Analyzing Longitudinal Data

Ashley I Naimi Fall 2024

Contents

1	G Methods for Complex Longitudinal Data					
1.1	Assumptions 4					
2	Results 6					
2.1	Standard Methods 6					
2.2	g Methods 7					
3	Concluding Remarks 12					

Again, repeated measurement of the exposure and confounders over time creates different problems than repeated or correlated outcome data. Repeated exposure and confounder measurements create the opportunity for us to capture complex causal relations between past and future covariates. Suppose we measure an exposure twice over follow-up, a covariate once, and the outcome at the end of follow-up. If past exposure/covariates affect future exposure/covariates in such a way that prior exposures or covariates confound future exposures, more advanced analytic techniques are needed.

We discuss some of these techniques here.

G Methods for Complex Longitudinal Data

Robins' q methods enable the identification and estimation of the effects of generalized treatment, exposure, or intervention plans. G methods are a family of methods that include the g formula, marginal structural models, and structural nested models. They provide consistent estimates of contrasts (e.g. differences, ratios) of average potential outcomes under a less restrictive set of identification conditions than standard regression methods (e.g. linear, logistic, Cox regression) (Robins and Hernán, 2009). Specifically, standard regression requires no feedback between time-varying treatments and timevarying confounders, while g methods do not. Robins and Hern'{a}n Robins and Hernán (2009) have provided a technically comprehensive worked example of each of the three g methods. Here, we present a corresponding worked example that illustrates the need for and use of g methods, while minimizing technical details.2

Our research guestion concerns the effect of treatment for HIV on CD4 count. Table 1 presents data from a hypothetical observational cohort study (A = 1 for treated, A = 0 otherwise). Treatment is measured at baseline (A_0) and once during follow up (A_1) . The sole covariate is elevated HIV viral load (Z=1 for those with > 200 copies/ml, Z=0 otherwise), which is constant

Figure 1: Causal diagram representing the relation between anti-retroviral treatment at time 0 (A_0) , HIV viral load just prior to the second round of treatment (Z_1) , antiretroviral treatment status at time 1 (A_1) , the CD4 count measured at the end of follow-up (Y), and an unmeasured common cause (U)of HIV viral load and CD4.

¹ There are three g methods: the parametric g formula and inverse probability weighting. These two are used to estimate the parameters of a marginal structural model. Then there is g estimation (different from the q formula). This is used to estimate the parameters of a strcutural nested model.

² There are a handful of worked examples and tutorials on the use of g methods to estimate effects in complex longitudinal data. These include Robins and Hernán (2009), Daniel et al. (2013), Keil et al. (2014), the paper on which these notes are based Naimi et al. (2017). Additionally, ? is an excellent, comprehensive, and very accessible introduction to causal inference generally, and g methods specifically.

by design at baseline ($Z_0 = 1$) and measured once during follow up just prior to the second treatment (Z_1) . The outcome is CD4 count measured at the end of follow up in units of cells/mm³. The CD4 outcome in Table 1 is summarized (averaged) over the participants at each level of the treatments and covariate.

YN A_0 Z_1 A_1 0 87.29 209,271 0 0 0 0 1 112.11 93,779 0 1 0 60,654 119.65 0 1 144.84 136,293 1 1 0 0 105.28 134,781 1 0 1 130.18 60,789 1 1 0 137.72 93,903 1 1 1 162.83 210,527

The number of participants is provided in the rightmost column of Table 1. In this hypothetical study of one million participants we ignore random error and focus on identifying the parameters defining our causal effect of interest, which we describe next.

