Dr. R. Käppeli D-ITET, D-MATL Sommer 2017 **Prüfung Numerische Methoden**

Wichtige Hinweise

- Die Prüfung dauert 90 Minuten.
- Erlaubte Hilfsmittel: 5 A4-Blätter doppelseitig (=10 Seiten) eigenhändig und handschriftlich verfasste Zusammenfassung, nicht ausgedruckt, nicht kopiert. Sonst keine Hilfsmittel zugelassen.
- Begründen Sie jeweils Ihre Aussagen. Unbegründete Lösungen (außer bei Multiple-Choice-Aufgaben falls nicht explizit gefordert) werden nicht akzeptiert!

Name		Note
Vorname		
Studiengang		
Leginummer		
Prüfung	Numerische Methoden	
Datum	08.08.2017	

1	2	3	4	5	Punkte	
10	10	10	10	5	45	

- Legen Sie Ihre Legi auf den Tisch. Schalten Sie Ihr Handy aus.
- Lösen Sie Aufgaben 1 und 2 auf dem Angabenblatt.
 Lösen Sie Aufgaben 3, 4 und 5 auf Extrablättern. Beginnen Sie hierfür für jede Aufgabe eine neue Seite, und schreiben Sie Ihren Namen und Ihre Leginummer auf alle Blätter.
- Schreiben Sie nicht mit Bleistift. Verwenden Sie einen Stift mit blauer oder schwarzer Farbe (keinesfalls rot oder grün).
- Versuchen Sie Ihren Lösungsweg möglichst klar darzustellen und arbeiten Sie sorgfältig!
- Schauen Sie das Prüfungsblatt erst an, wenn der Assistent das Signal dazu gibt!

Viel Erfolg!

Aufgaben:

1. Wahr oder Falsch [10 Points]

Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende Kästchen und zwar so:

wahr	falsch
×	

Als Markierungen sind ausschliesslich Kreuzchen \times erlaubt. Wenn Sie ein Kreuzchen rückgängig machen wollen, streichen Sie es klar erkennbar durch.

Jedes richtig gesetzte Kreuzchen ergibt **2 Punkte**, jedes falsch gesetzte Kreuzchen ergibt **-2 Punkte**. Die erreichte Gesamtpunktzahl wird aber nie negativ sein - wir runden auf 0 auf.

		wahr	falsch
1)	Das Newton-Verfahren angewendet auf das Nullstellenproblem		
	3x - 2y = -1		
	12x + 3y = 18		
	konvergiert nach nur einer Iteration.		
2)	Sei f eine skalare Funktion und es gebe zwei Punkte $a < b$ in denen f gemäss $f(a)f(b) < 0$ verschiedene Vorzeichen aufweist. Dann gibt es immer mindestens eine Nullstelle im Intervall $[a,b]$.		
3)	Die Simpson-Regel integriert $\int_0^2 x^2 + x^{3/2} + x + x^{1/2} dx$ exakt weil sie Genauigkeitsgrad $q=3$ hat.		
4)	Sei \mathbb{P}_n der Vektorraum aller Polynome von Grad kleiner gleich n auf dem Intervall $[a,b]$. Dann integriert eine $(n+1)$ -Punkte Gauss-Legendre Quadrafurregel folgendes Skalarprodukt		
	$\langle p, q \rangle = \int_{a}^{b} p(x) \cdot q(x) dx,$		
	für alle $p,q\in\mathbb{P}_n$ exakt.		
5)	Das folgende Anfangswertproblem genügt den Voraussetzungen von Picard-Lindelöf		
	$\dot{y}(t) = \sqrt[3]{(y(t)-1)^2}, y(0) = -1.$		

2. *Verbesserte Polygonzugmethode von Euler* [**10 Punkt(e)**]

In dieser Aufgabe wollen wir eine Verbesserung gegenüber der Euler Methode implementieren. Die verbesserte Polygonzugmethode von Euler ist gegeben durch

$$k_1 = f(t_k, y_k),$$

 $k_2 = f\left(t_k + \frac{h}{2}, y_k + \frac{h}{2}k_1\right),$
 $y_{k+1} = y_k + hk_2.$

a) [3 Punkt(e)] Skizzieren Sie dieses Verfahren in folgenden Richtungsfeld, d.h. skizzieren Sie direkt Abbildung 1.

