Al+x 인재양성 확대를 위한 교수자 연수

한국폴리텍대학 대구캠퍼스 AI엔지니어링학과 강현우

-신경망 및 딥러닝 개요

Overview

- ◆ 신경망
 - 인간이 뇌를 통해 문제를 처리하는 방법과 비슷한 방법으로 컴퓨터에서 문제를 해결하려는 모델
 - > 뉴런
 - ✓ 가지돌기에서 신호를 받음
 - ✓ 신호가 일정치 이상이면 축삭 돌기로 신호를 전달

출처: https://wikidocs.net/24958

Overview

- ◆ Activation Function (활성화 함수)
 - ▶ 뉴런에 가해지는 신호가 특정 임계치 까지는
 - 아무런 신호를 보내지 않다가 임계치를 초과하면
 - 신호를 내보내는 것을 모방

Perceptron 모델

활성화 함수
$$y = f(\sum W_i X_i)$$

가중합 =
$$W_o X_0 + W_1 X_1 + W_3 b$$

Neural Network

- ◆ 신경망
 - > 뉴런들을 여러 개 연결한 네트워크
- ◆ 신경망 학습
 - > 데이터를 통해 W의 값을 찾아내겠다
- ◆ 모델
 - > W 값들을 다 저장해둔게 모델이지 뭐.

Weight 학습

- ◆어떤 입력에 대하여
 - ▶ 원하는 출력값(목표값) d 와
 - 모델의 출력 y 사이에 차이가 발생
 - ➤ 현재의 weight에 차이를 더해서 weight를 갱신
- ◆ weigh를 갱신할 때 차이를 얼마나 줘?
 - ▶ 그게 바로 학습률
 - > 학습률이 너무 높으면 최적의 결과를 얻지 못함
 - > 너무 낮으면 학습 시간이 오래 걸림

$$W_{n+1} = W_n + \frac{\eta}{\eta}(d - y)$$

학습데이터

хı	x2	d
0	0	0
0	1	0
1	0	0
1	1	1

Activation Function

$$f(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

학습율 5% (0.05)

1라운드

Random

- Normal Distribution / Uniform Distribution
 - 확률 밀도 함수 (Probability Density Function)

1라운드

라운드? = 모든 학습데이터를 1회 학습하면 1라운드 Epoch 라는 표현으로 많이 사용함

ᅶ국폴리텍대학

м	x2	d	у
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

1라운드 종료 후 출력값 정답률 = 75%

2라운드

хı	x2	d	у
0	0	0	1
0	1	0	0
1	0	0	0
1	1	1	1

2라운드 결과

학습된 모델 구현

```
def AND_gate(x1, x2):
  w1 = 0.4
  w2 = 0.2
  # w3은 b로 표시.
  # b는 1이므로 1*w3 = w3 와 같다. 그러나! 다른 웨이트와 구별하기 위해
  b = -0.5
  w sum = w1 * x1 + w2 * x2 + b
  # activation function
  # 0이하 0, 그 외 1
  if w_sum <= 0:
    return 0
  else:
    return 1
if name == " main ":
  print("(0, 0)", AND_gate(0, 0))
  print("(0, 1)", AND_gate(0, 1))
  print("(1, 0)", AND_gate(1, 0))
  print("(1, 1)", AND_gate(1, 1))
```

XOR 문제

- ◆ 단층 신경망으로는 XOR 문제를 해결 X
- ◆ 다층 신경망으로 발전 (10년 걸림…)
 - > Multi Layer Perceptron; MLP

딥러닝 환경 구축시 고려 사항

- **♦ IDE**
 - Jupyter Lab / notebook
 - > Visual Studio / VS code
 - > PyCharm
 - > Eclipse

딥러닝 프레임워크

- ◆ TensorFlow (텐서 플로우)
 - ▶구글, 2015년, 가장 널리 사용
 - >개방성, 다양한 언어 지원, 많은 사용자
 - ≻Python, C/C++ 등 지원
 - >초기에 리눅스와 맥OS 만 지원, 현재 윈도우도 지원
 - > https://www.tensorflow.org/?hl=ko

