# 同学们好!



#### 第九章 电相互作用和静电场

#### 要点:

- 1. 两条基本实验定律: 库仑定律, 静电力叠加原理。
- 2.  $\triangle$  两个基本物理量: 电场强度 $\vec{E}$ , 电势 U。
- 3. ▲ 两条基本定理: 静电场高斯定理,环路定理。 揭示静电场基本性质(有源场、保守场)。
- 4. 静电场与物质(导体和电介质)的相互作用。
- 5. 稳恒电场。

### § 9.6 静电场中的导体



### § 9.6 静电场中的导体

一. 金属导体与电场的相互作用

静电感应

特征: 体内存在大量的自由电子

无外场时自由电子 在外场  $\vec{E}_0$  中

无规运动:

"电子气"

- 1. 无规运动;
  - 2. 宏观定向运动

导体内电荷重新分布, 出现附加电场  $\vec{E}$ 直至静电平衡



静电平衡: 导体内部及表面均无电荷定向运动, 导体上电荷及空间电场分布达到稳定.

条件:  $\begin{cases} \vec{E}_{\rm h} = \vec{E}_{\rm 0} + \vec{E}' = 0 \\ \vec{E}_{\rm \bar{e}} = \vec{E}_{\rm 0} + \vec{E}' \perp \bar{e} \end{cases}$  以 是  $\begin{cases} \dot{E}_{\rm b} = \vec{E}_{\rm 0} + \vec{E}' +$ 

要计算静电平衡时的电场分布,首先要知道其电荷分布。

#### 二. 静电平衡时导体上的电荷分布

- 1. 导体内无净电荷( $\rho=0$ ),电荷只分布于导体表面。
  - 1) 实心导体



$$\therefore \rho = 0$$

净电荷只分布 于外表面。

高斯面 S (宏观小,微观大)

$$\oint_{s} \vec{E}_{\mathsf{p}} \cdot d\vec{S} = \frac{1}{\varepsilon_{\mathsf{o}}} \sum_{s} q_{\mathsf{p}} = \int_{V} \frac{1}{\varepsilon_{\mathsf{o}}} \rho \, dV$$

静电平衡条件  $\vec{E}_{\text{H}} = 0$ 

$$\vec{E}_{\bowtie} = 0$$



#### 2) 空腔导体,腔内无电荷



同上,导体内 
$$\rho = 0$$

紧贴内表面作高斯面 S

$$\oint_{S} \vec{E}_{||} \cdot d\vec{S} = \frac{1}{\varepsilon_{0}} \sum_{||} q_{||} = \frac{1}{\varepsilon_{0}} \int_{||} \sigma_{||} dS = 0$$

若 
$$\sum q_{\mid j} = 0$$
,  $\sigma_{\mid j} \neq 0$ .



则必然有  $\sigma > 0, \sigma < 0$  处,

电力线由  $+\sigma \rightarrow -\sigma$ ., 沿电力线方向电势降低,导体内表面有电势差,与静电平衡条件:导体表面为等势面矛盾。

所以  $\sigma_{\rm h}=0$  净电荷只能分布于外表面。

### 







电力线不能进入腔内

即: 静电屏蔽。

- •空腔导体具有静电屏蔽作用。
- •例如: 高压带电作业人员穿的导电纤维编织的工作服。



FIGURE 26-20 A large spark jumps to the car's body and then exits by moving across the insulated left front tire (note the flash there), leaving the person inside unharmed.





#### 3) 空腔导体, 腔内有电荷

紧贴内表面作高斯面S

$$\oint_{S} \vec{E}_{\bowtie} \cdot d\vec{S} = \frac{1}{\mathcal{E}_{0}} \sum_{S} q_{\bowtie} = 0$$

$$\therefore \sum q_{\bowtie} = 0$$



空腔内表面电荷与腔内电荷等值异号。

空腔外表面电荷由电荷守恒决定。

#### 思考:

- 1) 空腔原不带电,腔内电荷 q,腔内、外表面电量?
- 2) 空腔原带电 Q. 腔内电荷 q, 腔内、外表面电量?





12/36

# 3) 空腔能屏蔽腔内电荷 *q* 的电场吗? 有什么办法能实现这种屏蔽?







腔不接地: 腔内不受腔外电荷影响 腔外要受腔内电荷影响

腔接地: 内外电场互不影响。

4) 腔内电荷 q 的位置移动对  $\sigma_{\text{p}}$ ,  $\sigma_{\text{p}}$ ,  $E_{\text{p}}$ ,  $E_{\text{p}}$ ,  $E_{\text{p}}$ ,  $E_{\text{p}}$  分布有无影响?





