CAPITULO I

MATRICES

Definición

Una matriz de orden $m \times n$, con coeficientes en K (con K igual a $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$) es un arreglo rectangular de elementos de la forma :

donde cada valor $a_{ij} \in K$ se dice coeficiente (i, j) de la matriz A

Notación

$$oldsymbol{A} = \left[oldsymbol{a}_{ij}
ight]_{\scriptscriptstyle{m imes n}}$$

Consideremos:

$$\boldsymbol{M}_{\scriptscriptstyle{m \times n}}(\boldsymbol{K}) = \{ \boldsymbol{A} \ / \boldsymbol{A} = [\ \boldsymbol{a}_{ij}\] \ ; 1 \leq i \leq m \ ; 1 \leq j \leq n \ ; \boldsymbol{a}_{ij} \in \boldsymbol{K} \}$$

diremos que:

1.- La fila \boldsymbol{i} de \boldsymbol{A} es $[\boldsymbol{a}_{i1} \quad \boldsymbol{a}_{i2} \quad . \quad . \quad \boldsymbol{a}_{in}]$ la cual denotaremos por

 $A_{i\cdot}$ ò $fil_i(A)$ (se le llama tambien vector fila)

2.- La columna $m{j}$ de $m{A}$ es $egin{bmatrix} m{a}_{1j} \\ m{a}_{2j} \\ . \\ . \\ m{a}_{mj} \end{bmatrix}$ la cual denotaremos por

 A_{j} à $col_{j}(A)$ (se le llama tambien vector columna)

3.- \boldsymbol{A} es una matriz de orden $\boldsymbol{m} \times \boldsymbol{n}$ si $\boldsymbol{A} \in \boldsymbol{M}_{\scriptscriptstyle m \times n}(\boldsymbol{K})$

Ejemplo

Si
$$\mathbf{A} = \begin{bmatrix} 3 & -2 & 0 \\ 1 & 5 & 8 \end{bmatrix}$$
 ; $\mathbf{B} = \begin{bmatrix} \sqrt{2} & -5 & \frac{1}{2} & 4 \\ 0 & 1 & 0 & 2 \\ 0 & 3 & -1 & 1 \end{bmatrix}$

se tiene que:

$$A \in M_{2\times 3}(\mathbb{Z})$$
 ò $A \in M_{2\times 3}(\mathbb{Q})$ ò $A \in M_{2\times 3}(\mathbb{R})$

$$B \in M_{\scriptscriptstyle 3 \times 4}(\mathbb{R})$$
 ò $B \in M_{\scriptscriptstyle 3 \times 4}(\mathbb{C})$

$$egin{aligned} m{A}_{2\cdot} &= m{fil}_2(m{A}) = \begin{bmatrix} 1 & 5 & 8 \end{bmatrix} \quad ; \quad m{A}_{\cdot 2} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} \\ m{B}_{\cdot 3} &= col_3(m{A}) = \begin{bmatrix} rac{1}{2} \\ 0 \\ -1 \end{bmatrix} \quad ; \quad m{B}_{1\cdot} = \begin{bmatrix} \sqrt{2} & -5 & rac{1}{2} & 4 \end{bmatrix} \\ m{a}_{22} &= 5 \quad ; \quad m{b}_{24} = 2 \; ; \quad m{b}_{33} = -1 \quad ; \quad m{b}_{32} = 3 \quad ; \quad m{a}_{23} = 8 \end{aligned}$$

Observación

Si $\boldsymbol{n} = \boldsymbol{m}$, diremos que

 $M_{m \times n}(K) = M_n(K)$ es el conjunto de las matrices cuadradas de orden n, con coeficientes en K

Definición

Sean
$$A; B \in M_{\scriptscriptstyle{m \times n}}(K)$$
, $A = [a_{ij}]$, $B = [b_{ij}]$

Se dice que \boldsymbol{A} es igual a \boldsymbol{B} ($\boldsymbol{A} = \boldsymbol{B}$) ssi $\boldsymbol{a}_{ij} = \boldsymbol{b}_{ij}$ $\forall i, j$

Ejercicio

Dadas
$$\mathbf{A} = \begin{bmatrix} 3 & a^2 - 2a \\ 1 & b + a \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 0 & 4 \end{bmatrix}$

Determine $a, b \in \mathbb{R}$ (si \exists) tal que :

i)
$$A = B$$
 ; ii) $A = C$

Sean
$$A; B \in M_{_{m \times n}}(K)$$
, $A = [a_{ij}]$, $B = [b_{ij}]$

Se define la suma de matrices como:

$$oldsymbol{A} + oldsymbol{B} : = [oldsymbol{a}_{ij} + oldsymbol{b}_{ij}] \in oldsymbol{M}_{m imes n}(oldsymbol{K})$$

Observación

Solo se pueden sumar matrices de igual orden

Ejemplo

Sean
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 3 \\ 6 & 0 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 4 & -3 & 2 \\ 6 & 1 & 8 \end{bmatrix}$

se tiene que:

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 6 & -4 & 5 \\ 12 & 1 & 9 \end{bmatrix}$$

Definición

1. Llamaremos **matriz nula** de orden $m \times n$ a la matriz cuyos coeficientes son todos nulos y se denota por 0

$$0 = [0]$$

2. Dada $oldsymbol{A} = [oldsymbol{a}_{ij}] \in oldsymbol{M}_{m imes n}(oldsymbol{K})$,

se define
$$-\boldsymbol{A}:=[-\boldsymbol{a}_{ij}]\in \boldsymbol{M}_{\scriptscriptstyle{m\times n}}(\boldsymbol{K})$$

Si
$$\mathbf{A} = \begin{bmatrix} -2 & 4 & 5 & 0 \\ 1 & 0 & -3 & 2 \\ 3 & 6 & -1 & 0 \end{bmatrix}, \quad -\mathbf{A} = \begin{bmatrix} 2 & -4 & -5 & 0 \\ -1 & 0 & 3 & -2 \\ -3 & -6 & 1 & 0 \end{bmatrix}$$

Teorema

Sean $A; B; C \in M_{m \times n}(K)$, se cumple que :

1.
$$(A + B) + C = A + (B + C)$$

2.
$$A + B = B + A$$

3.
$$A + 0 = A$$

4.
$$A + - A = 0$$

Definición

Si
$$m{A} = [\,m{a}_{ij}\,\,] \in m{M}_{_{\!m imes n}}(m{K}) \;, m{B} = [\,m{b}_{ij}\,\,] \in m{M}_{_{\!m imes p}}(m{K})$$

se define el producto entre A y B como la matriz $A \cdot B$, donde :

$$m{A} \cdot m{B} = [m{c}_{ij}] \in m{M}_{m imes p}(m{K})$$
 con $m{c}_{ij} = \sum\limits_{k=1}^n m{a}_{ik} \cdot m{b}_{kj}$

Observación

El producto de matrices esta definido sólo cuando el número de columnas de la primera (A) es igual al número de filas de la segunda (B)

Ejercicio

Sean
$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 5 & 1 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} -2 & 5 & 2 & 0 \\ 1 & 6 & -3 & 6 \\ 3 & 0 & 4 & 9 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix}$

4

Determinar: $A \cdot B$, $B \cdot A$, $A \cdot C$

Observación

En general el producto de matrices no es conmutativo.

