

Institut Mines-Telecom

Quantification Scalaire et Prédictive

Marco Cagnazzo, cagnazzo@telecom-paristech.fr

SIGMA 201

Introduction Quantification uniforme Quantification optimale QS prédictive

Plan

Introduction

Quantification uniforme

Quantification optimale

Quantification scalaire prédictive

Quantification uniforme Quantification optimale QS prédictive

Introduction

Quantification uniforme

Quantification optimale

Quantification scalaire prédictive

Quantification uniforme Quantification optimale QS prédictive

Définitions

$$Q: \textbf{\textit{x}} \in \mathbb{R} \rightarrow \textbf{\textit{y}} \in \mathcal{C} = \{\widehat{\textbf{\textit{x}}}^1, \widehat{\textbf{\textit{x}}}^2, \dots \widehat{\textbf{\textit{x}}}^L\} \subset \mathbb{R}$$

- ightharpoonup C: Dictionnaire, c'est un sous-ensemble discret de $\mathbb R$
- \hat{x}^i : niveau de quantification, niveau de restitution, codeword, mot de code
- e = x Q(x): Bruit de quantification
- $\Theta^i = \{x : Q(x) = \hat{x}^i\}$: Régions de décision

Un quantificateur scalaire (QS) est complètement défini par ses régions et ses niveaux

Définition: Quantification scalaire (QS)

$$Q: \textbf{\textit{x}} \in \mathbb{R} \rightarrow \textbf{\textit{y}} \in \mathcal{C} = \{\widehat{\textbf{\textit{x}}}^1, \widehat{\textbf{\textit{x}}}^2, \dots \widehat{\textbf{\textit{x}}}^L\} \subset \mathbb{R}$$

Quantification uniforme Quantification optimale QS prédictive

Quantification uniforme Quantification optimale QS prédictive

Quantification uniforme Quantification optimale QS prédictive

Quantification uniforme Quantification optimale QS prédictive

Exemple 1

6/48

Quantification uniforme Quantification optimale QS prédictive

Quantification uniforme Quantification optimale QS prédictive

Quantification d'un signal discret

- Typiquement on quantifie une suite (un signal discret) avec un QS régulier
- ▶ Les signaux d'intérêt ont une dynamique limitée [-A, A]
- ▶ Dans ce cas, $t^0 = -A$ et $t^L = +A$, toutes les régions sont finies, et l'erreur maximum est bornée
- La quantification consiste donc à associer à chaque échantillon d'entrée x(n) un indice i(n), qui détermine la région de décision, c.-à.-d. le mot de code $\widehat{x}^{i(n)}$

8/48

Quantification uniforme Quantification optimale QS prédictive

Quantification comme codage/décodage

Ce que le codeur envoie c'est les i(n)

Institut Mines-Telecom

- Le "décodage" associe à i(n) le mot de code $\hat{x}^{i(n)}$
- Souvent (avec abus de langage) on appel quantification l'application $x \rightarrow i$ et *quantification inverse* le décodage $i \rightarrow \widehat{\mathbf{x}}^i$

Quantification uniforme Quantification optimale QS prédictive

Débit d'un QS

- Le débit d'un QS est le nombre de bit nécessaire pour représenter les indices i(n)
- ▶ Par définition, R = log₂ L
- Cela correspond à un codeur à longueur fixe et à un nombre de niveaux que soit une puissance entière de 2
- Il est possible de réduire ce débit avec le codage sans pertes

Distorsion

 On définit la distorsion ponctuelle comme l'erreur quadratique:

$$d[x(n),\widehat{x}(n)] = |e(n)|^2 = |x(n) - \widehat{x}(n)|^2$$

▶ Si on considère tout le signal $x(\cdot)$ de durée N, on utilise comme distorsion l'erreur quadratique moyenne :

$$D = \frac{1}{N} \sum_{n=0}^{N-1} d[x(n), \widehat{x}(n)]$$

11/48

Distorsion: cas aléatoire

Souvent on utilise des modèles aléatoires centrés pour les signaux. Dans ce cas, l'EQM associé à la QS du processus aléatoire X est :

$$D = E\{|X(n) - Q(X(n))|^2\} = E\{|E(n)|^2\}$$

- La distorsion est donc la puissance du processus aléatoire E(n) = X(n) Q(X(n))
- ▶ On indiquera la distorsion d'un QS comme $\sigma_{\rm O}^2$

Distorsion : modèles pour le signal de bruit

Un modèle commun pour la quantification est le modèle additif

- Le bruit de quantification est donc vu comme un bruit additif
- ightharpoonup E(n) et X(n) sont modelés comme incorrelés
- ► *E*(*n*) est modelé comme uniforme

