TD n°9 : changements de variables convergence simple et uniforme

I Changement de variables

Exercice 1 Changement de variable

Soient $0 \le a < b$ et $D = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < y, \ a < xy < b, \ y^2 - x^2 < 1\}$. On souhaite calculer:

$$I = \int_{D} (y^{2} - x^{2})^{xy} (x^{2} + y^{2}) dx dy.$$

1. On considère

$$\left\{ \begin{array}{cccc} \varphi \colon & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & (x,y) & \mapsto & (xy,y^2-x^2) \end{array} \right.$$

- a. Montrer que φ est un \mathscr{C}^1 difféomorphisme.
- b. Déterminer $\varphi(D)$.
- **2.** En déduire la valeur de I.

Remarque: Afin d'utiliser les mêmes notations on notera u = xy, $v = y^2 - x^2$.

Correction:

1.

a. L'application:

$$\begin{cases} \varphi \colon & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & (x, y) & \mapsto & (xy, y^2 - x^2) \end{cases}$$

est de classe \mathscr{C}^1 sur \mathbb{R}^2 car polynomiale. On peut aussi dire que φ admet des différentielles par rapport à x et y continues. Donc f est de classe \mathscr{C}^1 .

• Il reste à justifier que φ est bijective de D dans $\varphi(D)$. Calculons la Jacobienne

$$Jac(\varphi) = \begin{vmatrix} y & -2x \\ x & 2y \end{vmatrix} = 2(x^2 + y^2) \neq 0$$

Ainsi d'après le théorème d'inversion local, φ est localement inversible. Il faut montrer que φ est injective sur D.

•. Notons $Delta = \{(u, v), a < u < b, 0 < v < 1\}$. Soit $(u, v) \in \Delta$. On cherche $(x, y) \in D$ tel que $\varphi((x, y)) = (u, v)$.

On raisonne par analyse-synthèse

• **Analyse**. Comme $x, y \neq 0$, on peut écrire $x = \frac{u}{y}$. Ainsi en injectant, y est solution de l'équation $y^4 - vy^2 - u^2 = 0$. On pose $Y = y^2$. Alors :

$$Y^2 - \nu Y - \mu^2 = 0$$

Il s'agit d'une équation du second degré de discriminant $\Delta = v^2 + 4u^2$. Les solutions sont :

$$Y_1 = \frac{v - \sqrt{v^2 + 4u^2}}{2} < 0, \qquad Y_2 = \frac{v + \sqrt{v^2 + 4u^2}}{2}$$

Or $Y = y^2$. La seule possibilité est donc Y_2 . On obtient alors deux solutions en y:

$$y = \pm \sqrt{\frac{v + \sqrt{v^2 + 4u^2}}{2}}$$

De même, y > 0. Ainsi $y = \sqrt{\frac{v + \sqrt{v^2 + 4u^2}}{2}}$. On obtient aussi un unique $x = \frac{u}{y}$.

- **Synthèse.** On vérifie facilement que x y satisfont les équations. Il faut vérifier que c'est à dire que $(x, y) \in D$. On a bien $x, y \in \mathbb{R}_+^*$. La condition 0 < x < y est aussi satisfaite.
 - -x.y ∈ [a,b] est aussi vérifée.
 - Un calcul montre que $y^2 x^2 < 1$

On a donc montré que tout élément de Δ admet un unique antécédent dans D. Autrement dit, φ est bijective de D dans Δ .

•. On a aussi démontré que $\varphi(D) = \Delta$. b. Soit g une fonction mesurable et φ un \mathscr{C}^1 -difféomorphisme. Alors :

$$\int_{D} g \circ \varphi \times |Jac(\varphi)| d\lambda = \int_{\varphi(D)} g d\lambda.$$

On reconnait que $g(u, v) = v^u$. On obtient alors

$$I = \int_{a < u < b} \int_{0 < v < 1} \frac{v^u}{2} du dv$$
$$\frac{1}{2} \int_a^b \left[\frac{v^{u+1}}{u+1} \right]_0^1 du$$
$$= \frac{1}{2} \ln \left(\frac{b+1}{a+1} \right)$$

Exercice 2 Changement de variables

On note $D = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 4, z \in [0, 2]\}$. Calculer:

$$I = \int \int \int_D \frac{z}{\sqrt{x^2 + y^2}} dx dy dz.$$

Correction:

On considère le changement de variable

$$\left\{ \begin{array}{ccc} \varphi \colon & \mathbb{R}_+^* \times]0, 2\pi] \times \mathbb{R} & \to & \mathbb{R}^3 \\ & (r, \theta, z) & \mapsto & (r \cos(\theta), r \sin(\theta), z) \end{array} \right.$$

 φ est \mathscr{C}^1 .

