一道高等代数习题的解答

icnow

April 2024

Problem: 设 W_1, W_2, \ldots, W_s 是 n 维向量空间 V 的真子空间,则存在 V 的一个基,使得基中的每一个向量均不在 W_1, W_2, \ldots, W_s 中.

Proof. 不妨设 $dim(W_i) = n - 1, i = 1, 2, ..., s.$ (此时若 $\exists \alpha \in V \setminus W_i$, 则 $\alpha \notin W, \forall W$ 满足 $dim(W) \leqslant dim(W_i)$, 符合题意.)

构造线性同构 $\phi: V \to \mathbb{R}$, 则 $\phi(W_i) \subset \mathbb{R}$.(设 $W_i = Span\{e_1, e_2, \dots, e_{n-1}\}$, 则 $\phi(W_i) = Span\{\phi(e_1), \phi(e_2), \dots, \phi(e_{n-1})\}$. 若 $\mathbb{R}^n = Span\{V_1, V_2, \dots, V_n\}$, $V_i \notin \phi(W_j)$, 则 $\phi^{-1}(V_i) \notin W_j$, $Span\{\phi^{-1}(V_1), \phi^{-1}(V_2), \dots, \phi^{-1}(V_n)\} \neq V$.)

Step1:由于 $W_1 \subset \mathbb{R}^n$, $dim(W_1) = n - 1$, 则 $\exists \xi_1 \in \mathbb{R}$, 使得 $W_1 = \{x \in \mathbb{R}^n \mid < x, \xi >= 0\}$. 上述引理的证明: $dim(W_1) = n - 1$, $W_1 \subset \mathbb{R}^n$, 则 $\exists y \in \mathbb{R}^n \setminus W_1$. 设 $W_1 = Span\{e_1, e_2, \dots, e_{n-1}\}$, $\{e_1, e_2, \dots, e_{n-1}\}$ 是单位正交基. 构造

$$\xi = y - \langle y, e_1 \rangle e_1 - \langle y, e_2 \rangle e_2 - \dots - \langle y, e_{n-1} \rangle e_{n-1},$$

则 $\langle \xi, e \rangle = 0, \forall 1 \leqslant i \leqslant n - 1 \Rightarrow \xi_1 \perp W$, 即 $\forall \nu \in W \Rightarrow \xi \perp \nu$. 记

 $W_1 = \{x \in \mathbb{R}^n | a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0\} (\diamondsuit \xi = (a_{11}, a_{12}, \dots, a_{1n})),$ $W_2 = \{x \in \mathbb{R}^n | a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0\},$

 $W_n = \{ x \in \mathbb{R}^n | a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \}.$

构造 $f_i(\lambda) = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n, 1 \leq i \leq s$, 该多项式共有 s*n = ns 个根. 在 \mathbb{R} 内把这个 ns 个根去掉, 再任取 \mathbb{R} 上的数 y_1, y_2, \dots, y_n , 构造 $\nu_1 = (1, y_1, y_1^2, \dots, y_1^{n-1} \in \mathbb{R}, \, \text{则} \, \nu_1 \notin W_1(a_{11} + a_{12}y_1 + \dots + a_{1n}y_1^{n-1} \neq 0)$. 同理构造 $\nu_2, \dots, \nu_n, \, \text{则}$

$$\nu_i \notin W_i, \forall i, j,$$

$$\Rightarrow \nu_1, \nu_2, \cdots, \nu_n$$
是 \mathbb{R}^n 的一组基.

验证:
$$det(\nu_1, \nu_2, \cdots, \nu_n) = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ y_1 & y_2 & \cdots & y_n \\ y_1^2 & y_2^2 & \cdots & y_n^2 \\ \vdots & \vdots & \cdots & \vdots \\ y_1^{n-1} & y_2^{n-1} & \cdots & y_n^{n-1} \end{vmatrix}$$
$$= \prod_{1 \leq i < j \leq n} (y_j - y_i) \neq 0,$$

即该向量组线性无关.