CHAP 1 - RAISONNEMENT ET VOCABULAIRE ENSEMBLISTE

1 Rudiments de logique

1.1 Propositions - règles logiques

Définition 1

On appelle **propriété** ou **assertion** une affirmation à laquelle on peut attacher une valeur de vérité : soit **vraie** soit **fausse**.

Dans la suite du paragraphe P, Q et R désignent des assertions.

Exemple 1

 $\mathbf{P} = "3$ est un nombre impair" est une assertion vraie.

 $\mathbf{Q} = "\frac{1}{2}$ est un entier" est une assertion fausse.

Définition 2

Un théorème ou une proposition est une assertion vraie.

Règles logiques : on admet les règles suivantes :

- Principe de non contradiction : on ne peut avoir P vraie et fausse simultanément.
- Principe du tiers exclu : une propriété qui n'est pas vraie est fausse, et une propriété qui n'est pas fausse est vraie.

1.2 Opérateurs logiques

Les opérateurs logiques permettent de combiner des propriétés pour en obtenir de nouvelles :

- la négation d'une propriété P est noté]P
- la conjonction de deux propriétés P et Q se note $P \wedge Q$, et se dit "P et Q"
- la disjonction inclusive de deux propriétés P et Q se note $P \lor Q$, et se dit "P ou Q"
- l'implication est note \Rightarrow
- l'équivalence se note \Leftrightarrow

Ils sont définis par la table de vérité suivante :

P	Q	ceil P	$\mathbf{P} \lor \mathbf{Q}$	$\mathbf{P} \wedge \mathbf{Q}$	P⇒Q	P⇔Q
V	V	F	V	V	V	V
V	F	F	V	F	F	F
F	V	V	V	F	V	F
F	F	V	F	F	V	V

Remarque 1

- (a) Dans l'implication $P \Rightarrow Q$, P s'appelle l'hypothèse et Q s'appelle la conclusion.
- (b) On peut exprimer l'implication $P \Rightarrow Q$ de l'une des façons suivantes :
 - Pour que ${\bf P}$ soit vraie, il faut que ${\bf Q}$ soit vraie; la réalisation de ${\bf Q}$ est une <u>condition nécessaire</u> à la réalisation de ${\bf P}$
 - Pour que \mathbf{Q} soit vraie, il suffit que \mathbf{P} soit vraie; la réalisation de \mathbf{P} est une <u>condition suffisante</u> à la réalisation de \mathbf{Q}
 - \bullet Si \mathbf{P} est vraie, alors \mathbf{Q} est vraie.

1.3 Tautologie

Définition 3

Un théorème de logique, appelé **tautologie**, est une assertion vraie, quelles que soient les valeurs de vérité des assertions qui la composent.

Exemple 2

- (a) $\mathbf{P} \Rightarrow \mathbf{P}$
- (b) $\rceil(\rceil \mathbf{P}) \Leftrightarrow \mathbf{P}$
- (c) $\mathbf{P} \vee (\mathbf{P})$ (c'est le principe du tiers exclu)

Proposition 1

Les assertions suivantes sont des tautologies appelées Lois de Morgan :

- $\rceil (\mathbf{P} \wedge \mathbf{Q}) \Leftrightarrow (\rceil \mathbf{P} \vee \rceil \mathbf{Q})$
- $\rceil (\mathbf{P} \vee \mathbf{Q}) \Leftrightarrow (\rceil \mathbf{P} \wedge \rceil \mathbf{Q})$
- $\mathbf{P} \wedge (\mathbf{Q} \vee \mathbf{R}) \Leftrightarrow (\mathbf{P} \wedge \mathbf{Q}) \vee (\mathbf{P} \wedge \mathbf{R})$
- $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Proposition 2

Les assertions suivantes sont des tautologies sur l'implication :

- $(\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow (\mathsf{P} \lor \mathbf{Q})$
- $(\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow (]\mathbf{Q} \Rightarrow]\mathbf{P})$; l'assertion $(]\mathbf{Q} \Rightarrow]\mathbf{P})$ est appelée **contraposée** de l'assertion $(\mathbf{P} \Rightarrow \mathbf{Q})$.
- $\rceil (\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow (\mathbf{P} \land \rceil \mathbf{Q})$; c'est la négation d'une implication.