Based on Figure 2, the average outcome in our simple data generating structure may be composed of several parts: the effects of A_0 , Z_1 , and A_1 ; the two-way interactions between A_0 and Z_1 , A_0 and A_1 , and A_1 and Z_1 ; and the three-way interaction between A_0 , Z_1 , and A_1 . These components (some whose magnitudes may be zero) can be used to "build up' a contrast of substantive interest. Here, we focus on the average causal effect of always taking treatment ($a_0 = 1, a_1 = 1$) compared to never taking treatment $(a_0=0,a_1=0),$ ³

$$\begin{split} \psi &= E(Y^{a_0=1,a_1=1}) - E(Y^{a_0=0,a_1=0}) \\ &= E(Y^{a_0=1,a_1=1} - Y^{a_0=0,a_1=0}), \end{split} \tag{1}$$

where expectations $E(\cdot)$ are taken with respect to the target population from which our sample is a random draw. This average causal effect consists of the joint effect of A_0 and A_1 on Y Daniel et al. (2013). Here, Y^{a_0,a_1} represents a potential outcome value that would have been observed had the exposures been set to specific levels a_0 and a_1 . This potential outcome is distinct from the observed (or actual) outcome.4

Table 1: Prospective study data illustrating the number of subjects (N) within each possible combination of treatment at time 0 (A_0) , HIV viral load just prior to the second round of treatment (Z_1) , and treatment status for the 2nd round of treatment (A_1) . The outcome column (Y) corresponds to the mean of Y within levels of A_0, Z_1, A_1 . Note that HIV viral load at baseline is high $(Z_0 = 1)$ for everyone by design.

³ Alternate notation for potential outcomes includes: Y_x , Y(x), $Y \mid Set(X = x)$, and Y|do(X=x).

⁴ Note this distinction is subtle, and often overlooked. Importantly, one can only equate the potential outcome with the observed outcome under the observed exposure if counterfactual consistency holds.

This average causal effect $\psi = E(Y^{a_0,a_1} - Y^{0,0})$ is a marginal effect because it averages (or marginalizes) over all individual-level effects in the population. We can write this effect as $E(Y^{a_0,a_1}-Y^{0,0})=\psi_0a_0+\psi_1a_1+\psi_1a_2$ $\psi_2 a_0 a_1$, which states that our average causal effect ψ may be composed of two exposure main effects (e.g., ψ_0 and ψ_1) and their two-way interaction (ψ_2). This marginal effect ψ is indifferent to whether the A_1 component $(\psi_1 + \psi_2)$ is modified by Z_1 : whether such effect modification is present or absent, the marginal effect represents a meaningful answer to the question: what is the effect of A_0 and A_1 in the entire population?

Alternatively, we may wish to estimate this effect conditional on certain values of another covariate. A conditional effect would arise if, for example, one was specifically interested in effect measure modification by Z_1 . When properly modeled, this conditional effect represents a meaningful answer to the question: what is the effect of A_0 and A_1 in those who receive $Z_1=1$ versus those who receive $Z_1 = 0$? Modeling such effect measure modification by time-varying covariates is the fundamental issue that distinguishes marginal structural from structural nested models. We thus return to this issue later. For simplicity, we define our effect of interest as $\psi = \psi_0 + \psi_1 + \psi_2$, and we explore a data example with no effect modification by time-varying confounders.

Assumptions 1.1

Our average causal effect is defined as a function of two averages that would be observed if everybody in the population were exposed (or unexposed) at both time points. Yet we cannot directly acquire information on these averages because in any given sample, some individuals will be unexposed (or exposed). Part of our task therefore involves justifying use of averages among subsets of the population as what would be observed in the whole population.⁵ This is accomplished by making three main assumptions.

Counterfactual consistency (Cole and Frangakis, 2009) allows us to equate observed outcomes among those who received a certain exposure value to the potential outcomes that would be observed under the same exposure value:

$$E(Y \mid A_0 = a_0, A_1 = a_1) = E(Y^{a_0, a_1} \mid A_0 = a_0, A_1 = a_1)$$

The status of this assumption remains unaffected by the choice of analytic

⁵ Understanding what this justification entails is the fundamental charge of causal inference.

method (e.g., standard regression versus g methods). Rather, this assumption's validity depends on the nature of the exposure assignment mechanism (VanderWeele and Hernán, 2013). Under counterfactual consistency, we partially identify our average causal effect.

