Wide and long data formats

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat

Data Scientist

You will learn

- Wide and long formats
- Long to wide transformation
- Wide to long transformation
- Stacking and unstacking columns
- Reshaping and handling complex data, such as string columns or JSON data

Why it is important

- Tidy datasets
- Data is not in the appropriate format for analysis:
 - Human readable vs. statistical analysis
- Nested data in DataFrames is complex to handle
- Get summary statistics for multi-level index DataFrames

Shape of data

The way in which a dataset is organized in rows and columns

```
fifa_players = pd.read_csv("fifa_players.csv")
fifa_players
```

```
nationality
                                                    club
                name
                        age
        Lionel Messi
                                Argentina
                                               Barcelona
                         32
0
  Cristiano Ronaldo
                         34
                                 Portugal
                                                Juventus
     Neymar da Silva
                                   Brazil Saint-Germain
                         27
2
```

```
fifa_players.shape
```

```
(3, 4)
```


fifa_players

```
nationality
                                                    club
                        age
                name
        Lionel Messi
                                Argentina
                                                Barcelona
0
                         32
  Cristiano Ronaldo
                                 Portugal
                         34
                                                Juventus
     Neymar da Silva
                         27
                                   Brazil Saint-Germain
```



```
fifa_players
```

```
٧V
                                  nationality
                                                         club
                           age
                 name
        Lionel Messi
                                   Argentina
                                                    Barcelona
0
                           32
   Cristiano Ronaldo
                          34
                                    Portugal
                                                     Juventus
                                      Brazil Saint-Germain
     Neymar da Silva
                           27
2
                           \Lambda \Lambda
```

Each feature is in a separate column

```
fifa_players
```

```
nationality
                                                     club
                name
                        age
        Lionel Messi
                                Argentina
                                                Barcelona <--
                         32
0
   Cristiano Ronaldo
                         34
                                 Portugal
                                                 Juventus <--
                                   Brazil Saint-Germain <--
     Neymar da Silva
                         27
```

- Each feature is in a separate column
- Each rows contains many features of the same player

```
fifa_players
```

- Each feature is in a separate column
- Each rows contains many features of the same player
- No repetition but large number of missing values
- Simple statistics and imputation

fifa_players_long.head()

```
variable
                                     value
               name
O Cristiano Ronaldo nationality
                                   Portugal
 Cristiano Ronaldo
                                   Juventus
                            club
      Lionel Messi
2
                             age
                                         32
3
      Lionel Messi nationality
                                  Argentina
       Lionel Messi
                            club
                                  Barcelona
```



```
fifa_players_long.head()
```

```
name variable value

O Cristiano Ronaldo nationality Portugal <--

1 Cristiano Ronaldo club Juventus

2 Lionel Messi age 32

3 Lionel Messi nationality Argentina <--

4 Lionel Messi club Barcelona
```

Each row represents one feature

```
fifa_players_long.head()
```

```
variable
                                     value
               name
    Cristiano Ronaldo nationality
                                     Portugal <--
    Cristiano Ronaldo
                                     Juventus <--
                              club
       Lionel Messi
                                         32
                             age
       Lionel Messi nationality
3
                                  Argentina
       Lionel Messi
                                  Barcelona
                            club
```

- Each row represents one feature
- Multiple rows for each player

```
fifa_players_long.head()
```

```
variable
                                                        value
                       name
     Cristiano Ronaldo |
                                nationality
                                                    Portugal
     Cristiano Ronaldo |
                                          club
                                                    Juventus
2
            Lionel Messi |
                                                            32
                                           age
3 |
            Lionel Messi | nationality
                                                  Argentina
            Lionel Messi |
                                                  Barcelona
                                          club
           \wedge \wedge
```

- Each row represents one feature
- Multiple rows for each player
- A column (name) to identify same player

```
fifa_players_long.head()
```

	name	variable	value
0	Cristiano Ronaldo	nationality	Portugal
1	Cristiano Ronaldo	club	Juventus
2	Lionel Messi	age	32
3	Lionel Messi	nationality	Argentina
4	Lionel Messi	club	Barcelona

- Each row represents one feature
- Multiple rows for each player
- A column (name) to identify same player
- Tidy data:
 - o Better to summarize data
 - Key-value pairs
 - Preferred for analysis and graphing

- Transforming a DataFrame or Series structure to adjust it for analysis
 - Transposing a DataFrame

```
fifa_players.set_index('club')
```

```
nationality
                                   age
                             name
        club
    Barcelona
                     Lionel Messi
                                          Argentina
                                    32
                                           Portugal
     Juventus
                Cristiano Ronaldo
                                  NaN
Saint-Germain
                  Neymar da Silva
                                    27
                                             Brazil
```

- Transforming a DataFrame or Series structure to adjust it for analysis
 - Transposing a DataFrame

```
fifa_players.set_index('club')[['name', 'nationality']]
```

```
name nationality
club
Barcelona Lionel Messi Argentina
Juventus Cristiano Ronaldo Portugal
Saint-Germain Neymar da Silva Brazil
```

- Transforming a DataFrame or Series structure to adjust it for analysis
 - Transposing a DataFrame

```
fifa_players.set_index('club')[['name', 'nationality']].transpose()
```

```
club Barcelona Juventus Saint-Germain
name Lionel Messi Cristiano Ronaldo Neymar da Silva
nationality Argentina Portugal Brazil
```

- Converting data from wide to long format and vice versa
- Unit of analysis:
 - Long format -> characteristic of a player
 - Wide format -> each player

Wide to long transformation

- Performed using pandas functions, such as:
 - o .melt()
 - o .wide_to_long()

Long to wide format

- Transform data using pandas methods, for example:
 - o .pivot()
 - o .pivot_table()

Let's practice!

RESHAPING DATA WITH PANDAS

Reshaping using pivot method

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat

Data Scientist

From long to wide

- Demonstrate relationship between two columns
- Time series operations with the variables
- Operation that requires columns to be the unique variable

¹ https://pandas.pydata.org/docs/user_guide/reshaping.html

From long to wide

	Name	Year	Weight	
0	John	2013	80	
1	Mary	2013	65	
2	Mary	2014	68	
3	John	2014	83	
4	Laura	2014	71	

	Name	Year	Weight
0	John	2013	80
1	Mary	2013	65
2	Mary	2014	68
3	John	2014	83
4	Laura	2014	71

Name	John	Mary	Laura
Year			
2013	80	65	NaN
2014	83	68	71

df.pivot(, ,

	Name	Year	Weight
0	John	2013	80
1	Mary	2013	65
2	Mary	2014	68
3	John	2014	83
4	Laura	2014	71

Name	John	Mary	Laura
Year			
2013	80	65	NaN
2014	83	68	71

	Name	Year	Weight
0	John	2013	80
1	Mary	2013	65
2	Mary	2014	68
3	John	2014	83
4	Laura	2014	71

	Name	Year	Weight					
0	John	2013	80		Name	<u> </u>	John	John Mary
1	Mary	2013	65		Year			
2	Mary	2014	68		2013		80	80 65
3	John	2014	83		2014		83	83 68
4	Laura	2014	71					

	Name	Year	Weight
0	John	2013	80
1	Mary	2013	65
2	Mary	2014	68
3	John	2014	83
4	Laura	2014	71

df.pivot(index="Year", columns="Name", values="Weight")

	Name	Year	Weight
0	John	2013	80
1	Mary	2013	65
2	Mary	2014	68
3	John	2014	83
4	Laura	2014	71

df.pivot(index="Year", columns="Name", values="Weight")

```
fifa = pd.read_csv('fifa_players.csv')
fifa.head()
```

```
variable
                                   metric_system imperial_system
                 name
    Cristiano Ronaldo
                           weight
                                                           183.00
                                              83
             J. Oblak
                           weight
                                                           191.00
                                              87
    Cristiano Ronaldo
                           height
                                                             6.13
                                             187
2
                                                             6.16
3
     J. Oblak
                           height
                                             188
```



```
fifa.pivot(index='name'
)
```



```
fifa.pivot(index='name', columns='variable'
)
```



```
fifa.pivot(index='name', columns='variable', values='metric_system')
```

```
variable height weight
name
Cristiano Ronaldo 187 83
J. Oblak 188 87
```


Pivoting multiple columns

```
fifa.pivot(index='name', columns='variable', values=['metric_system', 'imperial_system'])
```

```
metric_system
                                      imperial_system
        variable
                   height weight
                                      height
                                                weight
            name
Cristiano Ronaldo
                                         6.13
                                                183.0
                      187
                               83
                                                 191.0
        J. Oblak
                      188
                                87
                                         6.16
```


