

pandas 統計函式使用教學

簡報閱讀

範例與作業

問題討論

學習心得(完成)

重要知識點

- 應用統計函式
- 自定義的行或列函式應用

在生活中常聽到以下情況

- 1. 台灣平均薪資為 XXX
- 2. 今年指考最高分為 XXX
- 3. 今年台大最低入取分數為 XXX
- 4. 6 個標準差的良率

因為數據很多的情況下時常使用敘述統計量來描述 數據的分佈與統計量,在資料分析中常拿來對資料 做初步的了解。接下來我們以 pandas 的 DataFrame 資料來做統計函式的介紹。

統計函式:平均值mean()

今天都以班上學生國文、英文、數學分數的資料 (右表)為例子介紹各個統計函數。

首先是最常使用到的平均值 mean(),pandas 可針對指定欄位算平均值,如果沒指定會對全部欄位算平均值。

[69] #指定欄位算平均 score_df.math_score.mean()

60.7

[70] #全欄位算平均 score_df.mean()

> math_score 60.7 english_score 62.8 chinese_score 63.5

dtype: float64

student_id						
1	50	80	70			
2	60	45	50			
3	98	43	55			
4	70	69	89			
5	56	79	60			
6	60	68	55			
7	45	70	77			
8	55	77	76			
9	25	57	60			
10	88	40	43			

如果今天想要算每個學生的總平均分數怎麼辦? Pandas 統計函式中有參數 axis=0 為行運算, axis=1 為列運算,此參數適用在之後介紹的統計 函式。

score_qr.mean(axis-1)

student_id 1 66.666667 2 51.666667 3 65.333333 4 76.000000 5 65.000000 6 61.000000 7 64.000000 8 69.333333 9 47.333333 57,000000 10 dtype: float64

統計函式:加總sum(),個數count()

加總:計算總和,時常用在計算家庭開銷個數:計算個數,時常用在出遊時的點名

以下利用加總算出學生 3 科總分,利用各數計算 出應考人數

[73] #學生3科總分數 score_df.sum(axis=1)

studer	nt_id
1	200
2	155
3	196
4	228
5	195
6	183
7	192
8	208
9	142
10	171
dtype:	: int64

[74] #本次各科考試人數 score_df.count()

math_score	10
english_score	10
chinese_score	10
dtype: int64	

統計函式:中位數median()

反之亦然。

中位數:通過把所有觀察值高低排序後找出正中間的一個作為中位數。如果觀察值有偶數個,則中位數不唯一,通常取最中間的兩個數值的平均數作爲中位數。

以利用中位數算出各科中位數,如果今天數學考了 60 分超過了中位數的 58 分,我就可以說我數學 贏過了全班一半的同學。

[75] #各科中位數分佈 score_df.median()

math_score 58.0 english_score 68.5 chinese_score 60.0 dtype: float64

統計函式:百分位數quantile()

百分位數使用在觀察數據百分比,最常運用到的是 升學分數的百分位數。

百分位數:將一組數據從小到大排序,並計算相應的累計百分位,則某一百分位所對應數據的值就稱為這一百分位的百分位數。如果百分位數設定在50% 即為中位數。

score_df.quantile(0.75)

math_score 67.50 english_score 75.25 chinese_score 74.50

Name: 0.75, dtype: float64

統計函式:最大值max()、最小值min()

最大最小值時常拿觀察極端值,也可以檢視資料的 資料最小與最大分佈。

其中最小值常常拿來當通過門檻,例如:大學入取 分數最低幾分。

以下計算全班各科最高與最低分:

[78] #各科最大 score_df.		[79]	#各科最小值 score_df.min()	
math_scor english_s chinese_s dtype: in	core 80 core 89		math_score english_score chinese_score dtype: int64	25 40 43

統計函式:標準差**std()**,變異數 **var()**

標準差:在機率統計中最常使用作為測量一組數值的離散程度之用。一個較大的標準差,代表大部分的數值和其平均值之間差異較大;一個較小的標準

差,代表這些數值較接近平均值。

變異數:為標準差平方

小,也可以說國文分數較為集中。

[80] #各科標準差 score_df.std()

> math_score english_score chinese_score dtype: float64

20.854256 15.418603 14.151953 [81] #各科變異數 score_df.var()

