Содержание

1	Рав	номерная непрерывность функции	3		
2	Неопределенный интеграл				
	2.1	Понятие первообразной, неопределённого интеграла	5		
	2.2	Таблица неопределённых интегралов	8		
	2.3		9		
	2.4	Интегрирование рациональных дробей	12		
	2.5	Некоторые сведения из теории многочленов	12		
	2.6	Разложение рациональной дроби на простейшие	13		
	2.7	Интегрирование простейших дробей	18		
	2.8	Метод Остроградского	20		
	2.9	Интегрирование иррациональностей	20		
	2.10	Интегралы от тригонометрических функций	22		
	2.11	"Неберущиеся" интегралы	22		
3	Понятие интеграла Римана 23				
	3.1	Интегральные суммы и интеграл	23		
	3.2	Суммы Дарбу и их свойства. Необходимое условие интегриру-			
		емости	25		
	3.3	Критерии Дарбу и Римана интегрируемости функции	29		
	3.4	Свойства интегрируемых функций	31		
	3.5	Классы интегрируемых функций	34		
	3.6	Свойства интеграла Римана. Первая теорема о среднем	36		
	3.7	Интеграл с переменным верхним пределом и его свойства	40		
	3.8	Формула Ньютона-Лейбница	41		
	3.9	Формулы замены переменной и интегрирования по частям	44		
	3.10	Интегралы от четной, нечетной и периодической функций			
	3.11	Формулы Валлиса и Стирлинга			
4	При	ложения определенного интеграла	50		
	4.1	Понятие площади и ее вычисление	50		
		4.1.1 Площадь в декартовых координатах	52		
		4.1.2 Площадь в полярных координатах	54		
	4.2	Понятие объема и его вычисление	54		
		4.2.1 Вычисление объемов	55		
	4.3	Понятие длины кривой и ее вычисление	57		
		4.3.1 Вычисление длины пути			

Конспект лекций по мат. анализу (2 семестр)

5	Hec	обственный интеграл	62
	5.1	Понятие несобственного интеграла	62
	5.2	Свойства несобственного интеграла	63
	5.3	Признаки сходимости интегралов от функций, сохраняющих знак	66
	5.4	Критерий Коши	71
	5.5	Абсолютная и условная сходимости интеграла	71
	5.6	Признак Абеля-Дирихле	74
	5.7	Интегралы с несколькими особенностями	78
	5.8	Интеграл в смысле главного значения	78
	5.9	Интеграл Эйлера-Пуассона	80

1 Равномерная непрерывность функции

Определение 1.0.1 Функция $f: E \to \mathbb{R}$ называется равномерно непрерывной на множестве $D \subset E$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x_1, x_2 \in D: \ |x_1 - x_2| < \delta \ \Rightarrow \ |f(x_1) - f(x_2)| < \varepsilon.$$

Полезно сравнить определения равномерной непрерывности и непрерывности функции на множестве. Функция $f: E \to \mathbb{R}$ непрерывна на множестве $D \subset E$, если она непрерывна в каждой точке $x_0 \in D$, то есть

$$\forall x_0 \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in D : \ |x - x_0| < \delta \ \Rightarrow \ |f(x) - f(x_0)| < \varepsilon.$$

Отличие определения равномерной непрерывности от непрерывности на множестве состоит в том, что в определении равномерной непрерывности число δ зависит только от ε , тогда как в определении непрерывности функции δ зависит от ε и от точки x_0 .

Пример 1.0.1 Рассмотрим функцию $f(x) = \frac{1}{1+x^2}$ на множестве $[0, +\infty)$. Докажем, что на этом множестве данная функция будет равномерно непрерывна.

Возьмем произвольное число $\varepsilon>0$ и два значения аргумента из промежутка $[0,+\infty)$ и составим разность

$$f(x') - f(x'') = \frac{1}{1 + x'^2} - \frac{1}{1 + x''^2} = \frac{x''^2 - x'^2}{(1 + x'^2)(1 + x''^2)} = \frac{(x'' - x')(x' + x'')}{(1 + x''^2)(1 + x''^2)}.$$

Оценим модуль этой разности, используя неравенство между средним арифметическим и средним геометрическим $\left(x \leqslant \frac{1+x^2}{2}\right)$:

$$|f\left(x'\right) - f\left(x''\right)| \leqslant \left(\frac{x'}{1 + x'^2} + \frac{x''}{1 + x''^2}\right) \cdot |x' - x''| \leqslant \left(\frac{1}{2} + \frac{1}{2}\right) |x' - x''| = |x' - x''|.$$

Отсюда следует, что, если взять $\delta = \varepsilon$, то из неравенства $|x' - x''| < \delta$ будет следовать неравенство $|f(x') - f(x'')| < \varepsilon$, что и требовалось доказать.

Лемма 1.0.1 Если функция равномерно непрерывна на множестве D, то она непрерывна на этом множестве.

Доказательство. Пусть $x_0 \in D$. Так как функция f равномерно непрерывна на D, то по $\varepsilon > 0$ найдется $\delta > 0$, что для любых $x_1, x_2 \in D$: $|x_1 - x_2| < \delta$ будет выполнено $|f(x_1) - f(x_2)| < \varepsilon$. В частности, для $x_1 = x_0$ это утверждение верно, что и означает непрерывность f в точке x_0 .

Обратное, вообще говоря, неверно.

Пример 1.0.2 Пусть $f(x) = x^2$ и $G = [0, +\infty)$. Отметим, что данная функция будет непрерывной в каждой точке данного промежутка. Докажем, что эта непрерывность не будет равномерной на G.

Возьмем два значения аргумента $x' = n + \frac{1}{n}$ и x'' = n $n \in \mathbb{N}$, которые будут принадлежать заданному промежутку. Тогда будет справедливо неравенство

$$|f(x') - f(x'')| = |x'^2 - x''^2| = \frac{1}{n} \left(2n + \frac{1}{n}\right) > 2.$$

Следовательно, если взять $\varepsilon_0 = 2$, то, какое бы число $\delta > 0$ мы ни взяли, мы сможем найти число $n \in \mathbb{N}$ такое, что $|x' - x''| = \frac{1}{n} < \delta$, но при этом $|f(x') - f(x'')| > \varepsilon_0$. Это означает, что равномерной непрерывности функции на данном промежутке нет.

Теорема 1.0.1 (Кантора) Функция, непрерывная на отрезке [a,b], равномерно непрерывна на нем.

Доказательство. Возьмем $\varepsilon > 0$ и, пользуясь непрерывностью функции на [a,b], для каждой точки $x_0 \in [a,b]$ найдем окрестность $U_{\delta_{x_0}}(x_0)$ так, что

$$\forall x \in [a, b]: |x - x_0| < \delta_{x_0} \Rightarrow |f(x) - f(x_0)| < \frac{\varepsilon}{2}.$$

Множество окрестностей $U_{\delta_x/2}, x \in [a,b]$ образует покрытие отрезка [a,b] из которого, по теореме Бореля–Лебега, можно выделить конечное покрытие

$$U_{\delta_{x_1}/2}, \ U_{\delta_{x_2}/2}, ..., U_{\delta_{x_n}/2}.$$

Пусть $\delta = \min\left(\frac{\delta_{x_1}}{2},...,\frac{\delta_{x_n}}{2}\right)$. Возьмем $x',x'' \in [a,b]$ и $|x'-x''| < \delta$. Найдется окрестность $U_{\delta_{x_i}/2}$, содержащая x'. Тогда

$$|x'' - x_i| \le |x'' - x'| + |x' - x_i| < \delta + \frac{\delta_{x_i}}{2} < \delta_{x_i},$$

то есть $x', x'' \in U_{\delta_{x_i}}$. Но тогда

$$|f(x') - f(x'')| \leqslant |f(x') - f(x_0)| + |f(x_0) - f(x'')| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

что и означает равномерную непрерывность f на [a,b].

Заметим, что в условии Теоремы отрезок нельзя заменить на интервал или полуинтервал.

Функция f не является равномерно непрерывной на множестве D, если

$$\exists \varepsilon > 0: \ \forall \delta > 0 \ \exists x_1, x_2 \in D: \ |x_1 - x_2| < \delta, \ |f(x_1) - f(x_2)| \geqslant \varepsilon.$$

Пример 1.0.3 Функция f(x) = 1/x непрерывна на (0,1), но не является равномерно непрерывной на нем.

Возьмем $x_1 = \frac{1}{n}$, $x_2 = \frac{1}{2n}$. Так как $|x_1 - x_2| = \frac{1}{2n} \to 0$, то эту разность можно сделать сколь угодно малой, выбрав достаточно большое n. B то же время, $|f(x_1) - f(x_2)| = 2n - n = n$ становится сколь угодно большим u не может быть $< \varepsilon$.

2 Неопределенный интеграл

2.1 Понятие первообразной, неопределённого интеграла

Ранее была изучена операция дифференцирования, сопоставляющая функции ее производную. В этом разделе будет изучаться обратная задача, в которой производная известна, а функцию нужно найти.

Замечание 2.1.1 Ниже под обозначением $\langle a,b \rangle$ будет пониматься произвольный промежуток: отрезок, интервал или полуинтервал.

Определение 2.1.1 Первообразной функции f(x) на промежутке $\langle a, b \rangle$ называется функция F(x) такая, что для всех $x \in \langle a, b \rangle$ выполняется равенство F'(x) = f(x).

Пример 2.1.1 Функция $F_1(x) = \frac{x^3}{3}$ будет первообразной для функции $f(x) = x^2$ при $x \in (-\infty, +\infty)$, но эта первообразная не единственна. Так, функции $F_2(x) = \frac{x^3}{3} + 5$ или $F_3(x) = \frac{x^3}{3} - \pi^e$ также будут ее первообразными.

Пример 2.1.2 Функция $F(x) = \arctan x$ является первообразной для функции $\frac{1}{1+x^2}$ при всех $x \in \mathbb{R}$, так как $(\arctan x)' = \frac{1}{1+x^2}$.

Пример 2.1.3 Функция $F(x) = \arctan \frac{1}{x}$ является первообразной для функции $\frac{1}{1+x^2}$ как при x > 0, так и при x < 0.

Вопрос об описании всех первообразных данной функции решается с помощью следующей теоремы.

Теорема 2.1.1 Пусть F(x) – первообразная для f(x) на $\langle a,b \rangle$. Для того, чтобы $\Phi(x)$ также была первообразной для f(x) на $\langle a,b \rangle$, необходимо и достаточно, чтобы

$$F(x) - \Phi(x) \equiv C, \quad x \in \langle a, b \rangle.$$

Доказательство. Необходимость. Пусть $\Psi(x) = F(x) - \Phi(x)$, где F(x) и $\Phi(x)$ – первообразные для f(x) на $\langle a,b \rangle$. Тогда $\forall x \in \langle a,b \rangle$

$$\Psi'(x) = (F(x) - \Phi(x))' = F'(x) - \Phi'(x) = f(x) - f(x) = 0.$$

Согласно теореме Лагранжа, для любых $x_1, x_2 \in \langle a, b \rangle$ таких, что $x_1 < x_2$,

$$\Psi(x_2) - \Psi(x_1) = \Psi'(\xi)(x_2 - x_1) = 0, \ \xi \in (x_1, x_2).$$

Значит, $\Psi(x) \equiv C$.

Достаточность. Пусть на $\langle a,b \rangle$ выполнено условие $F(x) - \Phi(x) = C$. Тогда на этом промежутке $\Phi(x) = F(x) + C$, а следовательно

$$\Phi'(x) = F'(x) + C' = F'(x) + 0 = F'(x) = f(x).$$

То есть $\Phi(x)$ является первообразной для функции f(x) на $\langle a,b\rangle$.

Определение 2.1.2 Неопределённым интегралом функции f(x) на промежутке $\langle a,b \rangle$ называется множество всех её первообразных на этом промежутке. Неопределенный интеграл обозначается следующим образом:

$$\int f(x)dx \quad unu \quad \int fdx,$$

 $e \partial e$

- \int знак неопределенного интеграла;
- f(x) подынтегральная функция;
- f(x)dx подынтегральное выражение;
- х переменная интегрирования.

Следствие 2.1.2 Если F(x) – какая-либо первообразная функции f(x) на $\langle a,b \rangle$, то неопределенный интеграл функции f(x) на промежутке $\langle a,b \rangle$ равен

$$\int f(x)dx = F(x) + C, \ C \in \mathbb{R}.$$

Заметим, что для краткости информацию о том, что рассматривается промежуток $\langle a,b \rangle$, часто опускают. Например, вместо

$$\int \frac{dx}{x} = \ln|x| + \begin{cases} c_1, & x < 0 \\ c_2, & x > 0 \end{cases}$$

пишут

$$\int \frac{dx}{x} = \ln|x| + C,$$

подразумевая, что C – кусочно-постоянная.

Замечание 2.1.2 Если dx трактовать, как дифференциал, то ниже приведенные формулы интегрирования по частям и замены переменной становятся совершенно «механическими».

Замечание 2.1.3 Полезно отметить, что не каждая функция имеет первообразную. Так как производная дифференцируемой функции не может иметь разрывов первого рода, то любая функция, имеющая на $\langle a,b \rangle$ разрыв первого рода, не имеет на $\langle a,b \rangle$ первообразной.

Позже, при изучении определенного интеграла Римана будет показано, что каждая непрерывная на $\langle a,b \rangle$ функция имеет на этом множестве первообразную.

Замечание 2.1.4 Первообразные существуют не только у непрерывных функций. Производная дифференцируемой функции может иметь разрывы второго рода. Например,

$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

$$f'(x) = \begin{cases} 2x \cos \frac{1}{x} + \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases},$$

Детали остаются читателю.

Для практических целей часто полезно следующее определение.

Определение 2.1.3 Функция F(x) называется обобщенной первообразной функции f(x) на $\langle a,b \rangle$, если $F(x) \in C\langle a,b \rangle$ и F'(x) = f(x) всюду на $\langle a,b \rangle$, кроме не более чем конечного числа точек.

Пример 2.1.4 Легко проверить, что обобщенной первообразной функции $y = \operatorname{sign} x$ на \mathbb{R} является функция y = |x|.

2.2 Таблица неопределённых интегралов

Ниже приведена таблица интегралов, часто используемых на практике.

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$

$$\int e^{x} dx = e^{x} + C$$

$$\int \frac{dx}{\sin^{2} x} = \operatorname{tg} x + C$$

$$\int \frac{dx}{\sin^{2} x} = -\operatorname{ctg} x + C$$

$$\int \frac{dx}{\sin^{2} x} = -\operatorname{ctg} x + C$$

$$\int \frac{dx}{a^{2} - x^{2}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + C$$

$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C, \quad a \neq 0 \; (\text{«длинный логарифм»})$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C \; (\text{«высокий логарифм»})$$

Доказательство. В качестве примера приведено доказательство для формулы

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C, \quad a \neq 0.$$

Для доказательства достаточно показать, что производная правой части равна подынтегральной функции.

$$\left(\ln|x+\sqrt{x^2\pm a^2}|+C\right)' = \frac{1}{x+\sqrt{x^2\pm a^2}} \cdot \left(1+\frac{2x}{2\sqrt{x^2\pm a^2}}\right) = \frac{1}{x+\sqrt{x^2\pm a^2}} \cdot \left(\frac{x+\sqrt{x^2\pm a^2}}{\sqrt{x^2\pm a^2}}\right) = \frac{1}{\sqrt{x^2\pm a^2}}.$$

Важно отметить, что каждая из формул, написанных выше, рассматривается на тех промежутках вещественной оси, на которых определена соответствующая подынтегральная функция. Если таких промежутков несколько, то произвольные постоянные в правой части, вообще говоря, различны.

2.3 Свойства неопределенного интеграла

Теорема 2.3.1 (Интеграл и производная) Пусть существует $\int f(x)dx$ на $\langle a,b \rangle$, тогда на $\langle a,b \rangle$:

1.
$$\left(\int f(x)dx\right)' = f(x)$$
.

2.
$$d\left(\int f(x)dx\right) = f(x)dx$$
.

Доказательство. 1. Так как $\int f(x)dx = F(x) + C$, то

$$\left(\int f(x)dx\right)' = (F(x) + C)' = f(x).$$

2. Доказывается аналогично и предлагается в качестве упражнения.
Прямо из определения легко получается и следующая важная лемма:

Лемма 2.3.1 Если F(x) дифференцируема на $\langle a,b \rangle$, то $\int dF(x) = F(x) + C$.

Следующая теорема широко применяется на практике.

Теорема 2.3.2 (Линейность неопределенного интеграла) Пусть на $\langle a,b \rangle$ существуют неопределенные интегралы $\int f(x)dx$ и $\int g(x)dx$, $\alpha^2 + \beta^2 \neq 0$. Тогда

$$\int (\alpha f + \beta g) dx = \alpha \int f dx + \beta \int g dx.$$

Доказательство. По предыдущему свойству,

$$\left(\alpha \int f dx + \beta \int g dx\right)' = \alpha f(x) + \beta g(x),$$

то есть $\alpha \int f dx + \beta \int g dx$ – первообразная для $\alpha f + \beta g$ на $\langle a,b \rangle$, а значит равенство установлено.

Пример 2.3.1 Вычислить интеграл

$$\int \frac{x^2 + \sqrt[3]{x^2} + 5}{x} dx.$$

По свойству линейности,

$$\int \frac{x^2 + \sqrt[3]{x^2 + 5}}{x} dx = \int x dx + \int x^{-1/3} dx + 5 \int \frac{dx}{x} = \frac{x^2}{2} + \frac{3}{2} x^{2/3} + 5 \ln|x| + C.$$

Пример 2.3.2 Вычислить интеграл

$$\int \frac{dx}{\sin^2 x \cos^2 x}.$$

 $Ta\kappa \ \kappa a\kappa \ 1 = \sin^2 x + \cos^2 x, \ mo$

$$\int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} dx = \int \frac{dx}{\cos^2 x} + \int \frac{dx}{\sin^2 x} = \operatorname{tg} x - \operatorname{ctg} x + C.$$

Теорема 2.3.3 (Формула замены переменной) Пусть на $\langle a,b \rangle$ существует неопределенный интеграл $\int f(x)dx$, $\varphi(t):\langle \alpha,\beta \rangle \to \langle a,b \rangle$, дифференцируема на $\langle \alpha,\beta \rangle$, тогда

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Доказательство. Пусть F(x) – первообразная для функции f(x) на $\langle a,b\rangle$, тогда, согласно теореме о производной сложной функции, $F(\varphi(t))$ – первообразная для функции $f(\varphi(t))\varphi'(t)$ на $\langle \alpha,\beta\rangle$, откуда и следует равенство.

Пример 2.3.3 Вычислить интеграл

$$\int xe^{x^2}dx.$$

Пусть $x^2 = t$, тогда $d(x^2) = dt$ или 2xdx = dt, а значит

$$\int xe^{x^2}dx = \frac{1}{2}\int e^t dt = \frac{1}{2}e^t + C = \frac{1}{2}e^{x^2} + C$$

Пример 2.3.4 Вычисление предыдущего интеграла можно оформить и иначе, если dx трактовать, как дифференциал.

$$\int xe^{x^2}dx = \int e^{x^2}d\left(\frac{x^2}{2}\right) = \frac{1}{2}\int e^{x^2}dx^2 = \frac{1}{2}e^{x^2} + C.$$

Данный способ оформления называется занесением под знак дифференциала.

Теорема 2.3.4 (Формула интегрирования по частям) Пусть $u, v \partial u \phi$ -ференцируемы на $\langle a, b \rangle$ и на $\langle a, b \rangle$ существует неопределенный интеграл $\int v du$, тогда на $\langle a, b \rangle$

$$\int udv = uv - \int vdu.$$

Доказательство. Действительно, если рассмотреть дифференциал от правой части равенства, то получим

$$d\left(uv - \int vdu\right) = d(uv) - d\left(\int vdu\right) = d(uv) - vdu = udv,$$

так как d(uv) = udv + vdu. Отсюда следует требуемое.

