AOD Lista 3

Mateusz Gancarz

11 czerwca 2023

1 Zadanie 1

1.1 Opis algorytmu

Algorytm Edmondsa-Karpa polega na iteracyjnym zwiększaniu przepływu wzdłuż ścieżek powiększających w sieci residualnej, które są znalezione przy użyciu algorytmu BFS. Wyznaczany jest przepływ minimalny wzdłuż ścieżki powiększającej, a następnie aktualizowany jest przepływ na odpowiednich krawędziach, po których przechodziła ścieżka powiększająca, a maksymalny przepływ jest powiększony o wartość przepływu w tej iteracji. Algorytm kończy działanie, gdy nie można już znaleźć żadnej ścieżki powiększającej w sieci residualnej.

Algorytm Edmondsa-Karpa gwarantuje znalezienie maksymalnego przepływu w sieci przepływowej, o ile wszystkie przepływy są całkowite. Jest efektywny czasowo i działa w czasie $O(EV^2)$, gdzie E to liczba krawędzi, a V to liczba wierzchołków w grafie.

1.2 Testy

1.3 Wnioski

Eksperymenty potwierdziły złożoność algorytmu oraz możemy zauważyć, że przy większych k liczba maksymalnego przepływu drastycznie wzrasta.

2 Zadanie 2

2.1 Opis algorytmu

Aby obliczyć wielkość maksymalnego skojarzenia, możemy wykorzystać algorytm z poprzedniego zadania. Z wygenerowanego grafu dwudzielnego musimy stworzyć graf skierowany z dwoma dodatkowymi wierzchołkami, nazwijmy je v_0 oraz v_n . Od wierzchołka v_0 będzie wychodzić jedna krawędź do każdego wierzchołka ze zbioru V_1 oraz do wierzchołka v_n będzie wychodzić dokładnie jedna krawędź z każdego wierzchołka ze zbioru V_2 . Wszystkie krawędzie w tym grafie będą mieć pojemność równą 1. Po przebiegu algorytmu Edmondsa-Karpa na takim grafie, liczba dróg powiększających będzie równa wielkości maksymalnego skojarzenia tego grafu.

