Lattice

枫聆

2021年10月18日

目录

1	Ordered Sets	2
2	Semilattices, Lattices and Complete Lattices	6
	2.1 Semilattice	
	2.2 Lattice	8
	2.3 Complete Lattice	10
	2.4 Closure System	12
3	Alegbraic Lattices	20
	3.1 Algebraic Closure Operators	20
4	Representation by Equivalence Relations	29

Ordered Sets

Definition 1.1. Partially ordered set is a system $\mathcal{P} = (P, \leq)$ where P is a nonempty set and \leq is a binary relation on P satisfying, for all $x, y, z \in P$,

- 1. $x \le x$, (reflexivity)
- 2. if $x \le y$ and $y \le x$, then x = y, (antisymmetry)
- 3. if $x \le y$ and $y \le z$, then $x \le z$. (transitivity)

Definition 1.2. C is a chain if for every $x, y \in C$, either $x \leq y$ or $y \leq x$.

chain 上的元素都可以相互比较,所以它是 totally ordered 或者 linearly ordered.

Definition 1.3. We say that x is covered by y in \mathcal{P} , written $x \prec y$, if $x \leq y$ and there is no $z \in P$ with $x \leq z \leq y$.

Definition 1.4. Hasse diagram for a finite partially order set \mathcal{P} : the elements of P are represented by points in the plane, and a line is drawn from a up to b precisely when $a \prec b$.

Definition 1.5. Given a partially order set, f is a order preserving map satisfying the condition $x \leq y$ implies $f(x) \leq f(y)$.

Definition 1.6. Given two posets (P, \leq_S) and (Q, \leq_Q) , $f: P \to Q$ is an order-reflecting map if and only if $f(x) \leq_Q f(y) \Rightarrow x \leq_S y$

Definition 1.7. Given two posets (P, \leq_S) and (Q, \leq_Q) , an order isomorphism from (P, \leq_S) to (Q, \leq_Q) is a bijective order preserving map.

Definition 1.8. Given two posets (P, \leq_S) and (Q, \leq_Q) , an order embedding from (P, \leq_S) to (Q, \leq_Q) is a both order-preserving and order-reflecting map that $x \leq y \iff f(x) \leq f(y)$.

相比 order isomorphism 而言稍微弱一点,不需要是一个 surjective.

Definition 1.9. An ideal I of a partially ordered set \mathcal{P} is a subset of the elements of P which satisfy the property that if $x \in \mathcal{P}$ and exists $y \in I$ with $x \leq y$, then $x \in I$.

衍生自 the ideal of ring, 后面我们将会看见 the ideal of lattice.

Definition 1.10. Given an ordered set $\mathcal{P} = (P, \leq)$. The dual of P is another poset $\mathcal{P}^d = (P, \leq^d)$ with the order relation defined by $x \leq^d y \iff y \leq x$.

Definition 1.11. The dual notion of an ideal is called a filter that F is a subset of P such $x \geq y \in F$ implies $x \in F$

类似的还有 principle ideal 和 principle filter. 就是通过一个元素生成的.

Definition 1.12. The poset \mathcal{P} has a maximum(element) if there exists $x \in P$ such that $y \leq x$ for all $x \in P$. An element $x \in P$ is maximal if there is no element $y \in P$ with $x \leq y$ and $x \neq y$.

maximum 是一个名词表示最大值 (greatest), maximal 是一个形容词表示极大的意思. 在 poset 中可能不只有一个 maximal element.

Lemma 1.13. The following are equivalent for an poset \mathcal{P} .

- 1. Every nonempty subset $S \subseteq P$ contains an element minimal in S.
- 2. \mathcal{P} contains no infinite descending chain

$$a_0 > a_1 > a_2 > \cdots$$
.

这里去掉等号是指 $a_0 \neq a_1 \neq a_2 \neq \cdots$

3. If

$$a_0 \ge a_1 \ge a_2 \ge \cdots$$

in \mathcal{P} , then there exists k such that $a_n = a_k$ for all $n \geq k$.

这个 lemma 被称为 descending chain condition(DCC). 对偶地也有 ascending chain condition(ACC). original 'a partially ordered set \mathcal{P} requires that all decreasing sequences in \mathcal{P} become eventually constant'.

证明. $(2) \Rightarrow (3)$. 前提只存在 finite descending chain. 假设 (3) 不成立. 若 $a_0 \geq a_1 \geq a_2 \geq \cdots$ 是 infinite chain, 则对于任意的 k, 都能找到 $n \geq k$ 使得 $a_n \neq a_k$ 且 $a_k \geq a_n$, 那么 $a_k > a_n$. 这样从 $k = 0, 1, 2, \cdots$ 开始我们每次都可以找到 $a_{n_0} > a_{n_1} > \cdots$. 这样我们实际构造了一个 infinite descending chain, 这是和前提矛盾的. 若 $a_0 \geq a_1 \geq a_2 \geq \cdots$ 是一个 finite chain, 它的最后一个元素显然是满足 (3), 这和假设是矛盾的.

- (3) ⇒ (2). 也是分 infinite chain 和 finite chain 来讨论, finite 是显然的, infinite 的时候可以把它变成 finite.
- $(1) \Rightarrow (2)$. (1) 前提满足下,假设 (2) 不成立,即 \mathcal{P} 存在 infinite descending chain. 把这个 chain 上的所有元素取出来组成一个 subset S,那么任取 a_k 都有 $a_{k+1} \leq a_k$. 即找不到 minimal.
- $(2)\Rightarrow (1).$ (2) 前提满足下,假设 (1) 不成立. 这里需要用一下选择公理了,定义 S 上一个选择函数 $f\colon S\to T$,其中 $T\in S$. 让 $a_0=f(S)$,递归地定义对任意的 $i\in\omega$ 有 $a_{i+1}=f(\{s\in S\mid s< a_i\})$. 接下来让这个 definition make sense,(2) 前提下 S 是没有 minimal,所以 $\{s\in S\mid s\leq a_i\}$ 不是 empty set. 这样就找到了一个 infinite descending chain,与假设矛盾.
 - $(1) \Rightarrow (2) \Rightarrow (3).$
 - $(3) \Rightarrow (2) \Rightarrow (1).$

done well! \Box

Lemma 1.14. Let \mathcal{P} be an poset satisfying the DCC. If $\varphi(x)$ is statement such that

- 1. $\varphi(x)$ holds for all minimal elements of P, and
- 2. whenever $\varphi(y)$ holds for all y < x, then $\varphi(x)$ holds,

then $\varphi(x)$ is true for every element of P.

这个 lemma 有点意思,如果对 P 上所有的 minimal element m 都有命题 $\varphi(m)$ 成立,且 \mathcal{P} 满足 DCC. 那 么再加上一个条件: 只要对任意元素 $x \in P$,满足 y < x 都有 $\varphi(y)$ 成立. 则对任意元素 $x \in P$ 都有 $\varphi(x)$ 成立.

证明. 其实 (1) 是 (2) 的一个 special case. 在 (1)(2)hold 的情况下,我们试想一下 $\varphi(x)$ 没有被 hold 住的是哪些元素呢? 即对于某个 x,存在 y < x 使得 $\varphi(y)$ 没有被 hold. 递归地,我们再去考虑这个 y. 那么这里就存在一条 descending chain 在这里,由于 \mathcal{P} 是满足 DCC,所以这个 descending chain 是 infinite 的. 这条 chain 的结尾显然是一个 minimal element,但是它是满足 $\varphi(x)$. 所以实际上是不存在这里的 x 不满足 $\varphi(x)$.

Definition 1.15. Let \mathcal{P} be poset. Two elements a and b of \mathcal{P} are called comparable if $a \leq b$ or $a \geq b$. Otherwise, they are called incomparable.

元素的可比性.

Definition 1.16. An antichain in \mathcal{P} is a subset A of \mathcal{P} in which each pair of different element are incomparable.

Definition 1.17. Define the width of an poset \mathcal{P} by

$$w(\mathcal{P}) = \sup\{ |A| \mid A \text{ is an antichain in } \mathcal{P} \}$$

where |A| denotes the cardinality(集合的势) of A.

Definition 1.18. We define the chain-covering-number CCN $c(\mathcal{P})$ to be the least cardinal number k, such that P is a union of k chains(finite) of P, means $P = \bigcup C_i$.

拿同等最小规模的 finite chain 把整个 poset 盖住.

Lemma 1.19. Suppose $P = \bigcup C_i$ where $i \in I$, then $w(\mathcal{P}) \leq |I|$.

证明. 这里前提条件是任意一个 chain cover. 因为对任意一个 antichain A 和 C_i 有 $|A\cap C_i| \leq 1$,且 $A\in \bigcup C_i$,所以如果 A 里面有两个以上的元素,那么你要分开塞到 C_i 上,且每个 C_i 你都只能塞一个,那么最多你可以每个 C_i 上都塞一个进去,因此就有 $w(P)\leq |I|$.

Theorem 1.20. (Dilworth ,1950) Let \mathcal{P} be a finite poset. $w(\mathcal{P})$ is width. Then \mathcal{P} is a union of $w(\mathcal{P})$ -chains. 证明. TODO. 这有意思

Semilattices, Lattices and Complete Lattices

Semilattice

Definition 2.1. A semilattice is an algebra S = (S, *) satisfying, for all $x, y, z \in S$,

- 1. x * x = x,
- 2. x * y = y * x,
- 3. (x * y) * z = x * (y * z).

where * is binary operator. 换句话说 semilattice 就是一个 idempotent commutative semigroup(幂等交换半群).

Theorem 2.2. In a semilattice S, define $x \leq y$ if x * y = x. Then (S, \leq) is a poset in which every pair of elements has a greater lower bound(generally finite subset of poset).

Conversely, given an poset P with that property, define x * y = g.l.b(x,y). Then (P,*) is a semilattice. 证明. 先证明这个是一个 poset.

- 1. x * x = x implies $x \le x$,
- 2. if $x \leq y$ and $x \geq y$, then x = x * y = y * x = y,
- 3. if $x \le y$ and $y \le z$. then x * z = (x * y) * z = x * (y * z) = x * y = x, so $x \le z$.

这个 greater lower bound 就是 x*y. 首先证明它是一个 lower bound, x*(x*y) = x*y and y*(x*y) = x*y, 所以 x*y 是一个 lower bound. 再来证明所有的 lower bound 都比它小,假设 $z \le x$ 和 $z \le y$,即 z 是 $\{x,y\}$ 的一个 lower bound. 那么 z*(x*y) = z*y = z,所以 $z \le (x*y)$. 最后 x*y 的一个 greater lower bound.

semilattice 上弄了一个特殊的 poset 出来, 它最好的性质就是任意两个元素都有一个下确界.

Definition 2.3. A semilattice with the above ordering is usually called meet semilattice (S, \wedge) . 对偶地,使得 $x \geq y \iff x * y = x$,则称 S 为是一个join semilattice (S, \vee) . 自然地在 (S, \leq) 下任意的 pair 都有一个 least upper bound $x \vee y$.

Definition 2.4. A homomorphism between two semilattice is a map $f: \mathcal{S} \to \mathcal{T}$ with the property that f(x * y) = f(x) * f(y). An isomorphism is a homomorphism that injective and surjective.

