HUBERT KIM

Research Scientist, Haptics

E-mail: jk.hubert.kim@gmail.com

Mobile: 917.834.0377

Home: Bay Area, CA (willing to relocate)

Web: hubertjkim.com

LinkedIn: ~/hubertjkim

SKILLS

Human Subject Testing

User Interface Design

Digital Signal Processing

Bare-Metal Programming

Adaptive Control and Machine Learning

Numerical Simulation and Path Planning

EDUCATION

Ph.D.,

In Mechanical Engineering Virginia Tech, Blacksburg, VA Sept 2021

Dissertation: Joint Torque Feedback for Motion Training with an Elbow Exoskeleton

B.S., cum laude, In Mechanical Engineering **NYU Tandon**, *Brooklyn*, NY May 2015

SUMMARY

A haptic researcher with specialties in human experiments, mechatronics, and control theory. Seeks to join a research/engineering team with a project-driven environment to improve human and robot perception. Competent in:

- Designing and executing human subject research with analytical tools resulting in 2 journal articles.
- **Developing concepts into prototypes** with manufacturing and programming skills resulting in an open-sourced publication.
- Solving problems in frequency-domain with modeling and simulation skills contributing 1 peer-reviewed journal and 4 co-authored papers.

Wearables

RESEARCH INTERESTS

• Haptic Interfaces • Physical Human-Robot Interactions

AREAS OF EXPERTISE

Human-centered Research

Gained as a Ph.D. Researcher | Assistive Robotics Laboratory at Virginia Tech

- Managed quantitative human subject studies to discover human perceptual threshold when wearing an exoskeleton, as described in a paper in Scientific Reports.
- Oversaw design iterations of the adaptive User Interface to measure kinesthetic perception resulted in the 2020 ICRA conference presentation.
- Analyzed the user data resulting in discovering active human elbow stiffness as evidenced by a journal paper in IEEE Access.

Mechatronic Product Development

Gained as a Ph.D. Researcher | Assistive Robotics Laboratory at Virginia Tech

- Led Arm Haptic Feedback Team with rapid prototyping and embedded programming as evidenced by an open-source paper, HardwareX.
- Collaborated with a Motor Expert to solve a Brushless DC motor's Initial Pose Detection problem as exhibited in the HardwareX.
- Mentored two professionals and advised 2 Senior Design teams, including a team that participated in the 2019 Cornell Cup Robotics.

Modeling and Simulation of Physical Human-robot Interaction

Gained as a Ph.D. Researcher | Assistive Robotics Laboratory at Virginia Tech

- Operated a project of assessing Human-In-the-Loop via control design technique ended up poster presentation at the 2016 IROS conference.
- Carried out system identification of wearables as demonstrated by developing the impedance controller in the poster.

HUBERT KIM

Research Scientist, Haptics

TECHNICAL SKILLS

Embedded Programming (C/C++ via CCStudio):

- UART/I2C/CAN
- Oscilloscopes/ logic analyzers

Data Acquisition and Simulation:

MATLAB/LabVIEW

3D CAD:

NX/SolidWorks

Statistics:

- JMP
- SPSS

Data Processing with NN:

- Python
- Tensorflow (Jupiter)

Physiological Sensors:

• EMG/IMU

HONORS

Doctoral Scholarship ICTAS, Virginia Tech Mar 2016 – July 2020

Best Mechanical Engineering Experience Award for Undergrad NYU Tandon May 2015

INTERESTS

Baskethall

Weightlifting

Sci-Fi Novel

AREAS OF EXPERTISE continued

Signal Processing and Analysis

Gained as an Undergraduate Researcher | Dynamic System Laboratory at NYU

- Conducted the transfer function identification of the smart material to validate the physics-based model in the energy harvesting field.
- Configured custom and off-the-shelf data acquisition systems leading to several journal publications (1 first author, 4 authorships) and resulting in ICTAS funding (4+ years scholarship) for the doctoral study.

SELECTED PUBLICATIONS

The Effects of Torque Magnitude and Stiffness in Arm Guidance through Joint Torque Feedback

Kim, H., Asbeck, A. [Submitted]

• 2021 • IEEE Access

Just Noticeable Differences for Elbow Joint Torque Feedback

Kim, H., Asbeck, A. [Under review]

2021
Scientific Report

An elbow exoskeleton for haptic feedback made with a direct drive hobby motor

Kim, H., Asbeck, A.

2020HardwareX

Just Noticeable Differences for Joint Torque Feedback During Static Poses Kim, H., Guo, H., Asbeck, A.

• 2020 • ICRA

Voltage attenuation along the electrodes of ionic polymer metal composites Kim, H., Cha, Y., Porfiri, M.

2016
J. of Intell Mater Syst Struct

SCHOLARLY REVIEWS

Machine Learning Model Comparisons of User Independent & Dependent Intent Recognition Systems for Powered Prostheses

• 2020 • IEEE Robotics and Automation

Probabilistic Model-based Learning Control for Task-oriented Intention-driven Training with Soft Rehabilitation Robots

• 2020 • Transactions on Mechatronics