Modern Machine Learning Lasso Regression

Kenneth E. Barner

Department of Electrical and Computer Engineering

University of Delaware

Lasso (Least Absolute Shrinkage and Selection Operator)

- Penalizes the coefficients $\boldsymbol{\beta}$ using the ℓ_1 norm
- Formulation

$$\widehat{\boldsymbol{\beta}}_{lasso} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{(p+1)}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1 \qquad (*)$$

Lasso features:

- Sets some coefficients to zero, yielding a sparse solution (model selection)
- No closed form solution, but can be solved efficiently using convex optimization methods

Note: Lasso Regression can be equivalently formulated as

$$\widehat{\boldsymbol{\beta}}_{lasso} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{(p+1)}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^{2} \qquad (**)$$
subject to $\|\boldsymbol{\beta}\|_{1} < t$

There is a one-to-one correspondence between λ in (*) and t in (**)

Lasso & Ridge Comparison

Lasso constraint/penalty: $\|\boldsymbol{\beta}\|_1 \leq t$

– Lagrange multiplier: $\lambda \|oldsymbol{eta}\|_1$

Ridge constraint/penalty: $\|\boldsymbol{\beta}\|_2 \le t$

– Lagrange multiplier: $\lambda \|\boldsymbol{\beta}\|_2$

Thus

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{(p+1)}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_q \quad q \in \{1,2\}$$

Note: The solutions are the intersection between the constraint functions and the error (cost function) contours

Observation: the lasso constraint is diamond-shaped

- If the solution occurs at a corner, one coefficient is zero valued
- For higher dimensions, there are many "corners" forcing solutions with multiple zero coefficients

Shrinkage Constraint Comparison

Consider the more generalized regression problem:

$$\widehat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{(p+1)}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^{2} + \lambda \|\boldsymbol{\beta}\|_{q} \qquad q \ge 0$$

The contours for $\|\boldsymbol{\beta}\|_q$ are plotted below for the 2D case.

Observations:

- The case q = 1 (Lasso) is the smallest q such that the constraint region is convex
- Decreasing q forces solutions to the coordinate axis (reducing the number of nonzero coefficients)

Shrinkage Comparison

Consider the case of **X** with orthogonal columns. The resulting shrinkage of the LS solution is:

$$\hat{\beta}_j/(1+\lambda)$$
 [Ridge] $\operatorname{sign}(\hat{\beta}_j)(|\hat{\beta}_j|-\lambda)_{\perp}$ [Lasso]

where $\hat{\beta}_j$ is element j of $\hat{\beta}_{LS}$, sign (\cdot) denotes the sign of its argument (± 1) and

$$x_{+} = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$

Note: results derived similarly to SVD analysis performed in Ridge Regression

Observations:

- Rigidly linearly scales (shrinks) coefficients
- Lasso translates (shrinks) each coefficient by a constant λ , truncating to 0. This is called soft thresholding

Example: solid 45° lines represent LS coefficient values and the dotted lines represent the resulting Ridge & Lasso coefficient values.

Optimization: No closed form Lasso solution exists, although the optimization problem is convex. One optimization approach is cyclic coordinate descent

Coordinate descent: based on the premise that minimizing a multivariate function $f(\beta)$ can be achieved by repeatedly minimizing along one coordinate direction at a time

$$\begin{split} \beta_1^{(k+1)} &= \operatorname*{arg\,min} f \left(\beta, \beta_2^k, \beta_3^k, \ldots, \beta_p^k \right) \\ \beta_2^{(k+1)} &= \operatorname*{arg\,min} f \left(\beta_1^k, \beta, \beta_3^k, \ldots, \beta_p^k \right) \\ \beta_3^{(k+1)} &= \operatorname*{arg\,min} f \left(\beta_1^k, \beta_2^k, \beta, \ldots, \beta_p^k \right) \\ &\vdots \\ \beta_p^{(k+1)} &= \operatorname*{arg\,min} f \left(\beta_1^k, \beta_2^k, \beta_3^k, \ldots, \beta_p^k \right) \end{split}$$

Consider the optimization along a single coordinate (with the $\frac{1}{2}$ included for convenience)

$$\min_{\beta_{i}} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^{2} + \lambda \|\boldsymbol{\beta}\|_{1}
\min_{\beta_{i}} \frac{1}{2} \sum_{l=1}^{n} \left(y_{l} - \sum_{m=1}^{p} x_{lm} \beta_{m} \right)^{2} + \lambda \sum_{k=1}^{p} |\beta_{k}|$$
(*)

