Fórmulas para estimar los caudales máximos efluentes de ruptura de represas brasileñas en el siglo XXI

Carolina Icho¹, Rodolfo Scarati²

¹Candidato a Ms, Escuela de Ingeniería, Universidad de Sao Paulo, carolina.icho@usp.br

²Profesor Asociado, Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Universidad de São Paulo, scarati @usp.br

Resumen

Para predecir la inundación resultante después de la ruptura de una presa se han desarrollado muchos enfoques computacionales y empíricos a lo largo de la historia. Todos ellos incluyen una cierta cantidad de parámetros y están destinados a ayudar a los ingenieros con estimaciones rápidas y planificación de estudios más detallados. En este artículo, nuestro objetivo es evaluar las diferentes fórmulas empíricas propuestas por investigadores del área para estimar el caudal pico efluente de ruptura de represas y comparar los resultados de dos estudios de casos diferentes, el desbordamiento y la ruptura por Piping de las represas Jurumirim y Chavantes. Además, se implementó el software HEC-RAS como referencia para calcular los caudales pico efluentes. Debido a la gran cantidad de fórmulas disponibles, se empleó un análisis estadístico para evaluar y clasificar los resultados. Finalmente, se discutirá la pertinencia y rango de aplicación de las fórmulas.

Introducción

Para minimizar las pérdidas asociadas con la ruptura de una represa, la Política Nacional de Seguridad de Represas de Brasil desde 2010 exige la elaboración de un Plan de Riesgo (ANA, 2010) que incluye la estimación de los impactos potenciales de la ruptura de una represa y el correspondiente Plan de Acción de Emergencia (PAE) cuyo objetivo es reducir las pérdidas humanas, de infraestructura y de biodiversidad. El PAE contiene información como los mapas de inundación y los procedimientos a realizar en casos de emergencia (Lauriano, 2009). Estos se estiman a partir de la previsión y cálculo de niveles máximos de inundación, velocidades de agua y caudales máximos resultantes de los escenarios de ruptura. Para garantizar la seguridad de las estructuras hidráulicas, la normativa brasileña exige una actualización constante del Manual de Seguridad de Presas (ANA, 2016) que describe el procedimiento de inspección de seguridad de presas. De esta manera, es sumamente importante la necesidad de desarrollar herramientas útiles y prácticas para clasificar la amenaza, planificar acciones de emergencia, mapear y evaluar los riesgos potenciales (Graham, 1998). Una de estas herramientas es la modelización del flujo de efluentes de la ruptura de una presa, mediante enfoques empíricos, matemáticos y computacionales. El modelado computacional utiliza modelos matemáticos y numéricos que predigan los fenómenos hidráulicos e hidrológicos.

Un modelo computacional bien conocido es el software HEC-RAS (Brunner, 1995) por ser una herramienta gratuita y simplificada ya que requiere pocos datos de entrada y puede presentar un panorama sintetizado de los estudios unidimensionales de flujo constante, del flujo inestable unidimensional y bidimensional, de los cálculos de transporte de sedimentos/lecho móvil y modelado de temperatura y calidad del agua para una completa red de cauces naturales y/o artificiales. Además, es gratuito y funciona con pequeñas simplificaciones de la ecuación de Saint Venant, que usa el método implícito de diferencias finitas proporcionando un alto grado de precisión y confiabilidad (Mbajiorgu, 2017).

De este modo, se utilizará el software HEC-RAS para evaluar y comparar el desempeño de diversas fórmulas empírico-prácticas propuestas por investigadores en el área a fin de estimar el caudal máximo efluente de la ruptura de una represa por Piping y Overtopping en una situación de emergencia. Consecuentemente, el objetivo de este proyecto es identificar fórmulas prácticas y comparar sus resultados con un enfoque más sofisticado utilizando dos casos de estudio: Las represas Jurumirim y Chavantes, dos unidades hidroeléctricas ubicadas en el estado de São Paulo, Brasil.

Material y Métodos

Se seleccionaron diversas fórmulas para estimar el caudal pico efluente de ruptura (Tabla 1) cuyos parámetros se registraron a partir de los planos de diseño de las estructuras de estudio (Figura 1) y (Figura 2) y reportes de estudio de ruptura de represas (FCTH, 2003).

Author	Formula	Depends on
Pierce (2008) ¹	$Qp = 0.784 \times Hw^{2.668}$	Hw
Pierce (2008) ²	$Qp = 2.325 \times Ln(Hw)^{6.405}$	Hw
Pierce (2008) ³	$Qp = 0.00919 \times V^{0.745}$	v
Singh and Snorrason (1984) ¹	$Qp = 1.776 \times V^{0.47}$	v
U. S. Bureau of Reclamation (1982) Enveloped Equation	$Qp = 19.1 \times hw^{1.85}$	hw
Soil Conservation Service (1981) apud Wahl (2008)	$Qp = 16.6 \times hw^{1.85}$	hw
Singh and Snorrason (1984) ²	$Qp=13.4\times H^{1.89}$	н
Singh and Snorrason (1984) ³	$Qp = 1.776 \times V^{0.47}$	v
Costa (1985)1	$Qp = 1.122 \times V^{0.57}$	v
Evans (1986)	$Qp = 0.72 \times V^{0.53}$	v
Lou (1981) apud Faria (2019)	$Qp = 7.683 \times H^{1.909}$	н
Froehlich (1995b)	$Qp = 0.607 \times V^{0.295} \times hw^{1.24}$	V, hw
MacDonald and Langridge - Monopolis (1984)	$Qp = 1.154 \times (V \times hw)^{0.412}$	V, hw
MacDonald and Langridge - Monopolis (1984) Enveloped equation	$Qp = 3.85 \times (V \times hw)^{0.411}$	V, hw
Hagen(1982) ¹	$Qp = 0.54 \times (V \times H)^{0.5}$	V, H
Hagen(1982) ²	$Qp = 1.205 \times (H \times V)^{0.48}$	V, H
Vertedor de soleira espessa - Singh (1996) apud Faria (2019)	$Qp = 1.7 \times b \times h^{\frac{3}{2}}$	b,h
Costa (1985) ²	$Qp = 0.981 \times (S \times H)^{0.42}$	S,H
Costa (1985) Envolved Equation	$Qp = 2.634 \times (S \times H)^{0.44}$	S,H
Wetmore e Fread (1981) apud Faria (2019)	$Qp = 1.7 \times Bt \times \left\{ \frac{1.94 \times \frac{As}{Bb}}{Tp + \left[\frac{1.94 \times As}{Bb \times \sqrt{H}} \right]} \right\}^{3}$	As,H
Xu and Zhang (2009)	$\frac{Qp}{\sqrt{g \times V^{5/3}}} = 0.175 \times \left(\frac{H}{Hr}\right)^{0.199} \times \left(\frac{V^{1/3}}{hw}\right)^{-1.274} \times e^{B4}$	V,H,Hw
Mohamed (2001) ²	$Qp = 0.98 \times A \times \sqrt{2 \times g \times (Hw - Hp)} \qquad \text{(Only Piping)}$	A,Hw,Hp
Apud NRCS (2005)	$Qp = 65 \times Hw^{1.85}$ $Qp = 1.1 \times Br^{1.35}$	Hw, V,Ab
Saint Venant apud Faria (2019)	$Qp = \frac{8}{27} \times b \times \sqrt{g} \times Y_{\text{medio}}^{\frac{3}{2}}$	b,Hw,hmin-op
Mohamed (2001) ¹	$Qp = 3 \times b \times (Hw - Hc)^{1.5}$	b,Hw,Hc
Macchione (2008) ¹	$Qp = \left(\frac{1}{2} \times g\right)^{1/2} \times \left(\frac{4}{5} \times (Hw - Y)\right)^{5/2} \times \tan(\beta)$	Hw,B,m,H
Macchione(2008) ²	$Qp = \left(\frac{1}{2} \times g\right)^{1/2} \times (Hw(Hw - 2Y))^{3/2} \times (Hw - Y)^{-1/2} \times \tan(\beta)$	Hw,B,m,H

Tabla 1. Fórmulas para estimar el caudal pico efluente de una ruptura de represa. Fuente: Autor

En primer lugar, se utilizó el software HEC-RAS (Figura 1) con la información de cada caso simulado (Tabla 2) y (Tabla 3) que variando la geometría de su brecha, las condiciones de contorno, en la elevación inicial de Pipping, WS inicial en algunos casos, la elevación del área inundada por la ruptura y tiempo de formación de la brecha. Así mismo, fue necesario adoptar una brecha equivalente de forma simétrica trapezoidal o triangular para que pueda ser registrado en el software.

Jurumirim Dam									
Simulation		1	2	3	4	5			
Center Sta	ation of the breach	3035	3035	1110	3035	3035			
Final Botton	n Longitudinal Width	25	68	260	25	68			
Final B	ottom Elevation	533	539	554	533	539			
Lef	6.4	6.4	8	6.4	6.4				
Rigl	nt Side Slope	2.7	2.7	8	2.7	2.7			
Breach	Weir Coefficient			1.44					
Breach Fo	rmation Time (hrs)			7.35					
Fa	ilure Mode			Piping					
Pipir	ng Coefficient			0.5					
Initial I	Piping Elevation	550	550	554	568	568			
Trig	WS Elev								
S	tarting WS	568							
Top of Dam Elevation			570						
Breach I	Bottom Elevation	533							
Pool Ele	vation at Failure	568							
Pool Vo	olume at Failure	7100000							
Dam	Crest Width	6							
Slope of US	S Dam Face Z1 (H:V)	6.4							
Slope of US	S Dam Face Z2 (H:V)	2.7							
Ea	rth Fill Type	Fine Homogeneous							
I	Dam Type	Concrete - faced dam							
Dar	n Erodibility	High	High	High	High	High			
	05/jan	800							
	06/jan	800							
Boundary	07/jan	800							
conditions	08/jan			800					
	09/jan			800					
	10/jan	800							

	Jurumirim Dam													
	imulation	6	7	8	9	10	11	12	13	14	15	16	17	18
	ation of the breach	3035	3035				3035			3035		_	_	_
	n Longitudinal Width	25	25	25	25	25	25	25	68	25	68	260	260	260
Final Bo	ottom Elevation	533	533	533	533	533	533	533	539	533	539	554	554	554
Lef	t Side Slope	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	8	8	8
Righ	nt Side Slope	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	8	8	8
Breach	Weir Coefficient							1.44						
Breach Fo	rmation Time (hrs)	7.17	7.27	7.17	7.27	7.27	7.27	7.17	7.17	7.17	7.17	7.17	7.17	7.17
Fa	ilure Mode						Ove	ertopp	ing					
Trigg	ger Failure at						V	VS Ele	v					
St	tarting WS	568	568	568	568	568	568	568	568	568	568	568	568	568
Top of Dam Elevation		570	570	570	570	570	570	570	570	570	570	570	570	570
Breach Bottom Elevation		539	539	539	539	539	539	539	539	539	539	539	539	539
Pool Ele	vation at Failure	568	570	568	570	570	570	568	568	568	568	568	568	568
Pool Vo	olume at Failure	7750000												
Dam	Crest Width	6												
Slope of US	Dam Face Z1 (H:V)	20.4												
Slope of US	Dam Face Z2 (H:V)	0												
Ear	rth Fill Type	Fine Homogeneous												
[Dam Type	Concrete - faced dam												
Dam Erodibility		High												
	05/jan	800	800	1000	1000	1000	1000	1000	800	1000	1000	800	1000	1000
	06/jan	800	800	1200	1200	1500	1200	1500	800	1200	1200	800	1200	1200
Boundary	07/jan	800	800	1500	1500	2000	1500	2000	800	1500	1500	800	1500	1500
conditions	08/jan	800	800	1800	1800	2500	1800	2500	800	1800	1800	800	1800	1800
	09/jan	800	800	2000	2000	3000	2000	3000	800	2000	2000	800	2000	2000
	10/jan	800	800	2500	2500	3800	2500	3800	800	2500	2500	800	2500	2500

Tabla 2. Datos de entrada de la Represa Jurumirim en el software HEC-RAS. Fuente: Autor

Chavantes Dam								
S	imulation	1	2					
Center Sta	ation of the breach	13	15					
Final Botton	n Longitudinal Width	50	00					
Final B	ottom Elevation	4:	10					
Lef	t Side Slope		2					
Rigl	nt Side Slope	3						
Breach	Weir Coefficient	1.	44					
Breach Fo	rmation Time (hrs)	10	.86					
Fa	ilure Mode	Pip	ing					
Pipir	ng Coefficient	0	.5					
Initial	Piping Elevation	421	473.5					
Trig	Trigger Failure at WS Ele							
S	474							
Top of	479.6							
Breach I	391.8							
Pool Ele	4	74						
Pool Vo	880	0000						
Dam	n Crest Width	1	.1					
Slope of US	S Dam Face Z1 (H:V)	0	.9					
Slope of US	S Dam Face Z2 (H:V)	0.9						
		Non-						
Ea	rth Fill Type	homogeneous						
		or Ro	ockfill					
	Dam Type	Dam	with					
Dar	m Erodibility	Hi	gh					
	05/jan	3500						
	06/jan	3500						
Boundary	07/jan	35	00					
conditions	08/jan	3500						
	09/jan	3500						
	10/jan	35	00					

Chavantes Dam								
S	3	4	5	6	7			
Center Sta	ation of the breach			1315				
Final Botton	n Longitudinal Width			500				
Final B	ottom Elevation			410				
Lef	t Side Slope			2				
Righ	nt Side Slope	3						
Breach	Weir Coefficient			1.44				
Breach Fo	rmation Time (hrs)	11.12	11.12	11.12	11.19	11.19		
Fa	ilure Mode		Ove	ertoppir	ng			
Trig	ger Failure at		٧	VS Elev				
St	tarting WS			474				
Top of	Dam Elevation	479.6						
Breach I	Bottom Elevation	391.8						
Pool Ele	evation at Failure	474	474.5	474	474	475.5		
Pool Vo	olume at Failure		9	500000				
Dam	n Crest Width	11						
Slope of US	S Dam Face Z1 (H:V)	0.9						
Slope of US	S Dam Face Z2 (H:V)	0.9						
Ea	rth Fill Type	Non-homogeneous or Rockfill						
1	Dam Type	Dam with corewall						
Dar	m Erodibility	High						
	05/jan	3500	3500	5000	5000	5000		
	06/jan	3500	3500	8000	8000	8000		
Boundary	07/jan	3500	3500	10000	10000	10000		
conditions	08/jan	3500	3500	12000	12000	12000		
	09/jan	3500	3500	20000	20000	20000		
	10/jan	3500	3500	35000	35000	35000		

Tabla 3. Datos de entrada de la Presa Chavantes en el software HEC-RAS. **Fuente:** Autor

Figura 1. Implementación del software HEC-RAS en la represa Chavantes y la represa Jurumirim.

Figura 2. Vista de planta y corte de la represa Chavantes. Fuente: FCTH (2003)

Figura 3. Plano transversal de la represa de concreto Jurumirim. Fuente: FCTH (2003)

Resultados y discusión

El software HEC-RAS nos brindó información sobre el caudal y volumen máximo en 5 casos de ruptura de Piping y 13 casos de ruptura por Overtopping simulados en la Represa Jurumirim (Figura 4). También se analizaron dos casos de ruptura por Piping y 5 casos de ruptura por rebosamiento en la presa Chavantes (Figura 5).

Figura 4. Caudal máximo efluente de ruptura de la represa Jurumirim. Fuente: Autor

Figura 5. Caudal máximo efluente de ruptura de la represa Chavantes. **Fuente:** Autor

Estos resultados se compararon con los resultados generados a partir de las fórmulas propuestas por los autores mencionados. Podemos observar el siguiente cuadro comparativo del caso 7 con ruptura por Overtopping en la represa de Jurumirim. En este caso, el caudal calculado por el software HEC-RAS es igual a 39871,1 m3/s (Figura 6).

Figura 6. Cuadro comparativo de los caudales máximos efluentes de ruptura de brecha calculados por el software HecRas (gris oscuro) y por las fórmulas propuestas (gris claro). **Fuente:** Autor

Se calculó y clasificó el grado de incertidumbre entre los resultados proporcionados en cada caso de la represa Jurumirim y de la represa Chavantes usando el software HEC-RAS y los generados por las fórmulas propuestas (Figura 7) y (Figura 8). Podemos ver que muy pocas fórmulas son capaces de predecir resultados cercanos a los que obtuvieron HEC-RAS independientemente de la cantidad de parámetros considerados lo que nos permite postular que la correcta selección de la información a utilizar con las fórmulas es más importante que la parametrización detallada.

Figura 7. Grado de incertidumbre entre los resultados proporcionados en cada caso por el software HEC-RAS y los generados por las fórmulas propuestas en la represa Jurumirim. **Fuente:** Autor

Figura 8. Grado de incertidumbre entre los resultados proporcionados en cada caso por el software HEC-RAS y los generados por las fórmulas propuestas en la represa Chavantes. **Fuente:** Autor

El caso 12 (Ruptura por desborde en la presa Jurumirim) y el caso 5 (Ruptura por Overtopping en la represa Chavantes) no fueron considerados en el análisis debido a sus resultados inconsistentes o por la imposibilidad de ser simulados en el software HEC-RAS. Tomando en consideración que el número de casos restantes es válido y confiable, se puede seleccionar de 3 a 5 fórmulas que realmente se aproximen más a los resultados del software HEC-RAS simulado en ruptura por Piping y Overtopping.

Según Wahl (2004), las predicciones del flujo máximo tienen incertidumbres de alrededor del 50 % al 100 % en el orden de magnitud, excepto la ecuación del flujo máximo de Froehlich que tiene una incertidumbre de alrededor del 33 % de orden de magnitud. Afirmación que fue parcialmente verificada debido a que los valores resultantes de este estudio tienen un rango de 10% -50%. Además, el propuesto por Froehlich es el más preciso que se ha analizado.

Se usó un análisis de regresión lineal múltiple para desarrollar una ecuación que prediga el flujo de salida máximo de la ruptura de represa de terraplén (Froehlich, 1995b). Aunque inicialmente la fórmula propuesta por Froehlich y Macchione fue analizada para este material de represas, tambien tienen un buen desempeño cuando se comparan con los resultados de las simulaciones realizadas en la represa Jurumirim usando el software Hec Ras.

Por otro lado, Pierce amplió la base de datos de brechas en terraplenes con 44 estudios de casos, lo que generó una base de datos de 87 casos. Se realizaron análisis de regresión lineal, lineal compuesto, curvilíneo y multivariable en la base de datos compuesta para desarrollar las mejores relaciones de ajuste y envolvente que correlacionan la altura del agua detrás de la presa (H), el volumen de agua detrás de la presa (V), el factor de presa (HV), la altura agua detrás de la presa (H), el volumen de agua detrás de la presa (V) y pico de descarga Qp (Pierce, 2010).

Por otro lado, respecto al Hidrograma con Decaimiento Parabólico que representa el tiempo de vaciado de manera más paulatina que la triangular y más consistente en represas de tierra pues los tramos de descenso buscan representar un decaimiento aproximadamente exponencial (Faria, 2019).

Finalmente, en base a los resultados obtenidos, casos analizados y literatura del tema se recomienda el uso de las fórmulas propuestas por Froehlich (1995b) y Singh (1996) para represas de concreto y la fórmula de Pierce (2008) para represas de tierra. En segunda instancia, se recomienda utilizar las fórmulas postuladas por Mohamed (2001) para represas de concreto, las propuestas por MacDonald Envelope (1984) y Evans (1986) para represas de tierra.

Adicionalmente, se encontraron fórmulas para el cálculo de otras variables de ruptura (Tabla 4). Podemos observar que existe un amplio panorama de estudio que podría ser analizado en el futuro abriendo paso a más investigaciones sobre el tema.

V : 11	Amount of	"n" input variables						
Variable to calculate	formulas	n=1	n=2	n=3	n=4	n=5	n=6	n=7
Peak Flow	26	11	7	4	1	2	1	0
Breach formation time	8	3	4	0	0	0	1	0
Volume eroded	2	0	2	0	0	0	0	0
Breach area	4	0	0	3	1	0	0	0
Average breach width	1	0	0	1	0	0	0	0
Erosion rate	6	0	0	0	2	0	1	3
Breach width as a function of time	4	0	0	0	1	1	2	0
Breach height as a function of time	1	0	0	0	1	0	0	0
Rate of water depletion	5	0	0	0	1	1	2	1

Tabla 4. Clasificación de las fórmulas para el cálculo de variables de ruptura. Fuente: Autor

Conclusiones

Este artículo resume las contribuciones más importantes para predecir el caudal de ruptura de una represa a partir de una revisión histórica de las fórmulas postuladas y comparación de los resultados obtenidos de un modelo computacional. Es por ello que se revisó la literatura del tema donde se encontraron más de 50 formulaciones.

En general, en la represa Jurumirim, las fórmulas más precisas en todos los casos son las fórmulas propuestas por Froehlich (1995B) y Singh (1996). En segundo lugar, la fórmula propuesta por Mohamed (2001) es precisa en la mayoría de los casos analizados. En tercer lugar, se cumplen en algunos casos las fórmulas propuestas por el U.S. Army corps of Engineering, por Macchione, por Costa (1985) 2 y por MacDonald (1984).

En cambio, en el caso de la presa Chavantes, la fórmula más precisa en todos los casos es la propuesta por Pierce (2008). En segundo lugar, la fórmula propuesta por Evans (1986) y la ecuación Enveloped de MacDonald (1984) que cumple en la mayoría de los casos analizados. En tercer lugar, en algunos casos de ruptura por Piping se cumplen las fórmulas de Xu y Zhang (2009), Costa (1985) ecuación de evoltoria, Hagen (1982) y MacDonald (1984).

Se encontraron limitaciones en algunas ecuaciones homogéneas debido a una limitada descripción de los parámetros que suelen se difusas para el usuario final. Incluso, las simulaciones 1D HEC-RAS también pueden criticarse en términos de precisión por la limitada representación simétrica de la brecha, flujos de alta concentración de sedimentos, etc.