УДК 621.039.526

ОЦЕНКА И СРАВНЕНИЕ ПОТЕНЦИАЛЬНОЙ ОПАСНОСТИ ПЛУТОНИЯ

А.Г. Асеев, С.А. Субботин

РНЦ-Курчатовский институт, г. Москва

В работе предпринята попытка оценить, насколько представление о плутонии как об очень токсичном элементе соответствует действительности. Рассмотрены свойства плутония, опасные для человека и окружающей среды, радиационная опасность плутония. Были сделаны оценки его химической токсичности и сопоставлены с радиационной токсичностью плутония.

ВВЕДЕНИЕ

Благодаря человеческой активности, за последние десятилетия на планете стало стремительно нарастать количество плутония. До начала использования ядерной энергии количество природного плутония на всем земном шаре оценивалось величиной порядка 50 кг, и который был рассеян в земной коре. Ядерная энергетика наработала его к сегодняшнему дню в количестве уже на порядки большем. За счет ядерных взрывов в биосфере также было рассеяно большое количество этого химического элемента.

После открытия плутония в лабораторных условиях были предприняты попытки обнаружить его в природе. Он был найден в следовых количествах лишь в минералах, содержащих уран, каких-либо естественных месторождений плутония не обнаружено. Наличие естественного плутония в растительности и живых организмах практически не обнаруживается ни какими современными методами [1].

Источниками поступления изотопов плутония в окружающую среду являются испытания ядерного оружия, некоторые этапы ядерного топливного цикла и аварии на атомных электростанциях и летающих аппаратах. Основной источник загрязнения - испытания ядерного оружия [2].

К сожалению, мы до сих пор не знаем, насколько *реальную* опасность плутоний представляет для нас и экологии Земли вообще, насколько представления о нем как об очень токсичном элементе соответствуют действительности.

СВОЙСТВА ПЛУТОНИЯ, ОПАСНЫЕ ДЛЯ ЗДОРОВЬЯ ЧЕЛОВЕКА И ОКРУЖАЮЩЕЙ СРЕДЫ

Миграция в окружающей среде

Миграция плутония в окружающей среде тесно связана с растворимостью его соединений в природных средах, поэтому первоначальная химическая форма радионуклидов имеет решающее значение в перемещении их по цепи почва (вода) - растения - животные - человек.

© А.Г. Асеев, С.А. Субботин, 1999

Сейчас в ядерной энергетике в качестве топлива используется смесь $U0_2$ и $Pu0_2$, эти диоксиды проявляют слабую химическую активность и с трудом вступают в соединения с другими веществами, присутствующими в окружающей среде.

При ядерных испытаниях плутоний поступает в окружающую среду в виде оксидов и отдельных атомов. Тугоплавкие оксиды, образующиеся в небольших количествах при взрывах, практически нерастворимы. Основная доля плутония и америция, осевших с глобальными выпадениями, образуется в виде отдельных атомов и их соединения более растворимы. Химические соединения плутония в выбросах предприятий по переработке топлива представлены в основном растворимыми формами, а также комплексными соединениями с органическими лигандами [2].

Поверхностные слои почвы и донные отложения в настоящее время являются основным резервуаром плутония (более 99% поступившего в окружающую среду элемента). На долю плутония, находящегося в биологических компонентах экосистем, приходится менее 1%. Количество плутония, связанного с животными, в 5 -10 000 раз меньше количества радионуклида, связанного с растениями. Основное количество плутония, находящегося в почве, присутствует в нерастворимой четырехвалентной форме. В зависимости от источника поступления и состава почвы до 10% всего количества плутония в ней может находиться в растворимой доступной для растений форме. Перераспределение плутония по поверхности Земли обусловлено, в основном, ветровым переносом и эрозией почвы. Ветровой перенос приводит к накоплению плутония около любых препятствий, в том числе и растений. Отмечено, что наибольшие концентрации плутония имеют низкорослые растения (травы, лишайники, мхи). При этом поверхностное загрязнение на несколько порядков выше, чем накопление за счет процессов усвоения. Коэффициенты накопления плутония и америция в растениях при внешнем загрязнении в зависимости от состава почвы изменяются в пределах от 10^{-1} до 10^{-3} , а коэффициент накопления активного поглощения находится в пределах 10^{-3} - 10^{-8} [2].

