

Introduction to group project

Developing a sensing area visualisation tool for laparoscopic drop-in gamma probe

Kaizhong Deng

k.deng21@imperial.ac.uk

Introduction

- Prostate cancer [1]
 - 12K deaths during the last two years in the UK
 - Robotic-Assisted Surgery (RAS)
 - Sentinel Lymph Node (SLN) Mapping
- Drop-in gamma probe [2]
 - Designed for RAS
 - The radioisotope is injected and accumulated at SLN
 - Detect the hot spot
 - Distinguish cancerous tissue from the background
- Sensing area
 - 3cm away from tissue surface
 - Hard to perceive
 - Visualisation tool

The manoeuvrability of the drop-in gamma probe and its in-vivo usage during RAS [3]

^{[1] &}quot;Prostate cancer statistics," Cancer Research UK, May 14, 2015.

^[2] S. P. Povoski et al., "A comprehensive overview of radioguided surgery using gamma detection probe technology,", Jan. 2009.

Project skeleton

- 1. Implement and test the real-time probe-tracking algorithm
 - Where is the probe
- 2. Reconstruct the phantom tissue surface from the laparoscopic image
 - Where is the tissue
- 3. Detect the intersection between the probe's longitudinal axis and the phantom point cloud
 - Where is the area
- 4. Visualise the sensing area in augmented reality

Method: Probe tracking

- Optical pattern detection
 - Attach marker
 - Previous research [4,5]
 - Advantages: no extra tracking instrument
 - Difficulty: curved surface
- TODO
 - Determine the appropriate marker
 - Implement the tracking algorithm
 - Export the estimated pose
- Helpful suggestions
 - Attempt to find available source codes
 - Start from the simplest one

Ex-vivo drop-in gamma probe tracking [4]

- [4] B. Huang *et al.*, "Tracking and visualization of the sensing area for a tethered laparoscopic gamma probe," Jun. 2020.
- [5] U. L. Jayarathne *et al.*, "Robust, Intrinsic Tracking of a Laparoscopic Ultrasound Probe for Ultrasound-Augmented Laparoscopy," Feb. 2019

Method: Tissue reconstruction

- RealSense depth camera
 - RGB-D camera
 - Available supporting documents
 - https://dev.intelrealsense.com/docs/ros-wrapper
- TODO
 - Install and run the camera
 - Collect tissue geometry data (point cloud, depth map, ...)
 - Publish node on ROS
- Helpful suggestions
 - Using Ubuntu + ROS
 - Check developed repositories on GitHub

Method: Sensing area calculation and visualisation

- 3D data processing
 - Intersection of the probe axis with the tissue surface
- TODO
 - Process probe pose data and tissue surface 3D data
 - Visualise results
- Helpful suggestions
 - PyVista, Open3D, PyMeshLab...

General suggestions

- Feel free to
 - Propose your own method
 - Discuss and move the project focus
 - Discuss the extension of the project
- Logbook and minutes
 - Keep tracking
 - OneNote
- Team working
 - Working parallelly
 - Try to participate in the project
- Development
 - Read example codes

