NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Prof Lee Soo Teck

solutions prepared by Tay Jun Jie

MA2108 Mathematical Analysis I AY 2009/2010 Sem 1

Question 1

(a)

$$T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1 - 2x \Rightarrow \begin{bmatrix} T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}_{\mathcal{B}_2} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

$$T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 3x - x^2 \Rightarrow \begin{bmatrix} T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{bmatrix}_{\mathcal{B}_2} = \begin{pmatrix} 0 \\ 3 \\ -1 \end{pmatrix}$$

$$T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = 3 - 2x^2 \Rightarrow \begin{bmatrix} T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \end{bmatrix}_{\mathcal{B}_2} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$$

$$T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 1 - 2x \Rightarrow \begin{bmatrix} T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}_{\mathcal{B}_2} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

Therefore $[T]_{\mathcal{B}_2,\mathcal{B}_1} = \begin{pmatrix} 1 & 0 & 3 & 1 \\ -2 & 3 & 0 & -2 \\ 0 & -1 & -2 & 0 \end{pmatrix}$.

(b)

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+3c+d) + (3b-2a-2d)x - (b+2c)x^2$$
$$= a(1-2x) + b(3x-x^2) + c(3-2x^2) + d(1-2x)$$

Hence $\mathcal{R}(T) = \operatorname{Span} \{1 - 2x, 3x - x^2, 3 - 2x^2\}$. Now, by observation,

$$3 - 2x^2 = 3(1 - 2x) + 2(3x - x^2).$$

Thus $\mathcal{R}(T) = \operatorname{Span} \{1 - 2x, 3x - x^2\}$. Furthermore, $\{1 - 2x, 3x - x^2\}$ is linearly independent since 1 - 2x is not a linear multiple of $3x - x^2$. We conclude that $\{1 - 2x, 3x - x^2\}$ is a basis for $\mathcal{R}(T)$.

(c) By (b), rank T=2. Therefore, by the dimension theorem, nullity T=4-2=2.

(d)
$$[T \circ S]_{\mathcal{B}_2} = [T]_{\mathcal{B}_2, \mathcal{B}_1} [S]_{\mathcal{B}_1, \mathcal{B}_2} = \begin{pmatrix} 1 & 0 & 3 & 1 \\ -2 & 3 & 0 & -2 \\ 0 & -1 & -2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \\ -1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} -3 & -1 & 0 \\ 6 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$$

Since \mathcal{B}_2 is the standard basis for $P_2(\mathbb{R})$, we conclude that $(T \circ S)(a + bx + cx^2) = (-3a - b) + (6a + 2b + 3c)x - x^2$.

Question 2

- (a) (i) Since the eigenspace of A corresponding to the eigenvalue 3 has dimension 2, the Jordan canonical form will have two Jordan blocks corresponding to 3. In addition, since the multiplicity of eigenvalue 3 is three, the two Jordan blocks must be $J_2(3), J_1(3)$. On the other hand, the multiplicity of eigenvalue -1 is one, hence there will be a $J_1(-1)$. In conclusion, we conclude that the Jordan canonical form of A is either diag $(J_2(3), J_1(3), J_1(-1), J_2(i))$ or diag $(J_2(3), J_1(3), J_1(-1), J_1(i), J_1(i))$.
 - (ii) Respectively, $(x+1)(x-i)^2(x-3)^2$ and $(x+1)(x-i)(x-3)^2$.
- (b) Let the minimal polynomial of B be $m_B(x)$.

$$c_B(x) = \det(xI - B) = \begin{vmatrix} x - 4 & 0 & -1 \\ -2 & x - 3 & -2 \\ -1 & 0 & x - 4 \end{vmatrix} = (x - 3)^2 (x - 5)$$

Hence $m_B(x)$ is either (x-3)(x-5) or $(x-3)^2(x-5)$. Consider (B-3I)(B-5I).

$$(B-3I)(B-5I) = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 \\ 2 & -2 & 2 \\ 1 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Therefore $m_B(x) = (x-3)(x-5)$.

