```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.datasets import load_iris
   from sklearn.metrics import classification_report
   %matplotlib inline
```

本文主要参考了以下材料:

- 1. cs229: 9.3 softmax regression
- 2. http://ufldl.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92)
- 3. https://blog.csdn.net/u012328159/article/details/72155874 (https://blog.csdn.net/u012328159/article/details/72155874)

Softmax Regression

1. 原理推导

Consider a classification problem in which the response variable y can take on any one of k values, so $y \in \{1, 2, ..., k\}$. The response variable is still discrete, but can now take on more than two values. We will thus model it as distributed according to a multinomial distribution.

Lets derive a GLM for modelling this type of multinomial data. To do so, we will begin by expressing the multinomial as an exponential family distribution.

To parameterize a multinomial over k possible outcomes, one could use k parameters ϕ_1, \ldots, ϕ_k specifying the probability of each of the outcomes. However, these parameters would be redundant, or more formally, they

would not be independent (since knowing any k-1 of the ϕ_i 's uniquely determines the last one, as they must satisfy $\sum_{i=1}^k \phi_i = 1$). So, we will instead parameterize the multinomial with only k-1 parameters, $\phi_1, \ldots, \phi_{k-1}$, where $\phi_i = p(y=i;\phi)$, and $p(y=k;\phi) = 1 - \sum_{i=1}^{k-1} \phi_i$. For notational convenience, we will also let $\phi_k = 1 - \sum_{i=1}^{k-1} \phi_i$, but we should keep in mind that this is not a parameter, and that it is fully specified by $\phi_1, \ldots, \phi_{k-1}$.

To express the multinomial as an exponential family distribution, we will define $T(y) \in \mathbb{R}^{k-1}$ as follows:

$$T(1) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, T(2) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, T(3) = \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, T(k-1) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}, T(k) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

Unlike our previous examples, here we do not have T(y) = y; also, T(y) is now a k-1 dimensional vector, rather than a real number. We will write $(T(y))_i$ to denote the i-th element of the vector T(y).

We introduce one more very useful piece of notation. An indicator function $1\{\cdot\}$ takes on a value of 1 if its argument is true, and 0 otherwise. So, we can write the relationship between T(y) and y as $(T(y))_i = 1\{y = i\}$ (当且仅当y = i时,向量T(y)的第i个位置元素为1). Further, we have that $E[(T(y))_i] = P(y = i) = \phi_i$

We are now ready to show that the multinomial is a member of the exponential family. We have:

$$\begin{split} p(y;\phi) &= \phi_1^{1\{y=1\}} \phi_2^{1\{y=2\}} \cdots \phi_k^{1\{y=k\}} \\ &= \phi_1^{1\{y=1\}} \phi_2^{1\{y=1\}} \cdots \phi_k^{1-\sum_{i=1}^{k-1} 1\{y=i\}} \\ &= \phi_1^{(T(y))_1} \phi_2^{(T(y))_2} \cdots \phi_k^{1-\sum_{i=1}^{k-1} (T(y))_i} \\ &= exp((T(y))_1 log(\phi_1) + (T(y))_2 log(\phi_2) + \cdots + (1 - \sum_{i=1}^{k-1} (T(y))_i) log(\phi_k)) \\ &= exp((T(y))_1 log(\frac{\phi_1}{\phi_k}) + (T(y))_2 log(\frac{\phi_2}{\phi_k}) + \cdots + (T(y))_{k-1} log(\frac{\phi_{k-1}}{\phi_k}) + log(\phi_k)) \\ &= b(y) exp(\eta^T T(y) - a(\eta)) \end{split}$$

where

$$\eta = \begin{bmatrix} log(\frac{\phi_1}{\phi_k}) \\ log(\frac{\phi_2}{\phi_k}) \\ \vdots \\ log(\frac{\phi_{k-1}}{\phi_k}) \end{bmatrix}$$
$$a(\eta) = -log(\phi_k)$$
$$b(y) = 1$$

This completes our formulation of the multinomial as an exponential family distribution.

