Eco 4306 Economic and Business Forecasting

Lecture 6
Chapter 4: Tools of the Forecaster

Introduction

- before constructing a forecast based on a time series model, forecaster needs to decide about three basic elements that guide the production of the forecast
 - 1. Information set
 - 2. Forecast horizon
 - 3. Loss function
- information set will be used to construct conditional density function to be able to evaluate expectations, and the optimal forecast will minimize the expected loss

Introduction

Forecasting Problem

Introduction

- example: to forecast the number of new homes built, we need to
- 1 construct the information set
 - gather relevant up-to-date information for the problem at hand existing number of houses, state of the local economy, population inflows, . . .
 - be this information is used to estimate the time series model and construct the forecast
- 2. choose forecast horizon: how far into the future to forecast
 - ▶ 1-month-ahead, 1-quarter-ahead, 1-year-ahead, 10-years-ahead, . . .
 - this depends on the use of the forecast
 - e.g. a policy makers who plans to design or revamp the transportation services of the area or any
 other infrastructure is likely to be more interested in long-term predictions of new housing (1 year,
 2 years, 5 years) than in short-term predictions (1 month, 1 quarter)
 - forecast horizon influences the choice of the frequency of the time series data
 - e.g. if our interest is a 1-month-ahead prediction, we may wish to collect monthly data, or if our interest is a 1-day-ahead forecast, we may collect daily data
- 3. decide which loss function best represents the costs associated with forecast errors
 - forecast errors will happen and more importantly they will be costly
 - costs of underestimation and of overestimation may be of different magnitude
 - we will choose a forecast that minimizes the expected loss

▶ a univariate information set is the historical time series of the process up to time t

$$I_t = \{y_0, y_1, y_2, \dots, y_t\}$$

▶ a multivariate information set is the collection of several historical time series

$$I_t = \{y_0, y_1, y_2, \dots, y_t, x_0, x_1, x_2, \dots, x_t, z_0, z_1, z_2, \dots, z_t\}$$

- ▶ for example, to produce a 1-year-ahead forecast for new houses built
 - univariate information set is the time series of new houses built in previous years
 - multivariate information set may in addition contain the time series for inflows of population, unemployment in the area, . . .

 \blacktriangleright forecast $f_{t,h}$ is constructed as a function of the information set

$$f_{t,h} = g(I_t)$$

function $g(\cdot)$ represents the time series model that processes the known information up to time t and from which we produce the forecast of the variable of interest at a future date t+h

lacktriangleright some examples of 1-step-ahead forecasts of a process $\{Y_t\}$

(i)
$$f_{t,1} = 0.8y_t$$

(ii)
$$f_{t,1} = 0.2y_t - 0.9y_{t-1}$$

(iii)
$$f_{t,1} = \frac{4}{1 + 0.5y_t}$$

(iv)
$$f_{t,1} = 1.8y_t - 0.5y_{t-1} + 0.4x_t + 0.3x_{t-1} + 0.6x_{t-2}$$

▶ in (i), (ii) and (iii) the information set is univariate, in (iv) it is multivariate

- > predictability of a time series depends on how useful the information set is
- sometimes univariate information sets are not very helpful, and we need to resort to multivariate information sets
- for example, stock returns are very difficult to predict on the basis of past stock returns alone, but when we add other information such as firm size, price-earnings ratio, cash flows, and so on, we find some predictability
- some time series (e.g. stock returns, interest rates, exchange rates, ...) are inherently very difficult to predict due to
 - lack of understanding of the phenomenon
 - lack of statistical methods
 - ▶ high uncertainty making it difficult to separate information from noise

4.2 Forecast Horizon

- ▶ we distinguish between a **short-term** forecast and a **long-term** forecast
- ▶ in economics up to a 1-year-ahead prediction is a short-term forecast, forecasts between 1 and 10 years are considered short/medium term or medium/long term, and a 10-year-ahead and longer prediction is a long-term forecast
- short-, medium-, and long-term forecast are functions of the frequency of the data and of the properties of the model
- \blacktriangleright we distinguish between 1-step ahead forecast $f_{t,1}$ and multistep forecast $f_{t,h}$ for h>1

