Universidad Politecnica Salesiana

Nombre: Erika Morocho

Asignatura: Simulación

Covid-19 infección en Ecuador. Modelos matemáticos y predicciones

Formulacion del problema

Analizar la infecion del Covid-19 en el Ecuador, tomando en cuenta ciertos elementos:

- Resultados.- Simular los resultados aplciando el modelo matematico logistico.
- Vaciatifes de Interes.- Implentar un calculo para encontra la tasa o el numero de persnas infectadas • Tratamiento estadístico de los resultados.- Mostar resultads estadisticos, obteniedo las sus garficas correspondientes.

• Plan de experimento.- Recopilar informacion sobre la propagancion del covid, en el Ecuador y simular los datos

Definicion del sistema:

El sistema que se simulará debe estar definido perfectamente. Se debe establecer la tasa de casos totales, el numero de contagiados por dia.

Formulación del modelo :

En esta etapa se capturan los aspectos relevantes del sistema real. Por lo que se analizara datos reales de las personas infectadas o fallecidas, y verificando los datos de las personas que llega con sintomas y pacientes con pronosticos reservados.para poder hacer la simulacion de la cantidad de pacientes que llegan.

Colección de datos

La cantidad de datos se determinan con los datos que proporcinan el Centro medico. Pueden ser obtenidos de registros históricos, experimentos en laboratorio o mediciones realizadas en el sistema real.

```
In [2]: #Importar las lbrerias
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from sklearn.metrics import mean_squared_error
from scipy.optimize import curve_fit
from scipy.optimize import fsolve
from sklearn import linear_model
import matplotlib.pyplot as plt
%matplotlib inline
from xml.dom import minidom
from datetime import datetime
instanteInicial = datetime.now()
```

0.0

0.0

0.0

0.0

0.0

date total_cases new_cases new_cases_smoothed total_deaths new_deaths new_deat

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

In [24]: url = 'owid-covid-data.csv' df = pd.read_csv(url)

df = df.fillna(0) df.head()

Out[24]: iso code continent location

AFG

AFG

AFG

AFG

5 rows × 50 columns

Asia Afghanistan

Asia Afghanistan

Asia Afghanistan

Asia Afghanistan

Asia Afghanistan

01-24

2020-

Para hacer la simulación utilizaremos Python con sus librerias.

Implementación del modelo en el ordenador

In [25]: df = df[df['location'].isin(['Ecuador'])] #Filtro la Informacion solo para Ecuador df = df.loc[:,['date','total_cases', 'new_cases']] #Selecciono las columnas de analasis # Expresar las fechas en numero de dias desde el 01 Enero FMT = '%Y - %m - %d'date = df['date'] df['date'] = date.map(lambda x : (datetime.strptime(x, FMT) - datetime.strptime("2020-01-01") | datetime.strptime("2020-01") | datetime.strptime("2020-01") | datetime.strptim, FMT)).days)

16005 26 0.0 0.0

total_cases

Out[25]:

16001

16002

16003

16004

200000

175000 150000 22

23

24

In [26]: df.plot(x ='date', y='total_cases') Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x2ac02c6c3c8>

date total_cases new_cases

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0

125000 100000 75000 50000 25000 50 100 250 200 300 In [31]: ## modelo lineal x = list(df.iloc [:, 0]) # Fecha y = list(df.iloc [:, 1]) # Numero de casos # Creamos el objeto de Regresión Lineal

regr = linear_model.LinearRegression() # Entrenamos nuestro modelo regr.fit(np.array(x).reshape(-1, 1) ,y) # Veamos los coeficienetes obtenidos, En nuestro caso, serán la Tangente print('Coefficients: \n', regr.coef_) # Este es el valor donde corta el eje Y (en X=0) print('Independent term: \n', regr.intercept_) # Error Cuadrado Medio Coefficients: [678.23434836] Independent term: -50243.115476957784

In [30]: #Graficar plt.scatter(x, y) $x_{real} = np.array(range(50, 100))$ print(x_real) plt.plot(x_real, regr.predict(x_real.reshape(-1, 1)), color='red')

150000

plt.legend()

S

plt.show() y_prediccion = regr.predict([[100]]) print('Para el dia 100 el numero de casos son:',int(y_prediccion)) [50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99] 200000

100000 50000 150 Para el dia 100 el numero de casos son: 17580 In [32]: #modelo logistico def modelo_logistico(x,a,b): return a+b*np.log(x)

> print(exp_fit) (array([-343832.62635712, 83019.89950144]), array([[1.73473472e+08, -3.39535647e+07], [-3.39535647e+07, 6.76480830e+06]]))

In [40]: # Graficas $pred_x = list(range(min(x), max(x)+50)) # Predecir 50 dias mas$ plt.rcParams['figure.figsize'] = [7, 7] plt.rc('font', size=14) # Real data plt.scatter(x,y,label="Datos Reales",color="red") # Predicted exponential curve plt.plot(pred_x, [modelo_logistico(i,exp_fit[0][0],exp_fit[0][1]) for i in pred_x], label="M odelo Logistico")

exp_fit = curve_fit(modelo_logistico,x,y) #Extraemos los valores de los paramatros

plt.xlabel("Desde el 1 Enero 2020") plt.ylabel("Total de personas infectadas") plt.ylim($(\min(y)*0.9, \max(y)*3.1)$) # Definir los limites de Y 600000 Modelo Logistico **Datos Reales** 500000 400000

Total de persona 300000 200000 100000 50 100 150 200 250 300 350 400 Desde el 1 Enero 2020 In [43]: y1=np.array(df.values[:,2]) plt.figure(figsize=(15, 15)) plt.scatter(x,y,label='# de Casos', color='blue') plt.scatter(x,y1,label='# de Muertes', color='red') plt.grid(True) plt.legend() plt.title('# de Casos'); # de Casos # de Casos 200000

de Muertes

150000 100000 50000 50 100 150 200 250 350 300 Interpretación: Se analiza la sensibilidad del modelo con respecto a los parámetros con mayor incertidumbre

La simulación realizada con los modelos matematicos lineales y logisticos yo ayudan a poder saber la cantidad de casos confirmados que se han mostrado duarnte este pandimia, prediciendo asi el total de muertos, de infectados, o de pronostico

Documentación

In []:

reservado. Implementación: Se entrega la solución al cliente y se lo capacita en su uso.

En este caso nos hemos ayudado de los modelos de simulacion lineal y logaritmica para analisar los casos de covid-19 en el Ecuador, tomado en cuentas los datos que nos ayuda a mostrar de una forma simetrica los casos de contagio que se dan el país.

va evolucionado el covid y asi poder ir tomando ciertas decisiones para que no se propage y ya no existan mas incrementeo.

Elaboración de documentación técnica y manuales de uso.

Detallamos cada uno de los pasos que se van realizando durante el poceso de predicion con datos reales. proporcionado y actualizaod de forma constante https://github.com/owid/covid-19-data/blob/master/public/data/owid-covid-data.csv

Conclusiones: Podemos recalcar que los modelos matematicos son herramientas utiles que nos permiten predecir de forma certera de como