Relatório Eleticidade II

Igor Felipe Da Silva Rodrigues Lopes Matricula:201810077611 email lopes.igor@graduacao.uerj.br Turma:5

Alexia Coutinho Duarte Matricula:201720396111 email duarte.alexia@graduacao.uerj.br Turma:5

Março 2021

1 Objetivo

Determinar a resistência de resistores por softwares de simulação e de forma analítica através da consulta da tabela de código de cores e mensurar comparativamente a qualidade do emprego dos dois métodos.

2 Código de Cores de Resistores Comerciais

Usando o RCC Calculator (Resistor Color Code Calculator), obtemos seguinte resultados:

Resistor	Ω	$1^{\underline{a}}$	$2^{\underline{\mathbf{a}}}$	$3^{\underline{a}}$	$4^{\underline{a}}$	$5^{\underline{\mathbf{a}}}$	Tol %
		Faixa	Faixa	Faixa	Faixa	Faixa	
R1	22Ω	Verm	Verm	Preto	Ouro	Marrom	±1
R2	$1K\Omega$	Marrom	Preto	Preto	Marom	Verm	± 2
R3	$5,6K\Omega$	Verde	Azul	Preto	Marrom	Marrom	±1
R4	$680K\Omega$	Azul	Cinza	Preto	laranja	Ouro	±5
R5	$33M\Omega$	Laranja	Laranja	Preto	Verde	Prata	± 10
R6	$4,7K\Omega$	Amarelo	Violeta	Preto	Marrom	Marrom	±1

Figura 2: Simulação Usando o RCC Para R2

FRCC Calculator

5 Bands
Q

9

680kΩ ±5%

1st Band
Blue
6
7

2nd Band
Grey
8

3rd Band
Orange
1k

Tolerance
Gold
±5%

**

Figura 3: Simulação Usando o RCC Para R3

Figura 4: Simulação Usando o RCC Para R4

Figura 5: Simulação Usando o RCC Para R5

Figura 6: Simulação Usando o RCC Para R6

Usando os valores nominais e tolerâncias encontradas previamente, temos como faixa de valores os seguintes resultados:

Resistor	Faixa de valores				
R1	$(22 - 22.0,01) \Omega < R1 < (22 + 22.0,01) \Omega = 21,78\Omega < R1 < 22,22\Omega$				
R2	$(1000 - 1000.0,02) \Omega < R2 < (1000 + 1000.0,02) \Omega = 980\Omega < R2 < 1020\Omega$				
R3	(5600 - 5600.0,01) Ω < R3 < $(5600 + 5600.0,01)$ Ω = 5544 Ω < R3 < 5656 Ω				
R4	(680000 - 680000.0,05) Ω < R4 < $(680000 + 680000.0,05)$ Ω = 646000 Ω< R4 < 714000 Ω				
R5	(33000000 - 33000000.0,1) Ω <r5 (33000000="" +="" 33000000.0,1)="" <="" <math="">\Omega = 29700000 Ω < R5 < 36300000 Ω</r5>				
R6	(4700 - 4700. 0,01) Ω< R6 < $(4700 + 4700. 0,01)$ Ω= 4653 Ω < R6 < 4747 Ω				

Figura 7: Faixa de valores para os circuitos Calculados previamente

3 Segunda Parte:

Usando o RCC Calculator (Resistor Color Code Calculator), obtemos seguinte resultados:

Resistor	1ª	$2^{\underline{\mathbf{a}}}$	$3^{\underline{a}}$	$4^{\underline{a}}$	$5^{\underline{\mathbf{a}}}$	Valor	Tol %
	Faixa	Faixa	Faixa	Faixa	Faixa	nomi-	
						nal	
R1	Amarelo	Violeta	Preto	Ouro	Marrom	47Ω	±1
R2	Marrom	Verde	Preto	Verm	Verm	$15\mathrm{K}\Omega$	±1
R3	Laranja	Cinza	Verde	Amarelo	Prata	$3,85\mathrm{M}\Omega$	±10
R4	Verde	Azul	Preto	Verm	Verm	$56\mathrm{K}\Omega$	±2

Figura 8: Simulação Usando o RCC Para R1

Figura 10: Simulação Usando o RCC Para R3

Figura 9: Simulação Usando o RCC Para R2

Figura 11: Simulação Usando o RCC Para R4

Cor	1º Faixa	2ª Faixa	3ª Faixa	N° de zeros/multiplicador	Tolerância	
Preto	0	0	0	0		
Marrom	1	1	1	i	± 1%	
Vermelho	2	2	2	2	± 2%	
Laranja	3	3	3	3		
Amarelo	4	4	4	4		
Verde	5	5	5	5	± 0,5%	
Azul	6	6	6	6	± 0,25%	
Violeta	7	7	7	7	± 0,1%	
Cinza	8	8	8	8	± 0,05%	
Branco	9	9	9	9		
Dourado				x0,1	± 5%	
Prata				x0,01	± 10%	

