A type-safe introduction to

Probability Theory

Fabian M. Suchanek

Probability theory

starring主演

and

Shrek Puss

In all of the following, if there is a definition followed by a "special case", it is fully sufficient to know and understand the special case for the purpose of most applications in Information Extraction, including Markov Random Fields, Hidden Markov Models, Markov Chains, and Conditional Random Fields.

Overview

Introduction to Probabilities

	Chains	Complex dependencies and/or feature functions
only visible variables	Markov Chains	Markov Random Fields
visible and invisible variables	Hidden Markov Models	Conditional Random Fields

Overview

Introduction to Probabilities

	Chains	Complex dependencies and/or feature functions
only visible variables	Markov Chains	Markov Random Fields
visible and invisible variables	Hidden Markov Models	Conditional Random Fields

Def: Universe

A universe (also: sample space) is the set of all possible worlds (also: possible states of the world, outcomes of a random trial).

$$\Omega = \{w_1, ..., w_n\}$$

Special case: Universe

Given n named sets $X_1,...,X_n$, we use as universe $\Omega = X_1 \times ... \times X_n$.

Example: X1={Shrek,Puss}, X2={shouts,purrs}

world	X1	X2	
w1:	Shrek	shouts	possible world
w2:	Puss	purrs	
w3:	Shrek	purrs	universe
w4:	Puss	shouts	

Set of events / Sigma algebra

A sigma algebra (also: set of events) over a universe is a set of subsets of the universe that fulfills certain conditions.

Special case: Sigma algebra

We use as sigma-algebra the set of all subsets of the universe:

$$F = 2^{\Omega}$$

Def: Probability

A probability (also: probability measure, probability distribution) is a function

$$P: F \to [0, 1]$$

such that

$$P(\emptyset) = 0$$

$$P(\Omega) = 1$$

 $P(\cup_i E_i) = \sum_i P(E_i)$ for a finite number of disjoint sets E_i .

For general (not necessarily disjoint) sets E_i , we have:

$$P(\cup_i E_i) \leq \sum_i P(E_i)$$
 "union bound"

...because the E_i may overlap, in which case $|\cup_i E_i| < \sum_i |E_i|$.

Special case: Probability

We use as probability a function that maps every possible world to [0,1].

$$P:\Omega\to [0,1]$$

	X1	X2	
w1:	Shrek	shouts	P(w1)=0.4
w2:	Puss	purrs	P(w2)=0.3
w3:	Shrek	purrs	P(w3)=0.1
w4:	Puss	shouts	P(w4)=0.2

Special case: Probability

For our probability function, we define

$$P(\{w_1,...,w_n\}) = \sum_i P(w_i) \text{ for } w_i \in \Omega$$
.

$$P(\{w1,w2\}) = P(w1)+P(w2) = 0.7$$

	X1	X2	
w1:	Shrek	shouts	P(w1)=0.4
w2:	Puss	purrs	P(w2)=0.3
w3:	Shrek	purrs	P(w3)=0.1
w4:	Puss	shouts	P(w4)=0.2

Def: Probability space

A probability space is a triple of a universe, a sigma algebra, and a probability measure: (Ω, F, P)

We assume a fixed probability space from now on.

	X1	X2	
w1:	Shrek	shouts	P(w1)=0.4
w2:	Puss	purrs	P(w2)=0.3
w3:	Shrek	purrs	P(w3)=0.1
w4:	Puss	shouts	P(w4)=0.2

Def: Random variable

A random variable is a function that takes a possible world and returns a value (also: state).

$$X:\Omega\to\{s_1,...,s_m\}$$

(The random variable "extracts" a feature from the state of the world)

Example: Random variable

The Random Variable *A*

 $A: \Omega \to \{scary, cosy\}$

describes the atmosphere of a world.

	X1	X2	
w1:	Shrek	shouts	A(w1)=scary
w2:	Puss	purrs	A(w2)=cosy
w3:	Shrek	purrs	A(w3)=cosy
w4:	Puss	shouts	A(w4)=cosy

Are Random Variables random?

Random variables are

- neither random
- nor variables

They take a possible world and return a characteristic of that world.

$$A(w_1) = cosy$$

In our special case: They are just the components of the universe.

$$X_2(\langle Shrek, shouts \rangle) = shouts$$

Wikipedia/Random Variables 1

Special case: Random variable

In our universe, the named sets can be considered random variables. We consider only these as random variables:

$$X_i(< w_1, ..., w_n >) = x_i$$

	X1	X2	
w1:	Shrek	shouts	X1(w1)=Shrek
w2:	Puss	purrs	X1(w2)=Puss
w3:	Shrek	purrs	X1(w3)=Shrek
w4:	Puss	shouts	X1(w4)=Puss

Def: Events

An event is a subset of the universe.

Event where someone purrs: {w2, w3}

	X1	X2
w1:	Shrek	shouts
w2:	Puss	purrs
w3:	Shrek	purrs
w4:	Puss	shouts

Special case: Events

We define an event as "X = x" := $\{w : w \in \Omega, X(w) = x\}$.

