

FCC Test Report

FCC EVALUAT	FCC EVALUATION REPORT FOR CERTIFICATE					
Project Reference No.	273927					
Product	Tablet PC					
Brand Name	N/A					
Model	W850					
Alternate Model	N/A					
Tosted according to	FCC Rules and Regulations Part 15 Subpart C 2013, 15.247					
Tested according to	ANSI C63.4-2009					

Tested in period	2014-12-25 to 2014-12-30	
Issued date	2014-12-31	
Name and address	Nemko	
of the Test House	Nemko Shanghai Ltd. Shenzhen Unit CD, Floor 10, Tower 2, Kefa District, Shenzhen, China	Branch Road 8#, Hi-Technology Park, Nanshan
	Phone: +86 755 8221 0420	Fax: +86 755 8221 3363
Tested by	Zone Peng	2014-12-31
	Zone Peng	2014-12-31 date
Verified by	Davin Lin	2244 42 24
	Daria Liu	2014-12-31 date
	Daria Liu	uale

This form is only for use by Nemko, or by others according to special agreement with Nemko. The report may be reproduced infull. Partial reproduction may only be made with the written content of Nemko Hongkong. This report applies only to the sample(s) tested. It is the manufacturer's responsibility to assure the additional production units of this product are manufactured with identical electrical and mechanical components.

Contents of This Report

1.	Client Information	
	1.1 Applicant	4
	1.2 Manufacturer	4
	1.3 Scope	4
2.	Equipment under Test (EUT)	5
	2.1 Identification of EUT	5
	2.2 Detail spec:	5
	2.3 Additional Information Related to Testing	5
3.	General Test Conditions	6
	3.1 Location	6
	3.2 Operating Environment	6
	3.3 Operating During Test	6
	3.4 Test Equipment	6
4.	Measurement Uncertainty	7
5.	Radiated Electromagnetic Disturbances	8
	5.1 Test Procedure	8
	5.2 Measurement Equipment	8
	5.3 Test Result	8
	5.3.1 Diagram 5-1	.10
	5.3.2 Diagram 5-2	. 11
	5.3.3 Diagram 5-3	.12
	5.3.4 Diagram 5-4	.12
	5.3.5 Diagram 5-5	.13
	5.3.6 Diagram 5-6	.13
	5.3.7 Diagram 5-7	.14
	5.3.8 Diagram 5-8	.14
	5.3.9 Diagram 5-9	.15
	5.3.10 Diagram 5-10	.16
	5.3.11 Diagram 5-11	.17
	5.3.12 Diagram 5-12	.18
6.	6dB and 99% Bandwidth test	.19
	6.1 Test Procedure	.19
	6.2 Measurement Equipment	.19
	6.3 Test Result	.19
	6.3.1 Diagram 6-1	.20
	6.3.2 Diagram 6-2	.21
	6.3.3 Diagram 6-3	.22
7.	Band Edge Compliance Test	.23
	7.1 Test Procedure	.23
	7.2 Measurement Equipment	.23
	7.3 Test Result	.23
	7.3.1 Diagram 7-1	.23
	7.3.2 Diagram 7-2	.25
	7.3.3 Diagram 7-3	.26

Reference No.: 273927

8. Power Spectral Density Test	28
8.1 Test Procedure	28
8.2 Measurement Equipment	28
8.3 Test Result	28
8.3.1 Diagram 8-1	29
8.3.2 Diagram 8-2	30
8.3.3 Diagram 8-3	31
9. Peak Output Power Test	32
9.1 Test Procedure	32
9.2 Measurement Equipment	32
9.3 Test Result	32
9.3.1 Diagram 9-1	32
9.3.2 Diagram 9-2	33
9.3.3 Diagram 9-3	34
10 POWER LINE CONDUCTED EMISSION TEST	35
10.1 Test Procedure	35
10.2 Measurement Equipment	35
10.3 Test Result	35
10.3.1 Diagram 10-1	36
10.3.2 Diagram 10-2	37
11. Antenna requirement	38
11.1 Requirement	38
11.2 Result	38

FCC ID:2ACEK-W850 Reference No.: 273927

1. Client Information

1.1 Applicant

Company Name: South Holdings Industrial Limited

Building 1, Hao'er JiaShiTai Industrial Park, FengTang Rd.,

Company Address: Tangwei, FuYong Town, Bao'an District, Shenzhen, 518103,

China

1.2 Manufacturer

Company Name: South Holdings Industrial Limited

Building 1, Hao'er JiaShiTai Industrial Park, FengTang Rd.,

Company Address: Tangwei, FuYong Town, Bao'an District, Shenzhen, 518103,

China

1.3 Scope

•Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15.247.

FCC ID:2ACEK-W850 Reference No.: 273927

2. Equipment under Test (EUT)

2.1 Identification of EUT

Category: Bluetooth 4.0

Name: Tablet PC

Model Name: W850

Alternate model: N/A

Brand name: N/A

This report 273927 is on the basis of the report 274749, The model:W850, FCC ID:2ACEK-W850, trademark: N/A

is electrically identical to the model:W850,

Remark: FCC ID:2ACEK-W850-1, trademark:XTRATECH, only FCC ID

number and trademark are different.

Additional test is not need, all data are from the report 274749.

2.2 Detail spec:

Operation Frequency: 2402 MHz -2480MHz

Protocal: Bluetooth 4.0

Type of Modulation : GFSK

Antenna Type: Integral Antenna

Antenna Number : 1 Antenna gain: 1.31dBi Channel number: 40 Data rate: 1Mbps

Max PK Output power: 3.25dBm

AC/DC Adapter: KA24-0503000US

Input: 100-240V~, 50/60Hz, 0.55A max.Class II

Output: 5Vdc,3000mA

2.3 Additional Information Related to Testing

CH LOW:2402MHz CH MID:2442MHz CH HIGH:2480MHz

Remark: Only the worse case found by prescan is listed

Reference No.: 273927

3. General Test Conditions

3.1 Location

Global United Technology Services Co., Ltd. -- Nemko ELA 632

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

FCC Registration No.:600491

IC Registration No.9079A-2

Note: all test are witnessed by NEMKO engineer

3.2 Operating Environment

All tests and measurements were performed in a shielded enclosure or a controlled environment suitable for the tests conducted. The climatic conditions in the test area are automatically controlled and recorded continuously.

Parameters	Recording during test	Accepted deviation
Ambient temperature	24-25°C	15 – 35 ℃
Relative humidity	50-55%	30 - 60%
Atmospheric pressure	101.2 kPa -101.3kPa	86-106kPa

3.3 Operating During Test

Test mode: 5Vdc 3A Full charged battery

TM1: continuance TX MODE

TM2: Hopping on mode

Remark: When measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, have been performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. No findable change appear.

And only choose the worse mode to be the representative test mode

3.4 Test Equipment

The test equipments used in testing are calibrated on a regular basis. For most of the testing equipments accredited calibration is conducted once a year. For certain equipment the calibration interval is longer. Between the calibrations all test equipment are controlled and verified on a regular basis. The test equipments used are defined in each test section of this report.

A.E. used during testing:

- 1. HDMI cable: detachable, shielded with electric conductivity fabric and 2 magnetic core fixed at both end of the HDMI line (1m).
- 2. Earphone: detachable, un-shield with a magnetic core at the jack end (0.8m). manufacture: Aoni, model no: MP-105 (FCC VOC)
- 3. AC power cable: detachable, un-shield (1.5m)
- 3. Monitor: manufacture: AOC, model no: V22T (FCC DOC)
- 4: SD CARD: manufacture:Sony, model no: SR-32C4 (FCC DOC)
- 5: USB cable: detachable, shielded (0.2m)

Reference No.: 273927

4. Measurement Uncertainty

The Measurement Uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 with the confidence level of 95 %.

Conducted Emission : 0.15~30MHz 3.45dB
Radiated Emission: 30MHz~1000MHz 4.50dB

1GHz-18GHz 4.70dB

Reference No.: 273927

5. Radiated Electromagnetic Disturbances

5.1 Test Procedure

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. An antenna was located 3m from the EUT on an adjustable mast.

The EUT were rotated 0 to 360 degree and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. The test result are reported as below.

