Chapitre 10.

Fonctions de référence

Les savoir-faire du parcours

- Savoir étudier la parité d'une fonction.
- Savoir déterminer graphiquement la parité d'une fonction.
- · Savoir étudier les variations de la fonction carré.
- · Savoir comparer des images par la fonction carré.
- · Savoir résoudre une équation, inéquation avec la fonction carré.
- · Savoir étudier les variations de la fonction cube.
- · Savoir comparer des images par la fonction cube.
- Savoir résoudre une inéquation avec la fonction cube.
- · Savoir étudier les variations de la fonction inverse.
- Savoir résoudre une inéquation avec la fonction inverse.
- Savoir étudier les variations de la fonction racine carrée.
- · Savoir résoudre une inéquation avec la fonction racine carrée.
- Savoir reconnaître une fonction de référence.

Les mathématiciennes et mathématiciens

Sophie Germain (1776-1831) était une mathématicienne française pionnière du XIXe siècle. Malgré les obstacles dus à sa condition de femme, elle a contribué de manière significative à la théorie des nombres et à la théorie des équations diophantiennes. Elle a utilisé un pseudonyme masculin pour correspondre avec d'autres mathématiciens, dont Carl Friedrich Gauss, et a été la première femme à recevoir la médaille de l'Académie des Sciences de Paris. Ses travaux ont jeté les bases de la théorie des nombres modernes.

Compétence.

1

Fonctions paires, fonctions impaires

Définition 1: Fonction paire.

On dit qu'une fonction f est **paire** si :

- $\forall x \in D_f, -x \in D_f$
- $\forall x \in D_f, f(-x) = f(x)$

Remarque 2.

La **courbe représentative** d'une fonction pair est **symétrique** par rapport à l'**axe des ordonnées**.

Définition 3: Fonction impaire.

On dit qu'une fonction f est **impaire** si :

- $\forall x \in D_f, -x \in D_f$
- $\forall x \in D_f, f(-x) = -f(x)$

Remarque 4.

La **courbe représentative** d'une fonction pair est **symétrique** par rapport à l'**origine du repère**.

La fonction Carré

Définition 5: Fonction Carré.

La fonction Carré f est la fonction définie sur $\mathbb R$ par $f(x)=x^2$.

La **représentation graphique** de la fonction Carré s'appelle une **parabole** et son équation est $y=x^2$.

Théorème 6.

La fonction Carré f est paire.

La parabole d'équation $y=x^2$ est symétrique par rapport à l'axe des ordonnées.

Théorème 7: Variations de la fonction Carré.

Démonstration exigible

La fonction Carré est strictement décroissante sur \mathbb{R}^- et strictement croissante sur \mathbb{R}^+ .

Preuve : Etude des variations de $f: x \mapsto x^2$ sur $[0; +\infty[$:

Soient a et b deux nombres appartenant à $[0; +\infty[$ tels que a < b.

Comparons les images de a et b par la fonction f. $f(a) = a^2$ et $f(b) = b^2$

Pour les comparer on étudie le signe de leur différence :

$$f(a) - f(b) = a^2 - b^2 = (a+b)(a-b)$$

- a et b appartiennent à $[0;+\infty[$ donc a+b>0
- $a < b \operatorname{donc} a b < 0$
- $(a+b)(a-b) < 0 \Rightarrow a^2 b^2 < 0 \Rightarrow f(a) < f(b) \Rightarrow f(a) < f(b)$

Les images de a et b par la fonction f sont rangés dans le même ordre que ces nombres. La fonction est donc croissante sur $[0; +\infty[$.

Parité d'une fonction

Déterminer si les fonctions suivantes sont paires ou impaires.

Représenter. Raisonner.

La fonction est La fonction est

Raisonner.

A partir de la définition, démontrer que la fonction $f: x \mapsto x^2$ est paire. La fonction f est définie sur l'ensemble des réels, ainsi : $\forall x \in D_f, -x \in D_f$. Montrons que l'image de -x par la fonction f est égale à l'image de x. $f(-x)=(-x)^2=(-x)\times(-x)=x^2=f(x).$ Ainsi, la fonction $f:x\mapsto x^2$ est paire.

Connaitre et utiliser la fonction Carré

Comparer sans les calculer.

	/3\	2	
	(<u>-</u> 2)	et π	. :
_	1 0 1	01.11	

Raisonner.

• $(-11)^2$ et $(-6)^2$

• -7^2 et -8^2

		Raisonner. Calculer	r.
5	• Déterminer algébriquement l'intervalle de x^2 lorsque x appartient à $[1;3]$.		
			即即
			回数
			/b/ABCD
	• Déterminer algébriquement l'intervalle de x^2 lorsque x appartient à $[-1;4]$.		

La fonction Cube

Définition 8: Fonction Cube.

La fonction Cube f est la fonction définie sur \mathbb{R} par $f(x) = x^3$.

