《线性代数》(清华版) 部分习题参考答案

赵燕芬 武汉大学数学与统计学院 Email:wangzhaoyanfen@gmail.com

2008.12

目 录

第一章	行列式	5
第二章	矩阵	21
第三章	线性方程组	41
第四章	向量空间与线性变换	61
第五章	特征值与特征向量	7 9

4 目 录

第一章 行列式

计算下列数字元素行列式

$$10. \begin{vmatrix} 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 2 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 8 & \cdots & 0 & 0 & 0 \\ 9 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 10 \end{vmatrix} = 10 \times (-1)^{10+10} \begin{vmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 2 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 8 & \cdots & 0 & 0 \\ 9 & 0 & \cdots & 0 & 0 \end{vmatrix} = 10 \times (-1)^{\frac{9 \times 8}{2}} 9! = 10!.$$

11.
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{vmatrix} = \underbrace{\begin{bmatrix} r_i - r_1 \\ \vdots = 2, 3, 4 \end{bmatrix}}_{i=2,3,4} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{vmatrix} = -8.$$

12.
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{r_1 + r_i} \begin{vmatrix} 10 & 10 & 10 & 10 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} = 10 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix} \xrightarrow{c_i - c_{i-1}} 10 \begin{vmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & -3 \\ 3 & 1 & -3 & 1 \\ 4 & -3 & 1 & 1 \end{vmatrix}$$

$$\xrightarrow{\cancel{Er}_1} 10 \begin{vmatrix} 1 & 1 & -3 \\ 1 & -3 & 1 \\ -3 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 + r_i} 10 \begin{vmatrix} -1 & -1 & -1 \\ 1 & -3 & 1 \\ \hline = 2,3 \end{vmatrix} 10 \begin{vmatrix} -1 & -1 & -1 \\ 1 & -3 & 1 \\ \hline = -3 & 1 & 1 \end{vmatrix} = 160.$$

$$14. \begin{vmatrix} 3 & 6 & 5 & 6 & 4 \\ 2 & 5 & 4 & 5 & 3 \\ 3 & 6 & 3 & 4 & 2 \\ 2 & 5 & 4 & 6 & 5 \\ 1 & 1 & 1 & -1 & -1 \end{vmatrix} - \begin{vmatrix} 1 & 1 & 1 & -1 & -1 \\ 2 & 5 & 4 & 6 & 5 \\ 2 & 5 & 4 & 6 & 5 \\ 3 & 6 & 5 & 6 & 4 \end{vmatrix} - \begin{vmatrix} 1 & 1 & 1 & -1 & -1 \\ 2 & 5 & 4 & 6 & 5 \\ 2 & 5 & 4 & 6 & 5 \\ 3 & 6 & 5 & 6 & 4 \end{vmatrix} - \begin{vmatrix} 1 & 1 & 1 & -1 & -1 \\ 2 & 5 & 4 & 6 & 5 \\ 2 & 5 & 4 & 6 & 5 \\ 3 & 6 & 5 & 6 & 4 \end{vmatrix} - \begin{vmatrix} 1 & 1 & 1 & -1 & -1 \\ 0 & 3 & 2 & 7 & 5 \\ 0 & 3 & 2 & 8 & 7 \\ 0 & 3 & 2 & 9 & 7 \end{vmatrix} - \begin{vmatrix} 1 & 1 & 1 & -1 & -1 \\ 0 & 3 & 2 & 7 & 5 \\ 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & -2 \end{vmatrix} = -12.$$

16.
$$\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 2 & 4 \\ 0 & 1 & 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_3 \leftrightarrow r_5} - \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 1 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & 3 \\ 6 & 7 & 8 \\ 0 & 1 & 0 \end{vmatrix} \times \begin{vmatrix} 2 & 4 \\ 1 & 3 \end{vmatrix}.$$

$$= -(-1)^{3+2} \times (8-18) \times (6-4) = -20$$

17.
$$\begin{vmatrix} 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & 3 & 0 & 2 \\ 0 & 0 & 2 & 4 & 0 \\ 1 & 2 & 4 & 0 & -1 \\ 3 & 1 & 2 & 5 & 8 \end{vmatrix} = (-1)^{3 \times 2} \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 2 \\ 2 & 4 & 0 \end{vmatrix} \times \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = -5 \begin{vmatrix} 1 & -1 & 2 \\ 2 & 1 & 0 \\ 2 & 4 & 0 \end{vmatrix} = -60.$$

证明下列恒等式

19. 由行列式的线性性质,可将左边的行列式拆分为4个行列式的和、即

$$\begin{vmatrix} a_1 + b_1 x & a_1 x + b_1 & c_1 \\ a_2 + b_2 x & a_2 x + b_2 & c_2 \\ a_3 + b_3 x & a_3 x + b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_1 x & c_1 \\ a_2 & a_2 x & c_2 \\ a_3 & a_3 x & c_3 \end{vmatrix} + \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} b_1 x & a_1 x & c_1 \\ b_2 x & a_2 x & c_2 \\ b_3 x & a_3 x & c_3 \end{vmatrix} + \begin{vmatrix} b_1 x & b_1 & c_1 \\ b_2 x & b_2 & c_2 \\ b_3 x & b_3 & c_3 \end{vmatrix}$$
$$= 0 + \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} - \begin{vmatrix} a_1 x & b_1 x & c_1 \\ a_2 x & b_2 x & c_2 \\ a_3 x & b_3 x & c_3 \end{vmatrix} + 0 = (1 - x^2) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = \vec{\Box} \vec{\Box}.$$

$$20. \begin{vmatrix} 1+x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1+y & 1 \\ 1 & 1 & 1 & 1-y \end{vmatrix} = \begin{vmatrix} 1+x & 1+0 & 1+0 & 1+0 \\ 1+0 & 1-x & 1+0 & 1+0 \\ 1+0 & 1+0 & 1+y & 1+0 \\ 1+0 & 1+0 & 1+0 & 1-y \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & -x & 0 & 0 \\ 1 & 0 & y & 0 \\ 1 & 0 & 0 & -y \end{vmatrix} + \begin{vmatrix} x & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & y & 0 \\ 0 & 0 & 1 & -y \end{vmatrix} + \begin{vmatrix} x & 0 & 0 & 1 \\ 0 & -x & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -y \end{vmatrix} + \begin{vmatrix} x & 0 & 0 & 1 \\ 0 & -x & 0 & 1 \\ 0 & 0 & y & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix} + \begin{vmatrix} x & 0 & 0 & 0 \\ 0 & -x & 0 & 0 \\ 0 & 0 & y & 0 \\ 0 & 0 & 0 & -y \end{vmatrix}$$

$$= xy^2 - xy^2 + x^2y - x^2y + x^2y^2 = x^2y^2.$$

20. 另证: 若 x = 0 或 y = 0, 等式显然成立. 当 $xy \neq 0$ 时.

$$\begin{vmatrix} 1+x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1+y & 1 \\ 1 & 1 & 1 & 1-y \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1+x & 1 & 1 & 1 \\ 0 & 1 & 1-x & 1 & 1 \\ 0 & 1 & 1 & 1+y & 1 \\ 0 & 1 & 1 & 1-y & 1 \end{vmatrix} = \begin{vmatrix} \frac{r_i-r_1}{i=2,3,4,5} \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & y & 0 \\ -1 & 0 & 0 & 0 & -y \end{vmatrix}$$

$$\begin{vmatrix} c_1 + \frac{1}{x}c_2 \\ c_1 + \frac{1}{-x}c_3 \\ \hline c_1 + \frac{1}{y}c_4 \\ c_1 + \frac{1}{-y}c_5 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & x & 0 & 0 & 0 \\ 0 & 0 & 0 & y & 0 \\ 0 & 0 & 0 & 0 & -y \end{vmatrix} = x^2y^2.$$

$$21. \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^3 & b^3 - a^3 & c^3 - a^3 \end{vmatrix} = (b - a)(c^3 - a^3) - (c - a)(b^3 - a^3)$$
$$= (b - a)(c - a)(c^2 + ac + a^2 - b^2 - ab - a^2) = (b - a)(c - a)(c - b)(a + b + c).$$

$$22. \begin{vmatrix} 1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3} \end{vmatrix} = \frac{r_{2} - r_{1}}{r_{3} - r_{1}} \begin{vmatrix} 1 & a^{2} & a^{3} \\ 0 & b^{2} - a^{2} & c^{2} - a^{2} \\ 0 & c^{2} - a^{2} & c^{3} - a^{3} \end{vmatrix} = (b^{2} - a^{2})(c^{3} - a^{3}) - (c^{2} - a^{2})(b^{3} - a^{3})$$

$$= (b - a)(c - a)[(b + a)(c^{2} + ac + a^{2}) - (c + a)(b^{2} + ab + a^{2})] = (b - a)(c - a)[bc^{2} + ac^{2} - b^{2}c - ab^{2}]$$

$$= (b - a)(c - a)(c - b)(ab + bc + ca) = (ab + bc + ca) \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix}.$$

计算下列各题

23.
$$\begin{vmatrix} 1 & 0 & 2 & a \\ 2 & 0 & b & 0 \\ 3 & c & 4 & 5 \\ d & 0 & 0 & 0 \end{vmatrix} = d \times (-1)^{4+1} \begin{vmatrix} 0 & 2 & a \\ 0 & b & 0 \\ c & 4 & 5 \end{vmatrix} = -d \times c \times (-1)^{3+1} \begin{vmatrix} 2 & a \\ b & 0 \end{vmatrix}$$
$$= -dc \times (0 - ab) = abcd.$$

$$24. \begin{vmatrix} a & 1 & 0 & 0 \\ -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 0 & -1 & d \end{vmatrix} = a \begin{vmatrix} b & 1 & 0 \\ -1 & c & 1 \\ 0 & -1 & d \end{vmatrix} - \begin{vmatrix} -1 & 1 & 0 \\ 0 & c & 1 \\ 0 & -1 & d \end{vmatrix}$$
$$= a(bcd + b + d) - (-cd) = abcd + ab + ad + cd.$$

$$25. \begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix} = \underbrace{\begin{bmatrix} c_i - c_{i-1} \\ i=4,3,2 \end{bmatrix}}_{i=4,3,2} \begin{vmatrix} a^2 & 2a+1 & 2a+3 & 2a+5 \\ b^2 & 2b+1 & 2b+3 & 2b+5 \\ c^2 & 2c+1 & 2c+3 & 2c+5 \\ d^2 & 2d+1 & 2d+3 & 2d+5 \end{vmatrix}$$

$$= \underbrace{\begin{bmatrix} c_i - c_2 \\ i=3,4 \end{bmatrix}}_{i=3,4} \begin{vmatrix} a^2 & 2a+1 & 2 & 4 \\ b^2 & 2b+1 & 2 & 4 \\ c^2 & 2c+1 & 2 & 4 \\ d^2 & 2d+1 & 2 & 4 \end{vmatrix}}_{d^2 & 2d+1 & 2 & 4} = 0.$$

$$26. \begin{vmatrix} a & b & c & 1 \\ b & c & a & 1 \\ c & a & b & 1 \\ \frac{b+c}{2} & \frac{c+a}{2} & \frac{a+b}{2} & 1 \end{vmatrix} = \begin{vmatrix} a & b & c & 1 \\ b & c & a & 1 \\ c & a & b & 1 \\ \frac{b+c}{2} & \frac{c+a}{2} & \frac{a+b}{2} & \frac{1+1}{2} \end{vmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} \begin{vmatrix} a & b & c & 1 \\ b & c & a & 1 \\ c & a & b & 1 \\ b & c & a & 1 \end{vmatrix} + \begin{vmatrix} a & b & c & 1 \\ b & c & a & 1 \\ c & a & b & 1 \\ c & a & b & 1 \end{vmatrix} = 0.$$

$$28. \begin{vmatrix} 1 & 2 & 2 & \cdots & 2 & 2 \\ 2 & 2 & 2 & \cdots & 2 & 2 \\ 2 & 2 & 3 & \cdots & 2 & 2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & 2 & \cdots & n-1 & 2 \\ 2 & 2 & 2 & \cdots & 2 & n \end{vmatrix} \xrightarrow{r_i - r_2} \begin{vmatrix} -1 & 0 & 0 & \cdots & 0 & 0 \\ 2 & 2 & 2 & \cdots & 2 & 2 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & n-3 & 0 \\ 0 & 0 & \cdots & n-3 & 0 \\ 0 & 0 & \cdots & n-3 & 0 \\ 0 & 0 & \cdots & 0 & n-2 \end{vmatrix}$$

$$= (-1) \begin{vmatrix} 2 & 2 & \cdots & 2 & 2 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & n-3 & 0 \\ 0 & 0 & \cdots & n-3 & 0 \\ 0 & 0 & \cdots & 0 & n-2 \end{vmatrix}$$

36. 证明下列等式

$$\begin{vmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1+a_n \end{vmatrix} = \left(1+\sum_{i=1}^n \frac{1}{a_i}\right) \prod_{i=1}^n a_i.$$

方法一:

$$\begin{vmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1+a_n \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1+a_1 & 1 & \cdots & 1 \\ 0 & 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 1 & \cdots & 1+a_n \end{vmatrix}$$

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ -1 & a_1 & 0 & \cdots & 0 \\ -1 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & a_n \end{vmatrix} = \begin{vmatrix} 1 + \frac{1}{a_1} + \cdots + \frac{1}{a_n} & 1 & 1 & \cdots & 1 \\ 0 & 0 & a_1 & 0 & \cdots & 1 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_n \end{vmatrix}$$

$$= (1 + \sum_{i=1}^{n} \frac{1}{a_i}) \prod_{i=1}^{n} a_i.$$

方法二:

$$\begin{vmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1+a_n \end{vmatrix} \xrightarrow{r_i-r_1} \begin{vmatrix} 1+a_1 & 1 & \cdots & 1 \\ -a_1 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_1 & 0 & \cdots & a_n \end{vmatrix}$$

$$\begin{vmatrix} c_1+c_i \times \frac{a_1}{a_i} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \end{vmatrix} = (1+a_1 + \sum_{i=2}^n \frac{a_1}{a_i})a_2 \cdots a_n = a_1a_2 \cdots a_n (1 + \sum_{i=1}^n \frac{1}{a_i}).$$

方法三:

$$\begin{vmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1+a_n \end{vmatrix} \xrightarrow{r_1 \not \sqsubseteq \bigvee a_i} a_1 a_2 \cdots a_n \begin{vmatrix} 1+\frac{1}{a_1} & \frac{1}{a_1} & \cdots & \frac{1}{a_1} \\ \frac{1}{a_2} & 1+\frac{1}{a_2} & \cdots & \frac{1}{a_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1+\frac{1}{a_n} \end{vmatrix}$$

$$= a_1 a_2 \cdots a_n (1+\sum_{i=1}^n \frac{1}{a_i}) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \frac{1}{a_2} & 1+\frac{1}{a_2} & \cdots & \frac{1}{a_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1+\frac{1}{a_n} \end{vmatrix}$$

$$= a_1 a_2 \cdots a_n (1+\sum_{i=1}^n \frac{1}{a_i}) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \frac{1}{a_2} & 1+\frac{1}{a_2} & \cdots & \frac{1}{a_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{a_n} & \frac{1}{a_n} & \cdots & 1+\frac{1}{a_n} \end{vmatrix}$$

$$= a_1 a_2 \cdots a_n (1+\sum_{i=1}^n \frac{1}{a_i}).$$

方法 4:

$$D_{n} = \begin{vmatrix} 1+a_{1} & 1 & \cdots & 1 \\ 1 & 1+a_{2} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1+a_{n} \end{vmatrix} = \begin{vmatrix} 1+a_{1} & 1 & \cdots & 1 \\ 1 & 1+a_{2} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1+0 & 1+0 & \cdots & 1+a_{n} \end{vmatrix}$$

$$= \begin{vmatrix} 1+a_{1} & 1 & \cdots & 1 \\ 1 & 1+a_{2} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix} \begin{vmatrix} 1+a_{1} & 1 & \cdots & 1 \\ 1 & 1+a_{2} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix} \begin{vmatrix} 1+a_{1} & 1 & \cdots & 1 \\ 1 & 1+a_{2} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix}$$

$$= \begin{vmatrix} a_{1} & 0 & \cdots & 0 \\ 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{vmatrix} + a_{n} \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1+a_{2} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 + a_{n-1} \end{vmatrix}$$

$$= a_{1}a_{2} \cdots a_{n-1} + a_{n}D_{n-1} = \frac{1}{a_{n}} \prod_{i=1}^{n} a_{i} + a_{n}D_{n-1}$$

$$= \frac{1}{a_{n}} \prod_{i=1}^{n} a_{i} + a_{n} \left[\frac{1}{a_{n-1}} \prod_{i=1}^{n-1} a_{i} + a_{n-1}D_{n-2} \right]$$

$$= \left(\frac{1}{a_{n}} + \frac{1}{a_{n-1}} \right) \prod_{i=1}^{n} a_{i} + a_{n}a_{n-1} \cdots a_{2}D_{1}$$

$$= \left(\frac{1}{a_{n}} + \frac{1}{a_{n-1}} + \cdots + \frac{1}{a_{2}} \right) \prod_{i=1}^{n} a_{i} + a_{n}a_{n-1} \cdots a_{2}(1+a_{1})$$

$$= \left(1 + \sum_{i=1}^{n} \frac{1}{a_{i}} \right) a_{1}a_{2} \cdots a_{n}.$$

方法 5:

$$\begin{vmatrix} 1+a_1 & 1 & \cdots & 1 \\ 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1+a_n \end{vmatrix} = \begin{vmatrix} 1+a_1 & 1+0 & \cdots & 1+0 \\ 1+0 & 1+a_2 & \cdots & 1+0 \\ \vdots & \vdots & \ddots & \vdots \\ 1+0 & 1+0 & \cdots & 1+a_n \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 1 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & a_n \end{vmatrix} \begin{vmatrix} a_1 & 1 & \cdots \\ 0 & 1 & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix} + \begin{vmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix} + \begin{vmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix} + \begin{vmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix}$$

$$= a_2 a_3 \cdots a_n + a_1 a_3 \cdots a_n + \cdots + a_1 a_2 \cdots a_{n-1} + a_1 a_2 \cdots a_n$$

$$= \left(1 + \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}\right) a_1 a_2 \cdots a_n.$$

37. 证明
$$\begin{vmatrix} x & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \cdots & a_2 & x+a_1 \end{vmatrix} = x^n + \sum_{k=1}^n a_k x^{n-k}.$$

方法一: 从最后一列起, 依次将后一列的 x 倍加到前一列:

方法二: 按 c_1 展开

左边 =
$$D_n = xD_{n-1} + (-1)^{n+1}a_n$$

$$\begin{vmatrix} -1 & 0 & \cdots & 0 & 0 \\ x & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & x & -1 \end{vmatrix} = xD_{n-1} + (-1)^{n+1}a_n(-1)^{n-1} = xD_{n-1} + a_n$$
$$= x[xD_{n-2} + a_{n-1}] + a_n = x^2D_{n-2} + a_{n-1}x + a_n = \cdots = x^{n-2}D_2 + a_3x^{n-3} + \cdots + a_{n-1}x + a_n$$

再将
$$D_2 = \begin{vmatrix} x & -1 \\ a_2 & x + a_1 \end{vmatrix} = x^2 + a_1 x + a_2$$
 代入

$$x^{n-2}D_2 + a_3x^{n-3} + \dots + a_{n-1}x + a_n$$

即可.

计算下列行列式:

$$40.\begin{vmatrix} \frac{1}{3} & -\frac{5}{2} & \frac{2}{5} & \frac{3}{2} \\ 3 & -\frac{1}{2} & \frac{21}{5} & 15 \\ \frac{2}{3} & -\frac{9}{2} & \frac{4}{5} & \frac{5}{2} \\ -\frac{1}{7} & \frac{2}{7} & -\frac{1}{7} & \frac{3}{7} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & -\frac{5}{2} & \frac{2}{5} & \frac{3}{2} \\ 3 & -12 & \frac{21}{5} & 15 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & -\frac{5}{2} & \frac{2}{5} & -1 \\ 3 & -12 & \frac{21}{5} & 3 \\ 0 & \frac{1}{2} & 0 & 0 \\ -\frac{1}{7} & \frac{2}{7} & -\frac{1}{7} & \frac{5}{7} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & \frac{2}{5} & -1 \\ 3 & \frac{21}{5} & 3 \\ -\frac{1}{7} & -\frac{1}{7} & \frac{5}{7} \end{vmatrix} = -\frac{1}{2} \times \frac{1}{15} \times \frac{1}{5} \times \frac{1}{7} \begin{vmatrix} 5 & 6 & -15 \\ 15 & 21 & 15 \\ -1 & -1 & 5 \end{vmatrix} = -\frac{1}{2} \times \frac{1}{15} \times \frac{1}{5} \times \frac{1}{7} \times \frac{1}{5} \times \frac{1}{7} \times \frac{1}{5} \times \frac{1}{7} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{7} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{7} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{7} \times \frac{1}{5} \times \frac{1}$$

41. 方法一:
$$\begin{vmatrix} 1 & 1 & \cdots & 1 & -n \\ 1 & 1 & \cdots & -n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & -n & \cdots & 1 & 1 \\ -n & 1 & \cdots & 1 & 1 \end{vmatrix} \xrightarrow{r_i-r_1} \begin{vmatrix} 1 & 1 & \cdots & 1 & -n \\ 0 & 0 & \cdots & -n-1 & 1+n \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & -n-1 & 0 & \cdots & 0 & 1+n \\ \hline = (-1)^{\frac{n(n+1)}{2}}(n+1)^{n-1}.$$

方法二:
$$\begin{vmatrix} 1 & 1 & \cdots & 1 & -n \\ 1 & 1 & \cdots & -n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & -n & \cdots & 1 & 1 \\ -n & 1 & \cdots & 1 & 1 \end{vmatrix} \xrightarrow{r_1+r_i} \begin{vmatrix} 1 & 1 & \cdots & -n & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & -n & \cdots & 1 & 1 \\ -n & 1 & \cdots & 1 & 1 \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \times (-1)^n \times (n+1)^{n-1}$$
$$= (-1)^{\frac{n(n+1)}{2}} (n+1)^{n-1}.$$

方法二:
$$\begin{vmatrix} a_1 + \lambda_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 + \lambda_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 + \lambda_3 & \vdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n + \lambda_n \end{vmatrix} = (a_1 + \lambda_1 + \sum_{i=2}^n \frac{\lambda_1}{\lambda_i}) \lambda_2 \cdots \lambda_n = \lambda_1 \lambda_2 \cdots \lambda_n (1 + \sum_{i=1}^n \frac{1}{\lambda_i}).$$

14 第一章 行列式

$$||\widehat{\mathbb{R}}||_{\frac{1}{1-2,3,\cdots,n-1}} = \frac{\left| \frac{n(n+1)}{2} + \frac{2}{3} + \frac{3}{4} + \cdots + \frac{n-1}{n-1} \right|}{\left| \frac{n(n+1)}{2} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} \right|}{\left| \frac{n(n+1)}{2} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} \right|}{\left| \frac{n(n+1)}{2} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} \right|}{\left| \frac{n(n+1)}{2} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} \right|} = \frac{n(n+1)}{\left| \frac{1}{1} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} \right|}{\left| \frac{1}{1} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} \right|}{\left| \frac{1}{1} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} \right|} = \frac{n(n+1)}{\left| \frac{1}{1} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} \right|}{\left| \frac{1}{1} + \frac{1}{4} + \frac{1}{5} + \cdots + \frac{1}{2} + \cdots + \frac{1}{2} \right|}{\left| \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{3} +$$

证: 考虑行列式 n+1 阶 Vandermonde 行列式

$$V_{n+1} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n & y \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 & y^2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-2} & x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} & y^{n-2} \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} & y^{n-1} \\ x_1^n & x_2^n & x_3^n & \cdots & x_n^n & y^n \end{vmatrix}$$

一方面, 由 Vandermonde 行列式的结果可知:

$$V_{n+1} = (y - x_1)(y - x_2) \cdots (y - x_n) \prod_{1 \le j < i \le n} (x_i - x_j)$$

$$= [y^n - (x_1 + x_2 + \dots + x_n)y^{n-1} + \dots + (-1)^n x_1 x_2 \cdots x_n] \prod_{1 \le j < i \le n} (x_i - x_j).$$
(1.1)

另一方面,将 V_{n+1} 按第 n+1 列展开得:

$$V_{n+1} = 1 \times A_{1,n+1} + y \times A_{2,n+1} + \dots + y^{n-1} \times A_{n,n+1} + y^n \times A_{n+1,n+1}.$$
(1.2)

1.1 和 1.2 是关于 y 的恒等的多项式, 因此对应项的系数相等, 从而有:

$$A_{n,n+1} = -(x_1 + x_2 + \dots + x_n) \prod_{1 \le j < i \le n} (x_i - x_j).$$

注意到 $A_{n,n+1} = (-1)^{2n+1}V_n = -V_n$, 所以:

$$V_n = \left(\sum_{i=1}^n x_i\right) \prod_{1 \le j < i \le n} (x_i - x_j).$$

45. 用数学归纳法证明导数关系式

$$\frac{d}{dt} \begin{vmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & & \vdots \\ a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t) \end{vmatrix} = \sum_{j=1}^{n} \begin{vmatrix} a_{11}(t) & \cdots & \frac{d}{dt} a_{1j}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & \cdots & \frac{d}{dt} a_{2j}(t) & \cdots & a_{2n}(t) \\ \vdots & & \vdots & & \vdots \\ a_{n1}(t) & \cdots & \frac{d}{dt} a_{nj}(t) & \cdots & a_{nn}(t) \end{vmatrix}$$

 $\overline{\mathbf{u}}$: 用数学归纳法: 当 n=2 时

$$\frac{d}{dt} \begin{vmatrix} a_{11}(t) & a_{12}(t) \\ a_{21}(t) & a_{22}(t) \end{vmatrix} = \frac{d}{dt} [a_{11}(t)a_{22}(t) - a_{12}(t)a_{21}(t)]
= a_{22}(t) \frac{d}{dt} a_{11}(t) + a_{11}(t) \frac{d}{dt} a_{22}(t) - a_{21}(t) \frac{d}{dt} a_{12}(t) - a_{12}(t) \frac{d}{dt} a_{21}(t)
= \begin{vmatrix} \frac{d}{dt} a_{11}(t) & a_{12}(t) \\ \frac{d}{dt} a_{21}t & a_{22}t \end{vmatrix} + \begin{vmatrix} a_{11}(t) & \frac{d}{dt} a_{12}(t) \\ a_{21}t & \frac{d}{dt} a_{22}t \end{vmatrix}.$$

结论成立.

假设结论对 n-1 阶行列式成立, 那么对于 n 阶行列式 D, 首先将 D 按第一列展开:

$$D = a_{11}(t)A_{11}(t) + a_{21}(t)A_{21}(t) + \dots + a_{n1}(t)A_{n1}(t).$$

由求导法则有:

$$\frac{d}{dt}D = \frac{d}{dt}a_{11}(t)A_{11}(t) + \frac{d}{dt}a_{21}(t)A_{21}(t) + \dots + \frac{d}{dt}a_{n1}(t)A_{n1}(t) + a_{11}(t)\frac{d}{dt}A_{11}(t) + a_{21}(t)\frac{d}{dt}A_{21}(t) + \dots + a_{n1}(t)\frac{d}{dt}A_{n1}(t)$$

其中

$$\frac{d}{dt}a_{11}(t)A_{11}(t) + \frac{d}{dt}a_{21}(t)A_{21}(t) + \dots + \frac{d}{dt}a_{n1}(t)A_{n1}(t) = \begin{vmatrix}
\frac{d}{dt}a_{11}(t) & a_{12}(t) & \dots & a_{1n}(t) \\
\frac{d}{dt}a_{21}(t) & a_{22}(t) & \dots & a_{2n}(t) \\
\vdots & \vdots & & \vdots \\
\frac{d}{dt}a_{n1}(t) & a_{n2}(t) & \dots & a_{nn}(t)
\end{vmatrix}$$
(1.3)

由归纳假设,

$$a_{11}(t)\frac{d}{dt}A_{11}(t) + a_{21}(t)\frac{d}{dt}A_{21}(t) + \cdots + a_{n1}(t)\frac{d}{dt}A_{n1}(t)$$

$$= a_{11}(t)\frac{d}{dt}M_{11}(t) + (-1)^{2+1}a_{21}(t)\frac{d}{dt}M_{21}(t) + \cdots + (-1)^{n+1}a_{n1}(t)\frac{d}{dt}M_{n1}(t)$$

$$= a_{11}(t)\begin{bmatrix} \frac{d}{dt}a_{22}(t) & a_{23}(t) & \cdots & a_{2n}(t) \\ \frac{d}{dt}a_{32}(t) & a_{33}(t) & \cdots & a_{3n}(t) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{d}{dt}a_{n2}(t) & a_{n3}(t) & \cdots & a_{nn}(t) \end{bmatrix} + \cdots + \begin{bmatrix} a_{22}(t) & a_{23}(t) & \cdots & \frac{d}{dt}a_{2n}(t) \\ a_{32}(t) & a_{33}(t) & \cdots & \frac{d}{dt}a_{3n}(t) \end{bmatrix}$$

$$+ (-1)^{1+2}a_{21}(t)\begin{bmatrix} \frac{d}{dt}a_{12}(t) & a_{13}(t) & \cdots & a_{1n}(t) \\ \frac{d}{dt}a_{32}(t) & a_{33}(t) & \cdots & a_{nn}(t) \end{bmatrix} + \cdots + \begin{bmatrix} a_{12}(t) & a_{13}(t) & \cdots & \frac{d}{dt}a_{1n}(t) \\ \frac{d}{dt}a_{22}(t) & a_{23}(t) & a_{3n}(t) \end{bmatrix} + \cdots + \begin{bmatrix} a_{12}(t) & a_{13}(t) & \cdots & \frac{d}{dt}a_{1n}(t) \\ a_{21}(t) & a_{21}(t) & a_{23}(t) & \cdots & a_{2n}(t) \\ \frac{d}{dt}a_{22}(t) & a_{23}(t) & \cdots & a_{2n}(t) \end{bmatrix} + \cdots + \begin{bmatrix} a_{22}(t) & a_{23}(t) & \cdots & \frac{d}{dt}a_{1n}(t) \\ a_{32}(t) & a_{33}(t) & \cdots & \frac{d}{dt}a_{nn}(t) \end{bmatrix}$$

$$+ (-1)^{n+1}a_{n1}(t)\begin{bmatrix} \frac{d}{dt}a_{22}(t) & a_{23}(t) & \cdots & a_{2n}(t) \\ \frac{d}{dt}a_{32}(t) & a_{33}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & \frac{d}{dt}a_{22}(t) & a_{23}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & \frac{d}{dt}a_{22}(t) & a_{23}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & a_{nn}(t) \end{bmatrix} + \begin{bmatrix} a_{11}(t) & a_{12}(t) & a_{13}(t) & \cdots & a_{nn}(t) \\ \frac{d}{dt}a_{nn}(t) & \frac{d}{dt}a_{3n}(t) & \cdots & a_{nn}(t) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{23}(t) & a_{23}(t) & \cdots & \frac{d}{dt}a_{nn}(t) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{23}(t) & a_{n3}(t) & \cdots & \frac{d}{dt}a_{nn}(t) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & \frac{d}{dt}a_{nn}(t) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & \frac{d}{dt}a_{nn}(t) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & \frac{d}{dt}a_{nn}(t) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & \frac{d}{dt}a_{nn}(t) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & \frac{d}{dt}a_{nn}(t) \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & a_{n3}(t) & \cdots & \frac$$

$$1.3 + 1.4 = \sum_{j=1}^{n} \begin{vmatrix} a_{11}(t) & \cdots & \frac{d}{dt} a_{1j}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & \cdots & \frac{d}{dt} a_{2j}(t) & \cdots & a_{2n}(t) \\ \vdots & & \vdots & & \vdots \\ a_{n1}(t) & \cdots & \frac{d}{dt} a_{nj}(t) & \cdots & a_{nn}(t) \end{vmatrix}$$

结论得证!

46. 设 3 个点 $P_1(x_1, y_1), P_2(x_2, y_2), P_3(x_3, y_3)$ 不在一条直线上, 求过点 P_1, P_2, P_3 的圆的方程. **解**: 设所求圆的方程为

$$a(x^{2} + y^{2}) + bx + cy + d = 0 (a \neq 0)$$
(1.5)

因为圆过点 P_1, P_2, P_3 , 所以

$$\begin{cases} a(x_1^2 + y_1^2) + bx_1 + cy_1 + d = 0 \\ a(x_2^2 + y_2^2) + bx_2 + cy_2 + d = 0 \\ a(x_3^2 + y_3^2) + bx_3 + cy_3 + d = 0 \end{cases}$$
(1.6)

联立 1.5 和 1.6 得到一个关于 a,b,c,d 的齐次线性方程组, 且该方程组有非零解, 故

$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_1^2 + y_1^2 & x_1 & y_1 & d \\ x_2^2 + y_2^2 & x_2 & y_2 & d \\ x_3^2 + y_3^2 & x_3 & y_3 & d \end{vmatrix} = 0$$

此即为所求圆的方程.

47. 求使 3 点 (x_1, y_1) , (x_2, y_2) , (x_3, y_3) 位于一直线上的充分必要条件. 解: 设这 3 点位于直线 ax + by + c = 0 上, 其中 a, b, c 不同时为 0,即有

$$\begin{cases} ax_1 + by_1 + c = 0 \\ ax_2 + by_2 + c = 0 \\ ax_3 + by_3 + c = 0 \end{cases}$$

3 点位于直线等价于上述关于 a,b,c 的齐次线性方程组有非零解, 其充分必要条件是:

$$D = \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0.$$

48. 写出通过 3 点 (1,1,1), (2,3,-1), (3,-1,-1) 的平面方程.

解: 设通过这三点的平面方程为: ax + by + cz = d, 其中 a, b, c, d 不同时为 0, 由条件可得:

$$\begin{cases} a+b+c = d \\ 2a+3b-c = d \\ 3a-b-c = d \end{cases}$$

因为

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & -1 \\ 3 & -1 & -1 \end{vmatrix} = \begin{vmatrix} r_{2}+r_{1} \\ r_{3}+r_{1} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 4 & 0 \\ 4 & 0 & 0 \end{vmatrix} = -16$$

$$D_1 = \begin{vmatrix} d & 1 & 1 \\ d & 3 & -1 \\ d & -1 & -1 \end{vmatrix} = \begin{vmatrix} r_2 + r_1 \\ r_3 + r_1 \end{vmatrix} = \begin{vmatrix} d & 1 & 1 \\ 2d & 4 & 0 \\ 2d & 0 & 0 \end{vmatrix} = -8d$$

$$D_2 = \begin{vmatrix} 1 & d & 1 \\ 2 & d & -1 \\ 3 & d & -1 \end{vmatrix} \xrightarrow[r_3+r_1]{r_2+r_1} \begin{vmatrix} 1 & d & 1 \\ 3 & 2d & 0 \\ 4 & 2d & 0 \end{vmatrix} = -2d$$

$$D_3 = \begin{vmatrix} 1 & 1 & d \\ 2 & 3 & d \\ 3 & -1 & d \end{vmatrix} \xrightarrow{\begin{array}{c} r_2 - r_1 \\ r_3 - r_1 \end{array}} \begin{vmatrix} 1 & 1 & d \\ 1 & 2 & 0 \\ 2 & -2 & 0 \end{vmatrix} = -6d$$

于是

$$a = \frac{D_1}{D} = \frac{-8d}{-16}, \ b = \frac{D_2}{D} = \frac{-2d}{-16}, \ c = \frac{D_3}{D} = \frac{-6d}{-16}$$

代入方程 ax + by + cz = d 化简得所求方程为:

$$4x + y + 3z = 8.$$

50. 已知 $a^2 \neq b^2$, 证明方程组

$$\begin{cases} ax_1 & + & bx_{2n} = 1 \\ ax_2 & + & bx_{2n-1} & = 1 \\ & \cdots & \cdots & \cdots & \cdots & \cdots \\ & ax_n & + bx_{n+1} & = 1 \\ & bx_n & + ax_{n+1} & = 1 \\ & \cdots & \cdots & \cdots & \cdots & \cdots \\ bx_2 & + & ax_{2n-1} & = 1 \\ bx_1 & + & ax_{2n} & = 1 \end{cases}$$

有唯一解,并求解.

