Distribuições Discretas Univariadas

jlborges@fe.up.pt

Variável Aleatória

- Agrupa resultados de uma experiência aleatória em acontecimentos e associa a cada acontecimento uma probabilidade de ocorrência
 - Função de Probabilidade
 - Função de Distribuição
 - Parâmetros (localização de dispersão)

Algumas distribuições discretas univariadas seleccionadas

- pela sua simplicidade e
- por permitirem modelar fenómenos aleatórios que ocorrem com frequência
- Binomial, Binomial Negativa, Hipergeométrica, Poisson

Exemplo de variável aleatória

Considere um **teste de escolha múltipla** composto por **4 perguntas** e em que cada pergunta tem **5 respostas alternativas**. Se um aluno responder de forma aleatória calcule:

- i) a probabilidade de o aluno ser aprovado.
- ii) o número médio de respostas certas.

Y: número de respostas certas

Y	num. sequências	prob. sequência	p(y)
0	1 (eeee)	0.4096	0.4096
1	4 (eeea eeae eaee aeee)	0.1024	0.4096
2	6	0.0256	0.1536
3	4	0.0064	0.0256
4	1	0.0016	0.0016
	$0.2^{\circ} \cdot 0.8^{4}$	$2^1 \cdot 0.8^3 \cdot 4$	1

$$P(aprov) = p(2) + p(3) + p(4) =$$
 = 18.08%

$$E(y) = \sum y \cdot p(y) = 0x0.4096 + ... + 4x0.0016 = 0.8$$

$$E(classificação) = 0.8 \times 20 / 4 = 4 \text{ val}.$$

DISTRIBUIÇÃO BINOMIAL

Distribuição Binomial

Designam-se por experiências de bernoulli as experiências que:

- o têm dois resultados possíveis: <u>sucesso</u> ou <u>insucesso</u>
- a probabilidade de ocorrência de cada resultado mantém-se inalterada de experiência para experiência:
 - $\mathbf{p}(\mathbf{sucesso}) = \mathbf{p}$
 - p(insucesso) = 1-p = q
- os <u>resultados</u> associados a cada experiência são <u>independentes</u>

Quando Y representa o nº de sucessos ocorridos no decurso de N experiências de bernoulli diz-se que segue uma

Distribuição Binomial

$$P(y) = {N \choose y} \cdot p^{y} \cdot q^{N-y}$$

Exemplo

$$|N = 4|$$

$$p = 0.3$$

$$p(y = 2) = {4 \choose 2} \cdot 0.3^{2} \cdot (1 - 0.3)^{4-2} = 0.2646$$

$$Y \to B(N,p)$$

$$p(y) = \binom{N}{y} \cdot p^{y} \cdot q^{N-y}$$

Média e variância de uma distribuição binomial:

$$\mu = N \cdot p$$

$$\sigma^2 = N \cdot p \cdot q = N \cdot p \cdot (1 - p)$$

equivalente a usar as definições $\sum x.p(x) = \sum (x-\mu)^2.p(x)$

A variável que representa o nº de insucessos é também binomial: **B(N,q)**

$$B(N = 3, p = 0.4)$$

Υ	P(Y)			
0	0,216			
1	0,432			
2	0,288			
3	0,064			
\sum	1			

$$\mu = 0.216 \cdot 0 + 0.432 \cdot 1 + 0.288 \cdot 2 + 0.064 \cdot 3 = 1.2$$

$$\sigma^2 = 0.216 \cdot \left(0 - 1.2\right)^2 + 0.432 \cdot \left(1 - 1.2\right)^2 + 0.288 \cdot \left(2 - 1.2\right)^2 + 0.064 \cdot \left(3 - 1.2\right)^2 = 0.72$$

$$\mu = N \cdot p = 3 \cdot 0.4 = 1.2$$

$$\sigma^2 = N \cdot p \cdot q = 3 \cdot 0.4 \cdot 0.6 = 0.72$$

a partir dos parâmetros

mais simples!!!

Exemplos:

Número de vezes que sai um 6 em 10 lançamentos de um dado

Número de vezes que sai uma carta de copas ao retirar 4 cartas de um baralho

(se for com reposição)

Exemplos:

Número de vezes que sai uma carta de copas ao retirar 4 cartas de um baralho.

