CM1101: COMPUTATIONAL THINKING

TUTORIAL – DATA REPRESENTATION

02 October 2018

1.	Count from 0 up to 15 in binary, octal, hexadecimal, and base 5.
2.	Convert the following integers to binary:
	(a) 27 ₁₀
	(b) 34 ₁₀
	(c) 55 ₁₀
	(d) 451 ₁₀
	(e) 987 ₁₀
	(f) 2016 ₁₀
3.	Convert the integers from question 2 to octal.
4.	Convert the integers from question 2 to hexadecimal.
5.	Convert the following numbers to binary, accurate to four binary places after point:
	(a) 18.25 ₁₀
	(b) 19.625 ₁₀
	(c) 12.125 ₁₀
	(d) 14.11 ₁₀
	(e) 2314.34 ₁₀
	(f) 21.97 ₁₀
6.	Carry out the following binary arithmetic:
	(a) 101101 + 10101
	(b) 100111 - 11100
	(c) 1101110 + 111100 + 100101
7.	Show how the following decimal numbers would be represented in a 12-bit register, using sign and magnitude and two's complement representation:
	(a) +14
	(b) +63
	(c) -256
	(d) - 1032

8. Interpret the following bit pattern in the different ways requested below:

1011001110101000

- (a) as four hexadecimal digits.
- (b) as two 8-bit two's complement integers, interpreting your answer in decimal.
- 9. An 8-bit register is used to store non-negative numbers using the fixed point representation. The first 6 most significant bits of the register represent the integer part, and the remaining 2 bits represent the fractional part. What is the range of the register? What is the precision of the register?

END OF QUESTIONS