

#### مبانی رمزنگاری و امنیت شبکه

#### مدیریت کلید در سیستمهای رمزنگاری

**Key Management and Distribution** 

مهتاب ميرمحسني

نیمسال دوم (بهار) ۹۹–۹۹

## مديريت كليد

- رمزنگاری متقارن
- ۰ مبادله کلید مخفی میان دو طرف
- تغییر کلید جهت حفاظت از دادهها در صورت لو رفتن کلید
- توزیع کلید مخفی (مورد استفاده در رمزنگاری متقارن)
  - ۰ رمزنگاری متقارن
  - رمزنگاری کلید همگانی
  - رمزنگاری کلید همگانی
    - توزیع کلیدهای همگانی

# توزیع کلید مخفی با استفاده از رمزنگاری متقارن $\mathbf{B} \in \mathbf{A}$ سناریوهای ممکن برای مبادله کلید میان دو کاربر

- اد. A کلید را انتخاب و به طور فیزیکی در اختیار B قرار دهد A
- انتخاب و به طور فیزیکی در اختیار  $\mathbf{B}$  و  $\mathbf{B}$  قرار دهد  $\mathbf{B}$
- 3. اگر A و B در گذشته کلید مخفی مشترکی را در اختیار داشتند، A کلید جدید را با کلید قبلی رمزگذاری کرده و به B بفرستد
- لید را انتخاب  $\mathbf{C}$  هر کدام یک ارتباط رمزشده (امن) با شخص سوم  $\mathbf{C}$  داشته باشند،  $\mathbf{C}$  کلید را انتخاب و از طریق این ارتباطها در اختیار  $\mathbf{B}$  و  $\mathbf{B}$  قرار میدهد

# توزیع کلید مخفی با استفاده از رمزنگاری متقارن سناریوهای ممکن برای مبادله کلید میان دو کاربر A و B

- دهد  ${\bf B}$  کلید را انتخاب و به طور فیزیکی در اختیار  ${\bf B}$  قرار دهد  ${\bf A}$
- گ. شخص سومی کلید را انتخاب و به طور فیزیکی در اختیار  $\mathbf{B}$  و  $\mathbf{B}$  قرار دهد
- 3. اگر A و B در گذشته کلید مخفی مشتر کی را در اختیار داشتند، A کلید جدید را با کلید قبلی رمزگذاری کرده و به B بفرستد
- لید را انتخاب  $\mathbf{C}$  هر کدام یک ارتباط رمزشده (امن) با شخص سوم  $\mathbf{C}$  داشته باشند،  $\mathbf{C}$  کلید را انتخاب و از طریق این ارتباطها در اختیار  $\mathbf{B}$  و  $\mathbf{B}$  قرار میدهد
  - رمزنگاری یال (link): ۱و ۲
  - رمزنگاری انتها-به-انتها (end-to-end): تعداد زیادی کلید به صورت پویا اختصاص یابد
    - سیستمهای توزیع شده
  - در لایه شبکه یا  $ext{IP}$ : هر زوج کاربر یک کلید o برای N میزبان تعداد  $N(N ext{-}1)/2$  کلید لازم است o
    - $\circ$  در لایه کاربرد: هر زوج فرآیند یک کلید  $\rightarrow$  به مراتب بیشتر از حالت قبل
    - ایراد ۳: اگر یک کلید لو رود، همه کلیدهای بعدی لو میرود- توزیع اولیه کلیدها
    - در رمزنگاری انتها-به-انتها سناریوی ۴ به طور گسترده به کار میرود (مرکز توزیع کلید)

## مرکز توزیع کلید key distribution center (KDC)

• استفاده از سلسله مراتب کلید (Key Hierarchy)

ارتباط میان دو انتها توسط یک کلید موقت صورت می گیرد → کلید نشست برای هر ارتباط اختصاص یافته و سپس دور ریخته می شود از مرکز توزیع کلید درخواست می شود

کلید نشست به صورت رمزگذاری شده با استفاده از یک کلید مخفی میان کاربر انتهایی و مرکز توزیع کلید ارسال می شود  $\rightarrow$  کلید اصلی یا شاه کلید  $\rightarrow$  کلید  $\rightarrow$  ارسال فیزیکی