(se for SEM reposição)

Lançar uma moeda até obter 3 caras?

A partir de um grupo de 10 pessoas, 6 homens e 4 mulheres, formar equipas de 2 pessoas.

O número de mulheres na equipa será uma variavel binomial?

Distribuição Binomial com parâmetros n = 6 e

(a)
$$p = 0.25$$
,

- (b) p = 0.5,
- (c) p = 0.75

Função de probabilidade de distribuições Binomiais

n	r	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
1	0	0.9500	0.9000	0.8500	0.8000	0.7500	0.7000	0.6500	0.6000	0.5500	0.5000
	1	0.0500	0.1000	0.1500	0.2000	0.2500	0.3000	0.3500	0.4000	0.4500	0.5000
2	0	0.9025	0.8100	0.7225	0.6400	0.5625	0.4900	0.4225	0.3600	0.3025	0.2500
	1	0.0950	0.1800	0.2550	0.3200	0.3750	0.4200	0.4550	0.4800	0.4950	0.5000
	2	0.0025	0.0100	0.0225	0.0400	0.0625	0.0900	0.1225	0.1600	0.2025	0.2500
3	0	0.8574	0.7290	0.6141	0.5120	0.4219	0.3430	0.2746	0.2160	0.1664	0.1250
3	1	0.0374	0.7230	0.3251	0.3120	0.4219	0.3430	0.4436	0.4320	0.4084	0.1250
	2	0.1334	0.2430	0.0574	0.0960	0.4219	0.4410	0.4430	0.4320	0.3341	0.3750
	3	0.0071	0.0270	0.0074	0.0080	0.1400	0.1090	0.2309	0.2660	0.0911	0.3750
	3	0.0001	0.0010	0.0054	0.0000	0.0130	0.0270	0.0423	0.0040	0.0911	0.1230
4	0	0.8145	0.6561	0.5220	0.4096	0.3164	0.2401	0.1785	0.1296	0.0915	0.0625
	1	0.1715	0.2916	0.3685	0.4096	0.4219	0.4116	0.3845	0.3456	0.2995	0.2500
	2	0.0135	0.0486	0.0975	0.1536	0.2109	0.2646	0.3105	0.3456	0.3675	0.3750
	3	0.0005	0.0036	0.0115	0.0256	0.0469	0.0756	0.1115	0.1536	0.2005	0.2500
	4	0.0000	0.0001	0.0005	0.0016	0.0039	0.0081	0.0150	0.0256	0.0410	0.0625
_		0.7700	0.5005	0.4407	0.0077	0.0070	0.4004	0.4400	0.0770	0.0500	0.0040
5	0	0.7738	0.5905	0.4437	0.3277	0.2373	0.1681	0.1160	0.0778	0.0503	0.0312
	1	0.2036	0.3280	0.3915	0.4096	0.3955	0.3602	0.3124	0.2592	0.2059	0.1562
	2	0.0214	0.0729	0.1382	0.2048	0.2637	0.3087	0.3364	0.3456	0.3369	0.3125
	3	0.0011	0.0081	0.0244	0.0512	0.0879	0.1323	0.1811	0.2304	0.2757	0.3125
	4	0.0000	0.0004	0.0022	0.0064	0.0146	0.0284	0.0488	0.0768	0.1128	0.1562
	5	0.0000	0.0000	0.0001	0.0003	0.0010	0.0024	0.0053	0.0102	0.0185	0.0312

p=0.5
N=20
B(20;0.5)

У	p(y)	F(y)	y.p(y)
0	0.000001	0.000001	0.000000
1	0.000019	0.000020	0.000019
2	0.000181	0.000201	0.000362
3	0.001087	0.001288	0.003262
4	0.004621	0.005909	0.018482
5	0.014786	0.020695	0.073929
6	0.036964	0.057659	0.221786
7	0.073929	0.131588	0.517502
8	0.120134	0.251722	0.961075
9	0.160179	0.411901	1.441612
10	0.176197	0.588099	1.761971
11	0.160179	0.748278	1.761971
12	0.120134	0.868412	1.441612
13	0.073929	0.942341	0.961075
14	0.036964	0.979305	0.517502
15	0.014786	0.994091	0.221786
16	0.004621	0.998712	0.073929
17	0.001087	0.999799	0.018482
18	0.000181	0.999980	0.003262
19	0.000019	0.999999	0.000362
20	0.000001	1.000000	0.000019
			10.0

