sequence::Union{Isochromat Simulator, EPGSimulator}

Custom sequence struct with fields that are necessary to compute the magnetization at echo times for such a pulse sequence. A method for this struct must be added to the <code>simulate_echos!</code> function that implements the pulse sequence using core operators from <code>src/kernels</code>. Examples are provided in <code>src/sequences</code>.

resource::AbstractResource

Determines the computational resource to be used for simulations. Supported options (see Computational-Resources.jl package):

CPU1(), CPUThreads(), CPUProcesses(), Or CUDALibs()

parameters::AbstractVector {<:AbstractTissueParameters}</pre>

The tissue parameters per voxel are stored using custom structs. A struct (subtype of AbstractTissueParameters) exists for each combination of different tissue parameter types (see src/parameters/tissueparameters.jl). Simulations will be performed for each element of the parameters vector.

trajectory::AbstractTrajectory

an SVector (see StaticArrays.il).

Custom struct with fields that describe the gradient trajectory. This information is used to compute the time-domain signal from the magnetization at echo times. A method must be added to to_sample_point for each new trajectory type.

coil sensitivities::AbstractVector{<:SVector} For each voxel, the coil sensitivities in that voxel are stored as</pre>

Core Operators

Operators that act on either a spin isochromat (src/operators/isochromat.jl) or a configureation state matrix (src/operators/epg.jl) to implement the update equation of the Bloch equations. The operators include rotation, decay, regrowth and spoiling (EPG only). The operators are designed to be type-stable and non-allocating and are used to assemble sequence simulators.

simulate magnetization(resource, sequence, parameters)

Compute transverse magnetization at echo times for each voxel.

simulate signal(resource, sequence, parameters,
trajectory, coil sensitivities)

Compute the time-domain MR signal for all receive coils by first computing the magnetisetion at echo times, and then, using the trajectory information, expanding to all sample points and computing a volume integral over all voxels.