Institut Mines-Telecom

E est un processus blanc (corrélation impulsionnelle)

Courbe débit/distorsion d'un QS

- Souvent on caractérise un QS par rapport au nombre de niveaux L
- ▶ Le débit croit avec L : R = log₂ L

Institut Mines-Telecom

 Pour tout les cas d'intérêt, la distorsion décroit avec L, mais la relation explicite entre D et L est plus difficile à déterminer

- En général, un QS est donc caractérisé par une courbe paramétrique R(L), D(L)
- ▶ Il est intéressant de trouver la relation explicite entre *D* et *R* : c'est la courbe débit/distorsion D = D(R)

Introduction
Quantification uniforme
Quantification optimale
QS prédictive

Plan

Introduction

Quantification uniforme

Quantification optimale

Quantification scalaire prédictive

Quantification uniforme

Un QS uniforme (QU) est caractérisé par :

- ▶ Régions de décision d'amplitude fixe : $\forall i$, $t^i = t^{i-1} + \Delta$
- Les niveaux de restitution sont les centres des régions : $\widehat{\mathbf{x}}^i = \frac{t^i + t^{i-1}}{2}$

Le QU est simple, minimise l'erreur maximale et est optimale pour des v.a. uniformes.

On a encore:

Quantification uniforme : calcul de la distorsion

Hypothèse :
$$X \sim \mathcal{U}\left(-A,A\right)$$
. Trouver $\sigma_{\mathrm{Q}}^2 = \mathrm{E}\left[(X-\widehat{X})^2\right]$

Quantification uniforme : calcul de la distorsion

Hypothèse :
$$X \sim \mathcal{U}\left(-A,A\right)$$
. Trouver $\sigma_{\mathrm{Q}}^2 = \mathrm{E}\left[(X-\widehat{X})^2\right]$

$$\sigma_{\mathbf{Q}}^2 = \mathbf{E}\left[(X - \widehat{X})^2 \right] = \int_{-A}^{A} p_X(u)[u - \mathbf{Q}(u)]^2 du$$

Quantification uniforme : calcul de la distorsion

Hypothèse : $X \sim \mathcal{U}\left(-A,A\right)$. Trouver $\sigma_{\mathrm{Q}}^2 = \mathrm{E}\left[(X-\widehat{X})^2\right]$

$$\sigma_{\mathbf{Q}}^{2} = \mathbf{E}\left[(X - \widehat{X})^{2} \right] = \int_{-A}^{A} p_{X}(u)[u - \mathbf{Q}(u)]^{2} du$$

$$\dots = \sum_{i=1}^{L} \int_{\Theta^{i}} \frac{1}{2A} [u - \widehat{x}^{i})]^{2} du = \frac{1}{2A} \sum_{i=1}^{L} \int_{\widehat{x}^{i} - \Delta/2}^{\widehat{x}^{i} + \Delta/2} [u - \widehat{x}^{i})]^{2} du$$

$$= \frac{1}{2A} \sum_{i=1}^{L} \int_{-\Delta/2}^{\Delta/2} t^{2} dt = \frac{1}{2A} L \frac{\Delta^{3}}{12} = \frac{\Delta^{2}}{12}$$

En effet le bruit de quantification dans ce cas est une v.a. uniforme en $(-\Delta/2, \Delta/2)$

Quantification uniforme: courbe D(R)

$$D = \frac{\Delta^2}{12} = \frac{4A^2}{12L^2} = \frac{A^2}{3 \cdot 2^{2R}} = \sigma_X^2 2^{-2R}$$

On peut mesurer la qualité par le rapport signal sur bruit :

SNR =
$$10 \log_{10} \frac{E\{X^2\}}{D}$$
 = $10 \log_{10} \frac{\sigma_X^2}{\sigma_X^2 2^{-2R}}$
= $10 \log_{10} 2^{2R} \approx 6R$

