BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI (RAJASTHAN) First Semester 2008-2009

AAOC C321 Control Systems Quiz (Closed Book)

В

Date 20.11.2008

Total Time: 50 min

Max Marks: 40

NOTE: Questions 1 to 8 of are 1 mark each and Questions 9 to 24 are of 2 marks each.

Name	e: ID No: Sec. No.
Q.1	"Pointing finger towards an object" is an example of a Cloyed loop control system.
Q.2	System described by equation $\frac{d^2y(t)}{dt^2} + a_1^2t \frac{dy(t)}{dt} + a_2y(t) = u(t)$, where y is input and
	is output is a
Q.3	The Hydraulic system become sluggish at low temperatures (electrical/hydraulic)
Q.4	The Hydraulic system essentially requires the return lines (hydraulic/pneumatic)
Q.5	For a second order under damped system, the radial distance between a pole and the origin gives Natural frequency of oscillation.
Q.6	Open loop transfer function of unity feedback control system is given by $G(S) = \frac{K}{s(s+1)}$
	If the gain is increased to infinity, the damping ratio will tend to become
Q.7	As compared to derivative error controller, the Integral error controller is used to meet the <u>high</u> accuracy requirements.
Q.8	The corner frequencies of $G(s) = \frac{(s+1)}{s(1+0.5s)}$ are1 4 2 radian.
Q.9	The addition of only a zero in the closed loop transfer function results in
Q.10	For a unity negative feedback system, forward path gain is $\frac{30K}{s(s+5)}$. The magnitude of
	sensitivity $S_{\mathcal{K}}^T$ of the system, in case of open loop and closed loop to changes in k
	(K = 0.2) at ω = 0.5 rad/s is and o.4 respectively.
Q.11	A 4-stack stepper motor has 45 numbers of teeth, assuming that stack rotor teet aligns with its stator, the angular displacement between stacks of stator teeth is 2^{b}
Q.12	The output of a system with transfer function $\frac{5}{(s+2)}$ for an input e^t in time domain is $5 \left(e^t - e^{-2t} \right)$.

Q.13 The open loop poles of a unity negative feedback control system are at 0 and-1, when

there is an increase of 22.5% in its natural frequency, the steady state error to unit ramp input is decreased effectively by 33.36%.

