Regression and ANOVA

Stat 120

May 22 2022

Simple Linear Model

The population/true simple linear model is:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- eta_0 and eta_1 are unknown parameters corresponding to the y-intercept and the slope, respectively
- ε is the random error
- Estimate with b_0 and b_1 from the least squares line $\hat{y} = b_0 + b_1 x$

How accurate are the estimates?

Recall: Least Square Regression

- X = Cricket chirp rate
- Y = Temperature

Chirps	Temp
81	54.5
97	59.5
103	63.5
123	67.5
150	72.0
182	78.5
195	83.0

What are the parameters being estimated?

Inference for the Slope

Confidence intervals and hypothesis tests for the slope can be done using the familiar **formulas**:

$$b_1 \pm t^* \cdot SE \hspace{1.5cm} t = rac{b_1 - ext{ null slope}}{SE}$$

But how do we estimate the **standard error**?

- Bootstrap/Randomization distributions
- Computer output

Standard Error Using a Bootstrap Distribution

Technology Examples

Slope estimate and Standard Error

```
chirps.lm <- lm(Temp ~ Chirps, data = data)
summary(chirps.lm)
```

Confidence Interval for Slope

We can use the values for b_1 and SE from the regression output to form a confidence interval in the usual way:

$$b_1 \pm t^* \cdot SE$$

• Here, t^* uses n-2 degrees of freedom, since we are estimating two parameters in the simple linear model.

Confidence Interval for Slope

Find a 95% confidence interval for the slope of the cricket temperature model.

```
Temperature = 37.7 + 0.231 Chirps
Predictor Coef SE Coef T Pr(>|t|)
Constant 37.67858 1.97817 19.05 7.35e-06 ***
Chirps 0.23067 0.01423 16.21 1.63e-05 ***
```

$$b_1 \pm t^* \cdot SE$$

Hypothesis Test for Slope

• Population Simple Linear Model: $y=eta_0+eta_1x+arepsilon$

 $H_0: \beta_1 = 0 \implies ext{No linear relationship}$

 $H_a:eta_1
eq 0 \qquad \Longrightarrow ext{ Some relationship}$

$$t = \frac{\text{statistic-null}}{SE} = \frac{b_1 - 0}{SE} = \frac{b_1}{SE}$$

- Again, b_1 and SE come from R output.
- We find the p-value by using a t distribution with $n-2\mathrm{df}$.

Hypothesis Test for Slope

Confirm the **p-value** given by the regression output for testing the slope of the cricket chirp model.

```
Temperature = 37.7 + 0.231 Chirps

Predictor Coef SE Coef T Pr(>|t|)

Constant 37.67858 1.97817 19.05 7.35e-06 ***

Chirps 0.23067 0.01423 16.21 1.63e-05 ***
```

$$H_0: \beta_1 = 0$$

 $H_a: \beta_1 \neq 0$

$$t = \frac{b_1}{SE}$$

Standard Error of the Slope

Although we generally rely on technology to obtain the SE for the slope, we can also obtain it as follows:

$$SE = rac{s_arepsilon}{s_x \sqrt{n-1}}$$

where s_{ε} is the standard deviation of the error term and s_x is the standard deviation for the sample values of the predictor.

SE for Slope

	Chirps
Mean	133.00000
Standard Dev.	43.84442
n	7.00000

$$SE = rac{s_arepsilon}{s_x \sqrt{n-1}} = rac{\sqrt{MSE}}{s_x \sqrt{n-1}} =$$

Hypothesis Test for Correlation

How else can we measure the strength of association between two quantitative variables?

Recall: r = sample correlation, ρ = population correlation

$$H_0: \rho = 0$$

 $H_a: \rho \neq 0$

Find the p-value using a t-distribution with n - 2 df

$$t = rac{ ext{statistic -null}}{SE} = rac{r-0}{\sqrt{rac{1-r^2}{n-2}}} \ = rac{r}{rac{\sqrt{1-r^2}}{\sqrt{n-2}}} = \left(rac{r\sqrt{n-2}}{\sqrt{1-r^2}}
ight)$$

Hypothesis Test for Correlation

The correlation for the n = 7 cricket chirp data points is r = 0.99062. Compute the t-statistic for the test:

$$egin{aligned} H_a:&
ho
eq0 \ t=\left(rac{r\sqrt{n-2}}{\sqrt{1-r^2}}
ight) \ &=rac{0.99062\sqrt{7-2}}{\sqrt{1-0.99062^2}}=16.21 \end{aligned}$$

 $H_0:
ho=0$

Coefficient of Determination, R^2

Recall that for correlation: $-1 \le r \le 1$

If we square the correlation, we get the **coefficient of determination**, which is a number between 0 and 1 that can be interpreted as a proportion or percentage.

