

Cau hoi trac nghiem -Hept-KGVT

Đại số tuyến tính - nhóm ngành 1 (Trường Đại học Bách khoa Hà Nội)

Scan to open on Studocu

MỘT SỐ CÂU HỎI ÔN TẬP HÊ PT. TUYẾN TÍNH - KG. VECTOR

* Chọn đáp án đúng cho các câu hỏi sau:

Câu 1. Xét hệ phương trình

$$\begin{cases} 2x_1 + 5x_2 + x_3 &= 15\\ 3x_1 - x_2 - x_3 &= -2\\ -x_1 + 4x_2 + 2x_3 &= 13 \end{cases}$$

Khẳng định nào sau đây là đúng:

- (1) Hệ phương trình có vô số nghiệm.
- (2) Hệ phương trình có nghiệm duy nhất $x_1 = 1, x_2 = 2, x_3 = 3$.
- (3) Hệ phương trình vô nghiệm.
- (4) Hệ phương trình có vô số nghiệm phụ thuộc 1 tham số.
- (5) Hệ phương trình có nghiệm duy nhất $x_1 = 1, x_2 = \frac{1}{2}, x_3 = \frac{1}{3}$.
- (6) Một đáp án khác.

Câu 2. Xét hệ phương trình sau:

$$\begin{cases} x_1 + x_2 + x_3 - 2x_4 &= 1 \\ x_2 - x_3 + x_4 &= 1 \\ x_1 - x_2 + x_3 + x_4 &= 1 \\ x_1 + 2x_4 &= 1 \end{cases}$$

Khẳng định nào sau đây là đúng.

- (1) Hệ phương trình có vô số nghiệm.
- (2) Hệ phương trình vô nghiệm.
- (3) Hệ phương trình có nghiệm duy nhất.
- (4) Hệ phương trình có nghiệm tầm thường.

Câu 3. Xét hệ phương trình thuần nhất sau:

$$\begin{cases} x_1 + x_2 = 0 \\ x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 + x_4 = 0 \\ x_1 + 2x_4 = 0 \end{cases}$$

Khẳng định nào sau đây là đúng.

- (1) Hệ phương trình chỉ có nghiệm tầm thường.
- (2) Hệ phương trình có vô số nghiệm phụ thuộc 1 tham số $x_1 = 0, x_2 = t, x_3 = -2t, x_4 = t$ với $t \in \mathbb{R}$.
- (3) Hệ phương trình có vô số nghiệm phụ thuộc 2 tham số $x_1 = t_1, x_2 = t_2, x_3 = -2t_2, x_4 = t_2$ với $t_1, t_2 \in \mathbb{R}$.
- (4) Hệ phương trình có vô số nghiệm phụ thuộc 1 tham số $x_1 = t, x_2 = t, x_3 = -2t, x_4 = t$ với $t \in \mathbb{R}$.
- (5) Một đáp án khác.

Câu 4. Xét hệ phương trình sau:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 6 \\ x_1 + 2x_2 + 3x_3 + 4x_4 &= 3 \\ 4x_1 + x_2 + 2x_3 + 3x_4 &= 7 \\ 3x_1 + 2x_2 + 3x_3 + 4x_4 &= 2 \end{cases}$$

Khẳng định nào sau đây là đúng.

- (1) Hệ phương trình vô nghiệm.
- (2) Hệ phương trình có nghiệm duy nhất $x_1 = 1, x_2 = 1, x_3 = 2, x_4 = 2.$
- (3) Hệ phương trình có nghiệm duy nhất $x_1 = -1, x_2 = 1, x_3 = 0, x_4 = 0.$
- (4) Hệ phương trình có vô số nghiệm phụ thuộc 1 tham số.
- (5) Hệ phương trình có vô số nghiệm phụ thuộc 2 tham số.

