IE510 Applied Nonlinear Programming Homework 3

Instructor name: Ruoyu Sun	Student name:	
·		

Date assigned: Week 10 Monday 03/19/2018 Date due: Week 12 Tuesday 04/03/2018, at 3pm

Remark: The work your are submitting for this homework assignment must be your own, and suspiciously similar homework submitted by multiple individuals may be reported to the University for investigation.

1 Reading

- Reading: Textbook Section 1.5.2 "Incremental Gradient Method"
- Reading: Textbook Section 2.7 "Block Coordinate Descent Methods" (note that the theorem in 1999 version needs to be modified; see the correction in the Box file)
- If interested in more details about incremental gradient methods and SGD, you can read references listed in lecture slides

2 Problems

- 1. (60 points + 5 bonus points) Consider a non-singular matrix $A = (A_1, A_2, ..., A_n)$, where $A_i \in \mathbb{R}^{d \times 1}$ and $||A_i|| = 1$, for $\forall i$. We want to solve $\min_x ||Ax b||^2$, s.t. $x \in \mathbb{R}^n$. Assume b = 0 for simplicity.
 - (a) (25 points) Let n = 100. Consider the setting $A_{ij} \sim \text{Unif}[0, 1]$, where Unif[0, 1] represents uniform distribution on the interval [0, 1]. After generating A, normalize A_i , s.t. $||A_i|| = 1$, $\forall i$ (i.e. define $\widetilde{A}_{ij} = \frac{A_{ij}}{||A_i||}$, $\forall i, j$, and replace A by \widetilde{A}).

Use random initial point $x^0 = (x_1^0, \dots, x_n^0)$, where $x_i^0 \sim \mathcal{N}(0, 1)$, $i = 1, \dots, n$. Here $\mathcal{N}(0, 1)$ represents standard Gaussian distribution. Compare two algorithms randomized coordinate descent (R-CD) and gradient descent (GD) with stepsize $\frac{1}{L}$ by plotting function values v.s. epochs.

Remark: One epoch of R-CD consists of n iterations.

- (b) (5 points) I claimed in class that R-CD is roughly $\frac{\lambda_{max}(A^TA)}{\lambda_{avg}(A^TA)}$ times faster than GD, where $\lambda_{avg}(A^TA)$ is the average eigenvalue of A^TA . Do your figures in (a) support this claim?
- (c) (30 points) Under the same setting as (a), compare SGD with various constant stepsizes, SGD with diminishing stepsizes and GD with stepsize $\frac{1}{L}$. Report and discuss your findings.

(d) (5 bonus points) Generate Q as $Q_{ii}=1, \forall i; Q_{ij}=c, \forall i\neq j$. Here $0\leq c\leq 1$ is a constant. Consider problem

$$\min_{x} \quad x^{T}Qx, \quad s.t. \quad x \in \mathbb{R}^{n}.$$

Compare 4 algorithms: cyclic CD(C-CD), randomized CD(R-CD), randomly permutated CD(RP-CD), GD with stepsize $\frac{1}{L}$. Run experiments for different n and c. What do you find? Can you make some general conjectures that explain your findings?

2. (40 points) Consider the following problem:

$$\min_{x \in \mathbb{R}^n} \quad f(x) = \frac{1}{2} ||M - xx^T||_F^2. \tag{*}$$

- (a) (5 points) Describe how to use gradient descent to solve (*).
- (b) (10 points) Describe how to use coordinate gradient descent to solve (*).
- (c) (15 points) Describe how to use coordinate descent to solve (*).

Note: You can assume there exists a 3-rd order equation solver that returns all three complex roots of equation $az^3 + bz^2 + cz + d = 0$.

(d) (10 points) Describe how to use stochastic gradient method to solve (*). Please provide at least two versions of SGD.

Remark: You can use any update order in all algorithms.