Package 'fastrerandomize'

November 17, 2024

Title FastRerandomize: An R Package for Hardware-accelerated Rerandomization for Improved Balance

Version 0.1

Description Provides hardware-accelerated tools for performing rerandomization and randomization testing in experimental research. Using a JAX backend, the package enables exact rerandomization inference even for large experiments with hundreds of millions of possible randomizations. Key functionalities include generating pools of acceptable rerandomizations based on covariate balance, conducting exact randomization tests, and performing pre-analysis evaluations to determine optimal rerandomization acceptance thresholds. The package supports various hardware acceleration frameworks including CPU, CUDA, and METAL, making it versatile across computing environments. This allows researchers to efficiently implement rerandomization designs and conduct valid inference even with large sample sizes.

URL https://github.com/cjerzak/fastrerandomize-software

 $\pmb{BugReports} \ \text{https://github.com/cjerzak/fastrerandomize-software/issues}$

Depends R (>= 3.3.3)

License Creative Commons Attribution-Noncommercial-No Derivative Works 4.0, for academic use only.

Encoding UTF-8

LazyData false

Imports reticulate, assertthat

RoxygenNote 7.3.2

Contents

Index

GenerateCausalData	2
GenerateRandomizations	3
GenerateRandomizations_Exact	5
GenerateRandomizations_MonteCarlo	6
InitializeJAX	8
QJEData	9
RandomizationTest	9
SanityCheckSyntheticData	11
	12
	13

2 GenerateCausalData

GenerateCausalData

This function generates simulated causal data based on specified parameters. The functional form of the outcome models is:

$$Y_0 = X\beta_0 + \epsilon_0$$

$$Y_1 = X\beta_1 + \tau + \epsilon_1$$

where τ is the treatment effect, which is drawn from a normal distribution with mean treatment_effect_mean and standard deviation treatment_effect_SD. The dimension of β _0 and β _1 is k_covars. The correlation coefficient of the covariates is rho. Y0_coefficients and Y1_coefficients are optional arguments that can be provided to specify the coefficients for the control and treated outcome models, and they determine β _0 and β _1. If they are not provided, the function assumes a NULL value, and the coefficients are drawn from a normal distribution with decreasing variance. Example usage:

```
GenerateCausalData(n_units = 100, proportion_treated =
0.5, k_covars = 3, rho = 0.5, SD_inherent = 1,
treatment_effect_mean = 0, treatment_effect_SD = 1,
covariates_SD = 1)
```

Description

This function generates simulated causal data based on specified parameters. The functional form of the outcome models is:

$$Y_0 = X\beta_0 + \epsilon_0$$
$$Y_1 = X\beta_1 + \tau + \epsilon_1$$

where τ is the treatment effect, which is drawn from a normal distribution with mean treatment_effect_mean and standard deviation treatment_effect_SD. The dimension of β_0 and β_1 is k_covars. The correlation coefficient of the covariates is rho. Y0_coefficients and Y1_coefficients are optional arguments that can be provided to specify the coefficients for the control and treated outcome models, and they determine β_0 and β_1 . If they are not provided, the function assumes a NULL value, and the coefficients are drawn from a normal distribution with decreasing variance. Example usage:

GenerateCausalData(n_units = 100, proportion_treated = 0.5, k_covars = 3, rho = 0.5, SD_inherent = 1

Usage

```
GenerateCausalData(
    n_units,
    proportion_treated,
    k_covars,
    rho,
    SD_inherent,
    treatment_effect_mean,
    treatment_effect_SD,
    covariates_SD,
    Y0_coefficients = NULL,
    Y1_coefficients = NULL)
```

GenerateRandomizations 3

Arguments

n_units A numeric value specifying the total number of units in the sample.

 ${\tt proportion_treated}$

A numeric value between 0 and 1 indicating the proportion of units that receive

treatment.

k_covars A numeric value indicating the number of covariates to be generated.

rho A numeric value representing the correlation coefficient of the covariates.

SD_inherent A numeric value indicating the standard deviation inherent to the data.

treatment_effect_mean

A numeric value representing the mean of the treatment effect.

treatment_effect_SD

A numeric value indicating the standard deviation of the treatment effect.

 ${\tt covariates_SD} \quad A \ numeric \ value \ or \ vector \ specifying \ the \ standard \ deviation \ of \ the \ covariates.$

Y0_coefficients

An optional numeric vector specifying the coefficients for the control outcome model. If not provided, the function assumes a NULL value, and the coefficients are drawn from a normal distribution with decreasing variance.

