TERMODINAMICA CLÁSSICA

Prof. Dr. Andrés Armando Mendiburu Zevallos

Prof. Dr. Andrés Armando Mendiburu Zevallos

Arcsin(2) 0°=1[a0] 5. Formulações Alternativas e Transformações de Legendre Prof. Dr. Andrés Armando Mendiburu Zevallos

O formalismo desenvolvido na seção 5.2 aplica-se considerando, por exemplo, a relação fundamental energética:

$$U = U(S, X_1, X_2, ...X_t)$$

As derivadas P_0 , P_1 ,... Correspondem aos parâmetros intensivos T, -p, μ_i

As funções obtidas aplicando a Transformação de Legendre são chamadas <u>Potenciais</u> <u>Termodinâmicos</u>.

5.3.1. O Potencial de Helmholtz ou Energia Livre de Helmholtz

O Potencial de Helmholtz

- É a transformação parcial de Legendre de U.
- A entropia é substituída pela temperatura como variável independente.
- O símbolo adotado é F.

$$F = U[T]$$
 (5.38) Notação sistemática

$$U = U(S, X_1, X_2, ...X_t) \Rightarrow F = F(T, X_1, X_2, ...X_t)$$

5.3.1. O
Potencial de
Helmholtz ou
Energia Livre
de Helmholtz

• A relação entre a representação energética e a representação de Helmholtz é apresentada a seguir.

Energia Interna	Potencial de Helmholtz
$U = U(S, V, N_1, N_2,)$	$F = F(T, V, N_1, N_2,) (5.39)$
$T = \partial U / \partial S$	$-S = \partial F / \partial T (5.40)$
F = U - TS	U = F + TS (5.41)
Eliminando U e S	Eliminando F e T
$F = F(T, V, N_1, N_2,)$	$U = U(S, V, N_1, N_2,)$

$$dF = -SdT - pdV + \mu_1 dN_1 + \mu_2 dN_2 + \dots$$
 (5.42)

5.3.2. A Entalpia

A Entalpia

- É a transformação parcial de Legendre de U.
- O volume é substituído pela pressão como variável independente.
- O símbolo adotado é H.

$$H = U[p]$$
 (5.43)

$$U = U(S, V, X_1, ...X_t) \Rightarrow H = H(S, p, X_1, ...X_t)$$

5.3.2. A Entalpia

• A relação entre a representação energética e a representação da Entalpia é apresentada a seguir.

Energia Interna	A Entalpia
$U = U(S, V, N_1, N_2,)$	$H = H(S, p, N_1, N_2,)$ (5.44)
$-p = \partial U / \partial V$	$V = \partial H / \partial p (5.45)$
H = U + pV	U = H - pV (5.46)
Eliminando U e V	Eliminando H e p
$H = H(S, p, N_1, N_2,)$	$U = U(S, V, N_1, N_2,)$

$$dH = TdS + Vdp + \mu_1 dN_1 + \mu_2 dN_2 + \dots$$
 (5.47)

O Potencial de Gibbs

5.3.3. O Potencial de Gibbs ou Energia Livre de Gibbs

- É a transformação parcial de Legendre de U.
- A entropia e o volume são substituídos pela temperatura e pressão como variáveis independentes.
- O símbolo adotado é G.

$$G = U[T, p]$$
 (5.48)

$$U = U(S, V, X_1, ...X_t) \Rightarrow G = G(T, p, X_1, ...X_t)$$

5.3.3. O Potencial de Gibbs ou Energia Livre de Gibbs • A relação entre a representação energética e a representação de Gibbs é apresentada a seguir.

Energia Interna	Potencial de Gibbs
$U = U(S, V, N_1, N_2,)$	$G = G(T, p, N_1, N_2,)$ (5.49)
$T = \partial U / \partial S$	$-S = \partial G / \partial T (5.50)$
$-p = \partial U / \partial V$	$V = \partial G / \partial p (5.51)$
G = U - TS + pV	U = G + TS - pV (5.52)
Eliminando U, S e V	Eliminando G, T e p
$G = G(T, p, N_1, N_2,)$	$U = U(S, V, N_1, N_2,)$

$$dG = -SdT + Vdp + \mu_1 dN_1 + \mu_2 dN_2 + \dots$$
 (5.53)

O Potencial Canônico

- É a transformação parcial de Legendre de U.
- A entropia e o número de mols são substituídos pela temperatura e potencial químico como variáveis independentes.

$$U[T,\mu]$$

$$U = U(S, V, X_2, ...X_t) \Rightarrow U[T, \mu] = f(T, V, \mu_1, ...\mu_t)$$

5.3.4. O Potencial Canônico

5.3.4. O Potencial Canônico

• A relação entre a representação energética e a representação Canônica é apresentada a seguir.

