PIRENS Institute of Business Management and Administration, Loni BK.								
Seat Number:10097	Sign:	Date:	/	/				
Student Name: Yash Bora								
Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL								
Program Title: Q1. Find the co	Program Title: Q1. Find the correlation matrix.							

Program:

import numpy as np

ModuleNotFoundError Traceback (most recent call last)Input In [2], in <cell line: 1>() ----> 1 import numpy as np

ModuleNotFoundError: No module

```
named 'numpy' x =

np.array([3,5,11,21,28,35,56,61,72,88]
)
y = np.array([11,15,20,33,48,51,71,89,91,100])
z = np.array([104,100,89,81,76,66,69,43,17,11])

type(x) numpy.ndarr ay import matplotlib.pyplot as plt plt.xlabel('X-values') plt.ylabel('Y-values') plt.scatter(x, y)
```

<matplotlib.collections.PathCollection at 0x7f153834ffa0>


```
plt.xlabel('X-values')
plt.ylabel('Z-values')
plt.scatter(x, z)
```

<matplotlib.collections.PathCollection at 0x7f15362423d0>

plt.xlabel('X-values')
plt.ylabel('Y-values') plt.scatter(x,
y) plt.scatter(x, z, color = 'r')

<matplotlib.collections.PathCollection at 0x7f153


```
np.corrcoef(x, y)
                        , 0.98757408],
 array([[1.
          [0.98757408, 1.
                                      ]])
 np.corrcoef(x, z)
 array([[ 1.
                         , -0.96149075],
          [-0.96149075, 1.
                                         ]])
 np.corrcoef(z, y)
                         , -0.95002927],
 array([[ 1.
          [-0.95002927, 1.
                                         ]])
 import scipy.stats as st
 st.pearsonr(x, y)[0]
 0.9875740814243562
 st.pearsonr(x, z)[0]
 -0.9614907503686154
 st.pearsonr(z, y)[0]
 -0.9500292724815624
 import pandas as pd
 x1 = pd.Series([3,5,11,21,28,35,56,61,72,88])
 y1 = pd.Series([11,15,20,33,48,51,71,89,91,100]) z1 =
 pd.Series([104,100,89,81,76,66,69,43,17,11])
 x1.corr(y1)
 0.98757408142435
 62
 y1.corr(z1)
 -0.9500292724815624
 df=
      pd.DataFrame(
      \{'x': x,
      'y': y,
      'z': z
 })
```

```
df
                  \mathbf{Z}
      X
            y
      3
           11
 0
                104
 1
      5
           15
                100
 2
     11
           20
                 89
 3
    21
           33
                 81
 4
    28
           48
                 76
 5
    35
           51
                 66
 6
    56
           71
                 69
 7
           89
                 43
    61
 8
    72
           91
                 17
 9
    88
          100
                 11
df.corr()
                                      \mathbf{Z}
     1.000000
                 0.987574
                             -0.961491
 X
     0.987574
                  1.000000
                             -0.950029
    -0.961491
                 -0.950029
                              1.000000
df.corrwith(x1)
X
       1.00000
0
       0.987574
y
     -0.961491
\mathbf{Z}
dtype: float64
st.spearmanr(x, y)[0]
0.99999999999999
st.spearmanr(x, z)[0]
-0.98787878787878
st.spearmanr(z, y)[0]
-0.98787878787878
df.corr(method='spearman')
    1.000000
                 1.000000
                            -0.987879
X
    1.000000
                 1.000000
                            -0.987879
y
               -0.987879
   -0.987879
                             1.000000
st.kendalltau(x, y)[0]
0.999999999999999
st.kendalltau(x, z)[0]
-0.955555555555554
```

```
st.kendalltau(z, y)[0]
```

-0.95555555555555

df.corr(method='kendall')

```
x y z
x 1.000000 1.000000 -0.955556
y 1.000000 1.000000 -0.955556
z -0.955556 -0.955556 1.000000
```

df.corrwith(x1, method='kendall')x

1.000000 y 1.000000 z -0.955556 dtype: float64

cor = df.corr

(method='kendall')cor.values

import seaborn as sns

plt.xlabel('X-values')
plt.ylabel('Y-values')
sns.regplot(x=x, y=y, data=df)

<AxesSubplot:xlabel='X-values', ylabel='Y

PIRENS Institute of Business Management and Administration, Loni BK.

Roll Number: 10097 Sign:

Student Name: Yash Bora

Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL

Program Title: Q.2 Plot the correlation plot on dataset and visualize giving an overview of relationships among data on iris data.

Date:

Program:

Data Import import pandas as pd

x = ['slength', 'swidth', 'plength', 'pwidth', 'species']

 $df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=x)$

df

species	pwidth	plength	swidth	slength	
Iris-setosa	0.2	1.4	3.5	5.1	0
Iris-setosa	0.2	1.4	3.0	4.9	1
Iris-setosa	0.2	1.3	3.2	4.7	2
Iris-setosa	0.2	1.5	3.1	4.6	3
Iris-setosa	0.2	1.4	3.6	5.0	4
				•••	
Iris-virginica	2.3	5.2	3.0	6.7	145
Iris-virginica	1.9	5.0	2.5	6.3	146
Iris-virginica	2.0	5.2	3.0	6.5	147
Iris-virginica	2.3	5.4	3.4	6.2	148
Iris-virginica	1.8	5.1	3.0	5.9	149

[150 rows x 5 columns]

df = pd.read_csv('iris.csv') # Local data import

df

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
	•••	•••	•••	•••	•••
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

import seaborn as sns

sns.get_dataset_names()

```
['anagrams',
 'anscombe',
 'attention',
 'brain_networks',
 'car_crashes',
 'diamonds', 'dots',
 'exercise',
 'flights', 'fmri',
 'gammas',
 'geyser',
 'iris',
 'mpg',
 'penguins',
 'planets',
 'taxis',
 'tips',
 'titanic']
```

iris = sns.load_dataset('iris')

iris

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

sns.pairplot(df, hue='species')

<seaborn.axisgrid.PairGrid at 0x7fbe5dfb5df0>

import matplotlib.pyplot as

plt

df.corr()

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	$\frac{1}{1.000000}$	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

plt.figure(figsize=(16,9))
plt.matshow(df.corr()) plt.colorbar()

<matplotlib.colorbar.Colorbar at 0x7fbe556e8a30>

<Figure size 1152x648 with 0 Axes>

sns.heatmap(df.corr(), annot=True)

<AxesSubplot:>

	iistitute of D	usine	ss Manageme	ent and A	Adminis	tration, L	⊅oni BK.		
ll Numl	ber: 10097			Sign:			Date:	/ /	
dent N	ame: Yash	Bora							
ject Na	ame: Knowl	edge I	Representatio	n and A	rtificial	Intelliger	nce, ML, DL		
gram	Title: Q.3	Anal	ysis of cova	riance	varia	nce (AN	OVA), if data	have	
gorica	l variables	on i	ris data.						
	import pand	las as 1	od						
		-	'data.txt",sep=	='\t')					
	id gende	er	bdate educ	jobcat	salary	salbegin	jobtime prevex	p \0	1
	m		1952	15	3	57000	27000	98	144
	1 2		5/23/1958	16	1	40200	18750	98	36
	2 3 3 4		26/1929 15/1947	12 8	1 1	21450 21900	12000 13200	98 98	381 190
	4 5	1 4/ m	2/9/1955	6 15	1	45000	21000	98 98	138
	4 3	111	2/9/1933	13	1	43000	21000	90	130
	minority	y jobca							
	0	0	Manager						
	1	0	Clerical						
	2 3	0 0	Clerical Clerical						
	4	0	Clerical						
	df[['jobcat_	name',	'prevexp']].gr	oupby('jo	obcat_na	ame').mea	n()		
			prevexp						
	jobcat_nam	ne	95 029567						
	Clerical Custodial		85.038567 298.111111						
	Manager	•	77.619048						
	105.10			13.51					
	_		t_name=='Ma			_			
	-		e=='Clerical'][e=='Custodial'						
	urtur.joocat	_1141110	—— Custodiai	J[prevez	yb 1				
	from scipy i	mport	stats						
		-		eway(mg	r, cle, cu	ıst) print("	F_Statistic: {0},	P-	
	Value: {1}"	.forma	at(f_statistic,p	_value))					
	F_Statistic:	69.19	167101209159	9, P-Valu	ie: 4.515	36068516	51322e-27		
	fuom statem	odala :	famoula ani in	an ant ala					
			formula.api in s('prevexp ~ C	-	nama)'	data—df) f	i+()		
	model_nam			(Joocat_	manne),	uata—u1).11	и()		
			- ·						
	<class 'stats<="" td=""><td>smode</td><td>ls.iolib.summa</td><td></td><td></td><td></td><td>40</td><td></td><td></td></class>	smode	ls.iolib.summa				40		
				OLS	Kegres	sion Resul	ıs		

