

is it phishing?

By: Batoul Alosaimi Norah Alqahtani Shroaq Almutiri

INTRODACTION AND SOME STATISTICE

According to Google Safe Browsing; Google has registered 2,145,013 phishing sites as of Jan 17, 2021. This is up from 1,690,000 on Jan 19, 2020 (up 27% over 12 months).

INTRODACTION AND SOME STATISTICE

other: 26.00%

INTRODACTION AND SOME STATISTICE

 IBM found that customers' personally identifiable information (PII) was both the most commonly compromised type of data and the costliest.

METHODOLOGY

DATA SET

- Public source from Declaration on Scientific paper named 'Phishing URL Classification using Machine Learning'

- Size

- Target

EXAPLORTY DATA ANALYISI

Target:

EXAPLORTY DATA ANALYISI

correlation between the Target and features, and between each features

Data Preparation

Data Cleaning:

- Find and drop null values.
- Find duplicated.

Feature Engineering:

- we can see that 'protocol' column has no values but 0 in it so we will drop it.
- The scale of at_the_rate column is deferent than the other columns.

Splitting the data

MODELLING

EVALUATING

Table showing all confusion matrix values of the models.

	Model	Accuracy	Recall	Precision	F1 score
0	KNN	0.860833	0.873355	0.855072	0.864117
1	Logistic Regression	0.755833	0.789474	0.744186	0.766161
2	Decision Tree	0.851667	0.837171	0.865646	0.851171
3	Random Forest	0.884167	0.881579	0.888889	0.885219
4	Naive Bayes	0.744167	0.523026	0.949254	0.674443
5	SVM	0.775833	0.856908	0.741110	0.794813
6	XGBoost	0.877500	0.875000	0.882255	0.878613
7	StackingClassifier	0.889167	0.891447	0.889984	0.890715

ROC CURVE

Best model for our project (Random Forest)

Flask API

- Save the Model
- Create fanction which take URL and extract its features
- Buils website using Flask API
- http://127.0.0.1:5000/

Conclusion

- Our model solve the problem of classifing URLs with accuricy(0.93) and F1(0.93)
- By comparing our results with the results of the previous work; our accuracy is better where theirs is 0.87

FUTUER WORK

- Publish a website
- Improving the Model until F1= 0.96
- Create ourown Dataset

THANKS!