Algoritmos y Estructura de Datos I Mini intro al taller de programación con invariantes

23 de Abril de 2018

Repaso - Ciclos

Sintaxis de un ciclo:

```
while(B) {
   // cuerpo del ciclo
}
```

- ► El ciclo se repite continuamente mientras la guarda B se cumpla. Cada repetición es una iteración.
- ▶ El ciclo termina cuando no se cumpla la guarda.
- Al salir, en caso de que el ciclo terminara, el estado resultante es el mismo que el del final de la última iteración.

Repaso - Teorema del Invariante

Sea P_c la precondición del ciclo, Q_c la postcondición, B la guarda e I un invariante del ciclo. Si se cumple:

- P_C ⇒ I,
 {I ∧ B} cuerpo del ciclo {I},
 I ∧ ¬B ⇒ Q_C.
- entonces el ciclo es **parcialmente** correcto (si termina, termina en Q_c).

```
// Vale I
while(B){
   // Vale I && B
   Cuerpo del ciclo
   // Vale I
}
// Vale Qc
```

```
bool hayMayorACero(vector<int> v) {
  bool encontre = false;
  int i = 0;
  int n = v.size();
  while(i<n) {
    encontre = encontre || v[i] > 0;
    i = i+1;
  }
  return encontre;
}
Sea v = {-1,-2,3,-3,4}
```

Principio de Iteración

Iteración i encontre

FINAL DE ITERACIÓN

Iteración i encontre

```
bool hayMayorACero(vector<int> v) {
  bool encontre = false;
  int i = 0;
  int n = v.size();
  while(i<n) {
    encontre = encontre || v[i] > 0;
    i = i+1;
  }
  return encontre;
}
```

• Sea $v = \{-1, -2, 3, -3, 4\}$

Principio de Iteración

Iteración	i	encontre
1	0	false

Iteración	i	encontre
1	1	false

```
bool hayMayorACero(vector<int> v) {
  bool encontre = false;
  int i = 0;
  int n = v.size();
  while(i<n) {
    encontre = encontre || v[i] > 0;
    i = i+1;
  }
  return encontre;
}
Sea v = {-1,-2,3,-3,4}
```

PRINCIPIO DE ITERACIÓN

Iteración	i	encontre
1	0	false
2	1	false

Iteración	i	encontre
1	1	false
2	2	false

```
bool hayMayorACero(vector<int> v) {
  bool encontre = false;
  int i = 0;
  int n = v.size();
  while(i<n) {</pre>
    encontre = encontre || v[i] > 0;
    i = i+1;
  return encontre;
  \triangleright Sea v = \{-1,-2,3,-3,4\}
```

Principio de Iteración

Iteración	i	encontre
1	0	false
2	1	false
3	2	false

Iteración	i	encontre
1	1	false
2	2	false
3	3	true

```
bool hayMayorACero(vector<int> v) {
  bool encontre = false;
  int i = 0;
  int n = v.size();
  while(i<n) {
    encontre = encontre || v[i] > 0;
    i = i+1;
  }
  return encontre;
}
Sea v = {-1,-2,3,-3,4}
```

PRINCIPIO DE ITERACIÓN

Iteración	i	encontre
1	0	false
2	1	false
3	2	false
4	3	true

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true

```
bool hayMayorACero(vector<int> v) {
  bool encontre = false;
  int i = 0;
  int n = v.size();
  while(i<n) {
    encontre = encontre || v[i] > 0;
    i = i+1;
  }
  return encontre;
}
Sea v = {-1,-2,3,-3,4}
```

PRINCIPIO DE ITERACIÓN

Iteracióniencontre10false21false32false43true54true

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true
5	5	true

Principio de Iteración

Iteración	i	encontre
1	0	false
2	1	false
3	2	false
4	3	true
5	4	true

ES UN INVARIANTE?

▶ $I \equiv i \leq n$?

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true
5	5	true

Principio de Iteración

Iteración	i	encontre
1	0	false
2	1	false
3	2	false
4	3	true
5	4	true

FINAL DE ITERACIÓN

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true
5	5	true

- ► $I \equiv i \leq n$?
- ▶ $I \equiv i \leq n \land encontre = true \lor false$?

Principio de Iteración

Iteración	i	encontre
1	0	false
2	1	false
3	2	false
4	3	true
5	4	true
		•

FINAL DE ITERACIÓN

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true
5	5	true

- ► $I \equiv i \leq n$?
- ▶ $I \equiv i \leq n \land encontre = true \lor false$?
- ▶ $I \equiv 0 \le i \le n \land encontre = (\exists k : \mathbb{Z}) \ 0 \le k \le i \land v[k] > 0$?

