Scaling Language-Free Visual Representation Learning

David Fan*, Shengbang Tong*, Jiachen Zhu, Koustuv Sinha, Zhuang Liu, Xinlei Chen, Michael Rabbat, Nicolas Ballas, Yann LeCun, Amir Bar†, Saining Xie†

FAIR, Meta, New York University, Princeton University

Self-Supervision:

Self-Supervision:

• E.g. MoCo, MAE, DINO

Language-Supervision:

• E.g. CLIP, SigLIP, MetaCLIP

Self-Supervision:

- E.g. MoCo, MAE, DINO
- Learning from images directly (e.g. augmentation, masking)

- E.g. CLIP, SigLIP, MetaCLIP
- Learning from language captions that describe the image

Self-Supervision:

- E.g. MoCo, MAE, DINO
- Learning from images directly (e.g. augmentation, masking)
- Training on ImageNet-like data (1M to >100M scale)

- E.g. CLIP, SigLIP, MetaCLIP
- Learning from language captions that describe the image
- Training on image-text pairs from the Internet (400M to 100B scale)

Self-Supervision:

- E.g. MoCo, MAE, DINO
- Learning from images directly (e.g. augmentation, masking)
- Training on ImageNet-like data (1M to >100M scale)
- Good at <u>classification</u>, segmentation, depth estimation, etc

- E.g. CLIP, SigLIP, MetaCLIP
- Learning from language captions that describe the image
- Training on image-text pairs from the Internet (400M to 100B scale)
- Good at <u>classification</u>, and widely used as backbone for **multimodal** models

 CLIP has become the dominant visual representation learning method in multimodal models.

```
    VLM: LLaVA, Cambrian, PaliGemma, SEED-VL ...
```

VLA: Pi, Otter, ...

o ..

- CLIP has become the dominant visual representation learning method in multimodal models.
- Is CLIP better because of language supervision or data distribution?

- CLIP has become the dominant visual representation learning method in multimodal models.
- Is CLIP better because of language supervision or data distribution?
- To really understand this, we need controlled comparisons on the data.

ImageNet / LVD-142M¹:

Million scale ImageNet or ImageNet-like distribution of mostly natural images

Web-Scale Images:

Billion scale diverse "random" images from the Internet

E.g. MetaCLIP² ("*MC-2B"*)

We only use the images for SSL

¹ Oquab, M., et al. (2023). DINOv2: Learning Robust Visual Features without Supervision

More than 1B params:

ViT-1B, ..., VIT-7B and beyond

Classic Vision Eval:

Classification, segmentation, depth estimation, etc.

Elephant

VQA as a Vision Eval:

Assesses wider range of capabilities and more diverse questions

How many cars are in the image?

Evaluation Setup

Evaluation Setup

We use Cambrian with a *frozen* vision encoder (but finetuned adapter + LLM) to evaluate on VQA tasks: **General, Knowledge, OCR&Chart, Vision-Centric**

"Is language supervision or the data more important?"

"Is language supervision or the data more important?"

Let's train WebSSL and find out via controlled experiments!

WebSSL

1. Scaling up model

2. Scaling up data

• **Data**: <u>MC-2B</u>, 2 billion samples seen

Model: ViT-1B, ViT-2B, ViT-3B, ViT-5B, ViT-7B

Method: DINOv2 (SSL) vs. CLIP (Language-Supervised)

• **Eval**: Use VQA as evaluation and categorize Cambrian eval benchmarks:

General	Knowledge	OCR & Chart	Vision-Centric
MMBench-En	Al2D	ChartQA	CV-Bench 2D
MME	MathVista	DocVQA	CV-Bench 3D
GQA	МММИ	OCRBench	MMVP
SEED	ScienceQA	TextVQA	RealWorldQA

1. Web-DINO scales log-linearly w.r.t to model sizes

- 1. Web-DINO scales log-linearly w.r.t to model sizes
- 2. Under same conditions, Web-DINO scales better than CLIP

- 1. Web-DINO scales log-linearly *w.r.t* to model sizes
- 2. Under same conditions, Web-DINO scales better than CLIP
- 3. Web-DINO continues to excel on Vision-Centric VQA

- 1. Web-DINO scales log-linearly w.r.t to model sizes
- 2. Under same conditions, Web-DINO scales better than CLIP
- Web-DINO continues to excel on Vision-Centric VQA
- 4. The gap on OCR & Chart is closing!

