PRINTABLE VERSION

Practice Test 3

Question 1

The graph of f(x) is shown. Find the x-value(s) where f'(x)=0.

a)
$$\bigcirc x = -2$$

b)
$$\bigcirc x = \{-2, 1\}$$

c)
$$\bigcirc x = 0$$

d)
$$\bigcirc x = \{-2, 0, 1\}$$

e)
$$x = \{-2, 2\}$$

Find the intervals on which $f(x)=rac{4\,x}{x^2+81}$ decreases.

a)
$$\bigcirc (-\infty, -9) \cup (9, \infty)$$

b)
$$\bigcirc (-\infty, \infty)$$

c)
$$(-\infty, -9) \cup (0, 9)$$

d)
$$\bigcirc$$
 $(9,\infty)$

e)
$$(-9,9)$$

Question 3

Suppose that c=1 is a critical number for a function f. Determine if f(c) is a local maximum, local minimum or neither if the graph of f'(x) is shown below.

- a) Local Minimum
- **b)** Local Maximum
- c) Neither

Find the critical numbers of $f(x)=2x^4-4x^2+1$ and classify all local extreme values.

- a) Critical nos. ± 1 ; local min f(-1)=-1; local max f(1)=-1.
- **b)** Critical no. 0; local max f(0) = 1.
- c) No critical numbers, no extreme values.

- **d)** Critical nos. 0 and ± 1 ; local min f(-1)=-1 and f(1)=-1; local max f(0)=1.
- e) Critical nos. ± 1 ; local min f(1)=-1; local max f(-1)=-1.

Find the critical numbers of $f(x)=4x^2+2x+1$ and classify all extreme values given $-1 \leq x \leq 0$.

- a) Critical no. 0; local min f(0) = 1.
- **b)** Critical no. $-\frac{1}{4}$; local and absolute min $f\left(-\frac{1}{4}\right)=\frac{3}{4}$; absolute max f(-1)=3.
- c) No critical numbers, no extreme values.
- **d)** Critical nos. 0, $-\frac{1}{4}$; local and absolute min $f\left(-\frac{1}{4}\right)=\frac{3}{4}$; absolute max f(0)=1.
- e) Critical no. $-\frac{1}{4}$; local max $f\left(-\frac{1}{4}\right)=\frac{3}{4}$; no absolute extreme.

Question 6

Read Carefully! The graph of f' (the derivative of f) is shown below. Classify the smallest critical number for f.

- a) local maximum
- **b)** neither
- c) local minimum

Describe the concavity of the graph of $\,f(x)=rac{2\,x}{9\,x^2-16}\,$ and find the points of inflection (if any).

a) Concave down on $\left(-\infty,\frac{4}{3}\right)$; concave up on $\left(\frac{4}{3}\,,\infty\right)$; pt of inflection $\left(\frac{4}{3}\,,0\right)$.

- **b)** Concave down on $(-\infty, \infty)$; no points of inflection
- c) Concave up on $(-\infty, 0)$; concave down on $(0, \infty)$; pt of inflection (0, 0).
- **d)** Concave down on $\left(-\infty,-\frac{4}{3}\right)$ and $\left(0,\frac{4}{3}\right)$; concave up on $\left(-\frac{4}{3}\,,0\right)$ and $\left(\frac{4}{3}\,,\infty\right)$; pt of inflection (0,0).
- **e)** Concave up on $\left(-\frac{4}{3},\frac{4}{3}\right)$; concave down on $\left(-\infty,-\frac{4}{3}\right)$ and $\left(\frac{4}{3},\infty\right)$; pts of inflection $\left(-\frac{4}{3},0\right)$ and $\left(\frac{4}{3},0\right)$.

Find c so that the graph of $f(x)=cx^2-4x^{-2}$ has a point of inflection at (4,f(4)).

a)
$$c = \frac{3}{64}$$

b)
$$\bigcirc c = \frac{3}{32}$$

c)
$$c = -\frac{3}{64}$$

d)
$$\bigcirc c = 0$$

e)
$$c = -\frac{3}{32}$$

Question 9

The graph of f'(x) is shown below. Give the interval(s) where the graph of

f(x) is concave up.

- a) (-2,1)
- **b)** \bigcirc $(-\infty,0)$ and $(1,\infty)$
- c) \bigcirc $(0,\infty)$
- d) $\bigcirc (-\infty,0)$
- e) \bigcirc $(-\infty,-2)$ and $(1,\infty)$

Question 10

Given the graph of f'(x) below, where is f(x) increasing?

