Ben Langmead

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials) to tell me briefly how you are using the slides. For original Keynote files, email me (ben.langmead@gmail.com).

We have focused on *exact* matching...
... in reality, we have to deal with *differences*

Read

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC

Reference

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC **ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA STCTGCCAAACCCCAAAA** AACCCCCCCCCCCCCCCTTCTGGCCACAGC ACAAAGAACCCTAACACCAGCCTAACC/ TTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAAC/ ATTATTTT CATACTACTAAT CTCATCAATACAACCCCCGCCCAT/ TACCCAGCA CTAACCCCATA CCCCGAACCAACCAAACCCCAAAC CACCCCCCACAGTTT CCTCCTCAAA GCAATACACTGACCCGCTCAAAC CCTGGATTTTGGATCCAC TTGGCCTAAA CTAGCCTTTCTATTAGCTCTTAG AAGATTACACATGCAAGCA **TCCAGTGAGT** TCACCCTCTAAATCACCACGATC AAAGGAACAAGCATCAAGCACG **AATGCAGCTC** TTAGCAATAA ACGAAAGTTTAACTAAGCTATACT ACCCCAGGGTTGGTCAATTTCGT CCAGCCACCGC GGTCACACGATTAACCCAAGTCAA1. GAAGCCGGCGTAAAGAGTGTT **TAGATCACCCCC** TCCCCAATAAAGCTAAAACTCACCTGA TTGTAAAAAACTCCAGT **M**CAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACA CAATAGCTAAG GGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAU GCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCA AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGC CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTAC ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTT **AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTAA** AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCACCC AAGTATACTTCAAAGGACATTTAACTAAAACCCCTACGCATTTATATAGAGGAGACA CGTAACCTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACCTGCATAATGAĀĞ GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG **AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA** TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT ACCTAAGAACAGCTAAAAGAGCACACCCGTCTATGTAGCAAAATAGTGGGAAGATTTATA GGTAGAGGCGACAAACCTACCGAGCCTGGTGATAGCTGGTTGTCCAAGATAGAATCTTAG TTCAACTTTAAATTTGCCCACAGAACCCTCTAAATCCCCTTGTAAATTTAACTGTTAGTC ACACCCATAGTAGGCCTAAAAGCAGCCACCAATTAAGAAAGCGTTCAAGCTCAACACCCA CTACCTAAAAAATCCCAAACATATAACTGAACTCCTCACACCCAATTGGACCAATCTATC **ACCCTATAGAAGAACTAATGTTAGTATAAGTAACATGAAAACATTCTCCTCCGCATAAGC AAGTCATTATTACCCTCACTGTCAACCCAACACAGGCATGCTCATAAGGAAAGGTTAAAA** AAAGTAAAAGGAACTCGGCAAATCTTACCCCGCCTGTTTACCAAAAACATCACCTCTAGC **ATCACCAGTATTAGAGGCACCGCCTGCCCAGTGACACATGTTTAACGGCCGCGGTACCCT**

Sequence differences occur because of...

- 1. Sequencing error
- 2. Genetic variation

Hamming distance

For X & Y where |X| = |Y|, hamming distance = minimum # substitutions needed to turn one into the other

Hamming distance = 3

Edit distance

(AKA Levenshtein distance)

For X & Y, edit distance = minimum # edits (substitutions, insertions, deletions) needed to turn one into the other

Like exact matching, but *pattern P* may be within a certain *distance* (usually Hamming or edit) of *T*. Each such place is an *approximate match*.

Allowing edits is more challenging than just allowing mismatches

We'll return to edits

```
def naive_approx_hamming(p, t, maxDistance):
    occurrences = []
    for i in range(len(t) - len(p) + 1): # loop over alignments
        nmm = 0
        for j in range(len(p)):
                                  # Loop over characters
            if t[i+j] != p[j]:
                                          # compare characters
                                          # mismatch
                nmm += 1
                if nmm > maxDistance:
                    break
                                          # exceeded max hamming dist
        if nmm <= maxDistance:</pre>
          occurrences.append(i)
                                          # approximate match
    return occurrences
```

http://bit.ly/CG_NaiveApprox

Wanted: way to apply exact matching algorithms to approximate matching problems

If P occurs in T with 1 edit, then u or v appears with no edits

If *P* occurs in *T* with up to *k* edits...

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

5 partitions 4 edits (X)

Pigeonhole principle: k+1 pigeons, k holes. At least one has >1 pigeon!

We have *k* pigeons, *k*+1 holes, at least one... ...is *empty*

7

What algorithm can we use?