Energia Interna	Potencial Canônico
$U = U(S, V, N_1, N_2,)$	$U[T, \mu] = f(T, V, \mu_j,)$ (5.54)
$T = \partial U / \partial S$	$-S = \partial U [T, \mu] / \partial T (5.55)$
$\mu = \partial U / \partial N$	$-N = \partial U [T, \mu] / \partial \mu (5.56)$
$U[T,\mu] = U - TS - \mu N$	$U = U[T, \mu] + TS + \mu N (5.57)$
Eliminando U, S e N	Eliminando U[Τ,μ], T e μ
$U[T,\mu] = f(T,V,\mu_j)$	$U = U(S, V, N_1, N_2,)$

$$dU[T,\mu] = -SdT - pdV - N_j d\mu_j + \dots \quad (5.58)$$

PROBLEMA 5.3-1:

Obter a equação fundamental para um gás perfeito monoatómico nas seguintes representações:

- a) Potencial de Helmholtz
- b) Equação da Entalpia
- c) Potencial de Gibbs.

Assumir a equação fundamental obtida na seção 3.4 do capítulo 3.

Em cada caso obter as equações de estado diferenciando a equação fundamental.

PROBLEMA 5.3-1:

Temos a seguinte equação fundamental

$$S = Ns_0 + NR \ln \left[\left(\frac{U}{U_0} \right)^c \left(\frac{V}{V_0} \right) \left(\frac{N}{N_0} \right)^{-(c+1)} \right]$$

Quais serão os passos para obter as transformações?

PROBLEMA 5.3-1:

1) Expressar a equação fundamental na forma energética

2) Obter as funções que representam os parâmetros intensivos desejados.

2.5) Isso é conseguido derivando a equação fundamental energética pelo parâmetro extensivo correspondente.

3) Escrever o Potencial em termos da equação fundamental energética e da função que representa ao parâmetro intensivo.

PROBLEMA 5.3-1:

3.5) Por exemplo, para o potencial de Helmholtz: F = U – TS.

4) Expressar os parâmetros extensivos a serem substituídos em termos dos parâmetros intensivos desejados.

4.5) Por exemplo, no caso do potencial de Helmholtz:

Isolar S na expressão de T.

5) Substituir a expressão dos parâmetros extensivos obtidos no passo 4 na expressão do potencial obtida no passo 3 e rearranjar.

PROBLEMA 5.3-1:

Vamos resolver juntos a parte (a) do problema, é dizer, iremos obter o Potencial de Helmholtz.

Realizaremos o procedimento passo a passo, e vocês terão um tempo para realizar cada um dos passos do problema.

Precisam de papel e caneta.

Primeiro passo: 3 minutos de tempo

5.3. Potenciais Termodinâmicos

PROBLEMA 5.3-1: Primeiro Passo

Expressar a equação fundamental na forma energética

partida

Nosso ponto de partida
$$S = Ns_0 + NR \ln \left[\left(\frac{U}{U_0} \right)^c \left(\frac{V}{V_0} \right) \left(\frac{N}{N_0} \right)^{-(c+1)} \right]$$

Primeiro passo: Solução

PROBLEMA 5.3-1: Primeiro Passo

Expressamos a equação fundamental na forma energética

$$S = Ns_0 + NR \ln \left[\left(\frac{U}{U_0} \right)^c \left(\frac{V}{V_0} \right) \left(\frac{N}{N_0} \right)^{-(c+1)} \right]$$

$$S_0 = Ns_0$$

$$U = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (a)$$

1) Expressar a equação fundamental na forma energética

Primeiro passo: alguns detalhes da solução

$$S = Ns_0 + NR \ln \left[\left(\frac{U}{U_0} \right)^c \left(\frac{V}{V_0} \right) \left(\frac{N}{N_0} \right)^{-(c+1)} \right]$$

$$\exp\left(\frac{S - Ns_0}{NR}\right) = \left(\frac{U}{U_0}\right)^c \left(\frac{V}{V_0}\right) \left(\frac{N}{N_0}\right)^{-(c+1)}$$

$$\left(\frac{N}{N_0}\right)^{(c+1)} \left(\frac{V_0}{V}\right) \exp\left(\frac{S - Ns_0}{NR}\right) = \left(\frac{U}{U_0}\right)^c$$

Segundo passo: 5 minutos de tempo

PROBLEMA 5.3-1: Segundo Passo

Obter as funções que representam os parâmetros intensivos desejados.

