Deep Deterministic Policy Gradient (DDPG) TD3 SAC (Soft Actor Critic)

Deep Deterministic Policy Gradient (DDPG)

Deterministic Policy Gradient

- Deterministic policy gradient can be estimated more efficiently, especially in high-dimensional continuous action spaces
 - Deterministic policy integrates over only states space
 - Use off-policy learning to ensure adequate exploration

[Lillicrap, et al., 2016] "Continuous control with deep reinforcement learning," in 4th International Conference on Learning Representations (ICLR 2016).

Deep Deterministic Policy Gradient (DDPG) (A Kind of Actor-Critic For Continuous Actions)

- Use two networks: an actor and a critic
 - Critic estimates value of current action by Q-learning

$$\begin{aligned} & \nabla_{\omega} L_Q(s_t, a_t | \omega) \\ &= \left(\left(r_{t+1} + \gamma Q(s_{t+1}, \mu(s_{t+1} | \theta) | \omega) \right) - Q(s_t, a_t | \omega) \right) \nabla_{\omega} Q(s_t, a_t | \omega) \end{aligned}$$

Actor updates policy in direction suggested by critic (DDPG):

$$\begin{split} & \nabla_{\theta} J(\mu_{\theta}) \approx \mathbb{E}_{\mu} [\nabla_{\theta} Q(s_{t}, \mu(s_{t}|\theta)|\omega)] \\ & = \mathbb{E}_{\mu} \left[\nabla_{a} Q(s_{t}, a|\omega) \Big|_{a=\mu(s_{t}|\theta)} \nabla_{\theta} \mu(s_{t}|\theta) \right] \end{split}$$

DDPG(1/2)

Behavior and target network

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}$, $\theta^{\mu\prime} \leftarrow \theta^{\mu}$. Initialize replay buffer R

for
$$t = 1$$
, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + N_t$ A noise process

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Experience replay

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample random minibatch of M transitions (s_j, a_j, r_j, s_{j+1}) from R

$$(s_j, a_j, r_j, s_{j+1})$$
 from R

Set
$$y_i = r_i + \gamma Q'(s_{t+1}, \mu'(s_{t+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{M} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled gradient:

$$\nabla_{\theta} \mu \mu|_{S_i} \approx \frac{1}{N} \sum_i \nabla_a Q(s, a | \theta^Q)|_{s=s_i, a=\mu(s_i)} \nabla_{\theta} \mu \mu(s | \theta^\mu)|_{S_i}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
 $\theta^{\mu'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{\mu'}$

$$\theta^{\mu'} \leftarrow \tau \theta^Q + (1 - \tau) \theta^{\mu'}$$

DDPG(2/2)

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q, \theta^{\mu'} \leftarrow \theta^\mu$. Initialize replay buffer R for t = 1, T do

Select action $a_t = \mu(s_t | \theta^{\mu}) + N_t$

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample random minibatch of M transitions (s_j, a_j, r_j, s_{j+1}) Update the behavior networks Set $y_i = r_i + \gamma Q'(s_{t+1}, \mu'(s_{t+1}|\theta^{\mu'})|\theta^{Q'})$ (both actor and critic)

Update critic by minimizing the loss: $L = \frac{1}{M} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled gradient:

$$|\nabla_{\theta}^{\mu}\mu|_{s_i} \approx \frac{1}{N} \sum_{i} |\nabla_{a}Q(s, a|\theta^{Q})|_{s=s_i, a=\mu(s_i)} |\nabla_{\theta}^{\mu}\mu(s|\theta^{\mu})|_{s_i}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^Q + (1 - \tau) \theta^{\mu'}$$

Apply "soft" target updates $\theta' \leftarrow \tau\theta + (1 - \tau)\theta', \tau \ll 1$

(0.001 in practice.)

(Note in DQN, θ is copied periodically. Later, some DQN also used this way)

Experiment Settings

- Run experiments using both a low-dimensional state description and high-dimensional renderings of the environment
- The frames were downsampled to 64x64 pixels and the 8-bit RGB values were converted to floating point scaled to [0, 1]

Example screenshots of a sample of environments to solve with DDPG.

