

第五章 代数结构

- §1 代数系统的引入
- §2 运算及其性质
- §3 半群
- §4 群与子群
- §5 阿贝尔群和循环群
- §7 陪集与拉格朗日定理
- §8 同态与同构
 - §9 环和域

这一节讨论两个代数系统之间的联系。

着重研究两个代数系统之间的同态关系和同构关系。

同态公式

先算后映=先映后算 运算的象=象的运算

定义1 设<A, \bigstar >和<B,*>是两个代数系统, \bigstar 和*分别是A和B上的二元运算,f是从A到B的一个映射,使对 $\forall a_1, a_2 \in A$,有 $f(a_1 \bigstar a_2) = f(a_1) * f(a_2)$

- (1) 称f为由代数结构<A, ★>到<B,*>的同态映射;
- (2) 称代数结构<A, ★>同态于<B,*>, 记为A~B;
- (3) < f(A),* > 称为<A, ★>的一个同态象。 其中 f(A)={x|x=f(a),a∈A}⊆B

两个代数系统在同态意义下的相互联系 可以由下图来描述

同态映射示意图

例1:代数系统<I,·>,I是整数集,·是普通乘法运算。若对运算结果只感兴趣于正、负、零之间的特征区别,则代数系统<I,·>中运算结果的特征就可以用另一个代数系统<B, \odot >的运算结果来描述,其中B={正,负,零}, \odot 是定义在B上的二元运算,如表所示。

0	正	负	零
正	正	负	零
负	负	正	零
零	零	零	零

作映射f: I→B:

\odot	正	负	零
正	正	负	零
负	负	Œ	零
零	零	零	零

很显然,对于任意的a, b∈ I,有

$$f(\mathbf{a} \cdot \mathbf{b}) = f(\mathbf{a}) \odot f(\mathbf{b})$$

因此,映射f是由<I $, \cdot >$ 到<B $, \odot >$ 的一个同态。

上例告诉我们,在<I,·>中研究运算结果的正、负、零的特征就等于在<B, $\odot>$ 中的运算特征,可以说,代数系统<B, $\odot>$ 描述了<I,·>中运算结果的这些基本特征。而这正是研究两个代数系统之间是否存在同态的重要意义。

注意:由一个代数系统到另一个代数系统可能存在着多于 一个的同态。

(习题) 证明如果f是由<A,★>到<B,*>的同态映射,g 是由<B,*>到<C,△>的同态映射,那么 $f \circ g$ 是由 <A,★>到<C,△>的同态映射。

证明: 已知 $g \circ f$ 是由<A, \bigstar >到<C, \triangle >的映射,对任意 a_1 , $a_2 \in A$,有 $f(a_1 \bigstar a_2) = f(a_1) * f(a_2)$ $f \circ g(a_1 \bigstar a_2) = g(f(a_1) * f(a_2))$ $= g(f(a_1)) \triangle g(f(a_2))$ $= f \circ g(a_1) \triangle f \circ g(a_2)$ 所以 $g \circ f$ 是由<A, \bigstar >到<C, \triangle >的同态映射。

《第五章代数结构》

§5-8 同态与同构

二、同构

定义2 设f是由<A, \bigstar >到<B,*>的一个同态,如果f是从A到B的一个满射,则f称为满同态;如果f是从A到B的一个单射,则f称为单一同态;如果f是从A到B的一个双射,则f称为同构映射,并称<A, \bigstar >和<B,*>是同构的,记作A \cong B。

例2: 设 $f: R \rightarrow R$, 对任意 $x \in R$, $f(x)=5^x$ 那么,f是从< R, +>到< R, $\cdot>$ 的一个单一同态。

证明: 设 $\forall x1, x2 \in \mathbb{R}$ $f(x1+x2) = 5^{x1+x2} = 5^{x1} \cdot 5^{x2} = f(x1) \cdot f(x2)$ 因为 $f(x) = 5^{x}$ 是单射, 所以f是单一同态。

例3: 设H={x|x=dn, d是某一个正整数, $n \in I$ },定义映射f: $I \rightarrow H$,对 $\forall n \in I$,f(n)=dn,那么,f是从 $\forall I$ 0 +>的一个同构。

证明: 设 $\forall n_1, n_2 \in I$ $f(n_1+n_2)=d(n_1+n_2)=dn_1+dn_2=f(n_1)+f(n_2)$ 又因为f(n)=dn 是双射 所以,f是从< I,+>到< H,+>的一个同构。即 $I \cong H$

注意: 两个代数系统若是同构.

