Calc III Notes Day 21

Joseph Brooksbank

April 29, 2019

Sequences

$$(x_n) = x_1, x_2, x_3....$$

How to check if (x_n) converges to limit as $(n \to \infty)$?

Simplification EX 1:

$$x_n = \frac{n^2}{\sqrt[2]{n^6 + 1}}.$$

Next: put largest n power on the bottom

$$\frac{n^2}{\sqrt[2]{n^6+1}} * \frac{\frac{1}{n^3}}{\frac{1}{n^3}} \tag{1}$$

$$=\frac{\frac{1}{n}}{\sqrt[2]{\frac{n^6+1}{n^6}}}\tag{2}$$

 $\frac{1}{n} \to 0$

$$=\frac{0}{\sqrt[2]{1+\frac{1}{n^6}}}\tag{3}$$

$$= \frac{0}{\sqrt[2]{1+0}}$$
 (4)
= $\frac{0}{1}$ (5)

$$=\frac{0}{1}\tag{5}$$

$$=0 (6)$$

L'H Rule

We already did this so

Squeeze Theorem

Suppose we had 3 sequences, $x_n \leq y_n \leq z_n$

and

 $x_n \to L$

 $z_n \to L$

then $y_n \to L$

Example of Squeeze Theorem

$$y_n = \frac{\sin(n)}{n}.$$

This equation is totally unpredictable (What is $\sin(11)$?)... but **BE-**

 \mathbf{TWEEN} -1 and 1

IDEA: squeeze the equation between other things

$$-1 \le \frac{\sin(n)}{n} \le 1.$$

The squeeze theorem needs to have both sides of the squeeze go to the same point so instead:

$$-\frac{1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}.$$

Both $-\frac{1}{n}$ and $\frac{1}{n} \to 0$, so by squeeze theorem, so does $\frac{\sin(n)}{n}$!

How to check if $(x_n)inc/dec$?

- 1. Compare x_n and x_{n+1} EX: Is $x_n = \frac{n}{n+1}$ inc, dec, or neither?
 - $x_1 = \frac{1}{2}$
 - $x_2 = \frac{2}{3}$
 - $x_3 = \frac{3}{4}$

Guess: Increasing!

$$\begin{array}{l} x_n < x_{n+1} \\ \frac{n}{n+1} < \frac{n+1}{n+2} \text{ Cross Multiply:} \\ n(n+2) < (n+1)(n+1) \end{array}$$

Check to make sure that this is true, which it is

- 2. Check if derivative is increasing or decreasing Went over this last time so we're not doing it this time, but its pretty self explanatory
- (x_n) bounded from above / below?

We say x_n is bounded from above IF:

There's a number M so that $x_n \leq M$ for all n Same idea for below, but..from...below

How to check if x_n is bounded from above / below?

- 1. "common sense" / functions known to be bounded
 - EX 1

$$x_n = sin(n).$$

Bound by -1 and 1, so BOUND ABOVE AND BELOW

• EX 2

$$x_n = 4\cos(n+5) + 3.$$

Also bound from both sides

• EX 3

$$x_n = n^2$$
.

Bound from below x is always bigger than 0, so its bounded on the bottom but not the top

2. If sequence converges, then its bounded from both sides!

UNBOUND THINGS:

 $x_n = n * (-1)^n$ Goes to both -infinity and positive infinity