E-1130

B. E. IIIrd Semester (Main & Re) Examination, December – 2019

MATHEMATICS - III

Brach: (CSE, ECE, EE, CE, ME)

Time: Three Hours]

[Maximum Marks : 60

Note: Attempt *all* questions from Section - A four questions from Section - B and three questions from Section - C.

Section- A : Filling the blanks/MCQ/True, false.

 $1 \times 10 = 10$

Section- B: Short answer type questions.

 $5 \times 4 = 20$

Section- C: Long/ descriptive answer type questions.

 $10 \times 3 = 30$

SECTION - A

Note: Write true or false.

- 1. $\int e^{sx} f(x) dx$ is Fourier transform.
- 2. Fourier transform can be used to solve a boundary value problem.
- 3. Continuity is the necessary condition for differentiability.
- **4.** Analytic function satisfies the Cauchy Riemann equations.
- 5. The point at which the function is not differentiable is called singular point.
- **6.** If a function has more than one value is called single valued function.
- 7. Countour is not a Jordan Curve.
- 8. A time series has two components.
- 9. A null hypothesis is tested for possible rejection.

E-1130

10. In case of normal distribution $\mu_{n+1} = 0$.

SECTION - B

- 1. Find fourier sine transform of e^{-ax}/x .
- 2. Find the analytic function w = u + i v given that $v = \frac{x}{x^2 + y^2} + \cos h x \cos y$.
- 3. Use cauchy's integral formula to calculate $\int_{c} \frac{2z+1}{z^2+z} dz$ where $c \mid z \mid = \frac{1}{2}$.
- **4.** If a function f(z) is analytic and its derivative f'(z) is continuous inside and on a simple closed curve C, then show then $\int_{C}^{\infty} f(z) dz = 0$.
- **5.** Fit a straight line to the following data:

x	2 - 2	-3	4	5	6
у	8.3	15.4	33.1	65.2	127.4

- 6. State and prove that Baye's theorem.
- 7. What are the types of sampling?
- 8. Show that poisson distribution is a limiting case of binomial distribution.

SECTION - C

1. Using Fourier sine transform solve the partial differential equation $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ under the boundary conditions $u = u_0$ when x = 0, t > 0 and the initial condition u = 0 when t = 0, x > 0.

- 2. Use the method of contour integration, prove that $\int_{0}^{\pi} \frac{\cos 2\theta d\theta}{1 2\cos\theta + a^2} = \frac{\pi a^2}{1 a^2} (-1 < a < 1).$
- 3. Find the bilinear transformation which transforms the circular dise $|z| = \rho$ onto circular disc $|w| \le \rho^1$.
- 4. Discuss the properties of normal distribution in detail.
- **5.** An automobile company gives the following information about age- group and the liking for a particular model of the car which its plans to introduce:

Age Group.

Tige Group.								
Persons who	below 20	20-39	40-59	60 and above	Total			
Liked the Car	140	80	40	20	280			
Disliked the Car	60	50	30	80	220			
Total	200	130/	70	100				

On the basis of this data can it be concluded that the model appeal is independent of age group. (Give that for $\upsilon=3$, $\chi^2_{0.05}=7.815$.)