МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет)

Лабораторная работа 2.1.1

ИЗМЕРЕНИЕ УДЕЛЬНОЙ ТЕПЛОЁМКОСТИ ВОЗДУХА ПРИ ПОСТОЯННОМ ДАВЛЕНИИ

Составители: Смирнова О.И. Попов П.В.

Из лаборатории не выносить! Электронная версия доступна на сайте кафедры общей физики physics.mipt.ru/S_II/lab

Долгопрудный 2018

Измерение удельной теплоёмкости воздуха при постоянном давлении

Цель работы: измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу; исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр, вольтметр (цифровые мультиметры); термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

Введение

Измерение теплоёмкости тел обычно производится в калориметрах, т. е. в сосудах, обеспечивающих теплоизоляцию исследуемого тела от внешней среды. При этом регистрируется изменение его температуры dT в зависимости от количества тепла δQ , полученного телом от некоторого нагревательного элемента внутри калориметра. Tennoëmkocmb тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{dT}. (1)$$

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно — масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в которой установлен нагревательный элемент (см. рис. 1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой $dm = q \, dt$,

Рис. 1. Нагрев газа при течении по трубе

где q [кг/с] — массовый расход газа в трубе. Если мощность нагрева равна N,

мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q=(N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q=c\ dm\ \Delta T$, где $\Delta T=T_2-T_1$ — приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал * , поэтому можно принять, что $P_1\approx P_2=P_0$, где P_0 — атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$c_P = \frac{N - N_{\text{not}}}{a \, \Delta T}.\tag{2}$$

Течение газа по трубе[†]

В общем случае давление на входе может заметно превышать таковое на выходе (например, если труба достаточно узкая и длинная). Рассмотрим течение газа более детально, чтобы выяснить пределы применимости соот-

ношения (2). Обозначим индексом 1 параметры газа на входе в трубку, индексом 2 — на выходе из неё. Рассмотрим область, мысленно ограниченную двумя неподвижными плоскостями слева (AA') и справа (BB') от нагревателя (отмечено серым на рис. 2) и применим к ней закон сохранения энергии.

Пусть за время dt газ сместился слева направо на малое расстояние вдоль трубки, такое что через левую границу прошёл газ объёмом dV_1 , а через правую — dV_2 . В силу закона сохранения массы имеем

$$dm = \rho_1 dV_1 = \rho_2 dV_2, \tag{3}$$

где dm=q dt — масса газа, прошедшего через некоторое сечение трубки. Изменение внутренней энергия газа в рассматриваемой области за счёт переноса вещества составило $dU=(u_2-u_1)dm$, где $u_{1,2}$ — удельные внутренние энергии. Внешние силы совершили работу по перемещению газа $\delta A^{\checkmark}=P_1dV_1-P_2dV_2$, или с учётом (3):

$$\Delta P = \frac{8\eta Lq}{\pi \rho r^4}$$

 $^{^*}$ Перепад давлений ΔP при течении по прямой трубе может быть обусловлен вязкостью газа. Для ламинарного стационарного течения он может быть вычислен из формулы Пуазейля (см. работы 1.3.3 и 2.2.5):

где r — радиус трубы, L — её длина, η — вязкость газа.

[†] При первом чтении данный раздел можно опустить.

$$\delta A^{\checkmark} = -\left(\frac{P_2}{\rho_2} - \frac{P_1}{\rho_1}\right) dm.$$

Учтём также изменение кинетической энергии течения газа, равное $dK = \frac{1}{2}(v_2^2 - v_1^2)dm$, где $v_{1,2}$ — скорости течения. Наконец, пусть δQ — количество тепла, *суммарно* полученное газом в рассматриваемой области — включая тепло от нагревателя, теплопередачу через стенки и торцы, тепловыделение при трении и т.д. В *стационарном* состоянии энергия газа, заполняющего калориметр, неизменна, поэтому

$$dU - dA^{\checkmark} + dK = \delta Q$$
.

Полученное удобно переписать в виде

$$\left(i_2 - i_1 + \frac{v_2^2}{2} - \frac{v_1^2}{2}\right) dm = \delta Q, \tag{4}$$

где $i=u+\frac{P}{\rho}$ — удельная энтальпия газа.

Соотношение (4) справедливо для любой стационарно текущей непрерывной среды и представляет собой обобщение известного уравнения Бернулли, учитывающее выделение и потери тепла. Оно справедливо при условии, что в системе устанавливается не только стационарное течение, но и стационарное распределение температуры. Последнее весьма важно для нашего опыта, поскольку время установления может быть довольно велико.

Если предположить, что кинетическая энергия течения мала по сравнению с энергией нагрева ($dK \ll \delta Q$), то получим

$$(i_2 - i_1)dm = \delta Q, (5)$$

то есть полученное газом тепло идёт на приращение его энтальпии.

