Отчёт по заданию в рамках курса «Суперкомпьютерное моделирование и технологии» "Численное решение дифференциальной задачи"

Васильев Семён, группа 620, вариант 4

1 Математическая постановка задачи

В трёхмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z] \tag{1}$$

Для $(0 < t \leq T]$ найти решение u(x,y,z,t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = \Delta u \tag{2}$$

С начальными условиями

$$u|_{t=0} = \varphi(x, y, z) \tag{3}$$

$$\left. \frac{\partial u}{\partial t} \right|_{t=0} = 0 \tag{4}$$

Граничные условия (вариант 3):

$$u(0, y, z, t) = u(L_x, y, z, t)$$
 (5)

$$u(x, 0, z, t) = u(x, L_y, z, t); u_y(x, 0, z, t) = u_y(x, L_y, z, t)$$
(6)

$$u(x, y, 0, t) = u(x, y, L_z, t); u_z(x, y, 0, t) = u_z(x, y, L_z, t)$$
(7)

Аналитическое решение:

$$u_{analytical}(x,y,z,t) = sin(\frac{3\pi}{L_x}x) \cdot sin(\frac{2\pi}{L_y}y) \cdot sin(\frac{2\pi}{L_z}z) \cdot cos(a_y \cdot t + 4\pi) \quad (8)$$

$$a_t = \pi \sqrt{\frac{9}{L_x^2} + \frac{4}{L_y^2} + \frac{4}{L_z^2}} \tag{9}$$

2 Численный метод решения задачи

Для решения введём на Ω сетку

 $\omega_{h\tau} = \bar{\omega}_h \times \omega_{\tau}$ $\bar{\omega}_h = \{(x_i = ih_x, y_i = jh_y, z_k = kh_z), i, j, k = 0, ..., N, h_x N = L_x, h_y N = L_y, h_y N = L_y,$ $L_y, h_z N = L_z$

 $\omega_{\tau} = \{t_n = n\tau, n = 0, 1, ..., K, \tau K = T\}$

Для аппроксимации уравнения воспользуемся равенством:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u^n \tag{10}$$

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$
(11)

(Если $L_x=L_y=L_z$, то $h_x=h_y=h_z=h$). Для начала счёта находим u^0 . Из условия (3) получаем:

$$u_{ijk}^0 = \varphi(x_i, y_j, z_k), \quad (x_i, y_j, z_k) \in \omega_h. \tag{12}$$

Следующий шаг:

$$\frac{u_{ijk}^1 - u_{ijk}^0}{\tau} = \frac{\tau}{2} \Delta_h \varphi(x_i, y_j, z_k) \quad (x_i, y_j, z_k) \in \omega_h$$
 (13)

$$u_{ijk}^{1} = u_{ijk}^{0} + \frac{\tau^{2}}{2} \Delta_{h} \varphi(x_{i}, y_{j}, z_{k})$$
(14)

Аппроксимация для граничного условия на y и z (вариант 4):

$$u_{i,0,k}^{n+1} = u_{i,N,k}^{n+1} \quad u_{i,1,k}^{n+1} = u_{i,N+1,k}^{n+1}$$

$$\tag{15}$$

$$u_{i,i,0}^{n+1} = u_{i,i,N}^{n+1} \quad u_{i,i,1}^{n+1} = u_{i,i,N+1}^{n+1}$$
 (16)

Программная реализация MPI/OpenMP 3

Равномерное разбиение решетки по заданному числу процессов осуществляется за счет использования функции MPI Dims create().

Процессы вычисляют значения функции в своих точках решетки и обмениваются граничными значениями с соседними по решетке процессами за счет использования функции MPI Sendrecv(). Вычисление погрешности происходит паралелльно. Итоговое значение ошибки вычисляется на корневом процессе за счет использования функции MPI Reduce.

Директивы OpenMP используются в циклах вычисления значений функции во внутренних узлах решетки (эти действия независимы для каждого процесса) и при вычислении погрешности.

4 График аналитического и посчитанного решений. График погрешности. Результаты рассчетов

Рис. 1: Посчитанное решение

Рис. 2: Аналитическое решение

Рис. 3: Ошибка

Таблица 1: MPI. L=1

Число процессов	Число точек сетки	Время	Ускорение	Погрешность
1	128^{3}	12.9	1	0.00051
4	128^{3}	3.38	3.81	0.00051
8	128^{3}	1.75	7.37	0.00051
16	128^{3}	1.15	11.21	0.00051
32	128^{3}	0.67	19.25	0.00051
1	256^{3}	104	1	0.0001
4	256^{3}	27.1	3.83	0.0001
8	256^{3}	14.5	7.17	0.0001
16	256^{3}	8.3	12.53	0.0001
32	256^{3}	4.7	22.12	0.0001
1	512^{3}	824	1	0.00019
4	512^{3}	237	3.47	0.00019
8	512^{3}	121	6.81	0.00019
16	512^{3}	65	12.67	0.00019
32	512^{3}	32	25.75	0.00019

Таблица 2: MPI. L= π

Число процессов	Число точек сетки	Время	Ускорение	Погрешность
1	128^{3}	13.8	1	0.00005
4	128^{3}	3.57	3.86	0.00005
8	128^{3}	1.73	7.97	0.00005
16	128^{3}	1.05	13.14	0.00005
32	128^{3}	0.73	18.90	0.00005
1	256^{3}	102	1	0.0001
4	256^{3}	25	4.08	0.0001
8	256^{3}	13	7.84	0.0001
16	256^{3}	7.26	14.04	0.0001
32	256^{3}	3.89	26.22	0.0001
1	512^{3}	817	1	0.0002
4	512^{3}	229	3.56	0.0002
8	512^{3}	115	7.10	0.0002
16	512^{3}	59	13.84	0.0002
32	512^{3}	34	24.03	0.0002

Таблица 3: MPI+OpenMP. L=1

Число МРІ	Число точек	Число	Время	Ускорение	Погрешность
процессов	сетки	OpenMP			
		нитей в			
		процессе			
1	128^{3}	4	3.57	1	0.00051
2	128^{3}	4	1.83	1.95	0.00051
4	128^{3}	4	1.52	2.34	0.00051
8	128^{3}	4	1.46	2.44	0.00051
1	256^{3}	4	29	1	0.0001
2	256^{3}	4	15	1.93	0.0001
4	256^{3}	4	12.4	2.33	0.0001
8	256^{3}	4	13	2.23	0.0001
1	512^{3}	4	236	1	0.00019
2	512^{3}	4	164	1.43	0.00019
4	512^{3}	4	111	2.12	0.00019
8	512^{3}	4	98	2.40	0.00019

Таблица 4: MPI+OpenMP. L= π

Число МРІ	Число точек	Число		Время	Ускорение	Погрешность
процессов	сетки	OpenMP				
		нитей	В			
		процессе				
1	128^{3}	4		3.69	1	0.00005
2	128^{3}	4		1.96	1.88	0.00005
4	128^{3}	4		1.46	2.52	0.00005
8	128^{3}	4		1.63	2.26	0.00005
1	256^{3}	4		31	1	0.0001
2	256^{3}	4		16	1.93	0.0001
4	256^{3}	4		13	2.38	0.0001
8	256^{3}	4		12.7	2.44	0.0001
1	512^{3}	4		224	1	0.0002
2	512^3	4		151	1.48	0.0002
4	512^3	4		113	1.98	0.0002
8	512^3	4		106	2.11	0.0002