

ANALYSIS

TUTORIAL 3: SEQUENCES & SERIES

- The geometric progression U has terms u_1, u_2, u_3, \ldots , with common ratio r, where |r| < 1. It is given that $v_i = u_i^2$ for $i = 1, 2, 3, \ldots$
 - (i) Show that $\sum_{i=1}^{n} v_i = \frac{u_1}{1+r} \sum_{i=1}^{2n} u_i$.

It is given further that $w_i = v_i - v_{i+1}$ for i = 1, 2, 3, ...

(ii) Show that
$$\sum_{i=1}^{n} w_i = u_1 (1-r) \sum_{i=1}^{2n} u_i$$
.

Let
$$S_U = \sum_{i=1}^{\infty} u_i$$
, $S_V = \sum_{i=1}^{\infty} v_i$ and $S_W = \sum_{i=1}^{\infty} w_i$. Show that

(iii)
$$\frac{S_u}{S_V} + \frac{1}{S_U} = \frac{2}{u_1}$$
,

(iv)
$$S_W = u_1^2$$
.

2 For each of the following sequences, determine if it converges or diverges.

(a)
$$u_n = \sin \frac{n\pi}{2}$$
, $n = 1, 2, 3, ...$

(b)
$$u_n = \frac{n^3}{3^n}, \ n = 1, 2, 3, \dots$$

(c)
$$u_n = \frac{n^n}{n!}, n = 1, 2, 3, \dots$$

(**d**)
$$u_n = \frac{\sin n}{n}, \ n = 1, 2, 3, \dots$$

Hint:

For (b), consider a function f(x) such that $f(n) = u_n$ for every n, show that f'(x) < 0 and hence deduce that f approaches certain value as $x \to \infty$.

For (c), show that u_n is strictly increasing as n increases.

For (d), recall that $-1 \le \sin n \le 1$ for every n.

3 Show that the following series is divergent.

$$5 + \sqrt{5} + \sqrt[3]{5} + \sqrt[4]{5} + \dots$$

4 Consider the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ (again).

Denote its k^{th} partial sum by S_k , i.e. $S_k = \sum_{n=1}^k \frac{1}{n}$.

- (i) Show that $\sum_{n=2^{k-1}+1}^{2^k} \frac{1}{n} \ge \frac{1}{2}$ for every positive integer k.
- (ii) Show that $S_{2^k} \ge 1 + \frac{k}{2}$ for every positive integer k.
- (iii) Hence, determine whether the series converges or diverges.
- Prove that the following sum of series is less than $\frac{3}{2}$ using the formula for the sum of an infinite geometric series:

$$1 + \frac{1}{3} + \frac{1}{4^2} + \frac{1}{5^3} + \frac{1}{6^4} + \dots$$

6 The diagram below shows a sketch of the graph $y = \frac{1}{x^p}$, where p > 0, $p \ne 1$.

By considering the area of appropriate rectangles and the area between the graph and the x-axis, where $n \ge 1$,

Show that
$$\frac{1}{(n+1)^p} < \frac{1}{1-p} (n+1)^{1-p} - \frac{1}{1-p} n^{1-p} < \frac{1}{n^p}$$

Deduce that

$$\frac{1}{2^{p}} + \frac{1}{3^{p}} + \ldots + \frac{1}{n^{p}} + \frac{1}{(n+1)^{p}} < \frac{1}{(1-p)} \left[(n+1)^{1-p} - 1 \right] < 1 + \frac{1}{2^{p}} + \ldots + \frac{1}{(n-1)^{p}} + \frac{1}{n^{p}}$$

Deduce the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, when

(a)
$$p = \frac{1}{2}$$
, (b) $p = 2$.

7 (i) Sketch the graph of
$$y = \frac{1}{x}$$
 and hence explain why $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} > \int_{1}^{n+1} \frac{dx}{x}$.

(ii) Sketch the graph of
$$y = \sin x$$
 and determine the largest constant a such that $ax \le \sin x$ for $0 \le x \le \frac{\pi}{2}$.

(iii) Part of a proof of convergence and divergence of series in a textbook is as follows:

(1) Let
$$n$$
 be a positive integer. Then

(2)
$$\sum_{i=1}^{n} \sin \frac{1}{i} \ge \frac{2}{\pi} \sum_{i=1}^{n} \frac{1}{i}$$

$$(3) \geq \frac{2}{\pi} \ln(n+1).$$

(4)
$$\sum_{i=1}^{n} \sin^2 \frac{1}{i} \le \sum_{i=1}^{n} \frac{1}{i^2} < 1 + \sum_{i=2}^{n} \frac{1}{i(i-1)} < 2.$$

Explain the second and third lines of the proof.

Hence determine for every positive integer k, if the series $\sin^k \frac{1}{1} + \sin^k \frac{1}{2} + \sin^k \frac{1}{3} + \dots$ is convergent or divergent.

8 The r^{th} term u_r of an arithmetic progression U is given by

$$u_r = a + (r-1)d$$
, for $r = 1, 2, 3, ...$

The progression is such that there exists a term of U equal to a^2 . Given that a and d are positive integers, show that

- (i) for each term u_r of U, there exists a term of U equal to u_r^2 ,
- (ii) for each term u_r of U, there exists a term of U equal to u_r^3 ,
- (iii) all the terms of the geometric progression $a, a^2, a^3, ...$ are terms of U.

If a and d are not required to be positive integers, show, by giving a counter-example, that the result in part (i) is not necessarily true.

A sequence u_n (n = 0,1,2,...) is defined by $u_0 = X$ and $u_{n+1} = \frac{au_n + b}{cu_n + d}$ for $n \ge 0$, where a,b,c and d are non-zero constants such that $ad \ne bc$. It may be assumed that

where a,b,c and d are non-zero constants such that $ad \neq bc$. It may be assumed that $cu_n + d \neq 0$ for all n. Find an expression for u_{n+2} in terms of u_n .

The sequence is said to repeat after p steps if $u_p = u_0$, whatever the value of X.

- (i) Show that the sequence repeats after 2 steps if and only if a+d=0. Show also that if $a^2+d^2+2bc=0$, then the sequence repeats after 4 steps.
- (ii) If $u_1 = Y$, find an expression for u_0 in terms of Y. Write down an expression for u_3 in terms of Y, and hence show that if $a^2 + d^2 + ad + bc = 0$, then the sequence repeats after 3 steps.