Differentiating the first term in (*) with respect to β_i :

$$\frac{\partial}{\partial \beta_i} \frac{1}{2} \sum_{l=1}^n \left(y_l - \sum_{m=1}^p x_{lm} \beta_m \right)^2 = \sum_{l=1}^n \left(y_l - \sum_{m=1}^p x_{lm} \beta_m \right) (-x_{li})$$

$$= \mathbf{X}_i^T (\mathbf{X} \boldsymbol{\beta} - \mathbf{y})$$

$$= \mathbf{X}_i^T (\mathbf{X}_{-i} \boldsymbol{\beta}_{-i} - \mathbf{v}) + \mathbf{X}_i^T \mathbf{X}_i \beta_i$$

where \mathbf{X}_{-i} denotes matrix \mathbf{X} excluding the *i*th column, and \mathbf{X}_i is the *i*th column of matrix \mathbf{X}

Consider the second term in (*). Note the non-differential term

$$\frac{\partial}{\partial \beta} |\beta| = ??$$

Convex function

For any convex function we have that $f(a) \ge f(b) + \nabla f(b)(a-b)$

Subgradient: Generalizes the concept to non-differentiable points

- g is a subgradient if $f(b) \ge f(a) + g(b-a)$
- g(0): =Any plane that lower bounds the function $f(\beta)$ (it is a set)

 $\partial f(\beta)$: = all subgradients of f at β

$$\partial f(\beta) = \begin{cases} -1 & \text{if } \beta < 0\\ [-1,1] & \text{if } \beta = 0\\ 1 & \text{if } \beta > 0 \end{cases}$$

Define

$$f(\boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \|\boldsymbol{\beta}\|_1$$

and set

$$g_i = \frac{\partial}{\partial \beta_i} \frac{1}{2} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 = \mathbf{X}_i^T (\mathbf{X}_{-i}\boldsymbol{\beta}_{-i} - \mathbf{y}) + \mathbf{X}_i^T \mathbf{X}_i \beta_i$$

Complete solution has 3 cases:

$$\partial f(\beta_i) = \begin{cases} g_i - \lambda & \text{if } \beta_i < 0\\ [g_i - \lambda, g_i + \lambda] & \text{if } \beta_i = 0\\ g_i + \lambda & \text{if } \beta_i > 0 \end{cases}$$

To find the optimal solution, set the derivative to 0 for all 3 cases

Case 1:
$$\beta_i < 0 \Longrightarrow g_i - \lambda = 0$$

$$g_i - \lambda = 0 \iff \beta_i = \frac{\mathbf{X}_i^T (\mathbf{y} - \mathbf{X}_{-i} \boldsymbol{\beta}_{-i}) + \lambda}{\mathbf{X}_i^T \mathbf{X}_i} = \tilde{g}_i + \frac{\lambda}{\|\mathbf{X}_i\|^2}$$

where
$$\tilde{g}_i = \frac{\mathbf{X}_i^T(\mathbf{y} - \mathbf{X}_{-i}\boldsymbol{\beta}_{-i})}{\mathbf{X}_i^T\mathbf{X}_i}$$

Case 2:
$$\beta_i > 0 \Longrightarrow g_i + \lambda = 0$$

$$g_i + \lambda = 0 \Leftrightarrow \beta_i = \frac{\mathbf{X}_i^T (\mathbf{y} - \mathbf{X}_{-i} \boldsymbol{\beta}_{-i}) - \lambda}{\mathbf{X}_i^T \mathbf{X}_i} = \tilde{g}_i - \frac{\lambda}{\|\mathbf{X}_i\|^2}$$

Case 3: $\beta_i = 0 \implies 0 \in [g_i - \lambda, g_i + \lambda]$ — need to prove conditions guaranteeing 0 is in this set

