Topologie des espaces métriques — Cours

Ivan Lejeune

23 janvier 2025

Table des matières

Chapitre	1 — Topologie (d'un espace métrique) .								2
1	Espaces métriques								2
2	Ouverts d'un espace métrique								3

Chapitre 1 — Topologie (d'un espace métrique)

1 Espaces métriques

Soit X un ensemble.

Définition 1.1. On appellle une **distance** (ou métrique) sur X une application $d: X \times X \to \mathbb{R}$ telle que pour tout $x, y, z \in X$,

(i) la distance est positive :

$$d(x,y) \ge 0$$

(ii) la distance possède la séparation :

$$d(x,y) = 0 \iff x = y$$

(iii) la distance est symétrique :

$$d(x,y) = d(y,x)$$

(iv) la distance vérifie l'inégalité triangulaire :

$$d(x,z) \le d(x,y) + d(y,z)$$

Exemple. Un exemple classique de distance est la **distance euclidienne** sur \mathbb{R}^n :

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Définition 1.2. Soit E un \mathbb{R} -espace vectoriel. On appelle **norme** sur E une application $\|\cdot\|: E \to \mathbb{R}^+$ telle que pour tout $x, y \in E$ et $\lambda \in \mathbb{R}$,

(i) la norme possède la $s\'{e}paration$:

$$||x|| = 0 \iff x = 0$$

(ii) la norme est homogène :

$$\|\lambda x\| = |\lambda| \|x\|$$

(iii) la norme vérifie l'inégalité triangulaire :

$$||x + y|| \le ||x|| + ||y||$$

Exercice *.

Montrer que si $\|\cdot\|$ est une norme sur E, alors la fonction

$$d(x,y) = ||x - y||$$

est une distance sur E.

Exemple. Un exemple classique est \mathbb{R}^n muni d'une norme $\|\cdot\|$.

Exercice *.

Soit X et $\delta: X \times X \to \mathbb{R}$ telle que

$$\delta(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{sinon} \end{cases}$$

Montrer que δ est une distance sur X appelée distance discrète.

Remarque. Si on considère \mathbb{R} muni de δ alors δ n'est pas une norme.

2 Ouverts d'un espace métrique

Soit (X, d) un espace métrique.

Définition 2.1. Pour $\varepsilon > 0$ et $x_0 \in X$, on note

$$B\left(x_0 \middle[\varepsilon = \left\{ x \in X \mid d(x, x_0) < \varepsilon \right\} \right)$$

la **boule ouverte** de centre x_0 et de rayon ε .

Définition 2.2. Une partie $U \subset X$ est dite **ouverte** si pour tout $x \in U$, il existe $\varepsilon > 0$ tel que $B(x[\varepsilon \subset U])$.

Exemple.

- Dans $\mathbb R$ muni de la norme euclidienne, on a

$$B\left(x_0 \lceil \varepsilon = \{x \in \mathbb{R} \mid |x - x_0| < \varepsilon\}\right)$$

qui est l'intervalle ouvert $]x_0 - \varepsilon, x_0 + \varepsilon[.$

• Un contre-exemple est l'intervalle [0,1[dans $\mathbb R$ qui n'est pas ouvert.