Question 3

(a) Firstly recall that $\text{Tr}(B^TA) = \sum_{i=1}^2 \sum_{j=1}^2 a_{ij} b_{ij}$. Now, $\{A_1, A_2\}$ is linearly independent since A_1 is not a linear multiple of A_2 . Hence $\{A_1, A_2\}$ is a basis for W_1 . Let $B'_1 = A_1$.

$$\Rightarrow \left\| B_1' \right\|^2 = 1$$

Define $B_1 := \frac{B_1'}{\|B_1'\|} = A_1$. Now, let $B_2' = A_2 - \langle A_2, B_1 \rangle B_1$.

$$\Rightarrow B_2' = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} - 2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\Rightarrow \|B_2'\|^2 = 2$$

Define $B_2 := \frac{B_2'}{\|B_2'\|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Therefore $\{B_1, B_2\}$ is an orthonormal basis for W_1 .

(b)
$$\mathbf{proj}_{W_1}(F) = \langle F, B_1 \rangle B_1 + \langle F, B_2 \rangle B_2 = 2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \sqrt{2} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$

(c) Since W_1 is a subspace of $W_1 \oplus W_2$, $\mathbf{proj}_{W_1}(F) \in W_1 \oplus W_2$. Furthermore, $W_1 \perp W_2$.

$$\Rightarrow \mathbf{proj}_{W_2}(F) = \mathbf{proj}_{W_1 \oplus W_2}(F) - \mathbf{proj}_{W_1}(F) = \begin{pmatrix} 2 & 0 \\ -2 & 2 \end{pmatrix}$$

Therefore the smallest value of the set $\{\|F - X\| : X \in W_2\}$ is $\|F - \mathbf{proj}_{W_2}(F)\| = \sqrt{30}$.

Question 4

(a) False. Consider
$$V = \mathbb{R}^2$$
 with $S_1 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$ and $S_2 = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$.

 $\Rightarrow S_1, S_2$ are linearly independent and $S_1 \cap S_2 = \emptyset$

However, $S_1 \cup S_2 = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ is linearly dependent.

(b) True. Let I and **0** be the identity and zero matrix in $M_n(\mathbb{F})$ respectively. Since

$$T(I) = AI - IA = \mathbf{0},$$

 $\Rightarrow T$ is not injective. Therefore T is not invertible and thus $\det(T) = 0$.

Question 5

(a) Let $0_{P(\mathbb{R})}$ be the zero operator on $P(\mathbb{R})$, p_0 be the zero polynomial in $P(\mathbb{R})$, and n be a positive integer. Suppose

$$a_0 T^0 + a_1 T^1 + \dots + a_n T^n = 0_{P(\mathbb{R})}$$

where the a's are real numbers. Let $f \in P(\mathbb{R})$.

$$\Rightarrow (a_0 T^0 + a_1 T^1 + \dots + a_n T^n)(f) = 0_{P(\mathbb{R})}(f)$$

$$\Rightarrow a_0 T^0(f) + a_1 T^1(f) + \dots + a_n T^n(f) = p_0$$

$$\Rightarrow a_0 f + a_1 f' + \dots + a_n f^{(n)} = p_0$$

Since the choice of f is arbitrary,

$$\Rightarrow a_0 = a_1 = \cdots = a_n = 0.$$

Therefore $\{T^0, T^1, T^2, \dots, T^n\}$ is linearly independent.

(b) Let S' be a finite subset of S. Then there exist a positive integer k such that for all $T^i \in S'$, $i \leq k$. By (a), the set $\{T^0, T^1, T^2, \dots, T^k\}$ is linearly independent. Since $S' \subseteq \{T^0, T^1, T^2, \dots, T^k\}$,

$$\Rightarrow S'$$
 is linearly independent.

