Neural Networks on Graphs

Machine Learning
Federico Magnolfi & Niccolò Biondi
Prof. Paolo Frasconi

20 April 2020

Overview •00000

Overview

Graphs

Many application domains

Many **tasks**

Graphs

Many application domains

chemistry

Many tasks

graph classification

Graphs

Many application domains

- chemistry
- social networks

Many tasks

- graph classification
- node classification

Graphs: difficulties

Images

- regular structure
- ordered neighbors

Graphs: difficulties

Overview 00000

- regular structure
- ordered neighbors

Graphs

- irregular structure
- unordered neighbors

Overview 000

Graph: $\mathcal{G} = (A, X)$

Adjacency matrix: A

Feature matrix: X

Overview 000

Graph: $\mathcal{G} = (A, X)$

- Adjacency matrix: $A \in \mathbb{R}^{N \times N}$
- Feature matrix: $X \in \mathbb{R}^{N \times F}$
- *N* nodes, *F* features per node

Overview

000000

Graph: $\mathcal{G} = (A, X)$

- Adjacency matrix: $A \in \mathbb{R}^{N \times N}$
- Feature matrix: $X \in \mathbb{R}^{N \times F}$
- N nodes, F features per node
- Degree of node i: $D_{ii} = \sum_{i} A_{ij}$
- Graph Laplacian: $L = I_n D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$

Overview

000000

Graph: $\mathcal{G} = (A, X)$

- Adjacency matrix: $A \in \mathbb{R}^{N \times N}$
- Feature matrix: $X \in \mathbb{R}^{N \times F}$
- N nodes, F features per node
- Degree of node i: $D_{ii} = \sum_i A_{ij}$
- Graph Laplacian: $L = I_n D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$

Remark

A sparse \Rightarrow L sparse

Objective of this project

Objective

Overview

000000

Reproduce some **experimental results** of 4 papers on three different datasets

- 1 Planetoid (Yang et al., 2016)
- 2 ChebNet (Defferrard et al., 2016)
- 3 GCN (Kipf & Welling et al., 2017)
- 4 GAT (Veličković et al., 2018)

All these algorithms:

- use Neural Networks
- to predict node class
- in a **semi-supervised** setting

Overview 00000

Datasets: citation networks

	Cora	Citeseer	Pubmed
# Nodes	2708	3327	19717
# Edges	5429	4732	44338
# Features/Node	1433	3703	500
# Classes	7	6	3

Datasets: citation networks

	Cora	Citeseer	Pubmed
# Nodes	2708	3327	19717
# Edges	5429	4732	44338
# Features/Node	1433	3703	500
# Classes	7	6	3

■ Features: bag of words

Datasets: citation networks

	Cora	Citeseer	Pubmed
# Nodes	2708	3327	19717
# Edges	5429	4732	44338
# Features/Node	1433	3703	500
# Classes	7	6	3
# Training Nodes	140	120	60
# Validation Nodes	500	500	500
# Test Nodes	1000	1000	1000

■ Features: bag of words

Chebychev Networks (Defferrard et al., 2016)

