Teoría formal de la normalización de esquemas relacionales.

Definición formal de las tres primeras Formas Normales

Normalización de esquemas relacionales Motivación

Sea la BD de proveedores y partes, con 3 relaciones: S, P y SP

S

S#	SNOMBRE	SITUACIÓN	CIUDAD
S 1	Salazar	20	Londres
S2	Jaimes	10	París
S3	Bernal	30	París
S4	Corona	20	Londres
S5	Aldana	30	Atenas

P

P#	PNOMBRE	COLOR	PESO	CIUDAD
Pl	Tuerca	Rojo	12	Londres
P2	Perno	Verde	17	París
Р3	Birlo	Azul	17	Roma
P4	Birlo	Rojo	14	Londres
PS	Leva	Azul	12	París
P6	Engranaje	Rojo	19	Londres

SP

S#	P#	CANT
S 1	Pl	300
S 1	P2	200
S 1	P3	400
S 1	P4	200
S 1	P5	100
S 1	P6	100
S2	Pl	300
S2	P2	400
S 3	P3	200
S4	P2	200
S4	P4	300
S4	P5	400

Recordemos: Modelo relacional

Tabla → Relación

S

Definición de la tabla → Esquema de relación S (S#, SNOMBRE, SITUACION, CIUDAD)

Columna de la tabla → **Atributo**CIUDAD

Filas de la tabla → Tupla

(S1, Salazar, 20, Londres)

Representación de información **Problemas y soluciones**

Los **defectos** que puede tener una BD mal diseñada son:

- repetición de información
- incapacidad para representar cierta información
- pérdida de información

Solución:

descomponer el esquema de relación con problemas en varios esquemas de relaciones.

S, P y SP → Parece un diseño correcto

Objetivo del diseño

- generar un conjunto de esquemas de relaciones que permitan almacenar información sin redundancia innecesaria,
- pero que a la vez permita recuperar información fácilmente.

Un enfoque es diseñar esquemas

que tengan una forma normal apropiada.

Se definirán las formas normales usando el concepto de DF.

Pero... si se coloca CIUDAD del proveedor en SP (y no en S),

se obtiene SP'

P# P1	CANT 300
P1	300
	300
P2	200
P3	400
P4	200
PS	100
P6	100
P1	300
P2	400
	P3 P4 PS P6 P1

S. P v SP' → Es un mal diseño

Problemas de la relación SP'

La BD contiene un alto grado de redundancia

• La CIUDAD de un proveedor aparece tantas veces como envíos haya de ese proveedor.

Esta redundancia provoca problemas:

 Después de una actualización, podría quedar en una tupla que S1 está situado en Londres y en otra tupla en Amsterdam.

Formas Normales

Una relación está en una cierta forma normal si satisface un cierto conjunto de restricciones.

Se ha definido un gran número de formas normales.
 Codd definió la primera, segunda y tercera formas normales
 (1NF, 2NF, 3NF)

El diseñador de una BD debe tratar de lograr un diseño con relaciones por lo menos en 3NF.

Un buen **principio de diseño** podría ser "cada dato en <u>un</u> lugar"

→ evitar la redundancia si es posible

Nuestro **objetivo** es obtener una **estructura**: **más simple** que la original

y

que **resuelva** todos los problemas con las **operaciones de UPDATE, INSERT Y DELETE**.

Dependencia Funcional (DF)

Dada una relación R, el atributo Y de R depende funcionalmente del atributo X de R

$X \rightarrow Y$

si y sólo si **un solo valor Y** en R está **asociado a cada valor X** en R en cualquier momento.

Si dos tuplas coinciden en el valor de X deben coincidir en el valor de Y

Ej. Código Postal → Ciudad

Dependencia Funcional (DF)

En nuestra BD S# → SNOMBRE

S# → SITUACION

S# → CIUDAD

Porque dado un valor de S#, existe sólo un valor de SNOMBRE, de SITUACIÓN y de CIUDAD.

COLOR no determina PESO

Porque para cada color no hay un solo peso

- P1 es roja y tiene un peso de 12,
- **P6** también es **roja** pero tiene un peso de **19**.

Si X es clave candidata de R → todos los atributos de R deben por fuerza depender funcionalmente de X.

