1º-Teste (Com resolução)

Cálculo Diferencial e Integral I

Cursos LEE, LEGI, LEIC e LERC 2^o Semestre de 2010/2011 Duração: hora e meia

Versão B

1- Sejam A e B os subconjuntos de $\mathbb R$ definidos por

$$A = \{x \in \mathbb{R} : |4x - 2| \ge x^2 + 2\}$$
 $B =]-2, 5[$

- (a) Mostre que $A = [-4, 0] \cup \{2\}.$
- (b) Determine caso existam, ou justifique que não existem, o conjunto dos majorantes, o conjunto dos minorantes, o supremo, o ínfimo, o máximo e o mínimo de $A \cap B$.

Resposta à questão 1:

(a)

$$|4x - 2| \ge x^2 + 2 \Leftrightarrow 4x - 2 \ge x^2 + 2 \lor 4x - 2 \le -x^2 - 2 \Leftrightarrow x^2 - 4x + 4 \le 0 \lor x^2 + 4x \le 0 \Leftrightarrow (x - 2)^2 \le 0 \lor x(x + 4) \le 0 \Leftrightarrow x - 2 = 0 \lor (x \ge -4 \land x \le 0)$$

Portanto $A = [-4, 0] \cup \{2\}.$

(b)
$$A \cap B =]-2,0] \cup \{2\}.$$

O conjunto dos majorantes de $A \cap B$ é $[2, +\infty[$, o conjunto dos minorantes de $A \cap B$ é $]-\infty, -2]$, o supremo de $A \cap B$ é $[2, +\infty[$, o máximo de $[3, +\infty[$], o máximo de $[3, +\infty[$]], o máximo de $[3, +\infty[$], o máximo de $[3, +\infty[$]], o máximo de [3,

2- A sucessão u_n encontra-se definida através de:

$$u_1 = 3, \quad u_{n+1} = \frac{u_n^2 + 8}{6}$$

- (a) Mostre que u_n é uma sucessão decrescente e que $u_n > 1$, para todo o número natural n.
- (b) Mostre que u_n é convergente e calcule o seu limite.

Resposta à questão 2:

(a) Vamos mostrar primeiro por indução que $u_n > u_{n+1} > 1$ para todo o número natural n (o que mostra que a sucessão é decrescente e minorada por 1):

Para n=1 a proposição é verdadeira pois equivale $3 > \frac{17}{6} > 1$ (já que $u_1 = 3$ e $u_2 = \frac{17}{6}$). Consideremos agora, por hiótese de indução, que

$$u_n > u_{n+1} > 1$$
 Hipótese de indução (H.I.)

para um n fixo. Vamos então usar esta hipótese para demonstrar a tese de indução:

$$u_{n+1} > u_{n+2} > 1$$
 Tese de indução

$$\begin{split} demostração: & \ \, u_n > u_{n+1} > 1 \overset{1 \geq 0}{\Rightarrow} u_n^2 > u_{n+1}^2 > 1 \Rightarrow u_n^2 + 8 > u_{n+1}^2 + 8 > 9 \Rightarrow \\ & \ \, \Rightarrow \frac{u_n^2 + 8}{6} > \frac{u_{n+1}^2 + 8}{6} > \frac{9}{6} \overset{9}{\Rightarrow} u_{n+1} > u_{n+2} > 1. \end{split}$$

(b) Como u_n é uma sucessão decrescente e minorada então é convergente. Seja $L=\lim u_n,$ então temos que:

$$L = \lim u_{n+1} = \lim \frac{u_n^2 + 8}{6} = \frac{(\lim u_n)^2 + 8}{6} = \frac{L^2 + 8}{6}$$

Desta igualdade tiramos que $L^2 - 6L + 8 = 0$, logo L = 2 ou L = 4. Como $u_n < 3$ para todo o $n \in \mathbb{N}$, o limite não pode ser 4 logo tem que ser 2.

