Translation Syntax (SPSS, Stata, SAS and R)

The Basics

Calling in a data set

SPSS	GET FILE='P:\QAC\qac201\Studies\study name\filename.sav
Stata	use "P:\QAC\qac201\Studies\study name\filename"
SAS	LIBNAME in "P:\QAC\QAC201\study name;
	DATA new; set in.filename;
R	> newdata <- read.delim(file = "filename.txt", sep = "\t", header=T)

Selecting variables you want to examine

	/KEEP VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8. (Must follow the SAVE OUTFILE='dataname' command)
Stata	keep var1 var2 var3 var4 var5 var6 var7 var8
SAS	KEEP VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8;
	> var.keep <- c("VAR1", "VAR2", "VAR3", "VAR4", "VAR5", "VAR6", "VAR7", "VAR8") > title_of_new_data_set <- new.data[,var.keep]

Outputting your abbreviated data set

SPSS	SAVE OUTFILE= 'P:\QAC\qac201\Studies\study name\title_of_new_data_set'
Stata	save filename
SAS	Data libname.title_of_new_data_set; set dataname; by unique_id;
R	> write.table(title_of_data_set, file="filename.txt", sep="\t", row.names=F)

Sorting the data

SPSS	SORT CASES BY UNIQUE_ID.
Stata	sort unique_id
SAS	proc sort; by unique_id;
R	> title_of_data_set <- title_of_data_set[order(title_of_data_set\$unique_id,decreasing=F),]

Displaying frequency tables

SPSS	FREQUENCIES VARIABLES=var1 var2 var3 /ORDER=ANALYSIS.
Stata	tab1 var1 var2 var3
SAS	PROC FREQ; tables var1 var2 var3;
R	> library(descr) > freq(as.ordered(title_of_data_set\$VAR1)) > freq(as.ordered(title_of_data_set\$VAR2)) > freq(as.ordered(title_of_data_set\$VAR3))

Data management

Basic Operations:

SPSS	EQ or =	>= or GE	<= or LE	> or GT	< or LT	NE
STATA	==	>=	<=	>	<	!=
SAS	EQ or =	>= or GE	<= or LE	> or GT	< or LT	NE
R	==	>=	<=	>	<	!=

Examples:

1. Need to identify missing data

SPSS	RECODE var1 (9=SYSMIS)
Stata	replace var1=. if var1==9
SAS	if VAR1=9 then VAR1=.;
R	> title_of_data_set\$VAR1[title_of_data_set\$VAR1==9] <- NA

2. Need to recode responses to "no" based on skip patterns

SPSS	RECODE var1 (SYSMIS=7).
Stata	replace var1=7 if var1==.
SAS	if VAR1=. then VAR1=7;
R	> title_of_data_set\$VAR1[is.na(title_of_data_set\$VAR1)] <- 7

3. Recoding string variables into numeric

SPSS	RECODE TREE ('Maple'=1) ('Oak'=2) INTO TREE_N.
Stata	generate TREE_N=. replace TREE_N=1 if TREE=="Maple" replace TREE_N=2 if TREE=="Oak" OR by using the encode command encode TREE, gen(TREE_N)
SAS	IF TREE='Maple' then TREE_N=1; else if TREE= 'Oak' then TREE_N=2;
R	(Not necessary in R)

4. Need to collapse response categories

COMPUTE new region=2. SPSS IF (region=1| region=2|region=3| region=5|region=6) new region=1. **generate** new region =2 Stata replace new_region=1 if region==1| region==2|region==3| region==5|region==6 OR by using the recode command recode region (1/3 5 6=2) gen(new_region) if region=1 or region=2 or region=3 or region=5 or region=6 then new region=1; SAS else if region=4 or region=7 or region=8 or region=9 then new_region=2; > new region <- rep(NA. # of observations) R > new_region[title_of_data_set\$region == 1 | title_of_data_set\$region == 2 | title of data set\$region == 3 | title of data set\$region == 5 | title of data set\$region == 6**1 <-** 1 > new region title of data set region == 4 title of data set region == 7 title_of_data_set\$region == 8 | title_of_data_set\$region == 9] <- 2

