Homework 1 for MATH 574

Due: Wednesday January 26

Problem 1

Show that the product of a countable sequence of Polish spaces is Polish.

Problem 2

Verify (0, 1) (as a topological subspace of \mathbb{R}) is Polish.

Problem 3

Show that the metric on $A^{\mathbb{N}}$ introduced in class is an *ultrametric*, i.e.

$$d(\alpha,\beta)\leqslant max\{d(\alpha,\xi),d(\beta,\xi)\}\quad \text{ for all }\xi\in A^{\mathbb{N}}.$$

Furthermore, show that in any ultrametric space, any ball is clopen (i.e. open and closed).

Problem 4

Verify that $A^{\mathbb{N}}$ is compact if and only if A is finite.

Problem 5

Show that $(A^{\mathbb{N}})^{\mathbb{N}}$ (with the product topology of countably many copies of $A^{\mathbb{N}}$, which in turn carries the topology introduced in class) is homeomorphic to $A^{\mathbb{N}}$.