E.D.O.: méthodes numériques (cours 3)

François Cuvelier

Laboratoire d'Analyse Géométrie et Applications Institut Galilée Université Paris XIII.

13 janvier 2015

- Méthodes à un pas ou à pas séparés
 - Schéma général
 - Convergence
 - Stabilité
 - Consistance
 - Ordre
- - Principe
 - Formules explicites de Runge-Kutta d'ordre 2
 - Méthodes de Runge-Kutta d'ordre 4

Méthodes à un pas ou à pas séparés

Problème de Cauchy :

$$(\mathcal{PC})$$
 $\begin{cases} \mathbf{y}'(t) = \mathbf{f}(t,\mathbf{y}(t)) \\ \mathbf{y}(t^0) = \mathbf{y}_0 \in \mathbb{R}^m. \end{cases}$

Les méthodes à un pas utilisent la formule générale :

$$\mathbf{y}^{[n+1]} = \mathbf{y}^{[n]} + h\mathbf{\Phi}(t^n, \mathbf{y}^{[n]}, h)$$
 (1)

Pour la méthode d'Euler progressive :

$$\mathbf{\Phi}(t,\mathbf{y},h)=\mathbf{f}(t,\mathbf{y}).$$

Cuvelier F. (Ingénieurs Energétique I) E.D.O.: méthodes numériques (cours 3)

- Méthodes à un pas ou à pas séparés
 - Schéma général
 - Convergence
 - Stabilité
 - Consistance
 - Ordre
- - Principe
 - Formules explicites de Runge-Kutta d'ordre 2
 - Méthodes de Runge-Kutta d'ordre 4

Convergence

La méthode converge sur l'intervalle $[t^0, t^0 + T]$ si, pour la suite des $\mathbf{y}^{[n]}$ calculés, l'écart maximum avec la solution exacte diminue quand le pas h diminue :

$$\lim_{h=\frac{T}{N}\to 0} \max_{n\in\{0,\dots,N\}} \left\| \boldsymbol{y}^{[n]} - \boldsymbol{y}(t^n) \right\| = 0$$

- Méthodes à un pas ou à pas séparés
 - Schéma général
 - Convergence
 - Stabilité
 - Consistance
 - Ordre
- - Principe
 - Formules explicites de Runge-Kutta d'ordre 2
 - Méthodes de Runge-Kutta d'ordre 4

Stabilité

La méthode est stable si une petite perturbation sur $\mathbf{y}^{[0]}$ ou $\mathbf{\Phi}$ n'entraîne qu'une petite perturbation sur la solution approchée, et cela quel que soit le pas h.

Théorème

Si $\Phi(t, y, h)$ vérifie la condition de Lipschitz en y alors la méthode est stable.

- Méthodes à un pas ou à pas séparés
 - Schéma général
 - Convergence
 - Stabilité
 - Consistance
 - Ordre
- - Principe
 - Formules explicites de Runge-Kutta d'ordre 2
 - Méthodes de Runge-Kutta d'ordre 4

Consistance

• Le schéma de calcul (1) est consistant avec l'équation différentielle si

$$\lim_{h=\frac{T}{N}\to 0}\max_{n}\left\|\frac{\boldsymbol{y}(t^{n+1})-\boldsymbol{y}(t^{n})}{h}-\boldsymbol{\Phi}(t^{n},\boldsymbol{y}(t^{n}),h)\right\|=0$$

Cela signifie que le schéma doit être une approximation vraisemblable, bien construite.

Consistance

• Le schéma de calcul (1) est consistant avec l'équation différentielle si

$$\lim_{h=\frac{T}{N}\to 0}\max_{n}\left\|\frac{\boldsymbol{y}(t^{n+1})-\boldsymbol{y}(t^{n})}{h}-\boldsymbol{\Phi}(t^{n},\boldsymbol{y}(t^{n}),h)\right\|=0$$

Cela signifie que le schéma doit être une approximation vraisemblable, bien construite.

Théorème

Le schéma est consistant si $\Phi(t, y, 0) = f(t, y)$.

0

4□ > 4□ > 4 = > 4 = > = 90

Consistance

• Le schéma de calcul (1) est consistant avec l'équation différentielle si

$$\lim_{h=\frac{T}{N}\to 0}\max_{n}\left\|\frac{\boldsymbol{y}(t^{n+1})-\boldsymbol{y}(t^{n})}{h}-\boldsymbol{\Phi}(t^{n},\boldsymbol{y}(t^{n}),h)\right\|=0$$

Cela signifie que le schéma doit être une approximation vraisemblable, bien construite.

Théorème

Le schéma est consistant si $\Phi(t, y, 0) = f(t, y)$.

_.

Théorème

Si la méthode est stable et consistante, alors elle converge pour n'importe quelle valeur initiale.