Sea $\lambda \in K$ y $A = [a_{ij}] \in M_{m \times n}(K)$ se define el producto escalar de A por el escalar λ como :

$$\lambda \cdot A = [\lambda \cdot a_{ij}] \in M_{m \times n}(K)$$

Ejemplo

Si
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 6 & -4 \\ 5 & 7 & 2 \end{bmatrix}$$
 y $\lambda = 2$

Se tiene que
$$2 \cdot \mathbf{A} = \begin{bmatrix} -2 & 4 & 6 \\ 0 & 12 & -8 \\ 10 & 14 & 4 \end{bmatrix}$$

Teorema

Sean λ , $\mu \in K$ y A; $B \in M_{_{m \times n}}(K)$; $C \in M_{_{n \times p}}(K)$ Se cumple que :

1.
$$(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A$$

2.
$$\lambda \cdot (A + B) = \lambda \cdot A + \lambda \cdot B$$

3.
$$(\lambda \cdot \mu) \cdot A = \lambda \cdot (\mu \cdot A)$$

4.
$$\lambda \cdot (A \cdot C) = (\lambda \cdot A) \cdot C = A \cdot (\lambda \cdot C)$$

Ejercicio

Encontrar las matrices:

$$A = [a_{ij}] \in M_{2\times 4}(\mathbb{R}) \text{ donde } a_{ij} = 2i - j,$$

$$\boldsymbol{B} = [\boldsymbol{b}_{ij}] \in \boldsymbol{M}_{4\times 3}(\mathbb{R})$$
 donde $\boldsymbol{b}_{ij} = (-1)^j \cdot (2i+j)$

y determinar :
$$\mathbf{A} \cdot (3 \cdot \mathbf{B}) + \mathbf{C}$$
 si $\mathbf{C} = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 5 & 1 \end{bmatrix}$

Si $A = [\mathbf{a}_{ij}] \in \mathbf{M}_{m \times n}(\mathbf{K})$ diremos que los coeficientes $\mathbf{a}_{11}, \mathbf{a}_{22},$ forman la diagonal principal de \mathbf{A}

Ejemplo:

Si
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 3 & 5 & -7 & 0 \\ 1 & 4 & -6 & 2 \end{bmatrix}$$
, se tiene que los coeficientes de la

diagonal principal son : -1, 5, -6

Definición

Lamaremos matriz identidad δ unitaria de orden n a la matriz

$$m{I}_n = [\, m{\delta}_{ij} \,\,] \in m{M}_{\scriptscriptstyle n}(m{K}) \;\; ext{donde} \;\; m{\delta}_{ij} = \left\{ egin{array}{ll} 1 & ; \; i = j \\ & & \\ 0 & ; \; i
eq j \end{array}
ight.$$

Ejemplo

$$\boldsymbol{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad ; \quad \boldsymbol{I}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Definición

Sea $A = [a_{ij}] \in M_n(K)$, diremos que A es una matriz diagonal ssi todos los coeficientes fuera de la diagonal principal son nulos

Ejemplo

$$m{A} = egin{bmatrix} 3 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 2 \end{bmatrix} \quad m{B} = egin{bmatrix} -4 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 6 \end{bmatrix}$$

son matrices diagonales

Observación

Si $A; B \in M_n(K)$ son matrices diagonales se cumple que: $\lambda \cdot A$, A + B, $A \cdot B$ son matrices diagonales y ademas $A \cdot B = B \cdot A$

Ejercicio

Si
$$\mathbf{A} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 $\mathbf{B} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$

Determinar: $\mathbf{A} \cdot \mathbf{B}$, $(2\mathbf{A} - 3\mathbf{B}) \cdot \mathbf{B}$

Teorema

Si cada operación tiene sentido, se cumple que:

1.-
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

2.- Dada
$$A \in M_{m \times n}(K)$$
 entonces $A \cdot I_n = A \land I_m \cdot A = A$

3.-
$$(A+B)\cdot C = A\cdot C + B\cdot C$$

4.-
$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

- 5.- El coeficiente c_{ij} de $A \cdot B$, se obtiene de multiplicar la fila i de A con la columna j de B, es decir : $c_{ij} = A_i \cdot B_j$.
 - 6.- La columna j de $A \cdot B$, se obtiene de multiplicar A por la columna j de B, es decir:

$$(\boldsymbol{A}{\cdot}\boldsymbol{B})_{\cdot j} = \boldsymbol{A}{\cdot}\boldsymbol{B}_{\cdot j}$$

7.- La fila i de $A \cdot B$, se obtiene de multiplicar la fila i de A por B, es decir:

7

$$(\boldsymbol{A}{\cdot}\boldsymbol{B})_{i\cdot} = \boldsymbol{A}_{i\cdot}{\cdot}\boldsymbol{B}$$

8.-
$$\lambda \cdot (A \cdot B) = (\lambda \cdot A) \cdot B = A(\lambda \cdot B)$$

Ejercicio

Dadas
$$\mathbf{A} = \begin{bmatrix} 3 & -2 \\ 1 & 4 \\ 5 & 0 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 2 & -3 & -1 & 6 \\ 8 & 5 & 4 & 3 \end{bmatrix}$

Si
$$C = [c_{ij}] = A \cdot B$$
, determinar:

$$\boldsymbol{c}_{23}$$
 , $\boldsymbol{col}_2(C)$, $\boldsymbol{fil}_3(C)$, C

Definición

Si $A = [a_{ij}] \in M_{m \times n}(K)$ llamaremos matriz traspuesta de A a la matriz que denotaremos por A^t donde

$$oldsymbol{A^t} = [oldsymbol{a}_{ji}] \in oldsymbol{M}_{\scriptscriptstyle n imes m}(oldsymbol{K})$$

Ejemplo

1.- Si
$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 1 & 5 \\ 3 & 0 \end{bmatrix}$$
 , $\mathbf{A}^t = \begin{bmatrix} 1 & 1 & 3 \\ -2 & 5 & 0 \end{bmatrix}$

2.- Si
$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 8 \\ 1 & -5 & 3 \\ 9 & \frac{1}{2} & 4 \end{bmatrix}$$
 , $\mathbf{A}^{t} = \begin{bmatrix} 2 & 1 & 9 \\ 4 & -5 & \frac{1}{2} \\ 8 & 3 & 4 \end{bmatrix}$

Teorema

Sean $\lambda \in K$ y $A; B \in M_{_{m \times n}}(K)$, $C \in M_{_{n \times p}}(K)$ Se cumple que :

1.-
$$(A^t)^t = A$$

2.-
$$(A + B)^t = A^t + B^t$$

3.-
$$(A \cdot C)^t = C^t \cdot A^t$$

4.-
$$(\boldsymbol{\lambda} \cdot \boldsymbol{A})^t = \boldsymbol{\lambda} \cdot \boldsymbol{A}^t$$

1.- Si $A = A^t$, diremos que A es simétrica

2.- Si $A = -A^t$, diremos que A es antisimétrica

Observación

La definición anterior es válida sólo para matrices cuadradas

Ejercicio:

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 8 \\ 4 & -5 & 3 \\ 8 & 3 & 4 \end{bmatrix}$$
es simétrica

$$m{B} = \left[egin{array}{ccc} 0 & 3 & -1 \ -3 & 0 & -5 \ 1 & 5 & 0 \end{array}
ight]$$
 es antisimétrica

Observación

1.- Si \boldsymbol{A} es antisimétrica entonces la diagonal principal es nula

2.- I_n , O_n son matrices simétricas

3.- Si A, B son simétricas entonces A + B, $\lambda \cdot A$ son simètricas

Definición

Dada la matriz $T = [t_{ji}] \in M_n(K)$

Diremos que T es una matriz :

1.- triangular superior ssi $t_{ji} = 0$ para i > j

2.- triangular inferior ssi $\mathbf{t}_{ji} = 0$ para i < j

Definición

Sea
$$A \in M_n(K)$$

se define : $A^0 = I_n$, $A^1 = A$, $A^{m+1} = A^m \cdot A \ \forall m \in \mathbb{N}$

9

Observación

$$(\boldsymbol{A} + \boldsymbol{B}) \cdot (\boldsymbol{A} - \boldsymbol{B}) = \boldsymbol{A}^2 - \boldsymbol{B}^2$$
 ssi $\boldsymbol{A} \cdot \boldsymbol{B} = \boldsymbol{B} \cdot \boldsymbol{A}$

Ejercicio:

1.- Si
$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ 0 & \frac{1}{2} \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 2 & 8 \\ 0 & -1 \end{bmatrix}$ se cumple que $(\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} - \mathbf{B}) = \mathbf{A}^2 - \mathbf{B}^2$
2.- Si $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$ no se cumple que $(\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} - \mathbf{B}) = \mathbf{A}^2 - \mathbf{B}^2$

