DPENCLASSROOMS

Projet 4

Anticipez les besoins en consommation de bâtiments

Pierrick BERTHE

Formation Expert en Data Science Openclassrooms – CentraleSupélec

Sommaire

I – Problématique

II – Présentation du jeu de données

III - Nettoyage des données

IV – Analyses exploratoires

V – Feature engineering

VI – Modèle de prédiction - Energie totale

VII – Modèle de prédiction - Emission CO₂

VIII - Conclusion

Problématique

La ville de Seattle étudie ses émissions des bâtiments non destinés à l'habitation puisqu'ils génèrent 33% des émissions de gaz à effet de serre de la ville.

La ville effectue des relevés annuels des bâtiment de la ville pour suivre l'évolution de leurs performances énergétiques depuis 2013. => coûteux.

Nous devons tenter de prédire les émissions de CO2 et la consommation totale d'énergie des bâtiments non destinés à l'habitation et non-mesurés à partir du relevé de l'année 2016.

Missions:

- 1. Réaliser une courte analyse exploratoire.
- 2. Tester différents modèles de prédiction pour prédire la consommation totale d'énergie.
- 3. Tester différents modèles de prédiction pour prédire les émissions de CO2.
- 4. Evaluer l'intérêt de l'ENERGY STAR Score pour les prédictions

Sommaire

I – Problématique

II – Présentation du jeu de données

III - Nettoyage des données

IV – Analyses exploratoires

V – Feature engineering

VI – Modèle de prédiction - Energie totale

VII – Modèle de prédiction - Emission CO₂

VIII - Conclusion

Présentation du jeu de données

> Descriptif des bâtiments :

- Des informations **administratives**: type de bâtiment, type d'occupation, etc.
- Des informations **structurelles**: nombre de bâtiment, surface, etc.
- Des informations **géographiques** : longitude, latitude, etc.
- Des informations **énergétiques** : quantité de consommation, type de source énergétique, etc.
- Des informations de **pollution** : quantité totale et relative de gaz à effet de serre.

➤ Valeurs manguantes :

- 13 % de NaN
- 26 / 46 colonnes concernées

➤ Doublons

Pas de doublons sur la colonne de l'identifiant unique des bâtiments.

Sommaire

- I Problématique
- II Présentation du jeu de données
- III Nettoyage des données
- IV Analyses exploratoires
- V Feature engineering
- VI Modèle de prédiction Energie totale
- VII Modèle de prédiction Emission CO₂
- VIII Conclusion

1. Filtrage méthode entonnoir

2. Imputation valeurs manquantes

3. Transformation logarithmique features cibles

4. Suppression des outliers

Nom	Utilisation	Fonctions spécifiques
Anaconda	Gestion de package Gestion d'environnement virtuel	Conda: installation de package via le terminal
Visual Studio Code 1.84.2	Structurer la démarche Exécuter code par étape Expliquer la démarche (markdown)	
Python 3.11.6	Appel aux librairies Boucles for pour générer plusieurs calculs et graphiques	Boucles, listes, dictionnaires, librairies, méthodes
Pandas 2.1.1	Manipulation de données Représentation des données	Manipulation de Dataframe : création, copie, filtres, tris, description, concaténation
Matplotlib 3.8.0 Seaborn 0.13.0	Génération de graphiques de visualisation	Barplot, scatterplot, lineplot, distplot, heatmap
Numpy 1.26.0	Manipulation de matrices et fonctions mathématiques	Histogram, argmax, arange, object, number
Missingno 0.5.2	Représentation graphique pour valeurs manquantes	Matrice de NaN
Sklearn 1.3.1	Apprentissage automatique et modélisation statistique	SimpleImputer, KNNImputer, StandardScaler, PCA
Scipy 1.11.3	Calculs de mathématiques complexes ou de problèmes scientifiques	Stats, chi2_contingency, shapiro, kruskal

1/ Filtrage méthode « entonnoir »

a) Filtrage remplissage feature

=> features < 50% de remplissage

1/ Filtrage méthode « entonnoir »

a) Filtrage remplissage feature

=> features < 50% de remplissage

b) Filtrage features redondantes

=> Quantité d'énergie (kBtu / kWh) Localisation géographique (longitude & latitude / adresse / n° de parcelle / Zip Code)

1/ Filtrage méthode « entonnoir »

=> features < 50% de remplissage

b) Filtrage features redondantes

c) Filtrage features inutiles

=> Quantité d'énergie (kBtu / kWh) Localisation géographique (longitude & latitude / adresse / n° de parcelle / Zip Code)

=> « Datayear » / « city » / « State »

1/ Filtrage méthode « entonnoir »

b) Filtrage features redondantes

c) Filtrage features inutiles

d) Gestion des features de consommation

=> Quantité d'énergie (kBtu / kWh)
Localisation géographique (longitude & latitude / adresse / n° de parcelle / Zip Code)