The link function is given (for $i = 1, \dots, k$) by

$$\eta_i = log \frac{\phi_i}{\phi_k}$$

For convenience, we have also defined $\eta_k = log(\frac{\phi_k}{\phi_k}) = 0$. To invert the link function and derive the response function, we therefore have that

$$e^{\eta_i} = \frac{\phi_i}{\phi_k}$$
$$\phi_k e^{\eta_i} = \phi_i - (1)$$

$$\phi_k \sum_{i=1}^k e^{\eta_i} = \sum_{i=1}^k \phi_i = 1$$

This implies that $\phi_k = 1/\sum_{i=1}^k e^{\eta_i}$, which can be substituted back into Equation (1) to give the response function

$$\phi_i = \frac{e^{\eta_i}}{\sum_{l=1}^k e^{\eta_l}}$$

This function mapping from the η 's to the ϕ 's is called the **softmax function**.

To complete our model, we use Assumption 3, given earlier, that the η 's are linearly related to the x's. So, have $\eta_i = \theta_i^T x$ (for $i=1,\cdots,k-1$), where $\theta_1,\cdots,\theta_{k-1} \in \mathbb{R}^{n+1}$ are the parameters of our model. For notational convenience, we can also define $\theta_k=0$, so that $\eta_k=\theta_k^T x=0$, as given previously. Hence, our model assumes that the conditional distribution of y given x is given by

$$p(y = i|x; \theta) = \phi_i$$

$$= \frac{e^{\eta_i}}{\sum_{l=1}^k e^{\eta_l}}$$

$$= \frac{e^{\theta_i^T x}}{\sum_{l=1}^k e^{\theta_l^T x}} - (2)$$

This model, which applies to classification problems where $y \in \{1, \dots, k\}$, is called **softmax regression**. It is a generalization of logistic regression.

Our hypothesis will output

$$h_{\theta}(x) = E[T(y) \mid x; \theta]$$

$$= E\begin{bmatrix} 1\{y = 1\} \\ 1\{y = 2\} \\ \dots \\ 1\{y = k - 1\} \end{bmatrix} \quad x; \theta$$

$$= \begin{bmatrix} \phi_1 \\ \phi_2 \\ \dots \\ \phi_{k-1} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{exp(\theta_1^T x)}{\sum_{l=1}^k exp(\theta_l^T x)} \\ \frac{exp(\theta_2^T x)}{\sum_{l=1}^k exp(\theta_l^T x)} \\ \vdots \\ \frac{exp(\theta_{k-1}^T x)}{\sum_{l=1}^k exp(\theta_l^T x)} \end{bmatrix}$$

In other words, our hypothesis will output the estimated probability that $p(y=i|x;\theta)$, for every value of $i=1,\cdots,k$ (Even though $h_{\theta}(x)$ as defined above is only k-1 dimensional, clearly $p(y=k|x;\theta)$ can be obtained as $1-\sum_{i=1}^{k-1}\phi_i$.)

Lastly, lets discuss parameter fitting. Similar to our original derivation of ordinary least squares and logistic regression, if we have a training set of m examples $\{(x^{(i)}, y^{(i)}); i = 1, \cdots, m\}$ and would like to learn the parameter θ_i of this model, we would begin by writing down the log-likelihood:

$$l(\theta) = \sum_{i=1}^{m} log p(y^{(i)}|x^{(i)}; \theta)$$

$$= \sum_{i=1}^{m} log \prod_{j=1}^{k} \left(\frac{e^{\theta_{j}^{T}x^{(i)}}}{\sum_{i=l}^{k} e^{\theta_{l}^{T}x^{(i)}}}\right)^{1\{y^{(i)}=j\}}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^{(i)} = j\} log \frac{e^{\theta_{j}^{T}x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T}x^{(i)}}}$$

To obtain the second line above, we used the definition for $p(y|x;\theta)$ given in Equation (2). We can now obtain the maximum likelihood estimate of the parameters by maximizing $l(\theta)$ in terms of θ , using a method such as gradient ascent or Newton's method.

