Building Heap

Bottom Up

VS

Top Down

BuildHeap Bottom up

- 1. Assume $n = 2^{(h+1)} 1$
- 2. Binary tree is complete
- 3. The height is h

level	Number of nodes	Length of the path from node to a leaf	
0 (root)	1	h	
1	2	h -1	
2	4	h -2	
h - 1	2 ^{h-1}	1	
h	2 ^h	0	

Example: n = 15, h = 3 Binary tree nodes showing their height

BuildHeap Bottom up

Thus maximum number of operations (in the worst case) is

$$\sum_{j=0}^{h} j2^{h-j} = 2^h \sum_{j=0}^{h} j2^{-j}$$

Since

$$\sum_{j=0}^{h} j 2^{-j} < \sum_{j=0}^{\infty} j 2^{-j} = 2$$

Note: An operation in this case consists of finding the maximum among three values and perform a swap in the worst case.

BuildHeap Bottom up

Thus maximum number of operations (in the worst case) is

$$\sum_{j=0}^{n} j 2^{h-j} < 2^{h+1}$$

Since $n = 2^{(h+1)} - 1$,

$$\sum_{j=0}^{n} j 2^{h-j} < n+1 = O(n)$$

BuildHeap Top down

- 1. Assume $n = 2^{(h+1)} 1$
- 2. Binary tree is complete
- 3. The height is h

level	Number of nodes	Length of the path from node to a root
0 (root)	1	0
1	2	1
2	4	2
h - 1	2 ^{h-1}	h - 1
h	2 ^h	h

BuildHeap Top down

Thus maximum number of operations (in the worst case) is

$$\sum_{j=0}^{n} j2^j = O(h2^h) = O(nlogn)$$

Actual numbers

n	3	7	15	31	63	
h	1	2	3	4	5	
Bottom Up	1	4	11	26	57	n-log(n+1)
Top Down	2	10	34	98	258	(n+1)log(n+1) – 2n