## Lecture 22

Spatio-temporal Models

Colin Rundel 04/12/2018 Spatial Models with AR time dependence

### Example - Weather station data

Based on Andrew Finley and Sudipto Banerjee's notes from National Ecological Observatory Network (NEON) Applied Bayesian Regression Workshop, March 7 - 8, 2013 Module 6

**NETemp.dat** - Monthly temperature data (Celsius) recorded across the Northeastern US starting in January 2000.

```
## # A tibble: 34 x 27
##
              y elev t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8
   <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <</pre>
##
   1 6094. 3195. 102 -6.39 -3.61 3.72 6.78 12.6
##
                                                   18.4 20.0 20.1
##
   2 6245, 3262, 1 -6.28 -4.11 2.61 6.56 11.4
                                                   16.8 18.4 18.7
##
   3 6157. 3484. 157 -11.1 -9.44 -0.389
                                        3.94 9.89
                                                   15.4 17.5 17.4
   4 6124. 3528. 176 -11.6 -9.72 -1.17 2.89 9.67
                                                   14.8 17.4 16.9
##
##
   5 6005. 3275.
                  400 -12.6 -9.06 -1.61
                                        2.56 8.56
                                                   14.3 15.9 15.8
   6 6052. 3226. 133 -9.11 -6.39 1.22 4.94 10.9
                                                   15.9 17.3 17.6
##
##
   7 6099. 3185. 56 -7.94 -6.06 2.06 5.56 11.1
                                                   17.0 18.6 18.8
##
   8 6075. 3136. 59 -6.56 -3.50 3.17 6.17 11.5 17.4 19.1 19.4
   9 6175. 3455. 160 -9.94 -8.94 -0.278 3.56 9.61 15.3 17.7 17.3
##
## 10 6005. 3327. 360 -12.3 -9.44 -1.50 2.94 9.00 14.5 17.0 16.9
## #
    ... with 24 more rows, and 16 more variables: t 9 <dbl>, t 10 <dbl>,
    t 11 <dbl>, t 12 <dbl>, t 13 <dbl>, t 14 <dbl>, t 15 <dbl>,
## #
## #
    t_16 <dbl>, t_17 <dbl>, t_18 <dbl>, t_19 <dbl>, t_20 <dbl>,
## # t 21 <dbl>, t 22 <dbl>, t 23 <dbl>, t 24 <dbl>
```





# Dynamic Linear / State Space Models (time)

$$\begin{aligned} y_t &= \mathbf{F}_t' \ \boldsymbol{\theta}_t + v_t & \text{observation equation} \\ \boldsymbol{\theta}_t &= \mathbf{G}_t \ \boldsymbol{\theta}_{t-1} + \boldsymbol{\omega}_t & \text{evolution equation} \\ \mathbf{v}_t &\sim \mathcal{N}(0, \mathbf{V}_t) \\ \boldsymbol{\omega}_t &\sim \mathcal{N}(0, \mathbf{W}_t) \end{aligned}$$

ARMA / ARIMA are a special case of a dynamic linear model, for example an AR(p) can be written as

$$\begin{split} F_t' &= (1,0,\dots,0) \\ G_t &= \begin{pmatrix} \phi_1 & \phi_2 & \cdots & \phi_{p-1} & \phi_p \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \\ \omega_t &= (\omega_1,0,\dots,0), \qquad \omega_1 \sim \mathcal{N}(0,\,\sigma^2) \end{split}$$

ARMA / ARIMA are a special case of a dynamic linear model, for example an AR(p) can be written as

$$F_t' = (1,0,\dots,0)$$
 
$$G_t = \begin{pmatrix} \phi_1 & \phi_2 & \cdots & \phi_{p-1} & \phi_p \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$
 
$$\omega_t = (\omega_1,0,\dots,0), \qquad \omega_1 \sim \mathcal{N}(0,\,\sigma^2)$$

$$\begin{split} y_t &= \theta_t + v_t, & v_t \sim \mathcal{N}(0,\,\sigma_v^2) \\ \theta_t &= \sum_{i=1}^p \phi_i \,\theta_{t-i} + \omega_1, & \omega_1 \sim \mathcal{N}(0,\,\sigma_\omega^2) \end{split}$$

# Dynamic spatio-temporal model

The observed temperature at time t and location s is given by  $y_t(s)$  where,

$$\begin{split} y_t(\mathbf{s}) &= \mathbf{x}_t(\mathbf{s})\boldsymbol{\beta}_t + u_t(\mathbf{s}) + \epsilon_t(\mathbf{s}) \\ \epsilon_t(\mathbf{s}) &\stackrel{ind.}{\sim} \mathcal{N}(0, \tau_t^2) \\ & \boldsymbol{\beta}_t = \boldsymbol{\beta}_{t-1} + \boldsymbol{\eta}_t \\ & \boldsymbol{\eta}_t &\stackrel{i.i.d.}{\sim} \mathcal{N}(0, \boldsymbol{\Sigma}_{\eta}) \\ & u_t(\mathbf{s}) = u_{t-1}(\mathbf{s}) + w_t(\mathbf{s}) \\ & w_t(\mathbf{s}) &\stackrel{ind.}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_t(\boldsymbol{\phi}_t, \sigma_t^2)\right) \end{split}$$

# Dynamic spatio-temporal model

The observed temperature at time t and location s is given by  $\boldsymbol{y_t}(\boldsymbol{s})$  where,

$$\begin{split} y_t(\mathbf{s}) &= \mathbf{x}_t(\mathbf{s})\boldsymbol{\beta}_t + u_t(\mathbf{s}) + \epsilon_t(\mathbf{s}) \\ \epsilon_t(\mathbf{s}) &\stackrel{ind.}{\sim} \mathcal{N}(0, \tau_t^2) \\ & \boldsymbol{\beta}_t = \boldsymbol{\beta}_{t-1} + \boldsymbol{\eta}_t \\ & \boldsymbol{\eta}_t &\stackrel{i.i.d.}{\sim} \mathcal{N}(0, \boldsymbol{\Sigma}_{\eta}) \\ & u_t(\mathbf{s}) = u_{t-1}(\mathbf{s}) + w_t(\mathbf{s}) \\ & w_t(\mathbf{s}) &\stackrel{ind.}{\sim} \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_t(\phi_t, \sigma_t^2)\right) \end{split}$$

Additional assumptions for t=0,

$$\label{eq:beta_0} \begin{split} \pmb{\beta}_0 &\sim \mathcal{N}(\pmb{\mu}_0, \pmb{\Sigma}_0) \\ u_0(\mathbf{s}) &= 0 \end{split}$$

# Variograms by time



### Data:

```
max d = coords %>% dist() %>% max()
n t = 24
n s = nrow(ne temp)
Parameters:
n beta = 2
starting = list(
  beta = rep(0, n t * n beta), phi = rep(3/(max d/4), n t),
  sigma.sq = rep(1, n_t), tau.sq = rep(1, n_t),
  sigma.eta = diag(0.01, n beta)
tuning = list(phi = rep(1, n_t))
priors = list(
  beta.0.Norm = list(rep(0, n_beta), diag(1000, n_beta)),
  phi.Unif = list(rep(3/(0.9 * max_d), n_t), rep(3/(0.05 * max_d), n_t)),
  sigma.sq.IG = list(rep(2, n_t), rep(2, n_t)),
  tau.sq.IG = list(rep(2, n_t), rep(2, n_t)),
  sigma.eta.IW = list(2, diag(0.001, n beta))
```

# Fitting with spDynLM from spBayes

```
n \text{ samples} = 10000
models = lapply(paste0("t_",1:24, "~elev"), as.formula)
m = spBaves::spDvnLM(
 models, data = ne temp, coords = coords, get.fitted = TRUE,
  starting = starting, tuning = tuning, priors = priors,
  cov.model = "exponential". n.samples = n samples. n.report = 1000)
m = clean_spdynlm(m, n_samples/2+1, n_samples, (n_samples/2)/1000)
save(m. file="dvnlm.Rdata")
##
##
       General model description
##
##
    Model fit with 34 observations in 24 time steps.
##
##
    Number of missing observations 0.
##
    Number of covariates 2 (including intercept if specified).
##
##
##
    Using the exponential spatial correlation model.
##
##
    Number of MCMC samples 10000.
##
##
   . . .
```

# Posterior Inference - $\beta$ s



Lapse Rate  $\approx -9.8\,^{\circ}C/km$ .

## Posterior Inference - $\theta$



## Posterior Inference - Observed vs. Predicted



### Prediction

**spPredict** does not support **spDynLM** objects but it will impute missing values.

```
r = raster(xmn=5750, xmx=6300, ymn=3000, ymx=3550, nrow=20, ncol=20)
pred = xyFromCell(r, 1:length(r)) %>%
    as.data.frame() %>%
    mutate(type="pred") %>%
    bind_rows(
        ne_temp %>% mutate(type = "obs"),
        .
    )
}
```

#### Prediction

**spPredict** does not support **spDynLM** objects but it will impute missing values.

```
r = raster(xmn=5750, xmx=6300, ymn=3000, ymx=3550, nrow=20, ncol=20)
pred = xyFromCell(r, 1:length(r)) %>%
  as.data.frame() %>%
 mutate(type="pred") %>%
  bind rows(
    ne_temp %>% mutate(type = "obs"),
models pred = lapply(paste0("t ",1:n t, "~1"), as.formula)
n \text{ samples} = 5000
m_pred = spBayes::spDynLM(
 models_pred, data = pred, coords = coords_pred, get.fitted = TRUE,
  starting = starting, tuning = tuning, priors = priors,
  cov.model = "exponential", n.samples = n samples, n.report = 1000)
m pred = clean spdynlm(m pred, n samples/2+1, n samples, thin = 5)
```





