Построение вариационных рядов. Расчет числовых характеристик

§ 4. Лабораторная работа № 1.

Лабораторная работа № 1.

Цельработы: овладение способами построения рядов распределения и методами расчета числовых характеристик.

Выполнение лабораторной работы № 1 рассмотрим на примере следующей задачи.

Задача. Имеются данные об обводненности нефти из насосных скважин (в %):

61,2	61,4	60,2	61,2	61,3	60,4	61,4	60,8	61,2	60,6
61,6	60,2	61,3	60,3	60,7	60,9	61,2	60,5	61,0	61,4
61,1	60,9	61,5	61,4	60,6	61,2	60,1	61,3	61,1	61,3
60,3	61,3	60,6	61,7	60,6	61,2	60,8	61,3	61,0	61,2
60,5	61,4	60,7	61,3	60,9	61,2	61,1	61,3	60,9	61,4
60,7	61,2	60,3	61,1	61,0	61,5	61,3	61,9	61,4	61,3
61,6	61,0	61,7	61,1	60,9	61,5	61,6	61,4	61,5	61,2
61,6	61,3	61,8	61,1	61,7	60,9	62,2	61,1	62,1	61,0
61,5	61,7	62,3	62,3	61,7	62,9	62,5	62,8	62,6	61,5
62,1	62,6	61,6	62,5	62,4	62,3	62,1	62,3	62,2	62,1

Содержание работы: на основе совокупности данных опыта выполнить следующее:

- 1. Построить ряды распределения (интервальный и дискретный вариационные ряды). Изобразить их графики.
- 2. Построить график накопительных частот кумуляту.
- 3. Найти эмпирическую функцию распределения и изобразить ее графически.
- 4. Вычислить моду, медиану, выборочную среднюю, выборочную дисперсию, выборочное среднее квадратическое отклонение, коэффициент вариации, асимметрию, эксцесс.
- 5. Построить доверительные интервалы для истинного значения измеряемой величины и среднего квадратического отклонения генеральной совокупности.
- 6. Раскрыть смысловую сторону каждой характеристики.

- 1.1. Построить интервальный вариационный ряд. Для этого найти:
- а) размах варьирования признака по формуле $R = x_{\max} x_{\min}$, где x_{\min} наименьшая, x_{\max} наибольшая варианты в данной выборочной совокупности;
- б) число интервалов вариационного ряда, пользуясь одним из приведенных ниже соотношений:

$$k \approx \sqrt{n}$$
, $6 < k < 12$, $k \approx 1 + \log_2 n \approx 1 + 3{,}2\lg n$, где n — объем выборки;

- в) длину h частичных интервалов по формуле $h = \frac{R}{k}$ и, если необходимо, округлить это значение до некоторого числа;
- г) записать полученный интервальный вариационный ряд, заполнив табл. 2, §1. Сделать контроль, убедившись, что $\sum n_i = n$.

- **1.2.** Построить дискретный вариационный ряд, взяв в качестве вариант середины вариант-интервалов непрерывного вариационного ряда, а в качестве частот частоты непрерывного вариационного ряда (табл. 3).
- **1.3.** Изобразить графически интервальный и дискретный вариационные ряды (построить гистограмму и полигон частот).
- **2.** Построить график накопленных частот *кумуляту*, т.е. ломаную, проходящую через точки с координатами x_i и соответствующими накопленными частотами. Предварительно составить табл. 5 § 1.
- Найти эмпирическую функцию распределения и изобразить ее графически.
 - **4.1.** Найти моду $M_o X$ и медиану $M_e X$.
- **4.2.** Для вычисления остальных статистик воспользоваться методом произведений. Ввести условные варианты $u_i = \frac{x_i C}{h}$, где $C = M_o X$, h шаг (длина интервала). Составить расчетную табл. 6, § 2.

Контроль вычислений произвести по формуле:

$$\sum n_i + 2\sum n_i u_i + \sum n_i u_i^2 = \sum n_i (u_i + 1)^2.$$

4.3. Пользуясь табл. 6, вычислить начальные моменты (11) — (14):

$$M_1^* = \frac{1}{n} \sum n_i u_i$$
, $M_2^* = \frac{1}{n} \sum n_i u_i^2$, $M_3^* = \frac{1}{n} \sum n_i u_i^3$, $M_4^* = \frac{1}{n} \sum n_i u_i^4$.