Hence S is linearly independent. Furthermore, $|S| = \infty$ and $\mathcal{L}(P(\mathbb{R}), P(\mathbb{R}))$ is infinite dimensional. Therefore we conclude that S is a basis for $\mathcal{L}(P(\mathbb{R}), P(\mathbb{R}))$.

Question 6

(a) Since

$$0u_1 + \cdots + 0u_n + 0v_1 + \cdots + 0v_m = 0.$$

 \Rightarrow $(0,\ldots,0) \in \mathbb{F}^{n+m}$. Now, let $(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m), (\gamma_1,\ldots,\gamma_n,\delta_1,\ldots,\delta_m) \in \mathbb{F}^{n+m}$ and $x,y \in \mathbb{F}$.

$$\Rightarrow x(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m) + y(\gamma_1, \dots, \gamma_n, \delta_1, \dots, \delta_m) = (x\alpha_1 + y\gamma_1, \dots, x\alpha_n + y\gamma_n, x\beta_1 + y\delta_1, \dots, x\beta_m + y\delta_m)$$

Now,

$$(x\alpha_1 + y\gamma_1)\mathbf{u_1} + \dots + (x\alpha_n + y\gamma_n)\mathbf{u_n} + (x\beta_1 + y\delta_1)\mathbf{v_1} + \dots + (x\beta_m + y\delta_m)\mathbf{v_m}$$

$$= x(\alpha_1\mathbf{u_1} + \dots + \alpha_n\mathbf{u_n} + \beta_1\mathbf{v_1} + \dots + \beta_m\mathbf{v_m}) + y(\gamma_1\mathbf{u_1} + \dots + \gamma_n\mathbf{u_n} + \delta_1\mathbf{v_1} + \dots + \delta_m\mathbf{v_m})$$

$$= \mathbf{0}$$

 $\Rightarrow x(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m) + y(\gamma_1,\ldots,\gamma_n,\delta_1,\ldots,\delta_m) \in W$. Therefore W is a subspace of \mathbb{F}^{n+m} .

(b) Firstly, observe that $\dim(U_1 \cap U_2) = \dim U_1 + \dim U_2 - \dim(U_1 + U_2) = n + m - \dim(U_1 + U_2)$. Define $T: \mathbb{F}^{n+m} \to V$ by

$$T(a_1,\ldots,a_{n+m}) = a_1 \boldsymbol{u_1} + \cdots + a_n \boldsymbol{u_n} + a_{n+1} \boldsymbol{v_1} + \cdots + a_{n+m} \boldsymbol{v_m} \quad \forall (a_1,\ldots,a_{n+m}) \in \mathbb{F}^{n+m}$$

It is easily checked that T is a linear transformation. Furthermore,

$$\operatorname{Ker} T = W$$
 and $\mathcal{R}(T) = U_1 + U_2$.

Therefore, by the dimension theorem, dim $W = \text{nullity } T = \dim \mathbb{F}^{n+m} - \text{rank } T = n + m - \dim(U_1 + U_2) = \dim(U_1 \cap U_2)$.

Question 7

(a) Observe that $\mathcal{R}(T_1) + \mathcal{R}(T_2) + \cdots + \mathcal{R}(T_k) \subseteq V$. Let $v \in V$. Since $I_V = T_1 + \cdots + T_k$,

$$\Rightarrow \mathbf{v} = I_V(\mathbf{v}) = T_1(\mathbf{v}) + \dots + T_k(\mathbf{v}) \in \mathcal{R}(T_1) + \mathcal{R}(T_2) + \dots + \mathcal{R}(T_k).$$

Hence $V = \mathcal{R}(T_1) + \mathcal{R}(T_2) + \cdots + \mathcal{R}(T_k)$.

