Statistics

Dr. Polla Fattah

What You Will Learn

By the end of this crash course, you'll be able to:

- Summarize and visualize data
- Measure variability and shape
- Construct and interpret confidence intervals
- Conduct hypothesis testing (t-tests, ANOVA, chi-square)
- Analyze categorical and numeric outcomes
- Choose appropriate statistical tests for your thesis
- Communicate statistical results effectively

Key Questions Every Researcher Must Answer

- Does my algorithm really perform better than others?
- How confident can I be in my results?
- Is the difference I observed due to chance?
- How do I report my findings objectively?
 Statistics provides the language of evidence in science.
 Why Postgraduates Can't Ignore Statistics
 Without statistical analysis, a statement like:

"I ran my new sorting algorithm and it seemed faster than QuickSort."

is anecdotal at best.

In a thesis defense, your examiners will ask:

- How many times did you test it?
- What was the average run-time?
- How much variability was there?
- Could this be due to randomness?

Was your test design valid?
 These are not programming questions — they are statistical.

Statistics in Experimental Design and Validation

Activity	Statistical Role
	t-tests, ANOVA
•	Confidence intervals
Survey data	Chi-square, proportions
Benchmarking systems	Regression
System reliability	Error rate, standard deviation

Good experimental design includes:

- Stating clear hypotheses
- Designing fair trials
- Collecting and summarizing results
- Performing appropriate statistical analysis

Our Guiding Scenario: The Algorithm Showdown

To make this course practical, we'll follow one running example:

You're defending your MSc thesis:

"Comparing MergeSort and QuickSort performance."

You've:

- Run each algorithm 30 times
- Recorded run-time (ms)
- Collected performance data

Your core research question:

> "Is MergeSort significantly faster than QuickSort?"

We will use this example throughout to introduce and apply statistical concepts.

Descriptive Statistics: Center and Spread

To begin answering our thesis question ("Is MergeSort faster than QuickSort?"), we need to **describe** the data. We'll start with:

- Measures of central tendency
- Measures of variability
- How they behave in symmetric and skewed data
- Practical examples with our simulated results

Understanding Central Tendency

Central tendency describes the "middle" of the data — where values tend to cluster.

Three common measures:

Mean: Arithmetic average

• Median: Middle value when sorted

Mode: Most frequent value (less useful in continuous data)

When Do These Measures Differ?

In a perfectly **symmetric distribution**, all three measures are equal:

Mean = Median = Mode

In a right-skewed distribution (tail on the right):

Mean > Median > Mode

In a **left-skewed** distribution (tail on the left):

Mean < Median < Mode

This helps analysts infer the **shape** of the data from summary statistics.

Simulating Our Data (QuickSort vs MergeSort)

We'll work with the following data throughout this presentation:

Each row represents one run of either algorithm. We'll use this data in visualizations and statistical analysis.

Displaying the Data as a Table

It's useful to see the actual values used:

Trial	QuickSort	MergeSort
1	60.23	50.28
2	48.61	51.52
3	54.18	53.18
4	55.80	44.96
5	54.43	50.52
6	51.36	39.41
7	61.07	44.08
8	51.43	43.75
9	64.11	35.93

Trial	QuickSort	MergeSort
10	51.62	48.18

Mean and Median of Each Algorithm

```
mean(qs); median(qs)

## [1] 52.41152

## [1] 51.39765
```

Do the mean and median differ? That can tell us about symmetry or skewness.

Visualizing the Center of Data

Let's visualize both distributions using histograms with mean and median lines.

Understanding Variability

Two datasets can have the same mean but very different **spread**. Measures of variability include:

- Range: max min
- **Deviations** from the mean
- Variance: average squared deviation
- Standard Deviation (SD): square root of variance
- IQR: interquartile range (Q3 Q1)

Why Standard Deviation?

Standard deviation (SD) is the most common way to quantify **how much the data spread** around the mean.

