Multivariable Calculus Constrained Optimization

Spring 2024

Constrained optimization

Constrained optimization takes various forms, depending on the assumptions.

Three kinds of constraints:

- Domain
- ② Side condition of the form g(x) = k
- 3 A mix of those

Typically, people will write as follows

minimize
$$f(x)$$

subject to $g(x) = k$.

Absolute Max / Min

Theorem

If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

To find the absolute maximum and minimum values of a continuous function f on a closed, bounded set D:

- Find the values of f at the critical points of f in D.
- \odot Find the extreme values of f on the boundary of D.
- The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Example

Find the absolute maximum and minimum values of the function

$$f(x,y) = x^2 - 2xy + 1/2y$$
 on the rectangle $D = \{(x,y) \mid 0 \le x \le 3, 0 \le y \le 2\}.$

Constrained optimization

Theorem (Method of Lagrange Multiplier)

Suppose the maximum/minimum values of f exist and $\nabla g(\mathbf{x}) \neq 0$ where $g(\mathbf{x}) = k$. To find the maximum and minimum values of f subject to constraint $g(\mathbf{x}) = k$, we do the following:

1 Find all values of **x** and $\lambda \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x}),$$

and

$$g(\mathbf{x}) = k$$
.

2 Evaluate f at all the points \mathbf{x} that result from step 1. The largest of these values is the maximum of f; the smallest is the minimum value of f.

Example

https://youtu.be/hQ4UNu1P2kw

Worksheet

Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (1,1,1).

Two constraints

Problem 15 from

https://activecalculus.org/multi/S-10-8-Lagrange-Multipliers.html

