Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Formfaktoren des semileptonischen $D o Kl\nu$ Zerfalls

Dimitrios Skodras

Lehrstuhl für Theoretische Physik IV Technische Universität Dortmund

03.09.2014

Gliederung

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_
 - Formfaktor f₊
- Resultate für f₊
- 6 Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Standardmodell

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- 3 Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_{-}
 - Formfaktor f_+
- Resultate für f_+
- 6 Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Differentielle Zerfallsbreite d Γ Phasenraumvolumen d Φ Matrixelement M

Zerfallsbreite

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Differentielle Zerfallsbreite d Γ Phasenraumvolumen d Φ Matrixelement M

Zerfallsbreite

ullet Inverses der hier sehr kurzen Lebensdauer au

Zerfallsbreite

- ullet Inverses der hier sehr kurzen Lebensdauer au
- Energiemessung führt wegen Energieunschärfe zu Verteilungen

Zerfallsbreite

- ullet Inverses der hier sehr kurzen Lebensdauer au
- Energiemessung führt wegen Energieunschärfe zu Verteilungen
- ightarrow Breite der Verteilung Γ kann gemessen werden

Fermis Goldene Regel:

Fermis Goldene Regel:

$$\mathrm{d}\Gamma(D \to K I \nu) = \frac{|M|^2}{2m_D} \mathrm{d}\Phi(K,\,I,\,\nu)$$

Fermis Goldene Regel:

$$\begin{split} \mathrm{d}\Gamma\big(D \to K I \nu\big) &= \frac{|M|^2}{2m_D} \mathrm{d}\Phi\big(K,\,I,\,\nu\big) \\ &= \frac{G_F^2 |V_{cs}|^2}{24\pi^3} |f_+(q^2)|^2 |p_K|^3 \mathrm{d}q^2 \end{split}$$

Fermis Goldene Regel:

$$\mathrm{d}\Gamma(D o K l
u) = rac{|M|^2}{2m_D} \mathrm{d}\Phi(K, \, l, \,
u)$$

$$= rac{G_F^2 |V_{cs}|^2}{24\pi^3} |f_+(q^2)|^2 |p_K|^3 \mathrm{d}q^2$$

Fermikonstante G_F , CKM-Element V_{cs} , Formfaktor f_+ , Kaonimpuls p_K , Impulsübertrag q^2

• Enthält kinematische Informationen (Energien, Impulse)

- Enthält kinematische Informationen (Energien, Impulse)
- Je mehr Endzustände existieren, umso größer ist Φ

- Enthält kinematische Informationen (Energien, Impulse)
- Je mehr Endzustände existieren, umso größer ist Φ
- Nicht vom Matrixelement unabhängig ausdrückbar, da es Viererimpulse enthält

- Enthält kinematische Informationen (Energien, Impulse)
- Je mehr Endzustände existieren, umso größer ist Φ
- Nicht vom Matrixelement unabhängig ausdrückbar, da es Viererimpulse enthält

Ein erster Ausdruck:

$$\mathrm{d}\Phi = (2\pi)^4 \frac{\mathrm{d}^3 p_K}{2(2\pi)^3 E_K} \frac{\mathrm{d}^3 k_1}{2(2\pi)^3 E_1} \frac{\mathrm{d}^3 k_2}{2(2\pi)^3 E_2} \delta^4 (p_D - p_K - k_1 - k_2)$$

• Enthält dynamische Informationen (Wechselwirkungen)

- Enthält dynamische Informationen (Wechselwirkungen)
- ullet Beschreibt Übergang ähnlich Streuung von Startzustand i zu Endzustand f

- Enthält dynamische Informationen (Wechselwirkungen)
- ullet Beschreibt Übergang ähnlich Streuung von Startzustand i zu Endzustand f
- Betragsquadrat $|M|^2$ kann als Wahrscheinlichkeit für Reaktion betrachtet werden

- Enthält dynamische Informationen (Wechselwirkungen)
- ullet Beschreibt Übergang ähnlich Streuung von Startzustand i zu Endzustand f
- Betragsquadrat $|M|^2$ kann als Wahrscheinlichkeit für Reaktion betrachtet werden

Ein erster Ausdruck:

$$M = \langle KI\nu | \mathcal{H} | D \rangle$$

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_{-}
 - Formfaktor f_+
- 6 Resultate für f+
- 6 Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Dirac-Gleichung 4-Fermionen-Wechselwirkung

Dirac-Gleichung

Lorentzinvariant

- Lorentzinvariant
- Für Spin 1/2 -Teilchen

- Lorentzinvariant
- Für Spin 1/2 -Teilchen
- Besitzt positiv definite Wahrscheinlichkeitsdichte j⁰

