MATH 4108: Abstract Algebra II

Frank Qiang Instructor: Jennifer Hom

Georgia Institute of Technology Spring 2024

Contents

1	Jan. 8 — Rings and Fields	2
	1.1 Lots of Definitions	2
2	Jan. 10 — Field of Fractions, Polynomials	5
	2.1 Isomorphisms	5
	2.2 Field of Fractions	6
	2.3 The Characteristic of a Field	7
	2.4 Polynomials	8
3	Jan. 17 — Irreducible Polynomials	9
	3.1 Principal Ideal Domains and Irreducibile Polynomials	9
	3.2 Irreducible Polynomials over \mathbb{C} , \mathbb{R} , \mathbb{Q} , and \mathbb{Z}	10
4	Jan. 22 — Field Extensions	14
	4.1 More on Irreducibility	14
	4.2 Field Extensions	

Jan. 8 — Rings and Fields

1.1 Lots of Definitions

Recall the definitions of a ring and a field:

Definition 1.1 (Ring). A ring $R = (R, +, \cdot)$ is a non-empty set R together with two binary operations + and \cdot , called addition and multiplication respectively, which satisfy:

- (R1) Associative law for addition: (a+b)+c=a+(b+c) for all $a,b,c\in R$.
- (R2) Commutative law for addition: a + b = b + a for all $a, b \in R$.
- (R3) Existence of zero: There exists $0 \in R$ such that a + 0 = a for all $a \in R$.
- (R4) Existence of additive inverses: For all $a \in R$, there exists $-a \in R$ such that a + (-a) = 0.1
- (R5) Associative law for multiplication: (ab)c = a(bc) for all $a, b, c \in R$.
- (R6) Distributive laws: a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$.

Definition 1.2 (Commutative ring). In this class, we will mostly be interested in *commutative rings*, which satisfy the following additional property for multiplication:

(R7) Commutative law for multiplication: ab = ba for all $a, b \in R$.

Definition 1.3 (Ring with unity). A ring with unity satisfies the additional property that

(R8) Existence of unity: There exists $1 \neq 0 \in R$ such that and a1 = 1a = a for $a \in R$.

Note that a ring need not be commutative to have a unity.

Definition 1.4 (Domain). A commutative ring with unity is called a *(integral) domain* if it has the following cancellation property:

- (R9) Cancellation: For all $a, b \in R$ and $c \neq 0$, ca = cb implies a = b.
- (R9') No zero divisors: For all $a, b \in R$, ab = 0 implies a = 0 or b = 0.

The conditions (R9) and (R9') are equivalent.

Definition 1.5 (Field). A commutative ring with unity is called a *field* if it has the following additional property for multiplicative inverses:

(R10) Existence of multiplicative inverses: For all $a \neq 0 \in R$, there exists $a^{-1} \in R$ such that $aa^{-1} = 1$.

¹Note that we'll usually write a - b in place of a + (-b).

Example 1.5.1. Some examples of rings are $\mathbb{Z}/2\mathbb{Z}$, which also happens to be a field. The ring \mathbb{Z} is a domain. The set $M_{2\times 2}(\mathbb{R})$ is a non-commutative ring with unity, and has zero divisors. The ring \mathbb{Q} is a field. The real polynomials in a single variable $\mathbb{R}[x]$ form a ring, which is a domain but not a field. The complex numbers \mathbb{C} and the real numbers \mathbb{R} both form a field. The even integers $2\mathbb{Z}$ form a commutative ring without unity. In general, $\mathbb{Z}/n\mathbb{Z}$ is a commutative ring with unity, and is a field if and only if n is prime (and has zero divisors otherwise, if n is composite).

Remark. If $(R, +, \cdot)$ is a ring, then (R, +) is an abelian group. If $(K, +, \cdot)$ is a field, then (K^*, \cdot) is an abelian group, where $K^* = K \setminus \{0\}$.

Definition 1.6 (Group of units). Let R be a commutative ring with unity. The group of units of R is

$$U = \{u \in R \mid \text{there exists } v \in R \text{ such that } uv = 1\}.$$

Exercise 1.1. Show that U is in fact a group under multiplication.

Definition 1.7 (Associate). If $a, b \in R$ such that a = ub for some $u \in U$, then a and b are called associates, denoted by $a \sim b$.

Exercise 1.2. Show that \sim is in fact an equivalence relation.

Example 1.7.1. The group of units of \mathbb{Z} is $\{1, -1\}$. The group of units of a field K is $K^* = K \setminus \{0\}$.

Exercise 1.3. Let $R = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Check the following:

- 1. R is a commutative ring with unity.
- 2. The group of units of R is $\{a+b\sqrt{2} \mid a,b\in\mathbb{Z}, |a^2-2b^2|=1\}$.

Definition 1.8 (Divisor). Let D be an integral domain, $a \in D \setminus \{0\}$, $b \in D$. Then a divides b, or a is a divisor or factor of b, denoted by a|b, if there exists $z \in D$ such that az = b. We write $a \nmid b$ if a does not divide b. We say that a is a proper divisor or that a properly divides b if z is not a unit.

Remark. Equivalent, a is a proper divisor of b if and only if a|b and $b\nmid a$.

Definition 1.9 (Subring). A subring U of a ring R is a non-empty subset of R with the property that for all $a, b \in R$, $a, b \in U$ implies $a + b \in U$ and $ab \in U$, and $a \in U$ implies $-a \in U$.

