Bölüm 1: Giriş

İşletim Sistemleri

Modern Bilgisayarın Bileşenleri:

- Bir veya daha fazla işlemci
- Ana bellek
- Diskler
- Yazıcılar
- Klavye
- Fare
- Ekran
- Ağ arayüzleri
- G/Ç cihazları

İşletim Sistemi

- Modern bilgisayar çok karmaşıktır.
- Uygulama programcısının her detayı bilmesi imkansızdır.
- Kaynakları daha iyi, daha basit, ve daha sade yönetebilmek için bir bilgisayar yazılımı katmanı gereklidir.
- Çeşitli işletim sistemleri; Windows, Linux, MacOS
- Kullanıcı, kabuk veya GKA ile etkileşime girer.
- Kabuk ve GKA işletim sisteminin bir parçası mı?
- Aygıt sürücüsü işletim sisteminin bir parçası mı?

İşletim Sistemi Nerede Yer Alır

- Bilgisayar donanımı ve yazılım arasında bir arayüzdür.
- Donanım, fiziksel olarak mevcut olan bileşenleri (örneğin CPU, RAM, diskler) temsil eder.
- Yazılım ise, bilgisayarın yapabileceği işlemleri yürütmek için yazılmış kodları içerir.
- Donanımın yazılım tarafından nasıl kullanılacağını yönetir.
- İşletim sistemi, yazılımın donanımı kullanmasını kontrol ederken, aynı zamanda donanımın kullanımını optimize eder ve sistemin güvenliğini sağlar.

İşletim Sistemi Nerede Yer Alır

İşletim Sistemi Nerede Yer Alır

Banking system	Airline reservation	Web browser	Application programs
Compilers	Editors	Command interpreter	System
Operating system			programs
Machine language			
Microarchitecture			Hardware
Physical devices			

Çekirdek Modu ve Kullanıcı Modu

• Çoğu bilgisayarın iki çalışma modu vardır:

- İşletim sistemi, tüm donanıma tam erişime sahip olan ve herhangi bir talimatı yürütebilen çekirdek modunda çalışır.
- Yazılımın geri kalanı, sınırlı kapasiteye sahip kullanıcı modunda çalışır.
- Kabuk veya GKA, kullanıcı modu yazılımının en düşük seviyesidir.

Genişletilmiş Makine Olarak İşletim Sistemi

- Donanımın üstüne inşa edilmiş bir yazılımdır.
- Bilgisayar donanımını kullanmayı kolaylaştırır.
- Donanımın özelliklerini ve yeteneklerini kullanılabilir hale getirir.
- Donanımın özelliklerini gizler ve direk kullanmasını engeller.
- İşletim sistemi arayüzünü kullanmak daha kolaydır.
- İşletim sistemleri çirkin donanımları güzel soyutlamalara dönüştürür.

Genişletilmiş Makine Olarak İşletim Sistemi

Genişletilmiş Makine Olarak İşletim Sistemi

Soyutlama:

- İşlemci süreç
- Depolama dosya
- Bellek adres uzayı

• 4 tip çalışan:

- Donanım tasarımcısı
- Çekirdek tasarımcısı
- Uygulama geliştirici
- Son kullanıcı

Kaynak Yöneticisi Olarak İşletim Sistemi

- İşletim sistemi, bilgisayar donanımının kaynaklarını etkili bir şekilde yönetir. Kaynak kullanımını optimize eder. Kaynakların uygulamalar arasında adil bir şekilde dağıtımını sağlar.
- Üstten aşağıya bakış açısı:
 - Uygulama programları için soyutlamalar sağlar
- Aşağıdan yukarıya bakış açısı:
 - Karmaşık sistemin parçalarını yönetir
- Alternatif bakış açısı:
 - Kaynakların düzenli ve kontrollü dağıtımını sağlar.

Kaynak Yöneticisi Olarak İşletim Sistemi

- Birden çok programın aynı anda çalışmasına izin verir.
- Bellek, G/Ç cihazları ve diğer kaynakları yönetir ve korur.
- Kaynakları iki farklı şekilde paylaşır.
 - Zaman
 - Boşluk
- Birçok program aynı anda yazdırmak isterse ne olur?
- Her sürecin kaynak kullanımı/ihtiyacı nasıl hesaplanır?
- Kaynaklar çoklanırsa, adalet ve verimlilik nasıl sağlanır?

