

Math Methods for Political Science

Lecture 14: Optimization

Reminder: local extrema

Let $f: \mathbb{R}^n \to \mathbb{R}$.

Definition 1 (Local extrema and stationary points)

- If $\exists \delta > 0$ s.t., $\forall x \in (x_0 \delta, x_0 + \delta) \cap D_f$,
 - 1. $f(x) \ge f(x_0)$, then x_0 is a **local minimum**,
 - 2. $f(x) \le f(x_0)$, then x_0 is a **local maximum**.

If 1. or 2. is true, then x_0 is a **local extremum**.

• x_0 is a **stationary point** if $\nabla f(x_0) = 0$.

Theorem 1 (Gradient and Hessian at local extrema)

If f is differentiable at a local extremum x_0 , then $\nabla f(x_0) = 0$. Furthermore, if x_0 is a stationary point, then

- 1. $H(x_0)$ positive definite $\implies x_0$ is a local minimum,
- 2. $H(x_0)$ negative definite $\implies x_0$ is a local maximum.

Global extrema

Definition 2 (Global extrema)

If $\forall x \neq x_0$,

- 1. $f(x) \ge f(x_0)$, then x_0 is a global minimum,
- 2. $f(x) \le f(x_0)$, then x_0 is a global maximum.
- If 1. or 2. is true, then x_0 is a **global extremum**.

Example 1 (Global extrema)

- $f(x,y) = x^2 + y^2$ and $D_f = \mathbb{R} \times \mathbb{R}$
- $f(x) = 2x^3 + 3x^2 12x + 4$ and $D_f = [-3, 2]$

Reminder: concavity and convexity

Definition 3 (Concavity and convexity)

Let $f: \mathbb{R} \to \mathbb{R}$ and $S \subseteq D_f$. If $\forall x, y \in S$ and $\lambda \in [0, 1]$,

- $f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda)f(y)$, f is concave on S,
- $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$, f is convex on S.

Concave function

Convex function

Theorem 2 (Concavity and convexity)

If f is twice continuously differentiable on S, then $f''(x) \leq 0$ $\forall x \in S \implies f$ is concave/convex on S.

Concavity and convexity cont'd

Definition 4 (Concavity and convexity)

Let $f: \mathbb{R}^n \to \mathbb{R}$ and $S \subseteq D_f$. If $\forall x, y \in S$ and $\lambda \in [0,1]$,

- $f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda)f(y)$, f is concave on S,
- $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$, f is convex on S.

Note: strict convexity for < instead of \le and similar for concavity.

 $-(x_1^2+x_2^2)$

 x_1

5

Concavity and convexity cont'd

Theorem 3 (Sufficient condition for global min/max)

- 1. If f is convex, then every local minimum is also global.
- 2. If f is strictly convex, then \exists at most one global minimum.
- 3. If f is concave, then every local maximum is also global.
- 4. If f is strictly concave, then \exists at most one global maximum.

Theorem 4 (Hessian)

 $\forall x \in D_f$,

- 1. H(x) positive semidefinite \iff f is convex on D_f ,
- 2. H(x) positive definite \iff f is strictly convex on D_f ,
- 3. H(x) negative semidefinite \iff f is concave on D_f ,
- 4. H(x) negative definite \iff f is concave on D_f .

Mathematical optimization

Definition 5 (Optimization problem)

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i, i = 1, ..., m$.

- $\mathbf{x} = (x_1, \dots, x_n)$ are the **optimization variables**.
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective function.
- $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$ are the constraint functions.

Example 2 (Applications)

- portfolio optimization
 - variables: amounts invested in different assets
 - constraints: budget, amount per asset, return
 - objective: overall risk or return variance

- data fitting
 - variables: model parameters
 - constraints: prior info, parameter bounds
 - objective: measure of misfit or prediction error

Optimization problem cont'd

Example 3 (Optimization problem)

Your have 8kg of apples, 2.5kg of dough and 6 molds to bake apple turnover and pies.

- Apple turnover: 150g of apple, 75g of dough, sold for 3\$.
- Apple pie: 1kg of apple, 200g of dough, 1 mold, can be divided into 6 slides, each sold 2\$.

What should you bake to maximize your revenue?

Solving optimization problems

- general optimization problem
 - very difficult to solve
 - methods involve some compromise, e.g., very long computation time, or not always finding the solution
- exceptions: certain problem classes can be solved efficiently and reliably
 - least-squares problems
 - linear programming problems
 - convex optimization problems

Least-squares

$$\underset{x}{\mathsf{minimize}} \quad \|Ax - b\|^2$$

- solving least-squares problems
 - ▶ analytical solution: $x^* = (A^T A)^{-1} A^T b$
 - reliable and efficient algorithms and software
 - riangleright computation time proportional to n^2m (if A is $m \times n$); less if structured
 - a mature technology
- using least-squares
 - least-squares problems are easy to recognize
 - a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

- solving linear programs
 - no analytical formula for solution
 - reliable and efficient algorithms and software
 - ▶ computation time proportional to n^2m if $m \ge n$; less with structure
 - a mature technology
- using linear programming
 - not as easy to recognize as least-squares problems
 - a few standard tricks used to convert problems into linear programs

Convex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$.

objective and constraint functions are convex:

$$f_i(\lambda x + (1-\lambda)y) \leq \lambda f_i(x) + (1-\lambda)f_i(y),$$

$$\lambda \in [0,1]$$

 includes least-squares problems and linear programs as special cases

Convex optmization cont'd

- solving convex optimization problems
 - no analytical solution
 - reliable and efficient algorithms
 - computation time (roughly) proportional to $\max(n^3, n^2m, F)$, where F is the cost of evaluating f_i 's and their first and second derivatives
 - almost a technology
- using convex optimization
 - often difficult to recognize
 - many tricks for transforming problems into convex form
 - surprisingly many problems can be solved via convex optimization