3.6 Potential density anomaly

Potential density anomaly, σ^{θ} or σ^{Θ} , is simply potential density minus 1000 kg m⁻³,

$$\begin{split} \sigma^{\theta}\left(S_{\rm A},t,p,p_{\rm r}\right) &= \sigma^{\Theta}\left(S_{\rm A},t,p,p_{\rm r}\right) = \rho^{\theta}\left(S_{\rm A},t,p,p_{\rm r}\right) - 1000~{\rm kg}~{\rm m}^{-3} \\ &= \rho^{\Theta}\left(S_{\rm A},t,p,p_{\rm r}\right) - 1000~{\rm kg}~{\rm m}^{-3} \\ &= g_P^{-1}\left(S_{\rm A},\theta\left[S_{\rm A},t,p,p_{\rm r}\right],p_{\rm r}\right) - 1000~{\rm kg}~{\rm m}^{-3}. \end{split} \tag{3.6.1}$$

Note that it is equally correct to label potential density anomaly as σ^{θ} or σ^{Θ} because both θ and Θ are constant during the isentropic and isohaline pressure change from p to p_r .