

KCGRA- Uma Arquitetura Reconfigurável de Dominio Específico para K-means

Matheus Alves, Lucas Bragança, Jeronimo P., **Ricardo Ferreira**, José Nacif - Universidade Federal de Viçosa

Summary

Kmeans and Hardware Accelerator

Generic and Specialized Hardware Accelerators

 HP-CGRA and a Specialized Reconfigurable on-the-fly Kmeans Accelerator = KCGRA

Final Considerations

Kmeans and Accelerator

- Well Known Unsupervised Learning Cluster Algorithm
 - NP-Complete
 - Heuristic Complexity O(KN) where K=Clusters and N=attributes

- Most Hardware Accelerators use large values of K (not realistic)
- Which is the best value of K?
 - FPGA accelerators, K is defined in Design time
 - Hours to compile....

Kmeans Examples

K= 4 clusters

N = 2 Attributes

Figure Source

Kmeans Examples

K= 8 clusters N = 2 Attributes

Kmeans Examples

K= 3 clusters

N = 3 Attributes

O(3K) Arithmetic Intensity

Turing Lecture 2018 Patterson&Hennessy

Part III: Future Architecture Opportunities - Domain Specific Languages and Architecture,

- Achieve higher efficiency by tailoring the architecture to characteristics of the domain
 - Not one application, but a domain of applications
 - Different from strict ASIC
 - Requires more domain-specific knowledge then general purpose processors need

Turing Lecture 2018 Patterson&Hennessy

What Opportunities Left?

SW-centric

- Modern scripting languages are interpreted, dynamically-typed and encourage reuse
- Efficient for programmers but not for execution

HW-centric

- Only path left is Domain Specific Architectures
- Just do a few tasks, but extremely well

Combination

Domain Specific Languages & Architectures

- **FPGA**
 - Flexibility and bit level

Hardware Knowledges

Hours to Compile and Hard to Deploy

- CGRA
 - Simplify the Placement and Routing

Performance

No Commercial CGRA

- **HP-CGRA**
 - Generator for Commercial FPGA

Parametric

FPGA Portability - Intermediate Format

Simplify Placement & Routing (—)

- Proposal Specialized K-CGRA
 - Extension HP-CGRA
 - **New More Coarse-Grained Operators**
 - Performance close to FPGA implementation
 - K value is at runtime

HP-CGRA Parametric Generator

HP-CGRA Parametric Generator

```
"shape": [ 3, 3],
"data_width": 8,
"pes": [
               "id": 0,
               "type": "basic",
               "neighbors":[1, 3],
               "route_type": "one_routing",
               "elastic_queue": 2,
               "isa": ["and", "mux", "madd"]
```


Extension: composite coarse-grained operators

```
"id": 0,
    "type": "basic",
    "neighbors":[1, 3],
    "route_type": "one_routing",
    "elastic_queue": 2,
    "isa": [ reduction_operator]}
```


Reconfigurable Distance Operator

Reconfigurable Distance Operator

Reconfigurable Distance Operator 2x32

Reconfigurable Filter Operator 2x

Reconfigurable K CGRA

Reconfigurable K CGRA K=4 N =8

Reconfigurable K CGRA K=8 N =16

Assembly Reconfigurable K CGRA

Assembly Reconfigurable K CGRA on High Performance Alveo FPGAs

CPU Memory

CPU

HLS versus RTL versus KCGRA

	K	N	CPU->FPGA	FPGA->CPU	Tkernel	Accel
	4	8	5,89	0,84	7,20	1
HLS	8	8	6,26	0,92	7,20	1
0	16	8	7,27	1,05	7,36	1
RTL	4	8	2,93	0,37	3,27	2,20
KIL	8	8	2,84	0,33	3,44	2,09
	16	8	2,85	0,37	3,30	2,23
	4	8	4,04	0,55	2,32	3,11
KCGRA	8	8	3,54	0,54	2,32	3,10
	16	8	7,16	1,11	4.59	1,60

RodiniaHLS [Cong and et al. 2018] RTL [Bragança et al. 2021

RTL AWS versus KCGRA U55C

HLS versus RTL versus KCGRA FGPA Resources

	K	N	LUT	Lut as Mem	Reg	Bram	DSP	Reconfiguratio
HLS	4	8	8.241	1.581	14.152	119	96	03h 05m 45s
IILO	8	8	10.501	1.467	16.637	119	192	03h 10m 21s
	16	8	16.579	2.253	22.617	119	384	03h 11m 10s
RTL	4	8	9.350	306	11381	7	384	02h 44m 25s
	8	8	17.632	318	21.768	7	768	02h 56m 28s
	16	8	34.361	402	40.041	7	1.536	03h 23m 53s
KCGRA	232	232	153.494	6298	158497	0	0	2,34ms

KCGRA versus related Work

[Lopes et al. 2017]
[Tang and Khalid 2016
[Paulino et al. 2020]
[Penha et al. 2018]
[Dias et al. 2020]
[Bragança et al. 2021]
[Gorgin et al. 2022]

	onfig Yes	Implem	Validation Simulation	Peak Gops	Data Size
	No	OpenCL	Simulation	150	2M
	No	OpenCL	Simulation	50	4k
	No	RTL Gen	Execution	40	2M
	No	RTL	Simulation	4	4k
	No	RTL Gen	Execution	220	2M
	No	RTL	Simulation		
,	Yes .	JSON CGRA	Execution	668	2M

Turing Lecture 2018 Patterson&Hennessy

Conclusion: A New Golden Age

- Domain Specific Languages ⇒ Domain Specific Architectures
- Free, open architectures and open source implementations
 ⇒ everyone can innovate and contribute
- Cloud FPGAs ⇒ all can design and deploy custom "HW"
- DSL by using SW-HW generators
- DSA by extending HP-CGRA, example Kmeans
- Portability by using FPGAs overlay and intermediate format
- Performance and Deploy in Cloud FPGA

Questions?

ricardo@ufv.br

Acknowledgments

Financial support from FAPEMIG APQ-01577-22, CNPq, and UFV. This work was also carried out with the support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Financing Code 001