它们之间的同构映射可

以不唯一。

例: 设A= $\{a, b, c, d\}$, B= $\{\alpha, \beta, \gamma, \delta\}$ 。 证明<A, ★>和<B,*>是同构的。

*	a	b	c	d
a	a	b	c	d
b	b	a	a	\boldsymbol{c}
c	b	d	d	\boldsymbol{c}
d	a	b	\boldsymbol{c}	d

*	α	β	γ	δ
α	α	β	γ	δ
β	β	α	α	γ
γ	β	δ	δ	γ
δ	α	β	γ	δ

证明:考察映射f,使得

$$f(\mathbf{a}) = \alpha$$
 $f(\mathbf{b}) = \beta$ $f(\mathbf{c}) = \gamma$ $f(\mathbf{d}) = \delta$

$$f(\mathbf{c}) = \gamma$$
 $f(\mathbf{d}) = \delta$

考察映射g,使得

$$g(a) = \delta$$
 $g(b) = \gamma$ $g(c) = \beta$ $g(d) = \alpha$

$$g(c)=\beta$$

$$g(\mathbf{d}) = \alpha$$

例:代数系统<B,⊕>,<C,*>都与代数系统<A,★>同构。<A,★> <B,⊕> <C,*>

*	a	b
a	a	b
b	b	a

\oplus	偶	奇
偶	偶	奇
奇	奇	偶

*	0°	180°
0°	0°	180°
180°	180°	$\mathbf{0_o}$

注意:形式上不同的代数系统,如果同构,就可抽象地 把它们看作是本质上相同的代数系统,所不同的 只是所用的符号不同。并且,容易看出同构的逆 仍是一个同构。

三、自同态、自同构

定义3 设<A,★>是一个代数系统,

如果f是由<A, ★>到<A, ★>的同态,则称f为自同态。

如果g是由<A, ★>到<A, ★>的同构,则称g为自同构。

定理1 设G是代数系统的集合,则G中代数系统之间的 同构关系是一个等价关系。

证明: (1) 自反性: 因为任何一个代数系统可以通过恒等映射与它自身同构;

- (2) 对称性: 设<A, ★> \subseteq <B,* >且有对应的同构映射f,则f是双射函数,f的逆是<B,* > 到<A, ★> 的同构映射,即<B,* > \subseteq <A, ★> ;
- (3) 传递性:设f是A到B的同构映射,g是B到C的同构映射,因为f和g是双射函数, $f \circ g$ 是A到C的同构映射。即A \subseteq C。

所以,同构关系是等价关系。

定理2 设f是由<A, ★>到<B,*>的一个同态。

- (a) 如果<A, ★>是半群, 那么在f作用下, 同态象 < f(A),*>也是半群。
- (b) 如果<A, ★>是独异点,那么在f作用下,同态象 < f(A),*>也是独异点。
- (c) 如果<A, ★>是群, 那么在*f*作用下, 同态象 < *f*(A),*>也是群。

证明: 先证(a): < f(A),*>是半群

1) 证*运算在f(A)上封闭

设<A, ★>是半群, <B,*>是一个代数结构, 如果 f 是由<A, ★>到<B,*>的一个同态,则f(A) \subseteq B。 对于 \forall a, b∈f(A),必有x, y∈A,使得 f(x)=a,f(y)=b

