МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 2.2.3

Измерение теплопроводности воздуха при атмосферном давлении

Выполнил: Гисич Арсений Б03-109

1 Аннотация

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

2 Теоретические сведения

Tennonpoвoдность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотическогодвижения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии $\vec{q} \left[\frac{Bm}{M^2} \right]$ (количество теплоты, перено-симое через единичную площадку в единицу времени) пропорциональна градиенту температуры:

$$\vec{q} = -\kappa \cdot \nabla T,$$

где $\kappa - \kappa$ оэффициент теплопроводности.

$$\kappa \sim \lambda \vec{\nu} \cdot nc_v$$

где λ — длина свободного пробега молекул газа, \vec{v} — средняя скорость их теплового движения, n — концентрация (объёмная плотность) газа.

Решая дифференциальное уравнение для цилиндического случая получаем:

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_1}} \kappa \cdot \Delta T.$$

3 Методика измерений

На оси полой цилиндрической трубки с внутреннимдиаметром $2r_0 = (1,00\pm0,01)c_M$ размещена металлическая нить диаметром $2r_1 = (0,055\pm0,005)$ мм и длиной $L = (365\pm2)$ мм (материал нити и точные геометрические размеры указаныв техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально.

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля—Ленца:

Рис. 1: Схема установки

$$Q = UI$$
,

и сопротивление по закону Ома:

$$R = \frac{U}{I}.$$

Сопротивление нити является однозначной функцией её температуры R(t). Для большинства металлов относительное изменение сопротивления из-за нагрева невелико: приизменении температуры на 1 градус относительное изменение сопротивления нити может составлять приблизительно от 0.2% до 0.6% (в зависимости от её материала). Следовательно, измерение R важно провести с высокой точностью.

Схема предусматривает использование одного вольтметра и эталонного сопротивления $R_{\theta} \sim 10~O$ м, включённого последовательно с нитью. В положении переключателя 2 вольтметр измеряет напряжение на нити, а в положении 1 — напряжениена $R_{\mathfrak{d}}$, пропорциональное токучерез нить. Для исключения влияния контактов и подводящих проводов эталонное сопротивление R_{θ} также необходимо подключать в цепь по четырёхпроводной схеме. Ток в цепи в обеих схемах регулируется с помощью реостата или магазина сопротивлений $R_{\scriptscriptstyle M}$, включённого последовательно с источником напряжения.

Рис. 2: Электрическая схема измерения сопротивления нити и мощности нагрева

В исследуемоминтервалетемператур (20-70 °C) зависимость сопротивления от температуры можно с хорошей точностью аппроксимировать линейной функцией:

$$R(t) = R_{273} \cdot (1 + \alpha t),$$

где t — температурав [°C], R_{273} — сопротивление нити при температуре 20 °C и $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ — температурный коэффициент сопротивления материала.

4 Используемое оборудование

- 1. цилиндрическая колба с натянутой по оси нитью;
- 2. термостат;
- 3. источник питания постоянного тока;
- 4. амперметр, вольтметр (цифровые мультиметры), $\delta_A = 0,005 \ A;$
- 5. эталонное сопротивление;
- 6. источник постоянного напряжения;
- 7. магазин сопротивлений;

5 Результаты измерений и обработка данных

Начальные условия: $T = 23, 1 \pm 0, 1$ °C

Проведём предварительные расчёты парметров опыта. Принимая $\Delta t_{max}=10$ °C, $\kappa\sim25~{\rm MBm/(m\cdot K)},$ получаем

$$Q=110$$
 м $Bm;$ $I=\sqrt{rac{Q}{R}}=105$ м $A.$

Результаты измерений R(Q) представленны в таб. 1-4.