Abbildung 1

b) [7 Punkt(e)] Implementieren Sie dieses Verfahren in folgendem Matlab Template.

```
function [t,y] = verbEuler(f,t0,T,y0,N)
% Zweck: integriere eine gewoehnliche Diff.-Gleichung erster
        Ordnung mit der verbesserten Polygonzugmethode von
        Euler.
% Parameters:
% f
     rechte Seite f(t,y(t)) der gew. Diff.-Gl.
        Start- und End-Zeit
% t0, T
8 y0
          Anfangswert
응 N
          Anzahl Schritte
% Returns:
         Zeiten
응 t
^{\circ} y
         approx. Loesung zu Zeiten t
end
```

3. Quadratur [10 Punkt(e)]

Gegeben seien folgende zwei Stützstellen

$$x_0 = \frac{3 - \sqrt{3}}{6}, \quad x_1 = \frac{3 + \sqrt{3}}{6},$$

zugehörige Stützwerte y_0, y_1 , und das Polynom ersten Grades

$$p(x) = a_0 + a_1 x.$$

- a) [1 Punkt(e)] Stellen Sie die Interpolationsbedingungen auf.
- b) [1 Punkt(e)] Bestimmen Sie das Interpolationspolynom p(x) passend zu obigen Stützstellen und Stützwerte.
- c) [2 Punkt(e)] Konstruieren Sie eine Quadraturregel auf dem Intervall [0, 1] mit obigen Stützstellen:

$$Q[f] = \sum_{j=0}^{1} w_j \cdot f(x_j) \approx \int_0^1 f(x) dx.$$

- **d)** [1.5 Punkt(e)] Bestimmen Sie den Genauigkeitsgrad q Ihrer Quadraturregel aus c).
- e) [0.5 Punkt(e)] Transformieren Sie Ihre Quadraturregel aus c) auf ein beliebiges Intervall [a, b].
- f) [2 Punkt(e)] Bestimmen Sie die auf Ihre Quadraturregel aus c) basierende Quadraturregel Q_{2D} zur Annäherung des Integrals

$$\int_0^1 \int_0^1 f(x,y) dx dy \approx Q_{2D}[f].$$

g) [2 Punkt(e)] Für welche $q_1 \ge 0$ und $q_2 \ge 0$ gilt

$$Q_{2D}[x^{q_1} \cdot y^{q_2}] = \int_0^1 \int_0^1 x^{q_1} \cdot y^{q_2} dx dy.$$

Begründen Sie Ihre Antwort.

4. Konsistenzordnung und Stabilitätsfunktion [10 Punkt(e)]

Wir betrachten das durch folgendes Butcher Tableau definierte Verfahren

- a) [1 Punkt(e)] Schreiben Sie einen Schritt des Verfahrens (in Stufenform).
- b) [5 Punkt(e)] Zeigen Sie, dass dieses Verfahren eine Konsistenzordnung von mindestens zwei hat.
- c) [2 Punkt(e)] Berechnen Sie die Stabilitätsfunktion dieses Verfahren.
- d) [2 Punkt(e)] Bestimmen Sie das Stabilitätsintervall dieses Verfahren.

5. *DGL zweiter Ordnung und Steifigkeit* [**5 Punkt**(e)]

Gegeben ist folgendes Anfangswertproblem (AWP) zweiter Ordnung

$$\ddot{y}(t) = -1001\dot{y}(t) - 1000y(t),$$

mit

$$y(0) = 0$$
 und $\dot{y}(0) = 1$.

- a) [2 Punkt(e)] Schreiben Sie obiges AWP um in ein AWP erster Ordnung.
- **b)** [3 Punkt(e)] Geben Sie eine präzise Schranke für die Schrittweite h an, wenn obiges AWP mit dem Verfahren von Heun stabil berechnet werden soll.

Zur Erinnerung: Das Verfahren von Heun ist gegeben durch

$$\begin{array}{c|cccc}
0 & & \\
1 & 1 & \\
\hline
& \frac{1}{2} & \frac{1}{2} \\
\end{array}$$