虚拟内存机制如图

Gc详解

		步骤	优点	缺点	
	(基础算	1: 标记需 要回收对 象 2: 清除被 标记的对 象		1效率问题,标记和清楚的效率均不足 2:空间问题。大量的空间碎片,导致 在存储大对象时可能无法找到连续内存 而触发GC	
		1. 中 左 八			
Gc算法	复制算法	1: 内存分 为两部分 (A, B) 2: A内存 使用完, 软存复制 到B, 并清 除A	1:不用考虑内存 碎片	内存缩小一半	
	标记整理 算法	1: 标记需 要回收对 象 2: 存活对 象动,清 除掉端, 除以外的 内存	1: 没有内存碎片 2: 没有空间浪费 3: 没有较多的复 制操作		
	分代收集 算法				
HotSpot 算法实现		1: safePoint safe Region, 当线程处于这两个状态时,认为引用关系不会变化,从而可以执行GC 2: 抢先式中断,GC中断所有线程,如果线程不处于安全状态,则恢复线程达到安全状态后中断 2: 主动式中断,GC设定标志,线程执行时查看标志,为真时中断			
垃圾收集 器	Serial	1: 单线程 收集器,			

法)	停止所有 工作 2: 能与 CMS协作		
ParNew收 集器 (复制算 法)	停止所有		
Paraller Scanveng e (复制算 法)	1: 并行收 集器,着 重与吞吐 量		
	1:与 Paraller Scanveng e结合使用 2:作为 CMS收集 器的后备		
Paraller old (标记整 理算法)			
CMS (标记清 除)	1: 初标记录 2: 记录 3:	1: 最短停顿	1:cpu资源敏感 2:会产生空间碎片(导致full GC

		(停止所 有线程) 4: 并发清 除(与用 户线程并 发)	
	G1不成熟 不做考虑		
4			•

垃圾收集器协作

垃圾收集相关的常用参数

UseSerialGC	虚拟机运行在Client模式下的默认值,打开此开关后,使用Seria				
UseParNewGC	打开此开关后,使用ParNew+Serial Old的收集器组合进行内有				
UseConcMarkSweepGC	打开此开关后,使用ParNew+CMS+Serial Old的收集器组合进 Concurrent Mode Failure失败后的后备收集器使用				
UseParallelGC	虚拟机运行在Server模式下的默认值,打开此开关后,使用Para合进行内存回收				
UseParallelOldGC	打开此开关后,使用Parallel Scavenge + Parallel Old的收集器				
SurvivorRatio	新生代中Eden区域与Survivor区域的容量比值,默认值为8,代				
PretenureSizeThreshold	直接晋升到老年代的对象大小,设置这个参数后,大于这个参数				
MaxTenuringThreshold	晋升到老年代的对象年龄,每个对象在坚持过一次Minor GC之				
UseAdaptiveSizePolicy	动态调整Java堆中各个区域的大小以及进入老年代的年龄				
Handle Promotion Failure	是否允许分配担保失败,即老年代的剩余空间不足以应付新生代				
ParallelGCThreads	设置并行GC时进行内存回收的线程数				
GCTimeRatio	GC时间占总时间的比率,默认值为99,即允许1%的GC时间。(
MaxGCPauseMillis	设置GC的最大停顿时间,仅在使用Parallel Scavenge收集器时				
CMSInitingOccupancyFraction	设置CMS收集器在老年代空间被使用多少后触发垃圾收集。默认				
1					

UseCMSCompactAtFullCollection: 设置CMS收集器在完成垃圾收集后是否要进行一次内存碎片整理,仅在使用CMS收集器时生效

CMSFullGCsBeforeCompaction: 设置CMS收集器在进行若干次垃圾收集后再启动一次内存碎片整理。仅在使用CMS收集器时生效

内存分配

- 1: 优先在eden分配
- 2: 大对象直接进入老年代
- 3: 长期存活对象直接进入老年代
- 4:相同年龄对象的大小综合占survivor空间的一半,则大于等于此年龄的对象直接进入老年代