Dep. Variable:		prevexp	R-			
squared:0.227 Model:		OLS	Adj. R-squar	ed:		
0.224 Method:	Leas	st Squares	F-statistic:			
69.19 Date:		L Mar 2022	Prob (F-stat		4.52e-	
27 Time:		13:16:41	Log-Likeliho	od:	-	
2815.1 No. Observations:		474	AIC:			
5636. Df Residuals:		471	BIC:			
5649. Df Model:		2				
Covariance Type:		nonrobust				
	=====	=======		========		
=======================================						
[0.025 0.975]		coef	std err	t	P> t	
Intercept 75.535 94.542		85.0386	4.836	17.584	0.000	
C(jobcat_name)[T.Custodi	ial]	213.0725	18.380	11.592	0.000	
176.955 249.190 C(jobcat_name)[T.Manager 29.342 14.503	r]	-7.4195	11.156	-0.665	0.506 -	
=======	=====		=========	=======		:
= Omnibus: 1.817		133.381	Durbin-Watsor	n:		
Prob(Omnibus):		0.000	Jarque-Bera (JI	3):		
277.084 Skew:		1.525	Prob(JB):		6.79e-	
61 Kurtosis:		5.175	Cond. No.			
4.46		5.175	Cond. 140.			
=======================================	:=====		=======================================			=
=						

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

PIRENS Institute of Business Management and Administration, Loni BK.

Roll Number: 10097 Sign: Date: / /

Student Name: Yash Bora

Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL

Program Title: Q.4 Apply linear regression Model techniques to predict the data on anydataset.

Apply linear regression Model techniques to predict the# data on any dataset.

Import pandas package

Import pandas package import pandas as pd # Find the current working directory import os os.getcwd () '/home/mitu' # Import dataset df = pd.read_csv('Salary_Data.csv') df YearsExperience Salary 0 1.1 39343 1 46205 1.3 2 1.5 37731 3 2.0 43525 4 2.2 39891 5 56642 2.9 6 3.0 60150 7 3.2 54445 8 64445 3.2 9 3.7 57189 10 3.9 63218 11 4.0 55794 12 4.0 56957 13 4.1 57081 14 4.5 61111 15 4.9 67938 16 5.1 66029 17 5.3 83088 18 5.9 81363 19 93940 6.0 20 6.8 91738 21 7.1 98273 22 7.9 101302 23 8.2 113812 24 8.7 109431 25 9.0 105582 26 9.5 116969 27 9.6 112635 28 10.3 122391 29 10.5 121872

df.sha

pe(30,

2)

df.columns

Index(['YearsExperience', 'Salary'], dtype='object')

Input

x = df['YearsExperience'].values

Output

y = df['Salary'].values

df.corr()

	YearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

import matplotlib.pyplot as plt

```
plt.xlabel('Experience')
plt.ylabel('Salary') plt.scatter(x, y)
```

<matplotlib.collections.PathCollection at 0x7f97a5137310>

#Import LR class

from sklearn.linear_model import LinearRegression

```
# Create the object
regressor = LinearRegression()
x = x.reshape(-1,1)x
  array([[ 1.1],
         [ 1.3],
         [1.5],
         [ 2.],
         [2.2],
         [ 2.9],
            3.],
           3.2],
         [3.2],
         [3.7],
         [3.9],
         [ 4.],
           4.],
         [4.1],
            4.5],
         [4.9],
         [ 5.1],
         [ 5.3],
         [ 5.9],
         [ 6.],
         [6.8],
            7.1],
           7.9],
         [8.2],
         [8.7],
           9.],
         [ 9.5],
         [ 9.6],
        [10.3],
        [10.5]]
# Train the algorithm with data
regressor.fit(x, y)
LinearRegression()
# Prediction
regressor.predict([[5]])
array([73042.01180594])
y_pred = regressor.predict(x)
import seaborn as sns sns.regplot(x='YearsExperience',
y='Salary', data=df)
```



```
result = pd.DataFrame({
    'Actual': y,
    'Predicted': y_pred
})
```

result

Actual Predicted0 39343 36187.158752 46205 38077.151217 2 37731 39967.143681 3 43525 44692.124842 39891 46582.117306 56642 53197.090931 60150 6 54142.087163 7 54445 56032.079627 64445 8 56032.079627 9 57189 60757.060788 10 63218 62647.053252

```
11
                   55794
            63592.049484
              12
                   56957
            63592.049484
              13
                   57081
            64537.045717
                   61111
              14
            68317.030645
              15
                   67938
            72097.015574
              16
                   66029
            73987.008038
              17
                   83088
            75877.000502
              18
                   81363
            81546.977895
     93940
19
              82491.974127
20
     91738
              90051.943985
     98273
21
              92886.932681
22 101302 100446.902538
23 113812 103281.891235
24 109431 108006.872395
25 105582 110841.861092
26 116969 115566.842252
27 112635 116511.838485
28 122391 123126.812110
29 121872 125016.804574
plt.xlabel('Experience')
plt.ylabel('Salary')
plt.grid()
plt.scatter(x, y, label = 'Actual')
plt.plot(x, y_pred, label = 'Predicted', color='g')plt.legend()
<matplotlib.legend.Legend at 0x7f97a618dd30>
```



```
regressor.coef_  # Slope of line
array([9449.96232146])
regressor.intercept_  #y-intercept of line
25792.200198668696
5 * 9449.96232146 + 25792.200198668696
```

73042.0118059687

```
# r2 score
regressor.score(x, y)
0.95695666100975086
from sklearn.metrics import r2_score, mean_absolute_error,mean_absolute_percentage_error
```

nom skiedimmetres import 12_score, medii_dosorate_orror, medii_dosorate_percentage_orror

r2_score(y, y_pred)

0.956956661009750

86

mean_absolute_error(y, y_pred)

4644.2012894435375

 $mean_absolute_percentage_error(y,\,y_pred)$

0.07048034398306606

df = pd.read_csv('mtcars.csv')

```
df.shape
(32, 11)
```

input x = df[['disp','hp','wt']]

Output

y = df['mpg']

X

	disp	hp	wt
0	160.0	110	2.620
1	160.0	110	2.875
2	108.0	93	2.320
3	258.0	110	3.215
4	360.0	175	3.440

```
5
     225.0 105
                   3.460
6
     360.0 245
                   3.570
7
     146.7
              62
                   3.190
8
     140.8
              95
                   3.150
9
     167.6 123
                   3,440
10
     167.6 123
                   3.440
11
     275.8
            180
                   4.070
12
     275.8 180
                   3.730
13
     275.8 180
                   3.780
14
     472.0 205
                   5.250
15
     460.0 215
                   5.424
16 440.0 230 5.345
     78.7
              66 2.200
17
18
     75.7
              52 1.615
19
     71.1
              65 1.835
              97 2.465
20 120.1
21 318.0 150 3.520
22 304.0 150 3.435
23 350.0 245 3.840
24 400.0 175 3.845
25
     79.0
              66 1.935
              91 2.140
26 120.3
27
     95.1 113 1.513
28 351.0 264 3.170
29 145.0 175 2.770
30 301.0 335 3.570
31 121.0 109 2.780
regressor = LinearRegression()
regressor.fit(x, y)
LinearRegression()
regressor.intercept_
37.10550526903182
regressor.coef_
array([-9.37009081e-04, -3.11565508e-02, -3.80089058e+00])
# r2 Score
regressor.score(x, y)
0.8268361424946447
# prediction
new = [[221, 102, 3.81]]
regressor.predict(new)
array([19.23906496])
new = [[211, 134, 2.81]]
```

```
regressor.predict(new)
 array([22.052316])
 x.corrwith(y)
           -0.847551
  disp
           -0.776168
  hp
           -0.867659
  wt
          float64
  dtype:
 y_pred = regressor.predict(x)
 mean_absolute_error(y, y_pred)
 1.9070264019715124
 r2_score(y, y_pred)
 0.82683614249464
 47
# Data Visualization
plt.subplot(2,2,1)
plt.scatter(x['disp'], y)
plt.subplot(2,2,2)
plt.scatter(x['hp'], y)
plt.subplot(2,2,3)
plt.scatter(x['wt'], y)
<matplotlib.collections.PathCollection at 0x7f97a6219970>
   30
                                         30
   20
                                         20
   10
                                         10
        100
                200
                       300
                              400
                                                  100
                                                            200
                                                                      300
   30
   20
   10
                   ġ.
 sns.regplot(x='wt', y='mpg', data=pd.read_csv('mtcars.csv'))
```

<AxesSubplot:xlabel='wt', ylabel='mpg'>

PIRENS Institute of Business Management and Administration, Loni BK.

Roll Number: 10097 Sign: : Date: / /

Student Name: Yash Bora

Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL

Program Title: Q.5 Apply logical regression Model techniques to predict the data on any

dataset.

