ELSEVIER

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

The structure of split regular BiHom-Lie algebras*

Antonio J. Calderón ^{a,*}, José M. Sánchez ^b

- ^a Department of Mathematics, Faculty of Sciences, University of Cádiz, Campus of Puerto Real, 11510 Puerto Real, Cádiz, Spain
- ^b CMUC, Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal

ARTICLE INFO

Article history: Received 16 March 2016 Accepted 7 August 2016 Available online 7 September 2016

Keywords:
BiHom-Lie algebra
Hom-Lie algebra
Lie algebra
Root
Root space
Structure theory

ABSTRACT

We introduce the class of split regular BiHom-Lie algebras as the natural extension of the one of split Hom-Lie algebras and so of split Lie algebras. We show that an arbitrary split regular BiHom-Lie algebra $\mathfrak L$ is of the form $\mathfrak L=U+\sum_j I_j$ with U a linear subspace of a fixed maximal abelian subalgebra H and any I_j a well described (split) ideal of $\mathfrak L$, satisfying $[I_j,I_k]=0$ if $j\neq k$. Under certain conditions, the simplicity of $\mathfrak L$ is characterized and it is shown that $\mathfrak L$ is the direct sum of the family of its simple ideals.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and first definitions

A BiHom-algebra is an algebra in such a way that the identities defining the structure are twisted by two homomorphisms ϕ , ψ . This class of algebras was introduced from a categorical approach in [1] as an extension of the class of Homalgebras. The origin of Hom-structures can be found in the physics literature around 1900, appearing in the study of quasi-deformations of Lie algebras of vector fields, in particular q-deformations of Witt and Virasoro algebras, [2]. Since then, many authors have been interested in the study of Hom-algebras, mainly motivated by their applications in mathematical physics (see for instance the recent references [3–7]), but we would like to refer to [8,9], and the references therein, for a good review of the matter. The Ref. [1] is also fundamental for getting the basic notions, motivations and results on BiHom-algebras.

In the present paper we introduce the class of split regular BiHom-Lie algebras $\mathfrak L$ as the natural extension of the one of split Hom-Lie algebras and so of split Lie algebras, and study its structure. In Section 2 we develop connections of roots techniques in the framework of BiHom-algebras, which becomes the main tool in our study. In Section 3 we apply all of these techniques to show that $\mathfrak L$ is of the form $\mathfrak L = U + \sum I_j$ with U a linear subspace of a fixed maximal abelian subalgebra H and any I_j a well described ideal of $\mathfrak L$, satisfying $[I_j, I_k] = 0$ if $j \neq k$. Finally, in Section 4, and under certain conditions, the simplicity of $\mathfrak L$ is characterized and it is shown that $\mathfrak L$ is the direct sum of the family of its simple ideals.

Definition 1.1. A BiHom-Lie algebra over a field \mathbb{K} is a 4-tuple $(\mathfrak{L}, [\cdot, \cdot], \phi, \psi)$, where \mathfrak{L} is a \mathbb{K} -linear space, $[\cdot, \cdot] : \mathfrak{L} \times \mathfrak{L} \to \mathfrak{L}$ a bilinear map and $\phi, \psi : \mathfrak{L} \to \mathfrak{L}$ linear mappings satisfying the following identities:

E-mail addresses: ajesus.calderon@uca.es (A.J. Calderón), txema.sanchez@uca.es (J.M. Sánchez).

^{\$\}times\$ Supported by the PCI of the UCA 'Teoría de Lie y Teoría de Espacios de Banach', by the PAI with project numbers FQM298, FQM7156 and by the project of the Spanish Ministerio de Educación y Ciencia MTM2013-41208-P. Second author acknowledges the University of Cádiz (grant no. 007) for the contract research and the Fundao para a Ciencia e a Tecnologia from Portugal for the grant with reference SFRH/BPD/101675/2014.

^{*} Corresponding author.

- 1. $\phi \circ \psi = \psi \circ \phi$,
- 2. $[\psi(x), \phi(y)] = -[\psi(y), \phi(x)]$, (BiHom-skew-symmetry)
- 3. $[\psi^2(x), [\psi(y), \phi(z)]] + [\psi^2(y), [\psi(z), \phi(x)]] + [\psi^2(z), [\psi(x), \phi(y)]] = 0$, (BiHom-Jacobi identity),

for any $x, y, z \in \mathcal{L}$. When ϕ, ψ furthermore are algebra automorphisms it is said that \mathcal{L} is a regular BiHom-Lie algebra.

Lie algebras are examples of BiHom-Lie algebras by taking $\phi=\psi=\mathit{Id}$. Hom-Lie algebras are also examples of BiHom-Lie algebras by considering $\psi=\phi$.

Example 1.1. Let $(L, [\cdot, \cdot])$ be a Lie algebra and $\phi, \psi: L \to L$ two automorphisms. If we endow the underlying linear space L with a new product $[\cdot, \cdot]': L \times L \to L$ defined by $[x, y]':=[\phi(x), \psi(y)]$ for any $x, y \in L$, we have that $(L, [\cdot, \cdot]', \phi, \psi)$ becomes a regular BiHom-Lie algebra.

Throughout this paper $\mathfrak L$ will denote a regular BiHom-Lie algebra. A *subalgebra* A of $\mathfrak L$ is a linear subspace such that $[A,A]\subset A$ and $\phi(A)=\psi(A)=A$. A subalgebra I of $\mathfrak L$ is called an *ideal* if $[I,\mathfrak L]\subset I$, (and so necessarily $[\mathfrak L,I]\subset I$). A regular BiHom-Lie algebra $\mathfrak L$ is called *simple* if $[\mathfrak L,\mathfrak L]\neq 0$ and its only ideals are $\{0\}$ and $\mathfrak L$.

Finally, we would like to note that $\mathfrak L$ is considered of arbitrary dimension and over an arbitrary base field $\mathbb K$ and that we will denote by $\mathbb N$ the set of all non-negative integers and by $\mathbb Z$ the set of all integers.

Let us introduce the class of split algebras in the framework of regular BiHom-Lie algebras \mathfrak{L} . First, we recall that a Lie algebra $(L, [\cdot, \cdot])$, over a base field \mathbb{K} , is called *split* respect to a maximal abelian subalgebra H of L, if L can be written as the direct sum

$$L = H \oplus \left(\bigoplus_{\alpha \in \Gamma} L_{\alpha}\right)$$

where

$$L_{\alpha} := \{v_{\alpha} \in L : [h, v_{\alpha}] = \alpha(h)v_{\alpha} \text{ for any } h \in H\}$$

being any $\alpha: H \longrightarrow \mathbb{K}$, $\alpha \in \Gamma$, a non-zero linear functional on H such that $L_{\alpha} \neq 0$.

Let us return to a regular BiHom-Lie algebra \mathfrak{L} . Denote by H a maximal abelian, (in the sense [H,H]=0), subalgebra of \mathfrak{L} . For a linear functional

$$\alpha: H \longrightarrow \mathbb{K}$$
,

we define the *root space* of \mathfrak{L} (respect to H) associated to α as the subspace

$$\mathfrak{L}_{\alpha} := \{ v_{\alpha} \in \mathfrak{L} : [h, \phi(v_{\alpha})] = \alpha(h)\phi\psi(v_{\alpha}) \text{ for any } h \in H \}.$$

The elements $\alpha: H \longrightarrow \mathbb{K}$ satisfying $\mathfrak{L}_{\alpha} \neq 0$ are called *roots* of \mathfrak{L} with respect to H and we denote $\Lambda := \{\alpha \in (H)^* \setminus \{0\} : \mathfrak{L}_{\alpha} \neq 0\}$.

Definition 1.2. We say that \mathfrak{L} is a split regular BiHom-Lie algebra, with respect to H, if

$$\mathfrak{L}=H\oplus\left(\bigoplus_{\alpha\in\Lambda}\mathfrak{L}_{\alpha}\right).$$

We also say that Λ is the roots system of \mathfrak{L} .

As examples of split regular BiHom-Lie algebras we have the split Hom-Lie algebras and the split Lie algebras. Hence, the present paper extends the results in [10] and in [11]. Let us see another example.

Example 1.2. Let $(L = H \oplus (\bigoplus_{\alpha \in \Gamma} L_{\alpha}), [\cdot, \cdot])$ be a split Lie algebra and $\phi, \psi : L \to L$ two automorphisms such that $\phi(H) = \psi(H) = H$. By Example 1.1, we know that $(L, [\cdot, \cdot]', \phi, \psi)$, where $[x, y]' := [\phi(x), \psi(y)]$ for any $x, y \in L$, is a regular BiHom-Lie algebra. Then it is straightforward to verify that the direct sum

$$L = H \oplus \left(\bigoplus_{\alpha \in \Gamma} L_{\alpha\psi^{-1}}\right)$$

makes of the regular BiHom-Lie algebra $(L, [\cdot, \cdot]', \phi, \psi)$ a split regular BiHom-Lie algebra, being the roots system $\Lambda = \{\alpha\psi^{-1} : \alpha \in \Gamma\}$.