Câu 5. Xét hệ phương trình sau:

$$\begin{cases} x_1 + 2x_2 + 3x_3 - 2x_4 &= 1\\ -2x_1 + 2x_2 + 3x_3 + 4x_4 &= 2\\ x_1 + 3x_2 + 2x_3 + 3x_4 &= 3 \end{cases}$$

- (1) Hệ phương trình vô nghiệm.
- (2) Hệ phương trình có vô số nghiệm với công thức nghiệm,

$$x_1 = \frac{-1}{3} + 2t, x_2 = \frac{22}{15} - 3t, x_3 = \frac{-8}{15} + 2t.$$

(3) Hệ phương trình có vô số nghiệm với công thức nghiệm,

$$x_1 = \frac{1}{3} + 2t, x_2 = \frac{22}{15} + 3t, x_3 = \frac{8}{15} + 2t.$$

(4) Hệ phương trình có vô số nghiệm với công thức nghiệm,

$$x_1 = \frac{1}{3} + t, x_2 = \frac{22}{15} + t, x_3 = \frac{8}{15} + t.$$

(5) Một đáp án khác.

Câu 6. Tìm điều kiện của tham số m với $m \in \mathbf{R}$ để hệ phương trình sau có vô số nghiệm.

$$\begin{cases} mx_1 + x_2 + x_3 &= 1\\ x_1 + mx_2 + x_3 &= 1\\ x_1 + x_2 + mx_3 &= 1 \end{cases}$$

- $(1) \ m = 1$
- (2) m = -2
- (3) $m = 1 \text{ và } m \neq -2.$
- (4) m = 1 hoăc m = -2.
- (5) $m \neq 1 \text{ và } m \neq -2.$
- (6) Một đáp án khác.

Câu 7. Xét hệ phương trình sau:

$$\begin{cases} x_1 - x_2 + x_3 - x_4 &= 2\\ x_1 - x_2 + x_3 + 2x_4 &= 0\\ -x_1 + 2x_2 - 2x_3 + 7x_4 &= -7\\ 2x_1 - x_2 - x_3 &= 3 \end{cases}$$

(1) Hệ phương trình có nghiệm duy nhất

$$x_1 = \frac{1}{3}, x_2 = \frac{-5}{3}, x_3 = \frac{-2}{3}, x_4 = \frac{-2}{3}.$$

(2) Hệ phương trình có nghiệm duy nhất

$$x_1 = \frac{-5}{3}, x_2 = \frac{1}{3}, x_3 = \frac{2}{3}, x_4 = \frac{-2}{3}.$$

- (3) Hệ phương trình vô nghiệm.
- (4) Hệ phương trình có vô số nghiệm.
- (5) Một đáp án khác.

Câu 8. Tìm giá trị của a để hệ phương trình sau có nghiệm không tầm thường.

$$\begin{cases} ax - 3y + z = 0 \\ 2x + y + z = 0 \\ 3x + 2y - 2z = 0 \end{cases}$$

- $(1) \ a = 5$
- (2) a = -5
- (3) $a \neq 5$
- $(4) \ a \neq -5$
- (5) Không tồn tại giá trị của a.
- (6) Một đáp án khác.

Câu 9. Tìm điều kiện của a, b để hệ phương trình sau là hệ Cramer.

$$\begin{cases} ax - 3y + z = -2 \\ ax + y + 2z = 3 \\ 3x + 2y + z = b \end{cases}$$

- (1) $a \neq \frac{21}{2}$ và $b \neq 0$. (2) $a \neq \frac{21}{2}$. (3) $a \neq \frac{-21}{2}$ và $b \neq \frac{21}{7}$.
- (4) Không tồn tại giá tri a, b thỏa yêu cầu.
- (5) Một đáp án khác.

Câu 10. Xét hệ phương trình sau theo tham số k:

$$\begin{cases} kx_1 + x_2 + x_3 = 1 \\ x_1 + kx_2 + x_3 = 1 \\ x_1 + x_2 + kx_3 = 1 \end{cases}$$

Chọn các khẳng định Đúng.

