Twierdzenie 1. (o lokalnej odwracalności)

Niech $f: E \to E, E$ - otwarty, $E \subset \mathbb{R}^N, f$ - różniczkowalna w sposób ciągły na E. $(f - klasy \ \mathcal{C}^1(E)), \underset{a,b \in E}{\exists} : f(a) = b \land f'(a)$ - odwracalna $(det(f'(a)) \neq 0)$, to:

1.
$$\underset{U,V \subset E}{\exists}$$
, $\underset{a \in U, b \in V}{\exists}$, U, V - otwarte, f - bijekcja między U, V

2.
$$\underset{g:V \rightarrow U}{\exists}. \ \forall v, f(g(x)) = x, g$$
- ciągła i różniczkowalna na V

Uwaga: Dowód składa się z trzech części:

- 1. Pokażemy, że $\underset{U\,V}{\exists}:f$ bijekcja na U,V
- 2. Pokażemy, że $U\!,V$ otwarte
- 3. Pokażemy, że $\overset{\frown}{\exists}_{g:V \to U}, g$ różniczkowalna na Vi ciągła.

Przykład 1.

$$f(x,y) = \begin{bmatrix} e^x \cos y \\ e^x \sin y \end{bmatrix}, f'(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}$$
$$det(f'(x,y)) = e^{2x} \neq 0, \text{ ale } f(x,y) = f(x,y+2\pi) \text{ (czyli funkcja jest okresowa)}$$

Dowód 1.

Część I:

Szukamy U, V: f - bijekcja miedzy U i V Skoro f'(a) - odwracalne, to znaczy, że $\exists (f'(a))^{-1}$, zatem $\exists \lambda : 2\lambda \| (f'(a))^{-1} \| = 1$

Wiemy, że f'(x) - ciągła w x = a, czyli

$$\bigvee_{\varepsilon>0} \exists \forall d(x,a) < \delta \implies ||f'(x) - f(a)|| < \varepsilon$$
 (1)

Połóżmy $\varepsilon = \lambda$.

Oznacza to, że

$$\exists \forall x \in K(a, \delta_{\lambda}) \implies ||f'(x) - f'(a)|| < \lambda$$
 (2)

Więc $U=K(a,\delta_{\lambda})$, niech V=f(U). Chcemy pokazać, że f - bijekcja między U i V. Wprowadźmy funkcję pomocniczą:

$$\varphi_y(x) = x + [f'(a)]^{-1}(y - f(x)), x, y \in E$$
(3)

Pytanie 1. Co by było gdyby $\varphi_y(x)$ posiadała punkt stały? (jakie własności x by z tego faktu wynikały)

 $dla \ x \in U, y \in V, (y \in f(a))$?

Z zasady Banacha wiemy, że odwzorowanie zwężające ma dokładnie jeden punkt stały, czyli $\forall \dots \exists y \in V \ x \in U$:

O f - z taką własnością mówimy, że jest 1-1 na U. (iksa nie obchodzą sąsiedzi, f musi być ciągle to będzie bijekcja) Policzmy $\varphi_y'(x) = \mathbb{I} + (f'(a))^{-1}(-f'(x)) = (f'(a))^{-1}(f'(a) - f'(x))$, więc $\|\varphi_y'(x)\| = \|f'(a)^{-1}(f'(a) - f'(x))\| \le \|(f'(a)^{-1})\| \|f'(a) - f'(x)\| \le \bigvee_{x \in U} \frac{1}{2\lambda} \lambda = \frac{1}{2}$

Pamiętamy, że jeżeli $\exists \|\varphi_y'(x)\| \leq M$, to $\forall \|\varphi(x) - \varphi(y)\| < M\|x - y\|$ Zatem skoro $\|\varphi_y'(x)\| \leq \frac{1}{2}$, to

$$\forall _{x_1, x_2 \in U} \|\varphi_y(x_1) - \varphi_y(x_2)\| \leqslant \frac{1}{2} \|x_1 - x_2\|,$$

więc φ - zwężający na U, więc posiada dokładnie jeden punkt stały $\bigvee_{y \in V}$. Zatem f - bijekcja między U i V.

Część II - otwartość U i V

1. Zbiór U - otwarty (bo tak go zdefiniowaliśmy) $(U = K(a, \delta_1))$, więc $\underset{x_0 \in U}{\exists}, \underset{r}{\exists} K(x_0, r) \subset U$, lub równoważnie $||x - x_0|| \le r \land x \in U$.

Chcemy pokazać, że dla $y_0 = f(x_0) \underset{K(y_0, \lambda_T) \subset V}{\exists}$, czyli że V - otwarty.

Rysunek 1: Trochę jak listy do św. Mikołaja (??)

