ge
H
근
20
8
g
ਰ
-

ACCESSION: A98446 ACCESSION: AR143112 ACCESSION: AR143113 ACCESSION: AR143115 ACCESSION: AR143116 ACCESSION: AR143117 ACCESSION: AR143119 ACCESSION: AR143119 ACCESSION: AR143119 ACCESSION: AR143119 ACCESSION: AR143119	ACCESSION ARI43121 ACCESSION ARI43123 ACCESSION ARI43123 ACCESSION ARI43124 ACCESSION ARI43126 ACCESSION ARI43126 ACCESSION ARI43120 ACCESSION ARI43130 ACCESSION ARI43130 ACCESSION ARI43130 ACCESSION ARI43130	ACCESSION: BD249287 ACCESSION: BD249289 ACCESSION: BD249289 ACCESSION: BD249289 ACCESSION: BD249290 ACCESSION: BD249290 ACCESSION: BD249290 ACCESSION: BD249290 ACCESSION: BD249290 ACCESSION: BD249299 ACCESSION: BD249299 ACCESSION: BD249299 ACCESSION: BD249299 ACCESSION: BD249300	ACCESSION: BD249305 ACCESSION: BD249305 ACCESSION: BD249306 ACCESSION: AR422206 ACCESSION: AR422206 ACCESSION: AR422206 ACCESSION: AR422210 ACCESSION: AR422220 ACCESSION: AR4222310 ACCESSION: AR4222310 ACCESSION: AR4322310 ACCESSION: AR4322310 ACCESSION: AR4322310 ACCESSION: AR4322310 ACCESSION: AR4323313 ACCESSION: AR4323313 ACCESSION: AR4323313 ACCESSION: AR4323313
34 20 0.8 20 1 3 3 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	444 465 20 20 465 20 20 30 48 20 30 48 20 30 30 30 30 30 30 30 30 30 30 30 30 30	555 566 661 662 663 664 665 665 665 665 666 666 666	C 75 20 0.8 20 1 BD249305 C 75 20 0.8 20 1 BD249305 C 76 20 0.8 20 1 BD249306 C 77 20 0.8 20 1 BD249306 C 78 20 0.8 20 1 AR432206 C 81 20 0.8 20 1 AR432206 C 82 20 0.8 20 1 AR432209 C 83 20 0.8 20 1 AR432209 C 84 20 0.8 20 1 AR432210 C 85 20 0.8 20 1 AR432211 C 85 20 0.8 20 1 AR432212 C 86 20 0.8 20 1 AR432216 C 87 20 0.8 20 1 AR432216 C 88 20 0.8 20 1 AR432216 C 89 20 0.8 20 1 AR432216 C 90 20 0.8 20 1 AR432216 C 91 20 0.8 20 1 AR432216 C 91 20 0.8 20 1 AR432216 C 92 20 0.8 20 1 AR432216 C 93 20 0.8 20 1 AR432216 C 94 20 0.8 20 1 AR432216 C 95 20 0.8 20 1 AR432216 C 96 20 0.8 20 1 AR432216 C 97 20 0.8 20 1 AR432216 C 98 20 0.8 20 1 AR432216 C 99 20 0.8 20 1 AR432307 C 100 20 0.8 20 1 AR432307 C 101 20 0.8 20 1 AR432310 C 105 20 0.8 20 1 AR432310 C 105 20 0.8 20 1 AR432311 C 105 20 0.8 20 1 AR432311 C 105 20 0.8 20 1 AR432312
GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd. OM nucleic - nucleic search, using sw model Run on: October 27, 2004, 14:01:10; Search time 8 Seconds (without alignments) 3.501 Million cell updates/sec	taaaagtacgtaattaaataers	um DB seq length: 8 processing: Minimum Match 00% Maximum Match 100% Listing first 279 summaries ase: rgel.seq:* Pred. No. is the number of results predicted by ch score greater than or equal to the score of the re and is derived by analysis of the total score dist SUMMARIES t. Query t. Score Match Length DB ID	C 1 39.4 1.5 45 1 AR194144 ACCESSION:AR194144 2 38.4 1.5 45 1 AR194144 ACCESSION:AR194144 C 3 37.4 1.5 45 1 AR194144 ACCESSION:AR194144 C 4 34.6 1.4 41 1 156514 ACCESSION:IS8015 S 32 1.3 32 1 AR29926 ACCESSION:AR19730 C 12 30.4 1.2 32 1 AR29926 ACCESSION:AR29945 C 12 30.4 1.2 32 1 AR29926 ACCESSION:AR29945 C 13 30.4 1.2 32 1 AR39926 ACCESSION:AR29945 C 14 30.4 1.2 32 1 AR397301 ACCESSION:AR29945 C 15 29 1.1 29 1 AR39289 ACCESSION:AR39289 C 20 20 26 1.0 26 1 155623 ACCESSION:AR39289 C 21 25 1.0 26 1.0 26 1 155623 ACCESSION:AR3938 C 22 24 0.9 24 1 AR39289 ACCESSION:AR3938 C 24 24 0.9 24 1 AR394107 ACCESSION:AR391872 C 25 24 0.9 24 1 AR394107 ACCESSION:AR391872 C 26 27 24 0.9 24 1 AR394107 ACCESSION:AR391872 C 27 24 0.9 24 1 AR394107 ACCESSION:AR391871 C 28 24 0.9 24 1 AR394107 ACCESSION:AR391871 C 29 24 0.9 24 1 AR394107 ACCESSION:AR391871 C 29 24 0.9 24 1 AR394107 ACCESSION:AR391871 C 29 24 0.9 24 1 AR391871 C 20 25 0.0 26 1 163518 C 20 26 0.0 26 1 16352 C 20 27 24 0.9 24 1 AR391871 C 20 27 24 0.9 24 1 AR391871 C 20 28 24 0.9 28 1 AR391871 C 20 28 24 0.9 28 1 AR391871 C 20 20 20 20 0.8 24 1 AR391871 C 20 20 20 20 0.8 24 1 AR391871 C 20 20 20 20 0.8 24 1 AR391871 C 20 20 20 20 20 20 20 20 20 20 20 20 20

2004
O
0
Ŋ
45
••
ω
N
4
Ã.
П,
_
27
N
ų
U
Ö
_
77
Wed
₹.
3

ACCESSION: BBL256560 ACCESSION: BB257006 ACCESSION: AX325717 ACCESSION: AX325718 ACCESSION: AX4255718 ACCESSION: AX425718 ACCESSION: AX549037 ACCESSION: AX649038	ACCESSION: AX672697 ACCESSION: AX722552 ACCESSION: AX7226033	ACCESSION: AX727662 ACCESSION: AX727662	ACCESSION: AX / SEIES ACCESSION: AX 762656 ACCESSION: AR 264961	ACCESSION: AR264965 ACCESSION: AR478242	ACCESSION: BD072906 ACCESSION: BD072906	ACCESSION: BD145065 ACCESSION: BD166065 ACCESSION: AR084464	ACCESSION: BD199243 ACCESSION: BD255139	ACCESSION: AX422293 ACCESSION: AX422294	ACCESSION: AX422295 ACCESSION: AX726151	ACCESSION: AX757310 ACCESSION: AX762341 ACCESSION: X78378	ACCESSION: BD199241 ACCESSION: BD199242	ACCESSION: BD255317 ACCESSION: BD255317	ACCESSION: BD255518 ACCESSION: BD257631	ACCESSION: BD259669	ACCESSION: CQ830281	ACCESSION: AR282266 ACCESSION: AR309620	ACCESSION: AR323998 ACCESSION: AR464634	ACCESSION: AX045534 ACCESSION: AX216531	ACCESSION: AX217968 ACCESSION: AX324889	ACCESSION: AX324890 ACCESSION: AX326225	ACCESSION: AX326226 ACCESSION: AX531893	ACCESSION: AX579782 ACCESSION: AX649035	ACCESSION: AX649036	ACCESSION: AX674726	ACCESSION: AX729168	ACCESSION: AX731155	ACCESSION: AX733265 ACCESSION: AX733816	ACCESSION: AX734495 ACCESSION: AX734719	ACCESSION: AX735940 ACCESSION: AX735953
																									`				
BD256560 BD257006 BD257008 AX325717 AX325718 AX649037 AX649038																													
00000000	9000	0.00 0.00	000 9.9.9	999	0 0 0 0 0 0	9.00			0 0 0 0	0 0 C		0 0 0 0	0 0 0 0					000				0.00			. o o v v	ດ ດ ທ ຕ	0 0 0 0 0	ກຸເກັນ	
4 4 <td>4 4 4 4</td> <td>114 144.4 144.4</td> <td>4 4 4 4 4 4</td> <td>44.</td> <td>444</td> <td>44</td> <td>† † † † † †</td> <td>4 4 4</td> <td>4 4</td> <td>ଟଟ ~</td> <td></td> <td>m m</td> <td>~ ~ ·</td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td>. m m</td> <td></td> <td></td> <td></td> <td></td> <td>ກ ຕ ເ</td> <td>m m</td> <td>m m</td> <td>mm</td> <td>n m r</td> <td>113.00 13.00 13.00</td>	4 4 4 4	114 144.4 144.4	4 4 4 4 4 4	44.	444	44	† † † † † †	4 4 4	4 4	ଟଟ ~		m m	~ ~ ·				·		. m m					ກ ຕ ເ	m m	m m	mm	n m r	113.00 13.00 13.00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C 187 C 1886 190		ດ 194 ດ 195 196		0 200 201 201	202	202 205 205	202 203 208		c 211 c 212 c 213		216 c 217		2220	0 223	# LS V	0 0 C	0 223	G 231	233	233	C 237	0 230	C 240 241	242 243	C 244	C 246	0 4 2 2 2 4 4 7 8 9 9	0 250 251 070
N.AR432315 N.AR432316 N.AR432317 N.AR432318 N.AR432319 N.AR432320	2322 2323 2324 2325	2326 2327 2328	2329 2330 2331	2333	2334 2335 2336	2337	23339 2340 2341	2342	12344 12345	12346 12347	23.448 23.349	32351 32352	32353 L7823	52831 52893	13421	16674	17822	44.70 0000	01074 011376	0.00	32270 5643	20040	2000	56559 57007	47730 32276	32277 97528	855 96251	05134 66080	404 59965 57578
ACCESSION: AR43										ACCESSIO	ACCESSIO ACCESSIO																		
										1	3																		
AR432315 AR432316 AR432317 AR432318 AR432319 AR432320 AR432320	AR432322 AR432323 AR432324 AR432325	AR432326 AR432327 AR432328	AR432329 AR432330	AR432332 AR432333	AR432334 AR432335 AB432336	AR432337 AR432338	AR432339 .AR432340	AR432341 AR432342 AR432343	AR432344 AR432345	AR432346 AR432347	AR432348 AR432349 AR432340	AR432351 AR432352	AR432353 AX017823	AX662831 AX662893	AX813421 AX825323	ED137334 CQ816674	E35155 AX017822	AR343470	AR101074	AR1431/6 AR162389	AR432270	AR295098	BOVDIK08	BD256559 BD257007	AX147730 AX132276	AX132277	A56855 AR096251	AX805134 BD166080	A27404 AR059965 BD26658
200 11 200 12 20																										~ ~		~ ~	10.10.5
0000000	0000 8.8.8.8.	000 000	000	 	000		8.8.0	 		8 8 6	000	900	8.0	8.8	8.0 8.0	0.0							. 9	9.0 9.0	9.0	9.0	9.00	9.0	9.00
0000000	0000	000	000	000	000 000		000	200	000	000	000	9 0 0	50	20	0 0 0 7	0 6 7	m m (. ' '	0 10 1	8 6 6 6 6 7 6 7 6	ດພ	`` ۵	15.4	n n	LO.	44	44	14.4.4.4.4.4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																c 151 152		155 c 156			c 161			167 168	169	171	C 173	c 175	177

.. 0

Gaps

43 bp DNA linear PAT 18-JUN-2001 vector system expressing apoptosis-related gene.