From now on $\mathfrak{L}=H\oplus(\bigoplus_{\alpha\in\Lambda}\mathfrak{L}_{\alpha})$ denotes a split regular BiHom-Lie algebra. Also, and for an easier notation, the mappings $\phi|_{H},\psi|_{H},\phi|_{H}^{-1},\psi|_{H}^{-1}:H\to H$ will be denoted by $\phi,\psi,\phi^{-1},\psi^{-1}$ respectively.

Lemma 1.1. For any $\alpha \in \Lambda \cup \{0\}$ the following assertions hold.

1.
$$\phi(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha\phi^{-1}}$$
 and $\psi(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha\psi^{-1}}$.

2.
$$\phi^{-1}(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha\phi}$$
 and $\psi^{-1}(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha\psi}$.

Proof. 1. For any $h \in H$ and $v_{\alpha} \in \mathfrak{L}_{\alpha}$, since

$$[h, \phi(v_{\alpha})] = \alpha(h)\phi\psi(v_{\alpha}) \tag{1}$$

we have that by writing $h' = \phi(h)$ then

$$[h', \phi^{2}(v_{\alpha})] = \phi([h, \phi(v_{\alpha})]) = \alpha(h)\phi^{2}\psi(v_{\alpha}) = \alpha\phi^{-1}(h')\phi^{2}\psi(v_{\alpha}) = \alpha\phi^{-1}(h')\phi\psi(\phi(v_{\alpha})).$$

That is, $\phi(v_{\alpha}) \in \mathfrak{L}_{\alpha\phi^{-1}}$ and so

$$\phi(\mathfrak{L}_{\alpha}) \subset \mathfrak{L}_{\alpha\phi^{-1}}.\tag{2}$$

Now, let us show

$$\mathfrak{L}_{\alpha\phi^{-1}} \subset \phi(\mathfrak{L}_{\alpha}).$$

Indeed, for any $h \in H$ and $v_{\alpha} \in \mathfrak{L}_{\alpha}$, Eq. (1) shows $[\phi^{-1}(h), v_{\alpha}] = \alpha(h)\psi(v_{\alpha})$. From here we get $[\phi(h), v_{\alpha}] = \alpha\phi^{2}(h)\psi(v_{\alpha})$ and conclude

$$\phi^{-1}(\mathfrak{L}_{\alpha}) \subset \mathfrak{L}_{\alpha\phi}$$
. (3)

Hence, since for any $x \in \mathcal{L}_{\alpha\phi^{-1}}$ we can write $x = \phi(\phi^{-1}(x))$ and by Eq. (3) we have $\phi^{-1}(x) \in \mathcal{L}_{\alpha}$, we conclude $\mathcal{L}_{\alpha\phi^{-1}} \subset \phi(\mathcal{L}_{\alpha})$. This fact together with Eq. (2) shows $\phi(\mathcal{L}_{\alpha}) = \mathcal{L}_{\alpha\phi^{-1}}$.

To verify

$$\psi(\mathfrak{L}_{\alpha}) \subset \mathfrak{L}_{\alpha b^{-1}},$$
 (4)

observe that Eq. (1) gives us $[\psi(h), \psi\phi(v_{\alpha})] = \alpha(h)\psi\phi\psi(v_{\alpha})$ and so $[\psi(h), \phi\psi(v_{\alpha})] = \alpha\psi^{-1}(\psi(h))\phi\psi(\psi(v_{\alpha}))$. Since Eq. (1) and the identity $\psi^{-1}\phi = \phi\psi^{-1}$ also give us

$$\psi^{-1}(\mathfrak{L}_{\alpha}) \subset \mathfrak{L}_{\alpha i k}$$
, (5)

we conclude as above that $\psi(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha\psi^{-1}}$.

2. The fact $\phi^{-1}(\mathfrak{L}_{\alpha}) \subset \mathfrak{L}_{\alpha\phi}$ is Eq. (3), while the fact $\mathfrak{L}_{\alpha\phi} \subset \phi^{-1}(\mathfrak{L}_{\alpha})$ is consequence of writing any element $x \in \mathfrak{L}_{\alpha\phi}$ of the form $x = \phi^{-1}(\phi(x))$ and apply Eq. (2). We can argue similarly with Eqs. (5) and (4) to get $\psi^{-1}(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha\psi}$.

Lemma 1.2. For any $\alpha, \beta \in \Lambda \cup \{0\}$ we have $[\mathfrak{L}_{\alpha}, \mathfrak{L}_{\beta}] \subset \mathfrak{L}_{\alpha\phi^{-1} + \beta\psi^{-1}}$.

Proof. For each $h \in H$, $v_{\alpha} \in \mathfrak{L}_{\alpha}$ and $v_{\beta} \in \mathfrak{L}_{\beta}$ we can write

$$[h, \phi([v_{\alpha}, v_{\beta}])] = [\psi^{2}\psi^{-2}(h), \phi([v_{\alpha}, v_{\beta}])].$$

So. by denoting $h' = \psi^{-2}(h)$, we can apply BiHom-Jacobi identity and BiHom-skew-symmetry to get

$$\begin{split} [\psi^{2}(h'),\phi([v_{\alpha},v_{\beta}])] &= [\psi^{2}(h'),[\psi\psi^{-1}\phi(v_{\alpha}),\phi(v_{\beta})]] \\ &= -[\psi\phi(v_{\alpha}),[\psi(v_{\beta}),\phi(h')]] - [\psi^{2}(v_{\beta}),[\psi(h'),\phi\psi^{-1}\phi(v_{\alpha})]] \\ &= [\psi\phi(v_{\alpha}),[\psi(h'),\phi(v_{\beta})]] - [\psi^{2}(v_{\beta}),[\phi\phi^{-1}\psi(h'),\phi\psi^{-1}\phi(v_{\alpha})]] \\ &= [\psi\phi(v_{\alpha}),[\psi(h'),\phi(v_{\beta})]] - [\psi(\psi(v_{\beta})),\phi([\phi^{-1}\psi(h'),\psi^{-1}\phi(v_{\alpha})])] \\ &= [\psi\phi(v_{\alpha}),[\psi(h'),\phi(v_{\beta})]] + [[\psi^{2}\phi^{-1}(h'),\phi(v_{\alpha})],\phi\psi(v_{\beta})] \\ &= \beta\psi(h')[\psi\phi(v_{\alpha}),\phi\psi(v_{\beta})] + [\alpha\psi^{2}\phi^{-1}(h')[\phi\psi(v_{\alpha})],\phi\psi(v_{\beta})] \\ &= (\beta\psi+\alpha\psi^{2}\phi^{-1})(h')[\psi\phi(v_{\alpha}),\phi\psi(v_{\beta})] \\ &= (\beta\psi+\alpha\psi^{2}\phi^{-1})(h')[\phi\psi(v_{\alpha}),\phi\psi(v_{\beta})] \\ &= (\beta\psi+\alpha\psi^{2}\phi^{-1})(h')[\phi\psi(v_{\alpha}),\phi\psi(v_{\beta})] \\ &= (\beta\psi+\alpha\psi^{2}\phi^{-1})(h')[\phi\psi(v_{\alpha}),\phi\psi(v_{\beta})]. \end{split}$$

Taking now into account $h' = \psi^{-2}(h)$ we have shown

$$[h, \phi([v_{\alpha}, v_{\beta}])] = (\beta \psi^{-1} + \alpha \phi^{-1})(h)\phi \psi([v_{\alpha}, v_{\beta}]).$$

From here $[\mathfrak{L}_{\alpha}, \mathfrak{L}_{\beta}] \subset \mathfrak{L}_{\alpha\phi^{-1}+\beta\psi^{-1}}$. \square

Lemma 1.3. The following assertions hold.

- 1. If $\alpha \in \Lambda$ then $\alpha \phi^{-z_1} \psi^{-z_2} \in \Lambda$ for any $z_1, z_2 \in \mathbb{Z}$.
- 2. $\mathfrak{L}_0 = H$.

Proof. 1. Consequence of Lemma 1.1-1, 2.

2. The fact $H \subset \mathfrak{L}_0$ is a direct consequence of the character of abelian subalgebra of H. Let us now show $\mathfrak{L}_0 \subset H$. For any $0 \neq x \in \mathcal{L}_0$ we can express $x = h \oplus (\bigoplus_{i=1}^m v_{\alpha_i})$ with $h \in H$, any $v_{\alpha_i} \in \mathcal{L}_{\alpha_i}$ and with $\alpha_i \neq \alpha_i$ when $i \neq j$. Since for any $h' \in H$ we have [h',x]=0, then Lemma 1.1 allows us to get $0=[h',x]=[h',h+\bigoplus_{i=1}^m\phi\phi^{-1}(v_{\alpha_i})]=\bigoplus_{i=1}^m\alpha_i\phi(h')\psi(v_{\alpha_i})=0$. From here, Lemma 1.1 together with the fact $\alpha_i\neq 0$ gives us that any $v_{\alpha_i}=0$. Hence $x=h\in H$. \square

Maybe the main topic in the theory of Hom-algebras consists in studying if a known result for a class of, non-deformed, algebra still holds true for the corresponding class of Hom-algebras. Following this line, the present paper shows how the structure theorems getting in [11] and in [10] for split Lie algebras and split regular Hom-Lie algebras respectively, also hold for the class of split regular BiHom-Lie algebras. We would like to know that all of the constructions carried out along this paper strongly involve both of the structure mappings ϕ and ψ , which makes the proofs different from the non-bi-deformed cases.