İşletim Sistemlerinin Tarihi

- İlk jenerasyon (1945-55)
 - vakum tüpleri
- İkinci jenerasyon (1955-65)
 - transistörler ve batch sistemleri
- Üçüncü jenerasyon (1965-1980)
 - IC'ler ve çoklu programlama
- Dördüncü jenerasyon (1980-günümüz)
 - kişisel bilgisayarlar
- Beşinci jenerasyon (1990-günümüz)
 - mobil bilgisayarlar

Vakum Tüpleri

- Büyük ve yavaş
- Mühendisler tasarlar, inşa eder, çalıştırır ve bakımını yapar
- Makine diliyle veya kablolar kullanılarak programlanır
- Takılabilir kartlar ile çalışır
- Ağırlıklı olarak sayısal hesaplamalar yapar

Transistörler ve Batch Sistemleri

- Transistörlerin icadı ile birlikte ikinci jenerasyon işletim sistemleri ortaya çıktı. Transistörler, vakum tüplerin yerini aldılar
 - daha küçük, daha güvenilir ve daha enerji verimli
- Batch sistemler, işlemlerin toplu olarak yürütülmesini sağlar. İşlemler işlem kuyruğuna eklenir ve işletim sistemi sırayla yürütür.
 - İşlemlerin paralel olarak yürütülmesini engeller.
 - İşlemlerin manuel olarak yürütülmesini gerektirir.
 - Veri işleme, hesaplama ve raporlama gibi işlemler için kullanılır
 - Gerçek zamanlı işlemler için uygun değildir.

Transistörler ve Batch Sistemleri

- Eski bir batch sistemi.
- (a) Programcılar 1401'e kartlar getirir.
- (b) 1401, iş kartlarını tape'e okur.

Transistörler ve Batch Sistemleri

- (c) Girdi bandının 7094'e taşınması.
- (d) 7094 hesaplamaları yapar.
- (e) Çıktı bandının 1401'e taşınması.
- (f) 1401 çıktıyı yazdırır.

1401

Printer

Tipik bir FMS işinin yapısı

FMS (Flexible manufacturing system)

Bütünleşik Devreler ve Çoklu Programlama

- Bütünleşik devrelerin (IC) icadı ile birlikte üçüncü jenerasyon işletim sistemleri ortaya çıktı. IC'ler transistörlerin yerini aldı.
 - daha küçük, daha güvenilir ve daha enerji verimli
- Çoklu programlama, birden fazla işlemi aynı anda yürütmek için kullanılır.
 - Dinamik olarak işlemlerin ağırlıklarının ayarlanmasını sağlar.
 - İşlemler arasında eşitliği sağlar ve işlemlerin paralel olarak yürütülmesini sağlar.
 - Gerçek zamanlı işlemler için uygun.

Bütünleşik Devreler ve Çoklu Programlama

• Bellekte üç işi olan bir çoklu programlama sistemi.

Kişisel Bilgisayarlar

- Bilgisayarlar 3. nesle benzer performansa sahiptir, ancak fiyatları büyük ölçüde düşmüştür
- CP/M: İlk disk tabanlı işletim sistemi
- 1980, IBM PC, Basic Interpreter, DOS, MS-DOS
- GUI, Lisa, Apple: kullanıcı dostu
- Grafik arayüzlü MS-DOS, Win95/98/ME, winNT/XP

Kişisel Bilgisayarın Bazı Bileşenleri

İşlemciler

- Bilgisayarın en önemli bileşenidir ve tüm işlemleri yürütmek için kullanılır.
- İşlemci,
 - bilgisayar kodunu anlar
 - kodu yürütmek için gerekli olan işlemleri gerçekleştirir.
 - çok çekirdekli yapıda olabilir ve birden fazla işlemi aynı anda yürütebilir.
 - hız, çekirdek sayısı, önbellek boyutu, veri yolu genişliği ve diğer özellikler açısından değişebilir.

