## O que é Álgebra Relacional?

A Álgebra Relacional é uma linguagem formal que define operações sobre relações, que correspondem a tabelas de dados em um banco de dados relacional. Proposta por Edgar F. Codd, considerado o pai dos bancos de dados relacionais, em 1970, essa álgebra é essencial para a teoria dos bancos de dados relacionais e é amplamente aplicada em sistemas de gerenciamento de bancos de dados.

As operações da Álgebra Relacional são fundamentadas em princípios matemáticos de conjuntos e incluem funções como projeção, seleção, união, interseção,

diferença e junção. Essas operações permitem que os usuários realizem consultas complexas em um banco de dados relacional de maneira eficiente e precisa.

# Por que é importante estudar álgebra relacional?

- Fundamento de bancos de dados: A álgebra relacional fornece a base teórica para a manipulação e consulta de dados em bancos de dados relacionais. Compreender seus princípios é essencial para trabalhar com SQL e outras linguagens de consulta.
- Raciocínio lógico: Estudar álgebra relacional desenvolve habilidades de raciocínio lógico e resolução de problemas, que são úteis em diversas áreas da computação e ciência da informação.

| • Eficiência: Conhecer as operações da álgebra relacional ajuda a otimizar consultas e entender como os bancos de dados processam as informações, melhorando a eficiência no acesso e na manipulação dos dados.               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Modelagem de dados: A álgebra relacional auxilia na modelagem de dados, permitindo que você compreenda como estruturar informações de maneira que sejam facilmente acessíveis e manipuláveis.                               |
| • Integração com outras disciplinas: Conceitos de álgebra relacional se aplicam em áreas como inteligência artificial, ciência de dados e engenharia de software, tornando seu aprendizado relevante em diferentes contextos. |
| • Fundamentos para avanços: Compreender a álgebra relacional é crucial para aprender sobre tecnologias mais avançadas, como bancos de dados NoSQL, onde muitos conceitos ainda são aplicáveis.                                |
| Exemplos de Álgebra Relacional                                                                                                                                                                                                |

1- Seleção  $\sigma$  : Seleciona tuplas (linhas) que satisfazem um certo predicado ou condição.

Indicada por  $\sigma$  (letra grega sigma), é uma operação que para um conjunto inicial fornecido como argumento, produz um subconjunto estruturalmente idêntico, mas apenas com os elementos do conjunto original que atendem a uma determinada condição (chamada de predicado). A seleção pode ser entendida como uma operação que filtra as linhas de uma relação(tabela), e é uma operação unária, pois opera sobre um único conjunto de dados.

Notação -  $\sigma_{predicado (relação)}$ 

### Alunos

| id  | nome      | sexo |
|-----|-----------|------|
| 123 | Macoratti | М    |
| 234 | Miriam    | F    |
| 456 | Jefferson | M    |
| 567 | Janice    | F    |

Ex 1: Selecionar tuplas de Alunos cujo nome = Macoratti

O nome = 'Macoratti' (Alunos) ==> produz o conjunto dos elementos de alunos que atendem ao predicado [Nome = 'Macoratti'], ou seja, representa um subconjunto dos alunos para o qual essa condição é avaliada como verdadeira.

| id  | nome      | sexo |
|-----|-----------|------|
| 123 | Macoratti | M    |

- Resultado subconjunto horizontal de uma relação
- Operadores de comparação : =, <, <=, >, >=,
- Operadores lógicos: ^ (and) V (or) ¬ (not)

#### Ex 2: Selecionar as tuplas de Alunos com id > 123 e id < 567

σ id > 123 ^ id < 567

| id  | nome      | sexo |
|-----|-----------|------|
| 234 | Miriam    | F    |
| 456 | Jefferson | M    |

0 operador de seleção é comutativo =>  $\sigma_{\text{condição1}}$  ( $\sigma_{\text{condição2}}$ ) =  $\sigma_{\text{condição2}}$  ( $\sigma_{\text{condição2}}$ )

# 2- Projeção $\pi$ : Gera novas relações excluindo alguns atributos

Indicada por <sup>1</sup> (a letra grega pi) produz um conjunto onde há um elemento para cada elemento do conjunto de entrada, sendo que a estrutura dos membros do conjunto resultante é definida nos argumentos da operação. Pode ser entendida como uma operação que filtra as colunas de uma tabela. Por operar sobre apenas um conjunto de entrada é classificada como uma operação unária.