1.4 Différents types de raisonnement

1.4.1 Transitivité

De
$$((\mathbf{P} \Rightarrow \mathbf{Q}) \land (\mathbf{Q} \Rightarrow \mathbf{R}))$$
 on déduit $(\mathbf{P} \Rightarrow \mathbf{R})$.

1.4.2 Syllogisme

De
$$(\mathbf{P} \wedge (\mathbf{P} \Rightarrow \mathbf{Q}))$$
 on déduit \mathbf{Q} .

1.4.3 Disjonction de cas

De
$$((\mathbf{P} \Rightarrow \mathbf{Q}) \land (\mathsf{P} \Rightarrow \mathbf{Q}))$$
 on déduit \mathbf{Q} .

La démonstration de $(P \Rightarrow Q)$ peut également faire l'objet d'une disjonction de cas.

1.4.4 Contraposition

De
$$(\mathbf{P} \Rightarrow \mathbf{Q})$$
 on déduit $(\mathbf{Q} \Rightarrow \mathbf{P})$.

1.4.5 Raisonnement par analyse synthèse

De
$$(\mathbf{P} \Rightarrow \mathbf{Q}) \wedge (\mathbf{Q} \Rightarrow \mathbf{P})$$
 on déduit $\mathbf{P} \Leftrightarrow \mathbf{Q}$.

1.4.6 Raisonnement par l'absurde

Pour montrer que $(\mathbf{P} \Rightarrow \mathbf{Q})$, on suppose $(\mathbf{P} \land \mathbf{Q})$ et on montre que cela entraîne une contradiction.

1.4.7 Exhibition d'un contre-exemple

Pour montrer que $](\mathbf{P} \Rightarrow \mathbf{Q})$, il suffit d'exhiber **un** cas pour lequel $(\mathbf{P} \land]\mathbf{Q})$.

2 Ensembles

2.1 Quantificateurs

On introduit trois nouveaux opérateurs, appelés quantificateurs :

 \forall : se lit **pour tout** ou **quel que soit**

 \exists : se lit il existe au moins un

 $\exists!$: se lit **il existe un unique**.

<u>Attention!</u> On peut permuter deux quantificateurs identiques, mais on ne peut pas permuter deux quantificateurs de natures différentes.

Définition 4

On appelle **ensemble** une collection d'objets, appelés **éléments** de cet ensemble.

Lorsque x est un élément d'un ensemble E, on note $x \in E$.

Lorsque x n'est pas un élément d'un ensemble E, on note $x \notin E$.

Proposition 3 Négation d'une phrase quantifiée

Soit \mathbf{P} une proposition dépendant d'un élément x d'un ensemble E, alors :

2.2 Parties d'un ensemble

Définition 5

Soient A et B deux ensembles. On dit que A est **inclus** dans B ou que A est une partie de B si tout élément x de A est un élément de B. On note $A \subset B$.

On note $\mathscr{P}(E)$ l'ensemble des parties de E, et \varnothing la partie vide de E (qui ne contient aucun élément).

Exemple 3

Pour $E = \{a, b\}, \mathcal{P}(E) = \{\emptyset, \{a\}, \{b\}, E\}.$

Proposition 4

- $(A \subset B) \Leftrightarrow (x \in A \Rightarrow x \in B)$; on a $\emptyset \subset A, A \subset A$ pour tout ensemble A.
- $(A = B) \Leftrightarrow ((A \subset B) \land (B \subset A))$
- $(\exists (A \subset B)) \Leftrightarrow (\exists x \in A, x \notin B)$; on note $A \not\subseteq B$.
- $((A \subset B) \land (B \subset C)) \Rightarrow (A \subset C)$ (cette propriété s'appelle la **transitivité**)

Définition 6

Soient E un ensemble, A et B des parties de E. On note :

 $E \setminus A = \overline{A} = A^C = \{x \in E, x \notin A\}$; cet ensemble s'appelle le complémentaire de A dans E.

 $A \cap B = \{x \in E, (x \in A) \land (x \in B)\}\$; cet ensemble s'appelle l'intersection de A et B.

 $A \cup B = \{x \in E, (x \in A) \lor (x \in B)\}$; cet ensemble s'appelle **l'union** de A et B.

 $A \setminus B = \{x \in A, x \notin B\}$; cet ensemble s'appelle **la différence** de A par B.

