回归分析

□ 函数关系: 当一个或若干个变量x取一定值时,某一个变量 y 有确定的值与之相对应。

例:圆面积S与圆半径的关系 $S=\pi r^2$

□ 相关关系: 当一个或若干个变量x取一定值时,与之相对于的 另一个变量y的值虽然不确定,但却按某种规律在一定范围内 变化。

例:居民的可支配收入x与居民的消费支出v之间的关系。

□ 回归分析:处理变量之间的相关关系的数学方法。

一元线性回归

例 测16名成年女子的身高与腿长所得数据如下:

身高	143	145	146	147	149	150	153	154	155	156	157	158	159	160	162	164
腿长	88	85	88	91	92	93	93	95	96	98	97	96	98	99	100	102

 \triangleright 以身高x 为横坐标,以腿长y 为纵坐标将这些数据点(x_i, y_i) 在平面直角坐标系上标出。

□一元线性回归模型

$$\begin{cases} y = \beta_0 + \beta_1 x + \varepsilon \\ E\varepsilon = 0, \ D\varepsilon = \sigma^2 \end{cases}$$

- 回归系数: β₀、β₁
- ▶ 回归变量: 自变量 x
- \rightarrow y对x的回归直线方程: $Y = \beta_0 + \beta_1 x$
- > 一元线性回归分析的主要任务:
- 用实验值(样本值)对 β_0 、 β_1 和 σ 作点估计;
- 对回归系数β₀、β₁作假设检验;
- 在 $x=x_0$ 处对 y 作预测,对 y 作区间估计。

▶ 回归系数的最小二乘估计

n组独立观测值: $(x_1, y_1), (x_1, y_1), \ldots, (x_n, y_n)$

设
$$\begin{cases} y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, & i = 1, 2, ..., n \\ E \varepsilon_i = 0, D \varepsilon_i = \sigma^2 \perp \varepsilon_1, \varepsilon_2, ..., \varepsilon_n 相互独立 \end{cases}$$

$$i \exists Q = Q(\beta_0, \beta_1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

▶ 最小二乘法:选择 β_0 和 β_1 的估计 $\hat{\beta}_0$, $\hat{\beta}_1$ 使得

$$Q(\hat{\beta}_0, \hat{\beta}_1) = \min_{\beta_0, \beta_1} Q(\beta_0, \beta_1)$$

▶ 回归系数的最小二乘估计

由最小二乘法解得

$$\begin{cases} \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} \\ \hat{\beta}_1 = \frac{\overline{xy} - \overline{xy}}{\overline{x^2} - \overline{x}^2} \end{cases} \quad \text{ if } \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$\sharp \, \, \, \, \, \dot{\bar{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i \,, \, \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \,, \, \, \, \, \overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \,, \, \overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$

• (经验)回归方程: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x = \bar{y} + \hat{\beta}_1 (x - \bar{x})$

> σ²的无偏估计

 $记 Q_e = Q(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ \mathbf{Q}_e : 残差平方和、剩余平方和

- σ^2 的无偏估计: $\hat{\sigma}_e^2 = \frac{Q_e}{n-2}$
- $\hat{\sigma}_e^2$: 剩余方差(残差的方差)
- $\hat{\sigma}_e^2$ 分别与 \hat{eta}_0 、 \hat{eta}_1 独立。

▶ 回归方程的显著性检验

对回归方程 $Y = \beta_0 + \beta_1 x$ 的显著性检验,归结为如下假设检验。

$$H_0: \beta_1=0 ; H_1: \beta_1\neq 0 ;$$

- 假设 H_0 (β_1 =0)被拒绝,则回归显著,认为y与x存在线性关系, 所求的线性回归方程有意义。
- 否则回归不显著, y与x的关系不能用一元线性回归模型来描述, 所得的回归方程无意义。

> 回归方程的显著性检验

▶ F检验法

当
$$H_0$$
成立时, $F = \frac{U}{Q_e/(n-2)} \sim F(1, n-2)$

其中
$$U = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
 (回归平方和)

• $F > F_{1-\alpha}(1, n-2)$, 拒绝 H_0 , 否则接受 H_0 。

▶ 回归方程的显著性检验

➤ t 检验法

当
$$H_0$$
成立时, $T = \frac{\sqrt{L_{xx}}\hat{\beta}_1}{\hat{\sigma}_e} \sim t(n-2)$
其中 $L_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n\bar{x}^2$

