1. Пусть
$$y = X\beta + \varepsilon$$
 — регрессионная модель, где $X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}, \varepsilon = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$

$$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \\ \varepsilon_5 \end{pmatrix}, \mathbb{E}(\varepsilon) = 0, Var(\varepsilon) = \sigma^2 I.$$
 Для удобства расчётов даны матрицы: $X'X = \begin{pmatrix} 5 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

$$\mathbf{M} (X'X)' = \begin{pmatrix} 0.3333 & -0.3333 & 0.0000 \\ -0.3333 & 1.3333 & -1.0000 \\ 0.0000 & -1.0000 & 2.0000 \end{pmatrix}.$$

- (а) Укажите число наблюдений
- (b) Укажите число регрессоров в модели, учитывая свободный член
- (c) Найдите $TSS = \sum_{i=1}^{n} (y_i \bar{y})^2$
- (d) Найдите $RSS = \sum_{i=1}^{n} (y_i \hat{y_i})^2$
- (е) Методом МНК найдите оценку для вектора неизвестных коэффициентов
- (f) Чему равен \mathbb{R}^2 в модели? Прокомментируйте полученное значение с точки зрения качества оценённого уравнения регрессии
- (g) Сформулируйте основную и альтернативную гипотезы, которые соответствуют тесту на значимость переменной x_1 в уравнении регрессии
- (h) Протестируйте на значимость переменную x_1 в уравнении регрессии на уровне значимости 10%:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод о значимости переменной x_1
- (i) Найдите P—значение, соответствующее наблюдаемому значению тестовой статистики (T_{obs}) из предыдущего пункта. На основе полученного P—значения сделайте вывод о значимости переменной x_1

- (j) На уровне значимости 10% проверьте гипотезу $H_0: \beta_1 = 1$ против альтернативной $H_1: \beta_1 \neq 1$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (k) На уровне значимости 10% проверьте гипотезу $H_0: \beta_1=1$ против альтернативной $H_1: \beta_1>1$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (l) На уровне значимости 10% проверьте гипотезу $H_0: \beta_1 = 1$ против альтернативной $H_1: \beta_1 < 1$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (m) Сформулируйте основную гипотезу, которая соответствует тесту на значимость регрессии «в целом»
- (n) На уровне значимости 5% проверьте гипотезу о значимости регрессии «в целом»:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (о) Найдите P—значение, соответствующее наблюдаемому значению тестовой статистики (T_{obs}) из предыдущего пункта. На основе полученного P—значения сделайте вывод о значимости регрессии «в целом»

- (р) На уровне значимости 5% проверьте гипотезу $H_0: \beta_1+\beta_2=2$ против альтернативной $H_1: \beta_1+\beta_2\neq 2$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (q) На уровне значимости 5% проверьте гипотезу $H_0: \beta_1+\beta_2=2$ против альтернативной $H_1: \beta_1+\beta_2>2$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (r) На уровне значимости 5% проверьте гипотезу $H_0: \beta_1+\beta_2=2$ против альтернативной $H_1: \beta_1+\beta_2<2$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод

Решение

- (a) n = 5
- (b) k+1=3
- (c) TSS = 10
- (d) RSS = 2

(e)
$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \hat{\beta}_3 \end{pmatrix} = (X'X)^{-1}X'y = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

- (f) $R^2=1-\frac{RSS}{TSS}=0.8.$ R^2 высокий, построенная эконометрическая модель «хорошо» описывает данные
- (g) Основная гипотеза $H_0: \beta_1=0,$ альтернативная гипотеза $H_1: \beta_1 \neq 0$
- (h) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k-1} \left[(X'X)^{-1} \right]}|_{22}}; n = 5; k = 2$$

ii.
$$T \sim t(n-k-1); n=5; k=2$$

iii.
$$T_{obs} = \frac{\hat{\beta}_1 - 0}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - 0}{\sqrt{\frac{RSS}{n - k - 1} \left[(X'X)^{-1} \right]}|_{22}} = \frac{2 - 0}{\sqrt{\frac{2}{5 - 2 - 1} 1.3333}} = 1.7321$$