Print Test

- a) $\bigcirc f(x)$ is increasing on the interval $(-5, \infty)$.
- **b)** $\bigcirc f(x)$ is increasing on the intervals $(-\infty 5)$ and (5,7).
- c) $\bigcirc f(x)$ is increasing on the interval $(-\infty, 7)$.
- **d)** $\bigcirc f(x)$ is increasing on the intervals (-5,5) and $(7,\infty)$.
- e) f(x) is increasing on the interval (-5,7).

Question 11

Find the vertical and horizontal asymptotes of $f(x)=rac{2\,x}{2\,x-3}$.

- a) vertical asymptote: $x=rac{3}{2}$; no horizontal asymptote.
- **b)** Overtical asymptote: x=1 ; horizontal asymptote: $y=\frac{3}{2}$.
- c) vertical asymptote: $x=rac{3}{2}$; horizontal asymptote: y=0.
- **d)** Overtical asymptote: $x=rac{3}{2}$; horizontal asymptote: y=1 .
- e) one vertical asymptote; horizontal asymptote: y=1 .

Determine whether or not the graph of $f(x)=2(x-4)^{4/5}$ has a vertical tangent or vertical cusp at x=4.

- a) vertical tangent
- **b)** vertical cusp
- c) oboth
- d) neither

Question 13

Which of the following is true about the graph of $f(x)=27x^2+rac{54}{x}-4$?

- a) $\bigcirc f(x)$ has a point of inflection at the point (0, -4).
- **b)** $\bigcirc f(x)$ is concave down on the interval $(0, \infty)$.

- c) f(x) has a vertical asymptote at x = 54.
- **d)** f(x) has a local minimum at the point (1,77).
- e) f(x) is increasing on the interval $(-\infty,0)$.

The graph of f'(x) is shown below. Which of the following could represent the graph of f(x)?

10 of 15 03/23/2015 01:29 PM

11 of 15 03/23/2015 01:29 PM

12 of 15 03/23/2015 01:29 PM

Determine whether or not the given function is one-to-one and, if so, find the inverse. If f(x)=6x-2 has an inverse, give the domain of f^{-1} .

- a) Not one-to-one.
- **b)** $\bigcirc f^{-1}(x) = 6x + 2$; domain: $(-\infty, -2)$
- c) $\bigcirc f^{-1}(x) = \frac{1}{6} x + \frac{1}{3}$; domain: $(-\infty, \infty)$
- d) $\bigcirc f^{-1}(x) = 6x 2$; domain: $(-\infty, \infty)$
- **e)** $\bigcirc f^{-1}(x) = -\frac{1}{6}x \frac{1}{3}$; domain: $(-2, \infty)$

Question 16

Suppose that f has an inverse and f(-2)=3, $f'(-2)=rac{6}{7}.$ What is $\left(f^{-1}
ight)'(3)$?

- a) $\bigcirc \frac{7}{6}$
- **b)** $\bigcirc \frac{13}{6}$
- **c)** $0 \frac{6}{7}$
- $\mathbf{d)} \quad \bigcirc \frac{6}{7}$
- **e)** $\bigcirc \frac{7}{3}$

Question 17

Suppose that $f(x)=3x^3+6$ is differentiable and has an inverse and f(4)=198. Find $\left(f^{-1}\right)'(198)$.

- a) $0 \frac{1}{72}$
- **b)** $\bigcirc -\frac{1}{144}$
- c) 288
- **d)** 0 144
- **e)** $\bigcirc \frac{1}{144}$

Question 18

Suppose that $f(x)=2\,x+2\,\pi+\cos(x)$ is differentiable and has an inverse for $0< x< 2\pi$ and $f(1\pi)=4\,\pi-1$. Find $\left(f^{-1}\right)'(4\,\pi-1)$.

- a) $\bigcirc -1$
- **b)** $\bigcirc \frac{1}{2}$
- c) $\bigcirc \frac{1}{4}$
- **d)** $0 \frac{1}{2}$
- e) 01

Question 19

Differentiate: $y=4\,x\mathrm{e}^{2\,x^3}$

a)
$$y' = 4e^{2x^3} + 4xe^{2x^3}$$

b)
$$y' = 4 e^{2 x^3} + 24 x^3 e^{2 x^3}$$

c)
$$y' = 4 e^{2 x^3}$$

d)
$$y' = 4 e^{6 x^2}$$

e)
$$y' = e^{2x^3} + 6x^3e^{2x^3}$$

Question 20

Differentiate: $y = \ln(2 x^2 + 3)$

a)
$$y' = -\frac{4x}{(2x^2+3)^2}$$

b)
$$\bigcirc y' = \frac{2}{2 x^2 + 3}$$

c)
$$y' = \frac{4x}{2x^2 + 3}$$

d)
$$\bigcirc y' = -\frac{1}{\left(2\,x^2+3\right)^2}$$

e)
$$\bigcirc y' = \frac{1}{2x^2 + 3}$$