DMET 1001 Image Processing

Introduction

Assoc. Prof. Dr. Rimon Elias

Contents

- Administrative stuff
- Feature detectors
 - Edges and lines

Professor

Assoc. Prof. Dr. Rimon Elias

Office: C7.313

E-mail: <u>rimon.elias@guc.edu.eg</u>

Teaching Assistant

Eng. Mary Guindy

Office: C7.305

E-mail: <u>mary.messak@guc.edu.eg</u>

Class Time

Schedule retrieved on Jan 26th.

Course components (2+2+0):

	1 st	2 nd	3 rd	4 th	5 th
	8:30-10:00	10:30-12:00	12:15-13:45	14:15-15:45	16:00-17:30
Saturday					
Sunday			DMET 1001 H9		
Monday					
Tuesday		T01 (CSEN) C6.104			
Wednesday					
Thursday		T13 (DMET) C5.301	T14 (DMET) C5.305		

(c) 2016, Dr. R. Elias

Marking Scheme

- Students will be evaluated based on the following:
 - Assignments/Project (20%)
 - 2 out of 3 Quizzes (15%)
 - Final exam (40%)
 - Midterm exam (25%)

- "Digital image processing" by Rafael C. Gonzalez and Richard E. Woods, Third edition, Pearson Education, 2008
- "Image processing, analysis and machine vision" by Milan Sonka, Vaclav Hlavac and Roger Boyle, Third edition, Thomson Learning, London, 2008

Topics Covered: Edge Detectors

- An edge can be defined as the location of a sharp transition in intensity level between two regions.
- There are different ways (detectors) to detect edges in images.
- Roberts Cross detector is an example of these detectors.

Input Output

Topics Covered: Edge Detectors

Topics Covered: Corner

Detectors

SUSAN: <u>S</u>mallest <u>U</u>nivalue
 <u>S</u>egment <u>A</u>ssymilating
 <u>N</u>ucleus.

Topics Covered: Junction Detectors

JUDOCA: A JUnction Detection Operator based on Circumferential
 Anchor

Circumferential Anchor (CA)
Introduction

Topics Covered: Watermarking

 A visible watermark is opaque or semi-transparent that is placed on top of the original image (i.e., watermarked image).

Topics Covered: Morphology

- Dilation
- Erosion
- Opening
- Closing
- **...**

Topics Covered: Fourier Transform

 Fourier transform is used to transform the image from spatial domain to frequency domain.

Topics Covered: Low Pass Filters

- **Low** pass filter
 - passes signals with a frequency lower than a cutoff frequency and
 - attenuates signals with a frequency higher than the cutoff frequency

Topics Covered: High Pass Filters

- **High** pass filter
 - passes signals with a frequency higher than a cutoff frequency and
 - attenuates signals with a frequency lower than the cutoff frequency
- Such a filter highlights regions with step intensity variations as edges

(c) 2016, Dr. R. Elias

Introduction

Topics Covered: Distance Transform

- Applied to binary images.
- Outputs a gray-scale image similar to the input image.
- The gray-scale intensities of points inside foreground regions show the distance to the closest boundary from each point

Topics Covered: Compression Types

- Two types of compression:
 - Lossless compression
 - Minimize the bit rate without causing distortion. The same quality is maintained.
 - Lossy compression
 - Get best fidelity for a given bit rate
 - Get minimum bit rate for a given fidelity

Topics Covered: Compression Steps

Transformation:

 Transform data to be ready for compression.

Quantization:

- Limit the number of symbols to represent the data.
- This step is not used for lossless compression.

Symbol coding:

 Minimize the average codeword length used to represent the symbols.

Topics Covered: Compression Techniques

- Lossless predictive coding
- Bit-plane coding (example below)
- LZW coding

