TD 11: Files d'attente markoviennes

Exercice 1:

On suppose que des requètes informatiques arrivent à N serveurs (identiques) selon un processus de Poisson de paramètre $\lambda>0$. Chaque serveur ne peut traiter à chaque instant qu'une requète à la fois. Le temps de traitement d'une requète par un serveur est donné par une v.a. de loi exponentielle de paramètre $\mu>0$. Les temps de traitements sont indépendants (entre eux et du processus des arrivées) et une requète traîtée par un serveur quitte le système. Si les N serveurs sont occupés, la requète est mise en file d'attente. Il s'agit d'un modèle $M/M/N/+\infty$.

Soit Z_t le nombre total de requètes qui sont à l'instant t en traitement ou dans la file d'attente.

- 1. Déterminer le générateur infinitésimal du PMS $(Z_t)_{t\geqslant 0}$ et la matrice de transition de la chaîne de Markov induite.
- 2. Sous quelle condition sur les paramètres λ et μ le processus $(Z_t)_{t\geqslant 0}$ est-il récurrent positif? Déterminer alors sa probabilité invariante π .
- 3. Pour tous paramètres λ et μ déterminer $\lim_{t\to+\infty} P_t(i,j)$.
- 4. On considère maintenant le cas N=1. Soit U le temps d'attente à l'équilibre (ou en régime stationnaire). Déterminer la fonction de survie de U i.e.

$$\forall t \geqslant 0, \quad \mathbf{P}_{\pi} \left[U > t \right].$$

Corrigé:

1. L'espace d'états de $(Z_t)_{t\geqslant 0}$ est **N**. Un changement d'état se fait soit par l'arrivée d'une requète à un instant donné par le processus de Poisson de paramètre λ , soit par la fin de traitement de requète c'est à dire à la libération d'un serveur parmi les serveurs occupés (au maximum N). Le temps de libération d'un serveur parmi i $(1 \le i \le N)$ serveurs occupés est donné par le minimum de i v.a. exponentielles de paramètre $\mu > 0$ indépendantes, c'est à dire par une exponentielle de paramètre $i\mu$.

On peut donc écrire $(Z_t)_{t\geqslant 0}$ sous la forme (en posant $T_0=0$)

$$\forall t \geqslant 0, \quad Z_t = \sum_{n \geqslant 0} \xi_n \mathbf{1}_{[T_n, T_{n+1}[}(t),$$

οù

- $(Q_n)_{n\geqslant 0}$ est une chaîne de Markov sur $\mathbf N$ de probabilité de transition $Q(i,i)=0, Q(i,i+1)=\frac{\lambda}{\lambda+(i\wedge N)\mu}$ pour tout $i\geqslant 0$ et $Q(i,i-1)=\frac{(i\wedge N)\mu}{\lambda+(i\wedge N)\mu}$ pour tout $i\geqslant 1$.
- $(T_{n+1} T_n)_{n \geqslant 0}$ est indépendante de $(\xi_n)_{n \geqslant 0}$, où la loi conditionnelle de $T_{n+1} T_n$ sachant $\{\xi_n = i\}$ est une exponentielle de paramètre $(i \wedge N)\mu$.

Ainsi le générateur infinitésimal de $(Z_t)_{t\geqslant 0}$ est donné par

$$\begin{cases} A(0,0) = -\lambda, & A(0,1) = \lambda, \\ A(i,i-1) = i\mu, & A(i,i) = -(\lambda + (i+1)\mu), & A(i,i+1) = \lambda, & \forall 1 \leqslant i < N, \\ A(i,i-1) = N\mu, & A(i,i) = -(\lambda + N\mu), & A(i,i+1) = \lambda, & \forall i \geqslant N. \end{cases}$$

La chaîne induite est la chaîne $(Z_{T_n})_{n\geq 0} = (\xi_n)_{n\geq 0}$.

