

Universidade Federal do Espírito Santo Centro de Ciências Agrárias Departamento de Ciências Florestais e da Madeira

CAPÍTULO IV Métodos de Amostragem

Professor Gilson Fernandes da Silva

1 - Introdução

Nos levantamentos florestais, as unidades de amostra raramente são as árvores, pois isto implicaria na seleção aleatória destas, o que na prática não é viável. Para contornar esta dificuldade, é usual nesses levantamentos que as unidades amostrais sejam representadas por "parcelas de área fixa", ou seja, pequenas áreas dentro das quais todas as árvores, arbustos, plântulas etc são enumeradas e medidas.

Além da área fixa, as unidades de amostra também podem possuir área variável, no caso da amostragem por pontos, ou serem constituídas por faixas ou linhas de amostragem

Métodos Probabilísticos: A probabilidade de seleção de qualquer unidade de amostra é conhecida. Esta probabilidade é maior que zero e pode ser a mesma para todas as unidades em todos os momentos da seleção da unidade, ou pode variar com o progresso da amostragem.

Métodos Não Probabilísticos: As unidades que constituem a amostra não são selecionadas aleatoriamente, mas pelo julgamento pessoal ou sistematicamente.

Exemplos de métodos probabilísticos:

1 - Amostragem com igual probabilidade de seleção das unidades de amostra

- 1.1 Amostragem casual simples
- 1.2 Amostragem casual estratificada
- 1.3 Amostragem multiestágio
- 1.4 Amostragem multifase

2 - Amostragem com probabilidade variável

- 2.1 Amostragem por listagem
- 2.2 Amostragem com probabilidade proporcional à predição 3P
- 2.3 Amostragem com probabilidade proporcional ao tamanho PPS
 - 2.3.1 Amostragem por ponto, com ângulo de contagem horizontal (Bitterlich)
 - 2.3.2 Amostragem por ponto, com ângulo de contagem vertical (Hirata)
 - 2.3.3 Amostragem em linhas, com ângulo de contagem horizontal (Strand)
 - 2.3.4 Amostragem em linhas, com ângulo de contagem vertical (Strand)
- 2.4 Amostragem com probabilidade proporcional à distância- PPD
 - 2.4.1 Amostragem por quadrantes
 - 2.4.2 Amostragem pelo método das seis árvores

Exemplos de métodos não probabilísticos:

1 – Amostragem seletiva

2 – Amostragem sistemática

2 - Método de área fixa

Este é o mais antigo e conhecido método de amostragem. Nesse método, a seleção dos indivíduos é feita proporcional à área da unidade, e consequentemente, à frequência dos indivíduos que nela ocorrem.

2.1 – Tamanho e forma das unidades amostrais

As parcelas podem assumir diferentes formas geométricas, desde formas quadradas, retangulares até formas circulares. A praticidade e operacionalidade de sua localização e demarcação no campo são critérios importantes na escolha do tamanho e da forma das parcelas.

Fatos:

- ✓Não existe uma forma e tamanho ideal definitivo para a unidade amostral;
- ✓Em geral, as unidades estreitas e compridas são melhores que as quadradas, porém, outras vezes o contrário acontece, dependendo a decisão final do propósito do estudo;
- ✓ Considerando-se uma mesma área, a unidade circular é a que possui o menor perímetro, minimizando o problema das árvores marginais;
- ✓Os limites de uma unidade de amostra circular não são facilmente determinados, ao contrário das unidades quadradas ou retangulares;
- ✓Em terrenos com declividade acentuada, deve-se utilizar preferencialmente parcelas retangulares, de forma que a maior dimensão fique orientada no sentido da declividade.

Na literatura, os tamanhos das unidades de amostra mais utilizados em alguns países são: Alemanha, 100 a 500 m²; Canadá, 800 a 1000 m²; Estados Unidos, 800 m²; Finlândia, 1000 m²; Inglaterra, 400 m²; Japão, 500 a 2000 m². No Brasil, inúmeros trabalhos utilizam parcelas circulares ou retangulares entre 300 e 600 m², para florestas plantadas, e parcelas retangulares entre 1000 e 2500 m², para florestas inequiâneas.

Cuidados na alocação das parcelas!!!!

Em florestas equiâneas, a alocação das unidades de amostra de área fixa deve obedecer as linhas de plantio para que as unidades representem a área útil de cada planta.