I, A	δ_I, A	U, B	δ_U, B	Q,Bm	δ_Q, Bm	$R, O_{\mathcal{M}}$	δ_R, O_M
0,05	0,005	0,57190	0,00003	0,0286	0,0029	11,44	1,14
0,04	0,005	0,46558	0,00002	0,0186	0,0023	11,64	1,45
0,03	0,005	0,36405	0,00002	0,0109	0,0018	12,14	2,02
0,02	0,005	0,26005	0,00001	0,0052	0,0013	13,00	3,25
0,01	0,005	0,14615	0,00001	0,0015	0,0007	14,62	7,31
0,11	0,005	1,17080	0,00009	0,1288	0,0059	10,64	0,48
0,08	0,005	0,80057	0,00003	0,0640	0,0040	10,01	0,63

Таблица 1: $T_1 = 23, 1$ °C

I, A	δ_I, A	U, B	δ_U, B	Q,Bm	δ_Q, Bm	$R, O_{\mathcal{M}}$	δ_R, O_M
0,01	0,005	0,16042	0,00001	0,0016	0,0008	16,04	8,02
0,02	0,005	0,23591	0,00001	0,0047	0,0012	11,80	2,95
0,03	0,005	0,30849	0,00002	0,0093	0,0015	10,28	1,71
0,04	0,005	0,44552	$0,\!00002$	0,0178	0,0022	11,14	1,39
0,07	0,005	0,74165	0,00003	0,0519	0,0037	10,60	0,76
0,08	0,005	0,80061	0,00003	0,0640	0,0040	10,01	0,63
0,10	0,005	1,05017	0,00009	0,1050	0,0053	10,50	0,53

Таблица 2: $T_2 = 35$ °C

I, A	δ_I, A	U, B	δ_U, B	Q,Bm	δ_Q, Bm	R, Oм	δ_R , O_M
0,01	0,005	0,16850	$0,\!00001$	0,0017	0,0008	16,85	8,43
0,02	0,005	0,25384	0,00001	0,0051	0,0013	12,69	3,17
0,03	0,005	0,33987	$0,\!00002$	0,0102	0,0017	$11,\!33$	1,89
0,05	0,005	0,51401	0,00002	0,0257	0,0026	10,28	1,03
0,08	0,005	0,80056	$0,\!00003$	0,0640	0,0040	10,01	0,63
0,09	0,005	0,95146	0,00004	0,0856	0,0048	$10,\!57$	0,59
0,11	0,005	1,17099	0,00005	0,1288	0,0059	10,65	0,48

Таблица 3: $T_3 = 45$ °C

I, A	δ_I, A	U, B	δ_U, B	Q,Bm	δ_Q, Bm	R, Oм	δ_R , O_M
0,01	0,005	0,14146	0,00001	0,0014	0,0007	14,15	7,07
0,02	0,005	0,21795	0,00001	0,0044	0,0011	10,90	2,72
0,04	0,005	0,47411	0,00002	0,0190	0,0024	11,85	1,48
0,05	0,005	0,53708	0,00002	0,0269	0,0027	10,74	1,07
0,07	0,005	0,73055	0,00003	0,0511	0,0037	$10,\!44$	0,75
0,09	0,005	0,88960	0,00004	0,0801	0,0044	9,88	$0,\!55$
0,11	0,005	1,13321	0,00009	0,1247	0,0057	10,30	0,47

Таблица 4: $T_4 = 70$ °C

6 Обсуждение результатов и выводы

В данной работе исследовалась зависимость повышения температуры воздуха от мощности подводимого тепла и расхода при стационарном течении через трубку. По результатам измерений определялась удельная теплоёмкость воздуха при постоянном давлении. Полученное значение:

$$c_p = 837,01 \pm 160,91 \frac{\mathcal{A}_{\mathcal{H}}}{\kappa \varepsilon \cdot K}.$$

Использованный в работе метод измерений позволяет достичь относительной точности результатов в 19%. Полученный результат согласуется с табличным значением — $1003 \, \frac{\mathcal{A} \mathcal{H}}{\kappa \epsilon \cdot K}$. Основной вклад в погрешность вносит погрешность определения расхода. Также в данной работе была определена доля тепловых потерь:

$$\frac{N_{nom}}{N} = 0,29 \pm 0,06.$$