RANCANG BANGUN PENGAMAN MOTOR INDUKSI 3 FASA TERHADAP UNBALANCE VOLTAGE DAN OVERLOAD DENGAN SISTEM MONITORING

I.P. Sudiarta ¹, I.W.Arta Wijaya², I.G.A.P. Raka Agung³

1,2,3 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana

Email: putusudiarta91@gmail.com¹, artawijaya@ee.unud.ac.id², puturaka@ee.unud.ac.id³

Abstrak

Motor induksi tiga fasa merupakan salah satu mesin listrik yang banyak digunakan di dunia industri. Sesuai dengan peran dan fungsinya, maka motor induksi tiga fasa dinilai sangat penting dalam dunia industri, sehingga motor induksi diharuskan bekerja dengan baik dan aman. Banyak sekali jenis-jenis gangguan yang berpotensi untuk mengganggu fungsi dan kerja motor atau bahkan merusak motor itu sendiri di antaranya yaitu unbalance voltage dan overload. Penelitian ini bertujuan membuat suatu alat yang bertugas untuk mengamankan motor induksi tiga fasa terhadap gangguan unbalance voltage dan overload berbasis mikrokontroller ATMega 328. Alat ini juga memiliki fitur monitoring yang dilakukan pada komputer.

Kata Kunci: Motor induksi, unbalance voltage, overload, ATMega 328.

1. PENDAHULUAN

Motor induksi tiga fasa merupakan salah satu mesin listrik yang banyak digunakan di dunia industri. Sesuai dengan peran dan fungsinya, maka motor induksi 3 fasa dinilai sangat penting dalam dunia industri, sehingga motor induksi diharuskan bekerja dengan baik dan aman. Banyak sekali jenis-jenis gangguan yang berpotensi untuk mengganggu fungsi dan kerja motor atau bahkan merusak motor itu sendiri di antaranya yaitu unbalance voltage dan overload.

Ridwan (2011) membahas tentang rancang bangun sebuah perangkat yang dapat mengamankan motor induksi 3 fasa terhadap gangguan arus lebih. Sistem Mikrokontroller yang digunakan adalah ATMega16 dengan memori program internal 512 Kbyte. Alat pengaman ini menggunakan sensor arus tipe ACS712-20A-T [1].

Suparlan (2013) membahas tentang rancang bangun sebuah pengaman motor induksi 3 fasa terhadap tegangan tidak seimbang. Alat yang dirancang menggunakan rangkaian penguatan operasional (Ic Op-amp) dan komponen semikonduktor. Rangkaian statis ini akan

memberikan sinyal pelepasan hubungan pada saklar daya bila motor induksi beroperasi pada kondisi tegangan *fasa* tidak seimbang [2].

Penelitian ini bertujuan membuat suatu alat yang bertugas untuk mengamankan motor induksi tiga fasa terhadap gangguan unbalance voltage dan overload berbasis mikrokontroller ATMega 328. Pengaman ini untuk memutuskan berfungsi sumber tegangan 3 fasa tidak seimbang terhadap motor induksi 3 fasa jika terjadi unbalance voltage melebihi standar yang dijinkan. Pengaman motor induksi 3 fasa ini menggunakan transformator step sebagai sensor tegangan, dan menggunakan transformator arus sebagai sensor arus yang masuk ke motor. Alat ini juga terdapat fitur monitoring yang dapat dilakukan pada komputer.

2. KAJIAN PUSTAKA

2.1 Motor Induksi

Motor induksi adalah suatu mesin listrik yang merubah energi listrik menjadi energi gerak dengan menggunakan gandengan medan listrik dan mempunyai slip antara medan stator dan medan rotor [3].

2.2 Arduino

Arduino adalah kit elektronik atau papan rangkaian elektronik **open source** yang didalamnya terdapat komponen utama yaitu sebuah *chip* mikrokontroler dengan jenis AVR dari perusahaan Atmel [4]. Gambar 1 menunjukkan Board Arduino Uno.

Gambar 1. Board arduino uno [5].

2.3 Pengertian Trafo

Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energi listrik dari satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui suatu gandengan magnet dan berdasarkan prinsip induksi elektromagnetik [6].