Remark. Equivalently, U is a subring of R if and only if $a, b \in U$ implies $a - b \in U$ and $ab \in U$.

Remark. We automatically have $0 \in U$ since we can pick any $a \in U$, and then $0 = a - a \in U$.

Definition 1.10 (Subfield). A *subfield* of a field K is a subset E containing at least two elements such that $a, b \in E$ implies $a - b \in E$ and $a \in E, b \in E \setminus \{0\}$ implies $ab^{-1} \in E$. If E is a subfield and $E \neq K$, then we say E is a *proper* subfield.

Remark. As before, we can replace the last condition with the equivalent statement that $a, b \in E$ implies $ab \in E$ and $a \in E \setminus \{0\}$ implies $a^{-1} \in E$.

Definition 1.11 (Ideal). An *ideal* of R is a non-empty subset I of R with the properties that $a, b \in I$ implies $a - b \in I$ and $a \in I, r \in R$ implies $ra \in I$.

Remark. All ideals are subrings, but the converse is not true in general.

Example 1.11.1. The integers \mathbb{Z} form a subring of \mathbb{R} but not an ideal.

²In fact, \mathbb{Q} is somehow the smallest field containing \mathbb{Z} .

Remark. We trivially have that $\{0\}$ and R are both ideals of R. An ideal I is called *proper* if $\{0\} \subseteq I \subseteq R$.

Theorem 1.1. Let $A = \{a_1, \ldots, a_n\}$ be a finite subset of a commutative ring R. Then the set

$$Ra_1 + \dots + Ra_n = \{x_1a_1 + \dots + x_na_n \mid x_i \in R\}$$

is the smallest ideal of R containing A.

Proof. See Howie. Check this is indeed an ideal and is contained in any other ideal containing A. \square

Definition 1.12 (Ideals generated by elements of a ring). The set $Ra_1 + \cdots + Ra_n$ is the *ideal generated* by a_1, \ldots, a_n , denoted by $\langle a_1, \ldots, a_n \rangle$. If the ideal is generated by a single element $a \in R$, then we say that $Ra = \langle a \rangle$ is a *principal ideal*.

Example 1.12.1. In \mathbb{Z} , the ideal $\langle 2 \rangle = 2\mathbb{Z}$ are the even numbers. We have $\langle 2, 3 \rangle = \mathbb{Z}$, but $\langle 6, 8 \rangle = \langle 2 \rangle$.

Theorem 1.2. Let D be an integral domain with group of units U and let $a, b \in D \setminus \{0\}$. Then

- 1. $\langle a \rangle \subseteq \langle b \rangle$ if and only if b|a,
- 2. $\langle a \rangle = \langle b \rangle$ if and only if $a \sim b$,
- 3. $\langle a \rangle = D$ if and only if $a \in U$.

Proof. See Howie. \Box

Definition 1.13 (Homomorphism of rings). A homomorphism from a ring R to a ring S is a mapping $\varphi: R \to S$ such that $\varphi(a +_R b) = \varphi(a) +_S \varphi(b)$ and $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$.

Example 1.13.1. The zero mapping $\varphi(a) = 0$ is always a homomorphism. The inclusion map $\iota : 2\mathbb{Z} \to \mathbb{Z}$ or $\iota : \mathbb{Z} \to \mathbb{Q}$ is a homomorphism.

Theorem 1.3. Let R, S be rings and $\varphi: R \to S$ a homomorphism. Then

- 1. $\varphi(0_R) = 0_S$,
- 2. $\varphi(-r) = -\varphi(r)$ for all $r \in R$,
- 3. the image $\varphi(R)$ is a subring of S.

Proof. See Howie. \Box

Definition 1.14 (Monomorphism). Let $\varphi : R \to S$ be a homomorphism. If φ is injective, we say that φ is a *monomorphism* or an *embedding*.

Example 1.14.1. The inclusion map $\varphi : \mathbb{Z} \to \mathbb{R}$ given by $\varphi(n) = n$ is an embedding.

Jan. 10 — Field of Fractions, Polynomials

2.1 Isomorphisms

Definition 2.1 (Isomorphism). If a homomorphism $\varphi : R \to S$ is both one-to-one and onto, then φ is an *isomorphism* and we say R and S are *isomorphic*, denoted $R \cong S$.

Definition 2.2 (Automorphism). An isomorphism $\varphi: R \to R$ is called an *automorphism*.

Example 2.2.1. For any ring R, the identity map $\varphi: R \to R$ with $\varphi = \mathrm{id}$ is an automorphism.

Exercise 2.1. The complex conjugation $\varphi : \mathbb{C} \to \mathbb{C}$ with $\varphi(z) = \overline{z}$ is an automorphism.

Definition 2.3 (Kernel). Let $\varphi: R \to S$ be a homomorphism. The kernel of φ is

$$\ker \varphi = \phi^{-1}(0_S) = \{ a \in R : \varphi(a) = 0_S \}.$$

Exercise 2.2. For any homomorphism φ , ker φ is an ideal.

Definition 2.4 (Residue class). Let I be an ideal of a ring R and $a \in R$. The set

$$a+I=\{a+x\mid x\in I\}$$

is the $residue\ class$ of a modulo I.

Exercise 2.3. The set R/I of residue classes modulo I forms a ring with respect to the operations

$$(a+I) + (b+I) = (a+b) + I$$
 and $(a+I)(b+I) = ab + I$.