Performance Curves for Those Using Variants of DPG

Light Gray: State Description + Batch Normalization

Dark Gray: State Description + Target Network

Green: State Description + Batch Normalization + Target Network

Blue: Pixels + Target Network

Demo

I-Chen Wu

Twin Delayed DDPG (TD3) Addressing Function Approximation Error in ActorCritic Methods

Scott Fujimoto, Herke van Hoof and David Meger. "Addressing Function Approximation Error in Actor-Critic Methods." ICML (2018).

DDPG Overview

initial $\theta, \theta', \phi, \phi'$, replay buffer B

for episode = 1~M **do**

for
$$t = 1 \sim T do$$

Select action using π_{ϕ}

Play and store transition in B

Sample a batch from B

$$y = r + \gamma Q_{ heta'}(s', \pi_{\phi'}(s'))$$

	Actor	Critic
Behavior	ϕ	θ
Target	ϕ'	θ'

Network Weight Notation

Update Behavior Critic θ using y

Update Behavior Actor ϕ using **policy gradient**

Update Target

$$heta'
ightarrow au heta + (1- au) heta'$$

$$\phi'
ightarrow au \phi + (1- au) \phi'$$

Method

- Twin Delayed DDPG (TD3)
- TD3 = DDPG + 3 Tricks
 - Clipped Double Q-Learning
 - Delayed Policy Updates
 - Target Policy Smoothing

Critic

 θ_1, θ_2

 θ_1', θ_2'

TD3 Overview

initial $\theta, \theta', \phi, \phi'$, replay buffer B

for episode = $1 \sim M do$

for $t = 1 \sim T do$

Select action using [Critic]

Play and store transition in B

Sample a batch from B Trick 1

$$y = r + \gamma \overline{\min_{i=1,2} Q_{ heta_i'}}(s', \pi_{\phi'}(s') + \epsilon)$$
 Trick s'

Update Behavior Critic θ_1, θ_2 using y

State s

		•		-	_	
Netw	ork \	Weight No	otatio	on		•
3						
.4		Actor			Δ	ction

Actor

Behavior

Target

Trick 2 if t mod d then

Update Behavior Actor ϕ using **policy gradient**

Update Target

$$\theta_i' o au heta_i + (1- au) heta_i'$$

$$\phi' \rightarrow \tau \phi + (1-\tau)\phi'$$

Trick 1: Clipped Double-Q Learning

Origin DDPG (Not Good)

$$y = r + \gamma Q_{ heta'}(s',\pi_{\overline{\phi'}}(s'))$$

- Methods to solve overestimation problem
 - Double DQN (Not Good Enough)

$$y = r + \gamma Q_{ heta'}(s',\pi_{\overline{\phi}}(s'))$$

Double-Q Learning (Not Good Enough)

$$egin{aligned} y_1 &= r + \gamma Q_{ heta_2'}(s', \pi_{\phi_1}(s')) \ y_2 &= r + \gamma Q_{ heta_1'}(s', \pi_{\phi_2}(s')) \end{aligned}$$

	Actor	Critic
Behavior	ϕ	θ
Target	ϕ'	heta'

Network Weight Notation

(Recall) Overestimation Problem

Q-Learning update

$$Q(s,a) = r + \gamma \max_{a'} Q(s',a')$$

Trick 1: Clipped Double-Q Learning

- Methods to solve overestimation problem
 - Double DQN (Not Good Enough)

$$y = r + \gamma Q_{ heta'}(s', \pi_{\phi}(s'))$$

Double-Q Learning (Not Good Enough)

$$egin{aligned} y_1 &= r + \gamma Q_{ heta_2'}(s', \pi_{\phi_1}(s')) \ y_2 &= r + \gamma Q_{ heta_1'}(s', \pi_{\phi_2}(s')) \end{aligned}$$