SITUAÇÃO INCORRETA

0

SITUAÇÃO CORRETA

Em terrenos com declividade maior do que 10°, a área da unidade de amostra deve ser corrigida, de tal forma que esta fique no mesmo plano dos mapas utilizados para a definição do desenho da amostragem. A correção da área da unidade de amostra é dada pela seguinte expressão:

$$A_r = abcos(\theta)$$

em que

 A_r = área reduzida, em m²;

a = menor lado da parcela, em m;

b = maior lado da unidade de amostra, em m;

 θ = ângulo de inclinação do terreno, em graus.

Exemplo 1: Locou-se uma parcela retangular de dimensões (30 x 20 m) num terreno com declividade de 20% no maior comprimento. Obteve-se 75 árvores na parcela. Calcular o número de árvores por hectare.

Outra maneira de resolver o problema:

$$\theta = arctang(0,20) = 11,31^{\circ}$$
 $A_r = 20 \times 30 \times cos(11,31)$
 $A_r = 588,35 \text{ m}^2$
 $588,35 \text{ m}^2 \implies 75 \text{ plantas}$

$$x = 1274,75 \text{ plantas/ha}$$

 $10000 \text{ m}^2 \implies x$

Exemplo 2: Para marcar uma parcela de 20 x 30 *m* (600 m²) no campo, um engenheiro florestal encontrou um ângulo de inclinação do terreno de 30 graus. Para que a parcela tenha seu maior comprimento no sentido da declividade de modo que sua área seja de 600 m² em escala do mapa, qual deve ser a distância inclinada medida no campo?

Solução:

$$cos(\theta) = \frac{l}{L} \implies L = \frac{l}{cos(\theta)} \implies L = \frac{30}{cos(30)} = 34,64$$

Assim, para que a parcela tenha 600 m² de área rebatida no mapa, deve-se medir uma distância de 34,64 metros (L = distância inclinada) correspondente à maior dimensão da parcela (l = distância reduzida).

2.2 — Métodos de estimativa de tamanho e forma ótimos de unidades de amostra

2.2.1 – Método do coeficiente de variação

De acordo com este método, o CV é estimado medindo-se parcelas de tamanhos crescentes e calculandose o CV entre elas para os diferentes tamanhos. A expectativa é que o CV decresça até estabilizar, e o tamanho ótimo de parcelas será o menor tamanho cujo CV não difere muito do CV estabilizado.

Tamanho da parcela	Volume Médio	Variância do Volume	CV do Volume	
(m^2)	(m ³)	(m ⁶)	(%)	
400	0,23	1,04	442,97	
800	0,42	1,85	323,76	
1200	0,72	4,11	281,67	
1600	0,91	4,81	240,88	
2000	1,15 6,63		223,81	
2400	1,40	8,88	212,82	
2800	1,67	11,14	199,86	
3200	1,87	12,72	190,74	
3600	2,11	14,67	181,49	
4000	2,37	18,73	182,58	
4400	2,69	25,20	186,62	
4800	3,00	30,17	183,08	
5200	3,40	32,63	167,99	
5600	3,68	35,79	162,57	
6000	4,01	38,59	154,91	
6400	4,17	39,25	150,23	
6800	4,45	44,96	150,68	
7200	4,82	48,46	144,42	
7600	5,20	55,86	143,73	
8000	5,49	59,83	140,88	
8400	5,71	62,13	138,05	
8800	5,88	65,89	138,05	
9200	6,02	71,50	140,46	
9600	6,32	75,18	137,20	
10000	6,53	78,88	136,01	

Fonte: NETTO E BRENA (1993), citando QUEIROZ (1977)

Tamanho da parcela (m²)	Volume Médio (m³)	CV do Volume (%)	Coeficiente de Correlação	
400	0,23	442,97		
800	0,42	323,76	0,00	
1600	0,91	240,88	0,30	
3200	1,87	12,72	0,32	
6400	4,17	39,25	0,54	

Fonte: NETTO E BRENA (1993), citando QUEIROZ (1977)

2.2.2 – Método da Eficiência por dia de Trabalho (NETTO, 1979)

De acordo com NETTO e BRENA (1993), o tamanho da unidade amostral depende de outros fatores igualmente relevantes para sua definição, dentre os quais podem-se citar:

- O tamanho da área a ser inventariada;
- Os tempos de deslocamento;
- Os tempos de medição;
- O número de horas a ser trabalhada por dia;
- As condições de acesso à área e dentro dela e as adversidades de penetração na floresta.