Exercise 2.4. The map $\theta_I: R \to R/I$ with $\theta_I(a) = a + I$ is a surjective homomorphism onto R/I with kernel I. This map θ_I is called the *natural homomorphism* from R to R/I.

Example 2.4.1. Consider \mathbb{Z} and $I = \langle n \rangle = n\mathbb{Z}$. Then $\theta_I : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ with $\theta_I(a) = a + \langle n \rangle$ is the natural homomorphism. There are n residue classes, which are

$$\langle n \rangle$$
, $1 + \langle n \rangle$, ..., $(n-1) + \langle n \rangle$.

Theorem 2.1. Let $n \in \mathbb{Z}_{>0}$. Then $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is prime.

Proof. See Howie.
$$\Box$$

Remark. If n = 0, then $\mathbb{Z}/0\mathbb{Z} \cong \mathbb{Z}$.

Theorem 2.2. Let $\varphi: R \to S$ be a surjective homomorphism with kernel K. Then there is an isomorphism $\alpha: R/K \to S$ such that the following diagram commutes (i.e. $\varphi = \alpha \circ \theta_K$):

$$R \xrightarrow{\varphi} S$$

$$\theta_K \downarrow \qquad \alpha \qquad \qquad S$$

$$R/K$$

Proof. See Howie. But the general idea is to define $\alpha: R/K \to S$ by $\alpha(a+K) = \varphi(a)$. Then need to check that α is well-defined and an isomorphism.

2.2 Field of Fractions

The motivating question is: How do we get from \mathbb{Z} to \mathbb{Q} ? Recall that

$$\mathbb{Q} = \{ a/b \mid a, b \in \mathbb{Z}, b \neq 0 \},\$$

where a/c = b/d if ad = bc. We add and multiply fractions by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

How do we do this more generally (construct a field out of an arbitrary integral domain)?

Definition 2.5 (Field of fractions of a domain). Let D be an integral domain and

$$P = D \times (D \setminus \{0\}) = \{(a, b) \mid a, b \in D, b \neq 0.\}$$

Define an equivalence relation \equiv on P by $(a,b) \equiv (a',b')$ if ab'=a'b. Then the field of fractions of D is

$$Q(D) = P/\equiv.$$

We denote the equivalence class [a,b] by a/b, i.e. a/b=c/d if ad=bc. We define addition and multiplication on Q(D) by

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

Exercise 2.5. Do the following:

- 1. Check that \equiv is an equivalence relation.
- 2. Check that these operations are well-defined.
- 3. Check that Q(D) is a commutative ring with unity.
 - The zero element is 0/b for $b \neq 0$.
 - The unity element is a/a for $a \neq 0$.
 - The negative of a/b is (-a)/b or equivalently a/(-b).
 - The multiplicative inverse of a/b is b/a for $a, b \neq 0$.
- 4. Complete the previous exercise and check that Q(D) is a field.

Exercise 2.6. The map $\varphi: D \to Q(D)$ defined by $\varphi(a) = a/1$ is a monomorphism. In particular, the field of fractions Q(D) contains D as a subring and Q(D) is the smallest field containing D, in the sense that if K is a field with the property that there exists a monomorphism $\theta: D \to K$, then there exists a monomorphism $\psi: Q(D) \to K$ such that the following diagram commutes:

$$D \xrightarrow{\theta} K$$

$$\varphi \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Q(D)$$

2.3 The Characteristic of a Field

Note that for $a \in R$, we might write a + a as 2a and $a + a + \cdots + a$ (n times) as na. Furthermore, $0a = 0_R$ and (-n)a = n(-a) for $n \in \mathbb{Z}_{>0}$. Thus na has meaning for all $n \in \mathbb{Z}$.

Exercise 2.7. For $a, b \in R$ and $m, n \in \mathbb{Z}$, we have (ma)(nb) = (mn)(ab).

Definition 2.6 (Characteristic of a ring). For an arbitrary ring R, there are two possibilities:

- 1. $m1_R$ for $m \in \mathbb{Z}$ are all distinct. In this case, we say that R has characteristic 0.
- 2. There exists $m, n \in \mathbb{N}$ such that $m1_R = (m+n)1_R$. In this case, we say that R has *characteristic* n, where n is the least positive n for which this property holds.

We denote the characteristic of R by char R. If char R = n, then $na = 0_R$ for all $a \in R$ since

$$na = (n1_R)a = 0a = 0.$$

Example 2.6.1. We have char $\mathbb{Z}/n\mathbb{Z} = n$.

Theorem 2.3. The characteristic of a field is either 0 or a prime.

Proof. Let K be a field and suppose char $K = n \neq 0$ and n is not prime. Then we can write n = rs where 1 < r, s < n. The minimal property of n implies that $r1_K \neq 0$ and $s1_K \neq 0$. But then

$$r1_K \cdot s1_K = rs1_K = n1_K = 0,$$

which is impossible since K is a field and thus has no zero divisors.

Remark. Note the following:

1. If K is a field with char K = 0, then K has a subring isomorphic to \mathbb{Z} , i.e. elements of the form $n1_K$ for $n \in \mathbb{Z}$, and K has a subfield isomorphic to \mathbb{Q} , i.e.

$$P(K) = \{ m1_K / n1_K \mid m, n \in \mathbb{Z}, n \neq 0 \}.$$

This is the *prime subfield* of K, and any subfield of K must contain P(K).

