# Image Processing Facial Attribute Recognition

Guided by: Mr. Ly Quoc Ngoc

Group: VPN

| Luu Thi Hong Ngoc | 19127051 |
|-------------------|----------|
| Ho Thien Phuoc    | 19127517 |

Motivation

Challenges

Problem statement

Performance table

Principle - Method - Algorithm

Installation

### **Motivation**

### Scientific significance

▶ We propose to take advantage of attribute relationships in three ways: by using MCNN sharing the lowest layers amongst 40 attributes(groups) before splitting the network into 6 branches, each one of which focuses on a certain attribute group; sharing the higher layers for related attributes(different attributes belonging to the same group); and by building an auxiliary network(AUX) on top of the MCNN which utilizes the scores from all attributes to improve the final classification of each attribute.

### Application

- HCI required information about gender require information about gender.
- Expression in order to determine the mood of the user.
- Identity verification in low quality imagery to automatically search for suspects in surveillance video.

### Problem statement - Input, output

Input: a face image (an attribute vector)

Output: set of face images for each attribute vectors which represent each images, are similar to attribute vector of input.













### Problem statement - Framework



# Problem statement - Standard Dataset

### CelebA

CelebA dataset consists of 200k images respectively with 160k, 20k, and 20k images for training, validation, and testing sets. CelebA dataset provide the same 40 binary attributes.



































### Problem statement - Challenges



Datasets are extremely challenging, with large variations in subject pose, illumination and image quality.



Improving the accuracy of attribute classifiers

### Performance table

(Document attachment <a href="https://docs.google.com/document/d/1Xp2">https://docs.google.com/document/d/1Xp2</a> NOgoSk9KfOiv79c76

bH2qlx6s3SElQan3SHJhnY/edit?usp=sharing)

### MCNN - Principle

The input image is cropped to 227x227 and the training mean is subtracted. The image is then passed through the convolution layers and the fully connected layers to produce attribute scores. The attribute scores are then thresholded to give a yes or no answer. The red attributes indicate a lack of the attribute and the green attributes indicate a positive instance.

### MCNN and AUX - Method

There are two parts to this solution

- Face Attributes: Design a CNN that gives the facial attributes, given a face image
- 2. Face Similarity: Represent the face attributes in a vector space and use this to find similar faces

# MCNN and AUX - Method

### M (Multi-task learning)

- Used to facial landmark localization, pose estimation, action recognition, face detection, and many more
- 40 attributes share the lower layers in the CNN, so that information common to 40 the attributes can be learned. Applying M to attribute prediction is very natural given the strong relationships among the facial attributes.

(See more detail in document attachment <a href="https://docs.google.com/document/d/1Xp2">https://docs.google.com/document/d/1Xp2</a> NOgoSk9KfOiv79cZ6bH2qlx6s3SElQan3SHJhnY/edit?usp=sharing)

### MCNN and AUX - Method

CNN

utilized a large dataset and applied both a siamese deep CNN and a classification CNN in order to maximize the distance between impostors and minimize the distance between true matches.

(See more detail in

document attachment <a href="https://docs.google.com/document/d/1Xp2\_NOgoSk9KfOiv79cZ6bH2qlx6s3SElQan3SHJhnY/edit?usp=shatelearth">https://docs.google.com/document/d/1Xp2\_NOgoSk9KfOiv79cZ6bH2qlx6s3SElQan3SHJhnY/edit?usp=shatelearth</a>

# MCNN and AUX-Method

#### **MCNN**

A multi-task deep CNN for attribute classification.

Take an image as input and outputs 40 separate attribute scores, which are then thresholded to obtain binary outputs.



(See more detail in

document attachment <a href="https://docs.google.com/document/d/1Xp2">https://docs.google.com/document/d/1Xp2</a>
<a href="NOgoSk9KfOiv79cZ6bH2qlx6s3SElQan3SHJhnY/edit?usp=sharing">NOgoSk9KfOiv79cZ6bH2qlx6s3SElQan3SHJhnY/edit?usp=sharing</a>)

### MCNN and AUX- Method



(See more detail in document attachment <a href="https://docs.google.com/document/d/1Xp2\_NOgoSk9KfOiv79cZ6bH2qlx6s3SElQan3SHJhny/edit?usp=sharing">https://docs.google.com/document/d/1Xp2\_NOgoSk9KfOiv79cZ6bH2qlx6s3SElQan3SHJhny/edit?usp=sharing</a>)

# MCNN and AUX-Method

Combine MCNN and AUX to create MCNN-AUX, a multi-task attribute network which utilizes implicit and explicit attribute relationships for improved classification.