Next, we assume exchangeability (Greenland and Robins, 1986). Exchangeability implies that the potential outcomes under exposures a_0 and a_1 (denoted Y^{a_0,a_1}) are independent of the actual (or observed) exposures A_0 and A_1 . We make this exchangeability assumption within levels of past covariate values (conditional) and at each time point separately (sequential):

$$\begin{split} E(Y^{a_0,a_1}\mid A_1,Z_1,A_0) &= E(Y^{a_0,a_1}\mid Z_1,A_0), \text{ and} \\ E(Y^{a_0,a_1}\mid A_0) &= E(Y^{a_0,a_1}). \end{split} \tag{2}$$

This sequential conditional exchangeability assumption would hold if there were no uncontrolled confounding and no selection bias. The top part of equation 2 says that, within levels of prior viral load (Z_1) and a given treatment level A_0 , Y^{a_0,a_1} does not depend on the assigned values of A_1 . The bottom part of equation 2 says that Y^{a_0,a_1} does not depend on the assigned values of A_0 . Note the correspondence between these two equations and the causal diagram: because in Figure 1, Z_1 is a common cause of A_1 and Y, the assumption in equation 2 must be made conditional on Z_1 . Failing to condition for Z_1 will result in uncontrolled confounding of the effect of A_1 , and thus a dependence between the actual A_1 value and the potential outcome. However, adjusting for Z_1 using standard methods (restriction, stratification, matching, or conditioning in a linear regression model) would block part of the effect from A_0 through Z_1 , and potentially lead to a collider bias of the effect of A_0 through U(Cole et al., 2010) This is the central challenge that g methods were developed to address.

The third assumption, known as positivity (Westreich and Cole, 2010) requires $0 < P(A_1 = 1 \mid Z_1 = z_1, A_0 = a_0) < 1$ and $0 < P(A_0 = 1) < 1$. Furthermore, this assumption must hold for all values of a_0 and z_1 where $P(A_0 = a_0, Z_1 = z_1) > 0$. This latter condition is required so that effects are not defined in strata of a_0 and z_1 that do not exist. Positivity is met when there are exposed and unexposed individuals within all confounder and prior exposure levels, which can be evaluated empirically.6

Under these three assumptions, our hypothetical observational study can

⁶ There are actually two types of positivity violations: stochastic and structural. In the former, one need only collect more data to alleviate concerns over stochastic positivity violations. In the latter, certain confounder values preclude the possibility of individuals being exposed or unexposed. One example of the latter is the healthy worker survivor effect.

be likened to a sequentially randomized trial in which the exposure was randomized at baseline, and randomized again at time 1 with a probability that depends on Z_1 . Under these assumptions, g methods can be used to estimate counterfactual quantities with observational data.

2 Results

2.1 Standard Methods

Table 2 presents results from fitting a number of standard linear regression models to the data in Table 1.

Model Parameters	Estimate (\widehat{eta}_1)
$\beta_0 + \beta_1 (A_0 + A_1)/2$	60.9
$\beta_0 + \beta_1 (A_0 + A_1)/2 + \beta_2 Z_1$	42.6
$\beta_0 + \beta_1 A_0$	27.1
$\beta_0 + \beta_1 A_0 + \beta_2 Z_1$	18.0
$\beta_0 + \beta_1 A_1$	38.9
$\beta_0 + \beta_1 A_1 + \beta_2 Z_1$	25.0

Table 2: Linear regression models and corresponding estimates comparing several contrasts quantifying exposed versus unexposed scenarios fit to data in Table 1.

In the first model, $\hat{\beta} = 60.9 \text{ cells/mm}^3$ is the crude difference in mean CD4 count for the always treated compared to the never treated. In model two, $\hat{\beta}=42.6$ cells/mm 3 is the Z_1 -adjusted difference in mean CD4 count for the same contrast. Other model results are provided in Table 2, and more could be entertained.