一个 semilattice homomorphism 肯定是一个 monotone function(相对于 poset 来说),但是一个 monotone function 并不一定是一个 homomorphism.

nothing new... has some!

Definition 2.5. A semilattice is bounded if there is a top/bottom(only want to require one) element.

Theorem 2.6. Let S be a meet semilattice (S, \wedge) . Define $\phi: S \rightarrow \mathcal{O}(S)$ by

$$\phi(x) = \{ y \in S \mid y \le x \}$$

where $\mathcal{O}(S)$ is collection of all order ideals of S. Then S is isomorphic $(\mathcal{O}(S), \cap)$.

怎么感觉这些 ideal 都是 principle ideal(the ideal is generate by the element).

证明. \cap 表示 set intersection, ϕ 是 order-preserving 和 order-reflecting 还是比较 obvious. 所以 ϕ 是一个 order embedding of $\mathcal S$ into $\mathcal O(\mathcal S)$. Moreover $\phi(x \wedge y) = \phi(x) \cap \phi(y)$ because $x \wedge y$ is the greatest lower bound of $\{x,y\}$, so that $z \leq x \wedge y$ if and only if $z \leq x$ and $z \leq y$.

Lattice

Definition 2.7. A lattice is an algebra $\mathcal{L} = (L, \wedge, \vee)$ satisfying, for all $x, y, z \in L$,

- 1. $x \wedge x = x$ and $x \vee x = x$,
- 2. $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$,
- 3. $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ and $x \vee (y \vee z) = (x \vee y) \vee z$,
- 4. $x \wedge (x \vee y) = x$ and $x \vee (x \wedge y) = x$.

前三个公理保证 \mathcal{L} 同时是 meet semilattice 和 join semilattice. 最后一个公理交吸收律,它保证前面定理 meet 和 join 操作将会诱导出同一个 order,将会在后面的证明过程中 make sense.

Theorem 2.8. In a lattice \mathcal{L} , define $x \leq y$ if and only if $x \wedge y = x$. Then (L, \leq) is a poset in which every pair of elements has a greatest lower bound and a least upper bound.

证明. 给定一个 pair (x,y). 前面已经证明了 $x \wedge y$ 是它的一个 greater lower bound,这里我们需要再证明 $x \vee y$ 是它的 least lower bound. 假设 $z \geq x$,由 $z \vee (z \wedge x) = z \vee x = z$,这里证明了 \vee 的基本性质,因此回到 semilattice 中证明 least upper bound 手法,设 $z \in x, y$ 的一个 upper bound,那么

$$z \lor (x \lor y) = (z \lor x) \lor y = z \lor y = z.$$

这里若 $x \wedge y = x$,则 $x \vee y = (x \wedge y) \vee y = y$. 类似地 $x \vee y = y$,则 $x \wedge y = x \wedge (x \vee y) = x$. 所以有一个很重要的结论就是 $x \wedge y = x \iff x \vee y = y$,这就是 lattice definition 中吸收律保证 same order.

类似的我们可以通过一个 poset 构造 lattice.

Theorem 2.9. Given an poset \mathcal{P} with that above property, define $x \wedge y = \sup\{x,y\}$ and $x \vee y = \inf\{x,y\}$. Then (P, \wedge, \vee) is a lattice.

所以实际上 lattice 可以有两种定义第一种是前面的代数定义,第二种就是在 poset 上定义 join 和 meet 操作,这一点要清楚.

the definitions of homomorphism).

Definition 2.10. If \mathcal{L} is lattice and $L' \neq \emptyset$ is a subset of L such that for every pair of elements $(a, b) \in L'$ both $a \wedge b$ and $a \vee b$ are in L', where \wedge and \vee are the lattice operations of \mathcal{L} , then we say L' with the same operations of \mathcal{L} is a sublattice of \mathcal{L} .

Definition 2.11. Two lattice \mathcal{L}_1 and \mathcal{L}_2 are isomorphic if there is bijective α from \mathcal{L}_1 to \mathcal{L}_2 such that for every a, b in \mathcal{L}_1 the following two equations hold: $\alpha(a \wedge b) = \alpha(a) \wedge \alpha(b)$ and $\alpha(a \vee b) = \alpha(a) \vee \alpha(b)$. Such an α is called by an isomorphism.

在用 poset 基础上定义的 lattice 之间的 isomorphism 也可以用下述定理来描述.

Theorem 2.12. Two lattices \mathcal{L}_1 and \mathcal{L}_2 are isomorphic iff there is a bijection α from \mathcal{L}_1 to \mathcal{L}_2 such that both α and α^{-1} are order-preserving.

证明. 如果 α 是 \mathcal{L}_1 到 \mathcal{L}_2 的一个 isomorphism 和 $a \leq b$ hold in \mathcal{L}_1 . $a \leq b$ hold means $a = a \wedge b$, 那 $\Delta \alpha(a) = \alpha(a \wedge b) = \alpha(a) \wedge \alpha(b)$, 所以 $\alpha(a) \leq \alpha(b)$. 反过来 α^{-1} 也是一个 isomorphism, 所以 α^{-1} 也是 order-preserving 的.

反过来如果 α 是 bijective 的且 α 和 α^{-1} 都是 order-preserving 的. 给定 $a,b \in \mathcal{L}_1$,有 $a \leq a \vee b$,那么 $\alpha(a) \leq \alpha(a \vee b)$. 同理对 b 也有 $\alpha(b) \leq \alpha(a \vee b)$,那么 $\alpha(a) \vee \alpha(b) \leq \alpha(a \vee b)$.我们要把这个小于等于换成等于,就是要证明 $\alpha(a \vee b)$ 确实是一个 greatest upper bound,那么对应任意的 upper u,即 $\alpha(a) \vee \alpha(b) \leq u$,分别有 $\alpha(a) \leq u$ 和 $\alpha(b) \leq u$. 由于 α^{-1} 也是 order-preserving,所以有 $a \leq \alpha^{-1}(u)$ 和 $b \leq \alpha^{-1}(u)$,那么 $a \vee b \leq \alpha^{-1}(u)$,在用 α 作用一遍 $\alpha(a \vee b) \leq u$. 到这里证明了 $\alpha(a \vee b)$ 确实是一个 greatest upper bound,即 $\alpha(a) \vee \alpha(b) = \alpha(a \vee b)$. 同理也可以证 $\alpha(b) \wedge \alpha(b) = \alpha(a \wedge b)$.

Example 2.13. 记录一个 f 是 bijective 但只有 f order-preserving, 这样的 f 可能不是一个 isomorphism. Hasse 图可能画的不标准!

其中 $f(b \land c) \neq f(b) \land f(c)$.

Complete Lattice

Definition 2.14. 如果 \mathcal{L} 上如果存在一个最小元素,则记为 0. 类似地,如果 \mathcal{L} 存在一个最大元素,则记为 1.

Definition 2.15. For a subset A of a poset \mathcal{P} , let A^u denote the set of all upper bounds of A,

$$A^{u} = \{ x \in P \mid x \ge a \text{ for all } a \in A \}$$
$$= \bigcap_{a \in A} \uparrow a$$

where $\uparrow a = \{ x \in P \mid x \geq a \}$. Dually, A^l is the set of all lower bounds of A,

$$A^{l} = \{ x \in P \mid x \le a \text{ for all } a \in A \}$$
$$= \bigcap_{a \in A} \downarrow a$$

where $\downarrow a = \{ x \in P \mid x \le a \}.$

思考一个问题poset \mathcal{P} 的一个 subset A 什么时候有一个 least upper bound? 首先你得保证 A^u 不为空,那么这里可以设置一个条件 " \mathcal{P} 有一个 maximum element",显然此时 A^u 就天然不为空了.再进一步思考,如果 A^u 存在一个 greatest lower bound z,且 $z \in A^u$,那么按照定义 z 就是 A 的 least upper bound. 如果前面这样的 z 存在,那么我们 the join of A 存在,记为 $z = \bigvee A$,这样对集合的 join 操作也被定义好了,集合的 meet 操作也是类似的.

Theorem 2.16. 有限半格到格 Let S be a finite meet semilattice with greatest element 1. Then S is a lattice with join operation defined by

$$x \vee y = \bigwedge \{x, y\}^u = \bigwedge (\uparrow x \cap \uparrow y).$$

证明. 由于 S 是一个 finite lattice, 所以 A^u 也是 finite. A^u 里面的元素做有限次 meet 操作得到就是一个 A^u 的 lower upper bound, 但是你还得说明它在 A^u 里面, 这是很显然的, 因为 $x \wedge z_1 \wedge \cdots \wedge z_k = x$ 其中 $x \in A, z_i \in A^u$, 所以 $\bigwedge A^u$ 是它的一个 upper bound.

还得 proof 一下它是一个 lattice, 上面只是证明了这个东西是 well behaved. Lattice definition 中前三条还是比较明显的.

$$x \wedge (x \vee y) = x$$

这也很显然, 因为 $x \lor y \in \{x,y\}^u$.

$$x \lor (x \land y) = x$$

因为 $x \wedge y$ 是 $\{x,y\}$ 的一个 greatest lower bound.

这个 theorem 告诉我们: if a finite poset P has a greatest element and every pair of elements has a meet, then P is a lattice. 这就是 lattice 非代数形式的 definition.

Theorem 2.17. Every finite subset of a lattice has a greatest lower bound and a least upper bound.

证明. \mathcal{L} 是 finite, 则它的 subset 也是 finite, 两个确界的构造与2.16一样.

这个性质在 infinite lattice 下可能就无法成立, 自然地 completely 就 arised.

Definition 2.18. Given poset \mathcal{L} . If every subset A of \mathcal{L} has a greatest lower bound $\bigwedge A$ and a least upper bound $\bigvee A$, then \mathcal{L} is called complete lattice.

Definition 2.19. A complete meet semilattice is an poset S with greatest element and the property that every nonempty subset A of S has a greatest lower bound $\bigwedge A$.

Theorem 2.20. If \mathcal{L} is a complete meet semilattice, then \mathcal{L} is a complete lattice with the join operation defined by

$$\bigvee A = \bigwedge A^u = \bigwedge (\bigcap_{a \in A} \uparrow a).$$

证明. 和前面在 finite meet semilattice 上构造 lattice 类似,这里 finite 换成了 complete. 这里我们直接就可以 知道在 A^u 非空时, $\bigwedge A^u$ 是有意义的,并且这里有 $1 \in A^u$. 那么 $\bigwedge A$ 的 definition 是满足 A 的 least upper bound.

Closure System

这一章我们的主旋律, 先给出 closure system 是什么? 在告诉你如何构造第一个 closure system(closure rules)? 再告诉你如何在一个 closure system 上取一个合适的元素出来 (closure operator)? 慢慢享受吧)

Definition 2.21. A closure system on a set X is a collection \mathcal{C} of subsets of X thats is closed under arbitrary intersections(任意的交). The sets in \mathcal{C} are called closed set.

Example 2.22. 有一些 closure system 的例子

- 1. closed subsets of topological space,
- 2. subgroups of group,
- 3. subspace of vector space.
- 4. convex subsets of euclidean space \mathbb{R}^n ,
- 5. order ideals of an poset.