Pivoting multiple columns

	Name	Year	Weight	Age
0	John	2013	80	30
1	Mary	2013	65	28
2	Mary	2014	68	29
3	John	2014	83	31
4	Laura	2014	71	34

		Weight		Age		
Name	John Mary Laura			John	Mary	Laura
Year						
2013	80	65	NaN	30	28	NaN
2014	83	68	71	31	29	34

df.pivot(index="Year", columns="Name")

Pivoting multiple columns

```
fifa.pivot(index="name", columns="variable")
```

```
imperial_system
                     metric_system
         variable
                    height weight
                                       height
                                                weight
             name
Cristiano Ronaldo
                                83
                                         6.13
                                                 183.0
                       187
                                                 191.0
        J. Oblak
                                87
                       188
                                         6.16
```


Duplicate entries error

```
another_fifa.head()
```

	name	variable	metric_system	imperial_system
0	Cristiano Ronaldo	weight	83	183.00
1	J. Oblak	weight	87	191.00
2	Cristiano Ronaldo	height	187	6.13
3	J. Oblak	height	188	6.16
4	Cristiano Ronaldo	height	187	6.14

Duplicate entries error

```
another_fifa.head()
```

```
variable
                                   metric_system imperial_system
                 name
    Cristiano Ronaldo
                           weight
                                                            183.00
                                               83
             J. Oblak
                                                            191.00
                           weight
                                               87
      Cristiano Ronaldo
                             height
                                                                6.13 <--
                                                187
3
             J. Oblak
                           height
                                                              6.16
                                              188
      Cristiano Ronaldo
                             height
                                                                6.14 <--
                                                187
  4
```


Duplicate entries error

```
another_fifa.pivot(index="name", columns="variable")
```

ValueError: Index contains duplicate entries, cannot reshape

```
another_fifa = another_fifa.drop(4, axis=0)
another_fifa.pivot(index="name", columns="variable")
```

variable		system weight	imperial height	L_system weight
name	петупс	werdiir	петупс	werdir
Cristiano Ronaldo	187	83	6.13	183.0
J. Oblak	188	87	6.16	191.0

Let's practice!

RESHAPING DATA WITH PANDAS

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat
Data Scientist

Pivot method limitations

```
another_fifa.head()
```

```
variable metric_system imperial_system
            name
Cristiano Ronaldo
                      weight
                                         83
                                                       183.00
        J. Oblak
                      weight
                                         87
                                                      191.00
Cristiano Ronaldo
                      height
                                                         6.13
                                        187
                      height
 J. Oblak
                                                         6.16
                                        188
                      height
Cristiano Ronaldo
                                                         6.14
                                         187
```

```
another_fifa.pivot(index="name", columns="variable")
```

```
Traceback (most recent call last):
ValueError: Index contains duplicate entries, cannot reshape
```


Pivot method limitations

- General purpose pivoting
- Index/column pair must be unique
- Cannot aggregate values

• A DataFrame containing statistics that summarizes the data of a larger DataFrame

Name	John	Mary
Year		
2013	80.5	66.5
2014	83	68

	Name	Year	Weight
0	John	2013	80
1	John	2013	81
2	Mary	2013	67
3	Mary	2013	66
4	John	2014	82
5	John	2014	84
6	Mary	2014	69
7	Mary	2014	67

	Name	Year	Weight
0	John	2013	80
1	John	2013	81
2	Mary	2013	67
3	Mary	2013	66
4	John	2014	82
5	John	2014	84
6	Mary	2014	69
7	Mary	2014	67

df.pivot_table(, , , , ,

df.pivot_table(index="Year", columns="Name", , , , , ,

df.pivot_table(index="Year", columns="Name", values="Weight", aggfunc="mean")

```
another_fifa.pivot_table(index="name", columns="variable", aggfunc="mean")
```

	metric	_system	imperial	L_system
variable	height	weight	height	weight
name				
Cristiano Ronaldo	187	83	6.135	183.0
J. Oblak	188	87	6.160	191.0


```
fifa_players.head(6)
```

first	last	movement	overall	attacking
0 Lionel	Messi	shooting	92	70
1 Cristiano	Ronaldo	shooting	93	89
2 Lionel	Messi	passing	92	92
3 Cristiano	Ronaldo	passing	82	83
4 Lionel	Messi	passing	96	88
5 Cristiano	Ronaldo	passing	89	84


```
fifa_players.head(6)
```

```
first
                                  overall attacking
                last
                       movement
    Lionel
                       shooting
               Messi
                                       92
                                                   70
1 Cristiano Ronaldo
                       shooting
                                       93
                                                   89
     Lionel
                        passing
               Messi
                                       92
                                                   92
3 Cristiano Ronaldo
                                                   83
                        passing
                                       82
     Lionel
                        passing
               Messi
                                       96
                                                   88
5 Cristiano Ronaldo
                        passing
                                       89
                                                   84
```

```
fifa_players.pivot_table(index= , columns="movement", values= , aggfunc= )
```



```
fifa_players.head(6)
```

```
first
                                  overall attacking
                last
                       movement
     Lionel
               Messi
                       shooting
                                       92
                                                  70
1 Cristiano Ronaldo
                       shooting
                                       93
                                                  89
                        passing
     Lionel
               Messi
                                       92
                                                  92
3 Cristiano Ronaldo
                        passing
                                       82
                                                  83
    Lionel
                        passing
               Messi
                                       96
                                                  88
5 Cristiano Ronaldo
                        passing
                                       89
                                                  84
```



```
fifa_players.head(6)
```

```
overall attacking
      first
               last
                      movement
     Lionel
              Messi
                      shooting
                                      92
                                                 70
1 Cristiano Ronaldo
                      shooting
                                      93
                                                 89
     Lionel
              Messi
                       passing
                                      92
                                                 92
3 Cristiano Ronaldo
                       passing
                                      82
                                                 83
     Lionel
              Messi
                       passing
                                      96
                                                 88
5 Cristiano Ronaldo
                       passing
                                      89
                                                 84
```

```
fifa_players.pivot_table(index=["first", "last"], columns="movement", values=["overall", "attacking"], aggfunc="max")
```

```
attacking overall
movement passing shooting passing shooting
first last
Cristiano Ronaldo 84 89 89 93
Lionel Messi 92 70 96 92
```


Margins

```
fifa_players.pivot_table(index=["first", "last"], columns="movement", aggfunc="count", )
```


Margins

```
fifa_players.pivot_table(index=["first", "last"], columns="movement", aggfunc="count", margins=True)
```

	attacking		overall				
	movement	passing sh	ooting	All	passing sho	oting	All
First	Last						
Cristiano	Ronaldo	2	1	3	2	1	3
Lionel	. Messi	2	1	3	2	1	3
All		4	2	6	4	2	6

Pivot or pivot table?

Does the DataFrame have more than one value for each index/column pair?

Do you need to have a multi-index in your resulting pivoted DataFrame?

Do you need summary statistics of your large DataFrame?

Yes! Use .pivot_table()

Let's practice!

RESHAPING DATA WITH PANDAS

Reshaping with melt

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat
Data Scientist

Wide to long transformation

- Perform analytics
- Plot different variables in the same graph

Wide to long transformation

	first	last	age	height	weight
0	John	Wick	50	185	70
1	Mary	Shelley	25	164	60
2	Alice	Liddell	16	155	58

	first	last	variable	value
0	John	Wick	age	50
1	Mary	Shelley	age	25
2	Alice	Liddell	age	16
3	John	Wick	height	185
4	Mary	Shelley	height	164
5	Alice	Liddell	height	155
6	John	Wick	weight	70
7	Mary	Shelley	weight	60
8	Alice	Liddell	weight	58

df.melt(

	first	last	age	height	weight
0	John	Wick	50	185	70
1	Mary	Shelley	25	164	60
2	Alice	Liddell	16	155	58

	first	last	variable	value
0	John	Wick	age	50
1	Mary	Shelley	age	25
2	Alice	Liddell	age	16
3	John	Wick	height	185
4	Mary	Shelley	height	164
5	Alice	Liddell	height	155
6	John	Wick	weight	70
7	Mary	Shelley	weight	60
8	Alice	Liddell	weight	58

df.melt(id_vars=["first", "last"])

	first	last	age	height	weight
0	John	Wick	50	185	70
1	Mary	Shelley	25	164	60
2	Alice	Liddell	16	155	58

	first	last	variable	value
0	John	Wick	age	50
1	Mary	Shelley	age	25
2	Alice	Liddell	age	16
3	John	Wick	height	185
4	Mary	Shelley	height	164
5	Alice	Liddell	height	155
6	John	Wick	weight	70
7	Mary	Shelley	weight	60
8	Alice	Liddell	weight	58

df.melt(id_vars=["first", "last"])

df.melt(id_vars=["first", "last"])

