运筹学通论I

胡晓东

应用数学研究所

中国科学院数学与系统科学研究院

Http://www.amt.ac.cn/member/huxiaodong/

3. 无约束算法 - 线搜索

1-维线搜索是许多求解非线性规划问题的算法的基础。这 些算法的步骤可以如下:

迭代算法

- 1. 给定一个当前解 x_k ,
- 2. 输出 x_k 如果它是所需要的解,否则
- 3. 生成一个搜索方向 d_k ,
- 4. 确定一个合适的步长 λ_k ,
- 5. 置 $x_{k+1}:=x_k + \lambda_k d_k$.,并返回步骤1.

确定步长 λ_k 的问题实际上是求解一个子问题: 求 $f(x_k + \lambda d_k)$ 的最小值,其中变量为 λ ,这是一个 1-维线搜索问题。 变量 λ 可以取任意实数,也可以限定 $\lambda > 0$ 使得 $x_k + \lambda d_k$ 是一个可行解。

3. 无约束算法 - 线搜索 (续一)

一致搜索属于同步搜索,它在进行搜索之前就已经确定了要计算目标函数在哪些点的值。 我们通过格点 $a+k\delta$ 可以将不确定的区间 [a,b] 分割成若干个小的子区间,其中 $k=1,2,\ldots,n$, $b=a+(n+1)\delta$ 。计算函数 θ 在 n 个格点中的每一个格点处的函数值。 设函数 θ 在格点 λ * 处的函数值最小。若 θ 是一个严格拟凸函数,则函数 θ 的最小解位于区间 $[\lambda^*-\delta,\lambda^*+\delta]$ 中。

3. 无约束算法 - 线搜索 (续二)

定理 34. 设 θ : $E^1 \to E^1$ 在区间[a, b]上严格拟凸的。设 λ , $\mu \in [a$, b], 且 $\lambda < \mu$ 。若 $\theta(\lambda) > \theta(\mu)$,则对所有 $z \in [a, \lambda)$,都有 $\theta(z) \ge \theta(\mu)$ 。若 $\theta(\lambda) \le \theta(\mu)$,则对所有 $z \in (\mu, b]$,都有 $\theta(z) \ge \theta(\lambda)$ 。

证明.(练习)根据反证法和拟凸函数的定义,可知

3. 无约束算法 - 黄金分割法

与一致搜索方法不同:这种同步搜索方法,在进行任何搜索之前,就决定了要计算哪些点的目标函数值,**序贯线搜索**在进行每一步搜索时,要利用已经搜索过的点(的函数值)的信息。

为了比较各种序贯线搜索的效率,我们引入如下降减比:

k 次搜索以后仍然不确定的区间的总长度

在进行搜索以前不确定的区间的总长度

显然,比值越小的线搜索,其效率就越高。

3. 无约束算法 - 黄金分割法 (续一)

步 1. 当 $b_k - a_k < \varepsilon$, 终止 (最优解在[a_k, b_k]中) 若 $\theta(\lambda_k) > \theta(\mu_k)$, 则转到步2, 若 $\theta(\lambda_k) \le \theta(\mu_k)$, 则转到步3。

步 2. 置 $a_{k+1}:=\lambda_k$, $b_{k+1}:=b_k$; 再置 $\lambda_{k+1}:=\mu_k$, 并置 $\mu_{k+1}:=a_{k+1}+\alpha(b_{k+1}-a_{k+1})$; 计算 $\theta(\mu_{k+1})$,转到步4。

步 3. 置 $a_{k+1}:=a_k$, $b_{k+1}:=\mu_k$; 再置 $\mu_{k+1}:=\lambda_k$, 并置 $\lambda_{k+1}:=a_{k+1}+(1-\alpha)(b_{k+1}-a_{k+1})$; 计算 $\theta(\lambda_{k+1})$, 转到步 4。

步 4. 置 *k*:=*k*+1, 然后返回 步 1。

xdhu

6

3. 无约束算法 - 黄金分割法 (续二)

注意,当我们选取参数 α 使得 $\alpha + \alpha^2 - 1 = 0$,则有 $\lambda_k = a_k + (1 - \alpha)(b_k - a_k)$ 和 $\mu_k = a_k + \alpha(b_k - a_k)$ 。 因而有 $b_{k+1} - a_{k+1} = \alpha(b_k - a_k)$ 。

