### Effects of Weather on Maize Yield in Kenya

Monika Novackova supervised by: Pedram Rowhani, Martin Todd and Annemie Maertens

University of Sussex

January 2019

### Outline

Introduction

Data

Methods

My Suggestion

#### Introduction

- SSRP project, related to ForPAc project
- Extreme weather → disasters (maybe name some years of drought in Kenya??)
  - Early warning systems have been developed
- Goals: Improve early warning systems in Kenya
- Shifting the disaster management from reactive to protective
- Two predominant rainfall regimes in Kenya:
  - 1. Arid and semi-arid (ASAL): bi-modal
    - Short rains: March to May
    - Long rains: October to December
    - 2. non-ASAL: uni-modal
      - March to August
- Perhaps a map of ASAL and non-ASAL



## Approach

- Various approaches considered including:
  - Relating NDMA Early warning phase classification to weather
  - Relating markets and food prices to weather
  - Relating maize yields to weather to weather
  - Computable general equilibrium (CGE) models

#### **NDMA Early Warning Phase**

#### Classification

**Example: Kitui county** 

#### Normal $\rightarrow$ Alert $\rightarrow$ Alarm

• Bulletins for ASAL counties

Phase: 1 = Normal, 2 = Alert

S

0

-1

- Online since 2013
  - But in pdf format
- For county and month





## Approach

- Narrowing the research question:
  - Relationship of maize yield and weather in Kenya
    - What is it about weather that causes drought related disasters?
    - Which particular characteristics of weather are the most 'responsible' for drought related disasters?

#### Sample:

Panel of 47 counties of Kenya, 1981 – 2017

#### Data

- Maize yields
  - source: Famine Early Warning Systems Network (FEWS NET)
  - County level, yearly, tonnes per hectare
- Weather:
  - Daily, 0.25° resolution gridded data
  - Precipitation
    - source: Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
  - Temperature
    - source: Berkeley Earth
  - Aggregation needed to conform with the yield data

```
0.25^{\circ} grid \rightarrow county level daily \rightarrow yearly
```

add how averaged over seasons ASAL and non ASAL

## Precipitation and temperature measures

- Measures typically considered:
  - Total precipitation over rainy seasons
  - Average temperature during rainy seasons
- Less commonly used measures considered:
  - Maximum daily precipitation (floods)
  - Maximum daily temperature
  - Coefficients of variation: precipitation and temperature
  - Maximum length of dry spell during rainy seasons
  - Number of dry spells during rainy seasons
  - Number of heatwave days
  - Cumulative precipitation on days when precip. > 90th percentile

#### Linear mixed effects models

- Panel: County × Year
- Slopes allowed to vary over counties

$$log(y_{1t}) = \sum_{m=1}^{p} \beta^{m} X_{1t}^{m} + \sum_{n=1}^{q} b_{1}^{n} z_{1t}^{n} + \epsilon_{1t}$$

$$log(y_{2t}) = \sum_{m=1}^{p} \beta^{m} X_{2t}^{m} + \sum_{n=1}^{q} b_{2}^{n} z_{2t}^{n} + \epsilon_{2t}$$

$$\vdots$$

$$log(y_{47t}) = \sum_{m=1}^{p} \beta^{m} X_{47t}^{m} + \sum_{n=1}^{q} b_{47}^{n} z_{47t}^{n} + \epsilon_{47t}$$

 $y_{it} = Maize yield t/hectares, county i in year t$ 

eta = Vector of effects of other covariates

 $X_{i,t}$  = Matrix of values of other covariates in county i in year t

 $\epsilon_{i,t}$  = Error term

#### Linear mixed effects models

- Panel: County × Year
- Slopes allowed to vary over counties

$$log(y_{it}) = \sum_{m=1}^{p} \beta^m x_{it}^m + \sum_{n=1}^{q} b_i^n z_{it}^n + \epsilon_{it}$$
  $i = 1, ..., 47$  counties

 $y_{it}$  = Maize yield t/hectares, county i in year t

 $\alpha_i$  = Fixed effects), county *i* 

 $\delta$  = Effect of drought on economy

 $X_{i,t}$  = Matrix of values of other covariates in county i in year t

 $\epsilon_{i,t}$  = Error term

#### ideas

- Plot of dependency of precip or some measure and yields..
- Maybe also general description of the mixed effects models as I have in the draft
- Look at the document on google docs 'Yield and climate' to see if I can use something