在A中必有z=x★y,

所以 $\mathbf{a} * \mathbf{b} = f(\mathbf{x}) * f(\mathbf{y}) = f(\mathbf{x} \bigstar \mathbf{y}) = f(\mathbf{z}) \in f(\mathbf{A})$

2)证*在f(A)上满足结合律

对于 \forall a, b, c \in f(A),必有x, y, z \in A,使得 f(x)=a,f(y)=b,f(z)=c

因为*在A上是可结合的, 所以

$$a*(b*c)=f(x)*(f(y)*f(z)) = f(x)*f(y \neq z)$$

$$= f(x \neq (y \neq z))$$

$$= f((x \neq y) \neq z)$$

$$= f(x \neq y) *f(z)$$

$$= (f(x)*f(y))*f(z)$$

$$= (a*b)*c$$

所以< f(A),* > 是半群。

再证(b): < f(A),* > 是独异点

设<A, ★>是独异点,e是A中的幺元,那么f(e)是f(A)中的幺元。

- : 对于 \forall a∈f(A),必有x∈A,使得f(x)=a
- $\therefore a*f(e)=f(x)*f(e)=f(x \bigstar e)=f(x)=a$ $= f(e \bigstar x)=f(e)*f(x)=f(e)*a$
- $\therefore f(e)$ 是<f(A),*>中的幺元, <f(A),*>是独异点。

最后证(c): < f(A),* > 是群

设<A, ★>是群,对于 $\forall a \in f(A)$,必有 $x \in A$,使得f(x)=a

- ∵<A, ★>是群,
- ∴对于 \forall x ∈ A,都有逆元 x^{-1} ∈ A,且 $f(x^{-1})$ ∈ f(A),

$$\nabla : f(x) * f(x^{-1}) = f(x \bigstar x^{-1}) = f(e) = f(x^{-1} \bigstar x) = f(x^{-1}) * f(x)$$

- $\therefore f(\mathbf{x}^{-1}) \in f(\mathbf{x})$ 的逆元,即 $f(\mathbf{x}^{-1}) = [f(\mathbf{x})]^{-1}$
- $\therefore < f(A), * >$ 中的任意元素都有逆元, < f(A), * >是群。

综合上述(a)、(b)、(c)三步, 定理证毕。

四 同态核

定义4 如果f为代数结构<G, ★>到<G', *>的一个同态 映射,G'中有么元e',记

 $\operatorname{Ker}(f) = \{x \mid x \in G \land f(x) = e'\}$

称Ker(f) 为同态映射f的核,简称同态核($kernel\ of\ homomorphism$),

定理3 设f为群<G, ★>到群<G',*>的同态映射,则f的同态核K是G的子群。

 $\operatorname{Ker}(f) = \{x | x \in G \land f(x) = e'\}$

证明: 先证★运算在K上封闭

e'=f(e), K非空且有单位元e, 设 $k_1,k_2 \in K$,

则 $f(k_1 + k_2) = f(k_1) * f(k_2) = e' * e' = e'$

故 k_1 ★ k_2 ∈K,★运算在K上封闭。

再证K中的元素有逆元

而对 $\forall k \in \mathbb{K}$, $\underline{f(k^{-1})} = [\underline{f(k)}]^{-1} = e^{\gamma - 1} = e^{\gamma}$ 故 $k^{-1} \in \mathbb{K}$ 。 结论得证。

五 同态与同余关系的对应

定义5 设<A, \bigstar > 是一个代数系统,并设R是A上的一个等价关系。如果对 $\forall a_1, a_2, b_1, b_2 \in A$,

