

DEEP NEURAL NETWORKS

Narges Norouzi

WHY DEEP? UNIVERSALITY THEOREM

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer (given **enough** hidden neurons)

Why "Deep" neural network not "Fat" neural network?

Why Deep? Analogy

Logic circuits

Logic circuits consists of gates

A two layers of logic gates can represent any Boolean function.

Using multiple layers of logic gates to build some functions are much simpler

Neural network

Neural network consists of neurons

A hidden layer network can represent any continuous function.

Using multiple layers of neurons to represent some functions are much simpler

OUTPUT LAYER

Softmax layer as the output layerOrdinary Layer

$$z_1 \longrightarrow \sigma \longrightarrow y_1 = \sigma(z_1)$$

$$z_2 \longrightarrow \sigma \longrightarrow y_2 = \sigma(z_2)$$

$$z_3 \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3)$$

In general, the output of network can be any value.

May not be easy to interpret

OUTPUT LAYER

Softmax layer as the output layer

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

FAQ

Q: How many layers? How many neurons for each layer?

Trial and Error + Intuition

Q: Can we design the network structure?

Convolutional Neural Network (CNN)

- Q: Can the structure be automatically determined?
 - Yes, but not widely studied yet.

THREE STEPS FOR DEEP LEARNING

Step 1: define a set of function Step 2: goodness of function Step 3: pick the best function

TRAINING DATA

Preparing training data: images and their labels

The learning target is defined on the training data.

LEARNING TARGET

 $lnk \rightarrow 1$

No ink \rightarrow 0

The learning target is

Input: y_1 has the maximum value y_2 has the maximum value

LOSS

A good function should make the loss of all examples as small as possible for the model to work well on average for all training examples.

Loss can be **square error** or **cross entropy** between the network output and target

Cross Entropy Function

LIKELIHOOD?

- Let's think about h_i as estimated probability of outcome i and y_i as it's true label (or probability).
- Say, We have "red" and "blue" balls. In the training set, we were given a sample of [R][B][R][B]. The $y_R = \frac{2}{5}$, $y_B = \frac{3}{5}$ to be able to properly model this specific training set.
 - Bad estimation for the model: $h_R = \frac{4}{5}$, $h_B = \frac{1}{5}$.

$$Likelihood_{bad} = \left(\frac{4}{5}\right)^2 \left(\frac{1}{5}\right)^3$$

 $Likelihood_{bad} = \left(\frac{4}{5}\right)^2 \left(\frac{1}{5}\right)^3$ • Good estimation for the model: $h_R = \frac{2.5}{5}$, $h_B = \frac{2.5}{5}$.

$$Likelihood_{good} = \left(\frac{2.5}{5}\right)^2 \left(\frac{2.5}{5}\right)^3$$

LIKELIHOOD?

$$Likelihood = \prod_{i} h_{i}^{num(y_{i})}$$
 , $\sum_{i} h_{i} = 1$

• For only two classes: $y_i \in \{0, 1\}$

$$likelihood = \prod_{i} h_i^{num(y_i)} = h_0^{num(y_i=0)} \times h_1^{num(y_i=1)}, h_0 + h_1 = 1$$

- We need to maximize the likelihood function to have a model that very well represents our training set.
- Let's take the logarithm of the likelihood function:

$$\log(likelihood) = \log\left(h_0^{num(y_i=0)} \times h_1^{num(y_i=1)}\right)$$

$$= num(y_i = 0) \times \log h_0 + num(y_i = 1) \times \log h_1$$

$$= num(y_i = 0) \times \log(1 - h_1) + num(y_i = 1) \times \log h_1$$

NEGATIVE OF LOG LIKELIHOOD

$$\log(likelihood) = num(y_i = 0) \times \log(1 - h_1) + num(y_i = 1) \times \log h_1$$
$$= \sum_{i} y_i \log h_i + (1 - y_i) \log(1 - h_i)$$

- Since the likelihood function is a monotonic function, the maximum point of the likelihood function is at the minimum point of the negative of logarithm of the likelihood function.
- ullet The negative of the logarithm of likelihood function divided by n is:

$$-\frac{1}{n}H(y,h) = -\frac{1}{n}\sum_{i} y_{i} \log h_{i} + (1 - y_{i}) \log(1 - h_{i})$$

- Why we are taking log:
 - Taking derivative from a summation is easier than a multiplication
 - Log tends to compress a dynamic range

DIFFERENT LOSS FUNCTIONS

MSE or SSE

Sigmoid activation with MSE cost function gives you the following partial derivative:

$$\frac{\partial C}{\partial \theta} \approx a \times \sigma'(z)$$

Binary Cross entropy

$$D(H,Y) = -\frac{1}{n} \sum_{i} Y_{i} \log H_{i} + (1 - Y_{i}) \log(1 - H_{i})$$
$$\frac{\partial C}{\partial \theta} \approx \sum_{j} x_{j} \left(\sigma\left(z_{j}\right) - y_{j}\right)$$

Good reading:

https://rohanvarma.me/Loss-Functions/

TOTAL LOSS

For all training data ...

