初中数学模型研究系列

霍邱县第一中学城南分校 2023 年 6 月 29 日

文章导航

1	将军	饮马	2
	1.1	什么是将军饮马?	2
	1.2	将军饮马模型系列	3
		1.2.1 "一定两动"之点到点	3
		1.2.2 "两定两动"之点到点	4
		1.2.3 "一定两动"之点到线	4
	1.3	几何图形中的将军饮马	4
		1.3.1 正方形中的将军饮马	4
		1.3.2 三角形中的将军饮马	4
		1.3.3 菱形、矩形中的将军饮马	4
	1.4	特殊角的对称	4
	1.5	将军过桥	4
	1.6	将军遛马	4
2	半角	模型	4
	2.1	什么是半角模型?	4
	2.2	半角模型"破解"策略	4
	2.3	"半角模型"的类型	4
		2.3.1 正方形内含半角 90° + 45°	4
		2.3.2 等腰直角三角形内含半角 90° + 45°	7
		2.3.3 正三角形内含半角 120°+60°	7
		$2.3.4$ 一般情况半角模型 $\alpha+2\alpha$	8
	2.4	习题演练	8
3	角的	飞镖模型和"8"字模型	8
	3.1	角的飞镖模型	8
		3.1.1 飞镖模型例题	8
	3.2	"8"字模型	9
		3.2.1 "8"字模型例题	9
	3.3	飞镖模型和"8"字模型进阶练习	11
4	十字	架模型	13

5	三垂直全等模型	13
6	角平分线模型	13
7	胡不归	13
8	阿氏圆	13
9	倍长中线	13
10	对角互补	13
11	手拉手模型——旋转全等	13
	11.1 手拉手模型的定义及基本结论	13
	11.2 手拉手模型的类型	13
	11.3 一般等腰三角形手拉手	13
	11.4 等边三角形手拉手	14
	11.5 正方形手拉手	14
	11.6 习题演练	15
12	12345 模型	15
	12.1 【模型解读】	15

1 将军饮马

1.1 什么是将军饮马?

"白日登山望烽火,黄昏饮马傍交河",这是唐代诗人李颀《古从军行》里的一句诗。由此却引申出一系列非常有趣的数学问题,通常称为"将军饮马"。

【问题描述】

如图,将军在图中点 A 处,现在他要带马去河边喝水,之后返回军营 B,问:将军怎么走能使得路程最短?

【问题简化】

如图,在直线上找一点 P 使得 PA + PB 最小?

【问题分析】

这个问题的难点在于 PA + PB 是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道 "两点之间,线段最短"、"点到直线的连线中,垂线段最短"等,所以此处,需转化问题,将折线变为直线 段.

【问题解决】

作点 A 关于直线的对称点 A', 连接 PA', 则 PA' = PA, 所以 PA + PB = PA' + PB.

当 A', P, B 三点共线的时候,PA' + PB = A'B,此时为最小值(两点之间线段最短)

1.2 将军饮马模型系列

1.2.1 "一定两动"之点到点

在 OA,OB 上分别取点 M,N, 使得 ΔPMN 周长最小.

此处 M,N 均为折点,分别作点 P 关于 OA (折点 M 所在直线)、OB (折点 N 所在直线) 的对称点,化折线段 PM+MN+NP 为 P'M+MN+NP'',当 P',M,N,P'' 共线时, ΔPMN 周长最小.

- 1.2.2 "两定两动"之点到点
- 1.2.3 "一定两动"之点到线
- 1.3 几何图形中的将军饮马
- 1.3.1 正方形中的将军饮马
- 1.3.2 三角形中的将军饮马
- 1.3.3 菱形、矩形中的将军饮马
- 1.4 特殊角的对称
- 1.5 将军过桥
- 1.6 将军遛马

2 半角模型

2.1 什么是半角模型?

所谓"半角模型"指的是题目中出现了两个角,小角等于大角的一半,故称为"半角模型",有最普通 的半角问题,但是多数"半角模型"问题都是特殊角之间的"半角模型"。常见的有"30°与60°"、"45° 与 90° (又称为"正方形半角模型")"、"60° 与 120°"等类型。

2.2 半角模型"破解"策略

记住一句话:"半角模型,必旋转"

注意:

- (1) 旋转角度通常为大角的角度;
- (2) 旋转后, 往往涉及三点共线问题 (须简单证明);
- (3) 旋转后,一般需要再证一对共旋转点的三角形全等(SAS).

2.3"半角模型"的类型

2.3.1 正方形内含半角 90° + 45°

如图, 在正方形 ABCD 中, 点 E, F 分别为边 BC, CD 上点, 且 $\angle EAF = 45^{\circ}$, 连接 $EF, AH \perp EF$.

结论①: EF = BE + DF;

结论②: $\triangle CEF$ 的周长 C = 2AB;

结论③: AE 平分 ∠BEF, AF 平分 ∠DFE;

结论④: AH = AB;

结论⑤: $S_{\triangle ABE} + S_{\triangle ADF} = S_{\triangle AEF}$.

如图 1,将 $\triangle ADF$ 绕点 A 顺时针旋转 90° 得到 $\triangle ABG$. (亦可旋转 $\triangle ABE$) 易得 $\triangle ADF \cong \triangle ABG \dashrightarrow AG = AF, DF = BG, \angle 1 = \angle 2;$

再证 $\triangle AEG \cong \triangle AEF \dashrightarrow EF = EG$;

综上: EF = EG = BE + BG = BE + DF.(结论①得证)

 $\triangle CEF$ 的周长 C = EF + CE + CF = BE + DF + CE + CF = BC + DC = 2AB.(结论②得证)

由 $\triangle AEG \cong \triangle AEEF \longrightarrow AE$ 平分 $\angle BEF$, 同理可证 AF 平分 $\angle AFE$.(结论③得证)

利用结论③易证 $\triangle ABE \cong \triangle AHE(AAS) \dashrightarrow AB = AH.(结论④得证)$

由①易证 $S_{\triangle ABE} + S_{\triangle ADF} = \frac{1}{2}EF \cdot AB$,而 $S_{\triangle AEF} = \frac{1}{2}EF \cdot AH$,由④易得 $S_{\triangle ABE} + S_{\triangle ADF} = S_{\triangle AEF}$.(结论⑤得证)

证法②: (截长补短法)

如图 2, 延长 CD 至点 G 使得 DG = BE.

岁证: $\triangle ABE \cong \triangle ADG(SAS) \dashrightarrow AE = AG, \angle GAF = 45^{\circ};$

易证: $\triangle AFE \cong \triangle AFG(SAS) \longrightarrow EF = GF$;

综上: EF = GF = GD + DF = BE + DF.

其它结论证法同证法①.

进一步地,连接对角线后还可以得出下面8个结论:

如图,连接 BD,分别交 AE, AF 于点 M, N.

结论①: $MN^2 = BM^2 + DN^2$;

结论②: $2AM^2 = BM^2 + DM^2$, $2AN^2 = DN^2 + BN^2$;

结论③: $\triangle AEN$ 为等腰直角三角形, $\triangle AFM$ 为等腰直角三角形;

结论④: $\triangle ANM \sim \triangle DNF \sim \triangle BEM \sim \triangle AEF \sim \triangle BNA \sim \triangle DAM$;

结论⑤: $\sqrt{2}BN = AB + BE, \sqrt{2}DM = AD + DF;$

结论⑥: $\sqrt{2}DN = CE, \sqrt{2}BM = CF, \sqrt{2}MN = EF;$

结论②: $S_{\triangle AMN} = S_{\text{凹边形}MNFE}$ (即 $S_{\triangle AMN} = \frac{1}{2}S_{AEF}$);

结论®: A, M, F, D 四点共圆; A, B, E, N 四点英圆; M, N, F, C, E 五点共圆.

下面我们来进行证明,对于结论①,我们用两种方法证明:

证法①:

将 $\triangle AMB$ 逆时针 90° 旋转到 $\triangle AHD$, 如图 1.

则 $\angle 2 = \angle 1 = \angle 3 = 45^{\circ}$

 $\therefore \angle HDN = \angle 1 + \angle 3 = 90^{\circ}$

∴ △HDN 是直角三角形

:: 易证 $\triangle ANH \cong \triangle ANM$

 $\therefore NH = NM$

在 $Rt \triangle HDN$ 中, $HD^2 + DN^2 = HN^2$

 $\mathcal{X} : NH = NM, HD = MB$

 $BM^2 + DN^2 = MN^2$

证法②:

过A作AH垂直EF于H,连接MH,NH,如图 2.

易证 , $\triangle ABM\cong\triangle AHM$, $\triangle ADN\cong\triangle AHN$

 $\therefore \angle AHM = \angle ABM = 45^{\circ}, \angle AHN = \angle ADN = 45^{\circ}$

 $\therefore \angle MHN = 90^{\circ}$

 $MH^2 + NH^2 = MN^2$

 $\mathcal{X} : MH = MB, NH = ND$

 $\therefore BM^2 + DN^2 = MN^2$

结论②, 我们也用两种方法予以证明, 过程如下:

证法①:

将 $\triangle AMB$ 逆时针 90° 旋转到 $\triangle AHD$, 连接 MH, 如图 1.

 $AH = AM, \angle HAD + \angle DAN + \angle NAM = \angle HAM = 90^{\circ}$

 $\therefore HM = \sqrt{2}AM$

 $\mathfrak{X} : HD^2 + DM^2 = HM^2, HD = BM$

 $\therefore BM^2 + DM^2 = HM^2 = 2AM^2$

同理 $2AN^2 = BN^2 + DN^2$

证法②:

过M作 $MP \perp AD$ 于P, $MH \perp AB$ 于H, 如图 2.

设 HM = HB = x, PM = PD = y

 $BM^2 = 2x^2, PM^2 = 2y^2$

 $X : AM^2 = AH^2 + HM^2 = x^2 + y^2$

 $\therefore 2AM^2 = BM^2 + DM^2$

同理 $2AN^2 = BN^2 + DN^2$

结论③的证明如下:

证法②:

过M作 $MP \perp AD$ 于P, $MH \perp AB$ 于H, 如图 2.

设
$$HM = HB = x, PM = PD = y$$

$$BM^2 = 2x^2, PM^2 = 2y^2$$

$$\not \square : AM^2 = AH^2 + HM^2 = x^2 + y^2$$

$$\therefore 2AM^2 = BM^2 + DM^2$$

同理
$$2AN^2 = BN^2 + DN^2$$

2.3.2 等腰直角三角形内含半角 90° + 45°

如图, 在 $\triangle ABC$ 中, $AB = AC, \angle BAC = 90^{\circ}$, 点 D, E 在 BC 上且 $\angle DAE = 45^{\circ}$.

性质: ①: $\triangle BAE \sim \triangle ADE \sim \triangle CDA$

 $\textcircled{2}:BD^2+CE^2=DE^2$

2.3.3 正三角形内含半角 120° + 60°

如图,已知 $\triangle ABC$ 是正三角形,点 D 是 $\triangle ABC$ 外一点, DB = DC 且 $\angle BDC = 120^{\circ}$, $\angle EDF = 60^{\circ}$, DE, DF 分别交 AB, AC于点 E, F. 此时可以推导出以下结论:

结论①: EF = BE + CF;

结论②: $C_{\triangle AEF} = 2AB$.

2.3.4 一般情况半角模型 $\alpha + 2\alpha$

2.4 习题演练

3 角的飞镖模型和"8"字模型

3.1 角的飞镖模型

飞镖模型

结论①: $\angle BDC = \angle A + \angle B + \angle C$ 结论②: AB + AC > BD + CD

对于结论②的证明,主要利用三角形两边之和大于第三边进行证明.

证明: 延长 BD, 交 AC 于点 E, 如图.

 $\therefore AB + AE > BE, CE + DE > CD$

 $\therefore AB + AE + CE + DE > BE + CD$

 $\therefore AB + AC + DE > BD + DE + CD$

 $\therefore AB + AC > BD + CD$

3.1.1 飞镖模型例题

✔例 1: 如图,在四边形 ABCD 中,AM、CM 分别平分 $\angle DAB$ 和 $\angle DCB$,AM 与 CM 交于点 M,探究 $\angle AMC$ 与 $\angle B$ 、 $\angle D$ 之间的数量关系.

✔例 2: 如图,已知 $\angle DEC = 100^{\circ}$, $\angle CFB = 120^{\circ}$, 求 $\angle A + \angle B + \angle C + \angle D =$ _____

✔**例 3:** 如图,求 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F =$

✔例 4: 如图,在 △ABC 中, $\angle A = 52^{\circ}$, $\angle ABC$ 与 $\angle ACB$ 的角平分线交于点 D_1 , $\angle ABD_1$ 与 $\angle ACD_1$ 的角平分线交于点 D_2 ,以此类推, $\angle ABD_4$ 与 $\angle ACD_4$ 的角平分线交于点 D_5 ,则 $\angle BD_5C$ 是_______ 度.

✔例 5: 如图 1,在 △ABC 中,∠ABC,∠ACB 的角平分线交于点 O,则 ∠BOC = $90^{\circ} + \frac{1}{2}$ ∠ $A = \frac{1}{2} \times 180^{\circ} + \frac{1}{2}$ ∠A. 如图 2 和图 3,在 △ABC 中,∠ABC,∠ACB 的两条三等分角线分别对应交于 O_1,O_2 ,则 ∠BO₁C = $\frac{2}{3} \times 180^{\circ} + \frac{1}{3}$ ∠A,∠BO₂C = $\frac{1}{3} \times 180^{\circ} + \frac{2}{3}$ ∠A. 根据以上阅读理解,你能猜想 ∠BO₂₀₂₀C______

3.2 "8"字模型

"8"字模型

如图, 线段 AD,BC 相交于点 O, 连接 AB,CD.

结论①: $\angle A + \angle B = \angle C + \angle D$ 结论②: AB + CD > AD + BC

下面对结论①进行证明,分别根据三角形内角和等于 180°及三角形外角的性质有两种证法,如下: 证法①: 利用三角形内角和等于 180

 $\angle A + \angle B + \angle AOB = 180^{\circ}$,

 $\angle A + \angle B + \angle AOB = 180^{\circ},$ $\angle C + \angle D + \angle COD = 180^{\circ}$

 $\therefore \angle A + \angle B + \angle AOB = \angle C + \angle D + \angle COD$

 $\therefore \angle AOB = \angle COD$

 $\therefore \angle A + \angle B = \angle C + \angle D.$

证法②: 利用三角形外角的性质

 $\therefore \angle BOD = \angle A + \angle B$

 $\angle BOD = \angle C + \angle D$

 $\therefore \angle A + \angle B = \angle C + \angle D.$

3.2.1 "8"字模型例题

✔例 6: 如图,求 $\angle A + \angle B + \angle C + \angle D + \angle E =$

✔**例 7:** 如图,则 $\angle A + \angle B + \angle C + \angle D + \angle E$ 的度数为_____.

✔例 8: 如图, ∠A+∠B+∠C+∠D+∠E=_____

✔**例 9:** 如图,则 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = ($

A. 180°

B. 360°

C. 270°

D. 540°

✔例 10: 如图,则 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle G + \angle H$ 的度数为_____.

✔**例 11:** 如图,则 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle G + \angle H = ____.$

✔**例 12:** 如图,则 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle G + \angle H + \angle I + \angle K$ 的度数为 ().

A. 720°

B. 900°

C. 1080°

D. 1260°

3.3 飞镖模型和"8"字模型进阶练习

1. 如图, $\angle A + \angle B + \angle C + \angle D + \angle E$ 的度数是_____.

2. 如图, $\angle A + \angle B + \angle C + \angle D + \angle E =$ _____.

3. 如图,若 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 660^{\circ}$,求 $\angle G + \angle H$ 的度数.

4. 如图,求 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F + \angle G + \angle H + \angle K$ 的度数.

5. 如图, 求 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F$ 的度数.

6. (1) 如图①, 求 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F$ 的度数.

- (2) 如图②, 求 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F + \angle G + \angle H$ 的度数.
- (3) 如图③, 求 $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F + \angle G$ 的度数.

7. 如图, BE 与 CD 相交于点 A, CF 为 $\angle BCD$ 的平分线, EF 为 $\angle BED$ 的角平分线, 若 $\angle B$: $\angle D$: $\angle F = 2:4:x$, 求 x 的值.

4 十字架模型

- 5 三垂直全等模型
 - 6 角平分线模型
 - 7 胡不归
 - 8 阿氏圆
 - 9 倍长中线
 - 10 对角互补

11 手拉手模型——旋转全等

11.1 手拉手模型的定义及基本结论

手拉手全等模型

所谓手拉手模型,是指<mark>顶角相等</mark>,且有<mark>公共顶点</mark>的两个<mark>等腰三角形</mark>组成的图形,从中可以得到一个 经典的全等模型:因为顶点相连的四条边,形象的可以看作两双手,所以通常称为"手拉手模型". 常见的有等边三角形共顶点,等腰直角三角形共顶点,正方形共顶点等几种,如下图所示。

结论①: $\angle BDC = \angle A + \angle B + \angle C$

结论②: AB + AC > BD + CD

11.2 手拉手模型的类型

11.3 一般等腰三角形手拉手

结论①: $\triangle ABD \cong \triangle ACE$;

结论②: BD = CE;

结论③: $\angle BOC = \angle BAC = \alpha$;

结论④: OA 平分 $\angle BOE$;

结论⑤: $\triangle ABM \sim \triangle OCM$, $\triangle AEM \sim \triangle ODN$;

结论⑥: 点 A, B, C, O 四点共圆, 点 A, E, D, O 四点共圆.

11.4 等边三角形手拉手

如图, 直线 AB 的同侧作 $\triangle ABD$ 和 $\triangle BCE$ 都为等边三角形, 连接 AE,CD, 二者交点为 H, 则有以下结论成立:

结论①: $\triangle ABE \cong \triangle DBC$;

结论②: AE = DC; 结论③: $\angle DHA = 60^{\circ}$;

结论④: $\triangle AGB \cong \triangle DFB$; $\triangle EGB \cong \triangle CFB$;

结论⑤: 连接 GF, $\triangle BGF$ 是等边三角形;

结论⑥: *GF//AC*;

结论⑦: 连接 HB, HB 平分 ∠AHC;

结论®: HC = HB + HE; HA = HC + HD; 结论®: $\triangle DHG \sim \triangle ABG$; $\triangle EHF \sim \triangle CBF$;

结论⑩: 点 A, B, H, D 四点共圆, 点 C, B, H, E 四点共圆.

11.5 正方形手拉手

如图,四边形 ABCD 和四边形 CEFG 均为正方形,连接 BE,DG,则有以下结论:

结论①: $\triangle BCE \cong \triangle DCG$; 结论②: $BE = DG, BE \perp DG$.

12 12345 模型 QQ:724603614 11.6 习题演练

11.6 习题演练

12 12345 模型

12.1 【模型解读】

初中几何,直角三角形具有举足轻重的地位,贯彻初中数学的始终,无论是一次函数、平行四边形、特殊平行四边形、反比例函数、二次函数、相似、圆,都离不开直角三角形。而在直角三角形中,345 的三角形比含有 30° 的直角三角形的 $1\sqrt{3}:2$ 以及含有 45° 的直角三角形的 $1:1:\sqrt{2}$ 更加特殊更加重要。因为 345 不仅仅是自己特殊,更是可以在变化中隐藏更加特殊的变化 $(1:2:\sqrt{5}及1:3:\sqrt{10})$,综合性非常大,深受压轴题的喜爱。现在带领大家领略一下 345 的独特魅力:

12345 模型
$$\begin{cases} \tan \alpha = \frac{1}{2} \\ \tan \beta = \frac{1}{3} \end{cases} \Rightarrow \alpha + \beta = 45^{\circ}$$

不忘初心砥砺前行 第 15 页 长路漫漫未来可期