LINEAR PROGRAMMING MODELING EXAMPLES: Multiperiod Planning

multi period production planning

The National Steel Corporation (NSC) produces a specialpurpose steel used in aerospace industries. The sales department has received orders for the next four months:

	Jan	Feb	Mar	Apr
Demand (tons)	2400	2200	2700	2500

NSC can meet these demands by producing the steel, by drawing from its inventory or by a combination of both. January inventory is 1000.

multi period production planning

The steel production costs per ton vary from month to month – projections are:

	Jan	Feb	Mar	Apr
Production cost	7400	7500	7600	7800
Inventory cost	120	120	120	120

Monthly production capacity is 4000 tons.

Operations requires ending inventory for April to be 1500 tons.

A production plan, i.e., the amount of steel to produce in each of the next 4 months.

Minimize the total production and inventory cost.

The costs must be calculated from the decision variables.

What needs to be decided? What is the objective? What are the constraints?

Demand must be met each month.

Constraints to define inventory in each month.

Production-capacity constraints.

Non-negativity of the production and inventory quantities.

Decision Variables

- Let P_i be the tons of steel produced in month i
- Let I_i be the tons of steel in inventory at the end of month i.
 - Note: The initial inventory is $I_0 = 1000$

Objective Function

• Production cost:

$$7400 P_1 + 7500 P_2 + 7600 P_3 + 7800 P_4$$

Holding Cost:

120
$$(I_1 + I_2 + I_3)$$

Constraints

$$P_t + I_{t-1} = d_t + I_t$$
 for $t = 1...T$

Let t = 1...T denote the production periods Let P_t, I_t denote decision variables for production and inventory, respectively Let c_t, d_t denote production costs and product demand, respectively

min
$$\sum_{t=1...T} (c_t P_t + 120I_t)$$

s.t. $P_t + I_{t-1} = d_t + I_t$ for $t = 1...T$
 $I_0 = 1000$
 $I_T = 1500$
 $0 \le P_t \le 4000$ for $t = 1...T$
 $I_t \ge 0$

```
# number of months in the planning horizon
param MONTHS;
# inventory holding cost per unit per month
param ic;
# cost of producing one ton in month i
param c {1 .. MONTHS};
# tons of product needed in month i
param d {1 .. MONTHS};
```

#DECISION VARIABLES

```
# tons produced in month i
# nonnegativity and max production limits
var P {1 .. MONTHS} >= 0, <= 4000;
# tons in inventory at the end of month I
# nonnegativity constraints
var I {0 .. MONTHS} >= 0;
```

```
#OBJECTIVE
#minimize production and inventory costs
minimize cost:
sum{i in 1..MONTHS} (c[i]*P[i] + ic*I[i]);
#CONSTRAINTS
#flow-balance constraint
subject to inventory {i in 1..MONTHS}:
   P[i] + I[i-1] = I[i] + d[i];
subject to initial inventory: I[0] = 1000;
subject to final inventory: I[MONTHS] = 1500;
```

```
data;
param MONTHS := 4;
param ic := 120;
param c :=
1 7400
2 7500
3 7600
4 7800;
param d :=
1 2400
2 2200
3 2700
4 2500 ;
```

optimal solution for NSC

Value
2300
4000
4000
0
1000
900
2700
4000
1500

optimal objective

\$78,332,000

multi period production planning

What if National Steel Corporation (NSC) had *multiple* products?

And wanted to schedule for 12 months?

Let K denote the set of products.

min
$$\sum_{t=1...T,k\in K} (c_{kt}P_{kt} + 120I_{kt})$$

s.t. $P_{kt} + I_{k,t-1} = d_{kt} + I_{kt}$ for $t = 1...T, k \in K$
 $I_{k,0} = B_k$ $\forall k \in K$
 $I_{kT} = F_k$ $\forall k \in K$
 $0 \le P_{kt} \le 4000$ for $t = 1...T, k \in K$
 $I_{kt} \ge 0$ for $t = 1...T, k \in K$

```
#set of products
set PRODUCTS;
#months in the planning horizon
param MONTHS;
#cost of producing one ton of product k in month i
param c {1 .. MONTHS, PRODUCTS};
#demand of product k in month i
param d {1 .. MONTHS, PRODUCTS};
var P {1 .. MONTHS, PRODUCTS} >= 0;
var I {0 .. MONTHS, PRODUCTS} >= 0;
```

```
minimize cost:
sum{i in 1..MONTHS, p in PRODUCTS}
         (c[i,p]*P[i,p] + 120*I[i,p]);
subject to inventory {i in 1 .. MONTHS, p in PRODUCTS}:
  P[i,p] + I[i-1,p] = d[i,p] + I[i,p];
subject to initial inv {p in PRODUCTS}: I[0,p] = 1000;
subject to final inv {p in PRODUCTS}:
      I[MONTHS,p] >= 1500;
subject to max prod {i in 1 .. MONTHS, p in PRODUCTS}:
      P[i,p] <= 4000;
```

```
minimize cost:
sum{i in 1..MONTHS, p in PRODUCTS}
         (c[i,p]*P[i,p] + 120*I[i,p]);
subject to inventory {i in 1 .. MONTHS, p in PRODUCTS}:
  P[i,p] + I[i-1,p] = d[i,p] + I[i,p];
subject to initial inv {p in PRODUCTS}: I[0,p] = 1000;
subject to final inv {p in PRODUCTS}:
      I[MONTHS,p] >= 1500;
subject to max prod {i in 1 .. MONTHS}:
      sum {p in PRODUCTS} P[i,p] <= 4000;</pre>
```

```
set PRODUCTS := steel al;
param MONTHS := 12;
param c:
      steel
                    al :=
      7400
                    3400
      7500
                    3500
3
      7600
                    3600
4
      7800
                    3800
5
      7353
                    3199
6
      7813
                    3015
      7010
                    3747
8
      7139
                    3445
9
      7203
                    3932
10
      7199
                    3466
11
      7604
                    3419
12
      7272
                    3846;
```

param	d:	
	steel	al :=
1	2400	1000
2	2200	1200
3	2700	1400
4	2500	1600
5	2762	1738
6	2456	1176
7	2019	1406
8	2821	1935
9	2445	1917
10	2615	1410
11	2792	1894
12	2922	1058;

Increase/Decrease Penalty

- Suppose that if the production level is increased or decreased from one month to the next, then NSC incurs a cost for implementing these changes.
- Specifically, for each ton of increased or decreased production over the previous month, the cost is \$50 (except for month 1).

now with penalties...

Variable	Value	
P1	2300	
P2	4000	
Р3	4000	
P4	0	
10	1000	
I1	900	
12	2700	
13	4000	
14	1500	

This solution would incur an extra cost (4000 - 2300) (\$50) =\$85,000 for increasing the production from 2300 to 4000 tons month 1 to month 2.

And (4000 – 0) (\$50) =\$200,000 for decreasing the production from 4000 to 0 tons month 3 to month 4.

new objective function

min
$$7400P_1 + 7500P_2 + 7600P_3 + 7800P_4 + 120 \sum_{t=1}^{3} I_{t} + 50|P_1 - P_2| + 50|P_2 - P_3| + 50|P_3 - P_4|$$

new objective function

To make the objective function linear define:

- Y_i = increase from month i-1 to month i
- Z_i = decrease from month i-1 to month i

$$\min 7400P_1 + 7500P_2 + 7600P_3 + 7800P_4 + 120\sum_{i=0}^{4} I_i$$

$$+50\sum_{i=2}^{4}\left(Y_{i}+Z_{i}\right)$$

Additional Constraints

$$Y_i \ge 0$$
 for $i = 2, 3, 4$
 $Z_i \ge 0$ for $i = 2, 3, 4$
 $Y_i - Z_i = P_i - P_{i-1}$ for $i = 2, 3, 4$

Examples

- 1. If $P_1 = P_2$, then $Y_2 = 0$, and $Z_2 = 0$
- 2. If $P_1 = 2300$ and $P_2 = 4000$ then $Y_2 = 1700$, and $Z_2 = 0$
- 3. If $P_1 = 4000$ and $P_2 = 2300$ then $Y_2 = 0$, and $Z_2 = 1700$

Now, it is optimal to produce 2575 tons in each month and the total cost is \$78,520,500.