

EIE4512 - Digital Image Processing

Week 6 Tutorial

Bin Zeng

zengbin@cuhk.edu.cn School of Science and Engineering The Chinese University of Hong Kong, Shen Zhen

March 7, 2019

Content

1. Sobel Edge Detector

2. Laplacian of a Gaussian(LoG) Detector

- 3. Canny Edge Detector
- 4. Hough transform algorithm

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

1. Sobel Edge Detector

Better approximations of the derivatives exist

• The Sobel operators below are very commonly used

,	-1	0	1		
휭	-2	0	2		
	-1	0	1		
$\overline{s_x}$					

1	1	2	1
8	0	0	0
	-1	-2	-1
		s_n	

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value, however

2. Laplacian of a Gaussian(LoG) Detector

Consider the Gaussian function

$$h(r) = -e^{-\frac{r^2}{2\sigma^2}}$$

where $r^2 = x^2 + y^2$ and σ is the standard deviation. This is a smoothing function which, if convolved with an image, will blur it. The degree of blurring is determined by the value of σ . The Laplacian of this function (the second derivative with respect to r) is

$$\nabla^2 h(r) = - \left\lceil \frac{r^2 - \sigma^2}{\sigma^4} \right\rceil e^{-\frac{r^2}{2\sigma^2}}$$

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

3. Canny Edge Detector

Summarizing, the Canny edge detection algorithm consists of the following basic steps:

- **1.** Smooth the input image with a Gaussian filter.
- **2.** Compute the gradient magnitude and angle images.
- 3. Apply nonmaxima suppression to the gradient magnitude image.
- **4.** Use double thresholding and connectivity analysis to detect and link edges.

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

4. Hough transform algorithm

Typically use a different parameterization

$$d = x cos\theta + y sin\theta$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

- 1. Initialize H[d, θ]=0
- 2. for each edge point I[x,y] in the image

for
$$\theta$$
 = 0 to 180

$$d = x\cos\theta + y\sin\theta$$
H[d, θ] += 1

- 3. Find the value(s) of (d, θ) where H[d, θ] is maximum
- 4. The detected line in the image is given by $d = x\cos\theta + y\sin\theta$ What's the running time (measured in # votes)?