Name: Azeem Pinjar; Roll no: 5021152 Date: 04-03-2023

FR. CONCEICAO RODRIGUES II	NSTITUTE OF TECHNOLOGY,	VASHI
----------------------------	-------------------------	-------

	FK. LUNKEILAU KUDKIGUES INSTITUTE OF TECHNOLOGY, VASIN
	PROBABULTY DISTRIBUTION
501:12	Given: m=1.5.
	To find: P(x=0), P(x>2)
	Solution: Let X denote no of cars which
	are hired out per day
	By Poisson's distribution,
	$-P(x) = e^{-m} m^{x}$
** ************	α!
	$P(x) = e^{-1.5}(1.5)^{2L}$
	X some should be a
	$P(0) = e^{-1.5}(1.5)^{\circ} = 1 = 0.223$
	0! 61.5
	$P(x>2) = 1 - P(x \leq 2)$
	= 1 - [P(0) + P(1) + P(2)]
	$= 1 - \left[c \cdot 223 + e^{-1.5} (1.5)^{2} + e^{-1.5} (1.5)^{2} \right]$
	1! 2!
	= 1 - (0.223 + 0.336 + 0.261)
	= 1 - (0.809)
	$P(\chi > 2) = 0.191$
	Proportion of days on which neither car is used = 0.223 = 22.3%
	15 USER - 0.703 - 72.3%
~	Proportion of days on which some lemand is refused = 0.191 = 19.1%
	S DEFUSED - ().177 17.
Sc1": 14	Given a - 0
	Given: p = 2 5
	To find: P(x > 4)
8	Solution: By Poisson's distribution.
	$P(x) = e^{-m} \cdot m^{x}$
	$\frac{\partial C!}{\partial C!}$
	11 11 11 11 11 11 11 11 11 11 11 11 11

$$P(x = 1 - P(x < 4))$$

$$= 1 - \left[P(0) + P(1) + P(2) + P(3)\right]$$

$$= 1 - \left[\frac{e^{-m} \cdot m^{\circ}}{0!} + \frac{e^{-m} \cdot m^{1}}{1!} + \frac{e^{-m} \cdot m^{2}}{2!} + \frac{e^{-m} \cdot m^{3}}{6!}\right]$$

$$= 1 - \left[e^{-m} + me^{-m} + \frac{m^{2}e^{-m}}{6!} + \frac{m^{3}e^{-m}}{6!}\right]$$

$$m = 0 \times \rho$$

$$m = 20 \times \frac{2}{5} = 4$$

$$= 1 - \left[e^{-9} + 8e^{-9} + \frac{16}{2}e^{-9} + \frac{1}{5}e^{-9}\right]$$

$$= 1 - \left[\frac{0.033}{0.033}\right]$$

P(x74) = 0.469 0.968
The probability that at least 4 particles are recorded in a two minute period

 $\frac{1}{\zeta} = \frac{m}{3} \times \frac{1}{3} \quad \therefore \quad \frac{1}{\zeta} = \frac{m}{9} \quad \therefore \quad m = \frac{3}{9}$

 $P(0) = e^{-\frac{1}{2}} (\frac{3}{2})^{\circ} = e^{-\frac{3}{2}} = 0.223$

is 0.968.

Solven:
$$P(X=3) = \frac{1}{6}$$
, $P(X=2) = \frac{1}{3}$

To find: $P(X=0)$

Solution: By Poisson's distribution
$$P(X) = \frac{1}{16}e^{-m} \cdot m^{X}$$

$$P(3) = \frac{e^{-m} \cdot m^{3}}{6} = \frac{m^{3}e^{-m}}{6} \dots (i)$$

By Recurrence Relation of Probabilities,
$$P(3) = \frac{m}{3} P(2)$$

ED. CONCEICAD PODRIGUES INSTITUTE OF TECHNOLOGY, V	/ASHI
ED CONCEICAN BUINGIGUES INSTITUTE OF TECHNOLOGY,	

FR. CONCEICAO RODRIGUES INSTITUTE OF TECHNOLOGY, VASHI	
$P(x=x) = \left[e^{-m} \cdot m^{x}/x!\right] P(x) \ge xf$	
$\frac{\chi}{0}$ $\frac{1}{142}$ $\frac{\chi_{F}}{0}$ $\frac{1}{0.367}$ $\frac{140.8}{140.8}$	
1 166 156 0.367 146.8	
0 (0 125 (.183 73.2	
3 27 81 0.061 24.4	
0.015	
$\frac{4}{6}$ 0.003 1.2	
5 = 400 = 398.4 $5 = 400 = 398.4$	
$\dots m = 2\pi f = 400 = 1$	
EF 4100	
Eller on the Solve	
Given: $P(X=1)=2P(X=2)$	
$\parallel + \wedge $	
S / Line: By Raisson distribution	
$P(x) = e^{-m} \cdot m^{\alpha}$	
\mathcal{H} .	
$P(i) = e^{-m} \cdot M \cdot \cdot \cdot (i)$	
$P(2) = e^{-m} \cdot m^2 \dots (ii)$	
$me^{-M} = 2m^2e^{-M}$	
$\frac{1}{2}$	
$m = m^2$	
\sim 1	
$P(R) = e^{-1}(1)^3 = e^{-1} = 0.061$	
$P(8) = e^{-1}(1)^3 = e^{-1} = 0.061$ 31	
P(x=3) = 0.061	

Soln: 10) Given: m = 100, 6 = 2

To find: P(98 ≤ x ≤ 102)

Solution: Let x be resistance of

in ohms

$$Z = \frac{\chi - M}{6}$$

$$: Z = \frac{98 - 100}{2} = \frac{-2}{2} = -1$$

$$Z = \frac{102 - 100}{2} = \frac{2}{2} = 1$$

= Area between z=C and ==-1

+ Area between z=C and z=1

= 2 (Area between z=0 and z=1)

... curve is symmetric

$$=2\times0.3413$$

:. 68.26% of resistors will have the resistance between 98 and 102 ohms.

Soln: 11) Given: n= 2000, m= 1000, 0= 200

Solution: Let & be the burning hours

of the lamp (i) By Pois Normal Standard Curre,

$$Z = \frac{700 - 1000}{2000} = \frac{-300}{2000} = -1.5$$

..
$$P(x \le 700) = P(z \le 1.5)$$

	FR. CONCEICAO RODRIGUES INSTITUTE OF TECHNOLOGY, VASHI
	= 0.5 - 0.4332
/	= 0.0668 \approx 0.067
_ ·	. 134 lamps will be expected to
	Fail in First 700 hours
	(ii) X when 10% of the lamps
	have failed.
	P(x) = 0.1
	Z = C.26 $C.1 = 0.1$
- 42 - 5 - 1	Z = Z - M
	:-0.26 = x-1000
	200 € Z Z
	1052 948
	\$1052948 hours when for 10% of the
	lamps have failed
Soln:15)	Given: P(x<60) = 5%
	P(60 <xk66)= 40%<="" th=""></xk66)=>
	To find: m.c
	Solution. 70.05
	70.4
	70.55
	x=60 x-65
	Axea between X = 0 and X = 60 = 0.06
	1 - 1:12
	Azea between X=0 and X=66=0.46
	$\frac{1}{12} = 1.66$
-	
il	

$$1.66 = 66 - m$$
 and $0.13 = 60 - m$