P5设计文档

顶层设计

Pataputh.

I,D,E,M,W与模块 转发MUX ID LE IM IW 4个流水寄存器

> 一>允许有多的无用寄存器 不考虑性能,仅考虑简单+功能

Control:

分布对指令体码(内容翻转控制信号,PC+8的问题) 口级有自级的AT控制器,其它级ATI即可 冒险控制信号(Stall and bypass)

编码注意

用一个宏头文件专门来写宏定义,如果仅是一个、V中用的话local parameter to

SK local 用就不要用宏了、避免重化

命名上:流水级一元件一面(1/0)(定义写在使用的后面的吗?)

addu subu
ori Lui
IW sw
beg j jal jr
nop

教发

若无需读数据,如何处理? >> AI AZ置0,0寄存器从不驻发

无需处理是否应转发,直接转发即可若是要读reg的情况,海色外的然较 若是无需读reg的情况,后面还个MUX,转引不影响(此时默队转发MUX信号为0)

伏选新的那一条指令

程发争件:编号相同且不为O(哪次有错误指令) 已产生正确结果 Tnew=0 gif we = TE

P级 需分析与EMW级的数据转发问题

A1 D_A1 == M_A3 && M_A3 != 5'd0 && M_Tnew == 0 D_A1 == E_A3 && E_A3 != 5'd0 && E_Tnew == 0

AZ: D_AZ == M_A3&& M_A3!=5'd0 && M_Tnew==0

E级 仅需分析与MW级的数据转发问题 AZ与A1一种

M级、仅需分析与W级的数据转发问题 AZ = M_AZ == W_A3 & W_A3 != 5'do

D_mux_Al_mod=2dl 7else=0 D_mux_Al_mod=2dz

D_mux_A2_mod = | else=0

E-mux_Al_mod=2'dl

脚转

用3延迟槽, base 变为 PC+8 jal, jalR的图写都视为普通的图写来做,

control多一个输出信号。is_branch

beq jſ jal

暂停.

仪在口级有暂停的可能

行为:

海结艾 清陰E→插入NOP 想想豁襲中哪些要改了) 海结】 替PC (PC蛋有效个的能)