Таким образом, незначительная часть плутония, содержащаяся в почве, усваивается растениями, при этом основное количество перешедшего в растительность плутония задерживается в корнях растений; некоторое количество плутония переходит в надземную часть растений. По современным представлениям, такое количество плутония в продуктах сельскохозяйственного производства не представляет опасности для животных и человека [1].

Была предпринята попытка рассчитать содержание плутония в почве, которое можно было бы принять в качестве допустимого или нормативного уровня по отношению к человеку, проживающему и получающему средства жизнеобеспечения в этих условиях. Поверхностный слой почвы в этой модели считали основным депо и источником плутония, а в качестве процессов, в результате которых радионуклид может достигать критических органов человека, рассматривали ветровой подъем, рассеяние в атмосфере, истощение облака, осаждение, вдыхание, заглатывание почвы и потребление загрязненных пищевых продуктов, сорбцию кожей, метаболическое поведение после всасывания. Расчеты показывают, что вероятными консервативными стандартами содержания ²³⁹Pu в верхнем слое (толщина 3 см) почвы могут быть 15 кБк/кг или 920 кБк/м² [3].

После чернобыльской аварии загрязнение Гомельской области изотопами ²³⁹Pu и ²⁴⁰Pu составило 3,7 кБк/м². Максимальная эффективная эквивалентная доза составит к 2050 г. 68 мЗв/год относительно 1996 г. [4]. Здесь мы хорошо можем видеть, что даже после такой масштабной катастрофы, как чернобыльская, загрязнение самого пострадавшего в результате этой аварии района - Гомельской обла-

сти, конкретно, изотопами плутония было намного ниже допустимого уровня по плутонию.

Пути поступления плутония в организм человека

Существуют три пути поступления плутония из внешней среды в организм человека:

- 1) через органы дыхания;
- 2) через желудочно-кишечный тракт;
- 3) через кожу.

Поступление плутония в организм через органы дыхания

Ингаляционное поступление плутония наблюдается у работников плутониевых заводов, а также у проживающих вблизи предприятий по переработке топлива, и у людей, вдыхавших глобально рассеянный плутоний. Наибольшее количество плутония попало в атмосферу в результате испытаний ядерного оружия. По разным оценкам, в результате ядерных испытаний, в атмосферу поступило от 7 до 10 т плутония. Частицы плутония микронных размеров могут находиться в атмосфере месяцы и годы, огибая вместе с воздушными потоками земной шар и постепенно осаждаясь на поверхность земли. Ветровая эрозия почвы также способствует попаданию осевшего в ней плутония в атмосферу вместе с пылью.

Установлено, что при ингаляционном пути поступления концентрация плутония в лимфатических узлах в 6,5 раз выше, чем в легочной ткани [2]. Период биологического полувыведения плутония из легких человека составляет 250 - 500 сут. С увеличением диаметра частиц от 0,2 до 10 мкм отложение в легочной ткани уменьшается с 50 до 5%, но возрастает содержание в носоглоточной области - с 5 до 85%. Аэрозоли соединений плутония с диаметром частиц около 1 мкм откладываются в легких в количестве 25 %. Диоксид 239 Pu, полученный при высокой температуре (600 - 1000 0 C), практически не резорбируется из легких в кровь и концентрируется в лимфатических узлах легких [2].

