HYDROGEN PEROXIDE

- H₂O₂ was discovered by Thenard.
- H₂O₂ is also known as oxygenated water.
- (O⁻ O⁻) bond is known as Peroxy bond.
- H_2O_2 is a weak dibasic acid. Its molecular weight is 34 and its equivalent weight is 17.
- Substances containing peroxy linkage are H₂O₂, Na₂O₂, BaO₂, NaHO₂, H₂SO₅, H₂S₂O₈, HNO₄, H₃PO₅, CrO₅, H₂TiO₄
- Perchloric acid (HClO₄), MnO₂, PbO₂, TeO₂, KMnO₄ etc are not true peroxides as they do not contain peroxy bond.

Laboratory preparation of H₂O₂:

- i) In the laboratory H₂O₂ is prepared by the action of ice cold dil. H₂SO₄ on Na₂O₂ (or) hydrated Barium Peroxide [BaO₂.8H₂O].
- ii) H₂O₂ can also be obtained by passing CO₂ gas through a suspension of Barium peroxide in water.
- In the preparation of H₂O₂ from BaO₂, phosphoric acid is preferred to dil H₂SO₄. This is because H₃PO₄ stabilizes the formation of H₂O₂.

Auto - oxidation process:

- In auto oxidation method the starting substance is 2 ethyl anthraquinone.
- 2 ethyl anthraquinone is reduced to
 - 2 ethyl anthraquinol with H₂/Pd.
- On aerial oxidation 2-ethyl anthraquinol gives H₂O₂ and 2-ethyl anthraquinone back.

Electrolytic Method:

- H_2O_2 is manufactured by the electrolysis of 50% H_2SO_4 (or) a mixture of $(NH_4)_2SO_4$ + dil. H_2SO_4 using platinum anode and lead cathode.
- Electrodes are separated by porous stoneware diaphragm.
- The product at anode is H₂S₂O₈ and at cathode is H₂ gas.

a)
$$2H_2SO_4 \xrightarrow{lonisation} 2H^+ + 2HSO_4^-$$

At cathode
$$2H^+ + 2e^- \xrightarrow{Re \ duction} H_2$$
At anode
$$2HSO_4^- \xrightarrow{Oxidation} H_2S_2O_8 + 2e^-$$

b) Peroxy disulphuric acid (Marshall's acid) on distillation gives H₂O₂.

Caro's acid (H₂SO₅) is intermediate product.

$$H_2S_2O_8 + H_2O \rightarrow H_2SO_4 + H_2SO_5$$
 (Caro's acid)

$$H_2SO_5 + H_2 O \rightarrow H_2SO_4 + H_2O_2$$

• During the electrolysis of 50% H₂SO₄, the pH of the solution increases because the concentration of acid decreases.

Concentration of H_2O_2 : H_2O_2 obtained above is very dilute and so it is to be concentrated. Hydrogen peroxide is unstable and decomposes easily. If organic impurities are present, they catalyze the decomposition of H_2O_2 which may lead to explosion.

- \therefore H₂O₂ solution is concentrated carefully in the following 3 stages.
- The stages present in the concentration of H₂O₂ are
 - a) Freezing of water
 - b) Evaporation of water
 - c) Distillation under reduced pressure
 - d) Crystallisation of H₂O₂
- 20 30% H₂O₂ is obtained by evaporating dilute H₂O₂ on water bath at reduced pressure, using fractionating column.
- H_2O_2 decomposes below it's boiling point if it is distilled at ordinary pressure therefore, the above 20 30% H_2O_2 is distilled at reduced pressure i.e. 15mm Hg (vaccum distillation at 70°C) and 90% H_2O_2 is obtained.
- 100% H₂O₂ is obtained by crystallisation of 90% H₂O₂ by using a freezing mixture of solid CO₂ and diethyl ether. (from this needle shaped crystals of 100% pure H₂O₂ separate out).

Physical properties of H₂O₂:

It is colorless syrupy liquid concentrated H₂O₂ has bluish tinge.

It forms stronger H - bonds than H₂O.

It's B.P is higher and M.P is lower then compared with H₂O.

It is completely miscible with water.

It is feebly acidic and will not blue litmus to red.

- The strength of H₂O₂ can be expressed in
 - a) Volumes b) Molarity
 - c) Normality
 - d) Weight Volume Percentage
- The volume of O₂ gas at S.T.P. obtained by the decomposition of 1 c.c. of H₂O₂ solution is known as its volume strength. It is denoted by V.

