Optimizacija uz ograničenja tipa nejednakosti, uvođenje dodatne promenljive metod Lagranževih množitelja, metod ograničene varijacije

Anja Buljević Aleksandra Mitrović Smilja Stokanović 10. novembar 2020.

Zadaci

Metod Lagranževih množitelja

Optimizacioni problem koji rešavamo formulišemo na sledeći način: naći ekstrem funkcije

$$f = f(x_1, x_2, ..., x_n)$$

ukoliko su ograničenja

$$h_j(x_1,...,x_n) = 0, j = 1,...,m_1$$

 $g_k(x_1,...,x_n) = 0, k = 1,...,m_2$

pri čemu mora da važi da je broj ograničenja strogo manji od broja promenljivih (m < n).

1. Naći minimum funkcije $f(x)=(x_1-1)^2+x_2^2$ uz ograničenje $x_1-\frac{x_2^2}{4}\leq 0.$

Prvi korak pri rešavanju zadataka u slučaju ograničenja tipa nejednakosti, jeste pretvaranje ograničenja nejednakosti u ograničenje jednakosti, uvođenjem dodatne promenljive:

$$x_1 - \frac{x_2^2}{4} \le 0,$$
$$x_1 - \frac{x_2^2}{4} + x_3^2 = 0$$

Sledeći korak jeste formiranje Lagranžijana:

$$L = (x_1 - 1)^2 + x_2^2 + \lambda(x_1 - \frac{x_2^2}{4} + x_3^2)$$

Nakon što smo formirali prošireni kriterijum optimalnosti, potrebno je da pronađemo parcijalne izvode po svim promenljivima i da ih izjednačimo sa nulom:

$$\frac{\partial L}{\partial x_1} = 2(x_1 - 1) + \lambda = 0$$

$$\frac{\partial L}{\partial x_2} = 2x_2 - \frac{x_2}{2}\lambda = 0 \to x_2 = 0, \lambda = 4$$

$$\frac{\partial L}{\partial x_3} = 2\lambda x_3 = 0 \to x_3 = 0, \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = x_1 - \frac{x_2^2}{4} + x_3^2 = 0$$

Na osnovu prethodnog sistema jednačina, zaključujemo da ćemo imati tri slučaja koja treba da razmatramo:

x₂ = 0, x₃ = 0
 Ukoliko uvrstimo vrednost x₂ i x₃ u jednačinu ograničenja, dobijamo vrednost x₁:

$$x_1 = 0.$$

Vrednost λ , možemo izračunati iz prve jednačine i iznosi $\lambda=2$, a naša prva stacionarna tačka jeste A(0,0).

• $x_2=0, \lambda=0$ Uvrštavanjem vrednosti x_1 i λ u prvu jednačinu, dobijamo sledeći izraz:

$$2(x_1 - 1) = 0,$$

$$x_1 = 1.$$

Nakon što smo izračunali vrednost, $x_1 = 1$, potrebno je da proverimo ograničenje:

$$x_1 - \frac{x_2^2}{4} + x_3^2 = 0.$$

Odakle nam sledi da je:

$$x_3^2 = -1$$

Zaključujemo da ograničenje nije zadovoljeno.

• $\lambda = 4, x_3 = 0$ U ovom slučaju, možemo izračunati vrednost x_1 , uvrštavanjem vrednost $\lambda = 4$ u prvu jednačinu:

$$2(x_1-1)+4 = \rightarrow x_1 = -1.$$

Potrebno je da izračunamo i vrednost x_2

$$-1 - \frac{x_2^2}{4} = 0 \to x_2^2 = -4.$$

Zaključujemo da i u ovom slučaju ograničenje $x_1 - \frac{x_2^2}{4} + x_3^2 = 0$ nije zadovoljeno.

Potrebno je još da proverimo dovoljne uslove za našu stacionarnu tačku A(0,0). Dovoljne uslove proveravamo formiranjem matrice Q:

$$Q = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} \\ \frac{\partial^2 f}{\partial x_3 x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \frac{\partial^2 f}{\partial x_3^2} \end{bmatrix}$$

$$Q = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 - \frac{\lambda}{2} & 0 \\ 0 & 0 & 2\lambda \end{bmatrix}$$

Glavni minori matrice Q, za tačku A(0,0), $\lambda = 2$ su:

$$D_1 = 2$$

$$D_2 = 4 - \lambda = 2$$

$$D_3 = 4\lambda(2 - \frac{\lambda}{2}) = 8$$

Na osnovu glavnih minora, matrice Q, koji su u ovom slučaju > 0, zaključujemo da je naša tačka A(0,0) minimum.