Melting data

books

```
title isbn language pages

Mostly Harmless 074 eng 260

The Hitchhiker's Guide 072 eng 215

El restaurante del fin del mundo 071 spa 250
```

books.melt(id_vars='title')

	title	variable	value
0	Mostly Harmless	isbn	074
1	The Hitchhiker's Guide	isbn	072
2	El restaurante del fin del mundo	isbn	071
3	Mostly Harmless	language	eng
4	The Hitchhiker's Guide	language	eng
5	El restaurante del fin del mundo	language	spa
6	Mostly Harmless	pages	260
7	The Hitchhiker's Guide	pages	215
8	El restaurante del fin del mundo	pages	250

	first	last	age	height	weight
0	John	Wick	50	185	70
1	Mary	Shelley	25	164	60
2	Alice	Liddell	16	155	58

	first	last	feature	amount
0	John	Wick	age	50
1	Mary	Shelley	age	25
2	Alice	Liddell	age	16
3	John	Wick	height	185
4	Mary	Shelley	height	164
5	Alice	Liddell	height	155

							first	last	feature	amount
	first	last	age	height	weight	0	John	Wick	age	50
0	John	Wick	50	185	70	1	Mary	Shelley	age	25
1	Mary	Shelley	25	164	60	2	Alice	Liddell	age	16
2	Alice	Liddell	16	155	58	3	John	Wick	height	185
						4	Mary	Shelley	height	164
						5	Alice	Liddell	height	155
						Э	Alice	Liddell	neight	155

first last age height weight John Wick 50 185 70 Mary Shelley 25 164 60 Alice Liddell 16 155 58	John Wick 50 185 70 1 Mary Shelley age	John Wick 50 185 70 Mary Shelley 25 164 60 Alice Liddell 16 155 58						
Mary Shelley age Mary Shelley age Alice Liddell age	Mary Shelley age 2 Alice Liddell age	Mary Shelley 25 164 60 Alice Liddell 16 155 58 Alice John Wick height		first	last	age	height	weight
Alice Liddell age	Alice Liddell age	Alice Liddell 16 155 58 2 Alice Liddell age 3 John Wick height	0	John	Wick	50	185	70
Alico Liddell 16 155 58	Alico Liddell 16 155 58	Alice Liddell 16 155 58 3 John Wick height		Mary	Shelley	25	164	60
	3 John Wick height	3 John Wick height		Alice	Liddell	16	155	58

df.melt(id_vars=["first", "last"], value_vars=["age", "height"], var_name="feature", value_name="amount")

								first	last	feature	amount
	first	last	age	height	weight		0	John	Wick	age	50
0	John	Wick	50	185	70		1	Mary	Shelley	age	25
1	Mary	Shelley	25	164	60		2	Alice	Liddell	age	16
2	Alice	Liddell	16	155	58		3	John	Wick	height	185
							4	Mary	Shelley	height	164
							5	Alice	Liddell	height	155

df.melt(id_vars=["first", "last"], value_vars=["age", "height"], var_name="feature", value_name="amount")

Specifying values to melt

```
books.melt(id_vars='title', value_vars=['language_code', 'num_pages'])
```

```
title
                                      variable
                                                 value
                    Mostly Harmless
0
                                     language
                                                    eng
             The Hitchhiker's Guide
                                     language
                                                    eng
   El restaurante del fin del mundo
                                      language
                                                    spa
3
                    Mostly Harmless
                                                   260
                                         pages
             The Hitchhiker's Guide
4
                                                    215
                                         pages
   El restaurante del fin del mundo
                                                    250
                                         pages
```


Naming values and variables

```
books.melt(id_vars='title', value_vars=['language_code', 'isbn'], var_name='feature', value_name='code')
```

```
title
                                      feature
                                                 code
                   Mostly Harmless
                                         isbn
                                                  074
            The Hitchhiker's Guide
                                         isbn
                                                  072
  El restaurante del fin del mundo
                                         isbn
                                                  071
                   Mostly Harmless language
3
                                                  eng
            The Hitchhiker's Guide language
                                                  eng
  El restaurante del fin del mundo language
                                                  spa
```


Let's practice!

RESHAPING DATA WITH PANDAS

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat
Data Scientist

Wide to long transformation

	name	age2019	weight2019	age2020	weight2020
0	John Wick	50	70	51	72
1	Mary Shelley	25	60	26	61
2	Alice Liddell	16	58	17	57

Wide to long transformation

	name	age2019	weight2019	age2020	weight2020
0	John Wick	50	70	51	72
1	Mary Shelley	25	60	26	61
2	Alice Liddell	16	58	17	57

		age	weight
name	year		
John Wick	2019	50	70
Mary Shelley	2019	25	60
Alice Liddell	2019	16	58
John Wick	2020	51	72
Mary Shelley	2020	26	61
Alice Liddell	2020	17	57

pd.wide_to_long(

	name	age2019	weight2019	age2020	weight2020
0	John Wick	50	70	51	72
1	Mary Shelley	25	60	26	61
2	Alice Liddell	16	58	17	57

		age	weight
name	year		
John Wick	2019	50	70
Mary Shelley	2019	25	60
Alice Liddell	2019	16	58
John Wick	2020	51	72
Mary Shelley	2020	26	61
Alice Liddell	2020	17	57

$$, i =$$
 $, j =$ $)$

	name	age 2019	weight2019	age 2020	weight 2020
0	John Wick	50	70	51	72
1	Mary Shelley	25	60	26	61
2	Alice Liddell	16	58	17	57

		age	weight
name	year		
John Wick	2019	50	70
Mary Shelley	2019	25	60
Alice Liddell	2019	16	58
John Wick	2020	51	72
Mary Shelley	2020	26	61
Alice Liddell	2020	17	57

$$pd.wide_to_long(df, stubnames = ["age", "weight"], i = , j =)$$

	name	age <mark>2019</mark>	weight2019	age 2020	weight2020
0	John Wick	50	70	51	72
1	Mary Shelley	25	60	26	61
2	Alice Liddell	16	58	17	57

		age	weight
name	year		
John Wick	2019	50	70
Mary Shelley	2019	25	60
Alice Liddell	2019	16	58
John Wick	2020	51	72
Mary Shelley	2020	26	61

pd.wide_to_long(df, stubnames = ["age", "weight"], i =
$$, j = "year"$$
)

	name	age2019	weight2019	age2020	weight2020
0	John Wick	50	70	51	72
1	Mary Shelley	25	60	26	61
2	Alice Liddell	16	58	17	57

		age	weight
name	year		
John Wick	2019	50	70
Mary Shelley	2019	25	60
Alice Liddell	2019	16	58
John Wick	2020	51	72
Mary Shelley	2020	26	61
Alice Liddell	2020	17	57

pd.wide_to_long(df, stubnames = ["age", "weight"], i = "name", j = "year")

```
title ratings2019 sold2019 ratings2020 sold2020
                   Mostly Harmless
                                           4.2
                                                    456
0
                                                                4.3
                                                                         436
            The Hitchhiker's Guide
                                           4.8
                                                                4.9
                                                    980
                                                                         998
2 El restaurante del fin del mundo
                                           4.5
                                                    678
                                                                         638
                                                                4.6
```



```
pd.wide_to_long(books,
```



```
pd.wide_to_long(books, stubnames=['ratings', 'sold'], i='title', j='year')
```

```
ratings
                                                   sold
                            title
                                  year
                  Mostly Harmless 2019
                                            4.2
                                                    456
           The Hitchhiker's Guide 2019
                                            4.8
                                                    980
                                            4.5
 El restaurante del fin del mundo 2019
                                                    678
                  Mostly Harmless 2020
                                            4.4
3
                                                    436
           The Hitchhiker's Guide 2020
                                            4.9
4
                                                    998
5 El restaurante del fin del mundo 2020
                                            4.6
                                                    638
```

DataFrame with index

books_with_index

```
ratings2019 sold2019
                                    author
                   title
    To Kill a Mockingbird
                               Harper Lee
                                                   4.7
                                                             456
   The Hitchhiker's Guide
                             Douglas Adams
                                                    4.8
                                                             980
                            Edgar Alan Poe
                                                             678
            The Black Cat
                                                    4.5
2
```

```
pd.wide_to_long(books_with_index, stubnames=['ratings', 'sold'], i='author', j='year')
```

```
ratings sold
author year

0 Harper Lee 2019 4.2 456

1 Douglas Adams 2019 4.8 980

2 Edgar Alan Poe 2019 4.5 678
```