- (1) k=1 hệ phương trình vô nghiệm.
- (2) k = -2 hệ phương trình có nghiệm duy nhất.
- (3) $k \neq 1$ và $k \neq -2$, hệ phương trình có nghiệm duy nhất.
- (4) k = 1 hệ phương trình có vô số nghiệm phụ thuộc 1 tham số.
- (5) k = 1 hệ phương trình có vô số nghiệm phụ thuộc 2 tham số.

Câu 11. Với giá trị nào của m thì hệ phương trình sau vô nghiệm.

$$\begin{cases} mx_1 + x_2 + x_3 = m \\ 2x_1 + (1+m)x_2 + (1+m)x_3 = m-1 \\ x_1 + x_2 + mx_3 = 1 \end{cases}$$

- (1) m = 1 hoặc m = -2.
- (2) $m \neq 1$ và $m \neq -2$.
- (3) m = 1.
- $(4) \ m = -2.$
- (5) m = 3.

Câu 12. Tìm m để hệ phương trình sau có nghiệm duy nhất.

$$\begin{cases} mx_1 + x_2 + x_3 = 1\\ x_1 + mx_2 + x_3 = 2\\ x_1 + x_2 + 3x_3 = 3 \end{cases}$$

- (1) $m \neq 1$ và $m \neq \frac{-1}{3}$.
- (2) $m \neq 1$.
- (3) $m \neq \frac{-1}{3}$.
- (4) m = 1 hoặc $m = \frac{-1}{3}$.
- (5) Một đáp án khác.

Câu 13. Tìm các giá trị a, b, c của hàm số $y = ax^2 + bx + c$ biết đồ thị của nó đi qua 3 điểm A(1;4); B(2;8) và C(3;14).

- (1) a = 1, b = 1, c = 2.
- (2) a = 2, b = 1, c = 1.
- (3) a = 2, b = 0, c = 2.
- (4) Một đáp án khác.

Câu 14. Xét hệ phương trình sau:

$$\begin{cases} x + 4y - 2z = 1 \\ x + 7y - 6z = 6 \\ 3y + mz = n \end{cases}$$

Xác định giá trị m, n để hệ phương trình có nghiệm duy nhất.

- (1) $m \neq -4 \text{ và } n = 0.$
- (2) $m \neq -4$.
- (3) m = -4.

- (4) $m \neq -4$ và $n \neq -4$.
- (5) Một đáp án khác.

Câu 15. Tìm điều kiện của m để phương trình ma trận sau có vô số nghiệm.

$$\begin{bmatrix} 1 & 2m & 1 \\ 2 & -m+2 & -5 \\ 3 & -m & -4 \end{bmatrix} X = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}.$$

- $(1) \ m = 1$
- (2) m = -1
- (3) $m \neq 1$
- $(4) \ m \neq -1$
- (5) Một đáp án khác.

Câu 16. Tìm điều kiện của a để hệ phương trình sau có nghiệm duy nhất:

$$\begin{cases} x - ay + a^2z = a \\ ax - a^2y + az = 1 \\ ax + y - a^3z = 1 \end{cases}$$

- (1) $a \neq 0$ và $a \neq \pm 1$.
- (2) a = 0 hoặc $a = \pm 1$.
- (3) $a \neq \pm 1$.
- (4) Một đáp án khác.

Câu 17. Xét phương trình ma trận sau:

$$\begin{bmatrix} 1 & 1 & -2 \\ 2 & -1 & 1 \\ 4 & 1 & m \end{bmatrix} X = \begin{bmatrix} 0 \\ 2 \\ m+5 \end{bmatrix}$$

Tìm điều kiện của tham số m để phương trình trên có nghiệm.