chong220-1.rge

Patent: US	Source	/ Crganagam Linners Crganagamed DNA" Cross From Samuel DNA" Cross Cross		d L	T.O. T. SCOTE SO: #; DD T;	al Similarity 97.5%; Pred NO. 2.6;	Matches 39; Conservative 0; Mismatches 1; Indels 0; Gapi		Qy 218 ACCATGCTGGGCATCTGGACCCTCTACCTCTGGTTCTTA 25/		DD 6 ACCATGCTGGGCATCTGGACCCTCTGGTTCTGA 45			RESULT 3	0/1		z	ON E23361		SC		ORGANISM unidentified	unclassified.		KS Hirofumi, H.		JOURNAL PACENC: UP 19490/5859-A / Z3-MAK-1999;	x 6		TO COLUMN 1001 THE TOOLSTOOTS	08-25F-1997	אַרְאַרְאַרְאַרָּאַרָּאָר דַּאַרְאַרָּסְיַרָּאָּ דַם	PC C12N15/09,C12N5/10,C12N7/00//A61K35/76,A61K48/00,(C12N5	212
ACCESSION: AX737829 ACCESSION: AX738699	ACCESSION: AX739621	ACCESSION:AX/45205	ACCESSION: AAA 743208	ACCESSION: AX757930	ACCESSION: AX758784	ACCESSION:AX761314	ACCESSION: BD091241	ACCESSION:BD091251	ACCESSION: AR180355	ACCESSION: AR105448	ACCESSION: AX598489	ACCESSION: AX741124	ACCESSION: AX741128	ACCESSION:BD104639	ACCESSION: AR090266	ACCESSION: AR197301	ACCESSION: AR259455	ACCESSION: I58615	ACCESSION: 163513	ACCESSION:AR131852	ACCESSION:AR131853	ACCESSION: AR132467	ACCESSION: AR135858	ACCESSION: AR180460	ACCESSION: BD093154	-				: :		linear PAT 20-APR-2002		
0.5 17 1 0.5 17 1	0.5	0.5	0.5	0.5 17 1	0.5 17 1	0.5	0.5	0.5	0.5	0.5	0.5	0.5 16 1	0.5 16 1	0.5 16	0.5 32 1	0.5 32 1	0.5 32 1	0.5 41 1	0.5 41 1	0.5 15 1	0.5 15 1	0.5 15 1	0.5	H	_			ALIGNMENTS		•		45 bp	Sequence 87 irom patent US 5348334.	AK194144.1 GI:20240736
c 253 13.8 c 254 13.8	255	- ,	752/	-	7		1	-		,	_	ч	267 1	c 268 13.4	П	П	271 13.4	272	-		275 13		c 277 13	278 13	279 13					RESULT 1	AR194144/c		DEFINITION SE	

ALIGNMENTS

PI HIROFUMI HAWADA PC C12N15/09,C12N5/10,C12N7/00//A61K35/76,A61K48/00,(C12N5/10, PC C12R1:91), C(21N7/00,C12R1:92),C12N15/00,C12N5/00,(C12N5/00,C12R1:91) CC Strandedness: Single: CC Topology: Linear; FH Key Location/Qualifiers
FT Source

rce 1..43 /organism='Unidentified'. Location/Qualifiers

FEATURES

2002	Ö
PAT 20-APR-2002	Gaps
PAT	0
	1 45; Is
linear ra,N.	Length 45; Indels C 258 C 4
akamu	1; L 1; CTTAC
- DNA	BB GGTT
25 48334 7. T. a 8-200	9.4; 0.2; atche CCTCI CCTCI
AR194144 Sequence 87 from patent US 6348334. AR194144.1 GI:20240736 Unknown. Unchrown. Includesified. Includes 1 to 45) Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T. and Nakamura, N. Nagata, S., Suda, T., Takahashi, T., Takahashi, T., Takahashi, T., A. Suda, T., Takahashi, T., Takahashi, T., Takahashi, T., Takahashi, T., Takahashi, T., A. Suda, T., Suda, T., Takahashi, T., A. Suda, T., Takahashi, T., Takahashi, T., A. Suda, T., Takahashi, T., A. Suda, T., Takahashi, T., Takahas	tch al Similarity 97.6%; Pred. No. 2; 40; Conservative 0; Mismatches 1; Inde 40 ACANGCTGGGATCTGGACCTCTGACTTTTAC 258 44 ACCATGCTGGGATCTGGACCTCTGATTTTAC 258 44 ACCATGCTGGGCATCTGGACCTCTGGTTCTTAC 258
45 from patent US 6. 1 GI:20240736 ied. 1 to 45) 2 Mda,T, Takahash, ing Fas ligand 5 6348334-A 87 19-F) Location/Qualifiers L. 45 /organism="unknown" /mol_type="unassign"	Scc Pre
AR194144 Sequence 87 from patent AR194144 AR194144.1 GI:20240736 Unknown. Unknown. I (bases 1 to 45) Nagates, S., Suda, T., Tak NAA encoding Fas ligand Patent: US 6348334-A 87 Location/Quali 1.45 /organism="unk /mol_type="una"	1.5%; 97.6%; tive CATCTGG CATCTGG
87 from 1 GI:20 ied. 1 to 49 ing Rea, ing	yativ GGCAJ GGCAJ GGCAJ
64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	rity nser GCTG
AR194144 Sequence 87 from p AR194144 AR194144.1 GI:202 Unknown. Unknown. Unclassified. 1 (bases 1 to 45) Nagarez, Sudary. DNA encoding Fas I Patent: US 6348334 Patent: US 6348334 Patent: US 6748334 1. 45	Similarity 97.1 Similarity 97.1 40; Conservative B ACCATGCTGGGCATC
Φ	al S: 40 40 218 44
RESULT 1 LOCUS LOCUS LOCUS LOCUS LOCUS LOCUS LOCUS SERION VERSION VERSION KEYWORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE SOURCE	Query Match Best Local Similarity Matches 40; Conserv 218 ACCATGCTGG 44 ACCATGCTGG
RESULT 1 AR194144/ LOCASTA 1444/ LOCASTA 1444/ DEFINITIO ACCESSION ACCESSION ACCESSION ACCESSION ACTERNOR SOURCE ACTHORS TITLE JOURNAL SOUR 1	Ouer Best Mato Oy Db
HAHLANKO K H	, п

```
ö
                                                                                                                                                                                                                                            linear PAT 07-OCT-1997
                                                                                                                                                                                                                                                                                                                       Unknown.
Unknown.
Unknown.
1 (bases 1 to 41)
1 (bases 1 to 41)
Subjury, Shapiro,J.P. and Kiefer,M.C.
Soluble splice variant of the Fas (APO-1) antigen, Fas.DELTA.TM
Patent: US 5652210-A 2 29-JUL-1997;
                                                                                                         Gaps
                                                                                                         .,
                                                                         Length 43;
                                                                                                     1, Indels
                                                                                                                                   1193 TCAAACTTCAGAAATGAAATCCAAAGCTTGGTCTAGAGT 1231
                                                                                                                                                       Query Match
1.5%; Score 37.4; DB 1;
Best Local Similarity 97.4%; Pred. No. 3;
Matches 38; Conservative 0; Mismatches 1;
                                                                                                                                                                                                                                              158616 41 bp
Sequence 2 from patent US 5652210.
158616
158616.1 GI:2477854
1. .43
/organism="unidentified"
/mol_type="genomic DNA"
/db_xref="taxon:32644"
                                                                                                                                                                                                              RESULT 4
156616/c
LOCUS
DEFINITION
ACCESSION
VERSION
VERSION
CETYWCES
SOURCE
ORGANISM
                                                                                                                                                                                                                                                                                                                                                                       REFERENCE
AUTHORS
TITLE
JOURNAL
                                                                                                                                         à
                                                                                                                                                                엄
```

PAT 20-APR-2002

linear

AR194143 45 bp C Sequence 86 from patent US 6348334. AR194143.1 GI:20240735

RESULT 2
AR194143
LOCUS
DEFINITION
ACCESSION
VERSION
VERSION
KEYWORDS
SOURCE
ORGANISM

. Unknown.

Unknown. Unclassified. 1 (Bases 1 to 45) Nagata,S., Suda,T., Takahashi,T. and Nakamura,N. DNA encoding Fas ligand

REFERENCE AUTHORS TITLE

Wed Oct 2/ 14:26:46 2004

PCR primer for chi PCR primer for chi Fas antigen relate Fas antigen relate	PCR primer for chi Human Fas antigen Fas ligand promote	Human TNFRSF6 PCR Human TNFRSF6 PCR Human TNFRSF6 PCR	Human neurodegener Human neurodegener Human neurodegener Human Fas antiqen	Fas cell surface r Human TNFRSF6 sequ Cancer detection m	Human neurodegener PCR primer to ampl	Fas bait protein (PCR primer 82689. PCR primer 82690. Antisense oligonuc	Antisense oligomuc Antisense oligomuc Antisense oligomuc Antisense oligomuc	Antisense oligonuc Antisense oligonuc	Antisense oligonuc Antisense oligonuc Antisense oligonuc	Antisense oligonuc Antisense oligonuc	Antisense oligonuc	Antisense oligonuc	Antisense oligonuc Antisense oligonuc	Antisense oligonuc Antisense oligonuc	Fas cell surface r Human Fas target o	Human Fas target o Human Fas target o	Human Fas chimeric Human Fas chimeric	Human Fas target o Human Fas target o	Human Fas target o	Human Fas target o	Human Fas target o Human Fas target o	Human Fas target o	Human Fas Chimeric Himan Fas target O	Human Fas target o	Human Fas target o Human Fas target o	Human Fas target o	Human Fas caryet o Human Fas target o	Human Fas target o Human Fas target o	Human Fas chimeric	Human Fas target o Human Fas target o
30 1 AAA91134 30 1 AAA1136 23 1 ABN85357 23 1 ABN85358						4	н ң н		4 ~ ~	ннн		- H			\leftarrow	٦ ٦			Н.	4	H H	Н.		Н.			٠,٠,٠		4 ~ ~		
44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2222	211221	21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.8 0.8	20 20 20 20 0.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 0000 0000	20 20 20 0.8 0.8	20 0.8	20 0.8	20 0.8	20 0.8 20 0.8	20 0.8	20 . 0.8	20 0.8	20 0.8	2000	20 0.8	20 0.8	20 0.8	20 0.8	20 0.8	20 0.8	20 0.8	20 0.8	20 0.8	20000	2000	20 00.8 20 00.8 0.9
00 0 4 0 0 0	O (' ব' ব' ব'	444		ο i i i i	n in in		0000					υυ	000		· 0	0 0		יטי	U U	00		00	`	υ o	U	υ. υ	υ (00	00	
	9	conds) updates/sec	aata 2551					_		ıted,				900	and g	3' pr 5' pr	pecifi	man Fa	ingle	ingle pecifi	to ampl	NA, PC	R prim 3' PC), PC	erse A. PC	Drim	tigen tigen	tigen	extracel antigen	r for huF tection m	er to
5.1.6 Compugen Ltd	-	; Search time 13 Seconds (without alignments) 3.708 Million cell update	taaaagtacgtaattaaa			parameters: 942				predicted by chance to have a score of the result being printered a score distribution.	2006		Description	Human leukocyte ge Human leukocyte ge	Human Fas lig Human Fas lig	Fas-delta-TM	Human gene s	Probe for hu	Human fas pi Human gene s	Human gene s Human gene s	PCR primer t	Human Fas of	Human Fas PC Fas-delta-TM	Fas-delta-TM	Human Fas rev	Human Fas PCF	Human Fas an Human Fas an	Human Fas ar	Human Fas Human Fas	PCR primer Cancer dete	PCR prime Human Fas PCR prime