DataFrame with index

```
books_with_index.reset_index(drop=False, inplace=True)
pd.wide_to_long(books_with_index, stubnames=['ratings', 'sold'], i=['author', 'title'], j='year')
```

```
ratings sold
                title
                               author
                                         year
To Kill a Mockingbird
                           Harper Lee
                                                          456
                                         2019
                                                    4.7
                         Douglas Adams
The Hitchhiker's Guide
                                         2019
                                                    4.8
                                                         980
                        Edgar Alan Poe
                                                    4.5
                                                         678
        The Black Cat
                                         2019
```


sep argument

new_books

title	author	ratings_2019	sold_2019	ratings_2020	sold_2020
0 A Murder Is Announced	Agatha Christie	4.4	796	4.8	856
1 Sherlock Holmes	Sir A. Conan Doyle	4.5	780	4.8	818
2 The Sparrow	Mary Doria Russell	4.2	178	4.1	238

sep argument

```
pd.wide_to_long(new_books, stubnames=['ratings', 'sold'], i=['title', 'author'], j='year')
```

```
sold_2020 ratings_2020 ratings_2019 sold_2019 ratings sold
title author year
```


sep argument

```
pd.wide_to_long(new_books, stubnames=['ratings', 'sold'], i=['title', 'author'], j='year', sep='_')
```

				ratings	sold
	title	author	year		
0	A Murder Is Announced	Agatha Christie	2019	4.4	796
1	Sherlock Holmes	Sir A. Conan Doyle	2019	4.5	780
2	The Sparrow	Mary Doria Russell	2019	4.2	178
3	A Murder Is Announced	Agatha Christie	2020	4.8	856
4	Sherlock Holmes	Sir A. Conan Doyle	2020	4.8	818
5	The Sparrow	Mary Doria Russell	2020	4.1	238

suffix argument

another_books

	title	ratings_one	sold_one	ratings_two	sold_two
(A Murder Is Announced	4.4	796	4.8	856
-	1 Sherlock Holmes	4.5	780	4.8	818
4	2 The Sparrow	4.2	178	4.1	238

suffix argument

```
pd.wide_to_long(another_books, stubnames=['ratings', 'sold'], i='title', j='edition', sep='_')
```

```
sold_one ratings_one ratings_two sold_two ratings sold
title year
```


suffix argument

```
pd.wide_to_long(another_books, stubnames=['ratings', 'sold'], i='title', j='edition', sep='_', suffix='\w+')
```

```
ratings
                                            sold
                   title edition
   A Murder Is Announced
                                     4.4
                                             796
                             one
                                     4.5
         Sherlock Holmes
                             one
                                             780
             The Sparrow
                                     4.2
                                             178
2
                             one
   A Murder Is Announced
                                     4.8
                                             856
                             two
         Sherlock Holmes
                                     4.8
                                             818
                             two
                                     4.1
5
             The Sparrow
                                             238
                             two
```


Let's practice!

RESHAPING DATA WITH PANDAS

Working with string columns

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat
Data Scientist

Columns with strings

```
raitings_2015 sold_2015 raitings_2016 sold_2016
The Civil War: Vol. 1
                               4.3
                                        234
                                                     4.2
                                                               254
The Civil War: Vol. 2
                                                     4.3
                               4.5
                                        525
                                                               515
The Civil War: Vol. 3
                                                     4.2
                      4.1
                                        242
                                                               251
```

```
books['title'].dtypes
```

```
dtype('0')
```


String methods

- pandas Series string processing methods
- Access easily by str attribute

```
title
                       raitings_2015 sold_2015 raitings_2016 sold_2016
The Civil War: Vol. 1
                                 4.3
                                           234
                                                         4.2
                                                                   254
The Civil War: Vol. 2
                                                         4.3
                                 4.5
                                           525
                                                                   515
The Civil War: Vol. 3
                                4.1
                                           242
                                                         4.2
                                                                   251
```

```
books['title']
```



```
title
                   raitings_2015 sold_2015 raitings_2016 sold_2016
The Civil War: Vol. 1
                            4.3
                                     234
                                                 4.2
                                                         254
The Civil War: Vol. 2
                                                         515
                                                 4.3
                  4.5
                                    525
The Civil War: Vol. 3
                   4.1
                                                4.2
                                     242
                                                         251
```

```
books['title'].str.split(':')
```

```
0 [The Civil War, Vol. 1]
1 [The Civil War, Vol. 2]
2 [The Civil War, Vol. 3]
```

```
title
                     raitings_2015 sold_2015 raitings_2016 sold_2016
The Civil War: Vol. 1
                               4.3
                                        234
                                                     4.2
                                                               254
The Civil War: Vol. 2
                                                               515
                                                     4.3
                               4.5
                                        525
The Civil War: Vol. 3
                        4.1
                                                     4.2
                                        242
                                                               251
```

```
books['title'].str.split(":").str.get(0)
```

```
0 The Civil War
1 The Civil War
2 The Civil War
```

```
raitings_2015 sold_2015 raitings_2016 sold_2016
               title
The Civil War: Vol. 1
                              4.3
                                        234
                                                     4.2
                                                               254
The Civil War: Vol. 2
                                                              515
                              4.5
                                        525
                                                     4.3
The Civil War: Vol. 3
                                                     4.2
                        4.1
                                        242
                                                               251
```

```
books['title'].str.split(":", expand=True)
```

```
0 1
0 The Civil War Vol. 1
1 The Civil War Vol. 2
2 The Civil War Vol. 3
```

```
books[['main_title', 'subtitle']] = books['title'].str.split(":", expand=True)

books.drop('title', axis=1, inplace=True)

pd.wide_to_long(books , stubnames=['ratings', 'sold'], i=['main_title', 'subtitle'], j='year')
```

books_new

	name_author	lastname_author	nationality	number_books
0	Virginia	Wolf	British	50
1	Margaret	Atwood	Canadian	40
2	Harper	Lee	American	2


```
books_new
```

```
name_author lastname_author nationality number_books

0 Virginia Wolf British 50

1 Margaret Atwood Canadian 40

2 Harper Lee American 2
```

```
books_new['name_author'].str.cat(books_new['lastname_author'], sep=' ')
```

```
0 Virginia Wolf
1 Margaret Atwood
2 Harper Lee
```


books_new

```
name_author lastname_author nationality number_books

0 Virginia Wolf British 50

1 Margaret Atwood Canadian 40

2 Harper Lee American 2
```

```
books_new['author'] = books_new['name_author'].str.cat(books_new['lastname_author'], sep=' ')
books_new
```

```
name_author lastname_author nationality number_books
                                                                  author
                                                           Virginia Wolf
                                  British
0
    Virginia
                        Wolf
                                                     50
                                                         Margaret Atwood
                                 Canadian
    Margaret
                       Atwood
                                                              Harper Lee
                                 American
       Harper
                          Lee
```


books_new

```
name_author lastname_author nationality number_books

0 Virginia Wolf British 50

1 Margaret Atwood Canadian 40

2 Harper Lee American 2
```

```
books_new.melt(id_vars='author', value_vars=['nationality', 'number_books'], var_name='feature', value_name='value')
```

```
value
            author
                         feature
    Virginia Wolf
                     nationality
                                   British
   Margaret Atwood
                     nationality
                                  Canadian
       Harper Lee
                     nationality
                                  American
2
    Virginia Wolf number_books
                                        50
   Margaret Atwood
                   number_books
                                        40
       Harper Lee number_books
                                         2
5
```


Concatenate index

comics_marvel

	subtitle	year	ratings	sold
main_title				
Avengers	Next	1992	4.5	234
Avengers	Forever	1998	4.6	224
Avengers	2099	1999	4.8	141

Concatenate index

```
comics_marvel.head(2)
```

```
subtitle year ratings sold
main_title
Avengers Next 1992 4.5 234
Avengers Forever 1998 4.6 224
```

```
comics_marvel.index = comics_marvel.index.str.cat(comics_marvel['subtitle'], sep='-')
books
```

```
subtitle year ratings sold
main_title
Avengers-Next Next 1992 4.5 234
Avengers-Forever Forever 1998 4.6 224
Avengers-2099 2099 1999 4.8 141
```

Split index

```
comics_marvel.index = comics_marvel.index.str.split('-', expand=True)
comics_marvel
```

```
subtitle year ratings sold

Avengers Next Next 1992 4.5 234

Forever Forever 1998 4.6 224

2099 2099 1999 4.8 141
```

Concatenate Series

```
books_new['name_author']
     Virginia
     Margaret
       Harper
new_list = ['Wolf', 'Atwood', 'Lee']
books_new['name_author'].str.cat(new_list, sep=' ')
       Virginia Wolf
0
     Margaret Atwood
          Harper Lee
```


Let's practice!

