Chapter 1

Counting Sheep, Among Other Things

1.1 Learning to Count

The Addition Principle

Suppose there is a task, T, to be completed and there are numerous different methods, M_1, M_2, \ldots, M_k which can be used to complete T. If method M_1 can be accomplished in a_1 ways, method M_2 in a_2 ways,, and method M_k in a_k ways, and M_1, M_2, \ldots, M_k are mutually exclusive, then T can be compleated in $a_1 + a_2 + \cdots + a_k$ ways.

The Multiplication Principle

Suppose there is a task, T, to be completed, but now the task can be completed in stages. That is, T can be broken down into subtasks, t_1, t_2, \ldots, t_m so that T is accomplished only after all of the sub tasks have been completed. If t_1 can be done b_1 ways, t_2 in b_2 ways, , and t)m in b)m ways. Then T can be completed in $b_1 \cdot b_2 \cdot \cdots \cdot b_m$ ways.

1.2 Permutations

Definition 1.2.1. The notation n!, which we read as n factorial, is defined as $n! = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 3 \cdot 1 \cdot 1$.

Definition 1.2.2. An arrangment of n objects is called a permutation of the objects.

Definition 1.2.3. An arrangement of r distinct objects out of a collection of n distinct objects is called an r-permutation of the n objects.

Theorem 1.2.1. The number of r-permutations of n objects is $\frac{n!}{(n-r)!}$. This is often denoted P(n,r) or ${}_{n}P_{r}$.

1.3 Combinations

Definition 1.3.1. A collection of r objects chosen from n distinct objects without regard to the order of the objects is called an r-combination of the n objects.

Theorem 1.3.1. The number of r-combinations of n objects is $\frac{n!}{(n-r)! \cdot r!}$. This number is denoted C(n,r) or $\binom{n}{r}$.