Read Sections 5.1, 5.2. They are short but dense.

- **1.** Suppose *X* and *Y* are compact Hausdorff spaces. Show that the algebra generated by functions of the form f(x,y) = g(x)h(y) for $g \in C(X)$ and $h \in C(Y)$ is dense in $C(X \times Y)$.
- **2.** Let *X* be a metric space. A function $f \in C(X)$ is called *Hölder continuous with exponent* $\alpha (\alpha > 0)$ if the quantity

$$N_{\alpha}(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

is finite. If *X* is compact, show that $\{f \in C(X) : ||f||_u \le 1 \text{ and } N_\alpha(f) \le 1\}$ is compact in C(X).

3. Let *X* be a compact metric space and $0 < \alpha \le 1$. Show that the Hölder continuous functions on *X* with exponent α form a Banach space with norm

$$||f|| = ||f||_u + N_\alpha(f).$$

This space is often denoted $C^{\alpha}(X)$ (or $C^{0,\alpha}(X)$ if X is a manifold), though Folland uses $\Lambda_{\alpha}(X)$.

- **4.** Suppose *X* is a Banach space.
- (a) If $T \in \mathcal{L}(X, X)$ has ||T|| < 1, then I T is invertible and in fact the series $\sum_{n=0}^{\infty} T^n$ converges in $\mathcal{L}(X, X)$ to I T.
- (b) Show that if $A \in \mathcal{L}(X,X)$ is invertible and $\|A B\| < \|A^{-1}\|^{-1}$, then B is invertible. (The set of invertible operators is therefore open in $\mathcal{L}(X,X)$.)
- **5.** Suppose that *X* is a finite dimensional vector space. Let e_1, \ldots, e_n be a basis for *X* and define

$$\left\| \sum_{j=1}^{n} a_{j} e_{j} \right\|_{1} = \sum_{j=1}^{n} |a_{j}|.$$

- (a) Show that $\|\cdot\|_1$ is a norm on X.
- (b) Show that the map $(a_1, ..., a_n) \mapsto \sum_{j=1}^n a_j e_j$ is a continuous function from K^n (with the usual Euclidean topology) to X with the topology induced by $\|\cdot\|_1$.
- (c) Show that the unit sphere in this norm is compact, i.e., $\{x \in X : ||x||_1 = 1\}$ is compact in the topology defined by $||\cdot||_1$.
- (d) Show that any norm on X is equivalent to $\|\cdot\|_1$.

Quiz 4 Let *X* be a compact Hausdorff space. An *ideal* in $C(X; \mathbb{R})$ is a subalgebra \mathcal{I} of $C(X; \mathbb{R})$ so that if $f \in \mathcal{I}$ and $g \in C(X; \mathbb{R})$, $fg \in \mathcal{I}$.

- (a) If \mathcal{I} is an ideal in $C(X; \mathbb{R})$, let $V(\mathcal{I}) = \{x \in X : f(x) = 0 \text{ for all } f \in \mathcal{I}\}$. Show that $V(\mathcal{I})$ is a closed subset of X. It is called the hull of \mathcal{I} .
- (b) If $E \subset X$, let $J(E) = \{ f \in C(X; \mathbb{R}) : f(x) = 0 \text{ for all } x \in E \}$. Show that J(E) is a closed ideal in $C(X; \mathbb{R})$. It is called the kernel of E.
- (c) Show that if $E \subset X$, then $V(J(E)) = \overline{E}$.
- (d) If \mathcal{I} is an ideal in $C(X;\mathbb{R})$, then $J(V(\mathcal{I})) = \overline{\mathcal{I}}$. (Hint: $J(V(\mathcal{I}))$ can be identified with a subalgebra of $C_0(U,\mathbb{R})$, where $U = X \setminus V(\mathcal{I})$.)
- (e) Put the above together to show that the closed subsets of X are in one-to-one correspondence with the closed ideals of $C(X; \mathbb{R})$.

Additional practice problems Problems 5.8, 5.9, 5.10, 5.13.