Normal Forms for CFG's

Eliminating Useless Variables
Removing Epsilon
Removing Unit Productions
Chomsky Normal Form

Variables That Derive Nothing

- ◆Consider: S -> AB, A -> aA | a, B -> AB
- Although A derives all strings of a's, B derives no terminal strings.
 - Why? The only production for B leaves a B in the sentential form.
- Thus, S derives nothing, and the language is empty.

Discovery Algorithms

- There is a family of algorithms that work inductively.
- They start discovering some facts that are obvious (the basis).
- They discover more facts from what they already have discovered (induction).
- Eventually, nothing more can be discovered, and we are done.

Picture of Discovery

And so on ...

Testing Whether a Variable Derives Some Terminal String

- Basis: If there is a production A -> w, where w has no variables, then A derives a terminal string.
- ◆Induction: If there is a production A -> α, where α consists only of terminals and variables known to derive a terminal string, then A derives a terminal string.

Testing -(2)

- Eventually, we can find no more variables.
- An easy induction on the order in which variables are discovered shows that each one truly derives a terminal string.
- Conversely, any variable that derives a terminal string will be discovered by this algorithm.

Proof of Converse

- ◆The proof is an induction on the height of the least-height parse tree by which a variable A derives a terminal string.
- ◆Basis: Height = 1. Tree looks like:
- Then the basis of the algorithm tells us that A will be discovered.

Induction for Converse

Assume IH for parse trees of height < h, and suppose A derives a terminal string via a parse tree of height h:

By IH, those X_i's that are variables are discovered.

Thus, A will also be discovered, because it has a right side of terminals and/or discovered variables.

 W_1

Algorithm to Eliminate Variables That Derive Nothing

- Discover all variables that derive terminal strings.
- 2. For all other variables, remove all productions in which they appear in either the head or body.

Example: Eliminate Variables

- S -> AB | C, A -> aA | a, B -> bB, C -> c
- Basis: A and C are discovered because of A -> a and C -> c.
- Induction: S is discovered because of S -> C.
- Nothing else can be discovered.
- ◆ Result: S -> C, A -> aA | a, C -> c

Unreachable Symbols

- Another way a terminal or variable deserves to be eliminated is if it cannot appear in any derivation from the start symbol.
- ◆Basis: We can reach S (the start symbol).
- ◆Induction: if we can reach A, and there is a production A -> α , then we can reach all symbols of α .

Unreachable Symbols – (2)

- ◆ Easy inductions in both directions show that when we can discover no more symbols, then we have all and only the symbols that appear in derivations from S.
- Algorithm: Remove from the grammar all symbols not discovered reachable from S and all productions that involve these symbols.

Eliminating Useless Symbols

- A symbol is useful if it appears in some derivation of some terminal string from the start symbol.
- Otherwise, it is useless.
 Eliminate all useless symbols by:
 - Eliminate symbols that derive no terminal string.
 - 2. Eliminate unreachable symbols.

Example: Useless Symbols – (2)

- If we eliminated unreachable symbols first, we would find everything is reachable.
- A, C, and c would never get eliminated.

Why It Works

- After step (1), every symbol remaining derives some terminal string.
- After step (2) the only symbols remaining are all derivable from S.
- ◆In addition, they still derive a terminal string, because such a derivation can only involve symbols reachable from S.

Epsilon Productions

- We can almost avoid using productions of the form A -> ϵ (called ϵ -productions).
 - The problem is that ϵ cannot be in the language of any grammar that has no ϵ –productions.
- ♦ Theorem: If L is a CFL, then L- $\{\epsilon\}$ has a CFG with no ϵ -productions.

Nullable Symbols

- ◆ To eliminate ϵ -productions, we first need to discover the *nullable symbols* = variables A such that A =>* ϵ .
- ♦ Basis: If there is a production A -> ϵ , then A is nullable.
- ♦ Induction: If there is a production A -> α , and all symbols of α are nullable, then A is nullable.

Example: Nullable Symbols

S -> AB, A -> aA
$$\mid \epsilon$$
, B -> bB \mid A

- \bullet Basis: A is nullable because of A -> ϵ .
- ◆Induction: B is nullable because of B-> A.
- ◆Then, S is nullable because of S -> AB.

Eliminating ϵ -Productions

- **Key idea:** turn each production $A \rightarrow X_1...X_n$ into a family of productions.
- ◆For each subset of nullable X's, there is one production with those eliminated from the right side "in advance."
 - Except, if all X's are nullable (or the body was empty to begin with), do not make a production with ϵ as the right side.

Example: Eliminating ϵ Productions

- S -> ABC, A -> aA | ϵ , B -> bB | ϵ , C -> ϵ
- A, B, C, and S are all nullable.
- New grammar:

 $A \rightarrow aA \mid a$

B -> bB | b

Note: C is now useless. Eliminate its productions.