For below 1GHz

RBW=120 kHz; VBW=300KHz.QP detector, The frequency range from 30MHz to 1000MHz is checked.

For above 1GHz. The frequency range from 1GHz to 25GHz(10th harmonics) is checked.

RBW=1MHz; VBW=1MHz,PK detector for peak emissions measurement above 1GHz

RBW=1MHz; VBW=3MHz, RMS detector for average emissions measure above 1GHz

5.2 Measurement Equipment

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
\boxtimes	EMI Test Receiver	Jul. 04 2015	ESU26	GTS203	R&S
\boxtimes	BiConiLog Antenna	Feb. 26 2015	VULB9163	GTS214	SCHWARZBECK
\boxtimes	Horn Antenna	Feb. 25 2015	BBHA9120D	GTS215	SCHWARZBECK
\boxtimes	Coaxial Cable	Apr. 01 2015	N/A	GTS213	GTS
\boxtimes	Coaxial Cable	Apr. 01 2015	N/A	GTS211	GTS
\boxtimes	Coaxial Cable	Apr. 01 2015	N/A	GTS211	GTS
\boxtimes	Coaxial cable	Apr. 01 2015	N/A	GTS210	GTS
	Amplifier	Jul. 04 2015	8347A	GTS204	HP

5.3 Test Result

Remark: If PK value is lower than AV limit , only show PK diagram as below.

From 18GHz to 25GHz, Spurious Emission can not be found .

For restriction band test :Only list the restriction band test which there found emission.

For other restriction band: no emission found.

For Radiated emission test: The EUT have been tested at X,Y,Z axial direction, Only list the worse mode.

Mode	Freq ra	inge	Test ANT polarity	Diagram	Test Result
TX MODE	30MHz-1	GHz:	Н	5-1	Pass
	30MHz-1	GHz:	V	5-2	Pass
Mode	Freq range Channel		Test ANT polarity	Diagram	Test Result
	1GHz-18GHz:	CH LOW	Н	5-3	Pass
	1GHz-18GHz:	CH LOW	V	5-4	Pass
GFSK	1GHz-18GHz:	CH MID	Н	5-5	Pass
GFSK	1GHz-18GHz:	CH MID	V	5-6	Pass
	1GHz-18GHz:	CH HIGH	Н	5-7	Pass
	1GHz-18GHz:	CH HIGH	V	5-8	Pass

Restricted band test:

Mode	Freq range	Channel	Test ANT polarity	Diagram	Test Result
	Restricted band	CH LOW	Н	5-9	Pass
GFSK		CH LOW	V	5-10	Pass
GFSK		CH HIGH	Н	5-11	Pass
		CH HIGH	V	5-12	Pass

NOTES:

- 1.All modes were measured and only the worst case emission was reported.
- 2. H =Horizontal V=Vertical
- 3. Emission = Reading +Antenna Factor + Cable Loss -Amp Factor
- 4. Emission level dB μ V = 20 log Emission level μ V/m
- 5. The lower limit shall apply at the transition frequencies
- 6. All the emissions appearing within 15.205 Restricted bands shall not exceed the limits shown in (15.209 limit)#.
- 7. Unwanted emissions not falling within restricted frequency bands shall be at least 20dB below the fundamental emissions, or comply with 15.209 limits;

Remark:

The limit of "#" of 3 meter distance is

Frequency	Distance	Field strength		Distance	Field strength
MHz	m	μ V/m	dBμV/m(QP)	m	dBμV/m(QP)
30-88	3	100 40.0		10	30.0
88-216	3	150 43.5		10	33.5
216-960	3	200	46.0	10	36.0
960-1000	3	500 54.0		10	44.0
Above 1000	3	74.0 dBμV/m (PK)		/	/
		54.0 d	BµV/m (AV)		

15.205 Restricted bands:

MHz	MHz	MHz	GHz
0.090-0.110	1642-16423	399.9-410	4.5–5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	725-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5–3825	1435-1626.5	9.0-92
4.20725-4.20775	73–74.6	1645.5-1646.5	93-95
6.215-6.218	74.8–75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	1325-134
6.31175–6.31225	123-138	2200-2300	1447-14.5
8.291-8.294	149.9-150.05	2310-2390	1535-162
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7–156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	312-318
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36–13.41.			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