证: 由 $a^2 \neq b^2$ 可知, a,b 不同时为 0. 若 $a \neq 0, b = 0$, 显然方程组有唯一解 $x_i = \frac{1}{a}$. 同理若 $a = 0, b \neq 0$, 方程组也有唯一解 $x_i = \frac{1}{b}$. 下面讨论 a,b 均不为 0 的情形. 因为方程组的系数行列式

所以方程组有唯一解. 下面求解: 由第 1 个方程和第 2n 个方程

所以方程组的解为

$$\begin{cases} ax_1 + bx_{2n} = 1\\ bx_1 + ax_{2n} = 1 \end{cases}$$

可得:

$$x_1 = \frac{\begin{vmatrix} 1 & b \\ 1 & a \end{vmatrix}}{\begin{vmatrix} a & b \\ b & a \end{vmatrix}} = \frac{a-b}{a^2 - b^2} = \frac{1}{a+b}.$$

$$x_{2n} = \frac{\begin{vmatrix} a & 1 \\ b & 1 \end{vmatrix}}{\begin{vmatrix} a & b \\ b & a \end{vmatrix}} = \frac{a-b}{a^2 - b^2} = \frac{1}{a+b}.$$

同理由第 2 个方程和第 2n-1 个方程可以求出 $x_2=x_{2n-1}=\frac{1}{a+b}$, . . . 由第 n 个方程和第 n+1 个方程可以求出 $x_n=x_{n+1}=\frac{1}{a+b}$.

$$x_j = \frac{1}{a+b}, \ j = 1, 2, \cdots, 2n.$$

第二章 矩阵

下列 $5 \sim 6$ 题的线性方程组中, p,q 取何值时, 方程组有解, 无解, 在有解的情况下, 求出它的全部解:

$$5 \begin{cases}
px_1 + x_2 + x_3 = 1 \\
x_1 + px_2 + x_3 = p \\
x_1 + x_2 + px_3 = p^2
\end{cases}$$

$$6. \begin{cases}
x_1 - 3x_2 - 6x_3 = 2x_2 = -1 \\
x_1 - x_2 - 2x_3 + 3x_4 = 0 \\
x_1 + 5x_2 + 10x_3 - x_4 = q \\
3x_1 + x_2 + px_3 + 4x_4 = 1
\end{cases}$$

解:

$$5 \ (A,b) = \begin{pmatrix} p & 1 & 1 & 1 \\ 1 & p & 1 & p \\ 1 & 1 & p & p^2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & p & p^2 \\ 1 & p & 1 & p \\ p & 1 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & p & p^2 \\ 0 & p - 1 & 1 - p & p - p^2 \\ 0 & 1 - p & 1 - p^2 & 1 - p^3 \end{pmatrix}$$

$$\xrightarrow{r_3 + r_2} \begin{pmatrix} 1 & 1 & p & p^2 \\ 0 & p - 1 & 1 - p & p - p^2 \\ 0 & 0 & (1 - p)(p + 2) & (1 - p)(1 + p^2) \end{pmatrix}$$

(1) 当 $(1-p)(p+2) \neq 0$ 即 $p \neq 1$ 且 $p \neq -2$ 时, 方程组有唯一解, 此时

$$\begin{pmatrix} 1 & 1 & p & p^2 \\ 0 & p-1 & 1-p & p-p^2 \\ 0 & 0 & (1-p)(p+2) & (1-p)(1+p^2) \end{pmatrix} \xrightarrow{r_2 \div (p-1) \atop r_3 \div (1-p)(p+2)} \begin{pmatrix} 1 & 1 & p & p^2 \\ 0 & 1 & -1 & -p \\ 0 & 0 & 1 & \frac{(1+p)^2}{p+2} \end{pmatrix}$$

$$\xrightarrow{r_1-r_3 \times p} \begin{pmatrix} 1 & 1 & 0 & -\frac{p}{p+2} \\ 0 & 1 & 0 & \frac{1}{p+2} \\ 0 & 0 & 1 & \frac{(1+p)^2}{p+2} \end{pmatrix} \xrightarrow{r_1-r_2} \begin{pmatrix} 1 & 0 & 0 & -\frac{p+1}{p+2} \\ 0 & 1 & 0 & \frac{1}{p+2} \\ 0 & 0 & 1 & \frac{(1+p)^2}{p+2} \end{pmatrix}$$

由上述行最简形矩阵得到 $x_1 = -\frac{p+1}{p+2}$, $x_2 = \frac{1}{p+2}$, $x_3 = \frac{(1+p)^2}{p+2}$.

(2) 当 p = -2 时, (1-p)(p+2) = 0 但 $(1-p)(1+p)^2 \neq 0$, 方程组无解.

$$(3) \stackrel{\mbox{\tiny \perp}}{=} p = 1 \stackrel{\mbox{\tiny $| p$}}{=} \begin{pmatrix} 1 & 1 & p & p^2 \\ 0 & p-1 & 1-p & p-p^2 \\ 0 & 0 & (1-p)(p+2) & (1-p)(1+p^2) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

此时方程组有无穷多解, 令 $x_2 = k_1$, $x_3 = k_2$ 得方程组的通解为: $(x_1, x - 2, x_3) = (1 - k_1 - k_2, k_1, k_2)$, (k_1, k_2) 为任意常数).

$$6 \ (A,b) = \begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 1 & -1 & -2 & 3 & 0 \\ 1 & 5 & 10 & -1 & q \\ 3 & 1 & p & 4 & 1 \end{pmatrix} \xrightarrow{r_2 - r_1, \ r_3 - r_1} \begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 8 & 16 & -3 & q + 1 \\ 0 & 10 & p + 18 & -2 & 4 \end{pmatrix}$$

$$\xrightarrow{r_3 - 4r_2 \atop r_4 - 5r_2 \times p} \begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 0 & 0 & -7 & q - 3 \\ 0 & 0 & p - 2 & -7 & -1 \end{pmatrix} \xrightarrow{r_3 \leftrightarrow r_4} \begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 0 & p - 2 & -7 & -1 \\ 0 & 0 & 0 & -7 & q - 3 \end{pmatrix}$$

$$\xrightarrow{r_3 - r_4 \atop r_4 \div (-7)} \begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 0 & p - 2 & 0 & 2 - q \\ 0 & 0 & 0 & 1 & \frac{3-q}{7} \end{pmatrix}$$

(1) 当 $p-2 \neq 0$ 即 $p \neq 2$ 时, 方程组有唯一解, 此时

$$\begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 0 & p-2 & 0 & 2-q \\ 0 & 0 & 0 & 1 & \frac{3-q}{7} \end{pmatrix} \xrightarrow{r_3 \div (p-2)} \begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 0 & 1 & 0 & \frac{2-q}{p-2} \\ 0 & 0 & 0 & 1 & \frac{3-q}{7} \end{pmatrix}$$

$$\xrightarrow{r_1-r_4 \times 2} \begin{pmatrix} 1 & -3 & -6 & 0 & \frac{2q-13}{7} \\ 0 & 2 & 4 & 0 & 1 - \frac{3-q}{7} \\ 0 & 0 & 1 & 0 & \frac{2-q}{p-2} \\ 0 & 0 & 0 & 1 & \frac{3-q}{7} \end{pmatrix} \xrightarrow{r_1+r_3 \times 6} \begin{pmatrix} 1 & -3 & 0 & 0 & \frac{2q-13}{7} + 6\frac{2-q}{p-2} \\ 0 & 0 & 1 & 0 & \frac{2-q}{p-2} \\ 0 & 0 & 0 & 1 & \frac{3-q}{7} \end{pmatrix} \xrightarrow{r_2+r_3 \times 4} \begin{pmatrix} 1 & -3 & 0 & 0 & \frac{2q-13}{7} + 6\frac{2-q}{p-2} \\ 0 & 0 & 1 & 0 & \frac{2-q}{p-2} \\ 0 & 0 & 0 & 1 & \frac{3-q}{7} \end{pmatrix} \xrightarrow{r_1+3r_2} \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{q-2}{2} \\ 0 & 1 & 0 & 0 & \frac{1}{2}(1 - \frac{3-q}{7} - 4\frac{2-q}{p-2}) \\ 0 & 0 & 1 & 0 & \frac{2-q}{p-2} \\ 0 & 0 & 0 & 1 & \frac{3-q}{7} \end{pmatrix}$$

由上述行最简形矩阵得到: $x_1 = \frac{q-2}{2}$, $x_2 = \frac{1}{2}(1 - \frac{3-q}{7} - 4\frac{2-q}{p-2})$, $x_3 = \frac{2-q}{p-2}$, $x_4 = \frac{3-q}{7}$

- (2) 当 p-2=0 且 $2-q\neq 0$ 时, 即 p=2 且 $q\neq 2$ 时, 方程组无解.
- (3) 当 p = 2 且 q = 2 时.

$$\begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 0 & p - 2 & 0 & 2 - q \\ 0 & 0 & 0 & 1 & \frac{3-q}{7} \end{pmatrix} = \begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \frac{1}{7} \end{pmatrix} \xrightarrow{r_3 \leftrightarrow r_4} \begin{pmatrix} 1 & -3 & -6 & 2 & -1 \\ 0 & 2 & 4 & 1 & 1 \\ 0 & 0 & 0 & 1 & \frac{1}{7} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 - 2r_3} \begin{pmatrix} 1 & -3 & -6 & 0 & -\frac{9}{7} \\ 0 & 2 & 4 & 0 & \frac{6}{7} \\ 0 & 2 & 4 & 0 & \frac{6}{7} \\ 0 & 0 & 0 & 1 & \frac{1}{7} \\ 0 & 0 & 0 & 1 & \frac{1}{7} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_2 \div 2} \begin{pmatrix} 1 & -3 & -6 & 0 & -\frac{9}{7} \\ 0 & 1 & 2 & 0 & \frac{3}{7} \\ 0 & 0 & 0 & 1 & \frac{1}{7} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 + 3r_2} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & \frac{3}{7} \\ 0 & 0 & 0 & 1 & \frac{1}{7} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

此时方程组有无穷多解, 令 $x_3 = k$ 得方程组得通解为: $(x_1, x_2, x_3, x_4) = (0, \frac{3}{7} - 2k, k, \frac{1}{7}), (k)$ 为任意常数).

7. 将军点兵, 三三数之剩二, 五五数之剩三, 七七数之剩二, 问兵几何 (求在 500 至 1000 范围内的解)? **解**: 设兵的总数为 m, 依题意可得:

$$\begin{cases} 3x_1 + 2 = m \\ 5x_2 + 3 = m \\ 7x_3 + 2 = m \end{cases}$$
 即
$$\begin{cases} 3x_1 = 7x_3 \\ 5x_2 = 7x_3 - 1 \end{cases}$$
 ,取 $x_3 = k$ 可得
$$\begin{cases} x_1 = \frac{7}{3}k \\ x_2 = \frac{7k - 1}{5} \\ x_3 = k \end{cases}$$

由 $500 \le 7k + 2 \le 1000$ 得 $71 \le k \le 142$, 注意到 x_1, x_2, x_3 都是正整数, 得到 $k \in \{78, 93, 108, 123, 138\}$, 从而 $m \in \{548, 653, 758, 863, 968\}.$

8. 百鸡术: 母鸡每只5元, 公鸡每只3元, 小鸡三只一元, 百元买百鸡, 各买几

解: 设买母鸡
$$x_1$$
 只, 公鸡 x_2 只, 小鸡 x_3 只, 依题意可得:
$$\begin{cases} x_1 + x_2 + x_3 = 100 \\ 5x_1 + 3x_2 + \frac{1}{3}x_3 = 100 \end{cases}$$
, 对其系数矩阵进行

初等行变换:

同解方程组为
$$\begin{cases} x_1 = \frac{4}{3}x_3 - 100 \\ x_2 = 200 - \frac{7}{3}x_3 \end{cases}$$
 取 $x_3 = 3k$ 可得
$$\begin{cases} x_1 = 4k - 100 \\ x_2 = 200 - 7k \\ x_3 = 3k \end{cases}$$

注意到 x_1, x_2, x_3 都是正整数, 得到 $k \in \{25, 26, 27, 28\}$, 从而 $(x_1, x_2, x_3) = (0, 25, 75)$ 或(4, 18, 78) 或(8, 11, 81)或(12, 4, 84)

21. 已知
$$A = P\Lambda Q$$
, 其中 $P = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$, $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $Q = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$, $QP = I_2$. 计算: A^8 , A^9 , A^{2n} , A^{2n+1} (n 为正整数).

 \mathbf{M} : 对正整数 m,

$$A^{m} = (P\Lambda Q)(P\Lambda Q)\cdots(P\Lambda Q) = P\Lambda(QP)\Lambda(QP)\cdots(QP)\Lambda Q = P\Lambda I_{2}\Lambda I_{2}\cdots\Lambda Q = P\Lambda^{m}Q$$

当 m 为偶数时, $\Lambda^m = I_2$,当 m 为奇数时, $\Lambda^m = \Lambda$,因此

$$\bullet A^8 = A^{2n} = PI_2Q = PQ = I_2$$

$$\bullet A^9 = A^{2n+1} = P\Lambda Q = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 7 & -12 \\ 4 & -7 \end{pmatrix}$$

26. 求平方等于零矩阵的所有二阶矩阵.

解: 设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 满足 $A^2 = O$, 即 $A^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & b(a+d) \\ c(a+d) & d^2 + bc \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

于是有

$$\int a^2 + bc = 0, \tag{2.1}$$

$$b(a+d) = 0, (2.2)$$

$$\begin{cases} b(a+d) = 0, \\ c(a+d) = 0, \end{cases}$$
 (2.2)

$$d^2 + bc = 0, (2.4)$$

由 2.1 和 2.4 知 $a^2=d^2$,即 $a=\pm d$. 当 a=-d 时, 2.2 和 2.3 成立. 当 $a^2=d^2=-bc$ 时, 2.1 和 2.4 成立. 因此 所求矩阵为 $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ $bc = -a^2$

28. 求与
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & -2 \end{pmatrix}$$
 可交换的全体三阶矩阵.

解: 设矩阵
$$B = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{pmatrix}$$
 满足 $AB = BA$,而

$$AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & -2 \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b + 2d & c + 2e \\ 0 & b - 2d & c - 2e \end{pmatrix}$$

$$BA = \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{array}\right) \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & -2 \end{array}\right) = \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & b+c & 2b-2c \\ 0 & d+e & 2d-2e \end{array}\right).$$

比较得 c=2d , 于是所求矩阵为 $B=\begin{pmatrix} a & 0 & 0 \\ 0 & b & 2d \\ 0 & d & b-3d \end{pmatrix}$.其中a,b,d 为任意实数.

29. 已知
$$A$$
 是对角元互不相等的 n 阶对角矩阵,即 $A=\left(\begin{array}{cccc}a_1&&&\\&a_2&&\\&&\ddots&\\&&&a_n\end{array}\right),$ 当 $i\neq j$ 时, $a_i\neq a_j$ $(i,j=1,2,\ldots,n)$

 $1,2,\cdots,n$). 证明:与 A 可交换的矩阵必是对角矩阵.

解: 设矩阵 $B = (b_{ij})_{n \times n}$ 与对角矩阵 A 可交换, 即 AB = BA. 而

$$AB = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix} = \begin{pmatrix} a_1b_{11} & a_1b_{12} & \cdots & a_1b_{1n} \\ a_2b_{21} & a_2b_{22} & \cdots & a_2b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_{n1} & a_nb_{n2} & \cdots & a_nb_{nn} \end{pmatrix}$$

$$BA = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix} \begin{pmatrix} a_1 \\ & a_2 \\ & & \ddots \\ & & & a_n \end{pmatrix} = \begin{pmatrix} a_1b_{11} & a_2b_{12} & \cdots & a_nb_{1n} \\ a_1b_{21} & a_2b_{22} & \cdots & a_nb_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_1b_{n1} & a_2b_{n2} & \cdots & a_nb_{nn} \end{pmatrix}$$

$$a_i b_{ij} = a_j b_{ij} \ \mathbb{P} \ (a_i - a_j) b_{ij} = 0, \ (i, j = 1, 2, \dots, n).$$

因为当 $i \neq j$ 时, $a_i \neq a_j$,所以当 $i \neq j$ 时, $b_{ij} = 0$, 即 B 为对角矩阵.

30. 证明: 两个 n 阶下三角矩阵的乘积仍是下三角矩阵.

证: 设

$$A = \begin{pmatrix} a_{11} & & & & \\ a_{21} & a_{22} & & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & & & \\ b_{21} & b_{22} & & & \\ \vdots & \vdots & \ddots & \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

则 $AB = C = (c_{ij})_{n \times n}$, 当 i < j 时,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{i} a_{ik} b_{kj} + \sum_{k=i+1}^{n} a_{ik} b_{kj}$$

在 $\sum_{k=1}^{i} a_{ik} b_{kj}$ 中, 因为 $k \leq i < j$, 所以 $b_{kj} = 0$, 从而 $\sum_{k=1}^{i} a_{ik} b_{kj} = 0$; 在 $\sum_{k=i+1}^{n} a_{ik} b_{kj}$ 中, 因为 i < k, 所以 $a_{ik} = 0$, 从而 $\sum_{k=i+1}^{n} a_{ik} b_{kj} = 0$.

因此当 i < j 时, 总有 $c_{ij} = 0$, 即 C 是下三角矩阵.

31. 证明: 若 A 是主对角元全为零的上三角矩阵, 则 A² 也是主对角元全为零的上三角矩阵.

证: 设 $A = (a_{ij})_{n \times n}$, 且当 $i \ge j$ 时, $a_{ij} = 0$, $A^2 = (c_{ij})_{n \times n}$. 当 i > j 时,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} a_{kj} = \sum_{k=1}^{i} a_{ik} a_{kj} + \sum_{k=i+1}^{n} a_{ik} a_{kj}$$

在 $\sum_{k=1}^{i} a_{ik} a_{kj}$ 中, 因为 $i \geq k$, 所以 $a_{ik} = 0$, 从而 $\sum_{k=1}^{i} a_{ik} a_{kj} = 0$; 在 $\sum_{k=i+1}^{n} a_{ik} a_{kj}$ 中, 因为 $k > i \geq j$, 所以 $a_{kj} = 0$, 从而 $\sum_{k=i+1}^{n} a_{ik} a_{kj} = 0$.

因此当 $i \ge j$ 时, 总有 $c_{ij} = 0$, 即 A^2 是主对角元为零的上三角矩阵.

32. 证明: 主对角元全为 1 的上三角矩阵的乘积仍是主对角元全为 1 的上三角矩阵.

证: 设 $A = (a_{ij})_{n \times n}$, $B = (b_{ij})_{n \times n}$, $AB = C = (c_{ij})_{n \times n}$, 且当 i = j 时, $a_{ij} = b_{ij} = 1$, i > j 时, $a_{ij} = b_{ij} = 0$,

当 i > j 时,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{i-1} a_{ik} b_{kj} + \sum_{k=i}^{n} a_{ik} b_{kj}$$

在 $\sum_{k=1}^{i-1} a_{ik} b_{kj}$ 中, 因为 i > k, 所以 $a_{ik} = 0$, 从而 $\sum_{k=1}^{i} a_{ik} b_{kj} = 0$; 在 $\sum_{k=i}^{n} a_{ik} b_{kj}$ 中, 因为 $k \ge i > j$, 所以 $b_{kj} = 0$, 从而 $\sum_{k=i+1}^{n} a_{ik} b_{kj} = 0$.

$$\overrightarrow{\text{m}} c_{ii} = \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{i-1} a_{ik} b_{ki} + a_{kk} b_{kk} + \sum_{k=i+1}^{n} a_{ik} b_{ki} = 0 + 1 + 0 = 1$$

因此当 i > j 时, 总有 $c_{ij} = 0$, 且 $c_{ii} = 1$, 因此 C 是主对角元为零的上三角矩阵.

36. 对于任意 n 阶矩阵 A, 证明

- (1) $A + A^T$ 是对称矩阵, $A A^T$ 是反对称矩阵;
- (2) A 可表示成对称矩阵与反对称矩阵之和.

证: (1) 因为 $(A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T$, 所以 $A + A^T$ 是对称矩阵; 因为 $(A - A^T)^T = A^T - (A^T)^T = A^T - A = -(A - A^T)$, 所以 $A - A^T$ 是反对称矩阵.

(2)
$$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$
, 由 (1) 的结论知所证成立.

37. 证明若 A 和 B 都是 n 阶对称矩阵, 则 AB 是对称矩阵的充要条件是 A 与 B 可交换.

证: 充分性: 由条件有 $A^T = A$, $B^T = B$, AB = BA, 则

$$(AB)^T = B^T A^T = BA = AB.$$

即 AB 是对称矩阵.

必要性: 由条件有 $A^T = A$, $B^T = B$, $(AB)^T = AB$, 则

$$AB = (AB)^T = B^T A^T = BA$$

即 AB 可交换.

38. 设 A 是实对称矩阵, 且 $A^2 = O$, 证明 A = O.

证: 设 $A = (a_{ij})_{n \times n}$, 因为 A 是实对称矩阵, 所以 $A = A^T$, 即

$$a_{ij} = a_{ji}$$
 $(i, j = 1, 2, \cdots, n)$

设 $A^2 = C = (c_{ij})_{n \times n}$, 由矩阵乘法的定义有:

$$c_{ii} = \sum_{k=1}^{n} a_{ik} a_{ki} = \sum_{k=1}^{n} a_{ik}^{2}, \quad (i = 1, 2, \dots, n)$$

即 $0 = \sum_{k=1}^{n} a_{ik}^2$,从而 $a_{ik} = 0$ $(i, k = 1, 2, \dots, n)$. 故 A = O.

- 45. 设方阵 A 满足 $A^2 A 2I = O$, 证明
- (1) A 和 I A 都可逆,并求它们的逆矩阵;
- (2) A + I 和 A 2I 不同时可逆.

i.e. (1)
$$A^2 - A - 2I = O \implies A^2 - A = 2I \implies A(A - I) = 2I \implies \frac{A(A - I)}{2} = I$$
.

上式说明 A 和 A-I 都可逆,且

$$(A)^{-1} = \frac{1}{2}(A-I), \quad (A-I)^{-1} = \frac{A}{2}$$

从而 I-A 也可逆,且 $(I-A)^{-1}=-\frac{A}{2}$.

(2) $A^2 - A - 2I = O \Rightarrow (A - 2I)(A + I) = O \Rightarrow |A - 2I| \cdot |A + I| = 0 \Rightarrow |A - 2I| = 0$ 和 |A + I| = 0 至少有一个成立,所以 A - 2I 和 A + I 不同时可逆.

46. 设方阵 A 满足 $A^2 - 2A + 4I = O$, 证明 A + I 和 A - 3I 都可逆, 并求它们得逆矩阵.

证: $A^2 - 2A + 4I = O \Rightarrow A^2 - 2A + 3I = -I \Rightarrow (A+I)(A-3I) = -I \Rightarrow (A+I)(3I-A) = I \Rightarrow A+I$ 和 A-3I 都可逆,且

$$(A+I)^{-1} = 3I - A, (A-3I)^{-1} = -(A+I).$$

47. 证明可逆的对称矩阵的逆矩阵仍是对称矩阵.

证: 设矩阵 A 可逆, 且 $A^T = A$, 那么 $(A^{-1})^T = (A^T)^{-1} = A^{-1}$. 即 A^{-1} 是对称矩阵.

用初等变换法求下列矩阵的逆矩阵.

$$49. (A|I) = \begin{pmatrix} 1 & 2 & 2 & | & 1 & 0 & 0 \\ 2 & 1 & -2 & | & 0 & 1 & 0 \\ 2 & -2 & 1 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & -3 & -6 & | & -2 & 1 & 0 \\ 0 & -6 & -3 & | & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_3 - 2r_2} \begin{pmatrix} 1 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & -3 & -6 & | & -2 & 1 & 0 \\ 0 & 0 & 9 & | & 2 & -2 & 1 \end{pmatrix} \xrightarrow{r_2 \times (-\frac{1}{3})} \begin{pmatrix} 1 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & \frac{2}{3} & -\frac{1}{3} & 0 \\ 0 & 0 & 1 & | & \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \end{pmatrix}$$

$$\xrightarrow{r_1 - 2r_3} \begin{pmatrix} 1 & 2 & 0 & | & \frac{5}{9} & \frac{4}{9} & -\frac{2}{9} \\ 0 & 1 & 0 & | & \frac{2}{9} & \frac{1}{9} & -\frac{2}{9} \\ 0 & 0 & 1 & | & \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix} 1 & 0 & 0 & | & \frac{1}{9} & \frac{2}{9} & \frac{2}{9} \\ 0 & 1 & 0 & | & \frac{2}{9} & \frac{1}{9} & -\frac{2}{9} \\ 0 & 0 & 1 & | & \frac{2}{9} & -\frac{2}{9} & \frac{1}{9} \end{pmatrix}$$

$$A^{-1} = \frac{1}{9} \left(\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{array} \right)$$

$$50. \ (A|I) = \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 2 & 3 & 1 & 2 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & -1 & | & 0 & 0 & 1 & 0 \\ 1 & 0 & -2 & -6 & | & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & -5 & -6 & | & -2 & 1 & 0 & 0 \\ 0 & -1 & -2 & -5 & | & -1 & 0 & 1 & 0 \\ 0 & -2 & -5 & -10 & | & -1 & 0 & 1 & 0 \\ 0 & 1 & 5 & 6 & | & 2 & -1 & 0 & 0 \\ 0 & 1 & 5 & 6 & | & 2 & -1 & 0 & 0 \\ 0 & 1 & 2 & 5 & | & 1 & 0 & -1 & 0 \\ 0 & 2 & 5 & 10 & | & 1 & 0 & 0 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & 6 & | & 2 & -1 & 0 & 0 \\ 0 & 0 & 3 & 1 & | & 1 & -1 & 1 & 0 \\ 0 & 0 & 3 & 1 & | & 1 & -1 & 1 & 0 \\ 0 & 0 & 15 & 6 & | & 9 & -6 & 0 & 3 \end{pmatrix} \xrightarrow{r_4 - r_3 \times 5} \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & 6 & | & 2 & -1 & 0 & 0 \\ 0 & 0 & 3 & 1 & | & 1 & -1 & 1 & 0 \\ 0 & 0 & 15 & 6 & | & 9 & -6 & 0 & 3 \end{pmatrix} \xrightarrow{r_4 - r_3 \times 5} \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & 6 & | & 2 & -1 & 0 & 0 \\ 0 & 0 & 3 & 1 & | & 1 & -1 & 1 & 0 \\ 0 & 0 & 3 & 1 & | & 1 & -1 & 1 & 0 \\ 0 & 0 & 3 & 1 & | & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 4 & -1 & -5 & 3 \end{pmatrix} \xrightarrow{r_3 - r_3 \times \frac{1}{3}} \begin{pmatrix} 1 & 2 & 3 & 0 & | & -15 & 4 & 20 & -12 \\ 0 & 1 & 5 & 0 & | & -22 & 5 & 30 & -18 \\ 0 & 0 & 3 & 0 & | & -3 & 0 & 6 & -3 \\ 0 & 0 & 0 & 1 & | & 4 & -1 & -5 & 3 \end{pmatrix} \xrightarrow{r_1 - r_2 \times 2} \begin{pmatrix} 1 & 2 & 3 & 0 & | & -15 & 4 & 20 & -12 \\ 0 & 1 & 5 & 0 & | & -22 & 5 & 30 & -18 \\ 0 & 0 & 1 & 0 & | & -1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 & | & 4 & -1 & -5 & 3 \end{pmatrix} \xrightarrow{r_1 - r_2 \times 2} \begin{pmatrix} 1 & 0 & 0 & 0 & | & 22 & -6 & -26 & 17 \\ 0 & 1 & 0 & 0 & | & -17 & 5 & 20 & -13 \\ 0 & 0 & 1 & 0 & | & -17 & 5 & 20 & -13 \\ 0 & 0 & 1 & | & 4 & -1 & -5 & 3 \end{pmatrix} \xrightarrow{r_1 - r_2 \times 2} \begin{pmatrix} 1 & 0 & 0 & | & -17 & 5 & 20 & -13 \\ 0 & 0 & 1 & | & 4 & -1 & -5 & 3 \end{pmatrix} \xrightarrow{r_1 - r_2 \times 2} \begin{pmatrix} 1 & 0 & 0 & | & -17 & 5 & 20 & -13 \\ 0 & 0 & 0 & 1 & | & 4 & -1 & -5 & 3 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 22 & -6 & -26 & 17 \\ -17 & 5 & 20 & -13 \\ -1 & 0 & 2 & -1 \\ 4 & -1 & -5 & 3 \end{pmatrix}$$

$$51. \ (A|I) = \begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & | & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & | & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_i - r_{i-1}} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & | & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & | & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & -1 & 1 \end{pmatrix}$$

于是

$$A^{-1} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{array}\right)$$

$$52.(A|I) = \begin{pmatrix} 1 & a & a^2 & a^3 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & a & a^2 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & a & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_i - r_{i+1} \times a} \begin{pmatrix} 1 & 0 & 0 & 0 & | & 1 & -a & 0 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & 1 & -a & 0 \\ 0 & 0 & 1 & 0 & | & 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$

于是

$$A^{-1} = \left(\begin{array}{cccc} 1 & -a & 0 & 0\\ 0 & 1 & -a & 0\\ 0 & 0 & 1 & -a\\ 0 & 0 & 0 & 1 \end{array}\right)$$

$$53. (A|I) = \begin{pmatrix} 0 & a_1 & 0 & \cdots & 0 & | & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_2 & \cdots & 0 & | & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & | & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & | & 0 & 0 & \cdots & 1 & 0 \\ a_n & 0 & 0 & \cdots & 0 & | & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_n \text{依次与前面的}}_{n-1 \text{行对换}} \begin{pmatrix} a_n & 0 & 0 & \cdots & 0 & | & 0 & 0 & \cdots & 0 & 1 \\ 0 & a_1 & 0 & \cdots & 0 & | & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_2 & \cdots & 0 & | & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & | & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & | & 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 \times \frac{1}{a_n}}_{r_i \times \frac{1}{a_{i-1}} i = 2, 3, \cdots, n}} \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & | & \frac{1}{a_n} & 0 & \cdots & 0 & | & \frac{1}{a_n} \\ 0 & 1 & 0 & \cdots & 0 & | & 0 & \frac{1}{a_2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & | & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & | & 0 & 0 & \cdots & \frac{1}{a_{n-1}} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & \frac{1}{a_n} \\ \frac{1}{a_1} & 0 & \cdots & 0 & 0 & 0 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 0 & 0 & \cdots & 0 & \frac{1}{a_n} \\ \frac{1}{a_1} & 0 & \cdots & 0 & 0 \\ 0 & \frac{1}{a_2} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{1}{a_{n-1}} & 0 \end{pmatrix}$$

解矩阵方程

$$54. \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) X = \left(\begin{array}{cc} 3 & 5 \\ 5 & 9 \end{array}\right).$$

解. 因为

$$\begin{pmatrix} 1 & 2 & | & 3 & 5 \\ 3 & 4 & | & 5 & 9 \end{pmatrix} \xrightarrow{r_2 - r_1 \times 3} \begin{pmatrix} 1 & 2 & | & 3 & 5 \\ 0 & -2 & | & -4 & -6 \end{pmatrix} \xrightarrow{r_1 + r_2} \begin{pmatrix} 1 & 0 & | & -1 & -1 \\ 0 & -2 & | & -4 & -6 \end{pmatrix}$$

$$\xrightarrow{r_2 \times (-\frac{1}{2})} \begin{pmatrix} 1 & 0 & | & -1 & -1 \\ 0 & 1 & | & 2 & 3 \end{pmatrix}$$

所以矩阵
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 可逆, 且 $X = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix} = \begin{pmatrix} -1 & -1 \\ 2 & 3 \end{pmatrix}$.

$$55. \ X \left(\begin{array}{ccc} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{array} \right) = \left(\begin{array}{ccc} 1 & -3 & 0 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{array} \right).$$

解: 因为

$$\begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \\ 1 & -3 & 0 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{pmatrix} \xrightarrow{\frac{c_2-2c_1}{c_3+3c_1}} \begin{pmatrix} 1 & 0 & 0 \\ 3 & -4 & 5 \\ 2 & -5 & 6 \\ 1 & -5 & 3 \\ 10 & -18 & 37 \\ 10 & -13 & 38 \end{pmatrix} \xrightarrow{\frac{c_2\times(-1)}{c_3\times4}} \begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 20 \\ 2 & 5 & 24 \\ 1 & 5 & 12 \\ 10 & 18 & 148 \\ 10 & 13 & 152 \end{pmatrix} \xrightarrow{\frac{c_3-5c_2}{c_3-5c_2}} \begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 2 & 5 & -1 \\ 1 & 5 & -13 \\ 10 & 18 & 58 \\ 10 & 13 & 87 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & -1 \\ -25 & -60 & -13 \\ 126 & 308 & 58 \\ 184 & 448 & 87 \end{pmatrix} \xrightarrow{\frac{c_2\times\frac{1}{4}}{c_3\times(-1)}} \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \\ -25 & -15 & 13 \\ 10 & 77 & -58 \\ 126 & 112 & -87 \end{pmatrix} \xrightarrow{\frac{c_1-3c_2}{c_3-5c_2}} \begin{pmatrix} 1 & 0 & 0 \\ 3 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 20 & -15 & 13 \\ -105 & 77 & -58 \\ -152 & 112 & -87 \end{pmatrix}$$

所以矩阵
$$\begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{pmatrix}$$
 可逆,且 $X = \begin{pmatrix} 1 & -3 & 0 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 20 & -15 & 13 \\ -105 & 77 & -58 \\ -152 & 112 & -87 \end{pmatrix}$.

$$56. \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 2 & \cdots & n-1 \\ 0 & 0 & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

解: 因为
$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 1 & \cdots & 1 & 0 & 1 & 2 & \cdots & n-1 \\ 0 & 0 & 1 & \cdots & 1 & 0 & 0 & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \xrightarrow{r_i - r_{i+1}} \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

所以矩阵
$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$
 可逆, 且

$$X = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 2 & \cdots & n-1 \\ 0 & 0 & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

59. 设 $A \not\in m \times n$ 矩阵, $B \not\in n \times s$ 矩阵, $x \not\in n \times 1$ 矩阵, 证明: AB = O 的充要条件是 B 的每一列都是齐次线性方程组 Ax = 0 的解.

证: 将 $n \times s$ 矩阵 B 和 $m \times s$ 矩阵 O 按列分块为:

$$B = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s), \quad O = (\mathbf{0}_1, \mathbf{0}_2, \cdots, \mathbf{0}_s)$$

于是

$$A(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\cdots,\boldsymbol{\beta}_s)=AB=O=(\mathbf{0}_1,\mathbf{0}_2,\cdots,\mathbf{0}_s)$$

即

$$(A\boldsymbol{\beta}_1, A\boldsymbol{\beta}_2, \cdots, A\boldsymbol{\beta}_s) = (\mathbf{0}_1, \mathbf{0}_2, \cdots, \mathbf{0}_s)$$

从而有

$$A\beta_i = \mathbf{0}$$
 $i = 1, 2, \cdots, s$

这说明 β_i $(i=1,2,\cdots,s)$ 为齐次线性方程组 Ax=0 的解, 结论成立.

60. 设 C 是 n 阶可逆矩阵, D 是 $3 \times n$ 矩阵, 且

$$D = \left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{array} \right),$$

试用分块乘法,求一个 $n \times (n+3)$ 矩阵 A , 使得 $A \left(\begin{array}{c} C \\ D \end{array} \right) = I_n$.

 \mathbf{H} : 设 $A = (A_1, A_2)$, 其中 A_1 为 n 阶方阵, A_2 为 $n \times 3$ 阶矩阵, 于是

$$I_n = A \begin{pmatrix} C \\ D \end{pmatrix} = (A_1, A_2) \begin{pmatrix} C \\ D \end{pmatrix} = A_1C + A_2D$$

因为 C 可逆, 所以当 $A_1=C^{-1}$ 且 $A_2D=O$ 时, 上式成立. 注意到 D 中只有第一行为非零元, 取 A_2 的第一列全为 0 , 则一定满足 $A_2D=O$. 于是所求

$$A = (C^{-1}, A_2)$$

其中 A_2 的第一列全为 0 ,另两列为任意元素.

61. 设 $A = \begin{pmatrix} \mathbf{0} & B \\ C & \mathbf{0} \end{pmatrix}$, 其中 B 是 n 阶可逆矩阵, C 是 m 阶可逆矩阵, 证明 A 可逆, 并求 A^{-1} .