- Lorentzinvariant
- Für Spin 1/2 -Teilchen
- Besitzt positiv definite Wahrscheinlichkeitsdichte j⁰

Dirac-Gleichung:

$$(i\gamma_{\mu}\partial^{\mu}-m)\psi=(i\partial -m)\psi=(\not p-m)\psi=0$$

Dirac-Matrix γ^{μ} , Dirac-Wellenfunktion ψ , Dirac-Spinoren u, v

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Dirac-Gleichung 4-Fermionen-Wechselwirkung

Dirac-Strom j^{μ}

Dirac-Strom j^{μ}

 Beschreibt Wahrscheinlichkeitsstrom eines propagierenden Teilchens

Dirac-Strom j^{μ}

- Beschreibt Wahrscheinlichkeitsstrom eines propagierenden Teilchens
- ullet Strom genügt Kontinuitätsgleichung $\partial_{\mu}j^{\mu}=0$

Dirac-Strom j^{μ}

- Beschreibt Wahrscheinlichkeitsstrom eines propagierenden Teilchens
- ullet Strom genügt Kontinuitätsgleichung $\partial_{\mu}j^{\mu}=0$

$$j^{\mu} = \bar{\psi}\gamma^{\mu}\psi.$$

Rechtfertigung

Strom-Strom-Kopplung

Strom-Strom-Kopplung

 Ströme haben diverses Verhalten unter Lorentz-Transformationen (S, P, V, A, T)

Strom-Strom-Kopplung

- Ströme haben diverses Verhalten unter Lorentz-Transformationen (S, P, V, A, T)
- Experimente erfordern Paritätsverletzung (Schwache WW koppelt an linkshändige Teilchen und rechtshändige Antiteilchen)

Strom-Strom-Kopplung

- ullet Dies erfordert pseudoskalaren, also kontrahierten ${\cal H}$
 - \rightarrow Vektorstrom-Axialvektorstrom-Kopplung (V-A)

Strom-Strom-Kopplung

- Dies erfordert pseudoskalaren, also kontrahierten \mathcal{H} \rightarrow Vektorstrom-Axialvektorstrom-Kopplung (V-A)
- Projektionsoperator $P=(1-\gamma_5)$ extrahiert linkshändige Komponente der Spinoren

Strom-Strom-Kopplung

- Dies erfordert pseudoskalaren, also kontrahierten \mathcal{H} \rightarrow Vektorstrom-Axialvektorstrom-Kopplung (V-A)
- Projektionsoperator $P=(1-\gamma_5)$ extrahiert linkshändige Komponente der Spinoren
 - → Dirac-Strom wird um Axialvektorstromanteil erweitert:

$$j^{\mu} = \bar{\psi}\gamma^{\mu}(1 - \gamma_5)\psi$$

CKM-Matrix V_{CKM}

CKM-Matrix V_{CKM}

• Schwache WW ändert Flavourquantenzahlen und verletzt CP

CKM-Matrix V_{CKM}

- Schwache WW ändert Flavourquantenzahlen und verletzt CP
- Ausdruck für Übergangswahrscheinlichkeit von Quarks in Form einer (vermutlich) unitären 3×3 Matrix

CKM-Matrix V_{CKM}

- Schwache WW ändert Flavourquantenzahlen und verletzt CP
- Ausdruck für Übergangswahrscheinlichkeit von Quarks in Form einer (vermutlich) unitären 3×3 Matrix

$$V_{\mathsf{CKM}} = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CKM-Matrix V_{CKM}

Ausgedrückt in der Wolfensteinparametrisierung:

$$V_{\mathsf{CKM}} = egin{pmatrix} 1 - 1/2 \, \lambda^2 & \lambda & \lambda^3 A(
ho - \mathrm{i} \eta) \ -\lambda & 1 - 1/2 \, \lambda^2 & \lambda^2 A \ \lambda^3 A(1 -
ho - \mathrm{i} \eta) & -\lambda^2 A & 1 \end{pmatrix} \, + \, \mathcal{O}(\lambda^4)$$

CKM-Matrix V_{CKM}

Ausgedrückt in der Wolfensteinparametrisierung:

$$V_{\mathsf{CKM}} = egin{pmatrix} 1 - 1/2 \, \lambda^2 & \lambda & \lambda^3 A(
ho - \mathrm{i} \eta) \ -\lambda & 1 - 1/2 \, \lambda^2 & \lambda^2 A \ \lambda^3 A(1 -
ho - \mathrm{i} \eta) & -\lambda^2 A & 1 \end{pmatrix} \, + \, \mathcal{O}(\lambda^4)$$