 $A\Delta B = (A \setminus B) \cup (B \setminus A)$; cet ensemble s'appelle **la différence symétrique** de A et B.

Proposition 5 Lois de Morgan

Soient A, B et C des ensembles. On a :

- $A \cup B = B \cup A$ et $A \cap B = B \cap A$; cette propriété s'appelle la commutativité.
- $A \cup (B \cup C) = (A \cup B) \cup C$ et $A \cap (B \cap C) = (A \cap B) \cap C$; cette propriété s'appelle l'associativité.
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ et $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$; cette propriété s'appelle la distributivité.
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$ et $\overline{A \cup B} = \overline{A} \cap \overline{B}$; on dit que l'union et l'intersection s'échangent par passage au complémentaire.

Définition 7

Soit $(E_i)_{i\in\mathbb{N}}$ une famille de parties de E; on note :

$$\bigcup_{i\in\mathbb{N}} E_i = \{x \in E/\exists i \in \mathbb{N}, x \in E_i\} \text{ et } \bigcap_{i\in\mathbb{N}} E_i = \{x \in E/\forall i \in \mathbb{N}, x \in E_i\}.$$

2.3 Partition

Définition 8

Soit $I \subset \mathbb{N}$. La famille $(E_i)_{i \in I}$ de parties d'un ensemble E est une **partition** de E si :

- (a) $\forall i \in I, E_i \neq \emptyset$
- (b) $\forall i, j \in I, i \neq j, E_i \cap E_j = \emptyset$

(c)
$$\bigcup_{i \in I} E_i = E$$

Exemple 4

Soient $E = \{1, 2, 3, 4, 5, 6\}, E_1 = \{1, 2, 3\}, E_2 = \{4, 5\}, E_3 = \{6\}$; la famille $(E_i)_{i \in \{1, 2, 3\}}$ est une partition de E.

2.4 Produit cartésien

Définition 9

Soient E et F deux ensembles. On appelle **produit cartésien** de E et F l'ensemble

$$E \times F = \{x = (x_1, x_2), x_1 \in E, x_2 \in F\}$$

Exemple 5

Soient
$$E = \{1, 2\}$$
 et $F = \{a, b, c\}$; $E \times F = \{(1, a); (1, b); (1, c); (2, a); (2, b); (2, c)\}$.

Remarque 2

- (a) Cette définition s'étend à un produit cartésien d'une famille finie d'ensembles.
- (b) Lorsque l'on effectue le produit cartésien d'un ensemble avec lui-même on note : $E \times E = E^2$.

3 Ensembles de nombres

3.1 Ensemble des nombres réels

On note \mathbb{N} l'ensemble des entiers naturels : 0, 1, 2, 3, \cdots

 \mathbb{N}^* désigne l'ensemble \mathbb{N} privé de 0.

On note \mathbb{Z} l'ensemble des entiers relatifs : \mathbb{Z} est constitué des éléments de \mathbb{N} et de leurs opposés.

On note $\mathbb Q$ l'ensemble des rationnels : $\mathbb Q$ est constitué des éléments de $\mathbb Z$ et des quotients des éléments de $\mathbb Z$ par ceux de $\mathbb N^*$, c'est-à-dire tout élément de $\mathbb Q$ s'écrit $\frac{p}{q}$, avec $(p,q) \in \mathbb Z \times \mathbb N^*$.

Parmi les éléments de \mathbb{Q} , on distingue les nombres décimaux dont l'ensemble est noté \mathbb{D} , qui peuvent s'écrire comme le quotient d'un élément de \mathbb{Z} et d'un entier de la forme 10^n où $n \in \mathbb{N}$, c'est-à-dire tout élément de \mathbb{D} s'écrit $\frac{p}{10^n}$, avec $(p,n) \in \mathbb{Z} \times \mathbb{N}$.

Etant donnée une droite orientée, munie d'une origine O et d'une unité de longueur, on peut trouver des points M tels que la longueur OM et son opposé ne sont pas des nombres rationnels (comme $\sqrt{2}$ qui est la longueur de la diagonale d'un carré de côté 1). On appelle ces nombres des nombres irrationnels.

On note \mathbb{R} la réunion de l'ensemble des nombres rationnels et des nombres irrationnels.

Remarque 3

Cette approche des nombres est très intuitive et ne constitue d'aucune façon une construction des ensembles de nombres, qui est hors programme.