Sample of H ₂ O ₂	% strength (w/v)	Molarit y, M	Normalit y, N
5.6 vol. H ₂ O ₂	1.7% w/v	0.5 M	1 N
11.2 vol. H ₂ O ₂	3.4% w/v	1 M	2 N
22.4 vol. H ₂ O ₂	6.8% w/v	2 M	4 N
10 vol. H ₂ O ₂	3% w/v	0.89 M	1.78 N
100 vol. H ₂ O ₂	30% w/v	8.9 M	17.8 N

- Perhydol is 30% (w/v). Its Morality is 8.9M Normality is 17.8 N and it contains 300g/lit (or) 0.3g/ml.
- On long standing or on heating H_2O_2 undergoes decomposition. The equation for the decomposition of H_2O_2 is

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

- The substances which retard the decomposition of H₂O₂ are Acetanilide, Glycerol, Urea, Alcohol, H₃PO₄, sodium stannate Pyrophosphates etc. They act as negative catalysts. They are known as inhibitors (or) stabilisers.
- Alkalies, silica, MnO₂, metals(Fe Mn), graphite, alumina etc. catalyse the decomposition of H₂O₂
- Dilute aqueous solution of H_2O_2 is fairly stable in acid Medium of alcohol or ester. Alkaline solution of H_2O_2 are selectively not very stable.
- Precautions to be taken in storing H₂O₂.
 - a) The glass bottle must have wax coating on the inner side, so that the surface is smooth.
 - b) Plastic bottles are preferred to glass bottles. It is because the Na_2O in glass being alkaline, catalyses the decomposition of H_2O_2
 - c) A small quantity of acetanilide or urea is added as a stabiliser.
- 90% H₂O₂ is used as an oxidant for rocket fuel with hydrazine.
- The boiling point of H₂O₂ is 152⁰C.
- Anhydrous H₂O₂ and dilute solutions of H₂O₂ are neutral to Litmus. They do not turn blue litmus to red colour. But Conc. H₂O₂ turns blue litmus to red colour.
- H₂O₂ exhibits
- a) Oxidising properties
- b) Reducing properties
- c) Bleaching property
- d) Acidic Property

It doesn't exhibit dehydrating property.

- H_2O_2 has greater reactivity in basic medium. It is because bases catalyses the decomposition of H_2O_2 .
- H_2O_2 is a stronger oxidizing agent and a weaker reducing agent.

• The antiseptic action and the bleaching action of H₂O₂ involve the oxidizing properties

Chemical properties of H₂O₂:

- Stability: H₂O₂ is unstable and decomposes easily. 2H₂O₂ → 2H₂O + O₂
 Metals, graphite, MnO₂, silica, alkalies are positive catalysis.
 Urea, Glycerol, acetanilide, alcohol, H₃PO₄, Pyrophosphates are negative catalyses or Inhibitors.
- Acidic nature: Pure H₂O₂ is weak dibasic acid. It gives two types of salts with alkalies.

$$H_2O_2 + NaOH \rightarrow NaHO_2 + H_2O$$

 $H_2O_2 + 2NaOH \rightarrow Na_2O_2 + 2H_2O$

- During decomposition, H₂O₂ undergoes disproportionation.
- When H₂O₂ acts as an oxidising agent it undergoes reduction.
- The reaction in which H_2O_2 acts as a reducing agent, there will be the liberation of O_2 .
- $H_2O_2 \rightarrow 2H^+ + O_2 + 2e^- E^0 = -0.67V$ represents the reducing property of H_2O_2 .
- The fundamental equation for oxidising property of H_2O_2 is $H_2O_2 \rightarrow H_2O + (O)$
- The oxidising properties of H₂O₂ in both acidic and basic media are due to

$$H_2O_2$$
 $O_2 + 2H_2O + 2e^- (E^0 = +1.77v)$
Dasic medium

• The standard reduction potential values indicate that H₂O₂ is a strong oxidising agent in acidic medium and weak oxidising agent in basic medium.