2. Connections of roots techniques

As in the previous section, \mathcal{L} denotes a split regular BiHom-Lie algebra and

$$\mathfrak{L} = \mathfrak{L}_0 \oplus \left(\bigoplus_{\alpha \in \Lambda} \mathfrak{L}_\alpha\right)$$

the corresponding root spaces decomposition. Given a linear functional $\alpha: H \to \mathbb{K}$, we denote by $-\alpha: H \to \mathbb{K}$ the element in H^* defined by $(-\alpha)(h) := -\alpha(h)$ for all $h \in H$. We also denote by

$$-\Lambda := \{-\alpha : \alpha \in \Lambda\}$$
 and $\pm \Lambda := \Lambda \dot{\cup} (-\Lambda)$.

Definition 2.1. Let α , $\beta \in \Lambda$. We will say that α is connected to β if

- Either $\beta = \epsilon \alpha \phi^{z_1} \psi^{z_2}$ for some $z_1, z_2 \in \mathbb{Z}$ and $\epsilon \in \{1, -1\}$, or
- Either there exists $\{\alpha_1, \alpha_2, \dots, \alpha_k\} \subset \pm \Lambda$, with $k \geq 2$, such that

Either there exists
$$\{\alpha_1, \alpha_2, \dots, \alpha_k\} \subset \pm \Lambda$$
, with $k \ge 2$, such 1. $\alpha_1 \in \{\alpha \phi^{-n} \psi^{-r} : n, r \in \mathbb{N}\}$.
2. $\alpha_1 \phi^{-1} + \alpha_2 \psi^{-1} \in \pm \Lambda$, $\alpha_1 \phi^{-2} + \alpha_2 \phi^{-1} \psi^{-1} + \alpha_3 \psi^{-1} \in \pm \Lambda$, $\alpha_1 \phi^{-3} + \alpha_2 \phi^{-2} \psi^{-1} + \alpha_3 \phi^{-1} \psi^{-1} + \alpha_4 \psi^{-1} \in \pm \Lambda$,

$$\alpha_1 \varphi + \alpha_2 \varphi + \varphi + \alpha_3 \varphi + \varphi + \alpha_4 \varphi \in \pm \Lambda$$
.....

$$\alpha_1 \phi^{-i} + \alpha_2 \phi^{-i+1} \psi^{-1} + \alpha_3 \phi^{-i+2} \psi^{-1} + \dots + \alpha_i \phi^{-1} \psi^{-1} + \alpha_{i+1} \psi^{-1} \in \pm \Lambda,$$

 $\alpha_1\phi^{-k+2} + \alpha_2\phi^{-k+3}\psi^{-1} + \alpha_3\phi^{-k+4}\psi^{-1} + \dots + \alpha_{k-2}\phi^{-1}\psi^{-1} + \alpha_{k-1}\psi^{-1} \in \pm \Lambda.$ 3. $\alpha_1\phi^{-k+1} + \alpha_2\phi^{-k+2}\psi^{-1} + \alpha_3\phi^{-k+3}\psi^{-1} + \dots + \alpha_i\phi^{-k+i}\psi^{-1} + \dots + \alpha_{k-1}\phi^{-1}\psi^{-1} + \alpha_k\psi^{-1} \in \{\pm\beta\phi^{-m}\psi^{-s} : m, s \in \mathbb{N}\}.$

We will also say that $\{\alpha_1, \ldots, \alpha_k\}$ is a connection from α to β .

Observe that for any $\alpha \in \Lambda$, we have that $\alpha \phi^{z_1} \psi^{z_2}$ is connected to $\alpha \phi^{z_3} \psi^{z_4}$ for any $z_1, z_2, z_3, z_4 \in \mathbb{Z}$, and also to $-\alpha \phi^{z_3} \psi^{z_4}$ in case $-\alpha \in \Lambda$.

Lemma 2.1. The relation \sim in Λ , defined by $\alpha \sim \beta$ if and only if α is connected to β , is symmetric.

Proof. Suppose $\alpha \sim \beta$. In case $\beta = \epsilon \alpha \phi^{z_1} \psi^{z_2}$ with $z_1, z_2 \in \mathbb{Z}$ and $\epsilon \in \{1, -1\}$ we clearly have $\beta \sim \alpha$. So, let us consider a connection

$$\{\alpha_1, \alpha_2, \dots, \alpha_k\} \subset \pm \Lambda,$$
 (6)

k > 2, from α to β . Observe that condition 3. in Definition 2.1 allows us to distinguish two possibilities. In the first one

$$\alpha_1 \phi^{-k+1} + \alpha_2 \phi^{-k+2} \psi^{-1} + \dots + \alpha_i \phi^{-k+i} \psi^{-1} + \dots + \alpha_k \psi^{-1} = \beta \phi^{-m} \psi^{-s}, \tag{7}$$

while in the second one

$$\alpha_1 \phi^{-k+1} + \alpha_2 \phi^{-k+2} \psi^{-1} + \dots + \alpha_i \phi^{-k+i} \psi^{-1} + \dots + \alpha_k \psi^{-1} = -\beta \phi^{-m} \psi^{-s}$$
(8)

for some $m, s \in \mathbb{N}$.

Suppose we have the first above possibility (7). Lemma 1.3-1 shows that the set

$$\{\beta\phi^{-m}\psi^{-s}, -\alpha_k\phi^{-1}, -\alpha_{k-1}\phi^{-3}, -\alpha_{k-2}\phi^{-5}, \dots, -\alpha_{k-i}\phi^{-2i-1}, \dots, -\alpha_2\phi^{-2k+3}\} \subset \pm \Lambda.$$

We are going to show that this set is a connection from β to α . It is clear that satisfies condition 1. of Definition 2.1, so let us check that also satisfies condition 2. We have

$$(\beta\phi^{-m}\psi^{-s})\phi^{-1} - (\alpha_k\phi^{-1})\psi^{-1} = (\beta\phi^{-m}\psi^{-s} - \alpha_k\psi^{-1})\phi^{-1}$$

= $(\alpha_1\phi^{-k+1} + \alpha_2\phi^{-k+2}\psi^{-1} + \dots + \alpha_{k-1}\phi^{-1}\psi^{-1})\phi^{-1},$

last equality being consequence of Eq. (7), and so

$$(\beta\phi^{-m}\psi^{-s})\phi^{-1} - (\alpha_k\phi^{-1})\psi^{-1} = (\alpha_1\phi^{-k+2} + \alpha_2\phi^{-k+3}\psi^{-1} + \dots + \alpha_{k-1}\psi^{-1})\phi^{-2}.$$

Taking into account

$$\alpha_1 \phi^{-k+2} + \alpha_2 \phi^{-k+3} \psi^{-1} + \dots + \alpha_{k-1} \psi^{-1} \in \pm \Lambda$$

by condition 2. of Definition 2.1 applied to the connection (6), Lemma 1.3-1 allows us to assert $(\beta \phi^{-n} \psi^{-s}) \phi^{-1} - (\alpha_k \phi^{-1}) \psi^{-1} \in \pm \Lambda$.

For any $1 \le i \le k - 2$ we also have that,

$$(\beta\phi^{-m}\psi^{-s})\phi^{-i} - (\alpha_k\phi^{-1})\phi^{-i+1}\psi^{-1} - (\alpha_{k-1}\phi^{-3})\phi^{-i+2}\psi^{-1} - \dots - (\alpha_{k-(i-1)}\phi^{-2i+1})\psi^{-1}$$

$$= (\beta\phi^{-m}\psi^{-s} - \alpha_k\psi^{-1} - \alpha_{k-1}\phi^{-1}\psi^{-1} - \dots - \alpha_{k-(i-1)}\phi^{-i+1}\psi^{-1})\phi^{-i}$$

$$= (\alpha_1\phi^{-k+1} + \alpha_2\phi^{-k+2}\psi^{-1} + \dots + \alpha_{k-i}\phi^{-i}\psi^{-1})\phi^{-i},$$

last equality being consequence of Eq. (7). From here,

$$(\beta\phi^{-m}\psi^{-s})\phi^{-i} - (\alpha_k\phi^{-1})\phi^{-i+1}\psi^{-1} - (\alpha_{k-1}\phi^{-3})\phi^{-i+2}\psi^{-1} - \dots - (\alpha_{k-(i-1)}\phi^{-2i+1})\psi^{-1}$$

$$= (\alpha_1\phi^{-k+i+1} + \alpha_2\phi^{-k+i+2}\psi^{-1} + \dots + \alpha_{k-i}\psi^{-1})\phi^{-2i}.$$

