

زبان های توصیف سخت افزار و مدارها

دانشگاه صنعتی اصفهان

دانشکده مهندسی برق و کامپیوتر

امير خورسندي

زمستان ۱۴۰۱

تراشه های FPGA محصول Xilinx

سهم بازار در حوزه FPGA

خانواده تراشه های Xilinx

• Virtex: کارایی بالا Virtex6، Virtex4، Virtex2

نسل جدید از سال ۲۰۱۰

- تکنولوژی ساخت ۲۸ نانومتر
 - افزایش حجم به دو برابر
 - کاهش توان به نصف
 - Spartan7
 - Virtex7 •
 - Kintex7
 - Artix7 •

تراشه های UltraScale

• تكنولوژی ساخت ۲۰ نانومتر (UltraScale) و ۱۶ نانومتر (*UltraScale)

Virtex •

Kintex •

تراشه های Zynq

- یک SoC حاصل از ترکیب FPGA و ریزپردازنده
 - مناسب برای سیستمهای تعبیه شده

Zynq7000 •

رده های خاص

• صنایع خودروسازی: سری XA

• صنایع دفاعی – نظامی: سری XQ

• صنعت فضایی: سری QV

كدگذاري تراشه ها

بورد Posedge

- بورد آموزشی
- تراشه Spartan6-LX9

معماری Spartan6

ساختار CLB

- از دو بخش مجزا تشکیل شده است.
- •برای ارتباط با بلوک های دیگر به سوییچ مرتبط است.
- •بیت نقلی در بخش اول به صورت مجزا از بلوک پایینی به بلوک بالایی منتقل می شود.

انواع CLB

- •SLICEM: بخش کامل برای پیاده سازی مدار ترکیبی، حافظه رم و یا شیفت رجیستر
 - •SLICEL: برای پیاده سازی مدار ترکیبی به همراه زنجیره نقلی
 - •SLICEX: برای پیاده سازی فقط مدار ترکیبی

ساختار ارتباطي

•بلوک ها با فاصله کمی از همدیگر در دسترس هستند.

امير خورسندي المير خورسندي

ساختار هر بخش CLB

- •چهار عدد LUT با شش ورودی
 - •چهار عدد FF/Latch
 - •چهار عدد FF اضافه
 - وزنجيره بيت نقلي
 - •مالتی پلکسرهای عریض

LUT

- •هر تابع حاصل از ۶ ورودی
 - •دو تابع مجزای ۵ ورودی

زنجيره بيت نقلي

- •مناسب برای انجام جمع و تفریق سریع
 - انتشار بیت نقلی در هر بخش
- انتقال بیت نقلی در یک ستون به بخش های دیگر
 - مدار پیش بینی بیت نقلی در هر بخش

حافظه RAM

- •استفاده از حافظه مشترک با LUT
 - •پیکربندی های مختلف:
 - تک پورت: 64x1 یا 32x2
- دو پورت: ۱ پورت خواندنی ۱ پورت خواندنی -نوشتنی
 - دو پورت ساده: ۱ پورت خواندنی/۱ پورت نوشتنی
- چهارپورت: ۳ پورت خواندنی/۱ پورت خواندنی-نوشتنی

حافظه RAM (ادامه)

Single	Dual	Simple	Quad
Port	Port	Dual Port	Port
32x2 32x4 32x6 32x8 64x1 64x2 64x3 64x4 128x1 128x2 256x1	32x2D 32x4D 64x1D 64x2D 128x1D	32x6 SDP 64x3 SDP	32x2 Q 64x1 Q

امير خورسندي امير خورسندي

شيفت رجيستر

ورودي/خروجي

- برای برقراری ارتباط تراشه با محیط پیرامون استفاده می شوند.
 - در قالب واحدهایی به نام IO Bank دسته بندی شده اند:
 - بر روی هر تراشه بر اساس نوع تراشه بین ۴ تا ۶ بانک قرار دارد.
 - درون هر بانک بین ۳۰ تا ۸۳ پایه ورودی/خروجی تعبیه شده است.
 - هر پایه بیش از ۴۰ استاندارد متفاوت را پوشش می دهد.
- استفاده از پایه های درون هر بانک به منظور ارتباط ورودی اخروجی تابع قوانین خاصی می باشد.

ساختار ورودي/خروجي

• پالس ساعت مجزا برای مسیرهای ورودی و خروجی

• Set و Reset مشترک

انواع ورودي/خروجي

- Single Ended •
- Differential Pair •

ارتباط ورودی/خروجی با درون FPGA

