Plan du cours

l.	Le théorème de Pythagore						
	1. Reconnaître l'hypoténuse dans un triangle rectangle	. 1					
	2. Énoncé du théorème de Pythagore	. 2					
	3. Applications du théorème de Pythagore	. 3					
11.	La réciproque du théorème de Pythagore	4					
	1. Qu'est-ce qu'une réciproque?	. 4					
	2. La réciproque du théorème de Pythagore	2					

Chapitre 2 : Le théorème de Pythagore et sa réciproque

Remarque:	Ces théorèmes	ne s'appliquent	qu'aux	triangles rectan	gles!
-----------	---------------	-----------------	--------	------------------	-------

Mes objectifs:

Introduction : Conjecture du théorème de Pythagore

- 1. Tracer un triangle ABC rectangle en B, veuillez à prendre des mesures simples.
- 2. Compléter le tableau suivant :

Triangle n°	AB	ВС	AC	AB^2	BC ²	AC^2	$AB^2 + BC^2$
1							
2							
3							

I. Le théorème de Pythagore

1. Reconnaître l'hypoténuse dans un triangle rectangle

Définition

Dans un triangle rectangle, le côté opposé à l'angle droit est appelé l'hypoténuse.

Remarque : Dans un triangle rectangle l'hypoténuse est le plus grand des 3 côtés.

Exercice d'application 1 —

Repasser en rouge les hypoténuses des triangles rectangles suivants :

2. Énoncé du théorème de Pythagore

Théorème

Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.

En pratique :

Si ABC est un triangle rectangle en A alors $BC^2 = AC^2 + AB^2$.

Exercice d'application 2 -

Pour chaque triangle rectangle , repasser l'hypoténuse en rouge et écrire l'égalité du théorème de Pythagore appliqué à ce triangle :

3.	Applications	du	théorème	de	Pythagore
J.	Applications	uu	the of the	uc	1 yellagolc

Objectif 1	: Calculer la longueur	de l'hypoténuse dans	un triangle rectangle.
------------	------------------------	----------------------	------------------------

Soit ERL un triangle rectangle en R tel que ER = 9 cm et RL = 12 cm. Calculer la longueur LE.

On sait que le triangle ERL est rectangle en R. L'hypoténuse est le côté [LE].

Donc d'après le théorème de Pythagore, on a :

Or, **EF est une longueur donc** $LE \ge 0$. On utilise alors la touche racine carré de la calculatrice.

Donc

• Objectif 2 : Calculer la longueur d'un des côtés de l'angle droit dans un triangle rectangle.

Exemple 2:

Soit DFE un triangle rectangle en E.

Calculer la longueur EF (donner l'arrondi au dixième) sachant que ED = 5 cm et DF = 13 cm.

On sait que le triangle DFE est rectangle en E. L'hypoténuse est le côté [DF].

Donc d'après le théorème de Pythagore, on a :

Or, ${\sf EF}$ est une longueur donc ${\sf EF} \ge 0$. On utilise alors la touche racine carré de la calculatrice.

Donc

II. La réciproque du théorème de Pythagore

1. Qu'est-ce qu'une réciproque?

Considérons la propriété suivante : " Si je suis un Homme, j'ai des yeux ".

La propriété réciproque est « Si j'ai des yeux, je suis un Homme ».

→ La propriété est vraie, par contre, sa réciproque est fausse.

Considérons maintenant le théorème de Pythagore .

Le théorème de Pythagore pour un triangle ABC rectangle en A dit :

Sa réciproque serait donc : " Si je suis un triangle ABC tel que alors je suis "

On démontrera en accompagnement personnalisé que cette réciproque est vraie.

2. La réciproque du théorème de Pythagore

Théorème

(RÉCIPROQUE) Dans un triangle, si le carré de la longueur du plus grand côté est égal à la somme des carrés des deux autres côtés alors ce triangle est rectangle et admet ce plus grand côté pour hypoténuse.

Exemple 1:

On considère le triangle ZEN tel que NE = 16 cm, ZE = 12 cm et ZN = 20 cm. Montrons que le triangle ZEN est rectangle.

Dans le triangle ZEN, [ZN] est le plus grand côté.

D'une part, $ZN^2 = 20^2 = 400$

D'autre part,
$$ZE^2 + NE^2 = 12^2 + 16^2$$

$$ZE^2 + NE^2 = 144 + 256$$

$$ZE^2 + NE^2 = 400$$

Donc $AB^2 = BC^2 + AC^2$.

D'après la réciproque du théorème de Pythagore, on peut affirmer que le triangle ZEN est rectangle en E.

Exemple 2:

On considère un triangle IJK tel que IJ = 5,4 cm; JK = 3,5 cm et KI =4,1 cm . Le triangle IJK est-il rectangle?

Dans le triangle IJK, [IJ] est le plus grand côté.

Le théorème de Pythagore et sa réciproque

D'une part,
$$IJ^2 = 5, 4^2$$

 $IJ^2 = 29, 16$

D'autre part,
$$JK^2 + KI^2 = 3,5^2 + 4,1^2$$

 $JK^2 + KI^2 = 12,25 + 16,81$
 $JK^2 + KI^2 = 29,06$

Donc
$$IJ^2 \neq JK^2 + KI^2$$
.

Si le triangle était rectangle, d'après le théorème de Pythagore on aurait $IJ^2 = JK^2 + KI^2$. Puisque ce n'est pas le cas, on peut affirmer que le triangle IJK n'est pas un triangle rectangle.