- ullet V_{CKM} enthält nun komplexe Phase zur Erklärung der CP-Verletzung
- ullet und drei Eulerwinkel $heta_{12}= heta_c,\, heta_{13}$ und $heta_{23}$

Cabibbo-Winkel
$$\theta_c \approx 13^\circ$$
, $\lambda = \sin \theta_{12} \approx 0, 2$, $A\lambda^2 = \sin \theta_{23}$, $A\lambda^3(\rho - i\eta) = \sin \theta_{13} \mathbf{e}^{-i\phi}$

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- 3 Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_
 - Formfaktor f_+
- 6 Ausblick

• Fermi-Wechselwirkung berücksichtigt die starke WW zwischen c und \bar{q}_1 nicht

- Fermi-Wechselwirkung berücksichtigt die starke WW zwischen c und \bar{q}_1 nicht
 - → Leptonenstrom weiterhin dadurch beschrieben
 - → Hadronenstrom durch Formfaktoren darstellen

- Fermi-Wechselwirkung berücksichtigt die starke WW zwischen c und \bar{q}_1 nicht
 - → Leptonenstrom weiterhin dadurch beschrieben
 - → Hadronenstrom durch Formfaktoren darstellen
- Formfaktoren sind einheitenlose Größen, die theoretisch unzugängliche Einflüsse enthalten (sollen berechnet werden)

• Viererimpulse p_D und p_K sind einzige Freiheitsgrade und müssen zur Darstellung ausreichen

- Viererimpulse p_D und p_K sind einzige Freiheitsgrade und müssen zur Darstellung ausreichen
- Da QCD Parität erhält, müssen Formfaktorausdrücke dasselbe Transformationsverhalten unter Parität haben, wie V bzw. A.

 \bullet Eigenwerte der Parität ${\cal P}$ sind $\pi=\pm 1$ und multiplikativ, da diskrete Symmetrie

- ullet Eigenwerte der Parität ${\cal P}$ sind $\pi=\pm 1$ und multiplikativ, da diskrete Symmetrie
- Vektoren und Pseudoskalare transformieren mit $\pi=-1$, Axialvektoren mit $\pi=+1$

- ullet Eigenwerte der Parität ${\cal P}$ sind $\pi=\pm 1$ und multiplikativ, da diskrete Symmetrie
- Vektoren und Pseudoskalare transformieren mit $\pi=-1$, Axialvektoren mit $\pi=+1$

$$\begin{split} \mathcal{P} \left\langle \bar{K}^0 \left| V^{\mu} \right| D^+ \right\rangle &= (-1) \cdot (-1) \cdot (-1) = -1 \\ \mathcal{P} \left\langle \bar{K}^0 \left| A^{\mu} \right| D^+ \right\rangle &= (-1) \cdot (+1) \cdot (-1) = +1 \end{split}$$

$$\mathcal{P}\left\langle \bar{K}^{0} \left| V^{\mu} \right| D^{+} \right\rangle = (-1) \cdot (-1) \cdot (-1) = -1$$

$$\mathcal{P}\left\langle \bar{K}^{0} \left| A^{\mu} \right| D^{+} \right\rangle = (-1) \cdot (+1) \cdot (-1) = +1$$

• Keine Kombination aus p_D^μ , p_K^μ und dem Levi-Civita-Tensor $\epsilon^{\mu\nu\alpha\beta}$ transformiert mit $\pi=+1$

$$\begin{split} \mathcal{P} \left\langle \bar{K}^0 \left| V^{\mu} \right| D^+ \right\rangle &= (-1) \cdot (-1) \cdot (-1) = -1 \\ \mathcal{P} \left\langle \bar{K}^0 \left| A^{\mu} \right| D^+ \right\rangle &= (-1) \cdot (+1) \cdot (-1) = +1 \end{split}$$

- Keine Kombination aus p_D^μ , p_K^μ und dem Levi-Civita-Tensor $\epsilon^{\mu\nu\alpha\beta}$ transformiert mit $\pi=+1$
 - $\rightarrow \langle K(p_K) | A^{\mu} | D(p_D) \rangle = 0$
 - → Keine Axialvektorformfaktoren!