指生在基别的意思

方法、仅口级暂停,口级会有2个Tusc

Tuse

两个 Tuse >没必要流水,你都级使用

Tuse_1 与 A1 对应

Tune_Z 与 AZ对应

Tnew

Trew >W级Tnew 以为0 每个环节都有分析设际器译出X-grt_A3

已确定是同一寄存器时

若 Tnew > Tuse 暂停 若 Tnew & Tuse 转发解决

·D_A|== E-A3&& E-A3!=5'do. & Tuse-1 < E-Tnew · Tuse-1 和Tuse-2

默从取马

P_AZ==E_A3 & E_A3!=5'd0 & Tuse_Z < E_ Tnew

有可能器器等件。他 M-Tnew 为0家1

Α	В	С	D	E	F	G	Н		J	K	L	M	lnon N
		a1	addu D a1	subu D a1	ori D a1	lui	lw D_a1	sw D a1	beq D a1	J	jal	jr D a1	nop
			D_a1 D_a2	D_a1 D_a2	D_a1		D_a1	D_a1 D_a2	D_a1 D_a2			D_a1	
		a3	W_a3	W_a3	W_a3	W_a3	W_a3	D_a2	D_a2		W_a3=31		
	grf	wd	W_wd	W_wd	W_wd	W_wd	W_wd				W_wd		
	9	we	W_grf_we	W_grf_we	W_grf_we	W_grf_we	W_grf_we				W_grf_we		
		clk											
		rst											
	cmp	cmp_in_1							D_v1				
D _		cmp_in_2			D :	.	6 .	D .	D_v2				
	av.t	ext_i			D_imm	D_imm	D_imm	D_imm					
	ext	mod			ext_mod(00)	ext_mod(10)	ext_mod(01)	ext_mod(01)					
		instr[25:0]							instr[25:0]	instr[25:0]	instr[25:0]		
		grf_v							111001[20.0]	111001[20.0]	111001[20.0]	D v1	
	npc	npc_pc_in	рс	рс	рс	рс	рс	рс	рс	рс	рс	рс	
	·			npc_mod(000)	ľ	npc_mod(000)	nna mad(000)		npc_mod(000)			npc_mod(011)	
		npc_moa	npc_mod(000)	npc_mod(000)	npc_mod(000)	npc_moa(000)	npc_moa(000)	npc_mod(000)	npc_mod(001)	npc_mod(U1U)	npc_mod(010)	npc_mod(U11)	
7													
3		alu_in_1		E_v1	E_v1		E_v1						
E	alu		E_v2	E_v2	E_v2	E_ext_o	E_ext_o	E_ext_o			pc 8(流水pc)		
		alu_mod	`alu_add(000)	`alu_sub(001)	`alu_or(010)	`alu_in2(011)	`alu_add(000)	`alu_add(000)			`alu_in2(011)		
		add					M_alu_o	M_alu_o					
		data					IVI_did_O	M_v2					
M	DM	DM_we						M_DM_we					
		clk											
6		rst											
7													
\A/	只有一个mux,		Mrlin -	VA/ =1=) A/ - I	\A/ = =	NA DNA -				M. alas a		
W	用于选出W_wd, 写入数据		W_alu_o	W_alu_o	W_alu_o	W_alu_o	M_DM_o				M_alu_o		
	一八数加		1										
	流水寄存	器											
nstr	DEMW												
рс	DEMW												
v1	E												
v2	EM												
e32	E												
alu_out	MW												
DM_data	a W												
Tnew	EM												
	LIVI												
008用干	转发,pc用	干输出	DM中的r	c结果									
	7 X X Y D U / I J	J 789 LL	PIVI HJP	~~H~									

信号设计

AT设计

	А	В	С	D	Е	F	G	Н	T	J	K	L
1	lui可以在E	级转发而没	有转发									
2	转发时会对	付A3进行判	断,如果A	3为0则不进	行转发。无	论Tnew						
3												
4												
5		addu	subu	ori	lui	lw	SW	beq	j	jal	jr	nop
6	Tnew	1	1	1	0	2	0 (默认)	0 (默认)	0 (默认)	0	0 (默认)	0 (默认)
7												
8	T_use1	1	1	1	3 (默认)	1	1	0	3 (默认)	3 (默认)	0	3 (默认)
9	T_use2	1	1	3 (默认)	3 (默认)	3 (默认)	2	0	3 (默认)	3 (默认)	3 (默认)	3 (默认)
10												
11	Tues赵	过小越会暂停	序,默认取:	最大的3								
12	Tnew起	战大越会暂停	亭,默认取:	最小值0								
13												
14	Tuse <tne< td=""><td>W</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tne<>	W										

控制信号

A	B	С	D	Е	F	G	Н		J	K	
	input										
instr[31:0]											
cmp_is0											
cmp_g0											
(output				1.						
	addu	subu	ori	lui	lw	sw	beq	J	jal	jr	nor
grf_a1	aa1[25:21]	aa1	aa1		aa1	aa1	aa1			aa1	
grf_a2	aa2[20:16]	aa2	_	_	_	aa2	aa2			_	
grf_a3	aa3[15:11]	aa3	aa2	aa2	aa2	0	0	0	31	0	0
grf_we	1	1	1	1	1				1		
ext_mod			`ext_0(00)	`ext_lui(10)	`ext_sign(01)	`ext_sign(01)					
							`npc_add4 (000)				
npc_mod	`npc_add4 (000)	`npc_brch (001)	`npc_j (010)	`npc_j (010)	`npc_jr (011)						
alu_mod	`alu_add(000)	`alu_sub(001)	`alu_or (010)	`alu_in2 (011)	`alu_add(000)	`alu_add(000)			`alu_in2(011)(输入po	8)	
mux_alu_in2	000 (v2)	000 (v2)	001 (ext_out)	001 (ext_out)	001 (ext_out)	001 (ext_out)			010 (pc8)		
DM_we						1					
mux_W_wd	00 (alu_out)	00 (alu_out)	00 (alu_out)	00 (alu_out)	01 (DM_out)				00 (alu_out)		
	`alu_add(000)		`ext_0(00)		`npc_add4 (000)						
	`alu_sub (001)		`ext_sign(01)	-	`npc_brch (001)	-					
	`alu_or (010)		`ext_lui(10)		`npc_j (010)	-					
	`alu_in2 (011)				`npc_jr (011)						
直接将alu的第	二个输入放到输出处	ト. 用于lui和ial。	&合讲alu之后M级	的转发、W级的写	入就很方便了						

