PAL の完全性について

Yudai Kubono

JAIST

May 7, 2022

Yudai Kubono (JAIST) May 7, 2022 1/19

Introduction to Dynamic Epistemic Logic

Soundness and Completeness

Yudai Kubono (JAIST) May 7, 2022 2/19

Introduction to Dynamic Epistemic Logic

Soundness and Completeness

Yudai Kubono (JAIST) May 7, 2022 3/19

What is Dynamic Epistemic Logic?

- ▶ 動的認識論理(Dynamic Epistemic Logic)はモデルに対する動的な操作可能とする認識 論理の一種.
- ▶ 動的論理 (Dynamic Logic) とは別物.
 - ► PAL (Public Announcement Logic)
 - Action Model
 - Belief Revision (AGM-approach)

Yudai Kubono (JAIST) May 7, 2022 4/19

Basic Epistemic Logic: Syntax

▶ A language of Epistemic Logic (EL) is the set of formulas generated by the following grammar:

$$\varphi \in \mathcal{L}_{AP}^{EL} := \mathbf{p} \mid \bot \mid \neg \varphi \mid \varphi \wedge \varphi \mid K\varphi$$
,

where $\mathbf{p} \in \mathrm{AP}$. Other connectives \vee , \rightarrow , and \leftrightarrow are defined as usual.

Yudai Kubono (JAIST) May 7, 2022 5/19

Basic Epistemic Logic : Semantics 1/2

- A kripke Model is a tuple $M = \langle W, R, V \rangle$, where:
 - W is a non-empty set of possible worlds:
 - ightharpoonup R is a binary relation on W:
 - ightharpoonup V is a valuation that is $V: AP \to \mathcal{P}(W)$.

May 7, 2022

6/19

Basic Epistemic Logic : Semantics 2/2

For each kripke model M and $w \in W$, the satisfaction relation \models is defined as follows:

$$\begin{split} M,w &\models \mathbf{p} :\Leftrightarrow w \in V(\mathbf{p}); \\ M,w &\models \neg \varphi :\Leftrightarrow M,w \not\models \varphi; \\ M,w &\models \varphi \wedge \psi :\Leftrightarrow M,w \models \varphi \text{ and } M,w \models \psi; \\ M,w &\models \Box \varphi :\Leftrightarrow \text{ For all } s \text{ s.t. } \langle w,s \rangle \in R,M,s \models \varphi. \end{split}$$

Yudai Kubono (JAIST) May 7, 2022 7 / 19

Public Announcement Logic (PAL)

► The language of *Public Announcement Logic* (PAL) is the set of formulas generated by the following grammar:

$$\varphi \in \mathcal{L}_{\mathrm{AP}}^{\mathrm{PAL}} ::= \mathbf{p} \mid \bot \mid \neg \varphi \mid \varphi \wedge \varphi \mid K\varphi \mid [\varphi!]\varphi,$$

where $\mathbf{p} \in AP$. Other connectives \vee , \rightarrow , and \leftrightarrow are defined as usual.

Yudai Kubono (JAIST) May 7, 2022 8/19

Semantics 1/2

▶ For each PAL model M and $w \in W$, the satisfaction relation \models is defined as follows:

$$\begin{split} M,w &\models \mathbf{p} :\Leftrightarrow w \in V(\mathbf{p}); \\ M,w &\models \neg \varphi :\Leftrightarrow M,w \not\models \varphi; \\ M,w &\models \varphi \wedge \psi :\Leftrightarrow M,w \models \varphi \text{ and } M,w \models \psi; \\ M,w &\models K\varphi :\Leftrightarrow \text{ for all s s.t. } \langle w,s \rangle \in R,M,s \models \varphi; \\ M,w &\models [\varphi !]\psi :\Leftrightarrow (M,w \models \varphi \Rightarrow M^\varphi,w \models \psi). \end{split}$$

Yudai Kubono (JAIST) May 7, 2022 9/19

The Relativization of a Model

- $M^{\varphi} = \langle W', R', V' \rangle$
 - $\blacktriangleright W' := W \cap \{w \mid M, w \models \varphi\};$
 - $ightharpoonup R' := R \cap (W' \times W');$
 - $V'(\psi) = V(\psi) \cap W'$ for all $\psi \in \mathcal{L}^{PAL}$.

Yudai Kubono (JAIST) May 7, 2022 10 / 19

Axiomatization PA

Prop	The set of propositional tautologies
K	$K(\varphi \to \psi) \to (K\varphi \to K\psi)$
Т	Karphi ightarrow arphi
5	$\neg K\varphi \to K \neg K\varphi$
AP	$[\varphi!]p \leftrightarrow (\varphi \to p)$
AN	$[\varphi!]\neg\psi\leftrightarrow(\varphi\rightarrow\neg[\varphi!]\psi)$
AC	$[\varphi!](\psi \wedge \chi) \leftrightarrow ([\varphi!]\psi \wedge [\varphi!]\chi)$
AK	$[\varphi!]K\psi \leftrightarrow (\varphi \to K[\varphi!]\psi)$
AC	$[\varphi!][\psi!]\chi \leftrightarrow [\varphi \wedge [\varphi!]\psi]\chi$
MP	$(\vdash \varphi \text{ and } \vdash \varphi \rightarrow \psi) \Rightarrow \psi$
NR	$\vdash \varphi \Rightarrow K\varphi.$

Introduction to Dynamic Epistemic Logic

Soundness and Completeness

Yudai Kubono (JAIST) May 7, 2022 12 / 19

Soundness

Theorem 2.1

 $\vdash_{\mathrm{PA}} \varphi \Rightarrow$ for all M in the class $\mathrm{C}(\mathrm{E})$ of reflexive euclidean models, for all $w \in W$, $M, w \models \varphi$.

