Data Structures

4. Algorithm Analysis

4. Algorithm Analysis

- 1. Performance Analysis せいい
- 2. Space Complexity
- 3. Time Complexity
- 4. Asymptotic Notation

Performance Analysis

• Ideal Criteria (ๆให้หนุย)

- मिर्नेश्वा भारति ।
- Does a program meet the original requirement of the task?
- Does it work properly?
- Does it effectively use functions to perform a task?
- Realistic Criteria (প্রাথম)
 - the amount of memory space that a program needs to complete the execution (Space complexity) uta
 - the amount of computational time for execution 埃州强州

- Fixed space requirements (Sc) DARAGE: GRANNING USUST....
 - Memory space for instructions, simple variable, fixed-size structured variable, constants
- · Variable space requirement (S,) THE BANK
 - Memory space can be determined at run time because of array passing, or recursion
 - 明光水平
- Total Space Complexity

$$S = S_c + S_v$$

Simple variables

```
float abc (float a, float b, float c) {
    return a + b + b * c + (a + b - c) / (a + b) + 4.00;
}
```

- input : three simple variables (a, b, c)
- ouput : a simple variable (float type)
- variable space requirements

•
$$S_v(abc) = 0$$

• Sum

```
float Sum (float list[], int n)
{
    int i;
    float total = 0;

    for (i = 0; i < n; i++)
        total = total + list[i];
    return total;
}</pre>
```

- input: an array and an integer
- output : a simple float variable
 - Space complexity depends on wray passing method

· Call by Value

- Light TITTED 2 19/4
- Array elements are copied to function
- Additional memory space is required in proportional to array size
 - $S_v(sum) =$

// n is array size

柑奶地

- ・ex) Pascal (デリュ)
- · Call by <u>heference</u>
 - The base address of array is passed to function
 - No additional memory space required
 - $S_v(sum) = _0$
 - ex) C

THERESEX

- Sum (recursive) (m/ex+(hm)
 - At each function call, the followings must be saved
 - Local variables : list, n
 - Return address (the next instruction to resume)
 - n times function calls: rsum(n-1) rsum(0) ハビザル
 - Space Complexity = 121 // 4 bytes each

```
float rsum (float list[], int n)
{
    if ( \( \frac{N}{} \) \)
    return rsum (list, \( \frac{N-1}{} \) + list[n - 1];
    else
    return 0;
}
```

- Time complexity (*T*)
 - amount of time taken by an algorithm to complete

•
$$T =$$
 Compile time $(T_c) +$ execution time (T_e)

- Execution time depends on computing environment
- Instruction steps is more objective, and less accurate though

```
Hynnestanden

-195026

-20021 Math 1

-20021 Math 1
```

- Step count table
 - Steps
 - Instructions per line
 - Function header, variable declaration: no count for steps
 - ex) a = 1; b = 3; // two steps in a line
 - · Frequency
 - the number of execution times for each instruction
 - ex) for, while loops
 - Total steps
 - steps * frequency per line
 - Add up all total steps of each line

• Step Count Table (Iterative Sum)

Statement	steps	frequency	total steps
float sum (float list[], int n) {	y 741:	0	0
int i; HHVO	0 11	H. 0	0
float temp = 0;	1	1	1
for (i = 0; i < n; i++) Hotsheader th	21	(N+1)	<u>n+1</u>
temp += list[i];	1	n /	n
return temp;	1	1	1
}	0	0	0
Total step counts			2M+3

Step Count Table (Recursive Sum)

Statement	steps	frequency	total steps
float rsum (float list[], int n) {	0	0	0
if (n) N~0 0 122 NH	1	<u>N+1</u>	<u> N+1</u>
return rsum (list, n - 1) + list[n - 1];	. 1	n	n
return 0; > 167+17/2-2041 (५ 16)+452	터 N ₁	1	1
}	0	0	0
Total step counts			2n + 2

• Step Count Table (Matrix Addition)

Statement	steps	frequency	total steps
void add () {	0	0	0
int i, j;	0	VETACHIE O	0
for $(i = 0; i < \underline{rows}; i++)$	1	\int rows + 1	rows + 1
for $(j = 0; j < cols; j++)$	1	mws + (cols+1") hows * (cols +1)
c[i][j] = a[i][j] + b[i][j];	1	rows * cols	rows * cols
}	0	0	0
Total step counts			2rows * cols + 2rows + 1

Big O Notation

n: Inputalot

• Time complexity

•
$$T = n^2 + 2n => O(n^2)$$

295127

- To approximate a time complexity asymptotically where n is very large
- implies how much time an algorithm takes to run if n increases
- A standard for evaluating the algorithm performance

- Assume that we have two different algorithms solving for a problem
- Which algorithm is better?
- $T_1 = n^2 + 2n$ and $T_2 = 100n$
 - If $n \le 98$, then $n^2 + 2n \le 100n$
 - If n > 98, then $n^2 + 2n > 100n$
 - if n = 100,000, then $100,000^2 + 100,000 > 100,000$
 - As n increases.
 - T₁ takes much more time than _______
 - we should choose T₂
 - · The gnaller, the weller

Asymptotic Notation

- Asymptotically notated in Big Oh
 - $T_1 = n^2 + 2n => O(n^2)$

Big-Oh Notation

र्युष्टिश्व

- $f(n) \in O(g(n))$ iff there exist positive constants (integer) c and n_0 that satisfy $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- · c·g(n) is upper bound of f(n) (Afters)
- f(n) takes less time than $c \cdot g(n)$
- ex) prove $f(n) = 10n + 10,000 \in O(n)$
 - choose c and n₀ with 20 and 1,000
 - $f(n) \in O(n)$ as $f(n) \le 1000$ n for all $n \ge 1000$
- 地路等地路

- ex) prove $f(n) = n^3 + n^2 + n \in O(n^3)$
 - choose c and n₀ with 3 and 1
 - $f(n) \in O(n^3)$ as $f(n) \le \underline{\gamma}_n n^3$ for all $n \ge \underline{\gamma}_n$

Asymptotic Notation

Big-Oh Notation

Why
$$f(n) \le cg(n)$$
 continuous .

