

Machine Learning in Practice

Crash Course on Machine Learning

August 22-24, 2016

Arnaud Gotlieb and Valeriya Naumova

Simula Research Laboratory AS

Simula School of Research and Innovation (SSRI)

GOAL:

Advice on how to apply learning algorithms to different applications

Some key aspects of this lecture:

- No math!!! But it could be much harder material to understand and use;
- Some aspects are debatable;
- Advice might not be applicable for novel machine learning research;
- Briefly.... to give you some time to play with the labs.

Slides based on:

- ML Lecture by A. Ng, Stanford University
- Lectures and papers by P. Domingos, UC Washington
- Presentations by Scott Fortmann-Roe

ML in Practice

- Understanding domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learning models
- Interpreting results
- Consolidating and deploying discovered knowledge
- Loop

LEARNING

REPRESENTATION + EVALUATION + OPTIMISATION

Key aspects to remember

It's generalisation that counts...

- Set some data aside from the beginning to test your estimator at the end
- Use cross-validation

Data alone is not enough

- Every learner must embody some knowledge or assumption beyond the data it is given in order to generalise beyond it.
- "No Free Lunch Theorem"
- one of the key criteria for choosing a representation is which kinds of knowledge are easily expressed in it.
- Remember: Machine Learning is not Magic!!!

Overfitting has many faces

- Decompose the generalisation error into bias and variance
- Use cross-validation, regularisation

High Variance = Overfitting:

the model has too many parameters.

High Bias = Underfitting:

the model is too rigid.

Key aspects to remember

Intuition fails in high dimensions

- Our intuitions, which come from a three- dimensional world, often do not apply in high-dimensional ones.
- Luckily most of the real-life data has a lower-dimensional representation

> Theoretical guarantees are not what they seem

Feature engineering is the key

Data pre-processing and feature extraction might be the most tedious work

More data beats a cleverer algorithm

The issue of scalability (time, memory and training set)

Key aspects to remember

- Learn many models not just one
 - Model ensembles: bagging, boosting...
- Simplicity does not imply accuracy
- Representable does not imply learnable
 - Can it be represented? ———— Can it be learned?
- Correlation does not imply causation
 - Diapers Beer Example

Getting Started on a Problem: Two Approaches

Approach #1: Careful design.

- Spend a long term designing exactly the right features, collecting the right dataset, and designing the right algorithmic architecture.
- Implement it and hope it works.

Benefit: Nicer, perhaps more scalable algorithms. May come up with new, elegant, learning algorithms; contribute to basic research in machine learning.

Approach #2: Build-and-fix.

- Implement something quick-and-dirty.
- Run error analyses and diagnostics to see what's wrong with it, and fix its errors.

Benefit: Will often get your application problem working more quickly. Faster time to market.

Debugging Learning Algorithms

Motivating Example

- Anti-spam. You carefully choose a small set of 100 words to use as features. (Instead of using all 50000+ words in English.)
- Bayesian logistic regression, implemented with gradient descent, gets 20% test error, which is unacceptably high.

$$\max_{\theta} \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}, \theta) - \lambda \|\theta\|^{2}$$

What to do next?

Fixing the Learning Algorithm

Bayesian logistic regression:

$$\max_{\theta} \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}, \theta) - \lambda \|\theta\|^{2}$$

Try improving algorithms in different ways:

- Getting more training examples.
- Reduce the set of features.
- Enlarge the set of features.
- Use different features.
- Run the optimiser (gradient descent) for some more iterations.
- Choose a different optimisation algorithm.
- Use a different regularisation term or constant value.
- Try another learning algorithm (SVM).
 - ... some may be fixing problems you don't have.

This approach might work, but it's very time-consuming, and largely a matter of luck whether you end up fixing what the problem really is.

Principled Analysis: Diagnostics

First figure out what's going on.

- Overfitting vs. Underfitting?
- Search error vs. Modelling error?
- Complex system: Find the most problematic component.

Trivial but vital:

- Visualise the data. (Plot or view frequent patterns.)
- Start with simple things.

Diagnostic for Bias vs Variance

Suppose you suspect the problem is either:

- Overfitting (high variance).
- Too few features to classify spam (high bias).

Diagnostic:

- Variance: Training error will be much lower than test error.
- Bias: Training error will also be high.

Diagnostics Tell You What to Try Next

Bayesian logistic regression:

$$\max_{\theta} \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}, \theta) - \lambda \|\theta\|^{2}$$

Try improving algorithms in different ways:

Getting more training examples.

Reduce the set of features.

Enlarge the set of features.

Use different features (email header).

Fixes high variance

Fixes high variance

Fixes high bias

Fixes high bias

- ▶ Run the optimiser (gradient descent) for some more iterations.
- Choose a different optimisation algorithm.
- Use a different regularisation term or constant value.
- Try another learning algorithm (SVM).
 - ... some may be fixing problems you don't have.

Optimisation Algorithm Diagnostics

- Bias vs. variance is one common diagnostic.
- For other problems, it's usually up to your own ingenuity to construct your own diagnostics to figure out what's wrong.

Another example:

- Bayesian logistic regression gets 2% error on spam, and 2% error on non-spam.
 (Unacceptably high error on non-spam.)
- SVM using a linear kernel gets 10% error on spam, and 0.01% error on non-spam.
 (Acceptable performance.)
- But you want to use logistic regression, because of computational efficiency, etc.
- What to do next?

Search vs Modelling Error

Search Error:

- the optimiser fails to find the best parameters
- ... a problem with the optimiser.

Modelling Error:

- the best parameters do not lead to the best performance.
- ... a problem with the objective function.

Consider:

- Will more iterations help? Is the algorithm (gradient descent for logistic regression) converging?
- When can two learners help to diagnose the problem?
- Are you optimising the right function?
- Correct value of the regularisation parameter?

Diagnostics tell you what to try next

Bayesian logistic regression:

$$\max_{\theta} \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}, \theta) - \lambda \|\theta\|^{2}$$

Try improving algorithms in different ways:

Getting more training examples.

Reduce the set of features.

Enlarge the set of features.

Use different features (email header).

Fixes high variance

Fixes high variance

Fixes high bias

Fixes high bias

▶ Run the optimiser (gradient descent) for some more iterations. Fixes opt algorithm

Choose a different optimisation algorithm.

Use a different regularisation term or constant value.

Try another learning algorithm (SVM).

... some may be fixing problems you don't have.

Fixes opt algorithm

Fixes opt objective

Fixes opt objective

Error Analysis

Machine learning "pipeline" consists of many learning algorithms. Example: face recognition from images.

Error Analysis

How much error is attributable to each of the components?

Plug in ground-truth for each component, and see how accuracy changes.

Conclusion: Most room for improvement in face detection and eyes segmentation.

Component	Accuracy
Overall System	85 %
Preprocess (remove background)	85 %
Face detection	91 %
Eyes segmentation	95 %
Nose segmentation	96 %
Mouth segmentation	97 %
Logistic Regression	100 %

Complex Systems

Error Analysis:

- Compares the best possible vs. current accuracy.
- Provide more and more golden truth data as part of the input.
- Find the component where the jump in accuracy is the highest.

Ablative Analysis:

- Compares some baseline vs. current accuracy.
- Switch off more and more components.
- Find the component where the loss in accuracy is the highest.