

第十讲层次分析模型

周毓明 zhouyuming@nju.edu.cn

南京大学计算机科学与技术系

课程内容

- 1. 数学概念与模型
- 2. 实际案例与分析
- 3. 计算机典型应用

1.数学概念与模型

背景

- ・日常工作、生活中的决策问题
- ・涉及经济、社会等方面的因素
- ·作比较判断时人的主观选择起相当大的作用,各因素的重要性难以量化
- · Saaty于1970年代提出层次分析法 AHP (Analytic Hierarchy Process)
- · AHP——一种定性与定量相结合的、 系统化、层次化的分析方法

一. 层次分析法的基本步骤

例. 选择旅游地

如何在3个目的地中按照景色、费用、 居住条件等因素选择.

"选择旅游地"思维过程的归纳

· 将决策问题分为3个层次:目标层0,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

- ·通过相互比较确定各准则对目标的权重,及各方案对每一准则的权重。
- · 将上述两组权重进行综合,确定各方案对目标的权重。

层次分析法将定性分析与定量分析结合起来完成以上步骤,给出决策问题的定量结果。

成对比较阵 和权向量

层次分析法的基本步骤

元素之间两两对比,对比采用相对尺度

设要比较各准则 $C_1,C_2,...,C_n$ 对目标O的重要性

$$C_{i}:C_{j}\Rightarrow a_{ij}$$
 $A=(a_{ij})_{n\times n}, a_{ij}>0, a_{ji}=\frac{1}{a_{ji}}$

$$A = \begin{bmatrix} 1 & 1/2 & 4 & 3 & 3 \\ 2 & 1 & 7 & 5 & 5 \\ 1/4 & 1/7 & 1 & 1/2 & 1/3 \\ 1/3 & 1/5 & 2 & 1 & 1 \\ 1/3 & 1/5 & 3 & 1 & 1 \end{bmatrix}$$

A~成对比较阵

A是正互反阵

要由A确定 $C_1,...,C_n$ 对O的权向量

成对比较的不一致情况

$$A = \begin{bmatrix} 1 & 1/2 & 4 & \cdots \\ 2 & 1 & 7 & \cdots \end{bmatrix}$$

$$a_{13} = C_1 : C_3 = 4$$

一致比较

$$a_{23} = C_2 : C_3 = 8$$

允许不一致,但要确定不一致的允许范围

考察完全一致的情况

$$W (=1) \Rightarrow w_1, w_2, \cdots w_n$$

 $\Rightarrow a_{ij} = w_i / w_j$

$$W = (W_1, W_2, \cdots W_n)^T \sim 权向量$$

$$\begin{bmatrix} \frac{W_1}{W_1} & \frac{W_1}{W_2} & \cdots & \frac{W_1}{W_n} \\ \frac{W_2}{W_1} & \frac{W_2}{W_2} & \cdots & \frac{W_2}{W_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{W_n}{W_n} & \frac{W_n}{W_n} & \cdots & \frac{W_n}{W_n} \end{bmatrix}$$

成对比较阵和权向量

成对比较完全一致的情况

满足
$$a_{ij} \cdot a_{jk} = a_{ik}$$
, $i, j, k = 1, 2, \dots, n$

的正互反阵A称一致阵,如

一致阵性质

- ・A的秩为1,A的唯一非零特征根为n
- · A的任一列向量是对应于n 的特征向量
- · A的归一化特征向量可作为权向量

对于不一致(但在允许范围内)的成对比较阵 A,建议用对应于最大特征根 λ 的特征向量 作为权向量w,即

成对比较阵和权向量

比较尺度ajj

Saaty等人提出1~9尺度——*a_{ij}* 取值1,2,..., 9及其互反数1,1/2, ..., 1/9

·便于定性到定量的转化:

尺度 a _{ij}	1	2	3	4	5	6	7	8	9
C_i : C_i 的重要性	相同		稍强		强	明	显显	虽	绝对强

$$a_{ij} = 1,1/2,1/9$$
 ~ $C_i : C_j$ 的重要性与上面相反

- ·心理学家认为成对比较的因素不宜超过9个
- ・用1~3,1~5,...1~17,...,1p~9p(p=2,3,4,5), d+0.1~d+0.9 (d=1,2,3,4)等27种比较尺度对若干实例构造成对比较阵,算出权向量,与实际对比发现, 1~9尺度较优。

一致性检验

对A确定不一致的允许范围

已知:n 阶一致阵的唯一非零特征根为n

可证:n 阶正互反阵最大特征根 $\lambda \geq n$, 且 $\lambda = n$ 时为一致阵

定义一致性指标:

$$CI = \frac{\lambda - n}{n - 1}$$
 CI 越大,不一致越严重

为衡量CI的大小,引入随机一致性指标 RI——随机模拟得到 a_{ii} , 形成A,计算CI 即得RI。

Saaty的结果如下

n	1	2	3	4	5	6	7	8	9	10	11
RI	0	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51

定义一致性比率 CR = CI/RI

当CR<0.1时,通过一致性检验

"选择旅游地"中准 则层对目标的权向 量及一致性检验

最大特征根

2-5 N73

3 1/2

准则层对目标的成对比较阵

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 & 3 & 3 \\ 2 & 1 & 7 & 5 & 5 \\ 1/4 & 1/7 & 1 & 1/2 & 1/3 \\ 1/3 & 1/5 & 2 & 1 & 1 \\ 1/3 & 1/5 & 3 & 1 & 1 \end{bmatrix}$$

权向量(特征向量)w = (0.263, 0.475, 0.055, 0.090,

0.110)^T
一致性指标
$$CI = \frac{5.073 - 5}{5 - 1} = 0.018$$

随机一致性指标 RI=1.12 (查表)

一致性比率

CR=0 018/1 12=0 016<0 1

通过一致

组合权向量

记第2层(准则)对第1层(目标)的权向量为 $w^{(2)} = (\omega_1^{(2)}, \dots, \omega_n^{(2)})^T$

方案层对C₁(景色)的 成对比较阵

$$B_{1} = \begin{bmatrix} 1 & 2 & 5 \\ 1/2 & 1 & 2 \\ 1/5 & 1/2 & 1 \end{bmatrix}$$

方案层对C₂(费用)的 成对比较阵

$$B_{2} = \begin{bmatrix} 1 & 1/3 & 1/8 \\ 3 & 1 & 1/3 \\ 8 & 3 & 1 \end{bmatrix}$$

$$...B_n$$

2

... λ_{r}

权向量

 $W_1^{(3)}$

 $W_2^{(3)}$

... $W_{n}^{(3)}$

组合权向量

第3层对第2层的计算结果

k	1	2	3	4	5	W ⁽²⁾
	0.595	0.08		0.63	0.166	0.26 0.47
$W_{k}^{(3)}$	0.277	6 .236	8 .429	8 .193	0.166	0.05
	0.129	0.682	0.142	0.175	0.668	0.09
$\mathcal{A}_{_{k}}$	3.005	3.002	3	3.009	3	0.11
CI k	0.003	0.001	0	0.005	0	-

RI=0.58 (n=3), CI_k 均可通过一致性检验

方案P₁对目标的组合权重为0.595×0.263+ ...=0.300

方案层对目标的组合权向量为 (0.300, 0.246, 0.456)^T

组合 权向量

第2层对第1层的权向量

$$w^{(2)} = (\omega_1^{(2)}, \dots, \omega_n^{(2)})^T$$

第3层对第2层各元素的权向量

$$w_{k}^{(3)} = (\omega_{k_{1}}^{(3)}, \dots, \omega_{k_{m}}^{(3)})^{T}, k = 1, 2, \dots, n$$