	Human Fas CDNA, an	Fas CDNA,	Fas cDNA,	Fas cDNA,	Fas CUNA,	Fas CDNA.	Fas CDNA,	Fas cDNA,	Fas CDNA, Fas CDNA,	Fas cDNA,	CDNA,	Fas cDNA,	1 E	Fas CDNA,	Fas cDNA,	Fas CDNA,	FAS CONA.	CDNA,	Fas cDNA,	Fas cDNA,	Fas CUNA,	CDNA,	Fas cDNA,	Fas cDNA,	Fas CDNA,	CDNA,	Fas cDNA,	Fas conA,	ים מול מול	Fas cDNA,	Fas cDNA,	CDNA,	1. E	uman Fas cDNA,	Human Fas CDNA, an Human Fas CDNA, an	Fas cDNA,	Human Fas CDNA, an	Fas cDNA,	FaB	CDNA,	Fas cDNA,	Human Fas CDNA, an	Fas cDNA, a	Fas cDNA,	Fas CDNA, a Fas antisen	Fas anti	Fas antisen	antisen	Fas antisen	Fas anti	Fas antis	Fas antis	Fas antis	i Fas antis 1 Fas antis	Human Fas antisens Human Fas antisens	
	rtr	4	ı	н	,	٦.	4	Н		٠.	-	н,	н г	٠.	н	-	н г	-	н	Н	н,	٦.	ı –ı	Н	,,	٦,		-	Н-		۲,	٦.	4 ~	Н.	Н -	-	,,,	4 ~	+4		4 ~4			·	н г		Н.		٠,	Н,	-1	ı ~			1 ADM53520 1 ADM53527	
																																																							700	
	00			0.	o o			Ö	o 0			0	<i>.</i> .		0	ö	00		0	Ö	0		0	Ö	0		0	0	0 0	50	0	0 0	0	0	0 0	0	00	o a	0	00	0	0 0	0	0	0 0	00	0	00	0	0	00	0	0	00	000	•
	200	0 0	200	20	9 9	0 0	0 0	20	9 6	2 0	20	20	0 0	0 0	70	20	500	9 0	20	20	20	0 0	202	20	20	0 0	0 0	20	0 0	70 70	20	9 6	70	20	200	200	20	0 0	20	0 0	707	20	7 0	200	20	7 0	20	9 6	7 6	20	2 6	70 0	20	200	700	
. •	c 180	181	0 183	C 184	c 185	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	α α α τ τ τ	0 189	0 190	יים ר מפר	C 193	C 194	c 195	0 197	C 198	c 199	0 200	1000	C 203	C 204	C 205	C 206	c 208	c 209	0 210	C 211	C 213	c 214	0 215	C 216	C 218	0 219	0 221	c 222	G 223	C 225	0 226	0 727	c 229	0 230	0 232	0 233	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 236	C 237	0 739 0 239	C 240	0 241	243	C 244	0 245 0 245	C 247	c 248	0 249 0 000	0 251 0 251 0 252	1
	Human Fas target o	Human	Human Fas Chimeric	Human Fas chimeric	Human Fas chimeric	Human Fas Carget O	Human Fas carget o	Human Fas chimeric	Human Fas chimeric	Human Fas Chimeric	Human Fas cardet o	Human Fas target o	Human Fas target o	Human Fas Chimeric	Human Fas Chimeric Human Pas target o	Human Fas target o	Human Fas chimeric	Human Fas chimeric	Himan Fas target o	Human Fas Chimeric	Human Fas chimeric	Human Fas target o	Human Fas target o	Human	Human Fas chimeric	Human Fas target o	Human Fas target o	Human Fas target o	Human Fas target o FAS (APO-1) gene a	FAS (APO-1) gene s	RI-PCR primer RI-C	Apol PCR primer SE Apol PCR primer SE	Sense PCR primer u	Wild type protein	Human TNFRSF6 sequ	Human TNFRSF6 sequ	HUMBI INFASTO SOCIE	Human neurodegener	Human neurodegener	Human neurodegener	Human neurodegener	Human Fas PCR prim Human inducible ni	Human Fas PCR prim	FAS (APO-1) PCR pr	HAS (APC-1) FCK DI Himan Ras CDNA, an	Human Fas CDNA, an	Human Fas CDNA, an Human Fas CDNA, an Himan Fas CDNA	יים יים אין								
	н	н.		٠,	Н	н.	н.		М	·	٦,	-	Н.		-1 +-	٠,	1 ABN79732		٠,	4 ~	- -1	Н,	٦,		. Н	Н,		-	Н			Н.			Η.		H	Н.	٠,	٦,		-	٦,		Н		1 ADJ57347	٠,	٦,	4 ~	۲,	- i-	1 11		20 1 ADL2765 20 1 ADL27656 20 1 ADL27761	4
	0.8	B 0	20 c	0 0	0.8	0.0	ω c	. 0	0.8	œ (0 00 0 00		0.8	000			0.8	ω. 0.0	ю a	0 0	8.0	8.0		0 00	8.0	8.0	m α	. 0	0.8	œ o	0.0	0.8	ص ه ه	. 0	9.0	0 0		000		9.0	. a	8.0	8,0	0 0	8.0	ω α α	9 6.	9.0	000	8.0	8.0	ο α Э С	0.0	000	0.00)
	20	50	2 6	200	20	20	9 0	700	20	0 0	0 0	5 0 7 0 8	20	0 0	у r	202	20	50	0 0	0 0	50	20	0 0	0 0	20	20	0 0	70	20	0 0	0 0	20	0 0	. 0	20	200	20	200	0 0	20	0 70	20	500	200	100	0 0	20	50	0 0	700	20	0 0	207	0 0	, 000	3
	H	ä,	4 -	15	2	H	7	12	H	Ξ;	1 -	17	4		1.	1 11	H	-1 -	-1 -	i÷	H	H	H F	4 -	i	H :	-	-	Ä	À -	- -	Ä	0 147	ÄÄ	150	151	i ii			-		i	Н.	٦,	Η.	0 165	4 ~	Н,	Н.	4 ~	-1 e	٦-	4 ~		7700	٦.

Wed Oct 2/ 14:25:46 2004

4	•
č	>
5	,
2002	1
u	`
4	
7	
ú	
×	,
ç	•
4	H
ì	
٠	•
r	
c	ı
4	ر
+	ر
Ċ	כ

chong220-1.rng

Human caspase our Human infertility PCR primer used to	Oligonucleotide as	Mouse Fas cour, an Mouse Fas antisens	Human oligonucleot	Human biallelic ma	Human IL5-R oligon Human IL5-R derive	Oligonucleotide as	Human oligonucleot	Mitogen activated	Hammerhead ribozym	Hammerhead ribozym	Human G-alpha-12 a II wrealwhicum det	Cdc 25 hs ribozyme	Cdc 25 hs ribozyme	Cdc25 hs ribozyme	Cacas na ribozywe Human Pas antigen	Human Fas antigen	Human Fas antigen	Human biallelic ma	Oligomer Hivils to	Chicken THRG prime	PCR primer used to	Hammerhead ribozym	Hammerhead ribozym	Hammernead ribozym	Waxy starch produc	Waxy starch produc	WNV minus strand H	way Amberzyme subs way Hammerhead Rib	WNV minus strand I	Tumour suppression	Murine oligonucleo	Murine oligonucleo	Murine oligonucleo	Human breast cance	Human Na/H exchang	Human Na/H exchang	Tumour suppression	Human tumour suppr	Mutant cell identi	Mucant cert rentr Polynucleotide dir	Synthetic deoxyrib	Human SRC-3 antise	probe poly v for a	Human cyclin-depen	IGFBP3 oligonucieo	IGEBP3 Oligonucleo	IGFBP3 oligonucleo	Probe #69 used to	Hammerhead ribozym	Human ERG hammerhe	Human ERG hammerhe	Human ERG hammerne Murine oliconucleo	Tumour suppression	
1 ADD25012 1 ADD42290 1 ARX77441			н.		н.		-		٦.	-	٦.	٦.		н	 -	٠.	ι ,-ι	Н	,⊣ ,		4 ~	ı	Н.	٠,	٦.	1 ~1	∺	н-		Η.	н,	- r	1 -1	н.	-1	-	٦,	٦.	-	٦,	4 1-1	Н		٠,-	н		٠.	۲.	-1-	٦,				
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7																																																						
000		o c			600		. 0	00		. 0	0		0	o	o o	o c	0	0	0	5 C	o C	0	0	00	> C	0	0	00	o c	4.	4 0.	4. 4	4.	4.	4.4	. 0	4.0	4.4	4 0.	4.	4 4	4	4,	4 4 > 0	. 4	0.0	4 4 5 C	. 4	4.	4.	4.4	4.	4.4	
8.97 9.99	16.	16.	16.	9 4	9 1	9 9	16.	15.	15.	15.	15		1 5	15	15				14	4.4	1 -	4 4	14	1.4	7	1 1	14	rd t	7 7		-		1 11	П.	4.4	1 1-1	-		_			, , ,	4.	1 L	;									
326 327		c 330		333		336	338		C 340	342		344				ა. ს 4. ი 2v C				0 354		900	358	359	360	362	c 363	364	3 20 20	367	368	0 369	0 371	c 372	C 373	0 375	C 376	0 377	379	0880	20 K	383	384	288	0 387	386	0	391	395	395	2, W	396	00	
ᄺᄺ	8 8	Fas	7 A B	Fas	ក្ ខ្លួ	Fas	1. P.	FAB	F 28	יין ממ ממ	Fas	Fas	F 25	9 6	Fas anti	Fas anti	בחת היה היה	Fas anti	Fas ant	uman Fas ant	ät	Fas and	Fas ant	Fas ant	Fas ant	Human Fas antisens	Human Fas antisens	Human Fas antisens	Human Fas antisens	Human Fas antisens Human Fas antisens	Human Fas antisens	Human Fas antisens	Human Fas antisens	Human	Human Fas antisens	Human Fas antisens	Human Fas antisens	Human Fas antisens	D21WAF antisense D	Human Fas antigen	Human INFRSF6 sequ	Anti-INFRSF6 siRNA	Anti-TNFRSF6 siRNA	Anti-TNFRSF6 siRNA	Anti-Infrase o sixon	Pericentrin antise	Antisense PCR prim	Human INFRSF6 sequ	Human neurodegener	eurodeg	ae i	se olig	Human caspase 8 mR Mouse Fas chimeric	
20 1 ADMS3538 20 1 ADMS3545				Н		н.	Н.	4	-4	Н.		-	н,	-i -		Н	ч.	- ا	٠,-	н	e-1	Н.	٦.	4	Н	н,		4 ~	Н	٦,	-	H	Н.		H		4 -1	Н.	-، ۱	+	٦.	٦,		Н,	d -	4 ~	Н		٠,	Н		4 ~1		1
8.0	ο c α α		ص. ص. م	8.0	e.0 e.0	8.0	8.0		9.0	О С	 	8.0	8.0	ο ο Ο ο		8.0	e . e		0.00	8.0	8.0	8.6	. o	0.00	8.0	8.0	B. 0	0 0	8.0	ص ه د	0 00	9.0	в. 6	. e	8.0	8.0		8.0		0.7	0.7		. 7.	7.0			0.7	۰.۷		0.7	r. 0		0.7	
20																																															18					, T 6.8		
C 253	0,0	101	200	126	26	56	36	2 6	12	20	4 6	10	N	7	4 1	'n	C)	0 0	'nΩ	Ñ	ñ	Ö,	C) C	1 0	N	C)	N C	N	N	O C	10	1 (1	C) (40	1 m	m ı	a) (a)	'n	m n	וייו נ	308	309	311	312	313	315	c 316	317	n (1)	וייי ו	c 321	323 323 323	324	1

