

Multimodal Learning with Uncertainty Quantification based on Discounted Belief Fusion

Grigor Bezirganyan¹

grigor.bezirganyan@univ-amu.fr

Sana Sellami¹

sana.sellami@univ-amu.fr

¹Aix-Marseille Univ, CNRS, LIS Marseille, France

Laure Berti-Équille²

laure.berti@ird.fr

²IRD, ESPACE-DEV Montpellier, France Sébastien Fournier¹

sebastien.fournier@univ-amu.fr

Context

- Multimodal AI combines diverse data (images, text, audio) for critical decisions.
- Conflict between modalities can arise when modalities confidently disagree.
- Unaddressed conflict leads to unreliable predictions—risky in safety-critical tasks.

Limitations

Under conflicting modalities, current SOTA methods:

- Provide counter-intuitive decisions
- Underestimate the uncertainty
- The outcomes depend on modality fusion order (non order-invariant).
- Fail to distinguish between conflicting and non-conflicting samples.

Contributions

- Propose Discounted Belief Fusion (DBF), a novel uncertainty-aware multimodal fusion approach.
- Introduce a conflict-based discounting mechanism to reallocate uncertainty from conflicting modalities.
- Ensure fusion is order-invariant and scalable to multiple modalities.
- Demonstrate superior uncertainty quantification in conflicting scenarios compared to SOTA methods.
- Provide theoretical analysis and extensive experimental validation.

Discounted Belief Fusion

The degree of conflict DC between two subjective opinions $\boldsymbol{\omega}^1$ and $\boldsymbol{\omega}^2$ is defined as:

$$PD\left(\boldsymbol{\omega}^{1}, \boldsymbol{\omega}^{2}\right) = \frac{\sum_{k=1}^{K} |p_{k}^{1} - p_{k}^{2}|}{2},$$

$$CC\left(\boldsymbol{\omega}^{1}, \boldsymbol{\omega}^{2}\right) = \left(1 - u^{1}\right)\left(1 - u^{2}\right),$$

$$DC\left(\boldsymbol{\omega}^{1}, \boldsymbol{\omega}^{2}\right) = PD\left(\boldsymbol{\omega}^{1}, \boldsymbol{\omega}^{2}\right) \cdot CC\left(\boldsymbol{\omega}^{1}, \boldsymbol{\omega}^{2}\right),$$

computation using degree of conflict: $C_{ij} = \mathrm{DC}(\boldsymbol{\omega}^i, \boldsymbol{\omega}^j), \quad \boldsymbol{A} = (1 - \boldsymbol{C}^{\lambda})^{1/\lambda}.$

tainty masses.

 $b' = \eta b, \quad u' = 1 - \eta + \eta u.$

Compute the **Discounting Factors** $\eta^v = \prod A_{vi}, \quad \forall v \in [1, \dots V].$

5. Generalized Belief Averaging

$$oldsymbol{b}^{\diamond V} = rac{\sum_{v=1}^{V} \left(oldsymbol{b}^v \prod_{i
eq v} u^i
ight)}{\sum_{v=1}^{V} \left(\prod_{i
eq v} u^i
ight)}, \ u^{\diamond V} = rac{V \prod_{v=1}^{V} u^v}{\sum_{v=1}^{V} \left(\prod_{i
eq v} u^i
ight)}, \ oldsymbol{a}^{\diamond V} = rac{\sum_{v=1}^{V} oldsymbol{a}^v}{V}.$$

Results

·				
Fusion Method	b_1	b_2	b_3	u
Modality 1	0.99	0.00	0.01	0
Modality 2	0.00	0.99	0.01	0
BCF	0.0000	0.0000	1.0000	0
CBF	0.4950	0.4950	0.0100	0
BAF	0.4950	0.4950	0.0100	0
DBF $\lambda = 1$	0.0050	0.0050	0.0001	0.9900
$DBF \lambda = 3$	0.1533	0.1533	0.0031	0.6903

Unlike other fusion methods, **DBF increases the uncertainty** mass under conflict

DBF manages to **Distinguish between conflicting and** non-conflicting samples based on uncertainty values

Low confidence in modalities → Low conflict

→ Bad separation

