Package 'VBel'

December 5, 2024

December 5, 2021		
Type Package		
Title Variational Bayes for Fast and Accurate Empirical Likelihood Inference		
Version 1.1.0		
Date 2024-12-05		
Description Computes the Gaussian variational approximation of the Bayesian empirical likelihood posterior. This is an implementation of the function found in Yu, W., & Bondell, H. D. (2023) <doi:10.1080 01621459.2023.2169701="">.</doi:10.1080>		
License GPL (>= 3)		
Imports Rcpp (>= 1.0.12), stats		
LinkingTo Rcpp, RcppEigen		
Encoding UTF-8		
RoxygenNote 7.3.2		
<pre>URL https://github.com/jlimrasc/VBel</pre>		
<pre>BugReports https://github.com/jlimrasc/VBel/issues</pre>		
Suggests mytnorm, testthat (>= 3.0.0)		
Config/testthat/edition 3		
NeedsCompilation yes		
Author Weichang Yu [aut] (https://orcid.org/0000-0002-0399-3779), Jeremy Lim [cre, aut]		
Maintainer Jeremy Lim < jeremy.lim@unimelb.edu.au>		
Repository CRAN		
Date/Publication 2024-12-05 05:20:02 UTC		
Contents		
VBel-package		

VBel-package

Index 10

VBel-package Variational Bayes for Fast and Accurate Empirical Likelihood Infer-

ence

Description

Computes the Gaussian variational approximation of the Bayesian empirical likelihood posterior.

This is an implementation of the function found in Yu, W., & Bondell, H. D. (2023) < doi:10.1080/01621459.2023.2169701>.

Details

The DESCRIPTION file:

Package: VBel Type: Package

Title: Variational Bayes for Fast and Accurate Empirical Likelihood Inference

Version: 1.1.0

Date: 2024-12-05

 $Authors @R: \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment = c(ORCI) \\ c(person("Weichang", "Yu", , "weichang.yu@unimelb.edu.au", role = c("aut"), comment =$

Description: Computes the Gaussian variational approximation of the Bayesian empirical likelihood posterior. The

License: GPL (>= 3)

Imports: Rcpp (>= 1.0.12), stats LinkingTo: Rcpp, RcppEigen

Encoding: UTF-8

Roxygen: list(markdown = TRUE)

RoxygenNote: 7.3.2

URL: https://github.com/jlimrasc/VBel
BugReports: https://github.com/jlimrasc/VBel/issues

Suggests: mvtnorm, testthat (>= 3.0.0)

Config/testthat/edition: 3

Author: Weichang Yu [aut] (https://orcid.org/0000-0002-0399-3779), Jeremy Lim [cre, aut]

Maintainer: Jeremy Lim <jeremy.lim@unimelb.edu.au>

Archs: x64

Index of help topics:

VBel-package Variational Bayes for Fast and Accurate

Empirical Likelihood Inference

compute_AEL Compute the Adjusted Empirical Likelihood compute_GVA Compute the Full-Covariance Gaussian VB

Empirical Likelihood Posterior

diagnostic_plot Check the convergence of a data set computed by

'compute_GVA'

compute_AEL 3

Author(s)

Weichang Yu [aut] (https://orcid.org/0000-0002-0399-3779), Jeremy Lim [cre, aut] Maintainer: Jeremy Lim jeremy.lim@unimelb.edu.au

References

https://www.tandfonline.com/doi/abs/10.1080/01621459.2023.2169701

See Also

```
compute_AEL() for choice of R and/or C++ computation of AEL
compute_GVA() for choice of R and/or C++ computation of GVA
diagnostic_plot() for verifying convergence of computed GVA data
```

Examples

```
#ansGVARcppPure <- compute_GVA(mu, C_0, h, delthh, delth_logpi, z, lam0, rho,
#elip, a, iters, iters2, fullCpp = TRUE)
#diagnostic_plot(ansGVARcppPure)</pre>
```

compute_AEL

Compute the Adjusted Empirical Likelihood

Description

Evaluates the Log-Adjusted Empirical Likelihood (AEL) (Chen, Variyath, and Abraham 2008) for a given data set, moment conditions and parameter values. The AEL function is formulated as

$$\log \text{AEL}(\boldsymbol{\theta}) = \max_{\mathbf{w}'} \sum_{i=1}^{n+1} \log(w_i'),$$

where \mathbf{z}_{n+1} is a pseudo-observation that satisfies

$$h(\mathbf{z}_{n+1}, \boldsymbol{\theta}) = -\frac{a_n}{n} \sum_{i=1}^n h(\mathbf{z}_i, \boldsymbol{\theta})$$

for some constant $a_n > 0$ that may (but not necessarily) depend on n, and $\mathbf{w}' = (w'_1, \dots, w'_n, w'_{n+1})$ is a vector of probability weights that define a discrete distribution on $\{\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{z}_{n+1}\}$, and are subject to the constraints

$$\sum_{i=1}^{n+1} w'_i h(\mathbf{z}_i, \boldsymbol{\theta}) = 0, \quad \text{and} \quad \sum_{i=1}^{n+1} w'_i = 1.$$

