Løsningsforslag til oblig 2, MAT1110, V-08

Oppgave 1: a) Programmet kan f.eks. se slik ut:

```
function [x,y]=0blig2(a,b,N)

x=[a];

y=[b];

for n=1:N

x(n+1)=1.2*x(n)-0.15*y(n);

y(n+1)=0.1*x(n)+0.95*y(n);

end
```

b) Vi kjører programmet og lager figur med kommandoene:

```
>> [x,y]=Oblig2(200,100,15);
>> plot(x)
>> hold on
>> plot(y,'r')
```

Figuren blir seende slik ut:

c) Vi bruker nå kommandoene

```
>> hold off
>> [x,y]=Oblig2(100,200,15);
>> plot(x)
>> hold on
>> plot(y,'r')
```

og får dette resultatet:

Vi ser at verdiene etterhvert blir negative. Dette svarer til at bestandene dør ut.

- d) Ved å eksperimentere litt med programmet, ser vi at vi må velge N rundt 40 for å se at bestandene dør ut. Vi bruker kommandoene
- >> hold off
 >> [x,y]=Oblig2(95,105,40);
 >> plot(x)
 >> hold on
 >> plot(y,'r')

og får dette resultatet:

e) Jeg overlater eksperimenteringen til dere. Systematisk gjennomført vil den antyde at bestandene dør ut når $y_1 > x_1$, men at bestanden ellers overlever. Vi skal vise at dette er tilfellet i oppgave 3.

Oppgave 2: a) Det er lett å overbevise seg selv om dette ved å starte nedenfra:

$$A^{2}\mathbf{v} = A(A\mathbf{v}) = A(\lambda\mathbf{v}) = \lambda A\mathbf{v} = \lambda(\lambda\mathbf{v}) = \lambda^{2}\mathbf{v}$$
$$A^{3}\mathbf{v} = A(A^{2}\mathbf{v}) = A(\lambda^{2}\mathbf{v}) = \lambda^{2}A\mathbf{v} = \lambda^{2}(\lambda\mathbf{v}) = \lambda^{3}\mathbf{v}$$

osv. Vil du være mer formell, kan du føre et induksjonsbevis.

b) Vi gir kommandoene

Dette viser at $\mathbf{u}_1 = \begin{pmatrix} 0.8321 \\ 0.5547 \end{pmatrix}$ er en egenvektor med egenverdi 1.1 og at $\mathbf{u}_2 = \begin{pmatrix} 0.7071 \\ 0.7071 \end{pmatrix}$ er en egenvektor med egenverdi 1.05.

c) Vi regner ut

$$A\mathbf{v}_1 = \begin{pmatrix} 1.2 & -0.15 \\ 0.1 & 0.95 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3.3 \\ 2.2 \end{pmatrix} = 1.1\mathbf{v}_1$$

som viser at \mathbf{v}_1 er en egenvektor med egenverdi 1.1. Tilsvarende viser

$$A\mathbf{v}_2 = \begin{pmatrix} 1.2 & -0.15 \\ 0.1 & 0.95 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1.05 \\ 1.05 \end{pmatrix} = 1.05\mathbf{v}_2$$

at \mathbf{v}_2 er en egenvektor med egenverdi 1.05

De to vektorene \mathbf{v}_1 og \mathbf{v}_2 er skalare multipler av de egenvektorene \mathbf{u}_1 og \mathbf{u}_2 som MATLAB fant i forrige punkt; $\mathbf{v}_1 = \sqrt{13} \, \mathbf{u}_1$ og $\mathbf{v}_2 = \sqrt{2} \, \mathbf{u}_1$. Grunnen til de "rare" valgene er at MATLAB alltid velger egenvektorer med lengde 1.

d) Det er nok å vise at den reduserte trappeformen til matrisen $B = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$ er lik I_2 (i sa fall er nemlig søylene lineært uavhengige, og danner dermed en basis ifølge setning 4.6.10). Bruker vi MATLAB, får vi

som viser at $\mathbf{v}_1, \mathbf{v}_2$ danner en basis.

e) Vi må finne z og u slik at

$$z\left(\begin{array}{c}3\\2\end{array}\right)+u\left(\begin{array}{c}1\\1\end{array}\right)=\left(\begin{array}{c}a\\b\end{array}\right)$$

dvs. vi må løse ligningssystemet

$$3z + u = a$$
 og $2z + u = b$

Trekker vi den andre ligningen fra den første, får vi z = a - b, og setter vi dette inn i en av ligningene, ser vi at u = 3b - 2a.

