name	problem	f	g	$\mathcal{A}(x)$	method (complexity)
Robust	$\min \ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1$	0	x	
Regression		$\ \mathbf{x} - \mathbf{b}\ _1$	0	Ax	
ℓ_1 -Regularized		$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1 + \ \mathbf{x}\ _1$	0	X	
Robust	$\min \ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1 + \ \mathbf{x}\ _1$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1$	$\ \mathbf{x}\ _1$	x	
Regression		$\ \mathbf{x} - \mathbf{b}\ _1$	$\ \mathbf{x}\ _1$	Ax	
ℓ_2 -Regularized	$\min \ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1 + \ \mathbf{x}\ _2^2$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1$	$\ \mathbf{x}\ _{2}^{2}$	X	
Robust Regression		$\ \mathbf{x} - \mathbf{b}\ _1$	$\ \mathbf{x}\ _{2}^{2}$	Ax	
R-Regularized	$\min \ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1 + \sum rac{1}{x_i}$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _1$	$\sum \frac{1}{x_i}$	X	
Robust Regression	s.t. $x > 0$	$\ \mathbf{x} - \mathbf{b}\ _1$	$\sum \frac{1}{x_i}$	Ax	
ℓ_1 -Reg. LS	$\min \ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2^2 + \ \mathbf{x}\ _1$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _{2}^{2}$	$\ \mathbf{x}\ _1$	X	
ℓ_1 -Con. LS	$\min\{\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2^2 : \ \mathbf{x}\ _1 \le \alpha\}$	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _{2}^{2}$	$\delta_{B_1[0,lpha]}$	X	

name	problem	f	g	$\mathcal{A}(x)$	method (complexity)
Convex	$minmax\{d_{C}(x),d_{D}(x)\}$	$\max\{d_C(\mathbf{x}),d_D(\mathbf{x})\}$	0	x	
Feasibility $(C \cap D \neq \emptyset)$	$\min \delta_{\mathcal{C}}(\mathbf{x}) + \delta_{\mathcal{D}}(\mathbf{x})$	$\delta_{\mathcal{C}}(\mathbf{x})$	$\delta_D(\mathbf{x})$	X	
Projection on	$\min \ \mathbf{x} - \mathbf{a}\ ^2$	$\sum_{i=1}^m \delta_{C_i}(\mathbf{x}_i)$	$\ \mathbf{x} - \mathbf{a}\ ^2$	(x,, x)	
Convex Sets	s.t. $\mathbf{x} \in \cap_{i=1}^m C_i$	$\sum_{i=1}^m \delta_{C_i}(\mathbf{x})$	$\ \mathbf{x} - \mathbf{a}\ ^2$	X	
Basis Pursuit	$min\{\ \mathbf{x}\ _1: \mathbf{A}\mathbf{x} = \mathbf{b}\}$	$ \mathbf{x} _1$	$\delta_{\{\mathbf{x}:\mathbf{A}\mathbf{x}=\mathbf{b}\}}$	x	
		$\delta_{\{b\}}(\mathbf{x})$	$\ \mathbf{x}\ _1$	Ax	
Poisson Inv.	$\min_{x\geq 0}\sum b_i \ln \frac{b_i}{(Ax)_i} + (Ax)_i$	$-\sum (b_i \ln x_i + x_i)$	0	Ax	
Matrix Compl.	$\min \ \mathcal{M}(\mathbf{X}) - \mathbf{b}\ _F^2 + \ \mathbf{X}\ _*$	$\ \mathcal{M}(\mathbf{X}) - \mathbf{b}\ _F^2$	$\ \mathbf{X}\ _*$	x	
	s.t. $\mathbf{X} \in \mathbb{R}^{n \times d}$	$\ \mathbf{X} - \mathbf{b}\ _F^2$	$\ \mathbf{X}\ _*$	$\mathcal{M}(\mathbf{X})$	
TV Denoising	$\min\{0.5\ \mathbf{x} - \mathbf{d}\ _2^2 + \ \mathbf{D}\mathbf{x}\ _1\}$	$0.5\ \mathbf{x}\ _1$	$0.5\ \mathbf{x} - \mathbf{d}\ _2^2$	Dx	
TV Deblurring	$\min\{\ \mathbf{C}\mathbf{x} - \mathbf{b}\ _2^2 + \ \mathbf{D}\mathbf{x}\ _1\}$	$\ \mathbf{x} - \mathbf{b}\ _2^2 + \ \mathbf{y}\ _1$	0	(Cx, Dx)	