Dr. Wyatt McAllister

wyattsmcall1@me.com | 512.638.3717 | https://wyattsmcall1.github.io

RESEARCH INTEREST

I'm excited to chat with teams working on intelligent consumer infrastructure. I'm passionate about autonomous systems, robotics, and data science.

EDUCATION

UNIVERSITY OF ILLINOIS | URBANA-CHAMPAIGN, IL

Ph.D. IN ELECTRICAL AND COMPUTER ENGINEERING | AUGUST 2018 - May 2020

Advised by Dr. Girish Chowdhary

Department of Electrical and Computer Engineering (ECE)

Cum. GPA: 4.0 / 4.0

MS IN ELECTRICAL AND COMPUTER ENGINEERING | AUGUST 2016 - MAY 2018

Advised by Dr. Girish Chowdhary

Department of Electrical and Computer Engineering (ECE)

Cum. GPA: 4.0 / 4.0

BS IN ELECTRICAL AND COMPUTER ENGINEERING, HIGHEST HONORS | AUGUST 2014 - MAY 2016

Department of Electrical and Computer Engineering (ECE)

Cum. GPA: 3.92 / 4.0

SKILLS

SOFTWARE

C++, C, Java, MatLab, Python, LATEX, Mathematica, Photoshop, HTML, CSS

HARDWARE

ROS, Open CV, PHP, Eagle CAD PCB

LANGUAGE

Spanish - Professional

PROFESSIONAL EXPERIENCE

HRL LABORATORIES, LLC | SCIENTIST IV | MALIBU, CA | MARCH 2021 - PRESENT

- Researching collaborative robotic manufacturing in collaboration with General Motors, including robotic control, signal processing for audio and video, and autonomous decision making
- Created simulation for autonomous mobile robotic manipulation for maintenance of undersea structures in collaboration with Boeing, including control, path planning, and autonomous decision making
- Designed autonomous robotic wire insertion solution for aircraft manufacturing in collaboration with Boeing, including computer vision, robotic control, and autonomous decision making
- Worked on autonomous driving systems in collaboration with General Motors, including autonomous decision making with behavior trees and assured autonomy for collision avoidance

RESEARCH

DAS LAB | POSTDOCTORAL RESEARCHER | URBANA-CHAMPAIGN, IL | JUNE 2020 - FEBRUARY 2021

• Helped create a data validation pipeline using DeepSORT and OpenCV to perform detection and tracking of weeds in real agricultural fields to create spatially encoded density models

DAS LAB | GRADUATE RESEARCHER | URBANA-CHAMPAIGN, IL | MAY 2017 - MAY 2020

- Designed a multi-agent planning algorithm for robotic weed killing, with an associated simulation framework including a realistic weed growth model
- Incorporated a real-time weed growth information processing and prediction strategy using Evolving Gaussian Processes (E-GP) model and a Kalman filter, enabling proactive planning

AWARDS

2018 Shun Lien Chuang Memorial Award in ECE Top 1/503
2016 Highest Honors GPA > 3.8/4.0
2016 John Bardeen Award in ECE Top 1/2500
2014-2016 Dean's List Top 20th Percentile

HONOR SOCIETIES

2016 Tau Beta Pi Engineering Honor Society
 2015 Eta Kappa Nu IEEE Honor Society
 Top 12th Percentile
 Top 25th Percentile

TEACHING

UNIVERSITY OF ILLINOIS | URBANA-CHAMPAIGN, IL | AUGUST 2016 - MAY 2018

- Spring 2018: Fields and Waves I (ECE329) with Dr. Lynford Goddard
- Fall 2017: Principles of Experimental Research (ECE446) with Dr. Lynford Goddard
- Fall 2016: Digital Signal Processing (ECE310) with Drs. Yoram Bresler and Stephen Levinson

PUBLICATIONS

- [1] W. McAllister, D. Osipychev, G. Chowdhary, and A. Davis. Multi-agent planning for coordinated robotic weed killing. In *Intelligent Robots and Systems (IROS)*, 2018 IEEE/RSJ International Conference on. IEEE, 2018.
- [2] W. McAllister, D. Osipychev, G. Chowdhary, and A. Davis. Agbots: Weeding a field with a team of autonomous robots. *Computers and Electronics in Agriculture*, 163:104827, 2019.
- [3] W. McAllister, J. Whitman, A. Axelrod, J. Varghese, A. Davis, and G. Chowdhary. Agbots 2.0: Weeding denser fields with fewer robots. *Robotics: Science and Systems Foundation*, 2020.
- [4] W. McAllister, J. Whitman, J. Varghese, A. Davis, and G. Chowdhary. Agbots 3.0: Adaptive weed growth prediction for mechanical weeding agbots. *IEEE Transactions on Robotics*, pages 1–13, 2021.