3- Considere a seguinte função f definida em todo o \mathbb{R} pela expressão:

$$f(x) = \begin{cases} \frac{\sin(\pi x)}{x-1} + \frac{\alpha}{x} & \text{se } x > 1 \\ 1 & \text{se } x = 1 \\ \sqrt{x^2 + \beta} - |x| & \text{se } x < 1 \end{cases}$$

sendo α e β os valores reais que tornam a função f contínua em todo o $\mathbb{R}.$

- (a) Determine os valores de α e β .
- (b) Calcule os limites

$$\lim_{x \to -\infty} f(x) \in \lim_{x \to +\infty} f(x)$$

(c) Prove que f tem um máximo sem necessariamente determiná-lo.

Nota: No enunciado feito durante o teste estava $\sqrt{x^2 + \beta} - x$ em vez de $\sqrt{x^2 + \beta} - |x|$ o que impossibilitava a resolução da alínea (c).

Resposta à questão 3:

(a) Para que f seja contínua em todo o \mathbb{R} , em particular para x=1, é necessário que

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = f(1)$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{\sin(\pi x)}{x - 1} + \frac{\alpha}{x} = \left(\lim_{x \to 1^{+}} \frac{\sin(\pi(x - 1) + \pi)}{x - 1}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))}{\pi(x - 1)}\right) + \alpha = \left(\lim_{x \to 1^{+}} \frac{-\sin(\pi(x - 1))$$

Portanto, $\lim_{x\to 1^+} f(x) = f(1)$ se só se $-\pi + \alpha = 1$, ou seja, $\alpha = 1 + \pi$. Por outro lado,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \sqrt{x^2 + \beta} - |x| = \sqrt{1 + \beta} - 1$$

Assim, $\lim_{x\to 1^-} f(x) = f(1)$ se só se $\sqrt{1+\beta} - 1 = 1 \Leftrightarrow \sqrt{1+\beta} = 2 \Leftrightarrow \beta = 3$.

(b)

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\operatorname{sen}(\pi x)}{x - 1} + \frac{\alpha}{x} = \lim_{x \to +\infty} \frac{\operatorname{sen}(\pi x)}{x - 1} - 0 = 0$$

pois sen (πx) é uma função limitada e $x-1 \to +\infty$ quando $x \to +\infty$.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 + \beta} - |x| = \lim_{x \to -\infty} \frac{(\sqrt{x^2 + \beta} - |x|)(\sqrt{x^2 + \beta} + |x|)}{\sqrt{x^2 + \beta} + |x|} = \lim_{x \to -\infty} \frac{x^2 + \beta - |x|^2}{\sqrt{x^2 + \beta} + |x|} = \lim_{x \to -\infty} \frac{\beta}{\sqrt{x^2 + \beta} + |x|} = 0$$

Nota: Como estava no enuciado original ficaria apenas:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{x^2 + \beta} - x = +\infty - (-\infty) = +\infty$$

(c) Como $\lim_{x\to-\infty} f(x) = \lim_{x\to+\infty} f(x) = 0$ existem $a,b\in\mathbb{R}$ tais que f(x)<1 para quaisquer x< a ou x>b. Por outro lado, como f é contínua em \mathbb{R} (e em particular em [a,b]), pelo teorema de Weierstrass, f tem máximo em [a,b]. Seja M o máximo de f em [a,b]. Como f(0)=1 e

f(x)<1 para qualquer $x\not\in [a,b],$ $0\in [a,b]$ logo $m\geq f(0)=1.$ Concluimos então que m é máximo da função em todo o $\mathbb R.$ Logo f tem máximo absoluto.

Nota: Como estava no enuciado original, f não teria máximo pois $\lim_{x\to -\infty} f(x) = +\infty$.

4- Caso existam, calcule os limites (em $\overline{\mathbb{R}}$) das seguintes sucessões:

$$u_n = \frac{\sqrt{4^{n+1} - n}}{n^3 + 2^n}, \quad v_n = \sqrt[n]{3^n + n}, \quad w_n = \left(\frac{n+3}{n+1}\right)^{2n}$$

