Lecture No 14

Unit 3-Image Enhancement

Spatial Filters

Lecture By
Kalyan Acharjya
kalyan5.blogspot.in

Disclaimer

- This PPT contents are copied from various publicly available sources and all images are copyright of the respective original owner.
- This is used for academic purpose only.

Spatial Filtering Methods (or Mask Processing Methods)

Area or Mask Processing Methods

$$g(x,y) = T[f(x,y)]$$

T operates on a neighborhood of pixels

Spatial Filtering (cont'd)

Filters are classified as:

- Low-pass (i.e., preserve low frequencies)
- High-pass (i.e., preserve high frequencies)
- Band-pass (i.e., preserve frequencies within a band)
- Band-reject (i.e., reject frequencies within a band)

Spatial Filtering (cont'd)

- Need to define:
 - A neighborhood (or mask)
 - An Mask Operation

•Typically, the neighborhood is rectangular and its size is much smaller than that of f(x,y) - e.g., 3x3 or 5x5

Operation:

A filtered image is generated as the center of the mask moves to every pixel in the input image.

Spatial filtering - Operation

Example: weighted sum of input pixels.

mask weights:

w1	w2	W3
w4	w 5	w6
w 7	w8	w9

Area or Mask Processing Methods

Handling Pixels Close to Boundaries

or

Pad With Zeroes

Linear vs Non-Linear

Spatial Filtering Methods

 A filtering method is linear when the output is a weighted sum of the input pixels.

$$z5' = R = w1z1 + w2z2 + ... + z9w9$$

Methods that do not satisfy the above property are called non-linear.

e.g.,
$$z'_5 = max(z_k, k = 1, 2, ..., 9)$$

Spatial Filters

- We will mainly focus on two types of filters:
 - Smoothing (low-pass)
 - Sharpening (high-pass)

Smoothing Filters (low-pass)

- Useful for reducing noise and eliminating small details.
 - The elements of the mask must be positive.
 - Sum of mask elements is 1 (after normalization).

Smoothing filters – Example

Input Image

Smoothed Image

Sharpening Filters (high-pass)

- Useful for highlighting fine details.
 - The elements of the mask contain both positive and negative weights.
 - Sum of mask elements is 0.

Sharpening Filters - Example

 Warning: the results of sharpening might contain negative values (i.e., re-map them to [0, 255])

Input Image

Sharpened Image

(for better visualization, the original image is added to the sharpened image)

Common Smoothing Filters

- Averaging
- Gaussian
- Median filtering (non-linear)

Smoothing Filters: Averaging

Un-weighted

Input Image

3	3	0	1	1
4	5	4	0	2
2	3	4	0	1
1	5	6	7	1
1	0	2	3	5
4	5	6	7	0

Mask

1	1	1
1	1	1
1	1	1

Smoothing Filters: Averaging (cont'd)

Mask size determines the degree of smoothing (loss of detail).

Image Smoothing

This operation is equivalent to lowpass filtering.

N = 11

Example of Image Blurring

N = 7

N = 21

N = 15

Smoothing filters: Gaussian

The weights are samples of a 2D Gaussian function:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2+y^2}{2\sigma^2}}$$

mask size is a function of **σ**:

 $height = width = 5\sigma$ (subtends 98.76% of the area)

Smoothing filters: Gaussian (cont'd)

- σ controls the amount of smoothing
- ullet As ullet increases, more samples must be obtained to represent the Gaussian function accurately.

					1	5 ×	15 C	laus	sian	mas	k				
	2	2	3	4	5	5	6	6	6	5	5	4	3	2	2
	2	3	4	5	7	7	8	8	8	7	7	5	4	3	2
	3	4	6	7	9	10	10	11	10	10	9	7	6	4	3
	4	5	7	9	10	12	13	13	13	12	10	9	7	5	4
	5	7	9	11	13	14	15	16	15	14	13	11	9	7	5
	5	7	10	12	14	16	17	18	17	16	14	12	10	7	5
	6	8	10	13	15	17	19	19	19	17	15	13	10	8	6
	6	8	11	13	16	18	19	20	19	18	16	13	11	8	6
	6	8	10	13	15	17	19	19	19	17	15	13	10	8	6
$\sigma = 3$	5	7	10	12	14	16	17	18	17	16	14	12	10	7	-
	5	7	9	11	13	14	15	16	15	14	13	11	9	7	5
	4	5	7	9	10	12	13	13	13	12	10	9	7	5	4
	3	4	6	7	9	10	10	11	10	10	9	7	6	4	3
	2	3	4	5	7	7	8	8	8	7	7	5	4	3	2
	2	2	3	4	5	5	0	6	6	5	5	4	3	2	2

Smoothing filters: Gaussian (cont'd)

Averaging vs. Gaussian Smoothing

Averaging

Gaussian

Smoothing Filters: Median Filtering (cont'd)

- Replace each pixel by the median in a neighborhood around the pixel.
- The size of the neighborhood controls the amount of smoothing.

Smoothing Filters: Median Filtering (non-linear)

Very effective for removing "salt and pepper" noise (i.e., random occurrences of black and white pixels).

Original Image Image with Noise

Averaging Median Filtering

Filtering

Common Sharpening Filters

- Unsharp masking
- High Boost filter
- Gradient (1st derivative)
- Laplacian (2nd derivative)

Sharpening Filters: Un sharp Masking

Obtain a sharp image by subtracting a low pass filtered (i.e., smoothed) image from the original image:

$$Highpass = Original - Lowpass$$

Sharpening Filters: High Boost

- Image sharpening emphasizes edges but details are lost.
- High boost filter: Amplify input image, then subtract a Low pass image.

$$Highboost = A \ Original - Lowpass$$

= $(A-1) \ Original + Original - Lowpass$
= $(A-1) \ Original + Highpass$

Sharpening Filters: High Boost (cont'd)

- If A=1, we get unsharp masking.
- If A>1, part of the original image is added back to the high pass filtered image.

High boost
$$= (A-1)$$
 Original + Highpass

One way to implement high boost filtering is using the masks below

$$A>=1$$
 $W = 9A-1$
 -1
 -1
 $W = -1$
 $W = -1$

A=2

Sharpening Filters: High Boost (cont'd)

A=1.4

A=1.9

Sharpening Filters: Derivatives

Taking the derivative of an image results in sharpening the image.

The derivative of an image (i.e., 2D function) can be computed using the gradient.

$$grad(f) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}$$

How do we choose the mask weights?

Typically, by sampling certain functions:

First and Second Derivative

Gradient (cont'd)

- Gradient magnitude: provides information about edge strength.
- Gradient direction: perpendicular to the direction of the edge.

$$magnitude(grad(f)) = \sqrt{\frac{\partial f^2}{\partial x} + \frac{\partial f^2}{\partial y}}$$

$$direction(grad(f)) = \tan^{-1}(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x})$$

Derivative Results and Laplacian:

 $\frac{\partial f}{\partial y}$

Reminder: Assignment

Online Submission Due Date 10 Oct 2018

- Comments on Role of Digital Image Processing in Modern Imaging Based Medical Treatments.
- 2. Explain your view on Importance of Image Understanding in Recent Computer Vision Applications

Assignment Submission link is available at kalyan5.blogspot.in

OR

You can directly visit at http://bit.do/dipr_jnu

Any Questions?

Thank You