构造矩阵

$$W^{(3)} = [w_1^{(3)}, \dots, w_n^{(3)}]$$

则第3层对第1层的组合权向量

$$w^{(3)} = W^{(3)} w^{(2)}$$

第1层0

第2层C₁,...C_n

第 8 层对第1层的组合权向量

$$w^{(s)} = W^{(s)}W^{(s-1)}\cdots W^{(3)}w^{(2)}$$

其中 W^p 是由第p层对第p-1 层权向量组成的矩阵

层次分析法的基本步骤

1)建立层次分析结构模型

深入分析实际问题,将有关因素自上而下分层(目标一准则或指标一方案或对象),上层受下层影响,而层内各因素基本上相对独立。

2) 构造成对比较阵

用成对比较法和1~9尺度,构造各层对上一层每一因素的成对比较阵。

3) 计算权向量并作一致性检验

对每一成对比较阵计算最大特征根和特征向量,作一致性检验,若通 过,则特征向量为权向量。

4) 计算组合权向量(作组合一致性检验*)

组合权向量可作为决策的定量依据。

二. 层次分析法的广泛应用

- ·应用领域:经济计划和管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等。
- · 处理问题类型: 决策、评价、分析、预测等。
- ・建立层次分析结构模型是关键一步,要有主要决策层参与。
- · 构造成对比较阵是数量依据,应由经验丰富、判断力强的 专家给出。

例1 国家 实力分析

例3 横渡江河、海峡方案的抉择

例3 横渡江河、海峡方案的抉择

三. 层次分析法的若干问题

- ·正互反阵的最大特征根是否为正数?特征向量是否为正向量?一致性指标能否反映正互反阵接近一致阵的程度?
- ・怎样简化计算正互反阵的最大特征根和特征向量?
- ·为什么用特征向量作为权向量?
- · 当层次结构不完全或成对比较阵有空缺时怎样用层次分析 法?

1. 正互反阵的最大特征根和特征向量的性质

定理1 正矩阵A 的最大特征根 λ 是正单根,对应正特征向

量W,且

$$\lim_{k\to\infty} \frac{A^k e}{e^T A^k e} = w, \quad e = (1,1,\dots,1)^T$$

正互反阵的最大特征根是正数,特征 向量是正向量。

定理2 n阶正互反阵A的最大特征根 $\lambda \ge n$, $\lambda = n$ 是A为一致阵的充要条件。

·致性指标
$$CI = \frac{\lambda - n}{n-1}$$
 定义合理

层次

层次分析模型

2. 正互反阵最大特征根和特征向量的简化计算

- ・精确计算的复杂和不必要
- ·简化计算的思路——一致阵的任一列向量都是特征向量,一致性尚好的正互反阵的列向量都应近似特征向量,可取其某种意义下的平均。

和法——取列向量的算术平均

例
$$A = \begin{bmatrix} 1 & 2 & 6 \\ 1/2 & 1 & 4 \\ 1/6 & 1/4 & 1 \end{bmatrix}$$

列向 量归 一化

$$Aw = \begin{bmatrix} 1.769 \\ 0.974 \\ 0.268 \end{bmatrix}$$

$$Aw = \lambda w$$

$$\lambda = \frac{1}{3} \left(\frac{1.769}{0.587} + \frac{0.974}{0.324} + \frac{0.268}{0.089} \right) = 3.009$$

精确结果: $W=(0.588,0.322,0.090)^{T}$, $\lambda=3.010$

简化 计算

根法——取列向量的几何平均

幂法——迭代算法

- 1) 任取初始向量 $w^{(0)}$, k:=0,设置精度 ε
- 2) 计算 $\tilde{W}^{(k+1)} = AW^{(k)}$

3) 归一化
$$w^{(k+1)} = \widetilde{w}^{(k+1)} / \sum_{i=1}^{n} \widetilde{w}_{i}^{(k+1)}$$

4)若
$$\max_{j} \left| w_{j}^{(k+1)} - w_{j}^{(k)} \right| < \epsilon$$
 停止;否则, k . = k +1, 转2

