TCR2_EL1, Extended Translation Control Register (EL1)

The TCR2 EL1 characteristics are:

Purpose

The control register for stage 1 of the EL1&0 translation regime.

Configuration

This register is present only when FEAT_TCR2 is implemented. Otherwise, direct accesses to TCR2 EL1 are undefined.

Attributes

TCR2 EL1 is a 64-bit register.

Field descriptions

63626160595857565554535251504948	47	46	45 44	43	42	41403938	37	36	35	34	33
			RES0								
RES0	DisCH1	DisCH(RES0	HAFT	PTTWI	RES0	D128	AIE	POE	0POI	PIE Pr
31302928272625242322212019181716	15	14	13 12	11	10	9876	5	4	3	2	1

Unless stated otherwise, all the bits in <u>TCR2_EL1</u>, when they have the value 1, are permitted to be cached in a TLB.

Bits [63:16]

Reserved, res0.

DisCH1, bit [15] When FEAT D128 is implemented and TCR2 EL1.D128 == 1:

Disable Contiguous Hint for Start Table for VARange 1.

DisCH1	Meaning
0b0	Contiguous Hint of Block or
	Page descriptors of the Start
	Table for VARange 1 are not
	affected by this field.

0b1	Contiguous Hint of Block or
	Page descriptors of the Start
	Table for VARange 1 are
	disabled.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

DisCH0, bit [14] When FEAT D128 is implemented and TCR2 EL1.D128 == 1:

Disable Contiguous Hint for Start Table for VARange 0.

DisCH0	Meaning
0b0	Contiguous Hint of Block or
0.50	Page descriptors of the Start
	Table for VARange 0 are not
	affected by this field.
0b1	Contiguous Hint of Block or
	Page descriptors of the Start
	Table for VARange 0 are
	disabled.

The reset behavior of this field is:

- On a Warm reset:
 - $^{\circ}$ When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [13:12]

Reserved, res0.

HAFT, bit [11] When FEAT HAFT is implemented:

Hardware managed Access Flag for Tables.

Enables the Hardware managed Access Flag for Tables.

HAFT	Meaning
0b0	Hardware managed Access Flag
	for Tables is disabled.
0b1	Hardware managed Access Flag
	for Tables is enabled.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PTTWI, bit [10] When FEAT_THE is implemented:

Permit Translation table walk Incoherence.

Permits RCWS instructions to have Reduced Coherence property.

PTTWI	Meaning
0b0	Write accesses generated by
	RCWS at EL1&0 do not have
	the Reduced Coherence
	property.
0b1	Write accesses generated by
	RCWS at EL1&0 have the
	Reduced Coherence property if
	HCRX_EL2.PTTWI is 1.

This bit is permitted to be built as a read-only bit with a fixed value of 0.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.

 Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [9:6]

Reserved, res0.

D128, bit [5] When FEAT D128 is implemented:

Enable 128-bit Page Table Descriptors.

Enables VMSAv9-128 translation system for the Stage 1 EL1&0 Translation Process.

D128	Meaning
0b0	Translation system follows
	VMSA-64 translation process.
0b1	Translation system follows
	VMSAv9-128 translation process.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - \circ Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AIE, bit [4]

When FEAT_AIE is implemented:

Enable Attribute Indexing Extension. Control for Attribute Indexing Extension for Stage 1 EL1&0 Translation Process.

AIE	Meaning
0b0	Attribute Indexing Extension Disabled.
0b1	Attribute Indexing Extension Enabled.

This field is res1 when TCR2 EL1.D128 is set.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

POE, bit [3] When FEAT_S1POE is implemented:

POE. Controls setting of permission overlay for EL1 accesses in stage 1 of the EL1&0 translation regime.

POE	Meaning
0b0	Permission overlay disabled for
	EL1 access in stage 1 of EL1&0
	translation regime.
0b1	Permission overlay enabled for
	EL1 access in stage 1 of EL1&0
	translation regime.

This bit is not permitted to be cached in a TLB.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

E0POE, bit [2] When FEAT_S1POE is implemented:

EL0 POE. controls setting of permission overlay in stage 1 of the EL1 translation regime.

EOPOE	Meaning	

0b0	Permission overlay disabled for
	EL0 access in stage 1 of EL1&0
	translation regime.
0b1	Permission overlay enabled for
	EL0 access in stage 1 of EL1&0
	translation regime.

This bit is not permitted to be cached in a TLB.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PIE, bit [1] When FEAT S1PIE is implemented:

Select Permission Model. Controls setting of indirect permission model in Stage 1 EL1 Translation Process.

PIE	Meaning
0b0	Direct permission model.
0b1	Indirect permission model.

This field is res1 when TCR2 EL1.D128 is set.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PnCH, bit [0] When FEAT THE is implemented:

Protected attribute enable. Indicates use of bit[52] of the stage 1 translation table entry.

PnCH	Meaning
0b0	Bit[52] of each stage 1
	translation table entry does not
	indicate protected attribute.
0b1	Bit[52] of each stage 1
	translation table entry indicates
	protected attribute.

This field is res0 when TCR2 EL1.D128 is set.

The reset behavior of this field is:

- On a Warm reset:
 - When EL2 is not implemented and EL3 is not implemented, this field resets to 0.
 - $^{\circ}$ Otherwise, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Accessing TCR2_EL1

Accesses to this register use the following encodings in the System register encoding space:

op0	op1	CRn	CRm	op2
0b11	0b000	0b0010	0b0000	0b011

```
IsFeatureImplemented(FEAT FGT) && (!HaveEL(EL3)
SCR EL3.FGTEn == '1') && HFGRTR EL2.TCR EL1 == '1'
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (!IsHCRXEL2Enabled() |
HCRX EL2.TCR2En == '0') then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x270];
    else
        X[t, 64] = TCR2\_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.TCR2En == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        X[t, 64] = TCR2\_EL2;
    else
        X[t, 64] = TCR2\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = TCR2\_EL1;
```

MSR TCR2 EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0010	0b0000	0b011

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
    && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.TCR2En == '0' then
        UNDEFINED;
    elsif EL2Enabled() && HCR_EL2.TVM == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TCR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
```

```
elsif EL2Enabled() && (!IsHCRXEL2Enabled()
HCRX EL2.TCR2En == '0') then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x270] = X[t, 64];
    else
        TCR2 EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.TCR2En == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR EL3.TCR2En == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED:
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        TCR2\_EL2 = X[t, 64];
    else
        TCR2\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    TCR2\_EL1 = X[t, 64];
```

MRS <Xt>, TCR2_EL12

op0	op1	CRn	CRm	op2
0b11	0b101	0b0010	0b0000	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101'
then
        X[t, 64] = NVMem[0x270];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR EL2.E2H == '1' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TCR2En == '0'
then
            UNDEFINED;
        elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0'
```

MSR TCR2 EL12, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b101	0b0010	0b0000	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV1, NV> == '101'
then
        NVMem[0x270] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HCR_EL2.E2H == '1' then
        if Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.TCR2En == '0'
then
            UNDEFINED;
        elsif HaveEL(EL3) && SCR_EL3.TCR2En == '0'
then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            TCR2\_EL1 = X[t, 64];
    else
        UNDEFINED;
elsif PSTATE.EL == EL3 then
    if EL2Enabled() && !ELUsingAArch32(EL2) &&
HCR\_EL2.E2H == '1' then
        TCR2\_EL1 = X[t, 64];
    else
```

TTNTT	\neg	TATE	ı 🗀 .
OINT		INE	1 U 7

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.