

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

FEBRUARY/MARCH 2010

MEMORANDUM

MARKS: 150

This memorandum consists of 19 pages.

1.1.1 $(x-3)(x+5) = 9$	
$x^2 + 2x - 15 = 9$	✓ expansion
$x^2 + 2x - 24 = 0$	✓ standard form
(x+6)(x-4) = 0	
	✓ factorisation
x=4 or $x=-6$	✓ answers
	(4)
$1.1.2 2x^2 - 3x - 2 \le 0$	✓ factors
$(2x+1)(x-2) \le 0$	ractors
Critical values: $-\frac{1}{2}$ and 2	✓ critical values
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$-\frac{1}{2} \le x \le 2$	✓✓ answer (4)
1.2 $y = -2x - 2$ (1)	$\checkmark y = -2x - 2$
$-2x^2 + 8xy + 42 = y(2)$	
$-2x^2 + 8x(-2x - 2) + 42 = -2x - 2$	✓ substitution
$-2x^{2} - 16x^{2} - 16x + 42 + 2x + 2 = 0$	
$-18x^2 - 14x + 44 = 0$	✓simplification
$9x^2 + 7x - 22 = 0$	
(9x-11)(x+2) = 0	✓ factors
$\therefore x = \frac{11}{9} \qquad \text{or} \qquad x = -2$	\checkmark answers for x
$\therefore y = -2\left(\frac{11}{9}\right) - 2 \qquad \therefore y = -2(-2) - 2$	
$\therefore y = -\frac{40}{9} \qquad \qquad \therefore y = 2$	✓ answers for y (7)
OR	

Copyright reserved

$$y = -2x - 2$$
....(1)
- $2x^2 + 8xy + 42 = y$(2)

$$y = -2(x+1) = \frac{-2(x^2 - 21)}{1 - 8x}$$

$$(x+1)(1-8x) = x^2 - 21$$

$$x - 8x^2 + 1 - 8x = x^2 - 21$$

$$9x^2 + 7x - 22 = 0$$

$$(9x - 11)(x + 2) = 0$$

$$\therefore x = \frac{11}{9}$$

$$\therefore x = \frac{11}{9} \qquad \text{or} \qquad x = -2$$

$$y = -2\left(\frac{11}{9}\right) - 2 \qquad y = -2(-2) - 2$$

$$\therefore y = -2(-2) - 2$$

$$\therefore y = -\frac{40}{9}$$

$$\therefore y = 2$$

$$\checkmark$$
 answers for x

✓
$$\checkmark$$
 answers for y

OR

$$y = -2x - 2$$
....(1)
 $-2x^2 + 8xy + 42 = y$(2)

$$x = \frac{\left(-y - 2\right)}{2}$$

$$-2\left(\frac{(-y-2)}{2}\right)^2 + 8y\left(\frac{(-y-2)}{2}\right) + 42 - y = 0$$

$$-2\left(\frac{y^2+4y+4}{4}\right)+4y(-y-2)+42-y=0$$

$$y^2 + 4y + 4 + 8y^2 + 16y - 84 + 2y = 0$$

$$9y^2 + 22y - 80 = 0$$

$$(y-2)(9y+40)=0$$

$$y = 2$$
 or $y = -\frac{40}{9}$

$$x = -2$$
 or $x = \frac{11}{9}$

$$\checkmark x = \frac{(-y-2)}{2}$$

✓ substitution

✓ simplification

√ factors

 \checkmark answers for v

✓✓ answers for x

(7)