- (1) m = -3.
- (2) $m \neq -3$.
- (3) $m \neq 3$.
- $(4) \ \forall m \in \mathbb{R}.$

Câu 18. Tìm điều kiện của a, b để hệ phương trình sau vô nghiệm:

$$\begin{cases} ax + 2y + 3z = 1\\ x + ay + 3z = b\\ x + 2y + 3z = 2b \end{cases}$$

- (1) a = 2, b = 0.
- (2) $a = 2, b \neq 0$.
- (3) $a = 1 \text{ và } b = \frac{1}{2}$.
- $(4) \ a \neq 1.$
- (5) Không tồn tại giá trị a, b.

Câu 19. Tìm điều kiện của m để hệ phương trình sau có vô số nghiệm:

$$\begin{cases} 2x + y + mz = 0 \\ x + 2y + z = 0 \\ mx - y - z = 0 \end{cases}$$

- (1) $m = \pm \sqrt{\frac{5}{2}}$.
- (2) $m \neq \pm \sqrt{\frac{5}{2}}$.
- (3) Không tồn tại giá trị của m.
- (4) $m = \sqrt{\frac{5}{2}}$
- (5) Một đáp án khác.

Câu 20. Tìm a để hệ phương trình sau có nghiệm không tầm thường:

$$\begin{cases} (a+5)x + 3y + (2a+1)z = 0 \\ ax + (a-1)y + 4z = 0 \\ (a+5)x + (a+2)y + 5z = 0 \end{cases}$$

- (1) a = 0 hoặc $a \neq -1$.
- (2) $a = 0 \lor a = -1.$
- $(3) \ a = 0.$
- $(4) \ a = -1.$
- (5) Không tồn tại giá trị của a.

Câu 21. Xét hệ phương trình sau:

$$\begin{cases} x + 3y - az = 2\\ 2x + y - z & b\\ 8x + 9y - (2a + 3)z = 3b + 4 \end{cases}$$

trong đó $a, b \in \mathbb{R}$. Khẳng định nào sau đây luôn đúng:

- (1) Hệ phương trình vô nghiệm.
- (2) Hệ phương trình luôn có nghiệm tầm thường.
- (3) Hệ phương trình có vô số nghiệm.
- (4) Hệ phương trình là hệ Cramer nên có nghiệm duy nhất.

Câu 22. Cho không gian vector \mathbb{R}^4 với cơ sớ $W = \{u_1 = (1, 1, 1, 1), u_2 = (1, 1, -1, -1), u_3 = (1, -1, 1, -1), u_4 = (1, -1, -1, 1)\}$, khi đó tọa độ của vector x = (1, 2, 1, 2) trong \mathbb{R}^4 là:

$$(1) [x]_{W} = \begin{bmatrix} \frac{3}{2} \\ 0 \\ -\frac{1}{2} \\ 0 \end{bmatrix}$$

$$(2) [x]_{W} = \begin{bmatrix} 3 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$

$$(3) [x]_{W} = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 0 \end{bmatrix}$$

$$(4) [x]_{W} = \begin{bmatrix} \frac{3}{2} \\ 1 \\ -\frac{1}{2} \\ -1 \end{bmatrix}$$

(5) Một đáp án khác.

Câu 23. Trong không gian $P_2[x]$ các đa thức bậc không vượt quá 2, xét cơ sở $M = \{x^2+x+1, 2x+1, 3\}$. Tìm tọa độ của vector $u = 2x^2-x+1$ trong cơ sở M.

$$(1) [u]_{M} = \begin{bmatrix} -2\\ \frac{3}{2}\\ -\frac{1}{6} \end{bmatrix}$$

$$(2) [u]_{M} = \begin{bmatrix} 1\\ -3\\ 6 \end{bmatrix}$$

$$(3) [u]_{M} = \begin{bmatrix} 2\\ -3\\ \frac{1}{6} \end{bmatrix}$$

$$(4) [u]_{M} = \begin{bmatrix} 2\\ -\frac{3}{2}\\ \frac{1}{6} \end{bmatrix}$$

Câu 24 Cho u, v, w là ba vector độc lập tuyến tính. Tìm m sao cho v + w, u - w và u + v + mw cũng độc lập tuyến tính.