Total Loss:

$$L = \sum_{r=1}^{R} l_r$$

As small as possible

Find <u>the network</u>

parameters θ^* that minimize total loss L

THREE STEPS FOR DEEP LEARNING

Step 1: define a set of function Step 2: goodness of function Step 3: pick the best function

HOW TO PICK THE BEST FUNCTION

Find network parameters $oldsymbol{ heta}^*$ that minimize total loss L

Enumerate all possible values

E.g. speech recognition: 8 layers and 1000 neurons each layer

Network parameters $\theta = \{\theta_1, \theta_2, \cdots, b_1, b_2, \cdots\}$

Network parameters $\theta = \{\theta_1, \theta_2, \cdots\}$

Network parameters $\theta = \{\theta_1, \theta_2, \cdots\}$

Network parameters $\theta = \{\theta_1, \theta_2, \cdots\}$

Hopfully, we would reach a minima

LOCAL MINIMA

The value of a network parameter heta

LOCAL MINIMA

Gradient descent never guarantee global minima

Different initial point

Reach different minima, so different results

BACKPROPAGATION VIDEOS

OUTLINE

Introduction of Deep Learning

"Hello World" for Deep Learning

Tips for Deep Learning

Step 1: define a set of function

Step 3: pick the best function

```
28x28
   500
   500
                 Softmax
                              y<sub>10</sub>
```

```
model = Sequential()
```


Step 3.1: Configuration

model.compile(loss='mse', optimizer=SGD(lr=0.1), metrics=['accuracy'])
$$w \leftarrow w - \alpha \partial L / \partial w$$
 0.1

Step 3.2: Find the optimal network parameters

```
model.fit(x_train, y_train, epochs = 200, batch_size = 100)
 Training data
                      Labels
    (Images)
                      (digits)
```


Save and load models

http://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

How to use the neural network (testing):

```
score = model.evaluate(x_test, y_test)
print('Total loss on the Testing set:', score[0])
print('Accuracy of Testing set:', score[1])
```

case 2: result = model.predict(x_test)

OUTLINE

Introduction of Deep Learning

"Hello World" for Deep Learning

Tips for Deep Learning

Recipe of Deep Learning YES NO Step 1: define a Good Results on set of function Testing Data? Overfitting! Step 2: goodness YES of function NO Good Results on Step 3: pick the Training Data? best function Neural Network

Recipe of Deep Learning YES Choosing proper loss Good Results on Testing Data? Mini-batch YES New activation function Good Results on Adaptive Learning Rate Training Data? Momentum

DEMO

Square Error

Binary Cross Entropy

Several alternatives: https://keras.io/losses/

CHOOSING PROPER LOSS

Recipe of Deep Learning

Choosing proper loss

Mini-batch

New activation function

Adaptive Learning Rate

Momentum

Good Results on Testing Data?

YES

Good Results on Training Data?

model.fit(x_train, y_train, epochs = 200, batch_size = 100)

We do not really minimize total loss!

MINI-BATCH

Mini-batch

Mini-batch

- Randomly initialize network parameters
- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$ Update parameters once
- Pick the $2^{\rm nd}$ batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once
- Until all mini-batches have been picked

one epoch

Repeat the above process

MINI-BATCH

model.fit(x_train, y_train, epochs = 200, batch_size = 100)

100 examples in a minibatch

Repeat 200 times

- Pick the 1st batch $L'=l^1+l^{31}+\cdots$ Update parameters once
- Pick the 2^{nd} batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once :
- Until all mini-batches have been picked

one epoch

MINI-BATCH

The colors represent the total loss.

MINI-BATCH IS FASTER

Original Gradient Descent

Update after seeing all examples

With Mini-batch

If there are 20 batches, update 20 times in one epoch.