Figura 12: Tabela de resistores para realização de cálculos

Já usando a figura para a determinação dos valores de resistência temos para R_1 :

- Primeira faixa: Amarelo, logo o primeiro digito significativo será 4;
- Segunda Faixa: Violeta, logo o segundo dígito significativo será 7;
- Terceira Faixa: Preto, então o terceiro digito significativo, será 0;
- Quarta faixa: Ouro, Representa o multiplicador, neste caso temos que ele vale 0,1, no nosso caso temos que valor nominal da resistência é $470 \times 0, 1 = 47\Omega;$
- Quinta faixa: Marrom, logo esta representa uma tolerância de $\pm 1\%$. Logo o valor da Resistência estará entre $46,53\Omega \le R \le 47,47\Omega$

Para o R_2 temos que :

- Primeira faixa: Marrom, logo o primeiro digito significativo será 1;
- Segunda Faixa: Verde, logo o segundo dígito significativo será 5;
- Terceira Faixa: Preto, então o terceiro digito significativo, será 0;
- Quarta faixa: Vermelho, Representa o multiplicador, neste caso temos que ele vale 100, no nosso caso temos que valor nominal da resistência é $150 \times 100 = 1, 5 \times 10^4 \Omega$;

• Quinta faixa: Vermelho, logo esta representa uma tolerância de $\pm 2\%$. Logo o valor da Resistência estará entre $1,47\times 10^4\Omega \le R \le 1,53\times 10^4\Omega$

Para R_3 ,:

- Primeira faixa: Laranja, logo o primeiro digito significativo será 3;
- Segunda Faixa: Cinza, logo o segundo dígito significativo será 8;
- Terceira Faixa: Verde, então o terceiro digito significativo, será 5;
- Quarta faixa: Amarelo, Representa o multiplicador, neste caso temos que ele vale 10000, no nosso caso temos que valor nominal da resistência é $385 \times 100000 = 3,85 \times 10^{7}\Omega$;
- Quinta faixa: Prata, logo esta representa uma tolerância de $\pm 10\%$. Logo o valor da Resistência estará entre $3,465\times 10^6\Omega \le R \le 4,235\times 10^6\Omega$

Para R_4 :

- Primeira faixa: Verde, logo o primeiro digito significativo será 5;
- Segunda Faixa: Azul, logo o segundo dígito significativo será 6;
- Terceira Faixa: Preto, então o terceiro digito significativo, será 0;
- Quarta faixa: Vermelho, Representa o multiplicador, neste caso temos que ele vale 100, no nosso caso temos que valor nominal da resistência é $560 \times 100 = 5,610^4\Omega$;
- Quinta faixa: Vermelho, logo esta representa uma tolerância de $\pm 2\%$. Logo o valor da resistência estará entre $5,488 \times 10^4 \Omega \le R \le 5,712^4 \Omega$

Logo para tabela de valores, temos:

Resistor	1 ^a	$2^{\underline{\mathbf{a}}}$	$3^{\underline{a}}$	4^{a}	$5^{\underline{a}}$	Valor	Tol %	Faixa Ω
	Faixa	Faixa	Faixa	Faixa	Faixa	nominal		
R1	Amarelo	Violeta	Preto	Ouro	Marrom	47Ω	±1	$46,53 \le$
								$R \leq$
								47, 47
R2	Marrom	Verde	Preto	Verm	Verm	$15\mathrm{K}\Omega$	±1	$14,7K \leq$
								$R \leq$
								15, 3K
R3	Laranja	Cinza	Verde	Amarelo	Prata	$3,85\mathrm{M}\Omega$	±10	$3,465M \le$
								$R \leq$
								4,235M
R4	Verde	Azul	Preto	Verm	Verm	$56\mathrm{K}\Omega$	±2	$54,88K \le$
								$R \leq$
								57,12K

4 Conclusão

Após a verificação dos valores para cada resistor por duas formas distintas, uma usando um simulador e na outra usando uma tabela para valores, é possível concluir que ambas são eficientes e precisas na hora de estimar o comportamento de um resistor através das cores das suas faixas e que as mesmas ajudam na identificação e do cálculo do mesmo devido a padronização por cores.

Referências

- [1] Código de cores de resistores, contém a imagem de código usada na Figura 12 https://www.mundodaeletrica.com.br/codigo-de-cores-de-resistores/
- [2] Resistor Color Code Calculator, Disponível Para android como https://play.google.com/store/apps/details?id=com.jedemm.resistorcalculator&hl=en_US&gl=US