

## basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

### NASIONALE SENIOR SERTIFIKAAT

**GRAAD 12** 

**TEGNIESE WETENSKAPPE V2** 

**NOVEMBER 2023** 

**PUNTE: 75** 

TYD: 1½ uur

Hierdie vraestel bestaan uit 9 bladsye en 4 gegewensblaaie.

#### **INSTRUKSIES EN INLIGTING**

- 1. Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit SES vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 8. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 9. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 10. Skryf netjies en leesbaar.

#### **VRAAG 1: MEERVOUDIGEKEUSE-VRAE**

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.5) in die ANTWOORDEBOEK neer, bv. 1.6 D.

1.1 Beskou die struktuurformule van die verbinding hieronder.

Watter EEN van die volgende beskryf die verbinding hierbo die beste?

|   | BESKRYWING | HOMOLOË REEKS |
|---|------------|---------------|
| Α | Versadig   | Alkene        |
| В | Onversadig | Alkane        |
| С | Versadig   | Alkane        |
| D | Onversadig | Alkyne        |

(2)

1.2 Beskou die organiese molekule hieronder. **1** en **2** verteenwoordig kragte.

Watter EEN van die volgende is korrek vir kragte 1 en 2?

|   | 1                 | 2              |
|---|-------------------|----------------|
| Α | Interatomies      | Intermolekulêr |
| В | Waterstofbindings | London         |
| С | Intermolekulêr    | Interatomies   |
| D | Dipool-dipool     | London         |

(2)

| 1.3 | Germanium word gedoteer ('doped') met 'n onsuiwerheid wat vyf valensie-<br>elektrone besit. Hoeveel vry elektrone is beskikbaar as ladingdraers? |                                                                     |                    |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------|--|--|--|--|--|
|     | Α                                                                                                                                                | 1                                                                   |                    |  |  |  |  |  |
|     | В                                                                                                                                                | 2                                                                   |                    |  |  |  |  |  |
|     | С                                                                                                                                                | 5                                                                   |                    |  |  |  |  |  |
|     | D                                                                                                                                                | 4                                                                   | (2)                |  |  |  |  |  |
| 1.4 | 'n Ele                                                                                                                                           | ktrochemiese sel word deur die selnotasie hieronder verteenwoordig. |                    |  |  |  |  |  |
|     |                                                                                                                                                  | Zn / Zn <sup>2+</sup> // Cu <sup>2+</sup> / Cu                      |                    |  |  |  |  |  |
|     | Watte                                                                                                                                            | er EEN van die volgende is die reduseermiddel?                      |                    |  |  |  |  |  |
|     | Α                                                                                                                                                | Cu                                                                  |                    |  |  |  |  |  |
|     | В                                                                                                                                                | Zn <sup>2+</sup>                                                    |                    |  |  |  |  |  |
|     | С                                                                                                                                                | Cu <sup>2+</sup>                                                    |                    |  |  |  |  |  |
|     | D                                                                                                                                                | Zn                                                                  | (2)                |  |  |  |  |  |
| 1.5 | In 'n e                                                                                                                                          | elektrolitiese sel sal die anione na die migreer en ondergaan.      |                    |  |  |  |  |  |
|     | Α                                                                                                                                                | katode; oksidasie                                                   |                    |  |  |  |  |  |
|     | В                                                                                                                                                | anode; oksidasie                                                    |                    |  |  |  |  |  |
|     | С                                                                                                                                                | katode; reduksie                                                    |                    |  |  |  |  |  |
|     | D                                                                                                                                                | anode; reduksie                                                     | (2)<br><b>[10]</b> |  |  |  |  |  |

#### VRAAG 2 (Begin op 'n nuwe bladsy.)

Die tabel hieronder verteenwoordig organiese molekule van verskillende homoloë reekse.

| A | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | В | $\begin{pmatrix} H & H \\ -L & -C \\ -L & -L \\ H & H \end{pmatrix}_n$ |
|---|-----------------------------------------------------------------|---|------------------------------------------------------------------------|
| С | H — O — H H — C — H — H — C — H — H — C — H — H                 | D | Heksan-1-ol                                                            |
| E | Propanoon                                                       | F | H H O<br>H—C—C—C<br>H H                                                |