Valor esperado N.p = Sum(y.P(y))

Exemplo (da página 2)

Considere um teste de escolha múltipla composto por 4 perguntas em que cada pergunta tem 5 respostas alternativas. Se um aluno responder de forma aleatória calcule:

- i) a probabilidade de o aluno ser aprovado.
- ii) o número médio de respostas certas.

Y: número de respostas certas É UMA VARIÁVEL BINOMIAL B(N=4, p=0.2)

Y	p(y)	<i>n</i> 1	<i>r</i> 0	0.05 0.9500	0.1 0.9000	0.15 0.8500	0.2 0.8000	0.25 0.7500
0	0.4096		1	0.0500	0.1000	0.1500	0.2000	0.2500
1	0.4096		_	0.0445	0.0504	0.5000	0.4000	0.404
2	0.1536	4	0 1	0.8145 0.1715	0.6561 0.2916	0.5220 0.3685	0.4096 0.4096	0.3164 0.4219
3	0.0256		2	0.0135	0.0486	0.0975	0.1536	0.2109
4	0.0016		3 4	0.0005 0.0000	0.0036 0.0001	0.0115 0.0005	0.0256 0.0016	0.0469 0.0039

1

$$P(aprov) = p(2) + p(3) + p(4) = 18.08\%$$

 $E(y) = n.p=4.0.2 = 0.8$

Exemplo (da página 2)

E se o teste tiver 10 perguntas? Qual a probabilidade de ser aprovado?

Y: número de respostas certas É UMA VARIÁVEL BINOMIAL B(N=10, p=0.2)

У	p(y)	F(y)
0	0,10737418	0,10737418
1	0,26843546	0,37580964
2	0,30198989	0,67779953
3	0,20132659	0,87912612
4	0,08808038	0,96720650
5	0,02642412	0,99363062
6	0,00550502	0,99913564
7	0,00078643	0,99992207
8	0,00007373	0,99999580
9	0,00000410	0,99999990
10	0,00000010	1,00000000

$$P(Y>4) = 1 - F(4) = 1 - 0.967$$

DISTRIBUIÇÃO BINOMIAL NEGATIVA

Distribuição Binomial Negativa

Variável Y representa, numa sequência infinita de experiências de bernoulli, o nº de falhanços até ocorrerem o r sucessos.

$$P(y) = \begin{pmatrix} y + r - 1 \\ y \end{pmatrix} \cdot p^{r} \cdot q^{y}$$

Média e Variância de uma distribuição Binomial Negativa

$$\mu = \frac{r \cdot q}{p} \quad \sigma^2 = \frac{r \cdot q}{p^2}$$

Distribuição Binomial

Número de experiências fixo. Por exemplo, lanço uma moeda 5 vezes.

Distribuição Binomial Negativa

Número de experiências NÃO É fixo. Por exemplo, lanço uma moeda até obter 3 caras.

Pode ser necessário lançar a moeda apenas 3 vezes, ou pode ser necessário lançar a moeda 20 vezes.

Em ambos os casos temos em cada lançamento dois resultados possíveis com probabilidade de sucesso constante.

Exemplo

Numa sequência de lançamentos da moeda E-C ao ar, qual a probabilidade de saírem 3 C's (falhanços) até ocorrer o 2º E (sucessos)?