- iv. Нижняя граница = -2.920, верхняя граница = 2.920
- v. Поскольку $T_{obs}=1.7321$, что принадлежит промежутку от -2.920 до 2.920, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- (i) $p-value(T_{obs})=\mathbb{P}(|T|>|T_{obs}|)=2F_T(|T_{obs}|)$, где $F_T(|T_{obs}|)$ функция распределения t—распределения с n-k-1=5-2-1=2 степенями свободы в точке $|T_{obs}|$. $p-value(T_{obs})=2tcdf(-|T_{obs}|,n-k-1)=2tcdf(-1.7321,2)=0.2253$. Поскольку P—значение превосходит уровень значимости 10%, то основная гипотеза $H_0:\beta_1=0$ не может быть отвергнута
- (і) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k-1} \left[(X'X)^{-1} \right]}|_{22}}; n = 5; k = 2$$

ii.
$$T \sim t(n-k-1); n=5; k=2$$

iii.
$$T_{obs} = \frac{\hat{\beta}_1 - 1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - 1}{\sqrt{\frac{RSS}{n - k - 1}} \left[(X'X)^{-1} \right]|_{22}} = \frac{2 - 1}{\sqrt{\frac{2}{5 - 2 - 1} 1.3333}} = 0.8660$$

- iv. Нижняя граница = -2.920, верхняя граница = 2.920
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -2.920 до 2.920, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- (k) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k-1} \left[(X'X)^{-1} \right]}|_{22}}; n = 5; k = 2$$

ii.
$$T \sim t(n-k-1)$$
; $n=5$; $k=2$

iii.
$$T_{obs} = \frac{\hat{\beta}_1 - 1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - 1}{\sqrt{\frac{RSS}{n - k - 1}} \left\lceil (X'X)^{-1} \right\rceil_{|22}} = \frac{2 - 1}{\sqrt{\frac{2}{5 - 2 - 1}1.3333}} = 0.8660$$

iv. Нижняя граница $= -\infty$, верхняя граница = 1.8856

- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от $-\infty$ до 1.8856, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- (l) Проверка гипотезы

i.
$$T = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{RSS}{n-k-1} [(X'X)^{-1}]}|_{22}}; n = 5; k = 2$$

ii.
$$T \sim t(n-k-1); n = 5; k = 2$$

iii.
$$T_{obs} = \frac{\hat{\beta}_1 - 1}{\sqrt{\widehat{Var}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 - 1}{\sqrt{\frac{RSS}{n - k - 1} \left\lceil (X'X)^{-1} \right\rceil}|_{22}} = \frac{2 - 1}{\sqrt{\frac{2}{5 - 2} - 1} \cdot 1.3333}} = 0.8660$$

- iv. Нижняя граница = -1.8856, верхняя граница $= +\infty$
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -1.8856 до $+\infty$, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 10%
- (m) Основная гипотеза $H_0: \beta_1=\beta_2=0,$ альтернативная гипотеза $H_1: |\beta_1|+|\beta_2|>0$
- (n) Проверка гипотезы

i.
$$T = \frac{R^2}{1-R^2} \cdot \frac{n-k-1}{k}$$
; $n = 5$; $k = 2$

ii.
$$T \sim F(n-k-1); n=5; k=2$$

iii.
$$T_{obs} = \frac{R^2}{1-R^2} \cdot \frac{n-k-1}{k} = \frac{0.8}{1-0.8} \cdot \frac{5-2-1}{2} = 4$$

- iv. Нижняя граница = 0, верхняя граница = 19
- v. Поскольку $T_{obs} = 4$, что принадлежит промежутку от 0 до 19, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%. Следовательно, регрессия в целом незначима. Напомним, что $R^2 = 0.8$, то есть он высокий. Но при этом регрессия «в целом» незначима. Такой эффект может возникать при малом объёме выборки, например, таком, как в данной задаче
- (о) $p-value(T_{obs})=\mathbb{P}(|T|>|T_{obs}|)=2F_T(|T_{obs}|)$, где $F_T(|T_{obs}|)$ функция распределения F—распределения с k=2 и n-k-1=5-2-1=2 степенями свободы в точке $T_{obs}.$ $p-value(T_{obs})=1-fcdf(-|T_{obs}|,n-k-1)=1-fcdf(4,2,2)=0.2$. Поскольку P—значение превосходит уровень значимости 10%, то основная гипотеза $H_0:\beta_1=\beta_2=0$ не может быть отвергнута. Таким образом, регрессия «в целом» незначима
- (р) Проверка гипотезы

