9. EM Algorithm

EM stands for Expectation Maximization. This can be used for Probabilistic clustering or soft-unstering.

Previously we've seen the K-Means algorithm, which is used for Hourd-clustering.

What is Probabilistic counting?

Previously, we assigned each point to a Unique cluster. But the problem is, there might be some point, which cannot be assigned to any particular cluster, become those points seemingly belong to either clusters.

In Probability containing, we calculate the probability that a data point belongs to a custur! This is only, we also call this as Soft clustering.

Plot: Different Cluster Analysis results on "moure" data set.

In K-Means clustering, the data point an misclassified.

The Probabilistic custering is clearly able to recover the original custers to a great degree. Therefore, Em algorithm can yield a much better clustering performance than the K-Means algorithm.

To understand Em algorithm, let us consider a
Gaussian elester model. (i) we assume that the clusters are generated by Gaussian distributions. With probability Pi
(prior probability of its cluster), we generate a sample of
from Gaussian cluster i.
$(i) N \Gamma \left(\overline{\mathbf{u}}, \nabla^{2} \overline{\mathbf{I}} \right)$
(ii) N (M: , JI) covaniana Matrix
$\Rightarrow N(\overline{\mu}_{1}, \sigma' \underline{I}), N(\overline{\mu}_{2}, \sigma' \underline{I}), \dots, N(\overline{\mu}_{K}, \sigma' \underline{I})$
Assuming there are K clusters.
The Probability Density Function (PDF) is given as
The Probability seasily $f_{x}(\bar{x}) = \sum_{i=1}^{K} P_{i} \times \left(\frac{1}{2\pi i \sigma^{2}}\right)^{\frac{N}{2}} e^{-\frac{1}{2\sigma^{2}} \bar{x} - \bar{x}_{i} ^{2}}$
when, P, P2, PK are Prior Probabilities of clusters
when, P., P2, PK are Prior Probabilities of clusters This is tormed as Gaussian Mixture model,
when, P., P2, PK are Prior Probabilities of clusters This is tormed as Gaussian Mixture model,
When, P., P., P. are Prior Probabilities of clusters. This is tormed as Gaussian Mixture model, as there are K Gaussians, one for each cluster.
When, P, P2, PK are Prior Probabilities of clusters. This is tormed as Gaussian Mixture model, as there are K Gaussians, one for each cluster. Consider now M data points.
when, P_1 , P_2 , P_K are Prior Probabilities of clusters. This is tormed as Gaunian Mixture model, as there are K haunians, one for each cluster. Consider now M data points. This, $\pi(x)$,, $\pi(M)$.
when, P_1 , P_2 , P_K are Prior Probabilities of clusters. This is tormed as Gaunian Mixture model, as there are K haunians, one for each cluster. Consider now M data points. This, $\pi(x)$,, $\pi(M)$.
When, P., P., P. are Prior Probabilities of clusters This is tormed as Gaunian Mixture model, as true one K hourians, one for each cluster. Consider now M data points. T(1), T(2),, T(M). How do we cluster their data? (i) We desire to estimate Centrolds Iti According as the cluster Assignment, X; (1)
This is tormed as Gaurnian Mixture model, as true one K haunians, one for each cluster. Consider mow M data points. This is tormed as Gaurnian Mixture model, as true one K haunians, one for each cluster. Consider mow M data points. The consider mow Mixture models as the control of the cont
when, P., P., P. are Prior Probabilities of clusters. This is termed on Gaurnian Mixture model, on there are k housinans, one for each cluster. Consider mow M data points. This is to extract the data? (ii) We desire to estimate Controlds hi As well as the cluster Assignments of i(j) Here, performing direct ML estimation is mathematically intractable (Not possible) In this problem, there are 2 linknowns.
When, P., P., P. are Prior Probabilities of clusters. This is tormed as Gaussian Mixture model, as true one K haussians, one for each cluster. Consider now M data points. This is to make points. The considering direct ML estimation is make motically intractable (Not possible)

However, if cluster anignment of (1) is known, problem is simple. For example: we have M=8 data point, out of which

$$\pi(1), \pi(3), \pi(5), \pi(8) \in \text{cluster } 1$$

 $\pi(2), \pi(4), \pi(6), \pi(7) \in \text{cluster } 2$

There the centralds are

$$\hat{\mu}_{1} = \frac{\pi(1) + \pi(2) + \pi(5) + \pi(8)}{4}$$
(Average of points)

$$\hat{\mu}_2 = \frac{\pi(2) + \pi(4) + \pi(6) + \pi(7)}{4}$$
(Avorage of points)

Recall, clustering problem is Unsupervised Learning (No Labels).