2. Odrediti stacionarne tačke i njihov karakter za problem $f(x) = x_1x_2$, ukoliko važi ograničenje $g(x) = 25 - x_1^2 - x_2^2 \ge 0$.

Prvi korak jeste da pretvorimo ograničenje tipa nejednakosti u ograničenje tipa jednakosti:

$$25 - x_1^2 - x_2^2 \ge 0/(-1)$$
$$-25 + x_1^2 + x_2^2 \le 0$$
$$-25 + x_1^2 + x_2^2 + x_3^2 = 0$$

Sledeći korak jeste formiranje Laganžijana:

$$L = x_1 x_2 + \lambda (x_1^2 + x_2^2 + x_3^2 - 25)$$

$$\frac{\partial L}{\partial x_1} = x_2 + 2\lambda x_1 = 0$$

$$\frac{\partial L}{\partial x_2} = x_1 + 2\lambda x_2 = 0$$

$$\frac{\partial L}{\partial x_3} = 2\lambda x_3 = 0 \to x_3 = 0, \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = x_1^2 + x_2^2 + x_3^2 - 25 = 0$$

• $\lambda = 0$

$$x_2 = 0$$

$$x_1 = 0$$

$$x_3^2 = 25$$

$$x_3 = \pm 5$$

Rešavanjem sistema jednačina, dobili smo vrednost prve stacionarne tačke A(0,0), gde se rešenje nalazi unutar oblasti.

• $x_3 = 0$

$$x_1^2 + x_2^2 = 25$$

$$x_2 + 2\lambda x_1 = 0/(x_2)$$

$$x_1 + 2\lambda x_2 = 0/(-x_1)$$

Ukoliko saberemo ove dve jednačine dobijamo izraz

$$x_2^2 - x_1^2 = 0$$

$$x_1^2 = x_2^2$$

$$\lambda = -\frac{x_2}{2x_1}$$

Daljim uvrštavanjem dobijamo:

$$2x_2^2 = 25$$

$$x_2^2 = \frac{25}{2} \to x_2 = \pm \frac{5}{2}$$

Odavde dobijamo četiri stacionarne tačke, čiji je karakter potrebno ispitati:

•
$$B(\frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}}) \rightarrow \lambda_1 = -\frac{1}{2}$$

•
$$C(\frac{5}{\sqrt{2}}, -\frac{5}{\sqrt{2}}) \rightarrow \lambda_2 = \frac{1}{2}$$

•
$$D(-\frac{5}{\sqrt{2}},\frac{5}{\sqrt{2}}) \rightarrow \lambda_3 = \frac{1}{2}$$

•
$$E(-\frac{5}{\sqrt{2}}, -\frac{5}{\sqrt{2}}) \rightarrow \lambda_4 = -\frac{1}{2}$$

Nakon što smo odredili stacionarne tačke, potrebno je i da ispitamo njihov karakter, pomoću dovoljnih uslova. Formiramo matricu Q:

$$Q = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} \\ \frac{\partial^2 f}{\partial x_3 x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \frac{\partial^2 f}{\partial x_3^2} \end{bmatrix}$$

$$Q = \begin{bmatrix} 2\lambda & 1 & 0 \\ 1 & 2\lambda & 0 \\ 0 & 0 & 2\lambda \end{bmatrix}$$

Glavni minori matrice Q su:

$$D_1 = 2\lambda$$

$$D_2 = 4\lambda^2 - 1$$

$$D_3 = 8\lambda^3 - 2\lambda$$

Ukoliko bi smo uvrstili vrednosti λ , redom za tačke A, B, C, D i E, zaključili bi smo da je matrica Q nedefinitna. Iz tog razloga potrebno je da odredimo vrednosti μ , iz matrice Δ :

$$\Delta = \begin{bmatrix} Q - \mu I_{n \times n} & P_{n \times m}^T \\ P_{m \times n} & 0_{m \times m} \end{bmatrix} , \qquad (1)$$

gdje je P:

$$P = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \frac{\partial g_1}{\partial x_3} \end{bmatrix}$$
 (2)

$$\Delta = \begin{bmatrix} 2\lambda - \mu & 1 & 0 & 2x_1 \\ 1 & 2\lambda - \mu & 0 & 2x_2 \\ 0 & 0 & 2\lambda - \mu & 2x_3 \\ 2x_1 & 2x_2 & 2x_3 & 0 \end{bmatrix} = 0$$
 (3)