Y1_coefficients

An optional numeric vector specifying the coefficients for the treated outcome model. If not provided, the function assumes a NULL value, and the coefficients are drawn from a normal distribution with decreasing variance.

Value

A list consisting of

- data_matrix A data frame containing the simulated covariates and outcomes for both control (Y0) and treatment (Y1) groups. Access them through data_matrix\$Y0 and data_matrix\$Y1.
- Y0_coefficients A numeric vector representing the coefficients used for the control outcome model.
- Y1_coefficients A numeric vector representing the coefficients used for the treated outcome model.

Examples

- # For a tutorial, see
- # github.com/cjerzak/fastrerandomization-software

GenerateRandomizations

Generate randomizations for experimental design

Description

This function generates randomizations for experimental design using either exact enumeration or Monte Carlo sampling methods. It provides a unified interface to both approaches while handling memory and computational constraints appropriately.

4 GenerateRandomizations

Usage

```
GenerateRandomizations(
    n_units,
    n_treated,
    X,
    randomization_accept_prob,
    threshold_func,
    max_draws,
    seed,
    batch_size,
    randomization_type,
    verbose = TRUE
)
```

Arguments

n_units An integer specifying the total number of experimental units

n_treated An integer specifying the number of units to be assigned to treatment

X A numeric matrix of covariates used for balance checking. Cannot be NULL.

randomization_accept_prob

A numeric value between 0 and 1 specifying the probability threshold for ac-

cepting randomizations based on balance

threshold_func A JAX function that computes a balance measure for each randomization. Only

used for Monte Carlo sampling.

max_draws An integer specifying the maximum number of randomizations to draw in Monte

Carlo sampling

seed An integer seed for random number generation in Monte Carlo sampling

batch_size An integer specifying batch size for Monte Carlo processing

 ${\tt randomization_type}$

A string specifying the type of randomization: either "exact" or "monte_carlo"

verbose A logical value indicating whether to print progress information. Default is

TRUE

Details

The function supports two methods of generating randomizations:

- 1. Exact enumeration: Generates all possible randomizations (memory intensive but exact)
- 2. Monte Carlo sampling: Generates randomizations through sampling (more memory efficient)

For large problems (e.g., X with >20 columns), Monte Carlo sampling is recommended.

Value

A JAX array containing the accepted randomizations, where each row represents one possible treatment assignment vector

See Also

 ${\tt GenerateRandomizations_Exact} \ for the \ exact \ enumeration \ method \ {\tt GenerateRandomizations_MonteCarlo} \ for the \ Monte \ Carlo \ sampling \ method$

Examples

GenerateRandomizations_Exact

Generate Complete Randomizations with Optional Balance Constraints

Description

Generates all possible treatment assignments for a completely randomized experiment, optionally filtering them based on covariate balance criteria. The function can generate either all possible randomizations or a subset that meets specified balance thresholds using Hotelling's T² statistic.

Usage

```
GenerateRandomizations_Exact(
   n_units,
   n_treated,
   X = NULL,
   randomization_accept_prob = 1,
   threshold_func = VectorizedFastHotel2T2
)
```

Arguments

n_units An integer specifying the total number of experimental units
 n_treated An integer specifying the number of units to be assigned to treatment
 X A numeric matrix of covariates where rows represent units and columns represent different covariates. Default is NULL, in which case all possible randomizations are returned without balance filtering.

randomization_accept_prob

A numeric value between 0 and 1 specifying the quantile threshold for accepting randomizations based on balance statistics. Default is 1 (accept all randomizations).

threshold_func A function that calculates balance statistics for candidate randomizations. Default is VectorizedFastHotel2T2 which computes Hotelling's T² statistic.

Details

The function works in two main steps: 1. Generates all possible combinations of treatment assignments given n_units and n_treated 2. If covariates (X) are provided, filters these combinations based on balance criteria using the specified threshold function

The balance filtering process uses Hotelling's T² statistic by default to measure multivariate balance between treatment and control groups. Randomizations are accepted if their balance measure is below the specified quantile threshold.

Value

A JAX NumPy array where each row represents a valid treatment assignment vector (binary: 1 for treated, 0 for control) that meets the balance criteria if specified.

Note

This function requires JAX and NumPy to be installed and accessible through the reticulate package. The function assumes the existence of helper functions InsertOnesVectorized and Vectorized-FastHotel2T2.

References

Hotelling, H. (1931). The generalization of Student's ratio. The Annals of Mathematical Statistics, 2(3), 360-378.