3.2 Propriétés fondamentales de $\mathbb N$

Théorème 1

Toute partie non vide de N admet un plus petit élément.

Théorème 2

Toute partie non vide et majorée de \mathbb{N} (c'est-à-dire dont tous les éléments sont inférieurs à un même nombre) admet un plus grand élément.

Notation:

L'ensemble des entiers naturels compris entre les entiers p et q tels que $p \leq q$ se note [p, q].

Théorème 3 Principe de récurrence

Si une partie A de $\mathbb N$ vérifie la propriété :

$$(0 \in A) \land (\forall n \in \mathbb{N}, (n \in A) \Rightarrow (n+1 \in A))$$

alors $A = \mathbb{N}$.

Ce principe fondamental permet de démontrer des propriétés dépendant d'une entier naturel.

Récurrence simple :

Soient $n_0 \in \mathbb{N}$ et $\mathbf{P}(n)$ une propriété portant sur un entier $n \geq n_0$.

Pour prouver que $\mathbf{P}(n)$ est vraie pour tout entier naturel $n \geq n_0$, il faut et il suffit que l'on ait :

 \rightarrow **P**(n_0) vraie; c'est l'**initialisation**

 $\rightarrow \forall n \geq n_0, (\mathbf{P}(n) \Rightarrow \mathbf{P}(n+1)); \text{ c'est l'hérédité}.$

Récurrence forte :

Soient $n_0 \in \mathbb{N}$ et $\mathbf{P}(n)$ une propriété portant sur un entier $n \geq n_0$.

Pour prouver que $\mathbf{P}(n)$ est vraie pour tout entier naturel $n \geq n_0$, il faut et il suffit que l'on ait :

 \rightarrow **P**(n_0) vraie;

 $\forall n \geq n_0, (\forall k \in [n_0, n], \mathbf{P}(k)) \Rightarrow \mathbf{P}(n+1).$

3.3 Divisibilité

Dans ce paragraphe, a, b et c désignent des entiers relatifs.

Définition 10

On dit que b divise a ou que b est un diviseur de a s'il existe un entier k tel que a = bk. On note b|a.

Si b divise a, on dit que a est divisible par b et que a est un multiple de b.

Proposition 6

- Tout entier b divise 0 et 0 ne divise que 0.
- Si b|a et si $a \neq 0$, alors $|b| \leq |a|$. On en déduit qu'un entier non nul admet un nombre fini de diviseurs.
- Si b|a et a|b, alors |a| = |b|.
- Si a|b et b|c, alors a|c (on dit que la relation de divisibilité est **transitive**).
- Si a|b et a|c, alors a|(bu+cv) pour tout $(u,v) \in \mathbb{Z}^2$. On dit que a divise toute **combinaison linéaire** de b et c

En particulier, a|(b+c) et a|(b-c).

• Si a|b, alors pour tout entier c, ac|bc.

Notation:

Pour tout entier a on note D(a) l'ensemble des diviseurs positifs de a.

Remarque 4

Etant donnés deux entiers a et b, l'un au moins étant non nul, l'ensemble $D(a) \cap D(b)$, également noté D(a;b), n'est pas vide, car il contient 1. De plus, il est majoré car D(a) est majoré par |a| et D(b) est majoré par |b|. Ainsi, d'après le théorème 2, D(a;b) admet un plus grand élément.

Définition 11

On appelle **plus grand diviseur commun** des entiers a et b, l'un au moins étant non nul, le plus grand élément de D(a;b).

On le note PGCD(a; b) ou $a \wedge b$.

Remarque 5

Etant donnés deux entiers naturels a et b, l'ensemble des multiples positifs communs à a et b est non vide, car il contient $a \times b$. Ainsi, d'après le théorème 1, il admet un plus petit élément.

Définition 12

On appelle **plus petit multiple commun** des entiers a et b le plus petit multiple strictement positif commun à a et b.

On le note PPCM(a; b) ou $a \vee b$.

3.4 Nombres premiers

Définition 13

On dit qu'un entier naturel est un **nombre premier** s'il admet exactement deux diviseurs positif : 1 et lui-même.

Exemple 6

2, 3, 5 sont des nombres premiers; 0 et 1 ne sont pas des nombres premiers.

Théorème 4

L'ensemble des nombres premiers est infini.

