Riassunto Geometria e Algebra Lineare (Teoria)

INDICE	
Combinazione lineare (1.3)	2
Vettori linearmente dipendenti (1.3)	2
Vettori linearmente dipendenti in (1.5)	2
Vettori linearmente indipendenti (1.3)	2
Disuguaglianza di Cauchy-Scwartz (1.44)	3
Teorema di Binet (2.19)	3
Teorema degli orlati (2.26)	5
Teorema di struttura (3.4)	5
Teorema di Rouché-Capelli per i sistemi ridotti a scala (3.14)	6
Teorema 3.15 (Utile per dimostrare Rouché-Capelli)	6
Teorema di Rouché-Capelli (3.18)	7
Lemma di Steinitz (4.21)	8
Teorema di completamento a base (4.29)	9
Teorema\Formula di Grassman (4.31)	10
Teorema della dimensione (5.10)	12
Iniettività e suriettività di un'applicazione lineare (5.9)(5.11)	13
Definizione spazi isomorfi (5.13)	13
Definizione spazi isomorfi (5.14)	13
Criterio di Sylvester (7.5)	14
Lemma (8.16)	14
Proposizione (8.17)	15
Teorema spettrale (8.18)	16

Combinazione lineare (1.3)

Enunciato:

Dati I vettori $v_1, v_2, v_3, \ldots, v_n \in \mathbb{K}^n$, si dice combinazione lineare di $v_1, v_2, v_3, \ldots, v_n$ ogni elemento di $Z \in \mathbb{K}^n$ per cui esistano $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ tali che:

$$Z = \alpha_1 v_1 + \dots + \alpha_n v_n$$

Gli scalari $\alpha_1, \ldots, \alpha_n$ si dicono coefficienti della combinazione lineare.

Vettori linearmente dipendenti (1.3)

Enunciato:

I vettori $v_1, v_2, v_3, \ldots, v_n$ si dicono linearmente dipendenti se esistono dei coefficienti $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ non tutti nulli tali che

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n = 0$$

Vettori linearmente dipendenti in \mathbb{R}^3 (1.5)

Enunciato:

 X_1, \ldots, X_k sono linearmente dipendenti se e solo se uno di essi è combinazione lineare degli altri

Dimostrazione:

Sia $\lambda_1 X_1 + \cdots + \lambda_k X_K \operatorname{con} \lambda_1, \ldots, \lambda_k \operatorname{non tutti nulli.}$

Supponiamo che λ_i sia diverso da zero (\neq 0).

Allora:

$$X_j = -\lambda_j^{-1}(\lambda_1 X_1 + \dots + \lambda_{j-1} X_{j-1} + \lambda_{j+1} X_{j+1} + \dots + \lambda_k X_K)$$

Viceversa se

$$X_{j} = \lambda_{1}X_{1} + \dots + \lambda_{j-1}X_{j-1} + \lambda_{j+1}X_{j+1} + \dots + \lambda_{k}X_{K}$$

Allora

$$\lambda_1 X_1 + \dots + \lambda_{i-1} X_{i-1} - X_i + \lambda_{i+1} X_{i+1} + \dots + \lambda_k X_K = 0$$

Vettori linearmente indipendenti (1.3)

Enunciato:

I vettori v_1,v_2,v_3,\ldots,v_n si dicono linearmente indipendenti se esistono dei coefficienti $\alpha_1,\alpha_2,\alpha_3,\ldots,\alpha_n$ tutti nulli tali che

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \ldots + \alpha_n v_n = 0$$

Altri modi per dirlo:

L

 $v_1, v_2, v_3, \ldots, v_n$ sono linearmente indipendenti se $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \ldots + \alpha_n v_n = 0$ ha una e una sola soluzione (Rouché-Capelli). $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \ldots + \alpha_n v_n = 0$ se e solo se $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n = 0$

Disuguaglianza di Cauchy-Scwartz (1.44)

Enunciato:

$$\begin{aligned} |\langle Z,W\rangle| &\leq ||Z||\cdot||W|| \\ \text{Dove} &||Z|| := \sqrt{\langle Z,Z\rangle} \end{aligned}$$

E l'uguaglianza vale se e solamente se Z e W sono proporzionali.

Dimostrazione:

Siano $\alpha, \beta \in \mathbb{C}$

Se Z=0 allora l'uguaglianza è banalmente verificata.

Supponiamo $Z \neq 0$, allora:

$$0 \le \langle \alpha Z + \beta W, \alpha Z + \beta W \rangle \le |\alpha|^2 \langle Z, Z \rangle + |\beta|^2 \langle W, W \rangle + \alpha \overline{\beta} \langle Z, W \rangle + \overline{\alpha} \beta \langle W, Z \rangle$$

Se poniamo $\alpha = -\langle W, Z \rangle$ e $\beta = \langle Z, Z \rangle$ otteniamo: $|\langle Z, W \rangle|^2 \langle Z, Z \rangle + \langle Z, Z \rangle^2 \langle W, W \rangle - 2\langle Z, Z \rangle |\langle Z, W \rangle|^2 \ge 0$

Dividendo per $\langle Z, Z \rangle$ si ottiene:

$$|\langle Z, W \rangle|^2 \le \langle Z, Z \rangle \langle W, W \rangle$$

Infine, "eliminando l'esponente" si ottiene:

$$|\langle Z, W \rangle| \leq \sqrt{\langle Z, Z \rangle} \sqrt{\langle W, W \rangle} \Rightarrow |\langle Z, W \rangle| \leq ||Z|| \cdot ||W||$$

Teorema di Binet (2.19)

Enunciato:

$$det(A \cdot B) = det(A) \cdot det(B)$$

Corollario 1 (2.20):

Enunciato:

Se A è una matrice ortogonale ($A \cdot A^t = II$), allora |det(A)| = 1

Dimostrazione:

Sia $A \in M_{n \times n}(\mathbb{R})$ una matrice ortogonale.

Allora $A \cdot A^t = 1$.

Applicando il teorema di Binet, otteniamo:

$$1 = det(A) \cdot det(A^t) = det(A)^2$$

Poiché $det(A) = det(A^t)$, da cui segue la tesi.

Corollario 2 (2.21):

Enunciato:

Una matrice $A \in M_{n \times n}(\mathbb{R})$ invertibile se e solamente se $det(A) \neq 0$.

Inoltre, $det(A^{-1}) = \frac{1}{det(A)}$ (Il determinante dell'inversa è uguale al reciproco del suo determinante).

Dimostrazione:

Se A è invertibile, allora esiste A^{-1} tale che $A \cdot A^{-1} = II$.

