

M908

LoRa Communication + MCU Module

With Intel Quark

Preliminary DATASHEET 10th July, 2017

Table of Contents

1	Fea	tures and A	Applications	
2	Blo	ck Diagram	1	3
3	Par	t Number		3
4	Tec	hnical Spec	cifications	4
	4.1	Absolute	e Maximum Ratings	4
	4.2	Operation	on Condition	4
	4.3	Wireless	Specifications	4
	4.4	LoRa RF	Performance	5
		4.4.1	Band 915 MHz (US)	5
		4.4.2	Band 868 MHz (EU)	6
		4.4.3	Band 780 MHz (CN)	7
		4.4.4	Band 923 MHz	8
		4.4.5	Band 922 MHz (US)	c
		4.4.6	Band 433 MHz EU	10
		4.4.7	Band 490 MHz CN	11
	4.5	Power C	onsumption	12
5	Dim	ensions		13
ŝ	Pin	Assignmen	nts	
7	Rec	ommende	d Footprint	
3	Ref	erence Des	sign Circuit	
9	Rec	ommende	d Reflow Profile	17
10) SiP	Module Pr	eparation	18
	10.1	Handling	3	
	10.2	SMT Pre	paration	
11	L Pac	kage Inforr	nation	19
	11.1	Product	Marking	
	11.2	Package	Information	20
12	2 Doc	ument His	tory	20

1 Features and Applications

Feature List MCU

- Intel 32MHz Quark MCU (C1000)
- 32MHz DSP for sensor subsystem
- 8 kB 2-way L1 instruction cache
- Low Latency Data Tightly Coupled Memory (TCM)
 Interface to on-die SRAM
- 1.49 DMIPs/MHz

LoRa transceiver

- FULL Band 868/915/922/923/780/433/490 MHz
- Supports end-device class A/B/C
- 168 dB maximum link budget
- +20 dBm 100 mW constant RF output vs. V supply
- +14 dBm high efficiency PA
- High sensitivity: down to -148 dBm
- Programmable bit rate up to 300 kbps

Memory

- 384 kB of on-die NVM + 8 kB OTP on-die NVM
- 80 kB of on-die SRAM

Power Management

- SiP Status: Active, Sleep and off
- Sensor subsystem:

Sensing active, sensing wait and sensing standby

• Platform power DC-DC 1.8V, 3.3V

Industry Standard I/O Hardware

- USB 1.1 FS device
- 21²C/2SPI/2UART,4Timers,4PWM

Sensor Subsystem Interface

- 212C/2SPI
- 4 channel 12-bit ADC
- 2Timers

Characteristics

- Operation Range: -40°C~+85°C
- LGA-144 pins
 - 12x12x1.3mm

Applications

- Utility Metering and Lighting Control
- Long range Irrigation Systems
- Wireless Alarm and Security Systems
- Internet of Things (IoT)
 - Industrial Monitoring and Control
 - Sensor networks
 - Home and Building automation

2 Block Diagram

There is fully integration module with Semtech SX1276, 32MHz low power crystal. Intel C1000 Quark Processor.

3 Part Number

Ordering Part number	RF Band	Description			
M908H	868, 915, 922, 923 MHz	EU868, US915 ISM Band			
M908L	433, 490 MHz	EU433, AS430 ISM Band			

4 Technical Specifications

Operation and storage condition

4.1 Absolute Maximum Ratings

Item	Description		Value	Unit					
Ratings	Ratings Over Operating Free-Air Temperature Range								
1	Supply voltage	All supply pins must have the same voltage	3.3	V					
2	Voltage on any pin		TBD	V					
3	Storage temperature	range	TBD	°C					
4									

4.2 Operation Condition

Operating Condition	Min	Typical	Max	Unit
VCC		3.3		V
Operation ambient temperature range	-40		85	°C

4.3 Wireless Specifications

The M908 module is compliant with the following features and standards:

Features	Description		
Frequency			
Modulation Method	FSK, GFSK and LoRa Technology Modulaion		
Tx Power	2.402 – 2.480 GHz		
Sensitivity			

