Balanced Search Trees

- Why balanced search trees?
- Examples
 - AVL trees
 - 2-3 trees & red-black trees

Why balanced BSTs?

- Reminder: Definition of Binary Search Tree (BST)
- Search
- Insertion
- Deletion

Definition: Binary Search Tree (BST)

- A binary search tree (BST) is a binary tree where
 - each node has a (comparable) key and
 - satisfies the restriction that the key in any node is
 - larger than the keys in all nodes in that node's left subtree and
 - smaller than the keys in all nodes in that node's right subtree

Convention

- In a binary search tree, keys are stored in internal nodes only
- Every internal node in a binary search tree contains a key/an element with a key
- Every node as exactly two children (one or two of which can be leaves)

Search

- recursive
- follows structure of tree
- return the key's associated value if search successful; null otherwise

Insertion of new key

- Perform search (ends in leaf)
- replace leaf with new node containing the new key

Deletion

- Search key
 - key not found
 - key found

Deletion of existing key (key found)

- Three cases
 - The node containing the key is parent of leaves (null) only
 - 2. The node containing the key is parent of one internal node only
 - 3. The node containing the key is parent of two internal nodes

Deletion of existing key

- The node containing the key is parent of leaves (null) only
 - simply remove the node and replace it by a leaf

Deletion of existing key

- 2. The node containing the key is parent of one internal node only
 - Remove the internal node and replace it with the child that is an internal node

Deletion of existing key

- 3. The node *x* containing the key is parent of two internal nodes
 - Identify the node y that is x's in-order successor
 - Replace the content of x with the content of y
 - Delete key of y in subtree rooted by node y
 - Note: node y will have at most one internal child node and thus case 1 or 2 will apply

Properties of binary search trees

Height

O(n)

Worst-Case Time complexity

Search

O(n)

Insertion

O(n)

Deletion

O(n)

Balanced Search Trees

- Why balanced search trees?
 - unbalanced search trees are not efficient due to height O(n)
- Examples
 - AVL trees
 - 2-3 trees & red-black trees

AVL Trees

- AVL trees are height balanced binary search trees.
- Idea: balance of height avoids linear running time of dictionary operations
- Inventors: Adel'son-Vel'skii and Landis

Definition of AVL-trees

An **AVL-tree** is a **binary search tree** satisfying the **height-balance property**.

Height-Balance Property: For every internal node v, the heights of the children of v differ by at most 1.

Balanced and unbalanced nodes

- Given a binary search tree *T*, we say a node *v* in *T* is *balanced* if the absolute value of the difference between the height of *v*'s children is at most 1.
- Otherwise, we say *v* is *unbalanced*.

It follows: A binary search tree *T* is an AVL-tree iff every node in *T* is balanced.

To verify: (1) binary search tree

To verify: (1) binary search tree 🗸

To verify: (1) binary search tree 🗸 (2) height-balance property 🗸 58 **36** h: h: **37 12**

To verify: (1) binary search tree

To verify: (1) binary search tree ×

To verify: (1) binary search tree

To verify: (1) binary search tree 🗸

To verify: (1) binary search tree 🗸

The height of an AVL-tree

Theorem: The height of an AVL-tree T storing n items is $O(\log(n))$.

Proof. n(h): minimum number of internal nodes of AVL-tree of height h

Then:
$$n(1) = 1$$
, $n(2) = 2$ and

$$n(h) = 1 + n(h - 1) + n(h - 2)$$
 for $h \ge 2$

We show:

- (1) n(h) grows exponentially
- (2) (1) implies: height of an AVL-tree storing n keys is O(log(n))

(1)We show that $n(h) > 2^i n(h-2i)$ for any integer i such that $h-2i \ge 1$. We show the claim using induction on i.

Induction hypothesis:

$$n(h) > 2^i n(h-2i)$$
 for any integer i such that $h-2i \ge 1$

Base case: i = 1

$$n(h) = n(h-1) + n(h-2) + 1 \qquad n(h-1) = n(h-2) + n(h-3) + 1$$

$$= n(h-2) + n(h-3) + 1 + n(h-2) + 1$$

$$= 2n(h-2) + n(h-3) + 2$$

$$> 2n(h-2)$$

Induction step: $i \rightarrow i + 1$

We know from the hypothesis that $n(h) > 2^i n(h - 2i)$

$$n(h-2i) = n(h-2i-1) + n(h-2i-2) + 1$$

Therefore,

$$n(h) > 2^{i}(n(h-2i-1) + n(h-2i-2) + 1)$$

n(h-2i-1) = n(h-2i-2) + n(h-2i-3) + 1

and further

$$n(h) > 2^{i}(n(h-2i-2) + n(h-2i-3) + 1 + n(h-2i-2) + 1)$$

$$= 2^{i}(2n(h-2i-2) + n(h-2i-3) + 2)$$

which yields

$$n(h) > 2^{i}(2n(h-2i-2))$$

$$=2^{i+1}(2 \text{ n}(h-2(i+1)).$$

This proves the claim!

We pick $i = \lceil h/2 \rceil -1$. Then

$$n(h) > 2^{\lceil h/2 \rceil - 1} n(h - 2(\lceil h/2 \rceil - 1))$$

$$\geq 2^{\lceil h/2 \rceil - 1} n(h - h + 2))$$

$$= 2^{\lceil h/2 \rceil - 1} n(2)$$

$$\geq 2^{\lceil h/2 \rceil} and therefore n(h) grows exponentially$$

(2) To show: (1) implies that height of an AVL-tree storing n keys is $O(\log(n))$

Since
$$n(h) \ge 2^{\lceil h/2 \rceil}$$
: $\log(n(h)) > h/2$.

Thus
$$2 \log(n(h)) > h$$
.

We conclude: if
$$n(h) = n$$
 then $h < 2 \log(n)$, that is h is $O(\log(n))$.

Updating AVL trees

 Height-balance property must always hold, that is it must hold even after operations such as *insertion* and *removal/deletion*.

Insertion

Insert element 78

Insertion

Insert element 78

Insertion – Step 1: Insert as in binary search trees

Insertion – Step 2: Check balance

Insertion – Step 3: Fix the Unbalance!

Algorithm restructure(x)

Input: A node *x* of a binary search tree *T* that has both a parent *y* and a grandparent *z* (*z* is the unbalanced node, *y* its child in its higher subtree, and *x* is *y*'s child in *y*'s higher subtree)

Output: Tree T after trinode-restructuring (corresponding to a single or double rotation) involving x, y, and z

Fix the Unbalance!

Algorithm restructure(x)

- 0. Let a, b, and c be a left to right in-order listing of x, y, and z.
- 1. Let T_0 , T_1 , T_2 , T_3 be the subtrees rooted at x, y, and z.
- Replace the subtree rooted at z with a new subtree rooted at b as follows
 - 1. \boldsymbol{a} is the left child of b,
 - 2. T_0 and T_1 are the left and right subtrees of a
 - 3. Node c is the right child of b
 - 4. T_2 and T_3 are the left and right subtrees of c

A case of **Algorithm** restructure(x)

A case of **Algorithm** restructure(x)

Fix the Unbalance!

0. Let a, b, and c be a left to right in-order listing of x, y, and z

1. Let T_0 , T_1 , T_2 , T_3 be subtrees rooted at x, y, and z

1. Let T_0 , T_1 , T_2 , T_3 be subtrees rooted at x, y, and z

Another view: Rotate until balanced.