2. 梯度下降法

2.1 Cost Function

首先,定义

注意到, $x^{(i)} \in \mathbb{R}^{n+1}$,其中定义 $x_0^{(i)} = 0$ 。然后, $\theta_1, \theta_2, \cdots, \theta_k \in \mathbb{R}^{n+1}$,在这里,我没有定义 $\theta_k = 0$,因

此,存在过度参数化的问题。所以,在接下来的小节内会对这个问题进行解决。最后, $y \in \{1, 2, \dots, k\}$ 。

因此,我们定义Cost Function为

$$J(\theta) = -\frac{1}{m} \left(\sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^{(i)} = j\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_l^T x}} \right)$$

值得注意的是,上述公式是逻辑回归的cost function的推广,逻辑回归的cost function可以改为:

$$J(\theta) = -\frac{1}{m} \left(\sum_{i=1}^{m} (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) + y^{(i)} logh_{\theta}(x^{(i)}) \right)$$
$$= -\frac{1}{m} \left(\sum_{i=1}^{m} \sum_{j=0}^{1} 1\{y^{(i)} = j\} log p(y^{(i)} = j \mid x^{(i)}; \theta) \right)$$

2.2 Softmax Regression 模型参数化的特点

由于上一节,我们没有定义 $\theta_k=0$,这使得softmax regression有一个"冗余"的参数集。虽然,定义 $\theta_k=0$ 可以避免这个问题,但是这会使得在算法实现中没有那么简单清楚,而且,这个问题是可以得到解决的。接下来,我们对这个问题进行具体说明。

假设我们从参数向量 θ_j 中减去了向量 ψ ,这时,每一个 θ_j 都变成了 $\theta_j - \psi$ $(j = 1, \dots, k)$ 。此时假设函数变成了以下的式子:

$$p(y^{(i)} = j \mid x^{(i)}; \theta) = \frac{e^{(\theta_j - \psi)^T x^{(i)}}}{\sum_{l=1}^k e^{(\theta_l - \psi)^T x^{(i)}}}$$

$$= \frac{e^{\theta_j^T x^{(i)}} e^{-\psi^T x^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}} e^{-\psi^T x^{(i)}}}$$

$$= \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}}}$$

换句话说,从 θ_j 中减去 ψ 完全不影响假设函数的预测结果。这表明前面的softmax regression模型中存在冗余的参数。更正式一点说,softmax regression模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数 h_{θ} 。

进一步而言,如果参数 $(\theta_1,\theta_2,\cdots,\theta_k)$ 是 cost function $J(\theta)$ 的极小值点,那么 $(\theta_1-\psi,\theta_2-\psi,\cdots,\theta_k-\psi)$ 同样也是它的极小值点,其中 ψ 可以为任意向量。因此,使得 $J(\theta)$ 最小化的解不是唯一的。(有趣的是,由于 $J(\theta)$ 仍然是一个凸函数,因此梯度下降不会遇到局部最优解的问题,但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)

注意,当 $\phi=\theta_k$ 时,我们总是可以将 θ_k 替换为 $\theta_k-\psi=\vec{0}$ (即替换为全零向量),并且这种替换不会影响假设函数。因此,我们可以去掉参数向量 θ_k (或者其他 θ_j 中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的 $k\times(n+1)$ 个参数 $(\theta_1,\theta_2,\cdots,\theta_k)$ (其中, $\theta_j\in\mathbb{R}^{n+1}$),我们可以令 $\theta_k=\vec{0}$,只优化剩余的 $(k-1)\times(n+1)$ 个参数,这样算法依然能够正常工作。

在实际应用中,为了让算法实现更加简单清楚,往往保留所有参数 $(\theta_1, \theta_2, \cdots, \theta_k)$,而不任意地将某一参数设置为 $\vec{0}$ 。但此时,我们需要对 cost function 做一个改动:加入权重衰减项。权重衰减项可以解决 softmax regression 参数冗余所带来的数值问题。

2.3 权重衰减

我们通过添加一个权重衰减项 $\frac{\lambda}{2}\sum_{i=1}^k\sum_{j=0}^n\theta_{ij}^2$ 来修改 cost function,这个衰减项会惩罚过大的参数值,现在我们的 cost function 变为:

$$J(\theta) = -\frac{1}{m} \left(\sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^{(i)} = j\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_l^T x^{(i)}}} \right) + \frac{\lambda}{2} \sum_{i=1}^{k} \sum_{j=0}^{n} \theta_{ij}^2$$

有了这个权重衰减项之后($\lambda>0$),Cost function 就变成了严格的凸函数,这样就可以保证得到唯一的解了。此时的 Hessian 矩阵变成可逆矩阵,并且因为 $J(\theta)$ 是凸函数,梯度下降法和L-BFGS等算法可以保证收敛到全局最优解。

