Markov Chain Monte Carlo Diagnostics

For ignoring the MCMC diagnostics, he was sentenced to the Markov chain gang.

Additional Topics

Topics

BSTS

- Introduction
- State space models
- Fundamentals of BSTS
- Example (Level and Trend)
- Seasonality
- Example (Seasonality)

Change-point

- Introduction
- Techniques
- Examples

BTST

BSTS

Uses the Bayesian setting (distributions on parameters) and state space (think Exponential Smoothing models) together.

Was developed by Google around 2013

Easy to implement and run in R

R documentation: https://cran.r-project.org/web/packages/bsts/bsts.pdf

State Space models: Recall Holt-Winters Additive ESM

$$\hat{Y}_{t+h} = L_t + hT_t + S_{t-p+h}$$

$$L_t = \theta(Y_t - S_{t-p}) + (1 - \theta)(L_{t-1} + T_{t-1})$$

$$T_t = \gamma(L_t - L_{t-1}) + (1 - \gamma)T_{t-1}$$

$$S_t = \delta(Y_t - L_{t-1} - T_{t-1}) + (1 - \delta)S_{t-p}$$

Recall Holt-Winters Additive ESM

$$\hat{Y}_{t+h} = L_t + hT_t + S_{t-p+h}$$

$$L_t = \theta(Y_t - S_{t-p}) + (1 - \theta)(L_{t-1} + T_{t-1})$$

$$T_t = \gamma(L_t - L_{t-1}) + (1 - \gamma)T_{t-1}$$

$$S_t = \delta(Y_t - L_{t-1} - T_{t-1}) + (1 - \delta)S_{t-p}$$

Each of these components evolve over time....

Simple "level" model

$$y_t = \mu_t + \epsilon_t$$
Level

 $\mu_{t+1} = \mu_t + u_t$ Level (u_t is error....assumes Normal distribution)

Example (airline passengers...older data)

Use the older airline passenger data (we will use the Log(passenger) as our time series)

Fitting a level BSTS

library(bsts)
library(tidyverse)
air.bsts=airline\$LogPsngr

model_components=list()

model_components <- AddLocalLevel(model_components, y = air.bsts) fit.level=bsts(air.bsts, model_components, niter = 2000) plot(fit.level\$final.state,type='l')

Fitting a level BSTS

library(bsts)
library(tidyverse)
air.bsts=airline\$LogPsngr

model_components=list()

model_components <- AddLocalLevel(model_components, y = air.bsts) fit.level=bsts(air.bsts, model_components, niter = 2000) plot(fit.level\$final.state,type='l')

Making forecasts

pred.level<-predict(fit.level,burn = 200,horizon = 24)
plot(pred.level)</pre>

> pred.level\$mean 6.060904 6.058905 6.059396 6.057654 6.057066 6.052285 6.053708 6.053631 6.057384 6.059317 6.059745 6.061799 6.063273 6.064737 6.064800 6.067155 6.070143 6.066728 6.066637 6.062760 6.060922 6.056811 6.056758 6.058400

Can also ask for median and interval

Trend BSTS

$$y_t = \mu_t + \epsilon_t$$

Level/Trend

$$\mu_{t+1} = \mu_t + \delta_t + u_t$$

$$\delta_{t+1} = \delta_t + v_t$$

Level and Trend (u_t and v_t are error)

Fit a trend BSTS

> head(fit.trend\$final.state)

[,1] [,2]

[1,] 6.270559 0.028903721

[2,] 6.188468 0.015266010

[3,] 6.176237 0.006683758

[4,] 6.144252 0.002293991

[5,] 6.260150 0.005248778

[6,] 6.229388 0.005921211

Plot forecasts

pred.trend<-predict(fit.trend,burn = 500,horizon = 24)
plot(pred.trend)</pre>

> pred.trend\$median

6.069794 6.080965 6.084830 6.088169 6.094706

6.107259 6.112713 6.111001 6.114586 6.120687

6.129326 6.123488 6.131942 6.145842 6.141558

6.147235 6.145968 6.165901 6.164742 6.176605

6.187887 6.196770 6.202536 6.215285

Seasonal BSTS

$$y_t = \mu_t + \tau_t + \epsilon_t$$

Level Season

$$\mu_{t+1} = \mu_t + \delta_t + u_t$$

$$\delta_{t+1} = \delta_t + v_t$$
 Level and Trend (u_t and v_t are error)

$$\tau_{t+1} = -\sum \tau_t + w_t$$
 Seasonality (w_t is the error term)

How to model Seasonality

Dummy variables

Trigonometric Functions

Dummy variables

Basically, you are doing a linear regression!!! Let's say we have monthly data (i.e. we need 11 dummy variables)...

$$x_1 = \begin{cases} 1 & if January \\ 0 & otherwise \end{cases}$$

$$x_2 = \begin{cases} 1 & if February \\ 0 & otherwise \end{cases}$$

 $x_{11} = \begin{cases} 1 & if \ November \\ 0 & otherwise \end{cases}$

Dummy variables

Basically, you are doing a linear regression!!! Let's say we have monthly data (i.e. we need 11 dummy variables)...