Théorème 5

Tout entier naturel $n \geq 2$ s'écrit sous la forme $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, où $p_1, p_2, \cdots p_k$ sont des nombres premiers deux à deux distincts, et a_1, a_2, \cdots, a_k sont des entiers naturels non nuls. De plus, cette écriture est unique à l'ordre près des facteurs.

Vocabulaire:

Cette écriture s'appelle la **décomposition en produit de facteurs premiers** de n.

3.5 Division euclidienne

Théorème 6

Pour $(a, b) \in \mathbb{N} \times \mathbb{N}^*$, il existe un unique couple $(q, r) \in \mathbb{N}^2$ tel que a = bq + r, avec $0 \le r < b$.

Définition 14

On dit que l'on effectue la **division euclidienne** de a par b lorsque l'on détermine le couple (q, r) défini dans le théorème précédent.

Dans l'écriture a = bq + r, a s'appelle le **dividende**, b s'appelle le **diviseur**, q s'appelle le **quotient**, et r s'appelle le **reste**.

Remarque 6

b divise a si, et seulement si r = 0.

Application:

Dans la division euclidienne par 2, les restes possibles sont 0 et 1 (car il faut $0 \le r < 2$).

Tout entier s'écrit donc sous la forme 2q (si r = 0, ce sont les entiers pairs qui divisent 2) ou 2q + 1 (si r = 1, ce sont les entiers impairs qui ne divisent pas 2).

De même, la division euclidienne par 3 donne que tout entier s'écrit sous la forme 3q ou 3q + 1 ou 3q + 2.

Proposition 7

Pour $(a, b) \in \mathbb{N}^2$ tels que 0 < b < a, on a D(a; b) = D(b; r) où r est le reste de la division euclidienne de a par b.

3.6 Algorithme d'Euclide

Pour déterminer PGCD(a, b) (quand b ne divise pas a), on effectue la division euclidienne de a par b, puis celle de b par le reste r_1 de la division précédente, puis celle de r_1 par le reste r_2 de la division précédente, et ainsi de suite.

Si on note r_n le reste de la $n^{\text{ème}}$ division effectuée, alors pour tout n > 0 tel que $r_{n-1} \neq 0$, on a $0 \leq r_n < r_{n-1}$. La suite (r_n) va donc s'annuler à partir d'un certain rang n_0 , avec $n_0 > 0$ car b ne divise pas a.

On a:
$$D(a;b) = D(b;r_1) = D(r_1;r_2) = \cdots D(r_{n_0-1};0) = D(r_{n_0-1}).$$

Ainsi r_{n_0-1} étant le plus grand élément de $D(r_{n_0-1})$, on a PGCD $(a,b) = r_{n_0-1}$ (dernier reste non nul).

Exemple 7

Recherche de PGCD(4095; 440):

$$4095 = 440 \times 9 + 135$$

$$440 = 135 \times 3 + 35$$

$$135 = 35 \times 3 + 30$$

$$35 = 30 \times 1 + \boxed{5}$$

$$30 = 5 \times 6 + 0$$

On a donc PGCD(4095; 440)=5.

4 Applications

Dans l'ensemble de ce paragraphe, E, F, G et H désignent des ensembles.

4.1 Définitions

Définition 15

Une application de E vers F associe à tout élément de E un unique élément de F; elle se note généralement à l'aide d'une lettre, éventuellement de l'alphabet grec.

Si on appelle f une application de E vers F, on note :

$$f: \left| \begin{array}{ccc} E & \to & F \\ x & \mapsto & f(x) \end{array} \right|$$

Vocabulaire et notations :

- E s'appelle l'ensemble de départ, F s'appelle l'ensemble d'arrivée.
- f(x) est appelé **l'image** de x par f; c'est l'unique élément de F associé à x par f.
- Si pour un élément $y \in F$, il existe un élément $x \in E$ qui vérifie f(x) = y, alors x est appelé un antécédent de y par f. Un élément de F peut avoir un, plusieurs, ou aucun antécédent par f.
- L'ensemble des applications de E dans F se note F^E , ou $\mathscr{F}(E,F)$.

Définition 16

On appelle **graphe** d'une application f la partie G de $E \times F$, telle que : $(x,y) \in G \Leftrightarrow f(x) = y$.

Définition 17

Soit $f \in F^E$.

