Линейные пространства

Определение 1 (линейного пространства).

Линейным (векторным) пространством называется непустое множество V элементов произвольной природы $\vec{x}, \vec{y}, \vec{z}, ...$, то есть $V = \{\vec{x}, \vec{y}, \vec{z}, ...\}$, условно называемых векторами, над которыми определены две **операции**: **сложения двух векторов** \oplus : $\forall \vec{x}, \vec{y} \in V \Rightarrow \vec{x} \oplus \vec{y} \in V$, и **умножения вектора на число** \otimes : $\forall \vec{x} \in V, \forall \alpha \in P \Rightarrow \alpha \otimes \vec{x} \in V$, P – некоторое числовое множество, удовлетворяющие восьми аксиомам:

- 1. $\vec{x} \oplus \vec{y} = \vec{y} \oplus \vec{x}, \ \forall \vec{x}, \vec{y} \in V;$
- **2.** $(\vec{x} \oplus \vec{y}) \oplus \vec{z} = \vec{x} \oplus (\vec{y} \oplus \vec{z}), \ \forall \vec{x}, \vec{y}, \vec{z} \in V;$
- **3.** существует нуль-вектор $\vec{0} \in V$ такой, что $\vec{x} \oplus \vec{0} = \vec{x}$ для любого $\vec{x} \in V$;
- **4.** для каждого $\vec{x} \in V$ существует ему противоположный элемент $-\vec{x} \in V$ такой, что $\vec{x} \oplus (-\vec{x}) = \vec{0}$;
 - **5.** $1 \otimes \vec{x} = \vec{x}$, $\forall \vec{x} \in V$;
 - **6.** $\alpha \otimes (\beta \otimes \vec{x}) = (\alpha \beta) \otimes \vec{x}, \forall \vec{x} \in V, \forall \alpha, \beta \in P;$
 - 7. $\alpha \otimes (\vec{x} \oplus \vec{y}) = (\alpha \otimes \vec{x}) \oplus (\alpha \otimes \vec{y}), \ \forall \vec{x}, \vec{y} \in V, \forall \alpha \in P;$
 - **8.** $(\alpha + \beta) \otimes \vec{x} = (\alpha \otimes \vec{x}) \oplus (\beta \otimes \vec{x}), \ \forall \vec{x} \in V, \forall \alpha, \beta \in P.$

Свойства линейного пространства

1. В линейном пространстве существует единственный нулевой вектор.

Доказательство.

Пусть $\vec{0}_1, \vec{0}_2 \in V, \vec{0}_1 \neq \vec{0}_2$, — нулевые векторы пространства V. Тогда по аксиоме 3 имеем: $\vec{0}_1 \oplus \vec{0}_2 = \vec{0}_1$. С другой стороны, применяя аксиому 1, а затем аксиому 3, найдем $\vec{0}_1 \oplus \vec{0}_2$: $\vec{0}_1 \oplus \vec{0}_2 = \vec{0}_2 \oplus \vec{0}_1 = \vec{0}_2$. Получили противоречие: $\vec{0}_1 = \vec{0}_2$. Значит, наше предположение не верно, и нулевой вектор определен однозначным образом.

2. В линейном пространстве V для каждого вектора $\vec{x} \in V$ существует единственный ему противоположный вектор $-\vec{x} \in V$.

Доказательство.

Предположим, что для вектора $\vec{x} \in V$ имеется два различных противоположных вектора $-\vec{x}_1 \in V$ и $-\vec{x}_2 \in V$. Найдем $\vec{x} \oplus (-\vec{x}_1) \oplus (-\vec{x}_2)$.

Тогда

$$\vec{x} \oplus (-\vec{x}_1) \oplus (-\vec{x}_2) = (\vec{x} \oplus (-\vec{x}_1)) \oplus (-\vec{x}_2) \stackrel{A4}{=} \vec{0} \oplus (-\vec{x}_2) \stackrel{A1}{=} (-\vec{x}_2) \oplus \vec{0} \stackrel{A3}{=} -\vec{x}_2$$

И

$$\vec{x} \oplus (-\vec{x}_1) \oplus (-\vec{x}_2) = (\vec{x} \oplus (-\vec{x}_1)) \oplus (-\vec{x}_2) = \vec{x} \oplus ((-\vec{x}_1) \oplus (-\vec{x}_2)) = \vec{x} \oplus ((-\vec{x}_2) \oplus (-\vec{x}_1)) = \vec{x} \oplus ((-\vec{x}_2) \oplus (-\vec{x}_1)) = \vec{x} \oplus ((-\vec{x}_2) \oplus (-\vec{x}_1)) = \vec{x} \oplus ((-\vec{x}_1) \oplus (-\vec{x}_1)) \oplus ((-\vec{x}_1) \oplus (-\vec{x}_1)) = \vec{x} \oplus ((-\vec{x}_1) \oplus (-\vec{x}_1)) \oplus ((-\vec{x}_1) \oplus (-\vec{x}_1) \oplus (-\vec{x}_1)) \oplus ((-\vec{x}_1) \oplus (-\vec{x}_1)) \oplus ((-\vec{x$$

Получили, противоречие $-\vec{x}_1 = -\vec{x}_2$, следовательно, противоположный элемент определен однозначно.

