Chapitre 1

Réalisation et résultats

1.1 Introduction

Dans la partie conception, nous avons proposé certaines modifications à apporter sur des approches existantes ainsi que des méthodes que nous avons jugées intéressantes pour notre système. Nous allons, dans la suite de ce chapitre, montrer la faisabilité de ces méthodes ainsi que leurs avantages et leurs limites.

Nous commençons par décrire l'environnement de travail. Nous détaillerons par la suite les aspects de l'implémentation des différents modules de notre application qui seront évalués et analysés. Pour clôturer avec une application d'un assistant personnel pour la manipulation de fichiers.

1.2 Environnement de développement

Dans cette section nous allons présenter les différents outils (logiciels et matériels) qui ont été utilisé pour l'implémentation de BETHANO.

1.2.1 Machines utilisées

Principalement, le développement se divise en deux parties :

- Apprentissage : les données sont récoltées ou construites puis nettoyées et préparées.
 Les modèles sont développés, entraînés puis testés.
- Les modules sont implémentés puis connectés et intégrés dans l'application.

Pour ce faire nous avons utilisé des machines dont les spécificités sont mentionnés cidessous :

Figure 1.1 - Caractéristiques des machines

En ce qui concerne la partie logicielle une liste non exhaustive est présentée ci dessous, qui ne mentionne que les outils les plus utilisés et les plus exploités :

1.2.2 Langages de programmation

Figure 1.2 - Langages de programmation utilisés

Python

C'est un langage de programmation interprété de haut niveau, structuré et open source. Il est multi-paradigme (orienté objet, programmation fonctionnelle et impérative) et multi-usage. Il est, comme la plupart des applications et outils open source, maintenu par une équipe de développeurs un peu partout dans le monde. Il offre une grande panoplie d'extensions (packages) pour résoudre une variété de problèmes, qu'ils soient reliés au développement d'applications de bureau, web ou mobiles [3].

Javascript

JavaScript est un langage de programmation utilisé principalement par les navigateurs web pour exécuter un bout de code incorporé dans une page web plus communément appelé script. Il permet la manipulation de tout les éléments inclus dans une page, et par conséquent permet une gestion dynamique de ces dernier. Il est beaucoup utilisé du coté

client mais peut aussi être exécuté du coté serveur. Tout comme Python il offre une grande variété dans le choix des modules qui peuvent ajouter de nouvelles fonctionnalités, le tout géré par un gestionnaire de module npm^1 devenu un standard [2].

1.2.3 Librairies et bibliothèques

Figure 1.3 – Bibliothèques et librairies les plus utilisées

DeepSpeech API

Package python qui fait office d'interface entre un script Python et la librairie de reconnaissance automatique de la parole DeepSpeech [35]. Il permet entre autre de charger différents modèles acoustiques ou modèles de langues. Il offre aussi la possibilité d'utiliser des scripts d'apprentissage prédéfinis pour peu que les données soient organisé suivant une certaine norme, ces scripts sont notamment hautement paramétrables [1].

PyAudio

Librairie python destinée à la manipulation des fichiers ou flux audios. Elle offre entre autre la possibilité d'extraire des méta-données sur un flux audio (fréquence d'échantillonnage, débit ...). La possibilité d'extraire le vecteur de caractéristiques d'un extrait audio est aussi présente comme fonctionnalité [?].

Beatiful Soup

Bibliothèque Open source permettant l'analyse de fichier html pour en extraire ou y injecter des données. Principalement utilisée pour filtrer les balises nécessaire depuis une page web [?].

^{1.} Node Package Manager ou Gestionnaire de packages Node

PySpark

Package Python utilisé comme interface pour interagir avec un serveur Spark. Il permet entre autre de lire et écrire des données dans le nouveau format Hadoop [?].

Scikit-Learn

Bibliothèque Open source conçue pour rapidement développer des modèles pour l'apprentissage automatique, principalement utilisé pour ses nombreux outils de pré-traitement des données (codification, normalisation, filtrage ...) [?].

Numpy

Bibliothèque spécialisée dans la manipulation de grands volumes de données numériques, notamment les vecteurs (tableaux) multi-dimensionnels, les opérations sur ces dernier sont implémentés en C pour optimiser au maximum leur coût en temps de calcul ou ressources mémoires utilisées. Elle offre des structures de données compatibles avec beaucoup d'autre librairies comme Tensorflow ou Keras [?].

Tensorflow & Keras

Vaste librairie dédiée à l'apprentissage automatique, et plus particulièrement au réseaux de neurones et l'apprentissage profond. Optimisée pour exécuter des opérations à grande échelle et massivement distribuées sur un réseau, Tensorflow offre la possibilité d'implémenter une grande variété d'architectures de modèles avec un maximum d'efficacité. Elle dispose d'un package Python permettant d'interagir avec le cur de la librairie mais reste néanmoins assez bas-niveau et rudimentaire. Keras quant à lui propose de rajouter une couche d'abstraction à Tensorflow. c'est une package python destiné à faciliter le développement de modèles pour l'apprentissage profond tout en offrant la possibilité de rajouter et modifier un grand nombre de fonctionnalités par défaut. Sa force réside dans le fait qu'il peut utiliser au plus bas niveau plusieurs librairies autre que Tensorflow comme Theano et CNLTK [????].

Flask

Micro-librairie Open source dédiée au développement d'applications basé web. De base, cette librairie est très légère, mais elle offre la possibilité d'ajouter des extensions qui s'intègrent très facilement au système de base [?].

Vuetify

Librairie Open source basée sur VueJs dédié au développement d'interface web ou mobile. Elle implémente le paradigme Material Design de Google et offre la possibilité d'étendre les composants de base et de créer des interfaces belle et adaptatives [?].

1.2.4 Outils et logiciels de développement

PyCharm

PyCharm est un environnement de développement intégré spécialisé et optimisé pour programmer dans le langage Python (voir 1.2.2 ci dessus). Il permet l'analyse de code en continue et offre un débogueur intégré pour exécuter un code instruction par instruction. Il offre également l'intégration de logiciel de gestion de versions comme Git [?], et supporte le développement web avec Django et Flask [?].

Git

Système de gestion de versions décentralisé. Il permet entre autre de gérer les différentes versions d'un projet durant son développement, mais aussi de garder l'historiques des modifications effectuées ainsi que la possibilité de régler des conflits lors de l'intégration finale des contributions des développeurs [?].

Google Colaboratory

Colaboratory est un outil de recherche et développement pour la formation et la recherche associées à l'apprentissage profond. C'est un environnement Python qui ne nécessite aucune configuration et offre la possibilité d'utiliser de puissantes machines rendues accessibles par Google pour accélérer la phase d'apprentissage [?].

Protégé

Protégé est un système dédié à la création et la modification d'ontologies. Il est développé en Java et est Open source distribué sous une licence libre (la Mozilla Public License). Il se démarque par le fait qu'il permet de travailler sur des ontologies de très grandes dimensions [?].

1.3 Reconnaissance automatique de la parole

Pour ce premier module, il a été très difficile d'effectuer les tests idéals. En effet, nous n'avons pas pu trouver un ensemble de données qui proposait du contenu en rapport avec Bethano. Cependant puisque nous avons pu construire un mini-ensemble pour tester l'apport de notre modèle de langue. Les résultats ne doivent pas être pris comme une référence absolue, mais plutôt comme une indication pour de futurs possible tests.

1.3.1 Ensemble de test

Pour tester le modèle acoustiques, les données récoltées à travers le projet Common-Voice ?? constituent un assez bon échantillon. De par la nature des enregistrement (sur téléphone portable, par plusieurs genre et accent de locuteurs ...) et mais aussi de par le volume (environs 500 heures d'enregistrements audios). Nous avons tout de fois décidé de construire un mini-ensemble de teste d'environs 204 enregistrements audio d'une longueur moyenne de 5 secondes. Ces échantillons ont été prélevé sur trois locuteurs masculins. 20% de ces échantillons ont été prélevé dans un environnement fermé mais bruité (il s'agit d'un espace de travail pour étudiants) et sur téléphone. Le reste à été prélevé dans un environnement fermé avec peu de bruit à partir du micro d'un ordinateur portable. Chaque enregistrement est soit :

- Une requête prélévé de l'ensemble de test du module précédent (voir les sections 1.4.2 et ??).
- Une question prélevé de l'ensemble de données AskUbuntu ² qui regroupe des questions relatif à la manipulation d'un ordinateur sous le système d'exploitation GNU/Linux.

Pour le modèle de langue il s'agit de celui mentionné dans la section ??. Quelques modifications ont été rajoutée comme le filtrage des mots qui n'appartiennent pas à la langue anglaise. Mais au prix du sacrifice de quelques noms propres non reconnus ou bien de séquences de mots/lettres sans réel sens.

1.3.2 Méthodologie d'évaluation

Les tests ont été effectués dans un serveur Colab pour libérer les machines locales. Les principales étapes sont les suivantes :

- Préparation des données : Les données sont prélevé d'un base de données sqlite qui comprend une seule table Transcriptions. Les colonnes de la table sont :
 - id : identifiant de l'enregistrement
 - path : chemin vers le fichier audio de la requête.
 - **text** : transcription textuelle de la requête.

Un script de conversion est ensuite lancé pour s'assurer que chaque enregistrement est au format .wav avec une fréquence de rafraîchissement égale à 16KHz (le modèle acoustique de DeepSpeech attend cette valeur exacte pour lancer l'inférence, sinon une erreur se produira).

