Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. - 20. (Canceled)

21. (Currently amended) A pharmaceutical composition for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound of claim 1 the formula (I):

A-Q-D-E-G-J-X

wherein:

A is selected from the group consisting of:

 $-C(=NR^2)N(R^2,R^3)$; and

phenyl, which is substituted with 0-2 R¹ groups;

each R¹ is a member independently selected from the group consisting of:

halo, -CN, -C(=O)-N(R², R³), -NO₂, -SO₂N(R², R³), -SO₂R², -(CH₂)_mNR²R³, -(CH₂)_m-C(=NR³)-R², -(CH₂)_m-C(=NR²)-N(R²,R³), -(CH₂)_m-N(R²)-C(=NR²)-N(R²,R³), -(CH₂)_mNR²-C₃₋₆heterocyclics, C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl, -CF₃, -OR², and a 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁-C₄-alkyl, -CN C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl and -NO₂;

Attorney Docket No.: 021390-002421US

each R² and R³ is a member independently selected from the group consisting of:

-H, -C₁₋₆alkyl, -C₁₋₆alkyloxy, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl and -C₀₋₆alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₄alkylC₃₋₈cycloalkyl, $-S(=O)_2$ -OH, -CN, $-CF_3$ and $-NO_2$;

m is an integer of 0-2;

Q is a direct link;

D is phenyl, which is substituted with 0-2 R^{1a} groups;

each R^{1a} is a member independently selected from the group consisting of:

halo, -C₁₋₆alkyl, -C₁₋₆alkyloxy, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, $-C_{0-6}$ alkyl C_{3-8} cycloalkyl, $-S(=O)_2$ -OH, -CN, $-NO_2$, $-(CH_2)_n$ -N($-R^{2a}$, $-R^{3a}$), $-S(=O)_2$ -N($-R^{2a}$) R^{2a} , $-R^{3a}$), $-S(=O)_2-R^{2a}$, $-CF_3$, $-(CH_2)_n-OR^{2a}$, $-C(=O)-O-R^{2a}$, $-C(=O)-N(-R^{2a}$, $-R^{3a}$), $-C(=NH)-N(-R^{2a}, -R^{3a})$, $-C(=NMe)-N(-R^{2a}, -R^{3a})$, 2-imidazolin-2-yl, 1-methyl-2imidazolin-2-yl and a 5-6 membered aromatic heterocyclic ring containing 1-4 heteroatoms selected from N, O and S and -C₀₋₆alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the aromatic heterocyclic ring and the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -CF₃ and -NO₂;

n is an integer of 0-2;

R^{2a} and R^{3a} are independently selected from the group consisting of:

-H, -C₁₋₆alkyl, -C₁₋₆alkyloxy, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl and -C₀₋₆alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₄alkylC₃₋₈cycloalkyl, -S(=O)₂-OH, -CN, -CF₃ and -NO₂;

E is -NH-C(=O)-:

G is a pyrazole ring substituted with 0-2 R^{1b} groups;

each R1b is a member independently selected from the group consisting of:

halo, -C₁₋₆alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl, -C₁₋₄alkyl-C(=O)-OH, -CN, -NO₂, -S(=O)₂-OH, -N(- R^{2b} , - R^{3b}), -C(=O)-N(- R^{2b} , - R^{3b}), -S(=O)₂-R^{2b}, -CF₃, -O-R^{2b}, -O-CH₂-CH₂-O-R^{2b}, -N(- R^{2b})-C(=O)-O-R^{2b}, -N(- R^{2b})-C(=O)-R^{2b}, -N(- R^{2b})-C(=O)-R^{3b}, -N(- R^{2b})-S(=O)₂-R^{3b}, and a 5-6 membered heterocyclic ring containing 1-4 heteroatoms selected from N, O and S substituted with 0-4 R^{1b'} groups;

each R^{2b} and R^{3b} is a member independently selected from the group consisting of:

-H, $-C_{1-6}$ alkyl, $-C_{1-6}$ alkyloxy, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-6}$ alkyl C_{3-8} cycloalkyl and $-C_{0-6}$ alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, $-C_{1-4}$ alkyl, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-4}$ alkyl C_{3-8} cycloalkyl, $-C_{0-4}$ alkyl $-C_{0-4}$ alkyl-C

each R1b' is a member independently selected from the group consisting of:

 $\frac{\text{halo, -C}_{1\text{-}6}\text{alkyl, -C}_{2\text{-}6}\text{alkenyl, -C}_{2\text{-}6}\text{alkynyl, -C}_{3\text{-}8}\text{cycloalkyl, -C}_{0\text{-}6}\text{alkylC}_{3\text{-}8}\text{cycloalkyl, -C}_$

each R^{2b'} and R^{3b'} are independently selected from the group consisting of:

-H, -C₁₋₆alkyl, -C₁₋₆alkoxy, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl and -C₀₋₆alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloakyl, -C₀₋₄alkylC₃₋₈cycloalkyl, -S(=O)₂-OH, -CN, -CF3 and -NO₂;

J is a direct link;

X is a naphthyl, which is substituted with 0-3 R^{1c} groups;

each R1c is a member independently selected from the group consisting of:

halo, -CF₃, -C₁₋₆alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl, -C₁₋₄alkyl-C(=O)-OH, -CF₃, -CN, -NO₂, -(CH₂)_z-N(-R^{2c}, -R^{3c}), -C(=O)-N(-R^{2c}, -R^{3c}), -C(=NH)-N(-R^{2c}, -R^{3c}), -C(=NMe)-N(-R^{2c}, -R^{3c}), -S(=O)₂-N(-R^{2c}, -S(=O)₂-OH, -CF₃, -O-R^{2c}, -O(-CH₂)_z-O-R^{2c}, -O(-CH₂)_z-O-R^{2c}, -N(-R^{2c}), -O(-CH₂)_z-O-R^{2c}, -N(-CH₂)_z-O-R^{2c}, -N(-CH₂)_z-O-R^{2c}, -N(-CH₂)_z-O-R^{2c}, and a 5-6 membered heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;

z is an integer of 0-4;

each R^{2c} and R^{3c} is a member independently selected from the group consisting of:

-H, -C₁₋₆alkyl, -C₁₋₆alkyloxy, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl and -C₀₋₆alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₄alkylC₃₋₈cycloalkyl, -S(=O)₂-OH, -CN, -CF₃ and -NO₂;

and all pharmaceutically acceptable diastereomers, enantiomers or mixtures thereof, salts, hydrates or solvates thereof.

22. (Currently amended) A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a compound of claim 1 the formula (I):

A-Q-D-E-G-J-X

wherein:

A is selected from the group consisting of:

 $-C(=NR^2)N(R^2,R^3)$; and

phenyl, which is substituted with 0-2 R¹ groups;

each R¹ is a member independently selected from the group consisting of:

 $\frac{\text{halo, -CN, -C(=O)-N(R}^2, R^3), -\text{NO}_2, -\text{SO}_2\text{N}(R^2, R^3), -\text{SO}_2\text{R}^2, -(\text{CH}_2)_m\text{NR}^2\text{R}^3, -(\text{CH}_2)_m\text{-}}{\text{C(=NR}^3)-\text{R}^2, -(\text{CH}_2)_m\text{-C(=NR}^2)-\text{N}(R^2, R^3), -(\text{CH}_2)_m\text{-N}(R^2)-\text{C(=NR}^2)-\text{N}(R^2, R^3), -(\text{CH}_2)_m\text{NR}^2-\text{C}_{3-6}\text{heterocyclics, C}_{1-4}\text{alkyl, C}_{2-6}\text{alkenyl, C}_{2-6}\text{alkynyl, C}_{3-8}\text{cycloalkyl, C}_{0-4}}$

Reply to Non-Compliant Amendment dated September 29, 2005

alkylC₃₋₈cycloalkyl, -CF₃, -OR², and a 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from N, O and S, wherein from 1-4 hydrogen atoms on the heterocyclic system may be independently replaced with a member selected from the group consisting of halo, C₁-C₄-alkyl, -CN C₁₋₄alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₈cycloalkyl, C₀₋₄alkylC₃₋₈cycloalkyl and -NO₂;

each R² and R³ is a member independently selected from the group consisting of:

-H, -C₁₋₆alkyl, -C₁₋₆alkyloxy, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl and -C₀₋₆alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₄alkylC₃₋₈cycloalkyl, -S(=O)₂-OH, -CN, -CF₃ and -NO₂;

m is an integer of 0-2;

Q is a direct link;