◆ Keras (케라스)

- >구글, 2015년, (2017년부터 TensorFlow에서 지원)
- > 래퍼 라이브러리(MXNet, DL4J, TensorFlow, CNTK, Theano), Python 기반
- ≻사용성 우수[모듈화, 최소주의, 확장성]
- > https://keras.io/, https://keras.io/ko/

딥러닝 프레임워크

- ◆ PyTorch (叫の見力)
 - >페이스북, 2016년
 - >사용성 우수(코드 구현 장벽 낮음, 사용법 쉬움)
 - >텐서 플로우에 비하여 사용자층이 작음
 - >https://pytorch.org/
- ◆ Caffe (카페)
 - >버클리 대학, 2013년
 - >C/C++ 기반, Python 인터페이스
 - >컴퓨터비전/CNN/음성 특화, 범용성 낮음
 - >모델 공유 네트워크 (커뮤니티, Model Zoo)
 - https://caffe.berkeleyvision.org/

딥러닝 프레임워크

학습 과정

, **한국폴리텍대학** 대구캠퍼스

출력 - One Hot Encoding

- ◆ Target 은 1로 나머지는 0으로
 - ➤ 분류(Classification) 문제에서 주로 사용

- ◆ MNIST 예
 - $> 1 \rightarrow [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]$
 - > 5 \rightarrow [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
 - $> 9 \rightarrow [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]$
- ◆ 우리 문제
 - $\gt 0 \rightarrow [1,0]$
 - $\gt 1 \rightarrow [0, 1]$

Softmax

- ◆ 출력값들의 합이 1이 되도록 정규화
- ◆ 확률과 동일한 개념
- ◆ multi class 분류 문제에서 많이 사용

Softmax

```
def softmax(x):
    e_x = np.exp(x)
    sum_e_x = np.sum(e_x)
    y = e_x / sum_e_x

return y
```

```
if __name__ == "__main__":
    a = np.array([1.0, 1.0, 2.0])
    sm_a = softmax(a)
    print(sm_a)
```


[0.21194156 0.21194156 0.57611688]

Loss (손실)

Empirical Loss

◆ 전체 데이터셋에 대한 총 손실을 측정

$$J(W) = \frac{1}{N} \sum_{i=n}^{N} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$

Mean Squared Error Loss

◆ Regression 문제에서 많이 사용

$$J(W) = -\frac{1}{N} \sum_{i=n}^{N} \left(y^{(i)} - f(x^{(i)}; W) \right)^{2}$$

Binary Cross Entropy Loss

◆ 출력이 확률(0~1) 형태일 때 사용

$$J(W) = -\frac{1}{N} \sum_{i=n}^{N} y^{(i)} log \left(f(x^{(i)}; W) \right) + (1 - y^{(i)}) log \left(1 - f(x^{(i)}; W) \right)$$

신경망의 학습

- Loss Optimization
 - > 손실을 최소화 하는 가중치를 찾는 것

$$W^* = \operatorname{argmin}_{W} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x^{(i)}; W), y^{(i)})$$

$$W^* = \underset{W}{\operatorname{argmin}} J(W)$$

$$W = \{W^{(1)}, W^{(2)}, \cdots\}$$

Back Propagation

◆ 오차 역전파

- > MLP 에서 최적화 과정
- > 모델의 예측값 과 원하는 값 사이의 오차를 계산
- 경사 하강법을 이용해 오차가 작아지는 방향으로 웨이트를 업데이트
- ◆ 오차가 작아지는 것?
 - ▶ 미분 값 (기울기)가 0이 되는 방향으로 나아간다

