

### DS 5500 - Fall 2021

Capstone: Applications in Data Science

# Walmart Sales Forecasting



Gourang Patel
MS in Data Science



Hitashu Kanjani MS in Data Science



Sanjan Vijayakumar MS in Data Science



Sagar Singh MS in Data Science



# **Agenda**

- Summary
- Data Overview
- Methodology
- Initial Results
- Modeling Phase
- Key Learnings



## **Summary**

#### Context:

- Ecommerce has been an ever-growing industry with projected revenue growth of \$4.9 trillion in 2021.
- Sales forecasting will help businesses understand changing customer demands, manage inventories and create a pricing strategy that reflects demand.

#### **Problem Goals:**

- This project will present the right methodologies to analyze time-series sales data and predict 28 days ahead point forecasts for Walmart to help take strategic decisions.
- We plan to leverage the traditional time series forecasting methods(Phase 1) as well as the modern forecasting methods(Phase 2), to analyze Walmart's sales data.





The dataset contains **5 year historical sales** from 2011- 2016 for various products and stores.

Data is hierarchically organized: stores are divided into 3 states, and products are grouped by categories and sub-categories

The dataset is organized in 3 CSV files:

**calendar.csv** - Contains dates on which the products are sold and events held on that day.

**Sales\_train\_evaluation.csv:** Contains historical daily unit sales of each product on each store

**Sell\_prices.csv**: price of products each week





## Methodology

Standard statistical time-series forecasting strategies are important to establish a baseline for the model performance, which is our **primary goal for Phase 1**.

#### Phase 1

#### **Traditional Time Series Models**

- Involves historical analysis, finding dynamics of the data like cyclical patterns, trends, and growth rates.
- Three general ideas to tackle the forecasting problem would be Repeating/Static Patterns and Seasonal Trends.
- Exponential Smoothing(EA), ARIMA (Autoregressive integrated moving average) and SARIMA (Seasonal ARIMA) are some examples.

#### **Causal Forecasting**

- Assumes the variable to be forecasted has a cause-effect relationship with one or more independent variables.
- For sales, it can be used to forecast at a much granular level i.e., by product, product category, subclass etc.
- Regression model and Econometric model are some examples we will explore.

#### Deep Learning/Ensemble Models

- Neural Networks can learn inherent patterns in different time series without bothering about breaking up the trend and seasonality patterns.
- Forecasting can also be significantly improved using techniques like
   Gradient Boosted Trees
- DeepVanilla LSTM (Long Short Temporal Memory), XGBoost and LightGBM are some examples.



# Initial Analysis: FOODS is the Top Category



- FOODS category has the highest sales
- Precise forecasting on FOODS could be most beneficial



 Top 3 departments based on sales are FOODS\_3, HOUSEHOLD\_1 & HOUSEHOLD\_2



# Initial Analysis: CA has the highest overall sales

Rolling Average Sales vs. Time (per store)



- Rolling average Sales with time for the store CA\_3 situated in California is the highest amongst all
- We can also observe some seasonal high and lows in sales across all the stores



# Modeling Initiation: Aggregated Weekly for Baseline

- Sales data is grouped by the different categories i.e FOODS, HOBBIES, HOUSEHOLD
- To reduce memory footprint, downcasting was performed along with weekly aggregation of sales
- Exogenous variables like holidays, weekends and paydays were created leveraging the calendar data

| cat_id | FOODS | HOBBIES | HOUSEHOLD |
|--------|-------|---------|-----------|
| d_1    | 23178 | 3764    | 5689      |
| d_2    | 22758 | 3357    | 5634      |
| d_3    | 17174 | 2682    | 3927      |
| d_4    | 18878 | 2669    | 3865      |
| d_5    | 14603 | 1814    | 2729      |

