SUPERVISED MACHINE LEARNING

PART 3 OF 4 – GENERATIVE AND DISCRIMINATIVE LEARNERS

GOALS

- Present and compare:
 - discriminative learner
 - probabilistic learner

LEARNING / TESTING

VARIOUS MODELS

Objective of the learning algorithm

Learn a **decision surface** in an N-dimensional space (N - number of features) that distinctly classifies the data points (examples).

We call the decision surface, the <u>discriminative function</u>.

Generalization capability

Be able to correctly classify unseen examples.

Sample	Temperature	Rain/snow	Bike / Drive
s1	-22	10	Drive
s2	-24	12	Drive
s3	-15	20	Drive
s4	-8	13	Drive
s5	-5	40	Drive
s6	8	45	Drive
s7	-2	5	Bike
s8	5	5	Bike
s9	12	2	Bike
s10	8	5	Bike
s11	12	20	Bike
s12	13	15	Bike
s13	15	10	Bike
s14	18	5	Bike
s15	19	20	Bike

Training data

15 samples, s_i for i = 1..15

Feature vectors

 $ec{x}$ has 2 dimensions

 $oldsymbol{x}_1$ Temperature

 x_2 Rain/snow

BIKING/DRIVING EXAMPLE

Find a decision surface (red line) that separates the training data.

$$h(ec{x}) = ec{w}^T ec{x} + w_0$$
 Drive

Multi-class

There can be multiple target classes.

Various types of boundaries

Decision regions are shown (green, red or blue)

Decision surfaces are the frontiers between the decision regions.

A hyperplane in \mathbb{R}^2 is a line

A hyperplane in \mathbb{R}^3 is a plane

VARIOUS MODELS

Maximize the margin between the support vectors

SVM AS DISCRIMINATIVE LEARNER

Will create as many boundaries as necessary to separate the training data.

DECISION TREE AS DISCRIMINATIVE LEARNER

DECISION TREE AS DISCRIMINATIVE LEARNER

Will be able to learn decision surfaces that are not planes

MULTI-LAYER PERCEPTRON AS DISCRIMINATIVE LEARNER

VARIOUS MODELS

The learner assumes the data comes from more or less probable classes.

PROBABILISTIC APPROACH

It is important that the construction of the training set reflects the generative process.

	Features			Possible classes	
Movie	Duration	Producer	Lead actor/actress	Genre	Viewer's appreciation
M1	90	P1	A1	Drama	Bad
M2	140	P3	A2	Drama	Bad
МЗ	80	P1	A1	Comedy	Bad
M4	90	P1	A3	Drama	Bad
M5	100	P3	A4	Drama	Bad
M6	110	P2	A5	Comedy	Bad
M7	100	P2	A5	Comedy	Good

Unbalanced training set

BIAS

LEARNING / TESTING

Decision Tree

SVM

Naïve Bayes

Hypothesis testing

P(Drive | T= Average & Rain = Normal)
P(Bike | T= Average & Rain = Normal)

Take max. --- Bike

snow/rain (mm) 50 Bike -20C -10C -5C 0C 5C 10C 15C 20C 25C

PREDICTION WITH DIFFERENT MODELS

LET'S CONTINUE...

Next video: Evaluation