ДИСКРЕТНАЯ МАТЕМАТИКАИУ5, 3 семестр, 2015 г.

Лекция 3. ОТНОШЕНИЯ ЭКВИВАЛЕНТНОСТИ И ПОРЯДКА

3.1. Отношения эквивалентности

Пусть A — произвольное множество.

Семейство $(B_i)_{i\in I}$ непустых и попарно не пересекающихся множеств называют разбиением множества A , если

объединение множеств семейства $(B_i)_{i\in I}$ равно A , т.е. $\bigcup_{i\in I} B_i = A$.

Сами множества B_i называют элементами разбиения $(B_i)_{i\in I}$.

Пример. Рассмотрим множество точек плоскости. Семейство параллельных прямых образует разбиение плоскости.

Элементом разбиения является множество точек каждой прямой.

Пусть ρ — эквивалентность на множестве A и $x \in A$.

Классом эквивалентности по отношению ρ называют множество всех элементов A , эквивалентных x , т.е. множество $\{y\colon y\,\rho\,x\}$.

Класс эквивалентности обозначают $[x]_{\rho}$.

Для любого элемента $x \in A$ класс эквивалентности не пуст в силу рефлексивности , так как $x \in [x]_{\rho}$.

Фактор-множеством множества A по отношению ρ называют множество всех классов эквивалентности по данному отношению эквивалентности ρ на множестве A и обозначают A/ρ .

Утверждение 3.1. Любые два класса эквивалентности по отношению ρ либо не пересекаются, либо совпадают.

 \blacktriangleleft Пусть два класса эквивалентности $[x]_{\rho}$ и $[y]_{\rho}$ имеют общий элемент $z\in [x]_{\rho}\cap [y]_{\rho}$.

Тогда $z \rho x$ и $z \rho y$.

В силу $\mathit{симметричности}$ отношения $\,\rho\,:\,x\,\rho\,z$, тогда $\,x\,\rho\,z\,$ и $\,z\,\rho\,y\,.$

В силу mpанзитивности отношения ρ получим $x \rho y$.

Пусть

$$h \in [x]_{\rho} \Rightarrow (h \rho x \wedge x \rho y) \Rightarrow h \rho y \Rightarrow h \in [y]_{\rho}.$$

Это верно для любого элемента $h \in [x]_{\rho}$.

Обратно, если

$$h \in [y]_{\rho} \Rightarrow (h \rho y) \land (x \rho y) \Rightarrow$$

 \Rightarrow (то в силу симметричности ρ) $(h \rho y) \land (y \rho x) \Rightarrow$
 \Rightarrow (в силу транзитивности) $h \rho x \Rightarrow h \in [x]_{\rho} \Rightarrow [x]_{\rho} = [y]_{\rho}$.

Теорема 1. Для любого *отношения эквивалентности* на множестве A множество классов эквивалентности образует разбиение множества A. Обратно, любое разбиение множества A задает на нем отношение эквивалентности, для которого классы эквивалентности совпадают с элементами разбиения.

 \blacktriangleleft Отношение эквивалентности ρ на множестве A определяет некоторое разбиение этого множества.

Каждый элемент множества A принадлежит некоторому классу эквивалентности по отношению ρ т.к. для любого $x \in A$ справедливо $x \in [x]_{\rho}$ ($x \rho x$).

Множество всех классов эквивалентности по отношению ρ образует разбиение исходного множества A .

Т.о., любое отношение эквивалентности однозначно определяет некоторое разбиение.

Пусть $(B_i)_{i\in I}$ — некоторое разбиение множества A . Рассмотрим отношение ρ , такое, что

$$x \rho y \Leftrightarrow (\exists i \in I)(x \in B_i) \land (y \in B_i).$$

Введенное отношение ρ рефлексивно и симметрично.

Если для любых x , y и z имеет место $x \rho y$ и $y \rho z$,то x , y и z в силу определения отношения ρ принадлежат одному и тому же элементу B_i разбиения.

Следовательно, $x \rho z$ и отношение ρ транзитивно.

Таким образом, ρ — эквивалентность на A . \blacktriangleright

Любая эквивалентность определяет единственное разбиение и наоборот.