腔内电荷q的位置移动对  $\sigma_{\text{p}}$ ,  $\vec{E}_{\text{p}}$ , 分布有影响; 对  $\sigma_{\text{p}}$ ,  $\vec{E}_{\text{p}}$ , 分布无影响。

当静电平衡时,导体  $\rho=0$  净电荷只能分布于表面.

$$\sigma_{\mathbb{R}}=?$$

2. 静电平衡时导体表面电荷面密度与表面紧邻处场强

#### 成正比.

过表面紧邻处 P作平行于表面的面元  $\Delta S$ ,以  $\Delta S$  为底,过 P 法向为轴,作如图高斯面 S 。



$$\oint_{S} \vec{E} \cdot d\vec{S} = \int_{\Delta S} \vec{E} \cdot d\vec{S} + \int_{\Delta S'} \vec{E} \cdot d\vec{S} + \int_{S_{(0)}} \vec{E} \cdot d\vec{S} = E\Delta S = \frac{1}{\mathcal{E}_{0}} \cdot \sigma \Delta S$$

$$\vec{E}_{(1)} = \mathbf{0} \qquad \mathbf{cos} \theta = \mathbf{0}$$
15/36



$$\dot{E} = \frac{\sigma}{\varepsilon_0}$$

$$\vec{E} = \frac{\sigma}{n}$$

#### 思考:

〈1〉设带电导体表面某点电荷密度为  $\sigma$ ,外侧附近场强  $E = \sigma/\varepsilon_0$ ,现将另一带电体移近,该点场强是否变化? 公式  $E = \sigma/\varepsilon_0$  是否仍成立?

导体表面  $\sigma$  变化,外侧附近场强 E 变化,而  $E = \sigma/\varepsilon_0$  仍然成立。

# 〈2〉无限大带电平面: 带电导体表面附近:





$$\oint_{S} \vec{E} \cdot d\vec{S} = 2E\Delta S = \frac{\sigma \Delta S}{\varepsilon_{0}}$$

如果计及带电面的厚度 式中 $\sigma = \sigma_1 + \sigma_2 \approx 2\sigma_1$ 



$$\oint_{S} \vec{E} \cdot d\vec{S} = E\Delta S = \frac{\sigma\Delta S}{\varepsilon_{0}}$$
式中  $\sigma = \sigma_{1}$  , 不产生矛盾

# 〈2〉无限大带电平面: 带电导体表面附近:





$$\oint_{S} \vec{E} \cdot d\vec{S} = 2E\Delta S = \frac{\sigma \Delta S}{\varepsilon_{0}}$$

如果计及带电面的厚度 式中 $\sigma = \sigma_1 + \sigma_2 \approx 2\sigma_1$ 



$$\oint_{S} \vec{E} \cdot d\vec{S} = E\Delta S = \frac{\sigma \Delta S}{\varepsilon_{0}}$$

式中  $\sigma = \sigma_1$ , 不产生矛盾。

#### 3. 孤立导体 $\sigma$ 与表面曲率有关 .





$$U = \frac{1}{4\pi\varepsilon_0} \frac{Q}{R} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

$$\frac{Q}{q} = \frac{R}{r} \qquad \frac{4\pi R^2 \sigma_{\pm}}{4\pi r^2 \sigma_{\perp}} = \frac{R}{r}$$

$$\frac{\sigma_{\pm}}{\sigma_{\downarrow}} = \frac{r}{R}$$

$$\frac{Q}{q} = \frac{R}{r} \qquad \frac{4\pi\varepsilon_0 \ r}{4\pi r^2 \sigma_{\pm}} = \frac{R}{r} \qquad \frac{\sigma_{\pm}}{\sigma_{\pm}} = \frac{r}{R} \qquad \frac{\sigma_{\pm}}{r} = \frac{r}{r}$$

#### 孤立导体电荷分布有以下定性规律



· 尖端放电: 如果场强大到可以使其周围空气电 离——"尖端放电"。

20/36



# 雷击尖端



图 2-22 避雷针工作原理

避雷针:一个柱子或基础结构,由它的顶到地有一垂直导体或它本身就是一到地的导体,其目的通过引导与疏导,把闪雷电流释放到大地,栏截雷击使不落在其保护范围内的物体上,保护建筑物免遭直接雷击的破坏.