- 2.1 Definieer die term *organiese molekuul*. (2)
- 2.2 Skryf die letter(s) neer wat die volgende verteenwoordig:
  - 2.2.1 Polimeer van eteen (1)
  - 2.2.2 Posisionele isomere (2)
  - 2.2.3 Alkaan (1)
- 2.3 Teken die STRUKTUURFORMULE van die volgende verbindings:
  - 2.3.1 **A** (2)
  - 2.3.2 **D** (2)
- 2.4 Verbindings **E** en **F** is funksionele isomere. Definieer die term *funksionele* isomere. (2)
- 2.5 Skryf die IUPAC-naam van verbinding **F** neer. (2)
- 2.6 Skryf die NAAM van die homoloë reeks van verbinding E neer. (1) [15]

Kopiereg voorbehou

(2)

#### VRAAG 3 (Begin op 'n nuwe bladsy.)

Die tabel hieronder toon die smeltpunte van verskillende organiese verbindings.

|   | VERBINDING  | SMELTPUNT (°C) |  |  |  |
|---|-------------|----------------|--|--|--|
| Α | Propaan     | -188           |  |  |  |
| В | Butaan      | -138           |  |  |  |
| С | Propan-1-ol | -127           |  |  |  |

- 3.1 Definieer die term smeltpunt.
- 3.2 Verduidelik die verskil in smeltpunte van verbindings **A** en **B** met verwysing na die TIPE INTERMOLEKULÊRE KRAGTE, MOLEKULÊRE STRUKTUUR en die STERKTE van intermolekulêre kragte. (3)
- 3.3 Leerders het die smeltpunte van verbindings **A** en **C** ondersoek.
  - 3.3.1 Is dit 'n regverdige vergelyking? Verduidelik die antwoord. (2)
  - 3.3.2 Formuleer 'n ondersoekende vraag. (2)
  - 3.3.3 Identifiseer die onafhanklike veranderlike. (1)
  - 3.3.4 Hoe sal die viskositeit van verbinding **A** met dié van verbinding **C** vergelyk? Skryf slegs LAER AS, HOËR AS of GELYK AAN neer. (1)
  - 3.3.5 Verduidelik die antwoord op VRAAG 3.3.4. (2) [13]

#### VRAAG 4 (Begin op 'n nuwe bladsy.)

Beskou die volgende reaksies met betrekking tot organiese verbindings.



4.1 Noem die TIPE reaksie wat verteenwoordig word deur:

- 4.2 Skryf 'n gebalanseerde chemiese vergelyking vir reaksie **1** neer deur MOLEKULÊRE FORMULES te gebruik. (3)
- 4.3 Skryf die IUPAC-NAAM of FORMULE van verbinding **X** neer. (2)
- 4.4 'n Alkohol vorm wanneer verbinding **X** met 'n oormaat water reageer.
  - Skryf EEN reaksietoestand neer, behalwe oormaat water. (1)
- 4.5 Definieer ELK van die volgende terme:

4.5.2 Polimerisasie (2) [12]

(2) **[13]** 

#### VRAAG 5 (Begin op 'n nuwe bladsy.)

Die diagram hieronder toon 'n elektrolitiese sel wat by 'n elektroplateringsmaatskappy gebruik word om 'n ysterstaaf met silwer te bedek.



- 5.1 Definieer die term *elektroliet*. (2)
- 5.2 Skryf die energie-omskakeling neer wat in hierdie sel plaasvind. (2)
- 5.3 Is die reaksie wat in die sel plaasvind spontaan of niespontaan? Gee 'n rede vir die antwoord. (2)
- 5.4 Skryf neer die:
  - 5.4.1 Tipe reaksie wat op die ysterstaaf plaasvind (1)
  - 5.4.2 Halfreaksie wat by elektrode **X** plaasvind (2)
- 5.5 Behalwe die verbetering in voorkoms, skryf TWEE ander redes neer waarom die ysterstaaf met silwer geëlektroplateer word. (2)
- 5.6 Die vervanging van petroleumdiesel met biodiesel word al hoe belangriker in Suid-Afrika.
  - Noem TWEE voordele van die gebruik van biodiesel as 'n alternatiewe energiebron.