В условиях опыта газ с хорошей точностью можно считать идеальным: $P/\rho = RT/\mu$, а его теплоёмкость c_P (или c_V) не зависящей от температуры. Тогда энтальпия (и внутренняя энергия) газа зависит только от температуры и равна $\Delta i^{\text{ид.г.}} = c_P \Delta T$ (т.к. $\Delta u^{\text{ид.г.}} = c_V \Delta T$ и $c_P = c_V + \frac{R}{\mu}$). Нетрудно видеть, что в таком случае соотношение (5) переходит в (2).

Итак, более подробное рассмотрение позволяет установить, что формула (2) справедлива даже в том случае, если перепад давлений на концах трубы не мал, при условии, что газ можно считать идеальным*, а его кинетической энергией можно пренебречь. Кроме того, для практического использования (2) должны быть малы потери тепла и тепловыделение из-за трения (по сравнению с мощностью нагревателя).

 $^{^*}$ Заметим, что и для произвольного вещества соотношение $\Delta i = c_P \Delta T$ также имеет место, но только в *изобарном* процессе, то есть при $P_1 = P_2$, что, впрочем, в нашей работе выполняется с хорошей точностью.

Экспериментальная установка

Схема установки изображена на рис. 3. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь тепла за счет излучения. Воздух из пространства между стенками калориметра откачан до высокого вакуума $(10^{-5}\ \text{торр})$ для минимизации потерь тепла, обусловленных теплопроводностью.

Рис. 3. Схема экспериментальной установки

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI. (6)$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй — в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС $\mathcal E$ пропорциональна разности температур ΔT спаев:

$$\mathcal{E} = \beta \, \Delta T,\tag{7}$$

где $\beta=40.7\frac{\text{мкВ}}{\text{°C}}$ — чувствительность медно-константановой термопары в рабочем диапазоне температур (20–30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком ГС. Для регулировки расхода служит кран К. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. *Объёмный* расход равен $\Delta V/\Delta t$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t'},\tag{8}$$

где ρ_0 — плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева–Клапейрона: $\rho_0=\frac{\mu P_0}{RT_0}$, где P_0 — атмосферное давление, T_0 — комнатная температура (в Кельвинах), $\mu=29$,0 г/моль — средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T \ll T_0$) мощность потерь тепла $N_{\rm пот}$ прямо пропорциональна разности температур:

$$N_{\text{not}} = \alpha \, \Delta T, \tag{9}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_P q + \alpha) \Delta T \tag{10}$$

Следовательно, при фиксированном расходе воздуха (q = const) подводимая мощность и разность температур связаны *прямой пропорциональностью* ($\Delta T(N)$ — линейная функция).

Методика измерений

В настоящем эксперименте предлагается провести измерение зависимости $\Delta T(N)$ разности температур ΔT концов термопары от мощности нагрева N=UI при нескольких фиксированных значениях расхода q воздуха. По результатам измерений проверить справедливость зависимости (10) и определить удельную теплоёмкость воздуха при постоянном давлении c_P , а также оценить величину тепловых потерь.

Важнейшим условием корректности проведение опыта является установление стационарного состояния. Время установления может достигать 10-15 минут. Снятие показаний рекомендуется производить когда показания вольтметра, подключенного к термопаре, не меняются в течение 1-2 минут. Кроме того, необходимо учитывать, что охлаждение системы занимает существенно большее время, нежели нагрев, поэтому при измерениях мощность нагрева

нужно *увеличивать* постепенно. Охлаждение установки для повторного снятия зависимости производится при максимальном расходе воздуха и выключенном нагревателе; время, необходимое для охлаждения, может достигать 20-30 минут.

Внимание!

Для предотвращения перегорания нити нагревателя не рекомендуется включать нагреватель без продува воздуха через калориметр.

ЗАДАНИЕ

Подготовка к эксперименту

- **1.** Подготовьте к работе газовый счетчик: проверьте, заполнен ли он водой, установите счетчик по уровню.
- **2.** Начинать измерения следует при условии, что калориметр охлажден до комнатной температуры. Для охлаждения включите компрессор и открывая кран К, установите **максимально** возможный расход воздуха. Источник постоянного тока должен быть при этом **выключен!**

Для проверки корректности работы газового счетчика стоит убедиться, что при постоянном расходе его стрелка вращается равномерно.

- **3.** Включите вольтметр, предназначенный для измерения ЭДС термопары. Если показания вольтметра отличны от нуля, следует продувать калориметр воздухом до полного охлаждения калориметра (т.е. до установления нуля на цифровом дисплее вольтметра).*
- **4.** Запишите значения температуры и давления в комнате, необходимые для расчета расхода прокачиваемого воздуха. По психрометру определите значение влажности воздуха в комнате.
- **5.** С помощью газового счетчика и секундомера измерьте максимальный расход воздуха $\Delta V/\Delta t$ (в л/с). Измерения проведите несколько раз и определите среднее значение расхода. Вычислите соответствующий массовый расход воздуха $q_{\rm max}$ [г/с], пользуясь формулой (8).
- **6.** Оцените величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\Delta T_0 = 1$ °C. Для этого 1) определите теоретическое значение удельной теплоёмкости воздуха при постоянном давлении $c_P^{\text{теор}}$ [Дж/г·К], считая воздух смесью двухатомных идеальных газов; 2) оцените минимальную мощность N_0 [Вт] ($N \ge c_P q \Delta T$), необходимую для нагрева газа при максимальном рас-

 $^{^{*}}$ Если показания не спадают до нуля, убедитесь, что в комнате вблизи установки отсутствуют значимые перепады температуры (отсутствуют сквозняки, закрыты окна и т.п.)

