ISyE/CS/Math 728: Integer Optimization Polyhedral Theory

Prof. Luedtke

UW-Madison

Spring 2021

Overview

Some fundamental definitions/theory useful for IP

- Representations of polyhedra (Minkowski-Weil)
- Fundamental theorem of integer programming
- Complexity of separation vs. optimization over a mixed-integer set

Polyhedral cones

▶ A set $C \subseteq \mathbb{R}^n$ is a polyhedral cone if C is the intersection of a finite number of half-spaces containing the origin on their boundaries:

$$C:=\{x\in\mathbb{R}^n:Ax\leq 0\}$$

for some $m \times n$ matrix A.

▶ Given a vector $r \in C \setminus \{0\}$, the half line

$$cone(r) = \{\lambda r : \lambda \ge 0\}$$

is contained in C, and it is called a <u>ray</u> of C.

Basic Cone Properties

If *C* is a polyhedral cone, then:

- ▶ If $r \in C$, then $\lambda r \in C$ for all $\lambda \ge 0$
- ▶ If $r_1, r_2 \in C$, then $r_1 + r_2 \in C$

Finitely generated cones

▶ A set $C \subseteq \mathbb{R}^n$ is a <u>finitely generated cone</u> if there exist vectors $r^1, \ldots, r^k \in \mathbb{R}^n$ such that C is the set of all <u>conic</u> combinations of vectors r^1, \ldots, r^k :

$$C = \{x \in \mathbb{R}^n : x = \sum_{j=1}^k \lambda_j r^j, \ \lambda_j \ge 0, \forall j = 1, \dots, k\}.$$

We write $C = \text{cone}(r^1, \dots, r^k)$, and we say that r^1, \dots, r^k are the generators of C, and that C is the cone generated by r^1, \dots, r^k .

Minkowski-Weyl Theorem for cones

Theorem 3.11 (Minkowski-Weyl Theorem for Cones).

A subset of \mathbb{R}^n is a finitely generated cone if and only if it is a polyhedral cone.

We'll skip the proof (see CCZ book for details)

Minkowski-Weyl Theorem for cones

► Slightly stronger result

Proposition 3.12.

Given a rational matrix $A \in \mathbb{R}^{m \times n}$, there exist rational vectors $r^1, \ldots, r^k \in \mathbb{R}^n$ such that

$${x : Ax \le 0} = cone(r^1, ..., r^k).$$

Conversely, given rational vectors $r^1, \ldots, r^k \in \mathbb{R}^n$, there exists a rational matrix $A \in \mathbb{R}^{m \times n}$ such that

cone
$$(r^1, ..., r^k) = \{x : Ax \le 0\}.$$

▶ By scaling property of rays in a cone, we can further assume r^1, \ldots, r^k are integral

Minkowski-Weil for Polyhedra

Polyhedra

▶ A set $P \subseteq \mathbb{R}^n$ is a <u>polyhedron</u> if P is the intersection of a finite number of half-spaces. That is,

$$P := \{x \in \mathbb{R}^n : Ax \le b\}$$

for some $m \times n$ matrix A and m vector b.

Polytopes

▶ A subset Q of \mathbb{R}^n is a polytope if Q is the convex hull of a finite set of vectors in \mathbb{R}^n .

Projection of Polyhedra

Definition: Projection

If $Q \subseteq \mathbb{R}^n \times \mathbb{R}^p$, the projection of Q onto \mathbb{R}^n is the set:

$$\operatorname{proj}_{x}(Q) = \{x \in \mathbb{R}^{n} : \exists w \in \mathbb{R}^{p} \text{ s.t. } (x, w) \in Q\}.$$

Fact

A projection of a polyhedron is a polyhedron.

► Proof: Fourier Motzkin elimination

Minkowski-Weyl Theorem for polyhedra

Theorem 3.13 (Minkowski-Weyl Theorem).

A subset P of \mathbb{R}^n is a polyhedron if and only if P = Q + C for some polytope $Q \subset \mathbb{R}^n$ and finitely generated cone $C \subseteq \mathbb{R}^n$.

- Provides an alternative representation of a polyhedron.
- ► We prove only the forward direction. Reverse follows from Farkas lemma (LP duality)
- ► Both directions can be derived from the Minkowski-Weyl Theorem for cones (see CCZ book)

Corollary

polyhedron.

Corollary 3.14 (Minkowski-Weyl Theorem for Polytopes). A set $Q \subseteq \mathbb{R}^n$ is a polytope if and only if Q is a bounded

Lineality Space and Recession Cone

Recession Cone

► Given a nonempty polyhedron *P*, the <u>recession cone</u> of *P* is the set

$$rec(P) := \{ r \in \mathbb{R}^n : x + \lambda r \in P, \ \forall x \in P, \ \forall \lambda \in \mathbb{R}_+ \}.$$

We will refer to the rays of rec(P) as the rays of the polyhedron P.

