Caleb Logemann MATH 566 Discrete Optimization Homework 1

In order to find the recommended daily intake of nutrients, I used the website https://fnic.nal.usda.gov/fnic/interactiveDRI/. This website gives recommended daily intake based on height, weight, age, gender, and activity level. The following table summarizes the recommended daily intake for the professor.

Nutrient	Daily Requirement
Calories	2779 kcal
Carbohydrates	$383 \mathrm{\ grams}$
Fiber	38 grams
Protein	60 grams
Sodium	$1.5 \mathrm{\ grams}$

I then went to Walmart to do some grocery shopping. The following table summarizes the nutritional content and cost of 15 different foods.

Food	Calories	Carbohydrates	Fiber	Protein	Sodium	Cost
Gatorade (20 oz)	125	35 g	0 g	0 g	0.275 g	\$0.75
Peanut Butter (32 g)	190	7 g	$2 \mathrm{~g}$	$7~\mathrm{g}$	$0.130~\mathrm{g}$	\$0.13
Apple sauce (128 g)	110	$27 \mathrm{\ g}$	1 g	0 g	0 g	\$0.34
Blackberry Jam (20 g)	50	13 g	0 g	0 g	0 g	\$0.13
Frozen Waffles (70 g)	190	$27 \mathrm{\ g}$	1 g	4 g	$0.360~\mathrm{g}$	\$0.48
Granola Bar	100	18 g	1 g	$2 \mathrm{~g}$	$0.06~\mathrm{g}$	\$0.17
Corn (125 g)	60	9 g	$2 \mathrm{~g}$	$2 \mathrm{~g}$	$0.2 \mathrm{~g}$	\$0.21
Green Beans (120 g)	20	4 g	$2 \mathrm{~g}$	1 g	$0.38~\mathrm{g}$	\$0.21
Peas (125 g)	70	12 g	$3~\mathrm{g}$	$4 \mathrm{~g}$	$0.37~\mathrm{g}$	\$0.21
FiberOne Cereal (1/2 cup)	60	$25~\mathrm{g}$	14 g	$2 \mathrm{~g}$	$0.105~\mathrm{g}$	\$0.25
Cocunut Milk (80 ml)	120	$2~\mathrm{g}$	0 g	1 g	$0.025~\mathrm{g}$	\$0.42
Tortilla (49 g)	140	24 g	1 g	4 g	$0.44 \mathrm{\ g}$	\$0.26
Turkey Breast (52 g)	80	1 g	0 g	8 g	$0.69~\mathrm{g}$	\$0.50
Roast Beef (56 g)	60	0 g	0 g	11 g	$0.52~\mathrm{g}$	\$1.15
Hamburger Buns (1.6 oz)	150	$25~\mathrm{g}$	1 g	4 g	$0.025~\mathrm{g}$	\$0.29

The following model for APMonitor was used to solve this linear program.

```
Model Diet  x[1:15] = 0, >= 0   x[1:15] = 0, >= 0  End Variables  x[1:15] = 0, >= 0  Equations  125*x[1] + 190*x[2] + 110*x[3] + 50*x[4] + 190*x[5] + 100*x[6] + 60*x[7]   + 20*x[8] + 70*x[9] + 60*x[10] + 120*x[11] + 140*x[12] + 80*x[13]   + 60*x[14] + 150*x[15] >= 2779   35*x[1] + 7*x[2] + 27*x[3] + 13*x[4] + 27*x[5] + 18*x[6] + 9*x[7]   + 4*x[8] + 12*x[9] + 25*x[10] + 2*x[11] + 24*x[12] + 1*x[13] + 25*x[15] >= 383   2*x[2] + x[3] + x[5] + x[6] + 2*x[7] + 2*x[8] + 3*x[9] + 14*x[10]   + x[12] + x[15] >= 38
```

```
7*x[2] + 4*x[5] + 2*x[6] + 2*x[7] + 1*x[8] + 4*x[9] + 2*x[10] + x[11] \\ + 4*x[12] + 8*x[13] + 11*x[14] + 4*x[15] >= 60 \\ 0.275*x[1] + 0.13*x[2] + 0.36*x[5] + 0.06*x[6] + 0.2*x[7] + 0.38*x[8] \\ + 0.37*x[9] + 0.105*x[10] + 0.025*x[11] + 0.44*x[12] + 0.69*x[13] \\ + 0.52*x[14] + 0.025*x[15] >= 1.5*1.4 \\ \text{minimize } 0.75*x[1] + 0.13*x[2] + 0.34*x[3] + 0.13*x[4] + 0.48*x[5] \\ + 0.17*x[6] + 0.21*x[7] + 0.21*x[8] + 0.21*x[9] + 0.25*x[10] \\ + 0.42*x[11] + 0.26*x[12] + 0.5*x[13] + 1.15*x[14] + 0.29*x[15] \\ \text{End Equations}
```