Principio de Iteración

Iteración	i	encontre
1	0	false
2	1	false
3	2	false
4	3	true
5	4	true
•		true

FINAL DE ITERACIÓN

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true
5	5	true

- ► $I \equiv i \leq n$?
- ► $I \equiv i \leq n \land encontre = true \lor false$?
- ▶ $I \equiv 0 \le i \le n \land encontre = (\exists k : \mathbb{Z}) \ 0 \le k \le i \land v[k] > 0$?

Principio de Iteración

Iteración	i	encontre
1	0	false
2	1	false
3	2	false
4	3	true
5	4	true
		•

FINAL DE ITERACIÓN

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true
5	5	true

- $I \equiv i < n$?
- ► $I \equiv i \leq n \land encontre = true \lor false$?
- ► $I \equiv 0 \le i \le n \land encontre = (\exists k : \mathbb{Z}) \ 0 \le k \le i \land v[k] > 0 \ ?$
- ▶ $I \equiv 0 \le i \le n \land encontre = (\exists k : \mathbb{Z}) \ 0 \le k < i \land v[k] > 0$?

Principio de Iteración

Iteración	i	encontre
1	0	false
2	1	false
3	2	false
4	3	true
5	4	true

FINAL DE ITERACIÓN

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true
5	5	true

- $I \equiv i < n$?
- ► $I \equiv i \leq n \land encontre = true \lor false$?
- ▶ $I \equiv 0 \le i \le n \land encontre = (\exists k : \mathbb{Z}) \ 0 \le k \le i \land v[k] > 0 \ ?$

Principio de Iteración

Iteración	i	encontre
1	0	false
2	1	false
3	2	false
4	3	true
5	4	true

FINAL DE ITERACIÓN

Iteración	i	encontre
1	1	false
2	2	false
3	3	true
4	4	true
5	5	true

ES UN INVARIANTE?

- ► $I \equiv i \leq n$?
- ► $I \equiv i \leq n \land encontre = true \lor false$?
- ▶ $I \equiv 0 \le i \le n \land encontre = (\exists k : \mathbb{Z}) \ 0 \le k \le i \land v[k] > 0 \ ?$

 $\stackrel{l}{\smile}$ No todos nos van a servir para poder demostrar la correctitud parcial del ciclo! (en particular $I \land \neg B \Rightarrow Q_c$)

EJERCICIO

$$I \equiv 3 \le i \le n+1 \land suma = \sum_{k=3}^{i-1} \text{if } esPrimo(k) \text{ then } k \text{ else 0 fi}$$

EJERCICIO

```
I \equiv 3 \le i \le n+1 \land suma = \sum_{k=3}^{i-1} \text{if } esPrimo(k) \text{ then } k \text{ else } 0 \text{ fi}
```

```
int suma = 0;
int i = 3;
while(i <= n) {
   if (esPrimo(i)){
      suma = suma + i;
   }
   i++;
}
return suma;</pre>
```

VARIANTE 1

$$I\equiv 3\leq i\leq n+2 \ \land \ i \ mod \ 2=1 \ \land$$

$$suma=\sum_{k=3}^{i-2} \text{if } esPrimo(k) \text{ then } k \text{ else 0 fi}$$

Variante 1

```
I\equiv 3\leq i\leq n+2 \ \land \ i \ mod \ 2=1 \ \land suma=\sum_{k=3}^{i-2} \text{if } esPrimo(k) \text{ then } k \text{ else 0 fi}
```

```
int suma = 0;
int i = 3;
while(i <= n) {
   if (esPrimo(i)){
      suma = suma + i;
   }
   i = i + 2;
}
return suma;</pre>
```

Variante 2

$$I\equiv 1\leq i\leq n \ \land \ i \ mod \ 2=1 \ \land$$
 $suma=\sum_{k=i+2}^n ext{if } esPrimo(k) ext{ then } k ext{ else } 0 ext{ fi}$

Variante 2

```
I\equiv 1\leq i\leq n \ \land \ i \ mod \ 2=1 \ \land suma=\sum_{k=i+2}^n \text{if } esPrimo(k) \text{ then } k \text{ else } 0 \text{ fi}
```

```
int suma = 0;
int i = n;
if(i % 2 == 0 )
   i--;
while(i > 2) {
   if (esPrimo(i)){
      suma = suma + i;
   }
   i -= 2;
}
return suma;
```