

Information Fusion Using Plithogenic Set and Logic

Bala George*

Department of Computer Science, USA

***Corresponding Author:** Bala George, Department of Computer Science, USA.**Received:** April 30, 2020**Published:** July 25, 2020© All rights are reserved by **Bala George**.

While the crisp, fuzzy, intuitionistic fuzzy, and neutrosophic sets are sets whose elements x are characterized by a single attribute, called "appurtenance", whose attribute values are: "membership" (for crisp sets and fuzzy sets), or "membership" and "nonmembership" (for intuitionistic fuzzy set), or "membership" and "nonmembership" and "indeterminacy" (for neutrosophic set), a plithogenic set is a set whose elements x are characterized by many attributes, and each attribute may have many attribute values [1-6].

Neutrosophic set was extended to plithogenic set by Smarandache in 2017.

A simple example

Let's consider a set $M = \{x_1, x_2, x_3\}$, such that each element is characterized by two attributes:

$C = \text{color}$, and $S = \text{size}$. Suppose the attribute values of $C = \{\text{white (w), blue (b), green (g)}\}$ and of size are $S = \{\text{small (s), medium (m)}\}$.

Thus, each x element of M is characterized by the all five attribute values: white, blue, green, small, tall, i.e. $M = \{x_1(w, b, g; s, m), x_2(w, b, g; s, m), x_3(w, b, g; s, m)\}$.

Therefore, each element x belongs to the set M with a degree of white $d(w)$, a degree of blue $d(b)$, a degree of green $d(g)$, a degree of small $d(s)$, and a degree of medium $d(m)$.

Thus, $M = \{ x_1(d_1(w), d_1(b), d_1(g); d_1(s), d_1(m)), x_2(d_2(w), d_2(b), d_2(g); d_2(s), d_2(m)), x_3(d_3(w), d_3(b), d_3(g); d_3(s), d_3(m)) \}$

Where $d_1(\cdot)$, $d_2(\cdot)$, and $d_3(\cdot)$ are the degrees of appurtenance of x_1 , x_2 , and x_3 respectively to the set M with respect to each of the five attribute values.

But the degree of appurtenance may be: classical degree { whose values are 0 or 1 }, fuzzy degree { whose values are in $[0, 1]$ }, intuitionistic fuzzy degree { whose values are in $[0, 1]^2$ }, or neutrosophic degree { whose values are in $[0, 1]^3$ }.

Therefore, we may get:

A plithogenic classical set:

$M = \{ x_1(0, 1, 0; 0, 1), x_2(1, 0, 0; 0, 0), x_3(1, 0, 0; 1, 0) \}$, which means that:

x_1 is not white, x_1 is blue, x_1 is not green, x_1 is not small, x_1 is medium; similarly for x_2 and x_3 .

A plithogenic fuzzy set:

$M = \{ x_1(0.2, 0.7, 0.5; 0.8, 0.3), x_2(0.5, 0.1, 0.0; 0.9, 0.2), x_3(0.5, 1, 0.6; 0.4, 0.3) \}$,

which means that:

x_1 has the fuzzy degree of white equals to 0.2, x_1 has the fuzzy degree of blue equals to 0.7,

x_1 has the fuzzy degree of green equals to 0.1, x_1 has the fuzzy degree of small size equals to 0.8,

and x_1 has the fuzzy degree of medium size equals to 0.3;

similarly for x_2 and x_3 .

A plithogenic intuitionistic fuzzy set:

$M = \{ x_1((0.4, 0.1), (0.2, 0.7), (0.0, 0.3); (0.8, 0.5), (0.2, 0.3)), x_2((0.7, 0.2), (0.2, 0.6), (1.0, 0.0); (0.6, 0.4), (0.1, 0.5)), x_3((0.4, 0.4), (0.5, 0.6), (0.5, 0.1); (0.5, 0.6), (0.3, 0.3)) \}$

which means that:

x_1 has the truth-degree of white equals to 0.4 and the false-degree of white equals to 0.1;

x_1 has the truth-degree of blue equals to 0.2 and the false-degree of blue equals to 0.7;

x_1 has the truth-degree of green equals to 0.0 and the false-degree of green equals to 0.3;

x_1 has the truth-degree of small size equals to 0.8 and the false-degree of small size equals to 0.5;

x_1 has the truth-degree of medium size equals to 0.2 and the false-degree of white equals to 0.3;

similarly for x_2 and x_3 .

A plithogenic neutrosophic set:

$M = \{ x_1((0.2, 0.4, 0.3), (0.5, 0.2, 0.7), (0.6, 0.4, 0.3); (0.9, 0.6, 0.5), (0.1, 0.2, 0.3)), x_2((0.1, 0.7, 0.2), (0.3, 0.2, 0.7), (0.0, 0.2, 1.0); (0.6, 0.6, 0.1), (0.0, 0.1, 0.6)), x_3((0.7, 0.4, 0.4), (0.5, 0.6, (0.3, 0.5, 0.1); (0.0, 0.5, 0.6), (0.8, 0.3, 0.2)) \}$

which means that:

x_1 has the truth-degree of white equals to 0.2, the indeterminacy-degree of white equals to 0.4, and the false-degree of white equals to 0.3;

x_1 has the truth-degree of blue equals to 0.5, the indeterminacy-degree of blue equals to 0.2, and the false-degree of blue equals to 0.7;

x_1 has the truth-degree of green equals to 0.6, the indeterminacy-degree of green equals to 0.4, and the false-degree of green equals to 0.3;

x_1 has the truth-degree of small size equals to 0.9, the indeterminacy-degree of small size equals to 0.6, and the false-degree of small size equals to 0.5;

x_1 has the truth-degree of medium size equals to 0.1, the indeterminacy-degree of minimum size equals to 0.2, and the false-degree of minimum size equals to 0.3;

similarly for x_2 and x_3 .

Of course, we have considered the Single-Valued Plithogenic Set, i.e. when all degrees are single-valued (crisp) numbers from [0, 1].

But similarly we may define:

Interval-Valued Plithogenic Set (when the degrees are intervals included into [0, 1]),

or Hesitant Plithogenic Set (when the degrees are discrete finite subsets included into [0, 1]),

or in the most general case Subset Plithogenic Set (when the degrees are any subsets included into [0, 1]).

Using generic notations one has

Plithogenic fuzzy set

$x(v_1(t_1), v_2(t_2), \dots, v_n(t_n))$

Plithogenic intuitionistic fuzzy set

$x(v_1(t_1, f_1), v_2(t_2, f_2), \dots, v_n(t_n, f_n))$, with $0 \leq t_j + f_j \leq 1$, for all $j \in \{1, 2, \dots, n\}$.

Plithogenic neutrosophic set

$x(v_1(t_1, i_1, f_1), v_2(t_2, i_2, f_2), \dots, v_n(t_n, i_n, f_n))$, with $0 \leq t_j + i_j + f_j \leq 3$, for all $j \in \{1, 2, \dots, n\}$.

where $t_j, i_j, f_j \in [0, 1]$ are degrees of membership, indeterminacy, and nonmembership respectively.
Plithogenic Set is much used in Multi-Criteria Decision Making.

Assets from publication with us

- Prompt Acknowledgement after receiving the article
- Thorough Double blinded peer review
- Rapid Publication
- Issue of Publication Certificate
- High visibility of your Published work

Website: www.actascientific.com/

Submit Article: www.actascientific.com/submission.php

Email us: editor@actascientific.com

Contact us: +91 9182824667