#### VRAAG 6 (Begin op 'n nuwe bladsy.)

'n Leerder berei 'n elektrochemiese sel voor deur silwer en koper as elektrodes te gebruik. Die MINIMUM potensiaalverskil wat benodig word om die gloeilamp te laat brand, is 2,5 V. Die sel funksioneer onder standaardtoestande.



- 6.1 Definieer die term *oksidasie.* (2)
- 6.2 Identifiseer die negatiewe elektrode. (1)
- 6.3 In watter rigting sal die elektrone in die eksterne stroombaan vloei? Kies uit **Ag na Cu** of **Cu na Ag**. (1)
- 6.4 Watter waarneming word ná 'n ruk by die silwer-elektrode gemaak? (1)
- 6.5 Skryf die selnotasie vir hierdie sel neer. (3)
- 6.6 Gebruik 'n berekening om te bepaal of die gloeilamp sal brand of nie. (4)

  [12]

TOTAAL: 75

# DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 VRAESTEL 2

#### TABLE 1/TABEL 1: PHYSICAL CONSTANTS/FISIESE KONSTANTES

| NAME/NAAM                                 | SYMBOL/SIMBOOL                   | VALUE/WAARDE              |
|-------------------------------------------|----------------------------------|---------------------------|
| Standard pressure Standaarddruk           | $p^{\scriptscriptstyle{\theta}}$ | 1,01 x 10 <sup>5</sup> Pa |
| Standard temperature Standaardtemperatuur | Т                                | 0 °C/273 K                |

#### TABLE 2/TABEL 2: FORMULAE/FORMULES

| Emf/Emk | $E^{\theta}$ cell = $E^{\theta}$ cathode - $E^{\theta}$ anode / $E^{\theta}$ sel = $E^{\theta}$ katode - $E^{\theta}$ anode                                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | or/of                                                                                                                                                         |
|         | $E^{\theta}$ cell = $E^{\theta}$ reduction - $E^{\theta}$ oxidation / $E^{\theta}$ sel = $E^{\theta}$ reduksie - $E^{\theta}$ oksidasie                       |
|         | or/of                                                                                                                                                         |
|         | $E^{\theta}$ cell = $E^{\theta}$ oxidising agent - $E^{\theta}$ reducing agent / $E^{\theta}$ sel = $E^{\theta}$ oksideermiddel - $E^{\theta}$ reduseermiddel |

## TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

| 2,1   | 1<br>(l)<br>1<br>H | ]   | 2<br>(II)       |     | 3               |     | 4               | 5<br>KEY        | 6<br>/SLEUT         | 7<br>EL         |                       | 9<br>: numbe<br><i>mgetal</i> |                    | 11                 | 12              | 13<br>(III)             | 14<br>(IV)              | 15<br>(V)         | 16<br>(VI)        | 17<br>(VII)           | 18<br>(VIII)<br>2<br>He |
|-------|--------------------|-----|-----------------|-----|-----------------|-----|-----------------|-----------------|---------------------|-----------------|-----------------------|-------------------------------|--------------------|--------------------|-----------------|-------------------------|-------------------------|-------------------|-------------------|-----------------------|-------------------------|
| 1,0 2 | 1<br>3<br>Li<br>7  | 1,5 | 4<br>Be<br>9    |     |                 |     |                 |                 | lectrone<br>ektrone |                 | .→ <mark>c</mark> , ( | 9<br>Cu +                     | Symbol<br>Simboo   |                    |                 | 5<br>0°7 B<br>11        | 6<br>5, C<br>12         | 7<br>တို့ N<br>14 | 8<br>8<br>0<br>16 | 0, Ł<br>9             | 4<br>10<br>Ne<br>20     |
| 6,0   | 11<br>Na<br>23     | 1,2 | 12<br>Mg<br>24  |     |                 |     |                 |                 |                     |                 |                       |                               | nic mass<br>mmassa |                    |                 | 13<br>- Al<br>27        | ω, Si<br>28             | 15<br>P<br>31     | 32                | ວ 17<br>ຕິ Cℓ<br>35,5 | 18<br>Ar<br>40          |
| 8,0   | 19<br>K<br>39      | 1,0 | 20<br>Ca<br>40  | 1,3 | 21<br>Sc<br>45  | 1,5 | 22<br>Ti<br>48  | 9,1<br>7<br>51  | 9, Cr<br>52         | 25<br>Mn<br>55  | 8, Fe<br>56           | 8, Co<br>59                   | 8, Ni<br>59        | 63,5<br>63,5       | 9,1<br>2n<br>65 | 9 <sup>+</sup> Ga<br>70 | 8 <sup>-</sup> Ge<br>73 | 33<br>0, As<br>75 | 7, Se 79          | 35<br>Br<br>80        | 36<br>Kr<br>84          |
| 8,0   | 37<br>Rb<br>86     | 1,0 | 38<br>Sr<br>88  | 1,2 | 39<br>Y<br>89   | 1,4 | 40<br>Zr<br>91  | 41<br>Nb<br>92  | ω, Mo<br>96         | 6. Tc           | 7, Ru<br>101          | 45<br>C, Rh<br>103            | 46<br>7, Pd<br>106 | 47<br>6, Ag<br>108 | 48<br>Cd<br>112 | 49<br>In<br>115         | 50<br>% Sn<br>119       |                   | 52<br>7 Te<br>128 | 53<br>5, I<br>127     | 54<br>Xe<br>131         |
| 7,0   | 55<br>Cs<br>133    | 6,0 | 56<br>Ba<br>137 |     | 57<br>La<br>139 | 1,6 | 72<br>Hf<br>179 | 73<br>Ta<br>181 | W                   | 75<br>Re<br>186 | 76<br>Os<br>190       | 77<br>Ir<br>192               | 78<br>Pt           | 79<br>Au<br>197    | 80<br>Hg<br>201 | 81                      | ∞ 82<br>Pb<br>207       | 83                | 84<br>0'7<br>Po   | 85<br>S, At           | 86<br>Rn                |
| 2'0   | 87<br>Fr           | 6,0 | 88<br>Ra<br>226 |     | 89<br>Ac        |     |                 | 58              | 59                  | 60<br>Nd        | 61                    | 62                            | 63                 | 64                 | 65<br>Th        | 66                      | 67                      | 68                | 69<br>T           | 70<br>Yb              | 71                      |
|       |                    |     |                 |     |                 |     |                 | 90              | Pr<br>141<br>91     | 144<br>92       | Pm<br>93              | 94                            | 152<br>95          | 96                 | 159<br>97       | 163<br>98               | Ho<br>165<br>99         | 167<br>100        | 169<br>101        | 173<br>102            | Lu<br>175<br>103        |
|       |                    |     |                 |     |                 |     |                 | Th<br>232       | Pa                  | U<br>238        | Np                    | Pu                            | Am                 | Cm                 | Bk              | Cf                      | Es                      | Fm                | Md                | No                    | Lr                      |