Taking now into account that, by condition 2. of Definition 2.1 applied to (6),

$$\alpha_1 \phi^{-k+i+1} + \alpha_2 \phi^{-k+i+2} \psi^{-1} + \dots + \alpha_{k-i} \psi^{-1} \in \pm \Lambda$$

we get as consequence of Lemma 1.3-1 that

$$(\beta\phi^{-m}\psi^{-s})\phi^{-i} - (\alpha_k\phi^{-1})\phi^{-i+1}\psi^{-1} - (\alpha_{k-1}\phi^{-3})\phi^{-i+2}\psi^{-1} - \dots - (\alpha_{k-(i-1)}\phi^{-2i+1})\psi^{-1} \in \pm \Lambda.$$

Consequently, our set satisfies condition 2. of Definition 2.1. Let us prove that this set also satisfies condition 3. of this definition. We have as above that

$$(\beta\phi^{-m}\psi^{-s})\phi^{-k+1} - (\alpha_k\phi^{-1})\phi^{-k+2}\psi^{-1} - (\alpha_{k-1}\phi^{-3})\phi^{-k+3}\psi^{-1} - \dots - (\alpha_2\phi^{-2k+3})\psi^{-1}$$

$$= (\beta\phi^{-m}\psi^{-s} - \alpha_k\psi^{-1} - \alpha_{k-1}\phi^{-1}\psi^{-1} - \dots - \alpha_2\phi^{-k+2}\psi^{-1})\phi^{-k+1}$$

$$= (\alpha_1\phi^{-k+1})\phi^{-k+1}.$$

Condition 1. of Definition 2.1 applied to the connection (6) gives us now that $\alpha_1 = \alpha \phi^{-n} \psi^{-r}$ for some $n, r \in \mathbb{N}$ and so

$$(\beta\phi^{-m}\psi^{-s})\phi^{-k+1} - (\alpha_k\phi^{-1})\phi^{-k+2}\psi^{-1} - (\alpha_{k-1}\phi^{-3})\phi^{-k+3}\psi^{-1} - \dots - (\alpha_2\phi^{-2k+3})\psi^{-1}$$

$$= \alpha\phi^{-(2k-2+n)}\psi^{-r} \in \{\alpha\phi^{-h}\psi^{-r} : h, r \in \mathbb{N}\}.$$

We have showed that our set is actually a connection from β to α .

Suppose now we are in the second possibility given by Eq. (8). Then we can prove as in the above first possibility, given by Eq. (7), that

$$\{\beta\phi^{-m}\psi^{-s}, \alpha_k\phi^{-1}, \alpha_{k-1}\phi^{-3}, \alpha_{k-2}\phi^{-5}, \dots, \alpha_{k-i}\phi^{-2i-1}, \dots, \alpha_2\phi^{-2k+3}\}$$

is a connection from β to α . We conclude $\beta \sim \alpha$ and so the relation \sim is symmetric. \Box

Lemma 2.2. Let $\{\alpha_1, \ldots, \alpha_k\}$, $k \geq 2$, be a connection from α to β with $\alpha_1 = \alpha \phi^{-n} \psi^{-r}$, $n, r \in \mathbb{N}$. Then for any $\epsilon \in \{1, -1\}$ and $m, s \in \mathbb{N}$ with $m \geq n$ and $s \geq r$, there exists a connection $\{\bar{\alpha}_1, \ldots, \bar{\alpha}_k\}$ from α to β such that $\bar{\alpha}_1 = \alpha \phi^{-m} \psi^{-s}$.

Proof. By Lemma 1.3-1, 2 we have $\{\alpha_1\phi^{n-m}\psi^{r-s},\ldots,\alpha_k\phi^{n-m}\psi^{r-s}\}\subset\pm\Lambda$. Define $\bar{\alpha}_i:=\alpha_i\phi^{n-m}\psi^{r-s},i=1,\ldots,k$, then Lemma 1.3-1 allows us to verify that $\{\bar{\alpha}_1,\ldots,\bar{\alpha}_k\}$ is a connection from α to β which clearly satisfies

$$\bar{\alpha}_1 = \alpha_1 \phi^{n-m} \psi^{r-s} = (\alpha \phi^{-n} \psi^{-r}) \phi^{n-m} \psi^{r-s} = \alpha \phi^{-m} \psi^{-s}. \quad \Box$$

Lemma 2.3. Let $\{\alpha_1, \ldots, \alpha_k\}$, $k \ge 2$, be a connection from α to β with

$$\alpha_1 \phi^{-k+1} + \alpha_2 \phi^{-k+2} \psi^{-1} + \alpha_3 \phi^{-k+3} \psi^{-1} + \dots + \alpha_i \phi^{-k+i} \psi^{-1} + \dots + \alpha_k \psi^{-1} = \epsilon \beta \phi^{-m} \psi^{-s},$$

being $m, s \in \mathbb{N}$ and $\epsilon \in \{1, -1\}$. Then for any $q, p \in \mathbb{N}$ such that $q \geq m, p \geq s$, there exists a connection $\{\bar{\alpha}_1, \ldots, \bar{\alpha}_k\}$ from α to β such that

$$\bar{\alpha}_1 \phi^{-k+1} + \bar{\alpha}_2 \phi^{-k+2} \psi^{-1} + \bar{\alpha}_2 \phi^{-k+3} \psi^{-1} + \dots + \bar{\alpha}_k \phi^{-k+i} \psi^{-1} + \dots + \bar{\alpha}_k \psi^{-1} = \epsilon \beta \phi^{-q} \psi^{-p}$$

Proof. Lemma 1.3-1 allows us to assert that $\{\alpha_1\phi^{m-q}\psi^{s-p},\ldots,\alpha_k\phi^{m-q}\psi^{s-p}\}\subset\pm\Lambda$. Define now $\bar{\alpha}_i:=\alpha_i\phi^{m-q}\psi^{s-p},i=1,\ldots,k$. Then as in the previous item, Lemma 1.3-1 gives us that $\{\bar{\alpha}_1,\ldots,\bar{\alpha}_k\}$ is a connection from α to β . Finally

$$\begin{split} \bar{\alpha}_{1}\phi^{-k+1} + \bar{\alpha}_{2}\phi^{-k+2}\psi^{-1} + \bar{\alpha}_{3}\phi^{-k+3}\psi^{-1} + \cdots + \bar{\alpha}_{k}\psi^{-1} \\ &= \alpha_{1}\phi^{m-q}\psi^{s-p}\phi^{-k+1} + \alpha_{2}\phi^{m-q}\psi^{s-p}\phi^{-k+2}\psi^{-1} + \cdots + \alpha_{k}\phi^{m-q}\psi^{s-p}\psi^{-1} \\ &= (\alpha_{1}\phi^{-k+1} + \alpha_{2}\phi^{-k+2}\psi^{-1} + \cdots + \alpha_{k}\psi^{-1})\phi^{m-q}\psi^{s-p} \\ &= (\epsilon\beta\phi^{-m}\psi^{-s})\phi^{m-q}\psi^{s-p} \\ &= \epsilon\beta\phi^{-q}\psi^{-p}. \quad \Box \end{split}$$

Lemma 2.4. The relation \sim in Λ , defined by $\alpha \sim \beta$ if and only if α is connected to β , is transitive.

Proof. Suppose $\alpha \sim \beta$ and $\beta \sim \gamma$.

If $\beta = \epsilon \alpha \phi^{z_1} \psi^{z_2}$ for some $z_1, z_2 \in \mathbb{Z}$, $\epsilon \in \{1, -1\}$ and $\gamma = \epsilon' \beta \phi^{z_3} \psi^{z_4}$ for some $z_3, z_4 \in \mathbb{Z}$, it is clear that $\alpha \sim \gamma$.

Suppose $\beta = \epsilon \alpha \phi^{z_1} \psi^{z_2}$ for some $z_1, z_2 \in \mathbb{Z}$, $\epsilon \in \{1, -1\}$ and β is connected to γ through a connection $\{\tau_1, \ldots, \tau_p\}$, $p \geq 2$, being $\tau_1 = \beta \phi^{-n} \psi^{-r}$, $n, r \in \mathbb{N}$. By choosing $m, s \in \mathbb{N}$ such that $m \geq n$, $s \geq r$ and $z_1 - m \leq 0$ and $z_2 - s \leq 0$, Lemma 2.2 allows us to assert that β is connected to γ through a connection $\{\bar{\tau}_1, \bar{\tau}_2, \ldots, \bar{\tau}_k\}$ such that $\bar{\tau}_1 = \beta \phi^{-m} \psi^{-s}$. From here, $\{\epsilon \bar{\tau}_1, \epsilon \bar{\tau}_2, \ldots, \epsilon \bar{\tau}_k\}$ is a connection from α to γ .

