Stackelberg-Pareto Synthesis

Clément Tamines (Université de Mons)

Joint work with Véronique Bruyère (Université de Mons) Jean-François Raskin (Université libre de Bruxelles)

> August 2021 CONCUR 2021

Outline

1. Reactive Synthesis

2. Stackelberg-Pareto Synthesis

3. Our Results

Outline

1. Reactive Synthesis

2. Stackelberg-Pareto Synthesis

Our Results

Reactive Synthesis

Reactive systems: systems which constantly interact with the environment

Problem of Reactive Synthesis (RS)

- given a specification for the system
- synthesize an adequate **controller** for the system
- enforce the specification whatever the behavior of the environment

Classical approach for RS [GTW02]

- interaction is modeled using a two-player game
- Player 0 = system, Player 1 = environment
- specification = objective

Games: Arenas, Plays and Objectives

Game Arena: tuple $G = (V, V_0, V_1, E, v_0)$ with (V, E) a directed graph

Play: infinite path starting with the **initial vertex** v_0 , $\rho = v_0 v_2 (v_3 v_5)^{\omega}$

Objective $Ω_i$ for Player $i ∈ \{0, 1\}$:

- subset of plays, ρ satisfies Ω_i if $\rho \in \Omega_i$
- reachability: plays which visit T ⊆ V

Games: Strategies and Consistency

Strategy σ_i : $V^* \times V_i \rightarrow V$ dictates the choices of Player i

 \rightarrow given $\underbrace{v_0v_1\dots v_k}_{h}$ yields v_{k+1} from hv_k (memory) or v_k (without)

A play is **consistent** with σ_i if $v_{k+1} = \sigma_i(v_0 \dots v_k) \ \forall k \in \mathbb{N}$, $\forall v_k \in V_i$

Consider the **set of plays consistent** with a strategy σ_0

$$\rightarrow$$
 Plays _{σ_0} = { $v_0v_1^{\omega}$, $v_0v_2v_4^{\omega}$, $v_0v_2v_3v_7^{\omega}$ }

Back to Reactive Synthesis

Classical approach for RS: zero-sum games [GTW02]

- objective of environment is **opposite** objective of system: $\Omega_1 = \neg \Omega_0$
- if Ω_0 = Reach(T), then Ω_1 = Avoid(T)
- adversarial environment: we want a winning strategy for the system

Setbacks and Alternative

Fully adversarial environment: bold abstraction of reality

- assumes the only goal of the environment is to make the system fail
- environment can be composed of one or several components
- each with own objective

Alternative: framework of Stackelberg games [vS37] (non-zero-sum)

- Player O announces his strategy σ_0
- Player 1 rationally answers with optimal response w.r.t. his objective
- goal of Player 0:
 - announce a strategy that satisfies his objective
 - whatever the rational response of Player 1

Outline

1. Reactive Synthesis

2. Stackelberg-Pareto Synthesis

Our Results

Our New Model

Stackelberg-Pareto game (SP game): $\mathcal{G} = (G, \Omega_0, \Omega_1, \dots, \Omega_t)$

- Player 0 (system): objective Ω_0 , announces strategy σ_0
- Player 1 (environment): **several objectives** $\Omega_1, \ldots, \Omega_t$ (components)

Payoff of ρ for Player 1 is the **vector of Booleans** pay $(\rho) \in \{0, 1\}^t$

• order \leq on payoffs, e.g., (0, 1, 0) < (0, 1, 1)

$$\Omega_1 = \text{Reach}(\{v_6\})$$

$$\Omega_2 = \text{Reach}(\{v_2\})$$

$$\Omega_3 = \text{Reach}(\{v_7\})$$

Pareto-Optimal Payoffs

- 1. Player 0 announces his strategy σ_0
- 2. Player 1 considers Plays $_{\sigma_0}$
 - corresponding set of payoffs $\{pay(\rho) \mid \rho \in Plays_{\sigma_0}\}$
 - identify Pareto-optimal (PO) payoffs (maximal w.r.t. ≤) : set P_{σ₀}

Stackelberg-Pareto Synthesis Problem

Stackelberg-Pareto Synthesis Problem (SPS problem)

The SPS problem is to decide whether there exists a strategy σ_0 for Player 0 such that for every play $\rho \in \text{Plays}_{\sigma_0}$ with $\text{pay}(\rho) \in P_{\sigma_0}$, it holds that $\rho \in \Omega_0$

Environment is rational and responds to σ_0 to get a Pareto-optimal payoff

ightarrow Player 0 must satisfy Ω_0 in every such rational response

SPS Problem Example (1/2)

Consider σ_0 such that $\sigma_0(v_3) = v_5$

- Plays_{σ_0} = { $v_0v_1^{\omega}$, $v_0v_2v_4^{\omega}$, $v_0v_2(v_3v_5)^+v_6^{\omega}$, $v_0v_2(v_3v_5)^{\omega}$ }
- payoffs = $\{ (0, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0) \}$
- $P_{\sigma_0} = \{ (1, 0, 0), (0, 1, 1) \}$