## Effects of droughts on economy

#### Computable General Equilibrium (CGE)

#### • 3

 5 agro-ecological zones,46 production activities (incl. 35 zone specific agricultural production sectors), 22 commodity groups, 15 primary factors of production

| Fixed (inputs)                 | Determined by model (outputs)    |
|--------------------------------|----------------------------------|
| Capital stock                  | Domestic price of each commodity |
| Land (by region)               | Land allocated across crops      |
| Supply of labor per skill type | Real wages                       |
| Foreign capital inflow         | Real exchange rate               |
| Trade balance                  |                                  |

- The simulation use a 'balanced' macro closure in which aggregate investment, government demand, and consumption are fixed shares of total absorption
- Intermediate inputs into production are determined as fixed shares of the quantity of output



## Effects of droughts on economy

#### Computable General Equilibrium (CGE) Models

- 3
- Exploring range of scenarios for food price increase in 2030
  - 1. Baseline 2. Climate change 3. Climate change with adaptation 4. Adaptation only in sub-Saharan Africa
- Global coverage, set of individual country models, linked through international trade
- Climate change (incl. drought) modelled as changes in factor productivity (usually negative)

## My suggestion - panel estimation

#### My interest: Effects of drought on economy in Kenya

- Response variable
  - Volumes of production (crop specific, total)
  - Profit per acre (?)
    - (Value of agricultural products prod. expanses)/acres (crops, pasture, grazing)
- Units of analysis
  - Counties in Kenya × year
- Explanatory variable of interest
  - Dummy variable (0/1) drought occurred in a particular county and year or not
  - Several varieties various specifications of drought:

### My idea - panel estimation

$$Y_{i,t} = \alpha_i + \gamma_t + \delta D'_{i,t} + \beta X_{i,t} + \epsilon_{i,t}$$

 $Y_{i,t}$  = Response variable (food production/price), county i in year t

 $\alpha_i$  = Fixed effects, county i

 $\delta$  = Effect of drought on economy

 $D_{i,t}$  = Indicator variable

D=1 if drought in county i in year t, D=0 otherwise

 $\beta$  = Vector of effects of other covariates

 $X_{i,t}$  = Matrix of values of other covariates in county i in year t

 $\epsilon_{i,t}$  = Error term

 $\gamma_t$  = Year specific indicator?

# Thank you for attention

## Precipitation and temperature measures considered I

- Total precipitation over the rainy season
- Coefficient of variation of the precipitation during the rainy season
- Maximum length of dry spell during the rainy season (in number of days)
- Number of dry spells during the rainy season: a dry spell defined as 4 consecutive days without rain or more<sup>1</sup>
- Number of dry spells during the rainy season: a dry spell defined as 10 consecutive days without rain or more<sup>1</sup>
- Number of dry spells during the rainy season: a dry spell defined as 20 consecutive days without rain or more<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Threshold for a dry day was considered 1mm.



# Precipitation and temperature measures considered I

- Average temperature during the rainy season
- Standard deviation of temperature during the rainy season
- Cumulative degree days during the rainy season (excluding the days when maximum temperature above 30°C or below 10°C
- Number of heatwave days during the rainy season when max. temperature > 35°C
- Maximum daily precipitation to control for possible floods
- Sum of precipitation amount on days where precipitation is above 90<sup>th</sup> percentile of precip. of the whole period<sup>2</sup>
- Sum of precipitation amount on days where precipitation is above 95<sup>th</sup> percentile of precip. of the whole period<sup>3</sup>

 $<sup>^395^{</sup>th}$  percentile was calculated for the subsample of wet days, that is the days where precipitation is above or equal to 1mm.



 $<sup>^290^{</sup>th}$  percentile was calculated for the subsample of wet days, that is the days where precipitation is above or equal to 1mm.

### Precipitation and temperature measures considered I

- Sum of precipitation amount on days where precipitation is above 99<sup>th</sup> percentile of precip. of the whole period<sup>4</sup>
- Number of days where precipitation is above 90<sup>th</sup> percentile of precip. of the whole period<sup>2</sup>
- Number of days where precipitation is above 95<sup>th</sup> percentile of precip. of the whole period<sup>3</sup>
- Number of days where precipitation is above 99<sup>th</sup> percentile of precip. of the whole period<sup>4</sup>

<sup>&</sup>lt;sup>2</sup>90<sup>th</sup> percentile was calculated for the subsample of wet days, that is the days where precipitation is above or equal to 1mm.

 $<sup>^395^{</sup>th}$  percentile was calculated for the subsample of wet days, that is the days where precipitation is above or equal to 1mm.

 $<sup>^499^{</sup>th}$  percentile was calculated for the subsample of wet days, that is the days where precipitation is above or equal to 1mm.