"X2=purrs" = {w2, w3}

	X1	X2	
w1:	Shrek	shouts	Note that X=x is not a
w2:	Puss	purrs	statement, but a shorthand
w3:	Shrek	purrs	notation for a set of possible worlds.
w4:	Puss	shouts	

Events

An event has a probability:

$$P(X = x) = P(\{w_i : X(w_i) = x\}) = \sum_{i,X(w_i)=x} P(w_i)$$

$$P(X1=Shrek) = P(\{w1,w3\}) = 0.5$$

	X1	X2	
w1:	Shrek	shouts	P(w1)=0.4
w2:	Puss	purrs	P(w2)=0.3
w3:	Shrek	purrs	P(w3)=0.1
w4:	Puss	shouts	P(w4)=0.2

Set operations on events

$$P(X_1 = Shrek \cap X_2 = purrs)$$

= $P(\{w_1, w_3\} \cap \{w_2, w_3\})$
= $P(\{w_3\})$
= $P(w_3) = 0.1$

X=x is a set, and can hence undergo set operations such as

	X1	X2	
w1:	Shrek	shouts	P(w1)=0.4
w2:	Puss	purrs	P(w2)=0.3
w3:	Shrek	purrs	P(w3)=0.1
w4:	Puss	shouts	P(w4)=0.2

Syntax: Intersections

For the intersection, we write

a comma-separated list

$$P(X_1 = x_1, ..., X_n = x_n) := P(X_1 = x_1 \cap ... \cap X_n = x_n)$$

vectors

$$\vec{X} = \vec{x} := X_1 = x_1 \cap ... \cap X_n = x_n$$

single values

$$P(x_1,...,x_n) := P(X_1 = x_1 \cap ... \cap X_n = x_n)$$

Def: Conditional probability

The conditional probability of an event A given an event B is

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

i.e.: look only at the worlds where B happens. In these cases, compute the ratio of the probabilities where also A happens.

With random variables:

$$P(X = x | Y = y) := \frac{P(X = x \cap Y = y)}{P(Y = y)}$$

This entails:

$$P(X = x \cap Y = y) = P(Y = y) \times P(X = x | Y = y)$$

$$P(X_1 = Shrek | X_2 = purrs)$$

	X1	X2	_
w1:	Shrek	shouts	P(w1)=0.4
w2:	Puss	purrs	P(w2)=0.3
w3:	Shrek	purrs	P(w3)=0.1
w4:	Puss	shouts	P(w4)=0.2

$$P(X_1 = Shrek | X_2 = purrs)$$

Look at only cases where someone purrs

	X1	X2	
w1:	Shrek	shouts	P(w1)=0.4
w2:	Puss	purrs	P(w2)=0.3
w3:	Shrek	purrs	P(w3) = 0.1
w4:	Puss	shouts	P(w4)=0.2

$$P(X_1 = Shrek | X_2 = purrs)$$

Look at only cases where someone purrs

w2: Puss purrs $P(w2)=0$.		X1	X2	
ws. Strek puris $P(W3)=0$.	w2:	Puss	purrs	P(w2)=0.3
	w3:	Shrek	purrs	P(w3)=0.1

$$P(X_1 = Shrek | X_2 = purrs)$$

$$= \frac{P(X_1 = Shrek \cap X_2 = purrs)}{P(X_2 = purrs)}$$

	X1	X2	_
w2:	Puss	purrs	P(w2)=0.3
w3:	Puss Shrek	purrs	P(w3)=0.1

$$P(X_1 = Shrek | X_2 = purrs)$$

$$=\frac{P(X_1=Shrek\cap X_2=purrs)}{P(X_2=purrs)}$$

$$= \frac{P(\{w_1, w_3\} \cap \{w_2, w_3\})}{P(\{w_2, w_3\})} = \frac{P(w_3)}{P(w_2) + P(w_3)} = \frac{0.1}{0.3 + 0.1} = 0.25$$

	X1	X2	
w2: w3:	Puss Shrek	purrs purrs	P(w2)=0.3 P(w3)=0.1

$$P(X_1 = Shrek | X_2 = purrs)$$

$$= \frac{P(X_1 = Shrek \cap X_2 = purrs)}{P(X_2 = purrs)}$$

$$= \frac{P(\{w_1, w_3\} \cap \{w_2, w_3\})}{P(\{w_2, w_3\})} = \frac{P(w_3)}{P(w_2) + P(w_3)} = \frac{0.1}{0.3 + 0.1}$$

	X1	X2	_
w2:	Puss	purrs	P(w2) = 0.3
w3:	Puss Shrek	purrs	P(w2)=0.3 P(w3)=0.1

$$P(X_1 = Shrek | X_2 = purrs)$$

$$= \frac{P(X_1 = Shrek \cap X_2 = purrs)}{P(X_2 = purrs)}$$

$$= \frac{P(\{w_1, w_3\} \cap \{w_2, w_3\})}{P(\{w_2, w_3\})} = \frac{P(w_3)}{P(w_2) + P(w_3)} = \frac{0.1}{0.3 + 0.1} = 0.25$$

X1	X2

w2: Puss purrsw3: Shrek purrs

P(w2)=0.3

P(w3)=0.1

Def: Independence

Two events A and B are independent if

$$P(A \cap B) = P(A) \times P(B)$$

This entails
$$P(A|B) = P(A), P(B|A) = P(B)$$

Knowing B does not influence the probability of A, and vice versa.

Example: Independence

Two events A and B are independent if

$$P(A \cap B) = P(A) \times P(B)$$

$$P(X_1 = Shrek \cap X_2 = shouts) = 0.4$$

Events are not independent (shouting means it's Shrek)

$$/= P(X_1 = Shrek) \times P(X_2 = shouts) = 0.5 \times 0.6 = 0.3$$

	X1	X2	_
w1:	Shrek	shouts	P(w1)=0.4
w2:	Puss	purrs	P(w2)=0.3
w3:	Shrek	purrs	P(w3)=0.1
w4:	Puss	shouts	P(w4)=0.2

Syntax: Distribution

We define for a random variable X: $P(X) := \lambda v : P(X = v)$ i.e., P(X)(v) = P(X = v).