(See more detail in document attachment <a href="https://docs.google.com/document/d/1Xp2">https://docs.google.com/document/d/1Xp2</a> NOgoSk9KfOiv79cZ6bH2qlx6s3SElQaraSHJhnY/edit?usp=sharing)



### MCNN and AUX Algorithm

Our idea for looking for similar faces is to use the attributes of each face to get a vector representation for it. For this I have trained a word2vec using training set. Given the vector space for each face, it's easy to find nearby faces in the vector space. (Source code attachment)

### **Installation - Environment**

Programming language: Python

#### Tool:

- ► Anaconda Installer: <u>Installing on Windows Anaconda documentation</u>
- ► Install Jupyter Notebook: <u>Project Jupyter | Installing Jupyter Software</u>
- ► Install torch, pytorch

### **Installation - Environment**

Open Anaconda Prompt, follows below command to open Jupyter Notebook:

jupyter notebook

| Attribute           | Baseline | Liu et al. | Independent | MCNN  | MCNN-AUX |
|---------------------|----------|------------|-------------|-------|----------|
| 5 o'clock Shadow    | 90.01    | 91         | 93.94       | 94.41 | 94.51    |
| Arched Eyebrows     | 71.55    | 79         | 83.16       | 83.55 | 83.42    |
| Attractive          | 50.41    | 81         | 82.22       | 82.94 | 83.06    |
| Bags Under Eyes     | 79.73    | 79         | 84.83       | 84.89 | 84.92    |
| Bald                | 97.88    | 98         | 98.85       | 98.87 | 98.90    |
| Bangs               | 84.42    | 95         | 95.99       | 96.04 | 96.05    |
| Big Lips            | 67.29    | 68         | 70.80       | 71.20 | 71.47    |
| Big Nose            | 78.79    | 78         | 84.47       | 84.50 | 84.53    |
| Black Hair          | 72.83    | 88         | 89.41       | 89.87 | 89.78    |
| Blond Hair          | 86.67    | 95         | 95.88       | 95.97 | 96.01    |
| Blurry              | 94.94    | 84         | 96.07       | 96.08 | 96.17    |
| Brown Hair          | 82.03    | 80         | 88.75       | 88.99 | 89.15    |
| Bushy Eyebrows      | 87.04    | 90         | 92.87       | 92.80 | 92.84    |
| Chubby              | 94.69    | 91         | 95.55       | 95.66 | 95.67    |
| Double Chin         | 95.42    | 92         | 96.43       | 96.41 | 96.32    |
| Earrings            | 79.33    | 82         | 90.35       | 90.32 | 90.43    |
| Eyeglasses          | 93.54    | 99         | 99.67       | 99.63 | 99.63    |
| Goatee              | 95.41    | 95         | 97.13       | 97.30 | 97.24    |
| Gray Hair           | 96.81    | 97         | 98.07       | 98.20 | 98.20    |
| Hat                 | 95.79    | 99         | 98.97       | 99.04 | 99.05    |
| Heavy Makeup        | 59.50    | 90         | 90.95       | 91.37 | 91.55    |
| High Cheekbones     | 51.81    | 88         | 87.34       | 87.55 | 87.58    |
| Lipstick            | 52.18    | 93         | 93.80       | 93.95 | 94.11    |
| Male                | 61.34    | 98         | 98.02       | 98.16 | 98.17    |
| Mouth Slightly Open | 50.49    | 92         | 93.99       | 93.74 | 93.74    |
| Mustache            | 96.13    | 95         | 96.67       | 96.93 | 96.88    |
| Narrow Eyes         | 85.13    | 81         | 87.22       | 87.16 | 87.23    |
| Necklace            | 86.20    | 71         | 86.41       | 86.82 | 86.63    |
| Necktie             | 92.99    | 93         | 96.71       | 96.53 | 96.51    |
| No Beard            | 85.36    | 95         | 95.93       | 96.11 | 96.05    |
| Oval Face           | 70.43    | 66         | 74.70       | 75.81 | 75.84    |
| Pale Skin           | 95.79    | 91         | 97.07       | 97.01 | 97.05    |
| Pointy Nose         | 71.42    | 72         | 77.47       | 77.47 | 77.47    |
| Receding Hairline   | 91.51    | 89         | 93.41       | 93.81 | 93.81    |
| Rosy Cheeks         | 92.82    | 90         | 95.02       | 95.13 | 95.16    |
| Sideburns           | 95.36    | 96         | 97.77       | 97.82 | 97.85    |
| Smiling             | 50.03    | 92         | 92.65       | 92.66 | 92.73    |
| Straight Hair       | 79.01    | 73         | 82.62       | 83.39 | 83.58    |
| Wavy Hair           | 63.59    | 80         | 83.24       | 83.92 | 83.91    |
| Young               | 75.71    | 87         | 87.98       | 88.30 | 88.48    |



