FdE nº 9 - Exponentielle d'une matrice

- 1. Soit $A \in M_n(\mathbb{C})$.
 - (a) Résoudre le problème de Cauchy $\dot{X}(t) = AX(t), X(0) = \mathrm{Id}_n$ pour une fonction $X(t) : \mathbb{R} \to M_n(\mathbb{C})$. Indication : poser $X(t) = X_0 + tX_1 + t^2X_2 + \cdots$ et déterminer successivement les coefficients.
 - (b) Formuler une définition de l'exponentielle $e^A \in M_n(\mathbb{C})$.
 - (c) Calculer les dérivées de la fonction $t \mapsto e^{tA}$.
- 2. Calculer l'exponentielle d'une matrice.

(a)
$$D_2 = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$$
, $D_3 = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{pmatrix}$, ..., D_n .

- (b) $N_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $N_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, ..., N_n .
- (c) $P \in M_n(\mathbb{C}), P^2 = P$.
- (d) $B = \begin{pmatrix} 0 & -b \\ b & 0 \end{pmatrix}$ avec $b \in \mathbb{R}$
- 3. (a) Soit $A, B \in M_n(\mathbb{C})$ deux matrices semblables : $A = P^{-1}BP$ avec $P \in GL_n(\mathbb{C})$. Expliciter la relation entre e^A et e^B .
 - (b) Calculer e^A pour $A = \begin{pmatrix} -6 & -2 \\ 10 & -3 \end{pmatrix}$.
- 4. (a) Soit A(t), B(t) deux fonctions dérivables à valeurs dans $M_n(\mathbb{C})$. Montrer que A(t)B(t) est une fonction dérivable et calculer sa dérivée.
 - (b) Soit A(t) une fonction dérivable à valeurs dans $GL_n(\mathbb{C})$. Montrer que $(A(t))^{-1}$ est une fonction dérivable et calculer sa dérivée.
 - (c) Soit $A \in M_n(\mathbb{C})$. Montrer que pour tout $t, s \in \mathbb{C}$, $e^{tA+sA} = e^{tA}e^{sA}$.
 - (d) Soit $A \in M_n(\mathbb{C})$. Montrer que e^A est inversible et $(e^A)^{-1} = e^{-A}$.

Proposition 1. Soit $A, B \in M_n(\mathbb{C}), AB = BA$. Alors $e^{A+B} = e^A e^B$.

- 5. Calculer l'exponentielle de $J_2 = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$, $J_3 = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}$, ..., J_n .
- 6. Soit $A \in M_n(\mathbb{C})$. Calculer la dérivée de $f(t) = \det(e^{At})$. En déduire que $\det(e^A) = e^{\operatorname{tr} A}$. En particulier, le déterminant de l'exponentielle d'une matrice réelle est toujours positif. Indication : on calcule la dérivée par définition en utilisant que $\det(\operatorname{Id}_n + A \cdot \Delta t + o(\Delta t)) = 1 + \operatorname{tr} A \cdot \Delta t + o(\Delta t)$ lorsque $\Delta t \to +0$.
- 7. Soit $A \in GL_n(\mathbb{R})$. Donner deux interprétations géométriques de det A. Indication : pour la deuxième, on considère l'application $\mathbb{R}^n \to \mathbb{R}^n$, $x \mapsto Ax$. Soit $D \subset \mathbb{R}^n$ un domaine ouvert bornée. Comparer les volumes $\operatorname{vol}(D)$ et $\operatorname{vol}(AD)$.
- 8. Soit $A, B \in M_n(\mathbb{C})$. Résoudre le problème de Cauchy $\dot{X}(t) = AX(t) + X(t)B, X(0) = \mathrm{Id}_n$.