Lineality Space

► The lineality space of *P* is the set

$$lin(P) := \{ r \in \mathbb{R}^n : x + \lambda r \in P, \ \forall x \in P, \ \forall \lambda \in \mathbb{R} \}.$$

▶ Note that $lin(P) = rec(P) \cap - rec(P)$.

- ▶ When $lin(P) = \{0\}$, we say that P is pointed.
- ► Geometrically, a nonempty polyhedron is pointed when it does not contain any line.
- ▶ If $P = \{x \in \mathbb{R}^n : Ax \le b\}$, then $lin(P) = \{0\} \Leftrightarrow rank(A) = n$

Lineality Space

We can now understand better Minkowski-Weyl:

Proposition 3.15.

Let

$$P := \{x \in \mathbb{R}^n : Ax \le b\} = \operatorname{conv}(v^1, \dots, v^p) + \operatorname{cone}(r^1, \dots, r^q)$$

be a nonempty polyhedron. Then

$$rec(P) = \{r \in \mathbb{R}^n : Ar \le 0\} = cone(r^1, ..., r^q),$$

 $lin(P) = \{r \in \mathbb{R}^n : Ar = 0\}.$

Vertices

Definition: Vertex (aka Extreme point)

 $x \in P$ is an vertex of P if there does not exist $x^1, x^2 \in P$ and $\lambda \in (0,1)$ such that $x^1 \neq x^2$ and $x = \lambda x^1 + (1-\lambda)x^2$

Theorem

Let $P := \{x \in \mathbb{R}^n : Ax \le b\}$ be a pointed polyhedron, and let $\bar{x} \in P$. The following statements are equivalent.

- (i) \bar{x} is a vertex.
- (ii) \bar{x} satisfies at equality *n* linearly independent inequalities of $Ax \leq b$.

Extreme Rays

Recall: $r \in \mathbb{R}^n$ is a ray of P if $x + \lambda r \in P$ for all $x \in P$ and $\lambda \ge 0$

Definition: Extreme Ray

 $r \in \mathbb{R}^n$ is an extreme ray of P if r is a ray of P, and there does not exist rays r^1 and r^2 of P and $\lambda \in (0,1)$ such that $r^1 \neq \alpha r^2$ for any $\alpha \geq 0$ and $r = \lambda r^1 + (1-\lambda)r^2$.

Extreme Rays

Theorem

Let $P := \{x \in \mathbb{R}^n : Ax \le b\}$ be a pointed polyhedron, and let \overline{r} be a ray of P. The following are equivalent.

- (i) \bar{r} is an extreme ray of P.
- (ii) \overline{r} satisfies at equality n-1 linearly independent inequalities of $Ax \le 0$.

Minkowski-Weil (again!)

Minkowski-Weil Theorem for Pointed Polyhedra

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a non-empty *pointed* polyhedron. Then,

$$P = \left\{ \begin{array}{ll} x \in \mathbb{R}^n : & x = \sum_{i=1}^t \lambda_i x^i + \sum_{j=1}^k \mu_j t^j \\ & \text{for some } \lambda \in \mathbb{R}^t_+, \mu \in \mathbb{R}^k_+ \text{ with } \\ & \sum_{i=1}^t \lambda_i = 1 \end{array} \right\}.$$

where x^1, \ldots, x^t are the (finitely many) extreme points of P and r^1, \ldots, r^k are the (finitely many) extreme rays of P.

See handwritten example

► Consider a mixed integer linear set

$$S := \{(x, y) \in \mathbb{Z}^n \times \mathbb{R}^p : Ax + Gy \le b\},\$$

where matrices A, G and vector b have rational entries.

► We will see that *S* admits a perfect formulation that is a rational polyhedron.

Meyer's theorem (Theorem 4.30).

Given rational matrices A, G and a rational vector b, let

$$P := \{(x, y) : Ax + Gy \le b\},\$$

 $S := \{(x, y) \in P : x \text{ integral}\}.$

1. There exist rational matrices A', G' and a rational vector B' such that

$$conv(S) = \{(x, y) : A'x + G'y \le b'\}.$$

2. If S is nonempty, the recession cones of conv(S) and P coincide.

First, we prove Meyer's theorem when *P* is bounded:

Lemma.

Given rational matrices A, G and a rational vector b, let

$$P := \{(x, y) : Ax + Gy \le b\},\$$

 $S := \{(x, y) \in P : x \text{ integral}\}.$

If P is bounded, then there exist rational matrices A', G' and a rational vector b' such that

$$conv(S) = \{(x, y) : A'x + G'y \le b'\}.$$

Let's prove it!