Qual o valor esperado e a variância?

$$Y \rightarrow BN(2,0.5) \qquad p(3) = {3+2-1 \choose 3} \cdot 0.5^2 \cdot 0.5^3 = 0.125$$

$$\mu = \frac{2 \cdot 0.5}{0.5} = 2$$

$$\sigma^2 = \frac{2 \cdot 0.5}{0.5^2} = 4$$

DISTRIBUIÇÃO HIPERGEOMÉTRICA

Distribuição Hipergeométrica

Considere-se uma população finita constituída por M elementos de dois tipos, A to tipo 1 e \bar{A} do tipo 2), da qual se retiram em bloco N elementos

A variável **Y** representa o nº de elementos do tipo 1 entre os **N** elementos retirados diz-se que segue uma **distribuição Hipergeométrica**

$$Y \rightarrow H(A, \overline{A}, N)$$

$$p(y) = \frac{\binom{A}{y} \cdot \binom{\overline{A}}{N-y}}{\binom{A+\overline{A}}{N}}$$

$$M = A + \overline{A}$$

 $p = \frac{A}{M}$ e $q = 1 - p = \frac{\overline{A}}{M}$

Média e Variância

$$\mu = N \cdot p$$

$$\sigma^2 = N \cdot p \cdot q \cdot \frac{M - N}{M - 1}$$

Exemplo

Se num baralho de 52 cartas seleccionar 7 cartas ao acaso qual a probabilidade de saírem 4 paus?

$$Y \rightarrow H(13,39,7) \qquad p(y=4) = \frac{\begin{pmatrix} 13 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 39 \\ 3 \end{pmatrix}}{\begin{pmatrix} 52 \\ 7 \end{pmatrix}}$$

e de saírem pelos menos dois paus?

$$p(y \ge 2) = 1 - (p(0) + p(1)) = 1 - \frac{\binom{13}{0} \cdot \binom{39}{7}}{\binom{52}{7}} - \frac{\binom{13}{1} \cdot \binom{39}{6}}{\binom{52}{7}} = 1 - 0.114 - 0.317 = 0.568$$

Relações entre as distribuições Binomial e Hipergeométrica

	Valor esperado	Variância
Binomial	N∙p	N-p-q
Hipergeométrica	N∙p	N-p-q -(M-N)/(M-1)

Quando (M-N)/(M-1) \approx 1, isto é (M \geq 10 · N), temos que H(M ·p, M·q, N) \approx B(N, p)

Y	H (10, 90, 10)	B (10, 0.1)
0	0.330	0.349
1	0.408	0.387
2	0.202	0.194
3	0.052	0.057
4	0.008	0.011
5	0.010	0.002
μ	1.000	1.000
σ2	0.818	0.900

Distribuição Binomial

$$Y \to B(N,p)$$

$$p(y) = {N \choose y} \cdot p^{y} \cdot q^{N-y}$$

$$\mu = N \cdot p$$

$$\sigma^2 = N \cdot p \cdot q$$

Probabilidade constante

Populações infinitas; com ou sem reposição

Populações finitas; com reposição

Distribuição Hipergeométrica

$$Y \to H(M \cdot p, M \cdot q, N)$$

$$p(y) = \frac{\binom{M \cdot p}{y} \cdot \binom{M \cdot q}{N - y}}{\binom{M}{N}}$$

$$\mu = N \cdot p$$

$$\sigma^2 = N \cdot p \cdot q \cdot \frac{M - N}{M - 1}$$

Probabilidade não constante

Populações finitas; sem reposição

DISTRIBUIÇÃO DE POISSON

Distribuição de Poisson

Fenómenos aleatórios que ocorrem repetidamente ao longo do tempo (ou do espaço)

A variável aleatória **Y**, representando o <u>nº de ocorrências por unidade de</u> <u>tempo</u>, segue uma **distribuição de Poisson** quando se verificarem as seguintes condições:

- (i) o nº de ocorrências registadas nos diferentes intervalos são independentes entre si
- (ii) a distribuição do nº de ocorrências em cada intervalo é a mesma para todos os intervalos

• • •

...