Finally, let us write $\{\alpha_1, \ldots, \alpha_k\}$, $k \ge 2$, for a connection from α to β , which satisfies

$$\alpha_1 \phi^{-k+1} + \alpha_2 \phi^{-k+2} \psi^{-1} + \dots + \alpha_k \psi^{-1} = \epsilon \beta \phi^{-m} \psi^{-s}, \tag{9}$$

for some $m, s \in \mathbb{N}$, $\epsilon \in \{1, -1\}$; and write $\{\tau_1, \ldots, \tau_p\}$ for a connection from β to γ , being then

$$\tau_1 = \beta \phi^{-q} \psi^{-p} \tag{10}$$

for some $n, q \in \mathbb{N}$. Note that Lemmas 2.2 and 2.3 allows us to suppose m = q and s = p.

From here, taking into account Eqs. (9), and (10); and the fact m=q and s=p, we can easily verify that $\{\alpha_1,\ldots,\alpha_k,\tau_2,\ldots,\tau_p\}$ is a connection from α to γ if $\epsilon=1$; and that $\{\alpha_1,\ldots,\alpha_k,-\tau_2,\ldots,-\tau_p\}$ it is if $\epsilon=-1$. \square

Corollary 2.1. The relation \sim in Λ , defined by $\alpha \sim \beta$ if and only if α is connected to β , is an equivalence relation.

Proof. Since clearly the relation \sim is reflexive, the result follows of Lemmas 2.1 and 2.4. \Box

3. Decompositions as sum of ideals

By Corollary 2.1 the connection relation is an equivalence relation in Λ . From here, we can consider the quotient set

$$\Lambda/\sim = \{ [\alpha] : \alpha \in \Lambda \},$$

becoming $[\alpha]$ the set of nonzero roots \mathfrak{L} which are connected to α .

Our next goal in this section is to associate an (adequate) ideal $I_{[\alpha]}$ to any $[\alpha]$.

Fix $\alpha \in \Lambda$, we start by defining the set $I_{0, [\alpha]} \subset \mathfrak{L}_0$ as follows:

$$I_{0,\lceil\alpha\rceil} := span_{\mathbb{K}}\{[\mathfrak{L}_{\beta},\mathfrak{L}_{\gamma}] : \beta, \gamma \in [\alpha] \cup \{0\}\} \cap \mathfrak{L}_{0}.$$

By applying Lemmas 1.1-2 and 1.2 we get

$$I_{0,[\alpha]} := span_{\mathbb{K}}\{[\mathfrak{L}_{\beta\psi^{-1}},\mathfrak{L}_{-\beta\phi^{-1}}] : \beta \in [\alpha]\}.$$

Next, we define

$$V_{[\alpha]} := \bigoplus_{\beta \in [\alpha]} \mathfrak{L}_{\beta}.$$

Finally, we denote by I_{α} the direct sum of the two subspaces above, that is,

$$I_{[\alpha]} := I_{0,[\alpha]} \oplus V_{[\alpha]}.$$

Proposition 3.1. For any $[\alpha] \in \Lambda / \sim$, the following assertions hold.

- 1. $[I_{[\alpha]}, I_{[\alpha]}] \subset I_{[\alpha]}$.
- 2. $\phi(I_{[\alpha]}) = I_{[\alpha]}$ and $\psi(I_{[\alpha]}) = I_{[\alpha]}$.

Proof. 1. Since $I_{0,\lceil\alpha\rceil} \subset \mathfrak{L}_0 = H$, then $[I_{0,\lceil\alpha\rceil}, I_{0,\lceil\alpha\rceil}] = 0$ and we have

$$[I_{0,\lceil\alpha\rceil} \oplus V_{\lceil\alpha\rceil}, I_{0,\lceil\alpha\rceil} \oplus V_{\lceil\alpha\rceil}] \subset [I_{0,\lceil\alpha\rceil}, V_{\lceil\alpha\rceil}] + [V_{\lceil\alpha\rceil}, I_{0,\lceil\alpha\rceil}] + [V_{\lceil\alpha\rceil}, V_{\lceil\alpha\rceil}]. \tag{11}$$

Let us consider the first summand in Eq. (11). Given $\beta \in [\alpha]$ we have $[I_{0,[\alpha]}, \mathfrak{L}_{\beta}] \subset \mathfrak{L}_{\beta\psi^{-1}}$, being $\beta\psi^{-1} \in [\alpha]$ by Lemma 1.3-1. Hence $[I_{0,[\alpha]}, \mathfrak{L}_{\beta}] \subset V_{[\alpha]}$. In a similar way we get $[\mathfrak{L}_{\beta}, I_{0,[\alpha]}] \subset V_{[\alpha]}$. Consider now the third summand in Eq. (11). Given $\beta, \gamma \in [\alpha]$ such that $[\mathfrak{L}_{\beta}, \mathfrak{L}_{\gamma}] \neq 0$, then $[\mathfrak{L}_{\beta}, \mathfrak{L}_{\gamma}] \subset \mathfrak{L}_{\beta\phi^{-1}+\gamma\psi^{-1}}$. If $\beta\phi^{-1}+\gamma\psi^{-1}=0$ we have $[\mathfrak{L}_{\beta}, \mathfrak{L}_{-\gamma}] \subset \mathfrak{L}_{0}$ and so $[\mathfrak{L}_{\beta}, \mathfrak{L}_{-\gamma}] \subset I_{0,[\alpha]}$. Suppose then $\beta\phi^{-1}+\gamma\psi^{-1}\in\Lambda$. We have that $\{\beta, \gamma\}$ is a connection from β to $\beta\phi^{-1}+\gamma\psi^{-1}$. The transitivity of \sim gives now that $\beta\phi^{-1}+\gamma\psi^{-1}\in[\alpha]$ and so $[\mathfrak{L}_{\beta}, \mathfrak{L}_{\gamma}] \subset \mathfrak{L}_{\beta\phi^{-1}+\gamma\psi^{-1}}\subset V_{[\alpha]}$. Hence $[\bigoplus_{\beta\in[\alpha]}\mathfrak{L}_{\beta},\bigoplus_{\beta\in[\alpha]}\mathfrak{L}_{\beta}]\subset I_{0,[\alpha]}\oplus V_{[\alpha]}$. That is,

$$[V_{[\alpha]}, V_{[\alpha]}] \subset I_{[\alpha]}. \tag{12}$$

From Eqs. (11) and (12) we get $[I_{[\alpha]}, I_{[\alpha]}] = [I_{0,[\alpha]} \oplus V_{[\alpha]}, I_{0,[\alpha]} \oplus V_{[\alpha]}] \subset I_{[\alpha]}$. 2. The facts $\phi(I_{[\alpha]}) = I_{[\alpha]}$ and $\psi(I_{[\alpha]}) = I_{[\alpha]}$ are direct consequences of Lemma 1.1-1. \square

Proposition 3.2. For any $[\alpha] \neq [\gamma]$ we have $[I_{[\alpha]}, I_{[\gamma]}] = 0$.

Proof. We have

$$[I_{0,[\alpha]} \oplus V_{[\alpha]}, I_{0,[\gamma]} \oplus V_{[\gamma]}] \subset [I_{0,[\alpha]}V_{[\gamma]}] + [V_{[\alpha]}, I_{0,[\gamma]}] + [V_{[\alpha]}, V_{[\gamma]}]. \tag{13}$$

Consider the above third summand $[V_{[\alpha]}, V_{[\gamma]}]$ and suppose there exist $\alpha_1 \in [\alpha]$ and $\gamma_1 \in [\gamma]$ such that $[\mathcal{L}_{\alpha_1}, \mathcal{L}_{\gamma_1}] \neq 0$. As necessarily $\alpha_1 \phi^{-1} \neq -\gamma_1 \psi^{-1}$, then $\alpha_1 \phi^{-1} + \gamma_1 \psi^{-1} \in \Lambda$. So $\{\alpha_1, \gamma_1, -\alpha_1 \phi^{-1}\}$ is a connection between α_1 and γ_1 . By the transitivity of the connection relation we have $\alpha \in [\gamma]$, a contradiction. Hence $[\mathcal{L}_{\alpha_1}, \mathcal{L}_{\gamma_1}] = 0$ and so

$$[V_{[\alpha]}, V_{[\gamma]}] = 0. \tag{14}$$

Consider now the first summand $[I_{0,\lceil\alpha\rceil},V_{\lceil\gamma\rceil}]$ in Eq. (13). Let us take $\alpha_1\in[\alpha]$ and $\gamma_1\in[\gamma]$ and show that

$$\gamma_1([\mathfrak{L}_{\alpha_1\psi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-1}}])=0.$$

Indeed, by BiHom-Iacobi identity we have

$$[\psi^{2}(\mathfrak{L}_{\nu_{1}}), [\psi(\mathfrak{L}_{\alpha_{1}}), \phi(\mathfrak{L}_{-\alpha_{1}})]] + [\psi^{2}(\mathfrak{L}_{\alpha_{1}}), [\psi(\mathfrak{L}_{-\alpha_{1}}), \phi(\mathfrak{L}_{\nu_{1}})]] + [\psi^{2}(\mathfrak{L}_{-\alpha_{1}}), [\psi(\mathfrak{L}_{\nu_{1}}), \phi(\mathfrak{L}_{\alpha_{1}})]] = 0.$$

