DAILY ASSESSMENT FORMAT

Date:	01-06-2020	Name:	Sahana S R
Course:	Digital design using HDL	USN:	4al17ec083
Topic:	•Industry Application of FPGA	Semester	6 th sem
	•FPGA Business Fundamental	& Section:	B sec
	•FPGA vs FPGA design flow		
	•FPGA basics A look under the hood		
Github	sahanasr-course		
Repository:			

Design Flow

- ASIC and FPGA design and implementation methodologies differ somewhat
 - Xilinx FPGAs provide for reduced design time and later bug fixes
 - . No design for test logic is required
 - . Deep sub-micron verification is done
 - . No waiting for prototypes
- Coding style
 - For high-performance designs, FPGAs may require some pipelining
 - When retargeting code from an ASIC to an FPGA, the code usually requires optimization (instantiation)

Sahana S R

is here by awarded the certificate of achievement for the successful completion of

Step into Robotic Process Automation

during GUVI's RPA SKILL-A-THON 2020

S.P.Balamurugan

Valid certificate ID 5G0k1E995y28110I5Y

Verified certificate issue on June 1 2020

Co-founder, CEO

Verify certificate at www.guvi.in/certificate?id=5G0k1E995y2811015Y

In association with

Report – Report can be typed or hand written for up to two pages.

wire Va and (Ya.A.B);

end mod le

of. Data flow modeling model NAND-8-data. Atteled (output y. input A. B.); assign y=~(A&B); endmodule

3. Behavioral Modeling

A	B	Y (AandB)
0	0	1
0	1	1
1	O	1.3%
1	1	0

module NAND-2- behavioral (output 9 eg 4, input A. B.); always @ (A or B) begin

of
$$A = 1$$
 by $B = 1$ by begin end clase

end endmodule

Testbench of NAND gate vocalog

CSscanned with CamScanner

```
Initial begin

Initial begin

A=0; B=0;

A=0; B=1;

A=1; B=0;

A=1; B=1;
 ND-9-behavioral Indtanceoly, A.B.
  $ monitor ("1.t | A = % d | B = % d | V = % d") $time,
 initial begin
              i(Y,8,A
 $dumpfile ("dump. vcd");
 $ dumplians();
 endmodule
 Data-flow modeling is a higher level of abstration.
 This helps as gate-level modeling becomes very complicated for large circuits.
```