Shuffle the training examples for each epoch

Recipe of Deep Learning YES Choosing proper loss Good Results on Testing Data? Mini-batch YES New activation function Good Results on Adaptive Learning Rate Training Data? Momentum

VANISHING GRADIENT PROBLEM

Intuitive way to compute the derivatives ... $\frac{\partial l}{\partial \theta} = ? \frac{\Delta l}{\Delta \theta}$

VANISHING GRADIENT PROBLEM

Smaller gradients

Learn very slow

Almost random

Larger gradients

Learn very fast

Already converge

RELU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Vanishing gradient problem

RELU

RELU

RELU - VARIANT

Leaky ReLU

Parametric ReLU

α also learned by gradient descent

Recipe of Deep Learning YES Choosing proper loss Good Results on Testing Data? Mini-batch YES New activation function Good Results on Adaptive Learning Rate Training Data? Momentum

LEARNING RATES

Set the learning rate α carefully

If learning rate is too large

Total loss may not decrease after each update

LEARNING RATES

Set the learning rate α carefully

If learning rate is too large

Total loss may not decrease after each update

If learning rate is too small

Training would be too slow

LEARNING RATES

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
- At the beginning, we are far from the destination, so we use larger learning rate
- After several epochs, we are close to the destination, so we reduce the learning rate
- E.g. $\frac{1}{t}$ decay: $\alpha^t = \frac{\alpha}{\sqrt{t+1}}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates

ADAGRAD

Original:
$$\theta \leftarrow \theta - \alpha \partial L / \partial \theta$$

Adagrad: $\theta \leftarrow \theta - \alpha_{\theta} \partial L / \partial \theta$

Parameter-dependent learning rate

Summation of the square of the previous derivatives

ADAGRAD

$$\alpha_{\theta} = \frac{\alpha}{\sqrt{\sum_{i=0}^{t} (g^i)^2}}$$

$$\theta_1$$
 $\frac{g^0}{0.1}$

$$\theta_2$$
 $\frac{g^0}{20.0}$

Learning rate:

Learning rate:

$$\frac{\alpha}{\sqrt{0.1^2}} = \frac{\alpha}{0.1} \qquad \frac{\alpha}{\sqrt{20^2}} = \frac{\alpha}{20}$$

$$\frac{\alpha}{\sqrt{20^2}} = \frac{\alpha}{20}$$

Observation:

- 1. Learning rate is smaller and smaller for all parameters
- 2. Smaller derivatives, larger learning rate, and vice versa

Very useful tutorial on an overview of gradient descent optimization algorithms

https://ruder.io/optimizing-gradient-descent/

Recipe of Deep Learning YES Choosing proper loss Good Results on Testing Data? Mini-batch YES New activation function Good Results on Adaptive Learning Rate Training Data? Momentum

HARD TO FIND OPTIMAL NETWORK PARAMETERS

The value of a network parameter heta

IN PHYSICAL WORLD

Momentum

MOMENTUM

Still not guarantee reaching global minima, but give some hope

AVOIDING OVERFITTING

- Have more training data
- Create more training data (?)
 Handwriting recognition:

Original Training Data:

Shift 15°

OVERFITTING REVISED: REGULARIZATION

- A regularizer is an additional criteria to the loss function to make sure that we don't overfit
- It's called a regularizer since it tries to keep the parameters more normal/regular
- It is a bias on the model forces the learning to prefer certain types of weights over others

$$\begin{aligned} TrainLoss(\theta) &= \frac{1}{|D_{train}|} \sum_{(x,y) \in D_{train}} Loss(x,y,\theta) \\ & \min_{\theta \in \mathbb{R}^d} TrainLoss(\theta) + \lambda \, regularizer(\theta) \end{aligned}$$

COMMON REGULARIZERS

Sum of the weights

$$r(\theta) = \sum_{w_i} |\theta_i|$$

Sum of the squared weights

$$r(\theta) = \sqrt{\sum_{\theta_j} \left| \theta_j \right|^2}$$

Squared weights penalizes large values more.

DROPOUT

Training:

- > Each time before updating the parameters
 - ullet Each neuron has p% to dropout

DROPOUT

Training:

- > Each time before updating the parameters
 - ullet Each neuron has p% to dropout
 - The structure of the network is changed.
 - Using the new network for training

For each mini-batch, we resample the dropout neurons

DROPOUT

Testing:

No dropout

- If the dropout rate at training is p%, all the weights times 1 p%
- Assume that the dropout rate is 50%. If a weight $\theta=1$ by training, set $\theta=0.5$ for testing.

DROPOUT - INTUITIVE REASON

• Why the weights should multiply (1-p)% (dropout rate) when testing?

Training of Dropout

Assume dropout rate is 50%

Testing of Dropout

No dropout

Train a bunch of networks with different structures

Ensemble

- ➤ Using one mini-batch to train one network
- ➤ Some parameters in the network are shared

DEMO

```
model = Sequential()
                                model.add(Dense(units=500,
                                           input dim=28*28,
                                           activation='sigmoid'))
500
                                  model.add(Dropout(0.8))
                                model.add(Dense(units=500,
                                           activation='sigmoid'))
500
                                  model.add(Dropout(0.6))
                                 model.add(Dense(units=10,
          Softmax
                                           activation='softmax'))
                   y<sub>10</sub>
```


CNN ARCHITECTURE IS COMING NEXT...