=> « Datayear » / « city » / « State »

=> proportion des sources d'énergie (électricité / gaz naturel / vapeur) consommation énergie et émission CO2

1/ Filtrage méthode « entonnoir »

Pierrick BERTHE - Projet 4 19/07/2024 13

1/ Filtrage méthode « entonnoir »

2. Imputation valeurs manquantes

Features quantitatives

3. Transformation logarithmique features cibles

- Consommation annuelle totale d'énergie
- Emission de CO2

4. Gestion des outliers

- Consommation annuelle totale d'énergie
- Emission de CO2

Sommaire

- I Problématique
- II Présentation du jeu de données
- III Nettoyage des données
- IV Analyses exploratoires
- V Feature engineering
- VI Modèle de prédiction Energie totale
- VII Modèle de prédiction Emission CO₂
- VIII Conclusion

=> Analyse univarié

Répartition des types de batiment

Bâtiments non résidentiels 🗸

=> Analyse univarié

=> Analyse univarié

Quantité d'énergie du top 10 des types d'usage des bâtiments les plus récurrents

22

=> Analyse univarié

=> Analyse univarié

L'électricité est la principale source d'énergie

19/07/2024

Analyses exploratoires

24

=> Analyse bivarié

- -0.50

- -0.75

=> Analyse bivarié

Corrélation de Pearson sans les outliers

Corrélation Pearson (r) = 0.88

=> Analyse bivarié

- -0.50

- -0.75

=> Analyse bivarié

- -0.50

- -0.75

=> Analyse bivarié

19/07/2024 Pierrick BERTHE – Projet 4

29

=> Analyse bivarié

- -0.50

- -0.75

=> Analyse bivarié

-5 features

19/07/2024 Pierrick BERTHE – Projet 4

=> Variance Inflation Factor (VIF)

	feature	VIF
2	Longitude	982253.28997
1	Latitude	981765.89052
6	Electricity_Proportion	478.49544
8	NaturalGas_Proportion	127.99405
7	SteamUse_Proportion	8.35286
5	ENERGYSTARScore_KNN	6.81848
9	AncienneteBatiment	4.13828
0	OSEBuildingID	2.75987
3	NumberofBuildings	2.04125
4	LargestPropertyUseTypeGFA	1.75981

=> Variance Inflation Factor (VIF)

	feature	VIF
2	-Longitude	982253.28997
1	Latitude	981765.89052
6	Electricity_Proportion	478.49544
8	NaturalGas_Proportion	127.99405
7	SteamUse_Proportion	8.35286
5	ENERGYSTARScore_KNN	6.81848
9	AncienneteBatiment	4.13828
0	OSEBuildingID	2.75987
3	NumberofBuildings	2.04125
4	LargestPropertyUseTypeGFA	1.75981

-2 features

	feature	VIF
4	Electricity_Proportion	7.85350
3	ENERGYSTARScore_KNN	6.79006
7	AncienneteBatiment	4.07662
6	NaturalGas_Proportion	3.28454
0	OSEBuildingID	2.72844
1	NumberofBuildings	2.03883
2	LargestPropertyUseTypeGFA	1.75427
5	SteamUse_Proportion	1.20706

> Descriptif des bâtiments :

- Des informations administratives: ancienneté du bâtiment, type de commerce, etc.
- Des informations **structurelles**: nombre de bâtiment, surface, etc.
- Des informations géographiques : quartier.
- Des informations énergétiques : quantité de consommation d'énergie et proportion des sources d'énergie.
- Des informations de **pollution** : quantité d'émission de CO2.

> Valeurs manguantes :

- 13 % de NaN
- 2 % de Nan
- 26 / 46 colonnes concernées
- 1 / 17 colonnes concernées

Analyse en Composantes Principales (ACP)

8 composantes expliquent 100% des données

4 composantes > seuil de Kaiser

=> Les 4 premières composantes expliquent > 70% de l'inertie totale

F1 semble corrélée à La propreté énergétique du bâtiment

F2 semble corrélée à la taille du bâtiment

Analyses exploratoires

F3 semble corrélée à la récence du bâtiment

Analyses exploratoires

F4 semble corrélée à L'inefficacité énergétique du bâtiment

Analyses exploratoires

Selon l'ACP, > 70% de l'inertie totale est expliqué par certaines caractéristiques des bâtiments :

- La propreté énergétique
- La taille
- Ľâge
- L'efficacité énergétique

Sommaire

- I Problématique
- II Présentation du jeu de données
- III Nettoyage des données
- IV Analyses exploratoires
- V Feature engineering
- VI Modèle de prédiction Energie totale
- VII Modèle de prédiction Emission CO₂
- VIII Conclusion

