# Forecasting of Russian Macroeconomic Indicators with BVAR

# Oxana Malakhovskaya<sup>1,2</sup>, Boris Demeshev<sup>1</sup>

<sup>1</sup> Higher School of Economics

<sup>2</sup> University of Paris-Saclay

omalakhovskaya@hse.ru, boris.demeshev@gmail.com

#### Motivation

- Recently many papers has claimed that, in terms of forecasting accuracy, medium and large BVAR outperform their small dimensional counterparts.
- Application of Bayesian econometrics on Russian data is scarce

## Main Objectives

- Forecasting of macroeconomic indicators for Russian economy with BVARs of different size
- Comparing their forecasting accuracy with one of competing models (RW and unrestricted VARs)

### Main Hypotheses

- BVARs outperform the competing models in terms of forecasting accuracy
- High-dimensional BVARs forecast better than low-dimensional ones

#### Model

The model written in a compact way:

$$Y = X\Phi + E,$$

where  $Y = [y_1, y_2, \dots, y_T]', X = [x_1, x_2, \dots, x_T]', x_t = [y'_{t-1} \dots y'_{t-p} \ 1]',$   $\Phi = [\Phi_1 \dots \Phi_p \ \Phi_c]', E = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_T]' \text{ with}$ 

- conjugate normal inverted Wishart prior
- sum-of-coefficients prior
- initial observation prior

The overall tightness parameter is chosen endogenously depending on the sample dimension following (Banbura et al., 2010).

#### Our dataset

- 23 monthly time series running from January 1996 to April 2015
- Series demonstrating seasonal fluctuations are seasonally adjusted
- Logarithms are applied to most of the series, with the exception of those already expressed in rates.

#### Estimated models

VAR3/BVAR3  $Y = \{IP, CPI, R\}$ VAR4/BVAR4  $Y = \{IP, CPI, R, Z\}$ VAR6/BVAR6  $Y = \{IP, CPI, R, M2, REER, OPI\}$ VAR7/BVAR7  $Y = \{IP, CPI, R, M2, REER, OPI, W\}$ BVAR23 Y includes all 23 variables from the dataset

IP - industrial product index, CPI - consumer price index, R - nominal interbank rate, M2 - monetary aggregate M2, REER - real effective exchange rate, OPI - Brent oil price index. Z is any variable from the dataset besides IP, CPI and R. W is any variable from the dataset besides IP, CPI, R, M2, REER, and OPI.

#### Estimation scheme



#### Results

In tables, relative MSFE are reported.

$$RMSFE = \frac{MSFE_{var,h}^{\lambda,m}}{MSFE_{var,h}^{0}}$$

|               | h=1  | h=3  | h=6  | h=9  | h=12 |                                         |
|---------------|------|------|------|------|------|-----------------------------------------|
| ind product   | 0.92 |      | 0.96 | 0.82 | 0.7  | Random walk                             |
| cpi           | 0.44 | 0.38 | 0.46 | 0.38 | 0.33 |                                         |
| interb rate   |      |      | 0.66 | 0.52 | 0.58 | VAR3/4 - BVAR 3/4                       |
| agriculture   | 0.93 | 0.82 | 0.7  | 0.67 | 0.57 |                                         |
| construction  | 0.97 |      |      |      |      | VAR6/7                                  |
| employment    | 0.67 | 0.42 | 0.43 | 0.6  | 0.72 |                                         |
| export        | 0.59 | 0.61 | 0.76 | 0.81 | 0.89 | BVAR6/7                                 |
| gas price     | 0.73 | 0.43 | 0.22 | 0.29 | 0.5  |                                         |
| gov balance   | 0.61 | 0.79 | 0.77 | 0.7  | 0.63 | BVAR23                                  |
| import        | 0.75 | 0.48 | 0.52 | 0.72 | 0.98 |                                         |
| labor request | 0.66 | 0.79 | 0.94 | 0.95 | 0.96 | $\sigma_i$ are std of AR(p) residuals   |
| lend rate     | 0.94 | 0.84 | 0.77 | 0.77 | 0.8  |                                         |
| M2            | 0.53 | 0.51 | 0.71 | 0.95 |      | $\delta_i = 1$ for nonstationary series |
| nominal ER    |      |      |      |      |      | $\delta_i = 0.5$ for stationary series  |
| NFA of CB     | 0.6  | 0.56 | 0.75 | 0.65 | 0.6  |                                         |
| oil price     | 0.88 | 0.81 | 0.88 | 0.81 | 0.77 |                                         |
| ppi           | 0.43 | 0.75 | 0.69 | 0.59 | 0.49 |                                         |
| real income   | 0.87 | 0.84 | 0.83 | 0.71 | 0.73 |                                         |
| real invest   | 0.78 | 0.61 | 0.73 | 0.88 | 0.91 |                                         |
| real ER       | 0.72 | 0.68 | 0.6  |      |      |                                         |
| retail        | 0.62 | 0.39 | 0.4  | 0.64 | 0.88 |                                         |
| unemp rate    | 0.93 | 0.83 | 0.9  | 0.92 | 0.94 |                                         |
| wage          | 0.74 | 0.51 | 0.46 | 0.42 | 0.41 |                                         |



