Package 'mggd'

December 23, 2024
Title Multivariate Generalised Gaussian Distribution; Kullback-Leibler Divergence
Version 1.3.3
Maintainer Pierre Santagostini <pre><pre></pre></pre>
Description Distance between multivariate generalised Gaussian distributions, as presented by N. Bouhlel and A. Dziri (2019) <doi:10.1109 lsp.2019.2915000="">. Manipulation of multivariate generalised Gaussian distributions (methods presented by Gomez, Gomez-Villegas and Marin (1998) <doi:10.1080 03610929808832115=""> and Pascal, Bombrun, Tourneret and Berthoumieu (2013) <doi:10.1109 tsp.2013.2282909="">).</doi:10.1109></doi:10.1080></doi:10.1109>
Depends R (>= 4.3.0)
Imports MASS, rgl, lifecycle, data.table
License GPL (>= 3)
<pre>URL https://forgemia.inra.fr/imhorphen/mggd</pre>
<pre>BugReports https://forgemia.inra.fr/imhorphen/mggd/-/issues</pre>
Encoding UTF-8
RoxygenNote 7.3.2
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Pierre Santagostini [aut, cre], Nizar Bouhlel [aut]
Repository CRAN
Date/Publication 2024-12-23 00:30:02 UTC
Contents
mggd-package

2 mggd-package

mggd	-package	Тоо	olsj	for	· M	uli	tiv	ar	iat	e (Ge	ne	ra	liz	;ea	l G	fai	us	sia	ın	Di	st	ril	ш	tio	ns				
Index																														15
	rmggd	 •				•	•	•		•	•	•	•				•			•	٠	•	•	•		•	•		•	13
	pochhammer																													
	plotmggd																													
	Inpochhammer .																													
	lauricella																													
	kldggd																													7

Description

This package provides tools for multivariate generalized Gaussian distributions (MGGD):

- Calculation of distances/divergences between multivariate generalized Gaussian distributions:
 - Kullback-Leibler divergence: kldggd
- Tools for MGGD:
 - Probability density: dmggd
 - Estimation of the parameters: estparmggd
 - Simulation from a MGGD: rmggd
 - Plot of the density of a MGGD with 2 variables: plotmggd, contourmggd

Author(s)

Pierre Santagostini pierre.santagostini@agrocampus-ouest.fr, Nizar Bouhlel nizar.bouhlel@agrocampus-ouest.fr

References

- N. Bouhlel, A. Dziri, Kullback-Leibler Divergence Between Multivariate Generalized Gaussian Distributions. IEEE Signal Processing Letters, vol. 26 no. 7, July 2019. doi:10.1109/LSP.2019.2915000
- E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115
- F. Pascal, L. Bombrun, J.Y. Tourneret, Y. Berthoumieu. Parameter Estimation For Multivariate Generalized Gaussian Distribution. IEEE Trans. Signal Processing, vol. 61 no. 23, p. 5960-5971, Dec. 2013. doi:10.1109/TSP.2013.2282909 #' @keywords internal

See Also

Useful links:

- https://forgemia.inra.fr/imhorphen/mggd
- Report bugs at https://forgemia.inra.fr/imhorphen/mggd/-/issues

contourmggd 3

contourmggd	Contour Plot of the Bivariate Generalised Gaussian Density	

Description

Draws the contour plot of the probability density of the generalised Gaussian distribution with 2 variables with mean vector mu, dispersion matrix Sigma and shape parameter beta.

Usage

Arguments

mu	length 2 numeric vector.
Sigma	symmetric, positive-definite square matrix of order 2. The dispersion matrix.
beta	positive real number. The shape of the first distribution.
xlim, ylim	x-and y- limits.
zlim	z- limits. If NULL, it is the range of the values of the density on the x and y values within xlim and ylim.
npt	number of points for the discretisation.
nx, ny	number of points for the discretisation among the x- and y- axes.
main, sub	main and sub title, as for title.
nlevels, levels	arguments to be passed to the contour function.
tol	tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma, for the estimation of the density. see dmggd.
	additional arguments to plot.window, title, Axis and box, typically graphical parameters such as cex.axis.