# 三. 有导体存在时的 $\vec{E}$ , U 分布 求解思路:



# [例一] 相距很近的平行导体板a,b,分别带电 $Q_a$ , $Q_b$ 求电荷分布。



解:设平板面积为S

$$\sigma_1 S + \sigma_2 S = Q_a \quad (1)$$

$$\sigma_3 S + \sigma_4 S = Q_b \quad (2)$$

$$E_{a \mid 5} = \frac{\sigma_1}{2\varepsilon_0} - \frac{\sigma_2}{2\varepsilon_0} - \frac{\sigma_3}{2\varepsilon_0} - \frac{\sigma_4}{2\varepsilon_0} = 0$$
 (3)

$$E_{b \nmid b} = \frac{\sigma_1}{2\varepsilon_0} + \frac{\sigma_2}{2\varepsilon_0} + \frac{\sigma_3}{2\varepsilon_0} - \frac{\sigma_4}{2\varepsilon_0} = 0 \quad (4)$$

#### 由(1)、(2)、(3)、(4)解得:

$$\sigma_1 = \sigma_4 = \frac{Q_a + Q_b}{2S}$$

$$\sigma_2 = -\sigma_3 = \frac{Q_a - Q_b}{2S}$$



即:相背面  $\sigma$  等大同号,

相对面  $\sigma$  等大异号。

[例二] 带电量q、半径 $R_1$  的导体球A外,有一内半径 $R_2$ 、外半径 $R_3$ 的同心导体球壳B,求:

- (1) 外球壳的电荷分布及电势
- (2) 将B接地再重新绝缘,结果如何?
- (3) 再将A球接地, B电荷分布及电势如何变化?

解: (1) 
$$q_{B r | l} = -q$$
; 
$$q_{B r | l} = q$$

$$U_B = U_P = \frac{q}{4\pi \varepsilon_0 r} + \frac{(-q)}{4\pi \varepsilon_0 r} + \frac{q}{4\pi \varepsilon_0 R_3}$$

$$= \frac{q}{4\pi \varepsilon_0 r}$$







- (2) B接地  $U_B = U_{\pm} = 0$   $q_{Bh} = -q$   $q_{Bh} = 0$
- (3) A球电荷入地

B球壳-q分布于表面,对吗?

设A 带电q'则

$$q_{B} = -\dot{q}$$
,  $q_{B} = \dot{q} - \dot{q}$ 

由:

$$U_{A} = \frac{q'}{4\pi\varepsilon_{0}R_{1}} + \frac{-q'}{4\pi\varepsilon_{0}R_{2}} + \frac{q'-q}{4\pi\varepsilon_{0}R_{3}} = 0$$



$$q' = \frac{R_1 R_2 q}{R_2 R_3 - R_1 R_3 + R_1 R_2} < q$$

即 A所带部分电荷入地。

$$q_{B^{5/1}} = q' - q = \frac{(R_1 - R_2)R_3q}{R_2R_3 - R_1R_3 + R_1R_2} < 0$$

$$U_{B} = \frac{q_{B /\!\!\!/}}{4\pi \varepsilon_{0} R_{3}} = \frac{(R_{1} - R_{2}) \cdot q}{4\pi \varepsilon_{0} (R_{2} R_{3} - R_{1} R_{3} + R_{1} R_{2})} < 0$$

$$U_{R} \downarrow$$

#### [例三] 若A带电 $q_1$ , B带电 $q_2$ , 求:

- (1) 图中1, 2, 3, 4 各区域的E和U分布,并画出 $E \sim r$ 和 $U \sim r$ 曲线.
- (2) 若将球与球壳用导线连接,情况如何?
- (3) 若将外球壳接地,情况如何?





$$q_1 + q_2$$
 (1)  $q_A = q_1$   $q_{B \nmid 1} = -q_1$   $q_{B \nmid 1} = q_1 + q_2$ 

$$E_1 = 0$$
  $E_2 = \frac{q_1}{4 \pi \epsilon_0 r_2^2}$ 

$$E_3 = 0$$
  $E_4 = \frac{q_1 + q_2}{4 \pi \epsilon_0 r_4^2}$ 

$$\begin{split} U_1 &= \frac{1}{4\pi\varepsilon_0} (\frac{q_1}{R_1} - \frac{q_1}{R_2} + \frac{q_1 + q_2}{R_3}) \quad ; \quad U_3 = \frac{1}{4\pi\varepsilon_0} \frac{q_1 + q_2}{R_3} \\ U_2 &= \frac{1}{4\pi\varepsilon_0} (\frac{q_1}{r_2} - \frac{q_1}{R_2} + \frac{q_1 + q_2}{R_3}) \quad ; \quad U_4 = \frac{1}{4\pi\varepsilon_0} \frac{q_1 + q_2}{r_4} \end{split}$$