5. Need to aggregate variables

6. Need to create continuous variables

SPSS	COMPUTE nd_sum=sum(nd_symptom1 nd_symptom2 nd_symptom3 nd_symptom4).
Stata	egen nd_sum=rsum(nd_symptom1 nd_symptom2 nd_symptom3 nd_symptom4)
SAS	nd_sum= sum (of nd_symptom1 nd_symptom2 nd_symptom3 nd_symptom4);
R	> nd_sum <- title_of_data_set\$nd_symptom1 + title_of_data_set\$nd_symptom2 + title_of_data_set\$nd_symptom3 + title_of_data_set\$nd_symptom4 > title_of_data_set\$nd_sum <- nd_sum

7. Renaming variables

SPSS	COMPUTE newvarname=var1
Stata	rename var1 newvarname
SAS	RENAME var1=newvarname;
R	> names(title_of_data_set)[names(title_of_data_set)=="VAR1"] <- "newvarname"

8. ---

9. Labeling variable responses/values

SPSS	VALUE LABELS variable 0 'value' 1 'value' 2 'value' 3 'value'
Stata	label define name1 0 "value" 1 "value" 2 "value" 3 "value" label values variable name1
SAS	proc format; variable 0="value" 1="value" 2="value" 3="value";
R	> levels(title_of_data_set\$VARIABLE) <- c("value", "value")

10. Need to further subset the sample

SPSS	/SELECT=diabetes2 EQ 1 (must be added as a command option)
Stata	if diabetes2==1 (put this after the command)
SAS	if diabetes2=1; (put in the data step before sorting the data)
R	> title_of_subsetted_data <- title_of_data_set["diabetes2"==1,]

Graphing and Data Visualization

1. Univariate

Code for Univariate Output (Categorical):

SPSS	FREQUENCIES VARIABLES=var1 var2 var3 /ORDER=ANALYSIS.
Stata	tab1 var1 var2 var3
SAS	PROC FREQ; tables var1 var2 var3;
R	> library(descr)
	> freq(as.ordered(title_of_data_set\$var1))
	> freq(as.ordered(title_of_data_set\$var2))
	> freq(as.ordered(title_of_data_set\$var3))

Code for Univariate Output (Quantitative):

SPSS	DESCRIPTIVES VARIABLES=var1 var2 var3 /STATISTICS=MEAN STDDEV
Stata	summarize var1 var2 var3
SAS	proc means; var var1 var2 var3;
R	<pre>> library(descr) > freq(as.ordered(title_of_data_set\$var1)) > freq(as.ordered(title_of_data_set\$var2)) > freq(as.ordered(title_of_data_set\$var3)) (Or for mean and sd:) > summary(title_of_data_set\$var1)</pre>

2. Bivariate

Code for Bivariate Output (Categorical IV and Quantitative DV):

SPSS	MEANS TABLES=IV by DV	
	/CELLS MEAN COUNT STDDEV.	
Stata	bys IV: su DV	
SAS	proc sort; by IV;	
	proc means; var DV; by IV;	
R	> by(title_of_data_set\$DV, title_of_data_set\$IV, mean)	# for table
	> barplot(by(title of data set\$DV, title of data set\$IV, mean))	# for plots

Code for Bivariate Output (Categorical IV and Categorical DV):

SPSS	CROSSTABS /TABLES=DV by IV. /CELLS=COUNT ROW COLUMN TOTAL.
Stata	tab DV IV, row column cell
SAS	Proc freq; tables DV*IV;
R	> table(title_of_data_set\$DV, title_of_data_set\$IV) # for table > prop.table(table(title_of_data_set\$DV, title_of_data_set\$IV)) # for cell %ages > prop.table(table(title_of_data_set\$DV, title_of_data_set\$IV),1) # for row %ages > prop.table(table(title_of_data_set\$DV, title_of_data_set\$IV),2) # for column %age > barplot(prop.table(table(title_of_data_set\$DV, title_of_data_set\$IV),2)[rows,])) #
	for plots of column percentages

Note: If your IV is continuous, for graphing purposes, create meaningful categories and then use the code above.

3. Multivariate

Code for Multivariate Output (Categorical IV, Quantitative DV, Categorical 3rd VAR):

SPSS	MEANS TABLES=DV BY IV BY THIRD_VAR
	/CELLS MEAN COUNT STDDEV.
Stata	bys IV THIRD_VAR: su DV
SAS	proc sort; by IV THIRD_VAR;
	proc means; var DV; by IV THIRD_VAR;
R	> ftable(by(title_of_data_set\$DV, list(title_of_data_set\$IV,
	title_of_data_set\$THIRD_VAR), mean)) # to get table
	> barplot(by(title_of_data_set\$DV, list(title_of_data_set\$IV,
	title_of_data_set\$THIRD_VAR), mean), beside=T) # to get plot

Code for Multivariate Output (Categorical IV and Categorical DV, Categorical 3rd VAR):

SPSS	CROSSTABS
	/TABLES=DV BY IV BY THIRD_VAR.
Stata	bys IV THIRD_VAR: tab DV
SAS	proc sort; by THIRD_VAR;
	proc freq; tables DV*IV; by THIRD_VAR;

Note: If your 3rd variable is continuous, for graphing purposes, create meaningful categories and then use the code above.