2. Tout d'abord, on vérifie aisément que le processus $(Z_t)_{t\geqslant 0}$ est irréductible et non explosif. Cherchons une mesure réversible π pour le processus $(Z_t)_{t\geqslant 0}$, *i.e.* réversible pour le générateur A donc vérifiant

$$\forall i, j \in \mathbf{N}, \quad \pi(i)A(i,j) = \pi(j)A(j,i).$$

Le système à résoudre s'écrit alors

$$\begin{cases} \pi(0)\lambda = \pi(1)\mu, \\ \pi(i)\lambda = \pi(i+1)i\mu, & \forall 1 \leq i \leq N, \\ \pi(i)\lambda = \pi(i+1)N\mu & \forall i > N. \end{cases}$$

D'où la solution $\pi(k) = \left(\frac{\lambda}{\mu}\right)^k \frac{1}{k!} \pi(0)$ pour $k \leq N$ et $\pi(k) = \left(\frac{\lambda}{N\mu}\right)^{k-N} \pi(N)$ pour k > N. La mesure π est A-réversible donc invariante pour le processus $(Z_t)_{t\geqslant 0}$. Le processus $(Z_t)_{t\geqslant 0}$ est récurrent positif si et seulement si la mesure π est de masse finie ce qui est équivalent à $\frac{\lambda}{N\mu} < 1$. On choisit $\pi(0)$ de sorte que la mesure π soit de masse 1 i.e. π est la probabilité invariante.

3. Par le théorème ergodique, on a

$$\forall i, j, \quad \lim_{t \to \infty} P_t(i, j) = \begin{cases} \pi(j), & \text{si } \lambda < N\mu \\ 0, & \text{si } \lambda \ge N\mu \end{cases}$$

4. Soit N=1. Dans ce cas, on vérifie aisément que $\pi(k)=\left(\frac{\lambda}{\mu}\right)^k(1-\frac{\lambda}{\mu})$ pour $k\geqslant 0$.

On doit déterminer le temps de traitement d'une requète arrivant lorsque le système est en régime stationnaire. On suppose donc Z_0 de loi π et en préconditionnant on a

$$\mathbf{P}_{\pi}[U > t] = \mathbf{E}_{\pi}[\mathbf{1}_{\{U > t\}}] = \sum_{n \geqslant 0} \mathbf{P}_{n}[U > t]\pi(n).$$

Or sachant $\{Z_0 = n\}$ une nouvelle requète arrivant est la (n + 1)-ème requète de la file d'attente. Ainsi sachant $\{Z_0 = n\}$

$${U > t} = {Y_1 + \cdots + Y_n + Y_{n+1} > t},$$

où les $(Y_i)_{1 \leqslant i \leqslant n+1}$ sont les temps de traitements indépendants i.i.d. de loi exponentielle de paramètre μ . Donc sachant $\{Z_0 = n\}$, U suit une loi Gamma $\Gamma(n+1,\mu)$. Un calcul permet de conclure

$$\mathbf{P}_{\pi}[U > t] = \sum_{n > 0} \int_{t}^{+\infty} \frac{\mu^{n+1} u^{n}}{n!} e^{-\mu u} du \pi(n) = e^{-(\mu - \lambda)t}.$$

Exercice 2:

Des véhicules arrivent à une station aux instants $0 < \tau_1 < \tau_2 < \cdots$ d'un processus de Poisson de paramètre $\lambda > 0$. Chaque véhicule dépose deux passagers qui se placent dans une file. Ils sont alors servis un par un. Les temps de service sont i.i.d. de loi exponentielle de paramètre $\mu > 0$ et indépendants des arrivées.

- 1. On note M_t le nombre de clients arrivés entre 0 et t. Quelle est la limite presque sûre de M_t/t lorsque $t \to \infty$?
- 2. Montrer que M_t est un PMS dont on déterminera le semi-groupe de transition $(\tilde{P}_t)_{t\geqslant 0}$ et générateur infinitésimal \tilde{A} .

On note X_t le nombre de clients présents dans la station à l'instant t.

3. Montrer que le processus $(X_t)_{t\geqslant 0}$ est un PMS de générateur infinitésimal A qui a pour termes non diagonaux pour tout n

$$A(n, n+2) = \lambda$$
, $A(n, n-1) = \mu \text{ si } n > 0$.

- 4. Montrer que le processus $(X_t)_{t\geqslant 0}$ est irreductible. Est-il réversible?
- 5. Montrer que le processus $(X_t)_{t\geqslant 0}$ est récurrent positif si et seulement si $\mu>2\lambda$ (considérer la fonction génératrice g de la mesure π solution de $\pi A=0$ i.e. $g(s)=\sum_{n\geqslant 0}s^n\pi(n)$ pour $0\leqslant s\leqslant 1$).
- 6. Sous la condition $\mu > 2\lambda$, déterminer $\mathbf{E}_{\pi}[X_t]$.
- 7. Quelle est la file la plus efficace entre celle considérée ci-dessus et la file $M/M/1/\infty$ avec le même taux moyen d'arrivée 2λ et de service μ ?

