

验测链式与自动化

第6章 现代检测技术-2-多传感器信息融合

3 基于D-S证据理论的信息融合方法及应用

- 3.1 D-S证据理论的诞生、形成和适用领域
- 3.2 D-S证据理论的优势和局限性
- 3.3 D-S证据理论的基本概念
- 3.4 D-S证据理论的合成规则
- 3.5 基于D-S证据理论的信息融合

小结

3.1 D-S证据理论的诞生、形成和适用领域

- **诞生**: 源于20世纪60年代美国哈佛大学数学家A.P.Dempster 在利用上、下限概率来解决多值映射问题方面的研究工作。自1967年起发表一系列论文,标志着证据理论的正式诞生。
- 形成: Dempster的学生G. Shafer对证据理论引入信任函数概念,形成了一套基于"证据"和"组合"来处理不确定性推理问题的数学方法,并于1976年出版了《证据的数学理论》,这标志着证据理论正式成为一种处理不确定性问题的完整理论。
- 适用领域:信息融合、专家系统、情报分析、法律案件分析、多属性决策分析等等。

3.2 D-S证据理论的优势和局限性

• 优势:

满足比Bayes概率理论更弱的条件,即不需要知道先验概率,具有直接表达"不确定"和"不知道"的能力。

• 局限性:

要求证据必须是独立的,而这有时不易满足;证据合成规则没有非常坚固的理论支持,其合理性和有效性还存在较大的争议;计算上存在着潜在的组合爆炸问题。

3.3 D-S证据理论的基本概念

D-S方法与其他概率方法的区别在于:

- ① 它有两个值,即对每个命题指派两个不确定度量(类似但不等于概率);
- ② 存在一个证据使得命题似乎可能成立,但使用这个证据又不直接支持或拒绝它。

下面给出几个基本定义:

设 Ω 是样本空间, Ω 由一些互不相容的陈述构成。这 些陈述各种组合构成幂集 2^{Ω} 。 当样本空间 Ω 中元素个数为N时,则其幂集(构成一个框架)的元素个数为 2^N ,且其中每一个元素A都对应于一个关于x的命题,称该命题为"x的值在A中"。

【例】用x代表所看到的颜色, Ω ={红,黄,蓝},则A={红}表示 "x是红色";

1. 基本概率分配函数(Basic Probability Assignment Function)

定义1 基本概率分配函数 M

 $M: 2^{\Omega} \rightarrow [0,1]$

设函数 M 是满足下列条件的映射:

- ① 不可能事件的基本概率是0, 即 $M(\Phi) = 0$;
- ② 2^{Ω} 中全部元素的基本概率和为1, 即 $\sum M(A) = 1$, $A \subseteq \Omega$

则称 $M \in 2^{\Omega}$ 上的概率分配函数,M(A)称为A的基本概率 赋值/基本概率数,表示依据当前环境对假设集A的信任程度。

【例】对于上面给出的有限集 $\Omega=\{\mathfrak{U},\mathfrak{H},\mathfrak{K}\}$,若定义 2^{Ω} 上的一个基本函数m:

 $m(\phi, \{\mathcal{I}\}, \{\ddot{\mathbf{m}}\}, \{\mathcal{I}, \ddot{\mathbf{m}}\}, \{\mathcal{I}, \ddot{\mathbf{m}$

={0,0.3,0,0.1,0.2,0.2,0.1,0.1}

其中: $\{0,0.3,0,0.1,0.2,0.2,0.1,0.1\}$ 分别是幂集中各个子集的基本概率数。

显然m满足概率分配函数的定义

对概率分配函数的几点说明:

(1) 概率分配函数作用是把 Ω 的任意一个子集都映射为[0,1]上的一个数m(A)

当A包含于 Ω 且A由单个元素组成时,m(A)表示对A的精确信任度;

当A包含于 Ω 、 $A\neq\Omega$,且A由多个元素组成时,m(A)也表示对 A的精确信任度,但却不知道这部分信任度该分给A中哪些元素;