$$x_1 = \begin{cases} 1 & if \ January \\ 0 & otherwise \end{cases}$$

$$x_2 = \begin{cases} 1 & if \ February \\ 0 & otherwise \end{cases}$$

•

$$x_{11} = \begin{cases} 1 & if November \\ 0 & otherwise \end{cases}$$

```
Y_t = 38.5 + 2.9X_1 + 5.95X_2 + 6.7X_3 + 3.9124356X_4 - 0.91X_5 - 3.8X_6 - 2.27X_7 + 1.49X_8 + 3.1X_9 + 1.4X_{10} - 0.53X_{11}
```

```
x.dummy[1:3,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 1 0 0 0 0 0 0 0 0 0 0 0

[2,] 0 1 0 0 0 0 0 0 0 0 0

[3,] 0 0 1 0 0 0 0 0 0 0 0
```

```
y.dummy=38.5+x.dummy%*%c(2.9052559,5.9516660,6.7000000, 3.9124356,-0.9052559,-3.8000000,- 2.2660254,1.4875644,3.1000000 ,1.4483340,-0.5339746)
```


Trigonometric Functions

- Trigonometric functions in mathematics have a cyclical pattern.
- Use trigonometric functions, such as sine and cosine, to model seasonality.

Trigonometric Regression

$$X_t = \sin\left(\frac{2\pi t}{S}\right)$$

$$Y_t = \beta_0 + \beta_1 X_t + \epsilon_t$$

Trigonometric Regression

 You don't have to limit yourselves to only one sine or cosine variable.

Mixing sine and cosine functions might better fit your data (Fourier

analysis).

For example:

- > x = seq(1,50,by=1)
- $> \sin 1 = \sin (1*2*pi*x/12)$
- $> \cos 1 = \cos (1*2*pi*x/12)$
- $> \sin 2 = \sin(2*2*pi*x/12)$
- $> \cos 2 = \cos(2*2*pi*x/12)$
- $> \sin 3 = \sin(3*2*pi*x/12)$
- $> \cos 3 = \cos(3*2*pi*x/12)$
- > y=40+2*sin1+1.6*cos1+0.6*sin2-3.4*cos2+0.2*sin3+0.3*cos3
- > plot(x,y,type='l')

Seasonal (with Dummy and Level)

```
model_components=list()
model_components = AddLocalLevel(model_components,
                  y = air.bsts
model_components=AddSeasonal(model_components, y
= air.bsts, nseasons = 12)
```

fit.season=bsts(air.bsts, model_components, niter = 2000) plot(fit.season\$final.state[,2],type='l')

0.10

0.00

[5,] -0.0253000053 -0.05157723 [6,] -0.0004721743 -0.15021407

[4,] 0.0804886616 -0.15250747

Forecast(with dummy)

pred.season<-predict(fit.season,burn = 500,horizon = 24)
plot(pred.season)</pre>

> pred.season\$mean

[1] 6.104505 6.061527 6.182944 6.172317 6.173189 6.286979 6.401651 6.394572 6.226572 6.108766 5.964014 6.070397 6.105952 6.060050 6.179451 6.169520 6.167948 6.283719 6.400189 6.392691 6.224080 6.106716 5.961663 6.069726

Seasonal (Trig with level)

fit.season=bsts(air.bsts, model_components, niter = 2000) plot(fit.season\$final.state[,2],type='l')

> head(fit.season\$final.state)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [1,] 5.579081 -0.14760642 -0.5717763 0.01409946 -0.82855883 0.3028314 0.1562200 [2,] 5.601328 -0.07600871 -0.4598823 0.14894884 0.20325190 1.0879606 0.1213216 [3,] 5.574211 -0.37114738 -0.2070764 -0.35487942 -1.35175170 0.5059916 -0.2237004

[4,] 5.614885 -0.39524983 -1.1895666 0.04371342 0.09413661 0.5763212 0.3782019

Forecast (Trig)

pred.season<-predict(fit.season,burn = 500,horizon = 24)
plot(pred.season)</pre>

> pred.season\$interval

[,3] [,4][,5] [,6] [.7][8,] [,9] [.10][,12] [,1] 2.5% 5.965759 5.958060 5.984099 6.002435 6.041751 6.126399 6.241519 6.235748 6.056018 5.864842 5.808555 5.838206 97.5% 6.208353 6.235114 6.278911 6.324366 6.380711 6.484603 6.621303 6.623532 6.464349 6.287322 6.231317 6.276204 [,13] [,16] [,18] [,19] [,21] [,14][,15] [,17] [,20] [,24]2.5% 5.854577 5.859481 5.883375 5.926380 5.952490 6.034250 6.161035 6.149160 5.988632 5.806161 5.740073 5.762272 97.5% 6.306913 6.345058 6.393916 6.430722 6.483931 6.569421 6.701481 6.709872 6.553636 6.353762 6.293718 6.340721

Can also fit other X variables...

$$y_t = \mu_t + \tau_t + \beta^T x_t + \epsilon_t$$
Level Season "X" Variables

$$\mu_{t+1} = \mu_t + \delta_t + u_t$$

$$\delta_{t+1} = \delta_t + v_t$$
 Level and Trend (u_t and v_t are error)

$$\tau_{t+1} = -\sum \tau_t + w_t$$
 Seasonality (w_t is the error term)

A change-point is a point in your data in which the "signal" changes.