5.3.1 Diagram 5-1

	Freq				Preamp Factor			Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	dB	
1 2 3 4 5 6	84.702 173.205	58.90 58.39 55.77	11.16 11.49	1.07 1.70 1.73 2.49	31.78 31.74 32.06 32.07 32.09 32.01	29.67 39.70 39.54 41.76	40.00 43.50 43.50 46.00	-10.33 -3.80 -3.96 -4.24	QP QP QP QP

5.3.2 Diagram 5-2

	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>ab</u>	
1 2 3 4 5 6	84.405		14.30 15.10 12.16 11.23 15.59 20.69	0.80 1.07 1.71 2.49	31.95 31.74 32.06	34.65 30.04 34.07 32.55	40.00 40.00 43.50 46.00	-5.35 -9.96 -9.43 -13.45	QP QP QP QP

5.3.3 Diagram 5-3

5.3.4 Diagram 5-4

5.3.5 Diagram 5-5

5.3.6 Diagram 5-6

5.3.7 Diagram 5-7

5.3.8 Diagram 5-8

5.3.9 Diagram 5-9

	Freq		Antenna Factor						Remark	
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
2	2390.000 2400.000 * 2401.770	69.23	27.58	5.39	30.18	72.02			Peak Peak Peak	

5.3.10 Diagram 5-10

	Freq		Antenna Factor						Remark
-	MHz	dBu∜	dB/m	<u>dB</u>	<u>ab</u>	$\overline{dB} \overline{uV}/\overline{m}$	dBuV/m	<u>ab</u>	
2	2390.000 2400.000 2401.770	70.22	27.58	5.39	30.18	73.01	74.00	-25.68	Peak Peak Peak

5.3.11 Diagram 5-11

	Freq				Cable Preamp Loss Factor Level				Remark
•	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2480.046 2483.500						74.00		Peak Peak

5.3.12 Diagram 5-12

Freq				Cable Preamp Loss Factor Level				Remark
MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
* 2480.002 2483.500								Peak Peak

Reference No.: 273927

6. 6dB and 99% Bandwidth test

6.1 Test Procedure

6dB Bandwidth:

Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

The transmitter output was connected to a spectrum analyzer. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum with the power of which is lower than peak power for 6dB.

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW)>= RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2 Measurement Equipment

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum Analyzer	Dec. 04 2015	E4440A	GTS533	Agilent

6.3 Test Result

Remark: Conducted measurement.

6dB Bandwidth:

GFSK					
Channel	Diagram	6dB bandwidth (KHz)	99% bandwidth (MHz)	>Limit kHz	Result
CH LOW	6-1	716.244	1.0767	500	PASS
CH MID	6-2	705.751	1.0739	500	PASS
CH HIGH	6-3	712.647	1.0744	500	PASS

6.3.1 Diagram 6-1

6.3.2 Diagram 6-2

6.3.3 Diagram 6-3

7. Band Edge Compliance Test

7.1 Test Procedure

In any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

7.2 Measurement Equipment

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum Analyzer	Dec. 04 2015	E4440A	GTS533	Agilent

7.3 Test Result

Conducted measurement

PK detector

Max hold

RMB=100kHz VBW=300kHz

Mode	Channel	Test Data	Test Result	
	CH LOW	Diagram 7-1	Pass	
GFSK	CH MID	Diagram 7-2	Pass	
	CH HIGH	Diagram 7-3	Pass	

7.3.1 Diagram 7-1

7.3.2 Diagram 7-2

7.3.3 Diagram 7-3

FCC ID:2ACEK-W850 Reference No.: 273927

8. Power Spectral Density Test

8.1 Test Procedure

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

The transmitter output was connected to a spectrum analyzer. The maximum power density level was measured by spectrum analyzer with RBW >3kHz and Detector: PK Cable loss and attenuator loss have been added in Spectrum setting offset.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW >=3 kHz.
- 4. Set the VBW>= $3 \times RBW$.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

8.2 Measurement Equipment

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum Analyzer	Dec. 04 2015	E4440A	GTS533	Agilent