- Low SD = tightly clustered
- High SD = widely spread

```
tapply(algo_data$Time_ms, algo_data$Algorithm, sd)

## MergeSort QuickSort
## 5.250282 7.530168
```

Boxplots: A Visual Summary

Boxplots show:

- Median (center line)
- Q1 and Q3 (box edges)
- IQR (box width)
- Outliers (dots beyond whiskers)

What Can Boxplots Tell Us?

Boxplots help you:

- Compare medians
- Spot skewed distributions (asymmetry)
- Detect outliers
- Evaluate overall spread (IQR vs total range)
 Use them early and often during data exploration!

Distributions and Statistical Assumptions

Before conducting statistical tests, we must understand **how the data are distributed**.

This section covers:

- What distributions are
- The normal (bell-shaped) distribution
- How to assess normality in R
- When and why normality matters

What Is a Distribution?

A distribution describes how values are spread out. Key properties:

- Symmetry vs skewness
- Unimodal vs bimodal
- Continuous vs discrete
 Examples:
- Uniform: all values equally likely
- Normal: bell-shaped
- Skewed: lopsided toward one side

The Normal Distribution

The **normal distribution** (Gaussian) is:

- Symmetric
- Bell-shaped
- Defined by mean and standard deviation In a normal distribution:
- Mean = Median = Mode
- Most values lie near the center

The Empirical Rule

The **Empirical Rule** states:

- ~68% of data lie within ±1 SD
- ~95% within **±2 SD**
- ~99.7% within ±3 SD

This rule is essential for:

- Understanding confidence intervals
- Identifying outliers

Visualizing the Normal Curve

Why Does Normality Matter?

Many statistical tests assume normality — especially:

- t-tests
- ANOVA
- Regression

We assume:

"If the sample comes from a normal distribution, the test results are valid."

Fortunately, many tests are **robust** to small violations.

Central Limit Theorem (CLT)

The **CLT** says:

The distribution of the sample mean becomes approximately **normal** as the sample size increases, even if the data are not normal.

This allows us to:

- Use t-tests and CIs on non-normal data
- Rely on sampling distributions instead of raw data
 CLT usually kicks in around n ≥ 30

Graphical Checks for Normality

Three useful visual tools:

- Histogram see symmetry, outliers
- **Density Plot** smoother histogram
- QQ Plot plot of quantiles vs theoretical normal values

Example: Histogram + Density Plot

QQ Plot (Quantile-Quantile Plot)

In a QQ plot:

- Points should lie on a straight line
- Curves at ends → skewness
- Strong deviations → non-normal

Formal Test: Shapiro-Wilk Test

Tests whether data are normally distributed.

```
##
## Shapiro-Wilk normality test
##
## data: ms
## W = 0.93428, p-value = 0.06386
```

Interpretation:

- H₀: Data are from a normal distribution
- H₁: Data are not normal
- If p > 0.05 \rightarrow fail to reject H₀ \rightarrow data are normal enough

What Does "Assume Normality" Mean?

It doesn't mean your data must be perfect. It means:

- You've checked assumptions
- The data are close enough
- You can justify using parametric tests
 When in doubt:
- Use non-parametric tests (next section)
- Be transparent in your thesis

Confidence Intervals and Statistical Inference

After describing our data and checking assumptions, we're ready for **inference** — making conclusions about a population based on sample data.

The first tool of inference is the confidence interval.

What Is a Confidence Interval?

A confidence interval (CI) is a range of values likely to contain the true population parameter (like a mean).

For example:

"MergeSort is faster by 4.1 ms, 95% CI [1.6, 8.4]"

This means we're 95% confident the true difference is between 1.6 and 8.4 ms.

How to Interpret "95% Confidence"

It does not mean there's a 95% chance the true value lies in one specific interval.

It means:

If we repeated this experiment 100 times, 95 of those intervals would contain the true value.

It's about the method, not one single outcome.

