Syllabus: Natural Language Processing Lab

Module 1:

Morphology analysis –survey of English Morphology, Inflectional morphology & Derivational morphology, Tokenization, Stemming and Lemmatization, Stop word removal Self learning topics: Python libraries for NLP (NLTK, spaCy)

Module 2:

Multiple tags & words, Unknown words. Named Entity Recognition (NER) Self learning topics: Text preprocessing

Module 3:

Bag of Words (BoW), Term Frequency-Inverse Document Frequency (TF-IDF) Self learning topics: Text representations

Module 4:

Word embeddings (Word2Vec, GloVe),Robust Word Sense Disambiguation (WSD), Dictionary based approach Self learning topics:Word2Vec Model

Module 5:

Sentiment Analysis introduction, Sentiment Analysis - Affective lexicons, Sentiment analysis techniques, Aspect based sentiment analysis Self learning topics: Chatbots

Module 6:

Text classification, Text summarization Self learning topics: Algorithms for summarization and classification

Module 1: Morphology Analysis and Preprocessing

1. What is morphology in NLP?

Morphology studies the internal structure of words and how they are formed.

2. Differentiate between inflectional and derivational morphology.

- Inflectional: Modifies a word's tense/number (e.g., walk → walked).
- Derivational: Changes the word's class/meaning (e.g., teach → teacher).

3. What is tokenization?

Breaking text into smaller units like words or sentences.

4. What is stemming?

Removing suffixes to get the root word (e.g., "running" \rightarrow "run").

5. Define lemmatization.

It returns the base or dictionary form of a word, considering its context.

6. What are stop words?

Common words (like "and", "the") often removed in text processing.

7. Why is text preprocessing important?

It prepares raw text for effective analysis and modeling.

8. Which is better: stemming or lemmatization?

Lemmatization is more accurate but slower; stemming is faster but less accurate.

9. What are some functions of NLTK?

Tokenization, POS tagging, stemming, lemmatization, parsing, etc.

10. What is spaCy used for?

An NLP library for fast, production-ready NLP tasks like NER, parsing, and lemmatization.

Module 2: Tagging and Named Entity Recognition

1. What is POS tagging?

Assigning grammatical tags (like noun, verb) to words.

2. What are multiple tags?

A word may have more than one possible tag depending on context.

3. What is an unknown word (OOV)?

A word not present in the training vocabulary.

4. How can you handle unknown words?

Using subword embeddings or fallback methods like character-level models.

5. What is Named Entity Recognition (NER)?

Identifying names of people, places, dates, etc., in text.

6. Give examples of named entities.

"Barack Obama", "Google", "Monday", "India".

7. Which NLP libraries support NER?

spaCy, NLTK, Stanford NLP.

8. How is NER useful?

Helps in extracting structured information from unstructured text.

9. What are the steps in text preprocessing?

Lowercasing, removing punctuation/stop words, tokenization, stemming/lemmatization.

10. What is text normalization?

Bringing text to a standard format (e.g., converting "U.S.A." \rightarrow "USA").

Module 3: BoW and TF-IDF

1. What is Bag of Words (BoW)?

A representation of text that counts the frequency of words.

2. What are the limitations of BoW?

Ignores grammar, word order, and context.

3. What is TF-IDF?

A weighting technique that reflects how important a word is to a document.

4. How is TF calculated?

Frequency of a term in a document divided by total terms.

5. How is IDF calculated?

Log of total documents divided by number of documents containing the word.

6. Why is TF-IDF preferred over BoW?

It reduces the influence of common terms and highlights unique ones.

7. What is vectorization in NLP?

Converting text into numeric vectors for machine learning models.

8. What is the problem with sparse matrices in BoW?

They consume more memory and are inefficient for computation.

9. How do you implement TF-IDF in Python?

Using TfidfVectorizer from scikit-learn.

10. What are n-grams?

Sequences of n words (e.g., bigrams = 2 words).

Module 4: Word Embeddings and WSD

1. What are word embeddings?

Dense vector representations capturing semantic relationships between words.

2. How does Word2Vec work?

Predicts context words (CBOW) or target word (Skip-gram) using neural networks.

3. What is GloVe?

A count-based embedding model using co-occurrence statistics.

4. Difference between Word2Vec and GloVe?

Word2Vec: Predictive

o GloVe: Count-based (uses matrix factorization)

5. What is Word Sense Disambiguation (WSD)?

Determining the correct meaning of a word based on context.

6. What is the dictionary-based approach in WSD?

Uses lexical resources like WordNet to find correct meanings.

7. What is semantic similarity?

A measure of how similar two words/phrases are in meaning.

8. What is a vector space model?

Text is represented as vectors in a multi-dimensional space.

9. What are contextual embeddings?

Word vectors that change based on context (e.g., BERT).

10. Why are embeddings better than BoW?

They preserve semantic meaning and reduce dimensionality.

Module 5: Sentiment Analysis

1. What is sentiment analysis?

The process of determining the emotional tone behind a piece of text.

2. What are affective lexicons?

Dictionaries of words with associated emotions/sentiment scores.

3. What are some lexicons used in sentiment analysis?

SentiWordNet, NRC, AFINN.

4. What is polarity?

Indicates whether sentiment is positive, negative, or neutral.

5. What is subjectivity?

Indicates whether the text expresses personal opinions or factual information.

6. What are the main approaches to sentiment analysis?

- Rule-based (lexicons)
- Machine learning
- Deep learning

7. What is aspect-based sentiment analysis?

Evaluates sentiment towards specific aspects (e.g., "Camera is great, but battery is bad").

8. Which libraries support sentiment analysis?

TextBlob, VADER, spaCy, NLTK.

9. What is a chatbot?

A conversational AI system that interacts with users via text or voice.

10. What is the role of NLP in chatbots?

It enables understanding user queries and generating relevant responses.

Module 6: Text Classification and Summarization

1. What is text classification?

Categorizing text into predefined groups (e.g., spam, sports, politics).

2. Which algorithms are used for text classification?

Naive Bayes, Logistic Regression, SVM, Decision Trees.

3. What is text summarization?

Producing a concise and coherent summary of a longer document.

4. What is extractive summarization?

Selects important sentences from the original text.

5. What is abstractive summarization?

Generates new sentences to represent the main ideas.

6. What is a classification pipeline?

Text preprocessing → Feature extraction → Classification algorithm

7. What is TextRank?

A graph-based extractive summarization algorithm.

8. What are common evaluation metrics in classification?

Accuracy, Precision, Recall, F1 Score.

9. Which libraries help with summarization?

Gensim, spaCy, Sumy, HuggingFace Transformers.

10. What are challenges in text classification?

Ambiguity, sarcasm, data imbalance, domain-specific vocabulary.