LEÇON 4:ANALYSE DES ÉCHELLES DE GRANDEUR

INTRODUCTION

 Dégager les ordres de grandeur des termes des équations de la convection

 Comprendre le contenu physique de ces équations

INTRODUCTION

- Application au concept de couche limite
- Retour sur les équations générales de la convection
- Allure des équations adimensionnées

Rappels: couche limite laminaire sur plaque plane

- Rappels: couche limite sur plaque plane
 - □ Problème 2D (x,y),stationnaire, fluide incompressible, propriétés uniformes

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + \frac{F_x}{\rho}$$

$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) + \frac{F_y}{\rho}$$

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \Delta T + \mu \Phi + q + T \beta \frac{Dp}{Dt}$$

avec
$$\Phi = 2\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^2 + 2\left(\frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right)^2 + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}\right)^2$$

- Rappels: couche limite sur plaque plane
 - □ Equations (2D, stationnaire, fluide incompressible, propriétés uniformes, pas de force volumique, ni de dissipation visqueuse ni de dissipation due à la pression ni de flux volumique)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \Delta T = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

- Rappels: couche limite sur plaque plane
 - Equations

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right)$$

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \Delta T = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

- Conditions aux limites
 - Sur la plaque (y=0): u=v=0, $T=T_0$
 - Dans le fluide au loin: $u=u_{\infty}$, v=0, $p=p_{\infty}$, $T=T_{\infty}$

Couche limite dynamique

□ Ordre de grandeur

$$x \approx L$$

$$y \approx \delta$$

$$u \approx U_{\infty}$$

Couche limite dynamique

□ Ordre de grandeur

$$x \approx L$$
$$y \approx \delta$$
$$u \approx U_{\infty}$$

$$\delta << L$$

- Couche limite dynamique
 - □ Ordre de grandeur

$$x \approx L$$
$$y \approx \delta$$
$$u \approx U_{\infty}$$

□ Equation de continuité:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Ordre de grandeur:

$$\frac{U_{\infty}}{L} + \frac{v}{\delta} \approx 0 \Rightarrow v \approx U_{\infty} \frac{\delta}{L} \qquad \Rightarrow v \ll U_{\infty}$$

- Couche limite dynamique
 - □ Ordre de grandeur

$$x \approx L$$
$$y \approx \delta$$
$$u \approx U_{\infty}$$

□ Equation de quantité de mouvement suivant x:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \frac{\mu}{\rho}\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

Ordre de grandeur:

$$\underbrace{U_{\infty}\frac{U_{\infty}}{L} + v\frac{U_{\infty}}{\delta}}_{\text{inertie}} \approx -\frac{1}{\rho}\frac{p}{L} \left(\frac{\mu}{\rho}\left(\frac{U_{\infty}}{L^{2}} + \frac{U_{\infty}}{\delta^{2}}\right)\right)$$

Equation de quantité de mouvement suivant x:

$$U_{\infty} \frac{U_{\infty}}{L} + v \frac{U_{\infty}}{\delta} \approx -\frac{1}{\rho} \frac{p}{L} + \frac{\mu}{\rho} \left(\frac{U_{\infty}}{L^2} + \frac{U_{\infty}}{\delta^2} \right)$$
 inertie pression viscosité

- □ Inertie:
 - Sachant que $v \approx U_{\infty} \frac{\delta}{L}$
 - Les 2 termes ont le même ordre de grandeur $\frac{{U_{\scriptscriptstyle \infty}}^2}{L}$

Equation de quantité de mouvement suivant X:

$$U_{\infty} \frac{U_{\infty}}{L} + v \frac{U_{\infty}}{\delta} \approx -\frac{1}{\rho} \frac{p}{L} + \frac{\mu}{\rho} \left(\frac{U_{\infty}}{L^2} + \frac{U_{\infty}}{\delta^2} \right)$$
 inertie pression viscosité

