

Machine learning

Linear Discriminant Functions

Mohammad-Reza A. Dehaqani

dehaqani@ut.ac.ir

A. Dehaqani, UT

Generative vs Discriminant Approach

2

A classifier that uses discriminant functions **assigns** a feature vector ${\bf x}$ to class ω_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i$$

- where $g_i(x)$, $i = 1, \ldots, c$, are the discriminant functions for c classes
- Dichotomizer (case of two classes): More common to use a single discriminant function

$$g(\mathbf{x}) \equiv g_1(\mathbf{x}) - g_2(\mathbf{x}),$$

Example:

Decide
$$\omega_1$$
 if $g(\mathbf{x}) > 0$; otherwise decide ω_2

$$g(\mathbf{x}) = P(\omega_1|\mathbf{x}) - P(\omega_2|\mathbf{x})$$

- **Generative** approaches estimate the **discriminant function** by first estimating the **probability distribution** of the patterns belonging to each class.
- **Discriminant** approaches estimate the **discriminant function explicitly**, without assuming a probability distribution.

Linear Discriminants

• A discriminant function that is a **linear combination of the components** of **x** is called a linear discriminant function and can be written as

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0,$$

- where **w** is the weight vector and \mathbf{w}_0 is the **bias** (or **threshold** weight).
- For the two-category case, the **decision rule** can be written as

Decide
$$\begin{cases} w_1 & \text{if } g(\mathbf{x}) > 0 \\ w_2 & \text{otherwise} \end{cases}$$

- The equation $g(\mathbf{x}) = 0$ defines the **decision boundary** that separates points assigned to ω_1 from points assigned to ω_2 .
- When g(x) is **linear**, the **decision surface** is a **hyperplane** whose **orientation** is determined by the normal **vector w** (normal to the hyperplane) and **location** is determined by the **bias** w_0 .

Minimizing an error function

- The solution can be found by minimizing an error function (e.g., "training error" or "empirical risk"):
 - The average loss incurred in classifying training the set of training samples
 - Use "learning" algorithms to find the solution

$J(\mathbf{w}, w_0) = \frac{1}{n} \sum_{k=1}^{n} [z_k - \hat{z}_k]^2$ true predicted

true class label:

$$z_k = \begin{cases} +1 & \text{if } \mathbf{x}_k \in \omega_1 \\ -1 & \text{if } \mathbf{x}_k \in \omega_2 \end{cases}$$

predicted class label:

$$\hat{z}_k = \begin{cases} +1 & \text{if } g(\mathbf{x}_k) > 0 \\ -1 & \text{if } g(\mathbf{x}_k) < 0 \end{cases}$$

General structure

 Linear discriminant function as a general structure of a pattern recognition system

Each input **feature value** x_i is multiplied by its corresponding **weight** w_i ; the output unit **sums all these products** and emits a +1 if $\mathbf{w}^t\mathbf{x} + w_0 > 0$ or a -1 otherwise

Geometric Interpretation of g(x)

If \mathbf{x}_1 and \mathbf{x}_2 are **both** on the decision surface, then

$$\mathbf{w}^t \mathbf{x}_1 + w_0 = \mathbf{w}^t \mathbf{x}_2 + w_0 \quad \longrightarrow \quad \mathbf{w}^t (\mathbf{x}_1 - \mathbf{x}_2) = 0,$$

- g(x) provides an **algebraic** measure of the **distance** of x from the hyperplane.
- x can be expressed as follows:

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|},$$

where \mathbf{x}_{p} is the **normal projection** of **x** onto H (the hyperplane), and r is the desired algebraic distance

Signed distance from x to the hyperplane

• Substitute x in g(x):

