Supplementary materials for: Geometric models reveal the hidden structure of conceptual knowledge

 $Paxton \ C. \ Fitzpatrick^1 \ and \ Jeremy \ R. \ Manning^{*,\,1}$ $^1Dartmouth \ College$ $^*Corresponding \ author: jeremy.r.manning@dartmouth.edu$

	Question set	Question	Correct response	Alternative 1	Alternative 2	Alternative 3 The gravitational at tion between you your computer is rupted by the la gravitational field g ated by the earth	
1	FFF	Why is the gravitational attraction be- tween you and your computer too small for you to notice?	Neither you nor your computer has enough mass to cause a noticable gravitational attraction	You and your computer are too close for the gravitational attraction to be significant	Humans are too small to detect the force of grav- ity		
2	FFF	Which of the following is an example of the Weak Interaction?	A neutron in a radioac- tive Cesium atom is con- verted into a proton, leading to the release of a few particles	Light from the sun col- lides with a satellite or- biting Earth and exerts a small push on the satel- lite	Two protons bound to- gether in a Helium nu- cleus resist separation despite a repulsive elec- tromagnetic force acting on them	A distant galaxy a small but dete gravitational pull Earth	
3	3 FFF Roughly how many times stronger is the Weak Interaction than gravity?		10,000,000,000,000,000,- 000,000,000		1,000,000	The Weak Interact less strong than gr	
4	Why don't you and your computer experience any attraction or repulsion due to the Weak Interaction?		The weak interaction only acts over extremely small distances	The weak interaction be- tween you and your computer is counter- acted by the other forces	You and your computer have no net charge		
5	FFF Which of the following is a difference between gravity and the electromagnetic force?		Gravity is only ever at- tractive while the elec- tromagnetic force can both attract and repel	Gravity is a much more powerful force than elec- tromagnetism	Gravity can only act over large distances while the electromagnetic force can act over large and small distances	The electroma force can only ac small distances gravity can act small or large dist	
6 FFF		Electricity and magnetism can be shown to be two cases of the same force if we:	View them in different frames of reference			Consider both the tive and repulsive erties of the two fo	
7	FFF Which of the following are the primary two fundamental forces acting in opposi- tion between the positively-charged pro- tons in an atom's nucleus?		The Strong Force and the Electromagnetic Force	Gravity and the Weak Interaction	Gravity and the Electro- magnetic Force	The Strong Force a Weak Interaction	
8	FFF	Why does the universe have a very uneven distribution of mass but a relatively equal distribution of charge?	Positive and negative charges cancel out and become a neutral charge when they combine while masses only grow larger as they combine	Masses tend to repel while charges tend to at- tract	Masses tend to attract while charges tend to re- pel	The gravitational action acting be masses is stronge the electromagne teraction acting be charges	
9	FFF	In your body, there are a tremendous amount of negatively-charged electrons. Your computer also contains a huge number of negatively-charged electrons. We know that like charges repel, but you and your computer are not repelled apart. Which of the following explains why?	The electrons' negative charges are balanced by the positive charges of an equal number of protons	An attractive gravita- tional force balances out this repulsion	The Electromagnetic force only acts over very small distances	The Electroma force only acts ove large distances	
10	FFF	Which of the following is a similarity be- tween the Weak Interaction and the Strong Force?	Both act only over very small distances	Both are stronger than the Electromagnetic force	Both are weaker than Gravity	Both are responsi attractions between tant galaxies	
11	FFF	Which force is stronger than the Electro- magnetic Force?	Strong Force	Gravity Weak Interaction		Electromagnetic F the strongest	
12	FFF	Roughly how many times stronger is the Strong Force than gravity?	10^38	100	10^18	The Strong For weaker than gravi	
13	FFF Which of the following would have to be true for the Weak Interaction to cause repulsion or attraction between two objects?		The objects would have to be extremely close to each other	The objects would have to have the same mass	The objects would have to be extremely far away from each other	The objects would to have different n	
14	FFF	Which force keeps us from jumping off of Earth?	Gravity	Strong Force	Weak Interaction	Electromagnetic F	
15	FFF	What does the Coulomb Force refer to?	The repulsion of objects with similar charge and the attraction of objects with different charge	The repulsion of objects with similar mass and the attraction of objects with different mass	The repulsion of objects with similar tempera- ture and the attraction of objects with different temperature	The repulsion of with similar densi the attraction of with different den	
16	BoS	Which of the following describes the effect of gravity on a cloud of atoms?	The atoms move to the center of the mass of the atoms	The atoms move away from the center of the mass of the atoms	The atoms spin around the center of the mass of the atoms	Gravity has no ef a cloud of atoms	
17	BoS	Which of the following occurs as a cloud of atoms gets more dense?	Temperature increases	Temperature decreases	Mass increases	Mass decreases	
18	BoS	Which temperature does a cloud of hydro- gen atoms approach as it gets denser in the process of becoming a star?	10 Million Kelvin	0 Kelvin	10,000 Kelvin	10 Billion Kelvin	
19	BoS	Which of the following can overcome the Coulomb Force?	High temperature and high pressure	Low temperature and high pressure	High temperature and low pressure	Low temperatur low pressure	
	BoS	Which of the following prevents a star	Energy released from	the fusion of hydrogen atoms provides outward atoms decreases the tem- perature of the star		The Weak Interact	
20		from collapsing as a result of gravity?	atoms provides outward pressure		other stars nearby		