Пример 3.1. На множестве целых чисел \mathbb{Z} определим отношение $\equiv_{(\text{mod k})}$ отношение равенства по модулю k, где $k \in \mathbb{N}$: $x \equiv_{(\text{mod k})} y$, если и только если x-y делится на k.

 $\equiv_{(\mathrm{mod}\,k)}$ — это отношение эквивалентности.

Равенство чисел m и n по модулю k означает, что при делении на k эти числа дают одинаковые остатки.

Различных остатков может быть ровно k:0, 1, ..., k-1.

Получаем ровно k попарно различных классов эквивалентности:

$$[0]_{\equiv_{(\text{mod k})}}$$
, $[1]_{\equiv_{(\text{mod k})}}$, ..., $[k-1]_{\equiv_{(\text{mod k})}}$,

где класс $[r]_{\equiv_{(\mathrm{mod}\, \mathrm{k})}}$ состоит из всех целых чисел, дающих при делении на k остаток r .

3.2. Упорядоченные множества.

Множество вместе с заданным на нем *отношением порядка* называют **упорядоченным множеством**.

Отношение порядка будем обозначать \leq (или значками \preccurlyeq , \sqsubseteq и т.п., похожими на \leq).

Множество M с заданным на нем отношением порядка \leq будем записывать как пару (M, \leq) .

Каждому отношению порядка \leq на множестве M можно сопоставить следующие отношения.

1. Отношение < , получается из исходного отношения порядка \le выбрасыванием всех элементов диагонали id_M .

$$(x < y) \ \forall \ x, y \in M \Leftrightarrow ((x \le y) \land (x \ne y))$$

"Элемент x строго меньше элемента y."

Бинарное отношение < на множестве M —отношение строгого порядка. Оно иррефлексивное, антисимметричное и транзитивное.

2. Двойственный порядок. Это бинарное отношение на множестве M , обратное к отношению \leq .

Обозначение ≥.

Тогда для любых x , y условие $x \ge y$ равносильно тому, что $y \le x$. Отношение \ge тоже является отношением порядка.

Отношение строгого порядка, ассоциированное с \geq , обозначим > .

3. Отношение доминирования $x \triangleleft y$.

Для двух элементов x и y , по определению, $x \lhd y$ тогда и только тогда, когда x строго меньше y и не существует такого элемента z , что x < z < y .

Отношение $x \triangleleft y$ называют **отношением доминирования** (или просто **доминированием**), ассоциированным с отношением порядка \leq .

"Элемент y доминирует над элементом x".

Отношение доминирования иррефлексивно, антисимметрично, но не транзитивно.

Пример 3.2. На множестве натуральных чисел № задано отношение делимости

По отношению делимости 15 доминирует над 3 и 5, но 20 не доминирует над 5, так как существует "промежуточный" элемент — 10, делитель 20, который делится на 5, но не равен ни 20, ни 5.

3.3. Упорядоченные множества

Рассмотрим упорядоченное множество (M, \leq) .

Элементы x и y упорядоченного множества (M, \leq) называют **сравнимыми** по отношению порядка \leq , если $x \leq y$ или $y \leq x$.

В противном случае элементы x и y называются **несравнимыми**.

Упорядоченное множество, все элементы которого попарно сравнимы, называют **линейно упорядоченным**, а соответствующее отношение — **отношением линейного порядка** (или просто **линейным порядком**).

Линейно упорядоченное подмножество называют цепью.

Любое подмножество попарно не сравнимых элементов данного упорядоченного множества называют антицепью.

Пример 3.3. а. Отношение естественного числового порядка на множестве \mathbb{R} действительных чисел является отношением линейного порядка, поскольку для любых двух чисел a, b имеет место или неравенство $a \leq b$, или неравенство $b \leq a$.

б. Отношение делимости на множестве \mathbb{N} не является линейным порядком. #

◆ First ◆ Prev ◆ Next ◆ Last ◆ Go Back ◆ Full Screen ◆ Close ◆ Quit

Пусть (A, \leq) — упорядоченное множество.

Элемент $a \in A$ называют **наибольшим элементом** множества A , если для всех $x \in A$ выполняется неравенство $x \leq a$.