19/07/2024

Feature engineering

41

1. Renommage feature cible

19/07/2024

Feature engineering

1. Renommage feature cible

2. Séparation features cible/explicatives

Feature engineering

1. Renommage feature cible

2. Séparation features cible/explicatives

3. Séparation jeux entrainement/test

75% / 25%

Feature engineering

1. Renommage feature cible

2. Séparation features cible/explicatives

3. Séparation jeux entrainement/test

75% / 25%

4. Encodage et standardisation

Qualitatif => SimpleImputer (valeur la + fréquente) + OneHotEncoder

Quantitatif => SimpleImputer (médiane) + StandardScaler

Sommaire

45

- I Problématique
- II Présentation du jeu de données
- III Nettoyage des données
- IV Analyses exploratoires
- V Feature engineering
- VI Modèle de prédiction Energie totale
- VII Modèle de prédiction Emission CO₂
- VIII Conclusion

Modèle x 5

Dummy regressor (moyenne)

ElasticNet

SVR

RandomForest

GradientBoosting

GridSearchCV

Performance

mse_train

mse_test

Comparaison de l'erreur quadratiques moyenne (RMSE) de modèle

Comparaison de l'erreur quadratiques moyenne (RMSE) de modèle

r2_train

r² test

Comparaison du coefficient de détermination (r²) de modèle

Comparaison du coefficient de détermination (r²) de modèle

Comparaison du temps d'entrainement et de prédiction de modèle

Comparaison du temps d'entrainement et de prédiction de modèle

Feature importance

Feature importance

Locale

Globale

feature	importance
numLargestPropertyUseTypeGFA	1.09185
num_ENERGYSTARScore_KNN	0.19605
catPrimaryPropertyType_Warehouse	0.06851

Comparaison de l'erreur quadratiques moyenne (RMSE) de dataset

dataset

dataset

Comparaison de l'erreur quadratiques moyenne (RMSE) de dataset

dataset

dataset

Feature importance

Locale

feature	importance
num_LargestPropertyUseTypeGFA	1.10980
num_ENERGYSTARScore	0.23139
catPrimaryPropertyType_Warehouse	0.09489
numElectricity_Proportion	0.06138

Courbe d'apprentissage pour le modèle GradientBoostingRegressor

Sommaire

60

- I Problématique
- II Présentation du jeu de données
- III Nettoyage des données
- IV Analyses exploratoires
- V Feature engineering
- VI Modèle de prédiction Energie totale
- VII Modèle de prédiction Emission CO₂
- VIII Conclusion

Modèle x 5

Dummy regressor (moyenne)

ElasticNet

SVR

RandomForest

GradientBoosting

GridSearchCV

	0.01	0.1	1.0	10.0
3				
5				
7				
9				

62

Comparaison de l'erreur quadratiques moyenne (RMSE) de modèle

Comparaison du coefficient de détermination (r²) de modèle

Comparaison du temps d'entrainement et de prédiction de modèle

Feature importance

Feature importance

Locale

feature	importance
num_LargestPropertyUseTypeGFA	0.81642
numElectricity_Proportion	0.57925
numENERGYSTARScore_KNN	0.14221

Comparaison de l'erreur quadratiques moyenne (RMSE) de dataset

dataset

Comparaison du coefficient de détermination (r²) de dataset

dataset

Feature importance

Locale

feature	importance
num_LargestPropertyUseTypeGFA	0.76019
numElectricity_Proportion	0.54434
num_ENERGYSTARScore	0.13505

Courbe d'apprentissage pour le modèle GradientBoostingRegressor

Sommaire

- I Problématique
- II Présentation du jeu de données
- III Nettoyage des données
- IV Analyses exploratoires
- V Feature engineering
- VI Modèle de prédiction Energie totale
- VII Modèle de prédiction Emission CO₂

VIII - Conclusion

Missions:

- 1. Réaliser une courte analyse exploratoire. 🗸
- 2. Tester différents modèles de prédiction pour prédire la consommation totale d'énergie. 🗸

- 3. Tester différents modèles de prédiction pour prédire les émissions de CO2. 🗸
- 4. Evaluer l'intérêt de l'ENERGY STAR Score pour les prédictions

Conclusion

Le modèle **GradientBoosting** démontre les meilleures performances

$$R^2$$
 0,88

$$R^2$$
 0,88 $\pm 0,41 \text{ kBtu}$

$$R^2$$
 0,90

Features importantes pour les 2 prédictions :

- Surface d'usage principale

- Proportion d'énergie provenant de l'électricité 🌎 🐽

- ENERGY STAR Score non-imputé (f) (co.)

- Usage principal du bâtiment comme entrepôt 🥢

Features importantes pour les 2 prédictions :

- Surface d'usage principale 🦪

- Proportion d'énergie provenant de l'électricité 🌎 🐽

- ENERGY STAR Score non-imputé (f) (co.)

- Usage principal du bâtiment comme entrepôt 🥢

Limites:

- Il existe des algorithmes de ML qui n'ont pas été testé.
- Une seule méthode d'optimisation (GridSearchCV) a été testée.

DPENCLASSROOMS

Merci pour votre attention

