External Sorting 外排序

SUN YAT-SEN UNIVERSITY

Review

- Cost Model (代价模型)
 - □ 只关心磁盘块的IO次数
- 文件由页组成,而每个页包含一组记录
 - □ Record id = <page id, slot #>
- 索引文件由两部份组成
 - 1. 数据项部分
 - Data Entry(数据项) data record (数据记录)
 - 2. 引导部份
 - 树索引技术
 - Hash索引
- 索引的 clustered?

Why External Sorting(外排序)?

- Problem: sort 100Gb of data with 1Gb of RAM.
 - why not virtual memory?

Idea

- □ 方法:对数据进行多遍处理,
- □ 效果:从而可以使用较少内存排序庞大的数据集

Two-Way External Merge Sort: Requires 3 Buffers 两路归并外排序

- Pass 0(生成有序段/子文件): Read a page, sort it, write it.
 - □ each sorted page (or subfiles) is called a run(有序段).
 - only 1 buffer page is used.
- Pass 1, 2, 3, ..., etc.(合并有序段):
 - □ merge pairs of runs into runs twice as long 有序段长加倍
 - 3 buffer pages used

8,7

7,8

Merging Runs(合并有序段)

Two-Way External Merge Sort: Requires 3 Buffers 两路归并外排序

- Each pass(每遍) we read + write each page in file.
- N pages in the file => the number of passes

$$= \lceil \log_2 N \rceil + 1$$

So total cost is:

Disk

$$2N(\lceil \log_2 N \rceil + 1)$$

INPUT 1

INPUT 2

Merging Runs(合并有序段)

Main memory buffers

OUTPUT

General External Merge Sort 外归并排序

$$2N(\lceil \log_2 N \rceil + 1)$$

- More than 3 buffer pages. How can we utilize them?
- To sort a file with N pages using B buffer pages:
 - □ Pass 0: use *B* buffer pages. Produce $\lceil N / B \rceil$ sorted runs of *B* pages each.
 - □ Pass 1, 2, ..., etc.: merge *B-1* runs.

Cost of External Merge Sort

$$2N(\lceil \log_2 N \rceil + 1)$$

- Number of passes: $1 + \lceil \log_{B-1} \lceil N / B \rceil \rceil$
- Cost = 2N * (# of passes)
- E.g., with 5 buffer pages, to sort 108 page file:
 - □ Pass 0: $\lceil 108 / 5 \rceil = 22$ sorted runs of 5 pages each (last run is only 3 pages)
 - □ Pass 1: $\lceil 22 / 4 \rceil = 6$ sorted runs of 20 pages each (last run is only 8 pages)
 - □ Pass 2: 2 sorted runs, 80 pages and 28 pages
 - □ Pass 3: Sorted file of 108 pages

Formula check: $\lceil \log_4 22 \rceil = 3 \dots + 1 \rightarrow 4 \text{ passes} \sqrt{}$

Number of Passes of External Sort

$$1 + \lceil \log_{B-1} \lceil N / B \rceil \rceil$$

- 1+∫log_{B-1}[N/B]]
 缓冲区越多,处理遍数越少
 (I/O cost is 2N times number of passes)

N	B=3	B=5	B=9	B=17	B=129	B=257
100	7	4	3	2	1	1
1,000	10	5	4	3	2	2
10,000	13	7	5	4	2	2
100,000	17	9	6	5	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	4
1,000,000,000	30	15	10	8	5	4

Summary, cont.

- Choice of internal sort algorithm may matter:
 - Quicksort: Quick!
 - □ Heap/tournament(树形选择排序) sort
- Clustered B+ tree is good for sorting; unclustered tree is usually very bad.

■ 要求.

- □掌握外排序算法
- 」理解并记住外排序IO开销的基本公式

$$1 + \lceil \log_{B-1} \lceil N / B \rceil \rceil$$

Cost = 2N * (# of passes)