Why it Works

- Prove that for all variables A:
 - 1. If $w \neq \epsilon$ and $A = >*_{old} w$, then $A = >*_{new} w$.
 - 2. If $A = >*_{new} w$ then $w \neq \epsilon$ and $A = >*_{old} w$.
- Then, letting A be the start symbol proves that $L(new) = L(old) \{\epsilon\}$.
- (1) is an induction on the number of steps by which A derives w in the old grammar.

Proof of 1 — Basis

- ◆If the old derivation is one step, then A -> w must be a production.
- Since $w \neq \epsilon$, this production also appears in the new grammar.
- ♦ Thus, $A =>_{new} w$.

Proof of 1 – Induction

- •Let $A = >*_{old}$ w be a k-step derivation, and assume the IH for derivations of fewer than k steps.
- Let the first step be $A = >_{old} X_1...X_n$.
- Then w can be broken into $w = w_1...w_n$, where $X_i = >*_{old} w_i$, for all i, in fewer than k steps.

Induction – Continued

- By the IH, if $w_i \neq \epsilon$, then $X_i = >*_{new} w_i$.
- ♦ Also, the new grammar has a production with A on the left, and just those X_i 's on the right such that $w_i \neq \epsilon$.
 - Note: they all can't be ϵ , because $w \neq \epsilon$.
- ♦ Follow a use of this production by the derivations $X_i = >*_{new} w_i$ to show that A derives w in the new grammar.

Unit Productions

- ◆A unit production is one whose body consists of exactly one variable.
- These productions can be eliminated.
- ♦ Key idea: If A = > * B by a series of unit productions, and $B > \alpha$ is a non-unit-production, then add production $A > \alpha$.
- Then, drop all unit productions.

Unit Productions – (2)

- ◆Find all pairs (A, B) such that A =>* B by a sequence of unit productions only.
- ◆Basis: Surely (A, A).
- ◆Induction: If we have found (A, B), and B -> C is a unit production, then add (A, C).

Proof That We Find Exactly the Right Pairs

- By induction on the order in which pairs (A, B) are found, we can show A =>* B by unit productions.
- ◆ Conversely, by induction on the number of steps in the derivation by unit productions of A =>* B, we can show that the pair (A, B) is discovered.

Proof The the Unit-Production-Elimination Algorithm Works

- ◆Basic idea: there is a leftmost derivation A =>*_{lm} w in the new grammar if and only if there is such a derivation in the old.
- ◆A sequence of unit productions and a non-unit production is collapsed into a single production of the new grammar.

Cleaning Up a Grammar

- ◆ Theorem: if L is a CFL, then there is a CFG for L – {∈} that has:
 - 1. No useless symbols.
 - 2. No ϵ -productions.
 - 3. No unit productions.
- I.e., every body is either a single terminal or has length > 2.

Cleaning Up - (2)

- Proof: Start with a CFG for L.
- Perform the following steps in order:
 - 1. Eliminate ϵ -productions.
 - 2. Eliminate unit productions.
 - 3. Eliminate variables that derive no terminal string.
 - 4. Eliminate variables not reached from the start symbol.

 Must be first. Can create unit productions or useless

variables.

30

Chomsky Normal Form

- A CFG is said to be in *Chomsky Normal Form* if every production is of one of these two forms:
 - 1. A -> BC (body is two variables).
 - 2. A -> a (body is a single terminal).
- ◆ Theorem: If L is a CFL, then L − {ε} has a CFG in CNF.

Proof of CNF Theorem

- ◆Step 1: "Clean" the grammar, so every body is either a single terminal or of length at least 2.
- ◆Step 2: For each body ≠ a single terminal, make the right side all variables.
 - For each terminal a create new variable A_a and production A_a -> a.
 - Replace a by A_a in bodies of length ≥ 2 .

Example: Step 2

- Consider production A -> BcDe.
- We need variables A_c and A_e . with productions A_c -> c and A_e -> e.
 - Note: you create at most one variable for each terminal, and use it everywhere it is needed.
- ◆Replace A -> BcDe by A -> BA_cDA_e.

CNF Proof – Continued

- Step 3: Break right sides longer than 2 into a chain of productions with right sides of two variables.
- Example: A -> BCDE is replaced by A -> BF, F -> CG, and G -> DE.
 - F and G must be used nowhere else.

Example of Step 3 – Continued

- ◆Recall A -> BCDE is replaced by A-> BF, F -> CG, and G -> DE.
- ◆In the new grammar, A => BF => BCG => BCDE.
- More importantly: Once we choose to replace A by BF, we must continue to BCG and BCDE.
 - Because F and G have only one production.