Definición

Sea
$$A \in M_n(K)$$

Diremos que A es invertible ssi $\exists B \in M_n(K)$ tal que $A \cdot B = I_n$ en tal caso se dice que la matriz B es la matriz inversa de A y se denotara por : A^{-1}

Observación

- 1.- En caso contrario se dira que A no es invertible
- 2.- No todas las matrices cuadradas son invertibles

Ejemplo

Dada la matriz $\boldsymbol{A} = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$, determinar la inversa de \boldsymbol{A}

<u>Solución</u>

Sea
$$B=egin{bmatrix} x & y \ z & t \end{bmatrix}$$
 tal que $A\cdot B=I_n$, es decir
$$egin{bmatrix} 2 & 5 \ 1 & 3 \end{bmatrix}\cdot \begin{bmatrix} x & y \ z & t \end{bmatrix} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$
, con lo cual

$$\begin{bmatrix} 2x+5z & 2y+5t \\ x+3z & y+3t \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ por lo tanto}$$

2x + 5z	II	1	es decir	x	=	3
x+3z	=	0		y	=	-5
2y + 5t	=	0		z	=	- 1
y+3t		1		t	=	2

luego
$$A$$
 es invertible y se tiene que $\mathbf{A}^{-1}=\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$

Ejercicio

Determinar la inversa de
$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

Observación

Es claro que el mètodo anterior para determinar la inversa de una matriz es poco practico para matrices de orden mayor ,más adelante veremos un metodo más adecuado

Teorema

Sean $\lambda \in K$; $A,B \in M_n(K)$ invertibles, se cumple que:

1.-
$$(A^{-1})^{-1} = A$$

2.-
$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

3.-
$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}_n$$

4.-
$$(\boldsymbol{\lambda} \cdot \boldsymbol{A})^{-1} = \boldsymbol{\lambda}^{-1} \cdot \boldsymbol{A}^{-1}$$
 ; $\boldsymbol{\lambda} \neq 0$

5.-
$$(\mathbf{A}^t)^{-1} = (\mathbf{A}^{-1})^t$$

Ejemplo

Dadas las matrices
$$\mathbf{A} = \begin{pmatrix} 5 & -3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
; $\mathbf{B} = \begin{pmatrix} -3 & -1 & 0 \\ 1 & 4 & 2 \end{pmatrix}$;

$$oldsymbol{C} = \left(egin{array}{cccc} 4 & 5 & 3 \ -2 & -5 & -1 \ 0 & 2 & 1 \end{array}
ight) \qquad ; \quad ext{Determinar} : (oldsymbol{B}oldsymbol{A}^{ ext{t}})^2 - (oldsymbol{A}oldsymbol{B}^t)^2$$

Solución: Se desarrollará por partes.

$$\begin{pmatrix} \mathbf{B} & \cdot & \mathbf{A}^t \end{pmatrix}^2 & (\mathbf{B}\mathbf{A}^t)^2 & (\mathbf{B}\mathbf{A}^t)^2 \\ \begin{pmatrix} -3 & -1 & 0 \\ 1 & 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 5 & 1 \\ -3 & 2 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} -12 & -5 \\ -3 & 15 \end{pmatrix}^2 = \begin{pmatrix} 159 & -15 \\ -9 & 240 \end{pmatrix}$$

$$\begin{pmatrix} A & \cdot & \mathbf{B}^t)^2 & (A\mathbf{B}^t)^2 & (A\mathbf{B}^t)^2 \\ \begin{pmatrix} 5 & -3 & 2 \\ 1 & 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} -3 & 1 \\ -1 & 4 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -12 & -3 \\ -5 & 15 \end{pmatrix}^2 = \begin{pmatrix} 159 & -9 \\ -15 & 240 \end{pmatrix}$$

luego:
$$\begin{pmatrix} (\boldsymbol{B}\boldsymbol{A}^{\mathrm{t}})^2 & - & (\boldsymbol{A}\boldsymbol{B}^{t})^2 \\ 159 & -15 \\ -9 & 240 \end{pmatrix} - \begin{pmatrix} 159 & -9 \\ -15 & 240 \end{pmatrix} = \begin{pmatrix} 0 & -6 \\ 6 & 0 \end{pmatrix}$$

Ejemplo

Si

$$A = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 1 & 3 \end{pmatrix}, C = \begin{pmatrix} 0 & 4 \\ -1 & 0 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 3 \end{pmatrix}$$

Determinar $X \in M_{2\times 3}(\mathbb{R})$ tal que : $A^{-1} \cdot X \cdot B^{-1} - A^{-1} \cdot C \cdot X \cdot B^{-1} = D$

Solución

Se cumple que :
$$A^{-1} \cdot X \cdot B^{-1} - A^{-1} \cdot C \cdot X \cdot B^{-1} = D$$

 $\iff A^{-1} \cdot (X \cdot B^{-1} - C \cdot X \cdot B^{-1}) = D / A$
 $\iff X \cdot B^{-1} - C \cdot X \cdot B^{-1} = A \cdot D$

$$\iff (X - C \cdot X) \cdot B^{-1} = A \cdot D / B \quad (der)$$

$$\iff X - C \cdot X = A \cdot D \cdot B$$

$$\iff (I_2 - C) \cdot X = A \cdot D \cdot B$$

$$\iff \begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix} X = A \cdot D \cdot B$$

luego:
$$\mathbf{X} = \begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -9 & 13 & 39 \\ -3 & 3 & 9 \end{pmatrix}$$

por lo tanto, se tiene que:

$$X = \frac{1}{5} \begin{pmatrix} -21 & 25 & 75 \\ 6 & -10 & -30 \end{pmatrix}$$

Definición

Sean $k \in K$; $A \in M_{m \times n}(K)$

Se definen las siguientes operaciones elementales filas sobre A

- 1.- Intercambio de la fila i con la fila j , la cual denotaremos por $oldsymbol{F}_{ij}$
- 2.- Multiplicar la fila i por el escalar k, la cual denotaremos por ${m F}_i({m k})$
- 3.- Sumar la fila i a la fila j ; en la fila j , la cual denotaremos por ${m F}_{i+j}$
- 4.- Multiplicar la fila i por el escalar k y sumarla a la fila j; en la fila j dejando la fila i igual que al inicio, la cual denotaremos por $\mathbf{F}_{i+j}(\mathbf{k})$

Observación

Analogamente se definen las operaciones elementales columna sobre \boldsymbol{A} , las cuales denotaremos por :

$$oldsymbol{C}_{ij} \;,\; oldsymbol{C}_{i}(oldsymbol{k}) \;\;,\; oldsymbol{C}_{i+j} \;,\; oldsymbol{C}_{i+j}(oldsymbol{k})$$