chong220-1.rng

2004
_
0
$^{\prime\prime}$
Ø
46
••
φ
26
••
4
14:
27
N
ı
r)
Oct
_
71
ed
.•

472 13.6 0.5 15 1 ABK81472 Human CASP5 gene a		SENEMNOTIA			RESULT 1	ABZ00256 ID ABZ00256 standard; DNA; 50 BP.		AC ABZ00256;	XX XX (first entry)		DE Human leukocyte gene expression profiling probe SEQ ID NO 247.	m7. Jenkonvte: gene expression profiling; allograft	xxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	rheumatoid arthritis; osteoarthritis; cytomegalovirus;	KW 88.	Os Homo sapiens		PN W0200257414-A2.	ph 251II2002.		PF 22-0CT-2001; 2001MO-US047856.	20-0CT-2000:	PR 08-JUN-2001; 2001US-0296764P.	XX XX YVI CAMPACT CONTRACTOR CONT		Wohlgemuth J, Fry K	Ly N, Woodward R, Quertermous I, Johnson	DR WPI, 2002-636525/68.	New evetem for Jenkoryte exm		PT or congestive heart failure, comprises diagnostic oligonucleotides.	PS Claim 1, Page 334, Opp, English.		The invention relates to a system for detecting gene expression, commutes one or two isolated DNA molecules that detect expression	gene, where the gene corresponds to any of 8143 oligonucleotides	(ABZ00010-ABZ08152) each having 50 base pairs (bp). The Bystem is use			predicting disease complications in an individual of montroling respond	rejection, kidney allograft rejection, liver allograft rej		inemmacord architers, decouranted or of compared	SQ Sequence 50 BP; 13 A; 12 C; 7 G; 18 T; 0 U; 0 Other;	S. *C. C	aton cal Similarity 100.0%; Pred. No. 0.45;	nes 5	Qy 2273 AATCATCATCTGGATTTAGGAATTGCTCTTGTCATACCCCCAGTTTCTA 2322	A TAPHCATCATCATTAGGAATTGCTCTTAGCAAGTTTCTA 50	The Contract of the Contract o	0 DECITE 2	ABZ03786 Standard: DNA: 50 BP.	1
The annual annual on	Sequencing primer	Human flt1 VEGF re	Solanidine giucosy Human RhoG PCR rev	Integrin alpha 6 s	Human TIE-2 substr	Human TIE-2 substr Enman C-raf target	Antisense oligonuc	Respiratory syncyt	Nucleotide sequend Oestrogen receptor	Oestrogen receptor	Bacillus thuringie	Hammerhead ribozym	Hammernead ribozym Hammerhead ribozym	Hammerhead ribozym	Hammerhead ribozym	Human NOGO Zinzyme Himan CD20 G-Cleav	Alternative glucan	Human GDMLP-1 17-m	Stress tolerance d	Increased stearate	tress t	Human POSHLI scann	WNV Amberzyme subs	WNV minus strand H	G-protein coupled G-protein coupled	Tumour suppression	Tumour suppression	Tumour suppression	Tumour suppression	Human K-Ras DNAzym	Human K-Ras DNAzym	4 0		rd (respiratory syncyt Tumour suppression	Ω,	Human Na/H exchang Human Na/H exchand	į į	our	Human tumour suppr	tumour	tumour	tumour	tumour	Human tumour suppr Human tumour suppr	E E	Human glioma endot Human ER+ breast c	tis B	t cell		, 0 2	Human PIKI antisen Human Acetylcholin
	17 1	17 1	17 1	1	17 1	17	17/1	17 1	17 1	17 1	17 1	17 1	177	17 1	17 1	17	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17 1	17. 1	17 1	17 1	171.	17 1	17 1	17 1	17 1	17 1 ADI49027	17 1	177	17.1	17.	17 1	14	17 1	17 1	17 1 ADN45695 17 1 ADN45694	17 1
	400 13.8 0.	401 13.8 0.	13.8	404 404 8 8 8 8	13.8 0.	13.8	33.6	409 13.8 0.	410 13.8 0.	411 13.8 U. 412 13.8 U.	13.8	414 13.8 0.	13.8	13.8	418 13.8 0.	419 13.8 0.	421 13.0	13.8	423 13.8 0.	0 C	426 13.8 0	427 13.8 0	13.8	430 13.8 0	13.8	433 13.8 0	434 13.8 0	435 13.8 U	13.8	438 13.8 0	440 13.8 0	13.8	443 13.8 0	444 13.8 0	13.8	13.8 0	13.8	450 13.8 0	13.8	ο α α	13.8	455 13.8 0	13.8	13.8	459 13.8 0 460 13.8 0	461 13.8	462 13.8 0 463 13.8 0	464 13.8	13.8 13.8 0	467 13.8 0	C 469 13.8 0.5	470 13.8 0 471 13.6 0

```
October 27, 2004, 14:05:51 ; Search time 6 Seconds (without alignments) 3.457 Million cell updates/sec
                                                                                                                                                                                                                    Títle: US-10-619-220-1
Perfect score: 2551
Sequence: 1 gcaagagtgacacacaggtg......taaaagtacgtaattaaata 2551
                                                                                                                                                                                                                                                                                                                                                                                                                            414
GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.
                                                                                                                                                                                                                                                                                                                                                                                                                     Total number of hits satisfying chosen parameters:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 213 summaries
                                                                                     OM nucleic - nucleic search, using sw model
                                                                                                                                                                                                                                                                                                            Scoring table: IDENTITY_NUC
.Gapop 10.0 , Gapext 0.5
                                                                                                                                                                                                                                                                                                                                                                            207 seqs, 4066 residues
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           rnil.seq:*
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Minimum DB seq length: 8 Maximum DB seq length: 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Database :
                                                                                                                                                                                                                                                                                                                                                                            Searched:
                                                                                                                                Run on:
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

No.	8		Lengt)		_	80
1			45	-	-08-339-214-8	87
N	38.4	•	45	٦	-08-3	98
m	4,	•	41	٦	-08-444-231-	7
4	4	•	41	н	-08-152-443A	7
Ŋ	33	•	41	Н	-08-444-231	-1
w	33	•	41	Н	8-152-443A-	1,
۲-	32	•	32	Н	-08-829-998-38	386
∞	32	•	32	Н	-09-225-928-38	385
σ	32	٠	32	Н	-09-225-201B-3	386
10	m	•	31	Н	-09-665-615B-9	90
H	o,	•	32	ч	-08-829-998-38	386
77	30.4	•	32	Н	-09-225-928-38	386
13	ö	٠	32	Н	-09-225-201B	386
14	29	•	. 29	Н	-09-665-615B-8	88
72	27		27	Н	-08-444-231-1	10,
16	27	•	27	Н	08-152-443A-	10,
17	26	•	26	н	-08-444-231	6
18	26	•	26	н	-08-152-443A	6
13	26	٠	26	Н	-09-665-615B-	89,
20	24	•	24	Н	-08-322-805-	2
21	24	0.9	24	Н	08-429-499	Sequence 2, Appli
22	24	•	24	Н	-09-152-733-	2
23	24		24	Н	-08-339-214-	99
24	24	•	24	Н	S-09-481-620A-	120
2	21	•	21	1	S-08-713-557B-	8
56	N		21	Н	CT-US95-17083	11,
23	20.8	•	24	Н	38-444-005	equence 7,
28	6	٠	24		-08-444-005-	equence 8,
53	20	•	20	Н	-09-290-640	m
30	20		20	~	-09-290-640-	equence 4,
31	20		20	н	9-290-640	equence 5,
32	20	•	20	-	-09-230-640-	equence 6,
33	20		ć	•		

equence 8, equence 9, equence 10 equence 11 equence 12 equence 13 equence 14 equence 16 equence 16 equence 18 equence 18 equence 20	Sequence 22, Appliance 24, Appliance 34, Appliance 36, App	quence 142
1 US-09-290-640-80-80-80-80-80-80-80-80-80-80-80-80-80	20 1 US-09-290-640-23 20 1 US-09-665-615B-4 20 1 US-09-665-615B-4 20 1 US-09-665-615B-5 20 1 US-09-665-615B-7 20 1 US-09-665-615B-7 20 1 US-09-665-615B-1	1 US-09-665-615B-14
48888844444444444444444444444444444444	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	106 20 0.

ni.	
d	
٠.,	
÷	
0	
Ŋ	
S	
g	
Ä.	
×	
Ę,	
,4	
υ	
_	

12.4 0.5 14 1 US-08-410-780A-36 Sequence 3 12.4 0.5 14 1 US-09-874-601-72 Sequence 3 12.4 0.5 14 1 US-09-874-601-72 Sequence 3 14 1 US-08-7410-780A-36	183 12.4 0.5 14 1 PCT-US93-11775-4 S 184 12.4 0.5 14 1 PCT-US93-11775-4 S 184 12.4 0.5 14 1 PCT-US95-04511-35 S	12.4 0.5 15 1 US-08-311-76A-189 Sequence 12.4 0.5 15 1 US-08-311-760A-180 Sequence 12.4 0.5 15 1 US-08-311-760A-190 Sequence	188 12.4 0.5 15 1 US-08-311-760A-191 Sequence	190 12.4 0.5 15 1 US-08-363-240A-653 Sequence	12.4 0.5 15 1 US-08-717-526-30 Sequence	12.4 0.5 15 1 US-08-290-592E-3 Sequence	195 12.4 0.5 15.1 US-08-292-620A-50 Sequence 196 12.4 0.5 15.1 US-08-585-6848-276 Sequence	197 12.4 0.5 15 1 US-08-585-684B-804 Sequence 198 12.4 0.5 15 1 US-08-585-684B-805 Sequence	12.4 0.5 15 1 U3-08-585-684B-806 Sequence 12.4 0.5 15 1 U3-08-774-310-189 Sequence	201 12.4 0.5 15 1 US-08-774-310-190 Sequence	202 12.4 0.5 15 1 US-08-774-310-192 Sequence 203 12.4 0.5 15 1 US-08-774-310-192 Sequence	204 12.4 0.5 15 1 US-09-071-845-50 Sequence 205 12.4 0.5 15 1 US-09-038-073-276 Sequence	206 12.4 0.5 15 1 US-09-038-073-804 Sequence 207 12.4 0.5 15 1 US-09-038-073-805 Sequence	12.4 0.5 15 1 US-09-038-073-806 Sequence	210 12.4 0.5 15 1 0S-03-03-15 Sequence	<pre>11 12.4 0.5 15 1 PCT-US95-02080-6</pre>	13 12.4 0.5 15 1 5182195-23 Patent No. 51	OTT ON THE STATE OF THE STATE O	211000000000000000000000000000000000000	RESULT 1	US-08-339-214-87/c : Sequence 87, Application US/08339214	; Patent No. 6348334	; GENEKAL INFORMATION: ; APPLICANT: Nagata, Shigikazu	; APPLICANT: Suda, Takashi ; APPLICANT: Takahashi, Tomoniro	634	oding the Same	n	; ADDRESSEE: Birch, Stewart, Kolasch & Birch ; STREET: P.O. Box 747	; CITY: Falls Church : STATE: Vizoinia	; COUNTY: USA	COMPUTER READABLE PORM:	, MEDIUM TYPE: Floppy disk ; COMPUTER: IBM PC compatible .	; OPERATING SYSTEM: PC-DOS/MS-DOS SOFTWARDS: DATE: Delease #1 0. Version #1 30	T# 1101810A (0:1#	FILING DATE: 10-NOV-1994	; CLASSIFICATION: 435 ; ATTORNEY/AGENT INFORMATION:) NAME: Murphy Jr., Gerald M. REGISTRATION NUMBER: 28,977	/DOCKET NUMBER CATION INFORMA	; TELEPHONE: 703-205-8000	
44	Sequence 145, App Sequence 146, App Sequence 147, App	446	יוט ני	123	4 6	200	9	127	Sequence 3494, Ap	Sequence 12, Appl	Sequence 9263, Ap Sequence 35, Appl	Sequence 12, Appl Sequence 45, Appl	Sequence 49, Appl	Sequence 49, Appl	Sequence 14, Appl Sequence 11, Appl	Sequence 9, Appli Sequence 16, Appl	Sequence 26, Appl	Sequence 25, Appl	Sequence 32, Appr Sequence 1400, Ap	Sequence 8311, Ap. Sequence 423, App	Sequence 11, Appl	Sequence 386, App	Sequence 386, App Sequence 1, Appli	Sequence 1, Appli Sequence 277, App	Sequence 278, App	Sequence 60, Appl	Sequence 277, App Sequence 278, App	Sequence 892, App Sequence 528, App	Sequence 26, Appl	Sequence 41, Appl	Sequence 15, Appl	Sequence 105, App Sequence 26, Appl	Sequence 412, App	412,	6111 104,	143,	125,	2, Ap	35,	
US-09-665-615B-143 US-09-665-615B-144	US-09-665-615B-145 US-09-665-615B-146 US-09-665-615B-147	US-09-665-615B-148 US-09-665-615B-149 US-09-665-615B-149	US-09-665-615B-151 US-09-665-615B-151	US-09-665-615B-153	US-08-737-362-6	US-09-487-445-69	US-09-665-615B-70 US-09-422-978-6833	US-09-422-978-11097 US-09-339-993-12	US-09-696-791-3494	PCT-US95-17083-12	US-09-422-978-9263 US-08-894-784-35	US-08-811-949-12 US-09-725-265-45	US-09-725-265-49	US-09-556-127-49	US-08-786-555-11	US-07-703-778D-9 US-08-962-690-16	US-08-962-690-26	US-09-649-747A-25	US-09-371-772B-1400	US-09-866-108A-8311 US-09-081-646-423	US-08-872-917-11 US-08-859-998-386	US-09-225-928-386	US-09-225-201B-386 US-08-444-231-1	US-08-152-443A-1 US-08-585-684B-277	US-08-585-684B-278	US-08-929-856-60	US-09-038-073-277 US-09-038-073-278	US-09-038-073-892 US-09-081-646-528	US-08-256-568B-26	US-09-359-301A-41 TF-00-359-304A-41	US-09-614-034-66	US-09-614-034-105 US-09-378-900A-26	US-09-060-299-412	US-09-699-044-26 US-09-402-923A-412	US-09-371-772B-6111 US-09-479-005A-104	US-09-479-005A-143 US-09-479-005A-164	US-09-155-885A-125 US-09-665-615B-143	US-08-240-081-2 US-08-240-081-4	US-08-410-780A-35	
88 20 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	200 1	2000	2001	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 20 1	7 20 1 7 21 1	7 21 1 6 18 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	122	6 18 1 6 18 1	6 16 1	18 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 to	5 17 1	17 11 17 11 1	111	17 1	5 17 1 5 15 1	322 1	22.0	5 32 1 5 41 1	5 41 1 5 15 1	100	15 1	5 15 15 15 15 15 15 15 15 15 15 15 15 15	5 15 1	5 16 1	1 mm m	1 9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 16 1 5 16 1	16 1	16 1	5 16 1 5 16 1	5 16 1	20 77 77 77 77 77 77 77 77 77 77 77 77 77	5 14 1	5 14 1	
	8000 8000					0.00		ο. τ. σ. 4.		15	15 .8	4. 4. 4. 4.	4.4		4 . 4 14	8.8			. e.	8. 4. 8. 4.	4.4	4.	4.0	3.2					8 8	9 60 6	0.00	8 8	800	0 00	0. 00 00 00	8.8	9 9 9		2.4	
	0 110		444		1	4 14	-1-4		0 126	4 (7)		131	c 133	0 132		0 138 139			C 143		C 147	149	150 c 151		. ~ -	c 150	157	c 159	c 161		c 165				c 171 c 172	173 C 174		c 177 c 178	~ <i>L</i>	200

S

