Math 591 Lecture 6

Thomas Cohn

9/14/20

Many examples of C^{∞} manifolds are produced by the implicit function theorem. Reminder:

Thm: (Implicit Function Theorem) (Theorem B2 in the textbook)

Let $U \subseteq \mathbb{R}^N$ open, $F: U \to \mathbb{R}^k$ C^{∞} , and $x_0 \in U$ s.t. $F(x_0) = 0$. Split: for $x \in U$, write x = (x', x''), where $x' \in \mathbb{R}^{N-k}$ and $x'' \in \mathbb{R}^k$. Accordingly, the Jacobian of F at x_0 splits:

$$F'(x_0) = (\underbrace{\frac{\partial F}{\partial x'}(x_0)}_{N-k} | \underbrace{\frac{\partial F}{\partial x''}(x_0)}_{k}) \} k$$

Assume $\left[\frac{\partial F}{\partial x''}(x_0)\right](k \times k)$ is invertible. Then there exist open sets A,B with $x_0' \in A \subseteq \mathbb{R}^{N-k}, x_0'' \in B \subseteq \mathbb{R}^k$ and $g:A \to B$ C^{∞} s.t. $\left\{F^{-1}(0)\right\} \cap (A \times B) = \left\{(x',g(x') \mid x' \in A)\right\}$.

Application: Recall that given $F: U \to \mathbb{R}^k$, $U \subseteq \mathbb{R}^N$ open, zero is a regular value of F iff $\forall x \in F^{-1}(0, F'(x))$ has rank k.

Cor: If 0 is a regular value for F, then $F^{-1}(0) = M$ is locally a graph. Moreover, this structure of local graph gives M a C^{∞} atlas, and therefore a smooth manifold structure.

(Note: we will define "submanifold", and then $F^{-1}(0)$ will be examples of submanifolds of \mathbb{R}^N .)

Proof/Explanation: Assume 0 is a regular value of F. Then $\forall x_0 \in F^{-1}(0) = M$,

$$F'(x_0) = \begin{pmatrix} - & \nabla f^1(x_0) & - \\ & \vdots & \\ - & \nabla f^k(x_0) & - \end{pmatrix}$$

(for $F = (f^1, \ldots, f^k)$). After permuting the indices among the x_i , without loss of generality $\left[\frac{\partial F}{\partial x''}(x_0)\right]_{k \times k}$ is nondegenerate. (Think of this as swapping the columns around so the block is invertible.)

The independent variables will depend on x_0 . The number of independent variables is $N-k = \dim M$. k is the <u>codimension</u> of $M \subseteq \mathbb{R}^N$.

Statement about "Atlas"

Recall: A graph $\{(x',g(x')) \mid x' \in A\} = \Gamma$ has a global chart: just the projection onto the domain. $\Gamma \ni (x',x'') \mapsto x'$. Its inverse is $x' \mapsto (x', g(x'))$.

For two local representations of M as a local graph, transition functions are of the form $x' \mapsto (x', g(x')) \stackrel{\star}{\to} \mathbb{R}^{N-k}$. \star is a projection onto an N-k-dimensional coordinate plane of \mathbb{R}^N . This is smooth, and a transition map.

Ex: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ in \mathbb{R}^3 is the zero set of $F(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1$. (Check that 0 is a regular value.)

Ex: $O(n) = \{g \in \operatorname{Mat}(n, \mathbb{R}) \mid g^{-1} = g^T\}$. $\operatorname{Mat}(n, \mathbb{R}) \cong \mathbb{R}^{n^2}$, so $O(n) \subseteq \mathbb{R}^{n^2}$. In fact, $O(n) \subseteq \operatorname{GL}(n, \mathbb{R}) \subseteq \mathbb{R}^{n^2}$ (and $\operatorname{GL}(n, \mathbb{R})$ is open in \mathbb{R}^{n^2}). Define

$$\begin{split} F: \mathrm{GL}(n,\mathbb{R}) &\to \mathrm{Symm}(n,\mathbb{R}) \\ g &\mapsto g g^T - I \end{split}$$

where $\operatorname{Symm}(n,\mathbb{R}) = \left\{g \in \operatorname{Mat}(n,\mathbb{R}) \mid g = g^T\right\} \cong \mathbb{R}^{\frac{n(n+1)}{2}}$, and I is the identity matrix. Note: We have to choose the codomain carefully so that 0 is a regular value.

1

So, $O(n) = F^{-1}(0)$.

Check: is 0 a regular value? To see if F'(g), for $g \in O(n)$, has maximal rank, let $M \in \operatorname{Mat}(n, \mathbb{R})$. Then compute $\frac{d}{dt}F(g+tM)|_{t=0}$. (Compute this as a matrix to avoid \mathbb{R}^{n^2} coords.) Then $(-\varepsilon,\varepsilon)\ni t\mapsto \operatorname{GL}(n,\mathbb{R})\stackrel{F}{\mapsto}\operatorname{Symm}(n,\mathbb{R})$.

$$\left.\frac{d}{dt}F(g+tM)\right|_{t=0}=\left.\frac{d}{dt}(g+tM)(g+tM)^T\right|_{t=0}=\left.\frac{d}{dt}\left(gg^T+t(Mg^T+gM^T)+t^2MM^T\right)\right|_{t=0}=Mg^T+gM^T$$

Question: Is $\operatorname{Mat}(n,\mathbb{R})\ni M\mapsto Mg^T+gM^T$ onto? Yes! (This is true iff F'(g) has rank equal to the dimension of $\operatorname{Symm}(n,\mathbb{R})$. Let $S\in\operatorname{Symm}(n,\mathbb{R})$. What can M be?)

By the implicit function theorem, $O(n) \subseteq \mathbb{R}^{n^2}$ is locally a graph. So it has a natural C^{∞} structure.