Value

Returns invisibly the probability density function.

Author(s)

Pierre Santagostini, Nizar Bouhlel

4 dmggd

References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115

See Also

```
plotmggd: plot of a bivariate generalised Gaussian density.
```

dmggd: Probability density of a multivariate generalised Gaussian distribution.

Examples

```
mu <- c(1, 4)
Sigma <- matrix(c(0.8, 0.2, 0.2, 0.2), nrow = 2)
beta <- 0.74
contourmggd(mu, Sigma, beta)
```

dmggd

Density of a Multivariate Generalized Gaussian Distribution

Description

Density of the multivariate (p variables) generalized Gaussian distribution (MGGD) with mean vector mu, dispersion matrix Sigma and shape parameter beta.

Usage

```
dmggd(x, mu, Sigma, beta, tol = 1e-6)
```

Arguments

X	length p numeric vector.
mu	length p numeric vector. The mean vector.
Sigma	symmetric, positive-definite square matrix of order p . The dispersion matrix.
beta	positive real number. The shape of the distribution.
tol	tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.

dmggd 5

Details

The density function of a multivariate generalized Gaussian distribution is given by:

$$f(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\beta}) = \frac{\Gamma\left(\frac{p}{2}\right)}{\pi^{\frac{p}{2}}\Gamma\left(\frac{p}{2\boldsymbol{\beta}}\right)2^{\frac{p}{2\boldsymbol{\beta}}}} \frac{\boldsymbol{\beta}}{|\boldsymbol{\Sigma}|^{\frac{1}{2}}} e^{-\frac{1}{2}\left((\mathbf{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)^{\boldsymbol{\beta}}}$$

When p = 1 (univariate case) it becomes:

$$f(x|\mu,\sigma,\beta) = \frac{\Gamma\left(\frac{1}{2}\right)}{\pi^{\frac{1}{2}}\Gamma\left(\frac{1}{2\beta}\right)2^{\frac{1}{2\beta}}} \frac{\beta}{\sigma^{\frac{1}{2}}} e^{-\frac{1}{2}\left(\frac{(x-\mu)^2}{2\sigma}\right)^{\beta}} = \frac{\beta}{\Gamma\left(\frac{1}{2\beta}\right)2^{\frac{1}{2\beta}}\sqrt{\sigma}} e^{-\frac{1}{2}\left(\frac{(x-\mu)^2}{\sigma}\right)^{\beta}}$$

Value

The value of the density.

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115

See Also

rmggd: random generation from a MGGD.

estparmggd: estimation of the parameters of a MGGD.

plotmggd, contourmggd: plot of the probability density of a bivariate generalised Gaussian distribution.

Examples

```
mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
dmggd(c(0, 1, 4), mu, Sigma, beta)
dmggd(c(1, 2, 3), mu, Sigma, beta)
```

6 estparmggd

estparmggd	Estimation of the Parameters of a Multivariate Generalized Gaussian Distribution	

Description

Estimation of the mean vector, dispersion matrix and shape parameter of a multivariate generalized Gaussian distribution (MGGD).

Usage

```
estparmggd(x, eps = 1e-6, display = FALSE, plot = display)
```

Arguments

X	numeric matrix or data frame.
eps	numeric. Precision for the estimation of the beta parameter.
display	logical. When TRUE the value of the beta parameter at each iteration is printed.
plot	logical. When TRUE the successive values of the beta parameter are plotted,
	allowing to visualise its convergence.

Details

The μ parameter is the mean vector of x.

The dispersion matrix Σ and shape parameter: β are computed using the method presented in Pascal et al., using an iterative algorithm.

The precision for the estimation of beta is given by the eps parameter.

Value

A list of 3 elements:

- mu the mean vector.
- Sigma: symmetric positive-definite matrix. The dispersion matrix.
- beta non-negative numeric value. The shape parameter.

with two attributes attr(, "epsilon") (precision of the result) and attr(, "k") (number of iterations).

