# Over-parameterized Optical Flow using a Stereoscopic Constraint

Guy Rosman<sup>1</sup>, Shachar Shem Tov<sup>1</sup>, David Bitton<sup>2</sup>, Tal Nir<sup>1</sup>, Gilad Adiv<sup>4</sup>, Ron Kimmel<sup>1</sup>, Arie Feuer<sup>3</sup> and Alfred M. Bruckstein<sup>1</sup> 1:{rosman,shemtov,taln,ron,freddy}@cs.technion.ac.il 2: dbitton@tx.technion.ac.il 3: feuer@ee.technion.ac.il 4: gilad3a@gmail.com

#### Contribution

- We present a new over-parameterized model for optical flow estimation for static scenes in the case of uncalibrated cameras.
- The parameterization stems from planar homographies.
- Results show high accuracy in scenarios conforming to the model assumptions.
- The regularization coefficient is closely related to the measure of plane boundaries in the  $2\frac{1}{2}D$ -sketch.

# Overparameterized Optical Flow

In [2] an over-parameterized approach for optical flow estimation is presented. The flow field between images is locally described as an over-complete set of vector fields,

$$[u(x, y; \mathbf{a}) \ v(x, y; \mathbf{a})]^T = \sum_i a_i(x, y)\phi_i(x, y);$$

The regularization term is defined in terms of the model coefficients  $a_i$ ,

$$E_{S,TV} = \int \psi_S \left( \sum_i \|\nabla a_i\|^2 \right)$$

### The Model

We extend the overparameterized model in the case of static scenes to a nonlinear parameter model.

- In this model, the transformation between the images is locally a homography defined by the scene plane.
- Given 2 viewpoints of the scene and a local planar patch, each point is transferred to a point on the corresponding epipolar line.
- The set of homographies consistent with the fundamental matrix has 3 degrees of freedom, defining our model.
- We parameterize these homographies by

$$H(x, y, t) = H_0 + e' \mathbf{a}(x, y, t), \ H_0 = [e']_{\times} \mathcal{F}.$$

No need for metric calibration.



ullet The proposed parameterization better suits 3D scene understanding.



## The Functional

- We further extend the smoothness term to a generalized Ambrosio-Tortorelli scheme [1].
- The smoothness term encourages solutions that are piecewise smooth in terms of local planar coefficients.
- The functional over  $\mathbf{a}$  and the diffusivity  $v_{at}$  reads

$$E_D + \alpha \left( E_{S,AT} + \int \frac{(v_{AT} - 1)^2}{4\epsilon} + \epsilon |\nabla v_{AT}|^2 \right),$$

with  $E_{S,AT} = \int v_{AT}^2 \psi_S \left( \sum_i \|\nabla a_i\|^2 \right)$ ,

• and the  $E_D$  enforcing the brightness constancy term,

$$E_D = \int \Psi(I_z^2), \ I_z = I(x+u, y+v, t+1) - I(x, y, t)$$

• The flow is a nonlinear function of the parameters  ${\bf a}(x,y,t).$ 

# A Motivating Thought Experiment

- Consider a piecewise-planar static scene.
- Assume a solution **a**\* with correct plane coefficients at each interior plane point.
- Assume a diffusivity function such that  $v_{AT}^*=1$  at interior points and  $v_{AT}^*=0$  at boundary points
- The cost of the smoothness term converges with  $\epsilon \to 0$  to a measure of discontinuities in the  $2\frac{1}{2}$ -D sketch.

#### References

- [1] L. Ambrosio and V. M. Tortorelli. Approximation of functional depending on jumps by elliptic functional via  $\Gamma$ -convergence. *Communications on Pure and Applied Mathematics*, 43(8):999–1036, 1990.
- [2] T. Nir, A. M. Bruckstein, and R. Kimmel. Overparameterized variational optical flow. *International Journal of Computer Vision*, 76(2):205–216, 2008. ISSN 0920-5691.

## Results - Middlebury Test Set

| Average         | Grove<br>(Synthetic)                 | Urban<br>(Synthetic)        | Yosemite<br>(Synthetic)              | Teddy<br>(Stereo)                  |
|-----------------|--------------------------------------|-----------------------------|--------------------------------------|------------------------------------|
| error           | GT im0 im1                           | GT im0 im1                  | GT im0 im1                           | GT im0 im1                         |
|                 | <u>all</u> <u>disc</u> <u>untext</u> | all disc untext             | <u>all</u> <u>disc</u> <u>untext</u> | all <u>disc</u> untext             |
| MDP-Flow2 [40]  | 2.87 5 3.73 5 2.32 4                 | 3.15 2 11.1 4 2.65 3        | 2.04 5 3.64 8 1.60 5                 | <u>1.88</u> 5 4.49 6 1.49 2        |
| Layers++ [38]   | 2.35 1 3.02 1 1.96 1                 | 3.81 7 11.4 5 3.22 10       | 2.74 17 4.01 21 2.35 18              | <u>1.45</u> 2 <b>3.05</b> 1 1.79 4 |
| LSM [41]        | <u>2.82</u> 3 3.68 3 2.36 5          | 3.38 4 9.41 2 2.81 s        | 2.69 16 3.52 6 2.84 23               | <u>1.59</u> з 3.38з 1.80 5         |
| Classic+NL [31] | <u>2.83</u> 4 3.68 3 2.31 3          | 3.40 5 9.09 1 2.76 5        | 2.87 21 3.82 12 2.86 28              | <u>1.67</u> 4 3.53 4 2.26 8        |
| MDP-Flow [26]   | 3.03 € 3.87 € 2.60 11                | <u>3.43</u> € 12.6 8 2.81 € | 2.19 8 3.88 15 1.60 5                | <u>4.13</u> 21 9.96 22 3.86 25     |
|                 |                                      |                             |                                      |                                    |
| Proposed Method | <u>4.60</u> 40 5.05 38 5.52 42       | 2.38 1 11.5 6 1.77 1        | <u>1.25</u> 1 2.92 1 0.71 1          | <u>4.49</u> 23 10.3 25 4.23 27     |

Average angular errors (AAE) results for static scenes in the Middlebury test set. Bold numbers represent best results for the test scene.

# Results - Middlebury Training Set

We demonstrate results of the optical flow estimation on the Middlebury test and training datasets.



At each subfigure, left to right, top to bottom: The scene itself, color coded flow field; the motion parameters; the diffusivity function and the disparity norm. Results are shown for the Middlebury Grove2 and Urban2 training sequences.

AAE

1.43

1.15

0.85

| Middlebury Training Set |      | Yosemite Sequence |                  |      |                |
|-------------------------|------|-------------------|------------------|------|----------------|
|                         | AAE  | STD               | Method           | AAE  | Method         |
| Grove2                  | 2.41 | 7.16              | Brox, '04        | 1.59 | Roth/Black '08 |
| Grove3                  | 5.53 | 15.76             | Mémin/Pérez, '02 | 1.58 | Valgaerts, '08 |
| Jrban2                  | 2.15 | 9.22              | Bruhn '05        | 1.46 | Nir , '08      |
| Jrban3                  | 3.84 | 16.88             | Amiaz '07        | 1.44 | Our method     |
| Venus                   | 4.29 | 12.01             |                  |      |                |
| Yosemite                | 0.85 | 1.24              |                  |      |                |

AAE results for static Middlebury Training set sequences.

This research was supported by the Israel Science foundation (ISF) grant no. 1551/09.