Table 3 presents the results from fitting all three g methods to the data in Table 1.

G Method	$\hat{\psi}^a$
G Formula	50.0
IP-weighted marginal structural model	50.0
G Estimated Structural Nested Model	50.0
a $\psi = E(Y^{1,1} - Y^{0,0})$	

The marginal structural model resulted in $\hat{\psi} = 50.0$ cells/mm³. The g formula resulted in $\hat{\psi}=50.0$ cells/mm 3 . Finally, the structural nested model resulted in $\hat{\psi} \, = \, 50.0 \ {\rm cells/mm^3}.$ Next we discuss how we obtained these results.

Table 3: G-methods and corresponding estimates comparing contrasts quantifying always exposed versus never exposed scenarios fit to data in Table 1.

2.2 g Methods

The **g formula** can be used to estimate the average CD4 level that would be observed in the population under a given treatment plan. To implement the approach, we start with a mathematical representation of the data generating mechanism for all variables in Table 1. We refer to this as the joint density of the observed data. We factor the joint density in a way that respects the temporal ordering of the data by conditioning each variable on its history. For example, if $f(\cdot)$ represents the probability density function, then by the definition of conditional probabilities (Wasserman, 2006, p 36) we can factor this joint density as

$$f(y, a_1, z_1, a_0) = f(y \mid a_1, z_1, a_0) P(A_1 = a_1 \mid Z_1 = z_1, A_0 = a_0)$$
$$P(Z_1 = z_1 \mid A_0 = a_0) P(A_0 = a_0).$$

Our interest lies in the marginal mean of Y that would be observed if A_0 and A_1 were set to some values a_0 and a_1 , respectively. To obtain this expectation, we perform two mathematical operations on the factored joint density. The first is the well-known expectation operator (Wasserman, 2006, p 47), which allows us to write the conditional mean of Y in terms of its conditional density. The second is the law of total probability (Wasserman, 2006, p 12), which allows us to marginalize over the distribution of A_1 , Z_1 and A_0 , yielding the marginal mean of Y:

$$E(Y) = \sum_{a_1, z_1, a_0} E(Y \mid A_1 = a_1, Z_1 = z_1, A_0 = a_0) P(A_1 = a_1 \mid Z_1 = z_1, A_0 = a_0)$$
$$P(Z_1 = z_1 \mid A_0 = a_0) P(A_0 = a_0).$$

We can now modify this equation to yield the average of potential outcomes that would be observed after intervening on the exposure [enabling us to drop out the terms for $P(A_1 = a_1 \mid Z_1 = z_1, A_0 = a_0)$ and $P(A_0 = a_0)$], yielding

$$E(Y^{a_0,a_1}) = \sum_{z_1} E(Y \mid A_1 = a_1, Z_1 = z_1, A_0 = a_0) P(Z_1 = z_1 \mid A_0 = a_0).$$

This equation is the g formula. Its proof, given in the Supplementary Material of Naimi et al (2017), follows from the three identifying assumptions. In our simple scenario, the expectation $E(Y^{0,0})$ can be calculated by summing the mean CD4 count in the never treated with $Z_1=1$ (weighted by the proportion of people with $Z_1=1$ in the $A_0=0$ stratum) and the mean CD4 count in the never treated with $Z_1 = 0$ (weighted by the proportion of people with $Z_1=0$ in the $A_0=0$ stratum). Weighting the observed outcome's conditional expectation by the conditional probability that $Z_1 = z_1$ enables us to account for the fact that Z_1 is affected by A_0 , but also confounds the effect of A_1 on Y. Computing this expectation's value yields a result of $\hat{E}(Y^{0,0}) = 100.0$, where we use \hat{E} to denote a sample, rather than a population average, and with the understanding that $\hat{E}(Y^{0,0})$ is equal to the g formula with $A_0 =$ $A_1 = 0$ (since the potential outcomes $Y^{0,0}$ are not directly observed). We repeat the process to obtain the corresponding value for treated at time 0 only: $\hat{E}(Y^{1,0}) = 125.0$; treated at time 1 only: $\hat{E}(Y^{0,1}) = 125.0$; and always treated: $\hat{E}(Y^{1,1}) = 150.0$. Thus, $\hat{\psi}_{GF} = 150.0 - 100.0 = 50.0$, which is the average causal effect of treatment on CD4 cell count.