RESHAPING DATA WITH PANDAS

Stacking DataFrames

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat
Data Scientist

Row multi-indices

		height	weight
Last	First		
Wick	John	185	68
	Julien	164	61
Shelley	Mary	164	59
	Frank	155	58

Setting the index

churn

```
credit_score age country num_products exited
0 619 43 France 1 Yes
1 608 34 Germany 0 No
2 502 23 France 1 Yes
```

Setting the index

```
churn.set_index(['country', 'age'], inplace=True)
```

```
credit_score num_products exited
age country
43 France 619 1 Yes
34 Germany 608 0 No
23 France 502 1 Yes
```


Multilndex from array

```
new_array = [['yes', 'no', 'yes'], ['no', 'yes', 'yes']]
churn.index = pd.MultiIndex.from_arrays(new_array, names=['member', 'credit_card'])
churn
```

```
credit_score age country num_products exited
member credit_card
                            619 43
                                      France
                                                              Yes
               no
   yes
                                                               No
                            608 34
                                     Germany
              yes
   no
                            502 23
                                                              Yes
                                      France
   yes
               yes
```

MultiIndex DataFrames

		20	19	20	20
		height	weight	height	weight
Last	First				
Wick	John	185	68	185	70
	Julien	164	61	164	60
Shelley	Mary	164	59	164	60
	Frank	155	65	155	58

MultiIndex DataFrames

	year		2019		2020
	feature	age w	eight	age	weight
last	first				
Wick	John	25	68	26	72
	Julien	31	72	32	73
Shelley	Mary	41	68	42	69
	Frank	32	75	33	74

The .stack() method

		height	weight
Last	First		
Wick	John	185	68
	Julien	164	61
Shelley	Mary	164	59
Silelley			
	Frank	155	58

First

Last

df.stack()

The .stack() method

Rearrange a level of the columns to obtain a reshaped DataFrame with a new inner-most level row index

					Last	First	
		height	weight		Wick	John	height
Last	First	neight	Weight				weight
Wick	John	185	68	\rightarrow		Julien	height
· · · · ·	Julien	164	61				weight
Shelley	Mary	164	59		Shelley	Mary	height
Sticiley	Frank	155	58				weight
	714111	155	50			Frank	height
							weight

Stack into a series

churn

	credit_score	age	country	num_products	exited	
0	619	43	France	1	Yes	
1	608	34	Germany	0	No	
2	502	23	France	1	Yes	

churned_stacked = churn.stack()
churned_stacked.head(10)

member	credit_card			
yes	no	credit_score	619	
		age	43	
		country	France	
		num_products	1	
		churn	Yes	
no	yes	credit_score	608	
		age	34	
		country	Germany	
		num_products	0	
		churn	No	

Stack into a DataFrame

patients

	year 2019		2020		
	feature	age	weight	age	weight
last	first				
Wick	John	25	68	26	72
	Julien	31	72	32	73
Shelley	Mary	41	68	42	69
	Frank	32	75	33	74

patients_stacked = patients.stack()
patients_stacked

		year	2019	2020
last	first	feature		
Wick	John	age	25	26
		weight	68	72
	Julien	age	31	32
		weight	72	73
Shelley	Mary	age	41	42
		weight	68	69
	Frank	age	32	33
		weight	75	74

Stack a level by number

patients

	year		2019		2020
	feature	age	weight	age	weight
last	first				
Wick	John	25	68	26	72
	Julien	31	72	32	73
Shelley	Mary	41	68	42	69
	Frank	32	75	33	74

patients.stack(level=0)

		feature	age	weight
last	first	year		
Wick	John	2019	25	68
		2020	26	72
	Julien	2019	31	72
		2020	32	73
Shelley	Mary	2019	41	68
		2020	42	69
	Frank	2019	32	75
		2020	33	74

Stack a level by name

patients

	year		2019		2020
	feature	age	weight	age	weight
last	first				
Wick	John	25	68	26	72
	Julien	31	72	32	73
Shelley	Mary	41	68	42	69
	Frank	32	75	33	74

patients.stack(level='year')

		feature	age	weight
last	first	year		
Wick	John	2019	25	68
		2020	26	72
	Julien	2019	31	72
		2020	32	73
Shelley	Mary	2019	41	68
		2020	42	69
	Frank	2019	32	75
		2020	33	74

Let's practice!

RESHAPING DATA WITH PANDAS

Unstacking DataFrames

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat
Data Scientist

Review

df.stack()

Undoing stacking process

Last	First		
Wick	John	height	185
		weight	68
	Julien	height	164
		weight	61
Shelley	Mary	height	164
		weight	59
	Frank	height	155
		weight	58

The .unstack() method

df.unstack()

The .unstack() method

Rearrange a level of the row index into the columns to obtain a reshaped DataFrame with a new inner-most level column index.

Unstack Series

churn_stacked

member	credit_card		
yes	no	credit_score	619
		age	43
		country	France
		num_products	1
		churn	Yes
no	yes	credit_score	608
		age	34
		country	Germany
		num_products	0
		churn	No
yes	yes	credit_score	502
		age	23
		country	France
		num_products	1
		churn	Yes

Unstack Series

```
churned_stacked.unstack()
```

```
credit_score age country num_products exited
member credit_card
                                                              No
                            608 34
                                     Germany
   no
              yes
                            619
                                 43
                                      France
                                                              Yes
  yes
               no
                            502 23
                                      France
                                                              Yes
              yes
```

Unstacking a DataFrame

patients_stacked

```
2019 2020
                 year
 first
         last feature
  Wick
                        25
                             26
         John
                  age
               weight
                        68 72
       Julien
                  age
                       31
                             32
                        72
                             73
               weight
Shelley
         Mary
                        41
                             42
                  age
               weight
                        68
                             69
        Frank
                        32
                            33
                  age
               weight
                             74
                        75
```

Unstacking a DataFrame

```
patients_stacked.unstack()
```

```
2019
                                  2020
                age weight age weight
        feature
  last
          first
Shelley
                         75 33
         Frank
                                    74
                         68
                            42
                                    69
          Mary
                  41
  Wick
                         68 26
           John
                  25
                                    72
         Julien
                  31
                         72 32
                                    73
```


Unstack a level

df.unstack(level=1) or df.unstack(level='First')

Unstack level by number

churn_stacked.head(10)

member	credit_card			
yes	no	credit_score	619	
		age	43	
		country	France	
		num_products	1	
		churn	Yes	
no	yes	credit_score	608	
		age	34	
		country	Germany	
		num_products	0	
		churn	No	

churn_stacked.unstack(level=0)

	member	no	yes
credit_card			
no	<pre>credit_score</pre>	NaN	619
	age	NaN	43
	country	NaN	France
	num_products	NaN	1
	churn	NaN	Yes
yes	<pre>credit_score</pre>	608	502
	age	34	23
	country	Germany	France
	num_products	0	1
	churn	No	Yes

Unstack level by name

churn_stacked.head(10)

member	credit_card			
yes	no	credit_score	619	
		age	43	
		country	France	
		num_products	1	
		churn	Yes	
no	yes	credit_score	608	
		age	34	
		country	Germany	
		num_products	0	
		churn	No	

churn_stacked.unstack(level='credit_card')

	credit_card	no	yes	6
member				
no	credit_score	NaN	608	3
	age	NaN	34	ĺ
	country	NaN	Germany	/
	num_products	NaN	0)
	churn	NaN	No)
yes	credit_score	619	NaN	1
	age	43	NaN	1
	country	France	NaN	1
	num_products	1	NaN	J
	churn	Yes	NaN	1

Sort index

```
patients_stacked.unstack().sort_index(ascending=False)
```

		year		2019		2020
		feature	age	weight	age	weight
la	st	first				
Wi	ck	Julien	31	72	32	73
		John	25	68	26	72
Shell	еу	Mary	41	68	42	69
		Frank	32	75	33	74

Rearranging levels

patients_stacked

```
2019 2020
                 year
 first
         last feature
  Wick
         John
                        25 26
                  age
                            72
               weight
       Julien
                             32
                        31
                  age
               weight
                        72 73
Shelley
         Mary
                             42
                        41
                  age
               weight
                        68 69
        Frank
                        32
                             33
                  age
               weight
                        75
                             74
```

patients_stacked.unstack(level=1).stack(level=0)

first			Frank	John	Julien	Mary
last	feature	year				
Shelley	age	2019	32.0	NaN	NaN	41.0
		2020	33.0	NaN	NaN	42.0
	weight	2019	75.0	NaN	NaN	68.0
		2020	74.0	NaN	NaN	69.0
Wick	age	2019	NaN	25.0	31.0	NaN
		2020	NaN	26.0	32.0	NaN
	weight	2019	NaN	68.0	72.0	NaN
		2020	NaN	72.0	73.0	NaN

Let's practice!

