AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1

2

1		1. (Currently amended) A method for learning a generative model for text,
2		comprising:
3		receiving a current model, which contains terminal nodes representing
4		random variables for words and can contain cluster nodes representing clusters of
5		conceptually related words;
6		wherein nodes in the current model are coupled together by weighted
7		links, so that if an incoming link from a node that has fired causes a cluster node
8		in the probabilistic model to fire with a probability proportionate to the weight of
9	1	the incoming link node, an outgoing link from the cluster node to another node
10	ļ	causes the other node to fire with a probability proportionate to the weight of the
11		outgoing link node, otherwise, the other node does not fire;
12	'	receiving a set of training documents, wherein each training document
13		contains a set of words; and
14		applying the set of training documents to the current model to produce a
15		new model, wherein applying the set of training documents to the current model
16		involves computing once for each cluster the probabilistic cost of the cluster
17	•	existing in a document and triggering no words, and for each document applying
18		this cost and subtracting the effects of words that do exist in the document.

2. (Original) The method of claim 1, wherein applying the set of training documents to the current model involves:

)	applying the set of training documents to the miks defined in the current
4	model to produce functions for weights for corresponding links in the new model;
5	and
6	optimizing the functions to produce weights for links in the new model.
1	3. (Original) The method of claim 2, wherein for a given link, producing
2	functions for a weight on the given link involves:
3	producing a function for the given link for each document in the set of
4	training documents; and
5	multiplying the functions for each document together to produce a
6	function to be optimized for the given link.
1	4. (Original) The method of claim 3, wherein for the given link the
2	function for a document is an approximation of the probability of the document's
3	terminals firing as a function of the weight on the given link, keeping all other
4	link weights in the model constant.
1	5. (Original) The method of claim 1, wherein the method further
2	comprises iteratively:
3	considering the new model to be the current model; and
4	applying training documents to the current model to produce a subsequent
5	new model.
1	6. (Original) The method of claim 5, wherein during an initial iteration, the
2	method further comprises generating an initial current model from a set of words
3	by:
4	generating a universal node that is always active;
5	generating terminal nodes representing words in the set of words; and

į	7. (Original) The method of claim 5, wherein each iteration uses twice as
2	many training documents as the previous iteration until all available training
3	documents are used.
	8. (Original) The method of claim 1, wherein producing the new model
2	additionally involves selectively introducing new links from clusters to nodes and
3	from clusters to clusters.
ļ	9. (Previously presented) The method of claim 8, wherein introducing a
2	new link involves:
}	considering a cluster that is assumed to be active in generating a given
ļ	document;
5	considering a new term in the given document, wherein the new term is
5	not currently associated with the cluster; and
7	adding the new link between the cluster and the new term.
	10. (Previously presented) The method of claim 8, wherein introducing a
2	new link involves can involve:
}	considering a first cluster that is assumed to be active in generating a given
ļ	document;
5	considering a second cluster that is assumed to be active in generating the
5	given document, wherein the second cluster is not currently associated with the
7	first cluster; and

directly linking the universal node to the terminal nodes.

6

8

adding the new link between the first cluster and the second cluster.

2	additionally involves selectively introducing new cluster nodes into the current
3	model.
1	12. (Original) The method of claim 11, wherein selectively introducing a
2	new cluster node involves:
3	examining a given document;
4	creating the new cluster node;
5	creating links between the new cluster node and terminals in the given
6	document; and
7	creating links between cluster nodes that are likely to have been involved
8	in generating the given document and the new cluster node.
1	13. (Previously presented) The method of claim 1, wherein producing the
2	new model involves calculating an activation for each cluster node in each
3	document, wherein the activation for a given cluster node indicates how many
4	links will fire from the given cluster node to other nodes.
1	14. (Previously presented) The method of claim 1, wherein producing the
2	new model involves renumbering clusters in the current model to produce a
3	cluster numbering for the new model; and
4	wherein clusters that are active in generating more documents are assigned
5	lower numbers in an identifier space, whereas clusters that are active in generating
6	fewer documents are assigned higher numbers in the identifier space.
1	15. (Original) The method of claim 1, wherein applying a given document
2	to the current model involves:

11. (Original) The method of claim 1, wherein producing the new model

3		updating a summary variable for each cluster that is likely to be active in
4		the given document, wherein the summary variable summarizes the probabilistic
5		cost of the cluster linking to terminals not existing in the given document; and
6		for terminals that actually do exist in the given document, canceling the
7		effects of corresponding updates to the summary variables.
1		16 (Canceled).
1		17. (Original) The method of claim 1, wherein the probabilistic model
2		includes a universal node that is always active and that has weighted links to
3		terminal nodes and/or cluster nodes.
1		18. (Currently amended) A computer-readable storage medium storing
2		instructions that when executed by a computer cause the computer to perform a
3		method for learning a generative model for text, the method comprising:
4		receiving a current model, which contains terminal nodes representing
5		random variables for words and can contain cluster nodes representing clusters of
6		conceptually related words;
7		wherein nodes in the current model are coupled together by weighted
8		links, so that if an incoming link from a node that has fired causes a cluster node
9		in the probabilistic model to fire with a probability proportionate to the weight of
10		the incoming link node, an outgoing link from the cluster node to another node
11	ı	causes the other node to fire with a probability proportionate to the weight of the
12		outgoing link node, otherwise, the other node does not fire;
13	1	receiving a set of training documents, wherein each training document
14		contains a set of words; and
15		applying the set of training documents to the current model to produce a

