Circuit Theory and Electronics Fundamentals

EXAM PART I = TEST 1

July/08/2021. Duration: 1h30m

Only blank scratch paper and calculator are allowed on your desktop. Checking books or notes is not allowed. <u>Solve each problem group in a separate sheet group to facilitate and speed up grading</u>. Write your name and student number on all sheets delivered. <u>Unidentified sheets will not be graded</u>. The figures are in the next page.

- **1.** Consider the circuit in Figure 1, where $I_A=6mA$, $R_1=2k\Omega$, $R_2=5k\Omega$, $R_3=10k\Omega$, and $V_B=12V$.
- **a**) Using the Superposition Theorem, compute V_{β} and $I_{1.}$
- **b**) Compute the power in the sources I_A and V_B, and explicitly indicate if each source is receiving or supplying energy.
- c) Compute the Norton's equivalent parameters, I_{eq} (from node β to node α) and R_{eq} , as seen by the voltage source V_B .
- **2.** Consider the circuit in Figure 2, where $V_B=kV_a$ (dependent voltage source). In the following write two symbolic matrix equations (no numerical values)
- **a**) Write a mesh method matrix equation, using the 3 clockwise mesh currents.
- **b**) Write a nodal method matrix equation.
- **3.** Consider the circuit in Figure 3, where $R_1=600\Omega$, $R_2=200\Omega$, $C=1\mu F$, L=30~mH, and $I_A(t)=16-23u(t)~mA$.
- a) Compute the energy stored in the circuit at t = -15s, assuming the 2-way switch in <u>position 1</u> all the time.
- **b**) Determine $i_1(t)$ assuming the switch in position 2 all the time.
- **4.** Consider the circuit in Figure 3 with the switch in position 1, $i_A(t) = 20 \cos(\omega t \pi/4)$ mA and f = 1 kHz.
- **a**) Determine the forced solution $v_{\beta}(t)$.
- **b**) Compute the power factor for the load impedance seen by the current source.
- c) Compute the transfer function $T(s)=I_2(s)/I_a(s)$ symbolically (without replacing the components with their values); indicate the filter type (low-pass, high-pass, band-pass, etc.), justifying your answer.

TRADUÇÃO

Apenas a calculadora e folhas brancas de rascunho são permitidos. O teste é sem consulta. <u>Resolva cada grupo de problemas num grupo de folhas separado para facilitar e acelerar a correção</u>. Escreva o seu nome e número de aluno em todas as folhas entregues. <u>Folhas não identificadas não serão cotadas</u>. As figuras estão na página seguinte.

- **1.** Considere o circuito Figura 1, onde $I_A=6mA$, $R_1=2k\Omega$, $R_2=5k\Omega$, $R_3=10k\Omega$, e $V_B=12V$.
- a) Usando o Teorema da Sobreposição, calcule V_{β} e $I_{1.}$
- **b**) Calcule a potência nas fontes I_A e V_B, e indique explicitamente se cada fonte recebe ou fornece energia.
- c) Calcule os parâmetros do equivalente de Norton, I_{eq} (do nó β para o nó α) e R_{eq} , tal como visto da fonte de tensão V_B .
- **2.** Considere o circuito da Figura 2, onde $V_B=kV_a$ (fonte de tensão dependente). Nas questões seguintes escreva duas equações matriciais simbólicas (sem valores numéricos).
- a) Escreva uma equação matricial do método das malhas, usando as 3 correntes de malha definidas no sentido horário.
- **b**) Escreva uma equação matricial do método dos nós.

- **3.** Considere o circuito da Figura 3, onde $R_1=600\Omega$, $R_2=200\Omega$, $C=1\mu F$, L=30~mH, e $i_A(t)=16-23u(t)~mA$.
- a) Calcule a energia armazenada no circuito no instante t = -15s, assumindo que o interruptor de duas vias está na posição 1 o tempo todo.
- **b**) Determine $i_1(t)$ assumindo que o interruptor de duas vias está na posição 2 o tempo todo.
- **4.** Considere o circuito da Figura 3 com o interruptor de duas vias na posição 1, $i_A(t) = 20 \cos(\omega t \pi/4) mA$ e f=1kHz.
- **a**) Determine a solução forçada $v_{\beta}(t)$.
- **b**) Calcule o fator de potência associado à impedância de carga vista pela fonte de corrente.
- c) Calcule a função de transferência $T(s)=I_2(s)/I_a(s)$ simbolicamente (sem substituir os componentes pelos seus valores); indique o tipo de filtragem (passa-baixo, passa-alto, passa-banda, etc.), justificando a sua resposta.

Grading / Cotação

1-a)	1-b)	1-c)	2-a)	2-b)	3-a)	3-b)	4-a)	4-b)	4-c)
2	1.5	2	3	2	2	2.5	2	1	2

Figures / Figuras

Figure 1

Figure 2

Figure 3

Sugestão: copie a figura e dados de cada problema

Suggestion: copy the figure and data of each problem to your answer's sheet before solving it.

para a sua folha de resposta antes de o resolver.