1 Equations différentielles linéaires du 1^{ier} ordre.

Définition 1.1. On appelle équation différentielle linéaire du 1^{ier} ordre toute équation différentielle du type :

y' + a(x)y = b(x) (EDL1A) avec a et b: I intervalle de $\mathbb{R} \to \mathbb{K}$ fonctions continues sur I.

 \diamond **Remarque 1.1.** On rappelle qu'une solution de (EDL1A) est une fonction $f: I \to I\!\!K$ dérivable sur I telle que : $(\forall x \in I) \quad f'(x) + a(x)f(x) = b(x)$;

résoudre (EDL1A) signifiant : trouver toutes les solutions de (EDL1A) : l'ensemble de ces solutions sera noté $S_{I,\mathbb{K}}(EDL1A)$.

1.1 Premières remarques.

1) On associe à (EDL1A) une équation différentielle du $1^{\rm ier}$ ordre dite sans second membre ou homogène : y'+a(x)y=0 (EDL1H) .

$$\text{Soit L}: \left(\begin{array}{ccc} \mathcal{D}(I,\mathbb{K}) & \longrightarrow & \mathcal{F}(I,\mathbb{K}) \\ \phi & \mapsto & \phi' + a\phi \end{array} \right) \text{L est clairement linéaire (d'où le titre)}.$$

L'ensemble $S_{I,\mathbb{K}}(EDL1H)$ apparaît alors comme $\operatorname{Ker} L$ et est donc un sous-espace vectoriel du \mathbb{K} -espace vectoriel $\mathcal{D}(I,\mathbb{K})$ (ce que l'on peut aussi prouver directement).

2) Soit $\phi \in \mathcal{D}(I, \mathbb{K})$ une solution particulière de (EDL1A) c'est à dire $L(\phi) = b$. Alors :

$$\psi \in \mathcal{D}(I, \mathbb{K}) \text{ solution de (EDL1A)} \quad \Leftrightarrow \quad L(\psi) = b$$

$$\Leftrightarrow \quad L(\psi) = L(\phi)$$

$$\Leftrightarrow \quad L(\psi) - L(\phi) = \widetilde{0}$$

$$\Leftrightarrow \quad L(\psi - \phi) = \widetilde{0}$$

$$\Leftrightarrow \quad \psi - \phi \in \text{Ker } L = \mathcal{S}_{I, \mathbb{K}}(EDL1H)$$

$$\Leftrightarrow \quad (\exists k \in \mathcal{S}_{I, \mathbb{K}}(EDL1H)) \quad \psi = \phi + k$$

Ainsi on a prouvé que :

solution générale de (EDL1A)= solution générale de (EDL1H) + une solution particulière de (EDL1A)

3)Enfin si le second membre apparaît comme une somme $b = \sum_{i=1}^{n} b_i$

Si $(\forall i \in \llbracket 1, n \rrbracket)$ ϕ_i est une solution particulière de $y' + a(x)y = b_i(x)$ c'est à dire $L(\phi_i) = b_i$ alors :

$$L(\sum_{i=1}^n \phi_i) = \sum_{i=1}^n L(\phi_i) = \sum_{i=1}^n b_i = b$$
 c'est à dire que :

 $\sum_{i=1}^n \phi_i$ est une solution particulière de y'+a(x)y=b(x) : c'est ce que l'on appelle **principe de superposition** des solutions .

 \diamond **Remarque 1.2.** Bien comprendre que les 3 propriétés précédentes sont très spécifiques au caractère linéaire (voir l'application L) de l'équation différentielle.

1.2 résolution de l'équation homogène y' + a(x)y = 0 (EDL1H)

D'après la remarque 2) du 1.1, le résolution de l'équation homogène joue un rôle essentiel : le thèorème suivant donne la solution générale de (EDL1H) :

Théorème 1.1. Soit y' + a(x)y = 0 (EDL1H) avec a:I intervalle de $\mathbb{R} \to \mathbb{K}$ continue .

Les solutions de (EDL1H) sont exactement les fonctions $f_k: \begin{pmatrix} I & \longrightarrow & \mathbb{K} \\ x & \mapsto & ke^{-A(x)} \end{pmatrix}$ où A est une primitive de a sur I et $k \in \mathbb{K}$.

 $S_{I,\mathbb{K}}(EDL1H)$ est donc une droite vectorielle (sous-espace vectoriel de dimension 1) du IK-espace vectoriel $\mathcal{F}(I,\mathbb{K})$.

Démonstration:

$$\begin{split} \phi \in \mathcal{D}(I, \mathbb{K}) \text{ solution de (EDL1H)} &\iff (\forall x \in I) \quad \phi'(x) + a(x)\phi(x) = 0 \\ &\iff (\forall x \in I) \quad e^{A(x)}(\phi'(x) + a(x)\phi(x)) = 0 \\ &\iff (\forall x \in I) \quad \left(e^{A(x)}\phi(x)\right)' = 0 \\ &\iff (\exists k \in \mathbb{K})(\forall x \in I) \quad e^{A(x)}\phi(x) = k \\ &\iff (\exists k \in \mathbb{K})(\forall x \in I) \quad \phi(x) = ke^{-A(x)} \end{split}$$

c.q.f.d.⊙

\$\ Exemple 1.1. Résoudre :
$$(x^2+1)y'+xy=x$$
 (E)
 $(E)\Leftrightarrow y'+\frac{x}{x^2+1}y=\frac{x}{x^2+1}$ (EDL1A)
 On résoud donc d'abord : $y'+\frac{x}{x^2+1}y=0$ (EDL1H)
 $\int \frac{x}{x^2+1}\,dx=\frac{1}{2}\ln(1+x^2)+C=\ln\sqrt{1+x^2}+C$ $C\in I\!\!R$ et donc :
 solution générale de (EDL1H) : $y=ke^{-\ln\sqrt{1+x^2}}=\frac{k}{\sqrt{1+x^2}}$ $k\in I\!\!K$
 Comme $y=1$ est de façon évidente solution de (EDL1A) , on a finalement :
 solution générale de (EDL1A) : $y=\frac{k}{\sqrt{1+x^2}}+1$ $k\in I\!\!K$

Le corollaire suivant est l'application évidente du théorème au cas où a (fonction en facteur de y) est constante :

Corollaire 1.2. La solution générale de $y' + \alpha y = 0$ $\alpha \in \mathbb{K}$ est définie par : $y = ke^{-\alpha x}$ $k \in \mathbb{K}$.

