Equation réduite d'une droite

I Rappels sur les fonctions affines

<u>Définition</u>: Une fonction affine f est une fonction définie pour tout nombre réel x par f(x) = ax + b où a et b sont des réels donnés.

a est appelé coefficient directeur, b est appelé ordonnée à l'origine.

Propriété: La représentation graphique d'une fonction affine est une droite

II Equation réduite d'une droite et coefficient directeur d'une droite

<u>Propriété</u>: Dans un repère (O; \overrightarrow{i} , \overrightarrow{j}) toute droite (d) non parallèle à l'axe des ordonnées est la représentation graphique d'une fonction affine.

Elle admet donc une équation de la forme y = m x + p où m et p sont des nombres réels

m est appelé coefficient directeur de la droite et p est appelé ordonnée à l'origine.

Démonstration

La droite (d) n'étant pas parallèle à l'axe des ordonnées, elle le coupe en un point A.

Elle coupe aussi la parallèle à l'axe des ordonnées passant par le point I(1; 0). On note B le point d'intersection.

On a donc A(0; p) et B(1; q)

Soit f la fonction affine définie par f(x) = (q - p)x + p

On a
$$f(0) = p$$
 et $f(1) = q$

La représentation graphique de f est donc la droite (AB) et donc y = mx + p est l'équation de la droite (d).

<u>Propriété</u>: Dans un repère (O; \overrightarrow{i} , \overrightarrow{j}) **toute droite (d) parallèle à l'axe des ordonnées** admet une équation de la forme $\mathcal{X} = C$ où c est un nombre réel.

Démonstration

La droite (d) est parallèle à l'axe des ordonnées donc elle coupe l'axe des abscisses en un point A(c; 0).

Un point M appartient à (d) si et seulement si son abscisse est égale à celle de A.

La droite (d) admet donc comme équation x = c.

III Coefficient directeur d'une droite

<u>Propriété</u>: Dans un repère (O; \overrightarrow{i} , \overrightarrow{j}) soient $A(x_A; y_A)$ et $B(x_B; y_B)$ avec $x_A \neq x_B$. Le coefficient directeur

de la droite (AB) est donné par la relation : $m = \frac{y_B - y_A}{x_B - x_A}$

Démonstration

 $x_A \neq x_B$ donc (AB) n'est pas parallèle à l'axe des ordonnées donc elle admet une équation de la forme y = mx + p.

On a $y_A = m x_A + p$ et $y_B = m x_B + p$ donc :

$$\frac{y_{B} - y_{A}}{x_{B} - x_{A}} = \frac{m x_{B} + p - (m x_{A} + p)}{x_{B} - x_{A}} = \frac{m x_{B} + p - m x_{A} - p}{x_{B} - x_{A}} = \frac{m (x_{B} - x_{A})}{x_{B} - x_{A}} = m$$

IV Applications

Dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ on considère les points A(1; 2) et B(4; -2)

On cherche à déterminer l'équation réduite de la droite (AB).

On remarque que $x_A \neq x_B$ donc la droite (AB) a une équation de la forme y = mx + p

Méthode 1 : en déterminant le coefficient directeur puis l'ordonnée à l'origine de la droite (AB)

 \bullet On détermine le coefficient directeur m:

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{-2 - 2}{4 - 1} = -\frac{4}{3}$$

ullet On détermine l'ordonnée à l'origine p :

On a $y_A = m x_A + p$ donc $2 = \frac{-4}{3} \times 1 + p$ car A (1; 2)

on en déduit
$$p = 2 + \frac{4}{3} = \frac{10}{3}$$

Ainsi la droite (AB) a pour équation réduite $y = \frac{-4}{3}x + \frac{10}{3}$

Méthode 2 : en utilisant une équation cartésienne de la droite (AB)

• Soit M(x; y) un point de la droite (AB). On a \overrightarrow{AM} $\begin{pmatrix} x-1 \\ y-2 \end{pmatrix}$ et \overrightarrow{AB} $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$

 $M \in (AB)$ si et seulement si \overrightarrow{AM} et \overrightarrow{AB} sont colinéaires c'est-à-dire si et seulement si $\det(\overrightarrow{AM}; \overrightarrow{AB}) = 0$ c'est-à-dire si et seulement si -4(x-1)-3(y-2)=0

$$-4x+4-3y+6=0$$

$$-4x - 3y + 10 = 0$$

Une équation cartésienne de la droite (AB) est donc -4x - 3y + 10 = 0

• On utilise cette équation cartésienne pour déterminer l'équation réduite de la droite (AB) en « isolant y » :

$$-4x - 3y + 10 = 0$$

$$-3y = 4x - 10$$

$$y = \frac{-4}{3}x + \frac{10}{3}$$
 qui est l'équation réduite de la droite (AB)

V Positions relatives de deux droites

Théorème: Dans un repère (O; \overrightarrow{i} , \overrightarrow{j}) soient (d) et (d') deux droites d'équations y = m x + p et y = m' x + p'.

(d) et (d') sont parallèles si et seulement si m = m'