This approach to computing the value of the g formula is referred to as nonparametric maximum likelihood estimation. Several authors (Taubman et al., 2009, Westreich et al. (2012), Cole et al. (2013), Keil et al. (2014), Edwards et al. (2014)) demonstrate how simulation from parametric regression models can yield a g formula estimator, which is often required in typical population-health studies with many covariates.

Modeling each component of the joint density of the observed data (including the probability that $Z_1 = z_1$) can lead to bias if any of these models are mis-specified. To compute the expectations of interest, we can instead specify a single model that targets our average causal effect, and avoid unnecessary modeling. Marginal structural models with IP weighting map a marginal summary (e.g., average) of potential outcomes to the treatment and parameter of interest ψ . Unlike the g formula, they do not require a model for $P(Z_1 = z_1 \mid A_0 = a_0)$. Additionally, as we show in the Supplementary Material of Naimi et al (2017), while they cannot model it directly, they are indifferent to whether time-varying effect modification is present or absent. Because our interest lies in the marginal contrast of outcomes under always versus never treated conditions, our marginal structural model for the effect of A can be written as $E(Y^{a_0,a_1}) = \beta_0 + \psi_0 a_0 + \psi_1 a_1 + \psi_2 a_0 a_1$, where $\beta_0 = E(Y^{0,0})$ is a (nuisance) intercept parameter, and $\psi = E(Y^{1,1} - Y^{0,0}) = (\psi_0 + \psi_1 + \psi_2)$ is the effect of interest.

Inverse probability weighting can be used estimate marginal structural

⁷ One of the major limitations of the parametric q formula.

model parameters (proofs are provided in the Supplementary Material). To estimate ψ using inverse probability weighted regression, we first obtain the predicted probabilities of the observed treatments. In our example data, there are two possible A_1 values (exposed, unexposed) for each of the four levels in Z_1 and A_0 . Additionally, there are two possible A_0 values (exposed, unexposed) overall. This leads to four possible exposure regimes: never treat, treat early only, treat late only, and always treat. For each Z_1 value, we require the predicted probability of the exposure that was actually received. These probabilities are computed by calculating the appropriate proportions of subjects in Table 1. Because there are no variables that affect A_0 , this probability is 0.5 for all individuals in the sample. Furthermore, in our example A_1 is not affected by A_0 (Figure 1). Thus, the Z_1 specific probabilities of A_1 are constant across levels of A_0 . In settings where A_0 affects A_1 , the Z_1 specific probabilities of A_1 would vary across levels of A_0 .

In the stratum defined by $Z_1=1$, the predicted probabilities of $A_1=0$ and $A_1\,=\,1$ are 0.308 and 0.692, respectively. For example, $(210,527\,+\,$ (136, 293)/(210, 527 + 136, 293 + 93, 903 + 60, 654) = 0.692. Thus, the probabilities for each treatment combination are: $0.5 \times 0.308 = 0.155$ (never treated), $0.5 \times 0.308 = 0.155$ (treated early only), $0.5 \times 0.692 = 0.346$ (treated late only), and $0.5 \times 0.692 = 0.346$ (always treated). Dividing the marginal probability of each exposure category (not stratified by Z_1) by these stratum specific probabilities gives stabilized weights of 1.617, 1.617, 0.725, and 0.725, respectively. For example, the never treated weight is $(0.5 \times 0.501)/(0.5 \times 0.501)$ 0.308) = 1.617. The same approach is taken to obtain predicted probabilities and stabilized weights in the stratum defined by $Z_1 = 0$. The weights and weighted data are provided in Table 4.