在第k次迭代后,不确定的区间的长度是原来不确定的区间的长度的 α 倍。在第一次迭代以后,需要计算 λ_k 和 μ_k 这两个数值,但是在随后的每一次迭代中,我们只要计算一个值即可,这是因为此时或者 $\lambda_{k+1}=\mu_k$ 或者 $\mu_{k+1}=\lambda_k$ 。

除了一**致搜索法**和**黄金分割法**以外,还有许多其他的搜索法,比如二**分搜索法**和**斐波纳契搜索法**。这些简单的搜索方法都不需要计算目标函数的导数。而其他一些搜索方法,则需要计算目标函数的导数。

3. 无约束算法 - 点-集映射

当设计求解非线性规划问题 $\min\{f(x) \mid x \in S\}$ 的算法时,我们当然希望能在有限步内找到全局最优解,或者找到一个点列收敛到全局最优解。然而,对于大多数函数 f(x),这只能是奢望。在实际求解时,我们只能希望找到一个点列,它收敛到一个事先设定的解集 Ω 。比如:

3. 无约束算法 - 点-集映射 (续一)

定义 13. 称一个点-集映射 $A: X \to X$ 在 $Y \subseteq X$ 上是收敛的,若对于任意一个初始点 $x_1 \in Y$, $x_{k+1} \in A(x_k)$ 的任一个收敛子列的聚点都属于解集 Ω 。

考虑求最小值问题 $\min \{x^2 | x \ge 1\}$ 。设 Ω 为该问题的全局最优解集合,即 $\Omega = \{1\}$ 。令

$$A(x) = \begin{cases} [3/2 + x/4, 1+x/2], & x \ge 2; \\ (x+1)/2, & x < 2. \end{cases}$$

容易验证,当 $x_1 \ge 2$ 时, $A(x_k) \to x = 2$;而当 $x_1 < 2$ 时, $A(x_k) \to x = 1$;这个点-集映射是不收敛的,因为它在x = 2 不具有"连续性"。

3. 无约束算法 - 点-集映射 (续二)

考虑一个点-集映射 $A: X \subseteq E^n \to Y \subseteq E^m$ 。称其在点 $x \in X$ 处是闭的,如果

$$x_k \in X \to x, y_k \in A(x_k) \to y, \Rightarrow y \in A(x)$$

称其在集合 $S \subseteq X$ 是闭的若它在 S 中的每一个点处都是闭的。 我们可以将点-集映射的闭性视为函数的连续性的一种推广。

练习. 证明前页中给出的点-集映射在x=2 处是非闭的。

定理 35. $X \subseteq E^n$ 是一个非空闭集, $A: X \to Y$ 一个点-集映射, $\alpha: X \to E^1$ 是一个连续函数, $\Omega \subseteq X$ 是解集。假设 $x_{k+1} \in A(x_k)$ 属于 X 的一个紧子集,且若 $x \notin \Omega$, $y \in A(x)$,则 $\alpha(y) < \alpha(x)$ 。 若A 在 Ω 的补集上是闭的,则它收敛,且有 $\alpha(x_k) \to \alpha(x)$,其中 $x \in \Omega$ 。

3. 无约束算法 - 点-集映射 (续三)

证明: 设 $\{x_k\}_K \to x \in X$ 是一个收敛子点列。 α 是一个连续函数,所以 $\{\alpha(x_k)\}_K \to \alpha(x)$ 。因而对于任意 $\varepsilon > 0$,都存在一个正整数 N 使得 $\alpha(x_k) - \alpha(x) < \varepsilon$, $k \in K \geq N$ 。因此我们有 $\alpha(x_N) - \alpha(x) < \varepsilon$ 。 现考虑充分大的 k > N,则有

$$\alpha(x_k) - \alpha(x) = \alpha(x_k) - \alpha(x_N) + \alpha(x_N) - \alpha(x) < 0 + \varepsilon = \varepsilon_0$$

$$\text{it } \{\alpha(x_k)\} \to \alpha(x)_0$$

下面用反证法证明 $x \in \Omega$ 。假设 $x \notin \Omega$ 。考虑子列 $\{x_{k+1}\}_{K}$ 。注意,因为它属于 X 的一个紧集,所以它有一个收敛的子列 $\{x_{k+1}\}_{K'} \to x'$ 。显然, $\alpha(x') = \alpha(x)$ 。又因为 A 在 x 处是闭的,所以当 $k \in K'$ 时,有 $x_k \to x$, $x_{k+1} \in A(x_k)$,且 $x_{k+1} \to x'$ 。故有 $x' \in A(x)$ 。因此, $\alpha(x') < \alpha(x)$ 。产生矛盾。因而必有 $x \in \Omega$ 。

