2022 年秋季学期

复变函数与积分变换模拟试题

注意事项:

1. 本次考试为闭卷考试,考试时间为120分钟,总分80分。

注意行为规范 遵守考场纪律

得分		每小题 2 分,	港分 20 分
阅卷人	· 八块工版:	马小蛇 4 刀,	/M//) 20 /) c

- 1. 满足 $0 < \arg \frac{z-1}{z+1} < \frac{\pi}{6}$ 的点 z 所构成的点集是______.
- 2. 函数 $f(z) = e^{\frac{z}{5}}$ 的周期是______.
- 3. 函数 f(z) = u + iv 是解析函数,则 $e^u \cos v$ 的共轭调和函数是 .
- 4. (1+i)ⁱ 的辐角主值是 .
- 5. $\oint_{|z|=2} \frac{\sin z}{\left(z \frac{\pi}{2}\right)^3} dz = \underline{\hspace{1cm}}$

6.
$$\oint_{|z|=1} \frac{e^{\frac{1}{z-2}} dz}{(z^2+2)(z-3)} = \underline{\hspace{1cm}}.$$

- 7. 已知 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R,则 $\sum_{n=0}^{\infty} \frac{c_n}{b^n} z^n (b \neq 0)$ 的收敛半径为______.
- 8. 设幂级数 $\sum_{n=0}^{\infty} a_n z^n = e^{\frac{\cos z}{1-z}}$,则它的收敛半径为______.

9. 设
$$F(\omega) = 2\pi\delta(\omega - \omega_0)$$
,则 $\mathcal{F}^{-1}[F(\omega)] = \underline{\hspace{1cm}}$.

10. 设
$$\mathcal{F}[f(t)] = F(\omega)$$
,则 $\mathcal{F}[f(t)\sin\omega_0 t] =$ ______.

	得分二二二二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	选择题:每题2分,	共	20 分。在每小题:	给出的四	个选项中	١,
ß	国卷人	只有一项是符合题目	要	求的。			
1.	下列函数中,都有	f(0) = 0,则在原点不	连续	卖的是		()
	A. $f(z) = \frac{\text{Re}z}{1 + z }$			$f(z) = \frac{(\text{Re}z)^2}{ z }$			
	C. $f(z) = \frac{[\text{Re}(z^2)]^2}{ z ^2}$		D.	$f(z) = \frac{\operatorname{Re}(z^2)}{ z ^2}$			
2.	己知 $z = \left(\frac{1-\mathrm{i}}{1+\mathrm{i}}\right)^8$,	则 $z^{66} + 2z^{33} - 2$ 的信	直为			()
	Ai	B. 1	C.	i	D1		
3.	函数 $f(z) = z ^2$ 在	点 $z = 0$ 处不成立				()
	A. 连续	B. 可导	C.	解析	D. C-R	条件	
4.	设 $f(z) = \frac{1}{z(z-1)^3}$	$= \frac{1}{(z-1)^4} - \frac{1}{(z-1)^5}$	$+\frac{1}{(2)^{2}}$	$\frac{1}{(z-1)^6} - \dots$, 其中	z-1 >	> 1,则	
	A. $z = 1 \stackrel{\cdot}{\neq} f(z)$ in	本性奇点	В.	$\operatorname{Res}[f(z), 1] = 0$			
	C. $z = 1$ 是 $f(z)$ 的	三阶极点	D.	以上全不正确			
5.	z = 1 是函数 $f(z) =$: e ¹ z-1 的				()
	A. 解析点	B. 可去奇点	C.	极点	D. 本性	奇点	
6.	函数 $f(z) = \frac{z}{z^4 - 1}$	在无穷远点 $z = \infty$ 的	留数	为		()
	A. 0	B. 1	C.	2	D. 3		
7.	设函数 $f(z)$ 在区域	D 内解析,则与 $f(z)$) = 1	常数不等价的命题	是	()
	A. $f'(z) \equiv 0$		В.	$\operatorname{Re} f(z) \equiv \operatorname{Im} f(z)$	≡常数		
	C. $\overline{f(z)}$ 解析		D.	$ f(z) \equiv 常数$			
8.	幂级数 $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$ 的地	文敛半径为				()

8. 幂级数 $\sum_{n=0}^{\infty} \frac{n!}{n^n} z^n$ 的收敛半径为

A. 2 B. $\frac{1}{2}$ C. $\frac{1}{e}$ D. e

9. 己知 $F(s) = \frac{e^{-(s-2)}}{s+2}$,则 $f(t) = L^{-1}[F(s)] =$

A. $e^{-2t}u(t-1)$ B. $e^{-2(t-1)}u(t-1)$ C. $e^{-2(t-2)}u(t-1)$ D. $e^{-2t}u(t-2)$

10. 已知
$$f(t) = t^n e^{-at} u(t)$$
,则 $F(s) = L[f(t)]$ 的收敛域为 ()

A. Res > a B. Res > -a C. Res > 0 D. Res < -a

得分 阅卷人	三、	运算题	(每小题 5 分,	满分 10 分)
14 G/				

求下列积分:

(1)
$$I = \oint_{|z|=2} \frac{1}{(z+i)^{10}(z-1)(z-3)} dz;$$

$$(2) I = \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} \, \mathrm{d}x.$$

得分		(9分)	
阅卷人	四、	(y m)	

将函数

$$f(z) = \frac{\ln(2-z)}{z^2(z-1)}$$

在 0 < |z-1| < 1 内展开成洛朗级数。

附: 这是原先入选后被换下的两题, 可以在考后思考

1. 设
$$z = a$$
 是解析函数 $f(z)$ 的 m 阶零点,则 Res $\left[\frac{f'(z)}{f(z)}, a\right] =$

A. *m*

B. -m

C. m - 1

D. -(m-1)

2.
$$z = \infty$$
 是函数 $f(z) = \cot z - \frac{1}{z}$ 的

()

A. 解析点

B. 本性奇点

C. 孤立奇点

D. 非孤立奇点

得分	五、	(9分)
阅卷人	Д,	(97))

求解下列初值问题:

$$\begin{cases} y'' - y' - 6y = 2\\ y(0) = 1, y'(0) = 0 \end{cases}$$

得分	六、	(7 A)
阅卷人	<i>/</i> /\\	(7分)

设
$$f(z) = \frac{1}{z^2 - 3z + 2}$$
, 求积分

$$I_n = \oint_{|z|=\frac{1}{2}} \frac{f(z)}{z^{n+1}} dz, n = 0, 1, 2, \dots$$

得分	七、	(5分)
阅卷人	٠.٠	(3)))

设函数 f(z) 在简单闭曲线 C 上及内部 D 处处解析且不为常数,n 为正整数。

(1) 对于任意的 $z \in D$, 证明:

$$[f(z)]^n = \frac{1}{2\pi i} \oint_C \frac{[f(\xi)]^n}{\xi - z} d\xi$$

(2) 设 $M = \max_{\xi \in C} \{|f(\xi)|\}$,l 为 C 的长度, $d = \min_{\xi \in C} \{|\xi - z|\}$,证明不等式

$$|f(z)| \le M \left(\frac{l}{2\pi d}\right)^{\frac{1}{n}}$$

并进一步证明

$$|f(z)| \leq M, z \in D.$$