İşlemciler

- Bilgisayarın beyni
- Komutu bellekten alır ve yürütür
- CPU Döngüsü:
 - Getir (fetch), kodunu çöz (decode), yürüt (execute)
- CPU, değişken ve geçici sonuçları saklamak için yazmaçlara sahiptir:
 - Bellekten yazmaca yükle
 - Yazmaçtan belleğe sakla
- Program sayacı: işletilecek bir sonraki komut
- Yığıt işaretçisi: geçerli yığıtın en üstü
- PSW: program durum sözcüğü, öncelik, mod, ...

İşlemciler

- (a) Üç aşamalı bir boru hattı (pipeline).
- (b) Bir superscalar CPU

Bellek

- İşlemciler tarafından okunabilecek ve yazılabilecek verileri geçici olarak saklamak için kullanılan bileşendir.
- RAM (Random Access Memory) olarak da adlandırılır.
- Bellek boyutu, bilgisayarın performansını ve kullanılabilirliğini etkiler.
- Bellek, işlemler arasında verileri paylaşmayı ve hızlı erişimi sağlar.

Bellek

- (a) Paylaşımlı L2 önbellekli bir dört çekirdekli chip.
- (b) Ayrı L2 önbellekli dört çekirdekli chip.

Ana Bellek

- RAM, (random access memory)
 - değiştirilebilir, hızlı, pahalı
- ROM, (read only memory)
 - değiştirilemez, hızlı, ucuz
 - BIOS, İşletim sistemi yükleyici ..
- EEPROM (Electrically Erasable Programmable ROM)
 - Yeniden yazılabilir, yavaş
 - Taşınabilir müzik oynatıcılarındaki diskler ..

Bellek

Tipik bir bellek hiyerarşisi. Numaralar çok yaklaşık tahminlerdir.

Bellek

- Bellek, bilgisayarın verileri alıp depoladığı yerdir
- İdeal olarak, çip şeklinde ve büyük olmalıdır
- Bellek hiyerarşisi göz önünde bulundurulmalıdır
- Önbellek satırları:
 - Bellek, önbellek satırlarına bölünür; en çok kullanılanlar önbellekte saklanır
 - Cache hit/miss, aranan verinin önbellekte olup/olmaması
 - Performansı artırmak için kullanılır

Önbellek

- Ana bellek, önbellek satırlarına bölünmüştür (64 bayt)
 - 1. satırda 0-63, 2. satırda 64-127
- Program bir sözcük (word) okuduğunda, donanım önbellekte olup olmadığını kontrol eder.
 - Önbellekte ise, cache hit olur (2 döngü cycle)
 - Değilse, veri yolu üzerinden ana bellekten talep et (maliyetli)
- Önbellek pahalı olduğundan boyutu sınırlıdır
- Önbellek hiyerarşilere sahip olabilir

Önbellekleme sistemi sorunları

- Yeni bir öğe önbelleğe ne zaman yerleştirilmeli?
- Yeni öğe hangi önbellek satırına koyulmalı?
- Yer açmak için önbellekten hangi öğe çıkarılmalı?
- Çıkarılan öğe bellekte nereye yerleştirilmeli?

Disk

- Verileri uzun vadeli saklamak için kullanılan cihazlardır.
- Okuma ve yazma işlemleri için veriler disk plakaları üzerinde saklanır.
- Disk sürücüleri, farklı boyutlarda ve kapasitelerde olabilir.
- Disk sürücüsü yapısı, disk plakası, okuyucu/yazıcı kafası, motor ve kontrol elemanlarından oluşur.
 - Disk plakası, verileri saklamak için kullanılan alandır.
 - Okuyucu/yazıcı kafası, verileri okuma ve yazma işlemleri için kullanılır.
 - Motor, disk plakasını döndürür ve okuyucu/yazıcı kafasını hareket ettirir.
 - Kontrol elemanları, disk sürücüsünün işlemlerini yönetir.

Disk

- Ucuz, büyük, Yavaş
- Mekanik hareketlere ihtiyaç
- Bir veya daha fazla kez tabla döndürme
- Arm, track, cylinder, sector, head, checksum
 - y diskinde x sektörünü oku komutunu alır. x ve y bilgisini [cylinder, sector, head] adres şekline çevirir. Kolu doğru silindire hareket ettirir. Kafanın doğru sektör üzerine gelmesini bekler. Sürücüden gelen bitleri okur ve saklar. Sağlama yapar. Okunan bitleri sözcük olarak bellekte saklar.
- Disk, Sanal Belleğin uygulanmasına yardımcı olur
 - Yeterli bellek olmadığında, depolama alanı olarak diskler kullanılır.

