Sequential Circuit Lecture 15

Advanced Digital IC Design **Khosrow Ghadiri**

Gates:

- Acyclic logic gates, no memory, no clock
- Cyclic

Gates:

- Sequential circuits: Output depends on present & previous inputs.
- Combinational logic: Output of circuit depends only on the input.

Gates:

- Non regenerative circuits: (no feedback between I/O)
- Regenerative (feedback between I/O)

- Regenerative circuits (Class of multivibrators):
- Bi-stable circuits (circuit under certain input & output condition has 2 stable states, example, flip-flops, latches, registers)
- Mono-stable circuits (one stable state even with external perturbation)
- Astable circuits (circuit cannot preserve stable state for certain time, example, ring oscillator)

- SR Latches:
- Have two complementary outputs Q and \bar{Q}
- Two triggering input: Set (S) and Reset (R).
- Set state: Q = 1 or High and $\overline{Q} = 0$ or low
- Reset state: Q = 0 and $\bar{Q} = 1$
- Hold its states as long as power supply voltage is provided
- Added switches to cross-coupled inverter to allow change of the state by external triggering by overpower the feedback loop.

Asynchronous SR Latch Operation:

- Set Operation: Set: High, Reset: Low, Q: High, \bar{Q} : Low. Regardless of previous stage
- Reset Operation: Reset: High, set: Low, \mathcal{Q} : low, $\bar{\mathcal{Q}}$: High. Regardless of previous stage
- Not allowed condition: Set: High, Reset: High, Q: Low, \bar{Q} : Low. Contradictiory.
- Previous state: Set: Low, Reset: Low, $Q_n:Q_{n-1}$, $\bar{Q}_n:\bar{Q}_{n-1}$.

Asynchronous SR Latch NOR Gate Based:

R	S	Q_n	$ \bar{Q}_n $	Operation
0	0	Q_{n-1}	$ar{Q}_{n-1}$	Hold
1	0	1	0	Set
0	1	0	1	Reset
1	1	0	0	Forbidden State

Asynchronous SR Latch Operation:

S	R	Q	$ar{\mathcal{Q}}$	Operation
$V_{\scriptscriptstyle OH}$	$V_{\scriptscriptstyle OL}$	$V_{\scriptscriptstyle OH}$	$V_{\scriptscriptstyle OL}$	T_1 and $T_2: ON T_3$ and $T_2: OFF$
$V_{\scriptscriptstyle OL}$	$V_{\scriptscriptstyle OH}$	$V_{\scriptscriptstyle OL}$	V_{OH}	T_1 and $T_2: OFF T_3$ and $T_2: ON$
$V_{\scriptscriptstyle OL}$	V_{OL}	V_{OH}	$V_{\scriptscriptstyle OL}$	T_1 and $T_4: OFF T_2: ON \ or$
V_{OH}	V_{OH}	$V_{\scriptscriptstyle OL}$	$V_{\scriptscriptstyle OL}$	T_1 and $T_4: OFF T_3: ON$

- SR Latch Transient response: (Consider a state change)
- Apply set signal, output nodes undergo voltage transition from logic low to logic high.
- Or apply reset signal, output nodes undergo voltage transition from logical high to logical low.
- Both of the output nodes undergo a state change simultaneously in either case
- Estimate the amount of time required for the simultaneous switching of the two output nodes.
- Exact solution requires the simultaneous solution of two coupled differential equations, one each for each output node.
- Simplified solution with an overestimation of switching time are possible by assumption of two events take place in sequence rather than simultaneously.

- SR latch switching time:
- Find the total parasitic capacitance associated with each output node.

$$C_Q = C_{gb,2} + C_{gb,5} + C_{db,3} + C_{db,4} + C_{db,7} + C_{sb,7} + C_{db,8}$$

$$C_{\overline{Q}} = C_{gb,3} + C_{gb,7} + C_{db,1} + C_{db,2} + C_{db,5} + C_{sb,5} + C_{db,7}$$

- Assuming that the latch is initially reset and that a set operation is being performed by applying S = 1 and R = 0.
- The rise time of node *Q* is:

$$\tau_{\text{rise,Q(SR-Latch)}} = \tau_{\text{rise,Q(NOR-gate)}} + \tau_{\text{fall,Q(NOR-gate)}}$$

ı 🏥

Asynchronous CMOS NOR-Gate Based SR Latch with Lumped Capacitors:

- Calculation of switching time $\tau_{\rm rise,Q(SR-Latch)}$ requires two separate calculation for NOR gates.
- Two steps calculations:
- 1 The output node voltage \overline{Q} falling from high to low, due to turn on of T_1 . Find $au_{\mathrm{fall},\overline{\mathrm{Q}}(\mathrm{NOR}\text{-}\mathrm{gate})}$
- 1 The output node voltage Q rising from low to high, due to turn-off of T_3 . Find $T_{\text{rise,Q(NOR-gate)}}$
- Both T_2 , and T_4 can be assumed to be off in this process. Although T_2 can be turned on as Q rises, thus shortening the \overline{Q} node full time. (This is cause of over-estimation)

• Synchronous SR Latches:

Asynchronous Depletion-Load nMOS NOR Gate Based SR Latch:

Disadvantages: The power dissipation and noise margin

Asynchronous SR Latch NAND Gate Based:

- SR latch NAND gate based operation
- Set high reset: high to hold
- Set: low reset: High Q: High Q: low
- Reset : low set : high Q : low \overline{Q} : high

Asynchronous SR Latch NAND Gate Based:

R	S	Q_n	$ar{Q}_{\scriptscriptstyle n}$	Operation
1	1	Q_{n-1}	$ar{Q}_{n-1}$	Hold
1	0	1	0	Set
0	1	0	1	Reset
0	0	1	1	Forbidden State

Asynchronous Depletion-Load nMOS NAND Gate Based SR Latch:

example

Advanced Digital IC Design

- To reset Q: high to Q: low
- *Q* is high
- A pulse applied to R
- To make the latch switch to low, Q node should come below the switching threshold of T_1 and T_2 .
- Positive feedback invert state
- Increase the size of T_5 , T_6 , T_7 and T_8 .
- T_4 , T_7 , T_8 form ratioed inverter.
- If $V_m = \frac{V_{DD}}{2}$

and
$$\left(\frac{W}{L}\right)_{T1} = \left(\frac{W}{L}\right)_{T3} = \frac{0.5um}{0.25um}$$
 and $\left(\frac{W}{L}\right)_{T2} = \left(\frac{W}{L}\right)_{T4} = \frac{1.5um}{0.25um}$, $Q:low$

Design minimum size T_5 , T_6 , T_7 and T_8 to make the SR latch switchable

Sequential Circuit

Advanced Digital IC Design

- Q: low to Q: high
- Pseudo-NMOS inverter ($T_5 T_6$)- T_2 low level should be below the switching threshold of the inverter $T_3 T_4 = \frac{V_{DD}}{2}$

$$V_Q = 0$$
 and $V_G(T_2) = 0$ as long as $V_{\overline{O}} > V_M$

- Transistor sizing: equate current through inverter for $V_{\overline{Q}} = \frac{V_{DD}}{2}$
- The currents are determined by saturation.
- Since

$$\left(\frac{W}{L}\right)_{T5-T6}$$
 is the effective ratio of the series connected devices

$$L_{T5-T6} = 2L_{T5} = 2L_{T6}$$

$$k_{n}^{'} \left(\frac{W}{L}\right)_{T5-T6} \left[\left(V_{DD} - V_{Tn}\right) V_{Dsatn} - \frac{V_{DSatn}^{2}}{2} \right] = k_{p}^{'} \left(\frac{W}{L}\right)_{T2} \left[\left(-V_{DD} - V_{Tp}\right) V_{Dsatp} - \frac{V_{DSatp}^{2}}{2} \right]$$

$$\left(\frac{W}{L}\right)_{T5-T6} \ge 2.26, \quad \left(\frac{W}{L}\right)_{T5} = \left(\frac{W}{L}\right)_{T6} = 4.5$$

Synchronous NOR Gate Based SR Latches:

Gate-Level Synchronous clocked NOR-Based SR Latches:

Gate-Level Synchronous clocked NOR-Based SR Latches:

Synchronous SR Latches

Advanced Digital IC Design

- Gate-Level Synchronous clocked NAND-Based SR Latch,
- with Active High Input :

Synchronous SR Latches

Advanced Digital IC Design

- Gate-Level Synchronous clocked NAND-Based SR Latch,
- with Active Low Input :

- AND-OR-INVERT (AOI) Gates:
- Pull-down Logic

- OR-AND-INVERT (OAI) Gates:
- Pull-down Logic

AOI-based Clocked NOR Gate Based SR Latch:

