

COMP20008 Elements of Data Processing

Assessing Correlations

Announcements

- Exam study guide
 - Available on the "Exam" section of the LMS. Outlines what needs to be known for the exam, from the lectures and workshops so far
- Consultation session with Donia for python programming
 - Running on Monday 3 April: 11am-12pm Rm 10.22 Doug McDonell Building (10th floor)

Plan today

- Discuss about finding correlations between pairs of features in a dataset
 - Why useful and important
 - Pitfalls
 - Case study: genetic data
- Review methods for computing correlation
 - Euclidean distance
 - Pearson correlation
- Next week
 - Mutual information (another method to compute correlation)

What is Correlation?

Correlation is used to detect pairs of variables that might have some relationship

Ice Cream Sales vs Temperature				
Temperature °C	Ice Cream Sales			
14.2°	\$215			
16.4°	\$325			
11.9°	\$185			
15.2°	\$332			
18.5°	\$406			
22.1°	\$522			
19.4°	\$412			
25.1°	\$614			
23.4°	\$544			
18.1°	\$421			
22.6°	\$445			
17.2°	\$408			

https://www.mathsisfun.com/data/correlation.html

What is Correlation?

Visually can be identified via inspecting scatter plots

What is Correlation?

Linear relations

https://www.mathsisfun.com/data/correlation.html

Example of Correlated Variables

- Can hint at potential causal relationships (change in one variable is the result of change in the other)
- Business decision based on correlation: increase electricity production when temperature increases

Example of non-linear correlation

It gets so hot that people aren't going near the shop, and sales start dropping

Example of non-linear correlation

It gets so hot that people aren't going near the shop, and sales start dropping

Example of Correlated Variables

Correlation does not necessarily imply causality!

Example of Correlated Variables

Correlation does not necessarily imply causality!

https://www.kaggle.com/c/rossmann-store-sales/data

1	Store	DayOfWeek	Date	Sales	Customers	Open	Promo	StateHoliday	SchoolHolida
2	1	5	31/07/2015	5263	555	1	1	. 0	1
3	2	5	31/07/2015	6064	625	1	1	. 0	1
4	3	5	31/07/2015	8314	821	1	1	. 0	1
5	4	5	31/07/2015	13995	1498	1	1	. 0	1
6	5	5	31/07/2015	4822	559	1	1	. 0	1
7	6	5	31/07/2015	5651	589	1	1	. 0	1
8	7	5	31/07/2015	15344	1414	1	1	. 0	1
9	8	5	31/07/2015	8492	833	1	1	. 0	1
10	9	5	31/07/2015	8565	687	1	1	. 0	1
11	10	5	31/07/2015	7185	681	1	1	. 0	1
12	11	5	31/07/2015	10457	1236	1	1	. 0	1
13	12	5	31/07/2015	8959	962	1	1	. 0	1
14	13	5		8821	568	1	1	. 0	0
15	14	5	31/07/2015	6544	710	1	1	. 0	1
16	15	5	31/07/2015	9191	766	1	1	. 0	1
17	16	5	31/07/2015	10231	979	1	1	. 0	1
18	17	5	31/07/2015	8430	946	1	1	. 0	1
19	18	5	31/07/2015	10071	936	1	1	. 0	1
20	19	5	31/07/2015	8234	718	1	1	. 0	1
21	20	5	31/07/2015	9593	974	1	1	. 0	0
22	21	5	31/07/2015	9515	682	1	1	. 0	1
23	22	5	31/07/2015	6566	633	1	1	. 0	0
24	23	5	31/07/2015	7273	560	1	1	. 0	1
25	24	5	31/07/2015	14190	1082	1	1	. 0	1
26	25	5	31/07/2015	14180	1586	1	1	. 0	1

- Other correlations
 - Sales vs. holiday
 - Sales vs. day of the week
 - Sales vs. distance to competitors
 - Sales vs. average income in area

Example rank correlation

• "If a university has a higher-ranked football team, then is it likely to have a higher-ranked basketball team?"

Football ranking	University team
1	Melbourne
2	Monash
3	Sydney
4	New South Wales
5	Adelaide
6	Perth

Basketball ranking	University team
1	Sydney
2	Melbourne
3	Monash
4	New South Wales
5	Perth
6	Adelaide

Why is correlation important?

- Discover relationships
- One step towards discovering causality

A causes B

Examples:

Gene A causes lung cancer

 Feature ranking: select the best features for building better machine learning models

Case study: Microarrays data

- DNA Microarrays (Gene Chips)
- Measure genes' level of activity

The Central Dogma of Molecular Biology

DNA makes RNA makes proteins

- DNA contains multiple genes containing information to produce different types of proteins
- To much or too little proteins of certain type can cause diseases
- Gene chips can measure the amount or mRNA (a buffer for protein level) – activity level (expression level)

 Each chip contains thousands of tiny probes corresponding to the genes

(20k - 30k genes in humans)

	Gene 1	Gene 2	 Gene 20K
Activity level	0.3	1.2	 3.1

Microarray data from Multiple Conditions

	Gene 1	Gene 2	Gene 3	Gene n
Condition 1	2.3	1.1	0.3	 2.1
Condition 2	3.2	0.2	1.2	 1.1
Condition 3	1.9	3.8	2.7	 0.2
Condition m	2.8	3.1	2.5	 3.4

Conditions:

- different time points, same person, or
- different people
- How correlation can help?