- **4.4.** Найти выборочную среднюю $\bar{x} = M_1^* h + C$.
- **4.5.** Найти выборочную дисперсию $D(X) = (M_2^* M_1^{*2})h^2$.
- 4.6. Найти выборочное среднее квадратическое отклонение (17):

$$\sigma_{\rm B} = S = \sqrt{D(X)}$$
.

- **4.7.** Найти коэффициент вариации (22): $V = S/\bar{x}$.
- **4.8.** Найти центральные моменты (20), (21):

$$m_3 = (M_3^* - 3M_2^*M_1^* + 2M_1^{*3})h^3,$$

$$m_4 = (M_4^* - 4M_3^*M_1^* + 6M_2^*M_1^{*2} - 3M_1^{*4})h^4.$$

4.9. Вычислить асимметрию (18): $A_S = \frac{m_3}{S^3}$ и эксцесс (19): $E_X = \frac{m_4}{S^4} - 3$.

5. Доверительные интервалы для a и σ найти, согласно (23), (24):

$$\overline{x} - t_{\gamma} \cdot \frac{S_x}{\sqrt{n}} < a < \overline{x} + t_{\gamma} \cdot \frac{S_x}{\sqrt{n}}$$
 при $\gamma = 0.95$.

Величину t_{γ} найти по приложению 3, а по приложению 4 найти величину q, удовлетворяющую одному из условий:

$$S(1-q) < \sigma < S(1+q)$$
 при $q < 1$, $0 < \sigma < S(1+q)$ при $q > 1$.

6. Раскрыть смысловую сторону каждой характеристики.

Обозначим через X обводненность нефти из рассматриваемых насосных скважин.

- 1.1. По данным выборки строим интервальный вариационный ряд.
- а) Поскольку, как легко выяснить, $x_{\max} = 62.8$, $x_{\min} = 60.1$, то размах варьирования признака X равен $R = x_{\max} x_{\min} = 62.8 60.1 = 2.7$.
- б) Определяя число k интервалов (число столбцов в таблице) вариационного ряда, положим k=10.
- в) Длина h каждого частичного интервала равна $h = \frac{R}{k} = \frac{2,7}{10} = 0,27$. Так как исходные данные мало отличаются друг от друга и содержат один десятичный знак, то величину h округляем до одного десятичного знака: h = 0,3.

г) Подсчитываем число вариант, попадающих в каждый интервал, по данным выборки. Значение x_i , попадающее на границу интервала, относим к правому интервалу. За начало x_0 первого интервала берем величину $x_0 = x_{\min} - 0.5h = 60.1 - 0.5 \cdot 0.3 = 59.95 \approx 60$. Конец x_k последнего интервала находим по формуле $x_k = x_{\max} + 0.5h = 62.8 + 0.15 = 62.95 \approx 63.0$. Сформированный интервальный вариационный ряд записываем в виде табл. 7.

Таблица 7

Варианты- интервалы	60- 60,3	60,3-60,6	6,09 -9,09	60,9-61,2	61,2-61,5	61,5-61,8	61,8-62,1	62,1-62,4	62,4-62,7	62,7-63,0
Частоты, n_i	3	6	9	18	29	16	2	10	5	2

Контроль: $\sum n_i = 100$, и объем выборки n = 100.

1.2. Записываем дискретный вариационный ряд (табл. 8). В качестве вариант x_i берем середины интервалов интервального вариационного ряда.

Таблица 8

варианты, x_i	60,15	60,45	60,75	61,05	61,35	61,65	61,95	62,25	62,55	62,85
частоты, n_i	3	6	9	18	29	16	2	10	5	2

1.3. Изображаем интервальный и дискретный вариационные ряды графически, построив гистограмму и полигон частот в одной системе координат (рис. 2).

Рис.2. Гистограмма и полигон.

2. Строим график накопленных частот — кумуляту (рис. 3). Предварительно составляем расчетную табл. 9.

