Soit un ensemble de points (x_n, t_n) qu'on veut modéliser par une régression linéaire (une variable dépendante et une variable indépendante) :

$$y_n = w_1 + w_2 \ x_n$$

Considérons la procédure suivante : on forme des couples (w_1, w_2) pour quadriller l'espace des paramètres. Pour chaque couple (w_1, w_2) , on calcule la log-vraisemblance pour produire le triplet (w_1, w_2, l)

$$l = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2$$

C'est le graphique contour de gauche. Maintenant, transformons chaque couple (w_1, w_2, l) en un couple (w_1^*, w_2^*, l) selon la relation suivante :

$$\vec{w} = [w_1, w_2]^T$$
 $w_1^* = \vec{u_1}^T \vec{w}$
 $w_2^* = \vec{u_2}^T \vec{w}$

où u_1 et u_2 sont les vecteurs propres unitaires de la matrice $\mathbf{\Phi}^T\mathbf{\Phi}$. C'est le graphique contour de droite. Ça permet de mieux comprendre la figure 3.15 dans Bishop.