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 = \mathbf{w}^t (\mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}) + w_0$$

$$= \mathbf{w}^t \mathbf{x}_p + r \frac{\mathbf{w}^t \mathbf{w}}{\|\mathbf{w}\|} + w_0$$

$$= r \|\mathbf{w}\|$$

$$= r \|\mathbf{w}\|$$

since
$$g(\mathbf{x}_p) = 0$$
 ($\mathbf{w}^t \mathbf{x}_p + w_0 = 0$) and $\mathbf{w}^t \mathbf{w} = \|\mathbf{w}\|^2$

$$g(\mathbf{x}) = \mathbf{w}^t \mathbf{x} + w_0 = r\|\mathbf{w}\|, \longrightarrow r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}.$$

- In particular, the distance from the origin to H is given by $w_0/||\mathbf{w}||$
- The discriminant function g(x) is **proportional** to the **signed** distance from x to the hyperplane

Linear Discriminant Functions: multi-category case

 There is more than one way to devise multicategory classifiers with linear discriminant functions.

• (1) One against the rest

We can pose the problem as \mathbf{c} two-class problems, where the i'th problem is solved by a linear discriminant that separates points assigned to ω_i from those not assigned to ω_i . problem:

ambiguous regions

A. Dehaqani, UT

One against another

• We can use c(c-1)/2 linear discriminants, one for every pair of classes.

Problem:

Ambiguous regions

Solving problem of ambiguous regions

Defining c linear discriminant functions

$$g_i(\mathbf{x}) = \mathbf{w}^t \mathbf{x}_i + w_{i0} \qquad i = 1, ..., c,$$

- Assigning **x** to ω_i if $g_i(\mathbf{x}) > g_i(\mathbf{x})$ for all $j \neq i$;
- The resulting classifier is called a linear machine

A. Dehagani, UT

Decision boundaries produced by a linear machine

11

- A linear machine divides the feature space in c convex decisions regions.
 - If x is in region R_i , the $g_i(x)$ is the largest.
- Most **suitable** for problems for which the conditional densities $p(\mathbf{x}|\omega_i)$ are **unimodal**.
- Although there are c(c-1)/2 pairs of regions, there typically less decision boundaries

A. Dehagani, UT

Geometric Interpretation

The decision boundary between adjacent regions R_i
and R_i is a portion of the hyperplane H_{ii} given by:

$$g_i(\mathbf{x}) = g_j(\mathbf{x})$$
$$(\mathbf{w}_i - \mathbf{w}_j)^t \mathbf{x} + (w_{i0} - w_{j0}) = 0.$$

• It follows at once that $\mathbf{w}_i - \mathbf{w}_j$ is **normal** to H_{ij} , and the signed distance from \mathbf{x} to H_{ii} is given by

$$r = \frac{g_i(\mathbf{x}) - g_j(\mathbf{x})}{\|\mathbf{w}_i - \mathbf{w}_i\|}$$

Higher Order Discriminant Functions

- Higher order discriminants yield more complex decision boundaries than linear discriminant functions
- By adding additional terms involving the products of pairs of components of x, we obtain the quadratic discriminant

function
$$g(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j.$$

- The separating surface defined by $g(\mathbf{x}) = 0$ is a second-degree or **hyperquadric** surface (additional d(d+1)/2 coefficients)
- By continuing to add terms such as w_{ijk}x_ix_jx_k we can obtain the class of polynomial discriminant functions

A. Dehaqani, UT

Generalized linear discriminant function

14

Mapping the data to a space of higher

$$g(\mathbf{x}) = \sum_{i=1}^d a_i y_i(\mathbf{x}) = \mathbf{a}^t \mathbf{y},$$

• This is done by **transforming** the data through **properly** chosen functions $y_i(\mathbf{x})$, i=1,2,..., (called φ functions):

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_d \end{bmatrix} \boldsymbol{\varphi} \begin{bmatrix} y_1(\mathbf{x}) \\ y_2(\mathbf{x}) \\ \dots \\ y_{\hat{d}}(\mathbf{x}) \end{bmatrix} \quad d \rightarrow \hat{d} \quad \text{where} \quad \hat{d} > d$$

Linearly-separable by proper transformation

By **properly** choosing the φ functions, a problem which is **not linearly-separable** in the d-dimensional space, might **become** linearly separable in the \hat{d} -dimensional space

