More Dataflow Analysis

Xiaokang Qiu Purdue University

ECE 468 Adapted from Kulkarni 2012

October 17, 2016

Steps to building analysis

- Step I: Choose lattice
- Step 2: Choose direction of dataflow (forward or backward)
- Step 3: Create transfer function
- Step 4: Choose confluence operator (i.e., what to do at merges)
 - Either join or meet in the lattice
- Let's walk through these steps for a new analysis

Liveness analysis

- Which variables are live at a particular program point?
- Used all over the place in compilers
 - Register allocation
 - Loop optimizations

Choose lattice

- What do we want to know?
 - At each program point, want to maintain the set of variables that are live
 - Lattice elements: sets of variables
 - Natural choice for lattice: powerset of variables!

Choose dataflow direction

- A variable is *live* if it is used later in the program without being redefined
 - At a given program point, we want to know information about what happens later in the program
 - This means that liveness is a backwards analysis
 - Recall that we did liveness backwards when we looked at single basic blocks

Create x-fer functions

- What do we do for a statement like:
- x = y + z
- If x was live "before" (i.e., live after the statement), it isn't now (i.e., is not live before the statement)
- If y and z were not live "before," they are now
- What about:
- x = x

Create x-fer functions

- Let's generalize
- For any statement s, we can look at which live variables are killed, and which new variables are made live (generated)
- Which variables are killed in s?
 - The variables that are defined in s: DEF(s)
- Which variables are made live in s?
 - The variables that are <u>used</u> in s: USE(s)
- If the set of variables that are live after s is X, what is the set of variables live before s?

$$T_s(X) = \mathbf{use}(s) \cup (X - \mathbf{def}(s))$$

Dealing with aliases

- Aliases, as usual, cause problems
- Consider

```
int x, y, r, s
int *z, *w;
if (...) z = &y else z = &x
if (...) w = &r else w = &s
*z = *w; //which variable is defined? which is used?
```

- What should USE(*z = *w) and DEF(*z = *w) be?
 - Keep in mind: the goal is to get a list of variables that may be live at a program point
- For now, assume there is no aliasing

Dealing with function calls

Similar problem as aliases:

```
int foo(int &x, int &y); //pass by reference!

void main() {
  int x, y, z;
  z = foo(x, y);
}
```

- Simple solution: functions can do anything redefine variables, use variables
 - So DEF(foo()) is { } and USE(foo()) is V
- Real solution: interprocedural analysis, which determines what variables are used and defined in foo

Choose confluence operator

- What happens at a merge point?
 - The variables live in to a merge point are the variables that are live along either branch
 - Confluence operator:
 Set union (□) of all live sets of outgoing edges

$$T_{merge} = \bigcup_{X \in succ(merge)} X$$

How to initialize analysis?

- At the end of the program, we know no variables are live → value at exit point is { }
 - What about if we're analyzing a single function? Need to make conservative assumption about what may be live
- What about elsewhere in the program?
 - We should initialize other sets to { }

An alternate approach

- Dataflow analyses like live-variable analysis are bit-vector analyses: are even more structured than regular dataflow analysis
 - Consistent lattice: powerset
 - Consistent transfer functions
- Many sources only talk about bitvector dataflow

Bit-vector lattices

- Consider a single element, V, of the powerset(S) lattice
- Each item in S either appears in V or does not: can represent using a single bit
 - Can represent V as a bit vector
 - ${a, b, c} = <1, 1, 1>$
 - { } = <0, 0, 0>
 - $\{b, c\} = <0, 1, 1>$
- \sqcup and \sqcap (which are just \cup and \cap) are simply bitwise \vee and \wedge , respectively

Eliminating merge nodes

- Many dataflow presentations do not use explicit merge nodes in CFG
- How do we handle this?
- Problem: now a node may be a statement and a merge point
- Solution: compose confluence operator and transfer functions
- Note: non-merge nodes have just one successor; this equation works for all nodes!

