Remark 2.1 For the application of the results, it is possible to take the initial moment as $t_0 = 0$, without being the discontinuity moment since of the group property. Then $x_0 \notin \Gamma \cup \tilde{\Gamma}$.

Denote by $\widehat{[a,b]}$, $a,b \in \mathbb{R}$, the interval [a,b], whenever $a \leq b$ and [b,a], otherwise. Let $x_1(t) \in PC(\mathbb{R}_+,\theta^1)$, $\theta^1 = \{\theta_i^1\}$, and $x_2(t) \in PC(\mathbb{R}_+,\theta^2)$, $\theta^2 = \{\theta_i^2\}$, be two different solutions of (2.1).

Definition 2.3 The solution $x_2(t)$ is in the ϵ -neighborhood of $x_1(t)$ on the interval $\mathscr I$ if

- the sets θ^1 and θ^2 have same number of elements in \mathscr{I} ;
- $|\theta_i^1 \theta_i^2| < \epsilon \text{ for all } \theta_i^1 \in \mathscr{I};$
- the inequality $||x_1(t) x_2(t)|| < \epsilon$ is valid for all t, which satisfy $t \in \mathscr{I} \setminus \bigcup_{\theta_i^1 \in \mathscr{I}} (\theta_i^1 \epsilon, \theta_i^1 + \epsilon)$.

The topology defined with the help of ϵ —neighborhoods is called the B-topology. It can be apparently seen that it is Hausdorff and it can be considered also if two solutions $x_1(t)$ and $x_2(t)$ are defined on a semi-axis or on the entire real axis.

Definition 2.4 The solution $x_0(t) = x(t, 0, x_0)$, $t \in \mathbb{R}$, $x_0 \in D$, of (2.1) B-continuously depends on x_0 for increasing t if there corresponds a positive number δ to any positive ϵ and a finite interval [0,b], b > 0 such that any other solution $x(t) = x(t, 0, \tilde{x})$ of (2.1) lies in ϵ -neighborhood of $x_0(t)$ on [0,b] whenever $\tilde{x} \in B(x_0, \delta)$. Similarly, the solution $x_0(t)$ of (2.1) B-continuously depends on x_0 for decreasing t if there corresponds a positive number δ to any positive ϵ and a finite interval [a, 0], a < 0 such that any other solution $x(t) = x(t, 0, \tilde{x})$ of (2.1) lies in ϵ -neighborhood of $x_0(t)$ on [a, 0] whenever $\tilde{x} \in B(x_0, \delta)$. The solution $x_0(t)$ of (2.1) B-continuously depends on x_0 if it continuously depends on the initial value, x_0 , for both increasing and decreasing t.

If conditions (C1)-(C7) hold, then each solution $x_0(t) : \mathbb{R} \to \mathbb{R}^n$, $x_0(t) = x(t, 0, x_0)$, of (2.1) continuously depends on x_0 [1].

2.1 B-equivalence to a system with fixed moments of impulses

In order to facilitate the analysis of the system with variable moments of impulses (2.1), a *B-equivalent* system [1] to the system with variable moments of impulses will be utilized in our study. Below, we will construct the B-equivalent system.

Let $x(t) = x(t, 0, x_0 + \Delta x)$ be a solution of system (2.1) neighbor to $x_0(t)$ with small $\|\Delta x\|$. If the point $x_0(\theta_i)$ is a (β) - or (γ) - type point, then it is a boundary point. For this reason, there exist two different possibilities for the near solution x(t) with respect to the surface of discontinuity. They are:

- (N1) The solution x(t) intersects the surface of discontinuity, Γ , at a moment near to θ_i ,
- (N2) The solution x(t) does not intersect Γ , in a small time interval centered at θ_i .