

Fisheries and Oceans Canada Pêches et Océans Canada

Science

Sciences

CSAS

SCCS

Canadian Science Advisory Secretariat

Secrétariat canadien de consultation scientifique

Research Document 2009/049

Document de recherche 2009/049

Assessment of the NAFO Division 4T southern Gulf of St. Lawrence herring stocks in 2008

Évaluation des stocks de hareng de la zone 4T de l'OPANO dans le sud du golfe du Saint-Laurent en 2008

C.H. LeBlanc, C. MacDougall, C. Bourque, R. Morin, D. Swain

Department of Fisheries and Oceans | Ministère des Péches et des Océans Gulf Fisheries Centre | Centre des pêches du Golfe P.O. Box 5030 | C.P. 5030 Moncton N.B. | N.-B. E1C 9B6

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

This document is available on the Internet at:

Ce document est disponible sur l'Internet à:

http://www.dfo-mpo.gc.ca/csas/

ISSN 1499-3848 (Printed / Imprimé) ISSN 1919-5044 (Online / En ligne) © Her Majesty the Queen in Right of Canada, 2009 © Sa Majesté la Reine du Chef du Canada, 2009

Canadä

Correct citation for this publication:

LeBlanc, C.H., C. MacDougall, C. Bourque, R. Morin, and D. Swain. 2009. Assessment of the NAFO Division 4T southern Gulf of St. Lawrence herring stocks in 2008. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/049. iv + 175 p.

ABSTRACT

Assessments of the spring and fall spawning herring from the southern Gulf of St. Lawrence are required on an annual basis and form a part of the information base used to establish the total allowable catch (TAC). The 2008 assessment of 4T herring spring spawner component was based on a sequential population analysis calibrated on both the age-disaggregated gillnet catch rate (CPUE) and acoustic survey indices. Reported 2008 landings of the spring spawner component were 2,755 t against the spring spawner TAC of 2,500 t. Mean gillnet catch rate in 2008 was higher than 2007, but similar to the values from 2004 to 2006. The 2008 acoustic index was one of the lowest in the series that starts in 1994. The cumulative index of the opinions of harvesters on the abundance of spring herring in 2008 was the lowest in the time series that starts in 1987. The abundances of year-classes after 1991 have been average or below average. Age 4 + spawning biomass is estimated at 20,300 t for the beginning of 2009. The estimated exploitation rate was below the reference level in 2008. The current estimate of age 4+ biomass (20,300 t) is below the limit reference point (LRP, 22,000 t). At this level of biomass, the precautionary approach requires that removals from the stock should be kept to the lowest level possible. The 2008 assessment of 4T herring fall spawner component was based on a sequential population analysis calibrated on an age-disaggregated gillnet catch rate (CPUE) index. Reported landings of the fall spawner component in both the spring and the fall fisheries in 2008 were 41,471 t. The fall spawner TAC was 68,800 t. Mean gillnet catch rate in 2008 was lower than the previous three years. The cumulative index from the opinions of harvesters on the abundance of fall herring has been decreasing since 2006, although the index is higher than it was prior to 2000. Estimated recruitment at age 4 was above average from 1999 to 2005, and again in 2008. The 2009 beginning-of-year spawning stock biomass is estimated to be about 285,500 t, above the upper stock reference (USR) level of 172,000 t. The exploitation rate in 2008 was below the F_{0.1} reference level. For 2009, a catch option of 65,500 t corresponds to a 50% chance that F would be above the F_{0.1} removal rate.

La présente publication doit être citée comme suit :

LeBlanc, C.H., C. MacDougall, C. Bourque, R. Morin, et D. Swain. 2009. Évaluation des stocks de hareng de la zone 4T de l'OPANO dans le sud du golfe du Saint-Laurent en 2008. Secr. can. de consult. sci. du MPO. Doc. de rech. 2009/049. iv + 175 p.

RÉSUMÉ

Des évaluations des composantes de reproducteurs de printemps et d'automne dans le stock de hareng du sud du golfe du Saint-Laurent doivent être effectuées chaque année et elles font partie de la base d'information qui sert à établir le total admissible des captures (TAC). L'état de la composante de reproducteurs de printemps dans 4T en 2008 fut déterminé en se fondant sur une analyse de population qui incluait à la fois les taux de prises-à-l'âge (PUE) au filet maillant et l'indice du relevé acoustique. Les débarquements déclarés de reproducteurs de printemps dans les pêches de printemps et d'automne de 2008 se sont chiffrés à 2 755 t, par rapport à un TAC de 2 500 t. Les taux de prises moyens des pêcheurs aux filets maillants en 2008 étaient supérieurs à 2007, mais semblables aux valeurs de 2004 à 2006. L'indice est à la baisse depuis 1997 et demeure à un niveau bas de la série chronologique qui commence en 1990. L'indice d'abondance du relevé acoustique en 2008 était l'un des plus bas de la série chronologique qui commence en 1994. Dans le sondage téléphonique réalisé auprès des pêcheurs, l'indice cumulatif d'opinion exprimé sur l'abondance du hareng de printemps en 2008 était le plus bas de la série chronologique qui commence en 1987. Les abondances des classes d'âge après 1991 sont égales ou inférieures à la moyenne. L'estimation de biomasse des reproducteurs des âges 4 + pour 2009 est de 20 300 t. Le taux d'exploitation estimé en 2008 était inférieur au niveau de référence. L'estimation de la biomasse du stock reproducteur de 20 300 t est inférieure au niveau de référence limite (NRL, 22 000 t). Par conséquent, conformément à l'approche de précaution, il faudrait limiter les prises au minimum. L'état de la composante de reproducteurs d'automne dans 4T en 2008 fut déterminé en se fondant sur une analyse de population qui incluait les taux de prises-à-l'âge (PUE) au filet maillant. Les débarquements déclarés de reproducteurs d'automne en 2008 dans les pêches de printemps et d'automne se sont chiffrés à 41 471 t, par rapport à un TAC de 68 800 t. Les taux de prises moyens des pêcheurs aux filets maillants en 2008 étaient plus bas que les trois années précédentes. Dans le sondage téléphonique réalisé auprès des pêcheurs, l'indice cumulatif d'opinion exprimé sur l'abondance du hareng d'automne est à la baisse depuis 2006, néanmoins l'indice est plus élevé qu'il l'était avant 2000. Le recrutement estimé des âges 4 était supérieur à la moyenne en 1999 jusqu'à 2005, ainsi qu'en 2008. Pour le début de l'année 2009, la biomasse du stock reproducteur est estimée à environ 285 500 t, soit au-delà du niveau de référence supérieur (NRS) de 172 000 t. Le taux d'exploitation en 2008 était inférieur au niveau de référence Fon. Des prises de 65 500 t en 2009 correspondent à une probabilité de 50 % que F sera supérieur au niveau de référence Fo.1.

1. INTRODUCTION

Atlantic herring in the southern Gulf of St. Lawrence (sGSL) is found in the area extending from the north shore of the Gaspé Peninsula to the northern tip of Cape **Breton** Island, including Magdalen Islands. Adults overwinter off the north and east coast of Cape Breton in the Northwest Atlantic **Fisheries** Organization (NAFO) divisions 4T and 4Vn (Claytor 2001, Simon and Stobo 1983). Studies in the early 1970s indicated that southern Gulf herring also overwintered off the south coast of Newfoundland, but an exploratory fishery in 2006 has found no concentrations there (Wheeler et al. 2006).

Herring is a pelagic species which form schools particularly during feeding and spawning periods. Eggs are attached to the sea floor and large females can produce up to 360,000 eggs (Messieh 1988). First spawning occurs primarily at age four. The fork length at 50% maturity (L₅₀) is estimated at 23.5 cm for sGSL herring (DFO 2007).

The herring population in the sGSL consists of two components, the spring spawner component (SSC) and the fall spawner component (FSC), with July 1st as a separation date. Spring spawning occurs primarily in April-May but extends into June at depths <10 m. Fall spawning occurs from mid-August to mid-October at depths of 5 to 20 m. The largest spring spawning beds are in coastal waters of the Northumberland Strait. The largest fall spawning beds are in coastal waters off Miscou and Escuminac N.B., North Cape and Cape Bear P.E.I., and Pictou N.S.

1. INTRODUCTION

Le stock du hareng de l'Atlantique du sud du golfe du Saint-Laurent (sGSL) se retrouve dans la zone comprise entre la côte nord de la péninsule de Gaspé et l'extrémité nord de l'île du Cap-Breton; incluant les Îles-de-la-Madeleine. Les adultes passent l'hiver au large de la côte est du Cap-Breton, dans les divisions 4T et 4Vn de l'Organisation des Pêches de l'Atlantique Nord-Ouest (OPANO) (Claytor 2001, Simon et Stobo 1983), Des études au début des années 1970 indiquaient que le hareng du sud du golfe passait aussi l'hiver près des côtes du sud de Terre-Neuve. mais une pêche exploratoire en 2006 n'indiquait aucune présence de hareng dans ce secteur (Wheeler et al. 2006).

Le hareng est un poisson pélagique qui se déplace en bancs pour se nourrir, frayer et lors des migrations annuelles. Les oeufs, qui sont attachés sur le substrat du fond, sont produits en plus grand nombre par les grandes femelles qui peuvent produire jusqu'à 360 000 œufs (Messieh 1988). La plupart des harengs frayent pour la première fois à quatre ans. La longueur à la fourche à laquelle 50% des harengs sont considérés matures (L₅₀) est de 23,5 cm pour le hareng du sGSL (MPO 2007).

Dans le sGSL, la population se compose de deux composantes: les géniteurs printemps (CGP) et les géniteurs d'automne (CGA), la date de séparation étant le 1er juillet. La fraye de printemps a lieu généralement en avril-mai, mais se prolonge jusqu'en juin, à des profondeurs <10 m. La fraye d'automne se déroule entre la mi-août et la mi-octobre, à des profondeurs de 5 à 20 m. Les plus grandes frayères de géniteurs de printemps se trouvent dans les eaux côtières du détroit de Northumberland. Les plus grandes frayères de géniteurs d'automne se trouvent dans les eaux côtières au large de Miscou et Escuminac, N.-B., North Cape et Cape Bear, î-P-É., et Pictou, N.-É.

2. GENERAL DESCRIPTION

2.1 The Fishery

2.1.1 Landings

The sGSL herring is harvested primarily by an inshore gillnet fleet (fixed gear) and a purse seine fleet (mobile gear), both fishing in the NAFO division 4T and in some years 4Vn (Fig. 1). The purse seine fleet can consist of five large southern Gulf vessels (>65'). However, some small Gulf seiners (<65') can also participate in the inshore fishery as part of the gillnet fleet. Unless specifically stated as small seiners. the terms purse seiners or seiners refer to the purse seine fleet with vessels > 65'. During the spring and the fall fishing seasons, seiners are prohibited from fishing in several areas set aside exclusively for the gillnet fleet (Claytor et al. 1998).

Both spring and fall spawner components of herring are harvested in these fisheries. The percentage of spring and fall spawner component in the catch varies according to season and gear type. As a result, landings during the spring and fall fisheries must be separated into the appropriate spring and fall spawning groups to determine if the Total Allowable Catch (TAC) for these groups has been attained.

Prior to 1967, sGSL herring was exploited mainly by gillnets and average landings from 1935 to 1966 were 34,000 t. In the mid 1960s, a purse seine fishery was introduced and average landings were 166,000 t from 1967 to 1972. An allocation or TAC was introduced in 1972 at 166,000 t, and reduced to 40,000 t in 1973. Separate TAC for the spring and fall spawner components began in 1985. These TACs are first allotted by fishing season and later attributed to spring or fall spawner component landings based on

2. DESCRIPTION GÉNÉRALE

2.1 La Pêche

2.1.1 Les débarquements

Le hareng du sGSL est exploité par une flottille qui pêche principalement aux filets maillants (engins fixes) et une flottille de senneurs (engins mobiles) qui pêchent dans la division 4T de l'OPANO et certaines années dans 4Vn (fig. 1). La flottille de senneurs est composée de jusqu'à cinq senneurs (>65 pi). Néanmoins. certains petits senneurs du golfe (<65 pi) peuvent aussi participer à la pêche côtière et font partie de la flotte de filets maillants. À moins qu'il soit précisé qu'il s'agit de petits senneurs, le terme senneurs s'applique à la flottille de senneurs >65 pi. Au cours des saisons de pêche du printemps et de l'automne, la pêche est interdite aux senneurs dans plusieurs zones réservées exclusivement à la flottille de filets maillants (Claytor et al. 1998).

Deux composantes de géniteurs de hareng, celles du printemps et de l'automne, sont exploitées dans le cadre de ces pêches. Le pourcentage de reproducteurs de printemps et de reproducteurs d'automne dans les prises varie selon la saison et le type d'engin. Pour déterminer si le Total Admissible des Captures (TAC) alloué à chaque composante de reproducteurs a été atteint, il faut donc séparer et répartir les prises des pêches de printemps et d'automne entre ces deux composantes.

Avant 1967, le hareng du sGSL était pêché principalement aux filets maillants et la moyenne des débarquements, entre 1935 et 1966, s'établissait à 34 000 t. Au milieu des années 1960, la senne a commencé à être utilisée et les débarquements moyens ont atteint 166 000 t entre 1967 et 1972. En 1972, une allocation ou TAC de 166 000 t a été établi, pour ensuite être abaissé à 40 000 t en 1973. Des TAC distincts pour le groupe des géniteurs de printemps et d'automne ont été fixés depuis 1985. Ces TACs sont décernés par saison de pêche et

biological samples taken during the fishery. Both the spring and the fall fishing season TACs were not exceeded in 2008 (Table 1; Fig. 2).

Most of the 2008 gillnet catches of the spring fishing season occurred in areas 16E and 16B. Most of the 2008 gillnet catches during the fall fishing season came from area 16B (Table 2; Fig. 1). There was no seiner fishery in the spring of 2008. The fall 2008 seiner fishery catches were all from unit area 4Tm, 4Tn and 4To of NAFO division 4T (Figs. 1 and 3).

Since 1981, the gillnet fixed gear fleet has accounted for most of the catch of spring and fall spawners (Table 3; Fig. 4). The recent 2004 to 2008 mean proportion of the total catch caught by the gillnet sector was 68% of the spring spawners and 89% of the fall spawners. The seiner fleet caught a larger proportion of spring spawners in 2007 and 2008 (Table 4).

The 2008 TAC for the spring spawner component was 2,500 t. The combined 2008 landings of the spring spawner component in both the spring and the fall fisheries were 2,756 t, including 1,373 t of spring spawners caught by the seiners in their fall fishery. The TAC for the fall spawner component in 2008 was 68,800 t. The combined 2008 landings of the fall spawner component in both the spring and fall fisheries were 41,471 t (Tables 3 and 4).

2.1.2 Industry input

Industry input for the assessment was acquired during Gulf small pelagics meetings and from a gillnetter phone survey conducted between December

par la suite sont attribués aux débarquements des composantes de géniteurs de printemps ou d'automne basé sur les échantillons biologiques provenant de la pêcherie. Les TAC de la saison de pêche du printemps et de l'automne 2008 n'ont pas été dépassés (tableau 1, fig. 2).

La plupart des prises de filets maillants de la saison du printemps en 2008 ont eu lieu dans les zones 16E et 16B. Quant aux prises de filets maillants 2008 pendant la saison de pêche automnale, elles proviennent pour la plupart de la zone 16B (tableau 2; fig. 1). Au printemps 2008, il n'y a pas eu de pêche par les grands senneurs, tandis qu'à l'automne, leurs prises provenaient toutes des sous-divisions 4Tm, 4Tn and 4To de la division 4T de l'OPANO (figs. 1 et 3).

Depuis 1981, la flottille de pêche aux engins fixes a bénéficié de la plus grande partie des prises de géniteurs de printemps et d'automne (tableau 3; fig. 4). La proportion moyenne (2004-2008) des captures totales prises par le secteur aux engins fixes était de 68% des géniteurs de printemps et de 89% des géniteurs d'automne. Les senneurs ont capturé une plus grande proportion de géniteurs de printemps en 2007 et 2008 (tableau 4).

Le TAC pour la composante des géniteurs de printemps était de 2 500 t en 2008. Les débarquements combinés de géniteurs de printemps dans les pêches du printemps et de l'automne étaient 2 756 t, dont 1 373 t de géniteurs de printemps capturées par les grands senneurs à l'automne. Le TAC de 2008 pour la composante des géniteurs d'automne était de 68 800 t. Les débarquements combinés de géniteurs d'automne dans les pêches de printemps et d'automne étaient de 41 471 t (tableaux 3 et 4).

2.1.2 Contribution de l'industrie

La contribution de l'industrie dans l'évaluation a été obtenue de différentes façons: au cours de réunions des comités des petits pélagiques du golfe et au moyen d'un 2008 and February 2009. Ongoing local projects include acoustic recordings on local gillnet fishing boats during their regular fall fishing activities, plus the sampling of variable mesh gillnets for the fixed gear fleet in both the spring and fall.

For the spring spawner component, participants from the gillnet sector continued to express concern about the decline in abundance of spring spawners in the traditional spawning locations. The 4T fall gillnet fishery captured 83% of their fall spawner allocation in 2008.

The phone survey has been conducted yearly since 1986 to collect information on the gillnet fishery and opinions on abundance trends. The southern Gulf was divided into 8 areas corresponding to the areas where the major fisheries occur (Fig. 5). Active commercial licence holders were asked a series of questions concerning the number and size of nets they used, the frequency of fishing and how the abundance in the current year compared to the previous year and the medium-term trend. The information on net data was used to determine fishing effort. Methods used to conduct the telephone survey were described in LeBlanc and LeBlanc (1996).

By using the gillnetter opinions on the current year's abundance compared to the previous year, an index of opinion on the abundance was calculated for each area as well as an overall index for all areas combined.

For the 2008 gillnetter telephone survey, 229 candidates were randomly selected out of approximately 710 active commercial licences in both seasons combined. Out of these 229 candidates, 158 responded to the questionnaire, while

sondage téléphonique du secteur des engins fixes réalisé entre décembre 2008 et février 2009. Des projets locaux ont recueillies des données acoustiques sur les bateaux de pêche de filets maillants pendant leurs activités de pêche d'automne, ainsi que l'échantillonnage de filets maillants à mailles variables pour le secteur des engins fixes au printemps comme à l'automne.

Pour la composante des géniteurs de printemps, le secteur des pêcheurs de filets maillants continue d'être inquiet de la diminution de l'abondance des géniteurs de printemps dans les zones de frai conventionnelles. La pêche aux filets maillants de géniteurs d'automne a capturé 83% de leur allocation en 2008.

Chaque année depuis 1986, un sondage téléphonique permet de recueillir des renseignements sur la pêche aux filets maillants et des opinions sur les tendances de l'abondance. Le sud du golfe est divisé en huit zones qui correspondent aux zones principales de pêche (fig. 5). Les titulaires actifs de permis de pêche commerciale sont questionnés concernant le nombre et la taille des filets qu'ils utilisent, la fréquence de leur sorties de pêche et la comparabilité de l'abondance de hareng de l'année en cours avec les années précédentes, de même que sur la tendance à moven terme de l'abondance. Les données concernant les filets sont utilisées pour déterminer l'effort de pêche. Les méthodes utilisées lors du sondage téléphonique sont décrites dans LeBlanc et LeBlanc (1996).

Les opinions sur l'abondance entre l'année courante et l'année précédente des pêcheurs aux filets maillants furent utilisées pour calculer un indice d'opinion sur l'abondance pour chaque zone ainsi qu'un indice global pour toutes les zones combinées.

Pour le sondage 2008 des pêcheurs aux filets maillants, 229 candidats furent choisis aléatoirement sur un total d'environ 710 permis actifs de pêche commerciale aux filets maillants pour les deux saisons combinées. Parmi ces 229 candidats, 158 ont répondu au

34 could not be reached after five attempts at different times of day, 30 could not be traced and 7 refused to answer. Among those who responded to the 2008 telephone survey, there were 50 spring gillnetters and 108 fall gillnetters (Tables 5 and 6; Fig. 5).

Area fleet projects during the fall gillnet fishery combine the collection of acoustic data during commercial fishing and the sampling of variable mesh gillnets (Claytor and Allard, 2001). The goal of these projects is to develop a time series of local abundance indices. Sampling of size and age composition was conducted with multiple mesh size experimental nets in addition to their regular commercial nets. In 2008, five fall gillnetter boats participated and data analysis is ongoing.

2.1.3 Fishing effort

Fishing effort was calculated as the average number of gillnets deployed by season and area for the entire southern Gulf since 1978. From 1978 to 1985, the average number of nets used was collected by questionnaires done on wharves and by mail (Clay and Chouinard 1986). Since 1986, the effort measurement used to calculate the abundance indices based on gillnet fishery catch rates is the number of standard gillnets used in the spring and fall fisheries as estimated from the phone survey (LeBlanc and LeBlanc 1996) and, since 2005, from dockside observer data, where available. A standard net is 15 fathoms (27.4 m) in length (Table 7).

The percent of gillnet fishing days with no catch has been recorded for the past three years (Table 8). For the spring fishing season, the percentage of days with no catch is much higher than the fall. This information was not recorded in years prior to 2006 and is not part of the effort data used to calculate catch per unit effort.

questionnaire, tandis que 34 ne purent être rejoints après cinq tentatives à différentes périodes de la journée, 30 n'ont pu être localisés et 7 ont refusé de répondre. Parmi ceux qui ont répondu aux questions du sondage 2008, il y avait 50 pêcheurs du printemps et 108 pêcheurs de l'automne (tableaux 5 et 6; fig. 5).

Les projets des flottilles pendant la pêche d'automne aux filets maillants comprennent à la fois la collecte de données acoustiques pendant la pêche commerciale, ainsi que l'échantillonnage de filets maillants à mailles variées (Claytor et Allard, 2001). Le but de ces projets est de développer une série temporelle d'estimations d'abondance locale. L'échantillonnage de la composition en tailles et âges est fait avec des filets expérimentaux à maillage varié en plus de leurs filets ordinaires. En 2008, cinq bateaux de filets maillants d'automne ont participé et les analyses des données sont en cours.

2.1.3 Effort de pêche

L'effort de pêche est estimé par le nombre moyen de filets maillants utilisés depuis 1978 dans l'ensemble du sud du golfe par saison et région. De 1978 à 1985, le nombre moyen de filets utilisés fut obtenu par des sondages sur les quais ou par la poste (Clay et Chouinard 1986). Depuis 1986, la mesure de l'effort servant à formuler les indices d'abondance est le nombre de filets maillants ordinaires utilisés au printemps et à l'automne tel qu'évalué au moyen du sondage téléphonique (LeBlanc et LeBlanc 1996) et, depuis 2005, de données provenant des observateurs à quai, lorsque disponible. Un filet ordinaire est de 15 brasses (27.4 m) de longueur (tableau 7).

Le pourcentage de jours sans aucunes prises dans la pêche aux filets maillants a été comptabilisé depuis les trois dernières années (tableau 8). Le pourcentage est beaucoup plus élevé pour la saison du printemps qu'en automne. Cette information n'a pas été enregistrée avant 2006 et donc ne fait pas partie des données utilisées pour

The depth of gillnets in meshes used by season and area was examined in the 2008 phone survey to verify changes that could affect fishing effort. Gillnetters were asked the depth of their nets in 2008. In the spring 2008 gillnet fishery, the mean net depth ranged from 60 to 95 meshes deep depending on area. In the fall 2008 gillnet fishery, the mean net depth ranged

from 80 to 116 meshes deep depending

on area (Table 9). The gillnet depth has

been fairly constant in recent years in most

areas.

The phone survey data on number and length of gillnets used in 2008 was compared to gillnet data collected by the dockside monitoring program (DMP), where these were available (Table 9). In general, the two sets of data give similar results in most areas where there were a sufficient number of respondents. The gillnet data chosen were those with the greatest number of records.

2.1.4 Catch and weight-at-age matrices

Separate catch-at-age and weight-at-age matrices were calculated for all 4T herring spring and fall spawner component, including those caught by purse seiners. These were derived using age-length keys and length-weight relationships for each principal fishing area and season. In some cases, fishing activity within an area differed through the season and separate keys and relationships were developed for those cases. When fewer than 30 fish were sampled for detailed analysis, the overall length-weight relationship and agelength key nearest in gear, geography, and time were used to estimate the catch-atage.

At present, Gulf Region Science uses

calculer les prises par unité d'effort.

La profondeur des filets maillants en mailles utilisés par saison et région fut examinée lors du sondage téléphonique 2008 afin de vérifier tous changements qui pourraient affecter l'effort de pêche. Les pêcheurs furent questionnés sur la profondeur de leurs filets en 2008. Dans la pêche aux filets maillants du printemps 2008, la profondeur moyenne des filets variait entre 60 et 95 mailles selon la région. Dans la pêche aux filets maillants d'automne 2008, la profondeur moyenne des filets variait entre 80 et 116 mailles selon la région (tableau 9). La profondeur des filets maillants est restée relativement constante dans les années récentes.

Les données du sondage téléphonique sur le nombre et la longueur des filets maillants utilisés en 2008 furent comparées aux données provenant du programme de vérification à quai (PVQ) lorsque disponible (tableau 9). En général, les données sont similaires dans la plupart des régions où le nombre de répondants était suffisant. Les données utilisées furent ceux où le nombre de répondants était supérieur.

2.1.4 Matrices des prises et du poids selon l'âge

Des matrices distinctes des prises et du poids selon l'âge pour les géniteurs de printemps et d'automne ont été calculées pour tous les harengs de 4T, y compris ceux qui ont été capturés à la senne. Elles ont été calculées à partir des clés âge-longueur et des relations longueur-poids de chaque zone principale de pêche et de chaque saison. Dans certains cas, l'activité de pêche dans une zone varie au cours de la saison; des clés et des relations distinctes ont été établies pour ces cas particuliers. Lorsque le nombre de poissons échantillonnés pour l'analyse détaillée était inférieur à 30, la relation longueur-poids et la clé âge-longueur global les plus proches pour ce qui est de l'engin, de la géographie et du moment ont été utilisées pour estimer les prises selon l'âge.

Dans la Région du Golfe secteur des

three techniques to assign herring samples to either spring (P) or autumn (A) spawning components based on gonad maturity stages (Cleary et al. 1982). These are:

- For immature herring of maturity stages 1 and 2 (juveniles), the season of hatching is based on the size at capture and visual examination of otolith characteristics (Messieh 1972). The spawning component assignment to juvenile herring is its hatching season (Cleary et al 1982). Juveniles represent a small percentage of commercial catch, but are a higher proportion in the research survey samples.
- Adult herring with ripe or spent gonads (maturity stages 6 and 7) are assigned their maturity stage by macroscopic laboratory examination of the gonads. The fish are assumed to belong to the spawning component of the season in which they were caught. These represent over 90% of the gillnet catches and 75% of the total yearly landings.
- Adult herring with non-ripe gonads (maturity stages 3, 4, 5 and 8) are assigned their maturity stage by using a gonadosomatic index (GSI) based on a discriminant function model. The GSI is based on the length of the fish and its gonad weight (McQuinn 1989). Once the maturity stage is determined. the spawning component is assigned by using a maturity schedule (a table cross-referencing maturity stage and date of capture to spawning component) (Cleary et al. 1982). Since 1995, herring with non-ripe gonads represent at the most 20% of the total yearly commercial landings and a high proportion of the research survey samples.

sciences, on se sert actuellement de trois méthodes pour répartir les échantillons de hareng entre les composantes de géniteurs de printemps (P) ou d'automne (A) basés sur les stades de maturité des gonades (Cleary et al. 1982), comme suit :

- Dans le cas des immatures de stades de maturité 1 et 2 (juvéniles), on se sert de la taille à la capture et d'un examen visue! des caractéristiques des otolithes pour déterminer sa saison d'éclosion (Messiel) hareng 1972). Pour le iuvénile. l'assignation à une composante de géniteurs est sa saison d'éclosion (Cleary et al. 1982). Bien qu'ils ne constituent qu'un faible pourcentage des prises juvéniles commerciales. les sont davantage représentés dans les échantillons des relevés de recherche.
- Un examen macroscopique des gonades en laboratoire détermine le stade de maturité de harengs adultes avec gonades mûres ou vidées (stades de maturité 6 et 7). Ces harengs sont considérés comme appartenant à la composante de géniteurs de la saison de la capture. Ces adultes constituent plus de 90 % des prises aux filets maillants et 75 % des prises annuelles totales.
- Les équations sous-tendant un modèle d'analyse discriminante, reposant sur un index gonadosomatique (IGS), servent à établir le stade de maturité des gonades non pleines (stades de maturité 3, 4, 5 et 8). Le rapport IGS repose sur la longueur du poisson et le poids de ses gonades (McQuinn 1989). Une fois le stade de maturité des gonades déterminé, on assigne l'appartenance à une composante de géniteurs d'après un tableau de maturité (relie la maturité et la date de capture à une composante de géniteurs) (Cleary et al. 1982). Depuis 1995, ces adultes avec gonades non pleines constituent au plus 20 % des prises commerciales annuelles et la plupart des prises des relevés de recherche.

2.1.5 Age reading consistency test

Yearly age reading consistency tests are done in order to evaluate the consistency of age reading over time. In 2009, a subsample of 215 pairs of herring otolith from years 1993, 1994, 1996 and 2003 was reaged, and the new ages were compared to the reference ages. This test was conducted after the completion of age reading on most of the 2008 samples.

Otolith samples were randomly selected for age-groups 1 to 11+ and from years between 1993 and 2003, gear types used and type of sample (commercial and research). Some of the otoliths were removed from the test set due to their poor readability, which persisted after a resurfacing of the mounting media. Thus, a final set of over 200 otoliths were used. Results are presented for both the primary and secondary (alternate) reader. At this time, however, only the ages of the primary reader are used for assessment purposes.

The results for the primary reader show an overall agreement of 91% and a coefficient of variation (CV) of 2.5%. (Table 10; Fig. 6). The CV is considered to be a more robust measure of the precision of age determination (Campana et al: 1995). From the reading bias plot, there was no bias present, and age determination is more variable for older (9+) herring (Table 10; Fig. 6). There was an increase in percentage agreement and a decrease in the coefficient of variation for this study. This may have been caused by improved otolith clarity due to a resurfacing of the mounting media. Because of this improvement, one sample from 1996 that had become unreadable was restored to the study. This reference collection is to be used in further years, and is to be photographed and expanded.

2.1.5 Test d'uniformité de la détermination de l'âge

Chaque année, un test est effectué afin d'évaluer la constance dans la détermination des âges. En 2009, un sous-échantillon de 215 paires d'otolithes des années 1993, 1994, 1996 et 2003 fut re-âgé et les résultats furent comparés aux âges de référence. Ce test a eu lieu suivant la lecture d'âge de la majeure partie des échantillons de l'année 2008.

Des échantillons d'otolithes ont sélectionnés par âge pour les groupes d'âges de 1 à 11+ afin d'obtenir une représentation à peu près égale des années entre 1993 et 2003 des zones, des engins et des types d'échantillons (pêche ou recherche). Certains échantillons ont été écartés à cause de leur mauvaise condition. même après une tentative d'améliorer le matériel de soutient. Au total, au-dessus de 200 otolithes ont été choisis au hasard pour le test. Les résultats sont présentés pour le lecteur primaire et le lecteur secondaire (alternatif). Cependant. seulement les lectures d'âges du lecteur primaire sont utilisées dans l'évaluation du stock.

Pour le lecteur primaire, le pourcentage de concordance total était de 91 % et le coefficient de variation (CV) moven de cet ensemble de données était de 2,5 % (tableau 10; fig. 6). Le CV est considéré comme étant une mesure plus robuste de la précision de la détermination d'âges (Campana et al. 1995). Il n'y avait aucun biais apparent dans les résultats de comparaisons, mais il y avait plus de variabilité dans la détermination d'âges des harengs plus vieux (9 ans +) (tableau 10; fig. 6). Il v a eu une augmentation dans le pourcentage de concordance et une baisse dans la valeur du CV comparativement à 2007. Ceci est due à une amélioration dans la visibilité des otolithes grâce à une modification du matériel de soutient. Un échantillon datant de 1996 fut restauré à la collection. Cette collection de référence sera dorénavant utilisée dans les années futures, avec des ajouts et des photographes.

The secondary reader had an overall agreement of 86%, a CV of 3.6% and was within confidence limits for all ages. The second reader is slightly less reliable than the primary reader, however, for both readers, the results are in an acceptable range. The percentage of agreement between the two readers was 79% with a CV of 5.8 (Table 10; Fig. 6).

2.2 Gillnet Fishery Catch Rates

Gillnet catch and effort data are used to construct abundance indices for both the spring and fall spawning components of 4T herring. The gillnet fisheries take place on the spawning grounds and generally account for approximately 70% of the spring spawner catch, and more than 80% of the fall spawner catch. The remaining portion of the catch of both components is taken by the purse seine fleet fishing primarily on mixed aggregations prior to and during the migration out of the Gulf in the fall.

The catch data used to calculate the spring catch per unit of effort (CPUE) series consisted of data from a dockside monitoring program of the gillnet fishery managed and compiled by the provincial government of N.B. for Escuminac and southeast N.B. from 1990 to 1996 and data from the DFO dockside monitoring of the 4T spring gillnet fishery from 1997 to 2008; purchase slips were used for areas without dockside records. Effort was calculated as the number of trips multiplied by the number of nets, which is determined from the annual telephone survey of active herring fishers or dockside monitoring data where available. The data were aggregated by year, fishery area and day. Spring catch and effort dockside data are available for 1990-2008.

For the fall CPUE series, catch data were taken from purchase slips and ZIF files collected by Statistics Branch available

Pour le lecteur secondaire, le pourcentage de concordance total était de 86 % et le CV moyen était de 3,6 %, à l'intérieur des limites de confiances. Le lecteur secondaire est moins fiable que le lecteur primaire et, pour les deux lecteurs, les résultats sont dans les limites acceptables. Le pourcentage de concordance entre les deux lecteurs était de 78 % avec un CV de 5,8 (tableau 10; fig. 6).

2.2 Taux de Capture aux Filets Maillants

On se sert des données sur l'effort et les prises aux filets maillants pour calculer des indices d'abondance des géniteurs de printemps et d'automne dans 4T. En général, approximativement 70 % des prises de géniteurs de printemps et plus de 80 % de géniteurs d'automne sont attribuables aux pêches aux filets maillants, car elles ont lieu dans les frayères. Le reste des prises est attribuable aux pêches à la senne coulissante, qui visent les bancs mixtes de géniteurs avant et pendant leur migration hors-Golfe à l'automne.

Les données de captures utilisées pour calculer les prises par unité d'effort (PUE) du printemps ont été tirées des données de la vérification à quai de la pêche aux filets maillants d'Escuminac et du sud-est du N.-B. de 1990 à 1996, gérée par le gouvernement du N.-B., et des données de la vérification à quai du MPO des prises de la pêche aux filets maillants du printemps de 1997 à 2008: des bordereaux d'achat furent utilisés dans le cas des zones sans dossiers de vérification à quai. L'effort est le nombre de sorties multiplié par le nombre de filets qui est déterminé d'après enquête téléphonique annuelle auprès des pêcheurs actifs ou des données des observateurs à quai lorsque disponibles. Les données furent regroupées par année, zone et jour. Des données sur l'effort et les prises de printemps issues des dossiers de vérification à quai sont disponibles pour la période 1990-2008.

Les données de captures utilisées pour calculer les PUE d'automne ont été tirées des bordereaux d'achat et des ZIF de la Direction since 1978. Effort was calculated as the number of trips (purchase slips) multiplied by the number of nets or hauls, which were determined from the annual telephone survey of active herring fishers or dockside monitoring data where available. The data were aggregated by year, fishery area and day. Fall number of nets are available since 1978 and the number of hauls since 1986.

For both spring and fall, annual trends in gillnet CPUE were calculated using a generalised linear model (GLM).

2.3 Acoustic Survey

Since 1991, annual acoustic surveys of early fall (September-October) concentrations of herring in the southern Gulf have been conducted. The surveys are usually concentrated in the areas of Chaleurs-Miscou, north of P.E.I. and in some years, Cape Breton. These areas are where NAFO Division 4T herring aggregate in the fall. The survey design uses random parallel transects within strata.

In 2008, the acoustic survey covered two major areas of the 4T stock with a total transect distance covered of 1.611 kms (Fig. 7). The areas surveyed were Chaleurs-Miscou from September 23 to October 7 (Fig. 8) and north P.E.I. from October 8 to 10 (Fig. 9). The acoustic vessel used was the CCGS F. G. Creed. with a hull-mounted 120 KHz transducer. and using a Femto DE9320 digital echosounder. The fishing vessel was the CCGS Calanus II, using a Nordsea midwater trawl, with horizontal and vertical openings of 11 and 7 m respectively, a length of 36.2 m and minimum mesh size of 4 cm in the codend.

Sampling was carried out wherever major concentrations were detected acoustically to determine species composition, biological characteristics and size

des Statistiques disponibles depuis 1978. L'effort fut calculé comme le nombre de sorties (d'après les bordereaux d'achat) multiplié par le nombre de filets ou de levées, qui sont déterminé d'après enquête téléphonique annuelle auprès des pêcheurs actifs ou des données des observateurs à quai lorsque disponibles. Des données pour l'automne sur le nombre de filets sont disponibles depuis 1978, et sur le nombre de levées depuis 1986.

Pour le printemps ainsi que l'automne, on a établi les tendances annuelles des PUE des filets maillants à l'aide d'un modèle linéaire généralisé (MLG).

2.3 Relevé Acoustique

Depuis 1991, des relevés acoustiques annuels sont effectués sur les concentrations de hareng du début d'automne (septembre-octobre) dans le sud du golfe. Les relevés sont concentrés dans les régions de Chaleurs-Miscou, le nord de l'Î.-P.-É. et dans certaines années au Cap Breton. Ces régions sont là où les harengs de la division 4T de l'OPANO se concentrent. Il s'agit d'un relevé utilisant des lignes choisies au hasard à l'intérieur de strates prédéterminées.

En 2008, le relevé acoustique a porté sur deux grandes zones du stock de 4T avec une distance recensée de 1 611 kms (fig. 7). Les zones étaient Chaleurs-Miscou couverte du 23 septembre au 7 octobre (fig. 8) et le nord de l'Î.-P.-É. du 8 au 10 octobre (fig. 9). Le navire utilisé était le NGCC F. G. Creed, avec un transducteur en coque de 120 KHz et une échosondeuse digitale Femto DE9320. Les échantillons biologiques furent avec le NGCC Calanus II, utilisant un chalut pélagique Nordsea avec ouvertures horizontale et verticale de 11 et 7 m respectivement, une longueur de 36,2 m et grandeur minimale de mailles de 4 cm dans le cul du chalut

L'échantillonnage a été effectué chaque fois que des concentrations importantes étaient signalées afin de déterminer les espèces présentes, les caractéristiques biologiques et distribution for target strength (appendices 1 and 2). Methods used are detailed in LeBlanc and Dale (1996). The 2008 survey results are presented in Appendix 3 a-d.

In 2008, the biomass detected in the Chaleurs-Miscou area was estimated at 46,293 t, of which 25.9% were spring spawners (by weight). In the north P.E.I. area, the estimated biomass was 23,787 t, of which 15.4% were spring spawners (by weight). The north P.E.I. area was surveyed only partially in 2008 due to weather and time constraints. The northeastern part of the area was not surveyed. When surveyed in previous years, this area had the highest biomass densities of the north P.E.I. area. The acoustic numbers and biomass at age detected in the 2008 acoustic survey for Chaleurs-Miscou and north P.E.I. areas (Sept. 23 -Oct. 10) are summarised in Table 11.

The acoustic biomass index for the combined spring and fall spawner components has been decreasing since 2005 for all the strata of the Chaleurs-Miscou area and for the strata that have been surveyed every year since 1994 (Fig. 10). In recent years, there has been a constriction in the distribution and a decrease in biomass in the Chaleurs-Miscou area (Fig. 11).

Changes in the catch-at-age were made in 2006. The catch-at-age program uses the estimated species weight caught in the set as a weighting factor. This weighting favours the larger set catches in a stratum. Since the tows are of no fixed duration or speed, it was decided to standardize the weight of herring caught per tow (species weight) to what would be caught in a tow of one nautical mile: a nautical mile is the approximate average distance towed. The distance towed was calculated in three ways; latitude and longitude coordinates were given precedence, next was ship speed and set duration, and lastly the entered distance towed. If data were

la distribution des tailles pour l'estimation de l'index de réflexion du poisson (annexes 1 et 2). Les méthodes utilisées sont détaillées dans LeBlanc et Dale (1996). Les résultats du relevé de 2008 sont présentés à l'annexe 3 a-d.

En 2008, la biomasse estimée pour la région Chaleurs-Miscou se chiffrait à 46 293 t. avec 25,9% de géniteurs de printemps (par poids). Dans la région du nord de l'Î.-P.-É., la biomasse estimée était de 23 787 t, dont 15.4% étaient des géniteurs de printemps (par poids). La région du nord-est de l'Î.-P.-É. n'a été que partiellement répertoriée en 2008 du à des contraintes de météo et de temps Lors des années antérieures, cette région comptait parmi les régions avec les plus hautes densités de biomasse au nord de l'Î -P.-É. Les indices acoustiques des nombres et de la biomasse à l'âge du relevé acoustique 2008 dans les régions du Chaleurs-Miscou et du nord de l'Î.-P.-É. (23 sept. - 10 oct.) sont résumés au tableau 11

L'indice acoustique de la biomasse des géniteurs de printemps et d'automne combinés est en décroissance depuis 2005 pour toutes les strates de la région Chaleurs-Miscou et celles qui ont fait l'objet d'un relevé régulier à chaque année depuis 1994 (fig. 10). Il y a eu une diminution dans l'air de distribution et dans la biomasse de la région Chaleurs-Miscou dans les années récentes (fig. 11).

Des changements dans les prises selon l'âge ont été faits en 2006. Les prises selon l'âge sont pondérées par le poids estimé de la prise par trait de chalut. Ceci donnait plus de poids aux traits avec les prises les plus élevées. Il fut décidé d'uniformiser la prise d'un trait de chalut à un équivalent qui serait capturé lors d'un trait d'un mille nautique de distance, distance moyenne des traits. La distance du trait fut calculée par ordre de préférence comme suit : la précédence fut coordonnées latitude aux longitude, suivit de la vitesse du bateau et la durée réelle du trait, et en dernier lieu. l'estimé de la distance chalutée. Si ces informations n'étaient pas disponibles, la

missing for all of these, then a default value of distance towed of one nautical mile was assumed.

Catch-at-age by spawning group for the fishery independent acoustic abundance index used in this assessment was calculated from Chaleurs-Miscou detailed samples collected from the same strata covered since 1994, weighted by the acoustic biomass estimate for those strata. The data collected from north of P.E.I. has not been incorporated because of the shorter time series and inconsistency of coverage for this area over the years.

From this catch-at-age by spawning group, a SAS procedure (proc corr) was performed to determine any correlation of age-class abundance from one year to the next, as well as with a 2 and 3 year lag. Good correlation was found for the spring spawning component, the best being for one year lag in numbers-at-age. The fall spawning component showed poor correlation (Table 12).

2.4 Groundfish Bottom Trawl Survey

The annual groundfish bottom trawl survey provides some information on the distribution of 4T herring throughout the sGSL in September. The survey has been conducted consistently during the month of September since 1971. During the last six years, herring were found primarily near shore in shallow waters, mostly west, north and east of P.E.I., inshore of the Shediac Valley, in Northumberland Strait and in St. Georges Bay (Fig. 12).

In the September 2008 groundfish survey (Hurlbut et al. 2009 in prep), herring were caught primarily near shore in waters < 30 fathoms, mostly north and east of P.E.I., west of Cape Breton, as well as in the Northumberland Strait and St. Georges Bay (Fig. 12). The length frequency distribution of herring in 2008 consisted of a proportion

distance chalutée fut arbitrairement inscrite à un mille nautique.

Les prises selon l'âge pour chaque groupe de géniteurs utilisées dans cette évaluation du stock comme indice d'abondance acoustique ont été calculées à partir des échantillons détaillés de hareng provenant des mêmes strates de Chaleurs-Miscou échantillonnées depuis 1994 et pondérées par la biomasse détectée par l'acoustique dans ces mêmes strates. Les données recueillies au nord de l'Î.-P.-É. n'ont pas été utilisées car la série temporelle est plus courte et il y a de l'inconsistance dans les endroits couverts d'une année à l'autre.

De ces prises selon l'âge pour chaque groupe de géniteurs, une procédure SAS (proc corr) fut élaborée pour déterminer s'il existait une corrélation dans l'abondance des classes-d'âge d'une année à l'autre, ainsi qu'avec un décalage de 2 ou 3 ans. Une bonne corrélation existait pour les nombres-à-l'âge des géniteurs de printemps, la meilleure étant sur le décalage d'un an. Pour les géniteurs d'automne, la corrélation était faible (tableau 12).

2.4 Relevé au Chalut de Fond

Le relevé annuel des poissons de fond au chalut de fond fournit des renseignements sur la distribution du hareng de 4T dans le sGSL en septembre. Le relevé a été réalisé régulièrement en septembre depuis 1971. Au cours des six dernières années, le hareng a été observé surtout en eaux peu profondes près des côtes, principalement à l'ouest, au nord et à l'est de l'Î.-P.-É., dans le détroit de Northumberland et dans la baie St. Georges (fig. 12).

Dans le relevé de septembre 2008 (Hurlbut et al. 2009 en prép), le hareng a été capturé près des côtes surtout en eaux < 30 brasses, principalement au nord et à l'est de l'Î.-P.-É., à l'ouest du Cap Breton, ainsi que dans le détroit de Northumberland et la baie St. Georges (fig. 12). La distribution 2008 des fréquences de longueur consistait en une proportion de

less than 10 cm, mostly spring spawned herring of the year, a proportion from 12 to 15 cm corresponding mostly to age 1 fall spawned herring, a proportion at around 20 cm which would mainly be age 2 herring, and a proportion from 23 cm and higher of age 3 and older herring (Fig. 13). Less than 5% of the catches were of larger and older herring over 30 cm.

We looked at the herring catch-at-age from the September bottom trawl survey to determine the feasibility of using them as an index of 4T herring abundance. Herring from the survey have been sampled, separated into spawning components and the catch-at-age calculated since 1994.

Juvenile and adult herring of both spawning components were caught in the groundfish survey. Spring spawner juvenile have been more prevalent than adults and, generally, fall spawners were more abundant than spring spawners. A large proportion of adult herring caught in the groundfish survey were fall spawners.

A SAS procedure (proc corr) performed to determine any correlation of age-class abundance from one year to the next, as well as with a 2 and 3 year lag. No correlation was found for the spring spawning component. while the fall spawning component showed poor correlation, with the best fit being on a 2 year lag (Table 13). Both the spring spawner and fall spawner catch-at-age numbers from the groundfish survey showed little correlation with cohorts from one year to the next (Appendix 4a, 4b).

Based on these results, for the spring spawning component, the groundfish survey catch-at-age was not deemed useful as an age-desegregated abundance index of sGSL herring. For the fall spawning component, it was included in trials for the population model.

harengs mesurant moins que 10 cm, surtout des harengs du printemps de l'année, une proportion entre 12 et 15 cm correspondant surtout à des harengs d'automne d'âge 1, une proportion autour du 20 cm qui seraient surtout des harengs d'âge 2, et une proportion de 23 cm et plus consistant de harengs d'âges 3 et plus (fig. 13). Moins de 5% des captures étaient de harengs plus âgés de taille supérieure à 30 cm.

On a examiné les prises-à-l'âge récoltées dans le cadre de ces relevés au chalut de fond de septembre afin d'établir si elles pouvaient servir d'indice d'abondance du hareng dans 4T. On a déterminé l'âge des prises échantillonnées et on les a assigné à un groupe de reproducteurs depuis 1994.

Des juvéniles et des adultes issus des deux groupes de reproducteurs sont capturés dans le relevé. Dans le cas des reproducteurs de printemps, les juvéniles sont plus abondants que les adultes, et les reproducteurs d'automne sont plus abondants que leurs congénères de printemps. Une grande proportion des adultes capturés lors du relevé s'avère être des reproducteurs d'automne.

Une procédure SAS (proc corr) fut élaborée pour déterminer s'il existait une corrélation de l'abondance des classes-d'âge d'une année à l'autre, ainsi qu'avec un décalage de 2 ou 3 ans. Aucune corrélation n'existait pour les nombres de géniteurs de printemps, tandis que pour les géniteurs d'automne, la corrélation était faible, avec les meilleurs résultats sur un décalage de 2 ans (tableau 13). L'indice selon l'âge du relevé de poissons de fond des géniteurs de printemps et d'automne indiquait peu de corrélation avec les cohortes d'une année à l'autre (annexe 4a, 4b).

Basé sur ces résultats, pour les géniteurs de la composante du printemps, les captures-à-l'âge du relevé de poissons de fond ne semblent pas être utilisables comme indice d'abondance pour le hareng du sGSL. Pour les géniteurs de la composante de l'automne, elles furent incluent dans un essai du modèle

de population.

3. SPRING SPAWNER COMPONENT (SSC)

3.1 Spring Fishery

The opinions on abundance from the 2008 telephone survey of active gillnet fishers indicate a similar or a decrease in spring herring abundance from 2007 for all areas (Fig. 14). Overall, the opinion survey indicates that abundance has been declining since the mid 1990s in most areas except the Magdalen Islands (declining since 2003) and Nova Scotia.

When asked for comments on the spring gillnet fishery, gillnetter answers varied by area. The most common comment was that there were too few fishing days or not enough quota due to the conservation measures put in place for the 2008 fishery. Some respondents expressed the need to decrease the number of boats and mesh depth, while others commented that the spring gillnet fishery should be closed on spawning areas.

Most spring gillnets measure from 13 to 16 fathoms long and range from 60 to 100 meshes deep, with the total percentage of mesh sizes being from 2 ¼ to 2 ½ inches (Fig. 15). In the spring, nets are fished by anchoring overnight (set nets) and picked up the next morning (Tables 7 and 9).

The percentage of days with no catch in the spring gillnet fishery was 40% in 2007 and 49% in 2008 (Table 8). This high percentage is part of the effort data that should be taken into account when determining the gillnet catch per effort. Unfortunately, this information was not collected and is not available prior to 2006.

The age-length keys, landings, samples,

3. COMPOSANTE DES GÉNITEURS DE PRINTEMPS (CGP)

3.1 La Pêche du Printemps

Les résultats du sondage téléphonique des pêcheurs aux filets maillants actifs en 2008 indiquent que l'opinion sur l'abondance du hareng de printemps était similaire ou avait diminué par rapport à 2007 dans toutes les zones (fig. 14). Sur l'ensemble, l'opinion indique que l'abondance est en déclin depuis le milieu des années 1990 dans la plupart des régions sauf les Îles-de-la-Madeleine (en baisse depuis 2003) et la Nouvelle-Écosse.

Les commentaires des pêcheurs sur la saison de pêche du printemps aux filets maillants varient selon les régions. Les pêcheurs ont surtout indiqué qu'il y avait trop peu de jours de pêche et pas assez d'allocation à cause des mesures de conservation mises en place pour la saison 2008. D'autres ont suggéré une réduction dans le nombre de bateaux et qu'il devrait avoir une réduction dans la profondeur de filets, tandis que d'autres commentaires suggéraient la fermeture de la pêche du printemps aux filets maillants sur les frayères.

La plupart des filets maillants au printemps mesurent de 13 à 16 brasses de long et varient entre 60 et 100 mailles de profondeur, avec un maillage de 2 ¼ po à 2 ½ po pour la totalitérité (fig. 15). Au printemps, tous les filets sont mouillés pour y rester la nuit (filets ancrés) et sont retirés le lendemain matin (tableaux 7 et 9).

Le pourcentage de jours sans aucunes prises dans les filets maillants pour la saison du printemps était de 40% en 2006 et de 49% en 2008 (tableau 8). Ce haut pourcentage fait partie des données sur l'effort et devrait être considéré dans le calcul des prises par unité d'effort des filets maillants. Malheureusement, cet information n'était pas recueilli et n'est pas disponible avant 2006.

Les clés âge-longueur, les débarquements,

spawning group assignment, and numbers of fish used to calculate catch-at-age in the spring fishery are described in Table 14. The SSC catch-at-age and weight-at-age were determined for each gear type and for all gears combined (Tables 15 to 17). Catches of the SSC in 2008 were composed mostly of ages 2, 4 and 5 (Table 17; Figs. 16 and 17).

Mean weights-at-age for the SSC were generally lower in recent years than during the late 1980s and early 1990s (Table 17; Fig. 18). The mean weights observed in recent years have stabilized. Lower mean weights give us an indication on the status of the stock and affect the stock biomass estimate when numbers are converted to weight.

3.2 Spring Spawner Component Abundance Indices

3.2.1 Gillnet fishery CPUE index

Two data sets were combined to derive the daily catch used in the calculation of the SSC gillnet abundance index. The first data set came from dockside monitoring of the gillnet fishery in Escuminac and southeast N.B. from 1990 to 1996 managed and compiled by the provincial government of N.B.. The second data set consisted of the DFO dockside monitoring of the 4T spring gillnet fishery from 1997 to 2008. In addition, purchase slip data were included where dockside monitoring data were not available.

Since 1986, the number of standard gillnets (15 fathoms long) has been estimated from the telephone survey. Since 2005, the number of standard gillnets was also obtained from dockside monitoring data in areas where the number of records was greater than the

les échantillons, le classement selon les groupes de géniteurs et le nombre de poissons utilisés pour calculer les prises selon l'âge lors de la pêche du printemps sont décrits au tableau 14. Les prises-à-l'âge et les poids-à-l'âge de la CGP ont été formulés pour chaque engin de pêche et pour les engins combinés (tableaux 15 à 17). Les captures en 2008 étaient composées surtout des âges 2, 4 et 5 (tableau 17; figs. 16 et 17).

Le poids moyen selon l'âge de la CGP est généralement inférieur depuis quelques années, comparativement à la fin des années 1980 et au début des années 1990 (tableau 17; fig. 18). Les poids moyens observés ces dernières années semblent être stables. Les changements dans le poids moyen sont une indication de l'état du stock et affectent l'estimation de la biomasse totale lorsque les nombres sont convertis en poids.

3.2 Indices d'Abondance de la Composante des Géniteurs de Printemps

3.2.1 Indice des PUE de la pêche aux filets maillants

Les indices d'abondance de la CGP des filets maillants étaient calculés à partir de captures journalières tirées de la combinaison de deux ensembles de données. On s'est servi des données de la vérification à quai de la pêche aux filets maillants d'Escuminac et du sud-est du N.-B. de 1990 à 1996, gérée par le gouvernement du N.-B. Le deuxième ensemble de données était celui de la vérification à quai du MPO des prises de la pêche aux filets maillants du printemps de 1997 à 2008. Lorsque les données de vérification à quai n'étaient pas disponibles, les prises enregistrées sur les bordereaux d'achat furent utilisées.

Depuis 1986, le nombre de filets maillants ordinaires (mesure 15 brasses) a été estimé par le sondage téléphonique Depuis 2005, le nombre de filets maillants ordinaires fut aussi obtenu par les données des observateurs à quai, lorsque le nombre dépassait le nombre de répondants du sondage téléphonique.

telephone survey respondents. Daily effort was estimated by multiplying the number of trips by the average number of standard nets/fisher for each area (Table 18). The fishing effort for the season was obtained by adding the fishing effort for all days. Thus, the units of measurement for effort were net-days. The mesh size of gillnets used in the spring fishery has not changed significantly over time $(2^1/_4$ to $2^1/_2$ inch mesh were most common).

In recent years, landings from the late spring gillnet fishery (mainly June) have increased significantly and make up a larger amount of the total spring gillnet landings (Table 19). A closer examination of the composition of the 2008 late spring gillnet catches revealed that a large proportion of the June catches were of the fall spawner component, while catches in April and May are mostly of the spring spawner component caught on the spawning grounds. The June 2008 catches in the east PEI - Gulf N.S. area (16FG) were composed of 68% fall spawners (Table 20). In light of this catch composition in June, it was concluded that the spring gillnet fishery CPUE index should not include catch data from June in order to better reflect the spring spawner component abundance.

For the 2002 assessment, it was concluded that the catch-weighted index appears to be more consistent with the SSC stock trends (Poirier 2002, LeBlanc et al. 2003). Therefore, the gillnet CPUE series chosen to calibrate the 2008 SPA model for the SSC assessment included the April and May dockside monitoring data (1990-2008) from all areas aggregated by day and area and weighted by the catch for that area.

The multiplicative model (GLM) used week, area and year (1990-2008) effects to estimate annual abundance indices.

L'effort quotidien fut déterminé en multipliant le nombre de sorties par le nombre moyen de filets ordinaires/pêcheur (tableau 18). L'effort total de la saison fut obtenu en faisant la somme de tous les efforts quotidiens. Ainsi, les unités de mesure de l'effort étaient les filet-jours. La longueur de maille des filets maillants utilisés au printemps n'a pas beaucoup varié au fil du temps, se situant généralement entre 2½ po et 2½ po.

Depuis quelques années les captures aux filets maillants provenant de la pêche printannière tardive (surtout juin) augmenté considérablement et constituent une plus grande proportion des captures totales du printemps (tableau 19). Une analyse de la composition des captures de juin 2008 indique qu'une bonne proportion des captures est de la composante de géniteurs d'automne, tandis que les captures en avril et mai sont majoritairement de la composante des géniteurs de printemps, capturés sur les frayères. Les captures aux filets maillants de juin de la région est de l'Î.-P.-É. et golfe N.-É. (16FG) étaient composées de 68% de géniteurs d'automne (tableau 20). Vu la composition des captures de juin, il fut conclu que l'indice des PUE de la pêche aux filets maillants du printemps ne devrait pas inclure les captures de juin afin de s'assurer que l'index s'avère plus représentatif de l'abondance de la composante des géniteurs de printemps.

Pour l'évaluation de l'année 2002, on en conclut que l'indice pondéré par les prises semble mieux correspondre aux tendances du stock de la CGP (Poirier 2002, LeBlanc et al. 2003). Donc, la série des PUE des filets maillants choisie pour étalonner le modèle ASP pour la CGP pour l'année 2008 considérait les données de vérification à quai des prises de la pêche du printemps d'avril et de mai (1990-2008), regroupées par jour et région et pondérées par les prises de cette région.

Le modèle multiplicatif (GLM) utilisa semaine, région et année (1990-2008) comme facteurs pour mesurer l'indice d'abondance annuel.

The model formulation from GLMs was:

In(CPUE_{ijk})= $\alpha+\beta_1$ I+ β_2 J+ β_3 K+ ε where: CPUE_{ijk} = CPUE in year i, area j, week k I is a matrix of 0 to 1 indicating year J is a matrix of 0 to 1 indicating area K is a matrix of 0 to 1 indicating week ε is the residual error

The model was significant, ($r^2 = 0.46$, p < 0.0001) (Table 21). The residuals provided no violations of assumption of normal distribution and revealed no points that may have unduly influenced the parameter estimates.

The estimated catch rates in kg/net/day have been declining since 1997 and remain at a low level in the time series since 2004 (Fig. 19). An age-disaggregated abundance index for ages 4-10 and years 1990 to 2008 was calculated by dividing the gillnet catch-atage by the standardized effort from the model (Table 22).

3.2.2 Acoustic survey index

A second standard abundance index was generated from the annual acoustic survey. This index includes Chaleurs-Miscou strata surveyed yearly since 1994. During this time period, the survey was conducted with the vessel CCGS F. G. Creed and all transects were covered at night. For the whole survey area covered each year during this time period, the SSC in the Chaleurs-Miscou strata usually represents from 80 to 100% of the yearly total number of the SSC found in the whole survey.

The Chaleurs–Miscou acoustic survey catches of the SSC were dominated by the 2006 year-class (age 2 in 2008) (Table 23; Fig. 20). The 2008 Chaleurs-Miscou catches were predominantly herring of ages 1 to 3, and adult herring (4+) contributed approximately 33% by number.

Les résultats du passage de ce modèle étaient :

In(PUE_{ijk})= $\alpha+\beta_1$ I+ β_2 J+ β_3 K+ \in où:

PUE_{ijk} = PUE pour année i, zone j, semaine k I est une matrice de 0 à 1 indiquant l'année J est une matrice de 0 à 1 indiquant la zone K est une matrice de 0 à 1 indiquant la semaine

E est l'erreur résiduellle

Le modèle était significatif (r² = 0,46, p < 0,0001) (tableau 21). Les résiduels ne démontrent aucune violation de prétention de distribution normale et n'ont révélé aucun point ayant influencé indûment les paramètres estimés.

Les taux de capture estimés en kg/filet/jour ont diminué depuis 1997 et demeurent parmi les plus bas de la série chronologique depuis 2004 (fig. 19). Un indice d'abondance par âge pour les 4 à 10 ans et les années 1990 à 2008 fut calculé en divisant les prises selon l'âge de la pêche aux engins fixes par l'effort normalisé du modèle (tableau 22).

3.2.2 Indice du relevé acoustique

Un second indice d'abondance normalisé tiré du relevé acoustique annuel fut calculé. Cet indice comprend les strates Chaleurs-Miscou qui ont fait l'objet d'un relevé annuel depuis 1994. Pendant cette période, le relevé a été effectué avec le navire NGCC F.G. Creed et tous les transects ont été faits la nuit. Sur l'ensemble de la surface couverte annuellement lors du relevé, la CGP présente dans les strates Chaleurs-Miscou représente habituellement de 80 à 100% du nombre total observé dans ce relevé.

Les prises de la CGP lors du relevé acoustique de Chaleurs-Miscou furent dominées par la classe d'âge de 2006 (âge 2 en 2008) (tableau 23; fig. 20). Sur la totalité des géniteurs de printemps capturés dans le relevé acoustique de Chaleurs-Miscou en 2008, la grande majorité était des harengs

Internal consistency of the acoustic index by age for the SSC was examined with correlations and regressions of age-class abundance with a one to three year lag (Table 12). For the one year lag, the internal consistency is generally good, with five of the seven regressions showing good fits (Fig. 21).

The proportion of adult SSC herring (4+) was compared between the Chaleurs-Miscou acoustic survey and the seiner commercial catch for the same area and time period to verify if the acoustic survey midwater trawl provides unbiased samples of the area and time period surveyed. In general, the acoustic survey SSC catch proportions are similar to the seiner catches, with the exception of 2004 when the seiners targeted almost exclusively the fall spawning component near Miscou Bank (appendix 5a). The same comparison between the acoustic survey SSC catch proportions of adult herring (4+) and the gillnet catch proportions indicates less similarity, especially in catches of older herring (appendix 5b).

The estimated catch rates of spring spawners from the acoustic survey in numbers of age 4 to 8 are amongst the lowest in the time series (Fig. 22). The age-disaggregated abundance index includes ages 4-8 and years 1994 to 2008 (Tables 22 and 23).

entre 1 et 3 ans, et les harengs adultes (4+) contribuaient environ 33% en nombre.

On a vérifié la cohérence interne de l'indice acoustique des prises selon l'âge de la CGP avec des corrélations et régressions de l'abondance par classe d'âge avec un décalage d'une à trois années (tableau 12). Pour le décalage d'une année, la cohérence interne est généralement bonne, cinq des sept régressions étant serrées (fig. 21).

Les proportions de harengs adultes (4+) de la furent comparées entre acoustique de Chaleurs-Miscou et les prises commerciales des senneurs dans le même lieu et période de l'année, afin de vérifier si les captures du chalut pélagique du relevé acoustique étaient représentatives des âges présents sur les lieux pour la même période. En général, les proportions de la CGP capturées lors du relevé acoustique sont similaires aux proportions capturées par les senneurs, avec l'exception de 2004 où les senneurs se sont dirigés exclusivement vers la composante des géniteurs d'automne (annexe 5a). Une comparaison semblable entre les proportions de la CGP capturées lors du relevé acoustique et les proportions capturées par les filets maillants indique moins de similarité entre les proportions, surtout dans la capture de harengs plus âgés (annexe 5b).

Les estimations de taux de capture de géniteurs de printemps en nombre du relevé acoustique pour les âges 4 à 8 restent à un niveau parmi les plus bas dans la série chronologique (fig. 22). L'indice d'abondance par âge inclue les 4 à 8 ans et les années 1990 à 2008 (tableaux 22 et 23).

3.2.3 Telephone survey opinion index of gillnetters

During the annual gillnetter telephone survey started in 1986, one question asked the harvesters to compare the abundance of herring in the current year to the previous year. The responses were scaled 1 to 10, 5 meaning no change from the previous year. To construct the index. the responses were re-scaled from -5 to +5, with 0 indicating no change of abundance. The annual opinion responses were averaged by area and then weighted by the catch in that area. A global yearly weighted average was calculated and yearly averages were added cumulatively. to give a trend of abundance from 1987 to the current year. A positive slope indicates harvester opinions consistent with an increasing stock abundance negative slope decreasing abundance.

By averaging the opinion on abundance for all areas compared to the opinion on abundance in their previous year of fishing, weighted by the catch in each area and year, the global 4T cumulative spring index of gillnetter opinion on abundance reached a peak in 1998 and has been declining since (Fig. 23).

3.2.4 Comparison of abundance indices

All three abundance indices indicate a general decline after the mid 1990's up to 2008. The gillnetter telephone opinion survey shows a sharp decline after 1998, while the gillnet CPUE and acoustic survey indices indicate a more gradual decline. The CPUE index shows an increase from the 2007 value, but overall it remains at a low value in the time series (Fig. 24).

3.2.3 Indice d'opinion du sondage téléphonique des pêcheurs de filets maillants

Lors du sondage téléphonique annuel ayant lieu depuis 1986, une question demande aux pêcheurs de filets maillants leur opinion sur l'abondance du hareng dans l'année courante comparativement à l'année précédente. Les réponses d'opinion sont sur une échelle de 1 à 10, 5 indiquant aucun changement de l'abondance sur l'année précédente. Pour construire l'indice, les réponses furent réassignées des valeurs de -5 à +5, le 0 indiquant aucun changement d'abondance. Les opinions annuelles sur l'abondance furent ainsi obtenues pour chaque région en pondérant par les prises de cette région. Un indice d'opinion annuel moyen fut alors calculé et le cumulatif de ces indices donne ainsi une série temporelle de 1987 à l'année courante. Une pente positive correspond à une opinion d'une augmentation d'abondance du stock et une pente négative une diminution de l'abondance.

Pour toutes les régions, si l'on combine les opinions sur l'abondance par rapport à l'année précédente de pêche, pondérés par les prises par région et année, l'indice cumulatif global 4T d'opinion des pêcheurs aux filets maillants sur l'abondance du printemps a atteint un sommet en 1998 et diminue depuis (fig. 23).

3.2.4 Comparaison des indices d'abondance

Les trois indices d'abondance indiquent un déclin général depuis le milieu des années 90, jusqu'à l'année 2008. Le sondage téléphonique des pêcheurs aux filets maillants sur l'opinion d'abondance indique un déclin rapide après 1998, tandis que les indices des PUE des filets maillants et du relevé acoustique démontrent un déclin plus graduel. L'indice des PUE a augmenté par rapport à 2007, mais néanmoins reste à un niveau bas dans la série chronologique (fig. 24).

3.3 Spring Spawner Component Assessment

The determination of resource status of 4T spring spawning herring was attempted using a population analysis model with ADAPT software (Gavaris 1999).

3.3.1 Spring spawner component ADAPT calibration

The 2007 assessment model used both the age-disaggregated gillnet CPUE index and the acoustic survey index (LeBlanc et al. 2008). The internal weighting procedure was not used in the model trials for 2007. For the acoustic survey index, it was decided to use the ages 4 to 8 only, as the inclusion of the age 3 index resulted in an age 4 population estimate that was imprecise.

In 2007, it was also decided to include the gillnetter telephone survey opinion on abundance as an aggregated biomass index in the model and it was suggested that a review of its inclusion be done (LeBlanc et al. 2008). A review of its use as an aggregated biomass index in the model was done. Conclusions were that respondents in the gillnet telephone survey provide an honest opinion of their perception of recent changes in herring abundance but that opinion is not related in a constant manner to changes in the same respondent's herring catch rates. It was concluded that this index should not be used as an aggregated biomass index in the population model formulation (Appendix 6).

For the 2008 population analysis model trials, several estimates were attempted using different combinations of indices (Table 24; Fig. 25). The model using both the age disaggregated gillnet CPUE index

3.3 Évaluation de la Composante des Géniteurs de Printemps

On a tenté de déterminer l'état de la composante de reproducteurs de printemps dans 4T en se fondant sur une analyse de population avec le logiciel ADAPT (Gavaris 1999).

3.3.1 Étalonnage de la composante des géniteurs du printemps au moyen d'ADAPT

Dans le modèle d'évaluation 2007, les abondances par âge des indices des PUE des filets maillants et du relevé acoustique furent utilisées (LeBlanc et al. 2008). Les modalités de pondération interne ne furent pas utilisés dans les essaies du modèle d'évaluation pour 2007. Pour l'indice du relevé acoustique, il fut conclu d'utiliser les âges 4 à 8 seulement, car l'inclusion de l'indice des âges 3 donnait un estimé de la population d'âge 4 imprécis, vu la variance élevée associée à cet estimé.

En 2007, il fut aussi décidé d'inclure l'indice d'opinion des pêcheurs aux filets maillants sur l'abondance provenant du sondage téléphonique en tant qu'indice globale de biomasse dans le modèle, avec une suggestion qu'une revue de son utilisation soit faite (LeBlanc et al. 2008). Une revue de son utilisation en tant qu'indice globale de biomasse dans le modèle fut faite. Les conclusions sont que les répondants du sondage téléphonique donnent perception juste des changements récents dans l'abondance du hareng, mais que cette opinion n'est pas reliée d'une manière constante aux changements dans les taux de capture du répondant. Il fut conclu que cet indice ne devrait pas être utilisé comme indice globale de biomasse dans le modèle de population (annexe 6).

Pour les essais du modèle d'analyse de population en 2008, plusieurs estimés furent tentés en utilisant différentes combinaisons d'indices (tableau 24; fig. 25). Le modèle incluant les abondances par âge des indices and the acoustic survey index was chosen as the best representation of stock status and is presented in this paper.

The 2008 assessment model input catchat-age included ages 4 to 11+. The gillnet CPUE series included ages 4 to 10. The acoustic survey index included ages 4 to 8. The formulation for the calibration was as follows:

Parameters

Terminal N estimates:

- N_{i,2009}, i = 5 to 10
- N_{10,2008}
- N_{10,2007}
- N_{10,2008}

Calibration coefficients:

- Gillnet CPUE ages 4 to 10
- Acoustic survey ages 4 to 8

Structure Imposed:

- Error in catch-at-age assumed negligible
- Natural mortality (M) = 0.2
- Oldest age F: F₁₀ using FIRST method (Gavaris, 1999)
- F_{10} = average (F_8+F_9)
- $F_{11} = F_{10}$

Input:

- C_{ik} i = 2 to 11, k = 1978 to 2008
- Gillnet CPUE i = 4 to 10, k = 1990 to 2008
- Acoustic survey i = 4 to 8, k = 1994 to 2008

Objective Function:

Minimise sum of squared log normal residuals

Summary:

Number of observations: 208

des PUE et du relevé acoustique fut choisie comme le plus représentatif de l'état du stock et est présentée dans ce document.

Dans le modèle d'évaluation 2008, les prisesà-l'âge incluaient les âges 4 à 11+. L'indice des PUE incluaient les âges 4 à 10. L'indice du relevé acoustique incluait les âges 4 à 8. La formule de l'analyse pour l'étalonnage était la suivante :

Paramètres

Estimations de N terminal:

- N_{i,2009}, i = 5 à 10
- N_{10,2008}
- N_{10,2007}
- N_{10,2006}

Coefficients d'étalonnage :

- PUE des filets maillants, âges 4 à10
- Relevé acoustique, âges 4 à 8

Structure imposée :

- L'erreur dans les prises selon l'âge est considérée négligeable
- Mortalité naturelle (M) = 0,2
- F pour l'âge le plus vieux: F₁₀ calculé au moyen de la méthode FIRST (Gavaris, 1999)
- F_{10} = moyenne (F_8+F_9)
- $F_{11} = F_{10}$

Données:

- C_{ik} i = 2 à 11, k = 1978 à 2008
- PUE filets maillants i = 4 à 10, k = 1990 à 2008
- Relevé acoustique i = 4 à 8, k = 1994 à 2008

Fonction objective:

 Minimiser la somme des carrés des résidus (transformés en leur logarithme naturel)

Résumé :

Nombre d'observations : 208

Number of parameters: 22

The parameter variance was estimated analytically. Results indicated a model fit with a mean square residual of 0.44 (Table 25). The diagnostics for the model indicate that the relative error around the population estimates for ages 5 to 10 were between 0.32 and 0.49.

The residual plots for the agedisaggregated indices (Fig. 26) show distinct patterns with strong year effects. Another representation of the fit of the model with the indices is the comparison of CPUE and acoustic indices corrected for catchability and the model estimates of population abundance (Fig. 27).

Both the gillnet CPUE and the acoustic survey indices indicate a decline in the SSC biomass. However, they disagree on the extent of the decline. The CPUE index indicates a less steep decline than the acoustic survey. There are reasons to expect that changes in gillnet CPUE will underestimate the true changes in population abundance and biomass:

- 1) At high levels of abundance, gillnets may become saturated.
- 2) Zero catches are not included in the CPUE calculation.
- 3) Because the fishery targets spawning aggregations, relatively high catch rates can be maintained even at low levels of herring biomass.

On the other hand, there is no a priori reason to expect a bias in the acoustic survey index.

Based on Figures 26 and 27, the model appears to be averaging between the two indices and indicating an intermediate decline. Because the gillnet CPUE index likely underestimates the population decline, the model is likely overly optimistic.

A retrospective analysis (Fig. 28) indicated no apparent pattern with the addition of

Nombre de paramètres : 22

La variance des paramètres a été estimée de façon analytique. Les résultats indiquaient que l'ajustement du modèle avait un résidu carré moyen de 0,44. L'analyse du modèle (tableau 25) révèle que les erreurs relatives autour des estimés de la population d'âges 5 à 10 variaient entre 0,32 et 0,49.

Le graphique des résidus (fig. 26) suggère de forts effets de l'année. Une autre représentation de la tendance des indices et des résultats du modèle est la comparaison des indices des PUE et du relevé acoustique ajustés pour la capturabilité et les estimés de l'abondance de la population du modèle (fig. 27).

Les indices des PUE des filets maillants et du relevé acoustique tous deux indiquent une diminution dans la biomasse de la CGP, mais ils sont en désaccord sur l'ampleur du déclin. L'indice des PUE indique une diminution moins importante que l'indice du relevé acoustique. Il y a des raisons de s'attendre à ce que des changements dans les PUE des filets maillants vont sous-estimer les changements réels dans l'abondance et la biomasse de la population :

- 1) À de hauts niveaux de biomasse, les filets maillants peuvent devenir saturés.
- 2) Les sorties sans prises ne sont pas inclues dans le calcul des PUE.
- 3) Puisque la pêche cible des agrégations en fraie, des PUE relativement élevées peuvent se maintenir même à de bas niveaux de biomasse de harengs.

D'un autre côté, il n'y a pas de raisons à priori de s'attendre à un biais dans l'indice du relevé acoustique.

Basé sur les figures 26 et 27, le modèle semble indiquer un niveau intermédiaire de déclin en tenant compte des deux indices. Puisque l'indice des PUE des filets maillants est vraisemblablement une sous-estimation du déclin de la population, le modèle serait peut-être trop optimiste.

Une analyse rétrospective n'a montré aucun patron apparent avec l'ajout des données de

the 2008 data.

3.3.2 Spring spawner component - assessment results

Average recruitment rates (number at age in a year-class / Spawning Stock Biomass producing that year-class) for the previous five years were used to estimate the numbers of ages 2 to 4 in 2009 (Fig. 29). The results of this analysis suggest that population abundance of SSC herring in 4T has declined since 1995 and has been at a constant low level since 2002 (Fig. 30). The analysis indicates that both population abundance and biomass of ages 4+ SSC peaked in 1995, when the large 1991 year-class entered the fishery as 4 year-olds.

The population number at age 4 for 2009 was set at the number produced by the 2004-2008 mean survival ratio for age 4 multiplied by the estimated spawning stock biomass (SSB) in 2005 (Table 26). The 2009 beginning-of-year ages 4-11+ SSB was estimated to be about 20,300 t. (Table 27; Fig. 30). Average age 6 to 8 fishing mortalities from the ADAPT CPUE and acoustic calibration model suggest higher fishing mortalities from 1999 to 2005 (Table 28). The model suggests that the abundance of year-classes after 1991 were average or below average. The 1997 year-class appears to be slightly above average, but the 2000 year-class is below average.

The reference level exploitation rate at $F_{0.1}$ for the SSC was about 27% over fully recruited ages 6 to 8. The estimated exploitation rate has been over the reference level from 1999 to 2005, below in 2006, above in 2007 and below in 2008 (Fig. 30).

3.3.3 Spring spawner component prospects

Stock projections were conducted and input parameters are presented in Table

2008 (fig. 28).

3.3.2 Composante des géniteurs de printemps - résultats de l'évaluation

La moyenne des cinq années précédentes du taux de survie des âges 2 à 4 (nombre à l'âge / biomasse reproductrice pour cet âge) fut utilisée pour estimer le nombre des âges 2 à 4 en 2009 (fig. 29). Les résultats de cette analyse semblent indiquer que l'abondance de la population de hareng de la CGP dans 4T a diminuée depuis 1995 et reste à un niveau constant et bas depuis 2002 (fig. 30). L'analyse révèle que l'abondance et la biomasse de la population des âges 4+ ont culminé en 1995, année où la forte classe d'âge de 1991 est entrée dans la pêche étant d'âge 4.

Le nombre à l'âge 4 pour 2009 fut assigné par le nombre généré par le taux de survie moyen des plus récentes cinq années multiplié par l'estimé de la biomasse du stock reproducteur (BSR) en 2005 (tableau 26). La BSR pour le début de l'année 2009 est estimée à environ 20 300 t (tableau 27; fig. 30). La mortalité par pêche du modèle ADAPT (moyenne 6 à 8 ans) d'étalonnage avec les PUE et l'indice acoustique indique une plus haute mortalité par pêche pour la plupart des âges entre 1999 et 2005 (tableau 28). Le modèle démontre que l'abondance des classes d'âge des années après 1991 est moyenne ou inférieure à la moyenne. La classe-d'âge de 1997 semble légèrement supérieure à la moyenne, mais celles de 2000 est inférieure à la movenne.

Le taux d'exploitation de référence à $F_{0,1}$ de la CGP est d'environ 27% pour les groupes d'âge de 6 à 8 ans pleinement recrutés. Le taux d'exploitation estimé était au-dessus du taux de référence de 1999 à 2005, inférieur en 2006, au-dessus en 2007 et inférieur en 2008 (fig. 30).

3.3.3 Composante des géniteurs de printemps perspectives d'avenir

Des projections des stocks ont été effectuées et les paramètres des données sont

29. It was noted that, for partially recruited fish, calculating beginning of year weights at age based on the commercial weights at age biases the results in favour of the faster growing fish. Thus acoustic survey samples were used to calculate weights at age that are more representative of the partially recruited age classes. The fishery weights at age used in the projections were the average of 2006 to 2008. The 2009 beginning-of-year weights at age were averaged from the 2006 to 2008 commercial and acoustic weights adjusted to the beginning of the year. Partial recruitment was derived from fishing mortalities for 2006 to 2008.

The analysis suggested that fishing at $F_{0.1}$ (corresponding to a fully-recruited F=0.35) would yield 5,000t in 2009 for ages 2 to 11+ (Table 30). Fishing at $F_{0.1}$ is considered a safe exploitation rate only when the spawning stock biomass level is in the healthy zone.

A Regional Assessment Process (RAP) framework meeting was held in December 2005 to determine spawning biomass reference points, to update the F_{0.1} calculations and the methodology for short term projections. For the spring component, the limit reference point (LRP) and interim upper stock reference (USR) points are 22,000 and 54.000 respectively (DFO 2005). The current estimate of SSB (20,300 t) is below the LRP (Fig. 31). Below this level of biomass. the application of the precautionary approach requires that removals from the stock should be kept to the lowest level possible.

The risk analyses conducted were:

- 1. the probability of a decline in biomass,
- the probability of SSB being lower than 22,000 t (LRP).

présentés au tableau 29. Il fut noté que le calcul des poids du début de l'année pour les recrues partielles d'après les poids dans la pêche commercial apporterait un biais en faveur des harengs qui croissent plus rapidement. Donc les poids provenant des échantillons du relevé acoustique, étant considérés comme plus représentatifs, furent utilisés pour les recrues partielles. Les poids selon l'âge de la pêcherie correspondent aux valeurs moyennes des poids dans la pêche de 2006 à 2008. Les poids selon l'âge au début de l'année 2009 sont des moyennes 2006 à 2008 des poids de la pêche et du relevé acoustique ajustés au début de l'année. Le recrutement partiel a été calculé à partir des données sur la mortalité par la pêche de 2006 à 2008.

L'analyse révèle que la pêche à F_{0,1} (correspondant à un recrutement complet, F=0,35) donnerait un rendement de 5 000 t en 2009 pour les âges 2 à 11+ (tableau 30). Pêcher à F_{0,1} est considéré un niveau d'exploitation acceptable seulement quand le niveau de biomasse de stock reproducteur est à un niveau sain.

Un processus régional d'évaluation (PRÉ) a eu lieu en décembre, 2005 afin de déterminer des points de références pour les stocks de biomasse reproducteurs, la mise à jour des calculs de la valeur F_{0,1} et la méthodologie des projections à court terme. La limite inférieure et supérieure de référence pour la biomasse des géniteurs de printemps est de 22 000 t et 54 000 t, respectivement (MPO 2005). L'estimé actuel de la BSR de 20 300 t est en dessous de la limite inférieure de référence (fig. 31). En dessous de ce niveau de biomasse, l'application de l'approche de précaution est de mise et requiert que le taux d'exploitation soit réduit à le plus bas niveau possible.

Les analyses de risques considérées furent :

- la probabilité d'un déclin dans la biomasse,
- la probabilité que la BSR soit en dessous de la limite inférieure de référence de 22 000 t.

Even in the absence of any removals of the spring spawning component, there is a 65% probability that the biomass in 2010 will be below the limit reference point of 22,000 t. Catch options less than 1,200 t would provide a low probability (<25%) of further decline in biomass from the current level of 20,300 t (Fig. 32). The Armstrong plot shows the biomass changes and exploitation rates expected given catches between 0 and 9,000 t (Fig. 33).

Même en l'absence de captures en 2009, il y a 65% de probabilité que la biomasse en 2009 soit en dessous de la limite inférieure de référence de 22 000 t. Des captures dans l'ordre de 1 200 t résulteraient dans une faible probabilité (<25%) d'un déclin de la biomasse actuelle chiffrée à 20 300 t (fig. 32). La figure Armstrong est une autre manière de visualiser les changements dans le taux d'exploitation et la biomasse pour des captures variant entre 0 et 9 000 t (fig. 33).

3.3.4 Spring spawner component medium-term projection

In this section, we present stochastic population projections of the spring herring stock over the next 10 years. The analysis takes into account the variability that we observe in key population parameters: rate of recruitment, growth, age composition and natural mortality (M). We examine the effect of various harvest levels, ranging from fishery closure to 3,000-ton removals. This advice was requested by Fisheries and Aquaculture Management to provide an analysis of the probability of recovery in the long term (>10 years) of the spring spawner component to a level above the limit reference point (LRP 22,000 t) for different catch level options.

Our methods follow the approach used by Swain and Chouinard (2008). The projections are based on the population model presented in this assessment. Projections assume either no fishery or total allowable catch (TAC) increments of 1,000 tonnes, to a maximum of 3,000 tonnes. The projections were conducted using Fortan programs (D. Swain, DFO Gulf Region).

1. The abundance at ages 5-10 in 2009 for

3.3.4 Prévision à moyen terme de la composante des géniteurs de printemps

Nous présentons dans cette section des prévisions stochastiques du stock de hareng du printemps au cours des prochains 10 ans. L'analyse tient compte de la variabilité observée dans les plus importants paramètres de la population : le taux de recrutement, la croissance, la composition de la population selon l'âge et la mortalité naturelle (M). Nous évaluons l'effet relatif de divers niveaux de récoltes, allant d'une fermeture de la pêche jusqu'à une récolte de 3 000 tonnes. Cet avis répond à une requête de la Gestion des Pêches et de l'Aquaculture de fournir une analyse des probabilités de rétablissement à moyen terme (>10 ans) le la composante des géniteurs de printemps à un niveau au-dessus du niveau de référence limite (NRL 22 000 t) pour différents niveaux de captures.

Nos méthodes suivent l'approche de Swain et Chouinard (2008). Les prévisions se basent sur le modèle de population présenté dans cette évaluation. On présume soit l'absence d'une pêche ou un total admissible des captures (TAC) augmentant par tranche de 1 000 tonnes jusqu'à un maximum de 3 000 tonnes. Les prévisions ont été faites à l'aide des programmes en langage Fortran (D. Swain, MPO région du Golfe).

1. L'abondance des âges de 4 à 10 ans en

projection each were obtained randomly selecting from the bootstrap replicates of the terminal population abundance obtained from the ADAPT formulation. This step takes into account uncertainty in the population abundance of herring in 2009. Abundance at ages 2-4 and 11+ in 2009 were also inputs to the projections; no variability was incorporated in the inputs for these ages.

- 2009, à chaque projection, était une sélection aléatoire des réplications par auto-amorçage obtenues dans le modèle ADAPT. Cette démarche tient compte de l'incertitude dans l'abondance de la population de hareng in 2009. L'abondance des âges 2-4 et 11+ en 2009 sont aussi des données dans la projection; aucune variabilité fut incorporée pour les données de ces âges.
- 2. w_i, the weight at age i, is estimated for each iteration by randomly selecting from observed weights over the past 10 years.
- 2. w_i, soit le poids à l'âge i, est estimé à chaque itération par une sélection aléatoire des poids observés au cours des derniers 10 ans.
- 3. The recruitment rate to age 2 was taken at each iteration from a random selection of the rates observed over the past 10 and 20 years.
- 3. Le taux de recrutement à l'âge de 2 ans à chaque itération est obtenu par une sélection aléatoire des taux observés au cours des derniers 10 et 20 ans.
- 4. M was randomly selected from a normal distribution with a mean of 0.2 and a standard deviation of 0.03.
- 4. M a été sélectionné par hasard d'une distribution normale ayant une moyenne de 0,2 et un écart type de 0,03.
- 5. The commercial catch of each iteration was assumed to be equal to the TAC, with fishing mortality (F) constrained to be ≤3.0.
- 5. La prise commerciale à chaque itération était considérée égale au TAC, avec la mortalité de pêche (F) contrainte à 3.0 ou moins.

The projected population of each age class i at the beginning of year t (N_{i,t}) was calculated from N in the previous year (same cohort), reduced by mortality (M and F). Assuming that all spring herring were mature by 4 years of age, the spawning stock biomass (SSB) was calculated by summing across ages 4-11+ the product of w_i and N_{i,t}. Note that SSB in these projections includes ages 11+. A more detailed presentation of the method used in these projections, including the formulae used in each calculation, can be obtained in Swain and Chouinard (2008).

L'abondance de chaque classe d'âge i au début de l'an t (N_{i, t}), était calculée à partir de N de l'année précédente de la même cohorte, diminuée par la mortalité (M et F). En assumant que le hareng de printemps devient mature à l'âge de 4 ans, la biomasse du stock reproducteur (BSR) était calculée pour les âges 4 à 11+ par la somme des produits de w_i et N_{i, t}. Notez que la BSR dans ces prévisions incluse les âges 11+. Plus de détails au sujet de la méthode de calcul de ces prévisions, y incluant les formules utilisés, sont disponibles dans Swain et Chouinard (2008).

3.3.4.1 Results

Table 31 summarizes the inputs for the medium-term stochastic projections. Figure 34 illustrates the trends in projected SSB over the next 10 years under various harvest levels. The projections for each level of harvest are highly variable, with wide confidence limits. Caution is required in the interpretation of these results.

Not harvesting any spring herring is the only strategy that ensures an immediate positive growth of the stock, with no risk of any decline occurring over the next 10 years (Table 32). In contrast, with a harvest level of 3,000 tonnes, the stock is projected to decline rapidly to half the current level by 2019, with almost no possibility of positive growth.

The median stock trajectory under a harvest strategy of TAC's at 2,000 tonnes shows a decline of the stock over the next 10 years (Figure 34). Neither of these strategies offers the possibility of the stock attaining the limit reference point of 22,000 tonnes within 10 years. Although the upper bounds of the 95th confidence limits include the potential of growth in the stock, the lower bounds for these trajectories are close to zero. A harvest strategy of 3,000 tonnes or more would result in a relatively high risk of further decline in the stock and the possibility of very severe loss of SSB.

The spring spawning component is also captured in the fall fishery; therefore a catch of 0 t may not be feasible. An annual catch of 1,000 t would result in a 60% probability that the SSB > LRP by 2019 (Table 32).

3.3.4.1 Résultats

Le tableau 31 résume les données pour la projection stochastique du stock de hareng du printemps. À la figure 34 on voit les estimations de la BSR au cours des 10 prochaines années à la suite de divers niveaux de récolte. Les prévisions pour chaque niveau de récolte sont très variables avec des limites de confiance larges. L'interprétation de ces résultats exige de la prudence.

Un plan de gestion dont la pêche du hareng de printemps est exclue est la seule stratégie qui assure un accroissement du stock avec aucun risque d'un déclin au cours des prochains 10 ans (tableau 32). En revanche, avec une récolte de 3 000 tonnes le stock déclinerait rapidement à la moitié de son niveau actuel par l'an 2019, sans aucune possibilité d'un accroissement.

La trajectoire médiane du stock à la suite d'une stratégie de gestion avec un TAC de 2 000 tonnes présente un déclin du stock au cours des prochains 10 ans (figure 34). Il n'y aurait aucune possibilité à la suite de ces stratégies que le stock atteint son niveau limite de référence de 22 000 tonnes en 10 ans. La limite supérieure des limites de confiance à 95% inclut la possibilité d'un accroissement du stock, mais la limite inférieure de cette trajectoire approche le zéro. Un plan de gestion avec un TAC de 3 000 tonnes ou plus comporte un risque élevé d'un déclin du stock et la possibilité d'un déclin très sévère de la BSR

La composante des reproducteurs du printemps est également exploitée durant la pêche d'automne; par conséquent, il n'est sans doute pas possible d'obtenir une prise de 0 t. Une prise annuelle de 1 000 t entraînerait 60 % de probabilité que la BSR soit supérieure au NRL d'ici 2019 (tableau 32).