Strategy σ_0 is **not a solution** to the SPS problem, e.g., $\rho = v_0 v_2 (v_4)^{\omega} \notin \Omega_0$ \rightarrow the only other **memoryless** strategy is **not a solution either**

SPS Problem Example (2/2)

Finite-memory strategy σ'_0 s.t. $\sigma'_0(v_0v_2v_3) = v_5$ and $\sigma'_0(v_0v_2v_3v_5v_3) = v_7$

 σ'_0 is a solution to the SPS problem: $\rho \in \Omega_0$ when pay(ρ) $\in P_{\sigma'_0}$ \rightarrow Player 0 may need memory to have a solution to the SPS problem

We consider SP games where every objective is

- parity (parity SP games): models general class of ω -regular objectives
- reachability (reachability SP games): simpler setting

Outline

1. Reactive Synthesis

Stackelberg-Pareto Synthesis

3. Our Results

Our Results

Our Results on SP games

NEXPTIME-Completeness of the SPS problem

The SPS problem is NEXPTIME-complete for reachability SP games and for parity SP games

Fixed-Parameter Complexity of the SPS problem

Solving the SPS problem is FPT for reachability SP games for parameter *t* (number of objectives of Player 1) and FPT for parity SP games for parameters *t* and the maximal priority according to each parity objective of Player 1

Sound: in practice, we can assume those parameters to have **small values**

NEXPTIME algorithm not FPT & FPT algorithm not usable for membership

Complexity Class

NEXPTIME-Membership

The SPS problem is in NEXPTIME for reachability and for parity SP games

Use important result on the strategies which are solution to the problem

- if Player 0 has a solution, he has a finite-memory one
- with at most an exponential number of memory states

Membership: NEXPTIME algorithm where

- non-deterministically guess a strategy (with exponential size)
- check that it is a solution in exponential time (using automaton)

Constructing a Finite-Memory Strategy

Start from a solution σ_0 to the SPS problem and one play ρ_i per PO payoff

Create $\hat{\sigma}_0$ which follows σ_0 in prefix of ρ_i

 \rightarrow on deviation, switch to **punishing strategy** σ^{Pun} that imposes Ω_0 or \mathcal{P}

Decompose ρ_i into at most exponentially many parts and compact them

The SPS problem is NP-hard on Tree Arenas

Simple setting of tree arenas: trees with loops on leaves

NP-hardness is shown using the **Set Cover problem** (NP-complete) [Kar72]

- $C = \{e_1, e_2, ..., e_n\}$ of *n* elements
- m subsets S_1, S_2, \ldots, S_m s.t. $S_i \subseteq C$
- an integer $k \le m$
- find k indexes i_1, i_2, \ldots, i_k s.t. $C = \bigcup_{j=1}^k S_{i_j}$.

Devise a SP game such that:

Player 0 has a **solution** to the **SPS problem** ⇔ **solution** to the **SC problem**

Reduction to the Set Cover Problem

$$C = \{e_1, e_2, e_3\}, S_1 = \{e_1, e_3\}, S_2 = \{e_2\}, S_3 = \{e_1, e_2\}, k = 2$$

$$V_0$$

$$G_1$$

$$V_1$$

$$V_1$$

$$V_2$$

$$V_2$$

$$V_2$$

$$V_3$$

$$V_2$$

$$V_3$$

$$V_4$$

$$V_3$$

$$V_4$$

$$V_3$$

$$V_4$$

$$V_4$$

$$V_5$$

$$V_7$$

$$V_7$$

$$V_7$$

$$V_8$$

$$V_8$$

$$V_8$$

$$V_8$$

$$V_8$$

$$V_8$$

$$V_9$$

Every play in G_1 is consistent with any strategy of Player 0 and $\notin \Omega_0$

 \rightarrow in a solution, payoffs from G_1 cannot be Pareto-Optimal

Each payoff in G_1 must be < than some payoff in G_2 (corresponding to a set)

 Ω_0

 Ω_0

 \mathcal{A}_{0}

 \mathcal{A}_0

 \mathcal{A}_0

Hardness

NEXPTIME-Hardness

The SPS problem is NEXPTIME-hard for reachability and parity SP games

Intuition: use succinct variant of Set Cover problem (NEXPTIME-complete)

→ Set Cover problem succinctly defined using CNF formulas

Challenger-Prover Game

To show FPT results: reduction to Challenger-Prover game (C-P game)

- two-player zero-sum game \mathcal{G}' , created from \mathcal{G}
- played between **Challenger** (C) and **Prover** (P)
- solution to the SPS problem in $\mathcal{G} \iff$ winning strategy for \mathcal{P} in \mathcal{G}'
- described in a generic way, later adapted to parity/reachability

Intuition: \mathcal{P} tries to **show** the existence of a solution, \mathcal{C} tries to **disprove** it

Bibliography I

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors.

Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

[Kar72] Richard M. Karp.

Reducibility among combinatorial problems.

In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York, 1972.

Bibliography II

[vS37] Heinrich Freiherr von Stackelberg.

Marktform und Gleichgewicht.

Wien und Berlin, J. Springer, 1937.