3. 无约束算法 - 最速下降法

最速下降法(柯西1847年)是求多变量可微函数最小值的一个 最基本的方法。

引理 7. 设函数 f(x): $E^n \to E^1$ 在点 x^* 处可微,且 $\nabla f(x^*) \neq 0$ 。则最小值问题 $\min\{f'(x^*;d) \mid ||d|| \leq 1\}$ 的最优解为 $d^* \equiv -\nabla f(x^*)/||\nabla f(x^*)||$ 。

证明.(练习*)由函数f(x)在点x*处可微,可得

$$f'(x^*, d) = \lim_{\lambda \to 0+} \frac{f(x^* + \lambda d) - f(x^*)}{\lambda} = \nabla f(x^*) d.$$

因而引理中求最小值的问题转化为最小值问题

$$\min\{\nabla f(x^*)d \mid ||d|| \le 1\}$$

再由施瓦兹不等式,得 $\nabla f(x^*)d \ge - ||\nabla f(x^*)|| \cdot ||d|| \ge - ||\nabla f(x^*)||$ 。由此可知, $\nabla f(x^*)d$ 在 $d^* = - \nabla f(x^*)/||\nabla f(x^*)||$ 处达到最小值。

3. 无约束算法 - 最速下降法 (续一)

步 0. 取 $\varepsilon > 0$ 为算法终止参数。

选取一个初始解 x_k , 置k:=1, 并转入步1。

步 1. 若 $\|\nabla f(x_k)\| < \varepsilon$, 则算法终止; 否则置 $d_k := -\nabla f(x_k)$ 。

步 2. 求关于 λ 的函数 $f(x_k+\lambda d_k)$ 的最小值,并令其为 λ_k 。

步 3. 置 x_{k+1} := $x_k + \lambda_k d_k$, k:= k+1, 返回 步 1。

定理 36. 若最速下降法生成的点列属于一个紧集,则它收敛于一个梯度为 0 的点。

证明.(练习*)应用定理35。首先,取

$$A(x_k) = x_k + \lambda d_k$$
, $\Omega = \{ x \mid \nabla f(x) = 0 \}$, $\alpha(x) = f(x)$.

然后,验证它们满足定理的所有条件即可。

3. 无约束算法 - 最速下降法 (续二)

最速下降法在优化过程的开始阶段通常非常有效。然而, 当接近驻点时,却常常会产生相互垂直的、非常小的搜索步 (称锯齿现象)。

3. 非线性规划 - 算法中止规则

求解非线性规划的算法,在大多数情况下,会生成收敛到解集的一系列点(在极限意义下),因而在运行算法时,我们需要引入一些终止迭代的规则。常用的有以下几个:

- 1. $||x_{k+N}-x_k|| < \varepsilon$, N 次迭代以后**绝对距离**;
- $2.\frac{||x_{k+1}-x_k||}{||x_k||} < \varepsilon$, 1次迭代以后的相对距离;
- $3. f(x_k) f(x_{k+N}) < \varepsilon$, N 次迭代以后**绝对改进量**;
- 4. $\frac{f(x_k) f(x_{k+N})}{f(x_k)} < \varepsilon$, 1 次迭代以后相对改进量;
- 5. $\theta(x_k) \theta(x_{\text{solution}}) < \varepsilon$, N 次迭代以后与解集的**绝对距离**。

3. 非线性规划 - 算法收敛性

设数列 $\{r_k\}$ 收敛到 r^* ,则其收敛阶定义为满足下述等式的非负 p 的上确界

$$\overline{\lim_{k\to\infty}} \frac{|r_{k+1}-r^*|}{|r_k-r^*|^p} = \beta < \infty$$