Assume the graph is undirected

Assume the graph is undirected

A is symmetric

Assume the graph is undirected

A is symmetric

L is symmetric, real, and ≥ 0

Assume the graph is undirected

A is symmetric

L is symmetric, real, and ≥ 0

$$\exists U, \Lambda : L = U \Lambda U^T$$

U: eigenvectors matrixΛ: eigenvalues matrix

Assume the graph is undirected

A is symmetric

L is symmetric, real, and > 0

 $\exists U, \Lambda : L = U \Lambda U^T$

U: eigenvectors matrix Λ: eigenvalues matrix

Fourier Transform $\mathcal{F}(x) = U^T x$

Assume the graph is undirected

A is symmetric

L is symmetric, real, and > 0

 $\exists U, \Lambda : L = U \Lambda U^T$

U: eigenvectors matrix Λ: eigenvalues matrix

Fourier Transform $\mathcal{F}(x) = U^T x$

$$= U^T x$$
 \Downarrow

Inverse Fourier Transform

$$\mathcal{F}^{-1}(x) = Ux$$

Assume the graph is undirected

A is symmetric

L is symmetric, real, and ≥ 0

 $\exists U. \Lambda : L = U \Lambda U^T$

U: eigenvectors matrixΛ: eigenvalues matrix

Fourier Transform

$$\mathcal{F}(x) = U^T x$$

$$\downarrow$$

Inverse Fourier Transform

$$\mathcal{F}^{-1}(x) = Ux$$

Convolution

$$g * x = U(U^T g \odot U^T x)$$
$$= U g_{\theta} U^T x$$

Assume the graph is undirected

$$\downarrow \downarrow$$

A is symmetric

 $\it L$ is symmetric, real, and ≥ 0

$$\downarrow \downarrow$$

 $\exists U, \Lambda : L = U \Lambda U^T$

U: eigenvectors matrixΛ: eigenvalues matrix

Fourier Transform

$$\mathcal{F}(x) = U^T x$$

Inverse Fourier Transform

$$\mathcal{F}^{-1}(x) = Ux$$

Convolution

$$g * x = U(U^{\mathsf{T}} g \odot U^{\mathsf{T}} x)$$
$$= U g_{\theta} U^{\mathsf{T}} x$$

Spectral Convolutional GNN

Spectral ConvGNNs follow this definition and differ in the choice of g_{θ}

Assume the graph is undirected

$$\Downarrow$$

A is symmetric

L is symmetric, real, and > 0

$$\exists U. \Lambda : L = U \Lambda U^T$$

U: eigenvectors matrix

Λ: eigenvalues matrix

Fourier Transform

$$\mathcal{F}(x) = U^T x$$

Inverse Fourier Transform

$$\mathcal{F}^{-1}(x) = Ux$$

Convolution

$$g * x = U(U^T g \odot U^T x)$$

$$= Ug_{\theta}U^{T}x$$

Spectral Convolutional GNN

Spectral ConvGNNs follow this definition and differ in the choice of g_{θ}

Problems

N parameters per filter

2 filters not localized in space

ChebNet

ChebNet

$$T_k(Z) = \begin{cases} I_N, & \text{if } k = 0\\ Z, & \text{if } k = 1\\ 2ZT_{k-1}(Z) - T_{k-2}(Z), & \text{if } k > 1 \end{cases}$$

ChebNet

$$T_k(Z) = \begin{cases} I_N, & \text{if } k = 0\\ Z, & \text{if } k = 1\\ 2ZT_{k-1}(Z) - T_{k-2}(Z), & \text{if } k > 1 \end{cases}$$

$$\widetilde{\Lambda} = 2\Lambda/\lambda_{max} - I$$

$$\widetilde{L}=2L/\lambda_{max}-I_{n}$$

ChebNet

$$T_{k}(Z) = \begin{cases} I_{N}, & \text{if } k = 0 \\ Z, & \text{if } k = 1 \\ 2ZT_{k-1}(Z) - T_{k-2}(Z), & \text{if } k > 1 \end{cases} \qquad g_{\theta} \triangleq \sum_{k=0}^{K-1} \theta_{k} T_{k}(\widetilde{\Lambda})$$

$$\widetilde{\Lambda} = 2\Lambda/\lambda_{\textit{max}} - \textit{I}_{\textit{n}}$$

$$\widetilde{L}=2L/\lambda_{max}-I_{n}$$

ChebNet

$$T_{k}(Z) = \begin{cases} I_{N}, & \text{if } k = 0\\ Z, & \text{if } k = 1\\ 2ZT_{k-1}(Z) - T_{k-2}(Z), & \text{if } k > 1 \end{cases}$$
$$\widetilde{\Lambda} = 2\Lambda/\lambda_{max} - I_{n}$$

$$g_{\theta} \triangleq \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{\Lambda})$$

$$g_{\theta} * x = U \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{\Lambda}) U^T x$$

$$\widetilde{I} = 2I/\lambda = I$$

$$L=2L/\lambda_{max}-I_n$$

ChebNet

$$T_{k}(Z) = \begin{cases} I_{N}, & \text{if } k = 0 \\ Z, & \text{if } k = 1 \\ 2ZT_{k-1}(Z) - T_{k-2}(Z), & \text{if } k > 1 \end{cases}$$

