

Module: Machine learning project -

**Regression Problem** 

**Title: Concrete compressive strength** 

## **Data Set Information:**

Number of instances 1030 Number of Attributes 9 Attribute breakdown 8 quantitative input variables, and 1 quantitative output variable Missing Attribute Values None

<u>Click here</u> to download the dataset.

## **Attribute Information:**

Given are the variable name, variable type, the measurement unit and a brief description. The concrete compressive strength is the regression problem. The order of this listing corresponds to the order of numerals along the rows of the database.

| Name                                   | Data Type    | Measurement        | Description     |
|----------------------------------------|--------------|--------------------|-----------------|
| Cement                                 | quantitative | kg in a m3 mixture | Input Variable  |
| (Component 1)                          |              |                    |                 |
| Blast Furnace<br>Slag<br>(Component 2) | quantitative | kg in a m3 mixture | Input Variable  |
| Fly Ash                                | quantitative | kg in a m3 mixture | Input Variable  |
| (Component 3)                          |              |                    |                 |
| Water                                  | quantitative | kg in a m3 mixture | Input Variable  |
| (Component 4)                          |              |                    |                 |
| Superplasticizer                       | quantitative | kg in a m3 mixture | Input Variable  |
| (Component 5)                          |              |                    |                 |
| Coarse Aggregate (Component 6)         | quantitative | kg in a m3 mixture | Input Variable  |
| Fine Aggregate                         | quantitative | kg in a m3 mixture | Input Variable  |
| (Component 7)                          |              |                    |                 |
| Age                                    | quantitative | Day (1~365)        | Input Variable  |
| Concrete compressive strength          | quantitative | MPa                | Output Variable |



## **Steps to perform in Project:**

- 1. Read the dataset into the notebook
- 2. Print the shape of the data
- 3. List out the feature variables and their data-types
- 4. List out response variable and its data type
- 5. Perform univariate analysis (be as creative as possible in your analysis)
  - Visualize the shape of the distribution of data. Is every feature variable normally distributed? Why is normal distribution important for data?
  - Check for null values in the feature variables
  - Draw box and whiskers plot of each of the feature variables
  - Check for outliers
  - Is the data distribution skewed? If highly skewed, do you still find outliers which you did not treat?
  - How do the distributions look in terms of variation? Which features are widely spread and which are kind of concentrated towards the mean?
- 6. Treat outliers. What is your strategy? What other strategies can be used?
- 7. Perform bi-variate analysis (be as creative as possible)
  - Try creating correlation matrices. See if there are variables which are strongly or weakly related
  - If there are variables showing high correlation, what corrective action is needed? Why is this matter of concern? What if we do not treat the variables showing high degree of correlation?
- 8. What is the type of machine learning problem at hand? (Supervised or Unsupervised?) Why?
- 9. What is the category of the machine learning problem at hand? (Classification or Regression?) Why?
- 10. Perform below algorithms:
  - Linear Regression
  - Lasso Regression
  - Ridge Regression
  - Decision Tree Regressor
  - Random Forest Regressor
  - KNN Regressor
  - SVM Regressor
- 11. Pick each of the algorithm and perform the below steps:
  - o Split your data between train and test steps.
  - o Build your model
  - o List down the evaluation metrics you would use to evaluate the performance of the model?
  - o Evaluate the model on training data
  - o Predict the response variables for the test data
  - o How are the two scores? Are they significantly different? Are they the same? Is the test score better than the training score?



- o Perform hyper parameter tuning and cross validation techniques.
- o Evaluate the model on test data.
- 12. Which algorithm performs better on this dataset and Why?