Disk Sürücüsünün Yapısı

G/Ç Cihazları

- Bilgisayarın veri alma ve veri gönderme işlemlerini gerçekleştirmek için kullandığı cihazlardır.
- Dış dünya ile bilgisayar arasındaki veri transferini sağlar.
- Çeşitli tipte olabilir: Klavye, fare, ekran, yazıcı, tarayıcı, ses kartı, kameralar, vb.
- İşletim sistemi tarafından yönetilir ve kullanıcının cihazları kullanmasına izin verir.
- Bilgisayarın performansını ve kullanılabilirliğini etkiler.

G/Ç Cihazları

- İki parça: bir denetleyici ve bir aygıt
- Denetleyici: işletim sistemine daha basit bir arayüz sağlar
- Aygıt sürücüsü: denetleyiciyle konuşur, komut verir ve yanıt alır
- Meşgul bekleme/kesme/DMA

Aygıt Sürücüsü

- İşletim sistemi denetleyiciyle konuşur. (komut verir, yanıt alır)
- Denetleyici üreticileri, her işletim sistemi için bir sürücü sağlar
- Sürücü, çekirdek modunda çalışır
- Denetleyici, sürücüyle iletişim kurmak için yazmaçlar kullanır.
- Üç iletişim modu
 - Sorgulama (polling)
 - Kesmeler (interrupt)
 - DMA

G/Ç Cihazları - Sorgulama

- Sürücü, denetleyiciye komut verir
- Sürücü, aygıt hazır olana kadar sorgular
 - Örneğin, bir sonraki karakteri kabul etmeye hazır olana kadar yazıcı denetleyicisine karakter gönder ve sorgula
- Büyük CPU kullanımı
 - Programlanmış G/Ç olarak adlandırılır, artık kullanılmıyor

G/Ç Cihazları - Kesme

G/Ç cihazını başlatma ve bir kesme alma adımları

G/Ç Cihazları - Kesme

- Kesme işleme,
 - kesmeyi alma
 - kesme işleyicisini çalıştırma
 - kullanıcı programına dönme
- G/Ç işlemi bittiğinde kesme üret
- İşlem yapılırken işlemcinin başka işler yapmasına izin ver.

G/Ç Cihazları - DMA

- Özel (denetleyici) yonga
- Bellek ile veri transferinde işlemci kullanmaktan kaçınır
- İşlemci, yongaya aktarım hakkında gerekli bilgileri verir
- Yonga işlem bittiğinde kesme üretir.

Veriyolları

- Veriyolları, bilgisayar bileşenleri arasında veri ve sinyallerin taşınması için kullanılan yapılardır. Örneğin, işlemci, bellek, G/Ç cihazları arasında veri taşır.
- Genişliği ve hızı açısından değişebilir. Örneğin, PCI, PCI-Express, USB gibi.
- Veri taşınma yönetiminden işletim sistemi sorumludur.
- Bilgisayarın performansını ve kullanılabilirliğini etkiler.
- Eskiden bir veri yolu vardı, yetmeyince daha hızlı (PCI), özelleştirilmiş (SCSI, USB) veri yolları çıktı.

X86 Sistem Yapısı

Pentium Sistem Veriyolları

Bilgisayarın Ayağa Kalkması

- BIOS: temel giriş/çıkış sistemi
- Ana kartta yer alır, düşük seviye G/Ç yazılımı
- Bellek, klavye ve diğer temel cihazları kontrol eder
- Önyükleme aygıtını belirler (disket, CD-ROM, disk)
- Önyükleme aygıtının ilk sektörü belleğe okunur
- Sektör, hangi bölümün aktif olduğunu kontrol etmek için program içerir
- Ardından, ikincil bir önyükleyici belleğe okunur
- İşletim sistemi aktif bölümden okunur.