$$\widetilde{\Lambda} = 2\Lambda/\lambda_{max} - I_{n}$$

$$\widetilde{L} = 2L/\lambda_{max} - I_{n}$$

$$g_{\theta} * x = U \sum_{k=0}^{K-1} \theta_{k} T_{k}(\widetilde{\Lambda}) U^{T} x$$

$$UT_k(\widetilde{\Lambda})U^T = T_k(\widetilde{L})$$

ChebNet

$$T_{k}(Z) = \begin{cases} I_{N}, & \text{if } k = 0 \\ Z, & \text{if } k = 1 \\ 2ZT_{k-1}(Z) - T_{k-2}(Z), & \text{if } k > 1 \end{cases} \qquad g_{\theta} \triangleq \sum_{k=0}^{K-1} \theta_{k} T_{k}(\widetilde{\Lambda})$$

$$\widetilde{\Lambda} = 2\Lambda/\lambda_{max} - I_{n} \qquad g_{\theta} * x = U \sum_{k=0}^{K-1} \theta_{k} T_{k}(\widetilde{\Lambda}) U^{T} x$$

$$UT_k(\widetilde{\Lambda})U^T = T_k(\widetilde{L})$$

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

Chebychev layer

$$\theta \in \mathbb{R}^K$$

$$T_k(\widetilde{L}) \in \mathbb{R}^{N \times N}$$

$$x \in \mathbb{R}^N$$

Single-filter, single-feature

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

Chebychev layer

$$\theta \in \mathbb{R}^K$$

 $\Theta \in \mathbb{R}^{K \times F_{in} \times F_{out}}$

$$T_k(\widetilde{L}) \in \mathbb{R}^{N \times N}$$

$$x \in \mathbb{R}^N$$

 $X \in \mathbb{R}^{N \times F_{in}}$

Single-filter, single-feature

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

Chebychev layer

$$\theta \in \mathbb{R}^{K}$$

$$\Theta \in \mathbb{R}^{K \times F_{in} \times F_{out}}$$

$$T_k(\widetilde{L}) \in \mathbb{R}^{N \times N}$$

$$x \in \mathbb{R}^N$$
$$X \in \mathbb{R}^{N \times F_{in}}$$

Single-filter, single-feature

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

Many filters, many features

$$G_{\Theta} * X = \sum_{k=0}^{K-1} T_k(\widetilde{L}) X \Theta_k$$

- \blacksquare T_k : cheb polynomial of order k
- X: input
- Θ: learnable weights

Chebychev layer: observations

$$G_{\Theta} * X = \sum_{k=0}^{K-1} T_k(\widetilde{L}) X \Theta_k$$

Sparsity

A is sparse $\Rightarrow L$, \widetilde{L} are sparse $\Rightarrow \{T_k(\widetilde{L})\}_k$ are sparse in practice

Chebychev layer: observations

$$G_{\Theta} * X = \sum_{k=0}^{K-1} T_k(\widetilde{L}) X \Theta_k$$

Sparsity

A is sparse $\Rightarrow L$, \widetilde{L} are sparse $\Rightarrow \{T_k(\widetilde{L})\}_k$ are sparse in practice

Considerations

- $T_k(\widetilde{L})X$: is a sparse-dense matmul
- $\blacksquare [T_k(\widetilde{L})X]\Theta_k$: is a dense matmul
- efficiently computed on parallel architectures

Graph Convolutional Networks (Kipf & Welling, 2017)

Graph Convolutional Networks

GCNs are a first-order approximations of ChebNet, i.e. K=2.

Graph Convolutional Networks

GCNs are a first-order approximations of ChebNet, i.e. K=2.

- approximate also: $\lambda_{max} \simeq 2$
- add the constraint: $\theta_0 = -\theta_1 \triangleq \theta$

GCN

Graph Convolutional Networks

Graph Convolutional Networks

GCNs are a first-order approximations of ChebNet, i.e. K=2.

- **approximate** also: $\lambda_{max} \simeq 2$
- add the constraint: $\theta_0 = -\theta_1 \triangleq \theta$

ChebNet convolution

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

Graph Convolutional Networks

GCNs are a first-order approximations of ChebNet, i.e. K=2.