Program:

import pandas as pd

Data import

df = pd.read_csv('banknotes.csv')

import seaborn as sns
sns.pairplot(df, hue='Class')

<seaborn.axisgrid.PairGrid at 0x7f42a29c9310>


```
# output
y = df['Class']
x.shape
(1372, 4)
# Cross validation
from sklearn.model_selection import train_test_splitx_train, x_test,
y_train, y_test = train_test_split(
     x, y, random_state=0, test_size=0.25)
x_train.head()
         Variance
                    Skewness
                                  Curtosis
                                               Entropy
662
           2.9736
                       8.7944
                                  -3.6359 -1.375400
512
           2.6648
                      10.7540
                                  -3.3994 -4.168500
1193
          -3.7573
                      -8.2916
                                  10.3032
                                             0.380590
                      -3.8840
682
           3.7321
                                   3.3577 -0.006049
                      -7.3191
                                   7.8981
1313
          -1.5078
                                             1.228900
x_train.shape
(1029, 4)
# Import the class
from sklearn.linear_model import LogisticRegression
# Create the object
classifier = LogisticRegression()
# Train the algorithm
classifier.fit(x_train, y_train)
LogisticRegression() x_test.shape
(343, 4)
# Predict on the test data
y_pred = classifier.predict(x_test)set(y)
\{0, 1\}
y.value_counts()0
      762
      610
1
```

Name: Class, dtype: int64

```
result = pd.DataFrame({
    'Actual': y_test,
    'Predicted': y_pred
})
```

result

	Actual	Predicted
1023	1	1
642	0	0
1196	1	1
31	0	0
253	0	0
•••	•••	
866	1	1
361	0	0
703	0	0
328	0	0
530	0	0

[343 rows x 2 columns]

fromsklearn.metricsimport plot_confusion_matrix, accuracy_score plot_confusion_matrix(classifier, x_test, y_test);


```
0 195

1 148

Name: Class, dtype: int64 accuracy_score(y_test, y_pred)0.9854227405247813 new1 = [[0.7057,-5.4981,8.3368,-2.8715]]

new2 = [[-0.4665,2.3383,-2.9812,-1.0431]]
```

classifier.predict(new1) array([0]) classifier.predict_proba(new1) array([[0.99724553, 0.00275447]]) classifier.predict(new2) array([1]) classifier.predict_proba(new2) array([[6.24842128e-04, 9.99375158e-01]])

PIRENS Institute of Business Management and Administration, Loni BK.

RollNumber:10097 Sign:
Date: / /
StudentName:Yash Bora

Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL Program Title: Q.6 Clustering algorithms for unsupervised classification.

Program:

import pandas as pd

df = pd.read_csv('/home/mitu/Mall_Customers.csv')df.shape (200, 5)

list(df.columns)

['CustomerID', 'Genre', 'Age', 'Annual Income (k\$)', 'Spending Score (1-100)']

#Input data

x = df.iloc[:,3:]

X						
	Annual	Incom	(k\$)	Spending	Scor	(1-
		e			e	100)
0			15			39
1			15			81
2			16			6
3			16			77
4			17			40
195			120			79
196			126			28
197			126			74
198			137			18
199			137			83

[200 rows x 2 columns]

Summerize

df.describe()

	CustomerID	Age	Annual	Income (k\$)	Spending	Score (1-
count	200.000000	200.000000		200.000000		100)
						200.000000
mean	100.500000	38.850000		60.560000		50.200000
std	57.879185	13.969007		26.264721		25.823522
min	1.000000	18.000000		15.000000		1.000000
25%	50.750000	28.750000		41.500000		34.750000
50%	100.500000	36.000000		61.500000		50.000000
75%	150.250000	49.000000		78.000000		73.000000

import seaborn package

import seaborn as sns

sns.kdeplot(df['Age'])

<AxesSubplot:xlabel='Age', ylabel='Density'>

sns.kdeplot(df['Annual Income (k\$)'])

sns.kdeplot(df['Spending Score (1-100)'])

<AxesSubplot:xlabel='Spending Score (1-100)', ylabel='Density'>

sns.boxplot(df['Age'])

/home/mitu/.local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version

0.12, the only valid positional argument will be `data`, and passing otherarguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

(

<AxesSubplot:xlabel='Age'>

sns.boxplot(df['Annual Income (k\$)'])

/home/mitu/.local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Annual Income (k\$)'>

sns.boxplot(df['Spending Score (1-100)'])

/home/mitu/.local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Spending Sc

Import the class

from sklearn.cluster import KMeans

```
# Create the object
km = KMeans(n_clusters=12, random_state=0)
# Train the algorithm
labels = km.fit\_predict(x)
# Sum of squared errors
km.inertia
15810.838613705504
# elbow method
sse = []
for k in range(1,41):
     km = KMeans(n_clusters=k, random_state=0)
     labels = km.fit_predict(x) sse.append(km.inertia_)
import matplotlib.pyplot as plt
plt.figure(figsize=(16,9))
plt.title('Elbow Method')
plt.xlabel('Value of K')
plt.ylabel('SSE')
plt.grid()
plt.xticks(range(1,41))
plt.plot(range(1,41), sse, marker='o', color='r')
```

[<matplotlib.lines.Line2D at 0x7f9dac6b3070>]

Silhoutte method

from sklearn.metrics import silhouette_score

```
silh = []
for k in range(2,16):
    km = KMeans(n_clusters=k, random_state=0)
    labels = km.fit_predict(x)
    score = silhouette_score(x, labels)
    silh.append(score)
```

plot the silhoutte scores plt.title('Silhoutte Analysis') plt.xlabel('Value of K') plt.ylabel('Silhoutte Score') plt.xticks(range(2,16)) plt.bar(range(2,16), silh, color='g')

<BarContainer object of 14 ar tists>

Create the object

km = KMeans(n_clusters=5, random_state=0)

Train the algorithm

labels = km.fit predict(x)

labels

Cluster labels

km.labels

1, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,

0, 2, 0, 2, 0, 2, 0, 2, 0, 2,

0, 2, 0, 2,

0, 2,

0, 2, 0,

0, 2, 0, 2, 0, 2, 0, 2, 0, 2,

0, 2, 0, 2,

0, 2,

0, 2, 0,

0, 2], dtype=int32)

0, 2, 0, 2, 0, 2, 0, 2, 0, 2,

0, 2, 0, 2,

0, 2, 0, 2, 0, 2, 0, 2,

0, 2, 0, 2, 0, 2, 0, 2, 0, 2,

0, 2, 0, 2,

0, 2, 0, 2, 0, 2, 0, 2,

0, 2], dtype=int32)

SSE

km.inertia_

44448.45544793369

Centroids

km.cluster_centers_

Extract the clusters

df[labels==2] # Boolean filtering

	CustomerID	Genre A	ge Ani	nual Income (k\$) Spending Score (1-100)123	
	124	Male	39	69	91
125	126	Female	31	70	77
127	128	Male	40	71	95
129	130	Male	38	71	75
131	132	Male	39	71	75
133	134	Female	31	72	71
135	136	Female	29	73	88
137	138	Male	32	73	73
139	140	Female	35	74	72
141	142	Male	32	75	93
143	144	Female	32	76	87
145	146	Male	28	77	97
147	148	Female	32	77	74
149	150	Male	34	78	90
151	152	Male	39	78	88
153	154	Female	38	78	76
155	156	Female	27	78	89
157	158	Female	30	78	78
159	160	Female	30	78	73
161	162	Female	29	79	83
163	164	Female	31	81	93
165	166	Female	36	85	75
167	168	Female	33	86	95
169	170	Male	32	87	63
171	172	Male	28	87	75
173	174	Male	36	87	92
175	176	Female	30	88	86
177	178	Male	27	88	69
179	180	Male	35	93	90

```
181
               182
                     Female
                                32
183
               184
                     Female
                                29
185
               186
                       Male
                                30
                       Male
187
                                28
               188
189
               190 Female
                                36
191
               192
                     Female
                                32
193
               194
                     Female
                                38
195
               196
                     Female
                                35
197
               198
                       Male
                                32
199
               200
                       Male
                                30
one = df[labels==1]
one.shape
(81, 5)
# Export the cluster
one.to_csv('one.csv')
print('Cluster-0:',
                             len(df[labels==0]))
print('Cluster-1:',
                             len(df[labels==1]))
print('Cluster-2:',
                             len(df[labels==2]))
print('Cluster-3:',
                             len(df[labels==3]))
print('Cluster-4:', len(df[labels==4]))
Cluster-0: 35
Cluster-1:81
Cluster-2: 39
Cluster-3: 22
Cluster-4: 23
# Prediction
new = [[45, 76]]
km.predict(new)[0]3
# Prediction
new = [[25, 36]]
km.predict(new)[0]4
# Prediction
new = [[85, 76]]
km.predict(new)[0]2
# Prediction
new = [[45, 47]]
km.predict(new)[0]1
```