- (1) $m \neq 0$.
- (2) m = 1.
- $(3) \ \forall m \in \mathbb{R}.$
- (4) Không tồn tại m.
- (5) m = 11.

Câu 25. Trong không gian vector \mathbb{R}^4 , cho V = span(B) với $B = \{u = (1, 2, 2, -1), v = (2, 3, 1, 1), w = (5, 9, 7, -2), s = (1, 1, 1, 0)\}$. Tìm một cơ sở và số chiều của V.

- (1) Cơ sở của V gồm 3 vector u, v, w và dim V = 3.
- (2) Cơ sở của V gồm 3 vector u, v, s và dim V = 3.
- (3) Cơ sở của V chỉ gồm 2 vector u, v và dim V = 2.
- (4) Cơ sở của V chỉ gồm 1 vector u và dim V = 1.
- (5) Một đáp án khác.

Câu 26. Tìm ma trận X sao cho XA - 3X = B với

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 3 & 5 & -1 \\ 2 & 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 \\ 1 & 3 \\ -3 & 2 \end{bmatrix}.$$

$$(1) \ X = \begin{bmatrix} -2 & 6 & 7 \\ -2 & 13 & -19 \end{bmatrix}$$

$$(2) \ X = \begin{bmatrix} -2 & -2 \\ 6 & 13 \\ 7 & -19 \end{bmatrix}$$

$$(3) \ X = \begin{bmatrix} 2 & 6 & -7 \\ 2 & 13 & -19 \end{bmatrix}$$

$$(4) \ X = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

Câu 27. Trong không gian $P_1[x]$ xét hai cơ sở $B = \{u_1 = 1 + 2x, u_2 = 3 + 4x\}$ và $B' = \{v_1 = 5 + 6x, v_2 = 7 + 8x\}$. Tìm ma trận chuyển cơ sở từ B' sang B.

$$(1) C_{B'\to B} = \begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix}$$

$$(2) C_{B'\to B} = \begin{bmatrix} -2 & -1 \\ 3 & 2 \end{bmatrix}$$

$$(3) C_{B'\to B} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$$

$$(4) C_{B'\to B} = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

(5) Một đáp án khác.

Câu 28. Trong \mathbb{R}^2 cho hai cơ sở $S_1 = \{u_1 = (1, -2), u_2 = (3, -4)\}$ và $S_2 = \{v_1 = (1, 3), v_2 = (3, 8)\}$. Tìm ma trận chuyển cơ sở từ S_2 sang S_1 .

$$(1) C_{S_2 \to S_1} = \begin{bmatrix} -14 & -36 \\ 5 & 13 \end{bmatrix}$$

$$(2) C_{S_2 \to S_1} = \begin{bmatrix} -14 & 5 \\ -36 & 13 \end{bmatrix}$$

$$(3) C_{S_2 \to S_1} = \begin{bmatrix} 14 & -5 \\ 6 & -13 \end{bmatrix}$$

$$(4) C_{S_2 \to S_1} = \begin{bmatrix} -14 & 5 \\ -6 & -3 \end{bmatrix}$$

Câu 29. Cho u, v, w là ba vector độc lập tuyến tính. Khẳng định nào sau đây là Đúng

- (1) Các vector u, v, w, u + v 3w là độc lập tuyến tính.
- (2) Các vector u + v, u v, u 2v + w là độc lập tuyến tính.
- (3) Các vector u, v, u v là độc lập tuyến tính.
- (4) Các vector u, v, w, θ là độc lập tuyến tính trong đó θ là vector không.

Câu 30. Tìm x, z để

$$\begin{vmatrix} 1+x & 1 & 1 & 1 \\ 1 & 1-x & 1 & 1 \\ 1 & 1 & 1+z & 1 \\ 1 & 1 & 1 & 1-z \end{vmatrix} = 0.$$

- (1) x = 0 hoặc z = 0
- (2) x = 0 và z = 0.
- (3) $x = \pm z$.
- (4) x=z=1 hoặc x=z=-1. item Một đáp án khác.