- $\bullet \ \varphi^{-1}(D) = \left\{ (r,\theta,z) \in \mathbb{R}_+^* \times]0,2\pi] \times \mathbb{R}, \quad 0 < r \leq 2 \right\}$
- Écrivons la jacobienne de φ .

$$Jac(\varphi) = \begin{vmatrix} \frac{\partial \varphi_1}{\partial r} & \frac{\partial \varphi_2}{\partial r} & \frac{\partial \varphi_3}{\partial r} \\ \frac{\partial \varphi_1}{\partial \theta} & \frac{\partial \varphi_2}{\partial \theta} & \frac{\partial \varphi_3}{\partial \theta} \\ \frac{\partial \varphi_1}{\partial r} & \frac{\partial \varphi_2}{\partial r} & \frac{\partial \varphi_3}{\partial \theta} \\ \frac{\partial \varphi_1}{\partial r} & \frac{\partial \varphi_2}{\partial r} & \frac{\partial \varphi_3}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -r\sin(\theta) & r\cos(\theta) & 0 \\ 0 & 0 & 1 \end{vmatrix} = r$$

Comme $r \neq 0$, φ est un \mathscr{C}^1 difféomorphisme de $\varphi^{-1}(D)$ sur D.

• On remplace et on obtient :

$$I = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{2} \frac{z}{r} r dr d\theta = 8\pi.$$

Exercice 3 Changement de variables

On considère $f:(x,y)\mapsto e^{-(x^2+y^2)}$.

- **1.** Montrer que f est intégrable sur \mathbb{R}^2 .
- 2. On note:

$$I_R = \int_{B(0,R)} f(x,y) dx dy,$$

où B(0,R) est la boule de centre 0 et de rayon R. Calculer la valeur de I_R . En déduire la valeur de $\int_R e^{-x^2} dx$.

Correction:

1. f est positive et continue sur \mathbb{R}^2 donc mesurable. Comme $\lim_{x \to \pm \infty} x^2 e^{-x^2} = 0$, alors la fonction $f: x \mapsto e^{-x^2}$ est intégrable sur \mathbb{R} . D'après le théorème de Fubini-Tonelli :

$$\int_{\mathbb{R}^2} f(x,y) dx dy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} e^{-x^2} e^{-y^2} dx \right) dy = \left(\int_{\mathbb{R}} e^{-x^2} dx \right)^2 < +\infty.$$

D'où le résultat annoncé.

2. On considère le changement de variables :

$$\left\{ \begin{array}{ccc} \varphi : & \mathbb{R}_+^* \times]0, 2\pi] & \to & \mathbb{R}^2 \\ & (r, \theta, z) & \mapsto & (r\cos(\theta), r\sin(\theta)) \end{array} \right.$$

 φ est de classe \mathscr{C}^1 .

- $\varphi^{-1}(B(0,R)) = \{(r,\theta), 0 < r < R, \theta \in]0,2\pi]\}$
- Calculons la jacobienne :

$$Jac(\varphi) = \begin{vmatrix} \cos(\theta) & \sin(\theta) \\ -r\sin(\theta) & r\cos(\theta) \end{vmatrix} = r$$

Ainsi φ est un \mathscr{C}^1 -difféomorphisme.

• Finalement,

$$I_{R} = \int_{0}^{R} \int_{0}^{2\pi} r e^{-r^{2}} dr d\theta,$$

$$= 2\pi \left[-\frac{1}{2} e^{-r^{2}} \right]_{0}^{R},$$

$$= \pi (1 - e^{-R^{2}})$$

D'après la question 1, on obtient $\int_{\mathbb{D}} e^{-x^2} dx = \sqrt{\pi}$.