Ukoliko matricu Δ razvijemo po trećoj vrsti dobićemo sledeći izraz:

$$\Delta = -(2\lambda - \mu) \begin{bmatrix} 2\lambda - \mu & 1 & 2x_1 \\ 1 & 2\lambda - \mu & 2x_2 \\ 2x_1 & 2x_2 & 0 \end{bmatrix} - 2x_3 \begin{bmatrix} 2\lambda - \mu & 1 & 2x_1 \\ 1 & 2\lambda - \mu & 2x_2 \\ 0 & 0 & 2x_3 \end{bmatrix} = 0$$

Dalje možemo uvesti smenu $(2\lambda - \mu) = a$.

$$\Delta = a(4x_1x_2 + 4x_1x_2 - 4x_1^2a - 4x_2^2a) - 2x_3(2x_3a^2 - 2x_3) = 0$$

Sređivanjem ovog izraza dobijamo sledeći izraz:

$$\Delta = a(4x_1x_2 + 4x_1x_2 - 4x_1^2a - 4x_2^2a) - 2x_3(2x_3a^2 - 2x_3) = 0$$
$$\Delta = 8x_1x_2a - 4x_1^2a^2 - 4x_2^2a^2 - 4x_2^2a^2 + 4x_2^2 = 0$$

Sada je potrebno da proverimo vrednosti μ za stacionarne tačke:

•
$$A(0,0)$$
, $x_3^2 = 25$, $\lambda = 0$

$$\Delta = -4x_3^2a^2 + 4x_3^2 = 0$$

$$\Delta = -4x_3^2(a^2 - 1) = 0$$

$$\Delta = -100(a^2 - 1) = 0 \rightarrow a^2 - 1 = 0$$

$$a^2 = 1$$

$$a = \pm 1$$

$$2\lambda - \mu = \pm 1$$
$$\mu = 1 \land \mu = -1$$

•
$$B(\frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}})$$
, $E(-\frac{5}{\sqrt{2}}, -\frac{5}{\sqrt{2}})$, $x_3 = 0$, $\lambda = -\frac{1}{2}$

$$\Delta = 8x_1x_2a - 4x_1^2a^2 - 4x_2^2a^2 = 0$$

Uvrštavanjem vrednosti x_1 i x_2 , za tačke B i E, dobijamo sledeći izraz:

$$\Delta = 100a - 50a^{2} - 50a^{2} = 0$$

$$\Delta = 100a - 100a^{2} = 0$$

$$\Delta = a(1 - a) = 0$$

Vrednost Δ će biti jednaka 0, ukoliko je:

$$a = 1 \lor a = 0.$$

Vraćanjem smene $2\lambda - \mu = a$, dobijamo sledeće vrednosti μ :

$$2\lambda - \mu = 1 \lor 2\lambda - \mu = 0,$$

$$u_1 = -2 \land u_2 = -1.$$

Pošto su obe vrednosi $\mu < 0$, zaključujemo da su tačke B i E maksimum.

•
$$C(\frac{5}{\sqrt{2}}, -\frac{5}{\sqrt{2}}), D(-\frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}}), x_3 = 0, \lambda = \frac{1}{2}$$

$$\Delta = 8x_1x_2a - 4x_1^2a^2 - 4x_2^2a^2 = 0$$

Uvrštavanjem vrednosti x_1 i x_2 , dobijamo sledeći izraz:

$$\Delta = -100a - 50a^2 - 50a^2 = 0$$

$$\Delta = -100a - 100a^2 = 0$$

$$\Delta = -a(1+a) = 0$$

Matrica Δ će imati vrednost 0 u dva slučaja:

$$a = -1 \lor a = 0$$

Vraćanjem smene $2\lambda - \mu = a$, dobijamo sledeće vrednosti μ :

$$2\lambda - \mu = 1 \lor 2\lambda - \mu = 0$$

$$\mu_1 = 2 \land \mu_2 = 1$$

Na osnovu vrednosti $\mu>0$, možemo da zaključimo da su tačke C i D minimum.

