§ 2. ЛИНЕЙНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

2.1. Основные понятия

Неоднородным линейным дифференциальным уравнением n-го порядка с постоянными коэффициентами называется дифференциальное уравнение вида

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x),$$
 (2.1)

где $x \in \mathbb{R}$ — независимая переменная; y(x) — искомая функция; $a_0, a_1, ..., a_n$ — заданные числа, причем $a_0 \neq 0$; f(x) — известная функция, не равная тождественно нулю. Уравнение

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$
(2.2)

называется однородным.

Теорема 1.1. Общее решение линейного неоднородного уравнения (2.1) представляет собой сумму общего решения соответствующего однородного уравнения (2.2) и любого частного решения неоднородного уравнения (2.1):

$$y(x) = y_o(x) + y_u(x).$$
 (2.3)

2.2. Общее решение однородного уравнения

Фундаментальной системой решений однородного уравнения (2.2) называется совокупность n линейно независимых решений $y_1(x), y_2(x), ..., y_n(x)$ этого уравнения.

Теорема 2.1. Однородное линейное дифференциальное уравнение (2.2) имеет фундаментальную систему решений.

Теорема 2.2. Общее решение однородного уравнения (2.2) представляет собой произвольную линейную комбинацию частных решений, входящих в фундаментальную систему решений, $y_o = C_1 y_1(x) + C_2 y_2(x) + ... + C_n y_n(x)$. (2.4)

Далее мы будем рассматривать уравнения с вещественными коэффициентами, их решения будем искать в вещественной форме.

Характеристическим уравнением, соответствующим однородному уравнению (2.2), называется алгебраическое уравнение

$$a_0 \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0.$$
 (2.5)

Обозначим через $\lambda_1, \lambda_2, \dots, \lambda_n$ корни характеристического уравнения (2.5), вообще говоря, комплексные.

Теорема 2.3.

- 1) Каждому вещественному простому корню λ характеристического уравнения (2.5) соответствует частное решение однородного уравнения (2.2), имеющее вид $y = e^{\lambda x}$.
- 2) Каждому вещественному корню λ кратности k ($k \ge 2$) соответствует k линейно независимых частных решений однородного уравнения $e^{\lambda x}$, $xe^{\lambda x}$, ..., $x^{k-1}e^{\lambda x}$. Соответствующая компонента общего решения однородного уравнения (2.2) имеет вид

$$y(x) = (C_1 + C_2 x + \dots + C_k x^{k-1}) e^{\lambda x},$$
(2.6)

где $C_1, C_2, ..., C_k$ – произвольные постоянные.

Теорема 2.4. Паре невещественных корней $\alpha \pm i\beta$ соответствуют два линейно независимых вещественных частных решения однородного уравнения (2.2) Re $e^{(\alpha+i\beta)x} = e^{\alpha x} \cos \beta x$ и

 ${
m Im}\,e^{(lpha+ieta)x}=e^{lpha x}\,{
m sin}\,eta x$, которые включают в фундаментальную систему решений, вместо функций $e^{(lpha+ieta)x},\;e^{(lpha-ieta)x}$.

Соответствующая компонента общего решения однородного уравнения (2.2) представляется в виле

$$y(x) = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}, \qquad (2.7)$$

где C_1, C_2 – произвольные постоянные.

Теорема 2.5.

- 1) Если $\lambda = \alpha + i\beta$, где α и β вещественные, $\beta \neq 0$, а $i^2 = -1$, является корнем характеристического уравнения (2.5), то комплексно-сопряженное число $\overline{\lambda} = \alpha i\beta$ также корень этого уравнения (по свойству алгебраических уравнений с вещественными коэффициентами).
- 2) Если среди корней характеристического уравнения (2.5) есть корень $\lambda = \alpha + i\beta$ кратности k $(k \ge 2)$, то и комплексно сопряженный ему корень $\overline{\lambda} = \alpha i\beta$ имеет ту же кратность k. Этим 2k невещественным корням соответствуют 2k линейно независимых частных вещественных решений однородного уравнения (2.2)

$$e^{\alpha x} \cos \beta x$$
, $xe^{\alpha x} \cos \beta x$, ..., $x^{k-1}e^{\alpha x} \cos \beta x$,

$$e^{\alpha x} \sin \beta x$$
, $xe^{\alpha x} \sin \beta x$, ..., $x^{k-1}e^{\alpha x} \sin \beta x$.

