

MATRIZ DE DESIGN INSTRUCIONAL

Nome Curso	Sistemas Dinâmicos (ESTEMA007)					
Público Alvo	Alunos do 4º período de Eng. Controle e Automação.					
Objetivo Geral	Aprese	Apresentar aos alunos os princípios e técnicas de modelagem, análise de resposta de sistemas dinâmicos.				
Ementa	eletrom modela transfei Modela	Introdução aos sistemas dinâmicos. Modelagem de sistemas dinâmicos por leis físicas: mecânicos, elétricos, eletromecânicos, fluídicos e térmicos. Analogia entre sistemas. Representação de sistemas dinâmicos: modelagem via equações diferenciais ordinárias, modelagem por variáveis de estados, função de transferência, diagrama de blocos. Avaliação de sistemas dinâmicos: solução numérica e resposta dinâmica. Modelagem experimental de sistemas: simulação por software computacional.				
Carga Horária	60 hora	IS				
Aulas	Carga Horária	Objetivos Específicos	Materiais	Estratégias de Aprendizagem	Avaliações	
MÓDULO 1:	Introduç	ão e modelagem				
AT1. Int. aos sistemas dinâmicos: Definição, Classificação, Propriedades. Data: 04/05.	15	 Apresentar os conceitos, classificação e propriedades de sistemas dinâmicos. 	 Aula teórica 1 em pdf e gravação da aula (googleclass). Capítulo 1 do livro-texto do autor Craig. 	Leitura e estudo do material em pdf e assistir a vídeo aula 1. Leitura do capítulo 1 do livro-texto do autor Craig.		
2. AT2. Int. aos sistemas dinâmicos: domínios de representação/Exemplos. Data: 06/05.		Estudar os domínios de representação no domínio do tempo e da frequência de sistemas dinâmicos.	 Aula teórica 2 em pdf e gravação da aula (googleclass). Capítulo 2 e 3 do livro-texto do autor Craig. 	em pdf e assistir a vídeo aula 2. Leitura dos capítulos 2 e 3	Postagem da Tarefa 1 no Googleclass. (1,0 ponto) na AP1.	
3. AT3. Modelagem de sistemas x leis físicas: sistemas mecânicos. Data: 11/05.		Desenvolver o modelo matemático de sistemas mecânicos.	 Aula teórica 3 em pdf e gravação da aula (googleclass). Capítulo 3 do livro-texto do autor Craig. 	Leitura e estudo do material em pdf e assistir a vídeo aula 3. Leitura do capítulo 3 do livro-texto do autor Craig.		

4. AT4. Modelagem de sistemas x leis físicas: sistemas elétricos. Data: 13/05.	 Desenvolver o modelo matemático de sistemas elétricos. 	 Aula teórica 4 em pdf e gravação da aula (googleclass). Capítulo 3 do livro do Craig. 	Leitura e estudo do material em pdf e assistir a vídeo aula 4. Leitura do capítulo 3 do livro-texto do autor Craig.	
5. AT5. Modelagem de sistemas dinâmicos por leis físicas: sistemas eletromecânicos. Data: 18/05.	 Desenvolver o modelo matemático de sistemas eletromecânicos. 	 Aula teórica 5 em pdf e gravação da aula (googleclass). Capítulo 3 do livro do Craig. 	Leitura e estudo do material em pdf e assistir a vídeo aula 5. Leitura do capítulo 3 do livro-texto do autor Craig.	
6. AT6. Modelagem de sistemas dinâmicos por leis físicas: sistemas eletrônicos. Data: 20/05.	 Desenvolver o modelo matemático de sistemas eletrônicos. 	 Aula teórica 6 em pdf e gravação da aula (googleclass). Capítulo 3 do livro do Craig. 	Leitura e estudo do material em pdf e assistir a vídeo aula 6. Leitura do capítulo 3 do livro-texto do autor Craig.	
7. AT7. Modelagem de sistemas dinâmicos por leis físicas: sistemas fluídicos e térmicos.	 Desenvolver o modelo matemático de sistemas fluídicos e térmicos. 	 Aula teórica 7 em pdf e gravação da aula (googleclass). Capítulo 3 do livro do de Souza. 	Leitura e estudo do material em pdf e assistir a vídeo aula 7. Leitura do capítulo 3 do livro-texto do autor de Souza.	
Data: 25/05. 8. AT8. Modelagem de sistemas dinâmicos por leis físicas: sistemas	 Desenvolver o modelo matemático de sistemas pneumáticos e hidráulicos. 	 Aula teórica 8 em pdf e gravação da aula (googleclass). Capítulo 4 do livro do Craig. 	Leitura e estudo do material em pdf e assistir a vídeo aula 8. Leitura do capítulo 4 do livro-texto do autor Craig.	
pneumáticos e hidráulicos. Data: 27/05. 9. AT9. Modelagem de sistemas dinâmicos por leis físicas: sistemas químicos.	 Desenvolver o modelo matemático de sistemas químicos. 	 Aula teórica 9 em pdf e gravação da aula (googleclass). Capítulo 3 do livro do de Souza. 	Leitura e estudo do material em pdf e assistir a vídeo aula 9. Leitura do capítulo 3 do livro-texto do autor de Souza. Resolução da Tarefa 2: Lista de exercícios 2.	Postagem da Tarefa 2 no Googleclass. (1,0 ponto) na AP1.
Data: 01/06. 10. AT10. Analogias de modelagem de sistemas. Data: 03/06.	 Estudar a relação de analogias de modelos de sistemas dinâmicos. 	 Aula teórica 10 em pdf e gravação da aula (googleclass). Capítulo 3 do livro-texto Ogata. 	Leitura e estudo do material em pdf e assistir a vídeo aula 10. Leitura do capítulo 3 do livro-texto do autor Ogata.	

