Data: 29 de janeiro de 2015

Regente: Jaime Villate

Nome:

Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

1. (4 valores) No circuito representado no diagrama, a tensão da fonte é V(t) = $5\cos(3000t)$, em unidades SI, onde t é o tempo. (a) Encontre a impedância total do circuito. (b) Determine a expressão da corrente no indutor em função do tempo.

Duração: 2 horas

2. (4 valores) Uma espira quadrada, com aresta igual a L, desloca-se com velocidade constante \vec{v} . A figura mostra o instante t = 0, em que a espira começa a entrar numa região de comprimento 2L onde existe campo magnético \vec{B} , uniforme e perpendicular à espira. Assim sendo, no intervalo $0 < t < L/\nu$ a espira está parcialmente dentro do campo magnético, no intervalo $L/v \le t \le 2L/v$ a está completamente imersa dentro do campo e no intervalo $2L/v \le t < 3L/v$ a está parcialmente fora do campo. (a) Represente o gráfico do fluxo magnético em função do tempo nesses 3 intervalos. (b) Calcule a força electromotriz induzida na espira nos 3 intervalos. (c) Determine o sentido da corrente induzida na espira nos 3 intervalos.

PERGUNTAS. Avalia-se unicamente a **letra** que apareça na caixa de "Resposta". **Cotação**: certas, 0.8 valores, erradas, -0.2, em branco ou ilegível, 0.

- **3.** A capacidade elétrica de um condutor isolado:
 - (A) Diminui se o condutor tiver um dielétrico à sua volta.
 - (B) Mede-se em unidades de J/C.
 - (C) É maior quanto maior for o tamanho do condutor
 - (**D**) Depende da carga que estiver acumulada no condutor.
 - (E) É independente do tamanho do condutor.

Resposta:

- **4.** Se existir carga distribuída uniformemente em todo o plano xy, com carga superficial igual a 8.5 nC/m² e carga distribuída uniformemente em todo o plano xz, com carga superficial igual a 9 nC/m², determine o módulo do campo elétrico no ponto com coordenadas (x, y, z) = (1, 1, 1) (em metros).
 - (A) 300.6 N/C
- (C) 220.8 N/C
- (E) 380.4 N/C

- (B) 141.4 N/C
- (**D**) 700.0 N/C

Resposta:

- 5. Um dispositivo ligado a uma fonte de tensão contínua de 50 V tem potência elétrica de 75 W. Determine a carga total que passa através do dispositivo quando permanece ligado à fonte durante 1 minuto.
 - (A) 90 C
- (C) 108 C
- (E) 96 C

- **(B)** 30 C
- **(D)** 144 C
- Resposta:

Resposta:

- **6.** Uma carga pontual que se encontra no ponto (x, y, z) = (4, 5, 3)(distâncias em cm) produz um potencial de 5 kV no ponto (x, y, z) = (3,7,1). Calcule o valor da carga em unidades de nC.
 - (A) 50.0
- **(C)** 12.42
- **(E)** 16.67

- **(B)** 5.56
- **(D)** 1.85

Resposta:

7. No circuito da figura, $R = 4 \text{ k}\Omega$, $C = 2 \mu\text{F}$ e a corrente na resistência, em função do tempo (t > 0) é $I(t) = e^{-t}$, em mA, se t estiver em ms. Calcule a transformada de Laplace, \tilde{V}_e , da tensão da fonte (com s em kHz).

