Geometria Riemanniana. Curs 2023-2024

Seminari 2. Models del pla hiperbòlic

(I) Model del semiplà. En el model del semiplà $\mathbb{H}^2 = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ la mètrica s'expressa com

$$ds^2 = \frac{dx^2 + dy^2}{y^2}.$$

Utilitzem la variable complexa $z=x+iy, \mathbb{H}^2=\{z\in\mathbb{C}\mid \mathrm{Im}(z)>0\}$ i $ds^2=\frac{dzd\overline{z}}{\mathrm{Im}(z)^2}$.

Exercici 1. Demostreu:

- (i) Tota homografia $z\mapsto \frac{az+b}{cz+d}$ amb $a,b,c,d\in\mathbb{R},\ ad-bc>0$ és una isometria de $\mathbb{H}^2.$
- (ii) El grup d'isometries que preserven l'orientació satisfà

$$\mathrm{Isom}^+(\mathbb{H}^2)\cong\mathrm{PSL}_2(\mathbb{R})=\mathrm{SL}_2(\mathbb{R})/\{\pm\mathrm{Id}\}$$

- (iii) Utilitzeu els apartats anteriors i l'exercici 14 de la llista 2 per descriure les geodèsiques de \mathbb{H}^2 .
- (II) Model del disc.

En aquest model $\mathbb{D}^2 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$, la mètrica s'expressa com

$$ds^2 = 4\frac{dx^2 + dy^2}{(1 - x^2 - y^2)^2}.$$

En variable complexa: $\mathbb{D}^2=\{z\in\mathbb{C}\mid z\overline{z}<1\}$ i $ds^2=4\frac{dzd\overline{z}}{(1-z\overline{z})^2}$.

Exercici 2. Considereu l'esfera de Riemann $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\} \cong \mathbb{CP}^1$.

- (i) Trobeu una homografia $z\mapsto \frac{az+b}{cz+d}$ amb $a,b,c,d\in\mathbb{C},$ que porti 0, 1, ∞ a 1, i, -1, respectivament.
- (ii) Demostreu que l'homografia anterior és una isometria entre \mathbb{H}^2 i \mathbb{D}^2 .
- (iii) Descriviu les geodèsiques de \mathbb{D}^2 .
- (iv) Demostreu que el diferencial de longitud d'arc (o element de línia) d'un arc de circunferència de radi $\rho > 0$ i paràmetre angular $\theta \in (0, 2\pi)$ és

$$ds = \sinh(\rho)d\theta$$

(v) Quina és l'expressió de la mètrica en coordenades polars $\rho > 0$ i $\theta \in (0, 2\pi)$?

(III) Model de l'hiperboloide.

Considerem l'espai \mathbb{R}^2_1 , amb el producte de Lorentz

$$(x_0, x_1, x_2) \cdot (y_0, y_1, y_2) = -x_0 y_0 + x_1 y_1 + x_2 y_2$$

i el full superior de l'hiperboloide

$$H = \{x \in \mathbb{R}^2 \mid x \cdot x = -1, \ x_0 > 0\}$$

Exercici3. La restricci6 del producte de Lorentz és una mètrica de Riemann a H.

Considerem l'aplicació de H al pla $x_0 = 0$, que envia $x \in H$ a la intersecció de $x_0 = 0$ amb la recta que uneix x amb (-1,0,0).

Exercici 4. L'aplicació anterior indueix una isometria entre H i \mathbb{D}^2 . (Per simplificar càlculs, podeu fer servir coordenades $x_1 = r \cos \theta$ i $x_2 = r \sin \theta$ al pla).

Siguin
$$J = \begin{pmatrix} -1 & 1 \\ & 1 \end{pmatrix}$$
,

$$SO(2,1) = \{ A \in SL_3(\mathbb{R}) \mid A^t J A = J \}$$

i $SO^+(2,1) = \{A \in SO(2,1) \mid AH = H\}$ (és a dir, les matrius de SO(2,1) que preserven els fulls de l'hiperboloide i no els permuten).

Exercici 5. (i) Demostreu que $\text{Isom}^+(H) \cong \text{SO}^+(2,1)$

- (ii) Deduïu l'isomorfisme de grups de Lie $SO^+(2,1) \cong PSL_2(\mathbb{R})$.
- (iii) Demostreu que les geodèsiques de H són de la forma $H\cap\Pi,$ on $\Pi\subset\mathbb{R}^2_1$ és un pla que passa per l'orígen.

Font de la imatge: Wikipedia

(IV) **Model projectiu**. És la projectivització del model anterior, és a dir enviem un punt $p \in H$ a la intersecció de la recta que passa per 0 i p amb el pla $x_0 = 1$. És un disc en una carta afí del pla projectiu (no és el de la imatge, que està en el pla $x_0 = 0$ i correspon al model del disc). Malauradament, no tenim temps de fer cap exercici.