

Facultad de Informática de Madrid LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD 2ª EVALUACIÓN (02 de junio de 2014)

Apellidos:

SOLUCIÓN

Nombre:

Ejercicio 1:

Sea la gramática $G = \{ \Sigma_T, \Sigma_N, S, \mathcal{P} \}$ donde $\Sigma_T = \{ a, b \}, \Sigma_N = \{ S, A \}, S = axioma y cuyas producciones <math>\mathcal{P}$ son:

S::=aAb

 $A::=aAb \mid Ab \mid b$

- a) Obtener, utilizando el método 2, un autómata a pila por vaciado de pila (AP) (6 puntos).
- b) Comprobar el reconocimiento en el AP de las palabras ab y aabbbb (2 puntos) y su generación en la gramática G (1 punto).
- c) ¿Qué lenguaje reconoce el AP y genera la gramática G? (1 punto).

30 minutos

a) Obtención del autómata a pila por vaciado de pila AP (con método 2)

Construir un AP que acepte (reconozca) el lenguaje generado por una gramática: $G = \{ \Sigma_T, \Sigma_N, \mathcal{P}, S \}$. La gramática no ha de estar necesariamente en FNG.

 $AP = \{ \Sigma_T, \{ \Sigma_N \cup \Sigma_T \}, \{ q \}, S, q, f, \emptyset \}$

 Σ_T = Alfabeto de entrada (Σ)

 $\{\Sigma_N \cup \Sigma_T\} = \text{Alfabeto de pila }(\Gamma)$

{ g } = Q (Conjunto de estados del AP)

S = Símbolo de inicio de pila

q = estado inicial del AP

f = Función de transición (movimientos)

 $F = \emptyset$ (Conjunto de estados finales)

ALGORITMO (para obtener los movimientos del AP):

1. $X \in \{\Sigma_N \cup \Sigma_T\}, A \in \Sigma_N$

 \forall A : : = X producción de la gramática,

en AP se hace: $(q X) \in f(q \lambda A)$

2. $\forall a \in \Sigma_T$

entonces, $(q \lambda) \in f(q a a)$

Se va a construir un AP que acepte el mismo lenguaje generado por la gramática utilizando el método 2:

$$AP = \{ \{ a, b \}, \{ a, b, S, A \}, \{ q \}, S, q, f, \emptyset \} \}$$

Aplicamos el ALGORITMO para obtener los movimientos del AP: la gramática NO es necesario que esté en FNG.

 $f(q \lambda S) = (q aAb)$

 $f(q \lambda A) = (q aAb) (q Ab) (q b)$

 $f(q a a) = (q \lambda)$

 $f(qbb) = (q\lambda)$

b) Reconocimiento en AP de las palabras ab y aabbbb y su generación en G.

AP (palabra ab): (q ab S) ⊢ (q ab aAb) ⊢ (q b Ab) ⊢ (q b aAbb) ⊢ NO ACEPTA

 $(\texttt{q ab S}) \vdash (\texttt{q ab aAb}) \vdash (\texttt{q b Ab}) \vdash (\texttt{q b Abb}) \vdash (\texttt{q b bbb}) \vdash (\texttt{q \lambda bb}) \vdash \mathsf{NOACEPTA}$

 $(q ab S) \vdash (q ab aAb) \vdash (q b Ab) \vdash (q b bb) \vdash (q \lambda b) \vdash NO ACEPTA$

 $AP (palabra \ aabbbb) : \ (\ q \ aabbbb \ S\) \vdash \ (\ q \ aabbbb \ aAb\) \vdash \ (\ q \ abbbb \ Ab\) \vdash \ (\ q \ abbbb \ Abb\) \vdash \ (\ q \ abbbb \ Abb\) \vdash \ (\ q \ abbbb \ aAbb\) \vdash \ (\ q \ abbbb \ Abb\) \vdash \ (\ q \ abbbb \ aAbb\) \vdash \ (\ q \ abbbbb\ aAbb\) \vdash \ (\ q \ abbbb\ aAbb\) \vdash \ (\ q \ abbbb\ aAbb\) \vdash \ (\ q \ abbbb\ aAbb\) \vdash \ (\ q \ abbbbb\ aAbbbbb\ aAbb\) \vdash \ (\ q \ abbbbbb\ aAbb\) \vdash \ (\ q \ abbbbbb\ aAb$

 \vdash (q bbbb Abbb) \vdash (q bbbb bbbb) \vdash (q bbb bbb) \vdash (q bb bb) \vdash (q b b) \vdash (q λ λ) ACEPTA

G (palabra ab): $S \rightarrow aAb \rightarrow NO GENERA$

G (palabra aabbbb): $S \rightarrow aAb \rightarrow aaAbb \rightarrow aaAbbb \rightarrow aabbbb GENERA$

c) El lenguaje que reconoce el AP y genera la gramática G es:

$$L = \{ a^n b^m / m > n \ge 1 \}$$

Facultad de Informática de Madrid LENGUAJES FORMALES, AUTÓMATAS Y COMPUTABILIDAD 2ª EVALUACIÓN (4 de junio de 2014)

Apellidos:

SOLUCION

Nombre:

Ejercicio 2:

Sea la Máquina de Turing M definida según el siguiente grafo:

Y cuya configuración inicial es la siguiente:

Donde x e y son dos números enteros positivos codificados en unario. M inicialmente está en el estado q_0 leyendo el primer 1 de x.

a) ¿Qué función aritmética sobre las números x e y calcula M? Describir brevemente la respuesta y comprobar el funcionamiento con la siguiente entrada: (3 puntos)

b) Escribir (y describir brevemente) el contenido inicial de la cinta de una Máquina de Turing Universal cuando simula a la máquina M y ésta recibe como entrada la del apartado a). Utilicen la siguiente codificación binaria: (2 puntos)

$$q_0 \equiv 00; \ q_1 \equiv 01; \ q_2 \equiv 10$$

Desplazamiento a la izqda. I \equiv 1; Desplazamiento a la dcha. D \equiv 0

- c) Escribir (y describir brevemente) el contenido de la cinta de esa Máquina de Turing Universal tras simular el primer movimiento que realiza la máquina M con la entrada del apartado a). (3 puntos)
- d) Escribir (y describir brevemente) el contenido de la cinta de la Máquina de Turing Universal cuando termine de simular a la máquina M con la entrada del apartado a). (2 puntos)

NOTA: Todos los apartados se responderán en la carilla de atrás.

Continuación ejercicio 2. RESPUESTAS. SOLUCIONES
Apartado a) $x+y+2$
C.I #11#1# > > #11111# C.F.
Apartado b)
Oliolio#0101010## Séldague inicidme (fi.,#)=(fz,1,b) lee M.
Apartado c)) (es suficiente con escribir sólo la parte de la cinta que cambia)
El monte que se simula en l(fo,1)=(f,1,0) codicado en el repistro \$200000\$ Por tento: Donde esté el * se escribe 1. El control permenece en fo (00). El * se recdoca en la celos de la doca. El 1 que se sos escribe se Apartado d) 2 macenz en la oltima celos del Repistro inicial.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MTU pzez porque ninpon repistro comienza por 100 (fz,#) y 2 que M
en es levendo # re para. Todos los repistros han sido rechazados por el modulo localizador por lo que estan mascados con As y Bs. Le MTU para
en es levendo # re perz. Todos los repistros han sido rechazados por el módulo localizador por lo que están mascados con As y Bs. Le MTU pera buscando un 1 al comienzo del sipuiente repistro por examinar. Pero aparece la primera # por le derectro. Ahí para la MTU.