Résistance d'un circuit R.L.C.

par C. KOVACIC Lycée Poincaré, 54000 Nancy

RÉSUMÉ

L'étude expérimentale de l'entretien des oscillations d'un circuit RLC série par un dispositif à résistance négative, montre que la résistance du circuit augmente fortement et très rapidement avec la fréquence.

Après analyse des différentes causes possibles, nous montrons que ce phénomène est essentiellement dû à la bobine (effet de peau). L'interprétation théorique en sera donnée dans un prochain article.

1. ÉTUDE EXPÉRIMENTALE

1.1. Montage

r représente la résistance des connexions, de la bobine et éventuellement la résistances série du condensateur.

C est constitué de boîtes à décades.

L est constitué de bobines Leybold sans noyau.

Si $R_o > r$, le système est instable et des oscillations apparaissent. (Voir B.U.P. n^2 717 octobre 89, article de J. Le Dily).

En faisant varier C, donc la fréquence propre des oscillations, on peut étudier les variations de r en fonction de la fréquence.

Remarque: il est difficile de pousser très loin en fréquence à cause d'oscillations parasites d'origine non identifiée.

1.2. Mesures

BOBINE A : 500 tours, $\varnothing_{61} = 1.5$ mm, $r_0 = 1.27 \Omega$

C (nF)	8192	4096	2048	1024	512	256	128	64	32	16	8	4
f (KHz)	0,53	0,75	1,06	1,50	2,14	3,01	4,29	6,08	8,58	12,2	17,3	24,5
r (Ω)	1,6	1,8	2,1	2,8	4,2	6,8	12	22	38	67	98	149

BOBINE B: 500 tours, $\varnothing_{fil} = 1.0 \text{ mm}, r_o = 2.7 \Omega$

f (KHz)	0,515	0,73	1,03	1,46	2,08	2,92	4,15	5,86	8,22	11,6	16,3	22,8
r (Ω)	2,9	3,0	3,1	3,5	4,0	4,6	6,1	9,1	15	27	40	79

BOBINE C: 250 tours, $\varnothing_{\rm fil} = 1.6$ mm, $r_{\rm o} = 0.56 \ \Omega$

f (KHz)	0,96	1,36	1,93	2,72	3,88	5,46	7,82	11,1	15,7	22,4	31,5	44,3	61,1	81,8
r (Ω)	0,7	0,9	1,3	1,8	2,9	4,5	7,5	12	19	29	34	50	79	93

- Les valeurs de la capacité n'ont pas été reproduites dans les cas B et
 C, elles sont identiques au cas A.
- Pour la bobine C, on a pu faire 2 mesures supplémentaires correspondant à C=2 nF et C=1 nF.
- Les mesures aux basses fréquences indiquent une résistance dûe aux connexions de l'ordre de 0.2 à 0.3 Ω .

Les résultats sont rassemblés sur le diagramme logarithmique de la Figure 1 et indiquent un fort accroissement de la résistance du circuit dès que la fréquence atteint 10 KHz.

2. DÉFAUTS DE L'AMPLIFICATEUR OPÉRATIONNEL

2.1. Dissymétrie des entrées, non linéarité

On conçoit mal comment ces défauts pourraient géner l'apparition des oscillations.

2.2. Intensité prélevée par les entrées

On peut négliger cette intensité car les résistances extérieures appliquées sur les entrées sont au plus de l'ordre de 100Ω , donc largement négligeables par rapport aux résistances d'entrée de l'A.O.

2.3. Bande passante de l'A.O.

L'A.O. se comporte en sortie comme un circuit du premier ordre :

$$\tau \frac{dU_s}{dt} + U_s = \mu \varepsilon \tag{1}$$

D'autre part, on a aussi :

$$U^{-} = Ri + U_{s}$$
 (2), $U^{+} = \frac{R_{o}}{R_{o} + R} U_{s}$ (3)

Donc en utilisant (2) et (3):

$$\varepsilon = U^{+} - U^{-} = -\frac{R U_{s}}{R + R_{o}} - Ri$$
 (4)

