Predict Crime: A comparative study between Chicago and Seattle using spatial and temporal approach

Methods and Initial Results

Name: Yangyang Dai

Research question:

How to predict crime using spatial and temporal approach in machine learning and how the results of this method differ between city Chicago and Seattle.

Data:

The first Chicago crime data set is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system (https://data.cityofchicago.org/Public- Safety/Crimes-2001-to-present/ijzp-q8t2). The data is recorded from 2001 to present with 22 attributes including 'ID', 'Case Number', 'Date', 'Block', 'IUCR', 'Primary Type', 'Description', 'Location Description', 'Arrest', 'Domestic', 'Beat', 'District', 'Ward', 'Community Area', 'FBI Code', 'X Coordinate', 'Y Coordinate', 'Year', 'Updated On', 'Latitude', 'Longitude', 'Location'. There are in total 6.57M instances of crimes. The following table is a snapshot of the raw data.

Fig 1. Chicago crime data

ID :	Case Numb	Date ↓ :	Block :	IUCR :	Primary Type :	Description :	Locat
11267718	JB201047	03/26/2018 11:55:00 PM	066XX S WESTERN AVE	0860	THEFT	RETAIL THEFT	GAS ST
11267724	JB201048	03/26/2018 11:45:00 PM	007XX S WELLS ST	1330	CRIMINAL TRESPASS	TO LAND	CONST
11267725	JB201049	03/26/2018 11:45:00 PM	117XX S THROOP ST	0910	MOTOR VEHICLE THEFT	AUTOMOBILE	STREE
11267755	JB201053	03/26/2018 11:40:00 PM	064XX W IRVING PARK RD	1330	CRIMINAL TRESPASS	TO LAND	GROCE
11267705	JB201038	03/26/2018 11:35:00 PM	068XX S ASHLAND AVE	502P	OTHER OFFENSE	FALSE/STOLEN/ALTERED TRP	STREET
11267737	JB201040	03/26/2018 11:30:00 PM	031XX S KEELER AVE	0326	ROBBERY	AGGRAVATED VEHICULAR HIJACKING	STREE
11267784	JB201062	03/26/2018 11:30:00 PM	040XX W MAYPOLE AVE	031A	ROBBERY	ARMED: HANDGUN	STREET
11267753	JB201044	03/26/2018 11:19:00 PM	039XX W 63RD ST	1812	NARCOTICS	POSS: CANNABIS MORE THAN 30GMS	STREET
11267813	JB201046	03/26/2018 11:15:00 PM	003XX W 109TH PL	0486	BATTERY	DOMESTIC BATTERY SIMPLE	RESIDE
11268448	JB202026	03/26/2018 11:15:00 PM	007XX W 47TH ST	1320	CRIMINAL DAMAGE	TO VEHICLE	STREET
11267714	JB201023	03/26/2018 11:10:00 PM	071XX S ASHLAND AVE	0320	ROBBERY	STRONGARM - NO WEAPON	STREET
11267792 JB201032 03/26/2018 11:08:00 PM		077XX S CORNELL AVE	1310	CRIMINAL DAMAGE	TO PROPERTY	RESIDE	
11267701	JB201028	03/26/2018 11:05:00 PM	033XX W WARNER AVE	1320	CRIMINAL DAMAGE	TO VEHICLE	STREET
11268384	IB201839	03/26/2018 11:05:00 PM	056XX S WABASH AVE	0620	BURGLARY	UNLAWFUL ENTRY	APART

The second Seattle crime dataset is obtained from all the Police responses to 9-1-1 from Seattle police department. (https://data.seattle.gov/Public-Safety/Seattle-Police Department-911-Incident-Response/3k2p-39jp?category=Public Safety&view_name=Seattle-Police-Department-911-Incident-Response) The data ranges from 2010 to 2017 and contains 19 attributes, 1.47M instances in total. The variables include 'CAD CDW ID', 'CAD Event Number',

'General Offense Number', 'Event Clearance Code', 'Event Clearance Description', 'Event Clearance SubGroup', 'Event Clearance Group', 'Event Clearance Date', 'Hundred Block Location', 'District/Sector', 'Zone/Beat', 'Census Tract', 'Longitude', 'Latitude', 'Incident Location', 'Initial Type Description', 'Initial Type Subgroup', 'Initial Type Group', 'At Scene Time'. The following table is a snapshot of the raw data.