 $R^2=$ proportion of **variability** in the response variable, Y, that is "explained" by the explanatory variable, X.

• By convention we use a capital \mathbb{R}^2 , although the value is just \mathbb{R}^2 for a single explanatory variable.

Checking Condition

$$y = \beta_0 + \beta_1 x + \varepsilon$$

For a simple linear model, we assume the errors (ε) are randomly distributed above and below the line.

- Quick check: Look at a scatterplot with regression line on it.
- Watch out for:
 - Curved (nonlinear) patterns in the data
 - Consistently changing variability
 - Outliers and influential points

Scatterplot with Regression Line

Good

- Check linearity
- Check consistent variability

Problem

Scatterplot with Regression Line

Check for outliers or influential points

Partitioning Variability

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Data = Model + Error

Split the total variability in Y into two pieces, variability explained by the model + unexplained (residual error) variability

Total
Variability
in Y

Variability Explained by Model

Unexplained Variability in Error

Measuring Variability

Total Variability in Y

Variability Explained by Model

Unexplained Variability in Error

Total variability in Y: SSTotal $= \sum (y - \bar{y})^2$

Explained variability: SSModel $= \sum (\hat{y} - \bar{y})^2$

Unexplained variability: $SSE = \sum (y - \hat{y})^2$

HofD ogs

R: Calories Vs. Sugars

```
library(Lock5Data)
mod <- lm(Calories~Sugars, data = Cereal)
anova(mod)</pre>
```

```
Analysis of Variance Table

Response: Calories

Df Sum Sq Mean Sq F value Pr(
Sugars 1 15316 15316.5 21.623 7.2176
Residuals 28 19834 708.3

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*
```

```
ggplot(Cereal, aes(x = Sugars, y = Calorie
  geom_point() +
  geom_smooth(method="lm", se = FALSE)
```


R^2 in Regression

```
library(Lock5Data)
mod <- lm(Calories~Sugars, data = Cereal)
anova(mod)</pre>
```

```
Analysis of Variance Table

Response: Calories

Df Sum Sq Mean Sq F value Pr(
Sugars 1 15316 15316.5 21.623 7.2176
Residuals 28 19834 708.3

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*
```

$$R^2 = rac{ ext{Variabilit y explained by Model}}{ ext{Total variability in Y}}$$

$$R^2 = rac{ ext{SSModel}}{ ext{SSTotal}}$$
 $R^2 =$

R: Calories Vs. Sugars

```
mod <- lm(Calories~Sugars, data = Cereal)
summary(mod)</pre>
```

```
Call:
lm(formula = Calories ~ Sugars, data = Cereal)
Residuals:
   Min 10 Median 30 Max
-36.574 -25.282 -2.549 17.796 51.805
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 88.9204 10.8120 8.224 5.96e-09 ***
      4.3103 0.9269 4.650 7.22e-05 ***
Sugars
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 26.61 on 28 degrees of freedom
Multiple R-squared: 0.4357, Adjusted R-squared: 0.4156
F-statistic: 21.62 on 1 and 28 DF, p-value: 7.217e-05
```

ANOVA for Regression

 $H_0: eta_1 = 0 \ H_a: eta_1
eq 0$

 H_0 : The model is ineffective

 H_a : The model is effective

Source	df	Sum of Squares	Mean Square	F-statistic	p-value
Model	1	SSModel	$\frac{SSModel}{1}$	$F=rac{MSModel}{MSE}$	$F_{1,n-2}$
Error	n - 2	SSE	$\frac{SSE}{n-2}$		
Total	n-1	SSTotal			

P-value for Regression ANOVA

$$F = \frac{ ext{MSModel}}{ ext{MSE}}$$

How do we know when the F-statistic is "significant"?

To find a p-value for the ANOVA F-statistic:

- Create a randomization distribution, OR
- Use a theoretical distribution

For a randomization distribution, we need to obtain samples where $H_0: \beta_1 = 0$ is true:

- Randomly scramble the response (Y) values
- Compute the ANOVA F-statistic for each sample

Randomization distribution

Theoretical Distribution: F-distribution

For testing an F-statistic (which is a ratio of variances)

 Use an F-distribution, specifying the degrees of freedom for both the numerator and the denominator.

When performing an ANOVA for Regression with a single predictor:

- 1 df (numerator)
- n-2 df (denominator)
- Then use the upper tail beyond the *F*-statistic

F-distribution: Stat-key

Std. Dev. of Error in Regression

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Condition: The random errors (ε) have a common standard deviation, σ_{ε}

Estimation:

$$S_arepsilon = \sqrt{rac{\sum (y - \hat{y})^2}{n-2}} = \sqrt{rac{SSE}{n-2}} = \sqrt{MSE}$$

For Calorie model:

$$S_arepsilon =$$

05:00

- Go over to the in class activity file
- Complete the remaining activity