BPT-201 (semester II) Topic: Blackbody Radiation-part 5 (Wien's Distribution Law)

Dr Neelam Srivastava

Department of Physics (MMV Section)

Banaras Hindu University

neelamsrivastava_bhu@yahoo.co.in

neel@bhu.ac.in

Experimental results of black body radiation energy distribution

What this result tells us

- Energy density is a function of temperature and wavelength both.
- For every temperature there is a particular wavelength which has maximum energy density.
- This maximum wavelength shows a shift with temperature. As the temperature increases λ_{\max} shifts toward the lower value.
- In Wien's displacement law Wien has explained shifting relation between temperature and wavelength.
- In Wien's distribution law he has deduced a formula for estimating the energy density related with λ at given temperature.

Wien's Distribution Law

• In previous lecture (ppt) we studied regarding the Wien's displacement law.

• Which tells us how the wavelength of maximum intensity changes with change in temperature.

• Although long back Kirchhoff in 1860s, had shown that u=u(v,T) can be presented by a universal function.

.....Wien's Distribution Law

- It could be formulated nearly after 40 years of his statement.
- Wien's in 1896, could find a relation for u in terms of ν and T,
- which is now known as Wien's distribution law.
- Here he tried to estimate the energy related to wavelength range at certain $\boldsymbol{\lambda}$
- or better to say how energy is distributed in a radiation.

Proof of Wien's Distribution Law

 For estimating the energy content in particular wavelength let us start from our previous imaginary experiment (used for Wien's displacement law).

• Let us isolate wavelength between λ and λ +d λ in the spherical enclosure subjected to adiabatic expansion.

• The work done = $p \Delta V$

• P= u_{λ} d $\lambda/3$ (as we have define energy density and pressure relation p=u/3 and here we are considering only wavelength d λ range hence the if the energy density for λ is u_{λ}).

• So the work done = $u_{\lambda} d\lambda \Delta V/3$.

• The total energy content for particular wavelength = $u_{\lambda}d\lambda V$

 The work done must be equal to change in total energy available in volume V as calculated above hence we have

$$\frac{1}{3}u_{\lambda}d\lambda\,\Delta V = -\Delta(u_{\lambda}d\lambda\,V)$$

• or
$$\frac{1}{3}u_{\lambda}d\lambda \Delta V = -\Delta(u_{\lambda})d\lambda V - u_{\lambda}\Delta(d\lambda V)$$

or
$$\frac{1}{3}u_{\lambda}d\lambda\,\Delta V = -\Delta u_{\lambda}\,d\lambda\,V - u_{\lambda}d\lambda\,\Delta V - u_{\lambda}\,V\,\Delta(d\lambda\,) \tag{A}$$

• Dividing the equation (A) by $u_{\lambda}d\lambda V$ we get

$$\frac{1}{3}\frac{\Delta V}{V} = -\frac{\Delta u_{\lambda}}{u_{\lambda}} - \frac{\Delta V}{V} - \frac{\Delta (d\lambda)}{d\lambda}$$

• or by rearranging and using $\frac{\Delta(d\lambda)}{d\lambda} = \frac{\Delta\lambda}{\lambda}$

$$\frac{\Delta(d\lambda)}{d\lambda} = \frac{\Delta\lambda}{\lambda}$$

• we get
$$\frac{4}{3} \frac{\Delta V}{V} = -\frac{\Delta u_{\lambda}}{u_{\lambda}} - \frac{\Delta \lambda}{\lambda}$$
(B)

• Taking $V=\frac{4\pi}{3}r^3$ we get $\Delta V=\frac{4\pi}{3}3\,r^2\,\Delta r=\,4\pi r^2\,\Delta r$

$$\Delta V = \frac{4\pi}{3} \, 3 \, r^2 \, \Delta r = 4\pi r^2 \, \Delta r$$

• So we get
$$\frac{\Delta V}{V} = \frac{4\pi r^2 \Delta r}{\frac{4\pi}{3}r^3} = 3\frac{\Delta r}{r}$$

• Hence
$$\frac{\Delta r}{r} = \frac{1}{3} \frac{\Delta V}{V} = \frac{\Delta \lambda}{\lambda}$$

• Putting this in equation (B) we get $5\frac{\Delta\lambda}{\lambda} + \frac{\Delta u_{\lambda}}{u_{\lambda}} = 0$

• or
$$u_{\lambda}\lambda^{5} = constant = u_{\lambda'}\lambda'^{5}$$
(C)

• Where $u_{\lambda'}$ is the energy density of wavelength λ' to which λ has transformed due to expansion

• Or we can say that u_{λ} is function of temperature

• Wien's displacement law says $\lambda T = constant$ so we can have

$$u_{\lambda}\lambda^{5} = c f(\lambda T)$$
(D)

- Where c is also a constant.
- Hence from equations (C) and (D)

$$u_{\lambda}d\lambda = \frac{c}{\lambda^5} f(\lambda T) d\lambda$$

• This is Wien's distribution Law

• or we can write it as $u_{\lambda}d\lambda = \frac{cT^5}{\lambda^5 T^5} f(\lambda T) d\lambda$

• or
$$u_{\lambda}d\lambda = \frac{cT^5}{(\lambda T)^5} f(\lambda T) d\lambda = cT^5 F(\lambda T) d\lambda$$
 where $F(\lambda T) = \frac{f(\lambda T)}{(\lambda T)^5}$

• so we get
$$\frac{u_{\lambda}}{T^5} = cF(\lambda T) = constant$$

• Which results in
$$\frac{u_{\lambda}}{u_{\lambda}'} = \frac{T^5}{{T'}^5} = \left(\frac{T}{T'}\right)^5$$

 Indicating that energy density directly increases with fifth power of absolute temperature.

Limitations of Wien's Distribution Law

- Although law successfully explains the energy distribution in shorter wavelengths
- But it fails in explaining the energy distribution in longer wavelength region.
- Another important limitation of the law is that according to Wien's distribution law, energy density has finite value even at absolute zero temperature.
- According to Stefan's Law it should be zero hence his law is a contradiction to Stefan's law at absolute zero.

Nice set of Lecture ppts for understanding the physics in better way

- http://www.mrao.cam.ac.uk/~mph/concepts/concepts_rel ativity.pdf
- http://www.mrao.cam.ac.uk/~mph/concepts/concepts_cha os.pdf
- http://www.mrao.cam.ac.uk/~mph/concepts/concepts_di mension.pdf
- http://www.mrao.cam.ac.uk/~mph/concepts/concepts_gali leo.pdf
- http://www.mrao.cam.ac.uk/~mph/concepts/concepts maxwell.pdf
- http://www.mrao.cam.ac.uk/~mph/concepts/concepts_qu anta1.pdf
- http://www.mrao.cam.ac.uk/~mph/concepts/concepts_qu anta2.pdf

Study Material

- http://www1.itp.tu-berlin.de/brandes/public html/qm/umist qm/node3.html
- http://www.mrao.cam.ac.uk/~mph/concepts/
- http://galileo.phys.virginia.edu/classes/252/black body r adiation.html#A%20Note%20on%20Wien%E2%80%99s%2 ODisplacement%20Law
- http://hyperphysics.phy-astr.gsu.edu/hbase/wien.html