3. Odrediti stacionarne tačke sledećeg problema $f(x) = 4x_1 - x_2^2 - 12 = 0$, ukoliko važe ograničenja:

$$25 - x_1^2 - x_2^2 = 0$$
$$10x_1 - x_1^2 + 10x_2 - x_2^2 - 38 \ge 0$$

Prvo što je potrebno da odradimo jeste da pretvorimo ograničenje tipa nejednakosti u ograničenje tipa jednakosti:

$$10x_1 - x_1^2 + 10x_2 - x_2^2 - 38 \ge 0/(-1)$$
$$-10x_1 + x_1^2 - 10x_2 + x_2^2 + 38 \le 0$$
$$-10x_1 + x_1^2 - 10x_2 + x_2^2 + 38 + x_3^2 = 0$$

Kao i u prethodnom zadatku, potrebno je da formiramo Lagranžijan:

$$L = 4x_1 - x_2^2 - 12 + \lambda_1(25 - x_1^2 - x_2^2) + \lambda_2(-10x_1 + x_1^2 - 10x_2 + x_2^2 + 38 + x_3^2)$$

Sledeći korak jeste da pronađemo parcijalne izvode:

$$\begin{split} \frac{\partial L}{\partial x_1} &= 4 - 2\lambda_1 x_1 - 10\lambda_2 x_1 + 2x_1 \lambda_2 \\ \frac{\partial L}{\partial x_2} &= -2x_2 - 10\lambda_2 x_1 + 2x_2 \lambda_2 - 2x_2 \lambda_1 \\ \frac{\partial L}{\partial x_3} &= 2\lambda_2 x_3 = 0 \to \lambda_2 = 0 \lor x_3 = 0 \\ \frac{\partial L}{\partial \lambda_1} &= 25 - x_1^2 - x_2^2 = 0 \\ \frac{\partial L}{\partial \lambda_2} &= -10x_1 + x_1^2 - 10x_2 + x_2^2 + 38 + x_3^2 = 0 \end{split}$$

•
$$\lambda_2 = 0$$

$$4 - 2x_1\lambda_1 = 0$$
$$-2x_2 - 2x_2\lambda_1 = 0$$
$$-2x_2(1 + \lambda_1) = 0$$

(a)
$$x_2 = 0$$

$$25 - x_1^2 - x_2^2 = 0$$
$$x_1^2 = 25$$
$$x_1 = \pm 5$$

Kada smo odredili vrednosti x_1 i x_2 , potrebno je da proverimo i ograničenje:

$$x_3^2 = 10x_1 - x_1^2 + 10x_2 - x_2^2 - x_2^2 - 38$$

$$x_3^2 = -63 + 10x_1 < 0$$

(b)
$$\lambda_1 = -1$$

$$4 + 2x_1 = 0$$
$$x_1 = -2$$

$$x_2^2 = 25 - x_1^2$$

Kao i u prethodnom slučaju, potrebno je da proverimo ograničenje:

$$x_3^2 = 10x_1 - x_1^2 + 10x_2 - x_2^2 - 38$$

•
$$x_3 = 0$$

$$-10x_1 - 10x_2 + x_1^2 + x_2^2 + 38 = 0$$

$$x_1^2 + x_2^2 = 25$$

$$-10(x_1 + x_2) = -25 - 38$$

$$-10x_1 = 10x_2 - 63$$

$$x_1 = 6.3 - x_2$$

Uvrštavanjem smene $x_1 = 6.3 - x_2$, u jednačinu ograničenja, sledi:

$$(6.3 - x_2)^2 + x_2^2 = 25.$$

Daljim rešavanjem ovog sistema dobijamo stacionarne tačke:

- *A*(1.545, 4.755)
- *B*(4.755, 1.545)
- 4. **Z**adatak za samostalan rad Naći ekstreme funkcije i odrediti njihov karakter: $y(x) = (x_1 1)^2 + (x_2 2)^2$, ukoliko važi ograničenje $(x_1 + 1)^2 + x_2^2 \le a$, ako je a = 4 i a = 10.

