科学机器学习 +HW1 报告

2100012131 蒋鹏

2025年10月28日

目录

1	问题	描述 · · · · · · · · · · · · · · · · · · ·	1
2	问题		2
	2.1	计算格式	2
		时间步长	
	2.3	结果展示	2
3	问题 2		
	3.1	计算格式	2
	3.2	时间步长	5
	3.3	不同基底数量下的结果展示	5
4	问题		5
	4.1	计算方法	9
	4.2	Koopman 算子的谱与 Koopman 模式	9
	4.3	结果展示	9

1 问题描述

对于计算区域 $\Omega = [0,1] \times [0,1]$ 上的二维对流扩散方程

$$\frac{\partial c}{\partial t} + \nabla \cdot ([u; v]c) = \nabla \cdot (D\nabla c) \tag{1}$$

其中 c(t,x,y) 代表物质浓度。速度场 [u;v]=[1;0],扩散系数 D=0.01. 初始条件满足 c(0,x,y)=0。上下边界为周期边界条件,左边为入流条件满足

$$c(t,0,y) = \begin{cases} 1,1/3 < y < 2/3\\ 0, \sharp \text{ th} \end{cases}$$
 (2)

右边为出流条件,满足 $\frac{\partial c(t,1,y)}{\partial \vec{n}}=0,$ 这里可以假设 c(t,x,y)=c(t,1,y) 当 x>1.

2 问题 1

采用有限体积方法,dx = dy = 0.005,求解上述对流扩散方程,计算到 T = 1.5.

2.1 计算格式

这是一个关于空间导数为散度型的方程,进行有限体积推导,得到

$$c'_{i,j} \approx \frac{D}{h^2} (c_{i,j+1} + c_{i,j-1} + c_{i-1,j} + c_{i+1,j} - 4c_{i,j}) + \frac{c_{i-1/2,j} - c_{i+1/2,j}}{h}$$
(3)

已知速度场分布,利用迎风格式近似中点函数值;再在时间方向上用一阶向前 Euler 离散,得到数值格式

$$c_{i,j}^{n+1} = \frac{Ddt}{h^2} (c_{i,j+1}^n + c_{i,j-1}^n + c_{i-1,j}^n + c_{i+1,j}^n - 4c_{i,j}^n) + \frac{dt}{h} (c_{i-1,j}^n - c_{i,j}^n)$$
(4)

对于上下周期边界条件和右边出流条件:引入影子单元构造相应的有限体积格式。

2.2 时间步长

1 这是一个对流扩散方程,根据对流项的 CFL 条件和扩散方程的 L^2 稳定的 Von Neumann 条件:

$$\begin{cases} dt \le dx \\ \frac{2Ddt}{h^2} \le 1/2 \end{cases} \tag{5}$$

代入计算,得到 $dt \le 6.25e - 4$,所以我们取 dt = 5e - 4。

2 若选择 dt = 0.01,在两个临界点 (0, 1/3), (0, 2/3) 的附近,解出现部分负数值与部分无穷大,与物理背景实际不符;而在其他大范围内,解接近 0,如图2所示。

2.3 结果展示

计算结果如图1所示.

3 问题 2

采用基于正交分解的降阶模型对上述问题进行计算. 首先写出离散后的方程

$$\frac{\partial \mathbf{c}}{\partial t} = A\mathbf{c} + f \tag{6}$$

其中A是对流扩散方程离散后的矩阵,f是边界条件的作用。

3.1 计算格式

取定 $N_{snap} = 100$,对 [0,T] 做等距划分,得到数据集,对其用梯形公式做积分近似,进而得到快照矩阵 S. 设定基底维数为 k,对 S 做 SVD 分解,取左奇异向量矩阵的前 k 列为投影基底矩阵 V. 做低秩近似 $\mathbf{c} = V\mathbf{q}$,进而有

$$\begin{cases} \frac{\partial \mathbf{q}}{\partial t} = V^T A V \mathbf{q} + V^T f \\ \mathbf{c} = V \mathbf{q} \end{cases}$$
 (7)

图 1: results of FVM dt = 0.0005

图 2: results of FVM dt = 0.01

用一阶向前 Euler 求解关于 \mathbf{q} 的 ODE, 进而计算 \mathbf{c} 。

子函数求解矩阵-向量乘法 Ax,与 FVM 中格式基本类似,只是需要单独处理 i=0 的情况: 左端来自左边界,即 f 的作用.

3.2 时间步长

采用时间步长 dt = 5e - 4,与 FVM 中一致。

3.3 不同基底数量下的结果展示

设置基底数量 k = 2, 5, 10, 15, 计算结果分别展示如图3, 4, 5, 6所示。

图 3: results of POD k = 2

4 问题 3

采用动力学模态分解方法进行计算.

图 4: results of POD k = 5

图 5: results of POD k = 10

图 6: results of POD k = 15

4.1 计算方法

由问题 2 启发,做动力学建模 $\mathbf{c}(t + \Delta t) = K\mathbf{c}(t) + b$,即线性模型,进而有

$$\begin{pmatrix} \mathbf{c}(t+\Delta t) \\ 1 \end{pmatrix} = \begin{pmatrix} K & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{c}(t) \\ 1 \end{pmatrix}$$
 (8)

记对应动力学矩阵为 \bar{K} 。依然设定 $N_{snap}=100$,对[0,T] 做等距划分,得到数据集,每个向量末尾分别添加元素 1,共 101 个向量。取 \bar{X} 为前 100 个向量, \bar{Y} 为后 100 个向量,以近似 $\bar{Y}=\bar{K}\bar{X}$ 。

对 \bar{X} 做 SVD,设秩为 r,对 SVD 做满秩截断,Koopman 矩阵应为 $\bar{K}=YV\Sigma^{-1}U^*$,我们转而去求 $\tilde{K}=U^*YV\Sigma^{-1}$ 的特征对 $(\tilde{\lambda_j},\tilde{w_j},\tilde{v_j})_{j=0}^{r-1}$,进而可以得到 \bar{K} 的特征对 $(\lambda_j,w_j,v_j)_{j=0}^{r-1}$,满足转换关系

$$\begin{cases} \lambda_j = \tilde{\lambda_j} \\ w_j = U\tilde{w_j} \\ v_j = YV\Sigma^{-1}\tilde{v_j} \end{cases}$$

$$(9)$$

将 W, V 做双正交归一化,即可以认为 $W^*V = I$ 。最后以 Koopman 模式计算 $\mathbf{c}(m)$ 。

4.2 Koopman 算子的谱与 Koopman 模式

所得到的 Koopman 算子的谱如图7所示。对应 Koopman 模式:

$$\begin{cases}
\bar{\mathbf{c}} = \begin{pmatrix} \mathbf{c} \\ 1 \end{pmatrix} \\
\bar{\mathbf{c}}(m) = \sum_{j=0}^{r-1} \lambda_j^m v_j w_j^* \bar{\mathbf{c}}(0)
\end{cases}$$
(10)

4.3 结果展示

计算结果展示如图8所示.

图 7: DMD Eigenvalues

图 8: results of DMD dt = 0.015