$$T(s) = \mathbf{use}(s) \cup ((\bigcup_{X \in succ(s)} X) - \mathbf{def}(s))$$

Simplifying matters

$$T(s) = \mathbf{use}(s) \cup ((\bigcup_{X \in succ(s)} X) - \mathbf{def}(s))$$

- Lets split this up into two different sets
 - OUT(s): the set of variables that are live *immediately* after a statement is executed
 - IN(s): the set of variables that are live immediately before a statement is executed

$$IN(s) = \mathbf{use}(s) \cup (OUT(s) - \mathbf{def}(s))$$

 $OUT(s) = \bigcup_{t \in succ(s)} IN(t)$

Generalizing

- USE(s) are the variables that become live due to a statement—they are generated by this statement
- DEF(s) are the variables that stop being live due to a statement—they are killed by this statement

$$IN(s) = \mathbf{gen}(s) \cup (OUT(s) - \mathbf{kill}(s))$$

 $OUT(s) = \bigcup_{t \in succ(s)} IN(t)$

Bit-vector analyses

- A bit-vector analysis is any analysis that
 - Operates over the powerset lattice, ordered by \subseteq and with \cup and \cap as its meet and join
 - Has transfer functions that can be written in the form:

$$IN(s) = \mathbf{gen}(s) \cup (OUT(s) - \mathbf{kill}(s))$$

 $OUT(s) = \bigcup_{t \in succ(s)} IN(t)$

- Are these transfer functions monotonic? (Hint: if f and g are monotonic, is $f \circ g$ monotonic?)
- gen and kill are dependent on the statement, but not on IN or OUT
- $^{\bullet}$ Things are a little different for forward analyses, and some analyses use \cap instead of \cup

Reaching definitions

- What definitions of a variable reach a particular program point
 - A definition of variable x from statement s reaches a statement t if there is a path from s to t where x is not redefined
- Especially important if x is used in t
 - Used to build def-use chains and use-def chains, which are key building blocks of other analyses
 - Used to determine dependences: if x is defined in s and that definition reaches t then there is a flow dependence from s to
 - We used this to determine if statements were loop invaraint
 - All definitions that reach an expression must originate from outside the loop, or themselves be invariant

Creating a reaching-def analysis

- Can we use a powerset lattice?
- At each program point, we want to know which definitions have reached a particular point
 - Can use powerset of set of definitions in the program
 - V is set of variables, S is set of program statements
 - Definition: $d \in V \times S$
 - Use a tuple, <v, s>
 - How big is this set?
 - At most $|V \times S|$ definitions

Forward or backward?

• What do you think?

Choose confluence operator

- Remember: we want to know if a definition may reach a program point
- What happens if we are at a merge point and a definition reaches from one branch but not the other?
 - We don't know which branch is taken!
 - We should union the two sets any of those definitions can reach
- We want to avoid getting too many reaching definitions \rightarrow should start sets at \bot

Transfer functions for RD

- Forward analysis, so need a slightly different formulation
 - Merged data flowing into a statement

$$IN(s) = \bigcup_{t \in pred(s)} OUT(t)$$

 $OUT(s) = \mathbf{gen}(s) \cup (IN(s) - \mathbf{kill}(s))$

- What are gen and kill?
 - gen(s): the set of definitions that may occur at s
 - e.g., gen(s: x = e) is $\langle x, s \rangle$
 - kill(s): all previous definitions of variables that are definitely redefined by s
 - e.g., kill(s: x = e) is $\langle x, * \rangle$

Available expressions

- We've seen this one before
- What is the lattice? powerset of all expressions appearing in a procedure
- Forward or backward?
- Confluence operator?

