Heron's formula --- the area of a triangle, given 3 sides

Created by Mr. Francis Hung

Last updated: July 26, 2020

In $\triangle ABC$, let $s = \frac{1}{2}(a+b+c)$, half of a perimeter, then the area $= \sqrt{s(s-a)(s-b)(s-c)}$.

Proof: By cosine rule $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

$$1 - \cos^{2}C = 1 - \left(\frac{a^{2} + b^{2} - c^{2}}{2ab}\right)^{2}$$

$$\sin^{2}C = \frac{4a^{2}b^{2} - \left(a^{2} + b^{2} - c^{2}\right)^{2}}{4a^{2}b^{2}}$$

$$= \left(2ab + a^{2} + b^{2} - c^{2}\right)\left(2ab - a^{2} - b^{2} + b^{2}\right)$$

$$= \frac{(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)}{4a^2b^2}$$

$$= \frac{[(a+b)^2-c^2][c^2-(a-b)^2]}{4a^2b^2}$$

$$= \frac{(a+b+c)(a+b-c)(a-b+c)(-a+b+c)}{4a^2b^2}$$

$$= \frac{(a+b+c)(a+b+c-2c)(a+b+c-2b)(a+b+c-2a)}{4a^2b^2}$$

$$= \frac{2s(2s-2c)(2s-2b)(2s-2a)}{4a^2b^2} = \frac{4s(s-a)(s-b)(s-c)}{a^2b^2}$$

area =
$$\frac{1}{2}ab \sin C$$

= $\frac{1}{2}ab\sqrt{\frac{4s(s-a)(s-b)(s-c)}{a^2b^2}}$ = $\sqrt{s(s-a)(s-b)(s-c)}$

Example Let
$$a = 5$$
, $b = 6$, $c = 7$. then $s = \frac{1}{2}(5 + 6 + 7) = 9$
 $s - a = 9 - 5 = 4$, $s - b = 9 - 6 = 3$, $s - c = 9 - 7 = 2$
area = $\sqrt{9 \times 4 \times 3 \times 2} = 6\sqrt{6}$

In $\triangle ABC$, let $s = \frac{1}{2}(a+b+c)$, half of a perimeter, then the area $= \sqrt{s(s-a)(s-b)(s-c)}$.

Proof: (method 2)

Case $1 \angle C \le 90^{\circ}$ and $\angle B \le 90^{\circ}$

Let D be the foot of perpendicular from A to BC.

Let
$$CD = t$$
, $BD = a - t$, let $AD = h$.

Let
$$CD = t$$
, $BD = a - t$, let $AD = h$.
 $h^2 = b^2 - t^2 = c^2 - (a - t)^2$ (Pythagoras' theorem)
 $b^2 - t^2 = c^2 - (a^2 - 2at + t^2)$

$$b^2 - t^2 = c^2 - (a^2 - 2at + t^2)$$

$$b^2 = c^2 - a^2 + 2at$$

$$t = \frac{a^2 + b^2 - c^2}{2a}$$

$$h^{2} = b^{2} - t^{2} = (b+t)(b-t)$$

$$= \left(b + \frac{a^{2} + b^{2} - c^{2}}{2a}\right) \left(b - \frac{a^{2} + b^{2} - c^{2}}{2a}\right)$$

$$= \left(\frac{a^{2} + 2ab + b^{2} - c^{2}}{2a}\right) \left[\frac{c^{2} - (a^{2} - 2ab + b^{2})}{2a}\right]$$

$$= \frac{1}{(2a)^2} \left[(a+b)^2 - c^2 \right] \left[c^2 - (a-b)^2 \right]$$

$$=\frac{1}{(2a)^2}(a+b+c)(a+b-c)(c+a-b)(c-a+b)=\frac{1}{(2a)^2}(2s)(2s-2c)(2s-2b)(2s-2a)$$

$$= \frac{4}{a^2} s(s-a)(s-b)(s-c) \Rightarrow h = \frac{2}{a} \sqrt{s(s-a)(s-b)(s-c)}$$

Area of
$$\triangle ABC = \frac{1}{2}ah = \frac{1}{2}a \times \frac{2}{a}\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{s(s-a)(s-b)(s-c)}$$

Case
$$2 \angle C = 90^{\circ}$$
 or $\angle B = 90^{\circ}$ (WLOG assume $\angle C = 90^{\circ}$)

Area =
$$\frac{1}{2}ab$$

$$c^2 = a^2 + b^2$$
 (Pythagoras' theorem)

$$\sqrt{s(s-a)(s-b)(s-c)}$$

$$=\sqrt{\frac{a+b+c}{2} \cdot \frac{b+c-a}{2} \cdot \frac{a+c-b}{2} \cdot \frac{a+b-c}{2}}$$

$$= \frac{1}{4} \sqrt{\left[(b+c)^2 - a^2 \right] \left[a^2 - (c-b)^2 \right]}$$

$$=\frac{1}{4}\sqrt{[(b^2+2bc+c^2)-(c^2-b^2)][(c^2-b^2)-(c^2-2bc+b^2)]}$$

$$=\frac{1}{4}\sqrt{(2b^2+2bc)(2bc-2b^2)}=\frac{1}{2}\sqrt{(bc+b^2)(bc-b^2)}=\frac{1}{2}\sqrt{b^2c^2-b^4}=\frac{1}{2}\sqrt{b^2(c^2-b^2)}$$

$$=\frac{1}{2}ab$$

Case $3 \angle C > 90^{\circ}$ or $\angle B > 90^{\circ}$ (WLOG assume $\angle C > 90^{\circ}$)

Let D be the foot of perpendicular from A to BC.

Let
$$CD = t$$
, $BD = a + t$, let $AD = h$.

$$h^2 = b^2 - t^2 = c^2 - (a+t)^2$$
 (Pythagoras' theorem)
 $b^2 - t^2 = c^2 - (a^2 + 2at + t^2)$
 $b^2 = c^2 - a^2 - 2at$

$$b^2 - t^2 = c^2 - (a^2 + 2at + t^2)$$

$$b^2 = c^2 - a^2 - 2at$$

$$t = \frac{c^2 - a^2 - b^2}{2a}$$

$$h^{2} = b^{2} - t^{2} = (b+t)(b-t)$$

$$= \left(b + \frac{c^{2} - a^{2} - b^{2}}{2a}\right) \left(b - \frac{c^{2} - a^{2} - b^{2}}{2a}\right)$$

$$= \left[c^{2} - (a^{2} - 2ab + b^{2})\right] \left(a^{2} + 2ab + b^{2} - c^{2}\right)$$

$$= \left[\frac{b + \frac{a}{2a}}{2a} \right] \left(b - \frac{a}{2a} \right)$$

$$= \left[\frac{c^2 - (a^2 - 2ab + b^2)}{2a} \right] \left(\frac{a^2 + 2ab + b^2 - c^2}{2a} \right)$$

$$= \frac{1}{(2a)^2} \left[c^2 - (a - b)^2 \right] \left[(a + b)^2 - c^2 \right]$$

$$= \frac{1}{(2a)^2} (c + a - b)(c - a + b)(a + b + c)(a + b - c) = \frac{1}{(2a)^2} (2s - 2b)(2s - 2a)(2s)(2s - 2c)$$

$$= \frac{4}{a^2} s(s-a)(s-b)(s-c) \Rightarrow h = \frac{2}{a} \sqrt{s(s-a)(s-b)(s-c)}$$

Area of
$$\triangle ABC = \frac{1}{2}ah = \frac{1}{2}a \times \frac{2}{a}\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{s(s-a)(s-b)(s-c)}$$