Таблица 9

Варианты, x_i	60,15	60,45	60,75	61,05	61,35	61,65	61,95	62,25	62,55	62,85
относительные частоты, $w_i = n_i / n$	0,03	0,06	0,09	0,18	0,29	0,16	0,02	0,1	0,05	0,02
накопительные относительные частоты, $W_i = W_{i-1} + w_i$	0,03	0,09	0,18	0,36	0,65	0,81	0,83	0,93	0,98	1

Рис. 3. Кумулятивная кривая.

3. Находим эмпирическую функцию распределения. Воспользуемся формулой (1): $F_{\rm B}(x) = \frac{n_x}{n}$.

Если $x \le 60,15$, то $F_{\rm B}(x) = 0$ — по свойству эмпирической функции распределения.

Если 60,15
$$< x \le 60,45$$
, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{3}{100} = 0,03$.

Если
$$60,45 < x \le 60,75$$
, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{3+6}{100} = 0,09$.

Если
$$60,75 < x \le 61,05$$
, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{3+6+9}{100} = 0,18$.

Если 61,05
$$< x \le 61,35$$
, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{18+18}{100} = 0,36$.

Если 61,35
$$< x \le 61,65$$
, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{36+29}{100} = 0,65$.

Если 61,65
$$< x \le 61,95$$
, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{65+16}{100} = 0,81$.

Если 61,95 <
$$x \le$$
 62,25, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{81+2}{100} = 0,83$.

Если 62,25
$$< x \le 62,55$$
, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{83+10}{100} = 0,93$.

Если 62,55
$$< x \le 62,85$$
, то $F_{\rm B}(x) = \frac{n_x}{n} = \frac{93+5}{100} = 0,98$.

Если x > 62,85, то $F_{\rm B}(x) = 1$ — по свойству эмпирической функции распределения.

Записываем полученную эмпирическую функцию в виде:

$$F_{\text{B}}(x) = \begin{cases} 0, & x \in (-\infty, 60, 15], \\ 0,03, & x \in (60, 15; 60, 45], \\ 0,09, & x \in (60, 45; 60, 75], \\ 0,18, & x \in (60, 75; 61, 05], \\ 0,36, & x \in (61, 05; 61, 35], \\ 0,65, & x \in (61, 45; 61, 65], \\ 0,81, & x \in (61, 65; 61, 95], \\ 0,83, & x \in (61, 95; 62, 25], \\ 0,93, & x \in (62, 25; 62, 55], \\ 0,98, & x \in (62, 55; 62, 85], \\ 1, & x \in (62, 85; +\infty). \end{cases}$$

График функции $F_{\rm B}(x)$ представлен на рис.4.

Рис.4. Кумулята и эмпирическая функция распределения.

Соединив середины вертикальных частей ступенчатой кусочнопостоянной кривой, являющейся графиком функции $F_{\rm B}(x)$, получаем плавную кривую (на рис. 4 это штриховая линия). Абсциссами точек этой кривой служат значения обводненности нефти, добываемой насосным способом из скважин, а ординатами — значения эмпирической функции распределения, характеризующей оценку вероятности события $X \le x_i$, т.е. вероятности попадания возможных значений обводненности нефти на промежуток $(-\infty, x_i]$.

Для нахождения числовых характеристик признака X — обводненности нефти (несмещенных оценок для M(X) = a, D(X), а также $M_e X$, $M_o X$, A_s , E_x) воспользуемся табл. 8.

4.1. Так как варианта x = 61,35 в табл. 8 встречается с наибольшей частотой $n_5 = 29$, то $M_o X = 61,35$, т.е. это значение обводненности нефти, встречающееся в данной выборке с наибольшей частотой.

Находим $M_e X$. Так как табл. 8 содержит четное число столбцов, то $M_e X = \frac{61,35+61,65}{2} = 61,5$. Это значение обводненности нефти, которое делит данные выборки признака X на равные части.

4.2. Для нахождения остальных статистик, характеризующих обводненность нефти, воспользуемся методом произведений. Введем, согласно (9), *условные варианты* $u_i = \frac{x_i - C}{h}$; $C = M_o X = 61,35$, h = 0,3. Составим расчетную табл. 10.