1.3 Résolution de l'équation avec second membre : y' + a(x)y = b(x) (EDL1A) .

1.3.1 cas particulier de
$$y' + \alpha y = e^{\beta} P(x)$$
 avec $(\alpha, \beta) \in \mathbb{K}^2$ $P \in \mathbb{K}[X]$.

On sait résoudre $y'+\alpha y=0$ (EDL1H) avec le corollaire précédent ; il suffit donc de savoir trouver une solution particulière de $y'+\alpha y=e^{\beta}P(x)$ (EDL1A) ce que donne la proposition suivante :

Proposition 1.1. Soit $y' + \alpha y = e^{\beta x} P(x)$ (EDL1A)

- Si $\beta \neq -\alpha$ il y a une solution particulière du type $Q(x)e^{\beta x}$ où : $Q \in \mathbb{K}[X]$ et deq Q = deg P.
- Si $\beta = -\alpha$ il y a une solution particulière du type $xQ(x)e^{\beta x}$ où : $Q \in \mathbb{K}[X]$ et deq Q = deg P.

Démonstration:

$$1^{\text{er}} \operatorname{cas} : \beta = 0$$
:

• Si $\alpha \neq 0$ (EDL1A): $y' + \alpha y = P(x)$ et il s'agit donc de prouver qu'il y a une solution particulière

du type
$$Q$$
 avec $Q \in \mathbb{K}[X]$ et $deq Q = deg P$; soit $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{n} b_k X^k$:

$$Q' = \sum_{k=1}^{n} k b_k X^{k-1} = \sum_{l=0}^{n-1} (l+1) b_{l+1} X^l$$
 donc :

$$Q \text{ solution de (EDL1A)} \Leftrightarrow (\forall x \in \mathbb{R}) \quad \left\{ \begin{array}{l} \alpha b_n = a_n \\ (\forall l \in [\![0,n-1]\!]) \alpha b_l + (l+1) b_{l+1} = a_l \end{array} \right.$$
 Ce qui donne à résoudre un système où on tire successivement , puisque $\alpha \neq 0$, $b_n (\neq 0 \text{ car } a_n \neq 0)$

puis les b_l $l \in [0, n-1]$, d'ailleurs de manière unique.

• Si $\alpha = 0$ (EDL1A): y' = P(x) et en prenant la primitive de P nulle en 0, on a bien une solution particulière du type y = xQ(x) avec $Q \in \mathbb{K}[X]$ et deq Q = deg P.

 $2^{\text{ième}}$ cas : β quelconque | toute $y \in \mathcal{D}(\mathbb{R}, \mathbb{K})$ peut s'écrire $y = e^{\beta x}z$ ($\Leftrightarrow z = e^{-\beta x}y$) avec $z \in$ $\overline{\mathcal{D}(\mathbb{R}, \mathbb{K})}$ et on a : $y' = e^{\beta x}(z' + \beta z)$ et donc :

$$y \text{ solution de } (EDL1A) \quad \Leftrightarrow \quad (\forall x \in \mathbb{R}) \quad e^{\beta x}(z'(x) + (\beta + \alpha)z(x)) = e^{\beta x}P(x) \\ \quad \Leftrightarrow \quad (\forall x \in \mathbb{R}) \quad z'(x) + (\beta + \alpha)z(x) = P(x) \ \textcircled{F}$$

On est donc ramené au 1^{er} cas ce qui permet de conclure :

Si $\beta + \alpha \neq 0$ c'est à dire $\beta \neq -\alpha$ on a une solution particulière de (F) du type z = Q(x) avec $Q \in \mathbb{K}[X]$ et deq Q = deq P et $y = e^{\beta x}Q(x)$ solution particulière de (EDL1A).

Si $\beta + \alpha = 0$ c'est à dire $\beta = -\alpha$ on a une solution particulière de ${\mathbb F}$ du type z = xQ(x) avec $Q \in \mathbb{K}[X]$ et $deg\ Q = deg\ P$ et $y = xQ(x)e^{\beta x}$ solution particulière de (EDL1A). c.q.f.d.⊙

- **\$\rightarrow\$ Exemple 1.2.** $y' + 3y = x \cos x \ (EDL1A)$ (on cherche ici les solutions de \mathbb{R} dans \mathbb{R})
- Equation homogène: y' + 3y = 0 (EDL1A) a pour solution générale: $y = ke^{-3x}$ $k \in \mathbb{R}$
- Puisque $x \cos x = \Re e(xe^{ix}$, on cherche d'abord une solution particulière de $y' + 3y = xe^{ix}$ (F) du type: $y = (ax + b)e^{ix}$; $y' = (iax + a + ib)e^{ix}$ et on a:

y solution de
$$(\mathbb{F}) \Leftrightarrow (\forall x \in \mathbb{R})$$
 $(a(i+3)x + a + b(i+3))e^{ix} = xe^{ix} \Leftrightarrow (\forall x \in \mathbb{R})$ $a(i+3)x + a + b(i+3)e^{ix} = xe^{ix}$

$$y \text{ solution } de \ \textcircled{F} \Leftrightarrow (\forall x \in \mathbb{R}) \quad (a(i+3)x+a+b(i+3))e^{ix} = xe^{ix} \Leftrightarrow (\forall x \in \mathbb{R}) \quad a(i+3)x+a+b(i+3)e^{ix} = xe^{ix} \Leftrightarrow (\forall x \in \mathbb{R}) \quad a(i+3)x+a+b(i+3) = 0$$

$$b(i+3) = x \Leftrightarrow \begin{cases} a(i+3) = 1 \\ a+b(i+3) = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{3+i} = \frac{3-i}{10} \\ b = \frac{-a}{3+i} = -\frac{(3-i)^2}{100} = \frac{-4+3i}{50} \end{cases}$$