Any exact matching algorithm

If we have a k-mer index, we can use that

Naive exact matching

Boyer-Moore

For Hamming distance, verification is essentially just the inner loop of naive_approx_hamming from before

Advantages

Reuse favorite exact matching algos; fast and easy

Flexible; works for Hamming and edit distance*

Disadvantages

Large *k* yields small partitions matching many times by chance; lots of verification work

k+1 exact matching problems, one per partition

^{*} we don't know how to do edit distance verification yet

Implementation of pigeonhole principle with Boyer-Moore as exact matching algorithm: http://j.mp/CG_ApproxBM

	Boyer-Moore, exact			Boyer-Moore, ≤1 mismatch with pigeonhole			Boyer-Moore, ≤2 mismatches with pigeonhole		
	# character comparisons	wall clock time	# matches	# character comparisons	wall clock time	# matches	# character comparisons	wall clock time	# matches
P: "tomorrow" T: Shakespeare's complete works	786 K	1.91s	17	3.05 M	7.73 s	24	6.98 M	16.83 s	382
P: 50 nt string from Alu repeat* T: Human reference (hg19) chromosome 1	32.5 M	67.21 s	336	107 M	209 s	1,045	171 M	328 s	2,798

^{*} GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

But doesn't *have to* be "at least one of" ...

what would we have to change for "at least two of"?

If *P* occurs in *T* with up to *k* edits, then at least two of _____ must appear with 0 edits

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

But doesn't *have to* be "at least one of" ...

what would we have to change for "at least two of"?

If P occurs in T with up to k edits, then at least two of $p_1, p_2, ..., p_{k+2}$ must appear with 0 edits

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

Let $p_1, p_2, ..., p_j$ be a partitioning of P. If P occurs with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must occur with $\leq ???$ edits.

If *P* occurs in *T* with up to *k* edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

Let $p_1, p_2, ..., p_j$ be a partitioning of P. If P occurs with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must occur with $\leq floor(k / j)$ edits.

At least one of $p_1, p_2, ..., p_5$ occurs with...

≤1 edits

$$|XX| |XX| |XX| |XX| |XX| | k = 10 edits \le 2 edits$$

XX

k = 9 edits

XX

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_j$ must appear with floor(k/j) edits

Pigeonhole principle with j = k + 1

If P occurs in T with up to k edits, then at least one of $p_1, p_2, ..., p_{k+1}$ must appear with 0 edits

Let j = k + 1

Why?

Smallest value s.t. floor(k / j) = 0

Why make floor(k / j) = 0?

So we can use exact matching

Why is smaller j good?
Yields fewer, longer partitions

Why are long partitions good?

Makes exact-matching filter more specific, minimizing # candidates

A different principle

We partitioned *P* into non-overlapping substrings

Now consider *overlapping* substrings

Approximate string matching: more principles

Say substrings are length q. There are n - q + 1 such substrings.

kq is worst case; could be < kq

1 edit to *P* changes *at most q* substrings

Minimum # of length-q substrings unedited after k edits? n - q + q

q-gram lemma: if *P* occurs in *T* with up to *k* edits, alignment must contain *t* exact matches of length *q*, where $t \ge n - q + 1 - kq$

Approximate string matching: more principles

If *P* occurs in *T* with up to *k* edits, alignment contains an exact match of length q, where $q \ge floor(n / (k + 1))$

Obtained by solving for q: $n - q + 1 - kq \ge 1$

Exact matching filter: find matches of length floor(n / (k + 1)) between T and any substring of P. Check vicinity for full match.

Approximate matching principles

Non-overlapping substrings

Overlapping substrings

	Pigeonhole principle	q-gram lemma			
General	$p_1, p_2,, p_j$ is a partitioning of P . If P occurs with $\leq k$ edits, at least one partition matches with $\leq floor(k \mid j)$ edits.	If P occurs with $\leq k$ edits, alignment contains t exact matches of length q , where $t \geq n - q + 1 - kq$			
	Pigeonhole principle with $j = k + 1$	q-gram lemma with $t = 1$			
Specific	$p_1, p_2,, p_{k+1}$ is a partitioning of P . If P occurrs in T with $\leq k$ edits, at least one partition matches exactly.	If P occurs with $\leq k$ edits, alignment contains an exact match of length q where $q \geq floor(n / (k + 1))$			

Sensitivity

Sensitivity = fraction of "true" approximate matches discovered by the algorithm

Lossless algorithm finds all of them, lossy algorithm doesn't necessarily

We've seen *lossless* algorithms. Most everyday tools are *lossy*. Lossy algorithms are usually much speedier & still acceptably sensitive.

Example lossy algorithm: pick q > floor(n / (k + 1))