Wydział, kierunek:	Imię i nazwisko:	Rok:	Grupa:
WFiIS, FT	Marcin Mikołajczyk	4	1
Data wykonania:	Data oddania:		OCENA:
20 października 2025	20 października 2025		

Laboratorium 2

1 Metoda czasu urojonego

Celem projektu było zbadanie stanów własnych jednowymiarowego Hamiltonianu \hat{H} w nieskończonej studni potencjału. Problem sprowadza się do rozwiązania równania Schrödingera:

$$\hat{H}\Psi = E\Psi \tag{1}$$

gdzie Hamiltonian ma postać $\hat{H}=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+V(x).$

Zastosowana metoda czasu urojonego polega na iteracyjnym stosowaniu operatora $(1 - \alpha \hat{H})$ na dowolną funkcję falową Ψ , co "wytłumia" składowe o wyższych energiach, pozostawiając stan podstawowy. Algorytm iteracyjny ma postać:

$$\Psi_{new} := (1 - \alpha \hat{H}) \Psi_{old} \tag{2}$$

gdzie α jest małym parametrem (krokiem czasowym).

1.1 Implementacja numeryczna

Obliczenia przeprowadzono na dyskretnej siatce N=300 punktów, dla studni o szerokości $L=100\,\mathrm{nm}$. Działanie Hamiltonianu na funkcję falową na siatce przybliżono wzorem:

$$H\Psi(i) = -\frac{\hbar^2}{2m} \frac{\Psi(i+1) + \Psi(i-1) - 2\Psi(i)}{\Delta x^2} + V_i \Psi(i)$$
 (3)

W każdej iteracji funkcja falowa była normalizowana zgodnie z regułą:

$$I = \sum_{i=0}^{N} |\Psi(i)|^2 \Delta x, \quad \text{a następnie} \quad \forall_i \Psi(i) := \frac{\Psi(i)}{\sqrt{I}}$$
 (4)

Dla tak znormalizowanej funkcji, wartość oczekiwaną energii obliczano jako:

$$\langle E \rangle = \sum_{i=0}^{N} \Psi(i) H \Psi(i) \Delta x$$
 (5)

Iteracje przerywano, gdy zmiana energii między krokami była mniejsza niż $tol=1\times 10^{-6}\,\mathrm{meV}$:

$$|\langle E \rangle_{old} - \langle E \rangle_{new}| < tol \tag{6}$$

2 Zbieżność metody czasu urojonego

Zbadano zbieżność procesu dla różnych wartości α . Dla stałego potencjału, optymalna (i krytyczna) wartość tego parametru wynosi:

$$\alpha_0 = \frac{m\Delta x^2}{\hbar^2} \tag{7}$$

Dla badanej siatki obliczono krytyczną wartość parametru α_0 , która wyniosła 2.658 230 a.u. (co odpowiada $7.233\,470\times10^4~{\rm meV}^{-1}$).

Rysunek 1: Zbieżność energii stanu podstawowego w zależności od α

W celu zbadania wpływu parametru α na zbieżność, przeprowadzono symulacje dla trzech różnych wartości. Wyniki zebrano w Tabeli 1.

Tabela 1: Wyniki zbieżności dla różnych wartości α (dla $\alpha_0\approx 2.658).$

α/α_0	Wartość α (a.u.)	Liczba iteracji	Uzyskana $E \; [\text{meV}]$
≈ 0.50	1.329115	12599	0.563809
≈ 0.95	2.525319	7309	0.562512
≈ 1.05	2.791142	10639	20472.9

Rysunek 2: Energia stanu podstawowego w zależności od α

Jak widać na Rysunku 2 oraz w Tabeli 1, dla wartości $\alpha > \alpha_0$ (wiersz ≈ 1.05) metoda nie zbiega do stanu podstawowego, lecz do znacznie wyższej energii. Ze względu na skończoną precyzję obliczeń, konieczne jest stosowanie $\alpha < \alpha_0$. Obserwujemy, że im α jest bliższe α_0 (porównując ≈ 0.95 z ≈ 0.50), tym liczba iteracji potrzebna do osiągnięcia zbieżności jest mniejsza (7309 vs 12599).

3 Pierwszy stan wzbudzony

Aby wyznaczyć pierwszy stan wzbudzony (Ψ_2), należy zapewnić jego ortogonalność do wyznaczonego wcześniej stanu podstawowego (Ψ_1). W tym celu po każdym kroku iteracji (2) stosowano procedurę ortogonalizacji Grama-Schmidta.

Najpierw obliczano rzut Ψ_2 na Ψ_1 :

$$c_1 = \langle \Psi_1 | \Psi_2 \rangle = \sum_{i=0}^{N} \Psi_1(i) \Psi_2(i) \Delta x \tag{8}$$

A następnie odejmowano tę składową od Ψ_2 :

$$\Psi_2(i) := \Psi_2(i) - c_1 \Psi_1(i) \tag{9}$$

Proces zbieżności dla $\alpha = 0.99 \cdot \alpha_0$ (Rysunek 3) był równie szybki jak dla stanu podstawowego.

Rysunek 3: Zbieżność wartości oczekiwanej energii dla pierwszego stanu wzbudzonego (n=2).

Wyznaczona wartość energii wyniosła $E_2=2.243\,17\,\mathrm{meV}$, co różni się od wartości teoretycznej o zaledwie 0.09%. Kształty funkcji falowych dla stanów n=1 (Rysunek 4) i n=2 (Rysunek 5) są zgodne z oczekiwaniami (brak węzłów dla n=1, jeden węzeł dla n=2).

Rysunek 4: Funkcja falowa stanu podstawowego (n = 1) w nieskończonej studni potencjału.

Rysunek 5: Funkcja falowa pierwszego stanu wzbudzonego (n=2) w nieskończonej studni potencjału.

4 Nieskończona studnia potencjału z barierą

W ostatniej części zbadano stany własne w studni z dodatkową barierą potencjału umieszczoną pośrodku. Głębokość bariery wynosiła $W=500\,\mathrm{meV}$. Tolerancję zbieżności zaostrzono do $10^{-9}\,\mathrm{meV}$.

Zbieżność dla obu stanów w porównaniu z metodą strzałów przedstawiono na Rysunku 6.

Rysunek 6: Zbieżność energii dla stanu podstawowego (n=1) i pierwszego stanu wzbudzonego (n=2) dla studni z barierą $W=500\,\mathrm{meV}$.

Uzyskano następujące wartości energii:

- Stan podstawowy: $E_1 = -12.2036 \,\text{meV}$. Ujemna energia oznacza stan związany wewnątrz "bariery" (obniżenia potencjału).
- Stan wzbudzony: $E_2 = 2.245\,17\,\text{meV}$. Wartość ta jest, zgodnie z oczekiwaniami, niemal identyczna z energią E_2 dla studni bez bariery. Dzieje się tak, ponieważ stan $n=2\,\text{ma}$

węzeł w x=L/2, czyli tam, gdzie znajduje się bariera, przez co jest na nią "niewrażliwy". Funkcje falowe dla tego przypadku przedstawiono na Rysunkach 7 i 8.

Rysunek 7: Funkcja falowa $\Psi_1(x)$ z barierą

Rysunek 8: Funkcja falowa $\Psi(x)$ pierwszego stanu wzbudzonego (n=2)dla studni z barierą $W=500\,\mathrm{meV}.$

Literatura

[1] Instrukcja do ćwiczenia UPEL MOFiT2, dostęp 20 października 2025