当 $A=\Omega$ 时,则m(A)是对 Ω 的各个子集进行信任分配后剩下的部分,它表示不知道该如何对它进行分配。

【例】以Ω={红,黄,蓝}为例说明

当A= {红}时,由于m(A)=0.3,它表示对命题 "x是红色"的精确信任度为0.3。

当 $A=\{41, 黄\}$ 时,由于m(A)=0.2,它表示对命题 "x或者是红色,或者是黄色"的精确信任度为0.2,却不知道该把这0.2分给{红}还是分给{黄}。

当 $A=\Omega=\{\mathbf{红}, \mathbf{黄}, \mathbf{\underline{m}}\}$ 时,由于m(A)=0.2,表示不知道该对这0.2如何分配,但它不属于 $\{\mathbf{红}\}$,就一定属于 $\{\mathbf{\bar{t}}\}$ 或 $\{\mathbf{\underline{m}}\}$,只是基于现有的知识,还不知道该如何分配而已。

(2) $m \neq 2^{\Omega}$ 上而非 Ω 上的概率分布,所以基本概率分配函数不是概率,它们不必相等,而且:

$$m(A) \neq 1 - m(\overline{A})$$

事实上

2. 信任函数(Belief Function)

定义2 命题的信任函数Bel

对于任意假设而言,其信任度Bel(A)定义为A中全部子集对应的基本概率数之和,即

Bel:
$$2^{\Omega} \to [0, 1]$$

Bel $(A) = \sum_{B \subset A} M(B), A \subseteq \Omega$

Bel函数也称为下限函数,表示对A的全部信任,其值称为信任度。由概率分配函数的定义容易得到

Bel(
$$\Phi$$
) = $M(\Phi)$ = 0
Bel(Ω) = $\sum_{B \in \Omega} M(B)$

Bel: $2^{\Omega} \rightarrow [0,1]$

$$Bel(A) = \sum_{B \subset A} M(B), \ A \subseteq \Omega$$

【例】以 $\Omega = \{ \mathbf{红}, \mathbf{黄}, \mathbf{脏} \}$ 为例说明

Bel({红,黄})

=m({红})+m({黄})+m({红, 黄})

=0.3+0+0.2=0.5

当A为单一元素组成的集合时,

Bel(A)=m(A)

Bel(A)函数又称为下限函数。

3. 似然函数(Plausibility Function)

定义3 命题的似然函数PI:

P1: $2^{\Omega} \rightarrow [0,1]$

$$Pl(A) = 1 - Bel(\overline{A}), A \subseteq \Omega, \overline{A} = 1 - A$$

PI函数称为上限函数,表示对A非假的信任程度,即表示对A似乎可能成立的不确定性度量。

信任函数和似然函数有如下关系:

$$Pl(A) \ge Bel(A), A \subseteq \Omega$$

A的不确定性由下式表示:

$$\mu(A) = \text{Pl}(A) - \text{Bel}(A)$$

区间(Bel(A),Pl(A))称为信任空间。

【例】以 $\Omega=\{\mathfrak{L}, \mathfrak{g}, \mathfrak{w}\}$ 为例说明

这里0.8是"红"为非假的信任度。

由于"红"为真的精确信任度为0.3,而剩下的0.8-0.3=0.5,则是知道非假,但却不能肯定为真的那部分。

PI函数称为上限函数,表示对"红"非假的信任程度

$$\sum_{\{\mathfrak{I}\}\bigcap B\neq\Phi} m(B) = m(\{\mathfrak{I}\}) + m(\{\mathfrak{I}, \ \sharp\}) + m(\{\mathfrak{I}, \ \sharp\}) + m(\{\mathfrak{I}, \ \sharp\}) + m(\{\mathfrak{I}, \ \sharp\}) = 0.3 + 0.2 + 0.2 + 0.1 = 0.8$$

可见,

$$Pl(\{ \mathfrak{U} \}) = \sum_{\{ \mathfrak{U} \} \cap B \neq \Phi} m(B)$$

$$Pl(\{ \not \subseteq \ \}) = \sum_{\{ \not \subseteq \ \} \cap B \neq \Phi} m(B)$$

该式可推广为

$$Pl(A) = \sum_{A \cap B \neq \Phi} m(B)$$

因此命题 "x在A中" 的似然性,由与命题 "x在B中" 有关的m值确定,其中命题 "x在B中" 并不会使得命题 "x不在A中" 成立。

所以一个事件的似然性是建立在对其相反事件不信 任的基础上的。

信任函数和似然函数有如下的性质:

- (1) Bel(Φ)=0, Bel(Ω)=1 Pl(Φ)=0, Pl(Ω)=1
- (2) 如果 $A \subseteq B$,则 Bel(A) \leq Bel(B),Pl(A) \leq Pl(B)
- (3) $\forall A \subseteq \Omega$, $Pl(A) \ge Bel(A)$
- (4) $\forall A \subseteq \Omega$, $Bel(A)+Bel(\overline{A}) \le 1$ $Pl(A)+Pl(\overline{A}) \ge 1$

4. 信任区间

由于Bel(A)和Pl(A)分别表示A为真的信任度和A 为非假的信任度,因此,可分别称Bel(A)和Pl(A)为 对A信任程度的下限和上限,记为

Pl(A)-Bel(A)表示既不信任A,也不信任A的程度,即对于A是真是假不知道的程度。

信任区间

- 如,在前面的例子中,曾求过Bel({红})=0.3, Pl({红})=0.8
- 因此有

{红} (0.3, 0.8)

• 它表示对{红}的精确信任度为0.3,不可驳斥部分为0.8,肯定不是{红}的为0.2。

证据区间和不确定性

信任区间(对A是真是假不知道的程度)

信任度是对假设信任程度的下限估计—悲观估计 似然度是对假设信任程度的上限估计—乐观估计

不确定区间 (Bel(A),Pl(A))	解释
[0,1]	
[0.6,0.6]	
[0,0]	
[1,1]	
[0.25,1]	
[0,0.85]	
[0.25,0.85]	

3.4 D-S证据理论的合成规则

在实际问题中,对于相同的证据,由于来源不同,可能会得到不同的概率分配函数。

【例】考虑 $\Omega = \{ \text{红,黄} \}$,假设从不同知识源得到的概率分配函数分别为:

$$m_1(\phi, \{\mathbf{5}\}, \{\mathbf{5}\}, \{\mathbf{5}\}) = (0, 0.4, 0.5, 0.1)$$

$$m_2(\phi, \{\mathbf{\mathfrak{U}}\}, \{\mathbf{\mathfrak{H}}\}, \{\mathbf{\mathfrak{U}}, \mathbf{\mathfrak{H}}\}) = (0, 0.6, 0.2, 0.2)$$

在这种情况下,需要对它们进行组合。

Dempster合成规则(Dempster's combinational rule) 也称证据合成公式,其定义如下:

对于 $\forall A \subseteq \Theta$, Θ 上的两个函数 m_1 , m_2 的Dempster合成规则(正交和)为:

$$m_1 \oplus m_2(A) = \frac{1}{K} \sum_{B \cap C = A} m_1(B) \cdot m_2(C)$$

其中, K为归一化常数

$$K = \sum_{B \cap C \neq \emptyset} m_1(B) \cdot m_2(C) = 1 - \sum_{B \cap C = \emptyset} m_1(B) \cdot m_2(C)$$

注意:

- 如果K≠0,则正交和m也是一个概率分配函数
- 如果K=0,则不存在正交和m,称m1与m2矛盾

n个m函数的Dempster合成规则

对于 \forall A⊆Θ, 识别框架Θ上的有限个函数 m_1 , m_2 , ..., m_n 的Dempster合成规则为:

$$(m_1 \oplus m_2 \oplus \cdots \oplus m_n)(A) = \frac{1}{K} \sum_{A_1 \cap A_2 \cap \cdots \cap A_n = A} m_1(A_1) \cdot m_2(A_2) \cdots m_n(A_n)$$

其中,

$$K = \sum_{A_1 \cap \dots \cap A_n \neq \emptyset} m_1(A_1) \cdot m_2(A_2) \cdot \dots \cdot m_n(A_n)$$

$$= 1 - \sum_{A_1 \cap \dots \cap A_n = \emptyset} m_1(A_1) \cdot m_2(A_2) \cdot \dots \cdot m_n(A_n)$$

