

Intestine cell dissociation

Andrew Potter

Abstract

Protocol for human intestine cell dissociation.

Citation: Andrew Potter Intestine cell dissociation. protocols.io

dx.doi.org/10.17504/protocols.io.nf3dbqn

Published: 08 Mar 2018

Before start

Checklist prior to beginning:

- -Centrifuges, large and small, set to 4 C
- -Make enzyme stock; place 2 tubes of enzyme on dry ice.
- -Make 0.01% BSA/PBS (50 mL)
- -Things you need: petri dishes, clean forceps, razor blade, pipets, 30 µM filters, timer.

Stock solution for enzyme

- 895 μL DPBS
- 5 μL 0.5 M EDTA (2.5 mM final)

 \rightarrow Add 100 µL enzyme (100 mg/mL) to 900 µL of enzyme stock to make 1X enzyme mix. Add 28 mg of tissue to each 900 µL of enzyme mix.

Materials

✓ Please see Guidelines for required materials by Contributed by users

Protocol

Step 1.

While excluding as much PBS as possible, weigh out tissue using Mettler.

Step 2.

After weighing out tissue, **transfer to petri dish** on ice and **mince tissue** using grinding motion with razorblade for 2-3 minutes.

Step 3.

After tissue is minced finely, **add 1 mL enzyme mix per 28 mg of tissue** to the petri dish and pipet minced tissue + enzyme into eppendorf tube (on ice).

AMOUNT

1 ml Additional info: enzyme mix per 28 mg of tissue

Step 4.

Start timer. Leave tube on ice - initially shake vigorously to break up the tissue, 3-

5x every 30-45 seconds for 5 minutes.

Step 5.

Now, when big chunks are broken up, shake every 1 minute while leaving on ice for 10 minutes.

Step 6.

Triturate 10X with 1 mL pipet set to 700 μL.

Step 7.

Continue to shake vigorously every minute to re-suspend tissue for **15 minutes**.

Step 8.

Triturate digest mix again 10X and spin digest mix at 90 G for 30 seconds.

Step 9.

Remove supernatant (80%) containing single cells and filter using 30 μ M filter while leaving chucks on bottom; rinse filter with 10 mL PBS/BSA.

■ AMOUNT

10 ml Additional info: PBS/BSA

Step 10.

To residual chunks of tissue add additional 1 mL of enzyme (per 28 mg tissue).

■ AMOUNT

1 ml Additional info: enzyme (per 28 mg tissue)

Step 11.

Shake vigorously 3-4X every minute for **10 additional minutes**.

Step 12.

Triturate again 10X.

Step 13.

Continue to shake vigorously every minute for **15 minutes** total additional time.

Step 14.

Triturate again 10X and filter using the same 30 µM filter and rinse with 10 mL PBS/BSA.

■ AMOUNT

10 ml Additional info: PBS/BSA

Step 15.

Divide flow-through into 2 15 mL tubes.

Step 16.

Spin 600 g for 5 minutes at 4 °C.

▮ TEMPERATURE

4 °C Additional info: Spinning

Step 17.

Carefully remove and save supernatant - re-suspend in 1 mL total PBS/BSA in 1.5 mL tube.

■ AMOUNT

1.5 ml Additional info: PBS/BSA

Step 18.

Spin down 600 G for 5 minutes - remove and save supernatant.

Step 19.

Re-suspend in 700 μL RBC lysis buffer +100 μL PBS/BSA (800 μL total).

■ AMOUNT

700 μl Additional info: RBC lysis buffer

AMOUNT

100 µl Additional info: PBS/BSA

Step 20.

Incubate for 3 minutes on ice.

Step 21.

Spin 600 G for 5 minutes.

Step 22.

Remove supernatant.

Step 23.

Briefly re-suspend and check cells in a small volume of PBS/BSA to ensure that there are no more RBCs present.

Step 24.

Re-suspend in 1.3 mL total PBS/BSA.

■ AMOUNT

1.3 ml Additional info: PBS/BSA

Step 25.

Spin 600 g for 5 minutes at 4 °C.

■ TEMPERATURE

4 °C Additional info: Spinning

Step 26.

Remove supernatant and re-suspend in a small volume to check cell concentration.

Step 27.

Analyze quantity and viability of cells using a hemocytometer with trypanblue; for Chromium, make concentration to 1 million cells per mL.