Резорбция из легких соединений ²³⁸Pu отличается от ²³⁹Pu большей транспортабельностью. Диоксид ²³⁸Pu свободнее проходит альвеолярно-капиллярный барьер, в небольших количествах задерживается в лимфатических узлах и в значительных количествах, так же, как и нитрат ²³⁹Pu откладывается в органах вторичного депонирования. Объясняется это большей растворимостью оксидов ²³⁸Pu по сравнению с оксидами ²³⁹Pu [2].

Поступление плутония в организм через желудочно-кишечный тракт

Попадая в желудочно-кишечный тракт (ЖКТ), некоторая доля плутония переходит в кровяное русло путем всасывания. На процесс всасывания влияют такие факторы, как растворимость, способность к гидролизу и комплексообразованию, масса и химическая форма соединений, особенности диеты, возраст индивидуума. Коэффициент всасывания зависит от многих факторов и колеблется в широких пределах - от 0,0001 до 0,004 для растворимых соединений; для нерастворимых соединений коэффициент всасывания считается равным 0,00001 [1]. Для окиси плутония этот коэффициент принят 10-6 [3].

Наименьшей резорбцией из ЖКТ обладают окисные соединения плутония. Однако всасывание оксида плутония в смеси с оксидом калия такое же, как и растворимых соединений [2].

При введении в ЖКТ небольших количеств плутония (мкг), близких к уровням, которые могут поступать в организм при существующем загрязнении окружающей

среды, всасывание плутония на порядок выше, по сравнению с всасыванием больших количеств (мг). Показано увеличение всасывания плутония у животных, находящихся на кальцийдефицитной и молочных диетах, при дефиците цинка и витамина Д, при длительном голодании и беременности [2].

Поступление плутония в организм через кожу

Плутоний, входящий в состав жидких, твердых и газообразных соединений, может проникать внутрь организма через неповрежденную кожу животных и человека посредством механизма пассивной диффузии. Значимость этого пути поступления плутония в организм иногда может быть даже большей, чем поступление через ЖКТ. Поступление же его через микротравмы и через обожженные участки кожи может быть сравнимо с внутривенной инъекцией [1].

У человека через неповрежденную кожу ладоней нанесенный нитрат 239 Pu всасывается очень медленно: за 8 ч общая величина резорбции составляет $1,6\cdot10^{-5}$, или $2\cdot10^{-6}$ в час. Проникновение плутония через кожу у различных животных может достигать нескольких процентов. С повышением кислотности раствора нитрата 239 Pu с 0,1 до 10 М резорбция плутония увеличивается с 0,3 до 2%. Величина всасывания нитрата 239 Pu при pH=3,0 составляет 0,15%. Всасывание цитрата 239 Pu через кожу поросят, которая по гистологическому строению близка к коже человека, за 6 сут не превышает 0,35% [2].

Наиболее быстро всасывается шестивалентный плутоний, введенный в форме плутонилнитрата, растворенного в соляной кислоте. Резорбируется с биологическим периодом полувыведения, равным 6 сут. (60%) и 184 сут. (40%). Наиболее медленно всасывается нитрат ²³⁹Pu: его биологический период полувыведения равен 495 сут., а для хлорида ²³⁹Pu(III) биологический период полувыведения равен 117 сут. [2].

Органы вторичного депонирования плутония

Ко вторичным органам депонирования плутония, вне зависимости от пути поступления, химической формы этого элемента, а также вида живого организма являются скелет, печень и почки. При этом химическая форма оказывает влияние на уровни отложения радионуклида в органах депонирования.

При всех путях поступления отмечено незначительное содержание плутония в почках - до 1,5% при внутривенном введении и ингаляции, менее 0,002% при прероральном введении плутоний обнаружен в щитовидной железе, надпочечниках, яичниках и семенниках, а также в мышцах [2].

В случае поступления плутония в профессиональных условиях принимают, что в скелете и печени откладываются равные количества плутония - по 45%; биологический период полувыведения плутония из скелета равен 100 годам, из печени - 40 годам. Принято также, что из всего резорбированного плутония фракция, поступающая в гонады, составляет $3\cdot10^{-4}$ для мужчин и 10^{-4} для женщин [2].

Плутоний неравномерно распределяется по структурам тканей. Так, в губчатой кости его концентрация в 2-3 раза выше, чем в компактной. У всех видов животных и человека микрораспределение плутония в костной ткани характеризуется отложением радионуклида на поверхностях костных структур, т.е. отмечена тропность плутония к органическому матриксу кости. С течением времени плутоний перемещается в неорганическую часть кости и "замуровывается". Некоторое количество плутония захватывается макрофагами и переходит в костный мозг. Отмечены различия в микрораспределении плутония в растущем организме, а также при больших дозах, когда подавляются участки роста кости [2].

СРАВНЕНИЕ ХИМИЧЕСКОЙ И РАДИАЦИОННОЙ ОПАСНОСТИ ПЛУТОНИЯ

Считается, токсичность 100 мг цианистого калия примерно эквивалентна химической токсичности 0,5 г плутония. Также считается, что химическая токсичность плутония сравнима с токсичностью ртути. Но эти эквиваленты справедливы, если только плутоний попал в организм человека в растворимой форме и полностью перешел в кровь.

Как отмечалось ранее, большинство поступающих в окружающую среду химических форм плутония мало растворимы. Для желудочно-кишечного тракта коэффициент всасывания даже для растворимых соединений лежит в пределах от 0,0001 до 0,004.

На основании этих данных мы можем видеть, что даже если плутоний находится в своей самой растворимой форме, для того, чтобы в кровь перешло количество плутония, смертельное для человека (0,5 г), этому человеку необходимо съесть 125 г плутония.

Поглощенная доза 10 Гр смертельна для всех млекопитающих. Воспользовавшись формулой для однократного поступления радионуклида в организм человека [5], находим, что для того, чтобы получить такую поглощенную дозу, среднему человеку (с весом 70 кг) необходимо получить 27,5 МБк или около 0,01 г изотопа 239 Ри. Это введение может быть произведено через органы дыхания. Находясь в них, 239 Ри, если присутствует в нерастворимом соединении, все равно будет воздействовать на человека α - излучением. Здесь мы приняли, что плутоний будет очень быстро выводиться из легких - период полувыведения был принят равным 250 сут. Обычно период полувыведения плутония из легких лежит в пределах 250 - 500 сут. [2], если бы мы приняли его большим, то это значительно уменьшило бы необходимое для получение поглощенной дозы 10 Гр количество грамм плутония.

Из наших рассмотрений однозначно следует - для того, чтобы убить человека с помощью радиационных свойств плутония, нужно ввести в его организм намного меньшее его количество (в частности, ²³⁹Pu), чем для того, чтобы убить индивида с помощью его химических свойств.

И если учесть, что химическая токсичность плутония сравнима с токсичностью ртути, то химической опасности плутония можно уж точно не бояться по сравнению с его радиационной опасностью.

ВОЗМОЖНАЯ ОПАСНОСТЬ, КОТОРУЮ МОЖЕТ ПРЕДСТАВЛЯТЬ ПЛУТОНИЙ

Как можно видеть из различных свойств плутония, основной опасностью, которую он несет, является радиационная. Это также отмечается в работе [2]. Химическая опасность его не так велика. Что касается биологической опасности, то в предыдущих разделах нами показано, что большинство форм химических соединений плутония плохо усвоиваются организмом человека. Основными органами вторичного депонирования плутония являются печень и скелет. Скелет, за счет того, что в нем находится костный мозг, является более чувствительным, чем печень к воздействию радиации.

Большинство изотопов плутония являются α -излучателями. Именно α -излучение представляет наибольшую радиационную опасность по сравнению с другими видами радиации. Отметим, что далеко не одни только изотопы плутония имеют α -активность. Но ни один из других химических элементов, имеющий α -активные изотопы не привлек к себе такого внимания, как плутоний.

