

DATASCIENCEGO HACKATHON

Thanks to our Sponsor!

Introduction

Raj Krishnamoorthy

- Cloud Architect at Oracle
- Adv Data Services and Data science
- 19 Years of experience in technology
- Ex MSFT, Deloitte and Entrepreneur in UK & US
- B.SC Mathematics, M S Computer Science, MBA

Welcome to the Hackathon!

Goals:

- Practice your skills and learn from others
- Expand your network while collaborating with peers
- Have fun!

General Rules:

- Be respectful and collaborative
- Submit ONLY the work you produce during the Hackathon
- Be honest and ethical. Cheating is easy and will ruin your experience

Agenda (Pacific Time zone)

(NOW) Event Opening: 9:30 AM - 10:00 AM

Working Block #1 & Mentoring Sessions: 10:00 AM - 12:00 PM

Networking Break! 12:00 PM - 1:00 PM

Working Block #2 & Mentoring Sessions: 1:00 PM - 3:00 PM

SUBMISSION OF RESULTS DEADLINE: 3:00 PM

Team Presentations: 3:00 PM - 4:30 PM

Virtual Happy Hour! 4:30 PM - 5:30 PM

Prize Awarding and Event Closure: 5:30 PM - 6:00 PM

Support Team

Facilitators:

John PeachPrincipal Data Scientist at Oracle

Jiayuan YangStaff Solution Engineer at Oracle

Raj KrishnamoorthyMaster Principal Enterprise Cloud
Architect at Oracle

(Haree) Srihareendra Bodduluri Cloud Software Engineer at Oracle

Haroon AnwarMaster Principal Architect - Enterprise
Cloud Architecture at Oracle

Raja sekhar Reddy Cloud Software Engineer at Oracle

Support Team

Facilitators:

Anna FedotovaProduct Data Analyst at SuperDataScience

Diane PesqueraEvent Coordinator at DataScienceGO

Ankit Jain
MSBA Program Ambassador |
Graduate Student at UC Irvine

Jordan Sauchuk
Data Scientist at SuperDataScience

Edis GonulerData Science Enthusiast

Meet and Chat HERE

Share Files, Submit Results and Ask for Support HERE

Download Hackathon Materials HERE

United States Environmental Protection Agency Challenge

- EPA Air Quality monitoring sites
- Identify actionable insights based on the data
 - Best Insights
 - Best Visualization
 - Best Model
- Collaborative team effort
- Most helpful participant across teams
- Create an insightful visualization on the air quality.
- Create a predictive model that will estimate NO3.

The Challenge

3 Different Paths - Align Expectations

- Exploratory Analysis: Understand the data, gather insights and focus on an in-depth analysis of the relationships between the measures, the effects over time or between sites.
- Visualization: Create a visualization that communicates a message about what is happening with the air quality. The visualization can be a figure, set of figures, animation or interactive graphic.
- Model: EPA has identified that the total nitrate (NO3) is a metric that they are interested in studying and predictive model that will allow them to estimate the nitrate values when they are missing

Relevant files

Files

- Air_status.csv Real data for the challenge
- Codes.csv codes for the air status file
- Data_dictionary.csv data dictionary
- Site.csv Site location
- Test.csv for models
- The Challenge.doc Challenge description

