R. Alam

Block matrices and outer product

1. Let
$$X = \begin{bmatrix} 2 & 1 & 5 \\ 4 & 2 & 3 \end{bmatrix}$$
 and $Y := \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 1 \end{bmatrix}$.

- (a) Compute the outer product expansion of XY^{\top} .
- (b) Compute the outer product expansion of YX^{\top} . How is the outer product expansion of YX^{\top} related to the outer product expansion of XY^{\top} ?
- 2. Let $U := \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \end{bmatrix} \in \mathbb{R}^{m \times m}$ and $V := \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$. Let

$$S := \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & 0 \\ & & \sigma_p & \\ \hline & 0 & & 0 \end{bmatrix} \in \mathbb{R}^{m \times n}$$

be a diagonal matrix, where $\sigma_1, \ldots, \sigma_p$ are nonzero real numbers. Show that $A = USV^{\top}$ can be expressed as an outer product expansion of the form

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^\top + \dots + \sigma_p \mathbf{u}_p \mathbf{v}_p^\top.$$

- 3. Let $A:=\begin{bmatrix}A_{11} & A_{12} \\ 0 & A_{22}\end{bmatrix}$ be a block upper triangular matrix where each block is an $n\times n$ matrix. If A_{11} and A_{22} are nonsingular, then show that A must also be nonsingular and that A^{-1} must be of the form $A^{-1}=\begin{bmatrix}A_{11}^{-1} & C \\ 0 & A_{22}^{-1}\end{bmatrix}$. Determine C.
- 4. Let A and B be $n \times n$ matrices and define $2n \times 2n$ matrices S and M by

$$S = \begin{bmatrix} I_n & A \\ 0 & I_n \end{bmatrix} \text{ and } M := \begin{bmatrix} AB & 0 \\ B & 0 \end{bmatrix}.$$

Determine the block form of S^{-1} and use it to compute the block form of the product $S^{-1}MS$.

5. Let $A := \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ be such that A_{11} is an $m \times m$ nonsingular matrix and A_{22} is an $n \times n$ matrix. Show that A can be factored as a product of block matrices

$$A = \begin{bmatrix} I_m & 0 \\ B & I_n \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ 0 & S \end{bmatrix}$$

where $B := A_{21}A_{11}^{-1}$ and $S := A_{22} - A_{21}A_{11}^{-1}A_{12}$. The matrix S is called the Schur complement of A_{11} in A. Show that A is nonsingular $\iff S$ is nonsingular. Also show that $\det(A) = \det(A_{11})\det(S)$.

6. Let B be an $n \times n$ matrix such that $B^2 = 0$. Consider the block matrix $A = \begin{bmatrix} 0 & I_n \\ I_n & B \end{bmatrix}$. Determine the block form of $A^{-1} + A^2 + A^3$.

***********End*******