

Institutt for datateknikk og informasjonsvitenskap

Eksamensoppgave i TDT4300 Data datagruvedrift	varehus o	9
Faglig kontakt under eksamen: Kjetil Nørvåg Tlf.: 735 96755		
Eksamensdato: 29. mai Eksamenstid (fra-til): 09.00-13.00 Hjelpemiddelkode/Tillatte hjelpemidler: D: Ingen tryk tillatt. Bestemt, enkel kalkulator tillatt.	κte eller hånds∣	krivne hjelpemiddel
Annen informasjon:		
Målform/språk: Bokmål Antall sider: 4 Antall sider vedlegg: 0		
		Kontrollert av:
	 Dato	 Sign

Oppgave 1 – Diverse – 15% (alle deler teller likt)

a) Gitt to bit-vektorer $p \circ q$:

```
p = 10000000001
q = 0000001001
```

Regn ut Jaccard-koeffisienten for bitvektorene p og q. Hva er fordelen med Jaccard i forhold til "simple matching"?

- b) Forklar 3 teknikker som kan brukes til pre-prosessering av numeriske data.
- c) Forklar prinsippene bak bitmap-indekser. For hva slags data er denne type indeks egnet, og når er den ikke egnet?

Oppgave 2 – Modellering – 20% (15% på a, 5% på b)

I denne oppgaven skal dere modellere et datavarehus for en regional værvarslingstjeneste. Denne har ca. 1000 målestasjoner, som er spredt over ulike land- og hav-områder i regionen for å samle inn grunnleggende værdata, herunder lufttrykk, temperatur og nedbør for hver time. Alle data blir sendt til hovedsentralen, som har samlet inn slike data i over 10 år. Ditt design bør legge til rette for effektive spørringer og on-line analytisk behandling, og utlede generelle værmønstre.

Beskrivelsen er litt upresist formulert og det er en del av oppgaven å velge ut det som skal være med. Vi er først og fremst ute etter at du skal vise modelleringsprinsippet for datavarehus. Forklar kort eventuelle forutsetninger du finner det nødvendig å gjøre.

- a) Lag et stjerne- eller snøflak-skjema for denne case-beskrivelsen.
- b) Lag to forskjellige konsepthierarkier (fritt valgte dimensjoner).

Oppgave 3 – Klynging – 20 % (5% på a, 15% på b)

- a) Forklar potensielle ulemper med hierarkisk klynging.
- b) 1) Forklar DBSCAN-algoritmen.
 2) Gitt et to-dimensjonalt datasett som vist i tabellen til høyre. Utfør klynging ved hjelp av DBSCAN på dette datasettet, gitt MinPts=3 og Eps=3.

X	Y
X 2 4 6 6 7 7 8	Y 3 5 4 5 5 12 2 10
4	5
6	4
6	5
7	5
7	12
8	2
8	
8	14
8 9 9	12 13
	13
10	12
11	16
13	16
13	18
16	16
16	19

Oppgave 4 – Assosiasjonsregler – 20 %

Anta handlekurv-data til høyre. Bruk apriori-algoritmen for å finne alle frekvente elementsett med minimum støtte på 50 % (dvs. *minimum support count* er 4). Velg deretter et av de frekvente 3-elementsettene og finn alle assosiasjonsregler basert på dette settet, gitt konfidens på 75 %.

TransaksjonsID Element

T1	A,B,C,D
T2	A,G
T3	A,C,E,F
T4	B,C,G
T5	A,C,E,F
T6	C,D
T7	A,B,C,E,F
Т8	A,B,C,E,F,G

Oppgave 5 – Klassifisering – 25 % (5% på a og b, 15% på c)

- a) Forklar hva som er hensiktene med *klassifisering*. Gi tre eksempler på typiske oppgaver som kan løses ved hjelp av klassifisering.
- b) Forklar kort prinsippene bak nærmeste-nabo-klassifisering (nearest neighbour classification).
- c) Magnus Carlsen og Vishy Anand skal spille VM-finale mot hverandre senere i år. Det er bestemt at finalen skal gå i India. Se for deg at disse to har truffet hverandre flere ganger tidligere, og at vi har fått tak i data og informasjon om møtene. Vi får også vite at resultatene til Carlsen tidligere har vært avhengig av hvor mye innsats han har lagt i å forberede møtene. I følgende tabell er et datasett som viser verdien 1 hvis Carlsen har ytt full innsats mens verdien 0 betyr innsatsen hans ikke har vært helt topp. Typen kamp og kamptidspunkt, samt sted for kampene tas også hensyn til her.

Tid	Kamptype	Sted	Innsats	Resultat
Morgen	Master	Indoor	1	C
Ettermiddag	Grand Tour	Indoor Crowded	1	C
Kveld	Show	Mall	0	C
Ettermiddag	Show	Mixed	0	A
Ettermiddag	Master	Indoor Crowded	1	A
Ettermiddag	Grand Tour	Indoor	1	С
Ettermiddag	Grand Tour	Mall	1	С
Ettermiddag	Grand Tour	Mall	1	С
Morgen	Master	Indoor	1	С
Ettermiddag	Grand Tour	Indoor Crowded	1	A
Kveld	Show	Mall	0	С
Kveld	Master	Mixed	1	A
Ettermiddag	Master	Indoor Crowded	1	A
Ettermiddag	Master	Indoor	1	С
Ettermiddag	Grand Tour	Mall	1	С
Ettermiddag	Grand Tour	Indoor Crowded	1	С

Kamper som har endt uavgjort (remis) er ikke med i datasettet.

Anta at vi skal bruke *beslutningstre* som klassifiseringsmetode. Vi bruker da dataene i tabellen over som treningsdata. For å avgjøre den beste splitten trenger vi å bruke **Entropy** for en node t som følger: $Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$, hvor $p(j \mid t)$ er sannsynligheten for klasse j gitt node t (dvs. andelen

av klasse j i node t). For hver splitting er "information gain" angitt som

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right), \text{ hvor } n_i \text{ er antall elementer i node } i \text{ og } n \text{ total elementer i}$$
 forelder-noden p .

Oppgave: Målet med klassifiseringen er å kunne predikere utfallet av fremtidige kamper mellom Carlsen og Anand. Beregn GAIN for splitting på (1) "**Tid**" og (2) "**Kamptype**". Hvilken av disse splittingene ville du valgt for å starte opprettelsen av beslutningstreet? Begrunn svaret ditt.