Analytic Geometry

George Ţurcaș

Maths & Comp. Sci., UBB Cluj-Napoca

December 18, 2022

Recap... The ellipse

 An ellipse is a plane curve, defined as the geometric locus of the points in the plane, whose distances to two fixed points have a constant sum.

• The two fixed points are called the *foci* of the ellipse and the distance between the foci is the *focal distance*.

Applications

• Ellipses have an interesting reflective property

• This property affects both light and sound.

The hyperbola

- A hyperbola is a plane curve, defined as the geometric locus of the points in the plane, whose distances to two fixed points have a constant difference.
- The two fixed points are called the *foci* of the hyperbola, and the distance between the foci is the *focal distance*.
- Denote by F and F' the foci of the hyperbola and let |FF'| = 2c be the focal distance. Suppose that the constant in the definition is 2a. If M(x,y) is an arbitrary point of the hyperbola, then

$$||MF| - |MF'|| = 2a.$$

• Choose a Cartesian system of coordinates, having the center at the midpoint of the segment [FF'] and such that F(c,0), F'(-c,0).

• Remark: In the triangle $\triangle MFF'$, $||\underline{MF}| - |MF'|| < |FF'|$, so a < c.

Say
$$M(7,4)$$
 is a point on the hypothele. The metric relation $|MF|-|MF'|=\pm 2a$ becomes

or

$$\sqrt{(x-c)^2+y^2}=\pm 2a+\sqrt{(x+c)^2+y^2}.$$

 $\sqrt{(x-c)^2+y^2}-\sqrt{(x+c)^2+y^2}=\pm 2a,$

This is

$$x^{2} - 2cx + c^{2} + y^{2} = 4a^{2} \pm 4a\sqrt{(x+c)^{2} + y^{2}} + x^{2} + 2cx + c^{2} + y^{2} \iff$$

$$\iff cx + a^{2} = \pm a\sqrt{(x+c)^{2} + y^{2}} \iff$$

$$\iff c^{2}x^{2} + 2a^{2}cx + a^{4} = a^{2}x^{2} + 2a^{2}cx + a^{2}c^{2} + a^{2}y^{2} \iff$$

$$\iff (c^{2} - a^{2})x^{2} - a^{2}y^{2} - a^{2}(c^{2} - a^{2}) = 0.$$

• Denote $c^2 - a^2 = b^2$ (possible, since c > a) and one obtains the equation of the hyperbola

boola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0.$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0.$$

$$\frac{x^2}{b^2} - \frac{y^2}{b^2} - 1 = 0.$$

$$\frac{x^2}{b^2} - \frac{y^2}{b^2} - 1 = 0.$$

$$\frac{x^2}{b^2} - \frac{y^2}{b^2} - 1 = 0.$$

• Remark: The equation (1) is equivalent to

$$y = \pm \frac{b}{a} \sqrt{x^2 - a^2};$$
 $x = \pm \frac{a}{b} \sqrt{y^2 + b^2}.$

Then, the coordinate axes are axes of symmetry for the hyperbola. Their intersection point is the *center* of the hyperbola.

 To sketch the graph of the hyperbola, is it enough to represent the function

$$f:(-\infty,-a]\cup[a,\infty)\to\mathbb{R},\qquad f(x)=\frac{b}{a}\sqrt{x^2-a^2},$$

by taking into account that the hyperbola is symmetrical with respect to Ox.

• Since $\lim_{x \to \infty} \frac{f(x)}{x} = \frac{b}{a}$ and $\lim_{x \to -\infty} \frac{f(x)}{x} = -\frac{b}{a}$, it follows that $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$ are asymptotes of f.