- **a** approximate also: $\lambda_{max} \simeq 2$
- lacksquare add the constraint: $\theta_0 = -\theta_1 \triangleq \theta$

ChebNet convolution

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

GCN convolution

$$g_{\theta} * x = \theta (I_{N} + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$$

Graph Convolutional Networks

GCNs are a first-order approximations of ChebNet, i.e. K=2.

- **approximate** also: $\lambda_{max} \simeq 2$
- add the constraint: $\theta_0 = -\theta_1 \triangleq \theta$

ChebNet convolution

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

GCN convolution

$$g_{\theta} * x = \theta (I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$$

Instability

eigenvalues of $(\cdot) \in [0, 2]$

Graph Convolutional Networks

GCNs are a first-order approximations of ChebNet, i.e. K=2.

- approximate also: $\lambda_{max} \simeq 2$
- lacksquare add the constraint: $\theta_0 = -\theta_1 \triangleq \theta$

ChebNet convolution

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

GCN convolution

$$g_{\theta} * x = \theta (I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$$

Instability

eigenvalues of $(\cdot) \in [0,2]$

Renormalization trick

$$g_{\theta} * x = \theta(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}})x$$

Graph Convolutional Networks

GCNs are a first-order approximations of ChebNet, i.e. K=2.

- approximate also: $\lambda_{max} \simeq 2$
- add the constraint: $\theta_0 = -\theta_1 \triangleq \theta$

ChebNet convolution

$$g_{\theta} * x = \sum_{k=0}^{K-1} \theta_k T_k(\widetilde{L}) x$$

GCN convolution

$$g_{\theta} * x = \theta (I_{N} + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$$

Instability

eigenvalues of $(\cdot) \in [0,2]$

Renormalization trick

$$g_{\theta} * x = \theta(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}})x$$

Definition

$$M \triangleq \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}$$

$$\theta \in \mathbb{R}$$

$$M \in \mathbb{R}^{N \times N}$$

$$x \in \mathbb{R}^N$$

Single-filter, single-feature

$$g_{\theta} * x = \theta Mx$$

$$\theta \in \mathbb{R}$$

$$M \in \mathbb{R}^{N \times N}$$

$$\Theta \in \mathbb{R}^{F_{in} \times F_{out}}$$

$$x \in \mathbb{R}^N$$

$$X \in \mathbb{R}^{N \times F_{in}}$$

Single-filter, single-feature

$$g_{\theta} * x = \theta Mx$$

$$\theta \in \mathbb{R}$$

$$M \in \mathbb{R}^{N \times N}$$

$$\Theta \in \mathbb{R}^{F_{in} \times F_{out}}$$

$$x \in \mathbb{R}^N$$

$$X \in \mathbb{R}^{N \times F_{in}}$$

Single-filter, single-feature

$$g_{\theta} * x = \theta Mx$$

Many filters, many features

$$G_{\Theta} * X = MX\Theta$$

- M: renormalized matrix
- X: input
- Θ: learnable weights

Preprocessing

■ row-normalize X

Results for ChebNet and GCN

Method	Cora	Citeseer	Pubmed
ChebNet	81.2%	69.8%	74.4%
ChebNet*	82.0 ± 0.6%	70.5 ± 0.7%	75.2 ± 1.8%

^{*: (}our) 100 runs, Yang data split, optimization std

Results for ChebNet and GCN

Method	Cora	Citeseer	Pubmed
ChebNet	81.2%	69.8%	74.4%
ChebNet*	82.0 ± 0.6%	70.5 ± 0.7%	75.2 ± 1.8%
GCN	81.5%	70.3%	79.0%
GCN*	80.6 ± 0.6%	68.7 ± 0.9%	78.3 ± 0.5%

^{*: (}our) 100 runs, Yang data split, optimization std

Results for ChebNet and GCN

Method	Cora	Citeseer	Pubmed
ChebNet	81.2%	69.8%	74.4%
ChebNet*	82.0 ± 0.6%	70.5 ± 0.7%	75.2 ± 1.8%
GCN	81.5%	70.3%	79.0%
GCN*	80.6 ± 0.6%	68.7 ± 0.9%	78.3 ± 0.5%
# Features	1433	3703	500
# Classes	7	6	3

^{*: (}our) 100 runs, Yang data split, optimization std

Planetoid (Yang et al., 2016)

Some definitions

Assumption

A node and its neighbors (**instance** and its **graph context**) tend to have same labels.