Confidence Interval Formula

The general formula for a CI is:

$$CI = \overline{x} \pm t \cdot SE$$

Where:

• \bar{x} : sample mean

t: critical value from the t-distribution

• **SE**: standard error = s/\sqrt{n}

CI vs Standard Error

Standard Error (SE) shows how much sample means vary:

$$SE = \frac{s}{\sqrt{\overline{n}}}$$

The CI uses SE to build a range:

- SE = "spread of sample means"
- CI = "range of plausible population values"

Computing Confidence Intervals in R

We can use t.test() to compute the mean and its confidence interval:

```
qs_data <- algo_data$Time_ms[algo_data$Algorithm ==
         "OuickSort"]
ms_data <- algo_data$Time_ms[algo_data$Algorithm ==</pre>
         "MergeSort"]
t.test(qs_data)$conf.int
## [1] 49.59971 55.22333
## attr(,"conf.level")
## [1] 0.95
t.test(ms data)$conf.int
```

```
## [1] 45.42997 49.35095
## attr(,"conf.level")
## [1] 0.95
```

This gives the 95% confidence interval around the mean run-time.

Visualizing Confidence Intervals

We can plot mean ± CI error bars for each algorithm.

CI for the Difference in Means

What if we want to compare MergeSort and QuickSort directly?

```
t.test(Time_ms ~ Algorithm, data = algo_data)$conf.int

## [1] -8.384496 -1.657631
## attr(,"conf.level")
## [1] 0.95
```

If the CI includes $0 \rightarrow$ no significant difference If it excludes $0 \rightarrow$ significant difference

Example Interpretation

Suppose the CI is:

Interpretation: - We are 95% confident MergeSort is faster by between 1.66 and 8.38 ms - CI does not include $0 \rightarrow$ result is statistically significant

Summary: Confidence Intervals

Concept	Purpose
CI	Range of plausible population values
95% CI	95 out of 100 such intervals contain the true value
CI includes 0	No significant difference
CI excludes 0	Significant difference
Narrow CI	More precision (less variability)

Confidence intervals are a powerful tool for quantifying uncertainty — and they naturally lead us into hypothesis testing.

Foundations of Hypothesis Testing

Once we have summary statistics and confidence intervals, we're ready for formal decision-making.

Hypothesis testing helps us answer questions like: > "Is MergeSort significantly faster than QuickSort?"

It is the standard method for drawing scientific conclusions from data.

What Is a Hypothesis?

A **hypothesis** is a testable statement about a population or process. It must be:

- Testable can be confirmed or refuted with data
- Falsifiable you can imagine evidence against it
- Specific clear about what is being measured

Types of Hypotheses

We always define two hypotheses:

- Null Hypothesis (H₀)
 The default assumption no difference, no effect
 E.g., "The algorithms have equal mean run-time"
- Alternative Hypothesis (H₁)
 What we want to show there is a difference or effect E.g., "MergeSort is faster than QuickSort"
 We test whether we can reject H₀ in favor of H₁.

What Makes a Good Hypothesis?

A strong hypothesis should: - Be based on theory or prior research

- Identify specific variables
- Be framed for statistical testing
- Use clear operational definitions

Examples:

Research Question	H₀	H_1
Is MergeSort faster?	$\mu_1 = \mu_2$	$\mu_1 < \mu_2$
Do students prefer UI A or B?	Equal preferences	At least one differs
Is crash rate linked to platform?	Independent	Dependent

The Logic of Hypothesis Testing

- 1. Assume H₀ is true
- 2. Collect data
- 3. Calculate how likely the data are if H₀ were true
- 4. If the data are **very unlikely**, reject H₀
 This logic uses the **p-value** to quantify that likelihood.

What Is a p-value?

The **p-value** is the probability of observing your results (or more extreme), assuming H_0 is true.

- Small p-value → data are unlikely under H₀
- Large p-value → data are plausible under H₀

It is **not** the probability that H_0 is true.

Interpreting the p-value

p-value	Interpretation
≤0.05	Statistically significant — reject H₀
> 0.05	Not significant — fail to reject H₀

Significance level (α) is usually set at **0.05**

Type I and Type II Errors

Туре	Description	Risk Symbol
Type I Error	Rejecting H₀ when it is actually true	α
Type II Error	Failing to reject H₀ when it is false	β

Reducing one type often increases the other.

We aim to balance them.