By convention, 特殊地 $\bigcap \emptyset = X$ (but why), closure system 现在就是 complete meet semilattice with greatest element X, 所以你按前面构造定义出 join, 那么 closure system 就是一个 complete lattice 了.

Definition 2.23. A closure operator on a set X is a map $\Gamma : \mathfrak{P}(X) \to \mathfrak{P}(X)$ satisfying, for all $A, B \subseteq X$,

- 1. $A \subseteq \Gamma(A)$,
- 2. $A \subseteq B$ implies $\Gamma(A) \subseteq \Gamma(B)$,
- 3. $\Gamma(\Gamma(A)) = \Gamma(A)$.

如何在 X 上利用已知的 closure system 构造一个 closure operator?

Theorem 2.24. If \mathcal{C} is a closure system on a set X, then the map $\Gamma_{\mathcal{C}} \colon \mathfrak{B}(X) \to \mathfrak{B}(X)$ defined by

$$\Gamma_{\mathcal{C}}(A) = \bigcap \{ D \in \mathcal{C} \mid A \subseteq D \}$$

is a closure operator. Moreover $\Gamma_{\mathcal{C}}(A) = A$ if and only if $A \in \mathcal{C}$

Definition 2.25. A set of closure rules on a set X is a collection \sum of properties $\varphi(S)$ of subsets of X. where each $\varphi(S)$ has one of the forms

$$x \in S$$

or

$$Y \subseteq S \Rightarrow z \in S$$

with $x, z \in X$ and $Y \subseteq X$. A subset D of X is said to be closed with respect to these rules if $\varphi(D)$ is true for each $\varphi \in \Sigma$.

你看到这里一定会感觉非常的困惑,抽象的 closure rules 到底是个啥东西? 如果给定了一个 S,要想把它构造成一个 closet set,那你就就要按照 Σ 里面规则,往里面加东西. Σ 里面有两类规则,第一类就是告诉你 closet set 一定要包含一些元素,例如一个子群需要包含单位元,第二类就是告诉你如果存在了一些元素在 S,那么另外一些元素也需要在 S 里面,例如 a,b 在某个子群里面,那么 a*b 也要在这个子群里面,这样就 make sense 了.

Example 2.26. 对应前面列举到的 closure system.

- 1. In topological space, all rules $Y \subseteq S \Rightarrow z \in S$ where z is an accumulation point of Y.
- 2. In subgroup, the rule $1 \in S$ and all rules

$$x \in S \Rightarrow x^{-1} \in S\{x, y\} \in S \Rightarrow xy \in S$$

3. In vector space, $0 \in S$ and all rules $\{x,y\} \subseteq S \Rightarrow ax + by \in S$ with a,b scalars.

Theorem 2.27. If Γ is a closure operator on a set X, \sum_{Γ} be the set of (1)all rules where $c \in \Gamma(\emptyset)$, and (2)all rules

$$Y \subseteq S \Rightarrow z \in S$$

with $z \in \Gamma(Y)$. Then a set $D \subseteq X$ satisfies all the rules of \sum_{Γ} if and only if $\Gamma(D) = D$.

证明. 第一类条件,即对任意的 subset A,有 $F(\emptyset) \subseteq \Gamma(A \cup \emptyset)$. 第二类条件,即如果满足规则 $Y \subseteq S \Rightarrow s \in S$,那么显然有 $s \in \Gamma(S)$,还因为 $Y \subseteq Y$,那么也有 $s \in \Gamma(Y)$. 显然这些这些规则是非常的自然的,那些固有的元素放在了 $F(\emptyset)$ 中,因为所有子集都包含空集,而根据具体子集需要添加的元素根据所给的规则添加即可.

我尝试用 closure operator 的 definition 来推一下, $Y \subset S$, 结合前面那么有

$$Y \subset \Gamma(Y) \subset S$$
.

特殊点,把 Y 换成 S,有 $S \subseteq \Gamma(S) \subseteq S$,所以 $\Gamma(S) = S$. 但是 (1) 在这里有啥用啊?保证 S 非空? 反过来若 $\Gamma(D) = D$. 自然地,当 $Y \subseteq D$,则有 $Y \subseteq \Gamma(Y) \subseteq \Gamma(D) = D$.

当有一个 closure operator 之后,最重要是我们知道了 closed set 在它的作用下是它本身.

Theorem 2.28. If \sum is a set of closure rules on set X, let \mathcal{C}_{\sum} be the collection all subsets of X that satisfy all the rules of \sum . Then a set \mathcal{C}_{\sum} is a closure system.

证明. 这个定理可以更形象地去理解 closure rule 到底是什么?假设 A,B 是满足 \sum 里面所有 rules 的两个集合. 我们看它们的交,对于第一类规则 $x \in S$,很显然在交下是保持的,因为 $x \in A$ 和 $x \in B$,则 $x \in A \cap B$. 对于第二类的规则,若 $C \subseteq A \cap B$,且它是某个规则里面对应的 Y,那么 $C \subseteq A$ 和 $C \subseteq B$,对应地有某个 $z \in A$ 和 $z \in B$,所以 $z \in A \cap B$. 综上 $z \in A \cap B$ 也是属于 $z \in A \cap B$.

在这里我们才终于认识到这样 closure rules 这样抽象的东西,它确实可以刻画一堆 closed set 组成了一个 closure system.

总结一下前面的所有东西,前面提到过一个 closure system 其实是一个 complete lattice,现在我们多了另外两个概念 closure operator 和 closure rules. 我们前面 3 个定理就是在说明它们之前是可以相互转换的,例如给定一个 closure operator,它 $\Gamma(D)=D$ 可以对应上 closure rules,然后我们用 closure rules 刻画的 sets 收集起来,这些 sets 在交运算下也能保持封闭,所以这些 sets 是一个 closure system,最终也得到了 complete lattice. 后面我们用 \mathcal{C}_{Γ} 表示由 closure operator Γ 生成的 closed sets($\Gamma(D)=D$) with set inclusion 构成 poset. 很自然地有下面的定理.

Theorem 2.29. If Γ is a closure operator on a set X, and the operations on \mathcal{C}_{Γ} are given by

$$\bigwedge_{i \in I} D_i = \bigcap_{i \in I} D_i$$

$$\bigvee_{i \in I} D_i = \Gamma(\bigcup_{i \in I} D_i).$$

in where $D_i \in \mathcal{C}_{\Gamma}$. Then \mathcal{C}_{Γ} is complete lattice.

证明. 由 Theorem 2.25 和 Theorem 2.26 可以知道一族 closed set \mathcal{C}_{Γ} 是一个 closure system. 自然地我们要用集合上 union 和 interestion. 先考虑 interestion $\bigcap_{i\in I} D_i$, 它确实是 greatest lower bound, 且在 closure system interestion 下有

$$\Gamma(\bigcap_{i\in I} D_i) = \bigcap_{i\in I} D_i.$$

所以 $\bigcap_{i\in I} D_i \in \mathcal{C}_{\Gamma}$. 对于 union $\bigcup_{i\in I} D_i$,它肯定是 X 上的 greatest upper bound,但是它不一定在 \mathcal{C}_{Γ} 中,所以我们要在 \mathcal{C}_{Γ} 中找所有包含它的 closed sets,再交一下就可以得到 \mathcal{C}_{Γ} 上的 greatest upper bound. 这是我们的思路,假设这样的 closed sets 为 $\{A_j\}_{i\in J}$. 明显地, $\bigcup_{i\in I} D_i \in \bigcap \{A_j\}_{i\in J}$. 我们只要证明 $\Gamma(\bigcup_{i\in I} D_i) \subseteq A_j$ 对任意地 $j\in J$ 都成立即可,即它是 \mathcal{C}_{Γ} 包含 $\bigcup_{i\in I} D_i$ 最小的 closed set. 但是证明过于简单 2333,直接用 closure operator 第二个定义即可. 因为 $\bigcup_{i\in I} D_i \subseteq A_j$,所以 $\Gamma(\bigcup_{i\in I} D_i) \subseteq \Gamma(A_j) \subseteq A_j$.

略algebra 一般定义和 subalgebra 上的 closure operator.

下面是一个representation theorem,刚才是 closure operator 到 complete lattice,现在是 complete lattice 到 closuse.

下面的定理在说任意一个 complete lattice 和一些 closed set 构成 lattice 同构.

Theorem 2.30. If \mathcal{L} is a complete lattice, define a closure operator Δ on L by

$$\Delta(A) = \{ x \in L \mid x \le \bigvee A \}.$$

Then \mathcal{L} is isomorphic to \mathcal{C}_{Δ} . The isomorphism $\varphi \colon \mathcal{L} \to \mathcal{C}_{\Delta}$ is just given by $\varphi(x) = \downarrow x$.

证明. Δ 是一个 closure operator 还是比较 obvious. 我们来回顾一下 $\downarrow x$ 的 definition $\downarrow x = \{ y \in L \mid y \leq x \}$, 所以 $\Delta(\downarrow x) = \downarrow x \in \mathcal{C}_{\Delta}$.

先证 bijective,若对于 $x,y \in L$ 有 $\varphi(x) = \varphi(y)$,那么 $y \in \varphi(x)$ 和 $x \in \varphi(y)$,就有 $y \leq x$ 和 $x \leq y$,所以 x = y,即 φ 是 injective. 任意一个 $C \in \mathcal{C}_{\Delta}$,那么都有 least upper bound $u \in C$. 自然地 $\varphi(u) = C$,即 φ 是 surjective.

给定任意地 $x,y \in L$, 那么

$$\varphi(x \wedge y) = \uparrow (x \wedge y) = \uparrow x \cap \uparrow y = \varphi(x) \wedge \varphi(y).$$

同理

$$\varphi(x \vee y) = \uparrow (x \vee y) = \uparrow x \cap \uparrow y = \varphi(x) \vee \varphi(y).$$

综上 φ 是一个 isomorphism.

换句话说就是 q 如果是 join irreducible,则它不可能是其他某些元素的一个 join.

Definition 2.31. An element q of lattice \mathcal{L} is called join irreducible if $q = \bigvee F$ for a finite set F implies $q \in F$. The set of all join irreducible elements in \mathcal{L} is denoted by $J(\mathcal{L})$.

如果 \mathcal{L} 有一个最小元素 0,那么 0 其实不是 join irreducible 的,因为 $0 = \bigvee \emptyset$. 如果想要把 0 含进来,特殊地 $J_0(\mathcal{L}) = J(\mathcal{L}) \cap \{0\}$. 当然还有一种定义如果 q 是 join irreducible,那么当 $q = r \vee s$,则 q = r 或者 q = s,在这种定义下 q 已经是针对非空的集合来说的.

Lemma 2.32. If a lattice \mathcal{L} satisfies the DCC, then every element of \mathcal{L} is a join of finitely many join irreducible elements.