	Actor	Critic
Behavior	ϕ	$ heta_1, heta_2$
Target	ϕ'	$ heta_1', heta_2'$

Network Weight Notation

Clipped Double-Q Learning (Better)

$$y = r + \gamma \min[Q_{ heta_1'}(s', \overline{\pi_\phi}(s')), Q_{ heta_2'}(s', \overline{\pi_\phi}(s'))]$$

Only one Q target

Only one actor

Trick 2: Delayed Policy Updates

• Use lower frequency to update behavior actor and target networks.

```
initial

for episode = 1 \sim M do

for t = 1 \sim T do

...

Update Behavior Critic

Update Behavior Actor

Update Targets Networks

initial

for episode = 1 \sim M

for t = 1 \sim T do

...

Update Behavior Critic

Update Behavior Actor

Update Behavior Actor
```

```
for episode = 1~M do
for t = 1~T do

...

Update Behavior Critic
if t mod d then

Update Behavior Actor
Update Targets Networks
```


Trick 3: Target Policy Smoothing

- Assumption
 - Similar actions have similar values
- Add noise to action value

$$y = r + \gamma Q(s', \pi(s') + \epsilon), \epsilon \sim clip(\mathcal{N}(0, \sigma), -c, c)$$

Hyperparameters

Regularization

Algorithm 1 TD3

Initialize critic networks $Q_{\theta_1}, Q_{\theta_2}$, and actor network π_{ϕ} with random parameters θ_1, θ_2, ϕ

Initialize target networks $\theta_1' \leftarrow \theta_1, \theta_2' \leftarrow \theta_2, \phi' \leftarrow \phi$

Initialize replay buffer \mathcal{B}

for t = 1 to T do

Select action with exploration noise $a \sim \pi_{\phi}(s) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma)$ and observe reward r and new state s'Store transition tuple (s, a, r, s') in \mathcal{B}

Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B}

$$\begin{split} \tilde{a} &\leftarrow \pi_{\phi'}(s') + \epsilon, \quad \epsilon \sim \operatorname{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c) \\ y &\leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a}) \\ \text{Update critics } \theta_i &\leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2 \end{split}$$

if $t \mod d$ then

Update ϕ by the deterministic policy gradient:

$$\nabla_{\phi} J(\phi) = N^{-1} \sum \nabla_{a} Q_{\theta_{1}}(s, a)|_{a = \pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)$$

Update target networks:

$$\theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'$$

$$\phi' \leftarrow \tau \phi + (1 - \tau)\phi'$$

end if

end for

1. Clipped Double Q-Learning for Actor-Critic

Algorithm 1 TD3

Initialize critic networks $Q_{\theta_1}, Q_{\theta_2}$, and actor network π_{ϕ} with random parameters θ_1, θ_2, ϕ

Initialize target networks $\theta_1' \leftarrow \theta_1, \theta_2' \leftarrow \theta_2, \phi' \leftarrow \phi$

Initialize replay buffer \mathcal{B}

for
$$t = 1$$
 to T do

Select action with exploration noise $a \sim \pi_{\phi}(s) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma)$ and observe reward r and new state s'Store transition tuple (s, a, r, s') in \mathcal{B}

Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B}

$$\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \quad \epsilon \sim \text{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)$$

 $y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$

Update critics $\theta_i \leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$

if $t \mod d$ then

Update ϕ by the deterministic policy gradient:

$$\nabla_{\phi} J(\phi) = N^{-1} \sum \nabla_{a} Q_{\theta_{1}}(s, a)|_{a = \pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)$$

Update target networks:

$$\theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'$$

$$\phi' \leftarrow \tau \phi + (1 - \tau)\phi'$$

end if

end for

1. Clipped Double Q-Learning for Actor-Critic

2. Delayed Policy Updates

Algorithm 1 TD3

Initialize critic networks $Q_{\theta_1}, Q_{\theta_2}$, and actor network π_{ϕ} with random parameters θ_1, θ_2, ϕ

Initialize target networks $\theta_1' \leftarrow \theta_1, \theta_2' \leftarrow \theta_2, \phi' \leftarrow \phi$

