IMPLICAÇÃO E EQUIVALÊNCIA LÓGICA

Já sabemos avaliar os valores lógicos de uma proposição composta e julgar se ela é uma tautologia, contradição ou contingência. Mas será que dada uma proposição composta conseguimos deduzir alguma coisa a respeito de outra proposição composta?

Fala Professor

5.1 Implicação Lógica

Diz-se que uma proposição P(p,q,r,...) implica logicamente ou apenas implica uma proposição Q(p,q,r,...), se Q(p,q,r,...) é verdadeira (V) todas as vezes que P(p,q,r,...) é verdadeira (V).

Conceitos

Em outras palavras, uma proposição P(p,q,r,...) implica logicamente uma proposição Q(p,q,r,...), todas as vezes que nas respectivas tabelas-verdade dessas duas proposições não aparecer V na última coluna de P e P na última coluna de P0, com P1 e P2 com valores lógicos simultâneos P3 e P4 (ALENCAR FILHO, 2003).

Representação: $P(p,q,r,...) \Rightarrow Q(p,q,r,...)$

Em particular, toda proposição implica uma tautologia e somente uma contradição implica uma contradição.

5.2 Propriedades da Implicação Lógica

A relação de implicação lógica entre proposições possui as propriedades reflexiva (R) e transitiva (T), isto é, simbolicamente.

(R)
$$P(p,q,r,...) => P(p,q,r,...)$$

(T) Se
$$P(p,q,r,...) => Q(p,q,r,...)$$
 e $Q(p,q,r,...) => R(p,q,r,...)$, então $P(p,q,r,...) => R(p,q,r,...)$

Exemplos:

(1) Considere a tabela-verdade para as proposições (p \land q), (p \lor q) e (p \longleftrightarrow q)

p	q	$p \wedge q$	$(p \lor q)$	$p \leftrightarrow q$
V	V	V	V	V
V	F	F	V	F
F	V	F	V	F
F	F	F	F	V

Vamos observar (p \land q). Esta proposição é verdadeira apenas na 1ª linha. Nesta mesma linha, p, q, (p \lor q) e (p \land q) são também verdadeiras. Quer dizer, (p \land q) implica logicamente em p, por exemplo. Assim, podemos escrever: (p \land q) \Longrightarrow p.

As mesmas tabelas-verdade demonstram importantes regras de inferência:

$$p \mathop{\Longrightarrow} p \vee q \quad e \qquad q \mathop{\Longrightarrow} p \vee q \quad (Adição)$$

$$p \land q \Longrightarrow p$$
 e $p \land q \Longrightarrow q$ (Simplificação)

(2) Seja a tabela-verdade da proposição ($p \lor q$) $\land \neg p$:

p	q	$p \lor q$	~p	$(p \lor q) \land \sim p$
V	V	V	F	F
V	F	V	F	F
F	V	V	V	V
F	F	F	V	F

Ela é verdadeira apenas na linha 3, em que q também é verdadeira. Logo existe a seguinte implicação lógica:

$$(p \lor q) \land \neg p \Longrightarrow q \quad e \quad (p \lor q) \land \neg q \Longrightarrow p \quad (Regra do Silogismo Disjuntivo)$$

(3) Seja a tabela-verdade da proposição $(p \rightarrow q) \land p$:

p	q	$p \rightarrow q$	$(p \rightarrow q) \land p$
V	V	V	V
V	F	F	F
F	V	V	F
F	F	V	F

Ela é verdadeira apenas na linha 1, em que $\bf q$ também é verdadeira. Logo existe a seguinte implicação lógica:

$$(p \rightarrow q) \land p \Longrightarrow q$$
 (Regra Modus Ponens)

(4) Sejam as tabelas-verdade das proposições $(p \rightarrow q) \land \neg q e \neg p$:

p	q	$p \rightarrow q$	~q	$(p \rightarrow q) \land \sim q$	~p
V	V	V	F	F	F
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

Ela é verdadeira apenas na linha 4, em que $\sim p$ também é verdadeira. Logo existe a seguinte implicação lógica:

$$(p \rightarrow q) \land \neg q \Longrightarrow p$$
 (Regra Modus tollens)

5.3 Tautologias e Implicação Lógica

Teorema: Dizemos que a proposição P(p, q, r, ...) **implica** a proposição Q(p, q, r, ...), ou seja $P(p, q, r, ...) \Rightarrow Q(p, q, r, ...)$, se e somente se a condicional $(p, q, r, ...) \rightarrow Q(p, q, r, ...)$ é tautológica.