2. If K is a field with char K = p, then the prime subfield of K is

$$P(K) = \{1_K, 2 \cdot 1_K, \dots, (p-1) \cdot 1_K\},\$$

which is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

¹This is saying that any abelian group is naturally a *module* over the integers \mathbb{Z} .

Remark. In other words, every field of characteristic 0 is an *extension* of \mathbb{Q} (contains \mathbb{Q} as a subfield), and every field of characteristic p is an *extension* of $\mathbb{Z}/p\mathbb{Z}$ (contains $\mathbb{Z}/p\mathbb{Z}$ as a subfield).

Remark. If char K = 0, then writing $a/n1_K$ as a/n is fine. But if char K = p, then a/n does not make sense when p|n (since $p \cdot 1_K = 0$).

Theorem 2.4. If K is a field with char K = p, then for all $x, y \in K$, $(x + y)^p = x^p + y^p$.

Proof. See Howie. Uses the binomial theorem.

2.4 Polynomials

Let R be a ring, then we have the polynomial ring over R

$$R[X] = \{a_0 + a_1X + \dots + a_nX^n \mid a_i \in R, n \in \mathbb{N}\}.$$

If $f \in R[X]$, then it has degree n if the last nonzero element in the sequence $\{a_0, a_1, \dots\}$ is a_n , denoted $\partial f = n$. By convention, the zero polynomial has degree $-\infty$. The coefficient a_n is called the *leading coefficient*, and if $a_n = 1$, then f is *monic*. Addition and multiplication work as expected:

$$(a_0 + a_1X + \dots + a_mX^m) + (b_0 + b_1X + \dots + b_nX^n) = (a_0 + b_0) + (a_1 + b_1)X + \dots$$

and

$$(a_0 + a_1X + \dots + a_mX^m)(b_0 + b_1X + \dots + b_nX^n) = c_0 + c_1X + \dots$$

where

$$c_k = \sum_{i+j=k}^k a_i b_j.$$

The ground ring R sits inside of the polynomial ring R[X]. Take the monomorphism $\theta: R \to R[X]$ by $\theta(a) = a$, i.e. an element a maps to the constant polynomial a.

Theorem 2.5. Let D be an integral domain. Then

- 1. D[X] is an integral domain.
- 2. If $p, q \in D[X]$, then $\partial(p+q) \leq \max(\partial p, \partial q)$.
- 3. If $p, q \in D[X]$, then $\partial(pq) = \partial p + \partial q$.
- 4. The group of units of D[X] coincides with the group of units of D.

Proof. Statements (2) and (3) are left as exercises.

- (1) We need to show that D[X] has no zero divisors. For this, suppose that p, q are nonzero polynomials with leading coefficients a_m and b_n respectively. Then the leading coefficient of pq is $a_m b_n$, which is nonzero since D is an integral domain and thus has no zero divisors. So pq is nonzero.
- (4) Let $p, q \in D[X]$ and suppose pq = 1. Since $\partial(pq) = \partial(1) = 0$, we must have $\partial p = \partial q = 0$. Thus $p, q \in D$ and pq = 1 if and only if p and q are in the group of units of D.

Since D[X] is a domain, we can consider polynomials in the variable Y with coefficients in D[X]:

$$D[X,Y] = (D[X])[Y].$$

We can repeat this to get polynomials in n variables: $D[X_1, X_2, \dots, X_n]$, which is an integral domain.

Jan. 17 — Irreducible Polynomials

3.1 Principal Ideal Domains and Irreducibile Polynomials

Definition 3.1. The field of fractions of D[X] consists of rational forms

$$\frac{a_0 + a_1 X + \dots + a_m X^m}{b_0 + b_1 X + \dots + b_n X^n}$$

where $b_0 + b_1 X + \cdots + b_n X^n \neq 0$, denoted by D(X).

Definition 3.2. A domain D is a principal ideal domain (PID) if all of its ideals are principal.¹

Example 3.2.1. The integers \mathbb{Z} is a PID, since every ideal is of the form $\langle n \rangle$.

Definition 3.3. A non-zero, non-unit element p in a domain D is *irreducible* if it has no proper factors.

Definition 3.4. A domain D is a unique factorization domain (UFD) if every non-unit $a \neq 0$ in D has an essentially unique² factorization into irreducible elements.

Example 3.4.1. Again \mathbb{Z} is a UFD, e.g. $12 = 2 \cdot 2 \cdot 3 = (-2) \cdot 2 \cdot (-3)$.

Theorem 3.1. Every PID is a UFD.

Proof. See Howie.
$$\Box$$

Theorem 3.2. If K is a field, then K[X] is a PID.

Proof. See Howie.
$$\Box$$

Theorem 3.3. Let p be an element in a PID D. Then the following are equivalent:

- 1. p is irreducible.
- 2. $\langle p \rangle$ is maximal.
- 3. $D/\langle p \rangle$ is a field.

In particular if $f \in K[X]$, then $K[X]/\langle f \rangle$ is a field if and only if f is irreducible.

Proof. See Howie.
$$\Box$$

¹Recall that a principal ideal is one generated by a single element.

²As in, unique up to use of associates or adding in units.

Definition 3.5. Let D be a domain and $\alpha \in D$. Let $\sigma_{\alpha} : D[X] \to D$ defined by

$$\sigma_{\alpha}(a_0 + a_1X + \dots + a_nX^n) = a_0 + a_1\alpha + \dots + a_n\alpha^n.$$

Note that we often write $\sigma_{\alpha}(f)$ as $f(\alpha)$. If $f(\alpha) = 0$, we say α is a root of f, or a zero.