Théorème 9.

La fonction Cube f est impaire.

La courbe d'équation $y=x^3$ est symétrique par rapport à l'origine du repère.

La fonction Cube est strictement croissante sur $\mathbb{R}^$ et strictement croissante sur \mathbb{R}^+ .

4

Positions relatives des courbes de x, x^2 et x^3

Propriété 11.

Démonstration exigible

- Si $0 \leqslant x \leqslant 1$ alors $x \geqslant x^2 \geqslant x^3$.
- Si $x \geqslant 1$ alors $x \leqslant x^2 \leqslant x^3$

x	$-\infty$		0		1		$+\infty$
x		_	0	+		+	
x-1		_		_	0	+	
f(x)		+	0	_	0	+	

Preuve : Comparaison de x et x^2 sur $[0; +\infty[$.

Pour les comparer, on étudie le signe de leur différence.

On définit la fonction f par $f(x) = x^2 - x$.

$$f(x) = x^2 - x = x(x - 1)$$

On peut établir le tableau de signes de f(x).

$$(E): f(x) = 0 \text{ alors } S(E) = \{0; 1\}$$

x	$-\infty$		0		1		$+\infty$
x		_	0	+		+	
x-1		_		-	0	+	
f(x)		+	0	_	0	+	

Ainsi:

- $\forall x \in]0; 1[, f(x) < 0 \text{ donc } x^2 x < 0 \text{ donc } x^2 < x$
- $\bullet \ \, \forall x \in]1;+\infty,f(x)>0 \ \, \mathrm{donc} \,\, x^2-x>0 \ \, \mathrm{donc} \,\, x^2>x$

Connaitre et utiliser la fonction Cube

A partir de la définition, démontrer que la fonction $f: x \mapsto x^3$ est **impaire**.

La fonction f est définie sur l'ensemble des réels, ainsi : $\forall x \in D_f, -x \in D_f$.

Montrons que l'image de -x par la fonction f est égale à l'inverse de l'image de x.

$$f(-x) = (-x)^3 = (-x) \times (-x) \times (-x) = x^2 \times (-x) = -x^3 = -f(x).$$

Ainsi, la fonction $f: x \mapsto x^3$ est impaire.

Raisonner.

Raisonner.

Comparer sans les calculer.

• $(-5)^3$ et $(-9)^3$

Position relatives des courbes

Raisonner. Communiquer.

Comparer la position relative des courbes de x^2 et x^3 sur $[0; +\infty]$.

Pour comparer la position relative des courbes de x^2 et x^3 on étudie le signe de leur différence.

On definit la fonction f par $f(x) = x^3 - x^2 = x^2(x-1)$

On peut établir le tableau de signe de f(x).

 $(E): f(x) = 0 \text{ alors } S(E) = \{0, 1\}$

$(E) \cdot f(x) =$	0 4.0.0	(2)	± J				
x	$-\infty$		0		1		$+\infty$
x^2		+	0	+		+	
x-1		_		_	0	+	
f(x)		_	0	_	0	+	

Ainsi:

- $\forall x \in]0; 1[, f(x) < 0 \text{ donc } x^3 x^2 < 0 \text{ donc } x^3 < x^2$
- $\forall x \in]1; +\infty, f(x) > 0 \text{ donc } x^3 x^2 > 0 \text{ donc } x^3 > x^2$

9	Comparer sans les calculer.	Raisonner.	٦
	Comparer sans les calculer. $ \bullet \ (\tfrac{1}{3})^3 \ \mathrm{et} \ (\tfrac{1}{3})^2 $		鸓
			/b/ABCD
	• $\frac{10}{9}$ et $(\frac{10}{9})^2$		

La fonction Inverse

Définition 12: Fonction Inverse.

La fonction Inverse f est la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

La **représentation graphique** de la fonction Inverse s'appelle une **hyperbole** et son équation est $y = \frac{1}{x}$.

Théorème 13.

La fonction Inverse f est impaire.

La hyperbole d'équation $y = \frac{1}{x}$ est symétrique par rapport à l'origine du repère.

Théorème 14: Variations de la fonction Inverse.

Démonstration exigible

La fonction Carré est strictement décroissante sur \mathbb{R}^* et strictement décroissante sur \mathbb{R}^* .

Preuve : Étude des variations $f: x \mapsto \frac{1}{x} \text{ sur }] - \infty; 0[.$

Soient a et b deux nombres appartenant à $]-\infty;0[$ tels que a < b.