97

98

99

101

103

103

113

120

126

137

86

88

97

68

85

69

91 79

74

83

 $from \, sklearn.preprocessing \, import \, LabelEncoderle = \\ LabelEncoder()$

df['Genre'] = le.fit_transform(df['Genre'])import

matplotlib.pyplot as plt

df['Genre']

0	1
1	1
2	0
3	0
4	0
195	0
196	0
197	1
198	1
199	1

Name: Genre, Length: 200, dtype: int64

plt.scatter(df['Annual Income (k\$)'], df['Spending Score (1-100)'],c=df['Genre']) <matplotlib.collections.PathCollection at 0x7f9dac6e2fd0>

PIRENS Institute of Business Management and Administration, Loni BK. Roll Number: 10097 Sign: Date: / Student Name: Yash Bora Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL Program Title: O.7 Association algorithms for supervised classification on any dataset.

```
Program:
dataset = [['Apple', 'Beer', 'Rice', 'Chicken'],
         ['Apple', 'Beer', 'Rice'],
         ['Apple', 'Beer'],
          ['Apple', 'Pear'],
          ['Milk', 'Beer', 'Rice', 'Chicken'],
          ['Milk', 'Beer', 'Rice'],
          ['Milk', 'Beer'],
          ['Apple', 'Pear']]
dataset
[['Apple', 'Beer', 'Rice', 'Chicken'],
 ['Apple', 'Beer', 'Rice'],
 ['Apple', 'Beer'],
 ['Apple', 'Pear'],
 ['Milk', 'Beer', 'Rice', 'Chicken'],
 ['Milk', 'Beer', 'Rice'],
 ['Milk', 'Beer'],
 ['Apple', 'Pear']]
# Import the transaction encoder
from mlxtend.preprocessing import TransactionEncoder
# Create the object
trans = TransactionEncoder()
# Apply the operation
df_t = trans.fit_transform(dataset)df_t
array([[ True, True, True, False, False, True], [ True, True, False,
         False, False, True],[ True, True, False, False, False,
         False], [True, False, False, False, True, False], [False,
         True, True, False, True], [False, True,False,
         True, False, True, False, True, False, True, False,
         False], [True, False, False, False, True, False]])
trans.columns
```

['Apple', 'Beer', 'Chicken', 'Milk', 'Pear', 'Rice']import pandas as pd

```
df
```

	Apple	Beer	Chicken	Milk	Pear	Rice
0	True	True	True	False	False	True
1	True	True	False	False	False	True
2	True	True	False	False	False	False
3	True	False	False	False	True	False
4	False	True	True	True	False	True
5	False	True	False	True	False	True
6	False	True	False	True	False	False
7	True	False	False	False	True	False

Support count

sum(df['Rice']) / len(df)0.5

Generate frequent itemsets

from mlxtend.frequent_patterns import apriori

 $freq_itemset = apriori(df, min_support = 0.25, use_colnames = True) freq_itemset$

	support	itemsets
0	0.625	(Apple)
1	0.750	(Beer
2	0.250	(Chicken)
3	0.375	(Milk)
4	0.250	(Pear
5	0.500	(Rice
6	0.375	(Beer, Apple)
7	0.250	(Pear, Apple)
8	0.250	(Rice, Apple)
9	0.250	(Beer, Chicken)
10	0.375	(Beer, Milk)
11	0.500	(Beer, Rice)
12	0.250	(Rice, Chicken)
13	0.250	(Rice, Milk)
14	0.250	(Beer, Rice, Apple)
15	0.250 (B	eer, Rice, Chicken)
16	0.250	(Beer, Rice, Milk)

Generate strong association rules

 $from \ mlxtend.frequent_patterns \ import \ association_rules$

```
rules = association\_rules (freq\_itemset, \\ metric='confidence', \\ min\_threshold=0.5)
```

rules

	antecedents	consequents lever	rage conviction	0
	(Beer)	(Apple)0.0	9375	0.750
1	(Apple)	(Beer)0.0	9375	0.625
2	(Pear)	(Apple)	0.09375	inf
3	(Rice)	(Apple)0.0	06250	0.750
4	(Chicken)	(Beer)	0.06250	inf
5	(Beer)	(Milk)	0.09375	1.250
6	(Milk)	(Beer)	0.09375	inf
7	(Beer)	(Rice)	0.12500	1.500
8	(Rice)	(Beer)	0.12500	inf
9	(Rice)	(Chicken)	0.12500	1.500
10	(Chicken)	(Rice)	0.12500	inf
11	(Rice)	(Milk)	0.06250	1.250
12	(Milk)	(Rice)	0.06250	1.500
13	(Beer, Rice)	(Apple)0	.06250	0.750
14	(Beer, Apple)	(Rice)	0.06250	1.500
15	(Rice, Apple)	(Beer)	0.06250	inf
16	(Rice)	(Beer, Apple)	0.06250	1.250
17	(Beer, Rice)	(Chicken)	0.12500	1.500
18 ((Beer, Chicken)	(Rice)	0.12500	inf
19 ((Rice, Chicken)	(Beer)	0.06250	inf
20	(Rice) (Beer, Chicken)	0.12500	1.500	
21	(Chicken)	(Beer, Rice)	0.12500	inf
22	(Beer, Rice)	(Milk)	0.06250	1.250
23	(Beer, Milk)	(Rice)	0.06250	1.500
24	(Rice, Milk)	(Beer)	0.06250	inf
25	(Rice)	(Beer, Milk)	0.06250	1.250
26	(Milk)	(Beer, Rice)	0.06250	1.500

[27 rows x 9 columns]

 $rules = rules \hbox{\tt [['antecedents','consequents','support','confidence']]}$

rules

	antecedents	consequents	support	confidence
0	(Beer)	(Apple)	0.375	0.500000
1	(Apple)	(Beer)	0.375	0.600000
2	(Pear)	(Apple)	0.250	1.000000
3	(Rice)	(Apple)	0.250	0.500000
4	(Chicken)	(Beer)	0.250	1.000000
5	(Beer)	(Milk)	0.375	0.500000
6	(Milk)	(Beer)	0.375	1.000000
7	(Beer)	(Rice)	0.500	0.666667
8	(Rice)	(Beer)	0.500	1.000000
9	(Rice)	(Chicken)	0.250	0.500000
10	(Chicken)	(Rice)	0.250	1.000000
11	(Rice)	(Milk)	0.250	0.500000
12	(Milk)	(Rice)	0.250	0.666667
13	(Beer, Rice)	(Apple)	0.250	0.500000

14	(Beer, Apple)	(Rice)	0.250	0.666667
15	(Rice, Apple)	(Beer)	0.250	1.000000
16	(Rice)	(Beer, Apple)	0.250	0.500000
17	(Beer, Rice)	(Chicken)	0.250	0.500000
18	(Beer, Chicken)	(Rice)	0.250	1.000000
19	(Rice, Chicken)	(Beer)	0.250	1.000000
20	(Rice)	(Beer, Chicken)	0.250	0.500000
21	(Chicken)	(Beer, Rice)	0.250	1.000000
22	(Beer, Rice)	(Milk)	0.250	0.500000
23	(Beer, Milk)	(Rice)	0.250	0.666667
24	(Rice, Milk)	(Beer)	0.250	1.000000
25	(Rice)	(Beer, Milk)	0.250	0.500000
26	(Milk)	(Beer, Rice)	0.250	0.666667

rules['antecedent_len'] = rules['antecedents'].apply(lambda x: len(x))

<ipython-input-24-514ef6b1bde9>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.Try using
.loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy rules['antecedent_len'] = rules['antecedents'].apply(lambda x: len(x))

rules

	antecedents	consequents	support	confidence	antecedent_len
0	(Beer)	(Apple)	0.375	0.500000	1
1	(Apple)	(Beer)	0.375	0.600000	1
2	(Pear)	(Apple)	0.250	1.000000	1
3	(Rice)	(Apple)	0.250	0.500000	1
4	(Chicken)	(Beer)	0.250	1.000000	1
5	(Beer)	(Milk)	0.375	0.500000	1
6	(Milk)	(Beer)	0.375	1.000000	1
7	(Beer)	(Rice)	0.500	0.666667	1
8	(Rice)	(Beer)	0.500	1.000000	1
9	(Rice)	(Chicken)	0.250	0.500000	1
10	(Chicken)	(Rice)	0.250	1.000000	1
11	(Rice)	(Milk)	0.250	0.500000	1
12	(Milk)	(Rice)	0.250	0.666667	1
13	(Beer, Rice)	(Apple)	0.250	0.500000	2
14	(Beer, Apple)	(Rice)	0.250	0.666667	2
15	(Rice, Apple)	(Beer)	0.250	1.000000	2
16	(Rice)	(Beer, Apple)	0.250	0.500000	1
17	(Beer, Rice)	(Chicken)	0.250	0.500000	2
18	(Beer, Chicken)	(Rice)	0.250	1.000000	2
19	(Rice, Chicken)	(Beer)	0.250	1.000000	2
20	(Rice)	(Beer, Chicken)	0.250	0.500000	1
21	(Chicken)	(Beer, Rice)	0.250	1.000000	1