2. **Métriques retenues** : À chaque instance testée, le **WER** (Word Error Rate) est calculé. Pour rappel la formule du WER est la suivante :

$$WER(y, \hat{y}) = \frac{S + D + I}{S + D + C} = \frac{S + D + I}{N}$$

Où:

^{2.} https://github.com/taolei87/askubuntu

- y est la séquence de mots prédite appelée Hypothèse.
- \hat{y} est la séquence de mots réelle appelée Référence.
- S est le nombre de substituions (compté en mots) réalisées entre l'hypothèse et la référence.
- *D* est le nombre de suppressions qu'a effectué le système. donc le nombre de mots supprimés dans l'hypothèse par rapport à la référence.
- *I* est le nombre d'insertions effectuées par le système (c.à.d) le nombre de mots rajouté à l'hypothèse par rapport à la référence.
- C est le nombre de mots bien placés.
- N est la longueur totale de la séquence en nombre de mots
- 3. Boucle d'évaluation l'opération précédente est réitérée en incrémentant à chaque fois le taux d'utilisation de notre modèle de langue (de 20% à 100% avec un pas de 10%). Le WER associé est ensuite comparé à celui obtenu en utilisant le modèle de langue par défaut que propose DeepSpeech, le modèle acoustique sans modèle de langue, le résultat de l'API de Google 3 et enfin le modèle par défaut de CMU Sphinx 4

1.3.3 Résultats

Les résultats sont décrits dans le tableau 1.1 et la figure 1.4. Nous pouvons remarquer que sur notre mini-ensemble de test, les modèles par défaut obtiennent un score très proche de 1, cela démontre qu'ils ont été entraînés sur des cas assez généraux. Cependant en changeant juste le modèle de langue par défaut par des échantillons du notre, une nette amélioration est visible (environ -20%). Ce taux d'erreur diminue en augmentant la taille du corpus utilisé pour le modèle de langue. Toutefois, après avoir pris plus de 75% du corpus, l'erreur à légèrement augmenté. Cela peut s'expliquer par la nature assez bruité du corpus, les fichiers README.MD sont rédigé par des personnes, et l'erreur est humaine, il n y a pas de processus de vérification de l'orthographe, de la grammaire ou de la syntaxe du contenu. Nous avions envisagé de choisir comme corpus des extraits de livres dédié à la manipulation des ordinateurs sous Linux, mais nous n'avons pas trouvé de ressources gratuite ou Open source exploitable.

Il est a noter que le meilleure résultat obtenu, c.à.d un taux d'erreur de 72.6% est très loin d'être satisfaisant comparé au taux d'erreur de l'API de Google par exemple. Néanmoins, l'ajout d'un modèle de langue personnalisé a pu améliorer nettement ce résultat. Comme mentionné dans la section ??, DeepSpeech reste la meilleure option en Open Source à notre porté.

^{3.} https://cloud.google.com/speech-to-text/

^{4.} https://cmusphinx.github.io/

	WER (Word Error Rate)
Goole API	0,34955014
M.A - 50% du corpus	0,72634931
M.A - 75% du corpus	0,72809889
M.A - 100% du corpus	0,72928369
M.A - 25% du corpus	0,73910913
M.A - 10% du corpus	0,74333040
Modèle acoustique et modèle de langue de base	0,79569078
Modèle acoustique seulement	0,91092787
CMU Sphinx de base	0,94024028

Table 1.1 – Tableau récapitulatif des résultats pour le a reconnaissance automatique de la parole

Figure 1.4 – Graphe récapitulatif des résultats pour le a reconnaissance automatique de la parole

1.4 Classification d'intentions et extractions d'entités de domaine

Pour ce module, une approche assez classique à été utilisée, l'ensemble de test est extrait de l'ensemble d'apprentissage (plus de détail dans la section suivante). Les mé-

triques d'évaluation utilisées sont mentionnées dans la sous section 1.4.2. Nous commençons d'abord par détailler le contenu de l'ensemble de tests. Puis nous présenterons la méthodologie suivie pour la réalisation de ces tests. Un tableau récapitulatif sera présenté avant la fin pour illustrer les différents résultats.

1.4.1 Ensemble de test

Comme mentionné dans le chapitre précédent (voir la section ??), nous avons nous même construit un ensemble d'apprentissage relativement varié. Il regroupe essentiellement des commandes ou requêtes liées à l'exploration de fichier pour le moment car c'est la tâche rudimentaire que Bethano peut accomplir.

L'ensemble de test est dérivé de celui d'apprentissage selon une politique de découpage basée sur le taux de présence d'un intent (intention). Comme illustré dans la figure **??**, un pourcentage de chaque groupe d'instance affilié à la même classe est utilisé à la fois pour la validation et pour le test.

Une liste exhaustive des intentions et slots accompagné d'une description est introduite dans le tableau 1.2 ci dessous.

Figure 1.5 – Schéma de découpage des données pour l'apprentissage du modèle de compréhension du langage naturel

Intention	Déscription de l'intention	Groupe	Argument(s) (Entité(s))
create_file_desire	Création d'un fichier	ALTER	-file_name-parent directory
create_directory_desire	Création d'un répertoire	ALTER	-directory_name -parent_directory
delete_file_desire	Suppression d'un fichier	ALTER	-file_name -parent_directory
delete_directory_desire	Suppression d'un répertoire	ALTER	-directory_name -parent_directory
open_file_desire	Ouverture d'un fichier	INFO	-file_name -parent_directory
close_file_desire	Fermeture d'un fichier	INFO	-file_name -parent_directory
copy_file_desire	Copie d'un fichier	ALTER	-file_name -origin -destination
move_file_desire	Déplacement d'un fichier	ALTER	-file_name -origin -destination
rename_file_desire	Renommage d'un fichier	-	-old_name -new_name
change_directory_desire	Changement du répertoire de travail courant	-	-new_directory
inform	Informer d'une intention	EXCH	-file_name -parent_directory
request	Demander une information	EXCH	-file_name -directory
deny	Réponse négative	-	-
confirm	Réponse positive	-	-
unknown	Intention inconnue	-	-

Table 1.2 – Tableau récapitulatif de toutes intentions avec leurs descriptions et leurs arguments

Les intentions sont regroupé en groupes, chaque groupe comporte des intentions qui influent sur les documents de la même manière. Il existe bien évidemment des intentions sans groupe (on peut considérer qu'ils forment un seul groupe, ou bien que chacun constitue son propre groupe) :

- ALTER : Groupe d'intentions qui altère l'état d'un document.
- INFO: Groupe d'intentions pour effectuer une opération puis informer l'utilisateur.
- **EXCH** : Groupe d'intentions dont le but est d'échanger des informations avec l'utilisateur.

1.4.2 Méthodologie d'évaluation

Après avoir construit l'ensemble de test, un parcours exhaustif des différentes combinaisons des paramètres suivant est effectué :

- Architecture d'encodage : C'est à dire l'utilisation ou pas d'un réseau récurent LSTM de base ou bien BiLSTM. Le but étant de montrer que le modèle pourra mieux interprété les données en entrée s'il capture le contexte de chaque mots.
- Nombre neurones pour la couche de classification d'intention : Lorsque l'encodeur retourne le dernier vecteur d'état caché, ce dernier passera par un réseau de neurones complètement connecté et multi-couche (nombre de couches fixé à 3 par soucis de performance, une couche d'entrée, une couche intermédiera et une couche de sortie). Le nombre de neurones dans la couche caché dépend grandement de la complexité de la tâche à effectuer. La classification d'intentions pour l'exploration de fichier était relativement simple, nous avons commencé avec 32 neurones puis nous avons doublé ce nombre jusqu'à 512 pour, en théorie, donnée plus de puissance au classificateur tout en évitant une sur-apprentissage par surplus de neurones.
- Nombre d'unités d'une cellule LSTM (respectivement BiLSTM): En effet, les portes d'une cellule LSTM (résp. BiLSTM) sont en vérité des réseaux de neurones denses (complètement connectés) et donc un ensemble de matrice de poids à être optimiser. La capacité à "apprendre" la représentation des séquence dépend donc aussi du nombre de neurones dans ces mini-réseaux. Par le même raisonnement employé pour le classificateur d'intention, nous avons commencé avec un petit nombre de neurones pour examiner où se trouverait le seuil minimal qui permettra au modèle de généraliser, mais aussi où le seuil critique se situerait pour permettre au modèle de ne pas tomber dans un cas de sur-apprentissage. Nous partons de 128 jusqu'à 512 unités avec pas de 32 unités.
- Fonction d'activations : C'est un élément essentiel qui permet d'introduire la nonlinéarité dans les relations entre chaque neurones de couches voisines. Ces fonctions permettent de mieux représenter les seuils d'activations des neurones. La fonction la plus utilisée dans la littérature est actuellement ReLu (Rectified Linear Unit) car elle a expérimentalement donnée de meilleurs résultats dans une grande variété de tâches et problèmes liés à l'apprentissage automatique et à la classification et étiquetage de texte. Par souci d'exhaustivité nous avons quand même décidé de tester deux autre fonctions tanh (Tangente Hyperbolique) et sigmoid (Sigmoïde). Pour chaque couche de sortie, la fonction Softmax à été appliquée car chaque couche traite d'un problème de classification multi-classes. Voici les équations pour chacune de ces fonctions :

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$softmax_i(x) = \frac{e^{x_i}}{\sum_{j=1}^K e_j^x} \text{ pour } i = 1...K \text{ et } x = (x_1, ..., x_K) \in \mathbb{R}^K$$

• Fonction erreur : C'est l'élément clé pour la phase d'apprentissage, cette fonction détermine le degré d'exactitude du modèle, à quel point il est proche de la bonne réponse. Nous avons décidé d'utiliser comme fonction erreur la fonction $Categorical_{C}rossentropy$ ou Erreur Logistique. toute fois de par la nature de l'ensemble d'apprentissage et de test. Une version pondérée de cette fonction à été préféré, Pour palier au problème du non équilibrage des classes (que ce soit pour la classification d'intentions, ou pour la reconnaissance d'entité du domaine).

