Modeling extracellular potentials in a cortical slice preparation

Chaitanya Chintaluri

c.chintaluri@nencki.gov.pl

Supervisor: Daniel Wójcik

Nencki Institute of Experimental Biology, Warsaw, Poland.

Open Source Brain meeting, Sardinia, 15th May, 2014

Cortical slice preparation

Acute brain slices

 MEA – Multielectrode Arrays

Applications

^{*} wikimedia commons, source Dr. Steven M. Potter

Barrel cortical slices*

^{*} Dirk Schubert's lab, Donders Institute, Nijmegen

Neural activity – Electrical potentials

Conductivity profile of the setup

Finite volume

Changing conductivity

 Plane of electrodes (MEA)

Conductivity profile of a cortical slice

layer	layer depth (μm)	$\sigma_{\parallel} \; ({ m S/m})$	$\sigma_{\perp} \; (\mathrm{S/m})$
2/3	-400 to 0	0.319 ± 0.043	0.231 ± 0.056
4	-700 to -400	0.325 ± 0.067	0.240 ± 0.093
5	-1200 to -700	0.353 ± 0.063	0.228 ± 0.047
6	-1700 to -1200	0.294 ± 0.062	0.268 ± 0.067

^{*} T.Goto et.al. 2010, J. Neurophysiol

Finite Element Method (FEM)

- Gmsh for defining volume and generating the mesh
- FeniCS to define conductivity profile, boundary conditions and solve for Maxwell's equation – electrostatic approximation.

Method of Images (MOI)

- Simple geometry most relevant aspect of setup.
- Approximate solution.

Point current source

Control

What changed? And by how much?

No saline bath
Infinite
homogeneous

Saline interface thickness 10 μm

Saline interface thickness 30 μm

Anisotropic $\sigma_x\!=\!0.4,\!\sigma_{y,z}\!=\!0.3$

Anisotropic $\sigma_x = 0.4, \sigma_{y,z} = 0.2$

Inhomogeneous $\sigma_{T1} = 0.3, \sigma_{T2} = 0.4$

Inhomogeneous $\sigma_{T1} = 0.3, \sigma_{T2} = 0.5$

Traub's single column model

Position within the slice

FEM	MOI
Sophisticated conductivity profiles	Simple conductivity profile
Inhomogeneity + AnisotropySaline interface between MEA and sliceNon trivial geometry	- Two interface (MEA+Saline)- Anisotropy- Simple geometry
Computationally expensive. Not easily portable to other software.	Computationally cheap, and easily portable.
Can be verified independently to existing methods of calculations	Needs FEM like method to estimate accuracy
Inhomogeneity in forward models does not add new information.	The most contributing factor of Saline can be accounted for.

Inverse models

Inverse models – why?

Conclusions

- Modeling saline important for forward models.
- Modeling inhomogeneity does not add new information.
- MOI versus FEM which is better, and when.
- Modeling saline for inverse models CSD reconstructions - does not add new information.

Acknowledgments

Norwegian University of Life Sciences, Aas, Norway

Gaute T. Einevoll

Torbjørn B. Ness

Nencki Institute of Experimental Biology, Warsaw, Poland.

Daniel Wójcik

Jan Potworowski

Szymon Łęski

Helena Głąbska

NSDF – Neuroscience Simulation Data Format

(Subhasis, Chaitanya, Upinder Bhalla, Daniel)

Informal discussion ~ 30 minutes

Relevant to:

- Simulator / Tool developers
- Distribute / save simulation data
- Tests for solvers / simulators

Cheers!