3. Для вектора $-\vec{x} \in V$ противоположным вектором является $\vec{x} \in V$.

Доказательство.

Найдем $-(-\vec{x})$:

$$-(-\vec{x}) = -1 \otimes (-1 \otimes \vec{x}) \stackrel{A6}{=} (-1 \cdot (-1)) \otimes \vec{x} = 1 \otimes \vec{x} = \vec{x}.$$

Значит, вектор \vec{x} – противоположный для $-\vec{x}$.

4. $0 \otimes \vec{x} = \vec{0}, \forall \vec{x} \in V$.

Доказательство.

$$(0 \otimes \vec{x}) \stackrel{A3}{=} (0 \otimes \vec{x}) \oplus \vec{0} \stackrel{A4}{=} (0 \otimes \vec{x}) \oplus (\vec{x} \oplus (-\vec{x})) \stackrel{A2}{=} ((0 \otimes \vec{x}) \oplus \vec{x}) \oplus (-\vec{x}) \stackrel{A5}{=} ((0 \otimes \vec{x}) \oplus (1 \otimes \vec{x})) \oplus (-\vec{x}) \stackrel{A8}{=} ((0+1) \otimes \vec{x}) \oplus (-\vec{x}) = (1 \otimes \vec{x}) \oplus (-\vec{x}) \stackrel{A5}{=} \vec{x} \oplus (-\vec{x}) \stackrel{A4}{=} \vec{0}, \forall \vec{x} \in V.$$

5.
$$-1 \otimes \vec{x} = -\vec{x}, \forall \vec{x} \in V$$
.

Доказательство.

Найдем $\vec{x} \oplus (-1 \otimes \vec{x})$, получим $\vec{x} \oplus (-1 \otimes \vec{x}) = (1 \otimes \vec{x}) \oplus (-1 \otimes \vec{x}) = (1 + (-1)) \otimes \vec{x} = 0 \otimes \vec{x} = \vec{0}$. Отсюда и в силу аксиомы 4 имеем $-1 \otimes \vec{x} = -\vec{x}$.

6. Произведение любого числа α на нулевой вектор есть нулевой вектор, то есть $\alpha \otimes \vec{0} = \vec{0}, \forall \alpha \in P$.

Доказательство.

$$\alpha \otimes \vec{0} = \alpha \otimes (\vec{x} \oplus (-\vec{x})) = \alpha \otimes (\vec{x} \oplus (-1 \otimes \vec{x})) = (\alpha \otimes \vec{x}) \oplus (\alpha \otimes (-1 \otimes \vec{x})) = (\alpha \otimes \vec{x}) \oplus (-\alpha \otimes \vec{x}) \oplus (-\alpha \otimes \vec{x}) = \begin{pmatrix} A8 \\ = (\alpha + (-\alpha)) \otimes \vec{x} = 0 \otimes \vec{x} = \vec{0}. \end{pmatrix}$$

7. Если $\alpha \otimes \vec{x} = \vec{0}$ и $\alpha \neq 0$, то $\vec{x} = \vec{0}$.

Доказательство. Пусть $\alpha \neq 0$. Тогда

$$\alpha \otimes \vec{x} = \vec{0} \Leftrightarrow \frac{1}{\alpha} \otimes (\alpha \otimes \vec{x}) = \frac{1}{\alpha} \otimes \vec{0} \Leftrightarrow \left(\frac{1}{\alpha} \cdot \alpha\right) \otimes \vec{x} = \vec{0} \Leftrightarrow 1 \otimes \vec{x} = \vec{0} \Leftrightarrow \vec{x} = \vec{0}.$$

8. Если $\alpha \otimes \vec{x} = \vec{0}$ и $\vec{x} \neq \vec{0}$, то $\alpha = 0$.

Доказательство. Предположим, что $\alpha \neq 0$. Тогда $\alpha \otimes \vec{x} = \vec{0} \Leftrightarrow \frac{1}{\alpha} \otimes (\alpha \otimes \vec{x}) = \frac{1}{\alpha} \otimes \vec{0}$. Отсюда $\vec{x} = \vec{0}$. Получили противоречие, значит, $\alpha = 0$.

Пример 1. Выясните, образует ли линейное пространство данное множество с естественными операциями сложения двух векторов и умножения вектора на действительное число.