| Attribute         | Positive Influences       | Negative Influences             |  |
|-------------------|---------------------------|---------------------------------|--|
| Bald              | Receding Hairline         | Straight Hair, Wavy Hair        |  |
| Bangs             | N/A                       | Receding Hairline               |  |
| Black Hair        | Straight Hair, Wavy Hair  | Blond Hair, Brown Hair          |  |
| Blond Hair        | Attractive                | Black Hair, Brown Hair, Bushy   |  |
|                   |                           | Eyebrows                        |  |
| Chubby            | Double Chin               | Pointy Nose                     |  |
| Double Chin       | Chubby, Big Nose          | Young                           |  |
| Eyeglasses        | N/A                       | Bags Under Eyes                 |  |
| Male              | 5 o'clock Shadow, Necktie | Earrings, Heavy Makeup, High    |  |
|                   | ,                         | Cheekbones, Lipstick            |  |
| Goatee            | Mustache                  | 5 o'clock Shadow, No Beard      |  |
| Gray Hair         | Receding Hairline         | Black Hair, Brown Hair, Young   |  |
| Hat               | Black Hair, Blond Hair    | Bald, Receding Hairline         |  |
| Heavy Makeup      | Attractive, Lipstick      | Bags Under Eyes                 |  |
| High Cheekbones   | Smiling                   | N/A                             |  |
| Lipstick          | Heavy Makeup              | Male                            |  |
| Mustache          | Goatee                    | No Beard                        |  |
| Necklace          | N/A                       | Necktie                         |  |
| Necktie           | Male                      | Necklace                        |  |
| No Beard          | N/A                       | 5 o'clock Shadow, Goatee, Male, |  |
| No Beard          | N/A                       | Mustache, Sideburns             |  |
| Receding Hairline | Bald                      | Bangs, Hat                      |  |
| Sideburns         | 5 o'clock Shadow, Goatee  | No Beard                        |  |
| Smiling           | High Cheekbones           | Big Lips                        |  |
| Straight Hair     | N/A                       | Wavy Hair                       |  |
| Wavy Hair         | N/A                       | Straight Hair                   |  |
| Young             | Attractive                | Gray Hair                       |  |

| Publication        | Approach                                                  | Dataset                        | Accuracy                                |
|--------------------|-----------------------------------------------------------|--------------------------------|-----------------------------------------|
| Hand and Chellappa | Multi-task CNN features (3 Conv. layers and 2 FC layers); | CelebA (public)<br>(180K, 20K) | CelebA 91% (Avg. of 40 attributes)      |
| [33]               | Joint regression of multiple binary                       | LFWA (public)                  | <b>LFWA</b> 86% (Avg. of 40 attributes) |
|                    | attributes                                                | (6, 263; 6, 970)               |                                         |

### Installation – Result Comment

- achieve state-of-the-art performance for many attributes, some showing up to a 15% improvement over other methods
- skipping alignment or part extraction in the preprocessing stage which are expensive and error-prone processes.
- significantly decrease the number of parameters over four times and the amount of training time - over 16 times - required for the attribute classifier.

(See more result comments in Document attachment <a href="https://docs.google.com/document/d/1Xp2">https://docs.google.com/document/d/1Xp2</a> NOgoS <a href="https://docs.google.com/document/d/1Xp2">k9KfOiv79cZ6bH2qlx6s3SElQan3SHJhnY/edit?usp=sharing</a>)

### Responsibility

(Document attachment Personal information - Google Drive)