YUHA × Kalshi Market Research & Modeling Competition

Mateo Bodon, Ly Nguyen

Market. Will the U.S. AAA national average price of regular gasoline be above \$3.10 on October 31, 2025? $(resolver = AAA\ U.S.\ national\ average,\ regular)$

Final call (freeze). $Pr(AAA_{2025-10-31} > 3.10) = 0.3\%$ (very unlikely).

Point forecast. $$3.03/gal\ (\pm \$0.01)$ for 2025-10-31.

Executive Summary

- Resolver status. AAA Today's National Average is \$3.038/gal¹ as of Oct 30, 2025; that is -3.3¢ WoW and -11.3¢ MoM. Clearing \$3.10 tomorrow requires a +6.2¢ one-day jump—far outside typical national-average moves.
- Gap math (explicit). Gap to threshold = $3.10 3.038 = 6.2\mathfrak{e}$; with $\sigma_{1d} < 2\mathfrak{e}$, that implies a multi- σ move against trend.
- Wholesale/macro. WTI $\approx $60.17/\text{bbl}^2$ and front-month RBOB $\approx $1.83/\text{gal}^3$; these levels do not support a next-day, nationwide retail spike.
- Model. A T+1 nowcast-dominant ensemble (weak prior, α -lift = 0, horizon-gated pass-through so $\beta_{\text{eff}} \approx 0$) maps the calibrated daily residual variance into event space, yielding $\Pr(> \$3.10) \approx 0.3\%$ and a point forecast \$3.03.
- **Risk.** No U.S. supply disruption (pipeline/refinery/hurricane) is on deck with timing/geography to shift the *national* average by > 6 ¢ overnight.

Why we focus on \$3.10 (and how we handle other bins)

For Oct 31, the most referenced thresholds are about \$3.05 and \$3.10. We foreground \$3.10 because it is the *harder exceedance* (about $+6\,c$ above today) and is widely compared across entries. To ensure coherence across bins, we compute the *threshold S-curve* (posterior exceedance vs. threshold) so adjacent bins (e.g., \$3.05) inherit the same T+1 discipline without bloating the memo with extra numbers. Figure 1 includes explicit markers at \$3.05 and \$3.10 for visual anchoring.

¹AAA Gas Prices dashboard, accessed 2025-10-30.

²Reuters commodities tape, accessed 2025-10-30.

³Front-month quotes (e.g., Nasdaq / CME RB).

As of: 2025-10-30 • Source: Mean & σ from freeze

Figure 1: Posterior exceedance probability as a function of threshold ("S-curve"). *Red markers at \$3.05 and \$3.10* label the competition thresholds, establishing cross-bin coherence (e.g., \$3.05 vs. \$3.10) and explaining why we foreground \$3.10 in the main text.

Macro Snapshot

- Crude & blendstock. WTI and front-month RBOB levels (footnoted above) align with a soft near-term retail tape at T+1.
- Seasonality. Late-October demand fade and winter-blend transition mechanically lean against next-day retail lifts.
- Pass-through reality. One-day national-average moves are dominated by intercept-like drift; wholesale shocks need several days to propagate materially.
- Implication. With a +6.2¢ gap to \$3.10 and sub-2¢ σ_{1d} , macro conditions do not supply the magnitude or time needed to breach.

Data & Sources (as of Oct 30, 2025)

- Resolver (retail). AAA Today's National Average: \$3.038⁴ (week-ago \$3.071, month-ago \$3.151).
- Wholesale & macro. WTI $\approx \$60.17/\text{bbl}^5$; RBOB front-month $\approx \$1.83/\text{gal}^6$.
- Anchors. EIA weekly retail regular (week of Oct 20) at \$3.019/gal⁷; seasonal demand fade and the winter-blend transition support soft retail prices.

⁴AAA Gas Prices dashboard, accessed 2025-10-30.

⁵Reuters commodities tape, accessed 2025-10-30.

⁶Front-month quotes (e.g., Nasdaq / CME RB), accessed 2025-10-30.

⁷EIA weekly U.S. regular retail gasoline price series, week of 2025-10-20.

