Mathematics Department

9 8 6 4 1				
110000				
Note: All part question	s worth more than 2 marks require working to obtain full mar			
Formula sheet provide	у Жез			
Task weighting:	% ot			
Marks available:				
	схэшјизцоиг			
	A4 paper, and up to three calculators approved for use in the WAC			
Special items:	Drawing instruments, templates, notes on one unfolded sheet of			
	correction fluid/tape, eraser, ruler, highlighters			
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpen			
Materials required:	Calculator with CAS capability (to be provided by the student)			
Number of questions:	 9			
Time allowed for this task:45 mins				
_sak type:	Kesponse			
Date: Weds 26 A u	ng:			
Student name:	Teacher name:			
Course	Methods_Test 4 Year _12			
COIR CESTEONACE	ndependent Public School			
Ser.	Exceptional schooling. Exceptional stude			
	<i>JEKLH WODEKN SCHOO</i>			

Q1 (1, 1, 1 & 3 = 6 marks)

Consider a continuous random variable X that is uniformly distributed as follows.

Determine the following:

etermine the following a)
$$P(X > 3)$$

h)
$$P(X \ge 3)$$

c)
$$P(1 < X \le 7)$$

d)
$$P(X > 3 | x < 6)$$

Q2 (3 marks)

Consider a continuous random variable X shown below.

Solve for the constant k exactly. (Show all working)

$$f(x) = \begin{cases} ke^{-3x} & 0 \le x \le 10 \\ 0 & elsewhere \end{cases}$$

Perth Modern

Q3 (1 , 4, 1 & 2 = 8 marks) Consider a continuous random variable X shown below. (Not drawn to scale)

s) Determine the value of the constant $\, {\mathbb K} \, .$

$$(1 > x > 1)$$
 d betermine (1

c) Determine E(X)

 χ to notize Standard deviation of χ

Q6 (3, 3, 3, 2 & 2 = 13 marks) The time it takes to be served at a supermarket checkout, X seconds, can be modelled by a normal distribution as follows $X \sim N \left(103, 30^2\right)$ seconds. The assistant at the check out is paid according to the following scheme.

					blaces
					To 4 decimal
					Probability
81\$	ST\$	21\$	۷\$	9\$	Payment \$P
					spuoses uj
007≥ X	$150 \le X \le 200$	$0SI > X \ge 09$	$09 > X \ge 35$	$2\varepsilon > X \ge 0$	Devres emiT

- a) Fill in the probability line of the above table rounded to three decimal places.
- b) Determine the expected payment E(p) showing full working.
- c) Determine the variance of the payment $V_{d\Gamma}(p)$ showing full working.
- d) If the payments were all increased by 30% and a bonus of \$2 added to each category, determine the new mean and standard deviation.

e) Explain a limitation of the Normal distribution model and show a calculation to support this.

Q4 (2, 2, 2 & 1 = 7 marks)

$$f(x) = \begin{cases} \frac{3}{16}(x-3)^2 & 1 \le x \le 5\\ 0 & elsewhere \end{cases}$$

A continuous random variable, $\, X \,$ has a pdf Determine:

a) E(x)

b) Var(X)

- c) Standard deviation
- d) Var(3x 1)

Mathematics Department Q5 (2, 2, 2 & 3 =9 marks)

The results for a class test, X can be modelled by a Normal Distribution given by $X \sim N(60,15^2)$. Determine:

- a) The 78th percentile.
- b) $P(55 \le X \le 72)$
- c) The cut-off for an A grade given that this grade is only given to the top 20%.

d) A second test is a Normal Distribution with a mean of 55. Given that the 58th percentile is 62, determine the standard deviation.