Пример 2.3.5 Вычислить интеграл

$$\int x \sin x dx.$$

Пусть u = x, тогда du = dx, $dv = \sin x dx$ $u = -\cos x$. Значит,

$$\int x \sin x dx = \begin{vmatrix} u = x \\ du = dx \\ dv = \sin x dx \\ v = -\cos x \end{vmatrix} = -x \cos x + \int \cos x dx = -x \cos x + \sin x + C.$$

Пример 2.3.6 Вычислить интеграл

$$\int (x^2 + 2x)e^x dx.$$

Проинтегрируем по частям, получим

$$\int (x^2 + 2x)e^x dx = \begin{vmatrix} u = x^2 + 2x \\ du = (2x + 2)dx \\ dv = e^x dx \\ v = e^x \end{vmatrix} = (x^2 + 2x)e^x - \int (2x + 2)e^x dx.$$

B результате степень многочлена перед экспонентой уменьшилась. Проинтегрируем по частям снова,

$$\int (2x+2)e^x = \begin{vmatrix} u = 2x + 2 \\ du = 2dx \\ dv = e^x dx \\ v = e^x \end{vmatrix} = (2x+2)e^x - 2\int e^x dx = (2x+2)e^x - e^x + C.$$

Окончательно,

$$\int (x^2 + 2x)e^x dx = (x^2 + 2x)e^x - (2x + 2)e^x + e^x + C.$$

Замечание 2.3.1 Формулу интегрирования по частям удобно применять для интегралов вида

$$\int P_n(x)a^{\alpha x}dx$$
, $\int P_n(x)\sin(\alpha x)dx$, $\int P_n(x)\cos(\alpha x)dx$,

 $r\partial e\ P_n(x)$ – многочлен степени n.

Пример 2.3.7 Вычислить интеграл

$$\int e^x \sin x dx.$$

Проинтегрируем по частям, получим

$$\int e^x \sin x dx = \begin{vmatrix} u = e^x \\ du = e^x dx \\ dv = \sin x dx \\ v = -\cos x \end{vmatrix} = -e^x \cos x + \int e^x \cos x dx.$$

еще раз проинтегрируем по частям, получим

$$\int e^x \cos x dx = \begin{vmatrix} u = e^x \\ du = e^x dx \\ dv = \cos x dx \\ v = \sin x \end{vmatrix} = e^x \sin x - \int e^x \sin x dx.$$

B umore,

$$\int e^x \sin x dx = -e^x \cos x + e^x \sin x - \int e^x \sin x dx,$$

 $om\kappa y\partial a$

$$\int e^x \sin x dx = \frac{-e^x \cos x + e^x \sin x}{2} + C.$$

Интегралы такого типа, как рассмотрен выше, называются самосводящимися.

2.4 Интегрирование рациональных дробей

2.5 Некоторые сведения из теории многочленов

В дальнейшем, под многочленом (полиномом) $P_n(x)$ степени $n\geqslant 1$ будет подразумеваться функция

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

где $a_i \in \mathbb{R}, a_n \neq 0$. Под многочленом нулевой степени будет подразумеваться константа.

Определение 2.5.1 Рациональной дробью называется дробь $\frac{P_n(x)}{Q_m(x)}$, где $P_n(x)$ – многочлен степени $n, Q_m(x)$ – многочлен степени m.

Определение 2.5.2 Рациональная дробь называется правильной, если n < m, иначе она называется неправильной.

Лемма 2.5.1 Пусть $\frac{P_n(x)}{Q_m(x)}$ — неправильная дробь. Тогда существует единственное представление

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \frac{T_k(x)}{Q_m(x)},$$

где $R_{n-m}(x)$ – многочлен степени $(n-m), T_k(x)$ – многочлен степени k, причем k < m.

В теории многочленов доказывается следующая теорема.

Теорема 2.5.1 Пусть $P_n(x)$ – многочлен n-й степени, у которого коэффициент при старшей степени равен единице. Тогда он может быть разложен на множители следующим образом

$$P_n(x) = (x - a_1)^{k_1} \cdot (x - a_2)^{k_2} \cdot \dots \cdot (x - a_p)^{k_p} \cdot (x^2 + b_1 x + c_1)^{l_1} \cdot \dots \cdot (x^2 + b_m x + c_m)^{l_m},$$

$$e \partial e$$

$$k_p, l_m \in \mathbb{N}, D = b_m^2 - 4c_m < 0, k_1 + k_2 + \ldots + k_p + 2 \cdot (l_1 + \ldots + l_m) = n.$$

Замечание 2.5.1 Условия $b_i^2 - 4c_i < 0$ означают, что квадратные трехчлены $x^2 + b_i x + c_i$ не имеют вещественных корней. В этом случае они имеют два комплексно-сопряженных корня $\alpha \pm \beta i$.

2.6 Разложение рациональной дроби на простейшие

Определение 2.6.1 Простейшими дробями называют дроби вида

$$\frac{A}{(x-a)^k}, \frac{Ax+B}{(x^2+px+q)^k},$$

 $e \partial e \ k \in \mathbb{N}$.

Оказывается, любая правильная рациональная дробь может быть разложена в сумму простейших. Этой теореме предпошлем две леммы.

Лемма 2.6.1 Пусть $\frac{P_n(x)}{Q_m(x)}$ – правильная рациональная дробь и $Q_m(x)=(x-a)^k\cdot \widetilde{Q}(x)$, где $\widetilde{Q}(a)\neq 0$. Существует число $A\in\mathbb{R}$ и многочлен $\widetilde{P}(x)$, такие что

$$\frac{P_n(x)}{Q_m(x)} = \frac{A}{(x-a)^k} + \frac{\widetilde{P}(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)},$$

причем это представление единственно.

Доказательство. Рассмотрим разность

$$\frac{P_n(x)}{Q_m(x)} - \frac{A}{(x-a)^k} = \frac{P_n(x)}{(x-a)^k \cdot \widetilde{Q}(x)} - \frac{A}{(x-a)^k} = \frac{P_n(x) - A \cdot \widetilde{Q}(x)}{(x-a)^k \cdot \widetilde{Q}(x)}$$

и выберем число A так, чтобы число a было корнем числителя.

$$P_n(a) - A \cdot \widetilde{Q}(a) = 0 \Rightarrow A = \frac{P_n(a)}{\widetilde{Q}(a)},$$

где последнее равенство корректно, так как по условию $\widetilde{Q}(a) \neq 0$. При данном A в числителе стоит многочлен $P_n(x) - A \cdot \widetilde{Q}(x)$ с корнем a, значит его можно разложить на множители $(x-a) \cdot \widetilde{P}(x)$, а тогда

$$\frac{P_n(x) - A \cdot \widetilde{Q}(x)}{(x-a)^k \cdot \widetilde{Q}(x)} = \frac{(x-a) \cdot \widetilde{P}(x)}{(x-a)^k \cdot \widetilde{Q}(x)} = \frac{\widetilde{P}(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)}.$$

Существование разложения доказано.

Докажем единственность такого разложения. От противного, пусть существует два разложения

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_1}{(x-a)^k} + \frac{\widetilde{P}_1(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)} = \frac{A_2}{(x-a)^k} + \frac{\widetilde{P}_2(x)}{(x-a)^{k-1} \cdot \widetilde{Q}(x)}.$$

Домножив на $(x-a)^k \cdot \widetilde{Q}(x)$, имеем

$$A_1 \cdot \widetilde{Q}(x) + \widetilde{P}_1(x) \cdot (x - a) = A_2 \cdot \widetilde{Q}(x) + \widetilde{P}_2(x) \cdot (x - a),$$

причем это равенство верно при всех $x \in \mathbb{R}$. Пусть x = a, тогда равенство превращается в

$$A_1 \cdot \widetilde{Q}(a) = A_2 \cdot \widetilde{Q}(a),$$

и так как $\widetilde{Q}(a) \neq 0$ то $A_1 = A_2$. Но тогда коэффициенты многочлена $\widetilde{P} = P_n(x) - A \cdot \widetilde{Q}(x)$ тоже вычисляются однозначно. Противоречие.

Лемма 2.6.2 Пусть $\frac{P_n(x)}{Q_m(x)}$ – правильная рациональная дробь и $Q_m(x) = (x^2 + px + q)^k \cdot \widetilde{Q}(x)$, $p^2 - 4q < 0$, $\alpha \pm \beta i$ – комплексно-сопряженные корни квадратного трехчлена $x^2 + px + q$, причем $\widetilde{Q}(\alpha \pm \beta i) \neq 0$. Существуют единственные числа $A, B \in \mathbb{R}$ и многочлен $\widetilde{P}(x)$ такие, что

$$\frac{P_n(x)}{Q_m(x)} = \frac{Ax + B}{(x^2 + px + q)^k} + \frac{\widetilde{P}(x)}{(x^2 + px + q)^{k-1} \cdot \widetilde{Q}(x)},$$

причем это представление единственно.

Доказательство. Рассмотрим разность

$$\frac{P_n(x)}{Q_m(x)} - \frac{Ax + B}{(x^2 + px + q)^k} = \frac{P_n(x) - (Ax + B) \cdot \widetilde{Q}(x)}{(x^2 + px + q)^k \cdot \widetilde{Q}(x)}$$

Выберем числа A,B так, чтобы число $\alpha+\beta i$ было корнем числителя, то есть чтобы

$$P_n(\alpha + \beta i) - (A(\alpha + \beta i) + B) \cdot \widetilde{Q}(\alpha + \beta i) = 0.$$

Так как значение многочлена в комплексной точке дает комплексное число, то

$$P_n(\alpha + \beta i) = P_1 + iP_2,$$

$$\widetilde{Q}(\alpha + \beta i) = \widetilde{Q}_1 + i\widetilde{Q}_2,$$

где $P_1, P_2, \widetilde{Q}_1, \widetilde{Q}_2 \in \mathbb{R}$ и $\widetilde{Q}_1^2 + \widetilde{Q}_2^2 \neq 0$, так как по условию $\widetilde{Q}(\alpha + \beta i) \neq 0$. Тогда последнее уравнение примет вид

$$P_1 + iP_2 - (A\alpha + iA\beta + B) \cdot (\widetilde{Q}_1 + i\widetilde{Q}_2) = 0.$$

Отделив вещественную и мнимую части, получим

$$(P_1 - A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) - B\widetilde{Q}_1) + i(P_2 - A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) - B\widetilde{Q}_2) = 0 + 0 \cdot i$$

Таким образом,

$$\begin{cases} P_1 - A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) - B\widetilde{Q}_1 = 0 \\ P_2 - A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) - B\widetilde{Q}_2 = 0 \end{cases} \Leftrightarrow \begin{cases} A(\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2) + B\widetilde{Q}_1 = P_1 \\ A(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) + B\widetilde{Q}_2 = P_2 \end{cases}$$

Вычислим определитель данной системы:

$$\Delta = (\alpha \widetilde{Q}_1 - \beta \widetilde{Q}_2)\widetilde{Q}_2 - \widetilde{Q}_1(\alpha \widetilde{Q}_2 + \beta \widetilde{Q}_1) = -\beta(\widetilde{Q}_1^2 + \widetilde{Q}_2^2) \neq 0.$$

Значит из системы единственным образом могут быть найдены числа A и B такие, что $\alpha+\beta i$ - корень числителя. Если $\alpha+\beta i$ корень многочлена с

вещественными коэффициентами, то $\alpha - \beta i$ – тоже его корень, значит при найденных A и B числитель $P_n(x) - (Ax + B) \cdot \widetilde{Q}(x)$ может быть разложен на множители

$$P_n(x) - (Ax + B) \cdot \widetilde{Q}(x) = (x^2 + px + q) \cdot \widetilde{P}(x),$$

причем

$$\frac{P_n(x)}{Q_m(x)} - \frac{Ax + B}{(x^2 + px + q)^k} = \frac{(x^2 + px + q) \cdot \widetilde{P}(x)}{(x^2 + px + q)^k \cdot \widetilde{Q}(x)} = \frac{\widetilde{P}(x)}{(x^2 + px + q)^{k-1} \cdot \widetilde{Q}(x)}.$$

Тем самым, существование разложения доказано.

Единственность доказывается аналогично доказательству предыдущей леммы и остается в качестве упражнения.

Две данные леммы позволяют доказать теорему, которая и является основной целью данного параграфа.

Теорема 2.6.1 Любая рациональная дробь может быть представлена единственным образом в виде

$$\frac{P_n(x)}{Q_m(x)} = R_{n-m}(x) + \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} +
+ \frac{A_{s1}}{(x-a_s)^{k_s}} + \dots + \frac{A_{sk_s}}{(x-a_s)} + \frac{B_{11}x + C_{11}}{(x^2 + p_1x + q_1)^{l_1}} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{x^2 + p_1x + q_1} +
+ \frac{B_{t1}X + C_{t1}}{(x^2 + p_tx + q_t)^{l_t}} + \dots + \frac{B_{tl_t}X + C_{tl_t}}{x^2 + p_tx + q_t},$$

где $A_{ij}, B_{ij}, C_{ij} \in \mathbb{R}, R_{n-m}(x)$ – многочлен степени (n-m) и знаменатель исходной дроби имеет разложение

$$Q_m(x) = (x - a_1)^{k_1} \cdot \ldots \cdot (x - a_s)^{k_s} \cdot (x^2 + p_1 x + q_1)^{l_1} \cdot \ldots \cdot (x^2 + p_t x + q_t)^{l_t}.$$

Доказательство. Пусть в рациональной дроби $\frac{P_n(x)}{Q_m(x)}$ степень n>m, тогда по лемме 2.5.1 ее можно представить в виде суммы многочлена $R_{n-m}(x)$ и правильной дроби $\frac{T_k(x)}{Q_m(x)}$, где k< m. Таким образом достаточно рассмотреть случай правильной и несократимой дроби $\frac{T_k(x)}{Q_m(x)}$. По лемме 2.6.1 дробь можно представить в виде

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \frac{\widetilde{P}^{(11)}(x)}{(x-a_1)^{k_1-1} \cdot \widetilde{Q}^{(1)}(x)},$$

где $\widetilde{Q}^{(1)}(x)=(x-a_2)^{k_2}\cdot\ldots\cdot(x-a_s)^{k_s}\cdot(x^2+p_1x+q_1)^{l_1}\cdot\ldots\cdot(x^2+p_tx+q_t)^{l_t}$. Далее по лемме 2.6.1 также можно найти число A_{12} и многочлен $\widetilde{P}^{(12)}(x)$ такие, что

$$\frac{\widetilde{P}^{(11)}(x)}{(x-a_1)^{k_1-1}\cdot\widetilde{Q}^{(1)}(x)} = \frac{A_{12}}{(x-a_1)^{k_1-1}} + \frac{\widetilde{P}^{(12)}(x)}{(x-a_1)^{k_1-2}\cdot\widetilde{Q}^{(1)}(x)}.$$

Продолжая аналогичные рассуждения получим

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \frac{A_{12}}{(x-a_1)^{k_1-1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \frac{\widetilde{P}^{(1k_1)}(x)}{\widetilde{Q}^{(1)}(x)}.$$

Аналогично, для всех вещественных корней знаменателя a_i кратности k_i , i=1...s, получим

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \frac{A_{21}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots$$

где $\widetilde{Q}^{(s)}(x)=(x^2+p_1x+q_1)^{l_1}\cdot\ldots\cdot(x^2+p_tx+q_t)^{l_t}$, при этом дробь $\frac{\widetilde{P}^{(sk_s)}(x)}{\widetilde{Q}^{(s)}(x)}$ – правильная. Далее используем лемму 2.6.2, получим

$$\frac{\widetilde{P}^{(sk_s)}(x)}{\widetilde{Q}^{(s)}(x)} = \frac{B_{11}x + C_{11}}{(x^2 + p_1x + q_1)^{l_1}} + \frac{\widehat{P}^{(11)}(x)}{(x^2 + p_1x + q_1)^{l_1 - 1} \cdot \widehat{Q}^{(1)}(x)},$$

где $\hat{Q}^{(1)}(x) = (x^2 + p_2 x + q_2)^{l_2} \cdot \ldots \cdot (x^2 + p_t x + q_t)^{l_t}$. Продолжая рассуждения таким же образом получим, что каждой t паре комплексно-сопряженных корней знаменателя кратности l_t , будут соответствовать l_t простейших дробей третьего и четвертого типа, и окончательно:

$$\frac{P_n(x)}{Q_m(x)} = \frac{A_{11}}{(x-a_1)^{k_1}} + \dots + \frac{A_{1k_1}}{(x-a_1)} + \frac{A_{21}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots + \frac{A_{2k_1}}{(x-a_2)^{k_2}} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{(x^2 + p_1x + q_1)^{l_1}} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{(x^2 + p_1x + q_1)} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_2}} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_1}} + \dots + \frac{B_{2l_2}x + C_{2l_2}}{(x^2 + p_2x + q_2)^{l_2}} + \dots +$$

2.7 Интегрирование простейших дробей

В данном пункте в общем виде показывается, как можно вычислить интеграл от простейших рациональных дробей. Для начала рассмотрим интеграл

$$\int \frac{A}{(x-a)^k} dx, \ k \geqslant 1.$$

1. При k = 1 имеем

$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = A \ln|x-a| + C.$$

 $2. \ \Pi$ ри k > 1

$$\int \frac{A}{(x-a)^k} dx = A \int \frac{d(x-a)}{(x-a)^k} = A \int (x-a)^{-k} d(x-a) = A \frac{(x-a)^{1-k}}{1-k} + C.$$

Теперь покажем, как вычисляются интегралы

$$\int \frac{Ax+B}{(x^2+px+q)^k} dx, \ k \geqslant 1, \ p^2-4q < 0.$$

3. Пусть k=1. Дополним знаменатель до полного квадрата,

$$x^{2} + px + q = x^{2} + 2x\frac{p}{2} + \frac{p^{2}}{4} + q - \frac{p^{2}}{4} = \left(x + \frac{p}{2}\right)^{2} + \frac{4q - p^{2}}{4}.$$

Так как выражение

$$\frac{4q-p^2}{4} > 0,$$

то его можно обозначить, как a^2 . Кроме того, положим $t=x+\frac{p}{2}$, тогда dt=dx и

$$\int \frac{Ax+B}{x^2+px+q} dx = \int \frac{A(t-\frac{p}{2})+B}{t^2+a^2} dt = \int \frac{At+(B-\frac{Ap}{2})}{t^2+a^2} dt =$$

$$A\int \frac{tdt}{t^2+a^2} + \left(B-\frac{Ap}{2}\right) \int \frac{dt}{t^2+a^2} = \frac{A}{2} \int \frac{d(t^2+a^2)}{t^2+a^2} + \left(B-\frac{Ap}{2}\right) \frac{1}{a} \arctan \frac{t}{a} =$$

$$= \frac{A}{2} \ln|t^2+a^2| + \left(B-\frac{Ap}{2}\right) \frac{1}{a} \arctan \frac{t}{a} + C =$$

$$= \frac{A}{2} \ln(x^2+px+q) + \frac{B-\frac{Ap}{2}}{\sqrt{\frac{4q-p^2}{4}}} \arctan \frac{x+\frac{p}{2}}{\sqrt{\frac{4q-p^2}{4}}} + C.$$

4. Пусть k > 1. Используя обозначения, введенные в пункте 3, получим

$$\int \frac{Ax+B}{(x^2+px+q)^k} dx = A \int \frac{tdt}{(t^2+a^2)^k} + \left(B - \frac{Ap}{2}\right) \int \frac{dt}{(t^2+a^2)^k}.$$

Сначала рассмотрим первый интеграл:

$$\int \frac{tdt}{(t^2 + a^2)^k} = \frac{1}{2} \int \frac{d(t^2 + a^2)}{(t^2 + a^2)^k} = \frac{1}{2} \frac{(t^2 + a^2)^{1-k}}{1 - k} + C.$$

Теперь рассмотрим второй интеграл, обозначив его I_k :

$$I_k = \int \frac{dt}{(t^2 + a^2)^k} = \frac{1}{a^2} \int \frac{a^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} \int \frac{t^2 + a^2 - t^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} \int \frac{dt}{(t^2 + a^2)^{k-1}} - \frac{1}{a^2} \int \frac{t^2}{(t^2 + a^2)^k} dt = \frac{1}{a^2} I_{k-1} - \frac{1}{a^2} \int \frac{t^2}{(t^2 + a^2)^k} dt.$$

Последний интеграл вычислим по частям

$$\int \frac{t^2}{(t^2 + a^2)^k} dt = \begin{vmatrix} u = t \\ du = dt \\ dv = \frac{tdt}{(t^2 + a^2)^k} = \frac{1}{2} \frac{d(t^2 + a^2)}{(t^2 + a^2)^k} \\ v = \frac{1}{2(1 - k)(t^2 + a^2)^{k-1}} \end{vmatrix} = \frac{t}{2(1 - k)(t^2 + a^2)^{k-1}} - \frac{1}{2(1 - k)} \int \frac{dt}{(t^2 + a^2)^{k-1}}.$$

Тем самым,

$$I_k = \frac{1}{a^2} \left(I_{k-1} \left(1 + \frac{1}{2(1-k)} \right) - \frac{t}{2(1-k)(t^2 + a^2)^{k-1}} \right).$$

Таким образом, получена рекуррентная формула, выражающая I_k через I_{k-1} . Так как

$$I_1 = \int \frac{dt}{t^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{t}{a} + C,$$

то схема вычисления интеграла полностью изложена.

