee d)(a \vee c \vee \overline{d})(a \vee \overline{c} \vee d)(a \vee \overline{b} \vee \overline{c})$$

e) Tragen Sie die Formel ϕ_2 in das linke und die Formel ψ_2 in das rechte Diagramm ein:

Handelt es sich bei den Formeln ϕ_2 und ψ_2 um konjunktive Minimalformen? Begründen Sie Ihre Antwort.

f) Ist eine Minimalform immer eindeutig bestimmt. Begründen Sie Ihre Antwort.

•	•	

SS 2015

Prof. Dr. Dirk Hoffmann

Name:		
	-	-

Matrikelnummer: _____

Aufgabe 4: Arithmetisch-logische Einheit (8 Punkte)

Gegeben sei die folgende arithmetisch-logische Einheit (ALU). Die ALU nimmt als Eingabe 2 Zweierkomplementzahlen $x = x_3x_2x_1x_0$ und $y = y_3y_2y_1y_0$ entgegen und berechnet hieraus in Abhängigkeit der Steuersignale s_0, s_1, s_2 und s_3 die Zweierkomplementzahl $z = z_3z_2z_1z_0$.

Analysieren Sie das Verhalten der Schaltung auf der arithmetischen Ebene, indem Sie die folgende Tabelle ergänzen. Überlegen Sie sich hierzu zunächst, wie sich die vier Steuerleitungen auf den Datenfluss auswirken, und beachten Sie, dass alle Zahlen im Zweierkomplement dargestellt werden.

	<i>s</i> ₃	<i>s</i> ₂	s_1	s_0	Z
0	0	0	0	0	x+y
1	0	1	1	0	
2	0	0	1	1	
4	1	1	0	0	
8	1	1	1	1	

SS 2015

Prof. Dr. Dirk Hoffmann

Name: _____

Matrikelnummer: _____

Aufgabe 5: Speicherelemente (12 Punkte)

a) Ergänzen Sie für die ersten beiden Speicherelemente den fehlenden Signalverlauf und für die letzten beiden Elemente das Schaltsymbol:

