what-when-how

In Depth Tutorials and Information

Tracking (Introduction to Video and Image Processing) Part 1

One of the central questions in video processing is how to follow an object over time. Imagine you are designing a game where the position of the hand is used as a controller. What you need from your video processing software is then the position of the hand in each image and hence a temporal sequence of coordinates, see Table 9.1.

We can also illustrate this as a number of points in a coordinate system. If we connect these points we will have a curve through time, see Fig. 9.1. This curve is denoted the trajectory of the object.

The notion of a trajectory is not limited to the position of the object. We can generalize the concept and say that the object is represented by a so-called state vector, where each entry in the vector contains the value of a certain parameter at a particular time step. Besides position, such entries could be velocity, acceleration, size, shape, color etc. Formally we define tracking to be a matter of finding the trajectory of an object's state. This topic will define a framework for tracking, namely the so-called predict-match-update framework, see Fig. 9.6. Without loss of generality we will below assume the state is only the position of the object, meaning that the state vector we seek to find is $\sim \ddot{Y}(t) = |>(0, y(i)]$. Below the framework is built up one block at a time.

Tracking-by-Detection

We can use some of the methods described previously in the topic to detect an object. If we do this in each image and simply concatenate the positions we could argue that we are doing tracking. This approach is, however, not considered tracking since each detection is done independently of all other detections, i.e., no temporal information is included.

The most simple form of tracking is when the estimated position is updated using previous states. The current and previous states are combined in order to smooth the current state. The need for this is motivated by the fact that noise will always appear in the estimated position.

Table 9.1 The position of an object over time

Time	1	2	3	4	5	6	7	8	9	10	11	12	13 ···
X	1	2	4	5	4	6	8	9	9	7	3	2	2 ···
Y	10	8	8	7	6	4	4	3	2	2	2	2	4 ···

Fig. 9.1 The trajectory of an object over time

Fig. 9.2 (a) Framework for updating the state. (b) The effect of updating the states. The blue curve is the true trajectory of the object. The black curve is the detected trajectory and the red curve is the smoothed trajectory

Smoothing can be implemented by calculating the average of the last N states. The larger N is, the more smooth the trajectory will be. As N increases so does the latency in the system, meaning that the updated state will react slow to rapid position changes. For example if you are tracking a car that is accelerating hard or is doing an emergency break. This slow reaction can be counteracted by also including future states in the update of the current state, but such an approach will delay the output from the system. Whether this is acceptable or not depends on the application. Another way of counteracting the latency is to use a weighted

smoothing filter. Instead of adding N positions together and dividing by N, we weight each position according to its age. So the current state has the highest weight, the second newest state has the second highest weight etc. No matter which smoothing method is used to update the state, it is a compromise between smoothness and latency. In Fig. 9.2 the updating of the state is illustrated. The history-block contains previous states.

Fig. 9.3 (a) Framework for updating and predicting the state. (b) The effect of predicting the position of the object in the next image

Prediction

Very often the object we want to follow is moving much slower than the framerate of the camera. As a consequence the object is not moving very much from one image to the next. So, having located an object in one image will allow us to predict where the object will approximately be in the next image. We want to exploit this fact when detecting the object. This is done by introducing a ROI centered at the position where we predict the object to be and only analyze the pixels within the ROI, see Fig. 9.3. This will save a significant amount of processing time.

The question is now where we predict the object to be. For this purpose a motion model is introduced, that is, a model explaining how the object is moving. The most simple model is a zeroth order linear motion model. It predicts the object to be exactly at the same position in the next image as it is in the current image. The next of the linear motion models is the first order linear motion model, which includes the velocity of the

$$\overrightarrow{p}(t) = [x(t), y(t)]_{\text{and velocity}}$$

$$\overrightarrow{v}(t) = \left[v_{x}(t), v_{y}(t)\right]_{\text{of the object, the predicted position will be}}$$

$$\overrightarrow{p}(t+1) = \overrightarrow{v}(t) \cdot \Delta t + \overrightarrow{p}(t) \tag{9.1}$$

where
$$\overrightarrow{p}(t+1)_{\text{is the predicted position and}} \Delta t_{\text{is the time between}} \overrightarrow{p}(t)_{\text{and}}$$

$$\overrightarrow{p}(t+\overline{1})$$
. Often the framerate is constant and At is simply the number of images

predicted into the future. Usually we are just interested in predicting one image ahead and hence At can be removed from the equation.

The second order linear motion model also includes the current acceleration of the object

$$\overrightarrow{a}(t) = [a_x(t), a_y(t)]$$

and the predicted position is given as

$$\overrightarrow{p}(t+1)\Delta t\overrightarrow{p}(t)\overrightarrow{p}(t+\overline{1}).$$

$$\overrightarrow{\underline{p}}(t+1) = \frac{1}{2} \cdot \overrightarrow{a}(t) \cdot \Delta t^2 + \overrightarrow{v}(t) \cdot \Delta t + \overrightarrow{p}(t)$$
(9.2)

Again, with a fixed framerate and only predicting the next image, the two A terms become 1 and can therefore be ignored.

Motion models are not necessarily linear. If we for example are following an object being thrown, we need a model that includes gravity. Another example could be when tracking an object moving in a circle, the motion model would of course be that of a circle, or if we are tracking a drunken human, the motion model might be more like a sinus curve than a straight line.

Sometimes the movement of an object cannot be explained by just one motion model. If we for example are tracking a fish in an aquarium, we will need two motion models. One model for when the fish is just swimming slowly around and another model for when the fish needs to get away from something fast. The first type of movement could be modeled by a first order linear model, while the other type of movement could be modeled by a random direction with maximum acceleration. Having two (or more) motion models will result in two (or more) ROIs.

No matter how good our motion model is, it is still just a model of the movement, i.e. an approximation. The object is therefore not likely to be located exactly at the predicted location. For this reason we look for the object within a ROI. The question is now how to define the size of the ROI. The simplest approach is to try different sizes and see which works best. A more scientific approach, which will render a smaller ROI and hence save processing time, is to define the size based on the uncertainty of the prediction. Say we in the last image predicted the x-position of the object to be at position 370, but found the object at position 350. Whether this difference is due to a bad prediction or a bad detection we do not know. What we do know is that there is some uncertainty in the x-direction. The bigger the uncertainty is, the bigger the ROI should be in the x-direction. Normally it is not recommended to let the difference control the ROI directly since it is sensitive to noise. A more conservative way of changing the ROI based on the difference is here shown for the width of the ROI:

$$width(t+1) = \alpha \cdot |\underline{x}(t) - x(t)| + (1-\alpha) \cdot WIDTH$$
 (9.3)

where a is a small value, x(t) is the predicted x-value of the object at time t, x(t) is the detected x-value of the object at time t, and WIDTH is a predefined minimum width of the ROI. The same can of course be done in the vertical direction.

Similar to the uncertainty of the prediction, we also have an uncertainty associated with the detection. Imagine that we in one image have a bad segmentation of the object we are tracking. The effect of this could

4 of 9

be that we only detect a small part of the object. We can still calculate the position of the object, but the number of object pixels used in this calculation is much smaller than in previous images, see Fig. 9.4. This would suggest that the detection has become more uncertain and ultimately we could have a situation where the object is not found and hence no detection is available. In both cases it might be better using the prediction than the detection when updating the state. Following along this line of thinking, the update of the state could be

$$\overrightarrow{s}(t) = \frac{w_1}{w_1 + w_2} \cdot \overrightarrow{p}(t) + \frac{w_2}{w_1 + w_2} \cdot \overrightarrow{p}(t) \tag{9.4}$$

where W1 should be controlled by the uncertainty associated with the prediction and w2 by the uncertainty associated with the detection.

Fig. 9.4 The number of object pixels as a function of time.

Note how the number suddenly drops

Predicting is a delicate matter as we are talking about foreseeing the future. Care should therefore be taken before using any of the methods and equations presented above. But prediction in its simple form with a zeroth order or first order motion model, and a large ROI, is nearly always a good idea. So is the notion of including predicted values in the update when no detection is available.

Tracking Multiple Objects

Sometimes we need to track multiple objects at the same time. If the objects are different we can duplicate the methods mentioned above and track each object individually. When the objects are similar, however, we need a coherent framework that can simultaneous track multiple objects.

In the top row of Fig. 9.5 we see two similar objects that we want to track. Remember that tracking is about

finding the trajectory of the object over time, meaning that we need to figure out which object is which in each image. This is known as a data association problem in the sense that we need to assign some data (here two detected objects) to their respective trajectories. In the figure it is obvious that we have an object to the left moving downwards while the object to the right moves upwards, but how does the computer infer this? The solution is to predict the ROI for each object, as discussed above, and investigate which of the two objects best match the respective ROIs. This is illustrated in the bottom row in Fig. 9.5. By including the matching block into the tracking framework, we have now arrived at its final structure, see Fig. 9.6. This tracking framework is denoted the predict-match-update framework.

Unfortunately, tracking of multiple objects is not always as simple as illustrated in Fig. 9.5. When objects move they are likely to occlude each other, which will result in objects disappearing or new objects appearing. Moreover, sometimes the (b) Illustration of noise, new object and lost objects segmentation algorithm might fail resulting in an object being lost and/or new objects appearing. All these issues might occur simultaneously clouding the matter further. In Fig. 9.7 some of these phenomena are illustrated. In Fig. 9.7(a) we have a situation where one object is occluded by another object when entering the image's field of view. This continues until they split into two objects. We also see a situation where two objects merge into one and later split into two objects again. In Fig. 9.7(b) we first see a situation where a new object is detected in the middle of the scene and below a situation where an object disappears behind a static object in the scene before reappearing again. Last we see a situation where the detection of an object is incorrect resulting in the predicted object being lost and three new objects appearing.

Fig. 9.5 Top row shows four consecutive images containing two moving objects. In the bottom row the dashed red boxes indicate the predicted ROIs.

Fig. 9.6 The predict-match-update tracking framework

Fig. 9.7 (a) Illustration of merged and split objects.

One approach for resolving these issues is to measure how many of the detected objects are within each predicted ROI. In Fig. 9.8(a) we show an example where we have predicted five objects and detected five objects.

The zeros and ones in the table in Fig. 9.8(b) indicate if a detected object is within a predicted object's ROI. The numbers in the row (green) and column (red) outside the table indicate the sum of a particular row or column. Entries in the table those row and column sums are both one, have a unique match and can be assigned to each other. This will give that object 1 is assigned to trajectory B and object 2 to trajectory A. The row sum of the detected object 5 is equal to 0 meaning that this is a new object. The column sum of the predicted object E is 0 meaning that object E is lost. Next we look at non-assigned predicted objects with a column sum equal to 1 and assign these objects. In our example this will mean that detected object 4 is

assigned to trajectory D. We therefore set entry (C, 4) = 0 in the table and can now assign object 3 to trajectory C since both its row and column sums are one. The final result for this image is shown to the right in Fig. 9.8(b). Looking at Fig. 9.8(a) it might be reasonable to assume that object 5 should be assigned to trajectory E. We can handle such situations by increasing the size of the ROI, but this is a dangerous path to follow since this will in general increase the number of ambiguities. A better approach is to delay the decision about whether an object is new or lost for some time.

Fig. 9.8 (a) The blue dots are the detected objects and X illustrates the predicted objects. The dashed red boxes indicate the predicted ROIs. (b) A table indicating which detected objects that match which predicted objects

If a lost object is present in an image, the trajectory is updated with the predicted value instead of the missing detection. The more times this is done, the more uncertain this trajectory becomes and hence the size of the ROI should be increased accordingly. Moreover, if no detections have been associated to a trajectory for some time, it should be concluded that the object is lost and its trajectory terminated.

For a new object to be accepted as a truly new object the following can be done. The first time a new object is detected a temporary trajectory is defined and the object is being tracked. When it has been successfully tracked for a certain amount of time it can be concluded that this is indeed a new object and the trajectory is no longer temporary. If no detected object is associated to the temporary trajectory for some time, the temporary trajectory is terminated.

Next post: Tracking (Introduction to Video and Image Processing) Part 2

Previous post: Segmentation in Video Data (Introduction to Video and Image Processing) Part 2

Related Links

- Introduction to Video and Image Processing
 - Introduction to Video and Image Processing
 - Image Acquisition (Introduction to Video and Image Processing) Part 1
 - Image Acquisition (Introduction to Video and Image Processing) Part 2
 - Color Images (Introduction to Video and Image Processing) Part 1
 - Color Images (Introduction to Video and Image Processing) Part 2
- :: Search WWH ::

Search

Google Custor Relact Unprivileged Children ¶ Careers ¶ Privacy Statement ¶ Copyright Information

9 of 9