24	(Rice, Milk)	(Beer)	0.250	1.000000	2
25	(Rice)	(Beer, Milk)	0.250	0.500000	1
26	(Milk)	(Beer, Rice)	0.250	0.666667	1

nrules = rules[(rules['antecedent_len'] == 1) & (rules['support'] > 0.30)]

nrules

	antecedents	consequents	support	confidence	antecedent_len
0	(Beer)	(Apple)	0.375	0.500000	1
1	(Apple)	(Beer)	0.375	0.600000	1
5	(Beer)	(Milk)	0.375	0.500000	1
6	(Milk)	(Beer)	0.375	1.000000	1
7	(Beer)	(Rice)	0.500	0.666667	1
8	(Rice)	(Beer)	0.500	1.000000	1

Prediction / Suggestion / Recommendation

nrules[nrules['antecedents'] == {'Apple'}]['consequents'][1]

frozenset({'Beer'})

rules.sort_values(by='confidence', ascending=False)

	antecedents	consequents	support	confidence	antecedent_len
18	(Beer, Chicken)	(Rice)	0.250	1.000000	2
2	(Pear)	(Apple)	0.250	1.000000	1
21	(Chicken)	(Beer, Rice)	0.250	1.000000	1
4	(Chicken)	(Beer)	0.250	1.000000	1
24	(Rice, Milk)	(Beer)	0.250	1.000000	2
6	(Milk)	(Beer)	0.375	1.000000	1
15	(Rice, Apple)	(Beer)	0.250	1.000000	2
8	(Rice)	(Beer)	0.500	1.000000	1
19	(Rice, Chicken)	(Beer)	0.250	1.000000	2
10	(Chicken)	(Rice)	0.250	1.000000	1
12	(Milk)	(Rice)	0.250	0.666667	1
14	(Beer, Apple)	(Rice)	0.250	0.666667	2
26	(Milk)	(Beer, Rice)	0.250	0.666667	1
7	(Beer)	(Rice)	0.500	0.666667	1
23	(Beer, Milk)	(Rice)	0.250	0.666667	2
1	(Apple)	(Beer)	0.375	0.600000	1
22	(Beer, Rice)	(Milk)	0.250	0.500000	2
25	(Rice)	(Beer, Milk)	0.250	0.500000	1
20	(Rice)	(Beer, Chicken)	0.250	0.500000	1
0	(Beer)	(Apple)	0.375	0.500000	1
17	(Beer, Rice)	(Chicken)	0.250	0.500000	2
16	(Rice)	(Beer, Apple)	0.250	0.500000	1
11	(Rice)	(Milk)	0.250	0.500000	1
9	(Rice)	(Chicken)	0.250	0.500000	1
5	(Beer)	(Milk)	0.375	0.500000	1

PIRENS Institute of Business Management and Administration, Loni BK. Roll Number: 10097 Sign: Date: / Student Name: Yash Bora Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL

Program Title: Q.8 Developing and implementing Decision Tree model on

the dataset

Program:

```
import pandas as pd
```

Data import

df = pd.read_csv('Social_Network_Ads.csv')

df.shape

(400, 5)

input

x = df[['Age', 'EstimatedSalary']]

output

y = df['Purchased'] import seaborn as sns sns.jointplot(x='Age', y='EstimatedSalary', hue='Purchased', data=df)

<seaborn.axisgrid.JointGrid at 0x7fb1b1c5e9a0>

sns.countplot(x=y)

<AxesSubplot:xlabel='Purchased', ylabel='count'

y.value_counts()

0 257 1 143

Name: Purchased, dtype: int64

Cross-validation

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0, test_size=0.25)

x_train.shape

(300, 2)

x_test.shape

(100, 2)

Import the class

from sklearn.tree import DecisionTreeClassifier

Create the object

classifier = DecisionTreeClassifier(random_state=0)

Train the algorithm with data

Predictions

```
y_pred = classifier.predict(x_test)
```

```
# Combine the data
result = pd.DataFrame({
    'Actual': y_test,
    'Predicted': y_pred
```

result

})

	Actual	Predicted
132	0	0
309	0	0
341	0	0
196	0	0
246	0	0
		•••
146	1	1
135	0	0
390	1	1
264	1	1
364	1	1
[100	rows x	2 columns]

from sklearn.metrics import plot_confusion_matrix, accuracy_score plot_confusion_matrix(classifier, x_test, y_test);

accuracy_score(y_test, y_pred)0.9

```
# Single prediction
```

new1 = [[34, 123000]] new2 = [[25, 48900]]

classifier.predict(new1)array([1])

classifier.predict(new2)array([0])

from sklearn.tree import plot_treeimport matplotlib.pyplot as plt

PIRENS Institute of Business Management and Administration, Loni BK.

Roll Number:10097 Sign: Date: / /

Student Name: Yash Bora

Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL

Program Title:Q.9 Bayesian classification on any dataset.

Program:

Import packages import pandas as pd import seaborn as sns

Data import df = pd.read_csv('iris.csv')

The data shape df.shape

(150, 5)

The columns names

list(df.columns)

['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']

Let's describe

df.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Check the clusters

sns.pairplot(df, hue='species')

<seaborn.axisgrid.PairGrid at 0x7fa2f1e0df40>

input data

x = df.drop('species', axis = 1)

output data

y = df['species']

x.shape

(150, 4)

sns.countplot(x = y)

<AxesSubplot:xlabel='species', ylabel='count'>

y.value_counts()

setosa 50 virginica 50 versicolor 50

Name: species, dtype: int64

Cross validation -> hold out method

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0, train_size=0.75)

x_train.shape

(112, 4)

x_test.shape

(38, 4)

Import the class

from sklearn.naive_bayes import GaussianNB

Create the object

classifier = GaussianNB()

Train the algorithm with data

Predictions

y_pred = classifier.predict(x_test)

Import all functions

from sklearn.metrics import plot_confusion_matrix, accuracy_scorefrom sklearn.metrics import classification_report

Plot the confusion matrix

plot_confusion_matrix(classifier, x_test, y_test)

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at0x7fa2e177e6d0>

#Accuracy

accuracy_score(y_test, y_pred)1.0

Classification report

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	13
versicolor	1.00	1.00	1.00	16
virginica	1.00	1.00	1.00	9
accuracy			1.00	38
macro avg	1.00	1.00	1.00	38

weighted avg 1.00 1.00 1.00 38

Print the probabilities

classifier.predict_proba(x_test)

```
array([[2.05841140e-233,
                                                    9.99998762e-0011.
                             1.23816844e-006,
        [1.76139943e-084,
                               9.99998414e-001,
                                                    1.58647449e-006],
        [1.000000000e+000,
                               1.48308613e-018,
                                                    1.73234612e-027],
        [6.96767669e-312,
                               5.33743814e-007,
                                                    9.99999466e-001],
        [1.000000000e+000,
                               9.33944060e-017,
                                                    1.22124682e-026],
        [4.94065646e-324,
                              6.57075840e-011,
                                                    1.000000000e+000],
        [1.000000000e+000,
                               1.05531886e-016,
                                                    1.55777574e-026],
        [2.45560284e-149,
                               7.80950359e-001,
                                                    2.19049641e-001],
        [4.01160627e-153,
                               9.10103555e-001,
                                                    8.98964447e-002],
        [1.46667004e-094,
                               9.99887821e-001,
                                                    1.12179234e-004],
        [5.29999917e-215,
                               4.59787449e-001,
                                                    5.40212551e-001],
        [4.93479766e-134,
                               9.46482991e-001,
                                                    5.35170089e-002],
        [5.23735688e-135,
                               9.98906155e-001,
                                                    1.09384481e-003],
        [4.97057521e-142,
                               9.50340361e-001,
                                                    4.96596389e-002],
        [9.11315109e-143,
                               9.87982897e-001,
                                                    1.20171030e-002],
        [1.000000000e+000,
                               7.81797826e-019,
                                                    1.29694954e-028],
        [3.86310964e-133,
                                                    1.23349155e-002],
                               9.87665084e-001,
        [2.27343573e-113.
                               9.99940331e-001.
                                                    5.96690955e-005],
        [1.000000000e+000,
                               1.80007196e-015,
                                                    9.14666201e-026],
        [1.000000000e+000,
                               1.30351394e-015,
                                                    8.42776899e-025],
        [4.66537803e-188,
                               1.18626155e-002,
                                                    9.88137385e-001],
        [1.02677291e-131,
                               9.92205279e-001,
                                                    7.79472050e-003],
        [1.000000000e+000,
                               6.61341173e-013,
                                                    1.42044069e-022],
        [1.000000000e+000,
                               9.98321355e-017,
                                                    3.50690661e-027],
        [2.27898063e-170,
                               1.61227371e-001,
                                                    8.38772629e-001],
        [1.000000000e+000,
                               2.29415652e-018,
                                                    2.54202512e-028],
        [1.000000000e+000,
                               5.99780345e-011,
                                                    5.24260178e-020],
        [1.62676386e-112,
                               9.99340062e-001,
                                                    6.59938068e-004],
        [2.23238199e-047,
                               9.99999965e-001,
                                                    3.47984452e-008],
        [1.000000000e+000,
                               1.95773682e-013,
                                                    4.10256723e-023],
        [3.52965800e-228,
                               1.15450262e-003,
                                                    9.98845497e-001],
        [3.20480410e-131,
                               9.93956330e-001,
                                                    6.04366979e-003],
        [1.000000000e+000,
                               1.14714843e-016,
                                                    2.17310302e-026],
        [3.34423817e-177,
                               8.43422262e-002,
                                                    9.15657774e-001],
        [5.60348582e-264,
                               1.03689515e-006,
                                                    9.99998963e-001],
        [7.48035097e-091,
                               9.99950155e-001,
                                                    4.98452400e-005],
        [1.000000000e+000,
                               1.80571225e-013,
                                                    1.83435499e-022],
```