1. Множество всех невырожденных матриц второго порядка, то есть

$$V = \left\{ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} : a_{ij} \in R; i, j = 1, 2; \det A \neq 0 \right\}.$$

Решение.

Возьмем две невырожденные матрицы $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\det A = 1$, и $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\det B = -1$.

Найдем A+B , получим $A+B=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, для которой $\det \begin{pmatrix} A+B \end{pmatrix}=0$.

Значит, $A+B \notin V$. Следовательно, рассматриваемое множество не замкнуто относительно операции сложения двух векторов, поэтому не является линейным пространством с указанными операциями.

Ответ: не образует.

2. Множество всех многочленов степени n, то есть

$$V = \left\{ P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n : n \in \mathbb{N}; a_0, a_1, \dots, a_{n-1}, a_n \in \mathbb{R}; a_0 \neq 0 \right\}.$$

Решение.

Пусть $n \ge 2$. Рассмотрим два многочлена степени $n: P_n(x) = x^n$ и $Q_n(x) = -x^n + x - 1$. Найдем $P_n(x) + Q_n(x)$, получим $P_n(x) + Q_n(x) = x - 1$. Значит, $P_n(x) + Q_n(x) \not\in V$, что говорит о том, что множество V не является замкнутым относительно операции сложения двух векторов. Следовательно, V не является линейным пространством с указанными операциями.

Ответ: не образует.

Пример 2. Выясните, образует ли линейное пространство множество действительных чисел с операциями $\vec{x} \oplus \vec{y} = x \cdot y, \alpha \otimes \vec{x} = \alpha \cdot x, \alpha \in R$.

Решение.

В нашем случае V- множество действительных чисел. Поэтому V замкнуто относительно указанных операций.

Проверим справедливость аксиом линейного пространства.

- 1) $\vec{x} \oplus \vec{y} = x \cdot y = y \cdot x = \vec{y} \oplus \vec{x}, \forall \vec{x}, \vec{y} \in V$, то есть аксиома 1 выполняется.
- 2) $(\vec{x} \oplus \vec{y}) \oplus \vec{z} = (x \cdot y) \cdot z = x \cdot (y \cdot z) = \vec{x} \oplus (\vec{y} \oplus \vec{z}), \forall \vec{x}, \vec{y}, \vec{z} \in V$, то есть аксиома 2 имеет место.

- 3) Роль нуль—вектора $\vec{0} \in V$ играет число 1, так как $1 \in V$ и $\vec{x} \oplus \vec{0} = x \cdot 1 = x = \vec{x}, \forall \vec{x} \in V$, то есть аксиома 3 выполняется.
- 4) Так как в этом множестве нуль—вектором является число 1, то равенство $\vec{x} \oplus (-\vec{x}) = \vec{0}, \forall \vec{x} \in V$, возможно, когда $-\vec{x} = \frac{1}{x}$, так как $\vec{x} \oplus (-\vec{x}) = x \cdot \frac{1}{x} = 1 = \vec{0}$. Значит, вектором, противоположным \vec{x} , является вектор $-\vec{x} = \frac{1}{x}$. Поэтому для числа 0 противоположного вектора не существует. Следовательно, аксиома 4 нарушается и множество действительных чисел с операциями $\vec{x} \oplus \vec{y} = x \cdot y, \alpha \otimes \vec{x} = \alpha \cdot x, \alpha \in R$, не образует линейное пространство.

Ответ: не образует.

Пример 3. Выясните, образует ли линейное пространство множество положительных чисел с операциями $\vec{x} \oplus \vec{y} = x \cdot y, \alpha \otimes \vec{x} = x^{\alpha}, \alpha \in R$.

Решение.

По условию V- множество положительных чисел. Значит, множество V замкнуто относительно указанных операций.

Проверим справедливость аксиом линейного пространства.