P5思考题

流水线冒险

- Q1:在采用本节所述的控制冒险处理方式下, PC 的值应当如何被更新?请从数据通路和控制信号两方面进行说明。
- 1 对于顺序处理, PC+4。
- 2 对于跳转指令,
- 3 对于brch类,将base置为PC+4再进行操作。
- 4 对于 j 类,直接使用位拼接运算符计算
- Q2:对于 jal 等需要将指令地址写入寄存器的指令,为什么需要回写 PC+8?
- 1 编译时会对指令进行优化,保证跳转指令后的一条指令可以直接顺序执行,无需考虑当前跳转指令的情况。
- 2 因此,当使用jr跳回时应该跳过这一条指令,因此需要写回PC+8

数据冒险的分析

- Q:为什么所有的供给者都是存储了上一级传来的各种数据的流水级寄存器,而不是由 ALU 或者 DM 等部件来提供数据?
- 1 1. 使用流水寄存器的优点: 在一个时间周期内,转发回去的数据都是稳定的。相比之下如果连接部件,可将电路视为逻辑电路,其信号不稳定。
- 2 2. 原理上看直接连接部件来转发是可行的,但是这样意味着需要延长时钟周期的长度。例如从M级转发回E级,需要等M级处理完以后将数据转发回ALU的输入端口让ALU再跑一次,此时单个时钟周期时长翻倍。得不偿失。

AT法处理流水线数据冒险

Q1: think1-4

- 1. **Thinking 1**:如果不采用已经转发过的数据,而采用上一级中的原始数据,会出现怎样的问题?试列举指令序列说明这个问题。
- 1 例如
- 2 add \$t1, \$t1, \$t2
- 3 add \$t3, \$t1, \$t2
- 4 第一条add还没有将结果写入寄存器中,add就已经读了\$t1

- 2. **Thinking 2**: 我们为什么要对 GPR 采用内部转发机制?如果不采用内部转发机制,我们要怎样才能解决这种情况下的转发需求呢?
- 1 采用内部转发机制是因为GPR本身既可以视为是D级部件,也可以视为W级部件,而W级行为可能会对D级行为产生影响,使用内部转发可以消除这种影响,使得读取GRF值的时候可以读出正确的值,是对GRF的优化。
- 2 如果不采用内部转发,需要在寄存器外部放置一个MUX来对"GRF输出信号"和"GRF写入信号"进行选择,选择方式与内部转发方法一致。 或者,在发生GRF冲突时,强制将流水线暂停一个周期。
- 3. Thinking 3: 为什么 0号寄存器需要特殊处理?选择信号的生成规则是:只要**当前位点的读取寄存器地址和某转发输入来源的** 写入寄存器地址相等且不为 0
- 1 原因有两个:
- 2 1.0号寄存器无需转发,可以直接读取值0
- 3 2. 利用0号寄存器不可写入的特点,对于无需写入的情况,可以直接将A3置为0,表示其无需转发。
- 4. **Thinking 4**: 什么是 "最新产生的数据"?
- 1 对E级而言,M级和W级都有可能需要向E级进行转发,此时应该选择"最新"的结果即M级的信息来转发。

Q2: 在 AT 方法讨论转发条件的时候,只提到了"供给者需求者的A相同,且不为 0",但在 CPU 写入 GRF 的时候,是有一个 we 信号来控制是否要写入的。为何在 AT 方法中不需要特判 we 呢?为了**用且仅用** A 和 T 完成转发,在翻译出 A 的时候,要结合 we 做什么操作呢?

1 AT法中,A表示需要写入的寄存器编号。对0号寄存器,无需转发,其值一定为0。对于不需要写入寄存器的指令而言,可以将A3置为0,表示无需转发。此时,只要A!=0,说明其必然是需要写入寄存器的,x_grf_we必定为1。 在翻译A时,如果grf_we不为0,则置A为0。