Таблица 10

	ı	ı	I	I			аолица то
x_i	n_i	u_i	$n_i u_i$	$n_i u_i^2$	$n_i u_i^3$	$n_i u_i^4$	контрольный столбец $n_i(u_i + 1)^2$
60,15	3	-4	- 12	48	- 192	768	27
60,45	6	-3	- 18	54	- 162	486	24
60,75	9	-2	- 18	36	- 72	144	9
61,05	18	-1	- 18	18	- 18	18	0
61,35	29	0	0	0	0	0	29
61,65	16	1	16	16	16	16	64
61,95	2	2	4	8	16	32	18
62,25	10	3	30	90	270	810	160
62,55	5	4	20	80	320	1280	125
62,85	2	5	10	50	250	1250	72
	100		14	400	428	4804	528

Контроль вычислений проводим по формуле:

$$\sum n_i + 2\sum n_i u_i + \sum n_i u_i^2 = \sum n_i (u_i + 1)^2,$$

T.e.

$$100 + 2 \cdot 14 + 400 = 528 = 27 + 24 + 9 + 29 + 64 + 18 + 160 + 125 + 72$$
.

Следовательно, вычисления проведены верно.

4.3. Пользуясь результатами последней строки табл. 10, находим условные начальные моменты (11) — (14):

$$M_1^* = \frac{1}{n} \sum n_i u_i = 14/100 = 0,14,$$

$$M_2^* = \frac{1}{n} \sum n_i u_i^2 = 400/100 = 4,$$

$$M_3^* = \frac{1}{n} \sum n_i u_i^3 = 428/100 = 4,28,$$

$$M_4^* = \frac{1}{n} \sum n_i u_i^4 = 4804/100 = 48,04.$$

4.4. Находим выборочную среднюю (15):

$$\bar{x} = M_1^* h + C = 0.14 \cdot 0.3 + 61.35 = 61.392 \approx 61.39$$
,

которая характеризует среднюю обводненность нефти из насосных скважин в данной выборке, составляющую 61,39 %.

4.5. Находим выборочную дисперсию (16):

$$S^2 = (M_2^* - M_1^{*2})h^2 = (4 - 0.14^2) \cdot 0.09 = 0.358236$$

4.6. Вычисляем выборочное среднее квадратичное отклонение (17):

$$S = \sqrt{S^2} = \sqrt{0.358236} = 0.59853$$
.

4.7. Величина S = 0,599 характеризует степень рассеяния значений обводненности нефти относительно средней обводненности. Для определения колеблемости значений обводненности нефти в процентном отношении вычисляем коэффициент вариации (22):

$$V = S/\bar{x} = \frac{0.599}{61.39} = 0.00976$$

Величина коэффициента вариации мала (составляет 0,01), что означает тесную сгруппированность значений обводненности нефти около центра рассеяния, т.е. около средней обводненности нефти.

4.8. Для предварительной оценки отклонения значений обводненности нефти от нормального распределения вычисляем асимметрию и эксцесс. Сначала находим центральные моменты третьего и четвертого порядков (20), (21):

$$m_3 = (M_3^* - 3M_2^*M_1^* + 2M_1^{*3})h^3 = (4,28 - 3 \cdot 4 \cdot 0,14 + 2 \cdot 0,14^3) \cdot 0,3^3 = 0,07035.$$

$$m_4 = (M_4^* - 4M_3^*M_1^* + 6M_2^*M_1^{*2} - 3M_1^{*4})h^4 =$$

$$= (48,04 - 4 \cdot 4,28 \cdot 0,14 + 6 \cdot 4 \cdot 0,14^2 - 3 \cdot 0,14^4) \cdot 0,3^4 = 0,37023.$$

4.9. Тогда в соответствии с (18), (19), находим:

$$A_S = \frac{m_3}{S^3} = \frac{0.07}{0.599^3} = 0.328$$
,

$$E_x = \frac{m_4}{S^4} - 3 = \frac{0.37}{0.599^4} - 3 = -0.115$$
.

Резюме. Значения Аѕ и Ех мало отличаются от нуля. Поэтому можно предположить близость данной выборки, характеризующей обводненность нефти, к нормальному распределению

5. Произведем оценку генеральной средней M(X) = a и генерального среднеквадратического отклонения $\sigma = S$ по выборочным статистикам \bar{x} и S, используя теорию доверительных интервалов для нормального распределения.