Элемент b называют **максимальным элементом** множества A , если для всякого $x \in A$ имеет место одно из двух: или $x \leq b$, или x и b не сравнимы.

Наименьший элемент упорядоченного множества A — это такой его элемент a , что $a \le x$ для каждого $x \in A$.

Минимальный элемент — это такой элемент $b \in A$, что для любого $x \in A$ элементы b и x не сравнимы или $b \le x$.

Утверждение 3.2. Наибольший (наименьший) элемент множества, если он существует, является единственным.

Для всякого $x \in A$ выполняется $x \le a$ и $x \le a'$.

В частности, $a' \le a$ и $a \le a'$. Следовательно, a = a' (антисимметричность отношения порядка). \blacktriangleright

Единственность наименьшего элемента доказывается аналогично. Максимальных (минимальных) элементов может быть сколько угодно.

Пример 3.4.

Отношение порядка на множестве точек плоскости с фиксированной системой координат:

 $(a, b) \le (c, d)$, если и только если $a \le c$ и $b \le d$.

Рассмотрим множество точек треугольника **ОАВ** . Точка с координатами $(0,\,0)$ является наименьшим элементом этого множества.

Максимальными элементами являются все точки, лежащие на стороне AB . Наибольшего элемента нет. #

Пусть (A, \leq) — упорядоченное множество и $B \subseteq A$. Элемент $a \in A$ называется верхней (соответственно нижней) гранью множества B, если для всех элементов $x \in B$ имеет место $(x \leq a)$ (соответственно $(x \geq a)$).

Точной верхней гранью B называют наименьший элемент множества всех верхних граней множества B и обозначают $\sup B$ **Точной нижней гранью** B называют наибольший элемент множества всех нижних граней и обозначают ($\inf B$).

Элементы $\sup B$ и $\inf B$ могут не принадлежать множеству B . (наибольший и наименьший элементы множества B всегда принадлежат множеству B)

Точная верхняя (нижняя) грань множества существует не всегда.

Пример 3.5.

Рис. 2

Рассмотрим множество D точек прямоугольника **OABC** с отношением порядка $(a, b) \leq (c, d)$, если и только если $a \leq c$ и $b \leq d$. Точка D является точной нижней гранью, а точка B — точной верхней гранью этого множества. Обе точки принадлежат множеству.

Пример 3.6.

Рассмотрим множество ${\bf F}$ с тем же отношением порядка. Точная нижняя грань (точка O) и точная верхняя грань (точка E) множества F существуют, но не принадлежат множеству.

Индуктивное упорядоченное множество

Последовательность $\{x_i\}_{i\in\mathbb{N}}$ элементов упорядоченного **множества** называют **неубывающей**, если для каждого $i\in\mathbb{N}$ справедливо неравенство $x_i\leq x_{i+1}$.

Элемент a упорядоченного множества (M, \leq) называют точной верхней гранью последовательности $\{x_i\}_{i\in\mathbb{N}}$, если он есть точная верхняя грань множества всех членов последовательности.

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 3.1. Упорядоченное множество (M, <) называют **индук**тивным, если:

- 1) оно содержит наименьший элемент;
- 2) всякая неубывающая последовательность элементов этого множества имеет точную верхнюю грань.

Пример 3.7. Множество всех подмножеств некоторого множества по отношению включения будет индуктивным.

Наименьший элемент — \varnothing .

$$\sup\{A_i\}_{i\in\mathbb{N}} = \bigcup_{i\in\mathbb{N}} A_i.$$

Материал для самостоятельного изучения

Отношение эквивалентности

Пример 3.8. На множестве \mathbb{R} действительных чисел зададим отношение $a \equiv_{\pmod{1}} b$, полагая, что числа a и b равны по модулю 1 тогда и только тогда, когда число a-b является целым.

Из определения следует, что каждое число по модулю 1 равно своей дробной части

Так как отношение $\equiv_{(\bmod 1)}$ определено через равенство, все свойства отношения эквивалентности для него выполняются.

Каждый класс эквивалентности будет содержать числа с равными дробными частями.