### Out-of-sample validation

```
## # A tibble: 34 x 29
             v elev type station t 1 t 10 t 11 t 12 t 13
##
##
     <dbl> <dbl> <int> <chr> <int> <dbl> <dbl> <dbl> <
                                             <dbl>
                                                   <dbl> <dbl>
   1 6094. 3195. 102 test
                               1 NA
                                        NA
                                             NA
                                                    NA
                                                           NA
##
##
   2 6245, 3262, 1 train
                               2 -6.28 8.89 3.89
                                                   -4.22 -7.11
##
   3 6157, 3484, 157 train
                                3 -11.1 6.44 1.94 -8.72 -11.6
                                4 -11.6 5.94 1.67 -9.17 -11.8
##
   4 6124, 3528, 176 train
   5 6005. 3275. 400 train
                               5 -12.6 5.67 0.278 -10.7 -11.9
##
   6 6052. 3226. 133 train
                               6 -9.11 7.56 2.44
                                                   -7.11 -9.44
##
   7 6099. 3185. 56 test 7 NA
                                             NA
                                                         NA
##
                                        NA
                                                   NA
##
   8 6075, 3136, 59 train
                             8 -6.56 9.61 4.17 -4.89 -6.06
##
   9 6175, 3455, 160 train
                              9 -9.94 6.67 1.72 -8.44 -12.1
## 10 6005, 3327,
                 360 train 10 -12.3 6.39 0.944 -10.6 -11.6
## # ... with 24 more rows, and 19 more variables: t_14 < dbl >, t_15 < dbl >,
   t 16 <dbl>, t 17 <dbl>, t 18 <dbl>, t 19 <dbl>, t 2 <dbl>, t 20 <dbl>,
## # t 21 <dbl>, t 22 <dbl>, t 23 <dbl>, t 24 <dbl>, t 3 <dbl>, t 4 <dbl>,
    t 5 <dbl>. t 6 <dbl>. t 7 <dbl>. t 8 <dbl>. t 9 <dbl>
## #
```



Spatio-temporal models for continuous time

### **Additive Models**

In general, spatiotemporal models will have a form like the following,

$$\begin{split} y(\mathbf{s},t) &= \underset{\text{mean structure}}{\mu(\mathbf{s},t)} + \underset{\text{error structure}}{e(\mathbf{s},t)} \\ &= \mathbf{x}(\mathbf{s},t)\,\beta(\mathbf{s},t) + \underset{\text{Spatiotemporal RE}}{w(\mathbf{s},t)} + \epsilon(\mathbf{s},t) \end{split}$$

In general, spatiotemporal models will have a form like the following,

$$\begin{split} y(\mathbf{s},t) &= \underset{\text{mean structure}}{\mu(\mathbf{s},t)} + \underset{\text{error structure}}{error structure} \\ &= \mathbf{x}(\mathbf{s},t)\,\beta(\mathbf{s},t) + \underset{\text{Spatiotemporal RE}}{w(\mathbf{s},t)} + \epsilon(\mathbf{s},t) \end{split}$$

The simplest possible spatiotemporal model is one were assume there is no dependence between observations in space and time,

$$w(\mathbf{s}, t) = \alpha(t) + \omega(\mathbf{s})$$

these are straight forward to fit and interpret but are quite limiting (no shared information between space and time).

## Spatiotemporal Covariance

Lets assume that we want to define our spatiotemporal random effect to be a single stationary Gaussian Process (in 3 dimensions\*),

$$\mathbf{w}(\mathbf{s}, \mathbf{t}) \sim \mathcal{N} \big( \mathbf{0}, \boldsymbol{\Sigma}(\mathbf{s}, \mathbf{t}) \big)$$

where our covariance function depends on both  $\|s-s'\|$  and |t-t'|,

$$cov(\mathbf{w}(\mathbf{s}, \mathbf{t}), \mathbf{w}(\mathbf{s'}, \mathbf{t'})) = c(\|s - s'\|, |t - t'|)$$

- . Note that the resulting covariance matrix  $\Sigma$  will be of size  $n_s\cdot n_t\times n_s\cdot n_t.$ 
  - Even for modest problems this gets very large (past the point of direct computability).
  - · If  $n_t = 52$  and  $n_s = 100$  we have to work with a  $5200 \times 5200$  covariance matrix