Applicando la formula di Binet, otteniamo:

$$det(A) \cdot det(A^{-1}) = det(A \cdot A^{-1}) = det(II) = 1$$

Da cui segue che $det(A) \neq 0$ e $det(A^{-1}) = \frac{1}{det(A)}$.

Viceversa supponiamo, supponiamo che $det(A) \neq 0$.

Definiamo la matrice *B* come:

$$(b_{ij}) = (-1)^{i+j} \cdot \frac{\det(A_{ji})}{\det(A)} (A_{ji} \text{ complemento algebrico generico di } A)$$

Dove A_{ji} è un complemento algebrico generico di A, ovvero, la matrice che ottengo da A eliminando le j-esima riga e la i-esima colonna.

Vogliamo dimostrare che AB = BA = II

$$(AB)_{\alpha\beta} = \sum_{m=1}^{n} (-1)^{\beta+m} \cdot a_{\alpha m} \cdot \frac{\det(A_{\beta m})}{\det(A)},$$

Se $\alpha \neq \beta$, allora il termine:

$$\sum_{m=1}^{n} (-1)^{\beta+m} \cdot a_{\alpha m} \cdot det(A_{\beta m})$$

Coincide con lo sviluppo di Laplace secondo la α -esima riga della matrice:

$$\begin{bmatrix} A^1 \\ \vdots \\ A^{\alpha} \\ \vdots \\ A^{\alpha} \\ \vdots \\ A^n \end{bmatrix}$$

Le cui α -esime e β -esime righe coincidono con A^{α} .

Quindi $b_{\alpha\beta} = 0$ se $\alpha \neq \beta$.

Invece se $\alpha = \beta$, allora:

$$\sum_{m=1}^{n} (-1)^{\alpha+m} \cdot a_{\alpha m} \cdot det(A_{\alpha m})$$

Che è esattamente lo sviluppo di Laplace rispetto alla α -esima riga, quindi:

$$(AB)_{\alpha\alpha} = \sum_{m=1}^{n} (-1)^{\alpha+m} \cdot a_{\alpha m} \cdot \frac{\det(A_{\alpha m})}{\det(A)} = \frac{\det(A)}{\det(A)} = 1$$

Analogamente si dimostra che BA = II.

Teorema degli orlati (2.26)

Enunciato:

Il rango per minori della matrice A è uguale ad r se e solamente se esiste un matrice A' di ordine r non <u>singolare</u> e tutte le sottomatrici di A di ordine r+1, che si ottengono orlando A' hanno determinante nullo.

Teorema di struttura (3.4)

Enunciato:

Sia AX = b un sistema lineare compatibile.

Sia X_0 una sua soluzione particolare del sistema AX = b ($X_0 \in Sol(A|b)$).

Allora ogni altra soluzione del sistema lineare AX = b è della forma $X_0 + W$, dove W è una soluzione del sistema lineare omogeneo associato AX = 0 ($W \in Sol(A|0)$), allora: $Sol(A|b) = \left\{X_0 + W, W \in Sol(A|0)\right\}$

Dimostrazione:

Indichiamo con $E = \{X_0 + W, W \in Sol(A|0)\}.$

Vogliamo dimostrare che E = Sol(A|b).

Sia $Y \in Sol(A|b)$.

Allora $A(Y-X_0)=AY-AX_0=b-b=0$, ovvero $Y-X_0$ è soluzione del sistema lineare omogeneo associato, da cui segue che $Y-X_0\in Sol(A|0)$, cioè $Y=W+X_0$, per un certo $W\in Sol(A|0)$.

Quindi $Sol(A|b) \subset E$.

VICEVERSA, consideriamo un elemento di E, il quale sarà nella forma X_0+W e dove W è una soluzione del sistema lineare omogeneo associato. Allora:

$$A(X_0 + W) = AX_0 + AW = b + 0 = b$$

Da cui segue che $E \subset Sol(A|0)$.

Quindi $Sol(A|b) = \{X_0 + W, W \in Sol(A|0)\}.$

Teorema di Rouché-Capelli per i sistemi ridotti a scala (3.14)

Enunciato:

Sia SX = c un sistema ridotto a scala, dove $S \in M_{m \times n}(\mathbb{K})$ e $c \in \mathbb{K}^n$, con rg(S) = r, ovvero la matrice ridotta a scala S ha r righe non nulle.

Il sistema SX = c è compatibile se e solamente se rg(S|c) = r In tal caso le soluzioni dipendono dipendono da n - r parametri. n: numero di incognite(righe).

Dimostrazione:

 $\begin{aligned} &\text{Sia } rg(S|c) = rg(S) = r \leq n \\ &\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & | & k_1 \\ 0 & 1 & 0 & \cdots & 0 & | & k_2 \\ 0 & 0 & 0 & \cdots & s_1 j_1 & \cdots & \cdots & \cdots & \cdots & \cdots & * & | & c_1 \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & s_2 j_2 & \cdots & \cdots & * & | & c_2 \\ \vdots & & & & & & & & \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & s_r j_r & \cdots & * & | & c_r \\ 0 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1 & | & k_{n-r} \end{bmatrix}$

Osservazione:

Abbiamo scritto un sistema in cui abbiamo aggiunto delle condizioni (righe con k).

Osservazione:

Il sistema è una sistema triangolare superiore, quindi sappiamo che ha una e una sola soluzione.

Per ogni scelta degli n-r parametri abbiamo una e una sola soluzione.

Teorema 3.15 (Utile per dimostrare Rouché-Capelli)

Enunciato:

Ogni matrice $A \in M_{m \times n}(\mathbb{K})$ può, tramite un numero finito di operazioni elementari sulle righe, essere trasformata in una matrice a scala.

Dimostrazione:

Sia $A = (A^1, A^2, ..., A^n)$, dove A^i è l'i-esima colonna di A.

Passo 1:

Sia j_1 il più piccolo indice per cui la colonna $A^{j_1} \neq 0$ (Colonna non nulla).

$$[0,0,\dots,0,A^{j_1},\dots,A^n]$$

Passo 2:

A meno di scambiare fra loro 2 righe, posso supporre che $a_{1i} \neq 0$.

Quindi la matrice A dopo tali operazioni si è trasformata nella matrice:

 $a_{1j_1} \neq 0$ sarà il nostro pivot, quindi nella colonna sottostante vogliamo che tutti gli elementi siano uguali a zero.

Passo 3:

Facciamo apparire degli zeri sotto ad a_1j_1 .