End Model

The solution that APMonitor found was

```
Objective Value = 3.95434986
diet.slk_1 = 0.0
diet.slk\ 2 = 0.0
diet.slk_3 = 0.0
diet.slk_4 = 12.1406002045
diet.slk_5 = 0.0
diet.x[10] = 0.752789795399
diet.x[11] = 0.0
diet.x[12] = 0.859616100788
diet.x[13] = 0.0
diet.x[14] = 0.0
diet.x[15] = 0.0
diet.x[1] = 0.0
diet.x[2] = 4.66463518143
diet.x[3] = 0.0
diet.x[4] = 0.0
diet.x[5] = 0.0
diet.x[6] = 17.2720603943
diet.x[7] = 0.0
diet.x[8] = 0.0
diet.x[9] = 0.0
```

This means that for \$3.95 a day, the professor should eat .75 servings of FiberOne cereal, .86 tortillas, 4.66 servings of peanut butter and 17.27 granola bars.

The following table summarizes my daily recommended intake of nutrients.

Nutrient	Daily Requirement
Calories	3397 kcal
Carbohydrates	467 grams
Fiber	38 grams
Protein	73 grams
Sodium	1.5 grams

In order to solve this linear program for my daily requirements, I used the following model.

```
Model Diet
   Variables
   x[1:15] = 0, >=0
```

End Variables

```
Equations
        125*x[1] + 190*x[2] + 110*x[3] + 50*x[4] + 190*x[5] + 100*x[6] + 60*x[7]
        +20*x[8] + 70*x[9] + 60*x[10] + 120*x[11] + 140*x[12] + 80*x[13]
        + 60*x[14] + 150*x[15] >= 3397
        35*x[1] + 7*x[2] + 27*x[3] + 13*x[4] + 27*x[5] + 18*x[6] + 9*x[7]
        + 4*x[8] + 12*x[9] + 25*x[10] + 2*x[11] + 24*x[12] + 1*x[13] + 25*x[15] >= 467
        2*x[2] + x[3] + x[5] + x[6] + 2*x[7] + 2*x[8] + 3*x[9] + 14*x[10]
        + x[12] + x[15] >= 38
       7*x[2] + 4*x[5] + 2*x[6] + 2*x[7] + 1*x[8] + 4*x[9] + 2*x[10] + x[11]
        + 4*x[12] + 8*x[13] + 11*x[14] + 4*x[15] >= 73
        0.275*x[1] + 0.13*x[2] + 0.36*x[5] + 0.06*x[6] + 0.2*x[7] + 0.38*x[8]
        + 0.37*x[9] + 0.105*x[10] + 0.025*x[11] + 0.44*x[12] + 0.69*x[13]
        + 0.52*x[14] + 0.025*x[15] >= 1.5
       minimize 0.75*x[1] + 0.13*x[2] + 0.34*x[3] + 0.13*x[4] + 0.48*x[5]
        + 0.17*x[6] + 0.21*x[7] + 0.21*x[8] + 0.21*x[9] + 0.25*x[10]
        + 0.42*x[11] + 0.26*x[12] + 0.5*x[13] + 1.15*x[14] + 0.29*x[15]
    End Equations
End Model
```

The solution to this linear program was

```
Objective Value = 4.76215906
diet.slk_1 = 0.0
diet.slk_2 = 0.0
diet.slk_3 = 0.0
diet.slk_4 = 12.5778903961
diet.slk_5 = 0.643295824528
diet.x[10] = 0.260098397732
diet.x[11] = 0.0
diet.x[12] = 0.0
diet.x[13] = 0.0
diet.x[14] = 0.0
diet.x[15] = 0.0
diet.x[1] = 0.0
diet.x[2] = 5.44681596756
diet.x[3] = 0.0
diet.x[4] = 0.0
diet.x[5] = 0.0
diet.x[6] = 23.4649906158
diet.x[7] = 0.0
diet.x[8] = 0.0
diet.x[9] = 0.0
```

This means that for \$4.76 a day, I should eat .26 servings of FiberOne cereal, 5.45 servings of peanut butter, and 23.465 granola bars.