证明. 用反证法来证明: 假设存在 \mathcal{L} 上一些元素,使得找不到 join irreducible elements 的 join 正好是它们. 我们把这些元素记为集合 S,根据 DCC S 里面有一个最小值,我们设为 x. 那么 x 肯定也不是 join irreducible 的,如果它是的话,它就是它自己的一个 join,那么 $x \notin S$. 既然 x 不是一个 join irreducible,那么有 $x = \bigvee F$

其中 F 是一个 finite set 且里面的元素都是严格小于 x 的,由于 x 是最小元素这个概念,所以比它小的元素都是 the join of finitely many join irreducible elements. 那么对于 F 而言,任意的 $f \in F$ 都有一个 $G_f \subseteq J(\mathcal{L})$ 的 join 是 f. 所以

$$x = \bigvee_{f \in F} \bigvee G_f.$$

这里 $f = \bigvee G_f$,所以 x 可以表示称有个多个 join irreducible elements 的 join,这就矛盾了. 这里应该还要考虑一下 x = 0,但是讨论 0 确实没什么意义,0 可以定义为 join irreducible 也可以不是,这里还是避免这种情况吧...

Definition 2.33. An element q of a complete lattice \mathcal{L} is said to be completely join irreducible if $q = \bigvee X$ implies $q \in X$ for arbitrary (possibly infinite) subsets $X \subseteq L$. Let $J^*(\mathcal{L})$ denote the set of all completely join irreducible elements of \mathcal{L} .

Proposition 2.34. In general, $J^*(L) \subseteq J(L)$, but for lattices satisfying the ACC, equality holds.

证明. 每个 completely join irreducible element 肯定是 join irreducible element. 这是很自然地,它是任意多个元素的 join,那肯定可以挑出来有限多个元素 with q 的 join 还是 q. ACC 有了之后, \mathcal{L} 上任意非空的子集都有一个最大元素,那么我们现在假设一个 join irreducible element x 它不是 complete 的,即可以找到某个集合 S,有 $x = \bigvee S$ 且 $x \notin S$. 矛盾就来了,ACC 下 least upper bound 应该是在 S 里面,所以现在又有每个 join irreducible element 是 completely join irreducible.

满足 ACC 和 DCC 的 lattice 一个表示方法.

Theorem 2.35. Let \mathcal{L} be a lattice satisfying the ACC and DCC. Let \sum be the set of all closure rules on J(L) of the form

$$F\subseteq S\Rightarrow q\in S$$

where q is join irreducible, F is a finite subset of J(L), and $q \leq \bigvee F$. (Include the degenerate cases $p \in S \Rightarrow q \in S$ for $q \leq p$ in $J(\mathcal{L})$.) Then \mathcal{L} is isomorphic to the lattice of \mathcal{C}_{\sum} of \sum -closed sets.

证明. 这里同构证明用 isomorphism definition 下面那个定律,即 bijective 加两个 order-preserving. 那么先给出两个 order-preserving 的 map $f: \mathcal{L} \to \mathcal{C}_{\Sigma}$ 和 $g: \mathcal{C}_{\Sigma} \to \mathcal{L}$

$$f(x) = \downarrow x \cap J(\mathcal{L})$$
$$g(S) = \bigvee S.$$

需要证明它们两个互为逆映射(感觉好突兀啊,虽然原文中说 straightforwrad233333). 那么对于 gf(x) = x,前面那个 lemma 应该告诉我们了,在 DCC 下 \mathcal{L} 每一个元素都是 a join of finitely many join irreducible elements 对应是 f(x) 的操作.

那么对于 fg(S) = S,在 ACC 下 $\bigvee S \in S$,也就是我们可以找到一些 finite set $F \subseteq S$ 使得 $\bigvee F = \bigvee S$,按 照 closure rules,所有 join irreducible $q \leq \bigvee F$ 都是属于 S 的, $f(\bigvee F)$ 就是在做这件事.但是这样得到是不是全部的 S 呢? 考虑其他 finite set F',那么 $\bigvee F' \leq \bigvee S = \bigvee F$,f 是 order-preserving 的,所以有 $f(\bigvee F') \subseteq f(\bigvee F)$,所以 $f(\bigvee F)$ 涵盖了整个 S.

按照下面定义 x 明显是一个 upper bound,但是条件更强它还要是一个 least upper bound,dense 稠密在这里还是很形象,x 就是一个划分.

Definition 2.36. A subset Q of a complete lattice \mathcal{L} is join dense if for every $x \in L$,

$$x = \bigvee \{ \, q \in Q \mid q \leq x \, \}.$$

fixed point 来表征 complete lattice.

Theorem 2.37. A lattice \mathcal{L} is complete of if and only if every order-preserving map $f: \mathcal{L} \to \mathcal{L}$ has a fixed point.

证明. (⇒) 如果给定一个 complete lattice \mathcal{L} 和一个 order-preserving map $f: \mathcal{L} \to \mathcal{L}$. 定义集合 $A = \{x \in L \mid f(x) \geq x\}$. 注意到 $0 \in A$ (0 表示 minimal element of L). 再让 $a = \bigvee A$,那么对于任意的 $x \in A$ 都有 $a \geq x$,结合 f 是 order-preserving 我们有

$$f(a) \ge \bigvee_{x \in A} f(x) \ge \bigvee_{x \in A} x = a.$$

所以 $a \in A$,即 $f(a) \ge a$,两边再作用一下 f 有 $f^2(a) \ge f(a)$,这说明 $f(a) \in A$. a 可是整个 A 的 join,那么 有 $a \ge f(a)$. 综上 f(a) = a,a 就是这个 fixed point.

(\Leftarrow) 这个方向的证明略微有些复杂,故事主线是在 every order-preserving map has a fixed point 的前提下,假设 $\mathcal L$ 不是 complete,然后构造出来出来一个 order-preserving map 没有 fixed point 造成矛盾.

假设 \mathcal{L} 不是 complete, 那么先给出第一个 claim.

Claim 1: \mathcal{L} 没有最大元素 1 或者存在一个 chain $C \subseteq L$ 满足 ACC 且没有 meet(supermum).

证这个 claim,我们还是用反证法,假设 \mathcal{L} 有最大元素 1 和所有满足 ACC 的 chain $\mathcal{C} \subseteq \mathcal{L}$ 都有 meet. 我们仔细考虑一下这个假设,先回顾一下我们前面关于 complete meet semilattice 的 definition,是要有一个 poset 满足有 greatest element 并且所有非空的子集都有 meet,然后我们可以通过这个 complete meet semilattice 构造出来一个 complete lattice,我们的证明大体上也是这个思路,但是使用其对偶的形式(因为你可以观察到我们假设的第二个条件有些不一样),即在 complete join semilattice 来构造,从而制造了一个 contradiction.

考虑某个子集 S 的所有 upper bound S^u . 注意到 $1 \in S^u$, 所以 S^u 不是 emptyset. 我们再来定义一个 poset \mathcal{P} , 它是 S^u 上所有满足 ACC 的 chains 的一个 collections. \mathcal{P} 上的 partial-order 定义为若 $C_1 \leq C_2$ 则 C_1 是 C_2 的一个 filter (我们回顾一下 filter 的定义,它是 ideal 的对偶形式,即首先有 $C_1 \subseteq C_2$,若 $x \geq y \in C_1$ 则 $x \in C_1$ 其中 $x \in C_2$).

我们再来考虑这个特殊的 poset \mathcal{P} 上的 chain (chain of chains),任取 \mathcal{P} 上的一个 chain $\{C_i\}_{i\in I}$,那么 $\bigcup_{i\in I} C_i \in \mathcal{P}$,根据上面定义的 partial order 这是显然的,而且 $\bigcup_{i\in I} C_i$ 它是这个 chain 的一个 upper bound. 根据 Zorn's lemma, \mathcal{P} 上有一个 maximal element C_m . 根据我们的假设 C_m 满足 ACC 是有 meet 的,这个 meet 我们 用 a 来表示,即 $\bigwedge C_m = a$. 很明显 a 在是 S 的一个 upper bound,所以 $a \in S^u$. 我们现在来证明 $a = \bigwedge S^u$ (至于为什么后面你就知道了),还是用反证法(23333),假设 a 不是 S^u 的 greatest lower bound,那么存在 $t \in S^u$,使得 $a \not\leq t$. 则有 $a \land t \in S^u$,为什么呢?因为任取 $s \in S$,都有 $s \land (a \land t) = s$. 自然地 $a > a \land t$ (严格大于没有等号),那么 chain $C_m \cup \{a \land t\}$ 也是满足 ACC,且大于 C_m ,这就矛盾了,所以 $a = \bigwedge S^u = \bigvee S$.

所以我们证明了对于任意的 $S \subseteq L$ 都有 join,那么马上我们有

$$\bigwedge S = \bigvee S^l.$$

所以 S 的 meet 也有意义了,但是这里 S^l 我们不知道是不是非空的啊? 注意最前面我们用 0 加上 complete join semilattice 来构造 complete lattice,但是我们这里不需要构造因为 lattice 是给定了,那么对于任意非空的 S, $\wedge S \in S^l$ 的,所以 S^l 也是非空的,这里没有问题. 综上 \mathcal{L} 是一个 complete lattice 与前提矛盾. Claim $\mathbf{1}$ 证闭. 原谅我这个证明写不去了,原文省略太多的东西了…

来另一个 1955 年给出的第一个证明.

Lemma 2.38. 如果 \mathcal{L} 是 *incomplete*, 那么存在两个 *chain* C 和 D 满足下面条件,

- 1. C 是一个 strictly ascending chain(严格大于), D 是一个 strictly descending chain(严格小于).
- 2. D 中的每个元素都严格大于 C 中的每个元素.
- 3. 不存在 $a \in L$ 使得它同时是 C 的 upper bound 和 D 的 lower bound.

证明. Proof of above lemma.

证明. 这里我们还是证 if every preserving map $f: \mathcal{L} \to \mathcal{L}$ has a fixed point then \mathcal{L} is complete. 还是假设 \mathcal{L} 是 incomplete, 然后我们构造一个 preserving map 没有 fixed point.

假设 C,D 是满足前面 lemma 的两个 chains. 然后我们来定义这个特殊的 preserving map f, 对于任意的 $x \in \mathcal{L}$, 我们可以分两种情况来看, $x \not\in D$ 的 lower upper 或者不是.

第一种情况若 x 是 D 的 lower upper,反过来那么它肯定不是 C 的 upper bound,那么肯定存在某些 $c \in C$ 满足 $c \not\leq x$. 我们把这些 c 记为

$$C(x) = \{ c \in C \mid c \nleq x \}.$$

这种情况下我们取 $f(x) = \min C(x)$, 即 C(x) 中的最小值.

第二种情况 x 不是 D 的 lower upper,那么肯定存在某些 d D 满足 $c \ngeq x$. 我们把这些 d 记为

$$D(x) = \{ d \in D \mid d \not\geq x \}.$$

这种情况下我们取 $f(x) = \max D(x)$, 即 D(x) 中的最大值.

这种情况定义出来的 f(x) 都会满足 $f(x) \not\geq x$ 或者 $f(x) \not\leq x$,所以是不存在 f(x) = x,即没有 fixed point 的.

接下来我们证明 f 是一个 preserving map, 取 $x \le y$. 我们分下面几种情况来分别说明:

1. $x \neq D$ 的 lower bound, $y \neq D$ 的 lower bound. 那么 $f(x) = \min C(x)$ 和 $f(y) = \min C(y)$. 若 $y \not\geq c$, 则 $x \not\geq c$ (else $y \geq x \geq c$), 所以 $C(y) \subseteq C(x)$.