1.3	$g(x) = x^2$	
1.5		$\checkmark g(9) = 81$
	g(9) = 81	
	$f(x) = \sqrt{4x}$	
	$f(g(9)) = f(81) = \sqrt{4(81)}$	✓ substitution
	= 2(9)	✓ answer
	= 18	(3)
	OR	(0) 02
	(0) 02	\checkmark $g(9) = 9^2$ \checkmark substitution
	$g(9) = 9^2$	✓ answer
	$\therefore f(g(9)) = \sqrt{2^2 \cdot 9^2} = 18$	(3)
	OR	
	$f(g(x)) = \sqrt{4g(x)}$	✓
	$=\sqrt{4x^2}$	$f(g(x)) = \sqrt{4g(x)}$
	=2x	✓ substitution
	f(g(9)) = 2(9)	2 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	= 18	✓ answer
1.4		(3)
1.4	14	
	$\sqrt{63}-\sqrt{28}$	
	$=\frac{14}{3\sqrt{7}-2\sqrt{7}}$	✓ simplification
	$=\frac{14}{\sqrt{7}}\times\frac{\sqrt{7}}{\sqrt{7}}$	✓ simplification
	$\sqrt{7}$ $\sqrt{7}$	✓ rationalising the
	$=2\sqrt{7}$	denominator
	a = 2 and $b = 7$	✓ answer
	But $2\sqrt{7} = \sqrt{28}$	(4)
	So $a = 1$ and $b = 28$ is also a solution.	
		[22]
		1

QUEST		
2.1	399; 360; 323; 288; 255 -39 -37 -35 -33 2 2 2 2	✓ 2 nd difference constant
	Let $T_n = an^2 + bn + c$	$\checkmark a = 1$
	Then	
	2a = 2	✓ $b+c=398$
	a=1	(21) 256
	$T_1 = 399$: $a+b+c=399$; $b+c=398$	$\checkmark 2b + c = 356$ $\checkmark b = -42$
	$T_2 = 360$: $4a + 2b + c = 360$; $2b + c = 356$	$\checkmark c = 440$
	b = -42	(6)
	c = 440	(6)
	$T_n = n^2 - 42n + 440$	
	\mathbf{OR} $2a = 2$	
	a=1	
	$T_2 - T_1 = -39$	✓ 2 nd difference
	$\begin{vmatrix} a_2 & a_1 & b_2 \\ 4a + 2b + c - a - b - c & = -39 \end{vmatrix}$	constant
	3a+b=-39	$\checkmark a = 1$
	3 + b = -39	$\checkmark 3a + b = -39$
	b = -42	$\checkmark b = -42$
	a+b+c=399	,
	1 - 42 + c = 399	$\checkmark a + b + c = 399$
	c = 440	✓ <i>c</i> = 440
	$T_n = n^2 - 42n + 440$	(6)
	OR	
	2a=2	✓ 2 nd difference
	a=1	constant
	$399 - T_0 = -41$	$\checkmark a = 1$
	$T_0 = 440.$	✓ $399 - T_0 = -41$
	But $T_0 = c$	$\checkmark c = 440$
	$\therefore c = 440$	✓
	$T_n = n^2 + bn + 440$	$399 = 1^2 + b(1) + 440$
	$399 = 1^2 + b(1) + 440$	
	399 - 441 = b	✓ b = -42
	-42 = b	
	$T_n = n^2 - 42n + 440$	
	OR	(6)

	The sequence is $20^2 - 1$; $19^2 - 1$; $18^2 - 1$; $17^2 - 1$; $T_1 = 20^2 = (20 - 0)^2 - 1$	✓✓ rewriting terms as squares
	$T_2 = 19^2 = (20-1)^2 - 1$	✓✓✓ establishing
	$T_3 = 18^2 = (20 - 2)^2 - 1$	that $T = (20 - (n-1))^2$
	$T_n = (20 - (n-1))^2 - 1 = (21 - n)^2 - 1$	$T_n = (20 - (n-1))^2$ $\checkmark T_n = (21 - n)^2$
	$I_n = (20 - (n-1))^{n-1} = (21 - n)^{n-1}$	$\begin{array}{c} \mathbf{V} I_n = (21 - n) \\ \end{array} \tag{6}$
2.2	$n^2 - 42n + 440 = 0$	✓ equation
	(n-22)(n-20) = 0	
	n = 22 and n = 20	
	both terms 22 and 20 have values of 1.	✓✓ answers
	OR	(3)
	$(21-n)^2 - 1 = 0$	
	21 - n = 1 or -1	✓ equation
	n = 20 or $n = 22$	✓✓ answers
		(3)
2.3	$n = \frac{-(-42)}{2(1)}$	
	2(1)	✓ answer
	n=21	(1)
	At the 21 st term, the lowest value is obtained.	
	OR	
	2n-42=0	
	2n = 42	
	n = 21	./
	∴ At the 21 st term, the lowest value is obtained.	✓ answer (1)
	OR	
	$T_n = (21-n)^2 - 1 :$	
	For $n = 21$, $T_n = (21 - n)^2 - 1 = (21 - 21)^2 - 1 = -1$	✓ answer
	For $n = 21$, the lowest value $(= -1)$ is obtained.	(1)
		[10]