Доверительный интервал для истинного значения обводненности нефти с надежностью $\gamma = 0.95$ находим, согласно (23):

$$\overline{x} - \frac{S}{\sqrt{n}} \cdot t_{\gamma} < a < \overline{x} + \frac{S}{\sqrt{n}} \cdot t_{\gamma}$$
.

Согласно приложению 3, при n=100 и $\gamma=0.95$ находим $t_{\gamma}=1.984$. Записываем доверительный интервал:

$$61,39 - \frac{0,599}{10} \cdot 1,984 < a < 61,39 + \frac{0,599}{10} \cdot 1,984$$

или 61,27 < a < 61,51.

Таким образом, средняя обводненность нефти из насосных скважин (в %) по данным выборки должна находиться в промежутке (61,27;61,51).

Запишем доверительный интервал для генерального среднеквадратического отклонения $\sigma = S$. При заданных $\gamma = 0.95$ и n = 100 по таблице приложения 4 находим q = 0.143. Так как q < 1, то доверительный интервал записываем в виде (24):

$$S(1-q) < \sigma < S(1+q),$$

или

$$0.599(1-0.143) < \sigma < 0.599(1+0.143)$$
,

или

$$0,51 < \sigma < 0,68$$
;

следовательно, отклонения истинных значений обводненности нефти из насосных скважин не должны выходить за пределы промежутка (0,51;0,68).

Вариант № 1. Имеются данные о производительности труда (количество деталей в смену):

71	76	79	86	78	76	84	78	74	76	99	87	82
78	84	81	76	75	82	85	80	76	79	76	86	86
86	89	77	80	74	86	87	74	79	84	75	85	81
88	77	74	93	85	83	80	75	93	95	91	88	85
85	83	85	82	86	79	84	88	74	92	95	76	

Вариант № 2. Имеются данные о пропускной способности 50 участков нефтепровода (${\rm m}^3/{\rm сут.}$):

```
19,8 19,1 19,3 18,8 20,2 20,8 20,7 19,7 19,6 19,2 20,9 20,9 20,2 19,6 20,4 20,4 20,2 20,4 18,9 19,7 19,8 20,6 20,7 19,7 20,3 19,8 20,4 20,3 20,6 20,5 20,4 20,5 20,3 20,5 20,2 20,5 20,7 21,0 20,4 20,8 20,5 20,4 20,6 21,0 20,4 20,4 20,3 19,7 19,9 20,1
```

Вариант № 3. Имеются данные о суточной добыче нефти в одном из районов страны (в тоннах):

85	76	80	84	88	89	91	88	84	85	75	82	86
89	88	84	90	89	85	91	87	81	78	85	91	89
87	74	81	87	90	88	86	76	84	88	77	82	83
84	74	80	84	91	93	90	88	87	77	83	89	89
91	92	88	94	90	88	81	83	89	94	96	88	95
99	86	78	81	86	90	92	93	90	83	79	86	90
79	82	87	85	91	97	88	85	87	90	89	95	89
90	98	93	84	88	96	92	88	95				

Вариант № 4. Имеются данные о вводе в эксплуатацию новых газовых скважин за год по различным газодобывающим районам страны:

52	33	10	22	28	34	39	29	21	27	31	12	28
40	46	51	44	32	16	11	29	31	38	44	31	24
9	17	32	41	47	31	42	15	21	29	50	55	37
19	57	32	7	28	23	20	45	18	29	25		

Вариант № 5. Имеются энергетические затраты на 1 метр проходки при эксплуатационном бурении нефтяных скважин в различных нефтеносных районах страны (руб.):

14	13	18	15	12	13	14	12	13	16	16	15	12
13	13	14	16	18	13	15	14	15	14	13	15	12
13	12	14	16	12	13	15	15	15	13	14	15	18
15	12	15	13	13	15	15	15	17	17			

Вариант № 6. Имеются данные о суточном дебите газа в наблюдаемой скважине (M^3 /сут.):

30	19	21	28	27	29	31	24	25	28	28	32	34
26	24	19	23	27	30	29	25	18	18	24	28	31
33	18	21	26	30	32	34	29	26	23	25	27	32
23	20	21	26	22	20	27						