C 是一个升链,那么 C(x) 可以想象成这条链上一堆点,那么 C(x) 还是一个升链,C(y) 是它的一个子集必然满足 $\min C(x) \leq \min C(y)$,则 $f(x) \leq f(y)$.

- 2. $x \in D$ 的 lower bound, y 不是 D 的 lower bound. 那么 $f(x) = \min C(x)$ 和 $f(y) = \max D(y)$, 显然 $f(x) \le f(y)$.
- 3. x 不是 D 的 lower bound, y 是 D 的 lower bound. 这是不可能的,因为 $x \le y$,那么当 y 是 D 的 lower bound 的时候,x 也是 D 的 lower bound.
- 4. x 不是 D 的 lower bound, y 不是 D 的 lower bound. 那么 $f(x) = \max D(x)$ 和 $f(y) = \max D(y)$. 若 $x \nleq d$, 则 $y \nleq d$ (else $x \leq y \leq d$). 所以 $D(x) \subseteq D(y)$. 由于 D(y) 是一个降链上点的集合,这个集合还是一个降链,你在降链上找子集 D(x),肯定有 $\max D(x) \leq \max D(y)$,则 $f(x) \leq f(y)$.

综上 $f(x) \le f(y)$ 总是成立,所以 f 确实是一个 preserving map.

Alegbraic Lattices

Algebraic Closure Operators

Definition 3.1. A closure operator Γ on a set X is said to be algebraic if for every $B \subseteq X$,

$$\Gamma(B) = \bigcup \{ \Gamma(F) \mid F \text{ is finite subset of } X \}.$$

Definition 3.2. Let \mathcal{L} be a complete lattice. An element $x \in L$ is compact if whenever $x \leq \bigvee A$, then there exists a finite subset $F \subseteq A$ such that $x \leq \bigvee F$. The set of all compact elements of \mathcal{L} is denoted by \mathcal{L}^c

这里的 compact 就是在说如果 x 小于 A, 则 x 小于 A 中的部分元素. 这个定义看起来还是比较自然的.

Proposition 3.3. \mathcal{L}^c is closed under finite joins and contains 0, so it is a join semilattice with a least element.

证明. 假设 x 和 y 是两个 compact 元素,集合 A 表示 such $x \vee y \leq A$. 那么自然地有 $x \leq x \vee y \leq A$ 和 $y \leq x \vee y \leq A$,所以各自都可以找到 $x \leq F_x \subseteq A$ 和 $y \leq F_y \subseteq A$. 从 F_x 和 F_y 各挑一个元素出来 a 和 b 出来,那么 $x \vee y \leq a \vee b$. 0 属于 \mathcal{L}^c 这是很自然的,它比任何一个元素都小.

Definition 3.4. A lattice \mathcal{L} is said to be algebraic, or compactly generated, if it is complete and \mathcal{L}^c is join dense in \mathcal{L} , i.e., $x = \bigvee(\downarrow x \cap L^c)$ for every $x \in L$.

换句话说就是在 \mathcal{L}^c 中比 x 小的元素它们的 join 是 x, 每一个 x 都可以划分 \mathcal{L}^c . 另外一个理解就是任意 $x \in L$, 都是某些 compact elements 的 join, 这就是为什么说 compactly generated.

Example 3.5. 自然地, finite lattice 都是 algebraic lattice, 首先 finite lattice 是 complete lattice, 其中每一个元素都是 compact, 所以有 $\mathcal{L} = \mathcal{L}^c$, 那么 $x = \bigvee(\downarrow x \cap L) = \bigvee(\downarrow x) = x$, 即 \mathcal{L} 是 join dense 的.

Example 3.6. 一个 complete lattice 并一定是一个 algebraic lattice:

- 1. 区间 [0 1] 上所有的实数和自然序构成一个 complete lattice \mathcal{K} , 那么 $\mathcal{K}^c = 0$, 但是它并不是 join dense 的.
- 2. 下面的 Hasse 图也是 complete lattice, 但是 z 并不是一些 complete element 的 join, 那么 \mathcal{L}^c 就不是 join dense 的.

Definition 3.7. A closure rule is said to be finitary if it is a rule of the form $x \in S$ or the form $F \subseteq S \Rightarrow z \in S$ with F a finite set.

Theorem 3.8. (algebraic 和 finitary 的关系) A closure operator Γ is algebraic if and only if $\Gamma = \Gamma_{\Sigma}$ for some set Σ of finitary closure rules.

证明. 若 Γ 是一个 X 上的 algebraic closure operator,我们要构造一组 finitary closure rules 来描述它的 closed sets. 那么我们规定者 $S\subseteq X$ 是 closed 当且仅当对任意的 finite set $F\subseteq S$ 都有 $\Gamma(F)\subseteq S$. 我们再来证明 这个断言的正确性,正向是比较明显的,反过来要证明 S 是一个 closet set 即 $\Gamma(S)=S$,在 Γ 的作用下,已 经有 $S\subseteq \Gamma(S)$,所以我们只需要证明 $\Gamma(S)\subseteq S$. 因为 Γ 是 algebraic 的,所以对于 finite set $F\subseteq S$,有 $\Gamma(S)=\bigcup\Gamma(F)$,结合前提有 $\bigcup\Gamma(F)\subseteq S$,那么 $\Gamma(S)\subseteq S$. 我们由已经证明的结论构造出一族 closure rules 它 们是 finitary: 对任意的 finite set $F\subseteq S\Rightarrow z\in S$ 其中 $z\in\Gamma(F)$. 这族 closure rules 对应的 closed set 就是 Γ 上 所决定的.

前面命题的正向是在描述一个 represention, 那么反过来 Γ_{Σ} 到底在这里是什么意思呢? 在确定 closure rules 情况下,我们就确定了 X 上的 closed sets,随即它们构成了一个 closure system,在之前 closure system 那一章,我们已经证明了,那么我们再在这个 closure system 上构造一个 closure operator Γ_{Σ} 定义如下

$$\Gamma_{\Sigma}(A) = \bigcap \{ S \in \mathcal{C}_{\Sigma} \mid A \subseteq S \}$$

其中 \mathcal{C}_{Σ} 表示 closure rules 确定的 closed set. 是不是感觉绕了一个大湾? 哈哈. whatever its done!

反过来如果 \sum 是一族 finitary closure rules,可以得到上述定义的 closure operator Γ_{\sum} ,现在我们要来说明它是 algebraic. 你得证明 $\Gamma_{\sum}(B)$ 是 B 靠着 closure rules 生成的. 这里的证明去看 universe alegbra 中证明 Sg 是一个 algebraic closure operator 的方法.

Theorem 3.9. (在 algebraic closure operator 上构造 algebraic lattice) Let Γ be an algebraic closure operator on set X. Then \mathcal{C}_{Γ} is an algebraic lattice whose compact elements are $\{\Gamma(F) \mid F \text{ is a finite subset of } X\}$.

证明. 首先我们得说明 \mathcal{C}_{Γ} 是一个 complete lattice. 给定一族 \mathcal{C}_{Γ} 上的元素 $B_{i\in I}$,我们定义 $\bigvee_{i\in I} B_i = \Gamma(\bigcup_{i\in I} B_i)$ 和 $\bigwedge_{i\in I} B_i = \Gamma(\bigcap_{i\in I} B_i)$,其中最大元是 $\Gamma(X)$ 和最小元是 $\Gamma(\emptyset)$. 所以 \mathcal{C}_{Γ} 是一个 complete lattice.

给定 X 上的有限子集 F 和 X 上子集族 $A_{i\in I}$. 若 $\Gamma(F) \leq \bigvee_{i\in I} \Gamma(A_i) = \Gamma(\bigcup_{i\in I} A_i)$,要证明 $\Gamma(F)$ 是 compact 的,就是要证明 $\Gamma(F) \subseteq \bigvee_{j\in J} \Gamma(A_j)$ 其中 J 是有限的且 $J \subseteq I$.

由于 Γ 是 algebraic 的,那么

$$F \subseteq \Gamma(F) \subseteq \Gamma(\bigcup_{i \in I} A_i) = \bigcup \{ \, \Gamma(G) \mid G \text{ is finite subset of } \bigcup_{i \in I} A_i \, \}.$$

对于任意的 $x \in F$,都存在 $x \in \Gamma(G_x)$,那么

$$\Gamma(F) \subseteq \Gamma(\bigcup_{x \in F} \Gamma(G_x)).$$

实际上若 G 是 $\bigcup_{i \in I} A_i$ 的有限子集,那么 $G \subseteq \bigcup_{j \in J} A_j$,所以

$$\Gamma(F) \subseteq \Gamma(\bigcup_{x \in F} \Gamma(G_x)) \subseteq \Gamma(\bigcup_{x \in F} \Gamma(\bigcup_{j \in J_x} A_j)) = \bigvee_{x \in F} \bigvee_{j \in J_x} \Gamma(A_j) = \bigvee_{x \in F} \Gamma(A_j).$$

$$i \in J_x$$

反过来,若 C 是 C_{Γ} 上的 compact element. 我们要证明 C 是 X 上某个有限子集的闭包. 因为 C 是 closed 的,则 $\Gamma(C) = C$. 再由 Γ 是 algebraic 的,那么 $C = \bigcup \{ \Gamma(F) \mid F \text{ is finite subset of } C \}$. 又因为 C 是 compact 的,所以存在有限多个 $\Gamma(F_1), \cdots, \Gamma(F_n)$ 使得 $C = \Gamma(F_1) \vee \cdots \vee \Gamma(F_n) = \Gamma(F_1 \cup \cdots \cup F_n)$. 命题得证.

最后证明 \mathcal{C}^c_{Γ} 是 join dense 的. 对于任意的 $B \in \mathcal{C}_{\Gamma}$, B 是 closed, 那么 $B = \bigvee_{i \in I} \Gamma(F_i)$ 其中 finite subset $F \subseteq B$ (这里已经可以说明 B 是 compactly generated). 自然地有 $\bigvee(\downarrow B \cap \mathcal{C}^c_{\Gamma}) \leq A$ 且 $\Gamma(F_i)_{i \in I} \in \mathcal{C}^c_{\Gamma}$, 那么 $\bigvee(\downarrow B \cap \mathcal{C}^c_{\Gamma}) = B$. 命题得证.

我们用 algebraic closure operator 生成了一个 algebraic lattice,其上每一个元素都是 compact elements 的 join,自然地联想到 closure operator 是 algebraic 的那个条件,每一个 closed set 都可以用 finitely generated closed set 来表示.

Definition 3.10. If Γ is a closure operator on X and B is closed subset of X, then we way a set A is a generating set for B if $\Gamma(A) = B$. The Set B is finitely generated if there is a finite generating set for B. The set A is minimal generating set for B if A generates B and no proper subset of A generates B.

Corollary 3.11. Let Γ be an algebraic closure operator on X. Then the finitely generated subset of X are precisely the compact elements of \mathcal{C}_{Γ} .

