Mark NG

Introduction

The Large Deviation Principle (LDP)

Graph Limit Theory

Random Graphs

Questions & Answers

Large Deviations for Random Graphs Honours Year Project Introductory Talk

NG Say-Yao Mark¹ A/P SUN Rongfeng²

¹Student, ²Supervisor Department of Mathematics National University of Singapore (NUS)

October 5, 2016

The Large Deviation Principle (LDP)

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

1 Introduction

2 The Large Deviation Principle (LDP)

3 Graph Limit Theory

4 LDP for Random Graphs

5 Questions & Answers

The Large Deviation Principle (LDP)

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

Introduction

General information about this talk.

- Introduce fundamentals and motivation for chosen topic.
- Large deviation theory for random graph models.
- Assuming some knowledge in:
 - Probability theory: probability measure, expected value, almost sure convergence.
 - Analysis: limits, metric spaces, measurable functions.
 - Graph Theory: edge, vertex, graph homomorphisms.
- Slides available at:

http://mollymr305.github.io

Mark NG

Introduction

The Large Deviation Principle (LDP)

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

Large Deviations Theory

Let's begin with *soft* introduction to large deviations theory.

Large deviations theory is a branch of probability theory which, roughly speaking, concerns the study of two things:

- Probabilities of rare events.
- Conditional probabilities of events, given that a rare event has occurred.

The theory of large deviations is also applied in many fields such as statistical physics, statistical hypothesis testing, etc.

LDP for Random Graphs

Questions & Answers

A Coin Tossing Example

Let X_1, \ldots, X_n be IID random variables with law

$$P(X_i = 0) = P(X_i = 1) = \frac{1}{2}.$$

Denote their sum by $S_n = X_1 + \cdots + X_n$.

The Strong Law of Large Numbers (LLN) tells us that

$$\frac{S_n}{n} \xrightarrow{a.s.} \frac{1}{2}$$
, as $n \longrightarrow \infty$.

i.e. "The *empirical mean* converges to $\frac{1}{2}$ with probability 1."

A Coin Tossing Example

We can then ask about the asymptotic behaviour of the probabilities rare events, for example

$$\mathbf{P}\left(\frac{S_n}{n} \geq \frac{2}{3}\right) = \mathbf{P}\left(S_n \geq \frac{2}{3}n\right), \text{ as } n \longrightarrow \infty.$$

LDP for Random Graphs

Questions &

A Coin Tossing Example

It turns out that,

$$\begin{split} \lim_{n\to\infty} \frac{1}{n} \log \mathbf{P} \left(S_n \geq \frac{2}{3} n \right) &= -\left(\log 2 + \frac{2}{3} \log \frac{2}{3} - \frac{1}{3} \log \frac{1}{3} \right) \\ &= -\log \left(\frac{2^{5/3}}{3} \right). \end{split}$$

In other words: the probability of the rare event

$$\mathbf{P}\left(S_n\geq\frac{2}{3}n\right),\,$$

decays exponentially as $n \longrightarrow \infty$, with rate

$$\frac{2^{5/3}}{3}$$

The Large Deviation Principle (LDP)

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

A Coin Tossing Example

More generally, for any $\alpha > \frac{1}{2}$ we have

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbf{P}(S_n\geq\alpha n)=-I(\alpha),$$

where $I: \mathbb{R} \to \overline{\mathbb{R}}$, called the *rate function* is defined by

$$I(z) = egin{cases} \log 2 + z \log z + (1-z) \log (1-z) & ext{ if } z \in [0,1], \\ +\infty & ext{ otherwise.} \end{cases}$$

Remark 1. We set $0 \log 0 = 0$ by convention.

Remark 2. Some properties of this rate function include:

- $I(z) \ge 0$ for all $z \in \mathbb{R}$.
- I(z) = 0 if and only if $z = \frac{1}{2}$.

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

Cramer's Theorem for the Empirical Average

A further generalisation of the Coin Tossing Example.

Theorem (Cramer)

Let $\{X_i\}_{i\in\mathbb{N}}$ be IID \mathbb{R} -valued random variables such that

$$\varphi(t) = \mathbf{E}e^{tX_i} < \infty, \text{ for all } t \in \mathbb{R}.$$

Let $S_n = \sum_{i=1}^n X_i$. Then for any $\alpha > \mathbf{E}X_i$,

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbf{P}\left(S_{n}\geq\alpha n\right)=-I(\alpha),$$

where

$$I(z) = \sup_{t \in \mathbb{R}} \{zt - \log \varphi(t)\}.$$

LDP for Random Graphs

Questions & Answers

The Large Deviation Principle

 \star Starting point for the $\emph{general}$ large deviations theory.

Let (\mathcal{X}, d) be a Polish space (i.e. separable and complete).

Definition (Good Rate Function)

A function $I:\mathcal{X}\to [0,\infty]$ is said to be a *good rate function* if

- D1 $I \not\equiv \infty$.
- D2 I is lower semi-continuous. (iff $\liminf_{n\to\infty} I(x_n) \ge I(x)$ for any $x_n \to x$ in \mathcal{X} .)
- D3 I has compact level sets. (i.e. $I^{-1}([-\infty, c])$ is compact for every $c \in \mathbb{R}$)

For any subset $S \subseteq \mathcal{X}$ we also define $I(S) = \inf\{I(s) : s \in S\}$.