D is phenyl, which is substituted with 0-2 R^{1a} groups;

each R^{1a} is a member independently selected from the group consisting of:

halo, $-C_{1-6}$ alkyl, $-C_{1-6}$ alkyloxy, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-6}$ alkyl C_{3-8} cycloalkyl, $-S(=O)_2$ -OH, -CN, $-NO_2$, $-(CH_2)_n$ -N($-R^{2a}$, $-R^{3a}$), $-S(=O)_2$ -N($-R^{2a}$, $-R^{3a}$), $-S(=O)_2$ -R^{2a}, $-CF_3$, $-(CH_2)_n$ -OR^{2a}, -C(=O)-O-R^{2a}, -C(=O)-N($-R^{2a}$, $-R^{3a}$), -C(=NH)-N($-R^{2a}$, $-R^{3a}$), -C(=NMe)-N($-R^{2a}$, $-R^{3a}$), 2-imidazolin-2-yl, 1-methyl-2-imidazolin-2-yl and a 5-6 membered aromatic heterocyclic ring containing 1-4 heteroatoms selected from N, O and S and $-C_{0-6}$ alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the aromatic heterocyclic ring and

the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₄alkylC₃₋₈cycloalkyl, -CN, -CF₃ and -NO₂;

n is an integer of 0-2;

R^{2a} and R^{3a} are independently selected from the group consisting of:

-H, -C₁₋₆alkyl, -C₁₋₆alkyloxy, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl and -C₀₋₆alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₄alkylC₃₋₈cycloalkyl, -S(=O)₂-OH, -CN, -CF₃ and -NO₂;

<u>E is -NH-C(=O)-;</u>

G is a pyrazole ring substituted with 0-2 R^{1b} groups;

each R^{1b} is a member independently selected from the group consisting of:

halo, $-C_{1-6}$ alkyl, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-6}$ alkyl C_{3-8} cycloalkyl, $-C_{1-4}$ alkyl-C(=O)-OH, -CN, $-NO_2$, $-S(=O)_2$ -OH, $-N(-R^{2b}, -R^{3b})$, -C(=O)- $N(-R^{2b}, -R^{3b})$, $-S(=O)_2$ - $N(-R^{2b}, -CF_3, -O-R^{2b}, -O-CH_2$ -C(=O)- CH_2 - CH_2 -CH

each R^{2b} and R^{3b} is a member independently selected from the group consisting of:

-H, $-C_{1-6}$ alkyl, $-C_{1-6}$ alkyloxy, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-6}$ alkyl C_{3-8} cycloalkyl and $-C_{0-6}$ alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, $-C_{1-4}$ alkyl, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-4}$ alkyl C_{3-8} cycloalkyl, $-C_{0-4}$ alkyl C_{3-8} cycloalkyl, $-C_{0-4}$ alkyl $-C_{3-8}$ cycloalkyl, $-C_{3-8}$ cycloalk

each R1b' is a member independently selected from the group consisting of:

halo, $-C_{1-6}$ alkyl, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-6}$ alkyl C_{3-8} cycloalkyl, $-C_{1-4}$ alkyl-C(=O)-OH, -CN, $-NO_2$, $-S(=O)_2$ -OH, $-N(-R^{2b'}, -R^{3b'})$, -C(=O)- $N(-R^{2b'}, -R^{3b'})$, $-S(=O)_2$ - $N(-R^{2b'}, -CF_3, -O-R^{2b'}, -O-CH_2$ - CH_2 - $O-R^{2b'}, -N(-R^{2b'})$ -C(=O)- CH_2 - CH_2

each R2b' and R3b' are independently selected from the group consisting of:

-H, -C₁₋₆alkyl, -C₁₋₆alkoxy, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl and -C₀₋₆alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, -C₁₋₄alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloakyl, -C₀₋₄alkylC₃₋₈cycloalkyl, -S(=O)₂-OH, -CN, -CF3 and -NO₂;

J is a direct link;