Initialize replay buffer \mathcal{B}

for
$$t = 1$$
 to T do

Select action with exploration noise $a \sim \pi_{\phi}(s) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma)$ and observe reward r and new state s'Store transition tuple (s, a, r, s') in \mathcal{B}

Sample mini-batch of N transitions (s, a, r, s') from \mathcal{B}

$$\tilde{a} \leftarrow \pi_{\phi'}(s') + \epsilon, \quad \epsilon \sim \text{clip}(\mathcal{N}(0, \tilde{\sigma}), -c, c)$$
$$y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$$

Update critics $\theta_i \leftarrow \operatorname{argmin}_{\theta_i} N^{-1} \sum (y - Q_{\theta_i}(s, a))^2$

if $t \mod d$ then

Update ϕ by the deterministic policy gradient:

$$\nabla_{\phi} J(\phi) = N^{-1} \sum \nabla_{a} Q_{\theta_{1}}(s, a)|_{a = \pi_{\phi}(s)} \nabla_{\phi} \pi_{\phi}(s)$$

Update target networks:

$$\theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'$$

$$\phi' \leftarrow \tau \phi + (1 - \tau)\phi'$$

end if

end for

- 1. Clipped Double Q-Learning for Actor-Critic
- 2. Delayed Policy Updates
- 3. Target Policy Smoothing Regularization

Experiment

Experiments: Compared to Others

Environment	TD3	DDPG	Our DDPG	PPO	TRPO	ACKTR	SAC
HalfCheetah	9636.95 ± 859.065	3305.60	8577.29	1795.43	-15.57	1450.46	2347.19
Hopper	3564.07 ± 114.74	2020.46	1860.02	2164.70	2471.30	2428.39	2996.66
Walker2d	4682.82 ± 539.64	1843.85	3098.11	3317.69	2321.47	1216.70	1283.67
Ant	4372.44 ± 1000.33	1005.30	888.77	1083.20	-75.85	1821.94	655.35
Reacher	-3.60 ± 0.56	-6.51	-4.01	-6.18	-111.43	-4.26	-4.44
InvPendulum	1000.00 ± 0.00	1000.00	1000.00	1000.00	985.40	1000.00	1000.00
InvDoublePendulum	9337.47 ± 14.96	9355.52	8369.95	8977.94	205.85	9081.92	8487.15

SAC (Soft Actor Critic)

Reference

- Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017). Reinforcement Learning with Deep Energy-Based Policies. ICML.
- Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. ArXiv, abs/1801.01290.
- Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., & Levine, S. (2018). Soft Actor-Critic Algorithms and Applications. ArXiv, abs/1812.05905.
- Open source:
 - https://github.com/haarnoja/sac (original author)
 https://github.com/rail-berkeley/softlearning
- Credit goes to Guo-Hao Ho for most of the slides.

Introduction

- SAC is
 - Open-source (by original authors)
 - https://sites.google.com/view/sac-and-applications
 - Perform well (as in realistic environment)
 - Key idea is easy to understand
 - Maximum entropy reinforcement learning

Introduction

- Soft actor critic (SAC) train a policy that maximizes a trade-off between expected return and entropy
 - Still getting high performance while acting as random as possible
 - Augment the objective function with entropy term
- Evolution of SAC
 - Soft Q-learning (SQL)
 - → Soft Actor-Critic (SAC)
 - → Soft Actor-Critic with automating entropy adjustment(SAC)

Problem

- The above methods (PPO, DDPG) focus more on exploitation
 - The objective function is mainly based on the return

May be trapped in local optimum without exploration

Extremely simple case

Return	Up	Left	Down	Right
	0	10	0	10

Policy	Up	Left	Down	Right
T=0	0.25	0.25	0.25	0.25
T=1	0.2	0.4	0.2	0.2
		•••		
T=n	0	1	0	0

If we sampled "left" first

Without any exploration,

the chance to sample the "right" is harder, resulting in the policy converges to "left" gradually

The agent will be

- either right or left with 100%
- not right and left with 50%

Problem

- Hard exploration case
 - Extend previous "extremely simple case"

The agent will be either right or left for 100% But not right and left for 50%

Hard for agent to discover policy of "right" May trap in policy of "left"

Extremely simple case

Hard exploration case

Problem-Solution

- The exploration ability relies on
 - Random noise in selected action
 E.g. DDPG
 - During training, the action is disturbed with the random noise

```
Algorithmus 4: Deep Deterministic Policy-Gradient
  Result: policy parameter \theta and action-value weights w
  Initialize policy parameter \boldsymbol{\theta} \in \mathbb{R}^{d'} and action-value weights \mathbf{w} \in \mathbb{R}^{d};
  Initialize target policy parameter \theta' \in \mathbb{R}^{d'} and target action-value weights \mathbf{w}' \in \mathbb{R}^{d};
  Initialize experience replay memory \mathcal{D};
  for episode = 1, M do
         Observe initial state s_0 from environment;
        for t=1,T do
              Select action a_t = \tau(s, \boldsymbol{\theta}_t) + \mathcal{N}_t
              Observe reward r_t and next state s_{t+1} from environment;
               Store (s_t, a_t, r_t, s_{t+1}) tupel in \mathcal{D};
               Sample random batch (s_i, a_i, r_i, s_{i+1}) of size B from \mathcal{D};
               \delta_i \leftarrow r_i + \gamma \hat{q}(s_{i+1}, \tau(s_{i+1}, \boldsymbol{\theta}'_t), \mathbf{w}'_t) - \hat{q}(s_i, a_i, \mathbf{w}_t) ;
               \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \beta \frac{1}{B} \sum_{i}^{B} \delta_i \nabla_{\mathbf{w}} \hat{q}(s_i, a_i, \mathbf{w}_t) ;
              \boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t + \alpha \frac{1}{B} \sum_{i}^{B} \nabla_{\boldsymbol{\theta}} \hat{q}(s_i, \tau(s_i, \boldsymbol{\theta}_t), \mathbf{w}_t) \nabla_{\boldsymbol{\theta}} \tau(s_i, \boldsymbol{\theta}_t) ;
               Update target networks by
                                                                 \boldsymbol{\theta}_{t+1}^{'} \leftarrow v \boldsymbol{\theta}_{t} + (1-v) \boldsymbol{\theta}_{t}^{'}
                                                                 \mathbf{w}_{t+1}^{'} \leftarrow v\mathbf{w}_{t} + (1-v)\mathbf{w}_{t}^{'}
        end
  end
```

Problem-Solution

- The exploration ability relies on
 - Random noise in selected action E.g. DDPG
 - Entropy regularization in objective

E.g. PPO
$$L_t^{CLIP+VF+S}(\theta) = \widehat{E_t}[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t)]$$

• To maximum the objective, policy π_{θ} gets less entropy bonus $S[\pi_{\theta}]$ if π_{θ} is deterministic

Maximum Entropy Reinforcement Learning

- Standard reinforcement learning (RL) objective function:
 - Total expected rewards:

$$J(\pi_{\theta}) = \sum_{t} E_{(s_t, a_t) \sim \rho_{\pi_{\theta}}} [r(s_t, a_t)]$$

where $\rho_{\pi_{\theta}}$ is data distribution for policy π_{θ}

- Maximum entropy RL objective function:
 - Augment with entropy term:

$$J(\pi_{\theta}) = \sum_{t} E_{(s_t, a_t) \sim \rho_{\pi_{\theta}}} [r(s_t, a_t) + \alpha H(\pi_{\theta}(.|s_t))]$$

where α is temperature for importance of the entropy term

Maximum Entropy Reinforcement Learning

$$J(\pi_{\theta}) = \sum_{t} E_{(s_t, a_t) \sim \rho_{\pi_{\theta}}} [r(s_t, a_t) + \alpha H(\pi_{\theta}(.|s_t))]$$
Re

Example:

Assume $\alpha=1$

$$J(\pi_{\theta}) = r(s_t, \underline{a_t}) - log(\pi_{\theta}(s_t, \underline{a_t})),$$

