Оценка эффективности пропорциональных камер

Абрамова Татьяна

Установка

- Частицы вдоль оси Z
- Распределение по углу и высоте неизвестно
- Пропорциональные камеры расположены на расстояниях 380мм, 300мм, 300мм друг от друга

Данные

Проблемы:

- 1. Несколько сработавших проволочек рядом
- 2. Смещение камер относительно друг друга
- 3. Выбросы, шумы
- 4. Идентификация треков

Кластеризация

• Усреднить сигналы в близкорасположенных проволочках в один

$$[-20, -19, -18, -10, 4, 5, 80] \longrightarrow [-19, -10, 4.5, 80]$$

• Проблема: какие проволочки считать близкими?Вводить ли вес для усредненных проволочек?

Почему N1=1 и точки без веса? Потому что не хочется случайно учесть шумы, тем более увеличивать из-за них вес точки

```
До: P1 [51.] P2 [52.] P3 [58. 57.] P4 [-27. -28. -29. 59.]
```

После: Р1 [51.0] Р2 [52.0] Р3 [57.5] Р4 [-28.0, 59.0]

Нахождение смещения камер относительно друг друга и

1. Отбор событий: события с единичным сигналом в каждой из 4-х камер и смещением относительно друг друга не больше, чем на N2 мм. N2 = 6

Почему N2 = 6? Потому что это минимальное число, с которого пропадает видимое смещение после корректировки, и при этом до смещения нет треков с шумами.

2. Алгоритм корректировки: посчитать среднее отклонение от фита прямой линией для каждого корректного события. Смещения для проволочек:

-0.7325664503417095 1.7765072396821977 -1.1599640749147873 0.11602328557430912

1. До корректировки

2. После корректировки

Оценка эффективности пропорциональных камер

Эффективность пропорциональной камеры — отношение количества треков, восстановленных по всем четырем камерам количеству треков, восстановленных по трем другим камерам (кроме исследуемой).

Алгоритм исследования N-той камеры:

- 1. Для каждого события восстанавливаем треки по всем камерам, кроме N-той. Если линия трека в месте расположенмия N-той камеры выходит за пределы камеры, то не считаем этот трек корректным.
- 2. Получаем массив треков (каждый трек состоит из трех сигналов). Если массив не пустой, прибавляем 1 к количеству треков.
- 3. Для каждого полученного трека пытаемся восстановить точку в N-той камере. Если получается, то прибавляем 1 к количеству восстановленных в N-той камере треков.

Определение треков в событии

- Восстановление треков происходит полным перебором вершин (не более 24 комбинаций на событие)
- Трек считается восстановленным, если отклонение его точек от фита прямой линией не больше N3 = 1, 2, 3

Почему N3 = 2? Потому что начиная с такого числа примерно в каждом событии восстанавливается трек (по трем камерам).

• Оценка погрешности

$$Eff = \frac{N_{from3}}{N_{from4}} \quad \delta Eff = Eff \cdot \sqrt{\left(\frac{\delta N_{from3}}{N_{from3}}\right)^2 + \left(\frac{\delta N_{from4}}{N_{from4}}\right)^2} \quad \delta N = \sqrt{N}$$

Результаты (N3 = 1)

Номер файла /	Число событий в файле	P1	P2	P3	P4
1	385,090	97.6 +- 0.2 % (363,006 из 371,799)	97.8 +- 0.2 % (362,636 из 370,807)	98.0+- 0.2 % (362,657 из 369,951)	96.0 +- 0.2 % (362,996 из 378,085)
2	521,807	97.6 +- 0.2 % (491,947 из 503,888)	97.8 +- 0.2 % (491,521 из 502,701)	98.1 +- 0.2 % (491,530 из 501,197)	96.0 +- 0.2 % (491,924 из 512,175)
3	517,989	97.6+- 0.2 % (488,111 из 500,124)	97.8 +- 0.2 % (487,680 из 498,792)	98.0+- 0.2 % (487,662 из 497,487)	96.0 +- 0.2 % (488,092 из 508,625)
4	406,049	97.6 +- 0.2 % (382,297 из 391,882)	97.7 +- 0.2 % (381,979 из 390,817)	98.0 +- 0.2 % (381,967 из 389,694)	95.9+- 0.2 % (382,277 из 398,523)
Итого	1,813,935	97.6 +- 0.1 %	97.8 +- 0.1 %	98.0 +- 0.1 %	96.0 +- 0.1 %

Результаты (N3 = 2)

Номер файла /	Число событий в файле	P1	P2	P3	P4
1	385,090	97.3+- 0.2 % (369,213 из 379,406)	97.3+- 0.2 % (369,036 из 379,254)	97.6+- 0.2 % (369,070 из 378,282)	95.6 +- 0.2 % (369,214 из 386,040)
2	521,807	97.3 +- 0.2 % (500,258 из 514,073)	97.3 +- 0.2 % (500,002 из 513,938)	97.6 +- 0.2 % (500,020 из 512,475)	95.6 +- 0.2 % (500,259 из 523,046)
3	517,989	97.3 +- 0.2 % (496,527 из 510,293)м	97.3 +- 0.2 % (496,258 из 510,263)	97.6 +- 0.2 % (496,310 из 508,737)	95.6 +- 0.2 % (496,526 из 519,368)
4	406,049	97.3 +- 0.2 % (388,862 из 399,820)	97.2+- 0.2 % (388,675 из 399,754)	97.5+- 0.2 % (388,685 из 398,456)	95.5 +- 0.2 % (388,864 из 407,073)
Итого	1,813,935	97.3 +- 0.1 %	97.3 +- 0.1 %	97.6 +- 0.1 %	95.6 +- 0.1 %

Результаты (N3 = 3)

Номер файла /	Число событий в файле	P1	P2	P 3	P4
1	385,090	96.7+- 0.2 % (371,160 из 383,804)	96.6 +- 0.2 % (370,991 из 383,974)	96.8+- 0.2 % (370,998 из 383,209)	95.0 +- 0.2 % (371,160 из 390,788)
2	521,807	96.7+- 0.2 % (502,907 из 519,857)	96.6 +- 0.2 % (502,700 из 520,541)	96.9 +- 0.2 % (502,660 из 519,000)	95.0 +- 0.2 % (502,909 из 529,471)
3	517,989	96.7 +- 0.2 % (499081 из 516014)	96.5 +- 0.2 % (498868 из 516732)	96.8 +- 0.2 % (498848 из 515292)	94.9+- 0.2 % (499082 из 525752)
4	406,049	96.7+- 0.2 % (390,955 из 404,445)	96.5 +- 0.2 % (390,774 из 404,941)	96.8 +- 0.2 % (390,748 из 403,664)	94.9 +- 0.2 % (390,951 из 412,075)
Итого	1,813,935	98.1 +- 0.1 %	96.6 +- 0.1 %	96.9 +- 0.1 %	95.0 +- 0.1 %