

Investigating PID Control for Station Keeping ROVs

THE UNIVERSITY of EDINBURGH

K. L. Walker, A. A. Stokes, A. Kiprakis and F. Giorgio-Serchi The University of Edinburgh

Introduction & Motivation

 Underwater vehicles. such Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) currently lack the ability to sufficiently operate in shallow water environments where wave disturbance are prevalent.

Fig. 1: Typical ROVs; SeaBotix vLBV300 (left) and the BlueROV2 (right).

 If a suitable control methodology can be developed, ROVs could be used to reduce the cost of inspection and maintenance of shallow water offshore structures such as marine renewables.

Methodology

The vehicle is considered a rigid body with 2DOF (surge/heave), represented in each plane by the dynamic equation:

$$m_{dry}\dot{v_a} + m_{add}\dot{v_r} = F_T + F_D \quad (1)$$

A thruster model was utilised to improve the reliability of the station keeping results, as the motor time response influences performance:

$$F_T = K_T \rho_f D^4 |n| n - \frac{1}{3} v_f \rho_f D^3 |n|$$
 (2)

A wave model was reconstructed using real wave data [3] and Airy Wave Theory to demonstrate performance in a typical scenario. A section of this wave train is shown in Fig. 7.

- A time series trace of positional error at 15m operating depth shown in Fig. 7 displays significant error in both surge and heave.
- Positional error was assessed for a range of non-dimensional wave height and characteristic vehicle depth. (Fig. 4-7).
- Results display a specific region of sharp increase in positional error for both maximum and mean positional error.

Results & Analysis

Fig. 3: Time series positional error at 15m operating depth

Fig. 4: Maximum positional error, surge.

Fig. 5: Mean positional error, surge

Wave

Error, x

Fig. 6: Maximum positional error, heave.

Fig. 7: Mean positional error, heave

Conclusions & Future Work

- Evaluation of PID control shows excessive maximum positional error for non-dimensional wave heights >1.5 for any assessed depth in the surge. This shows that a more effective control method is required for station keeping in shallow water environments.
- To this end, Model Predictive Control (MPC) will be investigated. Alternatively, Cable Driven Variable Stiffness Manipulators will be investigated which can grasp structures and constrain motion.

Acknowledgements & References

This work was supported by EPSRC grant number EP/R513209/1.

[1] K. L. Walker et al.; Impact of Thruster Dynamics on the Feasibility of ROV Station Keeping in Waves; OCEANS 2020 MTS/IEEE (In Press). Investigating PID Control for Station Keeping ROVs; UK-RAS20 Robotics and Autonomous Systems Conference 2020 (In Press). [3] D. C. Fernandez and G. A. Hollinger, "Model Predictive Control for Underwater Robots in Ocean Waves," IEEE Robotics and Automation Letters, 2017.