WebSSL: Scaling Up Data

- Data: <u>MC-2B</u>:
 - 1 billion samples seen
 - 2 billion samples seen
 - 4 billion samples seen
 - o 8 billion samples seen
- Model: ViT-7B
- Method: DINOv2 (SSL) vs. CLIP (Language-Supervised)
- Eval: Use VQA as evaluation.

1. Model improves w.r.t to more data seen

- 1. Model improves *w.r.t* to more data seen
- 2. SSL models consistently outperform CLIP models at all data sizes

- 1. Model improves w.r.t to more data seen
- 2. SSL models consistently outperform CLIP models at all data sizes
- 3. SSL models are better "visual" models

- 1. Model improves *w.r.t* to more data seen
- 2. SSL models consistently outperform CLIP models at all data sizes
- 3. SSL models are better "visual" models
- Gap closes on OCR & Chart!

- 1. Model improves *w.r.t* to more data seen
- 2. SSL models consistently outperform CLIP models at all data sizes
- 3. SSL models are better "visual" models
- 4. Gap closes on OCR & Chart!

- 1. Model improves *w.r.t* to more data seen
- 2. SSL models consistently outperform CLIP models at all data sizes
- 3. SSL models are better "visual" models
- 4. Gap closes on OCR & Chart!

VQA capability is **not unique** to language-supervised vision encoders! SSL vision encoders can do just as well at scale:)

Takeaways from Scaling Up WebSSL

SSL performance improves with ...

- 1. Larger model size
- 2. More data seen

SSL scales better than CLIP and is competitive with CLIP when controlling for the data.

Takeaways from Scaling Up WebSSL

SSL performance improves with ...

- 1. Larger model size
- 2. More data seen

SSL scales better than CLIP and is competitive with CLIP when controlling for the data.

So it's more about the data, not language supervision!

Deep Dive and Analysis

Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

Answer: we conduct similar experiments on MAE (another SSL method) to see if the behavior is unique to DINO or not

Answer: we conduct similar experiments on MAE (another SSL method)

He, K., et al. (2021). Masked Autoencoders Are Scalable Vision Learners.

Answer: we conduct similar experiments on MAE (another SSL method)

1. MAE improves as well when trained on web-scale images!

He, K., et al. (2021). Masked Autoencoders Are Scalable Vision Learners.

Answer: we conduct similar experiments on MAE (another SSL method)

- 1. MAE improves as well when trained on web-scale images!
- Yet different SSL methods still learn different features
 - a. MAE is consistently better than DINO at OCR & Chart

He, K., et al. (2021). Masked Autoencoders Are Scalable Vision Learners.

Answer: we conduct similar experiments on MAE (another SSL method)

- MAE improves as well when trained on web-scale images!
- 2. Yet different SSL methods still learn different features
 - a. MAE is consistently better than DINO at OCR & Chart

Yes, the observed behavior generalizes to other SSL methods!

He, K., et al. (2021). Masked Autoencoders Are Scalable Vision Learners.

Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A:Yes, it does

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

Answer: we conduct similar experiments training on ImageNet-1k

Answer: we conduct similar experiments training on ImageNet-1k

Answer: we conduct similar experiments training on ImageNet-1k

No obvious scaling on both VQA and ImageNet-1k evaluation.

We need large and diverse data in order to scale SSL.

Deep Dive and Analysis

Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large and diverse data.

Deep Dive and Analysis

Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data

3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks with linear probes.

Answer: Evaluate our trained Web-DINO on classic vision benchmarks with linear probes.

- Classification:
 - ImageNet-1k
- Segmentation:
 - ADE20k (last layer)
 - ADE20k (multi-scale)
- Depth Estimation:
 - NYUd v2 (last layer)
 - NYUd v2 (four layers)

Answer: Evaluate our trained Web-DINO on classic vision benchmarks with linear probes.

Answer: Evaluate our trained Web-DINO on classic vision benchmarks

Answer: Evaluate our trained Web-DINO on classic vision benchmarks

Answer: Evaluate our trained Web-DINO on classic vision benchmarks

Web-DINO is mostly better than MetaCLIP

Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks

- Web-DINO is mostly better than MetaCLIP
- 2. Web-DINO remains competitive with DINOv2

Q3. How do WebSSL models perform on classic vision tasks?

Answer: Evaluate our trained Web-DINO on classic vision benchmarks

- 1. Web-DINO is mostly better than MetaCLIP
- Web-DINO remains competitive with DINOv2
 - a. Challenging! Since LVD142M (DINOv2 train data) is retrieved from classic vision tasks.

Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data

3. How do WebSSL models perform on classic vision tasks?

A: Better than CLIP models and competitive with DINOv2.

Deep Dive and Analysis

1. Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data

How do WebSSL models perform on classic vision tasks?

A: Better than CLIP models and competitive with DINOv2

4. Why does web-scale data improve OCR & Chart performance?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

Filter images that contain text/chart/documents...

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

Filter images that contain text/chart/documents...

"Does this image contain any readable text?"

"Does this image contain charts, tables, or documents with readable text?

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

			,	VQA Evaluato	or		Brea	akdown of OC	R & Chart T	asks
	% of	1819808-9-95			Vision	OCR	OF STATE			
Method	MC-2B	AVG	General	Knowledge	Centric	Chart	ChartQA	OCRBench	TextVQA	DocVQA
CLIP 2B	100%	53.0	72.2	48.8	55.0	36.1	32.8	32.9	52.6	26.0
Web-DINO 2B	100%	50.8	72.8	47.1	56.4	26.8	23.3	15.6	49.2	19.0
Web-DINO 2B	50.3%	53.4 (+2.6)	73.0 (+0.2)	51.7 (+4.6)	55.6 (-0.8)	33.2 (+6.4)	31.4 (+8.1)	27.3 (+11.7)	51.3 (+2.1)	23.0 (+4.0)
Web-DINO 2B	1.3%	53.7 (+2.9)	70.7 (-2.1)	47.3 (+0.2)	56.2 (-0.2)	40.4 (+13.6)	47.5 (+24.2)	29.4 (+13.8)	52.8 (+3.6)	32.0 (+13.0)

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

		1		,	VQA Evaluato	or		Brea	akdown of OC	R & Chart T	asks
Met	thod	% of MC-2B	AVG	General	Knowledge	Vision Centric	OCR Chart	ChartQA	OCRBench	TextVQA	DocVQA
CLIF	2B	100%	53.0	72.2	48.8	55.0	36.1	32.8	32.9	52.6	26.0
Web-DINC	2B	100%	50.8	72.8	47.1	56.4	26.8	23.3	15.6	49.2	19.0
Web-DINC	2B	50.3%	53.4 (+2.6)	73.0 (+0.2)	51.7 (+4.6)	55.6 (-0.8)	33.2 (+6.4)	31.4 (+8.1)	27.3 (+11.7)	51.3 (+2.1)	23.0 (+4.0)
Web-DINC) 2B	1.3%	53.7 (+2.9)	70.7 (-2.1)	47.3 (+0.2)	56.2 (-0.2)	40.4 (+13.6)	47.5 (+24.2)	29.4 (+13.8)	52.8 (+3.6)	32.0 (+13.0)

Trained on images containing any text

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

	1		,	VQA Evaluato	or		Brea	akdown of OC	R & Chart T	asks
	% of	Fatorial and			Vision	OCR	DESCRIPTION OF THE SAME			
Method	MC-2B	AVG	General	Knowledge	Centric	Chart	ChartQA	OCRBench	TextVQA	DocVQA
CLIP 2B	100%	53.0	72.2	48.8	55.0	36.1	32.8	32.9	52.6	26.0
Web-DINO 2B	100%	50.8	72.8	47.1	56.4	26.8	23.3	15.6	49.2	19.0
Web-DINO 2B	50.3%	53.4 (+2.6)	73.0 (+0.2)	51.7 (+4.6)	55.6 (-0.8)	33.2 (+6.4)	31.4 (+8.1)	27.3 (+11.7)	51.3 (+2.1)	23.0 (+4.0)
Web-DINO 2B	1.3%	53.7 (+2.9)	70.7 (-2.1)	47.3 (+0.2)	56.2 (-0.2)	40.4 (+13.6)	47.5 (+24.2)	29.4 (+13.8)	52.8 (+3.6)	32.0 (+13.0)

Trained on images containing charts, documents, heavy text ...