```
Sequence Seq
US-09-802-669-14

US-09-802-669-14

US-09-802-669-16

US-09-802-669-17

US-09-802-669-17

US-09-802-669-18

US-09-802-669-13

US-09-802-669-13

US-09-802-669-11

US-09-802-66
 \\
 247, App

3,777, Ap

90, Appl

248, Appl

248, Appl

89, Appl

11, Appl

11, Appl

2610, App

2610, App

27, Appl

28, Appl

2611, Appl

27, Appl

28, Appl

29, Appl

20, Appl

20, Appl

21, Appl

21, Appl

22, Appl

24, Appl

25, Appl

26, Appl

27, Appl

28, Appl

28, Appl

29, Appl

20, Appl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.
                                                                                                        ; Search time 6 Seconds (without alignments) 4.082 Million cell updates/sec
                                                                                                                                                                                                            2551
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Description
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Sequence Seq
                                                                                                                                                                     US-10-619-220-1
2551
1 gcaagagtgacacacaggtg......taaaagtacgtaattaaata
            GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              US-10-131-827-247
US-10-131-827-247
US-09-102-669-90
US-09-912-26-90
US-09-912-263-249
US-09-912-263-249
US-09-912-263-249
US-09-802-669-88
US-10-619-220-88
US-10-619-220-88
US-10-619-220-89
US-10-619-220-89
US-10-619-220-89
US-10-619-220-89
US-10-619-220-89
US-10-619-220-89
US-10-619-220-89
US-10-282-174-393
US-10-2802-669-4
US-09-802-669-7
US-09-802-669-7
US-09-802-669-7
US-09-802-669-11
                                                                                                                                                                                                                                                                                                                  Total number of hits satisfying chosen parameters:
                                                                                                                                                                                                                                                                                                                                                                                                    . 0%
. 100%
241 summaries
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SUMMARIES
                                                                                                          October 27, 2004, 14:07:41;
                                                                         sw model
                                                                                                                                                                                                                                      IDENTITY NUC
Gapop 10.0 , Gapext 0.5
                                                                                                                                                                                                                                                                                        241 segs, 4801 residues
                                                                             using
                                                                                                                                                                                                                                                                                                                                                                                                  Minimum Match 0
Maximum Match 1
Listing first 2
                                                                           nucleic search,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Length
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     rnpbl.seq:*
                                                                                                                                                                                                                                                                                                                                                  Minimum DB seq length: 8
Maximum DB seq length: 50
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  %
Query
Match 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Post-processing:
                                                                                                                                                                                           score:
                                                                                                                                                                                                                                      Scoring table:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Score
                                                                             i
                                                                           nucleic
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Database :
                                                                                                                                                                                                         Sequence:
                                                                                                                                                                                                                                                                                      Searched:
                                                                                                                                                                        Title:
Perfect :
                                                                                                          Run on:
```

υυ

υυ

o o

υo O 0 0 0 0 0 0 0 0 0 0

Applilable Applilable

1153, 1176, 1176, 1395, 1395,

chong220-1.rst

```
GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.
```

```
October 27, 2004, 14:09:36; Search time 0.001 Seconds (without alignments) 418.364 Million cell updates/sec
- nucleic search, using sw model
                                                              ö
```

US-10-619-220-1 2551 Perfect score: Sequence: Title:

1 gcaagagtgacacacaggtg......taaaagtacgtaattaaata 2551 IDENTITY NUC Gapop 10.0 , Gapext Scoring table:

0.5 5 segs, 82 residues Searched: Total number of hits satisfying chosen parameters:

Minimum DB seq length: 8 Maximum DB seq length: 50

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 5 summaries

rstl.seq:* Database : Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Description	ACCESSION: AJ666296	ACCESSION: BQ586069	ACCESSION: AJ592533	ACCESSION: AJ658636	ACCESSION: AJ597309
ΠD	AJ666	BQ586069	AJ592533	AJ658636	AJ597309
DB		H	 1	Н	-
Length	19	18	17	14	14
Query Match	0.6	9.0	9.0	0.5	0.5
S	15.8	15	14.4	12.4	12.4
		~	m	4	'n
10		υ	υ	υ	

ALIGNMENTS

4.00		, and	20
linear EST 28-JUN-2004 0000033_E06, mRNA		Euteleostomi, Sus. eproduction	h phred the -minscore
. ט		Eukaryota: Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; mammalia; Eutheria; Cetartiodactyla; Suina; Suidae; Sus. 1 (bases 1 to 19) Anderson, S.I., Finlayson, H.A. and Archibald, A.L. Bovelopment of cDNA and EST resources for studying reproduction and embryo development in pigs and cattle for Studying reproduction and Unpublished (2004)	Contact: Anderson SI Genomics and Bioinformatics Roslin, Institute Roslin, Midlothian, EH25 9PS, UNITED KINGDOM Single pass sequencing. Bases called and trimmed with phred V0.020425.c. Vector identified by cross match with the -minscore 20
19 bp mRNA ofa cDNA clone		a, Craniata; odactyla; Su A. and Archil resources f	Contact: Anderson SI Genomics and Bioinformatics Roslin Institute. Roslin, Midlothian, EH25 9PS, UNITED KINGDOM Single pass sequencing. Bases called and trin 90,020425.c. Vector identified by dross_match
1 :QRAN09 Sus scro GI:49350747		zoa, Chordat ria, Cetarti 19) Finlayson, H. CDNA and EST ent in pigs	on SI oinformatics e ian, EH25 9F uencing Bas
AJ666296 AJ666296 CSEQRAI Sequence. AJ666296.1 GI:	EST. Sus scrofa (pig) Sus scrofa	Bukaryota, Metazoa, Chordata, Craniat, Mammalia; Butheria, Cetartiodactyla, 1 (bases 1 to 19) Anderson, S.I., Finlayson, H.A. and Arcl Development of cDMA and EST resources embryo development in pigs and cattle Ouppublished (2004)	Contact: Anderson SI Genomics and Bioinformatics Roalin Institute Roalin, Midlothian, EH25 9P. Single pass sequencing, Base v0, 020425.c. Vector identif
1 1 196/c TION SION	SS		
RESULT AJ666296 LOCUS DEFINIT ACCESSIC	KEYWORI SOURCE ORGAN	REFE AU TI	COMMENT

```
ô
and -minmatch 12 options. Vector:pBlueScriptII(KS+) R. Site 1:
ECORI R. Site 2: NotI Description: Normalised library constructed
from pooled tissue from day 30 placentas. Clones available from UK
Centre for Functional Genomics in Farm Animals, Roslin Institute,
Roslin, Midlochian, UK, EH25 9PS, www.arkgenomics.org.
                                                                                                                                                        / Craditism="Sus scrofa"
/ Acranism="Sus scrofa"
/ Acranism="Sus scrofa"
/ Ab xref="taxon:9823"
/ Aclone="C0000033_BDG"
/ Lissue type="placenta"
/ clone lib=CSEQRAN09"
/ note="Vector: pBlueScriptII(KS+); Site_1: EcoRI; Site_2: Not1; Single pass sequencing. Normalised library constructed, from pooled tissue from day 30 placentas."
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              .
0
                                                                                                                                                                                                                                                                                                                                                                                                                                        Length 19;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2; Indels
                                                                                                                                                                                                                                                                                                                                                                                                                                        Score 15.8; DB 1;
Pred. No. 0.52;
0; Mismatches 2;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2188 TTATTTTCCCCCACCCC 2206
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             19 Trrrrrrrccccccccc
                                                                                                                                                                                                                                                                                                                                                                                                                                           Ouery Match
Best Local Similarity 89.5%;
Matches 17; Conservative
                                                                                                                                                                     source
                                                                                                                                        FEATURES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   g
```

