CLAIMS

1	1.	(Original)	A data processor for use in a wireless communication device,
2	comprising:		
3	a processing unit;		
4	an instruction pipeline circuit;		
5	at least one processing module;		
6	a timer for generating a time-out interval; and		
7	power control logic for detecting a sleep instruction and placing the processing unit,		
8	instruction pipeline circuit and at least one processing module in a low-power state, where the		
9	power control logic is operative in response to a wake-up signal to reactivate the instruction		
10	pipeline circuit, and consequently at least one processing module only to the extent required by		
11	the wake-up signal.		
1	2.	(Original)	The processor of claim 1, where the instruction pipeline circuit
2	comprises a multi-stage instruction pipeline circuit.		
1	3.	(Original)	The processor of claim 1 where the walte up signal comprises a
1 2		` •	The processor of claim 1, where the wake-up signal comprises a
3	logical OR combination of one or more predetermined wake-up conditions and the time-out interval.		
3	miervar.		
1	4.	(Original)	The processor of claim 1, where the power control logic comprises
2	instruction decode logic to detect the sleep instruction.		
		· ·	•
1	5.	(Original)	The processor of claim 1, where the power control logic comprises
2	branch condition logic to respond to the wake-up signal.		
1	6.	(Original)	The processor of claim 1, where the power control logic, having
2	specified one or more wake-up conditions that the processing unit will respond to when in a low-		
3	power state, generates the wake-up signal upon detecting the one or more wake-up conditions or		
4	the time-out interval.		

- 1 7. (Original) The processor of claim 1, where the power control logic instructs 2 the instruction pipeline circuit to complete any instructions preceding the sleep instruction. 8. 1 (Original) The processor of claim 7, where the power control logic instructs 2 the instruction pipeline circuit to cease fetching new instructions after encountering a sleep 3 instruction whose wake-up conditions are currently deasserted. 1 9. (Original) The processor of claim 1, wherein the processing unit, instruction 2 pipeline circuit and at least one processing module are formed together on a common silicon 3 substrate using CMOS processing. 1 10. (Original) The processor of claim 6, wherein the wake-up conditions and 2 time-out interval are stored in a register by the power control logic. 3 11. (Original) An article of manufacture having at least one recordable medium 4 having stored thereon executable instructions and data which, when executed by at least one 5 processing device, cause the at least one processing device to: 6 detect a sleep instruction for the processing device; 7 specify one or more wake-up conditions and a time-out interval; 8 power down an instruction pipeline and one or more processor modules; 9 reactivate the instruction pipeline upon detection of a wake-up signal corresponding to 10 either a wake-up condition or the time-out interval, and 11 process one or more instructions in the instruction pipeline to reactivate any of the one or 12 more processor modules required to respond to a detected wake-up condition.
- 1 12. (Original) The article of manufacture of claim 11, wherein the processing
 2 device executes any instructions received by the instruction pipeline before the sleep instruction
 3 is received.
- 1 13. (Original) The article of manufacture of claim 11, wherein the instruction 2 pipeline comprises a multistage instruction pipeline, and the processing device reactivates only

- 3 stages in the multistage instruction pipeline and/or the function units needed to process one or
- 4 more instructions necessary to analyze and respond to the wake-up signal.
- 1 14. (Original) The article of manufacture of claim 11, further comprising a
- 2 register for holding the specified wake-up conditions and time out signal.
- 1 15. (Original) The article of manufacture of claim 11, where the processing
- 2 device is implemented as part of a single-chip wireless communication device.
- 1 16. (Original) The article of manufacture of claim 11, where the executable
- 2 instructions and data comprise control logic for controlling the operation of the processing
- 3 device.
- 1 17. (Original) The article of manufacture of claim 11, where the processing
- 2 device powers down the one or more processor modules by freezing a clock signal for said one
- 3 or more modules.
- 1 18. (Original) The article of manufacture of claim 11, where the processing
- 2 device powers down the one or more processor modules by placing said one or more modules in
- 3 an idle mode.
- 1 19. (Original) A method for managing power in a communications processor by
- 2 selectively removing one or more processor modules from a standby mode, comprising:
- 3 storing one or more wake-up conditions and a time-out interval in a register;
- 4 receiving a processor sleep instruction;
- 5 executing any pending instructions received by the processor before the sleep instruction;
- 6 powering down the one or more processor modules;
- 7 receiving a processor wake-up signal corresponding to one of said wake-up conditions or
- 8 said time-out interval;
- 9 powering up only the processor modules required to respond to the detected processor
- wake-up signal.

- 1 20. (Original) The method of claim 19, wherein one of the processor modules
- 2 comprises an instruction pipeline circuit.