Now by Eq. (14) we get

$$[\psi^2(\mathfrak{L}_{\gamma_1}), [\psi(\mathfrak{L}_{\alpha_1}), \phi(\mathfrak{L}_{-\alpha_1})]] = 0$$

and so

$$\begin{split} \mathbf{0} &= [\psi^2(\mathfrak{L}_{\gamma_1}), [\psi(\mathfrak{L}_{\alpha_1}), \phi(\mathfrak{L}_{-\alpha_1})]] = [\psi^2(\mathfrak{L}_{\gamma_1}), \phi\phi^{-1}([\psi(\mathfrak{L}_{\alpha_1}), \phi(\mathfrak{L}_{-\alpha_1})])] \\ &= [\psi\phi^{-1}([\psi(\mathfrak{L}_{\alpha_1}), \phi(\mathfrak{L}_{-\alpha_1})]), \phi\psi(\mathfrak{L}_{\gamma_1})]. \end{split}$$

Since $\psi \phi^{-1}([\psi(\mathfrak{L}_{\alpha_1}), \phi(\mathfrak{L}_{-\alpha_1})]) \subset \mathfrak{L}_0 = H$ and $\psi(\mathfrak{L}_{\gamma_1}) \subset \mathfrak{L}_{\gamma_1 \psi^{-1}}$ we obtain

$$\gamma_1\phi^{-1}([\psi(\mathfrak{L}_{\alpha_1}),\phi(\mathfrak{L}_{-\alpha_1})])\phi\psi^2(\mathfrak{L}_{\gamma_1})=0.$$

From here

$$\gamma_1 \phi^{-1}([\mathcal{L}_{\alpha_1 \psi^{-1}}, \mathcal{L}_{-\alpha_1 \phi^{-1}}]) = \gamma_1 \phi^{-1}([\psi(\mathcal{L}_{\alpha_1}), \phi(\mathcal{L}_{-\alpha_1})]) = 0$$

$$\tag{15}$$

for any $\alpha_1 \in [\alpha]$.

Since

$$\phi([\mathfrak{L}_{\alpha_1\psi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-1}}])\subset [\mathfrak{L}_{\alpha_1\psi^{-1}\phi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-2}}],$$

we get

$$[\mathfrak{L}_{\alpha_1\psi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-1}}]\subset\phi^{-1}([\mathfrak{L}_{\alpha_1\psi^{-1}\phi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-2}}])=\phi^{-1}([\mathfrak{L}_{\alpha_1\phi^{-1}\psi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-2}}]).$$

Taking now into account that Eq. (15) and the fact $\alpha_1 \phi^{-1} \in [\alpha]$ give us

$$\gamma_1 \phi^{-1}([\mathfrak{L}_{\alpha_1 \phi^{-1} \psi^{-1}}, \mathfrak{L}_{-\alpha_1 \phi^{-2}}]) = 0$$

we conclude

$$\gamma_1([\mathfrak{L}_{\alpha_1\psi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-1}}])=0.$$

From here $[[\mathfrak{L}_{\alpha_1\psi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-1}}],\mathfrak{L}_{\gamma_1}]\subset \gamma_1([\mathfrak{L}_{\alpha_1\psi^{-1}},\mathfrak{L}_{-\alpha_1\phi^{-1}}])\phi\psi(\mathfrak{L}_{\gamma_1})=0$. We have showed $[I_{0,[\alpha]},V_{[\gamma]}]=0$. In a similar way we get $[V_{[\alpha]},I_{0,[\gamma]}]=0$ and we conclude, together with Eqs. (13) and (14), that $[I_{[\alpha]},I_{[\gamma]}]=0$. \square

Theorem 3.1. The following assertions hold.

1. For any $[\alpha] \in \Lambda/\sim$, the linear space

$$I_{\lceil \alpha \rceil} = I_{0,\lceil \alpha \rceil} \oplus V_{\lceil \alpha \rceil}$$

of \mathfrak{L} associated to $[\alpha]$ is an ideal of \mathfrak{L} .

2. If $\mathfrak L$ is simple, then there exists a connection from α to β for any α , $\beta \in \Lambda$; and $H = \sum_{\alpha \in \Lambda} [\mathfrak L_{\alpha\psi^{-1}}, \mathfrak L_{-\alpha\phi^{-1}}]$.

Proof. 1. Since $[I_{[\alpha]}, H] \subset I_{[\alpha]}$ we have by Propositions 3.1 and 3.2 that

$$[I_{[\alpha]},\mathfrak{L}] = \left[I_{[\alpha]}, H \oplus \left(\bigoplus_{\beta \in [\alpha]} \mathfrak{L}_{\beta}\right) \oplus \left(\bigoplus_{\gamma \notin [\alpha]} \mathfrak{L}_{\gamma}\right)\right] \subset I_{[\alpha]}.$$

In a similar way we get $[\mathfrak{L}, I_{[\alpha]}] \subset I_{[\alpha]}$ and, finally, as we also have by Proposition 3.1 that $\phi(I_{[\alpha]}) = \psi(I_{[\alpha]}) = I_{[\alpha]}$ we conclude $I_{[\alpha]}$ is an ideal of \mathfrak{L} .

2. The simplicity of $\mathfrak L$ implies $I_{[\alpha]} = \mathfrak L$. From here, it is clear that $[\alpha] = \Lambda$ and $H = \sum_{\alpha \in \Lambda} [\mathfrak L_{\alpha\psi^{-1}}, \mathfrak L_{-\alpha\phi^{-1}}]$.

Theorem 3.2. We have

$$\mathfrak{L} = U + \sum_{[\alpha] \in \Lambda/\sim} I_{[\alpha]},$$

where U is a linear complement in H of $\sum_{\alpha \in \Lambda} [\mathfrak{L}_{\alpha\psi^{-1}}, \mathfrak{L}_{-\alpha\phi^{-1}}]$ and any $I_{[\alpha]}$ is one of the ideals of \mathfrak{L} described in Theorem 3.1-1. Furthermore $[I_{[\alpha]}, I_{[\gamma]}] = 0$ when $[\alpha] \neq [\gamma]$.

Proof. We have $I_{[\alpha]}$ is well defined and, by Theorem 3.1-1, an ideal of \mathcal{L} , being clear that

$$\mathfrak{L} = H \oplus \left(\bigoplus_{\alpha \in \Lambda} \mathfrak{L}_{\alpha}\right) = U + \sum_{[\alpha] \in \Lambda/\sim} I_{[\alpha]}.$$

Finally, Proposition 3.2 gives us $[I_{[\alpha]}, I_{[\gamma]}] = 0$ if $[\alpha] \neq [\gamma]$.

Let us denote by $\mathcal{Z}(\mathfrak{L}) := \{ v \in \mathfrak{L} : [v, \mathfrak{L}] + [\mathfrak{L}, v] = 0 \}$ the center of \mathfrak{L} .

Corollary 3.1. If $\mathcal{Z}(\mathfrak{L}) = 0$ and $H = \sum_{\alpha \in \Lambda} [\mathfrak{L}_{\alpha\psi^{-1}}, \mathfrak{L}_{-\alpha\phi^{-1}}]$. Then \mathfrak{L} is the direct sum of the ideals given in Theorem 3.1,

$$\mathfrak{L} = \bigoplus_{[\alpha] \in \Lambda/\sim} I_{[\alpha]}.$$

Furthermore $[I_{[\alpha]}, I_{[\gamma]}] = 0$ when $[\alpha] \neq [\gamma]$.

Proof. Since $H = \sum_{\alpha \in \Lambda} [\mathfrak{L}_{\alpha\psi^{-1}}, \mathfrak{L}_{-\alpha\phi^{-1}}]$ we get $\mathfrak{L} = \sum_{[\alpha] \in \Lambda/\sim} I_{[\alpha]}$. Finally, to verify the direct character of the sum, take some $v \in I_{[\alpha]} \cap (\sum_{[\beta] \in \Lambda/\sim, [\beta] \neq [\alpha]} I_{[\beta]})$. Since $v \in I_{[\alpha]}$, the fact $[I_{[\alpha]}, I_{[\beta]}] = 0$ when $[\alpha] \neq [\beta]$ gives us

$$\left[v, \sum_{[\beta] \in \Lambda/\sim, [\beta] \neq [\alpha]} I_{[\beta]}\right] + \left[\sum_{[\beta] \in \Lambda/\sim, [\beta] \neq [\alpha]} I_{[\beta]}, v\right] = 0.$$

In a similar way, since $v \in \sum_{\lceil \beta \rceil \in \Lambda/\sim, \lceil \beta \rceil \neq \lceil \alpha \rceil} I_{\lceil \beta \rceil}$ we get $[v, I_{\lceil \alpha \rceil}] + [I_{\lceil \alpha \rceil}, v] = 0$. That is, $v \in \mathcal{Z}(\mathfrak{L})$ and so v = 0. \square

4. The simple components

In this section we are interested in studying under which conditions $\mathfrak L$ decomposes as the direct sum of the family of its simple ideals, obtaining so a second Wedderburn-type theorem for a class of BiHom-Lie algebras. We recall that a roots system Λ of a split regular BiHom-Lie algebra $\mathfrak L$ is called *symmetric* if it satisfies that $\alpha \in \Lambda$ implies $-\alpha \in \Lambda$. From now on we will suppose Λ is symmetric.