2 Metod ograničenih varijacija

Posmatramo kriterijumsku funkciju oblika:

$$y=f(x_1,x_2,\ldots,x_n),$$

pri čemu su jednačine ograničenja

$$h_j(x_1, x_2, ..., x_n) = 0, \quad j = 1, ..., m_1,$$

 $g_k(x_1, x_2, ..., x_n) \le 0, \quad k = 1, ..., m_2,$
 $g(x, x_{m+k}^2) = g_k(x) + x_{m+k}^2 = 0$

i važi n>m. Na osnovu navedenog formira se Jakobijeva matrica čijim se izjednačavanjem sa nulom

$$J_{k} = \begin{vmatrix} \frac{\partial f}{\partial x_{k}} & \frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{m1+m2}} \\ \frac{\partial h_{1}}{\partial x_{k}} & \frac{\partial h_{1}}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{m1+m2}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial h_{m1}}{\partial x_{k}} & \frac{\partial h_{m1}}{\partial x_{1}} & \cdots & \frac{\partial h_{m1}}{\partial x_{m1+m2}} \\ \frac{\partial g_{1}}{\partial x_{k}} & \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{m1+m2}} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial g_{m2}}{\partial x_{k}} & \frac{\partial g_{m1}}{\partial x_{1}} & \cdots & \frac{\partial g_{m1}}{\partial x_{m1+m2}} \end{vmatrix} = 0, \quad k = m_{1} + m_{2} + 1, \dots, n + m_{2}$$

dobijaju potrebni uslovi ekstrema funkcije više promenljivih sa ograničenjima tipa nejednakosti.

5. Pronaći stacionarne tačke, $f(x)=x_1^2+x_2^2+13$, uz ograničenja $x_1^2+4x_2^2=4$, $8-x_1^2-x_2^2\geq 0$.

Prvo je potrebno da ograničenje tipa nejednakosti, pretvorimo u ograničenje tipa jednakosti:

$$f(x) = x_1^2 + x_2^2 + 13$$
$$h_1 : x_1^2 + 4x_2^2 = 4$$
$$g_1 : 8 - x_1^2 - x_2^2 \ge 0/(-1).$$

Kada smo ograničenje tipa nejednakosti pomnožili sa (-1), uvodimo dodatnu promenljivu:

$$f(x) = x_1^2 + x_2^2 + 13$$
$$h_1 : x_1^2 + 4x_2^2 = 4$$
$$g_1 : -8 + x_1^2 + x_2^2 + x_3^2 = 0.$$

Broj promenljivih je n=2, broj ograničenja tipa jednakosti je $m_1=1$, a nejednakosti $m_2=1$. Potrebna nam je jedna Jakobijeva matrica, k=3.

Sledeći korak jeste da formiramo, Jakobijevu matricu, za k=3.

$$J_{3} = \begin{vmatrix} \frac{\partial f}{\partial x_{3}} & \frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} \\ \frac{\partial h_{1}}{\partial x_{3}} & \frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} \\ \frac{\partial g_{1}}{\partial x_{3}} & \frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} \end{vmatrix} = \begin{vmatrix} 0 & 2x_{1} & 2x_{2} \\ 0 & 2x_{1} & 8x_{2} \\ 2x_{3} & 2x_{1} & 2x_{2} \end{vmatrix} = 24x_{1}x_{2}x_{3} = 0$$

Formiramo sledeći sistem jednačina:

$$x_1^2 + 4x_2^2 = 4$$

$$-8 + x_1^2 + x_2^2 + x_3^2 = 0$$

$$24x_1x_2x_3 = 0 \rightarrow x_1 = 0 \lor x_2 = 0 \lor x_3 = 0$$

•
$$x_1 = 0$$

$$4x_{2}^{2} = 4$$

$$x_{2}^{2} = 1$$

$$x_{2} = \pm 1$$

$$x_{3}^{2} = 8 - x_{1}^{2} - x_{2}^{2}$$

$$x_{3} = \pm \sqrt{7}$$

Stacionarne tačke za slučaj $x_1 = 0$ su:

-
$$A(0, 1, \sqrt{7})$$

- $B(0, 1, -\sqrt{7})$
- $C(0, -1, \sqrt{7})$
- $D(0, -1, -\sqrt{7})$

•
$$x_2 = 0$$

$$x_{1}^{2} = 4$$

$$x_{1}^{2} = 2$$

$$x_{1} = \pm 2$$

$$x_{3}^{2} = 8 - x_{1}^{2} - x_{2}^{2}$$

$$x_{3} = \pm 2$$

Stacionarne tačke za slučaj $x_2 = 0$ su:

•
$$x_3 = 0$$

$$x_1^2 + 4x_2^2 = 4$$
$$x_1^2 + x_2^2 = 8$$

Oduzimanjem ove dve jednačine, sledi:

$$3x_2^2 = -4$$
$$x_2^2 = -\frac{4}{3}$$

Zaključujemo da slučaj $x_3 = 0$, ne zadovoljava ograničenje.