• Example:

$$g(x) > 0$$
 if $x < -1$ or $x > 0.5$

- The corresponding decision regions R_1 , R_2 in the 1D-space are **not** simply connected (not linearly separable).
- Consider the following mapping and parameters :

$$\mathbf{y} = \begin{bmatrix} y_1(x) \\ y_2(x) \\ y_3(x) \end{bmatrix} = \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$$

$$\mathbf{a}^t \mathbf{y}$$
 $g(x) = \underbrace{(-1,1,2)^t}$

A. Dehaqani, UT

The problem has now become linearly separable! **y**₃ $\widehat{\mathbf{R}}_{2}$ $\mathbf{a}^t \mathbf{y} = 0$ \mathcal{R}_1 \mathcal{R}_{2} y_2 0.5 1.5 y_1

A. Dehagani, UT

Augmented feature/parameter space

18

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^{d} w_i x_i = \sum_{i=0}^{d} w_i x_i$$

• where we set $x_0 = 1$. Thus we can write

$$\mathbf{a} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} = \begin{bmatrix} w_0 \\ \mathbf{w} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix} = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}$$

- This mapping from d-dimensional x-space to (d+1)-dimensional y-space is mathematically trivial but nonetheless quite **convenient**
- The hyperplane decision surface \widehat{H} defined by $\mathbf{a}^t \mathbf{y} = 0$ passes through the **origin** in \mathbf{y} -space
- The distance from \mathbf{y} to \widehat{H} is given by $|\mathbf{a}^t\mathbf{y}|/||\mathbf{a}||$, or $|\mathbf{g}(\mathbf{x})|/||\mathbf{a}||$. Since $||\mathbf{a}|| > ||\mathbf{w}||$, this distance is **less** than, or at most **equal** to the distance from \mathbf{x} to \mathbf{H} .

Learning: linearly separable case

19

Given a linear discriminant function

$$g(\mathbf{x}) = \mathbf{a}^t \mathbf{y}$$

the goal is to "learn" the parameters (weights) a from a set of n labeled samples y_i , where each y_i has a class label ω_1 or ω_2 .

- Every training sample y_i places a
 constraint on the weight vector a
- Visualize solution in "feature space":
 - a^ty=0 defines a hyperplane in the feature space with a being the normal vector.
 - Given n examples, the solution a must lie within a certain region.

Visualize solution in "parameter space":

- a^ty=0 defines a hyperplane in the parameter
 space with y being the normal vector.
- Given *n* examples, the solution **a** must lie on the **intersection** of *n* half-spaces

Solution vector **a** is usually **not unique**; we can impose certain constraints to enforce uniqueness, e.g.,:

"Find unit-length weight vector a that maximizes the minimum distance from the training examples to the separating plane"

20

Normalization

- This suggests a "normalization" that simplifies the treatment of the two-category case
- The replacement of all samples labelled ω_2 by their negatives. (replace \mathbf{y}_i by $-\mathbf{y}_i$)
- With this "normalization" we can forget the labels and look for a weight vector a such that a^ty_i > 0 for all of the samples.
- Such a weight vector is called a separating vector or more generally a solution vector

The effect of the margin on the solution region

- seek the minimum-length weight vector satisfying $\mathbf{a}^t \mathbf{y}_i \geq b$ for all i,
- where b is a positive constant called the margin
- The solution region resulting form the intersections of the halfspaces for which

$$\mathbf{a}^t \mathbf{y}_i \ge b > 0$$

- lies within the previous solution region, being **insultated** from the old boundaries by the distance $b/||\mathbf{y}_i||$.
- We find a solution vector closer to the "middle" of the solution region to get more likely to classify new test samples correctly

"Learning" Using Iterative Optimization

$$J(\mathbf{a}) = \frac{1}{n} \sum_{k=1}^{n} [z_k - \hat{z}_k]^2$$

- Gradient DescentProcedures:
- finding a solution vector **a** for **a**^t**y**_i>0
- define a **criterion function** $J(\mathbf{a}) \text{ that is minimized if } \mathbf{a} \text{ is}$ a **solution vector**

search direction

$$\mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k) \nabla J(\mathbf{a}(k)),$$

