Runge-Kutta-Chebyshev Methods

Hoang Trung Hieu

2020

Outline

- Preliminaries (Stability functions, stiffness)
- How to design and implement the Runge-Kutta-Chebyshev (RKC) methods.
- Numerical experiments

Preliminaries

Stability function

The function R(z) is called the **stability function** of the method if it can be interpreted as the numerical solution after one step for

$$y' = \lambda y$$
, $y_0 = 1$, $z = h\lambda$

The set

$$S = \{ z \in \mathbb{C} : |R(z)| \le 1 \}$$

is called the **stability domain** of the method.

Order of method

Theorem. If the Runge-Kutta method is of order p, then

$$R(z) = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^p}{p!} + O(z^{p+1})$$

Preliminaries

A **stiff equation** is a differential equation for which certain numerical methods for solving the equation are numerically *unstable*, unless the step size is taken to be extremely small.

Stiffness of ODEs

Traditionally, a linear stiff system of size n was defined by $Re(\lambda_i) < 0$, $1 \le i \le n$ with

$$\max_{1 \le i \le n} |Re(\lambda_i)| \gg \min_{1 \le i \le n} |Re(\lambda_i)|$$

The **stiffness ratio** R provided a measure of stiffness:

$$\frac{\max_{1 \le i \le n} |Re(\lambda_i)|}{\min_{1 \le i \le n} |Re(\lambda_i)|}$$

 λ_i are the eigenvalues of the Jacobian of the system.

Semi-discretizated heat problem

$$u_t = u_{xx}$$
 (PDE)

Or it can be rewrite by approximation

$$U'(t) = \frac{1}{h^2} tridiag(1, -2, 1)U(t)$$
 (ODEs)

The largest eigenvalue of $\frac{1}{h^2}tridiag(1,-2,1)$ is

$$\frac{4}{h^2}\cos^2\left(\frac{\pi h}{2}\right) \approx \frac{-4}{h^2}$$

Let us consider the following stiff systems of ODEs:

$$u'(t) = f(t, u(t)), \quad 0 < t \le T, \quad u(0) = u_0 \text{ is given}$$

The Runge-Kutta-Chebyshev(RKC) is an s-stage Runge-Kutta(RK) method designed for explicit integration of **modestly** stiff systems of ODEs. It satisfies two conditions:

- The eigenvalue spectrum of the Jacobian matrix $\partial f(t, u)/\partial U$ should lie in a narrow strip along the **negative axis** of the complex plane.
- 2 The Jacobian matrix should not digress too much from a **normal** matrix.

Chebyshev polynomials

$$T_0(x) = 1, T_1(x) = x, T_s(x) = 2xT_{s-1}(x) - T_{s-2}(x)$$

$$T_s(x) = \cos(s \arccos x) \quad \text{if } x \in [-1, 1]$$

$$T_s(x) = \cosh(s \cosh^{-1} x) \quad \text{if } x \notin [-1, 1]$$

Theorem

For any explicit, consistent Runge-Kutta method we have stable interval is not exceed $2s^2$. The optimal stability polynomial is the shifted Chebyshev polynomial of the first kind

$$R_s(z) = T_s \left(1 + \frac{z}{s^2}\right)$$

Figure. The absolute stability region of the second-order RKC methods with $s=5({\rm left})$ and $s=10({\rm right})$

Damped first-order RKC methods

$$R_s(z) = \frac{T_s(w_0 + w_1 z)}{T_s(w_0)}$$
 , $w_1 = \frac{T_s(w_0)}{T'_s(w_0)}$, $w_0 > 1$

Choose
$$w_0 = 1 + \frac{\epsilon}{s^2}$$

Figure. The absolute stability region of the damped first-order RKC methods

Second-order RKC methods (undamped)

Stabil polynomials

$$B_s(z) = rac{2}{3} + rac{1}{3s^2} + \left(rac{1}{3} - rac{1}{3s^2}
ight) T_s \left(1 + rac{3z}{s^2 - 1}
ight)$$

or

$$\frac{2}{2-z} - \frac{z}{2-z} T_s \left(\cos \frac{\pi}{2} + \frac{z}{2} \left(1 - \cos \frac{\pi}{s} \right) \right)$$

• In general, the optimal bound for second-order RKC methods is approximately $0.82s^2$.

Second-order RKC methods (damped)

Stabil polynomials

$$B_s(z) = 1 + \frac{T''s(w_0)}{(T'_s(w_0))^2} (T_s(w_0 + w_1 z) - T_s(w_0)) \quad , \quad w_1 = \frac{T'_s(w_0)}{T''_s(w_0)}$$

• If we are expected that the interior of the stability interval get 5% damping, we need to choose the damping parameter $\epsilon \approx 0.15$. The stability boundary will reduced 2% compared to undamped case.

