Sparse-angle X-ray tomography

Samuli Siltanen

Department of Mathematics and Statistics University of Helsinki, Finland samuli.siltanen@helsinki.fi www.siltanen-research.net

February 7, 2020

We collected X-ray projection data of a walnut from 1200 directions

Data collection: thanks to Keijo Hämäläinen and Aki Kallonen. University of Helsinki.

The data is openly available at http://fips.fi/dataset.php, thanks to Esa Niemi and Antti Kujanpää

Reconstructions of a 2D slice through the walnut using filtered back-projection (FBP)

FBP with comprehensive data (1200 projections)

FBP with sparse data (20 projections)

Sparse-data reconstruction of the walnut using non-negative total variation (TV) regularization

Filtered back-projection

TV regularization: minimum of $\|Ax - m\|_2^2 + \alpha(\|L_Hx\|_1 + \|L_Vx\|_1)$ over nonnegative images $x \in \mathbb{R}^{N \times N}$

Daubechies wavelet sparsity

Total generalized variation

Consider a simple example of a 2D slice with internal structures consisting of small squares

Two horizontal X-rays give us two numbers: row sums of the 2×2 array of attenuations

Tomographic imaging requires collecting X-ray data along another direction as well

"Inverse problem" in this example is to recover the interior numbers from the measurements

With such a limited amount of data, the inverse problem has multiple solutions!

With such a limited amount of data, the inverse problem has multiple solutions!

With such a limited amount of data, the inverse problem has multiple solutions!

So-called "ghosts," or targets with zero data, are the source of multiple solutions

Adding a ghost does not change the data

How can a reconstruction method pick out the correct image among all that match the data?

Consider these three candidates for reconstruction

267

Wrong data, good "tissue type"

3 3
3

Right data, bad "tissue type"

449

Penalty calculation for candidate 1 (true target). First the penalty from (mis)matching X-ray data

$$\begin{array}{c|c} 2 & 6 \\ \hline 2 & 7 \\ \hline (4-4)^2 & (13-13)^2 \\ \end{array}$$

Data penalty: $(8-8)^2 + (9-9)^2 + (4-4)^2 + (13-13)^2 = 0$.

Data penalty:
$$(8-8)^2 + (9-9)^2 + (4-4)^2 + (13-13)^2 = 0$$
.

Prior penalty: |2-6|

Data penalty:
$$(8-8)^2 + (9-9)^2 + (4-4)^2 + (13-13)^2 = 0$$
.

Prior penalty: |2 - 6| + |2 - 7|

Data penalty:
$$(8-8)^2 + (9-9)^2 + (4-4)^2 + (13-13)^2 = 0$$
.
Prior penalty: $|2-6| + |2-7| + |2-2|$

Data penalty:
$$(8-8)^2 + (9-9)^2 + (4-4)^2 + (13-13)^2 = 0$$
.
Prior penalty: $|2-6| + |2-7| + |2-2| + |6-7| = 4+5+0+1 = 10$.

Penalty calculation for candidate 1. Total penalty is the sum of data and prior penalties


```
\begin{array}{c} \text{data penalty} & 0 \\ + \text{prior penalty} & 10 \\ \hline = \text{total penalty} \in 10 \end{array}
```

Penalty calculation for candidate 2. First the penalty from (mis)matching X-ray data

Data penalty: $2^2 + 3^2 + 2^2 + 7^2 = 4 + 9 + 4 + 49 = 66$.

Data penalty: $2^2 + 3^2 + 2^2 + 7^2 = 4 + 9 + 4 + 49 = 66$.

Prior penalty: |3-3|+|3-3|+|3-3|+|3-3|=0.

Penalty calculation for candidate 2. Total penalty is the sum of data and prior penalties

$$\begin{array}{c} \text{data penalty} & 66 \\ + \text{prior penalty} & 0 \\ \hline = \text{total penalty} \in 66 \end{array}$$

Penalty calculation for candidate 3. First the penalty from (mis)matching X-ray data

$$\begin{array}{c|cccc}
(8-8)^2 & 4 & 4 \\
(9-9)^2 & 0 & 9 \\
\hline
(4-4)^2 & (13-13)^2
\end{array}$$

Data penalty: $(8-8)^2 + (9-9)^2 + (4-4)^2 + (13-13)^2 = 0$.

