Boyutlandırma

Resizing

Dört yöntem

- Piksel çoğullama/silme
- En yakın komşu
- Bilinear interpolasyon
- Bicubic interpolasyon

Piksel çoğullama ile görüntü büyütme

Orijinal görüntü değerlerini yeni matrisin her 4. satırın 4. sonraki elemanına gelecek şekilde yerleştir.

Piksel çoğullama ile görüntü büyütme

Piksel çoğullama ile görüntü büyütme

Orijinal piksel değerini 4x4 lük alana çoğullarız

Her satırdaki n. piksel değerini tut.

Kalanları yeni bir görüntüye kopyala

"En yakın komşu" algoritması piksel çoğullama ve silme yöntemlerinin genelleştirilmiş halidir.

Aynı zamanda kesirsel boyutlanmaya izin verir. Örneğin p/q oranında boyutlandırma yapılabilir.

İşlem sonucunu daha iyi anlamak için yakından bakalım

Örnek: Orijinal görüntüyü 3/7 oranında boyutlandır.

3/7 boyutlandır

Zoom

3/7 boyutlandır

7x7 oranında gridle

3/7 boyutlandır

(Sarı)

3/7 boyutlandır

Sarı pikselleri tut

3/7 boyutlandır

3/7 boyutlandır

3/7 boyutlandır

yeni bir görüntüye aktar

3/7 boyutlandır

Orijinal görüntü boyutlanmış olur

Orijinal görüntü boyutlanmış olur

Orijinal görüntü

7/3 boyutlandır

En yakın komşu boyutlama

Buradaki her bir 3×3 lük görüntüyü al

Orijinal görüntü

En yakın komşu boyutlama

7x7 bloklar
üzerine dağılan
3x3 lük bloklar

En yakın komşu boyutlama

Boş pikseller en yakındaki boş olmayan pikselin rengini alır

En yakın komşu boyutlama

Boş pikseller en yakındaki boş olmayan pikselin rengini alır

Orijinal görüntü

Bilinear Interpolation

- Bilinear interpolasyon : u(x,y) = ax + by + cxy + d
 - \Rightarrow 4 bilinmeyen, 4 denklem
 - Adım 1) Dört nokta için bu denklem yazılmalı
 - Adım 2) Dört bilinmeyen (a,b,c, d) li dört denklem çözülmeli.
 - Adım 3) Katsayılar (a,b,c,d) hesaplanınca, aynı denklem kullanılarak istenilen x ve y değerlerindeki renk değeri hesaplanabilir.

BiCubic İnterpolasyon örneği

- 16 bilinmeyenli, 16 denklem aşağıdaki gibi inşa edilir ve çözülür.
- Farz edelim ki, (0,0), (1,0), (0,1) ve (1,1) noktalarında f, fx, fy, fxy (yoğunluk, yatay gradient, dikey gradient, çapraz gradient) değerleri elimizde. Buna göre 16 bilinmeyenli 16 denklem sistemi aşağıdaki gibi üretilir.

1.
$$f(0,0) = p(0,0) = a_{00}$$

2. $f(1,0) = p(1,0) = a_{00} + a_{10} + a_{20} + a_{30}$
3. $f(0,1) = p(0,1) = a_{00} + a_{01} + a_{02} + a_{03}$
4. $f(1,1) = p(1,1) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij}$

Likewise, eight equations for the derivatives in the x-direction and the y-direction

1.
$$f_x(0,0) = p_x(0,0) = a_{10}$$

2. $f_x(1,0) = p_x(1,0) = a_{10} + 2a_{20} + 3a_{30}$
3. $f_x(0,1) = p_x(0,1) = a_{10} + a_{11} + a_{12} + a_{13}$
4. $f_x(1,1) = p_x(1,1) = \sum_{i=1}^{3} \sum_{j=0}^{3} a_{ij}i$
5. $f_y(0,0) = p_y(0,0) = a_{01}$
6. $f_y(1,0) = p_y(1,0) = a_{01} + a_{11} + a_{21} + a_{31}$
7. $f_y(0,1) = p_y(0,1) = a_{01} + 2a_{02} + 3a_{03}$
8. $f_y(1,1) = p_y(1,1) = \sum_{i=0}^{3} \sum_{j=1}^{3} a_{ij}j$

And four equations for the cross derivative xy.

1.
$$f_{xy}(0,0) = p_{xy}(0,0) = a_{11}$$

2. $f_{xy}(1,0) = p_{xy}(1,0) = a_{11} + 2a_{21} + 3a_{31}$
3. $f_{xy}(0,1) = p_{xy}(0,1) = a_{11} + 2a_{12} + 3a_{13}$
4. $f_{xy}(1,1) = p_{xy}(1,1) = \sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij}ij$

$$p(x,y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^i y^j.$$

Karşılaştırma