3.1	Let	
	$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} $ (1)	\checkmark writing S_n as a
	Then	series
	$r \times S_n = r(a + ar + ar^2 + ar^3 + \dots + ar^{n-1})$	(): G
	$= ar + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + ar^{n} $ (2)	✓ writing $r.S_n$ as a series
	(2)-(1) gives:	
	$rS_n - S_n = ar^n - a$	✓ subtracting
	$S_n(r-1) = a(r^n - 1)$	✓ removing
	$a(r^n-1)$	common factors
	$S_n = \frac{a(r^n - 1)}{(r - 1)}$	(4)
3.2	$a=3 \; ; \; r=\frac{1}{3}$	$\checkmark r = \frac{1}{2}$
	$S_{\infty} = \frac{a}{1 - r}$	3
	$\int_{-\infty}^{\infty} 1-r$	
	$=\frac{3}{1}$	✓ substitution
	$=\frac{3}{1-\frac{1}{3}}$	
	3	d amaxxxan
	$=\frac{9}{2}$	✓ answer (3)
		[7]

QUESTION 4

4.1	Term	Income	Expenses	Savings	✓ 30 000	
	1	120 000	90 000	30 000	✓ 27 000	
	2	132 000	105 000	27 000	✓ 24 000	
	3	144 000	120 000	24 000		
	30 000 +	27 000 + 24	000 ++ 0.		✓ series	(4)
4.2	_	= Income – E	-			
		•	20 000 + 12 00	· /		
	Expenses	s in year $n =$	$90\ 000 + 15\ 0$	000(n-1)		
	12000	0 + 12000(n - 1)	-1) = 90000 +	-15000(n-1)	✓✓ equating	
	30000+	12000n - 120	000 = 15000n	-15000		
		330	000 = 3000n			
			n = 11		✓ answer	
	∴ After	11 years.				(3)
	OR					

	$a = 30\ 000$ $d = -3000$	✓✓ equation
	$T_n = 30000 + (n-1)(-3000)$ 0 = 30000 - 3000n + 3000 3000n = 33000 $\therefore n = 11$ \therefore After 11 years	✓ answer (3)
4.3	120000 + 12000(25 - 1) = 90000 + x(25 - 1) $x = 13250$	✓ equating ✓ answer (2) [9]

5.1	y = 1	✓ answer
	x = 3	✓ answer
		(2)
5.2	$y = \frac{x-1}{x-3}$ $= \frac{1}{3}$ $y-int\left(0; \frac{1}{3}\right)$ $y = \frac{x-1}{x-3}$ $\therefore f(0) = \frac{1}{3}$	✓ answer
	x-int: $0 = \frac{2}{x-3} + 1$	✓ substitution $y = 0$
	$0 = 2 + (x - 3)$ $1 = x$ $(1; 0)$ $f(x) = 0$ $\Rightarrow x - 1 = 0$ $\Rightarrow x = 1$	✓ answer (3)