Следствие 2.7.1 Интеграл от рациональной дроби может быть выражен через элементарные функции.

2.8 Метод Остроградского

Вычисление интеграла от последнего типа дроби – задача трудоемкая. Полезно пользоваться следующей формулой (в случае, когда дробь под интегралом – правильная):

$$\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx.$$

В этой формуле $Q_2(x)$ – многочлен, имеющий те же корни, что и Q(x), но первой кратности. Многочлен $Q_1(x)$ – это частое от деления Q(x) на $Q_2(x)$. Все написанные дроби являются правильными.

Доказательство. Остается в качестве упражнения

2.9 Интегрирование иррациональностей

Пусть $R(x_1, x_2, ..., x_n)$ – рациональная функция относительно каждой из переменных $x_1, x_2, ..., x_n$.

1. Интегралы вида

$$\int R\left(x, \left(\frac{ax+b}{cx+d}\right)^{p_1}, \left(\frac{ax+b}{cx+d}\right)^{p_2}, ..., \left(\frac{ax+b}{cx+d}\right)^{p_n}\right) dx,$$

 $a,b,c,d\in\mathbb{R},\ ad-bc\neq0,\ n\in\mathbb{N},\ p_i\in\mathbb{Q}.$ Подстановка

$$\frac{ax+b}{cx+d} = t^m,$$

m – общий знаменатель $p_1, p_2, ..., p_n$.

2. Интегралы вида

$$\int R\left(x, \sqrt{ax^2 + bx + c}\right) dx, \ a \neq 0.$$

Функция под интегралом с помощью алгебраических преобразований приводится к виду:

$$R\left(x,\sqrt{ax^2+bx+c}\right) = \frac{R_1(x)}{\sqrt{ax^2+bx+c}} + R_2(x),$$

где $R_1(x)$, $R_2(x)$ – рациональные дроби. С интегралом от рациональной дроби все ясно. Как вычислить интеграл от первой дроби?

Разложив дробь на простейшие, придем к дробям (и интегралам) трех типов. Первый тип:

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx.$$

Этот интеграл может быть вычислен, как

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx = Q_{m-1}(x)\sqrt{ax^2 + bx + c} + \lambda \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

где коэффициенты ищутся после дифференцирования методом неопределенных коэффициентов.

Второй тип:

$$\int \frac{dx}{(x-a)^k \sqrt{ax^2 + bx + c}}.$$

Этот интеграл сводится к интегралу предыдущего типа подстановкой $t=(x-a)^{-1}$.

Третий тип:

$$\int \frac{Ax+B}{(x^2+px+q)^k \sqrt{ax^2+bx+c}} dx.$$

Если $ax^2 + bx + c = \alpha(x^2 + px + q)$, то приходим к интегралу

$$\int \frac{Ax+B}{(x^2+px+q)^{k+1/2}} dx = E \int \frac{2x+p}{(x^2+px+q)^{k+1/2}} dx + F \int \frac{dx}{(x^2+px+q)^{k+1/2}}.$$

Второй интеграл вычисляется, используя подстановку Абеля:

$$t = \left(\sqrt{x^2 + px + q}\right)'.$$

Иначе

$$x = \frac{\alpha t + \beta}{t + 1}$$

и коэффициенты подбираются так, чтобы в квадратных трехчленах исчезли члены, содержащие t. Приходим к интегралу

$$\int \frac{P_{k-1}(x)}{(x^2+a)^k \sqrt{sx^2+r}} dx.$$

Раскладывая дробь на простейшие, имеем либо

$$\int \frac{x}{(x^2+a)^k \sqrt{sx^2+r}} dx,$$

либо

$$\int \frac{dx}{(x^2+a)^k \sqrt{sx^2+r}}.$$

Последний интеграл снова вычисляется подстановкой Абеля

$$t = \left(\sqrt{sx^2 + r}\right)'.$$

3. Дифференциальный бином

$$\int x^m (ax^n + b)^p dx,$$

 $a, b \in \mathbb{R}, m, n, p \in \mathbb{Q}.$

Если $p \in \mathbb{Z}$, то $x = t^N$, N – общий знаменатель m, n.

Если $(m+1)/n \in \mathbb{Z}$, то $ax^n + b = t^s$, s – знаменатель p.

Если $(m+1)/n + p \in \mathbb{Z}$, то $a + bx^{-n} = t^s$, s – знаменатель p.

В других случаях интеграл в элементарных функциях не выражается (см. ниже про "Неберущиеся интегралы".)

2.10 Интегралы от тригонометрических функций

В этом разделе будут рассмотрены интегралы от некоторых классов тригонометрических функций.

Покажем, что интегралы вида

$$\int R(\sin x, \cos x) dx$$

всегда сводятся к интегралам от рациональных функций подстановкой $tg\frac{x}{2} = t$. Для этого обратимся к формулам выражение синуса и косинуса через тангенс половинного угла, а тем самым представим их через t:

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1 + t^2},$$

$$\cos x = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}.$$

А также

$$\operatorname{tg} \frac{x}{2} = t \Rightarrow x = 2 \operatorname{arctg} t, dx = \frac{2dt}{1 + t^2}.$$

Таким образом исходный интеграл будет выражен через рациональные функции:

$$\int R(\sin x, \cos x) dx = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2}.$$

2.11 "Неберущиеся" интегралы

Позже мы докажем, что непрерывная функция всегда имеет первообразную. Но эта первообразная не всегда выражается через элементарные функции.

Ниже приведены некоторые интегралы, не выражающиеся элементарными функциями:

1.
$$\int \frac{\sin x}{x} dx;$$

4.
$$\int e^{\pm x^2} dx$$
;

7.
$$\int \frac{dx}{\ln x}$$
;

$$2. \int \frac{\cos x}{x} dx;$$

5.
$$\int \sin x^2 dx;$$

8.
$$\int \sqrt{1 - \alpha^2 \sin^2 x} dx;$$

3.
$$\int \frac{e^x}{x} dx;$$

6.
$$\int \cos x^2 dx;$$

9.
$$\int \frac{dx}{\sqrt{1-\alpha^2 \sin^2 x}}.$$

3 Понятие интеграла Римана

3.1 Интегральные суммы и интеграл

Определение 3.1.1 Говорят, что на отрезке [a,b] введено разбиение τ , если введена система точек $x_i, i \in \{0,1,...,n\}$, удовлетворяющая условию

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

Замечание 3.1.1 Обычно вводят следующие обозначения:

$$\Delta x_i = x_i - x_{i-1}, \quad \Delta_i = [x_{i-1}, x_i], \quad i \in \{1, 2, ..., n\}.$$

Определение 3.1.2 Величина $\lambda(\tau) = \max_{i \in \{1,2,...,n\}} \Delta x_i$ называется мелкостью (рангом) разбиения (дробления).

Определение 3.1.3 Говорят, что на отрезке [a,b] введено разбиение (или оснащенное разбиение) (τ,ξ) , если на нем введено разбиение τ и выбрана система точек ξ_i , $i \in \{1,2,...,n\}$ таким образом, что $\xi_i \in \Delta_i$.

Определение 3.1.4 Пусть на отрезке [a,b] задана функция f(x) и введено разбиение (τ,ξ) . Величина

$$\sigma_{\tau}(f,\xi) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

называется интегральной суммой для функции f(x) на отрезке [a,b], отвечающей разбиению (au,ξ) .

Определение 3.1.5 Пусть функция f(x) задана на отрезке [a,b]. Говорят, что число I является интегралом Римана от функции f(x) по отрезку [a,b], если

$$\forall \varepsilon > 0 \ \exists \delta : \ \forall \tau : \ \lambda(\tau) < \delta, \ \forall \xi \Rightarrow |\sigma_{\tau}(f,\xi) - I| < \varepsilon.$$

При этом пишут

$$I = \int_{a}^{b} f(x)dx.$$

Замечание 3.1.2 Проще, но с некоторыми оговорками, последнее определение можно переписать в виде

$$I = \lim_{\lambda(\tau) \to 0} \sigma_{\tau}(f, \xi).$$

Замечание 3.1.3 Понятие предела интегральных сумм, вообще говоря, не является частным случаем понятия предела функции, так как интегральная сумма является функцией разбиения, а не его мелкости. В дальнейшем мы часто будем писать $\lambda(\tau) \to 0$, оставляя детальную расшифровку читателю.

Замечание 3.1.4 Аналогично определению предела функции по Гейне, сформулируем равносильное определение интеграла с помощью последовательностей:

Число I называется интегралом Римана функции f(x) по отрезку [a,b], если для любой последовательности оснащенных разбиений (τ_n, ξ_n) отрезка [a,b] такой, что мелкость разбиений $\lambda(\tau_n) \to 0$ при $n \to +\infty$ выполнено $\sigma_{\tau_n}(f,\xi_n) \to I$ при $n \to +\infty$.

Определение 3.1.6 Функция f(x), для которой существует интеграл Pимана по отрезку [a,b] называется интегрируемой по Pиману на этом отрезке (или просто интегрируемой) и обозначается $f \in R[a,b]$.

Пример 3.1.1 Легко показать, что постоянная функция y = C интегрируема по любому отрезку [a, b], причем

$$\int_{a}^{b} Cdx = C(b-a).$$

Действительно, вводя произвольное разбиение (τ, ξ) отрезка [a, b],

$$\sigma_{\tau}(y,\xi) = \sum_{i=1}^{n} C\Delta x_i = C\sum_{i=1}^{n} \Delta x_i = C(b-a),$$

откуда и следует требуемое.

Пример 3.1.2 Не всякая функция интегрируема. Оказывается, что функция Дирихле

$$d(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

не интегрируема ни на каком отрезке. Для примера будем рассматривать отрезок [0,1] и пусть τ – разбиение этого отрезка. Выберем в каждом отрезке Δ_i точку $\xi_i \in \mathbb{Q}$. Тогда

$$\sigma_{\tau}(d,\xi) = \sum_{i=1}^{n} d(\xi_i) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = 1.$$

Теперь выберем в каждом отрезке Δ_i точку $\xi_i \in \mathbb{I}$. Тогда

$$\sigma_{\tau}(d,\xi) = \sum_{i=1}^{n} d(\xi_i) \Delta x_i = \sum_{i=1}^{n} 0 \Delta x_i = 0.$$

Тем самым, при стремлении $\lambda(\tau) \to 0$, предел зависит от выбора средних точек ξ , что противоречит определению интеграла.

Для дальнейшего изложения удобно немного расширить определение интеграла Римана.

Определение 3.1.7 По определению полагают

$$\int_{a}^{a} f(x)dx = 0,$$

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx, \ a < b.$$

3.2 Суммы Дарбу и их свойства. Необходимое условие интегрируемости

Для изучения вопросов существования интеграла Римана, полезно рассмотреть две «крайние интегральные суммы», которые, на самом деле, интегральными являются не всегда. **Определение 3.2.1** Пусть функция f(x) задана на отрезке [a,b] и τ - некоторое разбиение этого отрезка. Величины

$$S_{\tau}(f) = \sum_{i=1}^{n} M_i \Delta x_i, \quad M_i = \sup_{x \in \Delta_i} f(x),$$

$$s_{\tau}(f) = \sum_{i=1}^{n} m_i \Delta x_i, \quad m_i = \inf_{x \in \Delta_i} f(x)$$

называют верхней и нижней суммами Дарбу для функции f(x), отвечающими разбиению τ , соответственно.

Замечание 3.2.1 Из определения верхней и нижней сумм Дарбу очевидно неравенство

$$s_{\tau}(f) \leqslant \sigma_{\tau}(f,\xi) \leqslant S_{\tau}(f)$$

для любых оснащенных разбиений (τ, ξ) отрезка [a, b].

Лемма 3.2.1 Ограниченность f сверху (снизу) равносильна конечности верхней суммы $S_{\tau}(f)$ (нижней суммы $s_{\tau}(f)$).

Доказательство. Очевидно.

Замечание 3.2.2 Если $f \in C[a,b]$, то, согласно теореме Вейерштрасса, $m_i = \min_{x \in \Delta_i} f(x)$, $M_i = \max_{x \in \Delta_i} f(x)$, а потому нижняя и верхняя суммы Дарбу для непрерывной функции являются ее наименьшей и наибольшими интегральными суммами, соответственно.

В общем случае последне замечание, конечно, не выполняется, но справедливо следующее утверждение.

Лемма 3.2.2 Справедливы равенства

$$S_{\tau}(f) = \sup_{\xi} \sigma_{\tau}(f, \xi), \quad s_{\tau}(f) = \inf_{\xi} \sigma_{\tau}(f, \xi).$$

Доказательство. Докажем первое равенство. То, что $S_{\tau}(f) \geqslant \sigma_{\tau}(f,\xi)$ уже отмечено в замечании 3.2.1. Пусть f ограничена сверху на [a,b]. Пусть $\varepsilon > 0$, тогда, по определению супремума,

$$\exists \xi_i \in \Delta_i : M_i - \frac{\varepsilon}{b-a} < f(\xi_i), \quad i = 1...n.$$

Домножим каждое неравенство на Δx_i и сложим по i, получим

$$\sum_{i=1}^{n} \left(M_i - \frac{\varepsilon}{b-a} \right) \Delta x_i < \sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

или

$$\sum_{i=1}^{n} M_i \Delta x_i - \varepsilon < \sigma_{\tau}(f, \xi),$$

что и означает, что для любого $\varepsilon > 0$ найдется набор точек ξ такой, что

$$S_{\tau}(f) - \varepsilon < \sigma_{\tau}(f, \xi),$$

и $S_{\tau}(f) \geqslant \sigma_{\tau}(f,\xi)$. Тем самым проверено, что

$$S_{\tau}(f) = \sup_{\xi} \sigma_{\tau}(f, \xi).$$

Если же f не ограничена сверху на [a,b], то f не ограничена хотя бы на одном Δ_i . Пусть, для определенности, на Δ_1 . Тогда существует последовательность ξ_1^n , что $f(\xi_1^n) \xrightarrow[n \to +\infty]{} +\infty$. Пусть $\xi_i \in \Delta_i$, $i \geqslant 2$. Тогда

$$\sup_{\xi} \sigma_{\tau}(f, \xi) \geqslant \lim_{n \to +\infty} \left(f(\xi^n) \Delta x_1 + \sum_{i=2}^n f(\xi_i) \Delta x_i \right) = +\infty = S_{\tau}(f)$$

Определение 3.2.2 Пусть на отрезке [a,b] введены разбиения τ_1 и τ_2 . Говорят, что разбиение τ_1 является измельчением разбиения τ_2 , если $\tau_2 \subset \tau_1$.

Лемма 3.2.3 Пусть $\tau_2 \subset \tau_1$, тогда

$$S_{\tau_2}(f) \geqslant S_{\tau_1}(f), \quad s_{\tau_1}(f) \geqslant s_{\tau_2}(f),$$

то есть при измельчении разбиения верхние суммы Дарбу не увеличиваются, а нижние – не уменьшаются.

Доказательство. Достаточно доказать лемму для случая, когда измельчение τ_1 получается из τ_2 добавлением одной точки $\hat{x} \in (x_{k-1}, x_k)$. Тогда

$$S_{\tau_2}(f) = \sum_{i=1}^n M_i \Delta x_i = \sum_{i=1, i \neq k}^n M_i \Delta x_i + M_k \Delta x_k.$$

Пусть

$$M'_{k} = \sup_{x \in [x_{k-1}, \hat{x}]} f(x), \quad M''_{k} = \sup_{x \in [\hat{x}, x_{k}]} f(x),$$

тогда

$$M_k \geqslant M_k', \quad M_k \geqslant M_k''$$

И

$$M_k \Delta x_k = M_k(\hat{x} - x_{k-1}) + M_k(x_k - \hat{x}) \geqslant M'_k(\hat{x} - x_{k-1}) + M''_k(x_k - \hat{x}),$$

откуда

$$S_{\tau_2}(f) \geqslant \sum_{i=1, i \neq k}^n M_i \Delta x_i + M_k'(\hat{x} - x_{k-1}) + M_k''(x_k - \hat{x}) = S_{\tau_1}(f).$$

Второе неравенство доказывается аналогично.

Лемма 3.2.4 Пусть τ_1 и τ_2 – разбиения отрезка [a,b], тогда

$$s_{\tau_1}(f) \leqslant S_{\tau_2}(f),$$

то есть любая нижняя сумма Дарбу не превосходит любой верхней суммы Дарбу.

Доказательство. Разбиение $\tau = \tau_1 \cup \tau_2$ является разбиением отрезка [a,b], причем $\tau_1 \subset \tau$, $\tau_2 \subset \tau$. По лемме 3.2.3 и замечанию 3.2.1,

$$s_{\tau_1}(f) \leqslant s_{\tau}(f) \leqslant S_{\tau}(f) \leqslant S_{\tau_2}(f),$$

что и доказывается утверждение.

Определение 3.2.3 Пусть функция задана и ограничена на [a,b]. Величины

$$I^*(f) = \inf_{\tau} S_{\tau}(f), \quad I_*(f) = \sup_{\tau} s_{\tau}(f)$$

называются верхним и нижним интегралами Дарбу соответственно.

Замечание 3.2.3 Для любых разбиений τ_1 и τ_2 отрезка [a,b] выполнено неравенство

$$s_{\tau_1}(f) \leqslant I_*(f) \leqslant I^*(f) \leqslant S_{\tau_2}(f).$$

Теорема 3.2.1 (Неообходимое условие интегрируемости) $\Pi ycmb \ f \in R[a,b], \ mor\partial a \ f \ orpanuчeна на [a,b].$

Доказательство. Пусть f, например, не ограничена сверху. Тогда $S_{\tau}(f) = +\infty$ для любого разбиения τ . Поэтому для любого числа I и разбиения τ , найдется такое оснащенное разбиение (τ, ξ) , что

$$\sigma_{\tau}(f,\xi) > I + 1.$$

Значит, никакое число I пределом интегральных сумм не является. \square

3.3 Критерии Дарбу и Римана интегрируемости функции

Теорема 3.3.1 (Критерии интегрируемости) Пусть f задана на [a,b]. Тогда следующие утверждения равносильны:

- 1. $f \in R[a, b];$
- 2. Критерий Дарбу:

$$\forall \ \varepsilon > 0 \ \exists \delta > 0 : \ \forall \tau : \ \lambda(\tau) < \delta \Rightarrow S_{\tau}(f) - s_{\tau}(f) < \varepsilon;$$

3. Критерий Римана:

$$\forall \ \varepsilon > 0 \ \exists \tau : \ S_{\tau}(f) - s_{\tau}(f) < \varepsilon;$$

4.

$$I_* = I^* \quad (=I).$$

Доказательство.

• Докажем $1 \Rightarrow 2$. Пусть функция f(x) интегрируема на отрезке [a,b] и $\varepsilon > 0$. Тогда

$$\exists \ \delta > 0 : \ \forall \tau : \ \lambda(\tau) < \delta \ \forall \xi \quad \Rightarrow \quad |\sigma_{\tau}(f,\xi) - I| < \frac{\varepsilon}{3},$$

откуда

$$I - \frac{\varepsilon}{3} < \sigma_{\tau}(f, \xi) < I + \frac{\varepsilon}{3}.$$

Переходя в правой части неравенства к супремуму по ξ , а в левой части к инфимуму, получается

$$I - \frac{\varepsilon}{3} \leqslant s_{\tau}(f) \leqslant S_{\tau}(f) \leqslant I + \frac{\varepsilon}{3},$$

откуда

$$S_{\tau}(f) - s_{\tau}(f) \leqslant \frac{2\varepsilon}{3} < \varepsilon.$$

- Переход $2 \Rightarrow 3$ очевиден.
- Докажем $3 \Rightarrow 4$. Пусть $\varepsilon > 0$ и разбиение τ такое, что $S_{\tau}(f) s_{\tau}(f) < \varepsilon$. Заметим, что тогда f ограничена. Так как (из определения и свойств интегралов Дарбу)

$$s_{\tau} \leqslant I_* \leqslant I^* \leqslant S_{\tau},$$

то $0 \leqslant I^* - I_* < \varepsilon$ для любого $\varepsilon > 0$. Следовательно, $I_* = I^*$.

