Árboles Binarios de Búsqueda (*Binary Search Trees*) Programación de Estructuras de Datos y Algoritmos Fundamentales (TC1031)

M.C. Xavier Sánchez Díaz sax@tec.mx

Outline

- Arboles
 - Elementos de un árbol

2 Árboles binarios de búsqueda (Binary Search Trees)

¿Qué es un árbol? Árboles

Un árbol es una estructura de datos jerárquica y recursiva:

- Jerárquica porque tiene niveles o prioridades
- Recursiva porque puede describirse recursivamente: el hijo del hijo del hijo . . .

Árboles

Raíz

Elementos de un árbol

La raíz es el inicio del árbol; el nodo que es padre de todos.

Nodos y relaciones

Elementos de un árbol

El elemento R es padre (parent) de los nodos A y B. A y B son hijos (children) de R. A y B son hermanos (siblings).

Niveles

Elementos de un árbol

A y B están en el mismo nivel. X,Y,Z y U están en el mismo nivel.

Jerarquía

Elementos de un árbol

Los elementos sin descendencia son los nodos hoja.

Árboles binarios de búsqueda

Un árbol binario de búsqueda (binary search tree) es un árbol que es:

- Binario porque cada nodo tiene a lo mucho 2 hijos.
- de Búsqueda porque como si fuera binary search, los descendientes izquierdos deben ser más chicos que el padre, y los descendientes derechos deben ser más grandes que el padre.

Teniendo un árbol binario de n nodos

donde cada uno (a excepción de las hojas) tuvieran dos hijos cada quién, ¿cuál sería

la altura del árbol? es decir, ¿Cuántos

niveles tendría?

Operaciones posibles

Árboles binarios de búsqueda

Las sencillitas:

- Buscar (un valor)
- Agregar (un valor)
- Borrar (un valor)

Las complicadas

- Obtener la altura (del árbol)
- Obtener los ancestros (de un dato)
- Obtener el nivel (de un dato)

Las extremadamente complicadas¹:

• Recorridos (del árbol completo, dado cierto orden)

¹no es cierto

Operaciones posibles

Árboles binarios de búsqueda

Las sencillitas:

- Buscar (un valor)
- Agregar (un valor)
- Borrar (un valor)

Las complicadas:

- Obtener la altura (del árbol)
- Obtener los ancestros (de un dato)
- Obtener el nivel (de un dato)

Las extremadamente complicadas¹:

• Recorridos (del árbol completo, dado cierto orden)

¹no es cierto

Operaciones posibles

Árboles binarios de búsqueda

Las sencillitas:

- Buscar (un valor)
- Agregar (un valor)
- Borrar (un valor)

Las complicadas:

- Obtener la altura (del árbol)
- Obtener los ancestros (de un dato)
- Obtener el nivel (de un dato)

Las extremadamente complicadas¹:

Recorridos (del árbol completo, dado cierto orden)

¹no es cierto