6.1	$-x^2 + 7x + 8 = 0$	√ = 0	
	$x^2 - 7x - 8 = 0$	V	
	(x-8)(x+1) = 0	✓ factors	
	x = 8 or x = -1 A(-1; 0)	✓ answer A	
	B(8;0)	✓ answer B	
6.2			(4)
6.2	$-x^2 + 7x + 8 = -3x + 24$	✓ equating	
	$-x^2 + 10x - 16 = 0$	✓ standard form	
	$x^2 - 10x + 16 = 0$		
	(x-8)(x-2) = 0	✓ factors	
	x = 8 or $x = 2$	✓ answer	
	x-value of D is 2. (i.e. $a = 2$)		(4)
6.3	$ST = (-x^2 + 7x + 8) - (-3x + 24)$	✓ subtraction ✓ answer	
	$=-x^2+10x-16$	allswei	(2)
6.4	Maximum length of ST is at $x = \frac{-10}{2(-1)} = 5$.	✓ method	
	Maximum length of ST is $-5^2 + 50 - 16 = 9$.	✓ answer	(2)
	OR	✓ method	
	Maximum length of ST is $\frac{4(-1)(-16)-10^2}{4(-1)} = 9$	✓ answer	(2)
	4(-1)		(2) [12]

Mathematics/P1 10 DoE/Feb. - March 2010

QUESTION 7

7.1	$y = \log_3 x$	✓ answer	
			(1)
7.2	$y = f^{-1}(x)$	$y = f^{-1}(x)$ $\checkmark x\text{-intercept}$ $\checkmark \text{ shape}$	
	$y = f^{-1}(x-2)$	$y = f^{-1}(x-2)$ $\checkmark x\text{-intercept}$	
		✓ x-intercept ✓ shape	(4)
7.3	$2 \le x \le 5$	✓✓ answer	
			(2) [7]

QUESTION 8

9.1.1	Total amount $= P(1 + in)$	✓ substitution into
	=55000(1+0.1275(4))	simple interest formula
	= 83 050	✓ answer
	Monthly instalment $=\frac{83050}{4 \times 12}$	✓ ÷ 48
	4×12	
	= R 1730,21	✓ answer (4)
9.1.2	$55000 = \frac{x \left[1 - \left(1 + \frac{0.2}{12} \right)^{-12 \times 4} \right]}{\frac{0.2}{12}}$	✓ substitution into
	$x \mid 1 - \left(1 + \frac{1}{12}\right)$	formula
	$55000 = \frac{L}{0.2}$	$\checkmark i = \frac{0.2}{12}$
	$\frac{0.2}{12}$	$\checkmark n = 48$
	$x = R \ 1 \ 673,67$	$\checkmark n = 48$ $\checkmark \text{answer}$
	a better option because monthly repayments are less.	(4)
9.1.3	1673,67 × 48	
, , , , ,	= 80336,16	✓ 80336,16
	80336,16 = 55000(1+4i)	
		✓
	1,460657455 = 1 + 4i	80336,16 = 55000(1+4i)
	i = 0,11516436	
	Rate = 11,52%	✓ answer
		(3)
9.2	$25000[1-(1+0.1375)^{-n}]$	✓ substitution into
	$80000 = \frac{25000 \left[1 - (1 + 0.1375)^{-n}\right]}{0.1375}$	correct formula
	$\frac{11}{25} = 1 - (1 + 0.1375)^{-n}$	✓ simplification
	$\frac{14}{25} = (1+0,1375)^{-n}$	
	14	✓ taking log of both
	$\log \frac{14}{25} = -n \log(1{,}1375)$	sides
	n = 4,50054779	
	The money will last for 4 full years	✓ answer
	The money will last for 1 fair years	(4)
	OR	
	Candidate guesses 4 years.	
	Then balance available at the end of 4 years (after the 4 th	✓ guesses 4 years
	withdrawal) is	<i>S.</i>
	$80000(1+0.1375)^4 - 25000\left(\frac{(1+0.1375)^4 - 1}{0.1375}\right) = R11354,86.$	✓✓ calculates balance at end of 4 th year
	At the end of the 5 th year cannot have grown to R25000.	✓ conclusion about
		balance.
		(4)
<u> </u>		