 η is a positive scale factor or learning rate

Gradient Descent

search space

Effect of the learning rate

slow but converges to solution fast but overshoots solution

25 A. Dehagani, UT

Optimum learning rate

Suppose that the criterion function can be well approximated by the second-order expansion around a value $\mathbf{a}(k)$ as

Hessian (2nd derivatives)

$$J(\mathbf{a}) \simeq J(\mathbf{a}(k)) + \nabla J^t(\mathbf{a} - \mathbf{a}(k)) + \frac{1}{2}(\mathbf{a} - \mathbf{a}(k))^t \mathbf{H} (\mathbf{a} - \mathbf{a}(k)),$$

- Evaluating $J(\mathbf{a})$ at $\mathbf{a} = \mathbf{a}(k+1)$ and using $\mathbf{a}(k+1) = \mathbf{a}(k) \eta(k)\nabla J(\mathbf{a}(k))$,
- We find:

$$J(\mathbf{a}(k+1)) \simeq J(\mathbf{a}(k)) - \eta(k) \|\nabla J\|^2 + \frac{1}{2}\eta^2(k)\nabla J^t \mathbf{H} \nabla J.$$

It is expensive in practice

$$\eta(k) = \frac{\|\nabla J\|^2}{\nabla J^t \mathbf{H} \nabla J},$$

Newton's algorithm

$$\mathbf{a}(k+1) = \mathbf{a}(k) - \mathbf{H}^{-1} \mathbf{\nabla} J,$$

- It is not applicable if the Hessian matrix **H** is singular
- It requires **inverting** H ($O(d^3)$; too expensive)
- If J(a) is quadratic, Newton's method converges

gradient descent (green) and Newton's method (red) for minimizing a function

Newton's method uses curvature information (i.e. the second derivative) to take a more direct ro

27

Perceptron rule

- The most obvious choice for **criterion function** is to let $J(\mathbf{a}; \mathbf{y}_1, ..., \mathbf{y}_n)$ be the **number of samples misclassified** by \mathbf{a} .
- This function is piecewise constant, it is a poor candidate for a gradient search
- Better choice is the *Perceptron criterion function*

$$J_p(\mathbf{a}) = \sum_{\mathbf{y} \in \mathcal{Y}} (-\mathbf{a}^t \mathbf{y}),$$

- Since $\mathbf{a}^t \mathbf{y} \leq 0$ if \mathbf{y} is misclassified, $J_p(\mathbf{a})$ is never negative.
- $J_p(\mathbf{a})$ is **proportional** to the **sum of the distances** from the misclassified samples to the decision boundary
- Gradient

$$\nabla J_p = \sum_{\mathbf{y} \in \mathcal{Y}} (-\mathbf{y}),$$

Update rule becomes

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_k} \mathbf{y},$$

Batch Perceptron

- The batch Perceptron algorithm for finding a solution vector can be stated very simply :
 - The next weight vector is obtained by adding some multiple of the sum of the misclassified samples to the present weight vector.
- Keep changing the orientation of the hyperplane until all training samples are on its positive side.

A. Dehaqani, UT

Fixed-increment single-sample Perceptron

• \mathbf{y}^k is misclassified.

$$\mathbf{a}(1)$$
 arbitrary $\mathbf{a}(k+1) = \mathbf{a}(k) + \mathbf{y}^k$ $k \ge 1$

- Since $\mathbf{a}(k)$ misclassifies \mathbf{y}^k , $\mathbf{a}(k)$ is not on the positive side of the \mathbf{y}^k hyperplane $\mathbf{a}^t\mathbf{y}^k=0$.
 - The addition of \mathbf{y}^k to $\mathbf{a}(k)$ moves the weight vector directly toward and perhaps across this hyperplane