Transfer functions for meet

What do the transfer functions look like if we are doing a meet?

$$IN(S) = \bigcap_{t \in pred(s)} OUT(t)$$

 $OUT(S) = \mathbf{gen}(s) \cup (IN(S) - \mathbf{kill}(s))$

- gen(s): expressions that must be computed in this statement
- kill(s): expressions that use variables that may be defined in this statement
 - Note difference between these sets and the sets for reaching definitions or liveness
- Insight: gen and kill must never lead to incorrect results
 - Must not decide an expression is available when it isn't, but OK to be safe and say it isn't
 - Must not decide a definition doesn't reach, but OK to overestimate and say it does

Analysis initialization

- Remember our formalization
 - If we start with everything initialized to \perp , we compute the least fixpoint
 - If we start with everything initialized to \top , we compute the greatest fixpoint
- Which do we want? It depends!
 - Reaching definitions: a definition that may reach this point
 - We want to have as few reaching definitions as possible → use least fixpoint
 - Available expressions: an expression that was definitely computed earlier
 - We want to have as many available expressions as possible → use greatest fixpoint
 - Rule of thumb: if confluence operator is \sqcup , start with \bot , otherwise start with \top

Analysis initialization (II)

- The set at the entry of a program (for forward analyses) or exit of a program (for backward analyses) may be different
 - One way of looking at this: start statement and end statement have their own transfer functions
- General rule for bitvector analyses: no information at beginning of analysis, so first set is always { }

Very busy expressions

- An expression is very busy if it is computed on every path that leads from a program point
 - Why does this matter?
 - Can calculate very busy expressions early without wasting computation (since the expression is used at least once on every outgoing path) – this can save space
 - Good candidates for loop invariant code motion

Very busy expressions

- Lattice?
- Direction?
- Confluence operator?
- Initialization?
- Transfer functions?
 - Gen? Kill?

Four types of dataflow

- Analysis can either be forward or backward
- Analysis can either be over all paths or over any path
 - All paths: merges consider values from all paths
 - Any path: merges consider values from any path

	All paths	Any path
Forward	available expressions	reaching definitions
Backward	very busy expressions	liveness analysis

What kind of analysis is constant propagation?

Dataflow analysis precision

- So how good are the results of dataflow analysis?
- What is the best solution we can get?
 - Should determine information based on every path the actual program takes
 - This is undecidable! (what if the program loops?)
- More restrictive solution: meet over all paths
 - Determine information based on every possible path in the program (including paths the actual program may not take)
 - In general, this is also undecidable! (potentially infinite number of possible paths)

Dataflow analysis precision

- The solution to iterative dataflow analysis is less precise than the meet over all paths solution
 - \bullet More formally, if confluence operator is \neg
 - Greatest fixpoint
 ⊆ meet over all paths solution
 - e.g., for available expressions, calculated fixpoint does not have more available expressions than MOP solution
 - If confluence operator is □
 - Meet over all paths solution

 ☐ least fixpoint
 - e.g., for constant propagation, dataflow solution does not say a variable is constant if MOP says the variable is definitely not constant

Distributive analysis

- A dataflow analysis is distributive if, for all transfer functions f
- $f(x \cup y) = f(x) \cup f(y)$ (equivalent definition for \neg)
- If a dataflow analysis is distributive, then meet over all paths solution = dataflow solution
- Bitvector analyses are distributive
- Is constant propagation distributive?

Dataflow analysis speed

- A dataflow analysis is k-bounded if, for all functions f
- $\forall x . f^k(x) = x \sqcup f(x) \sqcup ... \sqcup f^{k-1}(x)$ (and equivalently for \Box)
 - Consider a cycle, which contains a merge point at a loop header. If an analysis is k-bounded, then as long as the value coming in to the loop stays constant, you do not need more than k iterations to converge
- A dataflow analysis is fast if it is k-bounded and k = 2
 - ullet Constant propagation is fast: after one cycle, a variable either stays constant or becomes op
- A dataflow analysis is rapid if it is fast and the solution for a cycle is independent of the entry node