Соответствующая компонента общего решения однородного уравнения (2.2) имеет в этом случае вид

$$y(x) = (C_1 + C_2 x + \dots + C_k x^{k-1}) e^{\alpha x} \cos \beta x + + (D_1 + D_2 x + \dots + D_k x^{k-1}) e^{\alpha x} \sin \beta x,$$
(2.8)

где $C_1,\,C_2,\,...,\,C_k\,,\,D_1,\,D_2,\,...,\,D_k$ – произвольные постоянные.

Так можно построить совокупность решения, являющуюся общим решением уравнения (2.2).

2.3. Частное решение неоднородного уравнения с правой частью специального вида

Пусть правая часть f(x) неоднородного линейного дифференциального уравнения с постоянными коэффициентами является квазимногочленом, т.е. является суммой функций вида

$$g(x) = e^{\alpha x} (P_m(x) \cos \beta x + Q_n(x) \sin \beta x)$$
, r.e. $g(x) = e^{(\alpha + i\beta)x} \widetilde{P}_k(x) + e^{(\alpha - i\beta)x} \widetilde{Q}_k(x)$

где $P_m(x)$, $Q_n(x)$, $\tilde{P}_k(x)$, $\tilde{Q}_k(x)$ – многочлены действительной переменной x с, вообще говоря, комплексными коэффициентами.

В этом случае для поиска частного решения неоднородного дифференциального уравнения можно использовать метод неопределенных коэффициентов.

Пусть правая часть уравнения (2.1) имеет вид $f(x) = P_m(x)e^{\gamma x}$, где $P_m(x) = b_0 + b_1 x + ... + b_m x^m -$ многочлен степени m, γ – комплексное или вещественное число.

Теорема 3.1. Если γ не является корнем характеристического уравнения (2.5), то говорят, что имеет место *нерезонансный случай*; частное решение неоднородного уравнения (2.1) ищется в виде

$$y_{u} = Q_{m}(x)e^{\gamma x}, \qquad (2.9)$$

где $Q_m(x)$ – многочлен той же степени m.

Если γ является корнем (2.5) кратности s , то говорят, что имеет место pesonanc кратности s ; частное решение (2.1) ищется в виде

$$y_{_{q}} = x^{s} Q_{m}(x) e^{\gamma x}. \tag{2.10}$$

Напомним, что корень уравнения λ^* (2.5) называется *корнем кратности* k, если полином $a_0\lambda^n + a_1\lambda^{n-1} + ... + a_{n-1}\lambda + a_n$ делится на многочлен $\left(\lambda - \lambda^*\right)^k$, но не делится на многочлен $\left(\lambda - \lambda^*\right)^{k+1}$.

Для определения коэффициентов многочлена $Q_m(x)$ следует (2.9) или (2.10) подставить в (2.1), сократить на e^{ix} и приравнять коэффициенты при одинаковых степенях x в левой и правой частях уравнения. Из получившейся системы алгебраических уравнений найдем эти коэффициенты.

Теорема 3.2. Пусть коэффициенты левой части уравнения (2.1) вещественны, а его правая часть имеет вид $f(x) = e^{\alpha x} (P_m(x) \cos \beta x + Q_n(x) \sin \beta x)$.

