Optimizing Air Travel: A Data-Driven Approach to Flight Delay Analysis and Prediction

Priyanshu Kumar
Electrical Engineering
4th Year
22115123
IIT Roorkee

Objective & Problem Statement

1

Analyze Delay Patterns:

 Conduct exploratory data analysis (EDA) to uncover trends, correlations, and operational bottlenecks across airlines, airports, and time periods. 2

Predict Flight Delays:

Build machine learning models to

- Predict if a flight will be delayed (Yes/No)
- Estimate expected delay duration (in minutes)

3

Recommend Solutions:

- Provide actionable, databacked strategies to help.
- · Minimize preventable delays
- Improve airline operational planning
- Enhance the travel experience for passengers

Methodology

Workflow:

Exploratory Data Analysis (EDA)

Data Cleaning and Feature Engineering

Regression (Delay Duration in Minutes)

Classification (Delayed: Yes/No)

Custom metric: Operational Adjustability Index (OAI)

Explainability using SHAP

Tools Used: Python, pandas, matplotlib

Models Used: Random Forest Classifier and Regressor and XGBoost

Airline Market Share Overview Insight

This pie chart shows the distribution of total flights by airline. Airlines contributing less than 1% of total flights have been grouped into "Other" for clarity.

Objective: This bar graph show airlines based on their average delay performance.

Key Insights: Best Performers: Cape Air, Hawaiian Airlines, and Alaska Airlines have the lowest average delays, indicating strong operational efficiency.

Insight: This chart shows the percentage contribution of each delay type to the total arrival delays across all flights.

Key Observations:

- Late Aircraft Delay is the leading contributor at 38.9%.
- Carrier Delay closely follows at 34.3%
- NAS Delay (National Aviation System) contributes 21.2%
- Weather Delays make up 5.4% despite common assumptions
- Security Delays are negligible at 0.2%

Why It Matters:

- Over 70% of delays are caused by Late Aircraft and Carrier issues — both are operationally controllable
- Prioritizing interventions here can yield maximum impact on overall delay reduction
- Supports the Operational Adjustability Index (OAI) focus in predictive modeling

Contribution of Different Delay Types to Total Arrival Delay

Flight Cancellation Rate by Airline

Objective: To analyze how frequently different airlines cancel flights.

Key Insights: Most Airlines maintain cancellation rates between 1% and 5%, indicating relatively stable operations.

Outlier Alert:

Peninsula Airways Inc. exhibits a very high cancellation rate (~16%), significantly above the industry norm.

Airlines like Alaska, Delta, and Southwest show consistently low cancellation rates, suggesting stronger operational reliability.

Correlation Between Delay Components

Objective: To examine how different types of flight delays are related to each other.

Key Takeaways:

Highest Correlation: arrival_delay is strongly correlated with late_aircraft_delay (0.97) and carrier_delay (0.94).Suggests that delays caused by previous flights and airline operations heavily influence total arrival delays.

Lowest Correlation: security_delay shows low correlation with all components (max 0.39), meaning it tends to occur independently of other delays.

Why It Matters: Understanding which delays are interlinked helps in:

Root cause analysis of arrival delays

Strategic planning to target the most influential delay categories (like late aircraft and carrier-related issues)

Model Comparison Summary

(For Regression)

This table compares the performance of several regression models based on three key metrics:

- •RMSE (Root Mean Squared Error)
- •MAE (Mean Absolute Error)
- •R² (Coefficient of Determination)

Key Insights:

Best Performing Model: XGBoost Lowest RMSE: 19.3953 Lowest MAE: 9.3054Highest R²: 0.5833 Indicates it explains around 58% of the variance in the target variable, making it the most accurate and reliable model in this comparison.

LightGBM Performs better than Random Forest with an R² of 0.4838, showing strong predictive ability with a relatively low error.

MODEL COMPARISON SUMMARY				
	Model	RMSE	MAE	R2
0	Linear Regression	29.6512	14.3102	0.0261
1	Random Forest	25.0823	11.8823	0.3031
2	XGBoost	19.3953	9.3054	0.5833
3	LightGBM	21.5857	10.0214	0.4838
4	ElasticNet	29.6735	14.2962	0.0246
5	Support Vector Regressor	30.8676	11.2812	-0.0555

Evaluation of Classification Models

To comprehensively assess the performance of classification models, we use multiple metrics—such as Precision, Recall, Accuracy, and ROC-AUC—to understand both overall correctness and how well the models distinguish between classes.

Scheduling Adjustments:

Avoid congestion-prone slots and overused routes (identified via high-delay times).

Ground Operations

Optimization: Focus on top delay airports and enhance turnaround times.

Resource Allocation: Use SHAP scores + OAI to prioritize operational control efforts.

Proactive Communication:

Flag likely delays earlier to staff and passengers using the model output

Thank you