II Suites et séries de fonctions

Exercice 4

On définit la suite de fonctions (u_n) par :

$$\forall n \in \mathbb{N}, \ \forall x \in [0,1], \quad u_n(x) = \begin{cases} x^n \ln(x), & \text{si } x \in]0,1], \\ 0, & \text{si } x = 0 \end{cases}$$

Étudier la convergence uniforme de la suite de fonctions (u_n) sur [0,1]

Correction:

On étudie déjà la convergence simple.

Si x=0 alors $u_n(x)=0$. Donc $\lim_{n\to+\infty}u_n(0)=0$. Par le même raisonnement, $\lim_{n\to+\infty}u_n(1)=0$. Pour $x\in]0,1[,\lim_{n\to+\infty}u_n(x)=0$.

Donc le suite (u_n) CVS vers la fonction nulle sur [0,1].

• Soit $n \in \mathbb{N}$, la fonction u_n est dérivable et :

$$u'_n(x) = nx^{n-1}\ln(x) + x^{n-1} = x^{n-1}(n\ln(x) + 1).$$

Ainsi:

$$||u_n||_{\infty,[0,1]} = |u_n(e^{-1/n})| = \frac{e^{-1}}{n}.$$

Ainsi (u_n) CVU vers la fonction nulle sur [0,1].

Exercice 5

On définit la suite de fonctions (u_n) par :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}_+, \quad u_n(x) = e^{-nx} \sin(nx).$$

- **1.** Étudier la convergence simple de la suite de fonctions (u_n) sur \mathbb{R}_+ .
- **2.** Soit A > 0. Étudier la convergence uniforme de la suite de fonctions (u_n) sur $[A, +\infty[$.
- **3.** A-t-on convergence uniforme sur \mathbb{R}_+ ? Justifier.

Correction:

- 1.
- Pour x = 0, on a $u_n(0) = 0$. Donc $\lim_{n \to +\infty} u_n(0) = 0$.
- Pour x > 0, $\lim_{n \to +\infty} u_n(x) = 0$.
- Pour x > 0, $u_n(x)$ n'a pas de limites.

Ainsi (u_n) CVS vers la fonction nulle sur \mathbb{R}_+ . On notera u sa limite.

2. Soit A > 0. Alors $\forall x \in [A, +\infty[$:

$$|u_n(x)| \le e^{-na} \underset{n \to +\infty}{\longrightarrow} 0$$

Ainsi (u_n) CVU vers la fonction nulle sur $[A, +\infty[$.

3. On considère la suite $x_n = \frac{1}{n}$. Alors $u_n\left(\frac{1}{n}\right) - u\left(\frac{1}{n}\right) = e^{-1}\sin(1) \neq 0$. Il n'y a pas de CVU sur \mathbb{R}_+ .

Exercice 6

Étudier la suite de fonctions (u_n) définie par :

$$f_n(x) = \frac{nx^2e^{-nx}}{1 - e^{-x^2}}.$$

Correction:

1. Notons I_n l'ensemble de définition de f_n . A priori $\mathcal{D}_{f_n} = \mathbb{R}^*$. Or,

$$f_n(x) \sim_{x=0} n$$
.

Ainsi on prolonge f_n par continuité en 0, en posant $f_n(0) = n$.

- 2. Étudions la convergence simple.
 - $\forall x \le 0$, f_n n'a pas de limite finie.
 - $\forall x > 0$, $\lim_{n \to +\infty} f_n(x) = 0$.

Ainsi (f_n) CVS vers la fonction nulle sur \mathbb{R}_+^* .

3. A-t-on de la CVU sur \mathbb{R}_+^* ? On pose $x_n = \frac{1}{n}$. Alors :

$$f_n(x_n) = ne^{-1} \underset{n \to +\infty}{\longrightarrow} +\infty$$

Ainsi il n'y a pas de convergence uniforme sur \mathbb{R}_{+}^{*} .

4. Soit A > 0. A-t-on convergence uniforme sur $[A, +\infty[$?

Soit $x \in [A, +\infty[$,

$$|f_n(x)| \le \frac{1}{1 - e^{-A^2}} nx^2 e^{-nx}.$$

La fonction $g_n(x) = nx^2e^{-nx}$ atteint son maximum en $x = \frac{2}{n}$. Ainsi :

$$|f_n(x)| \le \frac{1}{1 - e^{-A^2}} 2e^{-2} \frac{1}{n}.$$

Ainsi (f_n) CVU sur [A, $+\infty$ [.