Correlation analysis on Microarray data

 Can reveal genes that exhibit similar patterns ⇒ similar or related functions ⇒ Discover functions of unknown genes

Build genetic networks

 Genes do not act in isolation: they control each other or work together

Gene A controls the activity level of Gene B: causality relationship

Genetic network

Connect genes with high correlation

Discover genes that are relevant to a disease

Correlation and Feature Ranking

- Why is correlation important?
 - Discover relationships, causality
 - Select the best features for building better machine learning models
- Measure of correlations:
 - Euclidean distance
 - Pearson coefficient
 - Mutual Information
- Case study: Microarrays data
 - What is it? How to collect?
 - How to build genetic networks from correlation
 - Which genes cause skin cancer?

Notation

	Gene 1	Gene 2	Gene 3	Gene n
Person 1	2.3	1.1	0.3	 2.1
Person 2	3.2	0.2	1.2	 1.1
Person 3	1.9	3.8	2.7	 0.2
Person m	2.8	3.1	2.5	 3.4

- Data matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$
- Each object can be either a row or a column
- Each row $\mathbf{x}_i \in \mathbb{R}^n$ represents a person
- ullet Each column $\mathbf{x}^j \in \mathbb{R}^m$ represents a gene

Euclidean distance

- Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- Euclidean distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$
$$= \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Length of the line segment connecting x and y

Squared Euclidean distance

$$d^{2}(\mathbf{x}, \mathbf{y}) = (x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2} + \dots + (x_{n} - y_{n})^{2}$$
$$= ||x - y||^{2} = 2 - 2\langle x, y \rangle$$

L2 norm:
$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^{n} x_i^2}$$

Inner product: $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$

Problem of Euclidean distance

Objects can be represented with different measure scales

	Day 1	Day 2	Day 3	Day m
Temperatur e	20	22	16	 33
#Ice- creams	50223	55223	45098	 78008
#Electricity	102034	105332	88900	 154008

 Euclidean distance: does not give a clear intuition about how well variables are correlated

Problem of Euclidean distance

 Cannot discover variables with similar behaviours/dynamics but at different scale

Problem of Euclidean distance

 Cannot discover variables with similar behaviours/dynamics but in the opposite direction (negative correlation)

Pearson's correlation coefficient (r)

$$r = r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Sample means

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

- Range within [-1,1]:
 - 1 for perfect positive linear correlation
 - -1 for perfect negative linear correlation
 - 0 means no correlation
 - Absolute value |r| indicates strength of linear correlation

Pearson coefficient example

Height	Weight
1.6	50
1.7	66
1.8	77
1.9	94

$$x_1 = 1.6, x_2 = 1.7, x_3 = 1.8, x_4 = 1.9$$

 $y_1 = 50, y_2 = 66, y_3 = 77, y_4 = 94$
 $\bar{x} = (1.6 + 1.7 + 1.8 + 1.9)/4$
 $\bar{y} = (50 + 66 + 77 + 94)/4$
 $r = 0.997$

Examples

Interpreting Pearson correlation values

- In general it depends on your domain of application. Jacob Cohen has suggested
 - 0.5 is large
 - 0.3-0.5 is moderate
 - 0.1-0.3 is small
 - less than 0.1 is trivial

Properties of Pearson's correlation

- Range within [-1,1]
- Scale invariant: r(x,y)= r(x, Ky)
- Location invariant: r(x,y)= r(x, K+y)
- Can only detect linear relationships

$$y = a.x + b + noise$$

Cannot detect non-linear relationship y = sin(x) + noise

- Interactive correlation calculator
 - http://www.bc.edu/research/intasc/library/correlation.shtml
- Correlation <> Causality

http://tylervigen.com/spurious-correlations

Google trend correlation

Points you should know from today

- be able to explain why identifying correlations is useful for data wrangling/analysis
- understand what is correlation between a pair of features
- understand how correlation can be identified using visualisation
- understand the concept of a linear relation, versus a non linear relation for a pair of features
- understand why the concept of correlation is important, where it is used and understand why correlation is not the same as causation
- understand the use of Euclidean distance for computing correlation between two features and its advantages/ disadvantages

Point to know - cont.

- understand the use of Pearson correlation coefficient for computing correlation between two features and its advantages/ disadvantages
- understand the meaning of the variables in the Pearson correlation coefficient formula and how they can be calculated.
 Be able to compute this coefficient on a simple pair of features.
 The formula for this coefficient will be provided on the exam.
- be able to interpret the meaning of a computed Pearson correlation coefficient
- understand the advantages and disadvantages of using the Pearson correlation coefficient for assessing the degree of relationship between two features