Fig 1. Seattle crime data

Hundred Block Location :	District/Sect :	Zone/B∈ :	Census Tra	Longitude :	Latitude :	Incident Location
3 AV S / S WASHINGTON ST	K	K3	9200.2014	-122.330271593	47.600875809	(47.600875809°, -122.330271593°)
20XX BLOCK OF 15 AV W	Q	Q1	5802.2003	-122.37613941	47.636336049	(47.636336049°, -122.37613941°)
6 AV / YESLER WY	K	K3	9200.1002	-122.326350868	47.601708802	(47.601708802°, -122.326350868°)
86XX BLOCK OF 24 AV SW	F	F2	11401.2005	-122.363172642	47.525585666	(47.525585666°, -122.363172642°)
135XX BLOCK OF 23 AV NE	L	L1	200.6017	-122.304248161	47.727498035	(47.727498035°, -122.304248161°)
63XX BLOCK OF 29 AV SW	F	F1	10700.4001	-122.369833395	47.546493546	(47.546493546°, -122.369833395°)
MARTIN LUTHER KING JR WY S / S GENESEE ST	R	R2	10001.3006	-122.295370641	47.563805602	(47.563805602°, -122.295370641°)
CALIFORNIA AV SW / SW ALASKA ST	W	W2	10500.4003	-122.386778535	47.561104368	(47.561104368°, -122.386778535°)
24XX BLOCK OF AURORA AV N	Q	Q2	6000.2045	-122.346642846	47.641419741	(47.641419741°, -122.346642846°)
43XX BLOCK OF S FERDINAND ST	R	R3	10300.1002	-122.278843236	47.558197565	(47.558197565°, -122.278843236°)
68XX BLOCK OF 30 AV NE	U	U3	3800.1004	-122.29516869	47.678505415	(47.678505415°, -122.29516869°)
1XX BLOCK OF NW 81 ST	J	J2	2900.1014	-122.359311741	47.687664142	(47.687664142°, -122.359311741°)
26XX BLOCK OF S DEARBORN ST	G	G3	8900.4011	-122.298174668	47.595534943	(47.595534943°, -122.298174668°)
30XX BLOCK OF E UNION ST	С	C3	8800.1000	-122.293157653	47.612937729	(47.612937729°, -122.293157653°)

Models:

Random forests:

This is an ensemble learning method for classification, regression and other tasks. It operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes or mean prediction of the individual trees. Random decision forests tend to correct for decision trees' habit of overfitting to their training set.

Decision Tree with KNN filter:

In Order to achieve higher accuracy, a combination of two classifiers are used with decision tree model being created every time as data is entered KNN being implemented when the input is requested to be tested.

To be specific, A decision tree is a supervised learning algorithm that builds regression models in the form of a tree structure. It splits a dataset into smaller and smaller subsets and thus simultaneously develops associated decision trees incrementally. The final result is a tree with decision nodes and leaf nodes. While KNN does not use available training data to establish any general rules and it is non-parametric.

Variables:

Chicago Crime Data:

The original dataset with 22 variables and their data types are shown in the diagram below. Fig. Chicago crime data variables table

rig. Chicago crime data variables table						
<pre><class 'pandas.core.frame.dataframe'=""></class></pre>						
RangeIndex: 6591364 en	tries, 0 to 6591363					
Data columns (total 22	columns):					
ID	int64					
Case Number	object					
Date	object					
Block	object					
IUCR	object					
Primary Type	object					
Description	object					
Location Description	object					
Arrest	bool					
Domestic	bool					
Beat	int64					
District	float64					
Ward	float64					
Community Area	float64					
FBI Code	object					
X Coordinate	float64					
Y Coordinate	float64					
Year	int64					
Updated On	object					
Latitude	float64					
Longitude	float64					
Location	object					
dtypes: bool(2), float64(7), int64(3), object(10)						
memory usage: 1018.3+ MB						

Among 22 attributes, I picked variables ID, DATE, YEAR, DISTRICT, AND PRIMARY TYPE that are highly relevant to the center of research interests and transformed the dataset to the new data frame as shown below for model building purposes.

Fig. Chicago crime reduced variables

	ID	Year	District	month	day	time	tod	t	Primary Type
0	10000092.0	2015.0	11.0	3.0	18.0	07:44:00	РМ	T7	BATTERY
1	10000094.0	2015.0	7.0	3.0	18.0	11:00:00	РМ	T8	OTHER OFFENSE
2	10000095.0	2015.0	2.0	3.0	18.0	10:45:00	РМ	T8	BATTERY
3	10000096.0	2015.0	2.0	3.0	18.0	10:30:00	РМ	T8	BATTERY
4	10000097.0	2015.0	11.0	3.0	18.0	09:00:00	РМ	T8	ROBBERY

Seattle Dataset:

The original dataset with 19 variables and their data types are shown in the diagram below.

Fig. Seattle crime data variables

<pre><class 'pandas.core.frame.dataframe'=""></class></pre>							
RangeIndex: 1475610 entries, 0 to 1475609							
Data columns (total 19 columns):							
CAD CDW ID	1475610 non-null object						
CAD Event Number	1475610 non-null int64						
General Offense Number	1475610 non-null int64						
Event Clearance Code	1467647 non-null float64						
Event Clearance Description	1467646 non-null object						
Event Clearance SubGroup	1467646 non-null object						
Event Clearance Group	1467646 non-null object						
Event Clearance Date	1467541 non-null object						
Hundred Block Location	1472123 non-null object						
District/Sector	1474545 non-null object						
Zone/Beat	1475609 non-null object						
Census Tract	1472791 non-null float64						
Longitude	1475609 non-null float64						
Latitude	1475609 non-null float64						
Incident Location	1475609 non-null object						
Initial Type Description	897797 non-null object						
Initial Type Subgroup	897797 non-null object						
Initial Type Group	897797 non-null object						
At Scene Time 434811 non-null object							
<pre>dtypes: float64(4), int64(2), object(13)</pre>							
memory usage: 213.9+ MB							

Among 22 attributes, I picked variables CAD CDW ID, DISTRICT/SECTOR, EVENT CLEARANCE GROUP, DATE that are highly relevant to the center of research interests and transformed the dataset to the new data frame as shown below for model building purposes.

