

Best Available Copy

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : G01N 27/327, C12Q 1/00		A1	(11) International Publication Number: WO 97/30344 (43) International Publication Date: 21 August 1997 (21.08.97)
<p>(21) International Application Number: PCT/US97/02165</p> <p>(22) International Filing Date: 11 February 1997 (11.02.97)</p> <p>(30) Priority Data: 08/601,223 14 February 1996 (14.02.96) US</p> <p>(71) Applicant: SELCARE, INC. [US/US]; 200 Prospect Street, Waltham, MA 02154 (US).</p> <p>(72) Inventors: MCALEER, Jerome, F.; 52 Nobles Close, Wantage OX12 0NR (GB). SCOTT, David; 68 Newland Mill, Witney, Oxon OX8 6S2 (GB). HALL, Geoff; Willboa Damfield Lane, Inverness IV2 3H5 (GB). ALVAREZ-ICAZA, Manuel; 3C Reay Street, Inverness IV2 3AJ (GB). PLOTKIN, Elliot, V.; 25 Boradstone Park, Inverness IV2 3JZ (GB).</p> <p>(74) Agents: LARSON, Marina, T. et al.; Oppedahl & Larson, Suite 309, 1992 Commerce Street, Yorktown Heights, NY 10598-4412 (US).</p>		<p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report.</i></p>	
<p>(54) Title: DISPOSABLE TEST STRIPS FOR DETERMINATION OF BLOOD ANALYTICS, AND METHODS AND COMPOSITIONS FOR MAKING SAME</p> <p>(57) Abstract</p> <p>An improved disposable glucose test strip for use in a test meter of the type which receives a disposable test strip and a sample of blood from a patient and performs an electrochemical analysis is made using a working formulation containing a filler, an enzyme effective to oxidize glucose, e.g., glucose oxidase, and a mediator effective to transfer electrons from the enzyme. The working formulation is printed over a conductive carbon base layer to form a working electrode. The filler, for example a silica filler, is selected to have a balance of hydrophobicity and hydrophilicity such that one drying it forms a two-dimensional network on the surface of the conductive base layer. The response of this test strip is essentially temperature independent over relevant temperature ranges and is substantially insensitive to the hematocrit of the patient.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

- 1 -

**DISPOSABLE TEST STRIPS FOR DETERMINATION OF BLOOD ANALYTES,
AND METHODS AND COMPOSITIONS FOR MAKING SAME**

DESCRIPTION

BACKGROUND OF THE INVENTION

This application relates to disposable test strips for use in electrochemical determinations of blood analytes such as glucose, and to methods and compositions for use in making such strips.

Glucose monitoring is a fact of everyday life for diabetic individuals, and the accuracy of such monitoring can literally mean the difference between life and death. To accommodate a normal life style to the need for frequent monitoring of glucose levels, a number of glucose meters are now available which permit the individual to test the glucose level in a small amount of blood.

Many of these meters detect glucose in a blood sample electrochemically, by detecting the oxidation of blood glucose using an enzyme such as glucose oxidase provided as part of a disposable, single use electrode system. Examples of devices of this type are disclosed in European Patent No. 0 127 958, and US Patents Nos. 5,141,868, 5,286,362, 5,288,636, and 5,437,999 which are incorporated herein by reference.

In general, existing glucose test strips for use in electrochemical meters comprise a substrate, working and reference electrodes formed on the surface of the substrate, and a means for making connection between the electrodes and the meter. The working electrode is coated with an enzyme capable of oxidizing glucose, and a mediator compound which transfers electrons from the enzyme to the electrode resulting in a measurable current when glucose is present. Representative mediator compounds include ferricyanide, metallocene compounds such as ferrocene, quinones, phenazinium salts, redox indicator DCPIP, and imidazole-substituted osmium compounds.

Working electrodes of this type have been formulated in a number of ways. For example, mixtures of conductive

- 2 -

carbon, glucose oxidase and a mediator have been formulated into a paste or ink and applied to a substrate. EP 0 127 958 and US 5,286,362. In the case of disposable glucose strips, this application is done by screen printing in order 5 to obtain the thin layers suitable for a small flat test strip. The use of screen printing, however, introduces problems to the operation of the electrode.

Unlike a thicker carbon paste electrode which remains fairly intact during the measurement, screen printed 10 electrodes formed from carbon pastes or inks are prone to break up on contact with the sample. The consequences of this breakup are two-fold. Firstly, the components of the electrode formulation are released into solution. Once 15 these components drift more than a diffusion length away from the underlying conductive layer, they no longer contribute toward the measurement, but in fact diminish the response by depleting inwardly-diffusing analyte. Secondly, the breakup of the screen printed electrode means that the effective electrode area is falling over time.

20 The combination of these two effects results in current transients which fall rapidly from an initial peak over the period of the measurement, and a high sensitivity to oxygen which quickly competes with the mediator for the enzyme. This fact is clearly demonstrated by the much lower 25 currents measured in blood samples than in plasma samples or other aqueous media, and can result in erroneous readings. A further consequence is that the transients are often "lumpy" as the electrode breaks up in a chaotic manner. Lumpy transients either give rise to erroneous readings or 30 rejected strips, neither of which are acceptable.

In addition to the potential for electrode breakup of screen-printed carbon-based electrodes, known electrodes used in disposable glucose test strips have been kinetically-controlled, i.e., the current depends on the 35 rate of conversion of glucose by the enzyme. Because the response measured by the instrument represents a balance between the reactions of enzyme and mediator, enzyme and

- 3 -

5 glucose and enzyme and oxygen, and because each of these reactions has its own dependence on temperature, the response of a kinetically-controlled test strip is very sensitive to the temperature of the sample. Substantial variation in the measured glucose value can therefore occur as a result of variations in sample handling.

10 Because of the importance of obtaining accurate glucose readings to the well-being of a patient using the meter and disposable test strips, it would be highly desirable to have a glucose test strip which did not suffer from these drawbacks, and which therefore provided a more consistent and reliable indication of actual blood glucose values, regardless of actual conditions. It is therefore an object of the present invention to provide disposable glucose test strips which are not prone to electrode breakup on contact with a sample.

15 It is a further object of this invention to provide glucose test strips which provide a glucose reading that is essentially independent of the hematocrit of the sample.

20 It is a further object of the present invention to provide glucose test strips which are substantially independent of temperature over a range between normal body temperature and room temperature.

25 It is a further object of the invention to provide test strips which provide a substantially flat current transient, without significant decay for periods of at least 10 seconds after the peak current level is obtained.

SUMMARY OF THE INVENTION

30 The present invention provides an improved disposable test strip for use in a test meter of the type which receives a disposable test strip and a sample of blood from a patient and performs an electrochemical analysis of the amount of a blood analyte such as glucose in the sample. The test strip comprises:

- (a) a substrate;
- (b) a reference electrode;

- 4 -

(c) a working electrode; and
(d) means for making an electrical connection
between the reference and working electrode and a glucose
test meter. The working electrode comprises a conductive
base layer disposed on the substrate and a non-conductive
coating disposed over the conductive base layer. In the
case of a glucose test strip, the non-conductive coating
comprises a filler which has both hydrophobic and
hydrophilic surface regions, an enzyme effective to oxidize
glucose, e.g., glucose oxidase, and a mediator effective to
transfer electrons from the enzyme to the conductive base
layer. The filler is selected to have a balance of
hydrophobicity and hydrophilicity such that on drying it
forms a two-dimensional network on the surface of the
conductive base layer. Preferred fillers are non-conductive
silica fillers. The response of this test strip is
dependent on the diffusion rate of glucose, not on the rate
at which the enzyme can oxidize glucose, such that the
performance of the test strip is essentially temperature
independent over relevant temperature ranges. Further, the
silica appears to form a two-dimensional network which
excludes red blood cells, thus rendering the test strip
substantially insensitive to the hematocrit of the patient.

25 BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A and 1B show an electrode structure useful
in a disposable test strip in accordance with the invention;

Fig. 2 shows a test strip in accordance with the
invention;

30 Figs. 3A - 3C show the current measured as a
function of glucose concentration for three different
hematocrit levels;

35 Fig. 4 shows the relationship of the glucose-
concentration dependence of the measured current as a
function of hematocrit;

- 5 -

Figs. 5A - 5C show the current measured as a function of glucose in blood and a control solution for three different conductive base layers;

5 Figs. 6A and 6B show the current measured as a function of glucose at two different temperatures;

Fig. 7 shows a further embodiment of a glucose test strip according to the invention; and

10 Figs 8A and 8B show current transients observed using a test strip according to the invention and a commercial carbon-based test strip.

DETAILED DESCRIPTION OF THE INVENTION

15 Figs. 1A and 1B show electrodes useful in a disposable test strip in accordance with the invention. As shown, the electrodes are formed on a substrate 10. On the substrate 10 are placed a conductive base layer 16, a working electrode track 15, a reference electrode track 14 ending in reference electrode 14', and conductive contacts 11, 12, and 13. An insulating mask 18 is then formed, leaving a portion 20 of the conductive base layer 16, and the contacts 11, 12 and 13 exposed. A region of a working coating 17 is then applied over the insulating mask 18 to make contact with conductive base layer 16.

25 The assembly shown in Fig. 1 provides a fully functional assembly for the measurement of a blood analyte when connected to a meter. Advantageously, however, the electrode strips of the invention are finished by applying a polyester mesh 21 over the region of the working coating 17 of the electrode assembly 22, and then a top cover 23 to prevent splashing of the blood sample. (Fig. 2) The polyester mesh acts to guide the sample to the reference electrode 14', thereby triggering the device and initiating the test.

30 35 The substrate 10 used in making the test strips of the invention can be any non-conducting, dimensionally stable material suitable for insertion into a glucose test meter. Suitable materials include polyester films, for

- 6 -

example a 330 micron polyester film, and other insulating substrate materials.

The working electrode track 15, the reference electrode track 14, and conductive contacts 11, and 12 can be formed from essentially any conductive material including silver, Ag/AgCl, gold, or platinum/carbon.

The conductive base layer 16 is preferably formed from conductive carbon. Preferred conductive carbon are ERCON ERC1, ERCON ERC2 and Acheson Carbon Electrodag 423. Carbon with these specifications is available from Ercon Inc. (Waltham, Massachusetts, USA), or Acheson Colloids, (Princes Rock, Plymouth, England). The conductive base layer 16 makes contact with working electrode track 15, and is close to, but not contacting the end of reference electrode track 14.

The insulating layer 18 can be formed from polyester-based printable dielectric materials such as ERCON R488-B(HV)-B2 Blue. The top cover 23 is suitably formed from a polyester strip or a "hot melt" coated plastic.

The test strips of the present invention do not require the formation of a discrete exit port to permit air to escape from the device as sample enters the electrode chamber but instead uses a distributed exit along all of the edges of the mesh. As the sample fluid wicks along the mesh, air seeps out of the edges of the mesh all around the device underneath the top layer. The sample fluid does not seep out because the insulation layer imparts significant hydrophobicity to that part of the mesh. The liquid sample therefore remains in the central hydrophilic region.

The key to the performance achieved using the present invention is in the nature of the coating 17. This coating contains a filler which has both hydrophobic and hydrophilic surface regions, and in the case of a glucose test strip, an enzyme which can oxidize glucose, and a mediator which can transfer electrons from the enzyme to the underlying conductive base layer 16. This coating is suitably formed by formulating an ink which contains the

- 7 -

filler, the enzyme and the mediator in a suitable carrier and using this ink to print the coating 17 onto the device.

A preferred filler for use in the coating 17 is silica. Silica is available in a variety of grades and with a variety of surface modifications. While all silica compounds tested resulted in a product which could measure glucose under some conditions, the superior performance characteristics of glucose test strip of the invention are obtained when a silica having a surface modification to render it partially hydrophobic is used. Materials of this type include Cab-O-Sil TS610, a silica which is modified by partial surface treatment with methyl dichlorosilane; Cab-o-Sil 530, a silica which is modified by full surface treatment with hexamethyl disilazane; Spherisorb C4 silica, which is surface modified with 4 carbon chains; and other similarly modified silicas, or combinations thereof. Silica with a surface modification which is too hydrophobic should be avoided, however, since it has been observed that C18-modified silica is too hydrophobic to form a printable ink.

During the process of manufacturing the ink of the invention, the particles are broken down by homogenization to expose hydrophilic inner portions of the silica particles. The actual particles present in the ink therefore have both hydrophilic and hydrophobic regions. The hydrophilic regions form hydrogen bonds with each other and with water.

When this material is formulated into an ink as described below in Example 1, and screen printed onto the conductive base layer 16, the dual nature of the material causes it to form layers of two-dimensional networks which take form as a kind of honeycomb. On rehydration, this layer does not break up, but swells to form a gelled reaction zone in the vicinity of the underlying conductive base layer 16. Reactants such as enzyme, mediator and glucose move freely within this zone, but interfering species such as red blood cells containing oxygenated hemoglobin are excluded. This results in a device in which

- 8 -

the amount of current generated in response to a given amount of glucose varies by less than 10 percent over a hematocrit range of 40 to 60 %, and which is thus substantially insensitive to the hematocrit of the sample, 5 and in fact performs substantially the same in blood as in a cell-free control solution. (Figs. 3A-C, Fig. 4 and Fig. 5A - 5C)

Furthermore, the gelled reaction zone presents a greater barrier to entry of blood analytes such as glucose 10 which makes the device diffusion, rather than kinetically limited. This leads to a device in which the measured current varies by less than 10 percent over a temperature range from 20°C to 37°C and which is thus essentially temperature independent. (Figs. 6A and 6B)

When making a glucose test strip, the working layer 15 is advantageously formed from an aqueous composition containing 2 to 10 % by weight, preferably 4 to 10 % and more preferably about 4.5 % of a binder such as hydroxyethylcellulose or mixtures of hydroxyethylcellulose 20 with alginate or other thickeners; 3 to 10 % by weight, preferably 3 to 5 % and more preferably about 4 % silica; 8 to 20 % by weight, preferably 14 to 18 % and more preferably about 16 % of a mediator such as ferricyanide; and .4 to 2 % by weight, preferably 1 to 2 % and more preferably about 1.6 25 % of an enzyme such as glucose oxidase, assuming a specific activity of about 250 units/mg, or about 1000 to 5000 units per gram of ink formulation.

The working layer may also include additional 30 ingredients without departing from the scope of the invention. For example, the nonconducting layer may include an antifoam. In addition, the nonconducting layer may be formulated with a buffering agent to control the pH of the reaction zone. The pH may be maintained at a level within the range from about pH 3 to pH 10. It is of particular 35 utility to maintain the pH of the device at a level above 8 because at this pH oxygen bound to hemoglobin is not released. Further, at this pH, the reaction rate of glucose

- 9 -

oxidase with oxygen is very low. Thus, selection of an appropriate pH can further stabilize the performance of the test strip against the effects of varying hematocrit.

While a preferred embodiment of the invention is a glucose test strip as described above, the test strips of the invention which include a first working coating disposed over the conductive base layer, said first working coating comprising a filler having both hydrophobic and hydrophilic surface regions. For example, a fructosamine test strip could include two layers disposed over the conductive base layer. The first, lower layer is formed from an ink comprising a carbonate buffer ($\text{pH} > 10$) in a silica mix substantially as described in Example 7 but without enzyme, mediator or citrate buffer. The second, upper layer is formed from an ink further comprising an oxidant such as ferricyanide.

Fig. 7 shows an alternative embodiment of the invention. In this embodiment, a second working layer 71 is disposed over the first working layer 17. This layer is formed from a composition which is identical to the first working layer except that the enzyme or both the enzyme and the mediator are omitted. This layer further isolates the conductive base layer from contact with oxygen-carrying red blood cells, thus reducing the effects of oxygen. Furthermore, to the extent that enzyme may tend to diffuse away from the surface of the electrode during the course of the measurement, such a layer containing mediator can provide an increased region in which it will have mediator available for the transfer of electrons.

30

EXAMPLE 1

A non-conducting formulation for preparation of the working layer 17 was made as follows. 100 ml of 20 mM aqueous trisodium citrate was adjusted to pH 6 by the addition of 0.1 M citric acid. To this 6 g of hydroxyethyl cellulose (HEC) was added and mixed by homogenization. The mixture was allowed to stand overnight to allow air bubbles

- 10 -

to disperse and then used as a stock solution for the formulation of the coating composition.

2 grams Cab-o-Sil TS610 silica and 0.1 grams of Dow Corning antifoam compound was gradually added by hand to 50
5 grams of the HEC solution until about 4/5 of the total amount had been added. The remainder was added with mixing by homogenization. The mixture was then cooled for ten minutes in a refrigerator. 8 g of potassium hexacyanoferrate (III) was then added and mixed until completely
10 dissolved. Finally, 0.8 g of glucose oxidase enzyme preparation (250 Units/mg) was added and then thoroughly mixed into the solution. The resulting formulation was ready for printing, or could be stored with refrigeration.

15

EXAMPLE 2

To prepare glucose test strips using the ink formulation of Example 1, a series of patterns are used to screen print layers onto a 330 micron polyester substrate (Melinex 329). The first step is the printing of carbon pads. An array of 10 X 50 pads of carbon is formed on the surface of the polyester substrate by printing with EC2 carbon. (Ercon) The printed substrate is then passed through a heated dryer, and optionally cured at elevated temperature (e.g. 70°C) for a period of 1 to 3 weeks.

20

Next, an array of silver/silver chloride connecting tracks and contacts is printed onto the substrate using ERCON R-414 (DPM-68) 1.25 bioelectrode sensor coating material and dried. One working track which makes contact with the carbon pad and one reference track is printed for
30 each carbon pad in the array.

35

A dielectric layer is then printed using ERCON R488-B(HV)-B2 Blue and dried. The dielectric layer is printed in a pattern which covers substantially all of each device, leaving only the contacts, the tip of the reference electrode and the carbon pads uncovered.

- 11 -

On top of the dielectric layer the ink of Example 1 is used to form a working layer overlaid on top of each conductive carbon pad.

Polyester mesh strips (Scrynel PET230 HC) are then
5 laid down across the substrate in lines, covering the reactions areas exposed by the windows in the dielectric. An 5 mm wide polyester strip (50 microns thick) is then applied over the top of the mesh strips, and the edges of the electrodes are heat sealed. Finally, the substrate is
10 cut up to provide 50 individual electrodes, for example having a size of 5.5 mm wide and 30 mm long.

EXAMPLE 3

Test strips manufactured using the ink formulation
15 of Example 1 in the manner described in Example 2 were placed in a test meter with an applied voltage of 500 mV and used to test blood samples having varying glucose concentrations and hematocrits ranging from 40% to 60%. Figs. 3A-3C show the current measured 25 seconds after
20 applying the voltage as a function of the glucose concentration, and Fig. 4 plots the slope of the glucose response as a function of hematocrit. As can be seen, the indicators produce highly reproducible current levels which are essentially independent of hematocrit.

25

EXAMPLE 4

Glucose test strips in accordance with the invention were made in accordance with Example 2, except the non-conductive layer was formed with 7 g Spherisorb C4 and 1 g Cab-o-Sil TS610. This formulation was laid down on three
30 different types of carbon-containing conductive base layers as follows:

- A: Ercon EC1
- B: Ercon EC2
- C: Ercon EC2 on top of Acheson Carbon, Electrodag 423
35 SS.

- 12 -

These test strips were used to measure varying levels of glucose in either a control solution (One Touch Control Solution, Lifescan Inc.) containing glucose in an inert solution or in blood at an applied voltage of 425 mV. The current observed 25 seconds after the voltage was applied was measured. Figs. 5A - 5C show the results obtained for the three formulations, A, B, and C, respectively. In all cases, the slope of the line showing the response of the meter to different glucose concentrations was essentially the same whether the measurements were made in blood or the control solution. Thus, this further demonstrates the independence of the test strips of the invention from the oxygen content and hematocrit of the sample, as well as the ability to use various materials as the conductive base layer.

EXAMPLE 5

Test strips prepared in accordance with Example 2 were tested at two different sample temperatures, namely 37 °C and 20 °C using an applied voltage of 425 mV. Figs. 6A and 6B show the current measured 25 seconds after applying the voltage as a function of glucose concentration. As can be seen, the slopes of the two lines are essentially identical (0.1068 at 20 °C versus 0.1009 at 37 °C), thus demonstrating that the test strips provide essentially temperature-independent behavior over a temperature range from ambient to physiological temperatures.

EXAMPLE 6

The current transient was measured for a test strip prepared in accordance with Example 2 and for a commercial test strip made with a carbon-containing ink. The results are shown in Figs. 8A and 8B. As shown, the test strip of the invention (Fig. 8A) provides a very flat transient which maintains more than 50% of the peak current for a period of more than 25 seconds after the initial response from the test strip. In contrast, the carbon-based electrode

- 13 -

exhibited an almost immediate decay in the current, having lost 50% of the peak current in a period of the first 1 to 2 seconds after the initial response from the test strip. This makes timing of the measurement difficult if peak current values are to be captured, or reduces the dynamic range of the meter if current must be measured after substantial decay has occurred. Thus, the test strips of the invention are advantageous in that the current generated in response to a given amount of glucose decays by less than 50% in the 5 seconds following peak current generation.

EXAMPLE 7

An ink for printing glucose test strips in accordance with the invention was formulated as follows:

15 67.8 g 20 mM Citrate buffer, pH 6
 0.68 g Polyvinyl alcohol (MW 85,000-146,000, 88% hydrolysed)
 0.68 g of Polyvinyl pyrrolidone-vinyl acetate
 0.42 g of Dow Corning DC1500 antifoam
20 3.4 g of hydroxyethyl cellulose (Natrosol 250G,
 Hercules)
 5.5 g of surface modified silica (Cabo-Sil TS 610,
 Cabot)
 1.5 g glucose oxidase
25 20.0 g Potassium Ferricyanide.

- 14 -

CLAIMS

1 1. A disposable test strip for use in a test meter
2 of the type which receives a disposable test strip and a
3 sample of blood and performs an electrochemical analysis of
4 the amount of a blood analyte in the sample, comprising:

5 (a) a substrate;
6 (b) a reference electrode;
7 (c) a working electrode, said working electrode
8 comprising a conductive base layer disposed on the substrate
9 and a first working coating disposed over the conductive
10 base layer, said first working coating comprising a filler
11 having both hydrophobic and hydrophilic surface regions; and
12 (d) means for making an electrical connection
13 between the reference and working electrode and the test
14 meter.

1 2. The test strip of claim 1, wherein the first
2 working coating is non-conductive.

1 3. The test strip of claim 1 or 2, wherein the
2 filler is silica.

1 4. The test strip of any of claims 1 through 3,
2 wherein the conductive base layer comprises conductive
3 carbon.

1 5. The test strip according to any of claims 1
2 through 4, wherein the first working coating forms a network
3 over the conductive base layer upon drying.

1 6. The test strip according to any of claims 1 to
2 5, wherein the test strip is for detection of glucose and
3 the first working coating further comprises an enzyme
4 effective to oxidize glucose and a mediator effective to
5 transfer electrons from the enzyme to the conductive base
6 layer.

- 15 -

1 7. The test strip of claim 6, wherein the enzyme
2 is glucose oxidase.

1 8. The test strip according to claim 6 or 7,
2 wherein the mediator is ferricyanide.

1 9. The test strip according to any of claims 6
2 through 8, wherein the first working coating is formed from
3 an aqueous composition comprising 2 to 10 % by weight of a
4 binder; 3 to 10 % by weight of silica; 8 to 20 % by weight
5 of a mediator; and 1000 to 5000 units of the enzyme per gram
6 of the aqueous composition.

1 10. The test strip of claim 3, wherein the silica
2 is Cab-o-Sil TS610.

1 11. The test strip according to any of claims 6
2 through 10, further comprising a second working layer
3 comprising silica, a binder and a mediator, but no glucose-
4 oxidizing enzyme.

1 12. The test strip according to any of claims 6
2 through 10, further comprising a second working layer
3 comprising silica and a binder, but no glucose-oxidizing
4 enzyme.

1 13. An aqueous fluid composition comprising a
2 binder, a filler having both hydrophobic and hydrophilic
3 surface regions, and at least one of an enzyme effective to
4 oxidize glucose and an electron transfer mediator.

1 14. The composition of claim 13, wherein the filler
2 is non-conductive.

1 15. The composition of claim 13 or 14, wherein the
2 filler is silica.

- 16 -

1 16. An aqueous fluid composition comprising 2 to 10
2 % by weight of a binder; 3 to 10 % by weight of silica
3 having both hydrophobic and hydrophilic surface regions; 8
4 to 20 % by weight of a mediator; and 1000 to 5000 units of
5 an enzyme for oxidizing glucose per gram of the aqueous
6 composition.

1 17. The composition of claim 16, wherein the binder
2 is hydroxyethylcellulose.

1 18. The composition according to any of claims 16
2 through 17, wherein the enzyme is glucose oxidase.

1 19. The composition according to any of claims 16
2 through 18, wherein the mediator is ferricyanide.

1 20. A method for making a disposable test strip for
2 the electrochemical detection of glucose, comprising the
3 steps of:

4 (a) applying working and reference electrode tracks
5 to a substrate;

6 (b) applying a conductive base layer in contact
7 with the working electrode track; and

8 (c) applying a working layer over the conductive
9 base layer, wherein the working layer comprising a filler
10 having both hydrophobic and hydrophilic surface regions, an
11 enzyme effective to oxidize glucose, and a mediator
12 effective to transfer electrons from the enzyme to the
13 conductive base layer.

1 21. The method of claim 20, wherein the filler is
2 non-conductive.

1 22. The method of claim 20 or 21, wherein the
2 filler is silica.

- 17 -

1 23. The method according to any of claims 20
2 through 22, wherein the conductive base layer comprises
3 conductive carbon.

1 24. The method according to any of claims 20
2 through 23, wherein the enzyme is glucose oxidase.

1 25. The method according to any of claims 20
2 through 24, wherein the mediator is ferricyanide.

1 26. The method according to any of claims 20
2 through 25, wherein the working layer is formed from an
3 aqueous composition comprising weight 2 to 10 % by weight of
4 a binder; 3 to 10 % by weight of silica as the filler; 8 to
5 20% by weight of the mediator; and 1000 to 5000 units of the
6 enzyme for oxidizing glucose per gram of the aqueous
7 composition.

1 27. The method of according to any of claims 20
2 through 26, wherein the silica is Cab-o-Sil TS610.

1 28. A disposable glucose test strip which produces
2 a current indicative of the amount of glucose in a sample
3 applied to the strip in response to an applied voltage,
4 wherein the amount of current generated in response to a
5 given amount of glucose varies by less than 10 percent over
6 a temperature range from 20°C to 37°C.

1 29. A disposable glucose test strip which produces
2 a current indicative of the amount of glucose in a sample
3 applied to the strip in response to an applied voltage,
4 wherein the amount of current generated in response to a
5 given amount of glucose varies by less than 10 percent over
6 a hematocrit range of 0 to 60 %.

1 30. A disposable glucose test strip which produces
2 a current indicative of the amount of glucose in a sample

- 18 -

3 applied to the strip in response to an applied voltage,
4 wherein the amount of current generated in response to a
5 given amount of glucose decays by less than 50% in the 5
6 seconds following peak current generation.

Fig. 1A

Fig. 1 B

Fig 2

Fig. 4

Glucose Response vs. Hematocrit

Fig. 3A 60 % Haematocrit, measured at 500 mV

Fig. 3B 50% Haematocrit, measured at 500mV

Fig. 3C 40% Haematocrit, measured at 500 mV

Fig. 7

7/7

Fig 8A

Silica Based Electrode

Fig 8B

Carbon Based Electrode

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 97/02165

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 G01N27/327 C12Q1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12Q G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 94 27140 A (MEDISENSE INC ;BLACK MURDO (GB); LIN LONG (GB); GUTHRIE JAMES (GB)) 24 November 1994 see the whole document ---	1,20,28
A,P	WO 97 02487 A (BOEHRINGER MANNHEIM CORP) 23 January 1997 see the whole document -----	1,20,28

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

*'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*'&' document member of the same patent family

1

Date of the actual completion of the international search

21 May 1997

Date of mailing of the international search report

28-05-1997

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Moreno, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PL./US 97/02165

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9427140 A	24-11-94	AU 6685694 A CA 2162045 A EP 0698206 A	12-12-94 24-11-94 28-02-96
WO 9702487 A	23-01-97	AU 6345196 A	05-02-97

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)