4. FALL SPAWNER COMPONENT (FSC)

4.1 Fall Fishery

Response from the fall gillnet fishery telephone survey was that 2008 abundance was estimated lower in all areas of the fall gillnet fishery except for West P.E.I., where the abundance was perceived as equal to 2007 (Fig. 35).

Gillnetter's comments on the fall fishery varied by area. The most common comments were that the price was too low, fish were located in deeper water and the fish schools were smaller. Gillnetters were also concerned about the decrease in abundance, the season opening too late, an increase in daytime fishing and too many seals.

Other information from the gillnetter telephone survey indicated that 2 % inch was the most commonly used fall mesh size (Fig. 36). In 2008, most nets were 13 to 16 fathoms long and ranged from 80 to 116 meshes deep (Tables 7 and 9). In the gillnetters search for spawning grounds and nets are set only when a school of sufficient size is found. In Quebec, the Acadian Peninsula and Escuminac, gillnets were fished with one end tied to the vessel and the other anchored (modified nets). In other areas. most of the gillnets are anchored at both ends and two or more strings may be set (set nets) (Table 7).

The percentage of days with no catch in the fall gillnet fishery was 29% in 2007 and in 2008 (Table 8). This high percentage is part of the effort data that should be taken into account when determining the gillnet catch per effort. Unfortunately, this information was not collected and is not

4. COMPOSANTE DES GÉNITEURS D'AUTOMNE (CGA)

4.1 Pêche d'Automne

Les réponses du sondage téléphonique sur la pêche d'automne aux filets maillants ont indiqué que l'abondance perçue en 2008 était inférieure dans toutes les régions de la pêche d'automne avec exception de l'ouest î.-P.-É, qui indiquait une abondance égale à 2007 (fig. 35).

Les commentaires sur la saison de pêche d'automne aux filets maillants varient selon les régions. Les commentaires le plus mentionnés étaient que le prix du hareng était trop bas, les bancs se trouvaient dans des eaux plus profondes et étaient plus petits. Les pêcheurs de filets maillants étaient aussi inquiets de la diminution de l'abondance, du début trop tardive de la saison, une augmentation dans la pêche durant le jour et la présence de phoques.

D'autres informations provenant du sondage téléphonique des pêcheurs aux filets maillants indiquaient que le maillage le plus couramment utilisé dans le sud du golfe pour la pêche de filets maillants d'automne est de 2 % po. (fig. 36). En 2008, la plupart des filets mesuraient de 13 à 16 brasses de long et la profondeur variait entre 80 et 116 mailles (tableaux 7 et 9). A l'automne, on recherche les frayères de géniteurs et les filets maillants sont mouillés uniquement lorsqu'un banc de taille suffisante est observé. Dans les zones du Québec, de la Péninsule acadienne et Escuminac, les filets étaient mouillés de façon qu'une extrémité soit fixée au bateau et l'autre ancrée (filets modifiés). Dans les autres régions, la plupart des filets maillants sont ancrés aux deux extrémités et deux ou plusieurs séries de filets sont parfois mouillés (filets ancrés) (tableau 7).

Le pourcentage de jours sans aucunes prises dans la pêche aux filets maillants pour la saison d'automne était de 29% en 2007 et en 2008 (tableau 8). Ce haut pourcentage fait partie des données sur l'effort et devrait être considéré dans le calcul des prises par unité d'effort des filets maillants. Malheureusement.

available prior to 2006.

In 2008, 62% of the total fall TAC was attained; seiners caught 27% of their allocation while the inshore gillnet fleet caught 73% of their allocation.

Age-length keys, landings, samples, spawning group assignment, and numbers of fish samples used to calculate catch-atage in the fall fishery are described in Table 33.

The FSC catch-at-age and weights-at-age by gear type and for all gears combined are summarized in Tables 34 to 36; Figs. 37 to 39. Inshore gillnet fleet catches of the FSC in 2008 were dominated by the 2000 year-class (age 8 in 2008) and the 2004 year-class (age 4 in 2008). The 2005 year-class (age 3) was the most important part of the catch for the seiner fleet in 2008 (Table 34 and 35; Fig. 38).

In general, mean weights-at-age for the FSC had declined during the 1990s from the level they were during the 1980s, and continue to decline for most ages in recent years (Table 36; Fig. 39). Changes in mean weight give us indications on the status of the stock and affect the stock biomass estimate when numbers were converted to weight.

4.2 Fall Spawner Component Abundance Indices

4.2.1 Groundfish bottom trawl survey index

We looked at the herring catch-at-age from the September bottom trawl survey to determine the feasibility of using them as an index of 4T herring abundance. Herring from the survey have been sampled, separated into spawning components and the catch-at-age calculated since 1994. cet information n'était pas recueilli et n'est pas disponible avant 2006.

En 2008, 62% du TAC global d'automne fut capturé; les senneurs ont capturé 27% de leur allocation tandis que les pêcheurs aux filets maillants ont capturé 73% de leur allocation.

Les âge-longueur, les débarquements, les échantillons, le classement selon les groupes de géniteurs et le nombre d'échantillons de poissons utilisés pour calculer les prises selon l'âge de la pêche d'automne sont décrits au tableau 33.

Les prises-à-l'âge et les poids-à-l'âge de la CGA par engin de pêche et pour les engins combinés sont résumés aux tableaux 34 à 36; figs. 37 à 39. Les captures de la CGA par la flottille de filets maillants en 2008 ont été dominées par la classe d'âge de 2000 (âge 8 en 2008) et par la classe d'âge de 2004 (âge 4 en 2008). La classe d'âge de 2005 (âge 3) était la classe d'âge la plus abondante parmi les prises de la flottille de senneurs en 2008 (tableau 34 et 35; fig. 38).

Les poids moyens selon l'âge de toute la CGA ont été généralement plus bas dans les années 1990 qu'ils ne l'étaient dans les années 1980, et continuent de diminuer pour la plupart des âges dans les dernières années (tableau 36; fig. 39). Les variations dans le poids moyen sont une indication de l'état du stock et ont un effet sur la biomasse estimée lorsque les nombres sont convertis en poids.

4.2 Indices d'Abondance de la Composante des Géniteurs d'Automne

4.2.1 Indice du relevé au chalut de fond

On a examiné les prises-à-l'âge récoltées dans le cadre de ces relevés au chalut de fond de septembre afin d'établir si elles pouvaient servir d'indice d'abondance du hareng dans 4T. On a déterminé l'âge des prises échantillonnées et on les a assigné à un groupe de reproducteurs depuis 1994.

A SAS procedure (proc corr) was performed to determine any correlation of age-class abundance from one year to the next, as well as with a 2 and 3 year lag. No correlation was found for the spring spawning component, while the fall spawning component showed poor correlation, with the best fit being on a 2 year lag (Table 13). Both the spring spawner and fall spawner catch-at-age numbers from the groundfish survey showed little correlation with cohorts from one year to the next (Appendix 4a, 4b).

Based on these results, for the fall spawning component, the groundfish survey catch-at-age was tried in the population model but was not deemed useful as an age-desegregated abundance index of sGSL herring.

4.2.2 Acoustic survey index

A FSC abundance index from the acoustic survey was derived using only those strata consistently surveyed in the Chaleurs-Miscou area from 1994 to 2008. The acoustic survey catches of the FSC were dominated by the 2005 year-class (age 3) followed by the 2004 year-class (age 4) (Table 37; Fig. 40).

The Chaleurs–Miscou acoustic survey FSC catch proportion of adult herring (4+) were compared to the seiner catches for the same area and time period to verify if the midwater trawl provides unbiased samples of the area and time period surveyed. In general, the acoustic survey FSC catch proportions are similar to the seiner catches (appendix 5c). The same comparison between the acoustic survey FSC catch proportions of adult herring (4+) and the gillnet catch proportions indicates less similarity, especially in catches of older herring (appendix 5d).

Une procédure SAS (proc corr) fut élaborée pour déterminer s'il existait une corrélation de l'abondance des classes-d'âge d'une année à l'autre, ainsi qu'avec un décalage de 2 ou 3 ans. Aucune corrélation n'existait pour les nombres de géniteurs de printemps, tandis que pour les géniteurs d'automne, la corrélation était faible, avec les meilleurs résultats sur un décalage de 2 ans (tableau 13). L'indice selon l'âge du relevé de poissons de fond des géniteurs de printemps et d'automne indiquait peu de corrélation avec les cohortes d'une année à l'autre (annexe 4a, 4b).

Basé sur ces résultats, pour les géniteurs de la composante de l'automne, les captures-àl'âge du relevé de poissons de fond furent essayées dans le modèle de population mais ne semblent pas être utilisables comme indice d'abondance pour le hareng du sGSL.

4.2.2 Indice du relevé acoustique

Un indice d'abondance pour la CGA fut calculé à partir du relevé acoustique; il utilise seulement les strates de Chaleurs-Miscou qui ont fait constamment l'objet de relevés de 1994 à 2008. Dans le relevé acoustique, les prises du groupe de la CGA étaient dominées par la classe d'âge de 2005 (âge 3), suivie de la classe d'âge de 2004 (âge 4) (tableau 37; fig. 40).

Les proportions de harengs adultes (4+) de la CGA capturées lors du relevé acoustique de Chaleurs-Miscou furent comparées proportions capturées par les senneurs dans le même lieu et période de l'année, afin de vérifier si les captures du chalut pélagique étaient représentatives des âges présents sur les lieux pour la même période. En général, les proportions de la CGA capturées lors du relevé acoustique sont similaires aux proportions capturées par les senneurs (annexe 5c). Une comparaison semblable entre les proportions de la CGA capturées lors du relevé acoustique et les proportions capturées par les filets maillants indique moins de similarité entre les proportions. surtout dans la capture de harengs plus âgés

Internal consistency of the acoustic index by age for the FSC was examined with correlations and regressions of age-class abundance with a one to three year lag (Table 12). The fall spawner catch-at-age from the acoustic survey still shows little correlation with cohorts from one year to the next (Fig. 41). In 2008, the number of 4+ adult fall spawners increased slightly but ages 2 to 8 numbers decreased from levels observed in 2007 (Fig. 42).

Based on the poor internal consistency, the fall spawner catch-at-age from the acoustic survey was tried in the population model but was not deemed useful as an age-desegregated abundance index.

4.2.3 Telephone survey opinion index of gillnetters

During the annual telephone survey, gillnetters are asked to relate the abundance of herring in the current year to the abundance in the previous year. To construct an index, the responses were scaled from -5 to +5, with 0 indicating no change of abundance. The annual opinion responses were averaged by area and then weighted by the catch in that area. A global yearly weighted average was calculated and yearly averages were added cumulatively, to give a trend of abundance from 1987 to the current year. A positive slope indicates gillnetter opinions consistent with an increasing stock abundance and a negative slope decreasing abundance.

By averaging the opinion on abundance for all areas compared to the opinion on abundance in their previous year of fishing, weighted by the catch in each area and year, the global 4T cumulative fall index of gillnetter opinion on abundance has been in an increasing trend since 1987, but the index is in a decreasing trend since 2006

(annexe 5d).

On a vérifié la cohérence interne de l'indice acoustique des prises selon l'âge de la CGP avec des corrélations et régressions de l'abondance par classe d'âge avec un décalage d'une à trois années (tableau 12). L'indice acoustique des géniteurs d'automne selon l'âge est encore faiblement corrélé aux cohortes d'une année à l'autre (fig. 41). En 2008, le nombre de géniteurs d'automne adultes (âges 4+) ainsi que les nombres d'âges 2 à 8 ont diminué par rapport à 2006 (fig. 42).

Basé sur le manque de cohérence interne, les captures-à-l'âge des géniteurs d'automne du relevé acoustique furent essayées dans le modèle de population mais ne semblent pas être utilisables comme indice d'abondance.

4.2.3 Indice d'opinion des pêcheurs aux filets maillants du sondage téléphonique

Lors du sondage téléphonique annuel, une question demandait l'opinion des pêcheurs aux filets maillants sur l'abondance du hareng dans l'année courante comparativement à l'année précédente. Pour construire un indice, les réponses furent assignées des valeurs entre -5 à +5, le 0 indiquant aucun changement d'abondance. Les opinions annuelles sur l'abondance furent ainsi obtenues pour chaque région en pondérant par les prises de cette région. Un indice d'opinion annuel moyen fut alors calculé et le cumulatif de ces indices donne ainsi une série temporelle de 1987 à l'année courante. Une pente positive correspond à une opinion d'une augmentation d'abondance du stock et une pente négative une diminution de l'abondance.

Pour toutes les régions, si l'on combine les opinions des pêcheurs aux filets maillants sur l'abondance par rapport à l'année précédente de pêche, pondérés par les prises par région et année, l'indice cumulatif global 4T d'opinion sur l'abondance d'automne suit une tendance de croissance depuis 1987, mais la tendance est à la baisse depuis 2006 (fig.

4.2.4 Gillnet fishery CPUE indices

Two FSC abundance indices were derived from the catch per unit effort (CPUE) from the fall gillnet fishery. As in previous assessments, purchase slip or dockside monitoring data (assuming one day fishing for one purchase slip) were used for catch information. Starting in 1986, the number of standard nets (15 fathoms long) has been estimated from the telephone survey. Since 2005, the number of standard nets was also obtained from dockside monitoring data in areas where the number of records was greater than the telephone survey respondents. In 2001, the index was modified to incorporate all fishing areas (Poirier 2002).

In the fall gillnet fishery, 2 $^5/_8$ inch mesh was most common. Beginning in 1992, many fishers started using bigger mesh sizes but by 2002, the proportion of 2 $^5/_8$ inch mesh reverted to pre-1992 numbers. The proportion in 2008 was 96%, the highest in the time series (Table 39).

The first gillnet CPUE index, which was used in previous assessments, is called CPUE1. CPUE1 is defined as catch kg/net/day (or kg/net/trip). The fishing effort required for a daily landing was calculated by multiplying the number of standard nets (Table 38 and 40, Fig. 44) times the number of trips taken to obtain that landing. Thus, the units of measurement for effort are net-days or net-trips.

The second gillnet CPUE index, which was tried for the first time in this assessment, is called CPUE2. CPUE2 is defined as catch kg/net*hauls/day (or kg/net*hauls/trip). The fishing effort required for a daily landing was calculated by multiplying the number

4.2.4 Indices des PUE de la pêche aux filets maillants

Deux indices d'abondance de la CGA furent développés à partir des prises par unité d'effort (PUE) de la pêche automnale aux filets maillants. Comme pour les évaluations précédentes, les données des bordereaux d'achat ou des observations à quai (une journée de pêche par bordereau d'achat) servent à obtenir l'information sur les prises et des données du MPO. Débutant en 1986, le nombre de filets ordinaires (mesure 15 brasses) a été estimé par le sondage téléphonique Depuis 2005, le nombre de filets ordinaires fut aussi obtenu par les données des observateurs à quai, lorsque le nombre dépassait le nombre de répondants du sondage téléphonique. L'indice a été modifié en 2001 de manière à inclure tous les secteurs de pêche (Poirier 2002).

Des filets à maille de 2 ⁵/₈ po sont le plus communément utilisés dans la pêche aux filets maillants en automne. Depuis 1992, plusieurs pêcheurs se servaient de filets à plus grandes mailles mais depuis 2002, la proportion de filets à mailles de 2 ⁵/₈ po est revenue au niveau pré-1992. La proportion en 2008 était de 96%, la plus élevée de la série (tableau 39).

Le premier indice PUE des filets maillants, utilisé dans les évaluations antérieures, est nommé PUE1. PUE1 est définit comme les prises en kg/filet/jour (ou kg/filet/sortie). L'effort quotidien est calculé en multipliant le nombre de filets ordinaires utilisés (tableau 38 et 40, fig. 44) par le nombre de sorties de cette journée. L'unité de mesure de l'effort est donc le nombre de filets par jour ou le nombre de filets par sortie.

Le deuxième indice PUE des filets maillants, utilisé pour la première fois dans cet évaluation, est nommé PUE2. PUE2 est définit comme les prises en kg/filet*levées/jour (ou kg/filet*levées/sortie). L'effort quotidien est calculé en multipliant le

of standard nets times the number of hauls (Table 40, Fig. 44), and the number of trips taken to obtain that landing. Thus, the units of measurement for effort are net*hauls-days or net*hauls-trips. The number of hauls per day has been derived from the telephone survey which began in 1986. From 1978 to 1985, it was assumed that hauls were equal to one per day. The telephone survey question was: "How many times each day did you empty your nets in the fall?"

The fall spawner gillnet CPUE1 and CPUE2 indices at age show that abundance of cohorts is well correlated from one year to the next (Figs. 45-46).

For the 2002 assessment, it was concluded that the gillnet CPUE index, non-weighted by the catch, appears to be more consistent with the FSC stock trends (Poirier 2002, LeBlanc et al. 2003). Therefore, the CPUE series chosen to calibrate the 2008 SPA model for FSC was the CPUE1 and CPUE2 series not weighted by the catch and unadjusted for mesh size changes.

The multiplicative models (GLM) used weekly periods, area (all statistical districts) and year (1978-2008) effects to estimate an annual gillnet CPUE1 and CPUE2 abundance indices. The model formulation for GLMs was:

In(CPUE_{ijk})= $\alpha+\beta_1$ I+ β_2 J+ β_3 K+ ε where: CPUE_{ijk} = CPUE in year i, area j, week k I is a matrix of 0 to 1 indicating year J is a matrix of 0 to 1 indicating area K is a matrix of 0 to 1 indicating week ε is the residual error

The model for CPUE1, in which data were aggregated by statistical district and day, was statistically significant (p<0.0001, r^2 = 0.65) (Table 41). The model for CPUE2 was statistically significant (p<0.0001, r^2 = 0.52) (Table 42). Residual plots revealed

nombre de filets ordinaires utilisés par le nombre de levées (tableau 40, fig. 44) et par le nombre de sorties de cette journée. L'unité de mesure de l'effort est donc le nombre de filets*levées par jour ou le nombre de filets*levées par sortie. Le nombre de levées par jour provient du sondage téléphonique débuté en 1986. De 1978 à 1985, nous avons assumé une levée par jour. La question demandée était : "Combien de fois par jour avez-vous relevé vos filets durant la pêche d'automne?"

L'indice des PUE1 et PUE2 des filets maillants des géniteurs d'automne selon l'âge indiquent que l'abondance des cohortes est bien corrélée d'une année à l'autre (figs. 45-46).

Pour l'évaluation de l'année 2002, on en conclut que l'indice PUE des filets maillants non pondéré par les prises semble mieux correspondre aux tendances du stock de la CGA (Poirier 2002, LeBlanc et al. 2003). Donc, on a choisi les séries de PUE1 et PUE2 non pondérées par les prises et non corrigées pour les changements dans le maillage pour étalonner le modèle de l'ASP pour la CGA en 2008.

Les modèles multiplicatifs (MLG) ont utilisé pour calculer les indices d'abondance (PUE1 et PUE2) des filets maillants avec l'année (1978-2008), la région (par district statistique) et des périodes d'une semaine comme facteurs. La formulation de ce modèle était :

In(PUE_{ijk})= $\alpha+\beta_1I+\beta_2J+\beta_3K+\varepsilon$ où: PUE_{ijk} = PUE pour année i, zone j, semaine k I est une matrice de 0 à 1 indiquant l'année J est une matrice de 0 à 1 indiquant la zone K est une matrice de 0 à 1 indiquant la semaine

Le modèle des PUE1, dont les données sont groupés par district statistique et par jour, était statistiquement significatif (p<0,0001, r² = 0,65) (tableau 41). Le modèle des PUE2 était statistiquement significatif (p<0,0001, r² = 0,52) (tableau 42). Les graphiques des

€ est l'erreur résiduelle

no trends or violations of assumption of normal distribution. The results indicate that both gillnet CPUE indices in 2008 are lower than 2007 but remain among the highest in the time series (Fig. 48).

Two age-specific abundance indices for ages 4 to 10 and years were derived by dividing the fall gillnet catch-at-age by the standardised effort, either CPUE1 or CPUE2, from the model (Table 43). The CPUE1 age-specific abundance index included the years 1978 to 2008; the CPUE2 age-specific abundance index included the years 1986 to 2008.

A comparison of the acoustic and gillnet catch rates (CPUE1 and CPUE2) for fall spawner ages 4 to 9 was conducted (Fig. 47). There was little correspondence between the two CPUE abundance indices and the acoustic abundance index, which mostly follow different trends, especially for the older ages.

4.3 Fall Spawner Component Assessment

4.3.1 Fall spawner component ADAPT calibration

In the 2007 assessment (LeBlanc et al. 2008), the sequential population analysis (SPA) model was calibrated with both the gillnet fishery CPUE1 index and the telephone survey opinion index, used as an aggregated biomass index. It was suggested that a review of the inclusion of the telephone survey opinion index in the model be undertaken. The 2007 acoustic survey index of fall spawning herring was not used because of the lack of internal consistency in tracking year-classes.

In 2008, a review of the use of the telephone survey opinion index as an aggregated biomass index in the model was done. Conclusions were that respondents in the gillnet telephone survey provide an honest opinion of their perception of recent changes in herring

résidus ne révèlent aucune tendance ni aucune violation de prétention de distribution normale. Selon les résultats, les deux taux de capture des filets maillants en 2008 sont inférieur à 2007, mais restent parmi les plus élevés de la série chronologique (fig. 48).

Deux indices d'abondance par âge pour les âges 4 à 10 et les années ont été calculé en divisant les prises selon l'âge de la pêche aux engins fixes par l'effort normalisé (PUE1 et PUE2) du modèle (tableau 43). L'indice d'abondance par âge PUE1 incluait les années 1978 à 2008; l'indice d'abondance par âge PUE2 incluait les années 1986 à 2008.

Une comparaison des taux de capture de la pêche aux filets maillants (PUE1 et PUE2) et du relevé acoustique pour les âges 4 à 9 a été réalisée (fig. 47). Il y a peu de correspondance entre les deux indices d'abondance PUE et l'indice du relevé acoustique. Ils ne suivent pas les mêmes tendances, surtout pour les âges plus vieux.

4.3 Évaluation de la Composante des Géniteurs d'Automne

4.3.1 Étalonnage de la composante des géniteurs d'automne au moyen d'ADAPT

Dans l'évaluation de 2007 (LeBlanc et al. 2008), le modèle d'analyse séquentiel de population (ASP) fut étalonné par les taux de capture des filets maillants (PUE1) ainsi que l'indice d'opinion sur l'abondance du sondage téléphonique, utilisé comme un indice global de biomasse, avec une suggestion qu'une revue de son utilisation soit faite. L'indice 2007 du relevé acoustique ne fut pas retenu compte tenu du manque de cohérence interne à suivre les classes-d'âge d'une année à l'autre.

En 2008, une revue de l'utilisation de l'indice d'opinion sur l'abondance du sondage téléphonique en tant qu'indice globale de biomasse dans le modèle fut faite. Les conclusions sont que les répondants du sondage téléphonique donnent une perception juste des changements récents

abundance but that opinion is not related in a constant manner to changes in the same respondent's herring catch rates. It was concluded that this index should not be used as an aggregated biomass index in the population model formulation (appendix 6).

Several trial formulations of the population analysis model were attempted using different combinations of indices (Table 44; Fig. 49), including the same model formulation as in 2007 (status quo).

Two 2008 assessment model calibrations are summarized. The input catch-at-age included ages 4 to 11+. The 2008 calibration of the FSC SPA used either the gillnet CPUE1 or CPUE2 abundance indices ages 4 to 10, not weighted by the catch. The software used to conduct the SPA was ADAPT (Gavaris 1999). This formulation was as follows:

Parameters

Terminal N estimates:

N_{i,2009}, i = 5 to 10

Calibration coefficients:

Gillnet CPUE ages 4 to 10

Structure Imposed:

- Error in catch-at-age assumed negligible
- Natural mortality (M) = 0.2
- Oldest age F: F₁₁ using FIRST method (Gavaris, 1999)
- F_{10} = average (F_8+F_9)
- $F_{11} = F_{10}$

Input:

- C_{ik} i = 2 to 11, k = 1978 to 2008
- Gillnet CPUE1 index ik, i = 4 to 10, k = 1978 to 2008
- Gillnet CPUE2 index ik, i = 4 to 10, k = 1986 to 2008

dans l'abondance du hareng, mais que cette opinion n'est pas reliée d'une manière constante aux changements dans les taux de capture du répondant. Il fut conclu que cet indice ne devrait pas être utilisé comme indice global de biomasse dans le modèle de population (annexe 6).

Plusieurs essais du modèle d'analyse de population furent tentés en utilisant différentes combinaisons d'indices (tableau 44; fig. 49), y inclut la même formulation que 2007 (statu quo).

Deux formulations de modèles de population sont résumées pour 2008. Les prises-à-l'âge incluaient les âges 4 à 11+. L'étalonnage 2008 de l'ASP de la CGA a été entrepris soit au moyen de l'indice d'abondance des PUE1 ou PUE2 des filets maillants (âges 4 à 10) non pondéré par les prises. L'ASP fut effectuée avec le logiciel ADAPT (Gavaris 1999). La formule était la suivante :

Paramètres

Estimations de N terminal:

N_{i,2009}, i = 5 à 10

Coefficients d'étalonnage :

PUE des filets maillants, âges 4 à 10

Structure imposée :

- L'erreur dans les prises selon l'âge est considérée négligeable
- Mortalité naturelle (M) = 0,2
- F pour l'âge le plus vieux, calculé au moyen de la méthode FIRST, (Gavaris, 1999)
- F_{10} = moyenne (F_8+F_9)
- $F_{11} = F_{10}$

Données:

- C_{ik} i=2 à 11, k = 1978 à 2008
- PUE1 des filets maillants k, i = 4 à 10, k = 1978 à 2008
 - PUE2 des filets maillants ik, i = 4 à 10, k = 1986 à 2008

Objective Function:

 Minimise sum of squared log normal residuals

Summary:

- Number of observations
 - o CPUE1 = 217
 - o CPUE2 = 161
- Number of parameters = 17

The parameter variance was estimated analytically. The diagnostics for the model using CPUE1 (Table 45) indicate that the coefficient of variation (relative error) for age 5 was higher (0.54) than for other ages (0.25 - 0.42). The diagnostics for the model using CPUE2 fit better (Table 45) and indicate that the coefficient of variation (relative error) for age 5 was also higher (0.45) than for other ages (0.23 - 0.35). Examination of the correlation matrix did not indicate any high values that would render the parameter estimates suspect. The residual plots for the CPUE1 and CPUE2 indices (Fig. 50) show definite year trends, with mostly positive residuals from 1997 to 2000 and negative residuals in the 1980's. Another representation of the fit of the model with the indices is the comparison of CPUE1 and CPUE2 corrected for catchability and the model estimates of population abundance (Fig. 51).

There are reasons to expect that changes in CPUE will underestimate the true changes in population abundance and biomass:

- 1) At high levels of abundance, gillnets may become saturated.
- 2) Zero catches are not included in the CPUE calculation.
- 3) Because the fishery targets spawning aggregations, relatively high catch rates can be maintained even at low levels of

Fonction objective:

 Minimiser la somme des carrés des résidus (transformés en leur logarithme naturel)

Résumé:

- Nombre d'observations
 - o PUE1 = 217
 - o PUE2 = 161
- Nombre de paramètres = 17

La variance des paramètres a été estimée de façon analytique. L'analyse du modèle utilisant PUE1 (tableau 45) révèle que le coefficient de variation (erreur relative) était élevé pour l'âge 5 (0.54)comparativement aux autres âges (0,25 -0.42). L'analyse du modèle utilisant PUE2 est (tableau 45) et révèle que le coefficient de variation (erreur relative) était aussi plus élevé pour l'âge 5 (0,45) comparativement aux autres âges (0,23 -L'examen de la matrice corrélations ne révèle aucune valeur élevée pourrait invalider l'estimation des paramètres du modèle. Les graphiques des résidus établis pour les indices PUE1 et PUE2 (fig. 50) tendent à illustrer certains effets selon l'année, surtout des résidus positifs de 1997 à 2000 et des résidus négatifs dans les années 80. Une autre représentation de l'ajustement du modèle aux indices d'abondance PUE1 et PUE2 est la comparaison de PUE ajustée pour la capturabilité et la population estimée par le modèle (fig. 51).

Il y a des raisons de s'attendre à ce que des changements dans les PUE vont sousestimer les changements réels dans l'abondance et la biomasse de la population :

- 1) À de hauts niveaux de biomasse, les filets maillants peuvent devenir saturés.
- 2) Les sorties sans prises ne sont pas inclues dans le calcul des PUE.
- 3) Puisque la pêche cible des agrégations en fraie, des PUE relativement élevées peuvent se maintenir même à de bas niveaux de

herring biomass.

Retrospective patterns were present with the addition of the 2008 data, suggesting an overestimation of abundance before 2004 and an underestimation since 2005 (Fig. 52). No adjustments of population estimates were done for the beginning of 2009.

4.3.2 Fall spawner component assessment results

Average recruitment rates (number at age in a year-class / Spawning Stock Biomass (SSB) producing that year-class) for the previous three years were used to estimate the numbers of ages 2 to 4 in 2009 (Fig. 53).

The population number at age 4 for 2009 was set at the number produced by the 2006-2008 mean recruitment ratio for age 4 multiplied by the estimated SSB in 2005, instead of the long term geometric mean used in previous assessments. Recruitment estimates (age 4) from both CPUE1 and CPUE2 analysis suggest that the abundance of the 2000 and 2004 yearclasses were above average and that overall abundance is currently high (Table 46; Fig. 54). Nevertheless, there are substantial differences in population numbers and biomass estimates between the CPUE1 and CPUE2 analysis.

The SPA formulations indicate that population biomass of ages 4+ FSC peaked in 2005, when the large 1998 and 2000 year-classes contributed to the fishery. With the CPUE1 formulation, the 2009 beginning-of-year age 4+ biomass was estimated to be about 327,000 t, while with the CPUE2 formulation, the 2009 beginning-of-year age 4+ biomass was estimated to be about 285,500 t (Table 47; Fig. 54). Overall, the average age 5 to 10 fishing mortalities for the models were generally higher from 1995 to 2003 than those from 2004 to 2008 (Table 48).

biomasse de harengs.

Des patrons rétrospectifs étaient présents avec l'ajout des données de 2008, ce qui laisse croire que le modèle surestimait l'abondance avant 2004 et la sous-estimait après 2005 (fig. 52). Aucun ajustement des nombres estimés fut appliqué aux effectifs du début de l'année 2009.

4.3.2 Résultats des évaluations de la composante des géniteurs d'automne

La moyenne des trois années précédentes du taux de survie des âges 2 à 4 (nombre à l'âge / biomasse du stock reproducteur (BSR) pour cet âge) fut utilisée pour estimer le nombre des âges 2 à 4 en 2009 (fig. 53).

Le nombre à l'âge 4 pour 2009 fut assigné par le nombre généré par le taux de survie moyen (2006-2008) multiplié par l'estimé de la BSR en 2005, au lieu de la moyenne géométrique à moyen terme utilisée dans les évaluations précédentes. Les estimations de recrutement (âge 4) découlant des deux analyses PUE1 et PUE2 laissent croire que les abondances des classes d'âge de 2000 et 2004 sont supérieures à la moyenne et que l'abondance générale est actuellement élevée (tableau 46; fig. 54). Néanmoins, il y a des différences substantielles dans les estimés des nombres et biomasses entre les deux analyses PUE1 et PUE2.

Les formulations ASP révèlent que la biomasse de la CGA des âges 4+ a culminé en 2005, année où la forte classe d'âge de 1998 et 2000 ont contribué dans la pêche. Avec la formulation utilisant les PUE1, la biomasse des harengs des âges 4+ au début de l'année 2009 est estimée à environ 327 000 t, tandis qu'avec la formulation utilisant les PUE2, la biomasse des harengs des âges 4+ au début de l'année 2009 est estimée à environ 285 500 t (tableau 47: fig. 54). Les moyenne des âges 5 à 10 des mortalités par pêche des harengs des deux modèles étaient généralement plus élevées entre 1995 et 2003 que celles entre 2004 et 2008 (tableau 48).

The reference level exploitation rate for FSC was about 25% for fully-recruited age-groups (5+). The 2008 exploitation rate remains below the target level for both models used (Fig. 54).

4.3.3 Fall spawner component prospects

Stock projections were conducted for the ADAPT model formulated with the gillnet CPUE1 or CPUE2 indices for calibration. Estimated recruitment at age 4 has been above average from 1999 to 2005, and 2008, but below average in 2007.

Input parameters for the CPUE1 or CPUE2 projections are presented in Table 49. It was noted that calculating beginning of year weights at age for partially recruited fish from the commercial weights at age biases the results in favor of the faster arowina fish. Thus acoustic survey samples were used to calculate weights at age that are more representative of the partially recruited age-classes. The fishery weights at age used in the projections were the average of 2006 to 2008 fishery weights at age. The 2009 beginning-ofyear weights-at-age were averaged from the 2006 to 2008 commercial and acoustic weights adjusted to the beginning of the year. Partial recruitment derived from fishing mortalities from this assessment suggest that younger ages are less available to the fishery than previously. Thus, the partial recruitment vector used in projections was based on the fishery in recent years (2006-2008).

The projection using CPUE1 indicates that fishing at $F_{0.1}$ (corresponding to a fully recruited F=0.32) would yield 76,500 t in 2009, while the projection using CPUE2 indicates that fishing at $F_{0.1}$ would yield 65,800 t in 2009 (Table 50).

In a RAP framework meeting held in

Le taux d'exploitation de référence de la CGA est d'environ 25 % pour les groupes d'âge pleinement recrutés (5+). Le taux d'exploitation en 2008 reste inférieur au niveau ciblé pour les deux modèles utilisés (fig. 54).

4.3.3 Perspectives futures de la composante des géniteurs d'automne

Les projections de stock ont été effectuées avec le modèle ADAPT utilisant l'indice des PUE1 ou PUE2 pour l'étalonnage. Le recrutement approximatif à l'âge 4 a été supérieur à la moyenne de 1998 à 2005, et en 2008, mais inférieur à la moyenne en 2007.

Les paramètres des données pour l'établissement des projections utilisant soit les PUE1 ou PUE2 sont indiqués au tableau 49. Il fut noté que le calcul des poids du début de l'année pour les recrues partielles d'après les poids dans la pêche commerciale apporterait un biais en faveur des harengs qui croissent plus rapidement. Donc les poids provenant des échantillons du relevé acoustique, étant considérés comme plus représentatifs, furent utilisés pour les recrues partielles. Les poids selon l'âge provenant de la pêcherie correspondent aux valeurs moyennes des poids dans la pêche de 2006 à 2008. Les poids selon l'âge au début de l'année 2009 sont des moyennes de 2006 à 2008 des poids de la pêche et du relevé acoustique ajustés au début de l'année. Le recrutement partiel tiré de la mortalité par pêche de cette évaluation suggère que les plus jeunes âges sont moins disponibles à la pêche qu'auparavant. Donc, le recrutement partiel tiré de la mortalité par pêche de cette évaluation est basé sur les années récentes (2006-2008).

Selon la projection utilisant PUE1, le niveau de pêche de la CGA à $F_{0,1}$ (correspondant à un recrutement complet, F=0,32) pour 2009 est de 76 500 t, tandis qu'avec la projection utilisant PUE2, le niveau de pêche de la CGA à $F_{0,1}$ pour 2009 est de 65 800 t I (tableau 50).

Lors du processus régional d'évaluation qui a

December 2005, spawning stock biomass reference points were identified (DFO 2005). For the fall spawning component, the limit reference point (LRP) and interim upper stock reference (USR) are 51,000 and 172,000 t, respectively. The removal rate reference has been set at $F_{0.1}$, which corresponds to F=0.32 or about 25% of the fully-recruited age-groups (5+). Fishing at $F_{0.1}$ is usually considered a safe exploitation rate when the stock is healthy. The current estimates of SSB using the CPUE1 or CPUE2 projections are above the upper stock reference point of 172,000 t (Fig. 55).

A risk analysis can provide some guidelines for decision making. For the current estimates of SSB using the CPUE1 or CPUE2 projections, the risk analysis considered the probability of exceeding F_{0.1}, and those of obtaining a slight decline and a 5% decline in biomass. For the CPUE1 projections, there is a low probability (< 25%) of a decline in biomass for catch options less than 35,000 t. A catch of 76,500 t will result in a 50% probability of about a 13% decline in 4+ spawning biomass for 2010 (Fig. 56). For the CPUE2 projections, there is a low probability (< 25%) of a decline in biomass for catch options less than 33,000 t. A catch of 65,800 t will result in a 50% probability of about a 12% decline in 4+ spawning biomass for 2010 (Fig. 56). The Armstrong plot shows the biomass changes and exploitation rates expected given catches between 10,000 and 90,000 t (Fig. 57).

4.3.4 Fall spawner component discussion

The two ADAPT model formulations used in this paper give substantial differences in stock abundance and projections for 2009. Unless proven otherwise, the model formulation using CPUE2, proposed for the first time this year, which takes into account the effort parameter of number of hauls per day, gives lesser error around

eu lieu en décembre, 2005 des points de références pour les stocks de biomasse reproducteurs furent déterminés (MPO 2005). La limite inférieure et supérieure de référence pour la biomasse des géniteurs d'automne est de 51 000 t et 172 000 t, respectivement. Le taux d'exploitation de référence à Fou de la CGA, correspondant à F = 0.32, est d'environ 25 % pour les groupes d'âge de 5 ans et plus pleinement recrutés. Pêcher au niveau Fo.1 est considéré comme un taux d'exploitation sûre lorsque le stock est en bonne santé. Les BSR estimées des projections utilisant soit les PUE1 ou PUE2 sont au-dessus de la limite supérieure de référence qui se chiffre à 172 000 t (fig. 55).

Les analyses de risques peuvent fournir des indications pour le processus décisionnel. Pour les BSR estimées des projections utilisant soit les PUE1 ou PUE2, l'analyse de risque a considéré la probabilité de dépasser le niveau F_{0.1}, et la probabilité de peu de déclin et de 5% de déclin dans la biomasse. Pour les projections utilisant les PUE1, il v a une faible probabilité (<25%) d'un déclin de la biomasse avec des captures moindre à 35 000 t. Des captures de 76 500 t résulteraient dans 50% de probabilité d'environ 13% de déclin de la biomasse (fig. 56). Pour les projections utilisant les PUE2, il y a une faible probabilité (<25%) d'un déclin de la biomasse avec des captures moindre à 33 000 t. Des captures de 65 800 t résulteraient dans 50% de probabilité d'environ 12% de déclin de la biomasse (fig. 56). La figure Armstrong est une autre manière de visualiser changements dans le taux d'exploitation et la biomasse pour des captures variant entre 10 000 et 90 000 t (fig. 57).

4.3.4 Discussions sur la composante des géniteurs d'automne

Les deux formulations ADAPT utilisées donnent des résultats considérablement différents sur l'abondance du stock et les projections pour 2009. à moins de preuves contraires, la formulation utilisant les PUE2, proposés pour la première fois cette année, et qui considèrent le nombre de levées par jour, donne moins d'erreurs autour des

the estimates and seems to better reflect the current effort being deployed. The incapacity of the fleets to capture their quotas in recent years and the phone and industry comments on the resource being harder to locate and capture corroborate this view. It is therefore suggested that the model results using the CPUE2 gillnet index be the ones selected to better reflect current fall spawner component stock status.

estimés et semble mieux refléter l'effort couramment déployé. L'incapacité des flottes de capturer leurs contingents dans les années récentes, ainsi que les commentaires du sondage téléphonique et de l'industrie sur les difficultés de localiser et de capturer la ressource corrobore ce point de vue. Il est donc suggéré que les résultats du modèle utilisant les PUE2 de la pêche aux filets maillants soient choisis comme étant la meilleure représentation courante de l'état du stock des géniteurs d'automne.

5. REFERENCES

- Campana, S.E., M.C. Annaud, and J.I. McMillan. 1995. Graphical and statistical methods for determining the consistency of age determinations. Trans. Am. Fish. Soc. 124:131-138.
- Clay, D. and G. Chouinard. 1986. Southern Gulf of St. Lawrence herring: stock status report 1985. CAFSAC Res. Doc. 86/4, 50 p.
- Claytor, R. 2001. Fishery acoustic indices for assessing Atlantic herring populations. Can. Tech. Rep. Fish. Aquat. Sci. 2359: 213 p.
- Claytor R.R. and J. Allard. 2001. Properties of abundance indices obtained from acoustic data collected by inshore herring gillnet boats. Can. J. Fish. Aquat. Sci. 58:2502-2512.
- Claytor, R., C. LeBlanc, C. MacDougall, and G. Poirier. 1998. Assessment of the NAFO Division 4T southern Gulf of St. Lawrence herring stock, 1997. CSAS Res. Doc. 98/47, 154 p.
- Cleary, L., J. Hunt, J. Moores and D. Tremblay. 1982. Herring aging workshop, St. John's, Newfoundland, March 1982. CAFCAC Res. Doc. 82/41, 10 p.
- DFO. 2005. Spawning Stock Biomass Reference Points for Southern Gulf of St. Lawrence Herring. DFO Can. Sci. Advis. Sec. Advis. Rep. 2005/070, 7 p.
- DFO. 2007. Size at 50% maturity for southern Gulf of St. Lawrence herring (NAFO 4T). DFO Can. Sci. Advis. Sec. Sci. Resp. 2007/019, 5 p.
- Gavaris, S. 1999. ADAPT (ADAPTive Framework) User's Guide Version 2.1. DFO. St. Andrews Biological Station, St. Andrews, N.B., Canada. 25 p.
- Hurlbut T., T. Surette, D.P. Swain, R. Morin, H.P. Benoît, and C. LeBlanc. 2009. Preliminary results from the September 2008 bottom-trawl survey of the Southern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/029.
- LeBlanc, C. and J. Dale. 1996. Distribution and acoustic backscatter of herring in NAFO divisions 4T and 4Vn, Sept. 23 Oct. 08, 1995. DFO Atlantic Fisheries Res. Doc. 96/125, 28 p.

- LeBlanc, C. and L. LeBlanc. 1996. The 1995 NAFO Division 4T herring gillnet telephone survey. DFO Atlantic Fisheries Res. Doc. 96/77, 37 p.
- LeBlanc, C.H., G.A. Poirier, G. Chouinard, and C. MacDougall. 2003. Assessment of the NAFO 4T southern Gulf of St. Lawrence herring stocks in 2002. DFO Can. Sci. Advis. Sec. Res. Doc. 2003/040, 111 p.
- LeBlanc, C.H., C. MacDougall, and C. Bourque. 2008. Assessment of the NAFO 4T southern Gulf of St. Lawrence herring stocks in 2007. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/061, 133 p.
- McQuinn, I. H. 1989. Identification of spring- and autumn spawning herring (*Clupea harengus*) using maturity stages assigned from a gonadosomatic index model. Can. J. Fish. Aquat. Sci. 46:969-980.
- Messieh, S. N. 1988. Spawning of Atlantic Herring in the Gulf of St. Lawrence. American Fisheries Society Symposium 5: 31-48.
- Messieh, S. N. 1972. Use of otoliths in identifying herring stocks in the southern Gulf of St. Lawrence and adjacent waters. J. Fish. Res. Bd. Canada 29: 1113-1118.
- MPO. 2005. Hareng du sud du golfe du Saint-Laurent Niveaux de références applicables à la biomasse du stock reproducteur. MPO, Secr. can. consult. sci. Avis. Sci. 2005/070, 7 p.
- MPO. 2007. Taille du hareng du sud du golfe du Saint-Laurent (division 4T de l'OPANO) à 50% de maturité. Secr. can. de consult. sci. du MPO. Rép. des Sci. 2007/019, 6 p.
- Poirier, G.A. 2002. Catch and effort data used in the assessment of herring populations in the southern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2002/061, 29 p.
- Simon J. and W.T. Stobo. 1983. The 1982-1983 4Vn herring biological update. CAFSAC Res. Doc. 83/49, 28 p.
- Swain, D.P. and G.A. Chouinard. 2008. Predicted extirpation of the dominant demersal fish in a large marine ecosystem: Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can. J. Aquat. Sci. 65: 2315-2319.
- Wheeler, J.P., B. Squires, and P. Williams. 2006. An assessment of Newfoundland east and south coast herring stocks to the spring of 2006. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/101, 93 p.

Table 1. Preliminary herring catch (t) by season in the 2008 fishery for 4T Southern Gulf of St. Lawrence. Catches are from ZIF and purchase slip files, from quota monitoring or logbook data.

Tableau 1. Prises (t) préliminaires de hareng par saison en 2008 pour la pêche 4T du sud du golfe du Saint-Laurent. Les prises ont été compilées au moyen des bordereaux d'achat, des fichiers de données brutes ZIF, de la surveillance des allocations ou des cahiers de bord.