2.4 Relay dan Kontaktor

Relay dan kontaktor magnetis adalah sebagai alat yang digerakan secara magnetis untuk menyambung dan membuka rangkaian daya listrik. Perbedaan dari relay dan kontaktor terletak pada kekuatan saklar internalnya dalam menghubungkan besaran arus listrik yang melaluinya [7].

2.5 Buzzer

Buzzer adalah alat yang dapat mengubah sinyal listrik menjadi sinyal suara. Pada umumnya buzzer digunakan untuk alarm, karena penggunaannya cukup mudah yaitu dengan memberikan tegangan input maka buzzer akan mengeluarkan bunyi. Frekuensi suara yang di keluarkan oleh buzzer yaitu antara 1-5 KHz [8].

2.6 Pengenalan Aplikasi Visual Delphi

Delphi adalah sebuah bahasa pemrograman dan lingkungan pengembangan perangkat lunak. Produk ini dikembangkan oleh *Borland*. Dengan menggunakan *Free Pascal* yang merupakan proyek *opensource*.

2.6.1 Ketidakseimbangan Tegangan (Unbalance Voltage)

Voltage Unbalance artinya tegangan yang tersedia di ketiga fasa tidak sama, ini dapat terjadi pada sistem distribusi dimana saja. Ini dapat menimbulkan masalah serius pada motor dan peralatan-peralatan listrik dengan sistem induksi tiga fasa. Kondisi balance secara sempurna tidak akan pernah tercapai, namun harus diminimalkan [9].

Menurut Standar *The National Standard for Electric Power System and Equipment ANSI Std C84.1* dimana *unbalance voltage* maksimal sebesar 3%. Adapun cara menghitung *unbalance voltage* dapat dilihat pada persamaan 1.

$$\%Unb_{Volt} = \frac{deviation\ from\ average\ voltage}{average\ voltage}\ x\ 100\ (1)$$

Dengan:

%Unb_{volt}: Nilai % unbalance voltage Deviation from average voltage: selisih antara tegangan rata-rata dengan tegangan fasa terendah (selisish tegangan terbesar. Average voltage: rata-rata tegangan ketiga fasa (fasa R, fasa S, fasa T).

3. METODE PENELITIAN

Analisis dalam penelitian ini dilakukan dalam beberapa tahapan sebagai berikut :

- Pengumpulan data yang dilakukan adalah seperti penentuan jenis sensor tegangan dan arus yang digunakan, jenis mikrokontroler, jenis relay, jenis motor induksi 3 fasa yang dipakai.
- Perancangan sistem pengaman dan monitoring motor induksi 3 fasa seperti membuat rancangan rangkaian sensor tegangan dan arus, rancangan rangkaian relay dan kontaktor, dan rancangan indikator AVR (Automatic Voltage Regulator), rangkaian relay dan alarm menggunakan buzzer.
- Perakitan seluruh rangkaian sensor tegangan dan arus beserta rancangan indikator AVR (Automatic Voltage Regulator), rangkaian relay dan alarm menggunakan buzzer.

- Pengujian ADC (Analog to Digital Converter) pada mikrokontroler arduino ATMEGA 328.
- 5. Pengujian rangkaian sensor tegangan dengan membandingkan nilai pengukuran dan teori berdasarkan rumus pembagi tegangan pada persamaan 2. $peak \ voltage \ output = \frac{R2}{(R1+R2)} \ x \ peak \ voltage \ input \ (2)$
- Pengujian rangkaian sensor arus dengan membandingkan nilai pengukuran dan teori berdasarkan rumus tegangan pada persamaan 3.

ersamaan 3.

Output Voltage =
$$\frac{RMSCurrent}{cTTurnRatio} x R_{Total}$$
 (3)

- Pengujian rangkaian relay dan kontaktor beserta alarm buzzer.
- 8. Pengujian dan Pembahasan Pengaman Motor Induksi 3 *Fasa* Terhadap Gangguan *Unbalance voltage* dan *Overload* dengan Sistem Monitoring Berbasis Mikrokontroler ATmega 328.

Diagram blok pengaman dan monitoring motor induksi 3 *fasa* dapat dilihat pada Gambar 2.

