TD 1 Calcul Scientifique

1 Guider le choix de la méthode de résolution

1. Soit A une matrice de rang plein (son rang est égal au nombre de colonnes). On s'intéresse à la résolution de systèmes linéaires associés à A. Précisez les questions 1 à 4 présentes dans l'arbre de décision suivant, associé au choix de la méthode de résolution :

2. Soit A une matrice carrée symétrique réelle. On s'intéresse à la recherche de valeurs propres de A. Précisez les questions 5 et 6 présentes dans l'arbre de décision suivant, associé au choix de la méthode de résolution :

2 Décomposition en valeurs singulières et produits.

Soit A une matrice rectangulaire de $\mathbb{R}^{m \times n}$ de rang r > 0. On appelle A^{\dagger} la matrice dite pseudo-inverse de A.

- **1.** Soient $x \in \mathbb{R}^{n \times 1}$ et $y \in \mathbb{R}^{n \times 1}$, tels que $x^T y \neq 0$. Calculer $(xy^T)^{\dagger}$ et $(y^T)^{\dagger}x^{\dagger}$. A-t-on selon vous pour toutes matrices A et B quelconques $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$?
- 2. Soit A une matrice rectangulaire de $\mathbb{R}^{m\times n}$ de rang r. Soit la matrice par blocs

$$B = \begin{bmatrix} A \\ A \end{bmatrix} \in \mathbb{R}^{2m \times n}.$$

Montrer que $B^\dagger=\alpha\left[A^\dagger,A^\dagger\right]\in\mathbb{R}^{n\times 2m},$ où α est un réel que vous indiquerez.

3. Soit A une matrice rectangulaire de $\mathbb{R}^{m\times n}$ de rang r. On suppose que $A=FR^T$ où $F\in\mathbb{R}^{m\times r}$ et $R\in\mathbb{R}^{n\times r}$. Expliquer pourquoi F et R sont de rang r. Montrer que R^TR et F^TF sont inversibles. Montrer que la pseudo-inverse de A est la matrice $A^{\dagger}=R(R^TR)^{-1}(F^TF)^{-1}F^T$.

3 Factorisation QR

- 1. On suppose que l'on applique l'algorithme de la factorisation QR de Householder présenté en cours à une matrice A carrée de taille n qui possède deux colonnes j_1 et j_2 ($j_1 < j_2$) colinéaires.
 - (a) Montrer qu'à chaque étape k de l'algorithme QR, les colonnes j_1 et j_2 de la matrice mise à jour $H_k \dots H_1A$ restent colinéaires.

- (b) On s'intéresse à l'étape j_1 de la factorisation QR. Que se passe-t-il pour le colonne j_2 ? On précisera les éléments non nuls de cette colonne.
- (c) En déduire une modification de l'algorithme de la factorisation QR qui permette de détecter un ensemble de vecteurs colonnes colinéaires aux précédents et donc la dimension du noyau (espace des vecteurs v tels que Av=0) de la matrice carrée A. Indiquer comment la dimension du noyau est calculée en fin de la factorisation QR.
- 2. Soit $A \in M_{n,n}(\mathbb{R})$. On suppose de plus qu'il existe une matrice de permutation P des colonnes de A telle qu'après k étapes de la factorisation QR de A on obtient la décomposition suivante:

$$AP = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_{11} & R_{21} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_1 \\ 0 \end{pmatrix}$$

avec $Q_1 \in M_{n,k}(\mathbb{R})$ telle que $Q_1^TQ_1 = I_k$, $Q_2 \in M_{n,n-k}(\mathbb{R})$ telle que $Q_2^TQ_2 = I_{n-k}$, $R_{11} \in M_{k,k}(\mathbb{R})$ une matrice triangulaire inversible, $R_{12} \in M_{k,n-k}(\mathbb{R})$ et $R_1 \in M_{k,n}(\mathbb{R})$

- (a) Soit A' la matrice permutée A' = AP, montrer que les colonnes de Q_1 forment une base de l'espace engendré par les colonnes de A' et en déduire le rang de A' (dimension de l'espace engendré par les colonnes de A'). (On notera que P étant une matrice de permutation on peut en déduire que les espaces engendrés par les colonnes de A' et de A sont identiques).
- (b) Montrer que $(AP)^T \times Q_2 = 0$ (i.e. Q_2 est orthogonal à l'espace engendré par les colonnes de AP).
- 3. Soit $A \in M_{n,n}(\mathbb{R})$. On suppose qu'à l'issue d'une factorisation \mathbb{R} on obtient la décomposition suivante:

$$A = QR = \begin{pmatrix} Q_1 & Q_2 \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$$

avec $Q_1 \in M_{n,k}(\mathbb{R})$, $Q_2 \in M_{n,n-k}(\mathbb{R})$, $R_1 \in M_{k,n}$ et $R_1 \in M_{n-k,n}$ On suppose de plus que $||R_2|| \le \epsilon ||A||$

- (a) Montrer que $||A Q_1 R_1|| \le \epsilon ||A||$
- (b) On suppose que la matrice A est approximée par la matrice Q_1R_1 . Pour quelles valeurs de k cette approximation permet elle de réduire l'espace mémoire nécessaire pour stocker la matrice A par un facteur 10 ?

4 Calcul de l'inverse d'une matrice

On suppose que A est une matrice carrée de taille n inversible pour laquelle existe une factorisation LU sans pivotage de la matrice A:

$$A = LU$$

- 1. Montrer que l'on peut utiliser l'expression suivante $AA^{-1}=I$ et la décomposition A=LU pour calculer A^{-1} .

 On détaillera les étapes du calcul de A^{-1} .
- 2. Calculer la complexité en terme de nombre d'opérations flottantes du calcul de A^{-1} de la question précédente. On prendra en compte aussi le nombre d'opérations pour la factorisation LU de A.
- 3. Soit x la solution du système $Lx = e_j$, avec e_j le j^{ieme} vecteur de la base canonique (vecteur possédant un seul élément non nul égal à 1 en position j). Montrer que les (j-1) premières composantes du vecteur x sont nulles : $\forall i \in \mathbb{N}, 1 \leq i \leq j-1, \quad x_i = 0$.
- 4. En déduire le nombre d'opérations pour calculer $Lx=e_j$, où e_j est le j^{ieme} vecteur de la base canonique.
- 5. En déduire le coût de calcul de LX=I. On pourra noter que $X=L^{-1}$. On rappelle que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.
- 6. En déduire le coût réel du calcul complet de $AA^{-1}=I$