SP'

CIUDAD	P#	CANT
Londres	P1	300
Londres	P2	200
Londres	Р3	400
Londres	P4	200
Londres	PS	100
Londres	P6	100
París	P1	300
París	P2	400
	Londres Londres Londres Londres Londres Londres París	Londres P1 Londres P2 Londres P3 Londres P4 Londres PS Londres P6 París P1

Dependencia funcional completa

$X \rightarrow Y$ es una DF completa si:

- Y depende funcionalmente de X
- Y no depende de ningún subconjunto propio de X.

Ejemplo:

En SP' $(S\#.P\#) \rightarrow CIUDAD$

Pero no es una DF completa, porque

S# → CIUDAD

Solución de anomalías mediante las formas normales

Primera Forma Normal(1NF)

Definición informal:

Una relación está en **1NF** si en **cada intersección de fila y columna** de una tabla siempre **existe un solo valor** , nunca una lista.

Definición formal:

Una relación está en **1NF** si y sólo si **todos los dominios simples subyacentes contienen sólo valores atómicos**.

El diagrama de DF es S# SITUACION CANT P# CIUDAD - hay flechas que salen de la PK junto con ciertas flechas adicionales

- esas flechas adicionales causan todos los problemas.

Una relación en 1NF presenta varios problemas

Supongamos tener en vez de S y SP una sola relación **PRIMERA**

Agregamos una

restricción adicional:

CIUDAD → **SITUACION**

clave primaria : (S#,P#).

S#	SITUACIÓN	CIUDAD	P#	CANT
S1	20	Londres	P1	300
S1	20	Londres	P2	200
S1	20	Londres	Р3	400
S1	20	Londres	P4	200
S1	20	Londres	P5	100
S1	20	Londres	P6	100
S2	10	París	P1	300
S2	10	París	P2	400
S3	10	París	P2	200
S4	20	Londres	P2	200
S4	20	Londres	P4	300
S4	20	Londres	P5	400

Anomalías de Actualización

Las redundancias son obvias.

Las redundancias provocan "anomalías de actualización".

• Problemas con las tres operaciones de actualización:

INSERT, DELETE y UPDATE.

Anomalías de Actualización

INSERT:

No podemos insertar el hecho de que un **proveedor está** situado en una ciudad si ese proveedor no suministra por lo menos una parte.

PRIMERA no indica que S5 está situado en Atenas.

Una forma de representarlos sería utilizando **nulos** en **P#**, pero por la **regla de integridad de entidades:**

ningún componente de la clave primaria puede ser nulo.

Anomalías de Actualización

Problema: PRIMERA contiene demasiada información

→ cuando se elimina una tupla, se elimina demasiado.

PRIMERA contiene información de envíos y proveedores

→ eliminar un envío hace que se elimine también información de proveedores.

Solución: "desempacar"

- colocar información de envíos en una relación
- colocar información de proveedores en otra

Es decir: colocar información separada en relaciones separadas.

Anomalías de Actualización

UPDATE:

La ciudad de un proveedor aparece varias veces en PRIMERA

Se podría producir un resultado inconsistente.

DELETE:

Si eliminamos la única tupla de PRIMERA de un proveedor, **perdemos** la información de la **ciudad** en la que está situado.

si eliminamos la tupla donde S# = S3 y P# = P2 perdemos la información: S3 está situado en París.

Solución a estos tres problemas de actualización

sustituir PRIMERA por

SEGUNDA (S#, SITUACIÓN, CIUDAD) SP (S#, P#, CANT)

S#	SITUACIÓN	CIUDAD
S1	20	Londres
S2	10	París
S3	10	París
S4	20	Londres
S5	30	Atenas

S#	P#	CANT
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Esta estructura resuelve los problemas

INSERT:

Podemos insertar la información que S5 está en Atenas, aún cuando S5 no suministre una parte.

S#	SITUACIÓN	CIUDAD
S1	20	Londres
S2	10	París
S3	10	París
S4	20	Londres
S5	30	Atenas

S#	P#	CANT
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Esta estructura resuelve los problemas

DELETE:

Podemos eliminar el envío que conecta a S3 con P2 en SP, sin perder que S3 está en París.

S#	SITUACIÓN	CIUDAD
S1	20	Londres
S2	10	París
S3	10	París
S4	20	Londres
S5	30	Atenas

S#	P#	CANT
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Esta estructura resuelve los problemas

UPDATE:

La ciudad de un proveedor aparece **una sola vez**, no muchas.