4.4 LoRa RF Performance

4.4.1 Band 915 MHz (US)

● **Transmitter output power:** (Tx power setting from 14 ~ 20 dBm)

4.4.2 Band 868 MHz (EU)

• Transmitter output power: (Tx power setting from 14 ~ 20 dBm)

4.4.3 Band 780 MHz (CN)

• Transmitter output power: (Tx power setting from 14 ~ 20 dBm)

4.4.4 Band 923 MHz

• Transmitter output power: (Tx power setting from 14 ~ 20 dBm)

4.4.5 Band 922 MHz (US)

• Transmitter output power: (Tx power setting from 14 ~ 20 dBm)

4.4.6 Band 433 MHz EU

• Transmitter output power: (Tx power setting from 14 ~ 20 dBm)

4.4.7 Band 490 MHz CN

• Transmitter output power: (Tx power setting from 14 ~ 20 dBm)

4.5 Power Consumption

Item	Тур.	Units
Tx Mode 0dBm		mA
Rx Mode @ 1Mb/s		mA
Idle		uA
Rx		uA
Deep Sleep		uA

5 Dimensions

The size and thickness of the M908 module are 12mm (W) x 12mm (L) x 1.3mm (H):

unit: mm		Symbol	Common Dimensions
D - 1 C'		Е	12.000
Body Size	Y	D	12.000
Ball Pitch		e	1.000
Total Thickness		A	1.332+0.07
Mold Thickness		M	1.000+0.07
Substrate Thickness		S	0.332+0.05
Lead Width		W	0.500±0.02
Package Edge Tolerance		aaa	0.100
Body Center to Contact Ball		SD	0.500
Body Center to Contact Ban		SE	0.500
Lead Count		n	144
Edan Dall anntanta anntan		E1	11.000
Edge Ball center to center		D1	11.000

6 Pin Assignments

	1	2	3	4	5	6	7	8	9	10	11	12
Α	RF_IO	GND	GND	GND	GND	VCC_AON _1P8	TR_RXTX	GPIO[21]	GPIO[24]	GPIO[25]	AREF_PA D	GND
В	GND	GND	GND	GND	GND	GND	SPI1_SS_ MISO	GPIO[22]	GPIO[23]	GPIO[26]	GND	VCC_IO_A ON
С	I2C0_SDA	I2C0_SCL	I2C1_SCL	I2C1_SDA	SPI0_SS_ MISO	SPI0_SS_ CS_B[3]	SPI1_SS_ MOSI	SPI1_SS_ CS_B[2]	GND	GPIO[27]	PWM[3]	PWM[2]
D	I2C1_SS_S CL	I2C1_SS_S DA	GND	GND	SPI0_SS_ SCK	SPI0_SS_ CS_B[2]	SPI1_SS_ SCK	SPI1_SS_ CS_B[3]	GND	GND	PWM[0]	PWM[1]
E	I2C0_SS_S CL	I2C0_SS_S DA	GND	GND	SPI0_SS_ MOSI	SPI0_SS_ CS_B[1]	SPI1_SS_ CS_B[1]	SPI1_SS_ CS_B[0]	GND	RST_B	GND	VCC_HOS T_1P8_PG
F	ADC[0]	GPIO_SS_ [5]	GPIO_SS_ [3]	GND	GND	SPI0_SS_ CS_B[0]	TDI	TDO	GND	GND	VCC_AVD _OPM_2P6	VCC_AVD _OPM_2P6
G	USB_NP	USB_DP	GND	GND	GND	GND	TRST_B	TMS	GND	PLT_REG_ EN	GND	VCC_PLT_ 1P8_IND
Н	GND	GPIO_SS_ [4]	GPIO_SS_ [2]	GND	GND	GPIO[1]	TCK	AON_GPIO [0]	AON_GPIO [4]	AON_GPIO [2]	GND	VCC_PLT_ 1P8
J	UART0_TX D	UART0_RX D	GND	GND	GND	GPIO[2]	GPIO[3]	AON_GPIO [5]	AON_GPIO [3]	AON_GPIO [1]	GND	VCC_PLT_ 3P3
K	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	VCC_PLT_ 3P3_IND
L	OSC32M_ OUT	GND	UART1_TX D	UART1_CT S	VCC_CMP	GND	GND	GND	VBAT_SO C	GND	VCCOUT_ AON_1P8	VCC_HOS T_1P8_IND
M	OSC32M_I N	GND	UART1_RX D	UART1_RT S	VCC_USB _3P3	VCC_ADC	VDD_RFS	TR_NRES ET	VBAT_SO C	GND	VCC_HOS T_1P8	VCC_HOS T_1P8
							<u> </u>					
	RF	Clock	UART	PWM	ADC	GND						
	Power	USB	SPI	JTAG	AON_GPIO	Others						

