Problema 4 - TST2, Países Baixos 2018.
Vormos provor por indução em n que podennos segrar V em V e W +. q V=U u W e G(v) = K v = v = v = v = v = v = v = v = v = v
(U,W) = (IA), Punciono!
h=2; $A=0$
$(U,W) = (\{A\}, \{B\})$ puna'ono!
n=3: $A = B$ OU C C
$(U,W) = (\{A,B\},\{C\})$ $(U,W) = (\{C\},\{A,B\})$
Suponha que a propriedade vale para todos números monores que n. Se existe alguéra A sem amigos, considere o grafo G'=G-{A}.
Par indução, G' possui (U', W') com os propriededos desejados. Como A voio tem amigos, a partigão (U', W'U SAS) funciona!
Podemos supor que todos possuem amilgos.
Lemal: Não pode (pelo condigão do enunciado): Logenda
$A \longrightarrow B \Leftrightarrow A \sim B$ $A \longrightarrow B \Leftrightarrow A \sim B$
Leme 2 diâmetro 632
Superho que d(A,B)>2. Sep A'~A e Bl~B. Como d>2, ArB, ArB, BrA
que não pade pelo L.1.
B B) 1

Deja M o elemento com número móximo de vizinhos.
Lerma 3 Seja B tol que BAM. Todos os amigos de B são omigos de M. Em outros polovros, V(B) CV(M).
omigos de M. Em outros polovros, V(B) e V(M).
Prove: Sobernos que IV(B) (V(M)) se V(B) = V(H), an!
Coso Contrório, existe CMM e CMB.
Suponho que existe DMM e DNB.
NÃO Poole pelo L.1.
Logo, noto existe annigo de B que noto véramigo de M => V(B) (EV(M).
M (M) - 3 M ? V - V(M) - 3 M ?
Seja W''=V-V(M)-M; e G' o grafo inaluzido por V(M). Constário 4:
W" é livre de armigos:
Seja W"=V-V(M)-M; e G' o grafo inaluzido por V(M). Corolário 4: W" é livre de armigos: Provo: Suponto que B~B', B, B E W'! Mos B'E V(B) C V(M) => B'E V(M) => B'& W' Abs' i
Lemo 5: Suponho que C+D, c,DEV(M). entro E+B, YBEW". Provo: Mos C So' pode acontecer se C+B e D+B. (pelo L.1)

n-1> /v(M))>1.
Por indução, sabermos resolver o problema no grapo G', gerando (U', W). Se existe elemento FEW que é amigo de todos em U, vormos trocor (U', W') por (U'u { F}, W'-{F}). Desse modo, s.pg., todo FEW' possui um não-omigo em U'. Pelo lemo 5, como FEW => FNG, para algum GEU => Frio é amigo de ninguéram em W". Logo, FEW' não é amino de ninguém em W. Seja W=W'UW" FE W não e amigo de ningrém em W! FEW não e' omigo de ninguém em W. FE W' noo e' omigo de ningrém em W". 1 Por outro loolo, FeU' é omigo de todos em U'. Bejo U = U' U {H}

M é amigo de todos em U'CV(H) = FEU é amigo de todos em U'CV(H) | D FEU é amigo de todos em U de todos em U.

Além alisso, UUW = (U'USHS) U(W'UW") = V(H) U H U (V-V(M)-SHS) = V. Logo, (U, W) funcional.