MÉTODOS E FILOSOFIA DO CONTROLE ESTATÍSTICO DE PROCESSOS

- Ferramentas básicas para solução de problemas em CEP
- Base estatística das cartas de controle de Shewhart
- Questões práticas de implementação de CEP

CAUSAS COMUNS OU DE CHANCE E CAUSAS ESPECIAIS OU ATRIBUÍVEIS DE VARIAÇÃO DE QUALIDADE

• Um processo operando somente com *Causas de Chance de Variação*, ou *Causas Comums* presentes é dito estar **em Estado de Controle Estatístico**.

• Um processo operando em presença de *Causas Atribuíveis*, ou *Causas Especiais*, é dito estar **fora de Estado de Controle Estatístico**.

Figura 01: Causas Atribuíveis e Causas Comuns de variação

BASE ESTATÍSTICA DAS CARTAS DE CONTROLE

- Uma Carta de Controle contém:
 - Uma linha central (valor médio).
 - Um limite de controle superior, UCL, (upper control limit).
 - Um limite de controle inferior, LCL, (lower control limit).
- Pontos na carta entre os limites de controle:
 - Processo em CE. Nenhuma ação é necessária.
- Pontos na carta fora dos limites de controle evidencia que o processo está fora de controle estatístico:
 - Investigação e ação corretiva são requeridas para encontrar e eliminar as causas especiais.
- Pontos com comportamento sistemático ou não-aleatório.

Figura 02: Carta de Controle Típica

Existe uma relação próxima entre cartas de controle e teste de **hipótese.**

INTERVALOS DE CONFIANÇA

- Suponha que x seja uma variável aleatória com média μ , desconhecida, e variância, σ^2 , conhecida. Para testar a hipótese de que a média é um valor nominal μ_0 , testa-se:
 - H_o : $\mu = \mu_o$
 - H_1 : $\mu \neq \mu_0$
- Para testar esta hipótese toma-se uma amostra aleatória de **n** observações e calcula-se a estatística de teste: $Z_o = \frac{\bar{x} \mu_o}{\sigma/\tau_o}$
- Rejeita-se H_o se $|Z_o| > Z_{\alpha/2}$, onde $Z_{\alpha/2}$ é o ponto da distribuição normal padrão correspondente à porcentagem superior $\alpha/2$.

Observe que α é a probabilidade de erro do tipo I para o teste e se H_o é verdadeira, devemos esperar que $100(1-\alpha)\%$ dos valores de Z_o caiam entre $-Z_{\alpha/2}$ e $+Z_{\alpha/2}$.

100(1- α)% é chamado intervalo de confiança de nível para a média desconhecida μ .

EXEMPLO: FABRICAÇÃO DE ANÉIS PARA PISTÃO DE MOTORES DE AUTOMÓVIES

- Um característica de qualidade importante na fabricação destes anéis é o diâmetro interno.
- Processo é monitorado por meio da medida do diâmetro interno médio com:
 - amostra de 5 anéis
 - média de1.5cm
 - desvio padrão de 0.15 cm
- Note que todos os pontos plotados estão dentro dos limites de controle
 - Processo é dito estar em CEP.

Figura 03: Carta de Controle X_{bar} para Largura de Fluxo

EXEMPLO: FABRICAÇÃO DE ANÉIS PARA PISTÃO DE MOTORES DE AUTOMÓVIES

Sendo a média do processo 1,5 cm e o desvio padrão do mesmo 0,15cm, além do tamanho das amostras n=5, pode-se calcular o desvio padrão da média da amostra, $\frac{1}{x}$, como:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{0.15}{\sqrt{5}} = 0.067$$

Assim, se o processo está em controle com diâmetro médio de $1,\underline{5}$ cm, então pode-se, considerando o teorema do limite central, assumir que x é aproximadamente normal distribuída, e com isso esperar:

$$100(1-\alpha)\%$$
 da amostra de diâmetros médio \bar{x} estará entre os limites $1.5+Z_{\alpha/2}(0.067)$ e $1.5-Z_{\alpha/2}(0.067)$