X is a naphthyl, which is substituted with 0-3 R^{1c} groups;

each R^{1c} is a member independently selected from the group consisting of:

halo, -CF₃, -C₁₋₆alkyl, -C₂₋₆alkenyl, -C₂₋₆alkynyl, -C₃₋₈cycloalkyl, -C₀₋₆alkylC₃₋₈cycloalkyl, -C₁₋₄alkyl-C(=O)-OH, -CF₃, -CN, -NO₂, -(CH₂)_z-N(-R^{2c}, -R^{3c}), -C(=O)-N(-R^{2c}, -R^{3c}), -C(=NH)-N(-R^{2c}, -R^{3c}), -C(=NMe)-N(-R^{2c}, -R^{3c}), -S(=O)₂-N(-R^{2c}, -S(=O)₂-OH, -CF₃, -O-R^{2c}, -O(-CH₂)_z-O-R^{2c}, -O(-CH₂)_z-O-R^{2c}, -N(-R^{2c}), -O(-CH₂)_z-O-R^{2c}, -N[(-CH₂)_z-O-R^{2c}]₂, -(CH₂)_z-N(-R^{2c})-C(=O)-R^{3c}, -(CH₂)_z-N(-R^{2c})-S(=O)₂-R^{3c}, and a 5-6 membered heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;

z is an integer of 0-4;

each R^{2c} and R^{3c} is a member independently selected from the group consisting of:

-H, $-C_{1-6}$ alkyl, $-C_{1-6}$ alkyloxy, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-6}$ alkyl C_{3-8} cycloalkyl and $-C_{0-6}$ alkyl-(carbocyclic aryl), wherein from 0-4 hydrogen atoms on the ring atoms of the carbocyclic aryl moiety may be independently replaced with a member selected from the group consisting of halo, $-C_{1-4}$ alkyl, $-C_{2-6}$ alkenyl, $-C_{2-6}$ alkynyl, $-C_{3-8}$ cycloalkyl, $-C_{0-4}$ alkyl C_{3-8} cycloalkyl, $-C_{0-4}$ alkyl $-C_{0-4}$ al

and all pharmaceutically acceptable diastereomers, enantiomers or mixtures thereof, salts, hydrates or solvates thereof.

23. (Currently amended) The method of claim 22 6, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke,

Appln. No. 10/600,695

Response dated October 13, 2005

Reply to Non-Compliant Amendment dated September 29, 2005

thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with extracorporeal circulation, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.

- 24. (Canceled)
- 25. (Currently amended) A pharmaceutical composition of claim 21 for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound of claim 2

wherein:

A is phenyl, which is substituted with 0-2 R¹ groups;

each R¹ is a member independently selected from the group consisting of:

halo, C_{1-4} alkyl, -CN, -C(=O)-N(R², R³), -NO₂, -SO₂N(R², R³), -SO₂R², -(CH₂)_mNR²R³, -(CH₂)_m-C(=NR³)-R², -(CH₂)_m-C(=NR²)-N(R²,R³), -(CH₂)_m-N(R²)-C(=NR²)-N(R²,R³), -(CH₂)_mNR²-C₃₋₆heterocyclics, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, -CF₃, -OR², and a 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from N, O and S;

each R² and R³ is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₀₋₄alkyl-(carbocyclic aryl);

m is an integer of 0-2;

Q is a direct link;

D is phenyl, which is substituted with 0-2 R^{1a} groups;

each R^{1a} is a member independently selected from the group consisting of:

<u>halo, -C₁₄alkyl, -CN, -NO₂, -(CH₂)_n-N(-R^{2a}, -R^{3a}), -S(=O)₂-N(-R^{2a}, -R^{3a}), -S(=O)₂-R^{2a}, -CF₃, -(CH₂)_n-OR^{2a}, -C(=O)-O-R^{2a}, -C(=O)-N(-R^{2a}, -R^{3a}), and a 5-6 membered aromatic heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;</u>

n is an integer of 0-2;

R^{2a} and R^{3a} are independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

E is -NH-C(=O)-:

G is a pyrazole ring substituted with 0-2 R^{1b} groups;

each R^{1b} is a member independently selected from the group consisting of:

halo, $-C_{1-4}$ alkyl, -CN, $-NO_2$, $-N(-R^{2b}$, $-R^{3b}$), $-C(=O)-N(-R^{2b}$, $-R^{3b}$), $-S(=O)_2-N(-R^{2b}$, $-R^{2b}$, $-CF_3$, $-O-R^{2b}$, $-O-CH_2-CH_2-O-R^{2b}$, $-O-CH_2-C(=O)-O-R^{2b}$, $-N(-R^{2b})-CH_2-CH_2-O-R^{2b}$, $-N(-CH_2-CH_2-O-R^{2b})_2$, $-N(-R^{2b})-C(=O)-R^{3b}$, $-N(-R^{2b})-S(=O)_2-R^{3b}$, and a 5-6 membered heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;

each R^{2b} and R^{3b} is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

J is a direct link;