- ▶ PAによって生成される全ての論理式が妥当であることを示す.
- ▶ 公理の妥当性と推論規則の妥当性の保存を証明すればよい.

Proof 2.2

$$[\varphi!]p \leftrightarrow \varphi \to p$$

- \Rightarrow (1) 仮定と定義より, 任意の M と w について $M, w \models \varphi \Rightarrow M^{\varphi}, w \models p$ と $M, w \models \varphi$.
 - (2) (1) $\&begin{aligned} (2) & (1) & \&begin{aligned} (2) &$
 - (3) (2) と valuation の定義より, $M, w \models p$.
- \leftarrow (1) 同様にして, 任意の M と w について $M, w \models \varphi \Rightarrow M, w \models p$ と $M, w \models \varphi$.

 - (3) (2) と valuation の定義より, $M^{\varphi}, w \models p$.

Yudai Kubono (JAIST) May 7, 2022 13/19

Completeness 1/3

Theorem 2.3

For all M in the class C(E) of reflexive euclidean models, for all $w \in W$, $M, w \models \varphi \Rightarrow \vdash_{PA} \varphi$.

- ightharpoonup Translation $t: \mathcal{L}^{\mathrm{PAL}} \to \mathcal{L}^{\mathrm{EL}}$
 - ightharpoonup t(p) = p;

 - $t([\varphi!]p) = t(\varphi \to p);$
 - :
 - $t([\varphi!][\psi!]\chi = t([\varphi! \land [\varphi!]\psi]\chi)).$

- ightharpoonup Complexity $c: \mathcal{L}^{\mathrm{PAL}}
 ightarrow \mathbb{N}$
 - c(p) = 1;
 - $c(\neg \varphi) = 1 + c(\varphi);$
 - $c(\varphi \wedge \psi) = 1 + \max(c(\varphi), c(\psi));$
 - $c(K\varphi) = 1 + c(\varphi);$
 - $c([\varphi!]\psi) = (4 + c(\varphi)) \times c(\psi);$

Yudai Kubono (JAIST)

Completeness 2/3

- (1) Complexity に関する帰納法を使い, 全ての $\varphi \in \mathcal{L}^{PAL}$ について, $\vdash_{PA} \varphi \leftrightarrow t(\varphi)$ が成立することを示す.
 - 1. Base case : $\vdash_{PA} p \leftrightarrow t(p)$.
 - 2. complexity の小さい論理式に関する $\vdash_{\mathrm{PA}} \varphi \leftrightarrow t(\varphi)$ を I.H. として全ての論理式に対して証明する.

Proof 2.4

 φ が $[\psi!]\chi$ のとき

 $c([\psi!]\chi) > c(\psi \to \chi)$ のため、I.H. より $\vdash_{\text{PA}} [\psi!]\chi \leftrightarrow t(\psi \to \chi)$. よって、 $\vdash_{\text{PA}} [\psi!]\chi \leftrightarrow t([\psi!]\chi)$.

Yudai Kubono (JAIST) May 7, 2022 15/19

Completeness 3/3

- (2) 健全性より $\models \varphi \leftrightarrow t(\varphi)$.
- (3) 仮定 $\models \varphi$ より $\models t(\varphi)$.
- (4) $t(\varphi) \in \mathcal{L}^{\mathrm{EL}}$ のため, $\vdash_{\mathrm{S5}} t(\varphi)$.
- (5) $S5 \subseteq PA$ のため, $\vdash_{PA} t(\varphi)$.
- (6) (1) \geq (5) \downarrow \downarrow \downarrow , $\vdash_{PA} \varphi$.

May 7, 2022

16 / 19

Appendix: Completeness of S5

- For all M in the class C(E) of reflexive euclidean models, for all $w \in W$, $M, w \models \varphi \Rightarrow$ for the canonical model for S5 M^c , for all $w \in W^c$, $M^c \models \varphi$, since $C(M^{c_K}) \subseteq C(M)$.
- For the canonical model for S5 M^c , for all $w \in W^c$, $M^c \models \varphi \Rightarrow \vdash_{S5} \varphi$, since for every $\operatorname{Max}_K \Delta, \varphi \in \Delta \Leftrightarrow \vdash_K \varphi.$

Yudai Kubono (JAIST) May 7, 2022 17 / 19

まとめ

▶ モデルの変更を伴うオペレータを含んだ論理体系の完全性定理の証明に使える汎用性の 高いテクニックなので、よく使われる.

May 7, 2022 18 / 19

- Hans Van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. *Dynamic epistemic logic*, volume 337. Springer Science & Business Media, 2007.
- Hans Van Ditmarsch, Wiebe van Der Hoek, Joseph Y Halpern, and Barteld Kooi. Handbook of epistemic logic, College Publications, 2015.
- Brian F Chellas. *Modal logic: an introduction*. Cambridge university press, 1980.

Yudai Kubono (JAIST) May 7, 2022 19 / 19