

主要内容:

- §13-1 准静态过程 功 热量
- §13-2 热力学第一定律 内能
- §13-3 理想气体的等体过程和等压过程 摩尔热容
- §13-4 理想气体的等温过程和绝热过程
- §13-5 循环过程 卡诺循环
- §13-6 热力学第二定律的表述 卡诺定理
- §13-7 熵 熵增加原理
- §13-8 热力学第二定律的统计意义

热一律 $Q = \Delta E + W$ dQ = dE + dW = dE + pdV 上节回顾

$$\Delta E = v \frac{i}{2} R \Delta T$$
 状态量

$$W = \int_{V_1}^{V_2} p dV$$
 $Q = \nu C_m \Delta T$ 过程量

过程	特征	过程方程	W	∆E	Q	C_m
等体	dV = 0	$pT^{-1} = C$		$ u C_{V,m} \Delta T$		$\frac{i}{2}R$
等压	dp = 0	$VT^{-1} = C$	$p\Delta V \ u R\Delta T$	$ u C_{V,m} \Delta T$	$ u C_{p,m} \Delta T$	$\frac{i+2}{2}R$
等温	dT = 0	pV = C	$ u RT \ln rac{V_2}{V_1}$	0	W	∞
绝热		$pV^{\gamma} = C$		$\nu C_{V,m} \Delta T$	0	0
		$egin{aligned} V^{\gamma-1}T &= C' \ p^{\gamma-1}T^{-\gamma} &= C'' \end{aligned}$	$\frac{p_1V_1 - p_2V_2}{\gamma - 1}$			

思考:

过程1吸热还是放热?

思考: 绝热自由膨胀

例1: 1mol单原子理想气体,由状态a(p_1 , V_1),先等压加热至体积增大1倍至状态b,再等体加热至压强增大1倍至状态c,最后再经绝热膨胀至状态d,使其温度降至初始始温度,请做出状态变化的P-V图,并求解: 1. 状态d的体积; 2.整个过程中对外所做的功; 3.整个过程吸收的热量.

§13-5 循环过程 卡诺循环

一 循环过程

1. 循环过程:系统从某一状态出发,经过一系列状态变化过程之后,又回到初始状态的过程。

若循环的各阶段都是准静态过程,则循环过程可用p-V图上的一条闭合曲线表示。

循环过程的特征: $\Delta E = 0$

曲线所包围的面积等于一个循环过程中系统做功的大小。

沿顺时针方向进行的循环称为正循环。沿逆时针方向进行的循环称为逆循环。

W > 0 吸热 W < 0 放热

2. 热机和制冷机

工作物质(工质):循环工作的物质系统。 气体、液体

1) 热机:利用工质做功把热能转变成机械能的装置。 热机进行的循环是正循环,可以获得净功。

2) 热机效率

$$\eta = \frac{W}{Q_1}$$

总吸热 $\longrightarrow Q$

总放热 $\longrightarrow Q_2$ (取绝对值)

净吸热 $\longrightarrow Q$

由热力学第一定律 Q=W

净功
$$W = Q_1 - Q_2 = Q$$

高温热源 Q_1 热机 W Q_2 低温热源

$$\eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$$

例1.一理想气体经过一循环过程ABCA,如图所示,AB为等温过程,BC是等体过程,CA是绝热过程,则该循环效率可用下列面积之比来表示

$$(A) \quad \eta = \frac{\overline{m} \, \Re(1)}{\overline{m} \, \Re(2)}$$

(B)
$$\eta = \frac{\text{in} \, \text{ln}(1)}{\overline{\text{in} \, \text{ln}(1) + \overline{\text{in}} \, \text{ln}(2)}}$$

(C)
$$\eta = \frac{\overline{\text{m}}\eta(1)}{\overline{\text{m}}\eta(1) - \overline{\text{m}}\eta(2)}$$

(D) 不能用面积表示

[B]

讨论: 单一过程能否使系统持续对外做功?

为了能够连续不断地对外做功,必须让系统做功后回到初始状态,形成一个循环过程。

3) 制冷机:工作在逆循环下的机器

通过外界对系统做功,工质 从低温热源吸收热量,向高 温热源放出热量,使低源的 温度更低,达到制冷的目的。

致冷机致冷系数

$$e = \frac{Q_2}{|W|} = \frac{Q_2}{|Q_1| - Q_2}$$

冰箱循环示意图

例2: 1mol单原子理想气体,由状态 $a(p_1,V_1)$,先等压加热至体积增大1倍至状态b,再等体加热至压强增大1倍至状态c,最后再经绝热膨胀至状态d,使其温度降至初始始温度,再经一等温过程回到状态a,求: 1. 状态d的体积; 2. 整个过程中对外所做的功; 3.若用该循环过程制作成热机,其热机效率.

二 卡诺循环

1. 卡诺循环:由两个准静态等温过程和两个准静态绝热过程组成的循环.

A - B 等温膨胀; B - C 绝热膨胀;

C-D 等温压缩; D-A 绝热压缩

2. 理想气体卡诺循环热机效率

$$\eta = 1 - \frac{Q_2}{Q_1}$$

1→2 等温膨胀吸热

$$Q_1 = Q_{12} = \nu R T_1 \ln \frac{V_2}{V_1}$$

3→4 等温压缩放热

$$Q_2 = |Q_{34}| = \nu R T_2 \ln \frac{V_3}{V_4}$$

2→3 绝热膨胀 $T_1V_2^{\gamma-1} = T_2V_3^{\gamma-1}$

3. 卡诺制冷机(卡诺逆循环)

卡诺致冷机致冷系数

$$e = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2}$$

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$

$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$$

$$e = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2}$$

物理意义

- 1) 卡诺热机效率与工作物质无关,只与两个热源的温度有关,两热源的温差越大,则卡诺循环的效率越高.为提高效率指明了方向(选工作物质不重要).
- 2) T_2 越低, T_1 - T_2 越高,都导致制冷系数下降,说明要得到更低的 T_2 ,需要消耗更多的功。

讨论

图中两卡诺循环 $\eta_1 = \eta_2$ 吗?

$$\eta_1 = \eta_2$$

$$\eta_1 < \eta_2$$

今日作业: 13-16; 13-19; 13-20; 13-27

13-16 如图所示,一定量的理想气体经历ACB过程吸热700J,则经历ACBDA过程时吸热又为多少?

13-19如图所示,使1mol氧气(1)由A等温地变到B, (2)由A等体地变到C, 再由C等压地变到B, 试分别计算氧气所做的功和吸收的热量。

13-20 将压强为1.01×10⁵ Pa、体积为1.0×10⁻⁴m³的氢气,经绝热压缩使体积变为2.0×10⁻⁵m³,求压缩过程中气体所作的功。(氢气的摩尔热容比=1.41)

13-27 如图所示是单原子理想气体循环过程的V-T图,图中 $V_C = 2V_A$ 试问: (1) 图中所示循环是代表制冷机还是热机? (2) 如果是正循环(热机循环),求出循环效率。