A_0	Z_1	A_1	Y	sw	Pseudo N
0	0	0	87.23	0.72	151222.84
0	0	1	112.23	1.62	151680.46
0	1	0	119.79	1.62	98110.06
0	1	1	144.78	0.72	98789.4
1	0	0	105.25	0.72	97395.08
1	0	1	130.25	1.62	98321.62
1	1	0	137.8	1.62	151884.02
1	1	1	162.8	0.72	152596.51

Table 4: Pseudo-population obtained after applying inverse probability weights to data in Table 1.

Fitting this model in the weighted data given in Table 4 provides the inverse-

probability weighted estimates $[\hat{\psi}_{0IP}=25.0,\hat{\psi}_{1IP}=25.0,\hat{\psi}_{2IP}=0.0]$, thus yielding $\hat{\psi}_{IP} = 50.0$.

Weighting the observed data by the inverse of the probability of the observed exposure yields a "pseudo-population" (Table 4) in which treatment at the second time point (A_1) is no longer related to (and is thus no longer confounded by) viral load just prior to the second time point (Z_1) . Thus, weighting a conditional regression model for the outcome by the inverse probability of treatment enables us to account for the fact that Z_1 both confounds A_1 and is affected by A_0 .

Structural nested models map a conditional contrast of potential outcomes to the treatment, within nested sub-groups of individuals defined by levels of A_1 , Z_1 , and A_0 . Our structural nested model can be written as

$$E(Y^{a_0,a_1} - Y^{a_0,0} \mid A_0 = a_0, Z_1 = z_1, A_1 = a_1) = a_1(\psi_1 + \psi_2 a_0 + \psi_3 z_1 + \psi_4 a_0 z_1)$$

$$E(Y^{a_0,0} - Y^{0,0} \mid A_0 = a_0) = \psi_0 a_0$$
(3)

Note this model introduces two additional parameters: ψ_3 for the two-way interaction between a_1 and z_1 , and ψ_4 for the three-way interaction between a_1 , z_1 , and a_0 . Indeed, the ability to explicitly quantify interactions between time-varying exposures and time-varying covariates (which cannot be modeled via standard marginal structural models) is a major strength of structural nested models when effect modification is of interest.@Robins2009} To simplify our exposition, we set $(\psi_3, \psi_4) = (0,0)$ in our data example, allowing us to drop the $\psi_3 z_1$ and $\psi_4 a_0 z_1$ terms from the model. In effect, this renders our structural nested mean model equivalent to a semi-parametric marginal structural model. In the Supplementary Material, we explain how marginal structural and structural nested models each relate to time-varying interactions in more detail.

We can now use g-estimation to estimate (ψ_0, ψ_1, ψ_2) in the above structural nested model. G-estimation is based on solving equations that directly result from the sequential conditional exchangeability assumptions in (2) and (??), combined with assumptions implied by the structural nested model. If, at each time point, the exposure is conditionally independent of the potential outcomes (sequential exchangeability) then the conditional covariance between the exposure and potential outcomes is zero.@Vansteelandt2015} Formally,

these conditional independence relations can be written as:

$$\begin{split} 0 &= \mathrm{Cov}(Y^{a_0,0},A_1 \mid Z_1,A_0) \\ &= \mathrm{Cov}(Y^{0,0},A_0) \end{split} \tag{4}$$

where $Cov(\cdot)$ is the well-known covariance formula (Wasserman, 2006)(p52). These equalities are of little direct use for estimation, though, as they contain unobserved potential outcomes and are not yet functions of the parameters of interest. However, by counterfactual consistency and the structural nested model, we can replace these unknowns with quantities estimable from the data.

