Análise da Detecção de Fraudes em Transações Financeiras com Modelos de Aprendizado de Máquina

1st Gabriel Lima de Souza

Departamento de Engenharia de Software

PUC Minas

Belo Horizonte, Brasil
gabriel.souza.1354648@sga.pucminas.br

2nd Nikolas Louret

Departamento de Engenharia de Software

PUC Minas

Belo Horizonte, Brasil

navlouret@sga.pucminas.br

3rd Frederico dos Santos

Departamento de Engenharia de Software

PUC Minas

Belo Horizonte, Brasil

frederico.andrade.1318112@sga.pucminas.br

4th Gabriel de Souza

Departamento de Engenharia de Software

PUC Minas

Belo Horizonte, Brasil
gabriel.souza.1365691@sga.pucminas.br

Abstract-A detecção de fraudes financeiras é um desafio crescente na era digital, impulsionado pelo aumento das transações online e pela complexidade das operações financeiras. Este estudo investiga o uso de técnicas de aprendizado de máquina para identificar transações fraudulentas em dados de cartões de crédito, com ênfase no modelo Random Forest. O objetivo principal é desenvolver um modelo eficaz para a detecção de fraudes financeiras, utilizando um conjunto de dados público do Kaggle contendo transações reais de cartões de crédito europeus. O modelo foi avaliado com métricas como acurácia, precisão, revocação, F_1 -score e AUC, com resultados indicando que o Random Forest superou outros modelos, como Logistic Regression, Naive Bayes, Support Vector Machine, e K-Nearest Neighbors, em termos de desempenho geral. Os resultados destacam a eficácia do Random Forest em identificar fraudes de forma robusta e eficiente, apresentando uma alta capacidade discriminatória, especialmente em cenários com dados desbalanceados. Este trabalho contribui para a literatura acadêmica ao demonstrar o uso prático de modelos de aprendizado de máquina para a detecção de fraudes financeiras, além de discutir as implicações e desafios dessa tecnologia no setor financeiro.

Index Terms—Detecção de fraudes, aprendizado de máquina, Random Forest, Logistic Regression, Naive Bayes, Support Vector Machine, K-Nearest Neighbors, AUC, undersampling, transações financeiras

I. INTRODUÇÃO

A detecção de fraudes financeiras tem se tornado um desafio crescente na era digital, especialmente com o aumento das transações online e a complexidade das operações financeiras. As fraudes financeiras representam uma ameaça significativa à estabilidade econômica e à confiança dos consumidores, afetando diretamente o desempenho e a reputação das instituições financeiras [1]. Com a crescente dependência de transações digitais, torna-se cada vez mais crucial implementar sistemas eficazes para identificar e prevenir fraudes em tempo real.

Na literatura, os métodos de detecção de fraudes são frequentemente divididos em duas abordagens principais: a detecção de uso indevido e a detecção de anomalias. A primeira utiliza técnicas de classificação baseadas no conhecimento prévio dos padrões de fraudes, avaliando se uma transação é fraudulenta ou não com base em dados históricos. Em contraste, a detecção de anomalias visa identificar transações atípicas que se desviam do comportamento normal do usuário, utilizando métodos que modelam o comportamento típico de transações e sinalizam comportamentos irregulares. A eficácia da detecção de anomalias, no entanto, depende da disponibilidade de dados suficientes para construir um perfil robusto de comportamento normal, o que pode ser um desafio em situações de novos tipos de fraudes [2].

Diversos estudos têm explorado diferentes algoritmos de aprendizado de máquina para resolver esse problema. O estudo de Xuan et al. (2018) testou várias metodologias para identificar fraudes em transações de cartões de crédito e concluiu que o método *Random Forest* (RF) obteve a maior precisão. Nesse contexto, o presente trabalho propõe o uso de cinco algoritmos de aprendizado de máquina — *Random Forest*, *Logistic Regression* (LR), *Naive Bayes* (NB), *Support Vector Machine* (SVM) e *K-Nearest Neighbors* (KNN) — para desenvolver um modelo capaz de identificar transações fraudulentas. O conjunto de dados utilizado neste estudo é proveniente do **Kaggle**¹ e contém informações sobre transações de cartões de crédito realizadas por clientes europeus em setembro de 2013.

