ABSTRACT ALGEBRA II MIDTERM REVIEW

MARIO L. GUTIERREZ ABED

Problem 1. (7 pts each)

a) Show that $\mathbb{Z}_2[x]/\langle x^3+1\rangle$ is not a field. (State theorem(s) involved)

Solution. Notice that x^3+1 is reducible because $x^3+1=(x+1)(x^2-x+1)$ (this follows from the algebraic identity $a^3+b^3=(a+b)(a^2-ab+b^2)$). But then we know from a previous theorem that a nontrivial ideal $\langle p(x)\rangle\in F[x]$ is maximal iff p(x) is irreducible over F. Hence, since in this case $p(x)=x^3+1$ is reducible, we have that $\langle p(x)\rangle$ is not maximal in F[x], and by another theorem that says that \mathcal{R}/\mathcal{I} is a field if and only if \mathcal{I} is a maximal ideal, we have the desired result that $\mathbb{Z}_2[x]/\langle x^3+1\rangle$ is not a field.

b) Give an example of a ring \mathcal{R} in which a cubic polynomial from $\mathcal{R}[x]$ can be written as a product of two quadratic polynomials from $\mathcal{R}[x]$.

Solution. Take $\mathcal{R} = \mathbb{Z}_4$ and consider the product of two quadratic polynomials:

$$(2x^{2} + x)(2x^{2} + 1) = 2x^{2}(2x^{2} + 1) + x(2x^{2} + 1)$$

$$= \underbrace{4x^{2}}_{=0 \text{ in } \mathbb{Z}_{4}} + 2x^{2} + 2x^{3} + x$$

$$= 2x^{3} + 2x^{2} + x.$$

Hence this product of two quadratic polynomials in \mathbb{Z}_4 yields a cubic polynomial in \mathbb{Z}_4 , as desired.

c) Show that $f(x) = x^5 - 6x^4 + 15x^3 + 21x^2 + 15x + 6$ is irreducible over \mathbb{Q} . (State theorem(s) involved)

Solution. According to the Einstein's Criterion, if we let $f(x) = a_0 + \cdots + a_n x^n$ be a polynomial in $\mathbb{Z}[x]$ and suppose there exists a prime p such that the following three properties hold:

- $p \nmid a_n$
- \bullet $p \mid a_{n-1}, \ldots, a_0$

•
$$p^2 \nmid a_0$$
,

then we have that f(x) is irreducible over $\mathbb{Q}[x]$.

Now notice that in our particular example $f(x) = x^5 - 6x^4 + 15x^3 + 21x^2 + 15x + 6$ is irreducible over \mathbb{Q} for p = 3, since

- 3 ∤ 1
- $3 \mid -6, 15, 21, 15, 6$

•
$$3^2 = 9 \nmid 6$$
.

d) Let α be a zero of $x^3 + x + 1$ in some extension field of \mathbb{Z}_2 . Show that $\alpha + 1$ is a zero of $x^3 + x^2 + 1$.

Solution. Since α is a zero of $x^3 + x + 1$ in some extension field of \mathbb{Z}_2 , then

$$\alpha^{3} + \alpha + 1 = 0$$

$$\Longrightarrow \alpha^{3} = -\alpha - 1$$

$$= \alpha + 1 \text{ in } \mathbb{Z}_{2}.$$

Then we have

$$x^{3} + x^{2} + 1 \mid_{x=\alpha+1} = (\alpha+1)^{3} + (\alpha+1)^{2} + 1$$

$$= (\alpha+1)(\alpha+1)^{2} + (\alpha+1)^{2} + 1$$

$$= \alpha^{3}(\alpha+1)^{2} + (\alpha+1)^{2} + 1$$

$$= \alpha^{3}(\alpha^{2} + 2\alpha + 1) + \alpha^{2} + 2\alpha + 1 + 1$$

$$= \alpha^{5} + 2\alpha^{4} + \alpha^{3} + \alpha^{2} + 2\alpha + 1 + 1$$

$$= \alpha^{5} + \alpha^{3} + \alpha^{2}$$

$$= \alpha^{2}(\alpha^{3} + \alpha + 1)$$

$$= \alpha^{2}(0) = 0.$$

e) Show that $f(x) = x^2 + x + 3$ is reducible over \mathbb{Z}_5 . (State theorem(s) involved)

Solution. Recall the theorem that says that if $f(x) \in F[x]$, where f(x) is of degree 2 or 3, then f(x) is reducible over F if and only if it has a zero in F. Now notice that 1 is a zero for $f(x) = x^2 + x + 3$, since $f(1) = 1^2 + 1 + 3 = 0$ in $\mathbb{Z}_5[x]$. Hence we have shown that $f(x) = x^2 + x + 3$ is reducible over \mathbb{Z}_5 , as desired.