Exercice 7

On définit la suite de fonction $f_n : \mathbb{R}_+ \to \mathbb{R}$ par :

$$\forall \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \quad f_n(x) = \left(1 + \frac{x}{n}\right)^{-n}.$$

1.

a. Étudier la convergence simple de la suite de fonctions (f_n) . On notera f la limite lorsqu'elle existe.

b. Démontrer que :

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}_+, \quad f_n(x) \ge f(x).$$

2. On admettra l'inégalité:

$$\forall t \in \mathbb{R}_+, \quad t - \frac{t^2}{2} \le \ln(1+t) \le t.$$

Montrer que la suite de fonctions (f_n) converge uniformément sur tout segment de la forme [0, A] avec A > 0.

3. Montrer que (f_n) converge uniformément sur \mathbb{R}_+ .

Correction:

1.

a. Il s'agit d'une limite classique :

$$\forall x \in \mathbb{R}, \qquad \lim_{n \to +\infty} f_n(x) = e^{-x}.$$

Ainsi (f_n) CVS vers la fonction $f: x \mapsto e^{-x}$.

b. On sait que $\forall t \in \mathbb{R}_+$, $\ln(1+t) \le t$. Alors, pour $x \in \mathbb{R}$:

$$f_n(x) = \exp\left(-n\ln\left(1+\frac{x}{n}\right)\right) \ge e^x$$
 par monotonie

2. Soit A > 0. Soit $x \in [0, A]$. Alors

$$\begin{split} &\frac{x}{n} - \frac{x^2}{2n^2} \le \ln\left(1 + \frac{x}{n}\right) \le \frac{x}{n}, \\ &- \frac{x}{n} \le -\ln\left(1 + \frac{x}{n}\right) \le -\frac{x}{n} + \frac{x^2}{2n^2}, \\ &- x \le -n\ln\left(1 + \frac{x}{n}\right) \le -x + \frac{x^2}{2n}, \\ &e^{-x} \le f_n(x) \le e^{-x} e^{\frac{A^2}{2n}} \end{split}$$

Ainsi:

$$|f_n(x) - f(x)| \le e^0 \left| e^{\frac{A^2}{2n}} - 1 \right|$$

Ainsi la suite (f_n) converge uniformément sur [0, A] vers f.

3. Soit a > 0 et $x \ge a$:

$$|f_n(x) - f(x)| \le f_n(x) + e^{-x} \le f_n(a) + e^{-x} \le f_n(a) - e^{-a} + e^{-a} + e^x.$$

Soit $\varepsilon > 0$.

- Comme $\lim_{x \to +\infty} e^{-x} = 0$, $\exists a > 0$ tel que $e^{-a} \le \frac{\varepsilon}{3}$.
- En particulier:

$$e^{-x} + e^{-a} \le 2e^{-a} \le \frac{2\varepsilon}{3}$$

• Par convergence simple, il existe $N_1 \in \mathbb{N}$ tel que

$$\forall n \ge N_1, \quad |f_n(a) - f(a)| \le \frac{\epsilon}{3}.$$

• Ainsi:

$$\exists N_1 \in \mathbb{N}, \quad n \geq N_1, \quad \forall x \geq A, \quad |f_n(x) - f(x)| \leq \varepsilon.$$

Or sur [0, A], on a de la convergence uniforme. Il existe $N_2 \in \mathbb{N}$ telque :

$$\exists N_2 \in \mathbb{N}, \quad n \geq N_2, \quad \forall x \in [0,A], \quad |f_n(x) - f(x)| \leq \varepsilon.$$

En posant $N_3 = \max(N_1, N_2)$, on en déduit que

$$\exists N_3 \in \mathbb{N}$$
, $n \ge N_3$, $\forall x \in \mathbb{R}_+$, $|f_n(x) - f(x)| \le \varepsilon$.

On conclut pour la convergence uniforme.

Exercice 8

On considère une suite de fonctions (f_n) telle que :

- $f_n:[0,1]\to\mathbb{R}$ est décroissante.
- (f_n) converge simplement vers la fonction nulle.

Démontrer que (f_n) converge uniformément vers la fonction nulle.

Correction:

Comme chacune des fonction f_n est décroissantes :

$$\forall n \in \mathbb{N}, \quad f_n(1) \le f_n(x) \le f_n(0).$$

Ainsi

$$||f_n - f||_{\infty} \le \max(|f_n(0)|, |f_n(1)|).$$

D'où la convergence uniforme.