2008 Fishing Season and Area		Sharing TA	C Partagé	Inshore /	Côtiers	Seiners (Senne	
/ Saison et Région 2008	TAC (t)	Inshore / Côtiers	Seiners / Senneurs	Allocation	Catch / Prises	Allocation	Catch / Prises
Spring / Printemps 4T	2500	77%	23%	1921	1475	579	0
Fall / Automne 4T	68800	77%	23%	53018	38541	15782	4211
Total (Spring + Fall) / (Printemps + Automne)	71300	77%	23%	54939	40016	16361	4211

2008 SPRING FISHERY SEASON / PÊCHE SAISON PRINTANIÈRE 2008

Area/Zone - Région/Zone	Season/Saison	TAC (t)	Preliminary Catch (t) / Prises (t)
INSHORE / CÔTIERS			From / de Jan – (June/juin)
Isle Verte 16A *	Jan – (May/mai)	4	13
Baie des Chaleurs 16B *	Jan - (May/mai)	95	423
Escuminac 16C	Jan - (May/mai)	130	30
I. Madeleine-Magdalen 16D *	Jan - (May/mai)	22	63
Southeast N.BWest P.E.I. 16E *	Jan - (May/mai)	605	825
North. Strait-South Cape Breton 16F *	Jan – (May/mai)	7	67
East PEI-North Cape Breton 16G *	Jan - (May/mai)	9	54
4Vn	Jan - (June/juin)	20	
16A - G (June - juin)	June - juin	82	
Reserve / réserve	Jan - (June/juin)	947	
Total Inshore / Côtiers		1921	1475
SEINERS / SENNEURS (>65') 4T	Jan 1 – Jun 30	579	0
Grand Total		2500	1475

Areas that used part of the reserve after initial TAC was reached Zones utilisatrices de la réserve après avoir atteint leur TAC initial

Table 1 (continued). Preliminary herring catch (t) by season in the 2008 fishery for 4T Southern Gulf of St. Lawrence. Catches are from ZIF and purchase slip files, from quota monitoring or logbook data.

Tableau 1 (suite). Prises (t) préliminaires de hareng par saison en 2008 pour la pêche 4T du sud du golfe du Saint-Laurent. Les prises ont été compilées au moyen des bordereaux d'achat, des fichiers de données brutes ZIF, de la surveillance des allocations ou des cahiers de bord.

2008 FALL FISHERY SEASON / PÊCHE SAISON D'AUTOMNE 2008

Area / Zone Région / Zone	Season / Saison	Weekend Closure / Fermeture	Vessel Limit / Limite par bateau (lbs) / (day/jour)	TAC (t)	Preliminary Catch (t) / Prises préliminaires
INSHORE / CÖTIERS					(t)
Isle Verte 16A	Jul 1 - Dec 31	none	20000	144	11
Baie des Chaleurs 16B	Jul 1 - Dec 31	1 day	25000	24976	18762
Escuminac 16C & West P.E.I. 16E	Jul 1 - Dec 31	none	20000	9200	7682
Magdalen 16D	Jul 1 - Dec 31	1 day	20000	344	62
Pictou 16F	Jul 1 - Dec 31	1 day	15000	9005	5332
Fisherman's Bank 16G	Jul 1 - Dec 31	2 days	80000 week/semaine	9005	6691
4Vn				344	
Total Inshore / Côtiers				53018	38541
SEINERS / SENNEURS (>65')					
Baie des Chaleurs Bay /	Sep 1 - Dec 31		East of / est de		
Miscou	Inside/intérieur		Grande-Anse	7891	4208
Remainder / Reste de 4T	Ouside/extérieur			7891	3
Total Seiners / Senneurs				15782	4211
Grand Total				68800	42752

Table 2. Fixed gear herring catch (t) by season in 4T Southern Gulf of St. Lawrence, based on ZIF raw data files, purchase slip files, dockside monitoring or logbook data. Data for 2008 are preliminary.

Tableau 2. Pêche aux engins fixes, prises de hareng (t) par saison dans 4T basées sur des fichiers de données brutes ZIF, données d'observateurs à quai ou cahiers de bord. Les données de 2008 sont préliminaires.

Year / Année 16A 1990 62 1991 26 1992 115 1993 106 1994 311 1995 66 1996 101 1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 20 203-2007 9 Fall / automne Year / Année 16A 1990 110 1991 1992 46 1993 103 1994 118 1995 60 1997 106 1998 13 1999 6 2000 16	16B						
1991 26 1992 115 1993 106 1994 311 1995 66 1996 101 1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2		16C	16D	16E	16F	16G	Tota
1991 26 1992 115 1993 106 1994 311 1995 66 1996 101 1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	1715	2232	167	4285	141	17	8618
1992 115 1993 106 1994 311 1995 66 1996 101 1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	2139	5159	193	5018	127	16	12678
1993 106 1994 311 1995 66 1996 101 1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	2865	4348	243	4699	146	54	12469
1994 311 1995 66 1996 101 1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	2397	4543	885	6829	200	126	15086
1995 66 1996 101 1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 66 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	1561	6284	218	10842	158	76	19450
1996 101 1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	1844	4909	1043	7988	96	27	15973
1997 91 1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	882	5423	1628	9016	231	579	17860
1998 60 1999 62 2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	622	3085	1552	9921	49	499	15819
2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	441	3024	1907	8104	176	611	14322
2000 62 2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	277	2343	2699	5534	162	628	11704
2001 34 2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	911	2336	3855	8372	127	526	16189
2002 12 2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	582	1287	2624	5242	270	556	10595
2003 11 2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	595	1106	2155	4053	499	590	9010
2004 20 2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	511	374	2806	4426	410	524	9062
2005 1 2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	694	325	3087	3696	564	516	8902
2006 7 2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	815	109	1095	2009	546	374	4496
2007 4 2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	823	72	160	613	789	381	2845
2008 13 Mean / moyenne 2003-2007 9 Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	467	155	21	884	149	375	2055
Mean / moyenne 2003-2007 9 Fall / automne 16A Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	423	30	63	825	67	54	1475
Fall / automne Year / Année 16A 1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	662	207	1434	2326	492	434	5563
1990 110 1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	002	201	Area / F		432	434	5505
1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	16B	16C	16D	16E	16F	16G	Total
1991 34 1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	31926	753	2	2405	10343	10957	56496
1992 46 1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	17181	1559	1	3242	1906	3122	27044
1993 103 1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	23609	1789	18	2540	1919	3160	
1994 118 1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	14504	3060	618	2137	935	1776	33081 23133
1995 60 1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	34414	4367	1459	2119	0		
1996 86 1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	29992	4921	1901		10141	3590	54100
1997 106 1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	21741	2841	1447	5006		4244	56265
1998 13 1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	18460	2011	407	5179 4447	7852 6278	7978	47124
1999 6 2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	17831	1819	1213	6197		7331	39041
2000 16 2001 3 2002 23 2003 3 2004 2 2005 2	21627	3897	389		5498	7045	39615
2001 3 2002 23 2003 3 2004 2 2005 2	24474	5403	291	4531	5957	8909	45316
2002 23 2003 3 2004 2 2005 2				4890	5048	10366	50488
2003 3 2004 2 2005 2	21750	4750	0	3232	6749	9022	45506
2004 2 2005 2	18666	4655	_	3257	8007	7448	42056
2005 2	21387	5756	0	2423	9116	9025	47710
2000	14764	7056	8	2910	5477	6990	37207
2006	24116	5052	0	4479	8916	9251	51816
2007	21639	4589	14	4134	8894	8525	47800
2000	19415	3090	32	4278	8687	7484	42995
2008 11 Mean / moyenne 2003-2007 4	18762 20264	2820 5109	62	4862 3645	5332 8218	6691 8255	38541

Table 3. Catch (t) of 4T herring in spring and fall, by gear (fixed and mobile) divided by spawning group (as calculated by the GSI method).

Tableau 3. Prises (t) de hareng de 4T au printemps et à l'automne, par engin (fixes et mobiles) et divisé par groupe de géniteurs (calculé au moyen de l'IGS).

	SPAWNING GROUP *	4	Т	4	Т	4T	4Vn	4TVn	4TVn
YEAR	P=spring A=fall	SPRI PRINT		FALL / AL	UTOMNE	CATCH/ PRISES	CATCH/ PRISES	CATCH/ PRISES	TAC
ANNEE	GROUPE GÉNITEURS *	Fixed	Mobile	Fixed	Mobile				
1978	Р	7498	6400	231	10187	24316	799		
	A	1048	1647	4910	21568	29173	2042		
	Total	8546	8047	5141	31755	53489	2841	56330	630
1979	P	6799	13683	218	8288	28988	1598		
	A	826	217	5856	12330	19229	1313		
	Total	7625	13900	6074	20618	48217	2911	51128	580
1980	Р	7192	6555	575	8701	23023	1303		
	A	74	7361	5971	6114	19520	2547		
	Total	7266	13916	6546	14815	42543	3850	46393	595
1981	P	6322	20	318	583	7243	875		
	A	1177	1	10907	2605	14690	2541		
	Total	7499	21	11225	3188	21933	3416	25349	190
1982	P	5854	61	252	597	6764	841		
	A	69	1	12731	1981	14782	2668		
	Total	5923	62	12983	2578	21546	3509	25055	180
1983	P	8187	18	365	1427	9997	1280		
	A	332	1	13475	2063	15871	2699		
	Total	8519	19	13840	3490	25868	3979	29847	250
1984	P	5025	4	313	923	6265	1386		
	Α	256	0	15662	1355	17273	2539		
	Total	5281	4	15975	2278	23538	3925	27463	225
1985	P	6948	0	1240	2171	10359	1042	2,400	
	A	269	0	22467	4851	27587	2427		
	Total	7217	0	23707	7022	37946	3469	41415	360
1986	Р	7876	0	3257	6790	17923	2799	41410	555
	A	674	0	36636	4125	41435	1550		
	Total	8550	0	39893	10915	59358	4349	63707	476
1987	Р	11390	0	2321	9221	22932	1414	00.0.	4,0
	A	369	0	49813	4513	54695	949		
	Total	11759	0	52134	13734	77627	2363	79990	770
1988	P	11160	0	3267	11697	26124	1716	, ,,,,,	,,,,
	A	1728	0	37945	5834	45507	856		
	Total	12888	0	41212	17531	71631	2572	74203	8310
1989	Р	10451	0	1547	8681	20679	1288	74203	031
	Α	643	0	32305	5589	38537	829		
	Total	11094	0	33852	14270	59216	2117	61333	9110
1990	P	4357	1					01333	3110
	A	544	0	1683 59595	6655 3653	12696 63792	3041 1669		
	Total	4901	1	61278	10308	76488	4710	81198	9110
1991	P	12721	5	127	2911	15764			
1001	A	170	13	27018	5148	32349	1635	17399	2100
	Total	12891	18	27145	8059	48113	3154	35503	7010
1992	P	12440	639				4789	52902	9110
1002	A			245	3241	16565	309	16874	2100
	A	36	480	32837	3875	37228	3919	41147	7010

Table 3 (cont'd). Catch (t) of 4T herring in spring and fall. Tableau 3 (suite). Prises (t) de hareng de 4T au printemps et à l'automne.

YEAR	SPAWNING GROUP *	4T SP PRINT		4T F		4T	4Vn	4TVn	4TVn
ANNEE	P=spring A=fall					CATCH/	CATCH/	CATCH/	T10
ANNEE	GROUPE GÉNITEURS	Fixed	Mobile	Fixed	Mobile	PRISES	PRISES	PRISES	TAC
1993	P	14971	1476	700	3431	20578	335	20913	2100
	A	209	1239	22396	2797	26641	3615	30256	8500
	Total	15180	2715	23096	6228	47219	3950	51169	10600
1994	P	18807	2898	243	3303	25251	420	25671	2100
	A	206	1035	53568	3657	58466	2830	61296	8500
	Total	19013	3933	53811	6960	83717	3250	86967	10600
1995	P	15823	1304	1909	7415	26451	403	26854	2100
	A	150	521	54357	7852	62880	3740	66620	8500
	Total	15973	1825	56266	15267	89331	4143	93474	10600
1996	P	15612	1166	1015	3882	21675	896	22571	1511
	A	461	741	44758	4139	50099	3371	53470	5874
	Total	16073	1907	45773	8021	71774	4267	76041	7386
1997	P	13206	1003	101	3659	17969	191	18160	165
	A	17	499	34970	2144	37630	3340	40970	500
	Total	13223	1502	35071	5803	55599	3531	59130	665
1998	P	13790	281	128	1422	15621	2	15623	1650
	A	119	723	38999	3154	42995	50	43045	575
	Total	13909	1004	39127	4576	58616	52	58668	740
1999	P	11309	2453	170	3713	17645	0	17645	185
	Α	570	2364	44621	5390	52945	0	52945	605
	Total	11879	4817	44791	9103	70590	0	70590	790
2000	P	15176	242	589	2235	18242	0	18242	165
	A	1007	306	49799	6461	57573	0	57573	710
	Total	16183	548	50388	8696	75815	0	75815	833
2001	Р	10402	519	988	2813	14722	0	14722	125
	Α	195	578	44532	7458	52763	0	52763	605
	Total	10597	1097	45520	10271	67485	0	67485	730
2002	Р	8636	437	672	684	10429	0	10429	80
	A	474	448	41288	10916	53126	0	53126	5150
	Total	9110	885	41960	11600	63555	0	63555	595
2003	Р	8851	44	30	334	9259	0	9259	110
	A	214	57	47774	12892	60937	0	60937	620
	Total	9065	101	47804	13226	70196	0	70196	730
2004	Р	7860	23	121	410	8414	0	8414	1350
	A	186	29	35904	7089	43208	0	43208	7300
	Total	8046	52	36025	7499	51622	0	51622	8650
2005	Р	4014	0	55	1070	5139	0	5139	1100
	A	482	0	51674	7770	59926	0	59926	7000
	Total	4496	0	51729	8840	65065	0	65065	810
2006	Р	1893	0	294	679	2866	0	2866	900
	A	951	0	47507	4221	52679	0	52679	6880
	Total	2844	0	47801	4900	55545	0	55545	7780
2007	P	1731	0	7	2217	3789	0	3789	500
	A	312	0	42990	4622	47621	0		
	Total	2043	0	42990				47621	6880
2008	P				6839	51879	0	51879	7380
prelim.	A	1358	0	25	1373	2756	0	2756	250
prenn.	Total	117 1475	0	38515 38540	2839 4212	41471 44227	0	41471 44227	6880 7130

Table 4. Annual landings (t) of 4T herring by spawning group and fleet with corresponding TACs.
 Tableau 4. Débarquements annuels (t) de hareng de 4T par groupe de géniteurs et flotte de pêche avec TAC correspondants.

		ners / Géniteurs d	de printemps		Spring TA	С
	Landings / D	ébarquements t			TAC printer	ps
Year	Gillnet	L. Seiner		% Gillnet	Gillnet	L. Seiner
Année	F. maillants	Senneurs	Total % F	. maillants	F. maillants	Senneurs
1996	16627	5944	22571	74	11638	3476
1997	13307	4853	18160	73	12705	3795
1998	13918	1705	15623	89	12705	3795
1999	11479	6166	17645	65	14245	4255
2000	15765	2477	18242	86	12705	3795
2001	11390	3332	14722	77	9625	2875
2002	9308	1121	10429	89	6160	1840
2003	8881	378	9259	96	8470	2530
2004	7981	433	8414	95	10395	3105
2005	4069	1070	5139	79	8470	2530
2006	2,187	679	2866	72	6930	2070
2007	1738	2217	3955	44	3851	1149
2008	1383	1373	2756	50	1921	579
Mean/Moyenne		10000				
2004-08	3471	1154	4625	68		

		s / Géniteurs d'au	tomne		Fall TAC	
		ébarquements t			TAC autom	ne
Year	Gillnet	L. Seiner		% Gillnet	Gillnet	L. Seiner
Année	F. maillants	Senneurs	Total % F	. maillants	F. maillants	Senneurs
1996	45219	8251	53470	85	52976	15824
1997	34987	5983	40970	85	45237	13512
1998	39118	3927	43045	91	38500	11500
1999	45191	7754	52945	85	44327	13241
2000	50806	6767	57573	88	46585	13915
2001	44727	8036	52763	85	54670	16330
2002	41762	11364	53126	79	46585	13915
2003	47988	12949	60937	79	39655	11845
2004	36090	7118	43208	84	47740	14260
2005	52156	7770	59926	87	56210	16790
2006	48458	4221	52679	92	53018	15782
2007	43302	4622	47924	90	53018	15782
2008	38632	2839	41470	93	53018	15782
Mean/Moyenne						
2004-08	43727	5314	49041	89		

Table 5. Number of respondents by area homeport and area of fishing activity for spring gillnetters contacted during the 2008 phone survey. See Fig. 5 for area locations.

Nombre de répondants par port d'attache et zone d'activité de pêche (fig. 5) pour les filets maillants du printemps rejoints dans le cadre du sondage téléphonique 2008.

			Fishing	Location / Rég	gion de pêc	he			
Home Port Port d'attache	Mag Is Iles Mad	Quebec	Ac. Pen Pén. Acad	Escuminac	Se N.B.	NS NÉ	E.P.E.I. ÎPÉ. est	W.P.E.I. ÎPÉ. ouest	Total
Mag Is\lies Mad	5	-			-		-		5
Quebec	-	18	-	-	-	-	-		18
Ac. Pen\Pén. Acad		-	1	-	-	-	-	-	1
Escuminac		-		2	-	-	-		2
Se N.B.		-		-	11	-	-	-	11
NS\NÉ	-	-			-	4			4
E.P.E.I.\IPÉ. est	-	-	-		-	-	2		2
W.P.E.I.\ ÎPÉ. ouest	-	-			1	-	1	5	7
Total	5	18	1	2	12	4	3	5	50

Table 6. Number of respondents by area homeport and area of fishing activity for fall gillnetters contacted during the 2008 phone survey. See Fig. 5 for area locations.

Nombre de répondants par port d'attache et zone d'activité de pêche (fig. 5) pour tous les filets maillants d'automne rejoints dans le cadre du sondage téléphonique 2008.

			Fishing	Location / Rég	jion de pêd	he			
Home Port Port d'attache	Mag Is Iles Mad	Quebec	Ac. Pen Pén. Acad	Escuminac	Se N.B.	NS NÉ	E.P.E.I. ÎPÉ. est	W.P.E.I. ÎPÉ. ouest	Total
Mag Is\lles Mad	1	-	-				-	-	1
Quebec	-	4	-	-	~	-	-	-	4
Ac. Pen\Pén. Acad			41	6	-	-		-	47
Escuminac	-		-	6		-	-	-	6
Se N.B.	-	-	-		-				0
NS\NÉ		-		-		24			24
E.P.E.I.\îPÉ. est		-	-		-		19		19
W.P.E.I.\ ÎPÉ. ouest	-	-	-			-		7	7
Total	1	4	41	12	0	24	19	7	108

Table 7. Average length of gillnets (fathoms) and percent distribution of gillnet types from the phone survey used in the 2008 herring fishery. See Fig. 5 for area locations.

Tableau 7. Longueur moyenne des filets maillants (brasses) et pourcentage de répartition des types de filets maillants du sondage téléphonique utilisés pour la pêche du hareng en 2008. Voir fig. 5 pour l'emplacement des zones.

Area \ Région	Spr	ing / Printemps		F	all / Automne	
	Length / Longueur	*Set / Ancré %	*Modified % Modifié %	Longueur / Length	Set / Ancré %	Modified % Modifié %
Mag Is\lies Mad	17.3	100	-	13.0		100
Quebec	15.7	100	-	14.1	60	40
Ac. Pen\Pén. Acad	13.0	100		14.1	7	93
Escuminac	15.5	100		14.1	28	72
Se N.B.	13.6	100	-		-	,-
NS/NÉ	12.5	100		15.4	100	
E.P.E.I.\IPÉ. est	14.0	100		13.9	100	
W.P.E.I.\ îPÉ. ouest	13.6	100	-	14.3	100	

^{*}Set / ancré = anchored at both ends / ancré aux deux extrémités

Table 8. Phone survey weighted percent of fishing days with no gillnet catch for main fishing areas. See Fig. 5 for area locations.

Tableau 8. Pourcentage de jours de pêche sans captures dans les filets maillants par zone, du sondage téléphonique. Voir fig. 5 pour les zones.

fall / automne	spring / printemps	year
areas / zones 2,3,4,6,7,8	areas / zones 1,2,3,4,5,8	année
%	%	
16.7	46.7	2006
28.8	40.0	2007
28.8	49.4	2008

^{*}Modified / modifiés = one end attached to boat / un bout attaché au bateau

Table 9. Gillnet data for 2008, by season and area, obtained from the telephone survey and collected by the dockside monitoring program (DMP) where available. (Lengths in fathoms; n = number).

Tableau 9. Données sur les filets maillants en 2008, par saison et région, obtenues du sondage téléphonique et recueillies par le programme de vérification à quai (PVQ) lorsque disponibles. (Longueur en brasses ; n=nombre).

Season / Area		Telephone Surve	y / So	ndage	DMP / PV	Q	
Spring / Printemps	Gillnets / Filets Maillants	Mean / Moyenne	n	Std. error Erreur t	Mean/ Moyenne	n	Std erro
Magdalen Is	Number/ Nombre*	15.3	- 4	1.9	12.1	32	0
les de la Madeleine	Length (fa) / Longueur (br)	17.3	4	0.8			-
noo do la madolomo	Depth (Meshes) / Profondeur (Mailles)	93.8	4	6.3			-
Québec	Number/ Nombre*	17.4	15	0.9	14.2	6	2
	Length (fa) / Longueur (br)	15.7	17	0.3			-
	Depth (Meshes) / Profondeur (Mailles)	87.9	17	7	****		
Acadian Peninsula	Number/ Nombre*	15	1		11.2	6	1
Péninsule Acadienne	Length (fa) / Longueur (br)	13	1		12.1	6	0
	Depth (Meshes) / Profondeur (Mailles)	50	1				-
Escuminac	Number/ Nombre*	14.5	2	6.5	22.2	7	0
	Length (fa) / Longueur (br)	15.5	2	2.5	****		-
	Depth (Meshes) / Profondeur (Mailles)	60.0	2	20.0	(minut) tils		
SE New Brunswick	Number/ Nombre*	22.3	11	1	22.2	43	0
Nouveau-Brunswick	Length (fa) / Longueur (br)	13.6	12	0.3	15.3	43	0
-	Depth (Meshes) / Profondeur (Mailles)	63.3	12	3.8	10.0		-
Nova Scotia	Number/ Nombre*	14.5	2	6.5	21.9	2	1
Nouvelle-Écosse	Length (fa) / Longueur (br)	12.5	2	2.5	15.6	2	0
VOUVEIIE-LC0556	Depth (Meshes) / Profondeur (Mailles)	60	2	20	13.0		-
East PEI	Number/ Nombre*	18.3	3	20	15.3	9	1
Est IPE.	Length (fa) / Longueur (br)	14	3	4		9	
- St 1PE.	Depth (Meshes) / Profondeur (Mailles)	58.3	3	21.7	14.2	9	0
Most DEL		23.4	5	21.7	20.7	50	
West PEI	Number/ Nombre*		_	1	20.7	58	(
Ouest IPE.	Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	13.6	5	0.5 6.3	13.7	58	
Fall	Depth (Weshes) / 1 foldided (Walles)		_				
Automne	Gillnets / Filets Maillants	Mean / Moyenne	n	Std. error Erreur t	Mean/ Moyenne	n	Std erre
Magdalen Is	Number/ Nombre*	4	1				:
les de la Madeleine	Length (fa) / Longueur (br)	13	1	0.000	****		-
	Depth (Meshes) / Profondeur (Mailles)	100	1	****	anen	*****	-
Québec	Number/ Nombre*	6	4	0.4	****	****	-
	Length (fa) / Longueur (br)	14.1	4	0.7			-
	Depth (Meshes) / Profondeur (Mailles)	100	4	****	****		-
Acadian Peninsula	Number/ Nombre*	6.5	42	0.2	***		-
Péninsule Acadienne	Length (fa) / Longueur (br)	14.1	43	0.2	****		-
		14.1	43				-
	Depth (Meshes) / Profondeur (Mailles)	116	41	1.9		****	
	Depth (Meshes) / Profondeur (Mailles)						
	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre*	116	41	1.9	10.1	26	C
	Depth (Meshes) / Profondeur (Mailles)	116 7.5	41 12	1.9	10,1	26	(
Escuminac	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	116 7.5 14.1	41 12 12	1.9 0.6 0.4	10.1 15	26	C
Escuminac Escuminac Escuminac	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre*	116 7.5 14.1	41 12 12	1.9 0.6 0.4	10.1	26	0.
SE New Brunswick	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	116 7.5 14.1	41 12 12 12	1.9 0.6 0.4 2.1	10.1 15	26 26	0.
SE New Brunswick Nouveau-Brunswick July / Juillet)	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	116 7.5 14.1 102	41 12 12 12 12	1.9 0.6 0.4 2.1	10.1	26	0.
SE New Brunswick Nouveau-Brunswick July / Juillet)	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre*	116 7.5 14.1 102 4.9	41 12 12 12 23	1.9 0.6 0.4 2.1	10.1	26 26 45	0.0
SE New Brunswick Nouveau-Brunswick July / Juillet)	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	116 7.5 14.1 102	41 12 12 12 12	1.9 0.6 0.4 2.1	10.1	26	0.0 0.1
SE New Brunswick Nouveau-Brunswick July / Juillet) Nova Scotia Nouvelle-Écosse	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	116 7.5 14.1 102 4.9 15.4 93.7	41 12 12 12 12 12 23 24 23	1.9 0.6 0.4 2.1 0.2 0.4 3.3	10.1 15 6.1 15.5	26 26 45 45	0.
SE New Brunswick Nouveau-Brunswick July / Juillet) Nova Scotia Nouvelle-Écosse	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre*	116 7.5 14.1 102 	41 12 12 12 12 23 24 23 19	1.9 0.6 0.4 2.1 	10.1 15 6.1 15.5 8.6	26 26 45 45 45	0.0
SE New Brunswick Nouveau-Brunswick July / Juillet) Nova Scotia Nouvelle-Écosse	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	116 7.5 14.1 102 	41 12 12 12 12 23 24 23 19	1.9 0.6 0.4 2.1 0.2 0.4 3.3 0.2 0.3	10.1 15 6.1 15.5	26 26 45 45	C O.J.
SE New Brunswick Nouveau-Brunswick July / Juillet) Nova Scotia Nouvelle-Écosse East PEI Est IPE.	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	116 7.5 14.1 102 	41 12 12 12 12 	1.9 0.6 0.4 2.1 	6.1 15.5 	26 26 45 45 45 99 99	0.0 0.1 0.0 0.0
Escuminac SE New Brunswick Nouveau-Brunswick July / Juillet) Nova Scotia Nouvelle-Écosse East PEI Est IPE. West PEI Duest IPE.	Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles) Number/ Nombre* Length (fa) / Longueur (br) Depth (Meshes) / Profondeur (Mailles)	116 7.5 14.1 102 	41 12 12 12 12 23 24 23 19	1.9 0.6 0.4 2.1 0.2 0.4 3.3 0.2 0.3	10.1 15 6.1 15.5 8.6 13.5	26 26 45 45 45	0.0 0.1 0.0 0.0 0.0

Table 10. Age reader agreement for 2008 age determination between reference and reaged samples.

Tableau 10. Concordance de la détermination de l'âge pour 2008 entre l'âge attribué à l'origine et l'âge selon la deuxième lecture ainsi qu'entre les lecteurs.

Age original	Age in/en 2009		electure d'á									
Original Age	1	2	3	4	5	6	7	8	9	10	11	To
1	5	_	_	_	_	_	_	_	-	_		- 10
2	_	15	1	-	_	_		_	-	-	-	
3	_	-	28	_	_	_			_	_	_	
4	_	_	1	25	3	_	_		_	_	_	
5	_	_	_	-	53	2	_	_		_	_	
6	_	-	-	_	_	18	2	_	_	_	_	
7	_	_	_	-	_	3	22	_	_	_		
8	-	_	_	_	-	-	2	20	2	_	_	
9	-	_	-	-	_	_	_	_	4	_	_	
10	-	_	_	_	-	_	-	1	_	2	1	
11										2	2	
Total % Agreement / %	5	15	30 = 2.47	25	56	23	26	21	6	4	3	2
Secondary reader Age original Original Age	Age in/en 2009	eur secono	laire relectu	ire d'âges 4	5	6	7	8	0	40		
Jigiliai Age	5			4	3	0		8	9	10	11	To
2	3	15	1	-	-	-	-	-	-	-	-	
3	-	13	28	-	-	-	-	-	-	-	-	
4	-	-		28	1	-	-	-	-	-	-	
5	-	1000	-	1	51	3	-		-	-	-	
6	-	-			5	14	1	-	-	-	-	
7	-	-	-	-	1	5	18	1	-	-	-	
8	_	-	-	-		1	3	18	2	-	-	
9	_	_	_	_				1	2	1	-	
10		_	_	_	_	_	-		1	2	1	
11				_	_	_	_	-		1	3	
Total	5	15	29	29	58	23	22	20	5	4	4	2
	Secondary read		= 3.63 r secondair	e								
	Age in/en 2009											
ge in/en 2009	1	2	3	4	5	6	7	8	9	10	11	To
1	5	-	-	-	-	-	_	_	_	-	-	
2	-	14	ī	-	_	_	_	_	_	_	-	
3	-	1	28	1	-	-	-	-	_	-	-	
4	-	-	-	24	1	-	_		-	-	-	
5	-	-	-	4	49	3	-	-	-	-	-	
6	_	-	-	-	7	12	4	-	-	-	_	
7	-	-	-	-	1	7	16	2	_	-	-	
8	-	-	-	-		1	2	16	1	1	-	
9	-	-	-	-	-	-	-	2	3	1	-	
10	-	-	-	-	-	-	-	-	1	-	3	
11 Total	-						-			2	1	
iotail	5	15	29	29	58	23	22	20	5	4	4	2

Table 11. Acoustic survey: total numbers and biomass-at-age by area derived from acoustic signal and samples from midwater trawling from September 23 to October 10, 2008.

Tableau 11. Total des prises et biomasse à l'âge par région lors des relevés acoustiques déterminées d'après l'intensité du signal acoustique et l'échantillonnage au chalut pélagique du 23 septembre au 10 octobre 2008.

P = spring spawners / géniteurs de printemps

			,
A - f-11			d'automne
A = Iall	spawners /	geniteurs	d automne
7 t 1 tours			

Spring spawners / O	Séniteurs printemps ombres (x 1000)		Spring spawners / Géniteurs Biomass / Biomasse (tonnes	
	spé-Chaleur	P.E.I.	Gaspé-Chaleur	P.E.I
AGE	Miscou	îPÉ.	Miscou	ÎPÉ
0	0	0	0	(
1	2369	673	150	36
2	44707	24920	4608	2274
3	19697	6654	2409	890
4	8550	0034	1294	090
5	9468	3273	1703	460
6	5642			
6		0	904	(
7	2705	0	429	(
8	2249	0	397	(
9	445	0	81	(
10	0	0	0	(
11	47	0	10	(
Total P	95878	35521	11986	3661
Fall spawners / Géni Numbers / No	teurs d'automne ombres (x 1000)		Fall spawners / Géniteurs d'a Biomass / Biomasse (tonnes	
Gas	spé-Chaleur	P.E.I.	Gaspé-Chaleur	P.E.I
AGE	Miscou	ÎPÉ.	Miscou	ÎPÉ
1	9	0	0	
2	50627	63817	4283	4623
3	122601	49479	15478	5839
4	67008	43013	9804	5993
5	9340	11591	1485	1689
6	6904	4060	1166	70
7	5342	5053	975	817
8	5575	1163	929	23
9	594	998	123	192
10	300	146	57	39
11	47	0	8	0.
Total A	268346	179321	34306	2012
Total				
A&P	364224	214842	46293	23787
%P	26.3	16.5	25.9	15.4

- Table 12. Correlation of age-class abundance from one year (cpue) to the next (cpue1), 2 year (cpue2) and 3 year (cpue3) lag. Data are from the same strata in the Chaleurs-Miscou acoustic survey covered since 1994.
- Tableau 12. Corrélation de l'abondance des classes-d'âge d'une année (cpue) à l'autre (cpue1), décalage de 2 ans (cpue2) et 3 ans (cpue3). Les données proviennent des strates du relevé acoustique de la région Chaleurs-Miscou visitées depuis 1994.

Acoustic s	urvey - Relevé	acoustique 19	94 - 2008					
spring spar	wners - génite	eurs de printem	ps					
age	variable 1	variable 2	numbers - nomb	res x 1000		log (numbers - n	ombres x	1000)
			correlation	n	p value	correlation	n	p value
3	cpue	cpue1	0.810	14	0.0004	0.634	14	0.0148
4	cpue	cpue1	0.508	14	0.0635	0.489	14	0.0760
5	cpue	cpue1	0.889	14	0.0000	0.621	14	0.017
6	cpue	cpue1	0.852	14	0.0001	0.861	13	0.0002
7	cpue	cpue1	0.886	14	0.0000	0.648	10	0.0428
8	cpue	cpue1	0.907	14	0.0000	0.817	10	0.0039
3	cpue	cpue2	0.806	13	0.0009	0.698	13	0.0079
4	cpue	cpue2	0.759	13	0.0026	0.636	13	0.019
5	cpue	cpue2	0.961	13	0.0000	0.803	12	0.001
6	cpue	cpue2	0.868	13	0.0001	0.558	10	0.0940
7	cpue	cpue2	0.791	13	0.0013	0.917	9	0.000
3	cpue	cpue3	0.742	12	0.0057	0.402	12	0.1948
4	cpue	cpue3	0.671	12	0.0169	0.796	11	0.003
5	cpue	cpue3	0.862	12	0.0003	0.608	9	0.082
6	cpue	cpue3	0.895	12	0.0001	0.822	9	0.006
ili spawne	rs - géniteurs	d'automne						
age	variable 1	variable 2	numbers - nomb	res x 1000		log (numbers - n	ombres x	1000)
_			correlation	n	p value	correlation	n	p value
3	cpue	cpue1	0.245	14	0.399	0.468	14	0.0917
4	cpue	cpue1	0.402	14	0.154	0.508	14	0.0637
5	cpue	cpue1	0.389	14	0.169	0.585	14	0.0280
6	cpue	cpue1	0.568	14	0.034	0.391	14	0.1668
7	cpue	cpue1	0.839	14	0.000	0.612	14	0.0199
8	cpue	cpue1	0.215	14	0.460	0.553	12	0.0622
9	cpue	cpue1	0.550	14	0.042	0.653	11	0.0292
3	cpue	cpue2	0.308	13	0.306	0.095	13	0.7586
4	cpue	cpue2	0.156	13	0.611	0.273	13	0.3677
5	cpue	cpue2	-0.076	13	0.806	0.395	13	0.1822
6	cpue	cpue2	0.421	13	0.152	0.262	13	0.3870
7	cpue	cpue2	0.261	13	0.388	0.239	11	0.4798
8	cpue	cpue2	0.773	13	0.002	0.463	13	0.1110
3	cpue	cpue3	0.355	12	0.257	0.060	12	0.8534
4	cpue	cpue3	0.394	12	0.205	0.411	12	0.000

0.226

0.310

0.711

12

12

12

0.481

0.326

0.010

0.665

0.419

0.461

12

11

12

0.0184

0.1992

0.1311

5

6

7

cpue

cpue

cpue

cpue3

cpue3

cpue3

- Table 13. Correlation of age-class abundance from one year (cpue) to the next (cpue1), 2 year (cpue2) and 3 year (cpue3) lag. Data are from the September bottom trawl groundfish survey.
- Tableau 13. Corrélation de l'abondance des classes-d'âge d'une année (cpue) à l'autre (cpue1), décalage de 2 ans (cpue2) et 3 ans (cpue3). Les données proviennent du relevé de poissons de fond de septembre.

Groundfish survey - Relevé du poisson de fond 1994 - 2008

age	variable 1	variable 2	numbers - nomb	res x 1000		log (numbers - n	ombres x	1000)
			correlation	n	p value	correlation	n	p value
3	cpue	cpue1	0.370	12	0.2370	0.414	12	0.1809
4	cpue	cpue1	-0.085	12	0.7935	-0.020	12	0.9500
5	cpue	cpue1	-0.238	12	0.4566	0.005	12	0.9870
6	cpue	cpue1	-0.071	12	0.8264	0.160	12	0.6203
7	cpue	cpue1	-0.007	12	0.9820	0.211	12	0.5101
8	cpue	cpue1	-0.197	12	0.5390	-0.211	12	0.5109
9	cpue	cpue1	0.110	12	0.7326	-0.118	12	0.7147
3	cpue	cpue2	0.689	11	0.0190	0.575	11	0.0645
4	cpue	cpue2	0.760	11	0.0067	0.652	11	0.0297
5	cpue	cpue2	0.893	11	0.0002	0.781	11	0.0045
6	cpue	cpue2	0.726	11	0.0114	0.564	11	0.0705
7	cpue	cpue2	0.301	11	0.3690	0.238	11	0.4819
8	cpue	cpue2	0.449	11	0.1659	0.022	11	0.9499
3	cpue	cpue3	0.310	10	0.3839	0.589	10	0.0729
4	cpue	cpue3	0.222	10	0.5384	0.505	10	0.1369
5	cpue	cpue3	0.077	10	0.8329	0.443	10	0.1999
6	cpue	cpue3	0.464	10	0.1767	0.447	10	0.1950
7	cpue	cpue3	0.330	10	0.3516	0.464	10	0.1770

Table 14. Spring fishery samples and landings by zone used to derive 2008 catch and weight-at-age matrices for 4T herring. Échantillons et débarquements par zone utilisés pour calculer les matrices des prises et du poids selon l'âge de 2008 pour le hareng de 4T.

Gear/ Region	Fishery			of samples d'échantillons	
Engin/ Région	Pêcherie	Zone	Lengths Longueurs	Detail biological biologique	Landings Débarquements (t)
Fixed Gear / E	ngins fixes Gillnets - Filets maillants			S.O.O.G.	Debarquements (t)
North / nord	Gaspe (16A) April-June/avril-juin	4Topq	1	1	12.5
North / nord	Chaleur (16B) April-May 3/avril-3 mai	4Tmn	2	2	231.0
North / nord	Chaleur (16B) May 4-June/4 mai-juin	4Tmn	2	3	192.3
Middle / milieu	Escuminac (16C)-WP.E.I.(16E) April-June/avril-juin	4TI	1	1	191.0
South / sud	Iles-de-la-Madeleine (16D) April-June/avril-juin	4Tf	6	6	63.4
South / sud	East P.E.I N.S. (16FG) April-June/avril-juin	4Tgj	8	7	120.9
South / sud	SE N.BSouth P.E.IN.S. (16EF) April /avril	4Th	3	3	193.1
South / sud	SE N.BSouth P.E.IN.S. (16EF) May-June/mai-juin	4Th	6	6	470.5
ixed gear / Er	ngins fixes total	4T	30	29	1474.7
Mobile Gear / E	Engins mobiles total	4T		-	0.0

Table 15. Spring spawner catch-at-age (A) and weight-at-age (B) for 4T herring fixed gear fishery.

Tableau 15. Captures (A) et poids (B) à l'âge de géniteurs de printemps, pêche aux engins fixes dans 4T.

AGE	1	2	3	4	5	6	7	8	9	10	11+	Total
1978	0	40	6249	25767	1092	2333	774	244	415	1791	754	39459
1979	100	113	7574	2954	17609	577	877	164	134	524	1426	32052
1980	0	218	9662	6926	2586	9896	1582	1003	709	478	743	33805
1981	3	395	11971	7288	2131	1527	3089	415	422	310	882	28431
1982	11	201	23561	4454	1130	487	322	320	152	106	634	31380
1983	0	216	15338	26599	2216	545	76	0	0	0	0	44990
1984	16	40	4307	13350	8112	524	86	14	7	4	0	26461
1985	0	7	5266	13283	13731	4635	610	109	32	71	0	37744
1986	0	11	2762	13960	13532	10699	3134	450	32	110	355	45044
1987	0	10	1239	6537	21422	12041	10560	4394	931	554	237	57926
1988	60	560	4053	8836	11199	16380	8518	6516	1398	154	604	58277
1989	0	0	4228	16800	6160	6144	7261	4738	2885	1030	348	49594
1990	0	128	1849	7696	3797	2113	2147	4119	1921	697	322	24790
1991	0	0	6184	12078	14817	9325	3497	3204	4844	1809	1286	57045
1992	0	0	2193	30298	11708	7714	3491	1627	1963	1446	2038	62477
1993	0	8	245	5490	40767	18761	4964	2462	1531	745	2655	77629
1994	0	0	2064	5916	24750	48258	9486	3900	1380	497	1312	97562
1995	0	0	201	13381	11054	18539	29927	6559	2181	1195	2360	85398
1996	0	0	447	1345	48019	9306	13733	9785	3114	633	1084	87466
1997	0	2	107	5486	4491	38837	7070	4215	4161	1041	186	65595
1998	0	0	788	8006	16310	2280	30767	3491	2747	2019	893	67300
1999	0	89	1814	6962	10226	11063	2436	17898	2707	1784	1256	56235
2000	0	12	2173	12300	15998	15024	7886	4562	12306	3061	1776	75099
2001	0	0	1059	12023	13942	10328	5210	3614	1463	7103	1949	56692
2002	0	2	2841	7344	19177	7834	3968	2174	1227	1132	1343	47042
2003	0	0	352	11203	11303	13534	4195	2643	1016	715	780	45741
2004	0	21	1668	2649	15461	5492	8584	3336	1215	492	1016	39934
2005	0	3	134	3972	3455	6168	2548	2198	604	177	174	19431
2006	0	1	1111	2739	5129	1694	725	355	512	92	99	12456
2007	0	2	943	1979	1648	2262	1664	821	209	142	73	9742
2008	0	70	182	2553	2842	1060	1100	178	52	19	17	8072

Table 15 (continued). Tableau 15 (suite).

AGE	1	2	3	4	5	6	7	8	9	10	11+	mean
1978		0.1532	0.1494	0.1873	0.2186	0.2512	0.2979	0.3192	0.3074	0.3422	0.3641	0.2006
1979	0.0201	0.1616	0.1627	0.2026	0.2265	0.2487	0.3128	0.3403	0.3460	0.3389	0.3582	0.2199
1980		0.1881	0.1667	0.1885	0.2328	0.2739	0.2986	0.3504	0.3568	0.3678	0.3764	0.2308
1981	0.0274	0.1526	0.1792	0.2338	0.2732	0.3229	0.3433	0.3506	0.3736	0.4214	0.4189	0.2409
1982	0.0384	0.1932	0.1730	0.2084	0.2603	0.3118	0.3676	0.3805	0.3925	0.4099	0.4435	0.1949
1983		0.1779	0.1532	0.2053	0.2361	0.2651	0.3366			0.4000	0.4400	0.1898
1984	0.0628	0.1052	0.1753	0.1958	0.2157	0.2802	0.3203	0.3986	0.4809	0.3626		0.2006
1985		0.1771	0.1684	0.1983	0.2279	0.2655	0.3132	0.3151	0 3267	0.4341		0.2159
1986		0.1109	0.1814	0.2120	0.2409	0.2600	0.3103	0.3366	0.3581	0.3198	0.3986	0.2401
1987		0.0910	0.1865	0.1961	0.2160	0.2464	0.2648	0.2749	0.3065	0.3071	0.3651	0.2357
1988	0.0405	0.0807	0.1634	0.2029	0.2392	0.2657	0.2892	0.3040	0.3192	0.3682	0.3328	0.2519
1989			0.1653	0.2012	0.2316	0.2555	0 2870	0.2991	0.3128	0.3248	0 3106	0.2404
1990		0.1522	0.1648	0.2032	0.2350	0.2688	0.2841	0.2904	0.3158	0.3153	0.3468	0.2458
1991			0.1454	0.1812	0.2188	0.2446	0.2581	0.2869	0.2983	0.3135	0.3145	0.2252
1992			0.1440	0.1713	0.2010	0.2311	0.2547	0.2737	0.2901	0.2973	0.3189	0.2021
1993		0.1347	0.1267	0.1636	0.1857	0.2063	0.2431	0.2511	0.2727	0.2969	0 2921	0.2011
1994			0.1407	0.1557	0.1772	0.1984	0.2178	0.2535	0.3051	0.2804	0.3195	0.1968
1995		0.1177	0.1844	0.1597	0.1791	0.2028	0.2211	0.2461	0.2717	0.3043	0.3301	0.2094
1996			0.1584	0 1692	0.1724	0.1919	0.2073	0.2312	0.2297	0.2745	0.2749	0.1904
1997		0.1337	0.1308	0.1621	0.1828	0.2001	0.2124	0.2316	0.2447	0.2454	0.2998	0.2028
1998			0.1366	0.1613	0.1849	0.2050	0.2196	0.2388	0.2459	0.2563	0.2776	0.2067
1999		0.1205	0.1222	0.1497	0.1749	0.2033	0.2195	0.2295	0.2429	0.2523	0.2685	0.2027
2000		0.1136	0.1322	0.1589	0.1841	0.2067	0.2292	0.2508	0 2540	0.2621	0.2738	0.2085
2001			0.1340	0.1590	0.1832	0.1987	0.2217	0.2346	0.2559	0.2576	0.2685	0.2009
2002		0.0961	0.1422	0.1651	0.1874	0.2042	0 2257	0.2497	0.2685	0.2762	0.2872	0.1972
2003		-	0.1441	0.1610	0.1839	0.2022	0.2224	0.2328	0.2522	0.2585	0.2795	0.1941
2004		0.1296	0.1349	0.1492	0.1777	0.2029	0.2279	0.2371	0.2523	0.2640	0.2869	0.1994
2005		0.1567	0.1464	0.1533	0.1733	0.2026	0.2218	0.2522	0.2529	0.2707	0.3073	0.1982
2006		0.1202	0.1413	0.1512	0.1693	0.1935	0.2131	0.2474	0.2445	0 2936	0 2532	0.1756
2007		0.1017	0.1392	0.1513	0.1692	0.1864	0.1956	0.2139	0.2495	0.2449	0.2547	0.1784
2008		0.1374	0.1442	0.1578	0 1637	0.1808	0.2031	0.2121	0.2293	0.2572	0 2757	0.1707

Table 16. Spring spawner catch-at-age (A) and weight-at-age (B) for 4T herring mobile gear fishery.

