Les Éléments Transposables

Les éléments transposables, également appelés transposons ou "gènes sauteurs", sont des séquences d'ADN capables de se déplacer d'une position à une autre au sein du génome. Ils jouent un rôle crucial dans l'évolution et la diversité génétique. Les éléments transposables sont classés en deux grandes catégories : la Classe 1 (rétrotransposons) et la Classe 2 (transposons à ADN).

Classe 1 : Rétrotransposons

Les rétrotransposons se déplacent par un intermédiaire ARN, qui est ensuite rétrotranscrit en ADN avant d'être inséré dans une nouvelle position dans le génome.

Superfamilles:

1. LINE (Long Interspersed Nuclear Elements)

- **Taille des séquences :** Souvent entre 6 000 et 8 000 paires de bases.
- Caractéristiques: Contient des cadres de lecture ouverts (ORF) codant pour des protéines nécessaires à la rétrotranscription et à l'intégration, tels que la transcriptase inverse et l'endonucléase.

2. SINE (Short Interspersed Nuclear Elements)

- **Taille des séquences :** Environ 100 à 300 paires de bases.
- **Caractéristiques :** Non autonomes (ne codent pas pour les protéines nécessaires à leur mobilité), souvent dérivés de petits ARN nucléaires ou cytoplasmiques.

3. LTR (Long Terminal Repeat) rétrotransposons

- **Taille des séquences :** Entre 5 000 et 10 000 paires de bases.
- Caractéristiques : Possèdent des répétitions terminales longues (LTR) aux extrémités, contiennent des gènes codant pour la transcriptase inverse, l'intégrase et d'autres protéines.

4. Non-LTR rétrotransposons

- Taille des séquences : Variable, généralement plusieurs milliers de paires de bases.
- Caractéristiques : Manquent de LTR, incluent souvent les LINEs et SINEs.

Classe 2: Transposons à ADN

Les transposons à ADN se déplacent directement sous forme d'ADN sans passer par un intermédiaire ARN. Ils utilisent une enzyme appelée transposase pour exciser et réinsérer la séquence dans une nouvelle position.

Superfamilles des TIR

1. Tc1/Mariner

- **Taille des séquences :** Environ 1 300 à 2 500 paires de bases.
- **Motif des TSD**: 2 paires de bases (pb).

• **Caractéristiques :** Contient une seule ORF codant pour la transposase. Utilise un mécanisme de "cut and paste" pour la transposition.

2. **hAT**

- **Taille des séquences :** Entre 2 000 et 5 000 paires de bases.
- **Motif des TSD**: Typiquement 8 pb.
- **Caractéristiques :** Nommés d'après les trois premiers membres découverts (hobo, Activator, Tam3). Codent pour une transposase.

3. Mutator (MuDR)

- **Taille des séquences :** Environ 4 000 à 10 000 paires de bases.
- **Motif des TSD**: 9 pb.
- **Caractéristiques :** Codent pour plusieurs protéines, y compris une transposase et une régulatrice. Sont connus pour leur rôle dans la mutagenèse chez les plantes.

4. PIF/Harbinger

- **Taille des séquences :** Entre 2 500 et 4 000 paires de bases.
- **Motif des TSD**: 3 pb.
- **Caractéristiques :** Codent pour une transposase et une protéine d'aide (helper). Souvent impliqués dans la régulation de l'expression des gènes hôtes.

5. CACTA

- **Taille des séquences :** Environ 3 000 à 12 000 paires de bases.
- **Motif des TSD**: 2 à 3 pb.
- **Caractéristiques :** Connus pour leur structure complexe et leur capacité à réarranger le génome. Codent pour une transposase et parfois d'autres protéines régulatrices.

6. P-element

- **Taille des séquences :** Environ 2 900 paires de bases.
- Motif des TSD: 8 pb.
- **Caractéristiques :** Découvert initialement chez la drosophile, contient des séquences codant pour une transposase.

Motifs des TSD (Target Site Duplications):

Les motifs TSD sont des séquences courtes dupliquées flanquant l'élément transposable après son insertion :

- Tc1/Mariner: 2 pb (exemple: "TA")
- **hAT**: 8 pb (exemple: "TTAATTA")
- **Mutator (MuDR)**: 9 pb (séquence spécifique variable)
- **PIF/Harbinger**: 3 pb (exemple: "TTA")
- **CACTA**: 2 à 3 pb (exemples : "TA" ou "TTA")
- **P-element**: 8 pb (exemple: "TCTAGAAA")

MITE (Miniature Inverted-repeat Transposable Elements)

Les MITEs sont des éléments transposables de petite taille, non autonomes, appartenant généralement à la Classe 2.

Caractéristiques :

- **Taille des séquences :** Typiquement entre 100 et 700 paires de bases.
- **Structure :** Présentent des répétitions inversées terminales (TIR) mais manquent de capacité à coder pour une transposase.
- **Mobilité** : Dépendent des transposases fournies par des transposons autonomes de la même famille.