1. Define variables

2. Assemble T, B, Q

B(i,i)

Q(i)

3. Update Pn=1 w/ time

$$\frac{\partial f}{\partial b} = \frac{k}{k} \frac{\partial x_2}{\partial x_2}$$
 ID Nomogeneous

$$\phi = \frac{9x}{9b} = \frac{9x}{3} \left(\frac{w_8^{9x}}{y^8} \right)$$

$$\phi_{c} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \left(\frac{k}{m_{s}} \frac{\partial f}{\partial x} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial x} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial x} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y} \left(\frac{k_{s}}{m_{s}} \frac{\partial f}{\partial y} \right) + \frac{\partial f}{\partial y$$

2D heturogeneous, anisotropic w/ wells

To solve:

- 1.) Finite Diff.
- 2.) Control Volum

1			
j=4=07	10	II	12.
j= 3	7	r=8	9
j= 2	4	9=5	6
j=1	2= ا القال) = 2	3 (=3=N)
	j= 3	j=3 $j=2$ 4	j=3 7 1=8 j=2 4 9=5

$$-\left(\begin{array}{c} i = 2 \\ j = 3 \end{array}\right)$$

Mass balance on block "2"

in - out + generation/. = accumulation

$$\begin{split} TX_{i-\frac{1}{2},j}(P_{e-1}-P_{e}) + TX_{i+\frac{1}{2},j}(P_{e+1}-P_{e}) + TY_{i,j-1}(P_{e-\omega x}-P_{e}) + TY_{i,j}(P_{e-\omega y}-P_{e}) \\ &= \frac{V_{e} C_{+} \Phi_{e}}{B_{\omega} \Delta H} \left(P_{e}^{n^{2}} - P_{e}^{n}\right) - Q_{e}^{so} \end{split}$$

$$\frac{\text{Implicit}}{\left(\frac{2}{7} + \frac{1}{100}\right) \vec{p}^{m}} = \frac{1}{100} \vec{p}^{n} + \vec{Q}^{sc}$$

Heterogente Lanisatropy

L-1 Rx, Ry

L-1 Rx, Ry

L-NX

$$R_{\times i+1/2,j} = \frac{\Delta_{\times i,j} + \Delta_{\times i+1,j}}{\Delta_{\times i,j}} \sum_{\substack{K_{\times i+1/2,j} \\ R_{\times i,j}}} \sum_{\substack{K_{\times$$

$$k_{yi,j+1/2} = \frac{\Delta y_{i,j}}{\Delta y_{i,j+1}} + \frac{\Delta y_{i,j+1}}{\Delta y_{i,j+1/2}}$$

$$T_{i,j+1/2} = \frac{k_{yi,j+1/2}}{\Delta y_{i,j+1/2}}$$

Boundary Conditions

Gi-1/2, j =
$$\frac{k_x A}{MB\omega \Delta x} \Delta P$$

= $\frac{k_{x,0} (h \Delta y)}{MB\omega (Dx/Z)} (P_g - P_e)$

= $\frac{2 k_{xe} (h \Delta y)}{MB\omega (Dx)} (P_e - P_e)$

= $2 TX_{g} (P_g - P_e)$

Neumann (No Now, flow)

Dirchelet