- ▶ The unbounded case is more complex.
- ▶ We need one more idea:

Let's prove Meyer's theorem!

Remark

In Meyer's theorem, if matrices A, G are not rational, then conv(S) may not be a polyhedron.

Review of separation

Separation problem

Let $P \subseteq \mathbb{R}^n$ be a polyhedron. The Separation Problem for P is: Given $x^* \in \mathbb{R}^n$, is $x^* \in P$? If not, find an inequality $\pi x \le \pi_0$ satisfied by all points in P, but violated by x^* .

- For MIP, $S = \{(x, y) \in \mathbb{Z}_+^n \times \mathbb{R}_+^p : Ax + Gy \le b\}$
- ightharpoonup P = conv(S) is a polyhedron
- lacktriangle An inequality is valid for S if and only if it is valid for conv(S)
 - Exercise: Prove this!
- \blacktriangleright So, the separation problem over conv(S) is exactly the problem of finding valid inequalities for the set S

Complexity of separation

Efficient separation implies efficient optimization

If the Separation Problem for a polyhedron P can be solved in polynomial time, then the linear program $\max\{cx:x\in P\}$ can be solved in polynomial time using the ellipsoid method.

- Finding valid inequalities for a MIP is as hard as solving the MIP!
- ► What about the reverse? Could solving a MIP be easier than separating?

Complexity of separation (2)

- Suppose we have an efficient algorithm for solving MIP: $\max\{cx : x \in S\} = \max\{cx : x \in \text{conv}(S)\}$
- Now consider the separation problem: Given x^* , determine if $x^* \in \text{conv}(S)$ and if not, provide a valid inequality that cuts it off
- ▶ Let $\Pi \subseteq \mathbb{R}^{n+1}$ be the set of *all* valid inequalities for conv(S)
 - $(\pi, \pi_0) \in \Pi$ if and only if $\pi x \le \pi_0$ is valid for conv(S)
 - The set Π is called the polar of the polyhedron conv(S)

Proposition

The polar of any polyhedron P is a polyhedral cone.

Proof provides an explicit representation of the polar

Separation as optimization

Separation problem: $\max\{\pi x^* - \pi_0 : (\pi, \pi_0) \in \Pi\}$

- ▶ If no valid inequality violated by x^* exists, optimal value = 0
- ightharpoonup Otherwise, problem is unbounded (because Π is a cone)

Inequalities are invariant to positive scaling: for any $\lambda>0$

$$\pi x \le \pi_0 \Leftrightarrow (\lambda \pi) x \le (\lambda \pi_0)$$

Thus by (e.g.,) taking $\lambda=1/\|(\pi,\pi_0)\|_1$, we can *normalize* Π as

$$\bar{\Pi} = \{(\pi, \pi_0) \in \Pi : \|(\pi, \pi_0)\|_1 = 1\}$$

- For any $(\pi, \pi_0) \in \Pi$ there exists $(\bar{\pi}, \bar{\pi}_0)$ in $\bar{\Pi}$ that defines an equivalent inequality
- Any norm can be used for normalization: $\|\cdot\|_1$ is convenient as $\bar{\Pi}$ is a polyhedron

Complexity of separation

Separation problem: $\max\{\pi x^* - \pi_0 : (\pi, \pi_0) \in \bar{\Pi}\}$

- If no valid inequality violated by x^* exists, optimal value = 0
- ► Otherwise, violated inequality is found

Since $\bar{\Pi}$ is a polyhedron, we can solve this by the ellipsoid algorithm if we can solve the separation problem over Π .

- ▶ Given $(\hat{\pi}, \hat{\pi_0})$ is it in Π? If not, provide an inequality that cuts it off from Π
- ► Solve: $\hat{z} = \max\{\hat{\pi}x : x \in S\}$.
- If $\hat{z} \leq \hat{\pi}_0$, then $\hat{\pi}x \leq \hat{\pi}_0$ for all $x \in \text{conv}(S)$, hence in $(\hat{\pi}, \hat{\pi}_0) \in \Pi$
- ► Else if $\hat{z} < \infty$, find a solution $\hat{x} \in S$ with $\hat{\pi}\hat{x} > \hat{\pi}_0$, inequality $\pi\hat{x} \leq \pi_0$ is valid for Π and separates $(\hat{\pi}, \hat{\pi}_0)$ from Π
- ► Else if $\hat{z} = \infty$, find a ray \hat{r} of conv(S) with $\hat{\pi}\hat{r} > 0$, inequality $\pi\hat{r} \le 0$ separates $(\hat{\pi}, \hat{\pi}_0)$ from Π

So, if we can optimize efficiently, we can always separate efficiently!