ROLE OF EMG IN DIAGNOSIS OF MYOPATHY

Associate Professor Steve Vucic

Western Clinical School, University of Sydney

Department of Neurology
Westmead Hospital

EMG and myopathy

- Infer the presence of myopathy
 - "Myopathic –like"
- Process may be patchy
- Qualitative
- Quantitative techniques
 - Mean vs outlier method
- DIAGNOSTIC UTILITY
 - Sensitivity variable
 - 33-92%
 - Specificity
 - 49-84%

EMG needles

MOTOR UNIT ACTION POTENTIAL

MOTOR UNIT ACTION POTENTIAL

MUAP DURATION

- Depends on electrical activity2.5 mm
- Measured at high display gain
- Robust

MUAP AMPLITUDE/RISE TIME

Muscle fibers 0.5 mm

Muscle fiber closest to the

recording tip

AMPLITUDE CHANGE WITH DISTANCE

MUAP PHASE

- Muscle fibers 1 mm
- Synchrony of muscle fiber APs
- Normal ≤ 4 phases

Pathological changes in myopathy

- Loss of muscle fibers & necrosis
 - segmental
- Change in fibre size (atrophy and hypertrophy)
- Regeneration fibers
- Fibre splitting

"MYOPATHIC-LIKE UNITS"

- 1. Small simple units 1.avi
 - 2. Small simple units 2.avi

"MYOPATHIC-LIKE UNIT"

1. Polyphasic units 1.avi

4. Polyphasic units 4.avi

TURNS AMPLITUDE ANALYSIS

"MYOPATHIC-LIKE UNITS"

1. Large amplitude.avi

Quantitative EMG MULTI-MUP ANALYSIS

N = 25, Mean Amp: 600 μ V, Mean Duration: 11 ms, Polyphasic: 4%

QEMG IN MYOPATHY

N=25, Mean Amp = 600 μ V, Duration : 7.3 ms (simple), 15.2 (All). 52% polyphasic

ORIGINAL ARTICLES

A correlative study of Quantitative EMG and biopsy findings in 31 patients with myopathies

E. Dardiotis¹², E. Papathanasiou¹, I. Vonta³, G. Hadjigeorgiou², E. Zamba-Papanicolaou¹, T. Kyriakides¹

	Myopathic findings	
	in muscle biopsy	Sensitivity
	(n = 29)	
Classical Q-EMG	All $(n = 29)$	31,0%
	M1 (n = 23)	39,1%
	M2 (n = 7)	28,6%
	M3 (n = 6)	33,3%
	M4 (n = 9)	22,2%
	M4 without M1 ($n = 5$)	0%
Amplitude outliers	All $(n = 29)$	68,9%
	M1 (n = 23)	69,5%
	M2 (n = 7)	71,4%
	M3 (n = 6)	50%
	M4 (n = 9)	77,7%
	M4 without $M1(n = 5)$	80%
Duration outliers	All $(n = 29)$	24,1%
	M1 (n = 23)	30,4%
	M2 (n = 7)	14,3%
	M3 (n = 6)	33,3%
	M4 (n = 9)	11,1%
	M4 without M1 (n = 5)	0%

- M1= Increase fibre size variability
 - M2 = Necrosis and/or regeneration
 - M3 = Endomysial fibrosis and fibre loss
- M4 = Alteration in fibre architecture

CAN EMG HELP WITH THE DIAGNOSIS OF THE UNDERLYING CAUSE OF MYOPATHY?

Accompaniments

Spontaneous activity

- Pattern of motor unit recruitment
 - "neurogenic" = chronic myopathies

Pattern of muscle disease

(1) Fibrillation potentials & PSW

1. F P 1 (1).avi

2. <u>F P 1 (2).avi</u>

3. <u>F P 3.avi</u>

Fibs/PW

- Inflammatory myopathies
- Infiltrative myopathies
- Inclusion body myositis
- Muscle trauma
- Muscular dystrophies/Congenital myopathies
- Rhambdomyolysis
- Muscle membrane disorders (hyperkalaemia periodic paralysis)
- Toxic myopathies
- Metabolic myopathies
- Infectious myopathies

Complex repetitive discharges

1. CRD 1.avi

2. <u>CRD 2.avi</u>

3. <u>CRD 3.avi</u>

Case of myopathy with CRDs

- 55-year-old female
 - Right foot drop
 - 18 months before presentation
 - Right hand weakness
 - 3-4 months before presentation
 - Left foot drop, left hand & bilateral shoulder girdle muscle weakness
 - At presentation

Physical examination

- Wasting
 - Intrinsic hand muscles
 - Right wrist & finger extensor muscles
 - Right tibialis anterior muscle
- Weakness
 - Global weakness in upper limb
 - MRC grade 3-4, Distal>Proximal
 - Distal lower limb; right>left
 - MRC grade 1-4
 - Hyperreflexia/ flexor plantar responses

