

RISC-V 生态开发板硬件手册

V1.1

	文档变更历史				
版本	变更日期	撰稿/检查	变更描述		
V1.0	2022/2/28	徐鹏	初始版本		
V1.1	2022/3/3	徐鹏	更新产品效果图;补充 EEPROM 相关内容;补充与 ARDUINO 兼容的排母内容		

目录

一、简介	1 -
二、硬件功能模块描述	
2.1 时钟	
2.2 电源	
2.3 指示与用户 LED	
2.4 复位与用户按键	
三、 扩展接口和跳线	7 -
3.1 Arduino 兼容的扩展接口	7 -
3.2 跳线	10 -
四、参考文档	11 -

一、简介

RISC-V 生态开发板是一款基于 CM32M433R MCU 的 RISC-V 开发板,提供板载仿真器。使用 USB 与外部电源供电的接口,应对不同的电流需求。提供 3 个指示灯、3 个用户按键以及 RESET 按键、多路 UART、IIC 及 SPI 等扩展接口等资源。

图 1-1 CM32M433R-START 开发板示意图

RISC-V 生态开发板及功能简介:

- 微控制器: CM32M433R
 - 内核: 32 位 RICS-V N308

- 主频: 144MHz
- 内存: 512KB FLASH, 144KB SRAM
- 工作电压: 1.8~3.6V
- 外设资源:

定时器(4 个通用定时器, 2 个高级定时器, 2 个基本定时器) SPI*3, IIS*2, QSPI*1, IIC*4, USART*3, UART*4, CAN*2

- 供电方式: 5V USB 或者 5V 外部直流电源
- 尺寸: 10.1 * 5.3 cm
- 外设及接口:
 - ① MICRO USB TYPE-B 接口:下载、调试、供电
 - ② 标准单排 2.54mm 排母接口: Arduino 兼容接口
 - ③ 按键: 复位按键*1,用户按键*3
 - ④ LED: 用户 LED*3

二、硬件功能模块描述

图 2-1 CM32M433R-START 开发板系统框图

2.1 时钟

开发板提供了两个 2 外部时钟源。一个 8MHz 无源晶振(Y3)作为 CM32M433R MCU 芯片的时钟源,经 MCU 片内 PLL 倍频可产生高达 144MHz 的系统时钟。另一个 32. 768kHz 的无源晶振(Y2)为 MCU 的实时时钟电 路提供低功耗精准的时钟基准。此外,用户也可以不使用外部时钟源,而只使用 MCU 内部的时钟源。

图 2-2 时钟电路

2.2 电源

RISC-V 生态开发板上 CM32M433R MCU 芯片使用单路 3.3V 电源供电,板载电源稳压电路如下图所示。

图 2-3 板载 3.3V 电源

2.3 指示与用户 LED

板载红色 LED1 指示板载 LDO 电源稳压工作正常,开发板有电源输入;

板载红色 LED6 / 绿色 LED7 / 蓝色 LED8 为用户可控的 LED,可供应用程序作为指示信息使用。

图 2-4 用户 LED

2.4 复位与用户按键

RISC-V 生态开发板提供了一个复位按键和三个用户按键,电路如下图 所示。注意用户按键有外部上拉,按下时为低电平。

图 2-5 复位与用户按键

2.5 EEPROM

RISC-V生态开发板提供了一颗 EEPROM 芯片,容量为 256*8bit,接口为 IIC 接口,板端提供上拉电阻。需要注意的是,IIC 控制引脚 PC0 与 PC1 还引出至对外的排母中,如果用户需要使用 PC0 与 PC1 的非 IIC 功能,请自行拆掉上拉电阻 R30 与 R32。

三、扩展接口和跳线

3.1 Arduino 兼容的扩展接口

图 3-1 Arduino 兼容的扩展接口

扩展接口同 Arduino 的 UNO 及 DUE 版型物理接口相同,且引脚功能兼容,可直接连接 Arduino 接口的相关扩展板。下面分别列出了各个接口上的信号与 MCU 对应的引脚及功能说明。