- Se $a_{ij_1} = 0$ allora non devo fare nulla.
- . Se $a_{ij_1}\neq 0$, allora sostituisco la riga i con la riga $i-\frac{a_{ij_1}}{a_{1j_1}}$ volte la riga 1. Al posto di ij_1 otteniamo $a_{ij_1}-\frac{a_{ij_1}}{a_{1j_1}}\cdot a_{1j_1}=a_{ij_1}-a_{ij_1}=0$

Di conseguenza, la matrice A, dopo queste operazioni, è stata trasformata nella matrice:

$$\begin{bmatrix} 0 & \cdots & \cdots & 0 & a_{1j_1} & * & \cdots & * \\ \vdots & & \vdots & 0 & & \\ \vdots & & \vdots & \vdots & B & & \\ \vdots & & \vdots & \vdots & & B & \\ 0 & \cdots & \cdots & 0 & 0 & * & \cdots & * \\ \end{bmatrix}$$

Compare il primo scalino e otteniamo la matrice B con n-1 righe.

Ripetiamo il procedimento precedente per la matrice B.

Ad ogni reiterazione del procedimento otteniamo una riga in meno, quindi, quando non avremo più righe su cui operare, la matrice A si potrà dire ridotta a scala.

Teorema di Rouché-Capelli (3.18)

Enunciato:

Sia AX = b, un sistema lineare con $A \in M_{m \times n}(\mathbb{K})$ e $b \in \mathbb{K}^n$.

Il sistema è compatibile se e solamente se rg(A) = rg(A|b) = r, in tal casi la soluzione dipende da n-r parametri (Numero di soluzioni: ∞^{n-r}).

r: numero di righe non nulle.

Dimostrazione:

Sia (A|b) la matrice completa associata al sistema lineare.

Svolgiamo un numero finito di operazioni elementari sulle righe per ridurre a scala la matrice (A | b).

Otteniamo quindi una matrice (S|c) dove S è ridotto a scala e il sistema lineare SX = c è un sistema lineare ridotto a scala equivalente al sistema AX = b.

Quindi AX = b è compatibile se e solamente se SX = c è compatibile se e solamente se rg(S) = rg(A) = rg(S|c) = rg(A|b).

Inoltre e soluzioni sono parametrizzate da n-r parametri.

Per trovare esplicitamente le soluzioni del sistema ci basta utilizzare il metodo di risoluzione all'indietro per i sistemi triangolari superiori, inserendo i parametri quando ci servono.

Osservazione:

Poiché (A|b) è la matrice A con una colonna in più il

$$rg(A|b) = \begin{cases} rg(A) & \text{se } b \text{ è combinazione lineare delle colonne di } A \\ rg(A) + 1 & \text{se } b \text{ non è combinazione lineare delle colonne di } A \end{cases}$$

Lemma di Steinitz (4.21)

Enunciato:

Sia V uno spazio vettoriale su \mathbb{K} finitamente generato da n vettori: $v_1, ..., v_n \in V$.

Siano $w_1, ... w_m \in V \operatorname{con} m > n$.

Allora I vettori $w_1, \dots w_m$ sono linearmente dipendenti.

In altre parole, se V è generato da n vettori, ogni insieme di vettori linearmente indipendente ha al massimo n elementi.

Dimostrazione:

Siano $\alpha_1,...,\alpha_m\in\mathbb{K}$ tali che $\alpha_1w_1,...,\alpha_mw_m=0$ che possiamo scrivere come

$$\sum_{l=1}^{m} \alpha_l w_l = 0$$

Sappiamo che $V = \alpha_{\mathbb{K}}(v_1, ..., v_n)$.

In particolare, ogni vettore w_j è combinazione lineare di $v_1, ..., v_n$:

$$\forall j = 1, ..., n \ w_j = \sum_{k=1}^{n} a_{jk} v_k$$

Quindi sostituendo in $\alpha_1 w_1, ..., \alpha_m w_m = 0$, otteniamo:

$$0 = \sum_{l=1}^{m} \alpha_{l} w_{l} = \sum_{l=1}^{m} \alpha_{l} \left(\sum_{k=1}^{n} a_{lk} v_{k} \right)$$

Porto alpha all'interno della sommatoria interna:

$$\sum_{l=1}^{m} \left(\sum_{k=1}^{n} \alpha_l a_{lk} v_k \right) = 0$$

Commutiamo le due sommatorie:

$$\sum_{k=1}^{n} \left(\sum_{l=1}^{m} \alpha_l a_{lk} v_k \right) = 0$$

Porto v_k fuori dalla sommatoria:

$$\sum_{k=1}^{n} \left(\sum_{l=1}^{m} \alpha_l a_{lk} \right) v_k = 0$$

Se la sommatoria interna risulta zero, allora questo: $\alpha_1 w_1, \ldots, \alpha_m w_m = 0$ è verificato.

Vediamo quindi se esistono $\alpha_1, ..., \alpha_m \in \mathbb{K}$ non tutti nulli tali che:

$$\sum_{l=1}^{m} a_{lk} \alpha_l = 0 \quad \forall k = 1, \dots, n$$

Notiamo che quello che abbiamo scritto è un sistema lineare omogeneo con n equazioni e m incognite.

Grazie a Rouché-Capelli sappiamo che il sistema è risolubile (sistema omogeneo), inoltre sappiamo che il numero di parametri per cui dipendono le soluzioni è dato dal numero delle incognite meno il rango della matrice: m-r.

Sappiamo anche che r=min(m,n), dall'ipotesi sappiamo che m>n, di conseguenza r=n.

Quindi il numero di soluzioni dipenderà da $m-n \ge 1$ parametri.

Ovvero ci sono soluzioni non banali $\Rightarrow w_1, ..., w_m$ sono linearmente dipendenti.

Teorema di completamento a base (4.29)

Enunciato:

Sia V uno spazio vettoriale su \mathbb{K} .

Sia $B = \{v_1, \dots, v_n\}$ una base dello spazio vettoriale.

Sia $C = \{w_1, \dots, w_m\}$ un insieme di vettori linearmente indipendenti di V.

Allora esiste n-m vettori di $B: v_{j1}, ..., v_{jn-m}$ tali che:

$$w_1, \ldots, w_m, v_{j1}, \ldots, v_{jn-m}$$
 sono una base di V

Dimostrazione:

Per il lemma di Steinitz sappiamo che $m \leq n$.