Fig. Seattle crime reduced variables

	CAD CDW ID	District/Sector	Event Clearance Group	month	day	time	tod	t	year
0	15736	М	DISTURBANCES	7	17	08:49:00	РМ	T7	2010
1	15737	Q	OTHER PROPERTY	7	17	08:50:00	РМ	T7	2010
2	15738	М	NUISANCE, MISCHIEF	7	17	08:55:00	РМ	T7	2010
3	15739	D	TRAFFIC RELATED CALLS	7	17	09:00:00	РМ	T8	2010
4	15740	D	NUISANCE, MISCHIEF	7	17	09:00:00	РМ	T8	2010

Methods:

The methods I use would be the same for the two data sets for the two cities.

Exploratory analysis:

The preliminary analysis includes visualizing relations between different variables and crime incidents. For example, the relation between year and crime rates, month and crime rates, day and crime rates, and crime types varieties.

Data preprocessing:

Based on the original dataset, I extracted the variables that are highly relevant to the center of research interests as shown in the above section. The steps I did to preprocess the raw data include:

- Dropped rows with Null values that appeared in the variables of interest
- Extracted Year, Month, Day, and Time from time series data
- Transformed time data from 12am to 12pm to eight categories of time slot (represented as 't' column in the new data frame)
 - o T1: 12am-3am
 - o T2: 3am-6am
 - o T3: 6am-9am
 - o T4: 9am-12pm
 - o T5:12pm-3pm
 - o T6: 3pm-6pm
 - o T7: 6pm-9pm
 - o T8: 9pm-12am
- Factorize Crime Type and Time Slot so that these two data can be used in random forests and decision trees

Model building:

- Split train and test data sets for two cities
- Build random forest classification models
- Test the models and find accuracy scores

Initial results:

Exploratory analysis

Chicago crime:

we can see from the above that:

- The total number of crimes tend to decrease slowly over the years in Chicago. The data in 2018 is incomplete so the volume is relatively small.
- In Chicago, districts 8, 12, 25 seem to have more crimes than the other districts from the graph.
- Throughout the year, month August and September seem to have relatively higher crimes than other months while February, November and December tend to have lower crimes.
- From the time slot graph, crimes occur more often within T1 and T7, which indicates 12am-3am and 6pm-9pm are two time frames that tend to more have crimes.
- Theft and Battery are two most common crime types in Chicago.

Seattle crime:

Compared to Chicago, we can see from the Seattle date set that:

- There is no particular pattern in crime counts distribution in Seattle over the years. And due to lack of data, the volumes of 2012 and 2018 are very small.
- Districts K and M seem to have more crimes than the other districts from the graph.
- Throughout the year, month August and July seem to have relatively higher crimes than other months while February and December tend to have lower crimes.
- From the time slot graph, crimes occur more often within T8 and T7, which indicates 9pm-12am and 6pm-9pm are two time frames that tend to more have crimes.
- Traffic related calls, suspicious circumstances, and disturbances are two most common crime types in Seattle.

Models:

The random forest model used to classify the Chicago crime data obtained the following results:

```
Train Accuracy :: 0.26939407655020875
Test Accuracy :: 0.2543163790850615
Confusion matrix [[
                         0
                                     2081 ...
                                                       1365
                                                                  0]
           197 66310 ...
       0
                                 0 68462
                                               0]
       0
            464 211241 ...
                                 0 179450
                                               0]
       0
              1
                   461 ...
                                 0
                                               0 ]
 [
                                      630
            393 144535 ...
       0
                                 0 339216
                                               0]
 [
                                     8406
                                               0]]
       0
             36
                12673 ...
                                 0
```

And the random forest model used to classify the Seattle crime data obtained the following results:

```
0.24107531501060928
Train Accuracy ::
Test Accuracy :: 0.21843350181982457
Confusion matrix [[511
                                                0 ]
                           0
                               2 ...
 [ 13
            0 ...
                   2
                         0
                             0 ]
 [ 70
        0
           22 ...
                    49
                         0
                             0]
 [ 63
            0 ... 447
                             0]
        0
                         0
   0
        0
            0 ...
                     0
                         0
                             0]
 [ 11
            1 ...
                     8
                         0
                             0]]
```

The above is only initial model exploration, I expect the model accuracy would increase after a complete transformation of data and incorporation of both decision trees and knn clustering methods.