为了使用优化算法,我们需要求得这个新函数的 $J(\theta)$ 的导数,如下:

$$\nabla_{\theta_j} J(\theta) = -\frac{1}{m} \left(x^{(i)} (1\{y^{(i)} = j\} - p(y^{(i)} \mid x^{(i)}; \theta)) \right) + \lambda \theta_j$$

注意,这里的 $\nabla_{\theta_i} J(\theta) \in \mathbb{R}^{n+1}$ 。通过最小化 $J(\theta)$,我们就能实现一个可用的 softmax regression 模型。

2.4 推导 $\frac{\partial J(\theta)}{\partial \theta_i}$

方法一:

$$\begin{split} \frac{\partial J(\theta)}{\partial \theta_{j}} &= -\frac{1}{m} \frac{\partial}{\partial \theta_{j}} \left[\sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^{(i)} = j\} \log \frac{e^{\theta_{j}^{T} x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}}} \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \frac{\partial}{\partial \theta_{j}} \left[\sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^{(i)} = j\} \left(\log e^{\theta_{j}^{T} x^{(i)}} - \log \sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}} \right) \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \frac{\partial}{\partial \theta_{j}} \left[\sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^{(i)} = j\} \left(\sum_{j=1}^{k} \theta_{j}^{T} x^{(i)} - \sum_{l=1}^{k} \log \sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}} \right) \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \left[\sum_{i=1}^{m} 1\{y^{(i)} = j\} \left(x^{(i)} - \sum_{j=1}^{k} \frac{x^{(i)} e^{\theta_{j}^{T} x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}}} \right) \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \left[\sum_{i=1}^{m} x^{(i)} \left(1\{y^{(i)} = j\} - \sum_{j=1}^{k} 1\{y^{(i)} = j\} \frac{e^{\theta_{j}^{T} x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}}} \right) \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \left[\sum_{i=1}^{m} x^{(i)} \left(1\{y^{(i)} = j\} - \frac{e^{\theta_{j}^{T} x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T} x^{(i)}}} \right) \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \left[\sum_{i=1}^{m} x^{(i)} \left(1\{y^{(i)} = j\} - p(y^{(i)} | x^{(i)}; \theta) \right) \right] + \lambda \theta_{j} \end{split}$$

$$\begin{split} \frac{\partial J(\theta)}{\partial \theta_{j}} &= -\frac{1}{m} \left[\sum_{i=1}^{m} \frac{\partial}{\partial \theta_{j}} (1\{y^{(i)} = j\} \log \frac{e^{\theta_{j}^{T}x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T}x^{(i)}}} + \sum_{c \neq j}^{k} 1\{y^{(i)} = c\} \log \frac{e^{\theta_{c}^{T}x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T}x^{(i)}}}) \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \left[\sum_{i=1}^{m} (1\{y^{(i)} = j\}(x^{(i)} - \frac{x^{(i)}e^{\theta_{j}^{T}x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T}x^{(i)}}}) + \sum_{c \neq j}^{k} 1\{y^{(i)} = c\}(-\frac{x^{(i)}e^{\theta_{j}^{T}x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T}x^{(i)}}}) \right) \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \left[\sum_{i=1}^{m} (x^{(i)}1\{y^{(i)} = j\}(1 - \frac{e^{\theta_{j}^{T}x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T}x^{(i)}}}) + \sum_{c \neq j}^{k} 1\{y^{(i)} = c\}(-\frac{x^{(i)}e^{\theta_{j}^{T}x^{(i)}}}{\sum_{l=1}^{k} e^{\theta_{l}^{T}x^{(i)}}}) \right) \right] + \lambda \theta_{j} \\ &= \frac{1}{m} \left[\sum_{i=1}^{m} x^{(i)}(1\{y^{(i)} = j\} - 1\{y^{(i)} = j\}p(y^{(i)} | x^{(i)}; \theta)) + \sum_{c \neq j}^{k} 1\{y^{(i)} = c\}(-p(y^{(i)} | x^{(i)}; \theta)) \right] + \lambda \theta_{j} \\ &= -\frac{1}{m} \left[\sum_{i=1}^{m} x^{(i)}(1\{y^{(i)} = j\} - p(y^{(i)} | x^{(i)}; \theta)) \right] + \lambda \theta_{j} \end{split}$$

