Adnansami Madar 1BM20CS400 CSE-4A

PROGRAM 1: INSURANCE DATABASE

Consider the Insurance database given below. The primary keys are underlined and the data types are specified.

PERSON (driver-id #: String, name: String, address: String)

CAR (Regno: String, model: String, year: int)

ACCIDENT (report-number: int, date: date, location: String)

OWNS (driver-id #: String, Regno: String)

PARTICIPATED (driver-id: String, Regno: String, report-number: int, damage-amount: int)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Demonstrate how you
- a. Update the damage amount for the car with a specific Regno in the accident with report number 12 to 25000.
- b. Add a new accident to the database.
- iv. Find the total number of people who owned cars that involved in accidents in 2008.
- v. Find the number of accidents in which cars belonging to a specific model were involved

Tables

PERSON

driver_id	name	address
A01	Richard	Srinivas nagar
A02	Pradeep	Rajaji nagar
A03	Smith	Ashok nagar
A04	Venu	N R Colony
A05	Jhon	Hanumanth nagar

CAR

reg_num	model	year
KA052250	Indica	1990
KA031181	Lancer	1957
KA095477	Toyota	1998
KA053408	Honda	2008
KA041702	Audi	2005

OWNS

driver_id	reg_num
A01	KA052250
A02	KA053408
A03	KA031181
A04	KA095477
A05	KA041702

ACCIDENT

report_num	accident_date	location
11	01-JAN-03	Mysore Road
12	02-FEB-04	South end Circle
13	21-JAN-03	Bull temple Road
14	17-FEB-08	Mysore Road
15	04-MAR-05	Kanakpura Road

PARTICIPATED

driver_id	reg_num	report_num	damage_amount
A01	KA052250	11	10000
A02	KA053408	12	50000
A03	KA095477	13	25000
A04	KA031181	14	3000
A05	KA041702	15	5000

CREATE DATABASE INSURANCE_DATABASE;

USE INSURANCE_DATABASE;

create table person

(

driver_id varchar(15) unique NOT NULL,

```
name varchar(20) NOT NULL,
  address varchar(30),
  primary key(driver_id)
);
create table car
(
  reg _num varchar(20) unique NOT NULL,
  model varchar(25),
  year int,
  primary key(reg_num)
);
create table accident
   report_num int unique NOT NULL,
   accident_date date,
   location varchar(30),
   primary key(report_num)
);
create table owns
    driver_id varchar(20),
    reg_num varchar(20),
    FOREIGN KEY(driver_id) REFERENCES person(driver_id),
    FOREIGN KEY(reg_num) REFERENCES car(reg_num)
);
create table participated
    driver_id varchar(15) unique NOT NULL,
    reg_num varchar(20) unique NOT NULL,
```

```
report_num int unique NOT NULL,

damage_amount int,

FOREIGN KEY(driver_id) REFERENCES person(driver_id),

FOREIGN KEY(reg_num) REFERENCES car(reg_num),

FOREIGN KEY(report_num) REFERENCES accident(report_num)

);
```

insert into person

values ("A01", "Richard", "Srinivas nagar"), ("A02", "Pradeep", "Rajaji nagar"), ("A03", "Smith", "Ashok nagar"), ("A04", "Venu", "N R Colony"), ("A05", "Jhon", "Hanumanth nagar"); select * from person;

insert into car

values ("KA052250","Indica",1990),("KA031181","Lancer",1957),("KA095477","Toyota",1998),
("KA053408","Honda",2008),("KA041702","Audi",2005);
select * from car;

insert into owns

values ("A01","KA052250"),("A02","KA053408"),("A03","KA031181"),
("A04","KA095477"),("A05","KA041702");

select * from owns;

insert into accident

values (11,'2003-01-03',"Mysore Road"), (12,'2002-02-04',"South end Circle"),(13,'2021-01-03',"Bull temple Road"), (14,'2017-02-08',"Mysore Road"),(15,'2004-03-05',"Kanakpura Road");

select * from accident;

insert into participated

values ("A01","KA052250",11,10000),("A02","KA053408",12,50000),("A03","KA095477",13,25000),

("A04","KA031181",14,3000),("A05","KA041702",15,5000);

select * from participated;

a. Update the damage amount for the car with a specific Regno in the accident with report number 12 to 25000

update PARTICIPATED

SET damage amount=25000

WHERE reg_num="KA053408";

select* from PARTICIPATED;

b. Add a new accident to the database.

insert into ACCIDENT

values (16,"2018-03-29","KORMANGLA");

select* from ACCIDENT;

iv. Find the total number of people who owned cars that involved in accidents in 2008.