Some definitions

Assumption

A node and its neighbors (instance and its graph context) tend to have same labels.

Semi-supervised framework loss

$$\mathcal{L} = \mathcal{L}_{s} + \lambda \mathcal{L}_{u}$$

$$\mathcal{L}_{s} = -\sum_{i=0}^{N} \sum_{i=0}^{K} y_{ij} log(\hat{y}_{ij})$$

 $\mathcal{L}_u \Rightarrow \mathsf{Embedding}$ vs Laplacian regularization

Planetoid Contributions

- Embeddings exploited on several points of view:
 - are incorporated into graph semi-supervised task
 - to learn the **distributional context** of instances
 - trained to predict class label and graph context of nodes

Planetoid Contributions

- Embeddings exploited on several points of view:
 - are incorporated into graph semi-supervised task
 - to learn the distributional context of instances
 - trained to predict class label and graph context of nodes

Proposed Frameworks

- Planetoid-T ⇒ Transductive
- Planetoid-I ⇒ Inductive

Embeddings

- Softmax layer on embeddings w.r.t. all nodes
- Similar instances close in embedding space
 - nearby nodes in the graph
 - nodes with same labels

Embeddings

- Softmax layer on embeddings w.r.t. all nodes
- Similar instances close in embedding space
 - nearby nodes in the graph
 - nodes with same labels

Embedding loss

Embedding learning methods minimize the **log loss** of predicting context from the embedding of an instance (Skipgram model)

$$\mathcal{L}_{u} = -\sum_{(i,c)} \log p(c|i) = -\sum_{(i,c)} \log \left(\frac{\exp(\mathbf{w}_{c}^{T} \mathbf{e}_{i})}{\sum_{c' \in \mathcal{C}} \exp(\mathbf{w}_{c'}^{T} \mathbf{e}_{i})} \right)$$

Planetoid-T

Two phases

- 1 pre-train
- 2 training

■ Pretrained Embeddings leveraged during labels classification

Planetoid-T

Two phases

- 1 pre-train
- 2 training

■ Pretrained Embeddings leveraged during labels classification

Planetoid-T

Two phases

- 1 pre-train
- 2 training

- Pretrained Embeddings leveraged during labels classification
- Total model loss: $\mathcal{L} = \mathcal{L}_s = \mathcal{L}_{softmax} + \mathcal{L}_{features} + \mathcal{L}_{embeddings}$

Planetoid-I

Two phases

- 1 pre-train
- 2 training

■ Embeddings as a parameterized function of feature vectors

Planetoid-I

Two phases

- 1 pre-train
- 2 training

■ Embeddings as a parameterized function of feature vectors

Planetoid-I

Two phases

- 1 pre-train
- 2 training

- Embeddings as a parameterized function of feature vectors
- Total model loss: $\mathcal{L} = \mathcal{L}_s + \lambda \mathcal{L}_u$

Experimental Results

Method	Cora	Citeseer	Pubmed
Planetoid	75.7%	64.7%	77.2%
Planetoid*	$73.1\pm0.9\%$	$62.3\pm1.1\%$	$73.5\pm0.7\%$

^{*: (}our) 100 runs, Yang data split, optimization std

Experimental Results

Method	Cora	Citeseer	Pubmed
Planetoid	75.7%	64.7%	77.2%
Planetoid*	$73.1\pm0.9\%$	$62.3\pm1.1\%$	$73.5\pm0.7\%$

Performances Gap

- The authors validate the model on test set
- Our model evaluated on validation set and later on test set
- We report mean and std

^{*: (}our) 100 runs, Yang data split, optimization std

Experimental Results

Method	Cora	Citeseer	Pubmed
Planetoid Planetoid*	75.7% 73.1 ± 0.9%	64.7% 62.3 ± 1.1%	77.2% 73.5 ± 0.7%
Planetoid*(max)	77.2 %	66.2 %	75.9 %

Performances Gap

- The authors validate the model on test set
- Our model evaluated on validation set and later on test set
- We report mean and std

