(921) In a J-k flip flop we have J= of and k=1 (see fig.) Assuming the flip flop was initially cleared and then clacked for Gpulses, the sequence at the 9 output will be

De year of the New York of the House of

Ans - Chacacteristica Table of JK flip-flopis:

J	K	Qntl	
0	0	90	2 - 1 - Son K. W. 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	1	0	the state of the s
	0	1	
1	1	90	1001 1010

Output table >

Stop 0123456 9,0101010 9, 1010101

(92) In the circuit shown, choose the correct timing diagram of the cutput (Y) from the given waveforens W, , W, W, and W4.

Ans > Let Q1 & Q2 be output of the respective flip-flop. Since, its given that flip-flop is traggered at 0 or that it is a negative edge traggered.

We know that the function of the D Plipflop is to follow the input when the flip flop traggered. Here, the flip flop is traggered at the negative edge. So, output Yis similar to Wz. 3) The outputs of the two flip-fleps Q, Q, in the figure shown are initialized to 0,0. The sequence generated at Q, upon application of clock signal is

Ans - Initially Q, & G2 are 0,0

From the fig., $J_1 = \overline{Q}_2$, $k_1 = \overline{Q}_2$, $Q_2 = \overline{Q}_1$, $k_2 = \overline{Q}_1$

Clock	Procent State	Flip Flop Topus	Next State
	G, Q, Q2 Q2	J, K, J, K2	
1	0101	1001	1 12
2	1001	1010	1
3	1010	0110	0
4	0101	1001	0
5	0101	1001	0

: Q1= 01100 11 may obs prost to make all sections

(9)4) A three bit pseudo enderrandom number generatore is shown. Initially the value of output Y=Y2Y, Yo is set to 111. The value of output Y three clock cycles is

Ans > The above circuit can be redrawn as +

Sequence Table-s

Output Y2 Y1 Y0

Initial I I I

1st Clock O I I ... The output in third cycle axis 100.

Inol clock O O I

Bred clock I O O

5) Design a MOD 6 counters with T Flip-Flops.

Anc.> By using MOD up

Flip Flop inputs-> TA TB Tc & CLK

Arcesent State Next State Flip Flop Inputs

QA QB Qc QA QB Qc TA TB Tc

O O O I O O I

O O I O O I

O O I O O I

O O I

(1)6) Design a 2 bit synchroppous up counter with T Flip-Flops and write on HDL behavioural description of the circuit.

		1 0 1 1		_		
Ans - State 1	ruble with e	scitation table	2-9			
Perces	ent State	Next	State	Flip Flop	D_ 3/	of topho
_Q _A	Q _e	Qa	Qe.	TA TE		
0	0	0	to plan	0 1		
0	1	I	0	1 1		
1	0	1	1	0 1		
1	1	0	0	dry i with	C combine 1	
Ta = (QB, TB.	= 1				DA PARTE
.,,	96) 18			MID X 5 6		32,301
		a philippia	14, 4	Total State		
	Ta Coa	CA I TB		12 02 00		
O.K				100		
				001		
HDL Coo		0 0		101		
libra	ry icee;	1.61.1.0	• 1	001		0 1
use i	cec. Std-lo	gic_1164. da	ll;	1 1 1	0	1 1
entite	y counter- à	16it is	01/	000		1 1
		k°, real: in 8			200	
1	9	out stel-log	jie-ved	forc () alouan d	ю ());	
end	counter_20	14)				
arch	intecturae 13	behaviored of	- counte	ector Clobus	nto 0) := "C	00";
8	signal coun	t_rieg; stal-	-logic -	EGGC C Man	,,,,	
begi	0700000 (01	1 (gof)				
	process Ccl					
	if net =	"1' then -reg <="O(rising_edge(V			
	coun	-reg < = 0	5 14 2 H	0.0		
	elset r	rising edge		(2)	C 1	W1131
	Cou	nt-reg <= 1	Cothers:	=>0) when	(count_reg =	= 11) esse
101100	endit;	and all co	Dunt_ra	=> 60) when y + "01";	and the same	
	end process			- his 19 9		
		gi				
end B	Behaviorcal;					

Q7) Design a 3-bit synchronous up counter with JK FTip-Flop.

Ans -> State table ->

Procesent State	Next State	Flip Flop @ Inpuls
- QA QB Qc	QA CGB CGE	JAKA JBKe Jcke
0 0 0	001	OxOxIX
0 0 1	010	OXIXXI
010	0 1 1	Oxxolx
011	1.00	1 x x 1 x to
100	101	x O O x lx
101	1 1 0	× O I x × I
1 10	1 1 1	× O × O lx
111	0 0 0	XIXIXI

(9)8) Design a 3 bit synchronous clown counters with D flip flops.

Aras State Table =

•	000		The state of the							
	Present		State	Next State			Flip Flop Input			
	O _C	(Ge	QA		Qc	QB	Cg,	Dc	Da	Da
	0	0	0		ĺ	1	1	Ī	1	1
	0	0	1		1	1	0	1	1	0
	0	1	0		1	0	1	1	0	1
	0	1	1		1	0	0	1	0	0
	1	0	0		0	1	1	O	1	1
	1	0	1		0	1	0	0	1	0
	1	1	0		0	0	1	0	0	1
	1	1	1		0	0	0	0	0	0

