CSCI 1100: Humanities CS1 Concept Syllabus

Lecture: 1.5 Hours, twice a week

Lab: 2 hours, once a week

Instructor: CS Faculty Member Co-Instructor: STS Faculty Member

TA: Information Technology & Web Science (ITWS) or Computer Science (CS) graduate student

Mentor Contact and Office Hours:

CS Undergraduate Students

STS Undergraduate Students

Learning Outcomes

- By successfully completing the readings below and participating in class discussions, students will achieve the following:
- Demonstrate proficiency in the purpose and behavior of basic programming constructs.
- Design algorithms and programs to solve small-scale computational programs
- Write, test and debug small-scale programs
- Demonstrate an understanding of the wide-spread application of computational thinking to real-world problems.
- Demonstrate basic proficiency in discussing the mutual formation of technology and society
- Articulate some of the biases that enter into higher education, technology, and the design of algorithmic systems
- Understand and critique dataset provenance, particularly along lines of race, gender, and class
- Effectively communicate to others the biases that enter your own systems

Required Texts

Students should purchase or otherwise obtain copies of the following texts:

- Cathy O'Neil, Weapons of Math Destruction (2016).
- Virginia Eubanks, Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor(2018).

All other readings can be obtained from the links provided in the course schedule below.

Course schedule

Week	Lecture 1	Lecture 2	Lab	Reading	Due
1		Introduction	Lab 0: Setup		
2	Python as	String	Lab 1: What is	"Liberal Education has Failed,"	Hwk 1
	calculator		Education, and What	by Matt Wisnioski	
			does it Do?		
3	Functions	Decisions	Lab 2: Epistemologies	"US Operating Systems at Mid-	
			and Ideologies of Code	Century" by Tara McPherson	

4	Tuples,	EXAM 1	Lab 3: Modularization	"Technology as Masculine	Hwk2
	Modules,		and Masculinity	Culture" by Judy Wajcman	
	Images				
5	Lists	While Loops	Lab 4: Loops and	"Do Artifacts have Politics?," by	Hwk3
			Bridges: Does Code	Langdon Winner	
			have Politics?		
6	Controlling	Data from	Lab 5: If Statements,	"Depression Quest, from	Hwk 4
	Loops	Files and the	Non-linearity, and Queer	Videogames for Humans," meritt	
		Web	Stories	kopas ed.	
7	Problem	EXAM 2	Lab 6: How do we	"Algorithms of Oppression,	
	Solving and		Define a Problem?	Introduction and Chapter 1," by	
	Design			Sofia Noble	
8	Sets	Dictionaries	Lab 7: Who Gets	"Weapons of Math Destruction,	Hwk 5
			Counted?	Chapter 1," by Cathy O'Neil	
9	Dictionaries	Classes	Lab 8: How do we	"Can an Algorithm be	Hwk 6
			Count?	Agonistic?" by Kate Crawford	
10	Classes	Searching	Lab 9: Building Classes,	"The Allegheny Algorithm," by	Hwk 7
			Constructing Class	Virginia Eubanks	
11	Sorting		Lab 10: Theories and	"The Information: A Theory, a	
			Politics of Information	Flood," by James Gleick	
			and Order		
12	TKInter	Recursion	Lab 11: Who Builds?	"Programmed Inequality,	Hwk 8
				Conclusion" by Marie Hicks	
13	Functional		Lab 12: Recursion and	"The Garden of Forking Paths,"	
	Programming		Recursive Narratives	by Jorge Luis Borges	