Relationship between Six Nations and World Cup Performances

In [587]:

```
#Install relevent programs
%pip install beautifulsoup4 requests selenium bs4
%pip install --upgrade selenium webdriver-manager
Requirement already satisfied: beautifulsoup4 in c:\users\gre01\anaconda3\lib\site-packag
es (4.10.0)
Requirement already satisfied: requests in c:\users\gre01\anaconda3\lib\site-packages (2.
26.0)
Requirement already satisfied: selenium in c:\users\gre01\anaconda3\lib\site-packages (4.
20.0)
Requirement already satisfied: bs4 in c:\users\gre01\anaconda3\lib\site-packages (0.0.2)
Requirement already satisfied: soupsieve>1.2 in c:\users\gre01\anaconda3\lib\site-package
s (from beautifulsoup4) (2.2.1)
Requirement already satisfied: idna<4,>=2.5 in c:\users\gre01\anaconda3\lib\site-packages
(from requests) (3.2)
Requirement already satisfied: charset-normalizer~=2.0.0 in c:\users\gre01\anaconda3\lib\
site-packages (from requests) (2.0.4)
Requirement already satisfied: certifi>=2017.4.17 in c:\users\gre01\anaconda3\lib\site-pa
ckages (from requests) (2021.10.8)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\users\gre01\anaconda3\lib\site
-packages (from requests) (1.26.7)
Requirement already satisfied: typing extensions>=4.9.0 in c:\users\gre01\anaconda3\lib\s
ite-packages (from selenium) (4.11.0)
Requirement already satisfied: trio~=0.17 in c:\users\gre01\anaconda3\lib\site-packages (
from selenium) (0.25.0)
Requirement already satisfied: trio-websocket~=0.9 in c:\users\gre01\anaconda3\lib\site-p
ackages (from selenium) (0.11.1)
Requirement already satisfied: cffi>=1.14 in c:\users\gre01\anaconda3\lib\site-packages (
from trio\sim=0.17->selenium) (1.14.6)
Requirement already satisfied: outcome in c:\users\gre01\anaconda3\lib\site-packages (fro
m trio~=0.17->selenium) (1.3.0.post0)
Requirement already satisfied: sortedcontainers in c:\users\gre01\anaconda3\lib\site-pack
ages (from trio~=0.17->selenium) (2.4.0)
Requirement already satisfied: exceptiongroup in c:\users\gre01\anaconda3\lib\site-packag
es (from trio\sim=0.17->selenium) (1.2.1)
Requirement already satisfied: sniffio>=1.3.0 in c:\users\gre01\anaconda3\lib\site-packag
es (from trio\sim=0.17->selenium) (1.3.1)
Requirement already satisfied: attrs>=23.2.0 in c:\users\gre01\anaconda3\lib\site-package
s (from trio\sim=0.17->selenium) (23.2.0)
Requirement already satisfied: pycparser in c:\users\gre01\anaconda3\lib\site-packages (f
rom cffi>=1.14->trio~=0.17->selenium) (2.20)
Requirement already satisfied: wsproto>=0.14 in c:\users\gre01\anaconda3\lib\site-package
s (from trio-websocket~=0.9->selenium) (1.2.0)
Requirement already satisfied: PySocks!=1.5.7,<2.0,>=1.5.6 in c:\users\gre01\anaconda3\li
b\site-packages (from urllib3<1.27,>=1.21.1->requests) (1.7.1)
Requirement already satisfied: h11<1,>=0.9.0 in c:\users\gre01\anaconda3\lib\site-package
s (from wsproto>=0.14->trio-websocket~=0.9->selenium) (0.14.0)
Note: you may need to restart the kernel to use updated packages.
Requirement already satisfied: selenium in c:\users\gre01\anaconda3\lib\site-packages (4.
20.0)
Requirement already satisfied: webdriver-manager in c:\users\gre01\anaconda3\lib\site-pac
kages (4.0.1)
Requirement already satisfied: trio-websocket~=0.9 in c:\users\gre01\anaconda3\lib\site-p
ackages (from selenium) (0.11.1)
Requirement already satisfied: urllib3[socks]<3,>=1.26 in c:\users\gre01\anaconda3\lib\si
te-packages (from selenium) (1.26.7)
Requirement already satisfied: certifi>=2021.10.8 in c:\users\gre01\anaconda3\lib\site-pa
ckages (from selenium) (2021.10.8)
Requirement already satisfied: trio~=0.17 in c:\users\gre01\anaconda3\lib\site-packages (
from selenium) (0.25.0)
```

