

Computer Networking

Introduction - 2

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

Contents

- Introduction 2
 - layered architecture
 - encapsulation
 - interconnection structures
 - performance

Internet protocol stack

- Application: supporting network applications
 - FTP, SMTP, HTTP, OSPF, RIP
- Transport: host-host data transfer
 - TCP, UDP
- Network: routing of datagrams from source to destination
 - IP
- Link: data transfer between neighboring network elements
 - PPP, Ethernet
- Physical: bits "on the wire"

Application
Transport
Network
Link
Physical

Layered protocol stack

- Protocol entity
 - provides a set of services, eg.
 - connect, send
 - data multiplexing/demultiplexing
 - construction/analysis of PDUs
 - execution of procedures
- Protocol unit (PDU)
 - header: control functions
 - opaque data
- Procedures
 - actions to perform protocol functions: e.g. lost packet retransmission

Protocol architecture

Application Layer

- Application layer supports network application
 - applications that are distributed over the network
 - applications that communicates through the network
- Many known protocols
 - FTP: file transfer
 - SMTP: email protocol
 - HTTP:web protocol
- An application uses UDP or TCP, it is a designer's choice
- Interface with the transport layer
 - use for example the socket API: a library of C functions
 - socket also means (IP address, port number)

Transport Layer

- Why a transport layer ?
 - transport layer = makes network service available to programs
 - is end-to-end only, not in routers
- In TCP/IP there are two transport protocols
 - UDP (user datagram protocol)
 - unreliable
 - offers a datagram service to the application (unit of information is a message)
 - TCP (transmisssion control protocol)
 - reliable
 - offers a stream service (unit of information is a byte)

Layering: *logical* communication

- E.g.: transport
- take data from app
- add addressing, reliability check info to form "datagram"
- send datagram to peer
- wait for peer to ack receipt
- analogy: post office

TCP

Network Layer

- Set of functions required to transfer packets end-to-end (from host to host)
 - hosts are not directly connected need for intermediate systems - routers
 - IP protocol
- Intermediate systems
 - routers: forward packets to the final destination

<u>IP</u>

<u>Physical Layer</u> <u>Data Link Layer - LANs</u>

- Physical transmission = Physical function
 - bits <-> electrical / optical signals
 - transmit individual bits over the cable: modulation, encoding
- Frame transmission = **Data Link** function
 - bits <-> frames
 - bit error detection
 - packet boundaries
 - in some cases: error correction by retransmission (802.11)
- ADSL (xDSL), LANs Ethernet

Layering: flow of data

Protocol layering and data

Each layer takes data from above

- adds header information to create new data unit
- passes new data unit to layer below

TCP/IP Architecture

Encapsulation

Ethereal

```
Ethernet II
    Destination: 00:03:93:a3:83:3a (Apple a3:83:3a)
    Source: 00:10:83:35:34:04 (HEWLETT- 35:34:04)
    Type: IP (0x0800)
Internet Protocol, Src Addr: 129.88.38.94 (129.88.38.94), Dst Addr:
   129.88.38.241 (129.88.38.241)
    Version: 4
    Header length: 20 bytes
    Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN:
   0x00)
    Total Length: 1500
    Identification: 0x624d
    Flags: 0x04
    Fragment offset: 0
    Time to live: 64
    Protocol: TCP (0x06)
    Header checksum: 0x82cf (correct)
    Source: 129.88.38.94 (129.88.38.94)
    Destination: 129.88.38.241 (129.88.38.241)
```

Ethereal

```
Transmission Control Protocol, Src Port: 34303 (34303), Dst Port: 6000 (6000), Seq: 4292988915, Ack: 3654747642, Len: 1448

Source port: 34303 (34303)

Destination port: 6000 (6000)

Sequence number: 4292988915

Next sequence number: 4292990363

Acknowledgement number: 3654747642

Header length: 32 bytes

Flags: 0x0010 (ACK)

Window size: 41992

Checksum: 0x9abe (correct)

Options: (12 bytes)
```

<u>Internet – global view</u>

Interconnection structure - layer 2

Interconnection at layer 2

- Switches (bridges)
 - interconnect hosts
 - logically separate groups of hosts (VLANs)
 - managed by one entity
- Type of the network
 - broadcast
- Forwarding based on MAC address
 - flat address space
 - forwarding tables: one entry per host
 - works if no loops
 - careful management
 - Spanning Tree protocol
 - not scalable

<u>Interconnection structure - layer 3</u>

<u>Interconnection at layer 3</u>

Routers

- interconnect subnetworks
- logically separate groups of hosts
- managed by one entity
- Forwarding based on IP address
 - structured address space
 - routing tables: aggregation of entries
 - works if no loops routing protocols (IGP Internal Routing Protocols)
 - scalable inside one administrative domain

Autonomous systems

<u>Internet</u>

Interconnection of AS

- Border routers
 - interconnect AS
- NAP or GIX, or IXP
 - exchange of traffic peering
- Route construction
 - based on the path through a series of AS
 - based on administrative policies
 - routing tables: aggregation of entries
 - works if no loops and at least one route routing protocols (EGP - External Routing Protocols)