Weźmy $y \in K(y_0, \lambda r)$. Zauważmy, że $\varphi_{y_1}(x_1)$ - zwężające, jeżeli $y_1 \in V, x_1 \in U$ Jeżeli pokażemy, że dla $\|y - y_0\| < \lambda r, \varphi_y(x)$ - zwężająca na $K(x_0, r) \subset U$, to będziemy wiedzieli, że $\|y - y_0\| < \lambda r$ oraz $y \in V \iff K(y_0, \lambda r) \subset V$

Žeby pokazać, że $\varphi_y(x)$ - zwężające na $K(x_0, r)$, zbadamy tę wielkośc dla $x \in K(x_0, r)$. $\|\varphi_y(x) - x_0\|$, chcielibyśmy, aby $\|\varphi_y(x) - x_0\| \le r$ i $\|y - y_0\| < \lambda r$, ale z drugiej strony

$$\|\varphi_y(x) - x_0\| = \|\varphi_y(x) - \varphi_y(x_0) + \varphi_y(x_0) - x_0\| \le \|\varphi_y(x) - \varphi_y(x_0)\| + \|\varphi_y(x_0 - x_0)\|$$

Ale $\|\varphi_y(x_0) - x_0\| \le \|(f'(a))^{-1}\| \|y - y_0\| \le \frac{1}{2\lambda} \lambda r = \frac{r}{2}$, wiệc $\|\varphi_y(x) - x_0\| \le r$, jeżeli $\|y - y_0\| < \lambda r$, $\|x - x_0\| \le r$.

Stąd wiemy , że punkt stały dla $\varphi_y(x): x \in K(x_0, r)$ należy do $K(x_0, r)$ i $||y - y_0|| < \lambda r$, zatem y = f(x), czyli V - otwarty.

Część III:

Szukamy $g: V \to U$

Skoro f- bijekcja między U i V, to znaczy, że $\underset{g:V\to U}{\exists} f(g(x)) = x \underset{x\in V}{\forall}.$

Chcemy pokazać, że g(x) - różniczkowalne. Wiemy, że f - różniczkowalna w $x \in U,$ czyli

$$\frac{f(x+h) - f(x) - f'(x)h}{\|h\|} \stackrel{h \to 0}{\to} 0, x, x+h \in V$$

Rysunek 2: Nie ok.

Jeżeli pokażemy, że

$$\frac{g(y+k) - g(y) - [f'(x)]^{-1}k}{\|k\|} \stackrel{k \to 0}{\to} 0$$
 (4)

to będziemy wiedzieli, że:

1. g - różniczkowalne dla $y \in V$

2.
$$g'(y) = [f'(x)]^{-1}$$
.

W tym celu pokażemy, że:

- 1. $(\|k\| \to 0) \implies (\|h\| \to 0)$
- 2. $[f'(x)]^{-1}$ istnieje dla $x \in U$. (na razie wiemy, że $(f'(a))^{-1}$ istnieje) Ad 1. Zauważmy, że

$$\varphi_y(x+h) - \varphi_y(x) = x + h + [f'(a)]^{-1}(y - f(x+h)) - x - [f'(a)]^{-1}(y - f(x)) =$$

$$= h + [f'(a)]^{-1}(y - f(x+h) - y + f(x)) = h - (f'(a))^{-1}(f(x+h) - f(x)),$$

$$czyli\|\varphi_y(x+h) - \varphi_y(x)\| = \|h - (f'(a))^{-1}(k)\| \le \frac{1}{2}\|h\|,$$

zatem $||h - (f'(a))^{-1}k|| \le \frac{1}{2}||h|| \Longrightarrow ||k|| \ge ||h||, k = f(x+h) - f(x)$ Stąd ostatecznie mamy: $\frac{g(y+k) - g(y) - [f'(x)]^{-1}k}{||k||} = [f'(x)]^{-1} \frac{hf'(x) - f(x+h) + f(x)}{||k||} \le \frac{[f'(x)]^{-1}}{\lambda} \frac{hf'(x) - f(x+h) + f(x)}{||h||} \to \frac{hf'(x) - f(x+h) + f(x)}{\lambda}$ 0, o ile $\exists_{[f'(x)]^{-1}}$

Pytanie 2. skąd wiadomo, że $(f'(x))^{-1}$?

Wiemy, że f'(a) jest odwracalna, więc $(f'(a))^{-1}$ istnieje, $a \in U$. Chcemy pokazać, że f'(x) jest odwracalna dla $x \in U$. Oznacza to, że

$$0 < ||f'(x)y|| dla y \neq 0, x \in U.$$

Pamiętamy, że $2\lambda \| (f'(a))^{-1} = 1$ oraz U - taka, że

$$\bigvee_{x \in U} ||f'(x) - f'(a)|| < \lambda.$$

Rysunek 3

 ${\rm Zatem}$

$$0 \leqslant \frac{1}{\|(f'(a))^{-1}\|} \|y\| = \|(f'(x) + f'(a) - f'(x))y\| \leqslant \|f'(a) - f'(x)\| \|y\| + \|f'(x)\| \|y\|.$$

Dalej
$$2\lambda\|y\|\leqslant \lambda\|y\|+\|f'(x)y\|$$
dla $x\in U$ 0 $\leqslant \lambda\|y\|\leqslant \|f'(x)y\|$ dla $y=0$ Czyli

$$\underset{x \in U}{\forall} \|f'(x)y\| > 0 \quad \Box.$$