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

| Half-reactions                                                           | E <sup>θ</sup> (V)   |                                       |                  |
|--------------------------------------------------------------------------|----------------------|---------------------------------------|------------------|
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                     | $\rightleftharpoons$ | 2F <sup>-</sup>                       | + 2,87           |
| Co <sup>3+</sup> + e <sup>-</sup>                                        | $\rightleftharpoons$ | Co <sup>2+</sup>                      | + 1,81           |
| $H_2O_2 + 2H^+ + 2e^-$                                                   | $\rightleftharpoons$ | 2H <sub>2</sub> O                     | +1,77            |
| MnO <sub>4</sub> + 8H <sup>+</sup> + 5e <sup>-</sup>                     | $\rightleftharpoons$ | $Mn^{2+} + 4H_2O$                     | + 1,51           |
| $C\ell_2(g) + 2e^-$                                                      | $\rightleftharpoons$ | 2Cℓ <sup>-</sup>                      | + 1,36           |
| $\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6\text{e}^-$                | $\rightleftharpoons$ | $2Cr^{3+} + 7H_2O$                    | + 1,33           |
| $O_2(g) + 4H^+ + 4e^-$                                                   | $\rightleftharpoons$ | 2H <sub>2</sub> O                     | + 1,23           |
| $MnO_2 + 4H^+ + 2e^-$                                                    | $\rightleftharpoons$ | $Mn^{2+} + 2H_2O$                     | + 1,23           |
| Pt <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Pt                                    | + 1,20           |
| $Br_2(\ell) + 2e^-$                                                      | $\rightleftharpoons$ | 2Br <sup>-</sup>                      | + 1,07           |
| $NO_3^- + 4H^+ + 3e^-$                                                   | $\rightleftharpoons$ | $NO(g) + 2H_2O$                       | + 0,96           |
| Hg <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Hg(ℓ)                                 | + 0,85           |
| Ag <sup>+</sup> + e <sup>-</sup>                                         | $\rightleftharpoons$ | Ag                                    | + 0,80           |
| NO <sub>3</sub> + 2H <sup>+</sup> + e <sup>-</sup>                       | $\rightleftharpoons$ | $NO_2(g) + H_2O$                      | + 0,80           |
| Fe <sup>3+</sup> + e <sup>-</sup>                                        | $\rightleftharpoons$ | Fe <sup>2+</sup>                      | + 0,77           |
| $O_2(g) + 2H^+ + 2e^-$                                                   | $\rightleftharpoons$ | $H_2O_2$                              | + 0,68           |
| l <sub>2</sub> + 2e <sup>-</sup>                                         | $\rightleftharpoons$ | 2I <sup>-</sup>                       | + 0,54           |
| Cu <sup>+</sup> + e <sup>-</sup>                                         | $\rightleftharpoons$ | Cu                                    | + 0,52           |
| $SO_2 + 4H^+ + 4e^-$                                                     | $\rightleftharpoons$ | S + 2H2O                              | + 0,45           |
| $2H_2O + O_2 + 4e^-$                                                     | $\rightleftharpoons$ | 4OH⁻                                  | + 0,40           |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Cu                                    | + 0,34           |
| SO <sub>4</sub> <sup>2-</sup> + 4H <sup>+</sup> + 2e <sup>-</sup>        | =                    | $SO_2(g) + 2H_2O$                     | + 0,17           |
| Cu <sup>2+</sup> + e <sup>-</sup>                                        | $\rightleftharpoons$ | Cu⁺                                   | + 0,16           |
| Sn <sup>4+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Sn <sup>2+</sup>                      | + 0,15           |
| S + 2H <sup>+</sup> + 2e <sup>-</sup>                                    | $\rightleftharpoons$ | $H_2S(g)$                             | + 0,14           |
| 2H <sup>+</sup> + 2e <sup>-</sup>                                        | $\rightleftharpoons$ | H₂(g)                                 | 0,00             |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                       | $\rightleftharpoons$ | Fe                                    | - 0,06           |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Pb                                    | - 0,13           |
| Sn <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Sn                                    | - 0,14           |
| Ni <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Ni                                    | - 0,27           |
| Co <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Со                                    | - 0,28           |
| Cd <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Cd                                    | - 0,40           |
| Cr <sup>3+</sup> + e <sup>-</sup>                                        | $\rightleftharpoons$ | Cr <sup>2+</sup>                      | - 0,41           |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                       | $\rightleftharpoons$ | Fe                                    | - 0,44           |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                       | =                    | Cr                                    | - 0,74           |
| Zn <sup>2+</sup> + 2e <sup>-</sup>                                       | =                    | Zn                                    | - 0,76           |
| 2H <sub>2</sub> O + 2e <sup>-</sup>                                      | =                    | H <sub>2</sub> (g) + 2OH <sup>-</sup> | - 0,83           |
| Cr <sup>2+</sup> + 2e <sup>-</sup><br>Mn <sup>2+</sup> + 2e <sup>-</sup> | =                    | Cr                                    | - 0,91           |
| Mn + 2e                                                                  | =                    | Mn                                    | - 1,18           |
| Al <sup>3+</sup> + 3e <sup>-</sup><br>Mg <sup>2+</sup> + 2e <sup>-</sup> | <b>=</b>             | Al<br>Ma                              | - 1,66           |
| Ng +∠e<br>Na⁺+e⁻                                                         | <del>=</del>         | Mg<br>Na                              | - 2,36           |
| Na + e<br>Ca <sup>2+</sup> + 2e <sup>-</sup>                             | <b>1 1</b>           | Ca                                    | - 2,71           |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                       | <b>=</b><br><b>≠</b> | Sr                                    | - 2,87           |
| Ba <sup>2+</sup> + 2e <sup>-</sup>                                       | <del>-</del>         | Ba                                    | - 2,89<br>- 2,90 |
| Cs <sup>+</sup> + e <sup>-</sup>                                         | <del>-</del>         | Cs Cs                                 | - 2,90<br>- 2,92 |
| K <sup>+</sup> + e <sup>-</sup>                                          | 7                    | K                                     | - 2,92<br>- 2,93 |
| Li <sup>+</sup> + e <sup>-</sup>                                         | <del>+</del>         | Li                                    | - 3,05           |