One-Tailed vs Two-Tailed Tests

- Two-tailed: Checks for any difference
 - $H_1: \mu_1 \neq \mu_2$
- One-tailed: Checks for a specific direction

 $H_1: \mu_1 < \mu_2$

Use one-tailed only when justified by theory — not after looking at data!

The Significance Level (11)

We set a threshold to control Type I error:

- Typically: $\alpha = 0.05$
- Stricter for high-risk domains: $\alpha = 0.01$ We compare:
- If $p \le \alpha \rightarrow \text{reject H}_0$ (significant)
- If $p > \alpha \rightarrow fail$ to reject H_0 (not significant)

Summary: Hypothesis Testing Flow

Step	Description
1. State H₀ and H₁	Define competing hypotheses
2. Choose α	Set risk tolerance (usually 0.05)
3. Compute p-value	Based on sample and test
4. Compare p to α	Decide whether to reject H ₀
5. Interpret	Report significance and effect size

This process will now guide us into **specific tests** — starting with the **t-test** for comparing means.

Comparing Means: t-Tests

When your outcome is **numeric** and you want to compare **means**, the most common tool is the **t-test**.

There are three main types:

- One-sample t-test
- Independent two-sample t-test
- Paired-sample t-test
 We'll explore each with assumptions, examples, and interpretation.

One-Sample t-Test

Use when: You compare a sample mean to a known value.

Is MergeSort's mean run-time different from 50ms?

```
ms_data <- algo_data$Time_ms[algo_data$Algorithm ==
    "MergeSort"]
t.test(ms_data, mu = 50)</pre>
```

```
##
## One Sample t-test
##
## data: ms_data
## t = -2.7223, df = 29, p-value = 0.01085
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 45.42997 49.35095
## sample estimates:
```

```
## mean of x
## 47.39046
```

- H_0 : $\mu = 50$
- H₁: µ ≠ 50

Reject H₀ if the p-value is less than 0.05.

Independent Two-Sample t-Test

Use when: You compare two independent groups.

Is there a significant difference in mean run-time between MergeSort and QuickSort?

```
##
## Welch Two Sample t-test
##
## data: Time_ms by Algorithm
## t = -2.9959, df = 51.806, p-value = 0.004192
## alternative hypothesis: true difference in means
between group MergeSort and group QuickSort is not equal
to 0
## 95 percent confidence interval:
```

- H_0 : $\mu_1 = \mu_2$
- H₁: μ₁ ≠ μ₂
 Welch's t-test (var.equal = FALSE) handles unequal variances.

Paired-Sample t-Test

Use when: You compare two values from the **same subject** (e.g., two algorithms on the same input).

Simulated Paired Data

```
##
## Paired t-test
##
## data: paired_data$QuickSort and paired_data$MergeSort
## t = 2.001, df = 29, p-value = 0.05483
## alternative hypothesis: true mean difference is not
equal to 0
## 95 percent confidence interval:
## -0.06243577 5.71380733
## sample estimates:
## mean difference
## 2.825686
```

- H₀: Median difference = 0
- H₁: Median difference ≠ 0

Assumptions of the t-Test

Assumption	Description
Normality	Each group's data ~ normal distribution
Equal variances	Use Welch's test if not true
Independence	Observations are not repeated
Interval-level data	Values must be numeric and continuous

Violations of these assumptions lead to **non-parametric tests** (we'll cover these later).

Visualizing Group Differences

Use boxplots and CI bars to complement test results.

Summary: Which t-Test?

Test	Use Case	Function
One-sample t- test	Sample vs fixed value	t.test(x, mu = val)
Two-sample t- test	Two independent groups	t.test(y ~ group)
Paired-sample t-test	Two related measurements	t.test(x, y, paired = TRUE)

Comparing 3+ Groups: ANOVA

When comparing more than two groups, we use ANOVA instead of multiple ttests to avoid inflating the Type I error rate.

ANOVA tells us:

"Is there any significant difference between group means?"