Notice that f(x) reduces to (x-1)(x-3) because

$$x^{2} + 1x + 3 = x^{2} - 4x + 3$$
 (Since $1 = -4$ in \mathbb{Z}_{5})
= $(x - 1)(x - 3)$.

Problem 2. (5 pts each) In each part give an example (with a brief explanation) that satisfies the given conditions or briefly explain why no such example exists.

a) \mathcal{R} and \mathcal{S} are fields. A polynomial f(x) irreducible in $\mathcal{R}[x]$ but reducible in \mathcal{S} .

Solution. Take $\mathcal{R} = \mathbb{R}$ and $\mathcal{S} = \mathbb{C}$, and consider the polynomial $f(x) = x^2 + 1$ in $\mathbb{R}[x]$, which is irreducible over \mathbb{R} because f(x) has no zero in \mathbb{R} (this fact is justified by the theorem invoked in *Exercise 1e*) above). However we have that f(x) is reducible over $\mathcal{S} = \mathbb{C}$, because $f(x) = x^2 + 1 = (x - i)(x + i)$ in $\mathbb{C}[x]$, which gives us zeroes $\pm i \in \mathbb{C}$. \square

b) A factor ring \mathcal{R}/\mathcal{I} that is a field, of a ring \mathcal{R} that is an integral domain (but not necessarily a field).

Solution. Take $\mathcal{R} = \mathbb{Z}$, which is an integral domain, and take $\mathcal{I} = 2\mathbb{Z}$. Then we have the factor ring $\mathcal{R}/\mathcal{I} = \mathbb{Z}/2\mathbb{Z}$, which is isomorphic to \mathbb{Z}_2 , and hence is a field. (Alternatively, we could have made the observation that $2\mathbb{Z}$ is a maximal ideal and, since \mathbb{Z} is a commutative ring with unity, we may conclude by a previous theorem that $\mathbb{Z}/2\mathbb{Z}$ must be a field). \square

c) A factor ring \mathcal{R}/\mathcal{I} that is a field, of a ring \mathcal{R} which is not an integral domain.

Solution. Take $\mathcal{R} = \mathbb{Z}_4$, which is not an integral domain (because it has the zero divisor 2: $2 \neq 0$, but $2 \cdot 2 = 0$) and take $\mathcal{I} = \{0, 2\}$. Then we have the factor ring $\mathcal{R}/\mathcal{I} = \mathbb{Z}_4/\{0, 2\}$, which is isomorphic to \mathbb{Z}_2 , and hence is a field. (Again, we could have made the observation that $\{0, 2\}$ is a maximal ideal and, since \mathbb{Z}_4 is a commutative ring with unity, we could conclude by a previous theorem that $\mathbb{Z}_4/\{0, 2\}$ must be a field).

d) A ring \mathcal{R} containing no proper nontrivial ideals.

Solution. By a previous theorem we know that a field contains no proper nontrivial ideals. Hence, as an example, take the ring $\mathcal{R} = \mathbb{R}$, which is a field and consequently it has no proper nontrivial ideals.

e) A maximal ideal \mathcal{M} in a commutative ring \mathcal{R} with unity that is not a prime ideal.

Solution. No such example exists. We have a theorem that says that every maximal ideal in a commutative ring with unity is a prime ideal. \Box

f) A polynomial $f(x) \in F[x]$ of degree 4 or more, containing no zeroes in F, but reducible in F[x].

Solution. Let's go with a simple one. Take $f(x) = x^4 + 2x^2 + 1$ in $\mathbb{R}[x]$. This polynomial reduces to the product of two quadratic factors $(x^2+1)(x^2+1)$, which has zeroes $\pm i \notin \mathbb{R}$. \square

Problem 3. (15 pts) Show that $f(x) = x^4 - 10x^2 + 1$ is irreducible in $\mathbb{Q}[x]$.