SELECT COUNT(accident_date) AS accidentsin2008

FROM ACCIDENT

WHERE YEAR(accident_date)=2008;

v. Find the number of accidents in which cars belonging to a specific model were involved

SELECT COUNT(model) AS carwithhondaomodel

FROM car

WHERE model="HONDA";

PROGRAM 2: BANKING ENTERPRISE DATABASE

Consider the following database for a banking enterprise.

Branch (branch-name: String, branch-city: String, assets: real) **BankAccount**(accno: int, branch-name: String, balance: real)

BankCustomer (customer-name: String, customer-street: String, customer-city: String)

Depositer(customer-name: String, accno: int)

Loan (loan-number: int, branch-name: String, amount: real)

- i. Create the above tables by properly specifying the primary keys and the foreign keys.
- ii. Enter at least five tuples for each relation.
- iii. Find all the customers who have at least two accounts at the Main branch (ex. SBI_ResidencyRoad).
- iv. Find all the customers who have an account at *all* the branches located in a specific city (Ex. Delhi).
- v. Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).

INTRODUCTION: This database is developed for supporting banking facilities. Details of the branch along with the accounts and loans handled by them are recorded. Also details of the depositors of the corresponding branches are maintained.

Sample Table data

Branch BankAccount

BRANCHNAME	BRANCHCITY	ASSESTS	ACCNO	BRANCHNAME	BALANCE
SBI_Chamrajpet SBI_ResidencyRoad SBI_ShivajiRoad SBI_ParlimentRoad SBI_Jantarmantar	Bombay	50000 10000 20000 10000 20000	2 3 4 5 6 8	SBI_Chamrajpet SBI_ResidencyRoad SBI_ShivajiRoad SBI_ParlimentRoad SBI_Jantarmantar SBI_ShivajiRoad SBI_ResidencyRoad SBI_ResidencyRoad SBI_ParlimentRoad	6000 9000 8000 4000 4000
			10	SBI_ResidencyRoad	

BankCustomer

Danikeastonik	*1	
CUSTOMERNA	ME CUSTOMERSTREET	CUSTOMERCITY
Avinash	Bull_Temple_Road	Bangalore
Dinesh	Bannergatta_Road	Bangalore
Mohan Nikil	NationalCollege_Road Akbar Road	Delhi
Ravi	Prithviraj Road	Delhi
Navi	FII(IIVII a)_NOau	Dellii

Loan

LOANNUMBER	BRANCHNAME	AMOUNT
2 3 4	SBI_Chamrajpet SBI_ResidencyRoad SBI_ShivajiRoad SBI_ParlimentRoad SBI_Jantarmantar	3000

Depositer

CUSTOMERNAME	ACCNO
Avinash	1
Dinesh	2
Nikil	4
Ravi	5
Avinash	8
Nikil	9
Dinesh	10
Nikil	11
,	

create database Bankingenterprise;

```
use Bankingenterprise;
CREATE TABLE BRANCH
(
     branch_name varchar(50),
     branch_city varchar(50),
     assets real,
    primary key(branch_name)
);
CREATE TABLE BankAccount
(
        accno int,
       branch_name varchar(50),
       balance real,
       primary key(accno),
  FOREIGN KEY(branch_name) REFERENCES BRANCH(branch_name) ON DELETE SET NULL ON UPDATE
CASCADE
);
CREATE TABLE BankCustomer
(
     customer_name varchar(50) primary key,
     customer_street varchar(50),
    customer_city varchar (50)
);
CREATE TABLE Depositor
     customer_name varchar(50),
     accno int,
    foreign key(accno) references BankAccount(accno),
```

```
foreign key(customer_name) references BankCustomer(customer_name)
);

CREATE TABLE Loan
(
    loan_number int,
    branch_name varchar(50),
    amount real,
    primary key(loan_number),
    foreign key(branch_name) references Branch(branch_name)
);
```

INSERT INTO Branch

```
VALUES ("SBI_Chamrajpet", "BANGALORE",50000),("SBI_ResidencyRoad", "BANGALORE",10000),

("SBI_ShivajiRoad", "Bombay",20000),("SBI_ParlimentRoad", "Delhi",10000),

("SBI_Jantarmantar", "Delhi",20000);
```

select * from Branch;

