TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2020

Posterior Collapse

VAE Non-Identifiability

 β -VAEs

Posterior Collapse

Assume Universal Expressiveness for $P_{\Phi}(y|z)$.

This allows $P_{\Phi}(y|z) = \text{Pop}(y)$ independent of z.

We then get a completely optimized model with z taking a single (meaningless) determined value.

$$\hat{P}_{\Phi}(z|y) = P_{\Phi}(z|y) = 1$$

Colorization with Latent Segmentation

Can colorization be used to learn latent segmentation?

We introduce a latent segmentation into the model.

In practice the latent segmentation is likely to "collapse" because the colorization can be done just as well without it.

Independent Universality

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}, z \sim \hat{P}_{\Phi}(z|y)} - \ln \frac{P_{\Phi}(z,y)}{\hat{P}_{\Phi}(z|y)}$$

It is natural to assume that Φ has independent parameters for each distribution. In practice parameters are often shared.

Since Φ can independently parameterize each distribution, we will here assume independent universality — that Φ can represent any triple of distributions $\hat{P}(z|y)$, P(z) and P(y|z).

Independent Universality

More formally, we assume that for any triple of distributions $\hat{P}(z|y)$, P(z) and P(y|z) there exists a Φ that simultaneously satisfies

$$\hat{P}_{\Phi}(z|y) = \hat{P}(z|y)
P_{\Phi}(z) = P(z)
P_{\Phi}(y|z) = P(y|z)$$

This assumption allows each distribution to be independently optimized while holding the others fixed.

VAE Non-Identifiability

A model is non-identifiable if different model parameters yield the same data distribution and hence cannot be distinguished based on the data.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \text{Pop}, \ z \sim \hat{P}(z|y)} - \ln \frac{P_{\Phi}(z) P_{\Phi}(y|z)}{\hat{P}_{\Phi}(z|y)}$$

We will now hold $\hat{P}_{\Phi}(z|y)$ fixed at an arbitrary distribution and optimize $P_{\Phi}(z)$ and $P_{\phi}(y|z)$ assuming independent universality.

VAE Non-Identifiability

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \text{Pop}, \ z \sim \hat{P}(z|y)} - \ln \frac{P_{\Phi}(z) P_{\Phi}(y|z)}{\hat{P}_{\Phi}(z|y)}$$

We will show that the optimal distributions for $P_{\Phi}(z)$ and $P_{\Phi}(y|z)$ occur when these are the distributions defined by $y \sim$ Pop and $z \sim \hat{P}_{\Phi}(z|y)$.

$$P^*(z) = E_{y \sim \text{Pop}} \hat{P}_{\Phi}(z|y)$$

$$P^*(y|z) = \frac{\operatorname{Pop}(y)\hat{P}_{\Phi}(z|y)}{P^*(z)}$$

VAE Non-Identifiability

$$E - \ln \frac{P^*(z)P^*(y|z)}{\hat{P}_{\Phi}(z|y)}$$

$$= E - \ln \frac{P^*(z)P^*(y|z)}{\operatorname{Pop}(y)\hat{P}_{\Phi}(z|y)} - \ln \operatorname{Pop}(y)$$

$$= E - \ln \text{Pop}(y) = H(y)$$

Hence any choice of $\hat{P}_{\Phi}(z|y)$ gives optimal modeling of y.

The β -VAE

 β -VAE: Learning Basic Visual Concepts With A Constrained Variational Framework, Higgins et al., ICLR 2017.

The β -VAE introduces a parameter β allow control of the rate-distortion trade off.

The β -VAE

To control I(y,z) we introduce a weighting β

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \beta I_{\Phi}(y, z) + H_{\Phi}(y|z)$$

$$\beta\text{-VAE } \Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{y \sim \operatorname{Pop}, z \sim \hat{P}_{\Phi}(z|y)} - \beta \ln \frac{P_{\Phi}(z)}{\hat{P}_{\Phi}(z|y)} - \ln P_{\Phi}(y|z)$$

For $\beta < 1$ we no longer have an upper bound on $H_{\text{pop}}(y)$ but we can force the use of z (avoid posterior collapse).

For $\beta > 1$ the bound on $H_{\text{Pop}}(y)$ becomes weaker and the latent variables carry less information.

RDAs vs. β -VAEs

Noisy channel RDAs and β -VAEs are essentially the same.

RDA:
$$\Phi^* = \operatorname{argmin}_{\Phi} E_{y, z \sim P_{\Phi}(z|y)} - \ln \frac{\hat{P}_{\Phi}(z)}{P_{\Phi}(z|y)} + \lambda \operatorname{Dist}(y, y_{\Phi}(z))$$

$$\beta$$
-VAE: $\Phi^* = \operatorname{argmin}_{\Phi} E_{y, z \sim \hat{P}_{\Phi}(z|y)} - \beta \ln \frac{P_{\Phi}(z)}{\hat{P}_{\Phi}(z|y)} - \ln P_{\Phi}(y|z)$

\mathbf{END}