22	BoS	Which of the following is the FIRST prod- uct of two hydrogen atoms fusing to- gether?	Deuterium	Oxygen	Helium	Beryllium	
23	BoS	Once hydrogen atoms get close enough to- gether, which of the following keeps them together?	The Strong Force	The Electromagnetic Force	Gravity	The Weak Interaction	
24	BoS	When two nuclei fuse together, how does the mass of the combined nucleus com- pare to the mass of each of the original nucleus?	The mass of the combined nucleus is smaller	The mass of the com- bined nucleus is larger	The mass of the com- bined nucleus is the same	It is not possible for two nuclei to fuse together	
25	BoS	If we say that our Sun is a main sequence star, what does that tell us about the Sun?	Hydrogen atoms in the Sun are fusing together and becoming Helium	The Sun is a supermassive star	The Sun does not experi- ence the force of Gravity but does experience the Coulomb Force	The Sun is comprised of 10 million Hydrogen atoms	
26	BoS	Which force would cause a massive cloud of hydrogen atoms to move together?	Gravity	Strong Force	Weak Interaction	Electromagnetic Force	
27	BoS	Which of the following occurs as density increases?	Temperature increases	Volume increases	Mass increases	None of the above	
28	BoS	Which of the following is a product of Hydrogen fusion?	Helium	Oxygen	Cesium	Carbon	
29	BoS	Which of the following terms accurately describes the Sun?	Main sequence star	Supermassive star	Alternative sequence star	None of the above	
30	BoS	Which of the following terms best describes a fusion reaction?	Ignition	Combustion	Decomposition	Displacement	
31	GK	Which of the following lists of particles is ordered from smallest to largest?	Electron, proton, nu- cleus, atom	Atom, electron, proton, nucleus	Electron, nucleus, atom, neutron	Neutron, nucleus, elec- tron, atom	
32	GK	Which of the following defines what element an atom is?	Its number of protons	Its number of neutrons	Its number of electrons	Its mass	
33	GK	Suppose that in some atom, a proton is converted into a neutron. What changes as a result of this conversion?	The atom's element	The atom's mass (in atomic mass units)	The atom's velocity	The atom's density	
34	GK	Which of the following lists is ordered from smallest to largest?	Star, solar system, galaxy, universe	Galaxy, solar system, Milky Way, universe	Planet, galaxy, star, solar system	Earth, solar system, uni- verse, galaxy	
35	GK	Which of the following are located in the nucleus of an atom?	Protons and neutrons	Only protons	Only electrons	Neutrons and electrons	
36	GK	Which of the following has the least mass?	An electron	A proton	A neutron	A hydrogen atom	
37	GK	What percent of an atom's space does its nucleus occupy?	Less than 1%	10%	50%	More than 90%	
38	GK	In the famous equation attributed to Albert Einstein, E = mc^2, what does the letter "m" represent?	Mass	Momentum	Moment of inertia	Moles	
39	GK	If I were to heat up an inflated balloon, which of the the following would occur?	The balloon would expand	The balloon would shrink	None of these answers are correct	The balloon could ex- pand or shrink depend- ing on whether it's filled with air or helium gas	

Table S1: Question pool. Each participant answered questions on three 30-question quizzes. Ten questions from each question set were included on each quiz: questions about the *Four Fundamental Forces* lecture (FFF), questions about the *Birth of Stars* lecture, and questions about general physics knowledge (GK). Each question appeared on at most one quiz (for each participant).

Topic	1	2	3	4	5	6	7	8	9	10
0	star	helium	main	mass	atomic	sequence	get	energy	fuse	hydrogen
1	charge	force	mass	gravity	strong	attract	large	strength	distance	electromagnetic
2	huge	force	electromagnetic	macro	way	scale	concentration	apply	kind	charge
3	atom	dense	go	hydrogen	slow	get	huge	condense	mass	would
4	fusion	get	threshold	core	occur	mass	something	start	several	jupiter
- 5	enough	ignition	proton	force	get	close	nucleus	coulomb	fusion	would
6	energy	pressure	ignition	mass	little	keep	provide	fusion	get	hydrogen
7	proton	weak	neutron	interaction	one	go	nucleon	cesium	extra	get
- 8	run	kind	say	go	want	would	get	well	give	although
9	huge	cloud	space	float	imagine	hydrogen	atom	say	distance	combine
10	one	hydrogen	helium	go	proton	neutron	keep	atomic	detail	fuse
11	gravity	force	weak	interaction	apply	strength	distance	ten	relative	next
12	force	go	electrostatic	call	charge	magnet	side	coulomb	know	different
13	force	atom	nucleus	electron	much	hydrogen	get	around	coulomb	charge
14	force	scale	gravity	start	weak	orbit	keep	fundamental	around	surprise

Table S2: Topics. The table displays the 10 top-weighted word from each of the 15 topics identified from sliding windows of two course video transcripts (see *Constructing text embeddings of multiple videos and questions*).

Supplementary references