UNIVERSIDADE FEDERAL DE SANTA MARIA

CENTRO DE TECNOLOGIA

ENGENHARIA DE COMPUTAÇÃO

SENSORIAMENTO DE TEMPERATURA BASEADO EM RTOS NO ARDUINO

RELATÓRIO DA DISCIPLINA DE PROJETO DE SISTEMAS EMBARCADOS

Prof. Carlos Henrique Barriquello

Franciuíne Barbosa da Silva de Almeida

Victor Eugenio Mainardi Fritz

Santa Maria, RS

RESUMO

O presente documento tem como objetivo relatar o processo de desenvolvimento do projeto final da disciplina, que consiste na simulação de um sensor de temperatura baseado em um sistema operacional em tempo real. Para este, foi utilizado o software de simulações elétricas e eletrônicas *Proteus*, integrando o uso da simulação de uma placa *Arduino UNO* e dos demais componentes do circuito. Além da própria IDE Arduíno para a implementação da mesma.

ÍNDICE

1 INTRODUÇÃO	3
1.1 FUNDAMENTAÇÃO TEÓRICA	3
2 IMPLEMENTAÇÃO EMBARCADA	3
2.1 MATERIAIS UTILIZADOS	4
2.2 HARDWARE	4
2.3 SOFTWARE	6
3 IMPLEMENTAÇÃO	7
REFERÊNCIAS BIBLIOGRÁFICAS	12
APÊNDICE A	13

1 INTRODUÇÃO

Através de três tarefas executadas independentemente, temos o controle de um ar condicionado através do sensoriamento de temperatura. A temperatura lida como entrada define o estado do ar, assim como suas saídas.

1.1 FUNDAMENTAÇÃO TEÓRICA

O Arduino Uno é uma placa de Arduino que tem como microcontrolador principal o ATmega328P da fabricante Atmel. Tem 14 pinos digitais que podem ser utilizados como entrada e/ou saída, sendo que desses 14 pinos, 6 deles podem ser utilizados como saída PWM que é um tipo de sinal elétrico para controle de motor por largura de pulso ainda tem mais 6 pinos de entrada para sinais analógicos. Para o clock do microcontrolador é utilizado um cristal oscilador de 16Mhz, tem também conexão USB e um conector para ligação da fonte de energia, um conector para programação e um botão de reset para reiniciar a placa.

A biblioteca de código livre FreeRTOS oferece um sistema operacional em tempo real para sistemas embarcados, Por ser de código aberto, isso permitiu o surgimento de várias versões do FreeRTOS que suportam vários dispositivos. Atualmente, existem mais de 35 versões de sistemas operacionais da série de processadores, incluindo Atmel AVR, cujo microcontrolador ATMega328 é o principal componente do Arduino ONU.

O sensor LM35 é um sensor de precisão que apresenta uma saída de tensão linear em relação à temperatura quando é alimentado. Seu terminal de saída emite um sinal de 10mV por graus Celsius. Ele se sobressai em relação a outros sensores quando consideramos esta medida de temperatura, já que a maioria dos dispositivos de sensoriamento trabalham com a escala Kelvin, assim, o LM35 tem uma saída mais precisa, visto que nenhuma variável é subtraída, além de ter um custo reduzido para o sistema.

2 IMPLEMENTAÇÃO EMBARCADA

Um sistema embarcado, no entendimento básico e objetivo dos conhecimentos adquiridos ao longo da disciplina, ele é definido como a integração de um software, modelado para o funcionamento de um hardware que tem como objetivo fazer toda a leitura desse código que recebe e executar funções físicas, como por exemplo sensores e atuadores

para um problema específico. O uso de sistemas embarcados, cresce diariamente devido a necessidade de sistema auxiliar para um determinado problema, que, humanamente, é inviável e ineficiente fazer essa observação. E para essa integração, é necessário a modelagem da lógica de um programa computacional "software" que seja embutido em um dispositivo físico "hardware".

2.1 MATERIAIS UTILIZADOS

- Placa Arduino UNO;
- LCD;
- LED's verde e vermelho;
- Sensor LM35.

2.2 HARDWARE

Para complementar a simulação em software e realizar a adaptação do projeto para um projeto de sistema embarcado, é necessário e basicamente obrigatório termos um sistema de hardware para comportar e servir de alicerce para todo o software desenvolvido, bem como funções específicas de um sistema de tempo real, que é o FreeRTOS. Foi utilizado então, a placa Arduino UNO, que faz leitura do input analógico de um sensor de temperatura LM35, e também , um output de LED, indicando a situação da leitura atual.

Figura 1 - Diagrama Arduino Mega 2560

Figura 2.2 - Diagrama Sensor LM35 no Proteus

2.3 SOFTWARE

Para a implementação do projeto, foi utilizado a plataforma de desenvolvimento Arduino IDE, para a implementação de funções do FreeRTOS. Integrando o arquivo compilado *projeto_final.hex* com o simulador Proteus.

3 IMPLEMENTAÇÃO

Para a implementação das tarefas, foram utilizadas 4 funções na representação, como leitura dos dados analógicos, temperatura do sensor, cálculo da temperatura média e uma função do atuador usando LED.