P(X) is a function that takes a value v and returns the probability P(X = v).

Syntax: Joint Distribution

We define for random variables $X_1, ... X_n$

$$P(X_1,...,X_n) := \lambda < v_1,...,v_n >: P(X_1 = v_1 \cap ... \cap X_n = v_n)$$

P(X,Y) is a function that takes a value v for X and a value w for Y and returns $P(X=v\cap Y=w)$.

Syntax: Conditional Distribution

We define for random variables $X_1,...X_n$:

$$P(X|Y_1,...,Y_n) := \lambda < v_1,...,v_n >: \lambda v : P(X = v|Y_1 = v_1,...,Y_n = v_n)$$

 $P(X|Y_1,...,Y_n)$ is a function that takes values for $Y_1,...,Y_n$ and returns a distribution P(X).

Theorem: Marginals

For any random variables X, Y, we have

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$
$$= \sum_{y} P(Y = y) \times P(X = x | Y = y)$$

The probability of X = x can be computed if we have the conditional probability P(X = x | Y = y) and P(Y = y).

P(X) is called the marginal distribution of the joint distribution P(X, Y).

Overview

Introduction to Probabilities

	Chains	Complex dependencies and/or feature functions
only visible variables	Markov Chains	Markov Random Fields
visible and invisible variables	Hidden Markov Models	Conditional Random Fields

Def: Stochastic Process

A stochastic process is a sequence of random variables

Def: Markov chain

A Markov chain is a sequence of random variables such that

$$P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$$

The probability of X=v depends only on the value of the predecessor of X.

"The future is independent of the past, given the present state."

Example: Markov chain

Let our named sets be the weather on consecutive days, with $V=\{sun, rain\}$.

<u>D1</u>	D2	D3	
	sun		This is a Markov chain, if
sun	sun	rain	P(D3-D1,D2) = P(D3-D2)

The probability distribution of D3 given a value for D2 is the same as the probability distribution of D3 given values for D2 and D1

Def: Homogeneous Markov Chain

A Markov chain $D_1, ..., D_n$ is homogeneous if

$$\forall i, j : P(D_i|D_{i-1}) = P(D_j|D_{j-1})$$

i.e., the conditional probability is the same for all days.

```
We write P(v_i|v_j) for P(D_k=v_i|D_{k-1}=v_j)
e.g. we write P(sunny—rainy)
for P(D2=sunny — D1=rainy)
which is the same as P(D3=sunny — D2=rainy)
which is the same as P(D4=sunny — D3=rainy)
...
```

Markov Chains as graphs

We can represent a Markov Chain as a graph, where the nodes are the values v, and the edge weights are $P(v_i|v_j)$:

Markov chains as matrices

Wikipedia/Markov Chains 42

Markov chains as matrices

Wikipedia/Markov Chains 43

Caring about the Joint Probability

We are now interested in one particular sequence of events:

$$P(D_1 = v_1, ..., D_n = v_n)$$

$$Definition of conditional probability$$

$$= P(D_n = v_n | D_1 = v_1, ..., D_{n-1} = v_{n-1}) \times P(D_1 = v_1, ..., D_{n-1} = v_{n-1})$$

$$Markov \text{ property}$$

$$= P(D_n = v_n | D_{n-1} = v_{n-1}) \times P(D_1 = v_1, ..., D_{n-1} = v_{n-1})$$

$$Homogenity$$

$$= P(v_n | v_{n-1}) \times P(D_1 = v_1, ..., D_{n-1} = v_{n-1})$$

$$Recursion$$

$$= \prod_i P(v_i | v_{i-1}) \times P(D_1 = v_1)$$

Joint Probability in the Graph

A joint probability corresponds to a path in the graph:

```
P(sunny, rainy, sunny) = P(D_1 = sunny)
 \times P(rainy|sunny)
 \times P(sunny|rainy)
```


Example: Joint Probability in Graph

```
P(sunny, rainy, sunny) = P(D_1 = sunny)
\times P(rainy|sunny)
\times P(sunny|rainy)
= P(D_1 = sunny) \times 0.1 \times 0.5
```


Caring about the final state

We are now interested in the distribution of the final state:

$$P(D_n = v_n)$$

$$\downarrow \text{ Definition of marginal probability}$$
 $= \sum_{v'} P(D_n = v_n, D_{n-1} = v')$

$$\downarrow \text{ Definition of conditional probability}$$
 $= \sum_{v'} P(D_n = v_n | D_{n-1} = v') \times P(D_{n-1} = v')$

$$\downarrow \text{ Homogenity}$$
 $= \sum_{v'} P(v_n | v') \times P(D_{n-1} = v')$

The final state and the Matrix

$$P(D_n = v_n) = \sum_{v'} P(v_n | v') \times P(D_{n-1} = v')$$

$$P(D_n = sunny) = P(sunny | sunny) \times P(D_{n-1} = sunny)$$

$$+P(sunny | rainy) \times P(D_{n-1} = rainy)$$

$$P(D_n = sunny) = \langle P(D_{n-1} = sunny), P(D_{n-1} = rainy) \rangle \times T_{column:sun}$$

The final state and the Matrix

Now let's look at the row vector $\vec{P}(D_n)$:

$$< P(D_n = sunny), P(D_n = rainy) >$$

=

$$< P(D_{n-1} = sunny), P(D_{n-1} = rain p) > \times P(sunny|sunny) P(rainy|sunny) P(rainy|rainy)$$

That is:

$$\vec{P}(D_n) = \vec{P}(D_{n-1}) \times T$$

$$\vec{P}(D_n) = \vec{P}(D_1) \times T \times ... \times T$$

$$\vec{P}(D_n) = \vec{P}(D_1) \times T^n$$

Def: Stationary Distribution

Now assume that $\vec{P}(D_n) = \vec{P}(D_{n-1})$

$$< P(D_n = sunny), P(D_n = rainy) >$$

$$< P(D_{X-1} = sunny), P(D_{n-1} = rain()) > \times P(sunny|sunny) P(rainy|sunny) P(rainy|rainy)$$

This means that $\vec{P}(D_n) = \vec{P}(D_n) \times T$ = $\vec{P}(D_n)$ is an eigenvector of T!