Example 3.12. 若 C_{Γ} 是 algebraic 的,则 Γ 不一定是 algebraic,也就是说 Γ 生成的 lattice 是 algebraic 的,但是 Γ 本身不一定是 algebraic. 下面举一个列子.

例如定义 $X=Y\cup\{b\}$ 其中 Y 是 finite set, X 表示为它们的 disjoint union(不交并). 然后定义 X 上的 closure operator Γ 为: 若 A 是 Y 的一个 proper set(真子集),则 $\Gamma(A)=A$; 特别地 $\Gamma(Y)=X$; 若 $b\in B\subseteq X$,则 $\Gamma(B)=X$. Γ 一个 well defined closure operator,可以验证一下. 那么 Γ 生成的 closed set 为 Y 的所有 proper set 和 X,它们构成的 lattice \mathcal{C}_{Γ} 是和 Y 上所有子集构成的 lattice $\mathcal{L}_{\mathfrak{P}(Y)}$ 是 isomorphic,这个 isomorphism 是比较明显的,Y 上的 proper set 映到它本身,X 映到 Y. Y 是一个 finite set,所以 $\mathcal{L}_{\mathfrak{P}(Y)}$ 是一个 algebraic lattice,有个问题那么 isomorphism 是保持 algebraic 的?这个是显然的,想想就行. 考虑 $\Gamma(Y)$,其中 $b\in\Gamma(Y)$,但是对任意的 $F\subseteq Y$ 都有 $b\notin\Gamma(F)$,所以 $\Gamma(Y)$ 是不满足 Γ 是 algebraic 的.

Definition 3.13. Let $S = (S, \vee)$ be a join semilattice. A subset A of S is called an ideal if

- 1. $x, y \in A$ implies $x \vee y \in A$.
- 2. if $z \leq y \in A$ implies $z \in A$.

用自然语言来描述就是 ideal 首先是要在 \lor 的作用下封闭的. 若存在对任意一个元素 z,它小于等于 ideal 中的某个元素,那么 z 也在 ideal 里面.

Proposition 3.14. (ideal closure operator 的引人) Ideals are defined by closure rules, so the intersection of a set of ideals of S is again one. Since the closure rules are finitary, the lattice of ideals is algebraic.

The closure operator I on S such that I(B) is the ideal of S generated by B is given by

$$I(B) = \{ x \in S \mid x \le \bigvee F \text{ for some finite } F \subseteq B \}.$$

The ideal lattice of a join semilattice is denoted by $\mathcal{I}(\mathcal{S})$. The ideal lattice of a lattice \mathcal{L} is likewise denoted by $\mathcal{I}(\mathcal{L})$.

不得不说 closure rules 抽象却深刻,扮演了一个很重要的角色.

证明. 我们来证明 I 是一个 closure operator 且 I(B) 是一个 ideal.

任取 $x, y \in I(B)$,那么分别对应存在 $x \leq F_x$ 和 $y \leq F_y$,自然地 $x \vee y \leq \bigvee (F_x \cup F_y)$ 其中 F_x 和 F_y 都是 finite 的,所以 $x \vee y \in I(B)$.若 $z \leq y \in I(B)$,那么 $z \leq \bigvee F_y$,所以 $z \in I$.综上 I(B) 是一个 ideal.

 $B \subseteq I(B)$,这是显然的,取每个 B 上单点集. 自然地 $A \subseteq B$,也有 $I(A) \subseteq I(B)$. 考虑 $x \in I(I(B))$,那么存在 finte set F 对应 $x \leq \bigvee F \subseteq I(B)$. 自然地有 $F \subseteq I(B)$,那么对于任意 $y \in F$,都对应一个 $y \leq \bigvee F_y \subseteq B$. 所以

$$F \le \bigvee F \le \bigvee \bigcup_{y \in F} F_y.$$

自然地 $x \leq \bigvee \bigcup_{y \in F} F_y$. 所以 $x \in I(B)$, 即 $I(B) \supseteq I(I(B))$, 前面已经保证了 $I(I(B)) \supseteq I(B)$, 所以 I(I(B)) = I(B).

Theorem 3.15. (ideal closure operator 生成的 algebraic lattice 的性质) If S is a join semilattice with 0, then the ideal lattice $\mathcal{I}(S)$ is algebraic. The compact elements of $\mathcal{I}(S)$ are the principal ideals $\downarrow x$ with $x \in S$. Conversely, if \mathcal{L} is an algebraic lattice, then \mathcal{L}^c is a join semilattice with 0, and $\mathcal{L} \cong \mathcal{I}(\mathcal{L}^c)$.

证明. 先来证明 $\mathcal{I}(\mathcal{S})$ 的 compact elements 是 principle ideals. I 是一个 algebraic closure operator 在上面已经证明了. 由 Theorem 3.9 我们知道 compact element 是 I(F) 其中 F 是 S 上的 finite subset. 我们需要证明 I(F) 里面有一个 maximal element,即 $\bigvee F \in I(F)$. 由于 F 是 finite 的,前面的结论是显然的,所以 $I(F) = \downarrow \bigvee F$.

如果 \mathcal{L} 是一个 algebraic lattice, \mathcal{L}^c 是一个 join semilattice with 0 在 proposition 3.3 中已经证明了. 这里 的 I 就是下面定理 Theorem 3.16 中 Δ 更加朴素刻画,因为 I 在定义上可以更直观地看出它是 algebraic 的.

Theorem 3.16. (第一同构定理?) If \mathcal{L} is an algebraic lattice, define a algebraic closure operator Δ on the \mathcal{L}^c by

$$\Delta(A) = \{ x \in \mathcal{L}^c \mid x \le \bigvee A \}$$

where $A \subseteq \mathcal{L}^c$. Then \mathcal{L} is isomorphic to \mathcal{C}_{Δ} . Then isomorphism $\varphi \colon \mathcal{L} \to \mathcal{C}_{\Delta}$ is just given by $\varphi(a) = \{ x \in \mathcal{L}^c \mid x \leq a \}$.

证明. Δ 是一个 closure operator 前面已经证明过了. 考虑 $x \in \Delta(A)$, 那么有 $x \leq \bigvee A$. 由于 x 本身是 L 上的一个 compact element, 那么就可以找到一个有限子集 $F \subseteq A$, 使得 $x \leq \bigvee F$, 所以 $\Delta(A) = \bigcup_{x \in \Delta(A)} \Delta(F_x)$. 即 Δ 是 algebraic 的.

先证 bijective. 给定 $a,b \in L$,若 $\varphi(a) = \varphi(b)$,那么 $a = \bigvee \varphi(a) = \bigvee \varphi(b) = b$,注意两边等号成立的条件是 \mathcal{L}^c 是 join dense(join dense 终于在这里起作用了),所以 φ 是 injective. 对于任意的 $C \in \mathcal{C}_\Delta$,它对应一个子集 $A \subseteq \mathcal{L}^c$,使得 $\Delta(A) = C$,那么我们取 $a = \bigvee A$,我们知道 compact element 的 join 还是一个 compact element, 所以 $a \in \mathcal{L}^c$,那么 $\varphi(a) = C$,即 φ 是 surjective.

再证 homomorphism.

$$\varphi(a \wedge b) = \varphi(a) \cap \varphi(b) = \varphi(a) \wedge \varphi(b)$$

$$\varphi(a \lor b) = \varphi(a) \cup \varphi(b) = \varphi(a) \lor \varphi(b).$$

Definition 3.17. A subset D of an ordered set \mathcal{P} is said to be up-directed if for every $x, y \in D$ there exists $z \in D$ with $x \leq z$ and $y \leq z$.

Example 3.18. Every chain, or more generally every join semilattice, forms an up-directed set.

Theorem 3.19. Let Γ be a closure operator on a set X. The following are equivalent.

- 1. Γ is an algebraic closure operator.
- 2. The union of any up-directed set of Γ -closed sets is Γ -closed.
- 3. The union of any chain of Γ -closed sets is Γ -closed.

证明. $(1) \Rightarrow (2)$. 给定 Γ 是一个 algebraic closure operator. 设 $D \subseteq \mathcal{C}_{\Gamma}$ 上的一个 up-directed set, 那么若 $C_1, C_2 \in D$,则存在 $C_3 \in D$ 使得 $C_1 \subseteq C_3$ 和 $C_2 \subseteq C_3$. (只有清楚了 D 的定义,接下来的事情就好办了)我们 要证明 $\bigcup D$ 也是一个 closed set,那么自然地考虑 $\Gamma(\bigcup D)$,由于 Γ 是 algebraic 的,所以

$$\Gamma(\bigcup D) = \bigcup \{ \Gamma(F) \mid F \text{ is finite subset of } \bigcup D \}.$$

我再来考虑这个 F, 换句话说 $F \subseteq \bigcup_{j \in J} C_j$, 其中 $C_j \in D$ 和 J 是 finite 的. 那么

$$\Gamma(F) \subseteq \Gamma(\bigcup_{j \in J} C_j).$$

由于 D 是一个 up-directed set, 所以存在某个 $C_m > C_j$ 对任意的 $j \in J$ 成立, 那么

$$\Gamma(\bigcup_{j\in J} C_j) \subseteq \Gamma(C_m) = C_m \subseteq \bigcup D.$$

所以对任意的 F, 都有 $\Gamma(F) \subseteq \bigcup D$, 那么 $\Gamma(\bigcup D) \subseteq \bigcup D$, 所以 $\Gamma(\bigcup D) = \bigcup D$, 即 $\bigcup D$ 也是一个 closed set.

- (2) ⇒ (3). 这个方向是 trivial 的, 因为 chain 是一种特殊的 up-directed set.
- $(3) \Rightarrow (1)$. 给定 Γ 是 X 上的一个 closure operator,且任意一个 closed sets 组成的 chain 的交还是一个 closed set. 对于任意的 $S \in X$,我们对 S 的基数 |S| 进行归纳,证明任意的 |S| 都有

$$\Gamma(S) = \bigcup \{ \Gamma(F) \mid F \text{ is finite subset of } \bigcup S \}.$$

当 |S|=1 时,这是显然的 F=S. 假设 |S|=n 时上述等式成立,那么 |S|=n+1 时,让 $S=W\cup\{a\}$,其中 |W|=n. 那么

$$\Gamma(S) = \Gamma(W \cup \{a\}) = \Gamma(W) \vee \Gamma(a) = \left(\bigcup_{\text{finite } F \subseteq W} \Gamma(F)\right) \vee \Gamma(a) = \left(\bigvee_{\text{finite } F \subseteq W} \Gamma(F)\right) \vee \Gamma(a)$$

(3) 在这里怎么用呢? 感觉有点弱啊, 似乎只能说明 \mathcal{C}_{Γ} 是 complete 的.

Definition 3.20. The lattice \mathcal{L} is said to be weakly atomic if whenever a > b in \mathcal{L} , there exist elements $u, v \in L$ such that $a \geq u \succ v \geq b$. (\succ means cover)

Example 3.21. 所有的 finite lattice 都是 weakly atomic 的;闭区间 [0,1] 上所有实数自然序构成的 lattice 不是 weakly atomic,给定一个 v, 你找不到它的 cover u.

Theorem 3.22. Every algebraic lattice is weakly atomic.