Requirement already satisfied: typing extensions>=4.9.0 in c:\users\gre01\anaconda3\lib\s

ite-packages (from selenium) (4.11.0)

```
Requirement already satisfied: requests in c:\users\gre01\anaconda3\lib\site-packages (fr
om webdriver-manager) (2.26.0)
Requirement already satisfied: packaging in c:\users\gre01\anaconda3\lib\site-packages (f
rom webdriver-manager) (21.0)
Requirement already satisfied: python-dotenv in c:\users\gre01\anaconda3\lib\site-package
s (from webdriver-manager) (1.0.1)
Requirement already satisfied: sniffio>=1.3.0 in c:\users\gre01\anaconda3\lib\site-packag
```

es (from trio $\sim=0.17$ ->selenium) (1.3.1) Requirement already satisfied: outcome in c:\users\gre01\anaconda3\lib\site-packages (fro

m trio \sim =0.17->selenium) (1.3.0.post0)

Requirement already satisfied: attrs>=23.2.0 in c:\users\gre01\anaconda3\lib\site-package s (from trio \sim =0.17->selenium) (23.2.0)

Requirement already satisfied: cffi>=1.14 in c:\users\gre01\anaconda3\lib\site-packages (from trio $\sim=0.17$ ->selenium) (1.14.6)

Requirement already satisfied: sortedcontainers in c:\users\gre01\anaconda3\lib\site-pack ages (from trio~=0.17->selenium) (2.4.0)

Requirement already satisfied: exceptiongroup in c:\users\gre01\anaconda3\lib\site-packag es (from trio $\sim=0.17$ ->selenium) (1.2.1)

Requirement already satisfied: idna in c:\users\gre01\anaconda3\lib\site-packages (from t $rio \sim = 0.17 - selenium)$ (3.2)

Requirement already satisfied: pycparser in c:\users\gre01\anaconda3\lib\site-packages (f rom cffi \geq =1.14 \rightarrow trio \sim =0.17 \rightarrow selenium) (2.20)

Requirement already satisfied: wsproto>=0.14 in c:\users\gre01\anaconda3\lib\site-package s (from trio-websocket~=0.9->selenium) (1.2.0)

Requirement already satisfied: PySocks!=1.5.7,<2.0,>=1.5.6 in c:\users\gre01\anaconda3\li b\site-packages (from urllib3[socks]<3,>=1.26->selenium) (1.7.1)

Requirement already satisfied: h11<1,>=0.9.0 in c:\users\gre01\anaconda3\lib\site-package s (from wsproto>=0.14->trio-websocket~=0.9->selenium) (0.14.0)

Requirement already satisfied: pyparsing>=2.0.2 in c:\users\gre01\anaconda3\lib\site-pack ages (from packaging->webdriver-manager) (3.0.4)

Requirement already satisfied: charset-normalizer~=2.0.0 in c:\users\gre01\anaconda3\lib\ site-packages (from requests->webdriver-manager) (2.0.4)

Note: you may need to restart the kernel to use updated packages.

In [708]:

%pip install plotly graphviz pearsonr statsmodels

Requirement already satisfied: plotly in c:\users\gre01\anaconda3\lib\site-packages (5.22

Requirement already satisfied: graphviz in c:\users\gre01\anaconda3\lib\site-packages (0. 20.3)

Requirement already satisfied: pearsonr in c:\users\gre01\anaconda3\lib\site-packages (0.