Corrigé:

- 1. Soit $(N_t)_{t\geqslant 0}$ le processus de Poisson de paramètre $\lambda>0$. Alors le nombre de clients M_t arrivés en t vaut $M_t=2N_t$. Par le théorème ergodique pour les processus de Poisson on sait que $\lim_t \frac{N_t}{t}=\lambda \ p.s.$ donc $\lim_t \frac{M_t}{t}=2\lambda \ p.s.$.
- 2. Le processus $(M_t)_{t\geqslant 0}$ est à valeurs dans $E=2\mathbf{N}$ et admet la représentation suivante, $\forall t\geqslant 0,\ M_t=\sum_{n\geqslant 0}2\mathbf{1}_{\{T_n\leqslant t\}}$ donc c'est un PMS de générateur inifinitésimal $\tilde{A}(x,x)=-\lambda$ et $\tilde{A}(x,x+2)=\lambda$ pour tout $x\in E$. Le semi-groupe $(P_t)_{t\geqslant 0}$ s'écrit

$$\forall x_1, x_2 \in E, \ x_1 \leqslant x_2, \quad P_t(x_1, x_2) = \frac{(\lambda t)^{x_2/2 - x_1/2}}{(x_2/2 - x_1/2)!} e^{-\lambda t}$$

3. Le processus $(X_t)_{t\geqslant 0}$ change d'états aux instants $(T_n)_{n\geqslant 1}$ composés des instants d'arrivés $(\tau_n)_{n\geqslant 1}$ et des instants de fin de service : instants de saut d'un processus de Poisson d'intensité $\mu>0$ indépendant de $(N_t)_{t\geqslant 0}$.

Le premier instant T_1 correspond au premier instant τ_1 et les instants suivants $(T_n)_{n\geqslant 2}$ sont des instants de sauts d'un processus de Poisson d'intensité $\lambda + \mu > 0$. Par le lemme des réveils, la chaîne de Markov sous-jacente $(X_{T_n})_{n\geqslant 1}$ est de noyau de transition $Q(n, n+2) = \frac{\lambda}{\lambda + \mu}$ et $Q(n, n-1) = \frac{\mu}{\lambda + \mu}$ pour tout n > 0 et Q(0, 2) = 1.

Le générateur A s'écrit donc

$$A(n, n+2) = \lambda$$
, $A(n, n-1) = \mu \mathbf{1}_{\{n>0\}}$, $A(n, n) = -(\lambda + \mu \mathbf{1}_{\{n>0\}})$

Le processus $(X_t)_{t\geqslant 0}$ est irréductible car la chaîne sous-jacente l'est mais il n'est pas réversible car A(n, n+2) > 0 et A(n+2, n) = 0.

4. Supposons $(X_t)_{t\geqslant 0}$ récurrent positif de probabilité invariante π sur \mathbf{N} vérifiant $\pi A=0$ c'est à dire $\pi=(\pi(n))_{n\geqslant 0}$ solution de

$$\begin{cases} \pi A(0) = \pi(0)A(0,0) + \pi(1)A(1,0) = 0, \\ \pi A(1) = \pi(1)A(1,1) + \pi(2)A(2,1) = 0, \\ \pi A(n) = \pi(n-2)A(n-2,n) + \pi(n)A(n,n) + \pi(n+1)A(n+1,n) = 0 \end{cases}$$

d'où π solution de

$$\begin{cases} -\lambda \pi(0) + \mu \pi(1) = 0, \\ -(\lambda + \mu)\pi(1) + \mu \pi(2) = 0, \\ \pi(n) = \frac{\lambda}{\lambda + \mu} \pi(n - 2) + \frac{\mu}{\lambda + \mu} \pi(n + 1), & n \geqslant 2. \end{cases}$$

