1 MARCH 2022 UIC IDS 506

PRATHAMESH BAPAT

PROSTATE CANCER SURVIVAL ANALYSIS

Table of Contents

		Page
I	Understanding the Problem	3
II	Grouping features for better analysis	4
III	Feature Selection	6
IV	Logistic Regression	12
V	Conclusion & Step-Wise Regression	14

OBJECTIVE

You are trying to determine the 7-year survival of prostate cancer patients. A patient survived if they are still alive 7 years after diagnosis. This means that a patient is counted as dead whether or not the death was due to their cancer. You have been given details about the patients and their cancers to help you with your prediction.

THE TASK IS TO UNDERSTAND WHICH FEATURES ARE IMPORTANT IN CAUSING CANCER AND ALSO WHICH FEATURES PLAY A VITAL ROLE IN CANCER SURVIVAL. AT LAST THESE FEATURES WILL FIT ON A PREDICTIVE MODEL.

GROUPS

THERAPY

TUMOR RELATED

DEMOGRAPHICS

DIAGNOSIS

SYMPTOMS

OTHER-NON RELATED TO PROSTATE CANCER

NO RELATION - (DROP & FILTER)

SURVIVAL 7 YEARS (TARGET)

SURVIVAL 1 YEAR **Drop the rows with value 0**FINAL ROW SIZE = 13799

MISSING VALUES AND NULL VALUES

DELETE FEATURES

id

diagnosis_date

tea

previous_cancer

side

survival_1_year

family_history

first_degree_history

REPLACE NULLS WITH MEAN

CREATE BMI FROM WEIGHT & HEIGHT

DIVIDE BMI IN TWO PARTS AT THRESHOLD 25

height

weight

data: df $tumor_diagnosis$ and df $tumor_1_year$ S = 8.0436e+10, p-value < 2.2e-16

psa_1_year

data: train $psa_diagnosis$ and train psa_1_year S = 3.1408e + 10, p-value < 2.2e-16

T test - DROP tumor 1 year

T test - DROP PSA 1 year

Therapy	WHAT TO DO			
multi_thrpy	Binary - Dependency with other therapies. Drop this			
rd_thrpy	Binary - Factor it			
h_thrpy	Binary - No dependency with target. Drop this			
chm_thrpy	Binary - Factor it			
cry_thrpy	Binary - Factor it			
brch_thrpy	Binary - Factor it			
rad_rem	Binary - No dependency with target. Drop this			
data: tbl4 X-squared = 0.82759, df = 1 CHI_SQR TEST - DR				

TUMOR RELATED	WHAT TO DO	Gleason score	
gleason_score	<8 = 0 and >8 =1. Then factor those values (gscat)	1000 1500	
t_score	Used to find stage and highly related to stage(chi square test)		
n_score	Used to find stage and highly related to stage(chi square test)	3 4 5 6 7 8 9 CLASS GLEASON SCOR	
m_score	Used to find stage and highly related to stage(chi square test)	STAGE DECIDED TAKING INTO	
stage	Factor the 5 values	t, n and m SC	

9 10 12 13 14 LASS N SCORE **GE**

INTO ACCOUNT n SCORES

Coefficients:					
	${\tt Estimate}$	Std. Error	z value	Pr(> z)	
(Intercept)	0.03599	0.04212	0.854	0.3929	
symptoms_0011	-0.11421	0.17579	-0.650	0.5159	
symptoms_0081	-0.48045	0.22242	-2.160	0.0308	*
symptoms_0091	-0.62001	0.27108	-2.287	0.0222	*
symptoms_0101	-0.25772	0.26111	-0.987	0.3236	
symptoms_0111	0.03851	0.04822	0.799	0.4245	
symptoms_P011	-1.08800	0.13280	-8.193	2.55e-16	***
symptoms_P021	-1.22092	0.15953	-7.653	1.96e-14	***
symptoms_P031	-1.84392	0.31438	-5.865	4.49e-09	***
symptoms_S041	0.03083	0.04001	0.771	0.4410	
symptoms_S071	0.06082	0.03533	1.721	0.0852	
symptoms_S101	-0.58318	0.07854	-7.425	1.13e-13	***
symptoms_U011	0.03231	0.03543	0.912	0.3618	
symptoms_U021	-0.04079	0.03478	-1.173	0.2409	
symptoms_U031	0.01430	0.03637	0.393	0.6941	
symptoms_U051	-0.44476	0.05853	-7.599	2.98e-14	***
symptoms_U061	0.02209	0.04303	0.513	0.6076	

