

ELECTRONIC SYSTEMS

2021-22 academic year prof. Franco ZAPPA

- Why increasing f_S beyond the Shannon minimum
- Standard oversampling
- Advanced Sigma-Delta oversampling
- Why 1bit is equal or even better than many
- Need for DSP for digital filtering and decimation

Effect of oversampling: spectrum replicas move further away...

... so easier reconstruction (filter), but EVEN MORE !!!

(c)

Quantization error:

Overall quantization power (variance):

$$\sigma_q^2 = \left(\frac{FSR}{2^n \sqrt{12}}\right)^2 = \frac{LSB^2}{12}$$

Spectral density: $Q_q(f) = \frac{\sigma_q^2}{f_s/2}$

Example: FSR=5V

n=12bit

f_S=40ksps

 σ_{q}^{2} = (352 μ V) ²

 $Q_{q}(f)=(3.52\mu V/\sqrt{Hz})^{2}$

Quantization

Quantization error = sampled - digitized signal d = b - c

Stephen W. Smith, www.DSPguide.com
"The Scientist and Engineer's Guide to DSP"

POLITECNICO

Spreads quantization noise across a broader spectrum!!!

$$\sigma_{out}^2 = \int_0^{f_0} Q_q^2(f) df = \sigma_q^2 \cdot \left(\frac{2f_0}{f_s}\right)$$

Oversampling factor:
$$OS = \left(\frac{2f_0}{f_s}\right)$$

$$OS = \left(\frac{2f_0}{f_s}\right)$$

Standard filter at f_s/2

SMART filter at f_{max}

since with oversampling $f_S/2$ is no longer f_{max}

MILANO 1863

$$SNR_{teorico} = \frac{V_{eff}}{q} = \frac{FSR/2\sqrt{2}}{\Delta/\sqrt{12}} = \frac{FSR/2\sqrt{2}}{FSR/2^{n}\sqrt{12}} = 2^{n-1}\sqrt{6}$$

$$SNR_{teoricodB} = 20\log_{10}\left(2^{n-1}\sqrt{6}\right) = 6,02n+1,76$$

Oversampled ADC:

$$SNR_{out} = \frac{V_{eff}^2}{\sigma_q^2 / \sqrt{OS}} = SNR_{teorico} \cdot \sqrt{OS}$$

Improvement of $\sqrt{2} = 3dB = \frac{1}{2}bit$ every doubling of f_s (OS)!

Qualitative description:

Nyquist sampling and reconstruction

Oversampling and SMART reconstruction (filtering at f₀)

Oversampling and SILLY reconstruction (filtering at $f_{\rm S}/2$)

MILANO 1863

The bit stream has too high a frequency!

Example:

$$f_0=20kHz$$

OS=256

 $f_S=10.24 \text{ Msps}$

In fact, even if the through-put of the input samples is $f_S > f_{max}$ at the output it is indeed enough to provide a throughput of $2 f_{max}$

It is possible to take "one-out-of-OS" samples, thus **DECIMATING** it

... or even better to **FILTER** and then to **DECIMATE**!

Example, a simple moving average provides more quantized levels,

i.e. it increases resolution

Digital filtering and Decimation

MILANO 1863

Delta Modulator

Delta Reconstructor

It is like the tracking ADC, but just 1bit output (up/down) instead of the whole byte

Let's shuffle cards...

It is still the same in-out relationship, but NOT for the QUANTIZATION error

Generalized architecture:

Linear modelling:

The average value of the output tracks the average value of the input signal

$$Y(z) = X(z) \frac{1}{1 + \frac{1 - z^{-1}}{z^{-1}}} + e(z) \frac{1 - z^{-1}}{1 + \frac{1 - z^{-1}}{z^{-1}}} = X(z) \cdot z^{-1} + e(z) \cdot (1 - z^{-1})$$

Quantization error is still present, but it is differentiated

Simulation of a Sigma-Delta modulator

Sigma-Delta Modulation

Sigma-Delta: 1bit

Classic ADC: 3bit

Noise shaping

$$Y(z) = X(z) \cdot z^{-1} + e(z) \cdot (1 - z^{-1})$$

$$Q(f) = Q_0 \left| 1 - e^{j2\pi fT} \right|^2 = 4Q_0 \sin^2(\pi fT)$$

Advantages of Sigma-Delta modulators

Sigma-Delta modulator

With a smart filtering of the output (at f_{max} and not at $f_{S}/2$):

$$q^{2} = \int_{0}^{f_{0}} Q(f)df = \int_{0}^{f_{0}} \frac{\Delta^{2}}{12} \frac{8}{f_{S}} \sin^{2}(\pi fT)df \approx \frac{\Delta^{2}}{12} \frac{\pi^{2}}{3} \frac{1}{OS^{3}}$$

$$SNR_{out} = SNR_{in} \cdot \frac{3}{\pi^2} \cdot OS^3$$

Improvement of $2^3 = 9dB = 1.5bit$

Every doubling of the sampling frequency f_s (i.e. doubling OS)!