Ejemplo

Dada
$$\mathbf{A} = \begin{bmatrix} 2 & -4 & 0 & 3 \\ 0 & 6 & 4 & 8 \\ -1 & 2 & 5 & 1 \end{bmatrix}$$
, se tiene que :

$$m{A}_{\widetilde{F_{13}}} \left[egin{array}{ccccc} -1 & 2 & 5 & 1 \ 0 & 6 & 4 & 8 \ 2 & -4 & 0 & 3 \end{array}
ight]_{\widetilde{F_{1}(2)}} \left[egin{array}{ccccc} -2 & 4 & 10 & 2 \ 0 & 6 & 4 & 8 \ 2 & -4 & 0 & 3 \end{array}
ight]$$

$$\overset{\sim}{F_{1+3}} \begin{bmatrix}
-2 & 4 & 10 & 2 \\
0 & 6 & 4 & 8 \\
0 & 0 & 10 & 5
\end{bmatrix}
\overset{\sim}{F_{1}(\frac{1}{2})}
\begin{bmatrix}
-1 & 2 & 5 & 1 \\
0 & 6 & 4 & 8 \\
0 & 0 & 10 & 5
\end{bmatrix}$$

$$\widetilde{F_{2}}(\frac{1}{2}) \left[\begin{array}{ccccc} -1 & 2 & 5 & 1 \\ 0 & 3 & 2 & 4 \\ 0 & 0 & 10 & 5 \end{array} \right]_{\widetilde{F_{3}}(\frac{1}{2})} \left[\begin{array}{ccccc} -1 & 2 & 5 & 1 \\ 0 & 3 & 2 & 4 \\ 0 & 0 & 2 & 1 \end{array} \right]$$

$$F_{3(-4)}^{\sim} \begin{bmatrix} -1 & 2 & 5 & 1 \\ 0 & 3 & 2 & 4 \\ 0 & 0 & -8 & -4 \end{bmatrix}_{F_{3+2}^{\sim}} \begin{bmatrix} -1 & 2 & 5 & 1 \\ 0 & 3 & -6 & 0 \\ 0 & 0 & -8 & -4 \end{bmatrix}$$

$$_{\widetilde{F_2}(\frac{1}{3})} \left[egin{array}{cccc} -1 & 2 & 5 & 1 \ 0 & 1 & -2 & 0 \ 0 & 0 & -8 & -4 \end{array}
ight] \; \; etc.$$

Definición

Llamaremos **matriz** elemental fila o columna de orden n a la matriz resultante de aplicar una operación elemental a la matriz I_n ; las cuales denotaremos con los mismos simbolos que las operaciones elementales respectivas es decir :

$$oldsymbol{F}_{ij}$$
 , $oldsymbol{F}_{i(k)}$, $oldsymbol{F}_{i+j}$, $oldsymbol{F}_{i+j}$, $oldsymbol{F}_{i+j}$, $oldsymbol{C}_{i+j}$, $oldsymbol{C}_{i+j}$, $oldsymbol{C}_{i+j}$

Si
$$\mathbf{n} = 3$$
 se tiene que $\mathbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ con lo cual :

$$m{F}_{12} = egin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad , \quad m{F}_{2}(3) = egin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad , \quad m{F}_{1+3} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$F_{3+1}(4) = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, C_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, C_1(6) = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{C}_{2+3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} , \ \boldsymbol{C}_{2+3}(5) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

Observación

- 1.- Las matrices elementales fila actuan como la operación elemental fila respectiva por multiplicación a la izquierda sobre una matriz dada
- 2.- Las matrices elementales columna actuan como la operación elemental columna respectiva por multiplicación a la derecha sobre una matriz dada

Si
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 5 & 4 \\ 3 & 0 & 1 & 8 \\ 2 & 1 & 6 & 9 \end{bmatrix}$$
, se tiene que :

$$m{F}_{12} \cdot m{A} = egin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot egin{bmatrix} -1 & 2 & 5 & 4 \\ 3 & 0 & 1 & 8 \\ 2 & 1 & 6 & 9 \end{bmatrix} = egin{bmatrix} 3 & 0 & 1 & 8 \\ -1 & 2 & 5 & 4 \\ 2 & 1 & 6 & 9 \end{bmatrix}$$

$$\boldsymbol{F}_{3}(4) \cdot \boldsymbol{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 & 5 & 4 \\ 3 & 0 & 1 & 8 \\ 2 & 1 & 6 & 9 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 5 & 4 \\ 3 & 0 & 1 & 8 \\ 8 & 4 & 24 & 36 \end{bmatrix}$$

$$\boldsymbol{F}_{3+1}(2) \cdot \boldsymbol{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 2 & 5 & 4 \\ 3 & 0 & 1 & 8 \\ 2 & 1 & 6 & 9 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 19 & 22 \\ 3 & 0 & 1 & 8 \\ 2 & 1 & 6 & 9 \end{bmatrix}$$

$$m{A \cdot C}_{42} = \left[egin{array}{cccc} -1 & 2 & 5 & 4 \ 3 & 0 & 1 & 8 \ 2 & 1 & 6 & 9 \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{array}
ight] = \left[egin{array}{cccc} -1 & 4 & 5 & 2 \ 3 & 8 & 1 & 0 \ 2 & 9 & 6 & 1 \end{array}
ight]$$

$$\mathbf{A} \cdot \mathbf{C}_{1+3}(4) = \begin{bmatrix} -1 & 2 & 5 & 4 \\ 3 & 0 & 1 & 8 \\ 2 & 1 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & 1 & 4 \\ 3 & 0 & 13 & 8 \\ 2 & 1 & 14 & 9 \end{bmatrix} \\
\mathbf{A} \cdot \mathbf{C}_{1}(-2) = \begin{bmatrix} -1 & 2 & 5 & 4 \\ 3 & 0 & 1 & 8 \\ 2 & 1 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 5 & 4 \\ -6 & 0 & 1 & 8 \\ -4 & 1 & 6 & 9 \end{bmatrix}$$

$$\mathbf{A} \cdot \mathbf{C}_{1}(-2) = \begin{bmatrix} -1 & 2 & 5 & 4 \\ 3 & 0 & 1 & 8 \\ 2 & 1 & 6 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 5 & 4 \\ -6 & 0 & 1 & 8 \\ -4 & 1 & 6 & 9 \end{bmatrix}$$

Dadas $A, B \in M_{m \times n}(K)$

Se dice que A y B son equivalentes por fila , lo cual denotaremos por $A_{\widetilde{F}}B$ si existe una sucesiòn de matrices elementales fila

$$F_1, F_t \in M_{\scriptscriptstyle m}(K)$$
 tal que $F_t \cdot \cdot \cdot \cdot \cdot F_1 \cdot A = B$

Definición

Dadas $A, B \in M_{m \times n}(K)$

Se dice que A y B son equivalentes por columna lo cual denotaremos por $A_{\widetilde{\sim}}B$ si existe una sucesión de matrices elementales columna $C_1, \dots, C_t \in M_n(K)$ tal que $A \cdot C_1 \cdot \dots \cdot C_t = B$

Ejercicio

Dada
$$\mathbf{A} = \begin{bmatrix} 3 & 1 & -1 \\ -1 & -1 & 6 \\ 1 & 0 & 3 \end{bmatrix}$$
 Pruebe que : $\mathbf{A}_{\widetilde{F}}\mathbf{I}_3$; $\mathbf{A}_{\widetilde{C}}\mathbf{I}_3$

Observación

De lo anterior, es posible pensar que tenemos un método para determinar la inversa de una matriz

Teorema

Sean $A, B, D \in M_{m \times n}(K)$ Se cumple que :

1.- Si
$$oldsymbol{A}_{\widetilde{F}}$$
 $oldsymbol{B}$ $\wedge oldsymbol{B}$ \widetilde{F} $oldsymbol{D}$ entonces $oldsymbol{A}$ \widetilde{F} $oldsymbol{D}$

2.- Si
$$A_{\widetilde{C}}B \wedge B_{\widetilde{C}}D$$
 entonces $A_{\widetilde{C}}D$

Demostración

- 1.- Como $A_{\widetilde{F}}$ B se tiene que $F_t \cdots F_1 \cdot A = B$ $B_{\widetilde{F}} D \text{ se tiene que } F_s' \cdots F_1' \cdot B = D$ $\text{con lo cual } F_s' \cdots F_1' \cdot F_t \cdots F_1 \cdot A = D \text{ luego,}$ $\text{se tiene que } A_{\widetilde{F}} D$
- 2.- Tarea

Teorema

Toda matriz alemental es invertible y se tiene que:

1.-
$$\boldsymbol{F}_{ij}^{-1} = \boldsymbol{F}_{ij}$$
 ; $\boldsymbol{C}_{ij}^{-1} = \boldsymbol{C}_{ij}$

2.-
$$F_i^{-1}(\mathbf{k}) = F_i(\mathbf{k}^{-1})$$
 ; $C_i^{-1}(\mathbf{k}) = C_i(\mathbf{k}^{-1})$, $\mathbf{k} \neq 0$