9.3.1	A = P + (Pi)n which is a linear function of n .	✓ linear	(1)
9.3.2	P O n	\checkmark P > 0 \checkmark slope >0	(2)
	Accept also: A P O n		
9.3.3	The slope is Pi . Therefore this is the increase for A for each increase of 1 in n . OR $A(n+1) - A(n) = [P + Pi(n+1)] - [P + Pin]$ $= Pi[(n+1) - n]$ $= Pi$ OR	✓ Pi	(1)
	A(1) - A(0) = (P + Pi) - (P + 0) = Pi		[19]

10.1	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$=\lim_{h\to 0}\frac{\frac{1}{x+h}-\frac{1}{x}}{h}$	✓ substitution into correct formula	
	$= \lim_{h \to 0} \frac{\frac{x - (x + h)}{x(x + h)}}{h}$	✓ expansion	
	$= \lim_{h \to 0} \frac{-h}{x(x+h)} \times \frac{1}{h}$	✓ simplification	
	$= \lim_{h \to 0} \frac{1}{x(x+h)}$ $= -\frac{1}{x^2}$	✓ answer (4	4)
10.2	$y = (2-5x)^{2}$ $y = 4-20x+25x^{2}$	✓ simplification	
	$\frac{dy}{dx} = -20 + 50x$	✓✓ answers	3)
	OR		
	$y = (2-5x)^2$ By the chain rule	✓ simplification	
	$\frac{dy}{dx} = (2)(2 - 5x)(-5)$ $= -20 + 50x$	✓✓ answers (3	3) 7]

11.1	0 = x - 2		
	x = 2		
	A(2;0)	✓ answer	(1)
11.2	f(-1) = 0: $-a + c = 2$	$\checkmark -a+c=2$	(1)
	f(2) = 0: $8a - 2c = 2$	$\checkmark 8a-2c=2$	
	a = 1, c = 3	$\checkmark a = 1$ $\checkmark c = 3$	
	O.D.		
	OR		
	a(x+1)(x+1)(x-2) = 0	✓ factors	
	a(0+1)(0+1)(0-2) = -2	✓ substitution	
	-2a = -2		
	a = 1	$\checkmark a$ $\checkmark c = -3$	
	$f(x) = (x^2 + 2x + 1)(x - 2)$	$\checkmark c = -3$	
	c = -3		(4)
11.3	f'(x) = 0	$\checkmark f'(x) = 0$	
	$3x^2 - 3 = 0$	$\checkmark x^2 - 1$	
	$x^2 - 1 = 0$		
	(x+1)(x-1) = 0	✓ answer	
	B(1;-4)		(3)
11.4	$x-2=x^3-3x-2$	\checkmark equating f and g	
	$0 = x^3 - 4x$	✓ standard form	
	$0 = x(x^2 - 4)$		
	0 = x(x-2)(x+2)	✓ factors	
	$x_C = -2, \ y_C = (-2)^2 - 3(-2) - 2 = -4$	$\checkmark x_C = -2$ $\checkmark y_C = -4$	
	C(-2;-4)	$y_C = -4$	
	$m_{BC} = \frac{-4 - (-4)}{1 - (-2)}$		
		$\checkmark m = 0$	
	= 0BC is parallel to the <i>x</i> -axis.	✓ conclusion	(7)
	De is paramer to the x-axis.		(7)
	OR		
	Following from $C(-2; -4)$, B and C have the same y – coordinate,		
	viz. -4 . So BC is parallel to the <i>x</i> -axis.		(7)
	OB		
<u> </u>	OR		

	(2) (2)(.1)2		
	$(x-2) = (x-2)(x+1)^2$		
	$\therefore (x+1)^2 = 1 \text{ for } x \neq 2$		
	$\therefore x+1=\pm 1$		
	$\therefore x = 0 \text{ or } x = -2$		(-)
	y = -4		(7)
11.5	f''(x) = 0	$\checkmark f''(x) = 0$	
	6x = 0		
	x = 0	✓ answer	(2)
11.6	k < -4 or $k > 0$	✓ ✓ answer	(2)
		✓ or	(3)
11.7	f'(x) < 0		(3)
	-1 < x < 1	✓✓answer	
			(2)
	OR		
	$3(x^2-1)<0$		
	if (x+1)(x-1) < 0	✓✓answer	(2)
	-1 < x < 1		(2) [22]
	$1 - 1 < \lambda < 1$	1	122