Viererimpulse selbst transformieren unter Parität wie Vektoren

Viererimpulse selbst transformieren unter Parität wie Vektoren

 \rightarrow Allgemeine Darstellung durch zwei Formfaktoren f_+ , f_- :

Viererimpulse selbst transformieren unter Parität wie Vektoren

 \rightarrow Allgemeine Darstellung durch zwei Formfaktoren f_+ , f_- :

$$\langle K(p_K) | V^{\mu} | D(p_D) \rangle = f_+(q^2)(p_D + p_K)^{\mu} + f_-(q^2)(p_D - p_K)^{\mu}$$

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Axialvektorformfaktoren und f_- Formfaktor f_+

Formfaktor f_

Betrachtung von M_- nur mit f_- :

$$M_{-} = \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (p_D - p_K)^{\mu} \bar{u}_{\nu} \gamma_{\mu} (1 - \gamma_5) v_I$$

Betrachtung von M_{-} nur mit f_{-} :

$$M_{-} = rac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (p_D - p_K)^{\mu} ar{u}_{
u} \gamma_{\mu} (1 - \gamma_5) v_I \ = rac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (k_{
u} + k_I)^{\mu} ar{u}_{
u} \gamma_{\mu} (1 - \gamma_5) v_I$$

Betrachtung von M_{-} nur mit f_{-} :

$$M_{-} = \frac{G_{F}V_{cs}}{\sqrt{2}}f_{-}(q^{2})(p_{D} - p_{K})^{\mu}\bar{u}_{\nu}\gamma_{\mu}(1 - \gamma_{5})v_{I}$$

$$= \frac{G_{F}V_{cs}}{\sqrt{2}}f_{-}(q^{2})(k_{\nu} + k_{I})^{\mu}\bar{u}_{\nu}\gamma_{\mu}(1 - \gamma_{5})v_{I}$$

$$= \frac{G_{F}V_{cs}}{\sqrt{2}}f_{-}(q^{2})\bar{u}_{\nu}(k_{\nu} + k_{I})(1 - \gamma_{5})v_{I}$$

Betrachtung von M_{-} nur mit f_{-} :

$$\begin{split} M_{-} &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (p_D - p_K)^{\mu} \bar{u}_{\nu} \gamma_{\mu} (1 - \gamma_5) v_I \\ &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (k_{\nu} + k_I)^{\mu} \bar{u}_{\nu} \gamma_{\mu} (1 - \gamma_5) v_I \\ &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) \bar{u}_{\nu} (k_{\nu} + k_I) (1 - \gamma_5) v_I \\ &\stackrel{\text{Dirac}}{=} \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) \bar{u}_{\nu} (m_{\nu} + m_I) (1 - \gamma_5) v_I \end{split}$$

Betrachtung von M_{-} nur mit f_{-} :

$$\begin{split} M_{-} &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (p_D - p_K)^{\mu} \bar{u}_{\nu} \gamma_{\mu} (1 - \gamma_5) v_I \\ &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (k_{\nu} + k_I)^{\mu} \bar{u}_{\nu} \gamma_{\mu} (1 - \gamma_5) v_I \\ &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) \bar{u}_{\nu} (k_{\nu} + k_I) (1 - \gamma_5) v_I \\ &\stackrel{\mathsf{Dirac}}{=} \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) \bar{u}_{\nu} (m_{\nu} + m_I) (1 - \gamma_5) v_I \end{split}$$

Die Leptonmassen sind für $I=e,~\mu$ verglichen mit m_D vernachlässigbar

 $\rightarrow f_{-}$ liefert ebenfalls keinen Beitrag!

Aus der Viererimpulserhaltung ergeben sich die Grenzen für q^2 , die den Bereich für den Fit von f_+ angeben:

Aus der Viererimpulserhaltung ergeben sich die Grenzen für q^2 , die den Bereich für den Fit von f_+ angeben:

$$p_D^{\mu} = p_K^{\mu} + p_I^{\mu} + p_{\nu}^{\mu}$$

$$p_D^{\mu} - p_K^{\mu} =: q^{\mu} := p_I^{\mu} + p_{\nu}^{\mu}$$

Aus der Viererimpulserhaltung ergeben sich die Grenzen für q^2 , die den Bereich für den Fit von f_+ angeben:

$$p_D^{\mu} = p_K^{\mu} + p_I^{\mu} + p_{\nu}^{\mu}$$

$$p_D^{\mu} - p_K^{\mu} =: q^{\mu} := p_I^{\mu} + p_{\nu}^{\mu}$$

$$(p_D^{\mu} - p_K^{\mu})^2 = q^2 = (p_I^{\mu} + p_{\nu}^{\mu})^2$$

$$m_D^2 + m_K^2 - 2m_D E_K = q^2 = m_I^2 + m_{\nu}^2 + E_I E_{\nu} - |\vec{p}_I||\vec{p}_{\nu}|\cos(\xi)$$