Isso é conseguido derivando a equação fundamental energética pelo parâmetro extensivo correspondente. [Neste caso derivar em função de S]

Nosso avanço até aqui
$$U = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (a)$$

Segundo passo: Solução

PROBLEMA 5.3-1: Segundo Passo

Devemos obter a temperatura derivando a equação fundamental em função de S.

$$T = \left(\frac{\partial U}{\partial S}\right)_{V,N} = \frac{\partial}{\partial S} \left[U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \right]_{V,N}$$

Efetuando a derivada parcial obtemos

$$T = \left(\frac{\partial U}{\partial S}\right)_{V,N} = \frac{U_0}{cNR} \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) = \frac{U}{cNR} \quad (b)$$

Segundo passo: alguns detalhes da solução

2) Obter as funções que representam os parâmetros intensivos desejados.

2.5) Isso é conseguido derivando a equação fundamental energética pelo parâmetro extensivo correspondente.

$$T = \left(\frac{\partial U}{\partial S}\right)_{N,V} = \frac{\partial}{\partial S} \left[U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \right]_{N,V}$$

$$T = \left(\frac{\partial U}{\partial S}\right)_{N,V} = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \frac{\partial}{\partial S} \left[\exp\left(\frac{S - S_0}{cNR}\right)\right]_{N,V}$$

$$T = \left(\frac{\partial U}{\partial S}\right)_{N,V} = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \frac{1}{cNR} \exp\left(\frac{S - S_0}{cNR}\right)$$

Terceiro passo: 5 minutos de tempo

PROBLEMA 5.3-1: Terceiro Passo

Escrever a nova representação em termos da equação fundamental na representação energética e da função que representa ao parâmetro intensivo.

Por exemplo, para o potencial de Helmholtz: F = U - TS.

$U = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (a)$

$$T = \left(\frac{\partial U}{\partial S}\right)_{V,N} = \frac{U_0}{cNR} \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) = \frac{U}{cNR} \quad (b)$$

5.3. Potenciais Termodinâmicos

Nosso avanço até aqui

Terceiro passo: Solução

PROBLEMA 5.3-1: Segundo Passo

Substituindo as Eqs. (a) e (b) na Eq. (5.41) e rearranjando:

$$U = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (a)$$

$$F = U - TS$$
 (5.41)

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \left[1 - \frac{S}{cNR}\right] \quad (c)$$

3) Escrever o Potencial em termos da equação fundamental energética e da função que representa ao parâmetro intensivo.

3.5) Por exemplo, para o potencial de Helmholtz: F = U – TS.

Terceiro passo: alguns detalhes da solução

$$F = U - TS$$

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) - \frac{U_0}{cNR} \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) S$$

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) - U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \frac{S}{cNR}$$

$$\frac{Podemos_agrupar}{Podemos_agrupar}$$

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \left[1 - \frac{S}{cNR}\right]$$

Quarto passo: 3 minutos de tempo

PROBLEMA 5.3-1: Quarto Passo

Expressar os parâmetros extensivos a serem substituídos em termos dos parâmetros intensivos desejados.

Por exemplo, no caso do potencial de Helmholtz: Isolar S na expressão de T.

5.3. Potenciais Termodinâmicos

$$U = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (a)$$

$$T = \frac{U_0}{cNR} \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (b)$$

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \left[1 - \frac{S}{cNR}\right] \quad (c)$$

Prof. Dr. Andrés Armando Mendiburu Zevallos

Quarto passo: Solução

PROBLEMA 5.3-1: Quarto Passo

Isolando S na Eq. (b), temos

$$T = \frac{U_0}{cNR} \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (b)$$

$$S = cNR \ln \left[T \left(\frac{cNR}{U_0} \right) \left(\frac{N}{N_0} \right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V} \right)^{-1/c} \right] + S_0 \quad (d)$$

4) Expressar os parâmetros extensivos a serem substituídos em termos dos parâmetros intensivos desejados.

4.5) Por exemplo, no caso do potencial de Helmholtz:Isolar S na expressão de T.

Quarto passo: alguns detalhes da solução

$$T = \frac{U_0}{cNR} \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (b)$$

$$T\left(\frac{cNR}{U_0}\right)\left(\frac{N}{N_0}\right)^{-\frac{c+1}{c}}\left(\frac{V_0}{V}\right)^{-1/c} = \exp\left(\frac{S - S_0}{cNR}\right)$$

$$\ln \left[T \left(\frac{cNR}{U_0} \right) \left(\frac{N}{N_0} \right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V} \right)^{-1/c} \right] = \left(\frac{S - S_0}{cNR} \right)$$

Quinto passo: 5 minutos de tempo

PROBLEMA 5.3-1: Quinto Passo

Substituir a expressão dos parâmetros extensivos obtidos no passo 4 na expressão do potencial obtida no passo 3 e rearranjar.

