MATRIZ

Multiplicao de Matrizes

Matriz 'A' vezes a Matriz 'B'

REVISAO

X1.3 *Matrizes e operações matriciais

- Coleções retangulares de números reais aparecem em muitos contextos, não só como a matriz aumentada de um sistema de equações lineares. Nesta seção, começamos a estudar matrizes como objetos independentes, definindo sobre elas as operações de adição, subtração e multiplicação.
- Na Seção 1.2, usamos coleções retangulares de números, denominadas matrizes aumentadas, para abreviar a escrita de sistemas de equações lineares. Contudo, essas coleções retangulares de números ocorrem também em outros contextos. Por exemplo, a seguinte coleção retangular de três linhas e sete colunas pode descrever o número de horas que um estudante gastou estudando três matérias numa certa semana.

Notação e terminologia matricial

		2ª	3°	42	5°	6ª	Sab.	Dom.
X	Matemática	2	3	2	4	1	4	2
	História	0	3	1	4	3	2	2
	Linguas	4	1	3	1	0	0	2

X Suprimindo os títulos, ficamos com a seguinte coleção retangular de números com três linhas e sete colunas, denominada "matriz".

$$\begin{bmatrix} 2 & 3 & 2 & 4 & 1 & 4 & 2 \\ 0 & 3 & 1 & 4 & 3 & 2 & 2 \\ 4 & 1 & 3 & 1 & 0 & 0 & 2 \end{bmatrix}$$

X Mais geralmente, fazemos a seguinte definição.

O PDF segue na página abaixo.

Seja a matriz retangular $A=\left(a_{ij}\right)_{2x3}$, de tamanho 2x3, duas linhas e 3 colunas,

$$i = linhas \quad e \quad j = colunas.$$

$$m = linhas$$
 e $n = colunas$

i e m indicam as linhas

j e n indicam as colunas

As linhas sao as retas orizontais da matriz.

As colunas sao as linhas verticais da matriz.

Cada elemento a_{ij} da matriz é o ponto de curzamento da linha horizontal com a reta coluna vertical da matriz.

Álgebra → OPERAÇOES: Adição, Subtração, Multiplicação e Divisão.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}_{mxn}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}_{2x3}$$

Linha 1	$a_{11}, a_{11} \in a_{13}$
Linha 2	$a_{13}, a_{22} e a_{23}$

Coluna 1	$a_{11} e a_{13}$
Coluna 2	$a_{13} \in a_{22}$
Coluna 3	$a_{22} e a_{23}$

DEFINIÇÃO 1 Uma matriz é um agrupamento retangular de números. Dizemos que os números nesse agrupamento são as entradas da matriz.

X EXEMPLO 1 Exemplos de matrizes

Alguns exemplos de matrizes são

$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}, [2 \quad 1 \quad 0 \quad -3], \begin{bmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, [4] \blacktriangleleft$$

X O tamanho de uma matriz é descrito em termos do número de linhas (fileiras horizontais) e de colunas (fileiras verticais) que ela contém. Por exemplo, a primeira matriz do Exemplo 1 tem três linhas e duas colunas, portanto, seu tamanho é 3 por 2 (e escrevemos 3 × 2). Numa descrição de tamanho, o primeiro número sempre denota o número de linhas e o segundo, o de colunas. As outras matrizes do Exemplo 1 têm tamanhos 1 × 4, 3×3 , 2×1 e 1×1 , respectivamente.

Utilizamos letras maiúsculas para denotar matrizes e letras minúsculas para denotar quantidades numéricas; assim, podemos escrever

$$A = \begin{bmatrix} 2 & 1 & 7 \\ 3 & 4 & 2 \end{bmatrix} \quad \text{ou} \quad C = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

X Quando discutimos matrizes, é costume dizer que as quantidades numéricas são escalares. Salvo menção explícita em contrário, escalares são números reais; escalares complexos serão considerados mais adiante no texto.