Kinematische Grenzen

Aus der Viererimpulserhaltung ergeben sich die Grenzen für q^2 , die den Bereich für den Fit von f_+ angeben:

$$\begin{split} p_D^\mu &= p_K^\mu + p_I^\mu + p_\nu^\mu \\ p_D^\mu - p_K^\mu &=: q^\mu := p_I^\mu + p_\nu^\mu \\ \left(p_D^\mu - p_K^\mu \right)^2 &= q^2 = (p_I^\mu + p_\nu^\mu)^2 \\ m_D^2 + m_K^2 - 2m_D E_K &= q^2 = m_I^2 + m_\nu^2 + E_I E_\nu - |\vec{p}_I| |\vec{p}_\nu| \cos(\xi) \end{split}$$

Hieraus ergeben sich bei abermals vernachlässigbaren Leptonenmassen $(E=|\vec{p}|)$ die Bereichsgrenzen zu

$$0 \leq q^2 \leq (m_D - m_K)^2.$$

Leptonenzwischenwinkel ξ

•
$$\mathrm{d}\Gamma \propto |f_+(q^2)|^2 \mathrm{d}q^2$$

- $\mathrm{d}\Gamma \propto |f_+(q^2)|^2 \mathrm{d}q^2$
- Bei bestimmten Energien divergiert Γ
 - ightarrow Pol-Verhalten um $q^2=m_{D^*}^2$ (außerhalb des phys. rel. Bereichs)

- $\mathrm{d}\Gamma \propto |f_+(q^2)|^2 \mathrm{d}q^2$
- Bei bestimmten Energien divergiert Γ
 - \rightarrow Pol-Verhalten um $q^2=m_{D^*}^2$ (außerhalb des phys. rel. Bereichs)
- ullet Parametrisierung durch Pol und Polynomreihe in z mit $|z| \stackrel{!}{<} 1$
 - → Gutes Konvergenzverhalten

Eine Parametrisierung für f_+ mit diesen Eigenschaften lautet:

$$f_{+}(q^{2}) = rac{1}{1 - rac{q^{2}}{m_{D^{*}}^{2}}} \sum_{i=0}^{\infty} a_{i} z^{i}(t_{0}, q^{2})$$

$$z(t_0, q^2) = rac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

$$t_{\pm} = (m_D \pm m_K)^2,$$

 $t_0: 0 \le t_0 < t_+$

ullet Polynomordnung ${\cal O}$ liefert Anzahl der Fitparameter a_i

- ullet Polynomordnung ${\cal O}$ liefert Anzahl der Fitparameter a_i
- Freier Parameter t_0 minimiert Fehler der a_i $(t_{\mathrm{opt}} := t_+(1-\sqrt{1-t_-/t_+})$ minimiert Maximalwert von |z|)

- ullet Polynomordnung ${\cal O}$ liefert Anzahl der Fitparameter a_i
- Freier Parameter t_0 minimiert Fehler der a_i $(t_{\text{opt}} := t_+(1 \sqrt{1 t_-/t_+})$ minimiert Maximalwert von |z|)
- ightarrow Variation in diesen beiden möglich

• Fitfunktionen weisen Abweichungen von Messwerten auf

- Fitfunktionen weisen Abweichungen von Messwerten auf
- \bullet Die quadrierten Abweichungen werden aufsummiert als χ^2 bezeichnet

- Fitfunktionen weisen Abweichungen von Messwerten auf
- ullet Die quadrierten Abweichungen werden aufsummiert als χ^2 bezeichnet
 - ightarrow Fitparameter werden variiert, bis χ^2 minimal ist

- Fitfunktionen weisen Abweichungen von Messwerten auf
- ullet Die quadrierten Abweichungen werden aufsummiert als χ^2 bezeichnet
 - ightarrow Fitparameter werden variiert, bis χ^2 minimal ist

Die hier verwandte χ^2 -Funktion lautet

$$\chi^2 = \sum_{i,j=1}^{m} (\Delta \Gamma_i - g_i(f_+)) C_{ij}^{-1} (\Delta \Gamma_j - g_j(f_+))$$

und wird durch ein Python-Skript unter Verwendung des Minimierungsmoduls Minuit vom CERN minimiert.

$$\chi^2 = \sum_{i,j=1}^{m} (\Delta \Gamma_i - g_i(f_+)) C_{ij}^{-1} (\Delta \Gamma_j - g_j(f_+))$$

$$\chi^2 = \sum_{i,j=1}^{m} (\Delta \Gamma_i - g_i(f_+)) C_{ij}^{-1} (\Delta \Gamma_j - g_j(f_+))$$

• Anzahl diskreter Intervalle $m(q^2$ -Bins)

$$\chi^2 = \sum_{i,j=1}^{m} (\Delta \Gamma_i - g_i(f_+)) C_{ij}^{-1} (\Delta \Gamma_j - g_j(f_+))$$