- 1) $\vec{x} \oplus \vec{y} = x \cdot y = y \cdot x = \vec{y} \oplus \vec{x}, \forall \vec{x}, \vec{y} \in V$, то есть аксиома 1 выполняется.
- 2) $(\vec{x} \oplus \vec{y}) \oplus \vec{z} = (x \cdot y) \cdot z = x \cdot (y \cdot z) = \vec{x} \oplus (\vec{y} \oplus \vec{z}), \forall \vec{x}, \vec{y}, \vec{z} \in V$, то есть аксиома 2 имеет место.
- 3) Роль нуль—вектора $\vec{0} \in V$ играет число 1, так как $1 \in V$ и $\vec{x} \oplus \vec{0} = x \cdot 1 = x = \vec{x}, \forall \vec{x} \in V$, то есть аксиома 3 выполняется.
- 4) Так как в этом множестве нуль—вектором является число 1, то равенство $\vec{x} \oplus (-\vec{x}) = \vec{0}, \forall \vec{x} \in V$, возможно, когда $-\vec{x} = \frac{1}{x}$, так как $\vec{x} \oplus (-\vec{x}) = x \cdot \frac{1}{x} = 1 = \vec{0}, \forall \vec{x} \in V$, то есть аксиома справедлива 4.
 - 5) $1 \otimes \vec{x} = x^1 = x = \vec{x}, \forall \vec{x} \in V$, то есть аксиома 5 выполняется.
 - 6) $\alpha \otimes (\beta \otimes \vec{x}) = (x^{\beta})^{\alpha} = x^{\beta \alpha} = x^{\alpha \beta} = (\alpha \beta) \otimes \vec{x}, \forall x \in V, \forall \alpha, \beta \in R$, то есть аксиома 6 имеет место.
- 7) $\alpha \otimes (\vec{x} \oplus \vec{y}) = (xy)^{\alpha} = x^{\alpha} \cdot y^{\alpha} = (\alpha \otimes \vec{x}) \oplus (\alpha \otimes \vec{y}), \forall \vec{x}, \vec{y} \in V, \alpha \in R$, то есть справедлива аксиома 7.
- 8) $(\alpha + \beta) \otimes \vec{x} = x^{\alpha + \beta} = x^{\alpha} \cdot x^{\beta} = (\alpha \otimes \vec{x}) \oplus (\beta \otimes \vec{x}), \forall \vec{x} \in V, \forall \alpha, \beta \in R$, то есть аксиома 8 выполняется.

Таким образом, множество положительных чисел с операциями $\vec{x} \oplus \vec{y} = x \cdot y, \alpha \otimes \vec{x} = x^{\alpha}, \alpha \in R$, образует линейное пространство.

Ответ: образует.

Примеры линейных пространств.

- **1.** Множество действительных чисел R с естественными операциями сложения и умножения двух чисел.
- **2.** Множество всех матриц размерности $m \times n$ с естественными операциями сложения двух матриц и умножения матрицы на число.
- **3.** Множество R^3 векторов трехмерного пространства с естественными операциями сложения двух векторов и умножения вектора на число.
 - 4. Множество всех решений линейного однородного дифференциального уравнения

$$y^{(n)} + a_1(x)y^{(n-1)} + a_2(x)y^{(n-2)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$$

с естественными операциями сложения двух векторов и умножения вектора на число.

- **5.** Пространство C[a;b] непрерывных на отрезке [a;b] функций.
- **6.** Пространство $L_2[a;b]$ функций f(x), интегрируемых с квадратом на отрезке [a;b], для которых существует интеграл $\int\limits_{a}^{b} f^2(x) dx$.

7. Пространство l_2 последовательностей $\{x_n\}$, для которых сходится ряд $\sum_{n=1}^{\infty} {x_n}^2$.

Определение 2 (линейного подпространства).

Множество V_1 элементов линейного пространства V называется **подпространством** пространства V , если выполнены условия:

- 1) в множестве V_1 операции сложения векторов и умножения вектора на число определяются также, как и в V;
 - 2) если \vec{x} , $\vec{y} \in V_1$, то и $\vec{x} \oplus \vec{y} \in V_1$;
 - 3) если $\alpha \in P$, $\vec{x} \in V_1$, то и $\alpha \otimes \vec{x} \in V_1$.

Заметим, что всякое подпространство V_1 линейного пространства является линейным пространством.

Пример 4.

1. Пусть V — множество действительных чисел. Рассмотрим множество V_1 четных чисел: $\vec{x} = x$, $\vec{y} = x$, $\vec{x} \oplus \vec{y} = x + y$, $\alpha \otimes \vec{x} = \alpha \cdot x$, $\alpha \in R$.

Так как сумма четных чисел есть число четное, то множество V_1 является замкнутым относительно операции сложения двух векторов.

Учитывая, что $\alpha \cdot x$ не всегда является четным числом, множество V_1 не является замкнутым относительно операции умножения вектора на число. Следовательно, V_1 не является подпространством линейного пространства V.

2. Пусть $V = R^2 = \{(x; y) : x, y \in R\}$. Рассмотрим множества $V_1 = \{\vec{a} = (x; 0) : x \in R\}$ и $V_2 = \{\vec{b} = (0; y) : y \in R\}$.

Для любых векторов $\vec{a}_1=(x_1;0)$ и $\vec{a}_2=(x_2;0)$ из множества V_1 выполняются условия: $\vec{a}_1+\vec{a}_2=(x_1+x_2;0)\in V_1$; $\alpha\cdot\vec{a}=(\alpha\cdot x;0)\in V_1$; $\alpha\in R$.