Tableau 16. Captures (A) et poids (B) à l'âge de harengs géniteurs de printemps, engins mobiles 4T.

AGE	1	2	3	4	5	6	7	8	9	10	11+	Total
1978	1390	14924	3998	24965	3932	6149	5078	1430	1513	7714	638	71731
1979	11640	12337	4754	5524	27128	4240	7565	2448	1800	3473	12960	93871
1980	737	11132	13507	12472	5812	12746	9239	4582	2802	902	424	74356
1981	0	362	1105	939	9	881	347	699	264	417	7	5031
1982	0	2344	3818	407	56	12	90	165	211	2	19	7123
1983	0	1349	7853	3570	450	1	65	71	89	0	0	13448
1984	0	619	1831	4190	2901	291	0	71	41	0	0	9944
1985	601	1132	3984	2452	3085	1153	77	0	0	0	294	12779
1986	0	4194	3982	9481	7647	7410	3070	212	514	0	60	36569
1987	0	1389	1891	2948	9966	6924	6957	3487	0	0	93	33655
1988	2708	6156	1846	1511	2446	10996	9231	5399	2433	0	2155	44881
1989	373	351	2768	4514	1605	4675	10273	4217	2238	430	69	31513
1990	46	5182	6250	7302	4236	2645	1504	5841	2964	737	318	37024
1991	32	1726	7970	2742	2482	1272	604	862	632	654	1011	19988
1992	5	829	2602	7225	3324	2156	624	330	790	527	453	18863
1993	35	3093	2350	6696	5307	2571	1463	975	1249	902	2211	26854
1994	0	44	4423	3034	5977	9268	2515	2119	907	211	1543	30041
1995	0	1418	1727	17683	5813	4677	7629	1520	936	254	1678	43336
1996	4	378	3224	2110	12018	3716	2364	2097	376	481	282	27050
1997	83	405	1500	3900	1785	8332	1035	1601	1399	146	465	20651
1998	5	298	796	1915	1514	183	1713	461	318	373	254	7829
1999	267	1744	3588	6185	3857	4063	1302	3543	1109	639	986	27283
2000	294	1352	3406	3929	1758	964	545	318	529	100	101	13296
2001	552	4221	3816	4703	2473	1158	1082	307	88	267	147	18814
2002	55	744	3009	1060	714	209	557	109	42	7	42	6547
2003	26	209	654	725	209	282	254	9	5	40	22	2434
2004	102	487	795	433	331	123	234	17	10	1	13	2546
2005	365	1781	1758	2514	333	310	41	0	41	0	0	7143
2006	56	206	785	456	1696	576	128	22	5	4	0	3936
2007	524	3520	3037	2286	1623	2042	701	251	15	0	113	14112
2008	268	2931	1781	765	1137	447	899	137	93	16	28	8503

Table 16 (continued). Tableau 16 (suite).

AGE	1	2	3	4	5	6	7	8	9	10	11+	mean
1978	0.0784	0.1303	0.1795	0.2583	0.2471	0.2774	0.3044	0.3097	0.3269	0.3696	0.3716	0.2435
1979	0.1069	0.1703	0.1869	0.2049	0.2519	0.2536	0.2902	0.2959	0.3200	0.3362	0.3417	0.2383
1980	0.1142	0.1558	0.1661	0.2194	0.2485	0.2713	0.2613	0.2719	0.2942	0.3655	0.3599	0.2242
1981	0.0274	0.1578	0.2025	0.2741	0.2715	0.4250	0.3063	0.2838	0.2900	0.3156	0.4168	0.2845
1982	0.0384	0.1325	0.2251	0.2651	0.2535	0.3171	0.4623	0.3080	0.3395	0.4346	0.4446	0.2062
1983		0.1444	0.1880	0.2304	0.2779	0.2749	0.3156	0.2435	0.4120			0.2003
1984	0.0628	0.1214	0.1920	0.2294	0.2621	0.2908	0.2978	0.3798	0.3511	0.3726		0.2287
1985	0.0827	0.1374	0.2178	0.2448	0.2986	0.3144	0.3857				0.3859	0 2427
1986		0.1442	0.1959	0.2487	0.2829	0.3146	0.3387	0.3491	0.3150		0.3921	0.2607
1987		0.1533	0.1889	0.2513	0.3045	0.3296	0.3577	0.3757	-		0.5268	0.3112
1988	0.0816	0.1135	0.1796	0.2526	0.3037	0.3361	0.3402	0.3942	0.4134		0.4428	0.2963
1989	0.0899	0.1429	0.2135	0.2576	0.2722	0.3136	0.3440	0.3639	0.3848	0.4129	0 4887	0.3136
1990	0 0784	0.1726	0.1966	0.2461	0.2805	0.2943	0.3333	0.3416	0.3516	0.4090	0.3631	0.2659
1991	0 0808	0.1437	0.1800	0.2149	0.2498	0.2661	0.3269	0.3431	0 3525	0.3527	0.3962	0.229
1992	0.0561	0.1173	0.1470	0.2010	0.2382	0.2726	0.2913	0.3124	0.3269	0.3380	0.3858	0.2230
1993	0.0695	0.1091	0.1517	0.1789	0.1941	0.2334	0.2496	0.2902	0.2807	0.3113	0.3478	0.2076
1994		0.1526	0.1562	0.1841	0.2009	0.2251	0.2583	0.2667	0.2850	0.3159	0.3309	0.2195
1995		0.1049	0.1448	0.1799	0.2014	0.2246	0.2470	0.2769	0.3006	0.3178	0.3148	0.2076
1996	0.0711	0.1160	0.1632	0.1814	0 2218	0.2298	0.2439	0.2712	0.3194	0.2980	0.3538	0.2211
1997	0.0682	0.1241	0.1533	0.1885	0.2076	0.2463	0.2578	0.2854	0.3110	0.3281	0.3249	0 2324
1998	0.0760	0.1093	0.1449	0.1706	0.2165	0.1983	0.2464	0.2623	0.2757	0.2953	0.3986	0.2148
1999	0.0627	0.1179	0.1557	0.1870	0.2294	0.2497	0.2781	0.2919	0.3080	0.3314	0.3266	0.2239
2000	0.0682	0.1306	0.1585	0.1868	0.2179	0.2477	0.2735	0.2938	0.2980	0.2998	0.3385	0.1923
2001	0.0618	0.1166	0.1492	0.1905	0.2096	0.2423	0.2558	0.2836	0.3052	0.3309	0.3278	0.1763
2002	0.0602	0.1056	0.1493	0.1760	0.2060	0.2119	0.2521	0.2810	0.2867	0.2859	0.3266	0 1692
2003	0.0777	0.0989	0.1409	0.1699	0.1775	0.2374	0.2457	0 2826	0.2919	0.2956	0.3304	0.1756
2004	0.0681	0.1099	0.1456	0.1618	0.2113	0.2358	0.2510	0.3003	0.3122	0.2909	0.3588	0.1638
2005	0.0786	0.1212	0.1461	0.1642	0.1903	0.2088	0.1972		0.2684			0.1488
2006	0 0629	0.1097	0.1450	0.1713	0.1789	0.2035	0.2344	0.3003	0.3502	0.2860		0 1724
2007	0.0597	0.1180	0.1458	0.1767	0.1861	0.1994	0.1923	0.2117	0.3013		0.1997	0.1571
2008	0.0754	0.1280	0.1416	0.1828	0.1986	0.2182	0.2153	0.2470	0 2309	0 3496	0 2529	0.1614

Table 17. Spring spawner catch-at-age (A) and weight-at-age (B) for 4T herring fishery all gears combined.

Tableau 17. Captures (A) et poids à l'âge (B) de hareng géniteurs de printemps de la pêche 4T tous les engins combinés.

AGE	1	2	3	4	5	6	7	8	9	10	11+	Total
1978	1390	14963	10246	50732	5024	8481	5852	1675	1928	9505	1392	111189
1979	11741	12450	12328	8478	44736	4818	8442	2611	1934	3998	14386	125923
1980	737	11351	23169	19398	8399	22642	10822	5585	3511	1380	1167	108161
1981	3	757	13077	8226	2140	2408	3436	1113	686	727	889	33462
1982	12	2545	27379	4861	1185	499	412	485	363	108	654	38504
1983	0	1566	23191	30170	2666	546	140	71	89	0	0	58438
1984	16	659	6139	17540	11013	815	86	85	48	4	0	36405
1985	601	1139	9250	15734	16817	5788	688	109	32	71	294	50523
1986	0	4205	6744	23441	21179	18109	6204	662	546	110	414	81614
1987	0	1399	3130	9485	31389	18965	17517	7881	931	554	330	9158
1988	2768	6716	5899	10347	13645	27375	17749	11915	3831	154	2759	10315
1989	373	351	6996	21314	7765	10819	17535	8954	5123	1459	417	8110
1990	46	5310	8099	14998	8033	4758	3650	9960	4885	1434	640	6181
1991	32	1726	14154	14820	17299	10597	4101	4066	5477	2463	2297	7703
1992	5	829	4795	37523	15031	9870	4115	1957	2753	1972	2492	8134
1993	35	3101	2595	12187	46074	21332	6428	3437	2781	1648	4866	10448
1994	0	44	6486	8950	30727	57525	12002	6019	2286	707	2855	127603
1995	0	1419	1928	31064	16867	23216	37557	8079	3117	1450	4038	12873
1996	4	378	3672	3455	60037	13022	16097	11882	3490	1115	1366	11451
1997	83	407	1607	9386	6275	47170	8105	5815	5560	1187	650	8624
1998	5	298	1584	9920	17823	2463	32480	3952	3064	2393	1147	7512
1999	267	1834	5402	13147	14083	15126	3738	21441	3816	2422	2242	8351
2000	294	1365	5579	16229	17757	15988	8430	4880	12836	3161	1877	8839
2001	552	4221	4875	16726	16415	11487	6292	3921	1551	7371	2095	75500
2002	55	746	5851	8404	19891	8043	4525	2283	1269	1139	1385	53589
2003	26	209	1006	11927	11512	13816	4449	2652	1021	755	802	4817
2004	102	508	2463	3081	15792	5614	8818	3353	1226	493	1029	42480
2005	365	1784	1892	6487	3788	6478	2587	2198	645	177	174	2657
2006	56	207	1896	3195	6825	2269	853	377	517	97	99	1639
2007	524	3523	3979	4265	3270	4304	2365	1071	223	142	186	2385
2008	268	3001	1964	3317	3979	1507	1999	315	145	36	45	1657

Table 17 (continued). Tableau 17 (suite).

GE	1	2	3	4	5	6	7	8	9	10	11+	Mean
1978	0.0784	0.1304	0.1611	0.2222	0.2409	0.2702	0.3035	0.3111	0 3227	0 3644	0 3675	0.2283
1979	0.1061	0.1703	0.1720	0.2041	0.2419	0.2530	0.2926	0.2987	0.3218	0 3365	0 3433	0 2336
1980	0.1142	0.1565	0.1663	0.2084	0.2436	0.2724	0.2667	0 2860	0 3068	0 3663	0 3704	0.2262
1981	0.0274	0.1551	0.1812	0.2384	0.2732	0.3603	0.3396	0 3087	0 3414	0.3607	0 4189	0.2475
1982	0.0384	0.1373	0.1803	0.2132	0.2600	0.3119	0.3882	0.3558	0.3617	0 4104	0 4436	0.1970
1983		0.1490	0.1650	0.2083	0.2431	0.2651	0.3269	0 2435	0 4120			0 1923
1984	0.0628	0.1205	0.1802	0.2038	0.2279	0.2840	0.3203	0.3829	0 3700	0 3626		0.2083
1985	0.0827	0.1376	0.1897	0.2056	0.2409	0.2752	0.3214	0 3151	0 3267	0.4341	0 3859	0.2227
1986		0.1441	0.1899	0.2269	0.2560	0.2824	0.3243	0 3406	0 3176	0 3198	0 3977	0 2494
1987		0.1529	0.1880	0.2132	0.2441	0.2768	0.3017	0.3195	0 3065	0 3071	0 4105	0 2635
1988	0.0807	0.1108	0.1684	0.2102	0.2508	0.2940	0.3157	0.3449	0 3790	0 3682	0 4187	0 2712
1989	0.0899	0.1429	0.1844	0.2131	0.2400	0.2806	0.3204	0.3296	0.3443	0 3507	0 3402	0 2688
1990	0.0784	0.1721	0.1893	0.2241	0.2590	0.2830	0.3044	0 3204	0 3375	0 3634	0 3549	0 2578
1991	0.0808	0.1437	0.1649	0.1874	0.2232	0.2472	0.2683	0 2988	0 3045	0 3239	0 3505	0 2262
1992	0.0561	0.1173	0.1456	0.1771	0.2092	0.2402	0.2603	0.2802	0.3007	0 3082	0 3311	0 2070
1993	0.0695	0 1092	0.1494	0.1720	0.1867	0.2096	0.2446	0 2622	0 2763	0 3048	0 3174	0 2028
1994		0.1526	0.1512	0.1653	0.1818	0.2027	0.2263	0.2581	0.2971	0 2910	0 3256	0 2022
1995		0.1049	0.1489	0.1712	0.1868	0.2072	0.2263	0.2519	0.2804	0 3066	0 3238	0.2088
1996	0.0711	0.1160	0.1626	0.1766	0.1823	0.2027	0.2127	0.2382	0 2394	0 2847	0.2911	0 1977
1997	0.0682	0.1241	0.1518	0.1731	0.1898	0.2082	0.2182	0.2464	0.2614	0 2556	0.3177	0 2099
1998	0.0760	0.1093	0.1408	0.1631	0.1876	0.2045	0.2211	0.2415	0.2490	0 2623	0 3044	0 2076
1999	0.0627	0.1180	0.1444	0.1673	0.1899	0.2158	0.2399	0.2398	0.2618	0 2732	0.2941	0 2096
2000	0.0682	0.1305	0.1483	0.1656	0.1874	0.2092	0.2320	0 2536	0 2559	0 2632	0.2773	0 2061
2001	0.0618	0.1166	0.1459	0.1678	0.1872	0.2031	0.2276	0.2384	0 2587	0.2603	0 2727	0.1948
2002	0.0602	0.1056	0.1458	0.1665	0.1881	0.2044	0.2289	0.2512	0.2691	0.2763	0.2884	0 1937
2003	0.0777	0.0989	0.1420	0.1615	0.1838	0.2030	0.2237	0.2330	0 2524	0 2605	0 2809	0.1931
2004	0.0681	0.1107	0.1384	0.1510	0.1785	0.2036	0.2285	0.2374	0.2529	0 2640	0 2878	0.1972
2005	0.0786	0.1213	0.1461	0.1575	0.1748	0 2029	0.2214	0 2522	0 2539	0 2707	0 3073	0 1848
2006	0.0629	0.1098	0.1428	0.1541	0.1717	0.1960	0.2163	0 2505	0 2457	0 2933	0 2532	0 1748
2007	0.0597	0.1179	0.1442	0.1649	0.1776	0.1926	0.1946	0.2134	0 2529	0 2449	0 2213	0 1658
2008	0.0754	0.1282	0.1419	0.1635	0.1737	0.1919	0.2086	0 2273	0 2303	0 2995	0.2613	0.1660

Table 18. Average number of standard gillnets used by fishers during the spring fishery (1 standard net = 15 fathoms) from telephone survey. **Bold values** taken from dockside monitoring data where number of records are higher than the telephone survey.

Tableau 18. Nombre moyen de filets maillants ordinaires utilisés par les pêcheurs durant la pêche du printemps (1 filet ordinaire = 15 brasses) provenant du sondage téléphonique. Les valeurs en <u>caractères gras</u> proviennent des données des observateurs à quai lorsque ceux-ci sont plus nombreux que les données du sondage téléphonique.

Year / Année	Gaspe / Gaspésie	Acadian Peninsula / Péninsule acadienne	Escuminac	WestP.E.I. / Ouest de 'ÎPÉ.	Southeast New Brunswick / Sud-est du NB.	Magdalen Islands /
1986	9	ware	25	34	26	
1987	17	delice	21	000	30	•••
1988	13	400	21	27	29	
1989	20	****	22	29	28	
1990	25	01000	23	20	28	***
1991	20	***	24	27	28	***
1992	19	*****	23	23	23	***
1993	16	****	23	23	23	***
1994	16	sit-sinte	21	21	24	
1995	7		22	18	21	-
1996	5	999	20	17	27	12
1997	15	****	19	17	25	10
1998	14	499	25	18	24	15
1999	16	19	24	21	28	14
2000	21	11	29	25	28	18
2001	20	20	27	24	28	18
2002	22	21	29	22	29	16
2003	19	9	29	26	29	20
2004	20	17	29	28	31	23
2005	20	10	28	27	29	24
2006	27	10 14 24	27	23	28	21
2007	23	24	18 23	27 23 18 19	20	
2008	19	9	23	19	23	17 12

Table 19. Spring season 2008 gillnet fishery preliminary landings (t) by month and area.
 Tableau 19. Débarquements (t) de la saison de printemps 2008 par les filets maillants par mois et par zone.

Spring				
Printemps	April	May	June	2008
Zone	avril	mai	juin	Total
16A	6.3	4.2	1.9	12.5
16B	153.0	270.3		423.3
16C	10.3	19.3		29.6
16D	3.4	59.8		63.2
16E	207.2	597.5	20.3	825.1
16F			67.3	67.3
16G	0.1		53.6	53.7
Total	380.4	951.1	143.2	1474.7

Table 20. Percent of fall spawning component present in gillnet fishery biological samples taken in the month of June. Pourcentage de la composante de géniteurs d'automne dans les échantillons Tableau 20.

biologiques recueillis des filets maillants en juin.

	East PEI - NS	West PEI - NB		North Strait
year	Est ÎPÉ - N-É	Ouest ÎPÉ N-B	Chaleurs	Détroit North.
année	4Tg	4TI	4Tmn	4Th
2000	52	53	59	1
2001	38	***	67	0
2002	29	55	0	3
2003	24	70	***	0
2004	58	59	***	
2005	60	***		
2006	70	69	***	
2007	49	***	13	***
2008	68	***	***	***

- Table 21. Results from the multiplicative model of spring spawners April and May gillnet CPUE for all areas.
- Tableau 21. Résultats du modèle multiplicatif des PUE des géniteurs de printemps pour les filets maillants en avril et mai toutes les régions.

The GLM Procedure

								(Class	Level	Info	rmati	on				
Class	Levels	, ,	alues	5													
/ear	19		1991 2007			1994	1995	199	1997	1998	1999	2000	2001	2002	2003	2004	2005
veek area	14		11 12			16 1	7 18 :	19 20	21 2	2							
Number of	Obser	vatio	ns Re	ead		3831											
lumber of	Obser	vatio	ons Us	ed		2025											
ependent	Varia	ble:	cpue														
Weight: w	vt.																
							Sum o	of									
Source				D	F	5	quare	es	Mea	n Squ	are	F V	alue	Pr	> F		
Model				3	4	5.99	3241	38	0.	17627	181	4	9.83	< . (0001		
Error				199	0	7.03	394806	67	0.	00353	743						
	Total			202	A	13.03	00000	25									

R-Square 0.459861	Coeff Var 1.207837	Root 0.05	A .			
Source		DF	Type III SS	Mean Square	F Value	Pr > F
year		18	1.99105639	0.11061424	31.27	<.0001
week		9	0.73978004	0.08219778	23.24	<.0001
area		7	1.86272738	0.26610391	75.23	<.0001

year	Ismean	CPUE kg / net-trip	
année	moyennels	PUE kg / filet-sortie	
1990	4.86	128.1	
1991	5.53	251.5	
1992	5.68	292.2	
1993	5.43	227.0	
1994	5.31	201.9	
1995	5.44	229.0	
1996	5.27	193.8	
1997	5.44	229.3	
1998	5.09	162.3	
1999	4.84	126.4	
2000	4.97	142.9	
2001	4.85	126.8	
2002	4.68	107.3	
2003	4.95	140.7	
2004	4.57	95.8	
2005	4.40	80.9	
2006	4.51	90.9	
2007	4.01	54.8	
2008	4.56	95.2	

Table 22. Spring spawner April-May gillnet catch rate at age (CPUE) for all fishing areas combined and acoustic survey index in catch rate at age used in the ADAPT-SPA population models.

Tableau 22. Taux de capture selon l'âge (PUE) des géniteurs de printemps en avril-mai pour les filets maillants de toutes régions de pêche combinées et la prise selon l'âge de l'indice du relevé acoustique utilisés dans les modèles de population ADAPT-ASP.

Age	4	5	6	7	8	9	10
CPUE GILLNET (nu			ETS MAILLA	NTS (nombr	e / filet-sorti	ie)	
1990	161.8	79.8	44.4	45.1	86.6	40.4	14.6
1991	236.4	290.0	182.5	68.5	62.7	94.8	35.4
1992	701.2	271.0	178.5	80.8	37.6	45.4	33.5
1993	79.8	592.9	272.8	72.2	35.8	22.3	10.8
1994	62.2	260.1	507.2	99.7	41.0	14.5	5.2
1995	171.4	141.6	237.5	383.4	84.0	27.9	15.3
1996	15.6	558.7	108.3	159.8	113.8	36.2	7.4
1997	94.5	77.4	669.3	121.8	72.6	71.7	17.9
1998	93.4	190.3	26.6	359.0	40.7	32.0	23.6
1999	77.2	113.4	122.7	27.0	198.5	30.0	19.8
2000	112.3	146.0	137.1	72.0	41.6	112.3	27.9
2001	133.8	155.2	115.0	58.0	40.2	16.3	79.1
2002	85.0	221.9	90.6	45.9	25.2	14.2	13.1
2003	177.5	179.1	214.5	66.5	41.9	16.1	11.3
2004	31.9	186.0	66.1	103.3	40.1	14.6	5.9
2005	83.4	72.6	129.5	53.5	46.2	12.7	3.7
2006	113.8	213.2	70.4	30.1	14.7	21.3	3.8
2007	62.4	52.0	71.4	52.5	25.9	6.6	4.5
2008	176.4	196.4	73.2	76.0	12.3	3.6	1.3
ACOUSTIC (number	x 105) / ACO	USTIQUE (nombre x 10	5)			
1994	1120	1057	888	132	24		
1995	811	179	324	219	38		
1996	188	1785	385	302	233		
1997	431	32	764	131	220		
1998	351	220	65	406	64		
1999	388	188	60	37	172		
2000	214	72	63	25	48		
2001	207	121	13	28	0		
2002	25	59	12	5	5		-
2003	296	151	126	9	15		
2004	17	24	120	0			
2004	327				0		
		14	40	6	0		
2006	237	204	17	7	0		
2007	24	63	30	0	1		
2008	77	93	28	9	15		

- Table 23. Acoustic survey spring spawners numbers-at-age (x1000) and biomass-at-age (t) for same stratum covered in Chaleurs-Miscou since 1994. Stratum names are identified in appendix 3b.
- Tableau 23. Nombre (x 1 000) et biomasse (t) selon l'âge des géniteurs de printemps du relevé acoustique pour les mêmes strates de Chaleurs-Miscou faisant l'objet d'un relevé depuis 1994. Les strates sont identifiées au tableau de l'annexe 3b.

Numbers / Nombres (x1000)

Age	Ö	1	2	3	4	5	6	7	8	9	10	11+	Total	4+
1994	79043	3014	2811	272529	112025	105682	88836	13225	2362	435	444	0	680405	323009
1995	830	8380	44905	10468	81112	17924	32437	21876	3813	383	0	0	222129	157545
1996	9543	21674	223278	193478	18819	178545	38492	30195	23280	4243	0	0	741547	293574
1997	0	9767	151464	55984	43115	3171	76360	13062	21979	7919	0	0	382822	165606
1998	3686	16399	165139	39747	35126	21984	6513	40561	6361	5493	3458	660	345126	120155
1999	20598	15768	251444	132081	38789	18818	6042	3734	17228	3214	1336	0	509053	89161
2000	1782	14900	17004	25972	21415	7164	6269	2547	4842	3769	879	933	107475	47817
2001	94084	98761	41036	11591	20677	12131	1343	2792	0	894	351	836	284497	39025
2002	1965	241459	87845	21629	2450	5864	1201	537	528	176	92	0	363747	10850
2003	0	47692	136695	27394	29568	15144	12588	919	1519	341	1366	1574	274802	63021
2004	2	9162	137053	65464	1668	2388	1228	0	0	0	0	0	216965	5284
2005	2	1331	17611	40331	32657	1380	3997	632	31	0	0	0	97971	38696
2006	6	22715	48654	17094	23714	20360	1750	742	0	220	0	0	135254	46785
2007	12	8982	40387	32767	2351	6279	2970	21	93	0	0	44	93906	11758
2008	0	2334	31494	11670	7658	9268	2781	944	1523	3	0	0	67675	22177

Riomass / Riomasse (t)

Age	0	1	2	3	4	5	6	7	8	9	10	11+	Total	4+
1994	862	134	272	42810	19005	20987	20071	3281	685	143	138	0	108383	64311
1995	8	473	5229	1417	14824	3695	7220	5096	1015	127	0	0	39099	31978
1996	260	1226	24209	30311	3288	37480	8187	7632	6356	1064	0	0	120020	64008
1997	0	604	15460	7498	8090	640	17974	3326	6286	2616	0	0	62491	38932
1998	56	1048	16830	5216	5838	4437	1470	9903	1630	1478	1035	201	49143	25992
1999	260	825	25788	18016	6931	3817	1581	1043	4992	998	387	0	64647	19748
2000	35	1012	2038	4046	3802	1533	1402	681	1380	1079	244	293	17542	10413
2001	2140	5817	4669	1807	3944	2489	312	682	0	233	99	250	22438	8008
2002	28	14073	8364	3313	466	1313	302	140	166	51	27	0	28248	2465
2003	0	3129	13678	4231	5457	3333	3085	245	452	107	385	565	34655	13628
2004	0	451	13473	8870	217	489	282	0	0	0	0	0	23776	989
2005	0	87	1544	5241	4995	195	831	152	8	0	0	0	13053	6181
2006	0	1370	4128	2338	4030	3260	373	148	0	71	0	0	15718	7882
2007	0	578	3457	3645	388	942	475	4	15	0	0	9	9515	1833
2008	0	149	3479	1561	1191	1665	494	188	268	1	0	0	8997	3808

Table 24. Relative errors on the parameter estimates of spring spawner ADAPT-VPA results using different combinations of indices and ages (MSR = mean square residual).

Tableau 24. Erreurs relatives des paramètres estimés pour l'étalonnage du modèle ADAPT-ASP des géniteurs de printemps en utilisant différentes combinaisons d'indices et d'âges (MSR = Carré moyen des résiduels).

model indices		status quo CPUE 4-10		CPUE 4-10		intrinsic wt.	
du		ACOU 4-8	CPUE 4-10	ACOU 3-8	CPUE 4-10	CPUE 4-10	
modèle		opinion	ACOU 4-8	opinion	ACOU 3-8	ACOU 4-8	CPUE 4-10
	MSR		0.436	0.443	0.441	0.353	0.272
Age		Rel. Error on es	stimates / Erre	ur relative sur	estimés		
N2006	10	0.426	0.437	0.427	0.438	0.339	0.338
N2007	10	0.389	0.403	0.393	0.406	0.314	0.313
N2008	10	0.392	0.396	0.395	0.4	0.319	0.325
N2009	4			0.703	0.701		
N2009	5	0.476	0.495	0.404	0.415	0.474	0.545
N2009	6	0.388	0.393	0.365	0.369	0.369	0.415
N2009	7	0.316	0.321	0.299	0.303	0.309	0.357
N2009	8	0.329	0.338	0.316	0.325	0.315	0.354
N2009	9	0.379	0.384	0.373	0.378	0.338	0.358
N2009	10	0.455	0.464	0.458	0.467	0.355	0.361
CPUE	4	0.156	0.156	0.156	0.156	0.126	0.127
	5	0.155	0.154	0.155	0.155	0.124	0.125
	6	0.155	0.154	0.155	0.155	0.123	0.124
	7	0.155	0.155	0.156	0.156	0.124	0.125
	8	0.158	0.157	0.159	0.158	0.126	0.126
	9	0.162	0.161	0.163	0.162	0.129	0.129
	10	0.166	0.165	0.167	0.166	0.132	0.132
ACOU				0.183	0.182	**	
	4	0.177	0.177	0.177	0.177	0.233	***
	5	0.176	0.175	0.176	0.176	0.232	
	6	0.175	0.175	0.176	0.176	0.232	
	7	0.189	0.188	0.189	0.189	0.249	
	8	0.206	0.206	0.207	0.207	0.271	
opinion		0.144		0.144			

Table 25. Diagnostics of spring spawner ADAPT-VPA results using gillnet CPUE and acoustic survey age-disaggregated population number indices (parameters are in linear scale).

Tableau 25. Données diagnostiques pour l'étalonnage du modèle ADAPT-ASP des géniteurs de printemps par les taux de captures des filets maillants et le relevé acoustique comme indices à l'âge des effectifs de la population (paramètres sont sur une échelle linéaire).

APPROXIMATE STATISTICS ASSUMING LINEARITY NEAR SOLUTION STATISTIQUES APPROXIMATIVES SUPPPOSANT RELATION LINEARE PRÈS DE LA SOLUTION

Mean square residual / Résiduel carré moyen =

0.4356

Age	Parameter estimate/ estimé	Standard error / erreur-type	Relative error / erreur relative	Bias / biais	Relative bias / Biais relatif
Population estimates in 2009	/ Valeur estimée	s de population	on en 2009		
N[200610]	1630	712	0.437	135	0.083
N[200710]	3120	1260	0.403	227	0.073
N[200810]	847	336	0.396	56	0.066
N[20095]	45300	22400	0.495	5590	0.123
N[20096]	18500	7260	0.393	1340	0.073
N[20097]	14500	4660	0.321	725	0.050
N[20098]	9490	3200	0.338	472	0.050
N[20099]	2320	890	0.384	141	0.061
N[200910]	678	315	0.464	55	0.081
Catchability / Capturabilité					
Gillnet CPUE disaggregated a	ages 4-10 / PUE	filets maillant:	s âges 4-10		
q CPUE age 4	0.0015	0.0002	0.156	0.000013	0.009
q CPUE age 5	0.0037	0.0006	0.154	0.000032	0.009
q CPUE age 6	0.0047	0.0007	0.154	0.000040	0.008
q CPUE age 7	0.0053	0.0008	0.155	0.000046	0.009
q CPUE age 8	0.0055	0.0009	0.157	0.000058	0.011
q CPUE age 9	0.0051	0.0008	0.161	0.000072	0.014
q CPUE age 10	0.0043	0.0007	0.165	0.000072	0.017
Acoustic survey disaggregate	d ages 4-8 / Rele	evé acoustique	e âges 4-8		
q Acoust. age 4	0.0036	0.0006	0.177	0.000041	0.011
q Acoust. age 5	0.0037	0.0006	0.175	0.000042	0.012
q Acoust. age 6	0.0033	0.0006	0.175	0.000036	0.011
q Acoust. age 7	0.0030	0.0006	0.188	0.000044	0.015
q Acoust. age 8	0.0044	0.0009	0.206	0.000096	0.022

Table 26. Spring spawner population numbers (x 1000) from the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices.

Effectifs de la population (x 1000) des géniteurs du printemps à partir de l'étalonnage ADAPT par les taux de captures des filets maillants et le relevé acoustique comme indices à l'âge des effectifs de la population.

	2	3	4	5	6	7	8	9	10	11+	Total 4-11
1978	72359	47708	159663	32322	31079	17372	7159	15229	52170	7640	322634
1979	69634	45783	29846	85217	21939	17829	8977	4355	10731	39161	218055
1980	55447	45806	26413	16825	29916	13630	7062	5006	1838	24383	125073
1981	204887	35186	16847	4532	6285	4575	1669	883	998	19200	54989
1982	279209	167063	17096	6454	1800	2990	721	381	120	15093	44655
1983	267918	226298	112129	9633	4218	1026	2077	162	3	11772	141020
1984	327838	217938	164370	64708	5493	2961	714	1636	53	9638	249573
1985	137394	267816	172890	118763	43064	3763	2347	508	1296	7930	350561
1986	94314	111460	210919	127363	82086	30043	2462	1823	387	7225	462308
1987	138719	73422	85170	151557	85208	50924	19017	1421	1003	5759	400059
1988	171007	112310	57288	61182	95851	52710	25992	8521	339	4745	306628
1989	220646	133946	86628	37591	37823	53901	27244	10640	3554	1573	258954
1990	556333	180333	103352	51772	23792	21255	28406	14277	4140	2518	249512
1991	270464	450691	140334	71109	35153	15199	14116	14331	7310	3591	301143
1992	180870	219879	356216	101536	42673	19272	8761	7907	6830	4681	547876
1993	623439	147335	175692	257819	69593	26065	12078	5413	4007	5435	556102
1994	76460	507627	118284	132850	169615	37838	15564	6803	1953	2043	484950
1995	147150	62560	409753	88770	81146	87303	20214	7355	3520	966	699027
1996	121776	119195	49479	307457	57501	45596	37904	9321	3234	1585	512077
1997	119106	99360	94273	37394	197708	35371	22907	20375	4506	1758	414292
1998	122192	97148	79898	68722	24966	119474	21673	13530	11688	3480	343431
1999	161118	99773	78108	56476	40254	18220	68649	14187	8323	9238	293455
2000	72334	130256	76812	52114	33584	19413	11555	36970	8189	10188	248825
2001	89222	57989	101609	48293	26750	13227	8359	5097	18765	10527	232627
2002	37370	69239	43081	68131	24824	11632	5213	3343	2781	15500	174505
2003	74295	29922	51412	27711	37928	13112	5473	2228	1601	12700	152165
2004	56108	60639	23590	31371	12392	18677	6747	2115	912	10311	106115
2005	57611	45478	47424	16538	11604	5131	7420	2533	642	7322	99114
2006	83356	45557	35527	32983	10135	3737	1894	4102	1495	6614	96487
2007	40355	68059	35587	26206	20866	6258	2293	1212	2893	6462	101777
2008	38406	29863	52132	25293	18509	13212	3006	921	791	7363	121227
2009	@ 37905	& 28737	* 22678	39689	17125	13794	9017	2177	623	6603	111706

[@] SSB 2007 multiplied by mean (2002-2006) age 2 survival ratio (number / SSB) BSR 2007 multipliée par le taux moyen (2002-2006) de survie (nombre / BSR) des âges 2

[&]amp; SSB 2006 multiplied by mean (2003-2007) age 3 survival ratio (number / SSB) BSR 2006 multipliée par le taux moyen (2003-2007) de survie (nombre / BSR) des âges 3

^{*} SSB 2005 multiplied by mean (2004-2008) age 4 survival ratio (number / SSB) BSR 2005 multipliée par le taux moyen (2004-2008) de survie (nombre / BSR) des âges 4

Table 27. Spring spawner biomass (t) from the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices.

Tableau 27. Biomasse de la population (t) des géniteurs du printemps à partir de l'étalonnage ADAPT par les taux de captures des filets maillants et le relevé acoustique comme indices à l'âge des effectifs de la population.

	2	3	4	5	6	7	8	9	10	11+	Total 4-11
1978	8215	6831	34004	7598	8070	5316	2190	4812	19587	2700	84277
1979	8045	6857	5413	19756	5417	5013	2703	1378	3536	13852	57068
1980	7145	7709	5001	3752	7680	3541	2043	1515	631	8609	32772
1981	27269	5924	3355	1081	1862	1392	479	276	332	7521	16297
1982	17126	27934	3360	1607	525	1118	251	127	45	6037	13070
1983	20268	34061	21728	2193	1107	328	639	62	1	4654	30712
1984	27641	35719	30141	14099	1443	863	253	491	20	3810	51121
1985	12774	40486	33281	26315	10786	1137	746	180	519	2967	75930
1986	10297	18022	43753	29221	21407	8976	815	577	125	3002	107876
1987	15048	12084	17140	35664	22683	14864	6122	459	313	2086	99332
1988	18551	18024	11388	14149	25677	15581	8384	2965	114	1702	79960
1989	23696	19143	16413	8443	10034	16543	8789	3666	1296	557	65740
1990	69201	29663	21007	12163	6200	6212	9101	4762	1464	888	61799
1991	28705	75925	26437	15903	8894	4187	4257	4476	2417	1282	67853
1992	17611	31805	60868	20107	9881	4888	2402	2370	2092	1533	104141
1993	48795	19504	27806	46875	14573	6318	3155	1506	1213	1700	103147
1994	7872	65232	18587	23495	32996	8240	3911	1899	554	644	90325
1995	13297	9431	65933	15601	15751	18700	4826	1979	1062	296	124148
1996	11004	15568	8026	54319	11190	9571	8801	2289	914	474	95582
1997	11189	13187	15812	6848	38521	7440	5244	5084	1115	529	80592
1998	10545	12841	12572	12382	4919	25633	4975	3352	3061	971	67864
1999	15257	12535	11986	9938	8099	4035	15805	3567	2171	2566	58167
2000	6545	17227	11881	9228	6693	4344	2850	9157	2150	2804	49107
2001	7955	8002	16027	8503	5219	2886	1966	1305	4843	2820	43570
2002	3019	9027	6714	12103	4855	2508	1246	847	744	4247	33264
2003	5733	3665	7890	4847	7410	2804	1264	561	424	3538	28737
2004	5205	7095	3454	5326	2397	4022	1555	513	235	2823	20327
2005	5235	5784	7002	2687	2208	1089	1781	622	168	2228	17786
2006	7743	5996	5330	5425	1876	783	446	1021	408	1732	17021
2007	3476	8564	5462	4335	3795	1222	493	305	710	1646	17967
2008	3360	3863	8007	4281	3417	2648	632	204	218	1862	21269
2009	3367	3705	3455	6604	3149	2783	1986	524	165	1694	20359

Table 28. Spring spawner fishing mortality for the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices.

Tableau 28. Mortalité par la pêche des géniteurs du printemps à partir de l'étalonnage ADAPT par les taux de captures des filets maillants et le relevé acoustique comme indices à l'âge des effectifs de la population.

Age	2	3	4	5	6	7	8	9	10	11+ A	v (6-8)
1978	0.258	0.269	0.428	0.187	0.356	0.460	0.297	0.150	0.223	0.223	0.371
1979	0.219	0.350	0.373	0.847	0.276	0.726	0.384	0.663	0.523	0.514	0.462
1980	0.255	0.800	1.563	0.785	1.678	1.900	1.880	1.413	1.646	0.054	1.819
1981	0.004	0.522	0.759	0.723	0.543	1.647	1.276	1.794	1.535	0.052	1.155
1982	0.010	0.199	0.374	0.225	0.362	0.164	1.296	4.682	2.989	0.049	0.607
1983	0.006	0.120	0.350	0.362	0.154	0.163	0.038	0.913	0.476	0	0.118
1984	0.002	0.032	0.125	0.207	0.178	0.033	0.141	0.033	0.087	0	0.117
1985	0.009	0.039	0.106	0.169	0.160	0.224	0.053	0.072	0.062	0.042	0.146
1986	0.050	0.069	0.131	0.202	0.277	0.257	0.349	0.398	0.374	0.065	0.294
1987	0.011	0.048	0.131	0.258	0.280	0.473	0.603	1.233	0.918	0.065	0.452
1988	0.044	0.060	0.221	0.281	0.376	0.460	0.693	0.674	0.684	0.997	0.510
1989	0.002	0.059	0.315	0.257	0.376	0.441	0.446	0.744	0.595	0.344	0.421
1990	0.011	0.051	0.174	0.187	0.248	0.209	0.484	0.469	0.477	0.327	0.314
1991	0.007	0.035	0.124	0.311	0.401	0.351	0.380	0.541	0.460	1.179	0.377
1992	0.005	0.024	0.123	0.178	0.293	0.267	0.281	0.480	0.381	0.865	0.280
1993	0.006	0.020	0.080	0.219	0.409	0.316	0.374	0.819	0.597	2.932	0.366
1994	0.001	0.014	0.087	0.293	0.464	0.427	0.550	0.459	0.504	100	0.480
1995	0.011	0.035	0.087	0.234	0.376	0.634	0.574	0.621	0.598	100	0.528
1996	0.003	0.035	0.080	0.242	0.286	0.488	0.421	0.527	0.474	2.477	0.398
1997	0.004	0.018	0.116	0.204	0.304	0.290	0.327	0.356	0.341	0.518	0.307
1998	0.003	0.018	0.147	0.335	0.115	0.354	0.224	0.286	0.255	0.448	0.231
1999	0.013	0.062	0.205	0.320	0.529	0.255	0.419	0.350	0.384	0.31	0.401
2000	0.021	0.048	0.264	0.467	0.732	0.643	0.618	0.478	0.548	0.226	0.664
2001	0.054	0.097	0.200	0.465	0.633	0.731	0.716	0.406	0.561	0.247	0.693
2002	0.022	0.098	0.241	0.386	0.438	0.554	0.650	0.536	0.593	0.104	0.547
2003	0.003	0.038	0.294	0.605	0.508	0.464	0.751	0.693	0.722	0.072	0.574
2004	0.010	0.046	0.155	0.795	0.682	0.723	0.779	0.992	0.886	0.116	0.728
2005	0.035	0.047	0.163	0.290	0.933	0.796	0.393	0.328	0.360	0.025	0.707
2006	0.003	0.047	0.104	0.258	0.282	0.289	0.247	0.149	0.074	0.017	0.273
2007	0.101	0.067	0.141	0.148	0.257	0.533	0.712	0.226	0.056	0.032	0.501
2008	0.090	0.075	0.073	0.190	0.094	0.182	0.123	0.190	0.051	0.007	0.133

Table 29. Spring spawner input parameters for the 2009 catch projections from the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices, ages 2 to 10 and 11+.

Tableau 29. Paramètres de base pour les projections des prises 2009 des géniteurs du printemps à partir de l'étalonnage ADAPT par les taux de captures des filets maillants et le relevé acoustique comme indices à l'âge des effectifs de la population, âges 2 à 10 et pour les 11+.

Population number nombres '00 January / janvid 200	Partial Recruitment recrutement partiel	Average Weights poids moyen Kg	Beg. Of year Weights / poids début d'année Kg	Natural Mortality mortalité naturelle	Age
3790	0.03	0.119	0.072	0.2	2
2873	0.14	0.143	0.098	0.2	3
2267	0.39	0.161	0.137	0.2	4
3968	1	0.174	0.166	0.2	5
1712	1	0.193	0.184	0.2	6
1379	1	0.207	0.202	0.2	7
901	1	0.230	0.220	0.2	8
217	0.77	0.243	0.241	0.2	9
62	0.33	0.279	0.264	0.2	10
660	0.33	0.279	0.264	0.2	11+

Table 30. Spring spawner catch and population projections from the ADAPT calibration using gillnet CPUE and acoustic survey age-disaggregated population number indices for ages 2 to 10 and 11+ numbers.

Tableau 30. Projections des prises et de population des géniteurs de printemps à partir de l'étalonnage ADAPT par les taux de captures des filets maillants et le relevé acoustique comme indices à l'âge des effectifs de la population, âges 2 à 10 et pour les 11+.

A-5-0	Catch (numbers) / Captures (nombres) (X 1000)	Catch biomass / Captures (biomasse) (t)	Population (numbers / nombres) (X 1000)	Population (biomass / biomasse) (t)
Age	2009	2009	2010	2010
2	359	43	37905	2729
3	1246	178	30710	3010
4	2629	423	22403	3069
5	10685	1859	16198	2689
6	4610	890	22899	4213
7	3714	769	9880	1996
8	2427	558	7959	1751
9	468	114	5202	1254
10	62	17	1361	359
Ages				
2 - 10	26200	4851	154517	21070
3 - 10	25841	4808	116612	18341
4 - 10	24595	4630	85902	15331
11+	654	182	5271	1392

Table 31. Inputs for the medium-term stochastic projections, spring spawner component.

Tableau 31. Paramètres de base pour les prévisions à moyen terme, composante des reproducteurs de printemps.

a) beginning-of-year weights at age / poids à l'âge du début de l'année (kgs, 2000 – 2009)

				Age	(yr)				
2	3	4	5	6	7	8	9	10	11
0.0905	0.1323	0.1547	0.1771	0.1993	0.2238	0.2466	0.2477	0.2625	0.2752
0.0892	0.1380	0.1577	0.1761	0.1951	0.2182	0.2352	0.2561	0.2581	0.2679
0.0808	0.1304	0.1559	0.1776	0.1956	0.2156	0.2391	0.2533	0.2674	0.2740
0.0772	0.1225	0.1535	0.1749	0.1954	0.2138	0.2309	0.2518	0.2647	0.2786
0.0928	0.1170	0.1464	0.1698	0.1935	0.2154	0.2305	0.2427	0.2581	0.2738
0.0909	0.1272	0.1477	0.1625	0.1903	0.2123	0.2401	0.2455	0.2616	0.2848
0.0929	0.1316	0.1500	0.1645	0.1851	0.2095	0.2355	0.2489	0.2729	0.2618
0.0861	0.1258	0.1535	0.1654	0.1819	0.1953	0.2148	0.2517	0.2453	0.2548
0.0875	0.1294	0.1536	0.1693	0.1846	0.2004	0.2103	0.2217	0.2752	0.2529
0.0888	0.1289	0.1524	0.1664	0.1839	0.2017	0.2202	0.2408	0.2645	0.2565

b) past 20 years recruitment rate to age 2 / taux de recrutement à l'âge 2 des 20 dernières années

p) bs	ist 20 years recru
	1.90135
	1.63074
	2.26933
	7.11061
	4.15110
	2.97233
	9.37408
	0.74673
	1.45183
	1.35954
	0.96395
	1.29466
	2.04984
	1.08410
	1.60562
	0.81485
	1.85464
	1.92565
	2.24599
	4.45266

Table 32. Spring spawner component 10 year projection assuming recruitment rates to age 2 for past 10 years (instead of 20) and inter annual variability in M assumed to be medium (SD=0.03, 15% CV).