证: 因为矩阵 B 和 C 可逆, 所以 $|B| \neq 0$, $|C| \neq 0$. 而

$$|A| = \begin{vmatrix} \mathbf{0} & B \\ C & \mathbf{0} \end{vmatrix} = (-1)^{m \times n} \begin{vmatrix} B & \mathbf{0} \\ \mathbf{0} & C \end{vmatrix} = -1^{m \times n} |B||C|.$$

故 $|A| \neq 0$, 从而 A 可逆.

下面求矩阵 A^{-1} :

方法一:设
$$A^{-1} = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$$
,那么由

$$AA^{-1} = \begin{pmatrix} \mathbf{0} & B \\ C & \mathbf{0} \end{pmatrix} \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} = \begin{pmatrix} BZ & BW \\ CX & CY \end{pmatrix} = \begin{pmatrix} I_n & \mathbf{0} \\ \mathbf{0} & I_m \end{pmatrix}$$

可得:

$$\begin{cases}
BZ = I_n \\
BW = \mathbf{0} \\
CX = \mathbf{0} \\
CY = I_m
\end{cases} \Rightarrow \begin{cases}
Z = B^{-1} \\
W = \mathbf{0} \\
X = \mathbf{0} \\
Y = C^{-1}
\end{cases}$$

所以

$$A^{-1} = \left(\begin{array}{cc} \mathbf{0} & C^{-1} \\ B^{-1} & \mathbf{0} \end{array} \right).$$

方法二: 因为

$$\left(\begin{array}{cc|cccc} \mathbf{0} & B & | & I & \mathbf{0} \\ C & \mathbf{0} & | & \mathbf{0} & I \end{array}\right) \xrightarrow{r_1 \leftrightarrow r_2} \left(\begin{array}{ccccc} C & \mathbf{0} & | & \mathbf{0} & I \\ \mathbf{0} & B & | & I & \mathbf{0} \end{array}\right) \xrightarrow{C^{-1} \times r_1} \left(\begin{array}{ccccc} I & \mathbf{0} & | & \mathbf{0} & C^{-1} \\ \mathbf{0} & I & | & B^{-1} & \mathbf{0} \end{array}\right).$$

所以

$$A^{-1} = \left(\begin{array}{cc} \mathbf{0} & C^{-1} \\ B^{-1} & \mathbf{0} \end{array} \right).$$

63. 设 A, B, C, D 都是 n 阶矩阵, $|A| \neq 0$, AC = CA. 证明: $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD - CB|$.

i.E:
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \frac{r_2 - CA^{-1} \times r_1}{ \begin{vmatrix} \mathbf{0} & D - CA^{-1}B \end{vmatrix}} \begin{vmatrix} A & B \\ \mathbf{0} & D - CA^{-1}B \end{vmatrix} = |A||D - CA^{-1}B| = |AD - ACA^{-1}B|$$

$$= \frac{AC = CA}{|AD - CAA^{-1}B|} = |AD - CB|.$$

64. 设
$$A=\begin{pmatrix}\mathbf{0} & B\\ C & D\end{pmatrix}$$
, 其中 B , C 分别为二阶, 三阶可逆矩阵,且已知 B^{-1} , C^{-1} 求 A^{-1} .

解: 方法一: 设
$$A^{-1} = \begin{pmatrix} X & Y \\ Z & W \end{pmatrix}$$
, 那么由

$$AA^{-1} = \begin{pmatrix} \mathbf{0} & B \\ C & D \end{pmatrix} \begin{pmatrix} X & Y \\ Z & W \end{pmatrix} = \begin{pmatrix} BZ & BW \\ CX + DZ & CY + DW \end{pmatrix} = \begin{pmatrix} I_2 & \mathbf{0} \\ \mathbf{0} & I_3 \end{pmatrix}$$

可得:

$$\begin{cases} BZ = I_2 \\ BW = \mathbf{0} \\ CX + DZ = \mathbf{0} \\ CY + DW = I_3 \end{cases} \Rightarrow \begin{cases} Z = B^{-1} \\ W = B^{-1}\mathbf{0} \\ CX + DZ = \mathbf{0} \\ CY + DW = I_3 \end{cases} \Rightarrow \begin{cases} Z = B^{-1} \\ W = \mathbf{0} \\ CX = -DB^{-1} \\ CY = I_3 \end{cases} \Rightarrow \begin{cases} Z = B^{-1} \\ W = \mathbf{0} \\ X = -C^{-1}DB^{-1} \\ Y = C^{-1} \end{cases}$$

所以

$$A^{-1} = \left(\begin{array}{cc} -C^{-1}DB^{-1} & C^{-1} \\ B^{-1} & \mathbf{0} \end{array} \right).$$

方法二: 因为

$$\begin{pmatrix}
\mathbf{0} & B & | & I & \mathbf{0} \\
C & D & | & \mathbf{0} & I
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
C & D & | & \mathbf{0} & I \\
\mathbf{0} & B & | & I & \mathbf{0}
\end{pmatrix}
\xrightarrow{B^{-1} \times r_2}
\begin{pmatrix}
I & C^{-1}D & | & \mathbf{0} & C^{-1} \\
\mathbf{0} & I & | & B^{-1} & \mathbf{0}
\end{pmatrix}$$

$$\xrightarrow{r_1 - C^{-1}D \times r_2}
\begin{pmatrix}
I & C^{-1}D & | & \mathbf{0} & -C^{-1}DB^{-1} \\
\mathbf{0} & I & | & B^{-1} & \mathbf{0}
\end{pmatrix}$$

所以

$$A^{-1} = \left(\begin{array}{cc} -C^{-1}DB^{-1} & C^{-1} \\ B^{-1} & \mathbf{0} \end{array} \right).$$

67. 设 A, B 均为 4 阶方阵, 已知 |A| = -2, |B| = 3, 计算:

(2)
$$|-AB^T| = (-1)^4 |A| |B^T| = |A| |B| = (-2) \times 3 = -6.$$

$$(3) |(AB)^{-1}| = |B^{-1}A^{-1}| = |B|^{-1}|A|^{-1} = \frac{1}{3} \times (-\frac{1}{2}) = -\frac{1}{6}.$$

(4)
$$\det[(AB)^T]^{-1} = |[(AB)^T]^{-1}| = |[(AB)^{-1}]^T| = |(AB)^{-1}| = -\frac{1}{6}$$

(5)
$$|-3A^*| = (-3)^4 |A|^{4-1} = 81 \times (-8) = -648.$$

68. $\ \ \overset{\text{\tiny th}}{\boxtimes} \ \alpha = (1, -2, 3)^T, \ \beta = (-1, \frac{1}{2}, 0)^T, \ A = \alpha \beta^T, \ \ \overset{\text{\tiny th}}{\boxtimes} \ |A^{100}|.$

$$\mathbf{\widetilde{H}}: \quad |A| = |\boldsymbol{\alpha}\boldsymbol{\beta}^T| = \left| \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} (-1, \frac{1}{2}, 0) \right| = \left| \begin{array}{ccc} -1 & \frac{1}{2} & 0 \\ 2 & -1 & 0 \\ -3 & \frac{3}{2} & 0 \end{array} \right| = 0$$

因此

$$|A^{100}| = |A|^{100} = 0$$

72. 设 $\alpha = (x_1, x_2, \dots, x_n)^T$, $\beta = (y_1, y_2, \dots, y_n)^T$, 已知 $\alpha^T \beta = 3$, $\beta = \alpha \beta^T$, $\beta = I - B$. 证明

- (1) $B^k = 3^{k-1}B(k \ge 2)$ 为正整数;
- (2) (A + 2I) 或 A I 不可逆;
- (3) A及A+I均可逆.

证: (1) 因为 $\alpha^T \beta = 3$, 所以 $\beta^T \alpha = 3$, 于是

$$B^k = (\alpha \beta^T)(\alpha \beta^T) \cdots (\alpha \beta^T) = \alpha (\beta^T \alpha)^{k-1} \beta^T = 3^{k-1} \alpha \beta^T = 3^{k-1} B.$$

(2) 因为 A = I - B,所以 $(A + 2I)(A - I) = (3I - B)(-B) = (B^2 - 3B) = O$,从而 |A + 2I||A - I| = 0. 即 |A + 2I| = 0 或 |A - I| = 0. 故 (A + 2I) 或 A - I 不可逆.

(3) 因为
$$A(A+I) = (I-B)(2I-B) = 2I - 3B - B^2 = 2I$$
, 即 $\frac{1}{2}A(A+I) = I$, 所以 A 及 $A+I$ 均可逆.

73. 设 A 为 3 阶方阵, |A| > 0, 已知 $A^* = \text{diag}(1, -1, -4)$, 且 $ABA^{-1} = BA^{-1} + 3I$, 求 B.

解: 因为 |A| > 0, 所以 $|A^*| = |\operatorname{diag}(1, -1, -4)| = 4 = |A|^2$. 从而 |A| = 2, 于是

$$A^{-1} = \frac{A^*}{|A|} = \frac{1}{2} \operatorname{diag}(1, -1, -4) = \operatorname{diag}(\frac{1}{2}, -\frac{1}{2}, -2)$$

进一步得到

$$A = diag(2, -2, -\frac{1}{2}), \ A - I = diag(1, -3, -\frac{3}{2})$$

$$ABA^{-1} = BA^{-1} + 3I \Rightarrow (A - I)BA^{-1} = 3I \Rightarrow B = 3(A - I)^{-1}A = 3\operatorname{diag}(1, -\frac{1}{3}, -\frac{2}{3})\operatorname{diag}(2, -2, -\frac{1}{2}) = \operatorname{diag}(6, 2, 1).$$

74. 设 n 阶矩阵 A 满足: $A^{T}A = I$ 和 |A| < 0, 求 |A + I|.

解: $A^T A = I \Rightarrow |A^T||A| = |A|^2 = 1$, 因为 |A| < 0, 所以 |A| = -1, 从而

$$|A + I| = |A + A^T A| = |(I + A^T)A| = |(I + A)^T||A| = |I + A||A| = -|A + I|$$

故

$$|A + I| = 0.$$

75. 设 A 为奇数阶可逆矩阵, 且 $A^{-1} = A^T$, |A| = 1, 求 |I - A|.

解: $|I - A| = |AA^{-1} - A| = |A||A^{-1} - I| = |A^T - I| = |(A - I)^T| = |A - I|$. 因为 A 为奇数阶矩阵,所以 |I - A| = |A - I| = |-(I - A)| = -|I - A|,故

$$|I - A| = 0.$$

77. 设 $\alpha = (1,0,-1)^T$, k 为正整数, $A = \alpha \alpha^T$, 求 $|kI - A^n|$.

解:

$$A^n = (\boldsymbol{lpha} \boldsymbol{lpha}^T)(\boldsymbol{lpha} \boldsymbol{lpha}^T) \cdots (\boldsymbol{lpha} \boldsymbol{lpha}^T) = \boldsymbol{lpha} (\boldsymbol{lpha}^T \boldsymbol{lpha})^{n-1} \boldsymbol{lpha}^T = 2^{n-1} \left(egin{array}{ccc} 1 & 0 & -1 \ 0 & 0 & 0 \ -1 & 0 & 1 \end{array}
ight)$$

于是

$$|kI - A^n| = \begin{vmatrix} k - 2^{n-1} & 0 & 2^{n-1} \\ 0 & k & 0 \\ 2^{n-1} & 0 & k - 2^{n-1} \end{vmatrix} \underbrace{\frac{\cancel{g}_{r_2}}{\cancel{E} \cancel{T}}}_{k} k \begin{vmatrix} k - 2^{n-1} & 2^{n-1} \\ 2^{n-1} & k - 2^{n-1} \end{vmatrix} = k^2(k-2^n).$$

80. 设 B 是元素全为 1 的 $n (n \ge 2)$ 阶矩阵, 证明:

(1)
$$B^k = n^{k-1}B$$
 $(k \ge 2$ 为正整数); (2) $(I - B)^{-1} = I - \frac{1}{n-1}B$.

证: (1) 设 $\alpha = (1, 1, \dots, 1)$, 则 $B = \alpha^{\mathsf{T}} \alpha$, 于是

$$B^k = (\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\alpha})(\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\alpha}) \cdots (\boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{\alpha}) = \boldsymbol{\alpha}^{\mathsf{T}} (\boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathsf{T}})(\boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathsf{T}}) \cdots (\boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathsf{T}}) \boldsymbol{\alpha}.$$

注意到
$$\alpha \alpha^\intercal = (1,1,\cdots,1) \left(\begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \end{array} \right) = n,$$
 所以当 $k \geq 2$ 时,有

$$B^k = \alpha^{\mathsf{T}}(\alpha\alpha^{\mathsf{T}})(\alpha\alpha^{\mathsf{T}})\cdots(\alpha\alpha^{\mathsf{T}})\alpha = \alpha^{\mathsf{T}}\cdot n\cdot n\cdot n\cdot \alpha = n^{k-1}\alpha^{\mathsf{T}}\alpha = n^{k-1}B.$$

(2) 因为由(1)的结果可得:

$$(I-B)(I-\frac{1}{n-1}B) = I - \frac{1}{n-1}B - B + \frac{1}{n-1}B^2 = I - \frac{n}{n-1}B + \frac{1}{n-1}nB = I.$$

所以

$$(I-B)^{-1} = I - \frac{1}{n-1}B.$$

81. 设 A 为 3 阶实对称矩阵,且主对角元全为 0, B = diag(0, 1, 2),求使 AB + I 为可逆矩阵的条件.

解: 依题意可设
$$A = \begin{pmatrix} 0 & a_{12} & a_{13} \\ a_{12} & 0 & a_{23} \\ a_{13} & a_{23} & 0 \end{pmatrix}$$
, 那么

$$AB+I = \left(\begin{array}{ccc} 0 & a_{12} & a_{13} \\ a_{12} & 0 & a_{23} \\ a_{13} & a_{23} & 0 \end{array}\right) \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right) + \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} 0 & a_{12} & 2a_{13} \\ 0 & 0 & 2a_{23} \\ 0 & a_{23} & 0 \end{array}\right) + \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & a_{12} & 2a_{13} \\ 0 & 1 & 2a_{23} \\ 0 & a_{23} & 1 \end{array}\right)$$

那么

$$|AB + I| = 1 - 2a_{23}^2$$

由矩阵可逆的充要条件可得: AB + I 为可逆矩阵的充要条件是: $2a_{23}^2 \neq 1$, 即 $a_{23} \neq \pm \frac{\sqrt{2}}{2}$

82. 己知 P, A 均为可逆矩阵,且 $P^{-1}AP = \text{diag}(1,1,\cdots,1,0,\cdots,0)$ (有 r 个 1), 试计算 |A+2I|.

解:
$$|A+2I| = |P^{-1}||A+2I||P| = |P^{-1}AP+2I| = |\operatorname{diag}(1,1,\cdots,1,0,\cdots,0) + \operatorname{diag}(2,2,\cdots,2)| \\ = |\operatorname{diag}(3,3,\cdots,3,2,\cdots,2)|$$

其中有r个3,n-r个1,所以

$$|A+2I| = 3^r \cdot 2^{n-r}.$$

83. 设 A 为 n ($n \ge 2$) 阶可逆矩阵, 证明:

解: 利用 $A^{-1} = \frac{A^*}{|A|}$ 和 $A^* = |A|A^{-1}$ 可得:

$$(1)\ (A^{-1})^{\star} = |A^{-1}|(A^{-1})^{-1} = |A|^{-1}(A^{-1})^{-1} = (|A|A^{-1})^{-1} = (A^{\star})^{-1}.$$

$$(2) \ \ (A^T)^\star = |A^T|(A^T)^{-1} = |A|(A^{-1})^T = (|A|A^{-1})^T = (A^\star)^T.$$

(3)
$$(kA)^* = |kA|(kA)^{-1} = k^n|A| \frac{1}{k}A^{-1} = k^{n-1}|A|A^{-1} = k^{n-1}A^*.$$

84. 计算下列矩阵的幂: (1)
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^n ; (2) \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & a & 1 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end{pmatrix}^n .$$

解: (1) 记
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, 则 $A = I + B$,于是

$$A^{n} = (I + B)^{n} = I + C_{n}^{1}B + C_{n}^{2}B^{2} + \dots + C_{n}^{n}B^{n}.$$

注意到:

$$B^2 = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right); \quad B^3 = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

所以

$$A^n = I + C_n^1 B + C_n^2 B^2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) + \left(\begin{array}{ccc} 0 & C_n^1 & 0 \\ 0 & 0 & C_n^1 \\ 0 & 0 & 0 \end{array}\right) + \left(\begin{array}{ccc} 0 & 0 & C_n^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 1 & C_n^1 & C_n^2 \\ 0 & 1 & C_n^1 \\ 0 & 0 & 1 \end{array}\right)$$

$$(2) \ \ensuremath{\vec{\mathcal{U}}}\ A = \left(\begin{array}{cccc} a & 1 & 0 & 0 \\ 0 & a & 1 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end{array}\right), \quad B = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right), \ \ensuremath{\mathbb{M}}\ A = aI + B \ \ \ensuremath{\mathcal{T}}\ \ensuremath{\mathbb{H}}\ \ensuremath{\mathcal{L}}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \ensuremath{\mathcal{H}\ \ensuremath{\mathcal{H}}\ \en$$

$$A^{n} = (aI + B)^{n} = a^{n}I + C_{n}^{1}a^{n-1}B + C_{n}^{2}a^{n-2}B^{2} + C_{n}^{3}a^{n-3}B^{3} + \cdots + C_{n}^{n}B^{n}.$$

注意到:

$$B^{2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix};$$

所以

$$\begin{split} A^n &= a^n I + C_n^1 a^{n-1} B + C_n^2 a^{n-2} B^2 + C_n^3 a^{n-3} B^3 \\ &= \begin{pmatrix} a^n & 0 & 0 & 0 \\ 0 & a^n & 0 & 0 \\ 0 & 0 & a^n & 0 \\ 0 & 0 & 0 & a^n \end{pmatrix} + \begin{pmatrix} 0 & C_n^1 a^{n-1} & 0 & 0 \\ 0 & 0 & C_n^1 a^{n-1} & 0 \\ 0 & 0 & 0 & C_n^1 a^{n-1} \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & C_n^2 a^{n-2} & 0 \\ 0 & 0 & 0 & C_n^2 a^{n-2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & C_n^3 a^{n-3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} a^n & C_n^1 a^{n-1} & C_n^2 a^{n-2} & C_n^3 a^{n-3} \\ 0 & a^n & C_n^1 a^{n-1} & C_n^2 a^{n-2} \\ 0 & 0 & a^n & C_n^1 a^{n-1} \end{pmatrix}. \end{split}$$

86. n 阶矩阵 $A = (a_{ij})$ 的主对角元之和称为 A 的迹,记作 tr(A),即 $tr(A) = \sum_{i=1}^{n} a_{ii}$. 证明:若 A 是 $m \times n$ 矩阵,B 是 $n \times m$ 矩阵,则 tr(AB) = tr(BA).

证: 设
$$AB = C = (C_{ij})_{m \times m}$$
, $BA = D = (d_{ij})_{n \times n}$, 那么

$$tr(AB) = c_{11} + c_{22} + \dots + c_{mm}$$

$$= (a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1}) + (a_{21}b_{12} + a_{22}b_{22} + \dots + a_{2n}b_{n2}) + \dots + (a_{m1}b_{1m} + a_{m2}b_{2m} + \dots + a_{mn}b_{nm})$$

$$= (b_{11}a_{11} + b_{12}a_{21} + \dots + b_{1m}a_{m1}) + (b_{21}a_{12} + b_{22}a_{22} + \dots + b_{2m}a_{m2}) + \dots + (b_{n1}a_{1n} + b_{n2}a_{2n} + \dots + b_{nm}a_{mn})$$

$$= d_{11} + d_{22} + \dots + d_{nn} = tr(BA).$$

88. 若 n 阶矩阵 A 存在正整数 k , 使得 $A^k = O$, 就称 A 为幂零矩阵. 设幂零矩阵 A 满足 $A^k = O(k)$ 为正整数), 试证明: I - A 可逆,并求其逆矩阵.

证:
$$A^k = O \Rightarrow I - A^k = I \Rightarrow (I - A)(I + A + A^2 + \dots + A^{k-1}) = I$$
, 所以 $I - A$ 可逆, 并且
$$(I - A)^{-1} = I + A + A^2 + \dots + A^{k-1}.$$

89. 设
$$A = \begin{pmatrix} a & 1 & 0 & 0 \\ 0 & a & 1 & 0 \\ 0 & 0 & a & 1 \\ 0 & 0 & 0 & a \end{pmatrix}, f(x) = (x - b)^n$$
. 试求 $f(A)$, 当 $f(A)$ 可逆时,求其逆矩阵.

解: $f(A) = (A - bI)^n = [(a - b)I + B]^n$, 其中

当 $k \ge 4$ 时, $B^k = O$. 于是

$$\begin{split} f(A) &= [(a-b)I + B]^n = (a-b)^n I + C_n^1 (a-b)^{n-1} B + C_n^2 (a-b)^{n-2} B^2 + C_n^3 (a-b)^{n-3} B^3 \\ &= \begin{pmatrix} (a-b)^n & C_n^1 (a-b)^{n-1} & C_n^2 (a-b)^{n-2} & C_n^3 (a-b)^{n-3} \\ 0 & (a-b)^n & C_n^1 (a-b)^{n-1} & C_n^2 (a-b)^{n-2} \\ 0 & 0 & (a-b)^n & C_n^1 (a-b)^{n-1} \\ 0 & 0 & 0 & (a-b)^n \end{pmatrix} \\ \\ (f(A) \mid I) &= \begin{pmatrix} (a-b)^n & C_n^1 (a-b)^{n-1} & C_n^2 (a-b)^{n-2} & C_n^3 (a-b)^{n-3} & | & 1 & 0 & 0 & 0 \\ 0 & (a-b)^n & C_n^1 (a-b)^{n-1} & C_n^2 (a-b)^{n-2} & | & 0 & 1 & 0 & 0 \\ 0 & (a-b)^n & C_n^1 (a-b)^{n-1} & C_n^2 (a-b)^{n-2} & | & 0 & 1 & 0 & 0 \\ 0 & 0 & (a-b)^n & C_n^1 (a-b)^{n-1} & | & 0 & 0 & 1 & 0 \\ 0 & 0 & (a-b)^n & C_n^1 (a-b)^{n-1} & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & (a-b)^n & C_n^1 (a-b)^{n-1} & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & (a-b)^n & | & 0 & 0 & 0 & 1 \\ 0 & 1 & \frac{C_n^1}{a-b} & \frac{C_n^2}{(a-b)^2} & \frac{C_n^3}{(a-b)^3} & | & \frac{1}{(a-b)^n} & 0 & 0 & 0 \\ 0 & 1 & \frac{C_n^1}{a-b} & \frac{C_n^2}{(a-b)^2} & | & 0 & \frac{1}{(a-b)^n} & 0 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 0 & \frac{1}{(a-b)^n} & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 0 & \frac{1}{(a-b)^n} & 0 \\ 0 & 0 & 1 & 0 & | & 0 & \frac{1}{(a-b)^n} & 0 & -\frac{C_n^2}{(a-b)^{n+1}} \\ 0 & 0 & 1 & 0 & | & 0 & 0 & \frac{1}{(a-b)^n} & -\frac{C_n^2}{(a-b)^{n+2}} \\ 0 & 1 & \frac{C_n^1}{a-b} & 0 & | & \frac{1}{(a-b)^n} & -\frac{C_n^2}{(a-b)^{n+2}} & \frac{C_n^2 C_n^2 C_n^2 C_n^2}{(a-b)^{n+2}} \\ 0 & 0 & 1 & 0 & | & 0 & 0 & \frac{1}{(a-b)^n} & -\frac{C_n^2}{(a-b)^{n+2}} \\ 0 & 0 & 1 & 0 & | & 0 & 0 & \frac{1}{(a-b)^n} & -\frac{C_n^n}{(a-b)^{n+2}} \\ 0 & 0 & 0 & 1 & | & 0 & 0 & 0 & \frac{1}{(a-b)^n} & -\frac{C_n^n}{(a-b)^{n+2}} \\ 0 & 1 & 0 & 0 & | & \frac{1}{(a-b)^n} & -\frac{C_n^n}{(a-b)^{n+2}} & \frac{C_n^2 C_n^2 C_n^2$$

于是

$$(f(A))^{-1} = (a-b)^{-n} \begin{pmatrix} 1 & -C_n^1(a-b)^{-1} & [(C_n^1)^2 - C_n^2](a-b)^{-2} & [2C_n^1C_n^2 - (C_n^1)^3 - C_n^3](a-b)^{-3} \\ 0 & 1 & -C_n^1(a-b)^{-1} & [(C_n^1)^2 - C_n^2](a-b)^{-2} \\ 0 & 0 & 1 & -C_n^1(a-b)^{-1} \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

$$\mathbf{\widetilde{R}}: \ f(x) = \left| \begin{array}{cccc} x - 1 & x & 0 \\ 0 & x - 1 & -3 \\ 1 & 1 & 1 \end{array} \right| \xrightarrow{\frac{r_2 + 3r_1}{2}} \left| \begin{array}{cccc} x - 1 & x & 0 \\ 3 & x + 2 & 0 \\ 1 & 1 & 1 \end{array} \right| = (x - 1)(x + 2) - 3x = x^2 - 2x - 2.$$

$$f(A) = A^{2} - 2A - 2I = \begin{pmatrix} 0 & 1 \\ 3 & -2 \end{pmatrix}^{2} - 2 \begin{pmatrix} 0 & 1 \\ 3 & -2 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & -2 \\ -6 & 7 \end{pmatrix} - \begin{pmatrix} 0 & 2 \\ 6 & -4 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ -12 & 9 \end{pmatrix}.$$

$$g(x) = \begin{vmatrix} x & -1 \\ -3 & x+2 \end{vmatrix} = x(x+2) - 3 = x^2 + 2x - 3.$$

$$g(A) = A^{2} + 2A - 3I = \begin{pmatrix} 0 & 1 \\ 3 & -2 \end{pmatrix}^{2} + 2 \begin{pmatrix} 0 & 1 \\ 3 & -2 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & -2 \\ -6 & 7 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 6 & -4 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

40 第二章 矩阵

第三章 线性方程组

将 1, 2 题中的向量 α 表示成 α_1 , α_2 , α_3 , α_4 的线性组合:

$$1. \ \boldsymbol{\alpha} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \ \boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ \boldsymbol{\alpha}_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \ \boldsymbol{\alpha}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -11 \end{pmatrix}, \ \boldsymbol{\alpha}_4 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}.$$

解: 设 $\alpha = x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 + x_4\alpha_4$, 即

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + x_2 - x_3 - x_4 = 2 \\ x_1 - x_2 + x_3 - x_4 = 1 \\ x_1 - x_2 - x_3 + x_4 = 1 \end{cases}$$

解方程组

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 2 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 \end{pmatrix} \xrightarrow{r_i - r_1} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & -2 & -2 & 1 \\ 0 & -2 & 0 & -2 & 0 \\ 0 & -2 & 0 & -2 & 0 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 & 0 \\ 0 & 0 & -2 & -2 & 0 \\ 0 & 0 & 0 & -2 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & -2 & 0 \\ 0 & 0 & 0 & -2 & -2 & 1 \end{pmatrix} \xrightarrow{r_4 + r_3} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & -2 & 0 \\ 0 & 0 & 0 & -4 & 1 \end{pmatrix} \xrightarrow{r_2 \div (-2), \ r_3 \div 2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{4} \end{pmatrix}$$

$$\xrightarrow{r_1 - r_4} \begin{pmatrix} 1 & 1 & 1 & 0 & \frac{5}{4} \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 0 & 1 & -\frac{1}{4} \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 1 & 0 & 0 & \frac{5}{4} \\ 0 & 1 & 0 & 0 & \frac{1}{4} \\ 0 & 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 0 & 1 & -\frac{1}{4} \end{pmatrix}$$

由上述行最简形矩阵可得: $x_1 = \frac{5}{4}$, $x_2 = \frac{1}{4}$, $x_3 = x_4 = -\frac{1}{4}$. 故

$$\boldsymbol{\alpha} = \frac{5}{4}\boldsymbol{\alpha}_1 + \frac{1}{4}\boldsymbol{\alpha}_2 - \frac{1}{4}\boldsymbol{\alpha}_3 - \frac{1}{4}\boldsymbol{\alpha}_4.$$

2.
$$\alpha = (0,0,0,1), \ \alpha_1 = (1,1,0,1), \ \alpha_2 = (2,1,3,1), \ \alpha_3 = (1,1,0,0), \ \alpha_4 = (0,1,-1,-1).$$

解:

$$\begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & -1 & 0 \\ 1 & 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow[r_4-r_1]{r_4-r_1} \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 3 & 0 & -1 & 0 \\ 0 & -1 & -1 & -1 & 1 \end{pmatrix} \xrightarrow[r_4+r_2]{r_3+3r_2} \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -2 & 1 \\ 0 & 0 & 0 & 2 & 0 \end{pmatrix} \xrightarrow[r_4+r_2]{r_4-r_2} \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -2 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow[r_4+r_2]{r_4+r_2} \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -2 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow[r_1+2r_2]{r_1+2r_2} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow[r_3\times(-1)]{r_2\times(-1)} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

由上述行最简形矩阵可得: $x_1 = 1$, $x_2 = 0$, $x_3 = -1$, $x_4 = 0$. 故

$$\alpha = \alpha_1 - \alpha_3$$
.

判别 3.4 题中向量组得线性相关性:

3. $\alpha_1 = (1, 1, 1)^T$, $\alpha_2 = (0, 2, 5)^T$, $\alpha_3 = (1, 3, 6)^T$.

解: 方法一: 观察可以得到 $\alpha_3 = \alpha_1 + \alpha_2$, 所以线性相关.

方法二: 因为
$$\begin{vmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & 5 & 6 \end{vmatrix}$$
 $= \begin{bmatrix} r_2 - r_1 \\ r_3 - r_1 \end{bmatrix}$ $= 0$ $= 0$, 所以线性相关.

方法三: 因为
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & 5 & 6 \end{pmatrix} \xrightarrow{r_2-r_1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 5 & 5 \end{pmatrix} \xrightarrow{r_3-\frac{2}{5}r_2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

秩 $\{\alpha_1, \alpha_2, \alpha_3\} = 2 < 3$, 所以线性相关.

4. $\boldsymbol{\beta_1} = (1, -1, 2, 4)^T$, $\boldsymbol{\beta_2} = (0, 3, 1, 2)^T$, $\boldsymbol{\beta_3} = (3, 0, 7, 14)^T$.

 \mathbf{p} : 方法一: 观察可以得到 $\boldsymbol{\beta}_3 = 3\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2$, 所以线性相关.

方法二: 因为
$$\begin{pmatrix} 1 & 0 & 3 \\ -1 & 3 & 0 \\ 2 & 1 & 7 \\ 4 & 2 & 14 \end{pmatrix} \xrightarrow{r_2+r_1, r_3-2r_1} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 3 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 3 & 3 \\ 0 & 2 & 2 \end{pmatrix} \xrightarrow{r_3-3r_2} \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

秩 $\{\beta_1, \beta_2, \beta_3\} = 2 < 3$, 所以线性相关.

5. 论述单个向量 $\alpha = (a_1, a_2, \dots, a_n)$ 线性相关和线性无关的条件.

解: 单个向量 α 线性相关 \Leftrightarrow $\alpha = 0$, 个向量 α 线性无关 \Leftrightarrow $\alpha \neq 0$.

7. 证明: 若 α_1 , α_2 线性无关,则 $\alpha_1 + \alpha_2$, $\alpha_1 - \alpha_2$ 也线性无关.

证:
$$\% k_1(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) + k_2(\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2) = \mathbf{0},$$
 即

$$(k_1 + k_1)\alpha_1 + (k_1 - k_2)\alpha_2 = \mathbf{0}$$

因为 α_1 , α_2 线性无关, 所以

$$\begin{cases} k_1 + k_2 = 0 \\ k_1 - k_2 = 0 \end{cases} \Rightarrow \begin{cases} k_1 = 0 \\ k_2 = 0 \end{cases}$$

故 $\alpha_1 + \alpha_2$, $\alpha_1 - \alpha_2$ 也线性无关.

9. 证明 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ 线性无关的充要条件是 $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 证: 充分性: 设

$$x_1(\alpha_1 + \alpha_2) + x_2(\alpha_2 + \alpha_3) + x_3(\alpha_3 + \alpha_1) = \mathbf{0}$$

即

$$(x_1 + x_3)\alpha_1 + (x_1 + x_2)\alpha_2 + (x_2 + x_3)\alpha_3 = \mathbf{0}$$

因为 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 所以

$$\begin{cases} x_1 + x_3 &= 0 \\ x_1 + x_2 &= 0 \\ x_2 + x_3 &= 0 \end{cases} \Rightarrow \begin{cases} x_1 &= 0 \\ x_2 &= 0 \\ x_3 &= 0 \end{cases}$$

所以 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ 线性无关.

必要性:用反证法.

假设 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,那么其中至少有一个向量能用其余向量线性表示,不妨设 α_3 能由 α_1, α_2 线性表示,那么 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 也可由 α_1, α_2 线性表示,从而 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性相关,矛盾!

11. 如果 α_1 , α_2 , α_3 , α_4 线性相关,但其中任意 3 个向量都线性无关,证明必存在一组全不为零的数 k_1,k_2,k_3,k_4 ,使得

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_3 + k_4\boldsymbol{\alpha}_4 = \mathbf{0}.$$

证: 用反证法, 因为 α_1 , α_2 , α_3 , α_4 线性相关, 所以一定存在不全为零的数 k_1 , k_2 , k_3 , k_4 , 使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 + k_4\alpha_4 = \mathbf{0}$. 若 k_1 , k_2 , k_3 , k_4 中至少有一个等于零, 不妨假设 $k_1 = 0$, 则由

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_3 + k_4\boldsymbol{\alpha}_4 = \mathbf{0}$$

得到 $k_2\alpha_2 + k_3\alpha_3 + k_4\alpha_4 = \mathbf{0}$, 其中 k_2, k_3, k_4 都不为零,从而得到 α_2 , α_3 , α_4 线性相关, 与题设矛盾!

12. 若 α_1 , α_2 , · · · , α_r 线性无关, 证明 β , α_1 , α_2 , · · · , α_r 线性无关的充要条件是 β 不能由 α_1 , α_2 , · · · , α_r 线性表示.

证: 必要性显然. 下面证明充分性, 用反证法: 假设 $\boldsymbol{\beta}$, $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, \cdots , $\boldsymbol{\alpha}_r$ 线性相关, 则一定存在不全为零的数 k, k_1 , k_2 , \cdots , k_r 使得

$$k\boldsymbol{\beta} + k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \cdots + k_r\boldsymbol{\alpha}_r = \mathbf{0}$$

又因为 α_1 , α_2 , ..., α_r 线性无关, 所以一定有 $k \neq 0$, 从而

$$\boldsymbol{\beta} = -\frac{k_1}{k} \boldsymbol{\alpha}_1 - \frac{k_2}{k} \boldsymbol{\alpha}_2 - \dots - \frac{k_r}{k} \boldsymbol{\alpha}_r$$

即 β 能由 α_1 , α_2 , ..., α_r 线性表示, 矛盾!