11. AP1. Aula simulação computacional: Modelagem de sistemas. Data: 08/06.	 Apresentar o ambiente de programação do software Matlab: desenvolvimento de modelagem de sistemas dinâmicos. 	 Aula prática remota 1, de simulação no ambiente Matlab: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 11. Resolução da Tarefa 3: Lista de ex.3. 	Postagem da Tarefa 3 no Googleclass. (1,0 ponto) na AP1.
12. Primeira Avaliação Escrita. Data: 10/06.	Avaliar o conhecimento adquirido dos alunos sobre o conteúdo ministrado, no módulo 1.	Prova escrita programada a ser aplicada online no horário da aula e no ambiente "meet" do Googlecass.	Resolução individual e postagem da prova no repositório do ambiente Googleclas da disciplina.	Postagem da Primeira prova escrita (5,0 pontos) na AP1, no Googleclass

MÓDULO 2:	Caracterizaçã	o de sistemas dinâmicos			
13. AT11. Representação de sistemas dinâmicos: modelagem via equações diferenciais ordinárias. Data:15/06.	de din	resentar a caracterização modelagem de sistemas nâmicos, via equações erenciais ordinárias.	 Aula teórica 11 em pdf e gravação da aula (googleclass). Capítulo 5 do livro do autor Craig. 	 Leitura e estudo do material em pdf e assistir a vídeo aula 13. Leitura do capítulo 5 do livro-texto do autor Craig. 	
14. AT12. Representação de sistemas dinâmicos: modelagem por variáveis de estados. Data: 17/06.	de din	resentar a caracterização modelagem de sistemas âmicos, via variáveis de tado.	 Aula teórica 12 em pdf e gravação da aula (googleclass). Capítulo 5 do livro do autor Craig. 	 Leitura e estudo do material em pdf e assistir a vídeo aula 14. Leitura do capítulo 5 do livro-texto do autor Craig. 	
15. AP2. Aula simulação computacional: Modelagem de sistemas por equações diferenciais e variáveis de estado. Data:22/06.	Ma sis eq ord	esenvolver no ambiente atlab: modelagem de temas dinâmicos, via uações diferenciais dinárias e variáveis de tado.	 Aula prática remota 2, de simulação no ambiente Matlab: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 15. Resolução da Tarefa 4: Lista de ex.4. 	 Postagem da Tarefa 4 no Googleclass. (1,0 ponto) na AP1.
16. AT13. Representação de sistemas dinâmicos: modelagem via função de transferência (uso da transformada de Laplace) e diagramas de blocos. Data: 24/06.	de din tra	resentar a caracterização modelagem de sistemas lâmicos, via funções de nsferência e diagrama de ocos.	 Aula teórica 13 em pdf e gravação da aula (googleclass). Capítulo 5 e 8 do livro do Craig. 	 Leitura e estudo do material em pdf e assistir a vídeo aula 16. Leitura do capítulo 5 do livro-texto do autor Craig. 	
17. AP3 Aula simulação computacional: Modelagem de sistemas por funções de transferência e diagramas de blocos. Data: 29/06.	Ma sis	esenvolver no ambiente atlab: modelagem de temas dinâmicos, via nções de transferência.	 Aula prática remota 3, de simulação no ambiente Matlab: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 17. Resolução da Tarefa 5: Lista de ex. 5. 	Postagem da Tarefa 5 no Googleclass. (1,0 ponto) na AP1.

