Estimation, MLE

Machine Learning Techniques

Karthik Thiagarajan

Unsupervised Learning

- Representation learning
 - PCA
 - Kernel PCA
- Clustering
 - Lloyd's algorithm (K-means)
- Estimation

Comprehension via Compression

Unsupervised Learning

- Representation learning
 - PCA
 - Kernel PCA
- Clustering
 - Lloyd's algorithm (K-means)
- Estimation

Comprehension via Compression

Unsupervised Learning

- Representation learning
 - PCA
 - Kernel PCA
- Clustering
 - Lloyd's algorithm (K-means)
- Estimation

• PCA

Comprehension via Compression

Unsupervised Learning

- Representation learning
 - PCA
 - Kernel PCA
- Clustering
 - Lloyd's algorithm (K-means)
- Estimation

- PCA
 - k principal components
- Clustering

Comprehension via Compression

Unsupervised Learning

- Representation learning
 - PCA
 - Kernel PCA
- Clustering
 - Lloyd's algorithm (K-means)
- Estimation

- PCA
 - k principal components
- Clustering
 - k means
- Estimation

Comprehension via Compression

Unsupervised Learning

- Representation learning
 - PCA
 - Kernel PCA
- Clustering
 - Lloyd's algorithm (K-means)
- Estimation

- PCA
 - k principal components
- Clustering
 - -k means
- Estimation
 - k parameters

- Model the data-generation process
 - Where does the data come from?
 - What is the process that generates the data?
 - What are the parameters that govern this process?

- Model the data-generation process
 - Where does the data come from?
 - What is the process that generates the data?
 - What are the parameters that govern this process?

• How is it different from clustering and representation learning?

- Model the data-generation process
 - Where does the data come from?
 - What is the process that generates the data?
 - What are the parameters that govern this process?

- How is it different from clustering and representation learning?
 - Present → Future
 - * Start with what is given and try to explain patterns in it

- Model the data-generation process
 - Where does the data come from?
 - What is the process that generates the data?
 - What are the parameters that govern this process?

- How is it different from clustering and representation learning?
 - Present → Future
 - * Start with what is given and try to explain patterns in it
 - Present → Past
 - * Explore the process that could have given rise to the data

$$D = \{x_1, \dots, x_n\}$$

Distribution ————— Sampling ————— Dataset

- (1) Choose a distribution
- (2) Estimate the parameters

- (1) Choose a distribution
- (2) Estimate the parameters

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

- (1) Choose a distribution
- (2) Estimate the parameters

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

Likelihood is treated as a function of θ

- (1) Choose a distribution
- (2) Estimate the parameters

$$\max_{\boldsymbol{\theta}} \quad L(\boldsymbol{\theta}; \{x_1, \ \cdots, x_n\}$$

$$L(\theta; \{x_1, \ \cdots, x_n\}) = P(\{x_1, \ \cdots, x_n\}; \theta)$$

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \quad L(\theta; \{x_1, \ \cdots, x_n\})$$

Likelihood is treated as a function of θ

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$
$$= P(x_1; \theta) \dots P(x_n; \theta)$$

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

$$= P(x_1; \theta) \dots P(x_n; \theta)$$

$$= \prod_{i=1}^n P(x_i; \theta)$$

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

$$= P(x_1; \theta) \dots P(x_n; \theta)$$

$$= \prod_{i=1}^{n} P(x_i; \theta)$$

$$l(\theta; \{x_1, \dots, x_n\}) = \log L(\theta; \{x_1, \dots, x_n\})$$
$$= \sum_{i=1}^n \log P(x_i; \theta)$$

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

$$= P(x_1; \theta) \dots P(x_n; \theta)$$

$$= \prod_{i=1}^{n} P(x_i; \theta)$$

$$\begin{split} l(\theta;~\{x_1,~\cdots,x_n\}) &= \log L(\theta;\{x_1,~\cdots,x_n\}) \\ &= \sum_{i=1}^n \log P(x_i;\theta) \end{split}$$

• **Problem:** Likelihood involves product of quantities less than 1

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

$$= P(x_1; \theta) \dots P(x_n; \theta)$$

$$= \prod_{i=1}^{n} P(x_i; \theta)$$

$$\begin{split} l(\theta; \ \{x_1, \ \cdots, x_n\}) &= \log L(\theta; \{x_1, \ \cdots, x_n\}) \\ &= \sum_{i=1}^n \log P(x_i; \theta) \end{split}$$

- **Problem:** Likelihood involves product of quantities less than 1
- Solution: Use \log as it converts products to sums

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

$$= P(x_1; \theta) \dots P(x_n; \theta)$$

$$= \prod_{i=1}^{n} P(x_i; \theta)$$

$$l(\theta; \{x_1, \dots, x_n\}) = \log L(\theta; \{x_1, \dots, x_n\})$$
$$= \sum_{i=1}^n \log P(x_i; \theta)$$

- **Problem:** Likelihood involves product of quantities less than 1
- Solution: Use \log as it converts products to sums
- Allowed: \log is strictly increasing