|               | h=1  | h=3  | h=6  | h=9  | h=12 |                                          |
|---------------|------|------|------|------|------|------------------------------------------|
| ind product   | 0.96 |      | 0.96 | 0.82 | 0.7  | Random walk                              |
| cpi           | 0.38 | 0.37 | 0.46 | 0.36 | 0.27 |                                          |
| interb rate   |      |      | 0.91 | 0.56 | 0.56 | VAR3/4 - BVAR 3/                         |
| agriculture   | 0.93 | 0.82 | 0.7  | 0.67 | 0.56 |                                          |
| construction  | 0.97 |      |      |      |      | VAR6/7                                   |
| employment    | 0.7  | 0.54 | 0.59 | 0.7  | 0.81 |                                          |
| export        | 0.57 | 0.62 | 0.71 | 0.8  | 0.86 | BVAR6/7                                  |
| gas price     | 0.7  | 0.42 | 0.22 | 0.31 | 0.51 |                                          |
| gov balance   | 0.6  | 0.79 | 0.78 | 0.74 | 0.64 | BVAR23                                   |
| import        | 0.74 | 0.63 | 0.82 | 0.88 | 0.97 |                                          |
| labor request | 0.66 | 0.79 | 0.94 | 0.94 | 0.95 | $\sigma_i$ are std of AR(1) residuals    |
| lend rate     | 0.95 | 0.89 | 0.79 | 0.71 | 0.66 | oi are stu or AK(1) residuais            |
| M2            | 0.55 | 0.6  | 0.8  | 0.97 |      | $\delta_i$ are first lag AR(1) estimates |
| nominal ER    |      |      |      |      |      |                                          |
| NFA of CB     | 0.6  | 0.62 | 0.69 | 0.61 | 0.61 |                                          |
| oil price     | 0.85 | 0.81 | 0.85 | 0.79 | 0.75 |                                          |
| ppi           | 0.43 | 0.74 | 0.69 | 0.6  | 0.49 |                                          |
| real income   | 0.91 | 0.93 | 0.84 | 0.73 | 0.75 |                                          |
| real invest   | 0.81 | 0.63 | 0.76 | 0.88 | 0.92 |                                          |
| real ER       | 0.72 | 0.69 | 0.8  |      |      |                                          |
| retail        | 0.62 | 0.4  | 0.45 | 0.72 | 0.88 |                                          |
| unemp rate    | 0.94 | 0.91 | 0.89 | 0.9  | 0.92 |                                          |
| wage          | 0.75 | 0.53 | 0.47 | 0.42 | 0.41 |                                          |

#### Robustness check



#### Conclusion

- In the paper, we estimate BVAR models of different size and compare their forecasting performance with RW with drift and unrestricted VAR models for 23 variables and 5 different forecast horizons.
- We show that for a majority of variables of interest BVAR produces better forecasting results than the competing models.
- However, we cannot confirm a conclusion of some studies that high-dimensional BVARs forecast better than low-dimensional models. For many variables in our sample and forecasting horizons a 6- or 7-variable BVAR can beat a 23-variable BVAR in terms of forecasting accuracy.