^{*: (}our) 100 runs, Yang data split, optimization std

Graph Attention Networks (Veličković et al., 2018)

GAT Contributions

Anisotropy

- Attention to give different importance to neighbors
- Attention mechanism is shared to all nodes
 - no dependency on graph structure
 - graphs can be directed

GAT Contributions

Anisotropy

- Attention to give different importance to neighbors
- Attention mechanism is shared to all nodes
 - no dependency on graph structure
 - graphs can be directed

Considerations

- No spectral convolution
- Sparse and parallel computations (high efficiency)

Attention Layer

Layer Configuration

- Input: $\mathbf{h} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}, \vec{h}_i \in \mathbb{R}^F$
- lacksquare Output: $\mathbf{h}'=\{ec{h}_1',ec{h}_2',\ldots,ec{h}_N'\},ec{h}_i'\in\mathbb{R}^{F'}$

Attention Layer

Layer Configuration

- Input: $\mathbf{h} = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}, \vec{h}_i \in \mathbb{R}^F$
- lacksquare Output: $\mathbf{h}' = \{ ec{h}_1', ec{h}_2', \ldots, ec{h}_N' \}, ec{h}_i' \in \mathbb{R}^{F'}$

- Normalized Attention Coefficients
- 2 Attention Layer Activation

Attention Layer: Coefficients

For each node *i* and its neighborhood $(\forall j \in \mathcal{N}_i)$:

Attention Coefficient

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$$

- $\mathbf{W} \in \mathbb{R}^{F' \times F}$ linear transformation
- lacktriangle Attentional mechanism parametrized by lacktriangle $\mathbf{a} \in \mathbb{R}^{2F'}$

Attention Layer: Coefficients

For each node *i* and its neighborhood $(\forall i \in \mathcal{N}_i)$:

Attention Coefficient

$$e_{ij} = a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$$

- $\mathbf{W} \in \mathbb{R}^{F' \times F}$ linear transformation
- Attentional mechanism parametrized by $\mathbf{a} \in \mathbb{R}^{2F'}$

$$\alpha_{ij} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_k]\right)\right)}$$

Attention Layer: Activation

$$\alpha_{ij} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_k]\right)\right)}$$

Attention Layer: Activation

$$\alpha_{ij} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^T[\mathbf{W}\vec{h}_i\|\mathbf{W}\vec{h}_k]\right)\right)}$$

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \ \mathbf{W} \ \vec{h}_j \right)$$

Attention Layer: Activation

$$\alpha_{ij} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^{\mathcal{T}}[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_j]\right)\right)}{\sum_{k \in \mathcal{N}_i} \exp\left(\mathsf{LeakyReLU}\left(\vec{\mathbf{a}}^{\mathcal{T}}[\mathbf{W}\vec{h}_i \| \mathbf{W}\vec{h}_k]\right)\right)}$$

$$\vec{h}_i' = \prod_{k=1}^K \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij}^{\ k} \mathbf{W}^k \vec{h}_j \right)$$

$$\vec{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^K \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \vec{h}_j \right)$$

Preprocessing

■ row-normalize X

Preprocessing

■ row-normalize X

Model

Preprocessing

row-normalize X

Model

- loss: categorical cross-entropy
- regularization: L2 on model weights
- hyperparameters: different heads numbers

Preprocessing

■ row-normalize X

Model

- loss: categorical cross-entropy
- regularization: L2 on model weights
- hyperparameters: different heads numbers

Evaluation

metric: classification accuracy on test set

Method	Cora	Citeseer	Pubmed
GAT GAT*	· · · ·	$72.5\pm0.7\% \\ 71.7\pm0.7\%$	· ·

^{*: (}our) 100 runs, Yang data split, optimization std

Conclusions

Method	Cora	Citeseer	Pubmed
Planetoid	75.7%	64.7%	77.2%
Planetoid*	$73.1\pm0.9\%$	$62.3\pm1.1\%$	$73.5\pm0.7\%$
Planetoid**	$72.3\pm2.0\%$	$59.4\pm2.0\%$	$69.7\pm2.8\%$