Наиболее частым раковым заболеванием, которое встречается у мужчин, является рак легких. В мире ежегодно регистрируется более 1 млн. смертей от него. В России ежегодно умирает от рака легкого 75-80 чел. на 100 000 населения.

Самым опасным путем поступления в организм человека плутония являются органы дыхания. Отмечено [6], что при содержании плутония в легких до 5,6 кБк не наблюдается увеличения заболеваемости раком легких. При количестве плутония в легких выше 5,6 кБк заболеваемость раком резко возрастает. Заболеваемость раком легких при курении носит линейный характер, т.е. пропорциональна количеству выкуренных сигарет.

Благодаря глобально рассеянному плутонию, его концентрация в легких людей в настоящее время составляет 0,2 Бк/г [2]. Масса легких среднестатистического человека (при весе 70 кг) составляет 1 кг [7]. В легких современного человека находится сегодня около 200 Бк плутония. Видно, что эта величина намного меньше пороговой величины заболеваемости раком легких от изотопов плутония.

Отметим, что в настоящее время признано, что самым важным фактором индуцированного рака легкого является курение. Табачный дым содержит более 50 канцерогенов, т.е. веществ с доказанной способностью вызывать опухоли у человека. Следующим по важности фактором, вызывающим рак легкого, является дыхание (или ингалирование) различных веществ техногенного происхождения в виде газов, аэрозолей, пылей. Таким путем в организм могут поступать черные, цветные и тяжелые металлы и их соединения, мышьяк, асбест, силикаты, различные химические продукты (полициклические ароматические углеводороды, нитрозо-соединения и их предшественники, оксиды серы и азота). Обычно это связано с работой тепловых электростанций, предприятий черной и цветной металлургии, нефтехимических и химических производств, автотранспорта, добычей полезных ископаемых. Естественно, что наибольшее количество этих веществ может быть ингалировано лицами, работающими на данных предприятиях, и увеличение заболеваемости рака легкого в 1,7 - 4,1 раза было найдено в черной металлургии, у шахтеров, в индустрии асбеста, у трубочистов, в производстве резины, в мясной промышленности. Но многие производства помимо непосредственного воздействия на персонал загрязняют также окружающую среду (атмосферный воздух, воду, почву), проводя контролируемые и неконтролируемые выбросы и сбросы. Имеются работы, показывающие, что риск рака легкого, связанный с местом проживания вблизи предприятий нефтяной и химической промышленности, увеличен в 1,6 - 1,8 раза [6]. Заметим, что на американских атомных предприятиях, где поступление ²³⁹Ри очень невелико (на уровне допустимого), было отмечено снижение частоты рака легкого по сравнению с контролем [6].

ОЦЕНКА РАДИАЦИОННОЙ ОПАСНОСТИ ПЛУТОНИЯ

Попробуем оценить, насколько велика радиационная опасность плутония. Как мы уже приводили выше, вероятным консервативным стандартом содержания 239 Pu в верхнем слое (толщина 3 см) почвы является 920 кБк/м². Предположим, почва получила это загрязнение в результате аварии на легководном реакторе с глубиной выгорания топлива 33 МВт сут/кг. Данные по процентному содержанию изотопов плутония в таком топливе представлены в табл.1 [1]. Зная процентное содержание изотопов плутония в топливе, легко рассчитать массовые количества этих изотопов в результате предполагаемого загрязнения почвы по 239 Pu. Результаты расчетов представлены также в табл.1.

Известно, что площадь поверхности земного шара примерно равна $5,10\cdot10^8~{\rm km}^2$ [5]. Умножив эту величину на общую массу вероятного консервативного стандарта

содержания плутония в почве (из табл.1), получаем - для того, чтобы добиться такого уровня загрязнения плутонием (920 к $\mathrm{K}\mathrm{K}/\mathrm{M}^2$ по $^{239}\mathrm{Pu}$) потребуется 3,61·10⁵ т плутония. Даже если считать, что суша составляет одну треть поверхности земли и мы равномерно загрязнили бы плутонием только сушу, еще не известно, наработает ли человечество когда-нибудь в будущем такое количество плутония. Напомним, что при таком загрязнении земли плутонием мы еще не нарушим предела по содержанию плутония в почве.