Se escolhermos a constante $\frac{Z_{\alpha/=}}{2}$ (frequentemente chamado de limites de controle "três sigmas"), os limites de controle superior e inferior serão:

$$UCL = 1.5 + 3.(0.067) = 1.701 \ e \ LCL = 1.5 - 3.(0.067) = 1.299$$

MODELO DA CARTA DE CONTROLE DE SHEWHART

Pode-se assumir um modelo geral para cartas de controle. Seja w uma amostra estatística que mede alguma característica de qualidade de interesse e assuma-se que a média de w é μ_w e o desvio padrão de w é σ_w . Assim:

$$UCL = \mu_{w} + L\sigma_{w}$$

$$Linha\ central = \mu_{w}$$

$$LCL = \mu_{w} - L\sigma_{w}$$

onde L é a "distância" dos limites de controle da linha central, expressa em unidades de desvio padrão.

Esta teoria de cartas de controle foi proposta por Walter S. Shewhart e este modelo de cartas é chamado de **Carta de Controle de Shewhart**.

MODELO DA CARTA DE CONTROLE DE SHEWHART

USO DE CARTAS DE CONTROLE

Figura 05: Processo de melhoria usando Carta de Controle

O objetivo mais importante de uma carta de controle é melhorar o processo. A maioria dos processos não opera em estado de controle estatístico e, assim:

- 1. Consequentemente, a rotina e o uso atento das cartas de controle irão identificar a existência de causas especiais ou atribuíveis. Se estas causas puderem ser eliminadas do processo, a variabilidade será reduzida e o processo será melhorado.
- 2. A carta de controle irá detectar somente causas especiais ou atribuíveis. A ação do gerenciamento, dos operadores e da engenharia serão, usualmente, necessárias para eliminar as causas atribuíveis.

USO DE CARTAS DE CONTROLE

Figura 06: Plano de ação para perda de estado de controle para um processo Hard-bake

OUTROS PRINCÍPIOS BÁSICOS

- Cartas de controle podem ser usadas para estimar parâmetros de processo que são usados para determinar a capacidade (capability).
- Existem dois tipos gerais de Cartas de Controle:
 - Variáveis (Cap. 5)
 - Escala contínua de medição
 - Característica de qualidade descrita pela tendência central e a medida de variabilidade.
 - Atributos (Cap. 6)
 - Conforme/não-conforme
 - Contável
- Projeto de cartas de controle compreende a seleção do tamanho da amostra, a definição dos limites de controle e da frequência de amostragem.
- (No exemplo anterior, n=5, limites de controle definidos por 3σ, e frequência de amostragem a cada hora.)

TIPOS DE VARIABILIDADE DE PROCESSO

- A) Estacionária e não-correlacionada os dados variam em torno de uma média fixa de uma maneira estável e previsível (ruído branco).
- B) Estacionária e autocorrelacionada observações sucessivas são dependentes com tendência a mover por "longos períodos" em cada lado da média.
- C) Não estacionário desvios do processo sem qualquer sentido de uma média fixa ou estável. O processo é instável, no sentido em que "vagueia" sem sentido de uma média fixa ou estável. Notoriamente é o caso de um processo que demanda controle realimentado de processos.
- Comportamentos A e B correspondem ao que Shewhart queria dizer de resultado de um processo operando sob controle.

Figura 07:Dados provenenientes de três processos. a) Estacionário e não correlacionado (ruido branco). b) Estacionário e Autocorrelacionado. c) Não estacionário.

RAZÕES PARA POPULARIDADE DAS CARTAS DE CONTROLE

- 1. Constituem-se uma técnica comprovada para melhoria de produtividade.
- 2. São efetivas na prevenção de defeitos.
- 3. Evitam ajustes desnecessários no processo.
- 4. Disponibilizam informações diagnósticas.
- 5. Disponibilizam informações a respeito da **capacidade** do processo (de produzir produtos aceitáveis, conformes).

ESCOLHA DOS LIMITES DE CONTROLE

3-Sigma Limites de Controle

Probabilidade de erro do tipo I é p = 0.0027 (probabilidade de que um ponto seja plotado fora dos limites quando o processo está sob controle - 99,73% de acerto para 3-Sigma).