İşletim Sistemi Çeşitleri

- Anabilgisayar (mainframe)
- Sunucu (server)
- Çoklu işlemci (multiprocessor)
- Kişisel (personal)
- Mobil (handheld)
- Gömülü (embedded)
- Algılayıcı düğüm (sensor node)
- Gerçek zamanlı (real-time)
- Akıllı kart (smart card)

Anabilgisayar (mainframe) İşletim Sistemi

- Büyük ve karmaşık bilgisayar sistemleri için tasarlanmıştır.
- Çoklu kullanıcı ve çoklu işlem desteği sunar.
- Yüksek performans, yüksek güvenilirlik ve yüksek kullanılabilirlik için tasarlanmıştır.
- Büyük veri setleri ve yüksek trafikli işlemler için kullanılır.
- Endüstriyel ve kurumsal uygulamalar için kullanılır.
- IBM z/OS, Unisys MCP, Fujitsu BS2000/OSD ...

Sunucu (server) İşletim Sistemi

- Çoklu kullanıcı, çoklu işlem ve yüksek kullanılabilirlik için optimize edilmiştir.
- Sunucu cihazlarında veri depolama, dosya paylaşımı, veritabanı işlemleri, web sunucusu hizmetleri ve diğer hizmetleri sağlar.
- Sunucu işletim sistemleri, kurumsal ve endüstriyel ortamlarda yaygın olarak kullanılır.
- Kuruluşların veri merkezleri, bulut bilişim ve diğer hizmetleri sağlamak için kullanılır.
- Windows Server, Linux, UNIX ...

Çoklu işlemci (multiprocessor) İşletim Sistemi

- Birden fazla işlemciye sahip bilgisayarlarda paralel işlemleri gerçekleştirmek için kullanılır.
- İşlemlerin işlemci üzerinde aynı anda çalışmasını sağlar ve bu sayede işlemlerin hızını arttırır.
- Linux, UNIX, Windows ...

Kişisel (personal) İşletim Sistemi

- Ev kullanıcıları, öğrenciler ve küçük işletmeler için tasarlanmıştır.
- Kullanıcıların çeşitli uygulamaları ve yazılımları yüklemek, internette gezinmek ve dosyaları yönetmek gibi işlemleri gerçekleştirmek için kullanılır.
- Kullanıcı dostu arayüzler ve kolay kullanımı sunar.
- Windows, MacOS, Linux ...

Mobil (handheld) İşletim Sistemi

- Taşınabilir cihazlar için tasarlanmıştır. (akıllı telefonlar, tabletler)
- İnternet erişimi, e-posta, sosyal medya, navigasyon, müzik ve video oynatma gibi hizmetler sağlar.
- iOS, Android, Windows Phone ...

Gömülü (embedded) İşletim Sistemi

- Otomatikleştirilmiş sistemler, cep telefonları, ev otomasyonu, araba sistemleri, hava taşıtları gibi cihazlar için tasarlanmıştır.
- Sistem ve cihazların özelliklerini optimize etmek için tasarlanmıştır.
- Linux, VxWorks, QNX ...

Algılayıcı düğüm (sensor node) İşletim Sistemi

- Sensör, IoT, M2M ağları için tasarlanmıştır.
- Sensör verilerini toplamak, işlemek ve iletmek için kullanılır.
- Enerji verimliliği ve güç tüketimi için optimize edilmiştir.
- TinyOS, Contiki, RIOT ...

Gerçek zamanlı (real-time) İşletim Sistemi

- Zaman kritik işlemlerin zamanında yerine getirilmesi için gerçek zamanlı uygulamalar tarafından kullanılır.
- Ses, video, hareket ve diğer sensör verilerini işlemek için kullanılır.
- Tahmin ve kontrol uygulamaları, otomatik sistemler, tren kontrol sistemleri, askeri araçlar gibi alanlarda kullanılır.
- VxWorks, QNX, RTLinux ...

Akıllı kart (smart card) İşletim Sistemi

- Akıllı kartlar, küçük boyutlu ve güvenli cihazlar için tasarlanmıştır.
- Kimlik doğrulama, para transferi, elektronik para, kriptografik işlemler ve güvenli veri depolama için kullanılır.
- Kredi kartları, banka kartları, yolcu uçuş kartları, kimlik kartları ve diğer kartlar için kullanılır.
- JavaCard, MULTOS ...

