9. Sea (h_n) la sucesión de las sumas parciales de la serie armónica, esto es, la de término n-ésimo

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
.

Demuestre que:

- a) La sucesión $(h_n \operatorname{L} n)$ es convergente.
- b) Existe un único $\gamma \in \mathbb{R}$ (llamado constante de Euler) tal que

$$h_n = L \, n + \gamma + \varepsilon_n \,,$$

donde $\varepsilon_n \to 0$, y deduzca de ello que $h_n \sim \operatorname{L} n$ cuando $n \to \infty$.

c) Si $p \in \mathbb{N}$, p > 1, la sucesión (a_n) es convergente y calcule su límite, donde

$$a_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{np}$$

Este problema es un compendio de los problemas 98.28 y 98.44 del volumen 4 de Problemas de Oposiciones de Editorial Deimos.

SOLUCIÓN: a) Probaremos que la sucesión $(x_n) = (h_n - L n)$ es acotada y monótona decreciente y, en consecuencia, convergente.

• (x_n) es estrictamente decreciente. En efecto,

$$x_{n+1}-x_n=h_{n+1}-\operatorname{L}(n+1)-h_n+\operatorname{L} n=\frac{1}{n+1}-\left[\operatorname{L}\left(n+1\right)-\operatorname{L} n\right]$$

academia@academiadeimos.es

Según el teorema del valor medio aplicado a la función derivable f(x) = Lx en el intervalo [n, n+1], para cada $n\in\mathbb{N}\,$ existe algún $c_n\in(n,n+1)$ tal que

$$f(n+1)-f(n)=f'(c_n)\,,\qquad \text{es decir},\qquad \operatorname{L}(n+1)-\operatorname{L} n=\frac{1}{c_n}$$

Dado que es $n < c_n < n+1$, se deduce que $\frac{1}{n+1} < \frac{1}{c_n} < \frac{1}{n}$, luego

$$\frac{1}{n+1} < L(n+1) - Ln < \frac{1}{n}$$

y por tanto,

academiadeimos.es

$$x_{n+1} - x_n = \frac{1}{n+1} - \left[L(n+1) - L n \right] < 0$$

luego (x_n) es estrictamente decreciente.

• $x_n > 0$ para todo $n \in \mathbb{N}^+$. Al sumar las desigualdades siguientes miembro:

$$L(n+1) - Ln < \frac{1}{n}$$

$$Ln - L(n-1) < \frac{1}{n-1}$$
....
$$L2 - L1 < 1$$

se obtiene:

$$\operatorname{L}(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
, es decir, $\operatorname{L}(n+1) < h_n$

Entonces, como la función logaritmo es estrictamente creciente:

$$x_n = h_n - \operatorname{L} n > \operatorname{L}(n+1) - \operatorname{L} n > 0$$

Por tanto, la sucesión (x_n) es decreciente y acotada inferiormente, luego es convergente. Al número real $\gamma = \lim_{n\to\infty} x_n = \lim_{n\to\infty} (h_n - \operatorname{L} n)$ se le conoce como *constante de Euler*. Su valor aproximado es $\gamma = 0.5772156\ldots$ y aún guarda secretos: no se sabe siquiera si es racional.

b) Como es $\lim_{n\to\infty}(h_n-L\,n)=\gamma$, también es $\lim_{n\to\infty}(h_n-L\,n-\gamma)=0$, es decir, llamando $\varepsilon_n=h_n-L\,n-\gamma$, resulta que $\lim_{n\to\infty}\varepsilon_n=0$. Entonces:

$$\lim_{n \to \infty} \frac{h_n}{\operatorname{L} n} = \lim_{n \to \infty} \frac{\operatorname{L} n + \gamma + \varepsilon_n}{\operatorname{L} n} = \lim_{n \to \infty} \left(1 + \frac{\gamma + \varepsilon_n}{\operatorname{L} n} \right) = 1 + 0 = 1$$

y por tanto $h_n \sim L n$.

c) Si $p \in \mathbb{N}$, p > 1, la sucesión (a_n) puede escribirse en términos de la h_n mediante

$$a_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{np} = \left(1 + \frac{1}{2} + \dots + \frac{1}{np}\right) - \left(1 + \frac{1}{2} + \dots + \frac{1}{n-1}\right) = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{np} = \frac{1}{n} + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n-1} = \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n} = \frac{1}{n} + \dots + \frac$$

$$=h_{np}-h_{n-1}=\mathrm{L}\left(n\,p\right)+\gamma+\varepsilon_{np}+\mathrm{L}\left(n-1\right)+\gamma-\varepsilon_{n-1}=\mathrm{L}\left(\frac{n\,p}{n-1}\right)+\varepsilon_{np}-\varepsilon_{n-1}$$

Por tanto,

$$\lim_{n\to\infty} a_n = \operatorname{L} p$$