6. Pronaći stacionarne tačke, sledeće funkcije $f(x)=x_1^2+x_2^2+4x_2-6x_1+1$, ukoliko važe ograničenja: $h_1:x_1+5x_2+4=0$, $g_1:x_1^2-2x_2^2-2\leq 0$. Broj promenljivih je n=2, broj ograničenja tipa jednakosti je $m_1=1$, a nejednakosti $m_2=1$, te nam je potrebna jedna Jakobijeva matrica k=3.

$$f(x) = x_1^2 + x_2^2 + 4x_2 - 6x_1 + 1$$
$$h_1 : x_1 + 5x_2 + 4 = 0$$
$$g_1 : x_1^2 - 2x_2^2 - 2 \le 0$$

Kao i u prethodnim zadacima, potrebno je da ograničenje tipa nejednakosti, pretvorimo u ograničenje tipa jednakosti:

$$f(x) = x_1^2 + x_2^2 + 4x_2 - 6x_1 + 1$$
$$h_1 : x_1 + 5x_2 + 4 = 0$$
$$g_1 : x_1^2 - 2x_2^2 - 2 + x_3^2 = 0$$

Sledeći korak jeste da formiramo, *Jakobijevu matricu*, za k=3.

$$J_3 = \begin{vmatrix} \frac{\partial f}{\partial x_3} & \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_1} \\ \frac{\partial h_1}{\partial x_3} & \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial g_1}{\partial x_3} & \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \end{vmatrix} = \begin{vmatrix} 0 & 2x_1 - 6 & 2x_2 + 4 \\ 0 & 1 & 5 \\ 2x_3 & 2x_1 & -4x_2 \end{vmatrix} = 10x_3(2x_1 - 6) - 2x_3(2x_2 + 4) = 0$$

Korištenjem jednačina ograničenja, dobijamo sledeći sistem jednačina:

$$10x_3(2x_1 - 6) - 2x_3(2x_2 + 4) = 0$$
$$x_1 + 5x_2 + 4 = 0$$
$$x_1^2 - 2x_2^2 - 2 + x_3^2 = 0.$$

Dalje možemo da sredimo sistem jednačina:

$$2x_3(10x_1 - 34 - 2x_2) = 0$$
$$x_1 + 5x_2 + 4 = 0$$
$$x_1^2 - 2x_2^2 - 2 + x_3^2 = 0.$$

Zaključujemo na osnovu prve jednačine, da ćemo imati dva slučaja: $x_3 = 0$ i $(10x_1 - 34 - 2x_2) = 0$.

•
$$x_3 = 0$$

$$x_1^2 - 2x_2^2 = 2$$

$$x_1 + 5x_2 + 4 = 0 \rightarrow x_1 = -5x_2 - 4$$

$$(-5x_2 - 4)^2 - 2x_2^2 = 2$$

$$25x_2^2 + 40x_2 + 16 - 2x_2^2 = 2$$

$$23x_2^2 + 40x_2 + 14 = 0$$

Rešavanjem kvadratne jednačine dobijamo dve stacionarne tačke:

$$A(0.572, -0.914)$$

 $B(-1.165, -0.567)$

•
$$10x_1 - 34 - 2x_2 = 0$$

$$10x_1 - 34 - 2x_2 = 0$$

$$x_1 + 5x_2 + 4 = 0/(-10)$$

$$-52x_2 - 74 = 0$$

$$x_2 = -1.42, x_1 = 3.68$$

Nakon što smo pronašli vrednosti x_1 i x_2 , potrebno je da proverimo i vrednost x_3 iz ograničenja:

$$x_3^2 = 2 - x_1^2 + 2x_2^2$$
$$x_3^2 = -7.5 < 0$$

Pošto je $x_3^2 < 0$, ograničenje nije zadovoljeno.