E adesso un po' di esercizi da fare. Ciascuno studente scelga un esercizio nel seguente modo. Prendere l'iniziale del proprio cognome e associargli il numero d'ordine $n \in \{0, 1, 2, ..., 26\}$ nell'alfabeto internazionale partendo da 0

ABCDEFGHIJKLMNOPQRSTUVWXYZ

calcolare $m=n \mod k$ dove k è il numero degli esercizi disponibili; scegliere l'esercizio m corrispondente. Ad esempio, se ci sono 6 esercizi disponibili numerati da 0 a 5, lo studente R. King, avendo il proprio cognome di iniziale K che ha numero d'ordine 10 (infatti si parte a contare da 0), deve scegliere l'esercizio il cui numero è dato da 10 modulo 6, cioè il numero 4.

Una volta risolto l'esercizio lo studente deve caricare sul sito del corso sia il codice Matlab o Octave che l'immagine nel formato jpg o png dell'immagine ottenuta.

Esercizio A0. [AGMSY]

Data una funzione f(x,y) definita su $[0,1] \times [0,1]$ e che prende valori in [-1,1], scrivere una function che, crea una immagine $n \times n$ in cui il pixel di coordinate (i,j) è rosso, verde o blu a seconda che il valore di $a_{i,j} = f(i/n,j/n)$ appartiene rispettivamente a [-1,-1/3), [-1/3,1/3), [1/3,2/3), ed è nero altrimenti. Applicare la function a $f(x,y) = \cos(2\pi(x+y))\sin(2\pi(x-y))$.

Esercizio A1. [BHNTZ]

Data una funzione f(x,y) definita su $[0,1] \times [0,1]$ e che prende valori in [-1,1], scrivere una function che crea una immagine $n \times n$ in cui il pixel di coordinate (i,j) è rosso, verde o blu a seconda che rispettivamente $|f(i/n,j/n)+1/2| \le \epsilon$, $|f(i/n,j/n)| \le \epsilon$, $|f(i/n,j/n)-1/2| \le \epsilon$, ed è bianco altrimenti. Applicare la function a $f(x,y) = \cos(2\pi(x+y))\sin(2\pi(x-y))$.

Esercizio A2. [CIOU]

Data una funzione f(x,y) definita su $[0,1] \times [0,1]$ e che prende valori in [-1,1], scrivere una function che crea una immagine $n \times n$ in cui il pixel di coordinate (i,j) è rosso, se il valore di $|a_{i,j}| = |f(i/n,j/n)|$ è più piccolo di 1/4 e la sua luminosità è tanto più scura quanto più piccolo è il valore di $|a_{i,j}|$ ed è massima se $|a_{i,j}| = 1/4$, altrimenti il colore è verde con luminosità più scura quanto più piccolo è il valore di $|a_{i,j}|$. Applicare la function a $f(x,y) = \cos(2\pi(x+y))\sin(2\pi(x-y))$.

Esercizio A3. [DJPV]

Scrivere una function che dati gli interi m e n crea un'immagine $n \times n$ che contiene tutte le combinazioni dei colori rosso e verde con sfumature graduate da 1 a n. Tracciare l'immagine che si ottiene con n=256 usando il comando imshow. Dare una versione che memorizza l'immagine in una matrice $n \times n$ con una opportuna mappa dei colori.

(Può essere utile in questo caso il comando kron che calcola il prodotto di Kronecker tra due matrici. Ad esempio, kron(eye(3),ones(10)) fornisce la matrice 30×30 che partizionata in blocchi 10×10 , ha blocchi diagonali formati da tutti 1 e blocchi non diagonali nulli.)

Esercizio A4. [EKQW]

Risolvere l'esercizio 3 in modo che l'immagine sia memorizzata in una matrice $n \times n \times 3$.

(Anche in questo caso può essere utile il comando kron.)

Esercizio A5. [FLRX]

Creare una immagine 80×80 formata da 64 quadrati di 10×10 pixel in cui ciascun quadrato ha colore uniforme e i 64 quadrati hanno tutti i possibili colori ottenuti combinando 4 sfumature di rosso, 4 sfumature di verde e 4 sfumature di blu.

(Anche in questo caso può essere utile il comando kron).