Gambar 2. Diagram blok pengaman dan monitoring motor induksi 3 fasa berbasis mikrokontroler ATMega

Masing-masing fasa pada sumber tegangan 3 fasa dan arus yang masuk ke motor disensor oleh rangkaian sensor tegangan dan sensor arus yang kemudian output dari masing-masing sensor akan masuk ke input mikrokontroler arduino uno ATMega 328. ADC pada mikrokontroler ATMega 328 akan mengubah nilai analog dari masing masing sensor ke nilai digital untuk diolah datanya. Data yang sudah diolah akan dikirimkan ke software monitoring kabel USB melalui to serial. Jika

mikrokontroler mendeteksi adanya gangguan unbalance voltage atau overload, maka output mikrokontroler akan memberikan sinyal kepada relay untuk menghidupkan kontaktor yang bertugas memisahkan sumber tegangan 3 fasa dengan motor induksi 3 fasa.

4. HASIL DAN PEMBAHASAN

4.1. Pengujian ADC pada mikrokontroler ATMega 328

Pengujian dan pembahasan ADC pada mikrokontroler ATmega 328 sangatlah penting karena dalam pembacaan sensor arus dan tegangan nilai analog dari rangkaian sensor arus, tegangan yang masuk kedalam mikrokontroler akan dibaca menjadi nilai digital. Gambar 3 merupakan diagram blok pengujian ADC pada mikrokontroler ATMega 328.

Gambar 3. Diagram blok pengujian ADC pada mikrokontroler ATMega 328

4.2. Pengujian ADC Rangkaian Sensor Tegangan

Rangkaian sensor tegangan berfungsi membaca tegangan yang masuk ke motor induksi 3 fasa. Pengujian dilakukan pada sensor tegangan dengan menggunakan voltage generator dan multimeter digital. Gambar 4 merupakan diagram blok pengujian rangkaian sensor tegangan.

Gambar 4. Diagram blok pengujian rangkaian sensor tegangan

4.3. Pengujian ADC Rangkaian Sensor Arus

Rangkaian sensor arus berfungsi membaca arus yang masuk ke motor induksi 3 *fasa*. Pengujian dilakukan dengan menggunakan bantuan *tacho generator* dan tang ampere. Gambar 5 merupakan diagram blok pengujian rangkaian sensor arus.

Gambar 5. Diagram blok pengujian rangkaian sensor arus

4.4. Pengujian dan Pembahasan Pengaman Motor Induksi 3 *Fasa* Terhadap Gangguan *Unbalance voltage* dengan Sistem Monitoring Berbasis Mikrokontroler ATmega 328.

Pengujian dan pembahasan pengaman motor induksi 3 fasa terhadap gangguan unbalance voltage dilakukan dengan menguji sistem apakah dapat mengamankan motor induksi 3 fasa dari gangguan sumber tegangan yang tidak seimbang. Pengujian sistem monitoring juga dilakukan dengan membandingkan nilai pengukuran sumber tegangan 3 fasa menggunakan multimeter dengan software monitoring Delphi pada menggunakan komputer. Gambar 6 merupakan diagram pengujian pengaman motor induksi 3 fasa terhadap gangguan unbalance voltage.

Gambar 6. Diagram blok pengujian pengaman motor induksi 3 *fasa* terhadap gangguan *unbalance voltage*

Pengukuran besar tegangan masing masing fasa dengan menggunakan 3 buah multimeter digital yang dapat dilihat pada Gambar 7.

Gambar 7. Contoh pengukuran tegangan masing masing *fasa* menggunakan multimeter

Pengujian rangkaian keseluruhan pengaman motor induksi 3 fasa terhadap gangguan unbalance voltage dilanjutkan dengan memonitoring besar tegangan masing masing fasa pada software Delphi. Gambar 8 merupakan contoh hasil monitoring masing masing fasa menggunakan software delphi.

Gambar 8. Contoh hasil monitoring masing masing *fasa* menggunakan *software* delphi

Hasil pengujian pengaman motor induksi 3 terhadap gangguan *unbalance voltage* dengan sistem monitoring berbasis mikrokontroler ATmega 328 dapat dilihat pada Tabel 1 dan Tabel 2.

Tabel 1. Hasil pengujian pengaman motor induksi 3 terhadap gangguan *unbalance voltage*.