S#	SITUACIÓN	CIUDAD
S1	20	Londres
S2	10	París
S3	10	París
S4	20	Londres
S5	30	Atenas

S#	P#	CANT
S1	P1	300
S1	P2	200
S1	Р3	400
S1	P4	200
S1	P5	100
S1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Esta estructura resuelve los problemas

Se han eliminado las dependencias no completas, y con esa eliminación se han resuelto los problemas.

Segunda Forma Normal

Atributo primo es un atributo que forma parte de la clave primaria.

Definición informal:

Una relación está en 2NF si y sólo si está en 1NF y todos los atributos no clave dependen por completo de la clave primaria

Definición formal:

Una relación R está en **2NF** si está en **1NF** y cada uno de sus **atributos no primos es dependiente funcional completo de cada clave candidata** de R

Segunda Forma Normal

- SEGUNDA y SP están en 2NF
- Las claves primarias son S# y (S#,P#)
- Una relación en 1NF pero no en 2NF siempre podrá reducirse a un conjunto equivalente de relaciones en 2NF

Mediante el procedimiento de normalización,

una relación en **cierta forma normal** (1NF), se puede **convertir** en un conjunto de relaciones en una **forma más deseable** (2NF).

Segunda Forma Normal

El procedimiento es reversible:

- **siempre** es posible **tomar la salida** del procedimiento (conj de relaciones 2NF)
- y convertirlas otra vez en la entrada (la relación 1NF).

El proceso de reducción es un proceso de sacar proyecciones.

- El operador de **descomposición** es la **proyección**.
- El operador de **recomposición** es la **reunión natural**.
 - → no se pierde información durante el proceso de normalización.

La estructura SEGUNDA y SP todavía causa problemas

INSERT: No podemos insertar que una CIUDAD tiene una SITUACIÓN si no hay algún proveedor situado en esa ciudad.

No se puede representar: "Roma tiene una situación de 50"

DELETE: Si eliminamos la única tupla en SEGUNDA de una ciudad, perdemos la información:

de que esa CIUDAD tiene esa SITUACIÓN particular.

Eliminar S5 en SEGUNDA > perder que: situación de Atenas es 30.

UPDATE: La SITUACIÓN de una ciudad aparece en SEGUNDA muchas veces.

Se podrían producir inconsistencias:

cambiar situación de Londres a 20 en una tupla y 30 en otra.

La estructura SEGUNDA y SP todavía causa problemas

S# → SITUACION se obtiene por transitividad (a través de CIUDAD)

• Las DF transitivas producen anomalías de actualización.

S#	SITUACIÓN	CIUDAD
S1	20	Londres
S2	10	París
S3	10	París
S4	20	Londres
S5	30	Atenas

sustituir SEGUNDA por dos proyecciones:

SC (S#, CIUDAD)

CS (CIUDAD, SITUACION)

Los diagramas DF son:

SC S# CIUDAD

CS CIUDAD SITUACION

Y las tablas son

CIUDAD	SITUACIÓN
Atenas	30
Londres	20
París	10
Roma	50

S#	CIUDAD
S1	Londres
S2	París
S3	París
S4	Londres
S5	Atenas

Tercera Forma Normal

Definición informal:

Una relación está en 3NF ⇔ los atributos no clave (si los hay) son

- (a) mutuamente independientes, y
- (b) dependientes por completo de la clave primaria.

Dos atributos son mutuamente independientes si ninguno de ellos depende funcionalmente de cualquier combinación de los otros.

Es decir: esos atributos se pueden actualizar sin tomar en cuenta a los demás.

Definición formal:

Una relación está en 3NF ⇔

está en 2NF y

todos los **atributos no primos dependen de manera no transitiva de la clave primaria**

Tercera Forma Normal

- SC y CS están en 3NF
- SEGUNDA no está en 3NF
- Toda relación en 2NF puede reducirse a un conjunto equivalente de relaciones 3NF
- El proceso es **reversible**, y por tanto que **no se pierde información** en la reducción
- La reducción a 3NF puede contener **información imposible de representar** en la relación en 2NF.

el hecho de que la situación de Roma es 50

Pérdida de Información

- ◆ Una relación con muchos atributos mal diseñada se puede descomponer en dos ó más esquemas con menos atributos.
- Si esta descomposición no se hace bien puede llegarse a otra forma de diseño defectuoso.

