Single value decomposition and pseudo-inverses

Kristian Wichmann

December 13, 2016

1 Gramian matrices

Given a set of vectors $a_1, a_2, \ldots, a_n \in \mathbb{R}^m$, the Gramian matrix is the traditionally matrix of inner products $\langle a_i, a_j \rangle$. If these vectors are collected into a $m \times n$ matrix A, this matrix can be expressed as A^tA . Here, we will use the term for any matrix in this form. By starting out with the transpose instead, this means that AA^t is also a Gramian, with dual results.

Theorem 1.1. If $A \in \mathbb{R}^{m \times n}$, then $A^t A$ is symmetric and positive semi-definite. Iff A has rank m, $A^t A$ is positive definite.

Proof. $(A^tA)^t = A^t(A^t)^t = A^tA$ shows symmetry. positive semi-definiteness, let $x \in \mathbb{R}^n$. Then:

$$x^{t}A^{t}Ax = \langle Ax, Ax \rangle = ||Ax||^{2}$$
(1.1)

As a norm, this is greater than or equal to zero. Hence A^tA is positive semi-definite. If A has rank m the map $x \mapsto Ax$ has a trivial kernel by the rank-kernel theorem. Which means only the zero vector is mapped to zero, and hence A^tA is positive definite. If the rank is less than m, the kernel is non-trivial and positive definiteness cannot be true.

2 The rank-nullity theorem

2.1 For A and A^t

According to the rank-nullity theorem, for a matrix $A \in \mathbb{R}^{m \times n}$, the sum of the rank and nullity is n. So, if the rank of A is r, then null A = n - r. Applying the theorem to A^t , which also has rank r, we get null A = m - r.

Figure 1: Visualization of dimensionality for the rank-nullity theorem

The image of A is also called the *column space* of A, denoted C(A). The image of A^t is also called the *row space* of A, $C(A^t)$. The null space of A^t is often called the *left null space*.

These relationships are visualized in figure 1.

3 Single value decomposition

Let $A \in \mathbb{R}^{m \times n}$. Since $A^t A$ is symmetric, it is diagonalizable. So there is an orthogonal $n \times n$ matrix O such that $A^t A = ODO^t$, where D is a diagonal matrix of eigenvalues.

4 Orthogonal projection

Let U be a subspace of \mathbb{R}^n spanned by the linearly independent set of vectors a_1, a_2, \ldots, a_m . Given a $x \in \mathbb{R}^n$, we wish to find a vector u in U, such that e = x - u is orthogonal to U. That means it should be orthogonal to all a_i 's:

$$\forall i: \ a_i^t(x-u) = 0 \tag{4.1}$$

This can be expressed in matrix form by collecting all the a_i 's into a $n \times m$ matrix A:

$$A = \begin{pmatrix} | & | & \cdots & | \\ a_1 & a_2 & \cdots & a_m \\ | & | & \cdots & | \end{pmatrix} \tag{4.2}$$

Then we may write:

$$A^t(x-u) = 0 (4.3)$$

Since $u \in U$, it can be written as a linear combination of a_i 's, so $u = A\beta$. We want to solve for the coefficient vector β :

$$A^{t}(x - A\beta) = 0 \Leftrightarrow A^{t}x = A^{t}A\beta \tag{4.4}$$

Since the a_i 's are linearly independent, A^tA is invertible, so:

$$\beta = (A^t A)^{-1} A^t x \tag{4.5}$$

The actual vector is then $A\beta = A(A^tA)^{-1}A^tx$. Which means that the projection operator $p_U : \mathbb{R}^n \to U$ is linear with the corresponding matrix being $P_U = A(A^tA)^{-1}A^t$.

Theorem 4.1. The matrix P_U is symmetric and idempotent.

Proof. Both follow directly from the formula $P_U = A(A^tA)^{-1}A^t$:

- Symmetry: $P_U^t = (A(A^tA)^{-1}A^t)^t = A[(A^tA)^{-1}]^t A^t$. But since the transpose of an inverse is the inverse of a transpose, and A^tA is symmetric by theorem 1.1 we have $[(A^tA)^{-1}]^t = [(A^tA)^t]^{-1} = (A^tA)^{-1}$. Hence $P_U^t = A(A^tA)^{-1}A^t = P_U$.
- Idempotency: $P_U^2 = (A(A^tA)^{-1}A^t)^2 = A(A^tA)^{-1}A^tA(A^tA)^{-1}A^t = A(A^tA)^{-1}A^t = P_U$.

5 Generalized inverses

For an invertible matrix A, it's obviously true that:

$$AA^{-1}A = A \tag{5.1}$$

If A is not invertible, we may still define a generalized inverse A^g as a matrix that satisfies the same equation:

$$AA^gA = A (5.2)$$

If A^g further satisfies:

$$A^g A A^g = A^g, (5.3)$$

it is called a reflexive generalized inverse.

5.1 Left and right inverses

If $A \in \mathbb{R}^{m \times n}$ has rank n, then the null space is trivial, and hence the corresponding linear transformation is injective. This means that the equation Ax = b may or may not have a solution, but if it exists, it's unique. The matrix A^tA has rank n as well, and hence is invertible. This can be used to construct a left inverse:

$$A_L^{-1} = (A^t A)^{-1} A^t, \qquad A_L^{-1} A = (A^t A)^{-1} A^t A = I_n$$
 (5.4)

Similarly, if $A \in \mathbb{R}^{m \times n}$ has rank m, then the image space is all of \mathbb{R}^m , and hence the corresponding linear transformation is surjective. This means that the equation Ax = b always has a solution, and it may have infinitely many. The matrix AA^t has rank m as well, and hence is invertible. Analogously, we can use this to construct a right inverse:

$$A_R^{-1} = A^t (AA^t)^{-1}, \qquad AA_R^{-1} = AA^t (AA^t)^{-1} = I_m$$
 (5.5)

Both of of these inverses (when they exist) satisfies equation 5.2. They also satisfy 5.3. For instance:

$$A_L^{-1}AA_L^{-1} = (A^tA)^{-1}A^tA(A^tA)^{-1}A^t = (A^tA)^{-1}A^t = A_L^{-1}$$
 (5.6)

So both are reflexive, generalized inverses.

6 The Moore-Penrose pseudoinverse

The Moore-Penrose pseudoinverse or simply the pseudoinverse of a real matrix A is the reflexive, generalized inverse A^+ which also satisfies:

$$(AA^{+})^{t} = AA^{+}, \qquad (A^{+}A)^{t} = A^{+}A$$
 (6.1)

In other words, for which AA^+ and A^+A are symmetrical.

6.1 Uniqueness

If such a pseudoinverse exists, it is unique (hence our use of definite article above). To show this, let B_1 and B_2 be pseudoinverses of A. Then:

$$AB_1 = (AB_1)^t = B_1^t A^t = B_1^t (AB_2 A)^t = B_1^t A^t B_2^t A^t =$$
(6.2)

$$(AB_1)^t (AB_2)^t = AB_1 AB_2 = AB_2 (6.3)$$

Similarly:

$$B_1 A = (B_1 A)^t = A^t B_1^t = (A B_2 A)^t B_1^t = A^t B_2^t A^t B_1^t =$$
(6.4)

$$(B_2A)^t(B_1A)^t = B_2AB_1A = B_2A (6.5)$$

But then:

$$B_1 = B_1 A B_1 = B_2 A B_1 = B_2 A B_2 = B_2 \tag{6.6}$$