We'll explore:

- One-way ANOVA
- Two-way ANOVA
- Post-hoc tests (Tukey HSD)
- Assumptions and visual inspection

One-Way ANOVA: Setup

Let's simulate a third algorithm: HeapSort

Running One-Way ANOVA

```
anova_model <- aov(Time_ms ~ Algorithm, data =
        algo3_data)
summary(anova_model)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## Algorithm 2 408.2 204.12 7.499 0.00099 ***
## Residuals 87 2368.2 27.22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
```

- H_0 : $\mu_1 = \mu_2 = \mu_3$ (all means are equal)
- H_1 : At least one group differs If p < 0.05 \rightarrow Reject $H_0 \rightarrow$ At least one mean is significantly different

Post-Hoc Testing: Tukey HSD

ANOVA tells us there is a difference, but not which groups differ. Use Tukey's Honest Significant Difference (HSD) to compare all pairs:

```
TukeyHSD(anova_model)
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
##
## Fit: aov(formula = Time ms ~ Algorithm, data =
algo3 data)
##
## $Algorithm
                             diff
##
                                         lwr
                                                   upr
p adj
## MergeSort-HeapSort -0.9764591 -4.1886528 2.235735
0.7494717
## QuickSort-HeapSort 3.9499434 0.7377497 7.162137
```

0.0118579

Look for:

- Which comparisons are significant
- Confidence intervals that do **not** include 0

Visualizing Group Differences

Assumptions of ANOVA

Assumption	How to Check
Independence	Experimental design
Normality	Use QQ plot or Shapiro test per group
Equal variances	Use Bartlett or Levene test

Example: Test for Equal Variances

```
bartlett.test(Time_ms ~ Algorithm, data = algo3_data)

##
## Bartlett test of homogeneity of variances
##
```

data: Time_ms by Algorithm
Bartlett's K-squared = 1.3655, df = 2, p-value = 0.5052

Two-Way ANOVA: Including More Factors

Let's add Input Size as a second factor: Small vs Large datasets.

```
set.seed(123)
algo <- rep(c("QuickSort", "MergeSort", "HeapSort"),</pre>
         times = 30)
size <- rep(rep(c("Small", "Large"), each = 15), times</pre>
         = 3)
runtime <- rnorm(90,</pre>
                  mean = ifelse(algo == "MergeSort",
         48,
                            ifelse(algo == "QuickSort",
         52, 50)) +
                          ifelse(size == "Large", 3, 0),
                  sd = 4.5)
```

Two-Way ANOVA Model

```
##
                     Df Sum Sq Mean Sq F value
Pr(>F)
## Algorithm
                      2 477.3 238.67 14.485 3.94e-
96 ***
                      1 142.4 142.44 8.645
## InputSize
0.00424 **
## Algorithm:InputSize 2 4.9 2.45 0.149
0.86182
## Residuals
            84 1384.1 16.48
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
```

This tests:

- Main effect of Algorithm
- Main effect of Input Size
- Interaction between them
 A significant interaction means:

The effect of Algorithm depends on Input Size

Summary: ANOVA

Test	Use Case	Tool
One-way ANOVA	3+ group means	aov(y ~ group)
Tukey HSD	Post-hoc pairwise	
Bartlett Test	Equal variances	<pre>bartlett.test()</pre>
Two-way ANOVA	2 factors	aov(y ~ A * B)

Chi-Squared Tests for Categorical Data

When your data are **categorical** (e.g., success/fail, error type, UI preference), you need a test designed for **counts**, not means.

The Chi-squared (χ^2) test helps answer questions like:

- Do observed results match expectations?
- Are two categorical variables related?

Two Main Types of Chi-Squared Tests

Test	Purpose
Goodness-of-Fit	Do observed counts match expected proportions?
Test of Independence	Are two categorical variables related?

We'll explore both with examples.

