

Universidade de Aveiro

Departamento de Electrónica, Telecomunicações e Informática

Compiladores

			CONTRACTOR OF THE PARTY OF THE
	and the same of the	DOG T	A orthog

(Ano Letivo de 2019-2020)

23 de junho de 2020

Corner Nome North Property e a expressão regular es). Solve a alfabelo $A = \{a, b, c\}$, considere a gramática regular G_2 e automate finite Mo. $e_3 = (c|ab)^+(aac)^*c$ St + cbX $X \rightarrow AS_2 | Ab X | b$ e sejam $\mathbb{Z}_1,\ \mathbb{Z}_2$ e \mathbb{Z}_3 aa linguageus reherentes a $M_1,\ G_2$ e e3, rospetivamente.

[3.0] (a) Seja L = L₁ · L₃ (concatenação de L₁ com L₃)

(Nove que pue cada quela que fallar terá uma cortação regativa de 1/4 da cotação da altica.) Cas seguintes afirmações, assinale as que são verdadeiras (A classificação da alinea como um todo são será negativa.)

DabceL DeceL ☐ asbc∈L ☐ abcc∈L

[3.0] (b) Obtenha um autômato finito determinista equivalente a M_1

Apresente os pasces intermédios e ou o raciocinio adequados para suportar a sua resposta.

 $\lfloor 2\pi \rfloor$ (c). Das seguintes opções apensa uma é uma gramática regular que representa a linguagem L_2

(Note que se falhar terá uma cotação negativa de 1/4 da cotação da alínea.)

- $S \mapsto \varepsilon S \mid abS \mid cX \mid abX$ $X \mapsto c \mid racX$
- $X \rightarrow c \mid ab \mid cX \mid abX$ $Y \rightarrow c \mid aacY$
- $X \to c \mid ab \mid cX \mid abX$ $Y \to c \mid aacY$

[3.0]	1000	Obtenha uma expressão regular que represente a linguagem L_1 . Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta Obtenha a resposta a partir do autômato M_1 e não do que possa ter obtido na alínea 1b.
---------	------	---

Area de resporta

[3.0] (e) Mostre que L₃ ⊂ L₁. (Note que se trata do subconjunto em sentido estrito (⊂) e não em sentido lato (⊆).) Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta.

Area de resporta

2. Sobre o alfabeto $A=\{0,1\}$, considere a linguagem $R=\{\;\omega\in A^*:\; |\omega|\geq 2\;\wedge\;\omega\; \text{não contém 3 letras (0 ou 1) iguais seguidas}\;\}$ onde $|\omega|$ representa o número de letras de ω .

 $\lceil \, 5.0 \, \rceil - (.)$ Projete um autómato finito que reconheça a linguagem R

Assa de resporta

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática

NºMeci	Nome:		23 de junho de 2020
			Cursor
1. Sobre por e	o alfabeto $T_1 = \{a \in S \mid AB \mid AB \}$	b c d e f} considere a gramática G_1 dada	a seguir e seja L_1 a linguagem
	$A \rightarrow \varepsilon \mid aA$ $B \rightarrow \varepsilon \mid bCf \mid bE$ $C \rightarrow aS \mid cDe$ $D \rightarrow Dd \mid d$		
2,0] (a)	Faça a derivação à es	squerda da palavra abcdef.	
	Area de resporta		
[2,0] (b	con and a second a	ações, assinale todas as que são vertuderas opção que falhar terá uma cotação negativa línea como um todo não será negativa.)	t. de 1/4 da cotação da alfaea.)
		□ a∈ F;	
	$\varepsilon \in F$;		
		c∈F:	
[2,0]	b $\in F$: Considere o conjuni Das seguintes afirm	to $G = follow(B)$, $ancar{c}es$, assimale todas as que são verdadeira opção que falbar terá uma cotação negati allene como um todo não será negativa.)	
[2.0]	b $\in F$: Considere o conjuni Das seguintes afirm	to $G = follow(B)$, $ancar{c}es$, assimale todas as que são verdadeira opção que falbar terá uma cotação negati allene como um todo não será negativa.)	us. va de 1/4 da cotação da alfassa de caudes
[2,0]	b ∈ F : Considere o conjunt Das seguintes afirm (Note que por cada (A classificação da a	to $G = \text{follow}(B)$. accios, assinale todas as que año verdadeira opção que fallar terá uma cotação negatialínea como um todo não será negativa.) Area	
	c) Considere o conjunt Das seguintes afirm (Note que por cada (A classificação da a $\varepsilon \in G$; $s \in G$; 3 $s \in G$; Das seguintes afirm Das seguintes afirm	to $G = \mathtt{follow}(B)$. ações, assinale todas as que são verdadeira opção que fallar terá uma cotação negatialinea como um todo não será negativa.)	iras. tiva de 1/4 da cotação da ali
	c) Considere o conjunt Das seguintes afirm (Note que por cada (A classificação da a $\varepsilon \in G$; $s \in G$; 3 $s \in G$; Das seguintes afirm Das seguintes afirm	to $G = \mathtt{follow}(B)$. ações, assinale todas as que são verdadeira opção que fallar terá uma cotação negatialinea como um todo não será negativa.)	der calculum

[2,0] (e) O que são símbolos acessíveis? Mostre que todos os símbolos não terminais da gramática G₁ são acessíveis. Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta.

