

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

ЛАБОРАТОРНАЯ РАБОТА №6 ПРЕДМЕТ «ЛИНЕЙНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «АНАЛИЗ ТОЧНОСТИ СИСТЕМ УПРАВЛЕНИЯ» Вариант 4

Преподаватель: Золотаревич В. П.

Студент: Румянцев А. А. Поток: ЛСАУ R22 бак 4.1.1

Факультет: СУиР Группа: R3341

Содержание

1	Цел	пь работы	2	
2 Задание 1				
	2.1	Условие	2	
	2.2	Выполнение	2	
3	Зад	цание 2	5	
	3.1	Условие	5	
	3.2	Выполнение	5	
4	Задание 3			
	4.1	Условие	9	
	4.2	Выполнение	9	
5	Зад	цание 4	11	
	5.1	Условие	11	
	5.2	Выполнение	12	
6	Вывод			
7	Приложения 1			

1 Цель работы

Исследование точностных свойств систем управления.

2 Задание 1

2.1 Условие

Исследование системы с астатизмом нулевого порядка.

 \bullet Структура системы представлена на рис. 1, где H(s)=k. Передаточная функции объекта управления

$$W(s) = \frac{1.5}{s^2 + 2s + 1},$$

характеристики задающего воздействия g(t):1,t

Рис. 1: Схема эксперимента

- Исследование стационарного режима работы: g(t) = A. Получить переходные процессы для трех различных значений коэффициента k и определить предельное значение установившейся ошибки ε . Значения коэффициента k (здесь и во всех последующих пунктах): 1, 5, 10.
- Исследование режима движения с постоянной скоростью: g(t) = Vt. Получить переходные процессы для различных значений коэффициента k. Интервал наблюдения 30 секунд.

2.2 Выполнение

Схема моделирования при g(t) = A и при g(t) = Vt представлена на рис. 2. Заданные параметры блока "Transfer Fcn" находятся на рис. 27 под заголовком «Приложения».

Рис. 2: Схема эксперимента

Рассмотрим g(t) = A. Рассчитаем предельное значение установившейся ошибки

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{A}{s} = \frac{A}{1 + k}$$

При A=1 получаем

$$k = 1: \quad \varepsilon = 1/(1+1) = 1/2$$

$$k = 5: \quad \varepsilon = 1/(1+5) = 1/6$$

$$k = 10: \quad \varepsilon = 1/(1+10) = 1/11$$

Построим графики переходных процессов (реакции системы) при g(t) = A и различных k. Синий график — g(t), желтый — g(t), оранжевый — g(t).

Рис. 3: Переходный процесс при g(t)=1, k=1

Рис. 4: Переходный процесс при g(t) = 1, k = 5

Рис. 5: Переходный процесс при g(t) = 1, k = 10

Рассмотрим g(t) = Vt = t. Рассчитаем предельное значение установившейся ошибки. При линейно нарастающем входном воздействии имеем

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{V}{s^2} = \frac{1}{1 + k} \frac{V}{s} = \infty,$$

следовательно, линейно возрастающее задающее воздействие отрабатывается статической системой с неограниченно растущей ошибкой при любых k: $\varepsilon_k = \infty, \forall k$. Построим графики.

Рис. 6: Переходный процесс при g(t) = t, k = 1

Рис. 7: Переходный процесс при g(t)=t, k=5

Рис. 8: Переходный процесс при g(t) = t, k = 10

3 Задание 2

3.1 Условие

Исследование системы с астатизмом первого порядка.

• Структура системы представлена на рис. 1, где H(s) = k/s. Передаточная функция объекта управления

$$W(s) = \frac{s+1.5}{s^2+2s+1},$$

характеристики квадратично нарастающего задающего воздействия

$$g(t) = \frac{at^2}{2} = 0.4t^2$$

Характеристики постоянного и линейно нарастающего задающих воздействий взять из задания 1.

- Исследование стационарного режима работы: g(t) = A. Получить переходные процессы для различных значений коэффициента k и определить предельное значение установившейся ошибки ε .
- Исследование режима движения с постоянной скоростью: g(t) = Vt. Получить переходные процессы для различных значений коэффициента k и определить предельное значение установившейся ошибки ε . Интервал наблюдения 30 секунд.
- Исследование режима движения с постоянным ускорением: $g(t) = at^2/2$. Получить переходные процессы для различных значений коэффициента k. Интервал наблюдения 30 секунд.