FOODS



Total sales of the FOODS category across the entire timeline - Aggregated Weekly

₽



## Time series Decompose: Highlights Trend & Seasonality

Based on Trend and Seasonality plots, we hypothesize that data is non-stationary





## Statistical Tests: Augmented Dickey-Fuller Stationarity Test

#### P-value of <0.05 indicates data is stationarized and suited for forecasting

| Г | Results of Dickey-Fuller Test           | for : FOODS |
|---|-----------------------------------------|-------------|
| _ | Test Statistic                          | -2.521061   |
|   | p-value                                 | 0.110434    |
|   | #Lags Used                              | 16.000000   |
|   | Number of Observations Used             | 248.000000  |
|   | Critical Value (1%)                     | -3.460000   |
|   | Critical Value (5%)                     | -2.870000   |
|   | Critical Value (10%)                    | -2.570000   |
|   | dtype: float64                          |             |
|   | +++++++++++++++++++++++++++++++++++++++ | +++++++     |





ACF/PACF plots before differencing

ACF/PACF plots after differencing



### FOODS: Baseline ARIMA performance was not optimal



- Model tuning was performed using Auto ARIMA.
- The test size was kept at 6 weeks to be closer to 28 days forecast.



# FOODS: Gridsearch optimized Baseline ARIMA by 36%



- The test size was kept at 6 weeks to be closer to 28 days forecast.
- As an alternative to k-fold CV, **Walk Forward validation** was used to perform backtesting.
- GridSearch gave RMSE of 6217.83, a ~36.5% improvement over baseline ARIMA



### FOODS: SARIMAX improved ARIMA model by further 20%



- **Exogenous variables** like holidays, paydays and weekend were modeled to improve trend capture.
- Improved RMSE score of 4969.28, further improved the forecasting RMSE by ~20.1%.



### **HOUSEHOLD:** Baseline ARIMA model showed a poor fit



- Model tuning was performed using Auto ARIMA.
- Log Transformation was applied to account for variance
- The test size was kept at 6 weeks to be closer to 28 days forecast.



### HOUSEHOLD: ARIMA model shows poor fit despite gridsearch



- The test size was kept at 6 weeks and backtesting was performed using Walk Forward validation.
- Log Transformation was applied to account for variance
- RMSE of 2130.08 after gridsearch, only showed a minor ~15.9% improvement over baseline ARIMA.



### **HOUSEHOLD: SARIMAX improved ARIMA model fit by 38%**



- **Exogenous variables** like holidays, paydays and weekend were modeled to improve trend capture.
- RMSE score of 1314.61 after gridsearch optimization, showed a significant improvement of ~38% over best ARIMA model.



### **HOBBIES: Baseline ARIMA model showed almost no trend capture**



- Model tuning was performed using Auto ARIMA.
- Log Transformation was applied to account for variance
- The test size was kept at 6 weeks to be closer to 28 days forecast.



### HOBBIES: ARIMA showed a very poor fit despite Gridsearch



- The test size was kept at 6 weeks and backtesting was performed using Walk Forward validation.
- Log Transformation was applied to account for variance.
- ARIMA model was unable to show a good fit even after applying gridsearch based optimizations.



### **HOBBIES: SARIMAX improved ARIMA model fit by 53%**



- Exogenous variables like holidays, paydays and weekend were modeled to improve trend capture.
- RMSE score of 215.28 after gridsearch optimization, showed an impressive ~53% improvement over best ARIMA model.



# Phase 1 Goals were successfully met





## **Key Learnings**

- → Downcasting is a good alternative to Spark and other Cloud based architecture when training on larger data.
  - ♦ Reduced memory usage by almost ~80%.
- → Walk Forward Validation is a good alternative to k-fold CV for backtesting.
- → SARIMAX performed better than ARIMA across all the categories, due to better Trend and Seasonality capture.
- → Log Transformation is a good step when the data has lot of variance (eg: in case of HOBBIES and HOUSEHOLD).
- → While Gridsearch performs much slower than Auto ARIMA, it showcased much better results on almost all the 3 categories.

Despite lower RMSE, larger confidence interval in SARIMAX results is a compelling reason to try modern forecasting techniques, which will be the primary goal for Phase 2.