Tableau 32. Prévision de la composante des reproducteurs de printemps échelonnée sur dix ans en utilisant les taux de recrutement à l'âge 2 des 10 dernières années (au lieu de 20) et avec la variance interannuelle de M à un niveau moyen (SD=0.03, 15% CV).

Probability (SSB > 22,000 t in 2019)
Probabilité (BSR > 22,000 t en 2019)
0.972
0.604
0.228
0.037

Table 33. Fall fishery samples and landings by zone used to derive 2008 catch and weight-at-age matrices for 4T herring. Échantillons et débarquements par zone de la pêche d'automne utilisés pour déterminer les matrices des prises et du poids selon l'âge en 2008 pour le hareng de 4T.

Gear/ Region	Fishery		Samples	/ échantillons	
Engin/ Région	Pêcherie	Zone		Detail biological/ Biologiques	Landings Débarquements (t)
Fixed Gear / E	ngins fixes Gillnets / Filets maillants				Description (t
North / nord	Gaspé/Chaleur (16AB) August / août 11-16	4Tmno	5	2	4597.2
North / nord	Gaspé/Chaleur (16AB) August / août 17-23	4Tmno	5	3	3918.4
North / nord	Gaspé/Chaleur (16AB) August / août 24 - Sept. 6	4Tmno	6	4	7095.4
North / nord	Gaspé/Chaleur (16AB) Sept. 7 +	4Tmno	6	5	3162.0
Middle / milieu	Escuminac-WP.E.I. (16CE) July / juillet - August / août	4TI	3	3	2547.3
Middle / milieu	Escuminac-WP.E.I. (16CE) Sept. 1-12	4TI	4	3	2538.8
Middle / milieu	Escuminac-WP.E.I. (16CE) Sept. 13 +	4TI	2	2	2579.2
South / sud	I. de la Madeleine (16D) fall / automne	4Tf	1	1	62.2
South / sud	Fisherman's Bank (16G) July - August / août 23	4Tgj	3	3	177.4
South / sud	Fisherman's Bank (16G) August / août 24 - Sept. 13	4Tgj	3	3	4150.9
South / sud	Fisherman's Bank (16G) Sept. 14 +	4Tgj	2	2	2395.1
South / sud	Pictou (16F) July / juillet - Sept. 19	4Th	5	2	2381.4
South / sud	Pictou (16F) Sept. 20-27	4Th	2	2	2123.9
South / sud	Pictou (16F) Sept. 28 +	4Th	1	1	811.5
Fixed gear / Er	ngins fixes total	4T	48	36	38540.7
Mobile Gear / E	Engins mobiles Purse Seine / Senne coulissante				
North / nord	East of / est de Grande-Anse (16B) Sept Oct.	4Tmn	7	6	1479.3
North / nord	East of / est de Grande-Anse (16B) Nov.	4Tmn	5	4	1815.0
North / nord	East of / est de Grande-Anse (16B) Dec.	4Tmn	4	3	916.4
Mobile Gear / E	Engins mobiles total	4T	16	13	4210.7
Fall all gears /	Tous les engines - automne	4T	64	49	42751.4

Table 34. Fall spawner catch-at-age (A) and weight-at-age (B) for 4T herring fixed gear fishery.
 Tableau 34. Captures (A) et poids à l'âge (B) de hareng géniteurs d'automne 4T engins fixes.

AGE	1	2	3	4	5	6	7	8	9	10	11+	Total
1978	0	41	2245	5187	3340	834	739	4719	79	95	2110	19389
1979	910	16	579	11360	5301	2805	686	1001	878	314	430	24280
1980	0	84	7923	4157	6141	904	1532	328	364	313	114	21840
1981	0	66	6135	24254	6740	2599	1102	1178	172	281	183	42710
1982	0	0	2122	14334	16731	5042	2749	1114	391	111	95	42690
1983	0	0	759	18688	9761	13729	2305	1808	573	63	272	47958
1984	0	0	891	23487	14028	8526	6314	1548	572	230	101	55697
1985	0	0	230	6203	29369	15576	8677	7688	2532	746	35	71057
1986	0	383	1539	31838	16794	35300	19231	9234	4015	692	975	120000
1987	0	17	8657	36262	28935	20065	36341	15006	9698	4620	2124	161727
1988	0	0	1336	21033	41945	19753	12643	13740	7128	2723	2241	122543
1989	0	0	332	13973	22256	29559	14232	6478	8419	3289	2501	101038
1990	0	14	3444	22503	20387	29014	59351	18586	9969	10566	6693	180527
1991	0	0	160	39557	10254	7411	10782	13253	4822	2567	4718	93523
1992	0	0	23	11341	54037	12905	7275	8546	9528	4225	7220	115100
1993	0	0	82	2690	30922	36266	5451	2856	2924	1357	2583	85131
1994	0	0	0	8866	12153	48387	71082	11670	9575	8776	14553	185062
1995	0	0	24	3855	41848	16976	50442	48424	8886	6160	14977	191591
1996	0	0	4	19625	19964	46582	10328	23539	23716	4941	10851	159549
1997	0	0	1105	17511	64158	13038	20124	3785	6789	6254	3936	136701
1998	0	0	59	23119	32609	46987	11459	16799	3057	5724	8694	148507
1999	0	0	265	38298	68545	38389	22741	5119	5513	1709	2914	183491
2000	0	0	356	36290	108803	41188	12169	8210	1632	1466	944	211058
2001	0	0	953	29973	64320	59547	20510	4414	2129	544	679	183068
2002	0	1	487	47732	38611	39704	29622	7439	1827	1465	750	167637
2003	0	0	419	22235	77674	28190	28252	25933	5828	1866	1437	191835
2004	0	0	16	34127	38965	39931	15072	12949	7493	2108	831	151493
2005	0	0	0	7748	82678	54285	43596	13870	10964	4613	585	218339
2006	0	0	56	10351	52000	70501	31444	19462	9904	5263	1783	200764
2007	0	0	716	6354	27618	57124	57996	24154	7339	4497	1935	187733
2008	0	0	1933	34321	15218	28206	32842	40751	9820	5527	4049	172668

Table 34 (continued). Tableau 34 (suite).

AGE	1	2	3	4	5	6	7	8	9	10	11+	mean
1978		0.0761	0.1398	0.2441	0.2867	0.3145	0.3313	0.3700	0.3935	0.3964	0 4323	0 2978
1979	0.0230	0.1319	0.1940	0.2448	0.2838	0 3182	0.3537	0 3960	0 4167	0 4345	0 4596	0 2740
1980		0.2116	0.2073	0.2488	0 3200	0 3691	0 3449	0 4049	0 4494	0 4464	0 4890	0 275
1981		0 1745	0 2198	0.2585	0.3111	0.3606	0.3951	0.4092	0 4578	0 4702	0 4711	0.278
1982	-	-	0.2227	0 2671	0 3037	0 3375	0.3772	0 3822	0 3974	0.3857	0 4725	0 2996
1983	-		0.1919	0.2517	0.2848	0.3172	0.3484	0.3738	0 3714	0 4236	0 4326	0 2881
1984	-		0 2232	0.2464	0 2866	0.3209	0.3491	0.4002	0 4137	0 4027	0 5074	0 2863
1985		-	0.2151	0.2463	0 2911	0.3315	0.3623	0.3843	0.4124	0 4376	0 4659	0 3205
1986		0 1748	0 1996	0.2464	0 2882	0.3254	0.3702	0.3909	0 4034	0 4444	0 4360	0.3135
1987	-	0.1740	0 2361	0.2483	0.2822	0.3175	0 3449	0.3725	0 3912	0.3924	0.4310	0.3106
1988			0 2304	0 2627	0 2911	0.3285	0 3543	0.3871	0.4148	0.4115	0.4484	0 3216
1989			0 2183	0 2552	0 2948	0 3251	0 3526	0 3782	0 3918	0.4167	0 4300	0 3269
1990	-	0 1482	0.1964	0 2449	0 2841	0 3245	0 3483	0 3705	0.3935	0 4086	0.4322	0.3329
1991		-	0 1932	0.2312	0 2658	0 2994	0.3351	0 3540	0 3727	0.3939	0.4137	0.290
1992			0 1995	0 2242	0 2546	0 2822	0 3090	0 3429	0 3506	0 3638	0.4048	0.286
1993			0 1720	0 2202	0 2403	0 2651	0 2886	0 3292	0.3499	0.3513	0 3881	0 2662
1994		-		0.2101	0.2377	0 2595	0.2884	0 3194	0 3438	0 3593	0 3875	0.2897
1995		0 1028	0 1840	0 2066	0 2308	0 2509	0 2806	0 2998	0.3360	0.3627	0 3840	0 2837
1996	•		0.1720	0.2210	0 2449	0.2574	0 2842	0 3067	0 3259	0 3629	0.3956	0.2832
1997		-	0 1760	0 2055	0 2346	0 2625	0.2771	0 3125	0 3299	0 3449	0 3989	0.2560
1998	-	•	0.1593	0 2123	0 2334	0 2591	0 2848	0 2953	0 3266	0 3424	0 3727	0 2635
1999			0 1642	0.2108	0.2369	0 2506	0.2765	0 3020	0 3213	0.3547	0.3722	0.2467
2000	-		0 1688	0 2114	0 2326	0 2586	0.2761	0.3004	0.3284	0 3406	0.3783	0.2412
2001			0.1699	0 2106	0 2345	0 2534	0 2747	0.3010	0 3204	0 3473	0 3735	0 2443
2002		0 0299	0 1873	0 2189	0 2399	0 2575	0 2789	0 2943	0 3188	0 3207	0 3512	0 2493
2003	-		0 1632	0 2078	0 2317	0 2548	0.2701	0.2913	0.3112	0.3319	0 3515	0 2502
2004	40		0 1462	0.2024	0 2226	0 2425	0 2620	0 2844	0.3024	0.3133	0 3450	0 2384
2005	*	-		0 1972	0 2247	0 2379	0 2499	0 2728	0 2846	0 2953	0 3263	0 2399
2006			0 1668	0 1994	0 2216	0 2395	0.2521	0.2625	0 2869	0 2933	0 3113	0.2414
2007			0 1492	0.1976	0 2039	0 2242	0 2391	0 2465	0 2605	0 2687	0 2911	0 2307
2008		0 0949	0 1280	0 1778	0.2102	0 2209	0.2353	0.2467	0.2504	0 2645	0 2842	0 2237

Table 35. Fall spawner catch-at-age (A) and weight-at-age (B) for 4T herring fishery mobile gears.

Tableau 35. Captures (A) et poids à l'âge (B) de hareng géniteurs d'automne 4T engins mobiles.

AGE:	1	2	3	Mobile gea	5	6	7	8	9	10	11+	Total
19:78	0	1351	21416	22996	20891	3457	3520	11235	1147	319	12909	99241
19779	156	5949	11164	7004	4467	6845	1873	2939	3549	1574	10244	55764
19180	151	2944	41286	12687	11171	6350	3264	1404	2206	1170	1559	84192
19881	18	1118	10011	11787	1076	297	447	31	187	0	0	24971
19882	0	1018	8889	3583	6955	839	134	155	104	25	262	21963
19883	0	222	5709	7031	2911	4140	720	167	224	30	91	21245
19884	0	398	1075	4823	4988	2748	1795	386	88	11	39	16352
19825	0	331	1905	3088	7416	6558	2956	2205	1838	574	0	26870
19886	0	347	2524	2618	3185	5965	3526	1565	1614	208	218	21770
19887	0	1722	3376	2381	1039	1884	4130	3900	1087	871	374	20764
19888	98	3948	2631	3080	3533	1806	4052	2822	1074	1401	1629	26073
1989	0	827	1157	2396	4848	4534	1896	2249	2702	1599	1229	23437
19990	0	71	4463	3357	3653	2019	1961	1548	2084	988	296	2046
1991	0	0	5240	19572	4337	1350	1945	1505	521	972	2587	38028
1992	0	45	672	5610	13502	3147	2384	1530	1818	1334	4882	34925
1993	0	311	4383	2717	4589	7615	2376	1989	1768	2440	3366	31554
19994	0	15	295	8104	2858	7512	10114	1372	1069	1099	2376	34815
1995	0	22	2367	3661	19841	6405	10058	10439	2206	1013	2545	58556
19996	0	392	2743	12927	4596	9978	3906	2960	1962	824	846	41134
19997	0	429	4939	6165	9408	1891	3993	774	1434	787	914	30735
19998	0	51	1553	3198	3544	3743	767	2461	340	1107	1267	18030
19999	0	714	8102	12108	7918	4067	3410	2527	1631	520	775	41769
20000	0	1030	6761	12369	11896	3386	1664	845	293	281	214	38739
20001	146	1999	13165	7330	9821	8763	2685	1844	1192	350	342	47638
20002	0	1030	4481	14152	11194	9317	7594	1906	552	802	395	51423
2003	0	201	8566	15654	12129	7511	7827	7610	2503	852	675	63529
20004	0	519	4592	15333	6674	4551	2944	2144	1777	506	337	39377
20005	0	760	4321	17546	15182	5070	1254	690	660	286	145	45913
20006	0	988	2235	3548	8332	5557	1507	490	321	233	52	23263
20007	0	1492	15377	5592	2950	3601	2063	511	114	46	23	31769
20008	0	1385	8622	5671	1677	904	621	771	3	24	0	19679

Table 35 (continued). Tableau 35 (suite).

(B) Fall	spawner w	reight (kg)	- Mobile	gear / Gé	niteurs d'a	automne p	ooids (kg)	- Engins	mobiles			
AGE	1	2	3	4	5	6	7	8	9	10	11+	meai
1978		0.1002	0 1490	0 2157	0 2562	0.2865	0 3016	0 3415	0.3441	0.3220	0.3991	0.253
1979	0 0682	0 1245	0 1807	0 2355	0 2735	0.2977	0.2911	0 3446	0 3687	0 3587	0.3862	0.270
1980	0.0324	0.1081	0 1397	0.1757	0.2309	0 2469	0 3001	0 3409	0 3834	0.3974	0.4336	0.189
1981	0 0798	0 1110	0.1814	0.2261	0.2558	0.3136	0.3656	0.2342	0 2614	0.4745		0.208
1982		0 0948	0 1681	0 2206	0 2589	0.2786	0.3751	0 3342	0.3554	0.4561	0 4345	0 213
1983		0 1029	0 1702	0.2129	0 2444	0.2833	0 3162	0 3756	0 3487	0 2224	0 4560	0 225
1984		0.0955	0.1461	0.2084	0.2484	0.2786	0 3048	0 3292	0 3728	0.3916	0.4327	0 240
1985		0 0898	0.1899	0.2169	0 2578	0.2805	0.3106	0 3265	0 3815	0 4185		0.275
1986		0 1157	0 1585	0.2069	0.2511	0.2764	0.3064	0 3282	0 3350	0 3625	0 4038	0 263
1987		0 1151	0 1730	0.2178	0 2509	0 2793	0 3217	0 3438	0 3446	0 3938	0 3957	0 270
1988	0.0740	0 0952	0 1584	0 2141	0.2614	0 3110	0 3242	0 3424	0 3432	0.4165	0.3844	0 260
1989		0 0995	0 1582	0 2110	0 2489	0 2797	0 3194	0.3236	0 3276	0 3607	0 3769	0.277
1990	-	0 1051	0 1709	0 2125	0 2362	0.2885	0 3095	0 3231	0.3286	0 3379	0 3860	0.252
1991			0 1498	0 1907	0 2212	0 2591	0 2796	0 3062	0 2994	0 3276	0 3792	0.217
1992	_	0 0724	0 1272	0 1704	0.2106	0 2385	0 2576	0 2803	0 2904	0 3022	0 3362	0 236
1993		0 0759	0.1277	0.1558	0 1969	0 2251	0.2584	0 2780	0 3105	0.3214	0 3525	0 232
1994	-	0 0870	0.1340	0 1594	0.1768	0 2105	0 2294	0.2664	0 2843	0 3022	0 3396	0.216
1995		0 0726	0.1182	0.1644	0.1785	0 1989	0 2252	0 2398	0.2712	0 3102	0 3363	0 208
1996		0.0893	0 1328	0 1665	0 1892	0 2120	0 2252	0 2506	0.2717	0 2929	0 3329	0 199
1997		0 0816	0.1414	0 1660	0 1928	0.2293	0 2288	0 2527	0 2605	0 2980	0 3422	0 196
1998		0 0757	0 1259	0 1647	0.1876	0.2243	0 2479	0 2451	0 3035	0 3008	0 3880	0 219
1999		0 0715	0 1278	0.1551	0.1901	0.2131	0 2537	0.2718	0.2935	0.3224	0.3578	0 187
2000		0 0767	0 1308	0 1619	0 1846	0 2083	0 2306	0 2620	0 2599	0.2632	0 3154	0 172
2001	0 0233	0 0784	0 1268	0 1564	0 1837	0 2004	0 2151	0.2417	0.2541	0.2487	0.2960	0 169
2002		0 0839	0.1480	0 1877	0 2223	0 2448	0 2721	0 2898	0 3211	0 3288	0 3606	0 221
2003	-	0 0809	0 1377	0 1687	0 1972	0 2187	0 2404	0 2599	0.2767	0.3179	0.3106	0 203
2004		0.0802	0.1309	0 1602	0 1808	0 2040	0 2234	0 2478	0 2648	0.2786	0 2910	0.181
2005		0 0787	0 1246	0.1519	0 1773	0 2011	0 2275	0 2815	0 2846	0 2973	0.3561	0 169
2006		0.0790	0.1323	0 1638	0 1809	0 2065	0 2162	0 2299	0 2644	0 3023	0.3475	0.181
2007 2008	-	0 0860	0 1267 0 1326	0 1499 0 1523	0 1661 0 1594	0 1824 0 1798	0 1977 0 1847	0 2155 0 1974	0 2290 0 2101	0 2585 0 2178	0 2049	0 145

Table 36. Fall spawner catch-at-age (A) and weight-at-age (B) for 4T herring fishery, all gears.

Tableau 36. Captures (A) et poids à l'âge (B) de hareng géniteurs d'automne. 4T tous les

Tableau 36. Captures (A) et poids à l'âge (B) de hareng géniteurs d'automne, 4T tous les engins.

AGE	1	2	3	4	5	6	7	8	9	10	11+	Total
1978	0	1392	23661	28183	24231	4291	4259	15955	1226	414	15018	118630
1979	1067	5965	11743	18364	9769	9650	2559	3939	4428	1888	10674	80044
1980	151	3008	49209	16843	17313	7254	4797	1732	2569	1484	1673	106032
1981	18	1184	16146	36041	7816	2896	1549	1209	359	281	183	67681
1982	0	1018	11011	17917	23687	5881	2883	1270	495	137	357	64654
1983	0	222	6468	25719	12672	17870	3025	1975	797	93	363	69203
1984	0	398	1966	28311	19017	11274	8109	1935	660	241	140	72049
1985	0	331	2135	9291	36786	22133	11633	9893	4370	1320	35	97926
1986	0	730	4063	34457	19979	41265	22757	10800	5629	900	1192	141771
1987	0	1739	12032	38643	29974	21949	40471	18907	10785	5491	2498	182490
1988	98	3948	3967	24113	45478	21559	16695	16561	8202	4124	3870	148616
1989	0	827	1490	16369	27104	34093	16128	8726	11121	4888	3730	124476
1990	0	85	7907	25860	24040	31033	61332	20134	12053	11555	6989	200988
1991	0	0	5399	59129	14591	8761	12727	14758	5343	3538	7305	131550
1992	0	45	695	16951	67540	16052	9659	10075	11346	5558	12103	150024
1993	0	311	4465	5406	35511	43881	7827	4845	4692	3797	5949	116685
1994	0	15	295	16969	15011	55899	81197	13043	10644	9875	16929	219877
1995	0	22	2391	7516	61688	23380	60500	58863	11092	7173	17522	250147
1996	0	392	2747	32551	24561	56561	14234	26499	25678	5764	11696	200683
1997	0	429	6044	23676	73566	14929	24117	4559	8223	7041	4850	167435
1998	0	51	1612	26317	36152	50730	12225	19260	3397	6831	9962	166537
1999	0	714	8367	50406	76463	42456	26150	7646	7143	2229	3688	225260
2000	0	1030	7117	48659	120699	44574	13833	9055	1925	1747	1157	249797
2001	146	1999	14118	37303	74140	68310	23195	6259	3321	894	1021	230705
2002	0	1030	4968	61883	49806	49021	37216	9345	2379	2267	1144	219059
2003	0	201	8985	37889	89803	35700	36079	33543	8332	2719	2112	255364
2004	0	519	4608	49460	45639	44482	18016	15093	9270	2614	1168	190871
2005	0	760	4321	25294	97860	59354	44850	14560	11623	4899	730	264252
2006	0	988	2291	13899	60332	76057	32951	19952	10224	5497	1836	224027
2007	0	1492	16093	11947	30568	60724	60059	24665	7452	4543	1959	219502
2008	0	1385	10555	39993	16896	29110	33464	41521	9823	5551	4049	192347

Table 36 (continued). Tableau 36 (suite).

AGE	1	2	3	4	5	6	7	8	9	10	11+	mean
1978		0 0995	0.1481	0.2209	0 2604	0 2920	0 3067	0.3499	0.3473	0.3391	0 4038	0 2609
1979	0.0296	0.1246	0.1814	0 2412	0 2791	0 3037	0 3079	0 3577	0 3783	0.3713	0.3891	0.2713
1980	0 0324	0 1103	0 1506	0 1938	0 2625	0 2622	0.3144	0 3531	0 3927	0 4077	0 4373	0.2067
1981	0 0798	0.1145	0.1960	0 2479	0 3035	0 3558	0.3866	0 4047	0 3556	0 4702	0.4711	0.2522
1982		0.0948	0.1786	0 2578	0.2905	0 3291	0.3771	0 3763	0 3886	0.3987	0 4446	0.2702
1983		0.1029	0.1728	0.2411	0 2755	0.3093	0.3408	0 3739	0 3650	0 3595	0 4385	0.2689
1984		0 0955	0 1810	0.2399	0 2766	0.3106	0.3393	0 3860	0 4083	0 4022	0 4865	0.2759
1985		0.0898	0 1926	0 2366	0.2844	0.3164	0.3491	0 3714	0 3994	0 4293	0 4659	0.3080
1986		0.1467	0.1740	0 2434	0.2823	0 3183	0.3603	0 3818	0 3838	0 4254	0.4301	0.3058
1987		0.1157	0.2184	0.2464	0.2811	0.3142	0 3426	0 3666	0 3865	0 3926	0 4257	0 306
1988	0 0740	0 0952	0.1826	0.2565	0.2888	0 3270	0.3470	0 3795	0 4054	0 4132	0 4215	0.3110
1989	•	0 0995	0 1716	0 2487	0 2866	0.3191	0 3487	0 3641	0 3762	0 3984	0.4125	0 3176
1990		0 1123	0 1820	0 2407	0 2768	0 3222	0.3471	0.3668	0 3823	0 4026	0 4303	0 3247
1991	-		0.1511	0.2178	0 2525	0 2932	0 3266	0 3491	0 3656	0 3757	0.4015	0 2697
1992		0 0724	0 1296	0 2064	0.2458	0 2736	0.2963	0.3334	0 3410	0 3490	0 3771	0 274
1993	-	0 0759	0 1285	0.1878	0 2349	0.2582	0 2794	0 3082	0 3351	0 3321	0 3680	0 2570
1994		0 0870	0 1340	0.1859	0.2261	0 2530	0 2810	0 3138	0 3378	0 3530	0 3808	0.2782
1995	-	0.0727	0.1189	0 1860	0.2140	0.2367	0.2714	0 2892	0 3231	0 3553	0 3770	0 2662
1996	-	0 0893	0 1328	0.1994	0.2345	0.2494	0 2680	0 3004	0.3217	0 3529	0 3910	0 266
1997		0.0816	0 1477	0 1952	0.2292	0.2583	0 2691	0 3023	0 3178	0 3397	0 3882	0.2450
1998		0 0757	0 1271	0.2065	0 2289	0 2566	0 2825	0 2889	0 3243	0 3356	0 3746	0 2587
1999		0.0715	0 1290	0 1974	0 2321	0 2470	0 2735	0 2920	0 3149	0 3471	0 3692	0 2357
2000		0 0767	0 1327	0.1988	0 2278	0 2548	0 2707	0 2968	0 3180	0 3281	0 3667	0 230
2001	0 0233	0.0784	0 1297	0 1999	0 2277	0 2466	0 2678	0 2835	0.2966	0 3086	0 3475	0 228
2002	-	0 0838	0 1518	0.2118	0 2359	0 2551	0 2775	0 2934	0 3193	0 3236	0 3544	0.242
2003		0 0809	0 1389	0.1916	0.2271	0 2472	0 2637	0 2841	0 3008	0 3275	0 3384	0.238
2004		0 0802	0 1310	0.1893	0.2165	0 2386	0 2557	0 2792	0 2952	0 3066	0 3294	0 226
(A) 2005		0 0787	0 1246	0.1658	0.2174	0 2348	0 2493	0 2732	0 2846	0 2955	0 3322	0 227
2006		0 0790	0 1332	0 1903	0.2160	0 2371	0 2505	0 2617	0 2862	0 2937	0 3322	0 235
2007		0.0860	0 1277	0 1753	0 2003	0 2217	0 2377	0 2458	0 2600	0 2686	0 2900	0 233
2008		0 0932	0 1317	0.1742	0 2052	0.2196	0 2344	0 2457	0 2503	0 2643	0 2842	0 215

Table 37. Fall spawners numbers-at-age (X 1000) and biomass-at-age (t) from the acoustic survey same stratum covered in Chaleurs-Miscou since 1994. Stratum are identified in Appendix 1e.

Tableau 37. Nombre (X 1 000) et biomasse (t) selon l'âge des géniteurs d'automne pour les mêmes strates de Chaleurs-Miscou faisant l'objet d'un relevé acoustique depuis 1994. Les strates sont identifiées à l'annexe 1e.

ge	1	2	3	4	5	6	7	8	9	10	11+	Total	4+
1994	2182	2180	6252	205940	54832	32546	20250	7824	0	0	867	332873	322259
1995	336	12161	20326	9533	48113	7732	14774	25552	1898	0	238	140663	107840
1996	10826	146151	219769	212752	40297	68763	14897	12120	0	1102	2004	728682	351935
1997	0	286708	320376	140833	59259	11770	29655	17270	10036	2693	342	878942	271858
1998	313	52819	222965	81941	42216	23828	4004	21771	2553	3483	2672	458565	182468
1999	2305	35276	355790	193968	49090	28394	13271	1235	3619	3921	1700	688571	295199
2000	3555	60441	136488	203342	136784	38700	12665	9427	4888	3626	1858	611776	411291
2001	26577	100380	69256	29750	17448	15987	1755	666	528	204	26	262577	66364
2002	690	238895	50262	22198	5926	2809	2935	486	366	90	0	324656	34809
2003	447	52061	267984	69356	19748	4465	5944	7722	1335	502	0	429565	109073
2004	0	10978	77705	75385	18305	4728	370	614	0	1619	0	189705	101021
2005	29	30968	75025	274997	147347	25706	7240	113	402	132	905	562863	456841
2006	0	183624	81166	48344	80791	53328	6941	1611	623	376	0	456804	192014
2007	0	151699	134613	28181	11870	7369	5421	22	247	234	0	339656	53344
200/	0												
2008	9	50386	98632	56681	7753	4800	4975	3275	476	180	0	227167	78141
2008 Biomas	9 s / Bior	50386 masse					4975						78141
2008 Biomass ge	9 s / Bior	50386 masse 2	3	4	5	6	7	8	9	10	11+	Total	78141
2008 Biomass ge 1994	9 s / Bior 1 43	50386 masse 2 156	3 766	4 31579	5 8854	6 6395	7 4325	8 1782	9	10	11+	Total 54181	78141 4+ 53224
2008 Siomass ge 1994 1995	9 s / Bior 1 43 17	50386 masse 2 156 784	3 766 2397	4 31579 1561	5 8854 8503	6 6395 1302	7 4325 3279	8 1782 6155	9 0 507	10 0	11+ 288 67	Total 54181 24569	78141 4+ 53224 21373
2008 Siomas: ge 1994 1995 1996	9 s / Bior 1 43 17 768	50386 masse 2 156 784 12379	3 766 2397 27459	4 31579 1561 31864	5 8854 8503 7077	6 6395 1302 13030	7 4325 3279 2951	8 1782 6155 2933	9 0 507 0	10 0 0 266	11+ 288 67 621	Total 54181 24569 99357	78141 4+ 53224 21373 58742
2008 Siomass ge 1994 1995 1996 1997	9 s / Bior 1 43 17 768 0	50386 masse 2 156 784 12379 20978	3 786 2397 27459 40971	4 31579 1561 31864 22065	5 8854 8503 7077 11193	6 6395 1302 13030 2471	7 4325 3279 2951 6778	8 1782 6155 2933 3536	9 0 507 0 2592	10 0 0 266 687	11+ 288 67 621 106	Total 54181 24569 99357 111355	78141 4+ 53224 21373 58742 49427
2008 Biomass ge 1994 1995 1996 1997 1998	9 s / Bior 1 43 17 768 0 6	50386 masse 2 156 784 12379 20978 4563	3 766 2397 27459 40971 25641	4 31579 1561 31864 22065 11790	5 8854 8503 7077 11193 7078	6 6395 1302 13030 2471 4522	7 4325 3279 2951 6778 904	8 1782 6155 2933 3536 4926	9 0 507 0 2592 613	10 0 0 266 687 904	11+ 288 67 621 106 681	Total 54181 24569 99357 111355 61622	78141 4+ 53224 21373 58742 49427 31419
2008 iomas: ge 1994 1995 1996 1997 1998 1999	9 s / Bior 1 43 17 768 0 6 41	50386 masse 2 156 784 12379 20978 4563 2460	3 766 2397 27459 40971 25641 43284	4 31579 1561 31864 22065 11790 28886	5 8854 8503 7077 11193 7078 9088	6 6395 1302 13030 2471 4522 5818	7 4325 3279 2951 6778 904 3111	8 1782 6155 2933 3536 4926 320	9 0 507 0 2592 613 937	10 0 0 266 687 904 831	11+ 288 67 621 106 681 502	Total 54181 24569 99357 111355 61622 95265	78141 4+ 53224 21373 58742 49427 31419 49493
2008 iomas: ge 1994 1995 1996 1997 1998 1999 2000	9 s / Bior 1 43 17 768 0 6 41 76	50386 masse 2 156 784 12379 20978 4563 2460 4728	3 766 2397 27459 40971 25641 43284 19093	4 31579 1561 31864 22065 11790 28886 34566	5 8854 8503 7077 11193 7078 9088 27700	6 6395 1302 13030 2471 4522 5818 8802	7 4325 3279 2951 6778 904 3111 3109	8 1782 6155 2933 3536 4926 320 2590	9 0 507 0 2592 613 937 1363	10 0 0 266 687 904 831 1059	11+ 288 67 621 106 681 502 638	Total 54181 24569 99357 111355 61622 95265 103710	78141 4+ 53224 21373 58742 49427 31419 49493 79827
2008 Siomass ge 1994 1995 1996 1997 1998 1999 2000 2001	9 5 / Bior 1 43 17 768 0 6 41 76 723	50386 masse 2 156 784 12379 20978 4563 2460 4728 7193	3 766 2397 27459 40971 25641 43284 19093 8855	4 31579 1561 31864 22065 11790 28886 34566 4654	5 8854 8503 7077 11193 7078 9088 27700 3088	6 6395 1302 13030 2471 4522 5818 8802 3139	7 4325 3279 2951 6778 904 3111 3109 379	8 1782 6155 2933 3536 4926 320 2590 151	9 0 507 0 2592 613 937 1363 127	10 0 0 266 687 904 831 1059 60	11+ 288 67 621 106 681 502 638 8	Total 54181 24569 99357 111355 61622 95265 103710 28381	78141 4+ 53224 21373 58742 49427 31419 49493 79827 11607
2008 iomass ge 1994 1995 1996 1997 1998 1999 2000 2001 2002	9 s / Bior 1 43 17 768 0 6 41 76 723 13	50386 masse 2 156 784 12379 20978 4563 2460 4728	3 766 2397 27459 40971 25641 43284 19093 8855 6185	4 31579 1561 31864 22065 11790 28886 34566 4654 3225	5 8854 8503 7077 11193 7078 9088 27700 3088 1067	6 6395 1302 13030 2471 4522 5818 8802 3139 584	7 4325 3279 2951 6778 904 3111 3109 379 626	8 1782 6155 2933 3536 4926 320 2590 151 117	9 0 507 0 2592 613 937 1363 127 96	10 0 0 266 687 904 831 1059 60 24	11+ 288 67 621 106 681 502 638 8	Total 54181 24569 99357 111355 61622 95265 103710 28381 29888	78141 4+ 53224 21373 58742 49427 31419 49493 79827 11607 5740
2008 Siomass ge 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	9 s / Bior 1 43 17 768 0 6 41 76 723 13 29	50386 masse 2 156 784 12379 20978 4563 2460 4728 7193 17949	3 766 2397 27459 40971 25641 43284 19093 8855 6185 32525	4 31579 1561 31864 22065 11790 28886 34566 4654 3225 10876	5 8854 8503 7077 11193 7078 9088 27700 3088 1067 3446	6 6395 1302 13030 2471 4522 5818 8802 3139 584 951	7 4325 3279 2951 6778 904 3111 3109 379 626 1396	8 1782 6155 2933 3536 4926 320 2590 151 117 1931	9 0 507 0 2592 613 937 1363 127 96 361	10 0 0 266 687 904 831 1059 60 24 151	11+ 288 67 621 106 681 502 638 8 0	Total 54181 24569 99357 111355 61622 95265 103710 28381 29888 55525	78141 53224 21373 58742 49427 31419 49493 79827 11607 5740 19112
2008 Siomass ge 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004	9 s / Bior 1 43 17 768 0 6 41 76 723 13	50386 masse 2 156 784 12379 20978 4563 2460 4728 7193 17949 3870 871	3 766 2397 27459 40971 25641 43284 19093 8855 6185 32525 9799	4 31579 1561 31864 22065 11790 28866 34566 4654 3225 10876 11194	5 8854 8503 7077 11193 7078 9088 27700 3088 1067 3446 2903	6 6395 1302 13030 2471 4522 5818 8802 3139 584 951 919	7 4325 3279 2951 6778 904 3111 3109 379 626 1396 84	8 1782 6155 2933 3536 4926 320 2590 151 117 1931 136	9 0 507 0 2592 613 937 1363 127 96 361 0	10 0 0 266 687 904 831 1059 60 24 151 382	11+ 288 67 621 106 681 502 638 8 0 0	Total 54181 24569 99357 111355 61622 95265 103710 28381 29888 55525 26283	78141 53224 21373 58742 49427 31419 49493 79827 11607 5740 19112 15618
2008 Siomass ge 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003	9 43 17 768 0 6 41 76 723 13 29 0	50386 masse 2 156 784 12379 20978 4563 2460 4728 7193 17949 3870	3 766 2397 27459 40971 25641 43284 19093 8855 6185 32525	4 31579 1561 31864 22065 11790 28886 34566 4654 3225 10876	5 8854 8503 7077 11193 7078 9088 27700 3088 1067 3446	6 6395 1302 13030 2471 4522 5818 8802 3139 584 951	7 4325 3279 2951 6778 904 3111 3109 379 626 1396	8 1782 6155 2933 3536 4926 320 2590 151 117 1931	9 0 507 0 2592 613 937 1363 127 96 361	10 0 0 266 687 904 831 1059 60 24 151	11+ 288 67 621 106 681 502 638 8 0	Total 54181 24569 99357 111355 61622 95265 103710 28381 29888 55525	78141 4+ 53224 21373 58742 49427 31419 49493 79827 11607 5740 19112

0 4266

Table 38. Average number of standard nets used during the fall inshore fishery (1 standard net = 15 fathoms) from telephone survey. **Bold underlined values** taken from Dockside monitoring data where number of records are higher than the telephone survey.

Tableau 38. Nombre moyen de filets ordinaires utilisés pour la pêche côtière d'automne (1 filet ordinaire = 15 brasses) provenant du sondage téléphonique. Les valeurs en caractères gras soulignés proviennent des données des observateurs à quai lorsque ceux-ci sont plus nombreux que les données du sondage téléphonique.

Year / année	Acadian Peninsula / Péninsule acadienne	Escuminac	Nova Scotia Novelle Écosse	East P.E.I. Est î.P.É.	West P.E.I. Ouest Î.P.É.
1986	5	9	7	9	8
1987	5	9	7	7	7
1988	5	6	6	7	7
1989	5	9	6	6	6
1990	5	11	6	7	7
1991	5	7	6	7	7
1992	5	9	5	5	11
1993	6	7	4	5	7
1994	5	8	5	7	10
1995	5	8	6	7	7
1996	5	8	6	6	6
1997	5	8	5	7	7
1998	5	7	6	8	7
1999	6	8	6	8	9
2000	5	9	6	8	8
2001	5	9	7	8	9
2002	6	9	7	8	9
2003	5	8	6	8	8
2004	6	8	7	10	10
2005	6	8	6	8	8
2006	6	8	5	8	12
2007	6	10	4	8	7
2008	6	10 10	6	8	7

Table 39. Percentage of nets that are 2 5/8" in the fall gillnet fishery weighted by landings per area.

Tableau 39. Pourcentage de filets ayant un maillage de 2 5/8 po pour la pêche d'automne pondéré par les débarquements par zone.

%	Year / Année	%	Year /
			Année
58	1997	75	1986
60	1998	92	1987
64	1999	91	1988
70	2000	89	1989
72	2001	81	1990
79	2002	79	1991
81	2003	68	1992
82	2004	63	1993
87	2005	61	1994
91	2006	54	1995
88	2007	56	1996
96	2008		

Table 40. Average number of standard gillnets of 15 fathoms (nets) and number of nethauls (net*hauls) from telephone survey used in the main fishing areas of the fall inshore fishery.

Tableau 40. Nombre moyen de filets maillants ordinaires de 15 brasses (filets) et de filetslevées (filets*levées) utilisés dans les zones proncipales de la pêche côtière d'automne provenant du sondage téléphonique.

	GASPE		BAIE DES C	HALEURS	ESCUMINAC	,	WEST PEI		NOVA SCO	TIA	EAST PEI	
	nets filets	nets*hauls filets*levées	nets filets	nets*hauls filets*levées		nets*hauls filets*levées	nets filets	nets*hauls filets*levées	nets filets	nets*hauls filets*levées		nets*haul
1986	5.6	6.8	5.2	7.7	9.4	9.4	7.8	7.8	6.8	9.6	8.7	9.0
1987	3.7	8.6	4.8	13.2	8.6	10.0	6.8	8.6	6.6	10.0	6.8	8.5
1988	5.0	9.9	4.8	12.1	6.4	18.9	7.3	13.6	6.4	10.2	6.6	9.
1989	5.9	11.3	5.1	12.8	8.6	29.2	5.9	8.5	5.6	6.4	6.1	8.0
1990	4.9	13.3	5.1	20.6	11.4	50.6	7.5	15.1	5.8	9.0	6.7	8.
1991	4.8	10.9	5.0	17.8	7.1	21.8	6.8	16.0	5.5	8.2	6.8	9.5
1992	4.4	13.8	4.9	15.5	8.7	23.9	10.9	15.2	4.5	5.3		6.8
1993	5.4	11.6	5.6	18.8	7.0	24.4	7.1	8.4	4.3	5.5		5.9
1994	5.8	12.0	5.4	17.8	8.2	25.4	10.0	14.1	5.3	8.5		9.0
1995	5.7	11.8	5.2	18.4	8.3	29.1	7.1	11.2	6.1	13.4		12.4
1996	4.5	9.3	4.8	17.2	8.0	24.1	6.1	8.9		11.1		8.
1997	5.4	11.7	5.1	13.3	7.5	22.1	6.8	7.8	5.1	9.0	1	8.9
1998	5.1	19.1	5.3	22.1	7.0	23.1	6.8	13.5	6.0	20.6		9.3
1999	5.7	16.0	5.5	23.0	7.9	30.1	8.9	21.5	5.7	13.1	8.2	14.5
2000	5.4	12.2	5.5	15.9	8.8	15.9	7.8	12.0	5.7	10.1	8.3	17.8
2001	5.2	13.4	5.3	21.1	8.6	20.3	7.2	12.5		17.6		10.5
2002	5.1	12.7	5.5	19.6	8.9	23.3	8.8	15.5		14.4		13.
2003	5.9	20.0	5.4	22.3	7.8	28.0	7.6	12.0	6.3	11.0		11.
2004	6.8	25.7	5.6	23.2	7.5	17.4	9.5	11.9		10.3		13.7
2005	6.8	20.7	5.6	18.5		15.4	8.0	12.9		8.4	8.4	9.5
2006	5.4	16.7	5.8	19.1	7.5	19.2	6.7	15.0		5.6		12.0
2007	6.0	18.0	5.9	23.0		10.5	7.4	8.7	4.4	4.8		9.8
2008	5.6	17.2	6.1	21.0		15.0	8.7	14.8		9.6		13.9

Table 41. Results of GLM fall spawner catch and effort data (CPUE1 kg/net-day) from landing statistics.

Tableau 41. Résultats du modèle multiplicatif des PUE (PUE1 kg/filet-jour) de géniteurs d'automne des filets maillants provenant des débarquements comptabilisés.

Niveaux \					
/ear / année 31		80 1981 1982 198 93 1994 1995 199			
		05 2006 2007 200		2000 2001	2002
	1 2 3 4 5 6				
week / semaine 19	27 28 29 30	31 32 33 34 35 3	36 37 38 39 40 4	1 42 43 44	45
Number of Observation			4360		
Number of Observation	s Used / obs	ervations utilis	iées 4329		
Dependent Variable: 0	PUE1 / PUE1				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
our ce	Dr.	Squar es	mean square	L AUTHE	Pr > r
Model	55	4733.556363	86.064661	143.33	<.0001
Error	4273	2565.796745	0.600467		
Corrected Total	4328	7299.353108			
R-Square Coeff Va	r Root	MSE cpue Mea	in		
0.648490 13.0186	7 0.774	898 5.95226	99		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
/ear / année	30	1887.068573	62.902286	104.76	<.0001
week / semaine	18	1114.414334	61.911907	103.11	<.0001
area / zone	7	218.518884	31.216983	51.99	<.0001
year	C	PUE1 / PUE1	year		CPUE1 / PUE1
année	kg/net-	day / filet-jour	année		kg/net-day / filet-jour
1978		78.6	1993		396.6
1979		52.6	1994		384.9
1980		48.5	1995		283.6
1981		90.9	1996		282.1
1982		85.3	1997		387.7
1983		129.8	1998		427.1
1984		196.7	1999		461.7
1985		222.2	2000		515.6
1986		350.6	2001		488.6
1987		396.1	2002		513.8
1988		391.6	2003		477.3
1989		536.8	2004		401.3
1990		434.2	2005		541.5
1991		568.9	2006		621.0
1992		482.5	2007		582.4
			2008		489.7

Table 42. Results of GLM fall spawner catch and effort data (CPUE2 kg/net*hauls-day) from landing statistics and telephone survey.

Tableau 42. Résultats du modèle multiplicatif des PUE (PUE2 kg/filet*levées-jour) de géniteurs d'automne des filets maillants provenant des débarquements comptabilisés et du sondage téléphonique.

Class Levels Va						
Niveaux Va						
1	1991 1992 199		3 1984 1985 198 6 1997 1998 199 8			
	2 3 4 5 6 7					
week / semaine 19 2	27 28 29 30 3:	1 32 33 34 35 3	6 37 38 39 40 4	1 42 43 44	45	
Number of Observation:			4360			
Number of Observation:	Used / obser	rvations utilis	ées 4329			
Dependent Variable: CF	PUE2 / PUE2					
		Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F	
Model	55	2854.173651	51.894066	83.23	<.0001	
Error	4273	2664.140307	0.623482			
Corrected Total	4328	5518.313958				
R-Square Coeff Var						
9.517218 14.68648	0.78966	5.37643	6			
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
/ear / année	30	871.561188	29.052040	46.60	<.0001	
Week / semaine Area / zone	18 7	1023.893685 279.109774	56.882983 39.872825	91.23	<.0001	
dea / zone	,	2/9.109//4	39.8/2823	63.95	<.0001	
year	CPI	JE2 / PUE2	year		CPUE2 / PUE2	
	hauls-day / filet		année	kg/net*hai	ıls-day / filet*levées-jour	
1978		72.9	1993		209.4	
1979		50.0	1994		166.8	
1980		45.7	1995		124.1	
1981		93.4	1996		139.8	
1982		85.3	1997		212.5	
1983		128.2	1998		162.5	
1984		202.8	1999		163.7	
1985		225.6	2000		242.3	
1986		282.1	2001		211.1	
1987		223.8	2002		233.8	
1988		190.5	2003		200.6	
1989		291.6	2004		175.4	
1990		173.9	2005		275.1	
1991		243.4	2006		321.3	
1992		230.0	2007		303.1	
			2008		208.2	

Table 43. Fall spawner catch rate at age index from gillnets (CPUE1 and CPUE2) used in the ADAPT-VPA population models 1 and 2.