On considère g la fonction génératrice de π définie pour tout s < 1 par $g(s) = \sum_{n \ge 0} s^n \pi(n)$. Alors g vérifie

$$\begin{split} g(s) &= \pi(0) + s\pi(1) + \sum_{n \geqslant 2} s^n \pi(n) \\ &= \pi(0) + s\rho \pi(0) + \frac{\rho}{1+\rho} s^2 g(s) + \frac{1}{s(1+\rho)} \left(g(s) - \pi(0) - s\rho \pi(0) - s^2 \rho (1+\rho) \pi(0) \right) \\ &= \frac{s-1}{s(1+\rho)} \pi(0) + \frac{\rho}{1+\rho} s^2 g(s) + \frac{1}{s(1+\rho)} g(s), \end{split}$$

avec $\rho = \lambda/\mu$. On en déduit que g vérifie

$$g(s) = \frac{\pi(0)}{1 - \rho s(1+s)}.$$

Par continuité on a $\lim_{s\to 1} g(s) = \frac{\pi(0)}{1-2\rho}$ or g est une fonction génératrice donc g(1) = 1 d'où $\pi(0) = 1-2\rho$ ce qui implique $1-2\rho > 0$ c'est à dire $\mu > 2\lambda$. A finir.

Exercice 3:

Soit $(\tau_n)_{n\geqslant 0}$ un processus de renouvellement *i.e.* tel que $0=\tau_0<\tau_1<\cdots<\tau_n<\cdots$ et $(\tau_n-\tau_{n-1})_{n\geqslant 1}$ est i.i.d.. Soit $(N_t)_{t\geqslant 0}$ le processus de comptage associé

$$\forall t \geqslant 0, \quad N_t = \sum_{n=1}^{+\infty} \mathbf{1}_{[0,t]}(\tau_n)$$

1. Montrer, en utilisant la loi de grands nombres, que

$$\lim_{t \to +\infty} \frac{N_t}{t} = \frac{1}{\mathbf{E}\left[\tau_1\right]} \quad p.s.$$

2. Soit $\mathscr{F} = (\mathscr{F}_n)_{n \geqslant 0}$ la filtration engendrée par $(\tau_n)_{n \geqslant 0}$ i.e. $\mathscr{F}_n = \sigma(\tau_1, \dots, \tau_n)$ et T un \mathscr{F} -temps d'arrêt. Montrer que $\mathbf{E}[\tau_T] = \mathbf{E}[\tau_1] \mathbf{E}[T]$ (lemme de Wald).

3. Supposons τ_1 borné. Montrer que

$$\lim_{t \to +\infty} \mathbf{E} \left[\frac{N_t}{t} \right] = \frac{1}{\mathbf{E} \left[\tau_1 \right]}$$

4. Etendre le résultat au cas τ_1 non borné.

Corrigé:

1. La suite $(Y_n)_{n\geqslant 1}$ définie par $Y_n=\tau_n-\tau_{n-1}$ est une suite *i.i.d.* et positive. Donc par la loi des grands nombres on a $\lim_n \frac{1}{n} \sum_{k=1}^n Y_i = \mathbf{E}[Y_1]$ (ce résultat est vrai même si Y_1 n'est pas intégrable car c'est une v.a. positive, dans ce cas on aurait $\mathbf{E}[Y_1]=\infty$). On a donc

$$\lim_{n \to \infty} \frac{\tau_n}{n} = \mathbf{E} \left[\tau_1 \right] \leqslant +\infty \quad p.s.$$

D'autre part on a $\lim_{t\to\infty} N_t = +\infty$ p.s. donc $\lim_{t\to\infty} \frac{\tau_{N_t}}{N_t} = \mathbf{E}\left[\tau_1\right]$ p.s. et $\lim_{t\to\infty} \frac{\tau_{N_t+1}}{N_t+1} = \mathbf{E}\left[\tau_1\right]$ p.s. On conclut aisément en utilisant l'encadrement $\tau_n \leqslant t \leqslant \tau_{n+1}$.

2. On a

$$\tau_T = \sum_{k \ge 1} (\tau_k - \tau_{k-1}) \mathbf{1}_{\{k-1 < T\}}$$

et $\mathbf{E}\left[(\tau_k - \tau_{k-1})\mathbf{1}_{\{k-1 < T\}}\right] = \mathbf{E}\left[\tau_1\right]\mathbf{E}\left[\mathbf{1}_{\{k-1 < T\}}\right]$ en préconditionnant par rapport à \mathscr{F}_{k-1} et en utilisant l'indépendance de $\tau_k - \tau_{k-1}$ par rapport à \mathscr{F}_{k-1} . On a donc

$$\mathbf{E}[\tau_T] = \sum_{k \geqslant 1} \mathbf{E}[\tau_1] \mathbf{P}[k-1 < T] = \mathbf{E}[\tau_1] \sum_{k \geqslant 0} \mathbf{P}[T > k],$$