• $|T|>t_{1-lpha/2}(n-2)$,拒绝 H_0 ,否则接受 H_0

▶ 回归方程的显著性检验

➤ r 检验法

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

$$r_{1-\alpha} = \sqrt{\frac{1}{1+(n-2)/F_{1-\alpha}(1,n-2)}}$$

• $|r| > \mathbf{r}_{1-\alpha}$,拒绝 H_0 ,否则接受 H_0

> 回归系数的置信区间

• β_0 和 β_1 置信水平为 $1-\alpha$ 的置信区间分别为

$$\begin{split} & \left[\hat{\beta}_{0} - t_{1-\frac{\alpha}{2}}(n-2)\hat{\sigma}_{e}\sqrt{\frac{1}{n} + \frac{\overline{x}^{2}}{L_{xx}}}, \hat{\beta}_{0} + t_{1-\frac{\alpha}{2}}(n-2)\hat{\sigma}_{e}\sqrt{\frac{1}{n} + \frac{\overline{x}^{2}}{L_{xx}}} \right] \\ & \left[\hat{\beta}_{1} - t_{1-\frac{\alpha}{2}}(n-2)\hat{\sigma}_{e} / \sqrt{L_{xx}}, \hat{\beta}_{1} + t_{1-\frac{\alpha}{2}}(n-2)\hat{\sigma}_{e} / \sqrt{L_{xx}} \right] \end{split}$$

 σ^2 的置信水平为 $1-\alpha$ 的置信区间为

$$\left[\frac{Q_e}{\chi^2_{1-\frac{\alpha}{2}}(n-2)}, \frac{Q_e}{\chi^2_{\frac{\alpha}{2}}(n-2)}\right]$$

- ightharpoonup 用 y_0 的回归值 $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ 作为 y_0 的预测值。
- $\triangleright y_0$ 的置信水平为1- α 的预测区间: $[\hat{y}_0 \delta(x_0), \hat{y}_0 + \delta(x_0)]$

其中
$$\delta(x_0) = \hat{\sigma}_e t_{1-\alpha/2} (n-2) \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{L_{xx}}}$$

- 当n很大且 x_0 在 \bar{x} 附近取值时,
- · ν的置信水平为1-α的预测区间近似为

$$[\hat{y} - \hat{\sigma}_e u_{1-rac{lpha}{2}}, \hat{y} - \hat{\sigma}_e u_{1-rac{lpha}{2}}]$$

> 要求:

 $y = \beta_0 + \beta_1 x + \varepsilon$ 的值以1- α 的概率落在指定区间(y', y'')

▶ 控制x满足以下两个不等式

$$\hat{y} - \delta(x) \ge y'$$
, $\hat{y} + \delta(x) \le y''$ 要求 $y'' - y \ge 2\delta(x)$

 \ddot{x} 若 $\hat{y} - \delta(x) = y'$, $\hat{y} + \delta(x) = y''$ 分别有解x'和x'',

即
$$\hat{y} - \delta(x') = y'$$
, $\hat{y} + \delta(x'') = y''$ 则 (x', x'') 就是所求的 x 的控制区间。

》例出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大。我们希望知道使用次数与增大的容积之间的关系。对一钢包作试验,测得的数据列于下表:

使用次数	增大容积	使用次数	増大容积		
2	6.42	10	10.49		
3	8.20	11	10.59		
4	9.58	12	10.60		
5	9.50	13	10.80 10.60		
6	9.70	14			
7	10.00	15	10.90		
8	9.93	16	10.76		
9	9.99				

- ▶ 非线性回归或曲线回归问题(需要配曲线)
- ▶ 配曲线的一般方法是:
- 对变量x和y作n次试验观察 得 $(x_i,y_i)(i=1,2,...,n)$ 。
- 画散点图,根据散点图确定须配曲线类型。

- 由n对试验数据确定每一类曲线的未知参数。
- 非线性回归线性化方法:通过变量代换把非线性回归化成线性回归。

通常选择的六类曲线

- 双曲线 $\frac{1}{y} = a + \frac{b}{x}$
- 幂函数曲线 *y=ax^b* (*x*>0, *a*>0)
- 指数曲线 *y=ae^{bx}* (*a*>0)
- 倒指数曲线y = $ae^{\frac{b}{x}}$ (a>0)
- 对数曲线 y = a + blog(x) x > 0
- S型曲线 $y = \frac{1}{a+be^{-x}}$
- ▶ 确定回归系数的点估计值

- ▶求回归系数的点估计和区间估计、并检验回归模型

- · 相关系数R²越接近1,说明回归方程越显著;
- F>F_{1-n}(k, n-k-1)时拒绝H₀, F越大, 说明回归方程越显著;
- 与F对应的概率p, p<α时拒绝H₀, 回归模型成立;
- 模型误差项ε的方差σ²的估计值。

▶ 残差分析, 画出残差及其置信区间:

rcoplot(r, rint)

例 测16名成年女子的身高与腿长所得数据如下:

身高	143	145	146	147	149	150	153	154	155	156	157	158	159	160	162	164
腿长	88	85	88	91	92	93	93	95	96	98	97	96	98	99	100	102

 \triangleright 以身高x 为横坐标,以腿长y 为纵坐标将这些数据点(x_i, y_i) 在平面直角坐标系上标出。

➤ 输入数据: (regress_eg_1.m)

x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]';

X = [ones(16,1) x];

Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102] ';

▶ 回归分析及检验:

[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats

▶ 结论

 $\hat{eta}_0 = -16.0730$; $\hat{eta}_1 = 0.7194$; \hat{eta}_0 的置信区间为[-33.7017, 1.5612]; \hat{eta}_1 的置信区间为[0.6047,0.834]; $R^2 = 0.9282$;

- F=180.9531; p=0.0000°
 - 回归模型 y=-16.073+0.7194x 成立.

