Slime Mould Algorithm: A New Method for Stochastic Optimization

Shimin Li^a, Huiling Chen^a, Mingjing Wang^a, Ali Asghar Heidari^{b,c}, Seyedali Mirjalili^d

^aCollege of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang 325035, China simonlishimin@foxmail.com, chenhuiling.jlu@gmail.com, wangmingjing.style@gmail.com
 ^bSchool of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 1439957131,

Iran
as heidari@ut.ac.ir, aliasqhar68@qmail.com

^cDepartment of Computer Science, School of Computing, National University of Singapore, Singapore 117417, Singapore

aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu

^d4Institute for Integrated and Intelligent Systems, Griffith University, Nathan, QLD 4111, Australia

ali.mirjalili@gmail.com

Abstract

Slime mould algorithm (SMA) is proposed based on the oscillation mode of slime mould in nature. The proposed SMA has several new features with a unique mathematical model that uses adaptive weights to simulate the process of producing positive and negative feedback of the propagation wave of slime mould based on bio-oscillator and to form the optimal path for connecting food with excellent exploratory ability and exploitation propensity. Source codes of SMA are publicly available at http://www.alimirjalili.com/SMA.htm and https://tinyurl.com/Slime-mould-algorithm.

Keywords: Slime mould algorithm, Adaptive weight, Engineering design problems, Constrained optimization

1. An Overview of slime mould algorithm

For complete details, please refer to main paper¹ established by [1].

1.1. Approach food

To model the approaching behavior of slime mould as a mathematical equation, the following rule is proposed to imitate the contraction mode:

$$X_{t+1} = \begin{cases} X_b(t) + v_b \cdot (W \cdot X_A(t) - X_B(t)) & r (1)$$

where v_b is a parameter with a range of [-a, a], v_c decreases linearly from one to zero. t represents the current iteration, X_b represents the individual location with the highest odor concentration currently found, X represents the location of slime mould, X_A and X_B represent two individuals randomly selected from the swarm, W represents the weight of slime mould. The formula of p is as follows:

$$p = \tanh |S(i) - DF| \tag{2}$$

¹The paper is available at https://doi.org/10.1016/j.future.2020.03.055 and https://tinyurl.com/Slime-mould-algorithm.

where $i \in \{1, 2, ..., n, S(i)\}$ represents the fitness of X, DF represents the best fitness obtained in all iterations.

The formula of v_b is as follows:

$$v_b = [-a, a] \tag{3}$$

$$a = \operatorname{arctanh}\left(-\left(\frac{t}{max_t}\right) + 1\right) \tag{4}$$

The formula of W is listed as follows:

$$W(SmellIndex(i)) = \begin{cases} 1 + r \log((b_F - S(i))/(b_F - w_F) + 1) & condition \\ 1 - r \log((b_F - S(i))/(b_F - w_F) + 1) & others \end{cases}$$
(5)

$$SmellIndex = sort(S)$$
 (6)

where condition indicates that S(i) ranks first half of the population, r denotes the random value in the interval of [0,1], b_F denotes the optimal fitness obtained in the current iterative process, w_F denotes the worst fitness value obtained in the iterative process currently, SmellIndex denotes the sequence of fitness values sorted (ascends in the minimum value problem).

1.2. Wrap food

The mathematical formula for updating the location of slime mould is as follows:

$$X^* = \begin{cases} rand(UB - LB) + LB & rand < z \\ X_b(t) + v_b(WX_A(t) - X_B(t)) & r < p \\ v_c X(t) & r \ge p \end{cases}$$

$$(7)$$

where LB and UB denote the lower and upper boundaries of the search range, rand and r denote the random value in [0, 1].

1.3. Oscillation

The value of v_b oscillates randomly between [-a, a] and gradually approaches zero as the iterations increase. The value of v_c oscillates between [-1, 1] and tends to zero eventually.

The logic of SMA is shown in Fig. 1 and its Pseudo-code represented in Algorithm 1.

Algorithm 1 Pseudo-code of SMA algorithm

Inputs: The population size N and maximum number of iterations max_t

Outputs: The best solution

Initialize the positions of slime mould $X_i (i = 1, 2, ..., n)$

while (Stopping condition is not met) do

Calculate the fitness of all slime mould

Calculate the W by Eq. (5)

for (each search portion (X_i)) do

Update p, v_b, v_c ;

Update positions by Eq. (7)

Return bestFitness and X_b

Figure 1: The overall steps of SMA $\,$

References

[1] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Generation Computer Systems (2020). doi:https://doi.org/10.1016/j.future.2020.03.055.