Such a distribution is called a stationary distribution of T. It implies that all future states will be equal to $\vec{P}(D_n)$.

Def: Irreducible Markov Chain

A Markov Chain given by a transition matrix T is irreducible, if for any states i, j, there is an n > 0 such that $T_{i,j}^n > 0$.

In other words, the chain is able to move from any state i to any state j (in one or more steps).

Def: Period

A state i of a Markov Chain has period k if any return to i occurs at step $k \times l$, for some l > 0 Formally:

$$k = gcd(\{n : P(X_n = i | X_0 = i) > 0\})$$

where gcd denotes the greatest common divisor. If k = 1 then state i is said to be aperiodic.

Def: Ergodic Markov chains

For some Markov Chains, the stationary distribution exists and is unique:

$$q = \lim_{n \to \infty} P(D_n)$$

This is the case if $\exists n > 0 : \forall i, j : (T^n)_{i,j} \neq 0$ i.e., already if $\forall i, j : (T)_{i,j} \neq 0$. Then, T is ergodic.

q is the steady state or stationary distribution.

If $q = \lim_{n \to \infty} P(D_n)$ exists, then this implies

- q is independent of $P(D_1)$
- \bullet q is an eigenvector of T

$$q = q \times T$$

Page Rank

Page Rank can be seen as a Markov Chain, where the values are the pages and $P(X_i = p)$ is the probability that a random surfer visits page p.

Random variables: $X_1,...X_n$ Values: $p_1,...,p_m$ (=the pages) $P(X_1 = p_j)$ is the probability that the surfer is at page p_j after i hops. $P(p_i|p_{i-1})$ is given by the links.

Page Rank

By adding random jumps from all pages to all pages the chain becomes ergodic, and the steady state exists.

$$q = \lim_{n \to \infty} P(X_n)$$

Overview

Introduction to Probabilities

	Chains	Complex dependencies and/or feature functions
only visible variables	Markov Chains	Markov Random Fields
visible and invisible variables	Hidden Markov Models	Conditional Random Fields

Hidden Markov Models

A HMM universe has "visible" and "hidden" random variables, with a set of "hidden" and "visible" values:

Usually, we observe the visible variables (here: the sentence) over time and we want to determine the hidden variables (here: the POS tags) over time.

	(visible)		(hidden)		
World	W1	W2	T1	T2	Probability
ω_1	Elvis	sings	PN	Verb	$P(\omega_1) = 0.2$
ω_2	Elvis	sings	Adj	Verb	$P(\omega_2) = 0.1$
ω_3	Elvis	runs	Prep	PN	$P(\omega_3) = 0.1$

Probabilistic POS-Tagging

Given a sentence $w_1, ..., w_n$ we want to find $argmax_{t_1,...,t_n}P(w_1,...,w_n,t_1,...,t_n)$.

	(visible)		(hidden		
World	W1	W2	T1	T2	Probability
ω_1	Elvis	sings	PN	Verb	$P(\omega_1) = 0.2$
ω_2	Elvis	sings	Adj	Verb	$P(\omega_2)=0.1$
ω_3	Elvis	runs	Prep	PN	$P(\omega_3) = 0.1$

Every tag depends just on its predecessor

$$P(T_i|T_1,...,T_{i-1}) = P(T_i|T_{i-1})$$

Every tag depends just on its predecessor

$$P(T_i|T_1,...,T_{i-1}) = P(T_i|T_{i-1})$$

The probability that PN, V, D is followed by a noun is the same as the probability that D is followed by a noun:

$$P(N|PN, V, D) = P(N|D)$$

Every tag depends just on its predecessor

$$P(T_i|T_1,...,T_{i-1}) = P(T_i|T_{i-1})$$

The probability that PN, V, D is followed by a noun is the same as the probability that D is followed by a noun:

$$P(N|PN, V, D) = P(N|D)$$

Elvis sings a song

PN Verb Det ?

Every tag depends just on its predecessor

$$P(T_i|T_1,...,T_{i-1}) = P(T_i|T_{i-1})$$

The probability that PN, V, D is followed by a noun is the same as the probability that D is followed by a noun:

$$P(N|PN, V, D) = P(N|D)$$

Elvis sings a song

PN Verb Det

Every word depends just on its tag:

$$P(W_i|W_1,...,W_{i-1},T_1,...,T_i) = P(W_i|T_i)$$

Every word depends just on its tag:

$$P(W_i|W_1,...,W_{i-1},T_1,...,T_i) = P(W_i|T_i)$$

The probability that the 4th word is "song" depends just on the tag of that word:

$$P(song|Elvis, sings, a, PN, V, D, N) = P(song|N)$$

Every word depends just on its tag:

$$P(W_i|W_1,...,W_{i-1},T_1,...,T_i) = P(W_i|T_i)$$

The probability that the 4th word is "song" depends just on the tag of that word:

$$P(song|Elvis, sings, a, PN, V, D, N) = P(song|N)$$

Elvis sings a ?