Tableau 43. Indice des géniteurs d'automne selon le taux de capture selon l'âge aux filets maillants (PUE1 et PUE2) utilisés dans les modèles de population ADAPT-ASP 1 et 2.

CI	PUE1 (Numb	er / net-day)	/ PUE1 (No	mbre / filets	-jour)		C	PUE2 (Numl	per / net*haul	s-day) / PUE2	(Nombre / file	te*levées-jou	r)	
Age	4	5	6	7	8	9	10	4	5	6	7	8	9	10
1978	70.6	45.5	11.4	10.1	64.2	1.1	1.3				,		3	
1979	89.8	41.9	22.2	5.4	7.9	6.9	2.5							
1980	33.6	49.6	7.3	12.4	2.6	2.9	2.5							
1981	185.6	51.6	19.9	8.4	9.0	1.3	2.1							
1982	95.6	111.6	33.6	18.3	7.4	2.6	0.7							
1983	175.6	91.7	129.0	21.7	17.0	5.4	0.6							
1984	289.8	173.1	105.2	77.9	19.1	7.1	2.8							
1985	60.5	286.5	151.9	84.6	75.0	24.7	7.3							
1986	296.7	156.5	329.0	179.2	86.1	37.4	6.4	238.7	125.9	264.7	144.2	69.2	30.1	5.2
1987	285.9	228.2	158.2	286.6	118.3	76.5	36.4	161.6	128.9	89.4	161.9	66.9	43.2	20.6
1988	209.0	416.7	196.2	125.6	136.5	70.8	27.1	101.7	202.8	95.5	61.1	66.4	34.5	13.2
1989	227.2	361.8	480.6	231.4	105.3	136.9	53.5	123.4	196.6	261.1	125.7	57.2	74.4	29.1
1990	162.6	147.3	209.6	428.9	134.3	72.0	76.3	65.1	59.0	84.0	171.8	53.8	28.9	30.6
1991	827.7	214.6	155.1	225.6	277.3	100.9	53.7	354.1	91.8	66.3	96.5	118.6	43.2	23.0
1992	166.2	791.8	189.1	106.6	125.2	139.6	61.9	79.2	377.5	90.1	50.8	59.7	66.6	29.5
1993	47.1	541.0	634.5	95.4	50.0	51.2	23.7	24.8	285.7	335.1	50.4	26.4	27.0	12.5
1994	63.6	87.2	347.3	510.2	83.8	68.7	63.0	27.6	37.8	150.5	221.1	36.3	29.8	
1995	20.1	218.3	88.6	263.1	252.6	46.4	32.1	8.8	95.5	38.8	115.2	110.6	20.3	27.3 14.1
1996	122.5	124.6	290.8	64.5	146.9	148.0	30.8	60.7	61.8	144.1	31.9	72.8	73.4	
1997	194.0	710.8	144.5	223.0	41.9	75.2	69.3	106.3	389.5	79.2	122.2	23.0	41.2	15.3
1998	252.4	356.0	512.9	125.1	183.4	33.4	62.5	96.0	135.4	195.1	47.6	69.8		38.0
1999	390.6	699.1	391.5	231.9	52.2	56.2	17.4	138.5	247.9	138.8	82.2	18.5	12.7	23.8
2000	367.6	1102.0	417.2	123.2	83.2	16.5	14.8	172.7	517.9	196.1	57.9	39.1	19.9 7.8	6.2
2001	327.4	702.7	650.5	224.1	48.2	23.3	5.9	141.5	303.6	281.1	96.8	20.8		7.0
2002	586.8	474.7	488.1	364.2	91.4	22.5	18.0	267.0	216.0	222.1	165.7	41.6	10.0	2.6
2003	221.2	772.6	280.4	281.0	257.9	58.0	18.6	92.9	324.7	117.8	118.1		10.2	8.2
2004	379.2	433.0	443.7	167.5	143.9	83.3	23.4	165.8	189.3	194.0	73.2	108.4 62.9	24.4	7.8
2005	80.1	854.7	561.2	450.7	143.4	113.3	47.7	40.7	434.2	285.1	229.0	72.8	36.4	10.2
2006	132.7	666.4	903.5	403.0	249.4	126.9	67.5	68.6	344.8	467.4	208.5		57.6	24.2
2007	85.5	371.4	768.3	780.0	324.9	98.7	60.5	44.5	193.3	399.8		129.0	65.7	34.9
2008	435.1	192.9	357.6	416.3	516.6	124.5	70.1	185.0	82.0	152.0	405.9 177.0	169.1 219.7	51.4 52.9	31.5 29.8

Table 44. Relative errors on the parameter estimates of fall spawner ADAPT-VPA results using different combinations of indices and ages (MSR = mean square residual).

Erreurs relatives des paramètres estimés pour l'étalonnage du modèle ADAPT-ASP des géniteurs d'automne en utilisant différentes combinaisons d'indices et d'âges (MSR = Carré moyen des résiduels).

model indices		statquo CPUE 1	CPUE 1 kg/net-day	CPUE 2 kg/net*hauls-day	CPUE 1 groundfish 3-8	CPUE 1 acoustic 3-6
du modèle		opinion	kg / filet-jour	kg/ filet*levées-jour	groundiisii 3-8	acoustic 3-6
MSR		0.272	0.278	0.188	0.383	0.438
N2009	4	-		-	0.644	0.690
N2009	5	0.505	0.544	0.451	0.374	0.414
N2009	6	0.413	0.420	0.351	0.318	0.354
N2009	7	0.367	0.377	0.32	0.288	0.363
N2009	8	0.363	0.374	0.324	0.312	0.393
N2009	9	0.266	0.281	0.252	0.271	0.339
N2009	10	0.247	0.255	0.233	0.265	0.330
CPUE	4	0.097	0.098	0.095	0.113	0.121
	5	0.096	0.097	0.094	0.113	0.121
	6	0.096	0.097	0.093	0.113	0.121
	7	0.096	0.097	0.094	0.113	0.121
	8	0.096	0.098	0.094	0.113	0.122
	9	0.097	0.098	0.095	0.114	0.122
	10	0.096	0.098	0.094	0.113	0.122
acoustic	3					0.183
	4			-		0.177
	5			-		0.176
	6					0.177
	7					
	8					
groundfish	3			-	0.178	
	4				0.171	_
	5				0.170	_
	6				0.170	
	7				0.171	-
	8				0.172	
opinion		0.114			0.172	

Table 45. Diagnostics of fall spawner ADAPT-VPA results using the gillnet CPUE1 and CPUE2 age-disaggregated indices in the model formulations (parameters are in linear scale).

Tableau 45. Données diagnostiques pour l'étalonnage du modèle ADAPT-ASP des géniteurs d'automne avec l'indice des PUE1 et PUE2 en nombre-à-l'âge des filets maillants (paramètres sont sur une échelle linéaire).

APPROXIMATE STATISTICS ASSUMING LINEARITY NEAR SOLUTION STATISTIQUES APPROXIMATIVES SUPPPOSANT RELATION LINÉAIRE PRÈS DE LA SOLUTION CPUE1 (Number / net-day) / PUE1 (Nombre / filets-jour)

	0.278	S DES RESIDUS	CARRES MOYE	E RESIDUALS / (MEAN SQUAR
Relative	Bias /	Relative	Standard	Parameter	Age /
bias	Dias /	error /	error /	estimate /	Age /
Biais relatif	Biais	Erreur relative	Erreur type	Estimé du paramètre	Åge
on en 2008	populati	aleur estimée de	ates in 2008 /	opulation estima	F
0.148	86127	0.544	317717	583637	5
0.082	7343	0.420	37704	89754	6
0.061	7288	0.377	44893	119220	7
0.056	6505	0.374	43639	116648	8
0.042	8242	0.281	55398	197160	9
0.034	2741	0.255	20314	79636	10
llants)	filets mai	urabilité (PUE1	et CPUE1) /ca	atchability (Gillne	C
0.003	000002	0.098 0.	0.000069	0.000699	4
0.004	000007	0.097 0.	0.000173	0.001776	5
0.004	000010	0.097 0.	0.000219	0.002256	6
0.005	000013	0.097 0.	0.000256	0.002637	7
0.005	000015	0.098 0.	0.000296	0.003029	8
0.005	000015	0.098 0.	0.000266	0.002722	9
0.006	000017	0.098 0.	0.000276	0.002832	10

CPUE2 (Number / net*hauls-day) / PUE2 (Nombre / filets*levées-jour)
MEAN SQUARE RESIDUALS / CARRÉS MOYENS DES RÉSIDUS: 0.188

Relative	Bias /	Relative error /	Standard error /	Parameter estimate /	Age /
Biais relatif	Biais	Erreur relative	Erreur type	Estimé du paramètre	Âge
ion en 2008	née de populat	Valeur estim	ates in 2008 /	Population estim	
0.102	53911	0.451	238919	529500	5
0.057	4625	0.351	28361	80762	6
0.044	4467	0.32	32586	101911	7
0.042	3944	0.324	30774	94883	8
0.032	4841	0.252	37811	149973	9
0.027	1552	0.233	13370	57503	10
aillants)	PUE2 filets ma	apturabilité (l	et CPUE2) /ca	Catchability (Gilln	(
0.003	0.000001	0.095	0.000031	0.000327	4
0.003	0.000003	0.094	0.000093	0.000989	5
0.004	0.000005	0.093	0.000127	0.00136	6
0.004	0.000007	0.094	0.000149	0.00159	7
0.005	0.000007	0.094	0.000149	0.00158	8
0.005	0.000008	0.095	0.000142	0.0015	9
0.006	0.000008	0.094	0.000137	0.00145	10

Table 46. Fall spawner population numbers (x1000) at beginning of year from ADAPT calibration using the gillnet CPUE1 and CPUE2 age disaggregated indices in the model.

Tableau 46. Effectifs de la population (x1000) des géniteurs d'automne au début de l'année à partir de la formulation ADAPT d'après les indices des PUE1 et PUE2 en nombre-à-l'âge des filets maillants.

	CPUE1 (Num	iber / net-da	y) / PUE1 (N	ombre / filet	s-jour)							CPUE2 (Nur	nber / net*hai	ils-day) / PUE	2 (Nombre / fi	lets*levées-ic	our)					
Age	2	3	4	5	6	7	8	9	10	11+	4+	2	3	4	5	6	7	8	9	10	11+	4+
1978	136189	117782	71199	51802	12477	15205	26496	5717	932	33793	217621	136186	117780	71199	51802	12477	15205	26496	5717	932	33793	217621
1979	416032	110245	75146	33072	20779	6369	8625	7526	3578	14641	169736	416017	110242	75145	33071	20779	6369	8625	7526	3578	14641	169734
1980	347726	335231	79675	45022	18309	8396	2925	3543	2228	3826	163924	347704	335219	79673	45021	18309	8396	2925	3543	2228	3826	163921
1981	478035	281977	230142	50084	21362	8499	2609	856	636	2148	316336	477999	281959	230132	50083	21361	8499	2609	856	636	2148	316324
1982	672296	390312	216294	155970	33967	14880	5564	1056	380	1863	429974	672237	390283	216279	155962	33966	14880	5564	1056	380	1863	429950
1983	367311	549510	309619	160927	106365	22516	9589	3414	423	1392	614245	367264	549461	309596	160915	106358	22515	9589	3414	423	1392	614202
1984	475821	300529	444059	230299	120326	70996	15709	6074	2079	1077	890619	475745	300490	444019	230280	120316	70991	15708	6074	2078	1077	890543
1985	711558	389210	244276	338022	171402	88349	50818	11118	4378	2240	910603	711452	389148	244245	337989	171386	88341	50814	11117	4378	2240	910510
1986	448562	582276	316730	191610	243589	120389	61853	32705	5191	4202	976269	448449	582188	316679	191584	243563	120376	61846	32702	5191	4202	976143
1987	283921	366592	473057	228256	138866	162286	78089	40920	21710	5811	1148995	283836	366499	472986	228215	138844	162264	78078	40914	21707	5810	1148818
1988	304091	230884	289278	352454	159874	93929	96503	46942	23815	15365	1078160	303971	230814	289202	352395	159840	93912	96485	46933	23810	15362	1077939
1989	1043430	245403	185450	215094	247588	111471	61876	64102	31050	24888	941519	1042998	245305	185392	215031	247540	111443	61862	64087	31043	24882	941280
1990	633655	853541	199573	137072	151681	171994	76738	42799	42472	38037	860366	633284	853188	199493	137025	151630	171955	76715	42788	42460	38027	860093
1991	193857	518716	691679	140096	90586	96271	85866	44742	24220	49249	1222709	193651	518412	691390	140031	90548	96229	85834	44723	24210	49230	1222195
1992	496325	158716	419813	512974	101547	66266	67353	57016	31816	50385	1307170	495784	158547	419564	512737	101494	66235	67319	56990	31801	50362	1306502
1993	188401	406316	129318	328413	359135	68686	45554	46070	36473	51420	1065069	187932	405873	129180	328209	358941	68642	45529	46042	36452	51389	1064384
1994	502033	153969	328631	100997	236871	254491	49180	32929	33489	63176	1099764	500136	153584	328268	100884	236704	254332	49144	32908	33466	63133	1098839
1995	327722	411016	125793	253746	69170	143689	135533	28550	17414	55076	828971	325977	409463	125478	253449	69077	143553	135403	28521	17397	55022	827900
1996	510354	268296	334352	96209	152312	35672	63544	58352	13446	37218	791105	505488	266867	333080	95951	152069	35597	63433	58247	13423	37160	788960
1997	878328	417489	217181	244395	56703	74047	16469	28327	24828	25836	687786	865430	413505	216012	243354	56492	73850	16408	28237	24743	25769	684865
1998	710001	718727	336352	156471	134079	33015	38998	9390	15811	30795	754911	689472	708167	333091	155514	133229	32843	38836	9340	15737	30670	749260
1999	573826	581254	586988	251645	95609	64352	16081	14750	4645	23117	1057187	541809	564446	578342	248975	94826	63659	15941	14619	4604	22956	1043922
2000	874644	469164	468334	435127	137420	40343	29292	6342	5703	17420	1139981	826340	442950	454573	428049	135240	39707	28729	6228	5597	17255	1115378
2001	921333	715168	377692	339573	247875	72537	20631	15859	3465	16320	1093952	817302	675619	356230	328310	242093	70757	20112	15399	3372	16098	1052371
2002	1574463	752518	572781	275596	211350	141603	38584	11275	9997	14474	1275660	1396498	667345	540402	258028	202140	136880	37132	10851	9621	14217	1209271
2003	783027	1288130	611622	413171	180813	128973	82506	23192	7092	16966	1464335	719065	1142426	541889	386668	166442	121443	78646	22005	6745	16447	1340285
2004	466044	640907	1046517	466568	257520	115919	73200	37542	11523	15359	2024148	426612	588539	927224	409480	235851	104166	67050	34402	10556	1 - 1 - 1	
2005	240842	381096	520568	812176	340845	170798	78683	46355	22407	18606	2010438	226869	348811	477693	714513	294117	153071	69066	41326	19840	14652	1803381
2006	995042	196498	308112	403377	576763	225633	99551	51317	27509	28514	1720776	955096	185058	281680	368276	496834	187409	85069	43452		17236	1786862
2007	90420	813779	158810	239716	275920	403688	155053	63557	32817	39266	1368827	629889	781074	149444	218076	247199	338279	123778	51714	23400	25295	1511415
2008	62598	72682	651734	119246	168719	171302	276419	104737	45320	53156	1590633	551606	514362	624958	111579	151010	147821	222901		26385	33270	1188145
2009	^500015	&500983	*451959	497510	82411	111932	110142	188918	76894	71971	1591737		&450366	*411593	475589	76137	97444	90940	79151 145132	35628 55952	42985 55713	1416033 1408500

[^] SSB 2007 multiplied by mean (2004-2006) age 2 survival ratio (number / SSB)_BSR 2007 multipliée par le taux moyen (2004-2006) de survie (nombre / BSR) âges 2

[&]amp; SSB 2006 multiplied by mean (2005-2007) age 3 survival ratio (number / SSB)_BSR 2006 multipliée par le taux moyen (2005-2007) de survie (nombre / BSR) âges 3

^{*} SSB 2005 multiplied by mean (2006-2008) age 4 survival ratio (number / SSB)_BSR 2005 multipliée par le taux moyen (2006-2008) de survie (nombre / BSR) âges 4

Table 47. Fall spawner population biomass (t) at beginning of year from ADAPT calibration using the gillnet CPUE1 and CPUE2 age disaggregated indices in the model.

Tableau 47. Biomasse (t) de la population des géniteurs d'automne au début de l'année d'après les indices des PUE1 et PUE2 en nombre-à-l'âge des filets maillants.

	PUE1 (Num	ber / net-day	/ PUE1 (No	ombre / filet:	s-jour)							CPUE2 (Num	ber / net*hau	is-day) / PUE	(Nombre / fil	ets*levées-jo	ur)					
Age	2	3	4	5	6	7	8	9	10	11+	4+	2	3	4	5	6	7	8	9	10	11+	4
1978	10031	13666	13992	12493	3547	4319	8918	1920	295	13568	59052	10031	13666	13992	12493	3547	4319	8918	1920	295	13568	59052
1979	47134	14808	14203	8211	5844	1909	2857	2738	1285	5318	42366	47132	14807	14203	8211	5844	1909	2857	2738	1285	5318	42365
1980	28776	45911	14937	11329	4952	2594	964	1328	875	1542	38522	28774	45909	14937	11329	4952	2594	964	1328	875	1542	38521
1981	43841	41457	44463	12145	6528	2706	931	303	273	941	68290	43837	41454	44461	12145	6528	2706	931	303	273	941	68288
1982	47191	55832	48617	41857	10734	5451	2122	419	143	852	110195	47187	55828	48614	41855	10734	5451	2122	419	143	852	110189
1983	28489	70317	64257	42890	31886	7540	3601	1265	158	582	152179	28486	70311	64253	42886	31884	7540	3601	1265	158	582	152169
1984	31989	41008	90412	59471	35200	22998	5697	2373	797	450	217398	31984	41002	90404	59466	35197	22997	5697	2373	796	450	217380
1985	45897	52781	50544	88299	50703	29095	18039	4365	1833	970	243846	45890	52772	50537	88290	50698	29092	18037	4365	1833	970	243822
1986	53953	72793	68570	49517	73290	40647	22583	12347	2140	1806	270900	53939	72782	68559	49511	73282	40642	22580	12346	2140	1806	270866
1987	26138	65630	97965	59700	41360	53589	28380	15719	8427	2473	307614	26130	65613	97950	59690	41354	53582	28376	15717	8426	2472	307567
1988	21562	33560	68473	94028	48472	31017	34793	18096	9517	6250	310647	21554	33550	68455	94012	48462	31011	34787	18092	9515	6249	310584
1989	76766	31366	39527	58318	75161	37640	21996	24220	12478	10275	279615	76734	31354	39515	58301	75146	37631	21991	24214	12475	10272	279545
1990	61378	114859	40562	35965	46089	57234	27445	15969	16529	15748	255541	61342	114812	40546	35953	46074	57221	27436	15965	16524	15744	255462
1991	14655	67575	137712	34542	25805	31231	29890	16385	9179	19800	304544	14639	67536	137655	34526	25794	31218	29879	16378	9175	19792	304417
1992	26965	17994	74131	118690	26695	19532	22228	19672	11365	18966	311279	26936	17975	74087	118635	26681	19523	22216	19663	11360	18957	311123
1993	10768	39197	20179	72314	90472	18993	13766	15399	12274	18428	261825	10741	39154	20157	72270	90423	18981	13759	15390	12267	18417	261662
1994	37361	15530	50796	20816	57743	68551	14563	10625	11518	22467	257079	37220	15491	50740	20793	57702	68508	14553	10618	11510	22452	256875
1995	17632	41803	19862	50600	16002	37646	38635	9091	6033	20093	197961	17538	41645	19812	50541	15980	37611	38598	9082	6027	20073	197723
1996	35431	26368	51476	20094	35186	8984	18143	17799	4540	13872	170095	35093	26227	51281	20040	35130	8965	18111	17767	4533	13850	169677
1997	57465	47944	34975	52246	13953	19184	4688	8752	8208	9563	151569	56621	47486	34787	52023	13902	19133	4671	8724	8180	9538	150958
1998	41173	73228	58739	33077	32517	8918	10873	2940	5163	10985	163213	39982	72152	58169	32875	32311	8871	10828	2925	5139	10941	162059
1999	30134	57439	92994	55088	22735	17047	4619	4449	1559	8137	206626	28453	55778	91624	54503	22549	16863	4579	4409	1545	8080	
2000	51544	45707	75000	92282	33415	10432	8346	1933	1833	6215	229456	48698	43153	72796	90780	32885	10267	8186	1898	1799	6156	204152 224769
2001	51881	71308	61516	72255	58752	18946	5715	4706	1085	5511	228486	46023	67364	58021	69858	57381	18481	5571	4569	1056		
2002	102553	82096	94931	59854	50944	37040	10814	3393	3097	4787	264859	90961	72804	89565	56038	48724	35804	10407	3265	2981	5436	220374
2003	49783	139002	104330	90607	43664	33450	23168	6889	2294	5614	310016	45717	123279	92435	84795	40194	31497	22084	6537		4702	251486
2004	30008	65976	169692	95024	59941	29141	19860	10873	3499	5045	393075	27469	60585	150349	83397	54898				2181	5443	285166
2005	14560	38114	76708	164753	76841	41653	20795	13067	6617	5937	406371	13715	34885	70390	144942	66307	26186 37330	18192 18253	9963 11649	3206	4813	351003
2006	61777	20114	47449	76319	130948	54718	25423	14349	7953	8662	365821	59297	18943	43378	69678	112801	45448			5859	5500	360230
2007	6280	81720	24264	46794	60370	95831	38475	16578	9099	11459	302871	6280	78436	22833	42569			21725	12150	6765	7685	319630
2008	5274	7735	97202	22613	35384	39045	66800	25982	11881	14686	313593	5274	7735			54086	80304	30715	13489	7316	9710	261021
2009	^35965	&51634	*68687	95197	18008	26409	27359	49656	21236	20918	327471	^31927	846417	93209 *62552	21159 91002	31670 16637	33693 22991	53866 22589	19635 38147	9340 15453	11876 16192	274449 285565

^{^&}amp;* SSB multiplied by mean survival ratio (number / SSB) _ BSR multipliée par le taux moyen de survie (nombre / BSR)

Table 48. Fall spawner fishing mortality for the ADAPT calibration using the gillnet CPUE1 and CPUE2 age disaggregated indices in the model.

Tableau 48. Mortalité par la pêche des géniteurs d'automne à partir de l'étalonnage ADAPT d'après les indices des PUE1 et PUE2 en nombre-à-l'âge des filets maillants.

	PUE1 (Numb	er / net-day	/ PUE1 (No	mbre / filets	-jour)							CPUE2 (Numi	er / net*hau	s-day) / PUE2	(Nombre / file	ts*levées-io	ur)					
Age	2	3	4	5	6	7	8	9	10	11+	5-10	2	3	4	5	6	7	8	9	10	11+	5-10
1978	0.011	0.249	0.567	0.713	0.472	0.367	1.059	0.269	0.664	0.664	0.698	0.011	0.249	0.567	0.713	0.472	0.367	1.059	0.269	0.664	0.664	0.698
1979	0.016	0.125	0.312	0.391	0.706	0.578	0.690	1.017	0.853	1.537	0.600	0.016	0.125	0.312	0.391	0.706	0.578	0.690	1.017	0.853	1.537	0.600
1980	0.010	0.176	0.264	0.546	0.567	0.969	1.029	1.518	1.273	0.649	0.675	0.010	0.176	0.264	0.546	0.567	0.969	1.029	1.518	1.273	0.649	
1981	0.003	0.065	0.189	0.188	0.162	0.224	0.704	0.613	0.658	0.099	0.209	0.003	0.065	0.189	0.188	0.162	0.224	0.704	0.613	0.658		0.675
1982	0.002	0.032	0.096	0.183	0.211	0.239	0.289	0.715	0.502	0.236	0.197	0.002	0.032	0.096	0.183	0.102	0.239	0.704	0.715	0.502	0.099	0.209
1983	0.001	0.013	0.096	0.091	0.204	0.160	0.257	0.296	0.276	0.337	0.144	0.001	0.013	0.096	0.091	0.204	0.160	0.257	0.715	0.302		0.197
1984	0.001	0.007	0.073	0.095	0.109	0.134	0.146	0.127	0.137	0.154	0.107	0.001	0.007	0.033	0.095	0.109	0.134	0.146			0.337	0.144
1985	0.001	0.006	0.043	0.128	0.153	0.157	0.241	0.562	0.401	0.017	0.156	0.001	0.006	0.043	0.128	0.153	0.157	0.146	0.127	0.137	0.154	0.107
1986	0.002	0.008	0.128	0.122	0.206	0.233	0.213	0.210	0.211	0.373	0.187	0.002	0.008	0.128	0.120	0.133	0.137		0.562	0.401	0.017	0.156
1987	0.007	0.037	0.094	0.156	0.191	0.320	0.309	0.341	0.325	0.634	0.238	0.002	0.037	0.094	0.122	0.206		0.213	0.210	0.211	0.373	0.187
1988	0.014	0.019	0.096	0.153	0.161	0.217	0.209	0.213	0.211	0.324	0.175	0.014	0.037	0.094	0.156		0.320	0.309	0.341	0.325	0.634	0.238
1989	0.001	0.007	0.102	0.149	0.164	0.173	0.169	0.212	0.190	0.180	0.167	0.001	0.019	0.102		0.161	0.217	0.209	0.213	0.211	0.324	0.175
1990	0.000	0.010	0.154	0.214	0.255	0.495	0.339	0.369	0.354	0.226	0.107	0.000	0.007		0.149	0.164	0.173	0.169	0.212	0.190	0.180	0.167
1991	0.000	0.012	0.099	0.122	0.113	0.157	0.209	0.141	0.175	0.178	0.337	0.000		0.154	0.214	0.255	0.495	0.340	0.369	0.355	0.226	0.337
1992	0.000	0.005	0.046	0.157	0.191	0.175	0.180	0.247	0.173	0.306	0.173	0.000	0.012	0.099	0.122	0.113	0.157	0.210	0.141	0.175	0.178	0.147
1993	0.002	0.012	0.047	0.127	0.144	0.134	0.100	0.119	0.122	0.136	0.173	0.000	0.005	0.046	0.157	0.191	0.175	0.180	0.247	0.213	0.306	0.173
1994	0.000	0.002	0.059	0.179	0.300	0.430	0.344	0.437	0.390			0.002	0.012	0.047	0.127	0.145	0.134	0.125	0.119	0.122	0.136	0.134
1995	0.000	0.006	0.068	0.310	0.462	0.616	0.643	0.553	0.598	0.348	0.343	0.000	0.002	0.059	0.179	0.300	0.430	0.344	0.437	0.391	0.348	0.343
1996	0.001	0.011	0.113	0.329	0.521	0.573	0.608			0.429	0.482	0.000	0.006	0.068	0.311	0.463	0.617	0.644	0.554	0.599	0.429	0.483
1997	0.001	0.016	0.113	0.400	0.341	0.373		0.655	0.631	0.422	0.517	0.001	0.011	0.114	0.330	0.522	0.575	0.609	0.656	0.633	0.423	0.518
1998	0.000	0.002	0.090	0.293	0.534		0.362	0.383	0.372	0.231	0.395	0.001	0.016	0.129	0.402	0.342	0.443	0.363	0.385	0.374	0.232	0.397
1999	0.001	0.016	0.099	0.405	0.663	0.519	0.772	0.504	0.638	0.437	0.463	0.000	0.003	0.091	0.295	0.539	0.523	0.777	0.507	0.642	0.440	0.467
2000	0.001	0.017	0.121			0.587	0.730	0.750	0.740	0.193	0.513	0.001	0.016	0.101	0.410	0.671	0.596	0.740	0.760	0.750	0.194	0.520
2001	0.001	0.017	0.121	0.363	0.439	0.471	0.414	0.404	0.409	0.076	0.389	0.001	0.018	0.125	0.370	0.448	0.480	0.424	0.414	0.419	0.077	0.396
2002	0.002			0.274	0.360	0.431	0.404	0.261	0.333	0.071	0.325	0.003	0.023	0.123	0.285	0.370	0.445	0.417	0.270	0.344	0.072	0.336
2002	0.000	0.007	0.127	0.221	0.294	0.340	0.309	0.264	0.286	0.091	0.274	0.001	0.008	0.135	0.238	0.310	0.354	0.323	0.275	0.299	0.093	0.291
		0.008	0.071	0.273	0.245	0.366	0.587	0.499	0.543	0.147	0.321	0.000	0.009	0.080	0.294	0.269	0.394	0.627	0.535	0.581	0.152	0.347
2004	0.001	0.008	0.054	0.114	0.211	0.187	0.257	0.316	0.286	0.088	0.170	0.001	0.009	0.061	0.131	0.232	0.211	0.284	0.350	0.317	0.092	0.191
2005	0.003	0.013	0.055	0.142	0.213	0.340	0.227	0.322	0.275	0.044	0.194	0.004	0.014	0.060	0.163	0.251	0.387	0.263	0.369	0.316	0.048	0.224
2006	0.001	0.013	0.051	0.180	0.157	0.175	0.249	0.247	0.248	0.074	0.178	0.001	0.014	0.056	0.199	0.184	0.215	0.298	0.299	0.298	0.083	0.208
2007	0.018	0.022	0.087	0.151	0.277	0.179	0.192	0.138	0.165	0.057	0.195	0.003	0.023	0.092	0.168	0.314	0.217	0.247	0.173	0.210	0.067	0.231
2008	0.025	0.174	0.070	0.169	0.210	0.242	0.181	0.109	0.145	0.088	0.186	0.003	0.023	0.073	0.182	0.238	0.286	0.229	0.147	0.188	0.110	0.224

Table 49. Input parameters for 2009 fall spawner catch projections from the ADAPT calibration using using the gillnet CPUE1 and CPUE2 age disaggregated indices in the model formulations.

Tableau 49. Paramètres d'entrée pour les projections de géniteurs d'automne 2009 des prises à partir de l'étalonnage ADAPT d'après les indices des PUE1 et PUE2 en nombre-à-l'âge des filets maillants.

CPUE1 (Number / net-day) / PUE1 (Nombre / filets-jour)

Age	Natural mortality / Mortalité naturelle	Partial recruitment / Recrutement partiel	Beginning of year weights / poids début de l'année (kg)	Average weight / poids moyen (kg)	Population (numbers / nombres) x 10 ³ January / janvier 2009
2	0.2	0.01	0.053	0.086	500015
3	0.2	0.08	0.092	0.131	500983
4	0.2	0.35	0.129	0.180	451959
5	0.2	1	0.191	0.207	497510
6	0.2	1	0.219	0.226	82411
7	0.2	1	0.236	0.241	111932
8	0.2	1	0.248	0.251	110142
9	0.2	1	0.263	0.266	188918
10	0.2	1	0.276	0.276	76894
11+	0.2	1	0.291	0.296	71971

CPUE2 (Number / net*hauls-day) / PUE2 (Nombre / filets*levées-jour)

Age	Natural mortality / Mortalité naturelle	Partial recruitment / Recrutement partiel	Beginning of year weights / poids début de l'année (kg)	Average weight / poids moyen (kg)	Population (numbers / nombres) x 10 ⁰ January / janvier 2009
2	0.2	0.010	0.053	0.086	443868
3	0.2	0.08	0.092	0.131	450366
4	0.2	0.31	0.129	0.180	411593
5	0.2	1	0.191	0.207	475589
6	0.2	1	0.219	0.226	76137
7	0.2	1	0.236	0.241	97444
8	0.2	1	0.248	0.251	90940
9	0.2	1	0.263	0.266	145132
10	0.2	1	0.276	0.276	55952
11+	0.2	1	0.291	0.296	55713

Table 50. Fall spawner catch and population projections from the ADAPT calibration using the gillnet CPUE1 and CPUE2 age disaggregated indices in the model formulations.

Tableau 50. Projections des captures et de la population de géniteurs d'automne à partir de l'étalonnage ADAPT d'après les indices des PUE1 et PUE2 en nombre-à-l'âge des filets maillants.

CPUE1 (Number	/ net-day)	/ PUE1	(Nombre	/ filets-iour)
---------------	------------	--------	---------	----------------

Age	Catch (numbers) / Prises (nombres) (x 10 ³)	Catch (biomass) / Prises (biomasse) (t)	Population (numbers / nombres) (x 10 ³)	Population (biomass / biomasse) (t)
	2009	2009	2010	2010
2	1593	137	500015	26501
3	11481	1504	407939	37530
4	43484	7827	399803	51575
5	124142	25697	330826	63188
6	20564	4647	295780	64776
7	27930	6731	48995	11563
8	27483	6898	66546	16503
9	47140	12539	65482	17222
10	19187	5296	112316	30999
11+	17959	5316	88503	25754
2+		76593	00000	345611
3+		76456		319110
4+		74952		281580

CPUE2 (Number / net*hauls-day) / PUE2 (Nombre / filets*levées-jour)

Age	Catch (numbers) / Prises (nombres)	Catch (biomass) / Prises (biomasse) (t)	Population (numbers / nombres)	Population (biomass / biomasse) (t)
	$(x 10^3)$		(x 10 ³)	(biomass / biomasse) (t)
	2009	2009	2010	2010
2	1414	122	2010	23525
3	10321	1352	443868	33316
4	35288	6352	362131	46364
5	118672	24565	359409	58285
6	18998	4294	305160	61922
7	24315	5860	282747	10682
8	22692	5696	45265	14367
9	36214	9633	57933	14219
10	13961	3853	54065	23814
11+	13902	4115	86284	19319
2+		65841		305814
3+		65719		282289
4+		64367		248973

Figure 1. Southern Gulf of St. Lawrence herring fishery management zones (upper) and Northwest Atlantic Fisheries Organization (NAFO) divisions 4T and 4Vn with 4T unit areas (lower).

Zones de gestion de la pêche au hareng dans le sud du golfe du Saint-Laurent (haut) et divisions 4T et 4Vn avec sous-divisions de 4T de l'Organisation des Pêches de l'Atlantique Nord-Ouest (OPANO).

Figure 2. Combined spring and fall 4T herring landings compared to the overall spring and fall 4T TAC.
Figure 2. Débarquements combinés de hareng de printemps et d'automne de 4T avec le TAC global du printemps et de l'automne.

Figure 3. Location of sets by large seiners under quota monitoring in the fall 2008 fishery (triangles). Figure 3. Emplacement des déploiements de sennes et prises d'automne (triangles) des grands senneurs dans 4T en 2008.

Figure 4. Spring and fall seasons combined 4T herring landings by fleet sector.
Figure 4. Débarquements combinés des saisons du printemps et de l'automne du hareng de 4T par flotille de pêche.

Figure 5. Southern Gulf of St. Lawrence geographic areas used in the telephone survey of the herring gillnet fishery.

Figure 5. Divisions géographiques du sud du golfe du Saint-Laurent utilisées lors du sondage téléphonique des pêcheurs de hareng aux filets maillants.

Figure 6. Comparison of ages obtained during the validation test with the original ages assigned and between readers. Bars indicate 95% confidence intervals.

Ages of primary reader / âges du lecteur primaire

10

11

Figure 6. Comparaison des âges obtenus lors du test de validation avec les âges originaux et entre les lecteurs. Les lignes indiquent l'intervalle de confiance 95%.

Figure 7. Surveyed transects covered during the acoustic survey (lines).

Figure 7. Trajets effectués lors du relevé acoustique (lignes).

Figure 8. Acoustic survey relative biomass ranges detected in the Chaleurs-Miscou area (circles).

Figure 8. Échelle de biomasse relative établie au cours du relevé acoustique dans la zone Chaleurs-Miscou (cercles).

Figure 9. Acoustic survey relative biomass ranges detected in north Prince Edward Island (circles). Figure 9. Estimations de biomasse relative du relevé acoustique du nord de l'Île-du-Prince-Édouard (cercles).

Figure 10. Acoustic survey biomass index combined spring and fall spawners of all strata from Chaleurs-Miscou (solid line) compared to strata consistently surveyed in each year since 1994 (dotted line). (Error bars ± 2 S.E.).

Figure 10. Figure 10. Chaleurs-Miscou (ligne continue) comparativement aux strates qui ont fait l'objet d'un relevé de façon constante chaque année depuis 1994 (ligne pointillée) (± 2 erreurs-type).

Figure 11. Acoustic survey Chaleurs-Miscou herring distribution, density and biomass estimates 2003-2008. Light circles represent 0 to 0.15 kg per m²; dark circles represent 0.15 to 10 kg per m².

Figure 11. Distribution, densité et estimées de biomasse du hareng dans Chaleurs-Miscou, relevé acoustique 2003-2008. Les cercles clairs représentent 0,1 à 0,15 kg par m²; les cercles foncés représentent 0,15 à 10 kg par m².

Figure 12. Atlantic herring catches (kg/tow) in the southern Gulf of St. Lawrence September bottom-trawl surveys from 2003 to 2008 (Black circles = Alfred Needler Grey = Wilfred Templeman and White = Teleost).

Figure 12. Prises du hareng (kg/trait) dans les relevés au chalut de fond de septembre effectués dans le sud du golfe du Saint-Laurent de 2003 à 2008 (Cercles noirs = Alfred Needler Gris = Wilfred Templeman et Blanc = Teleost).

Figure 13. Length frequencies (mean number per tow) of Atlantic herring in the southern Gulf of St. Lawrence September bottom-trawl surveys in 4T from 2002 and 2004-2008. The vertical line indicates the regulated minimum size in the fishery (26 cm total length).

Figure 13. Distributions des fréquences de longueur (nombre moyen par trait) du hareng dans les relevés de septembre au chalut de fond du Sud du golfe du Saint-Laurent dans 4T en 2002 et de 2004 à 2008. Le trait vertical indique la taille réglementaire minimale (26 cm longueur totale).

Figure 14. Spring cumulative indices of abundance by area from phone survey.

Indices cumulatif d'abondance au printemps par région d'après le sondage téléphonique.

Figure 15. Percent of nets fished that are between 2 ¼ " and 2 ½ " mesh in the 4T spring fishery from phone survey.

Figure 15. Pourcentage des filets de pêche qui ont un maillage de 2 ¼ po à 2 ½ po pour la pêche du printemps dans 4T d'après le sondage téléphonique.

Figure 16. Catch-at-age of spring spawner component from the fishery, all gears combined. Bubble represents numbers-at-age of total catch, line represents most recent (1991) strong year-class.

Figure 16. Prises selon l'âge de la composante des géniteurs de printemps dans la pêche, tous les engins. La taille des cercles représente le nombre-à l'âge de la prise total, la ligne indique la plus récente (1991) forte classe-d'âge.

Figure 17. Catch-at-age of spring spawner component from the fishery, all gears combined. Open bars are mobile gear catches, closed bars are fixed gear catches. Prises selon l'âge de la composante des géniteurs de printemps dans la pêche.

Les barres ouvertes représentent les prises des engins mobiles, les barres fermées celles des engins fixes.

Figure 18. Mean weight-at-age of spring spawners for fixed and mobile gears, ages 3 to 10. Poids moyen selon l'âge des géniteurs de printemps pour les engins fixes et mobiles, âges 3 à 10.

Figure 19. Gillnet catch rates (CPUE) of spring spawner from all areas with fishing activity reported through dockside monitoring in April and May (aggregated by day and area and weighted by the catch for that area). Error bars indicate approximate 95% confidence intervals.

Figure 19. Taux de capture des filets maillants (PUE) des géniteurs de printemps de toutes les régions avec débarquements comptabilisés par vérification à quai en avril et mai (pondérés par les prises et regroupés par jour et par région) avec intervalles de confiance approximative (95%).

Figure 20. Numbers-at-age of the spring spawner component for same stratum covered in the Chaleurs-Miscou area during the acoustic survey.

Figure 20. Nombre selon l'âge de la composante des géniteurs de printemps selon le relevé acoustique pour les mêmes strates de la zone Chaleurs-Miscou.

Figure 21. Spring spawner regression of age-class abundance (numbers x 10⁵) from one year to the next. The data are from catch-at-age of the acoustic survey Chaleurs-Miscou same stratum surveyed from 1994 to 2008.

Figure 21. Régression de l'abondance des classes-d'âge (nombres x 10⁵) d'une année à l'autre pour les géniteurs de printemps. Les données proviennent des prises selon l'âge du relevé acoustique pour les strates de Chaleurs-Miscou entre 1994 à 2008.

Figure 22. Acoustic survey index of spring spawner component from strata consistently surveyed in each year since 1994 (number in millions of fish).

Figure 22. Indice des géniteurs de printemps dans le relevé acoustique dans les strates qui ont fait l'objet d'un relevé de façon uniforme chaque année depuis 1994 (nombre en millions de poissons).

Figure 23. Spring index of abundance from phone survey for all areas combined weighted by the catch in each area.

Figure 23. Indice d'abondance au printemps d'après le sondage téléphonique avec toutes les régions combinées pondéré par les prises dans chaque région.

Figure 24. Gillnet catch rates (CPUE kg/net-day) acoustic survey index (age 4-8 numbers) and telephone survey opinion index (abundance in year y vs year y-1) of the spring spawner component.

Figure 24. Taux de capture des filets maillants (PUE kg/filet-sortie) indice du relevé acoustique (nombre d'âges 4-8) et l'indice d'opinion du sondage téléphonique (abondance de l'année y vs année y-1) de la composante des géniteurs de printemps.

Figure 25. Spring spawner ADAPT-VPA 4-10 biomass results using different combinations of indices (see Table 23) with 2009 age 4 estimate obtained using the geometric mean of 1999-2008 except for the lines with triangles and circles where the estimate of age-4 abundance in 2009 was obtained by multiplying the spawning stock biomass (SSB) in 2005 by the 2004-2008 average recruitment rate (age-4 abundance in year t / SSB in year t-4).

Figure 25. Biomasse des âges 4-10 obtenue du modèle ADAPT-ASP des géniteurs de printemps en utilisant différentes combinaisons d'indices (voir tableau 23) avec l'estimé d'âge 4 en 2009 provenant de la moyenne géométrique de 1999-2008 exception lignes avec triangles et cercles où l'estimé d'âge 4 en 2009 est le produit de la biomasse du stock reproducteur (BSR) en 2005 par le taux de survie moyen des recrus pour les années 2004-2008 (nombre âge 4 année t / BSR année t-4).

Figure 26. Residuals for the ADAPT calibration of the spring spawner SPA using the age disaggregated gillnet CPUE and acoustic survey indices. Circles indicate relative residual size black + white –

Figure 26. Résidus de l'étalonnage ADAPT de l'ASP des géniteurs de printemps avec l'indice par âge des PUE et du relevé acoustique. Les cercles indiquent la valeur relative des résidus noir + blanc -

Figure 27. Comparison of CPUE and acoustic indices corrected for catchability and the model estimates of population abundance for 4T herring spring spawner componant.

200000 -100000 -0 -

Figure 27. Comparaison des indices des PUE et du relevé acoustique ajustés pour la capturabilité et les estimés de l'abondance de la population du modèle pour la composante des géniteurs du printemps du hareng 4T.

Figure 28. Retrospective patterns (ages 5 – 10) in the spring spawner ADAPT-SPA using the age-disaggregated gillnet CPUE and acoustic survey indices.

Figure 28. Tendances rétrospectives (âges 5 – 10) dans ADAPT-ASP des géniteurs de printemps avec l'indice par âge des PUE et du relevé acoustique.

recruits.

Figure 29. Taux de survie (abondance de l'âge *n* pour l'année *t /* BSR pour l'année *t-4*) pour les recrus des géniteurs de printemps.

Figure 30. Spring population numbers (ages 4+) and recruitment at age 4 (top: age 4 in 2009 = SSB 2005 x mean age 4 survival ratio from 2004-2008) ages 4+ biomass (center) and exploitation rate (ages 6-8) (bottom) from the ADAPT calibration.

Figure 30. Effectifs de la population du printemps (âges 4+) et recrutement à quatre ans (haut : âge 4 en 2009 = BSR en 2005 x rapport moyen de survie des âges 4 de 2004-2008) biomasse des âges 4+ (centre) et taux d'exploitation (âges 6-8) (bas) par étalonnage ADAPT.

Figure 31. Spring spawning herring stock biomass trajectory and limit reference points. Arrow represents 2009 SSB estimate.

Figure 31. Trajectoire de la biomasse reproductive et les points de référence limites pour les harengs géniteurs de printemps. La flèche indique l'estimé de la BSR pour 2009.

Figure 32. Risk analyses for spring spawning herring using ages 4+. Figure 32. Analyse de risque pour les harengs géniteurs du printemps avec âges 4+.

Figure 33. Exploitation rate and change in biomass for various levels of catch for spring spawning herring.

Figure 33. Changements dans le taux d'exploitation et la biomasse pour différents niveaux de prises des harengs géniteurs de printemps.

Figure 34. Spring spawner component 10 year projection assuming recruitment rates to age 2 for past 10 years and interannual variability in M assumed to be medium (SD=0.03, 15% CV). Heavy solid line is median projection; dashed lines are the 5th and 95th percentiles of projected SSB.

Prévision de la composante des reproducteurs de printemps échelonnée sur dix ans en utilisant les taux de recrutement à l'âge 2 des 10 dernières années et avec la variance interannuelle de M à un niveau moyen (SD=0.03, 15% CV). La ligne solide est la médiane, les pointillés les 5 et 95^{ième} pourcentiles de la BSR projetée.

Figure 35. Fall cummulative indices of abundance by area from phone survey.

Indices cummulatifs d'abondance par région à l'automne d'après le sondage téléphonique.