```
/clone="va-va-va-va-leaf"
/tissue_type="leaf"
/lab host="Embl108"
/clone_lib="MPIZ-ADIS-024-leaf"
/note="vector: pCwV3PORT6; Site_l: SalI; Site_2: NotI;
cDNA_library from sugar beet, library provided by KWS
Kleinwanzlebener Saatzucht AG Einbeck, Germany, contact:
b.schulz@kws.de; cloning sites SalI-NotI, primer sites and
                                    BQ586069
E012394-024-013-B09-SP6 MPIZ-ADIS-024-leaf Beta vulgaris CDNA clone 024-013-B09 5-PRIME, mRNA sequence.
BQ586069.1 GI:26115651
                                                                                                                                                                                                 Beta vulgaris
Beta vulgaris
Bukaryota, Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
Bukaryota, Viridiplantae; Streptophyta; Embryophyta; Core eudicots;
Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
Caryophyllales; Amaranthaceae; Beta.
(Dases 1 to 18)
Herwig,R., Schulz,B., Weisshaar,B., Hennig,S., Steinfath,M.,
Drungowski,M., Stahl,D., Wruck,W., Menze,A., O'Brien,J., Lehrach,H.
and Radelof,U.
                                                                                                                                                                                                                                                                                                                                                                                                                               Construction of a 'unigene' cDNA clone set by oligonucleotide fingerprinting allows access to 25 000 potential sugar beet genes Plant J. 32 (5), 845-857 (2002)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       /mol_type="mRNA"
/cultivar="KWS2320 (double haploid, monogerm breeding
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Breeding Research
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Contact: Weisshaar B
ADIS DNA core facility at MPIZ
Max-Dlanck-Institute for Plant Breeding Rese:
Carl-von-Linne Weg 10, 50829 Koeln, Germany
Fax: 00492215062851
Email: weisshaa@mpiz-koeln.mpg.de
Insert Lenghi. 18 Std Error: 0.00
Plate: 13 row: B column: 09
Seq primer: SP6; CATACGATTAGGTGAACTATAG.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              /organism="Beta vulgaris"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            db_xref="GABI:186792"
|db_xref="taxon:161934"
|clone="024-013-B09"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Location/Qualifiers
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            line)"
                                                                                                                                                VERSION
KEYWORDS
SOURCE
ORGANISM
RESULT 2
BQ586069/c
                                                 LOCUS
DEFINITION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         JOURNAL
MEDLINE
PUBMED
COMMENT
                                                                                                                            ACCESSION
                                                                                                                                                                                                                                                                                                                                                               AUTHORS
                                                                                                                                                                                                                                                                                                                                    REFERENCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            FEATURES
                                                                                                                                                                                                                                                                                                                                                                                                                                          TITLE
```

Wed

ACCESSION: CQ837077 ACCESSION: ARA41808 ACCESSION: AX470970 ACCESSION: AX471396	ACCESSION:AX622968 ACCESSION:AX625367 ACCESSION:AX627220	ACCESSION: AX628179 ACCESSION: AX629878 ACCESSION: AX629878	ACCESSION: ARC#1032 ACCESSION: AX512724 ACCESSION: AX512726 ACCESSION: AK029884	ACCESSION: CQ 768938 ACCESSION: CQ836350 ACCESSION: AX471219	ACCESSION: AKSOSS / J ACCESSION: AKSOSS II	ACCESSION: A37861 ACCESSION: AR029964	ACCESSION: AR030014 ACCESSION: BD238688	ACCESSION: BD239674 ACCESSION: BD239674 ACCESSION: BD2399990 ACCESSION: B39661	ACCESSION: AR303328 ACCESSION: AR303346	ACCESSION: ARA 36842 ACCESSION: AR364709 ACCESSION: AX152680 ACCESSION: AX152681	ACCESSION: AX153193 - ACCESSION: BD007835	ACCESSION: BD083306 ACCESSION: BD083379	ACCESSION: AR076623 ACCESSION: AR076624	ACCESSION: E11042 ACCESSION: E12351	ACCESSION: E12352 ACCESSION: AR000251	ACCESSION:AR000253 ACCESSION:AR087158	ACCESSION:AR087171 ACCESSION:AR145664	ACCESSION: AR150606	ACCESSION: BD239174	ACCESSION: BD239216 ACCESSION: E36057	ACCESSION: E36070	ACCESSION: 149626	ACCESSION: 183584	ACCESSION: 188952	ACCESSION: AR200459	ACCESSION:AR200462 ACCESSION:AR200471	ACCESSION: AR200473	ACCESSION: ARZ41195 ACCESSION: ARZ41854	ACCESSION: ARZ61815 ACCESSION: AR303415	ACCESSION: AR303483 ACCESSION: AR371271	ACCESSION: AR371272 ACCESSION: AR371273	ACCESSION: AKS (1670
1 CC837077 1 AR241808 1 AX470970 1 AX471396											1 AX153193	1 BD083306 1 BD083379	1 AR076623 1 AR076624																		1 AR371272 1 AR371273	
#####	###	1112	2001	111	4	100	000	9000	100	0000	0 0	9 9 9	10	ω ση	10	100	010	9 6	20	010	0.0	201	0 0	000	0 0	107	0 0	0 0	100	9 6	999	10
0.74 0.74 0.74	7 4 4	. 4 4 4 7 7 10	4 4 4 4 U W W W	4. 44. 44. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72	4. 4. 4 V W n	4.4	44	4 4 4 4	42.	4 4 4 4	4 4	4 4 2	41.	4 4	404	40. 40.	40.	4.0	4 4	4 4 6 0 .	40.	4 4	404	4.4	4.04	40.	4.0	4 4 4 0 .	4 4 40.	40 40.	0.44	40
0000 4444			.	თ თ თ •	שמס					8 8 8 8 4 4 4 4				ω ω	യ യ	∞ ∞	σ α	0000	0 00	∞ ∞	00 (000	0 000	000	000	∞ ∞	0000	∞ α	ω ω	œ œ	α α α	20
0 0 0 0 4 10 6 1			D D D D D					n n		0 0 0 0		C 70 711	72			C 78											76	866 U	100 c 101	~ ~	0 104 0 1054	106
en Ltd.		, Search time 0.001 Seconds (without alignments) 56.200 Million cell updates/sec				260	-			l by chance to have a the result being printed,			Description	ACCESSION:AR143179 ACCESSION:BD249354	ACCESSION: AR432273 ACCESSION: 138970		ACCESSION: AX635250	ACCESSION: AR238749	ACCESSION: CQ835129 ACCESSION: AX470593	ACCESSION: AX624071 ACCESSION: AX627751	ACCESSION: AX629613	ACCESSION: AX631492 ACCESSION: AR030026	ACCESSION: AR036346	ACCESSION: ARCS6347	ACCESSION:AKU36369 ACCESSION:AR036368	ACCESSION:112563 ACCESSION:112564	ACCESSION: 172094	ACCESSION:172095 ACCESSION:172113	ACCESSION:172114 ACCESSION:172116	ACCESSION:AR030110 ACCESSION:CQ832697	ACCESSION: CQ833954	ACCESSION: CQ835815
GenCore version 5.1.6 Copyright (a) 1993 - 2004 Compugen	eic search, using sw model	October 27, 2004, 14:12:21 ; Search (without 56.200 Mi	5-10-619-220-73 5 tccagcacttctttccgg 20	IDENTITY_NUC Gapop 10.0 , Gapext 0.5	30 segs, 1405 residues	its satisfying chosen parameters:	ength: 8 ength: 50	Minimum Match 0% Maximum Match 100% Maximum first 130 summaries	ge73.seg:*	No. is the number of results predicted b greater than or equal to the score of the derived by analysis of the total	Salawwas of the Salawa	SUMMAKIE	Match De ID	20 1 20 1	20 1	1 21 21	112	200	11 1	0.0	111	.0 11 1	122 1	777	7 7 7	121	0.00	.0 12 1	.0	111	47.0 11 1 CQ833073 47.0 11 1 CQ833954	7.0 11 1
	OM nucleic - nucleic	Run on:	Title: US Perfect score: 20 Sequence: 1	Scoring table: ID	Searched: 13	Total number of hi	Minimum DB seq len Maximum DB seq len	Post-processing: M M	Database : r	Pred, No. is score greate		% Result Ou	Score	700	20	12.4	12.4	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10	0.0	14 10	10	17 10	010	20 10	000	201	25 26 10	10 10	4.4.	31 9.4	33 9.4

ce 1.20 /organism='Artificial Sequence'. Location/Qualifiers 1.20 /organism="synthetic construct" /mol type="genomic DNA" /db_xref="taxon:32630"

FEATURES Source

. 0 Query Match
100.0%; Score 20; DB 1; Length 20;
Best Local Similarity 100.0%; Pred. No. 1.3;
Matches 20; Conservative 0; Mismatches 0; Indels

ö

Gaps

RESULT 3 AR432273 LOCUS DEFINITION

AR432273 20 bp D Sequence 73 from patent US 6653133. AR432273.1 GI:40194546

PAT 18-DEC-2003

Unknown ACCESSION VERSION KEYWORDS SOURCE ORGANISM

Unknown REFERENCE

Unclassified.

1 (bases 1 to 20)
Dean,N.M., Marcusson,E.G. and Wyatt,J.
Artiense modulation of Fas mediated signaling
Patent: US 6653133-A 73 25-NOV-2003; AUTHORS
TITLE
JOURNAL
FEATURES

Query Match
100.0%; Score 20; DB 1; Length 20;
Best Local Similarity 100.0%; Pred. No. 1.3;
Matches 20; Conservative 0; Mismatches 0; Indels Location/Qualifiers
1. .20
/organism="unknown"
/mol__type="genomic DNA"

ö

Gaps

;

1 recadeacrirerrireces 20

ö

Gaps ; 0

138970 15 bp Sequence 8 from patent US 5616488. 138970.1 GI:2083450 Unknown. RESULT 4
138970
LOCUS
DEFINITION
ACCESSION
VERSION
KEYWORDS
SOURCE
ORGANISM

PAT 17-JUL-2003

Unknown.
Unknown.
Unclassified.
1 (bases 1 to 15)
2 ullivan, S., Deper, K.G., McSwiggen, J. and Stinchcomb, D.T.
IL-5 targeted ribozymes
Patent: US 5616488-A 8 01-APR-1997;
Location/Qualifiers
1. .15 REFERENCE AUTHORS TITLE JOURNAL FEATURES

Wed

ACCESSION: AR489492
ACCESSION: AR489494
ACCESSION: AR489496
ACCESSION: AR489498
ACCESSION: AR489529
ACCESSION: AR489529 ACCESSION: ARABOS ACCESSION: ARABOS ACCESSION: ARABILOS ACCESSION: ARABILOS ACCESSION: ARABILOS ACCESSION: AXIS 24 70 ACCESSION: AXIS 24 70 ACCESSION: AXIS 24 70 ACCESSION: AXIS 3049 ACCESSION: BD144711 ACCESSION: BD144711 ACCESSION: BD144711 ACCESSION: BD164771 **BD167010** συσυ

PAT 08-AUG-2001 M. Unknown.
Unclassified.

B. 1 (bases 1 to 20)

AS Dean,N.M. and Marcusson, E.G.
Antisense inhibition of Fas mediated signaling

AL Patent: US 6204055-A 73 20-MAR-2001;

Location/Qualifiers

Location/Qualifiers linear AR143179 20 bp Sequence 73 from patent US 6204055. AR143179 GI:15104465 RESULT 1
AR143179
LOCUS
DEFINITION
ACCESSION
KEYWORDS
SOURCE ORGANISM REFERENCE

Ouery Match
100.0%; Score 20; DB 1; Length 20;
Best Local Similarity 100.0%; Pred. No. 1.3;
Matches 20; Conservative 0; Mismatches 0; Indels

BD249354 20 bp DNA linear Antisense modulation of FAS mediated signaling. BD249354 BD249354.1 GI:33059124 JP 2002540812-A/69. RESULT 2 BD249354 LOCUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM

synthetic construct
synthetic construct
artificial sequences.

1 (Dases 1 to 20)
Dean, N. M. and Marcusson, E.G.
Antiense modulation of FAS mediated signaling
Patent: UP 2002249182-A 69 03-DEC-2002;
ISIS PHARMACEUTICALS INC
OS Artificial Sequence

AUTHORS TITLE JOURNAL

1 TCCAGCACTTTCTTTCCGG 20

REFERENCE AUTHORS TITLE JOURNAL

COMMENT

Comparight (i) 1999 - 2044 Company 21.4. 14.000 15.00 14.0	Oligonucleotide SE Endothelial moocyt Human adenosine re Human endothelial Human skin stress/ Retrotransposon in Human skin EST 479 Human skin EST 853 Human skin EST 853	Human monocyte act Human monocyte act Human facial skin- Circular oligonucl Single stranded ci Human P selectin a Triple helix formi Human P selectin p Oligonucleotide pr	Oligonucleotide proligonucleotide proligonucleotide proligonucleotide proligonucleotide proligonucleotide proligonucleotide proligonucleotide proligonucleotide prominan proligonucleotide prominan proligonucleotide proliforucleotide proliforucleot	Human skin EST 743 EST polymorphic DN Human hair-bearing Human hair-bearing Human hair-bearing Human facial skin- Human facial skin- Human facial skin- Triple helix formi Metastatic breast Prokaryote RT-PCR Human interleukin Primer for detecti Yeast NORF gene SA Yeast NORF Gene
## 10.4 Grantone version 5.1.6 m. 1.1d. ## 10.4 Grantone version 5.1.6 m. 1.1d. ## 10.5 Search, time 0.011 Geconde ## 10.5 Search time 0.01 Geconde				
GenCore version 5.1.6 search, using sw model oer 27, 2004, 14:19:47; Search time 0.001 Secon (without alignments) oegcactttctttccgg 20 IITTY_NUC prio. , Gapext 0.5 seqs, 2595 residues satisfying chosen parameters: 476 h: 80 h: 80 h: 80 h: 90 20 1 AACS186 Nouse Fast N	33.4 10.0 33.3 33.4 10.0 33.8 10.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.58 6.00 6.10 6.10 6.43 6.43 6.43 6.43 6.43 6.43 6.43 6.43	4.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 D04 H0 0 X WW ADA OZ 1000000	GenCore version 5.1.6 pyright (c) 1993 - 2004 Compugen Ltd. search, using sw model oer 27, 2004, 14:19:47 ; Search time 0.001 Seconds 103.800 Million cell updates/s	acttctttccgg 20 NUC 0, Gapext 0.5 , 2595 residues isfying chosen parameters: 476	Match 0% Match 100% first 238 summaries first 238 summaries eq:* maker of results predicted by chance to have or equal to the score of the result being to analysis of the total score distribution. SUMMARIES SOMMARIES SOMMARIES SOMMARIES SOMMARIES Descripti	AAC61866

chong220-/3.rng

HIV-1 NL4-3 nef ge HIV-1 NL4-3 nef ge Yeast tag for addi	Sed ID #51 from WO Sed ID #49 from WO		Human dendritic ce Metastatic breast	Metastatic breast	Human ubiquitously	Human ubidutcousty	Primer for detecti	Yeast NORF gene SA	east	ו עו	east	Yeast NORF gene SA			Yeast NORF gene SA	Human apo-dystroph Human apo-dystroph	Mouse neuronal reg	Pyridoxal (Pyridox	UDF Glycosyltransi Human Thi cell pre	Human haemoglobin	Human haemoglobin	paraoxonase 2 (PON	Human CHRMS gene p	SMOH polymorphism	EST polymorphic DN		proc	n apical i								,		le Fas (Apo-1) gene.													
1 AAQ96678 1 AAQ96676 1 AAV50338	1 AAV11235 1 AAV11233																																										ALIGNMENTS				20 BP.		7		directed against murine
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	0,7	0,0	0.0	0.0	10	0 10	0,0	0.0	10	0,0	0 0	011	01 0.	01.	01	01.	0.0	.01	0.0	10	101	0 10	01.	0100	0 70	000	0 10	010	000	10	0 0	0 0	0 10	000	0 10	001	1000	10.	000	0 10						tandard; DNA; 2		(first ontw.)	trans serra	oligonucleotide
œ œ œ																					89 60 0 44 40	4			9 9 9																						8 9 9 B	61866;) 1000-00M-20	1007-444	Antisense olig
0 180 181 82				c 188		190 191			0 194		c 197			c 201	202	0 202 204		205	c 208,		0 210			214	c 216			0 220		223		c 225		C 228			0 232		c 235		238				RESULT 1	161	ID AAC61	AC AAC61			
Triple helix formi Triple helix formi	dendritic c	Jendritic o Jendritic o	dendritic	atic	Metastatic breast	2110	atic	atic	atic		dendritic c	Human macrophage g	Human macrophage g	Human ubiquitously	Human ubiquitously	IPS activated huma	Yeast NORF gene SA	NORF gene	NORF gene	NORF gene	NORF gene	NORF Gene	NORF gene	Yeast NORF gene	Yeast NORF gene SA Yeast NORF gene SA	NORF gene	NORF gene	NORF gene	NORF gene	reast NORF gene SA Drimer-extension o	Human maturation/a	Human maturation/a	SCIAZO primer exte Human GRM8 gene bo	Human lysosomal ac	Human Myo/Vl prote	Zinc finger protei	Human androgen-reg	Openmentin promote Human CETP dene al	Human TNFRSF1A gen	Human transcriptio	Photodamage detect	Photodamage detect	Photodamage marker Photodamage marker	Photodamage marker	retin	en-regulate	ucleotide #	1	a nucleic a	nucleic nucleic	NL4-3 nef
10 1 AAX14816 10 1 AAX14766	111		н.	4 4	el -			7		1 AAZ81581		-			H 1			о с - с		-		 	1	п.			о r	4 4	H -	o c	4 11	О			o c					0 0	9 0	т 0	00	0	00	90	8 1		۲,		-
	4.4.4	4 4	42.	2 4	42.	4, 4	4 4	42.	42.	4 4	42.	42.	4.4	4.2	42.	4 4	42	4.6	4 4	42.	42.	4.4	42.	42.	4 42	42.	42.	4 4	42	4. 4	4.2	42	4 4	4,2	4.2	4 4	42	4 4	4,2	4.2	4 4	42	4 4	42	4 5	4 4	40	4 4 0 4	40	4 4 0 C	4.4
0 100 108 84.4	110	10 00	113 8.	o 00	116 8.	117 8.	119 8.	120 8.	121 8.	123 8.	124 8.	φ.	126 8.	128		131 8.	æ	ത്ര	135	600	137 8.	138	ώ	141 8.	œ α	œί	60 0	147	100	000	0 00	152 8	ao ao	0 00	156 8	158 8	159 8	160	162 8	163	165	166 8	00 00	169	170 8	0 00	173	174 175	176	~ ~	

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

October 27, 2004, 14:21:49; Search time 0.001 Seconds (without alignments) 44.320 Million cell updates/sec Run on:

US-10-619-220-73 20 1 tccagcacttctttccgg 20 Title: Perfect score: Sequence:

IDENTITY_NUC Gapop 10.0 , Gapext 0.5 106 segs, 1108 residues Searched:

Scoring table:

Total number of hits satisfying chosen parameters:

212

Minimum DB seq length: 8 Maximum DB seq length: 50

Post-processing: Minimum Match 0% Naximum Match 100% Listing first 106 summaries

rni73.seg:* Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score digtribution.

SOMMAKLES		
	de	1
		+[113

		100	Appl)]i	511	day	pj	Appl	ji ji	pl) <u>l</u> i	p]	lac	App1	p]	ddy	11	pp1	pl	ldi	pl	Ji	pp]	day	pl	lq.	day	ld:	p]	ddy	ddy	, Appl	p1	
		73, App.	73. Ar	Apr.	9, Appli	106, 7	5, Ar	5, Ar	Apr	0, App]	Apr	.0, Appl	8, Ar	19, AF	11, Aŗ	15, App	Apr	0, Ar	8, Ar	9, Ar		Apr	0, Ar		96, Ar	67, Ag	20, 2	.3, Ar	73, AF	153, 7	:03, 7	8, Ar		
	Description	Sequence	Sequence 7	Sequence 8			Sequence 1	Sequence 1	Seguence	Sequence 1	Seguence	Sequence 1	Sequence	Seguence	Sequence 3	Sequence 2	Seguence	Sequence 1	Seguence	Seguence	Seguence 3	Sednence	Sequence 1	Sequence				Sequence 1	• •	• •	Seguence 2	Seguence 4	Sequence 7	
SUMMARIES	ID	US-09-290-640-73	US-09-665-615B-73	US-08-319-492B-8	90-	US-08-544-381B-206	US-08-778-794A-15	09-341	18-004-	-004	-413-	-413-813-1	US-08-413-813-28	m	-413 - 81	-173-	-467-	-467-34	-467-346-2	US-08-467-346-29	US-08-467-346-31	PCT-US92-02480A-9	PCT-US92-02480A-10	US-08-173-489C-299	US-09-475-947A-96	3-173-	9-475-947A-1	9-534-3	3-173-489C-7	3-173-489C-1	-08-173-48	39-508-75	-09-508-7	11 001 000
	DB	-	-	Н	Н	~1	٦,		~	-		н	Н	Н	Н	-1	н	- -1	н	н	-		М	Н	Н	⊣		1	-	Н	-	н	н	,
	f Query Match Length	20	7	٦	15	13	13	13	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	11	11	10	10	10	11	-	r -1	-	10	,
d	Query Match	100.0	100.0	62.0	62.0	57.0	57.0	57.0	50.0	O	$^{\circ}$	0	\circ	50.0	0	50.0	0	0	0	0	0	50.0	50.0	~	47.0	45.0	45.0	45.0	45.0	42.0	42.0	42.0	42.0	c
	Score	20	20		N	11.4	11.4	ä	10	10	10	10	10	10		10				10	10	10	10	9.4	9.4	σv	σ	σ		8.4	8.4	8.4	8.4	a
٠.	Result No.		0	m	4	ru	9	7	ω U	σ	ດ 10	11	0 15	c 13	14	c 15	c 16		c 18	c 19	20	c 21	22	N	C 24	N		7	0	29	m	g 31	32	,

tent No. 54	equence 16,	equence 17	equence 16,	equence 17	equence 67	equence 78,	equence 86,	equence 4,	equence 43,	equente 43,	equence or,	equence 51.	equence 49,	equence 51,	equence 56,	equence 58,	equence 49,	equence 51,	equence 4,	equence 43,	equence 272	aquence 272	edience 270	equence 273	equence 274	equence 1,	equence 20,	equence 22,	equence 241	equence 2,	equence 5,	equence 14,	equence 16	equence 8,	ednence 3,	equence 10,	equence 12,	equence 14,	equence 58,	equence 80,	aguence 142	equence 140	equence 208	equence 56,	ednence 58'	equence 8,	equence 10,	equence 12,	equence 11,	equence 49,	equence 51,	equence 8,	equence 10,	equence 12,	equence 14,	equence 43,	equence 50,	equence 33.	equence 3,	equence 10,	equence 16,	equence 2,	equence 3,	Sequence 243, App Sequence 421, App	equence 422
2251-4	08-737-371A-1	08-737-3	- USSS-105853-1	108-662-963-17 08-662-963-17	09-442-054A-6	09-442-(09-442-054A-8	088-6	08-088-658-43	1 989 80	08-686-1184-2	08-685-4	08-847-1	08-847-1	38-686-113A-5	38-686-1	08-847-095A-4	08-847-095A-5	08-471-907A-4	08-4/1-90/A-4 08-388-353-07	78-388-353-27	2 - 88 £ - 80	08-488-551B-27	08-488-551B-2	38-488-551B-27	08-857-721-1	08-088-661F-2	38-088-661F-2	2-668-80	08-150-156A-2	08-150-1	18-150-1	38-150-156A-1	38-108-5	08-108-591B-9	08-108-591B-1	08-108-591B-1	2-80T-80	38-686-114B-5	39-475-947A-8	39-475-947A-14	39-508-753B-1	09-508-753B-20	09-337-3	09-337-3	38-468-713A-8	18-468-714A-L	J8-468-7198-1.	08-468-7	09-230-088-49	39-230-0	38-462-977B-8	18-462-977B-1	18-462-977B-1	18-462-977B-1	0-244-66	79-442-0344-0	375-6	8-662-9	8-662-9	38-662-9	0.000.00	18-859-954-5 56-859-954-5	US-08-859-954-243 US-08-859-954-421	08-859-954-42
Н	ч	Н,	٦,	4 ~	н	н	٦,	н.	٦.	٠,	٠.	1	ı	Н	н	н.	Н.	н,	٠,	٦,	٠,	٠,	ı		н	-	н	Н	Н	н	Н	н	н	Н	н,	м,	н.	-1	1	-	Н		-		н,	н,	٠, ١	٠,	4 (-1		Н	нì	н	٠,	٠,	٦,	- ا	٠,	H	Н	н.	٦,	٦ ،	4	н
10	10	10	2 5	o cc	σ	σι	σ.	0.) C	9 6	9 6	101	0	10	10	10	10	0 1	0 .) C) C	9 6	0	10	10	10	10	10	10	10	10	10	10	10	10	0 (0 6	0 -	9 6	101	10	10	10	10	10	10	7 .	9 6	10	10	10	10	10	9;	0 6) C	ο α 1	0 0	100	œ	ao c	20 C	oα	10 CO	œ
42.	41.	41.	4.4	4 4	40.	40.	. 04	40.	4.4	4	4 4	40	40.	40.	40.	40	40.	40.		4.4	, 0 C	. 4	40	40.	40	40.	40.	40.	40.	40.	40.	40.	40.	40.	40	40.	40.	. 0	4.0	40.	40.	40.	40.	40.	40.	40,	9 5	, 4	40.	40.	40.	40.	40	40.	40.	5 6			35.	35.			n n	35.0	'n
	8.2	•	•	•	60	σο.	CO (ao e	20 Q	ο α	oc	000	00	œ	00	œ	ю (ω (∞ (oα	οα	οα	oc	9 00	00	œ	80	00	ω	80	œ	α0	œ	æ	co o	DO 6	00 0	ο α	ο α	0 00	00	æ	60	αo	00 (00 0	20 C	οα	0	00	80	æ	œ	ω (00 (* 0 0		. 4		7		- 1	- 1	- 1	7
34	e D	9 19	- α n r	0.0 0.0	40	47	4.	5.	4, 4 4, 1,	1 4 0 4	. 4 . L	4 8	9	20	51	52	53	13 i	υr v	U II	י מ זיני	ט ני	9	61	62	63	64	65	99	67	68	69	70	71	72	5.	Ն լ 4, ր	0 7	7.0	78	79	80	81	82	ю Э	00 0 4, r	n ,u	0 Q	80	68	90	16	92	6 6 7	ου ο 4. ι	ה ה ה	0 10	. 8	66	O	0 0	\circ	> 0	105	0
υ		O	C)	υ	υ		U	υt	ט כ) C	υ	ט	υ	υ	U	υ	U	O, I	υc	י נ	י נ	ט	ט	υ	υ	U	υ		U	υ			O	υ	U			י כ)	υ	υ		υ	υ	O (D.			υ	υ	O	υ			υτ	ر	U	•			U	υ t	o o	υ

