```
# (2) loading dataset
df=pd.read csv("/content/Churn Modelling.csv")
In [3]:
df.head()
Out[3]:
                                                                            Balance NumOfProducts HasCrCare
   RowNumber Customerld Surname CreditScore Geography Gender Age Tenure
                                                 France Female
                                                                                                 1
0
                15634602 Hargrave
                                                                                0.00
            1
                                         619
                                                                         2
1
            2
                15647311
                              Hill
                                         608
                                                  Spain Female
                                                                         1
                                                                            83807.86
                                                                                                 1
2
                 15619304
                                         502
                                                                         8 159660.80
                                                                                                3
            3
                             Onio
                                                 France Female
                                                                 42
```

France Female

Spain Female

39

43

1

0.00

2 125510.82

2

1

In [4]:

4

5

15701354

15737888

3

In [1]:

In [2]:

import numpy as np
import pandas as pd

(4) descriptive statistics on the dataset
df.describe()

Boni

Mitchell

699

850

Out[4]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard Is
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000
4								Þ

In [5]:

(5) Handle the Missing values
df.isnull().sum()

Out[5]:

RowNumber 0
CustomerId 0
Surname 0
CreditScore 0
Geography 0
Gender 0
Age 0

```
тените
Balance
                    0
NumOfProducts
                    0
HasCrCard
                    0
                    0
IsActiveMember
EstimatedSalary
                    0
Exited
                    0
dtype: int64
In [6]:
# (6) finding outliers and replacing
df['Age'].mean()
Out[6]:
38.9218
In [7]:
df['Age'].median()
Out[7]:
37.0
In [8]:
df['Age'].std()
Out[8]:
10.487806451704609
In [9]:
df['Age'].value counts()
Out[9]:
37
      478
38
      477
      474
35
36
      456
34
      447
     . . .
        2
92
82
        1
88
        1
85
83
Name: Age, Length: 70, dtype: int64
In [10]:
import matplotlib.pyplot as plt
df.boxplot(column=['Age'],grid=False, color='orange')
Out[10]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f0738ad0b10>
90
80
 70
 60
 50
 40
 30 -
```

In [11]:

```
# (7) Check for Categorical columns and perform encoding

df.hist(column='Age',grid=False,edgecolor='red')
```

Out[11]:

In [12]:

```
df.plot.scatter('Age','CreditScore')
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f073850ebd0>

In [13]:

```
df.groupby('Gender')['Age'].mean().plot.bar()
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f073848a9d0>


```
Females Female
```

In [14]:

```
from sklearn import preprocessing
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
```

In [15]:

```
x = pd.DataFrame({
    'x1': np.concatenate([np.random.normal(20, 1, 2000), np.random.normal(1, 1, 20)]),
    'x2': np.concatenate([np.random.normal(30, 1, 2000), np.random.normal(50, 1, 20)]),
})
scaler = preprocessing.RobustScaler()
robust_scaled_df = scaler.fit_transform(x)
robust_scaled_df = pd.DataFrame(robust_scaled_df, columns =['x1', 'x2'])
fig, (ax1, ax2, ax3) = plt.subplots(ncols = 3, figsize =(9, 5))
ax1.set_title('Before Scaling')
sns.kdeplot(x['x1'], ax = ax1)
sns.kdeplot(x['x2'], ax = ax1)
ax2.set_title('After Robust Scaling')
sns.kdeplot(robust_scaled_df['x1'], ax = ax2)
sns.kdeplot(robust_scaled_df['x2'], ax = ax2)
```

Out[15]:

<matplotlib.axes. subplots.AxesSubplot at 0x7f072b91e850>

In [16]:

```
from sklearn.preprocessing import LabelEncoder
```

In [17]:

```
le = LabelEncoder()
```

In [18]:

```
from sklearn.model_selection import train_test_split
```

In [19]:

```
# (8) splitting of dependent and independent datas
x=df.iloc[:,0:8].values
y=df.iloc[:,8:15].values

In [20]:
# (10) splitting of data into training and testing
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.3, random_state=0)

In [21]:
# (9) Scale the independent variables
ytrain.shape, ytest.shape

Out[21]:
((7000, 6), (3000, 6))
```