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

| Half-reactions/ <i>Halfreaksies</i> Ε <sup>θ</sup> (V)                                      |                      |                           |                  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|----------------------|---------------------------|------------------|--|--|--|--|--|
| Li <sup>+</sup> + e <sup>-</sup>                                                            | =                    | Li                        | - 3,05           |  |  |  |  |  |
| K <sup>+</sup> + e <sup>-</sup>                                                             | `<br><b>⇌</b>        | K                         | - 2,93           |  |  |  |  |  |
| Cs <sup>+</sup> + e <sup>-</sup>                                                            | ·<br><b>⇌</b>        | Cs                        | - 2,92           |  |  |  |  |  |
| Ba <sup>2+</sup> + 2e <sup>-</sup>                                                          | <b>≓</b>             | Ва                        | - 2,90           |  |  |  |  |  |
| Sr <sup>2+</sup> + 2e <sup>-</sup>                                                          | ÷                    | Sr                        | - 2,89           |  |  |  |  |  |
| Ca <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Ca                        | - 2,87           |  |  |  |  |  |
| Na <sup>+</sup> + e <sup>-</sup>                                                            | $\rightleftharpoons$ | Na                        | - 2,71           |  |  |  |  |  |
| Mg <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Mg                        | <b>- 2,36</b>    |  |  |  |  |  |
| Al <sup>3+</sup> + 3e <sup>-</sup>                                                          | $\rightleftharpoons$ | Αl                        | <b>– 1,66</b>    |  |  |  |  |  |
| Mn <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Mn                        | - 1,18           |  |  |  |  |  |
| Cr <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Cr                        | - 0,91           |  |  |  |  |  |
| 2H <sub>2</sub> O + 2e <sup>-</sup>                                                         | $\rightleftharpoons$ | $H_2(g) + 2OH^-$          | - 0,83           |  |  |  |  |  |
| Zn <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Zn                        | -0,76            |  |  |  |  |  |
| Cr <sup>3+</sup> + 3e <sup>-</sup>                                                          | $\rightleftharpoons$ | Cr                        | - 0,74           |  |  |  |  |  |
| Fe <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Fe                        | -0,44            |  |  |  |  |  |
| Cr <sup>3+</sup> + e <sup>-</sup>                                                           | $\rightleftharpoons$ | Cr <sup>2+</sup>          | - 0,41           |  |  |  |  |  |
| Cd <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Cd                        | - 0,40           |  |  |  |  |  |
| Co <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Co                        | - 0,28           |  |  |  |  |  |
| Ni <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Ni                        | - 0,27           |  |  |  |  |  |
| Sn <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Sn                        | - 0,14           |  |  |  |  |  |
| Pb <sup>2+</sup> + 2e <sup>-</sup>                                                          | $\rightleftharpoons$ | Pb                        | - 0,13           |  |  |  |  |  |
| Fe <sup>3+</sup> + 3e <sup>-</sup>                                                          | =                    | Fe                        | - 0,06           |  |  |  |  |  |
| 2H <sup>+</sup> + 2e <sup>-</sup>                                                           | <del>=</del>         | H <sub>2</sub> (g)        | 0,00             |  |  |  |  |  |
| S + 2H <sup>+</sup> + 2e <sup>-</sup>                                                       | =                    | $H_2S(g)$                 | + 0,14           |  |  |  |  |  |
