Public key encryption from Diffie-Hellman

This slide is made based the online course of Cryptography by Dan Boneh

Recap: public key encryption: (Gen, E, D)

Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice's pub-key and sends her an email
- Encrypted File Systems

Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice's pub-key and sends her an email
- Encrypted File Systems

Constructions

This week: two families of public-key encryption schemes

- Previous lecture: based on trapdoor functions (such as RSA)
 - Schemes: ISO standard, OAEP+, ...
- This lecture: based on the Diffie-Hellman protocol
 - Schemes: ElGamal encryption and variants (e.g. used in GPG)

Security goals: chosen ciphertext security

Review: the Diffie-Hellman protocol (1977)

Fix a finite cyclic group G (e.g. $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

Bob

choose random **a** in {1,...,n}

choose random **b** in {1,...,n}

$$A = g^{a}$$

$$B = g^{b}$$

$$B^a = (g^b)^a =$$

$$k_{AB} = g^{ab}$$
 = $(g^a)^b$ = A^b

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random **a** in {1,...,n}

 $A = g^a$

Treat as a public key

<u>Bob</u>

ndom **b** in {1,...,n}

compute
$$g^{ab} = A^b$$
,
derive symmetric key k,
 $ct = \begin{bmatrix} B = g^b & encrypt message m & with k \end{bmatrix}$

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random **a** in {1,...,n}

$$A = g^a$$

Treat as a public key

compute $g^{ab} = A^b$.

<u>Bob</u>

ndom **b** in {1,...,n}

To decrypt: $compute g^{ab} = B^a$, derive k, and decrypt

ct = $\begin{bmatrix} & & derive symmetric key k, \\ B = g^b, & encrypt message m with k \end{bmatrix}$

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

We construct a pub-key enc. system (Gen, E, D):

- Key generation Gen:
 - choose random generator g in G and random a in Z_n
 - output sk = a, $pk = (g, h=g^a)$

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

```
\begin{split} \underline{\textbf{E(pk=(g,h), m)}}: \\ b &\stackrel{\mathbb{R}}{\leftarrow} Z_n, \ u \leftarrow g^b, \ v \leftarrow h^b \\ k \leftarrow H(u,v), \ c \leftarrow E_s(k,m) \\ \text{output } (u,c) \end{split}
```

```
\frac{D(sk=a,(u,c))}{v \leftarrow u^a}
k \leftarrow H(u,v), \quad m \leftarrow D_s(k,c)
output m
```

ElGamal performance

```
E( pk=(g,h), m):

b \leftarrow Z_n, u \leftarrow g^b, v \leftarrow h^b
```

```
\frac{D(sk=a, (u,c))}{v \leftarrow u^a}
```

Encryption: 2 exp. (fixed basis)

- Can pre-compute $\left[g^{(2^{i})}, h^{(2^{i})}\right]$ for $i=1,...,\log_2 n$
- 3x speed-up (or more)

Decryption: 1 exp. (variable basis)

Next step: why is this system chosen ciphertext secure? under what assumptions?

End of Segment

Public key encryption from Diffie-Hellman

ElGamal Security

Computational Diffie-Hellman Assumption

G: finite cyclic group of order n

Comp. DH (CDH) assumption holds in G if: g, g^a , $g^b \implies g^{ab}$

for all efficient algs. A:

$$Pr[A(g, g^a, g^b) = g^{ab}] < negligible$$

where $g \leftarrow \{\text{generators of G}\}\$, $a, b \leftarrow Z_n$

Hash Diffie-Hellman Assumption

G: finite cyclic group of order n , H: $G^2 \rightarrow K$ a hash function

<u>Def</u>: Hash-DH (HDH) assumption holds for (G, H) if:

$$\left(g,\ g^a,\ g^b\ ,\ H(g^b,g^{ab})\ \right) \quad \approx_p \quad \left(g,\ g^a,\ g^b\ ,\ R\ \right)$$
 where $g \leftarrow \{\text{generators of G}\}$, $a,b \leftarrow Z_n$, $R \leftarrow K$

H acts as an extractor: strange distribution on $G^2 \Rightarrow uniform$ on K

ElGamal is sem. secure under Hash-DH

KeyGen:
$$g \leftarrow \{generators of G\}$$
, $a \leftarrow Z_n$
output $pk = (g, h=g^a)$, $sk = a$

$$\frac{D(sk=a,(u,c))}{k \leftarrow H(u,u^a), \quad m \leftarrow D_s(k,c)}$$
 output m

ElGamal is sem. secure under Hash-DH

ElGamal chosen ciphertext security?

