CSE 151A - Discussion 06

Quick Review

Variations on Gradient Descent

Goal: Take advantage of the decomposability of our objective functions

• Full Batch
$$\rightarrow \nabla R(\vec{w}) = \sum_{i=1}^{n} \nabla \ell(\vec{w}; \vec{x}^{(i)}, y_i)$$

Update \vec{w} after processing all n points $\rightarrow O(nd)$ runtime for a single step

• Mini Batch
$$\to \nabla R(\vec{w}) \approx \sum_{i \in B} \nabla \ell(\vec{w}; \vec{x}^{(i)}, y_i)$$
, where B is a set of $n' \le n$ points

Update \vec{w} after processing n' points in minibatch $\rightarrow O(n'd)$ runtime for a single step

• Stochastic
$$\rightarrow \nabla R(\vec{w}) \approx \nabla \ell(\vec{w}; \vec{x}^{(i)}, y_i)$$

Update \vec{w} after processing just one point, $\vec{x}^{(i)} \to O(d)$ runtime for a single step

Perceptrons

Goal: Learn a linear decision boundary to make classifications

Key property: Converges only when the data is linearly separable

Perceptron Algorithm: loop over misclassified points $i \in M$ and perform the following update:

$$\vec{w}^{(t)} = \vec{w}^{(t-1)} - \alpha \begin{cases} Aug(\vec{x}^{(i)}), & \vec{w}^{(t-1)} \cdot Aug(\vec{x}^{(i)})) \ge 0 \\ -Aug(\vec{x}^{(i)}), & \vec{w}^{(t-1)} \cdot Aug(\vec{x}^{(i)})) < 0 \end{cases}$$

Prediction Rule:

$$\text{prediction} = \begin{cases} 1 & \text{if } \vec{w} \cdot Aug(\vec{x}) \geq 0 \\ -1 & \text{if } \vec{w} \cdot Aug(\vec{x}) < 0 \end{cases}$$

Support Vector Machines

Goal: Maximize the margin of a linear decision boundary

Support Vector: A training point $\vec{x}^{(i)}$ such that $y_i \vec{w} \cdot Aug(\vec{x}^{(i)}) = 1$

Hard Margin

Assumption: Data is linearly separable

Goal: Minimize $||\vec{w}||^2$ subject to $y_i \vec{w} \cdot Aug(\vec{x}^{(i)}) \ge 1$ for all i

$$\vec{w} = \sum_{i \in S} y_i \alpha_i Aug(\vec{x}^{(i)})$$
 where S is the set of support vectors

Soft Margin

Assumption: Data may not be linearly separable

Goal: Minimize
$$||w||^2 + C \sum_{i=1}^n \xi_i$$
 subject to $y_i \vec{w} \cdot Aug(\vec{x}^{(i)}) \ge 1 - \xi_i$ for all i (and $\xi_i \ge 0, C \ge 0$)

1

 $\xi_i = 1 - y_i \vec{w} \cdot Aug(\vec{x}^{(i)})$ for a misclassified $\vec{x}^{(i)}$

C: slack parameter (as C increases, we allow less slack, harden the margin, avoid misclassifications)

Problem 1.

Suppose we want to learn a perceptron over data points in two dimensions (i.e. each $\vec{x} = (x_1, x_2)^T$). Write an equation for the decision boundary in slope-intercept form.

Hint: Your result should resemble the form $x_2 = A \cdot x_1 + B$ where A and B are in terms of $\vec{w} = (w_0, w_1, w_2)^T$.

Problem 2.

While running the perceptron algorithm, suppose that at the start of some arbitrary step t the value of \vec{w} is given as $\vec{w}^{(t)} = (w_0^{(t)}, w_1^{(t)}, w_2^{(t)})^T$, and that the value of the input is given as $\vec{x} = (x_0, x_1, x_2)^T = (1, 0, -1)^T$. Determine, for each component of $\vec{w}^{(t+1)} = (w_0^{(t+1)}, w_1^{(t+1)}, w_2^{(t+1)})^T$, if the value is >, <, or = the corresponding value of $\vec{w}^{(t)}$ after applying the update rule in each of the following circumstances:

a) False Positive (we predict y = 1 but the correct label is y = -1).

$w_0^{(t+1)}$	$w_0^{(t)}$
$w_1^{(t+1)}$	$w_1^{(t)}$
$w_2^{(t+1)}$	$w_2^{(t)}$

b) Correct Positive Prediction (we predict y = 1 and the correct label is y = 1).

$w_0^{(t+1)}$	$w_0^{(t)}$
$w_1^{(t+1)}$	$w_1^{(t)}$
$w_2^{(t+1)}$	$w_{2}^{(t)}$

c) False Negative (we predict y = -1 but the correct label is y = 1).

d) Correct Negative Prediction (we predict y = -1 and the correct label is y = -1).

$w_0^{(t+1)}$	$w_0^{(t)}$
$w_1^{(t+1)}$	$w_1^{(t)}$
$w_2^{(t+1)}$	$w_2^{(t)}$

Problem 3.

Knowing that the training data is linearly separable, describe a situation where a Soft Margin SVM would be preferable to a Hard Margin SVM.

Problem 4.

Extra Problem!

Determine if a perceptron is capable of learning to compute the following logical operators. If so, give a possible value for \vec{w} . If not, explain why.

Assume that each input \vec{x} is two dimensional, where x_0 and x_1 can only take on the value of 0 or 1. (e.g. for the OR operator, a potential input is $\vec{x}^{(i)} = (1,0)^T$ with $y_i = x_0^{(i)} \lor x_1^{(i)} = 1 \lor 0 = 1$)

- OR
- AND
- XOR