> math_score english_score chinese_score dtype: float64

434.900000 237.733333 200.277778

統計函式:相關係數corr()

相關係數:皮爾遜積矩相關係數(Pearson product-moment correlation coefficient)用於度量兩個變數X和Y之間的相關程度(線性相依)。在自然科學領域中,該係數廣泛用於度量兩個變數之間的線性相依程度。相關係數的值介於-1與+1之間,即-1≤r≤+1。其性質如下:

- 1. 當 r>0 時,表示兩變數正相關,r<0 時,兩 變數為負相關,r=0 時,表示兩變數間無線 性相關關係。
- 一般可按三級劃分: |r|<0.4 為低度線性相關; 0.4≤|r|<0.7 為顯著性相關; 0.7≤|r|
 <1為高度線性相關。

可以發現說英文相對數學相關係數為 -0.53 · _ _ 、 解釋說英文跟數學有負的高度線性相關 · 可以說明此班學生數學越高分英文越低分 · 另外國文相對英

[82]	#各科之間的相關係數			
	score_df.corr()			

	math_score	english_score	chinese_score
math_score	1.000000	-0.532708	-0.314552
english_score	-0.532708	1.000000	0.682340
chinese_score	-0.314552	0.682340	1.000000

自訂義的行或列函式應用 apply()

你有時候可能儲覺得說前面的統計函式不足以表達 資料的特性,此時你可以使用 apply 做自定義的 函式。

像是學校最常使用的加分方式為開根號乘以十,例如:我考 49 分加分過後 √49 × 10 = 70 · 這種方程式沒辦法在統計函式中算出來 · 需要藉由 apply中 lambda 的函式達成。

其中 lambda x 相當於數學式中的 f(x) = √x × 10

[84]	#各科開根號乘 score_df.appl		: x**(0.5)*10)	$f(x) = \sqrt{x}$
	student_id	math_score	english_score	chinese_score
	1	70.710678	89.442719	83.666003
	2	77.459667	67.082039	70.710678
	3	98.994949	65.574385	74.161985
	4	83.666003	83.066239	94.339811
	5	74.833148	88.881944	77.459667
	6	77.459667	82.462113	74.161985
	7	67.082039	83.666003	87.749644
	8	74.161985	87.749644	87.177979
	9	50.000000	75.498344	77.459667
	10	93.808315	63.245553	65.574385

出兩個計算邏輯是等價的。

[86]	#各科加總apply score_df.apply(sum,axis=1)		[87]	#各科加總 score_df.sum(axis=1)		
	stude: 1 2 3 4 5 6 7 8 9 10 dtype	nt_id 200 155 196 228 195 183 192 208 142 171 : int64		stude: 1 2 3 4 5 6 7 8 9 10 dtype	nt_id 200 155 196 228 195 183 192 208 142 171 : int64	

參考資料

Pandas 描述性統計

網站:**程式教程網**

有很多方法用來集體計算DataFrame的描述性統計信息和其他相關操作。 其中大多數是sum(),mean()等聚合函數,但其中一些,如sumsum(),產生一個相同大小的對象。 一般來說,這些方法採用軸參數,就像 $ndarray.\{sum\cdot std\cdot \ldots\}$,但軸可以通過名稱或整數來指定:

• 數據幀(DataFrame) - 「index」(axis=0,默認),columns(axis=1)

下面創建一個數據幀(DataFrame),並使用此對象進行演示本章中所有操作。

示例

Pandas 函數應用

網站:程式教程網


```
例如,爲DataFrame中的所有元素相加一個值2。
```

adder 函數

adder函數將兩個數值作爲參數相加並返回總和。

```
def adder(ele1,ele2):
    return ele1+ele2
```

現在將使用自定義函數對DataFrame進行操作。

```
df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
df.pipe(adder,2)
```

延伸閱讀

Pandas 描述性统计

網站:易百教程

Pandas 函数应用

網站:易百教程

AI共學社群 我的

 \square $\stackrel{\triangleright}{\mathbb{A}}$ $\mathring{\mathbb{C}}$ $\stackrel{\circ}{\mathbb{C}}$

統計函式 >

統計函式:平均值mean() >

統計函式:加總sum(),

個數count()

統計函式:中位數

下一步:閱讀範例與完成作業