- Anzahl diskreter Intervalle m (q^2 -Bins)
- Kovarianzmatrix $C = C^{\text{stat}} + C^{\text{sys}}$; $C_{ij}^{\alpha} = \sigma_i^{\alpha} \sigma_j^{\alpha} \cdot \rho_{ij}^{\alpha}$ $\alpha = \text{stat}$, sys; Varianzen σ ; Korrelationsmatrix ρ

$$\chi^{2} = \sum_{i,i=1}^{m} (\Delta \Gamma_{i} - g_{i}(f_{+})) C_{ij}^{-1} (\Delta \Gamma_{j} - g_{j}(f_{+}))$$

$$\chi^2 = \sum_{i,j=1}^{m} (\Delta \Gamma_i - g_i(f_+)) C_{ij}^{-1} (\Delta \Gamma_j - g_j(f_+))$$

ullet experimentell erfasste Daten $\Delta\Gamma$ (CLEO Collaboration)

$$\chi^2 = \sum_{i,j=1}^{m} (\Delta \Gamma_i - g_i(f_+)) C_{ij}^{-1} (\Delta \Gamma_j - g_j(f_+))$$

- experimentell erfasste Daten $\Delta\Gamma$ (CLEO Collaboration)
- theoretische Werte $g=rac{G_F^2|V_{cs}|^2}{24\pi^3}\int |p_K(q_i^2)|^3\cdot |f_+(q_i^2)|^2\mathrm{d}q_i^2$

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- 3 Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_{-}
 - Formfaktor f_+
- Resultate für f₊
- 6 Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Vorbereitung

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f₊

Vorbereitung

• Ergebnisse für f_+ mit Werten der CLEO Collaboration (Lepton = Positron)

Vorbereitung

- Ergebnisse für f_+ mit Werten der CLEO Collaboration (Lepton = Positron)
- ullet Für $D^+
 ightarrow ar{K}^0 e^+
 u_e$ Betrachtung der Variation von t_0 und ${\cal O}$

Vorbereitung

- Ergebnisse für f_+ mit Werten der CLEO Collaboration (Lepton = Positron)
- ullet Für $D^+
 ightarrow ar{K}^0 e^+
 u_e$ Betrachtung der Variation von t_0 und ${\cal O}$
- Bei $D^0 o K^- e^+
 u_e$ gelten entsprechende Einflüsse, nur nicht so deutlich

Repräsentativer Fit für $D^0 ightarrow { extstyle K^-} e^+ u_e^-$

	Wert
$egin{array}{c} t_0 \ \mathcal{O} \end{array}$	t _{opt} 2
a ₀ a ₁ a ₂	0,744(7) -0,775(257) 7,876(6,691)
$f_{+}(0) V_{cs} $	2,9 0,725

Variation in t_0

	Wert
$egin{array}{c} t_0 \ \mathcal{O} \end{array}$	t_ 2
a ₀ a ₁ a ₂	0,714(37) 1,22(1,17) -12,67(8,90)
$f_{+}(0) V_{cs} $	12,0 0,707

Variation in t_0

	Wert
t_0	0
\mathcal{O}	2
<i>a</i> ₀	0,707(14)
a_1	-1,356(685)
a ₂	-12,58(8,81)
χ	12,0
$f_+(0) V_{cs} $	0,707

Variation in t₀

	Wert
$egin{array}{c} t_0 \ \mathcal{O} \end{array}$	t _{opt} 2
a ₀ a ₁ a ₂	0,744(11) -0,071(324) -12,56(8,78)
$f_{+}(0) V_{cs} $	12,0 0,707

Variation in \mathcal{O}

	Wert
$egin{array}{c} t_0 \ \mathcal{O} \end{array}$	t _{opt} 2
a ₀ a ₁ a ₂	0,744(11) -0,071(324) -12,56(8,78)
$f_{+}(0) V_{cs} $	12,0 0,707

Variation in \mathcal{O}

	Wert
$egin{array}{c} t_0 \ \mathcal{O} \end{array}$	$\begin{vmatrix} t_{\text{opt}} \\ 1 \end{vmatrix}$
a ₀ a ₁ a ₂	0,739(10) -0,421(207)
$f_+(0) V_{cs} $	14,1 0,718

Variation in \mathcal{O}

	Wert
$egin{array}{c} t_0 \ \mathcal{O} \end{array}$	0 t _{opt}
a ₀ a ₁ a ₂	0,731(9)
$f_{+}(0) V_{cs} $	18,2 0,731

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Diskussion

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f₊ Ausblick

Diskussion

Variation in t_0 :

Variation in \mathcal{O} :

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f₊ Ausblick

Diskussion

Variation in t_0 :