□ viscosité:

$$L >> \delta \Rightarrow \frac{U_{\infty}}{L^2} << \frac{U_{\infty}}{\delta^2}$$

$$\Rightarrow u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\mu}{\rho} \frac{\partial^2 u}{\partial y^2}$$

Equation de quantité de mouvement suivant Y:

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + \frac{\mu}{\rho}\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

Ordre de grandeur:

$$U_{\infty} \frac{v}{L} + \frac{v^2}{\delta} \approx -\frac{1}{\rho} \frac{p}{\delta} + \frac{\mu}{\rho} \left(\frac{v}{L^2} + \frac{v}{\delta^2} \right)$$

Comparé à X:

$$U_{\infty} \frac{U_{\infty}}{L} + v \frac{U_{\infty}}{\delta} \approx -\frac{1}{\rho} \frac{p}{L} + \frac{\mu}{\rho} \left(\frac{U_{\infty}}{L^2} + \frac{U_{\infty}}{\delta^2} \right)$$

 Les termes suivant Y ont un ordre de grandeur de moins que ceux suivant X

- Equation de quantité de mouvement suivant Y:
 - Les termes suivant Y ont un ordre de grandeur de moins que ceux suivant X
 - ⇒ Au premier ordre, l'équation de quantité de mouvement suivant Y peut ne pas être traitée

- Equation de quantité de mouvement suivant Y:
 - Les termes suivant Y ont un ordre de grandeur de moins que ceux suivant X

$$\left(u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y}\right) << \left(u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}\right)$$
$$\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right) << \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

$$\frac{1}{\rho} \frac{\partial p}{\partial x} = -\left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}\right) + \frac{\mu}{\rho} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$
$$\frac{1}{\rho} \frac{\partial p}{\partial y} = -\left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}\right) + \frac{\mu}{\rho} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

Equation de l'énergie:

$$x \approx L$$

$$y \approx \delta_{t}$$

$$u \approx U_{\infty}$$

$$T \approx (T_{0} - T_{\infty}) = \Delta T$$

Equation de l'énergie:

□ Ordre de grandeur:

$$\rho c_{p} \left(U_{\infty} \frac{\Delta T}{L} + v \frac{\Delta T}{\delta_{t}} \right) \approx \lambda \left(\frac{\Delta T}{\Delta_{t}^{2}} + \frac{\Delta T}{\delta_{t}^{2}} \right)$$

□ Donc

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \frac{\partial^2 T}{\partial y^2}$$

Equations:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2}$$

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \frac{\partial^2 T}{\partial y^2}$$

Conditions aux limites

- Sur la plaque (y=0): u=v=0, $T=T_0$
- Dans le fluide au loin: $u=u_{\infty}$, v=0, $p=p_{\infty}$, $T=T_{\infty}$

Equations:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2}$$

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \frac{\partial^2 T}{\partial y^2}$$

Conditions aux limites

- Sur la plaque (y=0): u=v=0, $T=T_0$
- Dans le fluide au loin: $u=u_{\infty}$, v=0, $p=p_{\infty}$, $T=T_{\infty}$

- Quelques grandeurs caractéristiques:
 - L'épaisseur de couche limite dynamique δ
 - La contrainte de cisaillement pariétale τ
 - □ Le coefficient de frottement pariétal C_f
 - □ Le coefficient d'échange convectif h
 - □ Le nombre de Nusselt Nu

- L'épaisseur de couche limite dynamique δ :
 - □ Equation de quantité de mouvement suivant x:

$$U_{\infty} \frac{U_{\infty}}{L} + v \frac{U_{\infty}}{\delta} \approx \frac{\mu}{\rho} \frac{U_{\infty}}{\delta^{2}}$$

$$\Rightarrow \frac{U_{\infty}^{2}}{L} \approx \frac{\mu}{\rho} \frac{U_{\infty}}{\delta^{2}} \Rightarrow \delta^{2} \approx \frac{\mu}{\rho} \frac{L}{U_{\infty}}$$

$$\Rightarrow \frac{\delta}{L} \approx \sqrt{\frac{\mu}{\rho U_{\infty} L}} = \frac{1}{\sqrt{\text{Re}}}$$