Specifically, as we prove in the Supplementary Material, the structural nested model, together with exchangeability and counterfactual consistency imply that we can replace the potential outcomes $Y^{a_0,0}$ and $Y^{0,0}$ in the above covariance formulas with their values implied by the structural nested model, yielding:

$$0 = \text{Cov}\{Y - A_1(\psi_1 + \psi_2 A_0), A_1 \mid Z_1, A_0\}$$

=
$$\text{Cov}\{Y - A_1(\psi_1 + \psi_2 A_0) - \psi_0 A_0, A_0\}.$$
 (5)

We provide an intuitive explanation for this substitution in the Supplementary Material. %is that it would certainly hold under a stronger version of our structural nested model assumptions, in which $Y^{a_0,a_1}-Y^{a_0,0}=a_1(\psi_1+\psi_1)$ $\psi_2a_0)$ and $Y^{a_0,0}-Y^{0,0}=\psi_0a_0$ exactly, so that $Y^{A_0,0}=Y-A_1(\psi_1+\psi_2A_0)$ and $Y^{0,0} = Y - A_1(\psi_1 + \psi_2 A_0) - \psi_0 A_0$. We also show how these covariance relations yield three equations that can be used to solve each of the unknowns in the above structural nested model (ψ_0, ψ_1, ψ_2) .

Two of the three equations yield the following g estimators:

$$\hat{\psi}_{1_{GE}} = \frac{\hat{E}[(1 - A_0)Y\{A_1 - \hat{E}(A_1 \mid Z_1, A_0)\}]}{\hat{E}[(1 - A_0)A_1\{A_1 - \hat{E}(A_1 \mid Z_1, A_0)\}]}$$

$$\hat{\psi}_{1_{GE}} + \hat{\psi}_{2_{GE}} = \frac{\hat{E}[A_0Y\{A_1 - \hat{E}(A_1 \mid Z_1, A_0)\}]}{\hat{E}[A_0A_1\{A_1 - \hat{E}(A_1 \mid Z_1, A_0)\}]}$$
(6)

Note that to solve these equations we need to model $E(A_1 \mid Z_1, A_0)$, which in practice we might assume can be correctly specified as the predicted values from a logistic model for A_1 . In our simple setting, the correctness of this model is guaranteed by saturating it (i.e., conditioning the model on Z_1 ,

 A_0 and their interaction).

As we show in the Supplementary Material, implementing these equations in software can be easily done using either an instrumental variables (i.e., two-stage least squares) estimator, or ordinary least squares.

Once the above parameters are estimated, the next step is to subtract the effect of A_1 and A_1A_0 from Y to obtain $\widetilde{Y} = Y - \hat{\psi}_{1_{GE}}A_1 - \hat{\psi}_{2_{GE}}A_1A_0$. We can then solve for the last parameter using a sample version of the third q estimation equality, yielding our final estimator and completing the procedure:

$$\hat{\psi}_{0_{GE}} = \frac{\hat{E}[\tilde{Y}\{A_0 - \hat{E}(A_0)\}]}{\hat{E}[A_0\{A_0 - \hat{E}(A_0)\}]}.$$

Again the above estimator can be implemented using an instrumental variable or ordinary least squares estimator. Implementing this procedure in our example data, we obtain $[\psi_{0_{GE}}=25.0,\psi_{1_{GE}}=25.0,\psi_{2_{GE}}=0.0]$, thus yielding $\psi_{GE} = 50.0.$

The potential outcome under no treatment can be thought of as a given subject's baseline prognosis: in our setting, individuals with poor baseline prognosis will have low CD4 levels, no matter what their treatment status may be. In the absence of confounding or selection bias, one expects this baseline prognosis to be independent of treatment status. G estimation exploits this independence by assuming no uncontrolled confounding (conditional on measured confounders), and assigning values to $\hat{\psi}_{GE}$ that render the potential outcomes independent of the exposure. However, assigning the correct values to $\hat{\psi}_{GE}$ depends on there being no confounding or selection bias.