B è una base di V quindi $w_1,\ldots,w_m\in\alpha_{\mathbb{K}}(v_1,\ldots,v_n).$ Di conseguenza sappiamo che $\alpha_{\mathbb{K}}(w_1,\ldots,w_m)\subset\alpha_{\mathbb{K}}(v_1,\ldots,v_n).$

Se $\alpha_{\mathbb{K}}(w_1,...,w_m)=\alpha_{\mathbb{K}}(v_1,...,v_n)$ allora $w_1,...,w_m$ sono generatori di V.

Sappiamo per ipotesi che sono linearmente indipendenti e quindi sono una base di V, poiché tutte le basi hanno la stessa dimensione allora m=n e di conseguenza il teorema sarebbe dimostrato.

Supponiamo quindi che $\alpha_{\mathbb{K}}(w_1,...,w_m) \neq \alpha_{\mathbb{K}}(v_1,...,v_n)$.

Ciò vuol dire che esiste un certo v_{j1} tra $v_1, ..., v_n$ tale che $v_{j1} \notin \alpha_{\mathbb{K}}(w_1, ..., w_m)$.

Quindi per il lemma 4.28 $v_{j1}, w_1, ..., w_m$ sono linearmente indipendenti e sono m+1.

Se m+1=m la dimostrazione è finita, altrimenti ripeto questo passaggio fino ad avere n-m vettori v_{j1},\ldots,v_{jn-m} tali che $v_{j1},\ldots,v_{jn-m},w_1,\ldots,w_m$ sono linearmente indipendenti e quindi una base.

Teorema\Formula di Grassman (4.31)

Enunciato:

Se U e W sono sottospazi vettoriali di V, allora:

 $dim(U+W) + dim(U \cap W) = dim(U) + dim(W)$

Osservazioni:

- Anche U+W e $U\cap W$ sono sottospazi di V.
- $U \supseteq (U \cap W) \subseteq W$.
- $U \subseteq (U+W) \supseteq W(U+W)$ è il sottospazio vettoriale più piccolo che contiene $U \in W$).

Dimostrazione:

Fissiamo una base $\{s_1, ..., s_k\}$ di $U \cap W$.

Per il teorema di completamento a base possiamo estenderla a

- Una base di $U\{S_1, ..., S_k, u_1, ..., u_p\}$
- Una base di W $\{s_1, ..., s_k, w_1, ..., w_q\}$

Da questo scopriamo che $dim(U\cap W)=k,$ dim(U)=k+p e dim(W)=k+q. Se la tesi del teorema è vera, allora dim(U+W)=k+p+q.

Quindi dobbiamo dimostrare che dim(U+W)=k+p+q:

Unendo le basi di U e W otteniamo $\{s_1, \dots, s_k, u_1, \dots, u_p, w_1, \dots, w_q\}$ che per il lemma sono generatori di U+W.

Se dimostriamo che $\{s_1,\dots,s_k,u_1,\dots,u_p,w_1,\dots,w_q\}$ è una base di U+W, allora dim(U+W)=k+p+q e quindi per dimostrare il teorema dobbiamo dimostrare che questo insieme di generatori sia linearmente indipendente.

Quindi siano $\alpha_1, ..., \alpha_k, \beta_1, ..., \beta_p, \gamma_1, ..., \gamma_q$ scalari tali che:

$$\sum_{i=1}^{k} \alpha_{j} s_{j} + \sum_{l=1}^{p} \beta_{l} u_{l} + \sum_{i=1}^{q} \gamma_{i} w_{i} = 0$$

Definizione:

$$v = \sum_{j=1}^{k} \alpha_j s_j \qquad u = \sum_{l=1}^{p} \beta_l u_l \qquad w = \sum_{i=1}^{q} \gamma_i w_i$$

Quindi
$$\sum_{j=1}^{k} \alpha_{j} s_{j} + \sum_{l=1}^{p} \beta_{l} u_{l} + \sum_{i=1}^{q} \gamma_{i} w_{i} = v + u + w = 0$$

Osservazione:

$v \in U \cap W$	$u \in U$	$w \in W$	

Allora possiamo dedurre che $u=-v(\in U\cap W)-w(\in W)$. Da questo possiamo dedurre che $u\in W$ e $u\in U\Rightarrow u\in U\cap W$. In maniera analoga possiamo dedurre $w=-v(\in U\cap W)-u(\in U)$. Dal quale possiamo dedurre che $w\in U$ e $w\in W\Rightarrow w\in U\cap W$.

 $u=\sum_{l=1}^p \beta_l u_l$, ma $u\in U\cap W$ quindi si scrive come combinazione lineare della base s_1,\ldots,s_k di $U\cap W$.

Ovvero
$$\exists \delta_1, ..., \delta_k \in W$$
 tall che $u = \sum_{l=1}^p \beta_l u_l = \sum_{r=1}^k \delta_r s_r$

Quindi possiamo dire che $\sum_{l=1}^{p} \beta_l u_l + \sum_{r=1}^{k} (-\delta_r) s_r = 0$ questa è una combinazione lineare

di vettori linearmente indipendenti (vettori della base di U) che risulta un valore nullo, quindi tutti i coefficienti sono nulli ($\beta_1 = \cdots = \beta_l = 0$ e $\delta_1 = \cdots = \delta_r = 0$).

Sapendo che $\beta_1=\cdots=\beta_l=0$ possiamo riscrivere l'equazione come:

$$\sum_{j=1}^{k} \alpha_j s_j + \sum_{i=1}^{q} \gamma_i w_i = 0$$

Che non è altri che una combinazione lineare di $s_1, \ldots, s_k, w_1, \ldots, w_q$ che da il vettore nulla.

Osserviamo che $s_1,\ldots,s_k,w_1,\ldots,w_q$ sono una base di W e quindi sono linearmente indipendenti, quindi tutti i coefficienti sono nulli ($\alpha_1=\cdots=\alpha_k=0$ e $\gamma_1=\cdots=\gamma_q=0$). Page 11 of 20

Quindi abbiamo dimostrato che $\{s_1,\dots,s_k,u_1,\dots,u_p,w_1,\dots,w_q\}$ sono linearmente indipendenti e sono generatori, quindi sono una base e quindi dim(U+W)=k+p+q come volevamo dimostrare.

Teorema della dimensione (5.10)

Enunciato:

Sia $T:V\to W$ un'applicazione lineare, allora:

$$dim(V) = dim(Ker(T)) + dim(Im(T))$$

Dimostrazione:

Osservazione:

 $Ker(T) \subseteq V$

Ci scriviamo una base di Ker(T) e la completiamo a base per ottenere una base di V. Quindi sia v_1, \ldots, v_k una base di Ker(T).

La completiamo a base e otteniamo $v_1, \ldots, v_k, v_{k+1}, \ldots, v_n$ ed otteniamo cosi una base di V.