Если $\gamma = \alpha + i\beta$ не является корнем характеристического уравнения (2.5), то говорят, что имеет место нерезонансный случай; частное решение неоднородного уравнения (2.1) ищется в виде

$$y_{y} = (R_{p} \cos \beta x + T_{p} \sin \beta x)e^{\alpha x}, \qquad (2.11)$$

где $p=\max\{m,\,n\}$ — наибольшей из степеней многочленов $P_m(x)$ и $Q_n(x)$, R_p и T_p — многочлены степени не выше p .

Если $\gamma = \alpha + i\beta$ является корнем (2.5) кратности s , то говорят, что имеет место резонанс кратности s ; частное решение (2.1) ищется в виде

$$y_{q} = x^{s} \left(R_{p} \cos \beta x + T_{p} \sin \beta x \right) e^{\alpha x}. \tag{2.12}$$

Чтобы найти коэффициенты многочленов R_p и T_p , надо подставить (2.11) или (2.12) в уравнение (2.1), приравнять коэффициенты при подобных членах и решить полученную систему алгебраических уравнений.

Теорема 3.3. Если правая часть уравнения (2.1) представима в виде суммы нескольких функций $f(x) = f_1(x) + f_2(x) + ... + f_l(x)$, то частное решение неоднородного уравнения (2.1) состоит из суммы частных решений y_i неоднородных уравнений

$$a_0 y_k^{(n)} + a_1 y_k^{(n-1)} + \dots + a_{n-1} y_k' + a_n y_k = f_k(x) (k = \overline{1,l}).$$

2.4. Схема решения. Решить линейное дифференциальное уравнение с постоянными коэффициентами найти общее решение найти частное решение соотвествующего неоднородного однородного дифференциального дифференциального уравнения с постоянными уравнения с постоянными коэффициентами коэффициентами

Ответ = общее решение однородного + частное решение неоднородного уравнения с постоянными коэффициентами Итак, суммируя вышеизложенное, пошаговые процедуры отыскания общего решения однородного уравнения с постоянными коэффициентами и частного решения неоднородного уравнения мы можем проиллюстрировать двумя подробными схемами:

Для решения однородного уравнения

<u>Для отыскания частного решения неоднородного</u> <u>уравнения</u>

$$y_u = x^s Q_m(x) e^{\alpha x},$$

где s - кратность $\lambda = \alpha$ как корня характеристического уравнения (резонанс при s≠0)

$$f(x) = (P_m(x)\cos \beta x + Q_n(x)\sin \beta x)e^{\alpha x}$$

 $f(x) = (P_m(x)\cos \beta x + Q_n(x)\sin \beta x)e^{\alpha x}$ $y_u = x^s (R_p(x)\cos \beta x + T_p(x)\sin \beta x)e^{\alpha x},$

где $p=max\{m,n\}$, а s - кратность $\lambda=\alpha+i\beta$ как корня характеристического уравнения (резонанс при s≠0)

МФТИ, Пыркова О.А.

2.5. Литература.

- 1. *Ипатова В.М., Пыркова О.А., Седов В.Н.*. Дифференциальные уравнения. Методы решений: Учебное пособие. 2-е изд., испр. и доп. М.: МФТИ, 2012. (§1)
- 2. *Романко В.К.* Курс дифференциальных уравнений и вариационного исчисления. М.: Лаборатория базовых знаний, 2000. (Гл. 2 $\S1$, 2, 3).
- 3. *Сборник* задач по дифференциальным уравнениям и вариационному исчислению /Под ред. В.К. Романко. М.: Лаборатория базовых знаний, 2002. (Гл. 2 §8).
- 4. Φ едорюк M.B. Обыкновенные дифференциальные уравнения. 2-е изд. M.: Наука, 1985. (Гл. 3 §7).
- 5. Φ илиппов $A.\Phi$. Введение в теорию дифференциальных уравнений. М.: КомКнига, 2007. (Гл. 3 §11).
- 6. *Филиппов А.Ф.* Сборник задач по дифференциальным уравнениям. М.: Наука, 1979, 1985, 1992. (§11)

2.6. Примеры решения задач, предлагавшихся на экзаменационных контрольных работах в МФТИ

Пример 2.1. Найдите общее решение уравнения $y^{IV} + 4y'' = 8e^{2x} + 8x^2$ в вещественном виде.