Requirement already satisfied: statsmodels in c:\users\gre01\anaconda3\lib\site-packages (0.12.2)

Requirement already satisfied: packaging in c:\users\gre01\anaconda3\lib\site-packages (f rom plotly) (21.0)

Requirement already satisfied: tenacity>=6.2.0 in c:\users\gre01\anaconda3\lib\site-packa ges (from plotly) (8.2.3)

Requirement already satisfied: numpy>=1.15 in c:\users\gre01\anaconda3\lib\site-packages (from statsmodels) (1.20.3)

Requirement already satisfied: scipy >= 1.1 in $c: \users gre01 \anaconda3 \lib \site-packages ($ from statsmodels) (1.7.1)

Requirement already satisfied: pandas>=0.21 in c:\users\gre01\anaconda3\lib\site-packages (from statsmodels) (1.3.4)

Requirement already satisfied: patsy>=0.5 in c:\users\gre01\anaconda3\lib\site-packages (from statsmodels) (0.5.2)

Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\gre01\anaconda3\lib\sit e-packages (from pandas>=0.21->statsmodels) (2.8.2)

Requirement already satisfied: pytz>=2017.3 in c:\users\gre01\anaconda3\lib\site-packages (from pandas>=0.21->statsmodels) (2021.3)

Requirement already satisfied: six in c:\users\gre01\anaconda3\lib\site-packages (from pa tsy >= 0.5 - statsmodels) (1.16.0)

Requirement already satisfied: pyparsing>=2.0.2 in c:\users\gre01\anaconda3\lib\site-pack ages (from packaging->plotly) (3.0.4)

Note: you may need to restart the kernel to use updated packages.

```
In [591]:
import requests
from bs4 import BeautifulSoup
import pandas as pd
In [593]:
def parse_html_from_url(url):
    #Fetch and parse HTML from a specified URL
    response = requests.get(url)
   response.raise for status()
    soup = BeautifulSoup(response.text, 'html.parser')
    return soup
In [595]:
def extract data by section(soup, section id):
    #Extract data from a section specified by its ID
    section = soup.find('span', {'id': section id})
    if section:
        table = section.find next('table', {'class': 'wikitable'})
        if table:
            return extract table data(table)
            print(f"No table found for {section id}")
        print(f"No section found for {section id}")
    return pd.DataFrame()
In [597]:
def extract table data(table):
    #Extract rows from the specified table
    rows = table.find all('tr')
    data = []
    for row in rows:
        cols = row.find_all('td')
        if cols:
            year text = cols[0].text.strip()
            try:
                year = int(year text) # Convert year to integer
            except ValueError:
                print(f"Skipping row, invalid year: {year text}")
                continue
            if year > 2024:
                print(f"Skipping future tournament year: {year}")
                continue # Skip future years
            try:
                champion = cols[2].text.strip()
                runner up = cols[4].text.strip()
                third = cols[5].text.strip()
                data.append((year text, champion, runner up, third))
            except IndexError as e:
                print(f"Error processing row: {row}, error: {e}")
    return pd.DataFrame(data, columns=['Year', 'Champion', 'Runner-up', 'Third'])
In [599]:
#URL of the Wikipedia page for the Rugby World Cup
url = 'https://en.wikipedia.org/wiki/Rugby World Cup'
soup = parse html from url(url)
section id = 'Tournaments'
```

Third

World Cup Data = extract data by section(soup, section id)

Runner-up

print("World Cup Data:")
print(World_Cup_Data)

World Cup Data:

Year

Skipping future tournament year: 2027 Skipping future tournament year: 2031

Champion

```
2 1995 South Africa New Zealand
                                          France
         Australia
-
           Australia France South Africa
England Australia New Zealand
3 1999
  2003
  2007 South Africa England
2011 New Zealand France
                                    Argentina
Australia
5
  2011
        New Zealand
                           France
                        Australia South Africa
7
  2015
         New Zealand
  2019 South Africa England New Zealand
  2023 South Africa New Zealand England
In [601]:
World Cup Data.to csv('World Cup Data.csv', index=False)
```

Wales

France

1 1991 Australia England New Zealand

World Cup Quarterfinalists Data Collection

```
In [603]:
import time
```

In [605]:

0 1987

New Zealand

```
#Function to extract top teams from each pool
def extract top teams(pool df):
   top teams = []
    #Determine the number of rows per pool
   if int(url.split('/')[-1][:4]) <= 1999:
       rows per pool = 7
    else:
       rows_per_pool = 8
    #Iterate through each pool
    for pool start index in range(0, len(pool df), rows per pool):
       #Get the top two teams from each pool based on points
       top teams.extend(pool df.iloc[pool start index+2:pool start index+4, 0].tolist()
   return top teams
world cup quarterfinalists = pd.DataFrame(columns=['Year', 'Country'])
```

In [607]:

```
#Iterate through each year
for year in range (1987, 2024, 4):
   try:
        #Construct the URL (page layouts change in the year 2011)
       if year <= 2011:
           url = f'https://www.globalrugbyresults.com/{year}rugbyworldcup.html'
           table index = 3
       else:
            url = f'https://www.globalrugbyresults.com/{year}RugbyWorldCup.html'
            table index = 2
        time.sleep(2)
       Rugby World Cup Quarters df = pd.read html(url)
        #Extract the relevant DataFrame containing pool stage results
       pool stage df = Rugby World Cup Quarters df[table index]
        #Extract top teams from each pool
        top teams = extract top teams (pool stage df)
        #Add the year to the list of years
       year list = [year] * len(top teams)
       year_df = pd.DataFrame({'Year': year_list, 'Country': top_teams})
```

```
#Append the current year's data to world cup quarterfinalists
        world_cup_quarterfinalists = world_cup_quarterfinalists.append(year_df, ignore_i
ndex=True)
    except Exception as e:
       print(f"Error processing data for year {year}: {e}")
In [609]:
print(world cup quarterfinalists)
              Country
0
   1987
            Australia
1
   1987
              England
2
   1987
                Wales
3
   1987
               Ireland
         New Zealand
4
   1987
    . . .
77 2023 South Africa
   2023
78
                 Wales
79
   2023
                 Fiji
80 2023
              England
81 2023
             Argentina
[82 rows x 2 columns]
In [611]:
world cup quarterfinalists.to csv('world cup quarterfinalists.csv', index=False)
Six Nations Data Collection
In [613]:
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected conditions as EC
from webdriver manager.chrome import ChromeDriverManager
In [615]:
def fetch page(url):
    options = webdriver.ChromeOptions()
    options.add argument('--headless')
    driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=
options)
    driver.get(url)
    return driver
In [617]:
def scrape season_data(driver):
    try:
        standings = []
        #Wait for the Javascript driven dynamic content to load
        WebDriverWait(driver, 3).until(EC.presence of element located((By.CSS SELECTOR,
".ui-table row")))
        rows = driver.find elements(By.CSS SELECTOR, ".ui-table row")
        #Debug
        #print(f"Found {len(rows)} rows")
        for row in rows:
            rank = row.find element(By.CSS SELECTOR, ".table cell--rank .tableCellRank"
).text.strip()
            team name = row.find element(By.CSS SELECTOR, ".tableCellParticipant name")
.text.strip()
```

total points = row.find element(By.CSS SELECTOR, ".table cell--points").tex

total playing points = row.find element (By.CSS SELECTOR, ".table cell--tota

t.strip()

In [619]:

```
def compile data(url):
   main driver = fetch page(url)
    #Filter only the links of interest
    links = main driver.find elements(By.CSS SELECTOR, 'a[href*="/six-nations-20"]:not([
href*="standings"])')
    #Debug so I dont have to go through all 24 years each time
    #year urls = [link.get attribute('href') for link in links if '2024' in link.text or
'2023' in link.text]
    year_urls = [link.get_attribute('href') for link in links]
    results = []
    for year url in year_urls:
        print(f"Processing {year url}")
        driver year = fetch page(year url)
        standings link = driver year.find element (By.CSS SELECTOR, 'a[href*="standings"]
• )
        standings url = standings link.get attribute('href')
        driver standings = fetch page(standings url)
        teams = scrape season data(driver standings)
        if teams:
            #Extract year from the URL
            year = standings url.split('/')[-2].split('-')[-1] if 'standings' in standin
gs url.split('/')[-1] else standings url.split('/')[-3].split('-')[-1]
            for team in teams:
                results.append([year] + list(team.values()))
        driver standings.quit()
        driver_year.quit()
   main driver.quit()
    return pd.DataFrame(results, columns=['Year', 'Rank', 'Team', 'Points', 'Scored Poin
ts'])
```

