Advanced Microeconomics I Note 4: Utility maximization and expenditure minimization

Xiang Han (SUFE)

Fall 2023

Fall 2023

The utility maximization problem

Suppose that the consumer has a preference relation \succeq on $X = \mathbb{R}^L_+$. The consumer's problem is to choose the best bundles from the budget set $B_{p,w}$ (preference maximization).

$$C_{\succeq}(B_{p,w}) = \{x \in B_{p,w} : x \succeq y, \forall y \in B_{p,w}\}$$

Assume that \succeq can be represented by a utility function $u: \mathbb{R}^L_+ \to \mathbb{R}$. Then the consumer's problem can be transformed to the following *utility maximization* problem (UMP).

$$\text{Max } u(x)$$

$$s.t. \ x \ge 0, \ p \cdot x \le w$$

Notice that, the solution to the consumer's problem of choosing the best bundles based on \succeq does not depend on the specific utility representation. That is, for any u that represents \succeq :

$$C_{\succeq}(B_{p,w}) = \underset{x \in B_{p,w}}{\operatorname{arg max}} u(x), \text{ for all } B_{p,w}$$

2/15

Fall 2023

Proposition. If u is continuous, then UMP has a solution.

Proof. The existence follows from the fact that a continuous function has a maximum value on a compact set. It is easy to see that $B_{p,w}$ is bounded. To see that it is closed, consider any $\{x^n\}\subseteq B_{p,w}$ with $x^n\to x$. Then $p\cdot x^n\to p\cdot x$. Since $p\cdot x^n\le w$ for all n, we have $p\cdot x\le w$. Moreover, $x\ge 0$ since $x^n\ge 0$ for all n. Hence $x\in B_{p,w}$ and $B_{p,w}$ is closed.

Walrasian demand correspondence

Suppose that u is continuous. Given any $p \gg 0$ and w > 0, the solution set of UMP is denoted as x(p, w): the Walrasian demand correspondence.

Proposition. Suppose that u is a continuous utility function representing \succeq . Then x(p, w) has the following properties:

- (i) x(p, w) is homogeneous of degree zero in (p, w).
- (ii) If \succeq is locally nonsatiated, then x(p, w) satisfies Walras' law.
- (iii) If \succeq is convex, then x(p, w) is a convex set. If \succeq is strictly convex, then x(p, w) is a singleton.

Fall 2023

Using calculus to solve UMP

$$\begin{aligned} &\text{Max } u(x) \\ &s.t. \ x \ge 0, \ p \cdot x \le w \end{aligned}$$

Suppose that u is differentiable. The Lagrangian

$$\mathcal{L}(x,\lambda) = u(x) + \lambda(w - p \cdot x)$$

Kuhn-Tucker conditions

$$rac{\partial u(x^*)}{\partial x_l} - \lambda p_l \le 0$$
, with equality if $x_l^* > 0, \forall l$

$$\lambda (w - p \cdot x^*) = 0, \ \lambda \ge 0$$

If $x^* \gg 0$, then

Advanced Microeconomics I

$$MRS_{lk}(x^*) = \frac{\frac{\partial u(x^*)}{\partial x_l}}{\frac{\partial u(x^*)}{\partial x_k}} = \frac{p_l}{p_k}$$

where $MRS_{lk}(x^*)$ is the marginal rate of substitution of good l for good k at x^* .

How to interpret the Lagrangian multiplier λ ? It measures the marginal effect of w on the maximized utility level:

assume that the underlying preference relation is locally nonsatiated, x(p, w) is a differentiable **function** and $x(p, w) \gg 0$, then

$$\frac{\partial u(x(p,w))}{\partial w} = \sum_{l=1}^{L} \frac{\partial u(x(p,w))}{\partial x_{l}} \frac{\partial x_{l}(p,w)}{\partial w}$$
$$= \sum_{l=1}^{L} \lambda p_{l} \frac{\partial x_{l}(p,w)}{\partial w}$$
$$= \lambda$$

where the last equality follows from Engel aggregation.

4 □ ▷ < ∰ ▷ < 분 ▷ < 분 ○ ♡

Fall 2023

6/15

Note 4: UMP and EMP

Some concrete UMP

- Cobb-Douglas utility function: $u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$, where $\alpha > 0, \beta > 0$.
 - ▶ Notice that it is homogeneous of degree $\alpha + \beta$.
 - ▶ UMP has a unique interior solution: $x_1(p, w) = \frac{w}{p_1} \frac{\alpha}{\alpha + \beta}$, $x_2(p, w) = \frac{w}{p_2} \frac{\beta}{\alpha + \beta}$.
 - ▶ The maximized utility is $\left[\frac{w}{\rho_1}\frac{\alpha}{\alpha+\beta}\right]^{\alpha}\left[\frac{w}{\rho_2}\frac{\beta}{\alpha+\beta}\right]^{\beta}$
- Leontief utility function (perfect complements): $u(x_1, x_2) = \min\{x_1, x_2\}$
 - not differentiable
- Linear utility function (perfect substitutes): $u(x_1, x_2) = x_1 + x_2$
 - differentiable, but don't need to differentiate

Advanced Microeconomics I

7 / 15

Indirect utility function

Fix a continuous utility function u. Given any $p \gg 0$ and w > 0, the maximized utility level is denoted v(p, w): the **indirect utility function**.

That is, if $x \in x(p, w)$, v(p, w) = u(x). Moreover, for any $y \in B_{p,w}$, $v(p, w) \ge u(y)$.

Proposition. Suppose that u is a continuous utility function representing \succeq . Then v(p, w) is

- (i) Homogeneous of degree zero in (p,w).
- (ii) Strictly increasing in w if \succeq is locally nonsatiated.
- (iii) Nonincreasing in p_l for any l.
- (iv) Quasiconvex.

Proof of (ii). Let w' > w, and $x \in x(p,w)$. Since $p \cdot x < w'$, there exists some $\epsilon > 0$ such that $p \cdot y < w'$ for all $y \in X$ with $\|y - x\| < \epsilon$. By local nonsatiation, there exists some $y \in X$ such that $p \cdot y < w'$ and $y \succ x$. Since $y \in B_{p,w'}$, we have $v(p,w') \ge u(y)$. Hence $v(p,w') \ge u(y) > u(x) = v(p,w)$.

Proof of (iii). Let $p = (p_1, ..., p_l, ..., p_L)$, $p' = (p_1, ..., p'_l, ..., p_L)$ and $p'_l > p_l$. Let $x \in x(p', w)$. Since $x \in B_{p,w}$, we have $v(p, w) \ge u(x) = v(p', w)$.

Proof of (iv). Consider any (p, w), (p', w') and $\alpha \in [0, 1]$. Denote $\bar{p} = \alpha p + (1 - \alpha)p'$ and $\bar{w} = \alpha w + (1 - \alpha)w'$. We want to show

$$v(\bar{p}, \bar{w}) \le \max\{v(p, w), v(p', w')\}\tag{1}$$

イロト イ御 トイミト イミト 一度

9/15

Let $x \in x(\bar{p}, \bar{w})$. Then $\bar{p} \cdot x \leq \bar{w}$ implies

$$\alpha p \cdot x + (1 - \alpha)p' \cdot x \le \alpha w + (1 - \alpha)w'$$

It follows that we have either $p \cdot x \leq w$ or $p' \cdot x \leq w'$. In the former case, $v(p,w) \geq u(x) = v(\bar{p},\bar{w})$; in the latter case, $v(p',w') \geq u(x) = v(\bar{p},\bar{w})$. Hence (1) is proved.