证明. 给定 \mathcal{L} 上任意两个元素 a,b,若 a>b,那么存在一个 compact element c 使得 $a\geq c$ 且, $b\nleq c$. 这是 因为 \mathcal{L} 是 compactly generated,所以 a 和 b 都是一些 compact element 的 join,a>b 则说明存在 a 对应的一些 compact element 是不小于等于 b 的. 接着我们考虑这样一个集合 $Q=\{x\in a/b\mid x\ngeq c\}$ (其中 a/b 表示 $b\leq x\leq a$ 称之为 interval sublattice 或者 quotient sublattice). 注意到 Q 不是一个 \emptyset ,因为 $b\in Q$. 我们考虑 \mathcal{L} 上所有的 chains,任意一个 chain 的 union 还是在 Q 里面,假设这个 union 大于等于 c,然而如果出现这种情况,这个 chain 肯定是 infinite 的,那么 c 小于等于 finite subset of it,这就矛盾了. 根据 Zorn's Lemma,Q 存在一个 maximal element u,然后我们取 $v=c\vee u$,u 是 covered by v,假设存在 $u\leq z\leq v$,那么 $z\ngeq c$,则 $z\in Q$,这与 u 是 maximal element 是矛盾的. 这样我们就构造出来了满足 weakly atomic 的 u 和 v,证毕.

Definition 3.23. A lattice \mathcal{L} is said to be upper continuous if whenever D is an up-directed set having a least upper bound $\bigvee D$, then for any element $x \in L$, the join $\bigvee_{d \in D} (a \wedge d)$ exists, and

$$a \wedge \bigvee D = \bigvee_{d \in D} (a \wedge d).$$

The property of being lower continuous is defined dually.

Theorem 3.24. Every algebraic lattice is upper continuous.

$$r = \bigvee (\downarrow \cap L^c) \le \bigvee_{d \in D} (a \wedge d).$$

所以有 $a \land \bigvee D \leq \bigvee_{d \in D} (a \land d)$, 综上 $a \land \bigvee D = \bigvee_{d \in D} (a \land d)$.

Definition 3.25. An element $a \in L$ is called an atom if $a \succ 0$, and a coatom if $1 \succ a$.

Definition 3.26. An element q in a complete lattice \mathcal{L} is completely meet irreducible if, for every subset S of L, $q = \bigwedge S$ implies $q \in S$.

Definition 3.27. A decomposition of an element $a \in L$ is a representation $a = \bigwedge Q$ where Q is set of completely meet irreducible elements of \mathcal{L}

Definition 3.28. A lattice is strongly atomic if a > b in \mathcal{L} implies there exists $u \in L$ such that $a \geq u \succ b$.

Representation by Equivalence Relations

这章目的是像在群论里面那样每一个 group 都能找到和它同构的 permutation group,同样每一个 lattice 也都能找到和它同构的 equivalence relation lattice.

等价关系的定义,等价类这是你必须已经提前掌握的东西!为了后面好说明一些东西,我还是把等价关系的定义再写一遍.

Definition 4.1. An equivalence relation on a set X is a binary relation E satisfying, for all $x, y, z \in X$,

- 1. x E x.
- 2. x E y implies y E x.
- 3. if x E y and y E z, then x E z.

Definition 4.2. Given two sets X and Y, and $f: X \rightarrow Y$ is any function, then

$$\ker f = \{ (x, y) \in X^2 \mid f(x) = f(y) \}$$

is an equivalence relation (the subset of X^2), called the kernel of f.

这里的 kernel 和 abstract algebra 那里面的 kernel 似乎有点不太一样...

Definition 4.3. (同余关系) If X and Y are algebras and $f: X \to Y$ is a homomorphism, then ker f is a congruence relation.

Definition 4.4. (等价关系代数格) Thinking of binary relations as subsets of X^2 , the axioms (1)-(3) for an equivalence relation are finitary closure rules. Thus the collection of all equivalence relations on X forms an algebraic lattice **Eq** X. The order on **Eq** X is given by set cotainment, i.e.,

$$R \le S \text{ iff } R \subseteq S \in \mathfrak{P}(X^2)$$

iff $(x, y) \in R \Rightarrow (x, y) \in S$.

等价关系的几个关系很自然的联想到了 finitary closure rules.

Definition 4.5. The greatest element of Eq X is the universal relation X^2 , and its least element is the equality relation = ((a, a)). The meet operation in Eq X is of course set intersection, which means that $(x, y) \in \bigwedge_{i \in I} E_i$ if and only if $x E_i y$ for all $i \in I$. The join $\bigvee_{i \in I} E_i$ is the transitive closure of the set union $\bigcup_{i \in I} E_i$. Thus $(x, y) \in \bigvee_{i \in I} E_i$ if and only if there exists a finite sequence of element x_i and i_j such that

$$x = x_0 E_{i_1} x_1 E_{i_2} x_2 \cdots x_{k-1} E_{i_k} x_k = y.$$

这些都是很自然衍生出来的概念,等价关系的交还是一个等价关系,等价关系的并并不一定构成一个等价 关系,所以需要取一下它的传递闭包. **Definition 4.6.** (积关系) If R and S are relations on X, defined the relative product $R \circ S$ to be the set of all pairs $(x,y) \in X^2$ for which there exists a $z \in X$ with x R z and z S y.

Lemma 4.7. 构造传递闭包的方法 If R and S are equivalence relations, then we have $S \subseteq R \circ S$ and $R \subseteq R \circ S$. Thus

$$R \circ S \subseteq R \circ S \circ R \subseteq R \circ S \circ R \circ S \subseteq \cdots$$
.

And $R \vee S$ is the union of this chain.

证明. 对任意的 $(x,y) \in S$,由于 R 是一个等价关系,因此存在 $(y,y) \in R$,即 $(x,y) \in R \circ S$,所以 $S \subseteq R \circ S$. 同理可以证明 $R \subseteq R \circ S$.

Definition 4.8. A representation of \mathcal{L} is an ordered pair (X, F) where X is a set and $F : \mathcal{L} \to \mathbf{Eq} X$ is a lattice embedding. We say that the representation is

- 1. of type 1 if $F(x) \vee F(y) = F(x) \circ F(y)$ for all $x, y \in L$,
- 2. of type 2 if $F(x) \vee F(y) = F(x) \circ F(y) \circ F(x)$ for all $x, y \in L$,
- 3. of type 3 if $F(x) \vee F(y) = F(x) \circ F(y) \circ F(x) \circ F(y)$ for all $x, y \in L$.

Definition 4.9. A weak representation of \mathcal{L} is a pair (U, F) where U is a set and $F: \mathcal{L} \to \mathbf{Eq} U$ is a one-to-one meet homomorphism. Let us order the weak representation of \mathcal{L} by

$$(U,F) \sqsubseteq (V,G)$$
 if $U \subseteq V$ and $G(x) \cap U^2 = F(x)$ for all $x \in L$.

Lemma 4.10. If (U, F) is a weak representation of \mathcal{L} and $(p, q) \in F(x \vee y)$, then there exists $(V, G) \supseteq (U, F)$ with $(p, q) \in G(x) \circ G(y) \circ G(x) \circ G(y)$.

证明. 往 U 里面加 3 个新的 distinct 元素, 使得 $V = U \cup \{r, s, t\}$. 我们想让

于是我们定义对任意的 $z \in L$ 和 $u, v \in U$, 使得 G(z) 满足下述条件

- 1. u G(z) v iff u F(z) v,
- 2. $u G(z) r \text{ iff } z \geq x \text{ and } u F(z) p$,
- 3. u G(z) s iff $z \ge x \lor y$ and u F(z) p,
- 4. $u G(z) r \text{ iff } z \geq y \text{ and } u F(z) p$,
- 5. r G(z) s iff $z \ge y$,
- 6. $s G(z) t \text{ iff } z \geq x$,
- 7. $r G(z) t \text{ iff } z \ge x \lor y$.

注意到 G(z) 由于 (1) 是满足自反性的,并且满足了 weak representtation 上 order 关系,即 $G(z) \cap U^2 = F(z)$. 同时观察到条件 (2-7) 都和 r,s,t 的位置无关,所以它们也都是满足对称性的。传递性也是很显然的,i.e.,(2)(4) => (3) 和 (5)(6) => 7. 所以 G(z) 是一个等价关系。还必须要说明 G 是单射和满足 meet homomorphism。由于 F 是单调,那么 G 肯定是单调,新加入的元素造成的 relations 不会对 $G(x) \cap U^2 = F(x)$ 造成影响。考虑 $z,z' \in L$,我们想要说明 $G(z \wedge z') = G(z) \wedge G(z')$,其实就是要考虑 z,z' 和 x,y 的关系,记住若 $z \wedge z' \geq x$ 当且仅当 $z \geq x$ 和 $z' \geq x$ 再结合上述条件,应该很容易证明,这过程太 routine 了! 我放弃了.

我们再来观察是否满足上述图里面的关系,首先来看 p G(x) r, 把 (2) 中的 u 换成 p 和 z 换成 x, 那么再看条件 $x \ge x$ and p F(z) p, 这是显然满足的. 再来试一个 r G(y) s, 把 (5) 中的 z 换成 y, 那么条件变为 $y \le y$, 这也是满足的. 回过头来看这个构造比较巧妙,注意到 (2-4) 必须带一个 u F(x) p, 这是要使得它们和 1 构成传递关系的时候是满足条件的.

Lemma 4.11. Let λ be limit ordinal, and for $\xi < \lambda$ let (U_{ξ}, F_{ξ}) be weak representations of \mathcal{L} such that $\alpha < \beta < \lambda$ implies $(U_{\alpha}, F_{\alpha}) \sqsubseteq (U_{\beta}, F_{\beta})$. Let $V = \bigcup_{\xi < \lambda} U_{\xi}$ and $G(x) = \bigcup_{\xi < \lambda} F_{\xi}(x)$ for all $x \in L$. Then (V, G) is a weak representation of \mathcal{L} with $(U_{\xi}, F_{\xi}) \sqsubseteq (V, G)$ for each $\xi < \lambda$.

证明. 先来证明满足的 order 关系, 考虑 $\xi < \lambda$, $U_{\xi} \subseteq V$ 这是显然的. 对任意的 $\alpha < \xi$ 有 $F_{\alpha}(x) = F_{\xi} \cap U_{\alpha}^{2} \le F_{\xi}(x)$ 和对任意的 $\beta > \xi$ 有 $F_{\xi}(x) = F_{\beta}(x) \cap U_{\xi}^{2}$, 这两个东西就说明比你小的序数交出来的结果不会比你大,比你大的序数交出来的结果等于你是自身,所以有

$$G(x) \cap U_{\xi}^2 = \left(\bigcup_{\gamma < \lambda} F_{\gamma}(x)\right) \cap U_{\xi}^2 = \bigcup_{\gamma < \lambda} (F_{\gamma}(x) \cap U_{\xi}^2) = F_{\xi}(x).$$

再来证明单调和 meet homomorphism,单调是因为 F_{ξ} 都是单调的,且满足对任意的 $\alpha < \xi$ 有 $F_{\alpha}(x) = F_{\xi} \cap U_{\alpha}^{2} \leq F_{\xi}(x)$,这说明不会相互干扰,所以 G 是单调的.最后只剩下 meet homomorphism,单调即 order-preserving,所以 $G(x \wedge y) \leq G(x) \wedge G(y)$.考虑 $(u,v) \in G(x) \wedge G(y)$,那么存在 $\alpha < \lambda$ 使得 $(u,v) \in F_{\alpha}(x)$ 和 $\beta < \lambda$ 使得 $(u,v) \in F_{\beta}(y)$.让 $\gamma = \max(\alpha,\beta)$,那么 $(u,v) \in F_{\gamma}(x) \wedge F_{\gamma}(y) = F_{\gamma}(x \wedge y) \leq G(x \wedge y)$.所以 $G(x) \wedge G(y) \leq G(x \wedge y)$.综上即有 $G(x \wedge y) = G(x) \wedge G(y)$.

