1

Assignment 2

CS20BTECH11028

and latex-tikz codes from

https://github.com/Harsha24112002/AI1103/ tree/main/Assignment-2

1 PROBLEM GATE EC 56

Let *X* and *Y* be jointly distributed random variables such that the conditional distribution of *Y*, given X = x, is uniform on the interval (x - 1, x + 1). Suppose E(X) = 1 and $Var(X) = \frac{5}{3}$.

The mean of the random variable Y is

(A)
$$\frac{1}{2}$$
 (C) $\frac{3}{2}$

2 Solution GATE EC 56

We know that,

$$\Pr(Y = y|X = x) = \frac{f(x,y)}{f_1(x)}$$
 (2.0.1)

where $f(x, y) = Pr(X = x, Y = y)., f_1(x)$ is the marginal probability for X=x.

Given that Pr(Y|X = x) is uniform over the interval (x-1,x+1).

$$\Rightarrow \Pr(Y = y | X = x) = \frac{1}{(x+1) - (x-1)}$$
 (2.0.2)
= $\frac{1}{2}$ (2.0.3)

$$\Rightarrow \Pr(Y = y | X = x) = \begin{cases} \frac{1}{2} & y \in (x - 1, x + 1) \\ 0 & \text{otherwise} \end{cases}$$
(2.0.4)

Given E(X) = 1

$$\Rightarrow \int_{-\infty}^{\infty} x f_1(x) dx = 1 \tag{2.0.5}$$

Now consider E(Y),

$$E(Y) = \int_{-\infty}^{\infty} y f_1(y) dy \qquad (2.0.6)$$

As $f_1(y)$ is a marginal probability of Y=y we can write as,

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy \qquad (2.0.7)$$

From 2.0.1 we can write,

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \Pr(Y = y | X = x) f_1(x) dx dy$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} y \Pr(Y = y | X = x) dy \right) f_1(x) dx$$
(2.0.9)

From 2.0.4 we can simplify as,

$$E(Y) = \int_{-\infty}^{\infty} \left(\int_{(x-1)}^{(x+1)} y \Pr(Y = y | X = x) dy \right) f_1(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\int_{(x-1)}^{(x+1)} y \left(\frac{1}{2} \right) dy \right) f_1(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\frac{1}{2} \right) \left(\frac{(x+1)^2 - (x-1)^2}{2} \right) f_1(x) dx$$
(2.0.12)

$$= \int_{-\infty}^{\infty} x f_1(x) dx$$
 (2.0.13)
= $E(X)$ (2.0.14)

Hence from 2.0.5 it can be seen that

$$E(Y) = 1 (2.0.15)$$

(2.0.3) : Option B is true