Для произвольных векторов $\vec{b}_1=(0;y_1)$ и $\vec{b}_2=(0;y_2)$ из множества V_2 имеем: $\vec{b}_1+\vec{b}_2=\left(0;y_1+y_2\right)\in V_2;\;\alpha\cdot\vec{b}=\left(0;\alpha\cdot y\right)\in V_2;\;\alpha\in R$.

Значит, V_1 и V_2 – подпространства линейного пространства V.

3. Пусть V — множество сходящихся последовательностей $\vec{x} = \{x_n\}$, $\vec{y} = \{y_n\}$, $\vec{x} \oplus \vec{y} = \{x_n + y_n\}$, $\alpha \otimes \vec{x} = \{\alpha \cdot x_n\}$, $\alpha \in R$. Рассмотрим множества V_0 и V_1 последовательностей, сходящихся к 0 и 1 соответственно.

Пусть $\vec{x}=\{x_n\}$, $\vec{y}=\{y_n\}$ — векторы из множества V_0 , то есть $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=0$. Тогда

$$\lim_{n\to\infty} \bigl(x_n+y_n\bigr) = \lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n = 0 \ \text{if} \ \lim_{n\to\infty} \bigl(\alpha\cdot x_n\bigr) = \alpha\cdot \lim_{n\to\infty} x_n = 0 \ .$$

Значит, $\{x_n+y_n\}\in V_0$ и $\{\alpha\cdot x_n\}\in V_0$. Следовательно, V_0 — подпространство линейного пространства V .

Пусть теперь $\vec{x}=\{x_n\}$, $\vec{y}=\{y_n\}$ — векторы из множества V_1 , то есть $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=1$.

Поскольку $\lim_{n\to\infty} (x_n+y_n) = \lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n = 2$, то $\{x_n+y_n\} \not\in V_1$, и, значит, V_1 не является подпространством линейного пространства V.

Определение 3. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ линейного пространства V называется линейно зависимой, если существует набор чисел $\alpha_1, \alpha_2, ..., \alpha_n$, среди которых хотя бы одно не равно нулю, такой, что $(\alpha_1 \otimes \vec{x}_1) \oplus (\alpha_2 \otimes \vec{x}_2) \oplus ... \oplus (\alpha_n \otimes \vec{x}_n) = \vec{0}$.

Определение 4. Система векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ линейного пространства V называется линейно независимой, если векторное равенство $(\alpha_1 \otimes \vec{x}_1) \oplus (\alpha_2 \otimes \vec{x}_2) \oplus ... \oplus (\alpha_n \otimes \vec{x}_n) = \vec{0}$ выполняется тогда и только тогда, когда $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$.

Теорема 1. Если к системе r линейно зависимых векторов присоединить любые m векторов, то получим систему r+m линейно зависимых векторов.

Теорема 2. Если из системы r линейно независимых векторов отбросить любые m, m < r, векторов, то получим систему r - m линейно независимых векторов.

Теорем 3. Если среди векторов $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ имеется нулевой вектор, то эти векторы линейно зависимы.

Теорема 4. Для того, чтобы векторы $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n, n > 1$, линейного пространства V были линейно зависимы, необходимо и достаточно, чтобы хотя бы один из этих векторов являлся линейной комбинацией остальных.

Определение 5. Пусть в линейном пространстве V выполнены условия:

- 1) существует n линейно независимых векторов;
- 2) любая система n+1 векторов линейно зависима.

Тогда число n называется **размерностью линейного пространства** V и обозначается $\dim V = n$.

Определение 6. Базисом n – **мерного линейного пространства** V называется любая упорядоченная система n линейно независимых векторов этого пространства.

Теорема 5. Если $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$ — базис n—мерного линейного пространства V , то любой вектор \vec{x} этого пространства линейно выражается через векторы $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$, то есть

$$\vec{x} = (\alpha_1 \otimes \vec{e}_1) \oplus (\alpha_2 \otimes \vec{e}_2) \oplus \dots \oplus (\alpha_n \otimes \vec{e}_n), \tag{1}$$

причем коэффициенты разложения $\alpha_1, \alpha_2, ..., \alpha_n$ определены однозначным образом.

Теорема 6. Если $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$ — система линейно независимых векторов линейного пространства V и любой вектор \vec{x} этого пространства линейно выражается через векторы $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$, то $\dim V = n$.

Определение 7. Выражение (1) называется разложением вектора \vec{x} по базису $\vec{e}_1, \vec{e}_2, ... \vec{e}_n$, а числа $\alpha_1, \alpha_2, ..., \alpha_n$ называются координатами вектора \vec{x} в этом базисе.

Определение 8. Линейное пространство V называется конечномерным, если в нем имеется базис, состоящий из конечного числа векторов.