- (□) (@) (분) (분) 분 (이익)

- Méthodes à un pas ou à pas séparés
 - Schéma général
 - Convergence
 - Stabilité
 - Consistance
 - Ordre
- - Principe
 - Formules explicites de Runge-Kutta d'ordre 2
 - Méthodes de Runge-Kutta d'ordre 4

Ordre

La méthode itérative est d'ordre p si pour toute solution :

$$\max_{n} \left\| \frac{\mathbf{y}(t^{n+1}) - \mathbf{y}(t^{n})}{h} - \mathbf{\Phi}(t^{n}, \mathbf{y}(t^{n}), h) \right\| \leqslant Ch^{p}$$

- - Schéma général
 - Convergence
 - Stabilité
 - Consistance
 - Ordre
- Méthode de Runge-Kutta
 - Principe
 - Formules explicites de Runge-Kutta d'ordre 2
 - Méthodes de Runge-Kutta d'ordre 4

$$(\mathcal{PC})$$
 $\begin{cases} \mathbf{y}'(t) = \mathbf{f}(t,\mathbf{y}(t)) \\ \mathbf{y}(t^0) = \mathbf{y}_0 \in \mathbb{R}^m. \end{cases}$

L'idée fondamentale des méthodes de Runge-Kutta est d'intégrer l'équation

$$\mathbf{y}'(t) = \mathbf{f}(t, \mathbf{y}(t))$$

sur $[t^n, t^{n+1}]$ et de calculer :

$$\mathbf{y}(t^{n+1}) = \mathbf{y}(t^n) + \int_{t^n}^{t^{n+1}} \mathbf{f}(t, \mathbf{y}(t)) dt,$$

en utilisant une formule d'intégration numérique à q points intermédiaires $t^{n,i+1} = t^n + h_i$ pour calculer l'intégrale.

$$\mathbf{y}^{[n+1]} = \mathbf{y}^{[n]} + h\mathbf{\Phi}(t^n, \mathbf{y}^{[n]}, h)$$

La fonction Φ associée à une méthode de Runge-Kutta à q évaluations de **f** peut s'écrire sous la forme :

$$\mathbf{\Phi}(t, \mathbf{y}, h) = \sum_{i=1}^{q} c_i \mathbf{k}^{[i]}(t, \mathbf{y}, h)$$

avec

$$\boldsymbol{k}^{[i]}(t,\boldsymbol{y},h) = \boldsymbol{f}\left(t + ha_i, y + h\sum_{j=1}^q b_{i,j}\boldsymbol{k}^{[j]}(t,\boldsymbol{y},h)\right), \ 1 \leqslant i \leqslant q$$

Sous la forme d'un tableau dit tableau de Butcher :

$$\begin{array}{c|c} a & \mathbb{B} \\ \hline & c^t \end{array} \tag{2}$$

avec
$$\mathbb{B} = (b_{i,j})_{i,j \in \llbracket 1,q \rrbracket} \in \mathcal{M}_{q,q}(\mathbb{R}), \ \boldsymbol{a} = (a_i)_{i \in \llbracket 1,q \rrbracket} \in \mathbb{R}^q$$
 et $\boldsymbol{c} = (c_i)_{i \in \llbracket 1,a \rrbracket} \in \mathbb{R}^q$

• Une méthode de Runge-Kutta est d'ordre 0 si

$$a_i = \sum_{j=1}^q b_{ij}.$$

• Une méthode de Runge-Kutta est d'ordre 0 si

$$a_i = \sum_{j=1}^q b_{ij}.$$

• Une méthode de Runge-Kutta est d'ordre 1 (et donc consistante) si elle est d'ordre 0 et si

$$\sum_{i=1}^{q} c_i = 1.$$

• Une méthode de Runge-Kutta est d'ordre 0 si

$$a_i = \sum_{j=1}^q b_{ij}.$$

 Une méthode de Runge-Kutta est d'ordre 1 (et donc consistante) si elle est d'ordre 0 et si

$$\sum_{i=1}^q c_i = 1.$$

• Une méthode de Runge-Kutta est d'ordre 2 si elle est d'ordre 1 et si

$$\sum_{i=1}^q c_i a_i = 1/2.$$

• Une méthode de Runge-Kutta est d'ordre 0 si

$$a_i = \sum_{j=1}^q b_{ij}.$$

• Une méthode de Runge-Kutta est d'ordre 1 (et donc consistante) si elle est d'ordre 0 et si

$$\sum_{i=1}^q c_i = 1.$$

• Une méthode de Runge-Kutta est d'ordre 2 si elle est d'ordre 1 et si

$$\sum_{i=1}^q c_i a_i = 1/2.$$

• Une méthode de Runge-Kutta est explicite si

$$\forall (i,j) \in [1,q], j \geqslant i, b_{ii} = 0.$$

• Les méthodes de Runge-Kutta explicites sont stables si f est contractante en y.