① Исходное уравнение неоднородное.

1. Найдем общее решение соответствующего однородного уравнения:

$$y^{IV} + 4y'' = 0.$$

Составляем характеристическое уравнение: $\lambda^4 + 4\lambda^2 = 0$.

Его корни $\lambda_{1,2}=0$, $\lambda_3=2i$, $\lambda_4=-2i$.

 $\lambda_{1,2}=0$ (кратности два) соответствуют частные решения $y_1=e^{0x}=1$ и $y_2=xe^{0x}=x$, корням $\lambda_{3,4}=\pm 2i$ — решения $y_3=\cos 2x$ и $y_4=\sin 2x$.

Общее решение однородного уравнения в вещественной форме

$$y_0 = C_1 + C_2 x + C_3 \cos 2x + C_4 \sin 2x$$
,

где C_1, C_2, C_3, C_4 – вещественные произвольные постоянные.

2. Частное решение неоднородного уравнения.

В нашем случае $f(x) = 8e^{2x} + 8x^2$, т.е. $f(x) = f_1(x) + f_2(x)$, где $f_1(x) = 8e^{2x}$, $f_2(x) = 8x^2$.

Поиск частного решения проводим методом неопределенных коэффициентов:

 $f_1(x) = 8e^{2x} = P_m(x)e^{\gamma x}$, $P_m(x) = 8$, т.е. m = 0, $\gamma = 2$. Таких корней у характеристического уравнения нет, следовательно, кратность корня s = 0. Т.о. частное решение ищем в виде $y_m(x) = ae^{2x}$.

Подставляя $y_{u_1}(x) = ae^{2x}$ в исходное дифференциальное уравнение при $f(x) = f_1(x)$, получаем

$$16ae^{2x} + 4 \cdot 4ae^{2x} \Big(= 32ae^{2x} \Big) = 8e^{2x}.$$

Приравнивая коэффициенты при e^{2x} , имеем

$$32a = 8$$
, $a = \frac{1}{4}$ if $y_{u_1} = \frac{1}{4}e^{2x}$.

 $f_2(x) = 8x^2 = 8x^2e^{0x} = P_m(x)e^{\gamma x}, \ P_m(x) = 8x^2, \ \text{следовательно} \ m=2, \ \gamma=0 \ \text{(что соответствует}$ $\lambda_{1,2}=0) - \text{резонансный случай, кратность корня} \ s=2 \,, \ \text{поэтому частное решение ищем в виде}$ $y_{u_2}=x^2Q_2e^{0x}=x^2\Big(ax^2+bx+c\Big).$

Подставляя $y_{u_2} = ax^4 + bx^3 + cx^2$, в исходное дифференциальное уравнение при $f(x) \equiv f_2(x)$, получаем

$$24a + 4(12ax^2 + 6bx + 2c) = 8x^2.$$

Приравнивая выражения при одинаковых степенях x, имеем

$$x^2$$
: 48 a = 8,
 x^1 : 24 b = 0, это дает $a = \frac{1}{6}$, $c = -3a = -\frac{1}{2}$ и
 x^0 : 24 $a + 8c$ = 0;

$$y_{u_2} = x^2 \left(\frac{1}{6} x^2 - \frac{1}{2} \right).$$

Частное решение неоднородного уравнения

$$y_{i_1}(x) = y_{i_1}(x) + y_{i_2}(x) = \frac{1}{4}e^{2x} + \frac{x^4}{6} - \frac{x^2}{2}$$
.

