О дистанционно регулярных графах Γ диаметра 3, содержащих максимальный 1-код, и с сильно регулярными графами Γ_2 и Γ_3

Голубятников Михаил Петрович ИММ УрО РАН mike_ru1@mail.ru

Соавторы: А. А. Махнев, Минчжу Чень

Секция: Алгебра

Наши терминология и обозначения стандартны, их можно найти в [1].

В докладе рассматриваются дистанционно регулярные графы диаметра d=2e+1, содержащие e-код C. Для e-кода C справедлива оценка $|C| \leq p_{dd}^d + 2$ (см [2]).

Если равенство достигается, то C называется максимальным кодом. В случае равенства v = |C|(k+1) код C называется совершенным.

Аналогично, справедлива оценка

$$|C| \le \frac{k_d}{\sum_{i=0}^e p_{id}^d} + 1.$$

Если равенство достигается в этой границе, то код C называется совершенным относительно последней окрестности.

Для дистанционно регулярных графов диаметра 3, содержащих максимальный локально регулярный 1-код, совершенный относительно последней окрестности, Юришич и Видали нашли возможные массивы пересечений (см [2]). Оказалось, что такой граф Γ имеет массив пересечений $\{a(p+1), cp, a+1; 1, c, ap\}$ (и сильно регулярный граф Γ_3) или $\{a(p+1), (a+1)p, c; 1, c, ap\}$, где $a=a_3, p=p_{33}^3, c=c_2$. В первом случае при a=c+1 граф Γ_3 — псевдогеометрический граф для $GQ(p+1, c_2+1)$, а $\bar{\Gamma}_2$ — псевдогеометрический граф для $pG_2(p+1, 2c_2+2)$.

В работе рассматриваются дистанционно регулярным графом диаметра 3 с сильно регулярными графами Γ_2 и Γ_3 , содержащими максимальный 1-код.

Основные результаты доклада формулируются в следующих двух теоремах:

Теорема 1. Пусть Γ является дистанционно регулярным графом диаметра 3 с сильно регулярными графами Γ_2 и Γ_3 . Если Γ содержит максимальный 1-код, то $a_3 = c_2 + 1$ и Γ имеет массив пересечений $\{(p+1)(c_2+1), pc_2, c_2+2; 1, c_2, p(c_2+1)\}$, где $p=p_{33}^3$.

Теорема 2. Дистанционно регулярный граф с массивом пересечений

$$\{(p+1)(c_2+1), pc_2, c_2+2; 1, c_2, p(c_2+1)\}$$

не существует.

- [1] Brouwer A. E., Cohen A. M., Neumaier A. *Distance-Regular Graphs*. Berlin; Heidelberg; New York: Springer-Verlag, 1989, 495 p.
- [2] A. Jurishich, J. Vidali, Extremal 1-codes in distance-regular graphs of diameter 3, Des. Codes Cryptogr, 65 (2012), 29-47.