Si el esquema **PRIMERA** se descompone en dos esquemas:

A (S#, SITUACION, CIUDAD)

B (CIUDAD, P#, CANT)

Pérdida de Información

Se obtienen las relaciones

A (S#, SITUACION, CIUDAD)

S#	SITUACIÓN	CIUDAD
S1	20	Londres
S2	10	París
S3	10	París
S4	20	Londres

CIUDAD	P#	CANT
Londres	P1	300
Londres	P2	200
Londres	Р3	400
Londres	P4	200
Londres	P5	100
Londres	P6	100
París	P1	300
París	P2	400
París	P2	200
Londres	P4	300
Londres	P5	400

Pérdida de Información

S#	SITUACIÓN	CIUDAD	P#	CANT
S1	20	Londres	P1	300
S1	20	Londres	P2	200
S1	20	Londres	Р3	400
S1	20	Londres	P4	200
S1	20	Londres	P5	100
S1	20	Londres	P6	100
S2	10	París	P1	300
S2	10	París	P2	400
S3	10	París	P2	200
S4	20	Londres	P2	200
S4	20	Londres	P4	300
S4	20	Londres	P5	400

PRIMERA

Si para alguna **consulta** se necesita **reconstruir PRIMERA**

 $A \mid x \mid B$

La relación resultante es

S#	SITUACIÓN	CIUDAD	P#	CANT
S1	20	Londres	P1	300
S1	20	Londres	P2	200
S1	20	Londres	P3	400
S1	20	Londres	P4	200
S1	20	Londres	P5	100
S1	20	Londres	P6	100
S1	20	Londres	P4	300
S1	20	Londres	P5	400
S2	10	París	P1	300
S2	10	París	P2	400
S2	10	París	P2	200
S3	10	París	P1	300
S3	10	París	P2	400
S3	10	París	P2	200
S4	20	Londres	P1	300
S4	20	Londres	P2	200
S4	20	Londres	P3	400
S4	20	Londres	P4	200
S4	20	Londres	P5	100
S4	20	Londres	P6	100
S4	20	Londres	P4	300
S4	20	Londres	P5	400

B (CIUDAD, P#, CANT)

Pérdida de Información

- Esta relación contiene **tuplas adicionales** respecto a PRIMERA.
- Las **consultas** que se efectúen podrían producir resultados erróneos
- Aunque se tienen más tuplas, se pierde información.
- Este tipo de descomposición se denomina descomposición con pérdida y es un mal diseño.

Es esencial que

al **descomponer una relación** en varias relaciones más pequeñas, la **descomposición sea sin pérdida**.

La descomposición de **PRIMERA** en **SEGUNDA** y **SP** es una **descomposición sin pérdidas**.

Criterio para determinar si una descomposición tiene pérdida

Sean

R un esquema de relación

F un conjunto de DF en R.

R1 y R2 una descomposición de R.

Esta descomposición es sin pérdida si por lo menos una de las siguientes DF está en F+:

 $R1 \cap R2 \rightarrow R1$

 $R1 \cap R2 \rightarrow R2$

Pérdida de Información

- Una descomposición sin pérdidas garantiza que la reunión producirá exactamente la relación original.
- Una descomposición con pérdidas pierde información porque
 - la reunión puede producir un superconjunto de la relación original, y
 - » no hay manera de saber cuáles tuplas son espurias.

Comentarios Finales

- 1- Los objetivos generales del proceso de normalización son:
- Eliminar ciertos tipos de redundancia
- Evitar ciertas anomalías de actualización
- Producir un diseño que sea una "buena" representación del mundo real

Comentarios Finales

- 2- Para solucionar los problemas de actualización, se descompone una relación en proyecciones que estén en una forma normal adecuada.
- Sacar proyecciones para eliminar todas las DF no completas.
 - → conjunto de relaciones 2NF
- Sacar proyecciones de una relación 2NF para eliminar las DF transitivas.
 - → conjunto de relaciones 3NF
- Sacar proyecciones de las relaciones 3NF para eliminar DF restantes en las cuales el determinante no sea una clave candidata.
 - → conjunto de relaciones BCNF.

Bibliografía

- Capítulo 21. Introducción a los Sistemas de Bases de Datos (Date)
- Capítulo 6. Fundamentos de Bases de Datos (Korth)

Comentarios Finales

3- A veces hay razones válidas para no normalizar por completo.

Por **ejemplo**:

CALLE, CODIGOPOSTAL, CIUDAD y PROVINCIA

casi siempre se necesitan juntos y los códigos postales no se modifican con mucha frecuencia,

tal descomposición implicará baja de performance.

En general:

datos muy consultados y poco actualizados no conviene normalizar.