Chi-Squared Goodness-of-Fit

Use when: You compare observed outcomes to an expected distribution.

```
Example: HeapSort ran 60 times
You expect 95% Success, 5% Fail.
You observed: 54 Success, 6 Fail
```

```
observed <- c(Success = 54, Fail = 6)
expected_probs <- c(0.95, 0.05)
chisq.test(x = observed, p = expected_probs)

## Warning in chisq.test(x = observed, p =
expected_probs): Chi-squared
## approximation may be incorrect</pre>
```

```
##
## Chi-squared test for given probabilities
```

##
data: observed
X-squared = 3.1579, df = 1, p-value = 0.07556

Interpreting Goodness-of-Fit

- H₀: The observed distribution matches the expected
- H₁: The distributions differ
- If p < 0.05 \rightarrow significant \rightarrow reject H₀ This helps check whether results conform to a known or ideal pattern.

Chi-Squared Test of Independence

Use when: You want to know if two categorical variables are associated.

Example: Is success rate dependent on the algorithm used?

Simulated Example (Success/Failure by Algorithm)

```
## Warning in chisq.test(tab): Chi-squared approximation
may be incorrect
```

```
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 9.6041, df = 2, p-value = 0.008213
```

Interpreting the Test of Independence

- H₀: The variables are independent (algorithm does not affect outcome)
- H_1 : The variables are dependent (algorithm affects outcome) If p < 0.05, we reject H_0 and conclude that the outcome depends on the algorithm.

Assumptions of the Chi-Squared Test

Assumption	How to Handle
Independent observations	No repeated measurements
Expected count ≥ 5 in each cell	Use Fisher's Exact Test if violated
Sufficient total sample size	Larger n = better approximation

When Expected Counts Are Too Small

If any expected cell count is **less than 5**, consider:

- Combining similar categories
- Using Fisher's Exact Test (especially for 2x2 tables)

```
fisher.test(tab) # if dimensions are small

##
## Fisher's Exact Test for Count Data
##
## data: tab
## p-value = 0.01512
## alternative hypothesis: two.sided
```

Summary: Chi-Squared Tests

Test Type	Use Case	R Function
Goodness-of-fit	One variable vs expected proportions	chisq.test(x, p)
Test of independence	Two categorical variables	chisq.test(table)
Small samples	Any 2x2 table	fisher.test()

These tests are essential when your research deals with:

- User preferences
- Pass/fail outcomes
- Classification results
- Any system behavior encoded as categories

Correlation Analysis

When working with two numeric variables, we often ask:

"As one variable increases, does the other also increase (or decrease)?"

Correlation analysis helps answer this by measuring:

- The strength of the relationship
- The direction (positive or negative)

Types of Correlation

Method	Use When
Pearson	Linear relationship, numeric data, normality
Spearman	Ordinal data or non-linear monotonic relationship
Kendall (optional)	Small samples, tied ranks

We'll focus on Pearson and Spearman.

Pearson Correlation Coefficient (r)

Used for:

- Two continuous, normally distributed variables
- Linear relationships
 Values range from:
- +1: perfect positive correlation
- 0: no correlation
- -1: perfect negative correlation

[1] 0.8478924

Spearman Rank Correlation

Used for:

- Ordinal or non-linear monotonic relationships
- Data with outliers or non-normality

```
cor(input_size, qs_runtime, method = "spearman")
## [1] 0.8690036
```

Compares ranks instead of raw values.

Scatterplot: Input Size vs Run Time

Always visualize your correlations — outliers and non-linear trends are not visible from cor() alone.

Correlation Matrix (Multiple Variables)

You can quickly assess relationships between several numeric variables using a correlation matrix:

```
df <- data.frame(
    Size = input_size,
    QuickSort = qs_runtime,
    Noise = rnorm(50),
    Quadratic = input_size^2 + rnorm(50, sd = 100)
)
round(cor(df), 2)</pre>
```

```
## Size QuickSort Noise Quadratic
## Size 1.00 0.85 -0.08 0.98
## QuickSort 0.85 1.00 -0.09 0.84
```

Noise -0.08 -0.09 1.00 -0.07 ## Quadratic 0.98 0.84 -0.07 1.00

Use this to explore pairwise relationships at a glance.

Correlation ≠ Causation

Just because two variables move together does **not** mean one causes the other.

Correlation may result from:

- Coincidence
- Confounding (a third variable affects both)
- Reverse causality

Always interpret correlations with context and caution.