= $\mathbf{E}[\tau_1] \mathbf{E}[T].$

- 3. Soit M>0 tel que $\tau_1\leqslant M$. Alors en appliquant le lemme de Wald au temps d'arrêt N_t+1 on a $\mathbf{E}\left[\tau_{N_t+1}\right]=\mathbf{E}\left[\tau_1\right]\mathbf{E}\left[N_t+1\right]$. Comme $t\leqslant \tau_{N_t+1}\leqslant t+M$ on obtient facilement le résultat par croissance comparée.
- 4. Dans le cas τ_1 non borné, on a uniquement $\tau_{N_t+1} \geqslant t$ d'où l'on déduit $\lim_t \frac{\mathbf{E}[N_t]}{t} \geqslant \frac{1}{\mathbf{E}[\tau_1]}$. Pour obtenir le résultat on fait une troncation et on passe à la limite par Beppo Levy.

On considère donc le processus de renouvellement tronqué

$$\tau_n^K = \sum_{k=1}^n (\tau_k - \tau_{k-1}) \wedge K,$$

et le processus de comptage $(N_t^K)_{t\geqslant 0}$ associé. Alors on a clairement $\tau_n^K\leqslant \tau_n$ et donc $N_t\leqslant N_t^K$ ce qui donne

$$\lim_{t} \frac{\mathbf{E}\left[N_{t}\right]}{t} \leqslant \lim_{t} \frac{\mathbf{E}\left[N_{t}^{K}\right]}{t} = \frac{1}{\mathbf{E}\left[\tau_{1} \wedge K\right]}$$

Par Beppo Levy on a $\lim_K \mathbf{E} [\tau_1 \wedge K] = \mathbf{E} [\tau_1]$ d'où le résultat.

Exercice 4:

Des clients arrivent à des instants de sauts $T_1 < T_2 < \cdots < T_n < \cdots$ d'un processus de Poisson homogène $(N_t)_{t\geqslant 0}$ de paramètre $\mu>0$. Soit une suite $(V_n)_{n\geqslant 1}$ i.i.d., indépendante de $(N_t)_{t\geqslant 0}$, de loi G portée par $\mathbf N$ et caractérisée par les $p_i=G(\{i\}),\ i\in \mathbf N$ avec $p_0=0$. On note $g(s)=\sum_{n\geqslant 0} s^n p_n$ la fonction génératrice de la loi G. Le nombre de clients arrivés entre 0 est t est donné par

$$Z_t = \sum_{n \geqslant 1} V_n \mathbf{1}_{\{T_n \leqslant t\}}.$$

On suppose qu'il y a un seul serveur et que les clients ont des temps de service indépendants entre eux et de toutes les autres variables de loi exponentielle de paramètre $\nu > 0$.

Soit X_t le nombre de clients présents dans la file d'attente à l'instant t.

- 1. Montrer que $(X_t)_{t\geq 0}$ est une PMS et déterminer son générateur infinitésimal A.
- 2. Montrer qu'il est irréductible et qu'il n'explose pas.

3. Supposons qu'il existe probabilité invariante π pour $(X_t)_{t\geqslant 0}$ de fonction génératrice ψ . Montrer qu'alors

$$\forall 0 \le s < 1, \quad \psi(s) = \frac{\nu \pi(0)(1-s)}{s\mu(g(s)-1) + \nu(1-s)}.$$

En déduire que $m = \mathbf{E}[V_1] < +\infty$ et que $m\frac{\mu}{\lambda} < 1$.

- 4. Montrer réciproquement que si $m^{\mu}_{\lambda} < 1$ alors il existe une probabilité invariante et une seule.
- 5. Que peut-on dire de la récurrence du processus $(X_t)_{t\geqslant 0}$?
- 6. Quelle est l'espérance de X_t à l'équilibre (ou en régime stationnaire)?

Exercice 5:

On considère une file d'attente M/M/1/0. Il s'agit d'une file à un serveur avec temps d'arrivés et de services Poissoniens et une salle d'attente à 0 place : si un client arrive alors que le serveur est déjà occupé, ce client est rejetté.

La taille du système X_t est donc à valeur dans $\{0,1\}$. Son générateur A s'écrit

$$A = \left(\begin{array}{cc} -\lambda & \lambda \\ \mu & -\mu \end{array} \right),$$

où $\lambda, \mu > 0$. On note T_n les temps de sauts successifs du processus $(X_t)_{t \geqslant 0}$. Excepté pour la question 5, on supposera toujours $X_0 = 0$.