当 $<a_1,a_2>$, $<b_1,b_2>$ ∈R时,蕴涵着 $<a_1★b_1,a_2★b_2>$ ∈R

- 1) 称R为A上关于★的同余关系(congruence relations)。
- 2) 由这个同余关系将A划分成的等价类称为同余类。

例: 设 $A=\{a,b,c,d\}$,代数系统<A,★>以及在A上定义的等价关系R如下所示。

*	a	b	c	d
a	a	a	d	c
b	b	a	\boldsymbol{c}	d
c	c	d	a	\boldsymbol{b}
d	d	d	b	a

	а	b	c	d
a	1	1		
b	1			
c				$\sqrt{}$
d			V	V

$$R = \{ , , , < c,c>, < c,d>, < d,c>, < d,d> \}$$

等价类
$$[a]_R = [b]_R = \{a, b\},$$

 $[c]_R = [d]_R = \{c, d\}$

R={<a,a>,<a,b>,<b,a>,<b,b>,<c,c>,<c,d>,<d,c>,<d,d>} 容易验证对于任意的< a_1 , b_1 >, $<a_2$, b_2 > \in R有 $<a_1 \star a_2$, $b_1 \star b_2$ > \in R

$$y < a \star a, a \star a > = < a, a > \in R$$
 $< a \star a, a \star b > = < a, a > \in R$

$$\langle a \star b, a \star a \rangle = \langle a, a \rangle \in \mathbb{R}$$
 $\langle a \star b, a \star b \rangle = \langle a, a \rangle \in \mathbb{R}$

$$\langle a \star c, a \star c \rangle = \langle d, d \rangle \in \mathbb{R}$$
 $\langle a \star c, a \star d \rangle = \langle d, c \rangle \in \mathbb{R}$

$$\langle a \star d, a \star c \rangle = \langle c, d \rangle \in \mathbb{R}$$
 $\langle a \star d, a \star d \rangle = \langle c, c \rangle \in \mathbb{R}$

所以R是A上的同余关系。

同余关系R将A划分为同余类 $\{a, b\}$ 和 $\{c, d\}$ 。

定理4 设 $\langle A, \star \rangle$ 是一个代数系统,R为A上的同余关系,B= $\{A_1, A_2, ..., A_r\}$ 是由R诱导的A的一个划分,那么,必定存在新的代数结构 $\langle B, * \rangle$,它是 $\langle A, \star \rangle$ 的同态象。

证明: 在B上定义二元运算*为:对于 $\forall A_i, A_j \in B$,任取 $a_1 \in A_i$, $a_2 \in A_j$,如果 $a_1 \bigstar a_2 \in A_k$,则 $A_i * A_j = A_k$ 。

由于R是A上的同余关系, 所以,以上定义的 $A_i*A_j = A_k$ 是唯一的。

《第五章 代数结构》

§5-8 同态与同构

作映射 $f(a) = A_i$ $a \in A_i$ 显然,f是从A到B的满映射。

对于任意的 $x,y \in A$,x,y必属于B中的某两个同余类,不妨设 $x \in A_i$, $y \in A_j$, $1 \le i$, $j \le r$,同时, $x \ne y$ 必属于B中某个同余类,不防设 $x \ne y \in A_k$,于是就有

 $\mathbf{f}(\mathbf{x} \bigstar \mathbf{y}) = \mathbf{A}_{\mathbf{k}} = \mathbf{A}_{i} * \mathbf{A}_{j} = \mathbf{f}(\mathbf{x}) * \mathbf{f}(\mathbf{y})$

因此f是由<A, ★>到<B, * >的满同态,

即<B, * >是<A, ★>的同态象。

例: 设A={a, b, c, d}, 代数系统<A, ★>如下。R是定义

在A上的等价关系, $R=\{<a,a>,<a,b>,<b,a>,<b,b>,$

<c,c>,<c,d>,<d,c>,<d,d>}

已知R是A上的同余关系。

B={{a, b}, {c, d}}是A的一个划分。 B上的二元运算*如下表:

*	{a, b}	{c, d}
{a, b}	$\{a, b\}$	{c, d}
{c, d}	{c, d}	{a, b}

A到B的映射f为:

$$f(a)=\{a, b\} f(c)=\{c, d\}$$

$$f(b)=\{a, b\} f(d)=\{c, d\}$$

<B, *>是<A, ★>的同态象。

定理5 设f是由<A, ★>到<B, *>的一个同态映射,如果 在A上定义二元关系R为:

证明: 因为f(a)=f(a), 所以 $<a,a>\in R$ 。

若<a,b>∈R,则f(a)=f(b)即f(b)=f(a),所以<b,a>∈R。 若<a,b>∈R, <b,c>∈R则f(a)=f(b)=f(c),所以<a,c>∈R。

最后,又因为若<a,b> \in R , <c,d> \in R ,则有 $f(a \bigstar c) = f(a) * f(c) = f(b) * f(d) = f(b \bigstar d)$ 所以,<a \bigstar c,b \bigstar d> \in R 。 因此,R是A上的同余关系。

第五章 代数结构

- §1 代数系统的引入
- §2 运算及其性质
- §3 半群
- §4 群与子群
- §5 阿贝尔群和循环群
- §7 陪集与拉格朗日定理
- §8 同态与同构
- **●** §9 环和域

§5-9 环和域

讨论具有两个二元运算的代数系统。

对于给定的两个代数系统<A, $\star>$ 和<A, *>,可将其组合成一个具有两个二元运算的代数系统<A, \star ,。我们感兴趣于两个二元运算 \star 和*之间有联系的代数系统。

通常,把第一个二元运算★称为"加法", 把第二个运算*称为"乘法"。

§5-9 环和域

例如,具有加法和乘法这两个二元运算的实数系统

<R, +, ×>和整数系统<I, +, ×>。

对于 $\forall a, b, c \in R(或I)$,

都有a \times (b+c)=(a \times b)+(a \times c)

以及 $(b+c) \times a=(b \times a)+(c \times a)$,

这种联系就是乘法运算对于加法运算是可分配的。

一、环

定义1 设<A, ★, *>是一个代数系统,如果满足

- (1) <A, ★>是阿贝尔群。
- (2) <A,*>是半群。
- (3)运算*对运算★可分配,即对∀a,b,c∈A,

$$a*(b\bigstar c)=(a*b)\bigstar (a*c)$$

$$(b \bigstar c)*a = (b * a) \bigstar (c * a)$$

称代数结构<A, \star , *>为环(ring)。

一般将★称为加运算,记为"+", 将*称为乘运算,记为"•"。

例: 设<K, *>是 Klein四元群, 其中K={e, a, b, c}。 *和
•的运算如下所示。

*	e	a	b	c
e	e	a	b	\boldsymbol{c}
a	a	e	\boldsymbol{c}	b
b	\boldsymbol{b}	\boldsymbol{c}	e	a
c	c	\boldsymbol{b}	a	e

•	e	а	b	c
e	e	e	e	e
е а b	e	a	e	a
b	e	\boldsymbol{b}	e	b
c	e	\boldsymbol{c}	e	\boldsymbol{c}

则<K,*, •>是一个环。

§5-9 环和域

证明:先证<K,•>是一个半群。

对于 $\forall x \in K$,都有 $x \cdot e = e \cdot x = e$; a和c都是关于运算 \cdot 的右幺元; 对于 $\forall x \in K$ 都有 $x \cdot b = e$ 。

•	e	а	b	c
e	e	e	e	e
a b	e	a	e	a
b	e	b	e	b
c	e	\boldsymbol{c}	e	c

对于 $\forall x, y, z \in K$,可以证明必有 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,因为:

若z=e 或 z=b, 则 $(x \cdot y) \cdot z = e = x \cdot (y \cdot z)$

若z=a 或 z=c, 则 $(x \cdot y) \cdot z = x \cdot y = x \cdot (y \cdot z)$

§ 5-9	**************************************	ķ	e	а	b	С		•	e	а	b	С	
82-9		?			b			e		e			
	a	<i>t</i>	a	e	c	b		a	e	a	e	a	
	l b	,	b	\boldsymbol{c}	c e	a		b		b			
	C	,	c	b	а	e		c	e	c	e	c	