RESHAPING DATA WITH PANDAS

Working with multiple levels

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat Instructor

Review

- Stack and unstack DataFrames and Series
- Choose a level to stack or unstack by name or number
- Rearrange levels by combining unstack and stack

Rearranging multiple levels

- Swap levels
- Stack and unstack multiple levels at the same time

Swap levels

df.swaplevel(0, 2)

Swap levels

cars

			2019	2020
price	Golf	VW	25	26
sold	Golf	VW	68	72
price	Passat	VW	31	32
sold	Passat	VW	72	73
price	A-class	Mercedes	41	42
sold	A-class	Mercedes	68	69
price	C-class	Mercedes	32	33
sold	C-class	Mercedes	75	74

Swap levels

cars

			2019	2020
price	Golf	VW	25	26
sold	Golf	VW	68	72
price	Passat	VW	31	32
sold	Passat	VW	72	73
price	A-class	Mercedes	41	42
sold	A-class	Mercedes	68	69
price	C-class	Mercedes	32	33
sold	C-class	Mercedes	75	74

cars.swaplevel(0, 2)

		2019	2020	
Golf	price	25	26	
	sold	68	72	
Passat	price	31	32	
	sold	72	73	
A-class	price	41	42	
	sold	68	69	
C-class	price	32	33	
	sold	75	74	
	Passat A-class	sold Passat price sold A-class price sold C-class price	Golf price 25 sold 68 Passat price 31 sold 72 A-class price 41 sold 68 C-class price 32	Golf price 25 26 sold 68 72 Passat price 31 32 sold 72 73 A-class price 41 42 sold 68 69 C-class price 32 33

Swap levels and unstack

cars

			2019	2020
price	Golf	VW	25	26
sold	Golf	VW	68	72
price	Passat	VW	31	32
sold	Passat	VW	72	73
price	A-class	Mercedes	41	42
sold	A-class	Mercedes	68	69
price	C-class	Mercedes	32	33
sold	C-class	Mercedes	75	74

cars.swaplevel(0, 2).unstack()

Mercedes A-class 41 68 42 69 VW Golf 25 68 26 72 Passat 31 72 32 73				2019		2020
C-class 32 75 33 74 VW Golf 25 68 26 72			price	sold	price	sold
VW Golf 25 68 26 72	Mercedes	A-class	41	68	42	69
		C-class	32	75	33	74
Passat 31 72 32 73	VW	Golf	25	68	26	72
		Passat	31	72	32	73

Swap levels and unstack

cars

			2019	2020
price	Golf	VW	25	26
sold	Golf	VW	68	72
price	Passat	VW	31	32
sold	Passat	VW	72	73
price	A-class	Mercedes	41	42
sold	A-class	Mercedes	68	69
price	C-class	Mercedes	32	33
sold	C-class	Mercedes	75	74

cars.unstack()

		Mercedes	VW	Mercedes	VW	
		2019	2019	2020	2020	
price	A-class	41.0	NaN	42.0	NaN	
	C-class	32.0	NaN	33.0	NaN	
	Golf	NaN	25.0	NaN	26.0	
	Passat	NaN	31.0	NaN	32.0	
sold	A-class	68.0	NaN	69.0	NaN	
	C-class	75.0	NaN	74.0	NaN	
	Golf	NaN	68.0	NaN	72.0	
	Passat	NaN	72.0	NaN	73.0	

Swap levels and unstack

cars

			2019	2020
price	Golf	VW	25	26
sold	Golf	VW	68	72
price	Passat	VW	31	32
sold	Passat	VW	72	73
price	A-class	Mercedes	41	42
sold	A-class	Mercedes	68	69
price	C-class	Mercedes	32	33
sold	C-class	Mercedes	75	74

cars.unstack().swaplevel(0, 1, axis=1)

			2019		2020	
		Mercedes	VW	Mercedes	VW	
price	A-class	41.0	NaN	42.0	NaN	
	C-class	32.0	NaN	33.0	NaN	
	Golf	NaN	25.0	NaN	26.0	
	Passat	NaN	31.0	NaN	32.0	
sold	A-class	68.0	NaN	69.0	NaN	
	C-class	75.0	NaN	74.0	NaN	
	Golf	NaN	68.0	NaN	72.0	
	Passat	NaN	72.0	NaN	73.0	

Swap levels and stack

cars

			2019	2020
price	Golf	VW	25	26
sold	Golf	VW	68	72
price	Passat	VW	31	32
sold	Passat	VW	72	73
price	A-class	Mercedes	41	42
sold	A-class	Mercedes	68	69
price	C-class	Mercedes	32	33
sold	C-class	Mercedes	75	74

cars.stack()

price	Golf	VW	2019	25	
			2020	26	
sold	Golf	VW	2019	68	
			2020	72	
price	Passat	VW	2019	31	
			2020	32	
sold	Passat	VW	2019	72	
			2020	73	
price	A-class	Mercedes	2019	41	
			2020	42	
sold	A-class	Mercedes	2019	68	
			2020	69	

Swap levels and stack

cars

			2019	2020
price	Golf	VW	25	26
sold	Golf	VW	68	72
price	Passat	VW	31	32
sold	Passat	VW	72	73
price	A-class	Mercedes	41	42
sold	A-class	Mercedes	68	69
price	C-class	Mercedes	32	33
sold	C-class	Mercedes	75	74

cars.stack().swaplevel(0, 2)

VW	Golf	price	2019	25	
			2020	26	
		sold	2019	68	
			2020	72	
	Passat	price	2019	31	
			2020	32	
		sold	2019	72	
			2020	73	
Mercedes	A-class	price	2019	41	
			2020	42	
		sold	2019	68	
			2020	69	

Multiple levels

			da	у		nig	ht	
		20)19	20	20	2020		
		high	low	high	low	high	low	
Last	First							
Wick	John	110	68	120	70	110	70	
	Julien	120	61	121	60	115	60	
Shelley	Mary	90	59	90	60	100	60	
	Frank	100	65	92	58	105	58	

Unstacking multiple levels

cars

year			2019	2020
brand	model	feature		
VW	Golf	price	25	26
		sold	68	72
	Passat	price	31	32
		sold	72	73
Mercedes	A-class	price	41	42
		sold	68	69
	C-class	price	32	33
		sold	75	74

Unstacking levels by number

```
cars.unstack(level=[0, 1])
```

		year		2019				2020
brand		VW	Mer	cedes		VW	M	ercedes
model	Golf	Passat	A-class C-	class	Golf	Passat	A-class	C-class
feature								
price	25	31	41	32	26	32	42	33
sold	68	72	68	75	72	73	69	74

Unstacking levels by name

```
cars.unstack(level=['brand', 'model'])
```

		year		2019				2020
brand		VW	Merc	edes		VW	ŀ	1ercedes
model	Golf	Passat	A-class C-c	lass	Golf	Passat	A-class	C-class
feature								
price	25	31	41	32	26	32	42	33
sold	68	72	68	75	72	73	69	74

Stacking multiple levels

cars_unstacked

yea	ar				2019				2020
brar	nd		VW	M	ercedes		VW		Mercedes
mode	el	Golf	Passat	A-class	C-class	Golf	Passat	A-class	C-class
featur	re								
prio	ce	25	31	41	32	26	32	42	33
sol	Ld	68	72	68	75	72	73	69	74

Stacking by name or number

cars_unstacked.stack(level=[0, 1])

		model	A-class	C-class	Golf	Passat
feature	year	brand				
price	2019	Mercedes	41.0	32.0	NaN	NaN
		VW	NaN	NaN	25.0	31.0
	2020	Mercedes	42.0	33.0	NaN	NaN
		VW	NaN	NaN	26.0	32.0
sold	2019	Mercedes	68.0	75.0	NaN	NaN
		VW	NaN	NaN	68.0	72.0
	2020	Mercedes	69.0	74.0	NaN	NaN
		VW	NaN	NaN	72.0	73.0

cars_unstacked.stack(levels=['year', 'brand'])

	model	A-class	C-class	Golf	Passat
feature year	brand				
price 2019	Mercedes	41.0	32.0	NaN	NaN
	VW	NaN	NaN	25.0	31.0
2020	Mercedes	42.0	33.0	NaN	NaN
	VW	NaN	NaN	26.0	32.0
sold 2019	Mercedes	68.0	75.0	NaN	NaN
	VW	NaN	NaN	68.0	72.0
2020	Mercedes	69.0	74.0	NaN	NaN
	VW	NaN	NaN	72.0	73.0

Let's practice!