Sigma-Delta modulator: linearized modelling

Quantization (i.e. ADC)

$$Y(z) = X(z) \frac{1}{1 + \frac{1 - z^{-1}}{z^{-1}}} + e(z) \frac{1 - z^{-1}}{1 + \frac{1 - z^{-1}}{z^{-1}}} = X(z) \cdot z^{-1} + e(z) \cdot (1 - z^{-1})$$

"On the average" the output is equal to the input (apart a delay)...

... of course the quantization noise is added, but first it is differentiated!

Sigma-Delta modulator: resolution

A Sigma-Delta with c bit and with $OS=2^{L}$:

$$SNR_{dB} = 6.02(c+1.5L) - 3.41$$

For every added bit the SNR increases of 6dB Instead for every doubling of f_S (increment of L) the SNR increases of 9dB

What about a Sigma-Delta with more than c bit at the output ? ... can the SNR be better than $6.02 \cdot n + 1.76$?

There is an maximum "equivalent" number of bit after digital filtering:

$$b = \frac{SNR + 3,41}{6,02}$$

Any filtering/processing that provides a number of bits higher than b is useless, since the extra-bits are redundant, since they simply describe the quantization error!

POLITECNICO

Sigma-Delta modulator: dynamic range

SNR and Dynamic Range:

$$SNR = \frac{\frac{Vin/2}{2}}{\frac{V_{fs}}{2^{c}} \frac{\pi}{(OS)^{3/2} \cdot \sqrt{36}}} = Vin \cdot \frac{\sqrt{36}}{\pi} \cdot \frac{(OS)^{3/2} \cdot 2^{c-1}}{V_{fs}}$$

Sigma-Delta modulator: I and II order

Second-Order $\Sigma\Delta$ modulators:

$$Y(z) = X(z) \cdot z^{-2} + e(z) \cdot (1 - z^{-1})^{2}$$

Noise shaping:

In bandwidth noise power:

Improvement:

"Equivalent" bits:

$$Q(f) = 16Q_0 \sin^4(\pi f T)$$

$$q^2 = \int_{0}^{f_0} Q(f)df \approx \frac{\Delta^2}{12} \frac{\pi^4}{5} \frac{1}{OS^5}$$

$$SNR_{dB} = 6.02(c + 2.5L) - 11.14$$

$$b = \frac{SNR + 11.14}{6.02}$$

Sigma-Delta modulator: noise shaping

Noise shaping and Dynamic-Range of I- and II-order Sigma-Delta modulators:

Sigma-Delta modulator: comparisons

II order 1bit:

II order 2bit:

Vin=1.3V

Oversampled ADC

Figure 6.1. Out-of-band noise rejection and decimation of an over-sampled signal.

Sigma-Delta modulator

Figure 6.4. Out-of-band noise rejection and decimation of a noise shaped signal.

Detailed discussion:

"Chapter 2 - Oversampling and low-order ΣΔ modulators"

"Data Converters", prof. Franco Maloberti

Modelling and Simulations

Figure 6.7. Behavioral scheme of the first order sigma-delta modulator.

"Oversampling and low-order ΣΔ modulators"

"Data Converters", prof. Franco Maloberti

Figure 6.8. FFT of a 16384 sequence of the output bit-stream made by 131 sine waves periods.

How to design a R in a time-discrete world: Switched-Capacitor

In time-discrete operation, charge transfer from V_{IN} to V_{OUT} during each clock cycle is:

$$Q = C \cdot (V_{IN} - V_{OUT})$$

Hence, the "average" current is:

$$I = \frac{Q}{T} = f_S \cdot C \cdot (V_{IN} - V_{OUT})$$

Instead, in time-continous operation, a Resistor would provide:

$$I = \frac{(V_{IN} - V_{OUT})}{R}$$

Therefore, we may say that:

$$R = \frac{1}{f_S \cdot C}$$

Examples of SC amplifier:

It is possible to play with many different SC configurations and clock schemes, to invert gain and/or in-out delay (z⁻¹)

$$G(z) = -\frac{C_1}{C_2} \cdot \frac{1}{1 - z^{-1}}$$

$$G(z) = -\frac{C_1}{C_2} \cdot \frac{1}{1 - z^{-1}}$$
 $\left(G(z) = +\frac{C_1}{C_2} \cdot \frac{z^{-1}}{1 - z^{-1}}\right)$

Switched-Capacitor implementations

POLITECNICO MILANO 1863

II order ΣΔ

Multi-Bit integrator

(from a 2bit thermometric code)

"Oversampling and low-order ΣΔ modulators" ^t
"Data Converters", prof. Franco Maloberti

New issue: "Pattern Noise"

Example:

$$f_0$$
=20kHz f_S =320kHz OS=8

with a constant input v_{in} =0.33V the output becomes periodic:

Hence there is a tone at 106kHz, luckily out of band...