Figure.The absolute stability region of the second-order RKC methods with s=5, undamped (left) and damped (right)

General kernel representation

$$y_{n0} = y_n$$
 $y_{n1} = y_n + h\mu_1 f(t_n + c_0 h, y_{n0}))$
 \vdots
 $y_{nj} = (1 - \mu_i - \nu_j) y_n + \mu_j y_{n,j-1} + \nu_j y_{n,j-2} + h(\tilde{\mu}_j f(t_n + c_{j-1} h, y_{n,j-1}) + \tilde{\gamma}_j f(t_n + c_0 h, y_{n0}))$
where $j = 2, \dots, s$
 $y_{n+1} = y_{ns}$

where

$$\tilde{\mu_1} = b_1 w_1, \quad \mu_j = \frac{2b_j w_0}{b_{j-1}}, \quad \nu_j = \frac{-b_j}{b_{j-2}}, \quad \tilde{\mu_j} = \frac{2b_j w_1}{b_{j-1}}, \quad \tilde{\gamma_j} = -a_{j-1} \tilde{\mu_j}$$

•

First-order RKC methods

Second-order RKC methods

 $b_j = \frac{1}{T_j(w_0)}$

$$c_j = \frac{T_s(w_0)T'_j(w_0)}{T'_s(w_0)T_j(w_0)}$$

$$b_j = \frac{T_j''(w_0)}{(T_j'(w_0))^2}$$

$$c_j = \frac{T'_s(w_0)T''_j(w_0)}{T''_s(w_0)T'_j(w_0)}$$

Test problem

Let us consider the initial value problem

$$x''(t) = -\frac{1}{4}x(t), \quad t \in [0, 4\pi]$$

with the initial conditions: x(0) = 0; x'(0) = 1.

The exact solution for this problem is $x(t) = \cos(\frac{x}{2})$

$N=2^i$	i = 10	i = 11	i = 12	i = 13	i = 14
Error	1.3692e-	6.8231e-	3.4059e-	1.7015e-	8.5039e-
(RKC5)	2	3	3	3	4
Error	1.3480e-	6.7179e-	3.3534e-	1.6753e-	8.3731e-
(RKC10)	2	3	3	3	4
Error	2.0450e-	1.0174e-	5.0747e-	2.5342e-	1.2663e-
(EE)	2	2	3	3	3

Table: Errors for explicit 1st-order RKC method (s=5,10) and EE

$N=2^i$	i = 10	i = 11	i = 12	i = 13	i = 14
Error	1.7356e-	4.3377e-	1.0843e-	2.7104e-	6.7758e-
(RKC5)	5	6	6	7	8
Error	1.5229e-	3.8060e-	9.5136e-	2.3782e-	5.9453e-
(RKC10)	5	6	7	7	8
Error	3.7001e-	9.2462e-	2.3111e-	5.7770e-	1.4442e-
(RK2)	5	6	6	7	7

Table: Errors for explicit 2nd-order RKC method (s = 5, 10) and RK2

Semi-discretizated heat problem

Let us consider semi-discretizated heat problem with perturbation:

$$u_t = u_{xx} + u, \quad x \in [0, 1], \quad t \in [0, 1/2]$$

with initial condition $u(0,x) = \sin(\pi x)$ and boundary conditions u(t,0) = u(t,1) = 0.

The exact solution is $u(t,x) = e^{(1-\pi^2)t} \sin(\pi x)$

Figure. Numerical solution solved by RKC methods, s=10, N=8 (left), s=10, N=10 (right)

The number of stage and interval	Error (inf norm)		
s = 10, N = 8	0.67001		
s = 15, N = 18	0.38906		
s = 19, N = 30	0.25595		
s = 25, N = 50	0.16549		
s = 30, N = 70	0.11901		
s = 40, N = 125	0.068492		
s = 50, N = 196	0.044244		

Table: Errors between exact solution and numerical solution using different RKC multi-stage methods

Diffusion problem

The diffusion problem is the following

$$\frac{\partial u}{\partial t} = A + u^2 v - (B+1)u + \alpha \frac{\partial^2 u}{\partial x^2}$$
$$\frac{\partial v}{\partial t} = Bu - u^2 v + \alpha \frac{\partial^2 v}{\partial x^2}$$
$$0 \le x \le 1, \quad 0 \le t \le 10$$

where $A = 1, B = 3, \alpha = 1/50$ and boundary conditions

$$u(0,t) = u(1,t) = 1, \quad v(0,t) = v(1,t) = 3$$

 $u(x,0) = 1 + \sin(2\pi x), \quad v(x,0) = 3$

THANK YOU FOR YOUR ATTENTION!