10.Intervals de Confiança

Estadística Grau en Matemàtiques

Josep A. Sanchez Dept. Estadística i I.O.(UPC)

Estimació puntual i estimació per interval

- Estimar un paràmetre poblacional amb un únic valor calculat a partir de la mostra s'anomena estimació puntual
- Estimar un paràmetre poblacional amb un rang de valors plausibles calculats a partir de la mostra s'anomena estimació per intervals

Estimació per intervals

• Definició: Una estimació per interval d'un paràmetre θ amb valor real és cualquier par de funcions $L(x_1,\ldots,x_n)$ i $U(x_1,\ldots,x_n)$ de la mostra que satisfà $L(\underline{x}) \leq U(\underline{x})$ per a qualsevol valor de \underline{x} . Si observem $\underline{X} = \underline{x}$ llavors el resultat inferencial és que $L(\underline{x}) \leq \theta \leq U(\underline{x})$. L'interval aleatori $[L(\underline{x}),U(\underline{x})]$ s'anomena **estimador per interval**.

Notes:

- $m{ heta}$ és un valor fixat i no pas una variable aleatòria (estadística freqüentista)
- Els límits de l'interval són variables aleatòries (abans d'observar la mostra)
- En ocasions l'estimador és una semi-recta enlloc d'un interval $(-\infty, U(x))$ o $[L(x), +\infty)$

Per una mostra X_1, X_2, X_3, X_4 d'una població $N(\mu, 1)$, fem servir un estimador per interval per a μ donat per $[\bar{X} - 1, \bar{X} + 1]$

Si fem servir estimació puntual, $\hat{\mu}=\bar{X}$, llavors $P(\bar{X}=\mu)=0$, degut a que $\bar{X}\sim N(\mu,\frac{1}{4})$

En canvi, amb l'estimació per interval:

$$P(\mu \in [\bar{X} - 1, \bar{X} + 1]) = P(\bar{X} - 1 \le \mu \le \bar{X} + 1]) =$$

$$= P(-1 \le \bar{X} - \mu \le 1) =$$

$$= P(-\frac{1}{1/2} \le \frac{\bar{X} - \mu}{1/2} \le \frac{1}{1/2}) =$$

$$= P(-2 < Z < 2) = 0.9544$$

Probabilitat de cobertura, coeficient de confiança i interval de confiança

Definició: Per un estimador per interval [L(X), U(X)] d'un paràmetre θ , la **probabilitat de recobriment** és la probabilitat de que l'interval aleatori [L(X), U(X)] contingui el veritable paràmetre θ $(P(\theta \in [L(X), U(X)]))$

Definició: Per un estimador per interval [L(X), U(X)] d'un paràmetre θ , el **coeficient de confiança** és l'ínfim de les probabilitat de recobriment, $\inf_{\theta} P(\theta \in [L(X), U(X)])$

Definició: El terme **interval de confiança** fa referència a un estimador per interval [L(X), U(X)] amb el seu coeficient de confiança $(IC_{1-\alpha}(\theta))$

Estimació per Interval de μ de una $N(\mu, \sigma^2)$

 Sigui X ~ N(0,1). Coneixent la distribució, podem trobar un rang de valors plausibles (no estranys) per a la variable aleatòria.

$$P(a \le X \le b) = 0.95$$

- Això vol dir que la probabilitat de que [a,b] no contingui X és 0.05
- a i b es poden escollir d'infinites maneres, però habitualment, la probabilitat de no contenir el paràmetre es reparteix equitativament entre ambdós extrems
- Notació: $P(X \leq Z_{\alpha}) = \alpha$
- Un valor habitual per a la confiança és 0.95 que ens dóna:

$$P(-1.96 < X < 1.96) = 0.95$$

Estimació per Interval de μ d'una $N(\mu, \sigma^2)$ (σ^2 coneguda)

Sigui X_1, \ldots, X_n m.a.s. amb $X_i \sim N(\mu, \sigma^2)$ amb σ^2 coneguda. construim un interval de confiança per a μ

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

$$P\left(Z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < Z_{1-\alpha/2}\right) = 1 - \alpha$$

$$P\left(Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \bar{X} - \mu < Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$P\left(\bar{X} - Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

$$IC_{1-\alpha}(\mu) = \left[\bar{X} - Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

$$IC_{1-\alpha}(\mu) = \bar{X} \pm Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Incertesa de l'estimació

- L'interval de confiança ens dona una idea de la incertesa a l'hora d'estimar puntualment el paràmetre.
- Quan més estret és l'interval menys incertesa hi ha en l'estimació del paràmetre
- Com afecten a la incertesa (amplada de l'interval) els següents factors?
 - Paràmetre de variància (σ^2) ?
 - Mida mostral (n)?
 - Coeficient de confiança (1α) ?