Data penalty:
$$(8-8)^2 + (9-9)^2 + (4-4)^2 + (13-13)^2 = 0$$
.
Prior penalty: $|4-4| + |0-9| + |4-0| + |4-9| = 0 + 9 + 4 + 5 = 18$.

Penalty calculation for candidate 3. Total penalty is the sum of data and prior penalties


```
\begin{array}{c} \text{data penalty} & 0 \\ + \text{prior penalty} & 18 \\ \hline = \text{total penalty} \in 18 \end{array}
```

Which of candidates has smallest total penalty?

Wrong data, good "tissue type"

Right data, bad "tissue type"

```
449
```

```
data penalty 0
+ prior penalty 10
= total penalty \in 10
```

$$=$$
 total penalty ≤ 66

The problem can be solved in general using optimization

General target

Find numbers $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$ and $x_4 \ge 0$ such that the sum of these two penalties is as small as possible:

Data penalty:
$$(x_1 + x_3 - 8)^2 + (x_2 + x_4 - 9)^2 + (x_1 + x_2 - 4)^2 + (x_3 + x_4 - 13)^2$$

Prior penalty:
$$|x_1 - x_3| + |x_2 - x_4| + |x_1 - x_2| + |x_3 - x_4|$$

This method is called total variation regularization.

Writing the data penalty in matrix form

Writing the data penalty in matrix form

Writing the data penalty in matrix form

Writing the data penalty in matrix form

Kernel of matrix A is the origin of ghosts

$$\overset{\mathsf{f}}{\mathsf{N}} \quad \mathsf{Ker}(A) = \{ \begin{bmatrix} t \\ -t \\ t \\ -t \end{bmatrix} \ : \ t \in \mathbb{R} \}$$

Writing the data penalty in matrix form

Recall that for a vector $y \in \mathbb{R}^n$ we have $||y||_2^2 = y_1^2 + y_2^2 + \cdots + y_n^2$.

Therefore, the data penalty can be written as

$$||Ax - m||_2^2 = (x_1 + x_3 - 8)^2 + (x_2 + x_4 - 9)^2 + (x_1 + x_2 - 4)^2 + (x_3 + x_4 - 13)^2.$$

Writing the prior penalty in matrix form: construction of the horizontal difference matrix L_H

$$\begin{bmatrix} x_1 & x_3 \\ x_2 & x_4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \end{bmatrix}$$

Writing the prior penalty in matrix form: construction of the horizontal difference matrix L_H

$$\begin{bmatrix} x_1 & x_3 \\ x_2 & x_4 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_4 \end{bmatrix}$$

Writing the prior penalty in matrix form: construction of the horizontal difference matrix L_H

$$\underbrace{\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}}_{x_1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_4 \end{bmatrix}$$

Writing the prior penalty in matrix form: construction of the vertical difference matrix L_V

$$\begin{bmatrix} x_1 & x_3 \\ x_2 & x_4 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \end{bmatrix}$$

Writing the prior penalty in matrix form: construction of the vertical difference matrix L_V

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \\ x_3 - x_4 \end{bmatrix}$$

Writing the prior penalty in matrix form: construction of the vertical difference matrix L_V

$$\underbrace{\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}}_{X_1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 - x_2 \\ x_3 - x_4 \end{bmatrix}$$

Writing the prior penalty in matrix form

Recall that for a vector $y \in \mathbb{R}^n$ we have $||y||_1 = |y_1| + |y_2| + \cdots + |y_n|$.

Therefore, the prior penalty can be written as

$$||L_H x||_1 + ||L_V x||_1 = |x_1 - x_3| + |x_2 - x_4| + |x_1 - x_2| + |x_3 - x_4|.$$

Quadratic programming for TV regularization

We want to minimize the non-quadratic functional

$$||Ax - m||_2^2 + ||L_Hx||_1 + ||L_Vx||_1$$

over non-negative image vectors $x \in \mathbb{R}^4$. This task can be converted into minimizing the quadratic functional

$$\frac{1}{2}z^TQz + c^Tz$$

over non-negative $z \in \mathbb{R}^{12}$ with equality constraints Ez = b.