Observe que os símbolos \rightarrow e => são diferentes. O primeiro é de operação lógica e o segundo é de relação.

Exemplo:

A proposição (p <-> q) ^ p implica a proposição q, pois a condicional (p <-> q) ^ p -> q é tautológica.

p	q	p <-> q	(p <-> q) ^ p	$(p < -> q) \land p -> q$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	V	F	V

Ou seja: $(p < -> q) \land p => q$.

Atividades

ATIVIDADE 6 - Para exercitar, vamos realizar algumas das atividades propostas por (PINHO, 1999, p. 53):

- 1. Utilizando tabelas-verdade, verifique se existem as relações de implicação lógica seguintes:
- (a) $p \land q \Rightarrow q \land p$
- (b) \sim (p \wedge q) \Longrightarrow \sim p \vee \sim q
- (c) $p \rightarrow q \land r \rightarrow \sim q \Longrightarrow r \rightarrow \sim p$
- $(d)\,{\scriptstyle{\sim}} p \wedge (\,{\scriptstyle{\sim}} q {\,\longrightarrow\,} p\,) \Longrightarrow {\scriptstyle{\sim}} (p \wedge {\scriptstyle{\sim}} q)$
- 2. Mostrar que:
- (a) $q \Rightarrow p \rightarrow q$ (b) $q \Rightarrow p \land q \leftrightarrow p$
- 3. Mostrar que $p \leftrightarrow \sim q$ não implica $p \rightarrow q$.
- 4. Mostrar $(x \neq y \rightarrow x = y) \land x \neq y \Longrightarrow x = 0$.

5.4 EQUIVALÊNCIA LÓGICA

Conceitos

Uma proposição P(p,q,r...) é logicamente equivalente a uma proposição Q(p,q,r...), se as tabelas-verdade destas duas proposições são idênticas.

Representação: P(p,q,r,...) ⇔ Q(p,q,r,...)

Em particular, se as proposições P e Q são ambas tautológicas ou são ambas contradições, então são equivalentes.

5.5 Propriedades da Equivalência Lógica

Vamos relacionar algumas propriedades:

- Reflexiva (a proposição é equivalente a ela mesma): P(p,q,r..)
 P(p,q,r..)
- **Simétrica** (se uma proposição equivale a uma outra, esta outra equivale à primeira):

Se
$$P(p,q,r..) \Leftrightarrow Q(p,q,r..)$$
 então $Q(p,q,r..) \Leftrightarrow P(p,q,r..)$

• Transitiva (se uma proposição equivale a uma segunda, e a segunda proposição é equivalente à uma terceira, a primeira equivale à terceira):

Se
$$P(p,q,r..) \Leftrightarrow R(p,q,r..)$$
 e $R(p,q,r..) \Leftrightarrow Q(p,q,r..)$ então $P(p,q,r..)$ ó $Q(p,q,r..)$

5.6 Exemplos

(1) Regra da dupla negação

As proposições $\sim p e p$ são equivalentes, ou seja, $\sim p \Leftrightarrow p$:

p	~p	~~p
V	F	V
F	V	F

(2) Regra de CLAVIUS

As proposições $\sim p \rightarrow p$ e p são equivalentes, ou seja, $\sim p \rightarrow p \Leftrightarrow p$:

p	~p	$\sim p \rightarrow p$
V	F	V
F	V	F

(3) Regra de absorção

As proposições $\mathbf{p} \rightarrow \mathbf{p} \wedge \mathbf{q}$ e $\mathbf{p} \rightarrow \mathbf{q}$ são equivalentes:

p	q	$p \wedge q$	$p \rightarrow p \land q$	$p \rightarrow q$
V	V	V	V	V
V	F	F	F	F
F	V	F	V	V
F	F	F	V	V

5.7 Tautologias e Equivalência Lógica

Conceitos

Teorema: Dizemos que a proposição P(p, q, r, ...) é equivalente a proposição Q(p, q, r, ...), ou seja P(p, q, r, ...) \Leftrightarrow Q(p, q, r, ...), se e somente se a bicondicional (p, q, r, ...) \leftrightarrow Q(p, q, r, ...) é tautológica (ALENCAR FILHO, 2003).

Portanto, toda equivalência lógica corresponde a uma bicondicional tautológica e vice-versa. Isso acontece, porque, se duas proposições P \Leftrightarrow Q, então não ocorre o caso em que P e Q apresentam valores lógicos diferentes. Desse modo P \Leftrightarrow Q é uma tautologia.

Atenção

Observe que os símbolos ↔ e ⇔ são diferentes. O primeiro é de operação lógica e o segundo é de relação.

Exemplo:

A bicondicional $(p \land \neg q \rightarrow c) \leftrightarrow (p \rightarrow q)$, onde $c \in uma$ proposição com valor lógico F, é tautológica, pois a última coluna da tabela-verdade tem apenas a letra V. Portanto, as proposições $p \land \neg q \rightarrow c \in p \rightarrow q$ são equivalentes, ou seja, $(p \land \neg q \rightarrow c) \Longleftrightarrow (p \rightarrow q)$.

Nesta equivalência consiste o método de demonstração por absurdo.

ATIVIDADE 7:

1. Construa a tabela-verdade do exemplo acima.

5.8 Proposições Associadas a uma Condicional

Dada a condicional $\mathbf{p} \rightarrow \mathbf{q}$, temos as seguintes proposições associadas:

- Proposição recíproca de p \rightarrow q: q \rightarrow p
- Proposição contrária de p \rightarrow q: \sim p \rightarrow \sim q
- Proposição contrapositiva de p → q: ~q → ~p

ATIVIDADE 8:

1. Construa as tabelas-verdade das proposições acima.

Atividades

5.9 Negação Conjunta de Duas Proposições

Negação conjunta – de duas proposições \mathbf{p} e \mathbf{q} é a proposição não \mathbf{p} e não \mathbf{q} , ou seja, $\sim \mathbf{p} \wedge \sim \mathbf{q}$. Também indicada pela notação: $\mathbf{p} \downarrow \mathbf{q}$.

Conceitos

Portanto temos: $\mathbf{p} \downarrow \mathbf{q} \Leftrightarrow \mathbf{p} \land \mathbf{q}$

ATIVIDADE 9:

1. Construa a tabela-verdade da proposição anterior.

Atividades

5.10 Negação Disjunta de Duas Proposições

Conceitos

Negação disjunta – de duas proposições p e q é a proposição não p ou não q, ou seja, $\sim p \lor \sim q$. Também indicada pela notação: $p \uparrow q$.

Portanto temos: $\mathbf{p} \uparrow \mathbf{q} \Leftrightarrow \mathbf{p} \lor \mathbf{q}$

Atividades

ATIVIDADE 10 - Para exercitar, vamos realizar algumas das atividades propostas por (PINHO, 1999, p. 63):

- 1. Construa a tabela-verdade da proposição acima.
- 2. Mostrar que as proposições **p** e **q** são equivalentes (**p** \Leftrightarrow **q**) nos seguintes casos:

(a)
$$p: 1 + 3 = 4$$
;

$$q: (1+3)^2 = 16$$

(b) p:
$$sen^0 = 1$$
;

$$q: cos^0 = 0$$

q:
$$x + 1$$
 é impar ($x \in \mathbf{Z}$)

- 3. Exprimir a bicondicional p \leftrightarrow q em função dos conectivos: ∧, ∨ e ~.
- 4. Demonstrar, por tabelas-verdade, as seguinte equivalências:

(a)
$$p \land (p \lor q) \Leftrightarrow p$$

(a)
$$p \land (p \lor q) \Leftrightarrow p$$
 (b) $(p \to q) \lor (p \to r) \Leftrightarrow p \to q \lor r$

5. Demonstrar através de tabelas-verdade, que os três conectivos ∨ e ~ exprimem-se em função do conectivo ↑, do seguinte modo:

(a)
$$\sim p \Leftrightarrow p \uparrow p$$

(a)
$$\sim p \Leftrightarrow p \uparrow p$$
 (b) $p \lor q \Leftrightarrow (p \uparrow p) \uparrow (q \uparrow q)$

6. Sabendo que o valor lógico das proposições **q** e **p** são verdadeiras e de **r** é **falsa**, determine o valor lógico das seguintes proposições:

(a)
$$((p \uparrow q) \land (q \uparrow \sim r)$$

(a)
$$((p \uparrow q) \land (q \uparrow \sim r)$$
 (b) $(\sim p \uparrow \sim q) \longleftrightarrow ((q \downarrow r) \downarrow p)$

Indicacões

Para maior compreensão, ler os capítulos 5 – Implicação Lógica e 6 - Equivalência Lógica do livro Alencar Filho, Edgard de. Iniciação à lógica matemática. São Paulo: Nobel, 2003.