其次证明•关于*是可分配的。

先证等式
$$(y * z) • x=(y • x) *(z • x)$$

若 $x=e ext{ } e$

若
$$x=a$$
 或 $x=c$, 则 $(y*z) \cdot x = (y \cdot x) *(z \cdot x)$

$$(x \bullet y) *(x \bullet z)=(x \bullet y) *(x \bullet y)=e$$

§5-9 环和	*	e	а	b	c		•
82-9 1711	e	e	а	b	c		e
	a	a	e		b	B0000000000000000000000000000000000000	a
	b	b	c	e			b
	c	c	b	a	e		c

•	e	a	b	c
e	e	e	e	e
a	e	a	e	a
b	e	e a b	e	b
c	e	c	e	c

若y与z中有一个等于e,则等式

$$x \bullet (y * z) = (x \bullet y) * (x \bullet z) 成立$$
。

若y,z均不等于e,且 $y\neq z$,那么有三种情况:

- (1) $x \bullet (a * b) = x \perp (x \bullet a) *(x \bullet b) = x * e = x$
- (2) $x \cdot (a \cdot c) = x \cdot b = e \coprod (x \cdot a) \cdot (x \cdot c) = x \cdot x = e$
- (3) $x \bullet (b * c) = x \bullet a = x \perp (x \bullet b) * (x \bullet c) = e * x = x$

所以,在代数系统<K, *, •>中运算•对于运算*是可分配的。因此,<K, *, •>是一个环。

环的性质

定理1 设<A, +, •>为环, 那么对任意a,b,c∈A

- (1) $\theta \cdot a = a \cdot \theta = \theta$ (+的么元必为•的零元)
- (2) $a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$
- (3) $(-a) \cdot (-b) = a \cdot b$
- (4) $a \cdot (b-c) = (a \cdot b) (a \cdot c)$
- (5) $(b-c) \cdot a = (b \cdot a) (c \cdot a)$

其中0是加法幺元,

-a表示a的加法逆元,并将a+(-b)记为a-b。

证明思路:

(1) 先证θ= θ•a

因为
$$\theta \bullet a = (\theta + \theta) \bullet a = \theta \bullet a + \theta \bullet a$$

根据消去律 $\theta = \theta \cdot \mathbf{a}$

$$\theta \bullet a + \theta = \theta \bullet a + \theta \bullet a$$

同理可证 $\theta = \mathbf{a} \cdot \mathbf{\theta}$ (略)

(2) 先证a•(-b)=-(a•b)

因为
$$a \cdot b + a \cdot (-b) = a \cdot [b + (-b)] = a \cdot \theta = \theta$$

所以 **a**•(-b)是**a**•b的加法逆元,

同理可证 (-a)•b=-(a•b) (略)

雨课堂 Rain Classroom

- (3) $(-a) \cdot (-b) = a \cdot b$
 - $a \bullet (-b) + (-a) \bullet (-b) = [a + (-a)] \bullet (-b) = \theta \bullet (-b) = \theta$
 - $\mathbf{a} \bullet (-\mathbf{b}) + (\mathbf{a} \bullet \mathbf{b}) = \mathbf{a} \bullet [(-\mathbf{b}) + \mathbf{b}] = \mathbf{a} \bullet \theta = \theta$
 - \therefore (-a)•(-b) = (a•b)
- (4) $a \cdot (b-c) = (a \cdot b) (a \cdot c)$ $a \cdot (b-c) = a \cdot [b+(-c)] = a \cdot b + a \cdot (-c)$ $= a \cdot b + (-a \cdot c) = a \cdot b - a \cdot c$
- (5) $(b-c) \cdot a = (b \cdot a) (c \cdot a)$ $(b-c) \cdot a = [b+(-c)] \cdot a = b \cdot a + (-c) \cdot a$ $= b \cdot a + (-c \cdot a) = b \cdot a - c \cdot a$

一些特殊环

定义 2 设< A, +, • >是环。

如果< A, $\bullet >$ 是可交换的, 称< A, +, $\bullet >$ 是交换环;