Baseado nos fatores anteriormente mencionados, Péllico Netto em 1979 propôs a introdução do conceito de Eficiência por Dia de Trabalho (*EDT*) como uma tentativa de agrupar todas estas variáveis. Tomando como base as leis da física que tratam da velocidade, pode-se chegar aos tempos efetivos por atividade executada em campo, ou seja:

$$v = d/t$$
 e $t = d/v$

Assim, de acordo com o descrito em NETTO e BRENA (1993), compondo-se os tempos para deslocar entre unidades e para medi-las, tem-se que:

$$EDT = \frac{\sqrt{\frac{A_f}{n}}(n_d + 1)}{v_1} + \frac{An_d}{v_2}$$

em que:

 A_f = área a ser inventariada;

 n_d = número de unidades a serem medidas;

A =área da unidade amostral;

 v_1 = velocidade de caminhamento entre unidades;

 v_2 = velocidade de medição das unidades.

Caso se queira maximizar o trabalho a ser executado no mínimo espaço de tempo e considerando que a carga de trabalho diário (*EDT*) seja de 8 horas, tem-se:

$$8 = \frac{\sqrt{\frac{A_f}{n}}(n_d + 1)}{v_1} + \frac{An_d}{v_2}$$

Isolando-se *A*, tem-se:

$$A = \begin{bmatrix} 8v_1 - \sqrt{\frac{A_f}{n}} (n_d + 1) \\ v_1 n_d \end{bmatrix} v_2$$

Um exemplo apresentado por NETTO e BRENA (1993) permite compreender melhor o método proposto por NETTO (1979), em que é sugerida a seguinte situação:

"Deseja-se planejar a amostragem para uma floresta plantada de 5.000 ha, em que serão amostradas 150 unidades. Pela experiência prática, sabe-se que uma equipe pode caminhar a uma velocidade de 5 km/h entre as unidades amostrais e pode-se medi-las com eficiência a uma velocidade de 2000 m²/hora. Uma equipe bem treinada pode medir 20 unidades por dia. Nestas condições qual deve ser o tamanho da unidade amostral para se maximizar o trabalho em tempo mínimo total de medição para os 5000 ha?"

$$A = \left[\frac{8(5.000) - \sqrt{50.000.000/150}(20+1)}{(5.000)(20)} \right] 2.000$$

$$A = 558 \text{ m}^2 \approx 600 \text{ m}^2$$
.

2.3 – Conversão das estimativas para hectare

As áreas das parcelas ou unidades amostrais são normalmente inferiores ao hectare, conforme já mencionado. Assim, os estimadores podem ser convertidos para o hectare, que é uma unidade por convenção muito aceita, por meio de um fator de proporcionalidade:

$$f_c = \frac{A_h}{a_p}$$

em que:

 f_c = fator de conversão da estimativa para hectare;

 A_h = área de um hectare;

 a_p = área da parcela ou unidade amostral.

Exemplo: Em uma parcela com 500 m², foram encontradas 82 árvores. Quantas árvores seriam por hectare?

$$f_c = \frac{10000}{500} = 20$$
 \Rightarrow N/ha = 20×82 = 1640 árv. por hectare.

Estratégia semelhante pode ser empregada para converter a área basal e o volume das parcelas para hectare!!!!!

2.4 – Vantagens e desvantagens do método de área fixa

Vantagens:

- ✓A obtenção de todos os estimadores diretamente na unidade amostral medida, como área basal, distribuição diamétrica, altura, volume, crescimento, mortalidade etc.
- ✓ Praticidade e simplicidade no estabelecimento das unidades amostrais em campo.
- ✓É o método mais utilizado em inventários florestais, principalmente quando se focaliza o aspecto do inventário florestal contínuo para os fins de manejo florestal.
- ✓ As unidades permanentes oferecem, nas remedições, a grande vantagem de manterem alta correlação entre duas ou mais medições sucessivas.

Desvantagens:

✓ Maior custo de implantação e manutenção dos limites das unidades amostrais.

✓ Geralmente tem-se um número alto de árvores a ser medido nas unidades amostrais quando comparado com os demais métodos.

