E2-212 MATRIX THEORY: ASSIGNMENT 11

Question 1. Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$, and $\mathbf{A} \in \mathbb{C}^{n \times n}$. Let $\mathbf{B} = \mathbf{I} - \mathbf{A}$ and $\mathbf{x}_0 \in \mathbb{C}^n$ be an arbitrary vector. Given \mathbf{A} and \mathbf{y} , we wish to solve the linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{y}$ as follows: (7 points)

For
$$i = 1, 2, 3, ...,$$

Do: $\mathbf{x}_i = \mathbf{B}\mathbf{x}_{i-1} + \mathbf{y}$

- (a) Let $\varepsilon_i = \mathbf{x}_i \mathbf{x}$ be the error in the ith iteration. Show that $\varepsilon_i = \mathbf{B}^i(\mathbf{x}_0 \mathbf{x})$.
- (b) Conclude that if $\rho(\mathbf{B}) < 1$, then this algorithm works (in the sense that $\mathbf{x}_i \to \mathbf{x}$ as $i \to \infty$).
- (c) Use the Gersgorin theorem to show that a hermitian **A** must be strictly diagonally dominant and $\|\mathbf{A}\|_{\infty} < 2$ to ensure that this algorithm works.

Question 2. Let \mathbf{y} and \mathbf{x} be unit ℓ_2 -norm left and right eigenvectors respectively of $\mathbf{C} \in \mathbb{C}^{n \times n}$ corresponding to a simple eigenvalue λ . Let $S(\lambda) \triangleq |\mathbf{y}^H \mathbf{x}|$. Prove that $S(\lambda) \neq 0$. (3 points) (Hint for proof by contradiction: Show that $\mathbf{x} \in \mathcal{R}(\mathbf{C} - \lambda \mathbf{I})$. Also, there can exist only 1 linearly independent generalized eigenvector corresponding to simple eigenvalues.)