Lemma 4.1. If I is an ideal of \mathfrak{L} such that $I \subset H$, then $I \subset \mathcal{Z}(\mathfrak{L})$.

Proof. Consequence of
$$[I, H] + [H, I] \subset [H, H] = 0$$
 and $[I, \bigoplus_{\alpha \in \Lambda} \mathfrak{L}_{\alpha}] + [\bigoplus_{\alpha \in \Lambda} \mathfrak{L}_{\alpha}, I] \subset (\bigoplus_{\alpha \in \Lambda} \mathfrak{L}_{\alpha}) \cap H = 0$. \square

Lemma 4.2. For any $\alpha, \beta \in \Lambda$ with $\alpha \neq \beta$ there exists $h_0 \in H$ such that $\alpha(h_0) \neq 0$ and $\alpha(h_0) \neq \beta(h_0)$.

Proof. As $\alpha \neq \beta$, there exists $h \in H$ such that $\alpha(h) \neq \beta(h)$. If $\alpha(h) \neq 0$ we have finished, so let us suppose $\alpha(h) = 0$ what implies $\beta(h) \neq 0$. Since $\alpha \neq 0$, we can fix some $h' \in H$ such that $\alpha(h') \neq 0$. We can distinguish two cases, in the first one $\alpha(h') \neq \beta(h')$ and in the second one $\alpha(h') = \beta(h')$. Then we have that by taking $h_0 := h'$ in the first case and $h_0 := h + h'$ in the second one we complete the proof. \square

Lemma 4.3. If I is an ideal of $\mathfrak L$ and $x=h+\sum_{j=1}^n v_{\alpha_j}\in I$, with $h\in H$, $v_{\alpha_j}\in \mathfrak L_{\alpha_j}$ and $\alpha_j\neq \alpha_k$ if $j\neq k$. Then any $v_{\alpha_j}\in I$.

Proof. If n=1 we have $x=h+v_{\alpha_1}\in I$. By taking $h'\in H$ such that $\alpha_1(h')\neq 0$ we get $[h',x]=[h',\phi\phi^{-1}(h)]+[h',\phi\phi^{-1}(v_{\alpha_1})]=\alpha_1\phi(h')\psi(v_{\alpha_1})\in I$ and so $\psi(v_{\alpha_1})\in I$. From here $\psi^{-1}(\psi(v_{\alpha_1}))=v_{\alpha_1}\in I$.

Suppose now n > 1 and consider α_1 and α_2 . By Lemma 4.2 there exists $h_0 \in H$ such that $\alpha_1(h_0) \neq 0$ and $\alpha_1(h_0) \neq \alpha_2(h_0)$. Then we have

$$[h_0, x] = [h_0, \phi\phi^{-1}(h)] + [h_0, \phi\phi^{-1}(v_{\alpha_1})] + [h_0, \phi\phi^{-1}(v_{\alpha_2})] + \dots + [h_0, \phi\phi^{-1}(v_{\alpha_n})]$$

$$= \alpha_1\phi(h_0)\psi(v_{\alpha_1}) + \alpha_2\phi(h_0)\psi(v_{\alpha_2}) + \dots + \alpha_n\phi(h_0)\psi(v_{\alpha_n}) \in I$$
(16)

and

$$\psi(x) = \psi(h) + \psi(v_{\alpha_1}) + \psi(v_{\alpha_2}) + \dots + \psi(v_{\alpha_n}) \in I. \tag{17}$$

By multiplying Eq. (17) by $\alpha_2 \phi(h_0)$ and subtracting Eq. (16) we get

$$\alpha_{2}\phi(h_{0})\psi(h) + (\alpha_{2}\phi(h_{0}) - \alpha_{1}\phi(h_{0}))\psi(v_{\alpha_{1}}) + (\alpha_{2}\phi(h_{0}) - \alpha_{3}\phi(h_{0}))\psi(v_{\alpha_{3}}) + \dots + (\alpha_{2}\phi(h_{0}) - \alpha_{n}\phi(h_{0}))\psi(v_{\alpha_{n}}) \in I.$$

By denoting $\tilde{h} := \alpha_2 \phi(h_0) \psi(h) \in H$ and $v_{\alpha_i \psi^{-1}} := (\alpha_2 \phi(h_0) - \alpha_i \phi(h_0)) \psi(v_{\alpha_i}) \in \mathfrak{L}_{\alpha_i \psi^{-1}}$ we can write

$$\tilde{h} + v_{\alpha_1 y_1^{-1}} + v_{\alpha_2 y_1^{-1}} + \dots + v_{\alpha_n y_n^{-1}} \in I.$$
(18)

Now we can argue as above with Eq. (18) to get

$$\tilde{\tilde{h}} + v_{\alpha_1 \psi^{-2}} + v_{\alpha_4 \psi^{-2}} + \dots + v_{\alpha_n \psi^{-2}} \in I$$

for $\tilde{\tilde{h}} \in H$ and any $v_{\alpha;\psi^{-2}} \in \mathfrak{L}_{\alpha;\psi^{-2}}$. By iterating this process we obtain

$$\bar{h} + v_{\alpha_1 \psi^{-n+1}} \in I$$

with $\bar{h} \in H$ and $v_{\alpha_1\psi^{-n+1}} \in \mathfrak{L}_{\alpha_1\psi^{-n+1}}$. As in the above case n=1, we get $v_{\alpha_1\psi^{-n+1}} \in I$ and consequently $v_{\alpha_1} \in \mathbb{K}\psi^{-n+1}(v_{\alpha_1\psi^{-n+1}}) \in I$.

In a similar way we can prove any $v_{\alpha_i} \in I$ for $i \in \{2, ..., n\}$ and the proof is complete. \square

Let us introduce the concepts of root-multiplicativity and maximal length in the framework of split BiHom-Lie algebras, in a similar way to the ones for split Hom-Lie algebras, split Lie algebras, split triple systems, split Leibniz structures and so on (see [10-12] for these notions and examples).

Definition 4.1. We say that a split regular BiHom-Lie algebra $\mathfrak L$ is root-multiplicative if given $\alpha, \beta \in \Lambda$ such that $\alpha \phi^{-1} + \beta \psi^{-1} \in \Lambda$, then $[\mathfrak L_{\alpha}, \mathfrak L_{\beta}] \neq 0$.

Definition 4.2. It is said that a split regular BiHom-Lie algebra $\mathfrak L$ is of maximal length if dim $\mathfrak L_\alpha=1$ for any $\alpha\in\Lambda$.

Theorem 4.1. Let $\mathfrak L$ be a split regular BiHom-Lie algebra of maximal length and root-multiplicative. Then $\mathfrak L$ is simple if and only if $\mathcal Z(\mathfrak L)=0, H=\sum_{\alpha\in\Lambda}[\mathfrak L_{\alpha\psi^{-1}},\mathfrak L_{-\alpha\phi^{-1}}]$ and Λ has all of its elements connected.

Proof. Suppose $\mathfrak L$ is simple. Since $\mathcal Z(\mathfrak L)$ is an ideal of $\mathfrak L$ then $\mathcal Z(\mathfrak L)=0$. From here, Theorem 3.1-2 completes the proof of the first implication. To prove the converse, consider I a nonzero ideal of $\mathfrak L$. By Lemma 4.3 we can write $I=(I\cap H)\oplus (\bigoplus_{\alpha\in\Lambda}I_\alpha)$, where $I_\alpha:=I\cap \mathfrak L_\alpha$. By the maximal length of $\mathfrak L$, if we denote by $\Lambda_I:=\{\alpha\in\Lambda:I_\alpha\neq0\}$, we can write $I=(I\cap H)\oplus (\bigoplus_{\alpha\in\Lambda_I}\mathfrak L_\alpha)$, being also $\Lambda_I\neq\emptyset$ as consequence of Lemma 4.1. Let us fix some $\alpha_0\in\Lambda_I$ being then $0\neq \mathfrak L_{\alpha_0}\subset I$. Since $\phi(I)=I$ and $\psi(I)=I$ and by making use of Lemma 1.1-1 we can assert that

if
$$\alpha \in \Lambda_I$$
 then $\{\alpha \phi^{z_1} \psi^{z_2} : z_1, z_2 \in \mathbb{Z}\} \subset \Lambda_I$. (19)

In particular

$$\{\mathfrak{L}_{\alpha_0\phi^{z_1}\psi^{z_2}}: z_1, z_2 \in \mathbb{Z}\} \subset I. \tag{20}$$

