

Hybrid Aerial-Aquatic Vehicle for Large Scale High Spatial Resolution Marine Observation

Authors: Jiayi Wang, Yiwei Yang, Jiajin Wu, Zheng Zeng, Di Lu, Lian Lian

Presenter:

2019.6

Contents

- Introduction of Marine Observation
- Vehicles nowadays
- Design of HAAV
- Field Tests & Simulations
- 5 Future Work

Aim of our work

Marine Observation

Large Scale

High Spatial Resolution

Contemporary Vehicles for Marine Observation

Underwater Glider

Energy-efficient Move slowly

Combined USV-ROV

Longer duration

Spatially limited

HAUV

Move fast Limited duration

Disadvantages of Contemporary Vehicles

Slow movement

Energy-consuming

Spatially restricted

Difficult to deploy

Unable to sample quickly at multiple locations and bypass barriers

Multi-location Water Column Sampling Schemes

Design of HAAV

Buoyancy System

The Flow Diagram of the Vehicle

Simulations & Field Tests

Simulink

SJTU UEIC

Egress—Field Test

The corresponding vertical velocity from t=0s to t=2s

Egress——Simulation Results

Gliding——0.5-meter Field Test (Zhiyuan Lake)

T≈56.67s

Max vertical Velocity=0.12m/s

Gliding——1&2-meter Field Test (SJTU UEIC)

T≈90.3s

Max Vertical Velocity=0.18m/s

T≈116.7s

Max Vertical Velocity=0.19m/s

Gliding—6-meter Simulation Test (Simulink)

T≈250s

Future Work

Improve the capacity of prototype

increase its thrust, velocity and depth the robustness of system eliminate its weight and cost of energy

Develop new functions

install camera
Global Positioning System
remote underwater manipulation system

THANKS!

