

Managing Inventory

+

Problem Context

Order processing and procurement lead time

Demand

Single Period vs. Multi-Period

Deterministic vs. Stochastic Lead time Deterministic vs. Stochastic Demand

Summary of inventory models

Problem Characteristics	Decision Variables
Single-period Deterministic Inventory Problem	No decision variable
Single-period Inventory Problem with uncertain demand	How much to order (Q*)
Multi-period Deterministic Inventory Problem	How much to order (EOQ) and When to order (ROP)
Multi-period Deterministic Inventory Problem with lead time	How much to order (EOQ) and When to order (ROP)
Multi-period Inventory Problem with lead time and with uncertain demand	How much to order (EOQ) and When to order (ROP) considering Safety Stock (SS)

Multi period Model – Economic Order Quantity

<u>Demand</u> is known and deterministic: D units/year

We have a known <u>ordering cost</u>, S, and immediate replenishment

Annual <u>holding cost</u> of average inventory is H per unit

<u>Purchasing cost</u> C per unit

Economic Order Quantity (EOQ)

$$Q^* = \sqrt{\frac{2SD}{H}}$$

Example:

Assume a car dealer that faces demand for 5,000 cars per year, and that it costs \$15,000 to have the cars shipped to the dealership. Holding cost is estimated at \$500 per car per year. How many times should the dealer order, and what should be the order size?

Economic Order Quantity (EOQ)

$$Q^* = \sqrt{\frac{2SD}{H}}$$

Example:

Assume a car dealer that faces demand for 5,000 cars per year, and that it costs \$15,000 to have the cars shipped to the dealership. Holding cost is estimated at \$500 per car per year. How many times should the dealer order, and what should be the order size?

$$Q^* = \sqrt{\frac{2(15,000)(5,000)}{500}} = 548$$

Lot Sizing for a Single Product

- The optimal ordering frequency: $n^* = \frac{D}{Q^*} = \sqrt{\frac{DH}{2S}}$
- Optimal lot size: $Q^* = \sqrt{\frac{2DS}{H}}$
- Cycle inventory: $\frac{Q^*}{2}$
- Annual ordering and holding cost: $\frac{D}{Q^*}S+\left(\frac{Q^*}{2}\right)H$
- Average flow time: $\frac{Q^*}{2D}$

Example:

Assume a car dealer that faces demand for 5,000 cars per year, and that it costs \$15,000 to have the cars shipped to the dealership. Holding cost is estimated at \$500 per car per year. How many times should the dealer order, and what should be the order size?

Lead time in delivery

If demand is known exactly, place an order when inventory equals demand during lead time.

Lead time in delivery

What if the lead time to receive cars is 10 days? (when should you place your order?)

Since D is given in years, first convert: 10 days = 10/365yrs

$$R = \frac{10}{365} D = \frac{10}{365} 5000 = 137$$

So, when the number of cars on the lot reaches 137, order 548 more cars.