D'où , pour F , la solution particulière : $y=\left(\frac{3-i}{10}x+\frac{-4+3i}{50}\right)e^{ix}$ et pour (EDL1A) , la partie

réelle de la précédente :
$$y = \left(\frac{3}{10}x - \frac{2}{25}\right)\cos x + \left(\frac{1}{10}x - \frac{3}{50}\right)\sin x$$
.

Solution générale de
$$(EDL1A)$$
: $y = \left(\frac{3}{10}x - \frac{2}{25}\right)\cos x + \left(\frac{1}{10}x - \frac{3}{50}\right)\sin x + ke^{-3x} \ (k \in IR)$.

 \diamond **Remarque 1.3.** *On comprendra l'intérêt de s'être placé provisoirement dans* \mathbb{C} .

1.3.2 Méthode de "variation de la constante".

$$y'+a(x)y=b(x) \quad (EDL1A) \text{ avec } a,b:I \text{ intervalle de } \mathbb{R} \to \mathbb{K}$$
 $y'+a(x)y=0 \quad (EDL1H) \text{ dont on connaît la soluiton générale}: y=ke^{-A(x)} \text{ avec } A \text{ primitive de } a$.

- On a vu qu'il suffit alors d'avoir une solution particulière de (EDL1A) pour conclure : il peut y en avoir une évidente comme dans l'exemple 1.1 ou encore on peut être amené à chercher parmi des familles de fonctions particulières (comme dans la proposition 1.1).
- Sinon on pourra mettre en oeuvre la méthode suivante dite de variation de la constante : Toute $y \in \mathcal{D}(I, \mathbb{K})$ peut s'écrire : $y = ze^{-A(x)}$ (\star)($\Leftrightarrow z = ye^{A(x)}$) avec $z \in \mathcal{D}(I, \mathbb{K})$. Alors : $y' = (z' a(x)z)e^{-A(x)}$ et donc :

$$y$$
 solution de $(EDL1A)$ \Leftrightarrow $(\forall x \in I)$ $(z'(x) - a(x)z(x))e^{-A(x)} + a(x)z(x)e^{-A(x)} = b(x)$ \Leftrightarrow $(\forall x \in I)$ $z'(x) = b(x)e^{A(x)}$ (donc à chaque fois les z s'annulent)

On voit donc l'intérêt du changement de fonction inconnue qui transforme (EDL1A) en un simple problème de primitivation : on obtient donc toutes les fonctions z convenables par primitivation puis toutes les y convenables avec la relation (\star) .

& Exemple 1.3. Résoudre sur
$$I =]-1,1[: (1-x^2)y'-xy=1 \ (E) \ Sur \]-1,1[\ (E) \Leftrightarrow y'-\frac{x}{1-x^2}y=\frac{1}{1-x^2} \ (EDL1A)$$

$$\bullet (EDL1H) \ y' - \frac{x}{1 - x^2} y = 0 \ ; \ \int -\frac{x}{1 - x^2} \ dx = \frac{1}{2} \ln(1 - x^2) + C = \ln \sqrt{1 - x^2} + C \quad C \in I\!\!R$$

Donc: solution générale de
$$(EDL1H)$$
: $y = ke^{-\ln \sqrt{1-x^2}} = \frac{k}{\sqrt{1-x^2}}$ $k \in \mathbb{R}$

• (méthode de variation de la constante, car il n'est pas évident de repérer une solution particulière) Tout $y \in \mathcal{D}(I, \mathbb{R})$ peut s'écrire : $y = \frac{z}{\sqrt{1-x^2}}$ (*)($\Leftrightarrow z = y\sqrt{1-x^2}$) avec $z \in \mathcal{D}(I, \mathbb{R})$.

Alors:
$$y' = \frac{z'}{\sqrt{1-x^2}} + z \frac{x}{(1-x^2)^{\frac{3}{2}}}$$
 et donc:

y solution de
$$(EDL1A) \Leftrightarrow \frac{z'}{\sqrt{1-x^2}} + z \frac{x}{(1-x^2)^{\frac{3}{2}}} - \frac{x}{1-x^2} \frac{z}{\sqrt{1-x^2}} = \frac{1}{1-x^2}$$

 $\Leftrightarrow z' = \frac{1}{\sqrt{1-x^2}}$ (on constate bien que les z s'annulent)

$$\Leftrightarrow (\exists k \in I\!\!R) \quad z = \arcsin x + k \underset{avec \, (\star)}{\Leftrightarrow} \left[(\exists k \in I\!\!R) \quad y = \frac{\arcsin x}{\sqrt{1-x^2}} + \frac{k}{\sqrt{1-x^2}} \right]$$

 \diamond **Remarque 1.4.** Dans un cas comme le précédent , la résolution complète de : $(1-x^2)y'-xy=1$ (E) sur \mathbb{R} consisterait ensuite à résoudre sur $]-\infty,-1[$ puis sur $]1,+\infty[$, puis enfin , à examiner si , par recollement par continuité et dérivabilité en 1 et -1, on peut obtenir une (ou des) solution(s) sur \mathbb{R} entier .