Dempster合成规则计算举例

【例】某宗"谋杀案"的三个犯罪嫌疑人组成了识别框架 $\Theta = \{Peter, Paul, Mary\}$,目击证人(W1, W2)分别给出下表所示的BPA。

【要求】: 计算证人W1和W2提供证据的组合结果。

	m ₁ ()	m ₂ ()	
Peter	0.99	0.00	
Paul	0.01	0.01	
Mary	0.00	0.99	

【解】:首先,计算归一化常数K。

	<u>m</u> ₁ ()	m ₂ ()
Peter	0.99	0.00
Paul	0.01	0.01
Mary	0.00	0.99

$$K = \sum_{B \cap C \neq \emptyset} m_1(B) \cdot m_2(C)$$

$$= m_1(Peter) \cdot m_2(Peter) + m_1(Paul) \cdot m_2(Paul) + m_1(Mary) \cdot m_2(Mary)$$

$$= 0.99 \times 0 + 0.01 \times 0.01 + 0 \times 0.99 = 0.0001$$

其次,利用Dempster证据合成规则分别计算Peter, Paul, Mary的组合BPA(即组合函数)。

(1) 关于Peter的组合函数

$$\begin{split} m_1 \oplus m_2(\{Peter\}) &= \frac{1}{K} \sum_{B \cap C = \{Peter\}} m_1(B) \cdot m_2(C) \\ &= \frac{1}{K} \cdot m_1(\{Peter\}) \cdot m_2(\{Peter\}) \\ &= \frac{1}{0.0001} \times 0.99 \times 0.00 = 0.00 \end{split}$$

化科学与电气工程学院 of Automation Science and Electrical Engineering

	<u>m</u> ₁ ()	m ₂ ()
Peter	0.99	0.00
Paul	0.01	0.01
Mary	0.00	0.99

(2) 关于Paul的组合mass函数

$$m_1 \oplus m_2(\{Paul\}) = \frac{1}{K} \cdot m_1(\{Paul\}) \cdot m_2(\{Paul\})$$
$$= \frac{1}{0.0001} \times 0.01 \times 0.01 = 1$$

(3) 关于Mary的组合mass函数

$$\begin{split} m_1 &\oplus m_2(\{Mary\}) = \frac{1}{K} \sum_{B \cap C = \{Mary\}} m_1(B) \cdot m_2(C) \\ &= \frac{1}{K} \cdot m_1(\{Mary\}) \cdot m_2(\{Mary\}) \\ &= \frac{1}{0.0001} \times 0.00 \times 0.99 = 0.00 \end{split}$$

【说明】:对于这个简单的实例而言,对于Peter, Paul, Mary的组合函数,再求信任函数、似然函数,可知:

信任函数值=似然函数值=组合后的mass函数值

即,Bel({Peter}) = Pl({Peter}) =
$$m_{12}$$
({Peter}) = 0
Bel({Paul}) = Pl({Paul}) = m_{12} ({Paul}) = 1
Bel({Mary}) = Pl({Mary}) = m_{12} ({Mary}) = 0

【例】若修改上例表中的部分数据,如下表所示。请 重新计算证人W1和W2提供证据的组合结果。

	m ₁ ()	m ₂ ()	
{Peter}	0.98	0	
{Paul}	0.01	0.01	
{Mary}	0	0.98	
$\Theta = \{ \text{Peter, Paul, Mary} \}$	0.01	0.01	

	m ₁ ()	m ₂ ()
{Peter}	0.98	0
{Paul}	0.01	0.01
{Mary}	0	0.98
Θ={Peter, Paul, Mary}	0.01	0.01

【解】:首先,计算归一化常数K。

$$\begin{split} K &= 1 - \sum_{B \cap C = \varnothing} m_1(B) \cdot m_2(C) \\ &= 1 - [m_1(Peter) \cdot m_2(Paul) + m_1(Peter) \cdot m_2(Mary) \\ &+ m_1(Paul) \cdot m_2(Mary)] \\ &= 1 - (0.98 \times 0.01 + 0.98 \times 0.98 + 0.01 \times 0.98) = 0.02 \end{split}$$