INSERT INTO BankAccount

```
VALUES (1,"SBI_Chamrajpet",2000),(2,"SBI_ResidencyRoad",5000),

(3,"SBI_ShivajiRoad",6000),(4,"SBI_ParlimentRoad",9000),(5,"SBI_Jantarmantar",8000),

(6,"SBI_ShivajiRoad",4000),(8,"SBI_ResidencyRoad",4000),(9,"SBI_ParlimentRoad",3000),

(10,"SBI_ResidencyRoad",5000),(11,"SBI_Jantarmantar",2000);

select * from BankAccount;
```


INSERT INTO BankCustomer

VALUES ("Avinash", "Bull_Temple_Road", "Bangalore");

INSERT INTO BankCustomer

VALUES("Dinesh", "Bannergatta_Road", "Bangalore");

INSERT INTO BankCustomer

VALUES ("Mohan", "NationtalCollege__Road", "Bangalore");

INSERT INTO BankCustomer

VALUES("Nikil","Akbar Road","Delhi");

INSERT INTO BankCustomer

VALUES ("Ravi", "Prithviraj_Road", "Delhi");

select * from BankCustomer;

INSERT INTO Depositor

VALUES("Avinash",1),("Dinesh",2),("Nikil",4),

("Ravi",5),("Avinash",8),("Nikil",9),("Dinesh",10),("Nikil",11);

select * from Depositor;

INSERT INTO Loan

VALUES (1, "SBI_Chamrajpet", 1000), (2, "SBI_ResidencyRoad", 2000), (3, "SBI_ShivajiRoad", 3000),

(4,"SBI_ParlimentRoad",4000),(5,"SBI_Jantarmantar",5000);

select * from Loan;

iii. Find all the customers who have at least two accounts at the *Main* branch (ex. SBI_ResidencyRoad).

SELECT *

FROM BankCustomer

WHERE customer_name IN (SELECT customer_name

FROM depositor

group by customer_name

having COUNT(customer_name)>=2);

iv. Find all the customers who have an account at *all* the branches located in a specific city (Ex. Delhi).

SELECT d.customer_name

FROM BankAccount a, Depositor d, Branch b

WHERE d.accno=a.accno AND b.branch_name=a.branch_name AND b.branch_city="Bangalore"

GROUP BY d.customer_name

HAVING count(distinct b.branch_name)=

(SELECT COUNT(branch_name)

FROM branch

WHERE branch_city="Bangalore");

v. Demonstrate how you delete all account tuples at every branch located in a specific city (Ex. Bombay).

DELETE FROM depositor

WHERE accno IN

(SELECT accno

FROM Branch b, BankAccount a

WHERE branch_city = 'delhi' and b.branch_name = a.branch_name);

DELETE FROM BankAccount WHERE branch_name IN(SELECT branch_name FROM BRANCH WHERE branch_city='delhi');

SELECT * FROM BankAccount;

PROGRAM 3: SUPPLIER DATABASE

Consider the following schema:

SUPPLIERS(<u>sid: integer</u>, sname: string, address: string)

PARTS(<u>pid: integer</u>, pname: string, color: string) CATALOG(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

Write the following queries in SQL:

- i. Find the pnames of parts for which there is some supplier.
- ii. Find the snames of suppliers who supply every part.
- iii. Find the snames of suppliers who supply every red part.
- iv. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.
- v. Find the sids of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part).
- vi. For each part, find the sname of the supplier who charges the most for that part.

Table Data

SUPPLIERS			
SID	SNAME	CITY	
10001	Acme Widget	Bangalore	
10002	Johns	Kolkata	
10003	Vimal	Mumbai	
10004	Reliance	Delhi	

CATALOG SID	PID	COST
JID		
10001	20001	10
10001	20002	10
10001	20003	30
10001	20004	10
10001	20005	10
10002	20001	10
10002	20002	20
10003	20003	30
10004	20003	40

PARTS PID PNAME	COLOR
20001 Book	Red
20002 Pen	Red
20003 Pencil	Green
20004 Mobile	Green
20005 Charger	Black

CREATE DATABASE Supplier Database1;