Вариант № 7. Имеются данные о себестоимости 1 тонны нефти и нефтяного попутного газа (тыс. руб.):

Вариант № 8. Имеются данные о числе рабочих дней без простоя для пятидесяти буровых бригад одного из районов страны:

261	260	258	263	257	260	259	264	261	260	264	261	265
261	260	263	260	260	259	260	258	265	259	265	261	258
259	259	258	262	264	258	259	263	266	259	261	266	262
259	262	261	266	262	259	262	261	259	262	262	261	266
259	262											

Вариант № 9. Приведено количество деталей, выработанных за смену различными рабочими:

75	88	74	80	76	82	86	76	93	74	72	82	71
82	87	81	87	79	78	87	82	87	82	74	77	83
86	85	86	76	81	86	76	71	80	85	73	75	88
89	84	85	85	81	82	85	83	76	87	87	76	76
73	78	87	80	78	72	83	91	82	93	76	83	80

Вариант № 10. Имеются данные о рабочих дебитах газовой скважины (тыс. $\text{м}^3/\text{сут.}$):

550	550	551	550	551	562	550	562	561	530	542	535	542
539	537	543	540	556	546	556	556	534	548	533	558	560
558	548	540	541	551	549	551	550	552	568	538	551	547
552	559	557	546	552	550	557	547	552	554	547	554	567
558	563	562	569	552	554	549	545	560	539	549	539	

Вариант № 11. Имеются данные о коэффициенте эксплуатации насосных скважин в различных нефтеносных районах страны:

```
0,79 0,84 0,86 0,88 0,90 0,89 0,85 0,91 0,98 0,91 0,80
0.90
                                                              0.87
0,89
     0,88 0,78 0,81
                    0,85 0,88
                              0,94 0,86 0,80
                                              0,86 0,91
                                                        0.78
                                                              0,86
    0,95 0,97 0,88
                    0,79 0,82
                                              0,87 0,91 0,90
0.91
                              0,84 0,90 0,81
                                                              0.82
    0.90 0.82
               0,85
                    0,90 0,96 0,98 0,89 0,87
                                              0.99 0.85
0.85
```

Вариант № 12. 50 сверл были подвергнуты испытанию на твердость. При этом фиксировалась твердость лапки. Результаты испытания следующие:

```
14,5 14,6 15,1 15,5 16,3 16,8 17,9 16,3 14,5 14,9 13,6 15,4 16,9 15,4 14,3 15,5 11,3 15,5 17,1 16,8 12,2 15,2 15,7 11,6 16,9 15,7 17,7 16,6 16,2 15,5 12,8 14,2 15,5 16,1 14,3 16,5 14,5 17,9 17,8 16,9 11,7 13,2 14,9 19,8 16,6 17,9 14,9 15,2 17,3 16,9
```

Вариант № 13. Даны значения обследуемого признака X — себестоимости единицы продукции (в руб.):

73	77	78	88	76	78	86	77	75	90	88	84	79
87	83	79	73	84	86	85	74	77	74	88	81	87
85	76	79	71	88	83	76	76	82	73	89	79	90
76	75	91	83	82	84	85	78	85	85	79	92	86
84	77	92	93	91	85	84	87	81	83	80	82	76
81	90	78	81	95	77	91	84	96	84	79	79	83
88	84	83	93	73	79	92	89	75	83	87	89	71
75	83	87	92	80	88	91	95	82				

Вариант № 14. Имеются данные о суточном дебите газа в наблюдаемой скважине:

39	19	21	28	26	27	29	28	28	27	23	26	32
34	26	24	22	19	23	27	30	29	25	18	18,5	20
22	24	28	31	33	25	18	21	26	30	32	34	29
26	21	20	23	25	27	30	32	29	27	23		

Вариант № 15. Даны замеры толщины резца (в мм):

```
24,5 26,8 23,6 25,5 22,2 26,9 25,3 24,1 28,5 25,3 24,1 28,5 25,3 24,6 27,9 25,4 21,3 25,2 27,7 23,6 25,2 26,8 25,9 25,1 26,3 25,4 21,3 25,2 25,5 25,7 26,6 28,2 25,4 23,2 26,6 25,7 24,3 26,8 25,8 27,1 26,2 25,9 21,6 25,3 25,1 24,8 26,3 24,9 24,3 26,8
```