8.3 Test Result

Mode	Channel	Diagram	Result (dBm)	<limit< th=""><th>Result</th></limit<>	Result
				(dBm)	
GFSK	CH LOW	8-1	2.95	8	Pass
GFSK	CH MID	8-2	1.82	8	Pass
GFSK	CH HIGH	8-3	1.05	8	Pass

8.3.1 Diagram 8-1

8.3.2 Diagram 8-2

8.3.3 Diagram 8-3

9. Peak Output Power Test

9.1 Test Procedure

For systems using digital modulation in the 2400-2483.5MHz, The Peak output power shall not exceed 1W(30dBm)

PEAK detector

RBW>6dB Bandwidth

VBW>=RBW

Sweep time: AUTO

9.2 Measurement Equipment

	Equipment	Calibration due	Туре	Serial No.	Manufacturer
\boxtimes	Spectrum Analyzer	Dec. 04 2015	E4440A	GTS533	Agilent

9.3 Test Result

PEAK Output power: PASS

Test Mode CH Peak output Power (dBm)		Limit (dBm)	
	CH LOW	3.25	30
GFSK	CH MID	3.01	30
	CH HIGH	2.33	30

9.3.1 Diagram 9-1

9.3.2 Diagram 9-2

9.3.3 Diagram 9-3

Reference No.: 273927

10 POWER LINE CONDUCTED EMISSION TEST

10.1 Test Procedure

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15–0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		
*-Decreases with the logarithm of the frequency.				

10.2 Measurement Equipment

	1012 modelarione = quipmon								
	Equipment	Calibration due	Type Serial No.		Manufacturer				
	Shielding Room	Jul. 04 2015	7.0(L)x3.0(W)x3.0(H)	GTS252	ZhongYu Electron				
	EMI Test Receiver	Jul. 04 2015	ESCS30	1102.4500K30	Rohde & Schwarz				
	10dB Pulse Limita	Jul. 04 2015	N/A	GTS224	Rohde & Schwarz				
	LISN	Jul. 04 2015	NSLK 8127	8127549	SCHWARZBECK MESS-ELEKTRONIK				
\boxtimes	Coaxial Cable	Apr. 01 2015	N/A	N/A	GTS				

10.3 Test Result

The EUT was placed on a non-metallic table, 80cm above the ground plane. The other peripheral devices power cord connected to the power mains through another line impedance stabilization network. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4-2009 on conducted Emission test.

Preview measurements: Final measurement: 0.15 MHz to 30 MHz 0.15 MHz to 30 MHz

Receiver settings: PK&AV detector Receiver settings: QP&AV detector

RBW:9 kHz

Test mode	Test mode Power Line		Test Result	
TM1	Line	Diagram 10-1	Pass	
I IVI I	Neutral	Diagram 10-2	Pass	

NOTES:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
- 3: If PK value is lower than AV limit then QP and AV value are deemed to be complied with rules and only diagram will be shown as below.

10.3.1 Diagram 10-1

	Freq		LISN Factor			Limit Line	Over Limit	Remark
	MHz	dBuV	d₿	dB	dBuV	dBuV	dB	
1 2 3 4 5 6		53. 19 44. 03 38. 44 39. 23 42. 42 42. 59	0.14 0.11 0.14 0.12 0.13 0.14	0.13 0.14 0.15	44. 24 38. 71 39. 49	59. 93 56. 00 56. 00 56. 00	-10.43 -15.69 -17.29 -16.51 -13.30 -13.12	QP QP QP QP

10.3.2 Diagram 10-2

	Freq		LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5	1.100 1.456	51. 93 43. 15 39. 47 39. 06 41. 11 42. 47	0.07 0.06 0.08 0.09 0.10 0.10	0.10 0.13 0.13 0.15	43.31 39.68 39.28	59.53 56.00 56.00 56.00	-16.22 -16.32 -16.72 -14.64	QP QP QP QP

Reference No.: 273927

11. Antenna requirement

11.1 Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2 Result

The antenna used for this product is Internal Patch antenna that no antenna other than that furnished by the responsible party shall be used with the device, The maximum peak gain of this antenna is 1.31dBi.

*****END OF REPORT*****