The Data

SITE_ID	IDATEON	DATEOFF	TSO4	TNO3	TNH4	Ca	Mg	Na	K	Cl
CON186	6/17/03	6/24/03	1.646	2.6535	1.074	0.1625	0.044	0.198	0.0609	NA
CON186	6/24/03	7/1/03	1.0356	0.6297	0.4035	0.2331	0.0394	0.1455	0.0444	NA
CON186	7/1/03	7/8/03	1.5335	1.257	0.4836	0.2185	0.0759	0.344	0.1697	NA
CON186	7/8/03	7/15/03	1.7773	0.8323	0.6537	0.2894	0.0541	0.2134	0.085	NA
CON186	7/15/03	7/22/03	2.1637	1.3187	0.7899	0.4331	0.08	0.2679	0.1382	NA
CON186	7/22/03	7/29/03	2.3961	1.8747	1.0025	0.3808	0.0721	0.2498	0.1085	NA
CON186	7/29/03	8/5/03	1.689	0.9653	0.6495	0.2078	0.0383	0.1394	0.0512	NA
CON186	8/5/03	8/12/03	0.9753	0.6864	0.3571	0.2145	0.036	0.1266	0.0401	0.013
CON186	8/12/03	8/19/03	1.7553	1.8385	0.6672	0.4243	0.0839	0.3391	0.141	0.014
CON186	8/19/03	8/26/03	1.6582	1.3791	0.5604	0.3728	0.0685	0.2213	0.1159	0.013
CON186	9/2/03	9/9/03	1.3079	0.951	0.5297	0.2329	0.0421	0.151	0.0532	0.013
CON186	9/9/03	9/16/03	1.3556	1.3186	0.5847	0.3147	0.0553	0.2038	0.0597	0.013
CON186	9/16/03	9/23/03	0.8147	0.7078	0.3528	0.3317	0.0455	0.1077	0.0509	0.013
CON186	9/23/03	9/30/03	1.1388	0.9686	0.4645	0.3119	0.0482	0.1195	0.0488	0.013
CON186	9/30/03	10/7/03	1.226	0.8245	0.4818	0.2236	0.0328	0.1023	0.0392	0.013
CON186	10/7/03	10/14/03	1.2985	0.9536	0.5754	0.2748	0.0418	0.1101	0.0466	0.013
CON186	10/14/03	10/21/03	0.6403	0.3421	0.2585	0.1776	0.0211	0.0485	0.029	0.013
CON186	10/21/03	10/28/03	0.4887	0.2065	0.1922	0.2103	0.0222	0.0286	0.0537	0.016
CON186	10/28/03	11/4/03	0.5005	1.5469	0.554	0.1019	0.0242	0.1143	0.0615	0.09
CON186	11/4/03	11/11/03	0.4534	2.7171	0.7852	0.1553	0.0181	0.0532	0.0305	0.013
CON186	11/11/03	11/18/03	0.3543	0.4171	0.1796	0.0424	0.0098	0.0578	0.0128	0.013
CON186	11/18/03	11/25/03	0.3248	0.5564	0.1778	0.1	0.0148	0.0509	0.0171	0.013
CON186	11/25/03	12/2/03	0.3231	0.3933	0.13	0.0973	0.0178	0.074	0.0186	0.018
CON186	12/2/03	12/9/03	0.259	0.7511	0.2517	0.0847	0.0116	0.0298	0.0153	0.013
CON186	12/9/03	12/16/03	0.2727	0.7361	0.191	0.0656	0.021	0.0828	0.0151	0.01
CON186	12/16/03	12/23/03	0.0995	0.1531	0.0406	0.0432	0.0095	0.0209	0.0097	0.013
CON186	12/23/03	12/30/03	0.2173	0.3228	0.1265	0.0306	0.0111	0.0457	0.0118	0.01
CON186	12/30/03	1/6/04	0.2497	0.2404	0.0977	0.0439	0.013	0.058	0.0138	0.015
CON186	1/6/04	1/13/04	0.2268	0.1052	0.0994	0.0582	0.0063	0.0242	0.0135	0.013
CON186	1/13/04	1/20/04	0.4061	2.0132	0.6177	0.1311	0.0189	0.0439	0.0265	0.016

The Data (Glossary)

