# An Analysis of Near-Earth Asteroids

Marina M. Dunn

W18 Intro to Python for Data Science August 10, 2020



# Concepts Explored:

- Confirmation that the further an asteroid is from Sun, longer its orbit takes
- Size of asteroid based on location
- Spectral type (composition)
- Influence of eccentricity, inclination, semi-major axis



## **Spatial Understanding**



$$R_a = a(1+e)$$
  $R_p = a(1-e)$ 





## **Spatial Understanding**





# **Histograms**















## **Eccentricity, Inclination, & Semi-major Axis**





# **Orbital Period & Semi-major Axis**





### **Asteroid Size Based on Distance**











## **Special Orbits**

### **Amors**

Earth-approaching NEAs with orbits exterior to Earth's but interior to Mars' (named after asteroid (1221) Amor)



 $\begin{array}{c} a > 1.0 \ {\rm AU} \\ 1.017 \ {\rm AU} < q < 1.3 \ {\rm AU} \end{array}$ 

### **Apollos**

Earth-crossing NEAs with semi-major axes larger than Earth's (named after asteroid (1862) Apollo)



a > 1.0 AUq < 1.017 AU

#### **Atens**

Earth-crossing NEAs with semi-major axes smaller than Earth's (named after asteroid (2062) Aten)



a < 1.0 AUQ > 0.983 AU

### **Atiras**

NEAs whose orbits are contained entirely within the orbit of the Earth (named after asteroid (163693) Atira)



a < 1.0 AU Q < 0.983 AU

(q = perihelion distance, Q = aphelion distance, a = semi-major axis)



# **Special Orbits**

#### **Total**

NEAs: 23,174 (2.3%) Apollos: 12,812 (1.3%) Amors: 8,584 (0.87%) Atens: 1,754 (0.2%) Atiras: 23 (0.002%)





# Spectral Type



- C-Type (carbonaceous):
  - ~75%
  - Found in outer Main belt
  - Very dark
  - Depleted He, H, etc.
- S-Type (silicaceous):
  - ~17%
  - Found in inner belt
  - Relatively bright
  - Fe & Mn silicates
- M-Type (metallic):
  - Found in middle of Main belt
  - Relatively bright
  - Fe



# Spectral Type

C-type: Very dark with an

albedo of 0.03-0.09

S-type: Relatively bright with an albedo of 0.10-0.22

M-type: Relatively bright with an albedo of 0.10-0.18

#### **Approximate total**

C-Type: 73,867 S-Type: 32,612 M-type: 24,324







# Thank you

Questions?