- (iii) a probabilidade de se registar uma ocorrência num intervalo qualquer Δt é praticamente proporcional à dimensão do intervalo ($\Delta p_1 \approx \lambda \cdot \Delta T$)
- (iv) a probabilidade de se registarem $n \ge 2$ ocorrências num intervalo qualquer Δt , Δp_n , é desprezável quando comparada com Δp_1 (ocorrências uma a uma e nunca aos grupos)

Em resumo:

Expressa a probabilidade de um determinado número de eventos que ocorrem num intervalo de tempo fixo (ou do espaço),

se estes eventos ocorrem com uma taxa média conhecida e independentemente do tempo decorrido desde o último evento.

$$Y \rightarrow Poisson(\lambda)$$
 $\lambda - n^{o}médio de ocorrências / unidade de tempo$ $p(y) = e^{-\lambda} \cdot \frac{\lambda^{y}}{y!}$

$$\rho(y) = e^{-\lambda} \cdot \frac{\lambda^{y}}{y!}$$

Média e Variância

$$\mu = \lambda$$

$$\sigma^2 = \lambda$$

Exemplo

$$\textit{Poisson} \big(\lambda \! = \! 1 \big)$$

Υ	P(y)
0	0,368
1	0,368
2	0,184
3	0,061
4	0,015
5	0,003
6	0,001
7	0,000
Σ	1,000

$$\mu = 0.368 \cdot 0 + 0.368 \cdot 1 + 0.184 \cdot 2 + 0.061 \cdot 3 + \\ + 0.015 \cdot 4 + 0.003 \cdot 5 + 0.001 \cdot 6 = 1 = \lambda$$

$$\sigma^{2} = 0.368 \cdot (0-1)^{2} + 0.368 \cdot (1-1)^{2} + 0.184 \cdot (2-1)^{2}$$
$$+ 0.061 \cdot (3-1)^{2} + 0.015 \cdot (4-1)^{2} + 0.003 \cdot (5-1)^{2}$$
$$+ 0.001 \cdot (6-1)^{2} = 1 = \lambda$$

ex
$$p(Y = 2) = e^{-1} \cdot \frac{1^2}{2!} = 0.18394$$

Exemplo

Se o nº médio de carros que chegam a um parque de estacionamento entre as 12 e as 14 horas é de 360, qual a probabilidade de, durante 1 minuto, chegarem 2 carros?

Qual o valor esperado e a variância?

$$Y \rightarrow Poisson\left(\frac{360}{120} = 3\right)$$

360 por hora -> 3 por minuto

$$p(2) = e^{-3} \cdot \frac{3^2}{2!} = 0.22$$

 $\mu = \sigma^2 = 3$

$$\mu = \sigma^2 = 3$$

Função de probabilidade para distribuições de Poisson

					λ					
y	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066	0.3679
1		0.1637	0.2222	0.2681	0.3033	0.3293	0.3476	0.3595	0.3659	0.3679
2		0.0164	0.0333	0.0536	0.0758	0.0988	0.1217	0.1438	0.1647	0.1839
3		0.0011	0.0033	0.0072	0.0126	0.0198	0.0284	0.0383	0.0494	0.0613
4	0.0000	0.0001	0.0003	0.0007	0.0016	0.0030	0.0050	0.0077	0.0111	0.0153
5	0.0000	0.0000	0.0000	0.0001	0.0002	0.0004	0.0007	0.0012	0.0020	0.0031
6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003	0.0005
7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
										_
					λ					
У	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0	0.3329	0.3012	0.2725	0.2466	0.2231	0.2019	0.1827	0.1653	0.1496	0.1353
1	0.3662	0.3614	0.3543	0.3452	0.3347	0.3230	0.3106	0.2975	0.2842	0.2707
2	0.2014	0.2169	0.2303	0.2417	0.2510	0.2584	0.2640	0.2678	0.2700	
3	0.0738	0.0867	0.0998	0.1128	0.1255	0.1378	0.1496	0.1607	0.1710	0.1804
4	0.0203	0.0260	0.0324	0.0395	0.0471	0.0551	0.0636	0.0723	0.0812	0.0902
5	0.0045	0.0062	0.0084	0.0111	0.0141	0.0176	0.0216	0.0260	0.0309	0.0361
6	0.0008	0.0012	0.0018	0.0026	0.0035	0.0047	0.0061	0.0078	0.0098	0.0120
7	0.0001	0.0002	0.0003	0.0005	0.0008	0.0011	0.0015	0.0020	0.0027	0.0034
8	0.0000	0.0000	0.0001	0.0001	0.0001	0.0002	0.0003	0.0005	0.0006	0.0009
9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001	0.0002

Função de probabilidade da distribuição de Poisson em função de λ

Variável que se ajusta à distribuição de Poisson (1)

Number of flying-bomb hits in the south of London during World War II.