归一化常数K的另一种计算法:

$$K = \sum_{B \cap C \neq \emptyset} m_1(B) \cdot m_2(C)$$

$$= m_1(Peter) \cdot m_2(\Theta) + m_1(Paul) \cdot m_2(Paul)$$

$$+ m_1(Paul) \cdot m_2(\Theta) + m_1(\Theta) \cdot m_2(Paul)$$

$$+ m_1(\Theta) \cdot m_2(Mary) + m_1(\Theta) \cdot m_2(\Theta)$$

$$= 0.98 \times 0.01 + 0.01 \times 0.01 + 0.01 \times 0.01$$

$$+ 0.01 \times 0.01 + 0.01 \times 0.98 + 0.01 \times 0.01 = 0.02$$

	m ₁ ()	m ₂ ()
{Peter}	0.98	0
{Paul}	0.01	0.01
{Mary}	0	0.98
$\Theta = \{ \text{Peter, Paul, Mary} \}$	0.01	0.01

(1) 计算关于Peter的组合函数

$$\begin{split} m_1 \oplus m_2(\{Peter\}) &= \frac{1}{K} \sum_{B \cap C = \{Peter\}} m_1(B) \cdot m_2(C) \\ &= \frac{1}{K} \cdot [m_1(\{Peter\}) \cdot m_2(\{Peter\}) + m_1(\{Peter\}) \cdot m_2(\Theta)] \\ &= \frac{1}{0.02} \times (0.98 \times 0 + 0.98 \times 0.01) = 0.49 \end{split}$$

	m ₁ ()	m ₂ ()
{Peter}	0.98	0
{Paul}	0.01	0.01
{Mary}	0	0.98
$\Theta = \{\text{Peter}, \text{Paul}, \text{Mary}\}$	0.01	0.01

(2) 计算关于Paul的组合函数

$$\begin{split} m_1 \oplus m_2(\{Paul\}) &= \frac{1}{K} \sum_{B \cap C = \{Paul\}} m_1(B) \cdot m_2(C) \\ &= \frac{1}{K} \cdot [m_1(\{Paul\}) \cdot m_2(\{Paul\}) + m_1(\{Paul\}) \cdot m_2(\Theta) \\ &+ m_1(\Theta) \cdot m_2(\{Paul\})] \\ &= \frac{1}{0.02} \times (0.01 \times 0.01 + 0.01 \times 0.01 + 0.01 \times 0.01) = 0.015 \end{split}$$

	m ₁ ()	m ₂ ()
{Peter}	0.98	0
{Paul}	0.01	0.01
{Mary}	0	0.98
Θ={Peter, Paul, Mary}	0.01	0.01

(3) 计算关于Mary的组合函数

$$\begin{split} m_1 &\oplus m_2(\{Mary\}) = \frac{1}{K} \sum_{B \cap C = \{Mary\}} m_1(B) \cdot m_2(C) \\ &= \frac{1}{K} \cdot [m_1(\{Mary\}) \cdot m_2(\{Mary\}) + m_1(\{\Theta\}) \cdot m_2(\{Mary\})] \\ &= \frac{1}{0.02} \times (0 \times 0.98 + 0.01 \times 0.98) = 0.49 \end{split}$$

	m ₁ ()	m ₂ ()
{Peter}	0.98	0
{Paul}	0.01	0.01
{Mary}	0	0.98
Θ={Peter, Paul, Mary}	0.01	0.01

(4) 计算关于Θ={Peter, Paul, Mary}的组合函数

$$m_1 \oplus m_2(\Theta) = \frac{1}{K} \sum_{B \cap C = \Theta} m_1(B) \cdot m_2(C)$$
$$= \frac{1}{K} \cdot m_1(\Theta) \cdot m_2(\Theta)$$
$$= \frac{1}{K} \cdot 0.01 \times 0.01 = 0.005$$

此外,根据信任函数、似然函数的计算公式,可得:

即,Bel({Peter}) = 0.49; Pl({Peter}) = 0.49 + 0.005 = 0.495 Bel({Paul}) = 0.015; Pl({Paul}) = 0.015 + 0.005=0.020 Bel({Mary}) = 0.49; Pl({Mary}) = 0.49 + 0.005 = 0.495 Bel(Θ) = 0.005; Pl(Θ) = 0.49 + 0.015 + 0.49 + 0.005 = 1