Каждый класс эквивалентности по данному отношению однозначно определяет некоторое число из полуинтервала [0, 1).

Наоборот, каждому числу $\gamma \in [0, 1)$ однозначно сопоставляется класс эквивалентности, состоящий из всех действительных чисел, дробная часть которых равна γ .

Таким образом, фактор-множество $\mathbb{R}/\equiv_{(\text{mod }1)}$ и полуинтервал [0,1) на числовой прямой находятся во взаимно однозначном соответствии.

Связь между понятиями эквивалентности и отображения.

Для любого отношения эквивалентности ρ на множестве A можно определить отображение f_{ρ} : $A \to A/\rho$, сопоставив каждому $x \in A$ содержащий его класс эквивалентности.

$$f_{\rho}(x) = [x]_{\rho}$$

Это *отображение сюръективно*, так как каждый элемент множества A принадлежит некоторому классу эквивалентности, т.е. для каждого $[x]_{\rho} \in A/\rho$ справедливо $[x]_{\rho} = f_{\rho}(x)$.

Отображение f_{ρ} , определенное таким образом, называют канонической сюръекцией множества A.

Любое отображение однозначно определяет некоторое отношение эквивалентности.

Теорема 2. Пусть $f: A \to B$ — произвольное отображение.На множестве A определим отношение $\rho_f: (x,y) \in \rho_f$, если и только если f(x) = f(y). Это отношение ρ_f является отношением эквивалентности, причем существует биекция фактор-множества A/ρ_f на множество f(A).

 \blacktriangleleft Рефлексивность : f(x)=f(x) ; Симметричность : f(x)=f(y) и f(y)=f(x) ; Транзитивность : $f(x)=f(y)\wedge f(y)=f(z)\Rightarrow f(x)=f(z)$; т.е. ρ_f — эквивалентность.

$$\varphi \colon A/\rho_f \to f(A) \ \varphi([x]_{\rho_f}) = f(x) \ .$$

Каждому классу эквивалентности поставлен в соответствие единственный элемент $y \in f(A)$ (отображение определено корректно).

 φ — биекция (инъекция и сюръекция одновременно).

Пусть классы эквивалентности $[x]_{\rho_f}$ и $[y]_{\rho_f}$ не совпадают.

В силу теоремы 1 они не пересекаются, т.е. x не эквивалентно y .

Из определения отношения ρ_f следует, что $f(x) \neq f(y)$.

Таким образом, φ — инъекция.

Если элемент $u\in f(A)$, то найдется такой элемент $x\in A$, что $u=f(x)=\varphi([x]_{
ho_f})$, т.е. φ — сюръекция .

Итак, φ — биекция. \blacktriangleright

Следовательно, в силу доказанных теорем 1 и 2 существует связь между тремя понятиями — отображением множества, отношением эквивалентности на множестве и разбиением множества.

Но **неверно**, что существует взаимно однозначное соответствие между отображениями и отношениями эквивалентности.

Два разных отображения могут определять одно и то же разбиение отображаемого множества, тем самым задавая на нем одно и то же отношение эквивалентности.

Пример 3.9.

- **а.** Любое биективное отображение $f \colon A \to B$ задает на A одно и то же разбиение тривиальное разбиение на одноэлементные множества.
- **b.** Тождественное отображение множества целых чисел и отображение, сопоставляющее каждому целому n число n+1, задают одинаковые разбиения множества целых чисел.

Отношение порядка

Пример 3.10. Рассмотрим множество действительных чисел \mathbb{R} с естественным числовым порядком.

Пусть a < c.

Для любых a и c найдется такое b , что a < b < c .

Отношение порядка на множестве действительных чисел является плотным.

Поэтому отношение доминирования будет пустым.

Пустым будет и отношение доминирования, ассоциированное с естественным числовым порядком на множестве рациональных чисел.

На множестве целых чисел с естественным числовым порядком отношение доминирования не пусто.

$$1 \triangleleft 2$$
, $-5 \triangleleft -4$;

между 1 и 2 не существует "промежуточный" элемент.

Записывать $1 \lhd 3$ **неверно**, что, поскольку между единицей и тройкой существует "промежуточный" элемент — двойка.

