EQUILÍBRIO IÔNICO

EQUILÍBRIO IÔNICO

Curvas de Titulação

- 1) Ácido forte + Base forte
- 2) Ácido fraco + Base forte

PROFESSOR: THÉ

LIÇÃO: 113

Curvas de titulação

1° CASO: ÁCIDO FORTE + BASE FORTE

Considerar a titulação de um ácido forte (HCI) por uma base forte (NaOH).

NaOH ····

Vamos medir o pH a cada gota de NaOH que cair sobre o HCl.

V= 50 mL

V = 50 mL

m = 0,1

HCI -

V= 60 mL

V= 99 mL

V= 100 mL

Para simplificar vamos determinar o pH em 6 situações

Antes de iniciar a titulação e após a adição de 10, 49, 50, 51 e 60 mL de NaOH 0,1M.

1) Reação química

$$HCI + NaOH \rightarrow NaCI + HOH$$

Observe que o sal formado é neutro.

Cálculo do número de mols

$$n = M. V \rightarrow n = (0,1)(50) = 5 \text{ mmol}$$

NaOH (0,1 **M**)

2)
$$V = 10 \text{ mL}$$
 $n = (0,1)(10) = 1 \text{ mmol}$

3)
$$V = 49 \text{ mL}$$
 $n = (0,1)(49) = 4,9 \text{ mmol}$

4)
$$V = 50 \text{ mL}$$
 $n = (0,1)(50) = 5,0 \text{ mmol}$

5)
$$V = 51 \text{mL}$$
 $n = (0,1)(51) = 5,1 \text{ mmol}$

6)
$$V = 60 \text{ mL}$$
 $n = (0,1)(60) = 6,0 \text{ mmol}$

3) Cálculo do excesso, sua concentração e o pH da solução

$$n=5$$
 mmol

1) Số tem HCI
$$\left\{ \begin{bmatrix} HCI \end{bmatrix} = 0,1 \text{ mol/L} \right\}$$

 $pH = 1$

2)

	HCl +	NaOH -	→ Produtos
ı	5	1	
R	-1	-1	
F	4	0	

$$[HCI] = \frac{n}{V} = \frac{4}{60} = 0,067$$

$$pH = -\log 0.067$$
 : $pH = 1.17$

HCl + NaOH \rightarrow Produtos -4,9 -4,9

$$\begin{bmatrix} \mathbf{HCI} \end{bmatrix} = \frac{0,1}{99} = 0,001 = \boxed{10^{-3}}$$

$$pH = -log 10^{-3} = pH = 3$$

4)				
		HCl +	NaOH -	→ Produtos
	_	5	5	
	R	-5	-5	
	F	0	0	

Não há excesso. Apenas o sal neutro. $\mathbf{pH} = 7$

5)				
		HCI +	NaOH -	→ Produtos
	ı	5	5,1	
	R	-5	-5	
	F	0	0,1	

Agora o excesso é de NaOH.

$$\label{eq:naoh} \left[\text{NaOH} \right] \! = \! \frac{0.1}{101} \! \cong 0,001 \left\{ \! \begin{array}{l} \! \text{pOH} \! = \! 3 \\ \! \text{pH} \! = \! 11 \end{array} \right.$$

6) V = 60 mL

	HCl + NaOH \rightarrow Produtos					
ı	5	6				
R	-5	-5				
F	0	1				

$$[NaOH] = \frac{1.0}{110} \cong 0.009$$

pOH =
$$-\log 0,009 \cong 2,0$$
 ∴ **pH** = 12,0

4) Gráfico - pH x Volume da Base

Conclusões:

Ácido forte com uma base forte.

- 1) O ponto final da reação acontece em pH=7.
- 2) O indicador apropriado para essa reação é aquele que vira (muda de cor) em qualquer pH entre 3 e 11.

2° CASO: ÁCIDO FRACO + BASE FORTE

Vamos medir pH em 5 situações

1) Reação química

 $HAc + NaOH \rightarrow NaAc + H_2O$

Observe que o sal formado sofre hidrólise básica

$$Ac^- + HOH \rightarrow HAc + OH^-$$

2) Cálculo do número de mols

a) HAc \rightarrow início

$$n = \mathbf{m} \cdot \mathbf{v}$$
 : $n = (0,1)(50) \rightarrow \boxed{n = 5 \text{ mmol}}$

Para ocorrer a neutralização total a base deve participar também 5 mmol de **OH**⁻.

b) NaOH

2)
$$V = 25 \text{mL}$$
 $n = (0,1)(25) = 2,5 \text{ mmol}$

3)
$$V = 50 \text{ mL}$$
 $n = (0,1)(50) = 5,0 \text{ mmol}$

4)
$$V = 51 \text{mL}$$
 $n = (0,1)(51) = 5,1 \text{ mmol}$

5)
$$V = 60 \text{ mL}$$
 $n = (0,1)(60) = 6,0 \text{ mmol}$

3) Cálculo do pH inicial e do excesso após cada adição de cada porção de base

a١

	HAc	\rightleftharpoons $H^{^{+}}$	+ Ac ⁻	$K_a = 2.10^{-5}$
ı	0,1	0	0	
R	-х	+x	+x	
F	0,1-x	х	х	

$$\mathbf{K_a} = \frac{\left[\mathbf{H}^+\right] \left[\mathbf{A}\mathbf{c}^-\right]}{\left[\mathbf{H}\mathbf{A}\mathbf{c}\right]}$$

$$2.10^{-5} = \frac{(x)(x)}{(0.1-x)}$$

$$x^2 = 2.10^{-6}$$

$$x = 1,4.10^{-3} \rightarrow pH = 2,85$$

b) (2) V = 25 mL

	HAc + NaOH o NaAc + HOH						
ı	5	2,5	0	0			
R	-2,5	-2,5	+2,5	+2,5			
F	2,5	0	2,5	2,5			