Линейное пространство V называется **бесконечномерным**, если в нем существует система из любого числа линейного независимых векторов.

Множество всех аналитических (бесконечное число раз дифференцируемых) функций является примером бесконечномерного пространства, в котором в качестве базиса можно взять совокупность многочленов $1, x, x^2, \dots, x^n, \dots$

Пример 5. Выясните, образуют ли линейное пространство данные множества:

- а) множество всех натуральных делителей числа 198;
- б) множество всех матриц вида $A = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_3 & 0 \end{pmatrix}$, где $\alpha_i \in R, i = 1,2,3,4$;
- в) множество всех плоских векторов, ортогональных данной прямой; с естественными операциями сложения двух векторов и умножения вектора на число.

В случае положительного ответа укажите размерность и какой-нибудь базис этого линейного пространства.

Решение.

а) Обозначим V – множество всех натуральных делителей числа 198. Так как число 198 делится и на 2, и на 3, то $2,3 \in V$. Учитывая, что сумма этих делителей $5 \notin V$, получим, что множество V не является замкнутым относительно операции сложения векторов. Следовательно, V не является линейным пространством.

б) Пусть
$$V$$
 — множество всех матриц вида $A = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix}$, где $\alpha_i \in R, i = 1, 2, 3, 4$, у которых

элементы $a_{13}, a_{21}, a_{22}, a_{31}, a_{33}$ равны нулю, а остальные элементы могут быть как нулями, так и любыми другими действительными числами.

Так как для любых матриц
$$A = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix}$$
 и $B = \begin{pmatrix} \beta_1 & \beta_2 & 0 \\ 0 & 0 & \beta_3 \\ 0 & \beta_4 & 0 \end{pmatrix}$, где

 $\alpha_i \in R, \beta_i \in R, i = 1,2,3,4, \text{ ux сумма}$

$$A + B = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix} + \begin{pmatrix} \beta_1 & \beta_2 & 0 \\ 0 & 0 & \beta_3 \\ 0 & \beta_4 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 & \alpha_2 + \beta_2 & 0 \\ 0 & 0 & \alpha_3 + \beta_3 \\ 0 & \alpha_4 + \beta_4 & 0 \end{pmatrix}$$

сохраняет нули в позициях (1;3), (2;1), (2;2), (3;1), (3;3), то матрица $A+B\in V$. Значит, множество Vзамкнуто относительно сложения двух векторов.

Так как для любого $c \in R$ и любой матрицы $A = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix}$ из множества V матрица

$$cA = egin{pmatrix} clpha_1 & clpha_2 & 0 \\ 0 & 0 & clpha_3 \\ 0 & clpha_4 & 0 \end{pmatrix}$$
 сохраняет нулевые элементы в тех же позициях, то множество V является

замкнутым и относительно операции умножения вектора на действительное число.

Проверим справедливость аксиом линейного пространства.

$$A + B = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix} + \begin{pmatrix} \beta_1 & \beta_2 & 0 \\ 0 & 0 & \beta_3 \\ 0 & \beta_4 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 + \beta_1 & \alpha_2 + \beta_2 & 0 \\ 0 & 0 & \alpha_3 + \beta_3 \\ 0 & \alpha_4 + \beta_4 & 0 \end{pmatrix} = \begin{pmatrix} \beta_1 + \alpha_1 & \beta_2 + \alpha_2 & 0 \\ 0 & 0 & \beta_3 + \alpha_3 \\ 0 & \beta_4 + \alpha_4 & 0 \end{pmatrix} = B + A$$

для любых $A, B \in V$, то первая аксиома выполняется.

2) Возьмем произвольные матрицы $A, B, C \in V$, где $C = \begin{pmatrix} \gamma_1 & \gamma_2 & 0 \\ 0 & 0 & \gamma_3 \\ 0 & \gamma_3 & 0 \end{pmatrix}$. Найдем суммы матриц

$$(A+B)+C$$
 и $A+(B+C)$:

$$(A+B)+C = \begin{pmatrix} \alpha_1+\beta_1 & \alpha_2+\beta_2 & 0 \\ 0 & 0 & \alpha_3+\beta_3 \\ 0 & \alpha_4+\beta_4 & 0 \end{pmatrix} + \begin{pmatrix} \gamma_1 & \gamma_2 & 0 \\ 0 & 0 & \gamma_3 \\ 0 & \gamma_4 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_1+\beta_1+\gamma_1 & \alpha_2+\beta_2+\gamma_2 & 0 \\ 0 & 0 & \alpha_3+\beta_3+\gamma_3 \\ 0 & \alpha_4+\beta_4+\gamma_4 & 0 \end{pmatrix},$$