Les poids des classes sont calculés selon la formule suivante :

$$Poids_i = \max(1, \log \frac{T}{T_i})$$

Où:

- T est le nombre total d'instances
- T_i est le nombre d'instance dont la classe est C_i

La formule de la fonction erreur devient donc :

$$Erreur(y, \hat{y}) = -\sum_{i}^{C} y_i * \log(\hat{y}) * Poids_i$$

Où:

- y est le vecteur en sortie produit par le modèle à la suite d'une fonction Softmax.
- \hat{y} est le vecteur de classe réelle présent dans l'ensemble d'apprentissage
- C est le nombre de classe au total.
- Fonction d'apprentissage : Le choix de la fonction d'apprentissage est généralement affecté par un désir de précision et de rapidité. Une fonction qui converge rapidement en un minimum local peut être parfois préféré à une autre qui prendrait un temps considérable pour soit se retrouver dans le même minimum ou un autre minimum local (donc sans garanti de minimum optimal de la fonction erreur). Les deux fonctions utilisées sont RmsProp et Adam qui sont connue pour leur rapidité de convergence.
- Encodage des entrée sorties: Là encore le choix de l'encodage des données influe grandement sur la capacité du modèle à distinguer et à représenter les différentes informations qui lui sont présentées. Comme initiative de notre part nous avons mentionné dans la section ?? l'ajout de l'étiquette morphosyntaxique de chaque mot à l'encodage. Nous avons donc lancé les tests sur un encodage avec (respectivement sans) l'ajout des étiquettes pour mieux constater sont intérêt.
- **Découpage des données** La stratégie adopté était de prendre aléatoirement les même proportions pour chaque sous ensemble de chaque classes (intentions ou entités de domaine). Comme nous avons décidé de faire varier les proportions de test et d'apprentissage en fixant celui de validation car nous avons remarqué que notre modèle n'arrivait pas à bien généraliser la relation entre les entrées et les sorties. Notre intuition portait sur le fait que le manque de données pouvait en être la cause (voir la section **??** pour plus de détails). Ainsi nous avons varié le taux de découpage pour le

tests entre 25 et 75% avec un pas de 25%. Le taux de découpage pour l'apprentissage est évidement de $(100\% - T_{test}) * 10\%$.

Pour éviter que le modèle ne sur-apprenne, nous avons volontairement interchanger quelques mots dans la séquence d'entrée et celle de sortie pour introduire un certain taux d'erreur et de variété. Cet échange se fait suivant une probabilité q fixé à 20%, bien entendu les étiquettes morphosyntaxiques ne sont pas échangé pour garder la structure de la phrase correcte.

Pour le reste des hyperparasites, la plus part ont été fixé par manque de temps et de ressources. Ainsi le nombre d'epochs (itération) a été limité au maximum à 4 avec une politique d'arrêt anticipé si la fonction erreur d'évaluation ne diminue pas plus d'un taux $\Delta E = 2*10^{-3}$. Les métriques employées pour évaluer les deux classificateurs sont les suivantes :

• **Précision** : il s'agit d'une métrique classique qui évalue à quel point le modèle est bon pour prédire les classes.

$$Pr = \frac{VP}{VP + FP}$$

Où:

- *VP* (Vrais Positifs) : nombre de cas où le modèle prédit correctement la classe comme étant positive.
- *FP* (Faux Positifs) : nombre de cas où le modèle ne prédit pas correctement la classe comme étant positive (il rate son tir).
- **Rappel** : Cette métrique évalue la capacité dy modèle à effectuer des classifications correctes par rapport à tout l'ensemble de test. Plus formellement :

$$Rap = \frac{VP}{VP + FN}$$

Où:

- VP (Vrais Positifs) : nombre de cas où le modèle prédit correctement la classe comme étant positive.
- FN (Faux Négatif) : nombre de cas où le modèle ne prédit pas correctement la classe comme étant négative (il rate son tir).
- **F-Mesure** : Mesure qui combine (d'un point de vu ensembliste) la précision et le rappel. Elle ne privilégie aucune des deux et essaye de donner un aperçu plus global de l'efficacité de l'algorithme.

$$Fm = \frac{2*Rap*Pr}{Rap+Pr}$$

1.4.3 Résultats

Pour les résultats qui vont suivre, Chaque tableau sera accompagné d'un paragraphe qui servira de commentaire aux résultats obtenus. Des remarques peuvent y être insérées pour attirer l'attention sur des détails non flagrants.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
64	512	relu	rmsprop	0,9687	0,9669	0,9293	0,9230	0,9470
32	128	relu	rmsprop	0,9743	0,9725	0,9214	0,9128	0,9452
64	256	relu	rmsprop	0,9753	0,9743	0,9141	0,9061	0,9424
32	512	relu	rmsprop	0,9750	0,9735	0,9082	0,9019	0,9396
32	256	relu	rmsprop	0,9755	0,9741	0,9066	0,8985	0,9387
256	512	relu	rmsprop	0,9716	0,9711	0,8842	0,8761	0,9257
64	128	relu	rmsprop	0,9700	0,9689	0,8744	0,8636	0,9192
128	512	relu	rmsprop	0,9647	0,9635	0,8690	0,8584	0,9139
256	128	relu	rmsprop	0,9704	0,9692	0,8473	0,8342	0,9052
128	256	relu	rmsprop	0,9714	0,9707	0,8431	0,8345	0,9049
128	128	relu	rmsprop	0,9638	0,9626	0,8425	0,8283	0,8993
256	256	relu	rmsprop	0,7215	0,7141	0,7573	0,7275	0,7299

Table 1.3 – Résultats des tests pour un encodage sans étiquetage morphosyntaxique avec des cellules LSTM avec découpage Apprentissage : 25%, Validation : 10%, Test : 75%.

Nous pouvons remarquer depuis le tableau 1.3 que pour un ensemble d'apprentissage assez réduit, le modèle arrive tout de même à bien classifier la majorité des intentions avec un rappel maximum avoisinant les 97%. Cependant le slot-filling se révèle être une tâche plus ardue, avec un rappel ne dépassant pas 92%. La meilleure combinaison qui équilibre les deux tâches utilise un petit nombre de neurones pour la classification d'intentions, mais en revanche demande une grande capacité de calcul pour la mémorisation des séquences en utilisant 512 unités dans les cellules LSTM.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
128	512	relu	rmsprop	0,9749	0,9736	0,9426	0,9380	0,9573
64	256	relu	rmsprop	0,9737	0,9729	0,9389	0,9325	0,9545
32	256	relu	rmsprop	0,9746	0,9735	0,9344	0,9298	0,9531
128	256	relu	rmsprop	0,9709	0,9703	0,9360	0,9304	0,9519
256	512	relu	rmsprop	0,9768	0,9762	0,9272	0,9221	0,9505
128	128	relu	rmsprop	0,9684	0,9674	0,9354	0,9299	0,9503
64	128	relu	rmsprop	0,9687	0,9684	0,9344	0,9286	0,9500
256	128	relu	rmsprop	0,9681	0,9673	0,9349	0,9286	0,9497
64	512	relu	rmsprop	0,9741	0,9732	0,9257	0,9188	0,9479
32	512	relu	rmsprop	0,9721	0,9714	0,9149	0,9089	0,9418
256	256	relu	rmsprop	0,9686	0,9679	0,9048	0,8995	0,9352
32	128	relu	rmsprop	0,9736	0,9721	0,8894	0,8817	0,9292

Table 1.4 – Résultats des tests pour un encodage sans étiquetage morphosyntaxique avec des cellules BiLSTM avec découpage Apprentissage : 25%, Validation : 10%, Test : 75%.