O objetivo deste estudo é realizar uma análise comparativa do desempenho de diferentes modelos de aprendizado de máquina em um cenário realista para a detecção de fraudes financeiras. Além disso, busca-se contribuir para a literatura

¹[Online] Disponível em: https://www.kaggle.com/

acadêmica ao detalhar os métodos utilizados, os resultados obtidos e as lições aprendidas, ressaltando os desafios e as oportunidades na aplicação de técnicas de inteligência artificial na detecção de fraudes financeiras.

II. MÉTODO

O método adotado neste trabalho segue uma abordagem sistemática baseada em técnicas de aprendizado de máquina para a detecção de fraudes financeiras.

A Figura 1 apresenta o fluxo metodológico utilizado neste estudo, destacando as etapas principais do processo de detecção de fraudes financeiras com aprendizado de máquina. O diagrama ilustra desde a configuração do ambiente e carregamento dos dados, passando pelo pré-processamento, balanceamento, divisão do conjunto de dados e treinamento, até a avaliação e visualização dos resultados. Cada etapa foi cuidadosamente planejada para garantir a robustez do modelo e a confiabilidade das análises, com foco na identificação precisa de transações fraudulentas e na mitigação de vieses decorrentes do desbalanceamento dos dados.

Fig. 1. Fluxo metodológico.

Para alcançar os objetivos propostos, as etapas a seguir foram realizadas:

A. Configuração do Ambiente e Carregamento dos Dados

A configuração do ambiente de desenvolvimento foi realizada no Google Colab devido à sua capacidade de oferecer recursos computacionais de alto desempenho em nuvem e integração facilitada com diversas bibliotecas de aprendizado de máquina. A API do Kaggle foi configurada para possibilitar o acesso ao conjunto de dados, utilizando credenciais pessoais para autenticação. O dataset Credit Card Fraud Detection, amplamente utilizado em estudos relacionados à detecção de fraudes, foi escolhido por conter características anonimizadas e informações específicas sobre transações reais [10].

Após o download do *dataset*, utilizou-se a biblioteca Pandas para carregar os dados em um DataFrame, facilitando a manipulação e análise. A distribuição inicial das classes foi examinada, revelando um alto desbalanceamento entre transações não fraudulentas (99,828%) e fraudulentas (0,172%) [10]. Esse desbalanceamento indicou a necessidade de técnicas de balanceamento para evitar enviesamento dos modelos treinados.

B. Pré-processamento e Balanceamento dos Dados

A etapa de pré-processamento iniciou-se com a análise estatística dos dados para identificar possíveis valores ausentes, duplicados ou inconsistências. Embora o *dataset* fosse limpo e não apresentasse valores ausentes, foi essencial validar a integridade dos dados antes de prosseguir.

Dada a disparidade na quantidade de exemplos entre as classes, foi aplicado o *undersampling*, uma técnica de balanceamento que reduz a classe majoritária, mantendo o mesmo número de amostras da classe minoritária [9]. A escolha pelo *undersampling* deve-se à sua eficácia em contextos onde os dados são abundantes e onde o foco principal é evitar o aprendizado enviesado. Após o balanceamento, o conjunto resultante continha 984 amostras, sendo metade fraudulentas e metade não fraudulentas.

Essa etapa garantiu que os modelos treinados tivessem condições de aprender características distintivas entre transações fraudulentas e não fraudulentas, sem priorizar excessivamente a classe majoritária.

C. Divisão do Conjunto de Dados

Com o conjunto de dados balanceado, procedeu-se à divisão em variáveis preditoras (X) e variável alvo (y). As variáveis preditoras incluem as características anonimizadas do *dataset*, enquanto a variável alvo indica se a transação foi classificada como fraudulenta (1) ou não fraudulenta (0).

Para garantir uma avaliação justa dos modelos, o conjunto foi dividido em dados de treino (80%) e teste (20%) utilizando o método de amostragem estratificada. Esse método assegura que a proporção de classes seja mantida em ambas as divisões, evitando distorções que poderiam impactar o desempenho dos algoritmos [3].

Essa abordagem permitiu treinar os modelos com dados representativos e avaliar seu desempenho em um conjunto não utilizado no treinamento, simulando condições de aplicação real.