Return	Up	Left	Down	Right
	0	10	0	10

T=0 0.25 0.25 0.25 0.25 0.25 0.25 III we sampled left IIIs $J(\pi_{\theta}) = 0$ -log0.25 10-log0.25 10-log0.25 10-log0.25 III T=1 0.2 0.4 0.2 0.2	Policy	Up	Left	Down	Right	If we sampled "left" first
	T=0	0.25	0.25	0.25	0.25	in we sampled left first
T=1 0.2 0.4 0.2 0.2	$J(\pi_{\theta})$	$0 = 0 - \log 0.25$	10-log0.25	0-log0.25	10-log0.25	
	T=1	0.2	0.4	0.2	0.2	
$J(\pi_{\theta}) = \begin{vmatrix} 0 - \log 0.2 \end{vmatrix}$ 10-log0.4 0-log0.2 10-log0.2 • Encourage take this	$J(\pi_{\theta})$	$0 = 0 - \log 0.2$	10-log0.4	0-log0.2	10-log0.2	 Encourage take this
action ("right") with	10					action ("right") with
T=k 10^{-10} ≈ 1 10^{-10} 10^{-10} entropy term	T=k	10 ⁻¹⁰	≈1	10^{-10}	10^{-10}	entropy term
$J(\pi_{\theta}) = \begin{vmatrix} 0 - \log 10^{-10} & 10 - \log 1 \end{vmatrix} = \begin{vmatrix} 0 - \log 10^{-10} & 10 + 10 \end{vmatrix}$ • The exploration bonu	$J(\pi_{\theta})$	$0 = 0 - \log 10^{-10}$	10-log1	$0 - \log 10^{-10}$	10+10	• The exploration bonus
is vanish when the			•••			is vanish when the
T=n 0 0.5 policy become	T=n	0	0.5	0	0.5	policy become

 The exploration bonus is vanish when the policy become deterministic

Extremely simple case

☐⇒ Ideal convergence

Maximum Entropy Reinforcement Learning

- Encourage exploration with entropy term
 - Entropy in loss function: Consider entropy as regularized term
 - ▶ E.g.: PPO

$$L_t^{CLIP+VF+S}(\theta) = \widehat{E_t}[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t)]$$

The entropy term only cares the current state

- Entropy in objective function: Consider entropy as incentivized exploration reward
 - ► E.g.: SAC

$$J(\pi_{\theta}) = \sum_{t} E_{(s_t, a_t) \sim \rho_{\pi_{\theta}}} [r(s_t, a_t) + \alpha H(\pi_{\theta}(.|s_t))]$$

The entropy term affects following future states by accumulated return

Soft Actor Critic

- Soft Q-learning
- Soft actor critic
- Soft actor critic with automating entropy adjustment

Za Z

Soft Q-Learning

• Objective function: Maximum entropy RL

$$J(\pi_{\theta}) = \sum_{t} E_{(s_t, a_t) \sim \rho_{\pi_{\theta}}} [r(s_t, a_t) + \alpha H(\pi_{\theta}(.|s_t))]$$

Soft V-function:

$$V_{soft}(s_t) = E_{a_t \sim \pi_{\theta}}[Q_{soft}(s_t, a_t) - \alpha log \pi(a_t | s_t)]$$

Soft Q-function:

$$Q_{soft}(s_t, a_t) = r_t + \gamma E_{s_{t+1} \sim \rho_{\pi_\theta}} [V_{soft}(s_{t+1})]$$

- Authors prove augment the entropy term still follow Bellman equation property
 - Policy evaluation
 - Policy improvement
 - Policy iteration

Soft Q-Learning

- Gaussian policy:
 - For convenient, usually assume the policy distribution is Gaussian distribution
 - Problem: Not suitable for multimodal case
- Energy-based policy:
 - Use Q value distribution to indicate the policy distribution
 - Assumption: $\pi(a_t|s_t) \propto \exp(Q(s_t, a_t))$