2 Equations différentielles linéaires du $2^{\mathrm{i\`{e}me}}$ ordre à coefficients constants .

Définition 2.1. On appelle équation différentielle linéaire du 2^{ième} ordre à coefficients constants toute équation différentielle du type :

$$ay'' + by' + cy = g(x)$$
 (EDL2A) où $(a, b, c) \in \mathbb{K}^3$ $a \neq 0$

g:I intervalle de ${\rm I\!R}\to{\rm I\!K}$ continue sur I .

On appelle équation différentielle linéaire homogène associée l'équation différentielle : ay'' + by' + cy = 0 (EDL2H).

2.1 Premières remarques.

Les mêmes remarques qu'en 1.1 retent valables :

1) Soit L :
$$\begin{pmatrix} \mathcal{D}^2(\mathbb{R}, \mathbb{K}) & \longrightarrow & \mathcal{F}(\mathbb{R}, \mathbb{K}) \\ \phi & \mapsto & a\phi'' + b\phi' + c\phi \end{pmatrix}$$
 L est clairement linéaire (d'où le titre).

L'ensemble $\mathcal{S}_{\mathbb{R},\mathbb{K}}(EDL2H)$ apparaît alors comme $\operatorname{Ker} L$ et est donc un sous-espace vectoriel du $\operatorname{\mathbb{K}}$ espace vectoriel $\mathcal{D}^2(\mathbb{R},\mathbb{K})$ (ce que l'on peut aussi prouver directement).

On peut ici remarquer qu'une solution de (EDL2H) est nécessairement de classe \mathcal{C}^{∞} (ce que l'on prouve facilement par récurrence en remarquant qu'elle vérifie : $\phi''=-\frac{b}{a}\phi'-\frac{c}{a}\phi$).

2)De même, on prouve:

solution générale de (EDL2A)= solution générale de (EDL2H) + une solution particulière de (EDL2A) 3)Enfin , le principe de superposition reste valable .

2.2 Résolution de ay'' + by' + cy = 0 (*EDL2H*)

2.2.1 Cas complexe.

On cherche donc ici les fonctions f de $\mathbb R$ dans $\mathbb C$ 2 fois dérivables et vérifiant :

$$(\forall x \in \mathbb{R}) \quad af''(x) + bf'(x) + cf(x) = 0.$$

1) **Remarque**: cherchons les fonctions exponentielles, c'est à dire du type: $\phi_r: x \mapsto e^{rx}$ $r \in \mathbb{C}$, solutions de (EDL2H):

$$\phi_r$$
 solution de EDL2H) \Leftrightarrow $(\forall x \in \mathbb{R})(ar^2 + br + c)e^{rx} = 0 \Leftrightarrow ar^2 + br + c = 0 \quad (EC)$
L'équation du $2^{\text{ième}}$ degré (EC) est appelée équation caractéristique associée (à (EDL2H)).

2)Le théorème suivant donne l'ensemble des solutions de (EDL2H) :

Théorème 2.1. Soit : ay'' + by' + cy = 0 (EDL2H) $(a, b, c) \in \mathbb{C}^3$ $a \neq 0$. (EC) $ar^2 + br + c = 0$ et Δ le discriminant de (EC).

()	()		
$Si \Delta$:	(EC) admet :	(EDL2H) a une solution générale définie par :	
$\neq 0$	2 racines r_1 et r_2 dans $\mathbb C$	$y = \lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x} (\lambda_1, \lambda_2) \in \mathbb{C}^2$	
=0	une racine double r_0 dans $\mathbb C$	$y = (\lambda_1 x + \lambda_2)e^{r_0 x} (\lambda_1, \lambda_2) \in \mathbb{C}^2$	

Et donc $S_{\mathbb{R},\mathbb{C}}(EDL2H)$ est un \mathbb{C} -espace vectoriel de dimension 2 (sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{C})$).

Démonstration:Soit $r \in \mathbb{C}$ une racine de (EC) : donc $\phi_r : x \mapsto e^{rx}$ est solution de (EDL2H).

Toute $y \in \mathcal{D}^2(\mathbb{R}, \mathbb{C})$ peut s'écrire : $y = \phi_r z$ avec $z \in \mathcal{D}^2(\mathbb{R}, \mathbb{C}) (\Leftrightarrow z = \frac{y}{\phi_r} \text{ car } \phi_r \text{ ne s'annule pas }).$

$$\begin{array}{ll} y(x) = e^{rx}z(x) \\ \text{Alors}: (\forall x \in \rm I\!R) & y'(x) = e^{rx}(rz(x) + z'(x)) \\ y''(x) = e^{rx}(r^2z(x) + 2rz'(x) + z''(x)) \end{array}$$

Donc:

$$y \text{ solution de (EDL2H)} \quad \Leftrightarrow \quad (\forall x \in \mathbb{R}) \quad e^{rx} [\underbrace{(ar^2 + br + c)}_{=0} z(x) + (2ar + b)z'(x) + az''(x)] = 0$$

$$\Leftrightarrow \quad (\forall x \in \mathbb{R}) \quad az''(x) + (2ar + b)z'(x) = 0 (\star)$$

Page5

ullet Si $\Delta
eq 0$ (EC) a 2 racines r_1 et r_2 dans $\mathbb C$; prenons , par exemple , dans (\star) $r=r_1$; alors :

$$(\star) \Leftrightarrow (\forall x \in \mathbb{R}) \quad z''(x) + (2r_1 + \frac{b}{a})z'(x) = 0 \Leftrightarrow (\forall x \in \mathbb{R}) \quad z''(x) + (r_1 - r_2)z'(x) = 0$$
$$\Leftrightarrow (\exists \alpha \in \mathbb{C})(\forall x \in \mathbb{R}) \quad z'(x) = \alpha e^{(r_2 - r_1)x}$$