3.2 Выполнение

Схема моделирования системы для исследования стационарного режима g(t) = A и режима движения g(t) = Vt представлена на рис. 9. Параметры SIMULINK блока "Transfer Fcn" на рис. 28 под заголовком «Приложения».

Рис. 9: Схема эксперимента

Рассмотрим g(t) = A. Рассчитаем предельное значение установившейся ошибки. Для системы с первым порядком астатизма при постоянном входном воздействии используем

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{A}{s} = \lim_{s \to 0} \frac{1}{1 + \frac{W^*(s)}{s}} A = \lim_{s \to 0} \frac{s}{s + k} A = 0,$$

то есть $\varepsilon_k = 0, \forall k$. Построим графики переходных процессов при различных k для g(t) = A. Синий график -y(t), желтый -e(t), оранжевый -g(t).

Рис. 10: Переходный процесс при g(t)=1, k=1

Рис. 11: Переходный процесс при g(t) = 1, k = 5

Рис. 12: Переходный процесс при g(t) = 1, k = 10

Рассмотрим g(t)=Vt=t. Рассчитаем предельное значение установившейся ошибки. Для системы с первым порядком астатизма при линейно нарастающем воздействии используем

$$\varepsilon = \lim_{s \to 0} s \frac{1}{1 + W(s)} \frac{V}{s^2} = \lim_{s \to 0} \frac{s}{s + k} \frac{V}{s} = \frac{V}{k} \Rightarrow \text{При } V = 1: \begin{array}{c} k = 1 : \varepsilon = 1/1 = 1 \\ k = 5 : & \varepsilon = 1/5 \\ k = 10 : & \varepsilon = 1/10 \end{array}$$

Аналогично построим графики.

Рис. 13: Переходный процесс при g(t)=t, k=1

Рис. 14: Переходный процесс при g(t)=t, k=5

Рис. 15: Переходный процесс при g(t)=t, k=10

Рассмотрим $g(t) = at^2/2 = 0.4t^2$. Схема моделирования системы для исследования движения с постоянным ускорением представлена на рис. 16

Рис. 16: Схема эксперимента

Рассчитаем предельное значение установившейся ошибки. Для системы с первым порядком астатизма при квадратично возрастающем воздействии имеем (см. методическое пособие)

$$\varepsilon_k = \infty, \forall k$$

Построим графики аналогично.

Рис. 17: Переходный процесс при $g(t) = at^2/2, k = 1$

Рис. 18: Переходный процесс при $g(t) = at^2/2, k = 5$

Рис. 19: Переходный процесс при $g(t) = at^2/2, k = 10$

4 Задание 3

4.1 Условие

Исследование влияния внешних возмущений.

• Собрать схему моделирования возмущенной системы. Дано:

$$W(s) = \frac{1.5}{s^2 + 2s + 1}, \quad f_1(t) = 2, \quad f_2(t) = 1$$

Структура системы представлена на рис. 20.

Рис. 20: Схема эксперимента

- Полагая $f_2(t) \equiv 0$ и g(t) = 1(t), получить переходной процесс и определить предельное значение установившейся ошибки ε .
- Полагая $f_1(t) \equiv 0$ и g(t) = 1(t), получить переходной процесс и определить предельное значение установившейся ошибки ε .

4.2 Выполнение

Рассмотрим $f_2(t) \equiv 0$ и g(t) = 1(t). Схема моделирования возмущенной системы представлена на рис. 21.

Рис. 21: Схема эксперимента

Рассчитаем предельное значение установившейся ошибки. Из методического пособия имеем расчет ошибки в общем виде

$$e = g - y = -y = -W(s) \left(f_1 - \frac{1}{s} (f_2 + y) \right) = -W(s) \left(f_1 - \frac{1}{s} (f_2 - e) \right),$$

что можно записать как

$$\left(1 + \frac{1}{s}W(s)\right)e = -W(s)f_1 + \frac{1}{s}W(s)f_2$$

После элементарных преобразований получаем

$$e = -\frac{W(s)}{1 + \frac{1}{s}W(s)}f_1 + \frac{\frac{1}{s}W(s)}{1 + \frac{1}{s}W(s)}f_2 = -\frac{sW(s)}{s + W(s)}f_1 + \frac{W(s)}{s + W(s)}f_2$$