	J13			J14		
序号	网络名称	默认功能	其他功能	网络名称	默认功能	其他功能
1	NC	/	/	ADC1	PE7	/
2	IOREF	数字参考电平	/	ADC2	PE8	UART5_TX, ADC,
	TORLE	X19-5-61	7		1 20	TIMER
3	RESET	复位	/	ADC3	PE9	UART5_RX,
	112521		7			ADC,TIMER
4	3V3	整板 3.3V 电源	/	ADC4	PE10	ADC,IMER
5	5V	整板 5V 电源	/	ADC5	PE11	ADC,TIMER
6	GND1	GND	/	ADC6	PE12	ADC,TIMER
7	GND2	GND	/	ADC7	PE13	ADC,TIMER
8	VIN	5V 外部电源输入	/	ADC8	PE14	ADC,TIMER
	J16			J18		
序号	网络名称	默认功能	其他功能	网络名称	默认功能	其他功能
		DC2	LIADTZ TV ADC	110 001	DAO	UART1_TX,
1	ADC1	PC2	UART7_TX,ADC	IIC_SCL	PA9	IIC_SCL4,TIMER
2	ADC2	PC3	UART7 RX,ADC	IIC_SDA PA	PA10	UART1_RX,
	ADCZ	PC3	OART7_RX,ADC		PAIU	IIC_SDA4,TIMER
3	B ADC3 PA7 ADC,		ADC,TIMER	AREF	模拟参考	,
3	ADCS	ra/	ADC, TIVIER	AILI	电平	7
4	ADC4	PA6	ADC,TIMER	GND	GND	/
5 DA	DAC1	PA4 DAC	DAC	SCK/PWM	PC7	SPI2 SCK,TIMER
ر	DACI	r A4	DAC	1	107	JI 12_JCK, I IIVILK

6	DAC2	PA5	DAC	MISO/PW M2	PC8	SPI2_MISO,TIMER
7	CANR	PB8	UART5_TX, CAN1_RX,IIC_S CL1	MOSI/PW M3	PC9	SPI2_MOSI,TIMER
8	CANT	PB8	UART5_RX, CAN1_TX,IIC_S DA1	NSS/PWM 4	PC6	SPI2_NSS,TIMER
9				PWM5	PC12	UART5_TX, TIMER
10				PWM6	PA11	CAN1_RX, TIMER
序号	J20(右侧)			J21(右侧)		
/3 3	网络名称	默认功能	其他功能	网络名称	默认功能	其他功能
1	COMP/P WM1	PB10	COMP5_INM,TI MER	UART1_TX	PB13	UART5_TX, ADC
2	COMP/ PWM2	PA3	COMP5_INP,TI MER	UART1_RX	PB14	UART5_RX, ADC
3	PWM3	PD12	ADC,TIMER	UART2_TX	PB0	UART6_TX, ADC,TIMER
4	PWM4	PB15	ADC,TIMER	UART2_RX	PB1	UARTR_RX, ADC,TIMER
5	PWM5	PA8	TIMER	UART3_TX	PC4	UART7_TX, IIC_SCL3,ADC
6	PWM6	PD13	ADC,TIMER	UART3_RX	PC5	UART7_RX, IIC_SDA3,ADC
7	UART_TX	PC10	UART3_TX, UART4_TX	IIC_SDA	PG3	IIC_SDA2
8	UART_RX	PC11	UART3_RX, UART4_RX	IIC_SCL	PG2	IIC_SCL2

表 3-1 Arduino 兼容的扩展接口

3.2 跳线

图 3-2 跳线

RISC-V 生态开发板的跳线连接选项与功能如下表所示。

跳线	说明	默认	功能
	VIN		USB 供电与 5V 外部电源供电二选一,区别在于 J13
J25	V_5V	,	连接器中 5V 网络的对外驱动能力。USB 供电时,驱
	VUSB	V	动能力为 1A; 5V 外部电源供电时,驱动能力为 2A
J8	VSYS_3.3V	,	MCU 电源,正常使用是连接跳线帽,测试 MCU 电
10	VMCU_3.3V	√	流时,去掉跳线帽,可串接电流计
J7	LINK_UART_RX	√	MCU的 LOG信息可通过 LINK 芯片转发,最终由 USB
J/	MCU_UART_TX		口显示
J6	LINK_UART_TX	√	
10	MCU_UART_RX		
J5	LINK_IO		LINK 芯片对 MCU 复位的控制
15	MCU_NRST		
	LINK_SPI_CSS	√	LINK 芯片对 MCU 的仿真、调试等功能的控制
	MCU_JTAG_TMS		
J10	LINK_SPI_SCK	√	
	MCU_JTAG_TCK		
	LINK_SPI_MISO	√	

	MCU_JTAG_TDO		
	LINK_SPI_MOSI	√	
	MCU_JTAG_TDI		
	HIGH_LEVEL	√	MCU 的 BOOT1 电平选择
J12	BOOT1		
	LOW_LEVEL		
	HIGH_LEVEL		MCU 的 BOOTO 电平选择
J11	воото	√	
	LOW_LEVEL		

表 3-2 跳线

四、参考文档

● CM32M433R 数据手册