第13回 大数の法則と中心極限定理(8)

村澤 康友

2022年11月15日

今日のポイント

1.	確率変数列 $\{X_i\}$ の標本平均 $ar{X}_n:=(X_1+$
	$\cdots + X_n)/n$ の分布を近似する.

- 2. $\{X_i\}$ が平均 μ , 分散 σ^2 の独立かつ同一な分布をもつなら $\{\bar{X}_n\}$ は μ に確率収束 (大数の法則).
- $\{Z_i\}$ が平均 0,分散 1 の独立かつ同一な分布をもつなら $\{\sqrt{n}\bar{Z}_n\}$ は $\mathrm{N}(0,1)$ に分布収束(中心極限定理). したがって $\bar{Z}_n\stackrel{a}{\sim}\mathrm{N}(0,1/n)$.

目次

1	標本平均(pp. 149, 183)	1	
2	大数の法則	2	
2.1	確率収束(p. 162)	2	
2.2	大数の法則(p. 160)	2	
3	中心極限定理	2	
3.1	分布収束	2	
3.2	総乗記号	2	
3.3	中心極限定理(p. 162)	2	
3.4	正規乱数の生成(p. 171)	3	
4	今日のキーワード	4	
5	次回までの準備	4	
1 標本平均(pp. 149, 183)			

 $\{X_i\}$ を確率変数列とする.

定義 1. (X_1,\ldots,X_n) の標本平均は

$$\bar{X}_n := \frac{X_1 + \dots + X_n}{n}$$

注 1. 確率変数の平均(期待値)とは異なる.

定理 1. X_1,\ldots,X_n が平均 μ の同一な分布をもつなら

$$\mathrm{E}\left(\bar{X}_{n}\right)=\mu$$

証明. 期待値の線形性より

$$E(\bar{X}_n) = E\left(\frac{X_1 + \dots + X_n}{n}\right)$$

$$= \frac{E(X_1) + \dots + E(X_n)}{n}$$

$$= \frac{\mu + \dots + \mu}{n}$$

$$= \mu$$

定理 2. X_1, \ldots, X_n が分散 σ^2 の独立かつ同一な分布をもつなら

$$\operatorname{var}\left(\bar{X}_{n}\right) = \frac{\sigma^{2}}{n}$$

証明 $.X_1,...,X_n$ は独立なので

$$\operatorname{var}(\bar{X}_n) = \operatorname{var}\left(\frac{X_1 + \dots + X_n}{n}\right)$$

$$= \frac{\operatorname{var}(X_1 + \dots + X_n)}{n^2}$$

$$= \frac{\operatorname{var}(X_1) + \dots + \operatorname{var}(X_n)}{n^2}$$

$$= \frac{\sigma^2 + \dots + \sigma^2}{n^2}$$

$$= \frac{\sigma^2}{n}$$

2 大数の法則

2.1 確率収束 (p. 162)

 $\{x_n\}$ を実数列, $\{X_n\}$ を確率変数列とする.

定義 2. 任意の $\epsilon>0$ について, ある自然数 $N(\epsilon)$ が存在し,

$$n \ge N(\epsilon) \Longrightarrow |x_n - c| < \epsilon$$

なら $\{x_n\}$ は c に**収束**するという.

注 2. $\lim_{n\to\infty} x_n = c$ または $x_n \to c$ と書く.

定義 3. 任意の $\epsilon > 0$ について

$$\lim_{n \to \infty} \Pr[|X_n - c| < \epsilon] = 1$$

なら $\{X_n\}$ は c に確率収束するという.

注 3. $\operatorname{plim}_{n\to\infty}X_n=c$ または $X_n\stackrel{p}{\longrightarrow}c$ と書く.

注 4. 確率変数列の収束の概念は他にもある.

2.2 大数の法則 (p. 160)

定理 3 (チェビシェフの大数の弱法則). $\{X_i\}$ が平均 μ , 分散 σ^2 の独立かつ同一な分布をもつなら

$$\lim_{n \to \infty} \bar{X}_n = \mu$$

証明. チェビシェフの不等式より,任意の $\epsilon>0$ について

$$\Pr\left[\left|\bar{X}_n - \mathrm{E}\left(\bar{X}_n\right)\right| \ge \epsilon\right] \le \frac{\mathrm{var}\left(\bar{X}_n\right)}{\epsilon^2}$$

すなわち

$$\Pr\left[\left|\bar{X}_n - \mu\right| \ge \epsilon\right] \le \frac{\sigma^2/n}{\epsilon^2}$$

余事象の確率は

$$\Pr\left[\left|\bar{X}_n - \mu\right| < \epsilon\right] > 1 - \frac{\sigma^2/n}{\epsilon^2}$$

 $n \to \infty$ の極限をとると

$$\lim_{n \to \infty} \Pr\left[\left| \bar{X}_n - \mu \right| < \epsilon \right] \ge 1$$

確率は1以下なので等号が成立.

例 1. コインを 10 回,100 回,1000 回と投げ続けると表の出る割合は 1/2 に近づく(図 1).

3 中心極限定理

3.1 分布収束

 $\{X_n\}$ に対応する cdf の列を $\{F_n(.)\}$ とする.

