1. (a)
$$A_1BEV$$
, $\lambda_1\mu ER$, $(\lambda A+\mu B)^{\dagger}=\lambda A^{\dagger}+\mu B^{\dagger}=-\lambda A-\mu B=-(\lambda A+\mu B)$
 $\rightarrow \lambda A+\mu BEV$.

(b)
$$A \in V$$
; $A = \begin{pmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{pmatrix} = a_{12} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + a_{13} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} + a_{23} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$

$$\rightarrow A \in \langle E_{1}, E_{2}, E_{3} \rangle$$

$$\{E_1, E_2, E_3\}$$
 & LiN. INDIP. Infatti, $aE_1+bE_2+cE_3=0 \rightarrow \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -e & 0 \end{pmatrix} = 0 \rightarrow a=b=c=0$ $\rightarrow dinV=3$.

(c) [c₁]: linearita:
$$\phi(\lambda A + \lambda' A') = (\lambda A + \lambda' A')B + B(\lambda A + \lambda' A') = ... = \lambda(AB + BA) + \lambda'(A'B + BA') = \lambda \phi(A) + \lambda' \phi(A')$$

[c2]:
$$\phi(V) \subseteq V$$
, cioé $\forall A \in V$, $\phi(A) \in V$, ovvero $\phi(A)^{\dagger} = -\phi(A)$. Infatti:

$$\phi(A)^{t} = (AB + BA)^{t} = B^{t}A^{t} + A^{t}B^{t} = B(-A) + (-A)B = -\phi(A)$$
.

2.
$$v = t(x_1, x_2, x_3, x_4) \in \langle \cdot, \cdot, \cdot \rangle \Leftrightarrow \exists a, b, c \in \mathbb{R} : \begin{cases} x_1 = -2a + b + 5c \\ x_2 = a + 5b + 3c \\ x_3 = -b - c \end{cases}$$
 (Equation')
$$\begin{cases} x_3 = -b - c \\ x_4 = 3a + 4b - 2c \end{cases}$$

$$\begin{cases} X_{1} + X_{3} = -2a + 4c \\ X_{4} + 4x_{3} = 3a - 6c \end{cases} \rightarrow 3x_{1} + Mx_{3} + 2x_{4} = 0$$

$$\begin{cases} X_{2} - 5x_{1} = Ma - 2kc \\ X_{1} + x_{3} = -2a + 4c \end{cases} \rightarrow x_{1} + 2x_{2} + Mx_{3} = 0$$

$$\begin{cases} X_{1} + X_{3} = -2a + 4c \end{cases} \rightarrow x_{1} + 2x_{2} + Mx_{3} = 0$$

4.
$$|A-\lambda 1| = -\lambda \left[\lambda^2 + \left(\sqrt{2} + \frac{4\sqrt{3}}{3} \right) \lambda + 1 + \frac{\sqrt{6}}{3} \right]$$
; $\lambda_1 = 0$, $\lambda_2 = -\sqrt{3}/3$, $\lambda_3 = -\sqrt{2} - \sqrt{3}$

$$\Rightarrow$$
 e diagonalizabile.
Si trova: $V_0 = \langle {}^{t}(0,0,1) \rangle$, $V_{-13/3} = \langle {}^{t}(\sqrt{2}+\sqrt{3},1,0) \rangle$, $V_{-\sqrt{2}-\sqrt{3}} = \langle {}^{t}(\sqrt{3},1,0) \rangle$

5. $|A-\lambda \mathbf{1}| = (1-\lambda)(k-\lambda) \left[\frac{\lambda^2}{k-\lambda} + 2k+\lambda \right]$ ha radia tette in R se e solo se KSOVK > 4.

$$\lambda_{1}=1$$
, $\lambda_{2}=k$, $\lambda_{3,4}=\frac{k+2\pm\sqrt{k^{2}4k}}{2}$

Per K<0 V k > 4 le quettro radici recli sono distinte \rightarrow A e' diagonolizzabile. Per 0 < k < 4 more diagonolizzabile in R.

Per k=0, $\lambda_1=1$, $m_a(1)=3$ $\lambda_2=0$, $m_a(0)=1$ $V_1=\{t^{\pm}(x_1x_1,0_1,0)\mid x\in R\}$, $m_g(1)=1$ \rightarrow non e' d'aganalitabile

Per k=4, $\lambda_1 = 1$, $m_a(1) = 1$ $\lambda_2 = 4$, $m_a(4) = 1$ $\lambda_3 = \lambda_4 = 3$, $m_a(3) = 2$ $V_3 = \begin{cases} t (x_1 - x_1, 0, 0) \mid x \in \mathbb{R} \end{cases}$, $m_g(3) = 1 \implies now e' diagonalitabile$

=> A e diagonalizzabile in R se e solo se K<0 V K74.

CASO
$$k=0$$
: dim Ker $(A-1)=\dim V_1=1$ \rightarrow un solo blocco di Jordon di ordine 3

$$J_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$