Comparons les images de a et b par la fonction f.

$$f(a) = \frac{1}{a}$$
 et $f(b) = \frac{1}{b}$

$$f(a) = \frac{1}{a} \text{ et } f(b) = \frac{1}{b}$$
 Pour les comparer on étudie le signe de leur différence.
$$f(a) - f(b) = \frac{1}{a} - \frac{1}{b} = \frac{b}{ab} - \frac{a}{ab} = \frac{b-a}{ab}$$

- a et b appartiennent à $]-\infty;0[$ donc ab>0
- $a < b \operatorname{donc} a b < 0 \operatorname{donc} b a > 0$
- $\frac{b-a}{ab} > 0 \Rightarrow \frac{1}{a} \frac{1}{b} > 0 \Rightarrow f(a) f(b) > 0 \Rightarrow f(a) > f(b)$

Les images de a et b par la fonction f sont rangés dans l'ordre contraire de celui de ces nombres. La fonction inverse est donc décroissante sur $]-\infty;0[$.

La fonction Racine carrée

Définition 15: Fonction Racine carrée.

La fonction Racine carrée f est la fonction définie sur \mathbb{R}^+ par $f(x) = \sqrt{x}$.

Remarque 16

L'ensemble de définition de la fonction Racine Carrée n'est pas centré. Donc la fonction Racine carrée n'est ni paire, ni impaire.

Théorème 17: Variations de la fonction Racine Carrée.

Démonstration exigible

La fonction Racine carrée est strictement croissante sur $\mathbb{R}^{+}.$

Preuve : Etude des variations de $f: x \mapsto \sqrt{x}$ sur $[0; +\infty[$.

Soient a et b deux nombres appartenant à $[0; +\infty[$ tels que a < b.

Comparons les images de a et b par la fonction f.

$$f(a) = \sqrt{a}$$
 et $f(b) = \sqrt{b}$

Pour les comparer on étudie le signe de leur différence.

$$f(a) - f(b) = \sqrt{a} - \sqrt{b} = (\sqrt{a} - \sqrt{b}) \times \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{\sqrt{a^2} - \sqrt{b^2}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

- $\sqrt{a} + \sqrt{b} > 0$
- $a < b \operatorname{donc} a b < 0$
- $\frac{a-b}{\sqrt{a}+\sqrt{b}} < 0 \Rightarrow \sqrt{a} \sqrt{b} < 0 \Rightarrow f(a) f(b) < 0 \Rightarrow f(a) < f(b)$

Les images de a et b par la fonction f sont rangés dans le même ordre que celui de ces nombres. La fonction racine carrée est donc croissante sur $[0; +\infty[$.

Connaitre et utiliser les fonctions Inverse et Racine Carrée

	Raisonner.
A partir de la définition, démontrer que la fonction $f: x \mapsto \frac{1}{x}$ La fonction f est définie sur l'ensemble des réels privé de 0 , Montrons que l'image de $-x$ par la fonction f est égale à l'in	ainsi : $\forall x \in D_f, -x \in D_f$.
$f(-x) = \frac{1}{-x} = -(\frac{1}{x}) = -f(x).$ Ainsi, la fonction $f: x \mapsto \frac{1}{x}$ est impaire.	/b/AE
	Raisonner.
Comparer sans les calculer.	
• $\frac{1}{5}$ et $\frac{1}{4}$	
	/b/AE
\bullet $-\frac{1}{4}$ et $-\frac{1}{6}$	
• $\sqrt{10}$ et $\sqrt{100}$	
	Raisonner.
Expliquer pourquoi la fonction Inverse n'est pas décroissant	te sur \mathbb{R}^* .
	Représenter. Raisonner.
Résoudre graphiquement les équations, puis retrouver les ré	esultats algébriquement.
1. $\frac{1}{x} = 4$	
	/b/AE
2. $\sqrt{x} = 2$	

Valider ces résultats par le calcul.

D -			0 -		
ка	ıson	ner.	Сa	ıcu	ıer.

14		
	1. Déterminer algébriquement l'intervalle de $\frac{1}{x}$ lorsque x appartient à $[1;3]$.	鸓
		/b/ABCD
	2. Déterminer algébriquement l'intervalle de \sqrt{x} lorsque x appartient à $[1;2]$.	

		Raisonner. Communique
Démontrer que f :	$x\mapsto x^2$ est décroissante sur $[-\infty;0[$.	
		• • • • • • • • • • • • • • • • • • • •
		Raisonner. Communique
En utilisant la prop	priété de parité de la fonction $x\mapsto x^2$, montrer que $2x^2$ +	+ 3 est paire.
		, 3 331 pa3
		• • • • • • • • • • • • • • • • • • • •
		Compétenc
		Compétence
		Compétence

		Compétence.
27		
		Raisonner. Communiquer.
28	Sachant que $a^3-a^3=(a-b)(a^2+ab+b^2)$, montrer que $f:x\mapsto x^3$ est croissante sur $[0;+\infty]$	
	Sachant que $u^* - u^* = (u - b)(u^* + ub + b^*)$, montrer que $f: x \mapsto x^*$ est croissante sur $[0; +b]$	∞ [.
		Compétence.
9		
_		
0		Compétence.
L		
		Compétence.
1		
		Compétence.
2		

AUTOÉVALUATION Fonctions de référence