USE Supplier Database1;

```
CREATE TABLE SUPPLIER
(
       sid int,
       sname varchar(20),
       address varchar(40),
       primary key(sid)
);
CREATE TABLE PARTS
(
       pid int,
       pname varchar(40),
       color varchar(20),
       primary key(pid)
);
CREATE TABLE CATALOG
(
       sid int,
       pid int,
       cost real,
       FOREIGN KEY(sid) REFERENCES SUPPLIER(sid),
       FOREIGN KEY(pid) REFERENCES PARTS(pid)
);
INSERT INTO SUPPLIER
VALUES (10001,"Acme Widget","Bangalore"),(10002,"Johns","Kolkata"),(10003,"Vimal","Mumbai"),
               (10004, "Reliance", "Delhi");
SELECT * FROM SUPPLIER;
```


INSERT INTO PARTS

VALUES (20001,"Book","Red"), (20002,"Pen","Red"), (20003,"Pencil","Green"), (20004,"Mobile","Green"), (20005,"Charger","Black");

SELECT * FROM PARTS;

INSERT INTO CATALOG

VALUES (10001,20001,10),(10001,20002,10),(10001,20003,30),(10001,20004,10),(10001,20005,10), (10002,20001,10),(10002,20002,20),(10003,20003,30),(10004,20003,40);

SELECT * FROM CATALOG;

a. Find the pnames of parts for which there is some supplier.

SELECT DISTINCT p.pname

FROM parts p, catalog c

WHERE p.pid = c.pid;

b.Find the snames of suppliers who supply every part.

SELECT SUPPLIER.sname, CATALOG.sid FROM SUPPLIER, CATALOG WHERE SUPPLIER.sid = CATALOG.sid group by SUPPLIER.sname having count(CATALOG.sid)=(select count(pid) from PARTS);

c.Find the snames of suppliers who supply every red part.

SELECT distinct s.sname

FROM SUPPLIER s, CATALOG c

WHERE s.sid = c.sid and c.pid in (select pid from PARTS WHERE color="Red");

d. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

SELECT pname

FROM PARTS P, CATALOG C

WHERE p.pid = c.pid AND sid in (SELECT sid from SUPPLIER WHERE sname = "Acme Widget");

e. Find the sids of suppliers who charge more for some part than the average cost of that part (averaged over all the suppliers who supply that part).

SELECT c.sid

FROM CATALOG c WHERE c.cost > (SELECT AVG(cost) FROM CATALOG

Re	esult Grid		Filter Ro		
	sid				
•	10002				
	10004				
CA	TALOG 6	×			

f. For each part, find the sname of the supplier who charges the most for that part.

SELECT c.pid, s.sname

FROM PARTS p, SUPPLIER s, CATALOG c

WHERE s.sid = c.sid AND c.cost = (SELECT MAX(cost)

FROM catalog

WHERE pid = c.pid);

PROGRAM 4: STUDENT FACULTY DATABASE

Consider the following database for student enrollment for course:

STUDENT(snum: integer, sname:string, major: string, lvl: string, age: integer)

CLASS(cname: string, meetsat: time, room: string, fid: integer)

ENROLLED(<u>snum</u>: integer, <u>cname</u>:string)

FACULTY(fid: integer, fname:string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record per student-class pair such that the student is enrolled in the class. Level(IVI) is a two character

code with 4 different values (example: Junior: JR etc)

Write the following queries in SQL. No duplicates should be printed in any of the answers.

- i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by
- ii. Find the names of all classes that either meet in room R128 or have five or more Students enrolled.
- iii. Find the names of all students who are enrolled in two classes that meet at the same time.
- iv. Find the names of faculty members who teach in every room in which some class is taught.
- v. Find the names of faculty members for whom the combined enrollment of the courses that they teach is less than five.
- vi. Find the names of students who are not enrolled in any class.
- vii. For each age value that appears in Students, find the level value that appears most often. For example, if there are more FR level students aged 18 than SR, JR, or SO students aged 18, you should print the pair (18, FR).

