What is intelligence?

- Most of us share the intuition that there are <u>two ways a problem can be difficult</u>:
 - Lack of information/knowledge
 - Need to
 - ignore some information
 - · reason flexibly
 - · think fast
 - come up with a novel solution

1

What is intelligence?

- We also may share the intuition that there are multiple domains in which individuals can have different abilities:
 - Spatial reasoning
 - Verbal reasoning
 - Quantitative reasoning

Early intelligence testing

Impetus: 1904 French universal education law

Goal: Identify children who would benefit more from special

education than from the regular classes

3

Binet's approach

- Intelligence is not unitary or unchanging
 - reflects many processes
 - including <u>reasoning</u> and <u>judgment</u>
 - can't be measured on one scale, like height
- Empirical, limited approach to testing
 - Did the items help with the <u>practical task</u> of predicting which children would be held back in school?

Alfred Binet (1857-1911)

Binet's approach

- Designed age-appropriate tasks
 - e.g., at 2, fit shapes into correct holes
 - at 12, define 'government'
- Score = mental age

Alfred Binet (1857-1911)

5

Binet's approach

- Worried about ethics of broad testing
 - could create 'selffulfilling prophecy'
- Developed 'mental orthopedics'
 - special educational assistance for children identified by his test as needing help

Alfred Binet (1857-1911)

Further developments: The concept of IQ

- Stern developed "Intelligence Quotient" (IQ)
 - Difficult to compare scores across ages
 - Noticed ratio of 'mental age' to chronological age tended to remain constant
 - IQ = 100 x <u>Mental Age</u> Chronological Age
- Problem: growth rates aren't really constant
 - Mental age plateaus by adulthood

Wilhelm Stern (1871-1938)

7

IQs aren't IQs any more

Modern IQ – Deviation scores; How many of your age-mates did you outscore?

15% → IQ = 85

50% → IQ = 100

 $85\% \rightarrow IQ = 115$

98% → IQ = 130

Standard IQ tests

- "Stanford-Binet" test -- American revision of Binet's test that incorporated IQ
 - Overall IQ measure
 - Sub-scales: Verbal reasoning, Abstract/visual reasoning,
 Quantitative reasoning, Short-term memory
- Wechsler tests (WAIS-III & WISC-III)
 - Developed for adults & children
 - Now most widely used test

9

Standard IQ tests

WISC Verbal item types (e.g.):

Verbal arithmetic problems

What is a helicopter?

How are a hammer and a chisel alike?

Digit span: repeat these numbers in order when I'm finished

WISC Performance item types:

Children are shown a picture, such as a car with no wheels, and asked what's missing

Mazes: children draw a line through printed mazes

Theories of intelligence

- Interpretation and use of IQ scores have been driven by different views of what intelligence really is
 - Intelligence is mostly one thing -- single factor
 - Different aptitudes -- multiple factors

11

Spearman's 'g': One factor view

- 'g' = general intelligence
- Basic evidence:
 - different subtests are correlated with each other
 - that is, an individual who does well on one tends to do well on another
 - Spearman took this as evidence of an underlying core cognitive ability common to many tasks

Charles Spearman (1863-1945)

Multiple factors

- Thurstone:
 - Argued the shared correlation among different tests (g) was less impressive than the differences among *clusters of tests*
 - Multiple abilities
 - 7 "Primary mental abilities"

13

Thurstone's 7 primary mental abilities

- Verbal comprehension
- Word fluency
- Number
- Spatial visualization
- associative Memory
- perceptual Speed
- Reasoning

Is it more useful to think of intelligence is one thing (g)? Or as multiple PMA's?

Still very controversial:

- different tests do tend be correlated
- but it's also true that subtests in the same domain are even more highly correlated

Crystalized vs. fluid intelligence

Raymond Cattell's 2-factor theory:

Crystalized intelligence (g-c)

- Acquired knowledge
- e.g., verbal & numerical ability, historical facts, social conventions
- culturally based

Raymond B. Cattell (1905-1998)

5

Crystalized vs. fluid intelligence

Raymond Cattell's 2-factor theory:

Fluid intelligence (g-f)

- On-the-spot reasoning ability
- e.g., problem-solving, pattern recognition, ability to acquire novel concepts

Raymond B. Cattell (1905-1998)

Raven's Progressive Matrices Test

A test of Fluid intelligence

17

Support for Cattell's view

- Tests of fluid intelligence do not strongly correlate with tests of crystallized intelligence
- And *g-f* and *g-c* develop differently

IQ is not unchanging: Influences of schooling

(Cahan & Cahan, 1989)

- School cut-offs: Children only a little different in age can be in different grades in school
- Scores on IQ sub-tests increase with age AND schooling
 - Children who are the same age but in a higher grade score higher
- Schooling vs. age matter more vs. less for different sub-tests

19

IQ is not unchanging: Influences of schooling (Cahan & Cahan, 1989)

- School cut-offs: Children only a little different in age can be in different grades in school
- Scores on IQ sub-tests increase with age AND schooling
 - Children who are the same age but in a higher grade score higher
- Schooling vs. age matter more vs. less for different sub-tests

IQ also changes with generations: The Flynn effect

- Possible explanations?
 - Better nutrition
 - Changes in education, and access to education

Is IQ useful?