new model, wherein applying the set of training documents to the current model

17	involves computing once for each cluster the probabilistic cost of the cluster
18	existing in a document and triggering no words, and for each document applying
19	this cost and subtracting the effects of words that do exist in the document.
1	19. (Original) The computer-readable storage medium of claim 18,
2	wherein applying the set of training documents to the current model involves:
3	applying the set of training documents to the links defined in the current
4	model to produce functions for weights for corresponding links in the new model;
5	and
6	optimizing the functions to produce weights for links in the new model.
1	20. (Original) The computer-readable storage medium of claim 19,
2	wherein for a given link, producing functions for a weight on the given link
3	involves:
4	producing a function for the given link for each document in the set of
5	training documents; and
6	multiplying the functions for each document together to produce a
7	function to be optimized for the given link.
1	21. (Original) The computer-readable storage medium of claim 20,
2	wherein for the given link the function for a document is an approximation of the
3	probability of the document's terminals firing as a function of the weight on the
4	given link, keeping all other link weights in the model constant.
1	22. (Original) The computer-readable storage medium of claim 18,

considering the new model to be the current model; and

wherein the method further comprises iteratively:

2

4	applying training documents to the current model to produce a subsequent
5	new model.
1	23. (Original) The computer-readable storage medium of claim 22,
	•
2	wherein during an initial iteration, the method further comprises generating an
3	initial current model from a set of words by:
4	generating a universal node that is always active;
5	generating terminal nodes representing words in the set of words; and
6	directly linking the universal node to the terminal nodes.
1	24. (Original) The computer-readable storage medium of claim 22,
2	wherein each iteration uses twice as many training documents as the previous
3	iteration until all available training documents are used.
1	25. (Original) The computer-readable storage medium of claim 18,
2	wherein producing the new model additionally involves selectively introducing
3	new links from clusters to nodes and from clusters to clusters.
1	26. (Original) The computer-readable storage medium of claim 25,
2	wherein introducing a new link can involve:
3	considering a cluster that is likely to be active in generating a given
4	document;
5	considering a new term in the given document, wherein the new term is
6	not associated with the cluster; and
7	adding the new link between the cluster and the new term.
1	27. (Original) The computer-readable storage medium of claim 25,
2	wherein introducing a new link can involve:

3	considering a first cluster that is likely to be active in generating a given
4	document;
5	considering a second cluster that is likely to be active in generating the
6	given document, wherein the second cluster is not associated with the first cluster
7	and .
8	adding the new link between the first cluster and the second cluster.
1	28. (Original) The computer-readable storage medium of claim 18,
2	wherein producing the new model additionally involves selectively introducing
3	new cluster nodes into the current model.
1	29. (Original) The computer-readable storage medium of claim 28,
2	wherein selectively introducing a new cluster node involves:
3	examining a given document;
4	creating the new cluster node;
5	creating links between the new cluster node and terminals in the given
6	document; and
7	creating links between cluster nodes that are likely to have been involved
8	in generating the given document and the new cluster node.
1	30. (Previously presented) The computer-readable storage medium of
2	claim 18, wherein producing the new model involves calculating an activation for
3	each cluster node in each document, wherein the activation for a given cluster
4	node indicates how many links will fire from the given cluster node to other
5	nodes.

1	31. (Previously presented) The computer-readable storage medium of
2	claim 18, wherein producing the new model involves renumbering clusters in the
3	current model to produce a cluster numbering for the new model; and
4	wherein clusters that are active in generating more documents are assigned
5	lower numbers in an identifier space, whereas clusters that are active in generating
6	fewer documents are assigned higher numbers in the identifier space.
1	32. (Original) The computer-readable storage medium of claim 18,
2	wherein applying a given document to the current model involves:
3	updating a summary variable for each cluster that is likely to be active in
4	the given document, wherein the summary variable summarizes the probabilistic
5	cost of the cluster linking to terminals not existing in the given document; and
6	for terminals that actually do exist in the given document, canceling the
7	effects of corresponding updates to the summary variables.
1	33 (Canceled).
1	34. (Original) The computer-readable storage medium of claim 18,
1	
2	wherein the probabilistic model includes a universal node that is always active
3	and that has weighted links to terminal nodes and/or cluster nodes.
1	35. (Currently amended) An apparatus that learns a generative model for
2	text, comprising:
3	a receiving mechanism configured to receive a current model, which
4	contains terminal nodes representing random variables for words and can contain
5	cluster nodes representing clusters of conceptually related words;
6	wherein nodes in the current model are coupled together by weighted
7	links, so that if an incoming link from a node that has fired causes a cluster node

in the probabilistic model to fire with a probability proportionate to the weight of 8 the incoming link-node, an outgoing link from the cluster node to another node 9 causes the other node to fire with a probability proportionate to the weight of the 10 outgoing link node, otherwise the other node does not fire; 11 wherein the receiving mechanism is configured to receive a set of training 12 13 documents, wherein each training document contains a set of words; and a training mechanism configured to apply the set of training documents to 14 the current model to produce a new model, wherein applying the set of training 15 16 documents to the current model involves computing once-for each cluster the probabilistic cost of the cluster existing in a document and triggering no words, 17 18 and for each document applying this cost and subtracting the effects of words that do exist in the document. 19