13. 求下列向量组的秩及其一个极大线性无关组,并将其余向量用极大线性无关组线性表示:

(1)
$$\alpha_1 = (6, 4, 1, 9, 2), \ \alpha_2 = (1, 0, 2, 3, -4), \ \alpha_3 = (1, 4, -9, -6, 22), \ \alpha_4 = (7, 1, 0, -1, 3).$$

(2)
$$\alpha_1 = (1, -1, 2, 4), \ \alpha_2 = (0, 3, 1, 2), \ \alpha_3 = (3, 0, 7, 14), \ \alpha_4 = (2, 1, 5, 6), \ \alpha_5 = (1, -1, 2, 0).$$

(3)
$$\alpha_1 = (1, 1, 1), \ \alpha_2 = (1, 1, 0), \ \alpha_3 = (1, 0, 0), \ \alpha_4 = (1, 2, -3).$$

 \mathbf{R} : 以 α_i 为列向量作矩阵 A, 并对 A 进行初等行变换化为行最简形:

$$(1) \ A = \begin{pmatrix} 6 & 1 & 1 & 7 \\ 4 & 0 & 4 & 1 \\ 1 & 2 & -9 & 0 \\ 9 & 3 & -6 & -12 \\ 2 & -4 & 22 & 3 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 2 & -9 & 0 \\ 4 & 0 & 4 & 1 \\ 6 & 1 & 1 & 7 \\ 9 & 3 & -6 & -12 \\ 2 & -4 & 22 & 3 \end{pmatrix} \xrightarrow{r_2 \to r_1, r_3 - 6r_1} \begin{pmatrix} 1 & 2 & -9 & 0 \\ 0 & -8 & 40 & 1 \\ 0 & -11 & 55 & 7 \\ 0 & -8 & 40 & 1 \\ 0 & -11 & 55 & 7 \\ 0 & -4 & 20 & -8 \\ 0 & 0 & 0 & 2 \end{pmatrix} \xrightarrow{r_4 \div (-4)} \begin{pmatrix} 1 & 2 & -9 & 0 \\ 0 & 1 & -5 & 2 \\ 0 & -8 & 40 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \xrightarrow{r_3 + 1r_2} \begin{pmatrix} 1 & 2 & -9 & 0 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 0 & 29 \\ 0 & 0 & 0 & 17 \\ 0 & 0 & 0 & 2 \end{pmatrix} \xrightarrow{r_5 - 29r_3} \xrightarrow{r_4 - 17r_3} \begin{pmatrix} 1 & 2 & -9 & 0 \\ 0 & 1 & -5 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_2 - 2r_3} \begin{pmatrix} 1 & 2 & -9 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

由上述矩阵可知: 秩 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} = 3, \alpha_1, \alpha_2, \alpha_4$ 是一个极大线性无关组, $\alpha_3 = \alpha_1 - 5\alpha_2$.

$$A = \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ -1 & 3 & 0 & 1 & -1 \\ 2 & 1 & 7 & 5 & 2 \\ 4 & 2 & 14 & 6 & 0 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 0 & 3 & 3 & 3 & 0 \\ 2 & 1 & 7 & 5 & 2 \\ 0 & 0 & 0 & -4 & -2 \end{pmatrix} \xrightarrow{r_3 - 2r_1} \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{2} \end{pmatrix}$$

$$\xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}} \xrightarrow{r_2 - r_3} \begin{pmatrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}}$$

由上述矩阵可知: 秩 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\} = 3, \alpha_1, \alpha_2, \alpha_4$ 是一个极大线性无关组.

$$\alpha_3 = 3\alpha_1 + \alpha_2, \ \alpha_5 = -\frac{1}{2}\alpha_2 + \frac{1}{2}\alpha_4.$$

$$(3)A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 0 & -3 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & -1 & -1 & -4 \end{pmatrix} \xrightarrow{r_2 \div (-1)} \begin{pmatrix} 1 & 1 & 1 & 1 \\ r_3 \div (-1) \\ \hline r_2 \leftrightarrow r_3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

$$\xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

由上述矩阵可知: 秩 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} = 3, \alpha_1, \alpha_2, \alpha_3$ 是一个极大线性无关组. $\alpha_4 = -3\alpha_1 + 5\alpha_2 - \alpha_3$.

- 14. 设向量组: $\xi_1 = (1, -1, 2, 4), \ \xi_2 = (0, 3, 1, 2), \ \xi_3 = (3, 0, 7, 14), \ \xi_4 = (1, -1, 2, 0), \ \xi_5 = (2, 1, 5, 6).$
- (1) 证明 **ξ**₁, **ξ**₂ 线性无关;
- (2) 求向量组包含 ξ_1 , ξ_2 的极大线性无关组.
- (1)证: 因为 ξ_1 , ξ_2 的对应分量不成比例, 所以 ξ_1 , ξ_2 线性无关.

$$(2) A = \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ -1 & 3 & 0 & -1 & 1 \\ 2 & 1 & 7 & 2 & 5 \\ 4 & 2 & 14 & 0 & 6 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 3 & 3 & 0 & 3 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 2 & 2 & -4 & -2 \end{pmatrix} \xrightarrow{q_3 - 2r_3} \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -4 & -4 \end{pmatrix}$$

$$\xrightarrow{2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{4 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 & 3 & 1 & 2 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}} \xrightarrow{1 - r_3} \begin{pmatrix} 1 & 0 & 3 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

由上述行最简形矩阵可以得到包含 ξ_1 , ξ_2 的极大线性无关组是 ξ_1 , ξ_2 , ξ_4 .

17. 设 $A \in m \times n$ 矩阵, $B \in n \times m$ 矩阵, n < m, 证明齐次线性方程组 (AB)x = 0 有非零解.

证: $AB \stackrel{\cdot}{=} m \times m$ 的矩阵, 而

$$r(AB) \le \min\{r(A), r(B)\} \le n < m.$$

所以方程组 (AB)x = 0 有非零解.

18. 设 A 是 $s \times n$ 矩阵, B 是由 A 的前 m 行构成的 $m \times n$ 矩阵. 证明: 若 A 的行向量组的秩为 r, 则 $r(B) \leq r + m - s$.

证: 注意到 B (即 A 的前 m 个行向量) 的极大无关组与 A 的后 s-m 个行向量所构成的向量组中包含了 A 的行向量组的极大无关组,即 $r(B)+s-m\leq r(A)=r$,亦即

$$r(B) < r + m - s$$
.

求下列矩阵的秩,并指出该矩阵的一个最高阶非零子式

$$19. \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 2 & -1 \end{pmatrix} \xrightarrow{r_3 \leftrightarrow r_4} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & -1 & -2 & -3 \\ 0 & 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} \xrightarrow{r_3 + r_2} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

$$\xrightarrow{r_4 + r_3} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & -1 & -2 & -3 \\ 0 & 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

矩阵的秩为 3, 它的一个最高阶非零子式为 $\begin{pmatrix} 1 & 3 & 5 \\ 0 & -1 & -3 \\ 0 & 0 & 4 \end{pmatrix}$.

第三章 线性方程组

$$20. \begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 2 & -2 & 4 & -2 & 0 \\ 3 & 0 & 6 & -1 & 1 \\ 0 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \rightarrow r_2} \begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 3 & 0 & -4 & 1 \\ 0 & 0 & 0 & -4 & 0 \end{pmatrix}$$

$$\xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 3 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{r_4 \rightarrow r_2} \begin{pmatrix} 1 & -1 & 2 & 1 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

矩阵的秩为 3, 它的一个最高阶非零子式为 $\begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & -2 \\ 3 & 3 & -1 \end{pmatrix}$.

$$21. \begin{pmatrix} 3 & 2 & -1 & -3 & -2 \\ 2 & -1 & 3 & 1 & -3 \\ 4 & 5 & -5 & -6 & 1 \end{pmatrix} \xrightarrow{r_2-r_1} \begin{pmatrix} 1 & 3 & -4 & -4 & 1 \\ 2 & -1 & 3 & 1 & -3 \\ 4 & 5 & -5 & -6 & 1 \end{pmatrix} \xrightarrow{r_2-2r_1} \begin{pmatrix} 1 & 3 & -4 & -4 & 1 \\ 0 & -7 & 11 & 9 & -5 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{r_3-r_2} \begin{pmatrix} 1 & 3 & -4 & -4 & 1 \\ 0 & -7 & 11 & 9 & -5 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

矩阵的秩为 3, 它的一个最高阶非零子式为 $\begin{pmatrix} 3 & 2 & -3 \\ 2 & -1 & 1 \\ 4 & 5 & -6 \end{pmatrix}$.

$$22. \begin{pmatrix} 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix} \xrightarrow{r_3 + 2r_2} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix} \xrightarrow{r_3 - r_4} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

$$\xrightarrow{r_4 - 2r_3} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

矩阵的秩为 4, 它的一个最高阶非零子式为 $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix}.$

23. 设 A 是一个 $m \times n$ 矩阵, 证明: 存在非零的 $n \times s$ 矩阵 B 使得 AB = O 的充要条件是 r(A) < n. 证: (充分性) 设 r(A) < n, 则 Ax = 0 有非零解, 取 Ax = 0 的 s 个解 $\beta_1, \beta_2, \cdots \beta_s$, ,且其中至少有一个 $\beta_i \neq \mathbf{0}$. 作矩阵 $B = (\beta_1, \beta_2, \cdots \beta_s)$, 则 $B \neq O$ 且有

$$AB = A(\beta_1, \beta_2, \cdots, \beta_s) = (A\beta_1, A\beta_2, \cdots, A\beta_s) = (\mathbf{0}, \mathbf{0}, \cdots, \mathbf{0}) = O.$$

(必要性) 设存在非零的 $n \times s$ 矩阵 B 使得 AB = O, 将矩阵 B 和零矩阵按列分块为 $B = (\beta_1, \beta_2, \dots \beta_s), O =$

 $(0,0,\cdots,0)$, 则 AB=O 即为

$$A(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_s) = (\mathbf{0}, \mathbf{0}, \cdots, \mathbf{0}).$$

即矩阵 B 的列向量 β_j $(j=1,2,\cdots,s)$ 都是方程组 Ax=0 的解. 因为 B 为非零矩阵, 所以至少有一个 $\beta_i \neq 0$, 即 Ax=0 有非零解, 从而 r(A) < n.

28. 求下列齐次线性方程组的一个基础解系及一般解

解: (1) 对方程组的系数矩阵进行初等行变换, 化为行最简形:

$$\begin{pmatrix} 1 & -1 & 5 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & -1 & 8 & 1 \\ 1 & 3 & -9 & 7 \end{pmatrix} \xrightarrow{\frac{r-2-r_1-r_3-3r_1}{r_4-r_1}} \begin{pmatrix} 1 & -1 & 5 & -1 \\ 0 & 2 & -7 & 4 \\ 0 & 2 & -7 & 4 \\ 0 & 4 & -14 & 8 \end{pmatrix} \xrightarrow{\frac{r_3-r_2}{r_4-2r_2}} \begin{pmatrix} 1 & -1 & 5 & -1 \\ 0 & 2 & -7 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{r_2 \div 2}{r_4} \div 2} \begin{pmatrix} 1 & -1 & 5 & -1 \\ 0 & 1 & -\frac{7}{2} & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{r_1+r_2}{r_1+r_2}} \begin{pmatrix} 1 & 0 & \frac{3}{2} & 1 \\ 0 & 1 & -\frac{7}{2} & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

同解方程组为 $\begin{cases} x_1 = -\frac{3}{2}x_3 & -x_4 \\ x_2 = \frac{7}{2}x_3 & -2x_4 \end{cases}$,分别取 $\begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$ 为 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 代入同解方程组得到基础解

系为
$$\boldsymbol{\xi}_1 = \begin{pmatrix} -\frac{3}{2} \\ \frac{7}{2} \\ 1 \\ 0 \end{pmatrix}, \ \boldsymbol{\xi}_2 = \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}.$$

方程组的一般解为
$$\mathbf{x} = k_1 \boldsymbol{\xi}_1 + k_2 \boldsymbol{\xi}_2 = k_1 \begin{pmatrix} -\frac{3}{2} \\ \frac{7}{2} \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix} .(k_1, k_2)$$
为任意常数).

(2) 对方程组的系数矩阵进行初等行变换, 化为行最简形:

同解方程组为
$$\begin{cases} x_1 = \frac{19}{8}x_3 & +\frac{3}{8}x_4 & -\frac{1}{2}x_5 \\ x_2 = \frac{7}{8}x_3 & -\frac{25}{8}x_4 & +\frac{1}{2}x_5 \end{cases},$$
 分别取
$$\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
 为
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 和
$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$
 代入同解方

程组得到基础解系为
$$\boldsymbol{\xi}_1 = \begin{pmatrix} \frac{19}{8} \\ \frac{7}{8} \\ 1 \\ 0 \\ 0 \end{pmatrix}, \ \boldsymbol{\xi}_2 = \begin{pmatrix} \frac{3}{8} \\ -\frac{25}{8} \\ 0 \\ 1 \\ 0 \end{pmatrix}, \boldsymbol{\xi}_3 = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

方程组的一般解为
$$\mathbf{x} = k_1 \boldsymbol{\xi}_1 + k_2 \boldsymbol{\xi}_2 + k_3 \boldsymbol{\xi}_3 = k_1 \begin{pmatrix} \frac{19}{8} \\ \frac{7}{8} \\ 1 \\ 0 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} \frac{3}{8} \\ -\frac{25}{8} \\ 0 \\ 1 \\ 0 \end{pmatrix} + k_3 \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \\ 1 \end{pmatrix} . (k_1, k_2, k_3)$$
为任意常数).

29. 求下列非齐次线性方程组的一般解:

$$(1) \begin{cases} 2x_1 & +7x_2 & +3x_3 & +x_4 = 6 \\ 3x_1 & +5x_2 & +2x_3 & +2x_4 = 4 \\ 9x_1 & +4x_2 & +x_3 & +7x_4 = 2 \end{cases}$$

$$(2) \begin{cases} x_1 & +x_2 & +x_3 & +x_4 & +x_5 & = 7 \\ 3x_1 & +2x_2 & +x_3 & +x_4 & -3x_5 & = -2 \\ x_2 & +2x_3 & +2x_4 & +6x_5 & = 23 \\ 5x_1 & +4x_2 & +3x_3 & +3x_4 & -x_5 & = 12 \end{cases}$$

解: (1) 对方程组的增广矩阵进行初等行变换, 化为行最简形:

$$\begin{pmatrix} 2 & 7 & 3 & 1 & 6 \\ 3 & 5 & 2 & 2 & 4 \\ 9 & 4 & 1 & 7 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 7 & 3 & 1 & 6 \\ -1 & -9 & -4 & 0 & -8 \\ -5 & -45 & -20 & 0 & -40 \end{pmatrix} \xrightarrow{r_3 - 5r_2} \begin{pmatrix} 2 & 7 & 3 & 1 & 6 \\ 1 & 9 & 4 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2 - 2 - r_1} \begin{pmatrix} 0 & -11 & -5 & 1 & -10 \\ 1 & 9 & 4 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

同解方程组为
$$\begin{cases} x_1 = -9x_2 & -4x_3 & +8 \\ x_4 = & 11x_2 & +5x_3 & -10 \end{cases}$$
,取 $x_2 = x_3 = 0$,代入得方程组得一个解 $\boldsymbol{\xi}_0 = \begin{pmatrix} 8 & 0 \\ 0 & 0 \\ -10 \end{pmatrix}$.

在对应的齐次线性方程组 $\begin{cases} x_1 = -9x_2 & -4x_3 \\ x_4 = & 11x_2 & +5x_3 \end{cases}$ 中,分别取 $\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$ 为 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. 得到对应的齐

次线性方程组的基础解系为
$$\boldsymbol{\xi}_1 = \begin{pmatrix} -9 \\ 1 \\ 0 \\ 11 \end{pmatrix}$$
, $\boldsymbol{\xi}_2 = \begin{pmatrix} -4 \\ 0 \\ 1 \\ 5 \end{pmatrix}$.

于是方程组的一般解为
$$\mathbf{x} = k_1 \boldsymbol{\xi}_1 + k_2 \boldsymbol{\xi}_2 + \boldsymbol{\xi}_0 = k_1 \begin{pmatrix} -9 \\ 1 \\ 0 \\ 11 \end{pmatrix} + k_2 \begin{pmatrix} -4 \\ 0 \\ 1 \\ 5 \end{pmatrix} + \begin{pmatrix} 8 \\ 0 \\ 0 \\ -10 \end{pmatrix} .(k_1, k_2)$$
为任意常数).

(2) 对方程组的增广矩阵进行初等行变换, 化为行最简形:

同解方程组为 $\begin{cases} x_1 = x_3 + x_4 + 5x_5 - 16 \\ x_2 = -2x_3 - 2x_4 - 6x_5 + 23 \end{cases}$,取 $x_3 = x_4 = x_5 = 0$,代入得方程组得一个解 $\boldsymbol{\xi}_0 = (-16, 23, 0, 0, 0)^T$.

在对应的齐次线性方程组 $\begin{cases} x_1 = x_3 + x_4 + 5x_5 \\ x_2 = -2x_3 - 2x_4 - 6x_5 \end{cases}$,中,分别取 $(x_3, x_4, x_5)^T$ 为 $(1,0,0)^T$, $(0,1,0)^T$ 和 $(0,0,1)^T$ 得到对应的齐次线性方程组的基础解系为 $\boldsymbol{\xi}_1 = (1,-2,1,0,0)^T$, $\boldsymbol{\xi}_2 = (1,-2,0,1,0)$, $\boldsymbol{\xi}_3 = (5,-6,0,0,-1)^T$. 于是方程组的一般解为 $\boldsymbol{x} = k_1 \boldsymbol{\xi}_1 + k_2 \boldsymbol{\xi}_2 + k_3 \boldsymbol{\xi}_3 + \boldsymbol{\xi}_0 = k_1 (1,-2,1,0,0)^T + k_2 (1,-2,0,1,0) + k_3 (5,-6,0,0,-1)^T + (-16,23,0,0,0)^T (k_1,k_2,k_3)$ 为任意常数).

30. 讨论 p,q 取何值时, 下列线性方程组有解, 无解, 有解时求其解:

$$(1) \begin{cases} (p+3)x_1 & +x_2 & +2x_3 & = p \\ px_1 & +(p-1)x_2 & +x_3 & = 2p \\ 3(p+1)x_1 & +px_2 & +(p+3)x_3 & = 3 \end{cases}$$

$$(2) \begin{cases} x_1 & +x_2 & +x_3 & +x_4 & +x_5 & = 1 \\ 3x_1 & +2x_2 & +x_3 & +x_4 & -3x_5 & = p \\ x_2 & +2x_3 & +2x_4 & +6x_5 & = 3 \\ 5x_1 & +4x_2 & +3x_3 & +3x_4 & -x_5 & = q \end{cases}$$

(3)
$$\begin{cases} x_1 + x_2 + 2x_3 & -x_4 = 1 \\ x_1 - x_2 - 2x_3 & -7x_4 = 3 \\ x_2 + px_3 & +qx_4 = q - 3 \\ x_1 + x_2 + 2x_3 + (q - 2)x_4 = q + 3 \end{cases}$$

解

$$(1) \ D = \left| \begin{array}{cccc} p+3 & 1 & 2 \\ p & p-1 & 1 \\ 3(p+1) & p & p+3 \end{array} \right| \\ = (p-1)(p+3)^2 + 3(p+1) + 2p^2 - 6(p+1)(p-1) - p(p+3) - p(p+3) \\ \\ = p^2(p-1).$$

当 $p^2(p-1) \neq 0$, 即 $p \neq 0$ 且 $p \neq 1$ 时, 方程组有唯一解. 当 p = 0 时, 对增广矩阵作行初等变换:

$$(A,b) = \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 3 & 0 & 3 & 3 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 3 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 3 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}. \quad \text{此时方程组无解}.$$

当 n-1 时 对增广矩阵作行初等变换,

$$(A,b) = \begin{pmatrix} 4 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \\ 6 & 1 & 4 & 3 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 0 & 1 & 2 \\ 4 & 1 & 2 & 1 \\ 6 & 1 & 4 & 3 \end{pmatrix} \xrightarrow{r_2 - 4r_1} \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 7 \\ 0 & 1 & -2 & -9 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -2 & 7 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

此时方程组无解.

因为

$$D_{1} = \begin{vmatrix} p & 1 & 2 \\ 2p & p-1 & 1 \\ 3 & p & p+3 \end{vmatrix} = p(p-1)(p+3) + 3 + 4p^{2} - 6(p-1) - p^{2} - 2p(p+3)$$

$$= p^{3} + 3p^{2} - 15p + 9.$$

$$D_{2} = \begin{vmatrix} p+3 & p & 2 \\ p & 2p & 1 \\ 3(p+1) & 3 & p+3 \end{vmatrix} = 2p(p+3)(p+3) + p(3p+3) + 6p - 4p(3p+3) - 3(p+3) - p^{2}(p+3)$$

$$= p^{3} + 12p - 9..$$

$$D_{3} = \begin{vmatrix} p+3 & 1 & p \\ p & p-1 & 2p \\ 3(p+1) & p & 3 \end{vmatrix} = 3(p+3)(p-1) + p^{3} + 6p(p+1) - 3p(p+1)(p-1) - 2p^{2}(p+3) - 3p$$

所以当 $p \neq 0$ 且 $p \neq 1$ 时, 方程组的解为:

$$x_1 = \frac{p^3 + 3p^2 - 15p + 9}{p^2(p-1)}; \ x_2 = \frac{p^3 + 12p - 9}{p^2(p-1)}; \ x_3 = \frac{-4p^3 + 3p^2 + 12p - 9}{p^2(p-1)}.$$

当 p=0 或 p=1 时, 方程组无解.

(2) 对方程组的增广矩阵作行初等变换:

$$(A,b) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 & -3 & p \\ 0 & 1 & 2 & 2 & 6 & 3 \\ 5 & 4 & 3 & 3 & -1 & q \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & -2 & -6 & p - 3 \\ 0 & 1 & 2 & 2 & 6 & 3 \\ 0 & -1 & -2 & -2 & -6 & p - 3 \\ 0 & -1 & -2 & -2 & -6 & q - 5 \end{pmatrix} \xrightarrow{r_3 + r_2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 6 & 3 \\ 0 & -1 & -2 & -2 & -6 & p - 3 \\ 0 & -1 & -2 & -2 & -6 & q - 5 \end{pmatrix} \xrightarrow{r_3 + r_2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 & 6 & 3 \\ 0 & 0 & 0 & 0 & 0 & p \\ 0 & 0 & 0 & 0 & 0 & q - 2 \end{pmatrix}$$

由上述行阶梯形矩阵可知当 $p \neq 0$ 或 $q \neq 2$ 时, 方程组无解; 当 p = 0 且 q = 2 时, 方程组有无穷多解, 此时对上述矩阵继续作初等行变换

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 6 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{r_1-r_2}
\begin{pmatrix}
1 & 0 & -1 & -1 & -5 & -2 \\
0 & 1 & 2 & 2 & 6 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

方程组的同解方程组为

$$\begin{cases} x_1 = x_3 + x_4 + 5x_5 - 2 \\ x_2 = -2x_3 - 2x_4 - 6x_5 + 3 \end{cases} \Leftrightarrow \begin{cases} x_3 = c_1 \\ x_4 = c_2 \\ x_5 = c_3 \end{cases}, 得方程组的通解为: \begin{cases} x_1 = c_1 + c_2 + 5c_3 - 2 \\ x_2 = -2c_1 - 2c_2 - 6c_3 + 3 \\ x_3 = c_1 \\ x_4 = c_2 \\ x_5 = c_3 \end{cases}$$

(3) 对方程组的增广矩阵作行初等变换:

$$(A,b) = \begin{pmatrix} 1 & 1 & 2 & -1 & 1 \\ 1 & -1 & -2 & -7 & 3 \\ 0 & 1 & p & q & q - 3 \\ 1 & 1 & 2 & q - 2 & q + 3 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & 2 & -1 & 1 \\ 0 & -2 & -4 & -6 & 2 \\ 0 & 1 & p & q & q - 3 \\ 0 & 0 & 0 & q - 1 & q + 2 \end{pmatrix}$$

$$\xrightarrow{r_2 \div (-2)} \begin{pmatrix} 1 & 1 & 2 & -1 & 1 \\ 0 & 1 & 2 & 3 & -1 \\ 0 & 1 & p & q & q - 3 \\ 0 & 0 & 0 & q - 1 & q + 2 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 1 & 2 & -1 & 1 \\ 0 & 1 & 2 & 3 & -1 \\ 0 & 0 & p - 2 & q - 3 & q - 2 \\ 0 & 0 & 0 & q - 1 & q + 2 \end{pmatrix}$$

$$\xrightarrow{r_3 - r_4} \begin{pmatrix} 1 & 1 & 2 & -1 & 1 \\ 0 & 1 & 2 & 3 & -1 \\ 0 & 0 & p - 2 & -2 & -4 \\ 0 & 0 & 0 & q - 1 & q + 2 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & 0 & -4 & 2 \\ 0 & 1 & 2 & 3 & -1 \\ 0 & 0 & p - 2 & -2 & -4 \\ 0 & 0 & 0 & q - 1 & q + 2 \end{pmatrix}$$

- (1) 当 q-1=0, 即 q=1 时, 方程组无解.
- (2) 当 $q \neq 1$ 且 $p \neq 2$ 时, 方程组有唯一解: 此时

$$\begin{pmatrix} 1 & 0 & 0 & -4 & 2 \\ 0 & 1 & 2 & 3 & -1 \\ 0 & 0 & p-2 & -2 & -4 \\ 0 & 0 & 0 & q-1 & q+2 \end{pmatrix} \xrightarrow[r_4 \to (q-1)]{r_3 \div (p-2)} \begin{pmatrix} 1 & 0 & 0 & -4 & 2 \\ 0 & 1 & 2 & 3 & -1 \\ 0 & 0 & 1 & \frac{2}{2-p} & \frac{4}{2-p} \\ 0 & 0 & 0 & 1 & \frac{q+2}{q-1} \end{pmatrix} \xrightarrow[r_3 \to (q-1)]{r_3 \div (p-2)} \begin{pmatrix} 1 & 0 & 0 & -4 & 2 \\ 0 & 1 & 2 & 3 & -1 \\ 0 & 0 & 1 & \frac{2}{2-p} & \frac{4}{2-p} \\ 0 & 0 & 0 & 1 & \frac{q+2}{q-1} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \frac{6q+6}{q-1} \\ 0 & 1 & 0 & 0 & \frac{2(q-4)}{(2-p)(q-1)} \\ 0 & 1 & 0 & 0 & \frac{12q-4pq-5p-6}{(1-q)(2-p)} \\ 0 & 0 & 1 & 0 & \frac{2(q-4)}{(2-p)(q-1)} \\ 0 & 0 & 0 & 1 & \frac{q+2}{q-1} \end{pmatrix}$$

由上述行最简形矩阵可知此时方程组的解为 $\begin{cases} x_1 = \frac{0q+0}{q-1} \\ x_2 = \frac{12q-4pq-5p-6}{(1-q)(2-p)} \\ x_3 = \frac{2(q-4)}{(2-p)(q-1)} \\ x_4 = \frac{q+2}{q-1} \end{cases}$

(3) 当 p = 2 且 $\frac{-2}{q-1} = \frac{-4}{q+2}$ 即 q = 4 时, 方程组有无穷多解, 此时

$$\begin{pmatrix}
1 & 0 & 0 & -4 & 2 \\
0 & 1 & 2 & 3 & -1 \\
0 & 0 & 0 & -2 & -4 \\
0 & 0 & 0 & 3 & 6
\end{pmatrix}
\xrightarrow{r_3 \div (-2)}
\begin{pmatrix}
1 & 0 & 0 & -4 & 2 \\
0 & 1 & 2 & 3 & -1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3 & 6
\end{pmatrix}$$

$$\xrightarrow{r_4 - 3r_3}
\begin{pmatrix}
1 & 0 & 0 & -4 & 2 \\
0 & 1 & 2 & 3 & -1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{r_1 + 4r_3}
\begin{pmatrix}
1 & 0 & 0 & 0 & 10 \\
0 & 1 & 2 & 0 & -7 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

同解方程组为
$$\begin{cases} x_1 = 10 \\ x_2 = -2x_3 - 7 \end{cases} \Leftrightarrow x_3 = c$$
 得方程组得通解为
$$\begin{cases} x_1 = 10 \\ x_2 = -2c - 7 \\ x_3 = c \\ x_4 = 2 \end{cases}$$

(4) 当 p = 2 且 $\frac{-2}{q-1} \neq \frac{-4}{q+2}$ 即 $q \neq 4$ 时, 方程组无解.

31. 设 A 为 $m \times n$ 矩阵, 证明: 若任一个 n 维向量都是 Ax = 0 的解, 那么 A = O.

证: 由题意可知方程组 Ax = 0 的基础解系中所含向量的个数为 n, 由

$$n = n - r(A)$$

得到

$$r(A) = 0$$

故 A = O.

另证: 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为 n 个线性无关的 n 维列向量, 矩阵 $B = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 由题设可得

$$A\boldsymbol{\alpha}_i = \mathbf{0}, \quad i = 1, 2, \cdots, n$$

于是得到

$$AB = O$$

又因为 B 可逆, 所以

$$A = O$$

34. 设 A^* 是 n 阶矩阵 A 的伴随矩阵, 证明:

$$(1) \ r(A^*) = \begin{cases} n, & \stackrel{\square}{\rightrightarrows} r(A) = n, \\ 1, & \stackrel{\square}{\rightrightarrows} r(A) = n - 1, \\ 0, & \stackrel{\square}{\rightrightarrows} r(A) < n - 1. \end{cases}$$

$$(2)|A^*| = |A|^{n-1}.$$

证: (1) 当 r(A) = n 时, 有 $|A| \neq 0$, 且 $|A^*| = |A|^{n-1}$, 所以 $|A^*| \neq 0$, 从而 $r(A^*) = n$.

当 r(A) = n - 1 时,有 |A| = 0,且 A 中至少有一个 n - 1 阶非零子式,于是 A^* 中至少有一个非零元,从而 $r(A^*) \ge 1$.

又因为 $AA^* = A^*A = |A|I = O$,所以 $r(A) + r(A^*) < n$ 即

$$r(A^*) \le n - r(A) = n - (n-1) = 1.$$

综合可得 $r(A^*) = 1$.

当 r(A) < n-1 时, A 中所有 n-1 阶子式均为 0 , 于是 $A^* = O$,故 $r(A^*) = 0$.

(2) 因为 $AA^* = A^*A = |A|I$, 所以

$$|A||A^*| = |A|^n.$$

于是当 $|A| \neq 0$ 时, 有

$$|A^*| = |A|^{n-1}.$$

当 |A| = 0 时,有 r(A) < n,由 (1)可知此时 $r(A^*) < n$,故

$$|A^*| = 0 = 0^{n-1} = |A|^{n-1}.$$

36. 设 $A \in n$ 阶矩阵. 证明: 非齐次线性方程组 Ax = b 对任何 b 都有解的充要条件是 $|A| \neq 0$.

证: 充分性:

当 $|A| \neq 0$ 时, A 可逆. 于是对任意 b, 由 Ax = b 可得:

$$x = A^{-1}b$$
.

充分性得证.

必要性:

取 n 个线性无关的 n 维向量 $\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n$, 设 $A\boldsymbol{x} = \boldsymbol{b}_i$ 的解为 \boldsymbol{x}_i , $(i = 1, 2, \dots, n)$. 那么

$$A(\boldsymbol{x}_1,\boldsymbol{x}_2,\cdots,\boldsymbol{x}_n)=(\boldsymbol{b}_1,\boldsymbol{b}_2,\cdots,\boldsymbol{b}_n).$$

两边取行列式并注意到 $|\boldsymbol{b}_1, \boldsymbol{b}_2, \cdots, \boldsymbol{b}_n| \neq 0$, 于是

$$|A| \neq 0$$
.

46. 设 A 为 n 阶矩阵,若存在正整数 k ($k \ge 2$) 使得 $A^k \alpha = \mathbf{0}$, 但 $A^{k-1} \alpha \ne \mathbf{0}$, 其中 α 为 n 为非零列向量,证 明 α , $A\alpha$, \cdots , $A^{k-1}\alpha$ 线性无关.

两边同时左乘 A^{k-1} 得:

$$l_1 A^{k-1} \boldsymbol{\alpha} + l_2 A^k \boldsymbol{\alpha} + \dots + l_k A^{2k-2} \boldsymbol{\alpha} = \mathbf{0}$$
 (1')

因为 $A^k \alpha = \mathbf{0}$, 所以

$$A^k \boldsymbol{\alpha} = A^{k+1} \boldsymbol{\alpha} = \dots = A^{2k-2} \boldsymbol{\alpha} = \mathbf{0}$$

代入 (1') 式得:

$$l_1 A^{k-1} \alpha = \mathbf{0}$$

因为 $A^{k-1}\alpha \neq \mathbf{0}$, 所以 $l_1 = 0$ 将 $l_1 = 0$ 代入 (1) 式得:

$$l_2 A \alpha + \dots + l_k A^{k-1} \alpha = \mathbf{0} \tag{2}$$

两边同时左乘 A^{k-2} 得:

$$l_2 A^{k-1} \alpha + l_3 A^k \alpha + \dots + l_k A^{2k-3} \alpha = \mathbf{0}$$

注意到

$$A^k \alpha = A^{k+1} \alpha = \cdots = A^{2k-2} \alpha = 0$$
. $A^{k-1} \alpha \neq 0$

于是得到 $l_2=0$, 类似可得

$$l_3 = l_4 = \dots = l_k = 0.$$

因此结论成立.

50. 设 n 阶矩阵 A 的每行元素之和均为 0 , 又 r(A) = n - 1 , 求齐次线性方程组 Ax = 0 的通解.

解: 由题设可知 Ax=0 的基础解系中只有一个解向量,且 $\xi=(1,1,\cdots,1)^T$ 是方程组的一个解, 因此所求通解为

$$\mathbf{x} = k(1, 1, \dots, 1)^T (k$$
为任意常数).

51. 已知下列线性方程组 I, II 为同解线性方程组, 求参数 m, n, t 之值.

$$I: \begin{cases} x_1 + x_2 & -2x_4 = -6, \\ 4x_1 - x_2 - x_3 - x_4 = 1, \\ 3x_1 - x_2 - x_3 & = 3; \end{cases}$$

$$II: \begin{cases} x_1 + mx_2 - x_3 - x_4 = -5, \\ nx_2 - x_3 - 2x_4 = -11, \\ x_3 - 2x_4 = -t + 1. \end{cases}$$

解: 对方程组 I 的增广矩阵做初等行变换:

$$(A,b) = \begin{pmatrix} 1 & 1 & 0 & -2 & -6 \\ 4 & -1 & -1 & -1 & 1 \\ 3 & -1 & -1 & 0 & 3 \end{pmatrix} \xrightarrow{r_3 - 4 \times r_1} \begin{pmatrix} 1 & 1 & 0 & -2 & -6 \\ 0 & -5 & -1 & 7 & 25 \\ 0 & -4 & -1 & 6 & 21 \end{pmatrix}$$

$$\xrightarrow{r_2 - r_3} \begin{pmatrix} 1 & 1 & 0 & -2 & -6 \\ 0 & -1 & 0 & 1 & 4 \\ 0 & -4 & -1 & 6 & 21 \end{pmatrix} \xrightarrow{r_3 - 4 \times r_2} \begin{pmatrix} 1 & 1 & 0 & -2 & -6 \\ 0 & -1 & 0 & 1 & 4 \\ 0 & 0 & -1 & 2 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & -2 & -6 \\ 0 & -1 & 0 & 1 & 4 \\ 0 & 0 & -1 & 2 & 5 \end{pmatrix} \xrightarrow{r_1 + r_2} \begin{pmatrix} 1 & 0 & 0 & -1 & -2 \\ 0 & -1 & 0 & 1 & 4 \\ 0 & 0 & -1 & 2 & 5 \end{pmatrix}$$

$$\xrightarrow{r_i \times (-1)}_{i=2,3} \begin{pmatrix} 1 & 0 & 0 & -1 & -2 \\ 0 & 1 & 0 & -1 & -4 \\ 0 & 0 & 1 & -2 & -5 \end{pmatrix}$$

由上述矩阵可以得到方程组 I 的特解为:

$$\boldsymbol{\xi}_0 = (-2, -4, -5, 0)^T$$

由于两方程组同解, 所以方程组 I 的解也是方程组 II 的解, 将 ξ_0 代入方程组 II 得:

$$\begin{cases}
-2 - 4m + 5 &= -5 \\
-4n + 5 &= -11 \\
-5 &= -t + 1
\end{cases} \Rightarrow \begin{cases}
m &= 2 \\
n &= 4 \\
t &= 6
\end{cases}$$

52. 设 $\alpha = (1, 2, 1)^T$, $\beta = (1, \frac{1}{2}, 0)^T$, $\gamma = (0, 0, 8)^T$, $A = \alpha \beta^T$, $B = \beta^T \alpha$, 求解方程 $2B^2 A^2 x = A^4 x + B^4 x + \gamma$. 解: 首先可计算出:

$$B = \boldsymbol{\beta}^T \boldsymbol{\alpha} = (1, \frac{1}{2}, 0) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2$$

$$A = \boldsymbol{\alpha} \boldsymbol{\beta}^T = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} (1, \frac{1}{2}, 0) = \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 2 & 1 & 0 \\ 1 & \frac{1}{2} & 0 \end{pmatrix}$$

$$A^2 = (\boldsymbol{\alpha} \boldsymbol{\beta}^T) (\boldsymbol{\alpha} \boldsymbol{\beta}^T) = \boldsymbol{\alpha} (\boldsymbol{\beta}^T \boldsymbol{\alpha}) \boldsymbol{\beta}^T = 2A, \quad A^4 = 3A$$

于是方程组为: $16Ax = 8Ax + 16x = \gamma$ 即 $(8A - 16I)x = \gamma$ 对方程组的增广矩阵作初等行变换:

$$\begin{pmatrix}
-8 & 4 & 0 & 0 \\
16 & -8 & 0 & 0 \\
8 & 4 & -16 & 8
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & \frac{1}{2} \\
0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

取 $x_3 = 0$ 得非齐次方程组的特解为: $\xi_0 = (\frac{1}{2}, 1, 0)^T$. 取 $x_3 = 1$ 得齐次方程组的基础解系为: $\xi_1 = (1, 2, 1)^T$. 于是方程组的通解为:

$$\boldsymbol{\xi} = k(1,2,1)^T + (\frac{1}{2},1,0) \ (k 为任意实数).$$

53. 设 n 阶矩阵 $A=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n)$ 的行列式 $|A|\neq 0$, A 的前 n-1 列构成的 $n\times(n-1)$ 矩阵记为 $A_1=(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_{n-1})$, 问方程组 $A_1x=\boldsymbol{\alpha}_n$ 是否有解?