3.1 Tarefa do atuador: void task led

```
154
      //funcao led
      void task_led(void *pvParameters __attribute__((unused)){
155
        while(){
156
          //intensidade de da luz
157
          int intensidade;
158
          //guarda oq foi consumido do buffer, a temperatura
159
          int aux;
160
         if(i>0){
161
            //consome o buffer
            aux = temp_media[i];
163
            if(aux>29){
164
              intensidade = map(aux, 30, 80, 0, 2500);
165
              tone(pinled, intensidade);
166
167
            }
168
          }
169
          else{
            i=0;
170
171
            noTone(pinled);
172
          }
173
        }
174
      }
```

Figura 3.1 - Função da tarefa do LED

3.2 Tarefa que calcula a temperatura média: void media Temperatura

```
//funcao temperatura media
     void task_mediaTemperatura(void *pvParameters __attribute__((unused)){
123
124
      while(){
         //media da temperatura
125
         float media;
126
        //acumulador do buffer
127
        float acumulador;
128
        //se a flag é 1, calcula a media
129
         if(flag==1){
130
          for(int j=0; j<10; j++){
131
132
             acumulador = acumulador + temp_media[j];
133
134
         //divide pelo tamanho do buffer pra calcular a media
135
         media = acumulador/10;
         //reseta a flag que indica se o buffer ta cheio ou n
136
137
         flag=0;
138
         //reseta a var de cont. do buffer
139
         k=0;
140
141
        if(xSemaphoreTake(xSerialSemaphore, (TickType_t)5)==pdTRUE){
142
           Serial.print("Media: ");
143
           Serial.println(media);
           media=0;
144
           acumulador=0;
145
146
           xSemaphoreGive(xSerialSemaphore);
147
         }
148
         //caso contrario n faz leitura
149
         else{flag=0; i=k}
150
151
152
    }
```

Figura 3.2 - Função da média de temperatura

3.3 Tarefa que recebe a temperatura atual: void task_temperatura

```
//funcao temperatura
     void task_temperatura(void *pvParameters __attribute__((unused)){
 96
 97
       while(){
          struct pino pinoatual;
 98
          if(xQueueReceive(structQueue, &pinoatual, portMAX_DELAY)==pdPASS){
99
100
            temp_media[k]=pinoatual.valor;
           //checa se encheou o vetor
           if(k<10){
102
             i = k;
103
             if(xSemaphoreTake(xSerialSemaphore, (TickType_t)5) == pdTRUE){
105
                //prints da serial
106
                Serial.print("Temperatura lida atual: ");
107
                Serial.println(pinoatual.valor);
108
                //printa posicao do buffer
109
                Serial.println(k);
110
111
               xSemaphoreGive(xSerialSemaphore);
112
                k=k+1;
113
             }
114
            } else{
              i = 0;
115
116
              flag = 1;
117
            }
118
119
       }
120
      }
```

Figura 3.3 - Função da tarefa de temperatura atual

3.4 Tarefa da leitura dos dados do sensor

```
//funcao da task do input analogico, sensor LM35
    void task_inputAnalogico(void *pvParameters __attribute__((unused)){
83
      while(){
        //acessando struct
84
        struct lerpino pinoatual;
        pinoatual.pino = 0;
86
        pinoatual.valor = (float(inputAnalogico(A0))*5 / (1023))/0.01;
87
        //inserir na pilha
        xQueueSend(structQueue, &pinoatual, portMAX_DELAY);
89
        //delay da leitura
90
        vTaskDelay(1);
91
92
     }
93 }
```

Figura 3.4 - Função do input analógico do sensor

3.4 Diagrama da estrutura do projeto

Figura 3.4 - Diagrama do projeto montado no Proteus

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] How to use FreeRTOS structure Queue to Receive Data from Multiple Tasks.

 Microcontrollers Lab. Disponível em:

 https://microcontrollerslab.com/arduino-freertos-structure-queue-receive-data-multiple-resources/. Acesso em: 21 Aug. 2021.
- [2] BERTOLETI, Pedro. Principais conceitos de RTOS para iniciantes com Arduino e FreeRTOS. Embarcados Sua fonte de informações sobre Sistemas Embarcados. Disponível em: https://www.embarcados.com.br/rtos-para-iniciantes-com-arduino-e-freertos/. Acesso em: 21 Aug. 2021.
- [3] Arduino AnalogRead. Arduino.cc. Disponível em: https://www.arduino.cc/en/Reference.AnalogRead. Acesso em: 21 Aug. 2021.
- [4] SENSOR DE TEMPERATURA LM35. Sensor de Temperatura LM35. Bau Eletrônica. Disponível em: ">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor%20de%20Temperatura%20LM35,cada%20grau%20celsius%20de%20temperatura.>">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor%20de%20Temperatura%20LM35,cada%20grau%20celsius%20de%20temperatura.>">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor%20de%20Temperatura%20LM35,cada%20grau%20celsius%20de%20temperatura.>">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor%20de%20temperatura.>">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor%20de%20temperatura.>">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura.>">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura.>">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura.>">https://www.baudaeletronica.com.br/sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-temperatura-lm35.html#:~:text=O%20Sensor-de-t
- [5] How to "Multithread" an Arduino (Protothreading Tutorial). Arduino Project Hub. Disponível

 https://create.arduino.cc/projecthub/reanimationxp/how-to-multithread-an-arduino-protothreading-tutorial-dd2c37. Acesso em: 25 Aug. 2021.