4.不完全层次结构中组合权向量的计算

完全层次结构:上层每一元素与下层所有元素相关联

不完全层次结构

设第2层对第1层权向量 $w^{(2)}=(w_1^{(2)},w_2^{(2)})^T$ 已定

第3层对第2层权向量 $W_1^{(3)}=(W_{11}^{(3)},W_{12}^{(3)},W_{13}^{(3)},0)^T$

 $W_2^{(3)}=(0,0,W_{23}^{(3)},W_{24}^{(3)})^T$ 已得

讨论由 $W^{(2)},W^{(3)}=(w_1^{(3)},w_2^{(3)})$ 计算第3 层对第1层权向量 $W^{(3)}$ 的方法

例: 评价教师贡献的层次结构

 P_1,P_2 只作教学, P_4 只作科研, P_3 兼作教学、科研。

C_1, C_2 支配元素的数目不等

考察一个特例:

若
$$C_1, C_2$$
重要性相同, $w^{(2)} = (1/2, 1/2)^{T_i}$

P₁~P₄能力相同, w₁⁽³⁾=(1/3,1/3,1/3,0)^T,w₂⁽³⁾=(0,0,1/2,1/2)^T 公正的评价应为: P₁:P₂:P₃:P₄=1:1:2:1

・不考虑支配元素数目不等的影响

仍用 $W^{(3)} = W^{(3)} W^{(2)}$ 计算 \Box $w^{(3)} = (1/6, 1/6, 5/12, 1/4)^T$

・支配元素越多权重越大

教学、科研任务由上级安排

用支配元素数目 n_1, n_2 对 $w^{(2)}$ 加权修正

$$\widetilde{\mathbf{w}}^{(2)} = (n_1 \mathbf{w}_1^{(2)}, n_2 \mathbf{w}_2^{(2)})^T / (n_1 \mathbf{w}_1^{(2)} + n_2 \mathbf{w}_2^{(2)})$$

$$n_1 = 3$$
, $n_2 = 2$,
 $\widetilde{w}^{(2)} = (3/5, 2/5)^T$

再用 $W^{(3)} = W^{(3)} \widetilde{W}^{(2)}$ 计算

 \square $w^{(3)}=(1/5,1/5,2/5,1/5)^T$

・支配元素越多权重越小

教学、科研靠个人积极性

5. 残缺成对比较阵的处理

例
$$A = \begin{bmatrix} 1 & 2 & \theta \\ 1/2 & 1 & 2 \\ \theta & 1/2 & 1 \end{bmatrix}$$
 輔助矩阵 $C = \begin{bmatrix} 1 & 2 & w_1 / w_3 \\ 1/2 & 1 & 2 \\ w_3 / w_1 & 1/2 & 1 \end{bmatrix}$

θ 为残缺元素

$$Cw = \lambda w$$
 \Rightarrow $\lambda = 3, w = (0.5714, 0.2857, 0.1429)^{T}$

$$\bigcirc$$

$$\overline{A} w = \lambda w$$

$$\frac{1}{A} = \begin{bmatrix} 2 & 2 & 0 \\ 1/2 & 1 & 2 \\ 0 & 1/2 & 2 \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} 2 & 2 & 0 \\ 1/2 & 1 & 2 \\ 0 & 1/2 & 2 \end{bmatrix} \quad \overline{a}_{ij} = \begin{cases} a_{ij}, & i \neq j, a_{ij} \neq \theta \\ 0, & i \neq j, a_{ij} = \theta \\ m_i + 1, & i = j \end{cases}$$

m_{/~}A第i行 中 θ 的个数

6. 更复杂的层次结构

- ・递阶层次结构:层内各元素独立,无相互影响和支配;层间自上而下、逐层传递,无反馈和循环。
- · 更复杂的层次结构:层内各元素间存在相互影响或支配;层间存在反馈或循环。