如果< A, $\bullet >$ 含有么元, 称< A, +, $\bullet >$ 是含么环。

例:设S是一个集合,P(S)是它的幂集,如果在P(S)上定义二元运算+和•如下:对于任意的A, $B \in P(S)$ $A+B=\{x|(x \in S) \land (x \in A \lor x \in B) \land (x \notin A \cap B)\}$ $A \bullet B=A \cap B$ 容易证明<P(S),+, \bullet >是一个环,称它为S的子集环。

由于集合运算 \cap 是可交换的, < P(S), • >含有幺元S, 因此子集环是含幺交换环。

《第五章代数结构》

定义3 设<A,+, ◆>是一个代数结构,如果满足:

1. < A,+>是阿贝尔群

2. < A, •> 是可交换独异点,且无零因子,即对任意的 $a,b \in A$, $a \neq \theta$, $b \neq \theta$ 必有 $a • b \neq \theta$ 。

3. 运算• 对于运算 + 是可分配的。 则称 < **A**,+, • > 为<mark>整环</mark>。

例: <I, +, •>是整环。

因为<I,+>是一个具有加法幺元0,且对任意n有逆元-n的阿贝尔群;

<I, •>是可交换独异点,且满足无零因子条件;

运算•对于运算+是可分配的,

故<I, +, •>是整环。

定理2 在环<A, +, •>中的无零因子条件等价于消去律, 即对于 $c\neq\theta$ 和 c• a=c•b, 必有a=b。

证明: 环<A,+,◆>中无零因子⇔消去律

先证环<A, +, •>中无零因子 \rightarrow 消去律 若<A, +, •>中无零因子, 并设c \neq θ 和c• a=c•b,

则有: c• a - c•b= c•(a - b)= θ, 所以. 必有 a=b。

再证: 消去律 \Rightarrow <A, +, •>中无零因子 若消去律成立,设 a ≠ θ , a •b= θ 则 a•b=a• θ , 消去a即得b= θ 。

45

 $a - b = \theta$

二、域

定义4 设<A,+, •>是一个代数结构,如果满足:

- 1. < A,+>是阿贝尔群。
- 2. < A-{θ},•>是阿贝尔群。
- 3. 运算•对于运算 + 是可分配的。

则称 < A,+, • > 为域(fields)。

例: <Q,+,•>,<R,+,•>,<C,+,•>都是域。

其中: Q为有理数集合, R是实数集合, C是复数集

合,+,•分别是各数集上的加法和乘法运算。

注意: <I,+, ●>是整环, 但不是域。

因为<I-{0}, • >不是群。这说明,整环不一定是域。

定理3 域一定是整环。

证明: 设<A,+, •>是任一个域。 对于a,b,c∈A, 且a≠θ如果有a•b=a•c, (而1是乘 法幺元)则

定理4 有限整环一定是域。

证明: 设<A,+,•>是一个有限整环。

所以,对于a,b,c∈A,且c≠θ,若a≠b,则a•c≠b•c。

再由•运算的封闭性,就有A•c=A。

对于乘法幺元 1, 由 $A \cdot c = A$, 必有 $d \in A$,

使得d •c=1,故d是c 的乘法逆元。

因此,有限整环<A,+,•>是一个域。

雨课堂 Rain Classroom

三、同态映射

定义5-9.5 设<A,+,•>和<B, \oplus , \odot >是两个代数结构,如果一个从A到B的映射f,满足如下条件:

对于任意的a, b∈A, 有

- 1. $f(a+b)=f(a) \oplus f(b)$
- 2. $f(\mathbf{a} \cdot \mathbf{b}) = f(\mathbf{a}) \odot f(\mathbf{b})$