- ightharpoonup suppose that we have a time series with T observations, $\{y_1, y_2, \dots, y_T\}$
- we divide the sample into two parts: estimation sample and prediction sample
- estimate the model using observations in estimation sample, with t < T observations, $\{y_1, y_2, \dots, y_t\}$
- we then assess the performance of models in-sample and out-of-sample
- ightharpoonup in-sample assessment evaluate goodness of the model (perform specification tests) using observations from 1 to t
- ightharpoonup out-of-sample assessment evaluate the forecasting ability of the model using observations from t+1 to T
 - e.g. if we are interested in evaluating accuracy of 1-step-ahead forecasts we first produce a sequence of out-of-sample 1-step-ahead forecasts $f_{t+j,1}$ where $j=0,1,\ldots T-t-1$ for $\{Y_{t+1},Y_{t+2},\ldots,Y_T\}$
 - we next compute a sequence of 1-step-ahead forecast errors $e_{t+j,1}=y_{t+j+1}-f_{t+j,1}$ for $j=0,1,\ldots,T-t-1$
 - finally, we assess the accuracy of the forecast by plugging the forecast errors into the loss function and calculating the average or the maximum loss

 $\,\blacktriangleright\,$ three forecasting schemes: recursive, rolling, and fixed

recursive forecasting scheme

- repeatedly increase estimation sample by one observation, reestimate the model with extra observation, and compute a 1-step ahead forecast
- estimation sample keeps expanding until the prediction sample is exhausted
- lacktriangle this yields a sequence of 1-step-ahead forecasting errors $\{e_{t,1}, e_{t+1,1}, \dots e_{T-1,1}\}$
- forecast errors are then used to calculate measures of forecast accuracy based on the loss function

recursive forecasting scheme

rolling forecasting scheme

- similar to recursive scheme but estimation sample always contains the same number of observations
- ▶ thus at t it contains observations 1 to t, at t+1 observations 2 to t+1, at time t+2 observations 3 to t+2, . . .
- ▶ model is reestimated for each rolling sample, and 1-step-ahead forecast is produced
- estimation sample is rolling until the prediction sample is exhausted
- ▶ this yields collection of 1-step-ahead forecasting errors $\{e_{t,1}, e_{t+1,1}, \dots, e_{T-1,1}\}$
- forecast errors are then used to calculate measures of forecast accuracy based on the loss function

rolling forecasting scheme

fixed forecasting scheme

- model is estimated only once using the estimation sample that contains the first t observations
- information set is updated but model is not reestimated each one step ahead forecast is thus constructed using same parameters
- for instance, at time t+1, information set contains one more observation, which will contribute to the construction of the 1-step-ahead forecast but will not be used to reestimate model parameters
- ▶ information set is updated until the prediction sample is exhausted
- ▶ this again yields collection of 1-step-ahead forecasting errors $\{e_{t,1}, e_{t+1,1}, \dots, e_{T-1,1}\}$
- forecast errors are then used to calculate measures of forecast accuracy based on the loss function

fixed forecasting scheme

advantages and disadvantages of the three schemes

- recursive scheme
 - incorporates as much information as possible in the estimation of the model
 - advantageous if the model is stable over time
 - if the data have structural breaks, model's stability is in jeopardy and so is the forecast
- rolling scheme
 - avoids the potential problem with the model's stability
 - more robust against structural breaks in the data
 - b does not make use of all the data
- fixed scheme
 - ▶ fast and convenient because there is one and only one estimation
 - does not allow for parameter updating, so again problem with structural breaks and model's stability

what the best forecast is depends on the purpose of the forecast, its intended use

- ▶ example: suppose you live in Riverside, CA about 90 miles east of Los Angeles
- you are departing on a business trip from Los Angeles International Airport (LAX) to meet with a client in New York
- you need to forecast how many hours it takes to get from Riverside to LAX
- ightharpoonup information set I_t will contain the distance between Riverside and LAX, rush hours in the area highways, construction work in the area, time needed for check-in at LAX, time needed for security check at LAX
- ▶ suppose the actual time could be either 5 hours or 3 hours with equal probability
- suppose your forecast is the average time needed $f_{t,1} = E(Y_{t+1}|I_t) = 4$ hours

$$f_{t,1} = 4$$
 $y_{t+1} = \begin{cases} 3 \\ 5 \end{cases} \Rightarrow e_{t,1} = y_{t+1} - f_{t,1} = \begin{cases} 1 \\ -1 \end{cases}$

- ▶ suppose that it takes 5 hours to get to LAX and so you miss your flight
- \blacktriangleright the forecast error is $e_{t,1}=1$ and the potential costs associated with it are
 - need to wait at the airport to hope to be able to get on the next flight
 - ▶ alternatively, purchase another ticket with a different airline
 - ▶ need to spend extra money on food, hotel
 - stressed and/or in bad mood for the rest of the day
 - professional reputation might be damaged if you miss the meeting with your client
 - prospective business deal might be lost
- ▶ suppose that it takes 3 hours to get to LAX and you thus and an hour spare at LAX
- lacktriangle the forecast error is $e_{t,1}=-1$ and the potential costs associated with it are
 - ▶ having to wait in a noisy environment, uncomfortable chairs, crowded space, . . .