RESHAPING DATA WITH PANDAS

Handling missing data

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat
Data Scientist

Review

- Stack and unstack DataFrames:
 - All columns index levels
 - A row index level
 - Choose which levels to stack or unstack

Subgroups do not have the same set of labels

animals

```
fly
                                 jump
                                       run
class
         order
                       name
Mammalia carnivora
                       dog
                                             No
                                   No
                                       Yes
         Diprotodontia Kangaroo
                                             No
                                  Yes
                                        No
         hervibora
                       bird
                                            Yes
Aves
                                   No
                                        No
```


Subgroups do not have the same set of labels

```
animals
```

```
jump run fly
class
        order
                       name
   Mammalia carnivora
                                     No Yes
                          dog
                                               No <--
        Diprotodontia Kangaroo
                                       No
                                            No
                                 Yes
        hervibora
                       bird
                                          Yes
Aves
                                  No
                                       No
```


Subgroups do not have the same set of labels

```
animals.unstack(level='class')
```

```
jump
                                                                 fly
                                                   run
                          Aves Mammalia Aves Mammalia Aves Mammalia
        clas
        order
                    name
 Diprotodontia Kangaroo
                                                    No
                                                       NaN
                                                                  No
                          NaN
                                    Yes
                                         NaN
      carnivora
                     Dog
                          NaN
                                                        NaN
                                                                  No
                                         NaN
                                     No
                                                   Yes
Charadriiformes
                                                        Yes
                  Avocet
                            No
                                    NaN
                                          No
                                                   NaN
                                                                 NaN
```


Subgroups do not have the same set of labels

```
animals.unstack(level='class')
```

```
jump
                                                         fly
                                            run
       clas
                      Aves Mammalia Aves Mammalia Aves Mammalia
       order
                  name
 Diprotodontia Kangaroo NaN Yes NaN
                                             No NaN
                                                         No
     carnivora Dog NaN <-- No
                                            Yes NaN
                                    NaN
                                                          No
Charadriiformes
                Avocet
                        No
                               NaN
                                     No
                                            NaN Yes
                                                         NaN
```


Handling NaN with unstack

```
animals.unstack(level='class', fill_value= )
```


Handling NaN with unstack

```
animals.unstack(level='class', fill_value='No')
```


Handling NaN with unstack

```
animals.unstack(level='class', fill_value='No').sort_index(level=['order', 'name'], ascending=[True, False])
```

```
jump
                                                              fly
                                                run
                        Aves Mammalia Aves Mammalia Aves Mammalia
       clas
       order
                   name
 Diprotodontia Kangaroo
                                                               No
                          No
                                  Yes
                                        No
                                                 No
                                                      No
     carnivora
                    Dog
                          No
                                   No
                                        No
                                                Yes
                                                      No
                                                               No
Charadriiformes
                                        No
                                                 No Yes
                 Avocet
                          No
                                   No
                                                               No
```


Combinations of index and column values missing from the original DataFrame

flowers

```
petals Stigma
number size
rose 40 NaN
Lily 8 big
```

Combinations of index and column values missing from the original DataFrame

```
flowers.stack()
```

```
Stigma petals
rose number NaN 40.0
Lily number NaN 8.0
size 5 NaN
```

Combinations of index and column values missing from the original DataFrame

```
flowers.stack(dropna=True)
```

```
Stigma petals
rose number NaN 40.0
Lily number NaN 8.0
size 5 NaN
```

Combinations of index and column values missing from the original DataFrame

```
flowers.stack(dropna=False)
```

```
Stigma petals
rose number NaN 40.0
size NaN NaN <--
Lily number NaN 8.0
size 5 NaN
```

Handling NaN with stack

```
flowers.stack(dropna=False).fillna(0)
```

```
Stigma petals
rose number 0 40.0
size 0 0
Lily number 0 8.0
size 5 0
```

Let's practice!

RESHAPING DATA WITH PANDAS

Reshaping and combining data

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat

Data Scientist

Reshaping and statistical functions

sales

		office s	upply	Technolo	gy
	shop	online	onsite	online	onsite
country	year				
Italy	2017	310	123	510	340
	2018	110	100	610	120
Spain	2017	229	200	300	240
	2018	120	220	190	210

Statistical functions

- Sum: .sum()
- Mean: .mean()
- Median: .median()
- Difference: .diff()

Stacking and stats

• Total amount of online and on-site sales by year in the two countries

```
sales.stack().sum(axis=1)
```

country	year	shop	
Italy	2017	online	820
		onsite	463
	2018	online	720
		onsite	220
Spain	2017	online	529
		onsite	440
	2018	online	310
		onsite	430

Stacking and stats

Total amount of online and on- site sales by year in the two countries

```
sales.stack().sum(axis=1).unstack()
```

```
shop online onsite
country
         year
Italy
         2017
                820
                        463
         2018
                720
                        220
Spain
         2017
                529
                       440
         2018
                310
                        430
```

Unstacking and stats

Mean amount of product sales by year in both countries

```
sales.unstack(level=0).mean(axis=1)
```

```
year
2017 281.5
2018 210.0
```


Unstacking and stats

• Difference in the amount of sales between years

```
sales["office supply"].unstack(level='country')
```


Unstacking and stats

Difference in the amount of sales between years

```
sales["office supply"].unstack(level='country').diff(axis=1, periods=2)
```

```
office supply
  shop
               online
                               onsite
country
         Italy Spain
                        Italy
                               Spain
year
2017
         NaN
                 NaN
                       -187.0
                              -29.0
2018
         NaN
                 NaN
                        -10.0
                              100.0
```

Reshaping and grouping

• Total amount of different products by online or on-site regardless of the country

```
sales.stack().head(4)
```

of	fice supply	Technology	
year shop			
2017 online	310	510	
onsite	123	340	
2018 online	110	610	
onsite	100	120	
	year shop 2017 online onsite 2018 online	2017 online 310 onsite 123 2018 online 110	year shop 2017 online 310 510 onsite 123 340 2018 online 110 610

Reshaping and grouping

• Total amount of different products by online or on-site regardless of the country

```
sales.stack().groupby(level='shop').sum()
```

	office supply	Technology
shop		
online	769	1610
onsite	643	910

Reshaping after grouping

Median amount of products by year

```
sales.groupby(level='year').median()
```

	office supply	Tech	nnology
shop	online onsite	online	onsite
year			
2017	269.5 161.5	405.0	290.0
2018	115.0 160.0	400.0	165.0

Reshaping after grouping

Median amount of products by year

```
sales.groupby(level=1).median().stack(level=[0, 1]).unstack(level='year')
```

	year	2017	2018
	shop		
Technology	online	405.0	400.0
	onsite	290.0	165.0
office supply	online	269.5	115.0
	onsite	161.5	160.0

Let's practice!

RESHAPING DATA WITH PANDAS

Transforming a listlike column

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat

Data Scientist

List-like columns

	city	country	zip code
0	Los Angeles	USA	90001, 90004, 90008
1	Madrid	Spain	28001, 28004, 28005
2	Rabat	Morocco	10010, 10170

Transforming list-like columns

	city	country	zip code
0	Los Angeles	USA	90001, 90004, 90008
1	Madrid	Spain	28001, 28004, 28005
2	Rabat	Morocco	10010, 10170

	city	country	zip code
0	Los Angeles	USA	90001
1	Los Angeles	USA	90004
2	Los Angeles	USA	90008
3	Madrid	Spain	28001
4	Madrid	Spain	28004
5	Madrid	Spain	28005
6	Rabat	Morocco	10010
7	Rabat	Morocco	10170

The .explode() method

	city	country	zip code
0	Los Angeles	USA	90001, 90004, 90008
1	Madrid	Spain	28001, 28004, 28005
2	Rabat	Morocco	10010, 10170

	city	country	zip code	
0	Los Angeles	USA	90001	
1	Los Angeles	USA	90004	
2	Los Angeles	USA	90008	
3	Madrid	Spain	28001	
4	Madrid	Spain	28004	
5	Madrid	Spain	28005	
6	Rabat	Morocco	10010	
7	Rabat	Morocco	10170	

df.explode()

cities

```
city country zip_code

0 Los Angeles USA [90001, 90004, 90008]

1 Madrid Spain [28001, 28004, 28005]

2 Rabat Morocco [10010, 10170]
```



```
cities_explode = cities['zip_code'].explode()
cities_explode
```

```
0 90001

0 90004

0 90008

1 28001

1 28005

2 10010

2 10170
```



```
cities[['city', 'country']]
```



```
cities[['city', 'country']].merge(cities_explode,
```



```
cities[['city', 'country']].merge(cities_explode, left_index=True, right_index=True)
```

```
city
                country zip_code
   Los Angeles
                    USA
                           90001
   Los Angeles
                    USA
                           90004
   Los Angeles
                    USA
                           90008
        Madrid
                 Spain
                           28001
        Madrid
                  Spain
                           28004
        Madrid
                  Spain
                           28005
2
        Rabat
                           10010
                Morocco
2
                Morocco
                           10170
         Rabat
```