Solution. If $f(x) = x^4 - 10x^2 + 1$ were reducible in $\mathbb{Q}[x]$, then either it factors into quadratic terms or it has a linear factor. We will analyze both cases now and show that such factorization is impossible in either case:

• Case I : If f(x) has a linear factor in $\mathbb{Q}[x]$, then it has a zero in \mathbb{Q} by a previous theorem. But then by a previous corollary, we know that if $f(x) = a_0 + \cdots + a_{n-1}x^{n-1} + x^n$ is a polynomial with integral coefficients and with $a_0 \neq 0$, and if f(x) has a zero in \mathbb{Q} , then it has a zero α in \mathbb{Z} , and α must divide a_0 .

But then in our example $a_0 = 1$, hence we have that α must divide 1, i.e. $\alpha = \pm 1$. But

$$f(1) = 1^4 - 10(1)^4 + 1 = -8 \neq 0$$

$$f(-1) = (-1)^4 - 10(-1)^4 + 1 = -8 \neq 0,$$

so the factorization is impossible.

• Case II: By a previous theorem we have that if $f(x) \in \mathbb{Z}[x]$, then f(x) factors into a product of polynomials of lower degrees r and s in $\mathbb{Q}[x]$ iff it has such a factorization with polynomials of the same degrees r and s in $\mathbb{Z}[x]$. Hence if f(x) factors into quadratic factors in $\mathbb{Q}[x]$, we can write it in the form

$$x^4 - 10x^2 + 1 = (x^2 + ax + b)(x^2 + cx + d)$$
 where $a, b, c, d \in \mathbb{Z}$

Now expanding on the right hand side we get $x^4 + (c+a)x^3 + (d+ac+b)x^2 + (ad+bc)x + bd$, which gives us the linear system of equations

$$c + a = 0$$

$$d + ac + b = -10$$

$$ad + bc = 0$$

$$bd = 1$$

It can be shown by a straight computation that such system of equations is inconsistent. Thus the factorization of f(x) into quadratic factors in $\mathbb{Q}[x]$ is impossible, and the second case also fails.

Hence we have shown that $f(x) = x^4 - 10x^2 + 1$ is irreducible in $\mathbb{Q}[x]$, as desired.

Problem 4. (20 pts)

a) Let $f(x) \in F[x]$, and let f(x) be of degree 2 or 3. Prove that f(x) is reducible over F if and only if it has a zero in F.

Proof. (\Rightarrow) Let f(x) be reducible over F so that f(x) = g(x)h(x), where both $\deg(g(x))$ and $\deg(h(x))$ are $< \deg(f(x))$. Then, since f(x) is either quadratic or cubic, we must have that either g(x) or h(x) is of degree 1. Now, WLOG, take $\deg(g(x)) = 1$. Then except for a possible factor in F, g(x) is of the form $x - \alpha$. Hence $g(\alpha) = 0$, which in turn implies that $f(\alpha) = 0 \cdot h(\alpha) = 0$, so f(x) has a zero in F.

- (\Leftarrow) This direction is trivial, since by a previous corollary we already know that if $f(\alpha) = 0$ for $\alpha \in F$, then $x \alpha$ is a factor of f(x), thus f(x) is indeed reducible over F.
- b) If \mathcal{R} is a ring with unity, and \mathcal{I} is an ideal of \mathcal{R} containing a unit, then $\mathcal{I} = \mathcal{R}$.

Proof. Let \mathcal{I} be an ideal of \mathcal{R} , and suppose that $u \in \mathcal{I}$ for some unit u in \mathcal{R} . Then the condition

$$(\dagger) r\mathcal{I} \subseteq \mathcal{I} \quad \forall r \in \mathcal{R}$$

implies, if we take $r = u^{-1}$ and $u \in \mathcal{I}$, that $1 = u^{-1}u$ is in \mathcal{I} . But then (†) implies that r1 = r is in \mathcal{I} for all $r \in \mathcal{R}$, so $\mathcal{I} = \mathcal{R}$.

c) Let \mathcal{R} be a commutative ring with unity and let \mathcal{I} be an ideal in \mathcal{R} . Then the quotient ring \mathcal{R}/\mathcal{I} is a field if and only if \mathcal{I} is a maximal ideal.

Proof. (\Rightarrow) Suppose that \mathcal{R}/\mathcal{I} is a field. By a previous proposition we know that if \mathcal{N} is any ideal of \mathcal{R} such that $\mathcal{I} \subset \mathcal{N} \subset \mathcal{R}$ and $\gamma \colon \mathcal{R} \to \mathcal{R}/\mathcal{I}$ is the canonical homomorphism of \mathcal{R} onto \mathcal{R}/\mathcal{I} , then $\gamma[\mathcal{N}]$ is an ideal of \mathcal{R}/\mathcal{I} with

$$\{(0+\mathcal{I})\}\subset\gamma[\mathcal{N}]\subset\mathcal{R}/\mathcal{I}.$$

But this is contrary to a previous corollary which says that a field does not contain any proper nontrivial ideals. Hence if \mathcal{R}/\mathcal{I} is a field, then the ideal \mathcal{I} is maximal.