• Bei t_{opt} ist im Verlauf von q^2 ein deutlich geringerer Fehlerschlauch erkennbar

Variation in \mathcal{O} :

Variation in t_0 :

- Bei t_{opt} ist im Verlauf von q^2 ein deutlich geringerer Fehlerschlauch erkennbar
- Für $f(0)|V_{cs}|$ bietet $t_0=0$ die geringste Varianz

Variation in \mathcal{O} :

Variation in t_0 :

- Bei t_{opt} ist im Verlauf von q^2 ein deutlich geringerer Fehlerschlauch erkennbar
- Für $f(0)|V_{cs}|$ bietet $t_0=0$ die geringste Varianz

Variation in \mathcal{O} :

 Höhere Ordnung bedingt größer werdende Fehlerschläuche wegen zunehmendem Beitrag weiterer Koeffizienten

Variation in t_0 :

- Bei t_{opt} ist im Verlauf von q^2 ein deutlich geringerer Fehlerschlauch erkennbar
- Für $f(0)|V_{cs}|$ bietet $t_0=0$ die geringste Varianz

Variation in \mathcal{O} :

- Höhere Ordnung bedingt größer werdende Fehlerschläuche wegen zunehmendem Beitrag weiterer Koeffizienten
- Ordnung manipuliert $f(0)|V_{cs}|$ nur geringfügig erst in zweiter Nachkommastelle feststellbar

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren **Resultate für** f₊ Ausblick

Diskussion

 $Parametrisierung\ und\ Formfaktor:$

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f₊ Ausblick

Diskussion

Parametrisierung und Formfaktor:

 Graphen zeugen von einer die Messwerte gut beschreibenden Parametrisierung

Parametrisierung und Formfaktor:

- Graphen zeugen von einer die Messwerte gut beschreibenden Parametrisierung
- Wert für $f(0)|V_{cs}|$ ähnlich anderen Parametrisierungen, die bei CLEO aufgeführt sind

Parametrisierung und Formfaktor:

- Graphen zeugen von einer die Messwerte gut beschreibenden Parametrisierung
- Wert für $f(0)|V_{cs}|$ ähnlich anderen Parametrisierungen, die bei CLEO aufgeführt sind
- Durch Rechnung Gitterquantenchromodynamik ergibt sich f(0)=0.73

Parametrisierung und Formfaktor:

- Graphen zeugen von einer die Messwerte gut beschreibenden Parametrisierung
- Wert für $f(0)|V_{cs}|$ ähnlich anderen Parametrisierungen, die bei CLEO aufgeführt sind
- Durch Rechnung Gitterquantenchromodynamik ergibt sich f(0)=0.73
- ightarrow für $|V_{cs}|$ ergeben sich $|V_{cs,D^+}|=0,97$ und $|V_{cs,D^0}|=0,99$ (vgl. Wolfenstein: $V_{cs}=1-1/2\lambda^2=0,98$)

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_{-}
 - Formfaktor f_+
- \blacksquare Resultate für f_+
- 6 Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f₊ **Ausblick**

Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Ausblick

Unitarität der CKM-Matrix

 Unitaritätsdreieck in komplexer Ebene erstellbar aus CKM-Elementen (Fläche ist Maß für CP-Verletzung) Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Ausblick

Unitarität der CKM-Matrix

 Unitaritätsdreieck in komplexer Ebene erstellbar aus CKM-Elementen (Fläche ist Maß für CP-Verletzung)

• CKM-Matrix 3-dimensional zur Erklärung der CP-Verletzung

- Unitaritätsdreieck in komplexer Ebene erstellbar aus CKM-Elementen (Fläche ist Maß für CP-Verletzung)
 - → ist sie ausreichend für das Materie-Antimaterie-Ungleichgewicht?
- CKM-Matrix 3-dimensional zur Erklärung der CP-Verletzung

- Unitaritätsdreieck in komplexer Ebene erstellbar aus CKM-Elementen (Fläche ist Maß für CP-Verletzung)
 - → ist sie ausreichend für das Materie-Antimaterie-Ungleichgewicht?
- CKM-Matrix 3-dimensional zur Erklärung der CP-Verletzung
 - → Sind alle Quarkflavour-Änderungsprozesse mit drei Generationen...

- Unitaritätsdreieck in komplexer Ebene erstellbar aus CKM-Elementen (Fläche ist Maß für CP-Verletzung)
 - ightarrow ist sie ausreichend für das Materie-Antimaterie-Ungleichgewicht?
- CKM-Matrix 3-dimensional zur Erklärung der CP-Verletzung
 - → Sind alle Quarkflavour-Änderungsprozesse mit drei Generationen...
 - → ... bzw. allein durch elektroschwache WW auch quantitativ beschreibbar?