і.
$$T = \frac{\hat{\beta}_1 + \hat{\beta}_2 - (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2)}}$$
, где $\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2) = \widehat{\operatorname{Var}}(\hat{\beta}_1) + \widehat{\operatorname{Var}}(\hat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_1; \hat{\beta}_2) = \hat{\sigma}^2 \left[(X'X)^{-1} \right] \mid_{22} + 2\hat{\sigma}^2 \left[(X'X)^{-1} \right] \mid_{23} + \hat{\sigma}^2 \left[(X'X)^{-1} \right] \mid_{33} = \frac{RSS}{n-k-1} (\left[(X'X)^{-1} \right] \mid_{22} + 2\left[(X'X)^{-1} \right] \mid_{23} + \left[(X'X)^{-1} \right] \mid_{33})$

ii.
$$T \sim t(n-k-1); n = 5; k = 2$$

ііі.
$$\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)=\frac{RSS}{n-k-1}(\left[(X'X)^{-1}\right]\mid_{22}+2\left[(X'X)^{-1}\right]\mid_{23}+\left[(X'X)^{-1}\right]\mid_{33})=\frac{2}{5-2-1}(1.3333+2(-1.0000)+2.0000)=1.3333$$
. Тогда $T_{obs}=\frac{\hat{\beta}_1+\hat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$

- iv. Нижняя граница = -4.3027, верхняя граница = 4.3027
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -4.3027 до 4.3027, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%

(q) Проверка гипотезы

і.
$$T = \frac{\hat{\beta}_1 + \hat{\beta}_2 - (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2)}}$$
, где $\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2) = \widehat{\operatorname{Var}}(\hat{\beta}_1) + \widehat{\operatorname{Var}}(\hat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_1; \hat{\beta}_2) = \hat{\sigma}^2 \left[(X'X)^{-1} \right] \mid_{22} + 2\widehat{\sigma}^2 \left[(X'X)^{-1} \right] \mid_{23} + \hat{\sigma}^2 \left[(X'X)^{-1} \right] \mid_{33} = \frac{RSS}{n-k-1} (\left[(X'X)^{-1} \right] \mid_{22} + 2\left[(X'X)^{-1} \right] \mid_{23} + \left[(X'X)^{-1} \right] \mid_{33})$

ii.
$$T \sim t(n-k-1); n=5; k=2$$

ііі.
$$\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)=\frac{RSS}{n-k-1}(\left[(X'X)^{-1}\right]\mid_{22}+2\left[(X'X)^{-1}\right]\mid_{23}+\left[(X'X)^{-1}\right]\mid_{33})=\frac{2}{5-2-1}(1.3333+2(-1.0000)+2.0000)=1.3333$$
. Тогда $T_{obs}=\frac{\hat{\beta}_1+\hat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$

- iv. Нижняя граница $= -\infty$, верхняя граница = 2.9200
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от $-\infty$ до 2.9200, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%

(r) Проверка гипотезы

і.
$$T = \frac{\hat{\beta}_1 + \hat{\beta}_2 - (\beta_1 + \beta_2)}{\sqrt{\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2)}}$$
, где $\widehat{\operatorname{Var}}(\hat{\beta}_1 + \hat{\beta}_2) = \widehat{\operatorname{Var}}(\hat{\beta}_1) + \widehat{\operatorname{Var}}(\hat{\beta}_2) + 2\widehat{\operatorname{Cov}}(\hat{\beta}_1; \hat{\beta}_2) = \hat{\sigma}^2 \left[(X'X)^{-1} \right] \big|_{22} + 2\hat{\sigma}^2 \left[(X'X)^{-1} \right] \big|_{23} + \hat{\sigma}^2 \left[(X'X)^{-1} \right] \big|_{33} = \frac{RSS}{n-k-1} (\left[(X'X)^{-1} \right] \big|_{22} + 2\left[(X'X)^{-1} \right] \big|_{23} + \left[(X'X)^{-1} \right] \big|_{33})$

ii.
$$T \sim t(n-k-1); n=5; k=2$$

ііі.
$$\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)=\frac{RSS}{n-k-1}(\left[(X'X)^{-1}\right]\mid_{22}+2\left[(X'X)^{-1}\right]\mid_{23}+\left[(X'X)^{-1}\right]\mid_{33})=\frac{2}{5-2-1}(1.3333+2(-1.0000)+2.0000)=1.3333$$
. Тогда $T_{obs}=\frac{\hat{\beta}_1+\hat{\beta}_2-2}{\sqrt{\widehat{\mathrm{Var}}(\hat{\beta}_1+\hat{\beta}_2)}}=\frac{2+1-2}{\sqrt{1.3333}}=0.8660$