解: 由题设可知

$$r(A_1) = n - 1 \neq n = r(A, \boldsymbol{\alpha}_n)$$

所以无解.

54. 设 α, β 均为非零的 n 维列向量, $A = \alpha \beta^T$, 证明: A 中任意两行或两列成比例.

分析: 即证 A 中任意两行或两列线性相关,亦即 r(A) = 1.

证: 一方面

$$A = \alpha \beta^T \Rightarrow r(A) \leq \min\{r(\alpha), r(\beta^T)\} = 1.$$

另一方面, 因为 α , β 均为非零的 n 维列向量, 所以 A 为非零矩阵, 于是

综合可得 r(A) = 1. 从而结论成立. 56. 设 A, B 皆为 n 阶矩阵,证明:

$$(1) \left| \begin{array}{cc} I & B \\ A & I \end{array} \right| = |I - AB|; (2)|I - BA| = |I - AB|;$$

$$(3)det(\lambda I - AB) = det(\lambda I - BA)(\lambda$$
为任意常数).

$$\mathbf{\widetilde{m}}: \quad (1) \quad \left| \begin{array}{cc} I & B \\ A & I \end{array} \right| \stackrel{r_2 - A \times r_1}{=} \left| \begin{array}{cc} I & B \\ O & I - AB \end{array} \right| = |I||I - AB| = |I - AB|.$$

$$(2) |I - AB| = \begin{vmatrix} I & B \\ A & I \end{vmatrix} = \underbrace{\begin{vmatrix} c_{1} - c_{2} \times A \\ O & I \end{vmatrix}} = |I - BA||I| = |I - BA|.$$

(3) 因为
$$\begin{vmatrix} \lambda I & B \\ A & I \end{vmatrix} = \frac{c_1 - c_2 \times A}{C} \begin{vmatrix} \lambda I - BA & B \\ O & I \end{vmatrix} = det(\lambda I - BA);$$
 $\begin{vmatrix} \lambda I & B \\ A & I \end{vmatrix} = \frac{r_1 - B \times r_2}{C} \begin{vmatrix} \lambda I - AB & O \\ A & I \end{vmatrix} = det(\lambda I - AB)$

所以 $det(\lambda I - AB) = det(\lambda I - BA).$

57. 证明: 若 A 是 $m \times n$ 矩阵, r(A) = r, 则存在 $m \times r$ 矩阵 B , $r \times n$ 矩阵 C, 且 r(B) = r(C) = r, 使得 A = BC.

证: 因为 r(A) = r, 所以存在 m 阶可逆矩阵 P 和 n 阶可逆矩阵 Q 使得

$$PAQ = \left(\begin{array}{cc} I_r & O_{r \times (n-r)} \\ O_{(m-r) \times r} & O_{(m-r) \times (n-r)} \end{array} \right) = U$$

第三章 线性方程组

于是 $A=P^{-1}UQ^{-1}$. 将矩阵 P^{-1} 和 Q^{-1} 分块为 $P^{-1}=(B_{m\times r},M_{m\times (m-r)}),\ Q^{-1}=\begin{pmatrix} C_{r\times n}\\N_{(n-r)\times n}\end{pmatrix}$. 因为 B 中的 r 列线性无关, C 中的 r 行线性无关, 所以 r(B)=r(C)=r,且

59. 证明: $\alpha_1, \alpha_2, \dots, \alpha_r$ (其中 $\alpha_1 \neq \mathbf{0}$) 线性相关的充要条件是存在一个 α_i ($1 < i \le r$) 使得 α_i 可以由 $\alpha_1, \alpha_2, \dots, \alpha_{i-1}$ 线性表示,且表示法唯一.

证: 充分性 显然. 必要性: 考虑下列所有的线性组合

因为 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性相关, 所以存在一组不全为 0 的数使得某一个式子成立. 设 k_{ii} 是所有系数中第一个不为 0 的数, 因为 $\alpha_1 \neq \mathbf{0}$, 所以 $1 < i \le r$. 因为 $k_{ii} \neq 0$, 所以 α_i 可以由 $\alpha_1, \alpha_2, \dots, \alpha_{i-1}$ 线性表示.

又因为系数还满足满足

$$k_{11} = k_{21} = k_{22} = \dots = k_{i,i-1} = 0$$

即 $\alpha_1, \alpha_2, \cdots, \alpha_{i-1}$ 线性无关, 所以表示法唯一.

60. 证明: $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关的充要条件是 $\alpha_i \neq \sum_{j=1}^{i-1} k_j \alpha_j$ $(i = 2, 3, \cdots, s)$.

证: (必要性:) 用反证法,若存在某一个 i_0 ,使得 $\alpha_{i_0} \neq \sum_{j=1}^{i_0-1} k_j \alpha_j$,则一定有 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关,矛盾!

(充分性:) 用反证法, 假设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关, 由练习 59 可知存在一个 α_{i_0} ($1 < i_0 \le r$) 使得 α_{i_0} 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_{i_0-1}$ 线性表示, 矛盾!

- 61. 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性无关, 如果在向量组的前面加入一个向量 β , 证明: 在向量组 $\beta, \alpha_1, \alpha_2, \dots, \alpha_r$ 中至多有一个向量 α_i $(1 \le i \le r)$ 可经其前面的 i 个向量 $\beta, \alpha_1, \alpha_2, \dots, \alpha_{i-1}$ 线性表示. 并在 \mathbb{R}^3 中做几何解释.
 - 证: (1) 如果 β , α_1 , α_2 , \cdots , α_r 线性无关, 那么任何 α_i ($1 \le i \le r$) 都不能经其前面的 i 个向量线性表示;
- (2) 如果 β , α_1 , α_2 , · · · · , α_r 线性相关,但 $\beta=0$,那么同样任何 α_i ($1\leq i\leq r$) 都不能经其前面的 i 个向量线性表示:
- (3) 如果 β , α_1 , α_2 , \cdots , α_r 线性相关,且 $\beta \neq 0$. 从前往后考察,如果 β , α_1 , α_2 , \cdots , α_{i-1} 线性无关,而 β , α_1 , α_2 , \cdots , α_i 线性相关,此时 α_i 可由 β , α_1 , α_2 , \cdots , α_{i-1} 线性表示.下证至多有一个 α_i ($1 \leq i \leq r$) 可由其前面的 i 个向量线性表示,用反证法,设 α_i 与 α_i (j > i) 均可由前面的 i 个与 j 个向量线性表示,即

$$\alpha_i = k_0 \beta + k_1 \alpha_1 + \cdots + k_{i-1} \alpha_{i-1}$$

$$\alpha_j = l_0 \beta + l_1 \alpha_1 + \dots + l_{i-1} \alpha_{i-1} + l_i \alpha_i + \dots + l_{j-1} \alpha_{j-1}$$

其中 $k_0 \neq 0$, $l_0 \neq 0$, 由上面的两个式子得到:

$$\beta = -\frac{k_1}{k_0}\boldsymbol{\alpha}_1 - \dots - \frac{k_{i-1}}{k_0}\boldsymbol{\alpha}_{i-1} + \frac{1}{k_0}\boldsymbol{\alpha}_i$$
$$\beta = -\frac{l_1}{l_0}\boldsymbol{\alpha}_1 - \dots - \frac{l_{i-1}}{l_0}\boldsymbol{\alpha}_{i-1} - \frac{l_i}{l_0}\boldsymbol{\alpha}_i - \dots - \frac{l_{j-1}}{l_0}\boldsymbol{\alpha}_{j-1} + \frac{1}{l_0}\boldsymbol{\alpha}_j$$

两式相减得到:

$$(\frac{l_1}{l_0} - \frac{k_1}{k_0})\boldsymbol{\alpha}_1 + \dots + (\frac{l_{i-1}}{l_0} - \frac{k_{i-1}}{k_0})\boldsymbol{\alpha}_{i-1} + (\frac{l_i}{l_0} + \frac{1}{k_0})\boldsymbol{\alpha}_i + \frac{l_{i+1}}{l_0}\boldsymbol{\alpha}_{i+1} + \dots + \frac{l_{j-1}}{l_0}\boldsymbol{\alpha}_{j-1} - \frac{1}{l_0}\boldsymbol{\alpha}_j = \mathbf{0}$$

因为 $\alpha_1, \alpha_2, \dots, \alpha_j$ 线性无关,所以上面 j = i,且 $k_0 = l_0$, $k_1 = l_1, \dots k_{i-1} = l_{i-1}$. 即至多只有一个 α_i 可由其前面的 i 个向量线性表示.

几何解释: 设 $\alpha_1 = (1,0,0), \alpha_2 = (0,1,0), \alpha_3 = (0,0,1),$

当 $\boldsymbol{\beta} = (a, b, 0)$ 时, $\boldsymbol{\beta}, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 共面,此时 $\boldsymbol{\alpha}_1$ 不能由 $\boldsymbol{\beta}$ 表示, $\boldsymbol{\alpha}_2$ 可由 $\boldsymbol{\beta}, \boldsymbol{\alpha}_1$ 表示: $\boldsymbol{\alpha}_2 = \frac{1}{b} \boldsymbol{\beta} - \frac{a}{b} \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3$ 不能由 $\boldsymbol{\beta}, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 表示.

当 $\boldsymbol{\beta} = (0, b, c)$ 时, $\boldsymbol{\beta}, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 共面,此时 $\boldsymbol{\alpha}_1$ 不能由 $\boldsymbol{\beta}$ 表示, $\boldsymbol{\alpha}_2$ 也不能由 $\boldsymbol{\beta}, \boldsymbol{\alpha}_1$ 表示, $\boldsymbol{\alpha}_3$ 能由 $\boldsymbol{\beta}, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 表示: $\boldsymbol{\alpha}_3 = \frac{1}{c}\boldsymbol{\beta} + 0\boldsymbol{\alpha}_1 - \frac{b}{c}\boldsymbol{\alpha}_2$.

当 $\boldsymbol{\beta} = (a,0,c)$ 时, $\boldsymbol{\beta}, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_3$ 共面,此时 $\boldsymbol{\alpha}_1$ 不能由 $\boldsymbol{\beta}$ 表示, $\boldsymbol{\alpha}_2$ 也不能由 $\boldsymbol{\beta}, \boldsymbol{\alpha}_1$ 表示, $\boldsymbol{\alpha}_3$ 能由 $\boldsymbol{\beta}, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 表示: $\boldsymbol{\alpha}_3 = \frac{1}{c}\boldsymbol{\beta} - \frac{a}{c}\boldsymbol{\alpha}_1 + 0\boldsymbol{\alpha}_2$.

当 $\boldsymbol{\beta}=(a,b,c)$ 时, $\boldsymbol{\beta},\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3$,任意三个不共面,此时 $\boldsymbol{\alpha}_1$ 不能由 $\boldsymbol{\beta}$ 表示, $\boldsymbol{\alpha}_2$ 也不能由 $\boldsymbol{\beta},\ \boldsymbol{\alpha}_1$ 表示, $\boldsymbol{\alpha}_3$ 能由 $\boldsymbol{\beta},\ \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2$ 表示: $\boldsymbol{\alpha}_3=\frac{1}{c}\boldsymbol{\beta}-\frac{a}{c}\boldsymbol{\alpha}_1-\frac{b}{c}\boldsymbol{\alpha}_2$,.

62. 证明: 在 n 维向量空间 \mathbf{R}^n 中, 若向量 α 可经向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示,则表示法唯一的充要条件 是向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关.

证: 充分性 同教材 116 页定理 3.3 中表示法唯一的证明.

下面证明必要性.用反证法: 假设 $oldsymbol{lpha}_1,oldsymbol{lpha}_2,\cdots,oldsymbol{lpha}_s$ 线性相关, 即存在不全为 0 的数 k_1,k_2,\cdots,k_s 使得

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \dots + k_s\boldsymbol{\alpha}_s = \mathbf{0}$$

由条件又有

$$\alpha = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_s \alpha_s$$

于是得到

$$\alpha = \alpha + 0 = (k_1 + \lambda_1)\alpha_1 + (k_2 + \lambda_2)\alpha_2 + \dots + (k_s + \lambda_s)\alpha_s$$

即向量 α 由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示的方法有两种,矛盾!

63. 设
$$A$$
 是 n 阶矩阵, $r(A)=1$, 证明: (1) $A=\begin{pmatrix} a_1\\a_2\\\vdots\\a_n \end{pmatrix}(b_1,b_2,\cdots,b_n); \quad (2)A^2=kA.$

证: 因为 r(A) = 1, 所以 A 中任意两行成比例, 可设

$$A = \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} (b_1, b_2, \cdots, b_n).$$

由 (1) 可知:

$$A^{2} = \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} (b_{1}, b_{2}, \dots, b_{n}) \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} (b_{1}, b_{2}, \dots, b_{n})$$

$$= \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \begin{bmatrix} a_{1} \\ a_{2}, \dots, a_{n} \\ a_{n} \end{bmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} (b_{1}, b_{2}, \dots, b_{n})$$

$$= (a_{1}b_{1} + a_{2}b_{2} + \dots + a_{n}b_{n})A = kA.$$

66. 设 $m \times n$ 矩阵 A 的 m 个行向量是齐次线性方程组 Cx = 0 的一个基础解系,又 B 是一个 m 阶可逆矩阵. 证明: BA 的行向量组也是 Cx = 0 的一个基础解系.

证: 由题设可得:

$$CA^T = O \Rightarrow CA^TB^T = O \Rightarrow C(BA)^T = O$$

即 $(BA)^T$ 的 m 个列向量都是 Cx = 0 的解, 亦即 BA 的 m 个行向量都是 Cx = 0 的解. 又因为矩阵 B 可逆, 所以

$$r(BA) = r(A) = m = BA$$
的行数 = 基础解系中解向量的个数

故结论成立.

67. 证明: 若 A 是 n 阶矩阵 (n > 1) , 且 |A| = 0, 则 |A| 中任意两行 (列) 对应元素的代数余子式成比例. 证:

$$|A| = 0 \Rightarrow r(A) < n \Rightarrow r(A^*) = 0$$
 $\overrightarrow{\mathbb{Q}}$ 1.

若 $r(A^*) = 0 \Rightarrow A^* = 0$, 结论成立.

若 $r(A^*) = 1 \Rightarrow A^*$ 中任意两行(列)线性相关,即成比例.结论成立.

68. 设 $A \in (n-1) \times n$ 矩阵, $|A_i|$ 表示 A 中划去第 j 列所构成的行列式. 证明:

- (1) $(-|A_1|, |A_2|, \cdots, (-1)^n |A_n|)^T \neq Ax = 0$ 的一个解;
- (2) 若 $|A_i|$ $(j = 1, 2, \dots, n)$ 不全为零,则 (1) 中的解是 Ax = 0 的一个基础解系.

证: (1) 在矩阵 $A=(a_{ij})_{(n-1)\times n}$ 的前面加上一行 $a_{11},a_{12},\cdots,a_{1n}$,得到 n 阶矩阵 $B=(b_{ij})$. 显然有 |B|=0. 下面考虑:

$$b_{i1}M_{11} - b_{i2}M_{12} + b_{i3}M_{13} - \dots + (-1)^{1+n}b_{in}M_{1n} = \begin{cases} |B| = 0, & \text{\pm i} i = 1 \text{ pt}; \\ 0, & \text{\pm i} i > 1 \text{ pt} \end{cases}$$

注意到: $b_{ij} = a_{i-1,j}$ $(i = 2, 3, \dots, n, j = 1, 2, \dots, n)$,且 $M_{1j} = |A_j|$,所以当 $1 \le i \le n$ 时,总有 $b_{i1}|A_1| - b_{i2}|A_2| + b_13|A_3| - \dots + (-1)^{1+n}b_{in}|A_n| = 0$

两边同时乘以 (-1) 得:

$$b_{i1}(-|A_1|) + b_{i2}|A_2| + b_{i3}(-|A_3|) + \dots + b_{in}((-1)^n|A_n|) = 0 (i = 1, 2, \dots, n)$$

故结论 (1) 成立.

(2) 由
$$|A_j|$$
 $(j = 1, 2, \dots, n)$ 不全为零 $\Rightarrow r(A) \ge n - 1$, 另一方面又显然有 $r(A) \le n - 1$, 所以
$$r(A) = n - 1.$$

于是方程组的基础解系中解向量的个数为

$$n - r(A) = n - (n - 1) = 1.$$

又因为(1)中的解为非零解,从而线性无关,所以(1)中的解是一个基础解系.

69. 若 A 为一个 n 阶矩阵, 且 $A^2 = A$, 证明

$$r(A) + r(A - I) = n.$$

证: 一方面 $r(A) + r(A - I) = r(A) + r(I - A) \ge r(A + I - A) = r(I) = n$, 另一方面 $A^2 = A \Rightarrow A^2 - A = O \Rightarrow A(A - I) = O \Rightarrow r(A) + r(A - I) \le n$. 综合可得 r(A) + r(A - I) = n.

70. 若 A 为一个 n 阶矩阵, 且 $A^2 = I$, 证明

$$r(A+I) + r(A-I) = n.$$

证: 一方面 $r(A+I) + r(A-I) = r(A+I) + r(I-A) \ge r(A+I+I-A) = r(2I) = n$, 另一方面 $A^2 = I \Rightarrow A^2 - A = O \Rightarrow (A+I)(A-I) = O \Rightarrow r(A+I) + r(A-I) \le n$. 综合可得 r(A+I) + r(A-I) = n.

71. 设 A, B 皆为 n 阶方阵, 证明

$$r(AB) \ge r(A) + r(B) - n$$
.

证: 由练习 15 的结论可知:

$$\begin{split} r(A) + r(B) &= r \left(\begin{array}{c} A & O \\ O & B \end{array} \right) \leq r \left(\begin{array}{c} A & O \\ I & B \end{array} \right) \\ &= r \left(\begin{array}{c} O & -AB \\ I & B \end{array} \right) = r \left(\begin{array}{c} O & -AB \\ I & O \end{array} \right) = r(I) + r(-AB) = n + r(AB) \end{split}$$

于是得到 $r(AB) \ge r(A) + r(B) - n$.

72. 设向量组 $\alpha_j = (a_{1j}, a_{2j}, \cdots, a_{nj})^T \ (j = 1, 2, \cdots, n)$. 证明: 如果

$$|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|, i = 1, 2, \dots, n,$$

 $j \neq i$

则向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关.

证: 用反证法. 假设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关,则齐次线性方程组 $x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n = \mathbf{0}$ 有非零解. 设非零解为 $\mathbf{x} = (x_1, x_2, \cdots, x_n)$,其中

$$x_i \ge x_i (j \ne i).$$

于是由

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = 0$$

得到

$$|a_{ii}||x_i| = -|\sum_{j=1}^n a_{ij}x_j| \le \sum_{j=1}^n |a_{ij}||x_j|$$

$$j \ne i \qquad j \ne i$$

即

$$|a_{ii}| \le \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \frac{|x_j|}{|x_i|} \le \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

矛盾!

第四章 向量空间与线性变换

1. 证明: $\alpha_1 = (1,1,1,1)^T$, $\alpha_2 = (1,1,-1,-1)^T$, $\alpha_3 = (1,-1,1,-1)^T$, $\alpha_4 = (1,-1,-1,1)^T$ 是 \mathbb{R}^4 的一组基, 并求 $\beta = (1,2,1,1)^T$ 在这组基下的坐标.

解: 因为

所以 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关,又因为任意 5 个四维向量都线性相关,所以 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是 \mathbb{R}^4 的一组基. 设 β 在这组基下的坐标为 $(x_1, x_2, x_3, x_4)^T$,即有

$$x_1\boldsymbol{\alpha}_1 + x_2\boldsymbol{\alpha}_2 + x_3\boldsymbol{\alpha}_3 + x_4\boldsymbol{\alpha}_4 = \boldsymbol{\beta}$$

解此方程组:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & 2 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 1 \end{pmatrix} \xrightarrow{r_i - r_1} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & -2 & -2 & 1 \\ 0 & -2 & 0 & -2 & 0 \\ 0 & -2 & -2 & 0 & 0 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_4} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 & 0 \\ 0 & -2 & 0 & -2 & 0 \\ 0 & 0 & -2 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & -2 & 0 \\ 0 & 0 & -2 & -2 & 1 \end{pmatrix} \xrightarrow{r_4 + r_3} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & -2 & 0 \\ 0 & 0 & 0 & -4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{4} \end{pmatrix}$$

$$\xrightarrow{r_3 + r_4} \begin{pmatrix} 1 & 1 & 1 & 0 & \frac{5}{4} \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 1 & 0 & -\frac{1}{4} \\ 0 & 0 & 0 & 1 & -\frac{1}{4} \end{pmatrix}$$

方程组有唯一解: $x_1 = \frac{5}{4}$, $x_2 = \frac{1}{4}$, $x_3 = x_4 = -\frac{1}{4}$. 即 $\boldsymbol{\beta}$ 在这组基下的坐标为 $(\frac{5}{4}, \frac{1}{4}, -\frac{1}{4}, -\frac{1}{4})^T$.

- 2. 己知 \mathbb{R}^3 的两组基为 $\boldsymbol{\alpha}_1 = (1,2,1)^T$, $\boldsymbol{\alpha}_2 = (2,3,3)^T$, $\boldsymbol{\alpha}_3 = (3,7,1)^T$; $\boldsymbol{\beta}_1 = (3,1,4)^T$, $\boldsymbol{\beta}_2 = (5,2,1)^T$, $\boldsymbol{\beta}_3 = (1,1-6)^T$. 求
 - (1) 向量 $\gamma = (3,6,2)^T$ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标;
 - (2) 基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 到基 $\{\beta_1, \beta_2, \beta_3\}$ 的过渡矩阵;
 - (3) 用公式 (4.7) 求 γ 在基 { β_1 , β_2 , β_3 } 下的坐标.

解: (1) 设向量 γ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标为 $(x_1, x_2, x_3)^T$, 即 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \gamma$, 解方程组:

$$\begin{pmatrix} 1 & 2 & 3 & 3 \\ 2 & 3 & 7 & 6 \\ 1 & 3 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -2 & -1 \end{pmatrix} \xrightarrow{r_3 + r_2} \begin{pmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix} \xrightarrow{r_i \times (-1)} \begin{pmatrix} 1 & 2 & 3 & 3 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2 + r_3} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

于是所求方程组的解为: $x_1 = -2$, $x_2 = 1$, $x_3 = 1$, 即向量 $\gamma = (3,6,2)^T$ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标为 $(-2,1,1)^T$.

(2) 设所求的过渡矩阵为 P, 即有 $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)P$, 那么 $P = (\alpha_1, \alpha_2, \alpha_3)^{-1}(\beta_1, \beta_2, \beta_3)$.

$$\begin{pmatrix} 1 & 2 & 3 & 3 & 5 & 1 \\ 2 & 3 & 7 & 1 & 2 & 1 \\ 1 & 3 & 1 & 4 & 1 & -6 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 3 & 3 & 5 & 1 \\ 0 & -1 & 1 & -5 & -8 & -1 \\ 0 & 1 & -2 & 1 & -4 & -7 \end{pmatrix} \xrightarrow{r_3 + r_1} \begin{pmatrix} 1 & 2 & 3 & 3 & 5 & 1 \\ 0 & -1 & 1 & -5 & -8 & -1 \\ 0 & 0 & -1 & -4 & -12 & -8 \end{pmatrix}$$

$$\xrightarrow[i=2,3]{r_i \times (-1)} \begin{pmatrix} 1 & 2 & 3 & 3 & 5 & 1 \\ 0 & 1 & -1 & 5 & 8 & 1 \\ 0 & 0 & 1 & 4 & 12 & 8 \end{pmatrix} \xrightarrow{r_2 + r_3} \begin{pmatrix} 1 & 2 & 0 & -9 & -31 & -23 \\ 0 & 1 & 0 & 9 & 20 & 9 \\ 0 & 0 & 1 & 4 & 12 & 8 \end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix} 1 & 0 & 0 & -27 & -71 & -41 \\ 0 & 1 & 0 & 9 & 20 & 9 \\ 0 & 0 & 1 & 4 & 12 & 8 \end{pmatrix}$$

于是所求过渡矩阵 $P = \begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix}$.

(3) 向量
$$\gamma = (3,6,2)^T$$
 在基 $\{\beta_1, \beta_2, \beta_3\}$ 下的坐标为 $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{pmatrix}^{-1} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$. 因为

$$\begin{pmatrix} -27 & -71 & -41 & -2 \\ 9 & 20 & 9 & 1 \\ 4 & 12 & 8 & 1 \end{pmatrix} \xrightarrow{r_1 + 3r_2} \begin{pmatrix} 0 & -11 & -14 & 1 \\ 9 & 20 & 9 & 1 \\ 1 & 3 & 2 & \frac{1}{4} \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 3 & 2 & \frac{1}{4} \\ 9 & 20 & 9 & 1 \\ 0 & -11 & -14 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2 - 9r_1} \begin{pmatrix} 1 & 3 & 2 & \frac{1}{4} \\ 0 & -7 & -9 & -\frac{5}{4} \\ 0 & -77 & -98 & 7 \end{pmatrix} \xrightarrow{r_3 - 11r_2} \begin{pmatrix} 1 & 3 & 2 & \frac{1}{4} \\ 0 & -7 & -9 & -\frac{5}{4} \\ 0 & 0 & 1 & \frac{83}{4} \end{pmatrix} \xrightarrow{r_1 - 2r_3} \begin{pmatrix} 1 & 3 & 0 & -\frac{165}{4} \\ 0 & 0 & 1 & \frac{83}{4} \end{pmatrix}$$

$$\xrightarrow{r_2 \div (-7)} \begin{pmatrix} 1 & 3 & 0 & -\frac{165}{4} \\ 0 & 1 & 0 & -\frac{106}{4} \\ 0 & 0 & 1 & \frac{83}{4} \end{pmatrix} \xrightarrow{r_1 - 3r_2} \begin{pmatrix} 1 & 0 & 0 & \frac{153}{4} \\ 0 & 1 & 0 & -\frac{106}{4} \\ 0 & 0 & 1 & \frac{83}{4} \end{pmatrix}$$

所以向量 $\gamma = (3,6,2)^T$ 在基 $\{\beta_1, \beta_2, \beta_3\}$ 下的坐标为 $(\frac{153}{4}, -\frac{106}{4}, \frac{83}{4})^T$.

- 3. 己知 \mathbb{R}^4 的两组基为 $\boldsymbol{\alpha}_1 = (1,2,-1,0)^T$, $\boldsymbol{\alpha}_2 = (1,-1,1,1)^T$, $\boldsymbol{\alpha}_3 = (-1,2,1,1)^T$, $\boldsymbol{\alpha}_4 = (-1,-1,0,1)^T$; $\boldsymbol{\beta}_1 = (2,1,0,1)^T$, $\boldsymbol{\beta}_2 = (0,1,2,2)^T$, $\boldsymbol{\beta}_3 = (-2,1,1,2)^T$, $\boldsymbol{\beta}_4 = (1,3,1,2)^T$. 求
- (1) 求基 { α_1 , α_2 , α_3 , α_4 } 到基 { β_1 , β_2 , β_3 , β_4 } 的过渡矩阵;若向量 γ 在基 { α_1 , α_2 , α_3 , α_4 } 下的坐标为 $(1,0,0,0)^T$, 求 γ 在基 { β_1 , β_2 , β_3 , β_4 } 下的坐标;
- (2) 求基 $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ 到基 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 的过渡矩阵;若向量 ξ 在基 $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ 下的坐标为 $(1, 2, -1, 0)^T$, 求 ξ 在基 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 下的坐标;
 - (3) 已知向量 α 在基 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 下的坐标为 (1, 2, -1, 0) 求它在基 $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ 下的坐标.
 - 解: 记 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4), B = (\beta_1, \beta_2, \beta_3, \beta_4).$

(1) 设所求过渡矩阵为 P, 即有 B = AP, 从而 $P = A^{-1}B$.

$$\begin{pmatrix} 1 & 1 & -1 & -1 & 2 & 0 & -2 & 1 \\ 2 & -1 & 2 & -1 & 1 & 1 & 1 & 3 \\ -1 & 1 & 1 & 0 & 0 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 1 & -1 & -1 & 2 & 0 & -2 & 1 \\ 0 & 2 & 0 & -1 & 2 & 2 & -1 & 2 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -1 & -1 & 2 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 2 & 0 & -1 & 2 & 2 & -1 & 2 \\ 0 & -3 & 4 & 1 & -3 & 1 & 5 & 1 \end{pmatrix} \xrightarrow{r_3 - 2r_2} \begin{pmatrix} 1 & 1 & -1 & -1 & 2 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 2 & 0 & -1 & 2 & 2 & -1 & 2 \\ 0 & -3 & 4 & 1 & -3 & 1 & 5 & 1 \end{pmatrix} \xrightarrow{r_3 - 2r_2} \begin{pmatrix} 1 & 1 & -1 & -1 & 2 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 0 & -2 & -3 & 0 & -2 & -5 & -2 \\ 0 & 0 & 7 & 4 & 0 & 7 & 11 & 7 \end{pmatrix}$$

$$\xrightarrow{r_3 \div (-2)} \begin{pmatrix} 1 & 1 & -1 & -1 & 2 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & \frac{3}{2} & 0 & 1 & \frac{5}{2} & 1 \\ 0 & 0 & 7 & 4 & 0 & 7 & 11 & 7 \end{pmatrix} \xrightarrow{r_4 - 7r_3} \begin{pmatrix} 1 & 1 & -1 & -1 & 2 & 0 & -2 & 1 \\ 0 & 1 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & \frac{3}{2} & 0 & 1 & \frac{5}{2} & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 + r_4, \ r_2 - r_4} \begin{pmatrix} 1 & 1 & -1 & 0 & 2 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + r_3} \begin{pmatrix} 1 & 1 & 0 & 0 & 2 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

即从基
$$\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$$
 到基 $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ 的过渡矩阵为 $P = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.

下面求 P^{-1} .

$$(P,I) = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2-r_1} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_3-r_2} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4-r_3} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 & -1 & 1 \end{pmatrix}$$

$$\xrightarrow{r_4\times(-1)} \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 & -1 & 1 \end{pmatrix} \xrightarrow{r_4-r_4} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & -1 & 1 & -1 \end{pmatrix}$$

$$\mathbb{P}^{-1} = \left(\begin{array}{cccc} 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & 1 & -1 \end{array} \right).$$

于是当向量 γ 在基 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 下的坐标为 $(1,0,0,0)^T$,则 γ 在基 $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ 下的坐标为:

$$\begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

(2) 设所求过渡矩阵为
$$Q$$
, 即有 $A = BQ$, 从而 $Q = B^{-1}A$, 于是 $Q = P^{-1} = \begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix}$.

当 ξ 在基 $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ 下的坐标为 $(1, 2, -1, 0)^T$ 时, 它在基 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 下的坐标为:

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 1 \\ -1 \end{pmatrix}.$$

(3) 当向量 α 在基 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 下的坐标为 (1, 2, -1, 0) 时, 它在基 $\{\beta_1, \beta_2, \beta_3, \beta_4\}$ 下的坐标为:

$$\begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ -2 \end{pmatrix}.$$

4. 在 \mathbb{R}^4 中找一个向量 γ , 使它在自然基和基 $B = \{\beta_1, \beta_2, \beta_3, \beta_4\}$ 下有相同的坐标, 其中 $\beta_1 = (2, 1, -1, 1)^T$, $\beta_2 = (0, 3, 1, 0)^T$, $\beta_3 = (5, 3, 2, 1)^T$, $\beta_4 = (6, 6, 1, 3)^T$.

 \mathbf{p} : 设所求向量 γ 在两组基下的坐标均为 $(x_1, x_2, x_3, x_4)^T$, 则有

$$\gamma = (x_1, x_2, x_3, x_4)^T = x_1 \beta_1 + x_2 \beta_2 + x_3 \beta_3 + x_4 \beta_4.$$

即

$$\begin{cases} 2x_1 + 5x_3 + 6x_4 = x_1 \\ x_1 + 3x_2 + 3x_3 + 6x_4 = x_2 \\ -x_1 + x_2 + 2x_3 + x_4 = x_3 \end{cases} \Rightarrow \begin{cases} x_1 + 5x_3 + 6x_4 = 0 \\ x_1 + 2x_2 + 3x_3 + 6x_4 = 0 \\ -x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_3 + 2x_4 = 0 \end{cases}$$

对上述方程组的系数矩阵进行初等行变换:

$$A = \begin{pmatrix} 1 & 0 & 5 & 6 \\ 1 & 2 & 3 & 6 \\ -1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - r_1, \ r_3 + r_1} \begin{pmatrix} 1 & 0 & 5 & 6 \\ 0 & 2 & -2 & 0 \\ 0 & 1 & 6 & 7 \\ 0 & 0 & -4 & -4 \end{pmatrix} \xrightarrow{r_2 \div 2} \begin{pmatrix} 1 & 0 & 5 & 6 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 6 & 7 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 5 & 6 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & 7 \\ 0 & 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_3 \div 7} \begin{pmatrix} 1 & 0 & 5 & 6 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - 5r_3} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

取 $x_4 = k$, 得方程组得通解为: $(x_1, x_2, x_3, x_4)^T = (-k, -k, -k, k)^T$ (k为任意实数.) 即所求向量为:

$$\gamma = (-k, -k, -k, k)^T$$
 (k为任意实数.)

- 5. $\Box \mathfrak{P} \alpha = (1, 2, -1, 1), \ \beta = (2, 3, 1, -1), \ \gamma = (-1, -1, -2, 2).$
- (1) 求 α , β , γ 的长度及 $<\alpha$, $\beta>$, $<\alpha$, $\gamma>$.
- (2) 求与 α , β , γ 都正交的所有向量.

M: (1) $\|\boldsymbol{\alpha}\| = \sqrt{1^2 + 2^2 + (-1)^2 + 1^2} = \sqrt{7}$, $\|\boldsymbol{\beta}\| = \sqrt{4 + 9 + 1 + 1} = \sqrt{15}$, $\|\boldsymbol{\gamma}\| = \sqrt{1 + 1 + 4 + 4} = \sqrt{10}$.

$$<\alpha, \ \beta> = \arccos \frac{\alpha \cdot \beta}{\|\alpha\| \cdot \|\beta\|} = \arccos \frac{2+6-1-1}{\sqrt{7} \cdot \sqrt{15}} = \arccos \frac{2\sqrt{105}}{21}.$$

$$<\alpha, \ \gamma> = \arccos \frac{\alpha \cdot \gamma}{\|\alpha\| \cdot \|\gamma\|} = \arccos \frac{-1-2+2+2}{\sqrt{7} \cdot \sqrt{10}} = \arccos \frac{\sqrt{70}}{70}.$$

(2) 设与
$$\alpha$$
, β , γ 都正交的向量为 $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$, 则有 $\alpha \cdot \mathbf{x} = 0$, $\beta \cdot \mathbf{x} = 0$, $\gamma \cdot \mathbf{x} = 0$. 即
$$\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 0 \\ 2x_1 + 3x_2 + x_3 - x_4 = 0 \\ -x_1 - x_2 - 2x_3 + 2x_4 = 0 \end{cases}$$

解此方程组:

$$\begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & 3 & 1 & -1 \\ -1 & -1 & -2 & 2 \end{pmatrix} \xrightarrow[r_3+r_1]{r_2-2r_1} \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 3 & -3 \\ 0 & 1 & -3 & 3 \end{pmatrix} \xrightarrow[r_2\times(-1)]{r_3+r_2} \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & -3 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow[r_1-2r_2]{r_1-2r_2} \begin{pmatrix} 1 & 0 & 5 & -5 \\ 0 & 1 & -3 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

同解方程组为
$$\begin{cases} x_1 = 5x_4 - 5x_3 \\ x_2 = 3x_3 - 3x_4 \end{cases}$$
 分别取 $\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 代入同解方程组得 $\boldsymbol{\xi}_1 = \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \end{pmatrix}$, $\boldsymbol{\xi}_2 = \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \end{pmatrix}$

$$\begin{pmatrix} 5 \\ -3 \\ 0 \\ 1 \end{pmatrix}$$
. 于是与 α , β , γ 都正交的所有向量为 $k_1 \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \end{pmatrix} + k_2 \begin{pmatrix} 5 \\ -3 \\ 0 \\ 1 \end{pmatrix}$ (k_1, k_2) 为任意常数).