层次分析法的优点

- · 系统性——将对象视作系统,按照分解、比较、判断、综合的思维方式进行决策——系统分析(与机理分析、统计分析并列);
- · 实用性——定性与定量相结合,能处理传统的优化方法 不能解决的问题;
- ・ 简洁性 ーー 计算简便,结果明确,便于决策者直接了解和掌握。

层次分析法的局限

- ・ 囿旧--只能从原方案中选优,不能产生新方案:
- ·粗略--定性化为定量,结果粗糙;
- · 主观--主观因素作用大,结果可能难以服人。

· Saaty于1996年提出网络层次分析法 ANP (The Analytic Network Process)

图 2 ANP 模型

文章编号:1000-6788(2007)03-0063-08

用网络层次分析法(ANP)评估应急桥梁设计方案

孙宏才,徐关尧,田 平 (总装备部工程兵科研二所,北京 100093)

图 3 Super Decisions 软件界面

Super Decisions

http://www.superdecisions.com/

2.实际案例与分析

干部选拔

某单位拟从三名干部中提拔一人担任领导工作,干部的优劣(由上级人事部门提出),用六个属性来衡量:健康状况、业务知识、写作水平、口才、政策水平、工作作风,分别用p1、p2、p3、p4、p5、p6来表示

判断矩阵

В	P ₁	p ₂	p ₃	p ₄	p ₅	p ₆
p ₁	1	1	1	4	1	1/2
p ₂	1	1	2	4	1	1/2
p ₃	1	1/2	1	5	3	1/2
p ₄	1/4	1/4	1/5	1	1/3	1/3
p ₅	1	1	1/3	3	1	1
p ₆	2	2	2	3	1	1

求出目标层的权值(和积法)

В	P ₁	P ₂	p ₃	P ₄	p ₅	p ₆
$\mathbf{p_1}$	1	1	1	4	1	1/2
p ₂	1	1	2	4	1	1/2
p ₃	1	1/2	1	5	3	1/2
P ₄	1/4	1/4	1/5	1	1/3	1/3
p ₅	1	1	1/3	3	1	1
p ₆	2	2	2	3	1	1

В	$\mathbf{p_{1}}$	p_2	p ₃	P4	p ₅	p ₆
p_1	1	1	1	4	1	1/2
P ₂	1	1	2	4	1	1/2
p ₃	1	1/2	1	5	3	1/2
P4	1/4	1/4	1/5	1	1/3	1/3
P ₅	1	1	1/3	3	1	1
P6	2	2	2	3	1	1
Σ	6.25	5.75	6.53	20	7.33	3.83

В	$\mathbf{p_1}$	p ₂	p ₃	p ₄	p ₅	p ₆
p_1	0.16	0.17	0.15	0.20	0.14	0.13
p ₂	0.16	0.17	0.30	0.20	0.14	0.13
p ₃	0.16	0.09	0.15	0.25	0.42	0.13
p ₄	0.04	0.04	0.03	0.05	0.05	0.09
P ₅	0.16	0.17	0.05	0.15	0.14	0.26
p ₆	0.32	0.34	0.30	0.15	0.14	0.26

0.93

1.51

В	\mathbf{p}_{1}	p_2	p ₃	p_4	p ₅	P 6
$\mathbf{p_1}$	0.16	0.17	0.15	0.20	0.14	0.13
p ₂	0.16	0.17	0.30	0.20	0.14	0.13
p ₃	0.16	0.09	0.15	0.25	0.42	0.13
P4	0.04	0.04	0.03	0.05	0.05	0.09
P ₅	0.16	0.17	0.05	0.15	0.14	0.26
p ₆	0.32	0.34	0.30	0.15	0.14	0.26
Σ	6.25	5.75	6.53	20	7.33	3.83

38

求出目标层的权值(和积法)