^{*: (}our) 100 runs, Yang data split, optimization std

^{**: (}our) 100 runs, fixed model seed, data split std

Method	Cora	Citeseer	Pubmed
Planetoid	75.7%	64.7%	77.2%
Planetoid*	$73.1\pm0.9\%$	$62.3\pm1.1\%$	$73.5\pm0.7\%$
Planetoid**	$72.3 \pm 2.0\%$	$59.4\pm2.0\%$	$69.7 \pm 2.8\%$
ChebNet	81.2%	69.8%	74.4%
ChebNet*	$82.0\pm0.6\%$	$70.5\pm0.7\%$	$75.2\pm1.8\%$
ChebNet**	$78.9 \pm 1.8\%$	$68.2 \pm 1.9\%$	$73.4 \pm 2.4\%$

^{*: (}our) 100 runs, Yang data split, optimization std

^{**: (}our) 100 runs, fixed model seed, data split std

Method	Cora	Citeseer	Pubmed
Planetoid Planetoid* Planetoid**	75.7% $73.1 \pm 0.9\%$ $72.3 \pm 2.0\%$	64.7% 62.3 ± 1.1% 59.4 ± 2.0%	77.2% 73.5 ± 0.7% 69.7 ± 2.8%
ChebNet ChebNet* ChebNet**	81.2% $82.0 \pm 0.6\%$ $78.9 \pm 1.8\%$	69.8% 70.5 ± 0.7% 68.2 ± 1.9%	74.4% 75.2 ± 1.8% 73.4 ± 2.4%
GCN GCN* GCN**	81.5% $80.6 \pm 0.6\%$ $79.2 \pm 1.7\%$	$70.3\% \\ 68.7 \pm 0.9\% \\ 68.0 \pm 1.8\%$	79.0% $78.3 \pm 0.5\%$ $76.2 \pm 2.5\%$
GAT GAT* GAT**	$\begin{array}{c} 83.0\pm0.7\% \\ 83.1\pm0.4\% \\ 81.0\pm1.7\% \end{array}$	$72.5 \pm 0.7\% \\ 71.7 \pm 0.7\% \\ 69.7 \pm 1.7\%$	$\begin{array}{c} 79.0 \pm 0.3\% \\ 77.7 \pm 0.4\% \\ 77.4 \pm 2.4\% \end{array}$

^{*: (}our) 100 runs, Yang data split, optimization std

^{**: (}our) 100 runs, fixed model seed, data split std

Summary

Objective

Compare performances of **Planetoid**, **ChebNet**, **GCN**, **GAT** on Cora, Citeseer and Pubmed

Summary

Objective

Compare performances of **Planetoid**, **ChebNet**, **GCN**, **GAT** on Cora, Citeseer and Pubmed

Final Considerations

- Our models reach comparable results w.r.t. the proposed ones
- Higher std with different data splits

Summary

Objective

Compare performances of **Planetoid**, **ChebNet**, **GCN**, **GAT** on Cora, Citeseer and Pubmed

Final Considerations

- Our models reach comparable results w.r.t. the proposed ones
- Higher std with different data splits

Next

- Better benchmark framework for GNNs
- More realistic data split

Thanks for the attention

References I

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst, *Convolutional neural networks on graphs with fast localized spectral filtering*, 2016.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson, *Benchmarking graph neural networks*, 2020.

P. Frasconi, M. Gori, and A. Sperduti, *A general framework for adaptive processing of data structures*, IEEE Transactions on Neural Networks **9** (1998), no. 5, 768–786.

C. Giles, Kurt Bollacker, and Steve Lawrence, *Citeseer: An automatic citation indexing system*, Proceedings of 3rd ACM Conference on Digital Libraries (2000).

M. Gori, G. Monfardini, and F. Scarselli, *A new model for learning in graph domains*, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., vol. 2, 2005, pp. 729–734 vol. 2.

References II

Thomas N. Kipf and Max Welling, Semi-supervised classification with graph convolutional networks, 2016.

A.K. McCallum, Automating the construction of internet portals with machine learning, Information Retrieval 3 (2000), 127–163.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio, *Graph attention networks*, 2017.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu, *A comprehensive survey on graph neural networks*, IEEE Transactions on Neural Networks and Learning Systems (2020), 1–21.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov, *Revisiting semi-supervised learning with graph embeddings*, 2016.