Câu 31. Tìm ma trận X sao cho $X^2 - 6X = \begin{bmatrix} 7 & 8 \\ 0 & -9 \end{bmatrix}$

$$(1) \ X = \begin{bmatrix} 7 & 2 \\ 0 & 3 \end{bmatrix} \text{ hoặc } X = \begin{bmatrix} -1 & -2 \\ 0 & 3 \end{bmatrix}$$

$$(2) \ X = \begin{bmatrix} 7 & 0 \\ 2 & 3 \end{bmatrix} \text{ hoặc } X = \begin{bmatrix} -1 & 0 \\ -2 & 3 \end{bmatrix}$$

$$(3) \ X = \begin{bmatrix} -7 & -2 \\ 0 & 3 \end{bmatrix} \text{ hoặc } X = \begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix}$$

$$(4) \ X = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix} \text{ hoặc } X = \begin{bmatrix} -4 & -2 \\ 0 & 0 \end{bmatrix}$$

(5) Một đáp án khác.

Câu 32. Trong không gian $P_2[x]$ cho cơ sở $B=p_1=1+x+x^2, p_2=2+2x-x^2, p_3=4+5x+x^2$. Tìm tọa độ của vector $p=10+11x-5x^2$ đối với cơ sở B.

$$(1) [p]_{B} = \begin{bmatrix} -2\\4\\1 \end{bmatrix}$$

$$(2) [p]_{B} = \begin{bmatrix} -2\\-4\\1 \end{bmatrix}$$

$$(3) [p]_{B} = \begin{bmatrix} 1\\4\\2 \end{bmatrix}$$

$$(4) [p]_{B} = \begin{bmatrix} -2\\-4\\11 \end{bmatrix}.$$

Câu 33. Cho $A=\begin{bmatrix}1&3&-1\\2&0&5\\6&-2&4\end{bmatrix}$ là ma trận của phép biến đổi tuyến

tính $f: P_2[x] \to P_2[x]$ trong cơ sở $v_1 = 3x + 3x^2, v_2 = -1 + 3x + 2x^2, v_3 = -1 + 3x + 2x^2$ $3 + 7x + 2x^2$. Tim $f(1 + x^2)$

$$(1) f(1+x^2) = 2 + 6x + 4x^2$$

$$(2) f(1+x^2) = 2 + 5x + x^2$$

(3)
$$f(1+x^2) = 22 + 56x + 14x^2$$

$$(4) f(1+x^2) = 11 + 28x + 7x^2$$

(5) Một đáp án khác.

Câu 34.

Cho $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ là ma trận của phép biến đổi tuyến tính f:

 $P_2[x] \rightarrow P_2[x]$ trong cơ sở $v_1 = 1, v_2 = 1 - x, v_3 = (1 - x)^2$. Tìm $f(1+x^2)$.

$$(1) f(1+x^2) = 12 - 18x + 7x^2$$

(2)
$$f(1+x^2) = 2 - 8x + 7x^2$$

(3) $f(1+x^2) = 1 - x + 7x^2$

(3)
$$f(1+x^2) = 1 - x + 7x^2$$

$$(4)$$
 $f(1+x^2) = 21 + 18x + x^2$

(5) Một đáp án khác.

Câu 35. Cho $A=\begin{bmatrix}1&-2&1\\2&-1&1\\3&3&2\end{bmatrix}$ là ma trận của phép biến đổi tuyến

tính $f: P_2[x] \to P_2[x]$ trong cơ sở $v_1 = 1, v_2 = 1 + x, v_3 = (1+x)^2$. Tìm $f(1-x^2)$.