- Limites de Ação: Limites de probabilidade de erro Tipo I - probabilidade é escolhida diretamente (onde existe 1 chance em 1000 (0.001) de um ponto amostrado estar fora dos limites de controle):
 - p. ex., 0.001 dá 3.09-sigma limites de controle típicos.
- Limites de Advertência (Warning): onde existe 1 chance em 40 de um ponto amostrado estar fora dos limites de controle:
 - tipicamente selecionados como limites 2sigma.

Figura 08: Uma carta X_{bar} com limites de advertência

TAMANHO DA AMOSTRA E FREQUÊNCIA DE AMOSTRAGEM

- Em geral, amostras maiores permitem detectar com maior facilidade pequenos deslocamentos no processo. Para detectar mudanças maiores tamanhos de amostras menores são mais adequados.
- Ao escolher, portanto, o tamanho da amostra, deve-se considerar o tamanho do deslocamento que se espera detectar.
- Amostragem relaciona-se aos esforços/custos da mesma. A medição e transmissão automática e remota de variáveis de qualidade torna possível aumentar as frequências de amostragem.

TAMANHO DA AMOSTRA E FREQUÊNCIA DE AMOSTRAGEM

- Outra maneira de avaliar decisões com relação a tamanho de amostra e frequência de amostragem é por meio do Comprimento Médio da Sequência (ARL: Average Run Length) da carta de controle.
 - CMS (ARL) corresponde ao número médio de pontos que deve ser plotado antes que um ponto indique uma condição fora de controle.
- Se as observações são não correlacionadas, então, para qualquer carta de controle de Shewhart: $CMS = ARL = \frac{I}{p}$ onde p é a probabilidade de qualquer ponto exceda os limites de controle.

Para uma carta de controle tipo \overline{X} com limites 3σ , p=0.0027, o comprimento médio da sequência, CMS, da carta quando o processo está sob controle é:

$$ARL = \frac{1}{p} = \frac{1}{0.0027} = 370$$

TAMANHO DA AMOSTRA E FREQUÊNCIA DE AMOSTRAGEM

- Isto significa que, mesmo o processo estando sob controle, a cada 370 pontos, em média, haverá um ponto fora dos limites de controle.
- O uso de CMS para descrever desempenho de cartas de controle tem sido criticado. A razão é o fato da distribuição de uma CMS para uma carta de Shewhart ser uma distribuição geométrica. Assim há dois aspectos a considerar com CMS:
 - o desvio padrão do CMS é muito grande.
 - a distribuição geométrica é muito inclinada, assim a média da distribuição do CMS não é necessariamente um valor muito típico do tamanho de uma execução.
- Por exemplo: para a carta anterior com limite de 3σ e p=0.0027, em controle, CMSo = 1/0.0027 = 370 é a média da distribuição geométrica. O desvio padrão desta distribuição é dado por:

$$\sqrt{(1-p)} p = \sqrt{(1-0.0027)}/0.0027 \approx 370$$

TAMANHO DA AMOSTRA E FREQUÊNCIA DE AMOSTRAGEM

- Neste caso, o desvio padrão e a média são aproximadamente iguais. O resultado é que numa carta de Shewhart X o CMSo variará consideravelmente.
- Algumas vezes é conveniente expressar o desempenho das cartas de controle em termos do seu **Tempo Médio para Alerta** - TMA. Se amostras são tomadas em intervalos fixados de 1h, então:

$$TMA = CMS_1h$$

- Em situações onde o CMS = 370, supondo amostragem a cada 1h, a equação anterior indica que haverá um alarme falso a cada 370h, em média.
- Para responder a questão da freqüência de amostragem mais precisamente, vários fatores devem ser considerados:
 - o custo da amostragem;
 - as perdas associadas com a operação fora de controle;
 - a taxa de produção;
 - a probabilidade com que vários tipos de deslocamento no processo ocorrem.