- - Schéma général
 - Convergence
 - Stabilité
 - Consistance
 - Ordre
- Méthode de Runge-Kutta
 - Principe
 - Formules explicites de Runge-Kutta d'ordre 2
 - Méthodes de Runge-Kutta d'ordre 4

• tableau de Butcher :

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
\frac{1}{2\alpha} & \frac{1}{2\alpha} & 0 \\
\hline
& 1 - \alpha & \alpha
\end{array}$$
(3)

$$\mathbf{\Phi}(t, \mathbf{y}, h) = (1 - \alpha)\mathbf{f}(t, \mathbf{y}) + \alpha\mathbf{f}(t + \frac{h}{2\alpha}, \mathbf{y} + \frac{h}{2\alpha}\mathbf{f}(t, \mathbf{y}))$$

tableau de Butcher :

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
\frac{1}{2\alpha} & \frac{1}{2\alpha} & 0 \\
\hline
& 1 - \alpha & \alpha
\end{array}$$
(3)

$$\mathbf{\Phi}(t, \mathbf{y}, h) = (1 - \alpha)\mathbf{f}(t, \mathbf{y}) + \alpha\mathbf{f}(t + \frac{h}{2\alpha}, \mathbf{y} + \frac{h}{2\alpha}\mathbf{f}(t, \mathbf{y}))$$

• Avec $\alpha = \frac{1}{2}$, on obtient la **méthode de Heun** :

$$\mathbf{y}^{[n+1]} = \mathbf{y}^{[n]} + \frac{h}{2}\mathbf{f}(t^n, \mathbf{y}^{[n]}) + \frac{h}{2}\mathbf{f}(t^{n+1}, \mathbf{y}^{[n]} + h\mathbf{f}(t^n, \mathbf{y}^{[n]})).$$

• Avec $\alpha = 1$, on obtient la méthode d'Euler modifiée ou méthode du point milieu :

$$\mathbf{y}^{[n+1]} = \mathbf{y}^{[n]} + h\mathbf{f}\left(\mathbf{t}^n + \frac{h}{2}, \mathbf{y}^{[n]} + \frac{h}{2}\mathbf{f}(\mathbf{t}^n, \mathbf{y}^{[n]})\right).$$

Exercice

la méthode de Heun est donnée par

$$\mathbf{y}^{[n+1]} = \mathbf{y}^{[n]} + \frac{h}{2}\mathbf{f}(t^n, \mathbf{y}^{[n]}) + \frac{h}{2}\mathbf{f}(t^{n+1}, \mathbf{y}^{[n]} + h\mathbf{f}(t^n, \mathbf{y}^{[n]})).$$

 Ecrire la fonction algorithmique REDHeun permettant de résoudre un problème de Cauchy scalaire par la méthode de Heun en utilisant au plus 2N évaluation de f.

Exercice

la méthode de Heun est donnée par

$$\mathbf{y}^{[n+1]} = \mathbf{y}^{[n]} + \frac{h}{2}\mathbf{f}(t^n, \mathbf{y}^{[n]}) + \frac{h}{2}\mathbf{f}(t^{n+1}, \mathbf{y}^{[n]} + h\mathbf{f}(t^n, \mathbf{y}^{[n]})).$$

- Ecrire la fonction algorithmique REDHeun permettant de résoudre un problème de Cauchy scalaire par la méthode de Heun en utilisant au plus 2N évaluation de f.
- Ecrire la fonction algorithmique REDHeunVec permettant de résoudre un problème de Cauchy vectoriel par la méthode de Heun en utilisant au plus 2N évaluation de f.

→□▶ →□▶ → □▶ → □ ♥ ♀ ♥ ♀ ♥

- - Schéma général
 - Convergence
 - Stabilité
 - Consistance
 - Ordre
- Méthode de Runge-Kutta
 - Principe
 - Formules explicites de Runge-Kutta d'ordre 2
 - Méthodes de Runge-Kutta d'ordre 4

La méthode explicite la plus utilisée est donnée par le tableau de Butcher suivant

Ce qui donne le schéma explicite de Runge-Kutta d'ordre 4 :

$$\begin{array}{rcl}
\boldsymbol{k}_{1}^{[n]} & = & \boldsymbol{f}(t^{n}, \boldsymbol{y}^{[n]}) \\
\boldsymbol{k}_{2}^{[n]} & = & \boldsymbol{f}(t^{n} + \frac{h}{2}, \boldsymbol{y}^{[n]} + \frac{h}{2}\boldsymbol{k}_{1}^{[n]}) \\
\boldsymbol{k}_{3}^{[n]} & = & \boldsymbol{f}(t^{n} + \frac{h}{2}, \boldsymbol{y}^{[n]} + \frac{h}{2}\boldsymbol{k}_{2}^{[n]}) \\
\underline{\boldsymbol{k}_{4}^{[n]}} & = & \boldsymbol{f}(t^{n} + h, \boldsymbol{y}^{[n]} + h\boldsymbol{k}_{3}^{[n]}) \\
\underline{\boldsymbol{y}^{[n+1]}} & = & \boldsymbol{y}^{[n]} + \frac{h}{6}(\boldsymbol{k}_{1}^{[n]} + 2\boldsymbol{k}_{2}^{[n]} + 2\boldsymbol{k}_{3}^{[n]} + \boldsymbol{k}_{4}^{[n]}).
\end{array} \tag{5}$$

→ロト →団 → → 重 → → 重 → りへで