Claim: For each $1 \le n \le k-1$, $[\mathcal{R}(T_1) + \mathcal{R}(T_2) + \cdots + \mathcal{R}(T_n)] \cap \mathcal{R}(T_{n+1}) = \{\mathbf{0}\}.$ Let $\mathbf{x} \in [\mathcal{R}(T_1) + \mathcal{R}(T_2) + \cdots + \mathcal{R}(T_n)] \cap \mathcal{R}(T_{n+1}).$

$$\Rightarrow x = x_1 + x_2 + \cdots + x_n$$
 where $x_i \in \mathcal{R}(T_i) \ \forall 1 \leq i \leq n$

Then there exist $w, w_1, \ldots, w_n \in V$ such that $x = T_{n+1}(w), x_1 = T_1(w_1), \ldots, x_n = T_n(w_n)$.

$$\Rightarrow T_{n+1}(\boldsymbol{w}) = T_1(\boldsymbol{w_1}) + T_2(\boldsymbol{w_2}) + \dots + T_n(\boldsymbol{w_n})$$

$$\Rightarrow T_{n+1}^2(\boldsymbol{w}) = T_{n+1}T_1(\boldsymbol{w_1}) + T_{n+1}T_2(\boldsymbol{w_2}) + \dots + T_{n+1}T_n(\boldsymbol{w_n})$$

$$\Rightarrow T_{n+1}(\boldsymbol{w}) = T_0(\boldsymbol{w_1}) + T_0(\boldsymbol{w_2}) + \dots + T_0(\boldsymbol{w_n})$$

$$\Rightarrow \boldsymbol{x} = \boldsymbol{0}$$

Hence the claim is proven. As a consequence, $V = \mathcal{R}(T_1) \oplus \mathcal{R}(T_2) \oplus \cdots \oplus \mathcal{R}(T_k)$.

(b) For each $1 \leq i \leq k$, let $v_i \in \mathcal{R}(T_i)$. Hence, $\exists w_i \in V$ such that $T_i(w_i) = v_i$.

$$\Rightarrow T(\mathbf{v_i}) = \lambda_1 T_1(\mathbf{v_i}) + \dots + \lambda_i T_i(\mathbf{v_i}) + \dots + \lambda_k T_k(\mathbf{v_i})$$

$$= \lambda_1 T_1 T_i(\mathbf{w_i}) + \dots + \lambda_i T_i^2(\mathbf{w_i}) + \dots + \lambda_k T_k T_i(\mathbf{w_i})$$

$$= \lambda_1 T_0(\mathbf{w_i}) + \dots + \lambda_i T_i(\mathbf{w_i}) + \dots + \lambda_k T_0(\mathbf{w_i})$$

$$= \lambda_i \mathbf{v_i}$$

That is, the λ 's are eigenvalues of T (not necessarily all). Furthermore, from above, $\mathcal{R}(T_i) \subseteq E_{\lambda_i} \ \forall 1 \leq i \leq k$.

$$\Rightarrow V = \mathcal{R}(T_1) \oplus \cdots \oplus \mathcal{R}(T_k) \subseteq E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k} \subseteq V$$

Therefore the λ 's are all the eigenvalues of T and $V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$. We conclude that T is diagonalizable.

Question 8

(a) Since $(I_V + iT)^* = I_V - iT$,

$$(I_V + iT)(I_V - iT) = I_V + T^2 = (I_V - iT)(I_V + iT).$$

That is, $I_V + iT$ is normal. Therefore it is orthogonally diagonalizable and thus invertible.

Page: 5 of ??

(b) Since
$$S^* = [(I_V + iT)^*]^{-1}(I_V - iT)^* = (I_V - iT)^{-1}(I_V + iT),$$

$$\Rightarrow SS^* = (I_V - iT)(I_V + iT)^{-1}(I_V - iT)^{-1}(I_V + iT)$$

$$= (I_V - iT)[(I_V - iT)(I_V + iT)]^{-1}(I_V + iT)$$

$$= (I_V - iT)[(I_V + iT)(I_V - iT)]^{-1}(I_V + iT)$$

$$= (I_V - iT)(I_V - iT)^{-1}(I_V + iT)^{-1}(I_V + iT)$$

$$= I_V$$

Similarly, $S^*S = I_V$. Therefore S is unitary.