✓ You submitted a response to the quiz! Thanks!

 \times

Quiz 3

Deadline	Wednesday, 23 June 2021 at 12:00PM
Latest Submission	Tuesday, 22 June 2021 at 11:35PM
Maximum Mark	10

Question 1 (1 mark)

Which of the following relations (over N) are functions? (Select all that apply)

(a) 🗹	The = relation
(b) 🗆	The relation
(c) 🗆	The ≤ relation
(d) 🗆	The relation $\{(n,m,n+m):n,m\in\mathbb{N}\}$
(e) <	The relation $\{(n-1, n) : n \in \mathbb{N}_{>0}\}$
(f) 🗆	The relation {}

Question 2 (1 mark)

True or false:

Over \mathbb{Z} , the relation defined by ($\leq \oplus \geq$) is the same as the relation \neq ?

(a) •	True
(b) O	False

Question 3 (1 mark)

Let $A = \{a,b,c\}$ and consider $g:Pow(A) \rightarrow \mathbb{N}$ given by g(X) = |X|.

What is Im(g)?

(a) O	3
(b) O	8
(c) O	{3}
(d) •	{0,1,2,3}

Question 4 (1 mark)

Let $\Sigma = \{0,1\}$ and consider the relation on Σ^* given by $R = \{(w,v) : length(w) \ge 2 \cdot length(v)\}$

Which of the following properties does R satisfy? Select all that apply

(a) 🗆	Reflexivity (R)
(b) 🗆	Antireflexivity (AR)
(c) 🗆	Symmetry (S)
(d) <	Antisymmetry (AS)
(e) <	Transitivity (T)

Question 5 (1 mark)

Consider the relation R = {(m,n) $\in \mathbb{Z} \times \mathbb{Z} : m^2 \equiv_{(5)} n^2$ }.

Which of the following properties does R satisfy? Select all that apply

(a) <u><</u>	Reflexivity (R)
(b) 🗆	Antireflexivity (AR)
(c) <u><</u>	Symmetry (S)
(d) 🗆	Antisymmetry (AS)
(e) 🗹	Transitivity (T)

Question 6 (1 mark)

True or false:

 $R \cup R^{\leftarrow}$ is an equivalence relation for any partial order R.

(a) •	True
(b) O	False

Question 7 (1 mark)

Suppose R is a symmetric relation.

True or false: R = R←

(a) •	True
(b) O	False

Question 8 (1 mark)

Consider $f: \mathbb{N}_{>0} \to \mathbb{N}_{>0}$ given by f(x) = 2x+1. What is the inverse image of $\{1,2,3\}$, i.e. what is $f^{\leftarrow}(\{1,2,3\})$?

(a) O	{3,5,7}
(b) O	{0,½,1}
(c) O	{0,1}
(d) O	{1}
(e) •	None of the above

Question 9 (1 mark)

Let $F = \mathbb{N}^{\mathbb{N}}$ denote the set of functions from \mathbb{N} to \mathbb{N} . Define the relation R on F×F as follows:

 $(f,g) \in R$ if $f(n) \neq g(n)$ for only finitely many $n \in \mathbb{N}$

Which of the following properties does R have? Select all that apply

(a) 🗹	Reflexivity (R)
(b) 🗆	Antireflexivity (AR)
(c) 🔽	Symmetry (S)
(d) 🗆	Antisymmetry (AS)
(e) 🔽	Transitivity (T)

Question 10 (1 mark)

Let $F = \mathbb{N}^{\mathbb{N}}$ denote the set of functions from \mathbb{N} to \mathbb{N} . Define the relation R on F×F as follows:

 $(f,g) \in R$ if $f(n) \le g(n)$ for infinitely many $n \in \mathbb{N}$

Which of the following properties does R have? Select all that apply

(a) <u>~</u>	Reflexivity (R)
(b) 🗆	Antireflexivity (AR)
(c) 🗆	Symmetry (S)
(d) 🗆	Antisymmetry (AS)
(e) 🗆	Transitivity (T)