➤ 残差分析, 作残差图: rcoplot(r,rint)

▶ 结论:

从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点。

> 预测及作图:

86.7944 88.2331 88.9524 89.6718 91.1105 91.8298 93.9879 94.7073 95.4266 96.1460 96.8653 97.5847 98.3040 99.0234 100.4621 101.9008

□ 一元多项式回归y=a₁x^m+a₂x^{m-1}+...+a_mx+a_{m+1}

> 回归

- 确定多项式系数: [p, S]=polyfit(x, y, m)
 x=(x₁, x₂, ..., x_n), y=(y₁, y₂, ..., y_n);
 p=(a₁, a₁..., a_{m+1})是多项式的系数;
- S是一个矩阵,用来估计预测误差。
 - 多项式回归命令: polytool(x, y, m)

□ 一元多项式回归

$$y=a_1x^m+a_2x^{m-1}+...+a_mx+a_{m+1}$$

> 预测和预测误差估计

- Y=polyval(p, x)
 求polyfit所得的回归多项式在x处的预测值Y;
- [Y, DELTA]=polyconf(p, x, S, alpha)
- 求polyfit所得的回归多项式在x处的预测值Y及预测值的显著性为1-alpha的置信区间[Y-DELTA, Y+DELTA]。

》 例 观测物体降落的距离s与时间t的关系,得到数据如下表,求s关于t的回归方程 $\hat{s} = a + bt + ct^2$ 。

t	(s)	1/30	2/30	3/30	4/30	5/30	6/30	7/30
s	(cm)	11.86	15.67	20.60	26.69	33.71	41.93	51.13
t	(s)	8/30	9/30	10/30	11/30	12/30	13/30	14/30
s	(cm)	61.49	72.90	85.44	99.08	113.77	129.54	146.48

▶方法一: 二次多项式回归

• 输入: (regress eg 2.m)

t=1/30:1/30:14/30;

s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];

[p,a]=polyfit(t,s,2)

• 回归模型: s = 489.2946t²+65.8896t+9.1329

▶方法一: 二次多项式回归

预测及作图

Y=polyconf(p,t,S)

plot(t,s,'k+',t,Y,'r')

▶方法二: 多元线性回归

·输入: (regress eg 2.m)

t=1/30:1/30:14/30;

s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];

 $T=[ones(14,1) t' (t.^2)'];$

[b,bint,r,rint,stats]=regress(s',T);

b,stats

9.1329 65.8896 489.2946 stats = 1.0e+007 * 0.0000 1.0378 0 0.0000

• 回归模型: s = 489.2946t²+65.8896t+9.1329

▶ 确定回归系数的命令:

- ▶ 非线性回归命令: nlintool(x, y, 'model', beta0, alpha)
- ➤ 预测和预测误差估计: [Y, DELTA]=nlpredci('model',x,beta,r,J) 求nlinfit或nlintool所得的回归函数在x处的预测值Y及预测值的 1-alpha的置信区间[Y-DELTA, Y+DELTA]。
- ▶ 例 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大。我们希望知道使用次数与增大的容积之间的关系。对一钢包作试验,测得的数据列于下表:

使用次数	增大容积	使用次数	増大容积		
2	6.42	10	10.49		
3	8.20	11	10.59		
4	9.58	12	10.60		
5	9.50	13	10.80 10.60		
6	9.70	14			
7	10.00	15	10.90		
8	9.93	16	10.76		
9	9.99				

▶方法一: 化为线性回归

$$y = ae^{\frac{b}{x}} \implies \ln y = \ln a + \frac{b}{x}$$

$$v = \ln y, \quad u = \frac{1}{x}$$

$$\Rightarrow v = \ln a + bu$$

▶方法一: 化为线性回归

• 输入: (regress steel 1.m)

x=2:16;

y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];

u=1./x; X=[ones(15,1) u'];

v=log(y); Y=v';

[b,bint,r,rint,stats]=regress(Y,X);

b,bint,stats

 $a = \exp(b(1)), b(2)$

• 回归模型: $y = 11.6791e^{-1.1107/x}$

▶ 方法二: 非线性回归

 对将要拟合的非线性模型y=ae^{b/x},建立m-文件如下: function yhat=volum(beta, x) yhat=beta(1)*exp(beta(2)./x);

• 输入: (regress_steel_2.m) x=2:16;

y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];

beta0=[8 2]';

[beta,r,J]=nlinfit(x',y','volum',beta0); beta

• 回归模型: $y = 11.6037e^{-1.0641/x}$

▶ 方法二: 非线性回归

• 预测及作图

[YY,delta]=nlpredci('volum',x',beta,r,J); plot(x,y,'k+',x,YY,'r')