- iv. Нижняя граница = -2.9200, верхняя граница = $+\infty$
- v. Поскольку $T_{obs}=0.8660$, что принадлежит промежутку от -2.9200 до $+\infty$, то на основе имеющихся данных нельзя отвергнуть основную гипотезу на уровне значимости 5%
- 2. На основе 100 наблюдений была оценена функция спроса:

$$\widehat{ln(Q)} = \underset{(s.e.)}{0.87} - \underset{(0.04)}{1.23} ln(P)$$

Значимо ли коэффициент эластичности спроса по цене отличается от -1? Рассмотрите уровень значимости 5%

3. На основе 100 наблюдений была оценена функция спроса:

$$\widehat{ln(Q)} = 2.87 - 1.12 ln(P)$$
(s.e.)

На уровне значимости 5% проверьте гипотезу $H_0: \beta_{ln(P)} = -1$ против альтернативной $H_1: \beta_{ln(P)} < -1$. Дайте экономическую интерпретацию проверяемой гипотезе и альтернативе

4. Используя годовые данные с 1960 по 2005 г., была построена кривая Филлипса, связывающая уровень инфляции Inf и уровень безработицы Unem:

$$\widehat{Inf} = 2.34 - 0.23 Unem$$

$$\sqrt{\widehat{Var}(\hat{\beta}_{Unem})} = 0.04, R^2 = 0.12$$

На уровне значимости 1% проверьте гипотезу $H_0: \beta_{Unem} = 0$ против альтернативной $H_1: \beta_{Unem} \neq 0$

5. Была оценена функция Кобба-Дугласа с учётом человеческого капитала H (K — физический капитал, L — труд):

$$\widehat{ln(Q)} = 1.4 + 0.46ln(L) + 0.27ln(H) + 0.23ln(K)$$

$$ESS = 170.4, RSS = 80.3, n = 21$$

- (a) Чему равен коэффициент R^2 ?
- (b) На уровне значимости 1% проверьте гипотезу о значимости регрессии «в целом»
- 6. На основе опроса 25 человек была оценена следующая модель зависимости логарифма зарплаты ln(W) от уровня образования Edu (в годах) и возраста Age:

$$\widehat{ln(W)} = 1.7 + 0.5Edu + 0.06Age - 0.0004Age^2$$

$$ESS = 90.3, RSS = 60.4$$

Когда в модель были введены переменные Fedu и Medu, учитывающие уровень образования родителей, величина ESS уведичилась до 110.3.

(а) Напишите спецификацию уравнения регрессии с учётом образования родителей

- (b) Сформулируйте и на уровне значимости 5% проверьте гипотезу о значимом влиянии уровня образования родителей на заработную плату:
 - і. Сформулируйте гипотезу
 - іі. Приведите формулу для тестовой статистики
 - ііі. Укажите распределение тестовой статистики
 - iv. Вычислите наблюдаемое значение тестовой статистики
 - v. Укажите границы области, где основная гипотеза не отвергается
 - vi. Сделайте статистический вывод

Решение

Ограниченная модель (Restricted model):

$$lnW_i = \beta + \beta_{Edu}Edu_i + \beta_{Age}Age_i + \beta_{Age^2}Age_i^2 + \varepsilon_i$$

Heoграниченная модель (Unrestricted model):

$$lnW_i = \beta + \beta_{Edu}Edu_i + \beta_{Age}Age_i + \beta_{Age^2}Age_i^2 + \beta_{Fedu}Fedu_i + \beta_{Medu}Medu_i + \varepsilon_i$$

По условию $ESS_R=90.3,\,RSS_R=60.4,\,TSS=ESS_R+RSS_R=90.3+60.4=150.7.$ Также сказано, что $ESS_{UR}=110.3.$ Значит, $RSS_{UR}=TSS-ESS_{UR}=150.7-110.3=40.4$