Periodic acid Schiff

Polyglucosan Bodies

Complex repetitive discharges (CRD)

- Inflammatory myopathy
- Muscular dystrophies
- Channelopathies
- Glycogen storage disorders
 - Acid maltase deficiency
 - Debrancher deficiency
 - Polyglucosan body disease
- Myxedema
- Schwartz-Jampel syndrome
 - Rare genetic disorder
 - Mutation in HSPG2 gene (perlecan)
 - Bone dysplasia and joint contractures
 - Dwarfism

Myotonic discharges

1. Myotonic dc.avi

Case with myotonic discharges

Chromosome 19 (19q13.2-13.3)

MWD DMPK CTGn DMAHP/Si

Pathological n >100 - 3000

Myotonic discharges

- Myotonic dystrophy type II (PROMM)
- Channelopathies
 - Myotonia & paramyotonia congenita
 - Hyperkalemic PP
- Glycogen storage disorders
- Inflammatory disease
- Toxic myopathies
 - Chloroquine, statins, cyclosporine
- Hypothyroid myopathy

1. Myokymia. avi

MYOKYMIA

Pattern of motor unit recruitment

Inclusion body myositis

Often performed to diagnose a myopathy

- 1. CK levels
- Thyrotropin, electrolytes, renal and liver function tests, complete blood count, erythrocyte sedimentation rate, and serum protein electrophoresis/immunofixation
- 3. Genetic testing (hypothesis-driven, step-wise; avoid panels)
- 4. NCS/EMG
- 5. Muscle biopsy (if above are nondiagnostic)

Box 4

Myopathies that may have a normal EMG

- 1. Type II muscle atrophy
 - a. Steroid myopathy
 - b. Disuse myopathy
- 2. Some mitochondrial myopathies
- 3. Some congenital myopathies
- 4. Metabolic myopathies with dynamic^a phenotype if not performed during acute exacerbations
 - a. GSD V (McArdle disease or myophosphorylase deficiency)
 - b. GDS VII (phosphofructokinase deficiency)
 - c. Carnitine palmityltransferase II deficiency

^a Here, metabolic myopathies are referred to as having a dynamic phenotype when they are associated with exercise-induced symptoms (exertional myalgias, cramps, and myoglobinuria) as the dominant clinical features.

Conclusion

- Assess motor units
 - Quantitative EMG
- Accompaniments
 - Spontaneous activity
 - Pattern of recruitment

MUSCLE BIOPSY

Pattern of muscle disease

Distal weakness

Weakness.mpg

Weakness.mpg

(1) Distal myopathy

- Early onset < 40
 - Miyoshi myopathy
 - Deficiency Dysferlin
 - Calf muscle weakness
 - Laing myopathy
 - Skeletal/beta cardiac myosin gene (MyH7)
 - Chromosome 14
 - Weakness of toe & ankle dorsiflexor & neck flexors
 - Nonaka myopathy*
 - Bilateral foot drop
 - N-acetylglucosamine 2 epimerase/Nacetylmannosamine kinase gene (GNE)

- Late onset > 40 years
 - Welander
 - 2p13
 - Weakness of finger & wrist extensors
 - Markesbery-Griggs/Udd
 - Titin gene
 - Chromosome 2
 - Ankle dorsiflexor

Other myopathies that present with distal weakness

- Myotonic dystrophy
- Inflammatory myopathies
 - IBM
- Metabolic myopathies
- Hereditary myopathies
 - Emery-Dreifuss
 - OPD
- FSH
- Congenital myopathies
 - Nemaline
 - Centronuclear
 - Central core

Other patterns

- Quadriceps and wrist & finger extensors
 - IBM
- FSH (FSH FACE.mpg, FSH anterior.mpg, FSH POSTERIOR VIEW.mpg)

- Scapuloperoneal pattern (Prox. arm & distal leg)
 - Scapuloperoneal dystrophy
 - **E**-D
 - LGMD1B (laminopathies)
 - LGMD2A (calpain)
 - LGMD 2C-F (sarcoglycan)
 - Congenital myopathies
 - Acid maltase

Other patterns

- Dropped head syndrome
 - Focal myositis
 - Inflammatory myopathy
 - Isolated neck extensor myopathy
 - Congenital myopathy
 - Mitochondrial myopathy
 - Carnitine deficiency
 - MD
 - Hypothyroidism/hyper PTH
 - Myasthenic gravis

EMG of limb muscles may be normal

Other patterns

- Ptosis with ophthalmoplegia
 - Oculopharyngeal MD
 - Oculopharyngealdistal MD
 - CPEO (mitochondrial myopathy)
 - NMS (MG)
- Ptosis without ophthalmoplegia
 - Myotonic dystrophy
 - Congenital myopathies
 - Desmin (myofibrillar) myopathy