Süreçler

- İşletim sistemi tarafından yürütülen programlardır, işletim sistemi tarafından yönetilir.
- Bir programın çalıştırılabilmesi için gerekli tüm bilgiyi tutan konteyner olarak düşünülebilir. Süreç tablosunda tutulurlar.
- İşletim sistemi tarafından atanmış kaynaklar (örneğin bellek, CPU) ile ilişkilidir. Diğer süreçlerle konuşabilirler (IPC).
- Bellekte saklanır ve yürütülürler. Adres uzayı ile ilişkilidir.
- Adres uzayı: 0-4G, yürütülebilir program, programın verileri ve yığını
- Yazmaçlar, dosyalar, alarmlar, ilgili süreçler...

Süreçler

Süreç ağacı. A süreci, B ve C olmak üzere 2 çocuk süreç başlatır. B süreci D, E ve F olmak üzere 3 çocuk süreç başlatır.

Adres Uzayı

- Kavram olarak bir süreç tarafından kullanılan bellek
- İşletim sistemi, bellekte aynı anda birden çok sürece izin verir
- Bazı işlemler, fiziksel olarak mevcut olandan daha fazla belleğe ihtiyaç duyar, bu durumda sanal bellek devreye girer.

- Veri depolama birimleridir.
- Dosyalar, veri, metin, resim, video, ses ve diğer türlerde olabilir.
- İşletim sistemi tarafından yönetilir ve veri depolama işlemleri gerçekleştirilir.
- İşletim sistemi tarafından belirlenen dizin yapısına göre saklanır.
- Kullanıcılar tarafından erişilebilir, okunabilir, yazılabilir veya silinebilir.
- Blok tabanlı (disk), karakter tabanlı (yazıcı, modem) olabilir.

• Örnek dosya sistemi.

- (a) Bağlamadan (mount) önce, CD-ROM'daki dosyalara erişilemez.
- (b) Bağlandıktan sonra, dosya hiyerarşisinin bir parçasıdırlar.

• 2 süreç boru (pipe) ile bağlanmış

- Sistem çağrıları, işletim sistemi tarafından sağlanan hizmetlere erişmek için kullanılır. Örneğin, dosya işlemleri, bellek yönetimi, zaman hizmetleri, vb.
- İşletim sistemi tarafından tanımlanmış bir arayüze göre gerçekleştirilir.
- Sistem çağrıları, uygulama programları tarafından kullanılır ve işletim sistemi tarafından yürütülür.
- Sistem çağrıları sistemden sisteme değişir, ancak temel kavramlar benzerdir.

read(fd, buffer, nbytes) sistem çağrısının adım adım gösterimi

Başlıca POSIX sistem çağrıları. Hata durumunda -1 döner.

pid: işlem kimliği.

s: geri dönüş kodu

Process management

Call	Description
pid = fork()	Create a child process identical to the parent
pid = waitpid(pid, &statloc, options)	Wait for a child to terminate
s = execve(name, argv, environp)	Replace a process' core image
exit(status)	Terminate process execution and return status

- fd: dosya tanıtıcı,
- n: bayt sayısı,
- position: dosya içinde göreli konum (offset).

File management

Call	Description
fd = open(file, how,)	Open a file for reading, writing, or both
s = close(fd)	Close an open file
n = read(fd, buffer, nbytes)	Read data from a file into a buffer
n = write(fd, buffer, nbytes)	Write data from a buffer into a file
position = lseek(fd, offset, whence)	Move the file pointer
s = stat(name, &buf)	Get a file's status information

Directory and file system management

Call	Description
s = mkdir(name, mode)	Create a new directory
s = rmdir(name)	Remove an empty directory
s = link(name1, name2)	Create a new entry, name2, pointing to name1
s = unlink(name)	Remove a directory entry
s = mount(special, name, flag)	Mount a file system
s = umount(special)	Unmount a file system

seconds: geçen süre

Miscellaneous

Call	Description
s = chdir(dirname)	Change the working directory
s = chmod(name, mode)	Change a file's protection bits
s = kill(pid, signal)	Send a signal to a process
seconds = time(&seconds)	Get the elapsed time since Jan. 1, 1970

Süreç Yönetimi

```
#define TRUE 1
                                                      /* repeat forever */
while (TRUE) {
                                                      /* display prompt on the screen */
     type_prompt();
                                                      /* read input from terminal */
     read_command(command, parameters);
     if (fork()!= 0) {
                                                      /* fork off child process */
        /* Parent code. */
         waitpid(-1, &status, 0);
                                                      /* wait for child to exit */
     } else {
         /* Child code. */
         execve(command, parameters, 0);
                                                      /* execute command */
```

Süreçlerin Bellek Yönetimi

• Süreçler 3 kesime sahiptir. metin, veri, yığın

Dizin Yönetimi

- (a) usr/jim/memo'yu ast'nin dizinine bağlamadan önce.
- (b) bağlandıktan sonra.