Methods — Model & Equations (with Freeze Settings)

Ensemble (level model). We blend a *nowcast*, a *pass-through* component, and a weak *market-prior*:

$$\mu_{t+1} = w_n \,\hat{y}_{t+1}^{\text{now}} + w_p \,\hat{y}_{t+1}^{\text{pass}} + w_m \,\hat{y}_{t+1}^{\text{prior}}, \qquad w_n + w_p + w_m = 1.$$
 (1)

Nowcast $\hat{y}_{t+1}^{\text{now}}$ anchors to today's AAA with a small drift from the recent 7–14 day slope. **Pass-through** $\hat{y}_{t+1}^{\text{pass}}$ is a horizon-gated response to wholesale:

$$\hat{y}_{t+1}^{\text{pass}} = \alpha_d + \beta_d \, \Delta \text{RBOB}_t + \gamma_d \, (\text{RBOB}_t - \text{WTI}_t), \quad d = \text{days-to-event},$$
 (2)

with β_d , γ_d shrinking toward 0 as $d \to 1$; at T+1 we set $\alpha_d = 0$ and $\beta_{\text{eff}} \approx 0$.

Market-prior $\hat{y}_{t+1}^{\text{prior}}$ is a weak, smoothed mapping from recent Kalshi bins, guardrailed to avoid circularity.

Event mapping. For threshold $\tau = 3.10$,

$$\Pr(AAA_{t+1} > \tau) = 1 - \Phi\left(\frac{\tau - \mu_{t+1}}{\sigma_{1d}}\right), \tag{3}$$

where σ_{1d} is the ensemble's daily residual standard deviation (empirically $\langle 2 \, \mathfrak{c} \rangle$).

Freeze settings (T+1 discipline). Prior weight $w_m \in [0, 0.10]$ (calibrated $\to 0$ if available); $\alpha_d = 0$ for $d \le 1$; $\beta_{\text{eff}} \approx 0$ for $d \le 1$; residual σ_{1d} from rolling daily fit of the ensemble.

Freeze setting	Value (Oct 30, 2025)
Prior weight w_m	≤ 0.10 (often $\rightarrow 0$ at $T+1$)
Intercept α	0 (at $T+1$)
Pass-through β_{eff}	$\approx 0 \text{ (at } T+1)$
Daily residual σ_{1d}	< 2 ¢ (calibrated)

Algorithmic steps. ETL refresh \rightarrow compute nowcast & gated pass-through \rightarrow blend with weak prior \rightarrow calibrate $\sigma_{1d} \rightarrow$ map to $P(>\tau) \rightarrow$ render figures/tables & write memo.

Diagnostics & Validation

- Backtests. Rolling daily threshold backtests: Brier 0.016 vs carry 0.022; CRPS 0.034 vs 0.038^8 .
- Sanity. With today at \$3.038⁹, the gap to \$3.10 is \$0.062; given national daily smoothness (sub-2 ¢ σ_{1d}), that implies a multi- σ tail move against a downtrend.

 $^{^8}$ Freeze backtest log, 2025-10-30.

⁹AAA Gas Prices dashboard, accessed 2025-10-30.

As of: 2025-10-30 • Source: AAA daily (USD/gal)

Figure 2: AAA national average over the last 60 days with the \$3.10 threshold (dashed). The downward drift and the current level relative to the threshold visually motivate a small exceedance probability at T+1.

As of: 2025-10-30 • Source: AAA daily

Figure 3: Distribution of daily changes (Δ AAA) across the past 24 months. The dashed band indicates a typical $\pm 2\sigma$ range; the dotted line marks $+6.2\varepsilon$. Such a one-day jump is a tail event for the national index, supporting the low P(> \$3.10).

As of: 2025-10-30 • Source: Kalshi Gas ensemble model

Figure 4: Reliability / calibration curve for daily threshold forecasts. Proximity to the 45° line indicates well-calibrated probabilities and that the ensemble matches or exceeds the carry benchmark on proper scores.

Snapshot: Oct 30, 2025 (Close of Business)

Series	Latest	Notes
AAA national average (Regular)	\$3.038	week-ago \$3.071; month-ago \$3.151
Threshold for Oct 31 market	\$3.10	resolver = AAA U.S. national average (regular)
Gap to threshold	+6.2c	required one-day increase
WTI spot proxy	$\sim \$60.17/\mathrm{bbl}$	soft macro backdrop
RBOB front-month (recent settle)	$\sim $1.83/\mathrm{gal}$	low vs. $H1-2025$
EIA weekly retail (Oct 20)	3.019/gal	down week-over-week

Repo nowcast (post-tune): \$3.0299.

Final Forecast (Freeze)

• Point (AAA 2025–10–31): \$3.03 (±\$0.01)

• Pr(AAA > \$3.10) on 2025–10–31: 0.3%

• Skew: slight downside risk (toward \$3.02–\$3.03)

Reproducibility

Repo: MateoBodon/kalshi-gas

Commands:

```
make report  # ETL → posterior → figures/memo
make calibrate  # optional; sets weak prior weight (often → 0 at T+1)
make freeze-backtest  # prints freeze metrics & baselines
```

Freeze settings: weak prior ($w_m \leq 0.10$ or 0 if calibrated), $\alpha = 0$, $\beta_{\text{eff}} \approx 0$, calibrated daily σ .

