Logic Simulation

- Introduction
- Simulation Models
- Logic Simulation Techniques
 - Compiled-code simulation
 - Event-driven simulation (1965)
 - Zero delay
 - Nominal delay
 - * False events
 - Parallel Simulation
- Issues of Logic Simulations
- Conclusions

Compiled-code Simulation Problems

- 1. Gate delay model not considered
- 2. Oblivious: forgets results in previous cycle

Event-Driven Simulation [Ulrich 1965]

- IDEA: evaluates a gate only if there is event(s) at its gate inputs
 - Event is a signal value change (at time t)
 - Gates with inputs changed are activated
- Example:
 - Event: A 0→1
 - Activated gate: G₂

• Only evaluate 1 gate, instead of 4 gates

O 1 A G_1 , G_3 , G_4 not evaluated again in 2^{nd} cycle

O B G_1 , G_3 , G_4 not evaluated again in 2^{nd} cycle

Zero-delay Event-driven Sim.

event (g, v_g^+) means gate g changes to v_g^+

Executed	Q
events	
(<i>B</i> ,1)(<i>A</i> ,1)	G _{1,} G ₂
(G ₁ , 1) -	G ₂
(G ₂ ,1)	G ₄
(G ₄ ,0)	-

Quiz

Please simulate this circuit

Executed Events	Q
(<i>B</i> ,1)	G ₁

VLSI Test 2.4 © National Taiwan University

Logic Simulation

- Introduction
- Simulation Models
- Logic Simulation Techniques
 - Compiled-code simulation
 - Event-driven simulation (1965)
 - * Zero delay
 - Nominal delay
 - * False events
 - Parallel Simulation
- Issues of Logic Simulations
- Conclusions

Nominal-delay Event-drive Sim.

every gate delay = 1ns

event (g, v_g^+) @ tgate g changes to v_g^+ at time stamp t

A 1	G_2 H O
0 → 1 L	G_4 K
$C = \begin{bmatrix} B & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	G_3 I

t	Executed events	sch'd events Q
0	(<i>B</i> ,1)	(G₁,1)@1
1	(G ₁ ,1)	(G ₃ ,0)@2 (G ₂ ,1)@2
2	(G ₃ ,0)	(G ₂ ,1)@2 (G ₄ ,1)@3
2	(G ₂ ,1)	(G ₄ ,1)@3 (G ₄ ,0)@3
3	(<i>G</i> ₄,1)	(G ₄ ,0)@3
3	(G ₄ ,0)	

FFT

Simultaneous signal change

of G₄ @3 wastes CPU time.

Q: Can we do better?

t	Executed events	sch'd events Q
0	(<i>B</i> ,1)	(G ₁ ,1)@1
1	(G ₁ ,1)	(G ₃ ,0)@2 (G ₂ ,1)@2
2	(G ₃ ,0)	(G ₂ ,1)@2 (G ₄ ,1)@3
2	(G ₂ ,1)	(G ₄ ,1)@3 (G ₄ ,0)@3
3	(G ₄ ,1)	(G ₄ ,0)@3
3	(G ₄ ,0)	

Quiz

t	executed	scheduled events in Q
0	(A,1)	(G ₂ ,1)@8
2	(<i>C</i> ,0)	(G ₂ ,1)@8; (G ₁ ,1)@10
4	(<i>B</i> ,0)	$(G_2,1)@8; (G_1,1)@10; (G_1,0)@12$
8	$(A,0),(G_2,1)$	$(G_1,1)@10; (G_1,0)@12 (G_4,0)@14; (G_2,0)@16$
10	(<i>G</i> ₁,1)	$(G_1,0)@12;(G_4,0)@14;(G_2,0)@16$
12	(<i>G</i> ₁,0)	$(G_4,0)@14; (G_2,0)@16 (G_3,1)@16; (G_2,0)@20$
14		
16		
20		
22	$(G_4,1)(G_4,0)(G_4,0)$	-

*Two events are shown in same row for simplicity

VLSI Test 2.4 © National Taiwan University

Logic Simulation

- Introduction
- Simulation Models
- Logic Simulation Techniques
 - Compiled-code simulation
 - Event-driven simulation (1965)
 - * Zero delay
 - Nominal delay
 - * False events
 - Parallel Simulation
- Issues of Logic Simulations
- Conclusions