```
α
34
                                                                                                                       October 27, 2004, 14:23:56; Search time 0.001 Seconds (without alignments) 22.320 Million cell updates/sec
                                                                                                                                                                                                                                                                                                                                                             100
                  GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.
                                                                                                                                                                                                                                                                                                                                                           Total number of hits satisfying chosen parameters:
                                                                                                                                                                                                                                                                                                                                                                                                                                                  Post-processing: Minimum Match 0%
Maximum Match 100%
Listing first 50 summaries
                                                                                       OM nucleic - nucleic search, using sw model
                                                                                                                                                                                             US-10-619-220-73
20
1 tccagcactttctttccgg 20
                                                                                                                                                                                                                                                                   IDENTITY NUC
Gapop 10.0 , Gapext 0.5
                                                                                                                                                                                                                                                                                                                       50 segs, 558 residues
                                                                                                                                                                                                                                                                                                                                                                                               Minimum DB seq length: 8 Maximum DB seq length: 50
                                                                                                                                                                                               Title:
Perfect score:
Sequence:
                                                                                                                                                                                                                                                                       Scoring table:
                                                                                                                                                                                                                                                                                                                         Searched:
                                                                                                                           Run on:
```

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score digitibution.

rnpb73.seg:*

Database :

	Sequence 25, Appl Sequence 73, Appl Sequence 73, Appl Sequence 114, App Sequence 116, App Sequence 116, App Sequence 117, App Sequence 973, Appl Sequence 973, Appl Sequence 26, Appl Sequence 106, Appl Sequence 106, Appl Sequence 106, Appl Sequence 25, Appl Sequence 256, Appl Sequence 256, Appl Sequence 256, Appl Sequence 256, Appl Sequence 217, Appl Seq	Jan des semestre
SUMMARIES	US-09-799-848-25 US-09-799-848-25 US-10-644-6396-3 US-10-644-639A-114 US-09-510-378-206 US-09-510-378-206 US-10-450-797-170 US-10-450-797-170 US-10-450-797-797- US-10-450-797-797- US-10-450-797-797- US-10-450-797-797- US-10-450-797-797- US-10-450-797-796- US-10-450-797-796- US-10-450-797-796- US-10-223-765-268- US-10-233-765-268- US-10-233-765-268- US-10-233-765-268- US-10-233-765-268- US-10-233-765-268- US-10-330-627-596- US-10-330-627-596- US-10-330-627-596- US-10-330-627-596- US-10-330-627-596- US-10-330-627-17- US-10-330-627-17- US-10-330-627-17- US-10-330-627-18- US-10-330-527-596- US-10-330-527-596- US-10-330-527-596- US-10-330-527-596- US-10-330-527-596- US-10-330-527-596- US-10-330-527-596- US-10-330-527-596- US-10-330-527-596- US-10-330-55-410-10-10-10-10-10-10-10-10-10-10-10-10-1	
DB	! !	ı
Length	000000000000000000000000000000000000000	1
ery	11111111	٠
Score		,
Result No.	000 0000 0 000000000 0000 1111111111111	1

100.0%; Score 20; DB 1; Length 20;

Query Match

	SEO SE COMPANY SECOND	
14, Appl 2, Appli 14, Appli 16, Appl 16, Appl 250, App 250, App 385, App 385, App 385, Appl 385, Appl 964, Appl 964, Appli 10, Appli 11, Appli 12, Appli 12, Appli 12, Appli 12, Appli 12, Appli 14, Appli 242, Appli	TIONS THEREOF	٢
adrence eduence eduenc	AND COMPOSITIONS	
	RNASE H	
	ALIGNMENTS 48 /39,848 /343,809 /684,254 /203,716 /067,458 /453,514 /144,611 /861,306 /244,993 /814,961 /462,280 /898,13966 /411,734 /007,996	
US-09-985 US-09-983 US-09-983 US-09-983 US-10-033 US-10-203 US-10-154 US-10-154 US-10-154 US-10-154 US-10-154 US-10-154 US-10-154 US-10-154 US-10-154 US-10-154 US-10-154	ALIGNMENT ALIGNM	
	S / S / S / S / S / S / S / S / S / S /	
000000000000000000000000000000000000000	-25 (Application US/O ORMATION: Monia, Brett Cook, Phillip Crooke, Stanley Wi, Hongjiang Lina, Walter NUENTION: BUCGTON NUMBER: LING DATE: LICATION NUMBER: LICATION LICATION LUMBER: LICATION L	Mus sp.
4 N 6 L 8 20 C H 12 W 4 N 6 L 8 20 C	BESULT 1 19-09-799-848-25 19-09-799-848-25 Sequence 25, Application U BREEAL INFORMATION APPLICANT: Monia, Brett APPLICANT: Crook, Phillip APPLICANT: Crook, Stailib APPLICANT: Mu, Hongjiang APPLICANT: Lina, Walter TITLE OF INVENTION UNDER: TITLE OF INVENTION UNDER: FILE REFERENCE: 1999 PRIOR FILING DATE: 1999 PRIOR PELICATION UNDER: PRIOR PELICATION UNDER: PRIOR PELICATION UNDER: PRIOR PELICATION UNDER: PRIOR APPLICATION UNDER: PRIOR APPLICATION UNDER: PRIOR PELING DATE: 1999	LENGTH: 20 TYPE: DNA ORGANISM: Mus
ต่อกับ ดับ การ	20.00	US-00-SD

chong220-73.rst