Sur le tableau 1.4, l'ajout de l'information du contexte pour un mot à une position donnée à travers l'utilisation d'une architecture BiLSTM affecte systématiquement les scores (Précision, Rappel, F-Mesure ...). Ceux ci augmentent d'un certain taux ($\approx 10\%$) dans la majorité des cas. Il est a noter que pour le même nombre d'unités BiLSTM, le nombre de neurones pour la classification d'intentions a doublé.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
64	256	relu	rmsprop	0,9690	0,9686	0,9354	0,9287	0,9504
32	512	relu	rmsprop	0,9717	0,9706	0,9304	0,9238	0,9491
32	128	relu	rmsprop	0,9769	0,9738	0,9189	0,9115	0,9453
128	256	relu	rmsprop	0,9689	0,9681	0,9204	0,9131	0,9426
128	512	relu	rmsprop	0,9714	0,9708	0,8756	0,8693	0,9218
256	128	relu	rmsprop	0,9707	0,9699	0,8767	0,8674	0,9212
256	256	relu	rmsprop	0,9650	0,9642	0,8767	0,8707	0,9191
32	256	relu	rmsprop	0,9703	0,9693	0,8609	0,8513	0,9129
128	128	relu	rmsprop	0,9713	0,9695	0,8565	0,8455	0,9107
64	128	relu	rmsprop	0,9696	0,9672	0,8556	0,8465	0,9097
256	512	relu	rmsprop	0,9751	0,9739	0,8418	0,8291	0,9050
64	512	relu	rmsprop	0,9761	0,9750	0,8275	0,8201	0,8997

Table 1.5 – Résultats des tests pour un encodage avec étiquetage morphosyntaxique avec des cellules LSTM avec découpage Apprentissage : 25%, Validation : 10%, Test : 75%.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
32	256	relu	rmsprop	0,9726	0,9715	0,9481	0,9436	0,9589
64	256	relu	rmsprop	0,9735	0,9731	0,9370	0,9329	0,9541
256	512	relu	rmsprop	0,9733	0,9723	0,9357	0,9304	0,9529
256	256	relu	rmsprop	0,9682	0,9670	0,9394	0,9352	0,9525
32	512	relu	rmsprop	0,9683	0,9656	0,9392	0,9330	0,9515
128	512	relu	rmsprop	0,9794	0,9790	0,9230	0,9163	0,9494
32	128	relu	rmsprop	0,9726	0,9708	0,9300	0,9232	0,9491
256	128	relu	rmsprop	0,9654	0,9645	0,9324	0,9266	0,9472
64	512	relu	rmsprop	0,9651	0,9636	0,9324	0,9261	0,9468
128	128	relu	rmsprop	0,9702	0,9687	0,8721	0,8670	0,9195
64	128	relu	rmsprop	0,9735	0,9719	0,8369	0,8278	0,9025
128	256	relu	rmsprop	0,9741	0,9732	0,8209	0,8114	0,8949

Table 1.6 – Résultats des tests pour un encodage avec étiquetage morphosyntaxique avec des cellules BiLSTM avec découpage Apprentissage : 25%, Validation : 10%, Test : 75%.

Quant aux deux tableaux 1.5 et 1.6, ils montrent que l'ajout de l'étiquette morphosyntaxique a amélioré les résultats pour cas de l'utilisation d'une cellule LSTM simple tout en réduisant le nombre d'unités requise, moins de calculs et plus d'efficacité. Cela se confirme encore plus pour le cas de l'utilisation de l'architecture BiLSTM, en réduisant de presque la moitié la puissance de calcul nécessaire et en augmentant un tout petit peu la qualité des prédictions.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
64	512	relu	rmsprop	0,9717	0,9708	0,9340	0,9262	0,9506
128	512	relu	rmsprop	0,9711	0,9698	0,9316	0,9269	0,9498
256	512	relu	rmsprop	0,9728	0,9725	0,9300	0,9239	0,9498
32	512	relu	rmsprop	0,9708	0,9699	0,9293	0,9222	0,9480
256	128	relu	rmsprop	0,9749	0,9741	0,9079	0,8988	0,9389
64	256	relu	rmsprop	0,9706	0,9698	0,9096	0,9030	0,9383
32	256	relu	rmsprop	0,9740	0,9724	0,8921	0,8859	0,9311
64	128	relu	rmsprop	0,9751	0,9729	0,8901	0,8796	0,9294
128	256	relu	rmsprop	0,9712	0,9706	0,8930	0,8817	0,9291
32	128	relu	rmsprop	0,9707	0,9691	0,8897	0,8776	0,9267
256	256	relu	rmsprop	0,9718	0,9712	0,8629	0,8555	0,9153
128	128	relu	rmsprop	0,9650	0,9633	0,8212	0,8081	0,8894

Table 1.7 – Résultats des tests pour un encodage sans étiquetage morphosyntaxique avec des cellules LSTM avec découpage Apprentissage : 50%, Validation : 10%, Test : 50%.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
64	256	relu	rmsprop	0,9740	0,9732	0,9425	0,9369	0,9567
32	512	relu	rmsprop	0,9689	0,9673	0,9456	0,9409	0,9557
256	512	relu	rmsprop	0,9752	0,9745	0,9390	0,9326	0,9553
64	512	relu	rmsprop	0,9771	0,9762	0,9339	0,9302	0,9543
256	256	relu	rmsprop	0,9716	0,9711	0,9327	0,9266	0,9505
128	256	relu	rmsprop	0,9654	0,9645	0,9384	0,9328	0,9503
128	128	relu	rmsprop	0,9699	0,9693	0,9326	0,9264	0,9496
64	128	relu	rmsprop	0,9679	0,9667	0,8941	0,8879	0,9291
32	256	relu	rmsprop	0,9649	0,9629	0,8947	0,8887	0,9278
32	128	relu	rmsprop	0,9539	0,9480	0,8215	0,8064	0,8824
256	128	relu	rmsprop	0,9710	0,9700	0,7782	0,7656	0,8712
128	512	relu	rmsprop	0,8747	0,8657	0,7848	0,7628	0,8219

Table 1.8 – Résultats des tests pour un encodage sans étiquetage morphosyntaxique avec des cellules BiLSTM avec découpage Apprentissage : 50%, Validation : 10%, Test : 50%.

Depuis les résultats des tableaux 1.7 et 1.8, il semblerait que le choix de l'architecture BiLSTM augmenterait la qualité des classifications, même si ce n'est que d'un petit taux. Ils semblent aussi montrer que notre intuition sur la faible quantité de données que nous possédions soit fondée. Les scores F-Mesure en moyenne tendent à augmenter avec l'injection de nouvelles données d'apprentissage.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
128	512	relu	rmsprop	0,9723	0,9716	0,9388	0,9330	0,9539
64	256	relu	rmsprop	0,9720	0,9709	0,9278	0,9219	0,9482
256	512	relu	rmsprop	0,9737	0,9731	0,9238	0,9193	0,9475
32	128	relu	rmsprop	0,9729	0,9712	0,9256	0,9182	0,9469
32	512	relu	rmsprop	0,9692	0,9681	0,9278	0,9226	0,9469
64	512	relu	rmsprop	0,9689	0,9671	0,9187	0,9107	0,9414
256	256	relu	rmsprop	0,9702	0,9699	0,9077	0,9016	0,9373
32	256	relu	rmsprop	0,9734	0,9716	0,8769	0,8689	0,9227
64	128	relu	rmsprop	0,9712	0,9693	0,8732	0,8641	0,9195
256	128	relu	rmsprop	0,9662	0,9655	0,8661	0,8563	0,9135
128	128	relu	rmsprop	0,9631	0,9614	0,8223	0,8090	0,8889
128	256	relu	rmsprop	0,9694	0,9686	0,8020	0,7936	0,8834

Table 1.9 – Résultats des tests pour un encodage avec étiquetage morphosyntaxique avec des cellules LSTM avec découpage Apprentissage : 50%, Validation : 10%, Test : 50%.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
32	256	relu	rmsprop	0,9920	0,9914	0,9650	0,9623	0,9777
256	512	relu	rmsprop	0,9883	0,9879	0,9652	0,9625	0,9760
64	128	relu	rmsprop	0,9903	0,9903	0,9621	0,9594	0,9755
128	128	relu	rmsprop	0,9935	0,9931	0,9581	0,9550	0,9749
128	512	relu	rmsprop	0,9896	0,9889	0,9619	0,9591	0,9749
32	512	relu	rmsprop	0,9900	0,9894	0,9603	0,9577	0,9744
64	512	relu	rmsprop	0,9893	0,9886	0,9604	0,9579	0,9741
32	128	relu	rmsprop	0,9906	0,9900	0,9559	0,9524	0,9722
64	256	relu	rmsprop	0,9871	0,9870	0,9570	0,9539	0,9713
256	128	relu	rmsprop	0,9878	0,9877	0,9518	0,9481	0,9689
256	256	relu	rmsprop	0,9882	0,9875	0,9016	0,8959	0,9433
128	256	relu	rmsprop	0,9885	0,9883	0,8658	0,8610	0,9259

Table 1.10 – Résultats des tests pour un encodage avec étiquetage morphosyntaxique avec des cellules BiLSTM avec découpage Apprentissage : 50%, Validation : 10%, Test : 50%.

Cependant, pour les tableaux 1.9 et 1.10. Nous pouvons observer que l'ajout de l'information morphosyntaxique à diminué le taux de réussite de la prédiction d'un faible taux au profit d'une moindre puissance de calculs.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
128	256	relu	rmsprop	0,9916307	0,9896523	0,9627657	0,95995647	0,9760
64	256	relu	rmsprop	0,99043167	0,99039567	0,96294695	0,9600461	0,9760
32	512	relu	rmsprop	0,99135494	0,991259	0,9618442	0,9587705	0,9758
256	512	relu	rmsprop	0,9900959	0,98919666	0,9606803	0,95757425	0,9744
32	256	relu	rmsprop	0,98709524	0,986915	0,9616008	0,95892894	0,9736
128	512	relu	rmsprop	0,9884785	0,98834586	0,95814633	0,9548097	0,9724
32	128	relu	rmsprop	0,9872662	0,9868825	0,95559824	0,95183223	0,9704
256	256	relu	rmsprop	0,9905734	0,9905734	0,9509028	0,9470265	0,9698
64	128	relu	rmsprop	0,9896091	0,98959714	0,95202535	0,947657	0,9697
64	512	relu	rmsprop	0,9893765	0,9893525	0,95193136	0,9479144	0,9696
128	128	relu	rmsprop	0,9873956	0,9873596	0,92632926	0,92039603	0,9554
256	128	relu	rmsprop	0,9802998	0,9792326	0,91053396	0,90138716	0,9429

Table 1.11 – Résultats des tests pour un encodage sans étiquetage morphosyntaxique avec des cellules LSTM avec découpage Apprentissage : 75%, Validation : 10%, Test : 25%.