Ordre de grandeur de δ (fluides à 20°C-L=1m-en cm)

(m/s)	0,1	1	10
Air	1,2	0,4	0,1
$(\mu/\rho = 1.5x10^{-5}m^2/s)$			
Eau	0,3	0,1	0,03
$(\mu/\rho = 10^{-6} m^2/s)$			

La contrainte de cisaillement pariétale τ:

$$\tau = -\mu \frac{\partial u}{\partial y}$$

$$\tau \approx \mu \frac{U_{\infty}}{\delta} = \mu \frac{U_{\infty}}{I} \sqrt{Re} = \frac{\rho U_{\infty}^{2}}{\sqrt{Re}}$$

le coefficient de frottement pariétal C_f

$$C_f = \frac{\tau}{\frac{1}{2}\rho U_{\infty}^2}$$

$$C_f \approx \frac{1}{\sqrt{\text{Re}}}$$

Le coefficient d'échange convectif h:

$$h(T_0 - T_{\infty}) = -\lambda \frac{\partial T}{\partial y}$$

Le coefficient d'échange convectif h:

$$h(T_0 - T_{\infty}) = h\Delta T = -\lambda \frac{\partial T}{\partial y}$$

□ Ordre de grandeur:

$$h \approx \frac{1}{\Delta T} \lambda \frac{\Delta T}{\delta_t} \approx \frac{\lambda}{\delta_t}$$

 \Box Ordre de grandeur de δ_t ?

- Le coefficient d'échange convectif h:
 - \Box Ordre de grandeur de δ_t :
 - Ordre de grandeur de l'équation de l'énergie:

$$\rho c_p \left(u \frac{\Delta T}{L} + v \frac{\Delta T}{\delta_t} \right) \approx \lambda \frac{\Delta T}{\delta_t^2}$$

- Cas 1: $\delta_t >> \delta$
 - □ Exemple: métaux liquides

- Le coefficient d'échange convectif h:
 - \square Ordre de grandeur de δ_t :

• Cas 1:
$$\delta_t >> \delta$$

$$u \approx U_{\infty}$$

$$v \approx U_{\infty} \frac{\delta}{I}$$

$$\Rightarrow \rho c_{p} \left(U_{\infty} \frac{\Delta T}{L} + U_{\infty} \frac{\delta}{L} \frac{\Delta T}{\delta_{t}} \right) \approx \lambda \frac{\Delta T}{\delta_{t}^{2}} \quad \Rightarrow \rho c_{p} \left(U_{\infty} \frac{\Delta T}{L} + U_{\infty} \frac{\Delta T}{\delta_{t}} \frac{\delta}{\delta_{t}} \right) \approx \lambda \frac{\Delta T}{\delta_{t}^{2}}$$

- Le coefficient d'échange convectif h:
 - \Box Ordre de grandeur de δ_t :
 - Cas 1: $\delta_{t} >> \delta$ $\rho c_{p} U_{\infty} \frac{\Delta T}{L} \approx \lambda \frac{\Delta T}{\delta_{t}^{2}}$ $\Rightarrow \frac{\delta_{t}}{L} \approx \sqrt{\frac{\lambda}{\rho c_{p} U_{\infty} L}} = \sqrt{\frac{\lambda \mu}{c_{p} \rho U_{\infty} L \mu}} = \sqrt{\frac{\lambda}{\text{Re } \mu c_{p}}}$ $\Rightarrow \frac{\delta_{t}}{L} \approx \frac{1}{\sqrt{\text{Re Pr}}}$
 - Or $\frac{\delta}{L} \approx \frac{1}{\sqrt{\text{Re}}}$ $\Rightarrow \frac{\delta}{\delta_t} \approx \sqrt{\text{Pr}}$