Oxidising properties of H₂O₂:

acidic medium

$$H_{2}O_{2}- \\ \begin{array}{c} \xrightarrow{\text{Ferrous salts}} & H_{2}O + PbSO_{4} \text{ white} \\ \hline Ferrous \text{ salts}} \\ \hline FeSO_{4} + H_{2}SO_{4} \\ \hline FeSO_{4} + H_{2}SO_{4} \\ \hline \\ & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\ \hline & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\$$

$$\begin{array}{c} \xrightarrow{\text{acidified } K_2Cr_2O_7} \\ \hline \text{(or)} chromicacid \\ \xrightarrow{HCHO} \\ \text{alkaline pyrogallol} \end{array} \\ \begin{array}{c} HCOOH + H_2 \uparrow \\ \hline \hline \\ \hline \end{array} \\ \begin{array}{c} C_6H_6/FeSO_4 \\ \hline \end{array} \\ \begin{array}{c} C_6H_5OH + H_2O \end{array}$$

- The bleaching action of H_2O_2 is due to its oxidising nature. $H_2O_2 \rightarrow H_2O + (O)$
- H₂O₂ is used to bleach silk, wool, ivory and hair.
- H₂O₂ is used to bleach black hair to golden yellow colour under the common name Auricome.
- The fundamental equation for reducing property of H₂O₂ is
 H₂O₂ + (O) → H₂O + O₂
- In both acidic and basic media, H₂O₂ shows reducing properties as

$$H_2O_2 \xrightarrow{\text{(oxidation)}} O_2 + 2H^+ + 2e^-(E^\circ = -0.67V)$$

$$20H^- + H_2O_2 \xrightarrow{\text{(oxidation)}} O_2 + 2H_2O + 2e^-$$

$$(E^\circ = +0.08V)$$

The reducing properties of H₂O₂ are

$$\begin{array}{c} \text{acidified KMnO}_4 \longrightarrow \text{Mn}^{2+} + O_2 \\ \hline Cl_2 \longrightarrow \text{HCI} + O_2 \\ \hline Br_2 \longrightarrow \text{HBr} + O_2 \\ \hline \text{moist } Ag_2O \longrightarrow \text{Ag} + O_2 \\ \hline \text{alkalineK}_3[\text{Fe}(\text{CN})_6] \longrightarrow \text{K}_4[\text{Fe}(\text{CN})_6] + O_2 \\ \hline \text{pot Ferrocyanide} \\ \hline NaOCI \longrightarrow \text{NaCI} + O_2 \\ \hline NaOBr \longrightarrow \text{NaBr} + O_2 \\ \hline PbO_2 \longrightarrow \text{PbO} + O_2 \\ \hline \text{acidified MnO}_2(\text{black}) \longrightarrow \text{Mn}^{2+} + O_2 \\ \hline \text{alkaline Fe}^{3+}(\text{Ferricsalts}) \longrightarrow \text{Fe}^{2+}(\text{Ferrous}) + O_2 \\ \hline O_3(\text{disproportionation}) \longrightarrow O_2 + \text{H}_2O \\ \hline \end{array}$$

Formation of addition compounds:

It forms addition compounds with some organic and inorganic compounds.

On adding H_2O , these addition compounds give back H_2O_2 .

i) H₂O₂.Na₂HPO₄

- ii) H₂O₂.(NH₄)₂ SO₄
- iii) H₂O₂.(NH₂)₂ CO (Hyperol)

Tests for H₂O₂:

- i) H₂O₂ oxidises acidified K₂Cr₂ O₇ solution to blue CrO₅ in ether.
- ii) H₂O₂ turns acidifed TiO₂ solution to orange coloured pertitanic acid [H₂TiO₄]
- iii) H₂O₂ turns starch lodide paper to blue colour.
- iv) It decolorises KMnO₄ in acid medium.
- Bleaching property: It's bleaching action is due to it's oxidising nature.

$$H_2O_2 \rightarrow H_2O + 'O'$$

$$'O' + color \rightarrow colorless$$

- Disinfectant action: It's antiseptic properties are also due to its oxidising behaviour.
- The structure of H₂O₂. in **gaseous state** can be shown as:

The H - O - O bond angle is $94^{\circ} 48^{\circ}$

- The dihedral angle is 111°30¹
- The O O bond length is 1.48A° and the O H is 0.97A°
- In liquid and solid states the bond lengths and bond angles are slightly changed due to hydrogen bonding.
- In crystalline H₂O₂ the dihedral angle is reduced to 90⁰

Uses Of H₂O₂:

As disinfectant and germicide

In cleaning of wounds

As bleaching agent for textiles, silk, wool, wood pulp etc.

Mixture of H₂O₂ and hydrazine is used as rocket fuel.

To restore color of old oil paints

As Oxidising agent

Mixture of H₂O₂ and NH₃ solution is used to bleach humain hair into golden yellow color.