Notação: \*\* lista\_nome\_atributos (Relação)

Ex. 1 - projete o atributo nome sobre a relação Alunos

π nome (Alunos)

nome Macoratti Miriam Jefferson Janice

#### Ex. 2 : Descobrir o nome e o id de todos os alunos do sexo masculino

Neste caso será necessário combinar uma projeção com uma seleção.

Se decidirmos projetar as colunas desejadas diretamente a partir da relação alunos, estaremos considerando também os elementos do sexo feminino o que não queremos. Como a projeção não permite descartar linhas, apenas colunas, deveremos fornecer a essa operação o subconjunto resultante de uma filtragem (seleção) da relação de alunos original, como mostram as figuras abaixo, que representam as relações e as operações de duas maneiras diferentes.



Definindo a expressão que atende aos requisitos temos:

 $\pi$  id, nome ( $\sigma$  sexo = 'M') (Alunos)



O operador Projeção não é comutativo.

A álgebra relacional empresta da teoria de conjuntos quatro operadores: União, Intersecção, Diferença e Produto Cartesiano que veremos a seguir.

#### Notação: relação1 X relação2 (R1 x R2)

Ex 1: Descobrir o nome do aluno, sexo e o nome do curso para cada aluno

#### Alunos

| id  | nome      | sexo | curso |
|-----|-----------|------|-------|
| 123 | Macoratti | M    | 100   |
| 234 | Miriam    | F    | 110   |
| 456 | Jefferson | M    | 120   |
| 567 | Janice    | F    | 100   |

#### Cursos

|     | nome       |
|-----|------------|
|     | Quimica    |
|     | Inglês     |
| 120 | Matemática |
| 130 | Física     |

π nome, sexo, curso ( σ Alunos.curso = Cursos.id ( Alunos x Cursos) )

#### Resultado

| id  | nome      | sexo | nome       |
|-----|-----------|------|------------|
| 123 | Macoratti | M    | Quimica    |
| 234 | Miriam    | F    | Inglês     |
| 456 | Jefferson | M    | Matemática |
| 567 | Janice    | F    | Quimica    |

Note que primeiro fizemos o produto cartesiano ( Alunos x Cursos ) que resulta em uma relação com 6 colunas e 16 linhas:

| id  | nome      | sexo | curso | id  | nome       |
|-----|-----------|------|-------|-----|------------|
| 123 | Macoratti | M    | 100   | 100 | Quimica    |
| 123 | Macoratti | M    | 100   | 110 | Inglês     |
| 123 | Macoratti | M    | 100   | 120 | Matematica |
| 123 | Macoratti | M    | 100   | 130 | Fisica     |
| 234 | Miriam    | F    | 110   | 100 | Quimica    |
| 234 | Miriam    | F    | 110   | 110 | Inglês     |
| 234 | Miriam    | F    | 110   | 120 | Matematica |
| 234 | Miriam    | F    | 1100  | 130 | Fisica     |
|     |           |      |       |     |            |

Depois fizemos uma seleção pelo código do curso : σ Alunos.curso = Cursos.id

| id  | nome      | sexo | curso | id  | nome       |
|-----|-----------|------|-------|-----|------------|
| 123 | Macoratti | M    | 100   | 100 | Quimica    |
| 123 | Miriam    | F    | 110   | 110 | Inglês     |
| 123 | Jefferson | M    | 120   | 120 | Matematica |
| 123 | Janice    | F    | 100   | 100 | Ouimica    |

Em seguida fizemos um projeção de nome, sexo e curso:

| nome      | sexo | nome       |
|-----------|------|------------|
| Macoratti | M    | Quimica    |
| Miriam    | F    | Inglês     |
| Jefferson | M    | Matemática |
| Janice    | F    | Quimica    |

### Referências bibliográficas

https://www.macoratti.net/13/06/sql\_arcb.htm

https://coens.dv.utfpr.edu.br/will/wp-

content/uploads/2022/03/Apostila\_Algebra\_Relacional.pdf

https://www.alura.com.br/artigos/algebra-

relacional#:~:text=Por%20que%20estudar%20%C3%81lgebra%20Relacional%3F%201%20Dom%

C3%ADnio%20da,solu%C3%A7%C3%B5es%3A%20...%203%20Utilizar%20as%20propriedades%2 0alg%C3%A9bricas%3A%20

https://www.soescola.com/glossario/o-que-e-relational-algebra#gsc.tab=0

https://www.devmedia.com.br/algebra-relacional/9229