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

F. Pascal, L. Bombrun, J.Y. Tourneret, Y. Berthoumieu. Parameter Estimation For Multivariate Generalized Gaussian Distribution. IEEE Trans. Signal Processing, vol. 61 no. 23, p. 5960-5971, Dec. 2013. doi: 10.1109/TSP.2013.2282909

kldggd 7

See Also

```
dmggd: probability density of a MGGD.
rmggd: random generation from a MGGD.
```

Examples

kldggd

Kullback-Leibler Divergence between Centered Multivariate generalized Gaussian Distributions

Description

Computes the Kullback- Leibler divergence between two random variables distributed according to multivariate generalized Gaussian distributions (MGGD) with zero means.

Usage

```
kldggd(Sigma1, beta1, Sigma2, beta2, eps = 1e-06)
```

Arguments

Sigma1	symmetric, positive-definite matrix. The dispersion matrix of the first distribution.
beta1	positive real number. The shape parameter of the first distribution.
Sigma2	symmetric, positive-definite matrix. The dispersion matrix of the second distribution.
beta2	positive real number. The shape parameter of the second distribution.
eps	numeric. Precision for the computation of the Lauricella function (see lauricella). Default: 1e-06.

Details

Given X_1 , a random vector of \mathbb{R}^p (p > 1) distributed according to the MGGD with parameters $(\mathbf{0}, \Sigma_1, \beta_1)$ and X_2 , a random vector of \mathbb{R}^p distributed according to the MGGD with parameters $(\mathbf{0}, \Sigma_2, \beta_2)$.

The Kullback-Leibler divergence between X_1 and X_2 is given by:

$$KL(\mathbf{X}_{1}||\mathbf{X}_{2}) = \ln \left(\frac{\beta_{1}|\Sigma_{1}|^{-1/2}\Gamma\left(\frac{p}{2\beta_{2}}\right)}{\beta_{2}|\Sigma_{2}|^{-1/2}\Gamma\left(\frac{p}{2\beta_{1}}\right)} \right) + \frac{p}{2} \left(\frac{1}{\beta_{2}} - \frac{1}{\beta_{1}} \right) \ln 2 - \frac{p}{2\beta_{2}} + 2^{\frac{\beta_{2}}{\beta_{1}} - 1} \frac{\Gamma\left(\frac{\beta_{2}}{\beta_{1}} + \frac{p}{\beta_{1}}\right)}{\Gamma\left(\frac{p}{2\beta_{1}}\right)} \lambda_{p}^{\beta_{2}}$$

$$\times F_{D}^{(p-1)} \left(-\beta_{1}; \underbrace{\frac{1}{2}, \dots, \frac{1}{2}}_{p-1}; \frac{p}{2}; 1 - \frac{\lambda_{p-1}}{\lambda_{p}}, \dots, 1 - \frac{\lambda_{1}}{\lambda_{p}} \right)$$

where $\lambda_1 < ... < \lambda_{p-1} < \lambda_p$ are the eigenvalues of the matrix $\Sigma_1 \Sigma_2^{-1}$ and $F_D^{(p-1)}$ is the Lauricella *D*-hypergeometric Function.

This computation uses the lauricella function.

When p=1 (univariate case): let X_1 , a random variable distributed according to the generalized Gaussian distribution with parameters $(0, \sigma_1, \beta_1)$ and X_2 , a random variable distributed according to the generalized Gaussian distribution with parameters $(0, \sigma_2, \beta_2)$.

$$KL(X_1||X_2) = \ln\left(\frac{\frac{\beta_1}{\sqrt{\sigma_1}}\Gamma\left(\frac{1}{2\beta_2}\right)}{\frac{\beta_2}{\sqrt{\sigma_2}}\Gamma\left(\frac{1}{2\beta_1}\right)}\right) + \frac{1}{2}\left(\frac{1}{\beta_2} - \frac{1}{\beta_1}\right)\ln 2 - \frac{1}{2\beta_2} + 2^{\frac{\beta_2}{\beta_1} - 1}\frac{\Gamma\left(\frac{\beta_2}{\beta_1} + \frac{1}{\beta_1}\right)}{\Gamma\left(\frac{1}{2\beta_1}\right)}\left(\frac{\sigma_1}{\sigma_2}\right)^{\beta_2}$$

Value

A numeric value: the Kullback-Leibler divergence between the two distributions, with two attributes attr(, "epsilon") (precision of the result of the Lauricella function; 0 if the distributions are univariate) and attr(, "k") (number of iterations).

