Reinforcement Learning

Typical Scenario:

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the world

world

Defined by:
$$(S, A, R, P, \gamma)$$
 S:状态集 A:动作场态集 R:负馈 Return (Reward \mathcal{F} Penalty)

R: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair : discount factor

- At time step t=0, environment samples initial state s₀ ~ p(s₀)

 - Then, for t=0 until done:
 - Agent selects action a,
 - Environment samples reward r, ~ R(. | s,, a,) Environment samples next state $s_{t+1} \sim P(\cdot \mid s_t, a_t)$
 - Agent receives reward r, and next state s,...
- A policy π is a function from S to A that specifies what action to take in
- each state **Objective**: find policy π^* that maximizes cumulative discounted reward:

A Simple Illustration Example about MDP:

Applications:在AlphaGo, Atari Game (常时设计一个队模型的效果)

Go

小沟对 (Flappy Bird)中, 都有广泛应用

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

Relative or Advanced Algorithms:

Basic learning:

- Policy Gradient
- Q Learning

Advanced learning:

表 5 典型的深度强化学习算法特点及性能比较

Table 5 Characteristic and performance comparison of classical deep reinforcement learning algorithms

算法	算法特点	Atari游戏表现
DQN	经验回放技术, 异步更新目标网络	100%(DQN表现作为基准)
Dueling DQN	竞争型网络结构,提升网络更新效率	151.72%
A3C	异步多线程优势函数作用网络更新	163.07%
TRPO	理论保证单调提升, 但训练耗时较长	实验游戏数量较少,且表现性能较差
ACKTR	使用K-FAC因式分解,降低梯度计算复杂度,提升算法样本利用率	353.87%
PPO	具有TRPO算法的稳定性和可靠性,算法复杂度较低	46.26%