A entrada que ocorre na linha i e coluna j de uma matriz A é denotada por 3×4 . Assim, uma matriz arbitrária 3 × 4 pode ser escrita como

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

e uma matriz arbitrária m X n como

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n} & a_{n} & \cdots & a_{n} \end{bmatrix}$$
 (1)

Quando for desejada uma notação mais compacta, a matriz precedente pode ser escrita como

$$[a_{ij}]_{m\times n}$$
 ou $[a_{ij}]$

sendo utilizada a primeira notação quando for importante, na argumentação, saber o ta-manho da matriz, e a segunda quando o tamanho não necessitar ênfase. Em geral, combinamos a letra denotando a matriz com a letra denotando suas entradas; assim, para uma matriz B, costumamos usar b_{ij} para a entrada na linha i e na coluna j e para uma matriz C, usamos a notação cir

A entrada na linha i e na coluna j de uma matriz A também é comumente denotada pelo símbolo (A);. Assim, para a matriz (1) acima, temos

$$(A)_{ij} = a_{ij}$$

é denominada matriz linha, ou vetor linha. No Exemplo 1, a matriz 2 × 1 é um vetor coluna, a matriz 1 × 4 é um vetor linha e a matriz 1 × 1 é um veter coluna e também um vetor linha.

É prática comum omitir os col-Chetes de matrizes I × 1, tor-

nando impossível saber, por

exemplo, se o símbolo 4 denota o número "quatro" ou a matriz [4]. Isso raramente causa problemas, pois geralmente é possível

ver a qual dos dois nos estamos referindo a partir do contexto.

Uma matriz com somente uma coluna é denominada matriz

coluna, ou vetor coluna, e uma matriz com somente uma linha

BiblioGRAFIA HOWARD ANTON

CHRIS RORRES

UFRGS

bookman

DIAGONAL

Seja a matriz quadrada $B=\left(b_{ij}\right)_{3x3}$, de tamanho 3x3, três linhas e 3 colunas, i=linhas

RETA

Diagonal Principal da Matriz B, acima

Dois pontos diferentes, distintos, determinam uma reta.

 b_{11} , b_{22} e b_{33}

A+B

INFINITOS PONTOS

Postulado

Há infinitos pontos na reta e fora dela.

Retas concorrentes

Definição

Duas retas se cruzam em um único ponto.

Uma reta horizontal se cruza com uma reta vertical.

Coisas coincidentes são iguais entre si.

Diagonal Secundária

REGRA:

- LINHA de 'A' VEZES COLUNAS de 'B'
- Quantidade de colunas de 'A' é a mesma quantidade de linhas de 'B'
- Os tamanhos são conformáveis para o produto

$$C = A.B = \begin{bmatrix} 3 & 4 & 2 \\ 3 & 9 & 1 \end{bmatrix}_{2x3} \cdot \begin{bmatrix} 1 & 2 & 4 \\ 4 & 1 & 5 \\ 3 & 0 & 1 \end{bmatrix}_{3x3} =$$

$$= \begin{bmatrix} 3.(1) + 4.(4) + 2.(3) & 3.(2) + 4.(1) + 2.(0) & 3.(4) + 4.(5) + 2.(1) \\ 3.(1) + 9.(4) + 1.(3) & 3.(2) + 9.(1) + 1.(0) & 3.(4) + 9.(5) + 1.(1) \end{bmatrix}_{2x3} =$$

$$= \begin{bmatrix} 3 + 16 + 6 & 6 + 4 + 0 & 12 + 20 + 2 \\ 3 + 36 + 3 & 6 + 9 + 0 & 12 + 45 + 1 \end{bmatrix}_{2x3} = \begin{bmatrix} 25 & 10 & 34 \\ 42 & 15 & 58 \end{bmatrix}_{2x3} = C_{2x3}$$

OPERAÇÃO

MULTIPLICAÇÃO

Multiplicaçao: Matriz vezes Matriz

Seja as matrizes
$$A=\begin{bmatrix}a_{ij}\end{bmatrix}_{mxn}\ e\ B=\begin{bmatrix}b_{jk}\end{bmatrix}_{nxp}$$
. A matriz $C=A.B$ é $tal\ que$:
$$C=\begin{bmatrix}c_{ik}\end{bmatrix}_{mxp}, tal\ que, \qquad c_{ik}=\sum_{j}^{n}a_{ij}.b_{jk} \begin{cases}para\ todo\ i\in IN^*,\quad 1\leq 1\leq m\\para\ todo\ k\in IN^*,\quad 1\leq k\leq p\end{cases}$$
 Multiplicação
$$C=A.B=\begin{bmatrix}\sum_{j}^{n}a_{ij}.b_{jk}\end{bmatrix}_{mxp}$$

EXERCÍCIO 1

Sejam as matrizes
$$A = \begin{pmatrix} 4 & 6 \\ 0 & -3 \\ 2 & -1 \end{pmatrix}_{3x2}$$
 e $B = \begin{pmatrix} 1 & 1 \\ 2 & 4 \end{pmatrix}_{2x2}$. Efetue o produto

A.B; A vezes B, e mostre a ordem da matriz resultado.

AREF DUTAR NETO VOLUMB:

2.3 - MULTIPLICAÇÃO DE MATRIZES

Requisito para a existência do produto de matrizes

multiplicados sejam conformáveis para a multiplicação; isto significa que o primeiro Para que o produto de duas matrizes exista, exige-se que os fatores que são fator deve possuir tantas colunas quantas são as linhas, do segundo fator.

o produto A · B só existe se n = p. Se n # p, a multiplicação de A por B não pode Assim, se A é uma matriz de ordem m X n e B é uma matriz de ordem p X k, ser efetuada, isto é, o produto A · B não existe.

Definição

Sejam as matrizes $A = [a_{ij}]_{m \times n}$ e $B = [b_{jk}]_{n \times p}$, conformáveis para a multiplicação.

 $C = [c_{ik}]_{m \times p}$, para a qual o elemento c_{ik} , que se encontra em sua i-ésima linha e em sua k-ésima coluna, é obtido multiplicando-se os elementos da i-ésima linha de O produto de A por B, notado com A · B, é a matriz de ordem m X p, A pelos "correspondentes" elementos da k-ésima coluna de B e somando-se os "produtos parciais" assim obtidos:

$$c_{ik} = a_{ii} \cdot b_{ik} + a_{i2}b_{2k} + a_{i3}b_{3k} + \dots + a_{in} \cdot b_{nk} = \sum_{j=1}^{n} a_{ij}b_{jk}$$

Exemplos

$$c_{32} = a_{31} \cdot b_{12} + a_{32} \cdot b_{22} + a_{33} \cdot b_{32} + a_{34} \cdot b_{42} = \sum_{i=1}^{4} a_{3i}b_{i2}$$

Observe que, para obtermos o elemento c32 da matriz produto, multiplicamos os elementos da 34 linha de A pelos "correspondentes" elementos da 24 coluna de B, somando-se, então, os produtos assim obtidos.

29) Sejam
$$A = \begin{bmatrix} 3 & 4 & 2 \\ 3 & 9 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & 2 & 4 \\ 4 & 1 & 5 \end{bmatrix}$; então

$$\mathbf{A} \cdot \mathbf{B} = \begin{bmatrix} 3 & 4 & 2 \\ 3 & 9 & 1 \end{bmatrix} \underbrace{ \begin{bmatrix} 1 & 2 & 4 \\ 4 & 1 & 5 \\ 3 & 0 & 1 \end{bmatrix}}_{3 \times 3} = \underbrace{ \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ 2 \times 3 & 2 \times 3 \end{bmatrix}}_{2 \times 3}$$

