Chapter 5 - Normal Distribution STAT 251

Lecture 14
Notations and Important properties
Examples

Dr. Lasantha Premarathna

Normal Distribution

• Normal Distribution as a mathematical function

$$X \sim N(\mu, \sigma^2)$$

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad ; \ -\infty < x < \infty, \ -\infty < \mu < \infty, \ \sigma > 0$

- Any given Normal random variable $X \sim N(\mu, \sigma^2)$ can be transformed into a standard normal random variable $Z = \frac{X \mu}{\sigma}$ then $Z \sim N(0, 1)$
- The standard normal density is denoted by the Greek letter ϕ (Phi) and the standard normal distribution function is denoted by the corresponding upper case Greek letter Φ
 - ightharpoonup pdf of $Z \longrightarrow \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$
 - cdf of $Z \longrightarrow \Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$

Some important facts about the Normal Distribution

• Fact 1: If $X \sim N(\mu, \sigma^2)$ and Y = aX + b where a and b are two constants with $a \neq 0$, then $Y \sim N(a\mu + b, a^2\sigma^2)$

• Fact 2: Suppose that $X_1, X_2, ..., X_n$ are independent normal random variables such that $X_i \sim N(\mu_i, \sigma_i^2)$

Let Y be a linear combination of the X_i , that is

$$Y = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n,$$

where $a_1(i = 1, 2, ..., a_n)$ are some constants

then

$$Y \sim N(a_1\mu_1 + a_2\mu_2, \dots + a_n\mu_n, a_1^2\sigma_1^2 + a_2^2\sigma_2^2 + \dots + a_n^2\sigma_n^2)$$

Some important facts about the Normal Distribution

• Fact 2: contd...

If $X_i \sim N(\mu, \sigma^2) \longleftarrow X_i$'s are identically distributed then, $Y \sim N\left((a_1 + a_2, \dots + a_n)\mu, (a_1^2 + a_2^2 + \dots a_n^2)\sigma^2\right)$

• Fact 3: When $X_1, X_2, ..., X_n$ is a normal sample, that is, when the $X_1, X_2, ..., X_n$ are independent and identically distributed normal random variables with mean μ and variance σ^2 , then the sample mean \bar{X} also follows a Normal distribution and

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

Some important facts about the Normal Distribution

• Fact 3: contd...

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

 $\bullet \ \bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$

$$E(\bar{X}) = E(\frac{X_1 + X_2 + \dots + X_n}{n}) = \frac{1}{n} \{ E(X_1) + E(X_2) + \dots + E(X_n) \}$$

= $\frac{1}{n} \{ \mu + \mu + \dots + \mu \} = \frac{1}{n} \{ n\mu \} = \mu$

$$V(\bar{X}) = V(\frac{X_1 + X_2 + \dots + X_n}{n}) = \frac{1}{n^2} \left\{ V(X_1) + V(X_2) + \dots + V(X_n) \right\}$$

= $\frac{1}{n^2} \left\{ \sigma^2 + \sigma^2 + \dots + \sigma^2 \right\} = \frac{1}{n^2} \left\{ n\sigma^2 \right\} = \frac{\sigma^2}{n}$

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

Example

Assume that the weight of airline adult passenger is reasonably normally distributed with mean=85 kg and standard deviation=15 kg.

(a) If a passenger is selected randomly, what is the probability that the passenger weight is between 73kg and 105kg?

O-9082 - O-2019 = 0.6962

(b) Commuter plane carries 50 passengers. What is the probability that the total weight of the passengers exceeds 4350kg?

$$var = 50 \times 85 = 4250 \, kg$$
 $var = 166.666$
 $var = 166.666$

←□ → ←□ → ←필 → ←필 → □ ● → ♀♀

Before the next class ...

Visit the course website at canvas.ubc.ca

- Review Lecture 14 and related sections in the text book
- Topic of next class:
 - ▶ Chapter 6: Bernoulli and Binomial Random Variables