Lista 3

e-mail:gleiphgh@gmail.com

- 1. Para cada uma das linguagens a seguir construa um autômato de pilha determinístico, se possível. Se não for possível, justifique e construa um autômato de pilha não determinístico.
 - (a) $\{0^n 1^n 2^k \mid n \ge 0, k \ge 0\};$
 - (b) $\{0^{3n}1^{2n} \mid n \ge 0\};$
 - (c) $\{w0w^R \mid w \in \{1,2\}^*\};$
 - (d) $\{0^m 1^n \mid m > n\};$
 - (e) $\{0^n1^n \mid n \ge 0\} \cup \{0^n1^{2n} \mid n \ge 0\};$
 - (f) $\{ww^R \mid w \in \{1, 2\}^*\};$
 - (g) $\{0^m 1^n \mid m < n\};$
 - (h) $\{a^n b^m c^p \mid n = m \text{ ou } m = p\};$
 - (i) $\{a^{3n}cb^{2(n+m)}ac^m\}.$
- 2. Construa autômatos de pilha que reconheça as linguagens do Exercício 1:
 - (a) por estado final;
 - (b) por pilha vazia.
- 3. Sejam M_1 e M_2 APNs. Mostre como construir APNs para:
 - (a) $L(M_1) \cup L(M_2);$
 - (b) $L(M_1)L(M_2)$;
 - (c) $L(M_1)^*$.
- 4. Uma autômato de fila é semelhante ao autômato de pilha, porém ao invés de ter uma pilha como estrutura auxiliar do autômato usa-se uma fila¹. Assim, uma transição $\delta(e_1,a,b)=[e_2,z]$ no autômato de fila significa que há transição do estado e_1 para o estado e_2 sob (consumindo) o símbolo do alfabeto de entrada a, retirando o primeiro elemento da fila, b, e adicionando ao final da fila a palavra z.

Toda linguagem que é reconhecida por um autômato de pilha também é reconhecida por um autômato de fila, pois é possível simular o comportamento da pilha, inserindo um elemento no início da fila. Para inserir um elemento no início da fila basta colocá-lo no final e retirar todos que estão a sua frente e adicioná-los ao final.

Seja o autômato de pilha $M=(\{1,2\},\{a,b,c,d\},\{A,C\},\delta,\{1\},\{1,2\}),$ em que δ está definida nos seguintes pontos:

$$\begin{split} \delta(1,a,\lambda) &= [1,A];\\ \delta(1,c,\lambda) &= [1,C];\\ \delta(1,b,A) &= [2,\lambda];\\ \delta(1,d,C) &= [2,\lambda];\\ \delta(2,b,A) &= [2,\lambda];\\ \delta(2,d,C) &= [2,\lambda]; \end{split}$$

Mostre como um **autômato de fila** pode ser construído a partir do autômato M, que reconheça a linguagem L(M). Para isto, simule o comportamento de inserir no início da fila, como mencionado acima.

- 5. Seja a linguagem $L = \{ww^R \mid w \in \{0, 1, 2\}^*\}$. Faça o que se pede:
 - (a) Construa um autômato de pilha que reconhece L por estado final e pilha vazia.

¹A fila é uma estrutura de dados em que um elemento sempre é adicionado ao final e retirado do início.

Lista 3

- (b) A partir do autômato construído no item anterior, construa um autômato de pilha que reconhece L por estado final, usando o método visto em sala de aula ou do livro texto.
- (c) A partir do autômato construído no item anterior, construa um autômato de pilha que reconhece $L \cup \{\lambda\}$ por pilha vazia, usando o método visto em sala de aula ou do livro texto.
- 6. Sejam um APN $M_1 = (E_1, \Sigma, \Gamma, \delta_1, I, F_1)$ e um AFD $M_2 = (E_2, \Sigma, \delta_2, i, F_2)$. A partir de M_1 e M_2 é possível construir um APN $M_3 = (E_1 \times E_2, \Sigma, \Gamma, \delta, I \times \{i\}, F_1 \times F_2)$, em que δ contém as seguintes transições:
 - para cada par de transições $[e_2, z] \in \delta_1(e_1, a, A)$ e $\delta_2(e_3, a) = e_4$, em que $e_1, e_2 \in E_1$, $e_3, e_4 \in E_2$, $a \in \Sigma$, $A \in \Gamma \cup \{\lambda\}$, e $z \in \Gamma^*$, há uma transição $[(e_2, e_4), z] \in \delta((e_1, e_3), a, A)$;
 - para cada transição λ , $[e_2, z] \in \delta_1(e_1, \lambda, A)$, há transições $[(e_2, e_3), z] \in \delta((e_1, e_3), \lambda, A)$ para cada $e_3 \in E_2$.
 - O APN M_3 , construído como descrito acima reconhece a linguagem $L(M_1) \cap L(M_2)$. A partir destas informações, faça o que se pede:
 - (a) Construa um autômato de pilha que reconheça a linguagem $L_1 = \{w \in \{a, b\}^* \mid w \text{ tem mais a's que b's}\};$
 - (b) Construa um AFD que reconheça a linguagem $L_2 = \{w \in \{a,b\}^* \mid |w| = 2n, n \ge 0\};$
 - (c) Usando o método descrito acima e os autômatos construídos nos itens anteriores, defina formalmente e apresente o diagrama de estados de um AP que reconheça $L_1 \cap L_2$.