- Le coefficient d'échange convectif h:
 - \Box Ordre de grandeur de δ_t :
 - Cas 1: $\delta_t >> \delta$

$$\frac{\delta_t}{L} \approx \frac{1}{\sqrt{\text{Re Pr}}}$$

$$\Rightarrow h \approx \frac{\lambda}{\delta_t} \approx \lambda \frac{\sqrt{\text{Re Pr}}}{L}$$

$$\Rightarrow Nu = \frac{hL}{\lambda} \approx \sqrt{\text{Re Pr}}$$

- Le coefficient d'échange convectif h:
 - \Box Ordre de grandeur de δ_t :
 - Cas 2: $\delta_t << \delta$:
 - □ Exemple: eau, huile,...

$$u \approx U_{\infty} \frac{\delta_t}{\delta}$$

- Le coefficient d'échange convectif h:
 - \Box Ordre de grandeur de δ_t :
 - Cas 2: $\delta_t << \delta$

$$u \approx U_{\infty} \frac{\delta_T}{\delta}$$

$$\Rightarrow \frac{\delta_t}{L} \approx \frac{1}{\Pr^{1/3} \sqrt{\text{Re}}}$$

$$\frac{\delta}{\delta_t} \approx \Pr^{1/3}$$

$$h \approx \frac{\lambda}{L} \Pr^{1/3} \sqrt{\text{Re}}$$

$$Nu \approx \Pr^{1/3} \sqrt{\operatorname{Re}_L}$$

- Le coefficient d'échange convectif h:
 - \Box Ordre de grandeur de δ_t :
 - Cas 3: $\delta_t = \delta$

$$\delta_{t} = \delta \approx \frac{L}{\sqrt{\text{Re}}}$$

$$h \approx \frac{\lambda}{L} \sqrt{\text{Re}}$$

$$Nu \approx \sqrt{\text{Re}_L}$$

Plaque plane		Longueur(m) vitesse (m/s)	0,5 0,5						
matériau	t(° C)	v m**2 /s	Lam W/m K	Pr	Re L	δ_t	δ mm	Nu	h W/m**2 K
sodium	200	5,00E-07	80,800	0,012	5.0E+05	6,57	0,71	76	12307
air	100	2,30E-05	0,032	0,700	1,1E+04	5,39	5,84	93	12.000.000.000.000.000
eau	100	2,90E-07	0,680	1,780	8,6E+05	0,45	7,94	1123	
hulle	100	1,70E-05	0,136	230,000	1,5E+04	0,69	39,50		1,5,4,
azote	-202	2,17E-07	0,141	2,590	1,2E+06	0,34	8,99		414
sodium	200	5,00E-07	80,800	0,012	5,0E+05	3,08	1,51	162	26254

Plaque plane		Longueur(m)	0,5						
		vitesse (m/s)	0,5						
matériau	t(° C)	v m**2 /s	Lam W/m K	Pr	Re L	δ_t	δ mm	Nu	h W/m**2 K
sodium	200	5,00E-07	80,800	0,012	5,0E+05	6,57	0,71	76	12307
air	100	2,30E-05	0,032	0,700	1,1E+04	5,39	5,84	93	. 6
eau	100	2,90E-07	0,680	1,780	8,6E+05	0,45	7,94	1123	1527
hulle	100	1,70E-05	0,136	230,000	1,5E+04	0,69	39,50	730	198
azote	-202	2,17E-07	0,141	2,590	1,2E+06	0,34	8,99	1469	414
sodium	200	5,00E-07	80,800	0,012	5,0E+05	3,08	1,51	162	26254
Cas 1: δ_t >	> δ	$\frac{\delta}{\delta_t} \approx \sqrt{\Pr}$	= 0.109	$\frac{\delta}{\delta_t} = 0.$	108				
$h \approx \lambda$	√Re I	$\frac{\overline{Pr}}{r} = 12517$	7W / m² I	K Nu≈	≈ √Re Pı	c = 77.4	45		