See Also

VectorizedFastHotel2T2 for details on the balance statistic calculation InsertOnesVectorized for the treatment assignment generation

Examples

```
# Generate all possible randomizations for 6 units with 3 treated
rand <- GenerateRandomizations(n_units = 6, n_treated = 3)

# Generate balanced randomizations with covariates
X <- matrix(rnorm(60), nrow = 10)  # 10 units, 6 covariates
balanced_rand <- GenerateRandomizations(
    n_units = 10,
    n_treated = 5,
    X = X,
    randomization_accept_prob = 0.25  # Keep top 25% most balanced
)</pre>
```

 ${\tt GenerateRandomizations_MonteCarlo}$

Draws a random sample of acceptable randomizations from all possible complete randomizations using Monte Carlo sampling

Description

This function performs sampling with replacement to generate randomizations in a memory-efficient way. It processes randomizations in batches to avoid memory issues and filters them based on covariate balance. The function uses JAX for fast computation and memory management.

Usage

```
GenerateRandomizations_MonteCarlo(
    n_units,
    n_treated,
    X,
    randomization_accept_prob = 1,
    threshold_func = VectorizedFastHotel2T2,
    max_draws = 1e+05,
    seed = 42,
    batch_size = 10000,
    verbose = FALSE
)
```

Arguments

n_units	An integer specifying the total number of experimental units
n_treated	An integer specifying the number of units to be assigned to treatment
Χ	A numeric matrix of covariates used for balance checking. Cannot be NULL.
randomization_a	ccept_prob
	A numeric value between 0 and 1 specifying the probability threshold for accepting randomizations based on balance. Default is $\bf 1$
threshold_func	A JAX function that computes a balance measure for each randomization. Must be vectorized using jax\$vmap with in_axes = list(NULL, 0L, NULL, NULL), and inputs covariates (matrix of X), treatment_assignment (vector of 0s and 1s), n0 (scalar), n1 (scalar). Default is VectorizedFastHotel2T2 which uses Hotelling's T^2 statistic
max_draws	An integer specifying the maximum number of randomizations to draw. Default is 100000
seed	An integer seed for random number generation. Default is 42
batch_size	An integer specifying how many randomizations to process at once. Default is 10000. Lower values use less memory but may be slower
verbose	A logical value indicating whether to print detailed information about batch pro-

Details

The function works by:

1. Generating batches of random permutations using JAX's random permutation functionality

cessing progress, and GPU memory usage. Default is FALSE

- 2. Computing balance measures for each permutation using the provided threshold function
- 3. Keeping only the top permutations that meet the acceptance probability threshold
- 4. Managing memory by clearing unused objects and JAX caches between batches

The function uses smaller data types (int8, float16) where possible to reduce memory usage. It also includes assertions to verify array shapes and dimensions throughout.

8 InitializeJAX

Value

A JAX array containing the accepted randomizations, where each row represents one possible treatment assignment vector

See Also

GenerateRandomizations for the non-Monte Carlo version VectorizedFastHotel2T2 for the default threshold function

Examples

InitializeJAX

Initialize JAX Environment for Fast Rerandomization

Description

Initialize JAX Environment for Fast Rerandomization

Usage

```
InitializeJAX(conda_env = NULL, conda_env_required = T)
```

Arguments

```
conda_env Character string. The conda environment name containing JAX. If NULL, uses default Python environment.
```

conda_env_required

Logical. Whether to force use of the specified conda environment.

Details

This function must be run before using any other functions in the package. It initializes JAX and defines several core functions used throughout the package:

- expand_grid_JAX: Creates treatment combinations
- FastDiffInMeans: Computes difference in means
- · Various vectorized versions of these functions

Value

Initializes JAX environment and defines core JAX functions globally. Returns invisible(NULL).

QJEData 9

Examples

```
## Not run:
# Basic usage
InitializeJAX()

# Using specific conda environment
InitializeJAX(conda_env = "my_jax_env")
## End(Not run)
```

QJEData

QJEData

Description

The dataset originates from the study "Moral hazard: Experimental evidence from tenancy contracts" by Burchardi, Konrad B et al., published in "The Quarterly Journal of Economics" in 2019 (Volume 134, Issue 1, Pages 281-347).

Usage

QJEData

Format

A data frame with 968 rows and many columns containing treatment data for a Quarterly Journal of Economics experiment on agriculture.

