11.4 An 8-Mb DC-Current-Free Binary-to-8b Precision ReRAM Nonvolatile Computing-in-Memory Macro using Time-Space-Readout with 1286.4 - 21.6TOPS/W for Edge-Al Devices

Je-Min Hung¹, Yen-Hsiang Huang¹, Sheng-Po Huang¹, Fu-Chun Chang¹, Tai-Hao Wen¹, Chin-I Su², Win-San Khwa², Chung-Chuan Lo¹, Ren-Shuo Liu¹, Chih-Cheng Hsieh¹, Kea-Tiong Tang¹, Yu-Der Chih², Tsung-Yung Jonathan Chang², Meng-Fan Chang^{1,2}

¹National Tsing Hua University, Hsinchu, Taiwan ²TSMC, Hsinchu, Taiwan

Battery-powered edge-Al devices require nonvolatile computing-in-memory (nvCIM) macros for nonvolatile data storage and multiply-and-accumulate (MAC) operations. High inference accuracy requires MAC operations with high input (IN), weight (W), and output (OUT) precisions. A high energy efficiency (EF_{MAC}) and a short computing latency (t_{AC}) are also required. Most existing silicon-verified nvCIM macros use current-mode signal generation; using current [1-3] or hybrid current-voltage readout schemes [4-5] for multibit MAC operations to compensate for the small BL-voltage swing and signal margin resulting from the low read-disturb-free voltage (V_{RD}).

As shown in Fig. 11.4.1, current-mode nvCIMs face various challenges: (1) a limited EF_{MAC} due to the use of DC current in the NVM cell array and peripheral readout circuits; (2) a limited output precision and ratio (R_{OUT} : actual output precision/full-precision) due to the limited signal margin imposed by a low V_{RD} ; (3) a long computing latency per output bit ($t_{AC-OUT} = t_{AC}/OUT$ -precision) imposed by the analog signal development time in large cell arrays, and/or multi-phase small-signal readout by the ADC. These challenges are addressed by developing: (1) a DC-current-free time-space based in-memory computing (DCFTS-IMC) for in-array signal generation and peripheral readout operations to eliminate the need for a DC-current and to reduce power consumption; (2) an integration-based voltage-to-time converter (IVTC) that increases the time-step signal margin to tolerate a higher number of accumulations and enhance readout accuracy; (3) a hidden-latency time-to-MACV conversion (HLTMC) scheme to improve t_{AC-OUT} by hiding multibit MAC readout latency within the development time of the analog MAC signal. The proposed 22nm 8Mb ReRAM nvCIM macro achieves a high memory capacity with a 0.76ns/b t_{AC-OUT} and a 1286.4 – 21.6TOPS/W EF_{MAC} from binary to 8b IN - 8b W - 19b OUT; a 24b output combines outputs from 32 channels in the same macro.

Each 256kb memory bank performs 8b IN - 8b W MAC operations: using 8-channel accumulation with 2's-complement 8b-weight data stored in 8 SLC ReRAM cells across \$\tilde{x}\$ 8 columns on the same row (WL). Each set of columns comprises memory cells, column multiplexors (YMUX), a BL pre-charge circuit, an IVTC, and a HLTMC. A reconfigurable \$\tilde{x}\$ digital shift-and-add (DSA) circuit is shared by the eight columns.

Figure 11.4.2 shows the signal generation of partial MAC values (pMACV) using the proposed DCFTS-IMC scheme. Each clock cycle includes a pipelined bitwise-input computing phase (BIC-P) and a DSA phase (DSA-P), completing N iterations for an N-tibit input. For example, an 8b-input (IN[7:0]) requires at most 8 WL pulses across 8 short BIC-Ps, each of which includes 3 sub-phases (SP-0~SP-2).

In SP-0, all peripheral circuits are rapidly reset to the initial state. During SP-1, the selected BL is pre-charged to a target voltage (V_{BLP}), not exceeding V_{RD} . During SP-2, 8 WLs are activated for the 8 corresponding bitwise-inputs with a given place-value: e.g., 8 MSB, IN $_0$ [7] - IN $_7$ [7], for BIC-P1. The cell-current (I_{CELL}) is the result of multiplying the WL (IN) by the cell-value (W), as in previous nvCIMs. The BL current (I_{BL}), which is the sum of 8 I_{CELL} values for 1b IN × 1b W with 8 accumulations, discharges the BL parasitic capacitance (I_{BL}) by varying the rate at which the BL voltage (I_{BL}) reduces in accordance to pMACV. A larger I_{BL} indicates that a larger number of low-resistance cells (LRS) are accessed (i.e., higher pMACV) and I_{BL} discharge rate is steeper, which reduce the BL discharge latency (I_{PMACV}) to meet the target BL voltage (I_{BL}). A smaller I_{BL} indicates a lower pMACV and a more gradual I_{BL} discharge rate, resulting in a longer I_{PMACV} .