3. Общее решение неоднородного уравнения.

$$y = y_o + y_u = C_1 + C_2 x + C_3 \cos 2x + C_4 \sin 2x + \frac{e^{2x}}{4} + \frac{x^4}{6} - \frac{x^2}{2}$$

Пример 2.2. Найдите общее решение уравнения $y''' + 3y'' + y' - 5y = 10e^x - 5x$ в вещественном виде.

② Исходное уравнение неоднородное.

1. Найдем общее решение соответствующего однородного уравнения:

$$y''' + 3y'' + y' - 5y = 0.$$

Составляем характеристическое уравнение: $\lambda^3 + 3\lambda^2 + \lambda - 5 = 0$.

Корень
$$\lambda_1 = 1$$
 – угадываем. $(\lambda^2 + 4\lambda + 5)(\lambda - 1) = 0$ дает $\lambda_{2,3} = -2 \pm \sqrt{4 - 5} = -2 \pm i$.

Корню характеристического уравнения $\lambda_1 = 1$ соответствует частное решение $y_1 = e^x$, корням $\lambda_{2,3} = -2 \pm i$ — решения $y_2 = e^{-2x} \cos x$ и $y_3 = e^{-2x} \sin x$.

Общее решение однородного уравнения в действительной форме

$$y_0 = C_1 e^x + C_2 e^{-2x} \cos x + C_3 e^{-2x} \sin x$$
,

где C_1, C_2, C_3 – действительные произвольные постоянные.

2. Частное решение неоднородного уравнения.

В нашем случае
$$f(x) = 10e^x - 5x$$
, т.е. $f(x) = f_1(x) + f_2(x)$, где $f_1(x) = 10e^x$, $f_2(x) = -5x$.

Поиск частного решения проводим методом неопределенных коэффициентов:

$$f_1(x) = 10e^x = P_m(x)e^{\gamma x}$$
, $P_m(x) = 10$, т.е. $m = 0$, $\gamma = 1$ (что соответствует $\lambda_1 = 1$) – резонансный случай, кратность корня $s = 1$, поэтому частное решение ищем в виде $y_{u_1} = x^1 Q_0 e^x = xae^x$.

Подставляя $y_{u_1}(x) = axe^x$ в исходное дифференциальное уравнение при $f(x) = f_1(x)$, получаем $10ae^x = 10e^x$.

Приравнивая выражения при одинаковых функциях, имеем

$$10a = 10$$
, $a = 1$ и $y_{u_1} = xe^x$.

 $f_2(x) = -5x = -5xe^{0x} = P_m(x)e^{\gamma x}$, $P_m(x) = -5x$, т.е. m = 1, $\gamma = 0$ (таких корней у характеристического уравнения нет), т.е. кратность корня s = 0, поэтому частное решение ищем в виде $y_{u_2} = x^0 Q_1 e^{0x} = ax + b$.

Подставляя $y_{u_2} = ax + b$ в исходное дифференциальное уравнение при $f(x) \equiv f_2(x)$, получаем $0 + 3 \cdot 0 + a - 5(ax + b) = -5x$. Приравнивая выражения при одинаковых степенях, имеем $x^1: -5a = -5, \\ x^0: a - 5b = 0;$ это дает $a = 1, b = \frac{1}{5}a = \frac{1}{5}$ и $y_{u_2} = x + \frac{1}{5}$.

Частное решение неоднородного уравнения

$$y_{u}(x) = y_{u_1}(x) + y_{u_2}(x) = xe^{x} + x + \frac{1}{5}$$
.

3. Общее решение неоднородного уравнения

$$y = y_o + y_u = C_1 e^x + C_2 e^{-2x} \cos x + C_3 e^{-2x} \sin x + x e^x + x + \frac{1}{5}$$
.

Пример 2.3. Найдите общее решение уравнения $y''' + 4y'' + y' + 4y = 34\sin x + \left(34x + \frac{13}{4}\right)e^{4x}$ в

вещественном виде.

③ Исходное уравнение неоднородное.