MÓDULO 3:	Respost	ta de sistemas dinâmicos			
18. AT14. Avaliação de sistemas dinâmicos: solução numérica de sistemas via equações diferenciais ordinárias. Data:01/07.	15	 Estudar o método de avaliação de sistemas dinâmicos modelados por equações dinâmicas diferenciais. 	 Aula teórica 14 em pdf e gravação da aula (googleclass). Capítulo 6 do livro-texto do autor Craig. 	Leitura e estudo do material em pdf e assistir a vídeo aula 18 Leitura do capítulo 6 do livro-texto do autor Craig.	
19. AP4. Aula simulação computacional: Solução numérica de sistemas dinâmicos via equações diferenciais ordinárias. Data: 06/07.		Desenvolver no ambiente Matlab: simulação da resposta de sistemas dinâmicos, via equações diferenciais ordinárias.	 Aula prática remota 4, de simulação no ambiente Matlab: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 19. Resolução da Tarefa 6: Lista de ex.6. 	Postagem da Tarefa 6 no Googleclass. (1,0 ponto) na AP2.
20. AT15. Avaliação de sistemas dinâmicos: resposta dinâmica de sistemas- caracterização da resposta por frações parciais. Data: 08/07.		 Estudar e aplicar o método de frações parciais e a transformada inversa de Laplace para caracterização padrão de resposta de sistemas dinâmicos. 	 Aula teórica 15 em pdf e gravação da aula (googleclass). Capítulo 5 e 7 do livro do Craig. 	Leitura e estudo do material em pdf e assistir a vídeo aula 20. Leitura do capítulo 5 e 7 do livro-texto do autor Craig.	
21.AT16. Avaliação de sistemas dinâmicos: resposta dinâmica de sistemas: aplicações de sinais testes padrão. Data: 13/07.		 Estudar e aplicar sinais testes para a obtenção da resposta de sistemas dinâmicos. 	Aula teórica 16 em pdf e gravação da aula (googleclass). Capítulo 5 do livro-texto do Craig.	Leitura e estudo do material em pdf e assistir a vídeo aula 21. Leitura do capítulo 5 do livro-texto do autor Craig.	

22. AP5. Aula simulação computacional: Solução analítica de sistemas dinâmicos- obtenção da resposta dinâmica. Data: 15/07.	 Desenvolver no ambiente Matlab: simulação da resposta de sistemas dinâmicos, via modelo de funções de transferência e sinais testes. 	 Aula prática remota 5, de simulação no ambiente Matlab: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 22. Resolução da Tarefa 7: Lista de ex. 7. 	Postagem da Tarefa 7 no Googleclass. (1,0 ponto) na AP2.
23. Segunda Avaliação Escrita. Data: 20/07.	Avaliar o conhecimento adquirido dos alunos sobre o conteúdo ministrado, nos módulos 2 e 3.	Prova escrita programada a ser aplicada online no horário da aula e no ambiente "meet" do Googlecass.	Resolução individual e postagem da prova no repositório do ambiente Googleclas da disciplina.	Postagem da Segunda prova escrita (5,0 pontos) na AP2, no Googleclass.

MÓDULO 4:	Aplicaçã	ões experimentais			
24. AT17. Modelagem experimental de sistemas: simulação por software-estudo de caso numa bancada NVPT.Data:22/07.	10	Apresentar e mostrar o ambiente da bancada NVPT, dos sistemas dinâmicos de nível, vazão, pressão e temperatura: modelagem experimental de sistemas.	 Aula teórica 17 em pdf e gravação da aula (googleclass). Capítulo 4 e 5 do livro do de Souza. 	Leitura e estudo do material em pdf e assistir a vídeo aula 24. Leitura do capítulo 4 e 5 do livro-texto do autor de Souza.	
25. AT18. Modelagem experimental de sistemas: simulação por software. Estudo de caso- modelagem de Nível e Vazão. Data: 24/07.		Estudar e aplicar a modelagem dinâmica dos sistemas de nível e vazão da bancada NVPT.	 Aula teórica 18 em pdf e gravação da aula (googleclass). Capítulo 4 e 5 do livro do de Souza. 	Leitura e estudo do material em pdf e assistir a vídeo aula 25. Leitura dos capítulos 4 e 5 do livro do autor de Souza.	
26.AT19. Modelagem experimental de sistemas: simulação por software. Estudo de caso- modelagem de Pressão e Temperatura. Data:27/07.		Estudar e aplicar a modelagem dinâmica dos sistemas de pressão e temperatura.	 Aula teórica 19 em pdf e gravação da aula (googleclass). Capítulo 4 e 5 do livro do de Souza. 	Leitura e estudo do material em pdf e assistir a vídeo aula 26. Leitura do capítulo 4 e 5 do livro-texto do autor de Souza.	
27.AP6. Modelagem experimental de sistemas: simulação por software. Estudo de caso- modelagem e resposta da bancada NPVT.Data:29/07.		Desenvolver no ambiente Matlab: modelagem e simulação da resposta de sistemas dinâmicos: nível, vazão, pressão e temperatura.	 Aula prática remota 6, de simulação no ambiente Matlab: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 27. Resolução da Tarefa 8: Lista de ex.8. 	Postagem da Tarefa 8 no Googleclass. (1,0 ponto) na AP2.

28.AP7. Modelagem experimental de sistemas: ensaio experimental. Estudo de caso- modelagem e resposta de Nível e Vazão. Data: 31/07.	 Aplicar ensaio experimental: modelagem e simulação da resposta de sistemas dinâmicos: nível, vazão. 	 Aula prática remota programada de aplicação experimental num sistema NVPT: roteiro em pdf e gravação da aula 28. 	Participar e desenvolver roteiro da aula prática, assistir a aula gravada 28. Resolução da Tarefa 9: Lista de ex.9.	Postagem da Tarefa 9 no Googleclass. (1,0 ponto) na AP2.
29.AP8. Modelagem experimental de sistemas: ensaio experimental. Estudo de caso- modelagem e resposta de Pressão e Temperatura. Data: 03/08.	 Aplicar ensaio experimental: modelagem e simulação da resposta de sistemas dinâmicos: pressão e temperatura. 	 Aula prática remota programada de aplicação experimental num sistema NVPT: roteiro em pdf e gravação da aula 29. 	Participar e desenvolver roteiro da aula prática, assistir a aula gravada 29. Resolução da Tarefa 10: Lista de ex.10.	Postagem da Tarefa 10 no Googleclass. (1,0 ponto) na AP2
30. Avaliação Final . Data:05/08.	 Avaliar o conhecimento adquirido dos alunos que não conseguiram a média parcial. Assunto: conteúdo do módulo 4. 	Prova escrita programada a ser aplicada online no horário da aula e no ambiente "meet" do Googlecass.	 Resolução individual e postagem da prova no repositório do ambiente Googleclas da disciplina. 	Postagem da Prova Final (10,0 pontos) na média final no Googleclass.

*Método de cálculo de notas:

-AP1= primeira prova escrita (5,0) + Tarefa1(1,0) + Tarefa2 (1,0) + Tarefa3(1,0) + Tarefa4(1,0) + Tarefa5(1,0).

-AP1= segunda prova escrita (5,0) + Tarefa6 (1,0) + Tarefa7(1,0) + Tarefa8(1,0) + Tarefa9(1,0) + Tarefa10(1,0).

Média parcial:
$$M_p = \frac{Ap_1 + Ap_2}{2} \ge 8.0$$
 Média final: $M_f = \frac{2*M_p + Prova_{final}}{3}$