

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΛΣ ΜΑΘΗΜΑΤΙΚΩΝ

Στοχαστικές Ανελίξεις- 1 Ιουλίου 2013

 ${f Z}$ ήτημα ${f 1}$ Έστω $V_j=\sum_{n=1}^\infty \mathbb{1}\big\{X_n=j\big\}$ ο συνολικός αριθμός διελεύσεων της αλυσίδας X_n από την κατάσταση j.

Ορίζουμε

$$\eta_{ij} = \mathbb{P}[V_j = \infty \mid X_0 = i].$$

Αν T_{ij} είναι ο χρόνος 1ης μετάβασης στην κατάσταση j με εκκίνηση από την κατάσταση i, δείξτε ότι

$$\eta_{ij} = \begin{cases} \mathbb{P}\big[T_{ij} < \infty | X_0 = i\big] & \text{ αν η κατάσταση } j \text{ είναι επαναληπτική} \\ 0 & \text{ αν η κατάσταση } j \text{ είναι παροδική}. \end{cases}$$

 \mathbf{Z} ήτημα $\mathbf{2}$ Τοποθετούμε αρχικά σ΄ ένα δοχείο \mathbf{A} δύο άσπρες σφαίρες και σε ένα δοχείο \mathbf{B} τρεις μαύρες σφαίρες. Σε κάθε βήμα μιας διαδικασίας ανακατέματος, επιλέγουμε τυχαία μία σφαίρα από το δοχείο \mathbf{A} και μία σφαίρα από το δοχείο \mathbf{B} και τους αλλάζουμε δοχείο. \mathbf{A} ν X_n είναι το πλήθος των άαπρων σφαιρών στο κουτί \mathbf{A} μετά από n βήματα

- α) Προσδιορίστε τον πίνακα πιθανοτήτων μετάβασης Ρ.
- β) Προσδιορίστε την κατανομή ισορροπίας της αλυσίδας.
- γ) Ποιός είναι ο αναμενόμενος αριθμός βημάτων μέχρι να έχουμε ξανά τις δύο άσπρες σφαίρες στο χουτί Α.
- δ) Μετά από ένα μεγαλο αριθμό βημάτων, σε ποιο ποσοστό του χρόνου υπάρχουν δύο σφαίρες στο χουτί Α.

 \mathbf{Z} ήτημα $\mathbf{3}$ Δίνεται ο πίνακας πιθανοτήτων μετάβασης \mathbf{P} μιας μαρχοβιανής αλυσίδας στον $\mathbb{X}=\{s_1,\ldots,s_6\}$.

$$\mathbf{P} = \begin{pmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 \\ 1/4 & 0 & 3/4 & 0 & 0 & 0 \\ 1/4 & 3/10 & 1/4 & 1/10 & 1/10 & 0 \\ 3/4 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 1/2 & 0 \\ s_5 & s_6 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

- α) Ταξινομήστε τις καταστάσεις σε κλάσεις επικοινωνίας, και χαρακτηρίστε τις ως προς την παροδικότητα/επαναληπτικότητα.
- β) Αν $X_0 = s_2$ υπολογίστε την πιθανότητα απορρόφησης στην s_6 .
- γ) Δώστε τρεις τουλάχιστον αναλλοίωτες κατανομές για την αλυσίδα.
- δ) Αν $T=\inf\{k\geq 0:\ X_k=s_6\}$ είναι ο χρόνος απορρόφησης στην s_6 υπολογίστε για κάθε παροδική κατάσταση x και κάθε κατάσταση $y\in\mathbb{X}$ την πιθανότητα

$$\mathbb{P}[X_1 = y \mid X_0 = x, T < +\infty].$$

Ζήτημα 4 Έστω $\{X_n\}_{n\in\mathbb{N}}$ η κίνηση ενός σωματιδίου στις m κορυφές ενός κανονικού πλυγώνου. Η κίνηση προς την γειτονική κορυφή με ωρολογιακή φορά γίνεται με πιθανότητα p=3/4, ενός προς την γειτονική κορυφή με ανθωρολογιακή φορά γίνεται με πιθανότητα q=1-p. Να αποδείξετε ότι η παραπάνω κίνηση έχει αναλλοίωτη κατανομή και να εξετάσετε αν η κατανομή της αλυσίδας συγκλίνει προς αυτήν οταν $n\to\infty$ στις περιπτώσεις α) $m=2\nu$ και β) $m=2\nu+1$. Ποιοι είναι οι αντίστοιχοι μέσοι χρόνοι επανόδου σε καθεμιά από τις παραπάνω δύο περιπτώσεις;

Διάρκεια εξέτασης 2,5 ώρες ΚΑΛΗ ΕΠΙΤΥΧΙΑ!