 $c_{11} = 3 \cdot 1 + 4 \cdot 4 + 2 \cdot 3 = 25$ $c_{12} = 3 \cdot 2 + 4 \cdot 1 + 2 \cdot 0 = 10$ $c_{13} = 3 \cdot 4 + 4 \cdot 5 + 2 \cdot 1 = 34$ $c_{21} = 3 \cdot 1 + 9 \cdot 4 + 1 \cdot 3 = 42$ $c_{12} = 3 \cdot 2 + 9 \cdot 1 + 1 \cdot 0 = 15$ $c_{23} = 3 \cdot 4 + 9 \cdot 5 + 1 \cdot 1 = 58$

$$A \cdot B = \begin{bmatrix} 25 & 10 & 34 \\ 42 & 15 & 58 \end{bmatrix}$$

27

$$39)\begin{bmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} \begin{bmatrix}b_{11} & b_{12} \\ b_{21} & b_{22}\end{bmatrix} = \begin{bmatrix}(a_{11} \cdot b_{11} + a_{12} \cdot b_{21}) & (a_{11} \cdot b_{12} + a_{12} \cdot b_{22}) \\ (a_{21} \cdot b_{11} + a_{22} \cdot b_{21}) & (a_{21} \cdot b_{12} + a_{22} \cdot b_{22})\end{bmatrix} = \begin{bmatrix}a_{21} \cdot b_{12} + a_{22} \cdot b_{22}\end{bmatrix}$$

$$=\begin{bmatrix} \frac{2}{3} & a_1jb_{j_1} & \sum_{j=1}^{2} & a_1jb_{j_2} \\ \frac{2}{j=1} & a_2jb_{j_1} & \sum_{j=1}^{2} & a_2jb_{j_2} \end{bmatrix} = \begin{bmatrix} \frac{2}{2} & a_1b_{j_k} \\ \frac{2}{j=1} & 2\times 2 \end{bmatrix}$$

(49) Sejam
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$; então:

$$A \cdot B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 + 1 \cdot 1 & 1 \cdot 0 + 1 \cdot 1 \\ 0 \cdot 0 + 1 \cdot 1 & 0 \cdot 0 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$B \cdot A = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \cdot 1 + 0 \cdot 0 & 0 \cdot 1 + 0 \cdot 1 \\ 1 \cdot 1 + 1 \cdot 0 & 1 \cdot 1 + 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$$

Observe que $A \cdot B \neq B \cdot A$, isto é, a multiplicação de matrizes não é uma operação comutativa.

So) Sejam A =
$$\begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
, B = $\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ e C = [-2 1]

Calculemos (A · B) · C

A.B =
$$\begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
. $\begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ = $\begin{bmatrix} 2 \cdot 1 + 1 \cdot 3 + (-1) \cdot 2 \\ 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix}$ = $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$

$$(A \cdot B) \cdot C = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, [-2 \quad 1] = \begin{bmatrix} 3 \cdot (-2) & 3 \cdot 1 \\ 1 \cdot (-2) & 1 \cdot 1 \end{bmatrix} = \begin{bmatrix} -6 & 3 \\ -2 & 1 \end{bmatrix}$$

Agora, calculemos A · (B · C)

$$B \cdot C = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \begin{bmatrix} -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-2) & 1 \cdot 1 \\ 2 \cdot (-2) & 3 \cdot 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 4 & 2 \end{bmatrix}$$

$$A \cdot (B \cdot C) = \begin{bmatrix} 2 & 1 & -1 \\ 0 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-4) + (-1) \cdot (-4) & 2 \cdot 1 + 1 \cdot 3 + (-1) \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + (-1) \cdot (-4) & 2 \cdot 1 + 1 \cdot 3 + (-1) \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + 2 \cdot (-4) & 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + 2 \cdot (-4) & 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + 2 \cdot (-4) & 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + 2 \cdot (-4) & 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + 2 \cdot (-4) & 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + 2 \cdot (-4) & 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + 2 \cdot (-4) & 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (-2) + (-1) \cdot (-6) + 2 \cdot (-4) & 0 \cdot 1 + (-1) \cdot 3 + 2 \cdot 2 \end{bmatrix}$$