Summary: Correlation Analysis

Concept	Pearson	Spearman
Measures	Linear association	Monotonic association
Sensitive to	Outliers, skew	Less sensitive
Use with	Numeric, normal data	Ranked or skewed data
Output	-1 to +1 (strength & direction)	Same scale, different method

Correlation is a **powerful exploratory tool**, but should be followed by **modeling or experimental design** when aiming for causal claims.

Non-Parametric Alternatives

Sometimes, your data:

- Isn't normally distributed
- Has small sample sizes
- Includes **outliers** or **ranks** instead of true numeric values In these cases, we turn to **non-parametric tests**.

These tests don't rely on distributional assumptions and operate on **ranks** instead of raw data.

When to Use Non-Parametric Tests

Use them when:

- Normality is violated
- You're working with ordinal (ranked) data
- Your sample size is too small for the Central Limit Theorem to apply
- Outliers distort the mean

Wilcoxon Signed-Rank Test

Alternative to: Paired t-test

Use when: - You have two **related** groups

- The differences are not normally distributed

```
qs <- rnorm(30, mean = 52, sd = 7)
ms <- rnorm(30, mean = 48, sd = 7)
wilcox.test(qs, ms, paired = TRUE)</pre>
```

```
##
## Wilcoxon signed rank exact test
##
## data: qs and ms
## V = 358, p-value = 0.008705
## alternative hypothesis: true location shift is not
equal to 0
```

• H₀: Median difference = 0

• H₁: Median difference ≠ 0

Mann-Whitney U Test (Wilcoxon Rank-Sum)

Alternative to: Independent two-sample t-test Use when:

- Comparing two independent groups
- The data are skewed or ordinal

```
group <- rep(c("QuickSort", "MergeSort"), each = 30)
times <- c(qs, ms)
wilcox.test(times ~ group)</pre>
```

```
##
## Wilcoxon rank sum exact test
##
## data: times by group
## W = 283, p-value = 0.01307
```

alternative hypothesis: true location shift is not
equal to 0

• Compares whether one group tends to rank higher than the other

Kruskal-Wallis Test

Alternative to: One-way ANOVA

Use when: - You want to compare 3 or more groups

- Data is not normally distributed

```
##
## Kruskal-Wallis rank sum test
##
```

```
## data: times by group
## Kruskal-Wallis chi-squared = 3.4113, df = 2, p-value
= 0.1817
```

If significant \rightarrow follow up with pairwise Wilcoxon tests.

Summary: Parametric vs Non-Parametric

Goal	Parametric Test	Non-Parametric Alternative
Compare one sample to a value	One-sample t- test	(rarely needed)
Compare two independent groups	Two-sample t- test	Mann-Whitney U
Compare two paired groups	Paired t-test	Wilcoxon signed-rank
Compare 3+ groups	One-way ANOVA	Kruskal-Wallis

When to Prefer Non-Parametric Tests

Choose non-parametric tests if:

- The normality assumption fails
- You're analyzing ordinal/ranked data
- You want a method robust to outliers

 They're less powerful than parametric tests when assumptions are met, but much more reliable when assumptions are violated.

Choosing the Right Statistical Test

Goal	Data	Groups	Assumptions Met?	Test
Compare to known value	Numeric	1	✓	One-sample t- test
Compare two groups	Numeric	2 (independent)	✓	Two-sample t- test
Compare two paired sets	Numeric	2 (paired)	✓	Paired t-test
Compare 3+ groups	Numeric	3+	~	ANOVA
Compare ranks/medians	Ordinal / skewed	2	×	Mann– Whitney U / Wilcoxon

Goal	Data	Groups	Assumptions Met?	Test
Compare 3+ medians	Ordinal / skewed	3+	×	Kruskal-Wallis
Compare counts to expected	Categorical	1 variable	_	Chi-squared (Goodness-of- Fit)
Association between categories	Categorical	2 variables	_	Chi-squared (Independence)
Correlation (linear)	Numeric	2 vars	✓	Pearson
Correlation (ranked)	Ordinal / skewed	2 vars	×	Spearman