

Using Linear Regression Method to Predict Corn Yield

Background and Method

Background

- Crop yield prediction is essential for global food security but is complex, we are focusing on corn yield.
- Our regressors represent four different aspects: weather(weekly), soil, scale, and growth performance(weekly), and the response is corn yield¹ (BU/A).
- We collected data from 1990 to 2018, with a total of 8,352 observations and 688 features.
- Our goal is to forecast corn yield performance for the Corn Belt states Illinois, Iowa, and Indiana.

Method

Using Historical Data as Potential Data Solution

Experimental Setup

2018

Key Points

- As crops grow, we can collect more detailed information throughout the year, so we can improve our forecasts on a weekly basis, which could be beneficial to policy makers and farmers.
- We run all data from previous years as the underlying data to construct prediction intervals.
- We summarize the maximum, median, and minimum as significant result for our prediction.

Model I: Linear Regression Using Lasso as Feature Selection Method

Function:

$$y = \beta_0 + \beta_w X_w + \beta_{soil} X_{soil} + \beta_{scale} X_{scale} + \beta_g X_g + \varepsilon$$

Model fitting Performance

2017-2018

QQ-Plot

Result

Residual standard error: 10.82 on 7247 degrees of freedom Multiple R-squared: 0.8872, Adjusted R-squared: 0.8792 F-statistic: 110.1 on 518 and 7247 DF, p-value: < 2.2e-16

Explain

- The idea of the lasso is adding a penalty term to constrain the equation. The consequence of imposing such a penalty is to shrink the coefficient values towards zero, this would set the less contributive regressor to have a zero coefficient which achieves the purpose of variable elimination.
- We successfully reduce the variables from 688 to 519 with 88% R-squared.
- We select the data from 1990-2016 to train the model and apply the model to predict the corn yield in 2017. And train model based on the data from 1990-2017 to 2018.

Corn Yield Trend

1990-2016

Bias and Improvements

- Model is complex with 519 variables: RFE
- Residual not fit perfectly: applied interaction terms; get ride of Genetic Modified Seed effects by reduce time frame

Improvements for Model I Using Different Strategies

Iowa: Prediction Interval based on Weekly Updated Data under Different Model

Group Member: Yaopeng Ma, Changhe Ji, John Zhang 1: Volume per Acre: 56lb = 1 BU

Illinois: Prediction Interval based on Weekly Updated Data under Different Model

Indiana: Prediction Interval based on Weekly Updated Data under Different Model

Prediction Accuracy at County Level for Different Models

Mode I

2017 - 18

7 - 18

Predict Accuracy Based on RRMSE for 2017 - Lasso

lowa - 0.107

lowa - 0.107

Illinois - 0.092

Indiana - 0.0679

RRMSE

0.0

0.8

0.8

Predict Accuracy Based on RRMSE for 2018 - Lasso

lowa - 0.081

Illinois - 0.102

Indiana - 0.112

RRMSE

0.0

0.4

0.6

0.8

Model II 2017 - 18

Model III

2017 - 18

Conclusion: Model III Would Be the Optimize Solution for Prediction

Model Comparison

	Model Fitting			RRMSE		
Model	Variables	R-squared	Adj R-squared	Illinois	Indiana	Iowa
I- 17	519	89%	88%	9%	7%	11%
II- 17	250	84%	83%	13%	9%	10%
III - 17	109	75%	74%	10%	10%	11%
I- 18	519	89%	88%	10%	11%	8%
II- 18	250	84%	84%	13%	6%	13%
III - 18	109	76%	75%	11%	12%	9%

- Model I performed the best in both model fitting and prediction accuracy, but the complexity needs to be improved.
- The complexity of Model II is lower, but the prediction accuracy dropped based on RRMSE.
- Model III performed best in terms of model complexity, and prediction result outperforming Model II but slightly weaker than Model I.
- After comparison, all models have their own biases and strengths. We choose Model III as the optimal solution for our project.

Thank you