Observe que $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

69) Sejam
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} e$$
 a matriz identidade $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; então:

$$A \cdot I_2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a \cdot 1 + b \cdot 0 & a \cdot 0 + b \cdot 1 \\ c \cdot 1 + d \cdot 0 & c \cdot 0 + d \cdot 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = A$$

$$I_2 \cdot A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 \cdot a + 0 \cdot c & 1 \cdot b + 0 \cdot d \\ 0 \cdot a + 1 \cdot c & 0 \cdot b + 1 \cdot d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = A$$
Observe que $A \cdot I_2 = I_2 \cdot A = A$

79) Sejam
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 e a matriz nula $O_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$; então:

$$A \cdot O_2 = O_2 \cdot A = O_2$$

Formalizando, então, a definição discutida acima:

Sejam as matrizes $A = [a_{ij}]_{m \times n}$ e $B = [b_{jk}]_{n \times p}$. CAZINITAG

A matriz C = A · B é tal que:

$$C = \left[\left. \operatorname{cik} \right|_{m \times p} \text{ onde } \operatorname{cik} = \sum_{j=1}^{n} \left. \operatorname{aij} \cdot \operatorname{bjk} \right| \begin{cases} \operatorname{para todo i}, 1 \leqslant i \leqslant m \\ \operatorname{para todo k}, 1 \leqslant k \leqslant p \end{cases}$$

$$\mathbf{A} \cdot \mathbf{B} = \left[\sum_{j=1}^{n} a_{ij} b_{jk} \right]_{m \times p}$$

Um resumo para memorizar

Exercícios Propostos

2.21) As matrizes A, B, C e D são de ordem 2×3, 3×4, 1×3 e 2×1, respectivamente. Dê a

2.22) Sojam A =
$$\begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 4 \end{bmatrix}$$
 e B = $\begin{bmatrix} -2 & 5 \\ 4 & -3 \end{bmatrix}$; determine A • B.

2.23) Para as matrizes
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 of $B = \begin{bmatrix} 4 & -6 \\ -2 & 3 \end{bmatrix}$, determine $A \cdot B$.

2.24) Se
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$ e $C = \begin{bmatrix} -2 & 7 \\ 5 & -1 \end{bmatrix}$ verifique que $A \cdot B = A \cdot C$.

2.25) a) Se
$$A = \begin{bmatrix} -2 & 3 & 0 & 1 \\ 1 & 1 & 2 & -1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 2 \end{bmatrix}$, calcule $A \cdot B$ e $B \cdot A$.

b) Se $A = \begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & 2 \end{bmatrix}$ c $B = \begin{bmatrix} 2 & -1 & -2 \\ 4 & 1 & 3 \end{bmatrix}$, determine $A \cdot B$ e $B \cdot A$.

2.26) So
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$$
, determine a matriz X tal que: $A \cdot X = I_2$.

Propriedades da multiplicação de matrizes

14) A multiplicação de matrizes não é comutativa.

Sejam as matrizes A e B. Se o produto A · B existe, o produto B · A pode não existir. Por exemplo, se A é de ordem 5 X 2 e B é de ordem 2 X 3, existe A · B, mas não existe B · A (por quê?).

Mas, atenção! mesmo que existam A · B e B · A, pode-se ter A · B ≠ B · A (veja o 49 exemplo, acima).

Então, para duas matrizes A e B quaisquer, é falso que necessariamente:

Quando as matrizes A e B são tais que A · B = B · A, diz-se que A e B

EXERCÍCIO 2

Efetue a multiplicação
$$A.X = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}_{3x3}.\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{3x1} =$$

EXERCÍCIO 3

Efetue
$$A_{3x3}$$
. $I_3 = \begin{pmatrix} 2 & 1 & 3 \\ 4 & -3 & 5 \\ 3 & 2 & -6 \end{pmatrix}_{3x3} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}_{3x3} = A \ vezes \ I_n, \ de \ ordern \ conformav\'eis = ?$

EXERCÍCIO 4

Fazer a resenha crítica da definição de matriz retangular e do texto em PDF sobre matriz retangular.