Nombre de neurones	Unités LSTM	Activation	Apprentissage	Précision Intention	Rappel Intention	Précision Entités de domaine	Rappel Entités de domaine	F-Mesure moyenne
256	256	relu	rmsprop	0,99003595	0,990012	0,96583736	0,96263885	0,9771
64	512	relu	rmsprop	0,9871703	0,9871223	0,9650179	0,9625874	0,9755
32	128	relu	rmsprop	0,98888487	0,98869306	0,9625747	0,9600506	0,9750
128	512	relu	rmsprop	0,98804444	0,98790026	0,9615633	0,9587429	0,9741
64	128	relu	rmsprop	0,9868231	0,98663056	0,9627016	0,95984924	0,9740
32	512	relu	rmsprop	0,9861543	0,98460525	0,96218276	0,95968837	0,9732
256	512	relu	rmsprop	0,98173183	0,98168373	0,96553797	0,96298146	0,9730
32	256	relu	rmsprop	0,98651797	0,9864697	0,96105814	0,95713913	0,9728
256	128	relu	rmsprop	0,9919135	0,9918654	0,95364505	0,95015824	0,9719
128	256	relu	rmsprop	0,9883518	0,98701894	0,9547271	0,95164615	0,9704
128	128	relu	rmsprop	0,97793764	0,9778777	0,9609247	0,95799255	0,9687
64	256	relu	rmsprop	0,98692375	0,98558605	0,8580563	0,8503752	0,9202

Table 1.12 – Résultats des tests pour un encodage sans étiquetage morphosyntaxique avec des cellules BiLSTM avec découpage Apprentissage : 75%, Validation : 10%, Test : 25%.

Les tableaux 1.11 et 1.12 démontrent que la taille des données d'apprentissage poussent vers de meilleurs résultats. Cela reste conforme à notre intuition théorique et encourage encore plus le développement d'un corpus plus volumineux pour possiblement de meilleurs résultats.

Pour mieux visualiser les différence de qualité de prédictions des différent modèles, la figure 1.6 ci dessous est proposée.

Figure 1.6 – Graphe comparatif selon les proportions et selon les paramètres

Nous pouvons remarquer l'impacte de trois facteurs :

- La taille de l'ensemble d'apprentissage : Systématiquement, le score F-Mesure Moyenne augmente avec l'augmentation du volume de données d'apprentissage. Cela laisse présager qu'avec plus de données le modèle pourrait mieux généraliser. Cela éviterait de biaiser le modèle vers un type de données en particulier.
- L'utilisation du contexte (LSTM contre BiLSTM) : De manière intuitive, le modèle donne de meilleur résultat lorsque l'information du contexte lui est accessible.
- L'utilisation de l'étiquetage morphosyntaxique : Pour finir, l'ajout de l'information sur la syntaxe de la requête semble aider le modèle à construire une meilleure représentation interne de la requête. Il ne voit pas un mot seulement à un instant t, mais plutôt la paire (mot,rôle du mot dans la phrase). Cet ajout est conforme à notre explication théorique dans la section ??

1.5 Ontologie et manipulation du graphe d'état

Les ontologies déjà présentées dans les sections ?? et ?? ont été créées en utilisant Protégé. Elles ont été ensuite exportées en format Turtle ⁵ afin de les exploiter dans la suite de ce travail en utilisant la bibliothèque RDFLib de Python.

Les nœuds et les relations du graphe ont des identifiants entiers pour faciliter leur utilisation avec les réseaux de neurones. Une phase de transformation des URIs ⁶ en identifiants entiers s'avère nécessaire. L'ontologie comprend 61 nœuds et 13 relations. Contrairement

^{5.} Turtle est une syntaxe pour l'écriture des triplets d'un graphe de connaissance avec RDF

^{6.} Les URIs identifient de manière unique les ressources dans le web sémantique et sont également utilisés pour identifier les concepts et les relations dans les ontologies

au nombre de relations, le nombre de concepts augmente au cours du dialogue; de nouveaux nœuds sont introduits après chaque échange. Ceci nécessite de garder un ensemble d'identifiants non utilisés pour les associer pendant le dialogue. Le tableau suivant résume l'association des identifiants aux nœuds et relations des graphes.

Ressource	Intervalles d'identifiants
Nœuds de l'ontologie	[1-61]
Relations de l'ontologie	[1-13]
Nœuds créés pendant un dialogue	[62-256]

Table 1.13 - Tableau des identifiants

1.6 L'agent de dialogue

Nous avons proposé dans la partie conception ?? deux architectures pour entraîner l'agent de dialogue. La première se compose de deux parties, un module pour encoder le graphe d'état et un autre pour décider l'action à prendre. Chacun est entraîné séparément. Les deux modules étant des réseaux de neurones, nous avons pensé à une deuxième architecture en les connectant pendant la phase d'apprentissage. Cette connexion permet à l'encodeur de graphe de choisir les parties du dialogue, représentées par le graphe d'état, à mémoriser afin de mieux estimer la fonction de récompense.

1.6.1 Encodeur de graphe

Dans la première méthode, l'entraînement de l'encodeur se fait avec une architecture encodeur-décodeur en passant les triplets du graphes comme entrées et sorties de cette architecture.

1.6.1.1 Implémentation

Le réseau de neurones a été implémenté en utilisant la bibliothèque Keras de Python. Nous avons utilisé des cellules GRUs (Gated Reccurent Units [15]) comme unités récurrentes pour l'encodeur et le décodeur vu leur efficacité comparable aux LSTMs tout en utilisant un seul vecteur d'état, ce qui les rend moins exigeants en mémoire. Comme notre tâche consiste à encoder un graphe dans un vecteur, la taille de ce dernier est très importante. Intuitivement, plus cette taille est grande plus le nombre de triplets qu'on peut y encoder est grand. D'où, l'intérêt des cellules GRUs qui permettent d'utiliser de plus grands vecteurs d'état en moins d'espace mémoire que les LSTMs.

La génération aléatoire des graphes de taille t triplets se fait en suivant les étapes suivantes :

• choisir un nombre de nœuds nn aléatoire entre 2 et t+1.

- choisir un nombre d'arcs na aléatoire entre 1 et nn-1.
- tirer nn identifiants de nœuds et na identifiants d'arcs aléatoirement de l'ensemble des identifiants possibles.
- créer les triplets en tirant pour chaque triplet deux nœuds et un arc aléatoirement des ensembles résultats de l'étape précédente.

Pendant l'apprentissage, le générateur choisit une taille pour le graphe inférieure à une taille maximale et crée un graphe en suivant les étapes sus-citées. Ce dernier est passé à l'encodeur-décodeur comme entrée et sortie désirée.

1.6.1.2 Résultats et discussion

Pour estimer la capacité de l'encodeur du graphe, nous avons varié la taille maximale du graphe ainsi que le vecteur d'état du GRU. Les résultats sont présentés dans le figure suivante.

Figure 1.7 – Variation de la précision en fonction de la taille maximale du graphe et la taille du vecteur d'état

Nous remarquons évidemment que la précision diminue avec l'augmentation de la taille maximale du graphe. Cependant, l'augmentation de la taille du vecteur encodant le graphe n'améliore pas beaucoup les résultats. Ceci peut être dû à la nature combinatoire du problème. En effet, la taille du graphe augmente exponentiellement en fonction du nombre de

triplets. Soit nb et t le nombre de triplets possibles et la fonction correspondant la taille du graphe avec le nombre de graphes possibles. t est définie par la fonction de récurrence suivante :

$$t(1) = nb$$

$$t(n+1) = t(n) \times nb$$

La première équation montre que le nombre de graphes possibles est égale au nombre de triplets possibles lorsque le graphe se compose d'un seul triplet. Tandis que la deuxième vient du fait que les graphes de taille n+1 peuvent être obtenus en combinant chaque graphe de taille n avec tous les triplets possibles. Le résultat des deux équations est :

$$t(n) = nb^n$$

Pour essayer de pallier à ce problème, le graphe d'état peut être divisé en plusieurs sousgraphes. De façon à ce que chaque sous-graphe soit assez petit pour être encodé par l'un des encodeurs déjà entraînés. Ainsi la concaténation de ces vecteurs peut être utilisée comme entrée pour le module suivant.

1.6.2 Apprentissage par renforcement

Nous allons à présent présenter les deux méthodes citées dans la section 1.6. La première consiste à utiliser le résultat de l'encodeur pour entraîner un réseau de neurones à estimer la récompense associée à chaque action possible. La deuxième, par contre, fait l'apprentissage des deux parties à la fois.

Nous utilisons un simulateur d'utilisateur pour communiquer avec l'agent de dialogue. Afin de simuler aussi les erreurs des modules précédents (reconnaissance automatique de la parole et compréhension du langage naturel), nous ajoutons un module qui insère du bruit dans les actions du simulateur. Sachant qu'une action utilisateur se compose de l'intention et des emplacements, ce dernier module prend donc deux valeurs de probabilités en paramètre; la probabilité de bruiter l'intention et celle de bruiter les emplacements. Dans la suite de ce travail nous allons varier ces deux valeurs ainsi que la taille du vecteur d'état afin d'arriver à un compromis entre la robustesse face aux erreurs, la réussite des tâches utilisateur et l'utilisation de la mémoire.

