Solution Tutorial 6

Ans 1

	Full Ş	ubtracto	or-Truth Table	
Input			Output	
Α	В	С	Difference	Borrow
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Ans 2

Similarly, F_3 and F_4 can be implemented.

Ans 3

Ans4 (a)

Truth table of $Y(A, B, C) = \Sigma m(0, 1, 4, 6, 7)$

	Y	C	В	A
9	1	0	0	0
Y=1	1	1	0	0
1.5	0	0	1	0
Y=0	0	1	1	0
1 11	1	0	0	1
$Y = \overline{C}$	0	1	0	1
	1	0	1	1
Y=1	1	1	×1500	1

Truth table of $Y = \sum m(0, 2, 3, 6, 8, 9, 12, 14)$ Y D C В A Digit $Y = \overline{D}$ $\frac{0}{0}$ 2 3 4 5 Y = 1Y = 0 $\frac{1}{1}$ $Y = \overline{D}$ 1_0 8 9 10 1 -1 -1 1 -1 0 0 0 0 0 Y = 11_0 Y = 0 $\frac{11}{12}$ $Y = \overline{D}$ $\frac{13}{14}$ $\frac{1}{1}$ $Y = \overline{D}$

Truth table of Y using three variables

A	B	C	Y
0	0	0	\overline{D}
0	0	1	1
0	1 Andre	0	0
0	1-	1	$\overline{\overline{D}}$
1	0	0	1
	0	1	Ō
I .	1 - ,	0	\overline{D}
1	1	1 6	\overline{D}

F(A,B,C,D) 2 Em (0,1,4,6,12,13) using eximux.

(b) 4x1 Mux

(C) BXI MUX

f2 Em (1, 4, 5, 7)

F=
$$AB$$
 + ABP
= $A[B+BP] = A[B+P]$
Where
 $P = \overline{CD} + CD + CD \cdot E$
= $\overline{D} + CDE = \overline{D} + CE$
 $= \overline{D} + CDE = \overline{D} + CE$
 $= A[B+D+CE]$
= $AB + AD + ACE$

Ans 7

WXYZ		
0000		
0001		
0011		
0111		
0101		
0100		
1100		
1101		
1111		
11110		
1010		
1011		
1001		

WZ EM (8,9,10,11,12,13,14,15) XZ EM (4,5,6,7,8,9,10,11) YZ EM (2,3,4,5,10,11,12,13) ZZ EM (1,2,5,6,9,10,13,14)

Implement it by will yell yell yell.