$$A+(B+C) = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix} + \begin{pmatrix} \beta_1+\gamma_1 & \beta_2+\gamma_2 & 0 \\ 0 & 0 & \beta_3+\gamma_3 \\ 0 & \beta_4+\gamma_4 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_1+\beta_1+\gamma_1 & \alpha_2+\beta_2+\gamma_2 & 0 \\ 0 & 0 & \alpha_3+\beta_3+\gamma_3 \\ 0 & \alpha_4+\beta_4+\gamma_4 & 0 \end{pmatrix}.$$

$$A + (B + C) = \begin{bmatrix} 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & \beta_3 + \gamma_3 \\ 0 & \beta_4 + \gamma_4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \alpha_3 + \beta_3 + \gamma_3 \\ 0 & \alpha_4 + \beta_4 + \gamma_4 & 0 \end{bmatrix}$$

Так как (A+B)+C=A+(B+C) для любых $A,B,C\in V$, то вторая аксиома имеет место.

3) Так как нулевая матрица O третьего порядка содержит нули в интересующих нас позициях,

то
$$O \in V$$
, при этом $A + O = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix} = A$, значит, третья аксиома

- 4) Для любой матрицы $A \in V$ существует противоположная матрица $-A = (-1) \cdot A$, такая, что $-A \in V$ и A + (-A) = O. Следовательно, четвертая аксиома выполняется.
- 5) Так как для числа $1 \in R$ и любой матрицы $A \in V$ имеет место равенство $1 \cdot A = A$, то пятая аксиома имеет место.
- 6) Возьмем любые числа c_1, c_2 и матрицу $A \in V$. Покажем справедливость равенства $c_1 \cdot (c_2 \cdot A) = (c_1 \cdot c_2) \cdot A$. Действительно,

$$c_1 \cdot (c_2 \cdot A) = c_1 \cdot \begin{pmatrix} c_2 \alpha_1 & c_2 \alpha_2 & 0 \\ 0 & 0 & c_2 \alpha_3 \\ 0 & c_2 \alpha_4 & 0 \end{pmatrix} = \begin{pmatrix} c_1 c_2 \alpha_1 & c_1 c_2 \alpha_2 & 0 \\ 0 & 0 & c_1 c_2 \alpha_3 \\ 0 & c_1 c_2 \alpha_4 & 0 \end{pmatrix} = (c_1 \cdot c_2) \cdot A.$$

Значит, шестая аксиомы выполняется.

- 7) Так как для любого $c \in R$ и любых матриц $A, B \in V$ справедливо равенство $c \cdot (A + B) = c \cdot A + c \cdot B$, то справедлива седьмая аксиома.
- 8) Так как для любых чисел c_1, c_2 и любой матрицы $A \in V$ справедливо равенство $(c_1 + c_2) \cdot A = c_1 \cdot A + c_2 \cdot A$, то восьмая аксиома выполняется.

Таким образом, множество V является линейным пространством относительно указанных операций.

Чтобы построить базис пространства V, придадим переменным $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ последовательно следующие наборы значений:

1)
$$\alpha_1 = 1, \alpha_2 = 0, \alpha_3 = 0, \alpha_4 = 0;$$

3)
$$\alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 1, \alpha_4 = 0;$$

2)
$$\alpha_1 = 0, \alpha_2 = 1, \alpha_3 = 0, \alpha_4 = 0;$$

4)
$$\alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 0, \alpha_4 = 1.$$

Получим соответственно матрицы

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Покажет, что система векторов E_1, E_2, E_3, E_4 является базисом пространства V.

Для этого достаточно показать, что матричное равенство $c_1 \cdot E_1 + c_2 \cdot E_2 + c_3 \cdot E_3 + c_4 \cdot E_4 = O$ выполняется только при $c_1 = c_2 = c_3 = c_4 = O$.

Действительно,

$$c_1 \cdot E_1 + c_2 \cdot E_2 + c_3 \cdot E_3 + c_4 \cdot E_4 = O \Leftrightarrow$$

$$\Leftrightarrow \begin{pmatrix} c_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & c_3 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & c_4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & c_4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & c_4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & c_4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & c_4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & c_4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & c_4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & c_3 \\ 0 & c_4 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} c_1 & c_2 & 0 \\ 0 & 0 & 0 \\$$

 $c_1 = c_2 = c_3 = c_4 = 0$. Значит, множество матриц E_1, E_2, E_3, E_4 образует систему линейно независимых векторов пространства V .

Так как любая матрица $A = \begin{pmatrix} \alpha_1 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \\ 0 & \alpha_4 & 0 \end{pmatrix}$ пространства V однозначно выражается через

матрицы $E_1, E_2, E_3, E_4: A = \alpha_1 E_1 + \alpha_2 E_2 + \alpha_3 E_3 + \alpha_4 E_4$, то указанные четыре матрицы образуют базис пространства V, при этом количество векторов в базисе определяет размерность пространства V, то есть $\dim V = 4$.