PN Verb Det Noun

Every word depends just on its tag:

$$P(W_i|W_1,...,W_{i-1},T_1,...,T_i) = P(W_i|T_i)$$

The probability that the 4th word is "song" depends just on the tag of that word:

$$P(song|Elvis, sings, a, PN, V, D, N) = P(song|N)$$

Elvis sings a ?

PN Verb Det Noun

The tag probabilities are the same at all positions

$$P(T_i|T_{i-1}) = P(T_k|T_{k-1})\forall i, k$$

The tag probabilities are the same at all positions

$$P(T_i|T_{i-1}) = P(T_k|T_{k-1})\forall i, k$$

The probability that a Det is followed by a Noun is the same at position 7 and 2:

$$P(T_7 = Noun|T_6 = Det) = P(T_2 = Noun|T_1 = Det)$$

The tag probabilities are the same at all positions

$$P(T_i|T_{i-1}) = P(T_k|T_{k-1})\forall i, k$$

The probability that a Det is followed by a Noun is the same at position 7 and 2:

$$P(T_7 = Noun|T_6 = Det) = P(T_2 = Noun|T_1 = Det)$$

Let's denote this probability by

$$P(Noun|Det)$$
 "Transition probability"

$$P(s|t) := P(T_i = s|T_{i-1} = t)(foranyi)$$

The word probabilities are the same at all positions

$$P(W_i|T_i) = P(W_k|T_k) \forall i, k$$

The word probabilities are the same at all positions

$$P(W_i|T_i) = P(W_k|T_k) \forall i, k$$

The probability that a PN is "Elvis" is the same at position 7 and 2:

$$P(W_7 = Elvis|T_7 = PN) = P(W_2 = Elvis|T_2 = PN) = 80\%$$

The word probabilities are the same at all positions

$$P(W_i|T_i) = P(W_k|T_k) \forall i, k$$

The probability that a PN is "Elvis" is the same at position 7 and 2:

$$P(W_7 = Elvis|T_7 = PN) = P(W_2 = Elvis|T_2 = PN) = 80\%$$

Let's denote this probability by

$$P(Elvis|PN)$$
 "Emission probability"

$$P(w|t) := P(W_i = w|T_i = t)(foranyi)$$

Def: HMM

A (homogeneous) Hidden Markov Model (also: HMM) is a sequence of random variables, such that

... with
$$t_0 = Start$$

HMMs as graphs

$$P(w_1,...,w_n,t_1,...,t_n) = \prod_i P(w_i|t_i) \times P(t_i|t_{i-1})$$

Transition probabilities

HMMs as graphs

$$P(w_1, ..., w_n, t_1, ..., t_n) = \prod_i P(w_i|t_i) \times P(t_i|t_{i-1})$$

Emission probabilities

HMMs as graphs

```
P(w_1, ..., w_n, t_1, ..., t_n) = \prod_i P(w_i | t_i) \times P(t_i | t_{i-1})
P(nice, sounds, ., Adj, Noun, End) = 50% * 50% * 100% * 50% * 20% * 100% = 2.5%
```


HMM questions

$$P(w_1, ..., w_n, t_1, ..., t_n) = \prod_i P(w_i|t_i) \times P(t_i|t_{i-1})$$

Main questions:

- Given $P(t_i|t_j)$ and $P(w_i|t_j)$, what is the probability of a sentence with tags
- Given $P(t_i|t_j)$ and $P(w_i|t_j)$, what is the most likely sequence of T_i that generated a sentence
- What are the $P(t_i|t_j)$, $P(w_i|t_j)$

Overview

Introduction to Probabilities

	Chains	Complex dependencies and/or feature functions		
only visible variables	Markov Chains	Markov Random Fields		
visible and invisible variables	Hidden Markov Models	Conditional Random Fields		

Def: Markov Random Field

A Markov Random Field (MRF) is a set of random variables that satisfies:

$$P(X_i|X_1,..,X_{i-1},X_{i+1},...,X_n) = P(X_i|N(X_i))$$

where $N(X_i)$ is the set of random variables that are neighbors of X_i .

That is: The probability of X_i taking a certain value given the values of the other variables depends only on the values of the variables in the neighborhood of X_i .

Example: Markov Random Field

world	X1	X2	X3	X4	X5	probability
w1:	Shrek	shouts	ferociously	with	pleasure	P(w1)=0.1
w2:	Shrek	shouts	ferociously	ϵ	ϵ	P(w2)=0.1
w3:	Shrek	purrs	ϵ	with	pleasure	P(w3)=0.02
w4:	Shrek	purrs	ϵ	ϵ	ϵ	P(w4)=0.02
w5:	Puss	shouts	ferociously	with	pleasure	P(w5)=0.01
•••	 					

X1, X2, and X3 depend on each other (shouting is always ferociously, purring is never ferociously, shouting is more likely to be by Shrek)

X4 and X5 depend on each other (either both are the empty string, or X4=with and X5=pleasure)

(X1,X2,X3) and (X4,X5) are independent

Example: Markov Random Field

world	X1	X2	X3	X4	X5	probability
w1:	Shrek	shouts	ferociously	with	pleasure	P(w1)=0.1
w2:	Shrek	shouts	ferociously	ϵ	ϵ	P(w2)=0.1
w3:	Shrek	purrs	ϵ	with	pleasure	P(w3)=0.02
w4:	Shrek	purrs	ϵ	ϵ	ϵ	P(w4)=0.02
w5:	Puss	shouts	ferociously	with	pleasure	P(w5)=0.01
						l

