Análisis programación paralela con MPI

Introducción

En el presente informe se compara algoritmos implementados de manera secuencial y paralela empleando MIPS. Se hace una comparación de tiempos, *speedup* y eficiencia.

Resultados

Matrix - Vector Multiplication

N° de procesos	Dimensiones de Matriz						
	1024	2048	4096	8192	16384		
1	0.003153	0.012754	0.049961	0.203809	0.813616		
2	0.001974	0.006330	0.026936	0.104198	0.387516		
4	0.001552	0.003372	0.013236	0.049211	0.230796		
8	0.000554	0.002174	0.014557	0.034458	0.167254		
16	0.000780	0.007270	0.022699	0.039639	0.426620		

Odd even sort

N° de procesos	Número de elementos						
	200	400	800	1600	3200		
1	0.000079	0.000253	0.000949	0.003851	0.014282		
2	0.000016	0.000022	0.000038	0.000075	0.000142		
4	0.000035	0.000059	0.000075	0.000066	0.000121		
8	0.000110	0.000154	0.000058	0.000090	0.000111		
16	-	0.003741	0.000163	0.001750	0.004117		

Speedups

Matrix - Vector Multiplication

N° de procesos	Dimensiones de Matriz					
	1024	2048	4096	8192	16384	
1	1.0	1.0	1.0	1.0	1.0	
2	1.59	2.01	1.85	1.95	2.09	
4	2.03	3.78	3.77	4.14	3.52	
8	5.69	5.86	3.43	5.91	4.86	
16	4.04	1.75	2.20	5.14	1.90	

Odd even sort

N° de procesos	Dimensiones de Matriz					
	200	400	800	1600	3200	
1	1.0	1.0	1.0	1.0	1.0	
2	4.93	11.5	24.9	51.34	100.57	
4	2.25	4.28	12.65	58.34	118.03	
8	0.71	1.64	16.36	42.78	128.66	
16	-	0.06	5.82	2.20	3.46	

Eficiencia

Matrix - Vector Multiplication

N° de procesos	Dimensiones de Matriz					
	1024	2048	4096	8192	16384	
1	1.0	1.0	1.0	1.0	1.0	
2	0.79	0.10	0.92	0.97	1.04	
4	0.50	0.09	0.94	1.03	0.88	
8	0.71	0.07	0.42	0.73	0.60	
16	0.25	0.01	0.13	0.32	0.11	

Odd even sort

N° de procesos	Dimensiones de Matriz					
	200	400	800	1600	3200	
1	1.0	1.0	1.0	1.0	1.0	
2	2.46	5.75	12.48	25.67	50.28	
4	0.56	1.07	3.16	14.58	29.50	
8	0.08	0.20	2.04	5.34	16.08	
16	-	0.004	0.36	0.13	0.21	

Conclusión

Definitivamente las implementaciónes paralelas usando MPI, es más rápida. Obviamente esto está directamente relacionado con el hardware que poseamos, sin embargo, la eficiencia tiene resultados mixtos por lo tanto. Se podría hacer un acercamiento de tareas diferentes paralelas para mejorar la eficiencia de hecho.