6. 求与 (1,1,-1,1), (1,-1,-1,1), (2,1,1,3) 都正交的单位向量.

解: 设与已知向量都正交的向量为 $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$, 则有 $\begin{cases} x_1 + x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 - x_3 + x_4 = 0 \end{cases}$ 解此方程组: $2x_1 + x_2 + x_3 + 3x_4 = 0$

$$\begin{pmatrix}
1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 \\
2 & 1 & 1 & 3
\end{pmatrix}
\xrightarrow[r_3 \div (-6)]{r_2 - r_1}$$

$$\begin{pmatrix}
1 & 1 & -1 & 1 \\
0 & -2 & 0 & 0 \\
0 & -1 & 3 & 1
\end{pmatrix}
\xrightarrow[r_2 + 3r_3]{r_3 \leftrightarrow r_2}$$

$$\begin{pmatrix}
1 & 1 & -1 & 1 \\
0 & -2 & 0 & 0 \\
0 & -1 & 3 & 1
\end{pmatrix}
\xrightarrow[r_1 + r_3]{r_2 \leftrightarrow r_2}$$

$$\begin{pmatrix}
1 & 1 & -1 & 1 \\
0 & -1 & 3 & 1 \\
0 & -2 & 0 & 0
\end{pmatrix}
\xrightarrow[r_2 \times (-1)]{r_3 \leftrightarrow r_2}$$

$$\begin{pmatrix}
1 & 1 & -1 & 1 \\
0 & -2 & 0 & 0
\end{pmatrix}
\xrightarrow[r_2 \times (-1)]{r_3 \leftrightarrow r_2}$$

$$\begin{pmatrix}
1 & 1 & -1 & 1 \\
0 & 1 & -3 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \frac{1}{3}
\end{pmatrix}
\xrightarrow[r_1 + r_2]{r_2 \leftrightarrow r_2}$$

$$\begin{pmatrix}
1 & 1 & 0 & \frac{4}{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \frac{1}{3}
\end{pmatrix}
\xrightarrow[r_1 + r_2]{r_2 \leftrightarrow r_2}$$

同解方程组为 $\begin{cases} x_1 = -\frac{4}{3}x_4 \\ x_2 = 0 \\ x_3 = -\frac{1}{3}x_4 \end{cases}$ 取 $x_4 = -3$ 代入同解方程组得 $\boldsymbol{\xi} = \begin{pmatrix} 4 \\ 0 \\ 1 \\ -3 \end{pmatrix}$, 于是与已知向量都正交的所有向量为

$$k\begin{pmatrix} 4 \\ 0 \\ 1 \\ -3 \end{pmatrix}$$
 $(k$ 为任意常数). 由 $k^2(16+1+9)=1$ 得 $k=\pm\frac{1}{\sqrt{26}}$, 所以所求向量为 $\pm\frac{1}{\sqrt{26}}\begin{pmatrix} 4 \\ 0 \\ 1 \\ -3 \end{pmatrix}$.

7. 已知向量 β 与向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 中每个向量都正交, 求证 β 与 $\alpha_1, \alpha_2, \dots, \alpha_m$ 的任一线性组合正交. 证: 设 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_m\alpha_m$ 为 $\alpha_1, \alpha_2, \dots, \alpha_m$ 的任一线性组合, 注意到 $(\beta, \alpha_i) = 0$ $(i = 1, 2, \dots, m)$, 则

$$(\boldsymbol{\beta}, k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + \dots + k_m\boldsymbol{\alpha}_m) = k_1(\boldsymbol{\beta}, \boldsymbol{\alpha}_1) + k_2(\boldsymbol{\beta}, \boldsymbol{\alpha}_2) + \dots + k_m(\boldsymbol{\beta}, \boldsymbol{\alpha}_m) = 0.$$

结论成立.

10. 设 $\{\alpha_1, \alpha_2, \alpha_3\}$ 是 \mathbb{R}^3 的一组标准正交基,证明 $\beta_1 = \frac{1}{3}(2\alpha_1 + 2\alpha_2 - \alpha_3)$, $\beta_2 = \frac{1}{3}(2\alpha_1 - \alpha_2 + 2\alpha_3)$, $\beta_3 = \frac{1}{3}(\alpha_1 - 2\alpha_2 - 2\alpha_3)$,也是 \mathbb{R}^3 的一组标准正交基.

证: 设 $A = (\alpha_1, \alpha_2, \alpha_3), B = (\beta_1, \beta_2, \beta_3)$ 由题设可知:

$$A^T A = E \quad \boxplus \ B = \frac{1}{3} A \left(\begin{array}{ccc} 2 & 2 & 1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{array} \right).$$

因为

$$B^{T}B = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{pmatrix}^{T} A \cdot \frac{1}{3}A^{T} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{pmatrix}^{T} \begin{pmatrix} 2 & 2 & 1 \\ 2 & -1 & -2 \\ -1 & 2 & -2 \end{pmatrix} = I.$$

所以 $\{\beta_1, \beta_2, \beta_3\}$ 也是 \mathbb{R}^3 的一组标准正交基.

11. 已知
$$Q = \begin{pmatrix} a & -\frac{3}{7} & \frac{2}{7} \\ b & c & d \\ -\frac{3}{7} & \frac{2}{7} & e \end{pmatrix}$$
 为正交矩阵, 试求 a, b, c, d 的值.

因为 Q 为正交矩阵, 所以 Q^T 也是正交矩阵, 从而 Q 的行向量组为 \mathbb{R}^3 的一组标准正交基, 即

$$a^2 + \frac{9}{49} + \frac{4}{49} = 1, (4.1)$$

$$b^2 + c^2 + d^2 = 1, (4.2)$$

$$\frac{9}{49} + \frac{4}{49} + e^2 = 1, (4.3)$$

$$a^{2} + \frac{1}{49} + \frac{1}{49} = 1,$$

$$b^{2} + c^{2} + d^{2} = 1,$$

$$\frac{9}{49} + \frac{4}{49} + e^{2} = 1,$$

$$-\frac{3}{7}a - \frac{6}{49} + \frac{2}{7}e = 0,$$

$$ab - \frac{3}{7}c + \frac{2}{7}d = 0,$$

$$(4.1)$$

$$(4.2)$$

$$(4.3)$$

$$ab - \frac{3}{7}c + \frac{2}{7}d = 0, (4.5)$$

$$-\frac{3}{7}b + \frac{2}{7}c + de = 0, (4.6)$$

由 4.1 得: $a = \pm \frac{6}{7}$,由 4.3 得: $e = \pm \frac{6}{7}$. 将 $a = \frac{6}{7}$ 代入 4.4 得 $e = \frac{12}{7}$,这与 4.3 矛盾,故舍去.将 $a = -\frac{6}{7}$ 代入 4.4 得 即所求的值有两组, 分别为 $(a,b,c,d,e) = (-\frac{6}{7},\frac{2}{7},-\frac{6}{7},-\frac{3}{7},-\frac{6}{7})$ 或 $(-\frac{6}{7},-\frac{2}{7},\frac{6}{7},\frac{3}{7},-\frac{6}{7})$

12. 证明: 若 A 是正交阵, 则 A 的伴随矩阵 A^* 也是正交矩阵.

证: 因为 A 是正交矩阵, 所以 $A^TA = E$, 从而 $AA^T = E$, 且 $|A|^2 = |A^T||A| = |A^TA| = |E| = 1$. 而 $A^* = |A|A^{-1}$, 于是 $(A^*)^T A^* = (|A|A^{-1})^T |A|A^{-1} = |A|^2 (AA^T)^{-1} = E^{-1} = E$. 故 A^* 也是正交矩阵.

21. 设
$$A = \begin{pmatrix} 2 & 1 & -1 & 1 & -3 \\ 1 & 1 & 1 & 0 & 1 \\ 3 & 2 & -1 & 1 & -2 \end{pmatrix}$$
, 求齐次线性方程组 $Ax = \mathbf{0}$ 的解空间的维数及解空间的一组标准正交基.

分析: 齐次线性方程组 Ax = 0 的解空间的维数就是其基础解系中解向量的个数,并且基础解系就是解空间 的一组基, 因此本题就是要求齐次线性方程组 Ax = 0 的基础解系, 再将其标准正交化.

$$A = \begin{pmatrix} 2 & 1 & -1 & 1 & -3 \\ 1 & 1 & 1 & 0 & 1 \\ 3 & 2 & -1 & 1 & -2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 2 & 1 & -1 & 1 & -3 \\ 3 & 2 & -1 & 1 & -2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & -3 & 1 & -5 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & -1 & -3 & 1 & -5 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 + r_3} \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 & -5 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 + r_2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 \end{pmatrix}$$

因为 r(A) = 3, 所以解空间的维数为 n - r(A) = 5 - 3 = 2.

分别取
$$\begin{pmatrix} x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 代入同解方程组 $\begin{cases} x_1 = -x_4 + 4x_5 \\ x_2 = x_4 - 5x_5 \\ x_3 = 0 \end{cases}$ 得基础解系为:

$$\boldsymbol{\xi}_1 = (1, 1, 0, 1, 0)^T, \ \boldsymbol{\xi}_2 = (4, -5, 0, 0, 1).$$

将
$$\boldsymbol{\xi}_1$$
, $\boldsymbol{\xi}_2$ 正交化得: $\boldsymbol{\eta}_1 = \boldsymbol{\xi}_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\boldsymbol{\eta}_2 = \boldsymbol{\xi}_2 - \frac{(\boldsymbol{\xi}_2, \boldsymbol{\eta}_1)}{(\boldsymbol{\eta}_1, \boldsymbol{\eta}_1)} \boldsymbol{\eta}_1 = \begin{pmatrix} 4 \\ -5 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{-4-5}{3} \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 3 \\ 1 \end{pmatrix}$.

再单位化:
$$e_1 = \frac{\eta_1}{\|\eta_1\|} = \frac{1}{\sqrt{3}} \begin{pmatrix} -1\\1\\0\\1\\0 \end{pmatrix}, e_2 = \frac{\eta_2}{\|\eta_2\|} = \frac{1}{\sqrt{15}} \begin{pmatrix} 1\\-2\\0\\3\\1 \end{pmatrix}.$$

综上: 齐次线性方程组 $A\mathbf{x} = \mathbf{0}$ 的解空间的维数为 2, 解空间的一组标准正交基为 $\mathbf{e}_1 = \frac{1}{\sqrt{3}}(-1,1,0,1,0)^T$, $\mathbf{e}_2 = \frac{1}{\sqrt{15}}(1,-2,0,3,1)^T$.

22. 设 V 是 \mathbb{R}^5 的一个二维子空间, 它的一组基为 $\alpha_1 = (1,1,1,1,1), \ \alpha_2 = (1,1,0,1,1)$, 试将 V 的基扩充为 \mathbb{R}^5 的基.

分析: 与 α_1 , α_2 正交的向量一定与 α_1 , α_2 线性无关

解: 设向量
$$\boldsymbol{x}$$
 满足 $(\boldsymbol{\alpha}_1, \boldsymbol{x}) = 0$, $(\boldsymbol{\alpha}_2, \boldsymbol{x}) = 0$, 即
$$\begin{cases} x_1 & +x_2 & +x_3 & +x_4 & x_5 = 0 \\ x_1 & +x_2 & & +x_4 & +x_5 = 0 \end{cases}$$
 即
$$\begin{cases} x_3 & = 0 \\ x_1 & = -x_2 - x_4 - x_5 \end{cases}$$

方程组的基础解系为: $\boldsymbol{\xi}_1 = (-1,1,0,0,0)^T$, $\boldsymbol{\xi}_2 = (-1,0,0,1,0)^T$, $\boldsymbol{\xi}_3 = (-1,0,0,0,1)^T$, 于是得到 \mathbb{R}^5 的一组基为: $(1,1,1,1,1)^T$, $(1,1,0,1,1)^T$, $(-1,1,0,0,0)^T(-1,0,0,1,0)^T$, $(-1,0,0,0,1)^T$.

另解:
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 + r_i} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 \times (-1)}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$
 于是得到 \mathbb{R}^5 的一组基为: $(1,1,1,1,1)^T$, $(1,1,0,1,1)^T$, $(0,1,0,0,0)^T(0,0,0,1,0)^T$, $(0,0,0,0,1)^T$.

27. 设 $\{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ 是 n 维空间 V 的一组基, 又 V 中向量 α_{n+1} 在这组基下的坐标 (x_1, x_2, \cdots, x_n) 全不为零. 证明 $\alpha_1, \alpha_2, \cdots, \alpha_n, \alpha_{n+1}$ 中任意 n 个向量必构成 V 的一组基. 并求 α_1 在基 $\{\alpha_2, \cdots, \alpha_n, \alpha_{n+1}\}$ 下的坐标.

 $\overline{\mathbf{u}}$: 只需证明 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n, \boldsymbol{\alpha}_{n+1}$ 中任意 n 个向量线性无关.

若 n 个向量中不包含 α_{n+1} , 那么结论显然成立, 若 n 个向量中包含 α_{n+1} , 不妨考虑 $\alpha_2, \dots, \alpha_n, \alpha_{n+1}$ 这 n 个向量,设

$$k_2\boldsymbol{\alpha}_2 + \dots + k_n\boldsymbol{\alpha}_n + k_{n+1}\boldsymbol{\alpha}_{n+1} = \mathbf{0}$$

又因为 $\alpha_{n+1} = x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n$, 则有

$$k_{n+1}x_1\alpha_1 + (k_{n+1}x_2 + k_2)\alpha_2 + \dots + (k_{n+1}x_n + k_n)\alpha_n = \mathbf{0}$$

因为 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 是 n 维空间 V 的一组基, 所以

$$\begin{cases} k_{n+1}x_1 = 0 \\ k_{n+1}x_2 + k_2 = 0 \\ \dots \\ k_{n+1}x_n + k_n = 0 \end{cases}$$
 因为 $x_i \neq 0$, 所以 $k_2 = k_3 = \dots = k_{n+1} = 0$

故结论成立.

设 α_1 在基 $\{\alpha_2, \dots, \alpha_n, \alpha_{n+1}\}$ 下的坐标为 $(y_2, y_3, \dots, y_n, y_{n+1})^T$ 即有

$$\alpha_1 = y_2 \alpha_2 + y_3 \alpha_3 + \dots + y_n \alpha_n + y_{n+1} \alpha_{n+1}
= y_2 \alpha_2 + y_3 \alpha_3 + \dots + y_n \alpha_n + y_{n+1} (x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n)
= (x_1 y_{n+1}) \alpha_1 + (y_2 + x_2 y_{n+1}) \alpha_2 + \dots + (y_n + x_n y_{n+1}) \alpha_n$$

于是得到

$$\begin{cases} x_1 y_{n+1} = 1 \\ y_2 + x_2 y_{n+1} = 0 \\ \dots \\ y_n + x_n y_{n+1} = 0 \end{cases} \Rightarrow \begin{cases} y_{n+1} = \frac{1}{x_1} \\ y_2 = -\frac{x_2}{x_1} \\ \dots \\ y_n = -\frac{x_n}{x_1} \end{cases}$$

故 α_1 在基 $\{\alpha_2, \cdots, \alpha_n, \alpha_{n+1}\}$ 下的坐标为 $(\frac{1}{x_1}, -\frac{x_2}{x_1}, \cdots, -\frac{x_n}{x_1})^T$.

- 28. 设 $\mathbb{R}[x]_5$ 的旧基为 $\{1, x, x^2, x^3, x^4\}$; 新基为 $\{1, 1+x, 1+x+x^2, 1+x+x^2+x^3, 1+x+x^2+x^3+x^4\}$.
- (1) 求由旧基到新基的过渡矩阵;
- (2) 求多项式 $1 + 2x + 3x^2 + 4x^3 + 5x^4$ 在新基下的坐标:
- (3) 若多项式 f(x) 在新基下的坐标为 (1,2,3,4,5), 求它在新基下的坐标.

解: (1) 因为
$$(1,1+x,1+x+x^2,1+x+x^2+x^3,1+x+x^2+x^3+x^4) = (1,x,x^2,x^3,x^4)$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

所以所求过渡矩阵为: $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$

(2) 设所求坐标为 (a, b, c, d, e), 即有

$$1 + 2x + 3x^{2} + 4x^{3} + 5x^{4} = a + b(1+x) + c(1+x+x^{2}) + d(1+x+x^{2}+x^{3}) + e(1+x+x^{2}+x^{3}+x^{4})$$
$$= (a+b+c+d+e) + (b+c+d+e)x + (c+d+e)x^{2} + (d+e)x^{3} + ex^{4}$$

比较系数得:
$$\begin{cases} a+b+c+d+e &= 1\\ b+c+d+e &= 2\\ c+d+e &= 3 \Rightarrow \\ d+e &= 4\\ e &= 5 \end{cases} \Rightarrow \begin{cases} a=-1\\ b=-1\\ c=-1\\ d=-1\\ e=5 \end{cases}$$

即多项式 $1+2x+3x^2+4x^3+5x^4$ 在新基下的坐标为: (-1,-1,-1,-1,5).

(3) 由己知可得:

 $f(x) = 1 + 2(1+x) + 3(1+x+x^2) + 4(1+x+x^2+x^3) + 5(1+x+x^2+x^3+x^4) = 15 + 14x + 12x^2 + 9x^3 + 5x^4$ 所以 f(x) 在旧基下的坐标为 (15, 14, 12, 9, 5).

29.
$$\begin{aligned} & & & \\$$

- (1) 证明 G_1, G_2, G_3, G_4 是 $\mathbb{R}^{2 \times 2}$ 的一组基;
- (2) 求从基 $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ 到基 $\{G_1, G_2, G_3, G_4\}$ 的过渡矩阵;
- (3) 求矩阵 $A = \begin{pmatrix} 0 & 1 \\ 2 & -3 \end{pmatrix}$ 分别在两组基下的坐标 (列) 向量.

解: (1) 设 $k_1G_1 + k_2G_2 + k_3G_3 + k_4G_4 = O$, 即

$$k_1 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + k_2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + k_3 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + k_4 \begin{pmatrix} 1 & 1 \\ 1 & 01 \end{pmatrix} = \begin{pmatrix} k_2 + k_3 + k_4 & k_1 + k_3 + k_4 \\ k_1 + k_2 + k_4 & k_1 + k_2 + k_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

从而
$$\begin{cases} k_2 + k_3 + k_4 = 0 \\ k_1 + k_3 + k_4 = 0 \\ k_1 + k_2 + k_4 = 0 \\ k_1 + k_2 + k_3 = 0 \end{cases} \Rightarrow k_1 = k_2 = k_3 = k_4 = 0. \text{ 所以 } G_1, G_2, G_3, G_4 \text{ 线性无关, 又因为 } \mathbb{R}^{2\times 2} \text{ 为四维空间, 所$$

以 G_1, G_2, G_3, G_4 是 $\mathbb{R}^{2 \times 2}$ 的一组基.

(2) 因为
$$(G_1, G_2, G_3, G_4) = (E_{11}, E_{12}, E_{21}, E_{22})$$

$$\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$
,所以从基 $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ 到基 $\{G_1, G_2, G_3, G_4\}$

的过渡矩阵为
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
.

(3) 因为
$$A = \begin{pmatrix} 0 & 1 \\ 2 & -3 \end{pmatrix} = E_{12} + 2E_{21} - 3E_{22}$$
,所以矩阵 A 在基 $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ 下的坐标为 $(0, 1, 2, -3)^T$.

设矩阵 A 在基 $\{G_1, G_2, G_3, G_4\}$ 下的坐标为 $(x_1, x_2, x_3, x_4)^T$, 即有

$$x_1 \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + x_2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + x_3 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + x_4 \begin{pmatrix} 1 & 1 \\ 1 & 01 \end{pmatrix} = \begin{pmatrix} x_2 + x_3 + x_4 & x_1 + x_3 + x_4 \\ x_1 + x_2 + x_4 & x_1 + x_2 + x_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & -3 \end{pmatrix}$$

从而
$$\begin{cases} x_2 + x_3 + x_4 = 0 \\ x_1 + x_3 + x_4 = 1 \\ x_1 + x_2 + x_4 = 2 \end{cases}$$
 解方程组
$$x_1 + x_2 + x_3 = -3$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 0 & -3 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_4} \begin{pmatrix} 1 & 1 & 1 & 0 & -3 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & 1 & 0 & -3 \\ 0 & -1 & 0 & 1 & 4 \\ 0 & 0 & -1 & 1 & 5 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_4 + r_2} \begin{pmatrix} 1 & 1 & 1 & 0 & -3 \\ 0 & 1 & 0 & -1 & -4 \\ 0 & 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 2 & 4 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -4 \\ 0 & 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 3 & 9 \end{pmatrix} \xrightarrow{r_4 \div 3} \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -4 \\ 0 & 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}$$

$$\xrightarrow{r_1 - r_4, r_2 + r_4} \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3 \end{pmatrix} \xrightarrow{r_1 - r_3} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}$$

即方程组的解为 $x_1 = 0, x_2 = -1, x_3 = -2, X_4 = 3$, 于是矩阵 A 在基 $\{G_1, G_2, G_3, G_4\}$ 下的坐标为 $(0, -1, -2, 3)^T$.

- 41. 在 \mathbb{R}^3 中定义线性变换 $\sigma(x_1, x_2, x_3)^T = (x_1 + x_2, x_1 x_2, x_3)^T$.
- (1) 求 σ 在自然基 $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ 下的对应矩阵;
- (2) 求 σ 在基 $\{\beta_1 = (1,0,0)^T, \beta_2 = (1,1,0)^T, \beta_3 = (1,1,1)^T\}$ 下的对应矩阵.

解: (1) 因为

$$\boldsymbol{\sigma}(\boldsymbol{\varepsilon}_1) = \boldsymbol{\sigma}(1,0,0)^T = (1,1,0)^T = \boldsymbol{\varepsilon}_1 + \boldsymbol{\varepsilon}_2$$

$$\boldsymbol{\sigma}(\boldsymbol{\varepsilon}_2) = \boldsymbol{\sigma}(0,1,0)^T = (1,-1,0)^T = \boldsymbol{\varepsilon}_1 - \boldsymbol{\varepsilon}_2$$

$$\boldsymbol{\sigma}(\boldsymbol{\varepsilon}_3) = \boldsymbol{\sigma}(0,0,1)^T = (0,0,1)^T = \boldsymbol{\varepsilon}_3$$

即
$$\sigma(\varepsilon_1, \varepsilon_2, \varepsilon_3) = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. 所以 σ 在自然基 $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ 下的对应矩阵为 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(2) 因为

$$\begin{aligned} & \boldsymbol{\sigma}(\boldsymbol{\beta}_1) = \boldsymbol{\sigma}(1,0,0)^T = (1,1,0)^T = \boldsymbol{\beta}_2 \\ & \boldsymbol{\sigma}(\boldsymbol{\beta}_2) = \boldsymbol{\sigma}(1,1,0)^T = (2,0,0)^T = 2\boldsymbol{\beta}_1 \\ & \boldsymbol{\sigma}(\boldsymbol{\beta}_3) = \boldsymbol{\sigma}(1,1,1)^T = (2,0,1)^T = 2\boldsymbol{\beta}_1 - \boldsymbol{\beta}_2 + \boldsymbol{\beta}_3 \end{aligned}$$

即
$$\sigma(\beta_1, \beta_2, \beta_3) = (\beta_1, \beta_2, \beta_3) \begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
. 所以 σ 在自然基 $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ 下的对应矩阵为 $B = \begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$.

另解: 从自然基 $\{\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3\}$ 到基 $\{\boldsymbol{\beta}, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3\}$ 的过渡矩阵为: $C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, 于是 $\boldsymbol{\sigma}$ 在基 $\{\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3\}$ 下的对应矩阵为:

$$C^{-1}AC = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 2 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

42. 设 $\{\alpha_1, \alpha_2, \alpha_3\}$ 和 $\{\beta_1, \beta_2, \beta_3\}$ 是 \mathbb{R}^3 的两组基,已知: $\beta_1 = 2\alpha_1 + \alpha_2 + 3\alpha_3$, $\beta_2 = \alpha_1 + \alpha_2 + 2\alpha_3$, $\beta_3 = -2\alpha_1 + \alpha_2 + \alpha_3$; σ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的对应矩阵为 $A = \begin{pmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & 3 \end{pmatrix}$. 试求:

- (1) σ 在基 $\{-\alpha_2, 2\alpha_1, \alpha_3\}$ 下的对应矩阵;
- (2) σ 在基 $\{\beta_1, \beta_2, \beta_3\}$ 下的对应矩阵.

解: (1) 由题设可知: $\sigma(\alpha_1) = 5\alpha_1 + 2\alpha_3$, $\sigma(\alpha_2) = 7\alpha_1 + 4\alpha_2 + 8\alpha_3$, $\sigma(\alpha_3) = -5\alpha_1 - \alpha_2 + 3\alpha_3$. 注意到 σ 为线性变换, 于是有:

$$\sigma(-\alpha_2) = -\sigma(\alpha_2) = -7\alpha_1 - 4\alpha_2 - 8\alpha_3, \ \sigma(2\alpha_1) = 2\sigma(\alpha_1) = 10\alpha_1 + 4\alpha_3, \ \sigma(\alpha_3) = -5\alpha_1 - \alpha_2 + 3\alpha_3.$$

所以
$$\sigma$$
 在基 $\{-\alpha_2, 2\alpha_1, \alpha_3\}$ 下的对应矩阵为: $B = \begin{pmatrix} -7 & 10 & -5 \\ -4 & 0 & -1 \\ -8 & 4 & 3 \end{pmatrix}$.

另解: 因为从基 $\{\alpha_1,\alpha_2,\alpha_3\}$ 到基 $\{-\alpha_2,2\alpha_1,\alpha_3\}$ 的过渡矩阵为: $C=\begin{pmatrix}0&2&0\\-1&0&0\\0&0&1\end{pmatrix}$, 所以 σ 在基

 $\{-\alpha_2, 2\alpha_1, \alpha_3\}$ 下的对应矩阵为:

$$B = C^{-1}AC = \begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 & 0 \\ \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -7 & 10 & -5 \\ -4 & 0 & -1 \\ -8 & 4 & 3 \end{pmatrix}.$$

(2) 由已知可得从基 $\{\alpha_1,\alpha_2,\alpha_3\}$ 到基 $\{\beta_1,\beta_2,\beta_3\}$ 的过渡矩阵为: $C=\begin{pmatrix}2&1&-1\\1&1&1\\3&2&1\end{pmatrix}$, 所以 σ 在基 $\{\beta_1,\beta_2,\beta_3\}$ 下的对应矩阵为:

$$B = C^{-1}AC = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & -3 & 2 \\ 2 & 5 & -3 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 5 & 7 & -5 \\ 0 & 4 & -1 \\ 2 & 8 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 37 & 24 & 12 \\ -54 & -34 & -18 \\ 18 & 12 & 9 \end{pmatrix}.$$

43. 已知 \mathbb{R}^3 的线性变换 $\boldsymbol{\sigma}$ 对于基 $\boldsymbol{\alpha}_1 = (-1,0,2)^T, \boldsymbol{\alpha}_2 = (0,1,1)^T, \boldsymbol{\alpha}_3 = (3,-1,-6)^T$ 的象为 $\boldsymbol{\sigma}(\boldsymbol{\alpha}_1) = \boldsymbol{\beta}_1 = (-1,0,1)^T, \ \boldsymbol{\sigma}(\boldsymbol{\alpha}_2) = \boldsymbol{\beta}_2 = (0,-1,2)^T, \ \boldsymbol{\sigma}(\boldsymbol{\alpha}_3) = \boldsymbol{\beta}_3 = (-1,-1,3)^T.$

- (1) 求 σ 在基 { $\alpha_1, \alpha_2, \alpha_3$ } 下的矩阵表示;
- (2) $\Re \boldsymbol{\sigma}(\boldsymbol{\beta}_1), \boldsymbol{\sigma}(\boldsymbol{\beta}_2), \boldsymbol{\sigma}(\boldsymbol{\beta}_3);$
- (3) σ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标向量为 $(5,1,1)^T$,求 $\sigma(\alpha)$ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标向量;
- (4) $\beta = (1, 1, 1)^T$, $\Re \sigma(\beta)$;
- (5) $\sigma(\gamma)$ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标向量为 $(2, -4, -2)^T$, 问: 原象 γ 是否唯一? 若不唯一, 求所有的原象 γ .
- **解**: (1) 设 σ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的矩阵为 A, 即有 $\sigma(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3)A$, 亦即 $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)A$.

因为 $(\alpha_1, \alpha_2, \alpha_3)$ 可逆, 所以 $A = (\alpha_1, \alpha_2, \alpha_3)^{-1}(\beta_1, \beta_2, \beta_3)$.

$$\begin{pmatrix} -1 & 0 & 3 & -1 & 0 & -1 \\ 0 & 1 & -1 & 0 & -1 & -1 \\ 2 & 1 & -6 & 1 & 2 & 3 \end{pmatrix} \xrightarrow{r_3 + 2r_1} \begin{pmatrix} -1 & 0 & 3 & -1 & 0 & -1 \\ 0 & 1 & -1 & 0 & -1 & -1 \\ 0 & 1 & 0 & -1 & 2 & 1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & -3 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1 & 3 & 2 \end{pmatrix}$$

$$\xrightarrow{r_1 + 3r_3} \begin{pmatrix} 1 & 0 & 0 & -2 & 9 & 7 \\ 0 & 1 & 0 & -1 & 2 & 1 \\ 0 & 0 & 1 & -1 & 3 & 2 \end{pmatrix}$$

$$\text{FIU} \quad A = \begin{pmatrix} -2 & 9 & 7 \\ -1 & 2 & 1 \\ -1 & 3 & 2 \end{pmatrix} .$$

$$\begin{aligned} &(2)\ (\boldsymbol{\sigma}(\boldsymbol{\beta}_{1}), \boldsymbol{\sigma}(\boldsymbol{\beta}_{2}), \boldsymbol{\sigma}(\boldsymbol{\beta}_{3})) = \boldsymbol{\sigma}(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3}) = \boldsymbol{\sigma}((\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3})A) = \boldsymbol{\sigma}(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3})A = (\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{3})A \\ &= \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} -2 & 9 & 7 \\ -1 & 2 & 1 \\ -1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -12 & -9 \\ 2 & -5 & -3 \\ -7 & 22 & 15 \end{pmatrix} \\ &\cdot \end{aligned} .$$

(3) 已知
$$\alpha = 5\alpha_1 + \alpha_2 + \alpha_3 = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix}$$
,所以

$$\boldsymbol{\sigma}(\boldsymbol{\alpha}) = \boldsymbol{\sigma}\left((\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix}\right) = \boldsymbol{\sigma}(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) A \begin{pmatrix} 5 \\ 1 \\ 1 \end{pmatrix}.$$

因此
$$\sigma(\alpha)$$
 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标向量为 $A\begin{pmatrix}5\\1\\1\end{pmatrix} = \begin{pmatrix}-2&9&7\\-1&2&1\\-1&3&2\end{pmatrix}\begin{pmatrix}5\\1\\1\end{pmatrix} = \begin{pmatrix}6\\-2\\0\end{pmatrix}$.

(4) 先求向量 $\beta = (1,1,1)^T$ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标: 解方程组 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$.

$$\begin{pmatrix} -1 & 0 & 3 & 1 \\ 0 & 1 & -1 & 1 \\ 2 & 1 & -6 & 1 \end{pmatrix} \xrightarrow{r_3 + 2r_1} \begin{pmatrix} -1 & 0 & 3 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \end{pmatrix} \xrightarrow{r_2 - r_3} \begin{pmatrix} -1 & 0 & 3 & 1 \\ 0 & 0 & -1 & -2 \\ 0 & 1 & 0 & 3 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} -1 & 0 & 3 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & -1 & -2 \end{pmatrix} \xrightarrow{r_1 \times (-1)} \begin{pmatrix} 1 & 0 & -3 & -1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 + 3r_3} \begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$

即
$$\boldsymbol{\beta} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}$$
. 再求 $\boldsymbol{\sigma}(\boldsymbol{\beta})$.

$$\sigma(\beta) = \sigma \left((\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} \right) = \sigma(\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3) A \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 & 3 \\ 0 & 1 & -1 \\ 2 & 1 & -6 \end{pmatrix} \begin{pmatrix} -2 & 9 & 7 \\ -1 & 2 & 1 \\ -1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} -7 \\ -5 \\ 17 \end{pmatrix}.$$

(5) 设 γ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标为 $\mathbf{x} = (x_1, x_2, x_3)^T, \boldsymbol{\sigma}(\gamma)$ 在基 $\{\alpha_1, \alpha_2, \alpha_3\}$ 下的坐标为 $\mathbf{y} = (y_1, y_2, y_3)^T = (2, -4, -2)^T$, 则 $A\mathbf{x} = \mathbf{y}$, 即 $\begin{pmatrix} -2 & 9 & 7 \\ -1 & 2 & 1 \\ -1 & 3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix}.$ 解方程组:

$$\begin{pmatrix} -2 & 9 & 7 & 2 \\ -1 & 2 & 1 & -4 \\ -1 & 3 & 2 & -2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} -1 & 2 & 1 & -4 \\ -2 & 9 & 7 & 2 \\ -1 & 3 & 2 & -2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} -1 & 2 & 1 & -4 \\ 0 & 5 & 5 & 10 \\ 0 & 1 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \times (-1)} \begin{pmatrix} 1 & -2 & -1 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 5 & 5 & 10 \end{pmatrix}$$

$$\xrightarrow{r_3 - 5r_1} \begin{pmatrix} 1 & -2 & -1 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}} \xrightarrow{r_1 + 2r_2} \begin{pmatrix} 1 & 0 & 1 & 8 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

方程组的通解为 $(x_1, x_2, x_3)^T = (8 - k, 2 - k, k), k$ 为任意常数. 所以原象 γ 不唯一, 所有的原象 γ 为:

$$\gamma = x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 = (4k - 8, 2 - 2k, 18 - 9k)^T$$
, k 为任意常数.

44. 在 $\mathbb{R}^{n\times n}$ 中定义变换 $\sigma(X)=BXC$, 其中 $B,C\in\mathbb{R}^{n\times n}$ 是两个固定的矩阵, 证明 σ 是 $\mathbb{R}^{n\times n}$ 中的线性变换.

证: 任取 $X_1, X_2 \in \mathbb{R}^{n \times n}, k_1, k_2 \in \mathbb{R}$, 因为

$$\sigma(k_1X_1 + k_2X_2) = B(k_1X_1 + k_2X_2)C = k_1BX_1C + k_2BX_2C = k_1\sigma(X_1) + k_2\sigma(X_2)$$

所以 σ 是 $\mathbb{R}^{n\times n}$ 中的线性变换.

45. 求 $\mathbb{R}[x]_4$ 的微分变换 $\mathbf{D}(f(x)) = f'(x)$ 在基 $\{1, 1+x, 1+x+x^2, 1+x+x^2+x^3\}$ 下的对应矩阵. **解**: 因为

$$\begin{aligned} & D1 = 0 = 0 \cdot 1 + 0 \cdot (1+x) + 0 \cdot (1+x+x^2) + 0 \cdot (1+x+x^2+x^3) \\ & D(1+x) = 1 = 1 \cdot 1 + 0 \cdot (1+x) + 0 \cdot (1+x+x^2) + 0 \cdot (1+x+x^2+x^3) \\ & D(1+x+x^2) = 1 + 2x = (-1) \cdot 1 + 2 \cdot (1+x) + 0 \cdot (1+x+x^2) + 0 \cdot (1+x+x^2+x^3) \\ & D(1+x+x^2+x^3) = 1 + 2x + 3x^2 = (-1) \cdot 1 + (-1) \cdot (1+x) + 3 \cdot (1+x+x^2) + 0 \cdot (1+x+x^2+x^3) \end{aligned}$$

所以所求矩阵为 $\begin{pmatrix} 0 & 1 & -1 & -1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} .$

46. 设 44 题中的 $B=C=\left(\begin{array}{cc} a & b \\ c & d \end{array} \right),$ 求 $\boldsymbol{\sigma}(X)=BXC$ 在基 $E_{11},E_{12},E_{21},E_{22}$ (如 29 题所给) 下的对应矩阵.