Neighbor sets:

$$N(X_1) = \{X_2, X_3\}$$

$$N(X_2) = \{X_1, X_3\}$$

$$N(X_3) = \{X_1, X_2\}$$

$$N(X_4) = \{X_5\}$$

$$N(X_5) = \{X_4\}$$

Def: MRF graph

$$P(X_i|X_1,..,X_{i-1},X_{i+1},...,X_n) = P(X_i|N(X_i))$$

We depict the neighborhood as an undirected graph, where the nodes are variables, and $X_i - X_j$ is an edge if $X_i \in N(X_j)$.

$$N(X_1) = \{X_2, X_3\}$$
 $N(X_2) = \{X_1, X_3\}$
 $N(X_3) = \{X_1, X_2\}$
 $N(X_4) = \{X_5\}$
 $N(X_5) = \{X_4\}$

MRFs and Markov Chains

Markov Chains:

$$P(X_i|X_1,...,X_{i-1}) = P(X_i|X_{i-1})$$

The probability of X = v depends only on the value of the predecessor of X.

Markov Random Fields:

$$P(X_i|X_1,..,X_{i-1},X_{i+1},...,X_n) = P(X_i|N(X_i))$$

The probability of X = v depends only on the value of the neighbors of X, but neighborhood is symmetric, and the probability is also conditioned on the "future" X_i .

Syntax: Projection

We define

$$\pi_{i1,...,im}(\vec{x}) := \langle x_{i1},...,x_{im} \rangle$$

Example:

$$\pi_{\{2,5\}}(\langle a, b, c, d, e, f, g \rangle) = \langle b, e \rangle$$

Special case: Factorizable MRFs

If all probabilities in an MRF are > 0, then $\exists \phi_i$ such that

$$P(\vec{X} = \vec{x}) = \prod_i \phi_i(\pi_{C_i}(\vec{x}))$$

Every ϕ_i is a function that takes as input only the variables of the ith clique.

where the C_i are the maximal cliques in the MRF graph.

$$C_1 = \{X_1, X_2\}$$
 $C_2 = \{X_2, X_3, X_4\}$
 X_1
 X_2
 X_4
 X_5
 X_1
 X_3

(We consider only factorizable MRFs)

Example: Factorizable MRF

world	X1	X2	X3	X4	X5	probability
w1:	Shrek	shouts	ferociously	with	pleasure	P(w1)=0.1
w2:	Shrek	shouts	ferociously	ϵ	ϵ	P(w2)=0.1 P(w3)=0.002
w3:	Shrek	shouts	ferociously	with	ϵ	P(w3)=0.002
w3:	Shrek	shouts	ferociously	ϵ		P(w4)=0.002
w3:	Shrek	shouts	ϵ	with	pleasure	P(w4)=0.01
	 					

$$C_1 = \{X_1, X_2\}$$
 $C_2 = \{X_2, X_3, X_4\}$

$$\phi_1(x_1, x_2, x_3) = (x_1 = Shrek \land x_2 = shouts \land x_3 = ferociously) \lor$$
$$(x_1 = Puss \land x_2 = purrs \land x_3 = \epsilon)?0.1:0.01$$

$$\phi_2(x_4, x_5) = (x_4 = with \land x_5 = pleasure) \lor (x_4 = x_5 = \epsilon)?1.0:0.02$$

$$P(\vec{X} = \vec{x}) = \phi_1(x_1, x_2, x_3) \times \phi_2(x_4, x_5)$$

Normalization

To obtain a value in [0,1], we normalize by Z

$$P(\vec{X} = \vec{x}) = \frac{1}{Z} \prod_i \phi_i(\pi_{C_i}(\vec{x}))$$

where Z is simply the sum over the products for all possible sequences of values $\vec{x'}$:

$$Z = \sum_{\vec{x'}} \prod_i \phi_i(\pi_{C_i}(\vec{x'}))$$

This ensures $P(\vec{X} = \vec{x}) \in [0, 1]$.

Yes, run over all possible sequences $\vec{x'} = \langle x'_1, ..., x'_n \rangle$ and sum up the products!

Special case: MRFs w/ Features

For each clique C_i , we define feature functions

$$f_{i,1}(\pi_{C_i}(\vec{x})) \in R$$
 $f_{i,m}(\pi_{C_i}(\vec{x})) \in R$

These form a vector $\vec{F}_i = \langle f_{i,1}, ... f_{i,m} \rangle \vec{F}_i = \langle f_{i,1}, ... f_{i,m} \rangle$ and we define $\vec{F}_i(x) = \langle f_{i,1}(x), ... f_{i,m}(x) \rangle$.

We define weights for the features:

$$\vec{w_i} \in R^m$$

Then we define the potentials as:

$$\phi_i(\pi_{C_i}(\vec{x})) = exp(\vec{w_i} \times \vec{F_i}(\pi_{C_i}(x)))$$

MRFs with features

With $\phi_i(\pi_{C_i}(\vec{x})) = exp(\vec{w_i} \times F_i(\vec{\pi_{C_i}}(x)))$ we have

$$P(\vec{X} = \vec{x}) = \frac{1}{Z} \prod_{i} \phi_{i}(\pi_{C_{i}}(\vec{x}))$$

$$P(\vec{X} = \vec{x}) = \frac{1}{Z} \prod_{i} exp(\vec{w}_{i} \times \vec{F}_{i}(\pi_{C_{i}}(\vec{x})))$$

$$P(\vec{X} = \vec{x}) = \frac{1}{Z} exp(\sum_{i} \vec{w}_{i} \times \vec{F}_{i}(\pi_{C_{i}}(\vec{x})))$$

Def: Log likelihood

The log-likelihood of a MRF is

Overview

Introduction to Probabilities

	Chains	Complex dependencies and/or feature functions		
only visible variables	Markov Chains	Markov Random Fields		
visible and invisible variables	Hidden Markov Models	Conditional Random Fields		