$$E-r$$
 ,  $U-r$  曲线





#### (2)若将球与球壳用导线连接,情况如何?

$$q_{A} = q_{BP} = 0$$
 ;  $q_{BP} = q_{1} + q_{2}$ 



$$E_{1} = E_{2} = E_{3} = 0$$

$$E_{4} = \frac{q_{1} + q_{2}}{4 \pi \epsilon_{0} r_{4}^{2}}$$

$$U_{1} = U_{2} = U_{3} = \frac{q_{1} + q_{2}}{4\pi\varepsilon_{0}R_{3}}$$

$$U_{4} = \frac{1}{4\pi\varepsilon_{0}} \frac{q_{1} + q_{2}}{r_{4}}$$

$$E-r$$
 ,  $U-r$  曲线





#### (3)若将外球壳接地,情况如何?

$$E_{1} = 0$$
  $E_{2} = \frac{q_{1}}{4\pi\varepsilon_{0}r_{2}^{2}}$   $E_{3} = E_{4} = 0$ 

$$U_{1} = \frac{1}{4 \pi \varepsilon_{0}} \left( \frac{q_{1}}{R_{1}} - \frac{q_{1}}{R_{2}} \right)$$

$$U_{2} = \frac{1}{4 \pi \varepsilon_{0}} \left( \frac{q_{1}}{r_{2}} - \frac{q_{1}}{R_{2}} \right)$$

$$U_{\alpha} = 0$$

$$U_{4} = 0$$



$$E-r$$
 ,  $U-r$  曲线





[例三] 内半径为R的导体球壳原来不带电,在腔内离球心距离为d (d < R) 处,固定一电量 + q的点电荷,用导线将球壳接地后再撤去地线,求球心处电势.

解:〈1〉画出未接地前的电荷分布图.





#### 《2》外壳接地后电荷分布如何变化?

$$U_{
m ar{c}} = U_{
m b} = U_{
m +q} + U_{
m ar{c}} + U_{
m ar{c}} = 0$$

内壁电荷分布不变

#### 〈3〉由叠加法求球心处电势

$$\begin{split} U_0 &= U_{+q} + U_{\text{BB}} = \frac{q}{4\pi\varepsilon_0 d} + \frac{-q}{4\pi\varepsilon_0 R} \\ &= \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{d} - \frac{1}{R}\right) \end{split}$$

[例四] 实验表明,在靠近地面处有相当强的电场,电场强度  $\vec{E}$  垂直于地面向下,大小约为 100 N/C; 在离地面 1.5 km 高的地方, $\vec{E}$  也是垂直于地面向下的,大小约为2.5 N/C。

- 〈1〉试计算从地面到此高度大气中电荷的平均体密度.
- (2) 假设地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度。

解: 地球——球对称,

离地面不远处(h << R)——面对称可以用高斯定理求解,

如何选择高斯面?





〈1〉作底面平行于地面,高 h=1500m 的 直圆柱为高斯面.

#### 由高斯定理:

$$\oint_{S} \vec{E} \cdot d\vec{S} = E_{2} \Delta S - E_{1} \Delta S$$

$$= \frac{1}{\varepsilon_{0}} \sum_{0} q_{||} = \frac{1}{\varepsilon_{0}} \overline{\rho} h \Delta S$$

$$\overline{\rho} = \frac{\varepsilon_0 (E_2 - E_1)}{h} = \frac{8.85 \times 10^{-12}}{1.5 \times 10^3} \times (100 - 25)$$
$$= 4.43 \times 10^{-13} (\text{C} \cdot \text{m}^{-3})$$

#### 〈2〉作高斯面如图

由高斯定理:

$$\oint_{S} \vec{E} \cdot d\vec{S} = -E_2 \Delta S = \frac{1}{\varepsilon_0} \, \overline{\sigma} \cdot \Delta S$$



$$\overline{\sigma} = -\varepsilon_0 E_2 = -8.85 \times 10^{-12} \times 100$$
  
=  $-8.85 \times 10^{-10} (\text{C} \cdot \text{m}^{-2})$