What is claimed is:

1	1. A viscous fluid type heat generating apparatus comprising:
2	housing means;
3	channel means in said housing means for guiding a tempering fluid
4	through them;
5	conveying rotor means arranged at least partially in said channel means
6	for driving said tempering fluid through said channel means, said conveying rotor
7	means being hollow to form a chamber at least partially surrounded by a rotor
8	wall of said conveyor rotor means for containing said viscous fluid;
9	drive means for rotating said conveying rotor means
10	shaft means driven by said drive means and being connected to said
11	conveying rotor means; and
12	shearing means in said chamber of said hollow conveying rotor means for
13	generating heat by shearing said viscous fluid, said heat being transferred via said
14	conveying rotor means to said tempering fluid in said channel means.
1	2. Apparatus as claimed in claim 1, wherein said chamber is
2	fully surrounded by said rotor wall means at least in operation.
1	3. Apparatus as claimed in claim 1, wherein said shearing
2	means comprise at least two opposing shearing parts, said shearing parts
3	including interengaging projections and recesses.
1	4. Apparatus as claimed in claim 1, wherein said chamber is
2	formed as a gap at least in part.
1	5. Apparatus as claimed in claim l, wherein said conveying
2	rotor means are formed of a metal having a higher thermal conductivity k than
3	100 kcal/m h degree.
1	6. Apparatus as claimed in claim 5, wherein said conveying
2	rotor means are formed of aluminum.
1	7. A viscous fluid type heat generating apparatus comprising:
_	, ,

3	channel means in said housing means for guiding a tempering fluid
4	through them;
5	conveying rotor means arranged at least partially in said channel means
6	for driving said tempering fluid through said channel means, said conveying
7	rotor means being hollow to form a chamber at least partially surrounded by a
8	rotor wall of said conveyor rotor means for containing said viscous fluid;
9	drive means for rotating said conveying rotor means;
10	shaft means driven by said dive means and being connected to said
11	conveying rotor means; and
12	shearing means in said chamber of said hollow conveying rotor means
13	for generating heat by shearing said viscous fluid, said heat being transferred
14	via said conveying rotor means to said tempering fluid in said channel means,
15	said shearing means including
16	at least one shearing plate element for cooperating with said rotor wall,
17	and
18	means providing relative movement of said shearing plate in relation to
19	said rotor wall.
1	8. Apparatus as claimed in claim 7, wherein said shaft means
2	comprise a hollow inner space, said relative movement providing means
3	comprising holding means arranged within said inner space for holding said at least
4	one shearing plate element.
1	9. Apparatus as claimed in claim 8, wherein said holding
2	means are formed as a shaft which extends along said inner space.
1	10. A viscous fluid type heat generating apparatus comprising:
2	housing means;
3	channel means in said housing means for guiding a tempering fluid
4 5	through them; conveying rotor means arranged at least partially in said channel
6	means for driving said tempering fluid through said channel means, said
7	conveying rotor means being hollow to form a chamber at least partially

O	surrounded by a rotor wan or said conveying rotor means for containing said
9	viscous fluid;
10	drive means for rotating said conveying rotor means
11	shaft means driven by said dive means and being connected to said
12	conveying rotor means; and
13	shearing means in said chamber of said hollow conveying rotor
14	means for generating heat by shearing said viscous fluid, said heat being
15	transferred via said conveying rotor means to said tempering fluid in said channel
16	means, said shearing means including at least one shearing plate element for
17	cooperating with said rotor wall, means providing relative movement of said
18	shearing plate in relation to said rotor wall; and
19	control means for controlling the magnitude of the relative
20	movement between said at least one shearing plate element and said rotor wall.
21	11. Apparatus as claimed in claim 10, wherein said control
22	means comprise electric control means.
1	12. Apparatus as claimed in claim 11, further comprising
2	sensor means for sensing a temperature influence parameter, said sensor means
3	providing an output signal.
1	13. Apparatus as claimed in claim 12, wherein said sensor
2	means comprise at least two sensors so as to provide an output signal of each of
3	it, and control means comprising a weighting control circuit for weighting said
4	output signals.
1	14. Apparatus as claimed in claim 13, wherein said weighting
2	control circuit comprises a neuronal network.
1	15. Apparatus as claimed in claim 10, wherein said control
2	means comprises
3	electric control means providing at least one control signal, and
4	electromagnetic means receiving said control signal for controlling
5	the magnitude of the relative movement.

_	70. Apparatus as claimed in claim 10, wherein said contro
2	means comprise braking means for braking said shearing plate element.
1	17. Apparatus as claimed in claim 16, further comprising
2	controllable coupling means interposed between said drive means and said shaf
3	means, said control means controlling said coupling means.
1	18. A viscous fluid type heat generating apparatus in a vehicle
2	comprising:
3	a vehicle driving arrangement for providing energy for said
4	vehicle;
5	housing means of said heat generating apparatus;
6	channel means in said housing means for guiding a tempering fluid
7	through them;
8	conveying rotor means arranged at least partially in said channe
9	means for driving said tempering fluid through said channel means, said
10	conveying rotor means being hollow to form a chamber at least partially
11	surrounded by a rotor wall of said conveyor rotor means for containing said
12	viscous fluid;
13	rotor drive means for rotating said conveying rotor means, said rotor
14	drive means being coupled to said vehicle driving arrangement to receive energy
15	from it;
16	shaft means driven by said drive means and being connected to said
17	conveying rotor means; and
18	shearing means in said chamber of said hollow conveying rotor
19	means for generating heat by shearing said viscous fluid, said heat being transferred
20	via said conveying rotor means to said tempering fluid in said channel means.
1	19. Apparatus, as claimed in claim 18, wherein said channel
2	means form a circle, said tempering fluid circulating through it