Extracting Information from Awkward Datasets

Jason A. Grafft

Modeling

• A patient P presents with initial state S_0 , evolving under the influence of time t and an unmeasured confounding variable into S_t .

Psychomotor Task Model

• An intervention I confounds the relationship of t, S_0 , S_t , and the unmeasured variable in *predictable and* unpredictable ways. b

Data

- Filmed study participants during simulated case
- Two (2) raters reviewed footage
- Created a psychomotor event log for each case

t	event	code	state	result	notes		
0.0	start						
56.0	drug	Fentanyl	bolus	100mcg	Stated '2.0mcg/kg'		
97.0	drug	Lidocaine	bolus	70mg			
101.0	drug	Propofol	bolus	150mg	Stated '2mg/kg'		
119.0	drug	Succinylcholine	bolus	70mg	Stated '1mg/kg'		
160.0	laryngoscopy	start	manual				
192.0	eti	start					
212.0	laryngoscopy	stop	manual				
232.0	eti	stop					
243.0	ventilations	start	manual				
249.0	check	breath sounds		bilateral			
257.0	recognize	monitor	etCO2	active			
259.0	end						

Data Integrity

A minority of orderings are valid, and raters "blind" downstream consumers

- Essential items
 - Chronology, pairing of events
 - Coding and spelling
 - Drug dosing

Key Algorithms

- countunique
 - Coding and spelling errors
 - Provides rough measure of set "orthodoxy"
 - Histograms, other frequency statistics
- destructure
 - Deconstructs DataFrame into

```
Array{Tuple{Symbol, Array}}
```

- tuplesbykey
 - Extracts combinations

Pairing, coding and spelling errors

	event:code	count	representation		event:code	count	representation	
1	ask:equipment	1	0.07	19	check:breath sounds	10	0.67	
2	check:monitor	1	0.07	20	check:equipment	10	0.67	
3	drug:Phenylephrine	1	0.07	21	preoxygenate:start	12	0.80	
4	eti:adjust	1	0.07	22	preoxygenate:stop	12	0.80	
5	recognize:eti	1	0.07	23	drug:Lidocaine	13	0.87	
6	suction:start	1	0.07	24	drug:Succinylcholine	13	0.87	
7	suction:stop	1	0.07	25	recognize:monitor	14	0.93	
8	ask:monitor	2	0.13	26	end:missing	15	1.00	
9	check:medications	2	0.13	27	start:missing	15	1.00	
10	check:reflex	2	0.13	28	drug:Propofol	16	1.07	
11	extubation:missing	2	0.13	29	ventilations:start	17	1.13	
12	ventilations:stop	2	0.13	30	cricoid pressure:start	20	1.33	
13	ask:patient	3	0.20	31	cricoid pressure:stop	20	1.33	
14	cricoid pressure:switch	3	0.20	32	laryngoscopy:start	20	1.33	
15	drug:Rocuronium	4	0.27	33	laryngoscopy:stop	20	1.33	
16	ask:assistant	7	0.47	34	eti:stop	23	1.53	
17	drug:Fentanyl	8	0.53	35	eti:start	24	1.60	
18	recognize:fasciculations	9	0.60					

Chronology and pairing of events

Hypotheses

- 1. Increase in maximum time to completion is proportional to increase in risk of adverse events: $t_{max} \propto risk_{adv}$
- Specifically, we believe the predominance of risk to the patient lies between the cessation of respirations and the reestablishment of effective ventilatory support.
 - Formally, that the mean risk of adverse events lies within the closed interval between a respiratory rate of 0 and the start of effective ventilatory support: $mean(risk_{adv}) \in [RR_0, vent_{eff}]$
- 3. The items with representation > 1.0 for the set (see table below) increase t_{max} , specifically
 - Number of laryngoscopy attempts
 - Number of ETI attempts
 - Number of ventilation attempts
 - Number of cricoid pressure attempts
- 4. The confounding influence of unmeasured variables will be greater in sets with higher t_{max}
- 5. The sequence of events preceding RR_0 correlates with the sequence events following it.

Statistics

	count	unique	missing	mean	minimum	1st	median	3rd	maximum	σ	σ^2	skew	kurtosis
t	325	223	0	204.27	0.00	122.00	206.00	290.00	518.00	121.10	14666.22	0.22	-0.44
t _{max}	15	15	0	317.60	174.00	266.50	309.0	378.00	518.00	98.77	9754.97	0.28	-0.59

Validity

Given S_t, biomedicine can often predict a range of potential future states and assign a probability to most

range(
$$(PS_{(t+n)a}, S_{(t+n)a}) \rightarrow (PS_{(t+m)a}, S_{(t+m)a})$$

A well-curated set of heuristics for composing empirical evidence guides this process. **Mechanical ones must match.**^C

Next Steps

- Asserting meaningful causality from these data necessitates integrating metatdata
 - Clinical
 - Physiologic
 - Expert opinion
 - Expert practice
 - Biometric

BioGears Physiology Simulation Engine Output Plots

Machine Learning

- Data programming 1,2
- Formalization in do-Calculus ^{3,4}
- Modeling of expert heuristic bias 5,6
- Logical value of "data generation" techniques
- Models for integration of biometric, clinical, physiologic, and expert opinion and practice

Thank you!!

jgrafft@gmail.com

- https://grafft.co
- https://github.com/jagrafft
- https://beta.observablehq.com/@jagrafft

Endnotes

 a S_{0} , ..., S_{t} are likely posets. Reflexivity and transitivity are relatively easy to demonstrate in the physical models of biomedicine. I suspect antisymmetry holds as well, but have not investigated this property.

^b In biomedicine, it is helpful to understand all applications as partial.

^C In essence, aggressive data collection and review has facilitated valid association of inputs with outputs, providing some way of calculating the "other end" of a black-box model given a left or right input.

References

- 1. Ratner A, De Sa C, Wu S, Selsam D, Ré C. Data programming: Creating large training sets, quickly. May 2016. https://arxiv.org/abs/1605.07723. Accessed August 29, 2018.
- 2. Ratner A, Bach SH, Ehrenberg H, Fries J, Wu S, Ré C. Snorkel: Rapid training data creation with weak supervision. *Proceedings of the VLDB Endowment*. 2017;11(3):269-282. doi:10.14778/3157794.3157797
- 3. Pearl J. The do-calculus revisited. October 2012. https://arxiv.org/abs/1210.4852. Accessed October 2, 2018.
- 4. Pearl J. The seven tools of causal inference with reflections on machine learning. *Communications of Association for Computing Machinery (Forthcoming)*. July 2018:6. https://ftp.cs.ucla.edu/pub/stat_ser/r481.pdf. Accessed September 30, 2018.
- 5. Taniguchi H, Sato H, Shirakawa T. A machine learning model with human cognitive biases capable of learning from small and biased datasets. *Scientific Reports*. 2018;8(1):7397. doi:10.1038/s41598-018-25679-z
- 6. Battaglia PW, Hamrick JB, Bapst V, et al. Relational inductive biases, deep learning, and graph networks. June 2018. https://arxiv.org/abs/1806.01261. Accessed October 2, 2018.