• И, наконец, докажем $4\Rightarrow 1$. Пусть $I^*=I_*=I$. Тогда для $\varepsilon>0$

$$I_* = \sup_{\tau} s_{\tau} \quad \Rightarrow \quad \exists \tau_1 : \ s_{\tau_1} > I_* - \varepsilon/4,$$

$$I^* = \inf_{\tau} S_{\tau} \quad \Rightarrow \quad \exists \tau_2 : \ S_{\tau_2} < I^* + \varepsilon/4.$$

Пусть теперь τ – произвольное разбиение мелкости $\lambda(\tau) < \delta$ (значение δ выберем позже). Дополним его точками разбиений τ_1 и τ_2 и рассмотрим разбиение $\widetilde{\tau} = \tau \cup \tau_1 \cup \tau_2$.

Пусть k – число точек в разбиении $\tau_1 \cup \tau_2$, $M = \sup_{[a,b]} f$, $m = \inf_{[a,b]} f$. Будем считать, что m < M (иначе $f = \operatorname{const} \in R[a,b]$).

Оценим наибольшее отклонение нижней суммы Дарбу разбиения τ по сравнению с его измельчением $\tilde{\tau}$. Так как к τ добавились k точек, то значение слагаемых суммы s_{τ} могло измениться на k отрезках разбиения. На каждом таком отрезке слагаемое $m_i \Delta x_i$ увеличилось не более, чем на $\delta(M_i - m_i) \leq \delta(M - m)$. Значит, вся сумма s_{τ} могла вырасти не больше, чем на $\delta k(M - m)$:

$$s_{\widetilde{\tau}} - s_{\tau} \leqslant k\delta(M - m).$$

Аналогично, верхняя сумма S_{τ} при добавлении точек $\tau_1 \cup \tau_2$ может уменьшиться не более, чем на такую же величину:

$$S_{\tau} - S_{\widetilde{\tau}} \leqslant k\delta(M - m).$$

Рис. 1: Изменение нижней суммы s_{τ} на отрезке $[x_{i-1}, x_i]$ при добавлении одной точки. Зеленая штриховка – реальное изменение, серая штриховка – максимально возможное изменение (с запасом)

Таким образом, имеем

$$s_{\tau} \geqslant s_{\widetilde{\tau}} - k\delta(M - m) \geqslant s_{\tau_1} - k\delta(M - m) > I - k\delta(M - m) - \varepsilon/4,$$

$$S_{ au} \leqslant S_{\widetilde{ au}} + k\delta(M-m) \leqslant S_{ au_2} + k\delta(M-m) < I + k\delta(M-m) + \varepsilon/4,$$
откуда

$$S_{\tau} - s_{\tau} < 2k\delta(M - m) + \varepsilon/2.$$

Теперь понятно, как надо выбирать δ . Возьмем

$$\delta = \min \left\{ \lambda(\tau_1), \lambda(\tau_2), \frac{\varepsilon}{4k(M-m)} \right\}.$$

Тогда для любого τ мелкостью меньше δ имеем $S_{\tau}-s_{\tau}<\varepsilon$.

Осталось заметить, что из неравенств

$$s_{\tau} \leqslant \sigma_{\tau}(\xi) \leqslant S_{\tau}, \quad s_{\tau} \leqslant I_* = I = I^* \leqslant S_{\tau}$$

следует для любого оснащения ξ : $|\sigma_{\tau}(\xi) - I| < S_{\tau} - s_{\tau} < \varepsilon$, что и означает $f \in R[a,b]$.

Определение 3.3.1 Пусть функция f(x) задана на множестве E. Колебанием функции на этом множестве называется величина

$$\omega(f, E) = \sup_{x,y \in E} |f(x) - f(y)|.$$

Из определений верхней и нижней граней легко получить, что

$$\omega(f, E) = \sup_{x \in E} f(x) - \inf_{x \in E} f(x).$$

Замечание 3.3.1 В критериях Дарбу и Римана разность $S_{\tau}-s_{\tau}$ можно заменять на

$$S_{\tau} - s_{\tau} = \sum_{i=1}^{n} \omega_i(f) \Delta x_i,$$

 $\epsilon \partial e \ \omega_i(f) = M_i - m_i - \kappa$ олебание функции f на отрезке $[x_{i-1}, x_i]$.

3.4 Свойства интегрируемых функций

Ниже приведены основные свойства интегрируемых функций, используемые в дальнейшем.

Теорема 3.4.1 (Свойства интегрируемых функций) $\Pi ycmb$ $f(x), g(x) \in R[a,b], \ moeda$

© Бойцев А.А., Трифанова Е.С., 2025

- 1. $\alpha f(x) + \beta g(x) \in R[a, b], \ \alpha, \beta \in \mathbb{R}$.
- 2. $f(x)g(x) \in R[a,b]$.
- 3. $|f(x)| \in R[a,b]$.
- 4. Ecnu $|f(x)| \ge C > 0$ на [a, b], то $\frac{1}{f(x)} \in R[a, b]$.
- 5. Пусть $[c,d] \subset [a,b]$, тогда $f(x) \in R[c,d]$.

Доказательство. 1. Так как

$$|\alpha f(x) + \beta g(x) - \alpha f(y) - \beta g(y)| \leq |\alpha||f(x) - f(y)| + |\beta||g(x) - g(y)| \leq$$
$$\leq |\alpha|\omega(f, E) + |\beta|\omega(g, E),$$

то, переходя к супремуму в левой части получается, что

$$\omega(\alpha f + \beta g, E) \leq |\alpha|\omega(f, E) + |\beta|\omega(g, E).$$

Пусть $\varepsilon > 0$. Так как $f \in R[a,b]$, то по следствию 3.3.1

$$\exists \delta_1: \ \forall \tau: \ \lambda(\tau) < \delta_1 \Rightarrow \sum_{i=1}^n \omega(f, \Delta_i) \Delta x_i < \frac{\varepsilon}{2(|\alpha|+1)}.$$

Аналогично, так как $g \in R[a,b]$, то по следствию 3.3.1

$$\exists \delta_2: \ \forall \tau: \ \lambda(\tau) < \delta_2 \Rightarrow \sum_{i=1}^n \omega(g, \Delta_i) \Delta x_i < \frac{\varepsilon}{2(|\beta| + 1)}$$

Пусть $\delta = \min(\delta_1, \delta_2)$, тогда для любого τ такого, что $\lambda(\tau) < \delta$ выполняется

$$\sum_{i=1}^{n} \omega_{i}(\alpha f + \beta g) \Delta x_{i} \leq |\alpha| \sum_{i=1}^{n} \omega_{i}(f) \Delta x_{i} + |\beta| \sum_{i=1}^{n} \omega_{i}(g) \Delta x_{i} \leq \frac{|\alpha| \varepsilon}{2(|\alpha| + 1)} + \frac{|\beta| \varepsilon}{2(|\beta| + 1)} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Значит, по критерию Дарбу, $\alpha f + \beta g \in R[a, b]$.

2. Так как $f, g \in R[a, b]$, то по необходимому условию они ограничены на [a, b], то есть

$$\exists C: |f(x)| < C, |g(x)| < C, \forall x \in [a, b].$$

Кроме того, так как

$$|f(x)g(x)-f(y)g(y)|=|f(x)g(x)-f(x)g(y)+f(x)g(y)-f(y)g(y)|\leqslant$$

$$\leq |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)| \leq C(\omega_i(f) + \omega_i(g)),$$

то, переходя к супремуму в левой части неравенства, получим, что

$$\omega_i(fg) \leqslant C(\omega_i(f) + \omega_i(g)).$$

Дальнейшие обоснования проводятся так же, как в пункте 1, и остаются в качестве упражнения.

3. Так как

$$||f(x)| - |f(y)|| \leq |f(x) - f(y)| \leq \omega_i(f),$$

то, переходя к супремуму в левой части неравенства, получается, что

$$\omega_i(|f|) \leqslant \omega_i(f)$$
.

Дальнейшие обоснования проводятся так же, как в пункте 1, и остаются в качестве упражнения.

4. Tak kak

$$\left| \frac{1}{f(x)} - \frac{1}{f(y)} \right| = \left| \frac{f(x) - f(y)}{f(x)f(y)} \right| \leqslant \frac{|f(x) - f(y)|}{C^2} \leqslant \frac{\omega_i(f)}{C^2},$$

то, переходя к супремуму в левой части неравенства, получается, что

$$\omega_i\left(\frac{1}{f}\right) \leqslant \frac{\omega_i(f)}{C^2}.$$

Дальнейшие обоснования проводятся так же, как в пункте 1, и остаются в качестве упражнения.

5. Пусть $\varepsilon > 0$. Так как $f \in R[a,b]$, то, согласно теореме Дарбу,

$$\exists \delta: \ \forall \tau: \ \lambda(\tau) < \delta \Rightarrow \sum_{i=1}^{n} \omega_i(f) \Delta x_i < \varepsilon.$$

Пусть τ' – произвольное разбиение отрезка [c,d] такое, что $\lambda(\tau') < \delta$. Дополним его до разбиения τ отрезка [a,b] так, чтобы $\lambda(\tau) < \delta$, введя разбиения отрезков [a,c] и [d,b], но не добавляя новых точек в отрезок [c,d]. Тогда

$$\sum_{[c,d]} \omega_i(f) \Delta x_i \leqslant \sum_{[a,b]} \omega_i(f) \Delta x_i < \varepsilon,$$

так как все слагаемые, входящие в левую сумму, входят и в правую, и $\omega_i(f) \geqslant 0$. Тем самым показано, что $f \in R[c,d]$.

Для дальнейшего изложения потребуется еще одно важное свойство интегрируемых функций, которое сформулировано ниже.

Теорема 3.4.2 Пусть $f(x) \in R[a, c], f(x) \in R[c, b], morda f(x) \in R[a, b].$

Доказательство. Пусть $\varepsilon > 0$. Так как функция $f \in R[a,c]$, то по критерию Римана

 $\exists \tau_1: \sum_{[a,c]} \omega_i(f) \Delta x_i < \frac{\varepsilon}{2}.$

Так как $f \in R[c,b]$, то по критерию Римана

$$\exists \tau_2: \sum_{[c,b]} \omega_i(f) \Delta x_i < \frac{\varepsilon}{2}.$$

Разбиение $au= au_1\cup au_2$ является разбиением отрезка [a,b], причем

$$\sum_{[a,b]} \omega_i(f) \Delta x_i = \sum_{[c,b]} \omega_i(f) \Delta x_i + \sum_{[c,b]} \omega_i(f) \Delta x_i < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Значит, по критерию Римана, $f \in R[a, b]$.

3.5 Классы интегрируемых функций

Теорема 3.5.1 (Интегрируемость непрерывной функции)

Hепрерывная на отрезке [a,b] функция интегрируема на нем, т.е.

$$(f \in C[a,b]) \Rightarrow (f \in R[a,b]).$$

Доказательство. Пусть $\varepsilon > 0$. Непрерывная на отрезке функция равномерно непрерывна на нем по теореме Кантора, а значит

$$\exists \ \delta > 0 : \ \forall x_1, x_2 \in [a, b] : \ |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \frac{\varepsilon}{b - a}.$$

Пусть au – разбиение отрезка [a,b], причем $\lambda(au)<\delta$, тогда

$$\omega_i(f) < \frac{\varepsilon}{b-a}$$

И

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i < \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \varepsilon.$$

Значит, по критерию Римана, $f \in R[a, b]$.

Теорема 3.5.2 (Конечное число точек разрыва) Пусть f задана и ограничена на [a,b]. Пусть, кроме того, множество точек разрыва функции f конечно. Тогда $f \in R[a,b]$.

Доказательство. Так как функция ограничена, то $|f| \leq C$. Тогда $\omega(f, [a, b]) \leq 2C$. Пусть $\varepsilon > 0$. Построим вокруг каждой точки разрыва интервал радиуса $\delta_1 = \varepsilon/(16Ck)$, где k – количество точек разрыва.

Дополнение к этому набору интервалов — это набор отрезков, на каждом из которых функция f непрерывна, а значит и равномерно непрерывна. Значит, так как число отрезков конечно, то существует δ_2 , что если x', x'' из какого-то отрезка, причем $|x'-x''|<\delta_2$, то

$$|f(x') - f(x'')| < \frac{\varepsilon}{2(b-a)}.$$

Пусть $\delta = \min(\delta_1, \delta_2)$ и τ – разбиение отрезка [a, b] такое, что $\lambda(\tau) < \delta$.

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i = \sum_{i=1}^{n} \omega_i(f) \Delta x_i + \sum_{i=1}^{n} \omega_i(f) \Delta x_i,$$

где первая сумма идет по отрезкам, не имеющим общих точек с построенными интервалами, а вторая – по всем остальным. Поэтому

$$\sum '\omega_i(f)\Delta x_i \leqslant \frac{\varepsilon}{2(b-a)}(b-a) = \frac{\varepsilon}{2}.$$

Сумма длин оставшихся частей меньше, чем

$$(\delta + 2\delta_1 + \delta)k \leqslant \frac{\varepsilon}{4C},$$

а значит

$$\sum ''\omega_i(f)\Delta x_i \leqslant \frac{\varepsilon}{4C}2C = \frac{\varepsilon}{2}.$$

В итоге получаем требуемое.

Теорема 3.5.3 (Об интегрируемости монотонной функции)

 ${\it Заданная}\ u$ монотонная на отрезке [a,b] функция f(x) интегрируема на этом отрезке.

Доказательство. Интегрируемость постоянной функции уже известна. Пусть функция f(x) не постоянна, не убывает и $\varepsilon > 0$. Тогда положив $\delta = \frac{\varepsilon}{f(b) - f(a)}$ и взяв разбиение τ отрезка [a,b] такое, что $\lambda(\tau) < \delta$, выполняется

$$\sum_{i=1}^{n} \omega_i(f) \Delta x_i < \frac{\varepsilon}{f(b) - f(a)} \sum_{i=1}^{n} \omega_i(f) = \frac{\varepsilon}{f(b) - f(a)} \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \varepsilon.$$

Значит, согласно критерию Римана, $f \in R[a, b]$.

Замечание 3.5.1 Монотонная функция может иметь счетное число точек разрыва. Например,

$$f(x) = \begin{cases} 1, & x = 0\\ 1 - \frac{1}{2^n}, & \frac{1}{2^n} \leqslant x < \frac{1}{2^{n-1}} \end{cases}.$$

3.6 Свойства интеграла Римана. Первая теорема о среднем.

Справедливо свойство линейности интеграла.

Теорема 3.6.1 (Линейность определенного интеграла) $\Pi ycmb \ f,g \in R[a,b], \ moeda$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Доказательство. То, что $\alpha f + \beta g \in R[a,b]$ известно из теоремы 3.4.1. Пусть $I_f = \int_a^b f(x) dx, \; I_g = \int_a^b g(x) dx.$ Тогда для разбиения (τ,ξ) имеем

$$\left|\sigma_{\tau}(\alpha f + \beta g, \xi) - \alpha I_f - \beta I_g\right| \leq |\alpha| \left|\sigma_{\tau}(f, \xi) - I_f\right| + |\beta| \left|\sigma_{\tau}(g, \xi) - I_g\right|.$$

Пользуясь определением интеграла Римана для I_f и I_g и интегрируемостью функции $\alpha f + \beta g$, получаем требуемое.

Теорема 3.6.2 (Аддитивность по промежутку интегрирования) $\Pi ycmb$ $f \in R[a,b], c \in [a,b], mor \partial a$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Доказательство. Интегрируемость функции f на промежутках [a,c] и [c,b] известна из теоремы 3.4.1. Пусть τ – разбиение отрезка [a,b], содержащее точку c. Тогда оно порождает разбиения τ_1 отрезка [a,c] и τ_2 отрезка [c,b], причем $\lambda(\tau_1) \leqslant \lambda(\tau)$ и $\lambda(\tau_2) \leqslant \lambda(\tau)$. Так как

$$\sum_{[a,b]} f(\xi_i) \Delta x_i = \sum_{[a,c]} f(\xi_i) \Delta x_i + \sum_{[c,b]} f(\xi_i) \Delta x_i,$$

и при $\lambda(\tau) \to 0$ одновременно $\lambda(\tau_1) \to 0$ и $\lambda(\tau_2) \to 0$, то получаем требуемое.

Следствие 3.6.3 Пусть $f \in R(\min(a, b, c), \max(a, b, c))$. Тогда

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Доказательство. Доказательство моментально следует из предыдущей теоремы и соглашений о том, что

$$\int_{a}^{a} f(x)dx = 0, \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

Следующее свойство интеграла часто называют его монотонностью.

Теорема 3.6.4 (Монотонность интеграла) Пусть $a \leq b$, $f, g \in R[a, b]$, причем $f(x) \leq g(x)$, $x \in [a, b]$, тогда

$$\int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} g(x)dx.$$

Доказательство. Для интегральных сумм справедливо неравенство

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i \leqslant \sum_{i=1}^{n} g(\xi_i) \Delta x_i.$$

Переходя к пределу при $\lambda(\tau) \to 0$, получается требуемое.

Следствие 3.6.5 Пусть $a\leqslant b,\ f\in R[a,b],\ m=\inf_{x\in [a,b]}f(x),\ M=\sup_{x\in [a,b]}f(x),$ тогда

$$m(b-a) \leqslant \int_{a}^{b} f(x)dx \leqslant M(b-a).$$

Замечание 3.6.1 В теореме о монотонности интеграла из строгого неравенства f(x) < g(x) на [a,b] следует строгое неравенство между интегралами: $\int_a^b f(x)dx < \int_a^b g(x)dx$. Доказательство этого факта значительно сложнее (попытайтесь!)

Теорема 3.6.6 (Об отделимости от нуля) Пусть $a < b, f \in R[a,b],$ $f \geqslant 0$ и существует точка $x_0 \in [a,b]$ такая, что $f(x_0) > 0$, причем f непрерывна в x_0 . Тогда

$$\int_{a}^{b} f(x)dx > 0$$

Доказательство. Так как $f(x_0) > 0$ и f непрерывна в точке x_0 , то существует окрестность $U(x_0)$, что при $x \in U(x_0)$ выполняется $f(x) > f(x_0)/2$. Тогда, в силу монотонности интеграла,

$$\int_{a}^{b} f(x)dx \geqslant \int_{[a,b]\cap U(x_0)} f(x)dx > \frac{f(x_0)}{2} \int_{[a,b]\cap U(x_0)} dx > 0.$$

Теорема 3.6.7 Пусть $f \in R[a,b]$, тогда

$$\left| \int_{a}^{b} f(x) dx \right| \leq \left| \int_{a}^{b} |f(x)| dx \right|.$$

Доказательство. Интегрируемость функции |f| известна из теоремы 3.4.1. Так как

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i \right| \leqslant \left| \sum_{i=1}^{n} |f(\xi_i)| \Delta x_i \right|,$$

то переходя к пределам получается требуемое.

Теорема 3.6.8 (Первая теорема о среднем) Пусть $f,g \in R[a,b], g(x)$ не меняет знак на $[a,b], m = \inf_{x \in [a,b]} f(x), M = \sup_{x \in [a,b]} f(x),$ тогда

$$\exists \mu \in [m, M]: \int_{a}^{b} f(x)g(x)dx = \mu \int_{a}^{b} g(x)dx.$$

Кроме того, если $f(x) \in C[a,b]$, то

$$\exists \xi \in [a, b] : \int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

© Бойцев А.А., Трифанова Е.С., 2025

Доказательство. Пусть $g(x) \geqslant 0$ на отрезке [a, b], тогда

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x), \ x \in [a, b]$$

и по теореме 3.6.4

$$m\int_{a}^{b}g(x)dx \leqslant \int_{a}^{b}f(x)g(x)dx \leqslant M\int_{a}^{b}g(x)dx.$$

Если $\int_a^b g(x)dx=0$, то в качестве μ можно взять любое число из отрезка [m,M], так как из неравенства выше следует, что

$$\int_{a}^{b} f(x)g(x)dx = 0.$$

Если же $\int\limits_a^b g(x)dx \neq 0$, то $\int\limits_a^b g(x)dx > 0$ и, поделив на этот интеграл, получается неравенство

$$m \leqslant \frac{\int\limits_{a}^{b} f(x)g(x)dx}{\int\limits_{a}^{b} g(x)dx} \leqslant M.$$

Положив

$$\mu = \frac{\int_{a}^{b} f(x)g(x)dx}{\int_{a}^{b} g(x)dx},$$

получается требуемое.