2.5 矩阵化

因为 $y \in \{1, 2, \dots, k\}$,所以,对 y 进行独热编码。即 $y^{(i)} \in \mathbb{R}^k$,其中,若 $y^{(i)}$ 属于类别 i,则 $y^{(i)}$ 第 i 个位置上的元素为1,其余位置元素为0。因此,定义矩阵 G 为

$$G = \begin{bmatrix} -(y^{(1)})^T - \\ -(y^{(2)})^T - \\ \vdots \\ -(y^{(m)})^T - \end{bmatrix}_{m \times k}$$

定义概率矩阵 P 为

$$P_{m \times k} = norm(exp(X_{m \times (n+1)} \cdot \theta_{(n+1) \times k}^T))$$

其中,norm 表示归一化项,因此,概率矩阵 P 的具体计算方式为: 首先,计算 $exp(X\theta^T)$ 得到 $m \times k$ 的矩阵。其次,使用 $np.\,sum()$ 对该该矩阵按行进行求和,得到 $m \times 1$ 的矩阵。最后,利用Python的广播(broadcast)机制,将该矩阵与 $exp(X\theta^T)$ 对应位置元素进行相乘(element-wise multiplication)得到概率矩阵 P。

于是

$$\frac{\partial J(\theta)}{\partial \theta} = -\frac{1}{m} (G - P)^T \cdot X + \lambda \theta$$

所以,cost function为

$$J(\theta) = -np. mean(G \circ P) + \lambda np. sum(\theta)$$

其中,。表示对应位置元素相乘,即 element-wise multiplication。

3. 实现 softmax regression

3.1 读取数据

```
In [2]: iris = load_iris()
    features = pd.DataFrame(data=iris.data, columns=iris.feature_names)
    label = pd.DataFrame(data=iris.target, columns=['traget'])
    data = pd.concat([features, label], axis=1)
    data.head()
```

Out[2]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	traget
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
In [3]: def loadData(df):
    ones = pd.DataFrame({'ones': np.ones(len(df))})
    df = pd.concat([ones, df], axis=1)
    X = df.iloc[:,:-1].values
    y = df.iloc[:,-1].values
    return X, y
```

```
In [4]: X, y = loadData(data)
X.shape, y.shape
```

Out[4]: ((150, 5), (150,))

3.2 数据可视化

```
In [5]: plt.figure(figsize=(12, 8))
    plt.scatter(X[:, 3][y==0], X[:, 4][y==0], marker='x', label=iris.target_names[0])
    plt.scatter(X[:, 3][y==1], X[:, 4][y==1], marker='^', label=iris.target_names[1])
    plt.scatter(X[:, 3][y==2], X[:, 4][y==2], marker='+', label=iris.target_names[2])
    plt.legend(loc='upper left')
    plt.xlabel(iris.feature_names[2])
    plt.ylabel(iris.feature_names[3])
    plt.title('Iris Data Set')
    plt.show()
```


3.3 Softmax Regression

对y进行独热编码,得到矩阵G。

```
In [6]: def oneHotY(y):
             # m为样本数
             m = y.shape[0]
             # k为类别数
             k = len(np.unique(y))
             oneHotY = np.zeros((m, k))
             for i in range(k):
                 oneHotY[:, i] = (y==i)
             return oneHotY
In [7]: G = oneHotY(y)
         G.shape
Out[7]: (150, 3)
In [8]: def initializeWithZeros(X, y):
             k = len(np.unique(y))
             return np.zeros((k, X.shape[1]))
In [9]: def probabilityMatrix(X, theta):
             expScore = np.exp(X @ theta.T)
             sumScore = np.sum(expScore, axis=1).reshape(-1, 1)
             return np.multiply(expScore, sumScore)
In [10]: def computeCost(X, G, theta, l):
             P = probabilityMatrix(X, theta)
             return -np.mean(np.multiply(G, np.log(P))) + l * theta.sum()
```

```
In [11]: def computeGradient(X, G, theta, l):
    m = X.shape[0]
    P = probabilityMatrix(X, theta)
    grad = -((G-P).T @ X) / m + l *theta
    return grad