- $(1) f(1+x^2) = -4 + 5x + 5x^2$
- (2) $f(1+x^2) = 4 5x 5x^2$
- (3) $f(1+x^2) = 6 10x 13x^2$
- $(4) \ f(1+x^2) = 1 + 2x + x^2$
- (5) Một đáp án khác.

** Điền câu trả lời cho các câu hỏi sau:

Câu 1. Hệ phương trình sau chỉ có nghiệm tầm thường khi m, n thỏa:

$$\begin{cases} x+y-2z+mt = 0\\ x-my+4z-t = 0\\ 2x-y+mz+nt = 0 \end{cases}$$

.....

......

Câu 2. Trong không gian \mathbb{R}^4 cho các vector $u_1 = (1, 2, 1, 1), u_2 = (-3, 2, 1, -1), u_3 = (2, 1, -1, 2), u_4 = (1, 3, 0, m)$. Hệ vector này độc lập tuyến tính khi m thỏa:

.....

.....

Câu 3. Tìm m để không gian nghiệm của hệ phương trình thuần nhất sau có số chiều là 2.

$$\begin{cases} 2x + y - z + 3t - 2r = 0 \\ x - 2y + 3z + mt + r = 0 \\ 3x - y + 2z + 4t - r = 0 \end{cases}$$

.....

Câu 4. Trong không gian $P_2[x]$ các đa thức bậc không vượt quá 2, xét hệ vector $S=\{u_1,u_2,u_3\}$ với $u_1=1+x+2x^2,u_2=2+mx+3x^2,u_3=-1+2x+(m+1)x^2$. Để S là cơ sở của $P_2[x]$ thì m thỏa điều kiện:
Câu 5. Hệ phương trình
$\begin{cases} x - y + z + t = 2\\ 2x + y + z + 3t = 7\\ -3x + 2y - z = -2\\ 4x - 4y + 3z + 5t = 8 \end{cases}$
có trường hợp nghiệm là:
Câu 6. Xét không gian nghiệm của hệ phương trình thuần nhất sau:
$\begin{cases} ax + 2y + z = 0 \\ (1+3a)x + (b+4)y + 3z = 0 \\ -2x - by - z = 0 \end{cases}$
Không gian nghiệm có số chiều bằng 1 nếu a, b thỏa điều kiên:

Câu 7. Trong không gian vector \mathbb{R}^4 , xét $W = \text{span}\{v_1, v_2, v_3, v_4\}$ không gian vector con sinh bởi hệ vector $v_1 = (1, 2, -1, 0), v_2 = (2, 2, -1, 3), v_3 = (-1, -2, 2, -1), v_4 = (1, 0, 1, 2)$. Khi đó một cơ sớ của W là:

15
Câu 8. Trong không gian vector \mathbb{R}^3 , ma trận chuyển cơ sở từ cơ sở $S = \{u_1 = (1,0,0), u_2 = (1,1,0), u_3 = (1,1,1)\}$ sang cơ sở $T = \{v_1 = (1,2,3), v_2 = (2,0,3), v_3 = (3,2,5)\}$ là:
Câu 9. Hệ phương trình
$\begin{cases} x - 2y + z + t = 0 \\ x + y - 2z + 4t = 0 \\ x - 3y - 3z + 2t = 0 \\ 2x + y - 2z - mt = 0 \end{cases}$
có nghiệm không tầm thường nếu m thỏa:
Câu 10. Cho hệ phương trình
$\begin{cases} x + 2y - z + 5t = & -1\\ 2x + 5y + 2z + (n+1)t = & m\\ 3x + 2y - 19z + 47t = & m - 16 \end{cases}$
Hệ phương trình vô nghiệm nếu m,n thỏa điều kiện:

 ${f Câu}$ 11. Cho hệ phương trình

$$\begin{cases} x + 2y - z = & -1\\ 2x + 5y + 2(n+1)z = & m\\ 3x + 2y - 19z = & m - 16 \end{cases}$$