Figure 11.4.3 illustrates the operation of the proposed IVTC, which converts the V_{DL} (V_{BL} selected by YMUX) discharge rate into a delay-time rising signal (DTS), while increasing the time-step between DTSs of neighboring pMACV pairs. The IVTC comprises of a coupling capacitor (C_0), a sampling capacitor (C_1), an integration capacitor (C_2), four initial transistors (N_0 , N_1 , N_3 , P_1), one PMOS (P_0) as an integration current source, four switches (SW₁-SW₄), one feedback transistor (P_2), one threshold-trigger NMOS (P_2), and one output inverter (INV₁).

Note: IVTC performs three tasks: circuit initialization during SP-0, V_{t-P0} sampling during SP-1, and integration with launch during SP-2. During SP-0, SW₁ is on and resets node DC to V_{BLP}, N₀, N₁, and SW₃ are on and reset SAMPLE and SENSE nodes to 0V, and P1 is on and resets node OUTB to V_{DD}. During SP-1, SW₃ is on and SW₄ is off to store the

threshold voltage of P_0 ($V_{SAMPLE} = V_{DD} - V_{t\text{-}PO}$) on C_1 ; thereby, suppressing the V_t induced offset variation. During SP-2, SW_1 and SW_3 are off, SW_2 and SW_4 are on, and the WL is on to discharge the selected BL and data lines (DL) via ReRAM cells; ΔV_{DL} ($V_{BLP} - V_{DL}$) is continuously AC coupled to the SAMPLE node via C_0 . The larger ΔV_{DL} swing can increase the integration current (I_{charge}) provided by P_0 ; I_{charge} charges C_2 , causing the SENSE node voltage (V_{SENSE}) to rise. When the charge integrated on C_2 is high and V_{SENSE} exceeds the threshold voltage of N_2 ($V_{t\text{-}N2}$), then OUTB is pulled down to launch a rising signal to IVTCO, while P_2 is switched on to pull-up the SENSE node. A larger transistor is used for N_2 to suppress its $V_{t\text{-}N2}$ variation, and the N_2 - P_2 feedback mechanism reduces the transient current and the energy consumed by INV1. The IVTCO time-step (Δt_{IVTC}) is kept larger than Δt_{BL} by converting the small DL voltage swing to a larger SENSE voltage, where the amplification ratio ($\Delta t_{\text{IVTC}}/\Delta t_{BL}$) is determined by the size of P_0 and the C_2 matching capacitance.

Figure 11.4.4 illustrates HLTMC operation: it converts the IVTCO into digital pMACV[2:0] values, while performing the time-space readout concurrently to the analog MACV development time. Each HLTMC comprises of a time-to-digital converter (TDC) and a timing calibration table (TCT). The number of TDC cells can be increased beyond 16 if higher time-space resolution is required. HLTMC is enabled by the WL. Each TDC takes 16 reference timings (t_{REF} [15:0]) as inputs to detect the timing of the rising IVTCO signals and thereby generates 16b time-space codes (pMACV-TC[15:0]): pMACV-TC[m] is 0 if $t_{IVTCO} > t_{REF-m}$ and is 1 otherwise. pMACV-TC[15:0] is then mapped by TCT entries to generate a 3b pMACV[2:0] output. Note that TCT compensates for the near-far WL effects and for process variation in each readout path. In each DSA-P, the 1st-level of DSA (DSA-L1) combines pMACV[2:0] from HLTMC[0] to HLTMC[7] to generate an 11b pMACV value (DSA_{L1}[10:0] = IN₀[7]·W₀[7:0] + IN₁[7]·W₁[7:0] + ... + IN₇[7]·W₇[7:0]). The 2^{mC_1} level DSA (DSA-L2) combines DSA_{L2}[18:0] = IN₀[7:0]·W₀[7:0] + IN₁[7:0]·W₁[7:0] + ... + IN₇[7:0]·W₁[7:0]).

Figure 11.4.5 summarizes the performance of the proposed schemes. Using 8b IN - 8b W MAC operations, the proposed DCFTS-IMC scheme reduces the array's energy consumption (E_{ARRAY}) by 2.06 - 16.5× compared to a current-mode signal-generation scheme with a varying number of activated WLs (accessed cells). Using the ResNet-20 model trained for the CIFAR-100 dataset shows that the DCFTS -IMC reduces E_{ARRAY} by 5.15× on average. Using the proposed IVTC, Δt_{IVTC} provides a 1.58× signal margin enhancement, than that of Δt_{BL} The proposed HLTMC scheme improves $t_{\text{AC-OUT}}$ by 1.36 - 8.3×, compared to previous work using conventional current/voltage mode readout schemes.