Plaque plane		Longueur(m) vitesse (m/s)	0,5 0,5						
matériau	t(° C)	v m**2 /s	Lam W/m K	Pr	Re L	$\delta_t^{}$	δ mm	Nu	h W/m**2 K
sodium	200	5,00E-07	80,800	0.012	5.0E+05	6.57	0.71	76	12307
air	100	2,30E-05	0,032	0,700	1,1E+04	5,39	5,84	93	. 6
eau	100	2,90E-07	0,680	1,780	8,6E+05	0,45	7,94	1123	1527
hulle	100	1,70E-05	0,136	230,000	1,5E+04	0,69	39,50	730	198
azote	-202	2,17E-07	0,141	2,590	1,2E+06	0,34	8,99	1469	414
sodium	200	5,00E-07	80,800	0,012	5,0E+05	3,08	1,51	162	26254

Cas 3: $\delta_t = \delta$

$$h \approx \frac{\lambda}{L} \sqrt{\text{Re}} = 6.71$$
 $Nu \approx \sqrt{\text{Re}_L} = 104$

Plaque plane		Longueur(m) vitesse (m/s)	0,5 0,5						
matériau	t(° C)	v m**2 /s	Lam W/m K	Pr	Re L	$\delta_t^{}$	δ mm	Nu	h W/m**2 K
sodium	200	5,00E-07	80,800	0,012	5.0E+05	6,57	0,71	76	12307
air	100	2,30E-05	0,032	0,700	1,1E+04	5,39	5,84	93	17.000 1110 12.00
eau	100	2,90E-07	0,680	1,780	8,6E+05	0,45	7,94	1123	1527
hulle	100	1,70E-05	0,136	230,000	1,5E+04	0,69	39,50	730	1
azote	-202	2,17E-07	0,141	2,590	1,2E+06	0,34	8,99	1469	414
sodium	200	5,00E-07	80,800	0,012	5,0E+05	3,08	1,51	162	26254

Cas 2: $\delta_t << \delta$

$$h \approx \frac{\lambda}{L} \text{Pr}^{1/3} \sqrt{\text{Re}} = 204$$
 $Nu \approx \text{Pr}^{1/3} \sqrt{\text{Re}_L} = 750$

RETOUR SUR LES ÉQUATIONS GÉNÉRALES DE LA CONVECTION

- Ordre de grandeur:
 - □ Fluide en mouvement:(air)
 - **■** U_∞=1 m/s
 - T_∞=100°C
 - $\rho=1$ kg/m³
 - ${}^{\bullet}$ C_p=1000J/kgK
 - $\mu = 1.5 \times 10^{-5} \text{kg/ms}$
 - λ=0.025W/mK

RETOUR SUR LES ÉQUATIONS GÉNÉRALES DE LA CONVECTION

- Bilan d'énergie:
 - □ Energie interne: ρ C_p $T \approx 10^5$
 - □ Energie cinétique: $1/2 \rho (u^2+v^2) \approx 1$

RETOUR SUR LES ÉQUATIONS GÉNÉRALES DE LA CONVECTION

Dissipation visqueuse:

□ Equation de l'énergie:

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \Delta T + \mu \Phi + q + T \beta \frac{Dp}{Dt}$$

$$avec \Phi = 2\left(\frac{\partial u}{\partial x}\right)^2 + 2\left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial u}\right)^2$$

$$\rho c_p u \frac{\partial T}{\partial x} \approx 10^5$$

$$\lambda \Delta T \approx 2.10^4$$

$$\mu\Phi \approx 10^{-1}$$

RETOUR SUR LES ÉQUATIONS GÉNÉRALES DE LA CONVECTION

- Dissipation due à la pression:
 - □ Equation de l'énergie:

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \lambda \Delta T + \mu \Phi + q + T \beta \frac{Dp}{Dt}$$

avec
$$\Phi = 2\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^2 + 2\left(\frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right)^2 + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{u}}\right)^2$$

$$\rho c_p u \frac{\partial T}{\partial x} \approx 10^5$$

$$\lambda \Delta T \approx 2.10^4$$

$$u\frac{\partial p}{\partial x} + v\frac{\partial p}{\partial v} \approx \frac{U_{\infty}}{L}\rho U_{\infty}^{2} = 1$$

ALLURE DES ÉQUATIONS ADIMENSIONNÉES

Changements de variables:

$$X = \frac{x}{L} \qquad Y = \frac{y}{L} \qquad P = \frac{p}{\rho U_{\infty}^{2}}$$

$$U = \frac{u}{U_{\infty}} \qquad V = \frac{v}{U_{\infty}} \qquad \theta = \frac{T - T_{\infty}}{T_{0} - T_{\infty}}$$

Les équations s'écrivent:

$$\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0$$

$$U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} = -\frac{\partial P}{\partial X} + \frac{1}{\text{Re}} \frac{\partial^2 U}{\partial Y^2} \quad \text{Avec}$$

$$U \frac{\partial \theta}{\partial X} + V \frac{\partial \theta}{\partial y} = \frac{1}{\text{Re Pr}} \frac{\partial^2 \theta}{\partial Y^2} + \frac{E}{\text{Re}} \Phi$$

$$Re = \frac{U_{\infty}L}{v}$$

$$Pr = \frac{v}{\alpha}$$

$$E = \frac{U_{\infty}^{2}}{C(T_{0} - T_{\infty})}$$

ALLURE DES ÉQUATIONS ADIMENSIONNÉES

Fonction de dissipation:

$$\Phi = 2\left(\frac{\partial \mathbf{u}}{\partial \mathbf{x}}\right)^{2} + 2\left(\frac{\partial \mathbf{v}}{\partial \mathbf{y}}\right)^{2} + \left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{v}}{\partial \mathbf{u}}\right)^{2}$$

$$\Phi \approx 2\left(\frac{U_{\infty}}{L}\right)^{2} + 2\left(\frac{v}{\delta}\right)^{2} + \left(\frac{U_{\infty}}{\delta} + \frac{v}{L}\right)^{2}$$

$$v \approx U_{\infty} \frac{\delta}{L}$$

$$\Rightarrow \Phi \approx 2\left(\frac{U_{\infty}}{L}\right)^{2} + 2\left(\frac{U_{\infty}}{L}\right)^{2} + \left(\frac{U_{\infty}}{\delta} + U_{\infty} \frac{\delta}{L^{2}}\right)^{2}$$

$$\Rightarrow \frac{U_{\infty}}{\delta} >> les \ autres \ termes$$

ALLURE DES ÉQUATIONS ADIMENSIONNÉES

Changements de variables:

$$X = \frac{x}{L} \qquad Y = \frac{y}{L} \qquad P = \frac{p}{\rho U_{\infty}^{2}}$$

$$U = \frac{u}{U_{\infty}} \qquad V = \frac{v}{U_{\infty}} \qquad \theta = \frac{T - T_{\infty}}{T_{0} - T_{\infty}}$$

Les équations s'écrivent:

$$\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0$$

$$U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} = -\frac{\partial P}{\partial X} + \frac{1}{\text{Re}} \frac{\partial^2 U}{\partial Y^2} \quad \text{Avec}$$

$$U \frac{\partial \theta}{\partial X} + V \frac{\partial \theta}{\partial y} = \frac{1}{\text{Re Pr}} \frac{\partial^2 \theta}{\partial Y^2} + \frac{E}{\text{Re}} \left(\frac{\partial U}{\partial Y}\right)^2$$

$$Re = \frac{U_{\infty}L}{v}$$

$$Pr = \frac{v}{\alpha}$$

$$E = \frac{U_{\infty}^{2}}{C(T_{0} - T_{\infty})}$$

Après analyse des ordres de grandeur