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

1. Huge boost on OCR & Chart

			,	VQA Evaluato	or		Brea	akdown of OC	CR & Chart T	asks	
Method	% of MC-2B	AVG	General	Knowledge	Vision Centric	OCR Chart	ChartQA	OCRBench	TextVQA	DocVQA	
CLIP 2B	100%	53.0	72.2	48.8	55.0	36.1	32.8	32.9	52.6	26.0	1
Web-DINO 2B	100%	50.8	72.8	47.1	56.4	26.8	23.3	15.6	49.2	19.0	١
Web-DINO 2B	50.3%	53.4 (+2.6)	73.0 (+0.2)	51.7 (+4.6)	55.6 (-0.8)			27.3 (+11.7)	51.3 (+2.1)	23.0 (+4.0)	١
Web-DINO 2B	1.3%									32.0 (+13.0)	V

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

- 1. Huge boost on OCR & Chart
- 2. Other categories does not change much (no loss of generality)

			,	VQA Evaluato	or		Brea	akdown of OC	R & Chart T	asks
	% of	111112			Vision	OCR	ogrania i restru			
Method	MC-2B	AVG	General	Knowledge	Centric	Chart	ChartQA	OCRBench	TextVQA	DocVQA
CLIP 2B	100%	53.0	72.2	48.8	55.0	36.1	32.8	32.9	52.6	26.0
Web-DINO 2B	100%	50.8	72.8	47.1	56.4	26.8	23.3	15.6	49.2	19.0
Web-DINO 2B	50.3%	53.4 (+2.6)	73.0 (+0.2)	51.7 (+4.6)	55.6 (-0.8)	33.2 (+6.4)	31.4 (+8.1)	27.3 (+11.7)	51.3 (+2.1)	23.0 (+4.0)
Web-DINO 2B	1.3%	53.7 (+2.9)	70.7 (-2.1)	47.3 (+0.2)	56.2 (-0.2)	40.4 (+13.6)	47.5 (+24.2)	29.4 (+13.8)	52.8 (+3.6)	32.0 (+13.0)

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

- 1. Huge boost on OCR & Chart
- 2. Other categories does not change much (no loss of generality)
- 3. Beats same-size clip CLIP models, even on OCR & Chart.

			,	VQA Evaluato	or		Brea	akdown of OC	R & Chart T	asks
	% of				Vision	OCR	GI O.	o gpp 1	T	
Method	MC-2B	AVG	General	Knowledge	Centric	Chart	ChartQA	OCRBench	TextVQA	DocVQA
CLIP 2B	100%	53.0	72.2	48.8	55.0	36.1	32.8	32.9	52.6	26.0
Web-DINO 2B	100%	50.8	72.8	47.1	56.4	26.8	23.3	15.6	49.2	19.0
Web-DINO 2B	50.3%	53.4 (+2.6)	73.0 (+0.2)	51.7 (+4.6)	55.6 (-0.8)	33.2 (+6.4)	31.4 (+8.1)	27.3 (+11.7)	51.3 (+2.1)	23.0 (+4.0)
Web-DINO 2B	1.3%	53.7 (+2.9)	70.7 (-2.1)	47.3 (+0.2)	56.2 (-0.2)	40.4 (+13.6)	47.5 (+24.2)	29.4 (+13.8)	52.8 (+3.6)	32.0 (+13.0)

Hypothesis: Maybe web-scale data contains very rich text information in images, and SSL models can learn from them

- 1. Huge boost on OCR & Chart
- 2. Other categories does not change much (no loss of generality)
- 3. Beats same-size clip CLIP models, even on OCR & Chart.

The "text" in images contributes to improved OCR & Chart ability, and SSL methods can implicitly learn this from the data.

				VQA Evaluato	or		Brea	akdown of OC	R & Chart T	asks	
	% of	Facility Special			Vision	OCR	and the same of th				
Method	MC-2B	AVG	General	Knowledge	Centric	Chart	ChartQA	OCRBench	TextVQA	DocVQA	
CLIP 2B	100%	53.0	72.2	48.8	55.0	36.1	32.8	32.9	52.6	26.0	_
Web-DINO 2B	100%	50.8	72.8	47.1	56.4	26.8	23.3	15.6	49.2	19.0	
Web-DINO 2B	50.3%	53.4 (+2.6)	73.0 (+0.2)	51.7 (+4.6)	55.6 (-0.8)	33.2 (+6.4)	31.4 (+8.1)	27.3 (+11.7)	51.3 (+2.1)	23.0 (+4.0)	0.7
Web-DINO 2B	1.3%	53.7 (+2.9)	70.7 (-2.1)	47.3 (+0.2)	56.2 (-0.2)	40.4 (+13.6)	47.5 (+24.2)	29.4 (+13.8)	52.8 (+3.6)	32.0 (+13.0)	07

Deep Dive and Analysis

Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

How do WebSSL models perform on classic vision tasks?