Now, let us take any $\beta \in \Lambda$ satisfying $\beta \notin \{\pm \alpha_0 \phi^{z_1} \psi^{z_2} : z_1, z_2 \in \mathbb{Z}\}$. Since α_0 and β are connected, we have a connection $\{\alpha_1, \ldots, \alpha_k\}, k \geq 2$, from α_0 to β satisfying:

$$\alpha_{1} = \alpha_{0}\phi^{-n}\psi^{-r} \text{ for some } n, r \in \mathbb{N},$$

$$\alpha_{1}\phi^{-1} + \alpha_{2}\psi^{-1} \in \Lambda,$$

$$\alpha_{1}\phi^{-2} + \alpha_{2}\phi^{-1}\psi^{-1} + \alpha_{3}\psi^{-1} \in \Lambda,$$

$$\dots \dots$$

$$\alpha_{1}\phi^{-i+1} + \alpha_{2}\phi^{-i+2} + \alpha_{3}\phi^{-i+3} + \dots + \alpha_{i}\psi^{-1} \in \Lambda.$$

$$\alpha_{1}\phi^{-k+2} + \alpha_{2}\phi^{-k+3}\psi^{-1} + \alpha_{3}\phi^{-k+4}\psi^{-1} + \dots + \alpha_{k-2}\phi^{-1}\psi^{-1} + \alpha_{k-1}\psi^{-1} \in \Lambda,$$

$$\alpha_{1}\phi^{-k+1} + \alpha_{2}\phi^{-k+2}\psi^{-1} + \alpha_{3}\phi^{-k+3}\psi^{-1} + \dots + \alpha_{i}\phi^{-k+i}\psi^{-1} + \dots + \alpha_{k-}\phi^{-1}\psi^{-1} + \dots$$

$$\alpha_{k}\psi^{-1} - \epsilon\beta\phi^{-m}\psi^{-s} \text{ for some } m, s \in \mathbb{N} \text{ and } \epsilon \in \{1, -1\}.$$

 $\alpha_1 \phi \stackrel{\kappa_1 + \alpha_2 \phi}{} \stackrel{\kappa_2 + \alpha_3 \psi}{} \stackrel{\kappa_3 + \omega}{} \stackrel{\kappa_4 + \omega_4 \psi}{} \stackrel{\psi}{} \stackrel{\psi}{}$

$$0 \neq \mathfrak{L}_{\alpha_1 \phi^{-1} + \alpha_2 \psi^{-1}} \subset I$$
.

A similar argument applied to $\alpha_1\phi^{-1} + \alpha_2\psi^{-1}$, α_3 and

$$(\alpha_1\phi^{-1} + \alpha_2\psi^{-1})\phi^{-1} + \alpha_3\psi^{-1} = \alpha_1\phi^{-2} + \alpha_2\phi^{-1}\psi^{-1} + \alpha_3\psi^{-1}$$

gives us $0 \neq \mathfrak{L}_{\alpha, \phi^{-2} + \alpha, \phi^{-1} + \mu^{-1} + \alpha, \psi^{-1}} \subset I$. We can follow this process with the connection $\{\alpha_1, \dots, \alpha_k\}$ to get

$$0 \neq \mathfrak{L}_{\alpha_1 \phi^{-k+1} + \alpha_2 \phi^{-k+2} \psi^{-1} + \dots + \alpha_k \psi^{-1}} \subset I$$

and then

either
$$\mathfrak{L}_{\beta\phi^{-m}\psi^{-s}} \subset I$$
 or $\mathfrak{L}_{-\beta\phi^{-m}\psi^{-s}} \subset I$.

From Eqs. (19) and (20), we now get

either
$$\{\mathfrak{L}_{\alpha\phi^{-z_1}\psi^{-z_2}}: z_1, z_2 \in \mathbb{Z}\} \subset I$$
 or $\{\mathfrak{L}_{-\alpha\phi^{-z_1}\psi^{-z_2}}: z_1, z_2 \in \mathbb{Z}\} \subset I$ for any $\alpha \in \Lambda$. (21)

Eq. (21) can be reformulated by asserting that given any $\alpha \in \Lambda$ either $\{\alpha \phi^{-z_1} \psi^{-z_2} : z_1, z_2 \in \mathbb{Z}\}$ or $\{-\alpha \phi^{-z_1} \psi^{-z_2} : z_1, z_2 \in \mathbb{Z}\}$ is contained in Λ_I . Taking now into account $H = \sum_{\alpha \in \Lambda} [\mathfrak{L}_{\alpha\psi^{-1}}, \mathfrak{L}_{-\alpha\phi^{-1}}]$ we have

$$H \subset I$$
. (22)

If we consider now any $\alpha \in \Lambda$, since $\mathfrak{L}_{\alpha} = [H, \mathfrak{L}_{\alpha\psi}]$ by the maximal length of \mathfrak{L} , Eq. (22) gives us $\mathfrak{L}_{\alpha} \subset I$ and so $I = \mathfrak{L}$. That is, \mathcal{L} is simple. \square

Theorem 4.2. Let \mathfrak{L} be a split regular BiHom-Lie algebra of maximal length, root multiplicative, with $\mathcal{Z}(\mathfrak{L}) = 0$ and satisfying $H = \sum_{\alpha \in \Lambda} [\mathfrak{L}_{\alpha\psi^{-1}}, \mathfrak{L}_{-\alpha\phi^{-1}}]$. Then

$$\mathfrak{L} = \bigoplus_{[\alpha] \in \Lambda/\sim} I_{[\alpha]},$$

where any $I_{[\alpha]}$ is a simple (split) ideal having its roots system, $\Lambda_{I_{[\alpha]}}$, with all of its elements $\Lambda_{I_{[\alpha]}}$ -connected.

Proof. Taking into account Corollary 3.1 we can write $\mathfrak{L} = \bigoplus_{[\alpha] \in \Lambda/\sim} I_{[\alpha]}$ as the direct sum of the family of ideals

$$I_{[\alpha]} = I_{0,[\alpha]} \oplus V_{[\alpha]} = \left(\sum_{\alpha \in \Lambda} [\mathfrak{L}_{\alpha\psi^{-1}}, \mathfrak{L}_{-\alpha\phi^{-1}}] \right) \oplus \bigoplus_{\beta \in [\alpha]} \mathfrak{L}_{\beta},$$

being each $I_{[\alpha]}$ a split regular BiHom-Lie algebra having as roots system $\Lambda_{I_{[\alpha]}} := [\alpha]$. To make use of Theorem 4.1 in each $I_{[\alpha]}$, we have to observe that the root-multiplicativity of $\mathfrak L$ and Proposition 3.2 show that $\Lambda_{I_{[\alpha]}}$ has all of its elements $\Lambda_{I_{[\alpha]}}$ -connected, that is, connected through connections contained in $\Lambda_{I_{[\alpha]}}$. We also get that any of the $I_{[\alpha]}$ is root-multiplicative as consequence of the root-multiplicativity of $\mathfrak L$. Clearly $I_{[\alpha]}$ is of maximal length, and finally its center $\mathcal{Z}_{I_{[\alpha]}}(I_{[\alpha]}) := \{x \in I_{[\alpha]} : [x, I_{[\alpha]} = 0]\} = 0$ as consequence of $[I_{[\alpha]}, I_{[\gamma]}] = 0$ if $[\alpha] \neq [\gamma]$ (see Theorem 3.2) and $\mathcal{Z}(\mathfrak{L}) = 0$. We can apply Theorem 4.1 to any $I_{[\alpha]}$ so as to conclude $I_{[\alpha]}$ is simple. It is clear that the decomposition $\mathfrak{L} = \bigoplus_{[\alpha] \in \Lambda/\sim} I_{[\alpha]}$ satisfies the assertions of the theorem. \Box

References

- [1] G. Graziani, A. Makhlouf, C. Menini, P. Panaite, BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras, SIGMA, Symmetry Integrability Geom. Methods Appl. 11 (2015) 34. Paper 086.
- J. Hartwig, S. Larsson, S. Silvestrov, Deformations of Lie algebras using δ-derivations, J. Algebra 295 (2) (2006) 314–361.
- H. Ataguema, A. Makhlouf, S. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys. 50 (8) (2009) 083501, 15 p..
- [4] S. Benayadi, A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014) 38–60.
 [5] M. Hassanzadeh, I. Shapiro, S. Sutlu, Cyclic homology for Hom-associative algebras, J. Geom. Phys. 98 (2015) 40–56.
- [6] L. Liu, B. Shen, Radfords biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras, J. Math. Phys. 55 (3) (2014) 16. 031701.
- X. Zhang, S. Wang, Weak Hom-Hopf algebras and their (co)representations, J. Geom. Phys. 94 (2015) 50-71.
- [8] A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (4) (2010) 553–589.
- [9] A. Makhlouf, Paradigm of nonassociative Hom-algebras and Hom-superalgebras, in: Proceedings of Jordan Structures in Algebra and Analysis Meeting, Editorial Circulo Rojo, Almeria, 2010, pp. 143-177.
- [10] M.J. Aragón, A.J. Calderón, Split regular Hom-Lie algebras, J. Lie Theory 25 (3) (2015) 875–888.
- [11] A.J. Calderón, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci, Math. 118 (2008) 351–356.
- [12] A.J. Calderón, On integrable roots in split Lie triple systems, Acta Math. Sin. (Engl. Ser.) 11 (2009) 1759-1774.