3.-
$$F_{i+j}^{-1} = F_{i+j}(-1)$$
 ; $C_{i+j}^{-1} = C_{i+j}(-1)$

4.-
$$F_{i+j}^{-1}(\mathbf{k}) = F_{i+j}(-\mathbf{k})$$
 ; $C_{i+j}^{-1}(\mathbf{k}) = C_{i+j}(-\mathbf{k})$, $\mathbf{k} \neq 0$

Teorema

Sean $A, B, D \in M_{m \times n}(K)$ Se cumple que :

1.- Si
$$oldsymbol{A}_{\widetilde{F}}$$
 $oldsymbol{D}$ $\wedge oldsymbol{B}$ $\widetilde{oldsymbol{F}}$ $oldsymbol{D}$ entonces $oldsymbol{A}$ $\widetilde{oldsymbol{F}}$ $oldsymbol{B}$

2.- Si
$$A \underset{\sim}{\sim} D \wedge B \underset{\sim}{\sim} D$$
 entonces $A \underset{\sim}{\sim} B$

Demostración

1.- Tarea

2.- Como
$$A \sim D$$
 se tiene que $A \cdot C'_1 \cdot \cdots \cdot C'_t = D$

$$\boldsymbol{B}_{\widetilde{\boldsymbol{F}}}$$
 \boldsymbol{D} se tiene que $\boldsymbol{B} \cdot \boldsymbol{C}_1 \cdot \dots \cdot \boldsymbol{C}_s = \boldsymbol{D}$

con lo cual :
$$A \cdot C_1'' \cdot \cdots \cdot C' = B \cdot C_1 \cdot \cdots \cdot C_s / \cdot C_s^{-1}$$

se tiene $A \cdot C_1'' \cdot \cdots \cdot C' \cdot C_s^{-1} = B \cdot C_1 \cdot \cdots \cdot C_{s-1} / \cdot C_{s-1}^{-1}$

•

por lo tanto
$$\mathbf{A} \cdot \mathbf{C}_1' \cdot \cdots \cdot \mathbf{C}' \cdot \mathbf{C}_s^{-1} \cdot \cdots \cdot \mathbf{C}_1^{-1} = \mathbf{B}$$

es decir
$$A \approx B$$

Ejemplo

Sea
$$W = \begin{pmatrix} -1 & 5 & 2 & 5 \\ 2 & 0 & -1 & -4 \\ -3 & 4 & 3 & 7 \end{pmatrix}$$

Determine:
$$C_{1+3}(2) \cdot F_{1+3}(-3) \cdot F_{32} \cdot W \cdot C_{12} \cdot C_{1+3}(2) \cdot F_{1+2}(2)$$

Solución:

$$oxed{W}_{\widetilde{F_{32}}} \left(egin{array}{cccc} -1 & 5 & 2 & 5 \ -3 & 4 & 3 & 7 \ 2 & 0 & -1 & -4 \end{array}
ight)}_{F_{1+3}(-3)} \left(egin{array}{cccc} -1 & 5 & 2 & 5 \ -3 & 4 & 3 & 7 \ 5 & -15 & -7 & -19 \end{array}
ight)$$

Observación: Como la matriz elemental columna $C_{1+3}(2)$ esta ubicada a la izquerda de la matriz que hasta aquí hemos obtenido no actua como una operación elemental columna, por lo cual debemos considerar la matriz elemental columna

donde $\mathbf{C}_{_{1+3}}(2) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ luego, continuando con lo anterior , se tiene

$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 5 & 2 & 5 \\ -3 & 4 & 3 & 7 \\ 5 & -15 & -7 & -19 \end{pmatrix} = \begin{pmatrix} 9 & -25 & -12 & -33 \\ 3 & 4 & 3 & 7 \\ 5 & -15 & -7 & -19 \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 9 & -25 & -12 & -33 \\ 3 & 4 & 3 & 7 \\ 5 & -15 & -7 & -19 \end{pmatrix} \widetilde{C}_{12} \begin{pmatrix} -25 & 9 & -12 & -33 \\ 4 & 3 & 3 & 7 \\ -15 & 5 & -7 & -19 \end{pmatrix}$$

$$\widetilde{C}_{1+3}(2) \begin{pmatrix} -25 & 9 & -62 & -33 \\ 4 & 3 & 11 & 7 \\ -15 & 5 & -37 & -19 \end{pmatrix}$$

Observación: Como la matriz elemental fila $\mathbf{F}_{_{1+2}}(2)$ esta ubicada a la derecha de la matriz que hasta aquí hemos obtenido no actúa como una operación elemental fila, por lo cual debemos considerar la matriz elemental fila, donde

$$\mathbf{F}_{1+2}(2) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ luego, continuando , se tiene :}$$

$$\begin{pmatrix} -25 & 9 & -62 & -33 \\ 4 & 3 & 11 & 7 \\ -15 & 5 & -37 & -19 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -7 & 9 & -62 & -33 \\ 10 & 3 & 11 & 7 \\ -5 & 5 & -37 & -19 \end{pmatrix}$$

por lo tanto
$$W = \begin{pmatrix} -7 & 9 & -62 & -33 \\ 10 & 3 & 11 & 7 \\ -5 & 5 & -37 & -19 \end{pmatrix}$$

Teorema

Sea $A \in M_n(K)$

se cumple que:

1.- $A \underset{F}{\sim} I_n \Leftrightarrow A$ es invertible

2.- $A \underset{\mathbf{C}}{\sim} I_n \Leftrightarrow A$ es invertible

Ejercicio

1.- Determine si
$$\mathbf{A} = \begin{bmatrix} 2 & 2 & 3 & 0 \\ 1 & 0 & 5 & -1 \\ -7 & 1 & 2 & 2 \\ 2 & 0 & 1 & -1 \end{bmatrix}$$
 es invertible

Es posible, con lo que se tiene determinar A^{-1} ?

2.- Determine si
$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 2 \\ 2 & 0 & 1 & -1 \end{bmatrix}$$
 es invertible

Definición (M.T.M.)

Llamaremos matriz triangular modificada a toda matriz que satisface las siguientes condiciones :

- 1.- El primer elemento no nulo (si lo hay) de cada fila es 1
- 2.- Todo otro elemento de una columna que contenga al primer elemento no nulo de una fila es cero
- 3.- El primer elemento o nulo de una fila dada esta más a la izquierda que el primer elemento no nulo de cada fila siguiente
- 4.- Una fila que contenga solamente ceros no precede a ninguna fila que contenga algun elemento no nulo.

Ejemplo

1.-
$$\begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix} , \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} , \mathbf{I}_n \mathbf{0}_n \text{ son M.T.M.}$$

2.-
$$\begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 1 & 0 \end{bmatrix} , \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
no son M.T.M.

Teorema

Toda matriz $A \in M_{m \times n}(K)$ es equivalente por filas (columna) a una M.T.M.