SUBGRUPOS RACIONAIS

- O conceito de subgrupos racionais significa que subgrupos ou amostras devem ser selecionados tal que se uma causa especial (ou atribuível) está presente, a chance de haver diferenças entre subgrupos será maximizada, enquanto a chance de haver diferenças devido a causas especiais dentro de um subgrupo será minimizada.
- Duas abordagens gerais para construir subgrupos racionais:
 - Amostra consiste de unidades produzidas ao mesmo tempo unidades consecutivas
 - Proposição primária é detectar mudanças (deslocamentos) no processo (amostras regulares, num intervalo ΔT de comprimento ΔT a, estão sujeitas ao falseamento quando houver ocorrência de medidas espúrias outliers)
 - Amostra consiste de unidades selecionadas aleatoriamente no intervalo de amostragem.

SUBGRUPOS RACIONAIS

Figure 4-10 The "snapshot" approach to rational subgroups. (a) Behavior of the process mean. (b) Corresponding \bar{x} and R control charts.

Figure 4-11 The random sample approach to rational subgroups. (*a*) Behavior of the process mean. (*b*) Corresponding \bar{x} and *R* control charts.

Abordagem do "Instantâneo"

Abordagem de Amostra Aleatória

ANÁLISE DE PADRÕES NAS CARTAS DE CONTROLE

Exemplo:

- O padrão parece ser muito não aleatório.
- 19 dos 25 pontos plotados abaixo da linha central, enquanto somente 6 acima.
- Seguindo o 4º ponto, 5 pontos em uma linha aumentaram em magnitude, um run up, uma sequência crescente.
- Existe, também, um não usual longo run down, sequência decrescente, começando com 18º ponto.

ANÁLISE DE PADRÕES NAS CARTAS DE CONTROLE

Carta de controle de média \overline{X} com padrão cíclico.

- a) Variabilidade com padrão cíclico.
- b) Variabilidade com padrão cíclico eliminado

ANÁLISE DE PADRÕES NAS CARTAS DE CONTROLE

- O Western Electric Handbook (1956) sugere um conjunto de regras de decisão para detectar padrões não aleatórios em cartas de controle.
 Especificamente, isto sugere concluir que o processo está fora de controle se ocorrerem:
 - Um ponto ou mais fora dos limites de controle 3σ .
 - Dois ou três pontos consecutivos entre os limites de alerta de 2σ .
 - Quatro ou cinco pontos consecutivos além dos limites 1σ.
 - Oito pontos consecutivos de um lado da linha central.

As regras das Zonas ou Western Eletric, com os últimos 4 pontos apresentando violação da regra 3.

REGRAS DE SENSIBILIZAÇÃO DAS CARTAS DE CONTROLE

- 1. Um ponto fora dos limites de controle 3σ .
- 2. 2 ou 3 pontos consecutivos fora dos limites de alerta 2σ .
- 3. 4 a cada 5 pontos consecutivos além dos limites 1σ.
- 4. 8 pontos consecutivos em um lado da linha central.
- 5. 6 pontos em uma sequência crescente ou decrescente.
- 6. 15 pontos em uma sequência na zona C (acima e abaixo da linha central).
- 7. 14 pontos em uma sequência alternando acima e abaixo.
- 8. Oito pontos em uma sequência nos dois lados da linha central com nenhum na zona C.
- 9. Um padrão não-usual ou não-aleatório nos dados.
- 10. Um ou mais pontos próximos a um limite de alerta ou de controle.

REGRAS DE SENSIBILIZAÇÃO DAS CARTAS DE CONTROLE

- As regras de sensibilização devem ser usadas com CUIDADO, pois um número excessivo de alarmes falsos podem ser gerados e serem prejudicias ao uso do CEP.
- Quanto mais regras são aplicadas mais complicado torna-se o processo de análise e decisão e a simplicidade desejável das cartas de Shewhart fica perdida.
- Os pacotes modernos de CEP implementam algumas destas regras de sensibilização, mas o analista deve ter cuidado com o seu uso/ interpretação.
- Estas regras costumam ser úteis quando o CEP está sendo usado pela primeira vez e o processo está fora de controle estatístico. Mas quando este encontra-se razoavelmente estável, estas regras utilizadas na rotina já não são tão capazes de detectar pequenos deslocamentos no processo, causados por causas especiais.
- As cartas de controle de Soma Cumulativa (CUSUM) e Média Móvel com Peso Exponencial (EWMA) é que devem ser usadas quando pequenos deslocamentos ocorrem no processo.