- As a predictor of achievement ...?
 - Predicts school performance moderately well (this was Binet's original goal)
- Job performance outside of school?
 - IQ predicts better on-the-job evaluations during training
 - Not as predictive once experienced
 - Predictive strength depends on the nature of the job

23

IQ is not the only predictor of success

- or even the strongest
- "self-discipline" is a better predictor of grades in high school than IQ (Duckworth & Seligman, 2005)
 - and predicts college grades better than SAT scores (Wolfe & Johnson, 1995)
 - you'll hear more about achievement motivation, delay of gratification, etc., later in the semester!!

Cultural effects on IQ

• Why we can't simply compare test scores across different social or cultural groups

25

Cultural effects on IQ

Example:

- There are more men than women in the higher reaches of the math, engineering, and science fields.
- Some argue this is primarily because
 - fewer women have the highest aptitude in these fields
 - & these sex differences are genetic: women and girls are intrinsically less able in these fields

Cultural effects on IQ

But aren't there other explanations?

- Women & men's performance on tests does show subtly different profiles
 - verbal fluency vs. verbal analogies
 - arithmetic calculation vs. math word problems
 - memory for spatial location vs. geometric configuration of an environment
- But these differences are very small (big overlap in

Liz Spelke

distributions; Hyde, 2005)

27

Note. Two normal distributions that are 0.21 standard deviations apart (i.e., d=0.21). This is the approximate magnitude of the gender difference in self-esteem, averaged over all samples, found by Kling et al. (1999). From "Gender Differences in Self-Esteem: A Meta-Analysis," by K. C. Kling, J. S. Hyde, C. J. Showers, and B. N. Buswell, 1999, Psychological Bulletin, 125, p. 484. Copyright 1999 by the American Psychological Association.

Cultural effects on IQ

But aren't there other explanations?

- Women & men's performance on tests does show subtly different profiles
 - verbal fluency vs. verbal analogies
 - arithmetic calculation vs. math word problems
 - memory for spatial location vs. geometric configuration of an environment
- And these differences arise late in development
 - makes it difficult to separate intrinsic factors from social/cultural factors that also affect development

29

Liz Spelke

A classic experiment

Rosenthal & Jacobson, 1966

- Nonverbal intelligence test was administered to all children in an elementary school
- Test described to teachers as "designed to predict academic blooming' or intellectual gain"

Key Manipulation:

- Each teacher was told that some particular students (about 20%) "would show unusual intellectual gains during the academic year", based on the results of the test.
 - These students had really been chosen randomly.

A classic experiment Rosenthal & Jacobson, 1966

- Eight months later, the intelligence test was administered again.
- What happened? What do you think?

31

Self-fulfilling prophecy Rosenthal & Jacobson, 1966

Table 1. Mean Gains in IQ

Grade	Controls		Expe	Experimentals	
	M	σ	M	σ	
1	12.0	16.6	27.4	12.5	15.4
2	7.0	10.0	16.5	18.6	9.5
3	5.0	11.9	5.0	9.3	0.0
4	2.2	13.4	5.6	11.0	3.4
5	17.5	13.1	17.4	17.8	-0.1
6	10.7	10.0	10.0	6.5	-0.7
Weighted M	8.4*	13.5	12.2**	15.0	3.8

^{*} Mean number of children per grade = 42.5

^{**} Mean number of children per grade = 10.8

Self-fulfilling prophecy Rosenthal & Jacobson, 1966

Table 1. Mean Gains in IQ

Grade	Co	ntrols	Experi	Diff.	
	M	σ	M	σ	_
1	12.0	16.6	27.4	12.5	15.4
2	7.0	10.0	16.5	18.6	9.5
3	5.0	11.9	5.0	9.3	0.0
4	2.2	13.4	5.6	11.0	3.4
5	17.5	13.1	17.4	17.8	-0.1
6	10.7	10.0	10.0	6.5	-0.7
Weighted M	8.4*	13.5	12.2**	15.0	3.8

 $^{^{*}}$ Mean number of children per grade = 42.5

Why the age effect?