Conditional Random Fields

As in Hidden Markov Models, we have visible and hidden random variables:

Conditional Random Fields

Let us look at the conditional probability

			X3			
P(Shrek	eats	Puss	PER	OTH	OTH)= 0.1
P(Shrek	eats	Puss	PER	LOC	OTH)= 0.01
P(Shrek	eats	Puss	PER	OTH	LOC)= 0.1
P(Shrek	eats	Puss	PER	LOC	OTH)= 0.1 OTH)= 0.01 LOC)= 0.1 LOC)= 0.01

Conditional Random Fields

Let us look at the conditional probability

$$P(Y1|X1, X2, X3, Y2, Y3)$$

$$= P(Y1|X1, X2, X3, Y2)$$

Y3 does not have an influence!

	X 1	X2	X3	Y 1	Y2	Y3
P(Shrek	eats	Puss	PER	OTH	OTH)= 0.1
P(Shrek	eats	Puss	PER	LOC	OTH)= 0.01
P(Shrek	eats	Puss	PER	OTH	LOC)= 0.1
P(Shrek	eats	Puss	PER	LOC	OTH)= 0.1 OTH)= 0.01 LOC)= 0.1 LOC)= 0.01

Def: Conditional Random Fields

A set of random variables is a conditional random field (CRF), if

$$P(Y_i|X_1,...,X_n,Y_1,...,Y_{i-1},Y_{i+1},...,Y_n) = P(Y_i|X_1,...,X_n,N(Y_i))$$

where $N(Y_i)$ are the neighbors of Y_i .

$$N_1 = \{Y2\}$$

			X3			
P(Shrek	eats	Puss	PER	OTH	OTH)= 0.1 OTH)= 0.01 LOC)= 0.1
Р(Shrek	eats	Puss	PER	LOC	OTH)= 0.01
P(Shrek	eats	Puss	PER	OTH	LOC)= 0.1
P(Shrek	eats	Puss	PER	LOC	LOC)= 0.01

Neighbors

A set of random variables is a conditional random field (CRF), if

$$P(Y_i|X_1,...,X_n,Y_1,...,Y_{i-1},Y_{i+1},...,Y_n) = P(Y_i|X_1,...,X_n,N(Y_i))$$

where $N(Y_i)$ are the neighbors of Y_i . We arrange the neighbors in an undirected graph, where two variables are connected if they are neighbors. C_i are the maximal cliques in this graph.

$$C_1 = \{Y_1, Y_2\}$$
 Y_1
 Y_2
 Y_4 — Y_5
 Y_5
 Y_6
 Y_7
 Y_8
 Y_9
 Y_9
 Y_9
 Y_9
 Y_9
 Y_9
 Y_9
 Y_9
 Y_9

We define
$$\pi_{i1,...,im}(\vec{x}) := \langle x_{i1},...,x_{im} \rangle$$

Example:
$$\pi_{C_1}(\langle a, b, c, d, e \rangle) = \langle a, b, c \rangle$$

Special case: Factorizable CRFs

Strictly positive CRFs can be "factorized", i.e., there exist functions ϕ_i such that

$$P(\vec{Y} = \vec{y} | \vec{X} = \vec{x}) = \prod_i \phi_i(\pi_{C_i}(\vec{y}), \vec{x})$$

 ϕ_i are the potentials. They take as input:

- \bullet the entire vector \vec{x}
- the values of the Y_i that are in C_i

CRFs and MRFs

$$P(\vec{Y} = \vec{y} | \vec{X} = \vec{x}) = \prod_{i} \phi_{i}(\pi_{C_{i}}(\vec{y}), \vec{x})$$

A conditional random field is basically a Markov Random Field that has \vec{x} as additional, fixed, inputs.

Special case: Chain CRFs

A Chain CRF is a CRF where the neighborhood graph is a chain.

$$Y_1 - Y_2 - Y_3 - Y_4$$

Then, the cliques have only 2 elements:

$$C_i = \{Y_i, Y_{i-1}\}$$
 The *i*-th clique is
$$for 1 < i < n$$
 just Y_i with the preceding Y

Syntax: Chain CRFs

In a chain CRF, we have:

$$P(\vec{Y} = \vec{y} | \vec{X} = \vec{x}) = \frac{1}{Z} \prod_i \phi_i(\pi_{C_i}(\vec{y}), \vec{x})$$

$$C_i = \{Y_i, Y_{i-1}\}$$

$$P(\vec{Y} = \vec{y} | \vec{X} = \vec{x}) = \frac{1}{Z} \prod_{i} \phi_{i}(y_{i}, y_{i-1}, \vec{x})$$

We already know the projection of the i-th clique, it's y_i, y_{i-1} .

Special case: Identical potentials

In a CRF with identical potentials, all ϕ_i are the same, but have i as input:

$$P(\vec{Y}=\vec{y}|\vec{X}=\vec{x}) = \frac{1}{Z} \prod_i \phi_i(y_i,y_{i-1},\vec{x})$$
 ϕ has to know i to know the
$$P(\vec{Y}=\vec{y}|\vec{X}=\vec{x}) = \frac{1}{Z} \prod_i \phi(y_i,y_{i-1},\vec{x},i)$$
 position in \vec{x} .

(We consider only CRFs with identical potentials)

Special case: CRFs with Features

We define feature functions

$$f_1(y_i, y_{i-1}, \vec{x}, i) \in R$$
 ... $f_m(y_i, y_{i-1}, \vec{x}, i) \in R$

These form a vector $\vec{F} = \langle f_1, ... f_m \rangle$, and we define $\vec{F}(x) = \langle f_1(x), ... f_m(x) \rangle$.