D. Treinamento e Avaliação dos Modelos

Cinco algoritmos de aprendizado de máquina foram selecionados para a tarefa de classificação:

- **RF:** Um modelo baseado em múltiplas árvores de decisão que utiliza o método de *ensemble* para melhorar a precisão e reduzir o risco de *overfitting* [4].
- **SVM:** Um classificador eficiente em problemas de alta dimensionalidade, que busca encontrar o hiperplano ótimo que separa as classes [5].
- LR: Um modelo linear simples e interpretável, amplamente utilizado para problemas binários [6].
- NB: Um classificador probabilístico baseado no Teorema de Bayes, ideal para dados de alta dimensionalidade e independência entre as variáveis [7].
- KNN: Um modelo baseado em instâncias que classifica amostras com base na proximidade de seus vizinhos mais próximos [8].

Os modelos foram treinados no conjunto de treino balanceado e avaliados no conjunto de teste. Foram utilizadas as métricas de acurácia, matriz de confusão, relatório de classificação (precisão, revocação e F_1 -score) e a AUC da curva ROC. Essas métricas fornecem uma visão abrangente da performance dos modelos em diferentes aspectos, como a capacidade de distinguir entre classes e evitar falsos negativos [3].

E. Visualização dos Resultados

A visualização dos resultados foi uma etapa fundamental para interpretar e comparar o desempenho dos modelos de forma intuitiva. Gráficos de barras foram utilizados para comparar a acurácia de cada modelo, enquanto gráficos de pizza representaram a distribuição de previsões (fraudulentas e não fraudulentas) para cada algoritmo.

Mapas de calor das matrizes de confusão destacaram os erros de classificação e os acertos dos modelos, permitindo uma análise detalhada dos tipos de erros cometidos. Além disso, as curvas ROC foram geradas para avaliar a capacidade discriminatória de cada modelo, sendo a AUC uma métrica adicional para determinar a qualidade geral da classificação.

F. Ferramentas Utilizadas

As ferramentas empregadas neste trabalho foram selecionadas para atender aos requisitos computacionais e analíticos:

- Pandas e NumPy: Para manipulação e análise dos dados.
- Matplotlib e Seaborn: Para geração de gráficos e visualizações.
- scikit-learn: Para implementação dos modelos de aprendizado de máquina e métricas de avaliação.
- Google Colab: Como ambiente de desenvolvimento em nuvem, possibilitando acesso a recursos computacionais avançados.
- **Kaggle**: Repositório utilizado para o download do *dataset*.

Essas ferramentas proporcionaram um fluxo de trabalho eficiente e reprodutível, permitindo que todas as etapas fossem concluídas de maneira integrada e robusta.

III. RESULTADOS

Nesta seção, apresentam-se os resultados obtidos nas etapas de pré-processamento, balanceamento, treinamento e avaliação dos modelos de aprendizado de máquina aplicados à detecção de fraudes financeiras.

A. Distribuição Inicial dos Dados

O conjunto de dados inicial apresentou um alto desbalanceamento entre as classes: 99,828% das transações eram não fraudulentas e apenas 0,172% eram fraudulentas, conforme ilustrado na Figura 2. Esse desbalanceamento é comum em sistemas de detecção de fraudes [9] e pode causar vieses nos modelos, priorizando a classe majoritária e ignorando fraudes.

Fig. 2. Distribuição inicial das classes no conjunto de dados.

B. Balanceamento dos Dados

Para corrigir o desbalanceamento, foi aplicado o método de *undersampling*, ajustando a classe majoritária para o mesmo número de exemplos da classe minoritária. A Figura 3 ilustra a distribuição balanceada resultante, com 492 amostras em cada classe. Embora essa técnica melhore a representatividade das classes, ela reduz a quantidade total de dados disponíveis, podendo impactar a generalização dos modelos.

Fig. 3. Distribuição balanceada das classes após undersampling.

C. Análise dos Resultados

Os cinco modelos avaliados foram comparados utilizando métricas como acurácia, precisão, revocação, F_1 -score e AUC. A Tabela I resume os resultados obtidos.

TABLE I RESUMO DAS MÉTRICAS PARA CADA MODELO AVALIADO.