Figure 36. Percent of nets with 2 5/8 inch mesh used in the 4T fall fishery from phone survey.

Figure 36. Pourcentage des filets utilisés ayant un maillage de 2 5/8 pouces pour la pêche d'automne de 4T d'après le sondage téléphonique.

Figure 37. Catch-at-age of fall spawner component from the fishery, all gears combined. Bubbles represent numbers-at-age of total catch.

Figure 37. Prises selon l'âge de la composante des géniteurs d'automne dans le cadre de la pêche tous les engins combinés. Les cercles représentent le nombre-à-l'âge de la prise totale.

Figure 38. Catch-at-age of fall spawner component from the fishery. all gears combined. Open bars are mobile gear catches closed bars are fixed gear catches.

Figure 38. Prises selon l'âge de la composante des géniteurs d'automne dans le cadre de la pêche tous les engins combinés. Les barres ouvertes représentent les prises des engins mobiles les barres fermées celles des engins fixes.

Figure 39. Mean weight-at-age of fall spawners for fixed and mobile gears ages 3 to 10. Poids moyens selon l'âge des géniteurs d'automne pour les engins fixes et mobiles âges 3 à 10.

Figure 40. Numbers-at-age of fall spawner component from acoustic survey Chaleurs-Miscou area, for same stratum consistently surveyed since 1994.

Nombre selon l'âge de la composante des géniteurs d'automne selon le relevé

relevé continu depuis 1994.

acoustique pour la zone Chaleurs-Miscou, incluant les strates faisant l'objet d'un

Figure 41. Regression of age-class abundance of fall spawners from one year to the next. The data are from acoustic survey Chaleurs-Miscou same stratum surveyed from 1994 to 2008 catch-at-age in numbers (x 10⁵).

Figure 41. Régression de l'abondance des classes-d'âge des géniteurs d'automne avec un délai d'un an. Les données proviennent des prises selon l'âge du relevé acoustique pour les strates de Chaleurs-Miscou entre 1994 à 2008, en nombres (x 10⁵).

Figure 42. Acoustic survey index of fall spawner component (millions of fish). Data from Chaleurs-Miscou stratum consistently surveyed each year.

Figure 42. Indice des géniteurs d'automne dans le relevé acoustique (millions de poissons).

Les données proviennent des strates de Chaleurs-Miscou qui ont fait l'objet d'un relevé de façon uniforme chaque année.

Figure 43. Fall index of abundance from phone survey for all areas combined weighted by the catch in each area.

Figure 43. Indice d'abondance à l'automne d'après le sondage téléphonique pour toutes les régions combinées pondéré par les prises dans chaque région.

Figure 44. Average number of standard gillnets of 15 fathoms (nets) and number of nethauls (net*hauls) from telephone survey used in the main fishing areas of the fall inshore fishery.

Figure 44. Nombre moyen de filets maillants ordinaires de 15 brasses (filets) et de filetslevées (filets*levées) utilisés dans les zones proncipales de la pêche côtière d'automne provenant du sondage téléphonique.

Figure 45. Regression of age-class abundance of fall spawners from one year to the next. The data are from gillnet catch rates CPUE1(kg/net-day) as numbers of herring (x 10⁵).

Figure 45. Régression de l'abondance des classes-d'âge des géniteurs d'automne avec un délai d'un an. Les données proviennent des taux de capture PUE1 (kg/filet-jour) des filets maillants en nombre (x 10⁵).

Figure 46. Regression of age-class abundance of fall spawners from one year to the next. The data are from gillnet catch rates CPUE2 (kg/net*hauls-day) as numbers of herring (x 10⁵).

Figure 46. Régression de l'abondance des classes-d'âge des géniteurs d'automne avec un délai d'un an. Les données proviennent des taux de capture PUE2 (kg/filet*levées-jour) des filets maillants en nombre (x 10⁵).

Figure 47. Comparison of fall gillnet CPUE1 and CPUE2 indices with acoustic survey index.

Comparaison des indices PUE1 et PUE2 des filets maillants d'automne avec l'indice acoustique.

Figure 48. Fall spawner gillnet catch rates (CPUE1 and CPUE2) for 4T herring. Error bars indicate approximate 95% confidence intervals.

Figure 48. Taux de capture des filets maillants (PUE1 et PUE2) des géniteurs d'automne avec intervalles de confiance approximative (95%).

Figure 49. Fall spawner ADAPT-VPA 4+ biomass results using different combinations of indices (see Table 39) with 2009 age 4 estimate obtained by multiplying the spawning stock biomass (SSB) in 2005 by the 2006 to 2008 average recruitment rate (rec) (age 4 abundance in year t / SSB in year t-4).

Figure 49. Biomasse 4+ obtenue du modèle ADAPT-ASP des géniteurs d'automne en utilisant différentes combinaisons d'indices (voir tableau 39) avec l'estimé d'âge 4 en 2009 est le produit de la biomasse du stock reproducteur (BSR) en 2005 par le taux de survie moyen des recrus pour les années 2006 à 2008 (rec) (nombre âge 4 année t / BSR année t-4).

Figure 50. Residuals for the ADAPT calibration of the fall spawner SPA using the age disaggregated gillnet CPUE1 and CPUE2 indices. Circles indicate relative residual size black + white –

Figure 50. Résidus de l'étalonnage ADAPT de l'ASP des géniteurs d'automne avec les indices par âge des PUE1 et PUE2. Les cercles indiquent la valeur relative des résidus noir + blanc –

Figure 51. Comparison of CPUE1 and CPUE2 indices corrected for catchability and model estimates of population abundance for 4T herring fall spawner component.

Comparaison des indices des PUE1 et PUE2 ajustés pour la capturabilité et les estimés de l'abondance de la population du modèle pour la composante des géniteurs d'automne du hareng 4T.

Figure 52. Retrospective patterns in the fall spawner ADAPT-VPA using the age disaggregated gillnet CPUE1 and CPUE2 indices (triangles = 2009).

Figure 52. Tendance rétrospective dans ADAPT-ASP des géniteurs d'automne avec les indices par âge des PUE1 et PUE2 (triangles = 2009).

Figure 53. Survival ratio (age n abundance in year t / SSB in year t-n) for fall spawner recruits.

Figure 53. Taux de survie (abondance de l'âge *n* pour l'année *t /* BSR pour l'année *t-4*) pour les recrus des géniteurs d'automne.

Figure 54. Fall spawner population numbers (4+) and recruitment at age 4 (top), biomass (center) and age 5+ exploitation rate (bottom) from the 2009 numbers from the ADAPT calibration with the gillnet CPUE1 and CPUE2 indices.

Figure 54. Géniteurs d'automne éffectifs de la population (4+) et le recrutement à 4 ans (haut), biomasse (centre) et le taux d'exploitation 5+ (bas) de l'étalonnage ADAPT avec les indices des PUE1 et PUE2 des filets maillants.

points. Arrow indicates 2009 SSB estimate.

Figure 55. Trajectoires de la biomasse reproductive et les points de référence limites pour les harengs géniteurs d'automne. Flèche indique l'estimé de la BSR en 2009.

Figure 56. Risk analyses for fall spawning herring using ages 4 to 11+.

Figure 56. Analyse de risque pour les harengs géniteurs d'automne avec âges 4 à 11+.

Figure 57. Exploitation rate and change in biomass for various levels of catch for fall spawning herring.

Figure 57. Changements dans le taux d'exploitation et la biomasse pour différents niveaux de prises des harengs géniteurs d'automne.

Appendix 1. Herring acoustic survey set locations (triangles) and strata covered (boxes).

Annexe 1. Relevé acoustique du hareng lieu des traits de chaluts (triangles) et strates recensées (boîtes).

Appendix 2. Herring acoustic survey 2008 set information and main species caught described by mean length (cm) and estimated weight caught (kg).

Annexe 2. Relevé acoustique du hareng 2008 information sur les traits de chaluts et les espèces principales capturées décrites par la longueur moyenne (cm) et estimés du poids capturé (kg).

Month mois	Day jour	Set # trait #	Sample Échant.		Depth Profondeur	Duration Durée	Latitude	Longitude	Herring Hareng			Mackerel Maquereau		au au
					m.	min.			cm.	Kg.	cm.	Kg.	cm.	Kg.
9	24	1		4TO	45	5	485480	641377	24.5	356				113.
9	24	2		4TO	44	8	485692	641653	24.3	333				
9	24	3		4TO	42	6	485729	641735	25.8	303				
9	25	4		4TM	45	45	481031	645060		0				
9	26	5		4TM	48	40	480975	645153	27.5	174				
9	27	6		4TM	20	16	475482	654580	28.1	358	1 1			
9	27	7		4TM	28	5	475406	654281	26.0	338				
9	28	8		4TM	34	4	474789	651943	27.0	324				
9	28	9		4TM	30	9	474820	651649	26.3	322				
9	28	10		4TM	26	8	475223	645769	27.1	353				
9	29	11		4TM	25	4	475210	645576	26.6	52				
10	2	12		4TN	46	0	480770	642556		0				
10	5	13		4TN	31	15	475987	644024	27.0	150				
10	5	14		4TN	31	15	475966	644065						
10	5	15		4TN	23	7	480526	642063	25.5	3500				
10	5	16		4TN	21	57	480531	642103		0				
10	6	17		4TN	39	6	475525	641172	27.9	75				
10	6	18		4TN	38	6	475493	641215		0				
10	6	19	1.00.00	4TN	25	7	480593	641579	22.3	196	28	1	24	
10	6	20		4TN	26	7	480641	641619		0				
10	8	21	182		39	7	471939	640031	26.9	114	20	0.4	12	0.1
10	8	22	183		40	7	472047	640061		0				
10	9	23	184		36	12	470474	640820	26.8	1300				
10	9	24	185		34	12	470500	640658		0				
10	9	25	186		41	3	464059	632236	24.7	300				
10	9	26	187		42	20	464031	632158		0				
10	10	27	188		43	3	463659	631352	23.6	70				
10	10	28	189		42	3	463700	631371		0				
10	10	29	190		45	15	463400	630601	24.2	700				
10	10	30	191		44	15	463303	630405		0				
10	10	32	192	4TG	40	15	463254	624854		0				

Appendix 3a. Number of transects, herring biomass (tons) and mean density (kg/m²) estimated from the fall acoustic survey in the southern Gulf of St. Lawrence. Nombre de transects, biomasse (tonnes) et densité moyenne estimée (kg/m²) à Annexe 3a.

partir du relevé acoustique d'automne du hareng dans le sud du golfe du Saint-Laurent.

Date	Area / Région	Transects	Kg/m ²	Tons - tonnes	CV
2008					
	CHALEURS-MISCOU	173	0.010	46297	0.16
Oct. 8 - 10	P.E.I.	21	0.012	23785	0.58
2007					
	CHALEURS-MISCOU	140	0.013	58401	0.24
Oct. 4 - 11	P.E.I.	44	0.017	39204	0.25
2006					
	CHALEURS-MISCOU	145	0.018	73673	0.19
oct. 5 - 9	P.E.I.	37	0.045	147824	0.21
2005					
	CHALEURS-MISCOU	180	0.019	94579	0.09
Oct. 4 - 10	P.E.I.	31	0.033	78467	0.60
2004					
	CHALEURS-MISCOU	170	0.011	47970	0.12
Oct. 3 - 9	P.E.I.	34	0.016	51767	0.17
2003					
	CHALEURS-MISCOU	168	0.027	127460	0.21
Oct. 7 - 12	P.E.I.	47	0.054	176035	0.14
002					
Oct. 2-	CHALEURS-MISCOU	112	0.016	72085	0.22
Oct. 13	PEI	25	0.027	42213	0.18
001 Sept.28-	CHALEURS-MISCOU	146	0.010	52203	0.12
Oct. 14	PEI * herring and mackerel mixed	20	0.047	22222	0.40
lov. 11-13	* no samples estimated from 2000 sizes CAPE BRETON INSHORE	29 30	0.017 0.076	32392	0.16
10V. 11-13	CAPE BRETON INSHORE	30	0.076	72712	0.23
2000	CHALEURS-MISCOU	136	0.022	123671	0.29
lept. 14-	PEI	38	0.023	60738	0.59
oct. 05	CAPE BRETON INSHORE	0		••	949
999	CHALEURS-MISCOU	151	0.0313	164753	0.12
Sept. 18 -	PEI	20	0.0611	62116	0.28
Sept. 30	CAPE BRETON INSHORE	0		60.00	-
998	CHALEURS-MISCOU	151	0.0346	146831	0.15
Sept. 19 -	PEI	0		**	
0-Oct	CAPE BRETON INSHORE	52	0.0305	43933	0.17
997	CHALEURS-MISCOU	156	0.0285	193656	0.27
Sept. 21 -	PEI-MAGDALEN ISLANDS	64	0.0109	70373	0.09
1-Oct	CAPE BRETON INSHORE	42	0.0158	17463	0.38
996	CHALEURS-MISCOU INSHORE	142	0.0494	241992	0.16
Sept 24 -	CHALEURS-MISCOU OFFSHORE	36	0.0052	15090	0.28
6-Oct	PEI-PICTOU-GEORGES	55	0.0128	62846	0.19
	CAPE BRETON INSHORE	28	0.026	21869	0.19

Appendix 3b. Herring biomass densities and estimates by stratum and area from the acoustic survey conducted between September 23 to October 10 2008.

Annexe 3b. Densité et estimation de la biomasse de hareng par strate et par zone selon le

relevé acoustique du 23 septembre au 10 octobre 2008.

Area and Stratum		erage TS	Stratum Area	Weighted	Biomass / e		Index per S	
Région et Strate	TS	moyen	Aire de strate	Mean Sa	Density		e de biomas	
				Sa moyen	Densité	Total	SE	SE% of / du
		(dB/kg)	(km2)	(dB/m2)	(kg/m2)	(tons)	(tons)	Tota
CHALEUR-MISCOU ALI	L STRATA							
Pte_seche		-34.59	113.9	-1025.503	0	0	0	13
Riv_renard		-34.59	123.3	-46.659	0.0622	7664	3221	42
Cap_bon_ami		-34.59	69	-61.55	0.002	139	119	86
Gaspe_off		-34.59	91	-85.175	0	1	1	71
Malbaie		-34.59	95.6	-1029.395	0	0	0	30
Anse_beaufils		-34.59	96	-80.49	0	2	2	75
Gde_riviere		-35.23	106.4	-66.442	0.0008	81	79	98
Newport		-35.23	124.9	-75.963	0.0001	11	7	67
Shigawake		-35.23	265.6	-56.579	0.0073	1947	543	28
Newcarlisle		-34.88	169	-53.938	0.0124	2097	1105	53
Newrichmond		-34.88	111.6	-51.814	0.0202	2259	2046	91
Belledune		-34.88	266	-47.792	0.0511	13594	4009	29
Nepisiguit		-35.02	211.3	-55.927	0.0081	1715	1069	62
Maisonnette		-35.02	145	-61.922	0.002	296	152	51
West_miscou		-35.02	330.5	-54.751	0.0106	3517	1751	50
North_miscou		-34.56	295.7	-1030.104	0	0	0	4
Miscou_nw		-34.56	444	-50.799	0.0238	10545	4006	38
Miscou_ne		-34.56	352.8	-68.989	0.0004	127	57	45
Miscou_sw		-34.56	552.2	-65.796	0.0008	415	170	41
Miscou_se		-34.56	521.3	-58.968	0.0036	1887	1711	91
TOTAL			4485.1			46297		-
MEAN / MOYENNE					0.01		7443.7	
C.V.							0.161	
CHALEUR-MISCOU SAN	ME STRAT	A / STRATE	SINDEXES					
Gde riviere		-35.23	106.4	-66.442	0.0008	81	79	98
Newport		-35.23	124.9	-75.963	0.0001	11	7	67
Shigawake		-35.23	265.6	-56.579	0.0073	1947	543	28
Newcarlisle		-34.88	169	-53.938	0.0124	2097	1105	53
Newrichmond		-34.88	111.6	-51.814	0.0202	2259	2046	91
Belledune		-34.88	266	-47.792	0.0511	13594	4009	29
Nepisiguit		-35.02	211.3	-55.927	0.0081	1715	1069	62
Maisonnette		-35.02	145	-61.922	0.002	296	152	51
West_miscou		-35.02	330.5	-54.751	0.0106	3517	1751	50
North miscou		-34.56	295.7	-1030.104	0.0100	0	0	4
Miscou nw		-34.56	444	-50.799	0.0238	10545	4006	38
Miscou ne		-34.56	352.8	-68.989	0.0004	127	57	45
Miscou_sw		-34.56	552.2	-65.796	0.0004	415	170	41
Miscou_se		-34.56	521.3	-58.968	0.0036	1887	1711	91
TOTAL		-34.30	3896.3	-30.300	0.0030	38491	17.11	91
MEAN / MOYENNE			3030.3		0.01	30431	6709.7	
C.V.					0.01		0.174	
PEI / ÎPÉ.							0.174	
Peinw		-34.89	376.5	-52.96	0.0156	6070	2400	
Therift		-34.89	376.5	-52.96 -65.085		5872	3186	54
Northcape					0.001	302	264	88
		-34.89	409.8	-61.684	0.0021	857	911	106
Malpeque		-34.29	440.8	-67.72	0.0005	200	254	127
Stanhope TOTAL		-34.29	385.5	-47.961	0.0429	16554	13443	81
			1928		0.010	23785		
MEAN / MOYENNE					0.012		13850.2	
C.V.							0.582	

Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 23 to October 07 2008. Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Annexe 3c.

Miscou selon le relevé acoustique du 23 septembre au 7 octobre 2008.

Stratum / Strate Transect Transect Target Strength Average Sa Sa Biomass (e) Set Number / Nombre Length / Longueur Force cible Moyen Density / Densité Number (kg/m²) (km) (dB/kg) (dB/m²)Numéro Pte Seche C008500H 4.1 -34.59 -1026.12 0.000 C008501H 4.5 -34.59 -1026.56 0.000 C008502H 2.7 -34.59-1024.230.000 C008503H 2.9 -34.59 -1024.67 0.000 Riv_Renard C008504H 5.0 -34.59 -1027.01 0.000 C008505H 5.5 -34.59-1027.380.000 C008506H 5.6 -34.59 -57.31 0.005 C008507H 5.2 -34.59 -1027.12 0.000 C008508H 4.4 -34.59 -42.590.159 1 C008509H 4.5 -34.59 -44.19 0.110 C008510H 4.3 -34.59 -42.520.161 2 C008511H 4.5 -34.59-44.18 3 0.110 Cap_Bon_Ami C008512H 4.4 -34.59 -1026.46 0.000 C008513H 5.1 -34.59-56.19 0.007 C008514H 4.3 -34.59 -1026.330.000 C008515H 3.7 -34.59 -1025.74 0.000 Gaspe_off 4.8 C008516H -34.59-1026.79 0.000 C008517H 5.8 -34.59-1027.67 0.000 C008518H 9.8 -34.59 -80.67 0.000 C008519H 7.3 -34.59-1028.63 0.000 Malbaie C008520H 4.3 -34.59-1026.30 0.000 C008521H 9.6 -34.59 -1029.83 0.000 C008522H 11.5 -34.59-1030.60 0.000 C008523H 9.4 -34.59-1029.750.000 Anse_Beaufils C008524H 2.6 -34.59-1024.120.000 C008525H 7.2 -34.59 -75.740.000 C008526H 6.9 -34.59 -1028.36 0.000 C008527H 4.8 -34.59-1026.84 0.000 Gde_Riviere 3.9 C008528H -35.23-57.390.006 C008529H 4.9 -35.23 -69.840.000

5.6

5.6

5.7

4.6

4.7

4.2

5.6

7.8

6.7

5.9

5.9

4.2

-35.23

-35.23

-35.23

-35.23

-35.23

C008530H

C008531H

C008532H

C008533H

C008534H

C008535H

C008536H

C008537H

C008538H

C008539H

C008540H

C008541H

C008542H

Newport

-69.78

-70.04

-81.44

-1026.67

-1026.74

0.000

0.000

0.000

0.000

0.000

Appendix 3c (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 23 to October 07 2008.

Annexe 3c (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou selon le relevé acoustique 23 septembre au 7 octobre 2008.

Stratum / Strate	Transect Number /Nombre	Transect Length / Longueur (km)	Target Strength Force cible (dB/kg)	Average Sa Sa moyen (dB/m²)	Biomass (e) Density / Densité (kg/m²)	Set Number Numéro
Shigawake	C008543H	4.7	-35.23	-1026.71	0.000	
	C008544H	5.6	-35.23	-1027.51	0.000	
	C008545H	6.8	-35.23	-51.50	0.024	4
	C008546H	7.5	-35.23	-52.42	0.019	
	C008547H	5.5	-35.23	-62.79	0.002	
	C008548H	5.9	-35.23	-58.36	0.005	
	C008549H	8.4	-35 23	-53.39	0.015	
	C008550H	8.4	-35.23	-52.56	0.019	5
	C008551H	7.6	-35.23	-56.51	0.008	
	C008552H	7.6	-35.23	-60.82	0.003	
	C008553H	5.5	-35.23	-58.91	0.004	
	C008554H	4.8	-35.23	-67.11	0.001	
	C008555H	5.0	-35.23	-79.72	0.000	
	C008556H	3.5	-35.23	-1025.39	0.000	
	C008557H	6.7	-35.23	-1028.27	0.000	
	C008558H	6.1	-35.23	-1027.84	0.000	
NewCarlisle	C008559H	6.0	-34.88	-56.34	0.007	
	C008560H	5.4	-34.88	-46.87	0.063	
	C008561H	6.2	-34.88	-53.73	0.013	
	C008562H	6.2	-34.88	-1027.95	0.000	
	C008563H	5.8	-34.88	-1027.61	0.000	
	C008564H	5.6	-34.88	-1027.50	0.000	
	C008565H	4.4	-34.88	-55.27	0.009	
	C008566H	3.9	-34.88	-54.41	0.011	
	C008567H	4.9	-34.88	-54.50	0.011	
NewRichmond	C008568H	5.1	-34.88	-58.94	0.004	
	C008569H	5.1	-34.88	-60.95	0.003	
	C008570H	5.4	-34.88	-62.11	0.003	
	C008571H	4.7	-34.88			
				-64.82	0.001	
Belledune	C008572H	4.9	-34.88	-45.15	0.094	
Delledurie	C008573H	4.4	-34.88	-1026.44	0.000	
	C008574H	8.5	-34.88	-1029.32	0.000	
	C008575H	7.0	-34.88	-59.89	0.003	
	C008576H	6.2	-34.88	-52.02	0.019	
	C008577H	6.2	-34.88	-42.76	0.163	6
	C008578H	5.9	-34.88	-45.69	0.083	
	C008579H	6.1	-34.88	-46.18	0.074	
	C008580H	7.8	-34.88	-43.15	0.149	
	C008581H	8.0	-34.88	-47.89	0.050	
	C008582H	6.9	-34.88	-41.92	0.198	7
	C008583H	6.6	-34.88	-48.38	0.045	
	C008584H	6.7	-34.88	-48.45	0.044	
	C008585H	6.8	-34.88	-48.15	0.047	
	C008586H	7.7	-34.88	-76.57	0.000	

Appendix 3c (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 23 to October 07 2008.

Annexe 3c (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou selon le relevé acoustique 23 septembre au 7 octobre 2008.

Stratum / Strate	Transect Number / Nombre	Transect Length / Longueur (km)	Target Strength Force cible (dB/kg)	Average Sa Sa moyen (dB/m²)	Biomass (e) Density / Densité (kg/m²)	Set Number Numéro
	C008587H	7.4	-34.88	-55.41	0.009	
	C008588H	8.2	-34.88	-53.37	0.014	
	C008589H	9.3	-34.88	-62.74	0.002	
Nepisiguit	C008590H	8.5	-35.02	-1029.29	0.000	
	C008591H	10.5	-35.02	-50.66	0.027	
	C008592H	10.1	-35.02	-1030.04	0.000	
	C008593H	9.7	-35.02	-1029.86	0.000	
	C008594H	9.6	-35.02	-1029.82	0.000	
	C008595H	8.4	-35.02	-1029 26	0 000	
	C008596H	82	-35 02	-1029.15	0 000	
	C008597H	8.0	-35.02	-1029.01	0.000	
	C008598H	7.0	-35.02	-59.89	0.003	
	C008599H	7.0	-35.02	-63.95	0.001	
	C008600H	6.3	-35.02	-72.82	0.000	
	C008601H	6.7	-35.02	-62 80	0.002	
	C008602H	6.7	-35.02	-46 36	0.074	8
	C008603H	5.7	-35.02	-52.48	0.018	9
	C008604H	5.3	-35.02	-57.26	0.006	
Maisonnette	C008605H	4.8	-35.02	-1026.77	0.000	
	C008606H	4.9	-35.02	-1026 92	0.000	
	C008607H	4.9	-35.02	-1026 90	0.000	
	C008608H	4.8	-35 02	-1026.78	0.000	
	C008609H	5.1	-35 02	-1027 08	0.000	
	C008610H	6.3	-35 02	-65.12	0.001	
	C008611H	5.2	-35 02	-64.22	0.001	
	C008612H	5.4	-35 02	-75.54	0 000	
	C008613H	6.0	-35 02	-53.69	0.014	10
	C008614H	6.3	-35 02	-69.40	0.000	10
	C008615H	6.2	-35.02	-56.13	0.008	
	C008616H	6.8	-35.02	-69.55	0.000	
	C008617H	7.0	-35.02	-62.37	0.000	
	C008618H	7.6	-35.02	-66.61	0.002	
West Miscou	C008619H	8.7	-35.02	-62.38	0.002	
vesi_iviiscou	C008620H	8.3	-35.02	-55.77	0.002	
	C008621H	8.5	-35.02	-59.82	0.003	
	C008622H	8.7	-35.02	-49 56		11
	C008623H	9.0	-35.02	-1029.55	0.035	11
	C008624H	10.8	-35.02	-46.27	0.000	
	C008625H	5.0	-35.02	-1026 97	0.075 0.000	
		5.1				
	C008626H C008627H	5.1	-35 02 -35 02	-1027.10	0.000	
		7.9		-1026.90	0.000	
	C008628H		-35 02	-1028.95	0.000	
	C008629H	8 7	-35 02	-1029.41	0 000	
	C008630H	7.5	-35.02	-1028.76	0.000	
	C008631H	7.4	-35.02	-1028.72	0.000	
	C008632H	7.7	-35.02	-1028.87	0.000	
	C008633H	7.7	-35 02	-64 64	0.001	

Appendix 3c (cont). Transect backscatter and biomass density in the Chaleurs-Miscou area from the acoustic survey held from September 23 to October 07 2008.

Annexe 3c (suite). Densité de la biomasse et rétrodiffusion par transect dans la zone Chaleurs-Miscou selon le relevé acoustique 23 septembre au 7 octobre 2008.

Stratum / Strate	Transect	Transect	Target Strength	Average Sa Sa	Biomass (e)	Se
	Number / Nombre	Length / Longueur (km)	Force cible (dB/kg)	moyen (dB/m²)	Density / Densité (kg/m²)	Numbe Numér
North_Miscou	C008634H	7.7	-34.56	-1028.86	0.000	
	C008635H	9.8	-34.56	-1029.91	0.000	
	C008636H	10.9	-34.56	-1030.38	0.000	
	C008637H	11.3	-34.56	-1030.53	0.000	
	C008638H	11.2	-34.56	-1030.51	0.000	
	C008639H	10.9	-34.56	-1030.39	0.000	
	C008640H	10.8	-34.56	-1030.35	0.000	
	C008641H	10.9	-34.56	-1030.37	0.000	
	C008642H	10.7	-34.56	-1030.30	0.000	
	C008643H	10.2	-34.56	-1030.11	0.000	
	C008644H	9.8	-34.56	-1029.90	0.000	
	C008645H	8.6	-34.56	-1029.35	0.000	
Miscou_NW	C008646H	12.9	-34.56	-1031.10	0.000	
	C008649H	12.3	-34.56	-72.23	0.000	
	C008654H	13.2	-34.56	-73.72	0.000	
	C008657H	14.3	-34.56	-52.41	0.016	
	C008658H	14.0	-34.56	-49.44	0.033	12
	C008661H	11.9	-34.56	-50.86	0.023	
	C008662H	13.1	-34.56	-45.96	0.072	13
	C008663H	13.1	-34.56	-48.17	0.044	
Miscou_NE	C008655H	10.1	-34.56	-1030.06	0.000	
	C008656H	11.0	-34.56	-70.02	0.000	
	C008659H	10.7	-34.56	-65.61	0.001	
	C008660H	11.0	-34.56	-69.01	0.000	
Miscou_SW	C008650H	12.0	-34.56	-65.58	0.001	
	C008651H	14.0	-34.56	-62.13	0.002	
	C008652H	13.3	-34.56	-70.01	0.000	
	C008653H	12.9	-34.56	-66.12	0.001	
	C008668H	13.9	-34.56	-60.95	0.002	
	C008669H	13.7	-34.56	-1031.37	0.000	
	C008672H	12.2	-34.56	-1030.86	0.000	
	C008673H	12.5	-34.56	-1030.99	0.000	
Miscou_SE	C008664H	12.5	-34.56	-62.02	0.002	
	C008665H	10.8	-34.56	-1030.33	0.000	
	C008666H	13.1	-34.56	-50.90	0.023	14
	C008667H	13.2	-34.56	-1031.22	0.000	
	C008670H	15.0	-34.56	-1031.77	0.000	
	C008671H	12.7	-34.56	-1031.04	0.000	
	C008674H	12.9	-34.56	-1031.11	0.000	

Appendix 3d. Transect backscatter and biomass density in the north P.E.I. area from the acoustic survey held from October 8 to 10 2008. Densité de la biomasse et rétrodiffusion par transect dans la zone de l'Î.-P.-É. Annexe 3d.

selon le relevé acoustique du 8 au 10 octobre 2008.

Stratum / Strate	Transect Number / Nombre	Transect Length /	Target Strength Force cible	Average Sa Sa moyen	Biomass (e) Density / Densité	Set Number
		(km)	(dB/kg)	(dB/m ²)	(kg/m^2)	Numéro
PEINW	C008679H	12.5	-34.89	-64.23	0.001	
	C008680H	17.3	-34.89	-65.39	0.001	
	C008681H	18.5	-34.89	-69.28	0.000	
	C008682H	17.8	-34.89	-49.23	0.037	15
	C008683H	18.6	-34.89	-49.60	0.034	16
TheRift	C008675H	6.3	-34.89	-1028.00	0.000	
	C008676H	9.2	-34.89	-1029.65	0.000	
	C008677H	10.4	-34.89	-59.64	0.003	
	C008678H	10.6	-34.89	-1030.24	0.000	
NorthCape	C008684H	10.8	-34.89	-55.35	0.009	
	C008685H	8.2	-34.89	-69.62	0.000	
	C008686H	11.5	-34.89	-1030.59	0.000	
	C008687H	17.2	-34.89	-1032.34	0.000	
Malpeque	C008688H	18.4	-34.29	-1032.65	0.000	
	C008689H	18.8	-34.29	-1032.75	0.000	
	C008690H	15.8	-34.29	-85.35	0.000	
	C008691H	12.9	-34.29	-60.66	0.002	17
Stanhope	C008692H	15.8	-34.29	-42.61	0.147	18
	C008693H	18.0	-34.29	-73.38	0.000	
	C008694H	16.4	-34.29	-49.05	0.033	19
	C008695H	16.7	-34.29	-76.87	0.000	

Appendix 4a. Regression of age-class abundance of spring spawners from one year to the next. The data are from the September bottom trawl groundfish survey 1994 to 2008 catch-at-age in numbers (x 10⁵).

Annexe 4a. Régression de l'abondance des classes-d'âge des géniteurs de printemps avec un délai d'un an. Les données proviennent des prises selon l'âge du relevé du poisson de fond de septembre 1994 à 2008, en nombres (x 10⁵).

Appendix 4b. Regression of age-class abundance of fall spawners from one year to the next. The data are from the September bottom trawl groundfish survey 1994 to 2008 catch-at-age in numbers (x 10⁵).

Annexe 4b. Régression de l'abondance des classes-d'âge des géniteurs d'automne avec un délai d'un an. Les données proviennent des prises selon l'âge du relevé du poisson de fond de septembre 1994 à 2008, en nombres (x 10⁵).

Appendix 5a. Comparison of the Chaleur–Miscou acoustic survey spring spawner component (SSC) catch percentages by age of adult herring (4+) with the seiner catches for the same area and time period.

Annexe 5a. Comparaison des pourcentages par âge de harengs adultes (4+) de la composante des géniteurs de printemps (CGP) capturées lors du relevé acoustique de Chaleurs-Miscou aux pourcentages capturées par les senneurs dans le même lieu et période de l'année.

Appendix 5b. Comparison of the Chaleur–Miscou acoustic survey spring spawner component (SSC) catch percentage at age of adult herring (4+) with the fix gillnet catches.

Annexe 5b. Comparaison des pourcentages par âge de harengs adultes (4+) de la composante des géniteurs de printemps (CGP) capturées lors du relevé acoustique de Chaleurs-Miscou aux pourcentages capturées par les filets maillants (engins fixes).

Appendix 5c. Comparison of the Chaleur–Miscou acoustic survey fall spawner component (FSC) catch percentage at age of adult herring (4+) with the seiner catches for the same area and time period.

Annexe 5c. Comparaison des pourcentages par âge de harengs adultes (4+) de la composante des géniteurs d'automne (CGA) capturées lors du relevé acoustique de Chaleurs-Miscou aux pourcentages capturées par les senneurs dans le même lieu et période de l'année.

Appendix 5d. Comparison of the Chaleur–Miscou acoustic survey fall spawner component (FSC) catch percentage at age of adult herring (4+) with the fix gear gillnet catches.

Annexe 5d. Comparaison des pourcentages par âge de harengs adultes (4+) de la composante des géniteurs d'automne (CGA) capturées lors du relevé acoustique de Chaleurs-Miscou aux pourcentages capturées par les filets maillants (engins fixes).

Appendix 6 / Annexe 6

A study on the use of gillnetter telephone survey opinion on abundance as an aggregated biomass index by R. Morin (DFO, Gulf Region)

Introduction

The annual herring gillnetter telephone survey has been conducted yearly since 1985 with the primary objective of obtaining vessel-specific estimates of catch and fishing effort (LeBlanc and LeBlanc 1996). The survey covers, in fact, a broad range of fishing activities: the distribution and intensity of fishing, mesh sizes, fishing dates, and the disposition of catches (for bait, discarded, sale to processers). Since 1995, fishers are asked their general opinion on the abundance of spring or fall herring. This question relates the perceived abundance of herring in the current year to that of the previous year¹.

Stock assessment biologists value the opinions of fishers. Several technical aspects of commercial fishing, such as the adoption of new fishing technology and methods, can only be ascertained by directly consulting fishers. Generally speaking, it is important to know whether fishers and biologists have similar or diverging perceptions of how the fish stock is evolving. How diverging views are incorporated into the decision process for managing fish stocks is not clearly defined. Recent assessments of southern Gulf herring report the indices of stock abundance obtained from various sources (hydroacoustic surveys, gillnetter catch rates, groundfish surveys) in addition to the opinions of fishers obtained from the telephone survey.

The 2008 assessment of the southern Gulf fall herring stock (LeBlanc et al. 2008) took the use of the phone survey opinions a step further: fisher opinions were combined into an index that was used in a population model. This practice raised a number of fundamental questions when the assessment was reviewed. Should fisher opinions be treated as a measure of stock abundance; what is the relationship between the perceived abundance of the stock and a measure of abundance obtained from commercial or experimental sampling gear; what diagnostics are available to know whether or not an opinion index is continuing to track fish stock abundance? This study explores the gillnetter telephone survey data in an attempt to respond to some of these questions.

Methods

Our primary data source was electronic files of the gillnetter telephone survey from 1994 to 2008. We used the unique commercial vessel identification number (CFV) to identify the vessels of fishers who had participated in the telephone survey in consecutive years. The CFV was used to merge catch and effort data in consecutive years, but was dropped from all further analyses to maintain the confidentiality of the information provided by the respondents.

The catch per unit effort (CPUE) of the telephone respondents was calculated by the methods used in the herring assessments. The catch was the total pounds of herring declared by the

¹ The following text is used: The Department of Fisheries and Oceans is interested in whether gillnetters think that herring are becoming more or less abundant. First of all, how long have you been fishing herring in your area in the spring/fall? If fishing for two or more years, proceed with question. We would like you to compare the abundance of herring in this year's spring/fall fishery with abundance in last year's spring/fall fishery. Would you say that herring this year are: much more abundant, little more abundant, about the same, a little less abundant, much less abundant?

telephone respondent. Fishing effort was calculated by the same method used to compute commercial gillnet catch rates in the southern Gulf herring assessments. Effort was the sum of the number of days of fishing during peak and non-peak fishing (the number of standard net lengths multiplied by the number of fishing days in each period) multiplied by the number of times the fisher hauled the nets in a day.

For respondents who participated in the telephone survey in consecutive years, we calculated a simple index of change in their catch rates by subtracting the CPUE of herring catches in the first year from the CPUE in the second year. We then related this index to the opinion of the same fisher concerning the abundance of herring in the second year relative to the first year. Over the 1994-2007 period we identified 108 fishers who fished spring herring and who participated in the gillnet telephone survey in consecutive years; similarly, we identified 263 fishers in the fall herring fishery.

We hypothesize that if fisher opinions on abundance relate to changes in herring catch rates, then we should obtain differences in the catch rates of fishers who perceive herring abundance as increasing, decreasing, or at the same level. Figure 1 illustrates the expected differences that we should see. The mean index should increase predictably as opinions range between declining abundance to increasing abundance. The CPUE index for fishers who feel that herring abundance has declined from the previous year should be negative; in contrast, the index for fishers who feel that herring are more abundant should be positive. Fishers who express the view that herring abundance is unchanged between years should have a CPUE index that is centered on zero. Although Figure 1 shows normal distributions for the CPUE frequency plots, we do not assume any particular statistical distribution for these data.

Telephone survey respondents are asked to estimate their total catch of herring, including herring that is used for bait, sold and dumped. Fish buyers also report the weighed catches of herring for each vessel that are provided in ZIF files (DFO Statistics Division, Policy & Economics Branch, Gulf Region). We assessed the closeness of the catch data from the telephone survey and from the ZIF files by producing scatter plots of catches from the same vessels. The spring and fall herring catches in the ZIF files were identified on the basis of the landing date (before and after July). ZIF data are not a reliable source of effort data, since herring gillnetters in the southern Gulf do not fill out logbooks. We plotted the number of days that herring were landed (ZIF data) against the number of fishing days reported by the same fisher in the telephone survey. The comparisons of survey catch and effort (days) between the telephone survey and ZIF files was done for the fall herring fishery over four recent years of data (2004-2007).

Results

Both spring and fall herring fishers who participated in the gillnetter telephone survey in consecutive year had highly variable differences in their herring catch rates between years. Their average differences increased predictably according to their opinion of herring abundance (Figures 2 and 3). Respondents who expressed the view that herring were less abundant than the previous year had a negative average difference in their catch rates (signifying, on average, a decline in catches). Respondents who felt that herring were more abundant than in the previous year had a positive average difference (signifying, on average, an increase in catch rates). Respondents who felt that herring had neither increased nor decreased had, on average, differences in their catch rates that were intermediate to the other two groups.

All three levels of opinions, for both spring and fall fisheries, displayed catch rates that overlapped broadly (Figures 2 and 3). In all cases, the most frequent category of observed in catch rate differences was the one centred on zero. A large proportion of fishers who felt that herring were less abundant had, in fact, experienced an increase in their catch rate relative to the previous year (17 of 51 respondents in the spring herring fishery; 23 of 61 respondents in the fall herring fishery). Conversely, a large proportion of fishers who felt that herring were more abundant than last year had experienced a decline in their catch rates (11 of 23 respondents in the spring herring fishery; 35 of 95 respondents in the fall herring fishery).

Scatter plots of CPUE in the second year against CPUE in the first year clearly shows that there was no separation of points relative to the opinions expressed about herring abundance (Figure 4). For respondents in the spring herring fishery (upper graph in Figure 4), the regression line for the group expressing higher abundance appears to be higher than the other two groups, as expected. However, this regression was non significant (P=0.14).

Telephone respondents provided estimates of their herring catch that was strongly correlated with the weighed catches of buyers in ZIF data files (Figure 5). In many cases, the telephone respondent provided the same catch weight as the buyer, or a value within 10 tonnes (values lying on or close to the 1:1 line in Figure 5). A tendency for the respondent to provide somewhat higher estimates might be expected, if the value provided on the telephone includes herring that was not sold to the buyer.

As expected, telephone respondents accounted for many more days of fishing than could be estimated from the number of landing days recorded in the ZIF files (Figure 6).

Discussion

This analysis indicates that fisher opinions on the abundance of herring (last year's abundance relative to this year's abundance) are not reflected in a consistent manner with their catch rates. However, the telephone respondents in the fall herring fishery provided similar estimates of their catches to the weights recorded by the fish buyers. There is no way to confirm the reliability of the effort data provided in the telephone survey; however, the number of days fishing reported in the survey is predictably greater than the number of days with landed catch in commercial data files. Lastly, at the opposite ends of the opinion spectrum (fewer herring versus more herring than last year), there are fishers who have experienced changes in their catch rates that are inconsistent with their opinions.

These results suggest that the telephone survey provides reliable estimates of catch and effort. If year-to-year changes in gillnetter catch rates are not clearly reflected in gillnetter opinions about herring stock abundance, why should this be so?

Any number of factors may influence gillnetter opinions about stock size. Fish stocks change slowly from one year to the next, so changes in catch rates may be subtle. Fishers are fully aware of the amount of fish landed, the number of days they spent fishing, the amount of gear that they deployed, and the number of times per day that they haul their nets. However, their opinion of stock change may not be based on a precise calculation of these various factors. Instead, the quantity of fish landed or other experiences (e.g. instances of particularly large catches or the experience of days with poor catches, the experiences of other fishers exploiting herring in their community) may influence their perception of year-to-year changes in the abundance of the stock.

Neis et al. (1999) referred to structured attempts to obtain resource users' knowledge (including telephone surveys and logbooks) as only tapping a limited range of information and often suffering from inconsistent participation. The gillnetter telephone survey receives extensive participation (148 participants in 2007, out of about 800 active fishers, LeBlanc et al. 2008), is supported by herring fisher associations, and draws on the experiences of active gillnetters.

The gillnetter telephone survey offers respondents the opportunity to present their opinion about stock abundance objectively, without any prompting or leading questions. There is no apparent reason for any of the respondents to falsify their opinions. If, indeed, the respondents were to favour a positive view of the stock, we would expect their estimates of herring catches to be exaggerated or their reported days of fishing to be under-reported. Our comparison with purchase slip data shows that they do neither of these.

We conclude that respondents in the gillnet telephone survey provide an honest opinion of their perception of recent change in herring stock abundance. However, that opinion is not related in a consistent manner to changes in the same respondent's herring catch rates. Why opinions about stock abundance fail to relate to catch rates is a subject of further study. In the meantime, we caution against using gillnetter opinions as an index of herring stock abundance.

Literature cited

- LeBlanc, C. and L. LeBlanc. 1996. The 1995 NAFO Division 4T herring gillnet telephone survey. DFO Atlantic Fisheries Res. Doc. 96/77, 37 p.
- LeBlanc, C.H., C. MacDougall, and C. Bourque. 2008. Assessment of the NAFO 4T southern Gulf of St. Lawrence herring stocks in 2007. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/061, 133 p.
- Neis, B., Schneider, D.C., Felt, L., Haedrich, R. and Fischer, J. 1999. Fisheries assessment: what can be learned from interviewing resource users? Canadian Journal Fisheries Aquatic Science 56(10): 1949-1963.

Figure 1. Hypothetical models of survey data assuming correspondence between opinions of herring abundance and catch per unit effort data. Opinions by colour: "herring abundance is lower this year than last year" represented by blue lines; "herring abundance is the same this year as last year" represented by green lines; "herring are more abundant this year than last year" red represents higher abundance. Top graph shows expected frequency distributions for the difference in catch per unit effort in the first and second year (CPUE1 & CPUE2). Bottom graph shows expected pattern of regression lines for plots of CPUE.

Figure 2. Telephone respondents in the spring herring fishery who participated in consecutive surveys, showing the frequency of their catch index (catch per unit effort of herring in the second year minus CPUE in the first year). The plots are identified by the opinions of the respondents concerning the abundance of herring in the second year relative to the previous year. A normal distribution with mean and standard deviation in the inset is superimposed on each plot.

Figure 3. Telephone respondents in the fall herring fishery who participated in consecutive surveys, showing the frequency of their catch index (catch per unit effort of herring in the second year minus CPUE in the first year). The plots are identified by the opinions of the respondents concerning the abundance of herring in the second year relative to the previous year. A normal distribution with mean and standard deviation in the inset is superimposed on each plot.

Figure 4. Scatter plots and regression lines of catch per unit effort (CPUE) for respondents who participated in the herring telephone survey in consecutive years. The respondent catch data is coded by the opinions of the respondents to the question of whether herring abundance is greater, the same or less in the second year relative to the first year. The upper graph is the spring herring fishery respondents and the lower is the fall herring fishery respondents.

Figure 5. Scatter plots of fall herring catches from purchase slips (ZIFF) and from the telephone survey, showing correlation coefficient and 1:1 line.

Figure 6. Scatter plots of fishing effort (number of fishing days) in the fall herring fishery from purchase slips (ZIFF) and from the gillnetter telephone survey, showing the correlation coefficient and the 1:1 line.