定義 4. F(.) の任意の連続点 x で

$$\lim_{n \to \infty} F_n(x) = F(x)$$

なら $\{X_n\}$ は F(.) に**分布(法則)収束**するという.

注 5. $X_n \xrightarrow{d} F(.)$ と書く.

3.2 総乗記号

定義 5.

$$\prod_{i=1}^{n} x_i := x_1 \cdots x_n$$

練習 1. 以下の公式を示しなさい.

1.
$$\prod_{i=1}^{n} ax_i = a^n \prod_{i=1}^{n} x_i$$

2.
$$\prod_{i=1}^{n} a^{x_i} = a^{\sum_{i=1}^{n} x_i}$$

3.
$$\prod_{i=1}^{n} x_i y_i = \prod_{i=1}^{n} x_i \prod_{i=1}^{n} y_i$$

3.3 中心極限定理 (p. 162)

定理 4 (リンドバーグ=レヴィの中心極限定理). $\{Z_i\}$ が平均 0,分散 1 の独立かつ同一な分布をもつなら

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_i \xrightarrow{d} N(0,1)$$

証明. $(1/\sqrt{n})\sum_{i=1}^{n} Z_i$ の mgf が N(0,1) の mgf に 収束することを示せばよい. すなわち

$$\lim_{n\to\infty} M_{\frac{1}{\sqrt{n}}\sum_{i=1}^n Z_i}(t) = e^{t^2/2}$$

を示したい. Z_1, \ldots, Z_n は独立かつ同一な分布をもつので

$$M_{\frac{1}{\sqrt{n}}\sum_{i=1}^{n}Z_{i}}(t) := E\left(e^{\frac{t}{\sqrt{n}}\sum_{i=1}^{n}Z_{i}}\right)$$

$$= E\left(\prod_{i=1}^{n}e^{\frac{t}{\sqrt{n}}Z_{i}}\right)$$

$$= \prod_{i=1}^{n}E\left(e^{\frac{t}{\sqrt{n}}Z_{i}}\right)$$

$$= M_{Z}\left(\frac{t}{\sqrt{n}}\right)^{n}$$

図1 n回のコイントスにおける表の割合

 $M_Z'(0) = 0$, $M_Z''(0) = 1$ なので、マクローリン展開より

$$M_Z\left(\frac{t}{\sqrt{n}}\right)$$

$$= M_Z(0) + M_Z'(0)\frac{t}{\sqrt{n}} + \frac{M_Z''(0)}{2}\left(\frac{t}{\sqrt{n}}\right)^2 + \cdots$$

$$= 1 + \frac{t^2}{2n} + \cdots$$

したがって

$$\lim_{n \to \infty} M_Z \left(\frac{t}{\sqrt{n}} \right)^n = \lim_{n \to \infty} \left(1 + \frac{t^2}{2n} + \cdots \right)^n$$
$$= e^{t^2/2}$$

注 6. 式変形すると

$$\sqrt{n}\bar{Z}_n \xrightarrow{d} \mathrm{N}(0,1)$$

系 1. $\{X_i\}$ が平均 μ ,分散 σ^2 の独立かつ同一な分布をもつなら

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{X_i - \mu}{\sigma} \xrightarrow{d} N(0,1)$$

証明. $Z_i := (X_i - \mu)/\sigma$ として前定理を適用. \square

注 7. 式変形すると

$$\frac{\bar{X}_n - \mu}{\sqrt{\sigma^2/n}} \xrightarrow{d} N(0,1)$$

定義 6. n が大きいときの X_n の近似分布を漸近分 布という.

注 8. 中心極限定理より

$$\sqrt{n}\bar{Z}_n \stackrel{a}{\sim} N(0,1)$$
$$\frac{\bar{X}_n - \mu}{\sqrt{\sigma^2/n}} \stackrel{a}{\sim} N(0,1)$$

すなわち

$$\bar{Z}_n \stackrel{a}{\sim} \mathrm{N}(0, 1/n)$$

$$\bar{X}_n \stackrel{a}{\sim} \mathrm{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

ただし a は漸近分布を表す.

例 2. 指数乱数の標本平均の分布(図2).

3.4 正規乱数の生成 (p. 171)

 $\{U_i\}$ を [0,1] 上の一様乱数の列とすると

$$E(U_i) = \frac{1}{2}$$
$$var(U_i) = \frac{1}{12}$$

図 2 指数乱数の標本平均の分布

$$X := U_1 + \cdots + U_{12} - 6$$
 とすると

$$E(X) = 0$$

$$var(X) = 1$$

中心極限定理より

$$X \stackrel{a}{\sim} \mathrm{N}(0,1)$$

これを利用して一様乱数から標準正規乱数が生成で きる(図 3).

4 今日のキーワード

標本平均,確率収束,大数の法則,分布収束,中 心極限定理,漸近分布

5 次回までの準備

提出 宿題 4,復習テスト 9-13

復習 教科書第8章,復習テスト13

試験 (1) 教科書を読む (2) 用語の定義を覚える (3) 復習テストを自力で解く (4) 過去問に挑戦

図 3 1000 個の標準正規乱数の累積相対度数グラフと N(0,1) の cdf