Resposta à questão 4:

 u_n :

$$\lim u_n = \lim \frac{\sqrt{4^{n+1} - n}}{n^3 + 2^n} = \lim \frac{2^n \sqrt{4 + \frac{n}{4^n}}}{2^n (\frac{n^3}{2^n} + 1)} = \lim \frac{\sqrt{4 + \frac{n}{4^n}}}{\frac{n^3}{2^n} + 1} = \sqrt{4} = 2$$

 v_n :

$$\lim v_n = \lim \sqrt[n]{3^n + n} = \lim \sqrt[3]{1 + \frac{n}{3^n}} = 3$$

Ou alternativamente, $v_n = \lim \sqrt[n]{a_n} \operatorname{com} a_n = 3^n + n$. Como

$$\lim \frac{a_{n+1}}{a_n} = \lim \frac{3^{n+1} + (n+1)}{3^n + n} = \lim \frac{3^n (3 + \frac{n+1}{3^n})}{3^n (1 + \frac{n}{3^n})} = 3$$

temos que $\lim v_n = \lim \sqrt[n]{a_n} = \lim \frac{a_{n+1}}{a_n} = 3.$

 w_n :

$$\lim w_n = \left(\frac{n+3}{n+1}\right)^{2n} = \lim \left(1 + \frac{2}{n+1}\right)^{2n+2} \left(1 + \frac{2}{n+1}\right)^{-2} =$$

$$= \lim \left[\left(1 + \frac{2}{n+1}\right)^{n+1}\right]^2 \lim \left(1 + \frac{2}{n+1}\right)^{-2} = \left(e^2\right)^2 \times 1^{-2} = e^4$$

Ou alternativamente,

$$\lim \left(1 + \frac{2}{n+1}\right)^{2n} = \lim \left[\left(1 + \frac{2}{n+1}\right)^{n+1}\right]^{\frac{2n}{n+1}} = \left[\lim \left(1 + \frac{2}{n+1}\right)^{n+1}\right]^{\lim \frac{2n}{n+1}} = \left(e^2\right)^2 = e^4$$

5- Calcule as derivadas das funções dadas pelas seguintes expressões:

$$f(x) = \arctan(3x) \operatorname{sen} x$$
 e $g(x) = \frac{\log(x^2 + 2)}{x}$

Resposta à questão 5:

$$f'(x) = (\arctan(3x) \sin x)' = (\arctan(3x))' \sin x + \arctan(3x)(\sin x)' =$$

$$= \frac{(3x)'}{1 + (3x)^2} \sin x + \arctan(3x) \cos x = \frac{3 \sin x}{1 + 9x^2} + \arctan(3x) \cos x$$

$$g'(x) = \left(\frac{\log(x^2 + 2)}{x}\right)' = \frac{(\log(x^2 + 2))'x - \log(x^2 + 2)x'}{x^2} =$$

$$= \frac{\frac{(x^2 + 2)'}{x^2 + 2}x - \log(x^2 + 2)}{x^2} = \frac{\frac{2x}{x^2 + 2}x - \log(x^2 + 2)}{x^2} = \frac{2}{x^2 + 2} - \frac{\log(x^2 + 2)}{x^2}$$

6- Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função tal que f(f(x)) = -x. Mostre que f não pode ser contínua em todo o \mathbb{R} .

Sugestão: Mostre que f é injectiva e não é monótona.

Resposta à questão 6:

Por definição, f é injectiva se $f(a) = f(b) \Rightarrow a = b$. Ora $f(a) = f(b) \Rightarrow f(f(a)) = f(f(b)) \Leftrightarrow -a = -b \Leftrightarrow a = b$, portanto f é injectiva.

Se f fosse crescente teríamos $a < b \Rightarrow f(a) \le f(b) \Rightarrow f(f(a)) \le f(f(b)) \Leftrightarrow -a \le -b \Leftrightarrow a \ge b$ o que é absurdo. Por outro lado, se f fosse decrescente teríamos $a < b \Rightarrow f(a) \ge f(b) \Rightarrow f(f(a)) \le f(f(b)) \Leftrightarrow -a \le -b \Leftrightarrow a \ge b$ o que também é absurdo. Portanto f não pode ser monótona.

Sabemos, por um corolário do teorema do valor intermédio (ou de Bolzano), que uma função contínua num intervalo é injectiva se e só se for estritamente monótona. Como f é injectiva e não é monótona em $\mathbb R$ concluimos que f não pode ser contínua em $\mathbb R$.