The city was divided into 576 small areas of one-quarter square kilometers each, and the number of areas hit exactly k times was counted.

There were a total of 537 hits, so the average number of hits per area was 0.9323.

The observed frequencies are remarkably close to a Poisson distribution with mean

 $\lambda = m = 0.9323$ (Feller 1957)

Hits	0	1	2	3	4	5+
Observed	229	211	93	35	7	1
Expected (λ=0.9323)	226.7	211.4	98.6	30.6	7.1	1.6

Variáveis que se ajustam à distribuição de Poisson (2)

Number of telephone connections to the wrong number. A total of 267 numbers was observed to see how many numbers had exactly k wrong connections. The Poisson(λ =8.74) shows an excellent fit. (Feller 1957)

k	Observed	p(λ=8.74)	Expected
0-2	1	0.008	2.05
3	5	0.018	4.76
4	11	0.039	10.39
5	14	0.068	18.16
6	22	0.099	26.46
7	43	0.124	33.03
8	31	0.135	36.09
9	40	0.131	35.04
10	35	0.115	30.63
11	20	0.091	24.34
12	18	0.066	17.72
13	12	0.045	11.92
14	7	0.028	7.44
15	6	0.016	4.33
16+	2	0.017	4.65

Variáveis que se ajustam à distribuição de Poisson (3)

Golos marcados pelo Pelé nos 91 jogos efectuados pela selecção do Brasil.

Golos	Jogos	Freq.	Poisson(0.85)
0	40	0,44	0,43
1	32	0,35	0,36
2	12	0,13	0,15
3	7	0,08	0,05

A list of applications of the Poisson distribution

From http://www.aabri.com/SA12Manuscripts/SA12083.pdf

- The number of soldiers of the Prussian army killed accidentally by horse kick per year (von Bortkewitsch, 1898, p. 25).
- The number of bankruptcies that are filed in a month (Jaggia, Kelly, 2012 p.158).
- The number of arrivals at a car wash in one hour (Anderson et al., 2012, p. 236).
- The number of network failures per day (Levine, 2010, p. 197).
- The number of file server virus infection at a data center during a 24-hour period.
 The number of Airbus 330 aircraft engine shutdowns per 100,000 flight hours. The
 number of asthma patient arrivals in a given hour at a walk-in clinic (Doane,
 Seward, 2010, p. 232).
- The number of customers who call to complain about a service problem per month (Donnelly, Jr., 2012, p. 215).
- The number of visitors to a Web site per minute (Sharpie, De Veaux, Velleman, 2010, p.654).

Relações entre a distribuição de Poisson e a Binomial

$$\lim_{N\to\infty} B(N,p) \equiv Poisson(\lambda)$$

 $(N \cdot p = \lambda)$

Υ	B (10, 0.1)	B (20, 0.05)	B (100, 0.01)	Poisson (1)
0	0.349	0.359	0.366	0.368
1	0.387	0.377	0.370	0.368
2	0.194	0.189	0.185	0.186
3	0.057	0.060	0.061	0.061
4	0.011	0.013	0.015	0.015
5	0.002	0.002	0.003	0.003
μ	1.000	1.000	1.000	1.000
σ2	0.900	0.950	0.990	1.000

Relações entre a distribuição de Poisson e a Hipergeométrica

Υ	H (35, 665, 30)	Poisson (1.5)
0	0.2075	0.2231
1	0.3426	0.3347
2	0.2652	0.2510
3	0.1280	0.1256
4	0.0433	0.0470
5	0.0109	0.0141
6	0.0021	0.0036
7	0.0003	0.0007
8	0.0000	0.0002
μ	1.500	1.500
σ2	1.366	1.500

Relações entre distribuições

Debaixo de certas condições, uma distribuição pode ser aproximada por outras cujo cálculo da função probabilidade seja mais simples

- H(M·p,M·q,N) pode ser aproximada razoavelmente por B(N,p)
 quando M≥10·N
- B(N,p) pode ser aproximada razoavelmente por Poisson(λ =N·p) quando n \geq 20
- $H(M \cdot p, M \cdot q, N)$ pode ser aproximada razoavelmente por $Poisson(\lambda=N \cdot P)$ quando $M \ge 10 \cdot N$ e $N \ge 20$

1987 challenger explosion - Cause of explotion was an o'ring leak.

