Coq チートシート

記号	使用	前	$ \Rightarrow$		使用後
	仮定	ゴール	tactic	仮定	ゴール
仮定	p:P	P	exact p.		証明終わり
\rightarrow		P -> Q	intro p0.	p0:P	Q
->	pq: P -> Q	Q	apply pq.	pq0: P -> Q	P
\wedge		P /\ Q	split.		(1/2) P
					(2/2) Q
/\	pq: P /\ Q		destruct pq	p0:P	
			as [p0 q0].	q0:Q	
V		P \/ Q	left.		P
			right.		Q
\/	pq:P \/ Q		destruct pq	(1/2) p0:P	
			as [p0 q0].	(2/2) q0:Q	
Т		True	exact I.		証明終わり
\perp	H:False		elim H.		証明終わり
		~P	intro p0.	p0:P	False
~	np:~P		elim np.	np:~P	P
\forall		forall x:X,	intro x0.	x0:X	f x0 y =
		f x y =			
forall	H:forall x:X,	f x0 =	exact (H x0).		証明終わり
	f x =				
3	x0:X	exists x:X,	exists x0.	x0:X	f x0 y =
		f x y =			
exists	H:exists x:X,		destruct H	x0:X	
	f x =		as [x0 H0].	H0:f x0 =	
βι簡約		簡約したい式	simpl.		簡約された式
等式		x = x	reflexivity.		証明終わり
書き換え	H:foo = bar	f foo = g bar	rewrite H.	H:foo = bar	f bar = g bar
	H:foo = bar	f foo = g bar	rewrite <- H.	H:foo = bar	f foo = g foo
		f foo = g bar	replace foo		(1/2) f baz = g bar
			with baz.		(2/2) baz = foo
構築子	H:C a = C b	P	injection H.	H:C a = C b	a=b -> P
		Ca = Cb	f_equal.		a=b
	H:C1 = C2		discriminate H.		証明終わり

名前の自動生成 intro. destruct x. などで自動的に名前を生成してくれるが、自分で名前を付ける方が良い習慣。

intros intros p q. で複数の intro を代用可能。

対象 simpl, rewrite, replace は simpl in H. や simpl in *. など tactic 対象を変更出来る。

場合分け destruct x. で x の (構築子毎の) 場合分けが出来る。似たものとして case_eq x. もある。

帰納法 induction x. でxの 帰納法が出来る。

generalize 仮定 x:X がある時、generalize dependent x. するとゴールが forall x:X, ... になる。

inversion injection, discriminate を纏めたような強力な tactic。仮定に対する場合分けが出来る。

e系 tactic eauto, eapply, erewrite などは定理名から引数を推測するので省略可能。

- assert 証明の途中で補題を作りたい時に assert(H:hogehoge). とすると、ゴールが hogehoge に切り替わる。証明が終わると H:hogehoge が仮定に追加される。
- remember remember (f foo bar) as x. とすると、仮定 Heqx:x = f foo bar が追加され、f foo bar が x で置き換えられる。remember して destruct, induction することもあり。
- **info** info auto. とすると、auto. の実行した中身を調べられる。(Coq 8.3 まで。)
- **fold/unfold** Definition f := ... で定義した定義を展開するのは unfold f で、逆が fold f。 unfold f; fold f. で元に戻るのではなく、いい感じに簡約されることがある。
- ring Require Import Ring. すると使える自動証明。ring. で環の等式 (加減算と乗算に関する等式) を解く。
- omega Require Import Omega. すると使える自動証明。omega. で一次式に関する等式不等式 (正確に は Presburger 算術の式) を解く。