[8.97496247e-182, 5.65567226e-001, 4.34432774e-001]])

```
new1 = [[5.1,3.7,1.5,0.4]]
new2 = [[6.8,2.8,4.8,1.4]]
```

new3 = [[7.7, 2.6, 6.9, 2.3]]

Predictions

classifier.predict(new1)[0]

'setosa' classifier.predict(new2)[0]

'versicolor' classifier.predict(new3)[0]

'virginica'

PIRENS Institute of Business Management and Administration, Loni BK.

Roll Number: 10097 Sign: Date:

/

Student Name: Yash Bora

Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL

Program Title: Q.10 SVM classification on any dataset

Program:

import pandas as pd

Data import

 $df = pd.read_csv('banknotes.csv')import$

seaborn as sns sns.pairplot(df,

hue='Class')

<seaborn.axisgrid.PairGrid at 0x7f03ccecc490>

Input data

```
x.shape
```

(1372,4)

Cross - validation -> hold out method

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0, test_size=0.25)

x_train.shape

(1029, 4)

x_test.shape

(343, 4)

 x_train

	Variance	Skewness	Curtosis	Entropy
662	2.97360	8.794400	-3.635900	-1.375400
512	2.66480	10.754000	-3.399400	-4.168500
1193	-3.75730	-8.291600	10.303200	0.380590
682	3.73210	-3.884000	3.357700	-0.006049
1313	-1.50780	-7.319100	7.898100	1.228900
763	0.39012	-0.142790	-0.031994	0.350840
835	-0.94255	0.039307	-0.241920	0.315930
1216	0.60050	0.999450	-2.212600	0.097399
559	2.01650	-0.252460	5.170700	1.076300
684	-2.07590	10.822300	2.643900	-4.837000

[1029 rows x 4 columns]

sns.countplot(x=y)

<AxesSubplot:xlabel='Class', ylabel='count'>

y.value_counts()

0 762 1 610

Name: Class, dtype: int64

y_train.value_counts()

0 567 1 462

Name: Class, dtype: int64

y_test.value_counts()

0 195 1 148

Name: Class, dtype: int64 # Import the SVM class

from sklearn.svm import SVC

Create the object of SVC

classifier = SVC(random_state=0, kernel='sigmoid')

Train the algorithm

classifier.fit(x_train, y_train)

SVC(kernel='sigmoid', random_state=0)

Predictions

y_pred = classifier.predict(x_test)

from sklearn.metrics import plot_confusion_matrix, classification_reportfrom sklearn.metrics import accuracy_score plot_confusion_matrix(classifier, x_test, y_test) <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at0x7f03a41518e0>

print(classification_report(y_test, y_pred))

precision	recall	f1-score	support
0.71	0.73	0.72	195
0.64	0.61	0.63	148
0.68 0.68	0.67 0.68	0.68 0.67 0.68	343 343 343
	0.71 0.64 0.68	0.71 0.73 0.64 0.61 0.68 0.67	0.71 0.73 0.72 0.64 0.61 0.63 0.68 0.67 0.67

accuracy_score(y_test, y_pred)

0.6822157434402333

new1 = [[3.73210,-3.884000,3.357700,-0.006049]] classifier.predict(new1)array([1])

Linear - 0.9854227405247813 # Polynomial - 0.967930029154519# RBF - 0.9970845481049563 # Sigmoid - 0.6822157434402333 PIRENS Institute of Business Management and Administration, Loni BK.

Roll Number: 10097 Sign: Date: / /

Student Name: Yash Bora

Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL

Program Title: Q.11 Text Mining algorithms on unstructured dataset

Program:

```
import pandas as pd
df = pd.read_csv('SMSSpamCollection',
sep='\t',
names = ['class','body_text'])
df
      class body_text
         ham Go until jurong point, crazy.. Available only ...
0
1
                                         Ok lar... Joking wif u oni...
       spam Free entry in 2 a wkly comp to win FA Cup fina...
2
        ham U dun say so early hor... U c already then say...
3
        ham Nah I don't think he goes to usf, he lives aro...
4
5567 spam This is the 2nd time we have tried 2 contact u...5568
                                                                           ham
                                Will ü b going to esplanade fr home?5569
ham Pity, * was in mood for that. So...any other s...5570 ham The guy did
some bitching but I acted like i'd...5571
                                                            Rofl. Its true to its
name
[5572 rows x 2 columns]
import string
string.punctuation
'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'
# Function to count the punctuation symbols
def count_punct(text):
     count = sum([1 \text{ for } x \text{ in } text \text{ if } x \text{ in } string.punctuation])
     return(round(count/(len(text)-text.count(''))*100,2))s = 'Hello,
friends! How are you? Welcome to Pune.!!!' count_punct(s)
17.07
# Add feature of punctuation percentages
df['punct%'] = df['body text'].apply(lambda x: count punct(x))
```

	class			body_text	punct%
0	ham	Go until jurong p	oint,	crazy Available only	9.78
1	ham		Ok	lar Joking wif u oni	25.00
2	spam	Free entry in 2 a	wkly	comp to win FA Cup fina	4.69
3	ham	U dun say so early hor.	U c alre	eady then say	15.38
4	ham	Nah I don't think he	goes	to usf, he lives aro	4.08
•••	•••				
5567	spam	This is the 2nd time we	have tried	12 contact u	6.11
5568	ham	Will ü b	going to e	esplanade fr home?	3.45
5569	ham	Pity, * was in mood	for that.	Soany other s	14.58
5570	ham	The guy did some bit	tching but	I acted like i'd	1.00
5571	ham		Rof	1. Its true to its name	4.76

Add the column body length to it

df['body_len'] = df['body_text'].apply(lambda x: len(x) - x.count(" "))

df

0	class ham	Go until jurong point, crazy Available only	punct% \ 9.78
1	ham	Ok lar Joking wif u oni	25.00
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	4.69
3	ham	U dun say so early hor U c already then say	15.38
4	ham	Nah I don't think he goes to usf, he lives aro	4.08
•••	•••		•••
5567	snam '	This is the 2nd time we have tried 2 contact u	6.11
5568	ham	Will ü b going to esplanade fr home?	3.45
5569	ham	Pity, * was in mood for that. Soany other s	14.58
5570	ham	The guy did some bitching but I acted like i'd	1.00
5571	ham	Rofl. Its true to its name	4.76
	body_l	len	
Ω	•	92	

92
24
128
39
4.0
49
49
 131
 131 29

[5572 rows x 4 columns]

from nltk.corpus import stopwords s_words

⁼ stopwords.words('english')s_words;

```
from nltk.stem import PorterStemmerps =
 PorterStemmer()
 # analyzer function
 def clean text(text):
       data = [x \text{ for } x \text{ in text if } x \text{ not in string.punctuation}] data =
       "".join(data)
       data = [ps.stem(x) for x in data.split() if x not in s_words]
       return data
 clean_text(s)
 ['hello', 'friend', 'how', 'welcom', 'pune']
  # Seperate the input and output
  X = df.drop('class', axis = 1)
  y = df['class']
  X
                                                                body_text punct%
                                                                                         body_len
  0
               Go until jurong point, crazy.. Available only ...
                                                                                 9.78
                                                                                                92
              Ok lar... Joking wif u oni...
                                                                               25.00
                                                                                                24
  1
  2
             Free entry in 2 a wkly comp to win FA Cup fina...
                                                                                 4.69
                                                                                               128
  3
               U dun say so early hor... U c already then say...
                                                                               15.38
                                                                                                39
                                                                                                49
  4
                                                                                4.08
                                                                     aro...
          Nah I don't think he
                                     goes to usf, he
                                                          lives
        This is the 2nd time we have tried 2 contact u...
  5567
                                                                                6.11
                                                                                               131
                           Will ü b going to esplanade fr home?
                                                                                                29
                                                                                3.45
  5568
         Pity, *
                    was in mood for that. So...any other s...
                                                                               14.58
                                                                                                48
  5569
                    did some bitching but I acted like i'd...
  5570
         The guy
                                                                                 1.00
                                                                                               100
                                        Rofl. Its true to its name
  5571
                                                                                4.76
                                                                                                21
 [5572 rows x 3 columns]
# Import tfidf vectorizer
 from\ sklearn.feature\_extraction.text\ import\ TfidfVectorizertfidf =
 TfidfVectorizer(analyzer=clean_text)
X trans = tfidf.fit transform(X['body text'])
X_trans.shape
(5572, 8277)
X_{\text{vect}} = \text{pd.concat}([X[['body_len', 'punct\%']])
                                    .reset index(drop=True),
                                    pd.DataFrame(X_trans.toarray())], axis=1)
X_vect.shape
(5572, 8279)
```

y.value_counts()

ham 4825 spam 747

Name: class, dtype: int64

X_vect.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5572 entries, 0 to 5571