20

Ejercicio

Si
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 1 & 2 & 1 & -1 \\ -1 & 1 & 0 & 2 \\ 2 & 0 & 1 & -1 \end{bmatrix}$$
 determinar la M.T.M. equivalente a \mathbf{A}

Definición

Dada $A \in M_{m \times n}(K)$ llamaremos rango de A al número de filas no nulas de la M.T.M. equivalente a A y se denotará por r(A)

Observación

Se dice que una fila o columna es no nula , si al menos uno de sus coeficientes es no nulo

Ejercicio

Determinar
$$\mathbf{r}(\mathbf{A})$$
 si $\mathbf{A} = \begin{bmatrix} 2 & 3 & -1 & 1 & 2 \\ 1 & 2 & -3 & 5 & 0 \\ -1 & 4 & 6 & 3 & 1 \\ 0 & 5 & 0 & 4 & 0 \end{bmatrix}$

Observación

Un procedimiento para determinar la inversa de una matriz $A \in M_n(K)$ es el siguiente, consideremos la matriz

$$\left[A \middle| I_n \right] \in M_{n \times 2n}(K)$$

aplicar operaciones elementales fila ,hasta obtener la M.T.M. asociada a ella $\lceil E \mid B \rceil$

1.- Si
$$\boldsymbol{E} = \boldsymbol{I}_n$$
 entonces $\boldsymbol{A}^{-1} = \boldsymbol{B}$

2.- Si $\boldsymbol{E} \neq \boldsymbol{I}_n$ entonces \boldsymbol{A} no es invertible

Ejemplo

Determinar ,si existe , la inversa de :
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -2 \\ 1 & 1 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

21

Solución:

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & -2 & |1 & 0 & 0 \\ 1 & 1 & 1 & |0 & 1 & 0 \\ 2 & 0 & -1 & |0 & 0 & 1 \end{bmatrix} \quad \boldsymbol{F}_{2+1^{(-1)}} \begin{bmatrix} 0 & 0 & -3 & |1 & -1 & 0 \\ 1 & 1 & 1 & |0 & 1 & 0 \\ 2 & 0 & 1 & |0 & 0 & 1 \end{bmatrix}$$

$$m{F}_{_{3+2}(-1)}$$
 ; $m{F}_{_{3+1}(3)}$ $egin{bmatrix} 6 & 0 & 0 & |1 & -1 & 3 \ -1 & 1 & 0 & |0 & 1 & -1 \ 2 & 0 & 1 & |0 & 0 & 1 \end{bmatrix}$

$$m{F}_1(rac{1}{6}) egin{bmatrix} & 1 & 0 & 0 & \left|rac{1}{6} & -rac{1}{6} & rac{1}{2} \ -1 & 1 & 0 & \left|0 & 1 & -1 \ 2 & 0 & 1 & \left|0 & 0 & 1
ight] \end{pmatrix}$$

$$m{\widetilde{F}_{_{1+2}}}; m{F_{_{_{1+3}(-2)}}} egin{bmatrix} 1 & 0 & 0 & | & rac{1}{6} & -rac{1}{6} & rac{1}{2} \ 0 & 1 & 0 & | & rac{1}{6} & & rac{1}{2} \ 0 & 0 & 1 & | -rac{1}{3} & & rac{1}{3} & & 0 \end{bmatrix}$$

por lo tanto la Inversa de A es:

$$m{A}^{^{-1}} = egin{bmatrix} rac{1}{6} & 1 & -1 & 3 \ 1 & 1 & -3 \ -2 & 2 & 0 \ \end{bmatrix}$$

Definición

Dada la matriz $A \in M_{m \times n}(K)$, llamaremos sub-matriz ij-esima de A a la matriz que se obtiene eliminando la i-esima fila y la j-esima columna de A, la cual denotaremos por A_{ij} .

Si
$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 7 \\ 5 & 3 & 8 \\ 2 & 1 & 0 \end{bmatrix}$$
 se tiene que $\mathbf{A}_{12} = \begin{bmatrix} 0 & 7 \\ 5 & 8 \\ 2 & 0 \end{bmatrix}$, $\mathbf{A}_{33} = \begin{bmatrix} 2 & 4 \\ 9 & 2 \\ 2 & 1 \end{bmatrix}$

1.- Sea $A = [a_{11}] \in M_1(K)$, se define el determinante de A como el número det(A) ó |A|, donde:

$$det(A) = |A| = a_{11}$$

2.- Sea $A=egin{bmatrix} {m a}_{11} & {m a}_{12} \\ {m a}_{21} & {m a}_{22} \end{bmatrix} \in {m M}_2({m K})$, se define el determinante de ${m A}$

como el número $\operatorname{\boldsymbol{det}}(A)$ ó |A|, donde :

$$egin{aligned} oldsymbol{det}(oldsymbol{A}) = egin{aligned} oldsymbol{a}_{11} & oldsymbol{a}_{12} \ oldsymbol{a}_{21} & oldsymbol{a}_{22} \end{aligned} = oldsymbol{a}_{11}.oldsymbol{a}_{22} - oldsymbol{a}_{21}.oldsymbol{a}_{12} \end{aligned}$$

3.- Sea $A = [a_{ij}] \in M_n(K)$ se define el determinante de A como el número det(A) ó |A|, donde:

$$m{det}: m{M}_n(m{K})------ m{ iny} m{K}$$
 función $m{A}---- m{ iny} m{det}(m{A})$

donde:

$$det(A) = \sum_{\alpha=1}^{n} (-1)^{i+\alpha}.a_{i\alpha}.det(A_{i\alpha})$$
 (por fila)

o bien

$$det(A) = \sum_{\alpha=1}^{n} (-1)^{\alpha+j}.a_{\alpha j}.det(A_{\alpha j})$$
 (por columna)

para cualquier $i, j \in \{1, 2, ..., n\}$

1.- Dada
$$m{A}=\begin{bmatrix}3&-1\\2&-2\end{bmatrix}$$
 , se tiene que $|m{A}|=\begin{vmatrix}3&-1\\2&-2\end{vmatrix}=-4$

2.- Dada
$$m{B}=\left[egin{array}{ccc} 1 & 1 & -2 \\ 1 & 1 & 1 \\ 2 & 0 & -1 \end{array}
ight]$$
 , se tiene que

$$|\boldsymbol{B}| = \begin{vmatrix} 1 & 1 & -2 \\ 1 & 1 & 1 \\ 2 & 0 & -1 \end{vmatrix} =$$
(siguiendo la fila uno)

$$(-1)^2.1.\begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix} + (-1)^3.1.\begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + (-1)^4.(-2).\begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = 6$$

o bien siguiendo la columna dos, se tiene :

$$|\mathbf{B}| = \begin{vmatrix} 1 & 1 & -2 \\ 1 & 1 & 1 \\ 2 & 0 & -1 \end{vmatrix} =$$

$$(-1)^3.1.\begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + (-1)^4.1.\begin{vmatrix} 1 & -2 \\ 2 & -1 \end{vmatrix} + (-1)^5.(0).\begin{vmatrix} 1 & -2 \\ 1 & 1 \end{vmatrix} = 6$$

Observación

- 1.- El resultado del determinante es independiente de la fila o columna que se considere en el cálculo de el .
- 2.- El determinante está definido ,sólo para matrices cuadradas.

Ejercicio

Calcular $\boldsymbol{det}(\boldsymbol{A})$, $\boldsymbol{det}(\boldsymbol{B})$ si se tiene que :

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 5 & -1 \\ -1 & 1 & 2 & 4 \\ 0 & -1 & 3 & 6 \\ 1 & 0 & 0 & 2 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 2 & 2 & 3 & 0 \\ 1 & 0 & 5 & -1 \\ -7 & 1 & 2 & 2 \\ 2 & 0 & 1 & -1 \end{bmatrix}$$

Teorema

Sean $A, B \in M_n(K)$ y sea $\lambda \in K$ se cumple que :

- 1.- Si una fila o columna de \boldsymbol{A} es nula entonces $|\boldsymbol{A}|=0$
- $2.-|A| = |A^t|$
- 3.- $|F_{ij}| = -1$; $|C_{ij}| = -1$
- 4.- $|F_i(\lambda)| = \lambda$; $|C_i(\lambda)| = \lambda$, $\lambda \neq 0$
- 5.- $|F_{i+j}| = 1$; $|C_{i+j}| = 1$
- 6.- $|\boldsymbol{F}_{i+j}(\boldsymbol{\lambda})| = 1$; $|\boldsymbol{F}_{i+j}(\boldsymbol{\lambda})| = 1$, $\boldsymbol{\lambda} \neq 0$
- 7.- Si dos filas o columnas de ${\bf A}$ son una múltiplo de la otra entonces $|{\bf A}|=0$
- 8.- $|A \cdot B| = |A| \cdot |B|$
- 9.- $|\boldsymbol{\lambda} \cdot \boldsymbol{A}| = \boldsymbol{\lambda}^n \cdot |\boldsymbol{A}|$
- 10.- \boldsymbol{A} invertible ssi $|\boldsymbol{A}| \neq 0$

Observación

Considerando el Teorema anterior ,para calcular el determinante de una matriz \boldsymbol{A} se recomienda aplicar operaciones elementales del tipo $\boldsymbol{F}_{i+j}(\boldsymbol{k})$, $\boldsymbol{C}_{i+j}(\boldsymbol{k})$ con $\boldsymbol{k} \neq 0$ a la matriz \boldsymbol{A} ya que éstas no alteran el $|\boldsymbol{A}|$ y se disminuyen los cálculos.