РЕЗЮМЕ

- Сейчас в ЯЭ в качестве топлива используется смесь $U0_2$ и $Pu0_2$. Эти диоксиды проявляют слабую химическую активность и с трудом вступают в соединения с другими веществами, присутствующими в окружающей среде (ОС). Благодаря этому, их миграция в ОС крайне мала, и в живых организмах эти химические формы усваиваются слабо.
- Что касается рассмотрения перспективных видов топлива (U-Pu+Zr и UN+PuN), то можно сказать, что, по-видимому, сплав Pu с U и Zr не будет давать возможности Pu испаряться при комнатной температуре в результате какой-либо аварии, если же топливо будет поступать в ОС в раскаленном состоянии, например, из активной зоны реактора, то Pu вступит в контакт с кислородом воздуха и превратится в оксид, мало растворимый в воде, хотя для этого вида топлива требуются еще дополнительные исследования. Нитрид плутония нерастворимое соединение, способность его образовывать комплексные соединения стоит на предпоследнем месте в ряду степеней валентности плутония. Заметим, что топливо на основе PuO₂ все-таки обладает меньшей растворимостью и способностью образовывать комплексные соединения, чем PuN, поэтому сегодня оно является самым безопасным для ОС из предлагаемых видов плутониевого топлива.
- Была предпринята попытка рассчитать содержание плутония в почве, которое можно было бы принять в качестве допустимого или нормативного уровня по отношению к человеку, проживающему и получающему средства жизнеобеспечения в этих условиях. Расчеты показывают, что вероятными консервативными стандартами содержания ²³⁹Pu в верхнем слое (толщина 3 см) почвы могут быть 15 кБк/кг или 920 кБк/м² [3]. После чернобыльской аварии загрязнение Гомельской области изотопами ²³⁹Pu и ²⁴⁰Pu составило 3,7 кБк/м². Здесь мы хорошо можем видеть, что даже после такой масштабной катастрофы, как чернобыльская, загрязнение самого пострадавшего в результате этой аварии района Гомельской области изотопами плутония было намного ниже допустимого уровня по плутонию.

Габлица 1 Количества различных изотопов плутония при его содержании в почве 920 кБк/м². (Считаем, что плутоний был наработан в легководном реакторе с глубиной выгорания топлива 33 МВт сут/кг)

Изотоп плутония	Содержание изотопов в реакторном плутонии, %	Количество рассматриваемого изотопа, г/м²
²³⁸ Pu	1,9	9,9·10 ⁻⁶
²³⁹ Pu	76,82	4,0 ·10 ⁻⁴
²⁴⁰ Pu	15,34	8,0·10 ⁻⁵
²⁴¹ Pu	4,01	2,1·10 ⁻⁵
²⁴² Pu	1,93	1,0·10 ⁻⁵
Общая масса изотопов плутония 7,1·10 ⁻⁴		