Exercise 3.1. Check that σ_{α} is a homomorphism.

Theorem 3.4. Let K be a field, $\beta \in K$ and f a non-zero polynomial in K[X]. Then β is a root of f if and only if $X - \beta | f$.

Proof. See Howie. \Box

Example 3.5.1. We have $X^2 + 1$ in $\mathbb{R}[X]$ is irreducible, so $\mathbb{R}[X]/\langle X^2 + 1 \rangle$ is a field. In fact this field is isomorphic to the complex numbers \mathbb{C} .

Exercise 3.2. Do the following:

1. Show that $\varphi : \mathbb{R}[X] \to \mathbb{C}$ given by

$$\varphi(a_0 + a_1X + \dots + a_nX^n) = a_0 + a_1i + \dots + a_ni^n$$

is a surjective homomorphism.³

2. Show that $\ker \varphi = \langle X^2 + 1 \rangle$.

So by the first isomorphism theorem we can conclude that $\mathbb{R}[X]/\langle X^2+1\rangle=\mathbb{R}/\ker\varphi\cong\varphi(\mathbb{R}[X])=\mathbb{C}.$

Theorem 3.5. Let K be a field and $g \in K[X]$ an irreducible polynomial. Then $K[X]/\langle g \rangle$ is a field containing K up to isomorphism.

Proof. Since g is irreducible, $K[X]/\langle g \rangle$ is a field. Now define $\varphi: K \to K[X]/\langle g \rangle$ by

$$\varphi(a) = a + \langle g \rangle.$$

(Left as an exercise to check that φ is a homomorphism.) We need to show that φ is injective. For this, take $a, b \in K$. If $a + \langle g \rangle = b + \langle g \rangle$, then $a - b \in \langle g \rangle$. But K is a field, so this happens precisely when a = b. Thus φ embeds K into $K[X]/\langle g \rangle$, as desired.

3.2 Irreducible Polynomials over \mathbb{C} , \mathbb{R} , \mathbb{Q} , and \mathbb{Z}

Our goal now is to study irreducible polynomials. Note that linear polynomials are irreducible, and recall that every polynomial in \mathbb{C} factorizes, essentially uniquely, into linear factors. Furthermore, complex roots of real polynomials come in conjugate pairs, hence

$$g = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{R}[X]$$

factors as

$$g = a_n(X - \beta_1) \dots (X - \beta_r)(X - \gamma_1)(X - \overline{\gamma}_1) \dots (X - \gamma_3)(X - \overline{\gamma}_s)$$

³Note that there's some technicality about this φ not being a σ_{α} since we defined σ_{α} for α in the base domain, and i is kind of somewhere else.

in $\mathbb{C}[X]$, where $\beta_1, \ldots, \beta_r \in \mathbb{R}$ and $\gamma_1, \ldots, \gamma_s \in \mathbb{C} \setminus \mathbb{R}$ and r + 2s = n. Thus over $\mathbb{R}[X]$, g factors as

$$g = a_n(X - \beta_1) \dots (X - \beta_r)(X^2 - (\gamma_1 + \overline{\gamma}_1)X + \gamma_1\overline{\gamma}_1) \dots (X^2 - (\gamma_s + \overline{\gamma}_s)X + \gamma_s\overline{\gamma}_s)$$

in $\mathbb{R}[X]$, where the quadratic factors are irreducible in $\mathbb{R}[X]$.

Exercise 3.3. A quadratic $aX^2 + bX + c \in \mathbb{R}[X]$ is irreducible if and only if its discriminant $b^2 - 4ac < 0$.

Now we have pretty much characterized irreducible polynomials in $\mathbb{R}[X]$. But what about $\mathbb{Q}[X]$?

Theorem 3.6. Let $g = a_0 + a_1 X + a_2 X^2 \in \mathbb{Q}[X]$. Then

- 1. If g is irreducible over \mathbb{R} , then it is irreducible over \mathbb{Q} .
- 2. If $g = a_2(X \beta_1)(X \beta)$ with $\beta_1, \beta_2 \in \mathbb{R}$, then g is irreducible in $\mathbb{Q}[X]$ if and only if β_1 and β_2 are irrational.

Proof. (1) We show the contrapositive. If g factors as

$$g = a_2(X - q_1)(X - q_2) \in \mathbb{Q}[X],$$

then g also factors in $\mathbb{R}[X]$.

(2) If β_1 and β_2 are rational, then g factors in $\mathbb{Q}[X]$ and is thus not irreducible. For the other direction, if β_1 and β_2 are irrational, then $g = a_2(X - \beta_1)(X - \beta_2)$ is the only factorization in $\mathbb{R}[X]$ since $\mathbb{R}[X]$ is a UFD, so there is no factorization in $\mathbb{Q}[X]$ into linear factors.

Example 3.5.2. Are the following polynomials irreducible in $\mathbb{R}[X]$? In $\mathbb{Q}[X]$?

- 1. $X^2 + X + 1$ is irreducible over \mathbb{R} and \mathbb{O} since $b^2 4ac = -3$.
- 2. $X^2 X 1$ has roots $(-1 \pm \sqrt{5})/2$, so it factors over \mathbb{R} but is irreducible over \mathbb{Q} .
- 3. $X^2 + X 2$ factors as (X + 2)(X 1) over \mathbb{R} and \mathbb{Q} .