- Soit $A \in \mathcal{P}(E)$. L'application $g \in F^A$ définie pour tout $x \in A$ par g(x) = f(x) est appelée **LA** restriction de f à A; on la note $g = f_{|A}$.
- Soit B une partie contenant E. Une application $f \in F^B$ telle que pour tout $x \in E, h(x) = f(x)$ est appelée **UN prolongement** de f à B.

Définition 18

Soient $f \in F^E$, $g \in G^F$. On appelle **composée** de f et g, notée $g \circ f$, l'application de E dans G, telle que pour tout $x \in E$, $g \circ f(x) = g(f(x))$.

Proposition 8 Associativité

Soient $f \in F^E$, $g \in G^F$ et $h \in H^G$. On a : $(h \circ g) \circ f = h \circ (g \circ f)$.

4.2 Applications particulières

Définition 19

L'application $f \in E^E$ telle que pour tout $x \in E$, f(x) = x est appelée **application identité** de E; elle se note Id_E .

Définition 20

Soit $A \in \mathcal{P}(E)$. L'application :

$$\left| \begin{array}{ccc} E & \rightarrow & \{0,1\} \\ x & \mapsto & \left\{ \begin{array}{ccc} 0 & \text{si } x \in A \\ 1 & \text{si } x \notin A \end{array} \right. \end{array} \right.$$

est appelée fonction indicatrice de A; elle se note $\mathbf{1}_A$.

4.3 Injectivité, surjectivité

Définition 21

Soit $\in F^E$. On dit que :

• f est injective (ou f est une injection) si

$$\forall (a,b) \in E^2, (a \neq b) \Leftrightarrow (f(a) \neq f(b))$$

• f est surjective (ou f est une surjection) si

$$\forall y \in F, \exists x \in E, f(x) = y$$

• f est bijective (ou f est une bijection) si f est injective et surjective.

Lorsque f est bijective, elle admet une **bijection réciproque**, notée f^{-1} , définie sur F à valeurs dans E telle que

$$\forall (x,y) \in E \times F, (f^{-1}(y) = x) \Leftrightarrow (y = f(x))$$

Remarque 7

- (a) f est injective si, et seulement si : $(f(a) = f(b)) \Rightarrow (a = b)$.
- (b) f est bijective si, et seulement si : $\forall y \in F, \exists ! x \in E, f(x) = y$

Proposition 9

Soient $f \in F^E$ et $g \in G^F$.

- Si $g \circ f$ est injective, alors f est injective.
- Si $g \circ f$ est surjective, alors g est surjective.
- La composée de deux injections est une injection.
- La composée de deux surjections est une surjection.
- La composée de deux bijections est une bijection, et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Image directe et image réciproque

Définition 22

Soit $f \in F^E$.

• Pour toute partie A de E, on appelle **image directe** de A par f, notée f(A) l'ensemble :

$$f(A) = \{f(x), x \in A\}$$

• Pour toute partie B de F, on appelle **image réciproque** de B par f, notée $f^{-1}(B)$ l'ensemble :

$$f^{-1}(B) = \{x \in E, f(x) \in B\}$$

Remarque 8

- (a) Lorsqu'aucun élément de B n'admet d'antécédent par f, on a $f^{-1}(B) = \emptyset$.
- (b) Pour $y \in F$, il ne faut pas confondre $f^{-1}(\{y\})$ qui représente l'ensemble des antécédents de y par f (éventuellement vide), et $f^{-1}(y)$ qui n'existe que si f est bijective, f^{-1} désignant alors la bijection réciproque. Si $f^{-1}(y) = x$, on a alors $f^{-1}(\{y\}) = \{x\}$.

Proposition 10

Soient $f \in F^E$, $(A, A') \in E^2$ et $(B, B') \in F^2$. On a :

- $A \subset f^{-1}(f(A))$ et $f(f^{-1}(B)) \subset B$ $f(A \cup A') = f(A) \cup f(A')$ et $f(A \cap A') \subset f(A) \cap f(A')$ $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$ et $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$
- $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$

Définition 23

Soient $A \in \mathscr{P}(E)$ et $f \in E^E$.

On dit que A est **stable** par f si $f(A) \subset A$.

On dit que A est globalement invariant par f si f(A) = A.

Exemple 8

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2$.

[-1,1] est stable par f et [0,1] est globalement invariant par f.