Hipotesis:

- 1. Los estampados del mismo tipo pero de diferenctes maquinas son indistinguibles
- 2. No hay inflación
- 3. Las fracciones de productos se venden a un precio porporcional al de la unidad
- 4. Se vende todo lo que se produce

Objetivo

Detenrmina la cantidad de horas de cada tipo de máquina que se usarán para hacer ambos estampados para máximizar las ganancias en un periodo de un día

Constantes:

 $M_{SC}(\$/dia)$: precio (\$) de la tela de Scooby por metro (m)

 $L_{SC}(m/hs)$: metros (m) de tela de Scooby producidos por hora (hs) en la maquina lenta

 $R_{SC}(m/hs)$: metros (m) de tela de Scooby producidos por hora (hs) en la maquina rápida

 $K_{SN}(\$/dia)$: precio (\$) de la tela de Snoopy por metro (m)

 $L_{SN}(m/hs)$: metros (m) de tela de Snoopy producidos por hora (hs) en

la maquina lenta

 $R_{SN}(m/hs)$: metros (m) de tela de Snoopy producidos por hora (hs) en la maquina rápida

$$R_{SC} = 7m/hs$$

$$L_{SN} \ = \ 2m/hs$$

Variables:

 $x_{i,j}(hs)$: horas (hs) de maquina i usadas en estampado k donde $i\epsilon\{r,\,l\}$ y $i\epsilon\{sn,\,sc\}$ $r=\mathrm{rapida}$ $l=\mathrm{lenta}$

sn = snoopy

sc = scooby

Objetivo funcional:

$$Z_{MAX} \; = \; K_{SN}(\$) \, * \, (R_{SN}(m/hs) \, * \, x_{r,sn}(hs) \, + \, L_{SN}(m/hs) \, * \, x_{l,sn}(hs)$$

Restricciones:

Demanda mínima:

$$egin{aligned} R_{SN}(m/hs) \, * \, x_{r,sn}(hs) \, + \, L_{SN}(m/hs) \, * \, x_{l,sn}(hs) \, \geq \, 10.000 \ R_{SC}(m/hs) \, * \, x_{r,sc}(hs) \, + \, L_{SC}(m/hs) \, * \, x_{l,sc}(hs) \, \geq \, 9.000 \end{aligned}$$

Horas disponibles máximas de cada maquina:

$$x_{r,sn}(hs) + x_{r,sc}(hs) \le 70(maq) * 8(hs/maq)$$

 $x_{l,sn}(hs) \, + \, x_{l,sc}(hs) \, \leq \, 60(maq) \, * \, 8(hs/maq)$