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel, A. Dziri, Kullback-Leibler Divergence Between Multivariate Generalized Gaussian Distributions. IEEE Signal Processing Letters, vol. 26 no. 7, July 2019. doi:10.1109/LSP.2019.2915000

See Also

dmggd: probability density of a MGGD.

Examples

```
beta1 <- 0.74
beta2 <- 0.55
Sigma1 <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
Sigma2 <- matrix(c(1, 0.3, 0.2, 0.3, 0.5, 0.1, 0.2, 0.1, 0.7), nrow = 3)
# Kullback-Leibler divergence
kl12 <- kldggd(Sigma1, beta1, Sigma2, beta2)</pre>
```

lauricella 9

```
kl21 <- kldggd(Sigma2, beta2, Sigma1, beta1)
print(kl12)
print(kl21)

# Distance (symmetrized Kullback-Leibler divergence)
kldist <- as.numeric(kl12) + as.numeric(kl21)
print(kldist)</pre>
```

lauricella

Lauricella D-Hypergeometric Function

Description

Computes the Lauricella *D*-hypergeometric Function function.

Usage

```
lauricella(a, b, g, x, eps = 1e-06)
```

Arguments

а	numeric.
b	numeric vector.
g	numeric.
X	numeric vector. x must have the same length as b.
eps	numeric. Precision for the nested sums (default 1e-06).

Details

If n is the length of the b and x vectors, the Lauricella D-hypergeometric Function function is given by:

$$F_D^{(n)}\left(a,b_1,...,b_n,g;x_1,...,x_n\right) = \sum_{m_1 \geq 0} ... \sum_{m_n \geq 0} \frac{(a)_{m_1+...+m_n}(b_1)_{m_1}...(b_n)_{m_n}}{(g)_{m_1+...+m_n}} \frac{x_1^{m_1}}{m_1!}...\frac{x_n^{m_n}}{m_n!}$$

where $(x)_p$ is the Pochhammer symbol (see pochhammer).

If $|x_i| < 1, i = 1, \dots, n$, this sum converges. Otherwise there is an error.

The eps argument gives the required precision for its computation. It is the attr(, "epsilon") attribute of the returned value.

Sometimes, the convergence is too slow and the required precision cannot be reached. If this happens, the attr(, "epsilon") attribute is the precision that was really reached.

Value

A numeric value: the value of the Lauricella function, with two attributes attr(, "epsilon") (precision of the result) and attr(, "k") (number of iterations).

10 Inpochhammer

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

N. Bouhlel, A. Dziri, Kullback-Leibler Divergence Between Multivariate Generalized Gaussian Distributions. IEEE Signal Processing Letters, vol. 26 no. 7, July 2019. doi:10.1109/LSP.2019.2915000

N. Bouhlel and D. Rousseau (2023), Exact Rényi and Kullback-Leibler Divergences Between Multivariate t-Distributions. IEEE Signal Processing Letters, vol. 30, pp. 1672-1676, October 2023. doi:10.1109/LSP.2023.3324594

1npochhammer

Logarithm of the Pochhammer Symbol

Description

Computes the logarithm of the Pochhammer symbol.

Usage

lnpochhammer(x, n)

Arguments

x numeric.

n positive integer.

Details

The Pochhammer symbol is given by:

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = x(x+1)...(x+n-1)$$

So, if n > 0:

$$log((x)_n) = log(x) + log(x+1) + ... + log(x+n-1)$$

If
$$n = 0$$
, $log((x)_n) = log(1) = 0$

Value

Numeric value. The logarithm of the Pochhammer symbol.