SQL> select * from student;

SNUM	SNAME	MA	LV	AGE
1	ihon	CS	Sr	19

2	Smith	CS	Jr	20
3	Jacob	CV	Sr	20
4	Tom	CS	Jr	20
5	Rahul	CS	Jr	20
6	Rita	CS	Sr	21

SQL> select * from faculty;

FID FNAME	DEPTID
44.77. 1.1	1000
11 Harish	1000
12 MV	1000
13 Mira	1001
14 Shiva	1002
15 Nupur	1000

SQL> select * from class;

CNAME	METTS_A	ROOM	FIL
Class1	12/11/15 10:15:16.00	000 R1	14
Class10	12/11/15 10:15:16.000	000 R128	14
Class2	12/11/15 10:15:20.000	0000 R2	12
Class3	12/11/15 10:15:25.000	0000 R3	11
Class4	12/11/15 20:15:20.000	0000 R4	14
Class5	12/11/15 20:15:20.000	0000 R3	15
Class6	12/11/15 13:20:20.000	000 R2	14
Class7	12/11/15 10:10:10.000	000 R3	14

SQL> select * from enrolled;

SNUM CNAME

1 class1

2 class1

3 class3

4 class3

5 class4

CREATE DATABASE STUDENT_FACULTY1;

USE STUDENT_FACULTY1;

```
CREATE TABLE STUDENT
(
       snum int,
       sname varchar(40),
       major varchar(30),
       lvl varchar(20),
       age int,
       primary key(snum)
);
CREATE TABLE FACULTY
(
    fid int,
    fname varchar(40),
    deptid int,
    primary key(fid)
);
CREATE TABLE CLASS
(
       cname varchar(40),
       meetsat datetime;
       room varchar(20),
       fid int,
       primary key(cname),
      FOREIGN KEY(fid) REFERENCES FACULTY(fid)
);
CREATE TABLE ENROLLED
(
       snum int,
```

```
cname varchar(40),

FOREIGN KEY(snum) REFERENCES STUDENT(snum),

FOREIGN KEY(cname) REFERENCES CLASS(cname)
);
INSERT INTO STUDENT

VALUES (1,"john","CS","Sr",19),(2,"Smith","CS","Jr",20),(3,"Jacob","CV","Sr",20),

(4,"Tom","CS","Jr",20),(5,"Rahul","CS","Jr",20),(6,"Rita","CS","Sr",21);

SELECT * FROM STUDENT;
```


INSERT INTO FACULTY

VALUES (11,"Harish",1000),(12,"MV",1000),(13,"Mira",1001),(14,"Shiva",1002), (15,"Nupur",1000);

SELECT * FROM FACULTY;

INSERT INTO CLASS

```
VALUES ("Class1",'2015-11-12:10:15:16.00000',"R1",14);

("Class10",'2015-11-12:10:15:16.00000',"R 128",14),

("Class2",'2015-11-12:10:15:20.00000',"R2",12),

("Class3",'2015-11-12:10:15:25.00000',"R3",11),

("Class4",'2015-11-12:20:15:20.00000',"R4",14),

("Class5",'2015-11-12:20:15:20.00000',"R3",15),

("Class6",'2015-11-12:13:20:20.00000',"R2",14),

("Class7",'2015-11-12:10:10:10.00000',"R3",14);

select * from CLASS;
```


INSERT INTO ENROLLED

```
VALUES (1,"class1"),(2,"class1"),(3,"class3"),(4,"class3"),(5,"class4"); select * from ENROLLED;
```


i. Find the names of all Juniors (level = JR) who are enrolled in a class taught by SELECT s.sname

FROM STUDENT s, CLASS c, ENROLLED e

WHERE s.snum=e.snum and c.cname=e.cname and c.fid = (select fid

from FACULTY

where fname="Harish") and S.lvl="Jr";

ii. Find the names of all classes that either meet in room R128 or have five or more Students enrolled.

SELECT c.cname

FROM CLASS c

WHERE c.room = 'R 128' or c.cname in (select e.cname

from ENROLLED e

group by e.cname

having count(*)>=5);

iii. Find the names of all students who are enrolled in two classes that meet at the same time.

SELECT distinct s.sname

FROM STUDENT s

WHERE S.snum in (select e1.snum

from ENROLLED e1, ENROLLED e2, CLASS c1, CLASS c2

where e1.snum = e2.snum and e1.cname <> e2.cname and e1.cname = c1.cname and e2.cname = c2.cname and c1.meetsat = c2.meetsat);

iv. Find the names of faculty members who teach in every room in which some class is taught.

SELECT f.fname, c.fid

FROM FACULTY f, CLASS c

WHERE f.fid = c.fid

group by c.fid

having count(c.fid)=(select COUNT(distinct room)

from CLASS);

v. Find the names of faculty members for whom the combined enrollment of the courses that they teach is less than five.

