

Resonancias plasmónicas dipolares en nanoelipsoides: análisis de contribuciones interbanda e intrabanda en el régimen cuasiestático

Luna González, D. Larissa¹, Urrutia Anguiano, Jonathan A.² y Reyes Coronado, Alejandro³ Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México ¹dana Jarissala@ciencias.unam.mx. ²iaurrutia.95@ciencias.unam.mx. ³coronado@ciencias.unam.mx

Acerca de las funciones dieléctricas

Se emplearon los ajustes a datos experimentales reportados por [1]. Para la contribución **intrabanda** se empleó el modelo de Drude [2]

$$\chi_{\rm intra}(\omega) = -\frac{f_0 \omega_p^2}{\omega^2 + i\omega\gamma_0}$$

con los parámetros

Oro:

 $\hbar\omega_p = 9.03 \text{ eV}, \quad \hbar\gamma_0 = 1 \times 10^{-3} \text{ eV}, \quad f_0 = 4.069 \times 10^{-1}.$

Aluminio:

$$\hbar\omega_p = 15.6 \text{ eV}, \quad \hbar\gamma_0 = 1.007 \times 10^{-1} \text{ eV}, \quad f_0 = 7.124 \times 10^{-1}.$$

Para la contribución **interbanda** se empleó el modelo de Orosco y Coimbra [3]

$$\chi_{\text{inter}}(\omega) = \sum_{i=0}^{n} \frac{\omega_p^2 f_i}{\omega_i^2} \left[\frac{s(z_{i_+}) + s(z_{i_-})}{\chi_{0_i}} \right]$$

donde

$$\begin{split} s(z) &= i\pi\omega(z) + \exp(-z^2) \left[\log(z) + \log\left(-\frac{\bar{z}}{|z^2|}\right) - i\pi\right] \quad \text{con} \quad z_{i\pm} = (\pm\alpha_i - \omega_i)/(\sqrt{2}\sigma_i), \\ w(z) &= \exp(-z^2) \text{erfc}(-iz) \quad \text{con} \quad \text{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_z^\infty \exp(-t^2) dt, \\ \alpha_i &= \alpha_i' + i\alpha_i'' \quad \text{con} \quad \alpha_i'(\omega) = \sqrt{\frac{\omega}{2}} \sqrt{\sqrt{\omega^2 + \gamma_i^2} + \gamma_i}, \; \alpha_i''(\omega) = \sqrt{\frac{\omega}{2}} \sqrt{\sqrt{\omega^2 + \gamma_i^2} - \gamma_i} + \mu, \; 0 < \mu \ll 1, \\ \text{y} \quad \chi_{0_i} &= -4\pi D\left(-\frac{\omega_i}{\sqrt{2}\sigma_i}\right), \; \text{donde} \quad D(x) = \frac{\sqrt{2}}{2} \exp(-x^2) \operatorname{erfi}(x) \; \text{y} \quad \operatorname{erfi}(x) = i \operatorname{erf}(x), \end{split}$$

con los parámetros

Oro:

i	f_i	$\hbar\gamma_i \; [\mathrm{eV}]$	$\hbar\omega_i \; [\mathrm{eV}]$	σ_i
1	1.186×10^{-3}	1×10^{-3}	1.213	1.939×10^{-1}
2	8.410×10^{-1}	1×10^{-3}	8.167	10^{-5}
3	6.129×10^{-3}	1×10^{-3}	2.642	1.356×10^{-1}
4	4.969×10^{-1}	1.124×10^{-1}	2.784×10^{-1}	10^{-5}
5	2.911×10^{-1}	1×10^{-3}	3.743	8.416×10^{-1}
6	6.051×10^{-1}	1×10^{-3}	5.945	1.440
7	4.919×10^{-2}	1.531×10^{-1}	2.901	3.003×10^{-1}

Aluminio:

i	f_{i}	$\hbar \gamma_i \; [\mathrm{eV}]$	$\hbar\omega_i \; [\mathrm{eV}]$	σ_{i}
1	6.685×10^{-2}	6.269×10^{-1}	1.762	5.226×10^{-2}
2	2.772×10^{-2}	1.109×10^{-3}	1.529	1.261×10^{-1}
3	1.401×10^{-1}	1.191	1.465	6.698×10^{-1}
4	5.276×10^{-2}	1.749	2.886	1.144
5	1.236×10^{-2}	3.009×10^{-1}	4.764×10^{-1}	8.808×10^{-2}

Referencias

- [1] D. Espinosa. Tesis de Licenciatura (Universidad Nacional Autónoma de México, México, 2022)
- [2] C. F. Bohren y D. R. Huffman. Absorption and scattering of light by small particles. 2008
- [3] J. Orosco y C.F.M. Coimbra. Applied Optics, 57 (19)