

The sum of two halves may be different from the whole. Effects of splitting sequencing samples across lanes.

<u>Eleanor C. Williams</u>*, Ruben Chazarra-Gil*, Arash Shahsavari*, Irina Mohorianu[@]
Core Bioinformatics Group, Wellcome-MRC Cambridge Stem Cell Institute
Contact: ecw63@cam.ac.uk

Aims

- Simulating across-lane sample splitting to illustrate variability introduced through sequencing design
- o For bulk experiments, differences are observed in differential expression and enrichment analysis
- At the single cell level, we see changes in the identification of cell subpopulations
- \circ We identify changes in biological interpretation when splitting across lanes is performed

Statistical Background

mRNAseq Case Study

Yang et al, Cell Systems, May 22;8(5):427-445.e10. (2019) Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency

ChIPseq Case Study

Yang et al, Cell Systems, May 22;8(5):427-445.e10. (2019) Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency

mRNAseq Case Study

Yang et al, Cell Systems, May 22;8(5):427-445.e10. (2019) Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency

Varying split proportion

Varying number of splits and sequencing depth

ChIPseq Case Study

Yang et al, Cell Systems, May 22;8(5):427-445.e10. (2019) Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency

Smart-Seq2 Case Study

Cuomo et al; Nature Communications volume 11, Article number: 810 (2020) Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression

	Study case	N cells	Donor	N cells (donor)	Time point	N cells (time point)	Cluster	N cells (cluster)
1	Case 1	105	hayt	105	day2	105	0	105
2	Case 2	106	pahc	106	day3	106	1	66
2							4	40
3	Case 3	168	melw	94	day0	168	3	168
			qunz	74				
4	Case 5	168	hayt	168	day1	61	9	61
					day3	107	1	107
5	Case 6	95	melw	47	day1	95	5	45
			vils	48			6	50
6	Case 8	217	melw	95	day0	95	3	95
			naah	122	day3	122	2	122

10x Case Study

Mende et al; bioRxiv (2020)

Quantitative and molecular differences distinguish adult human medullary and extramedullary haematopoietic stem and progenitor cell landscapes

Conclusions

- Splitting across lanes typically reduced read diversity, leading to over-representation for higher abundance fragments and under-representation or complete loss of lower abundance fragment
- While these changes may be difficult to see pre-alignment, we see knock-on effects in downstream analysis
- o In bulk mRNAseq experiments this could lead to false positives in differential expression
- o In bulk ChIPseq experiments, changes in peak calling and properties can be observed
- In single cell experiments, the topography of the UMAP can change, along with inferred cell type identities
- o Ideally, don't split across lanes but if it can't be avoided then consistency is key

Acknowledgements

Ruben Chazarra-Gil

Katarzyna Kania

Arash Shahsavari

Irina Mohorianu

