Exercice

1 Décrire par un intervalle les ensembles de nombres suivants.

- 1. Les nombres x compris entre 3 et 5 inclus.
- 2. Les nombres x strictement plus grands que -2
- 3. Les nombres x plus petits ou égaux à $\sqrt{2}$
- 4. Les nombres x plus petits ou égaux à -8 et strictement plus grand que $-\frac{100}{3}$
- 5. Les nombres plus grands que 3 ou plus petit que -1

2 Sur l'axe des réels, décrire graphiquement l'ensemble de nombre suivant.

Et dire si cela correspond à des intervalles.

- 1. Tous les nombres strictement plus grands que $\sqrt{10}$.
- 2. Tous les nombres x tel que $x^2 > 10$.
- 3. Tous les nombres compris strictement plus grands que 3, mais plus petits ou égaux à 5.

3 Compléter par \in ou \notin .

Et justifiez par des inégalités dans chaque cas.

- 1. 2...]1;3[
- 2. 1...]1;3[
- 3. 1...]1;3]
- 4. 1...] -1;3]
- **5.** 2,9...]1;3[
- 6. -1...] -2;3]
- 7. -0.99...] -2; -1]
- 8. $\sqrt{2}$...[1,4;1,45]
- 9. Donnez deux intervalles I et I' qui respectent les trois conditions suivantes :
 - a) ils contiennent tous les deux -1
 - b) $2 \in I$ et $2 \notin I'$
 - c) $0 \notin I$ et $0 \in I'$

4 Pour chaque question, calculer l'intersection des deux intervalles

- 1. I = [-4; 5] et I' = [0; 10].
- 2. I = [-4; 5] et I' =]0; 10] (aidez vous de la question précédente).
- 3. I = [1; 2] et I' = [2; 3].
- 4. I = [-10; 5] et I' = [4; 12]

5 Questions de réflexion

- 1. Si $x \in [-8, 2]$, à quel intervalle appartient x + 3?
- 2. Si $x \in]-1;4]$, à quel intervalle appartient -x?
- 3. Vrai ou faux : un intervalle qui contient deux nombres différents contient forcément un nombre infini de valeurs. Quelque soit votre réponse, argumentez.
- 4. Soit I et I' deux intervalles. Est-ce que leur intersection est un intervalle?