Вариант № 16. Имеются данные о расходах, связанных с монтажом и демонтажом оборудования на предприятии (в тыс. руб.):

```
4,7 7,2 6,2 6,7 7,2 5,7 7,7 8,2 6,2 5,2 7,2 5,7 6,2 5,7 8,2 5,7 6,7 6,2 5,7 6,2 6,7 5,2 7,7 6,2 7,2 7,7 6,7 7,2 8,2 6,2 5,7 6,2 7,7 6,7 7,2 5,7 6,7 8,2 7,7 8,2 4,7 8,7 4,2 8,7 6,2 6,7 6,2 7,2 4,9 5,5
```

Вариант № 17. Даны значения обследуемого признака X — себестоимости одной детали (в руб.):

82	83	73	76	79	89	95	92	93	84	88	76	88
81	78	86	84	84	86	85	87	84	74	83	87	73
76	73	78	76	76	74	88	82	73	85	79	77	79
97	84	80	75	81	73	78	83	75	90	83	77	84
85	90	92	91	85	71	85	87	82	94	92	76	93
90	73	92	84	93	88	84	81	93	81	91	78	85
84	95	79	79	83	96	89	82	79	77	83	88	81
88	82	77	92	76	84	83	87	89				

Вариант № 18. Даны значения диаметров шестерен, обрабатываемых на станке:

21	29	27	29	27	29	31	29	31	29	29	23	39
31	29	31	29	31	29	31	33	31	31	31	27	23
27	33	29	25	29	19	29	31	23	31	29	27	33
29	31	29	31	23	35	27	29	29	27	29	29	21
29	27	29	29	29	33	29	25	25	27	31	29	29
27	33	29	31	29	29	29	35	27	29	35	29	33
29	27	31	31	27	29	35	27	33	29	27	29	25
27	31	37	25	31	27	27	29	25				

Вариант № 19. Даны значения израсходованных долот на 100 скважинах при механической скорости проходки 18 м/сек.:

28	30	28	27	28	29	29	29	31	28	26	25	33
35	27	31	31	30	28	33	23	30	31	33	31	27
30	28	30	29	30	26	25	31	33	26	27	33	29
30	30	36	26	25	28	30	29	27	32	29	31	30
31	26	25	29	31	33	27	32	30	31	34	28	26
38	29	31	29	27	31	30	28	34	30	26	30	32
30	29	30	28	32	30	29	34	32	35	29	27	28
30	30	29	32	29	34	30	32	24				

Вариант № 20. Даны значения внутреннего диаметра гайки (в мм):

```
4,25 4,38 4,48 4,53 4,54 4,41 4,52 4,39 4,16 4,27 4,59 4,48 4,56 4,13 4,51 4,31 4,27 4,87 4,32 4,49 4,74 4,17 4,66 4,92 4,48 4,68 4,45 4,12 4,69 4,28 4,74 4,55 4,28 4,54 4,51 4,77 4,71 4,78 4,13 4,51 4,42 4,36 4,45 4,32 4,17 4,79 4,13 4,52 4,73 4,95
```

Вариант № 21. Даны значения ширины пера круглой плашки (в мм):

```
3,69 3,56 3,52 3,68 3,49 3,58 3,59 3,54 3,35 3,69 3,87 3,67 3,79 3,75 3,43 3,50 3,57 3,53 3,49 3,68 3,36 3,63 3,51 3,99 3,90 3,53 3,50 3,55 3,40 3,73 3,72 3,53 3,42 3,72 3,68 3,46 3,46 3,46 3,36 3,37 3,53 3,48 3,70 3,48 3,68 3,46 3,61 3,57 3,47 3,74 3,47
```

Вариант № 22. Имеются данные об энергетических затратах на 1 м проходки при разведочном бурении нефтяных скважин в различных нефтяных районах страны (в тыс. руб.):

48	29	6	18	24	30	35	25	17	24	36	42	47
40	28	12	7	25	23	33	28	19	14	8	40	27
20	27	15	6	16	25	34	17	25	46	6	51	13
28	37	43	27	38	53	24	41	21	11	26		

