米田引理

LATEX Definitions are here.

反变米田引理的陈述如下:

反变米田引理的证明如下:

1. \leftarrow : 考虑任意 (c_2F) 中的 etc: 根据 etc 及其所对应的上方右侧的交换图 我们可为每个对象 c' 定义其所对应的 c'^{n_2} , 于是便可构建一个完整的 η_2 。 易知 η_2 是一个自然变换 。

2. \Rightarrow : 考虑任意等式左侧的 η_1 : 若上述交换图成立 则可对任意 η_1 指派 $etc = \frac{1}{2} \operatorname{id}(\mathbf{c}^{\eta_1})$ 为 $\mathbf{c}_2 \mathbf{F}$ 中与之对应的元素;

为何构成同构呢?因为 1 和 2 的自然变换表达式本质上是一样的! c_2 唯一地确定了 η_2 , 反之 η_2 页唯一确定了 c_2 。

协变米田引理的陈述如下:

协变米田引理的证明如下:

1. \leftarrow : 考虑任意 $(c_1 F)$ 中的 etc: 根据 etc 及其所对应的上方右侧的交换图 我们可为每个对象 c' 定义其所对应的 c'^{n} , 于是便可构建一个完整的 η_1 。 易知 η_1 是一个自然变换 。

2. \Rightarrow : 考虑任意等式左侧的 η_1 : 若上述交换图成立 则可对任意 η_1 指派 etc = $\frac{1}{100}$ id $\frac{1}{100}$ 为 $\frac{1}{100}$ 中与之对应的元素;

为何构成同构呢?因为 1 和 2 的自然变换表达式本质上是一样的! c_1 唯一地确定了 η_1 , 反之 η_1 页唯一确定了 c_1 。