Rewriting the TV regularization

Write the horizontal and vertical differences in the form

$$L_{H}x = u_{H}^{+} - u_{H}^{-}$$
 and $L_{V}x = u_{V}^{+} - u_{V}^{-}$,

using non-negative vectors u_H^{\pm} , $u_V^{\pm} \in \mathbb{R}^2$.

Then TV regularization is equivalent to minimizing

$$x^{T}A^{T}Ax - 2x^{T}A^{T}m + \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{T} (u_{H}^{+} + u_{H}^{-} + u_{V}^{+} + u_{V}^{-}),$$

over non-negative vectors $x \in \mathbb{R}^4$.

Reduction of TV regularization to the quadratic problem $\underset{z \in \mathbb{R}^{12}}{\min} \left\{ \frac{1}{2} z^T Q z + c^T z \right\}$ with Ez = b

We now minimize over non-negative vectors $z \in \mathbb{R}^{12}$ connected to TV regularization by this formula:

$$z = \begin{bmatrix} x \\ u_{\mathsf{H}}^+ \\ u_{\mathsf{H}}^- \\ u_{\mathsf{V}}^+ \\ u_{\mathsf{V}}^- \end{bmatrix}.$$

The 12×12 matrix Q and the vector $c \in \mathbb{R}^{12}$ are these:

$$Q = \left| \begin{array}{cccc} 2A'A & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \dots & & 0 \end{array} \right|, \quad c = \left| \begin{array}{c} -2A'm \\ 1 \\ \vdots \\ 1 \end{array} \right|.$$

Reduction of TV regularization to the quadratic problem $\underset{z \in \mathbb{R}^{12}}{\min} \left\{ \frac{1}{2} z^T Q z + c^T z \right\}$ with Ez = b

The equality constraint Ez = b is needed for enforcing the identities $L_H x - u_H^+ + u_H^- = 0$ and $L_V x - u_V^+ + u_V^- = 0$. Since

$$z = \begin{bmatrix} x \\ u_{\mathsf{H}}^+ \\ u_{\mathsf{H}}^- \\ u_{\mathsf{V}}^+ \\ u_{\mathsf{V}}^- \end{bmatrix} \in \mathbb{R}^{12},$$

we have

$$\begin{vmatrix} L_H & -I & I & 0 & 0 \\ L_V & 0 & 0 & -I & I \end{vmatrix} z = 0.$$

Reduction of TV regularization to the quadratic problem $\underset{z \in \mathbb{R}^{12}}{\min} \left\{ \frac{1}{2} z^T Q z + c^T z \right\}$ with Ez = b

Finally we get

$$E = \begin{bmatrix} 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ \hline 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \end{bmatrix}$$

and

$$b = \left[egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}
ight].$$

Total variation regularization for the 2×2 problem

True target

Total variation regularization

```
\begin{array}{c} \text{data penalty} & 0 \\ + \text{prior penalty} & 10 \\ \hline = \text{total penalty} \in 10 \end{array}
```

data penalty
$$\frac{1}{8}$$
+ prior penalty $\frac{8}{1}$
= total penalty $\frac{1}{1}$

Total variation regularization for the 2×2 problem


```
\begin{array}{c} \text{data penalty} & 0 \\ + \text{prior penalty} & 10 \\ \hline = \text{total penalty} \in 10 \end{array}
```

```
data penalty \frac{1}{9} + prior penalty \frac{8}{9} = total penalty \frac{6}{9}
```

Resolution 2×2

Resolution 4×4

Resolution 8×8

 $\begin{array}{c} \text{Resolution} \\ 16{\times}16 \end{array}$

 $\begin{array}{c} \text{Resolution} \\ 32{\times}32 \end{array}$

Resolution 64×64

 $\begin{array}{c} \text{Resolution} \\ 128{\times}128 \end{array}$

Resolution 256×256

 $\begin{array}{c} \text{Resolution} \\ 512{\times}512 \end{array}$

Computational resources

You can find Matlab code for total variation regularized sparse tomography at

https://blog.fips.fi/tomography/x-ray/total-variation-regularization-for-x-ray-tomography/

Another computational method for the same problem is here: https://blog.fips.fi/tomography/x-ray/total-variation-regularization-for-x-ray-tomography-experimental-data/