A: It is better than CLIP models and competitive with DINOv2

4. Why does web-scale data improve OCR & Chart performance?

A: Because SSL models learn from text information embed in images.

Deep Dive and Analysis

Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

3. How do scaled models perform on classic vision tasks?

A: It is better than CLIP models and competitive with DINOv2

4. Why does web-scale data improve OCR & Chart performance?

A: Because SSL models learn from text information embed in images.

5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?

Hypothesis: SSL models learn features increasingly aligned with language as model size and examples seen increases.

Hypothesis: SSL models learn features increasingly aligned with language as model size and examples seen increases.

Measure its alignment with LLM via "Platonic Hypothesis"

Platonic Representation Measurements

- Frozen visual encoder + off-shelf LLM (no post-training / alignment)
- Uses 1024 Samples from WiT-1024 (A image-text dataset based on Wikipedia)
- Compute the representation from Vision Model ([cls]) and Language Model ([avg])
- For each [Image, Text], compute k=10 nearest neighbors each, measure how many overlap.
 - If 2 neighbors overlap, alignment score = 2/10 = 0.2
- Alignment Score is the average alignment score across all samples

1. Training on more diverse data (MC-2B) lead to better alignment

- 1. Training on more diverse data (MC-2B) lead to better alignment
- 2. Increase model size gradually lead to better alignment

- 1. Training on more diverse data (MC-2B) lead to better alignment
- 2. Increase model size gradually lead to better alignment
- 3. Training on more data lead to better alignment

- 1. Training on more diverse data (MC-2B) lead to better alignment
- 2. Increase model size gradually lead to better alignment
- 3. Training on more data lead to better alignment

As SSL scales to larger models or more data, its representation naturally aligns more with off-shelf LLMs

... without any explicit alignment!

Deep Dive and Analysis

Does the observed scaling behavior generalize to other visual SSL methods?

A: Yes, it does!

2. Does visual SSL exhibit similar scaling behavior on smaller scale conventional data such as ImageNet?

A: No, it doesn't. We need large data.

3. How do scaled models perform on classic vision tasks?

A: It is better than CLIP models and competitive with DINOv2.

4. Why does web-scale data improve OCR & Chart performance?

A: Because SSL models learn from text information embed in images.

- 5. Why can SSL learn strong visual representations for multimodal modeling, without language supervision?
 - A: As SSL scales larger or train longer, the representation intrinsically aligns more with off-shelf LLMs, without any explicit alignment.

(Now the system-level comparisons are no longer apples-to-apples)

	Model				MLL	M Eval	uator			Class	ic Visic	n Tasks		
Method	Pretrain Data	Pretrain Samples Seen	Res	AVG	General	Knowledge	OCR & Chart	Vision-Centric	IN1k lin.	ADE20K lin.	ADE20K ms.	NYUd lin. 1 (↓)	NYUd lin. 4 (↓)	
Language-Supervised Mo	dels													
SigLIP ViT-SO400M	WebLI	45.0B	224	55.4	74.4	48.7	39.5	58.9	86.5	36.5	38.0	0.607	0.525	
Sighii VII-SO400W	Webbi	40.00	384	60.0	76.3	50.4	53.5	59.7	87.3	39.5	47.2	0.582	0.438	
SigLIP2 ViT-SO400M	WebLI	45.0B	224	56.3	74.4	50.7	42.1	58.1	87.5	41.1	44.2	0.562	0.539	
	770021	10.02	384	62.0	76.6	51.9	58.4	61.0	88.1	43.5	50.2	0.524	0.469	
MetaCLIP ViT-G	${\it MetaCLIP}$	12.8B	224	54.8	75.5	48.2	37.3	58.4	86.4	38.0	46.7	0.524	0.415	
Visual Self-Supervised Mo	odels													
MAE ViT-H	ImageNet-1k	2.0B	224	45.2	64.6	43.9	20.6	51.7	76.6	33.3	30.7	0.517	0.483	
I-JEPA ViT-H	ImageNet-22k	0.9B	224	44.7	65.4	43.9	21.2	48.4	68.8	31.6	34.6	0.548	0.520	
DINOv2 ViT-g	LVD-142M	1.9B	518	47.9	70.2	45.0	21.2	55.3	86.0	49.0	53.0	0.344	0.298	
			224	55.2	74.5	48.0	39.4	59.1	86.5	42.1	52.6	0.491	0.376	
Web-DINO ViT-7B	MC-2B	8.0B	378	57.4	73.9	47.7	50.4	57.7	86.3	42.3	53.1	0.498	0.366	1
			518	59.9	75.5	48.2	55.1	60.8	86.4	42.6	52.8	0.490	0.362	