Вариант № 23. Имеются данные о пластовом давлении (в атм.) при насосном способе эксплуатации 100 скважин:

Вариант № 24. Имеются данные о продолжительности (в мес.) 50 фонтанирующих скважин:

```
18,4 18,2 18,6 18,9 19,0 18,4 18,5 19,3 18,3
                                                           18,7
    18,1
                                                                 18,8
     18.9
          19,3
                18,4
                     19,2 18,2 18,7
                                     19,5
                                           18,7
                                                19,1
                                                      18.7
                                                           19.1
19,1
                                                                 19.6
     18,8 19,3 18,8
                                     19,0 19,8 19,7
                     19,0 19,5 18,9
18,6
                                                     19.4 19.3 19.1
     18.9
          19.7
                18,5 19,0 19,9
                                19,2
                                     19.1 18.6
19,8
```

Вариант № 25. Имеются данные замеров температуры масла двигателя автомобиля ГАЗ-53A:

19	29	21	39	25	26	32	25	28	26	36	30	31
29	35	23	32	27	27	26	26	30	27	25	28	28
36	29	35	26	32	29	38	28	25	29	34	28	29
32	34	28	28	29	33	27	34	25	28	26	30	38
39	32	29	29	34	35	32	27	26	25	26	35	36
30	28	33	26	28	26	28	27	33	33	29	32	25
38	26	36	23	24	27	26	30	34	25	24	33	

Вариант № 26. Результаты измерения температуры раздела фракции бензин-авиакеросин на установке первичной переработке нефти (в °C):

133	133	142	135	145	144	145	147	146	134	130	134	138
144	141	141	134	141	136	140	143	139	141	137	140	145
145	141	144	138	139	143	141	141	146	143	140	139	143
143	139	140	139	138	138	135	141	141	140	138	145	135
148	136	139	142	143	143	137	138	138	139	138	144	143
138	142	138	140	140	137	139	140	139	137	136	136	135
135	141	142	136	140	136	137	138	138	137	139	139	140
139	140	140	139	139	139	140	140	146				

Вариант № 27. Имеются данные о суточном дебите нефти наблюдаемой скважины (в т/сут.):

16	13	11	15	18	19	21	18	17	15	13	16	18
17	19	15	13	12	14	16	17	20	17	17	20	19
18	22	24	1	15	14	10	12	16	18	18	19	21
23	20	22	24	17	16	14	15	18	15	11	16	17
15	13	16	17	18	14	15	19	17	18	16	13	15
17	21	23	26	19	22	24	25	20	21	24	19	22
23	20	25	21	20	22	26	19	22	25	28	23	20
21	27	19	15	22	23	18	22	22				

Вариант № 28. Имеются результаты испытания — твердости лапки сверла:

```
36,8 32,0 39,4 36,3 35,4 37,3 34,7 39,0 28,3 41,3 36,1 37,3 32,2 38,5 34,2 37,2 30,6 37,3 35,2 36,9 34,3 35,2 30,8 36,0 39,3 32,7 34,6 36,8 39,1 29,5 30,4 35,2 36,5 38,2 40,2 36,8 39,3 32,7 37,1 29,3 28,4 40,2 34,8 37,2 32,6 41,0 40,4 28,3 34,8 39,2
```

Вариант № 29. Имеются данные о расходах, связанных с подготовительными работами, на 1 м проходки при разведочном бурении нефтяных скважин в различных нефтеносных районах страны (в тыс. руб.):

11	15	20	25	29	34	19	25	16	21	29	20	21
22	23	26	28	30	18	13	17	22	29	26	39	14
16	24	27	25	31	32	23	37	23	27	37	36	42
32	34	39	38	44	28	33	23	35	36	34		

Вариант № 30. Даны значения овальности валика (в мк):

25	29	33	21	29	25	29	28	31	23	31	27	29
27	27	29	31	27	29	29	29	31	25	29	29	27
29	31	29	27	25	28	27	31	31	29	27	27	33
29	33	31	33	25	27	35	37	35	27	27	29	27
29	31	29	27	29	31	29	21	23	29	37	29	31
29	31	29	31	29	39	29	39	39	27	31	37	29
31	29	27	23	29	27	31	29	29	31	29	35	29
19	29	27	29	29	31	33	29	25				