в) Пусть данная прямая l задана уравнением Ax + By + C = 0; $A^2 + B^2 \neq 0$; $A, B, C \in R$. Обозначим V — множество всех плоских векторов, ортогональных прямой l, тогда $V = \{\vec{x} = k \cdot (A; B) : k \in R\}$.

Множество V является линейным пространством, в котором $\vec{0} = 0 \cdot (A;B) = (0;0)$ и $-\vec{x} = (-A;-B)$.

Обозначим $\vec{e}=(A;B)$. Так как $\vec{e}\neq \vec{0}$, то система, состоящая из одного ненулевого вектора, является линейно независимой. Так как любой вектор $\vec{x}\in V$ можно записать в виде $\vec{x}=k\cdot\vec{e}=k(A;B)$, то \vec{x} однозначно выражается через \vec{e} , что означает, что \vec{e} –базис линейного пространства V, а его размерность равна 1.

Пример 6. Дано линейное пространство $V = R^3$.

Докажите, что данный набор векторов $\vec{e}_1 = (0;1;2)$, $\vec{e}_2 = (1;0;1)$, $\vec{e}_3 = (-1;2;4)$ образует базис линейного пространства V и найдите координаты вектора $\vec{y} = (-2;4;5)$ в этом базисе.

Решение.

Известно, что базисом пространства R^3 является любая тройка некомпланарных векторов. Поэтому проверим компланарность векторов $\vec{e}_1, \vec{e}_2, \vec{e}_3$. Для этого найдем их смешанное произведение:

$$(\vec{e}_1, \vec{e}_2, \vec{e}_3) = \begin{vmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ -1 & 2 & 4 \end{vmatrix} \begin{vmatrix} s_{2} + s_{3} \\ s_{2} + s_{3} \\ -1 & 2 & 4 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 2 \\ 0 & 2 & 5 \\ -1 & 2 & 4 \end{vmatrix} = -1 \cdot (5 - 4) = -1.$$

Так как $(\vec{e}_1, \vec{e}_2, \vec{e}_3) = -1 \neq 0$, то векторы $\vec{e}_1, \vec{e}_2, \vec{e}_3$ не компланарны и, следовательно, образуют базис в пространстве R^3 .

Найдем координаты вектора \vec{y} в базисе $\vec{e}_1, \vec{e}_2, \vec{e}_3$. Для этого представим вектор \vec{y} в виде линейной комбинации векторов $\vec{e}_1, \vec{e}_2, \vec{e}_3$: $\vec{y} = y_1 \cdot \vec{e}_1 + y_2 \cdot \vec{e}_2 + y_3 \cdot \vec{e}_3$.

Тогда тройка чисел $(y_1; y_2; y_3)$ и будет являться координатами вектора \vec{y} в базисе $\vec{e}_1, \vec{e}_2, \vec{e}_3$. Получим

$$\vec{y} = y_1 \cdot \vec{e}_1 + y_2 \cdot \vec{e}_2 + y_3 \cdot \vec{e}_3 \Leftrightarrow y_1 \cdot \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + y_2 \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + y_3 \cdot \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \\ 5 \end{pmatrix} \Leftrightarrow \begin{cases} y_2 - y_3 = -2, \\ y_1 + 2y_3 = 4, \\ 2y_1 + y_2 + 4y_3 = 5. \end{cases}$$

Решим полученную систему методом Гаусса:

$$\begin{pmatrix} 0 & 1 & -1 & | & -2 \\ 1 & 0 & 2 & | & 4 \\ 2 & 1 & 4 & | & 5 \end{pmatrix} \xrightarrow{S_1 \leftrightarrow S_2} \begin{pmatrix} 1 & 0 & 2 & | & 4 \\ 0 & 1 & -1 & | & -2 \\ 2 & 1 & 4 & | & 5 \end{pmatrix} \xrightarrow{S_2 + (-2)S_1} \begin{pmatrix} 1 & 0 & 2 & | & 4 \\ 0 & 1 & -1 & | & -2 \\ 0 & 1 & 0 & | & -3 \end{pmatrix} \xrightarrow{S_3 + (-1)S_2} \begin{pmatrix} 1 & 0 & 2 & | & 4 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 1 & | & -1 \end{pmatrix}.$$

Полученной матрице соответствует система линейных уравнений:

$$\begin{cases} y_1 + 2y_3 = 4, \\ y_2 - y_3 = -2, \\ y_3 = -1, \end{cases}$$

из которой находим $y_3=-1, y_2=-3, y_1=6$. Значит, $\vec{y}=6\cdot\vec{e}_1-3\cdot\vec{e}_2-\vec{e}_3$.