3.5 基于D-S证据理论的信息融合

基于D-S证据方法的信息融合框图

1. 单传感器多测量周期可信度分配的融合

设 $M_j(A_k)$ 表示传感器在第j(j=1,...,J)个测量周期对命题 $A_k(k=1,...,K)$ 的可信度分配值,则该传感器依据J个周期的测量积累对命题 A_k 的融合后验可信度分配为

$$M(A_k) = c^{-1} \sum_{\bigcap A_m = A_k} \prod_{1 \le j \le J} M_j(A_m), \quad m = 1, ..., K$$

其中

$$c = 1 - \sum_{\bigcap A_k = \Phi} \prod_{1 \le j \le J} M_j(A_k) = \sum_{\bigcap A_k \ne \Phi} \prod_{1 \le j \le J} M_j(A_k)$$

2. 多传感器多测量周期可信度分配的融合

设 $M_{s_j}(A_k)$ 表示第 s(s=1,...,S) 个传感器在第 j(j=1,...,n) 个测量周期对命题 A_k (k=1,...,K) 的可信度分配, 那么 A_k 的融合后验可信度分配如何计算呢?

中心式计算的步骤:

① 计算每一传感器根据各自*j*个周期的累积量测所获得的各个命题的融合后验可信度分配

$$M_s(A_k) = c_s^{-1} \sum_{\bigcap A_m = A_k} \prod_{1 \le j \le J} M_{sj}(A_m), \quad m = 1, ..., K$$

其中:

$$c_s = 1 - \sum_{\bigcap A_m = \Phi} \prod_{1 \le j \le J} M_{sj}(A_m) = \sum_{\bigcap A_m \ne \Phi} \prod_{1 \le j \le J} M_{sj}(A_m)$$

② 对所有传感器的融合结果再进行融合处理,即

$$M(A_k) = c^{-1} \sum_{\bigcap A_m = A_k} \prod_{1 \le s \le S} M_s(A_m), \quad m = 1, ..., K$$

其中:

$$c = \sum_{\bigcap A_m \neq \Phi} \prod_{1 \le s \le S} M_s(A_m)$$

【**例**】假设空中目标可能有4个机型类(轰炸机、大型机、 小型机、民航),3个识别属性(敌、我、不明)。

基于中心式计算法的融合实例

对于中频雷达、ESM(电子支援测量系统) 和 IFF(敌我识别)传感器,假设已获得两个测量周期的后验可信度分配数据:

```
M_{21}(\{b, b, b, b\}, \{b, b, b\},
                            = (0.4, 0.3, 0.2, 0.1)
M_{22}(\{b, b, b, b\}, \{b, b, b\},
                            = (0.4, 0.4, 0.1, 0.1)
M_{31}({34, {79}}) = (0.6, 0.4)
M_{32}({34,0.6})
```

其中,Msj表示第s个传感器(s=1,2,3)在第j个测量周期(j=1,2)上对命题的后验可信度分配函数。

对于第1个传感器:

 c_1 = M_{11} (民航) M_{12} (民航)+ M_{11} (民航) M_{12} (不明)+ M_{11} (轰炸机) M_{12} (轰炸机)+ M_{11} (轰炸机) M_{12} (不明) M_{11} (不明) M_{12} (民航)+ M_{11} (不明) M_{12} (轰炸机)+ M_{11} (不明) M_{12} (高少年) M_{12} (元明) M_{12} (元明) M_{12} (元明) M_{12} (元明)

或者另一种方法:

 c_1 =1-{ M_{11} (民航) M_{12} (轰炸机)+ M_{11} (轰炸机) M_{12} (民航)} =1-(0.3*0.5+0.4*0.3)=0.73

$$\sum_{\bigcap A_j = \mathbb{R} \text{ } \text{ } 1 \leq j \leq 2} \prod_{1 \leq j \leq 2} M_{1j}(A_j)$$

$$= M_{11}(\mathbf{R} \hat{\mathbf{M}}) M_{12}(\mathbf{R} \hat{\mathbf{M}}) + M_{11}(\mathbf{R} \hat{\mathbf{M}}) M_{12}(\mathbf{不明}) + M_{11}(\mathbf{不明}) M_{12}(\mathbf{R} \hat{\mathbf{M}})$$