Nous allons évaluer les différents résultats en comparant leur taux de succès qui est donné par le rapport entre le nombre de fois où l'agent arrive au but sur le nombre total d'essais. Un succès nécessite d'arriver au but dans un nombre d'échanges limite que nous avons estimé comme suit :

$$limite = nb_{diff} \times 4 \times (1 + (pb_i + pb_e) \times 2)$$

• limite : le nombre d'échanges maximal.

- nb_{diff} : le nombre de fichiers dans l'arborescence de départ en plus ou en moins par rapport à l'arborescence but.
- pb_i : la probabilité d'erreurs dans l'intention de l'utilisateur.
- pb_e : la probabilité d'erreurs dans les emplacements de l'action.

La première partie de l'équation, $nb_{diff} \times 4$, détermine une approximation du nombre d'actions nécessaire afin d'arriver au but; nous avons estimé qu'il faut un maximum de 4 échanges pour ajouter ou supprimer un fichier. La deuxième partie permet de prendre en compte les erreurs du simulateur. Sachant que le nombre moyen d'actions erronées en n échanges est égal à $n \times (pb_i + pb_e)$, nous avons donc ajouté deux fois ce nombre. Ceci permet en premier lieu de ne pas compter les actions erronées dans la limite des échanges possibles, ainsi que d'ajouter des actions afin que l'agent puisse se retrouver dans la conversation après une erreur du simulateur.

1.6.2.1 Apprentissage avec DQN déconnecté

Dans cette partie, nous utilisons un des encodeurs déjà entraînés dans la partie précédente. Nous avons donc choisi d'utiliser l'encodeur de taille 300 qui a été entraîné avec des graphes de taille maximale de 20. Nous avons varié le nombre de vecteurs utilisés ainsi que les probabilités d'erreurs du simulateur. Les résultats sont présentés dans le tableau 1.14.

Nombre de vecteurs	probabilité pb _i	probabilité pb _e	taux de réussite maximal
4	0.25	0.3	0.25
4	0.05	0.2	0.59
4	0.01	0.1	0.69
4	0	0	0.61
5	0.25	0.3	0.27
5	0.05	0.2	0.55
5	0.01	0.1	0.61
5	0	0	0.72
6	0.25	0.3	0.28
6	0.05	0.2	0.63
6	0.01	0.1	0.69
6	0	0	0.7

Table 1.14 – Taux de réussite en fonction des probabilités d'erreurs et du nombre de vecteurs d'état. Avec les probabilités pb_i et pb_e : les probabilités d'erreurs sur l'intention et les emplacements respectivement.

Le tableau 1.14 nous permet de conclure ce qui suit :

• Évidemment avec moins de probabilités d'erreurs, le réseau arrive à mieux reconnaître les motifs dans le vecteur d'état et leurs relations avec les récompenses du simulateur. Cependant, l'augmentation de la taille du vecteur n'améliore que légèrement les résultats; en calculons la moyenne des taux de réussite pour chaque nombre de vecteurs, les résultats sont comme suit : 53.4% de taux de réussite pour quatre vecteurs, 53.75% pour cinq vecteurs et 57.5% pour six vecteurs.

- Le meilleur résultat a été obtenu en utilisant quatre vecteurs et sans erreurs avec un taux de réussite de **72%**. En pratique, ce modèle ne s'adapte pas aux erreurs des modules précédents. Par conséquent, il se perd lorsqu'une erreur se produit et il n'arrive pas à se resituer dans la conversation.
- Avec des probabilités d'erreurs très élevées, le réseau n'arrive pas à apprendre et ne dépasse pas 28% de taux de réussite.
- Les résultats les plus prometteurs dans ce cas sont celles qui sont entraînées avec des probabilités d'erreurs proches de la réalité avec des taux de réussite acceptables.
 Dans ce cas, nous avons obtenu un taux de réussite de 69% avec des probabilités d'erreurs de 1% et 10% sur les intentions et les emplacements respectivement.

1.6.2.2 Apprentissage avec DQN connecté

Connecter le DQN avec l'encodeur devrait permettre de réduire la taille du vecteur d'état nécessaire. Comme pour la partie précédente, nous avons varié la taille du vecteur d'état ainsi que les probabilités des erreurs pour pouvoir par la suite comparer les deux approches proposées.

Nombre de vecteurs	probabilité pb _i	probabilité pb _e	taux de réussite maximal
50	0.25	0.3	0.69
50	0.05	0.2	0.77
50	0.01	0.1	0.80
50	0	0	0.87
100	0.25	0.3	0.59
100	0.05	0.2	0.81
100	0.01	0.1	0.84
100	0	0	0.89
150	0.25	0.3	0.58
150	0.05	0.2	0.82
150	0.01	0.1	0.80
150	0	0	0.93
200	0.25	0.3	0.59
200	0.05	0.2	0.82
200	0.01	0.1	0.85
200	0	0	0.86

Table 1.15 – Taux de réussite en fonction des probabilités d'erreurs et de la taille du vecteur d'état. Avec les probabilités pb_i et pb_e : les probabilités d'erreurs sur l'intention et les emplacements respectivement.

- Comme pour la méthode précédente, l'augmentation des probabilités d'erreurs diminue le taux de réussite en général.
- Le meilleur taux de réussite est toujours obtenu en faisant un apprentissage sans erreurs ce qui a donné 93% de réussite.

- Pour des probabilités d'erreurs élevées, le taux de réussite diminue considérablement par rapport aux autres valeurs de probabilités.
- Le réseau arrive à reconnaître les motifs encodés aussi bien pour de petites tailles du vecteur d'état que pour de grandes tailles. Cette méthode permet effectivement de réduire la taille du vecteur encodant le graphe d'état par rapport à son prédécesseur.

1.6.2.3 Comparaison des approches et discussion

En comparant les deux méthodes, apprentissage avec DQN déconnecté et apprentissage avec DQN connecté, il est évident que la deuxième méthode est beaucoup plus efficace. Dans cette partie nous allons donner de potentielle explications aux résultats trouvés en analysant les forces et faiblesses de chaque méthode. Nous allons analyser les méthodes par rapport à trois aspects : le taux de réussite, la vitesse d'apprentissage et la courbe d'apprentissage.

1.6.2.4 Taux de réussite

Il est clair que connecter l'encodeur avec le réseau DQN a donné de meilleurs résultats. Ceci peut être dû aux facteurs suivants :

- La difficulté de comprendre les motifs encodés séparément : En effet, la deuxième méthode permet au réseau de neurones d'apprendre à générer des motifs qui correspondent aux poids du réseau DQN.
- Deux états de dialogue lointains peuvent être encodés dans des vecteurs très proches en utilisant un encodeur séparé. Par exemple, il se peut que deux graphes soient similaires sauf pour un nœud d'action qui est dans un graphe de type **Create_node** et dans l'autre graphe **Delete_node**. Dans ce cas, si l'encodeur les encode dans des vecteurs proches, le DQN aura des difficultés à distinguer les deux états. Par contre, en connectant l'encodeur avec le DQN, il peut observer les récompenses pour avoir l'information que certains nœuds sont plus importants que d'autres, les nœuds d'action par exemple, et qu'ils peuvent changer complètement l'état du vecteur.
- Les erreurs provenant de l'encodeur : bien que la précision de l'encodeur obtenue était de **99%**, en empilant 6 vecteurs encodés avec le même taux d'erreurs pour chacun et sachant que la probabilité d'erreur dans un vecteur est indépendante des autres, cette précision diminue à **96%**.

1.6.2.5 Vitesse d'apprentissage

Nous avons comparé les vitesses d'apprentissage des deux approches. En utilisant le réseau DQN séparé, ce dernier apprend avec une moyenne de **1013.15 instances/seconde**. De l'autre côté, le réseau connecté ne fait que **197.61 instances/seconde**. La raison derrière la lenteur de la deuxième approche revient à la nécéssité de refaire l'encodage de tout le graphe d'état de l'instance sauvegardée pendant les échanges avec le simulateur. Tandis que dans la deuxième approche, on ne sauvegarde que le vecteur déjà encodé.

Les temps des échanges avec le simulateur des deux approches sont proches puisqu'ils se comportent de la même manière dans ce cas. Les deux méthodes n'encodent que les nouveaux triplets arrivant dans le vecteur d'état précédent.

1.6.2.6 Courbe d'apprentissage

Enfin, nous comparons à présent les courbes d'apprentissage des deux méthodes. Cellesci montrent le taux de réussite par rapport au nombre d'épisodes ⁷. La figure 1.8 contient quatre courbes : deux courbes pour chaque méthode, avec et sans erreurs.

Figure 1.8 – Les courbes d'apprentissage des deux méthodes proposées avec et sans erreurs du simulateur d'utilisateur

Nous remarquons que la deuxième méthode arrive beaucoup plus rapidement à comprendre la fonction de récompense. Il s'avère donc que déconnecter le DQN de l'encodeur rend effectivement la tâche de trouver la relation entre les motifs des vecteurs d'états et les récompenses plus difficile.

L'apprentissage peut être amélioré dans les deux cas, et surtout en ce qui concerne le premier, en utilisant un meilleur encodage des nœuds et des arcs du graphe. En effet, les nœuds sont actuellement encodés avec des identifiants entiers seulement, perdant ainsi les riches connaissances sémantiques qu'on peut extraire des relations du graphe. Un

^{7.} Un épisode est un ensemble d'échanges agent-simulateur qui aboutit à un succès ou un échec

meilleur encodage serait d'utiliser des méthodes d'apprentissage semi-supervisé qui permettraient de donner aux nœuds proches un encodage similaire. Cette méthode permet d'éviter quelques problèmes que nous avons cités dans 1.6.2.4, entre autres le problème d'encoder deux états lointains dans des vecteurs proches.