We define weights for the features:

$$\vec{w} \in R^m$$

Then we define the potential as:

$$\phi(y_i, y_{i-1}, \vec{x}, i) = exp(\vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i))$$

(We consider only CRFs with features)

CRFs with Features

We have

$$P(\vec{Y} = \vec{y} | \vec{X} = \vec{x}) = \frac{1}{Z} \prod_{i} \phi(y_i, y_{i-1}, \vec{x}, i)$$

and

$$\phi(y_i, y_{i-1}, \vec{x}, i) = exp(\vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i))$$

which yields

$$P(\vec{Y} = \vec{y}|\vec{X} = \vec{x}) = \frac{1}{Z} \prod_{i} exp(\vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i))$$
$$= \frac{1}{Z} exp(\sum_{i} \vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i))$$

Def: CRF log likelihood

The log-likelihood of a CRF is

$$log(P(\vec{Y} = \vec{y} | \vec{X} = \vec{x}))$$

$$= log(\frac{1}{Z}exp(\sum_{i} \vec{w} \times \vec{F}(y_{i}, y_{i-1}, \vec{x}, i)))$$

$$= \sum_{i} \vec{w} \times \vec{F}(y_{i}, y_{i-1}, \vec{x}, i) - log(Z)$$

Maximizing the CRF likelihood

We want to compute the best Y for X:

$$Y^* = argmax_Y P(\vec{Y} = \vec{y} | \vec{X} = \vec{x})$$

log is monotonic

$$= argmax_Y log(P(\vec{Y} = \vec{y} | \vec{X} = \vec{x}))$$

use log-likelihood from previous slide

$$= argmax_Y \sum_i \vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i) - log(Z)$$

Z does not depend on Y

=
$$argmax_Y \sum_i \vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i)$$

Easy!

Reminder: Statistical NEA

Statistical NEA uses the following notations:

- a corpus $X = < x_1, ..., x_m >$
- class labels $Y = \langle y_1, ..., y_m \rangle$
- features $F = < f_1, ..., f_n >$
- weights $W = < w_1, ..., w_n >$

Statistical NEA learns the weights W on a manually annotated training corpus (X, Y), as follows:

$$W = argmax_{W'}log(Pr(Y|X,W'))$$

Given a new corpus X', it computes the annotations Y' as

$$Y' = argmax_Y \sum_i W \times F(X', i, y_i)$$

This is the CRF formula, just that we considered no dependencies, i.e., $C_i = \{Y_i\}$

Maximizing the CRF likelihood

We want to compute the best Y for X:

$$Y^* = argmax_Y P(\vec{Y} = \vec{y} | \vec{X} = \vec{x})$$

P is factorized

=
$$argmax_{Y} \frac{1}{Z} \prod_{i} exp(\vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i))$$

$$e^a \times e^b = e^{a+b}$$

=
$$argmax_{Y} \frac{1}{Z} exp(\sum_{i} \vec{w} \times \vec{F}(y_{i}, y_{i-1}, \vec{x}, i))$$

log is monotonic

=
$$argmax_Y log(\frac{1}{Z}exp(\sum_i \vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i)))$$

Maximizing the CRF likelihood

$$Y^* = argmax_Y log(\frac{1}{Z}exp(\sum_i \vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i)))$$
$$log(a \times b) = log(a) + log(b)$$

=
$$argmax_Y \sum_i \vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i) - log(Z)$$

Z does not depend on Y

$$= argmax_Y \sum_i \vec{w} \times \vec{F}(y_i, y_{i-1}, \vec{x}, i)$$

If we consider only singleton cliques, $C_i = \{Y_i\}$.

$$= argmax_Y \sum_i \vec{w} \times \vec{F}(y_i, \vec{x}, i)$$

Summary: Prob's, MRFs and CRFs

$$P(w_1) + P(w_2)$$

$$"X_{1} = Shrek" :=$$

$$P(\vec{X} = \vec{x}) = \frac{1}{Z} \prod_{i} \phi_{i}(\pi_{C_{i}}(\vec{x}))$$

$$P(X_{1} = Shrek) = P(\{w_{1}, w_{2}\})$$

$$P(Y_{1} | \vec{X}, Y_{2}, ..., Y_{n}) = P(Y_{1} | \vec{X}, N(Y_{1}))$$

$$P(X_{1} | X_{2}, ..., X_{n}) = P(X_{1} | N(X_{1}))$$

$$\{w | X_{1}(w) = Shrek\}$$

(just kidding) 109

Summary: Prob's, MRFs and CRFs

An event is a set of possible worlds

$$X_1 = Shrek := \{w | X_1(w) = Shrek\} = \{w_1, w_2\}$$

Probabilities are defined on events

$$P(X_1 = Shrek) = P(\{w_1, w_2\}) = P(w_1) + P(w_2)$$

MRFs model limited dependencies

$$P(X_1|X_2,...,X_n) = P(X_1|N(X_1))$$

$$P(\vec{X} = \vec{x}) = \frac{1}{Z} \prod_i \phi_i(\pi_{C_i}(\vec{x}))$$

$$X_1 = X_2 - X_4$$

$$X_2 - X_4$$

CRFs are MRFs with hidden variables

$$P(Y_1|\vec{X}, Y_2, ..., Y_n) = P(Y_1|\vec{X}, N(Y_1))$$

References

Elkan: Log-linear models and conditional random fields

Collins: Log-Linear Models

Lafferty et al: Conditional Random Fields

Sunita Sarawagi: Information Extraction