还有一个问题是 G(x) 是一个等价关系吗? 考虑任意的 $(u,v) \in G(x)$, 那么存在 $\alpha < \lambda$ 使得 $(u,v) \in F_{\alpha}(x)$, 那么也有 $(v,u) \in F_{\alpha}$, 对称性满足了,自反性是 trivial 的,那么传递性呢? 若还有 $(v,w) \in G(x)$, 那么存在 β 使得 $(v,w) \in F_{\beta}(x)$. 让 $\gamma = \max(\alpha,\beta)$, 那么 $(v,u),(u,w) \in F_{\gamma}(x)$, 所以有 $(v,w) \in F_{\gamma}(x)$. 好家伙似乎又把前面的东西写了一遍...

Theorem 4.12. Every lattice has a type 3 representation.

证明. 前面我们已经证明 G(x) 是一个 meet homomorphism 且单调,现在我们的目标是证明 $G(x \vee y) = G(x) \circ G(y) \circ G(x) \circ G(y) \leq G(x) \vee G(y)$, 显然 G 就是一个 lattice embedding (G 单调可以得到 $G(x \vee y) \geq G(x) \vee G(x)$).

现在我们从任意一个 \mathcal{L} 的 weak representation (U_0,F_0) 开始,在此之前所有的 lattice 都有一个 weak representation 存在. 其实这算一个 lemma,但是证明没有新意,都是构造性的. 我们让 $U_0=L$,若 $(y,z)\in F_0(x)$ 当且仅当 y=z 或者 $y\vee z\leq x$. 然后考虑所有这样的四元组 (p,q,x,y),它是满足 $(p,q)\in F_0(x\vee y)$,每次拿一个出来用下第一个 lemma 构造一个新的 weak representation,让它们作为 order $(p_\xi,q_\xi,x_\xi,y_\xi)$ 使得 (U_ξ,F_ξ) ,其中 $\xi<\eta$,它们是满足如下条件

- 1. 若 $\xi < \eta$, 则 $(U_{\xi}, F_{\xi}) \sqsubseteq (U_{\xi+1}, F_{\xi+1})$ 且 $(p_{\xi}, q_{\xi}) \in F_{\xi+1}(x) \circ F_{\xi+1}(y) \circ F_{\xi+1}(x) \circ F_{\xi+1}(y)$;
- 2. 若 $\lambda < \eta$ 是一个 limit original,则 $U_{\lambda} = \bigcup_{\xi < \lambda} U_{\xi}$ 和对任意的 $x \in L$ 有 $F_{\lambda}(x) = \bigcup_{\xi < \lambda} F_{\xi}$.

其中 $(p_{\xi}, q_{\xi}) \in F_{\xi}(x \vee y)$. 现在我们是用 ordinal number 来描述的,所以你要分别对 0 或者 successor ordinal 和 limit ordinal 来说明.

我们让 $V_1 = U_\eta$ 和 $G_1 = F_\eta$. 若对任意的 $(p,q) \in U_0$ 和 $x,y \in L$ 且 $(p,q) \in F(x \vee y)$,那么存在 $(p,q,x,y) = (p_\xi,q_\xi,x_\xi,y_\xi)$,使得 $(p,q) = (p_\xi,q_\xi) \in F_{\xi+1}(x) \circ F_{\xi+1}(y) \circ F_{\xi+1}(x) \circ F_{\xi+1}(y)$,即

$$F_0(x \vee y) \subseteq G_1(x) \circ G_1(y) \circ G_1(x) \circ G_1(y).$$

注意到有 $(U_0, F_0) \subseteq (V_1, G_1)$. 我们定义 $(V_0, G_0) = (U_0, F_0)$,然后用 (V_1, G_1) 代替 (U_0, F_0) 重复上面整个过程,我们又可以得到一个 pair (V_2, G_2) ,类似我们重复 ω 次,就可以得到

$$(U_0, F_0) = (V_0, G_0) \sqsubseteq (V_1, G_1) \sqsubseteq (V_2, G_2) \sqsubseteq \cdots$$

其中对任意的 $n \in \omega$ 和 $x, y \in L$ 有 $G_n(x \vee y) \subseteq G_{n+1}(x) \circ G_{n+1}(y) \circ G_{n+1}(x) \circ G_{n+1}(y)$.

最后我们让
$$W = \bigcup_{n \in \omega} V_n$$
 和 $H(x) = \bigcup_{n \in \omega} G_n(x)$,为什么会有

$$H(x \lor y) = H(x) \circ H(y) \circ H(x) \circ H(y).$$

我的理解实际第一步并不能直接得到上面的等式,只能得到

$$H(x\vee y)=\bigcup_{n\in\omega}G_n(x\vee y)\subseteq\bigcup_{n+1\in\omega}G_{n+1}(x)\circ G_{n+1}(y)\circ G_{n+1}(x)\circ G_{n+1}(y)\leq H(x)\circ H(y)\circ H(y)\circ H(y).$$

再用一下单调性就能得到上面的等式.

前面的证明过程用到了 transfinite recurison,最后得到 \mathcal{L} 的 representation (X, F) 其中 X 是 infinite 的,尽管 \mathcal{L} 有可能是 finite 的.自然地,你可能会想如果 \mathcal{L} 是 finite 的,那么是否存在一个有限的等价关系构成的 lattice 与之对应呢?

Definition 4.13. Every finite lattice has a representation (Y,G) with Y finite.

证明. 这个命题在 1980 年被 Pavel Pavel Pudlák and Jiři Tůma 证明了, but the proof is quite difficult, 若是未来机会再去看看吧.

Theorem 4.14. Every lattice can be embedded into the lattice of subgroups of a group

证明. Whitman 在 1946 年证明了"every lattice can be embedded into the lattice of equivalence relations on same set", 在此之初这个问题的 motivation 源自 1930 年的 Birkhoff's observation "a representation of a lattice \mathcal{L} by equivalence relations induces an embedding of \mathcal{L} into the lattice of subgroups of a group". 所以当前这个定理是和 Whitman's theorem 是等价的,我们来尝试构造性的证明它.

给定一个 representation (X, F) of \mathcal{L} , 让 \mathcal{G} 表示 X 上所有限置换群 (move only finitely many elements 即只有有限多个 $f(s) \neq s$) 构成的群. 再让 **Sub** \mathcal{G} 表示 the lattice of subgroups of \mathcal{G} . 让 $h: \mathcal{L} \to \mathbf{Sub} \mathcal{G}$ 定义如下

$$h(a) = \{ \pi \in G \mid x F(a) \pi(x) \text{ for all } x \in X \}.$$

首先我们想证明 h(a) 是一个 subgroup of \mathcal{G} . 若存在 $\pi_1, \pi_2 \in h(a)$ 和任意的 $x \in X$,考虑 $\pi_1 \circ \pi_2(x) = \pi_1(\pi_2(x))$,那么 $x F(a) \pi_2(x) F(a) \pi_1(\pi_2(x))$,所以 $\pi_1 \circ \pi_2 \in h(x)$. h 是 monotone 还是比较显然的.

最后的 lattice homomorphism 证明,在此之前我们得说明一下 the lattice of subgroups 的结构是怎样的. 在 the lattice of subgroups 上的 element order 关系是 set inclusion,两个 subgroup 的交还是一个 subgroup,所以 lattice 上 meet 操作自然就是集合的交. 但是两个 subgroup 的并可能并不是一个 subgroup,所以我们定义 lattice 上的 join 操作是 new subgroup is generated by two subgroup,join 产生的 new subgroups 是包含原来两个 subgroup 的最小的 subgroup. 这里相当于把 closure system 又重新回忆了一遍. 若 $a,b \in L$,考虑 meet homomorphism,在 monotone 的条件下我们只需要证明 $h(a \wedge b) \geq h(a) \wedge h(b) = h(a) \cap h(b)$. 若 $\pi \in h(a) \cap h(p)$,即 $(x,\pi(x)) \in F(a)$ 和 $(x,\pi(x)) \in F(b)$,那么 $(x,\pi(x)) \in F(a) \wedge F(b)$,所以 $h(a) \cap h(b) \in h(a \wedge b)$. 再来考虑 join homomorphism,同理在 monotone 的条件下我们只需要证明 $h(a \vee b) \leq h(a) \vee h(b)$,若 $\pi \in h(a \vee b)$,即 $(x,\pi(x)) \in F(a \vee b)$,现在要证明 $(x,\pi(x)) \in h(a) \vee h(b)$ 似乎略微有些不是那么直接. 怎么办呢?那只能去拆解 $F(a \vee b) = F(a) \circ F(b) \circ F(a) \circ F(b)$,自然地我们也可以定义 subgroups 之间的 product

$$h(a) \circ h(b) = \{ \pi_a \circ \pi_b \mid \pi_a \in h(a), \pi_b \in h(b) \}.$$

那么也有 $h(a) \subseteq h(a) \circ h(b)$ 和 $h(b) \subseteq h(a) \circ h(b)$. 我们现在想让

 $h(a) \vee h(b) \supseteq h(a) \circ h(b) \circ h(a) \circ h(b) \circ \cdots \supseteq h(a \vee q) = \{ \pi \in G \mid x \mid F(a) \circ F(b) \circ F(a) \circ F(b) \mid \pi(x) \text{ for all } x \in X \}.$

这里我直觉的告诉我 $\pi \in h(a) \circ h(b) \circ h(a) \circ h(b)$. 事实上确实如此吗?

$$x F(a) \pi_1(x) F(b) \pi_2(\pi_1(x)) F(a) \pi_3(\pi_2(\pi_1(x))) F(b) \pi(x)$$

那么存在一个 $\pi_4 \in h(b)$ 使得 $\pi_4(\pi_3(\pi_2(\pi_1(x)))) = \pi(x)$,即 $\pi \in h(a) \circ h(b) \circ h(a) \circ h(b)$ 印证了我们的猜测. 这 product of subgroup 性质和 type3 representation 有那么一点相似了,也是在说明它们其实是等价的.

Lemma 4.15. Let \mathcal{L} be a sublattice of **Eq** X with the property that $R \vee S = R \circ S \circ R$ for all $R, S \in L$. Then \mathcal{L} statisfies

$$x \leq y$$
 implies $x \wedge (y \vee z) = y \vee (x \wedge z)$.

The implication is known as the modular law.

证明.