Estabilidade

Fundamentos de Controle

- Usando a resposta natural:
 - Um sistema é estável se a resposta natural tende a zero, à medida que o tempo tende a infinito.
 - Um sistema é instável se a resposta natural tende a infinito, à medida que o tempo tende a infinito.
 - Um sistema é marginalmente estável se a resposta natural não decair nem crescer, mas permanecer constante ou oscilar.

- Usando a resposta total (BIBO):
 - Um sistema é estável se toda entrada limitada gerar uma saída limitada.
 - Um sistema é **instável** se alguma entrada limitada gerar uma saída ilimitada.

Stable system

Stable system's closed-loop poles (not to scale)

$$R(s) = \frac{10(s+2)}{s^5 + 28s^4 + 284s^3 + 1232s^2 + 1930s + 20}$$

$$C(s)$$

$$(b)$$

Critério de Routh-Hurwitz

TABLE 6.1 Initial layout for Routh table

s^4	a_4	a_2	a_0
s^3	a_3	a_1	0
s^2			
s^1			
SO			

TABLE 6.2 Completed Routh table

$$s^{4} \qquad a_{4} \qquad a_{2} \qquad a_{0}$$

$$s^{3} \qquad a_{3} \qquad a_{1} \qquad 0$$

$$s^{2} \qquad -\frac{\begin{vmatrix} a_{4} & a_{2} \\ a_{3} & a_{1} \end{vmatrix}}{a_{3}} = b_{1} \qquad -\frac{\begin{vmatrix} a_{4} & a_{0} \\ a_{3} & 0 \end{vmatrix}}{a_{3}} = b_{2} \qquad -\frac{\begin{vmatrix} a_{4} & 0 \\ a_{3} & 0 \end{vmatrix}}{a_{3}} = 0$$

$$s^{1} \qquad -\frac{\begin{vmatrix} a_{3} & a_{1} \\ b_{1} & b_{2} \end{vmatrix}}{b_{1}} = c_{1} \qquad -\frac{\begin{vmatrix} a_{3} & 0 \\ b_{1} & 0 \end{vmatrix}}{b_{1}} = 0 \qquad -\frac{\begin{vmatrix} a_{3} & 0 \\ b_{1} & 0 \end{vmatrix}}{b_{1}} = 0$$

$$s^{0} \qquad -\frac{\begin{vmatrix} b_{1} & b_{2} \\ c_{1} & 0 \end{vmatrix}}{c_{1}} = d_{1} \qquad -\frac{\begin{vmatrix} b_{1} & 0 \\ c_{1} & 0 \end{vmatrix}}{c_{1}} = 0 \qquad -\frac{\begin{vmatrix} b_{1} & 0 \\ c_{1} & 0 \end{vmatrix}}{c_{1}} = 0$$

Exemplo 6.1

Criando uma Tabela de Routh

PROBLEMA: Construa a tabela de Routh para o sistema mostrado na Figura 6.4(a).

FIGURA 6.4 a. Sistema com realimentação para o Exemplo 6.1; b. sistema em malha fechada equivalente.

TABLE 6.3 Completed Routh table for Example 6.1

s³

31

 s^2

1030 103

0

 s^1

$$\frac{-\begin{vmatrix} 1 & 31 \\ 1 & 103 \end{vmatrix}}{1} = -72$$

$$\frac{-\begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}}{1} = 0$$

$$\frac{-\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}}{1} = 0$$

 s^0

$$\frac{-\begin{vmatrix} 1 & 103 \\ -72 & 0 \end{vmatrix}}{-72} = 103$$

$$\frac{-\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix}}{-72} = 0$$

$$\begin{vmatrix} 1 & 0 \\ -72 & 0 \end{vmatrix} = 0$$

Exercício 6.1

PROBLEMA: Construa uma tabela de Routh e diga quantas raízes do polinômio a seguir estão no semiplano da direita e no semiplano da esquerda.

$$P(s) = 3s^7 + 9s^6 + 6s^5 + 4s^4 + 7s^3 + 8s^2 + 2s + 6$$

RESPOSTA: Quatro no semiplano da direita (spd) e três no semiplano da esquerda (spe).