解: 因为

$$\sigma(E_{11}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 & ab \\ ac & bc \end{pmatrix} = a^2 E_{11} + ab E_{12} + ac E_{21} + bc E_{22}
\sigma(E_{12}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ac & ad \\ c^2 & dc \end{pmatrix} = ac E_{11} + ad E_{12} + c^2 E_{21} + cd E_{22}
\sigma(E_{21}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ab & b^2 \\ ad & bd \end{pmatrix} = ab E_{11} + b^2 E_{12} + ad E_{21} + bd E_{22}
\sigma(E_{22}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} bc & bd \\ dc & d^2 \end{pmatrix} = bc E_{11} + bd E_{12} + cd E_{21} + d^2 E_{22}$$

所以所求的矩阵为 $\begin{pmatrix} a^2 & ac & ab & bc \\ ab & ad & b^2 & bd \\ ac & c^2 & ad & cd \\ bc & cd & bd & d^2 \end{pmatrix}.$

47. 设 σ 是线性空间 V 上的线性变换. 如果 $\sigma^{k-1}(\xi) \neq \mathbf{0}$,但 $\sigma^k(\xi) = \mathbf{0}$,求证 $\xi, \sigma(\xi), \sigma^2(\xi), \cdots, \sigma^{k-1}(\xi)$ 线性无关 (k > 1).

证: 设 $l_1 \xi + l_2 \sigma(\xi) + \dots + l_k \sigma^{k-1}(\xi) = \mathbf{0}$ (1) 两边同时用 σ^{k-1} 作用得:

$$l_1 \sigma^{k-1}(\xi) + l_2 \sigma^k(\xi) + \dots + l_k \sigma^{2k-2}(\xi) = 0$$
 (1')

因为 $\sigma^k(\xi) = \mathbf{0}$, 所以 $\sigma^k(\xi) = \sigma^{k+1}(\xi) = \cdots = \sigma^{2k-2}(\xi) = \mathbf{0}$, 代入 (1') 式得: $l_1\sigma^{k-1}(\xi) = \mathbf{0}$. 因为 $\sigma^{k-1}(\xi) \neq \mathbf{0}$, 所以 $l_1 = 0$.

将 $l_1 = 0$ 代入 (1) 式得:

$$l_2 \sigma(\boldsymbol{\xi}) + \dots + l_k \sigma^{k-1}(\boldsymbol{\xi}) = \mathbf{0}$$
 (2)

两边同时用 σ^{k-2} 作用得: $l_2\sigma^{k-1}(\xi) + l_3\sigma^k(\xi) + \cdots + l_k\sigma^{2k-3}(\xi) = 0$, 注意到 $\sigma^k(\xi) = \sigma^{k+1}(\xi) = \cdots = \sigma^{2k-2}(\xi) = 0$, $\sigma^{k-1}(\xi) \neq 0$. 于是得到 $l_2 = 0$, 类似可得 $l_3 = l_4 = \cdots = l_k = 0$. 因此结论成立.

- 50. 已知 \mathbb{R}^2 的线性变换 $\sigma(x_1, x_2) = (x_1 x_2, x_1 + x_2)$.
- (1) $\Re \sigma^2(x_1, x_2) = ?$
- (2) 问 σ 是否可逆? 求 $\sigma^{-1}(x_1, x_2) =$?

 $\mathbf{\underline{m}}: \quad (1) \ \boldsymbol{\sigma}^2(x_1, x_2) = \boldsymbol{\sigma}(\boldsymbol{\sigma}(x_1, x_2)) = \boldsymbol{\sigma}(x_1 - x_2, x_1 + x_2) = ((x_1 - x_2) - (x_1 + x_2), (x_1 - x_2) + (x_1 + x_2)) = (-2x_2, 2x_1).$

$$(2) \ \boldsymbol{\sigma}(x_1,x_2) = (x_1 - x_2, x_1 + x_2) = (x_1,x_2) \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix},$$
因为 $\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2 \neq 0$,所以矩阵 $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ 可逆,且 $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. 从而 $\boldsymbol{\sigma}$ 可逆,且
$$\boldsymbol{\sigma}^{-1}(x_1,x_2) = (x_1,x_2) \frac{1}{2} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = (\frac{x_1 - x_2}{2}, \frac{x_1 + x_2}{2}).$$

- 51. 设 A 为正交矩阵, I + A 可逆, 证明:
- (1) $(I-A)(I+A)^{-1}$ 可交换;
- (2) $(I-A)(I+A)^{-1}$ 为反对称矩阵.

证: (1) 因为 $I-A^2=(I-A)(I+A)=(I+A)(I-A)$,所以 $(I+A)^{-1}(I-A)(I+A)=(I+A)^{-1}(I+A)(I-A)=(I-A)$,从而

$$(I+A)^{-1}(I-A) = (I-A)(I+A)^{-1}.$$

故 $(I-A)(I+A)^{-1}$ 可交换.

(2) 因为 A 为正交矩阵, 所以 $AA^T = A^TA = I$, 从而

$$[(I-A)(I+A)^{-1}]^T = [(I+A)^{-1}]^T (I-A)^T = [(I+A)^T]^{-1} (I-A)^T = (I+A^T)^{-1} (I-A^T) = [A^T(A+I)]^{-1} A^T (A-I)$$

$$= (A+I)^{-1} (A^T)^{-1} A^T (A-I) = -(I+A)^{-1} (I-A) = -(I-A)(I+A)^{-1}$$

故 $(I-A)(I+A)^{-1}$ 为反对称矩阵.

52. 证明: (1) 若 det A = 1, 则 A 为正交矩阵的充分必要条件是 A 的每个元素等于自己的代数余子式; 若 det A = -1, 则 A 为正交矩阵的充分必要条件是 A 的每个元素等于自己的代数余子式乘以 -1.

证:
$$A$$
 为正交矩阵 $\Leftrightarrow A^T = A^{-1} \Leftrightarrow A^T = \frac{A^*}{|A|}$.

若 |A|=1, 则 A 为正交矩阵 $\Leftrightarrow A^T=A^* \Leftrightarrow a_{ij}=A_{ij} \ (1,j=1,2,\cdots n)$.

若 |A| = -1, 则 A 为正交矩阵 $\Leftrightarrow A^T = -A^* \Leftrightarrow a_{ij} = -A_{ij} \ (1, j = 1, 2, \cdots n)$.

结论成立.

53. 设 $\alpha_1, \alpha_2, \dots, \alpha_m \in \mathbb{R}^n$, 证明: $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关的充要条件是

$$\det A = \det \begin{pmatrix} (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1) & (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) & \cdots & (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_m) \\ (\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1) & (\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2) & \cdots & (\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_m) \\ \vdots & \vdots & & \vdots \\ (\boldsymbol{\alpha}_m, \boldsymbol{\alpha}_1) & (\boldsymbol{\alpha}_m, \boldsymbol{\alpha}_2) & \cdots & (\boldsymbol{\alpha}_m, \boldsymbol{\alpha}_m) \end{pmatrix} \neq 0.$$

证: 充分性:设 $x_1\alpha_1 + x_2\alpha_2 + \cdots + x_m\alpha_m = \mathbf{0}$, 分别用 α_i $(i = 1, 2, \cdots, m)$ 与上式两端的向量做内积, 得

到线性方程组:

$$\begin{cases} x_1(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_1) + x_2(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2) + \dots + x_m(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_m) = (\boldsymbol{\alpha}_1, \boldsymbol{0}) = 0 \\ x_1(\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_1) + x_2(\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2) + \dots + x_m(\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_m) = (\boldsymbol{\alpha}_2, \boldsymbol{0}) = 0 \\ \dots & \dots & \dots \\ x_1(\boldsymbol{\alpha}_m, \boldsymbol{\alpha}_1) + x_2(\boldsymbol{\alpha}_m, \boldsymbol{\alpha}_2) + \dots + x_m(\boldsymbol{\alpha}_m, \boldsymbol{\alpha}_m) = (\boldsymbol{\alpha}_m, \boldsymbol{0}) = 0 \end{cases}$$

因为
$$\det A = \det \begin{pmatrix} (\alpha_1, \alpha_1) & (\alpha_1, \alpha_2) & \cdots & (\alpha_1, \alpha_m) \\ (\alpha_2, \alpha_1) & (\alpha_2, \alpha_2) & \cdots & (\alpha_2, \alpha_m) \\ \vdots & \vdots & & \vdots \\ (\alpha_m, \alpha_1) & (\alpha_m, \alpha_2) & \cdots & (\alpha_m, \alpha_m) \end{pmatrix} \neq 0$$
,所以上述方程组只有零解,即 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_2 = x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_2 = x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_2 = x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_2 = x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_2 = x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = \cdots = x_m = 0$,并 $x_2 = x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = x_2 = \cdots = x_m = 0$,并 $x_2 = x_1 = x_2 = x_2 = x_1 = x_2 = \cdots = x_m = 0$,并 $x_1 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_1 = x_2 = x_2 = x_2 = x_2 = x_2 = x_1 = x_2 =$

 $x_n = 0$, $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关

=0,故 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关. 必要性: 用反证法, 假设 $\det A=0$,那么 A 的 m 个列向量线性相关, 记 $\boldsymbol{\beta}_i=\begin{pmatrix} (\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_i) \\ (\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_i) \\ \vdots \\ (\boldsymbol{\alpha}_n,\boldsymbol{\alpha}_n) \end{pmatrix}$,则存在不全为

0 的数 k_1, k_2, \cdots, k_m 使得

$$k_1 \boldsymbol{\beta}_1 + k_2 \boldsymbol{\beta} + \dots + k_m \boldsymbol{\beta}_m = \mathbf{0}$$

即 $(\boldsymbol{\alpha}_i, \sum_{j=1}^m k_j \boldsymbol{\alpha}_j) = 0$, $i = 1, 2, \dots, n$. 于是

$$\sum_{i=1}^{m} k_i(\boldsymbol{\alpha}_i, \sum_{j=1}^{m} k_j \boldsymbol{\alpha}_j) = (\sum_{i=1}^{m} k_i \boldsymbol{\alpha}_i, \sum_{j=1}^{m} k_j \boldsymbol{\alpha}_j) = (\sum_{i=1}^{m} k_i \boldsymbol{\alpha}_i, \sum_{i=1}^{m} k_i \boldsymbol{\alpha}_i) = 0$$

亦即 $\sum_{i=1}^{m} k_i \alpha_i = \mathbf{0}$, 这与 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关矛盾, 故结论成立.

第五章 特征值与特征向量

1. 求下列矩阵的特征值与特征向量.

$$(1) \begin{pmatrix} 2 & -3 \\ -3 & 1 \end{pmatrix}; \qquad (2) \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}; \qquad (3) \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 3 \end{pmatrix};$$

$$(4) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \quad (5) \begin{pmatrix} 4 & 5 & -2 \\ -2 & -2 & 1 \\ -1 & -1 & 1 \end{pmatrix}; \quad (6) \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}.$$

M: (1)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 3 \\ 3 & \lambda - 1 \end{vmatrix} = (\lambda - 2)(\lambda - 1) - 9 = \lambda^2 - 3\lambda - 7.$$

故
$$A$$
 的特征值为: $\lambda_1 = \frac{3 + \sqrt{37}}{2}$, $\lambda_2 = \frac{3 - \sqrt{37}}{2}$.

当
$$\lambda_1 = \frac{3+\sqrt{37}}{2}$$
 时,解方程组 $(\lambda_1 I - A)\boldsymbol{x} = \boldsymbol{0}$,由

$$\begin{pmatrix} \frac{\sqrt{37}-1}{2} & 3\\ 3 & \frac{\sqrt{37}+1}{2} \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}.$$

解得基础解系为 $\xi_1 = (6, 1 - \sqrt{37})^T$. 因此矩阵对应于特征值 $\lambda_1 = \frac{3 + \sqrt{37}}{2}$ 的全部特征向量为 $k_1\xi_1$ (k_1 为任意非零常数).

当
$$\lambda_1 = \frac{3 - \sqrt{37}}{2}$$
 时, 由 $(\lambda_1 I - A)\boldsymbol{x} = \boldsymbol{0}$, 即

$$\left(\begin{array}{cc} -\frac{\sqrt{37}+1}{2} & 3\\ 3 & \frac{1-\sqrt{37}}{2} \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 0\\ 0 \end{array}\right).$$

解得基础解系为 $\boldsymbol{\xi}_2 = (6, 1 + \sqrt{37})^T$. 因此矩阵对应于特征值 $\lambda_1 = \frac{3 + \sqrt{37}}{2}$ 的全部特征向量为 $k_2\boldsymbol{\xi}_2$ (k_2 为任意非零常数).

$$(2) |\lambda I - A| = \begin{vmatrix} \lambda - 3 & 1 & -1 \\ -2 & \lambda & -1 \\ -1 & 1 & \lambda - 2 \end{vmatrix} = \begin{vmatrix} \frac{r_1 - r_3}{r_2 - \lambda r_3} & \lambda - 2 & 0 & 1 - \lambda 1 \\ \lambda - 2 & 0 & -\lambda^2 + 2\lambda - 1 \\ -1 & 1 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^2 (\lambda - 1).$$

故 A 的特征值为: $\lambda_1 = \lambda_2 = 2$ $\lambda_2 = 1$

当 $\lambda_1 = \lambda_2 = 2$ 时, 解方程组 (2I - A)x = 0, 由

$$2I - A = \begin{pmatrix} -1 & 1 & -1 \\ -2 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} -1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得基础解系为 $\xi_1 = (1,1,0)^T$. 因此矩阵对应于特征值 $\lambda_1 = \lambda_2 = 2$ 的全部特征向量为 $k_1\xi_1$ (k_1 为任意非零常数).

当 $\lambda_3 = 1$ 时, 解方程组 (I - A)x = 0, 由

$$I - A = \begin{pmatrix} -2 & 1 & -1 \\ -2 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix} \xrightarrow[r_3 \times (-1)]{r_2 - r_1} \begin{pmatrix} -2 & 1 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得基础解系为 $\xi_2 = (0,1,1)^T$. 因此矩阵对应于特征值 $\lambda_3 = 1$ 的全部特征向量为 $k_2\xi_2$ (k_2 为任意非零常数).

(3)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 0 & 0 \\ -1 & \lambda - 1 & -1 \\ -1 & 1 & \lambda - 3 \end{vmatrix} = (\lambda - 2) \begin{vmatrix} \lambda - 1 & -1 \\ 1 & \lambda - 3 \end{vmatrix} = (\lambda - 2)^3.$$

故 A 的特征值为: $\lambda_1 = \lambda_2 = \lambda_3 = 2$.

当 $\lambda_1 = \lambda_2 = \lambda_3 = 2$ 时,解方程组 (2I - A)x = 0,由

$$2I - A = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得基础解系为 $\boldsymbol{\xi}_1 = (1,1,0)^T$, $\boldsymbol{\xi}_2 = (-1,0,1)^T$. 因此矩阵对应于特征值 $\lambda_1 = \lambda_2 = \lambda_3 = 2$ 的全部特征向量为 $k_1\boldsymbol{\xi}_1 + k_2\boldsymbol{\xi}_2$, (k_1,k_2) 为任意非零常数).

$$(4) |\lambda I - A| = \begin{vmatrix} \lambda - 1 & -2 & -3 & -4 \\ 0 & \lambda - 1 & -2 & -3 \\ 0 & 0 & \lambda - 1 & -2 \\ 0 & 0 & 0 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^4, \text{ it } A \text{ in the partial of } \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 1.$$

当 $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 1$ 时, 解方程组 (I - A)x = 0, 由

$$I-A = \begin{pmatrix} 0 & -2 & -3 & -4 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_i \div (-2)} \begin{pmatrix} 0 & 1 & \frac{3}{2} & 2 \\ 0 & 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - 2r_3} \begin{pmatrix} 0 & 1 & \frac{3}{2} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 - \frac{3}{2}r_2} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

解得基础解系为 $\boldsymbol{\xi} = (1,0,0,0)^T$,因此矩阵对应于特征值 $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 1$ 的全部特征向量为 $k\boldsymbol{\xi}$, (k 为任意非零常数).

$$(5) |\lambda I - A| = \begin{vmatrix} \lambda - 4 & -5 & 2 \\ 2 & \lambda + 2 & -1 \\ 1 & 1 & \lambda - 1 \end{vmatrix} \xrightarrow{c_1 - c_2} \begin{vmatrix} \lambda + 1 & -5 & 5\lambda - 3 \\ -\lambda & \lambda + 2 & -\lambda^2 - \lambda + 1 \\ 0 & 1 & 0 \end{vmatrix} = (\lambda - 1)^3.$$

故 A 的特征值为: $\lambda_1 = \lambda_2 = \lambda_3 = 1$

当 $\lambda_1 = \lambda_2 = \lambda_3 = 1$ 时, 解方程组 (I - A)x = 0, 由

$$I-A = \begin{pmatrix} -3 & -5 & 2 \\ 2 & 3 & -1 \\ 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 2 & 3 & -1 \\ -3 & -5 & 2 \end{pmatrix} \xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得基础解系为 $\boldsymbol{\xi} = (-1,1,1)^T$,因此矩阵对应于特征值 $\lambda_1 = \lambda_2 = \lambda_3 = 1$ 的全部特征向量为 $k\boldsymbol{\xi}$, (k 为任意非零常数).

(6)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 2 & 0 \\ 2 & \lambda - 1 & 2 \\ 0 & 2 & \lambda \end{vmatrix} = \lambda(\lambda - 1)(\lambda - 2) - 4(\lambda - 2) - 4\lambda = (\lambda + 2)(\lambda - 1)(\lambda - 4).$$

故 A 的特征值为: $\lambda_1 = -2$, $\lambda_2 = 1$, $\lambda_3 = 4$.

当 $\lambda_1 = -2$ 时,解方程组 (-2I - A)x = 0,由

$$-2I - A = \begin{pmatrix} -4 & 2 & 0 \\ 2 & -3 & 2 \\ 0 & 2 & -2 \end{pmatrix} \xrightarrow{r_1 + 2r_2} \begin{pmatrix} 0 & -4 & 4 \\ 2 & -3 & 2 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & -1 \\ 2 & -3 & 2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & -1 \\ 2 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得基础解系为 $\xi_1 = (1,2,2)^T$. 因此矩阵对应于特征值 $\lambda_1 = -2$ 的全部特征向量为 $k_1\xi_1$ (k_1 为任意非零常数). 当 $\lambda_2 = 1$ 时,解方程组 (I - A) $\boldsymbol{x} = \boldsymbol{0}$,由

$$I - A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix} \xrightarrow[r_1 \times (-1)]{r_2 + 2r_1} \begin{pmatrix} 1 & -2 & 0 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得基础解系为 $\xi_2 = (2,1,-2)^T$. 因此矩阵对应于特征值 $\lambda_2 = 1$ 的全部特征向量为 $k_2\xi_2$ (k_2 为任意非零常数).

当 $\lambda_3 = 4$ 时,解方程组 (4I - A)x = 0,由

$$4I - A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 3 & 2 \\ 0 & 2 & 4 \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得基础解系为 $\xi_3 = (-2, 2, -1)^T$. 因此矩阵对应于特征值 $\lambda_3 = 4$ 的全部特征向量为 $k_3\xi_3$ (k_3 为任意非零常数).

2. 已知矩阵
$$A = \begin{pmatrix} 7 & 4 & -1 \\ 4 & 7 & -1 \\ -4 & -4 & x \end{pmatrix}$$
 的特征值 $\lambda_1 = 3$ (二重), $\lambda_2 = 12$, 求 x 的值, 并求特征向量.

解: 由特征值的性质可知 $\lambda_1 + \lambda_1 + \lambda_2 = tr(A)$, 即

$$3+3+12=7+7+x \Rightarrow x=4$$
.

当 $\lambda_1 = 3$ 时, 解方程组 $(\lambda_1 I - A)x = \mathbf{0}$, 由

$$(\lambda_1 I - A) = (3I - A) = \begin{pmatrix} -4 & -4 & 1 \\ -4 & -4 & 1 \\ 4 & 4 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -\frac{1}{4} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

得基础解系为 $\boldsymbol{\xi}_1 = (-1,1,0)^T$, $\boldsymbol{\xi}_2 = (1,0,4)^T$, 因此矩阵对应于特征值 $\lambda_1 = 3$ 的全部特征向量为 $k_1\boldsymbol{\xi}_1 + k_2\boldsymbol{\xi}_2$ (k_1,k_2 为任意常数).

当 $\lambda_2 = 12$ 时,解方程组 $(\lambda_2 I - A)x = 0$,由

$$(\lambda_2 I - A) = \left(\begin{array}{ccc} 5 & -4 & 1 \\ -4 & 5 & 1 \\ 4 & 4 & 8 \end{array}\right) \xrightarrow[r_3 + r_2]{r_1 + r_2} \left(\begin{array}{ccc} 1 & 1 & 2 \\ -4 & 5 & 1 \\ 0 & 9 & 9 \end{array}\right) \xrightarrow[r_3 \div 9]{r_2 + 4r_1} \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 9 & 9 \\ 0 & 1 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right) \xrightarrow[r_1 - r_2]{r_1 - r_2} \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

得基础解系为 $\boldsymbol{\xi}_3 = (1,1,-1)^T$, 因此矩阵对应于特征值 $\lambda_2 = 12$ 的全部特征向量为 $k_3 \boldsymbol{\xi}_3$ (k_3 为任意常数).

3. 设 x_1, x_2 是矩阵 A 不同特征值的特征向量, 证明 $x_1 + x_2$ 不是 A 的一个特征向量.

证: 用反证法: 假设 $x_1 + x_2$ 是矩阵 A 的特征向量, 对应的特征值为 λ , 由题设再设 x_i 是矩阵 A 的对应于特征值 λ_i 的特征向量, $i = 1, 2, 且 <math>\lambda_1 \neq \lambda_2$, 即有

$$Ax_1 = \lambda_1 x_1, \ Ax_2 = \lambda_2 x_2, \ A(x_1 + x_2) = \lambda(x_1 + x_2)$$

于是得到

$$(\lambda - \lambda_1)\boldsymbol{x}_1 + (\lambda - \lambda_2)\boldsymbol{x}_2 = \boldsymbol{0}$$

因为 x_1, x_2 对应 A 的不同特征值, 所以 x_1, x_2 线性无关, 从而有

$$\lambda - \lambda_1 = \lambda - \lambda_2 = 0 \Rightarrow \lambda = \lambda_1 = \lambda_2.$$

矛盾!

4. 设 x_1, x_2, x_3 分别是矩阵 A 对应于互不相同的特征值 $\lambda_1, \lambda_2, \lambda_3$ 的特征向量, 证明 $x_1 + x_2 + x_3$ 不是 A 的特征向量.

证: 用反证法: 假设 $x_1 + x_2 + x_3$ 是矩阵 A 的特征向量, 对应的特征值为 λ , 由题设再设 x_i 是矩阵 A 的对应于特征值 λ_i 的特征向量, i = 1, 2, 3, 且 $\lambda_1 \neq \lambda_2 \neq \lambda_3$, 即有

$$Ax_1 = \lambda_1 x_1, \ Ax_2 = \lambda_2 x_2, \ Ax_3 = \lambda_3 x_3 A(x_1 + x_2 + x_3) = \lambda(x_1 + x_2 + x_3)$$

于是得到

$$(\lambda - \lambda_1)\mathbf{x}_1 + (\lambda - \lambda_2)\mathbf{x}_2 + (\lambda - \lambda_3)\mathbf{x}_3 = \mathbf{0}$$

因为 x_1, x_2, x_3 对应 A 的不同特征值, 所以 x_1, x_2, x_3 线性无关, 从而有

$$\lambda - \lambda_1 = \lambda - \lambda_2 = \lambda - \lambda_3 = 0 \Rightarrow \lambda = \lambda_1 = \lambda_2 = \lambda_3.$$

矛盾!

5. 证明对合矩阵 A (即 $A^2 = I$) 的特征值只能为 1 或 -1.

证: 设 λ 是 A 的特征值, x 是对应的特征向量, 即有 $Ax = \lambda x$, 用 A 左乘上式得 $A^2x = \lambda Ax = \lambda^2 x$, 注意 到 $A^2 = I$, 则有

$$x = \lambda^2 x \Rightarrow (1 - \lambda^2) x = 0$$

因为 $x \neq 0$, 所以 $1 - \lambda^2 = 0$, 从而 $\lambda = 1$ 或 -1.

6. 设 A 可逆, 讨论 A 与 A^* 的特征值 (特征向量) 之间的相互关系.

解: 设 λ 是 A 的特征值, 对应的特征向量为 x, 即有 $Ax = \lambda x$. 因为 A 可逆, 所以 $|A| \neq 0$, 且 $\lambda \neq 0$.

$$A\boldsymbol{x} = \lambda \boldsymbol{x} \Rightarrow \boldsymbol{x} = \lambda A^{-1}\boldsymbol{x} = \lambda \frac{A^{\star}}{|A|}\boldsymbol{x} \Rightarrow A^{\star}\boldsymbol{x} = \frac{|A|}{\lambda}\boldsymbol{x}$$

上式说明: 如果 λ 是可逆矩阵 A 的特征值, 那么 $\frac{|A|}{\lambda}$ 就是 A^* 的特征值, 对应的特征向量相同.

7. 若
$$P^{-1}AP = B$$
, 问: $P^{-1}(A - 2I)P = B - 2I$ 是否成立? **解**: $P^{-1}(A - 2I)P = P^{-1}AP - 2P^{-1}IP = B - 2I$, 即成立.

8. 己知
$$A \sim \Lambda = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$$
, 求 $\det(A - I)$.

解: 因为 $A \sim \Lambda$, 所以存在可逆阵 P, 使得 $P^{-1}AP = \Lambda$, 即 $A = P\Lambda P^{-1}$, 从而 $A - I = P\Lambda P^{-1} - PIP^{-1} = P(\Lambda - I)P^{-1}$, 两边取行列式得:

$$|A - I| = |P||\Lambda - I||P^{-1}| = |\Lambda - I| = \begin{vmatrix} -1 - 1 & 0 \\ 0 & 2 - 1 \end{vmatrix} = -2.$$

另解: 由已知条件可知 A 的特征值为 -1 和 2, 那么 A - I 的特征值为 -1 - 1 = -2 和 2 - 1 = 1, 于是

$$|A - I| = (-1) \times 1 = -2.$$

9. 已知
$$P = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$$
, $P^{-1}AP = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$, 求 A^n .

解: 由已知
$$P^{-1}AP = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$$
 可得 $A = P \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$ P^{-1} , 且 $P^{-1} = -\begin{pmatrix} -2 & 1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$ 于

是

$$A^{n} = P \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}^{n} P^{-1} = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} (-1)^{n} & 0 \\ 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 4(-1)^{n} - 3 \cdot 2^{n} & 2(-1)^{n+1} + 2^{n+1} \\ 6(-1)^{n} - 3 \cdot 2^{n+1} & 3(-1)^{n+1} + 2^{n+2} \end{pmatrix}.$$

10. 设 $B = P^{-1}AP, x$ 是矩阵 A 属于特征值 λ_0 的特征向量. 证明 $P^{-1}x$ 是矩阵 B 对应特征值 λ_0 的一个特征向量.

证: 由已知可得: $Ax = \lambda_0 x$, 又由 $B = P^{-1}AP$ 可得 $A = PBP^{-1}$, 所以有:

$$PBP^{-1}x = \lambda_0 x$$

两边左乘 P^{-1} 得:

$$B(P^{-1}\boldsymbol{x}) = \lambda_0(P^{-1}\boldsymbol{x}).$$

即 $P^{-1}x$ 是矩阵 B 对应特征值 λ_0 的一个特征向量.

11. 设 A 为非奇异矩阵, 证明 AB 与 BA 相似.

证: 因为 A 为非奇异矩阵, 所以 A^{-1} 存在, 而

$$BA = IBA = A^{-1}ABA$$

即 AB 与 BA 相似.

12. 设
$$A \sim B$$
, $C \sim D$, 证明: $\begin{pmatrix} A & O \\ O & C \end{pmatrix} \sim \begin{pmatrix} B & O \\ O & D \end{pmatrix}$.

证: 因为 $A \sim B$, $C \sim D$, 所以存在可逆矩阵 P, Q, 使得 $B = P^{-1}AP$, $D = Q^{-1}CQ$, 作矩阵 $T = \begin{pmatrix} P & O \\ O & Q \end{pmatrix}$,

因为 P,Q 都可逆, 所以 T 也可逆, 且 $T^{-1}=\left(\left(egin{array}{cc} P^{-1} & O \\ O & Q^{-1} \end{array} \right),$ 于是

$$T^{-1}\left(\begin{array}{cc}A&O\\O&C\end{array}\right)T=\left(\begin{array}{cc}P^{-1}&O\\O&Q^{-1}\end{array}\right)\left(\begin{array}{cc}A&O\\O&C\end{array}\right)\left(\begin{array}{cc}P&O\\O&Q\end{array}\right)=\left(\begin{array}{cc}P^{-1}AP&O\\O&Q^{-1}CQ\end{array}\right)=\left(\begin{array}{cc}B&O\\O&D\end{array}\right).$$

所以
$$\begin{pmatrix} A & O \\ O & C \end{pmatrix} \sim \begin{pmatrix} B & O \\ O & D \end{pmatrix}$$
.

13. 证明:
$$m$$
 阶矩阵 $J = \begin{pmatrix} 0 & 1 & & \\ & 0 & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{pmatrix}$ 只有零特征值,且其特征子空间是 \mathbb{R}^m 的一维子空间,并求它的基.

证: 由
$$|\lambda I - J| =$$
 $\begin{vmatrix} \lambda & 1 \\ & \lambda & \ddots \\ & & \ddots & 1 \\ & & & \lambda \end{vmatrix} = \lambda^n = 0$ 得 $\lambda = 0$, 即矩阵 J 只有零特征值.

因为 R(J) = n-1, 所以 $Jx = \mathbf{0}$ 的基础解系中只有一个解向量 $\boldsymbol{\xi} = (1,0,\cdots,0)^T$. 即 J 的关于零特征值的特征子空间是 \mathbb{R}^m 的一维子空间,且 $\boldsymbol{\xi}$ 为特征子空间的一个基.

14. 若 I + A 可逆, I - A 不可逆, 那么, 关于 A 的特征值能作出怎样的断语?

解: 有题设可知 $|I+A| \neq 0$, 即 $|-I-A| \neq 0$, 且 |I-A| = 0, 所以 1 是 A 的特征值, 而 -1 不是 A 的特征值.

15. 若 $\det(I - A^2) = 0$, 证明: 1 或 -1 至少有一个是 A 的特征值.

证: 因为 $|I-A^2|=|I-A||I+A|=0$,所以 |I-A|=0 和 |-I-A|=0 至少有一个成立,从而 1 或 -1 至少有一个是 A 的特征值.

18. 设 n 阶矩阵 A 的 n^2 个元素全为 1, 试求可逆阵 P, 使 $P^{-1}AP$ 为对角阵, 并写出与 A 相似的对角阵. **解**: 计算 A 的特征多项式:

$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 1 & \cdots & 1 \\ 1 & 1 - \lambda & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 - \lambda \end{vmatrix} \xrightarrow{c_1 + c_i} \begin{vmatrix} n - \lambda & 1 & \cdots & 1 \\ n - \lambda & 1 - \lambda & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ n - \lambda & 1 & \cdots & 1 - \lambda \end{vmatrix}$$

$$= (n - \lambda) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 - \lambda & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 - \lambda \end{vmatrix} \xrightarrow{r_i - r_1} (n - \lambda) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & -\lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -\lambda \end{vmatrix} = (-\lambda)^{n-1} (n - \lambda).$$

故 A 的特征值为 $\lambda_1 = \lambda_2 = \cdots = \lambda_{n-1} = 0$, $\lambda_n = n$.

对于特征值 0, 解方程组 $Ax = \mathbf{0}$, 同解方程组为 $x_1 = -x_2 - x_3 - \cdots - x_n$. 对应的特征向量为: $\boldsymbol{\xi}_1 = (1, -1, 0, \cdots, 0)^T$, $\boldsymbol{\xi}_2 = (1, 0, -1, \cdots, 0)^T$, $\boldsymbol{\xi}_{n-1} = (1, 0, 0, \cdots, -1)^T$.

对于特征值 n, 解方程组 (A-nI)x=0, 因为 A-nI 的每行元素之和均为 0, 所以对应的特征向量为 $\boldsymbol{\xi}_n=(1,1,\cdots,1)^T$.

取
$$P = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1 \\ -1 & 1 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 1 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & \ddots & \\ & & & n \end{pmatrix}, \quad \mathcal{D} P 可逆, \quad \mathcal{D} P T \mathcal{D} \mathcal{D}, \quad \mathcal{D} P \mathcal{D} \mathcal{D} \mathcal{D}$$

19. 已知 4 阶矩阵 A 的特征值 λ_1 (三重), $\lambda_2 = -3$; 对应于 λ_1 的特征向量有 $\boldsymbol{x}_1 = (1, -1, 0, 0)^T$, $\boldsymbol{x}_2 = (-1, 1, -1, 0)^T$, $\boldsymbol{x} = (0, -1, 1, -1)^T$, 对应于 λ_2 的特征向量为 $\boldsymbol{x}_4 = (0, 0, -1, 1)^T$. 问 A 可否对角化? 如能对角化, 求出 A 及 A^n .

解: 因为

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 \times (-1)} \begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - r_3} \begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & -1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 & 0 & 1 \end{pmatrix}$$

即矩阵
$$P = (\boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}_3, \boldsymbol{x}_4) = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$
 可逆, 且 $P^{-1} = \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1 \\ -1 & -1 & 0 & 0 \\ -1 & -1 & 0 & 1 \end{pmatrix}$. 因为 A 的特

征向量 x_1, x_2, x_3, x_4 线性无关, 所以 A 可以对角化. 记 $\Lambda = diag(1, 1, 1, -3)$, 则有 $AP = P\Lambda$

$$A = P\Lambda P^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1 \\ -1 & -1 & 0 & 0 \\ -1 & -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & -4 & 1 & 4 \\ 4 & 4 & 0 & -3 \end{pmatrix}$$

$$A^{n} = P\Lambda^{n}P^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & -1 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & (-3)^{n} \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & -1 \\ 0 & 0 & -1 & -1 \\ -1 & -1 & 0 & 0 \\ -1 & -1 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 + (-3)^{n} & -1 + (-3)^{n} & 1 & 1 - (-3)^{n} \\ 1 - (-3)^{n} & 1 - (-3)^{n} & 0 & (-3)^{n} \end{pmatrix}.$$

$$21. 已知 A = \begin{pmatrix} -3 & 2 \\ -2 & 2 \end{pmatrix}.$$

(1). 求 A^4 , A^5 , $A^k(k)$ 为正整数

(2). 若
$$f(x) = \begin{vmatrix} x^4 - 1 & x \\ x^3 & x^6 + 1 \end{vmatrix}$$
, 求 $f(A)$.

解: $|\lambda I - A| = \begin{vmatrix} \lambda + 3 & -2 \\ 2 & \lambda - 2 \end{vmatrix} = (\lambda - 2)(\lambda + 3) + 4 = (\lambda + 2)(\lambda - 1)$.

即 A 的特征值为 $\lambda_1 = -2$, $\lambda_2 = 1$

当 $\lambda_1 = -2$ 时,解齐次线性方程组 (-2I - A)x = 0,因为

$$(-2I - A) = \begin{pmatrix} 1 & -2 \\ 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix}$$

所以 A 的对应于特征值 $\lambda_1 = -2$ 的特征向量为 $\xi_1 = (2,1)^T$.

当 $\lambda_2 = 1$ 时, 解齐次线性方程组 (I - A)x = 0, 因为

$$(I - A) = \begin{pmatrix} 4 & -2 \\ 2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$

所以 A 的对应于特征值 $\lambda_2 = 1$ 的特征向量为 $\boldsymbol{\xi}_1 = (1,2)^T$.