One has, also,

$$f'(x) = \frac{b}{a} \frac{x}{\sqrt{x^2 - a^2}}, \qquad f''(x) = -\frac{ab}{(x^2 - a^2)\sqrt{x^2 - a^2}}.$$

X	$-\infty$		-a		a		∞
f'(x)	_			///		+ + +	+
f(x)	∞	×	0	///	0	7	∞
f''(x)	_			///			_

The graph of the hyperbola

A few remarks

- If a = b, the equation of the hyperbola becomes $x^2 y^2 = a^2$. In this case, the asymptotes are the bisectors of the system of coordinates and one deals with an equilateral hyperbola.
- As in the case of an ellipse, one can consider the hyperbola having the foci on Ov.
- The number $e = \frac{c}{a}$ is called the *eccentricity* of the hyperbola. Since c > a, then the eccentricity is always greater than 1.
- Moreover,

$$e^2 = \frac{c^2}{a^2} = 1 + \left(\frac{b}{a}\right)^2,$$

hence e gives informations about the shape of the hyperbola. For e closer to 1, the hyperbola has the branches closer to Ox.

Intersection of a Hyperbola and a Line

• Let $\mathcal{H}: \frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$ be a hyperbola and d: y = mx + n be a line in \mathcal{E}_2 . Their intersection is given by the system of equations

$$\begin{cases} \frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0\\ y = mx + n \end{cases}.$$

• By substituting y in the first equation, one obtains

$$(a^2m^2 - b^2)x^2 + 2a^2mnx + a^2(n^2 + b^2) = 0.$$
 (2)

If $a^2m^2 - b^2 = 0$, (or $m = \pm \frac{b}{a}$), then the equation (2) becomes $\pm 2bnx + a(n^2 + b^2) = 0.$

- If n = 0, there are no solutions (this means, geometrically, that the two asymptotes do not intersect the hyperbola);
- If $n \neq 0$, there exists a unique solution (geometrically, a line d, which is parallel to one of the asymptotes, intersects the hyperbola at exactly one point);

If $a^2m^2-b^2\neq 0$, then the discriminant of the equation (2) is

$$\Delta = 4[a^4m^2n^2 - a^2(a^2m^2 - b^2)(n^2 + b^2)].$$

- If Δ < 0, then the line does not intersect the hyperbola;
- If $\Delta = 0$, then the line is *tangent* to the hyperbola (they have a double intersection point);
- If $\Delta > 0$, then the line and the hyperbola have two intersection points.

The tangent to a hyperbola

The line d: y = mx + n is tangent to the hyperbola $\mathcal{H}: \frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0$ if the discriminant Δ of the equation

$$(a^2m^2 - b^2)x^2 + 2a^2mnx + a^2(n^2 + b^2) = 0$$

is zero, which is equivalent to $a^2m^2 - n^2 - b^2 = 0.4$

• If $a^2m^2-b^2\geq 0$, i.e. $m\in\left(-\infty,-\frac{b}{a}\right]\cup\left[\frac{b}{a},\infty\right)$, then $n=\pm\sqrt{a^2m^2-b^2}$. The equations of the tangent lines to \mathcal{H} , having the angular coefficient m are

$$y = mx \pm \sqrt{a^2m^2 - b^2}. (3)$$

• If $a^2m^2 - b^2 < 0$, there are no tangent lines to \mathcal{H} , of angular coefficient m.

The Tangent at a Point of the Hyperbola

 One can prove, as in the case of the ellipse that, if $\mathcal{H}: \frac{x^2}{r^2} - \frac{y^2}{h^2} - 1 = 0$ is a hyperbola, and $P_0(x_0, y_0)$ is a point of \mathcal{H} , then the equation of the tangent to \mathcal{H} at P_0 is

$$\frac{x_0x}{a^2} - \frac{y_0y}{b^2} - 1 = 0. \tag{4}$$

$$\frac{x_0x}{a^2} - \frac{y_0y}{b^2} - 1 = 0.$$
Lecture 13
December 18, 2022 16/3

The parabola

The parabola is a plane curve defined to be the geometric locus of the points in the plane, whose distance to a fixed line d is equal to its distance to a fixed point F.

