Roteiro 4 EE534

EE534 — Roteiro 4

Professor: Max Costa

Leonardo Rodrigues Marques 178610

1)

Utilizando-se a aproximação de I_{R1} com I_B , conseguimos calcular a corrente que passa por R_1 .

$$I_{R1} = I_D + I_B \approx 10I_B + I_B = 11I_B$$

$$I_C = \beta I_B = 40mA \rightarrow 120I_B = 40mA \rightarrow I_B = 0.33mA$$

$$I_{R1} = 11I_B \rightarrow I_{R1} = 11*0.333 \rightarrow I_{R1} = 3.667mA$$

Pela simetria do cicruito $\to R_1 = R_2 = R$, portanto a queda de tensão correspondente é $\frac{V_{cc}}{2}$, e dessa forma conseguimos encontrar os valores das resistências.

$$I_{R1} = \frac{2.5 - 0.7}{R} \to R = \frac{1.8}{3.667} \to R = R_1 = R_2 = 491\Omega$$

Ainda utilizando a simetria do circuito, temos que $g_{m1} = g_{m2}$ (dois transistores). O g_m dessa configuração é a soma dos g_{ms} particulares. Portanto, conseguimos encontrar o ganho do circuito.

$$g_m = g_{m1} + g_{m2} = 2\frac{I_c}{V_T} = \frac{80}{26} = 3.08s$$
$$A_v = \frac{R_L}{R_L + \frac{1}{g_m}} = \frac{8}{8 + \frac{1}{3.08}} = 0.961$$

Roteiro 4 EE534

2)

Figura 1: Circuito simulado no PSpice.

O ganho simulado foi $A_v = 0.623$.

Figura 2: Simulação do circuito.

Razões pelas quais o ganho simulado foi menor que o ganho obtido:

- configurações internas dos transistores.
- comportamento dos diodos
- aproximação usada no projeto.