Da quello che abbiamo appena fatto possiamo dedurre che dim(Ker(T)) = k e dim(V) = n.

Quindi sostituendo nella formula otteniamo che

$$n = k + dim(Im(T)) \Rightarrow dim(Im(T)) = n - k.$$

Dobbiamo dimostrare che dim(Im(T)) = n - k, quindi dobbiamo trovare una base di Im(T) che sia composta da n - k elementi.

Osservazione:

Sappiamo che Im(T) è generato dallo spazio lineare formato dalle immagini dei vettori della base di $V: Im(T) = \alpha_{\mathbb{K}} (T(v_1), ..., T(v_n))$.

Sappiamo però che i primi k vettori della base di V hanno immagine nulla, poiché base di Ker(T), quindi possiamo riscrivere come:

$$Im(T) = \alpha_{\mathbb{K}} (T(v_1), ..., T(v_n)) = \alpha_{\mathbb{K}} (T(v_{k+1}), ..., T(v_n)).$$

Da quest possiamo dedurre che $\operatorname{Im}(T)$ è generato esattamente da n-k vettori.

Allora dobbiamo dimostrare che $T(v_{k+1}), ..., T(v_n)$ sono linearmente indipendenti. Siano $\alpha_{k+1}, ..., \alpha_n \in \mathbb{K}$ (degli scalari in \mathbb{K}) tali che:

$$\sum_{i=k+1}^{n} \alpha_j T(v_j) = 0_W$$

Poiché la nostra combinazione è lineare, possiamo riscriverla come $T\left(\sum_{j=k+1}^{n}\alpha_{j}v_{j}\right)=0_{W}$

Visto che lo abbiamo posto uguale al vettore nullo di $\it W$ possiamo dire che

$$T\left(\sum_{j=k+1}^{n} \alpha_{j} v_{j}\right) \in Ker(T)$$

Quindi $\exists \alpha_1,...,\alpha_k \in \mathbb{K}$ tali che:

$$T\left(\sum_{j=k+1}^{n} \alpha_{j} v_{j}\right) = T\left(\sum_{j=1}^{k} \alpha_{j} v_{j}\right) \Rightarrow \sum_{j=k+1}^{n} \alpha_{j} v_{j} = \sum_{j=1}^{k} \alpha_{j} v_{j} \Rightarrow \sum_{j=1}^{n} \alpha_{j} v_{j} = 0_{V}$$

Sappiamo pero che $\alpha_j v_j$ sono una base di $V \Rightarrow \alpha_j = 0 \ \forall j = 1, \dots, n$.

Di conseguenza abbiamo dimostrato che $T(v_{k+1}), ..., T(v_n)$ sono una base di Im(T), sono esattamente n-k e quindi il teorema è dimostrato.

Corollario:

Iniettività e suriettività di un'applicazione lineare (5.9)(5.11)

Enunciato:

Sia $T: V \rightarrow W$

- 1. T è iniettiva se e solamente se $dim(Im(T)) = dim(V) \Rightarrow dim(Ker(T)) = 0$
- 2. T è suriettiva se e solamente se dim(Im(T)) = dim(W)
- 3. T è biunivoca se e solamente se T è sia iniettiva che suriettiva

Corollario:

- 1. Se T è iniettiva, allora $dim(V) \leq dim(W)$
- 2. Se T è suriettiva, allora $dim(V) \ge dim(W)$
- 3. Se T è biunivoca, allora dim(V) = dim(W)

Definizione spazi isomorfi (5.13)

Enunciato:

Due spazi vettoriali V,W si dicono isomorfi se esiste un'applicazione lineare $T:V\to W$ iniettiva e suriettiva, ovvero biunivoca.

Definizione spazi isomorfi (5.14)

Enunciato:

V, W spazi vettoriali visivamente generati.

V, W sono isomorfi se e solamente se dim(V) = dim(W).

Dimostrazione:

Sappiamo che se V,W sono isomorfi, allora esiste un'applicazione lineare biunivoca $T:V\to W$

Viceversa, se V, W hanno la stessa dimensione $\left(dim(V) = dim(W) = n\right)$, allora esiste una base $B = \{v_1, \dots, v_n\}$ di V e una base $C = \{w_1, \dots, w_n\}$ di W.

Allora possiamo definire $T: V \to W$ che manda v_j in $w_j (v_j \to w_j)$.

È suriettiva perché $Im(T) \supset \{w_1, \dots w_n\}$.

Quindi $Im(T) \supset \alpha_{\mathbb{K}} \{ w_1, \dots w_n \} = W.$

Ma visto che i due spazi hanno la stessa dimensione, allora T è anche iniettiva $\Rightarrow V, W$ Sono isomorfi.

Criterio di Sylvester (7.5)

Enunciato:

Sia $A \in M_{n \times n}(\mathbb{K})$ una matrice simmetrica.

A definisce un prodotto scalare se e solamente se $\Delta_r(A) > 0 \ \forall r = 1, ..., n$ dove $\Delta_r(A)$ è il minore di A considerando le prime r righe e le prime r colonne.

Se $f:\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ è un applicazione bilineare simmetrica, allora:

$$f(X,Y) = X^t M_C(f) Y$$

Dove $M_C(f)$ è la matrice associata a f rispetto alla base canonica, ovvero $\left(M_C(f)\right)_{ij}=f(e_i,e_j)$ dove e_1,\ldots,e_n sono i vettori che formano la base canonica.

Quindi f è un prodotto scalare se e solamente se $M_{\mathcal{C}}(f)$ è una matrice simmetrica che verifica il criterio di Sylvester.

In generale si può dimostrare che se B è una base di \mathbb{R}^n , allora f è un prodotto scalare se e solamente se $M_B(f)$ verifica il criterio di Sylvester.

Lemma (8.16)

Enunciato:

 $A \in M_{m \times n}(\mathbb{R})$ simmetrica: $A^t = A$.

Gli autovalori di una matrice simmetrica sono reali.

Dimostrazione:

Consideriamo $L_A^{\mathbb{C}}:\mathbb{C}^n\to\mathbb{C}^n$ l'applicazione lineare tale che: $X\to AX$ $\left(L_A^{\mathbb{C}}(X)=AX\right)$. $L_A^{\mathbb{C}}$ è un endomorfismo di \mathbb{C}^n , ovvero un'applicazione \mathbb{C} -lineare da \mathbb{C}^n in \mathbb{C}^n .

