Espaces de dimension finie

#espace_vectoriel

Un espace vectoriel E est de dimension finie / infinie s'il admet une famille génératrice finie / infinie.

Théorème de la base extraite

De tout famille génératrice de E, on peut extraire une base.

Théorème de la base incomplète

Soit G une famille génératrice, il existé $G' \in G$ tel que G' est une base de E.

Dimension d'une espace de dimension finie

- Si une famille génératrice de n vecteurs engendre une de n+1, la 2èm est lié.
- ullet Soit E une $\mathbb{K}.\,e.\,v$ et $\dim(E)=n.$ Soit $F=(u_1,\ldots,u_p)$:
 - F est une base $\Rightarrow n = p$
 - Si n = p: F base $\Leftrightarrow F$ libre $\Leftrightarrow F$ génératrice.

Rang d'une famille

```
rg(u_1,u_2,\ldots,u_p)=\dim(vect(u_1,\ldots,u_p))
```

- $rg(u_1,u_2,\ldots,u_p)=p\Leftrightarrow (u_1,u_2,\ldots,u_p)$ est libre
- $rg(u_1,u_2,\ldots,u_p)=n\Leftrightarrow (u_1,u_2,\ldots,u_p)$ est génératrice de E ($\dim(E)=n$)

$s.\,e.\,v$ de dimension finis

Soit E une \mathbb{K} . e. v et F et G s. e. v de E avec $\dim(E) = n$

- Si $\dim(F) = p$ alors $\dim(F) \leq \dim(E)$
- Soit B_F une base de F. Si p=n. B_F base de $E \Leftrightarrow vect(B_F)=E=F$

- $\dim(F+G) = \dim(F) + \dim(G) \dim(F \cap G)$
- $ullet \ E = F \oplus G \Leftrightarrow egin{cases} \dim(F) + \dim(G) = \dim(E) \ F \cap G = \{0\} \end{cases}$
- $E=F\oplus G\Leftrightarrow\exists$ une base B de E ; $B=B_F+B_G$

Application linéaire de dimension finie

- Soit une \mathbb{K} . e. v de E de base $\mathcal{B}=(\overrightarrow{e_1},\ldots,\overrightarrow{e_p})$, soit $(y_i)_{1\leq i\leq p}$ une famille de p vecteurs d'un \mathbb{K},e,v F. $\exists !f:E\longrightarrow E$ tel que $\forall i,f(e_i)=y_i$.
- Une application linéaire $f: E \longrightarrow F$ est entièrement déterminé par l'image des vecteurs d'une base $\mathcal B$ de E. $\dim(\mathcal L(E,F)) = \dim(E) \times \dim(F)$
- Soit $u \in \mathcal{L}(E, F)$, soit $\mathcal{B} = (e_i)$ base de E, soit E et F de dimension finie. Si Im(u) est de dimension finie :
 - $rg(u) = \dim(Im(u)) = rg(u(e_1), \dots, u(e_p))$
 - $rg(u \circ v) \leq \min(rg(u), rg(v))$
 - u injective $\Leftrightarrow u(\mathcal{B})$ est libre.
 - u surjective $\Leftrightarrow u(\mathcal{B})$ génératrice de F.
 - u bijective $\Leftrightarrow u(\mathcal{B})$ base de F.
 - E et F isomorphismes s'il existe une isomorphisme $u:E\longrightarrow F$
 - E et F isomorphismes $\Leftrightarrow \dim(F) = \dim(E)$
 - Si $u \in \mathcal{L}(E,F)$ et si $\dim(E) = \dim(F)$
 - Alors u injective $\Leftrightarrow u$ surjective $\Leftrightarrow u$ bijective.

Formule du rang

$$\dim(E) = \dim(\ker(u)) + \dim(Im(u))$$