Alice



Alice





# طول عمر کلید نشست

#### مصالحهای میان کارآیی و امنیت

- $\bullet$  طول عمر کمتر  $\rightarrow$  امنیت بیشتر
- مهاجم به تعداد کمتری متن رمز شده دسترسی دارد
- در صورت لو رفتن، خسارت کمی به سیستم وارد می شود
- توزیع کلید تاخیر و سربار ارسال و محاسباتی زیادی برای شبکه به همراه دارد
  - پروتکلهای اتصال گرا (connection-oriented)
    - یک کلید برای هر اتصال در صورت طولانی نبودن
    - پروتکلهای بدون اتصال (connectionless)
- تغییر کلید به طور متناوب پس از گذشت زمان مشخص و یا تعداد مشخصی تراکنش

# توزیع کلید تمرکززدا (Decentralized)

- مشكل استفاده از KDC: اعتماد به آن و محافظت از آن
- N(N-1)/2 در شبکههای کوچک امکان توزیع کلید بدون مرکز نیز وجود دارد  $\longrightarrow$  نیاز به  $\longrightarrow$  کلید اصلی داریم  $\longrightarrow$  هر کاربر باید N-1 کلید اصلی را محافظت کند



- رمزنگاری کلید همگانی برای ارسال دادههایی با طول کم کاربرد دارد ۰ رمزگذاری کلید مخفی (رمز متقارن)
  - یک طرح ساده توزیع کلید مخفی (Merkle 79)



- رمزنگاری کلید همگانی برای ارسال دادههایی با طول کم کاربرد دارد ۰ رمزگذاری کلید مخفی (رمز متقارن)
  - یک طرح ساده توزیع کلید مخفی (Merkle 79)



- رمزنگاری کلید همگانی برای ارسال دادههایی با طول کم کاربرد دارد
  - رمزگذاری کلید مخفی (رمز متقارن)
  - یک طرح ساده توزیع کلید مخفی (Merkle 79)
  - هیچ کلیدی پیش از ارتباط لازم نیست و پس از ارتباط نیز باقی نمیماند
    - در برابر شنود (حمله غیر فعال) امن است
    - $\circ$  در برابر حمله فعال امن نیست  $\to$  حمله فرد در میانه



• حمله فرد در میانه





• حمله فرد در میانه



• حمله فرد در میانه



- حمله فرد در میانه
- پس از آشکار کردن کلید مخفی، دشمن تنها شنود میکند



- مقابله با حملات فعال و غير فعال
- ابتدا کلیدهای همگانی ( $PU_a, PU_b$ ) به یک روش امن (در ادامه) توزیع شدهاند lacktriangle



- مقابله با حملات فعال و غير فعال
- ابتدا کلیدهای همگانی ( $PU_a, PU_b$ ) به یک روش امن (در ادامه) توزیع شدهاند lacktriangle



- مقابله با حملات فعال و غير فعال
- ابتدا کلیدهای همگانی  $(PU_a, PU_b)$  به یک روش امن (در ادامه) توزیع شدهاند



- مقابله با حملات فعال و غير فعال
- ابتدا کلیدهای همگانی  $(PU_a, PU_b)$  به یک روش امن (در ادامه) توزیع شدهاند



# روش تركيبي توزيع كليد مخفي

- تعداد کلیدهای نشست مورد نیاز بسیار زیاد است
- با توجه به سربار روش توزیع کلید با استفاده از رمزنگاری کلید همگانی، استفاده از این روش در توزیع کلیدهای نشست، کارآیی سیستم را به شدت کاهش میدهد
  - روش ترکیبی: استفاده شده در IBM
- توزیع کلیدهای اصلی (میان کاربرها و KDC) با استفاده از رمزنگاری کلید همگانی
  - توزیع کلیدهای نشست با استفاده از رمز متقارن و کلیدهای اصلی

# توزیع کلیدهای همگانی

- اعلام همگانی (Public announcement)
- فهرست راهنمای همگانی در دسترس (Publicly available directory)
  - مرجع مجازشناس کلید همگانی (Public-key authority)
    - گواهینامه کلید همگانی (Public-key certificates)