Exercice 9

On définit la suite de fonctions (f_n) par :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}_+, \qquad f_n(x) = \frac{x^n e^{-x}}{n!}$$

- **1.** Étudier les différentes convergences de la suite de fonctions (f_n) .
- **2.** Étudier les différentes convergences de la série de fonctions $\sum f_n$.

Correction:

1.

• Étudions la convergence simple.

- Si
$$x \in]0,1[$$
,

$$|f_n(x)| \le \frac{x^n}{n!} n \to +\infty0$$

- Si
$$x > 0$$
;

$$\lim_{n\to+\infty} f_n(x) = 0$$

Ainsi la suite (f_n) converge simplement vers 0.

• Étudions la convergence uniforme. Soit $n \in \mathbb{N}$, la fonction f_n est dérivable et :

$$f'_n(x) = nx^{n-1}e^{-x} - x^ne^{-x} = x^{n-1}e^{-x}(n-x).$$

Ainsi:

$$||f_n||_{\infty,\mathbb{R}_+} = f_n(n) = \frac{n^n}{n!}e^{-n}.$$

On rappelle la formule de Stirling:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Ainsi $||f_n||_{\infty,\mathbb{R}_+} \sim \frac{1}{\sqrt{2\pi n}}$ Donc (f_n) converge uniformément vers 0 sur \mathbb{R}_+ .

2.

- On sait que $\sum f_n$ converge simplement vers la fonction constante égale à 1 sur \mathbb{R} donc sur \mathbb{R}_+ .
- $\sum \frac{x^n}{n!}$ converge normalement sur \mathbb{R} . Car c'est une série de rayon de convergence $R = +\infty$. Le fait de multiplier par e^{-x} n'assure peut être pas la convergence uniforme. Il faut l'étudier de nouveau
- Soit a > 0. Il existe $N \in \mathbb{N}$ tel que $N \ge a$. Alors, $\forall n \ge N$:

$$|f_n(x)| \le |f_n(a)| = \frac{a^n e^{-a}}{n!}$$

La série $\sum \frac{a^n e^{-a}}{n!}$ converge. Ainsi, la série $\sum f_n$ converge normalement donc uniformément sur [0,a].

Montrons qu'il n'y a pas de convergence uniforme sur \mathbb{R}_+ . On raisonne par l'absurde.

Si il y a de la convergence uniforme sur \mathbb{R}_+ , on pourrait appliquer le théorème de la double limite soit :

$$\lim_{x \to +\infty} \sum_{k=0}^{+\infty} f_k(x) = \sum_{k=0}^{+\infty} \lim_{x \to +\infty} f_k(x)$$

On aurait alors 1 = 0. Ce qui est absurde

• De plus, il ne peux y avoir de convergence normale sur \mathbb{R}_+ car $f_n(n)$ n'est pas une série convergente.

Exercice 10

Étudier la convergence simple, uniforme et normale de la série de fonctions :

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \quad f_n(x) = \frac{1}{n^2 + x^2}.$$

Correction:

On a $\forall x \in \mathbb{R}$,

$$|f_n(x)| \le \frac{1}{n^2}.$$

 $\sum 1/n^2$ converge. Ainsi la série $\sum f_n$ converge normalement sur $\mathbb R.$

Exercice 11

Étudier la convergence simple, uniforme et normale de la série de fonctions :

$$\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, \quad f_n(x) = \frac{(-1)^n}{n+x^2}.$$

Correction:

1.

- Soit $x \in \mathbb{R}$, la série suite (f_n) est alternée et tend vers 0 en décroissant. Ainsi :
 - 1. La série $\sum_{n\geq 1} f_n(x)$ converge. On a donc de la convergence simple sur \mathbb{R} .
 - 2. De plus,

$$\forall x \in \mathbb{R}, \quad |R_n(x)| \le |u_{n+1}(x)| \le \frac{1}{n+1}.$$

- D'après la deuxième propriété, on a de la convergence uniforme sur $\mathbb R.$
- On remarque que $||f_n||_{\infty} = \frac{1}{n}$. La série diverge. Ainsi $\sum f_n$ ne converge pas normalement sur \mathbb{R} .