On replace l'expression obtenue de ε dans (1):

$$\tau \frac{dU_S}{dt} + U_S \left(1 + \frac{\mu R}{R + R_o} \right) = -\mu Ri$$

Et tenant compte du fait que U- est aussi la tension aux bornes du circuit RLC, on a l'équation supplémentaire :

$$U^{-} = -ri - L \frac{di}{dt} - \frac{1}{C} \int idt = Ri + U_s$$

Il reste à chercher une solution sinusoïdale du système :

$$\begin{split} &j\omega\tau\,\overline{U_s} + \overline{U_s}\,\frac{\mu R}{R+R_o} = -\,\mu\,R\overline{I}\,\left(\text{on n\'eglige 1 devant}\,\frac{\mu R}{R+R_o}\right) \\ &(R+r)\,\overline{I} + j\overline{I}\left(L\omega - \frac{1}{C\omega}\right) + \overline{U_s} = 0 \end{split}$$

Par identification, il vient:

$$\left[\left(r+R\right)+j\left(L\omega-\frac{1}{C\omega}\right)\right]\left[\frac{R\mu}{R+R_{o}}+j\;\omega\;\tau\right]-\mu R=0$$

En séparant les parties réelles et imaginaires :

$$\frac{\mu R}{R + R_o} \left(r - R_o \right) = \omega \tau \left(L \omega - \frac{1}{C \omega} \right)$$
 (1)

$$\omega \tau (r + R) + \frac{\mu R}{R + R_o} \left(L\omega - \frac{1}{C\omega} \right) = 0$$
 (2)

Comme
$$\mu >> 1$$
, (2) impose que : $L\omega - \frac{1}{C\omega} \sim 0$, $\omega \sim \omega_o = \frac{1}{\sqrt{LC}}$

On obtient alors de manière approchée :

$$L\omega - \frac{1}{C\omega} \sim \frac{-\omega_o \tau (R+r) (R_o + R)}{\mu R}$$

Ce qui en transposant dans (1) donne :

$$R_o - r \sim \omega_o^2 \frac{\tau^2}{\mu^2} \left(\frac{R + R_o}{R^2} \right)^2 (R + r) \; , \; R_0 - r \sim \frac{\omega_o^2 \, \tau^2 \, R}{\mu^2}$$

en considérant que r << R et $R_0 << R$.

Application numérique :

On prend
$$\mu = 10^5$$
, $\tau = 10^{-2}s$ (A.O. tout à fait courant)
 $R = 10^4 \Omega$ (c'est une valeur maximum dans un montage)

on désire que : $R_o - r = 1 \Omega$ on en déduit : $\omega_o = 10^5 \text{ rad/s}$, $f_0 = 16 \text{ kHz}$.

Ce résultat est donc loin d'expliquer les variations observées de la résistance du circuit en fonction de la fréquence.

3. RÉSISTANCE SÉRIE D'UN CONDENSATEUR

Il s'agit de décrire un condensateur réel par le schéma équivalent :

La résistance de fuite est supposée suffisamment importante

(condensateur plastique) pour ne pas intervenir dans le schéma équivalent.

3.1. Réponse d'un diélectrique à basse fréquence

On peut considérer l'équation de relaxation : $\tau \frac{dD}{dt} + D = \epsilon E$

D Déplacement, E Champ électrique qui traduit simplement le fait que les dipôles induits ou préexistant dans le diélectrique s'orientent dans le champ appliqué avec un temps de retard de l'ordre de τ .

ε étant la valeur statique de la constante diélectrique. Donc en régime sinusoïdal alternatif :

$$D(1 + j\omega \tau) = \varepsilon E, \ \varepsilon(\omega) = \frac{\varepsilon}{1 + j\omega \tau}$$

La capacité et l'impédance du condensateur s'expriment alors par :

$$C\left(\omega\right) = \frac{\varepsilon\left(\omega\right) s}{e} = \frac{C}{1+j\omega\tau}, \ Z = \frac{-j}{C\omega}\left(1+j\omega\tau\right)$$

D'où une résistance correspondant à la partie réelle de Z:

$$R = \frac{\tau}{C}$$
 ou $\tau = RC$

3.2. Étude expérimentale

3.2.1. Montage

Le G.B.F. a été testé jusque 1 MHz, sa résistance de sortie reste

fixée à 50Ω . Le but des 2 résistances est de réduire la résistance interne du générateur de Thévenin équivalent alimentant le condensateur (lors des mesures on a fait varier R' entre 10 et 40Ω).