- ▶ note that positive and negative errors are of same magnitude, but costs are not
- your loss function is thus asymmetric
- ightharpoonup taking into account your loss function, you decide that it makes sense for you to change your forecast and instead of average time $f_{t,1}=4$ choose the maximum time thus $f_{t,1}=5$ hours
- as this example illustrates, the forecast will depend on the loss function that the forecaster is facing
- ▶ the forecaster thus must know the loss function before making the forecast
- note also that in the example if you are avoiding positive forecast errors and always arrive at airport too early, the average forecast errors will be negative, not zero
- ▶ it is rational to consistently make biased forecasts if loss function is asymmetric

- **loss function** $L(e_{t,h})$ is the evaluation of costs associated with the forecast error
- three properties that loss functions need to satisfy
- 1. if the forecast error is zero, the loss is zero: $L(e_{t,h})=0$ when $e_{t,h}=0$
- 2. loss function is a non-negative function with minimum value equal to zero: $L(e_{t,h}) \geq 0$ for all $e_{t,h}$
- for positive errors the loss is monotonically increasing, for negative errors it is monotonically decreasing:

$$\text{if} \quad e_{t,h}^{(1)} > e_{t,h}^{(2)} > 0 \quad \text{ then } \quad L(e_{t,h}^{(1)}) > L(e_{t,h}^{(2)})$$

$$\text{if} \quad e_{t,h}^{(1)} < e_{t,h}^{(2)} < 0 \quad \text{ then } \quad L(e_{t,h}^{(1)}) > L(e_{t,h}^{(2)})$$

4.3.1 Some Examples of Loss Functions

Symmetric Loss Functions

 sign of the forecast errors is irrelevant, positive or negative errors of the same magnitude have identical costs

Quadratic loss function

$$L(e) = ae^2, \quad a > 0$$

Absolute value loss function

$$L(e) = a \mid e \mid$$
, $a > 0$

4.3.1 Some Examples of Loss Functions

Asymmetric Loss Functions

Linex function

$$L(e) = \exp(ae) - ae - 1$$
, $a \neq 0$

Lin-lin function

$$L(e) = \begin{cases} a \mid e \mid & e > 0 \\ b \mid e \mid & e \le 0 \end{cases}$$

4.3.1 Some Examples of Loss Functions

- quadratic loss function is the most prevalent in practice it is mathematically tractable
- most of the time, however economic agents have asymmetric loss functions
 - example with trip to LAX airport for most people it is less costly to wait at the airport than to miss a flight
 - government planning spending and forecasting tax revenues deficit and surplus of the same size are not viewed the same by most politicians
 - Fed policymakers deciding about interest rate, facing inflation vs unemployment tradeoff monetary hawks and inflation doves
 - investment fund managers making predictions of asset returns in their portfolio underperforming by 5% vs overperforming 5%
 - financial intermediaries are requited to make capital provisions as a preventive measure against insolvency caused by loan defaults

- we now put all three components together information set I_t , forecast horizon h, and loss function $L(e_{t,h})$
- ▶ recall: $e_{t,h} = y_{t+h} f_{t,h}$ and y_{t+h} is future value unknown at time t, of random variable Y_{t+h} , which has a conditional probability density function $f(y_{t+h}|I_t)$
- because the loss function depends on a random variable, it is also a random variable, thus we can write the expected loss as

$$E(L(y_{t+h} - f_{t,h})) = \int L(y_{t+h} - f_{t,h}) f(y_{t+h}|I_t) dy_{t,h}$$

ightharpoonup the optimal forecast is $f_{t,h}$ which minimizes the above expected loss

$$\min_{f_{t,h}} E(L(y_{t+h} - f_{t,h}))$$

if the loss function is quadratic, the optimal forecast that is minimizing the expected loss is

$$f_{t,h}^* = \mu_{t+h|t} = E(y_{t+h}|I_t) = \int y_{t+h} f(y_{t+h}|I_t) dy_{t,h}$$

we will discuss the optimal forecast under various symmetric and asymmetric loss function in more detail when we get to Chapter 9

Symmetric Loss Functions - Quadratic

$$L(e) = ae^2, \quad a > 0$$

Asymmetric Loss Functions - Linex

$$L(e) = \exp(ae) - ae - 1$$
, $a < 0$

