Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет программной инженерии и компьютерной техники

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №1

Перевод чисел между различными системами счисления (Вариант 17)

Выполнил студент группы Р3110 Гусев Максим Вадимович

Принял канд. техн. наук, доцент Малышева Т. А.

Содержание

Обязательное задание	3
Основные этапы вычисления	4
Дополнительное задание №1	7
Реализация решения дополнительного задания №1	7
Заключение	8
Список использованных источников	8

Обязательное задание

Перевести число "А", заданное в системе счисления "В", в систему счисления "С". Числа "А", "В" и "С" взять из представленной ниже таблицы. Всего нужно решить 13 примеров. Для примеров с 5-го по 7-й выполнить операцию перевода по сокращенному правилу (для систем с основанием 2 в системы с основанием 2^k). Для примеров с 4-го по 6-й и с 8-го по 9-й найти ответ с точностью до 5 знака после запятой. В примере 11 группа символов $\{^{\wedge}1\}$ означает -1 в симметричной системе счисления.

Задание	A	В	C
1	25334	10	9
2	22211	5	10
3	3CAAD	15	5
4	53,54	10	2
5	72,98	16	2
6	25,11	8	2
7	0,011111	2	16
8	0,000001	2	10
9	7A,87	16	10
10	142121	Факт	10
11	175	10	Фиб
12	10100010	Фиб	10
13	1000001.000001	Бергмана	10

Основные этапы вычисления

Пример 1 $25334_{10} = 42668_9$

Рисунок 1. Решение примера №1.

$$22211_5 = 1 \cdot 5^0 + 1 \cdot 5^1 + 2 \cdot 5^2 + 2 \cdot 5^3 + 2 \cdot 5^4 = 1556_{10}$$

Пример 3

$$3CAAD_{15} = 194788_{10} = 22213123_5$$

Рисунок 2. Решение примера №3.

Пример 4

$53.54_{10} = 110101.10001_2$

Рисунок 3. Решение примера №4.

Пример 5

$$72.98_{16} = (0111)(0010).(1001)(1000)_2 = 1110010.10011_2$$

Пример 6

$$25.11_8 = (010)(101). (001)(001)_2 = 10101.001001_2$$

Пример 7

$$0.011111_2 = 0.(0111)(1100)_2 = 0.7C_{16}$$

Пример 8

$$0.000001_2 = 1 \cdot 2^{-6} = rac{1}{2^6} = rac{1}{64} = 0.015625_{10} pprox 0.01563_{10}$$

Пример 9

$$7A.87_{16} = 7 \cdot 16^1 + 10 + 8 \cdot 16^{-1} + 7 \cdot 16^{-2} = 122.5 + rac{7}{256} pprox 122.52734_{10}$$

Пример 10

$$142121_{(\Phi)} = 1 \cdot 1! + 2 \cdot 2! + 1 \cdot 3! + 2 \cdot 4! + 4 \cdot 5! + 1 \cdot 6! = 1259_{10}$$

Пример 11

$$175_{10} = 144 + 21 + 8 + 2 = 10001010010_{(II)}$$

$$10100010_{({\rm II})} = 2 + 13 + 34 = 49_{10}$$

Пример 13

$$egin{split} 1000001.000001_{(5)} &= \left(rac{1+\sqrt{5}}{2}
ight)^6 + 1 + \left(rac{1+\sqrt{5}}{2}
ight)^{-6} = \ &= rac{\left(1+\sqrt{5}
ight)^6 + \left(1-\sqrt{5}
ight)^6}{64} + 1 pprox 19_{10} \end{split}$$

Дополнительное задание №1

Написать программу на любом языке программирования, которая бы на вход получала число в системе счисления "С" из примера 11 (в Фибоначчиевой системе счисления), а на выходе выдавала это число в системе счисления "В" из примера 11 (в десятичной системе счисления).

Реализация решения дополнительного задания №1

```
main.py
 1 def fibonacci_generator():
      """Yield the next Fibonacci number."""
     a, b = 1, 1
 4 while True:
 5
     yield a
 6
         a, b = b, a + b
 8
 9 def fibonacci_to_decimal(fib_string: str):
    """Convert a Fibonacci number to decimal."""
10
11
      fibonacci = fibonacci_generator()
12
      next(fibonacci) # Skip the first Fibonacci number
13
14
15
      result = 0
16
     for char in fib_string[::-1]:
      cur = next(fibonacci)
17
         if char = "1":
18
        result += cur
19
20 return result
21
22
23 if __name__ = "__main__":
24 fib_string = input("Enter a Fibonacci number: ")
      print("Result:", fibonacci_to_decimal(fib_string))
25
```

Рисунок 4. Программное решение дополнительного задания на языке Python.

Программа принимает на вход число в Фибоначчиевой системе счисления и при помощи функции fibonacci_to_decimal переводит его в десятичное представление. Алгоритм использует вспомогательную функцию-генератор бесконечной последовательности чисел Фибоначчи fibonacci_generator для получения следующих членов последовательности и выполнения перевода.

Заключение

В процессе выполнения лабораторной работы я освежил свои знания о позиционных системах счисления, а также научился работать со смешанными и неклассическими системами счисления, такими как Фибоначчиева с.с. (с.с. Цекендорфа) и факториальная с.с., с.с. Бергмана.

Список использованных источников

- 1. Презентация с лекции по информатике №1 от 14.09.2023
- 2. https://en.wikipedia.org/wiki/Fibonacci_coding
- 3. https://ru.wikipedia.org/wiki/Система счисления