[Neste caso obtemos S em termos de T]

5.3. Potenciais Termodinâmicos

Nosso avanço até aqui

$$U = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \quad (a)$$

$$S = cNR \ln \left[T \left(\frac{cNR}{U_0} \right) \left(\frac{N}{N_0} \right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V} \right)^{-1/c} \right] + S_0 \quad (d)$$

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \left[1 - \frac{S}{cNR}\right] \quad (c)$$

Prof. Dr. Andrés Armando Mendiburu Zevallos

Quinto passo: Solução

PROBLEMA 5.3-1: Quinto Passo

Substituindo a Eq. (d) na Eq. (c) e rearranjando

$$S = cNR \ln \left[T \left(\frac{cNR}{U_0} \right) \left(\frac{N}{N_0} \right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V} \right)^{-1/c} \right] + S_0 \quad (d)$$

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S - S_0}{cNR}\right) \left[1 - \frac{S}{cNR}\right] \quad (c)$$

$$F = cNRT - NRT \ln \left[\left(\frac{cNRT}{U_0} \right)^c \left(\frac{N}{N_0} \right)^{-(c+1)} \left(\frac{V}{V_0} \right) \right] - TNs_0 \quad (e)$$

Quinto passo: alguns detalhes da solução

5) Substituir a expressão dos parâmetros extensivos obtidos no passo 4 na expressão do potencial obtida no passo 3 e rearranjar.

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \exp\left(\frac{S}{cNR} - \frac{S_0}{cNR}\right) \left[1 - \frac{S}{cNR}\right] \quad (c^*)$$

$$\frac{S}{cNR} = \ln \left[T \left(\frac{cNR}{U_0} \right) \left(\frac{N}{N_0} \right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V} \right)^{-1/c} \right] + \frac{S_0}{cNR} \quad (d^*)$$

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \left[T\left(\frac{cNR}{U_0}\right) \left(\frac{N}{N_0}\right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{-1/c}\right] \left\{1 - \ln\left[T\left(\frac{cNR}{U_0}\right) \left(\frac{N}{N_0}\right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{-1/c}\right] - \frac{S_0}{cNR}\right\}$$

Quinto passo: alguns detalhes da solução

$$F = U_0 \left(\frac{N}{N_0}\right)^{\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{1/c} \left[T\left(\frac{cNR}{U_0}\right) \left(\frac{N}{N_0}\right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{-1/c}\right] \left\{1 - \ln\left[T\left(\frac{cNR}{U_0}\right) \left(\frac{N}{N_0}\right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V}\right)^{-1/c}\right] - \frac{S_0}{cNR}\right\}$$

5) Substituir a expressão dos parâmetros extensivos obtidos no passo 4 na expressão do potencial obtida no passo 3 e rearranjar.

$$F = cNRT \left\{ 1 - \ln \left[T \left(\frac{cNR}{U_0} \right) \left(\frac{N}{N_0} \right)^{-\frac{c+1}{c}} \left(\frac{V_0}{V} \right)^{-1/c} \right] - \frac{S_0}{cNR} \right\}$$

$$F = cNRT - NRT \ln \left[T \left(\frac{cNR}{U_0} \right) \left(\frac{N}{N_0} \right)^{-(c+1)} \left(\frac{V}{V_0} \right) \right] - TS_0$$

Quinto passo: Solução

PROBLEMA 5.3-1: Quinto Passo

Fazendo:

$$U_0 = cN_0RT_0$$

$$F_0 = U_0 - N_0 s_0 T_0$$

E rearranjando

$$F = NRT \left\{ \frac{F_0}{N_0 R T_0} - \ln \left[\left(\frac{T}{T_0} \right)^c \left(\frac{N}{N_0} \right)^{-1} \left(\frac{V}{V_0} \right) \right] \right\}$$

5.4. Funções generalizadas de Massieu

- O desenvolvimento é análogo àquele apresentado no item 5.3
- O único que muda é que partimos da representação entrópica.
- As funções generalizadas de Massieu têm menos uso na prática.

RECOMENDAÇÃO PARA OS GRUPOS

Resolver as partes (b) e (c) do Problema 5.3-1.

[Resumo passos]

PROBLEMA 5.3-1:

Os passos são os seguintes:

- 1. Expressar a equação fundamental na forma energética
- 2. Obter as funções que representam os parâmetros intensivos desejados. Isso é conseguido derivando a equação fundamental energética pelo parâmetro extensivo correspondente.
- 3. Escrever a nova representação em termos da equação fundamental na representação energética e da função que representa ao parâmetro intensivo. Por exemplo, para o potencial de Helmholtz: F = U TS.
- 4. Expressar os parâmetros extensivos a serem substituídos em termos dos parâmetros intensivos desejados. Por exemplo, no caso do potencial de Helmholtz: Isolar S na expressão de T.
- 5. Substituir a expressão dos parâmetros extensivos obtidos no passo 4 na expressão do potencial obtida no passo 3 e rearranjar.