当p=1时,称数列**线性收敛**如果收敛率 β 小于 1。当p>1时,或者p=1且 $\beta=0$ 时,称数列**超线性收敛**。

如果我们用 r_k 表示 $\alpha(r_k)$,即第k次迭代时的下降函数值,目标函数值 $f(x_k)$ 或者梯度函数 $\nabla f(x_k)$ 的模,那么p的值越大,相应的算法就收敛得越快。

练习. 构造一个超线性收敛数列。

3. 非线性规划 - 算法收敛性 (续一)

然而,需要强调的是,不能将收敛阶和收敛率作为衡量 算法收敛好坏的惟一标准,因为它们仅仅反应的是算法的迭代 次数趋向于无穷大时,算法的收敛进程。

衡量和比较算法好坏的另外一个常用收敛标准是,它们求解二次函数的最小值时的收敛性。这是因为,在非线性函数的最小值点附近,线性近似它效果往往不太好,然而用二次函数近似它会有比较满意的效果。因此,我们可以认为,如果一个算法求二次函数的最小值时效果不佳,那么用它求解一般的非线性函数的最小值时,不太可能有优异的表现(尤其是当搜索到最优点附近时)。

3. 无约束算法 - 牛顿法

由于最速下降法是利用目标函数 f(x) 的线性近似来确定搜索方向,故在最优点附近所生成的搜索方向并不是非常有效。这一点可以从下述表达式看出:

$$f(x_k + \lambda d) = f(x_k) + \lambda \nabla f(x_k) d + \lambda ||d|| \alpha(x_k; \lambda d),$$

其中当 $\lambda d \to 0$ 时 $\alpha(x_k; \lambda d) \to 0$,且 $d = -\nabla f(x_k)$ 。当 x_k 非常接近梯度为0的驻点时, $\lambda ||\nabla f(x_k)||^2$ 会变得非常的小。

牛顿法通过用海森阵的逆矩阵乘以 负梯度得到一个偏离最速下降方向的搜索方 向。 这么做的原因是,构造目标函数的二 次近似的一个适合方向,而不是像最速下 降法那样,利用目标函数的一次近似。

1643—1727

3. 无约束算法 - 牛顿法 (续一)

为了进一步说明牛顿法的原理,考虑函数f(x) 在点 x_k 处的二次近似q(x):

$$q(x) = f(x_k) + \nabla f(x_k)(x - x_k) + (x - x_k)^T H(x_k)(x - x_k)/2$$
,其中 $H(x_k)$ 为函数 f 在 x_k 处的海森阵。二次近似 q 在点 x 处达到最小值的必要条件是 $\nabla q(x) = 0$ 或者 $\nabla f(x_k) + H(x_k)(x - x_k) = 0$ 。若假定海森阵 $H(x_k)$ 存在拟矩阵,则迭代后得到的点为 $x_{k+1} := x_k - H(x_k)^{-1} \nabla f(x_k)$

一般来讲, 牛顿法生成的点列并不一定收敛。理由很简单:海森阵 $H(x_k)$ 可能是奇异阵,也就无法生成新的迭代点 x_{k+1} 。即使海森阵的逆存在,新的函数值 $f(x_{k+1})$ 也未必一定小于 $f(x_k)$!不过,如果初始点足够接近驻点 x^* ,其梯度 $\nabla f(x^*)=0$ 且海森阵 $H(x^*)$ 是满秩的,那么牛顿法会收敛到该驻点 x^* 。

3. 无约束算法 - 共轭方向法

定义 14. 设 H 是一个 $n \times n$ 对称矩阵。称向量 $d_1, ..., d_k$ 为H-共 **轭**,或简单称共**轭**如果它们是线性无关的且 $d_i^T H d_i = 0$, $i \neq j$ 。

$$Min - 12y + 4x^2 + 4y^2 - 4xy$$

其海森阵为

$$H=\left[\begin{array}{cc} 8 & -4 \\ -4 & 8 \end{array}\right]$$

假定选取 d_1 =(1,0)。那么与其共轭的方向 d_2 =(a, b) 必须满足

$$d_1^T H d_2 = 0 = 8a - 4b$$
.