(а) Спецификация:

$$lnW_i = \beta + \beta_{Edu}Edu_i + \beta_{Age}Age_i + \beta_{Age^2}Age_i^2 + \beta_{Fedu}Fedu_i + \beta_{Medu}Medu_i + \varepsilon_i$$

(b) Проверка гипотезы

i.
$$H_0:$$

$$\begin{cases} \beta_{Fedu} = 0 \\ \beta_{Medu} = 0 \end{cases} \quad H_1: |\beta_{Fedu}| + |\beta_{Medu}| > 0$$

іі. $T = \frac{(RSS_R - RSS_{UR})/q}{RSS_{UR}/(n-k-1)}$, где q = 2 — число линейно независимых уравнений в основной гипотезе H_0 , n = 25 — число наблюдений, k = 5 — число коэффициентов в модели без ограничения (без учёта свободного члена)

iii.
$$T \sim F(q; n-k-1)$$

iv.
$$T_{obs} = \frac{(RSS_R - RSS_{UR})/q}{RSS_{UR}/(n-k-1)} = \frac{(60.4 - 40.4)/2}{40.4/(25 - 5 - 1)} = 4.70$$

v. Нижняя граница = 0, верхняя граница = 3.52

- vi. Поскольку $T_{obs} = 4.70$, что не принадлежит промежутку от 0 до 3.52, то на основе имеющихся данных можно отвергнуть основную гипотезу на уровне значимости 5%. Таким образом, образование родителей существенно влияет на заработную плату.
- 7. Рассмотрим следующую модель зависимости цены дома Price (в тысячах долларов) от его площади Hsize (в квадратных метрах), площади участка Lsize (в квадратных метрах), числа ванных комнат Bath и числа спален BDR:

$$\widehat{Price} = \hat{\beta}_1 + \hat{\beta}_2 H size + \hat{\beta}_3 L size + \hat{\beta}_4 Bath + \hat{\beta}_5 BDR$$

$$R^2 = 0.218, n = 23$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы H_0 : $\beta_3=20\beta_4$. Дайте интерпретацию проверяемой гипотезе. Для регрессии с ограничением был вычислен коэффициент $R_R^2=0.136$. На уровне значимости 5% проверьте нулевую гипотезу

8. Рассмотрим следующую модель зависимости почасовой оплаты труда W от уровня образования Educ, возраста Age, уровня образования родителей Fathedu и Mothedu:

$$\widehat{ln(W)} = \hat{\beta}_1 + \hat{\beta}_2 E duc + \hat{\beta}_3 A ge + \hat{\beta}_4 A ge^2 + \hat{\beta}_5 F athedu + \hat{\beta}_6 M othedu$$

$$R^2 = 0.341, n = 27$$

Напишите спецификацию регрессии с ограничениями для проверки статистической гипотезы H_0 : $\beta_5=2\beta_4$. Дайте интерпретацию проверяемой гипотезе. Для регрессии с ограничением был вычислен коэффициент $R_R^2=0.296$. На уровне значимости 5% проверьте нулевую гипотезу

9. Пусть
$$y = X\beta + \varepsilon$$
 — регрессионная модель, где $X = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, y = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix},$

$$arepsilon = egin{pmatrix} arepsilon_1 \ arepsilon_2 \ arepsilon_3 \ arepsilon_4 \ arepsilon_5 \end{pmatrix}, \, \mathbb{E}(arepsilon) = 0, \, Var(arepsilon) = \sigma^2 I.$$

На уровне значимости 5% проверьте гипотезу $H_0: \beta_1+\beta_2=2$ против альтернативной $H_1: \beta_1+\beta_2\neq 2$:

- (а) Приведите формулу для тестовой статистики
- (b) Укажите распределение тестовой статистики
- (с) Вычислите наблюдаемое значение тестовой статистики
- (d) Укажите границы области, где основная гипотеза не отвергается
- (е) Сделайте статистический вывод
- 10. Пусть $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и $i = 1, \dots, 18$ классическая регрессионная модель, где $\mathbb{E}(\varepsilon_i) = 0$, $Var(\varepsilon_i) = \sigma^2$. Также имеются следующие данные: $\sum_{i=1}^{18} y_i^2 = 4256$, $\sum_{i=1}^{18} x_i^2 = 185$, $\sum_{i=1}^{18} x_i y_i = 814.25$, $\sum_{i=1}^{18} y_i = 225$, $\sum_{i=1}^{18} x_i = 49.5$. Используя эти данные, оцените эту регрессию и на уровне значимости 5% проверьте гипотезу $H_0: \beta_1 = 3.5$ против альтернативной $H_1: \beta_1 > 3.5$:
 - (а) Приведите формулу для тестовой статистики
 - (b) Укажите распределение тестовой статистики
 - (с) Вычислите наблюдаемое значение тестовой статистики
 - (d) Укажите границы области, где основная гипотеза не отвергается
 - (е) Сделайте статистический вывод
- 11. По данным для 27 фирм исследователь оценил зависимость объёма выпуска y от труда l и капитала k с помощью двух моделей:

$$ln(y_i) = \beta_1 + \beta_2 ln(l_i) + \beta_3 ln(k_i) + \varepsilon_i$$

$$ln(y_i) = \beta_1 + \beta_2 ln(l_i \cdot k_i) + \varepsilon_i$$

Он получил для этих двух моделей суммы квадратов остатков $RSS_1 = 0.851$ и $RSS_2 = 0.894$ соответственно. Сформулируйте гипотезу, которую хотел проверить исследователь. На уровне значимости 5% проверьте эту гипотезу и дайте экономическую интерпретацию.

12. Пусть задана линейная регрессионная модель:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \varepsilon_i, i = 1, \dots, 20$$

По имеющимся данным оценены следующие регрессии:

$$\hat{y_i} = \underbrace{10.01}_{(0.15)} + \underbrace{1.05}_{(0.06)} x_1 + \underbrace{2.06}_{(0.04)} x_2 + \underbrace{0.49}_{(0.06)} x_3 - \underbrace{1.31}_{(0.06)} x_4, RSS = 6.85$$

$$y_i - \widehat{x_1} - 2x_2 = \underbrace{10.00}_{(0.15)} + \underbrace{0.50}_{(0.07)} x_3 - \underbrace{1.32}_{(0.06)} x_4, RSS = 8.31$$

$$y_i + \widehat{x_1} + 2x_2 = \underbrace{9.93}_{(3.62)} + \underbrace{0.56}_{(1.48)} x_3 - \underbrace{1.50}_{(1.42)} x_4, RSS = 4310.62$$

$$y_i - \widehat{x_1} + 2x_2 = \underbrace{10.71}_{(3.26)} + \underbrace{0.09}_{(1.33)} x_3 - \underbrace{1.28}_{(1.28)} x_4, RSS = 3496.85$$

$$y_i + \widehat{x_1} - 2x_2 = \underbrace{9.22}_{(3.26)} + \underbrace{0.97}_{(0.51)} x_3 - \underbrace{1.54}_{(0.49)} x_4, RSS = 516.23$$

$$y_i + \widehat{x_1} - 2x_2 = \underbrace{9.22}_{(1.25)} + \underbrace{0.97}_{(0.51)} x_3 - \underbrace{1.54}_{(0.49)} x_4, RSS = 516.23$$

На уровне значимости 5% проверьте гипотезу H_0 : $\begin{cases} \beta_1=1 \\ \beta_2=2 \end{cases}$ против альтернативной гипотезы $H_1: |\beta_1-1|+|\beta_2-2| \neq 0$

13. Рассмотрим следующую модель зависимости расходов на образование на душу населения от дохода на душу населения, доли населения в возрасте до 18 лет, а также доли городского населения:

$$education_i = \beta_1 + \beta_2 income_i + \beta_3 young_i + \beta_4 urban_i + \varepsilon_i$$

Ниже приведены результаты оценивания уравнения этой линейной регрессии:

$$\widehat{education_i} = -\underbrace{287}_{(64.9199)} + \underbrace{0.0807 \cdot income_i}_{(0.0093)} + \underbrace{0.817 \cdot young_i}_{(0.1598)} - \underbrace{0.106}_{(0.0343)} \cdot urban_i$$

	Estimate	St.Error	t value	P-value
Intercept	-286.84	64.92	-4.42	0.00
Income	0.08	0.01	8.67	0.00
Young	0.82	0.16	5.12	0.00
Urban	-0.11	0.03	-3.09	0.00