COLUMN_NAME	UNIT	DATA_TYPE	DESCRIPTION
SITE_ID		CHAR	Site identification code. See the file site.csv for a mapping of site code to site name.
DATEON		DATE	Date the sample collection began, Local Standard Time; YYYY-MM-DD
DATEOFF		DATE	Date the sample collection ended, Local Standard Time; YYYY-MM-DD
TSO4	ug/m^3	NUMBER	Sulfate (SO4) concentration from Teflon filter; ug/m^3.
TNO3	ug/m^3	NUMBER	Nitrate (NO3) concentration from Teflon filter; ug/m^3.
TNH4	ug/m^3	NUMBER	Ammonium (NH4) concentration from Teflon filter; ug/m^3.
Ca	ug/m^3	NUMBER	Calcium (Ca) concentration from Teflon filter; ug/m^3.
Mg	ug/m^3	NUMBER	Magnesium (Mg) concentration from Teflon filter; ug/m^3.
Na	ug/m^3	NUMBER	Sodium (Na) concentration from Teflon filter; ug/m^3.
K	ug/m^3	NUMBER	Potassium (K) concentration from Teflon filter; ug/m^3.
Cl	ug/m^3	NUMBER	Chloride (CI) concentration from Teflon filter; ug/m^3.
NSO4	ug/m^3	NUMBER	Sulfate (SO4) concentration from Nylon filter; ug/m^3.
NHNO3	ug/m^3	NUMBER	Nitric acid (NO3) concentration from Nylon filter; ug/m^3.
WSO2	ug/m^3	NUMBER	Sulfur dioxide (SO2) concentration from Whatman filter; ug/m^3.
TOTAL_SO2	ug/m^3	NUMBER	Total sulfur dioxide (SO2) concentration calculated from [wso2]+0.667*nso4]; ug/m^3.
TOTAL_NO3	ug/m^3	NUMBER	Total nitrate (NO3) concentration calculated from [tno3]+0.9841*[nhno3]; ug/m^3.
FLOW_VOLUME	m^3	NUMBER	Flow volume; m^3.
VALID_HOURS		NUMBER	Valid hours during sampling period
COMMENT_CODES		CHAR	Comment codes separated by spaces. See codes.csv
STD2LOCAL_CF		NUMBER	Factor used to convert atmospheric concentrations from standard to local conditions
TEMP_SOURCE		CHAR	Source of mean temperature used in conversion factor. See codes.csv
QA_CODE		CHAR	Quality assurance level of the record. (see QAPP for definition of quality assurance levels). See codes.csv
UPDATE_DATE		DATE	Date of last record update; YYYY-MM-DD

Expected Submission and Deadline

Submission is expected to be made by 3:00 PM PT via Slack

Expected Submission:

- Submission can be a slide deck or a GitHub repository, including the notebook that implements the full lifecycle of data preparation, source code, model creation and evaluation.
- Excel, OAC, Notebooks, Results Table in CSV format.
- PDF presentation (3 slides max) with your observations, predictions, and conclusions. At the end of the activity, your team will have 3 minutes to present the results.

Criteria for Best Model:

- Any team that presents results of their work that were obtained using statistical modeling will be eligible for the Best Model award.
- Any data modeling method can be used, including:
 - Linear regression, logistic regression, and other common statistical models
 - Machine learning models and algorithms such as decisions trees, Random Forest, support vector machines (SVM), and neural networks
- Models will be assessed on SSE.

Criteria for Best Insight:

- All teams that present their work will be eligible for the Best Insight award.
- An insight will be considered as piece of "knowledge" gained through the analysis of the hackathon data set. This could include, for example:
 - an interesting conclusion or understanding about the data
 - a recommendation or suggestion about how something could be changed or done differently, supported by data analysis
 - a link or association between different pieces of information in the data, particularly ones that are unexpected or non-intuitive
- Insights will be judged based upon how much practical impact the insight could have on the subject
 of the hackathon data set, and how well the associated analysis supports it.

Criteria for Best Visualization:

- Any team that presents a visualization as part of their final submission is eligible for the Best Visualization award.
- Visualizations can be either static graphics (e.g. a plot or 2-D graphic), or an interactive/dynamic visualization (e.g. Oracle Analytics Cloud)
- Visualizations will be judged primarily on their ability to clearly convey an interesting and/or insightful aspect of the hackathon data set. Factors include:
 - how data visualizations are used to communicate interesting aspects of the data
 - the ability for someone not familiar with the data to understand (with the accompanying presentation) the main points of the visualization
 - the effective use of data graphics principles including, for example, the use of statistical summarizations, color, data sub-setting, data highlighting, etc.
 - For static graphics, overly complex visualizations that detract from understanding the points of the visualization should be avoided.
 - for interactive/dynamic graphics, the interactive aspect should be a fundamental component to understanding the points of the visualization. Interactivity for interactivity-sake should be avoided.
 - interactive graphics will not be judged as "better" than static graphics.

Criteria for Most Helpful Person:

- In addition to the team presentations, the Most Helpful Person award will be awarded to the most helpful person at the event, as voted upon by the hackathon participants.
- Before end of Saturday, participants will vote for the most helpful person. The person with the most votes will receive the Most Helpful Person award.
- Each participant will be given fixed number of points that they can distribute as they like to any other participant, except themselves. The participant with the most points will be awarded the prize.

DATASCIENCEGO HACKATHON