... but with other values the main tone may lower below the filter bandwidth $f_{\text{\scriptsize max}}$

For example with $v_{in}=1/16$ FSR we get a tone at $1/16 \cdot f_S=20$ kHz

Figure 6.33. Quantization error of a first order $\Sigma\Delta$ with $V_{in}=23/37$ and $V_{ref}=\pm 1$.

Digital Filtering: possible implementations

$$y_K = \sum_{i=0}^N a_i \cdot x_{k-i}$$

- It processes a finite number of samples
- its time response in limited in time
- it provides only **ZEROES**
- it is always STABLE

$$y_{k} = \sum_{i=0}^{N} a_{i} \cdot x_{k-i} - \sum_{j=0}^{M} b_{i} \cdot y_{k-j}$$

- It process all infinite past samples
- its time response lasts to infinite time
- it provides both POLES and ZEROES
- It can be UNSTABLE

- IV order 4bit $\Sigma\Delta$ modulators
- 64-fold oversampling
- two stage FIR digital filter (first decimation 16, second decimation 4)
- overall resolution is 20bit

		PCM1760/DF1760			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ACCURACY					
Gain Error			±0.5	±1.0	dB
Gain Mismatch				±0.5	dB
Bipolar Zero Error	$V_{IN} = 0$ at 20s Afeter Power-On			±0.4	%FSR ⁽²⁾
Gain Drift	0°C to +70°C		±100		ppm/°C
Bipolar Zero Drift	0°C to +70°C		±20		ppm/°C

NOTES: (2) FSR means Full Scale Range, digital output code is from 90000H to 70000H, FSR=5V.

				ADS8011	U	-
PARAMETER	CONDITION	TEMP	MIN	TYP	MAX	UNITS
ACCURACY ⁽²⁾						
Gain Error		+25°C		±0.6	±1.5	%
		Full		±1.0	±2.5	%
Gain Tempco				±85		ppm/°C
Power Supply Rejection Gain	Delta +V,=±5%	+25°C		0.03	0.15	%FSR%
Input Offset Error		+25°C		±2.0	±2.5	%
•		Full		±2.1	±3.0	%FSR%
Power Supply Rejection Offset	Delta +V,=±5%	+25°C		00.5	0.15	%FSR%

NOTE: (2) Percentage accuracies are referred to the internal A/D Full Scale Range of 4Vp-p.

Data-sheet

			PCM1760/DF1760			
PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
DYNIMIC CHARACTERISTICS ⁽⁴⁾						
TDH+N/(0dBFS)	P,U	$f_{IN} = 1 \text{kHz}$		-92	-90	dB
	P-L, U-L			-90	-88	dB
TDH+N/(-20dBFS)	P,U	$f_{IN} = 1kHz$		-76	-70	dB
	P-L, U-L			-76	-70	dB
TDH+N/(-60dBFS) P.U		$f_{IN} = 1 kHz$		-44	-42	dB
. 1	P-L,U-L			-44	-42	dB
Dynamic Range	P,U	$f_{IN}=1kHz$, $V_{IN}=-60dBFS$	104	108		dB
2	P-L,U-L		104	108		dB
SNR	P,U	V_{IN} =-0. A Filter	108	110		dB
	P-L,U-L		106	110		dB
Frequency response		$f_{IN} = 20kHz$		±0.1		dB
Channel Separation		$f_N = 1 \text{kHz}$, A Filter	94	98		dB

NOTES: (4) Average response using a 20-bit reconstruction DAC with 20 kHz low-pass filter and 400 Hz high-pass filter.

PIN ASSIGNEMENT PCM1760

PIN	NAME	DESCRIPTION
1	Out-2R	Right Channel Second Integrator Output
3	In-2R	Right Channel Second Integrator input
	Out-IR	Right Channel First Integrator Output
4	ln-IR	Right Channel First Integrator Input
5	SERVO DC	Servo Amp Deccupling Capacitor
6	-Voc	+5V Analog Supply Voltage
7	AGND	Analog Common
8	-Vœ	-5V Analog Supply Voltage
9	BGDC	Band Gap Reference Decoupling Capacitor
10	NC	No Connection
11	in-11.	Left Channel First Integrator Input
12	Out-1L	Left Channel First Integrator Output
13	ln-2L	Left Channel Second Integrator Input
14	Cut-2L	Left Channel Second Integrator Output
15	NC	No Connection
16	BPODC-L	Left Channel Bipolar Offset Decoupling Capacitor
17	L/RCK	LR Clock Output (64fs)
18	Strobe	Data Strobe Output (128fs)
19	256fs	256fs Clock Input
20	· L'DD	-5V Digital Supply Voltage
21	DGND	Digital Common
22	$\pm \mathbf{V_{DD}}$	+5V Digital Supply Voltage
23	D0	D0 Data Output (LSB)
24	D1	D1 Data Output
25	D2	D2 Data Octput
26	D3	O3 Data Output (MSB)
27	BPODC-R	Right Channel Bipolar Offset Decoupling Capacitor
28	NC.	No Connection