1.7 Application PCS2

L'application PCS2 relie les modules que nous avons implémentés dans un assistant qui aide à manipuler les fichiers de l'ordinateur avec la voix. Le schéma 1.9 montre les différentes parties que comporte l'application et les communications entre elles.

Figure 1.9 – Schéma général de l'application PCS2

L'application contient principalement deux parties : une partie frontend, avec laquelle l'utilisateur interagit, et une partie backend qui contient tous les modules que nous avons traités au cours de ce travail. Cette dernière partie se trouve dans un serveur qui répond aux requêtes de l'utilisateur. Les requêtes de l'utilisateur contiennent les données audio collectées par l'interface ainsi que les données du système sur lesquelles l'assistant peut agir. Quant-à la réponse du backend, elle est sous forme d'une action qui peut être exécutée par le côté client de l'application. Nous n'avons cependant pas encore traité les cas de permissions et les limites de ce que peut manipuler l'assistant. Néanmoins, nous avons limité l'espace des actions de l'assistant pour qu'il ne puisse agir que sur une arborescence de fichier test.

1.7.1 Backend

Pour implémenter le backend, nous avons utilisé le framework Flask qui permet d'écrire en Python le côté serveur d'une application. Les communications client-serveur de notre application se font comme suit :

- Au lancement de l'application du côté client, celle-ci envoie une requête de début contenant l'état du système, dans notre cas une arborescence de fichiers.
- Le backend lui répond avec un token qui sera l'identifiant de cet utilisateur.
- Lorsque l'utilisateur parle à l'assistant, une requête est envoyée contenant son enregistrement audio. Alternativement, l'utilisateur peut introduire directement du texte qui sera envoyé dans la requête.
- Le backend reçoit le contenu de la requête. S'il s'agit d'un enregistrement audio, il le fait passer par le module de reconnaissance de la parole pour le convertir en texte.
- Le texte passe ensuite par le module de compréhension du langage qui est directement connecté avec le gestionnaire de dialogue. Ce dernier reçoit l'action résultat du module précédent et décide quelle action prendre selon l'état du système de l'utilisateur en question.
- L'action de l'assistant est transformée en langage naturel avant qu'elle soit envoyée à l'utilisateur.
- Le côté client de l'application reçoit le texte et l'action de l'assistant. Il exécute l'action et affiche le texte à l'utilisateur.

1.7.2 Frontend

Pour la réalisation de l'interface de l'application, nous avons opté pour une interface basée web (facilement exportable vers Desktop). Pour cela nous avons utilisé le framework VueJS augmenté par le plugin Vuetify. le résultat est une interface épurée et qui se veut simple et légère. L'utilisation d'un framework basé web permet de facilement créer des boucles d'éventements dont l'état interne est géré entièrement par le navigateur et le moteur VueJS.

Figure 1.10 - Interface principale de Bethano

L'application se compose de quatre parties disposées sur une seule page web dynamiquement mise à jour au fur et à mesure du dialogue :

• Champ de saisie : C'est une petite surface qui permet à l'utilisateur de communiquer avec le système. Il lui ai possible bien entendu d'utiliser du texte ou bien de cliquer sur le bouton Microphone à gauche pour lancer des commandes vocales. Pour l'instant, c'est à l'utilisateur d'arrêter l'enregistrement de la commande ou bien d'attendre une période limite fixée à 7 secondes. Le bouton de volume permet d'activer ou non la réponse vocale du système (extensions de synthèse vocale). Le bouton tout à droite est réservé au mode Développeur pour analyser l'interaction entre le système et l'utilisateur.

Figure 1.11 - Champ de saisie de l'application

• Arborescence virtuelle : C'est une petite fenêtre pour faciliter à l'utilisateur la mémorisation de l'environnement d'interaction. Cette fenêtre est dynamiquement mise à jour à travers le déroulement du dialogue et la manipulation des fichiers/répertoires.

Figure 1.12 – Fenêtre d'affichage de l'arborescence virtuelle

• Champ de dialogue : C'est là que vont résider toutes les informations sur le dialogue tout au long du cycle de vie de l'application. Il est mis à jour à chaque échange avec les messages échangés par l'utilisateur et l'assistant Bethano. Il permet ainsi de garder trace de tous les échanges effectués et pouvoir à tout moment vérifier ou réutiliser des messages.

Figure 1.13 – Fenêtre de dialogue avec l'assistant

• Fenêtre de Débogage: C'est une option réservée aux développeurs pour faciliter les tests durant le développement. Toute réponse du serveur peut y être affichée pour peu qu'elle soit au format JSON sous la forme d'une réponse à une requête RESTFul. Pour le moment il y est affiché l'intention de l'utilisateur avec son degré de confiance généré par Bethano, ainsi que les arguments de la requête (nom, type, positions ...).

Figure 1.14 - Fenêtre de Débogage

1.8 Conclusion

Au terme de ce chapitre nous avons pu apprécier les fruits d'un long travail de conception. L'implémentation de certaines fonctionnalités a permis de mieux apprécier la complexité de la tâche qu'est le développement de Bethano. Chaque module a été soumis à une série de tests pour déterminer ses forces, faiblesses et limites. Une rapide analyse stipulant que pour un manque de données flagrant et un manque de ressources frustrant, Bethano a pu effectuer des petites tâches rudimentaires de manipulation du bureau sur un ordinateur et délivrer une mini-expérience de ce que peut être un véritable assistant virtuel intelligent.

Table des figures

1.1	Caractéristiques des machines	2
1.2	Langages de programmation utilisés	2
1.3	Bibliothèques et librairies les plus utilisées	3
1.4	Graphe récapitulatif des résultats pour le a reconnaissance automatique de la	
	parole	8
1.5	Schéma de découpage des données pour l'apprentissage du modèle de com-	
	préhension du langage naturel	9
1.6	Graphe comparatif selon les proportions et selon les paramètres	9
1.7	Variation de la précision en fonction de la taille maximale du graphe et la taille	
	du vecteur d'état	:1
1.8	Les courbes d'apprentissage des deux méthodes proposées avec et sans er-	
	reurs du simulateur d'utilisateur	6
1.9	Schéma général de l'application PCS2	:7
1.10	OInterface principale de Bethano	8
	l Champ de saisie de l'application	
	2 Fenêtre d'affichage de l'arborescence virtuelle	
	3 Fenêtre de dialogue avec l'assistant	
1.14	1Fenêtre de Débogage	0

Bibliographie

- [1] mozilla/deepspeech : A tensorflow implementation of baidu's deepspeech architecture. https://github.com/mozilla/DeepSpeech. (Consulté le 10/06/2019).
- [2] Programmation javascript/introduction wikilivres. https://fr.wikibooks.org/wiki/Programmation_JavaScript/Introduction. (Consulté le 10/06/2019).
- [3] Programmation python/introduction wikilivres. https://fr.wikibooks.org/wiki/ Programmation_Python/Introduction. (Consulté le 10/06/2019).
- [4] Fawaz Al-Anzi and Dia AbuZeina. Literature survey of arabic speech recognition. pages 1–6, 03 2018.
- [5] Gabor Angeli, Christopher D. Manning, and Daniel Jurafsky. Parsing time: Learning to interpret time expressions. In *Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, NAACL HLT '12, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.
- [6] K. J. Åström. Optimal control of Markov Processes with incomplete state information. *Journal of Mathematical Analysis and Applications*, 10:174–205, January 1965.
- [7] H.B. Barlow. Unsupervised learning. Neural Computation, 1(3):295–311, 1989.
- [8] John A. Bateman. Enabling technology for multilingual natural language generation: The kpml development environment. *Nat. Lang. Eng.*, 3(1), March 1997.
- [9] Anja Belz. Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models. *Nat. Lang. Eng.*, 14(4), October 2008.
- [10] Dimitri Bertsekas. Dynamic Programming & Optimal Control, Vol II: Approximate Dynamic Programming. Athena Scientific, 01 2012.
- [11] Julien Bloit and Xavier Rodet. Short-time viterbi for online hmm decoding: Evaluation on a real-time phone recognition task. pages 2121 2124, 05 2008.
- [12] Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefèvre, and Olivier Pietquin. User simulation in dialogue systems using inverse reinforcement learning. In INTER-SPEECH, page 10251028, 2011.
- [13] P. M. Chauhan and N. P. Desai. Mel frequency cepstral coefficients (mfcc) based speaker identification in noisy environment using wiener filter. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGC-CEE), pages 1–5, March 2014.