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

$$= P(x_1; \theta) \dots P(x_n; \theta)$$

$$= \prod_{i=1}^{n} P(x_i; \theta)$$

$$l(\theta; \{x_1, \dots, x_n\}) = \log L(\theta; \{x_1, \dots, x_n\})$$
$$= \sum_{i=1}^n \log P(x_i; \theta)$$

 x^* maximizes $f \iff x^*$ maximizes $\log f$

- **Problem:** Likelihood involves product of quantities less than 1
- Solution: Use \log as it converts products to sums
- Allowed: \log is strictly increasing

$$D = \{x_1, \dots, x_n\}$$

$$L(\theta; \{x_1, \dots, x_n\}) = P(\{x_1, \dots, x_n\}; \theta)$$

$$= P(x_1; \theta) \dots P(x_n; \theta)$$

$$= \prod_{i=1}^{n} P(x_i; \theta)$$

$$l(\theta; \{x_1, \dots, x_n\}) = \log L(\theta; \{x_1, \dots, x_n\})$$
$$= \sum_{i=1}^n \log P(x_i; \theta)$$

 $x^* \text{ maximizes } f \iff x^* \text{ maximizes } \log f$

$$f(x) \leqslant f(x^*) \iff \log(f(x)) \leqslant \log(f(x^*))$$

- **Problem:** Likelihood involves product of quantities less than 1
- Solution: Use \log as it converts products to sums
- Allowed: \log is strictly increasing

$$X_i \sim Br(p)$$

$$P(X_i = 1) = p$$

$$P(X_i = 0) = 1 - p$$

$$X_i \sim Br(p)$$

$$\begin{split} P(X_i = 1) &= p \\ P(X_i = 0) &= 1 - p \end{split}$$

$$X_i \sim Br(p)$$

$$P(X_i = x_i) = p^{x_i} \cdot (1 - p)^{1 - x_i}$$

$$P(X_i = 1) = p$$

$$P(X_i = 0) = 1 - p$$

$$X_i \sim Br(p)$$

$$P(X_i = x_i) = p^{x_i} \cdot (1-p)^{1-x_i}$$

$$L(p; D) = \prod_{i=1}^{n} P(X_i = x_i) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

$$X_i \sim Br(p)$$

$$P(X_i = x_i) = p^{x_i} \cdot (1-p)^{1-x_i}$$

$$\begin{split} L(p;D) &= \prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} \\ &= p^{n_h} (1-p)^{n-n_h} \end{split}$$

$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

$$X_i \sim Br(p)$$

$$P(X_i = x_i) = p^{x_i} \cdot (1-p)^{1-x_i}$$

$$\begin{split} L(p;D) &= \prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} \\ &= p^{n_h} (1-p)^{n-n_h} \end{split}$$

$$l(p; D) = n_h \log p + (n - n_h) \log(1 - p)$$

$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

$$X_i \sim Br(p)$$

$$P(X_i = x_i) = p^{x_i} \cdot (1 - p)^{1 - x_i}$$

$$\begin{split} L(p;D) &= \prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} \\ &= p^{n_h} (1-p)^{n-n_h} \end{split}$$

$$\begin{split} l(p;D) &= n_h \log p + (n-n_h) \mathrm{log}(1-p) \\ \frac{dl(p;D)}{dp} &= \frac{n_h}{p} - \frac{n-n_h}{1-p} \end{split}$$

$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

$$X_i \sim Br(p)$$

$$P(X_i = x_i) = p^{x_i} \cdot (1 - p)^{1 - x_i}$$

$$\begin{split} L(p;D) &= \prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} \\ &= p^{n_h} (1-p)^{n-n_h} \end{split}$$

$$\begin{split} l(p;D) &= n_h \log p + (n-n_h) \mathrm{log}(1-p) \\ \frac{dl(p;D)}{dp} &= \frac{n_h}{p} - \frac{n-n_h}{1-p} \end{split}$$

$$\frac{dl(p;D)}{dp} = 0$$

$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

$$X_i \sim Br(p)$$

$$P(X_i = x_i) = p^{x_i} \cdot (1 - p)^{1 - x_i}$$

$$\begin{split} L(p;D) &= \prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} \\ &= p^{n_h} (1-p)^{n-n_h} \end{split}$$

$$\begin{split} l(p;D) &= n_h \log p + (n-n_h) \mathrm{log}(1-p) \\ \frac{dl(p;D)}{dp} &= \frac{n_h}{p} - \frac{n-n_h}{1-p} \end{split}$$

$$\frac{dl(p;D)}{dp}=0$$

$$(1-p)n_h-(n-n_h)p=0$$

$$P(X_i = 1) = p$$

 $P(X_i = 0) = 1 - p$

$$X_i \sim Br(p)$$

$$P(X_i = x_i) = p^{x_i} \cdot (1-p)^{1-x_i}$$

$$\begin{split} L(p;D) &= \prod_{i=1}^n P(X_i = x_i) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} \\ &= p^{n_h} (1-p)^{n-n_h} \end{split}$$

$$\begin{split} l(p;D) &= n_h \log p + (n-n_h) \mathrm{log}(1-p) \\ \frac{dl(p;D)}{dp} &= \frac{n_h}{p} - \frac{n-n_h}{1-p} \end{split}$$

$$\frac{dl(p;D)}{dp} = 0$$

$$(1-p)n_h - (n-n_h)p = 0$$

$$p = \frac{n_h}{n}$$