No		Pengu	lean diei kannanan			
	R	S	Т	Unb	kondisi tegangan	
	(Volt)	(Volt)	(Volt)	(%)		
1	0.044	213.8	222.2	99.97	Unbalance Voltage	
2	191	213.3	220	8.22	Unbalance Voltage	
3	200.7	212.6	221.1	5.09	Unbalance Voltage	
4	211.1	214	222.4	2.19	Normal	
5	219.6	212.8	221.5	2.37	Normal	
6	229.2	212.1	220.6	3.87	Unbalance Voltage	
7	240.6	212.8	221.3	5.38	Unbalance Voltage	
8	223.5	0.058	222.2	99.96	Unbalance Voltage	
9	223.9	190.7	222.4	10.19	Unbalance Voltage	
10	224	200.8	222.5	6.94	Unbalance Voltage	
11	224.1	209.9	222.6	4.10	Unbalance Voltage	
12	224.1	220.2	222.6	0.94	Normal	
13	224	229.9	222.6	1.29	Normal	
14	224.1	240.8	222.6	2.87	Normal	
15	224.9	215.7	0.077	99.95	Unbalance Voltage	
16	225.2	215.6	191.6	9.11	Unbalance Voltage	
17	225.2	215.7	200.8	6.12	Unbalance Voltage	
18	225.2	215.6	210.5	3.04	Unbalance Voltage	
19	225.4	215.8	221.6	2.32	Normal	
20	225.3	215.7	230.9	3.69	Unbalance Voltage	
21	225.4	225.4 215.7		5.06	Unbalance Voltage	

Tabel 2. Hasil pengujian tampilan monitoring pengaman motor induksi 3 terhadap gangguan *unbalance voltage*.

No		Sistem M	l. a. adici ka asasasa			
	R	S	Т	Unb	kondisi tegangan	
	(Volt)	(Volt)	(Volt)	(%)		
1	0	212.97	223.3	100	Unbalance Voltage	
2	191.17	214.8	220.34	8.43	Unbalance Voltage	
3	200.89	212.96	221.12	5.09	Unbalance Voltage	
4	212.11	212.01	221.06	1.42	Normal	
5	220	212.94	221.13	2.33	Normal	
6	229.33	213.2	219.32	3.36	Unbalance Voltage	
7	239.42	214.58	218.77	4.31	Unbalance Voltage	
8	222.8	0	224.03	100	Unbalance Voltage	
9	223.3	191.51	223.41	9.98	Unbalance Voltage	
10	221.53	201.66	201.66 220.88 6		Unbalance Voltage	
11	222.26	210.25	221.98	3.63	Unbalance Voltage	
12	222.16	220	221.42	0.54	Normal	
13	221.91	231.24	220.8	1.71	Normal	
14	222.71	239.78 223.31		2.58	Normal	
15	224.79 216.41		0	100	Unbalance Voltage	

16	222.29	214.82	191.35	8.66	Unbalance Voltage	
17	224.48	214.92	201.86	5.56	Unbalance Voltage	
18	222.46	215.79	207.88	3.48	Unbalance Voltage	
19	222.57	213.79	220.34	2.33	Normal	
20	222.5	213.58	229.18	3.69	Unbalance Voltage	
21	222.42	213.21	240.04	5.33	Unbalance Voltage	

4.5. Pengujian dan Pembahasan Pengaman Motor Induksi 3 Fasa Terhadap Ganguan Overload dengan Sistem Monitoring Berbasis Mikrokontroler ATMega 328.

Pengujian dan pembahasan pengaman motor induksi 3 fasa terhadap gangguan overload dilakukan dengan menguji sistem apakah dapat mengamankan motor induksi 3 fasa dari beban motor yang berlebihan sehingga dapat meningkatkan nilai arus yang masuk ke motor . Pengujian sistem monitoring juga dilakukan dengan cara membandingkan nilai pengukuran arus menggunakan tang ampere dan multimeter dengan software monitoring menggunakan Delphi pada komputer. Gambar 9 merupakan diagram blok pengujian pengaman motor induksi 3 fasa terhadap gangguan overload.

Gambar 9. Diagram blok pengujian pengaman motor induksi 3 *fasa* terhadap gangguan *overload*

Hasil pengujian pengaman motor induksi 3 fasa terhadap gangguan *overload* dengan sistem monitoring berbasis mikrokontroler ATmega 328 dapat dilihat pada Tabel 3.