- Engineers were convinced that the O-rings were not safe in low temperatures and tried to postpone launch.
- They were not able to convince the decision makers of the danger.

L.		Cross Sectional View			Top		
Mar Mar	SRM Mo.	Depth (in.)	Perimeter Affected (deg)	Numinal Dia. (in.)	Length Of Max Erosion (in.)	Affected Length	Location (deg)
61A LH Center Field** 61A LH CENTER FIELD**	22A 22A 15A	None NONE 0.010	None NONE 154.0	0.280 0.280	None NONE 4.25	None NONE 5.25	36: -56 338 -18
51C RH Center Field (prim)*** 51C RH Center Field (sec)***	158 158	0.038 None	130.0 45.0	0.280	12.50 None	58.75 29.50	354 354
410 RH Forward Field 41C LH Aft Field* 418 LH Forward Field	138 11A 10A	0.028 Mone 0.040	110.0 None 217.0	0.280 0.280 0.280	3.00 None 3.00	None None 14.50	275 351
STS-2 RH Aft Field	28	0.053	116.0	0.280	**		90
*Not gas path detected in put **Soot behind primary O-ring. ***Soot behind primary O-ring. Clocking location of leak ch	heat a	ffected sec rt - 0 deg.	ondary O-ring				

Examples of messages sent by the engineers

PRIMARY CONCERNS -

FIELD JOINT - HIGHEST CONCERN

- ERBSION PENETRATION OF PRIMARY SEAL REQUIRES RELIABLE SECONDARY SEAL FOR PRESSURE INTEGRITY
 - IGNITION TRANSIENT (0-600 MS)
 - (0-170 MS)HIGH PROBABILITY OF RELIABLE SECONDARY SEAL
 - 6 (170-330 MS) REDUCED PROBABILITY OF RELIABLE SECONDARY SEAL
 - o (330-600 NS) HIGH PROBABILITY OF NO SECONDARY SEAL CAPABILITY
- O STEADY STATE (600 MS 2 MINUTES)
 - IF EROSION PENETRATES PRIMARY O-RING SEAL ~ %16H PROBABILITY OF NO SECONDARY SEAL CAPABILITY
 - BENCH TESTING SHOMED O-RING NOT CAPABLE OF MAINTAINING CONTACT WITH METAL PARTS GAP OPENING RATE TO MEOP
 - BENCK TESTING SHOWED CAPABILITY TO MAINTAIN G-RING CONTACT DURING INITIAL PHASE (G-170 MS) OF TRANSIENT

BLOW BY HISTORY		HISTORY			TEMPERATURES
SRM-15 WORST BLOW-BY			(DEGR	REES - F)	
0 2 CASE JOINTS (80°), (110°) ARC	MOTOR	<u></u>	AMB	O-RING	WIND
O MUCH WORSE VISUALLY THAN SEM-22	om-+	68	36	47	10 MPH
· ·	Dm - 2	76	45	52	10 MPH
SRM 12 BLOW-BY	QM - 3	72.5	40	48	10 mp4
0 2 CASE JOINTS (30-40°)	Qm-4	76	48	51	10 m PH
	SRM-15	52	64	53	10 MPH
SRM-13A, 15, 16A, 18, 23A 24A	5RM-22	77	78	75	10 mpH
O NOZZLE BLOW-BY	5 Rm - 25	<i>55</i>	26	29 27	10 mpH 25 mph

An example of what could have been shown

If this chart was shown the shuttle would not be launched!

Resultados de Aprendizagem

- Compreender as características das experiências aleatórias que podem ser representadas por uma distribuição
 - binomial, binomial negativa, hipergeométrica e Poisson
- Calcular probabilidades de acontecimentos de experiências aleatórias que podem ser representadas por uma distribuição
 - binomial, binomial negativa, hipergeométrica e Poisson