$$= 0.24$$

从而

$$M_1$$
(民航)=0.24/0.73=0.32876
$$M_1$$
(轰炸机)=[M_{11} (轰炸机) M_{12} (轰炸机)+ M_{11} (轰炸机) M_{12} (不明)
$$+M_{11}$$
(不明) M_{12} (轰炸机)]/ C_1
$$=[0.4\times0.5+0.4\times0.2+0.3\times0.5]/0.73$$
$$=0.58904$$

$$M_1$$
 (不明)=[M_{11} (不明) M_{12} (不明)]/ C_1
= [0.3×0.2]/ 0.73
= 0.08219

可知: M_1 (民航)+ M_1 (轰炸机)+ M_1 (不明)= 1

对于第2个传感器:

```
c_2 = M_{21}(敌轰炸机1)M_{22}(敌轰炸机1)+M_{21}(敌轰炸机1)M_{22}(不明)+M_{21}(敌轰炸机2)M_{22}(敌轰炸机2)+M_{21}(敌轰炸机2)M_{22}(不明)+M_{21}(我轰炸机)M_{22}(不明)+M_{21}(我轰炸机)M_{22}(不明)+M_{21}(不明)M_{22}(敌轰炸机1)+M_{21}(不明)M_{22}(敌轰炸机2)+M_{21}(不明)M_{22}(敌轰炸机)+M_{21}(不明)M_{22}(和1)+M_{21}(不明)M_{22}(和2)+M_{21}(和3)+M_{22}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{21}(和3)+M_{
```

 $c_2 = 1 - [M_{21}($ 敌轰炸机1 $)M_{22}($ 敌轰炸机2 $) + M_{21}($ 敌轰炸机1 $)M_{22}($ 我轰炸机) $+ M_{21}($ 敌轰炸机2 $)M_{22}($ 敌轰炸机1 $) + M_{21}($ 敌轰炸机2 $)M_{22}($ 我轰炸机1 $) + M_{21}($ 我轰炸机2 $)M_{22}($ 我轰炸机1 $) + M_{21}($ 我轰炸机2 $)M_{22}($ 敌轰炸机1 $) + M_{21}($ 我轰炸机2 $)M_{22}($ 敌轰炸机2 $)M_{22}($ 2 $)M_$

同理可得

M₂(我轰炸机)=0.05/0.49=0.10204

 $M_2($ 不明)=0.01/0.49=0.020408

M₂(敌轰炸机1)=0.24/0.49=0.48979

M₂(敌轰炸机2)=0.19/0.49=0.38755

满足

 M_2 (我轰炸机)+ M_2 (不明)+ M_2 (敌轰炸机1)+ M_2 (敌轰炸机2)=1

对于第3个传感器:

同理可得

 M_3 (我机)=0.76/1=0.76 M_3 (不明)=0.24/1=0.24

 M_3 (我机) + M_3 (不明)=1

之后对3个传感器的融合结果再进行融合处理:

 $c = M_1(民航)M_2(不明)M_3\{ 不明) + M_1(轰炸机)M_2(敌轰炸机1)M_3(不明) + M_1(轰炸机)M_2(敌轰炸机2)M_3(不明) + M_1(轰炸机)M_2(我轰炸机2)M_3(不明) + M_1(轰炸机)M_2(我轰炸机)M_3(我) + M_1(轰炸机)M_2(我轰炸机)M_3(不明) + M_1(轰炸机)M_2(不明)M_3(我) + M_1(轰炸机)M_2(不明)M_3(不明)$

 $+M_1(\{ \pi \})M_2(\{ 敌轰炸机1 \})M_3(\{ \pi \})+M_1(\{ \pi \})M_2(\{ 敌轰炸机2 \})M_3(\{ \pi \})+M_1(\{ \pi \})M_2(\{ 我轰炸机 \})M_3(\{ 我 \})+M_1(\{ \pi \})M_2(\{ 我轰炸机 \})M_3(\{ \pi \})+M_1(\{ \pi \})M_2(\{ \pi \})M_3(\{ \pi \})+M_1(\{ \pi \})M_2(\{ \pi \})M_3(\{ \pi \})+M_1(\{ \pi \})M_2(\{ \pi \})M_3(\{ \pi \}))=0.225172$