 $\lambda \in sp(L_A^{\mathbb{C}}) \Leftrightarrow det(A-\lambda II_n)=0 \Leftrightarrow \lambda$ è radice del polinomio caratteristico di A $\left(p_A(t)=det(A-\lambda II_n)\right)$.

Vogliamo dimostrare che tutti i λ (autovalori) siano reali.

Osservazione:

Sia $<\cdot,\cdot>$ il prodotto scalare canonico di \mathbb{C}^n , allora $< L_A^{\mathbb{C}}(X), Y>=< X, L_A^{\mathbb{C}}(Y)> \forall X,Y\in\mathbb{C}^n$

Allora calcoliamo $< L_A^{\mathbb{C}}(X), Y> = < AX, Y> = (AX)^t \overline{Y} = A^t X^t \overline{Y}$

Visto che A è simmetrica possiamo riscrivere come:

 $AX^{t}\overline{Y}$

Essendo A reale sappiamo anche che $A = \overline{A}$, quindi:

$$X^t \overline{AY} = \langle X, AY \rangle = \langle X, L^{\mathbb{C}}_A(Y) \rangle$$

Dall'osservazione sappiamo che $AX = \lambda X$.

Sia X un autovettore relativo a $\lambda \in sp(L_A^{\mathbb{C}})$, quindi $X \in \mathbb{C}^n \{0\}$.

Quindi < AX, X> = < X, AX> e applicando l'osservazione possiamo riscrivere come: $<\lambda X, X> = < X, \lambda X>$, essendo il prodotto hermitiano lineare possiamo infine riscrivere come $\lambda < X, X> = \overline{\lambda} < X, X>$.

Da questa uguaglianza ricaviamo: $(\lambda - \overline{\lambda}) \cdot \langle X, X \rangle = (\lambda - \overline{\lambda}) \cdot ||X||^2 = 0$. Ma X è un autovettore, quindi non è nullo, di conseguenza $||X||^2 \neq 0$, quindi $(\lambda - \overline{\lambda}) \cdot ||X||^2 = 0$ se e solamente se $(\lambda - \overline{\lambda}) = 0$ e quindi risolvendo l'uguaglianza troviamo che $\lambda = \overline{\lambda}$ ovvero λ è reale.

Proposizione (8.17)

Enunciato:

Sia $A \in M_{m \times n}(\mathbb{R})$ simmetrica: $A^t = A$ e siano u e v due autovettori di A corrispondenti a due distinti autovalori di A: $\lambda, \mu \in \mathbb{R}$ (come dimostrato nel lemma precedente). Allora < u, v > = 0 e quindi $V_{\lambda} \subset V_{\mu}^{\perp}$ se $\lambda \neq \mu$.

Dimostrazione:

Dal lemma precedente sappiamo che $\langle AX, Y \rangle = \langle X, AY \rangle$.

Infatti $\langle AX, Y \rangle = (AX)^t \overline{Y} = A^t X^t \overline{Y} = AX^t \overline{Y} = X^t \overline{AY} = \langle X, AY \rangle$.

Siano u e v autovettori relativi agli autovalori λ $(Au = \lambda u)$ e μ $(Av = \mu v)$, allora < Av, u > = < v, Au >

Che possiamo riscrivere come: $<\mu v, u>=< v, \lambda u>$ che a sua volta può essere scritto come $\mu < v, u>=\lambda < v, u>$.

Di conseguenza come nella dimostrazione precedente $(\mu - \lambda) < v, u > = 0$.

Page 15 of 20

Per ipotesi sappiamo che $\lambda \neq \mu$, quindi $\mu - \lambda \neq 0$ e di conseguenza per fare si che l'uguaglianza sia vera < v, u > = 0, ovvero v e u sono ortogonali.

Teorema spettrale (8.18)

Enunciato:

NOTA:

Sia $A \in M_{n \times n}(\mathbb{R})$ una matrice simmetrica.

Allora esiste una matrice ortogonale P tale che P^tAP è diagonale (essendo P ortogonale, quindi $P^t=P^{-1}$ sappiamo che A è simile ad una matrice diagonale, ovvero è diagonalizzabile).

Ovvero esiste una base $B = \{v_1, ..., v_n\}$ ortonormale di \mathbb{R}^n composta da autovettori di A, ovvero dai vettori colonna di P che fra loro sono ortonormali.

Dal teorema 8.14 sappiamo che se una matrice A è diagonalizzabile, allora l'operatore lineare di moltiplicazione a sinistra per quella matrice è diagonalizzabile.

Quindi una base di autovettori è data dalle colonne della matrice diagonalizzante P.

Dimostrazione per induzione su n (l'ordine della matrice A):

• Passo base: n=1

Banalmente vero: $A=(a_{11})$ essendo formata da un solo elemento è già diagonale, $P=II_1$.

 $\{e_1\}$ base canonica di \mathbb{R}^1 ortonormale di autovettori $Ae_1=a_{11}e_1$.

• Passo induttivo: $n \rightarrow n+1$

Supponiamo di aver dimostrato il teorema nel caso di A di dimensione n.

Dimostriamolo nel caso di A di dimensione n + 1.

Quindi sia $A \in M_{(n+1)\times(n+1)}(\mathbb{R})$ una matrice simmetrica.

Per il lemma 8.16 sappiamo che A ha tutti gli autovalori reali.

Sia $\lambda_1 \in sp(A)$ allora $\exists v \in \mathbb{R}^n / \{0\}$ tale che $Av = \lambda_1 v$.

Denotiamo con $v_1 = \frac{v}{||v||}$ un vettore di norma 1, quindi

$$Av_1 = A\left(\frac{1}{||v||}v\right) = \frac{1}{||v||}\lambda_1 v = \lambda_1 v_1.$$

Quindi v_1 è un autovettore di A relativo all'autovalore λ_1 .

Abbiamo trovato che v_1 è il primo elemento della nostra base, quindi possiamo usare il teorema di completamento a base e il teorema di ortonormalizzazione di Gram-Schmidt per ottenere una base ortonormale di \mathbb{R}^{n+1} : $\{v_1, v_2, ..., v_{n+1}\} = B$.

 $\{v_2, \dots, v_{n+1}\}$ potrebbero non essere autovettori.

La matrice del cambiamento di base M(C,B) che trasforma le coordinate di un vettore rispetto alla base B: $[v]_B$ nelle coordinate dello stesso vettore rispetto alla base C: $[v]_C$. La colonna i-esima della matrice del cambiamento di base è data semplicemente dalle coordinate del vettore v_i rispetto alla base B: $[v_i]_B$ moltiplicato a sinistra per la matrice M(C,B) così da ottenere le coordinate del vettore v_i rispetto alla base C: $[v_i]_C$.

$$[v_i]_C = M(C, B) \cdot [v_i]_B$$

$$| | \qquad \qquad | |$$

$$v_i \qquad M(C, B)^i$$

Questo ci dice che la matrice M(C,B) non è altro che una matrice P che ha per colonne $\{v_1,v_2,...,v_{n+1}\}$ che è una matrice ortogonale.