Пусть возмущения $f_1(t) = F_1$ и $f_2(t) = F_2$ являются постоянными, тогда

$$\varepsilon = \lim_{s \to 0} \left[-s \frac{sW(s)}{s + W(s)} \frac{F_1}{s} + s \frac{W(s)}{s + W(s)} \frac{F_2}{s} \right] = F_2$$

Таким образом, возмущение f_2 дает статическую ошибку (величина которой не зависит от параметров системы управления), а влияние возмущения f_1 полностью компенсировано. Так как мы положили $f_2(t) \equiv 0$, следовательно

$$\varepsilon = f_2(t) = 0$$

Построим график переходного процесса. Синий — y(t), желтый — e(t), оранжевый — g(t). Видим, что ошибка стабилизируется к значению 0.

Рис. 22: Переходный процесс при $f_2(t) \equiv 0, g(t) = 1(t)$

Рассмотрим $f_1(t) \equiv 0$ и g(t) = 1(t). Схема моделирования возмущенной системы представлена на рис. 23.

Рис. 23: Схема эксперимента

Расчет ошибки аналогичен, следовательно

$$\varepsilon = f_2(t) = 1$$

Аналогично построим график. Желтый график ошибки стабилизируется к $1=\varepsilon.$

Рис. 24: Переходный процесс при $f_1(t) \equiv 0, g(t) = 1(t)$

5 Задание 4

5.1 Условие

Исследование установившейся ошибки при произвольном входном воздействии. Структура системы представлена на рис. 1, где <math>H(s) = 1. Дано:

$$W(s) = \frac{1.5}{s^2 + 2s + 1}, \quad g(t) = 0.4t + 0.2t^2$$

- Получить переходной процесс в замкнутой системе и определить (по графику) установившуюся ошибку слежения $e_y(t)$.
- Получить приближенное аналитическое выражение для $e_y(t)$, сохранив в ряде Тейлора

$$e_y(t) = c_0 g(t) + c_1 \frac{d}{dt} g(t) + \frac{c^2}{2!} \frac{d^2}{dt^2} g(t) + \frac{c^3}{3!} \frac{d^3}{dt^3} g(t) \dots,$$

где c_i – коэффициенты ошибок, три первых члена. Построить график $e_y(t)$ в соответствии с полученным аналитическим выражением (использовать для этого блок нелинейных функций Fnc).

5.2 Выполнение

Схема моделирования замкнутой системы представлена на рисунке 25.

Рис. 25: Схема эксперимента

Рис. 26: Переходный процесс при $g(t) = 0.4t + 0.2t^2$

6 Вывод

В этой работе мы определяли установившуюся ошибку системы по её передаточной функции и сравнивали полученные результаты с аналитическим расчетом, подтвердив их совпадение. Проведённые исследования продемонстрировали, что наличие или отсутствие установившейся ошибки следует оценивать для каждого возмущающего воздействия на систему, анализируя соответствующие передаточные функции от возмущения к ошибке, независимо от порядка астатизма системы по задающему воздействию.

7 Приложения

Transfer Fcn
The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of s.
'Parameter tunability' controls the runtime tunability level for numerator and denominator coefficients.
'Auto': Allow Simulink to choose the most appropriate tunability level.
'Optimized': Tunability is optimized for performance.
'Unconstrained': Tunability is unconstrained across the simulation targets.
Parameters
Numerator coefficients:
[1.5]
Denominator coefficients:
[1 2 1]
Parameter tunability: Auto
Absolute tolerance:
auto
State Name: (e.g., 'position')
m .
OK Cancel Help Apply

Рис. 27: Параметры SIMULINK для $W(s) = 1.5/(s^2 + 2s + 1)$

Transfer Fcn			
The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of \mathbf{s} .			
'Parameter tunability' controls the runtime tunability level for numerator and denominator coefficients. 'Auto': Allow Simulink to choose the most appropriate tunability level. 'Optimized': Tunability is optimized for per			
'Unconstrained': Tunability is unconstrained across the simulation targets.			
Parameters			
Numerator coefficients:			
[1 1.5]			
Denominator coefficients:			
[1 2 1]			
Parameter tunability: Auto			
Absolute tolerance:			
auto :			
State Name: (e.g., 'position')			
п			
OK Cancel Help Apply			

Рис. 28: Параметры SIMULINK для $W(s) = (s+1.5)/(s^2+2s+1)$