Then Ax is given as the continuous extension of (*). We shortly write Ax = xB + B*x.

In the next theorem we give some equivalent conditions for the uniform exponential stability of an implemented semigroup . As we shall see, the operator equality

$$yB + B*y = -x \quad (x, y \in M_{\perp})$$

is necessary and sufficient, which is in complete analogy to the classical Liapunov stability result.

Theorem 2.2. Let M be a W*-algebra on a Hilbert space H and let $T = (T(t))_{t \ge 0}$ be a weak*-semigroup on M with generator A implemented by the semigroup $(U(t))_{t \ge 0}$ on H with generator B. Then the following assertions are equivalent.

- (a) $\omega(T) = s(A) < 0$.
- (b) The semigroup $(U(t))_{t\geq 0}$ is uniformly exponentially stable.
- (c) There exists $0 \le x \in D(A)$ such that Ax = -1.
- (d) There exists $0 \le x \in D(A)$ such that $x(D(B)) \subseteq D(B^*)$ and $xB+B^*x = -1$.
- (e) For every $0 \le x \in D(A)$ there exists $0 \le y \in D(A)$ such that Ay = -x.
- (f) For every $0 \le x \in D(A)$ there exists $0 \le y \in D(A)$ such that $y(D(B)) \subseteq D(B^*)$ and $yB+B^*y = -x$.
- (g) $\int_0^\infty \|U(s)\xi\|^2 ds$ exists for all $\xi \in H$.
- (h) $\int_0^\infty ((T(s)x)\xi|\zeta)ds$ exists for all $\xi,\zeta\in H$ and all $x\in M$.

<u>Proof.</u> The equivalence of (a) and (b) follows from Remark 2.1.(a) whereas (c) and (d), resp., (e) and (f) are equivalent by the Remark 2.1.(c).

(a) + (c): Since s(A) < 0 the resolvent R(0,A) exists and is a positive map on M . Therefore R(0,A)1 \in D(A) or Ax = -1 for some $x\in$ D(A) .