Performance

- Bit Rate (débit binaire) of a transmission system
 - bandwidth, throughput
 - number of bits transmitted per time unit
 - units: b/s or bps, kb/s = 1000 b/s, Mb/s = 10e+06 b/s, Gb/s=10e+09 b/s
 - OC3/STM1 155 Mb/s, OC12/STM4 622 Mb/s, and OC48/STM-16 - 2.5 Gb/s, OC192/STM-48 10 Gb/s
- Latency or Delay
 - time interval between the beginning of a transmission and the end of the reception
 - RTT Round-Trip Time

Delay in packet-switched networks

packets experience delay on end-to-end path

four sources of delay at each hop

- nodal processing:
 - check bit errors
 - determine output link
- queuing
 - time waiting at output link for transmission
 - depends on congestion level of node
- transmission:
 - depends on packet length and link bandwidth
- propagation:
 - depends on distance between nodes

Performance

- Latency
 - Latency = Propagation + Transmission + Wait
 - Propagation = Distance / Speed
 - copper : Speed = 2.3×10^8 m/s
 - glass : Speed = 2×10^8 m/s
 - Transmission = Size / BitRate
- 5 μs/km
- New York Los Angeles in 24 ms
 - request 1 byte, response 1 byte: 48 ms
 - 25 MB file on 10 Mb/s: 20 s
- World tour in 0.2 s

Example

At time 0, computer A sends a packet of size 1000 bytes to B; at what time is the packet received by B (speed = 2e+08 m/s)?

distance	20 km	20000 km	2 km	20 m
bit rate	10kb/s	1 Mb/s	10 Mb/s	1 Gb/s
propagation	0.1ms	100 ms	0.01 ms	0.1µs
transmission	800 ms	8 ms	0.8 ms	8 µs
latency	800.1 ms	108 ms	0.81 ms	8.1 µs

modem satellite LAN Ether 1G

Bandwidth-Delay Product

- Bandwidth-Delay product
 - how many bits should we send before the arrival of the first bit?
 - good utilization keep the pipe filled!

A Simple Protocol: Stop and Go

- Packets may be lost during transmission: bit errors due to channel imperfections, various noises.
- Computer A sends packets to B; B returns an acknowledgement packet immediately to confirm that B has received the packet;

A waits for acknowledgement before sending a new packet; if no acknowledgement comes after a delay *T1*, then A retransmits

A Simple Protocol: Stop and Go

• Question: What is the maximum throughput assuming that there are no losses? notation:

- packet length = L, constant (in bits);
- acknowledgement length = /, constant
- channel bit rate = b;
- propagation = D
- processing time = 0

Solution (1) packet P1 sent packet P1 acknowledged T=L/b2Dtime T'=1/bВ

```
cycle time = T + 2D + T' useful bits per cycle time = L throughput = Lb / (L + 1 + 2Db) = b / (\omega + \beta/L) with \omega = (L+1)/L=overhead and \beta = 2Db=bandwidth-delay product
```

Solution

distance	20 km	20000 km	2 km	20 m
bit rate	10kb/s	1 Mb/s	10 Mb/s	1 Gb/s
propagation	0.1ms	100 ms	0.01 ms	0.1µs
transmission	800 ms	8 ms	0.8 ms	8 µs
delay	800.1 ms	108 ms	0.81 ms	8.1 µs
	modem	satellite	LAN	Ether 1G
$\beta=2Db$	2 bits	200 000 bits	200 bits	200 bits
throughput = L	<i>b</i> ×99.98%	3.8%	97.56%	97.56%

Bandwidth-delay


```
window in time = T + 2D + T
window in bits = (T + 2D + T)b = 2L + \beta
```

Solution (2)

distance	20 km	20000 km	2 km	20 m
bit rate	10kb/s	1 Mb/s	10 Mb/s 1 Gb/s	
propagation	0.1ms	100 ms	0.01 ms 0.1µs	
transmission	800 ms 8 ms	0.8 ms	8 µs	
reception time	800.1 ms	108 ms	0.81 ms 8.1 µs	
	modem	satellite	LAN	Hippi
β =2 <i>Db</i>	2 bits	200 000 bits	200 bits	200 bits
throughput = $b \times 99.98\% 3.8\%$		97.56%	%97.56%	

Waiting time

- Queueing system M/M/1
 - interarrival times ~ exponentially distributed
 - service times ~ exponentially distributed
 - arrival rate λ , service rate μ , utilization $\rho = \lambda/\mu$
 - number of packets N, waiting time T

$$\xrightarrow{\lambda} \boxed{\qquad} \qquad \xrightarrow{u}$$

$$N = \frac{\rho}{(1-\rho)}$$

$$T = \frac{1}{\mu(1-\rho)}$$

$$T = \frac{N}{\lambda}$$

Waiting time

- Average packet length 1500 bytes
 - link with 1 Mb/s bit rate (propagation = 0)
 - transmission time

12 ms

service rate

83 packet/s

λ	[p/s]	10	40	60	70
$1/\lambda$	[ms]	100	25	16	14
T	[ms]	13	23	43	76

Waiting time

Summary

- Layered stack
 - Isolation and virtualization of functions
 - Data encapsulation
- Internet hierarchical interconnection structures
 - L2 VLANs
 - L3 subnetworks
 - Global AS
- Performance
 - Transmission time
 - Propagation time
 - Bandwidth-delay product
 - Queueing delay