Linear transformations

7/9/2020

Francesco Preta

Computational Linear Algebra

Definition

Let V,W be vector spaces. A function $T:V\to W$ is called **linear** if for every $\mathbf{x},\mathbf{y}\in V$ and $\alpha,\beta\in\mathbb{R}$, we have

$$T(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha T(\mathbf{x}) + \beta T(\mathbf{y})$$

Matrix multiplication

For a fixed matrix $A \in \mathbb{R}^{n \times m}$: $A(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha A \mathbf{x} + \beta A \mathbf{y}$

For instance
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

Inner product with a fixed vector

Fix a vector $\mathbf{z} \in \mathbb{R}^n$, then for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$:

$$\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$$

For instance, let
$$\mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Integral in function space

let $f_1, f_2 : [0,1] \to \mathbb{R}$ be Riemann-integrable functions and $\alpha, \beta \in \mathbb{R}$. Then

$$\int_0^1 (\alpha f_1(t) + \beta f_2(t)) dt = \alpha \int_0^1 f_1(t) dt + \beta \int_0^1 f_2(t) dt$$

Derivatives on function spaces

let $g_1, g_2 : [0,1] \to \mathbb{R}$ be derivable functions and $\alpha, \beta \in \mathbb{R}$. Then

$$\frac{d}{dt}(\alpha g_1 + \beta g_2)(t) = \alpha \frac{dg_1(t)}{dt} + \beta \frac{dg_2(t)}{dt}$$

Non-Examples:

Euclidean norm

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ in general it is not true that $||\alpha \mathbf{x} + \beta \mathbf{y}|| = \alpha ||\mathbf{x}|| + \beta ||\mathbf{y}||$

For instance, consider $\mathbf{x} = [1 \ 0]$, $\mathbf{y} = [0 \ 1]$ and $\alpha = \beta = 1$

Non-examples:

Maximum function

Consider $\max : \mathbb{R}^n \to \mathbb{R}$, the function returning the maximum element in a vector. Then for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$, in general $\max(\alpha \mathbf{x} + \beta \mathbf{y}) \neq \alpha \max(\mathbf{x}) + \beta \max(\mathbf{y})$

As a counterexample, consider $\mathbf{x} = [0 \ 1]$ and $\mathbf{y} = [0 \ -1]$, $\alpha = \beta = 1$.

Canonical basis of \mathbb{R}^n

Finite set of vectors $\{\mathbf{e}_i\}_{i=1}^m$, where

$$(\mathbf{e}_i)_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Then every vector $\mathbf{x} \in \mathbb{R}^m$ is a linear combination of \mathbf{e}_i 's, that is

$$\mathbf{x} = \sum_{i=1}^{m} x_i \mathbf{e}_i.$$

Representation of linear functions

A priori, it seems to be the case that matrix multiplication constitutes only one of the possible linear functions between \mathbb{R}^m and \mathbb{R}^n . However we will proving that every linear function on \mathbb{R}^m is in some sense a matrix multiplication:

Representation Theorem for linear functions

Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be a linear operator. Then there exists a $n \times m$ matrix A such that $f(\mathbf{x}) = A\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^m$

Proof:

Linearity of f guarantees that the value of $f(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^m$ is uniquely determined by the value of f on a finite set of vectors that span the entire space: the canonical basis.

$$f(\mathbf{x}) = f(\sum_{i=1}^{m} x_i \mathbf{e}_i) = \sum_{i=1}^{m} x_i f(\mathbf{e}_i)$$

Proof (continued):

For any matrix $A \in \mathbb{R}^{n \times m}$, $A\mathbf{e}_i$ is the i-th column of A:

$$(A\mathbf{e}_i)_j = \sum_{k=1}^n A_{j,k}(\mathbf{e}_i)_k = A_{j,i}$$

Proof (continued):

Then consider the matrix

$$A = \begin{bmatrix} f(\mathbf{e}_1) & f(\mathbf{e}_2) & \dots & f(\mathbf{e}_m) \end{bmatrix}$$

Where every $f(\mathbf{e}_i)$ is a column matrix. We have that

$$A\mathbf{x} = A(\sum_{i=1}^{m} x_i \mathbf{e}_i) = \sum_{i=1}^{m} x_i A \mathbf{e}_i = \sum_{i=1}^{m} x_i f(\mathbf{e}_i) = f(\sum_{i=1}^{m} x_i \mathbf{e}_i) = f(\mathbf{x})$$

Shift-forward operator

Consider $f: \mathbb{R}^3 \to \mathbb{R}^3$ to be the shift-forward operator, that is

$$f(\begin{array}{c|c} x_1 \\ x_2 \\ x_3 \end{array}) = \begin{bmatrix} x_3 \\ x_1 \\ x_2 \end{bmatrix}$$

What is the representation of f?

Injectivity and Surjectivity

A function $f: V \to W$ is said to be **injective** if

$$f(\mathbf{x}) = f(\mathbf{y})$$
 if and only if $\mathbf{x} = \mathbf{y}$

that is, different points of V have different image in W.f is said to be surjective if

$$\forall \mathbf{w} \in W, \exists \mathbf{x} \in V \text{ such that } f(\mathbf{x}) = \mathbf{w}$$

that is, all points in Ware the image of a point in V.

If a function is both injective and surjective it is said to be bijective.

