The GKR method

Ariel Gabizon
Zeta Function Technologies

Overview

- ► Mutlilinear functions and sumcheck basics
- ► GKR motivation and example.

Polynomials that are linear in each variable:

Polynomials that are linear in each variable:

Example: equality function

Polynomials that are linear in each variable:

Example: equality function

$$eq(x, y) = \prod_{i \in [n]} (x_i y_i + (1 - x_i)(1 - y_i))$$

Polynomials that are linear in each variable:

Example: equality function

$$eq(x, y) = \prod_{i \in [n]} (x_i y_i + (1 - x_i)(1 - y_i))$$

For $x, y \in \{0, 1\}^n$, eq(x, y) = 1 iff x = y.

Polynomials that are linear in each variable:

Example: equality function

$$eq(x,y) = \prod_{i \in [n]} (x_i y_i + (1-x_i)(1-y_i))$$

For
$$x, y \in \{0, 1\}^n$$
, $eq(x, y) = 1$ iff $x = y$.

"Multilinear Lagranges": $L_x(Y) = eq(x, Y)$ for some $x \in \{0, 1\}^n$.

Polynomials that are linear in each variable:

Example: equality function

$$eq(x,y) = \prod_{i \in [n]} (x_i y_i + (1-x_i)(1-y_i))$$

For $x, y \in \{0, 1\}^n$, eq(x, y) = 1 iff x = y.

"Multilinear Lagranges": $L_x(Y) = eq(x, Y)$ for some $x \in \{0, 1\}^n$.

We have $L_x(x) = 1$ and $L_x(y) = 0$ for any $y \neq x$ in $\{0, 1\}^n$.

 \mathcal{P} has \mathbf{n} -variate poly \mathbf{f} of degree $\leq \mathbf{3}$ in each variable.

 \mathcal{P} has n-variate poly f of degree ≤ 3 in each variable.

Wants to prove to \mathcal{V}

$$\sum_{x \in \{0,1\}^n} f(x) = 0$$

 \mathcal{P} has \mathbf{n} -variate poly \mathbf{f} of degree $\leq \mathbf{3}$ in each variable.

Wants to prove to ${\cal V}$

$$\sum_{\mathbf{x}\in\{0,1\}^n}\mathbf{f}(\mathbf{x})=\mathbf{0}$$

The [LFKN] sumcheck protocol between \mathcal{P} and \mathcal{V} reduces this claim to claim of form $\mathbf{f}(\mathbf{r}) = \mathbf{v}$ for random $\mathbf{r} \in \mathbb{F}^n$.

 \mathcal{P} has n-variate poly f of degree ≤ 3 in each variable.

Wants to prove to \mathcal{V}

$$\sum_{\mathbf{x}\in\{0,1\}^n}\mathbf{f}(\mathbf{x})=\mathbf{0}$$

The [LFKN] sumcheck protocol between \mathcal{P} and \mathcal{V} reduces this claim to claim of form $\mathbf{f}(\mathbf{r}) = \mathbf{v}$ for random $\mathbf{r} \in \mathbb{F}^n$.

Reduction doesn't require \mathcal{P} to do FFT's or commit to other polynomials

Main application: Zero Testing

 $ightharpoonup \mathcal{P}$ wants to prove to \mathcal{V} that $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, $\forall \mathbf{x} \in {\{\mathbf{0}, \mathbf{1}\}}^n$.

Main application: Zero Testing

- ▶ \mathcal{P} wants to prove to \mathcal{V} that $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, $\forall \mathbf{x} \in {\{\mathbf{0}, \mathbf{1}\}}^n$.
- $ightharpoonup \mathcal{V}$ chooses random $\beta \in \mathbb{F}$.
- ▶ Define $f'(X) := eq(\beta, X)f(X)$.

Main application: Zero Testing

- $ightharpoonup \mathcal{P}$ wants to prove to \mathcal{V} that $\mathbf{f}(\mathbf{x}) = \mathbf{0}$, $\forall \mathbf{x} \in {\{\mathbf{0}, \mathbf{1}\}}^n$.
- $ightharpoonup \mathcal{V}$ chooses random $\beta \in \mathbb{F}$.
- ▶ Define $f'(X) := eq(\beta, X)f(X)$.
- ▶ \mathcal{P} shows using sumcheck protocol that $\sum_{x \in \{0,1\}^n} f'(x) = 0$. This implies desired claim on f w.h.p.

P sends short commitment cm(h) to n-variate mutlilinear polynomial h.

- P sends short commitment cm(h) to n-variate mutlilinear polynomial h.
- ▶ Later \mathcal{V} chooses $\mathbf{r} \in \mathbb{F}^n$.

- P sends short commitment cm(h) to n-variate mutlilinear polynomial h.
- ▶ Later \mathcal{V} chooses $\mathbf{r} \in \mathbb{F}^n$.
- ▶ \mathcal{P} sends back z = f(r); together with short proof open(f, i) that z is correct.

- ▶ P sends short commitment cm(h) to n-variate mutlilinear polynomial h.
- ▶ Later \mathcal{V} chooses $\mathbf{r} \in \mathbb{F}^n$.
- ▶ \mathcal{P} sends back z = f(r); together with short proof open(f, i) that z is correct.

State of the art: Basefold, Binius, Brakedown, Gemini, Zeromorph,...