例如,可选 a=1 和 b=2。

3. 无约束算法 - 共轭方向法 (续一)

定理 37. 设 f(x) = cx + xHx/2,其中H 是一个 $n \times n$ 对称矩阵, $d_1, ..., d_n$ 是一组 H-共轭的向量, x_1 为一个初始解。另设 λ_k 是 关于变量 $\lambda \in E^1$ 的最小值问题 $f(x_k + \lambda d_k)$ 的最优解。

若 $x_{k+1}:=x_k+\lambda_k d_k$ 。则对于 k=1,2,...,n,有

- i) $\nabla f(x_{k+1}) d_j = 0, j=1, \underline{2}, ..., k;$
- ii) $\nabla f(x_1) d_k = \nabla f(x_k) d_k$;
- iii) x_{n+1} 是函数 f(x) 的最优解。

证明:一系列较复杂的计算。

考虑到,任意一个函数在其最小点附近可以用二次函数很好 地近似,上述性质说明共轭梯度法不仅能求出二次函数的最小 值,而且还能有助于求解非二次函数的最小值。

3. 无约束算法 - 共轭方向法 (续二)

下面我们来说明如何生成共轭方向。最著名的一个方法是变尺度法(简称 DFP),它是由 W. C. Davidon [1959], R. Fletcher 和 M. Powell [1963]提出来的。

1927-2013

1939-2016

1936-2015

这个算法可以归为**拟牛顿类算法**,其搜索方向为 $-D_j\nabla f(y)$ 。将目标函数的梯度乘以 $-D_j$ 即可得到负梯度方向的一个偏离,其中 D_j 是一个 $n\times n$ 正定对称矩阵,它可以视为海森阵的逆的一个近似。在迭代的下一步,将 D_j 加上两个秩为1的对称矩阵即可得到 D_{j+1} 。因此这个方法有时也称为**秩2-修正法**。

3. 无约束算法 - 共轭方向法 (续三)

- 步 0. 取一个 $\varepsilon > 0$ 为算法终止参数。选取一个初始解 x_1 和一个初始对称正定矩阵 D_1 。置 $y_k := x_l$,k := j := 1,转到步 1。
- 步 1. 若 $\|\nabla f(x_k)\| < \varepsilon$, 则终止; 否则置 $d_j := -D_j \nabla f(y_j)$ 。
- 步 2. 求函数 $f(x_k + \lambda d_k)$ 的最小值,并令其为 λ_j 。
- 步 3. 置 $y_{j+1}:=y_j+\lambda_j d_j$ 。若 j < n,转入 步 4。若 j = n, 置 $y_1:=x_{k+1}:=y_{n+1}$, k:=k+1, j:=1,并转入 步 1。
- 步 4. 置

$$D_{j+1} := D_j + \frac{p_j p_j^T}{p_j^T q_j} - \frac{D_j q_j q_j^T D_j}{d_j^T D_j q_j},$$

$$p_j := \lambda_j d_j,$$

$$q_j := \nabla f(y_{j+1}) - \nabla f(y_j)$$

置j:=j+1,然后返回步1。

3. 无约束算法 - 共轭方向法 (续三)

引理 8. 设 $y_1 \in E^n$, D_1 是初始对称正定矩阵。对每个 j = 1, 2, ...,n, 置 $y_{j+1} := y_j + \lambda_j d_j$, 其中 $d_j := -D_j \nabla f(y_j)$, λ_j 是关于 λ 的函数 $f(x_k + \lambda d_k)$ 的最小值点。若 $\nabla f(y_j) \neq 0$, j = 1, 2, ..., n,则 D_1 , $D_2, ..., D_n$ 是对称正定矩阵且 $d_1, d_2, ..., d_n$ 都是下降方向。

定理 38. 设 $f(x) = c^T x + x^T H x/2$,其中H 是一个 $n \times n$ 对称矩阵。假定任取初始 y_1 和对称正定矩阵 D_1 ,用变尺度法求函数 f(x) 的最小值, $x \in E^n$ 。设 λ_k 是关于 $\lambda \geq 0$ 的函数 $f(y_k + \lambda d_k)$ 的最小值解,令 $y_{j+1} := y_j + \lambda_j d_j$ 。若对每一个j,都有 $\nabla f(y_j) \neq 0$,则 d_1 , …, d_n 是一组 H-共轭方向,且 $D_{n+1} = H^{-1}$ 。而且, y_{n+1} 是目标函数 f(x) 的最小解。