PA2: Digital Signatures

v3

Digital Signature Algorithms

DSA (Digital Signature Algorithms)

Public parameters:

- p, q: large primes. p > q, q | (p-1)
- ullet g: generator: 1 < g < p. $g^q \equiv 1 (mod p)$. $g^e \not\equiv 1 (mod p)$ for $e \in \{1, 2, \ldots, q-1\}$.

p, q, g are fixed and provided in this assignment.

Generate Key

- secret signing key x: choose random $x \in \{1, 2, \dots, q-1\}$
- public verification key y: $y = g^x \pmod{p}$. $y \in [2, p-1]$

Signing

Given message m: string, secret key x.

- Choose random k from $\{1, 2, q-1\}$
- Compute: $r = (g^k \mod p) \mod q$
- Compute: z = Number :: Hash(m)
- Compute: $s = (k^{-1}(z + xr)) \mod q$.
- If r or s is 0, choose different k.
- (r, s) is the signature.

Note: $ki = k^{-1} \pmod{q}$ is the unique element in $\{1, 2, \ldots, q-1\}$ s.t. $(ki \cdot k) \equiv 1 \pmod{q}$. The computation is provided in Number :: Inv().

Verification

Given message m: string, public key y, signature (r, s).

- Check that both r and s are in $\{1,2,\ldots,q-1\}$. If not, return false.
- Compute: $w = s^{-1} \bmod q$
- Compute: z = Number :: Hash(m)
- Compute: $u_1 = (zw) \mod q$
- Compute: $u_2 = (rw) \mod q$
- If $(g^{u_1}y^{u_2} \bmod p) \bmod q = r$, return true. Else, return false.

Schnorr

Public parameters:

- p, q: large primes. p > q, q | (p-1)
- ullet g: generator: 1 < g < p. $g^q \equiv 1 (mod p)$. $g^e \not\equiv 1 (mod p)$ for $e \in \{1, 2, \ldots, q-1\}$.

p,q,g are fixed and provided in this assignment.

Generate Key

- ullet secret signing key x: choose random $x \in \{1, 2, \dots, q-1\}$
- ullet public verification key $y{:}\ y=g^x(mod p).\ y\in [2,p-1]$

Signing

Given message m: string, secret key x.

- ullet Choose random k from $\{1,2,q-1\}$
- Compute: $r = (g^k \mod p)$

- Compute: $e = Number :: Hash(r, m) \bmod q$
- Compute: $s = (k xe) \mod q$.
- If s or e is 0, choose different k.
- (s, e) is the signature.

Verification

Given message m: string, public key y, signature (s, e).

- ullet Check that both s and e are in $\{1,2,\ldots,q-1\}.$ If not, return false.
- Compute: $r_v = (g^s y^e) \bmod p$
- ullet Compute: $e_v = Number :: Hash(r_v, m) mod q$
- ullet If $e_v=e$, return true. Else, return false.