CHAPITRE 13 : Equations différentielles linéaires .

$$\begin{split} &\Leftrightarrow (\exists (\alpha,\beta) \in \mathbb{C}^2)(\forall x \in \mathbb{R}) \quad z(x) = \frac{\alpha}{r_2 - r_1} e^{(r_2 - r_1)x} + \beta \\ &\Leftrightarrow (\exists (\alpha,\beta) \in \mathbb{C}^2)(\forall x \in \mathbb{R}) \quad y(x) = \frac{\alpha}{r_2 - r_1} e^{r_2 x} + \beta e^{r_1 x} \\ &\Leftrightarrow (\exists (\lambda_1,\lambda_2) \in \mathbb{C}^2))(\forall x \in \mathbb{R}) \quad y(x) = \lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x} \\ &\bullet \text{ Si } \Delta = 0 \text{ (EC) a 1 racine double } r_0 \text{ dans } \mathbb{C} \text{ ; prenons dans } (\star) \ r = r_0 \text{ ; alors : } \\ &(\star) \Leftrightarrow (\forall x \in \mathbb{R}) \quad z''(x) = 0 \Leftrightarrow (\exists (\lambda_1,\lambda_2) \in \mathbb{C}^2)(\forall x \in \mathbb{R}) \quad z(x) = \lambda_1 x + \lambda_2 \\ &\Leftrightarrow (\exists (\lambda_1,\lambda_2) \in \mathbb{C}^2)(\forall x \in \mathbb{R}) \quad y(x) = (\lambda_1 x + \lambda_2) e^{r_0 x} \end{split}$$

Les résultats précédents donnent clairement une famille génératrice , à 2 éléments , de $\mathcal{S}_{\mathbb{R},\mathbb{C}}(EDL2H)$

Par exemple, dans le cas $\Delta \neq 0$, on a obtenu (avec les notations du début) que (ϕ_{r_1}, ϕ_{r_2}) est génératrice de $\mathcal{S}_{\mathbb{R},\mathbb{C}}(EDL2H)$. Prouvons qu'elle est libre .

Soit
$$(\lambda_1, \lambda_2) \in \mathbb{C}^2$$
 tels que : $\lambda_1 \phi_{r_1} + \lambda_2 \phi_{r_2} = \widetilde{0}$. Alors : $(\forall x \in \mathbb{R})$ $\lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x} = 0$

Soit $(\lambda_1, \lambda_2) \in \mathbb{C}^2$) tels que : $\lambda_1 \phi_{r_1} + \lambda_2 \phi_{r_2} = \widetilde{0}$. Alors : $(\forall x \in \mathbb{R})$ $\lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x} = 0$. En prenant : x = 0 puis x = 1 , on obtient : $\begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 e^{r_1} + \lambda_2 e^{r_2} = 0 \end{cases}$ système linéaire homogène de déterminant $e^{r_2} - e^{r_1} \neq 0$ et donc $\lambda_1 = \lambda_2 = 0$ ce qui achève la preuve que (ϕ_{r_1}, ϕ_{r_2}) est aussi libre donc est une base de $S_{\mathbb{R},\mathbb{C}}(EDL2H)$ qui , par là même , est de dimension 2 . c.q.f.d.⊙

& Exemple 2.1. (mouvement à accélération centrale)

Dans le plan muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, on considére un point matériel de masse m soumis à une force $\overrightarrow{F} = -k\overrightarrow{OM}$ k > 0 m > 0.

D'après le principe fondamental de la dynamique, on a :

$$m\frac{d^2\overrightarrow{OM}}{dt^2} = \overrightarrow{F} = -k\overrightarrow{OM}$$

Par conséquent, en désignant par z(t) l'affixe de M à l'instant t, on a :

mz''(t) = -kz(t) c'est à dire mz''(t) + kz(t) = 0 (EDL2H)

$$(EC): mr^2 + k = 0 \Leftrightarrow r = \pm i \sqrt{\frac{k}{m}} \ {\it et donc}$$
 , la solution générale de $(EDL2H)$ est :

$$z(t) = \lambda e^{i\sqrt{\frac{k}{m}}t} + \mu e^{-i\sqrt{\frac{k}{m}}t} \quad (\lambda, \mu) \in \mathbb{C}^2.$$

On obtient facilement une trajectoire elliptique (pouvant être réduite à un segment) de centre O.

2.2.2 Cas réel .

On cherche donc ici les fonctions f de IR dans IR 2 fois dérivables et vérifiant : $(\forall x \in \mathbb{R}) \quad af''(x) + bf'(x) + cf(x) = 0 \quad (a, b, c) \in \mathbb{R}^3 \quad a \neq 0.$

Théorème 2.2. Soit : ay'' + by' + cy = 0 $(EDL2H) (a, b, c) \in \mathbb{R}^3$ $a \neq 0$. (EC) $ar^2 + br + c = 0$ et Δ le discriminant de (EC).

	(-) (-)		
	$Si \Delta$:	(EC) admet :	(EDL2H) a une solution générale définie par :
	> 0	2 racines r_1 et r_2 dans \mathbb{R}	$y = \lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x} (\lambda_1, \lambda_2) \in \mathbb{R}^2$
ĺ	= 0	une racine double r_0 dans ${\rm I\!R}$	$y = (\lambda_1 x + \lambda_2)e^{r_0 x} (\lambda_1, \lambda_2) \in \mathbb{R}^2$
Ì	< 0	2 racines complexes, non réelles,	$e^{\alpha x}(\lambda_1 \cos \beta x + \lambda_2 \sin \beta x) (\lambda_1, \lambda_2) \in \mathbb{R}^2$
İ		conjuguées $\alpha + i\beta$ et $\alpha + i\beta$	soit encore $e^{\alpha x}R\cos(\beta x - \phi)$ $(R, \phi) \in \mathbb{R}^2$

Et donc $\mathcal{S}_{\mathbb{R},\mathbb{R}}(EDL2H)$ est un \mathbb{R} -espace vectoriel de dimension 2 (sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$).