- The line *d* is the *director line* and the point *F* is the *focus*. The distance between the focus and the director line is denoted by *p* and represents the *parameter* of the parabola.
- Consider a Cartesian system of coordinates xOy, in which $F\left(\frac{p}{2},0\right)$

and $d: x = -\frac{p}{2}$. If M(x, y) is an arbitrary point of the parabola, then it verifies

$$|MN| = |MF|,$$

where N is the orthogonal projection of M on d.

Thus, the coordinates of a point of the parabola verify

$$\sqrt{\left(x+\frac{p}{2}\right)^2+0} = \sqrt{\left(x-\frac{p}{2}\right)^2+y^2} \Leftrightarrow$$

$$\Leftrightarrow \left(x+\frac{p}{2}\right)^2 = \left(x-\frac{p}{2}\right)^2 = y^2 \Leftrightarrow$$

$$\Leftrightarrow x^2+px+\frac{p^2}{4}=x^2-px+\frac{p^2}{4}+y^2,$$

and the equation of the parabola is

a is
$$y^{2} = 2px.$$

$$y^{2} = 2px.$$

$$(5)$$

Remark: The equation (5) is equivalent to $y = \pm \sqrt{2px}$, so that the parabola is symmetrical with respect to Ox.

Representing the graph of the function $f:[0,\infty)\to[0,\infty)$ and using the symmetry of the curve with respect to Ox, one obtains the graph of the parabola. One has

$$f'(x) = \frac{p}{\sqrt{2px}}; f''(x) = -\frac{p}{2x\sqrt{2x}}.$$

$$\frac{x \mid 0 \quad \infty}{f'(x) \mid + + + + + \atop f(x) \mid 0 \quad \nearrow \quad \infty}$$

$$f''(x) \mid - - - - - -$$

Intersection of a Parabola and a Line

Let $\mathcal{P}: y^2 = 2px$ be a parabola, $d: y = mx + n \ (m \neq 0)$ be a line and

$$\begin{cases} y^2 = 2px \\ y = mx + n \end{cases}$$

be the system determined by their equations.

This leads to a second degree equation

$$m^2x^2 + 2(mn - p)x + n^2 = 0$$
,

having the discriminant

$$\Delta = 4p(2mn - p) \tag{6}$$

- If $\Delta < 0$, then the line does not intersect the parabola;
- If $\Delta > 0$, then there are two intersection points between the line and the parabola;
- If $\Delta = 0$, then the line is *tangent* to the parabola and they have a unique intersection point.

The tangent to a parabola with a given direction

A line d: y = mx + n (with $m \neq 0$) is tangent to the parabola $\mathcal{P}: y^2 = 2px$ if the discriminant Δ which appears in (6) is zero, i.e. 2mn = p. Then, the equation of the tangent line to \mathcal{P} , having the angular coefficient m, is

$$y = mx + \frac{p}{2m}. (7)$$

The tangent to a parabola with a given point

Let $\mathcal{P}: y^2=2px$ be a parabola and $P_0(x_0,y_0)$ be a <u>point of \mathcal{P} </u>. Suppose that $y_0>0$, so that the point P_0 belongs to the graph of the function $f:[0,\infty)\to[0,\infty),\ f(x)=\sqrt{2px}$. The angular coefficient of the tangent at P_0 to the curve is

$$f'(x_0) = \frac{p}{\sqrt{2px_0}} = \frac{p}{y_0}.$$

A similar computation leads to the angular coefficient of the tangent for $y_0 < 0$, which is still $\frac{p}{y_0}$.

The equation of the tangent at P_0 to \mathcal{P} is

$$y - y_0 = f'(x_0)(x - x_0),$$

or, replacing $f'(x_0)$,

$$y - y_0 = \frac{p}{y_0}(x - x_0) \Leftrightarrow$$

$$\Leftrightarrow yy_0 - y_0^2 = p(x - x_0) \Leftrightarrow$$

$$yy_0 - 2px_0 = p(x - x_0),$$

hence the equation of the tangent is

$$yy_0 = p(x + x_0). \tag{8}$$

$$y^2 = 1p \mathscr{L} = p(\mathscr{L} + \mathscr{L})$$

Thank you very much for your attention!