(a) Сформулируйте основную и альтернативую гипотезы, которые соответствуют тесту на значимость коэффициента при переменной доход на душу населения в уравнении регрессии

- (b) На уровне значимости 10% проверьте гипотезу о значимости коэффициента при переменной доход на душу населения в уравнении регрессии:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (c) На уровне значимости 5% проверьте гипотезу $H_0: \beta_1 = 1$ против альтернативной $H_1: \beta_1 > 1:$
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (d) Сформулируйте основную гипотезу, которая соответствует тесту на значимость регрессии «в целом»
- (e) На уровне значимости 1% проверьте гипотезу о значимости регрессии «в целом», если известно, что F-statistic: 34.81 on 3 and 47 DF, P-value: $5.337e^{-12}$:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (f) Далее приведены результаты оценивания уравнения регрессии без переменной, отражающей долю городского населения:

$$\widehat{education_i} = -\frac{301}{(70.27134)} + \frac{0.0612}{(0.00741)} \cdot income_i + \frac{0.836}{(0.17327)} \cdot young_i$$

	Estimate	St.Error	t value	P-value
Intercept	-301.09	70.27	-4.28	0.00
Income	0.06	0.01	8.25	0.00
Young	0.84	0.17	4.83	0.00

Также известно, что RSS для первой модели равен 33489.35, а для второй модели — 40276.61. На уровне значимости 5% проверьте гипотезу $H_0: \beta_4 = 0$ против альтернативной $H_0: \beta_4 \neq 0$:

- і. Приведите формулу для тестовой статистики
- іі. Укажите распределение тестовой статистики
- ііі. Вычислите наблюдаемое значение тестовой статистики
- iv. Укажите границы области, где основная гипотеза не отвергается
- v. Сделайте статистический вывод
- 14. Рассмотрим следующую модель зависимости расходов на образование на душу населения от дохода на душу населения, доли населения в возрасте до 18 лет, а также доли городского населения:

$$education_i = \beta_1 + \beta_2 income_i + \beta_3 young_i + \beta_4 urban_i + \varepsilon_i$$

Ниже приведены результаты оценивания уравнения этой линейной регрессии:

$$\widehat{education_i} = -\underbrace{287}_{(64.9199)} + \underbrace{0.0807 \cdot income_i}_{(0.0093)} + \underbrace{0.817 \cdot young_i}_{(0.1598)} - \underbrace{0.106 \cdot urban_i}_{(0.0343)}$$

	Estimate	St.Error	t value	P-value
Intercept	-286.84	64.92	-4.42	0.00
Income	0.08	0.01	8.67	0.00
Young	0.82	0.16	5.12	0.00
Urban	-0.11	0.03	-3.09	0.00

- (a) Сформулируйте основную и альтернативую гипотезы, которые соответствуют тесту на значимость коэффициента при переменной доля населения в возрасте до 18 лет в уравнении регрессии
- (b) На уровне значимости 10% проверьте гипотезу о значимости коэффициента при переменной доля населения в возрасте до 18 лет в уравнении регрессии:
 - і. Приведите формулу для тестовой статистики
 - іі. Укажите распределение тестовой статистики
 - ііі. Вычислите наблюдаемое значение тестовой статистики
 - iv. Укажите границы области, где основная гипотеза не отвергается
 - v. Сделайте статистический вывод
- (c) Далее приведены результаты оценивания уравнения регрессии без переменной, отражающей долю населения в возрасте до 18 лет:

$$\widehat{education_i} = \underbrace{25.3}_{(27.3827)} + \underbrace{0.0762}_{(0.0114)} \cdot income_i - \underbrace{0.112}_{(0.0423)} \cdot urban_i$$

	Estimate	St.Error	t value	P-value
Intercept	25.25	27.38	0.92	0.36
Income	0.08	0.01	6.67	0.00
Urban	-0.11	0.04	-2.66	0.01

Также известно, что RSS для первой модели равен 33489.35, а для второй модели — 52132.29. На уровне значимости 5% проверьте гипотезу $H_0: \beta_3 = 0$ против альтернативной $H_0: \beta_3 \neq 0$:

- і. Приведите формулу для тестовой статистики
- іі. Укажите распределение тестовой статистики
- ііі. Вычислите наблюдаемое значение тестовой статистики
- iv. Укажите границы области, где основная гипотеза не отвергается
- v. Сделайте статистический вывод