Injectivity for linear functions

Linearity guarantees an additional property for surjectivity, that is:

Theorem

Let $T:V\to W$ be a linear function. Then injectivity of T is equivalent to the condition that $T(\mathbf{x})=0$ if and only if $\mathbf{x}=0$.

Proof:

Consider $\mathbf{x}, \mathbf{y} \in V$ such that $T(\mathbf{x}) = T(\mathbf{y})$. Since T is linear and $T(\mathbf{x}) - T(\mathbf{y}) = 0$, then $T(\mathbf{x} - \mathbf{y}) = 0$.

If T is injective, then $\mathbf{x} = \mathbf{y}$, therefore $\mathbf{x} - \mathbf{y} = 0$.

On the other hand, if T(v) = 0 if and only if v = 0, then $\mathbf{x} - \mathbf{y} = 0$, so $\mathbf{x} = \mathbf{y}$ and T is injective.

The image of 0

for a linear operator it is always the case that $T(\mathbf{0}) = \mathbf{0}$. This comes from the definition of linearity, since

$$T(0) = T(2 \cdot 0) = 2T(0)$$

which is true only if T(0) = 0.

The theorem tells us that injectivity of T corresponds to the fact that 0 is the only element whose image is $\mathbf{0}$.

Kernel and Image

For linear functionals, it makes sense to give the following definitions:

Let $T:V\to W$ be a linear function. Then the **Kernel** of T is defined as the elements of V whose image is $\mathbf{0}$, that is

$$Ker(T) = \{ \mathbf{x} \in V \mid T(\mathbf{x}) = 0 \}$$

and the image or range of T are the elements of W that are mapped through T by some element in V

$$Im(T) = \{ y \in W \mid T(\mathbf{x}) = y \text{ for some } \mathbf{x} \in V \}$$

Surjectivity of a linear function

Surjectivity for linear functions can be stated in the following terms:

Theorem

Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be a linear operator and A a $n \times m$ matrix such that $T(\mathbf{x}) = A\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^m$. Then T is surjective if and only if the columns of A span \mathbb{R}^n .

Proof:

By the representation theorem $T(\mathbf{x}) = A\mathbf{x}$ for some matrix A in $\mathbb{R}^{n \times m}$, then every \mathbf{x} can be written as a linear combination of the canonical basis of \mathbb{R}^m , and by linearity

$$A\mathbf{x} = A(\sum_{i=1}^{m} x_i \mathbf{e}_i) = \sum_{i=1}^{m} x_i A \mathbf{e}_i$$

But we know that $A\mathbf{e}_i$ is the i-th column of A, so Im(T) is the span of the columns of A.

Example

Consider the following function $f: \mathbb{R}^2 \to \mathbb{R}^3$:

$$f(\mathbf{x}) = (x_1, x_1, x_2)$$

Is it injective? Is it surjective?

Examples of linear transformations in \mathbb{R}^2

Rotations

Example of counter-clockwise rotation by $\frac{\pi}{3}$, for A= $\begin{bmatrix} \frac{1}{2} & \frac{7}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$

Rotations

General form of rotation is A= $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$.

represents a rotation around the origin of angle θ . Consider a point

$$\mathbf{x} = (x_1, x_2)$$
. Then

$$A\mathbf{x} = (x_1 \cos \theta - x_2 \sin \theta, x_1 \sin \theta + x_2 \cos \theta)$$

Rotations

To check that it does what we want it to do, we can calculate

$$\cos \angle(\mathbf{x}, A\mathbf{x}) = \frac{\langle \mathbf{x}, A\mathbf{x} \rangle}{||\mathbf{x}|| ||A\mathbf{x}||}$$

Dilatations

Example of dilatation. General form is $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$. In this case the horizontal axis

is dilated by 2 and the vertical axis contracted by $\frac{1}{3}$, so the form is $A = \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$

Reflections: horizontal axis

The function has the form

$$f(x_1, x_2) = (x_1, -x_2).$$

The matrix A has the form

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Reflection: vertical axis

The function has the form $g(x_1, x_2) = (-x_1, x_2)$.

The matrix B has the form

$$B = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Reflection: origin

The function has the form $h(x_1, x_2) = (-x_1, -x_2).$

The matrix C has the form

$$C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Reflection: $x_2 = x_1$

The function has the form $i(x_1, x_2) = (x_2, x_1)$.

The matrix D has the form

$$D = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Reflection: $x_2 = -x_1$

The function has the form $l(x_1, x_2) = (-x_2, -x_1).$

The matrix E has the form

$$E = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}.$$

Shear transformations: horizontal shear

A horizontal shear will map horizontal lines to horizontal lines and vertical lines to oblique lines.

The generic transformation has the form
$$A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$
. In the picture the matrix is $A = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$

Shear transformations: vertical shear

A vertical shear maps horizontal lines to oblique lines and vertical lines to to vertical

lines. . Generic form is
$$A = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$
, while in the picture it is $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.

Affine transformations

An **affine transformation** on \mathbb{R}^m is a function $F: \mathbb{R}^m \to \mathbb{R}^n$ of the form $F(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for $A \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^n$. It is therefore a function that differs from a linear function by an additive term \mathbf{b} .

Affine transformations: translation

The geometric interpretation of the additive term is a translation. In the picture, we can see the action of the function

$$F(\mathbf{x}) = \mathbf{x} + \mathbf{b} \text{ for } \mathbf{b} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