```
GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.
```

OM nucleic - nucleic search, using sw model

October 27, 2004, 14:26:08; Search time 0.001 Seconds (without alignments) 2.360 Million cell updates/sec Run on:

1 tecageactttetttteegg 20 US-10-619-220-73 20 score: Sequence: Title: Perfect

IDENTITY NUC Gapop 10.0 , Gapext 0.5 Scoring table:

7 seqs, 59 residues Searched: Total number of hits satisfying chosen parameters:

14

Minimum DB seq length: 8
Maximum DB seq length: 50

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 7 summaries

rst73.seg:* Database : Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		43159	146337	17997	01888	102851	12818	63421
	Description	ACCESSION: CF543159	ACCESSION: AL046337	ACCESSION: CF277997	ACCESSION: CF301888	ACCESSION: CF302851	ACCESSION: CF312818	ACCESSION: CN763421
٠	ΩI	CF543159	AL046337	CF277997	CF301888	CF302851	CF312818	CN763421
	DB		H	, -1	н	н	н	-
	Match Length DB	11	60	8	80	80	80	80
Ouerv	Match	9,4 47.0	32.0	32.0	32.0	32.0	32.0	32.0
	Score	4,6	6.4	6.4	6.4	6.4	6.4	6.4
Result	No.	; ;		٣	Ω	Ŋ	U	7

ALIGNMENTS

RESULT 1	
CF543159	
LOCUS	CF543159 11 bp mRNA linear EST 22-SEP-2003
DEFINITION	S014678-024-030-006-SP6 MPIZ-ADIS-024-leaf Beta vulgaris cDNA clone
	024-030-006 5-PRIME, mRNA sequence.
ACCESSION	CF543159
VERSION	CF543159.1 GI:34891599
KEYWORDS	BST.
SOURCE	Beta vulgaris
ORGANISM	Beta vulgaris
	Eukaryota, Viridiplantae, Streptophyta; Embryophyta; Tracheophyta;
	Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
	Caryophyllales; Amaranthaceae; Beta.
REFERENCE	1 (bases 1 to 11)
AUTHORS	Herwig, R., Schulz, B., Weisshaar, B., Hennig, S., Steinfath, M.,
,	Drungowski, M., Stahl, D., Wruck, W., Menze, A., O'Brien, J., Lehrach, H.
	and Radelof, U.
TITLE	Construction of a 'unigene' cDNA clone set by oligonucleotide
	fingerprinting allows access to 25 000 potential sugar beet genes
JOURNAL	Plant J. 32 (5), 845-857 (2002)
MEDLINE	22362189

```
/db_xref="GABI:936619"
/db_xref="GABI:936619"
/db_xref="100006"
/tissue_r024-030-006"
/tissue_r024-030-006"
/tissue_r024-030-006"
/lab_noit="EMPIROB"
/clon lib="PRIZ-015-024-leaf"
/clon lib="PRIZ-015-024-leaf"
/clon lib=xry from sugar beet, library provided by Kas CDNA library from sugar beet, library provided by Kas Kleinwarzlebener saatzucht AG Einbeck, Germany, contact: b.schulz@kws.de; cloning sites SalI-NotI, primer sites and orientation:
SP6-SalI-CCACGCGTCCG-Sprime-cDNA-polyA-CC-NotI-T7; Note: Sequencing granted in the context of the GABI-Beet project, local PI: Dr. Katharina Schneider, coordinator: Prof. Christian Jung; Sequence submission managed by RZPD/GABI-Primary database:http://gabi.rzpd.de"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AL046337

DXFZQ434J217 s1 434 (synonym: htes3) Homo sapiens CDNA clone
DXFZQ434J217, mRNA sequence.
AL046337
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ö
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Homo sapiens
Eukaryota, Metazoa, Chordata, Craniata, Vertebrata, Euteleostomi,
Mammalia, Eutheria, Primates, Catarrhini, Hominidae, Homo.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1 (bases 1 to 8)
Kochrer, K., Beyer, A., Mewes, H.W., Gassenhuber, J. and Wiemann, S. EST (Kochrer, et al.)
Unpublished (1999)
                                                                                                                                                                                                                                 1. .11
/organism="Beta vulgaris"
/organism="Beta vulgaris"
/organism="RRNA"
/cultivar="KWS2320 (double haploid, monogerm breeding line)"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 /clone="DKFZp434J217"
/tissue_type="testis"
/dev stage="adult"
/lab_host="DH108"
/clone lib="434 (synonym: htes3)"
/note="Vector: pSport1; Site_1: Not1; Site_2: Sall"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ..
0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Ingolstaedter Landstr.1, D-85764 Neuherberg, Germany. Location/Qualifiers
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    47.0%; Score 9.4; DB 1; Length 11; 90.9%; Pred. No. 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Indels
         Contact: Weisshaar B
ADIS DNA core facility at MPIZ
Max-Planck-Institute for Plant Breeding Research
Car: Von-Linne Weg 10, 50829 Koeln, Germany
Fax: 00492215062851
Email: weisshaadmpiz-koeln mpg de
Insert Length: 11 Std Error: 0.00
Plate: 30 row: 0 column: 06
Seg primer: SP6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0; Mismatches
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              /organism="Homo sapiens"
/mol_type="mRNA"
/db_xref="taxon:9606"
                                                                                                                                                                                                                               Location/Qualifiers
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        AL046337.1 GI:49682663
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Homo sapiens (human)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Query Match
Best Local Similarity 90.9
Matches 10; Conservative
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4 AGCACTTTCTT 14
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1 AACACTTTCTT 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Contact: MIPS
12472698
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RESULT 2
AL046337
LOCUS
DEFINITION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ACCESSION
VERSION
KEYWORDS
SOURCE
ORGANISM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                REFERENCE
AUTHORS
TITLE
JOURNAL
COMMENT
PUBMED
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    FEATURES
                                                                                                                                                                                                                                   FEATURES
                      COMMENT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     à
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Q
```