В	P ₁	p ₂	P ₃	P ₄	p _s	\mathbf{p}_6	Σ
P ₁	0.16	0.17	0.15	0.20	0.14	0.13	0.95
P ₂	0.16	0.17	0.30	0.20	0.14	0.13	1.10
P ₃	0.16	0.09	0.15	0.25	0.42	0.13	1.20
P ₄	0.04	0.04	0.03	0.05	0.05	0.09	0.30
Ps	0.16	0.17	0.05	0.15	0.14	0.26	0.93
P ₆	0.32	0.34	0.30	0.15	0.14	0.26	1.51
						Σ	5.99

В	$\mathbf{p_{1}}$	p_2	p ₃	p ₄	p ₅	p ₆
$\mathbf{p_1}$	1	1	1	4	1	1/2
P ₂	1	1	2	4	1	1/2
p ₃	1	1/2	1	5	3	1/2
P4	1/4	1/4	1/5	1	1/3	1/3
P ₅	1	1	1/3	3	1	1
P ₆	2	2	2	3	1	1
Σ	6.25	5.75	6.53	20	7.33	3.83

F	В	$\mathbf{p_1}$	p_2	μ ₃	p ₄	p ₅	p ₆	Σ
	$\mathbf{p_1}$	0.16	0.17	0.15	0.20	0.14	0.13	0.9
	$\mathbf{p_2}$	0.16	0.17	0.30	0.20	0.14	0.13	1.1
	p ₃	0.16	0.09	0.15	0.25	0.42	0.13	1.20
	p_4	0.04	0.04	0.03	0.05	0.05	0.09	0.30
	p ₅	0.16	0.17	0.05	0.15	0.14	0.26	0.9.
	p ₆	0.32	0.34	0.30	0.15	0.14	0.26	1.5

В	\mathbf{p}_{1}	p_2	p ₃	\mathbf{p}_4	p ₅	p ₆
$\mathbf{p_1}$	0.16	0.17	0.15	0.20	0.14	0.13
$\mathbf{p_2}$	0.16	0.17	0.30	0.20	0.14	0.13
p ₃	0.16	0.09	0.15	0.25	0.42	0.13
P4	0.04	0.04	0.03	0.05	0.05	0.09
P ₅	0.16	0.17	0.05	0.15	0.14	0.26
P ₆	0.32	0.34	0.30	0.15	0.14	0.26
7	6.25	5.75	6.53	20	7.33	3.83

39

求出目标层的权值(和积法)

В	p ₁	P ₂	P ₃	P ₄	P ₅	\mathbf{p}_6	Σ
\mathbf{p}_1	0.16	0.17	0.15	0.20	0.14	0.13	0.95
p_2	0.16	0.17	0.30	0.20	0.14	0.13	1.10
p_3	0.16	0.09	0.15	0.25	0.42	0.13	1.20
p_4	0.04	0.04	0.03	0.05	0.05	0.09	0.30
p_s	0.16	0.17	0.05	0.15	0.14	0.26	0.93
\mathbf{p}_{6}	0.32	0.34	0.30	0.15	0.14	0.26	1.51
						Σ	5.99

В	$\mathbf{p_1}$	p ₂	p ₃	p ₄	p ₅	P ₆	W
p ₁	0.16	0.17	0.15	0.20	0.14	0.13	0.16
p ₂	0.16	0.17	0.30	0.20	0.14	0.13	0.18
p ₃	0.16	0.09	0.15	0.25	0.42	0.13	0.20
p ₄	0.04	0.04	0.03	0.05	0.05	0.09	0.05
p ₅	0.16	0.17	0.05	0.15	0.14	0.26	0.16
P ₆	0.32	0.34	0.30	0.15	0.14	0.26	0.25