Consider the boundaries of Cases 1 & 2, and suppose: $-\frac{\lambda}{\|\mathbf{X}_i\|^2} < \tilde{g}_i < \frac{\lambda}{\|\mathbf{X}_i\|^2}$

$$-\frac{\lambda}{\|\mathbf{X}_{i}\|^{2}} < \tilde{g}_{i} < \frac{\lambda}{\|\mathbf{X}_{i}\|^{2}} \Leftrightarrow -\frac{\lambda}{\|\mathbf{X}_{i}\|^{2}} < \frac{\mathbf{X}_{i}^{T}(\mathbf{y} - \mathbf{X}_{-i}\boldsymbol{\beta}_{-i})}{\mathbf{X}_{i}^{T}\mathbf{X}_{i}} < \frac{\lambda}{\|\mathbf{X}_{i}\|^{2}}$$
$$\Leftrightarrow -\lambda < \mathbf{X}_{i}^{T}(\mathbf{y} - \mathbf{X}_{-i}\boldsymbol{\beta}_{-i}) < \lambda \qquad (*)$$

Recall $g_i = \mathbf{X}_i^T (\mathbf{X}_{-i} \boldsymbol{\beta}_{-i} - \mathbf{y}) + \mathbf{X}_i^T \mathbf{X}_i \beta_i$

Thus $\beta_i = 0 \Longrightarrow g_i = -\mathbf{X}_i^T(\mathbf{y} - \mathbf{X}_{-i}\boldsymbol{\beta}_{-i})$ and combining with (*)

$$-\lambda < -g_i < \lambda \Longrightarrow 0 \in [g_i - \lambda, g_i + \lambda]$$

Therefore we have shown that $0 \in \partial f(\beta_i)$ for $\beta_i = 0$ if $-\frac{\lambda}{\|\mathbf{X}_i\|^2} < \tilde{g}_i < \frac{\lambda}{\|\mathbf{X}_i\|^2}$

Combining the 3 cases yields the Lasso shrinkage optimization

$$\hat{\beta}_i = \begin{cases} \hat{g}_i + \frac{\lambda}{\|\mathbf{X}_i\|^2} & \text{if } \tilde{g}_i < -\frac{\lambda}{\|\mathbf{X}_i\|^2} \\ 0 & \text{if } -\frac{\lambda}{\|\mathbf{X}_i\|^2} < \tilde{g}_i < \frac{\lambda}{\|\mathbf{X}_i\|^2} \\ \tilde{g}_i - \frac{\lambda}{\|\mathbf{X}_i\|^2} & \text{if } \tilde{g}_i > \frac{\lambda}{\|\mathbf{X}_i\|^2} \end{cases}$$

where
$$\tilde{g}_i = \frac{\mathbf{X}_i^T(\mathbf{y} - \mathbf{X}_{-i}\boldsymbol{\beta}_{-i})}{\mathbf{X}_i^T\mathbf{X}_i}$$

The solution can be expressed in terms of the soft thresholding operator

$$\hat{\beta}_i = \eta_{\lambda/\|\mathbf{X}_i\|^2}^S(\tilde{g}_i) = \eta_{\lambda/\|\mathbf{X}_i\|^2}^S\left(\frac{\mathbf{X}_i^T(\mathbf{y} - \mathbf{X}_{-i}\boldsymbol{\beta}_{-i})}{\mathbf{X}_i^T\mathbf{X}_i}\right)$$

Thus for $\hat{\beta}_i = \eta_{\lambda/\|\mathbf{X}_i\|^2}^{\mathcal{S}}(\tilde{g}_i)$ we use the Soft-Thresholding operator

$$\eta_{\lambda}^{S}(\beta) = \operatorname{sign}(\beta)(|\beta| - \lambda)_{+} = \begin{cases} \beta + \lambda & \text{if } \beta < -\lambda \\ 0 & \text{if } -\lambda < \beta < \lambda \\ \beta - \lambda & \text{if } \beta > \lambda \end{cases}$$

Final Result: Apply cyclic coordinate descent to obtain the lasso solution

$$\beta_{1}^{(k+1)} = \eta_{\lambda/\|\mathbf{X}_{1}\|^{2}}^{S}(\tilde{g}_{1})$$

$$\beta_{2}^{(k+1)} = \eta_{\lambda/\|\mathbf{X}_{2}\|^{2}}^{S}(\tilde{g}_{2})$$

$$\vdots$$

$$\beta_{p}^{(k+1)} = \eta_{\lambda/\|\mathbf{X}_{p}\|^{2}}^{S}(\tilde{g}_{p}),$$

where
$$\tilde{g}_i = \frac{\mathbf{X}_i^T(\mathbf{y} - \mathbf{X}_{-i}\boldsymbol{\beta}_{-i})}{\mathbf{X}_i^T\mathbf{X}_i}$$

⇒ cycle through the coordinates until convergence