12.1	Length of sides of square = $\frac{4-x}{4} = 1 - \frac{x}{4}$	✓ answer	(1)
12.2	$x = 2\pi r$		
	$r = \frac{x}{2\pi}$	$\checkmark r = \frac{x}{2\pi}$	
	Areas = $\left(\frac{4-x}{4}\right)^2 + \pi \left(\frac{x}{2\pi}\right)^2$	✓ sum of areas	
	$= \frac{16 - 8x + x^2}{16} + \frac{x^2}{4\pi}$ $= 1 - \frac{1}{2}x + \left(\frac{1}{16} + \frac{1}{4\pi}\right)x^2$	✓ simplification	
	$2 (16 4\pi)$	✓ simplification	
	OR		(4)
	$x = 2\pi r$	✓ r	
	$r = \frac{x}{2\pi}$	V r	
	$\left(1 - \frac{x}{4}\right)^2 + \pi \left(\frac{x}{2\pi}\right)^2$	✓ sum of areas	
	$1 - \frac{1}{2}x + \frac{x^2}{16} + \frac{x^2}{4\pi}$	✓ simplification	
	$1 - \frac{1}{2}x + \left(\frac{\pi + 4}{16\pi}\right)x^2$	✓ simplification	(4)
12.3	$x = \frac{-b}{2a}$		
	$=\frac{\frac{1}{2}}{(\pi+4)}$	✓✓ substitution	
	$2\left(\frac{\kappa+4}{16\pi}\right)$	✓ answer	(3)
	= 1,76 meter OR		
	OK .		

$f(x) = 1 - \frac{1}{2}x + \frac{x^2(\pi + 4)}{16\pi}$	$\checkmark f'(x) = \frac{1}{2} + \frac{\pi + 4}{8\pi} x$ $\checkmark f'(x) = 0$
$f'(x) = 0 = -\frac{1}{2} + \frac{\pi + 4}{8\pi} x$	
$4\pi = (\pi + 4)x$	
$x = \frac{4\pi}{\pi + 4}$	✓ answer (3)
x = 1,76 m for the circle and 2,24 m for the square	[8]

13.1	$4x + 2y \le 32 \therefore y \le -2x + 16$	✓ answer	
	x = x	✓ answer	
	$2x + 4y \le 36 \therefore y \le -\frac{x}{2} + 9$	✓ answer	
	$x + y \le 10 \qquad \therefore y \le -x + 10$		(3)
13.2	Attached graph	$\checkmark y = -2x + 16$	
		✓ $y = -2x + 16$ ✓ $y = -\frac{x}{2} + 9$ ✓ $y = -x + 10$ ✓ feasible region	
		$\checkmark y = -x + 10$	
		✓ feasible region	
		_	(4)
13.3	P = 60x + 80y	✓ answer	
			(1)
13.4	80y = -60x + P	13.4	
	3 P	✓ search line	
	$y = -\frac{3}{4}x + \frac{P}{480}$	scarch line	
	Maximum profit at (2; 8)	✓ ✓ (2;8)	
	:. Grade 10: 2 learners must be trained to give a maximum profit		
	Grade 11: 8 learners must be trained to give a maximum profit		(3)
13.5	$m=-rac{4}{3}$	$\checkmark m = -\frac{4}{3}$	
		3	
	Since the gradient of the new profit function is not equal to the	√ (6; 4)	
	gradient of the initial profit function, the new maximum point is		
	(6; 4) that gives an optimal solution.		(2)
			[12]
			[13]

QUESTION 13.2 & 13.4

Grade 10 learners