В	$\mathbf{p}_{\mathbf{I}}$	p_2	p_3	p ₄	p ₅	p ₆	Σ
p_1	0.16	0.17	0.15	0.20	0.14	0.13	0.95
p_2	0.16	0.17	0.30	0.20	0.14	0.13	1.10
p ₃	0.16	0.09	0.15	0.25	0.42	0.13	1.20
p ₄	0.04	0.04	0.03	0.05	0.05	0.09	0.30
p ₅	0.16	0.17	0.05	0.15	0.14	0.26	0.93
P ₆	0.32	0.34	0.30	0.15	0.14	0.26	1.51

В	$\mathbf{p_1}$	p ₂	p ₃	p ₄	p ₅	P ₆
$\mathbf{p_1}$	0.16	0.17	0.15	0.20	0.14	0.13
p_2	0.16	0.17	0.30	0.20	0.14	0.13
p ₃	0.16	0.09	0.15	0.25	0.42	0.13
P4	0.04	0.04	0.03	0.05	0.05	0.09
p ₅	0.16	0.17	0.05	0.15	0.14	0.26
p ₆	0.32	0.34	0.30	0.15	0.14	0.26
Σ	6.25	5.75	6.53	20	7_33 4U	3.83

计算判断矩阵最大特征根λ_{max}

$$\lambda_{\max} = \Sigma_1^n \frac{(BW)_i}{nW_i}$$

判断矩阵一致性指标C.I. (Consistency Index)

C.I. =
$$\frac{\lambda_{\text{max}} - n}{n-1} = \frac{6.35 - 6}{6-1} = 0.07$$

随机一致性比率 C.R.(Consistency Ratio)。

C.R. =
$$\frac{C.I}{R.I.}$$
 = $\frac{0.07}{1.24}$ = 0.056 < 0.10

田	乙	囚
1	1/4	1/2
4	_	အ
2	1/3	1
	甲 1 4 2	4 1

P₁健康状况

B ₂	甲	乙	丙
甲	1	1/4	1/5
乙	4	1	1/2
丙	5	2	1

P₂业务水平

 P_3 写作水平

B ₄	田	乙	丙
甲	1	1/3	5
乙	3	1	7
丙	1/5	1/7	1

P₄ 口才

P₅政策水平

P₆工作作风

求出方案层对目标层的最大特征向量

$$(W_1^1 W_2^1 W_3^1) = (0.14,0.62,0.24)$$

 $(W_1^2 W_2^2 W_3^2) = (0.10,0.32,0.58)$
 $(W_1^3 W_2^3 W_3^3) = (0.14,0.62,0.24)$
 $(W_1^4 W_2^4 W_3^4) = (0.28,0.65,0.07)$
 $(W_1^5 W_2^5 W_3^5) = (0.47,0.47,0.06)$
 $(W_1^6 W_2^6 W_3^6) = (0.80,0.15,0.05)$

求得三人所得总分

甲的总分

- $= \Sigma W_i^* W_i^1$
- = 0.16*0.14+0.18*0.10+0.20*0.14+**0.05*0.28+**0.16*0.47+**0.25*0.80**
- = 0.3576

乙的总分

 $= \sum W_i^* W_i^2$

0.16*0.62+0.18*0.32+0.20*0.62+**0.05*0.65**+0.16*0.47+**0.25*0.15**

对的認分

- $= \sum W_i * W_i^3$
- = 0.16*0.24+0.18*0.58+**0.20*0.24**+**0.05*0.07**+0.16*
- 0.07 + 0.25 * 0.05
- = 0.2182

3.计算机典型应用

- ① 项目的工作量估算
- ② 电信公司服务比较
- ③ 其他应用...

问题

在项目的开发早期,为估算其开发工作量(即需要花多长时间开发项目),许多公司采用专家估算法。 然而,该方法严重依赖于专家的经验和领域知识,有可能估算不准确。

要求 应用AHP方法,提高估算准确性?

