Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Test 8

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$A = \{0,1,2\}$	3 p
	Suma elementelor mulțimii A este egală cu $0+1+2=3$	2 p
2.	f(1) = m + n si f(2) = 2m + n , deci m + n = 2 si 2m + n = 1	2 p
	$m = -1, \ n = 3$	3 p
3.	$(4^x + 4)(4^x - 2) = 0$	2p
	$2^{2x} = 2$, deci $x = \frac{1}{2}$	3 p
4.	Mulțimea numerelor naturale de trei cifre are 900 de elemente, deci sunt 900 de cazuri posibile	2p
	Mulțimea numerelor naturale de trei cifre care au cifra sutelor un număr prim are $4\cdot 10\cdot 10 = 400$ de elemente, deci sunt 400 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{400}{900} = \frac{4}{9}$	1p
5.	O este punctul de intersecție a diagonalelor paralelogramului $ABCD \Rightarrow \overrightarrow{OC} = -\overrightarrow{OA}$	3 p
	$\overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{AB}$	2p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \frac{16}{25} = \frac{9}{25}$	3p
	Cum $x \in \left(\frac{3\pi}{2}, 2\pi\right)$, obținem $\sin x = -\frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 2 & 0 & 1 \\ -3 & 0 & 1 \\ 3 & -1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 0 & 1 \\ -3 & 0 & 1 \\ 3 & -1 & 1 \end{vmatrix} = 0 + 3 + 0 - 0 - (-2) + 0 = 5$	3p 2p
b)	$det(A(a)) = a^2 - 6a + 5$, pentru orice număr real a	2p
	Sistemul de ecuații este compatibil determinat \Leftrightarrow det $(A(a)) \neq 0$, deci $a \in \mathbb{R} \setminus \{1,5\}$	3 p
c)	Sistemul are soluție unică (x_0, y_0, z_0) , deci $a \in \mathbb{R} \setminus \{1, 5\}$ și soluția sistemului este $\left(\frac{2(a-1)}{a-5}, -\frac{2}{a-5}, -\frac{a+1}{a-5}\right)$	3p
	$2 \cdot \left(-\frac{2}{a-5}\right) = \frac{2(a-1)}{a-5} + \left(-\frac{a+1}{a-5}\right), \text{ deci } a = -1, \text{ care convine}$	2 p

2.a)	$1*3=1+3-\frac{1\cdot 3}{3}=$	3p
	=1+3-1=3	2 p
b)	$x * x = -\frac{1}{3}(x-3)^2 + 3$, $x * x * x = \frac{1}{3^2}(x-3)^3 + 3$, pentru orice număr real x	2p
	$\frac{1}{9}(x-3)^3 + 3 = \frac{26}{9} \Leftrightarrow (x-3)^3 = -1 \Leftrightarrow x-3 = -1, \text{ de unde obţinem } x = 2$	3 p
c)	x*0=0*x=x, pentru orice număr real x , deci $e=0$ este elementul neutru al legii de compoziție "*"	1p
	$n*n'=0 \Leftrightarrow n'(n-3)=3n$, deci $n'=\frac{3n}{n-3}$, pentru orice număr natural $n, n \neq 3$	2p
	Cum $n \neq i n'$ sunt numere naturale, obținem $n = 0$, $n = 4$, $n = 6$ sau $n = 12$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 4x^3 - \frac{4}{x} =$	3p
	$= \frac{4(x^4 - 1)}{x} = \frac{4(x^2 - 1)(x^2 + 1)}{x} = \frac{4(x - 1)(x + 1)(x^2 + 1)}{x}, \ x \in (0, +\infty)$	2p
b)	$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x^4 - 4\ln x) = +\infty$	3p
	Dreapta de ecuație $x = 0$ este asimptotă verticală la graficul funcției f	2 p
c)	$f'(x) = 0 \Leftrightarrow x = 1, \ f'(x) < 0$, pentru orice $x \in (0,1) \Rightarrow f$ este strict descrescătoare pe $(0,1)$ și $f'(x) > 0$, pentru orice $x \in (1,+\infty) \Rightarrow f$ este strict crescătoare pe $(1,+\infty)$	2p
	$\lim_{x\to 0} f\left(x\right) = +\infty \;,\; f\left(1\right) = 1 \;,\; \lim_{x\to +\infty} f\left(x\right) = +\infty \;\; \text{si} \;\; f \;\; \text{este continuă pe} \;\left(0,+\infty\right) \;,\; \text{deci pentru fiecare număr natural} \;\; n \;,\; n \geq 2 \;,\; \text{ecuația} \;\; f\left(x\right) - n = 0 \;\; \text{are două soluții reale distincte,} \\ x_1 \in \left(0,1\right) \;\; \text{și} \;\; x_2 \in \left(1,+\infty\right)$	3 p
2.a)	$\int_{0}^{2} f(x)e^{-x}dx = \int_{0}^{2} x^{3}dx = \frac{x^{4}}{4} \Big _{0}^{2} =$	3p
1.)	=4-0=4	2p
b)	$\int_{1}^{e} \frac{1}{x^{2}} f(\ln x) dx = \int_{1}^{e} \frac{1}{x} \ln^{3} x dx = \frac{\ln^{4} x}{4} \Big _{1}^{e} =$	3 p
	$=\frac{\ln^4 e}{4} - \frac{\ln^4 1}{4} = \frac{1}{4}$	2p
c)	$F(x) = (x^3 - 3x^2 + 6x - 6)e^x + c, c \in \mathbb{R} \text{ si, cum } F(0) = 0 \Rightarrow F(x) = (x^3 - 3x^2 + 6x - 6)e^x + 6$	2p
	$\int_{0}^{1} f(x)F(x)dx = \int_{0}^{1} F'(x)F(x)dx = \frac{1}{2}F^{2}(x)\Big _{0}^{1} = \frac{1}{2}(F^{2}(1) - F^{2}(0)) = 2(e-3)^{2}$	3 p