CHANGE-POINT

A change-point is a point in your data in which the "signal" changes. It can be a shift in means:

A change-point is a point in your data in which the "signal" changes. It can be a change in variance:

A change-point is a point in your data in which the "signal" changes. It can be a change in variance AND a shift in means:

A change-point is a point in your data in which the "signal" changes. It can be a change in pattern (going from a level to a trend):

And sooooo many more!!!

Can be challenging to find change-points (they can happen in many different ways AND there can be more than one!)

An overview of change point packages in R

Source: vignettes/packages.Rmd

OBS: I have yet to review these packages: not, breakfast, IDetect, trendsegmentR, mosum, ChangepointTesting, changepoint.mv, changepointsHD, changepointsVar, InspectChangepoint, breakpoint, segmentr, Segmentor3IsBack, trendsegmentR, BayesPiecewiseICAR, BayesPieceHazSelect.

There are a lot of change point packages out there already, so why mcp? Here are my (probably biased) thoughts about this. I compiled some tables, summarising change point packages (.xlsx file here). I will demonstrate each of these packages in an applied example below to discuss their merits and shortcomings. I recommend this nice overview of the methodologies used in many of these packages.

Of the packages reviewed here, I think segmented, and EnvCpt are good if the data fits what they can model, and mcp is a more capable and general-purpose package at the cost of speed. You can see the immediate roadmap for mcp at the GitHub issues tracker.

Modeling options

How much flexibility does the package allow for modeling the system, you're studying? A clear difference here is between packages that allow you to *specify* the number of change points, and packages which infer the number of change points *automatically* (using some criteria), captured in the N column below.

Package		Segment models					Change points					Other
Name	version	Formulas	GLM	Time series	Survival	Multiv.	N	Mean	Random	Variance	AR	Share pars
тср	0.1.0	specify: all	yes	AR(N)	planned	no	specify	yes	yes	yes	yes	yes
segmented	1.0.0	specify: slope	yes	ARIMA(N)	yes	no	both	yes	no	no	no	no
strucchange::breakpoints	1.5.2	specify: all	no	no	no	no	specify	yes	no	no	no	no
еср	3.1.2	auto: ?	no	?	no	yes	auto	yes	no	no	no	no
bcp	4.0.3	auto: slope + int	no	no	no	yes	auto	yes	no	no	no	no
changepoint	2.2.2	auto: int	no	no	no	no	auto	yes	no	yes	no	no
changepoint.np	1.0.1	auto: int?	no	no	no	no	auto	yes	no	?	no	no
strucchange::Fstats	1.5.2	specify: all	no	no	no	no	only 1	yes	no	no	no	no
TSMCP	1.0.0	auto: ?	no	yes	no	yes	auto	yes	no	no	no	no
cpm	2.2.0	auto: int	(yes)	no	no	no	auto	yes	no	yes	no	no
EnvCpt	1.1.1	specify: (select)	no	AR(2)	no	no	auto	yes	no	yes	no	no
wbsts	2.0.0	auto: ?	no	yes	no	no	auto	yes	no	no	no	no

From the author's of mcp

Methods

Focus on the change-point package

Changepoint package:

- Can detect multiple change-points (do NOT need to specify number of change-points)
- Uses the PELT algorithm ("Pruned Exact Linear Time" by Killick, Fearnhead, and Eckley 2012)
- Combines the binary segmentation algorithm with the segment neighborhood algorithm for an efficient, exact test (minimizes a cost function with a penalty)
- Can handle multiple change-points in mean and/or variances

Data sets

We will be using the Netherlands unemployment data set (use percent unemployed...yearly data): many thanks to Dr. LaBarr for this data set

Change-point algorithm

```
library(changepoint)
cp.n <- cpt.mean(netherlands$Percentage.Unemployed, method = "PELT",
Q = 10)
plot(cp.n)
summary(cp.n)
```

Edited R output

Created Using changepoint version 2.2.4

Changepoint type : Change in mean

Method of analysis : PELT

Test Statistic: Normal

Type of penalty: MBIC with value, 14.2086

Minimum Segment Length: 1

Maximum no. of cpts: Inf

Changepoint Locations: 21 32 39 42 74 82 97

Changepoints on graph

netherlands\$Year[c(21, 32, 39, 42, 74, 82, 97)] [1] 1920 1931 1938 1941 1973 1981 1996

Questions?