Now that we have studied irreducible polynomials in $\mathbb{R}[X]$ and $\mathbb{Q}[X]$, can a polynomial in $\mathbb{Z}[X]$ be irreducible over \mathbb{Z} but not \mathbb{Q} ? The answer is no!

Theorem 3.7 (Gauss's lemma). Let f be a polynomial in $\mathbb{Z}[X]$, irreducible over \mathbb{Z} . Then f is irreducible over \mathbb{Q} .

Proof. For sake of contradiction, suppose f = gh with $g, h \in \mathbb{Q}[X]$ and $\partial g, \partial h < \partial f$. Then there exists $n \in \mathbb{Z}_{>0}$ such that nf = g'h' where $g', h' \in \mathbb{Z}[X]$. Let n be the smallest positive integer with this property. Let

$$g' = a_0 + a_1 X + \dots + a_k X^k$$

 $h' = b_0 + b_1 X + \dots + b_l X^l$.

If n = 1, then g' = g and h' = h, a contradiction. Now $n \ge 1$, so let p be a prime factor of n.⁴ Without loss of generality, assume p divides g', i.e. g' = pg'' where $g'' \in \mathbb{Z}[X]$. Then

$$\frac{n}{p}f = g''h',$$

contradicting the minimality of n. Hence f cannot be factored over \mathbb{Q} .

⁴Lemma: Either p divides all the coefficients of g' or p divides all the coefficients of h'. Proof left as an exercise.

Example 3.5.3. Show that $g = X^3 + 2X^2 + 4X - 6$ is irreducible over \mathbb{Q} .

Proof. If q factors over \mathbb{Q} , it factors over \mathbb{Z} and at least one factor must be linear, i.e.

$$g = X^3 = 2X^2 + 4X - 6 = (X - a)(X^2 + bX + c)$$

where $a, b, c \in \mathbb{Z}$. We must have ac = 6, so $a \in \{\pm 1, \pm 2, \pm 3, \pm 6\}$ and g(a) = 0. We can check this:

Hence g is irreducible over \mathbb{Z} and thus also irreducible over \mathbb{Q} .

We could do this trick since the degree was 3, forcing a linear factor. What about degrees higher than 3?

Theorem 3.8 (Eisenstein's criterion). Let $f = a_0 + a_1X + \cdots + a_nX^n \in \mathbb{Z}[X]$. Suppose there exists a prime p such that

- 1. $p \nmid a_n$,
- 2. $p|a_i \text{ for } i = 0, \ldots, n-1,$
- 3. $p^2 \nmid a_0$.

Then f is irreducible over \mathbb{Q} .

Proof. By Gauss's lemma, it suffices to show that f is irreducible over \mathbb{Z} . Suppose for sake of contradiction that f = gh for

$$g = b_0 + b_1 X + \dots + b_r X^r$$
 and $h = c_0 + c_1 X + \dots + c_s X^s$,

r, s < n, and r + s = n. Note that $a_0 = b_0 c_0$, so $p|a_0$ from (2) implies that $p|b_0$ or $p|c_0$. Since $p^2 \nmid a_0$, it cannot be both. Without loss of generality, assume $p|b_0$ and $p\nmid c_0$. Now suppose inductively that p divides b_0, \ldots, b_{k-1} where $1 \le k \le r$. Then

$$a_k = b_0 c_k + b_1 c_{k-1} + \dots + b_{k-1} c_1 + b_k c_0$$

and since p divides a_k , b_0c_k , b_1c_{k-1} , ..., $b_{k-1}c_1$, it follows that $p|b_kc_0$. Since $p\nmid c_0$ by assumption, we must have $p|b_k$. Thus $p|b_r$ and since $a_n = b_rc_s$, we have $p|a_n$, contradicting (1). Hence is f is irreducible. \square

Example 3.5.4. The polynomial

$$X^5 + 2X^3 + \frac{8}{7}X^2 - \frac{4}{7}X + \frac{2}{7}$$

is irreducible over \mathbb{Q} .

Proof. Multiply by 7 and take the integer polynomial $7X^5 + 14X^3 + 8X^2 - 4X + 2$. Taking p = 2 satisfies Eisenstein's criterion, so this polynomial is irreducible over \mathbb{Z} and thus also irreducible over \mathbb{Q} .

Example 3.5.5. If p > 2 is prime, then show that

$$f = 1 + X + X^2 + \dots + X^{p-1}$$

is irreducible over \mathbb{Q} .

Proof. First observe that

$$f = \frac{X^p - 1}{X - 1}.$$

Let g(X) = f(X+1). Then

$$g(X) = \frac{(X+1)^p - 1}{(X+1) - 1} = \frac{1}{X}((X+1)^p - 1) = \frac{1}{X}\sum_{i=0}^p \binom{p}{i}X^{p-i} - 1$$
$$= \frac{1}{X}\sum_{i=0}^{p-1} \binom{p}{i}X^{p-i} = \sum_{i=0}^{p-1} \binom{p}{i}X^{p-i-1}.$$

Note that $\binom{p}{1}, \binom{p}{2}, \ldots \binom{p}{p-1}$ are all divisible by p, so g is irreducible by Eisenstein's criterion. Now if f factors as f = uv, then g(X) = u(X+1)v(X+1), which is a contradiction since g is irreducible. \square

Jan. 22 — Field Extensions

4.1 More on Irreducibility

The following excerpt is from Howie:

Another device for determining irreducibility over \mathbb{Z} (and consequently over \mathbb{Q}) is to map the polynomial onto $\mathbb{Z}_p[X]$ for some suitably chosen prime p. Let $g = a_0 + a_1 X + \cdots + a_n X^n \in \mathbb{Z}[X]$, and let p be a prime not dividing a_n . For each i in $\{0, 1, \ldots, n\}$, let \overline{a}_i denote the residue class $a_i + \langle p \rangle$ in the field $\mathbb{Z}_p = \mathbb{Z}/\langle p \rangle$, and write the polynomial $\overline{a}_0 + \overline{a}_1 X + \cdots + \overline{a}_n X^n$ as \overline{g} . Our choice of p ensures that $\partial \overline{g} = n$. Suppose that g = uv, with $\partial u, \partial v < \partial f$ and $\partial u + \partial v = \partial g$. Then $\overline{g} = \overline{u} \overline{v}$. If we can show that \overline{g} is irreducible in $\mathbb{Z}_p[X]$, then we have a contradiction, and we deduce that g is irreducible. The advantage of transferring the problem from $\mathbb{Z}[X]$ to $\mathbb{Z}_p[X]$ is that \mathbb{Z}_p is finite, and the verification of irreducibility is a matter of checking a finite number of cases.

Example 4.0.1. Show that

$$q = 7X^4 + 10X^3 - 2X^2 + 4X - 5$$

is irreducible over \mathbb{Q} .

Proof. Let p = 3 and

$$\overline{g} = X^4 + X^3 + X^2 + 1$$

This has no linear factors since

$$\overline{g}(0) = 1$$
, $\overline{g}(1) = 2$, $\overline{g}(-1) = 1$.

So suppose

$$\overline{g} = X^4 + X^3 + X^2 + X + 1 = (X^2 + aX + b)(X^2 + cX + d)$$

in $\mathbb{Z}_3[x]$. Then for some $a, b, c, d \in \mathbb{Z}_3 = \{-1, 0, 1\}$, we have

$$\begin{cases} X^3 & a+c=1\\ X^2 & b+ac+d=1\\ X & ad+bc=1\\ 1 & bd=1 \end{cases}$$

The first case is if b = d = 1, but this implies ac = -1, so $a = \pm 1$ and $c = \mp 1$. But a + c = 1, so this cannot happen. The second case is if b = d = -1. This implies that ac = 0 and a + c = 1. So if a = 0, then c = 1, so 1 = ad + bc = b, which is a contradiction with b = -1. If c = 0, then 1 = ad + bc = d,

which is a contradiction with d = -1. Thus \overline{g} is irreducible in $\mathbb{Z}_3[x]$, so g is irreducible in $\mathbb{Z}[x]$, and by Gauss's lemma, g is irreducible in $\mathbb{Q}[x]$.

Remark. If we had tried p=2, then we have $\overline{g}=x^4+1\in\mathbb{Z}_2[x]$, which is not in fact irreducible since

$$\overline{g} = x^4 + 1 = (x+1)^4 \in \mathbb{Z}_2[x].$$

4.2 Field Extensions

Definition 4.1. Let K, L be fields and $\varphi : K \to L$ an injective homomorphism. Then L is a *field extension* of K, denoted L : K.

Example 4.1.1. We have $\mathbb{C} : \mathbb{R}$ is a field extension.

Definition 4.2. Recall that V is a K-vector space if

- 1. V is an abelian group under +,
- 2. For $a, b \in K$ and $x, y \in V$, we have

(i).
$$a(x+y) = ax + ay$$
, (ii). $(a+b)x = ax + bx$, (iii). $(ab)x = a(bx)$, (iv). $1x = 1$.

Remark. If L: K is a field extension, then L is a a vector space over K.

Definition 4.3. A basis for a vector space is a linearly independent spanning set.

Example 4.3.1. The complex numbers \mathbb{C} is a \mathbb{R} -vector space with basis $\{1, i\}$. Bases are not unique, since $\{1 + i, 1 - i\}$ is another basis for \mathbb{C} .

Example 4.3.2. If there is a vector space that we know to be a field, then it is automatically a field extension of its ground field.

Definition 4.4. The dimension of L is the cardinality of a bsis for L:K.¹ The dimension is also called the degree of L:K, denoted [L:K]. We say that L is a finite extension if [L:K] is finite, and an infinite extension otherwise.

Example 4.4.1. We have $[\mathbb{C}:\mathbb{R}]=2$, which is finite. On the other hand, $\mathbb{R}:\mathbb{Q}$ is an infinite extension.

Theorem 4.1. Let L: K be a field extension. Then L = K if and only if [L: K] = 1.

Proof. (\Rightarrow) If L = K, then $\{1\}$ is a basis for L : K, and thus [L : K] = 1.

(\Leftarrow) If [L:K]=1, then $\{x\}$ is a basis for L:K for some $x\in L$. Then there exists some $a\in K$ such that 1=ax, so $x=a^{-1}\in K$. For every $y\in L$, there exists $b\in K$ such that y=bx. But then

$$y = bx = b(a^{-1}) \in K,$$

so $y \in K$ as well by closure. Thus L = K as desired.

Remark. Let L: K and M: L be field extensions with

$$K \xrightarrow{\alpha} L \xrightarrow{\beta} M$$

¹Note that this is well-defined since any two bases of L have the same length.

Then M: K is also a field extension.

Theorem 4.2. For field extensions L: K and M: L, we have [M:L][L:K] = [M:K].

