Introduction to Online Learning Algorithms

Yoav Freund

January 2, 2020

Outline

Halving Algorithm

Perceptron

Estimating the mean

Example trace for Halving Algorithm

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5
expert1	1	1	1	1	-
expert2	1	0	-	-	-
expert3	0	-	-	-	-
expert4	1	0	-	-	-
expert5	1	0	-	-	-
expert6	0	-	-	-	-
expert7	1	1	1	1	0
expert8	1	1	1	0	-
alg.	1	0	1	1	0
outcome	1	1	1	0	0

Mistake bound for Halving algorithm

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.
- No stochastic assumptions whatsoever.
- Proof is based on combining a lower and upper bounds on the number of perfect experts.

The Perceptron Problem

- ▶ $\|\vec{V}\| = 1$
- Example = (\vec{X}, y) , $y \in \{-1, +1\}$.
- $\blacktriangleright \ \forall \vec{X}, \ \|\vec{X}\| \leq R.$
- $\forall (\vec{X}, y), \\ y(\vec{X} \cdot \vec{V}) \geq g$

The Perceptron learning algorithm

- An online algorithm. Examples presented one by one.
- start with $\vec{W}_0 = \vec{0}$.
- ▶ If mistake: $(\vec{W}_i \cdot \vec{X}_i)y_i \leq 0$
 - Update $\vec{W}_{i+1} = \vec{W}_i + y_i X_i$.

Example trace for the perceptron algorithm

Bound on number of mistakes

- The number of mistakes that the perceptron algorithm can make is at most $\left(\frac{R}{g}\right)^2$.
- ▶ Proof by combining upper and lower bounds on $\|\vec{W}\|$.

Pythagorian Lemma

If $(\vec{W}_i \cdot X_i)y < 0$ then

$$\|\vec{W}_{i+1}\|^2 = \|\vec{W}_i + y_i \vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$$

Upper bound on $\|\vec{W}_i\|$

Proof by induction

- ► Claim: $\|\vec{W}_i\|^2 \le iR^2$
- ► Base: i = 0, $\|\vec{W}_0\|^2 = 0$
- Induction step (assume for i and prove for i+1): $\|\vec{W}_{i+1}\|^2 < \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$

$$||W_{i+1}||^2 \le ||W_i||^2 + ||X_i||^2$$

 $< ||\vec{W}_i||^2 + R^2 < (i+1)R^2$

Lower bound on $\|\vec{W}_i\|$

 $\|\vec{W}_i\| \geq \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$.

We prove a lower bound on $\vec{W}_i \cdot \vec{V}$ using induction over i

- ▶ Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for *i* and prove for i + 1): $\vec{W}_{i} + \vec{V}_{i} = (\vec{W}_{i} + \vec{X}_{i}v_{i}) \vec{V}_{i} = \vec{W}_{i} + \vec{V}_{i} + v_{i}\vec{X}_{i} + \vec{V}_{i}$

$$\vec{W}_{i+1} \cdot \vec{V} = \left(\vec{W}_i + \vec{X}_i y_i\right) \vec{V} = \vec{W}_i \cdot \vec{V} + y_i \vec{X}_i \cdot \vec{V}$$

> $iq + q = (i+1)q$

Combining the upper and lower bounds

$$(ig)^2 \leq \|\vec{W}_i\|^2 \leq iR^2$$

Thus:

$$i \leq \left(\frac{R}{g}\right)^2$$

The mean estimation game

- An adversary choses a real number y_tin[0, 1] and keeps it secret.
- You make a guess of the secret number x_t
- ▶ The adversary reveals the secret and you pay $(x_t y_t)^2$
- ▶ You want to minimize $\frac{1}{T} \sum_{t=1}^{T} (x_t y_t)^2$
- Impossible without additional constraints.

Adversary is a fixed distribution

- ▶ Suppose that the adversary draws $y_1, y_2, ..., y_T$ IID from a fixed distribution over [0, 1] with mean μ and std σ .
- Optimal prediction $x_t = \mu$
- $E_{Y} \left[(\mu Y)^{2} \right] = \sigma^{2}$
- ▶ Online prediction: predict x_{t+1} from $Y^t = \langle Y_1, Y_2, \dots, Y_t \rangle$.
- ► **Expected regret**: compare performance of algorithm to Regret = $\mathbb{E}_{Y^T} [(x_t Y_t)^2] \sigma^2$

Individual sequence bounds

- Make no assumption about how the sequence is generated.
- ▶ The best constant value for *x* in hind-sight:

$$x_T^* \doteq \underset{x \in [0,1]}{\operatorname{argmin}} \sum_{t=1}^T (x - y_t)^2, \ \ x_t^* = \frac{1}{T} \sum_{t=1}^T X_t$$

► Regret: the loss over and above the loss of x_T^* . **for the worst-case sequence** $Regret_T = \sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_T^* - y_t)^2$

▶ **Goal:** sublinear regret
$$\lim_{T\to\infty} \frac{\text{Regret}_T}{T} = 0$$

Follow the Leader

- ▶ Idea: set x_{t+1} to be the best constant prediction on y_1, \dots, y_t
- $x_{t+1} = \operatorname{argmin}_{x \in [0,1]} \sum_{i=1}^{t} (x y_i)^2$
- We will prove that the regret of this algorithm is upper bound by 4 + 4 In T

A more general setup

- ▶ General euclidean space: \mathbf{x} , \mathbf{y} are elements in $V \subset \mathbb{R}^d$
- ▶ The loss function for time step t maps \mathbf{x} to \mathbb{R} :

$$\ell_t: V \to \mathbb{R}$$

- ► For square loss: $\ell_t(\mathbf{x}) = (\mathbf{x} \mathbf{y}_t)^2$
- ► Regret relative to $\mathbf{u} \in V$: Regret $_{T} = \sum_{t=1}^{T} \ell_{t}(\mathbf{x}_{t}) - \sum_{t=1}^{T} \ell_{t}(\mathbf{u})$

Technical Lemma

Lemma

Let \mathbf{x}_t^* be the minimizer of $\sum_{i=1}^t \ell_i(\mathbf{x})$. Then $\sum_{t=1}^T \ell_t(\mathbf{x}_t^*) \leq \sum_{t=1}^T \ell_t(\mathbf{x}_T^*)$

regret bound

Theorem

Let $y_t \in [0,1]$ for t = 1,...T an arbitrary sequence of numbers. Let the algorithm output be $x_t = x_{t-1}^* = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i$, then

$$Regret_T = \sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_T^* - y_t)^2 \le 4 + 4 \ln T$$