- 1. Quelle est la loi de $(T_1, T_2 T_1)$.
- 2. Plus généralement quelle est la loi du vecteur

$$(T_1, T_2 - T_1, \dots, T_{2n-1} - T_{2n-2}, T_{2n} - T_{2n-1})$$

- 3. Montrer que si $\lambda = \mu$ alors $(T_n)_{n \ge 1}$ représente les instants de sauts d'un processus de Poisson.
- 4. Calculer la probabilité invariante π du processus $(X_t)_{t\geq 0}$.
- 5. Le processus des sorties est-il à l'équilibre un processus de Poisson? (on pourra calculer $\mathbf{E}_{\pi}\left[e^{-\alpha S}\right]$ pour $\alpha \geqslant 0$ où S est le l'instant de sortie du premier client).
- 6. Déterminer $(P_t)_{t\geq 0}$ le semi-groupe de transition.

Corrigé:

Corrigé rapide.

- 1. T_1 et T_2-T_1 sont indépendantes, de lois exponentielles λ et μ .
- 2. On sait d'après le cours que la suite $(T_{n+1}-T_n)_{n\geqslant 0}$ sachant $\{X_0=0,X_{T_1}=1,X_{T_2}=0,\ldots,X_{T_{2k}}=0,X_{T_{2k+1}}=1,\ldots\}$ est une suite de v.a. independantes de lois exponentielles de paramètres $\bar{\lambda}(X_{T_n})$ avec ici $\bar{\lambda}(X_{T_n})=\lambda$ si n est pair et $\bar{\lambda}(X_{T_n})=\mu$ si n est impair.
- 3. Si $\lambda = \mu$ alors $\bar{\lambda}(x) = \lambda$ et la suite $(T_{n+1} T_n)_{n \ge 0}$ est une suite de v.a. *i.i.d.* de loi exponentielle de paramètre λ . Ainsi $(T_n)_{n \ge 1}$ sont les instants de sauts d'un processus de Poisson de paramètre λ .
- 4. La chaîne de Markov induite sur $\{0,1\}$ a pour transition Q(0,1)=1 et Q(1,0)=1, elle est donc irréductible récurrente positive. Le processus $(X_t)_{t\geqslant 0}$ est donc récurrent. On cherche une probabilité π réversible pour A et on trouve $\pi(0)=\frac{\mu}{\lambda+\mu}$ et $\pi(1)=\frac{\lambda}{\lambda+\mu}$.
- 5. Si personne n'est en train d'être servi, sur l'événement $\{X_0=0\}$, on peut écrire S=U+V où U le premier temps d'arrivée d'un client et V le temps de service de ce client donc

$$\mathbf{E}_0\left[e^{-\alpha S}\right] = \mathbf{E}\left[e^{-\alpha U}\right] \mathbf{E}\left[e^{-\alpha V}\right] = \frac{\lambda}{\lambda + \alpha} \frac{\mu}{\mu + \alpha}.$$

Si une personne est en train d'être servie, sur l'événement $\{X_0=1\}$, on peut écrire S=V où V est de loi $\mathscr{E}(\mu)$ donc

$$\mathbf{E}_1 \left[e^{-\alpha S} \right] = \mathbf{E} \left[e^{-\alpha V} \right] = \frac{\mu}{\mu + \alpha}.$$

On conclut facilement d'après l'expression de π

$$\mathbf{E}_{\pi}\left[e^{-\alpha S}\right] = \pi(0)\mathbf{E}_{0}\left[e^{-\alpha S}\right] + \pi(1)\mathbf{E}_{1}\left[e^{-\alpha S}\right] = \frac{\mu}{\lambda + \mu}\frac{\lambda}{\lambda + \alpha}\frac{\mu}{\mu + \alpha} + \frac{\lambda}{\lambda + \mu}\frac{\mu}{\mu + \alpha}.$$

La loi de S sous π n'est pas celle d'une loi exponentielle, donc le processus des sorties n'est pas un processus de Poisson.

6. On résoud les équations de Kolmogorov et on obtient

$$\forall t \geqslant 0, \quad P_t = \frac{1}{\lambda + \mu} \left(\begin{array}{cc} \mu + \lambda e^{-(\lambda + \mu)t} & \lambda - \lambda e^{-(\lambda + \mu)t} \\ \mu - \mu e^{-(\lambda + \mu)t} & \lambda + \mu e^{-(\lambda + \mu)t} \end{array} \right)$$