Source

Burchardi, Konrad B et al. (2019). "Moral hazard: Experimental evidence from tenancy contracts." In: The Quarterly Journal of Economics 134.1, pp. 281–347

RandomizationTest

Fast randomization test

Description

Fast randomization test

Usage

```
RandomizationTest(
  obsW = NULL,
  obsY = NULL,
  X = NULL,
  alpha = 0.05,
  candidate_randomizations = NULL,
  candidate_randomizations_array = NULL,
```

10 RandomizationTest

```
n0_array = NULL,
n1_array = NULL,
prior_treatment_effect_mean = NULL,
prior_treatment_effect_SD = NULL,
true_treatment_effect = NULL,
simulate = F,
coef_prior = NULL,
nSimulate_obsW = 50L,
nSimulate_obsY = 50L,
randomization_accept_prob = 1,
findFI = F,
c_initial = 2
```

Arguments

obsW A numeric vector where 0's correspond to control units and 1's to treated units.

obsY An optional numeric vector of observed outcomes. If not provided, the function

assumes a NULL value.

X A numeric matrix of covariates.

alpha The significance level for the test. Default is 0.05.

candidate_randomizations

A numeric matrix of candidate randomizations.

candidate_randomizations_array

An optional JAX array of candidate randomizations. If not provided, the func-

tion coerces candidate_randomizations into a JAX array.

n@_array An optional array specifying the number of control units.

n1_array An optional array specifying the number of treated units.

prior_treatment_effect_mean

An optional numeric value for the prior mean of the treatment effect. Default is NULL.

prior_treatment_effect_SD

An optional numeric value for the prior standard deviation of the treatment effect. Default is NULL.

true_treatment_effect

An optional numeric value specifying the true treatment effect. Default is NULL.

simulate A logical value indicating whether to run RandomizationTest in simulation

mode. Default is FALSE.

coef_prior An optional function generating coefficients on values of X for predicting $Y(\emptyset)$.

 $\verb|nSimulate_obsW| A numeric value specifying the number of simulated values for obsW. Default$

is 50L.

nSimulate_obsY A numeric value specifying the number of simulated values for obsY. Default is

 ${\tt randomization_accept_prob}$

An numeric scalar or vector of probabilities for accepting each randomization.

findFI A logical value indicating whether to find the fiducial interval. Default is FALSE.

 $c_initial \qquad \quad A \ numeric \ value \ representing \ the \ initial \ criterion \ for \ the \ randomization. \ Default$

is 2.

Value

A list consisting of

- p_value A numeric value or vector representing the p-value of the test (or the expected p-value under the prior structure specified in the function inputs).
- FI A numeric vector representing the fiducial interval if findFI=T.
- tau_obs A numeric value or vector representing the estimated treatment effect(s)

References

•

Examples

```
# For a tutorial, see
# github.com/cjerzak/fastrerandomization-software
```

SanityCheckSyntheticData

Perform sanity checks on synthetic data

Description

This function performs several sanity checks on synthetic data to ensure the quality of the generated dataset and the strength of relationships between variables.

Usage

```
SanityCheckSyntheticData(
   synthetic_data,
   InSampleR_threshold = 0.01,
   00S_R_threshold = 0.01,
   treatment_pval_threshold = 0.05
)
```

Arguments

synthetic_data A list containing:

- data_matrix Matrix containing the synthetic data
- Y0_coefficients Coefficients for potential outcome Y0
- Y1_coefficients Coefficients for potential outcome Y1

InSampleR_threshold

A numeric value indicating the threshold for in-sample R-squared.

OOS_R_threshold

A numeric value indicating the threshold for out-of-sample R-squared.

treatment_pval_threshold

A numeric value indicating the threshold for treatment effect p-value.

Details

The function performs the following checks:

- 1. Verifies R-squared > InSampleR_threshold for Y0 and Y1 regressed on X
- 2. Checks out-of-sample R-squared > OOS_R_threshold for Y0 and Y1 predictions
- 3. Confirms treatment effect is statistically significant (p < treatment_pval_threshold)

Value

A list of 4 linear models:

- lm_model_Y0 Linear model for $Y0 \sim X$
- lm_model_Y1 Linear model for $Y1 \sim X$
- lm_model_obsY Linear model for observed $Y \sim X$
- lm_model_obsY_obsW Linear model for treatment effect

Examples

```
## Not run:
synthetic_data <- generate_synthetic_data()
models <- sanity_check_synthetic_data(synthetic_data)
## End(Not run)</pre>
```

Index

```
* datasets
QJEData, 9

GenerateCausalData, 2
GenerateRandomizations, 3, 8
GenerateRandomizations_Exact, 4, 5
GenerateRandomizations_MonteCarlo, 4, 6

InitializeJAX, 8
InsertOnesVectorized, 6

QJEData, 9

RandomizationTest, 9

SanityCheckSyntheticData, 11

VectorizedFastHotel2T2, 6, 8
```