Oppgave 3: a) Per definisjon er

$$\mathbf{r}_{n+1} = \left(\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array} \right) = \left(\begin{array}{c} 1.2x_n - 0.15y_n \\ 0.1x_n + 0.95y_n \end{array} \right) = \left(\begin{array}{cc} 1.2 & -0.15 \\ 0.1 & 0.95 \end{array} \right) \left(\begin{array}{c} x_n \\ y_n \end{array} \right) = A\mathbf{r}_n$$

Bruker vi dette, får vi: $\mathbf{r}_2 = A\mathbf{r}_1, \mathbf{r}_3 = A\mathbf{r}_2 = A(A\mathbf{r}_1) = A^2\mathbf{r}_1, \mathbf{r}_4 = A\mathbf{r}_3 = A(A^2\mathbf{r}_1) = A^3\mathbf{r}_1$ osv. som viser at $\mathbf{r}_n = A^{n-1}\mathbf{r}_1$. Vil du ha et mer formelt bevis, kan du bruke induksjon.

b) Ifølge resultatet i forrige punkt har vi:

$$\mathbf{r}_n = A^{n-1}\mathbf{r}_1 = A^{n-1}(z\mathbf{v}_1 + u\mathbf{v}_2) =$$

= $zA^{n-1}\mathbf{v}_1 + uA^{n-1}\mathbf{v}_2 = z\lambda^{n-1}\mathbf{v}_1 + u\lambda^{n-1}\mathbf{v}_2$

der vi også har brukt resultatet fra 2a).

c) Ifølge oppgave 2 er $\mathbf{v}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\lambda_1 = 1.1$, $\lambda_2 = 1.05$, z = a - b og u = 3b - 2a. Kombinerer vi dette med resultatet i forrige punkt, ser vi at

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \mathbf{r}_n = z\lambda^{n-1}\mathbf{v}_1 + u\lambda^{n-1}\mathbf{v}_2 =$$

$$= (a-b)1.1^{n-1} \begin{pmatrix} 3 \\ 2 \end{pmatrix} + (3b-2a)1.05^{n-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 3(a-b)1.1^{n-1} - (2a-3b)1.05^{n-1} \\ 2(a-b)1.1^{n-1} - (2a-3b)1.05^{n-1} \end{pmatrix}$$

som gir oss uttrykkene for x_n og y_n .

- d) Siden 1.1 > 1.05, vil 1.1^{n-1} vokse raskere enn 1.05^{n-1} , og blir n stor nok vil derfor $|3(a-b)1.1^{n-1}|$ være større enn $|(2a-3b)1.05^{n-1}|$ (forutsatt at $3(a-b) \neq 0$)). Er derfor a < b, vil uttrykket for x_n før eller senere bli negativt, og den første dyrestammen dør ut. Et helt tilsvarende argument viser at y_n før eller senere blir negativ.
- e) La oss først se på tilfellet a = b. Da er $x_n = y_n = a1.05^{n-1}$. Siden $x_1 = y_1 > 0$, må a > 0, og følgelig er $x_n = y_n > 0$ for alle n.

La oss så se på tilfellet a > b. Siden $x_1 > 0$, er 3(a-b) > 2a-3b. Dermed er (husk at 3(a-b) > 0)

$$3(a-b)1.1^{n-1} \ge 3(a-b)1.05^{n-1} > (2a-3b)1.05^{n-1}$$

som viser at $x_n > 0$ for alle n. Et helt tilsvarende argument viser at $y_n > 0$ for alle n.