

IIC 2433 Minería de Datos

https://github.com/marcelomendoza/IIC2433

- OUTLINE -

¿Qué vamos a ver?

PCA, t-SNE, UMAP, outliers

HAC, HDBSCAN, GMM

Asociaciones y causalidad

Modelos causales

Data Mining

- UC - M. Mendoza -

Data Mining

- Preprocesamiento de datos -

Datos estructurados (tabulares)

A	Α	В	С	D	E	F	G	Н
1	Provincia 🔻	Vendedor -	Fecha 💌	Nº Pedido ▼	Producto	 Unidades 	Precio 💌 II	mporte 💌
2	León	Marío	28/09/2021	105090	Mezcla Gumbo del chef Anton	13	21,35	277,55
3	Burgos	Almudena	04/05/2021	104987	Chocolate Schoggi	17	43,9	746,3
4	Almería	Susana	23/02/2021	104947	Crema de queso Fløtemys	19	21,5	408,5
5	Barcelona	Susana	12/10/2021	105570	Langostinos tigre Carnarvon	4	62,5	250
6	Lleida	Julio	18/05/2021	105398	Algas Konbu	11	6	66
7	Navarra	Almudena	27/07/2021	105057	Queso de cabra	19	2,5	47,5
8	Alicante/Alacant	Julio	05/09/2021	104848	Peras secas orgánicas del tío Bob	13	30	390
9	Palencia	Susana	13/03/2021	105361	Empanada de carne	6	32,8	196,8
10	Salamanca	Marío	02/01/2021	105074	Café de Malasia	18	46	828
11	Valladolid	Juan Carlos	24/12/2021	106221	Queso gorgonzola Telino	8	12,5	100
12	Teruel	Juan Carlos	06/07/2021	103595	Sirope de regaliz	18	10	180
13	Cantabria	Juan Carlos	01/02/2021	105704	Postre de merengue Pavlova	2	17,45	34,9
14	Salamanca	Juan Carlos	09/01/2021	104498	Arenque ahumado	3	9,5	28,5
15	Cantabria	Marío	18/03/2021	103536	Cordero Alice Springs	17	39	663
16	Almería	Juan Carlos	16/10/2021	103495	Tarta de azúcar	20	49,3	986
17	Madrid	Susana	19/12/2021	105626	Camembert Pierrot	20	34	680
18	Zaragoza	Juan Carlos	21/09/2021	104600	Queso gorgonzola Telino	7	12,5	87,5
19	Salamanca	Julio	07/05/2021	105770	Pan fino	16	9	144
20	Bizkaia	Amaya	22/06/2021	105112	Salsa de arándanos Northwoods	10	40	400
21	Salamanca	Almudena	12/02/2021	104597	Salsa de pimiento picante de Luisian	a 2	21,05	42,1
22	Alicante/Alacant	Amaya	21/07/2021	103017	Licor verde Chartreuse	14	18	252
23	Valladolid	Susana	03/10/2021	103611	Langostinos tigre Carnarvon	10	62,5	625
24	Almería	Almudena	30/12/2021	102654	Carne de cangrejo de Boston	10	18,4	184
25	Castellón/Castelló	Juan Carlos	04/07/2021	104312	Pan fino	12	9	108
26	Cáceres	Marío	23/05/2021	102494	Camembert Pierrot	15	34	510
27	Toledo	Susana	31/03/2021	102717	Postre de merengue Pavlova	3	17,45	52,35
28	Burgos	Almudena	04/03/2021	104718	Chocolate holandés	20	12,75	255

Datos no estructurados

Tipos de características

Características cuantitativas

Scaling:

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$
 [0, 1]

Estandarización:

En general, la estandarización se centra entorno del 0.

Características cualitativas

Codificación para nominales u ordinales:

La descripción

Vectores y características

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_d \end{bmatrix}$$

Feature vector

Vectores y características

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_d \end{bmatrix}$$

Feature vector

Feature space (3D)

- Distancia y proximidad -

Distancia Euclideana

2D:

n-dimensional:
$$d(\mathbf{p},\mathbf{q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Distancia Euclideana

Maldición de la dimensionalidad

Distancia Euclideana

Maldición de la dimensionalidad (normalizado)

Distancias

Distancia Manhattan

Distancias

Distancia Manhattan

Generalización (Minkowski):

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p}$$

$$-----$$
 Manhattan $(p = 1)$

Distancias

Generalización (Minkowski):

$$Dist(\overline{X}, \overline{Y}) = \left(\sum_{i=1}^{d} |x_i - y_i|^p\right)^{1/p}$$

-------- Manhattan (p = 1)

$$Euclidean (p = 2)$$

Distancia Manhattan

Proximidad de vectores de alta dimensionalidad:

Coseno:

Proximidad de vectores de alta dimensionalidad:

Coseno:

$$\cos(\overline{X}, \overline{Y}) = \frac{\sum_{i=1} x_i \cdot y_i}{\sqrt{\sum_{i=1}^d x_i^2} \cdot \sqrt{\sum_{i=1}^d y_i^2}}$$

Proximidad de vectores de alta dimensionalidad:

Coseno:

Si las características están en [0,1], los ángulos están en [0°, 90°]

$$\cos(\overline{X}, \overline{Y}) = \frac{\sum_{i=1}^{d} x_i \cdot y_i}{\sqrt{\sum_{i=1}^{d} x_i^2} \cdot \sqrt{\sum_{i=1}^{d} y_i^2}}$$

У

Proximidad de vectores de alta dimensionalidad:

Coseno:

Si las características están en [0,1], los ángulos están en [0°, 90°]

У

26

dolphin: 0.875 mink: 0.875 porpoise: 0.875 seal: 0.875 boar: 0.8125 cheetah: 0.8125 leopard: 0.8125 lion: 0.8125

- PCA -

Proyección

Ej.: PCA

- UC - M. Mendoza -

X1 retiene la mayor parte de la varianza por lo que remover x2 es neutro en términos de compresión.

dataset
$$\mathcal{X} = \{ oldsymbol{x}_1, \dots, oldsymbol{x}_N \}$$
, $oldsymbol{x}_n \in \mathbb{R}^D$

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

$$m{z}_n = m{B}^ op m{x}_n \in \mathbb{R}^M$$
 — Baja dimensionalidad Base de la descomposición $m{B} := [m{b}_1, \dots, m{b}_M] \in \mathbb{R}^{D imes M}$.

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

$$m{z}_n = m{B}^ op m{x}_n \in \mathbb{R}^M$$
 — Baja dimensionalidad Base ortonormal $m{B} := [m{b}_1, \dots, m{b}_M] \in \mathbb{R}^{D imes M}$. de la descomposición $m{b}_i^ op m{b}_j = 0$ y $m{b}_i^ op m{b}_i = 1$

La proyección se calcula usando la SVD.

Proceso iterativo:

$$\hat{m{X}} := m{X} - \sum_{i=1}^{m-1} m{b}_i m{b}_i^ op m{X} = m{X} - m{B}_{m-1} m{X} \,, \qquad ext{con} \quad m{X} \ = \ m{igl[x_1, \dots, x_Nigr]} \ \in \ \mathbb{R}_-^{D imes N} \,.$$

Proceso iterativo:

$$\hat{m{X}} := m{X} - \sum_{i=1}^{m-1} m{b}_i m{b}_i^ op m{X} = m{X} - m{B}_{m-1} m{X} , \qquad ext{con} \quad m{X} = m{ig[x_1,\dots,x_Nig]} \in \mathbb{R}_-^{D imes N}$$
 y $m{B}_{m-1} := \sum_{i=1}^{m-1} m{b}_i m{b}_i^ op$

Importante: puedo ajustar el # de componentes de manera que retenga una cantidad de varianza dada. Por ejemplo ¿Cuántas componentes retienen el 90% de la varianza?

Test de diagnóstico