Если предположить, что $f(x) \in C[a,b]$, то по теореме Больцано-Коши для каждого $\mu \in [m,M]$ существует $\xi \in [a,b]$, что $f(\xi) = \mu$, что доказывает вторую часть утверждения.

Замечание 3.6.2 Можно доказать, что в в условиях теоремы в предположении, что $f \in C[a,b], \exists \xi \in (a,b)$:

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx.$$

Обязательно проделайте это!

3.7 Интеграл с переменным верхним пределом и его свойства

Определение 3.7.1 Пусть $f \in R[a,b]$ и $x \in [a,b]$. Функция

$$\Phi(x) = \int_{a}^{x} f(x)dx$$

называется интегралом с переменным верхним пределом.

Ниже будут рассмотрены стандартные свойства функции $\Phi(x)$: ее непрерывность и дифференцируемость.

Теорема 3.7.1 (О непрерывности $\Phi(x)$)

$$\Phi(x) \in C[a,b].$$

Доказательство. Пусть $x_0 \in [a,b], x_0 + \Delta x \in [a,b]$. Так как функция $f \in R[a,b]$, то она ограничена на этом отрезке, то есть

$$|f(x)| \leqslant C, \ x \in [a, b].$$

Тогда

$$|\Phi(x_0 + \Delta x) - \Phi(x_0)| = \left| \int_{x_0}^{x_0 + \Delta x} f(x) dx \right| \leqslant \left| \int_{x_0}^{x_0 + \Delta x} |f(x)| dx \right| \leqslant$$

$$\leqslant C \left| \int_{x_0}^{x_0 + \Delta x} dx \right| = C|\Delta x|.$$

Значит, при $\Delta x \to 0$ выполняется $\Phi(x_0 + \Delta x) \to \Phi(x_0)$, что и означает непрерывность функции $\Phi(x)$ в точке x_0 . Так как x_0 – произвольная точка отрезка [a,b], то утверждение доказано.

Теорема 3.7.2 (О производной $\Phi(x)$) $\Phi(x)$ дифференцируема в точках непрерывности функции f(x), причем

$$(\Phi(x))'(x_0) = f(x_0).$$

Доказательство. Пусть f(x) непрерывна в точке x_0 и $x_0 + \Delta x \in [a, b]$.

$$\left| \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} - f(x_0) \right| = \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(x) dx - f(x_0) \right| =$$

$$= \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} (f(x) - f(x_0)) dx \right|.$$

Пусть $\varepsilon > 0$, тогда (в силу непрерывности функции f(x))

$$\exists \delta > 0 : \forall x \in [a, b] : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

Пусть $\Delta x < \delta$, тогда

$$\left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} (f(x) - f(x_0)) dx \right| \leqslant \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} |f(x) - f(x_0)| dx \right| < \varepsilon \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} dx \right| = \varepsilon,$$

что и означает, что

$$\lim_{\Delta x \to 0} \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} = \Phi'(x_0) = f(x_0).$$

Следствие 3.7.3 Всякая непрерывная на отрезке [a,b] функция f(x) имеет на этом отрезке первообразную, причем любая ее первообразная имеет вид

$$F(x) = \int_{a}^{x} f(x)dx + C = \Phi(x) + C.$$

3.8 Формула Ньютона-Лейбница

Ниже приведена основная формула интегрального исчисления.

Теорема 3.8.1 (Формула Ньютона-Лейбница) $\mathit{Пусть}\ f \in C[a,b]\ u$ F(x) – ee $nepsooбразная. <math>Tor\partial a$

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$

П

Доказательство. Согласно следствию 3.7.3, любая первообразная непрерывной функции имеет вид

$$F(x) = \int_{a}^{x} f(x)dx + C.$$

Так как

$$F(a) = \int_{a}^{a} f(x)dx + C = C,$$

то C = F(a). Положив в равенстве

$$F(x) = \int_{a}^{x} f(x)dx + F(a)$$

x = b, получается

$$F(b) = \int_{a}^{b} f(x)dx + F(a) \Rightarrow \int_{a}^{b} f(x)dx = F(b) - F(a).$$

Формула Ньютона-Лейбница справедлива и при предположении наличия первообразной у интегрируемой функции, а именно справедлива следующая теорема.

Теорема 3.8.2 (Усиленная формула Ньютона-Лейбница) Пусть $f \in R[a,b]$ и существует F(x) – некоторая первообразная данной функции на [a,b], тогда

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$

Доказательство. Положим $x_k=a+\frac{k(b-a)}{n},\ k\in\{0,1,2,...,n\}$ – разбиение отрезка [a,b]. Тогда

$$F(b) - F(a) = F(x_n) - F(x_0) = \sum_{k=1}^{n} (F(x_k) - F(x_{k-1})).$$

Согласно теореме Лагранжа, существует $\xi_k^n \in (x_{k-1}, x_k)$, что

$$F(x_k) - F(x_{k-1}) = f(\xi_k^n)(x_k - x_{k-1}),$$

© Бойцев А.А., Трифанова Е.С., 2025

а тогда

$$F(b) - F(a) = \sum_{k=1}^{n} f(\xi_k^n) \Delta x_k$$

и мы получаем интегральную сумму для функции f по отрезку [a,b] с оснащенным разбиением (τ,ξ) . Так как $f\in R[a,b]$ и так как при $n\to +\infty$ выполняется $\lambda(\tau)\to 0$, то

$$\lim_{n \to +\infty} \sum_{k=1}^{n} f(\xi_k^n) \Delta x_k = \int_a^b f(x) dx.$$

С другой стороны,

$$F(b) - F(a) = \lim_{n \to +\infty} \sum_{k=1}^{n} f(\xi_k^n) \Delta x_k,$$

а значит

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Замечание 3.8.1 Доказанная формула Ньютона-Лейбница справедлива для любой первообразной интегрируемой функции. Ясно, что значение интеграла не зависит от выбора этой первообразной, ведь если выбрана первообразная F(x) + C, то

$$F(b) - F(a) = F(b) + C - F(a) - C.$$

Оказывается, формула Ньютона-Лейбница справедлива и для обобщенных первообразных.

Теорема 3.8.3 (Обобщение формулы Ньютона-Лейбница) Пусть $f(x) \in R[a,b]$ и F(x) – обобщенная первообразная функции f(x) на [a,b]. Тогда

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Доказательство. Пусть $\alpha_1, \alpha_2, ..., \alpha_{k-1}$ – точки внутри (a, b), в которых нарушено условие F'(x) = f(x). Добавим к ним $\alpha_0 = a, \alpha_k = b$. Так как

интеграл – непрерывная функция по обоим пределам, то

$$\int_{\alpha_{p-1}}^{\alpha_p} f(x)dx = \lim_{\varepsilon \to 0} \int_{\alpha_{p-1} + \varepsilon}^{\alpha_p - \varepsilon} f(x)dx = \lim_{\varepsilon \to 0} \left(F(\alpha_p - \varepsilon) - F(\alpha_{p-1} + \varepsilon) \right) =$$

$$= F(\alpha_p) - F(\alpha_{p-1}),$$

где последнее равенство справедливо ввиду того, что F – непрерывная функция. Тогда

$$\int_{a}^{b} f(x)dx = \sum_{p=1}^{k} \int_{\alpha_{p-1}}^{\alpha_{p}} f(x)dx = \sum_{p=1}^{k} (F(\alpha_{p}) - F(\alpha_{p-1})) =$$

$$= F(\alpha_{k}) - F(\alpha_{0}) = F(b) - F(a)$$

Замечание 3.8.2 Не каждая интегрируемая функция имеет первообразную, и не каждая функция, имеющая первообразную, интегрируема.

$$f(x) = \begin{cases} x^2 \sin\frac{1}{x^2}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

дифференцируема, а значит имеет первообразную, но $f' \notin R[-1,1]$ (в силу неограниченности).

C другой стороны, функция $f(x) = \operatorname{sign} x \in R[-1,1]$, но не имеет первообразной на этом промежутке. Она имеет обобщенную первообразную.

Обязательно придумайте пример интегрируемой функции, не имеющей даже обобщенной первообразной.

Вывод: интегрируемость и наличие первообразной - вещи разные.

3.9 Формулы замены переменной и интегрирования по частям

Теорема 3.9.1 (Формула интегрирования по частям) Пусть $u, v \partial u \phi$ -ференцируемы на [a, b], причем $u', v' \in R[a, b]$, тогда

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du.$$

Доказательство. Согласно теоремам о действиях с интегрируемыми функциями, $uv' \in R[a,b]$ и $u'v \in R[a,b]$. Кроме того, $(uv)' = u'v + uv' \in R[a,b]$, а значит, по усиленной формуле Ньютона-Лейбница,

$$\int_{a}^{b} u'v dx + \int_{a}^{b} uv' dx = \int_{a}^{b} (u'v + uv') dx = \int_{a}^{b} (uv)' dx = uv \Big|_{a}^{b}.$$

Пример 3.9.1 Вычислить интеграл

$$\int_{0}^{\pi/2} \sin^n x dx.$$

Пусть

$$I_n = \int_{0}^{\pi/2} \sin^n x dx.$$

Ясно, что $I_0=\frac{\pi}{2},\ I_1=1.\ \Pi ycmv\ n>1,\ mor\partial a$

$$\int_{0}^{\pi/2} \sin^{n} x dx = \int_{0}^{\pi/2} \sin^{n-1}(x) d(-\cos(x)) = (n-1) \int_{0}^{\pi/2} \sin^{n-2} x \cos^{2} x dx =$$

$$= (n-1)(I_{n-2} - I_n),$$

 $om\kappa y\partial a$

$$I_n = \frac{n-1}{n} I_{n-2}.$$

Ясно, что тогда

$$I_n = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2}, & n = 2k\\ \frac{(n-1)!!}{n!!}, & n = 2k-1 \end{cases}$$

Теорема 3.9.2 (Первый вариант формулы замены переменной)

Пусть $f(x) \in C[a,b], x = \varphi(t) : [\alpha,\beta] \to [a,b], \varphi(t)$ дифференцируема и $\varphi'(t) \in R[\alpha,\beta],$ тогда

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Доказательство. Ясно, что интеграл от правой функции определен, так как $f(\varphi(t)) \in C[\alpha, \beta] \Rightarrow f(\varphi(t)) \in R[\alpha, \beta]$. По свойствам интегрируемых функций, $f(\varphi(t))\varphi'(t) \in R[\alpha, \beta]$, причем $F(\varphi(t))$ – первообразная этой функции, если F(x) – первообразная f(x). Тогда

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx.$$

Пример 3.9.2 Вычислить интеграл (a > 0)

$$\int_{0}^{a} \sqrt{a^2 - x^2} dx.$$

Ясно (из геометрических соображений), что ответ таков: $\frac{\pi}{4}a^2$. Проверим это. Сделаем замену $x=a\sin t$. Тогда

$$\int_{0}^{a} \sqrt{a^{2} - x^{2}} dx = \int_{0}^{\pi/2} a^{2} \cos^{2} t dt = a^{2} \int_{0}^{\pi/2} \left(\frac{1 + \cos 2t}{2} \right) dt = \frac{\pi}{4} a^{2}.$$

Часто теорему о замене переменной дают и в более общей форме.

Теорема 3.9.3 (Второй вариант формулы замены переменной) $\Pi y cm b \quad \varphi(t) \quad \partial u \phi \phi e p e н ц u p y e ма \quad u \quad cm p o r o \quad м o н o m o н н a \quad h a \quad [\alpha, \beta], \quad \alpha \in R[\varphi(\alpha), \varphi(\beta)].$ То r d a

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Ясно, что здесь от функции φ больше требований, а от f – меньше. Мы не будем сейчас доказывать эту теорему.

3.10 Интегралы от четной, нечетной и периодической функций

Теорема 3.10.1 Пусть $f \in R[0,a]$ и является четной. Тогда

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$

Доказательство. Ясно, что $f \in R[-a, a]$, так как f(-x) = f(x).

$$\int_{-a}^{a} f(x)dx = \int_{-a}^{0} f(x)dx + \int_{0}^{a} f(x)dx.$$

В первом интеграле можно сделать замену t = -x, dt = -dx, откуда

$$\int_{-a}^{0} f(x)dx = -\int_{a}^{0} f(-t)dt = \int_{0}^{a} f(t)dt,$$

значит

$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} f(t)dt + \int_{0}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx.$$

Теорема 3.10.2 Пусть $f \in R[0,a]$ и является нечетной. Тогда

$$\int_{-a}^{a} f(x)dx = 0.$$

Доказательство. Доказательство аналогично доказательству теоремы 3.10.1 и предлагается в качестве упражнения.

Теорема 3.10.3 Пусть $f \in R[0,T]$ и является периодической с периодом T, тогда

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx, \ a \in \mathbb{R}.$$

Доказательство. Доказательство аналогично доказательству теоремы 3.10.1 и предлагается в качестве упражнения.

3.11 Формулы Валлиса и Стирлинга

Теорема 3.11.1 (Формула Валлиса)

$$\pi = \lim_{n \to +\infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$$

Доказательство. Ясно, что при $x \in (0, \frac{\pi}{2}), n \in \mathbb{N}$, выполняется цепочка неравенств

$$\sin^{2n+1}(x) < \sin^{2n}(x) < \sin^{2n-1}(x).$$

Обозначив

$$I_n = \int_{0}^{\pi/2} \sin^n x dx,$$

получим

$$I_{2n+1} < I_{2n} < I_{2n-1} \Leftrightarrow \frac{(2n)!!}{(2n+1)!!} < \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!} < \frac{(2n-2)!!}{(2n-1)!!}$$

или

$$\frac{1}{2n+1} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2 < \frac{\pi}{2} < \frac{1}{2n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2.$$

Пусть

$$x_n = \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2,$$

тогда

$$\pi < x_n < \frac{2n+1}{2n}\pi,$$

откуда и получается требуемое.

Докажем формулу Стирлинга в простейшем варианте. В дальнейшем она будет получена куда быстрее, проще, и точнее.

Теорема 3.11.2 (Простейшая формула Стирлинга)

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}, \quad n \to +\infty.$$

Доказательство. Рассмотрим последовательность

$$x_n = \frac{n!e^n}{n^{n+1/2}}.$$

Покажем, что она убывает и ограничена снизу. Так как

$$\frac{x_n}{x_{n+1}} = \frac{1}{e} \left(1 + \frac{1}{n} \right)^{n+1/2},$$

ТО

$$\ln \frac{x_n}{x_{n+1}} = \left(n + \frac{1}{2}\right) \ln \left(1 + \frac{1}{n}\right) - 1.$$

 \Box

Из геометрических соображений легко получить неравенство, что

$$\frac{1}{n+1/2} < \int_{n}^{n+1} \frac{dx}{x} = \ln\left(1 + \frac{1}{n}\right) < \frac{1}{2}\left(\frac{1}{n} + \frac{1}{n+1}\right).$$

Умножив все неравенство на (n + 1/2), получим

$$1 < \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) < \frac{(n+1/2)^2}{n(n+1)}.$$

Вычтем единицу, тогда получим

$$0 < \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) - 1 < \frac{(n+1/2)^2}{n(n+1)} - 1 = \frac{1}{4n(n+1)},$$

Откуда

$$\frac{x_n}{x_{n+1}} > 1,$$

а значит последовательность x_n убывает. Так как она ограничена снизу (например, нулем), то она, согласно теореме Вейерштрасса, имеет предел. Обозначим его A.

Подставим в неравенства $(n+1),\ (n+2),\ ...,\ (n+k)$ и сложим, тогда получим

$$0 < \ln \frac{x_n}{x_{n+k}} < \frac{1}{4n(n+1)} + \frac{1}{4(n+1)(n+2)} + \dots + \frac{1}{4(n+k-1)(n+k)} = \frac{1}{4} \left(\frac{1}{n} - \frac{1}{n+k} \right),$$

откуда

$$1 < \frac{x_n}{x_{n+k}} < e^{\frac{1}{4}\left(\frac{1}{n} - \frac{1}{n+k}\right)}.$$

Пусть $k \to +\infty$, тогда

$$1 < \frac{x_n}{A} < e^{1/(4n)}$$

и значит $A \neq 0$. В итоге,

$$A < x_n < Ae^{1/(4n)}.$$

а значит $x_n = A(1 + o(1))$. Осталось найти A. Согласно формуле Валлиса,

$$\sqrt{\pi} = \lim_{n \to +\infty} \frac{1}{\sqrt{n}} \frac{(2n)!!}{(2n-1)!!} = \lim_{n \to +\infty} \frac{1}{\sqrt{n}} \frac{((2n)!!)^2}{(2n)!} = \lim_{n \to +\infty} \frac{2^{2n}(n!!)^2}{\sqrt{n}(2n)!}.$$

С другой стороны,

$$\frac{x_n^2}{x_{2n}} = \sqrt{2} \frac{(n!!)^2 2^{2n}}{(2n)! \sqrt{n}} \xrightarrow[n \to +\infty]{} \sqrt{2\pi}.$$

Левая же часть стремится к A. Тем самым,

$$x_n = \sqrt{2\pi}(1 + o(1)),$$

что и доказывает формулу.

Замечание 3.11.1 Можно доказать, что

$$n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} e^{\theta/12n}, \ 0 < \theta < 1.$$

4 Приложения определенного интеграла

В этом разделе мы обсудим некоторые приложения теории определенного интеграла Римана к различным геометрическим и физическим задачам.

4.1 Понятие площади и ее вычисление

Понятие площади некоторых геометрических фигур известно из школьного курса геометрии. Определение площади для более широкого класса множеств «совсем строго» даваться не будет.

Замечание 4.1.1 Пусть $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Как обычно,

$$|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Определение 4.1.1 Отображение $U: \mathbb{R}^n \to \mathbb{R}^n$ называется движением, если

$$|x - y| = |U(x) - U(y)|,$$

иными словами движение сохраняет расстояния.

Определение 4.1.2 Функция множеств (функционал) $S: \mathfrak{U} \to \mathbb{R}$, заданная на некотором множестве «квадрируемых фигур» подмножеств плоскости, называется площадью, если

1.
$$S(A) \geqslant 0, A \in \mathfrak{U}$$
.

2. Echu $A, B \in \mathfrak{U}, A \cap B = \emptyset, mo \ A \cup B \in \mathfrak{U} \ u$

$$S(A \cup B) = S(A) + S(B).$$

- 3. Площадь прямоугольника со сторонами а, b равна аb.
- 4. Если $A \in \mathfrak{U}$, U движение, то $U(A) \in \mathfrak{U}$ и

$$S(U(A)) = S(A).$$

Замечание 4.1.2 Множество квадрируемых фигур мы не определяем. То, что некоторая фигура имеет площадь здесь и далее принимается на веру до обсуждений теории меры.

Лемма 4.1.1 (Свойства площади) $\Pi y cmb \ S : \mathfrak{U} \to \mathbb{R} - n \wedge o w a \partial b$. $Tor \partial a$:

1. Площадь монотонна, то есть если $A, B \in \mathfrak{U}, A \subset B$, то

$$S(A) \leqslant S(B)$$
.

- 2. Пусть $A \in \mathfrak{U}$ содержится в некотором отрезке. Тогда S(A) = 0.
- 3. Если множеества $A,B\in\mathfrak{U}$ пересекаются по множееству нулевой площади, то

$$S(A \cup B) = S(A) + S(B).$$

Доказательство. 1. $B = A \cup (B \setminus A)$, причем $A \cap (B \setminus A) = \varnothing$. Тогда, предполагая квадрируемость $(B \setminus A)$,

$$S(A \cup (B \setminus A)) = S(A) + S(B \setminus A) \geqslant S(A).$$

2. A можно поместить в прямоугольник площади меньше, чем любое наперед заданное $\varepsilon > 0$. Тогда

$$\forall \varepsilon > 0 \quad 0 \leqslant S(A) < \varepsilon \Rightarrow S(A) = 0.$$

3. Пусть $C = A \cap B$.

$$S(A) = S(A \setminus C) + S(C) = S(A \setminus B)$$

$$S(A \cup B) = S(A \setminus C) + S(B) = S(A) + S(B).$$

4.1.1 Площадь в декартовых координатах

Определение 4.1.3 Пусть $f:[a,b]\to\mathbb{R},\ f\geqslant 0$. Множество

$$G_f = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], \ 0 \le y \le f(x)\}$$

называется подграфиком функции f. Если функция f непрерывна, то подграфик еще называют криволинейной трапецией.