Proof. Suppose $\{a_1, a_2, \dots a_r\}$ is a linearly independent subset of M over L and $\{b_1, b_2, \dots, b_s\}$ is a linearly independent subset of L over K. Now we claim that

$${a_ib_i \mid 1 \le i \le r, 1 \le j \le s}$$

is a linearly independent subset of M over K. To see this, suppose

$$\sum_{i=1}^{r} \sum_{j=1}^{s} \lambda_{ij} a_i b_i = 0$$

for some $\lambda_{ij} \in K$. We can rewrite this as

$$\sum_{i=1}^{r} \left(\sum_{j=1}^{s} \lambda_{ij} b_j \right) a_i = 0.$$

Since the a_i are linearly independent over L, it follows that

$$\sum_{j=1}^{s} \lambda_{ij} b_j = 0$$

for each i = 1, ..., r. Since the b_j are linearly independent over K, it follows that $\lambda_{ij} = 0$ for each i, j, which proves the claim. Returning to the main proof, if [M:L] or [L:K] is infinite, then r or s can be made arbitrarily large, so

$$\{a_ib_j \mid 1 \le i \le r, 1 \le j \le s\}$$

can also be made arbitrarily large, and hence [M:K] is infinite. Now suppose $[M:L]=r<\infty$ and $[L:K]=s<\infty$. Let $\{a_1,a_2,\ldots,a_r\}$ be a basis for M:L and $\{b_1,b_2,\ldots,b_s\}$ be a basis for L:K. We will show that

$${a_ib_j \mid 1 \le i \le r, 1 \le j \le s}$$

is a basis for M:K. Since we already showed that $\{a_ib_j\}$ is linearly independent, it only remains to show that they span M over K. For each $z \in M$, there exist $\lambda_1, \ldots, \lambda_r \in L$ such that

$$z = \sum_{i=1}^{r} \lambda_i a_i.$$

Then for each $\lambda_i \in L$, there exist $\mu_{i1}, \ldots, \mu_{is} \in K$ such that

$$\lambda_i = \sum_{j=1}^s \mu_{ij} b_j.$$

Combining this yields

$$z = \sum_{i=1}^{r} \sum_{j=1}^{s} \mu_{ij} a_i b_j$$

as desired, which finishes the proof.

Example 4.4.2. Consider $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$

Exercise 4.1. Show that $\mathbb{Q}[\sqrt{2}]$ is a field. (Hint: $1/(a+b\sqrt{2})=(a-b\sqrt{2})/(a^2-2b^2)$.)

Definition 4.5. Let K be a subfield of L and S a subset of L. The *subfield of* L *generated over* K *by* S, denoted K(S), is the intersection of all subfields of L containing $K \cup S$. If $S = \{\alpha_1, \ldots, \alpha_n\}$ is finite, we write $K(\alpha_1, \ldots, \alpha_n)$.

Theorem 4.3. Let E be the elements in L that can be expressed as quotients of finite K-linear combinations of finite products of elements in S. Then K(S) = E.

Proof. To see that $K(S) \subseteq E$, simply check that E is a subfield of L containing $K \cup S$.

For $E \subseteq K(S)$, note that any subfield of L containing K and S must contain all finite products of elements in S, all linear combinations of such products, and all quotients of such linear combinations. This is precisely what is means to have $E \subseteq K(S)$.

Definition 4.6. A simple extension of K is $K(\alpha)$, i.e. S has a single element $\alpha \notin K$.

Example 4.6.1. The previous example $\mathbb{Q}(\sqrt{2})$ is a simple extension.

Theorem 4.4. Let L be a field, K a subfield, and $\alpha \in L$. Then either

- 1. $K(\alpha)$ is isomorphic to K(X), the field of rational forms with coefficients in K,
- 2. or there exists a unique monic polynomial $m \in K[X]$ with the property that for all $f \in K[X]$,
 - (a) $f(\alpha) = 0$ if and only if m|f,
 - (b) the field $K(\alpha)$ coincides with $K[\alpha]$, the ring of all polynomials in α with coefficients in K,
 - (c) and $[K[\alpha]:K] = \partial m$.

Proof. Suppose there does not exist nonzero $f \in K[X]$ such that $f(\alpha) = 0$. Then there exists a map $\varphi : K(X) \to K(\alpha)$ with $f/g \mapsto f(\alpha)/g(\alpha)$, which is defined since $g(\alpha) = 0$ only if g is the zero polynomial. Note that φ is a surjective homomorphism, which one can check as an exercise. Now we show that φ is also injective. To see this, suppose

$$\varphi(f/g) = \varphi(p/q),$$

which happens if and only if

$$f(\alpha)q(\alpha) - p(\alpha)g(\alpha) = 0.$$

in L. This happens if and only if fq - pg = 0 in K[X], which happens if and only if f/g = p/q in K(X). This completes the first case of the theorem. (Second case of the theorem to be done next class.)

Example 4.6.2. Continuing the same example, note that

$$\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} = \{a_0 + a_1\sqrt{2} + a_2\sqrt{2}^2 + a_3\sqrt{2}^3 + \dots + a_n\sqrt{2}^n \mid a_i \in \mathbb{Q}\},\$$

which falls in the second case of the previous theorem.

Remark. We also have $\mathbb{Q}[\sqrt{2}] = \mathbb{Q}[X]/\langle X^2 - 2 \rangle$.

²Also check that φ is well-defined.