- 1) Younger children might be more susceptible to expectations communicated by the teacher.
- 2) Younger children have less well-established reputations, so the information fed to the teachers is more credible.

33

Self-fulfilling prophecy

Rosenthal & Jacobson, 1966

Table 1. Mean Gains in IQ

Grade	Controls			Exp	Diff.	
	М	σ		М	σ	
1	12.0	16.6		27.4	12.5	15.4
2	7.0	10.0		16.5	18.6	9.5
3	5.0	11.9		5.0	9.3	0.0
4	2.2	13.4		5.6	11.0	3.4
5	17.5	13.1		17.4	17.8	-0.1
6	10.7	10.0		10.0	6.5	-0.7
Weighted M	8.4*	13.5	1	12.2**	15.0	3.8

 $^{^*}$ Mean number of children per grade = 42.5

How are teachers' expectations communicated?

Which of these behaviors actually influence children? How?

^{**} Mean number of children per grade = 10.8

^{**} Mean number of children per grade = 10.8

Implications for thinking about intelligence testing?

• Especially about interpreting differences between cultural groups as intrinsic differences in ability

A cultural influence on intellectual development: Stereotypes

<u>Stereotypes</u> – society-wide beliefs about certain social groups as a whole (wide individual variation is ignored)

A prevalent negative stereotype:

• Women aren't good at math and science.

37

A cultural influence on intellectual development: Stereotypes

• <u>Stereotypes</u> can turn into <u>self-fulfilling prophecies</u> by impairing performance: Stereotype threat

Claude Steele

A cultural influence on intellectual development: Stereotypes

• <u>Stereotypes</u> can turn into <u>self-fulfilling prophecies</u> by impairing performance:

If we are in a situation for which a negative stereotype about our group applies, we fear the prospect of being treated stereotypically, or (worse) conforming to the stereotype.

- Fear of being reduced to a stereotype (*stereotype threat*) can impair performance.
- Impaired performance confirms the stereotype!
- If stereotype threat is chronic, it can lead to *disidentification* with the academic domain.

39

Women in math

Spencer, Steele, & Quinn (1999)

Participants: male and female college students, equally good at math (based on grades and SATs) and interested in math

Task: difficult questions from math GRE

Key Manipulation:

- Half were told that the test <u>had never</u> revealed gender differences in the past.
- Half were told that the test <u>had</u> shown gender differences in the past.

Women in math

Spencer, Steele, & Quinn (1999)

When stereotype was not a threat (the No-gender-difference condition), women did as well as men

-- as we would expect based on their matched grades & SATs!

Many similar results involving other stereotypes, other groups

Are children susceptible to stereotype threat? Ambady et al., 2001

- Previous results with adults:
 - Asian-American women did <u>better</u> on a math test following an <u>ethnic-identity prime</u>
 - ... and worse following a gender-identity prime
- What should we expect in school children?
 - As early as 1st grade, children believe boys are better at math than girls
 - Though gender differences in math ability do not appear until adolescence (Hyde et al., 1990)

43

Are children susceptible to stereotype threat? Ambady et al., 2001

Participants: Asian-American girls, K to 8th grade

Task: Standardized math test (Iowa test of basic skills)

Manipulation:

- ethnic identity prime:
 - K-2nd: color in a picture of children eating rice from a bowl with chopsticks
 - 3rd-8th: questionnaire related to ethnicity

Are children susceptible to stereotype threat? Ambady et al., 2001

Participants: Asian-American girls, K to 8th grade

Task: Standardized math test (Iowa test of basic skills)

Manipulation:

- gender identity prime:
 - K-2nd: color in a picture of girl holding a doll
 - 3rd-8th: questionnaire related to gender

45

Are children susceptible to stereotype threat? Ambady et al., 2001

Participants: Asian-American girls, K to 8th grade

Task: Standardized math test (Iowa test of basic skills)

Manipulation:

- <u>control</u> prime condition:
 - K-2nd: color a landscape scene
 - 3rd-8th: questionnaire unrelated to gender or ethnicity

Implications for thinking about intelligence testing?

- Especially about differences between groups!
 - Performance on tests varies across contexts
 - Can be pushed around by subtle activation of culturally entrenched stereotypes

49

Summary

- Intelligence tests can be useful for practical purposes
- There are many theories of what is the most useful way to think about intelligence:
 - Single factor -- 'g'
 - Two factors -- g-c, g-f
 - Multiple intelligences
- · Academic achievement can be predicted by IQ
- · But achievement depends on many other factors
 - Including subtle (or not-so-subtle) signs of what others expect from us