Possiamo dedurre quindi che $P^t = P^{-1} = M(B, C)$

Quindi
$$P^tAPe_1=\left(\begin{array}{cccc} \frac{\lambda_1}{0} & | & - & \frac{\cdots}{0} & -\\ 0 & | & & \\ \vdots & | & B_{n\times n} & \\ 0 & | & & \end{array}\right)$$

Osservazione:

 $(P^tAP)^t = P^tA^tP^{t^t} = P^tA^tP$ quindi P^tA^tP è una matrice simmetrica, quindi:

$$P^{t}APe_{1} = \begin{pmatrix} \frac{\lambda_{1}}{0} & | & \underline{0} & \underline{\cdots} & \underline{0} \\ 0 & | & & \\ \vdots & | & B_{n \times n} \\ 0 & | & & \end{pmatrix}$$

Essendo la matrice P^tA^tP simmetrica deduciamo che $B^t=B\in M_{n\times n}(\mathbb{R}).$

Essendo B di ordine n, per ipotesi induttiva, tutte le matrici simmetriche $M_{n\times n}(\mathbb{R})$ sono diagonalizzabili tramite una matrice ortogonale: ovvero $\exists\,Q\in M_{n\times n}(\mathbb{R})$ ortogonale tale

che
$$Q^tBQ=\Delta$$
(matrice diagonale) = $\begin{pmatrix} \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$.

Allora definiamo a blocchi la matrice $\tilde{Q} \in M_{(n+1)\times(n+1)}(\mathbb{R})$

$$\tilde{Q} = \begin{pmatrix} \frac{1}{0} & | & \frac{0}{0} & \frac{\cdots}{0} & \frac{0}{0} \\ 0 & | & & & \\ \vdots & | & Q & \\ 0 & | & & & \end{pmatrix}$$

Osservazione:

 $oldsymbol{Q}$ è a sua volta una matrice ortogonale, per verificarlo ci basta calcolare

$$\tilde{Q}^t \tilde{Q} = \begin{pmatrix} \frac{1}{0} & \mid & \underline{0} & \underline{\cdots} & \underline{0} \\ 0 & \mid & & \\ \vdots & \mid & Q^t \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{0} & \mid & \underline{0} & \underline{\cdots} & \underline{0} \\ 0 & \mid & & \\ \vdots & \mid & Q^t Q \end{pmatrix} = \begin{pmatrix} \frac{1}{0} & \mid & \underline{0} & \underline{\cdots} & \underline{0} \\ 0 & \mid & & \\ \vdots & \mid & Q^t Q \end{pmatrix} = \begin{pmatrix} \frac{1}{0} & \mid & \underline{0} & \underline{\cdots} & \underline{0} \\ 0 & \mid & & \\ \vdots & \mid & II_n \\ 0 & \mid & & \end{pmatrix} = II_{n+1}$$

Sapendo che il prodotto fra matrici ortogonali è anche esso ortogonale, possiamo dedurre che PQ sia ortogonale.

Ora calcoliamo

$$(P\tilde{Q})^{t}A(P\tilde{Q}) = \tilde{Q}^{t}(P^{t}AP)\tilde{Q} = \tilde{Q}^{t} \cdot \begin{pmatrix} \frac{\lambda_{1}}{0} & | & - & \cdots & - \\ 0 & | & & & \\ \vdots & | & B_{n \times n} & \\ 0 & | & & & \end{pmatrix} \cdot \tilde{Q} = \begin{pmatrix} \frac{1}{0} & | & \frac{0}{0} & \cdots & 0 \\ 0 & | & & & \\ \vdots & | & Q^{t} & \\ 0 & | & & & \end{pmatrix} \cdot \begin{pmatrix} \frac{\lambda_{1}}{0} & | & - & \cdots & - \\ 0 & | & & & \\ \vdots & | & B_{n \times n} & \\ 0 & | & & & \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{1} & | & \frac{0}{0} & \cdots & 0 \\ 0 & | & & & \\ \vdots & | & Q & \\ 0 & | & & & \end{pmatrix}$$

$$\begin{split} &(P\tilde{\mathcal{Q}})^t A(P\tilde{\mathcal{Q}}) = \tilde{\mathcal{Q}}^t (P^t A P) \tilde{\mathcal{Q}} = \tilde{\mathcal{Q}}^t \cdot \begin{pmatrix} \frac{\lambda_1}{0} & | & - & \cdots & - \\ 0 & | & & & \\ \vdots & | & B_{n \times n} \end{pmatrix} \cdot \tilde{\mathcal{Q}} = \begin{pmatrix} \frac{1}{0} & | & \frac{0}{0} & \cdots & 0 \\ 0 & | & & & \\ \vdots & | & \mathcal{Q}^t \end{pmatrix} \cdot \begin{pmatrix} \frac{\lambda_1}{0} & | & - & \cdots & - \\ 0 & | & & & \\ \vdots & | & B_{n \times n} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{0} & | & \frac{0}{0} & \cdots & 0 \\ \vdots & | & \mathcal{Q} & \\ 0 & | & & \end{pmatrix} \\ & = \begin{pmatrix} \frac{\lambda_1}{0} & | & \frac{0}{0} & \cdots & 0 \\ \vdots & | & \mathcal{Q}^t B \mathcal{Q} & \\ \vdots & | & \mathcal{Q}^t B \mathcal{Q} & \end{pmatrix} \quad \text{noi pero sappiamo che } \mathcal{Q}^t B \mathcal{Q} = \begin{pmatrix} \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \\ 0 & & & \lambda_n \end{pmatrix}, \text{ quindi} \end{split}$$

$$=\begin{pmatrix} \lambda_1 & \cdots & \cdots & 0 \\ \vdots & \lambda_2 & & \\ \vdots & & \ddots & \\ 0 & & & \lambda_{n+1} \end{pmatrix} = \tilde{\Delta} \text{ che è una matrice diagonale, quindi come volevamo}$$

dimostrare A è simile a una matrice diagonale (ovvero A è diagonalizzabile) utilizzando una matrice ortogonale per diagonalizzarla.