In [12]: def batchGradientDescent(X, G, theta, alpha, iters, l, printFlag=True):
    costs = np.zeros(iters)
    for i in range(iters):
        theta = theta - alpha * computeGradient(X, G, theta, l)
        costs[i] = computeCost(X, G, theta, l)

        if printFlag and i % 1000 == 0:
            print(costs[i])
    return theta, costs

In [13]: def predict(X, theta):
```

P = probabilityMatrix(X, theta)

return np.argmax(P, axis=1).reshape(-1, 1)

```
In [14]: X, y = loadData(data)
         G = oneHotY(y)
         theta = initializeWithZeros(X, y)
         iters = 10000
         alpha = 0.01
         l = 0.1
         theta, costs = batchGradientDescent(X, G, theta, alpha, iters, l)
         0.577650282651
         0.0685942497214
```

- 0.062683569659
- 0.0612484292857
- 0.0608645968918
- 0.0607601270249
- 0.060731296824
- 0.0607232213633
- 0.0607209225948
- 0.0607202570216

In [15]: plt.figure(figsize=(12, 8))
 plt.plot(np.arange(iters), costs, color='red')
 plt.xlabel('Iterations')
 plt.ylabel('Cost')
 plt.title('Error vs. Training Epoch')
 plt.show()

In [16]: y_pred = predict(X, theta)
print(classification_report(y, y_pred))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	50
1	1.00	0.80	0.89	50
2	0.83	1.00	0.91	50
avg / total	0.94	0.93	0.93	150

4. Softmax Regression 与 Logistic Regression 的关系

当类别数 k=2 时,softmax regression 退化为 logistic regression。这表明 softmax regression 是 logistic regression 的一般形式。具体地说,当 k=2 时,softmax regression 的假设函数为:

$$h_{\theta}(x) = \frac{1}{e^{\theta_1^T x} + e^{\theta_2^T x}} \begin{bmatrix} e^{\theta_1^T x} \\ e^{\theta_2^T x} \end{bmatrix}$$

利用 softmax regression 回归参数冗余的特点,我们令 $\psi=\theta_1$,并且从两个参数向量中都减去向量 θ_1 ,得到:

$$h(x) = \frac{1}{e^{\vec{0}^T x} + e^{(\theta_2 - \theta_1)^T x}} \begin{bmatrix} e^{\vec{0}^T x} \\ e^{(\theta_1 - \theta_2)^T x} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{1 + e^{(\theta_1 - \theta_2)^T x}} \\ \frac{e^{(\theta_1 - \theta_2)^T x}}{1 + e^{(\theta_1 - \theta_2)^T x}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{1 + e^{(\theta_1 - \theta_2)^T x}} \\ 1 - \frac{1}{1 + e^{(\theta_1 - \theta_2)^T x}} \end{bmatrix}$$

因此,用 θ' 来表示 $\theta_1-\theta_2$,我们就会发现 softmax regression 预测其中一个类别的概率为 $\frac{1}{1+e^{(\theta')T_x}}$,另一个类别的概率为 $1-\frac{1}{1+e^{(\theta')T_x}}$,这与logistic regression 是一致的。

5. Softmax Regression vs. k 个二元分类器

如果你在开发一个音乐分类的应用,需要对 k 种类型的音乐进行识别,那么是选择使用 softmax regression,还是使用 logistic regression 建立 k 个独立的二元分类器呢?

这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即一首歌只能属于这四种音乐类型的其中一种),此时,你应该使用类别数 k=4 的 softmax regression(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个"其他类",并将类别数 k 设为5)。

如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声。在这种情况下,使用4个二分类的 logistic regression 更为合适。这样每个新的音乐作品,我们的算法可以分别判断它是否属于各个类别。

现在,我们来看一个计算机视觉领域的例子,你的任务是将图像分到三个不同的类别中。(1)假设这三个类

别分别是:室内场景、户外城区场景、户外荒野场景。你会使用softmax regression 还是3个 logistic regression 呢? (2)现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你会选择 softmax regression 还是多个 logistic regression 呢?

在第一个例子中,三个类别是互斥的,因此,更适于选择 softmax regression。而在第二个例子中,建立三个独立的 logistic regression 更加合适。

In []:	
TII [].	