Métrica	RF	LR	NB	SVM	KNN
Acurácia (%)	94,92	93,91	83,76	55,33	58,38
Precisão (%)	92,78	91,58	68,00	51,61	52,00
Revocação (%)	94,62	92,85	92,31	59,18	60,00
F_1 -score (%)	93,69	92,21	78,37	55,10	55,74
AUC	0,9793	0,9813	0,9555	0,5920	0,6216

Entre os modelos avaliados, RF apresentou o melhor desempenho geral, com acurácia de 94,92% e AUC de 0,9793, seguido de perto pelo LR, com acurácia de 93,91% e AUC de 0,9813. Ambos demonstraram alta capacidade discriminatória e consistência na classificação de fraudes e não fraudes.

Por outro lado, NB apresentou uma revocação elevada (92,31%), indicando boa capacidade de identificar transações fraudulentas. No entanto, sua precisão foi baixa (68,00%), sugerindo muitos falsos positivos. Já SVM e KNN tiveram desempenhos insatisfatórios, com acurácias inferiores a 60%, demonstrando limitações significativas no aprendizado de padrões em dados balanceados artificialmente.

O impacto do *undersampling* foi perceptível. Enquanto RF e LR foram pouco afetados pela redução no tamanho do conjunto de dados, SVM e KNN mostraram sensibilidade às alterações na densidade e estrutura dos dados, apresentando dificuldade em separar as classes de forma eficaz.

D. Visualização de Resultados por Modelo

As matrizes de confusão destacam o desempenho detalhado dos modelos, revelando acertos e erros em cada classe. A seguir, discutem-se as matrizes de confusão para os principais modelos.

a) Modelo RF: A Figura 4 mostra a matriz de confusão para o modelo RF. O modelo obteve uma taxa de verdadeiros positivos de 94,62% (fraudes corretamente identificadas) e uma taxa de verdadeiros negativos de 92,78% (não fraudes corretamente classificadas). Esses valores indicam um bom equilíbrio entre a identificação de fraudes e a classificação correta das transações não fraudulentas.

Fig. 4. Matriz de confusão para o modelo RF.

b) Modelo LR: A Figura 5 apresenta a matriz de confusão para o modelo LR. O modelo teve 92,85% de revocação (fraudes corretamente identificadas) e 91,58% de precisão. No entanto, houve uma proporção de falsos negativos, onde 7,15% das fraudes não foram identificadas, o que resultou em uma leve perda de acurácia, mas sem comprometer significativamente o desempenho geral.

Fig. 5. Matriz de confusão para o modelo LR.

c) Modelo NB: A Figura 6 ilustra a matriz de confusão para o Naive Bayes. Embora o modelo tenha apresentado uma alta revocação de 92,31% (indicando boa capacidade de identificar fraudes), a precisão foi de apenas 68,00%, sugerindo que 32% das transações classificadas como fraudulentas eram, na verdade, não fraudulentas (falsos positivos).

Fig. 6. Matriz de confusão para o modelo NB.

d) Modelo SVM: A Figura 7 apresenta a matriz de confusão do modelo SVM, que obteve uma revocação de 59,18% e uma precisão de 51,61%. O modelo classificou como não fraudulentas 59,18% das transações fraudulentas (falsos negativos), o que resultou em um desempenho inferior, evidenciado pela AUC de 0,5920. O modelo teve dificuldades em separar adequadamente as classes, mostrando limitações no aprendizado de padrões discriminatórios.

Fig. 7. Matriz de confusão para o modelo SVM.

e) Modelo KNN: A Figura 8 apresenta a matriz de confusão para o KNN, que obteve uma revocação de 60,00% e uma precisão de 52,00%. O modelo cometeu falsos negativos, classificando como não fraudulentas 40,00% das transações fraudulentas. Esse comportamento sugere que o modelo teve dificuldade em distinguir entre fraudes e transações legítimas após o balanceamento por undersampling, o que impactou sua capacidade de generalização.

Fig. 8. Matriz de confusão para o modelo KNN.

E. Comparação Geral dos Modelos

A Figura 9 mostra a comparação da acurácia dos modelos, destacando o desempenho superior de RF e LR, com valores muito próximos entre si. As curvas ROC, na Figura 10, evidenciam a alta capacidade discriminatória desses modelos, com AUCs próximas de 1,0.

