

I²C

- "two-wire interface" standard
- Used to attach low-speed peripherals to embedded systems
- ullet Beagle xM has four I²C controllers (Section 17 of TRM)
- The Bone has three (Section 21)

Hardware - xM

• You can see which ones are configured at boot time

```
beagle$ dmesg | grep i2c [ 0.082092] omap_i2c omap_i2c.1: bus 1 rev4.0 at 2600 kHz [ 0.100433] omap_i2c omap_i2c.3: bus 3 rev4.0 at 100 kHz [ 2.294616] input: twl4030_pwrbutton as devices/platform/omap/omap_i2c.1/i2c-1/1-0049/twl4030_pwrbutton/input/input1 [ 2.295440] i2c /dev entries driver

Two buser each running at different speeds
```

Time in seconds

Hardware - bone

• You can see which ones are configured at boot time

```
beagle$ dmesg | grep i2c
[    0.069359]    omap_i2c.1: alias fck already exists
[    0.085082]    omap_i2c omap_i2c.1: bus 1 rev2.4.0 at 100 kHz
[    0.25964]    omap_i2c.3: alias fck already exists
[    0.259942]    omap_i2c omap_i2c.3: bus 3 rev2.4.0 at 100 kHz
[    0.641936] i2c /dev entries driver
```

• Two buses, same speed.

i2c - bone

SIGNAL NAME	PIN GND	CONN		PIN	SIGNAL NAME
		1	2	GND	
	VDD_3V3EXP	3	4	VDD_3V3EXP	
	VDD_5V	5	6	VDD_5V	
	SYS_5V	7	8	SYS_5V	
PWR_BUT*		9	10	A10	SYS_RESETn
UART4_RXD	T17	11	12	U18	GPIO1_28
UART4_TXD	U17	13	14	U14	EHRPWM1A
GPI01_16	R13	15	16	T14	EHRPWM1R
I2C1_SCL	A16	17	18	B16	I2C1_SDA
I2C2_SCL	D17	19	20	D18	I2C2_SDA
UART2_TXD	B17	21	22	A17	UART2_RXD
GPIO1_17	V14	23	24	D15	UART1_TXD
GPIO3_21	A14	25	26	D16	UART1_RXD
GPIO3_19	C13	27	28	C12	SPI1_CS0
SPI1_D0	B13	29	30	D12	SPI1_D1
SPI1_SCLK	A13	31	32	VDD_ADC(1.8V)	
AIN4	C8	33	34	GNDA_ADC	
AIN6	A5	35	36	A5	AIN5
AIN2	B7	37	38	A7	AIN3
AINO	B6	39	40	C7	AIN1
CLKOUT2	D14	41	42	C18	GPI00_7
	GND	43	44	GND	
	GND	45	46	GND	

Pin MUX

• Is the MUX set to output i2c?

beagle\$ cd /sys/kernel/debug/omap_mux
beagle\$ ls | grep i2c
i2c0_scl
i2c0_sda
beagle\$ grep i2c2_sda *
spi0_sclk:signals:
 spi0_sclk | uart2_rxd | i2c2_sda | NA | NA | NA | NA | gpi00_2
uart0_rxd:signals:
 uart0_rxd | spi1_cs0 | d_can0_tx | i2c2_sda | NA | NA | NA | NA | gpi01_10
uart1_ctsn:signals:
 uart1_ctsn | NA | d_can0_tx | i2c2_sda | spi1_cs0 | NA | NA | gpi00_12

• Which one is it?

Pin MUX

• Cat each file to see

beagle\$ cat spi0_sclk

beagle\$ cat uart0_rxd

name: uart0_rxd.uart0_rxd (0x44e10970/0x970 = 0x0030), b NA, t NA
mode: OMAP_PIN_OUTPUT | OMAP_MUX_MODE0
signals: uart0_rxd | spi1_cs0 | d_can0_tx | i2c2_sda | NA | NA | NA |
gpio1_10

beagle\$ cat uart1_ctsn

name: uartl_ctsn.i2c2_sda (0x44e10978/0x978 = 0x0033), b NA, t NA mode: OMAP_PIN_OUTPUT | OMAP_MUX_MODE3 signals: uartl_ctsn | NA | d_can0_tx | i2c2_sda | spi1_cs0 | NA | NA | gpi00_12

Hardware - TC74

• Goal: Interface to a TC74 temp sensor

Parameter Name	Value
Typical Accuracy (°)	0.5
Max Input/ Supply Current (μA)	350
Max. Accuracy @ 25° (°)	2
Temp. Range (°C)	-40 to +125
Operating Voltage Range (V)	2.7 to 5.5
Device Description	Serial Output Temp Sensor

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en010749#1

2-wire bus

- The two wires are
 - Serial Clock (SCLK on the data sheet, SCL on the Beagle), is an input to the TC74 and is used to clock data into and out of the TC74
 - Serial Data (SDA on both), is bidirection and carries the data to and from the TC74.
- The only other two pins on the TC74 that you need to use are the Power Supply (Vdd) and Ground.

Software - bone

• See what's on a bus with **i2cdetect**

I have 2, TMP102's and an LED matrix.

- The TMP102's are at **1001 000** and **1001 010**
- Convert to hex **0x48** and **0x49**

Registers

• Each TC74 has two registers

Command	Code	Function
RTR	0x00	Read Temperature (TEMP)
RWCR	0x01	Read/Write Configuration (CONFIG}

- Read with \$ i2get -y 3 0x48 0
- 0x18 which is 24C or 75.2F

I²C via C - myi2cget.c

I²C via C

I²C via C

myi2ctest

- See exercises/i2c/myi2ctest.c for an example that controls an LED grid
- See exercises/i2c/i2c-tools-3.1.0 for source code for ic2 tools