101

1. WebSSL is competitive with CLIP models on VQA, even when using less data.

	Model				MLL	M Eval	uator			Class	ic Visio	n Tasks		
Method	Pretrain Data	Pretrain Samples Seen	Res	AVG	General	Knowledge	OCR & Chart	Vision-Centric	IN1k lin.	ADE20K lin.	ADE20K ms.	NYUd lin. 1 (†)	NYUd lin. 4 (Ļ)	
Language-Supervised Mode	els													
SigLIP ViT-SO400M	WebLI	45.0B	224	55.4	74.4	48.7	39.5	58.9	86.5	36.5	38.0	0.607	0.525	
Signii VII-SO400W	WebLi	40.0D	384	60.0	76.3	50.4	53.5	59.7	87.3	39.5	47.2	0.582	0.438	
SigLIP2 ViT-SO400M	WebLI	45.0B	224	56.3	74.4	50.7	42.1	58.1	87.5	41.1	44.2	0.562	0.539	
Signii 2 VII-50400W	Webli	10.01	384	62.0	76.6	51.9	58.4	61.0	88.1	43.5	50.2	0.524	0.469	
${\it MetaCLIP~ViT-G}$	${\bf MetaCLIP}$	12.8B	224	54.8	75.5	48.2	37.3	58.4	86.4	38.0	46.7	0.524	0.415	
Visual Self-Supervised Mod	dels													
MAE ViT-H	ImageNet-1k	2.0B	224	45.2	64.6	43.9	20.6	51.7	76.6	33.3	30.7	0.517	0.483	
I-JEPA ViT-H	ImageNet-22k	0.9B	224	44.7	65.4	43.9	21.2	48.4	68.8	31.6	34.6	0.548	0.520	
DINOv2 ViT-g	LVD-142M	1.9B	518	47.9	70.2	45.0	21.2	55.3	86.0	49.0	53.0	0.344	0.298	
			224	55.2	74.5	48.0	39.4	59.1	86.5	42.1	52.6	0.491	0.376	
Web-DINO ViT-7B	MC-2B	8.0B	378	57.4	73.9	47.7	50.4	57.7	86.3	42.3	53.1	0.498	0.366	
			518	59.9	75.5	48.2	55.1	60.8	86.4	42.6	52.8	0.490	0.362	

- 1. WebSSL is competitive with CLIP models on VQA, even when using less data.
- 2. And better than CLIP models on classic vision.

	Model				MLL	M Eval	uator			Class	ic Visic	n Tasks	
${ m Method}$	Pretrain Data	Pretrain Samples Seen	Res	AVG	General	Knowledge	OCR & Chart	Vision-Centric	IN1k lin.	ADE20K lin.	ADE20K ms.	NYUd lin. 1 (↓)	NYUd lin. 4 (Ļ)
Language-Supervised Mode	els												
SigLIP ViT-SO400M	WebLI	45.0B	224	55.4	74.4	48.7	39.5	58.9	86.5	36.5	38.0	0.607	0.525
Siglii VII-50400M	Webbi	45.00	384	60.0	76.3	50.4	53.5	59.7	87.3	39.5	47.2	0.582	0.438
SigLIP2 ViT-SO400M	WebLI	45.0B	224	56.3	74.4	50.7	42.1	58.1	87.5	41.1	44.2	0.562	0.539
51gL11 2 V11-50400W	Webbi	45.01	384	62.0	76.6	51.9	58.4	61.0	88.1	43.5	50.2	0.524	0.469
MetaCLIP ViT-G	${\bf MetaCLIP}$	12.8B	224	54.8	75.5	48.2	37.3	58.4	86.4	38.0	46.7	0.524	0.415
Visual Self-Supervised Mod	lels												
MAE ViT-H	ImageNet-1k	2.0B	224	45.2	64.6	43.9	20.6	51.7	76.6	33.3	30.7	0.517	0.483
I-JEPA ViT-H	ImageNet-22k	0.9B	224	44.7	65.4	43.9	21.2	48.4	68.8	31.6	34.6	0.548	0.520
DINOv2 ViT-g	LVD-142M	1.9B	518	47.9	70.2	45.0	21.2	55.3	86.0	49.0	53.0	0.344	0.298
			224	55.2	74.5	48.0	39.4	59.1	86.5	42.1	52.6	0.491	0.376
Web-DINO ViT-7B	MC-2B	8.0B	378	57.4	73.9	47.7	50.4	57.7	86.3	42.3	53.1	0.498	0.366
			518	59.9	75.5	48.2	55.1	60.8	86.4	42.6	52.8	0.490	0.362

103

WebSSL also improves with higher resolution (more room for improvement!)

