Examples of Plagiarism

From

Karin Kniseley, A Student handbook for writing in biology, 4th Ed., Sinauer Associates, Sunderland, MA (2013), Table 3.1, p. 43

Original Text (description of ATP synthase):

 F_1 extends from the membrane with α and β subunits alternating around a central subunit γ . ATP synthesis occurs alternately in different β subunits, the coorperative tight-binding of ADP + P_i at one catalytic site being coupled to ATP release at a second. The differences in binding affinities appear to be caused by rotation of the γ subunit in the cener of the $\alpha 3\beta 3$ hexamer.

Source:

Fillingame RH. 1997. Coupling H+ transport and ATP synthesis in F_1F_0 -ATP-syntheses: glimpses of interacting parts in a dynamic molecular machine. *The Journal of Experimental Biology* [Internet] [cited 2012 October 30]; 200: 217-224 Available from: http://jeb.biologists.org/content/200/2/217.full.pdf+html

Example 1:

According to Fillingame (1997), F_1 extends from the membrane with α and β subunits alternating around a central subunit γ . ATP synthesis occurs alternately in different β subunits, the coorperative tight-binding of ADP + P_i at one catalytic site being coupled to ATP release at a second. The differences in binding affinities appear to be caused by rotation of the γ subunit in the cener of the $\alpha 3\beta 3$ hexamer.

Fillingame RH. 1997. Coupling H+ transport and ATP synthesis in F1F0-ATP-syntheses: glimpses of interacting parts in a dynamic molecular machine. The Journal of Experimental Biology [Internet] [cited 2012 October 30]; 200: 217-224 Available from: http://jeb.biologists.org/content/200/2/217.full.pdf+html

Example 1:

According to Fillingame (1997), F_1 extends from the membrane with α and β subunits alternating around a central subunit γ . ATP synthesis occurs alternately in different β subunits, the coorperative tight-binding of ADP + P_i at one catalytic site being coupled to ATP release at a second. The differences in binding affinities appear to be caused by rotation of the γ subunit in the cener of the $\alpha 3\beta 3$ hexamer.

Problem: The author's actual words are quoted without quotation marks. Extensive direct quotes should not be used in scientific articles. So, you must paraphrase. **Using the original text is plagiarism even when the source is cited!**

Example 2:

 F_1 consists of α and β subunits alternating around a central subunit γ . In the β subunits, tight-binding of ADP + P_i occurs at one catalytic site and ATP is released at a second. The different in binding affinities may be caused by rotation of the γ subunit in the cener (Fillingame 1997).

Fillingame RH. 1997. Coupling H⁺ transport and ATP synthesis in F₁F₀-ATP-syntheses: glimpses of interacting parts in a dynamic molecular machine. The Journal of Experimental Biology [Internet] [cited 2012 October 30]; 200: 217-224 Available from:

http://jeb.biologists.org/content/200/2/217.full.pdf+html

Example 2:

 F_1 extends from the membrane with consists of α and β subunits alternating around a central subunit γ . ATP synthesis occurs alternately in different In the β subunits, the coorperative tight-binding of ADP + P_i occurs at one catalytic site being coupled to and ATP is released at a second. The differentces in binding affinities appear to may be caused by rotation of the γ subunit in the cener of the a3b3 hexamer. (Fillingame 1997).

Problem: The basic sentence structure of the original was maintained. A few words were omitted or changed, but the text is still highly similar to the original.

Example 3:

ATP synthase consists of a trans-membrane protein (F_0), a central shaft (γ), and an F_1 head made up of α and β subunits. As protons enter F_0 , the shaft rotates, changing the conformation of the β subunits, allowing ADP and P_i to bind and be released as ATP.

Note: The text incorporates information from a wider context than the paragraph quoted earlier, and contains the essential information.

Problem: No citation! Not citing the source of information (unless widely accepted in the discipline) is also plagiarism.