1. Найдем общее решение соответствующего однородного уравнения:

$$y''' + 4y'' + y' + 4y = 0.$$

Составляем характеристическое уравнение: $\lambda^3 + 4\lambda^2 + \lambda + 4 = 0$.

Его корни $\lambda_1 = -4$, $\lambda_{2,3} = \pm i$.

 $\lambda_1=-4$ соответствует частное решение $y_1=e^{-4x}$, корням $\lambda_{2,3}=\pm i$ — решения $y_2=\sin x$, $y_3=\cos x$.

Общее решение однородного уравнения в действительной форме

$$y_o = C_1 e^{-4x} + C_2 \sin x + C_3 \cos x$$
,

где C_1 , C_2 , C_3 – действительные произвольные постоянные.

2. Частное решение неоднородного уравнения.

В нашем случае $f(x) = 34 \sin x + \left(34x + \frac{13}{4}\right)e^{4x}$, т.е. $f(x) = f_1(x) + f_2(x)$, где $f_1(x) = 34 \sin x$,

$$f_2(x) = \left(34x + \frac{13}{4}\right)e^{4x}$$
.

Поиск частного решения проводим методом неопределенных коэффициентов:

 $f_1(x) = 34 \sin x = e^{\gamma x} (P_m(x) \cos \beta x + Q_n(x) \sin \beta x),$ $P_m(x) = 0,$ $Q_n(x) = 34,$ $p = \max\{m,n\} = 0,$ $\gamma + \beta i = i$ – корень характеристического уравнения резонансный случай, кратность корня s = 1, поэтому частное решение ищем в виде $y_{u_i}(x) = x(a \sin x + b \cos x)$.

Подставляя $y_{u_1}(x) = x(a\sin x + b\cos x)$, в исходное дифференциальное уравнение при $f(x) = f_1(x)$, получаем $8(a\cos x - b\sin x) - 2(a\sin x + b\cos x) = 34\sin x$.

Приравнивая коэффициенты при $\cos x$ и при $\sin x$, имеем

$$\cos x$$
: $8a-2b=0$, $\sin x$: $-8b-2a=34$; это дает $a=-1$, $b=-4$ и $y_{u_1}=-x\sin x-4x\cos x$.

$$f_2(x) = \left(34x + \frac{13}{4}\right)e^{4x} = P_m(x)e^{\gamma x}$$
, $P_m(x) = 34x + \frac{13}{4}$, т.е. $m = 1$, $\gamma = 4$ не является корнем

характеристического уравнения, кратность корня s=0, поэтому частное решение ищем в виде $y_{u_2}=x^0Q_1e^{4x}=(ax+b)e^{4x}$.

Подставляя $y_{u_2} = (ax+b)e^{4x}$, в исходное дифференциальное уравнение при $f(x) \equiv f_2(x)$, получаем

$$48a + 64(ax+b) + 32a + 64(ax+b) + a + 4(ax+b) + 4(ax+b) = 34x + \frac{13}{4}.$$

Приравнивая выражения при одинаковых степенях, имеем

$$x^1$$
: $136a = 34$, x^0 : $136b + 81a = \frac{13}{4}$; это дает $a = \frac{1}{4}$, $b = -\frac{1}{8}$ и $y_{u_2} = \left(\frac{1}{4}x^2 - \frac{1}{8}\right)e^{4x}$.

МФТИ, Пыркова О.А.

Частное решение неоднородного уравнения

$$y_{u} = y_{u_{1}} + y_{u_{2}} = -x\sin x - 4x\cos x + \left(\frac{1}{4}x^{2} - \frac{1}{8}\right)e^{4x}.$$

3. Общее решение неоднородного уравнения

$$y = y_o + y_u = C_1 e^{-4x} + C_2 \sin x + C_3 \cos x - x \sin x - 4x \cos x + \left(\frac{x}{4} - \frac{1}{8}\right) e^{4x}.$$