

STACUP-2023

Python Based Statistics and its Application in Astrophysics & Cosmology

Darshan Kumar Beniwal

Research Scholar, Dept of Physics and Astrophysics, University of Delhi, Delhi-110007

Date: October 18 2023

Least Square Fitting

Observational dataset:

X	У	$\sigma_{ m y}$
1.0	2.3	0.08
2.0	4.1	0.12
3.0	6.2	0.20
4.0	8.1	0.16
5.0	10.0	0.28

Assumptions: Observed data are normal distributed with center y and width σ_y

Theoretical Model: $y^{th} = a + bx$

— • 1/12

Least Square Fitting

- Theoretical Term: $y^{\text{th}} = a + bx$
- Observational Term: y_i^{obs} , σ_{y_i}

The probability of obtaining the observed value (y_i^{obs}) is

$$\mathsf{Prob}_{\mathsf{a},\mathsf{b}}\left(y_{\mathsf{i}}\right) = \frac{1}{\sqrt{2\pi\sigma_{\mathsf{y}}^{2}}} e^{-\left(y_{\mathsf{i}}^{\mathrm{obs}} - \mathsf{a} - \mathsf{b}\mathsf{x}_{\mathsf{i}}\right)^{2}/2\sigma_{\mathsf{y}}^{2}}$$

$$\mathcal{L}(x_i; a, b) = \prod_{i=1}^{n} \mathsf{Prob}_{a,b}(y_i) \Rightarrow \mathsf{Maximise} \; \mathsf{it}$$

..... gives the parameters values for which observed data have the highest probability

— • 2/12

The probability of obtaining the observed value (y_i^{obs}) is

$$\mathcal{L}(x_i; a, b) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{y_i}^2}} \exp\left\{-\frac{1}{2} \left[\frac{\left(y_i^{\text{obs}} - a - bx_i\right)^2}{\sigma_{y_i}^2}\right]\right\}$$
$$-2 \ln \mathcal{L}(x_i; a, b) = \sum_{i=1}^{N} \frac{\left(y_i^{\text{obs}} - a - bx_i\right)^2}{\sigma_{y_i}^2} \equiv \chi^2$$

To estimate parameters: either maximize the likelihood or minimise the Chi-square

..... log makes math easier, doesn't change answer (monotonic)!

Chi-square Test: describes the goodness-of-fit of the data to the model.

$$\chi^2 = \sum_{i} \left(\frac{\text{observed} - \text{expected}}{\text{error}} \right)^2$$

- Observational dataset: x_i , $y_{obs}(x_i)$, σ_{y_i}
- Theoretical model: $y_{th}(x_i; a, b) = f(x_i; a, b)$
- Define

$$\chi^2 = \sum_{i=1}^N \left(\frac{y_{\rm obs}(x_i) - y_{\rm th}(x_i; a, b)}{\sigma_{y_i}} \right)^2$$

Chi-square:

$$\chi^2 = \sum_{i=1}^{N} \frac{\left(y_i^{\text{obs}} - a - bx_i\right)^2}{\sigma_{y_i}^2}$$

• Minimize the Chi-square:
$$\frac{\partial \chi^2}{\partial a}$$
 $\frac{\partial \chi^2}{\partial b}$

a =
$$\frac{\sum wx^2 \sum wy - \sum wx \sum wxy}{\sum w \sum wx^2 - (\sum wx)^2}$$

$$b = \sum wx \sum wx^2 - (\sum wx)^2$$

$$a = \frac{\sum wx^{2} \sum wy - \sum wx \sum wxy}{\sum wx^{2} - (\sum wx)^{2}} \qquad b = \frac{\sum w \sum wxy - \sum wx \sum wy}{\sum wx^{2} - (\sum wx)^{2}}$$

$$\sigma_{a} = \sqrt{\frac{\sum wx^{2}}{\sum w \sum wx^{2} - (\sum wx)^{2}}} \qquad \sigma_{b} = \sqrt{\frac{\sum w}{\sum w \sum wx^{2} - (\sum wx)^{2}}}$$

$$w=1/\sigma_{y_i}^2$$

Chi-square:

$$\chi^2 = \sum_{i=1}^N \left(\frac{y_{\rm obs}(x_i) - y_{\rm th}(x_i; a, b)}{\sigma_{y_i}} \right)^2 \Rightarrow \chi^2_{\rm min} \to {\sf Best \ fit \ value \ of \ parameter}$$

Case: 1 One Parameter Model:

Case: 2 Two Parameters Model:

Confidence Intervals: Range of estimates for an unknown parameter.

Chi-squared Distribution with Sigma Values: $\chi^2_{n\sigma} = \chi^2_{\min} + \Delta \chi^2_{n\sigma}$

Dimensionality	1σ	2σ	3σ
1	1.00	4.00	9.00
2	2.30	6.18	11.83
3	3.53	8.02	14.16
4	4.72	9.72	16.25
5	5.89	11.31	18.21

Chi-squared distribution $\Delta \chi_{n\sigma}^2$ upto 5 parameters (5D).

Chi-squared Distribution with Sigma Values: $\chi^2_{n\sigma} = \chi^2_{\min} + \Delta \chi^2_{n\sigma}$ Two-parameters model:

Parameter error estimation:

Correlation among parameters:

c). Example: Hand-on Session

Example-1: Hand-on Session

Mock dataset:

X	У	$\sigma_{ m y}$
1.0	2.3	0.08
2.0	4.1	0.12
3.0	6.2	0.20
4.0	8.1	0.16
5.0	10.0	0.28

Theoretical Model: $y^{th} = a + bx$

Key Takeaways

Observational dataset: x_i , $y_{obs}(x_i)$, σ_{y_i}

Theoretical model: $y_{th}(x_i; a, b) = f(x_i; a, b)$

Define Chi-square:
$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_{\text{obs}}(x_i) - y_{\text{th}}(x_i; a, b)}{\sigma_{y_i}} \right)^2$$

Minimize Chi-square: $\chi^2_{\min} \Rightarrow$ Best fit value of parameters

Draw Confidence Level: $\chi_{n\sigma}^2 = \chi_{\min}^2 + \Delta \chi_{n\sigma}^2$

Error in parameters: $a = a_{\text{best}} \pm \sigma_a$ and $b = b_{\text{best}} \pm \sigma_b$

— • 12/12