 (\Leftarrow) Conversely, suppose \mathcal{I} is maximal in \mathcal{R} . Observe that if \mathcal{R} is a commutative ring with unity, then \mathcal{R}/\mathcal{I} is also a nonzero commutative ring with unity if $\mathcal{I} \neq \mathcal{R}$, which is indeed the case if \mathcal{I} is maximal.

Now let $(a + \mathcal{I}) \in \mathcal{R}/\mathcal{I}$, with $a \notin \mathcal{I}$, so that $a + \mathcal{I}$ is not the additive identity element in \mathcal{R}/\mathcal{I} . Suppose that $a + \mathcal{I}$ has no multiplicative inverse in \mathcal{R}/\mathcal{I} . Then the set

$$(\mathcal{R}/\mathcal{I})(a+\mathcal{I}) = \{(r+\mathcal{I})(a+\mathcal{I}) \mid (r+\mathcal{I}) \in \mathcal{R}/\mathcal{I}\}\$$

does not contain $1 + \mathcal{I}$. We can easily see that $(\mathcal{R}/\mathcal{I})(a + \mathcal{I})$ is an ideal of \mathcal{R}/\mathcal{I} , which is nontrivial because $a \notin \mathcal{I}$ and it is also proper because it does not contain $1 + \mathcal{I}$.

Now consider the canonical homomorphism $\gamma \colon \mathcal{R} \to \mathcal{R}/\mathcal{I}$ and notice that $\gamma^{-1}[(\mathcal{R}/\mathcal{I})(a+\mathcal{I})]$ is a proper ideal of \mathcal{R} properly containing \mathcal{I} . But this contradicts our assumption that \mathcal{I} is maximal, so $a + \mathcal{I}$ must have a multiplicative inverse in \mathcal{R}/\mathcal{I} , and thus \mathcal{R}/\mathcal{I} must be a field.

d) Let \mathcal{R} be a commutative ring with unity, and let $\mathcal{I} \neq \mathcal{R}$ be an ideal in \mathcal{R} . Then \mathcal{R}/\mathcal{I} is an integral domain if and only if \mathcal{I} is a prime ideal in \mathcal{R} .

Proof. This result is quite trivial. Let \mathcal{R}/\mathcal{I} be an integral domain and notice that for any two elements $a + \mathcal{I}, b + \mathcal{I} \in \mathcal{R}/\mathcal{I}$, where $a, b \in \mathcal{R}$, we have

$$(a+\mathcal{I})(b+\mathcal{I}) = ab + \mathcal{I}.$$

Now notice that if $ab + \mathcal{I} = \mathcal{I}$, then we must have that either $a \in \mathcal{I}$ or $b \in \mathcal{I}$, since the coset \mathcal{I} plays the role of 0 in \mathcal{R}/\mathcal{I} , and by the definition of an integral domain \mathcal{R}/\mathcal{I} has no zero divisors. But looking at the coset representatives, we see that this condition amounts to saying that $ab \in \mathcal{I}$ implies that either $a \in \mathcal{I}$ or $b \in \mathcal{I}$, which is in fact the definition of a prime ideal.

e) (Kronecker's Theorem) Let F be a field and let f(x) be a non-constant polynomial in F[x]. Then there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.

Proof. By Theorem 23.20¹, f(x) has a factorization in F[x] into polynomials that are irreducible over F. Let p(x) be an irreducible polynomial in such a factorization. It is clearly sufficient to find an extension field E of F containing an element α such that $p(\alpha) = 0$.

Take the maximal ideal $\langle p(x) \rangle$ in F[x], so that $F[x]/\langle p(x) \rangle$ is a field (we know this from a previous theorem). We claim that F can be identified with a subfield of $F[x]/\langle p(x) \rangle$ in a natural way by use of the map $\psi \colon F \to F[x]/\langle p(x) \rangle$ given by

$$\psi(a) = a + \langle p(x) \rangle$$
 for $a \in F$.

¹Here's *Theorem 23.20* for reference:

If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in F[x] into a product of irreducible polynomials, the irreducible polynomials being unique expect for order and for unit (that is, nonzero constant) in F.