To prove chosen ciphertext security need stronger assumption

Interactive Diffie-Hellman (IDH) in group G:

IDH holds in G if: ∀efficient A: Pr[A outputs gab] < negligible

ElGamal chosen ciphertext security?

Security Theorem:

If **IDH** holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^2 \longrightarrow K$ is a "random oracle" then **ElGamal** is CCA^{ro} secure.

Questions: (1) can we prove CCA security based on CDH?

(2) can we prove CCA security without random oracles?

End of Segment

Public key encryption from Diffie-Hellman

ElGamal Variants
With Better Security

Review: ElGamal encryption

KeyGen:
$$g \leftarrow \{generators of G\}$$
, $a \leftarrow Z_n$

output
$$pk = (g, h=g^a)$$
, $sk = a$

E(pk=(g,h), m):
$$b \leftarrow Z_n$$

 $k \leftarrow H(g^b,h^b)$, $c \leftarrow E_s(k,m)$
output (g^b,c)

$$\begin{array}{c} \underline{\textbf{D(sk=a,(u,c))}:} \\ \\ k \leftarrow H(u,u^a) \;, \;\; m \leftarrow D_s(k,c) \\ \\ \text{output } m \end{array}$$

ElGamal chosen ciphertext security

Security Theorem:

If IDH holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^2 \longrightarrow K$ is a "random oracle" then **ElGamal** is CCA^{ro} secure.

Can we prove CCA security based on CDH $(g, g^a, g^b \rightarrow g^{ab})$?

- Option 1: use group G where CDH = IDH (a.k.a bilinear group)
- Option 2: change the ElGamal system

Variants: twin ElGamal [CKS'08]

KeyGen: $g \leftarrow \{\text{generators of G}\}$, $a1, a2 \leftarrow Z_n$

output $pk = (g, h_1=g^{a1}, h_2=g^{a2})$, sk = (a1, a2)

E(pk=(g,h₁,h₂), m): $b \leftarrow Z_n$ $k \leftarrow H(g^b, h_1^b, h_2^b)$ $c \leftarrow E_s(k, m)$

output (g^b, c)

D(sk=(a1,a2), (u,c)):

$$k \leftarrow H(u, u^{a1}, u^{a2})$$

 $m \leftarrow D_s(k, c)$
output m

Chosen ciphertext security

Security Theorem:

If CDH holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^3 \longrightarrow K$ is a "random oracle" then **twin ElGamal** is CCA^{ro} secure.

Cost: one more exponentiation during enc/dec

— Is it worth it? No one knows ...

ElGamal security w/o random oracles?

Can we prove CCA security without random oracles?

- Option 1: use Hash-DH assumption in "bilinear groups"
 - Special elliptic curve with more structure [CHK'04 + BB'04]

Option 2: use Decision-DH assumption in any group [CS'98]

Further Reading

- The Decision Diffie-Hellman problem.
 D. Boneh, ANTS 3, 1998.
- Universal hash proofs and a paradigm for chosen ciphertext secure public key encryption. R. Cramer and V. Shoup, Eurocrypt 2002
- Chosen-ciphertext security from Identity-Based Encryption.
 D. Boneh, R. Canetti, S. Halevi, and J. Katz, SICOMP 2007
- The Twin Diffie-Hellman problem and applications.
 D. Cash, E. Kiltz, V. Shoup, Eurocrypt 2008
- Efficient chosen-ciphertext security via extractable hash proofs.
 H. Wee, Crypto 2010