-		
D7	5	7 Y
1 4	JI	

SEAT No.:		
[Total	No of Pages	٠3

[5153] - 554

T.E. (Electronics & Telecommunication)

ELECTROMAGNETICS & TRANSMISSION LINES

(2012 Course) (Semester - I)

Time : 2½ *Hours*]

[Max. Marks:70

Instructions to the candidates:

- 1) Answer Q.No.1 or Q.No.2, Q.No.3 or Q.No.4, Q.No.5 or Q.No.6, Q.No.7 or Q.No.8.
- 2) Figure to right indicate full marks.
- 3) Neat diagram must be drawn wherever required.
- 4) Use Electronic pocket calculator and smith chart is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) Derive the expression for electric field intensity \overline{E} at a point 'P' due to infinite line charge with uniform line charge density ' ρ_{\perp} '. [6]
 - b) Derive the electrostatic boundary condition between two dielectric media.

 [8]
 - c) Find \overline{H} at point P(2, 3, 4) caused by a current filament of 12A in \widehat{a}_y direction on y axis and extending from y=0 to y=8. [6]

OR

- Q2) a) Derive relation between \overline{E} and V. Also state significance of potential gradient. [8]
 - b) Find the capacitance of parallel plate capacitor containing two dielectrics, $\varepsilon_{r1} = 1.5$ and $\varepsilon_{r2} = 3.5$, each comprising one half the volumes as shown in figure. Here area of plates $A = 2m^2$ and $d = 10^{-3}$ m. [6]

c) State and prove Ampere's Law and apply the same for infinite sheet of current. [6]

P.T.O.

- Q3) a) Write Maxwell's equations for static and time varying fields in point and integral forms.[8]
 - b) State and prove Poynting theorem. Interpret each term. [8]

OR

- **Q4)** a) What do you mean by uniform plane wave? Obtain equation of wave travelling in free space in terms of \overline{E} .
 - b) The magnetic field of an EM wave in free space is given by

 $\vec{H} = 0.5 \in_{0} \cos(\omega t - 100z) \hat{a}_{y} \frac{A}{m}$. Find the electric field intensity and displacement current density. [8]

- Q5) a) State primary and secondary constants of transmission lines. Derive the relationship between primary and secondary constants of transmission line.[8]
 - b) The characteristic impedance of the uniform transmission line is 2040Ω at a frequency of 800 Hz. At this frequency, the propagation constant is $0.054 \angle 87.9^{\circ}$. Determine R, L, G, C, α and β .

OR

- **Q6)** a) Explain the phenomenon of reflection of transmission line and hence define reflection coefficient.
 - b) Derive the expression for characteristic impedance (Z_0) and propagation constant in terms of primary constants of transmission lines. [8]
- **Q7)** a) What is impedance matching? Explain necessity of it. What is stub matching? Explain single stub matching with merits and demerits. [10]
 - b) A 50 Ω line is terminated by a load impedance of $(75 j 69) \Omega$. The line is 3.5 meter long and is excited by 50 MHz source. Propagation velocity is 3×10^8 m/sec. Find the input impedance, reflection coefficient, VSWR, position of minimum voltage. [8]

OR

- **Q8)** a) What is mean by distortionless line? Derive the expression for characteristic impedance and propagation constant for it. [10]
 - b) A transmission line has a characteristic impedance of 300 Ω and terminated in a load $Z_L = 150 + j150 \Omega$. Find the following using smith chart.
 - i) VSWR
 - ii) Reflection Coefficient.
 - iii) Input impedance at a distance 0.1λ from load.
 - iv) Input admittance from 0.1λ from load.

888