Loss Optimization

- Gradient Desent
 - > 1차 근사값 발견용 최적화 알고리즘
 - ▶ 함수의 기울기를 구하고 기울기의 절대값이 낮은 쪽으로 계속 이동시켜 극값에 이를때 까지 반복

경사 하강법

$$W \leftarrow W - \eta \, \frac{\partial J(W)}{\partial W}$$

확률적 경사 하강법

Loss Optimization

◆ 가중치에 따른 손실 분포

Back Propagagtion

[출처] https://ds-academy.net/chapter-1-introduction-to-dl/

Optimization

	고급 경사 하강법	개요	효과	케라스 사용법
	확률적 경사 하강법	랜덤하게 추출한 일부 데이터를 사용해	속도 개선	keras.optimizers.SGD(lr = 0.1)
	(SGD)	더 빨리, 자주 업데이트를 하게 하는 것	국エ 개인	케라스 최적화 함수를 이용합니다.
	모멘텀	관성의 방향을 고려해 진동과 폭을 줄이	정확도	keras.optimizers.SGD(lr = 0.1,
	포한함 (Momentum)		경복도 개선	momentum = 0.9)
	(Morrientum)	tum) 는 효과		모멘텀 계수를 추가합니다.
	네스테로프 모멘텀	모멘텀이 이동시킬 방향으로 미리 이동해	정확도	keras.optimizers.SGD(lr = 0.1,
	네프네포트 모델립 (NAG)	서 그레이디언트를 계산. 불필요한 이동	개선	momentum = 0.9, nesterov = True)
	(NAG)	을 줄이는 효과	계신	네스테로프 옵션을 추가합니다.
				keras.optimizers. $Adagrad(lr = 0.01)$
				epsilon = $1e - 6$)
				아다그라드 함수를 사용합니다.
	아다그라드	변수의 업데이트가 잦으면 학습률을 적게	보폭 크기	
	(Adagrad)	하여 이동 보폭을 조절하는 방법	개선	※ 참고: 여기서 epsilon, rho, decay 같은
				파라미터는 바꾸지 않고 그대로 사용하기를
				권장하고 있습니다. 따라서 $1r$, 즉 learning
				rate(학습률) 값만 적절히 조절하면 됩니다.

[출처] 모두의 딥러닝 한국폴리텍대호

Optimization

고급 경사 하강법	개요	효과	케라스 사용법
알엠에스프롭 (RMSProp)	아다그라드의 보폭 민감도를 보완한 방법	보폭 크기 개선	keras.optimizers.RMSprop(lr = 0.001, rho = 0.9, epsilon = 1e - 08, decay = 0.0) 알엠에스프롭 함수를 사용합니다.
아담(Adam)	모멘텀과 알엠에스프롭 방법을 합친 방법	정확도와 보폭 크기 개선	keras.optimizers.Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e - 08, decay = 0.0) 아담 함수를 사용합니다.

[출처] 모두의 딥러닝

잘 모르겠으면, 그냥 Adam 을 사용한다!

TensorFlow - Keras 로 모델 만들기

```
# keras tesnor flow 신경망
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

def make_model():
    model = Sequential()
    model.add(Dense(2, input_dim=2, kernel_initializer='normal', activation="sigmoid"))
    model.summary()
    model.compile(optimizer="adam", loss='binary_crossentropy', metrics=['accuracy'])
    return model
```

```
Model: "sequential"

Layer (type) Output Shape Param #

dense (Dense) (None, 1) 3

Total params: 3

Trainable params: 3

Non-trainable params: 0
```


학습 해보기

```
if __name__ == "__main__":
    perceptron_model = make_model()

x = [[0, 0], [0, 1], [1, 0], [1, 1]]
y = [[1, 0], [1, 0], [1, 0], [0, 1]]

perceptron_model.fit(x, y, epochs=100)

result = perceptron_model.predict(x)
    print(result)
```


====] - Os Os/step - loss: 0.6457 - accuracy:

Multi-layer Perceptron

- ◆ XOR 문제
 - ▶ 단층 신경망으로는 풀 수 없다
 - > 새로운 접근이 필요
- ◆ 성냥개비 6개로 정삼각형 3개를 만들어보라

Multi Layer Perceptron

- ◆ 2차원 평면 노노
 - > 3차원에서는 쉽게 해결

[출처] 모두의 딥러닝

◆ XOR 문제의 해결은 평면을 휘어 주는 것

Multi Layer Perceptron

- ◆ 좌표 평면 자체에 변화
 - > 2개의 perceptron을 한 번에 계산할 수 있어야 함
 - > 은닉층 (Hidden layer)를 추가!

Multi Layer Perceptron

◆ 은닉층이 좌표 평면을 왜곡 시키는 결과

http://colah.github.io/posts/2015-09-NN-Types-FP/

MLP 구조

$$n_1 = w_{11}x_1 + w_{21}x_2 + b_1$$

$$n_2 = w_{12}x_1 + w_{22}x_2 + b_2$$

$$W1 = \begin{bmatrix} w_{11} & w_{21} \\ w_{12} & w_{22} \end{bmatrix} \quad X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$B1 = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

[출처] 모두의 딥러닝

 $N1 = W_1X + B1$

MLP 구조

XOR 문제 풀기

- ◆ 은닉층에 노드 5개 추가
 - ➤ 적절한 개수? → 실험적으로 찾는다.
 - > 일반적으로 히든 노드의 개수를 늘이면 학습 잘 됨
- ◆ 출력은 One-hot Encoding으로
 - ➤ XOR 게이트의 출력 0과 1을 각각의 클래스로 간주
 - > [1, 0], [0, 1], [0, 1], [1, 0]

모델 설계

모델 구현

```
def make_model():
    model = Sequential()
    model.add(Dense(5, input_dim=2, kernel_initializer='normal',
    activation="sigmoid"))
    model.add(Dense(2, input_dim=5, kernel_initializer='normal',
    activation="softmax"))
    model.summary()
    model.compile(optimizer="adam", loss="categorical_crossentropy",
    metrics=['accuracy'])
    return model
```

Layer (type)	Output Shape	Param #	
dense (Dense)	(None, 5)	15	
dense_1 (Dense)	(None, 2)	12	

Total params: 27

Trainable params: 27
Non-trainable params: 0

모델 학습 및 테스트

```
if __name__ == "__main__":
    perceptron_model = make_model()

x = [[0, 0], [0, 1], [1, 0], [1, 1]]
y = [[1, 0], [0, 1], [0, 1], [1, 0]]

perceptron_model.fit(x, y, epochs=1000)

result = perceptron_model.predict(x)
    print(result)
```

Deep Learning

- ◆ MLP 는 XOR 문제를 가볍게 해결
- ◆ 신경망을 차곡 차곡 쌓기만 하면 되겠네? → 응 아니아.

Gradient Vanishing

- Back Propagation
 - ▶ 출력층으로 되돌아가며 가중치를 수정
 - > 이 때 미분을 사용하는데…

Gradient Vanishing

◆ Sigmoid 함수를 미분하면

- > 여러 층을 거칠 수록 기울기가 사라짐
- ▶ 가중치를 수정할 수 없게 됨

Activation Function

◆ 활성화 함수를 다른 걸 써야겠구나?!

Activation Function

- ◆ Keras 는 다양한 활성화 함수를 지원
 - https://keras.io/ko/activations/
 - https://subinium.github.io/introduction-toactivation/

Summary

- ◆ 신경망이란?
 - > 인간의 뉴런을 모방
 - > Activation Function
- ◆ 학습이란?
 - ➤ 손실이 최소가 되는 최적의 Weight를 찾는 것
 - 오류 역전파를 통해 손실을 앞으로 전달
- ◆ 다음 시간?
 - ➤ MNIST 손글씨 인식
 - ➤ Cifar-10 이미지 분류 실습