- [14] Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. A survey on dialogue systems: Recent advances and new frontiers. *SIGKDD Explor. Newsl.*, 19(2):25–35, November 2017.
- [15] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.
- [16] Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, KyungHyun Cho, and Yoshua Bengio. Attention-based models for speech recognition. *CoRR*, abs/1506.07503, 2015.
- [17] Heriberto Cuayáhuitl, Steve Renals, Oliver Lemon, and Hiroshi Shimodaira. Human-computer dialogue simulation using hidden markov models. *IEEE Workshop on Automatic Speech Recognition and Understanding*, 2005., pages 290–295, 2005.
- [18] li Deng, Geoffrey Hinton, and Brian Kingsbury. New types of deep neural network learning for speech recognition and related applications: An overview. pages 8599–8603, 10 2013.
- [19] Nina Dethlefs. Context-sensitive natural language generation: From knowledge-driven to data-driven techniques. *Language and Linguistics Compass*, 8, 03 2014.
- [20] Michael Elhadad and Jacques Robin. An overview of surge: a reusable comprehensive syntactic realization component. In *International Natural Language Generation Workshop*, 1996.
- [21] Dominic Espinosa, Michael White, and Dennis Mehay. Hypertagging: Supertagging for surface realization with ccg. In *ACL*, 2008.
- [22] Roger Evans, P. Piwek, and Lynne Cahill. What is nlg? In *Proceedings of the Second International Conference on Natural Language Generation*, 2002.
- [23] Thiago Castro Ferreira, Iacer Calixto, Sander Wubben, and Emiel Krahmer. Linguistic realisation as machine translation: Comparing different mt models for amr-to-text generation. In *INLG*, 2017.
- [24] G. D. Forney. The viterbi algorithm. *Proceedings of the IEEE*, 61(3):268–278, March 1973.
- [25] Albert Gatt and Emiel Krahmer. Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. *J. Artif. Int. Res.*, 61(1), January 2018.
- [26] Kallirroi Georgila, James Henderson, and Oliver Lemon. Learning user simulations for information state update dialogue systems. In *INTERSPEECH*, pages 893–896, 2005.
- [27] Zoubin Ghahramani. Hidden markov models. chapter An Introduction to Hidden Markov Models and Bayesian Networks, pages 9–42. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2002.

- [28] Wiqas Ghai and Navdeep Singh. Literature review on automatic speech recognition. *International Journal of Computer Applications*, 41(8):42–50, March 2012. Full text available.
- [29] R Glass and Michael Kyle Mccandless. Automatic acquisition of language models for speech recognition. 10 1994.
- [30] D Goddeau, Helen Meng, Joseph Polifroni, Stephanie Seneff, and S Busayapongchai. A form-based dialogue manager for spoken language applications. volume 2, pages 701 – 704, 11 1996.
- [31] Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung Chen. Slot-gated modeling for joint slot filling and intent prediction. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
- [32] Raghav Goyal, Marc Dymetman, and Eric Gaussier. Natural language generation through character-based rnns with finite-state prior knowledge. In *COLING*, pages 1083–1092, 2016.
- [33] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6645–6649, May 2013.
- [34] M. A. K. Halliday and Christian M. I. M. Matthiessen. *Introduction to Functional Grammar*. Hodder Arnold, London, 3 edition, 2004.
- [35] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. Deep speech: Scaling up end-to-end speech recognition. CoRR, abs/1412.5567, 2014.
- [36] James Henderson, Oliver Lemon, and Kallirroi Georgila. Hybrid reinforcement/supervised learning of dialogue policies from fixed data sets. *Comput. Linguist.*, 34(4):487–511, December 2008.
- [37] Matthew Henderson, Blaise Thomson, and Steve J. Young. Deep neural network approach for the dialog state tracking challenge. In SIGDIAL Conference, pages 467–471, 2013.
- [38] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem solutions. *Int. J. Uncertain. Fuzziness Knowl.-Based Syst.*, 6(2):107–116, April 1998.
- [39] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Comput.*, 9(8):1735–1780, November 1997.
- [40] Daniel Jurafsky and James H. Martin. Speech and Language Processing, 2nd Edition. Prentice Hall, 2008.
- [41] John G. Kemeny and J. Laurie Snell. Markov processes in learning theory. *Psychometrika*, 22(3):221–230, Sep 1957.

- [42] Sotiris Kotsiantis, I Zaharakis, and P Pintelas. Machine learning: A review of classification and combining techniques. Artificial Intelligence Review, 26:159–190, 11 2006.
- [43] Cyril Labbé and François Portet. Towards an abstractive opinion summarisation of multiple reviews in the tourism domain. *CEUR Workshop Proceedings*, 917, 01 2012.
- [44] Irene Langkilde-Geary. Forest-based statistical sentence generation. In ANLP, 2000.
- [45] Yann LeCun, Y Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521:436–44, 05 2015.
- [46] Cheongjae Lee, Sangkeun Jung, Kyungduk Kim, Donghyeon Lee, and Gary Geunbae Lee. Recent approaches to dialog management for spoken dialog systems. *JCSE*, 4:1–22, 2010.
- [47] Zachary Chase Lipton. A critical review of recurrent neural networks for sequence learning. *CoRR*, abs/1506.00019, 2015.
- [48] Bing Liu and Ian Lane. Attention-based recurrent neural network models for joint intent detection and slot filling. *CoRR*, abs/1609.01454, 2016.
- [49] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Recurrent neural network for text classification with multi-task learning. *CoRR*, abs/1605.05101, 2016.
- [50] Tom M Mitchell. The discipline of machine learning. 01 2006.
- [51] William C. Mann and Christian M. I. M. Matthiessen. Nigel: A systemic grammar for text generation. 1983.
- [52] Pierrick Milhorat, Stephan Schlögl, Gerard Chollet, Boudy , Anna Esposito, and G Pelosi. Building the next generation of personal digital assistants. 03 2014.
- [53] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. *Nature*, 518, 2015.
- [54] Fionn Murtagh. Multilayer perceptrons for classification and regression. *Neurocomputing*, 2(5-6):183–197, jul 1991.
- [55] Shreya Narang and Ms. Divya Gupta. Speech feature extraction techniques: A review. 2015.
- [56] Christopher Olah. Understanding lstm networks colah's blog. http://colah.github.io/posts/2015-08-Understanding-LSTMs/, Août 2015. (Accessed on 02/19/2019).
- [57] Douglas D. O'Shaughnessy. Linear predictive coding. IEEE Potentials, 7:29–32, 1988.
- [58] R. Rabiner and B. H. Juang. An introduction to hidden markov models. *IEEE ASSP Magazine*, 3:4–16, 1986.

- [59] Hajer Rahali, Zied Hajaiej, and Noureddine Ellouze. Robust features for speech recognition using temporal filtering technique in the presence of impulsive noise. *International Journal of Image, Graphics and Signal Processing*, 6:17–24, 10 2014.
- [60] Ehud Reiter and Robert Dale. Building applied natural language generation systems. *Natural Language Engineering*, 3(1), March 1997.
- [61] title = "A Markovian Decision Process Richard Bellman". *Indiana Univ. Math. J.", fjournal* = "Indiana University Mathematics Journal, 6:679–684, 1957.
- [62] Brian Roark, Murat Saraclar, and Michael Collins. Discriminative n-gram language modeling. *Comput. Speech Lang.*, 21(2), April 2007.
- [63] F. Rosenblatt. Perceptron simulation experiments (Project Para). 1959.
- [64] Jost Schatzmann, Blaise Thomson, Karl Weilhammer, Hui Ye, and Steve J. Young. Agenda-based user simulation for bootstrapping a pomdp dialogue system. In HLT-NAACL, 2007.
- [65] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. *Trans. Sig. Proc.*, 45(11), November 1997.
- [66] Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau. Building end-to-end dialogue systems using generative hierarchical neural network models. In *Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence*, AAAI, pages 3776–3783. AAAI Press, 2016.
- [67] B.Maind. Sonali. Research paper on basic of artificial neural network. page 1, 2014.
- [68] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and William B. Dolan. A neural network approach to context-sensitive generation of conversational responses. In *HLT-NAACL*, pages 196–205, 2015.
- [69] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015.
- [70] M. Theune, E. Klabbers, J. R. De Pijper, E. Krahmer, and J. Odijk. From data to speech: A general approach. *Natural Language Engineering*, 7(1), March 2001.
- [71] Marc Velay and Fabrice Daniel. Seq2seq and multi-task learning for joint intent and content extraction for domain specific interpreters. *CoRR*, abs/1808.00423:3–4, 2018.
- [72] Yu Wang, Yilin Shen, and Hongxia Jin. A bi-model based rnn semantic frame parsing model for intent detection and slot filling. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
- [73] Gellért Weisz, Pawex0142 Budzianowski, Pei hao Su, and Milica Gax0161ix0107. Sample efficient deep reinforcement learning for dialogue systems with large ac-

- tion spaces. *IEEE/ACM Transactions on Audio, Speech, and Language Processing,* 26:2083–2097, 2018.
- [74] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei hao Su, David Vandyke, and Steve J. Young. Semantically conditioned lstm-based natural language generation for spoken dialogue systems. In *EMNLP*, 2015.
- [75] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina Maria Rojas-Barahona, Pei hao Su, Stefan Ultes, David Vandyke, and Steve J. Young. A network-based end-to-end trainable task-oriented dialogue system. In *EACL*, pages 438–449, 2017.
- [76] J. D. Williams and S. Young. Scaling pomdps for spoken dialog management. *Trans. Audio, Speech and Lang. Proc.*, 15(7):2116–2129, September 2007.
- [77] Steve Young, Milica Gašić, Simon Keizer, François Mairesse, Jost Schatzmann, Blaise Thomson, and Kai Yu. The hidden information state model: A practical framework for pomdp-based spoken dialogue management. *Comput. Speech Lang.*, 24(2):150–174, April 2010.
- [78] Dong Yu and Li Deng. Automatic Speech Recognition. Springer London, 2015.
- [79] Jin Yu, Ehud Reiter, Jim Hunter, and Chris Mellish. Choosing the content of textual summaries of large time-series data sets. *Natural Language Engineering*, 13(1), March 2007.