False Events

t	executed	scheduled events in Q
0	(<i>A</i> ,1)	(G ₂ ,1)@8
2	(<i>C</i> ,0)	(G ₂ ,1)@8; (G ₁ ,1)@10
4	(<i>B</i> ,0)	$(G_2,1)@8; (G_1,1)@10; (G_1,0)@12$
8	(<i>A</i> ,0),(<i>G</i> ₂ ,1)	(G ₁ ,1)@10; (G ₁ ,0)@12 (G ₄ ,0)@14; (G ₂ ,0)@16
10	$(G_1,1)$ false	$(G_1,0)@12;(G_4,0)@14;(G_2,0)@16$
12	(G₁,0)	$(G_4,0)@14; (G_2,0)@16 (G_3,1)@16; (G_2,0)@20$
14	(<i>G</i> ₄ ,0)	$(G_2,0)@16;(G_3,1)@16;(G_2,0)@20$
16	$(G_2,0)(G_3,1)$	$(G_2,0)@20; (G_4,1)@22; (G_4,0)@22$
20	$(G_2,0)$ false	$(G_4,1)@22; (G_4,0)@22; (G_4,0)@26$
22	$(G_4,1)(G_4,0)(G_4,0)$	-

False Events cause no change in signal

VLSI Test 2.4 © National Taiwan University

Event-driven Alg. w/o False Events

- For each gate, record last scheduled value to avoid false events
- (BA Fig. 3.32)

```
event-driven-sim (t) /*t is current time stamp*/

1. for every event (g, v_g^+) @ t
2. v_g = v_g^+
3. for every j on the fauout list of g
4. update input values of j
5. v_j^+ = \text{evaluate}(j)
6. if v_j^+ \neq \text{lsv}(j) /* lsv = last scheduled value */
7. schedule (j, v_j^+) @ t + d_j /* d_j = gate \ delay \ of \ j */
8. \text{lsv}(j) = v_j^+
```

Trade off Memory for Speed

How to Implement Event List?

1. Linked list

- **Slower** to search

- 2. Cyclic Array (aka. Timing Wheel) [Ulrich 1969]
 - © Faster to search
 - \otimes Δt is fixed
 - **⊗** Limited *L* slots in a cycle

Summary

- Event-driven simulation
 - Consider gate delay
 - Saves CPU time. Only evaluate gates with events at input.
- Two algorithms
 - Zero delay
 - Nominal delay
- False events are redundant events that can be removed
- Event list implementation
 - Linked list: slow but flexible
 - Cyclic Array (Timing wheel): fast but fixed time slots

Comparison

	Pros ©	Cons 😕
Compiled-code	Simple implementation	No gate delay Oblivious Suitable for high activity
Event-driven	Consider gate delay Only simulate events Suitable for low activity	Complex algorithm

ED is Generally Better than CC

FFT

Simultaneous signal change

of G₄ @3 wastes CPU time.

Q: Can we do better?

t	Executed events	sch'd events Q
0	(<i>B</i> ,1)	(G ₁ ,1)@1
1	(G ₁ ,1)	(G ₃ ,0)@2 (G ₂ ,1)@2
2	(G ₃ ,0)	(G ₂ ,1)@2 (G ₄ ,1)@3
2	(G ₂ ,1)	(G ₄ ,1)@3 (G ₄ ,0)@3
3	(G ₄ ,1)	(G ₄ ,0)@3
3	(G ₄ ,0)	

IDEA#1 Two-pass Algorithm [Ulrich 1965]

- 1st pass executes events
 - L_F event list, priority queue of events
- 2nd pass evaluates gates

 L_{Δ} activity list, list of gates

All input events to a gate evaluated together. **Avoid simultaneous** signal change

IDEA #2 One-pass Algorithm [Ulrich 1969]

- Add last scheduled time (lst)
- Cancel previously scheduled events when needed

```
event-driven-sim-new (t)
 1. for every event (g, v_g^+) @ t
 2. v_{g} = v_{g}^{+}
 3. for every j on the fauout list of g
           update input values of j
          v_i^+ = evaluate (j)
 6. if v_i^+ \neq lsv(j)
 7.
              t^+ = t + d_i
 8.
              if t^+ == 1st(j) /* simultaneous signal change*/
 9.
                 cancel event (j, lsv(j)) @ t^+
10.
              schedule (j, v_i^+) @ t^+
              lsv(j) = v_i^+
11.
              lst(j) = t^+ /* lst = last scheduled time */
12.
```

FFT

- Cyclic Array (aka. Timing Wheel)
 - Continue the second second
- Q:what if remote events that is outside of (n+L)∆t?