则称f为由 $< A, +, \bullet > 到 < B, \oplus, \odot > 的一个同态映射,$

并称<f(A), \oplus , \odot >是 < A,+, • >的同态象。

设<A,+,•>是一个代数结构,并设R是在A上同时关于运算+和•的同余关系,即R是A上的一个等价关系,并且若<a₁,a₂>,<b₁,b₂> \in R,

则 $< a_1 + b_1, a_2 + b_2 >, < a_1 \cdot b_1, a_2 \cdot b_2 > \in R$ 。

设 $B=\{A_1, A_2, ..., A_r\}$ 是由同余关系R诱导的A的划分,

其中, A_i (i=1,2,...,r) 都是同余类。

在B上定义两个二元运算⊕和⊙如下:

$$\mathbf{A}_i \oplus \mathbf{A}_j = \mathbf{A}_k \qquad \mathbf{a}_1 + \mathbf{a}_2 \in \mathbf{A}_k \quad (\sharp \mathbf{p} \mathbf{a}_1 \in \mathbf{A}_i, \mathbf{a}_2 \in \mathbf{A}_j)$$

$$A_i \odot A_j = A_l$$
 $a_1 \circ a_2 \in A_l$ $(\sharp \Phi a_1 \in A_i, a_2 \in A_j)$

雨课堂 Rain Classroom

定义一个A到B的映射f,满足如下条件:

对于 $\forall a \in A$, 有 $f(a) = A_i$ $a \in A_i$

那么,对于 $\forall x,y \in A$,必有 $x \in A_i$, $y \in A_j$ 以及

$$f(\mathbf{x}+\mathbf{y}) = \mathbf{A}_k \qquad \mathbf{x}+\mathbf{y} \in \mathbf{A}_k$$

 $\overline{\mathbb{M}}$ $A_k = A_i \oplus A_j = f(\mathbf{x}) \oplus f(\mathbf{y})$

所以 $f(x+y) = f(x) \oplus f(y)$

类似地 $f(x \cdot y) = f(x) \odot f(y)$

所以,f是由 $< A, +, \bullet > 到 < B, \oplus, \odot > 的一个同态映射,$

故<B,⊕,⊙>是<A,+,•>的同态象。

例:设<N,+,•>是一个代数系统,N是自然数集,+和•是普通的加法和乘法运算,并设代数系统<{偶,奇},⊕,⊙>,其运算表如下:

⊕	偶	奇
偶	偶	奇
奇	奇	偶

•	偶	奇
偶	偶	偶
奇	偶	奇

容易验证
$$f(n)=$$

$$\begin{cases} \texttt{K} & \texttt{K}=0,1,2\cdots \\ \texttt{K}=0,1,2\cdots \end{cases}$$

是由<N,+, $\bullet>$ 到<{偶,奇}, \oplus , \odot >的同态映射。 因此, <{偶,奇} , \oplus , \odot >是<N,+, \bullet >的一个同态象。

定理5-9.5 任一环的同态象是一个环。

证明: 设< A,+, •>是一个环, 且<B, ⊕,⊙>是关于同态 映射*f*的同态象。

由 <A,+>是阿贝尔群,易证<B, \oplus >也是阿贝尔群。

由 <A,•>是半群,易证<B,⊙>也是半群。

对于 $\forall b_1, b_2, b_3 \in B$,必有相应的 $a_1, a_2, a_3 \in A$,使得 $f(a_i) = b_i$ (i=1,2,3)

于是
$$b_1 \odot (b_2 \oplus b_3) = f(a_1) \odot (f(a_2) \oplus f(a_3))$$

$$= f(a_1) \odot (f(a_2 + a_3))$$

$$= f(a_1 \bullet (a_2 + a_3))$$

$$= f((a_1 \bullet a_2) + (a_1 \bullet a_3))$$

$$= f(a_1 \bullet a_2) \oplus f(a_1 \bullet a_3)$$

$$= (f(a_1) \odot f(a_2)) \oplus (f(a_1) \odot f(a_3))$$

$$= (b_1 \odot b_2) \oplus (b_1 \odot b_3)$$
同理可证 $(b_2 \oplus b_3) \odot b_1 = (b_2 \odot b_1) \oplus (b_3 \odot b_1)$
因此 $< B, \oplus, \odot >$ 也是一个环。