Critério de Routh-Hurwitz: Casos Especiais Zero Apenas na Primeira Coluna

Exemplo 6.2

Estabilidade Via Método do Épsilon

PROBLEMA: Determine a estabilidade da função de transferência em malha fechada

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3} \tag{6.2}$$

TABLE 6.4 Completed Routh table for Example 6.2

s^5	1	3	5
s^5 s^4	2	6	3
s^3	Θ ϵ	$\frac{7}{2}$	0
s^2	$\frac{6\epsilon-7}{\epsilon}$	3	0
s^1	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	0	0
SO	3	0	0

TABLE 6.5 Determining signs in first column of a Routh table with zero as first element in a row

Label	First column	$\epsilon = +$	$\epsilon = -$
s ⁵	1	+	+
s^4	2	+	+
s^3	Θ ϵ	+	_
s^2	$\frac{6\epsilon - 7}{\epsilon}$		+
s^1	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	+	+
SO	3	+	+

Uma Linha Inteira de Zeros

Exemplo 6.4

Estabilidade Via Tabela de Routh com Linha de Zeros

PROBLEMA: Determine o número de polos no semiplano da direita da função de transferência em malha fechada

$$T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56} \tag{6.8}$$

$$P(s) = s^4 + 6s^2 + 8$$

$$\frac{dP(s)}{ds} = 4s^3 + 12s + 0$$

TABLE 6.7 Routh table for Example 6.4

s^5			1			6			8
s^4		7	1		42	6		56	8
s^3	0	4	1	0	12	3	P	0	0
s^2			3			8			0
s^1			$\frac{1}{3}$			0			0
s^0			8			0			0

Exemplo 6.5

Distribuição de Polos Via Tabela de Routh com Linha de Zeros

PROBLEMA: Para a função de transferência

$$T(s) = \frac{20}{s^8 + s^7 + 12s^6 + 22s^5 + 39s^4 + 59s^3 + 48s^2 + 38s + 20}$$
(6.11)

diga quantos polos estão no semiplano da direita, no semiplano da esquerda e sobre o eixo $j\omega$.

TABLE 6.8 Routh table for Example 6.5

s ⁸	1	12	39	48	20
s ⁷	1	22	59	38	0
s^6	-10-1	-20 - 2	10 1	20 2	0
s^5	20 1	60 3	40 2	0	0
s^4	1	3	2	0	0
s^3	0 4 2	0 6 3	0 0	0	0
s^2	$\frac{3}{2}$ 3	2 4	0	0	0
s^1	$\frac{1}{3}$	0	0	0	0
s^{0}	4	0	0	0	0

TABLE 6.9 Summary of pole locations for Example 6.5

Polynomial

Location	Even (fourth-order)	Other (fourth-order)	Total (eighth-order)
Right half-plane	0	2	2
Left half-plane	0	2	2
$j\omega$	4	0	4

A: Real and symmetrical about the origin

B: Imaginary and symmetrical about the origin

C: Quadrantal and symmetrical about the origin

Exercício 6.2

PROBLEMA: Utilize o critério de Routh-Hurwitz para descobrir quantos polos do sistema em malha fechada a seguir, T(s), estão no spd, no spe e sobre o eixo $j\omega$:

$$T(s) = \frac{s^3 + 7s^2 - 21s + 10}{s^6 + s^5 - 6s^4 + 0s^3 - s^2 - s + 6}$$

RESPOSTA: Dois no spd, dois no spe e dois sobre o eixo $j\omega$.

A solução completa está disponível no GEN-IO, Ambiente de Aprendizagem do Grupo GEN.

Exemplo 6.9

Projeto de Estabilidade Via Routh-Hurwitz

PROBLEMA: Determine a faixa de valores de ganho, K, para o sistema da Figura 6.10, que fará com que o sistema seja estável, instável e marginalmente estável. Admita K > 0.

FIGURA 6.10 Sistema de controle com realimentação para o Exemplo 6.9.

$$T(s) = \frac{K}{s^3 + 18s^2 + 77s + K}$$

TABLE 6.15 Routh table for Example 6.9

1	77
18	K
1386 - K	
18	
K	
	$\frac{1386 - K}{18}$

$$P(s) = 18s^2 + 1386$$

$$\frac{dP(s)}{ds} = 36s + 0$$

TABLE 6.16 Routh table for Example 6.9 with K = 1386

s^3	1	77
s^2	18	1386
s^1	· 0 36	
s^0	1386	

Exercício 6.3

PROBLEMA: Para um sistema com realimentação unitária com a função de transferência à frente

$$G(s) = \frac{K(s+20)}{s(s+2)(s+3)}$$

determine a faixa de valores de K que torna o sistema estável.

RESPOSTA: 0 < K < 2

A solução completa está disponível no GEN-IO, Ambiente de Aprendizagem do Grupo GEN.