Démonstration: • Les 2 premiers cas se démontrent exactement comme le thèorème précédent.

• Traitons donc le cas où $\Delta < 0$.

• Traitons donc le cas où
$$\Delta < 0$$
. D'après le précédent thèorème $\phi_1: \begin{pmatrix} \mathbb{R} & \longrightarrow \mathbb{C} \\ x & \mapsto & e^{(\alpha+i\beta)x} \end{pmatrix}$ vérifie $(EDL2H)$. Donc $\Re e\phi_1: \begin{pmatrix} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \mapsto & e^{\alpha x}\cos\beta x \end{pmatrix}$ aussi , car $(a,b,c)\in\mathbb{R}^3$. De même : $\Im \phi_1: \begin{pmatrix} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \mapsto & e^{\alpha x}\sin\beta x \end{pmatrix}$ On a ainsi 2 éléments de $\mathcal{S}_{\mathbb{R},\mathbb{R}}(EDL2H)$ et toute combinaison linéaire de ces 2 éléments est encore dans $(EDL2H)$ ce qui prouve une inclusion

Donc
$$\Re e\phi_1: \begin{pmatrix} \mathbb{R} & \longrightarrow \mathbb{R} \\ x & \mapsto & e^{\alpha x}\cos\beta x \end{pmatrix}$$
 aussi, $\operatorname{car}(a,b,c) \in \mathbb{R}^3$.

De même :
$$\Im \phi_1 : \left(\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \mapsto & e^{\alpha x} \sin \beta x \end{array}\right)$$

dans (EDL2H) ce qui prouve une inclusion .

Réciproquement : soit $f \in \mathcal{S}_{\mathbb{R},\underline{\mathbb{R}}}(EDL2H)$; alors $f \in \mathcal{S}_{\mathbb{R},\underline{\mathbb{C}}}(EDL2H)$ et donc , d'après le précédent théorème:

théorème :
$$(\exists (\lambda_1,\lambda_2)\in\mathbb{C}^2) \quad f=\lambda_1\phi_1+\lambda_2\overline{\phi_1} \qquad \text{(où } \overline{\phi_1}:\left(\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{C} \\ x & \mapsto & e^{(\alpha-i\beta)x} \end{array}\right)\text{)}$$

Or fest à valeurs réelles et donc :

$$f = \Re e f = \Re e \lambda_1 \Re e \phi_1 - \Im m \lambda_1 \Im m \phi_1 + \Re e \lambda_2 \Re e \phi_1 + \Im m \lambda_2 \Im m \phi_1 \text{ donc}:$$

 $(\exists (\gamma, \delta) \in \mathbb{R}^2)$ $f = \gamma \Re e \phi_1 + \delta \Im \phi_1$ c'est à dire $(\forall x \in \mathbb{R})$ $f(x) = e^{\alpha x} (\gamma \cos \beta x + \delta \sin \beta x)$ ce qui prouve l'autre inclusion et achève la preuve.

Le corollaire suivant ne fait que mettre en relief 2 cas particuliers du théorème précédent :

Corollaire 2.3. Soit $\omega \in \mathbb{R}^*$.

$$y'' + \omega^2 y = 0$$
 admet une solution générale définie par : $y = \lambda \cos \omega x + \mu \sin \omega x \quad (\lambda, \mu) \in \mathbb{R}^2$. $y'' - \omega^2 y = 0$ admet une solution générale définie par : $y = \lambda e^{\omega x} + \mu e^{-\omega x} \quad (\lambda, \mu) \in \mathbb{R}^2$.

Démonstration:Immédiat avec le théorème, puisque, par exemple pour le 1^{er} cas: $(EC)r^2+\omega^2=0 \Leftrightarrow r=\pm i\omega$, d'où le résultat en utilisant le $3^{
m ième}$ cas du tableau . $c.q.f.d.\odot$

& Exemple 2.2.
$$y'' + y' + y = 0$$
 $(EDL2H)$; $(EC)r^2 + r + 1 = 0 \Leftrightarrow r = j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ ou $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$ solution générale définie par : $y = e^{-\frac{x}{2}}(\lambda\cos\frac{\sqrt{3}}{2}x + \mu\sin\frac{\sqrt{3}}{2}x)$ $(\lambda,\mu) \in I\!\!R^2$

& Exemple 2.3.
$$y''+2\sqrt{3}y'+3y=0 \quad (EDL2H)$$
; $(EC)r^2+2\sqrt{3}r+3=0 \Leftrightarrow (r+\sqrt{3})^2=0 \Leftrightarrow r=-\sqrt{3}$ solution générale définie par : $y=(\lambda x+\mu)e^{-\sqrt{3}x} \quad (\lambda,\mu)\in I\!\!R^2$

2.3 Résolution de
$$ay'' + by' + cy = P(x)e^{\alpha x}$$
 avec $P \in \mathbf{IK}[X]$ et $\alpha \in \mathbf{IK}$.

Le théorème suivant donne une méthode pour trouver une solution particulière dans le cas très fréquent et important d'un second membre particulier du type $P(x)e^{\alpha x}$.

Théorème 2.4. Soit
$$ay'' + by' + cy = P(x)e^{\alpha x}$$
 $(EDL2A)$ avec : $(a,b,c) \in \mathbb{K}^3$ $a \neq 0$ $P \in \mathbb{K}[X]$ $\alpha \in \mathbb{K}$.

