RL Algorithms: Q-learning

Model-Free vs. Model-Based RL

Bellman equation (state-action presentation):

$$Q^*(s, a) = E(r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1}, a') | s_t = s, a_t = a)$$

$$= \sum_{s'} P^a_{ss'}(R^a_{ss'} + \gamma \max_{a'} Q^*(s', a'))$$

- Explicit knowledge of transition probabilities not needed to learn the optimal policy
- Model free vs. model based RL
- Model free RL learn in environment or the simulator!

Model-Free vs Model-Based RL

- Environment is noisy
- Takes longer to converge to optimal policy

$$p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t), \ \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$$

- Need to learn the model
- Learning optimal policy is sample-efficient
- Optimal policy is as good as the model

$$\frac{p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)}{\text{model}}, \quad \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$$

Model-based examples

- Frog-escape
- Games: go or chess (can also be modelfree)
- Physical systems

AlphaGO

Taxonomy of RL algorithms

Ideas for capstone projects!

Tabular Q-Learning

$$Q^*(s, a) = E(r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1}, a') | s_t = s, a_t = a)$$

- Q "quality"
- Q function is the function that assigns a quality score to an State Action pair (Action Value Function)
- Given a state s and an action a the function Q(s,a) will return a real number reflecting the quality of doing this action a in the state s

Tic Tac Toe

- If played against an optimal opponent many times, can learn the best strategy
- States:
- Actions:
- Transition probabilities:
- Rerwards:

Tic Tac Toe

States:

Actions:

Top Left	Top	Top	Middle	Middle	Middle	Bottom	Bottom	Bottom
	Middle	Right	Left	Middle	Right	Left	Middle	Right

- Transition probabilities: implied by the game
- Rewards: 1 for winning the game,
 0.5 for a tie, 0 for loosing a game

Tic Tac Toe Reward Assignment

- Rewards should motivate the agent to learn to take best action at a state
- Good action positive reward
- Bad action negative reward
- Tic tac toe rewards at the end of the game
- Need to attribute past rewards back to previous actions

Q-Table

Game State	Top Left	Top Middle	Top Right	Middle Left	Middle Middle	Middle Right	Bottom Left	Bottom Middle	Bottom Right
x x 0 x 0 0	N/A	0.5	N/A	N/A	N/A	N/A	0	0	N/A
x 0 x 0 0 x x 0	N/A	N/A	N/A	N/A	N/A	N/A	0.5	N/A	N/A
	0.3	0.5	0.3	0.5	0.7	0.3	0.3	0.5	0.3
		•••	•••	•••	•••	•••	•••	•••	

Q-Learning Algorithm

$$Q^*(s, a) = E(r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1}, a') | s_t = s, a_t = a)$$

- Initialize the Q-table
- Until convergence:

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{ ext{current value}} + \underbrace{\alpha}_{ ext{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{ ext{reward}} + \underbrace{\gamma}_{ ext{discount factor}} \cdot \underbrace{\max_a Q(s_{t+1}, a)}_{ ext{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{ ext{current value}} \right)}_{ ext{new value (temporal difference target)}}$$

temporal difference

Hyperparamers of Q-Learning

- Learning rate $0 \le \alpha < 1$
 - For convergence, learning rate must decrease to 0
- Discount factor $0 \le \gamma < 1$
 - Importance of future reward

$$Q^{new}(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{current value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}} - \underbrace{Q(s_t, a_t)}_{\text{current value}}\right)}_{\text{new value (temporal difference target)}}$$

Q-Table in Training

Initialized

Q-Table		Actions								
Q-18	ible	South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)			
	0	0	0	0	0	0	0			
a										
States	327	0	0	0	0	0	0			
		•			•		•			
		•	•	•	•	•	•			
	499	0	0	0	0	0	0			

Q-Table		Actions									
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)				
	0	0	0	0	0	0	0				
						•					
				•	•	•					
		•	•	•	•	•	•				
States	328	-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017				
	499	9.96984239	4.02706992	12.96022777	29	3.32877873	3.38230603				

From Q-Table to Optimal Policy

Game State	Top Left	Top Middle	Top Right	Middle Left	Middle Middle	Middle Right	Bottom Left	Bottom Middle	Bottom Right
x x o o x	N/A	0.5	N/A	N/A	N/A	N/A	0	0	N/A
x 0 x 0 0 x x 0	N/A	N/A	N/A	N/A	N/A	N/A	0.5	N/A	N/A
	0.3	0.5	0.3	0.5	0.7	0.3	0.3	0.5	0.3
	•••	•••	•••	•••	•••	•••	•••	•••	•••

Convergence of Q-Learning

 Tabular Q-learning is guaranteed to converge to a globally optimal policy when all states are visited infinitely many times the below conditions are satisfied

$$\sum_{i=0}^{\infty} \alpha_{i(s,a)} = \infty, \quad \sum_{i=0}^{\infty} \alpha_{i(s,a)}^2 < \infty, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}.$$

- Tabular Q states need to be discretized, not always scalable
- Q-function can be learned in different shapes (e.g., DQN), but the convergence results are generally not guaranteed

Exploration Q-Learning

 Tabular Q-learning is guaranteed to converge to a globally optimal policy when all states are visited infinitely many times the below conditions are satisfied

$$\sum_{i=0}^{\infty} \alpha_{i(s,a)} = \infty, \quad \sum_{i=0}^{\infty} \alpha_{i(s,a)}^2 < \infty, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}.$$

- ϵ greedy
 - Take random action at a state with probability ϵ

Rewards

Q-learning agent is trained to maximizes total cumulative rewards