Columns: 8279 entries, body_len to 8276dtypes:

float64(8278), int64(1) memory usage: 351.9 MB

Cross validation

X_train.shape

(4179, 8279)

 $from \ sklearn.ensemble \ import \ Random Forest Classifier clf =$

RandomForestClassifier(random_state=0) clf.fit(X_train,

y_train) RandomForestClassifier(random_state=0)

 $y_pred = clf.predict(X_test)$

from sklearn.metrics import accuracy_score, classification_reportaccuracy_score(y_test, y_pred)

0.9662598707824839

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
ham	0.96	1.00	0.98	1206
spam	1.00	0.75	0.86	187
accuracy			0.97	1393
macro avg	0.98	0.87	0.92	1393
weighted avg	0.97	0.97	0.96	1393

body_text

```
Ok lar i double check wif da hair dresser alre...
```

- As a valued customer, I am pleased to advise y...
- Today is "song dedicated day.." Which song wil...

```
new['body_len'] = new['body_text'].apply(lambda x: len(x) - x.count(" "))new['punct%'] =
new['body_text'].apply(lambda x: count_punct(x))
new_vect = tfidf.transform(new['body_text'])
sample\_vect = new
sample_vect = pd.concat([new[['body_len', 'punct%']].reset_index(drop=True),
             pd.DataFrame(new_vect.toarray())], axis=1)
sample_vect.shape(3,
```

8279)

sample_vect

	body_len	punct	0	1	2	3 4	5	6	7	8267	8268
\		%									
0	89	4.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	125	2.40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	102	9.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8269 82	70 8271	8272	8273	8274	8275	8276				
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0				

[3 rows x 8279 columns]

clf.predict(sample_vect)

array(['ham', 'spam', 'ham'], dtype=object)

PIRENS Institute of Business Management and Administration, Loni BK. Roll Number: 10097 Sign: Date: / Student Name: Yash Bora Subject Name: Knowledge Representation and Artificial Intelligence, ML, DL Program Title: Q.12 Plot the cluster data using python visualizations.

Program:

Import packages import pandas as pd # Import the dataset df = pd.read_csv('Mall Customers.csv') df.shape (200, 5)list(df.columns)

['CustomerID', 'Genre', 'Age', 'Annual Income (k\$)', 'Spending Score (1-100)']

Input data x = df.iloc[:,3:]

X Annual Income (k\$) Spending Score (1-100)39 0 15 15 1 81 2 16 6 3 77 16 4 17 40 195 79 120 28 196 126 197 74 126 198 137 18

137

[200 rows x 2 columns]

Summerize

199

df.describe()

	CustomerID	Age	Annual	Income (k\$)	Spending	Score (1-100)
count	200.000000	200.000000		200.000000		200.000000
mean	100.500000	38.850000		60.560000		50.200000
std	57.879185	13.969007		26.264721		25.823522
min	1.000000	18.000000		15.000000		1.000000
25%	50.750000	28.750000		41.500000		34.750000

83

import seaborn package

import seaborn as sns

sns.kdeplot(df['Age'])

<AxesSubplot:xlabel='Age', ylabel='Density'>

sns.kdeplot(df['Annual Income (k\$)'])

<AxesSubplot:xlabel='Annual Income

sns.kdeplot(df['Spending Score (1-100)'])

<AxesSubplot:xlabel='Spending Score (1-100)', ylabel='Density'>

sns.boxplot(df['Age'])

/home/mitu/.local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version

0.12, the only valid positional argument will be `data`, and passing otherarguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Age'>

sns.boxplot(df['Annual Income (k\$)'])

/home/mitu/.local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Annual Income (k

sns.boxplot(df['Spending Score (1-100)'])

/home/mitu/.local/lib/python3.8/site-packages/seaborn/_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Spending Score (1-100)'>


```
# Import the class
 from sklearn.cluster import KMeans
 # Create the object
 km = KMeans(n_clusters=12, random_state=0)
 # Train the algorithm
 labels = km.fit\_predict(x)
 # Sum of squared errors
 km.inertia
 15810.838613705504
 # elbow method
 sse = []
 for k in range(1,41):
      km = KMeans(n_clusters=k, random_state=0)
      labels = km.fit_predict(x) sse.append(km.inertia_)
 import matplotlib.pyplot as plt
 plt.figure(figsize=(16,9))
 plt.title('Elbow Method')
 plt.xlabel('Value of K')
 plt.ylabel('SSE')
 plt.grid()
 plt.xticks(range(1,41))
 plt.plot(range(1,41), sse, marker='o', color='r')
```

[<matplotlib.lines.Line2D at 0x7fb5f259fa60>]

Silhoutte method

from sklearn.metrics import silhouette_score

silh = []

for k **in** range(2,16):

km = KMeans(n_clusters=k, random_state=0)
labels = km.fit_predict(x)
score = silhouette_score(x, labels)
silh.append(score)

plot the silhoutte scores plt.title('Silhoutte Analysis') plt.xlabel('Value of K') plt.ylabel('Silhoutte Score') plt.xticks(range(2,16)) plt.bar(range(2,16), silh, color='g')

<BarContainer object of 14 artists>

Create the object

km = KMeans(n_clusters=5, random_state=0)

Train the algorithm

 $labels = km.fit_predict(x)$

labels

Cluster labels

km.labels_

```
array([4, 3,
             4, 3,
                    4,
                       3,
                          4, 3,
                                 4, 3,
                                        4,
                                           3,
                                               4,
                                                   3,
                                                      4,
                                                          3, 4,
                                        4, 3,
            4, 3,
                    4, 3, 4, 3,
                                 4, 3,
                                               4, 3,
                                                      4,
                                                          3, 4,
                                                                 3, 4,
                                                                        3, 4,
                    1, 1,
                          1, 1,
                                 1, 1,
                                        1, 1,
                                               1, 1,
                                                      1,
                                                          1, 1,
                                                                 1, 1,
             1, 1,
                                                                        1, 1,
             1, 1,
                    1,
                      1,
                          1, 1,
                                 1, 1,
                                        1, 1,
                                               1, 1,
                                                      1,
                                                          1, 1,
                                                                 1, 1,
                                        1, 1, 1, 1, 1, 1, 1,
            1, 1, 1, 1, 1, 1, 1,
                                                                 1, 1,
```

SSE

km.inertia_

44448.45544793369

Centroids

km.cluster_centers_

```
array([[88.2 , 17.11428571], [55.2962963 , 49.51851852], [86.53846154, 82.12820513], [25.72727273, 79.36363636], [26.30434783, 20.91304348]])
```

Extract the clusters

df[labels==2] # Boolean filtering

	CustomerID	Genre A	ge Anr	nual Income (k\$) Spending Score (1-100)123	
	124	Male	39	69	91
125	126	Female	31	70	77
127	128	Male	40	71	95
129	130	Male	38	71	75
131	132	Male	39	71	75
133	134	Female	31	72	71
135	136	Female	29	73	88
137	138	Male	32	73	73
139	140	Female	35	74	72
141	142	Male	32	75	93
143	144	Female	32	76	87
145	146	Male	28	77	97
147	148	Female	32	77	74
149	150	Male	34	78	90
151	152	Male	39	78	88
153	154	Female	38	78	76
155	156	Female	27	78	89
157	158	Female	30	78	78
159	160	Female	30	78	73
161	162	Female	29	79	83
163	164	Female	31	81	93
165	166	Female	36	85	75
167	168	Female	33	86	95
169	170	Male	32	87	63
171	172	Male	28	87	75
173	174	Male	36	87	92

