Problem Set 8

Due Wednesday, April 23, 2025

Problem 1 (10 points). Suppose f is a real function on \mathbb{R} such that

$$|f(x) - f(y)| \le (x - y)^2$$

for all real x and y. Prove that f is constant.

Proof. We will prove that f is constant by showing that its derivative is zero at every point, and then applying the Mean Value Theorem.

Fix any point $a \in \mathbb{R}$. We need to show that f'(a) = 0. Consider the difference quotient:

$$\left| \frac{f(a+h) - f(a)}{h} \right| \le \frac{|f(a+h) - f(a)|}{|h|} \tag{1}$$

$$\leq \frac{(a+h-a)^2}{|h|}$$
 (by the given condition) (2)

$$=\frac{h^2}{|h|}\tag{3}$$

$$=|h|\tag{4}$$

Now, as $h \to 0$, we have $|h| \to 0$. Since the above inequality holds for all $h \neq 0$, we can take the limit as $h \to 0$ to get:

$$\lim_{h \to 0} \left| \frac{f(a+h) - f(a)}{h} \right| \le \lim_{h \to 0} |h| = 0 \tag{5}$$

This means that the absolute value of the difference quotient approaches 0, which implies that the difference quotient itself must approach 0. Therefore:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = 0 \tag{6}$$

Since a was arbitrary, we have shown that f'(x) = 0 for all $x \in \mathbb{R}$.

Now we can use the Mean Value Theorem. For any two points $p, q \in \mathbb{R}$ with p < q, the Mean Value Theorem guarantees the existence of a point $c \in (p, q)$ such that:

$$f(q) - f(p) = f'(c)(q - p)$$
 (7)

Since we've established that f'(c) = 0, we have:

$$f(q) - f(p) = 0 \cdot (q - p) = 0$$
 (8)

Therefore, f(p) = f(q) for any two points $p, q \in \mathbb{R}$, which means that f is constant on \mathbb{R} .

Problem 2 (10 points). Suppose g is a real, differentiable function on \mathbb{R} with bounded derivative (i.e. g' is a bounded function). For $\epsilon > 0$, define

$$f_{\epsilon}(x) = x + \epsilon g(x).$$

Prove that f_{ϵ} is one-to-one (i.e. $f_{\epsilon}(x) = f_{\epsilon}(y)$ implies x = y) if ϵ is small enough.

Proof. We'll show that for sufficiently small $\epsilon > 0$, the function $f_{\epsilon}(x) = x + \epsilon g(x)$ is strictly monotonic, which implies that it's one-to-one.

Since g is differentiable on \mathbb{R} , f_{ϵ} is also differentiable on \mathbb{R} . Let's compute the derivative of f_{ϵ} :

$$f'_{\epsilon}(x) = \frac{d}{dx}[x + \epsilon g(x)] = 1 + \epsilon g'(x) \tag{9}$$

We're given that g' is bounded on \mathbb{R} . This means there exists a constant M > 0 such that $|g'(x)| \leq M$ for all $x \in \mathbb{R}$. Therefore:

$$|f'_{\epsilon}(x) - 1| = |\epsilon g'(x)| = \epsilon |g'(x)| \le \epsilon M \tag{10}$$

This implies:

$$1 - \epsilon M \le f_{\epsilon}'(x) \le 1 + \epsilon M \tag{11}$$

Now, we want to ensure that $f'_{\epsilon}(x) > 0$ for all $x \in \mathbb{R}$, which would make f_{ϵ} strictly increasing and thus one-to-one. From the inequality above, we need:

$$1 - \epsilon M > 0 \tag{12}$$

$$\Rightarrow \epsilon M < 1$$
 (13)

$$\Rightarrow \epsilon < \frac{1}{M} \tag{14}$$

So if we choose $\epsilon < \frac{1}{M}$, then $f'_{\epsilon}(x) > 0$ for all $x \in \mathbb{R}$, making f_{ϵ} strictly increasing.

Now, to show that a strictly increasing function is one-to-one: suppose $f_{\epsilon}(x) = f_{\epsilon}(y)$ for some $x, y \in \mathbb{R}$. If x < y, then by the strict monotonicity of f_{ϵ} , we would have $f_{\epsilon}(x) < f_{\epsilon}(y)$, which contradicts our assumption. Similarly, if x > y, we'd have $f_{\epsilon}(x) > f_{\epsilon}(y)$, again contradicting our assumption. Thus, we must have x = y.

Therefore, for any ϵ satisfying $0 < \epsilon < \frac{1}{M}$, the function f_{ϵ} is one-to-one.