- Токсичность 100 мг цианистого калия примерно эквивалентна химической токсичности 0,5 г плутония. Химическая токсичность плутония сравнима с токсичностью ртути. Но эти эквиваленты справедливы, если только плутоний попал в организм человека в растворимой форме и полностью перешел в кровь. По нашим оценкам, химическая токсичность 125 г плутония с учетом всасывания в кровь через желудочно-кишечный тракт равна токсичности 100 мг цианистого калия.
- Чтобы получить дозу в 10 Гр, смертельную для всех млекопитающих, человеку достаточно поступления в организм (по нашим оценкам) около 0,01 г изотопа ²³⁹Pu. Это введение может быть произведено через органы дыхания. Находясь в них, ²³⁹Pu, даже если будет присутствовать в нерастворимом соединении, все равно будет воздействовать на человека α-излучением. Для того, чтобы убить человека с помощью радиационных свойств плутония, нужно ввести в организм намного меньшее его количество (в частности, ²³⁹Pu), чем для того, чтобы убить индивида с помощью его химических свойств. Основная опасность, которую представляет плутоний, является радиационной.
- Что касается биологической опасности, то важно отметить, что большинство форм химических соединений плутония очень плохо усваиваются организмом человека.
- Самым опасным путем поступления в организм человека плутония являются органы дыхания. Отмечено [6], что при содержании плутония в легких до 5,6 кБк не наблюдается увеличения заболеваемости раком легких. При количестве плутония в легких выше 5,6 кБк заболеваемость раком резко возрастает. Благодаря глобально рассеянному плутонию, его концентрация в легких людей в настоящее время составляет 0,2 Бк/г [2]. В легких современного человека находится сегодня около 200 Бк плутония. Видно, что эта величина намного меньше пороговой величины заболеваемости раком легких от изотопов плутония.
- Площадь поверхности земного шара примерно равна $5,10\cdot10^8$ км² [5]. Умножив эту величину на общую массу вероятного консервативного стандарта содержания плутония в почве (920 кБк/м² по 239 Pu) получаем, что для того, чтобы добиться такого уровня равномерного загрязнения плутонием потребуется $3,6\cdot10^5$ т плутония. Еще не известно, наработает ли человечество когда-нибудь в будущем такое количество плутония, не говоря о том, что не ясно как такое количество ценного для ядерной энергетики вещества будет рассеяно в окружающей среде. Напомним, что при таком загрязнении земли плутонием мы еще не нарушим предела по содержанию плутония в почве. Наши оценки показывают, что полное количество плутония на земном щаре (включая невыделенный из отработавшего ядерного топлива) составляет сегодня примерно 1200.
- Конечно, отдельные участки земли могут получить загрязнение плутонием намного превышающим допустимые величины. Но заметим, что отдельный индивид нигде, никогда, ни при каком высоком уровне технологии не застрахован от травм и гибели. Любая технология должна заботиться, прежде всего, о сохранении вида в целом. И из приведенных оценок видно, что по такой критической величине, как количество плутония, человечество как вид защищено. Конечно, при этом необходимо тщательно контролировать места хранения плутония, не допускать его попадания в биосферу. Этот элемент все-таки для отдельного индивида может представлять серьезную опасность и защита отдельного индивида лежит на специальных нормах, требованиях и правилах, которые необходимо выполнять, и которым неукоснительно следует ядерная энерготехнология.

Список литературы

- 1. Воробьев Г.В., Дмитриев А.М. и др. Плутоний в России. М.: Центр координации и информации СоЭС, 1994.
- 2. Вредные химические вещества. Радиоактивные вещества. Справочник/ Π од ред. акад. Π .А. Ильина. Π .: Химия, 1990.
- 3. Трансурановые элементы в окружающей среде./ $\Pi od ped$. У. С. Хэнсона. М.: Энергоатомиздат, 1985.
- 4. Bolshov L.A., Arutyunyan R.V. e. a. Environmental & safety problems in Pu utilization & power generation. IBRAE RAS, Moscow. E.R. Merz and C.E. Walter Advanced Nuclear Systems Consuming Excess Plutonium Proc. of the NATO Advanced Research Workshop (Moscow, Russia, 13-16 October, 1996). -Vol. 15. P. 271.
- 5. *Гусев Н.Г., Беляев В.А*. Радиоактивные выбросы в биосфере: Справочник. -М.: Энергоатомиздат, 1991.
- 6. Токарская 3.Б., Жунтова Γ .В. Плутоний и раклегкого у работников атомной промышленности /Международный форум "Молодежь и плутониевая проблема" (Обнинск, Россия, 4-10 июля 1998).
- 7. Публ. 23 МКРЗ. М.: Медицина, 1977.

Поступила в редакцию 01.04.99.