ENGG 201 -W2012 - Pure Component Examples - Chapter 4

Fall 1990 (Mid-Term)-b

Ammonia (NH₃, M = 17.03 g/mol) is a compound that finds important applications in the fertilizer and refrigeration industries. Its triple-point temperature and pressure are 195.4 K and 6.08 kPa, respectively. Additional P-V-T data for NH₃ in the vapor-liquid region are provided below:

$V(\text{cm}^3/\text{g})$									
T(K)	P, MPa	liquid	vapor						
350.0	3.87	1.95	31.73						
370.0	5.89	2.15	19.02						
390.0	8.61	2.50	10.72	4.					
405.6	11.30	4.25	4.25) —	critical point					
	•			10.00					

109

Ten grams of NH₃ is brought to the following sets of conditions. In each case, state whether the NH₃ is a liquid, a vapor, a gas, a solid, or more than one phase. If there is more than one phase, calculate the mass of each phase.

(a)
$$T = 370.0 \text{ K}$$
; $P = 10.0 \text{ MPa}$. - LIQUID

(b)
$$T = 370.0 \text{ K}$$
; $P = 4.0 \text{ MPa.} - \text{VAPOVR}$

(c)
$$T = 420.0 \text{ K}$$
; $P = 8.0 \text{ MPa}$. - 6.45

(d)
$$T = 380.0 \text{ K}$$
; $P = 5.89 \text{ MPa.} - \sqrt{APVV}$

(e)
$$T = 360.0 \text{ K}$$
; $P = 5.89 \text{ MPa}$. $- \text{VIQUIN}$

(f)
$$T = 180.0 \text{ K}$$
; $P = 5.89 \text{ MPa}$.

(g)
$$T = 370.0 \text{ K}$$
; volume = 300 cm³.

30LID

(h)
$$T = 370.0 \text{ K}$$
; volume = 21 cm³.

(i)
$$P = 5.89 \text{ MPa}$$
; volume = 100 cm³.

Ans. (a) L, (b) V, (c) G, (d) V, (e) L, (f) S, (g) V, (h) L, (i) L (5.4g) & V (4.6g).

(1) PHASE(s) - mass of each it more than one

Fall 1993 (Mid-Term)-a

The P-V diagram, covering the vapour and liquid phase regions, of ethane (C_2H_6 ; M = 30.1kg/kmol) is shown below. The critical properties are: $P_c = 4.9$ MPa, T_c =305.4K, and V_c =0.14m³/kmol. critical point

- (a) Identify the state(s) of C₂H₆ at each of the following conditions.
 - (i) T=270K, P=4MPa
 - (ii) P=2MPa, $V=1.0m^3/kmol$. VAPOVR
 - (iii) T=280K, V=0.4m³/kmol. VAPVVX + UQVV) (iv) T=260K, V=1.1m³/kmol. VAPVVX

 - (v) T = 320K, P = 3MPa.

What is the density (in kg/m³) of C₂H₆ at its critical conditions? 2.8 MPa 2.8 MP4

- (c) (i) Give the dew point and bubble point pressures and the vapour pressure of C_2H_6 at 280K.
 - (ii) What is the ratio of the densities of the co-existing liquid and vapour phases at 280K?
- (d) (i) Find the mass of the vapour phase in a 100-Litre bottle filled with 3.01 kg of C₂H₆ at 260K.
 - (ii) What is the volume of the liquid phase in the bottle in Part (d)(i)?

$$V = \frac{V}{\Omega} = \frac{0.1 \, \text{m}^3}{0.1 \, \text{kmol}} = \frac{\text{Ans.}}{\text{kmol}}$$

 $(a)(i)L, (ii)V, (iii)L+V, (iv)V, (v)G, (b) 215kg/m^3,$ (c)(i)280K, 2.8MPa,, (ii)7, (d)(i)3.01kg, (ii)0.

 $M = \frac{M}{\Lambda} \rightarrow \Lambda = \frac{M}{M} = \frac{3.01 \text{ kg}}{30.1 \text{ ks/lmod}} = 0.1 \text{ km/l}$

Fall 1991 (Mid-Term)-a

The P-V diagram for a new industrial material (M = 49 kg/kmol) is provided below. The critical properties of this material are (approximately): $T_c = 52^{\circ}\text{C}$, $P_c = 11.5 \text{ MPa}$, and $V_c = 100 \text{ MPa}$ 0.34 m³/kmol. Use the *P-V* diagram to answer the following questions:

- What is the state of the material at each of the following conditions?
 - T = 30°C, V = 0.015 m³/kg VAPOUR
 - $P = 5 \text{ MPa}, V = 0.010 \text{ m}^3/\text{kg}$ (ii)
 - (iii) $P = 10 \text{ MPa}, T = 15^{\circ}\text{C}$
 - $V = 0.010 \text{ m}^3/\text{kg}, P = 15 \text{ MPa}$ (iv)
- What is the density of the material (in kg/m³) at its critical conditions? $R = \frac{M}{0.34 \frac{m^3}{lime1}}$ What is the vapour pressure at 25°C? 7 MPa (b) (c)
- What is the density and mass of the liquid phase in a 1 kg sample which occupies a (d) volume of 0.006m³ at 10°C? volume of 0.006m^3 at 10°C ? $\sqrt{\frac{0.006\text{m}^3}{1\text{kg}}} = 0.006\text{m}^3/\text{kg}$ What are the density and the volume occupied by the vapour phase in Part (d)?
- (e)