AS DUAS FASES DE APLICAÇÃO DE CARTAS DE CONTROLE

- Fase I é a Análise Retrospectiva dos dados de processo para construir Limites de Controle Experimentais
 - Cartas são efetivas em detectar grandes deslocamentos sustentados nos parâmetros do processo, outliers, erros de medição, erros de entrada de dados, etc.
 - Facilita identificação e remoção de causas especiais ou atribuíveis.
- Na Fase II, as cartas de controle são usadas para monitorar o processo
 - Processo é assumido ser razoavelmente estável.
 - Ênfase está no monitoramento do processo, não em trazer um processo sem regras ao estado de Controle Estatístico (detectar pequenos deslocamentos).

AS DEMAIS FERRAMENTAS DE CEP

- Histograma ou Gráfico Caule e Folha (stemand-leaf plot)
- 2. Folha de Checagem
- Carta de Pareto
- 4. Diagrama de Causa-e-Efeito
- 5. Diagrama de Concentração de Defeito
- 6. Diagrama de Espalhamento
- 7. Cartas de Controle

FOLHA DE CHECAGEM

	CHECK SHEET DEFECT DATA FOR 2002–2003 YTD																				
Part No.: TAX-41 Location: Bellevue Study Date: 6/5/03 Analyst: TCB		Meses do ano 1988														Meses do ano 1989					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	Total			
Partes danificadas		1		3	1	2		1		10	3		2	2	7	2		34			
Problemas de máquina			3	3				1	8		3		8	3				29			
Def Partes fornecidas enferrujadas			1	1		2	9		•									13			
Part Revestimento insuficiente		3	6	4	3	1												17			
Mai Solda desalinhada	2																	2			
Sup Ma: Solda desalinhada Processamento fora de ordem	2								· ·							2		4			
Mis Parte errada produzida		1						2										3			
Pro Carenagem sem acabamento		,	3															3			
Wro Falha do adesivo				1							1	·	2			1	1	6			
Unf Anodização com produto em pó			-		1					••••								1			
Adl Pintura fora dos limites						1		····						1				2			
Pov Tinta danificada por produto químico			1													•		1			
Pair Película nas partes		•				3		1	1									5			
Pair Filr Latas da tinta de base danificada								1										1			
Prir Porosidade na fundição									1	1								2			
Voi Composto delaminado										2								2			
Del Dimensões incorretas											13	7	13	1		1	1	36			
Inco Procedimento de teste impróprio										1				· · · · · · · · · · · · · · · · · · ·				1			
Imp Falha no spray salinizado									·	-			4					4			
Salt TOTAL TO	4	5	14	12	5	9	9	6	10	14	20	7	29	7	7	6	2	166			

Folha de checagem para registro de defeitos em um tanque usado em uma aplicação aeroespacial. Introdução ao Controle Estatístico de Processos, Profa. Carmela Maria Polito Braga, DELT-EEUFMG

CARTA DE PARETO

Carta de Pareto dos Dados de Defeito do Tanque

Esta carta é simplesmente uma distribuição de frequência (ou histograma) de dados de atributos organizados por categoria.

CARTA DE PARETO

Vários exemplos de Carta de Pareto

DIAGRAMA DE CAUSA-E-EFEITO

Diagrama de Causa-e-Efeito para o problema de Defeito do Tanque

DIAGRAMA DE CONCENTRAÇÃO DE DEFEITOS

Defeito de acabamento de superfície em um refrigerador

Diagrama de Concentração de Defeito para o tanque

DIAGRAMA DE ESPALHAMENTO (SCATTER DIAGRAM)

Diagrama de Espalhamento

BIBLIOGRAFIA

1. Douglas C. Montgomery: *Introduction to Statistical Quality Control*, 4th Edition.