Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка средства визуализации и мониторинга криминального контента из туманной вычислительной среды

Выполнила: Рослова Лариса Сергеевна, гр. 9304

Руководитель: Первицкий Александр Юрьевич, к.т.н., доцент

Консультант: Субботин Алексей Николаевич, ГУП "Петербургский

метрополитен"

Санкт-Петербург, 2023

Цель и задачи

Актуальность:

- Количество контента в сети растёт с каждой минутой
- Нехватка человеческого ресурса и человеческий фактор
- Отсутствие доступных аналогов

Цель: разработать расширение для браузера, анализирующего посещаемый веб-ресурс на криминальный контент с применением средств машинного обучения и туманных вычислений.

Задачи:

- Обзор моделей машинного обучения
- Обучить выбранную модель
- Спроектировать архитектуру системы
- Исследовать разработанную систему

Задача 1. Обзор моделей классификации изображений

Модель	Размер (мб)	Топ-1 точност ь (%)	Топ-5 точность (%)	Пара- метры (млн)	Время вывода на СРU (мс)	Время вывода на GPU (мс)
VGG16	528	71.3	90.1	138.4	69.5	4.2
InseptionV3	92	77.9	93.7	23.9	42.2	6.9
ResNet50	98	74.9	92.1	25.6	58.2	4.6
MobileNetV2	14	71.3	90.1	3.5	25.9	3.8
EfficientNet	220	85.3	97.4	54.4	1578.9	61.6

Задача 2. Обучение модели EfficientNet

Подзадачи:

- Собрать набор данных для обучения
- Применить трансферное обучение к модели EfficientNet
- Конвертировать переобученную модель из формата HDF5 (.h5) в формат Layers (.JSON).

Результат: после обучения на собранном датасете нейронная сеть показала точность в **92%** на тестовых данных.

Задача 3. Архитектура системы

Задача 4. Интеграция с облачными технологиями

С самой дорогой конфигурацией вычислительных мощностей можно уменьшить задержки в 10 раз по сравнению с персональным компьютером.

Заключение

- Были изучены технологии машинного обучения для анализа изображений.
- На основе сравнения была выбрана и обучена нейросеть EfficientNet, которая показала 92% точности определения криминального контента на изображениях.
- Спроектирована архитектура расширения для браузера, анализируещего изображения на криминальное содержание.
- Тестирование и оптимизация работы продукта показали, что при использовании мощных конфигураций облачных сервисов можно добиться ускорения анализа контента в 10 раз.

Способы развития продукта

- Будет полезным внедрить возможности анализа текстового контента и мониторинг нескольких изображений за единицу времени.
- Улучшение точности и производительности.
- Расширение поддерживаемых платформ и браузеров.
- Улучшение пользовательского интерфейса.
- Регулярное обновление моделей машинного обучения и базы данных негативного контента поможет улучшить работу расширения и его способность обнаруживать новые типы негативного содержания.

Апробация работы

Исходный код разработанного продукта доступен на GitHub: https://github.com/LRoslova/criminalContent_monitor

В описании репозитория есть подробная инструкция по установке и работе программы.

Запасные слайды

Параметры тестирования

Используемые вычислительные мощности:

- Acer Aspire E5-573, ОЗУ 8 Гб, СРU 4
- Облако на платформе Yandex, ОЗУ 20 Гб, СРU 20
- Облако на платформе Yandex, ОЗУ 12 Гб, СРU 14
- Платформа Google Colab ОЗУ 12.7, GPU Т4

Интерфейс расширения

