

				Sul	bjec	t Co	de:]	KAI	[071
Roll No:									

Printed Page: 1 of 2

BTECH (SEM VII) THEORY EXAMINATION 2023-24 OPTIMIZATION IN MACHINE LEARNING

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt <i>all</i> questions in brief.	10 = 20
Q no.	Question	Marks
a.	How does convexity play a crucial role in optimization problems?	2
b.	Illustrate the application of convex optimization in real-world scenarios.	2
c.	Explain Nesterov's application in convex optimization.	2
d.	Investigate Moreau–Yosida regularization.	2
e.	Explain the regularization process.	2
f.	Explain the concept of dual decomposition in optimization	2
g.	How Douglas-Rachford splitting addresses challenges?	2
h.	How do optimization algorithms strategically navigate saddle points?	2
i.	What are the implications for convergence and optimization efficiency?	2
j.	How does the structure of the optimization landscape impact the choice of optimization algorithms?	2

SECTION B

2.	Attempt any three of the following: 10 x	3 = 30
a.	Compare and contrast linear programming, second-order cone programming,	10
	and semidefinite programming. Provide real-world examples where each type of	
	convex program is applicable.	
b.	Explain the concept of duality in convex optimization. How does duality provide	10
	insights into the primal and dual aspects of an optimization problem? Discuss	
	the relationship between the primal and dual solutions.	
c.	Compare and contrast mirror descent and traditional gradient descent methods.	10
	Highlight the advantages and disadvantages of mirror descent, and provide a	
	real-world example where mirror descent might outperform other optimization	
	algorithms.	
d.	Compare the convergence properties of Augmented Lagrangian methods and	10
	ADMM. Discuss scenarios where one method might be preferred over the other	
	based on the nature of the optimization problem.	
e.	Compare and contrast Polyak–Juditsky averaging with other methods used in	10
	stochastic gradient descent. How does it contribute to the convergence and	
	stability of optimization algorithms, especially in the context of deep learning?	

SECTION C

3.	Attempt any <i>one</i> part of the following: 10 x	1 = 10
a.	Describe the Karush-Kuhn-Tucker (KKT) conditions in the context of convex	10
	optimization. How do these conditions characterize optimality in convex programs? Provide examples to illustrate the application of KKT conditions.	

					Pri	inted	l Pa	ge: 2	of 2
				Sul	bjec	t Co	de:	KAI	071
Roll No:									

BTECH (SEM VII) THEORY EXAMINATION 2023-24 OPTIMIZATION IN MACHINE LEARNING

TIME: 3 HRS M.MARKS: 100

b.	Provide detailed explanations and examples of different convex programs.	10
	Highlight the specific mathematical formulations and problem structures for	
	each type of convex program.	

a.	Elaborate on the Frank-Wolfe method and its applications in constrained	10
	optimization. Discuss how the method addresses challenges posed by large-	
	scale optimization problems and provide a scenario where it is particularly	
	effective.	
b.	Explore the concept of Ordinary Differential Equations interpretations in the	10
	context of optimization algorithms.	

5. Attempt any *one* part of the following: $10 \times 1 = 10$

a.	Discuss the role of dual methods in optimization and their applications in	10
	solving primal-dual problems. Provide an example illustrating the use of dual	
	methods and explain their advantages over primal methods in certain scenarios.	K
b.	Provide an in-depth overview of proximal gradient methods and their role in	10
	handling non-smooth and non-convex optimization problems.	DV

6. Attempt any *one* part of the following: $10 \times 1 = 10$

a.	Compare and contrast the Alternating Direction Method of Multipliers with	10
	other optimization algorithms, highlighting its strengths and weaknesses.	
b.	Describe the Douglas-Rachford splitting algorithm and its application in	10
	solving convex optimization problems. Discuss situations where this algorithm	
	is particularly effective and the conditions under which it converges.	

7. Attempt any *one* part of the following: $10 \times 1 = 10$

	Elsh and an the analisation of Languin dynamics Davesian information Herry	10
a.	Elaborate on the application of Langevin dynamics in Bayesian inference. How	10
	does it relate to escaping saddle points and contribute to efficient sampling in	
	high-dimensional spaces, particularly in the context of deep learning models?	
b.	Examine the Bayesian interpretation of Langevin dynamics. How does	10
	Langevin dynamics connect to the posterior distribution in Bayesian models,	
	and what are the implications for exploring the posterior space in the context	
	of probabilistic modeling?	