Advanced Microeconomics I Note 4: UMP and EMP Fall 2023

The expenditure minimization problem

Given a utility function u(x), $p \gg 0$ and a utility level u, we consider the expenditure minimization problem (EMP):

Min
$$p \cdot x$$

s.t.
$$x \ge 0$$
, $u(x) \ge u$

A solution to EMP exists under very general conditions. If u is continuous and there exists some $x' \geq 0$ such that $u(x') \geq u$, then a solution exists, since in this case EMP is equivalent to the following problem with a compact and nonempty constraint set:

Min
$$p \cdot x$$

s.t.
$$x \ge 0$$
, $u(x) \ge u$, $p \cdot x \le p \cdot x'$

(From now on, we only consider the case that u > u(0), and assume that for any u > u(0), there exists $x \ge 0$ with $u(x) \ge u$.)

- (ロ) (御) (注) (注) (注) (2)

10 / 15

Hicksian demand correspondence

Given any $p \gg 0$ and u, the solution set of EMP is denoted as h(p, u): the **Hicksian demand correspondence**.

Proposition. Suppose that u is a continuous utility function representing \succeq , then h(p,u) has the following properties:

- (i) h(p, u) is homogeneous of degree zero in p.
- (ii) No excess utility: for any $x \in h(p, u)$, u(x) = u.
- (iii) If \succeq is convex, then h(p, u) is a convex set. If \succeq is strictly convex, then h(p, u) is a singleton.

Using calculus to solve EMP

Min
$$p \cdot x$$

s.t.
$$x \ge 0$$
, $u(x) \ge u$

Suppose that u is differentiable. The Lagrangian

$$\mathcal{L}(x,\lambda) = p \cdot x + \lambda(u - u(x))$$

Kuhn-Tucker conditions

$$\forall I: p_I - \lambda \frac{\partial u(x^*)}{\partial x_I} \ge 0$$
, with equality if $x_I^* > 0$
 $\lambda \ge 0$, $\lambda (u - u(x^*)) = 0$

Example: Cobb-Douglas utility function $u(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$, where $\alpha > 0, \beta > 0$.

EMP has a unique interior solution if u>0. For simplicity, let $\beta=1-\alpha$, then

$$h_1(p, u) = \left[\frac{\alpha}{1 - \alpha} \cdot \frac{p_2}{p_1}\right]^{1 - \alpha} u$$

$$h_2(p, u) = \left[\frac{1-\alpha}{\alpha} \cdot \frac{p_1}{p_2}\right]^{\alpha} u$$

Then the **minimized expenditure** is

$$p_1\left[\frac{\alpha}{1-\alpha}\cdot\frac{p_2}{p_1}\right]^{1-\alpha}u+p_2\left[\frac{1-\alpha}{\alpha}\cdot\frac{p_1}{p_2}\right]^{\alpha}u$$

Advanced Microeconomics I Note 4: UMP and EMP Fall 2023 13/15

Expenditure function

Fix a continuous utility function u. Give any $p\gg 0$ and u, the minimized expenditure level is denoted e(p,u): the **expenditure function**.

That is, if $x \in h(p, u)$, then $e(p, u) = p \cdot x$. Moreover, if $y \ge 0$ and $u(y) \ge u$, then $p \cdot y \ge e(p, u)$.

Proposition. Suppose that u is a continuous function. Then e(p,u) is

- (i) Homogeneous of degree one in p.
- (ii) Strictly increasing in u.
- (iii) Nondecreasing in p_l for any l.
- (iv) Concave in p.

Concavity of e(p, u) is a very important property and has a nice graphical interpretation.

Proof of (ii). Let u'>u. Assume to the contrary, $e(p,u')\leq e(p,u)$. Consider any $x\in h(p,u')$. Since $u(x)\geq u'>u$ and $p\cdot x=e(p,u')\leq e(p,u)$, we have $x\in h(p,u)$, but this contradicts to "no excess utility", given that u is continuous.

15 / 15

Advanced Microeconomics I Note 4: UMP and EMP Fall 2023