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

The Large Deviation Principle

Definition (LDP)

A sequence of probability measures $\{\mathbf{P}_n\}_{n\in\mathbb{N}}$ on the space \mathcal{X} is said to satisfy the Large Deviation Principle (LDP) with rate n and good rate function I if

- L1 *I* is a good rate function.
- L2 For any *closed* subset $C \subseteq \mathcal{X}$,

$$\limsup_{n\to\infty}\frac{1}{n}\log\mathbf{P}_n(C)\leq -I(C).$$

L3 For any *open* subset $O \subseteq \mathcal{X}$,

$$\liminf_{n\to\infty}\frac{1}{n}\log\mathbf{P}_n(O)\geq -I(O).$$

Graph Limit Theory

LDP for Random Graphs

Questions & Answers

Graph Limit Theory

We first define what is means for a graph sequences to have a limit. For a graph G, let V(G) and E(G) denote the vertex and edge set respectively.

- Let $\{G_n\}_{n\in\mathbb{N}}$ be a sequence of simple graphs whose number of vertices tend to infinity.
- For a fixed simple graph H, let hom (H, G_n) denote the number of homomorphisms from H into G_n .
- The probability that a random map $\phi:V(H)\to V(G_n)$ is a homomorphism is

$$t(H, G_n) = \frac{\mathsf{hom}(H, G_n)}{|V(G_n)|^{|V(H)|}}.$$

Graph Limit Theory

LDP for Random Graphs

Questions & Answers

Graph Limit Theory

Lovász and Szegedy (2004) proved the following:

Theorem

Suppose $t(H, G_n)$ tends to a limit t(H) for every H. Then there exists a symmetric measurable function

$$f:[0,1]\times[0,1]\to[0,1]$$

such that

$$\lim_{n\to\infty} t(H,G_n) = t(H,f) \stackrel{\text{def.}}{=} \int_{[0,1]^k} \prod_{\{i,j\}\in E(H)} f(x_i,x_j) dx_1 \cdots dx_k.$$

Conversely, every symmetric measurable function of the form $f:[0,1]\times[0,1]\to[0,1]$ corresponds to the limit of an appropriate graph sequence.

Graph Limit Theory

LDP for Random Graphs

Questions & Answers

Graph Limit Theory

- The function f is the 'natural limit object' of $\{G_n\}_{n\in\mathbb{N}}$.
- This gives us a 'working definition'* for a 'graph limit'.

Definition

A sequence of simple graphs $\{G_n\}_{n\in\mathbb{N}}$ whose number of vertices tend to infinity is said to converge to a symmetric measurable function $f:[0,1]\times[0,1]\to[0,1]$ if for every finite simple graph H,

$$\lim_{n\to\infty}t(H,G_n)=t(H,f).$$

The function f is also referred to as a *graphon*.

The Large Deviation Principle (LDP)

Graph Limit Theory

LDP for Random Graphs

Questions & Answers

Erdős-Rényi Random Graphs

- The Erdős-Rényi random graph $G_{n,p}$ is a graph vertex set $\{1,\ldots,n\}$, and the law $\mathbf{P}(\{i,j\})$ is an edge p independently for all $1 \le i < j \le n$.
- For a given H, note that $t(H, G_{n,p})$ is a random variable.
- It can be shown that

$$t(H, G_{n,p}) \xrightarrow{a.s.} p^{|E(H)|}$$
, as $n \longrightarrow \infty$.

• Also, note that the constant graphon f(x, y) = p gives

$$t(H,f) = \int_{[0,1]^k} \prod_{\{i,i\} \in E(H)} f(x_i, x_j) dx_1 \cdots dx_k = p^{|E(H)|}.$$

• In other words, the graph sequence $\{G_{n,p}\}_{n\in\mathbb{N}}$ converges to $f\equiv p$ with probability 1.

Mark NG

Introduction

The Large Deviation Principle (LDP)

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

Large Deviation Principle for Random Graphs: Research

General information about this field of research:

- Large deviation theory for the Erdős-Rényi random graph was developed not too long ago by Chatterjee & Varadhan (2011).
- Other developments include large deviation theory for the Exponential Random Graph Model (ERGM) by Chatterjee & Diaconis (2013).
- However, less has been established with respect to sparse random graphs.

Mark NG

Introduction

The Large Deviation Principle (LDP)

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

Large Deviation Principle for Random Graphs: Research

Some interesting work regarding the Erdős-Rényi random graph:

- For an Erdős-Rényi random graph $G_{n,p}$, let $T_{n,p}$ denote the number of *triangles*.
- It can be shown that $\mathbf{E}T_{n,p} = \binom{n}{3}p^3$.
- Consider the *rare* event $E_n = \{T_{n,p} \ge (1+\delta)\mathbf{E}T_{n,p}\}$, for some $\delta > 0$.
- ? What is the asymptotic behaviour of $P(E_n)$ as $n \to \infty$.
- ? Can we characterize the *conditional distribution* of $G_{n,p}$ given that the rare event E_n has occurred.

Mark NG

Introduction

The Large Deviation Principle (LDP)

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

Goals for Honours Year Project

What I hope to fulfil by the end of this project:

- Better understand results concerning large deviations for:
 - Dense random graphs.
 - Sparse random graphs.
- On a side note: I hope to spend more focus on sparse random graph models.
- ? Try to answer some open questions in this field.

Mark NG

Introduction

The Large Deviation Principle (LDP)

Graph Limi Theory

LDP for Random Graphs

Questions & Answers

Questions & Answers

Thank you very much for your attention.

Selected References

- 1 Frank den Hollander. *Large deviations*. Fields Institute monographs, ISSN 1069-5273; 14.
- 2 László Lovász and Balázs Szegedy. Limits of dense graph sequences. J. Combin. Theory Ser. B, 96 no. 6, 933-957.
- 3 Sourav Chatterjee. *An introduction to large deviations for random graphs.* To appear in Bull. Amer. Math. Soc.