SELECT distinct fname

FROM FACULTY f

WHERE 5> (select COUNT(e.snum)

from ENROLLED e,CLASS c

where c.cname=e.cname and c.fid=f.fid);

vi. Find the names of students who are not enrolled in any class. SELECT s.sname

FROM STUDENT s

WHERE snum not in (select snum

from ENROLLED);

vii. For each age value that appears in Students, find the level value that appears most often. For example, if there are more FR level students aged 18 than SR, JR, or SO students aged 18, you should print the pair (18, FR).

SELECT s.age ,s.lvl

FROM STUDENT s

group by s.age

having s.lvl in (select s1.lvl

from STUDENT s1

where s1.age=s.age
group by s1.age

having count(*)>= all (select s2.lvl

from STUDENT s2

where s2.age=s1.age
group by s2.age));

PROGRAM 5: AIRLINE FLIGHT DATABASE

Consider the following database that keeps track of airline flight information:

FLIGHTS(<u>flno</u>: integer, from: string, to: string, distance: integer, departs: time, arrives:

time, price: integer)

AIRCRAFT(<u>aid</u>: integer, aname: string, cruisingrange: integer)

CERTIFIED(eid: integer, aid: integer)

EMPLOYEES(eid: integer, ename: string, salary: integer)

Note that the Employees relation describes pilots and other kinds of employees as well; Every pilot is certified for some aircraft, and only pilots are certified to fly.

Write each of the following queries in SQL.

- i. Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs. 80,000.
- ii.For each pilot who is certified for more than three aircrafts, find the eid and the maximum cruisingrange of the aircraft for which she or he is certified.
- iii. Find the names of pilots whose salary is less than the price of the cheapest route from Bengaluru to Frankfurt.
- iv. For all aircraft with cruising range over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this aircraft.
- v.Find the names of pilots certified for some Boeing aircraft.
- vi. Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi.

vii.A customer wants to travel from Bangalore to Kolkata New with no more than two changes of flight. List the choice of departure times from Madison if the customer wants to arrive in Kolkata by 6 p.m.

SQL> select * from Flights;

FLNO FFRO	M TO	DISTANCE DEPARTS ARRIVES PRICE
101 Bangalore	Delhi 2500 13-	MAY-05 07.15.31.000000 AM13-MAY-05 07.15.31.000000 A 5000
102 Bangalore 1	Lucknow	3000 05/05/13 07:15:31.000000 05/05/13 11:15:31.000000 6000
103 Lucknow	Delhi	500 05/05/13 12:15:31.000000 05/05/13 17:15:31.000000 3000
107 Bangalore	Frankfurt	8000 05/05/13 07:15:31.000000 05/05/13 22:15:31.000000 60000
104 Bangalore	Frankfurt	8500 05/05/13 07:15:31.000000 05/05/13 23:15:31.00000 75000
105 Kolkata	Delhi	3400 05/05/13 07:15:31.000000 05/05/13 09:15:31.000000 7000

SQL> select * from Aircraft;

AID ANAME	CRUISINGRANGE
101 747	3000
102 Boeing	900
103 647	800
104 Dreamliner	10000
105 Boeing	3500
106 707	1500
107 Dream	120000

7 rows selected.

SQL> select * from Certified;

EID	AID
701	101
701	102
701	106
701	105
702	104
703	104
704	104
702	107
703	107
704	107
702	101
EID	AID
703	105
704	105
705	103

14 rows selected.

SQL> select * from Employees;

	1 0				
EID ENAME	SALARY				
	50000 100000 150000 90000 40000 60000 90000				
7 rows selected.					
CREATE DATABASE AIR	LINE_FLIGHT_DATABASE;				
USE AIRLINE_FLIGHT_D	ATABASE;				
CREATE TABLE FLIGHTS					
flno int,					
ffrom varchar(4	4 0),				
tto varchar(40),					
distance int,					
departs datetime,					
arrives datetime,					
price int,					
primary key(flno)					
);					
CREATE TABLE AIRCRAF	-T				
(
aid int,					
aname varchar					
cruisingrange ir					
primary key(aid	1)				

