命题:可以判断真假的陈述句。通常,我们用T表示真,用F表示假。

例.

- 2是偶数。(真命题)
- 北京是中国的首都。(真命题)
- 多伦多是加拿大的首都。(假命题)
- 这句话是假的。(不能判断真假的陈述句,不是命题)

谓词: 命题的谓语部分。

例.

- P(x): x **是偶数** 这里P为一元谓词,表示"是偶数"。当x为某个确定的数字时,P(x)则对应一个命题。例如P(2)为真命题,P(1)为假命题。这里,P之所以被称为一元谓词,是因为P(x)只包含一个变量x。
- P(x,y): x>y 这里P为二元谓词,表示>。当x和y为确定的数字时,P(x,y)则 对应一个命题。例如1>0为真命题,0>1为假命题。这里,P之所以被称为二元谓词,是因为P(x,y)包含两个变量x和y。

相应的,有三元谓词,四元谓词,

我们还可以用如下方式由谓词得到命题:

- $\forall x P(x)$ 对任意的x, P(x)。For All中的A上下颠倒可以得到 \forall 。
- $\exists x P(x)$ 存在x, P(x)。 There Exists中的E左右颠倒可以得到 \exists 。

命题可以由联结词 \neg , \land , \lor , \rightarrow , \leftrightarrow 联结而构成复合命题。设p为命题,则 $\neg p$ 表示"p不成立"。

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

设p和q为两个命题,则 $p \wedge q$ 表示"p成立,并且q成立"。

p	\mathbf{q}	$p \wedge q$
Τ	Τ	Т
\mathbf{T}	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

设p和q为两个命题,则 $p \lor q$ 表示"p成立,或者q成立"。 $p \quad q \mid p \lor q$

p	q	$p \lor c$
Т	Τ	${ m T}$
\mathbf{T}	\mathbf{F}	${ m T}$
\mathbf{F}	\mathbf{T}	${ m T}$
\mathbf{F}	\mathbf{F}	F

设p和q为两个命题,则 $p \to q$ 表示"如果p成立,那么q成立"。

p	q	$p \rightarrow q$
\overline{T}	Τ	Т
${\rm T}$	\mathbf{F}	\mathbf{F}
\mathbf{F}	T	${ m T}$
\mathbf{F}	\mathbf{F}	${ m T}$

这里需要注意的是,当p为假时,则 $p \rightarrow q$ 一定为真,这是所有数学家共同的约定。下面的例子可以帮助大家更好的理解其实我们已经用到了这个约定。

对任意的实数x,当x > 1时, $x^2 > 1$ 。该命题显然是真命题,可以符号化为 $\forall x \ x > 1 \rightarrow x^2 > 1$ 。那么,既然对于任意的x, $x > 1 \rightarrow x^2 > 1$ 成立,则

- 1) 当x = 2时, $2 > 1 \rightarrow 2^2 > 1$ 成立,这对应于以上真值表的第一行;
- 2) 当x = 0时, $0 > 1 \rightarrow 0^2 > 1$ 成立, 这对应于以上真值表的第四行;
- 3) 当x=-2时, $-2>1\to (-2)^2>1$ 成立,这对应于以上真值表的第三行。

设p和q为两个命题,则 $p \to q$ 表示"p等价于q"。

p	\mathbf{q}	$p \leftrightarrow q$
\overline{T}	Τ	Т
\mathbf{T}	\mathbf{F}	F
\mathbf{F}	\mathbf{T}	F
\mathbf{F}	\mathbf{F}	Т

请大家思考,设p, q, r为命题,则 $(p \lor q) \land r$ 所代表的命题的含义是什么? $(p \land r) \lor (q \land r)$ 所代表的命题的含义是什么?这两个命题是等价的吗?我们可以通过枚举p,q,r依次取值为T和F时, $(p \lor q) \land r$ 和 $(p \land r) \lor (q \land r)$ 同时取值为T或F,从而验证这两个命题是等价的,如下所示:

p	q	r	$(p \lor q) \land r$	$(p \wedge r) \vee (q \wedge r)$
\overline{T}	Τ	Τ	Т	Τ
${\rm T}$	\mathbf{F}	${\rm T}$	T	${ m T}$
\mathbf{F}	${\rm T}$	${\rm T}$	T	${ m T}$
\mathbf{F}	\mathbf{F}	${\rm T}$	F	\mathbf{F}
${ m T}$	${\rm T}$	\mathbf{F}	F	\mathbf{F}
${ m T}$	\mathbf{F}	\mathbf{F}	F	\mathbf{F}
\mathbf{F}	${\rm T}$	\mathbf{F}	F	\mathbf{F}
\mathbf{F}	F	F	F	\mathbf{F}

用同样的方法我们可以验证:

 $(p \land q) \lor r = (p \lor r) \land (q \lor r)$ 是等价的。

\ <u>-</u>	-,		, , , , , , , , , , , , , , , , , , , ,	,
p	q	r	$(p \land q) \lor r$	$(p \vee r) \wedge (q \vee r)$
\overline{T}	Τ	Τ	T	T
\mathbf{T}	\mathbf{F}	${\rm T}$	Γ	${ m T}$
\mathbf{F}	${ m T}$	\mathbf{T}	Γ	${ m T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	Γ	${ m T}$
\mathbf{T}	\mathbf{T}	\mathbf{F}	Γ	${ m T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	F	\mathbf{F}
\mathbf{F}	${\rm T}$	\mathbf{F}	F	${ m F}$
\mathbf{F}	\mathbf{F}	\mathbf{F}	F	\mathbf{F}
				,

 $\neg (p \land q)$ 与 $\neg p \lor \neg q$ 是等价的。

p	q	r	$\neg (p \land q)$	$\neg p \vee \neg q$	
Т	Т	Τ	F	F	
\mathbf{T}	\mathbf{F}	${ m T}$	T	${ m T}$	
\mathbf{F}	\mathbf{T}	\mathbf{T}	T	T	
\mathbf{F}	\mathbf{F}	\mathbf{T}	T	T	
$\neg (p \lor q)$ 与 $\neg p \land \neg q$ 是等价的。					
p	q	r	$\neg(p \lor q)$	$\neg p \land \neg q$	
Т	Τ	Τ	F	F	
T	\mathbf{F}	T	F	\mathbf{F}	
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	${\rm T}$	${ m T}$	${ m T}$	