Gaussian policy

Energy-based policy: Stochastic policy with multimodal

Soft Actor Critic

- Policy: (ideal) $\pi(a_t|s_t) = \exp(\frac{1}{\alpha}(Q_{soft}(s_t, a_t) - V_{soft}(s_t)))$
- Architecture
 - -1 state value (V_{ψ}) network
 - 1 policy network (π_{ϕ})
 - 2 action-state value (Q-value) network (Q_{θ})
 - Double Q trick: Prevent overestimated in Q
 - ▶ Like TD3

Training of SAC

- D is the distribution of sampled states and actions
- \square Value network (V_{ψ}) :

$$J_V(\psi) = E_{s_t \sim D} \left[\frac{1}{2} \left(V_{\psi}(s_t) - \widehat{V_{\psi}}(s_t) \right)^2 \right]$$

where $\widehat{V_{\psi}}(s_t) = E_{a_t \sim \pi_{\phi}}[Q_{\theta}(s_t, a_t) - \alpha log \pi_{\phi}(a_t | s_t)]$

Trained by minimizing the squared residual error (TD error)

 \Box Q-Value network (Q_{θ}) :

$$J_Q(\theta) = E_{(s_t, a_t) \sim D} \left[\frac{1}{2} \left(Q_{\theta}(s_t, a_t) - \widehat{Q_{\theta}}(s_t, a_t) \right)^2 \right]$$

where $\widehat{Q_{\theta}}(s_t, a_t) = r(s_t, a_t) + \gamma E_{s_{t+1} \sim p}[V_{\psi}(s_{t+1})]$

Trained by minimizing the soft Bellman residual error (TD error)

State s

Actor ϕ $(+ \sigma(s|\phi)...)$ Action a

- D is the distribution of sampled states and actions
- Policy network (π_{ϕ})
 - Train by minimizing the KL-divergence
 - Use reparameterization trick, sample action from fixed distribution $J_{\pi}(\phi) = E_{s_t \sim D, \epsilon_t \sim N} \left[log \pi_{\phi} (f_{\phi}(\epsilon_t; s_t) | s_t) Q_{\theta}(s_t, f_{\phi}(\epsilon_t; s_t)) \right]$
 - $a_t = f_{\phi}(\epsilon_t; s_t),$
 - ϵ_t is a noise vector
 - E.g.: $f_{\phi}(\epsilon_t; s_t)$ as spherical Gaussian distribution
 - Take gradient $\nabla_{\phi} J_{\pi}(\phi)$

SAC Algorithm

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors ψ , $\bar{\psi}$, θ , ϕ .

for each iteration do

for each environment step do

$$\mathbf{a}_{t} \sim \pi_{\phi}(\mathbf{a}_{t}|\mathbf{s}_{t})$$

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})$$

$$\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{s}_{t}, \mathbf{a}_{t}, r(\mathbf{s}_{t}, \mathbf{a}_{t}), \mathbf{s}_{t+1})\}$$

end for

for each gradient step do

$$\psi \leftarrow \psi - \lambda_V \hat{\nabla}_{\psi} J_V(\psi)$$

$$\theta_i \leftarrow \theta_i - \lambda_Q \hat{\nabla}_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}$$

$$\phi \leftarrow \phi - \lambda_{\pi} \hat{\nabla}_{\phi} J_{\pi}(\phi)$$

$$\bar{\psi} \leftarrow \tau \psi + (1 - \tau)\bar{\psi}$$

Double Q trick

end for

Result

OpenAI gym v1

Conclusion

- Soft actor critic (SAC) train a policy that maximize a trade-off between expected return and entropy
 - Still getting high performance while acting as random as possible
- Evolution of SAC
 - Soft Q-learning (SQL)
 - ▶ Soft: $\pi \propto Q(s, a)$
 - Soft Actor-Critic (SAC)
 - ► Argument the objective function with entropy term
 - Soft Actor-Critic with auto-adjusted temperature (SAC)
 - Argument the objective function with entropy term
 - Auto-adjust temperature
 - By constrained policy optimization