Предположим, что $f \in R[a,b]$ и подграфик данной функции имеет площадь. Пусть τ – разбиение отрезка [a,b]. Геометрически очевидно, что

$$s_{\tau} \leqslant S(G_f) \leqslant S_{\tau}.$$

Поскольку $S(G_f)$ – число, не зависящее от τ , а $f \in R[a,b]$, то при $\lambda(\tau) \to 0$ выполняется $S_\tau - s_\tau \to 0$, значит при всех τ неравенству

$$s_{\tau} \leqslant S(G_f) \leqslant S_{\tau}$$

удовлетворяет только одно число

$$S(G_f) = \int_a^b f(x)dx.$$

Данная формула допускает некоторое обобщение.

Теорема 4.1.1 Пусть $f, g \in R[a, b], f \leqslant g,$ тогда площадь фигуры $S(G_{f,q})$

$$G_{f,g} = \{(x,y) \in \mathbb{R}^2 : x \in [a,b], \ f(x) \le y \le g(x)\}$$

вычисляется по формуле

$$S(G_{f,g}) = \int_{a}^{b} (g - f) dx.$$

Доказательство. Для доказательства достаточно перенести фигуру выше оси абсцисс, добавив к f и g такую постоянную c, чтобы $f+c\geqslant 0$. Тогда

$$S(G_{f,g}) = S(G_{f+c,g+c}) = S(G_{g+c}) - S(G_{f+c}) =$$

$$= \int_{a}^{b} (g+c)dx - \int_{a}^{b} (f+c)dx = \int_{a}^{b} (g-f)dx.$$

Пусть теперь функция $y = f(x), x \in [a, b]$ задана параметрически уравнениями x = x(t), y = y(t) и $x(\alpha) = a, x(\beta) = b.$

Тогда площадь подграфика находится как

$$S(G_f) = \int_a^b f(x)dx = \int_\alpha^\beta y(t)x'(t)dt.$$

В случае замкнутой кривой верна

Теорема 4.1.2 Пусть фигура G ограничена замкнутой кривой, заданной параметрически $x=x(t),y=y(t),\,t\in [\alpha,\beta]$. Функции $x(t),\,y(t)$ – непрерывно дифференцируемы. Тогда

$$S(G) = \pm \int_{\alpha}^{\beta} y(t)x'(t)dt = \mp \int_{\alpha}^{\beta} x(t)y'(t)dt,$$

где знак перед интегралом определяется в зависимости от направления обхода кривой. Точнее, верхний знак соответствует обходу кривой по часовой стрелке.

Доказательство. Для доказательства рассмотрим случай, когда G выпукла и граница обходится по часовой стрелке. Пусть $x \in [a,b]$ и $x(\alpha) = x(\beta) = a$, $x(\gamma) = b$. Тогда, пользуясь аддитивностью площади и предыдущей теоремой, получим

$$S(G) = \int\limits_{\alpha}^{\gamma} y(t)x'(t)dt - \int\limits_{\beta}^{\gamma} y(t)x'(t)dt = \int\limits_{\alpha}^{\gamma} y(t)x'(t)dt + \int\limits_{\gamma}^{\beta} y(t)x'(t)dt = \int\limits_{\alpha}^{\beta} y(t)x'(t)dt.$$

Второй интеграл получим, меняя x и y ролями.

Если кривая имеет противоположную ориентацию, то изменятся знаки перед интегралами.

Если фигура G не выпуклая, то представим её как объединение выпуклых фигур и воспользуемся аддитивностью площади.

4.1.2 Площадь в полярных координатах

Выведем формулу для вычисления площади фигуры в полярных координатах.

Определение 4.1.4 Пусть $0 < \beta - \alpha \leqslant 2\pi, \ f: [\alpha, \beta] \to \mathbb{R}, \ f \geqslant 0$. Множество

$$\widetilde{G}_f = \{ (r\cos\varphi, r\sin\varphi) \in \mathbb{R}^2 : \varphi \in [\alpha, \beta], \ 0 \leqslant r \leqslant f(\varphi) \}$$

называется подграфиком функции f в полярных координатах. Если функция f непрерывна, то подграфик еще называется криволинейным сектором.

Предположим, что $f \in R[\alpha, \beta]$ и подграфик данной функции в полярных координатах имеет площадь. Пусть $\tau = \{\varphi_k\}_{k=0}^n$ – разбиение $[\alpha, \beta]$, $\Delta \varphi_i = \varphi_i - \varphi_{i-1}$,

$$m_i = \inf_{\varphi \in [\varphi_{i-1}, \varphi_i]} f(\varphi), \ M_i = \sup_{\varphi \in [\varphi_{i-1}, \varphi_i]} f(\varphi).$$

Воспользовавшись тем, что площадь сектора радиусом r и углом φ равна $\frac{1}{2}r^2\varphi$, составим суммы

$$s_{\tau} = \frac{1}{2} \sum_{i=1}^{n} m_i^2 \Delta \varphi_i, \ S_{\tau} = \frac{1}{2} \sum_{i=1}^{n} M_i^2 \Delta \varphi_i.$$

Геометрически очевидно, что

$$s_{\tau} \leqslant S(\widetilde{G_f}) \leqslant S_{\tau}.$$

Кроме того, s_{τ} и S_{τ} – суммы Дарбу функции $\frac{1}{2}f^2(\varphi)$. Так как эта функция интегрируема, то при $\lambda(\tau)\to 0$ выполняется $S_{\tau}-s_{\tau}\to 0$, а значит

$$S(\widetilde{G_f}) = \frac{1}{2} \int_{\alpha}^{\beta} f^2 d\varphi.$$

4.2 Понятие объема и его вычисление

Под словом тело всюду понимается подмножество пространства $\mathbb{R}^3.$

Определение 4.2.1 Функция множеств (функционал) $V: \mathfrak{U} \to \mathbb{R}$, заданная на некотором множестве «кубируемых фигур» подмножеств пространства \mathbb{R}^3 , называется объемом, если

1.
$$V(A) \geqslant 0, A \in \mathfrak{U}$$
.

2. Ecau $A, B \in \mathfrak{U}, A \cap B = \emptyset, mo \ A \cup B \in \mathfrak{U} \ u$

$$V(A \cup B) = V(A) + V(B).$$

- 3. Объем параллелепипеда со сторонами a,b,c равна abc.
- 4. Если $A \in \mathfrak{U}$, U движение, то $U(A) \in \mathfrak{U}$ и

$$V(U(A)) = V(A).$$

Замечание 4.2.1 Множество кубируемых фигур мы не определяем. То, что некоторое тело имеет объем здесь и далее принимается на веру до обсуждений теории меры.

Лемма 4.2.1 (Свойства объема) Пусть $V: \mathfrak{U} \to \mathbb{R}$ – объем. Тогда:

1. Объем монотонен, то есть если $A, B \in \mathfrak{U}, A \subset B$, то

$$V(A) \leqslant V(B)$$
.

- 2. Пусть $A \in \mathfrak{U}$ содержится в некотором прямоугольнике. Тогда V(A) = 0.
- 3. Если множества $A, B \in \mathfrak{U}$ пересекаются по множеству нулевого объема, то

$$V(A \cup B) = V(A) + V(B).$$

Определение 4.2.2 (Сечение) Пусть T – тело, $x \in \mathbb{R}$. Множество

$$T(x) = \{(y, z) \in \mathbb{R}^2 : (x, y, z) \in T\}$$

называется сечением тела T первой координатой x.

4.2.1 Вычисление объемов

Далее будем полагать, что тело T удовлетворяет следующим условиям:

- 1. $\exists [a,b]: T(x) = \varnothing, x \notin [a,b].$
- 2. $\forall x \in [a,b]$ фигура T(x) квадрируема с площадью S(x), причем $S(x) \in C[a,b]$.
- 3. $\forall \Delta \subset [a, b] \exists \xi_{\Delta}^*, \xi_{\Delta}^{**} : T(\xi_{\Delta}^*) \subset T(x) \subset T(\xi_{\Delta}^{**}) \forall x \in \Delta.$

Пусть T имеет объем и au – разбиение [a,b]. Пусть

$$m_k = \min_{\Delta_k} S(x), \ M_k = \max_{\Delta_k} S(x),$$

тогда

$$S(T(\xi_k^*)) = m_k, \quad S(T(\xi_k^{**})) = M_k.$$

Пусть

$$q_k = \Delta_k \times T(\xi_k^*), \quad Q_k = \Delta_k \times T(\xi_k^{**}),$$

тогда

$$q_k \subset T_k \subset Q_k, \quad T_k = \{(x, y, z) \in T : x \in \Delta_k\}.$$

Но тогда

$$\bigcup_{k=1}^{n} q_k \subset T \subset \bigcup_{k=1}^{n} Q_k.$$

По усиленной монотонности объема,

$$V\left(\bigcup_{k=1}^{n} q_{k}\right) = \sum_{k=1}^{n} V(q_{k}) = \sum_{k=1}^{n} m_{k} \Delta x_{k} = s_{\tau},$$

$$V\left(\bigcup_{k=1}^{n} Q_{k}\right) = \sum_{k=1}^{n} V(Q_{k}) = \sum_{k=1}^{n} M_{k} \Delta x_{k} = S_{\tau}.$$

По монотонности объема,

$$s_{\tau} \leqslant V(T) \leqslant S_{\tau}.$$

Так как s_{τ} и S_{τ} – суммы Дарбу S(x), а последняя интегрируема, то

$$V(T) = \int_{a}^{b} S(x)dx.$$

Определение 4.2.3 (Тело вращения) Пусть $f \in C[a,b]$, причем $f \geqslant 0$. Множество

$$T_f = \{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \leqslant f^2(x)\}$$

называется телом вращения, полученным вращением графика функции y=f(x) вокруг Ox.

Ясно, что $S(x) = \pi f^2(x)$, все условия выполнены, а значит

$$V(T_f) = \pi \int_a^b f^2(x) dx.$$

4.3 Понятие длины кривой и ее вычисление

Определение 4.3.1 Путем в пространстве \mathbb{R}^n называется отображение $\gamma:[a,b]\to\mathbb{R}^n$, все координатные функции которого непрерывны на [a,b].

Замечание 4.3.1 Путь γ задается n непрерывными функциями $x_i(t)$: $[a,b] \to \mathbb{R}, \ i=1...n,$

$$\gamma(t) = (x_1(t), ..., x_n(t)).$$

Определение 4.3.2 Точка $\gamma(a)$ называется началом пути, а точка $\gamma(b)$ концом пути.

Определение 4.3.3 *Если* $\gamma(a) = \gamma(b)$, то путь называется замкнутым.

Определение 4.3.4 Если равенство $\gamma(t_1) = \gamma(t_2)$ возможно лишь при $t_1 = t_2$ или $t_1, t_2 \in \{a, b\}$, то путь называется простым (или несамопересекающимся).

Определение 4.3.5 Множество $\gamma([a,b])$, то есть образ отрезка [a,b], называется носителем пути.

Замечание 4.3.2 Разные пути могут иметь равные носители. Например, верхняя полуокружность $x^2 + y^2 = 1, \ y \geqslant 0$ является носителем как пути $\gamma_1(t) = (t, \sqrt{1-t^2}), \ t \in [-1,1], \ mak \ u \ nymu \ \gamma_2(t) = (\cos t, \sin t), \ t \in [0,\pi].$

Определение 4.3.6 Говорят, что $\gamma(t) = (x_1(t), ..., x_n(t)) : [a, b] \to \mathbb{R}^n$ - путь гладкости m, если $x_i(t) \in C^m[a, b]$, i = 1...n. Если m = 1, то путь часто называют просто гладким.

Определение 4.3.7 Если отрезок [a,b] можно разбить точками $a=t_0 < t_1 < ... < t_k = b$ так, что сужение пути $\gamma(t)$ на каждый отрезок $[t_{i-1},t_i]$ - гладкий путь, то путь называется кусочно-гладким.

Определение 4.3.8 Два пути $\gamma:[a,b]\to\mathbb{R}^n$ и $\widetilde{\gamma}:[\alpha,\beta]\to\mathbb{R}^n$ называются эквивалентными, если существует строго возрастающая биекция $u:[a,b]\to[\alpha,\beta]$, что

$$\gamma(t) = \widetilde{\gamma}(u(t)).$$

Замечание 4.3.3 Можно показать, что в условиях определения функция и непрерывна.

Лемма 4.3.1 Введенное отношение – отношение эквивалентности.

Доказательство. Очевидно.

Определение 4.3.9 *Класс эквивалентных путей называют кривой и обозначают* $\{\gamma\}$, а каждый представитель класса γ – параметризация кривой.

Ясно, что носители эквивалентных кривых совпадают.

Определение 4.3.10 $\{\gamma^-\}$ – кривая с противоположной ориентацией, если

$$\gamma^{-}(t) = \gamma(a+b-t), \ t \in [a,b]$$

Определение 4.3.11 Кривая называется гладкой (т-гладкой, кусочно-гладкой), если у нее существует гладкая (т-гладкая, кусочно-гладкая) параметризация.

4.3.1 Вычисление длины пути

Дадим определение длины пути. Определение должно удовлетворять нескольким естественным требованиям. Во-первых, длина пути должна быть аддитивной. Во-вторых, длина пути, соединяющего точки A и B, должна быть не меньше длины отрезка AB.

Для простоты и геометрической наглядности, пусть $\gamma(t)=(x(t),y(t)):$ $[a,b]\to\mathbb{R}^2$ – путь, au – разбиение отрезка [a,b] точками $t_0,t_1,...,t_n.$

Определение 4.3.12 Множество отрезков, соединяющих точки $\gamma(t_k)$ и $\gamma(t_{k-1})$, называется ломаной, вписанной в путь γ , отвечающей разбиению τ . Эту ломаную будем обозначать s_{τ} .

Длина отрезка, соединяющего точки $\gamma(t_k)$ и $\gamma(t_{k-1})$, вычисляется по теореме Пифагора и равна, очевидно,

$$\sqrt{(x(t_k)-x(t_{k-1}))^2+(y(t_k)-y(t_{k-1}))^2}$$
.

Тогда длина $|s_{ au}|$ ломаной $s_{ au}$ вычисляется по формуле

$$|s_{\tau}| = \sum_{k=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2}.$$

Определение 4.3.13 Длиной пути γ называется величина

$$l_{\gamma} = \sup_{\tau} |s_{\tau}|.$$

Определение 4.3.14 Если $l_{\gamma} < +\infty$, то путь γ называется спрямляемым.

Лемма 4.3.2 Длины эквивалентных путей равны

Доказательство. Пусть $\gamma(t) = \widetilde{\gamma}(u(t)),\ u(t): [a,b] \to [\alpha,\beta]$ – возрастающая биекция. Пусть $\tau = \{t_i\}_{i=0}^k$ – дробление [a,b], тогда $\widetilde{t}_k = u(t_k)$ – дробление $[\alpha,\beta]$.

$$s_{\gamma} = \sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k-1})| = \sum_{k=1}^{n} |\widetilde{\gamma}(\widetilde{t}_k) - \widetilde{\gamma}(\widetilde{t}_{k-1})| = s_{\widetilde{\gamma}} < l_{\widetilde{\gamma}}.$$

Значит, $l_{\gamma} \leqslant l_{\widetilde{\gamma}}$. Меняя их местами, придем к требуемому. \square Аналогично можно показать, что длины противоположных путей равны.

Определение 4.3.15 Длиной кривой называют длину любой ее параметризации.

Покажем, что путь аддитивен, а именно справедлива следующая теорема.

Теорема 4.3.1 Пусть $\gamma(t):[a,b]\to\mathbb{R},\ c\in(a,b),\ \gamma^1(t):[a,c]\to\mathbb{R},\ \gamma^2(t):[c,b]\to\mathbb{R}.$ Путь $\gamma(t)$ спрямляем тогда и только тогда, когда спрямляемы пути $\gamma^1(t)$ и $\gamma^2(t)$, причем

$$l_{\gamma} = l_{\gamma^1} + l_{\gamma^2}.$$

Доказательство. Докажем необходимость. Пусть τ – разбиение [a,b], содержащее точку c. Ясно, что $\tau=\tau_1\cup\tau_2$, где τ_1 – разбиение [a,c] и τ_2 – разбиение [c,b]. Тогда ломаная s_{τ} – объединение ломаных s_{τ_1} и s_{τ_2} , причем

$$|s_{\tau_1}| + |s_{\tau_2}| = |s_{\tau}| \leqslant l_{\gamma}.$$

Отсюда сразу следует, что каждый из путей γ^1 и γ^2 спрямляемы. Переходя в предыдущем неравенстве сначала к супремуму по τ_1 , а потом по τ_2 , получим

$$l_{\gamma^1} + l_{\gamma^2} \leqslant l_{\gamma}.$$

Докажем достаточность и обратное неравенство. Пусть τ – разбиение отрезка [a,b]. Если оно не содержит точку c, то добавим ее, получив разбиение $\tau' = \tau_1 \cup \tau_2$, где τ_1 – разбиение [a,c] и τ_2 – разбиение [c,b]. Пусть $c \in (t_{i-1},t_i)$. Длина ломаной, отвечающей разбиению τ' , могла только увеличиться, так как согласно неравенству треугольника,

$$\sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2} \leqslant$$

$$\sqrt{(x(c)-x(t_{i-1}))^2+(y(c)-y(t_{i-1}))^2}+\sqrt{(x(t_i)-x(c))^2+(y(t_i)-y(c))^2}.$$

Значит,

$$|s_{\tau}| \leqslant |s_{\tau'}| = |s_{\tau_1}| + |s_{\tau_2}| \leqslant l_{\gamma^1} + l_{\gamma^2}$$

и, тем самым, кривая γ спрямляема. Переходя к супремуму в левой части неравенства по τ , получим

$$l_{\gamma} \leqslant l_{\gamma^1} + l_{\gamma^2}.$$

Объединяя это неравенство и последнее в пункте необходимости, заключаем

$$l_{\gamma} = l_{\gamma^1} + l_{\gamma^2},$$

и теорема полностью доказана.

Замечание 4.3.4 Пока что нигде не требовалась непрерывность отображения γ .

Укажем важное достаточное условие спрямляемости кривой.

Теорема 4.3.2 Пусть путь $\gamma \in C^1[a,b]$, тогда он спрямляем.

Доказательство. Пусть τ – разбиение отрезка [a,b],

$$|s_{\tau}| = \sum_{k=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2}.$$

По теореме Лагранжа, найдутся точки $\xi_i, \tau_i \in [t_{i-1}, t_i]$ такие, что

$$x(t_i) - x(t_{i-1}) = x'(\xi_i)\Delta t_i, \ y(t_i) - y(t_{i-1}) = y'(\eta_i)\Delta t_i, \ \Delta t_i = t_i - t_{i-1},$$

откуда

$$|s_{\tau}| = \sum_{k=1}^{n} \sqrt{x'^{2}(\xi_{i}) + y'^{2}(\eta_{i})} \cdot \Delta t_{i}.$$

Пусть

$$M_x = \max_{t \in [a,b]} |x'(t)|, \ M_y = \max_{t \in [a,b]} |y'(t)|, m_x = \min_{t \in [a,b]} |x'(t)|, \ m_y = \min_{t \in [a,b]} |y'(t)|,$$

тогда

$$\sum_{k=1}^{n} \sqrt{m_x^2 + m_y^2} \cdot \Delta t_i \leqslant |s_\tau| \leqslant \sum_{k=1}^{n} \sqrt{M_x^2 + M_y^2} \cdot \Delta t_i,$$

откуда

$$\sqrt{m_x^2 + m_y^2} \cdot (b - a) \leqslant |s_\tau| \leqslant \sqrt{M_x^2 + M_y^2} \cdot (b - a).$$

Переходя к супремуму по τ , имеем

$$\sqrt{m_x^2 + m_y^2} \cdot (b - a) \leqslant l_\gamma \leqslant \sqrt{M_x^2 + M_y^2} \cdot (b - a).$$

и правое неравенство дает возможность заключить, что путь спрямляем. \square Пусть $\gamma:[a,b]\to\mathbb{R}$ – спрямляемая кривая. Тогда, согласно теореме, для $t\in[a,b]$ определена функция $l_{\gamma}(t)$, показывающая длину участка пути γ от точки $\gamma(a)$ до точки $\gamma(t)$.