## Separable Models

One solution is to use a seperable form, where the covariance is the product of a valid 2d spatial and a valid 1d temporal covariance / correlation function,

$$\mathrm{cov}(\mathbf{w}(\mathbf{s}, \mathbf{t}), \mathbf{w}(\mathbf{s}', \mathbf{t}')) = \sigma^2 \, \rho_1(\|\mathbf{s} - \mathbf{s}'\|; \boldsymbol{\theta}) \, \rho_2(|\mathbf{t} - \mathbf{t}'|; \boldsymbol{\phi})$$

## Separable Models

One solution is to use a seperable form, where the covariance is the product of a valid 2d spatial and a valid 1d temporal covariance / correlation function,

$$\mathrm{cov}(\mathbf{w}(\mathbf{s}, \mathbf{t}), \mathbf{w}(\mathbf{s}', \mathbf{t}')) = \sigma^2 \, \rho_1(\|\mathbf{s} - \mathbf{s}'\|; \boldsymbol{\theta}) \, \rho_2(|\mathbf{t} - \mathbf{t}'|; \boldsymbol{\phi})$$

If we define our observations as follows (stacking time locations within spatial locations)

$$\mathbf{w}(\mathbf{s},\mathbf{t}) = \big(w(\mathbf{s}_1,t_1),\,\cdots,\,w(\mathbf{s}_1,t_{n_t}),\,\cdots,\,w(\mathbf{s}_{n_s},t_1),\,\cdots,\,w(\mathbf{s}_{n_s},t_{n_t})\big)^t$$

then the covariance can be written as

where  $\mathbf{H}_s(\theta)$  and  $\mathbf{H}_t(\theta)$  are correlation matrices defined by

$$\{\mathbf{H}_s(\theta)\}_{ii} = \rho_1(\|\mathbf{s}_i - \mathbf{s}_i\|; \theta)$$

### Kronecker Product

Definition:

$$\mathbf{A} \underset{[m \times n]}{\otimes} \mathbf{B} \underset{[p \times q]}{\mathbf{B}} = \begin{pmatrix} a_{11} \mathbf{B} & \cdots & a_{1n} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1} \mathbf{B} & \cdots & a_{mn} \mathbf{B} \end{pmatrix}$$

### Kronecker Product

Definition:

$$\mathbf{A}_{[m\times n]} \otimes \mathbf{B}_{[p\times q]} = \begin{pmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{pmatrix}$$

$$[m \cdot p \times n \cdot q]$$

Properties:

$$\mathbf{A} \otimes \mathbf{B} \neq \mathbf{B} \otimes \mathbf{A}$$
 (usually) 
$$(\mathbf{A} \otimes \mathbf{B})^t = \mathbf{A}^t \otimes \mathbf{B}^t$$
 
$$\det(\mathbf{A} \otimes \mathbf{B}) = \det(\mathbf{B} \otimes \mathbf{A})$$
 
$$= \det(\mathbf{A})^{\operatorname{rank}(\mathbf{B})} \det(\mathbf{B})^{\operatorname{rank}(\mathbf{A})}$$

$$(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \mathbf{B}^{-1}$$

### Kronecker Product and MVN Likelihoods

If we have a spatiotemporal random effect with a separable form,

$$\mathbf{w}(\mathbf{s},\mathbf{t}) \sim \mathcal{N}(\mathbf{0},\, \boldsymbol{\Sigma}_w)$$

$$\mathbf{\Sigma}_w = \sigma^2 \, \mathbf{H}_s \otimes \mathbf{H}_t$$

then the likelihood for  ${f w}$  is given by

$$\begin{split} &-\frac{n}{2}\log 2\pi - \frac{1}{2}\log |\boldsymbol{\Sigma}_w| - \frac{1}{2}\mathbf{w}^t\boldsymbol{\Sigma}_{\mathbf{w}}^{-1}\mathbf{w} \\ &= -\frac{n}{2}\log 2\pi - \frac{1}{2}\log \left[(\sigma^2)^{n_t\cdot n_s}|\boldsymbol{H}_s|^{n_t}|\boldsymbol{H}_t|^{n_s}\right] - \frac{1}{2\sigma^2}\mathbf{w}^t(\mathbf{H}_s^{-1}\otimes\mathbf{H}_t^{-1})\mathbf{w} \end{split}$$

## Non-seperable Models

- Additive and separable models are still somewhat limiting
- · Cannot treat spatiotemporal covariances as 3d observations
- · Possible alternatives:
  - Specialized spatiotemporal covariance functions, i.e.

$$\gamma(\mathbf{s},\mathbf{s}',t,t') = \sigma^2(|t-t'|+1)^{-1} \exp\left(-\|\mathbf{s}-\mathbf{s}'\|(|t-t'|+1)^{-\beta/2}\right)$$

· Mixtures of separable covariances, i.e.

$$w(\mathbf{s},t) = w_1(\mathbf{s},t) + w_2(\mathbf{s},t)$$