Задача 1.

Рассмотрим следующий граф.

Перед нами граф, на котором изображены 13 агентов и связи между ними. При запуске программы каждый агент запоминает рандомное число от 20 до 40.

Произведем обход графа в ширину, начиная с вершины 0, чтобы составить алгоритм вычисления среднего арифметического.

Будем считать среднее арифметическое, поднимаясь по дереву обхода снизу вверх. Итоговое значение будет вычислено на агенте под номером "0" и напечатано на экран (== передано в "центр").

Данное дерево можно представить с помощью следующей матрицей инцидентности:

-	0	1	2	3	4	5	6	7	8	9	10	11	12
0		1	1					1					
1													
2				1								1	
3					1								
4						1			1				
5													
6													
7							1				1		
8													
9													
10													1
11										1			
12													

А[і][ј] = 1 ⇔ Агент і может получить сообщения от агента ј.

Детали реализации:

При создании агента в качестве аргументов ему передается его рандомно сгенерированное число (от 20 до 40), количество сообщений, которое он должен принять от потомков перед передачей сообщения дальше, а также столбец из матрицы A, соответствующий ему.

Агент 0 также знает, сколько всего агентов находится в сети.

Каждый агент реализует два поведения: SenderBehaviour и ListenerBehaviour.

ListenerBehaviour: агент слушает входящие сообщения и при получении нового инкрементирует счетчик принятых сообщений и прибавляет к своему числу то, которое было получено в сообщении. Когда агент принял все сообщения от своих потомков, он передает сообщение со своим числом своему родителю. Если у агента нет потомков, то число передается сразу (без ожидания).

У ZeroHelloAgent также есть поведение ZeroSenderBehaviour, в котором происходит печать среднего арифметического на экран, когда до агента доходят все сообщения.

Эффективность:

Количест во	Невязка	Количество сс	общений	Число тактов*	Память		
агентов		между агентами	в центр				
13	0	12	1	4	13 * (13 + 1 + 1 + 1) + 1 = 209 (ячейка памяти**)		

^{*}Считаем, что принятие/отправка сообщения и подсчет суммы происходит на один такт

^{**} Считаем память для массивов связей, чисел, количества полученных сообщений, количества сообщений, которые нужно получить перед следующей отправкой.