取
$$P = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
, $\Lambda = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$ 那么 $P^{-1} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$, 且 $P^{-1}AP = \Lambda$, 或 $A = P\Lambda P^{-1}$. 于是
$$A^4 = P\Lambda^4 P^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} (-2)^4 & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 21 & -10 \\ 10 & -4 \end{pmatrix}.$$

$$A^{5} = P\Lambda^{4}P^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} (-2)^{5} & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -43 & 22 \\ -22 & 12 \end{pmatrix}.$$

$$A^{k} = P\Lambda^{4}P^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} (-2)^{k} & 0 \\ 0 & 1 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -1 + (-2)^{k+2} & 2 + (-2)^{k+1} \\ -2 - (-2)^{k+1} & 4 - (-2)^{k} \end{pmatrix}.$$

$$(2). \; \boxtimes \not\exists \; f(x) = (x^{4} - 1)(x^{6} + 1) - x^{4} = x^{10} - x^{6} - 1, \; \not\exists \; U$$

$$f(A) = A^{10} - A^{6} - I = P(\Lambda^{10} - \Lambda^{6} - I)P^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 959 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1279 & -640 \\ 640 & -321 \end{pmatrix}.$$

22. 设
$$A = \begin{pmatrix} 3 & 4 & 0 & 0 \\ 4 & -3 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 求 A^k (k 为正整数).

解: 将 A 分块为 $\begin{pmatrix} A_1 & O \\ O & A_2 \end{pmatrix}$, 那么 $A^k = \begin{pmatrix} A_1^k & O \\ O & A_2^k \end{pmatrix}$. 下面分别求 A_1^k 和 A_2^k .

$$A^{k} = \left\{ \begin{array}{ccccc} \begin{pmatrix} 5^{k} & 0 & 0 & 0 \\ 0 & 5^{k} & 0 & 0 \\ 0 & 0 & 2^{k} & 4k2^{k-1} \\ 0 & 0 & 0 & 2^{k} \end{pmatrix}, & k \text{ 为偶数}, \\ \begin{pmatrix} 3(5^{k-1}) & 4(5^{k-1}) & 0 & 0 \\ 4(5^{k-1}) & -3(5^{k-1}) & 0 & 0 \\ 0 & 0 & 2^{k} & 4k2^{k-1} \\ 0 & 0 & 0 & 2^{k} \end{pmatrix}, & k \text{ 为奇数}. \end{array} \right.$$

23. 对 5.2 节例 1 的矩阵 A. 求正交矩阵 T. 使得 $T^{-1}AT$ 为对角阵.

解: 求特征值及对应特征值的同解方程组见教材, 对应于特征值 2 (三重根) 的特征向量取为两两正交的向量 $\boldsymbol{\xi}_1 = (1,-1,0,0)^T, \boldsymbol{\xi}_2 = (0,0,1,-1)^T, \boldsymbol{\xi}_3 = (1,1,-1,-1)^T$. 对应于特征值 -2 的特征向量为 $\boldsymbol{\xi}_4 = (1,1,1,1)$.

再取
$$\boldsymbol{\eta}_1 = \frac{\boldsymbol{\xi}_1}{\|\boldsymbol{\xi}_1\|} = \frac{1}{\sqrt{2}}(1, -1, 0, 0)^T$$
, $\boldsymbol{\eta}_2 = \frac{\boldsymbol{\xi}_2}{\|\boldsymbol{\xi}_2\|} = \frac{1}{\sqrt{2}}(0, 0, 1, -1)^T$, $\boldsymbol{\eta}_3 = \frac{\boldsymbol{\xi}_3}{\|\boldsymbol{\xi}_3\|} = \frac{1}{2}(1, 1, -1, -1)^T$, $\boldsymbol{\eta}_4 = \frac{\boldsymbol{\xi}_4}{\|\boldsymbol{\xi}_4\|} = \frac{1}{2}(1, 1, -1, -1)^T$

$$\frac{1}{2}(1,1,1,1)^T, \quad 则 \ T = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3, \boldsymbol{\eta}_4) = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
即为所求的正交矩阵.

24. 对下列实对称矩阵 A, 求正交矩阵 T 和对角阵 A, 使 $T^{-1}AT = \Lambda$.

解:
$$(1) |\lambda I - A| = \begin{vmatrix} \lambda - 3 & -2 & -4 \\ -2 & \lambda & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix} = \begin{vmatrix} \lambda - 3 & -2 & -1 - \lambda \\ -2 & \lambda & 0 \\ -4 & -2 & \lambda \lambda + 1 \end{vmatrix} = \begin{vmatrix} r_{1} + r_{3} \\ -2 & \lambda & 0 \\ -4 & -2 & \lambda \lambda + 1 \end{vmatrix} = (\lambda + 1)[\lambda^{2} - 7\lambda - 8] = (\lambda + 1)^{2}[\lambda - 8]$$

故 A 的特征值为: $\lambda_1 = \lambda_2 = -1$, $\lambda_3 = 8$.

当 $\lambda_1 = \lambda_2 = -1$ 时,解方程组 (A+I)x = 0,由

$$A + I = \begin{pmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 -1 的两两正交的特征向量为: $\boldsymbol{\xi}_1 = (1, -2, 0)^T$, $\boldsymbol{\xi}_2 = (4, 2, -5)^T$.

当 $\lambda_3 = 8$ 时,解方程组 (A - 8I)x = 0,由

$$A-8I = \begin{pmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & 1 \\ -5 & 2 & 4 \\ 4 & 2 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & 1 \\ 0 & -18 & 9 \\ 0 & 18 & -9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -4 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 8 特征向量为 $\xi_3 = (2,1,2)^T$.

取
$$\eta_1 = \frac{\xi_1}{\|\xi_1\|} = \frac{1}{\sqrt{5}}(1, -2, 0)^T, \eta_2 = \frac{\xi_2}{\|\xi_2\|} = \frac{1}{\sqrt{45}}(4, 2, -5)^T, \eta_3 = \frac{\xi_3}{\|\xi_3\|} = \frac{1}{3}(2, 1, 2)^T$$
,作矩阵

$$T = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{4}{\sqrt{45}} & \frac{2}{3} \\ \frac{-2}{\sqrt{5}} & \frac{2}{\sqrt{45}} & \frac{1}{3} \\ 0 & \frac{-5}{\sqrt{45}} & \frac{2}{3} \end{pmatrix}, \ \Lambda = \begin{pmatrix} -1 \\ & -1 \\ & & 8 \end{pmatrix}$$

则 T 为正交矩阵, 且 $T^{-1}AT = \Lambda$.

(2)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & -3 & 0 \\ -3 & \lambda - 4 & 1 \\ 0 & 1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 4) - (\lambda - 1) - 9(\lambda - 1) = (\lambda - 1)(\lambda + 1)(\lambda - 6).$$

故 A 的特征值为: $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = 6$.

当 $\lambda_1 = 1$ 时,解方程组 (A - I)x = 0,由

$$A - I = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 3 & -1 \\ 0 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 3 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 1 的特征向量为 $\xi_1 = (1,0,3)^T$.

当 $\lambda_2 = -1$ 时,解方程组 (A+I)x = 0,由

$$A + I = \begin{pmatrix} 2 & 3 & 0 \\ 3 & 5 & -1 \\ 0 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 3 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ 0 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 2 \\ 0 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 -1 的特征向量为 $\xi_2 = (-3, 2, 1)^T$.

当 $\lambda_3 = 6$ 时,解方程组 (A - 6I)x = 0,由

$$A - 6I = \begin{pmatrix} -5 & 3 & 0 \\ 3 & -2 & -1 \\ 0 & -1 & -5 \end{pmatrix} \xrightarrow{r_1 + 2r_2} \begin{pmatrix} 1 & -1 & -2 \\ 3 & -2 & -1 \\ 0 & -1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -2 \\ 0 & 1 & 5 \\ 0 & -1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 6 的特征向量为 $\xi_3 = (3,5,-1)^T$.

取
$$\eta_1 = \frac{\xi_1}{\|\xi_1\|} = \frac{1}{\sqrt{10}}(1,0,3)^T$$
, $\eta_2 = \frac{\xi_2}{\|\xi_2\|} = \frac{1}{\sqrt{14}}(-3,2,1)^T$, $\eta_3 = \frac{\xi_3}{\|\xi_3\|} = \frac{1}{\sqrt{35}}(3,5,-1)^T$, 作矩阵

$$T = \begin{pmatrix} \frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{14}} & \frac{3}{\sqrt{35}} \\ 0 & \frac{2}{\sqrt{14}} & \frac{5}{\sqrt{35}} \\ \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{14}} & \frac{-1}{\sqrt{35}} \end{pmatrix}, \ \Lambda = \begin{pmatrix} 1 & & \\ & -1 & \\ & & 6 \end{pmatrix}$$

则 T 为正交矩阵, 且 $T^{-1}AT = \Lambda$.

(3)
$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda - 1 & -2 \\ -2 & -2 & \lambda + 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1) - 4(\lambda - 1) - 4(\lambda - 1) = (\lambda - 1)(\lambda - 3)(\lambda + 3).$$

故 *A* 的特征值为: $\lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = -3$.

当 $\lambda_1 = 1$ 时,解方程组 (A - I)x = 0,由

$$A - I = \left(\begin{array}{ccc} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 2 & 2 & -2 \end{array}\right) \ \rightarrow \ \left(\begin{array}{ccc} 1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \ \rightarrow \ \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

解得矩阵对应于特征值 1 的特征向量为 $\xi_1 = (1, -1, 0)^T$.

当 $\lambda_2 = 3$ 时,解方程组 (A + I)x = 0,由

$$A - 3I = \begin{pmatrix} -2 & 0 & 2 \\ 0 & -2 & 2 \\ 2 & 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 0 & 2 \\ 0 & -2 & 2 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 0 & 2 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 3 的特征向量为 $\xi_2 = (1,1,1)^T$.

当 $\lambda_3 = -3$ 时,解方程组 (A + 3I)x = 0,由

$$A + 3I = \begin{pmatrix} 4 & 0 & 2 \\ 0 & 4 & 2 \\ 2 & 2 & 2 \end{pmatrix} \xrightarrow{r_1 + 2r_2} \begin{pmatrix} 0 & -4 & -2 \\ 0 & 4 & 2 \\ 2 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 -3 的特征向量为 $\xi_3 = (1,1,-2)^T$.

取
$$\eta_1 = \frac{\xi_1}{\|\xi_1\|} = \frac{1}{\sqrt{2}}(1, -1, 0)^T$$
, $\eta_2 = \frac{\xi_2}{\|\xi_2\|} = \frac{1}{\sqrt{3}}(1, 1, 1)^T$, $\eta_3 = \frac{\xi_3}{\|\xi_3\|} = \frac{1}{\sqrt{6}}(1, 1, -2)^T$, 作矩阵

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \end{pmatrix}, \ \Lambda = \begin{pmatrix} 1 & & \\ & 3 & \\ & & -3 \end{pmatrix}.$$

则 T 为正交矩阵, 且 $T^{-1}AT = \Lambda$.

$$(4) |\lambda I - A| = \begin{vmatrix} \lambda & 0 & -4 & -1 \\ 0 & \lambda & -1 & -4 \\ -4 & -1 & \lambda & 0 \\ -1 & -4 & 0 & \lambda \end{vmatrix} = \begin{vmatrix} r_{1+\lambda r_{4}} \\ r_{3-4r_{4}} \\ -1 & -4 & 0 & \lambda \end{vmatrix} = \begin{vmatrix} 0 & -4\lambda & -4 & \lambda^{2} - 1 \\ 0 & \lambda & -1 & -4 \\ 0 & 15 & \lambda & -4\lambda \\ -1 & -4 & 0 & \lambda \end{vmatrix} = \begin{vmatrix} -4\lambda & -4 & \lambda^{2} - 1 \\ \lambda & -1 & -4 \\ 15 & \lambda & -4\lambda \end{vmatrix}$$

$$= \begin{vmatrix} r_{1} - 4r_{2} \\ r_{3} - \lambda r_{2} \end{vmatrix} \begin{vmatrix} -8\lambda & 0 & \lambda^{2} + 15 \\ \lambda & -1 & -4 \\ 15 + \lambda^{2} & 0 & -8\lambda \end{vmatrix} = (8\lambda)^{2} - (\lambda^{2} + 15)^{2} = (\lambda - 3)(\lambda + 3)(\lambda - 5)(\lambda + 5).$$

故 A 的特征值为: $\lambda_1 = 3$, $\lambda_2 = -3$, $\lambda_3 = 5$, $\lambda_4 = -5$.

当 $\lambda_1 = 3$ 时,解方程组 (3I - A)x = 0,由

$$3I - A = \begin{pmatrix} 3 & 0 & -4 & -1 \\ 0 & 3 & -1 & -4 \\ -4 & -1 & 3 & 0 \\ -1 & -4 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & -3 \\ 0 & 3 & -1 & -4 \\ -4 & -1 & 3 & 0 \\ 3 & 0 & -4 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & -3 \\ 0 & 3 & -1 & -4 \\ 0 & 15 & 3 & -12 \\ 0 & -12 & -4 & 8 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 1 & 4 & 0 & -3 \\ 0 & 3 & -1 & -4 \\ 0 & 0 & 8 & 8 \\ 0 & 0 & -8 & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 3 的特征向量为 $\xi_1 = (-1, 1, -1, 1)^T$.

当 $\lambda_2 = -3$ 时,解方程组 (A+3I)x = 0,由

$$A + 3I = \begin{pmatrix} 3 & 0 & 4 & 1 \\ 0 & 3 & 1 & 4 \\ 4 & 1 & 3 & 0 \\ 1 & 4 & 0 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & 3 \\ 0 & 3 & 1 & 4 \\ 4 & 1 & 3 & 0 \\ 3 & 0 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & 3 \\ 0 & 3 & 1 & 4 \\ 0 & -15 & 3 & -12 \\ 0 & -12 & 4 & -8 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 4 & 0 & 3 \\ 0 & 3 & 1 & 4 \\ 0 & 0 & 8 & 8 \\ 0 & 0 & 8 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 -3 的特征向量为 $\xi_2 = (1, -1, -1, 1)^T$.

当 $\lambda_3 = 5$ 时,解方程组 (A+3I)x = 0,由

$$A - 5I = \begin{pmatrix} -5 & 0 & 4 & 1 \\ 0 & -5 & 1 & 4 \\ 4 & 1 & -5 & 0 \\ 1 & 4 & 0 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & -5 \\ 0 & -5 & 1 & 4 \\ 4 & 1 & -5 & 0 \\ -5 & 0 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & -5 \\ 0 & -5 & 1 & 4 \\ 0 & -15 & -5 & 20 \\ 0 & 20 & 4 & -24 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 4 & 0 & -5 \\ 0 & -5 & 1 & 4 \\ 0 & 0 & -8 & 8 \\ 0 & 0 & 8 & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 5 的特征向量为 $\xi_3 = (1, 1, 1, 1)^T$.

当 $\lambda_4 = -5$ 时,解方程组 (A + 5I)x = 0,由

$$A+5I = \begin{pmatrix} 5 & 0 & 4 & 1 \\ 0 & 5 & 1 & 4 \\ 4 & 1 & 5 & 0 \\ 1 & 4 & 0 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & 5 \\ 0 & 5 & 1 & 4 \\ 4 & 1 & 5 & 0 \\ 5 & 0 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & 0 & 5 \\ 0 & 5 & 1 & 4 \\ 0 & -15 & 5 & -20 \\ 0 & -20 & 4 & -24 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 4 & 0 & 5 \\ 0 & 5 & 1 & 4 \\ 0 & 0 & 8 & -8 \\ 0 & 0 & 8 & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 5 的特征向量为 $\xi_4 = (-1, -1, 1, 1)^T$.

取 $\eta_1 = \frac{\boldsymbol{\xi}_1}{\|\boldsymbol{\xi}_1\|} = \frac{1}{2}(-1,1,-1,1)^T$, $\boldsymbol{\eta}_2 = \frac{\boldsymbol{\xi}_2}{\|\boldsymbol{\xi}_2\|} = \frac{1}{2}(1,-1,-1,1)^T$, $\boldsymbol{\eta}_3 = \frac{\boldsymbol{\xi}_3}{\|\boldsymbol{\xi}_3\|} = \frac{1}{2}(1,1,1,1)^T$, $\boldsymbol{\eta}_4 = \frac{\boldsymbol{\xi}_4}{\|\boldsymbol{\xi}_4\|} = \frac{1}{2}(-1,-1,1,1)^T$. 作矩阵

$$T = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3, \boldsymbol{\eta}_4) = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \ \Lambda = \begin{pmatrix} 3 & & & \\ & -3 & & \\ & & 5 & \\ & & & -5 \end{pmatrix}.$$

则 T 为正交矩阵, 且 $T^{-1}AT = \Lambda$.

$$(5) |\lambda I - A| = \begin{vmatrix} \lambda + 1 & 3 & -3 & 3 \\ 3 & \lambda + 1 & 3 & -3 \\ -3 & 3 & \lambda + 1 & 3 \end{vmatrix} \xrightarrow{c_1 + c_i} \begin{vmatrix} \lambda + 4 & 3 & -3 & 3 \\ \lambda + 4 & \lambda + 1 & 3 & -3 \\ \lambda + 4 & 3 & \lambda + 1 & 3 \end{vmatrix}$$

$$= \frac{r_i - r_1}{i = 2, 3, 4} \begin{vmatrix} \lambda + 4 & 3 & -3 & 3 \\ 0 & \lambda - 2 & 6 & -6 \\ 0 & 0 & \lambda + 4 & 0 \\ 0 & -6 & 6 & \lambda - 2 \end{vmatrix} = (\lambda + 4)^2 [(\lambda - 2)^2 - 6^2] = (\lambda + 4)^3 (\lambda - 8).$$

故 A 的特征值为: $\lambda_1 = \lambda_2 = \lambda_3 = -4$, $\lambda_4 = 8$. 当 $\lambda_1 = -4$ 时, 解方程组 (A + 4I)x = 0, 由

解得矩阵对应于特征值 -4 的两两正交的特征向量为 $\boldsymbol{\xi}_1 = (1,1,0,0)^T$, $\boldsymbol{\xi}_2 = (0,0,1,1)^T$, $\boldsymbol{\xi}_3 = (1,-1,-1,1)^T$. 当 $\lambda_4 = 8$ 时, 解方程组 $(A - 8I)\boldsymbol{x} = \boldsymbol{0}$, 由

$$A - 8I = \begin{pmatrix} -9 & -3 & 3 & -3 \\ -3 & -9 & -3 & 3 \\ 3 & -3 & -9 & -3 \\ -3 & 3 & -3 & -9 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 1 & -1 & 1 \\ 1 & 3 & 1 & -1 \\ 1 & -1 & -3 & -1 \\ 1 & -1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & 3 \\ 1 & 3 & 1 & -1 \\ 1 & -1 & -3 & -1 \\ 3 & 1 & -1 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 1 & 3 \\ 0 & 4 & 0 & -4 \\ 0 & 0 & -4 & -4 \\ 0 & 4 & -4 & -8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

解得矩阵对应于特征值 8 的特征向量为 $\xi_4 = (-1, 1, -1, 1)^T$.

取 $\eta_1 = \frac{\boldsymbol{\xi}_1}{\|\boldsymbol{\xi}_1\|} = \frac{1}{\sqrt{2}}(1,1,0,0)^T$, $\eta_2 = \frac{\boldsymbol{\xi}_2}{\|\boldsymbol{\xi}_2\|} = \frac{1}{\sqrt{2}}(0,0,1,1)^T$, $\eta_3 = \frac{\boldsymbol{\xi}_3}{\|\boldsymbol{\xi}_3\|} = \frac{1}{2}(1,-1,-1,1)^T$, $\eta_4 = \frac{\boldsymbol{\xi}_4}{\|\boldsymbol{\xi}_4\|} = \frac{1}{2}(-1,1,-1,1)^T$. 作矩阵

$$T = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3, \boldsymbol{\eta}_4) = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \ \Lambda = \begin{pmatrix} -4 & & & \\ & -4 & & \\ & & -4 & \\ & & & -4 & \\ & & & & 8 \end{pmatrix}.$$

则 T 为正交矩阵, 且 $T^{-1}AT = \Lambda$.

30. 设 $A = (a_{ij})_{4\times 4}$, 已知 0 是 A 的二重特征值 1 是 A 的 (一重) 特征值, 求矩阵 A 特征多项式 $\det(\lambda I - A)$. 解: 由题设及特征值的性质可知 A 的四个特征值分别为 $\lambda_1 = \lambda_2 = 0$, $\lambda_3 = 1$, $\lambda_4 = \sum_4^{i=1} a_{ii} - 1$, 于是

$$\det(\lambda I - A) = \lambda^2 (\lambda - 1)(\lambda - \sum_{i=1}^{i=1} a_{ii} + 1).$$

31. 设n 阶矩阵A 的每行元素之和皆为1, 问: 能否至少求得A 的一个特征值?

解: 能!

因为由题设可知 A 的特征多项式 $|A-\lambda I|$ 的每行元素之和皆为 $1-\lambda$,所以至少可以求得 A 的一个特征值 1.

32. 设 $\lambda_1, \ \lambda_2, \ \cdots, \lambda_n$ 是矩阵 $A = (a_{ij})_{n \times n}$ 的 n 个特征值, 证明: $\sum_{i=1}^n \lambda_i^2 = \sum_{i=1}^n \sum_{j=1}^n a_{ij} a_{ji}$.

证: 因为 λ_1 , λ_2 , \cdots , λ_n 是矩阵 $A = (a_{ij})_{n \times n}$ 的 n 个特征值, 所以 λ_1^2 , λ_2^2 , \cdots , λ_n^2 是矩阵 A^2 的 n 个特征值. 又因为 A^2 主对角元 $c_{ii} = \sum_{j=1}^n a_{ij} a_{ji}$, 所以

$$\sum_{i=1}^{n} \lambda_i^2 = \sum_{i=1}^{n} c_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} a_{ji}.$$

33. 设 AB = BA, x 是 A 对应于特征值 λ_0 的特征向量, 证明: $Bx \in V_{\lambda_0}$ (A 的特征子空间.

证:
$$Ax = \lambda_0 x \Rightarrow BAx = B\lambda_0 x = \lambda_0 (Bx)$$
 $AB = BA$ $\Rightarrow A(Bx) = \lambda_0 (Bx)$. 故结论成立.

34. 证明: 若 n 阶矩阵 A 有 n 个互不相同的特征值, 则 AB = BA 的充要条件是 A 的特征向量也是 B 的特征向量.

证: (充分性:) 设 \mathbf{p}_i 是矩阵 A 对应于特征值 λ_i 的特征向量,同时也是矩阵 B 对应于特征值 μ_i 的特征向量 $(i=1,2,\cdots,n)$,作矩阵 $P=(\mathbf{p}_1,\mathbf{p}_2,\cdots,\mathbf{p}_n)$,则 P 可逆. 再记 $\Lambda_1=\mathrm{diag}(\lambda_1,\lambda_2,\cdots,\lambda_n)$, $\Lambda_2=\mathrm{diag}(\mu_1,\mu_2,\cdots,\mu_n)$,则有 $P^{-1}AP=\Lambda_1$, $P^{-1}BP=\lambda_2$,注意到对角矩阵可交换,于是有

$$AB = (P\Lambda_1 P^{-1})(P\Lambda_2 P^{-1}) = P\Lambda_1 \Lambda_2 P^{-1} = P\Lambda_2 \Lambda_1 P^{-1} = (P\Lambda_2 P^{-1})(P\Lambda_1 P^{-1}) = BA.$$

(必要性:) 设 x 是矩阵 A 的对应于特征值 λ 的特征向量,即有 $Ax = \lambda x$,从而有 $B(Ax) = B(\lambda x) = \lambda(Bx)$,又因为 AB = BA,所以 $B(Ax) = A(Bx) = \lambda(Bx)$,即 Bx 也是 A 的对应于特征值 λ 的特征向量. 因为 λ 是 A 的单重特征值,所以 A 的对应于 λ 的线性无关的特征向量只有一个,从而 Bx 与 x 线性相关,即存在常数 μ ,使得 $Bx = \mu x$,此式就说明 x 也是矩阵 B 的特征向量.

35. 设 A, B 皆为 n 阶矩阵, $\varphi(\lambda) = |\lambda I - B|$. 证明: $\varphi(A)$ 可逆的充要条件是 B 的任一特征值都不是 A 的特征值.

证: 设 B 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$,那么

$$\varphi(\lambda) = |\lambda I - B| = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

从而 $\varphi(A) = (A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$. 进一步有

$$|\varphi(A)| = |A - \lambda_1 I| |A - \lambda_2 I| \cdots |A - \lambda_n I|$$

 $\varphi(A)$ 可逆 $\Leftrightarrow |\varphi(A)| \neq 0 \Leftrightarrow |A - \lambda_i I| \neq 0$, 即 λ_i $(i = 1, 2, \dots, n)$ 不是 A 的特征值.

36. 证明反对称实矩阵的特征值是 0 或纯虚数.

证: 设 λ 是 A 的任一个特征值, 由 $\overline{A}^T = -A$ 和 $Ax = \lambda x$, 有

 $\overline{(Ax)^T} = \overline{(\lambda x)^T} \Rightarrow \overline{x^T A^T} = \overline{\lambda} \overline{x^T} \Rightarrow \overline{x^T A^T} x = \overline{\lambda} \overline{x^T} x \Rightarrow \overline{x}^T A x = \lambda \overline{x}^T x = \overline{\lambda} \overline{x}^T x$

又因为 $x \neq 0$, $\overline{x}^T x > 0$, 所以 $\lambda = \overline{\lambda}$, 即反对称实矩阵 A 的特征值 $\lambda \neq 0$ 或纯虚数.

37. 已知 \mathbb{R}^n 中两个非零的正交向量 $\boldsymbol{\alpha}=(a_1,a_2,\cdots,a_n),\ \boldsymbol{\beta}=(b_1,b_2,\cdots,b_n),\ 证明:$ 矩阵 $A=\boldsymbol{\alpha}^T\boldsymbol{\beta}$ 的特征值全为 0, 且 A 不可对角化.

证: 因为 α 与 β 正交, 所以 $(\alpha, \beta) = \alpha \beta^T = \beta \alpha^T = 0$, 从而 $A^2 = \alpha^T \beta \alpha^T \beta = \alpha^T (\beta \alpha^T) \beta = 0 A = O$.

设 λ 为 A 任一特征值, 对应的特征向量为 x, 即有 $Ax = \lambda x$, 于是 $A^2x = \lambda^2 x$, 即 $\lambda^2 x = 0$, 因为 $x \neq 0$, 所以 $\lambda^2 = 0$, 即 $\lambda = 0$, 故 0 为 A 的 n 重特征值.

又因为 α 与 β 均为非零向量, 所以 $A = \alpha^T \beta$ 中至少有一个非零元, 即 $r(A) \ge 1$, 从而 A 的与 n 重特征值 0 对应的线性无关的特征向量不超过 n-1 个, 所以 A 不可对角化.

38. 设 $\alpha = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$, 且 $a_i \neq 0$ $(i = 1, 2, \dots, n)$. 试求矩阵 $A = \alpha^T \alpha$ 的特征值, 并求可逆阵 P, 使得 $P^{-1}AP$ 成对角形.

解:

$$A = \boldsymbol{\alpha}^{T} \boldsymbol{\alpha} = \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} (a_{1}, a_{2}, \cdots, a_{n}) = \begin{pmatrix} a_{1}^{2} & a_{1}a_{2} & \cdots & a_{1}a_{n} \\ a_{2}a_{1} & a_{2}^{2} & \cdots & a_{2}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}a_{1} & a_{n}a_{2} & \cdots & a_{n}^{2} \end{pmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_1^2 & -a_1 a_2 & \cdots & -a_1 a_n \\ -a_2 a_1 & \lambda - a_2^2 & \cdots & -a_2 a_n \\ \vdots & \vdots & \ddots & \vdots \\ -a_n a_1 & -a_n a_2 & \cdots & \lambda - a_n^2 \end{vmatrix} \begin{vmatrix} \lambda - a_1^2 & -a_1 a_2 & \cdots & -a_1 a_n \\ -\frac{a_2}{a_1} \lambda & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_n a_1 & -a_n a_2 & \cdots & \lambda - a_n^2 \end{vmatrix} \begin{vmatrix} \lambda - a_1^2 - a_1 a_2 & \cdots & -a_1 a_n \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{a_n}{a_1} \lambda & 0 & \cdots & \lambda \end{vmatrix}$$

$$\frac{c_1 + \frac{a_n}{a_1} c_i}{i = 2, \cdots, n} \begin{vmatrix} \lambda - a_1^2 - a_2^2 - \cdots - a_n^2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{vmatrix} = \lambda^{n-1} \left(1 - \frac{a_1^2 + a_2^2 + \cdots + a_n^2}{\lambda} \right).$$

故 A 的特征值为 $\lambda_1 = \lambda_2 = \dots = \lambda_{n-1} = 0$, $\lambda_n = a_1^2 + a_2^2 + \dots + a_n^2$.

当
$$\lambda_1 = \lambda_2 = \cdots = \lambda_{n-1} = 0$$
, 时, $Ax = \mathbf{0}$ 的同解方程组为

$$a_1x_1 = -a_2x_2 - a_3x_3 - \cdots - a_nx_n$$

于是对应的线性无关的特征向量为:
$$\boldsymbol{\xi}_1 = \begin{pmatrix} a_2 \\ -a_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \boldsymbol{\xi}_2 = \begin{pmatrix} a_3 \\ 0 \\ -a_1 \\ \vdots \\ 0 \end{pmatrix}, \quad \cdots , \quad \boldsymbol{\xi}_{n-1} = \begin{pmatrix} a_n \\ 0 \\ 0 \\ \vdots \\ -a_1 \end{pmatrix}.$$

当 $\lambda_n = a_1^2 + a_2^2 + \dots + a_n^2$ 时, 注意到 $\boldsymbol{\alpha}^T \boldsymbol{\alpha} = \lambda_n$,所以 $A \boldsymbol{x} = \lambda_n \boldsymbol{x}$ 即为 $\boldsymbol{\alpha} \boldsymbol{\alpha}^T \boldsymbol{x} = \boldsymbol{\alpha}^T \boldsymbol{\alpha} \boldsymbol{x}$,容易观察到 $\boldsymbol{x} = \boldsymbol{\alpha}$ 满足上式,即对应 $\lambda_n = a_1^2 + a_2^2 + \dots + a_n^2$ 的特征向量为 $\boldsymbol{\xi}_n = (a_1, a_2, \dots, a_n)$.

39. 已知
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$$
 的一个特征向量 $\boldsymbol{\xi} = (1, 1, -1)^T$.

(1). 确定 *a*,*b* 及 *ξ* 对应的特征值;

(2). A 能否相似于对角阵? 说明理由.

 \mathbf{p} : (1) 设 $\boldsymbol{\xi}$ 对应的特征值为 λ , 则有 $(A - \lambda I)\boldsymbol{\xi} = \mathbf{0}$, 即

$$\begin{pmatrix} 2-\lambda & -1 & 2 \\ 5 & a-\lambda & 3 \\ -1 & b & -2-\lambda \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -\lambda-1 \\ 2+a-\lambda \\ 1+b+\lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} \lambda = -1 \\ a = -3 \\ b = 0 \end{cases}$$

(2).
$$|A - \lambda I| = \begin{vmatrix} 2 - \lambda & -1 & 2 \\ 5 & -3 - \lambda & 3 \\ -1 & 0 & -2 - \lambda \end{vmatrix} \begin{vmatrix} c_3 - (2 + \lambda)c_1 \\ 5 & -3 - \lambda & -7 - 5\lambda \\ -1 & 0 & 0 \end{vmatrix} = -(\lambda + 1)^3, \quad \square \lambda = -1 \not\equiv 0$$

A 的三重特征值, 而

$$(A+I) = \begin{pmatrix} 3 & -1 & 2 \\ 5 & -2 & 3 \\ -1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 5 & -2 & 3 \\ 3 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & -2 \\ 0 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

即 R(A+I)=2, 所以 A 的对应于三重特征值 -1 的线性无关的特征向量只有一个, 所以 A 不能对角化.

40. 设
$$A = \begin{pmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{pmatrix}$$
,已知 $|A| = 1$,且 A^* 有一个特征值 λ_0 ,其特征向量 $\boldsymbol{x} = (-1, -1, 1)^T$,试求

a,b,c 及 λ_0 .

解:
$$A^\star x = \lambda_0 x$$
 $AA^\star = |A|I$ $|A| = 1$ $\Rightarrow AA^\star x = Ix = x = \lambda_0 Ax$, 即

$$\lambda_0 \begin{pmatrix} a & -1 & c \\ 5 & b & 3 \\ 1 - c & 0 & -a \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_0 (1 - a + c) \\ \lambda_0 (-2 - b) \\ \lambda_0 (c - a - 1) \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \Rightarrow \begin{cases} \lambda_0 = -1 \\ a = 4 \\ b = -3 \\ c = 4 \end{cases}$$

41. 设
$$A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$
,已知 A 有三个线性无关的特征向量,且 $\lambda_1 = 2$ 是其二重特征值,求 P ,使得

 $P^{-1}AP = \Lambda$ (对角矩阵).

解: 由特征值的性质可知 *A* 的第三个特征值 $\lambda_3 = 1 + 4 + 5 - 2 - 2 = 6$,

$$(A-2I) = \begin{pmatrix} -1 & -1 & 1 \\ x & 2 & y \\ -3 & -3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -1 & 1 \\ x-2 & 0 & y+2 \\ 0 & 0 & 0 \end{pmatrix}.$$

因为 A 有三个线性无关的特征向量, 且 $\lambda_1=2$ 是其二重特征值, 所以 R(A-2I)=1, 从而有 $x=2,\ y=-2$.

解方程组 (A-2I)x=0, 由

$$(A-2I) = \begin{pmatrix} -1 & -1 & 1 \\ 2 & 2 & -2 \\ -3 & -3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

得对应于二重特征值 2 的线性无关的特征向量为 $p_1 = (-1,1,0)^T$, $p_2 = (1,0,1)^T$.

解方程组 (A-6I)x=0, 由

$$(A-2I) = \begin{pmatrix} -5 & -1 & 1 \\ 2 & -2 & -2 \\ -3 & -3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 \\ -5 & -1 & 1 \\ 3 & 3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & -6 & -4 \\ 0 & 6 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 0 \end{pmatrix}.$$

得对应于特征值 6 的特征向量为 $p_3 = (1, -2, 3)^T$.

作矩阵
$$P = (\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}, \ \Lambda = \begin{pmatrix} 2 & \\ & 2 & \\ & & 6 \end{pmatrix}, 则 P 可逆, 且 $P^{-1}AP = \Lambda$.$$

42. 设 $\alpha = (a_1, a_2, \dots, a_n)^T$, $\beta = (b_1, b_2, \dots, b_n)^T$ 均为非零向量,已知 $\alpha^T \beta = 0$, $A = \alpha \beta^T$. 试求: (1) A^2 ; (2) A 的特征值与特征向量.

\mathbf{\widetilde{H}}: (1) $A^2 = \boldsymbol{\alpha}^T \boldsymbol{\beta} \boldsymbol{\alpha}^T \boldsymbol{\beta} = \boldsymbol{\alpha}^T (\boldsymbol{\beta} \boldsymbol{\alpha}^T) \boldsymbol{\beta} = 0 A = O$.

(2). 设 λ 为 A 任一特征值, 对应的特征向量为 x, 即有 $Ax = \lambda x$, 于是 $A^2x = \lambda^2 x$, 即 $\lambda^2 x = 0$, 因为 $x \neq 0$, 所以 $\lambda^2 = 0$, 即 $\lambda = 0$, 故 0 为 A 的 n 重特征值.

因为 α , β 均为非零向量, 不妨设 $a_1 \neq 0$, 则方程组 Ax = 0 的同解方程组为 $b_1x_1 + b_2x_2 + \cdots + b_nx_n = 0$, 于

是所求特征向量为:
$$\boldsymbol{\xi}_1 = \begin{pmatrix} b_2 \\ -b_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \boldsymbol{\xi}_2 = \begin{pmatrix} b_3 \\ 0 \\ -b_1 \\ \vdots \\ 0 \end{pmatrix}, \quad \cdots , \quad \boldsymbol{\xi}_{n-1} = \begin{pmatrix} b_n \\ 0 \\ 0 \\ \vdots \\ -b_1 \end{pmatrix}.$$