3.2.2. Principe des mesures

Si U_o est la tension en circuit ouvert, en présence du condensateur on aura : $U = \frac{U_o}{1 + i \omega r C}$ r étant la résistance totale du circuit.

On règle la fréquence pour que : $U = U_o / \sqrt{2}$.

On a alors:
$$\omega r C = 1$$
, $r = \frac{1}{C\omega}$.

Il suffit ensuite de retrancher de r la résistance du générateur de Thévenin pour obtenir la valeur de R. Ceci explique la nécessité d'un générateur de faible résistance afin d'éviter que R ne soit pas trop faible par rapport à r.

Les résultats sont regroupés sur la Figure 2.

Les résultats différents correspondant à une même valeur de C ont été obtenu par différentes valeurs de R'.

Malgré la dispersion manifeste des résultats, on peut approximativement estimer que l'on a : RC ~ 60 10^{-9} s ; en tout cas on peut prendre RC < 10^{-7} s.

3.3 Influence sur la résistance du circuit RLC

Considérons un cas extrême, C=4 nF, en majorant τ à 10^{-7} s, on obtient R=25 Ω .

D'après les mesures du l-, on reste largement en dessous des déterminations expérimentales.

Néanmoins ce terme peut devenir prépondérant à haute fréquence car il varie en ω^2 .

$$\mbox{En effet} \ : \ \ R = \frac{\tau}{C} \ , \ \ L \ C \ \omega^2 \sim 1 \ , \ \frac{1}{C} \ \sim L \omega^2 \ \ \ \mbox{et donc} \ \ R \sim L \ \tau \ \omega^2. \label{eq:energy}$$

4. EFFET DE PEAU

4.1. Profondeur de peau

La résolution des équations de Maxwell montre qu'une onde électro-magnétique ne pénètre dans un métal que sur une distance de l'ordre de $\delta = \sqrt{\frac{2}{u\sigma\omega}}$ (notations évidentes).

Par exemple pour le cuivre, $\delta = 2$ mm à 1 KHz.

Il en résulte une augmentation de la résistance du conducteur, puisque le courant ne peut circuler qu'au voisinage de sa surface.

4.2. Cas du fil infini cylindrique

Les résultats sont bien connus et la Figure 3 représente de manière logarithmique les variations de la résistance du fil (rapportée à la valeur statique) en fonction du paramètre a/8, a étant le rayon du fil cylindrique.

On remarque deux parties bien différenciées :

- r ~ r_o à basse fréquence.

$$r/r_{o}\sim\frac{a}{\delta}\sim\sqrt{\omega}$$
 correspondant à la limite hautes fréquences.

On peut considérer que le changement de régime apparaît pour : $\log a/\delta = 0.3$ soit $a/\delta = 2$.

Application numérique :

prenons a = 0.5 mm, $a/\delta = 2$ donc $\delta = 0.25$ mm

on obtient :
$$f = \left(\frac{2}{0.25}\right)^2 = 64 \text{ KHz}.$$

Donc dans l'intervalle de fréquences utilisées lors de nos mesures, les corrections dûes à l'effet de peau dans un fil sont absolument négligeables.

5. CONCLUSION PROVISOIRE

Même si on cumule les corrections proposées, il est impossible de parvenir aux valeurs de résistances trouvées expérimentalement. Il faut noter aussi le comportement assez curieux du rapport r/r_o dans la partie rectiligne des courbes de la Figure 1, on a : $r/r_o \sim \omega^{1.75}$, or il est difficile d'obtenir ce type de comportement à l'aide d'une théorie simple (développement limité par exemple).

Tout ceci nous pousse vers une étude plus détaillée du système le plus complexe du circuit, à savoir la bobine.

On peut concevoir assez facilement que l'effet de peau dans une bobine doit être plus important que dans un fil rectiligne :

- à intensité égale le champ magnétique est plus intense dans la bobine qu'à la surface du fil,
- le paramètre caractéristique va être r/δ , r étant le rayon moyen de la bobine, donc on atteindra plus rapidement les valeurs $r/\delta \sim 1$ conduisant à un effet de peau notable.