Figure 11.4.6 presents the measurement results of proposed macro, which is fabricated using foundry provided ReRAM devices. The measured waveforms confirm that each BIC-P is 1.59ns using a 0.8V supply for a 1b IN - 1b W - 3b OUT pMACV. In 8b IN - 8bW - 19b OUT operation, the Shmoo results indicate a 14.4ns $t_{\rm AC}$ using a 0.8V supply for 8b precision using 8 BIC-Ps. Using 8 accumulations the average $\rm EF_{MAC}$ is 21.6TOPS/W and the peak $\rm EF_{MAC}$ is 28.74TOPS/W using a 0.8V supply with a ResNet-20 model applied to the CIFAR-100 dataset; using 16 accumulations the peak $\rm EF_{MAC}$ is 61.84TOPS/W using a 0.75V supply with a 90% input sparsity. In binary operation, the peak energy efficiency is 1.28POPS/W using 16 accumulations and a 90% input sparsity. Compared to previous work, the proposed scheme improves FoM ($\rm EF_{MAC}\times input\text{-precision}\times weight\text{-precision}\times \text{output\text{-ratio}}\times \text{capacity})$ by 276.7 - 6.18× for binary to 8b IN - 8b W configurations. The system level inference accuracy is shown to achieve 91.74% and 67.11% when applied to CIFAR-10 and CIFAR-100 datasets using a ResNet-20 model with 8b IN - 8b W precision. Figure 11.4.7 presents a summary table and die photo of the proposed macro.

Acknowledgement:

The authors would like to thank MOST-Taiwan, TSRI, NTHU-TSMC JDP for financial and manufacturing support.

References:

[1] C.-X. Xue et al., "A 1Mb Multibit ReRAM Computing-In-Memory Macro with 14.6ns Parallel MAC Computing Time for CNN Based Al Edge Processors," *ISSCC*, pp. 388-389, 2019.

[2] Q. Liu et al., "A Fully Integrated Analog ReRAM Based 78.4TOPS/W Compute-In-Memory Chip with Fully Parallel MAC Computing," ISSCC, pp. 500-501, 2020.

[3] C.-X. Xue et al., "A 22nm 2Mb ReRAM Compute-in-Memory Macro with 121-28TOPS/W for Multibit MAC Computing for Tiny Al Edge Devices," *ISSCC*, pp. 244-245, 2020.

[4] C.-X. Xue et al., "A 22nm 4Mb 8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7TOPS/W for Tiny Al Edge Devices," *ISSCC*, pp. 245-247, 2021.
[5] J.-H. Yoon et al., "A 40nm 64Kb 56.67TOPS/W Read-Disturb-Tolerant Compute-in-

Memory/Digital RRAM Macro with Active-Feedback-Based Read and In-Situ Write Verification," *ISSCC*, pp. 404-406, 2021.

ISSCC 2022 PAPER CONTINUATIONS

Chip Summary		
Technology	22nm CMOS Logic Process	
ReRAM	Foundry 1T1R SLC ReRAM	
Testchip Size	6mm x 3mm (Inc.IO pad and testmodes)	
Capacity	8Mb (32 Sub-banks)	
Sub-bank	1024 rows x 256 columns	
Supply Voltage	0.8V	
Input precision	1 bit ~ 8 bits	
Weight precision	1 bit ~ 8 bits	
Output precision	3 bits ~ 19 bits (24 bits for combing 32 banks output)	
Performance		
CIM-mode Computing Latency (ns)	8bIN-8bW-19bOUT	14.4*1
	1bIN-1bW-3bOUT	3.2*1
Throughput (GOPS)	8bIN-8bW-19bOUT	142.2*1
	1bIN-1bW-3bOUT	5120*1
Energy Efficiency (TOPS/W)	8bIN-8bW-19bOUT	21.6*1 ~ 61.8*2
	1bIN-1bW-3bOUT	416.5*1 ~ 1286.4*2
Inference Accuracy	CIFAR-10	91.74%*3
	CIFAR-100	67.11%*4
*4 A		

Figure 11.4.7: Die micrograph and chip summary.

^{*1,} Average performance measured @ 0.8V VDD with 8 accumulations.
*2. Peak performance measured @ 0.75V VDD with 16 accumulations and
90% input sparsity.
*3. Using ResNet-20 model and the software baseline was 92.2% (-0.46%).
*4. Using ResNet-20 model and the software baseline was 68.03% (-0.92%)