ходе q_{\max} на $\Delta T_0=1$ °C; 3) учитывая, что сопротивление проволоки нагревателя составляет приблизительно $R_{\rm H}{\sim}35$ Ом и в процессе опыта практически не меняется*, определите искомое значение тока $I_0=\sqrt{\frac{N_0}{R_{\rm H}}}$.

Проведение измерений

- 7. Проведите измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при максимальном расходе воздуха $q_1 = q_{\text{max}}$. Рекомендуется измерить 4-5 точек в диапазоне температур ΔT от \sim 2 °C до \sim 10 °C.
 - **7.1.** Чтобы начать нагрев, включите источник питания (ИП) нагревателя и установите на нём такое напряжение, чтобы ток через нить нагревателя составлял $I_1 \sim (2 \div 2,5)I_0$ (см. п. 6). Запишите значения тока I и напряжения U в цепи. Рассчитайте мощность N нагрева, а также сопротивление нити нагревателя $R_{\rm H}$.
 - **7.2.** После включения нагрева (или после изменения его мощности) дождитесь установления стационарного состояния системы. Первоначальный прогрев калориметра происходит достаточно долго (\sim 10 минут). Значения ЭДС $\mathcal E$ вольтметра, подключенного к термопаре, должны оставаться постоянными (в пределах точности прибора) в течение 1-2 минут.
 - **7.3.** По величине $\mathcal E$ определите значение ΔT (см. (7)). Учитывая, что $\Delta T \propto N \propto I^2$, определите значения токов накала, необходимые для того, чтобы равномерно повышать температуру нагрева ΔT до требуемого значения. Проведите измерения согласно пп. 7.1.-7.2, последовательно увеличивая ток нагрева до расчётных значений.
- **8.** Завершив первую серию измерений, **охладите калориметр до комнат-ной температуры.** Для этого отключите источник питания нагревателя, откройте кран К и продувайте калориметр при максимальном расходе воздуха до тех пор, пока показания ЭДС не достигнут нуля.
- **9.** Повторите измерения по п. 7 по крайней мере ещё для одного значения расхода воздуха. **Внимание!** Начинать каждую следующую серию опытов следует только после полного охлаждения калориметра до комнатной температуры.
- **10.** После завершения опытов выключите источник питания нагревателя и мультиметры. Кран К откройте для максимального продува воздуха через калориметр. Сообщите лаборанту об окончании работы.

 $^{^*}$ Температурный коэффициент сопротивления нихрома $\frac{1}{R}\frac{dR}{dT}=$ 1,7 \cdot 10 $^{-4}$ K $^{-1}$.

Обработка результатов измерений

- **11.** Постройте графики зависимости $\Delta T(N)$ для каждого расхода воздуха q. Проверьте, выполняется ли предположение о том, что тепловые потери пропорциональные разности температур. Аппроксимируя зависимость прямой y=kx, найдите угловые коэффициенты k для каждого расхода.
- **12.** Проанализируйте зависимость наклона k от расхода q и, пользуясь формулой (10), определите значение теплоёмкости воздуха при постоянном давлении c_P . Пользуясь полученным значением c_P , определите долю тепловых потерь в опыте $N_{\text{пот}}/N$.
- **13.** Оцените погрешности опыта. Сравните полученное значение теплоемкости с теоретическим и с табличным. Объясните расхождения, оценив факторы, влияющие на величину экспериментального значения теплоемкости.

Вопросы к сдаче работы

- 1. Сформулируйте теорему о равнораспределении энергии по степеням свободы. Получите теоретическое значение молярной и удельной теплоёмкости воздуха при постоянном давлении.
- 2. Дают ли колебания атомов в молекулах кислорода и азота вклад в теплоёмкость в условиях опыта? Как теплоёмкость двухатомного газа зависит от температуры?
- 3. Покажите, что в проведенном опыте измеряется именно теплоёмкость при постоянном давлении c_P .
- 4. Перечислите возможные механизмы тепловых потерь. Как эти потери зависят от параметров опыта?
- 5. Используя данные опыта, проверьте обоснованность пренебрежения кинетической энергией течения газа.
- 6. Оцените влияние влажности воздуха на результаты опыта.
- 7. Как влияют колебания комнатной температуры и атмосферного давления на результаты опыта?
- 8. Пользуясь формулой Пуазейля, оцените перепад давления в трубке калориметра в условиях опыта. Диаметр трубки принять равным \sim 1,5 см, длину трубки 25 см.
- 9. Тепловые потери на излучение определяются законом Стефана-Больцмана: $N_{\text{пот}} = AT^4$, где A константа. С какой относительной точностью эта зависимость может быть аппроксимирована линейной функцией $N_{\text{пот}} \propto (T-T_0)$ в условиях опыта?

.

28.02.2018