Notice that this map is injective:

$$\psi(a) = \psi(b)$$

$$\Longrightarrow a + \langle p(x) \rangle = b + \langle p(x) \rangle \quad \text{for some } a, b \in F$$

$$\Longrightarrow (a - b) \in \langle p(x) \rangle,$$

so a-b must be a multiple of the polynomial p(x), which is of degree ≥ 1 . Now $a,b \in F \Longrightarrow a-b \in F$. Thus we must have $a-b=0 \Longrightarrow a=b$.

We defined addition and multiplication in $F[x]/\langle p(x)\rangle$ by choosing any representatives, so we may choose $a \in (a + \langle p(x) \rangle)$. Thus ψ is a homomorphism that maps F injectively onto a subfield of $F[x]/\langle p(x) \rangle$. We identify F with $\{a + \langle p(x) \rangle \mid a \in F\}$ by means of this map ψ . Thus we shall view $E = F[x]/\langle p(x) \rangle$ as an extension field of F. Hence we have manufactured our desired extension field E of F, and all that remains for us to show is that E contains a zero of p(x):

Let us set

$$\alpha = x + \langle p(x) \rangle,$$

so $\alpha \in E$. Consider the evaluation homomorphism $\phi_{\alpha} \colon F[x] \to E$. If $p(x) = a_0 + a_1 x + \cdots + a_n x^n$, where $a_i \in F$, then we have

$$\phi_{\alpha}(p(x)) = a_0 + a_1(x + \langle p(x) \rangle) + \dots + a_n(x + \langle p(x) \rangle)^n$$

in $E = F[x]/\langle p(x) \rangle$. But we can compute in $F[x]/\langle p(x) \rangle$ by choosing representatives, and x is a representative of the coset $\alpha = x + \langle p(x) \rangle$. Therefore,

$$p(\alpha) = (a_0 + a_1 x + \dots + a_n x^n) + \langle p(x) \rangle$$

= $p(x) + \langle p(x) \rangle = \langle p(x) \rangle = 0$

in $F[x]/\langle p(x)\rangle$. We have thus found an element $\alpha \in E = F[x]/\langle p(x)\rangle$ such that $p(\alpha) = 0$, and therefore $f(\alpha) = 0$.

f) Let F be a field and $f(x) \neq 0$ be a polynomial in F[x]. Let α be a root of f(x) in an extension field E of F. Then α is a multiple root of f(x) if and only if $f'(\alpha) = 0$.

Proof. (\Rightarrow) Suppose α is a multiple root of f(x), so that $(x-\alpha)^2$ divides f(x), i.e. $f(x) = (x-\alpha)^2 g(x)$ for some $g(x) \in F[x]$. Then

$$f'(x) = (x - \alpha)^2 g'(x) + g(x) \cdot 2(x - \alpha)$$
$$= (x - \alpha)[(x - \alpha)g'(x) + 2g(x)]$$
$$\implies f'(\alpha) = 0.$$

 (\Leftarrow) Conversely, suppose we have $f'(\alpha) = 0$. Notice that if $\deg(f(x)) = 1$, then f(x) is a linear polynomial of the form $b(x - \alpha)$, and so $f'(\alpha) = b$, which contradicts our hypothesis. Thus we only need to consider the case when $\deg(f(x)) \geq 2$.

By the division algorithm,

$$f(x) = (x - \alpha)^2 g(x) + r(x),$$

where $\deg(r(x)) = 0$ or $\deg(r(x)) < \deg((x - \alpha)^2) = 2$. In other words, we must have $\deg(r(x)) \le 1$, which we consider as separate cases:

• Case I : Let r(x) be a constant term b. Then

$$f(x) = (x - \alpha)^2 g(x) + b$$

$$\implies f'(x) = (x - \alpha)^2 g'(x) + 2g(x)(x - \alpha)$$

$$\implies f'(\alpha) = 0.$$

• Case II : Let r(x) be a linear term $b(x - \alpha)$. Then

$$f(x) = (x - \alpha)^2 g(x) + b(x - \alpha)$$

$$\implies f'(x) = (x - \alpha)^2 g'(x) + 2g(x)(x - \alpha) + b$$

$$\implies f'(\alpha) = b. \quad (\Rightarrow \Leftarrow)$$

Hence the case where $\deg(r(x)) = 1$ fails, and so we see that α cannot be a simple root when $f'(\alpha) = 0$.