Exploding a column in the DataFrame

```
cities_explode = cities.explode('zip_code')
cities_explode
```

```
country zip_code
          city
   Los Angeles
                    USA
                            90001
   Los Angeles
                    USA
                            90004
   Los Angeles
                    USA
                            90008
                            28001
        Madrid
                  Spain
                  Spain
        Madrid
                            28004
        Madrid
                  Spain
                            28005
         Rabat
                Morocco
                            10010
2
         Rabat
                Morocco
                            10170
```


Exploding a column in the DataFrame

```
cities_explode.reset_index(drop=True, inplace=True)
```

```
city
                country zip_code
   Los Angeles
                    USA
                            90001
   Los Angeles
                    USA
                            90004
   Los Angeles
                    USA
                            90008
3
        Madrid
                  Spain
                            28001
        Madrid
                  Spain
                            28004
5
        Madrid
                  Spain
                            28005
6
         Rabat
                Morocco
                            10010
         Rabat
                Morocco
                            10170
```


Empty lists

```
cities_new
```

```
      city
      country
      zip_code

      0 Los Angeles
      USA [90001, 90004, 90008]

      1 Madrid
      Spain
      []

      2 Rabat
      Morocco
      [10010, 10170]
```

```
cities_new.explode('zip_code')
```

```
city
                country zip_code
   Los Angeles
                    USA
                            90001
   Los Angeles
                    USA
                            90004
   Los Angeles
                    USA
                            90008
0
        Madrid
1
                  Spain
                              NaN
                Morocco
2
         Rabat
                            10010
                Morocco
                            10170
2
         Rabat
```

cities

```
city country zip_code
0 Los Angeles USA 90001, 90004, 90008
1 Madrid Spain 28001, 28004, 28005
2 Rabat Morocco 10010, 10170
```



```
cities['zip_code'].str.split(',', expand=True)
```

```
0 1 2
0 90001 90004 90008
1 28001 28004 28005
2 10010 10170 None
```



```
cites.assign(zip_code= )
```



```
cites.assign(zip_code=cities['zip_code'].str.split(','))
```



```
cites.assign(zip_code=cities['zip_code'].str.split(',')).explode('zip_code')
```

```
city
                country zip_code
   Los Angeles
                    USA
                           90001
   Los Angeles
                    USA
                           90004
   Los Angeles
                    USA
                           90008
        Madrid
                  Spain
                           28001
        Madrid
                  Spain
                           28004
        Madrid
                  Spain
                           28005
2
                           10010
         Rabat
                Morocco
2
                Morocco
                           10170
         Rabat
```


Let's practice!

RESHAPING DATA WITH PANDAS

Reading nested data into a DataFrame

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat

Data Scientist

Review

- Reshape DataFrames and Series
- Explode lists contained in columns
- Split and concatenate strings

JSON format

- JavaScript Object Notation
- Data-interchange format
- Easy for humans to read and write
- Easy for machines to parse and generate

JSON format

```
my_writer
```

```
{
  "first" : "Mary",
  "last" : "Shelley",
  "country" : "England",
  "books" : 12
}
```

Nested JSON

writers

```
writers = [
              "first": "Mary",
              "last": "Shelley",
              "books": {"title": "Frankenstein", "year": 1818}
            },
              "first": "Ernest",
              "last": "Hemingway",
              "books": {"title": "The Old Man and the Sea", "year": 1951}
```

Data normalization

```
from pandas import json_normalize
```

```
json_normalize(writers)
```

```
first last books.title books.year
O Mary Shelley Frankenstein 1818
1 Ernest Hemingway The Old Man and the Sea 1951
```


Data normalization

```
writers_norm = json_normalize(writers, sep='_')
writers_norm
```

```
first last books_title books_year

0 Mary Shelley Frankenstein 1818

1 Ernest Hemingway The Old Man and the Sea 1951
```


Data normalization

```
pd.wide_to_long(writers_norm, stubnames=['books'], i=['first', 'last'], j='feature', sep='_', suffix='\w+')
```

```
first last feature
Mary Shelley title Frankenstein
year 1818
Ernest Hemingway title The Old Man and the Sea
year 1951
```


Complex JSON

writers

```
{'name': 'Mary',
 'last': 'Shelley',
 'books': [{'title': 'Frankestein', 'year': 1818},
            {'title': 'Mathilda ', 'year': 1819},
            {'title': 'The Last Man', 'year': 1826}]},
{'name': 'Ernest',
 'last': 'Hemmingway',
 'books': [{'title': 'The Old Man and the Sea', 'year': 1951},
           {'title': 'The Sun Also Rises', 'year': 1927}]}
```

Complex JSON

```
json_normalize(writers)
```

```
name last
0 Mary Shelley [{'title': 'Frankestein', 'year': 1818}, {'tit...
1 Ernest Hemmingway [{'title': 'The Old Man and the Sea', 'year': ...
```


Record path

```
json_normalize(writers, record_path='books')
```

```
title year

0 Frankestein 1818

1 Mathilda 1819

2 The Last Man 1826

3 The Old Man and the Sea 1951

4 The Sun Also Rises 1927
```


Metadata

```
json_normalize(writers, record_path='books', meta=['name', 'last'])
```

```
title
                                               last
                           year
                                   name
              Frankestein
                                            Shelley
                                   Mary
                          1818
                Mathilda
                                   Mary
                                            Shelley
                           1819
             The Last Man 1826
                                            Shelley
2
                                   Mary
  The Old Man and the Sea 1951
                                         Hemmingway
                                 Ernest
       The Sun Also Rises 1927
                                 Ernest
                                         Hemmingway
```

Let's practice!

RESHAPING DATA WITH PANDAS

Dealing with nested data columns

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat

Data Scientist

Review

• How to read nested JSON into DataFrame using json_normalize().


```
writers

0 Mary Shelley {'title': 'Frankenstein', 'year': 1818}

1 Ernest Hemingway {'title': 'The Old Man and the Sea', 'year': 1951}
```



```
import json
books = collection['books']
```



```
import json
books = collection['books'].apply(json.loads)
```



```
import json
books = collection['books'].apply(json.loads).apply(pd.Series)
books
```

```
title year
O Frankenstein 1818
1 The Old Man and the Sea 1951
```


Concatenate back

```
collection = collection.drop(columns='books')
pd.concat([collection, books], axis=1)
```

```
writers title year

0 Mary Shelley Frankenstein 1818

1 Ernest Hemingway The Old Man and the Sea 1951
```


Dumping nested data

```
import json
books = collection['books'].apply(json.loads)
```


Dumping nested data

```
import json
books = collection['books'].apply(json.loads).to_list()
books_dump = json.dumps(books)
new_books = pd.read_json(books_dump)
new_books
```

```
title year
O Frankenstein 1818
1 The Old Man and the Sea 1951
```


Dumping nested data

```
pd.concat([collection['writers'], new_books], axis=1)
```

```
writers title year

0 Mary Shelley Frankenstein 1818

1 Ernest Hemingway The Old Man and the Sea 1951
```


Let's practice!

RESHAPING DATA WITH PANDAS

The final reshape

RESHAPING DATA WITH PANDAS

Maria Eugenia Inzaugarat
Data Scientist

	Message
0	CON
1	GRA
2	TU
3	LA
4	TIONS

	Chapter 1	Chapter 2	Chapter 3	Chapter 4
0	Long & Wide	melt	stack	Reshape &Combining
1	pivot	wide_to_long	unstack	List-like col
2	pivot_table	string col	np.nan	Nested data

Concept of long and wide formats

Use .pivot() method - columns as unique variables, index as individual observations

Create pivot tables

Learn the difference between .pivot() and .pivot_table()

From a wide to a long format using:

- the .melt() method
- the wide_to_long() function

Splitting or concatenating string columns

Multi-level index

Use .stack() and .unstack()

Handle generated missing data

	Chapter 1	Chapter 2	Chapter 3	Chapter 4
0	Long & Wide	melt	stack	Reshape &Combining
1	pivot	wide_to_long	unstack	List-like col
2	pivot_table	string col	np.nan	Nested data

Combine reshaping and grouping processes

List-like column transformation

Thank you! RESHAPING DATA WITH PANDAS