Ans. (a) (i)V, (ii)L+V, (iii)L, (iv)G, (b) 144.12kg/m³, (c) 7MPa, (d) 500kg/m³, 0.71kg, (e) 69kg/m³, 4.2liter ML = 0.68 (165) (0.68

KSLIR) - MV = MT - ML

= 1 kg - 0.68 = 0.32 kg VAP

ENGG 201 -W2012 - Pure Component Examples - Chapter 4

Fall 1990 (Mid-Term)-b

TRIPLE

Ammonia (NH₃, M = 17.03 g/mol) is a compound that finds important applications in the fertilizer and refrigeration industries. Its triple-point temperature and pressure are (195.4 K) and (6.08 kPa), respectively. Additional P-V-T data for NH₃ in the vapor-liquid region are provided below:

		$V(\text{cm}^3/\text{g})$					
	T(K)	P, MPa	liquid	vapor			
	- 350.0	3.87	1,95	31.73			
	-370.0	5.89	2.15	19.02			
	-390.0	8.61	2.50	10.72			
1120	405.6	11.30	4.25	4.25	CRITICAL	DT	
100			Maria -		OF THEME	TT_{χ}	

Ten grams of NH₃ is brought to the following sets of conditions. In each case, state whether the NH₃ is a liquid, a vapor, a gas, a solid, or more than one phase. If there is more than one phase, calculate the mass of each phase.

(a)
$$T = 370.0 \text{ K}$$
; $P = 10.0 \text{ MPa.}$ — L [Q (b) $T = 370.0 \text{ K}$; $P = 4.0 \text{ MPa.}$ — VAP (c) $T = 420.0 \text{ K}$; $P = 8.0 \text{ MPa.}$ — CAS (d) $T = 380.0 \text{ K}$; $P = 5.89 \text{ MPa.}$ — VAP (e) $T = 360.0 \text{ K}$; $P = 5.89 \text{ MPa.}$ — VAP (i) $P = 5.89 \text{ MPa.}$ — VAP (ii) $P = 5.89 \text{ MPa.}$ (i) $P = 5.89 \text{ MPa.}$ volume = 100 cm^3 .

Ans. (a) L, (b) V, (c) G, (d) V, (e) L, (f) S, (g) V, (h) L, (i) L (5.4g) & V (4.6g).

$$V = \frac{V}{m} = \frac{300 \text{ cm}^3}{10 \text{ g}} = \frac{300 \text{ cm}^3}{30 \text{ cm}^3} = \frac{300 \text{ cm}^3}{30 \text{ cm}^3} = \frac{300 \text{ cm}^3}{10 \text{ g}} = \frac{21 \text{ cm}^3}{10 \text{ g}} = \frac{1000 \text{ c$$

Fall 1993 (Mid-Term)-a

Pr = Vr = 0.55 m3/mol = 7.33

The P-V diagram, covering the vapour and liquid phase regions, of ethane $(C_2H_6; M = 30.1)$ kg/kmol) is shown below. The critical properties are $P_c = 4.9$ MPa, $T_c \neq 305.4$ K, and V_c =0.14m 3 /kmol.

- (a) Identify the state(s) of C₂H₆ at each of the following conditions.
 - 4) T=270K, P=4MPa L(QV)

- 2.8 MPg 2.8 MPg
 - (ii) What is the ratio of the densities of the co-existing liquid and vapour phases at 280K?
- (d) (i) Find the mass of the vapour phase in a 100-Litre bottle filled with 3.01 kg of C₂H₆/at 260K.

(c)(i)280K, 2.8MPa,, (ii)7, (d)(i)3.01kg, (ii)0.

Fall 1991 (Mid-Term)-a

The P-V diagram for a new industrial material (M = 49 kg/kmol) is provided below. The critical properties of this material are (approximately): $T_c = 52$ °C, $P_c = 11.5$ MPa, and $V_c =$ 0.34 m³/kmel. Use the *P-V* diagram to answer the following questions: CRITICAL.

What is the state of the material at each of the following conditions?

 $T = 30^{\circ}\text{C}, V = 0.015 \text{ m}^3/\text{kg}$

P = 5 MPa, $V = 0.010 \text{ m}^3/\text{kg}$ VAP + L LQ

(iv) $V = 0.010 \text{ m}^3/\text{kg}$, P = 15 MPa - 6ASWhat is the density of the material (in kg/m³) at its critical conditions? $P_c = \frac{M}{V_{MC}} = \frac{49 \text{ kg/kmol}}{0.34 \text{ m}^3/\text{kmol}}$ (b)

- (c)
- What is the density and mass of the liquid phase in a 1 kg sample which occupies a (d) V= W = 0.006 m3/kg = 0.006 m3/kg volume of 0.006m³ at 10°C?

What are the density and the volume occupied by the vapour phase in Part (d)? (e)

Ans. (a) (i)V, (ii)L+V, (iii)L, (iv)G, (b) 144.12kg/m³, (c) 7MPa, (d) 500kg/m³, 0.71kg, (e) 69kg/m³, 4.2liter

$$ML = 0.0145 - 0.006$$
 (c) /MPa, $MT = 0.0145 - 0.002 = 0.68$