Here, we introduce the concept of missing data or latent information.

The cluster anignment variable

$$\alpha_{i}(j) = \begin{cases}
i & \text{if } \pi(j) \in \text{Cluster } i \\
0 & \text{if } \pi(j) \in \text{cluster } i
\end{cases}$$

is missing how.

Cluster 1 — Complete Porta Porta (M) , 7 (2) , ..., 7 (M)

We have to estimate the Missing data as well as the Centroids. To do there, we have to first start with Cost function, and that cost function comes from the likelihood.

EM Algorithm Week 6: Session 2

The EM algorithm proceeds iteratively

(ii) in each iteration, we perform

Expectation step -> E - Step.

Maximization step -> M - Step

Let us consider the Centroids in (1-1) iterations.

(1-1) (1-1)

Mo, M, , ..., MK

At the end of (1-1) the iteration, we have these centroids, which are nothing but cluster Means. Recall, we have Gaussian Clusters (i) Gaussian Mixture model. We are modeling the clusters as Gaussian. So, the centers are nothing but the mean of the different Gaussian components in the mixture.

The Expected value of ten log likelihood in iteration of $\frac{\sum_{j=1}^{N} \sum_{i=1}^{K} \left(\left\langle \frac{(2)}{(i)} \right\rangle \right) \left(2\pi \left(\frac{N}{2} \right) - \frac{1}{2\sigma^{2}} \left(1\pi \left(\frac{1}{2} \right) - \frac{1}{2\sigma^{2}}$ > E [x: (i)] = x: (i) Expected value of X:(j) in 1th Itoration How to colculate $\propto_i^{(l)}(j)$? Recall, $\propto_i^{(2)}(j) = 1$ if $\pi(j) \in C_i$ = Pr (\(\pi \(\) \) \(+ Pr (=1) & Ci) x 0 = Pr (Try) E Ci) = Pr (C; | \ \(\forall j)) = Pr (=16) (Ci) P(Ci) (Bayes) Expr(n(j) | CR) P(CR) Propability = (Pi) (-1/02) = 1-202 | TUy) - [1: (K) ||2 = PA (2002) 2 - 202 11 7 (j) - MA (2-1) 112 = = { < ; (4) }.

. M- Step

The M-Step is the Maximization step (ii) Maximize the Expected value of Likelihood. To determine μ_j , differentiate w.r.t. μ_j and set equal to zero.

(ie) To maximize, take the Gradient of the Expected value of the Log likelihood and but equal to Zero.

$$\nabla_{\overline{\mu}}$$
: $Q(\overline{u}) = 0$

Solve for
$$\overline{\mu}_{i}^{(l)}$$
, we get (e) $\overline{\chi}_{i}^{(l)}$ (j) $\overline{\chi}_{i}^{(l)}$ (in steadow l .

Solve for $\overline{\mu}_{i}^{(l)}$, we get $\overline{\chi}_{i}^{(l)}$ (j) $\overline{\chi}_{i}^{(l)}$ (j) $\overline{\chi}_{i}^{(l)}$ (in steadow l .

Now, compare 'the expressions I've K-Means and EM,

$$EM: \overline{\mu}_{i}(l) = \frac{\sum_{j=1}^{M} \left(\chi_{i}^{(k)}(j)\right) \overline{\pi}_{j}^{(k)}}{\sum_{j=1}^{M} \chi_{i}^{(k)}(j)} \overline{\pi}_{j}^{(k)}}$$

Some

 $\overline{\sum_{j=1}^{M} \chi_{i}^{(k)}(j)} \overline{\pi}_{j}^{(k)}$
 $\overline{\sum_{j=1}^{M} \chi_{i}^{(k)}(j)} \overline{\pi}_{j}^{(k)}}$
 $\overline{\sum_{j=1}^{M} \chi_{i}^{(k)}(j)} \overline{\pi}_{j}^{(k)}}$

Both are Identical! Then what is the difference ?

EM	K-Means
· Weignted average	O K-Means performs Hard average
⊙ x(i)(j) - Soft clustering	⊙ X; (1) - Hand clustering
(i) (j) € [0,1]	$\bigcirc \land (2)(j) \in \{0,1\}$
in the interval [0, 1]	(ii) can only take 2 parsible values
Example: 0.95	

Thousare, in EM, \propto ; (1) denote probabilities.

Previously, we around the Prior probabilities to be known probabilities: But here, we compute Prior can be computed as follows. The Portor probabilities Pi Sum of all Apostoriovi probabilities of points in climte ;

Estimate of Prior Probability in Iteration &