$\int 3x + 2y - 19z = m - 10$
Hệ phương trình trên có nghiệm duy nhất nếu m,n thỏa điều kiện:
Câu 12. Trong không gian vector $P_2[x]$, cho cơ sở B gồm các vecto $u_1=1+x-x^2, u_2=3x-x^2, u_3=2-2x+x^2$. Khi đó tọa độ vecto $u=3+2x+2x^2$ đối với cơ sở B là:
Câu 13. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^{\nvDash}$ xác định bởi $f(x,y,z) = (x-2y+3z,x-y+2z,x+z)$. Hãy chỉ ra một cơ sở và số chiều củ Imf .
Câu 14. Xét hệ phương trình
$\begin{cases} mx + 2y - z &= 3\\ x + my + 2z &= 4\\ 2x + 3y + z &= -m \end{cases}$

Hệ có nghiệm duy nhất khi m bằng
Câu 15. Cho toán tử tuyến tính $f: \mathbb{R}^{\not\vDash} \to \mathbb{R}^3$ xác định bởi công thức: $f(x,y,z)=(2x-3y-z,x+y-z,3x-2y-2z)$. Tìm ma trận của f đối với cơ sở $B=\{u=(1,1,0),v=(0,1,1),w=(1,0,1)\}$.
Câu 16. Tồn tại hay không ma trận X thỏa phương trình $AX = B$
với $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -2 \\ -4 & -3 & 2 \end{bmatrix}$ và $B = \begin{bmatrix} 1 \\ 2 \\ -5 \end{bmatrix}$. Nếu tồn tại chỉ ra ma trận X .
Câu 17 Chỉ ra một cơ gở và cấ chiều của không gian nghiệm hậ

Câu 17. Chỉ ra một cơ sở và số chiều của không gian nghiệm hệ phương trình thuần nhất sau:

$$\begin{cases} 5x + 3y + z &= 0\\ -y + 4z &= 0\\ 5x + 2y + 5z &= 0 \end{cases}$$

Câu 18. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi công thức f(x,y,z) = (2x-3y-z,x+y-z,3x-2y-2z). Xét xem có tồn tại một cơ sở của \mathbb{R}^3 để ma trận của f đối với cơ sở này có dạng chéo không? Nếu có chỉ ra cơ sở.

Câu 21. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi công thức $f(x,y,z) = (2x+y+z,x-y+z,-x+y+z)$. Hãy chỉ ra một cơ sở và số chiều của $kerf$.
Câu 22. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi công thức $f(x,y,z)=(2x-3y-z,x+y-z,3x-2y-2z)$. Hãy chỉ ra ma trận của f đối với cơ sở $B=\{u=(1,1,0),v=(0,1,1),w=(0,0,1)\}$. Xét xem f có là đơn ánh không?
Câu 23. Trong không gian \mathbb{R}^4 , cho hệ vector $B = \{u_1 = (1, 3, 1, 1), u_2 = (3, 0, 0, 1), u_3 = (1, 0, 1, 1), u_4 = (1, 1, 1, 1)\}$. Xét xem B có là hệ sinh của \mathbb{R}^4 không?
Câu 24. Trong không gian $P_2[x]$, cho hệ vector $B = \{u_1 = 1 + x + x^2, u_2 = 1 + 2x, u_3 = 4 + x + 3x^2, u_4 = 3x - 5x^2\}$. Khi đó hạng của hệ vector B bằng:
Câu 25. Trong không gian $M_2(\mathbb{R})$, cho cơ sở
$B = \left\{ B_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, B_3 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, B_4 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$

T 	lìm tọa độ của vector $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ đối với cơ sở trên.
	Câu 26. Trong không gian $P_3[x]$, cho hệ vector $B = \{u_1 = 1 + 2x + x^3, u_2 = 2 + 3x + x^2, u_3 = 1 + x^3, u_4 = 1 - x - 3x^2 - x^3\}$. Khi đơng của hệ vector này là.
••	