- Unitaritätsdreieck in komplexer Ebene erstellbar aus CKM-Elementen (Fläche ist Maß für CP-Verletzung)
 - ightarrow ist sie ausreichend für das Materie-Antimaterie-Ungleichgewicht?
- CKM-Matrix 3-dimensional zur Erklärung der CP-Verletzung
 - → Sind alle Quarkflavour-Änderungsprozesse mit drei Generationen...
 - → ... bzw. allein durch elektroschwache WW auch quantitativ beschreibbar?
- → Verbesserte Ausmessung aller CKM-Elemente!

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate für f_+ Ausblick

Bonus

Bonusfolien

Berechnung der differentiellen Zerfallsbreite

$$\mathrm{d}\Gamma = \frac{|M|^2}{2m_D} \mathrm{d}\Phi$$

Berechnung der differentiellen Zerfallsbreite Matrixelement

$$\begin{split} M &= \langle \textit{KI}\nu \, | \mathcal{H} | \, D \rangle \\ &= \frac{\textit{G}_F \, \textit{V}_{cs}}{\sqrt{2}} [f_+(q^2) P^\mu] \bar{\textit{u}}(\textit{k}_\textit{I}) \gamma_\mu (1 - \gamma_5) \textit{v}(\textit{k}_\nu) \\ |\textit{M}|^2 &= \frac{\textit{G}_F^2 |\textit{V}_{cs}|^2}{2} |f_+(q^2)^2| P^\mu P^\nu \underbrace{\left[\bar{\textit{u}}(\textit{k}_\textit{I}) \gamma_\mu (1 - \gamma_5) \textit{v}(\textit{k}_\nu)\right]^2}_{\text{Casimirs Trick}} \\ &= \frac{\textit{G}_F^2 |\textit{V}_{cs}|^2}{2} |f_+(q^2)^2| P^\mu P^\nu \cdot 8 (\textit{k}_\textit{I},\mu \textit{k}_{\nu,\nu} - \textit{g}_{\mu\nu} \textit{k}_\textit{I} \textit{k}_\nu + \textit{k}_\textit{I},\nu \textit{k}_{\nu,\mu}) \\ &= 4 \textit{G}_F^2 |\textit{V}_{cs}|^2 |f_+(q^2)|^2 (2 P^\mu P^\nu - P^2 g^{\mu\nu}) \textit{k}_\textit{I},\nu \textit{k}_{\nu,\mu} \end{split}$$

Berechnung der differentiellen Zerfallsbreite Phasenraum

$$\mathrm{d}\Phi = \frac{1}{(2\pi)^5} \frac{\mathrm{d}^3 p_K}{2E_K} \int \frac{\mathrm{d}^3 k_1}{2E_1} \frac{\mathrm{d}^3 k_2}{2E_2} \delta^4 (p_D - p_K - k_1 - k_2) k_{I,\nu} k_{\nu,\mu}$$

Berechnung der differentiellen Zerfallsbreite Benutzte Gleichheiten

$$\begin{split} &\frac{\mathrm{d}^{3}p_{K}}{2E_{K}} = 2\pi |p_{K}| \mathrm{d}E_{K} \\ &|p_{K}| = \frac{\sqrt{\lambda(m_{D}^{2}, m_{K}^{2}, q^{2})}}{2m_{D}} \\ &\int \frac{\mathrm{d}^{3}k_{1}}{2(2\pi)^{3}E_{1}} \frac{\mathrm{d}^{3}k_{2}}{2(2\pi)^{3}E_{2}} \delta^{4}(q - k_{1} - k_{2})k_{1,\mu}k_{2,\nu} = \frac{\pi}{24} (q^{2}g_{\mu\nu} + 2q_{\mu}q_{\nu}) \end{split}$$

Berechnung der differentiellen Zerfallsbreite Phasenraum

$$d\Phi = \frac{|p_{K}|dE_{K}}{(2\pi)^{4}} \frac{\pi}{24} (q^{2}g_{\mu,\nu} + 2q_{\mu}q_{\nu})$$

Berechnung der differentiellen Zerfallsbreite Matrixelement und Phasenraum

Unter Verwendung von

$$(2P^{\mu}P^{\nu} - P^{2}g^{\mu\nu})(q^{2}g_{\mu,\nu} + 2q_{\mu}q_{\nu}) = 4\lambda(m_{D}^{2}, m_{K}^{2}, q^{2}) = 16m_{D}^{2}|p_{K}|^{2}$$

ergibt sich die oben aufgeführte Zerfallsbreite