## اعلام همگانی (Public announcement)

- هدف اولیه طراحی رمزنگاری کلید همگانی
- در پروتکل PGP (بر پایه RSA)، بسیاری از کاربرها کلید همگانی خود را به پیام الصاق و به فرومهای همگانی ارسال می کنند
  - مشکل اصلی: هر کسی میتواند این اعلام همگانی را جعل کند
- A مثلا کاربری ادعا کند که A است (با اعلام یک کلید همگانی جعلی) و همه پیامهای رمزشده برای A را بخواند و از امضای A نیز برای احراز اصالت استفاده کند





#### فهرست راهنمای همگانی در دسترس Publicly available directory

- امنیت بیشتر از اعلام همگانی
- کلیدهای همگانی در یک فهرست راهنمای همگانی که نگهداری آن بر عهده یک سازمان معتمد است
  - فهرستی از {نام+کلیدهمگانی} برای هر کاربر
  - ثبت نام به صورت فردی یا با یک ارتباط امن احراز اصالت شده
    - دسترسی با یک ارتباط امن احراز اصالت شده
    - مشکل: مهاجم به کلید خصوصی مرجع دست یابد











# (Public-key certificates) گواهینامه کلید همگانی

- در روش قبلی: مرجع مجازشناس گلوگاه سیستم است
  - هر دو کاربر پیش از ارتباط به آن مراجعه می کنند
  - راه حل: استفاده از گواهینامه کلید همگانی
    - مشخصات گواهینامه
- هر کاربری بتواند آن را خوانده و نام و کلید همگانی صاحب کلید همگانی را بفهمد
  - هر کاربری بتواند صدور آن توسط مرجع مجازشناس را تایید کند
- تنها مرجع مجازشناس (Certificate Authority (CA)) بتواند آن را صادر و بهروزرسانی کند
  - هر کاربری بتواند به روز بودن آن را تایید کند
    - برای باطل کردن پیش از پایان اعتبار
  - فهرست گواهیهای باطل شده (Certificate revocation list (CRL)) فهرست گواهیهای باطل

## (Public-key certificates) گواهینامه کلید همگانی

• هر کاربر با ارسال کلید همگانی خود، درخواست گواهی نامه می کند در خواست شده در در نام از تباط امن احراز اصالت شده



## (Public-key certificates) گواهینامه کلید همگانی

- هر کاربر با ارسال کلید همگانی خود، درخواست گواهینامه میکند
  - به صورت فردی یا با یک ارتباط امن احراز اصالت شده
  - مهر زمانی: مثلا یک کارت اعتباری مفقود و باطل شود







## گواهي نامه X.509

- استاندارد ITU-T: بخشى از X.500
- استفاده در IP Security ،S/MIME و SSL/TLS
  - استفاده از رمزنگاری کلیدهمگانی و امضای دیجیتال
- کند محدودیتی بر الگوریتم مورد استفاده نمی گذارد ولی  $\mathbf{RSA}$  را توصیه می کند  $\circ$ 
  - استفاده از تابع چکیدهساز دلخواه برای امضای دیجیتال

#### $CA \ll A \gg = CA \{V, SN, AI, CA, UCA, A, UA, Ap, T^A\}$

 $Y \ll X \gg$  = the certificate of user X issued by certification authority Y

Y {I} = the signing of I by Y. It consists of I with an encrypted hash code appended

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A

 $T^{A}$  = period of validity of the certificate



(a) X.509 certificate

## زیرساخت کلید همگانی public-key infrastructure (PKI)

#### • تعریف (Internet Security Glossary) تعریف

• مجموعهای از سختافزارها، نرمافزارها، افراد، سیاستها و رویههای مورد نیاز برای صدور، مدیریت، ذخیرهسازی، توزیع و ابطال گواهینامههای دیجیتالی بر اساس رمزنگاری نامتقارن (کلید همگانی)

• PKIX: بر اساس گواهی نامه PKIX:

## Public Key Infrastructure (PKI)

- Certificate Authority (CA)
  - Trusted Third Party
  - Public Key is known
  - CertCA is a signature on:
    - The identity
    - Its public Key
    - Other information (e.g. lifetime)
- Registration Authority (RA):
  - Verifies the identity
- Validation Authority (VA):
  - Validates the public key



src: wikipedia

#### PKIX Jan