Ejemplo

Se tiene que:

$$|\mathbf{A}| = \begin{vmatrix} 1 & 0 & 5 & -1 \\ 2 & 2 & 3 & 0 \\ 2 & 0 & 1 & -1 \\ -7 & 1 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 5 & -1 \\ 0 & 2 & -7 & 2 \\ 0 & 0 & -9 & 1 \\ 0 & 1 & 37 & -5 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & -7 & 2 \\ 0 & -9 & 1 \\ 1 & 37 & -5 \end{vmatrix} = \begin{vmatrix} 0 & -81 & 12 \\ 0 & -9 & 1 \\ 1 & 37 & -5 \end{vmatrix} = \begin{vmatrix} -81 & 12 \\ -9 & 1 \end{vmatrix} = 27$$

Ejemplo

Si |A| = 2 y |B| = -3; con $A, B \in M_3(\mathbb{R})$ se tiene que :

$$|3 \cdot A^t \cdot B^{-1}| = 3^3 \cdot |A^t| \cdot |B^{-1}| = 3^3 \cdot |A| \cdot |B|^{-1} = 3^3 \cdot 2 \cdot \frac{-1}{3} = -18$$

Ejercicio

$$\mathbf{Si}\,\mathbf{A} = \begin{bmatrix} 2 & 5 & 4 & -1 \\ 1 & 2 & 1 & 3 \\ -2 & 1 & -1 & 0 \\ 0 & 3 & 4 & 1 \end{bmatrix},\,\,\mathbf{B} = \begin{bmatrix} 3 & 2 & 0 & -1 & 0 \\ 2 & 0 & 2 & 1 & 1 \\ -1 & 1 & -2 & -1 & 3 \\ 1 & 4 & 1 & 2 & 2 \\ 0 & 3 & 1 & 1 & 1 \end{bmatrix}$$

Calcular: det(A), det(B), $det(2 \cdot A^t)$, $det(6 \cdot B^{-1})$

Definición

Dada $A \in M_n(K)$ con $A = [a_{ij}]$

llamaremos cofactor del elemento $oldsymbol{a}_{ij}$ de $oldsymbol{A}$ al número $oldsymbol{A}^{ij}$ donde

$$\boldsymbol{A}^{ij} = (-1)^{i+j} |\boldsymbol{A}_{ij}|$$

1.- Si
$$\mathbf{A} = \begin{bmatrix} 2 & -4 \\ 3 & 5 \end{bmatrix}$$
 se tiene que : $\mathbf{A}^{11} = (-1)^2 5 = 5$,

$${m A}^{^{12}}=-3$$
 , ${m A}^{^{21}}=4$, ${m A}^{^{22}}=2$

2.- Si
$$\mathbf{A} = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 4 & -2 \\ -3 & 1 & 5 \end{bmatrix}$$
 se tiene que :

$$m{A}^{11} = (-1)^2 \begin{vmatrix} m{4} & -2 \\ 1 & 5 \end{vmatrix} = 22 \quad , \quad m{A}^{23} = (-1)^5 \begin{vmatrix} -1 & 2 \\ -3 & 1 \end{vmatrix} = -5 \, , \quad m{A}^{12} = 6$$

Sea
$$A \in M_n(K)$$
 con $A = [a_{ij}]$.

llamaremos matriz adjunta de A a la matriz que denotaremos por adj(A), la cual es la matriz traspuesta de la formada por los cofactores de A, es decir:

$$adj(A) = [A^{ij}]^t \in M_n(K)$$

Ejemplo

Si
$$\mathbf{A} = \begin{bmatrix} 4 & 4 & 1 \\ 2 & 0 & 0 \\ 1 & 3 & 2 \end{bmatrix}$$
 se tiene que :

$$adj(A) = \begin{bmatrix} 0 & -4 & 6 \\ -5 & 7 & 8 \\ 0 & 2 & -8 \end{bmatrix}^t = \begin{bmatrix} 0 & -5 & 0 \\ -4 & 7 & 2 \\ 6 & 8 & -8 \end{bmatrix}$$

Teorema

Si
$$A \in M_n(K)$$
 es invertible, entonces $A^{^{-1}} = \frac{1}{|A|} adj(A)$

Ejemplo

Si
$$\mathbf{A} = \begin{bmatrix} 4 & 4 & 1 \\ 2 & 0 & 0 \\ 1 & 3 & 2 \end{bmatrix}$$
, se tiene que $\mathbf{A}^{-1} = -\frac{1}{10} \begin{bmatrix} 0 & -5 & 0 \\ -4 & 7 & 2 \\ 6 & 8 & -8 \end{bmatrix}$

Ejercicio

Determine, si existe, la inversa de :

$$m{A} = \left[egin{array}{cccc} 2 & 1 & 3 \ -1 & 0 & 1 \ 0 & 2 & 5 \end{array}
ight] \; m{B} = \left[egin{array}{cccc} 1 & 0 & 1 & -1 \ 0 & 1 & 2 & 0 \ 3 & 1 & -1 & 2 \ 2 & 1 & 1 & 0 \end{array}
ight]$$

Guía de Ejercicios:

1.- Dadas las Matrices

$$A = \left(egin{matrix} 5 & -3 & 2 \ 1 & 2 & 3 \end{array}
ight); B = \left(egin{matrix} -3 & -1 & 0 \ 1 & 4 & 2 \end{array}
ight);$$

$$C = \left(egin{array}{cccc} 4 & 5 & 3 \ -2 & -5 & -1 \ 0 & 2 & 1 \end{array}
ight)$$

Determinar: a) 2A - 3BC

- ; b) $B(C-2I_3)^tA^t$
- 2.- Dadas las matrices $:A=\left(egin{array}{cccc} -1 & 3 & 1 & 2 \ 2 & 1 & 4 & -1 \ 0 & -1 & 5 & 1 \end{array}
 ight) \;;$

$$B = \left(egin{array}{cccc} 0 & 2 & -3 & 4 \ 3 & 1 & -2 & 5 \ -1 & 2 & 0 & 3 \end{array}
ight) \quad ; \quad C = \left(egin{array}{ccccc} 0 & 1 & 2 & 0 \ -1 & 0 & 1 & 3 \ 4 & 6 & -1 & -2 \ 3 & 0 & 0 & 5 \end{array}
ight)$$

Determinar:

a)
$$M = 3A - 2BC$$
 ; b) $N = AC^{t} - 4AC$; c) $T = BCA^{t}$

3.- Sea $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ Determinar la matriz X tal que:

$$7(X - I_3)^t = A^2 - 2A - 9I_3$$

4.- Sea $a_{ij} = 2i(-1)^{i+j} + 3j$, con $i, j \in \mathbb{N}$

Determine:

a)
$$L = (a_{ij}) \in M_{3\times 4}$$
 ; b) $E = L \cdot I_3$

5.- Dadas las matrices :

$$A = \left(egin{array}{cc} 2 & 1 \ 2 & 2 \end{array}
ight) \; ; \; B = \left(egin{array}{cc} 5 & 7 \ 2 & 4 \end{array}
ight) \; ; \; C = \left(egin{array}{cc} 3 & -2 \ -1 & 1 \end{array}
ight)$$

Determinar la matriz X si :

$$\left(B\cdot X\cdot C
ight)^{-1}\cdot \left(C\cdot A^{^{t}}\cdot B^{^{t}}
ight)^{t}\;-3\,C^{-1}\cdot X^{-1}\cdot C^{^{t}}\;=\;\mathrm{C}^{^{t}}$$

