Notes

Ryan Heslin

2021-11-17

##4.

If Q_1 and Q_2 are both orthogonal, so is Q_1Q_2 .

$$(Q_1Q_2)(Q_1Q_2)^T = I$$

 $Q_1Q_2Q_2^TQ_1^T = I$
 $Q_1Q_1^T = I$
 $I = I$

##5.

Show the reflection matrix R = 2P - I is orthogonal. I proved in the last chapter that $R^2 = I$, and since it is symmetric, $R^T R = I$, making it orthogonal as well.

8.

Example showing that projections onto non-orthogonal vectors sum to more than b:

```
b <- 1:2
b - (tcrossprod(c(1, 0)) %*% b) + (tcrossprod(c(1, 2))) %*% b</pre>
```

[,1] [1,] 5 [2,] 12

9.

If q_1 and q_2 are orthogonal, the closest combination to q_3 is $0q_1 + 0q_2$

10.

Given GRaham-Schmidt inputs a and b, $a = ||a||u_1||$, and $b = ||a||u_1 + u_1 \cdot b$

11.

Upper triangular orthogonals must be diagonal. Since $Q^2 = I$, each diagonal element Q_{ii} must be ± 1 .

18.

$$\begin{split} A &= QR \\ P &= QR((QR)^TQR)^{-1}(QR)^T \\ &= QR(R^TQ^TQR)^{-1}R^TQ^T \\ &= QR(R^TR)^{-1}R^TQ^T \\ &= QQ^T \end{split}$$

If Q is square, then the projection is the identity.

31.

a. If Q is orthogonal, Q^{-1} is as well by definition.

b. True. For a 3×2 , $Qx = x_1q_1 + x_2q_2$. Since the columns are unit length, the sum of squares doesn't change.

32.

$$x_1 + x_2 + x_3 - x_4 = 0$$

All solutions

$$\begin{bmatrix} -1 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Non-solutions: $\begin{bmatrix} -1\\-1\\-1\\1 \end{bmatrix}$

If b=(1,1,1,1), then its projection S^{\perp} is 'rtcrossprod(1/4*c(-1,-1,-1,1)), leaving $\begin{bmatrix} 7/8\\7/8\\7/8\\9/8 \end{bmatrix}$ in S.