Problem 3 (10 points). If

$$c_0 + \frac{c_1}{2} + \dots + \frac{c_{n-1}}{n} + \frac{c_n}{n+1} = 0,$$

where c_0, \dots, c_n are real constants, prove that the equation

$$c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + c_n x^n = 0$$

has at least one real root between 0 and 1.

Proof. Let's define the polynomial function:

$$P(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + c_n x^n$$

We need to prove that there exists some $r \in [0, 1]$ such that P(r) = 0. Consider the definite integral of P(x) from 0 to 1:

$$I = \int_0^1 P(x) \, dx \tag{15}$$

$$= \int_0^1 (c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + c_n x^n) dx$$
 (16)

(17)

We can integrate each term separately:

$$I = \int_0^1 c_0 dx + \int_0^1 c_1 x dx + \dots + \int_0^1 c_{n-1} x^{n-1} dx + \int_0^1 c_n x^n dx$$
 (18)

$$= c_0 \int_0^1 dx + c_1 \int_0^1 x \, dx + \dots + c_{n-1} \int_0^1 x^{n-1} \, dx + c_n \int_0^1 x^n \, dx \tag{19}$$

(20)

For each term, we compute:

$$\int_0^1 x^k \, dx = \left[\frac{x^{k+1}}{k+1} \right]_0^1 = \frac{1}{k+1} \tag{21}$$

Therefore:

$$I = c_0 \cdot 1 + c_1 \cdot \frac{1}{2} + \dots + c_{n-1} \cdot \frac{1}{n} + c_n \cdot \frac{1}{n+1}$$
 (22)

$$= c_0 + \frac{c_1}{2} + \dots + \frac{c_{n-1}}{n} + \frac{c_n}{n+1}$$
 (23)

By the given condition, this sum equals zero. So we have I=0.

Now, we apply the Mean Value Theorem for Integrals, which states that if a function f is continuous on a closed interval [a, b], then there exists a point $c \in (a, b)$ such that:

$$\int_{a}^{b} f(x) dx = f(c) \cdot (b - a)$$

In our case, P(x) is a polynomial, which is continuous on [0,1]. Therefore, there exists a point $r \in (0,1)$ such that:

$$\int_0^1 P(x) \, dx = P(r) \cdot (1 - 0) \tag{24}$$

$$\Rightarrow 0 = P(r) \cdot 1 \tag{25}$$

$$\Rightarrow P(r) = 0 \tag{26}$$

This proves that there exists at least one real value $r \in (0,1)$ such that P(r) = 0, which means the equation $c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} + c_n x^n = 0$ has at least one real root between 0 and 1.

Problem 4 (10 points). Suppose f is a real function defined and differentiable at every x > 0. Suppose that¹

$$\lim_{x \to +\infty} f'(x) = 0.$$

Put g(x) := f(x+1) - f(x). Prove that

$$\lim_{x \to +\infty} g(x) = 0.$$

Proof. We are given that f is differentiable for all x > 0 and that $\lim_{x \to +\infty} f'(x) = 0$. We need to prove that $\lim_{x \to +\infty} g(x) = 0$, where g(x) = f(x+1) - f(x).

We'll apply the Mean Value Theorem to the function f on the interval [x, x+1] for x > 0. The Mean Value Theorem states that if a function is continuous on a closed interval [a, b] and differentiable on the open interval (a, b), then there exists a point $c \in (a, b)$ such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Since f is differentiable for all x > 0, it is continuous for all x > 0 as well. Therefore, for each x > 0, there exists a point $c_x \in (x, x + 1)$ such that:

$$f'(c_x) = \frac{f(x+1) - f(x)}{(x+1) - x} \tag{27}$$

$$=\frac{f(x+1) - f(x)}{1} \tag{28}$$

$$= f(x+1) - f(x) (29)$$

$$=g(x) \tag{30}$$

So we have established that $g(x) = f'(c_x)$ for some $c_x \in (x, x + 1)$.

Now, as $x \to +\infty$, we also have $c_x \to +\infty$ (since $c_x > x$). By the given limit condition, we know that $\lim_{x \to +\infty} f'(x) = 0$. Therefore:

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} f'(c_x) = \lim_{c_x \to +\infty} f'(c_x) = 0$$
(31)

The last equality follows from the fact that as $x \to +\infty$, $c_x \to +\infty$ as well, and we're given that $\lim_{x \to +\infty} f'(x) = 0$.

Therefore, we have proven that $\lim_{x\to+\infty} g(x) = 0$, as required.

¹In other words, for any $\epsilon > 0$, there exists M such that $|f'(x)| < \epsilon$ whenever x > M.