X is a naphthyl, which is substituted with 0-3 R^{1c} groups;

each R^{1c} is a member independently selected from the group consisting of:

halo, $-C_{1-4}$ alkyl, -CN, $-NO_{2}$, $-(CH_{2})_{z}$ - $N(-R^{2c}$, $-R^{3c}$), -C(=O)- $N(-R^{2c}$, $-R^{3c}$), -C(=NH)- $N(-R^{2c}$, $-R^{3c}$), -C(=NMe)- $N(-R^{2c}$, $-R^{3c}$), $-S(=O)_{2}$ - $N(-R^{2c}$, $-R^{3c}$), $-S(=O)_{2}$ - R^{2c} , $-S(=O)_{2}$ - R^{2c} , and a 5-6 membered heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;

z is an integer of 0-4;

each R^{2c} and R^{3c} is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

or all pharmaceutically acceptable diastereomers, enantiomers or mixtures thereof, salts, hydrates or solvates thereof.

26. (Currently amended) The A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a compound of claim-2 22

wherein:

A is selected from the group consisting of:

phenyl, which is substituted with 0-2 R¹ groups;

each R¹ is a member independently selected from the group consisting of:

halo, C_{1-4} alkyl, -CN, -C(=O)-N(R², R³), -NO₂, -SO₂N(R², R³), -SO₂R², -(CH₂)_mNR²R³, -(CH₂)_m-C(=NR³)-R², -(CH₂)_m-C(=NR²)-N(R²,R³), -(CH₂)_m-N(R²)-C(=NR²)-N(R²,R³), -(CH₂)_m-N(R²)-C(=NR²)-N(R²,R³), -(CH₂)_mNR²-C₃₋₆heterocyclics, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CF₃, -OR², and a 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from N, O and S;

each R² and R³ is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₀₋₄alkyl-(carbocyclic aryl);

m is an integer of 0-2;

Q is a direct link;

D is phenyl, which is substituted with 0-2 R^{1a} groups;

each R^{1a} is a member independently selected from the group consisting of:

halo, $-C_{14}$ alkyl, -CN, $-NO_2$, $-(CH_2)_n$ - $N(-R^{2a}$, $-R^{3a}$), $-S(=O)_2$ - $N(-R^{2a}$, $-R^{3a}$), $-S(=O)_2$ - R^{2a} , $-CF_3$, $-(CH_2)_n$ - OR^{2a} , -C(=O)- $O-R^{2a}$, -C(=O)- $N(-R^{2a}$, $-R^{3a}$), and a 5-6 membered aromatic heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;

n is an integer of 0-2;

R^{2a} and R^{3a} are independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

E is -NH-C(=O)-;

G is a pyrazole ring substituted with 0-2 R^{1b} groups;

each R^{1b} is a member independently selected from the group consisting of:

halo, $-C_{1-4}$ alkyl, -CN, $-NO_2$, $-N(-R^{2b}$, $-R^{3b}$), $-C(=O)-N(-R^{2b}$, $-R^{3b}$), $-S(=O)_2-N(-R^{2b}$, $-R^{2b}$, $-CF_3$

each R^{2b} and R^{3b} is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

J is a direct link;

X is a naphthyl, which is substituted with 0-3 R^{1c} groups;

each R1c is a member independently selected from the group consisting of:

halo, $-C_{1-4}$ alkyl, -CN, $-NO_2$, $-(CH_2)_z$ -N($-R^{2c}$, $-R^{3c}$), -C(=O)-N($-R^{2c}$, $-R^{3c}$), -C(=NH)-N($-R^{2c}$, $-R^{3c}$), -C(=NMe)-N($-R^{2c}$, $-R^{3c}$), $-S(=O)_2$ -N($-R^{2c}$, $-R^{3c}$), $-S(=O)_2$ -R($-S(=O)_2$ -OH, $-CF_3$, $-O-R^{2c}$, $-O(-CH_2)_z$ -O-R($-CH_2$), $-O(-CH_2)_z$ -O-R($-CH_2$), $-O(-CH_2)_z$ -O-R($-CH_2$), $-O(-CH_2)_z$ -N($-R^{2c}$)-C($-CH_2$), and a 5-6 membered heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;

z is an integer of 0-4;

each R^{2c} and R^{3c} is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

or all pharmaceutically acceptable diastereomers, enantiomers or mixtures thereof, salts, hydrates or solvates thereof.

27. (Currently amended) The method of claim <u>26</u> 10, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.

- 28. (Canceled)
- 29. (Currently amended) A pharmaceutical composition of claim 21 for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound of claim 3

wherein:

A is selected from the group consisting of:

Q is a direct link;

D is selected from the group consisting of:

E is -NH-C(=O)-;

G has the following formula:

each R1b is a member independently selected from the group consisting of:

-H, -Me, -CF₃, -F, -Cl, -Br, -SO₂Me, -CN, -CONH₂, -CONMe₂, -NH₂, -NO₂, -NHCOMe, -NHSO₂Me, -CH₂NH₂ and -CO₂H;

J is a direct link;

X is selected from the group consisting of:

Appln. No. 10/600,695 Response dated October 13, 2005 Reply to Non-Compliant Amendment dated September 29, 2005

Appln. No. 10/600,695 Response dated October 13, 2005 Reply to Non-Compliant Amendment dated September 29, 2005

но	но	HO Br	HOUSE
HO	HO	MeO F	MeO CI
MeO Br	MeO	MeO	MeO Br
H_2N	H ₂ N CI	H_2N Br	H_2N
H_2N	H_2N M	leO ₂ S F Me	_{eO2} S F
MeO ₂ S F	MeO ₂ S CI M	leO ₂ S CI Me	eO ₂ S CI
MeO ₂ S Br M	eO ₂ S Br Me	_{eO2} S Br _{Br} H	₂ NO ₂ S
H ₂ NO ₂ S F H	2NO ₂ S F H ₂	NO ₂ S CI F	H ₂ NO ₂ S CI
H ₂ NO ₂ S CI H	2NO ₂ S Br H	2NO ₂ S Br	H ₂ NO ₂ S Br
O_2N	O_2N F	O_2N F	O_2N C_1
O_2N CI	O ₂ N CI	O ₂ N Br	O_2N Br
O_2N Br Br	NC F	NC F	NC F

or all pharmaceutically acceptable diastereomers, enantiomers or mixtures thereof, salts, hydrates or solvates thereof

30. (Currently amended) The A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a compound of claim-3 22

wherein:

A is selected from the group consisting of:

Q is a direct link;

D is selected from the group consisting of:

$$- \bigcirc \bigcap_{F} \bigcap_{Cl} \bigcap_{F} \bigcap_{F} \bigcap_{Cl} \bigcap_{F} \bigcap_{Cl} \bigcap_{Cl}$$

E is -NH-C(=O)-;

G has the following formula:

each R1b is a member independently selected from the group consisting of:

-H, -Me, -CF₃, -F, -Cl, -Br, -SO₂Me, -CN, -CONH₂, -CONMe₂, -NH₂, -NO₂, -NHCOMe, -NHSO₂Me, -CH₂NH₂ and -CO₂H;

J is a direct link;

X is selected from the group consisting of:

Appln. No. 10/600,695 Response dated October 13, 2005 Reply to Non-Compliant Amendment dated September 29, 2005

Appln. No. 10/600,695 Response dated October 13, 2005 Reply to Non-Compliant Amendment dated September 29, 2005

HOTT	но	HO Br	HO
HO	HO	MeO F	MeO
MeO Br	MeO	MeO	MeO
H_2N	H_2N CI	H_2N Br	H ₂ N F
H ₂ N CI	H_2N H_2N M	leO ₂ S F M	eO ₂ S F
MeO ₂ S F	MeO ₂ S CI N	NeO ₂ S CI M	eO ₂ S CI
MeO ₂ S Br M	eO ₂ S Br Mo	eO ₂ S Br	P ₂ NO ₂ S
H ₂ NO ₂ S F H ₂	PNO ₂ S F H ₂	2NO2S CI H	H ₂ NO ₂ S CI
H ₂ NO ₂ S CI H ₂	2NO2S Br H	₂ NO ₂ S Br	H ₂ NO ₂ S Br
O ₂ N F	O_2N F	O_2N Br F	O_2N
O_2N CI	O_2N CI	O_2N F Br	O_2N Br
O_2N Br Br	NC F	NC THE	NC Br

Appln. No. 10/600,695 Response dated October 13, 2005

Reply to Non-Compliant Amendment dated September 29, 2005

or all pharmaceutically acceptable diastereomers, enantiomers or mixtures thereof, salts, hydrates or solvates thereof.

31. (Original) The method of claim 30, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina,

occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.

- 32. (Canceled)
- 33. (Currently amended) A pharmaceutical composition of claim 21 for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising a pharmaceutically acceptable carrier and a pharmaceutically effective amount of a compound of claim 4

wherein:

A is phenyl, which is substituted with 0-2 R¹ groups;

each R¹ is a member independently selected from the group consisting of:

halo, C_{1-4} alkyl, -CN, -C(=O)-N(R², R³), -NO₂, -SO₂N(R², R³), -SO₂R², -(CH₂)_mNR²R³, -(CH₂)_m-C(=NR³)-R², -(CH₂)_m-C(=NR²)-N(R²,R³), -(CH₂)_m-N(R²)-C(=NR²)-N(R²,R³), -(CH₂)_mNR²-C₃₋₆heterocyclics, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-8} cycloalkyl, C_{0-4} alkyl C_{3-8} cycloalkyl, -CF₃, -OR², and a 5-6 membered heterocyclic system containing from 1-4 heteroatoms selected from N, O and S;

each R² and R³ is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₀₋₄alkyl-(carbocyclic aryl);

m is an integer of 0-2;

Q is a direct link;

D is phenyl, which is substituted with 0-2 R^{1a} groups;

each R^{1a} is a member independently selected from the group consisting of:

<u>halo, -C₁₄alkyl, -CN, -NO₂, -(CH₂)_n-N(-R^{2a}, -R^{3a}), -S(=O)₂-N(-R^{2a}, -R^{3a}), -S(=O)₂-R^{2a}, -CF₃, -(CH₂)_n-OR^{2a}, -C(=O)-O-R^{2a}, -C(=O)-N(-R^{2a}, -R^{3a}), and a 5-6 membered aromatic heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;</u>

n is an integer of 0-2;

R^{2a} and R^{3a} are independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

E is -NH-C(=O)-:

G is a pyrazole ring substituted with 0-2 R^{1b} groups;

each R1b is a member independently selected from the group consisting of:

halo, $-C_{1-4}$ alkyl, -CN, $-NO_2$, $-N(-R^{2b}, -R^{3b})$, $-C(=O)-N(-R^{2b}, -R^{3b})$, $-S(=O)_2-N(-R^{2b}, -R^{2b})$, $-S(=O)_2-R^{2b}$, $-CF_3$, $-O-R^{2b}$, $-O-CH_2-CH_2-O-R^{2b}$, $-O-CH_2-C(=O)-O-R^{2b}$, $-N(-R^{2b})-CH_2-CH_2-O-R^{2b}$, $-N(-CH_2-CH_2-O-R^{2b})_2$, $-N(-R^{2b})-C(=O)-R^{3b}$, $-N(-R^{2b})-S(=O)_2-R^{3b}$, and a 5-6 membered heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;

each R^{2b} and R^{3b} is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

J is a direct link;

X is a naphthyl, which is substituted with 0-3 R^{1c} groups;

each R^{1c} is a member independently selected from the group consisting of:

halo, $-C_{1-4}$ alkyl, -CN, $-NO_2$, $-(CH_2)_z$ - $N(-R^{2c}$, $-R^{3c}$), -C(=O)- $N(-R^{2c}$, $-R^{3c}$), -C(=NH)- $N(-R^{2c}$, $-R^{3c}$), -C(=NMe)- $N(-R^{2c}$, $-R^{3c}$), $-S(=O)_2$ - $N(-R^{2c}$, $-R^{3c}$), $-S(=O)_2$ - R^{2c} , $-S(=O)_2$ - R^{2c} , and a 5-6 membered heterocyclic ring containing 1-4 heteroatoms selected from N, O and S;

z is an integer of 0-4;

each R^{2c} and R^{3c} is a member independently selected from the group consisting of:

-H, -C₁₋₄alkyl and -C₁₋₄alkyl-(carbocyclic aryl);

or all pharmaceutically acceptable diastereomers, enantiomers or mixtures thereof, salts, hydrates or solvates thereof.

