ESO208

Programming Assignment 1

Prasad Jaware

200705

Group: J4

1) Fixed Point Method

i) $f(x) = x - \cos x$ by fixed point method

Choose the method of solution by selecting letter shown with method:

Bisection-a,

False Position-b,

Fixed Point Method-c,

Newton-Raphson-d,

Secant-e

С

Enter the function

x-cos(x)

Enter your function g(x) such that your function f(x) is expressed as x=g(x)

cos(x)

Enter starting point

0

Now subsequent enter stopping criteria:\n

Enter the relative error allowed in solution

0.01

Enter Convergence criteria for the function value, i.e., how close f(x) is to zero

0.0000000000025

Enter allowed maximum number of iterations

50

Root is = 0.739106

Iterations stopped as relative error stopping criteria was met.

Plot of Relative approx. Error and Iterations

Plot of Given Function

ii) f(x) = exp(-x) - x = 0 by fixed point method

exp(-x)-x

Enter your function g(x) such that your function f(x) is expressed as x=g(x)

exp(-x)

Enter starting point

0

Now subsequent enter stopping criteria:\n

Enter the relative error allowed in solution

0.05

Enter allowed maximum number of iterations

50

Root is = 0.567068

Iterations stopped as relative error stopping criteria was met

Plot of Given Function

Plot of Relative approx. Error and Iterations

2) $f(x) = x^4 - 7.4x^3 + 20.44x^2 - 24.184x + 9.6448 = 0$ by muller method For (1,0,-1)

Choose One of the following methods: Muller-a, Bairstow-b

а

Input Degree of Polynomial

4

Enter all degree+1 number of coefficients with each input followed by space

9.6448 -24.184 20.44 -7.4 1

Enter first starting point

-1

Enter 2nd starting point

0

Enter third starting point

1

Now subsequent enter stopping criteria:

Enter the relative error allowed in solution

0.01

Enter Convergence criteria for the function value, i.e., how close f(x) is to zero

0.0000000000025

Enter allowed maximum number of iterations

50

Root is 0.800019+0.000000i

Iterations stopped as relative error stopping criteria was met

For (0,1,2) Root is the same 0.800019+0.000000i

Similarly, the we can get roots of the Non-linear Equations by using choosing one method of the five in command window

a) Bisection b) False-position c) Fixed-Point d) Newton-Raphson e) Secant

Plot of Function

$f(x) = x^4 - 7.4x^3 + 20.44x^2 - 24.184x + 9.6448 = 0$ by Bairstow method

Choose One of the following methods: Muller-a, Bairstow-b

b

Input your polynomial: x^4-7.4*x^3+20.44*x^2-24.184*x+9.6448

Starting value of r: -5

Starting value of s: 4

Allowed Value of relative error: 0.01

Allowed maximum iteration: 50

Roots of the functions are: 2.200000, 0.800000

Roots of the functions are: 2.200000 + 0.800000i, 2.200000 - 0.800000i

For (-5,4) Roots of the functions are: 2.200000 + 0.800000i, 2.200000 - 0.800000i

For (-2,2) Roots of the functions are: 2.199954 + 0.800004i, 2.199954 - 0.800004i

Plot of Function