LOGISTIC REG WITH JUST THE SYMPTOMS

EXTREMELY UNBALANCED - DROP

LOGISTIC REGRESSION SPLIT THE DATA - 75:25

RUN LOG REG with 12 SELECTED FEATURES on TRAIN SET

```
model = glm(formula = survival_7_years ~ rd_thrpy+
                   chm_thrpy+
                   cry_thrpy+
                   brch_thrpy+
                     gscat+
                 stage+agecat+
                      race+
                tumor_diagnosis+
                 psa_diagnosis+
                 symptoms_Oll+
                 symptoms_U05,
          data = train, family="binomial")
```

Coefficients: Estimate Std. Error z value Pr(>|z|) 6.386 1.70e-10 *** 1.153796 0.180679 (Intercept) rd_thrpy1 -0.321109 0.042583 -7.541 4.67e-14 *** -0.001764 0.051413 -0.034 0.972625 chm_thrpy1 cry_thrpy1 0.052025 -0.972 0.330995 -0.050575 0.052510 brch_thrpy1 -0.153452 -2.922 0.003474 ** -0.479827 0.048552 -9.883 < 2e-16 *** gscat8+ stageIIA -0.305608 0.128236 -2.383 0.017164 * -0.445233 0.128043 -3.477 0.000507 *** stageIIB -0.249067 0.129465 -1.924 0.054378 . stageIII stageIV -1.102263 0.128054 -8.608 < 2e-16 *** agecat60-80 0.176226 1.825 0.067965 . 0.096549 agecat80+ 0.097359 -0.020 0.984428 -0.001900 0.307054 0.100094 3.068 0.002157 ** race2 2.277 0.022815 * race3 0.304304 0.133671 0.229773 2.610 0.009045 ** race4 0.088023 tumor_diagnosis -0.006080 0.001210 -5.027 4.99e-07 *** psa_diagnosis -0.010333 0.005433 -1.902 0.057176 . 0.038566 0.056402 0.684 0.494128 symptoms_0111 symptoms_U051 -0.460702 0.069614 -6.618 3.64e-11 *** 0.001 0.05 '.' 0.1 0.01 Signif. codes:

ACCURACY = 62%


```
set.seed(123)
# Set up repeated k-fold cross-validation
library(caret)
train.control <- trainControl(method = "cv", number = 10)
# Train the model
step.model <- train(survival_7_years ~., data = train_1,
                    method = "leapBackward",
                    tuneGrid = data.frame(nvmax = 1:12),
                    trControl = train.control
step.model$results
                                 > model results
```

BACKWARD STEPWISE REGRESSION

GET THE BEST MODEL(BEST R-SQAURED)

WHAT ELSE CAN WE DO?

		IIIOGE L DI	esults					
		nvmax	RMSE	Rsquared	MAE	RMSESD	RsquaredSD	MAESD
	1	1	0.4910345	0.03480620	0.4821589	0.001614610	0.007379619	0.001446058
	2	2	0.4858125	0.05537317	0.4719209	0.002464711	0.009638606	0.002172849
	3	3	0.4844959	0.06051746	0.4692989	0.002548783	0.010147151	0.002128610
	4	4	0.4834029	0.06471289	0.4671366	0.002568669	0.010013533	0.002050140
	5	5	0.4828750	0.06673317	0.4660410	0.002596250	0.010499414	0.002070519
)?	6	6	0.4824666	0.06837736	0.4652216	0.002774394	0.011227919	0.002200821
	7	7	0.4824707	0.06836629	0.4649738	0.002729411	0.011245807	0.002173278
	8	8	0.4822923	0.06913553	0.4645905	0.002815916	0.011311598	0.002150740
	9	9	0.4823713	0.06882530	0.4645805	0.002827891	0.011375317	0.002201031
	10	10	0.4822855	0.06911997	0.4644471	0.002751759	0.011122397	0.002114233
	11	. 11	0.4822831	0.06913758	0.4643402	0.002684042	0.010784956	0.002021506
	12	12	0.4821124	0.06978440	0.4640966	0.002756647	0.011092277	0.002119270