Interpretació frequentista d'un interval de confiança

$$X \sim N(\mu, \sigma^2 = 10^2)$$

Simulació amb $\mu=1000$ i n=20 amb confiança $1-\alpha=0.95$

IC95(mu) de 100 muestras simuladas

Estimació per Interval de μ d'una $N(\mu, \sigma^2)$ (σ^2 desconeguda)

Sigui X_1, \ldots, X_n m.a.s. amb $X_i \sim N(\mu, \sigma^2)$ amb σ^2 desconeguda. construim un interval de confiança per a μ

$$t = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

$$P\left(t_{n-1,\alpha/2} < \frac{\bar{X} - \mu}{S/\sqrt{n}} < t_{n-1,1-\alpha/2}\right) = 1 - \alpha$$

$$P\left(t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} < \bar{X} - \mu < t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}\right) = 1 - \alpha$$

$$P\left(\bar{X} - t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}} < \mu < \bar{X} + t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}\right) = 1 - \alpha$$

$$IC_{1-\alpha}(\mu) = \left[\bar{X} - t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}\right]$$

$$IC_{1-\alpha}(\mu) = \bar{X} \pm t_{n-1,1-\alpha/2} \frac{S}{\sqrt{n}}$$

Estimació per Interval de μ d'una $N(\mu, \sigma^2)$ (σ^2 desconeguda)

- Com no coneixem el paràmetre de variància, fem servir l'estimació puntual S^2 que en l'expressió de l'estandardització de la variable ens porta a la distribució t-Student amb n-1 graus de llibertat enlloc de a la Normal estandarditzada
- La distribució t-Student té cues més pesants que la Normal.
 Això indica que les quantiles de la t-Student són més grans que les de la N(0,1)

Pregunta: Implica això que per una mateixa confiança l'interval amb σ^2 coneguda és sempre més estret (precís) que amb σ^2 desconeguda?

Una mostra de 77 estudiants tenen un pes mig de 72.62kg. La desviació estandard de la mostra és 8.36kg. Construeix un interval de confiança al 95% per a la mitjana poblacional.

$$IC_{1-\alpha}(\mu) = \bar{X} \pm \frac{S}{\sqrt{n}}$$

$$= 72.62 \pm t_{76,0.975} \frac{8.36}{\sqrt{77}}$$

$$= 72.62 \pm 1.9917 \frac{8.36}{\sqrt{77}} = [70.73, 74.52]$$

Estimació per Interval de σ^2 d'una $N(\mu, \sigma^2)$

Sigui X_1, \ldots, X_n m.a.s. amb $X_i \sim N(\mu, \sigma^2)$. construim un interval de confiança per a σ^2

$$W = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$P\left(W \le \chi_{n-1,\alpha/2}^2\right) = \frac{\alpha}{2} \qquad P\left(W \le \chi_{n-1,1-\alpha/2}^2\right) = 1 - \frac{\alpha}{2}$$

$$P\left(\chi_{n-1,\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1,1-\alpha/2}^2\right) = 1 - \alpha$$

$$P\left(\frac{1}{\chi_{n-1,1-\alpha/2}^2} \le \frac{\sigma^2}{(n-1)S^2} \le \frac{1}{\chi_{n-1,\alpha/2}^2}\right) = 1 - \alpha$$

$$P\left(\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}\right) = 1 - \alpha$$

$$IC_{1-\alpha}(\sigma^2) = \left[\frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}\right]$$

Una mostra de 77 estudiants tenen una pes mig de 72.62kg. La desviació estandard de la mostra és 8.36kg. Construeix un interval de confiança al 95% per a la variància i per a la desviació estàndard poblacional.

$$\chi^2_{n-1,\alpha/2} = \chi^2_{76,0.025} = 53.78$$
 $\chi^2_{n-1,1-\alpha/2} = \chi^2_{76,0.975} = 102.00$

$$IC_{95\%}(\sigma^2) = \left[\frac{76 * (8.36)^2}{102.00}, \frac{76 * (8.36)^2}{53.78} \right] = [52.06, 98.73]$$

Nota: L'interval no és simètric en S^2

$$IC_{95\%}(\sigma) = [\sqrt{52.06}, \sqrt{98.73}] = [7.21, 9.94]$$

Estimació per Interval de p d'una Bern(p) (proporció)

Es fa una enquesta per determinar el percentatge de la població a favor de la legalització de les drogues blandes. Cada observació de la mostra és o bé 1 (a favor) o bé 0 (en contra)