Ovvero la base ortonormale di \mathbb{R}^{n+1} di autovettori di A è $D=\{w_1,...,w_{n+1}\}$ dove $w_i = (P\tilde{Q})^i = P\tilde{Q}e_i.$

Quello che abbiamo è $Aw_i = AP\tilde{Q}e_i$.

Sapendo che $(P\tilde{Q})^tA(P\tilde{Q})=\tilde{\Delta}$ possiamo moltiplicare entrambe i membri per $(P\tilde{Q}),$ cosi da ottenere $(P\tilde{Q})(P\tilde{Q})^tA(P\tilde{Q})=\tilde{\Delta}(P\tilde{Q})\Rightarrow II_{n+1}AP\tilde{Q}=\tilde{\Delta}P\tilde{Q}\Rightarrow AP\tilde{Q}=\tilde{\Delta}P\tilde{Q}.$ Possiamo sostituire il valore appena calcolato e otteniamo $Aw_i=AP\tilde{Q}e_i=\tilde{\Delta}P\tilde{Q}e_i.$

$$\tilde{\Delta}e_i = \lambda_i e_i \Rightarrow \tilde{\Delta}P\tilde{Q}e_i = P\tilde{Q}\lambda_i e_i = \lambda_i P\tilde{Q}e_i.$$

Applicando $w_i = (P\tilde{Q})^i = P\tilde{Q}e_i$ otteniamo $\lambda_i P\tilde{Q}e_i = \lambda_i w_i$.

Ecco dimostrato che w_i è un autovettore relativo all'autovalore λ_i

Nozioni utili

Page 18 of 20

RETTA IN FORMA CARTESIANA

$$\pi : ax + by + cz + d = 0
\pi' : ax + by + cz + d' = 0$$

$$\Rightarrow \begin{cases} ax + by + cz + d = 0 \\ ax + by + cz + d' = 0 \end{cases}$$

RETTA IN FORMA PARAMETRICA

r: X = P + tv dove v è chiamato **vettore direttore/direzione**

Si può anche scrivere come
$$\begin{cases} x = p_1 + tv_1 \\ y = p_2 + tv_2 \\ z = p_3 + tv_3 \end{cases}$$

PIANO IN FORMA CARTESIANA

$$\pi : ax + by + cz + d = 0$$

PIANO IN FORMA PARAMETRICA

$$\pi: X = P_0 + t_1 v_1 + t_2 v_2$$

 VETTORE DIRETTORE/DIREZIONE (VETTORE NORMALE) DI UN PIANO IN FORMA CARTESIANA

$$\pi : ax + by + cz + d = 0$$

Il vettore direttore sarà:
$$n_{\pi} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

APPLICAZIONE LINEARE BEN DEFINITA

Un'applicazione lineare è ben definita quando, se definita da n vettori con le loro rispettive immagini, questi vettori sono una base dello spazio vettoriale di partenza. Se una matrice è ben definita, allora le immagini dei vettori dello spazio vettoriale di partenza compongono una matrice associata della mia applicazione lineare.

Esempio:

 $T: \mathbb{R}^3 \to \mathbb{R}^4$ definita da:

$$T(v_1) = T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} \mid T(v_2) = T \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -1 \\ -7 \end{pmatrix} \mid T(v_3) = T \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

L'applicazione lineare T è ben definita sse v_1, v_2, v_3 sono una base di \mathbb{R}^3

RANGO DI UNA MATRICE:

$$A \in M_{m \times n}(\mathbb{R})$$
$$rg(A) \le min(m, n)$$

DIMENSIONE BASE SPAZIO VETTORIALE DI MATRICI:

Uno spazio vettoriale di matrici definito come $Mat(m,n,\mathbb{K})$ ha una base di dimensione $m\cdot n$

Esempio:

Spazio vettoriale: $Mat(3,2,\mathbb{R})$ la sua base avrà dimensione $3 \cdot 2 = 6$

SOMMA DIRETTA SPAZI VETTORIALI:

 $W\,e\,S$ sottospazi di V

Si dice che V è somma diretta di W e S sse:

$$1. dim(W + S) = dim(V)$$

2.
$$dim(W \cap S) = 0$$

SPETTRO DI UNO SPAZIO VETTORIALE:

L'insieme degli autovalori di una autospazio "T" si chiama spettro e si indica con sp(T)

MOLTEPLICITÀ ALGEBRICA

Numero di volte in cui si ripete un determinato valore di un autovalore

MOLTEPLICITÀ GEOMETRICA

$$mg = n - rg(H)$$

• VETTORI ORTOGONALI:

Due vettori sono ortogonali se e solo se il loro prodotto scalare è uguale a zero $(\langle v_1, v_2 \rangle) = 0$

• NORMA DI UN VETTORE:
$$\|v_1\| = \sqrt{\langle v_1, v_1 \rangle}$$

• VETTORE NORMALE:

Vettore con norma uguale a 1:
$$\|v_1\| = \sqrt{\langle v_1, v_1 \rangle} = 1$$

VETTORI ORTONORMALI:

Due vettori sono ortonormali se sono fra loro ortogonali e entrambe di norma 1

MATRICE DI DIAGONALIZZAZIONE ORTOGONALE:

Se una matrice è simmetrica, allora ammette una matrice di diagonalizzazione ortogonale

MATRICI SIMILI:

Due matrici A e B si dicono simili se esiste una matrice invertibile P tale che $A = P^{-1}BP$

• SPAZIO VETTORIALE FINITAMENTE GENERATO:

Uno spazio vettoriale V su un campo \mathbb{K} si dice finitamente generato se esistono $v_1, v_2, ..., v_n \in V$ che sono generatori

SPAZIO EUCLIDEO:

Spazio vettoriale dotato di un prodotto scalare qualsiasi, generalmente lo indichiamo con (Nome spazio vettoriale, nome prodotto scalare) (Es. (V, g))

SPAZIO HERMITIANO:

Spazio vettoriale dotato di un prodotto hermitiano qualsiasi

UNIONE DI SPAZI VETTORIALI:

Siano $W, U \in V$ allora $W \cup U \notin V$

L'unione di due sottospazi vettoriali non è un sottospazio vettoriale dello spazio di partenza

• MATRICE SINGOLARE:

Si dice singolare qualsiasi matrice quadrata con determinante uguale a zero

SOLUZIONI NON BANALI:

Soluzioni diverse da quelle banali, come ad esempio il vettore nullo.

• MATRICE ORTOGONALE:

Si dice ortogonale qualsiasi matrice quadrata invertibile la cui matrice inversa coincide con la trasposta.

Inoltre tutti i suoi vettori colonna sono di norma 1 e ortogonali a due a due.