Grupo 3

Participantes:

David Arias Calderón 20181020149 Luis Miguel Polo 20182020158

Taller 1 Ejercicio 4

Enunciado

Para el sistema de la figura 2 se requiere implementar un controlador basado en automatismos. Como entrada del controlador se tiene el error con los conjuntos de la figura 3 y como salida la acción suministrada a la planta la cual puede ser de: $u_{ng} = -1.0$, $u_{np} = -0.5$, $u_{z} = 0$, $u_{pp} = 0.5$ y $u_{pg} = 1.0$ (ajustables). La referencia de entrada r(t) es de tipo escalón unitario r(t) = μ (t). El modelo de la planta es:

$$G(s) = \frac{2}{s^2 + 2s + 1}$$

Figura 2

Figura 3

Requerimientos del diseño:

- Entrada de referencia escalón unitario μ(t).
- Sobre pico inferior al 20%.
- Error (oscilación) en estado estable inferior al ±10%.

Solución

Diseño

Entrada				Salida				
Eng	Enp	Epp	Epg	Ung	Unp	Uz	Upp	Upg
1	0	0	0	1	0	0	0	0
0	1	0	0	0	1	0	0	0
0	0	1	0	0	0	0	1	0
0	0	0	1	0	0	0	0	1

U = Yng*Ung+Ynp*Unp+o*Uz+Ypp*Upp+Ypg*Upg

Script de Matlab

```
function Ft = ControladorT1P2(h)
disp(h);
%Eng
if h < -2.0
   Eng = zmf(h,[-3.43 -0.443])
else
   Eng 💂 0
end
%Enp
if h>-2.0 && h<0
   Enp = smf(h,[-3.14 0.717])
   Enp 💂 0
%Epp
if h > 0 && h<2.0
   Epp = zmf(h,[0.11 2.2])
   Epp 💂 0
end
 %Epg
if h>2.0
   Epg = smf(h,[1.62 2.61])
   Epg 📒 0
%Control
V1 = Eng;
V2 = Enp;
V4 = Epp;
V5 = Epg;
%Salida
Ft = -0.9*V1 -0.87*V2+0*V3+0.87*V4+0.9*V5
```

Montaje en simulink

Gráfica Resultante en simulink