PIN ASSIGNEMENT DF1760

PIN	NAME	DESCRIPTION		
1	OVL	Left Channel Overflow Output (Active High)		
3	OVR	Right Channel Overflow Output (Active High)		
3	D3	D3 Data Input (MSB)		
4	D2	D2 Data Input		
5	D1	D1 Data Input		
6	D0	DO Data Input (LSB)		
7	TP1	Test Pin (No Connection)		
8	V_{ssi}	Common Channel I		
9	V_{DDt}	+5V Channel I		
10	256fs	256fs Clock Output		
11	Strobe	Data Strobe Clock Input (128fs)		
12	LRCK	LR Clock Input		
13	CALD	Calibration Function Enable (Active Low)		
14	CAL	Calibration Output (High During Calibration)		
15	SYSCLK	System Clock Input (256fs or 348fs)		
16	SCLK	Data Clock		
17	LR	LR Channel Phase Clock		
18	SDATA	Serial Data Output (1fs)		
19	FSYNC	Frame Clock (2fs)		
20	LRSC	Phase Control or LR Channel Phase Clock		
2:	PD	Power Down Mode Enable Input (Active low)		
22	Mode 2	Output Format Selection Input 2		
23	Mode 1	Output Format Selection Input 1		
24	S/M	Slave/Master Mode Selection Input (High Makes)		
		Slave Mode		
25	CLKSEL	System Clock Selection Input (High Makes 256fs)		
26	TP2	Test Pin (No Connection)		
27	V_{DD2}	+5V Channel 2		
28	V_{SS2}	Common Channel 2		

POLITECNICO MILANO 1863

Data-sheet

LARID

- III order $\Sigma\Delta$ modulator
- filtering with two FIR stages
- variable oversampling between 64 to 4096
- 24bit output

CS5317

- one-chip with both modulator and digital filter
- II order $\Sigma\Delta$ modulator
- FIR filtering with *sinc* response
- 128-fold oversampling
- 16bit output

Example of an application

POLITECNICO

- **MILANO 1863**
- CS5516 at 16bit and 60sps (CS5520 at 20bit)
- both modulator, digital filter, INA with 25x gain, PGA, 4bit DAC (offset comp), ref. voltage generator...

Figure 1. System Connection Diagram: AC Excitation Mode Using External Excitation

ELECTRONIC SYSTEMS: $15 - \text{oversampling and } \Sigma \Delta$

CS5516 CS5520

16-bit & 20-bit Bridge Transducer A/D Converters

Features

- On-chip Instrumentation Amplifier
- On-chip Programmable Gain Amplifier
- On-Chip 4-Bit D/A For Offset Removal
- Dynamic Excitation Options
- Linearity Error: ±0.0015% FS
- 20-bit, No Missing Codes
- CMRR at 50/60 Hz > 200 dB
- System Calibration Capability with calibration read/write option
- 3-, 4-, or 5-wire Serial Communications Port
- Low Power Consumption: 40 mW
- 10 µW Standby Mode for Portable applications

Description

The CS5516 and CS5520 are complete solutions for digitizing low level signals from strain gauges, load cells, and pressure transducers. Any family of mV output transducers, including those requiring bridge excitation can be interfaced directly to the CS5516 or CS5520. The devices offer an on-chip software programmable instrumentation amplifier block, choice of DC or AC bridge excitation, and software selectable reference and signal demodulation.

The CS5516 uses delta-sigma modulation to achieve 16-bit resolution at output word rates up to 60 Sps. The CS5520 achieves 20-bit resolution at output word rates up to 60 Sps.

The CS5516 and CS5520 sample at a rate set by the user in the form of either an external CMOS clock or a crystal. On-chip digital filtering provides rejection of all frequencies above 12 Hz for a 4.096 MHz clock.

The CS5516 and CS5520 include system calibration to null offset and gain errors in the input channel. The digital values associated with the system calibration can be written to, or read from, the calibration RAM locations at any time via the serial communications port. The 4-bit DC offset D/A converter, in conjunction with digital correction, is initially used to zero the input offset value.

ORDERING INFORMATION

See page 29.

ADC should not be always the classic-way!!!

 $\Sigma\Delta$ is a very brilliant example of

- Analog & Digital processing
- Resolution vs. speed trade-off

Next lesson: none, just the exam!