Fazer a resenha crítica da definição da multiplicação de Matriz vezes Matriz.

Fazer a resenha crítica da definição de retas concorrentes.

Fazer a resenha crítica do Postulado determinação da reta.

Fazer a resenha crítica do Postulado dos infinitos pontos na reta.

MATRIZ INVERSA

EXEMPLO

Seja a matriz quadrada
$$A_{2x2}=\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}_{2x2}.$$

Considerando a matriz $A_{2x2} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}_{2x2}$, determine uma matriz B, tal que a equação A. B = B. $A = I_2$

Efetuando,

Supondo que

$$B=\begin{pmatrix} a & b \\ c & d \end{pmatrix}_{2x2}$$
 , e encontremos os valores de $a,\ b,\ c$, d

Teremos, multiplicando,

$$A.B = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}_{2x2} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}_{2x2} = \begin{pmatrix} a+c & b+d \\ a+2c & b+2d \end{pmatrix}_{2x2} = I_2$$

 $A.B = I_n \implies produto\ e\ igualdade\ de\ matrizes \implies sistema\ linear$

$$\begin{pmatrix} a+c & b+d \\ a+2c & b+2d \end{pmatrix}_{2x2} = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}_{2x2}$$

Sistema do primeiro grau,

$$\begin{cases} a+c &= 1 \\ a+2c &= 0 \end{cases} \implies a=2 , \quad c=-1$$

$$\begin{cases} b+d &= 0 \\ b+2d &= 1 \end{cases} \implies b=-1 , d=1$$

Logo,
$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}_{2x2} = \begin{pmatrix} a = 2 & b = -1 \\ c = -1 & d = 1 \end{pmatrix}_{2x2} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}_{2x2} = A^{-1}$$

A matriz B é a única matriz inversa da matriz A, tais que, $A.B=A.A^{-1}=I_2$.

 $A.B=A.A^{-1}=I_2$, isto é, uma matriz que se for multiplicada por A, em qualquer ordem, vai resultar a matriz unidade, identidade. Sempre que isto ocorrer para uma matriz quadrada A, diremos que A é invertível, isto é:

Matriz INVERSA

Uma matriz quadrada A, de ordem n, é invertível se, e somente se, existir uma matriz B, tal que, $A.B=B.A=l_n$.

A matriz 'B', quando existe, é chamada matriz INVERSA de A e a representaremos por $B=A^{-1}$. Então:

MATRIZ INVERSA

$$A.A^{-1} = A^{-1}.A = I_n$$

Convém notar que, sendo $A\ e\ I_n$ matrizes do tipo $\ nxn,\ quadrada,\$ a matriz $\ C$, se existir, é também do tipo

nxn.

Se Não INVETÍVEL

Se nao existe A^{-1} , entao a matriz A é nao invertível.

EXERCÍCIO 1

Seja a matriz $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}_{2x2}$. Determine A^{-1} , se existir.

EXERCÍCIO 2

Determine, se existir, a inversa da $W = \begin{bmatrix} 4 & 2 \\ 7 & 6 \end{bmatrix}_{2x2}$.

- Se a matriz tiver inversa, ela é invertível
- Se a matriz não tiver inversa, ela é singular

EXERCÍCIO 3

Fazer a resenha crítica da proposição acima de matriz inversa, .

Aulas no youtuber:

- 1. MULTIPLICAÇAO: https://www.youtube.com/watch?v=eCmv6v53V88 acesso em 31/08/2020
- 2. MATRIZ INVERSA: https://www.youtube.com/watch?v=wfDoPGfo2fE acesso em 31/08/2020

O Texto acima, é a Última parte de matriz.

O próximo conteúdo será a Definição de DETERMINANTE, a Definição de Cofator, o Teorema de Sarrus, e o Teorema de Lapalce.

BIBLIOGRAFIA -

IEZZI, volume 2

AREF ANTAR NETO. Volume 4

Prof. FRANÇA S. PAULO, 31/08/2020