7 Recommended Footprint Suggest on PCB: SMD (1:1)

TBD

8 Reference Design Circuit VOC_HOST_1P8 M12 VCC_PLT_1P8 M0 H12 VCC_PLT_1P8 M0 H12 VCC_PLT_1P8 M0 H12 VCC_PLT_1P8 VCC_IO_AON LS VCC_CMP L9 VBAT_SOC VBAT_ LoRa Module R274 R276 R129 R277 R275 TP8 1 SM 1 TP9 1 SM 1 TP10 1 TP1 1 TP13 1 SM 1 TP13 1 SM 1 TP13 1 SM 1 TP14 1 SM 1 TP3 1 TP4 1 VCC_IO_AON TPS 1 SM 1 SM 1 SM 1 SM 1 SM 1 SM 1 VOC_OMP TPIS 1 Connectors (Pitch:1.27mm)

9 Recommended Reflow Profile

Profile Condition

- a. Suitable for Lead-Free solder
- b. Between 155~160°C: 60~90 sec.
- c. Above 220°C: 60~90 sec.
- d. Peak Temperature: 240~245 (<10 sec.)

10 SiP Module Preparation

10.1 Handling

Handling the module must wear the anti-static wrist strap to avoid ESD damage. After each module is aligned and tested, it should be transport and storage with anti-static tray and packing. This protective package must be remained in suitable environment until the module is assembled and soldered onto the main board.

10.2 SMT Preparation

- 1. Calculated shelf life in sealed bag: 6 months at $<40^{\circ}$ C and <90% relative humidity (RH).
- 2. Peak package body temperature: 250°C.
- 3. After bag was opened, devices that will be subjected to reflow solder or other high temperature process must.
 - a. Mounted within: 72 hours of factory conditions $<30^{\circ}$ C/60% RH.
 - b. Stored at \leq 10% RH with N2 flow box.
- 4. Devices require baking, before mounting, if:
 - a. Package bag does not keep in vacuumed while first time open.
 - b. Humidity Indicator Card is >10% when read at $23\pm5^{\circ}$ C.
 - c. Expose at 3A condition over 8 hours or Expose at 3B condition over 24 hours.
- 5. If baking is required, devices may be baked for 12 hours at $125\pm5^{\circ}$ C.

11 Package Information

11.1 Product Marking

TBD

11.2 Package Information

TBD

12 Document History

Date	Modifications	Version
Mar. 08, 2017	Preliminary Version	1.0
July. 10, 2017	Update Low band of LoRa	1.1

MtM Technology Corporation

7F, 178 MinQuan East Road Section 3, Songshan District, Taipei, Taiwan (R.O.C.)

+886-2-7736-7386

http://www.mtmtech.com.tw

http://blog.mtmtech.com.tw

https://www.facebook.com/MtMTechnologyCorporation

http://www.Instagram.com/mtmtech

© 2017 MtM Technology Corporation

DISCLAIMER: The information in this document is provided in connection with MtM Technology products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of MtM Technology products. MTM TECHNOLOGY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL MTM TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LI MITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF MTM TECHNOLOGY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. MtM Technology makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to pecifications and products descriptions at any time without notice. MtM Technology does not make any commitment to update the information contained herein. MtM Technology products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: MtM Technology products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety -Critical Applications") without an MtM officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. MtM Technology products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by MtM Technology as military -grade.