Dizin Yönetimi

- (a) Bağlamadan önce dosya sistemi
- (b) Bağlamadan sonra

(a)

Kilitlenme (Deadlock)

- (a) Potansiyel kilitlenme
- (b) Gerçekleşmiş kilitlenme

The Windows Win32 API

UNIX	Win32	Description				
fork	CreateProcess	Create a new process				
waitpid	WaitForSingleObject	Can wait for a process to exit				
execve	(none)	CreateProcess = fork + execve				
exit	ExitProcess	Terminate execution				
open	CreateFile	Create a file or open an existing file				
close	CloseHandle	Close a file				
read	ReadFile	Read data from a file				
write	WriteFile	Write data to a file				
Iseek	SetFilePointer	Move the file pointer				
stat	GetFileAttributesEx	Get various file attributes				
Okdir	~CreateDirectory.	Cresters new director (, , , , , , , , , , , , , , , , , ,				

The Windows Win32 API

SetFilePointer SetFileAttributesEx	Move the file pointer			
SetFileAttributesEx				
ACT HON KIND GLOOLA	Get various file attributes			
CreateDirectory	Create a new directory			
RemoveDirectory	Remove an empty directory			
none)	Win32 does not support links			
DeleteFile	Destroy an existing file			
none)	Win32 does not support mount			
none)	Win32 does not support mount			
SetCurrentDirectory	Change the current working directory			
none)	Win32 does not support security (although NT does			
none)	Win32 does not support signals			
GetLocalTime	Get the current time			
	none) none) none) none) none) none) none) none) none)			

Monolitik Sistem

İşletim sisteminin temel yapısı

- İstenen hizmet prosedürünü başlatan bir ana program.
- Sistem çağrılarını gerçekleştiren bir dizi hizmet prosedürü.
- Hizmet prosedürlerine yardımcı olan bir dizi yardımcı prosedür.

Monolitik Sistem Yapısı

Katmanlı Sistem Yapısı

Layer	Function		
5	The operator		
4	User programs		
3	Input/output management		
2	Operator-process communication		
1	Memory and drum management		
0	Processor allocation and multiprogramming		

Mikrokernel

- Çekirdekte az sayıda sürecin yürütülmesine izin verilir
- Hataların etkilerini en aza indirir
 - Sürücüdeki bir hatanın sistemi çökertmesi istenmez
- Mekanizma çekirdekte, ilke (policy) çekirdeğin dışındadır
 - Mekanizma, süreçler önceliklerine göre çizelgelenir (kernel)
 - İlke, süreç öncelikleri kullanıcı modunda tanımlanır (user)

Mikrokernel Sistem Yapısı

İstemci Sunucu Modeli

Sanal Makine Yapısı

Sanal Makine Yapısı

(a) Tip 1 hipervizör. (b) Yalın tip 2 hipervizör. (c) Pratik tip 2 hipervizör.

Yürütülebilir Dosya Oluşturma

Yürütülebilir Dosya Oluşturma

- C preprocessor (önişlemci):
 - Başlığı alır, makroları genişletir, koşullu derlemeyi ele alır.
- Compiler (derleyici)
 - .c -.o , kaynak koda göre nesne dosyalarını oluşturur.
- Linker (bağlayıcı)
 - .o uzantılı nesne dosyalarını birleştirerek yürütülebilir dosyayı oluşturur.

Metrik ve Birimleri

Exp.	Explicit	Prefix	Exp.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 ⁻¹²	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000	Peta
10 ⁻¹⁸	0.00000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 ⁻²¹	0.00000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 ⁻²⁴	0.0000000000000000000000000001	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

SON