3 - Amostragem com probabilidade proporcional ao tamanho: Considerações sobre o método de Bitterlich

3.1 – Independência dos pontos amostrais

Considerando que o método de Bitterlich se baseia em unidades amostrais de tamanhos variáveis, proporcionais aos tamanhos dos diâmetros das árvores, deve-se evitar que diferentes *PNA's* tenham áreas amostradas sobrepostas.

Para que isso não ocorra, considere a seguinte demonstração:

$$\frac{d_m}{l} \cong \frac{D}{R} \quad \text{e} \quad K \cong 2500 \left(\frac{D}{R}\right)^2$$

$$\frac{D}{R} = C \quad \Rightarrow \quad R = \frac{D}{C} \quad (1)$$

Multiplicando a expressão (1) por 2, e considerando D o diâmetro máximo possível de ser encontrado no povoamento (D_{max}) , tem-se:

$$2R = \frac{2D_{\text{max}}}{C} \qquad ou \qquad D_P = \frac{D_{\text{max}}}{C} \quad (2)$$

Mas, tem-se também que:

$$K = 2500C^2$$
 ou $C = \frac{\sqrt{K}}{50}$ (3)

Substituindo a expressão (3) em (2), tem-se:

$$D_P = \frac{100D_{\text{max}}}{\sqrt{K}} \quad (4)$$

Como exemplo, considere um povoamento avaliado com o fator K = 1 e com diâmetro máximo (D_{max}) igual a 70 cm. Neste caso, a distância mínima entre pontos amostrais para que nenhuma árvore seja incluída simultaneamente é de 70 metros.

3.2 – Intensidade amostral

- ✓ Para determinar o número de *PNA's* a serem medidas na amostragem, CAMPOS e LEITE (2002) sugerem empregar delineamentos de amostragem, como o casual simples, estimando o erro de amostragem e a intensidade de amostragem ideal.
- ✓ SILVA e NETO (1979), consideram que os seguintes fatores devem ser observados: área do povoamento, fator instrumental (*K*), homogeneidade populacional e consequentemente a precisão requerida.
- ✓ Ainda, citando Bitterlich, estes autores sugerem que as *PNA's* sejam distribuídas de maneira sistemática dentro do povoamento.

Fórmula de Bitterlich para distribuição sistemática das parcelas dentro do povoamento:

Fator K	Fórmula		
1	$a = 68 + 2\sqrt{S}$		
2	$a = 58 + 2\sqrt{S}$		
4	$a = 48 + 2\sqrt{S}$		

em que:

a = distância entre os centros das PNA's;

S = área da população a ser amostrada.

Distância entre os centros das *PNA's* e número de *PNA's* calculados pela fórmula de Bitterlich para diferentes valores de *K*

Área	Distância entre centros (m)			PNA's por hectare		
(ha)	K=1	K = 2	K = 4	K = 1	K = 2	K = 4
1	70	60	50	2,04	2,78	4,00
4	72	62	52	1,93	2,60	3,70
9	74	64	54	1,83	2,44	3,43
16	76	66	56	1,73	2,30	3,19
25	78	68	58	1,64	2,16	2,97
36	80	70	60	1,56	2,04	2,78
49	82	72	62	1,49	1,93	2,60
64	84	74	64	1,42	1,83	2,44
81	86	76	66	1,35	1,73	2,30
100	88	78	68	1,29	1,64	2,16
400	108	98	88	0,86	1,04	1,29
900	128	118	108	0,61	0,72	0,86

Exemplo: Para 1 ha e K = 1, tem-se: $a = 68 + 2\sqrt{1} = 70$ metros $PNA's/ha = 10000/70^2 = 2,04$

FIM

Referências

CAMPOS, J. C. C.; LEITE, H. G. Mensuração florestal: perguntas e respostas. Viçosa: Editora UFV, Universidade Federal de Viçosa, 2002. 407 p.

PÉLLICO NETTO, S. Die Forstinventuren in Brasilien - Neue Entwicklungen und ihr Beitrag für eine geregelte Forstwirtschaft. Mitteilungen aus dem Arbeitskreis für Forstliche Biometrie. Freiburg, 1979. 232 p. (Tese de Doutorado).

PÉLLICO NETTO, S., BRENA, D. A. **Inventário florestal**. Curitiba: Universidade Federal do Paraná / Universidade Federal de Santa Maria, 1993. 245p.

SILVA, J. A. A.; PAULA NETO, F. **Princípios básicos de dendrometria**. Recife: UFRPE. 1979. 185p.