Author(s)

Pierre Santagostini, Nizar Bouhlel

plotmggd 11

See Also

```
pochhammer()
```

Examples

```
lnpochhammer(2, 0)
lnpochhammer(2, 1)
lnpochhammer(2, 3)
```

plotmggd

Plot of the Bivariate Generalised Gaussian Density

Description

Plots the probability density of the generalised Gaussian distribution with 2 variables with mean vector mu, dispersion matrix Sigma and shape parameter beta.

Usage

Arguments

mu	length 2 numeric vector.
Sigma	symmetric, positive-definite square matrix of order 2. The dispersion matrix.
beta	positive real number. The shape of the distribution.
xlim, ylim	x-and y- limits.
n	A one or two element vector giving the number of steps in the x and y grid, passed to plot3d.function.
xvals, yvals	The values at which to evaluate \boldsymbol{x} and \boldsymbol{y} . If used, \boldsymbol{x} lim and/or \boldsymbol{y} lim are ignored.
xlab, ylab, zlab	The axis labels.
col	The color to use for the plot. See plot3d.function.
tol	tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma, for the estimation of the density. see $dmggd$.
	Additional arguments to pass to plot3d.function.

Value

Returns invisibly the probability density function.

12 pochhammer

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115

See Also

contourmggd: contour plot of a bivariate generalised Gaussian density.

dmggd: Probability density of a multivariate generalised Gaussian distribution.

Examples

```
mu <- c(1, 4)
Sigma <- matrix(c(0.8, 0.2, 0.2, 0.2), nrow = 2)
beta <- 0.74
plotmggd(mu, Sigma, beta)
```

pochhammer

Pochhammer Symbol

Description

Computes the Pochhammer symbol.

Usage

```
pochhammer(x, n)
```

Arguments

x numeric.

n positive integer.

Details

The Pochhammer symbol is given by:

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = x(x+1)...(x+n-1)$$

Value

Numeric value. The value of the Pochhammer symbol.

rmggd 13

Author(s)

Pierre Santagostini, Nizar Bouhlel

Examples

```
pochhammer(2, 0)
pochhammer(2, 1)
pochhammer(2, 3)
```

rmggd

Simulate from a Multivariate Generalized Gaussian Distribution

Description

Produces one or more samples from a multivariate (p variables) generalized Gaussian distribution (MGGD).

Usage

```
rmggd(n = 1 , mu, Sigma, beta, tol = 1e-6)
```

Arguments

n	integer. Number of observations.
mu	length p numeric vector. The mean vector.
Sigma	symmetric, positive-definite square matrix of order p . The dispersion matrix.
beta	positive real number. The shape of the distribution.
tol	tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma.

Details

A sample from a centered MGGD with dispersion matrix Σ and shape parameter β can be generated using:

$$X = \tau \; \Sigma^{1/2} \; U$$

where U is a random vector uniformly distributed on the unit sphere and τ is such that $\tau^{2\beta}$ is generated from a distribution Gamma with shape parameter $\frac{p}{2\beta}$ and scale parameter 2.

This property is used to generate a sample from a MGGD.

Value

A matrix with p columns and n rows.

14 rmggd

Author(s)

Pierre Santagostini, Nizar Bouhlel

References

E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115

See Also

```
dmggd: probability density of a MGGD.. estparmggd: estimation of the parameters of a MGGD.
```

Examples

```
mu <- c(0, 0, 0)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
beta <- 0.74
rmggd(100, mu, Sigma, beta)
```

Index

```
Axis, 3
box, 3
contour, 3
\mathtt{contourmggd}, 2, 3, 5, 12
dmggd, 2-4, 4, 7, 8, 11, 12, 14
\mathtt{estparmggd}, 2, 5, 6, 14
graphical parameters, 3
kldggd, 2, 7
lauricella, 7, 8, 9
1npochhammer, 10
\mathsf{mggd}\,(\mathsf{mggd}\text{-}\mathsf{package}),\,\mathbf{2}
mggd-package, 2
plot.window, 3
plot3d.function, 11
plotmggd, 2, 4, 5, 11
pochhammer, 9, 12
pochhammer(), 11
rmggd, 2, 5, 7, 13
title, 3
```