

Title for the talk

Author List

Argonne National Laboratory

August 20, 2020

total pages

Tomography

Algorithm

Results

Tomography

Algorithm

Results

Basics

- ▶ Radon transform : Real \rightleftarrows Sinogram space.
- $Rf(\tau, \theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(\tau x\cos(\theta) y\sin(\theta)) dxdy$

Figure: Spinning the object to obatin "sinograms", reconstruct each slice independently 2

22

^{1?}

Center of rotation drifts

- $P_{\theta} = x_{\theta}^* (1 \cos(\theta) + y_{\theta}^* \sin(\theta))$
- $Rf(\tau, \theta, 0, 0) = Rf(\tau P_{\theta}, \theta, x_{\theta}^*, y_{\theta}^*)$
- ► Translation of sinogram by P_{θ} achieved by convolution with gaussian.
- Recover P_{θ} to obtain accurate reconstruction!

Figure: Center of rotaion drift causes us to measure the shifted sinograms!

Tomography

Algorithm

Results

Optimization formulation

Discretize & Vectorize

- $\triangleright \mathcal{W}$: object vector
- $\triangleright \mathcal{L}$: discretized radon transform
- $\triangleright \mathcal{D}$: measure sinogram

Least squares cost function

- ► To recover both shifts and object : $\min_{\mathcal{W} \geq 0, P_{\theta}} \phi(\mathcal{W}, P_{\theta}) = \frac{1}{2} ||\mathcal{LW} g(\mathcal{D}, P_{\theta})||$
- First order derivatives analytically computable : $\nabla \phi(\mathcal{W}, P_{\theta}) = [\mathcal{L}^{T}, \nabla_{P_{\theta}} \phi(\mathcal{W}, P_{\theta})] (\mathcal{LW} g(\mathcal{D}, P_{\theta}))$

Implementation

- ightharpoonup Implemented in C/C++ using :
 - ▶ PETSc (which handles the optimization routines, data management and parallel I/O)
 - ▶ Boost (which handles geometry routines)
 - ▶ FFTW (for position correction cost function evaluation).

Joint

► Combine shifts and sample into one vector and optimize for both together.

Alternating

▶ Alternate between optimizing with respect to sample and with respect to shifts.

Tomography

Algorithm

Results

Accuracy

Figure: Objective function and gradient norm as a function of iteration number. Dimensions of unknowns : $50+256 \times 256$ and size of experimental data : 256×50

Scaling

Figure: Strong scaling plots for alternating and joint reconstruction algorithms.

Tomography

Algorithm

Results

Next Steps

- ► Invert 3D tomography data by replicating the 2D solve on sub-communicators.
- ▶ Port application to GPU.

 ${\it graphics/closing.png}$

References I