- si α non racine de (EC) alors il y a une solution particulière du type $Q(x)e^{\alpha x}$
- si α racine simple de (EC) alors il y a une solution particulière du type $xQ(x)e^{\alpha x}$
- si α racine double de (EC) alors il y a une solution particulière du type $x^2Q(x)e^{\alpha x}$ $\operatorname{avec} \left\{ \begin{array}{l} Q \in \operatorname{I\!K}[X] \\ \deg Q = \deg P. \end{array} \right.$

Démonstration:

1)Cas où $\alpha = 0$.

• Si $c \neq 0$, il s'agit de prouver que l'équation : ay'' + by' + cy = P(x) (E) admet une solution parti-

culière $Q \in \mathbb{K}[X]$ avec $\deg Q = \deg P$. Soit $\deg P = n$ et $\mathbb{L}: \begin{pmatrix} \mathbb{K}_n[X] & \longrightarrow & \mathbb{K}_n[X] \\ y & \mapsto & ay'' + by' + cy \end{pmatrix}$ (évidemment endomorphisme de $\mathbb{K}_n[X]$). En munissant $\mathbb{K}_n[X]$ de sa base canonique $\mathcal{B} = (1, X, \dots, X^n)$, on a :

$$M_{\mathcal{B}}(L) = \begin{pmatrix} c & b & 2a & \dots & & & & & & & & \\ 0 & c & 2b & 6a & \dots & & & & & & & \\ \vdots & \ddots & c & 3b & 12a & \dots & & \vdots & & & & & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & & \vdots & & & & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & \ddots & & \vdots & & & & \\ \vdots & & & \ddots & \ddots & \ddots & n(n-1)a & & & & & & \\ \vdots & & & \ddots & \ddots & nb & & & & \\ 0 & \dots & \dots & 0 & c & & & & \\ \text{Puisque } c \neq 0 \text{ , on a de suite } L \text{ bijective (par exemple avec } \det L = c^{n+1} \text{ ou même dire} \end{cases}$$

Puisque $c \neq 0$, on a de suite L bijective (par exemple avec $\det L = c^{n+1}$ ou même directement en résolvant le système triangulaire : L(Q) = P) et donc (E) admet une solution Q dans $\mathbb{K}_n[X]$ unique [la résolution du système, en commençant par la dernière ligne, prouve même que Q est de degré n]

• Si c=0 et $b\neq 0$ alors : $\textcircled{E}\Leftrightarrow ay''+by'=P(x)\Leftrightarrow z'+\frac{b}{a}z=P(x)\textcircled{F}$ en posant z=y' . Or on a vu qu'il y a une solution de F du type R(x) avec $R\in \textbf{IK}[X]$ et deg R=deg P; en prenant pour y la primitive de R nulle en 0 , on a bien une solution de E du type xQ(x) avec $\left\{ \begin{array}{l} Q\in \textbf{IK}[X]\\ deg\ Q=deg\ P. \end{array} \right.$

En prenant la biprimitive de $\cfrac{P(x)}{a}$ nulle en 0 ainsi que sa dérivée , on a bien une solution de E du type $x^2Q(x)$ avec $\left\{ \begin{array}{l} Q \in \mathbb{K}[X] \\ deg \ Q = deg \ P. \end{array} \right.$

2)Cas α quelconque : toute $y \in \mathcal{D}^2(\mathbb{R}, \mathbb{K})$ peut s'écrire : $y = ze^{\alpha x}$ avec $z \in \mathcal{D}^2(\mathbb{R}, \mathbb{K})$ et on a : $y' \overline{= (z' + \alpha z)e^{\alpha x}}$ et $y'' = (z'' + 2\alpha z' + \alpha^2 z)e^{\alpha x}$ et donc : $ay'' + by' + cy = \left[az'' + (2a\alpha + b)z' + (a\alpha^2 + b\alpha + c)z\right]e^{\alpha x}$ Donc: $ay'' + by' + cy = P(x)e^{\alpha x} \Leftrightarrow az'' + (2a\alpha + b)z' + (a\alpha^2 + b\alpha + c)z = P(x)$ et on conclut donc en utilisant les résultats démontrés au 1) c.q.f.d.⊙

- **\$ Exemple 2.4.** $y'' + y = \cos x \; (EDL2A)$
- •(EDL2H) y''+y=0 dont la solution générale est (voir corollaire 2.3) $y=\lambda\cos x+\mu\sin x$ $(\lambda,\mu)\in$
- Puisque $\cos x = \Re e(e^{ix})$ on cherche une solution particulière de $y'' + y = e^{ix}$ (F) du type $y=xke^{ix}\ k\in\mathbb{C}$ (car ici i est racine de l'équation caractéristique associèe). $y' = k(1+ix)e^{ix}$; $y'' = k(-x+2i)e^{ix}$; donc:

 $y \ solution \ de \ EDL2A) \Leftrightarrow (\forall x \in I\!\!R) \quad k2ie^{ix} = e^{ix} \Leftrightarrow k = \frac{1}{2i} = -\frac{i}{2} \ , \ d'où \ , \ pour \ (F) \ , \ la \ solution \ , \ l$ particulière $y=-\frac{i}{2}e^{ix}$, et, pour (EDL2A), la solution particulière : $y=\Re e(-\frac{i}{2}e^{ix})=\frac{x\sin x}{2}$.

Finalement, solution générale de (EDL2A): $y = \frac{x \sin x}{2} + \lambda \cos x + \mu \sin x$ $(\lambda, \mu) \in I\!\!R^2$.