Теорема 4.3.3 Пусть путь $\gamma \in C^1[a,b]$, тогда функция $l_{\gamma}(t) \in C^1[a,b]$.

Доказательство. Пусть $\Delta t > 0$ и t_0 , $t_0 + \Delta t \in [a,b]$. Согласно последнему неравенству предыдущей теоремы, сохраняя те же обозначения, на отрезке $[t_0, t_0 + \Delta t]$ выполнено

$$\sqrt{m_x^2 + m_y^2} \cdot \Delta t \leqslant l_\gamma(t_0 + \Delta t) - l_\gamma(t_0) \leqslant \sqrt{M_x^2 + M_y^2} \cdot \Delta t.$$

Деля на $\Delta t > 0$, получим

$$\sqrt{m_x^2 + m_y^2} \leqslant \frac{l_\gamma(t_0 + \Delta t) - l_\gamma(t_0)}{\Delta t} \leqslant \sqrt{M_x^2 + M_y^2}.$$

Так как $M_x = \max_{t \in [t_0, t_0 + \Delta t]} |x'(t)|$, и функция x'(t) непрерывна, то

$$\lim_{\Delta t \to 0+0} M_x = x'(t_0).$$

Аналогично,

$$\lim_{\Delta t \to 0+0} m_x = x'(t_0), \lim_{\Delta t \to 0+0} M_y = y'(t_0), \lim_{\Delta t \to 0+0} m_y = y'(t_0).$$

Значит,

$$\sqrt{x'^2(t_0) + y'^2(t_0)} \leqslant \lim_{\Delta t \to 0+0} \frac{l_{\gamma}(t_0 + \Delta t) - l_{\gamma}(t_0)}{\Delta t} \leqslant \sqrt{x'^2(t_0) + y'^2(t_0)}.$$

и $l'_{\gamma+}(t_0) = \sqrt{x'^2(t_0) + y'^2(t_0)}$. Аналогично рассматривается случай $\Delta t < 0$, а значит, в силу произвольности t_0 ,

$$l'_{\gamma}(t) = \sqrt{x'^2(t) + y'^2(t)}.$$

Так как функции x'(t) и y'(t), согласно условию, непрерывны, то $l_{\gamma}'(t) \in C[a,b]$ и $l_{\gamma}(t) \in C^1[a,b]$.

Следствие 4.3.4 Пусть путь $\gamma \in C^1[a,b]$, тогда

$$l_{\gamma} = \int_{a}^{b} \sqrt{x'^{2}(t) + y'^{2}(t)} dt.$$

Доказательство. Так как $l_\gamma'(t) \in C[a,b]$ и $l_\gamma(a)=0$, то по формуле Ньютона-Лейбница

$$l_{\gamma}(t) = l_{\gamma}(t) - l_{\gamma}(a) = \int_{a}^{t} l_{\gamma}'(t)dt.$$

Так как $l_{\gamma} = l_{\gamma}(b)$, то

$$l_{\gamma} = l_{\gamma}(b) = \int_{a}^{b} l'_{\gamma}(t)dt = \int_{a}^{b} \sqrt{x'^{2}(t) + y'^{2}(t)}dt.$$

Все вышеизложенное относится не только к путям в \mathbb{R}^2 , но и к путям в \mathbb{R}^n для произвольных $n \in \mathbb{N}$, доказательства сохраняются.

5 Несобственный интеграл

5.1 Понятие несобственного интеграла

Определение 5.1.1 Говорят, что функция f локально интегрируема на промежутке E, и пишут $f \in R_{loc}(E)$, если $f \in R[a,b]$ для любого $[a,b] \subset E$.

Иными словами, локально интегрируемая функция интегрируема на любом отрезке, содержащемся в E.

Определение 5.1.2 Пусть $f \in R_{loc}[a,b)$. Тогда символ

$$\int_{a}^{b} f(x)dx$$

называется несобственным интегралом от функции f по множеству [a,b).

Определение 5.1.3 Пусть $\omega \in [a, b)$. Тогда предел

$$\lim_{\omega \to b-} \int_{a}^{\omega} f(x) dx,$$

если он существует в $\overline{\mathbb{R}}$, называется значением несобственного интеграла.

Определение 5.1.4 *Пусть* $\omega \in [a,b)$. *Если предел*

$$\lim_{\omega \to b-} \int_{a}^{\omega} f(x) dx$$

существует в \mathbb{R} , то несобственный интеграл называется сходящимся. Иначе — расходящимся.

Пример 5.1.1 Легко понять, что интеграл

$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$$

cxoдumcs, когда $\alpha > 1$, и расходится иначе. Более точно,

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{\alpha - 1}, & \alpha > 1\\ +\infty, & \alpha \leqslant 1. \end{cases}$$

Аналогично,

$$\int_{0}^{1} \frac{dx}{x^{\alpha}}$$

 $cxoдится, когда \alpha < 1, и расходится иначе. Более точно,$

$$\int_{0}^{1} \frac{1}{x^{\alpha}} dx = \begin{cases} \frac{1}{1-\alpha}, & \alpha < 1 \\ +\infty, & \alpha \geqslant 1. \end{cases}$$

5.2 Свойства несобственного интеграла

Свойства несобственного интеграла во многом аналогичны свойствам классического интеграла Римана.

Теорема 5.2.1 (О линейности несобственного интеграла) $\Pi ycmb$

 $f,g\in R_{loc}[a,b)$. Если существуют в $\mathbb{\bar{R}}\int\limits_a^b f(x)dx$ и $\int\limits_a^b g(x)dx$, то

$$\int_{a}^{b} (f+g)dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx,$$

если соответствующая операция определена в $\bar{\mathbb{R}}$.

Доказательство. Для доказательства достаточно перейти к пределу при $\omega \to b-$ в равенстве

$$\int_{a}^{\omega} (f+g)dx = \int_{a}^{\omega} f(x)dx + \int_{a}^{\omega} g(x)dx.$$

Замечание 5.2.1 Из теоремы следует, что сумма двух сходящихся интегралов сходится. Верно и такое утверждение. Если $\int_a^b f(x)dx$ сходится, $a\int_a^b g(x)dx$ расходится, то $\int_a^b (f(x)+g(x))dx$ тоже расходится. При этом если оба интеграла расходятся, то сумма может как сходиться, так и расходиться (Приведите соответствующие примеры).

Теорема 5.2.2 (Монотонность несобственного интеграла) Пусть $f,g \in R_{loc}[a,b), f(x) \leqslant g(x)$ на [a,b) и существуют в \mathbb{R} оба интеграла $\int\limits_a^b f(x)dx$ и $\int\limits_a^b g(x)dx$. Тогда

$$\int_{a}^{b} f(x)dx \leqslant \int_{a}^{b} g(x)dx.$$

Доказательство. Для доказательства достаточно перейти к пределу при $\omega \to b-$ в неравенстве

$$\int_{a}^{\omega} f(x)dx \leqslant \int_{a}^{\omega} g(x)dx.$$

Теорема 5.2.3 (Об аддитивности по промежутку) Пусть $f \in R_{loc}[a,b)$. Тогда для любого $c \in (a,b)$ справедливо равенство

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx,$$

причем интегралы

$$\int_{a}^{b} f(x)dx \quad u \quad \int_{c}^{b} f(x)dx$$

существуют в $\bar{\mathbb{R}}$ или нет одновременно.

Доказательство. Для доказательства достаточно перейти к пределу при $\omega \to b-$ в равенстве

$$\int_{a}^{\omega} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{\omega} f(x)dx.$$

Замечание 5.2.2 Из теоремы следует, что при любом $c \in (a,b)$ сходимость интеграла $\int\limits_a^b f(x)dx$ равносильна сходимости интеграла $\int\limits_c^b f(x)dx$. Последний интеграл часто называют **хвостом** или **остатком** первого интеграла.

Теорема 5.2.4 (Формула интегрирования по частям) Пусть $u, v \partial u \phi$ -ференцируемы на [a, b) и $u', v' \in R_{loc}[a, b)$. Тогда

$$\int_{a}^{b} uv'dx = uv\Big|_{a}^{b} - \int_{a}^{b} vu'dx,$$

причем последнее равенство справедливо тогда и только тогда, когда существует хотя бы два предела из трех.

Здесь используется короткая запись:

$$uv\Big|_a^b = \lim_{\omega \to b-0} uv\Big|_a^\omega = \lim_{\omega \to b-0} u(\omega)v(\omega) - u(a)v(a).$$

Доказательство. Для доказательства достаточно перейти к пределу при $\omega \to b-$ в равенстве

$$\int_{a}^{w} uv'dx = uv\Big|_{a}^{w} - \int_{a}^{w} vu'dx.$$

Теорема 5.2.5 (Формула замены переменной) Пусть $x=\varphi(t): [\alpha,\beta) \to [a,b)$ дифференцируема на $[\alpha,\beta),$ причем $\varphi'(t) \in R_{loc}[\alpha,\beta),$ $f \in C[a,b)$ и существует $\varphi(\beta-) \in \overline{\mathbb{R}}.$ Тогда

$$I_1 = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(x)dx = I_2,$$

nричем если существует один интеграл (в $\overline{\mathbb{R}}$), то существует и другой.

Доказательство. 1) Пусть существует $I_2 \in \overline{\mathbb{R}}$. Для $\omega \in (\alpha, \beta)$, пользуясь формулой замены переменной для определенного (собственного) интеграла, имеем

$$I_1 = \lim_{\omega \to \beta -} \int_{\alpha}^{\omega} f(\varphi(t)) \varphi'(t) dt = \lim_{\omega \to \beta -} \int_{\varphi(a)}^{\varphi(\omega)} f(x) dx = I_2.$$

П

2) Пусть теперь существует $I_1 \in \overline{\mathbb{R}}$. Докажем существование интеграла I_2 .

Если $\varphi(\beta-) \in \mathbb{R}$, то интеграл существует, как собственный. Равенство же справедливо из доказанного первого пункта.

Пусть теперь $\varphi(\beta-)=b$. Возьмем произвольную последовательность $x_n\in[a,b)$, причем $x_n\xrightarrow[n\to+\infty]{}b$. Будем считать, что $x_n\in[\varphi(\alpha),b)$. Тогда, по теореме Больцано–Коши, найдутся точки $\gamma_n\in[\alpha,\beta)$ такие, что $\varphi(\gamma_n)=x_n$.

Покажем, что $\gamma_n \to \beta-$. От противного, пусть выполнено отрицание определения предела:

$$\exists \varepsilon > 0 : \forall n_0 \ \exists n \geqslant n_0 : \ \gamma_n \in [\alpha, \beta - \varepsilon].$$

Тогда для указанных ε и n имеем $\varphi(\gamma_n) \leqslant \max_{[\alpha,\gamma]} \varphi = b' < b$, что противоречит тому, что $\varphi(\gamma_n) = x_n \to b - 0$.

Значит $\gamma_n \to \beta$ — и

$$I_2 = \lim_{n \to +\infty} \int_{\varphi(\alpha)}^{x_n} f(x) dx = \lim_{n \to +\infty} \int_{\alpha}^{\gamma_n} f(\varphi(t)) \varphi'(t) dt = I_1.$$

5.3 Признаки сходимости интегралов от функций, сохраняющих знак

В этом пункте будем считать, что рассматриваемые функции не меняют знак. Всюду мы будем пользоваться следующей теоремой.

Теорема 5.3.1 Пусть $f \in R_{loc}[a,b), f \geqslant 0$. Тогда функция

$$F(\omega) = \int_{a}^{\omega} f(x)dx, \ \omega \in [a, b)$$

не убывает, а сходимость интеграла

$$\int_{a}^{b} f(x)dx$$

равносильна ограниченности функции $F(\omega)$.

Доказательство. Ясно, что если $a \leqslant \omega_1 \leqslant \omega_2 < b$, то, так как

$$\int_{\omega_1}^{\omega_2} f(x) dx \geqslant 0,$$

ТО

$$\int_{a}^{\omega_{2}} f(x)dx = \int_{a}^{\omega_{1}} f(x)dx + \int_{\omega_{1}}^{\omega_{2}} f(x)dx \geqslant \int_{a}^{\omega_{1}} f(x)dx,$$

откуда $F(\omega_2) \geqslant F(\omega_1)$, а значит $F(\omega)$ не убывает. Тогда сходимость несобственного интеграла, то есть существование конечного предела, по теореме Вейерштрасса равносильна ограниченности $F(\omega)$.

Теорема 5.3.2 (Признаки сравнения) Пусть $f,g \in R_{loc}[a,b)$ и $0 \leqslant f(x) \leqslant g(x)$ при $x \in [a,b)$. Тогда

- 1. Если сходится $\int\limits_a^b g(x)dx$, то сходится $u\int\limits_a^b f(x)dx$.
- 2. Если расходится $\int\limits_a^b f(x)dx$, то расходится $u\int\limits_a^b g(x)dx$.
- 3. Ecnu $f(x) \sim g(x)$ npu $x \to b-$, mo интегралы

$$\int_{a}^{b} f(x)dx \ u \int_{a}^{b} g(x)dx$$

сходятся или расходятся одновременно.

Доказательство. 1. Докажем первый пункт. Согласно предыдущей теореме,

$$F(\omega) = \int_{a}^{\omega} f(x)dx$$

не убывает с ростом ω . По свойствам интеграла Римана, а также используя теорему Вейерштрасса, при каждом $\omega \in [a,b)$,

$$F(\omega) = \int_{a}^{\omega} f(x)dx \leqslant \int_{a}^{\omega} g(x)dx \leqslant \sup_{\omega \in [a,b)} \int_{a}^{\omega} g(x)dx = \int_{a}^{b} g(x)dx < +\infty,$$

где последнее неравенство справедливо, исходя из условия (несобственный интеграл сходится). Но тогда $F(\omega)$ ограничена, а значит, по предыдущей теореме, интеграл сходится.

- 2. Второй пункт докажем от противного. Если предположить, что интеграл $\int\limits_a^b g(x)dx$ сходится, то, по только что доказанному первому пункту, сходится и $\int\limits_a^b f(x)dx$, что противоречит условию.
- 3. Согласно определению, $f(x) \sim g(x)$ при $x \to b-$ означает, что существует $\alpha(x)$, что

$$f(x) = \alpha(x)g(x), \quad \lim_{x \to b^{-}} \alpha(x) = 1.$$

Тогда существует $\Delta > a$, что при $x \in [\Delta, b)$ выполняется неравенство

$$\frac{1}{2} \leqslant \alpha(x) \leqslant \frac{3}{2},$$

откуда, при $x \in [\Delta, b)$

$$\frac{1}{2}g(x) \leqslant f(x) \leqslant \frac{3}{2}g(x).$$

Кроме того, сходимость интегралов

$$\int_{a}^{b} f(x)dx, \int_{a}^{b} g(x)dx$$

равносильна сходимости интегралов

$$\int_{\Delta}^{b} f(x)dx, \int_{\Delta}^{b} g(x)dx.$$

Для последних же рассуждения проводятся с использованием пунктов 1 и 2 данной теоремы, опираясь на неравенство

$$\frac{1}{2}g(x) \leqslant f(x) \leqslant \frac{3}{2}g(x).$$

Скажем, если сходится интеграл от g(x), то, используя правое неравенство, сходится и интеграл от f(x). Если же расходится интеграл от f, то, опять же, по правому неравенству, расходится и интеграл от g. Аналогичные рассуждения относительно левого неравенства завершают доказательство.

Пример 5.3.1 Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{x}{\sqrt[3]{1+x^7}} dx.$$

Ясно, что у этого интеграла особенность на верхнем пределе – это $+\infty$. Для исследования интеграла на сходимость вовсе не обязательно его вычислять. Заметим, что функция под интегралом положительна и упростим подынтегральную функцию при $x \to +\infty$:

$$\frac{x}{\sqrt[3]{1+x^7}} = \frac{x}{x^{7/3}\sqrt[3]{1/x^7+1}} \sim \frac{x}{x^{7/3}} = \frac{1}{x^{4/3}}, \ x \to +\infty.$$

Так как интеграл

$$\int_{-\infty}^{+\infty} \frac{dx}{x^{4/3}}$$

сходится, то, по 3 пункту теоремы сравнения, сходится и исходный интеграл.

Пример 5.3.2 Исследовать на сходимость интеграл

$$\int_{0}^{+\infty} \frac{\sin^2 x}{x^2} dx$$

На первый взгляд может показаться, что у данного интеграла две особенности: в точках 0 и $+\infty$, но это не так. В окрестности нуля функция ограничена и интеграл может рассматриваться, как собственный. Значит, осталось выяснить поведение интеграла на $+\infty$. Перепишем интеграл в виде

$$\int_{0}^{+\infty} \frac{\sin^{2} x}{x^{2}} dx = \int_{0}^{1} \frac{\sin^{2} x}{x^{2}} dx + \int_{1}^{+\infty} \frac{\sin^{2} x}{x^{2}} dx$$

и исследуем на сходимость второй. Функция под интегралом неотрицательна, можно пользоваться сформулированными теоремами. Так как

$$\frac{\sin^2 x}{x^2} \leqslant \frac{1}{x^2},$$

а интеграл от последней функции по $[1, +\infty)$ сходится, то сходится и исходный интеграл.

Замечание 5.3.1 Отметим важный момент: из сходимости интеграла $f(x) = \int_{a}^{+\infty} f(x) dx$ не следует, что $f(x) \xrightarrow[x \to +\infty]{} 0$ даже в случае, когда $f \geqslant 0$ и $f \in C[0, +\infty)$. Пусть

$$E = \bigcup_{k=1}^{+\infty} \left(k - \frac{1}{k^2(k+1)}, k + \frac{1}{k^2(k+1)} \right).$$

положим f(x)=0 при $x\in [0,+\infty)$, $x\notin E$. Кроме того, пусть

$$f(k) = k, \ f\left(k \pm \frac{1}{k^2(k+1)}\right) = 0$$

и f линейна на

$$\left(k - \frac{1}{k^2(k+1)}, k\right) u \left(k, k + \frac{1}{k^2(k+1)}\right).$$

Ясно, что такая функция непрерывна и неотрицательна на $x \in [0, +\infty)$. Кроме того, если $N \in \mathbb{N}$, то

$$\int_{0}^{N+1/2} f(x)dx = \sum_{k=1}^{N} \int_{k-\frac{1}{k^{2}(k+1)}}^{k-\frac{1}{k^{2}(k+1)}} f(x)dx = \sum_{k=1}^{N} k \cdot \frac{1}{k^{2}(k+1)} = \sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k$$

$$= \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{N+1} \xrightarrow[N \to +\infty]{} 1.$$

Из последнего следует (ввиду монотонности интеграла от неотрицательной функции), что сходится и $\int\limits_0^{+\infty} f(x)dx$. В то же время, очевидно, $f(x) \xrightarrow[x \to +\infty]{} 0$ не выполнено. Кроме того, f(x) оказывается не ограниченной.

5.4 Критерий Коши

Так как несобственный интеграл – это предел, то, как обычно, справедлив так называемый критерий Коши сходимости интеграла.

Теорема 5.4.1 (Критерий Коши) Пусть $f \in R_{loc}[a,b)$. Для сходимости интеграла $\int_a^b f(x)dx$ необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \; \exists \Delta \in (a,b) : \; \forall \delta_1, \delta_2 \in (\Delta,b) \Rightarrow \left| \int_{\delta_1}^{\delta_2} f(x) dx \right| < \varepsilon.$$

Доказательство. Обозначим

$$F(\omega) = \int_{a}^{\omega} f(x)dx.$$

Согласно определению, сходимость интеграла равносильна существованию предела функции $F(\omega)$ при $\omega \to b-0$. Согласно критерию Коши существования предела функции это выполнено тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \Delta \in (a, b) : \ \forall \delta_1, \delta_2 \in (\Delta, b) \Rightarrow |F(\delta_2) - F(\delta_1)| < \varepsilon.$$

Последнее же неравенство, в силу свойств интеграла, переписывается, как

$$|F(\delta_2) - F(\delta_1)| < \varepsilon \Leftrightarrow \left| \int_{\delta_1}^{\delta_2} f(x) dx \right| < \varepsilon,$$

откуда и следует требуемое.

5.5 Абсолютная и условная сходимости интеграла

Если функция не сохраняет знак вблизи особой точки, то выделяют дополнительный тип сходимости.

Определение 5.5.1 Пусть $f \in R_{loc}[a,b)$. Говорят, что несобственный интеграл $\int_a^b f(x)dx$ сходится абсолютно, если сходится интеграл $\int_a^b |f(x)|dx$.