6.- Determine $X\in \mathrm{M}_2\left(\mathbb{R}\right)$, dadas $A=\begin{pmatrix}1&3\\1&1\end{pmatrix}$; $B=\begin{pmatrix}1&1\\4&3\end{pmatrix}$, si:

$$(X \cdot B \cdot (A + A^{2}) - B^{2}A = \left[A^{-1} \cdot \left(\left((X \cdot B - B^{2})^{t} + I\right)^{t}\right)^{-1}\right]^{-1}$$

7.- Determinar $X \in M_3(\mathbb{R})$ tal que :

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 3 & -1 \end{bmatrix} \cdot X + 5 \cdot \begin{bmatrix} 1 & 0 & -\frac{1}{5} \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 1 & 1 \\ 6 & 4 & 2 \\ -1 & -6 & 4 \end{bmatrix}$$

8.- Determine la matriz X si :

$$(X \cdot B - C \cdot A)^{t} + A \cdot X^{t} = A + B + 3C - B \cdot X^{t}$$

9.- Dadas $A, B, X \in M_3(\mathbb{R})$ tales que :

$$A = \left(egin{array}{ccc} 2 & 0 & -1 \ 3 & 1 & 4 \ -2 & 5 & 6 \end{array}
ight) \;\; ; \;\; B = \left(egin{array}{ccc} 3 & 1 & -1 \ 2 & 4 & -2 \ -1 & 1 & 2 \end{array}
ight)$$

Determine la matriz X si :

$$(X \cdot A^{^{-1}} \cdot B^t)^t + (A^t \cdot B^{^{-1}})^{^{-1}} \cdot X^t = \left[I - A^{^{-1}} \cdot (A - B)\right]^{^{-1}} \cdot A^{^{-1}}$$

10.- Determinar
$$A^{-1}$$
 si existe, cuando : $A = \begin{pmatrix} 2 & 3 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 4 & 3 & 1 & 2 \\ 0 & 0 & 3 & 1 \end{pmatrix}$

11.- Determinar
$$A^{-1}$$
 cuando existe si : $A=egin{bmatrix}2&\lambda&0&-1\\1&2&-1&0\\1&-1&2&3\\0&1&-1&2\end{bmatrix}$, $\lambda\in\mathbb{R}$

12.- Determinar
$$\left|B\right|$$
 si: $det\left(4AB\right)=det\left(B^{-1}\right)$ y $\left|-A^{t}\right|=-4$, con $A,B\in M_{3}\left(\mathbb{R}\right)$

13.- Determinar
$$|(2D)^{-1}|$$
 si : $A \cdot F_{12} \cdot B \cdot D^t \cdot C_{1+2}(3) = B \cdot A^{-1}$ con $|A| = 8$, $|B| = -1$ y $A, B, D \in M_3(\mathbb{R})$

14.- Sean A, B \in M₃ (\mathbb{R}) tales que:

$$F_{12} \cdot F_{2+3}(-4) \cdot F_3(-2) \cdot A \cdot C_{31} \cdot C_2(-\frac{1}{2}) = B$$

y |B| = -20, demueste que A es invertible y calcule $|3A^{-1}|$

15.- Sean
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

determinar $X \in M_3(\mathbb{R})$ tal que:

$$A \cdot X \cdot B - 2 \cdot A + (Adj(A^{-1})) \cdot B = A^2$$

sabiendo que $A \cdot (Adj(A)) = det(A) \cdot I_3$, para toda A invertible.

16.- Dada
$$A = \begin{bmatrix} 3 & 3 & 8 \\ 2 & 1 & 7 \\ 2 & 2 & 5 \end{bmatrix}$$
, determine:

a)
$$D = C_{1+2}(3) \cdot F_{1+2}(-1) \cdot F_{32} \cdot A \cdot C_{21} \cdot C_{2+1}(-2) \cdot F_2(3)$$

b)
$$E = F_{1+2}(2) \cdot F_{1+3}(-3) \cdot A \cdot C_{1+2}(5) \cdot C_{1+3}(2) \cdot C_{12} \cdot C_{1}(-1)$$

c)
$$M$$
, si: $F_{1+2}(-1) \cdot M \cdot C_2(2) = F_{3+1}(-1) \cdot F_{23} \cdot A \cdot C_{2+1}(-1)$

Soluciones Guía de Ejercicios:

1.- a)
$$\begin{pmatrix} 40 & 24 & 28 \\ 14 & 37 & 3 \end{pmatrix}$$
 b) $\begin{pmatrix} -98 & 9 \\ 248 & -18 \end{pmatrix}$

2.- a)
$$M = \begin{pmatrix} 1 & 45 & -7 & -58 \\ -6 & 21 & -6 & -67 \\ -14 & -1 & 15 & -39 \end{pmatrix}$$

b)
$$N = \begin{pmatrix} -23 & -12 & 9 & -61 \\ -39 & -105 & 8 & 41 \\ -87 & -112 & 11 & 37 \end{pmatrix}$$

c)
$$T = \begin{pmatrix} 17 & -34 & 75 \\ 10 & 22 & 71 \\ 32 & -8 & 22 \end{pmatrix}$$

3.-
$$X = \frac{1}{7} \begin{bmatrix} 2 & 1 & 3 \\ 5 & 6 & -3 \\ 5 & -1 & 4 \end{bmatrix}$$

4.- a)
$$L = \begin{bmatrix} 5 & 4 & 11 & 10 \\ -1 & 1 & 5 & 16 \\ 9 & 0 & 15 & 6 \end{bmatrix}$$
 b) no tiene solución.

5.-
$$X = (A - 3I)C^{-1}$$

6.-
$$X = \frac{1}{4} \begin{pmatrix} 15 & -4 \\ -7 & 2 \end{pmatrix}$$

7.-
$$X = \begin{bmatrix} -13 & 4 & 14 \\ -2 & -7 & -8 \\ -21 & -2 & 15 \end{bmatrix}$$

8.-
$$X = \left[D^{-1} \left(A + B + 3C + A^t \cdot C^t \right) \right]^t$$

9.-
$$X = \frac{1}{2} (B^{-1} B^{-1})^t A$$
.

10.-
$$A^{-1} = \begin{pmatrix} -\frac{1}{2} & -3 & \frac{1}{2} & 2\\ \frac{2}{3} & \frac{7}{3} & -\frac{1}{3} & -\frac{5}{3}\\ 0 & -1 & 0 & 1\\ 0 & 3 & 0 & -2 \end{pmatrix}$$

11.-
$$A^{-1}=egin{bmatrix} -1 & rac{22}{9} & rac{5}{9} & -rac{4}{3} \ 1 & -rac{5}{3} & -rac{1}{3} & 1 \ 1 & -rac{17}{9} & -rac{1}{9} & rac{2}{3} \ 0 & -rac{1}{9} & rac{1}{9} & rac{1}{3} \end{bmatrix}$$

12.-
$$|B| = \pm \frac{1}{16}$$

13-
$$|(2D)^{-1}| = -8$$

$$|3A^{-1}| = -\frac{27}{20}$$

15.-
$$X = \begin{bmatrix} \frac{85}{6} & 2 & 2\\ 6 & \frac{31}{6} & 5\\ 10 & 4 & \frac{25}{6} \end{bmatrix}$$

16.- a)
$$D = \begin{pmatrix} 0 & 0 & -1 \\ 1 & -3 & -3 \\ -3 & 6 & 7 \end{pmatrix} ;$$
b)
$$E = \begin{pmatrix} -18 & 3 & 14 \\ -47 & 8 & 39 \\ 42 & -7 & -33 \end{pmatrix}$$

b)
$$E = \begin{pmatrix} -18 & 3 & 14 \\ -47 & 8 & 39 \\ 42 & -7 & -33 \end{pmatrix}$$

c)
$$M = \begin{pmatrix} -1 & 1 & 1 \\ -1 & -2 & 6 \\ 1 & -\frac{1}{2} & 7 \end{pmatrix}$$