Here, the maximizer $\tilde{\mathbf{w}}$ is of the form

$$\tilde{w}_i = \frac{1}{n+1} \frac{1}{1 + \lambda_{\text{AEL}}^{\top} h(\mathbf{z}_i, \boldsymbol{\theta})},$$

4 compute_AEL

where λ_{AEL} satisfies the constraints

$$\frac{1}{n+1}\sum_{i=1}^{n+1}\frac{h(\mathbf{z}_i,\boldsymbol{\theta})}{1+\lambda_{\mathrm{AEL}}^\top h(\mathbf{z}_i,\boldsymbol{\theta})}=0,\quad \text{and}\quad \frac{1}{n+1}\sum_{i=1}^{n+1}\frac{1}{1+\lambda_{\mathrm{AEL}}^\top h(\mathbf{z}_i,\boldsymbol{\theta})}=1.$$

Usage

```
compute_AEL(th, h, lam0, a, z, iters = 500, returnH = FALSE)
```

Arguments

th	p x 1 parameter vector to evaluate the AEL function at
h	User-defined moment-condition function. Note that output should be an (n-1) x K matrix where K is necessarily $\geq p$
lam0	Initial vector for Lagrange multiplier lambda
a	Positive scalar adjustment constant
Z	(n-1) x d data matrix. Note that $\{z_i\}_{i=1}^{n-1}$ is a sequence of d-dimensional data vectors
iters	Number of iterations using Newton-Raphson for estimation of lambda. Default: 500
returnH	Whether to return calculated values of h, H matrix and lambda. Default: 'FALSE

Details

Note that theta (th) is a p-dimensional vector, h is a K-dimensional vector and $K \ge p$

Value

A numeric value for the Adjusted Empirical Likelihood function computed evaluated at a given theta value

Author(s)

Weichang Yu, Jeremy Lim

References

Chen, J., Variyath, A. M., and Abraham, B. (2008), "Adjusted Empirical Likelihood and its Properties," Journal of Computational and Graphical Statistics, 17, 426–443. Pages 2,3,4,5,6,7 doi:10.1198/106186008X321068

Examples

```
# Generating 30 data points from a simple linear-regression model
set.seed(1)
x <- runif(30, min = -5, max = 5)
vari <- rnorm(30, mean = 0, sd = 1)
y <- 0.75 - x + vari</pre>
```

compute_GVA 5

compute_GVA

Compute the Full-Covariance Gaussian VB Empirical Likelihood Posterior

Description

Requires a given data set, moment conditions and parameter values and returns a list of the final mean and variance-covariance along with an array of the in-between calculations at each iteration for analysis of convergence

Usage

```
compute_GVA(
   mu0,
   C0,
   h,
   delthh,
   delth_logpi,
   z,
   lam0,
   rho,
   epsil,
   a,
   SDG_iters = 10000,
   AEL_iters = 500,
   verbosity = 500
)
```

6 compute_GVA

Arguments

mu0	p x 1 initial vector of Gaussian VB mean
C0	p x p initial lower triangular matrix of Gaussian VB Cholesky
h	User-defined moment-condition function. Note that output should be an (n-1) x K matrix where K is necessarily $\geq p$
delthh	User-defined first-order derivative of moment-condition function. Note that output should be a K x p matrix of $h(zi,th)$ with respect to theta
delth_logpi	User-defined first-order derivative of log-prior function. Note that output should be a p \mathbf{x} 1 vector
z	Data matrix, n-1 x d matrix
lam0	Initial vector for Lagrange multiplier lambda
rho	Scalar numeric beteen 0 to 1. ADADELTA accumulation constant
epsil	Positive numeric scalar stability constant. Should be specified with a small value
а	Positive scalar adjustment constant. For more accurate calculations, small values are recommended
SDG_iters	Number of Stochastic Gradient-Descent iterations for optimising mu and C. Default: 10,000
AEL_iters	Number of iterations using Newton-Raphson for optimising AEL lambda. Default: 500
verbosity	Integer for how often to print updates on current iteration number. Default:500

Value

A list containing:

- 1. mu_FC: VB Posterior Mean at final iteration. A vector of size p x 1
- 2. C_FC: VB Posterior Variance-Covariance (Cholesky) at final iteration. A lower-triangular matrix of size p x p
- 3. mu_FC_arr: VB Posterior Mean for each iteration. A matrix of size p x (SDG_iters + 1)
- 4. C_FC_arr: VB Posterior Variance-Covariance (Cholesky) for each iteration. An array of size p x p x (SDG_iters + 1)

Author(s)