每个命题的融合后验可信度分配为

 $M(民航) = M_1(航)M_2(不明)M_3(不明)/c = 0.00715$ $M(轰炸机)=M_1(轰炸机)M_2(不明)M_3(不明)/c=0.01281$ $M(敌轰炸机1)=[M_1(轰炸机)M_2(敌轰炸机1)M_3(不明+M_1(不明)M_2(敌轰炸机1)M_3(不明)]/c$ =0.35042

M(敌轰炸机2)=[$M_1($ 轰炸机) $M_2($ 敌轰炸机2 $)M_3($ 不明)+ $M_1($ 不明) $M_2($ 敌轰炸机2 $)M_3($ 不明)]/c=0.27741

 $M(我轰炸机)=[M_1(轰炸机)M_2(我轰炸机)M_3(我)+$

 M_1 (轰炸机) M_2 (我轰炸机) M_3 (不明)+

 M_1 (轰炸机) M_2 (不明) M_3 (我) + M_1 (不明) M_2 (我轰炸机) M_3 (我) + M_1 (不明) M_2 (我轰炸机) M_3 (不明)]/c

=0.34476

 $M(我机)=M_1(不明)M_2(不明)M_3(我机)/c=0.00566$

 $M(不明)=M_1(不明)M_2(不明)M_3(不明)/c=0.00179$

分布式计算方法

分布式计算步骤

① 计算每一测量周期上所获得的各个命题的融合后验可信度分配

$$M_{j}(A_{k}) = c_{j}^{-1} \sum_{\bigcap A_{m}} \prod_{1 \le s \le S} M_{sj}(A_{m}), \quad m = 1, ..., K$$

其中:

$$c_{j} = \sum_{\bigcap A_{m} \neq \Phi} \prod_{1 \leq s \leq S} M_{sj}(A_{m})$$

②基于各周期上的可信度分配计算总的融合后验可信度分配,即

$$M(A_k) = c^{-1} \sum_{\bigcap A_m} \prod_{1 \le j \le J} M_j(A_m), \quad m = 1, ..., K$$

其中:

$$c = \sum_{\bigcap A_m \neq \Phi} \prod_{1 \leq j \leq J} M_j(A_m)$$

基于分布式计算法的融合实例

对于上面的例子,应用分布式计算方法,容易计算得到第一周期和第二周期的各命题的3种传感器融合的各命题的可信度分配如下:

第一周期

 M_1 (轰炸机)=0.038278 M_1 (敌轰1)=0.267942

 M_1 (敌轰2)=0.200975 M_1 (我轰)=0.392345

 M_1 (我机)=0.043062 M_1 (民航)=0.028708

 $M_1(不明)=0.028708$

第二周期

 M_2 (轰炸机)=0.060729 M_2 (敌轰1)=0.340081

 M_2 (敌轰2)=0.340081 M_2 (我轰)=0.182186

 M_2 (我机)=0.016195 M_2 (民航)=0.036437

 M_2 (不明)=0.024291

从而可得两周期传感器系统对融合命题的可信度分配为

M(轰炸机)=0.011669 M(敌轰1)=0.284939

M(敌轰2)=0.252646 M(我轰)=0.400814

M(我机)=0.041791 M(民航)=0.006513

M(不明)=0.001628

小结:

D-S证据理论优点:

- 1) D-S 证据理论具有比较强的理论基础, 既能处理随机性 所导致的不确定性, 又能处理模糊性所导致的不确定性;
- 2) D-S 证据理论可以依靠证据的积累,不断缩小假设集;
- 3) D-S 证据理论能将"不知道"和"不确定"区分开来;
- 4) D-S 证据理论可以不需要先验概率和条件概率密度。

小结: 🦰

D-S证据理论缺点:

- 证据理论具有潜在的数据复杂度;
- 在推理链较长时,使用证据理论很不方便;
- 当基本概率赋值有一个很小的变化都可能导致结果很大的变化,甚至出现矛盾;
- 当 D-S 证据理论在处理两个相互矛盾的基本概率 分配函数时,得到的结果不理想。

Thanks