34. (Currently amended) The A method for preventing or treating a condition in a mammal characterized by undesired thrombosis comprising administering to said mammal a therapeutically effective amount of a compound of claim-4 22

wherein:

A is phenyl, which is substituted with 0-2 R¹ groups;

each R¹ is a member independently selected from the group consisting of:

halo, -CN, -SO₂N(R^2 , R^3), -SO₂ R^2 and -CH₂NR² R^3 ;

each R² and R³ is a member independently selected from the group consisting of:

-H and -C₁₋₄alkyl;

Q is a direct link;

D is phenyl, which is substituted with 0-2 R^{1a} groups;

each R^{1a} is a member independently selected from the group consisting of:

-H and halo;

<u>E is -NH-C(=O)-;</u>

G is a pyrazole ring substituted with 0-2 R^{1b} groups;

each R^{1b} is a member independently selected from the group consisting of:

- Me, -Et, -CF₃, -C(=O)-NH₂, -NH₂, -NH-(C=O)-Me, -NH-S(=O)₂-Me, -SMe, -S(=O)-Me and halo;

J is a direct link;

X is a naphthyl, which is substituted with 0-3 R^{1c} groups;

each R^{1c} is a member independently selected from the group consisting of:

<u>halo, OH, -OMe, -NH₂, -CN, -NO₂, -CH₂OH, -C₁₋₅alkyl, -C(=O)-N(-R^{2c}, -R^{3c}), -C(=NH)-N(-R^{2c}, -R^{3c}), -S(=O)₂-N(-R^{2c}, -R^{3c}), -S(=O)₂-R^{2c}, -S(=O)₂-OH, -CF₃, 2-imidazolin-2-yl and 1-methyl-2-imidazolin-2-yl;</u>

each R^{2c} and R^{3c} is a member independently selected from the group consisting of:

-H, -OH, -NH₂ and - C_{1-4} alkyl;

or all pharmaceutically acceptable diastereomers, enantiomers or mixtures thereof, salts, hydrates or solvates thereof.

35. (Original) The method of claim 34, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.

36. (Canceled)

37. (New) A pharmaceutical composition of claim 21

wherein the compound has the following formula:

R¹ is selected from the group consisting of:

R^{1a} is selected from the group consisting of:

-H, -F, -Cl and -Br;

R^{1c1} is independently selected from the group consisting of:

R^{1c2} is independently selected from the group consisting of:

-H, -F, -Cl and -Br;

R^{1c3} is independently selected from the group consisting of:

-H, -F, -Cl and -Br;

R^{1b} is selected from the group consisting of:

-H, -CH₃ and -CF₃.

38. (New) The method of claim-22

wherein the compound has the following formula:

R¹ is selected from the group consisting of:

R^{1a} is selected from the group consisting of:

-H, -F, -Cl and -Br;

R^{1c1} is independently selected from the group consisting of:

-H, -F, -Cl, -Br, -NH
$$_2$$
, -OH, -SO $_2$ Me, -SO $_2$ Et, -SO $_2$ NH $_2$, -NO $_2$, -CN, -CONH $_2$ and -CH $_2$ OH;

R^{1c2} is independently selected from the group consisting of:

-H, -F, -Cl and -Br;

R^{1c3} is independently selected from the group consisting of:

-H, -F, -Cl and -Br;

R^{1b} is selected from the group consisting of:

-H, -CH₃ and -CF₃.

40. (New) The method of claim 39, wherein the condition is selected from the group consisting of:

acute coronary syndrome, myocardial infarction, unstable angina, refractory angina, occlusive coronary thrombus occurring post-thrombolytic therapy or post-coronary angioplasty, a thrombotically mediated cerebrovascular syndrome, embolic stroke, thrombotic stroke, transient ischemic attacks, venous thrombosis, deep venous thrombosis, pulmonary embolus, coagulopathy, disseminated intravascular coagulation, thrombotic thrombocytopenic purpura, thromboangiitis obliterans, thrombotic disease associated with heparin-induced thrombocytopenia, thrombotic complications associated with instrumentation, and thrombotic complications associated with the fitting of prosthetic devices.