Nesse ponto estamos na metade da titulação. Houve a formação de uma solução tampão (ácido fraco + sal do ácido fraco)

$$\left[\text{HAc} \right] = \frac{\mathbf{n}}{\mathbf{V}} = \frac{2.5}{75} = 0.033$$

$$[\text{HAc}] = \frac{\mathbf{n}}{\mathbf{V}} = \frac{2.5}{75} = 0.033$$
 $[\text{NaAc}] = \frac{\mathbf{n}}{\mathbf{V}} = \frac{2.5}{75} = 0.033$

pH do tampão

$$\mathbf{K_a} = \frac{\left[\mathbf{H}^+\right] \left[\mathbf{Sal}\right]}{\left[\mathbf{\acute{A}cido}\right]}$$

$$2.10^{-5} = \frac{\left[H^{+}\right]\left(0.033\right)}{\left(0.033\right)}$$

$$pH = -(log \ 2.10^{-5}) = 4.7$$

b) (3) V = 50 mL

	$HAc + NaOH \rightarrow NaAc + HOH$							
_	5	5	0	0				
R	-5	-5	+5	+5				
F	0	0	5	5				

Estamos no ponto final (ou ponto de equivalência). Na solução há apenas o sal, que sofre hidrólise.

$$\boxed{\boxed{\begin{bmatrix} \text{NaAc} \end{bmatrix} = \frac{\text{n}}{\text{V}}}} = \frac{5}{100} = 0.05 \text{ mol/L}$$

Hidrólise

	$Ac^- + H$	HOH \rightarrow	HAc +	OH^-
ı	0,05	•	0	0
R	-x	-	+x	+x
F	0,05-x	-	х	х

$$K_b = \frac{K_w}{K_a}$$
 = $\frac{10^{-14}}{2.10^{-5}}$ = 0,5.10⁻⁹ = 5.10⁻¹⁰

$$\mathbf{K_b} = \frac{\left[\mathbf{HAc} \right] \left[\mathbf{OH}^- \right]}{\left[\mathbf{Ac}^- \right]}$$

$$5.10^{-10} = \frac{\mathbf{x}^2}{0.05 - \mathbf{x}}$$

$$x^2 = 25.10^{-12} \rightarrow x = 5.10^{-6} \begin{cases} pOH = 5.3 \\ pH = 8.7 \end{cases}$$

b) (4) V = 51mL

	$HAc + NaOH \rightarrow NaAc + H_2O$							
ı	5	5,1	0	0				
R	-5	-5	+5	+5				
F	0	0,1	5	5				

Agora já ultrapassamos o ponto de equivalência. Há excesso de base e de sal formado.

$$[\text{NaOH}] = \frac{\text{n}}{\text{V}}$$
 $= \frac{0.1}{101} = 0.00099 \cong 0.001$

$$[\text{NaAc}] = \frac{\mathsf{n}}{\mathsf{V}} = \frac{5}{101} = 0,0495 \cong 0,05$$

Considerando apenas o excesso de NaOH, o pH será:

$$pOH = -log \ 0.001 \begin{cases} pOH = 3 \\ \hline pH = 11 \end{cases}$$

Considerando a hidrólise, o pH será:

	Ac^-	+ HOH -	→ HAc	+ OH ⁻
ı	0,05	-	0	0,001
R	-x	-	+x	+x
F	(0,05− x)	-	х	(0,001+x)

$$\mathbf{K_b} = \frac{\left[\mathbf{HAc} \right] \left[\mathbf{OH}^{-} \right]}{\left[\mathbf{Ac}^{-} \right]}$$

$$5.10^{-10} = \frac{(x)(0,001 + \cancel{x})}{(0,05 - \cancel{x})}$$

$$x = 2, 5.10^{-8}$$

$$[OH^{-}] = 0.001 + x$$

$$\left[\text{OH}^{-}\right] = 10^{-3} + 2,5.10^{-8} \cong 10^{-3}$$

A hidrólise do Ac⁻ praticamente não altera o pH estabelecido pela base forte (NaOH).

b) (5) V = 60 mL

Na adição de 60 mL da base, já sabemos que haverá excesso da base e que a hidrolise não vai influir no pH. Então o pH será o mesmo que no caso de base forte, ou seja, pH=12.

4) Gráfico: pH x Volume da Base

Conclusões:

Ácido fraco com uma base forte:

- 1) O ponto final da reação acontece em pH>7
- O indicador apropriado para essa reação é aquele que vira em pH próximo do ponto final da reação, nesse caso seria próximo de 8,7.

Com essas duas curvas é possível prever como seriam as demais.

OBS: Não se faz titulação entre um ácido fraco e uma base fraca porque o ponto de equivalência não é nítido.

1) Titulação de um ácido forte e de um ácido fraco com uma base forte.

2) Titulação de uma base forte e de uma base fraca com um ácido forte.

3) Curvas de titulação de ácidos dipróticos com base forte

- a) Ácido carbônico
- b) Ácido maleico
- c) Ácido oxálico

Ácido	K _{a1}	K _{a2}	K _{a1} / K _{a2}
Carbônico	4,6.10 ⁻⁷	5,6.10 ⁻¹¹	8,2.10 ³
Maleico	1,5.10 ⁻²	2,6.10 ⁻⁷	5,8.10 ⁴
Oxálico	5.6.10 ⁻²	5,2.10 ⁻⁵	1,1.10 ³