- $X_i \sim Bern(p)$. Quina és l'estimació puntual i per interval de p?
- $E(X_i) = p$ V(X) = p(1-p)
- Pel Teorema Central del Límit, per n suficientment gran, $\sum_{i=1}^{n} X_i \approx N(np, np(1-p))$
- Per tant, $\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n} \approx N(p, \frac{p(1-p)}{n})$
- D'acord al resultat obtingut previament,

$$IC_{1-\alpha}(p) = \hat{p} \pm Z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

 Pel càlcul de la variància es pot substituir p per la seva estimació p̂ o pel valor que suposa la màxima variància (màxima indeterminació) p=0.5

Exercici

Suposem que en una classe hi ha 18 estudiants, 11 nois i 7 noies. S'assumeix que la classe és una mostra aleatòria de tots els estudiants de la facultat, Calcula un Interval de Confiança al 95% pel veritable percentatge d'estudiants que són noies en la facultat.

Exercici 2

Enquesta a partir de 2.831 qüestionaris (1425 nois i 1406 noies)

Prevalences del consum de diferents substàncies per sexes (Catalunya, 2004, Alumnat 14-18 anys)						
	Nois	Noies	Nois	Noies	Nois	Noies
Alcohol	75.5	78.9	75.0	78.8	60.6	60.6
Tabac	62.8	67.8	-	-	28.6	34.2
Tranquil.litzants	5.4	9.7	3.3	7.3	1.4	4.0
Cànnabis	47.3	47.2	43.0	40.5	32.2	28.3
Cocaïna	10.0	7.2	8.1	5.4	4.3	2.3
Heroïna	0.9	0.3	0.8	0.3	0.7	0.3
Speed i amfetamines	5.3	3.3	4.2	2.2	2.3	1.2
Èxtasi	5.1	4.2	2.8	1.5	1.7	0.5
Al.lucinògens	6.9	3.9	5.1	2.1	3.0	0.8
Substàncies volàtils	5.0	3.3	3.5	2.1	1.7	1.1

Exercici 2

Calcula:

- Un interval de confiança pel percentatge poblacional d'usuaris de Cannabis (últim mes)
- El marge d'error pels percentatges globals de l'enquesta (assumint màxima indeterminació)
- Intervals de confiança al 95% dels veritables consumidors de Cannabis, separats per nois i noies (últim mes)
- Un interval de confiança al 95% per a la diferencia entre el percentatge de nois i noies consumidores de Cannabis (últim mes)

Quantitats Pivotals

• Definició: Una variable aleatòria $Q(X, \theta)$ és una **quantitat pivotal** si la distribució de $Q(X, \theta)$ és independent de tots els paràmetres. Si $X \sim f(X|\theta)$, llavors $Q(X, \theta)$ té la mateixa distribució per tots els valors de θ

Les quantitats pivotals es fan servir per construir intervals de confiança.

Exemples:

- ullet Si $X\sim \mathit{N}(\mu,\sigma^2)$ amb σ^2 coneguda, $Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim \mathit{N}(0,1)$
- ullet Si $X\sim \mathit{N}(\mu,\sigma^2)$ amb σ^2 desconeguda, $t=rac{ar{\mathit{X}}-\mu}{S/\sqrt{n}}\sim t_{n-1}$
- Si $X \sim N(\mu, \sigma^2)$ $W = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$
- Si $X \sim U[0, \theta]$ $Y = \frac{X}{\theta} \sim U[0, 1]$
- Si $X \sim exp(\lambda)$ $Y = \lambda X \sim exp(1)$

Sigui X_1, \ldots, X_n una m.a.s. on $X_i \sim \Gamma(2, \beta)$ on β és el paràmetre d'escala $(E(X_i) = 2\beta)$

- Quantitat pivotal: $\sum_{i=1}^{n} X_i \sim \Gamma(2n, \beta) \Rightarrow \frac{\sum_{i=1}^{n} X_i}{\beta} \sim \Gamma(2n, 1)$
- Càlcul d'un interval de confiança a partir de la quantitat pivotal:

$$P\left(\Gamma_{2n,1,\alpha/2} \leq \frac{\sum_{i=1}^{n} X_i}{\beta} \leq \Gamma_{2n,1,1-\alpha/2}\right) = 1 - \alpha$$

$$P\left(\frac{\sum_{i=1}^{n} X_i}{\Gamma_{2n,1,1-\alpha/2}} \leq \beta \leq \frac{\sum_{i=1}^{n} X_i}{\Gamma_{2n,1,\alpha/2}}\right) = 1 - \alpha$$

$$IC_{1-\alpha}(\beta) = \left[\frac{\sum_{i=1}^{n} X_i}{\Gamma_{2n,1,1-\alpha/2}}, \frac{\sum_{i=1}^{n} X_i}{\Gamma_{2n,1,\alpha/2}}\right]$$