Weichang Yu, Jeremy Lim

References

Yu, W., & Bondell, H. D. (2023). Variational Bayes for Fast and Accurate Empirical Likelihood Inference. Journal of the American Statistical Association, 1–13. doi:10.1080/01621459.2023.2169701

diagnostic_plot 7

Examples

```
# -----
# Initialise Inputs
# -----
# Generating 30 data points from a simple linear-regression model
set.seed(1)
  \leftarrow runif(30, min = -5, max = 5)
vari <- rnorm(30, mean = 0, sd = 1)
   <- 0.75 - x + vari
lam0 \leftarrow matrix(c(0,0), nrow = 2)
    <- cbind(x, y)
# Specify moment condition functions for linear regression and its corresponding derivative
   <- function(z, th) {
   xi \leftarrow z[1]
   уi
          <-z[2]
   h_zith \leftarrow c(yi - th[1] - th[2] * xi, xi*(yi - th[1] - th[2] * xi))
   matrix(h_zith, nrow = 2)
}
delthh <- function(z, th) {</pre>
   xi \leftarrow z[1]
    matrix(c(-1, -xi, -xi, -xi^2), 2, 2)
}
# Specify derivative of log prior
delth_logpi <- function(theta) { -0.0001 * mu0 }</pre>
# Specify AEL constant and Newton-Rhapson iteration
         <- 0.00001
AEL_iters <- 10
# Specify initial values for GVA mean vector and Cholesky
reslm <- lm(y \sim x)
    <- matrix(unname(reslm$coefficients),2,1)</pre>
mu0
      <- unname(t(chol(vcov(reslm))))
# Specify details for ADADELTA (Stochastic Gradient-Descent)
SDG_iters <- 50
epsil <- 10^-5
         <- 0.9
rho
# -----
result <-compute_GVA(mu0, C0, h, delthh, delth_logpi, z, lam0,</pre>
rho, epsil, a, SDG_iters, AEL_iters)
```

8 diagnostic_plot

Description

Plots mu and variance in a time series plot to check for convergence of the computed data (i.e. Full-Covariance Gaussian VB Empirical Likelihood Posterior)

Usage

```
diagnostic_plot(dataList, muList, cList)
```

Arguments

dataList Named list of data generated from compute_GVA

muList Array of indices of mu_arr to plot. (default:all)

cList Matrix of indices of variance to plot, 2xn matrix, each row is (col,row) of variance matrix

Value

Matrix of variance of C_FC

Examples

```
# Initialise Inputs
# Generating 30 data points from a simple linear-regression model
seedNum <- 100
set.seed(seedNum)
        <- 100
n
        <- 10
lam0
        <- matrix(0, nrow = p)
        \leftarrow rep(1, p)
sigStar \leftarrow matrix(0.4, p, p) + diag(0.6, p)
        <- mvtnorm::rmvnorm(n = n-1, mean = mean, sigma = sigStar)</pre>
# Specify moment condition functions for linear regression and its corresponding derivative
        <- function(zi, th) { matrix(zi - th, nrow = 10) }
delthh <- function(z, th) { -diag(p) }</pre>
# Specify derivative of log prior
delth_logpi <- function(theta) {-0.0001 * theta}</pre>
# Specify AEL constant and Newton-Rhapson iteration
AEL_iters <- 5 # Number of iterations for AEL
          <- 0.00001
# Specify initial values for GVA mean vector and Cholesky
        <- 1/(n-1) * matrix(colSums(z), nrow = p)
        <- matrix(zbar, p, 1)
mu_0
sumVal <- matrix(0, nrow = p, ncol = p)</pre>
for (i in 1:p) {
```

diagnostic_plot 9

```
<- matrix(z[i,], nrow = p)
sumVal <- sumVal + (zi - zbar) %*% matrix(zi - zbar, ncol = p)</pre>
sigHat <- 1/(n-2) * sumVal
C_0
      <- 1/sqrt(n) * t(chol(sigHat))
# Specify details for ADADELTA (Stochastic Gradient-Descent)
SDG\_iters <- 5 # Number of iterations for GVA
         <- 10^-5
epsil
         <- 0.9
rho
# -----
# Main
# -----
# Compute GVA
ansGVA <-compute_GVA(mu_0, C_0, h, delthh, delth_logpi, z, lam0, rho, epsil,
a, SDG_iters, AEL_iters)
# Plot graphs
diagnostic_plot(ansGVA) # Plot all graphs
diagnostic_plot(ansGVA, muList = c(1,4)) # Limit number of graphs
diagnostic_plot(ansGVA, cList = matrix(c(1,1, 5,6, 3,3), ncol = 2)) # Limit number of graphs
```

Index

```
* package

VBel-package, 2

compute_AEL, 3

compute_AEL(), 3

compute_GVA, 5, 8

compute_GVA(), 3

diagnostic_plot, 7

diagnostic_plot(), 3

VBel (VBel-package), 2

VBel-package, 2
```