Chapter 6

 $\underbrace{\text{Muxes}}_{\text{Sometimes building blocks of circuit}} \text{ and } \mathbf{Decoders}$

Sometimes building blocks of circuit can be larger than simple gates. Having larger building blocks reduces the number of inter-connection switches.

6.1 Objectives

- 1. Design combinational circuits using multiplexers and decoders
- 6.2 Design combinational circuit using multiplexers [1, Section 2.8.1]
- 6.2.1 Review: 2to1 Multiplexer (MUX)

$\mathcal{L}_{\mathbf{ACI}}$ (111021)	
S	7
0	$\mathcal{D}_{m{\phi}}$
0	Dı
	-

Draw the symbol for a 4:1 MUX, an 8:1 MUX and a $2^N:1 \text{ MUX}$ and write corresponding Boolean expressions.

Remark 6.2. A $2^{N-1}: 1$ MUX can be used to program any N-input logic function, if we use literals on the input side.

Example 6.3. Design a circuit for $Y = \bar{A}C + \bar{A}B + B\bar{D}$ using a 8:1 MUX and NOT gates only.

Problem 6.1. (15 marks [1, Ex-2.42]) Implement the function $Y = BC + \bar{A}\bar{B}\bar{C} + B\bar{C}$ using

- 1. an 8:1 multiplexer
- 2. a 4:1 multiplexer and no other gates
- 3. a 2:1 multiplexer, one OR gate, and an inverter

6.3 **Encoders and Decoders**

Example 6.4. Draw the symbol and the truth table for 2:4 decoder. Also write the logic expressions.

$$= (\overline{A}\overline{c})$$

$$= \overline{A+c}$$

Example 6.5. Draw the symbol and the truth table for 3:8 decoder, 4:16 decoder and $N: 2^N$ decoder. Also write the logic expressions.

Example 6.6. Design a circuit for a XOR gate using a 2:4 decoder and an OR gate.

Example 6.7. Design a circuit for $Y = A\bar{B} + \bar{B}\bar{C} + \bar{A}BC$ using a 3:8 decoder and an OR gate.

6.3.1 (Priority) Encoders

Example 6.8. Draw symbol and truth table for a 4:2 priority encoder.

Example 6.9. Draw symbol and truth table for a 8:3 priority encoder.