Quantification uniforme en haute résolution

- ▶ Hypothèse : $L \to +\infty$, X v.a. quelconque
- ▶ En HR, pour tout Θ^i on approxime p_X comme constante.
- Donc le bruit de quantification en Θ^i est $\mathcal{U}\left(-\frac{\Delta}{2}, \frac{\Delta}{2}\right)$
- ▶ Pour la probabilité totale, $E \sim \mathcal{U}\left(-\frac{\Delta}{2}, \frac{\Delta}{2}\right)$
- Donc:

$$D = \frac{\Delta^2}{12} = \frac{A^2}{3} 2^{-2R}$$

Quantification uniforme en haute résolution

On peut écrire :

$$\mathrm{SNR} = 10 \log_{10} \frac{\mathrm{E}\left\{X^2\right\}}{D} \ = 10 \log_{10} \frac{\sigma_X^2}{A^2/3} 2^{2R} \ \approx 6R - 10 \log_{10} \frac{\gamma^2}{3}$$

où on a définit $\gamma^2 = \frac{X_{\max}^2}{\sigma_{\nu}^2} = \frac{A^2}{\sigma_{\nu}^2}$ rapport entre puissance de crête et puissance moyenne (facteur de charge) On trouve encore:

$$D = \frac{A^2}{3} 2^{-2R} = \frac{\gamma^2}{3} \sigma_X^2 2^{-2R} = K_X \sigma_X^2 2^{-2R}$$

Le facteur de charge est donc un paramètre unique qui caractérise les performance de la QU en HR.

Quantification scalaire: exemple sur image couleurs

Image Originale, 24 bpp

Quantification scalaire : exemple sur image couleurs

Débit 21 bpp PSNR 47.19 dB TC 1.143

22/48

Quantification scalaire: exemple sur image couleurs

Débit 18 bpp PSNR 42.38 dB TC 1.333

Quantification scalaire : exemple sur image couleurs

Débit 15 bpp PSNR 36.97 dB TC 1.600

Quantification scalaire: exemple sur image couleurs

Débit 12 bpp PSNR 31.40 dB TC 2.000

Quantification scalaire : exemple sur image couleurs

Quantification scalaire: exemple sur image couleurs

Quantification scalaire: exemple sur image couleurs

Plan

Introduction

Quantification uniforme

Quantification optimale

Quantification scalaire prédictive

Quantification optimale

Pour une densité de probabilité $p_X(x)$ donnée, déterminer le quantificateur qui minimise la distorsion pour un débit donné. Problème équivalent à déterminer les seuils t^i et les niveaux \widehat{x}^i . Solutions :

- ▶ Solution analytique en haute résolution: $D = c_X \sigma_x^2 2^{-2R}$
- Si l'hypothèse de haute résolution n'est pas satisfaite, on peut atteindre un minimum local de la distorsion avec l'algorithme de Max-Lloyd

Quantification optimale en haute résolution

Si on définit $U = X/\sigma_X$, on peut écrire :

$$\sigma_{\mathrm{Q}}^2 = c_X \sigma_X^2 2^{-2R}$$
 avec $c_X = rac{1}{12} \left[\int_{\mathbb{R}} p_U^{1/3}(t) dt
ight]^3$

 c_X est appelé facteur de forme, car il dépend seulement de la forme de la PDF de X (c.-à.-d. de p_U) et pas de sa variance

Facteurs de forme pour PDF communes :

•	. actoure actornic pour . Dr. co				
		Uniforme	Gaussienne		
	c_X	1	$\frac{\sqrt{3}}{2}\pi \approx 2.72$		

Quantification optimale non-HR

- Les hypothèses d'haute résolution ne sont pas toujours respectées
- Les cas plus intéressants sont au contraire ceux où le débit disponible est faible
- On dispose pas de formules pour la quantification optimale à faible débit
- En revanche, on peut trouver des conditions nécessaires et pour avoir un QO
- Ces conditions permettent de déterminer un algorithme de quantification (algorithme de Lloyd-Max)

Quantification optimale

Algorithme de Lloyd-Max

- initialiser les régions (p.e. uniforme)
- 2. trouver les *meilleures* régions pour le dictionnaire donné

$$t^{i} = \frac{\hat{x}^{i} + \hat{x}^{i+1}}{2}, \quad i \in \{1, \dots, L-1\}$$

3. trouver le *meilleur* dictionnaire pour les régions données

$$\widehat{x}^i = \mathbb{E}[X|X \in \Theta_i] = \frac{\int_{\Theta_i} x p_X(x) dx}{\int_{\Theta_i} p_X(x) dx}$$

4. boucler en 2 jusqu'à la convergence

Algorithme de Lloyd-Max pour les données

- On a pas toujours les distributions de probabilités des signaux, souvent on a seulement un ensemble de M observations
- L'algorithme de Lloyd-Max se modifie comme il suit :
 - 1. Soit $\mathcal{X} = \{u_1, u_2, \dots u_M\}$ l'ensemble des données à quantifier
 - 2. Initialisation (k=0) avec un dictionnaire quelconque (p.e. uniforme) : $\mathcal{C}^{(k)} = \{\widehat{\mathbf{x}}_0^i\}_{i=1,\dots,L}$
 - 3. Règle du plus proche voisin :

$$W_k^i = \{u_m \in \mathcal{X} : \forall j \neq i \|u_m - \widehat{x}_k^i\| \leq \|u_m - \widehat{x}_k^j\|\}$$

- 4. Règle du centroïd : $\widehat{\mathbf{x}}_{k+1}^i = \frac{1}{|W^i|} \sum_{u_m \in W_k^i} u_m$
- 5. Boucler en 3 jusqu'à convergence

Convergence de l'algorithme de Lloyd-Max

- ► Rien n'assure la convergence à l'optimum global
- Le résultat depend de l'initialisation
- En tout cas, à chaque itération la distorsion n'augmente pas
- Critère d'arrêt :
 - Soit $D^{(k)}$ la distorsion du k-ème quantificateur
 - ► Une condition d'arrêt typique est :

$$\frac{D^{(k)} - D^{(k+1)}}{D^{(k)}} \le \epsilon$$

Algorithme de Lloyd-Max

Bilan de la quantification scalaire

- ▶ D(R), QU et v.a. uniforme : $D = \sigma_x^2 2^{-2R}$
- ▶ D(R), QU et v.a. non uniforme en HR : $D = K_X \sigma_X^2 2^{-2R}$
- ▶ D(R), QO et v.a. non uniforme en HR : $\sigma_{\rm O}^2 = c_{\rm X} \sigma_{\rm X}^2 2^{-2R}$
- c_X est une constante qui dépend de la distribution de X (facteur de forme)
 - $c_X = 1$ dans le cas uniforme

Institut Mines-Telecom

- $c_X = \frac{\sqrt{3}}{2}\pi$ dans le cas gaussien
- À faible resolution, LM produit un QNU localement optimale

Introduction
Quantification uniforme
Quantification optimale
QS prédictive

Plan

Introduction

Quantification uniforme

Quantification optimale

Quantification scalaire prédictive

Codage prédictive

Principes

- La seule quantification est peu efficace pour la compression
- Modèle soujacent trop simple : échantillons indépendants et tous également importants
- Idée : exploiter la corrélation entre échantillon par une prédiction
- Réduction de la variance

Schéma de codage

Schéma en boucle ouverte

- L'échantillon x(n) est lié au échantillons passés (et futurs)
- ▶ On utilise les voisins de x(n) pour le prédire
- ▶ Si on fait un bonne prédiction, $v(n) \approx x(n)$

- ► Comment on fait la prédiction ?
- Qu'est-ce qu'on gagne ?

Gain de prédiction

Erreur sur la prédiction = erreur sur le signal :

$$q(n) = y(n) - \hat{y}(n) = x(n) - v(n) - \hat{x}(n) + v(n) = \bar{q}(n)$$

Donc l'objectif de la QS prédictive devient celui de minimiser la distorsion de y Gain de codage :

$$SNR_{p} = 10 \log_{10} \frac{\sigma_{X}^{2}}{D} = 10 \log_{10} \frac{\sigma_{X}^{2}}{\sigma_{Y}^{2}} + 10 \log_{10} \frac{\sigma_{Y}^{2}}{D} = G_{P} + G_{Q}$$

La prédiction doit produire un signal d'erreur dont la variance est inférieure à la variance du signal d'origine

Exemple

$$X(n) \sim \mathcal{N}(0, \sigma^2)$$
 $\operatorname{E}[X(n)X(m)] = \sigma^2 \rho^{|n-m|}$ $V(n) = X(n-1)$ $\rho: G_P > 0$?

Exemple

$$X(n) \sim \mathcal{N}(0, \sigma^2)$$
 $\mathbb{E}[X(n)X(m)] = \sigma^2 \rho^{|n-m|}$ $V(n) = X(n-1)$ $\rho: G_P > 0$?

$$Y(n)=X(n)-X(n-1)$$
 v.a. Gaussienne centrée
$$\sigma_Y^2=\mathrm{E}\left[(X(n)-X(n-1))^2\right]=2\sigma^2-2\sigma^2\rho$$

$$G_P=10\log_{10}\frac{\sigma_X^2}{\sigma_Y^2}=10\log_{10}\frac{\sigma^2}{2(1-\rho)\sigma^2}$$

$$G_P>0\Leftrightarrow \rho>\frac{1}{2}$$

Prédicteurs

 On s'intéressera aux prédicteurs linéaires : simples et optimaux dans le cas Gaussien

$$v(n) = -\sum_{i=1}^{P} a_i x_{n-i}$$
 Filtre de prédiction à P paramètres

$$y(n) = x(n) - v(n) = \sum_{i=0}^{P} a_i x_{n-i}$$
 Erreur de prédiction

- avec a₀ = 1.
- On peut donc voir y comme filtrage de x avec le filtre de fonction de transfert :

$$A(z) = 1 + a_1 z^{-1} + \ldots + a_P z^{-P}$$

Filtre optimale : minimisation de σ_V^2

Modèle AR du signal

- ► Si Y(z) = A(z)X(z), $X(z) = \frac{Y(z)}{A(z)}$
- On montre que, si la prédiction est optimale, Y(z) est du bruit blanc de puissance σ²_Y
- ▶ Dans ce cas, la DSP de X est $S_X(f) = rac{\sigma_Y^2}{|A(f)|^2}$
- ▶ Le modèle sous-jacente pour X est celui d'un signal auto-regressif :

$$X(z) = \frac{Y(z)}{1 + a_1 z^{-1} + \dots + a_P z^{-P}} \Leftrightarrow x(n) + a_1 x(n-1) + \dots + a_P x(n-P) = y(n)$$

 \rightarrow x(n) est donc le filtrage AR de y(n)

Choix du prédicteur

Problème:

Trouver le vecteur (filtre linéaire) <u>a</u> qui minimise :

$$\sigma_{\mathsf{Y}}^2 = \mathsf{E}\left\{\mathsf{Y}^2(n)\right\} = \mathsf{E}\left\{\left[\mathsf{X}(n) + \sum_{i=1}^P a_i \mathsf{X}(n-i)\right]^2\right\}$$

Choix du prédicteur

$$\sigma_{Y}^{2} = \mathbb{E}\left\{X^{2}(n)\right\} + 2\sum_{i=1}^{P} a_{i}\mathbb{E}\left\{X(n)X(n-i)\right\} + \sum_{i=1}^{P} \sum_{j=1}^{P} a_{i}a_{j}\mathbb{E}\left\{X(n-i)X(n-j)\right\}$$
$$= \sigma_{X}^{2} + 2\underline{r}^{t}\underline{a} + \underline{a}^{t}\mathbf{R}_{X}\underline{a}$$

avec:

$$\underline{r} = [r_X(1) \dots r_X(P)] \quad \mathbf{R}_X = \begin{bmatrix} r_X(0) & r_X(1) & r_X(2) & \dots & r_X(P-1) \\ r_X(1) & r_X(0) & r_X(1) & \dots & r_X(P-2) \\ r_X(2) & r_X(1) & r_X(0) & \dots & r_X(P-3) \\ \dots & \dots & \dots & \dots & \dots \\ r_X(P-2) & r_X(P-3) & r_X(P-4) & \dots & r_X(1) \\ r_X(P-1) & r_X(P-2) & r_X(P-3) & \dots & r_X(0) \end{bmatrix}$$

$$r_X(k) = \mathbb{E}\{X(n)X(n-k)\}$$

Choix du prédicteur

Minimisation de la variance de Y:

$$\frac{\partial \sigma_{Y}^{2}}{\partial a} = 2\underline{r} + 2\mathbf{R}_{X}\underline{a} = 0$$

On a donc:

$$\underline{\underline{a}}^{\text{opt}} = -\mathbf{R}_X^{-1}\underline{\underline{r}}$$
 $\sigma_Y^2 = \sigma_X^2 + \underline{\underline{r}}^t\underline{\underline{a}}^{\text{opt}}$

L'autocorrélation r_X peut généralement être estimé avec :

$$\widehat{r}_X(k) = \frac{1}{N} \sum_{n=0}^{N-1-k} X(n)(X(n+k))$$

Méthodes prédictives : exemple

$$\sigma_{X}^{2} = 2903$$

Prédicteur :

	Ь			
а	Х			
1 1				

$$v_{n,m} = ax_{n-1,m} + bx_{n,m-1}$$

а	b	σ_Y^2	G_P
1/2	1/2	78.7	15.67 dB
0.45	0.55	78.4	15.68 dB

Prédicteur :

ſ	С	b	d
ſ	а	х	

$$v_{n,m} = ax_{n-1,m} + bx_{n,m-1} + cx_{n-1,m-1} + dx_{n-1,m+1}$$

а	b	С	d	σ_Y^2	G_P
0.66	0.72	-0.39	0	70.56	16.14 dB
0.66	0.54	-0.38	0.18	62.12	16.70 dB