Area de respecta

Simbolos acestiveis see suutolog associates productiveis see suutolog associates productiveis simbolos suo terminais (pare alem et ess mennos).

- · A & oceasive per S
- " B & accessive por s
- · c & accentual por se B
- · D & activity por par B c C
- · S & CLERKTH POR C.
- [2,0] (f) A gramática G_1 é inadequada à implementação de um reconhecedor descendente com lookahead de 1. Diga porquê e altere-a de forma a obter uma equivalente que o permita. Basta transcrever as partes alteradas.

Area de respecta

2. Sobre o alfabeto $A = \{ab \, c \, x \, y \, w \, z\}$ considere a linguagem L_2 tal que:

$$L_2 = \{ \; \mathbf{a}^n \mathbf{x}^k \mathbf{u} (\mathbf{y} \mathbf{z})^{k-1} (\mathbf{b} | \mathbf{c})^{n+1} \; : \; n \geq 0 \, \wedge \, k > 0 \; \}$$

 $\lceil 2.0 \rceil$ (.) Construa uma gramática independente do contexto que represente a linguagem L_2 .

3. Sobre o alfabeto $T_3 = \{_{\texttt{NSM, DOTED, CLOSED, LINE, (,)}}\}$. considere a gramática G_3 dada a seguir.

draw
$$\rightarrow$$
 seq \bigcirc
seq \rightarrow \in line seq \bigcirc
line \rightarrow options line point point xpoints
options \rightarrow \bigcirc lopton options \bigcirc
xpoints \rightarrow \bigcirc point xpoints \bigcirc
option \rightarrow OTIED (LEEE)
point \rightarrow (NEW MM) \bigcirc

 $[\ 2.0\]$ (a) Preencha a tabela de análise para um reconhecedor (parser) descendente com lookahead de 1 da gramática G_3 .

	3084	DOTTED	CLOSED	LINE	- (1	4
draw						,	0
seq		Sea Line say	-				draw with
line		- CE	6	ing the late			101-4 E
options		- 6	6	G			
rpoints		7	4	201	0		1 -
option		9	10				+
point.					11		1

(b) A construccio de um reconhecedor (parser) ascendente para uma gramática baseia-se na colecccio de conjuntos de itens. O elemento inicial dessa colecccio para a gramática G₃ está parcialmente descrito a seguir.

$$Z_0 = \{ draw \rightarrow *seq \$ \} \cup ...$$

Complete-o e determine mais 5 elementos desse conjunto.

Arra de responta

2.0]	Uma palavra na linguagem dada por G_3 descreve um desenho definido por um conjunto de linhas poligonais (polytines). Por defeito as linhas poligonais são sólidas e abertas, podendo O símbolo terminal aum tem um atributo associado, e/ou fechadas, se a opccão classo for fornecida. O símbolo não terminal acor um atributo associado, designado v , que representa um número.
	O símbolo não terminal point representa as coordenadas X e Y de um ponto.

Dispõe-se da funccão drawLine(x1, y1, x2, y2, t), que desenha uma linha (segmento de reta), a contínuo ou a ponteado, dependendo do parâmetro t, entre os pontos (x1,y1) e (x2,y2). Assuma que o parâmetro t pode ter os valores serme ou soulo.

Construa uma gramática de atributos que permita invocar a funccão drav
Line de forma adequada para cada linha poligonal incluída mum desenho. Note que uma linha poligonal com n pontos possu
in-1 segmentos de reta, se for aberta, e n, se for fechada.

Produccão	Regra semântica			
${\rm draw} \to {\rm seq}$				
$\operatorname{seq} \to \varepsilon$				
$\operatorname{seq} \to \operatorname{line}\operatorname{seq}$				
line \rightarrow options LIME point point xpoints				
options $\rightarrow \varepsilon$				
options → option options				
$xpoints \rightarrow \varepsilon$				
xpoints → point xpoints				
option → DOTTED				
option → CLOSED				
point -+ sem sum				

Asserting past united