Tabel 3. Hasil pengujian pengaman motor induksi 3 fasa terhadap gangguan *overload* dengan sistem monitoring berbasis mikrokontroler ATmega 328

N.	Alat Ukur			Sistem Monitoring				
No	R	S	Т	R	S	Т	Status	
	(A)	(A)	(A)	(A)	(A)	(A)	Beban	
1	0.00	0.00	0.00	0.00	0.00	0.00	Normal	
2	0.43	0.40	0.45	0.43	0.39	0.45	Normal	
3	0.44	0.41	0.45	0.44	0.40	0.45	Normal	
4	0.45	0.42	0.46	0.45	0.40	0.46	Normal	
5	0.46	0.43	0.47	0.46	0.41	0.47	Normal	
6	0.47	0.43	0.48	0.48	0.44	0.48	Overload	
7	0.49	0.45	0.49	0.50	0.45	0.50	Overload	
8	0.50	0.46	0.50	0.51	0.47	0.50	Overload	
9	0.52	0.48	0.52	0.52	0.51	0.53	Overload	
10	0.55	0.51	0.55	0.56	0.53	0.57	Overload	

5. KESIMPULAN

- Sistem Pengaman motor induksi 3 fasa berbasis ATmega 328 yang dirancang dapat mengamankan motor induksi 3 fasa terhadap gangguan unbalance voltage dan overload.
- ADC pada mikrokontroler ATmega 328 dapat mengubah nilai analog dari tegangan dan arus menjadi nilai digitalnya dengan menggunakan rangkaian pengkondisi sinyal sample hold dan pembagi tegangan.
- Software Monitoring Sistem Pengaman motor induksi 3 fasa berbasis ATmega 328 dapat memonitoring hasil pembacaan sensor arus dan sensor tegangan.
- Perbedaan hasil pengukuran alat ukur dan pembacaan sensor arus yang di tampilkan pada software monitoring terdapat selisih terbesar dengan selisih 0.03A. Rata rata selisih pengukuran alat ukur dengan pembacaan sensor arus adalah sebesar 0.01A.
- 5. Selisih *unbalance voltage* terkecil antara pengukuran menggunakan multimeter dan monitoring pada komputer yaitu sebesar 0,00% dan Selisih terbesar sebesar 1,07%.
- 6. Pengaman motor induksi 3 *fasa* terhadap *unbalance voltage* dan *overload* ini dapat

- dikembangkan dengan menambahkan sensor kecepatan untuk mengetahui rpm motor dan menambahkan sensor suhu untuk mengetahui besar temperatur motor.
- 7. Aplikasi Software monitoring sistem pada Pengaman motor induksi 3 fasa berbasis mikrokontroler ATmega 328 ini dapat dikembangkan menjadi lebih aplikatif dan universal dengan menambahkan fitur fitur yang bisa dirubah rubah seperti jenis jenis motor.

6. DAFTAR PUSTAKA

- [1] Ridwan Ahmad. Rancang Bangun Sistem Proteksi Motor Induksi Tiga Phasa Terhadap Gangguan Arus Berbasis Mikrokontroller. Tugas Akhir. Surabaya: PEN-ITS. 2011.
- [2] Suparlan M. Rancang Bangun Rele Statis Phasa Tidak Seimbang dan Pengujiannya Pada Motor Induksi Tiga Phasa. Makalah. Sumatera Selatan: Universitas Sriwijaya. 2013.
- [3] J.N. Hooper. Electrical Machines: Electrical Installation Series Advanced Courses. London: Thomson Learning.
- [4] Winoto Ardi. Mikrokontroler AVR ATmega8/32/16/8535 dan Pemrogramannya dengan Bahasa C pada Win AVR. Bandung : Informatika Bandung. 2008.
- [5] http://arduino.cc/en/Reference/ HomePage. Diakses tanggal 3 April 2014.
- [6] Sumanto MA. Teori Transformator, Yogjakarta: Penerbit ANDI. 1996.
- [7] Arifianto D. Kamus Komponen Elektronika. Jakarta : Kawan Pustaka. 2011.
- [8] Toolay Michael. Rangkaian Elektronik "Prinsip dan Aplikasi Elektronika" Edisi kedua. Jakarta : Erlangga. 2003.
- [9] http://soemarno.org/2008/06/24/voltage-unbalance-penyebab-over-heating/ Diakses tanggal 3 Juni 2014.