& Exemple 2.5.

$$y'' + 3y' - 4y = x \operatorname{sh} x \ (EDL2A)$$

$$\bullet (EDL2H) : y'' + 3y' - 4y = 0;$$

$$(EC)r^2 + 3r - 4 = 0 \Leftrightarrow r = 1 \ ou \ r = -4 \ \text{d'où} :$$
solution générale de $(EDL2H) : y = \lambda e^x + \mu e^{-4x}$

$$\bullet x \operatorname{sh} x = x \frac{e^x}{2} - x \frac{e^{-x}}{2}$$

On cherche déjà une solution particulière de $y''+3y'-4y=x\frac{e^x}{2}$ (F) du type :

$$y = x(ax + b)e^x = (ax^2 + bx)e^x$$
 (car 1 racine de (EC));
 $y' = (ax^2 + (2a + b)x + b)e^x$; $y'' = (ax^2 + (4a + b)x + 2a + 2b)e^x$

$$y \text{ solution de (EDL2A)} \Leftrightarrow (\forall x \in \mathbb{R}) \quad (10ax + 2a + 5b)e^x = x\frac{e^x}{2} \Leftrightarrow \begin{cases} 10a = \frac{1}{2} \\ 2a + 5b = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{20} \\ b = -\frac{1}{50} \end{cases}$$

D'où , pour
$$(F)$$
 , la solution particulière : $y = \left(\frac{1}{20}x^2 - \frac{1}{50}x\right)e^x$

De même , on trouve pour solution particulière de :
$$y''+3y'-4y=-x\frac{e^{-x}}{2}\left(F\right)$$
 : $y=\left(\frac{1}{12}x+\frac{1}{72}\right)e^{-x}$

Finalement : solution générale de (EDL2A) :

$$y = \left(\frac{1}{20}x^2 - \frac{1}{50}x\right)e^x + \left(\frac{1}{12}x + \frac{1}{72}\right)e^{-x} + \lambda e^x + \mu e^{-4x} \quad (\lambda, \mu) \in \mathbb{R}^2.$$

♣ Exemple 2.6. On considère un solide de masse m suspendu à un ressort et soumis à :

son poids
$$\overrightarrow{P} = m\overrightarrow{g}$$

une force de tension due au ressort \overrightarrow{T}

une force de frottement du type $\overrightarrow{F}=-f\overrightarrow{v}$ (f>0) où \overrightarrow{v} est la vitesse Décrire le mouvement du centre de gravité G du solide .

Considérons un axe (O, \overrightarrow{i}) orienté vers "le bas", O étant la position du centre de gravité G du solide quand le ressort n'est pas tendu et soit x(t) l'abscisse de G à l'instant t (x 2 fois dérivable sur $I\!\!R$). Le principe fondamental de la dynamique ou $2^{\grave{e}me}$ loi de Newton donne :

$$\Sigma \overrightarrow{F} = m \overrightarrow{\gamma} \quad (\overrightarrow{\gamma} \text{ désignant l'accélération }) \quad \overrightarrow{c'\text{est}} \text{ à dire } \overrightarrow{\text{ici}} : \overrightarrow{P} + \overrightarrow{T} + \overrightarrow{F} = m \overrightarrow{\gamma} \ (\star)$$

D'après la loi de Hooke, la composante de \overrightarrow{T} suivant \overrightarrow{i} est du type -kx(t) (k>0 étant un coefficient, dépendant du ressort, qu'on appelle coefficient de raideur).

En considérant la composante suivant \overrightarrow{i} , la relation (\star) donne :

$$mg - kx(t) - fx'(t) = mx''(t)$$
 c'est à dire : $mx''(t) + fx'(t) + kx(t) = mg$ (EDL2A).

$$(EDL2H)$$
: $mx''(t) + fx'(t) + kx(t) = 0$;

$$(EC)$$
 $mr^2 + fr + k = 0$ $\Delta = f^2 - 4mk$.

$$ullet$$
 Si le frottement n'est pas "trop grand" , plus précisément , si $f < 2\sqrt{mk}$:

Alors $\Delta < 0$ donc (EC) admet 2 racines non réelles complexes conjuguées :

$$r_1 = \frac{-f - i\sqrt{\Delta}}{2m}$$
 et $r_2 = \frac{-f + i\sqrt{\Delta}}{2m}$

Solution générale de
$$(EDL2H): x(t) = e^{-\frac{f}{2m}t}R\cos\left(\frac{\sqrt{\Delta}}{2m}t - \phi\right) \quad (R,\phi) \in I\!\!R^2$$

Par ailleurs , (EDL2A) admet comme solution évidente : $x(t) = \frac{mg}{k}$ donc ;

Solution générale de
$$(EDL2A): x(t) = \frac{mg}{k} + e^{-\frac{f}{2m}t}R\cos\left(\frac{\sqrt{\Delta}}{2m}t - \phi\right) \quad (R,\phi) \in I\!\!R^2$$

Voir ci-contre un exemple de représentation graphique d'une telle fonction.

$$\begin{aligned} &\textit{Comme}: (\forall t \in I\!\!R) \quad \left| e^{-\frac{f}{2m}t}R\cos\left(\frac{\sqrt{\Delta}}{2m}t - \phi\right) \right| \leq e^{-\frac{f}{2m}t} \text{ , on déduit de suite :} \\ &\lim_{t \to +\infty} \, e^{-\frac{f}{2m}t}R\cos\left(\frac{\sqrt{\Delta}}{2m}t - \phi\right) = 0 \text{ , d'où : } \lim_{t \to +\infty} x(t) = \frac{mg}{k}. \end{aligned}$$

Autrement dit, le solide "tend" vers la position définie par $x=\frac{mg}{k}$ (oscillations amorties). **Remarque**: Dans le cas où on néglige le frottement (f=0), on trouve un mouvement défini par :

$$x(t) = \frac{mg}{k} + R\cos\left(\frac{\sqrt{\Delta}}{2m}t - \phi\right) \quad (R, \phi) \in \mathbb{R}^2.$$

(oscillations non amorties "autour" de la position $x = \frac{mg}{k}$).

• Terminer en traitant les 2 autres cas : $f = 2\sqrt{mk}$ et $f > 2\sqrt{mk}$