175 177 179 181 183 185 187 189 191 193 195 197	176 1 178 180 182 184 186 188 190 192 194 196 198 200	Female Male Female Female Male Male Female Female Female Female Male Male Male	30 27 35 32 29 30 28 36 32 38 35 32 30	
one = df[labels	==1]			
one.shape				
(81, 5) # Export the clu one.to_csv('or				
print('Cluster- print('Cluster- print('Cluster- print('Cluster- print('Cluster-	1:', 2:', 3:',	1e 1e 1e	en(df[labels==0]) en(df[labels==1]) en(df[labels==2]) en(df[labels==3]) en(df[labels==4]))))
Cluster-0: 35 Cluster-1: 81 Cluster-2: 39 Cluster-3: 22 Cluster-4: 23				
# Prediction new = [[45, 76 km.predict(ne				
# Prediction new = [[25, 36 km.predict(ne				
# Prediction new = [[85, 76 km.predict(ne				
# Prediction new = [[45, 47 km.predict(ne				

 # Visualization of clusters plt.title('Unclustered data')plt.xlabel('Annual Income') plt.ylabel('Spending Score') plt.grid() plt.scatter(x['Annual Income (k\$)'], x['Spending Score (1-100)'])

<matplotlib.collections.PathCollection at 0x7fb5f14582e0>

Save the centroids

cent = km.cluster_centers_cent

```
array([[88.2 , 17.11428571], [55.2962963 , 49.51851852], [86.53846154, 82.12820513], [25.72727273, 79.36363636], [26.30434783, 20.91304348]])
```

Visualization of clusters

plt.title('Clustered data')
plt.xlabel('Annual Income')
plt.ylabel('Spending Score')
plt.grid()
plt.scatter(x['Annual Income (k\$)'], x['Spending Score (1-100)'],

```
c = labels, \ marker='*') \\ plt.scatter(cent[:,0], cent[:,1], s=100, \ marker='o', \ color='r') \\
```

<matplotlib.collections.PathCollection at 0x7fb5f0ed0b80>


```
# Combined plot
```


import seaborn as sns


```
131 [D
         loss:
                0.038602,
                             acc.:
                                    100.00%] [G loss: 4.238760]
132 [D
         loss:
                0.066584,
                                    98.44%] [G loss: 4.631004]
                             acc.:
133 [D
         loss:
                0.064235,
                             acc.:
                                    98.44%] [G loss: 4.729104]
134 [D
         loss:
                0.057679,
                             acc.:
                                    100.00%] [G loss: 4.399063]
135 [D
         loss:
                                    100.00%] [G loss: 3.980439]
                0.038678,
                             acc.:
136 [D
         loss:
                0.070430,
                                    96.88%] [G loss: 4.184968]
                             acc.:
137 [D
         loss:
                0.269052,
                             acc.:
                                    85.94%] [G loss: 3.930685]
138 [D
         loss:
                0.071771,
                             acc.:
                                    98.44%] [G loss: 4.210067]
139 ID
         loss:
                0.175595.
                             acc.:
                                    92.19%] [G loss: 3.578120]
140 [D
         loss:
                0.057856,
                             acc.:
                                    96.88%] [G loss: 4.090517]
141 [D
                0.091329,
                                    98.44%] [G loss: 3.495711]
         loss:
                             acc.:
142 [D
         loss:
                0.074046,
                                    98.44%] [G loss: 3.672240]
                             acc.:
143 [D
         loss:
                0.067564,
                             acc.:
                                    100.00%] [G loss: 3.488506]
144 [D
         loss:
                0.097541,
                             acc.:
                                    96.88%] [G loss: 3.927138]
145 [D
         loss:
                0.189200,
                             acc.:
                                    92.19%] [G loss: 3.607136]
146 [D
         loss:
                0.069164,
                             acc.:
                                    100.00%] [G loss: 4.224221]
147 [D
         loss:
                                    79.69%] [G loss: 2.658618]
                0.577445,
                             acc.:
148 [D
         loss:
                0.192502,
                                    92.19%] [G loss: 3.820522]
                             acc.:
149 [D
         loss:
                0.084979,
                             acc.:
                                    98.44%] [G loss: 4.757998]
150 [D
         loss:
                0.261661,
                                    92.19%] [G loss: 2.996725]
                             acc.:
151 [D
         loss:
                0.188527,
                             acc.:
                                    89.06%] [G loss: 4.621965]
152 [D
         loss:
                                    93.75%] [G loss: 3.851809]
                0.151155,
                             acc.:
153 [D
         loss:
                0.136393,
                                    93.75%] [G loss: 4.189128]
                             acc.:
154 [D
         loss:
                0.083352,
                             acc.:
                                    100.00%] [G loss: 4.461646]
155 [D
         loss:
                0.206723,
                             acc.:
                                    89.06%] [G loss: 4.497554]
156 [D
         loss:
                0.241861,
                                    89.06%] [G loss: 4.464531]
                             acc.:
157 [D
         loss:
                0.319591,
                             acc.:
                                    82.81%] [G loss: 3.933166]
158 [D
         loss:
                0.078051,
                                    100.00%] [G loss: 3.995445]
                             acc.:
159 [D
         loss:
                0.258115,
                             acc.:
                                    89.06%] [G loss: 3.682753]
160 [D
         loss:
                0.068538,
                                    98.44%] [G loss: 3.920011]
                             acc.:
161 [D
         loss:
                0.137065,
                             acc.:
                                    95.31%] [G loss: 2.958877]
                0.092553,
162 [D
         loss:
                             acc.:
                                    95.31%] [G loss: 3.897508]
163 [D
                0.243603,
         loss:
                             acc.:
                                    89.06%] [G loss: 3.506659]
164 [D
         loss:
                0.044570,
                             acc.:
                                    100.00%] [G loss: 4.298730]
165 [D
         loss:
                0.274047,
                             acc.:
                                    89.06%] [G loss: 3.803701]
166 [D
         loss:
                0.216394,
                                    90.62%] [G loss: 4.244328]
                             acc.:
167 [D
                0.938720,
         loss:
                             acc.:
                                    57.81%] [G loss: 1.454402]
168 [D
         loss:
                0.281417,
                             acc.:
                                    85.94%] [G loss: 3.043864]
169 [D
         loss:
                0.071866,
                             acc.:
                                    100.00%] [G loss: 4.173522]
170 ID
         loss:
                0.167514.
                                    95.31%] [G loss: 3.013133]
                             acc.:
171 [D
         loss:
                0.095101,
                             acc.:
                                    96.88%] [G loss: 3.071562]
172 [D
         loss:
                0.062486,
                                    98.44%] [G loss: 3.801221]
                             acc.:
173 ID
                             acc.:
         loss:
                0.169537,
                                    96.88%] [G loss: 3.312897]
174 [D
         loss:
                0.098783,
                                    96.88%] [G loss: 4.142616]
                             acc.:
175 ID
         loss:
                0.244112.
                             acc.:
                                    92.19%] [G loss: 3.173460]
176 [D
         loss:
                0.129209,
                             acc.:
                                    96.88%] [G loss: 5.158587]
177 [D
                0.785221,
         loss:
                             acc.:
                                    67.19%] [G loss: 2.247335]
178 [D
                0.319861,
                                    81.25%] [G loss: 3.888173]
         loss:
                             acc.:
```

```
179 [D loss:
                 0.074654, acc.:
                                   96.88%] [G loss: 5.345549]
180 [D loss:
                 0.378398, acc.:
                                   84.38%] [G loss: 2.330404]
181 [D loss: 0.144777, acc.: 90.62%] [G loss: 3.041365]
182 [D loss: 0.095836, acc.: 95.31%] [G loss: 4.223273]
183 [D loss: 0.157615, acc.: 96.88%] [G loss: 3.565648]
184 [D loss: 0.109397, acc.: 98.44%] [G loss: 4.065246]
185 [D loss: 0.226231, acc.: 92.19%] [G loss: 3.359378]
186 [D loss: 0.151613, acc.: 95.31%] [G loss: 4.360668]
187 [D loss: 0.582917, acc.: 70.31%] [G loss: 2.666638]
188 [D loss: 0.080962, acc.: 100.00%] [G loss: 4.300864]
189 [D loss: 0.176439, acc.: 95.31%] [G loss: 3.181917]
190 [D loss: 0.107121, acc.: 98.44%] [G loss: 3.637481]
191 [D loss: 0.209021, acc.: 92.19%] [G loss: 4.648886]
192 [D loss: 0.334682, acc.: 85.94%] [G loss: 2.255054]
193 [D loss: 0.154234, acc.: 95.31%] [G loss: 4.317871]
194 [D loss: 0.288475, acc.: 90.62%] [G loss: 2.890252]
195 [D loss: 0.113874, acc.: 98.44%] [G loss: 3.731670]
196 [D loss: 0.272280, acc.: 90.62%] [G loss: 3.698488]
197 [D loss: 0.375167, acc.: 81.25%] [G loss: 5.970434]
198 [D loss: 1.642656, acc.: 42.19%] [G loss: 1.831249]
199 [D loss: 0.910615, acc.: 62.50%] [G loss: 1.924973]
```