```
# Import necessary packages and load `winequality_edited.csv`
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
import requests
import pandas as pd
import io
url = 'https://raw.githubusercontent.com/Vignesh106121/Wine-Quality-Analysis/main/wine_quality.csv'
response = requests.get(url)
data = pd.read_csv(io.StringIO(response.text))
data.head()
₹
                                                            free
                                                                   total
           fixed volatile citric residual
                                             chlorides
                                                         sulfur
                                                                  sulfur
                                                                          density
                                                                                     pH sulph
         acidity
                  acidity
                             acid
                                       sugar
                                                        dioxide
                                                                 dioxide
     0
             7.4
                      0.70
                              0.00
                                                  0.076
                                         1.9
                                                            11.0
                                                                     34 0
                                                                            0.9978 3.51
      1
             7.8
                      0.88
                              0.00
                                         2.6
                                                  0.098
                                                            25.0
                                                                     67.0
                                                                            0.9968 3.20
      2
             7.8
                      0.76
                              0.04
                                         2.3
                                                  0.092
                                                            15.0
                                                                     54.0
                                                                            0.9970 3.26
                      በ 28
                                         1 9
                                                  በ በ75
                                                            17 N
                                                                     6N በ
                                                                            N 998N 3 16
 Next steps:
              Generate code with data
                                        View recommended plots
# Import necessary packages and load `winequality_edited.csv`
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
# Assuming 'wine_data' is the DataFrame from your previous cell
wine_data.info()
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1143 entries, 0 to 1142
     Data columns (total 13 columns):
     #
         Column
                                Non-Null Count Dtype
     ---
     0
         fixed acidity
                                1143 non-null
                                                float64
          volatile acidity
                                1143 non-null
                                                float64
      1
      2
          citric acid
                                1143 non-null
                                                float64
         residual sugar
                                1143 non-null
                                                float64
                                1143 non-null
          chlorides
                                                float64
          free sulfur dioxide
                                1143 non-null
                                                float64
          total sulfur dioxide 1143 non-null
                                                float64
          density
                                1143 non-null
                                                float64
      8
                                1143 non-null
                                                float64
         рΗ
          sulphates
                                1143 non-null
                                                float64
      10
         alcohol
                                1143 non-null
                                                float64
      11 quality
                                1143 non-null
                                                int64
      12 Id
                                1143 non-null
                                                int64
     dtypes: float64(11), int64(2)
     memory usage: 116.2 KB
# Use query to select each group and get its mean quality
# Assuming 'wine data' is the DataFrame from your previous cell
median = wine_data['alcohol'].median()
low = wine_data.query('alcohol < {}'.format(median))</pre>
high = wine_data.query('alcohol >= {}'.format(median))
```

mean_quality_low = low['quality'].mean()
mean_quality_high = high['quality'].mean()

₹

```
# Create a bar chart with proper labels
locations = [1, 2]
heights = [mean_quality_low, mean_quality_high]
labels = ['Low', 'High']
plt.bar(locations, heights, tick_label=labels)
plt.title('Average Quality Ratings by Alcohol Content')
plt.xlabel('Alcohol Content')
plt.ylabel('Average Quality Rating');
```



```
# Use query to select each group and get its mean quality
median_sugar = wine_data['residual sugar'].median() # Corrected column name
low_sugar = wine_data.query('`residual sugar` < {}'.format(median_sugar)) # Use backticks for column name with spaces
high_sugar = wine_data.query('`residual sugar` >= {}'.format(median_sugar))
low_sugar_mean_quality = low_sugar['quality'].mean()
low_sugar_mean_quality
high_sugar_mean_quality = high_sugar['quality'].mean()
high_sugar_mean_quality
→ 5.682804674457429
# Create a bar chart with proper labels
locations_sugar = [1,2]
points = [low_sugar_mean_quality, high_sugar_mean_quality]
labels_sugar = ['Low', 'High']
plt.bar(locations_sugar, points, tick_label=labels_sugar)
plt.title('Wine Quality for Sugar Content')
plt.xlabel('Sugar Content')
plt.ylabel('Mean Quality Rating');
```


Use groupby to get the mean quality for each acidity level wine_data.describe() # Assuming 'wine_data' is the DataFrame you want to describe

_ →		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	t di
	count	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.000000	1143.0
	mean	8.311111	0.531339	0.268364	2.532152	0.086933	15.615486	45.9
	std	1.747595	0.179633	0.196686	1.355917	0.047267	10.250486	32.7
	min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.0
	25%	7.100000	0.392500	0.090000	1.900000	0.070000	7.000000	21.0
	50%	7.900000	0.520000	0.250000	2.200000	0.079000	13.000000	37.0
	75%	9.100000	0.640000	0.420000	2.600000	0.090000	21.000000	61.(
	4							+

import pandas as pd

Assuming 'wine_data' is your DataFrame, replace 'df' with 'wine_data' wine_data['acidity_levels'] = pd.cut(wine_data['pH'], bin_edges, labels=bin_names)

Checks for successful creation of this column wine_data.head()

→		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality	Id	acidity_levels	11.
	0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	0	Low	
	1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	1	Moderately High	
	2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	2	Medium	
	3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6	3	Moderately High	
	4															+

Next steps: Generate code with wine_data View recommended plots

Find the mean quality of each acidity level with groupby quality_acidity_mean = [] quality_acidity_mean = wine_data.groupby('acidity_levels').mean()['quality'] # Use 'wine_data' instead of 'df' quality_acidity_mean

 $\overline{2}$ acidity_levels High

5.735849 Moderately High 5.666667


```
colors = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow', 'black', 'white']
plt.scatter(x=acidity_mean, y=quality_acidity_mean, color=[colors[i%len(colors)] for i in range(len(acidity_mean))])
plt.xlabel('Average Acidity')
plt.ylabel('Average Quality')
plt.title('Quality vs Acidity')
plt.show()
```


quality_acidity_mean

```
⇒ acidity_levels
High
```

High 5.735849
Moderately High 5.666667
Medium 5.704180
Low 5.609195
Name: quality, dtype: float64

```
import matplotlib.pyplot as plt
plt.plot([5.7833,5.7845, 5.8508, 5.8595])
plt.ylabel('Quality Mean for Acidity')
plt.xlabel('Acidity Levels')
plt.show();
```