Bivariate Analyses

ANOVA

SPSS	ONEWAY QUAN_DV BY CAT_IV /STATISTICS DESCRIPTIVES.
Stata	oneway quan_DV cat_IV, tabulate
SAS	proc anova; class CAT_IV; model QUAN_DV = CAT_IV; means CAT_IV;
R	> summary(aov(DV ~ IV, data=title_of_data_set))

Pearson correlation

	CORRELATIONS /VARIABLES= QUANIV QUANDV /STATISTICS DESCRIPTIVES.
Stata	corr quan_IV quan_DV
	OR
	pwcorr quant_IV quant_DV, sig
SAS	Proc corr; var QUAN_IV QUAN_DV;
R	> cor.test(title_of_data_set\$DV, title_of_data_set\$IV)

Chi-square test

SPSS	CROSSTABS
	/TABLES= CAT_DV by CAT_IV
	/STATISTICS=CHISQ.
Stata	tab cat_dv cat_iv, chi2 row col
SAS	Proc freq; tables CAT_DV*CAT_IV/ chisq;
R	> chisq.test(title_of_data_set\$DV, title_of_data_set\$IV)

POST HOC TESTS WITHIN ANOVA

SPSS	UNIANOVA QUAN_DV BY CAT_IV
	/POSTHOC=CAT_IV (TUKEY)
	/PRINT=ETASQ DESCRIPTIVE.
Stata	oneway quan_DV cat_IV, sidak
SAS	Proc anova; class CAT_IV; model QUAN_DV=CAT_IV;
	means CAT_IV /duncan;
R	> TukeyHSD(aov(DV ~ IV, data=title_of_data_set))

POST HOC TESTS FOR CHI SQUARE (must subset data in order to conduct 2X2 comparisons)

SPSS	TEMPORARY.
	SELECT IF CATIV=X OR CAT_IV=Y.
	CROSSTABS
	/TABLES= CAT_DV CAT_IV
	/STATISTICS=CHISQ.
Stata	keep if cat_IV==1 cat_IV==3
	tab cat_IV cat_DV, chi2
SAS	IF (CAT_IV = 1) AND (CAT_IV = 3); (in data step)
	Proc freq; tables CAT_DV*CAT_IV / chisq;
R	> chisq.test(title_of_data_set\$DV, title_of_data_set\$IV)\$observed
	# for actual cell counts
	> chisq.test(title_of_data_set\$DV, title_of_data_set\$IV)\$expected
	# for cell counts expected by chance
	> chisq.test(title_of_data_set\$DV, title_of_data_set\$IV)\$residuals
	# for Pearson residuals (z scores)

For 2x2 comparisons:

> chisq.test(title_of_data_set\$DV[subset], title_of_data_set\$IV[subset])

Multivariate Regression: Testing for Confounding

MULTIPLE REGRESSION

SPSS	REGRESSION
	/DEPENDENT QUAN_DV
	/METHOD ENTER IV THIRDVAR1 THIRDVAR2
Stata	reg quan_DV IV THIRDVAR1 THIRDVAR2
SAS	Proc reg; model QUAN_DV=IV THIRDVAR1 THIRDVAR2;
R	my.lm <- Im(DV ~ IV + THIRDVAR1 + THIRDVAR2, data=title_of_data_set)
	> summary(my.lm)

LOGISTIC REGRESSION

SPSS	LOGISTIC REGRESSION BINARY_DV with IV THIRDVAR1.
Stata	logistic binary_DV IV thirdvar1 thirdvar2
	or
	logit binary_DV IV thirdvar1 thirdvar2
SAS	Proc logistic; class IV THIRDVAR (when these variables are categorical); model
	BINARY_DV=IV THIRDVAR1 THIRDVAR2;
R	> my.logreg <- glm(DV ~ IV + THIRDVAR1 + THIRDVAR2, data=title_of_data_set, family="binomial")
	> summary(my.logreg) # for p-values
	> exp(my.logreg\$coefficients) # for odds ratios