Concluding Remarks

Having constructed these data using the causal diagram shown in Figure 1, we know the true effect of combined treatment is indeed 50 cells/mm³ (25 cells/mm³ for each exposure main effect) as well approximated by all three g methods, but not by any of the standard regression models we fit, with one exception. The final standard result presented in Table 2 correctly estimates the effect of the second treatment (an effect of 25 cells/mm³), as would be expected from the causal diagram.

For the past several years, we have used the foregoing simple example to initiate epidemiologists to g methods with some success. Once having

studied this simple example in detail, we recommend working through more comprehensive examples by Robins and Hern'{a}n Robins and Hernán (2009) and Hern'{a}n and Robins Hernán and Robins (Forthcoming). A recent tutorial Daniel et al. (2013) may then be of further use. G methods are becoming more common in epidemiologic research (Suarez et al., 2011). We hope this commentary facilitates the process of better understanding these useful methods.

References

- S. R. Cole and C. E. Frangakis. The consistency statement in causal inference: a definition or an assumption? *Epidemiol*, 20(1):3-5, 2009.
- Stephen R Cole, Robert W Platt, Enrique F Schisterman, Haitao Chu, Daniel Westreich, David Richardson, and Charles Poole. Illustrating bias due to conditioning on a collider. Int J Epidemiol, 39(2):417-420, 2010.
- Stephen R. Cole, David B. Richardson, Haitao Chu, and Ashley I. Naimi. Analysis of occupational asbestos exposure and lung cancer mortality using the g formula. Am J Epidemiol, 177(9):989-996, 2013.
- R.M. Daniel, S.N. Cousens, B.L. De Stavola, M. G. Kenward, and J. A. C. Sterne. Methods for dealing with time-dependent confounding. Stat Med, 32(9): 1584-618, 2013.
- Jessie K Edwards, LJ McGrath, Buckley JP, MK Schubauer-Berigan, SR Cole, and Richardson DB. Occupational radon exposure and lung cancer mortality: Estimating intervention effects using the parametric g-formula. Epidemiol, 25(6):829-34, 2014.
- Sander Greenland and JM Robins. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol, 15(3):413-419, 1986.
- M. A. Hernán and JM Robins. Causal Inference. Chapman/Hall, Boca Raton, FL, Forthcoming.
- Alex Keil, Jessie K Edwards, David B. Richardson, Ashley I. Naimi, and Stephen R. Cole. The parametric g-formula for time-to-event data: towards intuition with a worked example. Epidemiol, 25(6):889-97, 2014.

- Ashley I Naimi, Stephen R Cole, and Edward H Kennedy. An Introduction to G Methods. Int J Epidemiol, 46(2):756-62, 2017.
- James M Robins and Miguel Á Hernán. Estimation of the causal effects of time-varying exposures. In G Fitzmaurice, M. Davidian, G Verbeke, and G Molenberghs, editors, Advances in Longitudinal Data Analysis, pages 553-599. Chapman & Hall, Boca Raton, FL, 2009.
- David Suarez, Roger Borras, and Xavier Basagana. Differences between marginal structural models and conventional models in their exposure effect estimates: a systematic review. Epidemiol, 22(4):586-588, 2011.
- S. L. Taubman, J. M. Robins, M. A. Mittleman, and M. A. Hernán. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int J Epidemiol, 38(6):1599-611, 2009.
- Tyler J VanderWeele and Miguel Ángel Hernán. Causal inference under multiple versions of treatment. Journal of Causal Inference, 1(1):1-20, 2013.
- Larry Wasserman. All of nonparametric statistics. Springer, New York; London, 2006.
- Daniel Westreich and Stephen R. Cole. Invited commentary: Positivity in practice. Am J Epidemiol, 171(6):674-677, 2010.
- Daniel Westreich, Stephen R. Cole, Jessica G. Young, Frank Palella, Phyllis C. Tien, Lawrence Kingsley, Stephen J. Gange, and Miguel A. Hernán. The parametric g-formula to estimate the effect of highly active antiretroviral therapy on incident aids or death. Stat Med, 31(18):2000-2009, 2012.