Zero Testing - typical example

 \mathcal{P} has multilinears f_1 , f_2 , f_3 . \mathcal{V} has $cm(f_1)$, $cm(f_2)$, $cm(f_3)$.

Zero Testing - typical example

 \mathcal{P} has multilinears f_1 , f_2 , f_3 . \mathcal{V} has $cm(f_1)$, $cm(f_2)$, $cm(f_3)$.

 ${\mathcal P}$ wants to prove to ${\mathcal V}$ that

$$\forall x \in \{0,1\}^n : f_1(x)f_2(x) - f_3(x) = 0.$$

GKR Motivation

GKR="Delegating Computation: Interactive Proofs for Muggles" by Goldwasser, Kalai and Rothblum.

GKR Motivation

GKR= "Delegating Computation: Interactive Proofs for Muggles" by Goldwasser, Kalai and Rothblum.

Committing to polynomials is expensive. Can we use sumcheck for polynomials we **don't** have a commitment to?

GKR idea - iterative sumcheck

When we don't have a commitment to the polynomial we're summing, reduce the random evaluation at the end to *another* sumcheck over a different polynomial

$$\mathsf{sum} \overset{\mathsf{sumcheck}}{ o} \overset{\mathsf{reduction}}{ o} \mathsf{sum} \overset{\mathsf{sumcheck}}{ o} \dots$$

Example from [Thaler13]

Example from [Thaler13]

 \mathcal{P} has $f(Y_1, Y_2)$. \mathcal{V} has cm(f)

Example from [Thaler13]

$$a_1 \cdot a_2 \cdot a_3 \cdot a_4$$
 \times
 \times
 a_1
 a_2
 a_3
 a_4

$$\mathcal{P}$$
 has $f(Y_1, Y_2)$. \mathcal{V} has $cm(f)$

Wants to prove to \mathcal{V} correctness of $\mathfrak{u} := f(0,0) \cdot f(0,1) \cdot f(1,0) \cdot f(1,1)$.

Define multilinear "Intermediate layer function" g: $g(\mathbf{0}) := f(\mathbf{0}, \mathbf{0}) \cdot f(\mathbf{0}, \mathbf{1})$ $g(\mathbf{1}) := f(\mathbf{1}, \mathbf{0}) \cdot f(\mathbf{1}, \mathbf{1})$.

Define multilinear "Intermediate layer function" g: $g(0) := f(0,0) \cdot f(0,1)$ $g(1) := f(1,0) \cdot f(1,1)$.

Our claim is $g(\mathbf{0}) \cdot g(\mathbf{1}) = \mathbf{u}$.

Define multilinear "Intermediate layer function" g: $g(0) := f(0,0) \cdot f(0,1)$ $g(1) := f(1,0) \cdot f(1,1)$.

Our claim is $g(0) \cdot g(1) = u$.

Exercise: Can reduce this to evaluating g(r) for one random $r \in \mathbb{F}$.

Define multilinear "Intermediate layer function" g: $g(0) := f(0,0) \cdot f(0,1)$

$$g(0) := f(0,0) \cdot f(0,1)$$

 $g(1) := f(1,0) \cdot f(1,1)$.

Our claim is $g(0) \cdot g(1) = u$.

Exercise: Can reduce this to evaluating g(r) for one random $r \in \mathbb{F}$.

Main goal: Avoid needing to compute cm(g) as "traditional SNARKs" would do!

Interlude: Representing mutlilinear functions via **eq**

Recall

$$eq(x,y) = \prod_{i \in [n]} (x_i y_i + (1 - x_i)(1 - y_i))$$

Interlude: Representing mutlilinear functions via **eq**

Recall

$$eq(x,y) = \prod_{i \in [n]} (x_i y_i + (1 - x_i)(1 - y_i))$$

Claim: When h is multilinear, we have for any r

$$h(r) = \sum_{x \in \{0,1\}^n} eq(r,x)h(x)$$

Heart of GKR - representing g(r) as sum over f

$$g(r) = eq(r, 0)f(0, 0)f(0, 1) + eq(r, 1)f(1, 0)f(1, 1)$$

Heart of GKR - representing g(r) as sum over f

$$g(r) = eq(r, 0)f(0, 0)f(0, 1) + eq(r, 1)f(1, 0)f(1, 1)$$

$$\sum f'(x)$$

$$=\sum_{\mathbf{x}\in\{\mathbf{0},\mathbf{1}\}}\mathbf{f'}(\mathbf{x})$$

where f'(X) := eq(r, X)f(X, 0)f(X, 1).

Heart of GKR - representing g(r) as sum over f

$$g(r) = eq(r, 0)f(0, 0)f(0, 1) + eq(r, 1)f(1, 0)f(1, 1)$$

 $= \sum f'(x)$

$$x \in \{0,1\}$$
where $f'(X) := eq(r, X)f(X, 0)f(X, 1)$.

Thus, using SCP can reduce evaluating g(r) to evaluating $f'(r_2)$ for a random $r_2 \in \mathbb{F}$.

Evaluating $f'(r_2)$

$$f'(r_2) = eq(r, r_2)f(r_2, 0)f(r_2, 1)$$

V can evaluate $eq(r, r_2)$ itself.

Since it has cm(f) it can ask \mathcal{P} for $f(r_2, 0)$, $f(r_2, 1)$ with proofs of correctness.