M. Shepperd, M. Cartwright. Predicting with sparse data. IEEE TSE, 2001

问题分析与思考

n个项目

应用AHP

n个项目的权值

选参考点

少量项目实际工作量

计算

其他项目的估算

Step 3:

Fig. 2. Example hierarchy (for the criterion project effort).

$$\hat{E}_i = (w_i/w_k)E_k,$$

实验结果

	1			
Project	Company	Actual	Expert	Sparse Data
ı				Method
ı				Prediction
1	Company X	670	691	reference project
2	Company X	912	902	906
3	Company X	218	274	276
4	Company X	595	479	495
5	Company X	267	308	291
6	Company X	344	301	291
7	Company X	1044	590	591
8	Company X	229	234	230
9	Company X	190	172	181
10	Company X	870	334	313
11	Company X	109	159	166
12	Company X	289	239	247
13	Company X	616	373	377
14	Company X	557	308	291
15	Company X	416	588	591
16	Company X	578	861	838
17	Company X	98	104	100
18	Company X	439	424	424
19	Company X	99	232	230
20	Company X	75	218	223
21	Company X	1076	505	510
-	Ab.		150V. (#F	511

实验结果

22	BT	305	304	reference project
23	BT	330	274	260
24	BT	334	589	575
25	BT	150	480	478
26	BT	545	648	589
27	BT	118	186	177
28	BT	1116	777	740
29	BT	159	136	137
30	BT	574	709	664
31	BT	277	333	334
32	BT	97	91	90
33	BT	374	446	416
34	BT	167	159	155
35	BT	358	342	344
36	BT	123	198	182
37	BT	24	30	not used*
38	BT	34	30	not used*
39	BT	32	34	not used*

TABLE 2
Comparison of Absolute Residuals from Expert Judgement with the Sparse Data Method

实验结果

Technique	Mean	Median	Min	Max
Sparse Data	134.8	58.5	1	566
Method				
Expert	139.3	70	5	571
Judgement				

p = 0.0610 Reject Ho at Alpha = 0.10

(2) 电信公司服务比较

问题

有几家电信公司,如何比较它们的服务质量,挑选出一个满意的公司为我们服务?

要求 应用AHP方法,挑选满意的公司?

C. Douligeris, I.J. Pereira. A telecommunications quality study using the analytic hierarchy process. IEEE Journal on Selected Areas in Communications.

1994.

(2) 电信公司服务比较

问题分析与思考

(3) 项目风险评估

问题

在项目的投标阶段,如何评估项目的风险?

要求 应用AHP方法,挑选出风险小的项目投标?

M.A. Mustafa, J.F. Al-Bahar. Project risk assessment using the analytic Hierarchy process. IEEE Transactions on Engineering Management, 1991.

(3) 项目风险评估

Legend

F1: Financial and Economic Risks

F11 : Subcontractors Failure F12 : Unavailability of Funds

F13: Inflation

F2: Political Risks

F21 : Embargoes / expropriation

F22: Changes in Local Laws

F3: Acts of God Risks

F31: Earthquakes

F32: Water Damage and Floads

F33 : Soil Subsidence and

Collapse

(4) 专家知识获取

问题

许多领域用信度网获取专家的领域知识,用条件概率表示专家知识,如何获取一致的条件概率?

要求 应用AHP方法,获取一致的知识?

S. Monti, G. Carenini. Dealing with the expert inconsistency in probability eclicitation. IEEE TKDE, 2000.

(4) 专家知识获取

Fig. 1. The belief network for the clinical domain of chronic nonorganic headaches.

其他文献

1. 武器系统筛选

A hybrid approach using the analytic hierarchy process and integer programming to screen weapon systems projects. IEEE TEM, 2003

2. 中国的研发项目评价

Analytic hierarchy process with fuzzy scoring in evaluating multidisciplinary R&D projects in China. IEEE TEM, 2005

3. Web services的选择

C. Wu, E. Chang. Intelligent Web services selection based on AHP and Wiki. WI 2007.

4. 电力控制系统的通信网络安全性评价

Security assessment for communication networks of power control systems using attack graph and MCDM. IEEE TPD, 2010.

Thanks for your time and attention!