- Because g(n) grows faster than each term of f(n), c times g(n) increases always faster than f(n)
- Choose c by considering the coefficient of a dominant term and number of terms of f(n)
- ex)

•
$$f(n) = n^2 + n \le n^2 + \underline{\hspace{1cm}} = 2n^2 \le 2g(n) = O(n^2)$$

•
$$f(n) = n^2 + n \le n^2 + \underline{\qquad} = 2n^2 \le 2g(n) = O(n^2)$$

• $f(n) = 2n^2 + n \le 2n^2 + \underline{\qquad} = 3n^2 \le 3g(n) = O(n^2)$

Big-Oh Notation

- $3n + 2 \in O(n)$ as $3n + 2 \le 4n$ for all $n \ge 2$
- $10n^2 + 4n + 2 \in O(n^2)$ as $10n^2 + 4n + 2 \le 11n^2$ for $n \ge 5$
- $6 \cdot 2^n + n^2 \in O(2^n)$ as $6 \cdot 2^n + n^2 \le 7 \cdot 2^n$ for $n \ge 4$
- $3n + 3 \in O(n^2)$ as $3n + 3 \le 3n^2$ for $n \ge 2$
- $\log n + n + 3 \in O(\underline{\mathsf{N}})$
- $n \log n + n \in O(N \log n)$

> TEINITIMENT CHIMEN OCHINHUFUELY

- $3n + 2 \notin O(1)$, $10n^2 + 4n + 2 \notin O(n)$
 - Because there is no such c and n₀ satisfying Big-Oh definition

Constant

(स्मिश्मिन्नगर्मिन्नगर्भाम्

Big-Omega Notation

- $f(n) \in \Omega(g(n))$
 - iff there exist positive constants c and n_0 such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$
 - $c \cdot g(n)$ is the Lower bound of f(n)
 - F(n) takes more time than $c \cdot g(n)$
- ex)
 - $f(n) = 3n + 2 \in \Omega(n)$ as $f(n) \ge 3n$ for $n \ge 1$
 - $f(n) = 10n^2 + 4n + 2 \in \Omega(n^2)$ as $f(n) \ge n^2$ for $n \ge 1$

Big-Omega Notation

Big-Theta Notation

- $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$
 - iff there exist positive constants c, d, and n_0 , satisfying $d \cdot g(n) \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$
 - f(n) takes the time <u>\text{\text{MOVC}}</u> than lower bound, and <u>\text{\text{\text{e55}}}</u> than upper bound
- $f(n) = 3n + 2 \in \Theta(n)$ as $3n \le f(n)$ and $f(n) \le 4n$ for all $n \ge 2$
- $10n^2 + 4n + 2 \in \Theta(n^2)$

Big-Theta Notation

Time complexity Class

```
O(1) = \underbrace{\text{constant}}_{\text{constant}} (\underbrace{\text{fast}}_{\text{constant}})
O(\log n) = \text{logarithm}
• O(n) = linear
• O(n \log n) = \log linear
• O(n^2) = quadratic
• O(n^3) = \text{cubic}
• O(2^n) = exponential
• O(n!) = factorial (
```


Practical Complexity

- O(1) ~ O(n²)
 => tractable; useful when n is large
 O(2n) ~ O(n!)
 => intractable, useful when n is very small

	Instance characteristic n						
time	name	1	2	4	8	16	32
1	Constant	1	1	1	1	1	1
log n	Logarithm	0	1	2	3	4	5
n	Linear	1	2	4	8	16	32
n log n	Log linear	0	2	8	24	64	160
n ²	Quadratic	1	4	16	64	256	1024
n ³	Cubic	1	8	64	512	4096	32768
2 ⁿ n!	Exponential Factorial	2 1	4 2	16 24	256 40326	65536 20922789888000	4294967296 26313*10 ³³

Practical Complexity

- Ex) 1 bps computer (= 1 $\frac{\text{fillion}}{\text{inst./sec}}$ inst./sec (109/sec))
- If a program runs an algorithm that needs 2ⁿ steps for execution
 - n = 40 \rightarrow # of steps = $(2^{10})^4$ = $(1.024 * 10^3)^4$ = 1100 * 10⁹
 - Total execution time is $1,100 \sec/60 = 18.3 \min$
 - n = $50 \rightarrow 13$ days
 - $n = 60 \rightarrow 310.56 \text{ years}$
 - n = $100 \rightarrow 4x10^{13}$ years
- If an algorithm needs n¹⁰ steps
 - n = $10 \rightarrow 10$ sec
 - $n = 100 \rightarrow 3,171 \text{ years}$