МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Параллельные алгоритмы»

Тема: Знакомство с программированием гетерогенных систем в стандарте Open CL.

Студент гр. 0304	 Алексеев Р.В
Преподаватель	 Сергеева Е.И

Санкт-Петербург 2023

Цель работы.

Изучить программирование гетерогенных систем в стандарте Open CL. Реализовать программу рассчитывающую фрактал Мандельброта при помощи Open CL и визуализирующую результат.

Задание.

- Реализовать расчёт фрактала Мандельброта на OpenCL.
- Визуализировать результат.
- Произвести оценку производительности.

Выполнение работы.

Расчет фрактала Мандельброта осуществляется двумя способами: последовательно — на CPU, и параллельно — на GPU при помощи OpenCL. Координаты множества вычисляются по формулам: $x_{n+1} = x_n^2 - y_n^2 + x_0$ и $y_{n+1} = 2 x_n y_n + y_0$. Цвет зависит от количества итераций, которые необходимы, чтобы выяснить, что точка не принадлежит множеству: черный — принадлежит, различные оттенки синего — не принадлежит.

Для визуализации фрактала и задания параметров реализован графический интерфейс при помощи Qt. Изображение фрактала Мандельброта представлено на рис. 1.

Рисунок 1 — Интерфейс и множество Мандельброта.

Для расчета фрактала на CPU создан класс Mandelbrot, который последовательно проводит расчеты для каждого пикселя изображения.

Для расчета на GPU создан класс Mandelbrot_CL, который наследуется от Mandelbrot. В методах класса определяются устройства, контекст, очередь, буфер, программа и kernel для выполнения расчетов. В файле mandelbrot.cl определена функция для каждого work-item и точка входа для kernel.

Были произведены замеры временных затрат для расчета фрактала Мандельброта на CPU и на GPU в завимости от количества итераций при равных размерах, результаты представлены в таблице 1.

Таблица 1 — Зависимость времени от количества итераций.

Кол-во итераций	Время на CPU, мс	Время на GPU, мс
128	107	102
512	367	105

1024	755	111
4096	2813	239
16384	11194	743

По таблице 1 видно, что благодаря выполнению расчетов параллельно на GPU, временные затраты меньше и возрастают линейно при возрастании количества итераций. При большом количестве итераций время вычислений на CPU и на GPU отличается на порядки.

Бали проведены замеры времени расчета фрактала при фиксированном количестве итераций и при различных размерах. Результаты представлены в таблице 2.

Таблица 2 — Зависимость времени от размеров.

Размеры	Время на СР U, мс	Время на GPU, мс
500x400	87	88
1000x800	353	105
2000x1600	1324	168
4000x3200	5182	408
8000x6400	20470	1330

Временные затраты для последовательных вычислений на CPU возрастают линейно. Время вычислений на GPU расчет медленней, т. к. расчеты выполняются параллельно, тем самым количество новых пикселей равномерно делится между work-item.

Выводы.

Было изучено программирование гетерогенных систем на OpenCL.

Была реализована программа, рассчитывающая множество Мандельброта последовательно на CPU и параллельно на GPU при помощи OpenCL. Программа визуализирует получившееся множество в интерфейсе.

Были проведены замеры времени в зависимости от количества итераций и в зависимости от размеров. Время, требуемое для вычислений на GPU меньше, чем на CPU, т. к. вычисления производятся параллельно.