);

```
CREATE TABLE EMPLOYEES
(
       eid int,
       ename varchar(40),
       salary int,
       primary key(eid)
);
CREATE TABLE CERTIFIED
(
       eid int,
        aid int,
       FOREIGN KEY(aid) REFERENCES AIRCRAFT(aid),
       FOREIGN KEY(eid) REFERENCES EMPLOYEES(eid)
);
INSERT INTO FLIGHTS
VALUES (101,"Bangalore","Delhi",2500,'2005-05-13:07:15:31.000000','2005-05-
13:07:15:31.000000',5000),
(102, "Bangalore", "Lucknow", 3000, '2013-05-05:07:15:31.000000', '2013-05-
05:11:15:31.000000',6000),
(103,"Lucknow","Delhi",500,'2013-05-05:12:15:31.000000','2013-05-05:17:15:31.000000',3000),
(107, "Bangalore", "Frankfurt", 8000, '2013-05-05:07:15:31.000000', '2013-05-
05:22:15:31.000000',60000),
(104, "Bangalore", "Frankfurt", 8500, '2013-05-05:07:15:31.000000', '2013-05-
05:23:15:31.000000',75000),
(105, "Kolkata", "Delhi", 3400, '2013-05-05:07:15:31.000000', '2013-05-05:09:15:31.000000', 7000);
SELECT * FROM FLIGHTS;
```


INSERT INTO AIRCRAFT

VALUES (101,747,3000),(102,"Boeing",900),(103,647,800),(104,"Dreamliner",10000),
(105,"Boeing",3500),(106,707,1500),(107,"Dream",120000);

SELECT * FROM AIRCRAFT;

INSERT INTO EMPLOYEES

VALUES (701,"A",50000),(702,"B",100000),(703,"C",150000),(704,"D",90000),
(705,"E",40000),(706,"F",60000),(707,"G",90000);

SELECT * FROM EMPLOYEES;

INSERT INTO CERTIFIED

VALUES (701,101),(701,102),(701,106),(701,105),(702,104),(703,104),(704,104),(702,107),
(703,107),(704,107),(702,101),(703,105),(704,105),(705,103);

SELECT * FROM CERTIFIED;

a. Find the names of aircraft such that all pilots certified to operate them have salaries more than Rs. 80,000.

SELECT distinct a.aname

FROM AIRCRAFT a, EMPLOYEES e, CERTIFIED c

WHERE a.aid=c.aid and e.eid=c.eid and e.salary>80000;

Re	esult Grid	43	Filter Rows	
	aname			
•	747			
	Dreamliner			
	Boeing			
	Dream			
Re	sult 5 ×			

b.For each pilot who is certified for more than three aircrafts, find the eid and the maximum cruisingrange of the aircraft for which she or he is certified.

SELECT e.eid, e.ename, max(a. cruising range)

FROM EMPLOYEES e, CERTIFIED c, AIRCRAFT a

WHERE e.eid=c.eid and a.aid=c.aid

group by e.ename

having count(c.aid)>3;

c.Find the names of pilots whose salary is less than the price of the cheapest route from Bengaluru to Frankfurt.

SELECT e.ename

FROM EMPLOYEES e

WHERE salary < (select min(price)

from FLIGHTS

where ffrom="Bangalore" and tto="Frankfurt");

d.For all aircraft with cruisingrange over 1000 Kms, find the name of the aircraft and the average salary of all pilots certified for this aircraft.

SELECT a.aname,a.cruisingrange,avg(e.salary)

FROM AIRCRAFT a, EMPLOYEES e, CERTIFIED c

WHERE c.eid=e.eid and c.aid=a.aid

group by a.aname

having a.cruisingrange > 1000;

e.Find the names of pilots certified for some Boeing aircraft.

SELECT distinct e.ename

FROM EMPLOYEES e, CERTIFIED c, AIRCRAFT a

WHERE e.eid=c.eid and a.aid=c.aid and aname like "Boeing";

f. Find the aids of all aircraft that can be used on routes from Bengaluru to New Delhi.

SELECT a.aid

FROM AIRCRAFT a

WHERE a. cruisingrange >= (select distance

from FLIGHTS

where ffrom="Bangalore" and tto="Delhi");

g. A customer wants to travel from Bangalore to Kolkata New with no more than two changes of flight. List the choice of departure times from Madison if the customer wants to arrive in Kolkata by 6 p.m.

SELECT f.ffrom,f.tto,f.arrives

FROM FLIGHTS f

WHERE (f.ffrom="Bangalore" and f.tto=(select ffrom

from FLIGHTS

where tto="Kolkata")) or f.tto="Kolkata";

