Intelligent Vehicle Damage Assessment and Cost Estimator for Insurance Companies

Team No.: PNT2022TMID35437

College: College of Engineering Guindy, Anna University

Department: Electronics and Communication

<u>LITERATURE</u> <u>SURVEY</u>

SI.	Author/	Title	Methodology	Advantages	Disadvantages
No.	Publication				
	Year				
1.	Phyu Mar	Car Damage	CNN models on	Transfer learning	CNN cannot
	Kyu,	Assessment	ImageNet dataset	and regularization	accurately
	Kuntpong	Based on	to perform	can work better	calculate the
	Woraratpanya,	VGG Models.	different tasks of	than those of fine	level of damage
	2021		localization and	tuning. Pretrained	part. Sometimes
			detection. YOLO	models assess its	overfitting
			object detection	location and	occurs.
			model to train and	security which	
			detect damage	help insurance	
			region as their	companies to	
			important pipeline	solve claim	
			to improve their	leakage problems.	
			performance of		
			damage detection.		

2.	Najmeddine	A Very Deep	Combination of	Transfer learning	A traditional
	Dhieb, Hakim	Transfer	deep learning,	significantly	CNN model can
	Ghazzai,	Learning	instance	reduce the	be very time
	Hichem	Model for	segmentation, and	training times	consuming to
	Besbes Yehia	Vehicle	transfer learning	when it uses the	perform image
	Massoud, 2019	Damage	techniques for	weight of	classification
		Detection and	features extraction	pretrained VGG	tasks and
		Localization.	and damage	models. It has	identify the
			identification.	progress on how	correct weights
				to classify	for the network
				problems when	by multiple
				the small dataset	forward and
				was not enough to	backward
				train a CNN	iterations.
				model.	

2	II Wasas N	Domassa	Doon loomin -	It is a brokerid	The main
3.	U. Waqas, N.	Damage	Deep learning	It is a hybrid	
	Akram, S.	Assessment	techniques, Moire	approach which	drawback was
	Kim, D. Lee	of a vehicle	effect Detection,	provide only	that Images in
	and J. Jeon, t,	and Insurance	Mobile Net model	authentic images	bad lighting,
	2012	Reclaim.	is proposed with	to algorithm for	awkward
			transfer learning	damage	angles, and
			for classification.	classification as	vehicle models
				input. moiré effect	in a small
				detection and	dataset to
				metadata analysis	achieve
				are performed to	automation is
				detect fraudulent	difficult but
				images	still the range is
					broad.
4.	Li Ying &	Applying	Image analysis and	Because of the	The drawback is
	Dorai Chitra,	image	pattern recognition	advancement of	that the
	2012	analysis to	are applied to	image analysis	automobile
		auto	automatically	and pattern	damaged can be
		insurance	identify and	recognition	analyzed only
		Triage	characterize	technologies, the	having white
			automobile	auto insurance	background
			damage.	industry could	otherwise it will
				significantly	be not able to
				benefit.	give the desired
					results.
5.	Srimal	Image based	This approach	Automatically	Vehicles have
	Jayewardene',	automatic	requires 3D	detecting the	very reflective
	2013	vehicle	computer aided	damage of the	metallic bodies
		damage	design (CAD)	vehicle using	the photographs
		detection	modes of the	photographs	taken in such an
			considered vehicle	clicked at the	uncontrolled
			to identify how it	accident site is	environment
			would look if it	extremely	can be expected
			were undamaged.	functional as it	to have a certain
			,, ore anadmaged.	can greatly	amount of inter
				decrease the rate	object
				of processing	reflection.
				insurance claims,	
				and it will also	Application of standard
				provide greater	computer vision

				conveniences for	techniques is a
				customers who	very
				are making the	challenging
				best use of this	task.
				functionality.	
6.	Phyu Mar	Car damage	CNN model is	Pre-trained VGG	Transfer
	Kyu,Kuntpong	detection and	trained on	model not only	learning and
	Woraratpanya	classification	ImageNet dataset.	detect damaged	regularization
	,2020		After fine tuning	part of a car but	can work better
			the dataset, transfer	also assess its	than those of
			learning with L2	location and	fine tuning.
			regularization is	severity.	
			applied		
7.	M.Wassel,	A Secure AI-	Blockchain, data	Proposed	The major
	2019	driven	analysis, machine	classifiers ensure	drawback of the
		Architecture	learning, AI for	not only the best	proposed model
		for	damage	accuracy in	is that it only
		Automated	identification.	detecting	identifies the
		Insurance		fraudulent claims	physical visible
		Systems:		but also can	damage and not
		FraudDetecti		classify different	of the internal
		on and Risk		types of fraud for	or the interior
		Measurement		insurance unlike	damage.
				the existing	
				solutions.	