	Model				MLL	M Eval	luator			Class	ic Visio	n Tasks	
Method	Pretrain Data	Pretrain Samples Seen	Res	AVG	General	Knowledge	OCR & Chart	Vision-Centric	IN1k lin.	ADE20K lin.	ADE20K ms.	NYUd lin. 1 (Ļ)	NYUd lin. 4 (↓)
Language-Supervised Mode	els												
SigLIP ViT-SO400M	WebLI	45.0B	224	55.4	74.4	48.7	39.5	58.9	86.5	36.5	38.0	0.607	0.525
Siglii VII-SO400W	WEDLI	45.00	384	60.0	76.3	50.4	53.5	59.7	87.3	39.5	47.2	0.582	0.438
SigLIP2 ViT-SO400M	WebLI	45.0B	224	56.3	74.4	50.7	42.1	58.1	87.5	41.1	44.2	0.562	0.539
51gL11 2 V11-50400W	WEBEI	40.01	384	62.0	76.6	51.9	58.4	61.0	88.1	43.5	50.2	0.524	0.469
${\bf MetaCLIP~ViT\text{-}G}$	${\bf MetaCLIP}$	12.8B	224	54.8	75.5	48.2	37.3	58.4	86.4	38.0	46.7	0.524	0.415
Visual Self-Supervised Mod	dels												
MAE ViT-H	ImageNet-1k	2.0B	224	45.2	64.6	43.9	20.6	51.7	76.6	33.3	30.7	0.517	0.483
I-JEPA ViT-H	ImageNet-22k	0.9B	224	44.7	65.4	43.9	21.2	48.4	68.8	31.6	34.6	0.548	0.520
DINOv2 ViT-g	LVD-142M	1.9B	518	47.9	70.2	45.0	21.2	55.3	86.0	49.0	53.0	0.344	0.298
			224	55.2	74.5	48.0	39.4	59.1	86.5	42.1	52.6	0.491	0.376
Web-DINO ViT-7B	MC-2B	8.0B	378	57.4	73.9	47.7	50.4	57.7	86.3	42.3	53.1	0.498	0.366
			518	59.9	75.5	48.2	55.1	60.8	86.4	42.6	52.8	0.490	0.362

104

 Visual SSL improves w.r.t to model and data sizes when we use VQA as evaluation

- Visual SSL improves w.r.t to model and data sizes when we use VQA as evaluation
- The gap between SSL and CLIP models partly (largely) comes from **data**, not language supervision

- Visual SSL improves w.r.t to model and data sizes when we use VQA as evaluation
- The gap between SSL and CLIP models partly (largely) come from **data**, not language supervision
- Visual SSL is competitive with CLIP models on VQA, even on OCR & Chart

- Visual SSL improves w.r.t to model and data sizes when we use VQA as evaluation
- The gap between SSL and CLIP models partly (largely) come from data not language supervision
- Visual SSL is competitive with CLIP models on VQA, even on OCR & Chart
- Visual SSL has its unique benefits
 - Vision-centric VQA
 - Classic vision benchmarks
 - Easy to train on raw images (no need for text curation)

- Visual SSL improves w.r.t to model and data sizes when we use VQA as evaluation
- The gap between SSL and CLIP models partly (largely) come from data not language supervision
- Visual SSL is competitive with CLIP models on VQA, even on OCR & Chart
- Visual SSL has its unique benefits
 - Vision-centric VQA
 - Classic vision benchmarks
 - Easy to train on raw images (no need for text curation)
- We can continue to train better SSL models! (Better / More Data, Larger Model, ...)

Thanks to Our Amazing Team!!!

Thank you!

Please visit us at Poster #25 (Tuesday 11:45 AM - 1:45 PM)

Open-sourced at:

https://davidfan.io/webssl/

https://github.com/facebookresearch/webssl