| Sn <sup>4+</sup> + 2e <sup>-</sup>                                                          | =                    | Sn <sup>2+</sup>          | + 0,15           |  |  |  |  |  |
| Cu <sup>2+</sup> + e <sup>-</sup>                                                           | =                    | Cu <sup>+</sup>           | + 0,16           |  |  |  |  |  |
| SO <sub>4</sub> + 4H' + 2e <sup>-</sup>                                                     | =                    | $SO_2(g) + 2H_2O$         | + 0,17           |  |  |  |  |  |
| Cu <sup>2+</sup> + 2e <sup>-</sup>                                                          | =                    | Cu                        | + 0,34           |  |  |  |  |  |
| $2H_2O + O_2 + 4e^-$                                                                        | <i>–</i>             | 4OH⁻                      | + 0,40           |  |  |  |  |  |
| SO <sub>2</sub> + 4H <sup>+</sup> + 4e <sup>-</sup>                                         | =                    | S + 2H <sub>2</sub> O     | + 0,45           |  |  |  |  |  |
| Cu <sup>+</sup> + e <sup>-</sup><br>I <sub>2</sub> + 2e <sup>-</sup>                        | =                    | Cu<br>2l <sup>-</sup>     | + 0,52           |  |  |  |  |  |
|                                                                                             | <b>#</b>             | $H_2O_2$                  | + 0,54<br>+ 0,68 |  |  |  |  |  |
| O <sub>2</sub> (g) + 2H <sup>+</sup> + 2e <sup>-</sup><br>Fe <sup>3+</sup> + e <sup>-</sup> | <del>+</del>         | Fe <sup>2+</sup>          | + 0,00           |  |  |  |  |  |
|                                                                                             | 7                    | $NO_2(g) + H_2O$          | + 0,77           |  |  |  |  |  |
| $NO_{3}^{-} + 2H^{+} + e^{-}$<br>$Ag^{+} + e^{-}$                                           |                      |                           | + 0,80           |  |  |  |  |  |
| Hg <sup>2+</sup> + 2e <sup>-</sup>                                                          | <b>+</b>             | Ag<br>Hg(ℓ)               | + 0,85           |  |  |  |  |  |
| _                                                                                           | +                    | NO(g) + 2H <sub>2</sub> O | + 0,96           |  |  |  |  |  |
| $NO_3 + 4H^+ + 3e^-$<br>$Br_2(\ell) + 2e^-$                                                 | 7                    | 2Br <sup>-</sup>          | + 1,07           |  |  |  |  |  |
| Pt <sup>2+</sup> + 2 e <sup>-</sup>                                                         | <del>+</del>         | Pt                        | + 1,07           |  |  |  |  |  |
| MnO <sub>2</sub> + 4H <sup>+</sup> + 2e <sup>-</sup>                                        | <del>+</del>         |                           | + 1,23           |  |  |  |  |  |
| $O_2(g) + 4H^+ + 4e^-$                                                                      | `<br><b>≓</b>        |                           | + 1,23           |  |  |  |  |  |
| $Cr_2O_7^{2-} + 14H^+ + 6e^-$                                                               | ·<br><b>⇌</b>        | 3+                        | + 1,33           |  |  |  |  |  |
| $C\ell_2(g) + 2e^-$                                                                         | <b>≓</b>             | _                         | + 1,36           |  |  |  |  |  |
| MnO <sub>4</sub> + 8H <sup>+</sup> + 5e <sup>-</sup>                                        | ·<br><b>≓</b>        | 2+                        | + 1,51           |  |  |  |  |  |
| $H_2O_2 + 2H^+ + 2e^-$                                                                      | $\rightleftharpoons$ | 2H₂O                      | +1,77            |  |  |  |  |  |
| Co <sup>3+</sup> + e <sup>-</sup>                                                           | $\rightleftharpoons$ | Co <sup>2+</sup>          | + 1,81           |  |  |  |  |  |
| F <sub>2</sub> (g) + 2e <sup>-</sup>                                                        | =                    | 2F <sup>-</sup>           | + 2,87           |  |  |  |  |  |

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels