北京大学信息科学技术学院 2022年春季学期《编译原理》

第3章 词法分析(2)

Lexical Analysis

【对应教材 3.3-3.7】

内容提要

- □ 词法分析器的作用
- □ 词法单元的规约
 - 串和语言; 正则表达式、正则定义
- □ 词法单元的识别
- □ 有限自动机 (Finite Automata)
- □ 正则表达式到有限自动机
- □ 词法分析器生成工具的设计

有限自动机(Finite Automata)

- □ 有限自动机是词法分析器生成工具(Lex) 的关键技术。
 - 正则表达式→有限自动机→词法分析程序
- □ 有限自动机是识别器,对每个可能的输入串回答"yes" or "no"。

- □ 有限自动机可以分为两类:
 - 确定的有限自动机 (DFA)
 - 不确定的有限自动机(NFA)

确定的有限自动机 (Deterministic FA)

定义 一个确定的有限自动机 M (记作DFA M)

是一个五元组 $M=(\Sigma, Q, q_0, F, \delta)$, 其中

- (1) Σ是一个有限字母表,它的每个元素称为一个输入符号。
- (2) Q是一个有限状态集合。
- (3) $q_0 \in Q$, q_0 称为开始状态。
- (4) $F \subseteq Q$, F 称为终止状态(或接受状态)集合。
- (5) δ 是一个从 $Q \times \Sigma$ 到 Q 的单值映射 (称为转换函数) $\delta(q, a) = q' \ (q, q' \in Q, a \in \Sigma)$

表示当前状态为q,输入符号为a时,自动机 M 将转换到下一个状态q', q' 称为q的一个后继。

DFA的表示形式

例: 设DFA M = $(\{a,b\},\{0,1,2,3\},0,\{3\},\delta)$

其中δ:

$$\delta(0,a) = 1, \ \delta(1,a) = 3$$

$$\delta(2,a) = 1, \delta(3,a) = 3$$

$$\delta(0,b) = 2, \ \delta(1,b) = 2$$

$$\delta(2,b) = 3, \delta(3,b) = 3$$

可以使用 转移矩阵 来表示 (易存储)

输入字符 状态	a	b
0	1	2
1	3	2
2	1	3
3	3	3

所谓确定的自 动机,其确定 性表现在状态 转换函数是单 值函数!

使用状态转换图来表示

输入 状态	a	b	
0	1	2	
1	3	2	接受状态
2	1	3	汉又八心
3	3	3	
	Start 开始状		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

如果对所有w∈ Σ *,以下述方式递归地扩展δ的定义 $\delta(q, \epsilon) = q$ $\delta(q, wa) = \delta(\delta(q, w), a)$

对任何
$$a \in \Sigma, q \in \mathbb{Q}$$
 , 则有 $L(M) = \{w \mid w \in \Sigma^*, \text{ 若存在} q \in F, \}$

$$\mathbf{e}\delta (q_0, \mathbf{w}) = \mathbf{q}$$

从状态转换图看,从开始状态出发,沿任一条路径到达接受状态,这条路径上的弧上的标记符号连接起来构成的符号串被DFA M接受。

偶数个a, 偶数个b 的{a,b}串集合

DFA示例-1

Pascal 标识符

Pascal整数和实数

DFA示例-2

识别Σ={0,1}上能被5整除的二进制数

Quiz

□ 画一个DFA,表示所有能被32整除的二进制数。

Quiz

□ 画一个DFA,表示所有除32余1的二进制数。

非确定的带ε_转移的有限自动机NFA

定义: 非确定的带ε转移的有限自动机NFA M是一个五元组

$$M = (\Sigma, Q, q_0, F, \delta)$$

其中 Σ , Q, q₀, F 的意义和 DFA 的定义一样,而δ是一个从Q×(Σ U{ ϵ })到 Q 的子集的映射,即

$$\delta: \mathbb{Q} \times \Sigma \cup \{\epsilon\} \to 2^{\mathbb{Q}}$$

和DFA类似, NFA M 也可以用状态转换图表示。也可以定义 NFA M 接受的语言。

NFA示例-1

NFA 表示的语言:

(a|b)*aab

可不可以用DFA 来表示?

NFA示例-2

NFA 表示的语言:

aa*|bb*

可不可以用DFA 来表示?

关于NFA的说明

- □ NFA接受的字符串和语言
 - 如果在NFA中存在一个从开始状态到接受状态的路径,该路径上的符号序列构成的字符串是w,那么称该NFA可以接受字符串w
 - □ 一个字符串在NFA中可能对应不同的接受路径
 - □ NFA接受的字符串可能存在其他不能接受的路径
 - □ 如果在某个状态对于输入字符a不存在可用的转移动作 ,那么不能通过该路径接受当前的字符串
 - 一个NFA M接受的所有字符串的集合构成该NFA所接受的语言L(M)
- □ DFA是NFA的一种特例
 - DFA的表达能力与NFA是等价的

内容提要

- □ 词法分析器的作用
- □ 词法单元的规约
 - 串和语言; 正则表达式、正则定义
- □ 词法单元的识别
- □ 有限自动机 (Finite Automata)
- □ 正则表达式到有限自动机
- □ 词法分析器生成工具的设计

例 题 1

□ 给出接受 (a|b)*a(a|b)(a|b) 的DFA。

例 题 2

□ 指出下面的正则表达式描述的语言,并画出接受该语言的最简DFA的状态转换图。

 $(1|01)^* 0^*$

正则表达式与有限自动机

- □ 正则表达式
 - 可以简洁、精确地描述词法单元的模式
 - 人可以比较容易地写出正则表达式
- □ 有限自动机
 - 模拟DFA的执行可以高效地进行模式匹配
 - 状态较多时, DFA不适合手动书写

□ 目标: 把人写的正则表达式转换为机器可以自动匹配的DFA

从正则表达式到自动机的转换

□ 将正则表达式转换为DFA的步骤

NFA与DFA的等价性

定理: 对任何一个NFA M, 都存在DFA M'使 L(M')=L(M)

证明思想:用M'的一个状态对应M的一个状态集合,用这种方法,能从一个NFA M构造一个DFA M',称作子集构造法。

例3.2 NFA M= ($\{0,1\}$, $\{q_0,q_1\}$, q_0,δ), 其中 $\delta(q_0,0) = \{q_0,q_1\} \qquad \delta(q_0,1) = \{q_1\}$ $\delta(q_1,0) = \emptyset \qquad \qquad \delta(q_1,1) = \{q_0,q_1\}$

$L(M)=L(M')=\{0,1\}^+-10\{0,1\}^*$

从NFA M 构造DFA M'的算法

1. ε_closure(S) 的定义和算法

定义:从状态集合S中任一状态出发,仅沿 ϵ 弧到达的状态集合(包括S自身)称为S的 ϵ _ 闭包,记为 ϵ _closure(S):

 $T=S \cup (\cup edge(t, \varepsilon)), t \in T$

其中: edge(t, a)是M中从状态t出发, 仅沿a弧到达的状态集合。

从NFA M构造DFA M'的算法

2. DFA M'中的状态

- M'中的每个状态是 M的状态集合。
- $\diamondsuit t_0$ 是M的初始状态,M'的初始状态 $d_0 = \varepsilon_{\text{closure}}(\{t_0\})$
- •包含M的任意终态的状态集合都是M'中的终止状态。

3. DFA M'的转移函数

DFA edge(d, a)= ε _closure($\bigcup_{t \in d}$ edge(t, a))

- d是M的状态集合
- $a \in \Sigma$
- edge(t, a)是M中从状态t出发,仅沿a弧到达的状态集合。

states	a	b
(A) 0,1,2,4,7	(B)	(C)
(B) 3,8,6,1,2,4,7	(B)	(D)
(C) 5,6,1,2,4,7	(B)	(C)
(D) 5,9,6,1,2,4,7	(B)	(E)
(E) 5,10,6,1,2,4,7	(B)	(C)

转换之后得到的DFA

DFA的最小化

□ DFA的化简

- 设有DFA M=(Σ , Q, q₀, F, δ), 寻找一个状态数更 少的DFA M', 使 L(M') = L(M)
- 可以证明,存在一个最少状态的DFA M',使 L(M)=L(M')。

口 等价状态

- 设 $p, q \in Q$, 若对任意 $w \in \Sigma^*$, $\delta(p, w) \in F$ 当且仅 当 $\delta(q, w) \in F$, 则称 $p \neq q$ 是等价状态。
- 否则,称p和q是可区别的。

等价状态的判别条件

- □ 等价状态定义了状态集合上的等价关系。因此 状态集合能被划分成等价类
- □ 两个状态p和q等价应满足如下条件:
 - 一致性条件
 - □ p和q必须同时或为接受状态或为非接受状态
 - 蔓延性条件:
 - □ 对于∀a∈∑,δ(p,a)=r,δ(q,a)=s, r和s必须等价;
 - □ 反过来,r和s不等价,则p和q不等价。
- □ 可以按照上述条件把所有状态划分为不同的等价类

等价类划分方法

- 把所有状态划分为两个组:接受状态组和非接受状态组。
- 2. 任意选定一个输入符号a, 判断每个组中的各个状态对于a的转换, 如果落入不同的组中, 就把该组中的状态按照转换之后的组进行分割, 使分割之后的每个组对于a的转换都会落入同一个组。
- 3. 重复第2步,直至每个组中的所有状态都等价。

例: DFA的最小化

化简之后

从正则表达式构造FA

定理: 设r是 Σ 上一个正则表达式,则存在 FA M接受 L(r),并且M的终态是唯一的且无有向边射出。

证: \Rightarrow 对正则表达式r的运算符数目作归纳。设r具有零个运算,必有 $r=\epsilon$ 或 $r=\emptyset$ 或 $r=a\in \Sigma$,则FA分别为:

设结论对少于i(i≥1)个运算的正则表达式r成立。 当r有i个运算时,有三种情况:

情况1 r=r₁ r₂ 情况2 r=r₁r₂ 情况3 r=r₁*

有 M_1 =(Σ_1 , Q_1 , q_1 , F_1 , δ_1), M_2 =(Σ_2 , Q_2 , q_2 , F_2 , δ_2)

且 $L(M_1)=L(r_1)$, $L(M_2)=L(r_2)$,由 M_1 和 M_2 构造 M,使得 L(M)=L(r)。构造方法图示如下:

由此可以证明:假定知道r的计算顺序,对于任意正则表达式r,可以构造一个FAM,使得 L(M)=L(r)。

转换得到的NFA的特性

- □ 状态数量最多为r中的运算符和运算符分量 总数的两倍
 - 因为每个步骤只引入两个状态
- □ 有且只有一个开始状态和一个接受状态
- □ 除接受状态之外,每个状态要么有一条标号 不为ε的出边,要么最多有两条标号为ε的出 边。

例: 构造与下列正则式

r = 01*1

等价的有限自动机。

内容提要

- □ 词法分析器的作用
- □ 词法单元的规约
 - 串和语言; 正则表达式、正则定义
- □ 词法单元的识别
- □ 词法分析器生成工具—LEX
- □ 有限自动机 (Finite Automata)
- □ 正则表达式到有限自动机
- □ 词法分析器生成工具的设计

词法分析器生成工具的设计

词法分析器生成工具的功能

- □ 生成的词法分析器中包含一个模拟有限自动机的模块
- □ 其余部分由生成工具根据词法规则的描述自 动生成,包括
 - 自动机的转换表
 - 和动作相关的代码,适当的时候由模拟器调用。
- □ 构造自动机时
 - 首先构造出各个模式对应的NFA
 - 然后将这些NFA合并成为一个NFA
 - (根据需要)进行确定化

NFA合并的方法

□ 合并方法:

- 引入新的开始状态,并 引入从这个开始状态到 各个原开始状态的ε转 换。
- 得到的NFA所接受的语言是原来各个NFA的语言的并集。
- 不同的接受状态可代表 不同的模式。
- 不仅判断输入前缀是否 NFA的语言,还需要知 道对应于哪个模式

NFA到DFA的转换

- □ 对得到的NFA进行确定化,得到DFA。
 - 对得到的DFA的状态进行最小化
- □ 一个DFA的接受状态对应于NFA状态的集合, 其中至少包括一个NFA接受状态
 - 如果其中包括多个对应于不同模式的NFA接受状态,则表示当前的输入前缀对应于多个模式,存在冲突。
- □ 找出第一个这样的模式,将这个模式作为这个DFA接受状态的输出。

示例(1)

- □ 假设有三个模式
 - a {A1}
 - abb {A2}
 - a*b+ {A3}

□ 构造各模式的NFA如右

示例(2)

□ 合并NFA

■ 2: 模式1

■ 6: 模式2

■ 8: 模式3

示例(3)

□ 确定化得到如下DFA

■ DFA状态68对应NFA状态集合{6,8}, 对应的模式是abb (第二个模式), 而不是a*b+ (第三个模式)

运行的方式

- □ 模拟DFA,不断读入输入字符串中的字符
- □ 直到某一时刻没有后继为止(不是到达某个接受状态)
 - 注意:根据教材的定义,DFA总是有后继的。
 - 这里是指DFA进入了死状态,即永远不可能到达接受状态的状态。
 - 这样可以找到最长可能的词素。
- □ 回头查找最后的接受状态,执行相应的动作
 - 如果查不到,报词法错
 - 在回退时,需要同时回退读入的字符

本章小结

- □词法规则通常可以使用正则表达式来描述。
 - LEX中使用正则表达式来自动生成词法分析器
- □ 有限自动机(FA)可以用来描述词法规则。
 - DFA、NFA
 - NFA 到 DFA 的转换
 - DFA 的最小化
- □ 正则表达式到有限自动机的转换
- □ 词法分析器生成工具Lex
 - Lex的工作原理

作业

- □ Ex. 3.6.2 (本 Ex. 3.5.2) (1,2,3,6,9小题)
- \square NFA->DFA
 - Ex. 3.7.1 (本 Ex. 3.6.1) 2-3小题
- □ 正则表达式 -> DFA
 - Ex. 3.7.3 (本 Ex. 3.6.3) 3-4小题 (对得到DFA进行 最小化)