Circuits II

Ch14 Additional Problems Solution

AP 14.6
$$\omega_o^2 = \frac{1}{LC} \quad \text{so} \quad L = \frac{1}{\omega_o^2 C} = \frac{1}{(24\pi \times 10^3)^2 (0.1 \times 10^{-6})} = 1.76 \,\text{mH}$$

$$Q = \frac{\omega_o}{\beta} = \frac{\omega_o}{R/L} \quad \text{so} \quad R = \frac{\omega_o L}{Q} = \frac{(24\pi \times 10^3)(1.76 \times 10^{-3})}{6} = 22.10 \,\Omega$$
AP 14.7
$$\omega_o = 2\pi (2000) = 4000\pi \,\text{rad/s};$$

$$\beta = 2\pi (500) = 1000\pi \,\text{rad/s};$$

$$R = 250 \,\Omega$$

$$\beta = \frac{1}{RC} \quad \text{so} \quad C = \frac{1}{\beta R} = \frac{1}{(1000\pi)(250)} = 1.27 \,\mu\text{F}$$

$$\omega_o^2 = \frac{1}{LC} \quad \text{so} \quad L = \frac{1}{\omega_o^2 C} = \frac{10^6}{(4000\pi)^2 (1.27)} = 4.97 \,\text{mH}$$
AP 14.8
$$\omega_o^2 = \frac{1}{LC} \quad \text{so} \quad L = \frac{1}{\omega_o^2 C} = \frac{1}{(10^4\pi)^2 (0.2 \times 10^{-6})} = 5.07 \,\text{mH}$$

$$\beta = \frac{1}{RC} \quad \text{so} \quad R = \frac{1}{\beta C} = \frac{1}{400\pi (0.2 \times 10^{-6})} = 3.98 \,\text{k}\Omega$$

$$\omega_o^2 = \frac{1}{LC} \quad \text{so} \quad L = \frac{1}{\omega_o^2 C} = \frac{1}{(400\pi)^2 (0.2 \times 10^{-6})} = 31.66 \, \text{mH}$$

$$Q = \frac{f_o}{\beta} = \frac{5 \times 10^3}{200} = 25 = \omega_o RC$$

$$\therefore R = \frac{Q}{\omega_o C} = \frac{25}{(400\pi)(0.2 \times 10^{-6})} = 9.95 \,\mathrm{k}\Omega$$