	(A) $9.52 \mu\text{V}$ (C) $4.76 \mu\text{V}$ (E) 0.75V		(2) 7.0 -2
	(B) 1.0 V (D) 2.27 mV		Resposta:
9.	Resposta: A figura mostra as linhas de campo elétrico de um sistema de duas cargas pontuais: q_1 no ponto $x = -1$ e q_2 no ponto $x = 1$. Em que direção e sentido deslocar-se-á um eletrão colocado em		Num condensador de placas paralelas quadradas, com 8.0 cm de lado, a distância entre as placas é 0.5 mm. Se o condensador for carregado até a diferença de potencial de 15 V, calcule a carga armazenada.
	repouso no ponto $x = 3$, $y = 0$?		(A) 14.9 nC (C) 1.06 nC (E) 1.70 nC (B) 70.7 nC (D) 6.37 nC Resposta:
	-2.5	14.	Sabendo que a corrente indicada no circuito tem intensidade $I=60~\mathrm{mA}$, determine o valor da resistência R . $R = 30 ~\mathrm{m}$ $100~\Omega$
	(A) Sentido negativo do eixo dos x.		(A) 7.89Ω (C) 30.0Ω (E) 150.0Ω (B) 68.18Ω (D) 450.0Ω
	(B) Sentido positivo do eixo dos x.		Resposta:
	(C) Sentido positivo do eixo dos y. (D) Sentido positivo do eixo dos z		
	Sentido positivo do eixo dos z.Sentido negativo do eixo dos y.esposta:	15.	A expressão do campo elétrico numa região do espaço é $\vec{E} = 9 x^2 \vec{e}_x$ (unidades SI). Calcule a diferença de potencial $V(2) - V(1)$ entre os pontos $x = 2$ m e $x = 1$ m, sobre o eixo dos x .
10.	Determine a corrente eficaz num indutor de 13 mH ligado a uma fonte ideal de tensão alternada, com tensão máxima 85 V e frequência de 30 Hz.		(A) -9 V (C) -27 V (E) -18 V (B) -21 V (D) -36 V
	(A) 8.2 A (C) 4.9 A (E) 3.1 A (B) 24.5 A (D) 4.1 A Resposta:	16.	O coeficiente de temperatura do alumínio a 20° C, é igual a 0.0039 . Se a resistência de uma barra de alumínio é $65~\Omega$ a 20° C, qual será a resistência quando a barra for aquecida até 56° C?
11.	No circuito representado no diagrama, determine a intensidade da corrente final (após a fonte ter estado ligada muito tempo) através da resistência de 1 k Ω .		(A) 76.0Ω (C) 69.6Ω (E) 87.8Ω (B) 83.3Ω (D) 74.1Ω Resposta: \square
	'		O campo magnético numa região do espaço é $2\vec{e}_x + 3\vec{e}_y + 5\vec{e}_z$ (unidades SI). Determine o módulo do binário magnético numa espira triangular, com vértices na origem e nos pontos (5.6, 0, 0) e (0, 4.3, 0) (unidades SI), percorrida por uma corrente de 1 A.
	(A) 10.0 mA (C) 1.0 mA (E) 4.0 mA (B) 5.0 mA (D) 2.5 mA		(A) 43.4 N·m (C) 64.8 N·m (E) 77.1 N·m (B) 53.8 N·m (D) 60.2 N·m
	Resposta:		Resposta:

8. Uma bobina com indutância de 4.2 mH é ligada a uma fonte 12. Calcule a resistência de uma lãmpada incandescente de 10 W e

(A) 18.0Ω

(B) 9.0 Ω

6 V, nas condições normais de operação.

(**C**) 6.0 Ω

(D) 3.6Ω

 $(\mathbf{E}) 4.5 \Omega$

ideal de 1.5 V. Após 1.5 segundos, a corrente na bobina é igual

a 3.4 mA. Calcule a força eletromotriz média induzida na bo-

bina durante esse intervalo.

Regente: Jaime Villate

FEUP - MIEIC

Resolução do exame de 29 de janeiro de 2015

Problemas

Problema 1. (a) A frequência angular e a impedância do condensador são:

A impedância da resistência em série com o indutor e a indutância total são:

(b) A corrente no indutor é a mesma do que no sistema da resistência e o indutor em série, onde a tensão é igual à da fonte; como tal, o fasor da corrente no indutor é:

```
(%i6) I: rectform (5/z2);
(%o6) 0.1184 - 0.0538 %i
```

e a expressão da corrente, em unidades SI, é

```
(%i7) cabs(I)*cos(w*t+carg(I));
(%o7) 0.1301 cos(3000 t - 0.4264)
```

Problema 2. (a) No primeiro intervalo, a área exposta ao campo aumenta linearmente, desde 0 até a área do quadrado, L^2 . Como a componente perpendicular do campo é constante e igual a B, então o fluxo aumenta linearmente desde 0 até BL^2 . No segundo intervalo o fluxo permanece constante e no terceiro intervalo diminui linearmente desde BL^2 até 0. A figura seguinte mostra o gráfico do fluxo, no sentido para lá da folha.

(b) A f.e.m. induzida é igual ao declive da curva no gráfico anterior, ou seja v B L no primeiro intervalo, 0 no segundo intervalo e -v B L, tal como mostra o gráfico seguinte. Neste caso o sinal positivo de ε indica f.e.m. no sentido anti-horário da espira e o sinal negativo indica f.e.m. no sentido horário.

(c) Como já foi dito na alínea anterior, no primeiro intervalo a f.e.m., e portanto a corrente induzida, são no sentido anti-horário no primeiro intervalo, nulas no segundo intervalo e no sentido horário no terceiro intervalo. Isso explica-se pela lei de Lenz, já que no primeiro intervalo, como o fluxo aumenta, o campo magnético induzido é contrário ao campo externo e pela regra da mão direita a corrente é no sentido anti-horário. No terceiro intervalo, a diminuição do fluxo implica campo induzido no mesmo sentido do campo externo e corrente induzida no sentido horário.

Perguntas

3. C	6. E	9.
J. C	U. L	7.

15. B