# Łukasz Stępień 30.03.2023r. Laboratorium 5

# Aproksymacja

### 1. Temat zadania:

Wykonaj aproksymacje średniokwadratową punktowa populacji Stanów Zjednoczonych w przedziale [1900,1980] wielomianami stopnia m dla  $0 \le m \le 6$ . Dla każdego m dokonaj ekstrapolacji wielomianu do roku 1990. Porównaj otrzymana wartość z prawdziwa wartością dla roku 1990. Wyznacz optymalny stopień wielomianu za pomocą kryterium informacyjnym Akaikego.

Wykonaj aproksymacje średniokwadratową ciągła funkcji  $f(x) = \sqrt{x}$  w przedziale [0,2] wielomianem drugiego stopnia, używając wielomianów Czebyszewa.

## 2. Implementacja:

Zdefiniowana jest funkcja *vand(Y, n)*, która tworzy macierz Vandermonde'a na podstawie wektora Y o długości 9 i stopnia wielomianu n. Macierz ta jest używana w późniejszym procesie aproksymacji średniokwadratowej punktowej.

Zdefiniowana jest funkcja AICc(m, n, s), która oblicza współczynnik AICc na podstawie liczby stopni wielomianu m, liczby danych n oraz sumy kwadratów reszt s. Wartość ta jest używana do oceny jakości aproksymacji.

Zdefiniowane są dane wejściowe do aproksymacji, tj. wektory rok i populacja, reprezentujące odpowiednio lata od 1900 do 1980 oraz odpowiadające im liczby ludności.

Przeprowadzana jest pętla w zakresie od 0 do 6, w której dla każdego stopnia wielomianu m:

- a. Tworzona jest macierz Vandermonde'a A na podstawie wektora rok i stopnia wielomianu m+1.
- b. Wykonywane jest rozwiązanie układu równań liniowych za pomocą funkcji *Istsą* z biblioteki *numpy*, które daje współczynniki wielomianu aproksymacyjnego, resztę, rangę macierzy oraz sumę kwadratów reszt.
- c. Obliczany jest wielomian aproksymacyjny dla przedziału lat od 1890 do 1991.
- d. Obliczany jest błąd względny dla roku 1990 na podstawie różnicy między wartością aproksymowaną a wartością rzeczywistą, dzielonej przez wartość rzeczywistą.
- e. Obliczany jest współczynnik AICc na podstawie funkcji AICc.
- f. Wyniki błędu względnego i współczynnika AICc są zapisywane w odpowiednich listach result1 i result2.

Wykresy błędu względnego oraz współczynnika AICc są generowane i zapisywane do plików.

Wykonywana jest pętla w zakresie od 0 do 6, w której wypisywane są wyniki błędu względnego i współczynnika AICc w formacie tabelarycznym.

Indeksy o najmniejszych wartościach błędu względnego i współczynnika AICc są wypisywane.

# 3. Wyniki:

Poniższa tabela przedstawia dla danego stopnia wielomianu błąd względny ekstrapolacji wielomianu do roku 1990 (przy prawdziwej wartości w 1990: 248709873) oraz wartość kryterium informacyjnego Akaikego.

| Stopień wielomianu | Błąd względny | AICc   |
|--------------------|---------------|--------|
| 0                  | 42,35%        | 321,01 |
| 1                  | 5,19%         | 289,06 |
| 2                  | 2,41%         | 279,45 |
| 3                  | 2,56%         | 286,50 |
| 4                  | 2,69%         | 298,37 |
| 5                  | 2,82%         | 322,26 |
| 6                  | 2,93%         | 394,16 |

Wykres dla błędu względnego:



### Wykres dla AICc:



Najmniejszy błąd względny ekstrapolacji jak i najmniejsza wartość kryterium informacyjnego Akaikego wyliczane są dla wielomianu **stopnia drugiego**.

Poniższy wykres przedstawia aproksymacje funkcji  $f(x) = \sqrt{x}$  w przedziale [0,2] wielomianem Czebyszewa drugiego stopnia:



### 4. Wnioski:

W ramach zadania 1 przeprowadzono poprawnie aproksymację średniokwadratową punktową populacji Stanów Zjednoczonych w przedziale czasowym [1900, 1980] wielomianami stopnia od 0 do 6. Następnie dokonano ekstrapolacji otrzymanych wielomianów do roku 1990 i porównano otrzymane wartości z prawdziwą wartością dla roku 1990, wynoszącą 248 709 873. Obliczono także błąd względny ekstrapolacji dla roku 1990 oraz zidentyfikowano stopień wielomianu, dla którego błąd względny był najmniejszy. Ponadto, wykorzystano kryterium informacyjne Akaikego (AIC) do wyboru optymalnego stopnia wielomianu, uwzględniając również korektę dla niewielkiego rozmiaru próbki (n < 40) za pomocą wzoru AIC<sub>c</sub>. Sprawdzono także, czy wyznaczony w ten sposób stopień wielomianu pokrywa się z wynikiem uzyskanym w poprzednim podpunkcie, co okazało się prawdą.

W ramach zadania 2 dokonano poprawnej aproksymacji średniokwadratowej ciągłej funkcji  $f(x) = \sqrt{x}$  w przedziale [0,2] za pomocą wielomianów Czebyszewa drugiego stopnia.