Как связаны абсолютная сходимость и сходимость интеграла?

 \Box

Теорема 5.5.1 Пусть $f \in R_{loc}[a,b)$. Если интеграл $\int_a^b f(x)dx$ сходится абсолютно, то он сходится.

Доказательство. Пусть $\varepsilon > 0$. Так как интеграл сходится асбсолютно, то, согласно критерию Коши,

$$\exists \Delta : \ \forall \delta_1, \delta_2 \in (\Delta, b) \Rightarrow \left| \int_{\delta_1}^{\delta_2} |f(x)| dx \right| < \varepsilon.$$

Но согласно свойствам интеграла,

$$\left| \int_{\delta_1}^{\delta_2} f(x) dx \right| \leqslant \left| \int_{\delta_1}^{\delta_2} |f(x)| dx \right| < \varepsilon,$$

а значит, по критерию Коши, интеграл $\int\limits_a^b f(x)dx$ сходится.

Замечание 5.5.1 При исследовании интеграла на абсолютную сходимость можно пользоваться доказанными ранее признаками сходимости интегралов от знакопостоянных функций.

Определение 5.5.2 Пусть $f \in R_{loc}[a,b)$. Если интеграл $\int_a^b f(x)dx$ сходится, но абсолютной сходимости нет (то есть он не сходится абсолютно), то говорят, что интеграл $\int_a^b f(x)dx$ сходится условно (или неабсолютно).

Пример 5.5.1 Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{\cos x}{x^2} dx.$$

Τακ κακ

$$\left|\frac{\cos x}{r^2}\right| \leqslant \frac{1}{r^2},$$

а последний интеграл сходится, то исходный интеграл сходится абсолютно, а значит и просто сходится.

Пример 5.5.2 Часто оказывается, что интеграл сходится лишь условно. Исследуем на сходимость интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx.$$

Во-первых, он сходится. Интегрируя по частям ($dv = \sin x dx$), получим

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx = \cos 1 - \int_{1}^{+\infty} \frac{\cos x}{x^2} dx.$$

Последний интеграл, как мы только что показали, сходится.

Покажем, что абсолютной сходимости нет. Воспользуемся критерием Коши (его отрицанием):

$$\exists \ \varepsilon > 0 : \ \forall \Delta \in (a,b) \ \exists \delta_1, \delta_2 \in (\Delta,b) : \left| \int_{\delta_1}^{\delta_2} f(x) dx \right| \geqslant \varepsilon_0.$$

Пусть $\delta_1 = \pi n$, $\delta_2 = 2\pi n$, $\delta_i \to +\infty$, тогда

$$\int_{\pi n}^{2\pi n} \left| \frac{\sin x}{x} \right| dx \geqslant \frac{1}{2\pi n} \int_{\pi n}^{2\pi n} |\sin x| dx = \frac{1}{2\pi} \int_{0}^{\pi} \sin x dx = \frac{1}{\pi}.$$

Последнее равенство показывает, что абсолютной сходимости у интеграла нет. Значит, исходный интеграл сходится, но лишь условно.

Замечание 5.5.2 Расходимость последнего интеграла можно установить и следующим образом. Ясно, что

$$\frac{|\sin x|}{x} \geqslant \frac{\sin^2 x}{x},$$

причем

$$\int_{1}^{+\infty} \frac{\sin^2 x}{x} dx = \int_{1}^{+\infty} \frac{1 - \cos 2x}{x} dx = \int_{1}^{+\infty} \frac{dx}{x} - \int_{1}^{+\infty} \frac{\cos 2x}{x} dx,$$

где последний интеграл сходится (доказывается интегрированием по частям), а первый, очевидно, расходится. Значит и исходный интеграл расходится.

На практике часто бывает полезна ещё такая теорема.

Теорема 5.5.2 Пусть $f, g, h \in R_{loc}[a, b)$, причем

$$f(x) = g(x) + h(x).$$

Если интеграл $\int_a^b h(x)dx$ сходится абсолютно, то интегралы $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ ведут себя одинаково (одновременно либо расходятся, либо сходятся абсолютно, либо условно).

Доказательство. Пусть интеграл от g сходится абсолютно. Тогда, так как $|f| \leq |g| + |h|$, абсолютно сходится и интеграл от f. Наоборот, если сходится абсолютно интеграл от f, то, так как g = f - h и $|g| \leq |f| + |h|$, абсолютно сходится и интеграл от g.

Пусть интеграл от g сходится условно. Тогда интеграл от f сходится. Если бы он сходился абсолютно, то по пред. пункту, абсолютно бы сходился и интеграл от g. Значит, он сходится условно. Аналогично разбираются и остальные случаи.

5.6 Признак Абеля-Дирихле

Рассмотрим признак, позволяющий устанавливать сходимость интеграла от произведения двух функций.

Теорема 5.6.1 (Признак Абеля-Дирихле) Пусть $f \in C[a,b)$, $g \in C^1[a,b)$. Тогда для сходимости интеграла $\int\limits_a^b f(x)g(x)dx$ достаточно, чтобы выполнялась любая из двух пар условий:

- 1. Функция $F(\omega) = \int\limits_a^\omega f(x) dx$ ограничена на [a,b).
- 2. $g(x) \rightarrow 0$ при $x \rightarrow b 0$ и g монотонна,

u n u

- 1. Интеграл $\int\limits_a^b f(x)dx$ сходится.
- $2. \ g(x)$ ограничена на [a,b) и монотонна.

Формулировка теоремы с первой парой условий иногда называют признаком Дирихле, а со второй – признаком Абеля.

Доказательство. 1) Пусть $F(\omega) = \int_a^\omega f(x) dx$ и выполнена первая пара условий. Воспользуемся критерием Коши. Рассмотрим

$$\left| \int_{\delta_1}^{\delta_2} f(x)g(x)dx \right| = \left| \int_{\delta_1}^{\delta_2} g(x)dF(x) \right| = \left| F(\delta_2)g(\delta_2) - F(\delta_1)g(\delta_1) - \int_{\delta_1}^{\delta_2} F(x)g'(x)dx \right| \leqslant$$

применим неравенство треугольника для модуля и воспользуемся ограниченностью $F(\omega)$: $|F(\omega)| \leqslant C$:

$$\leq \left| F(\delta_2)g(\delta_2) \right| + \left| F(\delta_1)g(\delta_1) \right| + \left| \int_{\delta_1}^{\delta_2} F(x)g'(x)dx \right| \leq$$

оценим модуль интеграла интегралом от модуля

$$\leq C\left(|g(\delta_1)| + |g(\delta_2)|\right) + C\left|\int_{\delta_1}^{\delta_2} |g'(x)|dx\right|$$

заметим, что в силу монотонности g(x) g'(x) одного знака, а значит $\int\limits_{\delta_1}^{\delta_2}|g'(x)|dx=\pm(g(\delta_2)-g(\delta_1)).$ Воспользуемся неравенством треугольника еще раз и получим

$$\left| \int_{\delta_1}^{\delta_2} f(x)g(x)dx \right| \leq 2C(|g(\delta_1)| + |g(\delta_2)|).$$

Так как $g(x)\to 0$ при $x\to b-$, то по любому $\varepsilon>0$ найдется $\delta>0$, что $\forall x\in \dot{U}^-_\delta(b)\ |g(x)|<\varepsilon/4C,$ и

$$\left| \int_{\delta_1}^{\delta_2} f(x)g(x)dx \right| < \varepsilon,$$

что и означает сходимость интеграла.

2) Так как g монотонна и ограничена, то $\exists\lim_{x\to b-}g(x)=A$. Введем функцию $h(x)=g(x)-A,\ h(x)\to 0$ при $x\to b-$ и h(x) монотонна. Тогда

$$\int_{a}^{b} f(x)g(x)dx = \int_{a}^{b} f(x)h(x)dx + A \int_{a}^{b} f(x)dx.$$

Первый интеграл сходится по п.1), а второй по условию. Следовательно, исходный интеграл сходится.

Замечание 5.6.1 Можно ослабить условия на функции f и g в первой строке Теоремы, оставив только $f \in R_{loc}[a,b)$. Доказательство будет сложнее (требуется преобразование Абеля и вторая теорема о среднем).

Пример 5.6.1 Исследовать на абсолютную и условную сходимости

$$\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} dx, \quad \alpha \in \mathbb{R}.$$

Ясно, что если $\alpha > 1$, то интеграл сходится абсолютно, ведь

$$\frac{|\sin x|}{r^{\alpha}} \leqslant \frac{1}{r^{\alpha}},$$

а интеграл от последней функции по промежутку $[1, +\infty)$ при $\alpha > 1$ сходится.

Если $\alpha \leqslant 0$, то интеграл расходится, так как

$$\left| \int_{2\pi n}^{\pi/4 + 2\pi n} \frac{\sin x}{x^{\alpha}} dx \right| \ge (2\pi n)^{-\alpha} \int_{2\pi n}^{\pi/4 + 2\pi n} \sin x dx = (1 - \sqrt{2}/2)(2\pi n)^{-\alpha},$$

 $\it rde\ nocnedh$ яя величина не стремится $\it k$ нулю $\it c$ ростом $\it n$.

Eсли $\alpha \in (0,1]$, то интеграл сходится по признаку Абеля-Дирихле, так как

$$|F(\omega)| = \left| \int_{1}^{\omega} \sin x dx \right| = |\cos \omega - \cos 1| \leqslant 2$$

 $u 1/x^{\alpha}$ монотонно стремится к нулю при $x \to +\infty$. С другой стороны,

$$\left| \int_{\pi n}^{2\pi n} \frac{|\sin x|}{x^{\alpha}} dx \right| \geqslant \frac{1}{(2\pi n)^{\alpha}} \int_{\pi n}^{2\pi n} |\sin x| dx = \frac{n}{(2\pi n)^{\alpha}} 2 = C \cdot n^{1-\alpha},$$

где последнее выражение к нулю не стремится. Значит, абсолютной сходимости нет и интеграл при $\alpha \in (0,1]$ сходится условно.

Пример 5.6.2 Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \sin\left(\frac{\sin x}{\sqrt{x}}\right) \frac{dx}{\sqrt{x}}.$$

Найдем асимптотику подынтегральной функции вблизи особой точки.

$$\sin\left(\frac{\sin x}{\sqrt{x}}\right) = \frac{\sin x}{\sqrt{x}} - \frac{\left(\frac{\sin x}{\sqrt{x}}\right)^3}{3!} + o\left(\frac{\sin x}{\sqrt{x}}\right)^3.$$

Tог ∂a

$$\sin\left(\frac{\sin x}{\sqrt{x}}\right)\frac{1}{\sqrt{x}} = \frac{\sin x}{x} - \frac{\frac{\sin^3 x}{x^2}}{3!} + o\left(\frac{\sin^3 x}{x^2}\right).$$

Ясно, что интеграл от функции $\frac{\sin^3 x}{x^2} + o\left(\frac{\sin^3 x}{x^2}\right) = O\left(\frac{1}{x^2}\right)$ сходится абсолютно. Значит, достаточно исследовать интеграл

$$\int_{1}^{+\infty} \frac{\sin x}{x} dx.$$

Kак известно, он сходится условно. Значит, исходный интеграл сходится условно.

Пример 5.6.3 Отказаться от условия монотонности в признаке Абеля-Дирихле нельзя.

$$\int_{1}^{+\infty} \frac{\sin x}{\sqrt{x} - \sin x} dx.$$

Если (неверно) использовать признак, то

$$|F(\omega)| = \left| \int_{1}^{\omega} \sin x dx \right| \leqslant 2,$$

 $a\ (\sqrt{x}-\sin x)^{-1} \xrightarrow[x\to +\infty]{} 0$, но не монотонно. Откуда можно сделать неверный вывод, что интеграл сходится (условно).

В то же время,

$$\frac{\sin x}{\sqrt{x} - \sin x} = \frac{1}{\sqrt{x}} \frac{\sin x}{1 - \frac{\sin x}{\sqrt{x}}} = \frac{1}{\sqrt{x}} \sin x \left(1 - \frac{\sin x}{\sqrt{x}} + O\left(\frac{1}{x}\right) \right) =$$
$$= \frac{\sin x}{\sqrt{x}} - \frac{\sin^2 x}{x} + O\left(\frac{1}{x^{3/2}}\right).$$

Интеграл же от $\frac{\sin x}{\sqrt{x}} - \frac{\sin^2 x}{x}$ расходится, так как интеграл от первой функции сходится, а от второй расходится (по доказанному ранее).

5.7 Интегралы с несколькими особенностями

До сих пор особенность у нас была лишь на одном конце промежутка интегрирования. Обобщим.

Определение 5.7.1 $\Pi ycmv -\infty \leqslant a < b \leqslant +\infty$ $u \ f \in R_{loc}(a,b)$. $Tor \partial a$ nonaram

$$\int_{a}^{b} f(x)dx = \lim_{\omega_1 \to a+0} \int_{\omega_1}^{c} f(x)dx + \lim_{\omega_2 \to b-0} \int_{c}^{\omega_2} f(x)dx,$$

если оба предела существуют в \mathbb{R} и не равны бесконечностям разных знаков. При этом интеграл называется сходящимся, если, как и ранее, его значение принадлежит \mathbb{R} (то есть оба интеграла справа сходятся).

Замечание 5.7.1 Ясно, что определение не зависит от выбора точки с.

Пусть теперь $-\infty \leqslant a < b \leqslant +\infty$ и f задана на (a,b) за исключением не более чем конечного числа точек.

Определение 5.7.2 Точка $c \in (a,b)$ называется особой точкой функции f , если

$$\forall A, B: \ a < A < c < B < b \Rightarrow f \notin R[A, B].$$

Точка а называется особой, если либо $a = -\infty$, либо $f \notin R[a, B]$ для любых a < B < b. Аналогично определяется особая точка b.

Пусть число особых точек конечно и $c_1 < ... < c_{n-1}$ – особые точки внутри (a,b). Добавим $c_0 = a$ и $c_n = b$. Можно показать, что $f \in R_{loc}(c_{i-1},c_i)$, $i \in \{1,2,...,n\}$. Тогда

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \int_{c_{i-1}}^{c_i} f(x)dx,$$

и интеграл слева называется сходящимся, если все интегралы справа сходятся.

5.8 Интеграл в смысле главного значения

Определение 5.8.1 (Особенность в конченой точке) $\Pi ycmb - \infty < a < b < +\infty, c \in (a,b)$ — единственная особая точка. Предел

$$\lim_{\varepsilon \to 0+} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right),$$

если он существует в $\overline{\mathbb{R}}$, называется главным значением интеграла $\int_a^b f(x)dx$. Если значение предела принадлежит \mathbb{R} , то говорят, что интеграл сходится в смысле главного значения. Обозначают

$$v.p. \int_{a}^{b} f(x)dx.$$

Замечание 5.8.1 Если интеграл сходится, то он сходится и в смысле главного значения, но не наоборот.

Пример 5.8.1 Рассмотрим $\int_{-1}^{1} \frac{dx}{x}$. Ясно, что в классическом смысле он рас-ходится, но

$$v.p. \int_{-1}^{1} \frac{dx}{x} = \lim_{\varepsilon \to 0+} \left(\int_{-1}^{0-\varepsilon} \frac{dx}{x} + \int_{0+\varepsilon}^{1} \frac{dx}{x} \right) = \lim_{\varepsilon \to 0+} \left(\ln \varepsilon - \ln 1 + \ln 1 - \ln \varepsilon \right) = 0.$$

Определение 5.8.2 (Особенность в бесконечной точке) $\Pi ycmb \ f \in R_{loc}(\mathbb{R})$. Интегралом в смысле главного значения по \mathbb{R} называется предел

$$\lim_{A \to +\infty} \int_{-A}^{A} f(x) dx,$$

если он существует в $\overline{\mathbb{R}}$. Если значение предела принадлежит \mathbb{R} , то говорят, что интеграл сходится в смысле главного значения. Обозначают

$$v.p. \int_{-\infty}^{+\infty} f(x)dx.$$

Замечание 5.8.2 Если интеграл сходится, то он сходится и в смысле главного значения, но не наоборот.

Пример 5.8.2 Рассмотрим $\int_{-\infty}^{+\infty} x dx$. Ясно, что в классическом смысле он расходится, но

$$v.p. \int_{-\infty}^{\infty} x dx = \lim_{A \to +\infty} \int_{-A}^{A} x dx = 0.$$

В случае нескольких особенностей можно поступать по-разному. Останавливаться на этом не будем.

5.9 Интеграл Эйлера-Пуассона

Вычислим так называемый интеграл Эйлера-Пуассона.

Теорема 5.9.1

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$$

Доказательство. Легко проверить, что при $x \in \mathbb{R}$ справедливо неравенство

$$e^x \geqslant 1 + x$$
.

Тогда

$$(1-x^2) \leqslant e^{-x^2} = (e^{x^2})^{-1} \leqslant \frac{1}{1+x^2}.$$

Будем рассматривать первое неравенство при $x \in [-1,1]$, а последнее при $x \in \mathbb{R}$, тогда при $k \in \mathbb{N}$

$$(1-x^2)^k \leqslant e^{-kx^2} \leqslant \frac{1}{(1+x^2)^k},$$

а значит

$$\int_{-1}^{1} (1-x^2)^k dx \leqslant \int_{-1}^{1} e^{-kx^2} dx \leqslant \int_{-\infty}^{+\infty} e^{-kx^2} dx \leqslant \int_{-\infty}^{+\infty} \frac{dx}{(1+x^2)^k}.$$

Сделаем в первом интеграле замену $x = \sin t$, а в последнем $x = \operatorname{tg} t$. Тогда придем к неравенству

$$\int_{-\pi/2}^{\pi/2} \cos^{2k+1} t dt \leqslant \int_{-\infty}^{+\infty} e^{-kx^2} dx \leqslant \int_{-\pi/2}^{\pi/2} \cos^{2k-2} t dt,$$

откуда, в силу четности косинуса,

$$2\int_{0}^{\pi/2} \cos^{2k+1} t dt \leqslant \int_{-\infty}^{+\infty} e^{-kx^{2}} dx \leqslant 2\int_{0}^{\pi/2} \cos^{2k-2} t dt.$$

Так как, как было вычислено ранее (и в чем легко убедиться),

$$\int_{0}^{\pi/2} \sin^{n} x dx = \int_{0}^{\pi/2} \cos^{n} x dx = \begin{cases} \frac{(n-1)!!}{n!!} \frac{\pi}{2}, & n = 2k \\ \frac{(n-1)!!}{n!!}, & n = 2k - 1 \end{cases},$$

то приходим к цепочке неравенств

$$2\frac{(2k)!!}{(2k+1)!!} \leqslant \int_{-\infty}^{+\infty} e^{-kx^2} dx \leqslant 2\frac{(2k-3)!!}{(2k-2)!!} \frac{\pi}{2}.$$

Сделаем в интеграле замену $t = \sqrt{k}x$ и придем к неравенству

$$2\frac{(2k)!!}{(2k+1)!!} \leqslant \frac{1}{\sqrt{k}} \int_{-\infty}^{+\infty} e^{-t^2} dt \leqslant \pi \frac{(2k-3)!!}{(2k-2)!!}$$

или

$$2\sqrt{k}\frac{(2k)!!}{(2k+1)!!} \leqslant \int_{-\infty}^{+\infty} e^{-t^2} dt \leqslant \pi\sqrt{k}\frac{(2k-3)!!}{(2k-2)!!}.$$

По формуле Валлиса,

$$\sqrt{\pi} = \lim_{k \to +\infty} \frac{1}{\sqrt{k}} \frac{(2k)!!}{(2k-1)!!}.$$

Тогда

$$2\sqrt{k}\frac{(2k)!!}{(2k+1)!!} = \frac{2\sqrt{k}}{(2k+1)}\frac{(2k)!!}{(2k-1)!!} \sim \frac{1}{\sqrt{k}}\frac{(2k)!!}{(2k-1)!!} \xrightarrow[k \to +\infty]{} \sqrt{\pi}$$

И

$$\pi\sqrt{k} \frac{(2k-3)!!}{(2k-2)!!} = \pi \frac{1}{\frac{1}{\sqrt{k}} \frac{(2k)!!}{(2k-1)!!}} \frac{2k}{2k-1} \xrightarrow[k \to +\infty]{} \sqrt{\pi}.$$

Теперь требуемое получается согласно теореме о сжатой переменной.