References (resolver, drivers, context)

- AAA Gas Prices Today's National Average: gasprices.aaa.com
- EIA Weekly Petroleum Status Report (WPSR): eia.gov/petroleum/supply/weekly/
- CME Group RBOB Gasoline Futures (RB): cmegroup.com/markets/energy/refined-products/rbob-gasoline.html
- Reuters Oil & Commodities (WTI spot context): reuters.com/markets/commodities/
- Nasdaq RBOB front-month quotes: nasdaq.com/market-activity/futures/rb:nmx
- Kalshi Markets (event listings / trackers): kalshi.com/markets
- NOAA National Hurricane Center (tropical risk): nhc.noaa.gov

Appendix (Model and Data Details)

Freeze configuration (Oct 30, 2025)

Setting	Value
Resolve source	AAA U.S. national average (regular)
Threshold	\$3.10 (Oct 31, 2025)
Point nowcast	\$3.0299
Prior weight w_m	≤ 0.10 (calibrated $\rightarrow 0$ if available)
Intercept (α) at $T+1$	0
Pass-through (β_{eff}) at $T+1$	≈ 0
Residual daily σ	< 2 c (calibrated)
Wholesale inputs	RBOB (front month), WTI spot context
Fundamental anchor	EIA weekly retail (regular)

Algorithm summary

- 1. Refresh inputs (AAA, EIA, RBOB, WTI; as-of dates recorded).
- 2. Compute nowcast and horizon-gated pass-through; clamp $\alpha = 0$, $\beta_{\text{eff}} \approx 0$ at T+1.
- 3. Blend with weak market prior (w_m small or calibrated to 0).
- 4. Calibrate daily residual σ on rolling fit.
- 5. Map level forecast to event probability: $1 \Phi((\tau \mu)/\sigma)$.
- 6. Render tables and four core figures; package memo.

Data provenance & notes

- AAA daily values are taken from the public dashboard; the as-of date is reflected in the snapshot table.
- EIA weekly retail series provides a slow-moving anchor and bias check; it is *not* the resolver for this round.
- RBOB quotes (front month) and WTI spot context are used for pass-through diagnostics only; at T+1 their influence on the national retail index is minimal.
- Tropical and outage risks are reviewed at a high level (NOAA NHC; major U.S. infrastructure headlines); none justify a national +6¢ move overnight.

Additional Quant Diagnostics (compact)

Brier decomposition. For binary events with forecasts p_i and outcomes $y_i \in \{0, 1\}$,

$$BS = \frac{1}{N} \sum_{i=1}^{N} (p_i - y_i)^2 = \underbrace{\bar{y}(1 - \bar{y})}_{\text{uncertainty}} - \underbrace{\sum_{k} \frac{n_k}{N} (\bar{y}_k - \bar{y})^2}_{\text{resolution}} + \underbrace{\sum_{k} \frac{n_k}{N} (\bar{p}_k - \bar{y}_k)^2}_{\text{reliability}}.$$
 (4)

Our freeze achieves lower BS than carry (see main text); the reliability/ calibration curve (Fig. 4) shows near-diagonal behavior.

Lead–lag pass-through. For horizons $h \in \{1, 3, 7\}$, a distributed-lag regression

$$\Delta AAA_{t+h} = \alpha_h + \sum_{\ell=0}^{L} \beta_{h,\ell} \, \Delta RBOB_{t-\ell} + \varepsilon_{t,h}$$
 (5)

yields $\beta_{1,\ell} \approx 0$ (tiny one-day pass-through), with nonzero mass appearing by $h \geq 3$. Our freeze enforces this by setting $\alpha = 0$ and $\beta_{\text{eff}} \approx 0$ at T+1.

Robust residuals (optional). A Student- t_{ν} residual ($\nu \in [5, 10]$) can hedge fat tails; in practice, it did not change the T+1 exceedance materially, so we keep Gaussian for simplicity.

Optional: Position EV & Size (illustrative)

Let p = 0.003 be our Yes probability and let prices be in cents.

$$EV_{Yes} = 100p - price_{Yes}$$
 (ignoring fees) (6)

$$EV_{N_0} = 100(1-p) - price_{N_0}.$$
 (7)

Example: at 5 c for Yes, $EV_{Yes} = 0.3 - 5 = -4.7$ c (unattractive). At 98 c for No, $EV_{No} = 99.7 - 98 = +1.7$ c (attractive). Use your repo's fee-aware functions for exact figures.