Fig. 9. Comparação da acurácia entre os modelos avaliados.

Fig. 10. Curvas ROC para os modelos avaliados.

F. Considerações Finais

Os resultados evidenciam que RF e LR são os modelos mais adequados para a detecção de fraudes neste cenário, devido à sua robustez e alta capacidade discriminatória. Em contrapartida, os modelos SVM e KNN apresentaram limitações claras, reforçando a importância de selecionar algoritmos apropriados para dados balanceados artificialmente. Esses achados sugerem que técnicas de balanceamento, como o *undersampling*, devem ser usadas com cautela, pois podem impactar significativamente o desempenho de determinados algoritmos.

IV. CONCLUSÃO

Este trabalho apresentou o desenvolvimento e avaliação de modelos de aprendizado de máquina para a detecção de fraudes em transações financeiras. Os modelos RF e LR se destacaram pela alta acurácia, capacidade discriminatória e equilíbrio entre precisão e revocação, alcançando AUCs superiores a 0,97. O modelo RF obteve o melhor desempenho geral, com uma acurácia de 94,92% e um F_1 -score de 93,69%. Em contraste, os modelos SVM e KNN apresentaram acurácias abaixo de 60%, com desempenho insatisfatório na detecção de fraudes.

A análise do impacto do balanceamento dos dados, por meio do *undersampling*, mostrou que os modelos RF e LR foram menos sensíveis à redução da classe majoritária, mantendo boa capacidade de generalização. Por outro lado, os modelos SVM e KNN, mais dependentes da estrutura dos dados, tiveram seu desempenho comprometido pela alteração na distribuição das classes. O NB, apesar de apresentar boa revocação, teve baixa precisão, indicando muitos falsos positivos.

Com base nos resultados, podemos concluir que os modelos RF e LR são adequados para a detecção de fraudes financeiras em contextos desbalanceados. No entanto, é importante considerar a escolha do modelo e as técnicas de balanceamento de dados, uma vez que essas influenciam diretamente a performance. Futuros trabalhos podem explorar o uso de outras técnicas de balanceamento e modelos mais complexos, como redes neurais, para melhorar a acurácia e a capacidade de detecção.

REFERENCES

- [1] D. Varmedja, M. Karanovic, S. Sladojevic, M. Arsenovic and A. Anderla, "Credit Card Fraud Detection Machine Learning methods," 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 2019, pp. 1-5, doi: 10.1109/INFOTEH.2019.8717766.
- [2] S. Xuan, G. Liu, Z. Li, L. Zheng, S. Wang and C. Jiang, "Random forest for credit card fraud detection," 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 2018, pp. 1-6, doi: 10.1109/ICNSC.2018.8361343.
- [3] S. Raschka and V. Mirjalili, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 3rd ed., Birmingham, UK: Packt Publishing, 2019.
- [4] L. Breiman, "Random Forests," *Machine Learning*, vol. 45, no. 1, pp. 5-32, 2001. doi: 10.1023/A:1010933404324.
- [5] C. Cortes and V. Vapnik, "Support-vector networks," *Machine Learning*, vol. 20, no. 3, pp. 273-297, 1995. doi: 10.1007/BF00994018.
- [6] D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression, 3rd ed., Hoboken, NJ, USA: John Wiley & Sons, 2013. doi: 10.1002/9781118548387.
- [7] H. Zhang, "The optimality of Naive Bayes," AAAI Conference on Artificial Intelligence, pp. 562-567, 2004.
- [8] N. S. Altman, "An introduction to kernel and nearest-neighbor non-parametric regression," *The American Statistician*, vol. 46, no. 3, pp. 175-185, 1992. doi: 10.1080/00031305.1992.10475879.
- [9] H. He and E. A. Garcia, "Learning from imbalanced data," *IEEE Transactions on Knowledge and Data Engineering*, vol. 21, no. 9, pp. 1263-1284, Sept. 2009. doi: 10.1109/TKDE.2008.239.
- [10] A. Pozzolo, "Credit Card Fraud Detection," Kaggle, 2016. [Online]. Available: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud. [Accessed: Out. 30, 2024].