In [621]:

```
main_url = 'https://www.livesport.com/en/rugby-union/europe/six-nations/archive/'
six_nations_data = compile_data(main_url)
print(six_nations_data)
```

```
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2024/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2023/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2022/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2021/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2020/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2019/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2018/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2017/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2016/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2015/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2014/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2013/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2012/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2011/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2010/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2009/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2008/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2007/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2006/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2005/
```

```
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2004/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2003/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2002/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2001/
Processing https://www.livesport.com/en/rugby-union/europe/six-nations-2000/
                   Team Points Scored Points
    Year Rank
0
    2024
          1.
                Ireland
                          20
                                     144:60
           2.
1
    2024
                France
                           15
                                    128:122
2
    2024
           3.
               England
                           14
                                    118:123
3
    2024
           4. Scotland
                            12
                                     115:115
                Italy
    2024
           5.
                            11
                                     92:126
     . . .
. .
                    . . .
145 2000 2.
                                    140:92
                           6
                France
146 2000 3. Ireland
                            6
                                    168:133
147 2000
                            6
          4.
                Wales
                                    111:135
                            2
148 2000 5. Scotland
                                    95:145
                            2
149 2000 6. Italy
                                    106:228
[150 rows x 5 columns]
In [623]:
print(six nations data.columns)
Index(['Year', 'Rank', 'Team', 'Points', 'Scored Points'], dtype='object')
In [625]:
#Expand 'Scored Points' column into two new columns
six_nations_data[['Points Scored', 'Points Conceded']] = six_nations_data['Scored Points
'].str.split(':', expand=True)
six nations_data['Points Scored'] = pd.to_numeric(six_nations_data['Points Scored'])
six nations data['Points Conceded'] = pd.to numeric(six nations data['Points Conceded'])
six_nations_data['Points Difference'] = six_nations_data['Points Scored'] - six_nations_
data['Points Conceded']
#Remove 'Scored Points' column
six nations data = six nations data.drop(columns=['Scored Points'])
print(six nations data.head())
                Team Points Points Scored Points Conceded
  Year Rank
0
  2024 1.
              Ireland 20
                                       144
                                                         60
1
  2024
         2.
              France
                          15
                                       128
                                                        122
         3.
                                                        123
  2024
             England
                          14
                                       118
3
  2024
                          12
                                       115
                                                        115
         4.
             Scotland
  2024
         5.
                Italy
                          11
                                        92
                                                        126
  Points Difference
0
                 84
                  6
1
2
                 -5
3
                  0
4
                -34
In [627]:
six nations data.to csv('Six Nations data.csv', index=False)
```

Investment Analysis

```
In [629]:
```

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [631]:
```

```
investment data path = '6 nations teams investments.csv'
investment data = pd.read csv(investment data path)
print(investment data)
             Team Expenditure (£/€) Expenditure (£)
   Year
0
         England
                          99400000.0
   2023
                                        9.940000e+07
   2023
                        142944183.0
                                        1.223639e+08
1
          France
2
   2023
          Ireland
                         93118736.0
                                        7.971203e+07
3
   2023
                          37496556.9
                                        3.209802e+07
           Italy
4
   2023 Scotland
                                        7.538200e+07
                          75382000.0
5
           Wales
   2023
                          79500000.0
                                        7.950000e+07
6
   2022
                         77400000.0
                                        7.740000e+07
         England
7
   2022
          France
                        125699609.0
                                        1.076021e+08
8
   2022
        Ireland
                        109686828.0
                                        9.389475e+07
9
   2022
                         36037805.5
                                        3.084929e+07
          Italy
10 2022 Scotland
                         61051000.0
                                        6.105100e+07
11 2022
          Wales
                         70100000.0
                                        7.010000e+07
12 2021 England
                         57400000.0
                                        5.740000e+07
13 2021
                         88150169.0
                                        7.545881e+07
          France
14 2021 Ireland
                         94093057.0
                                        8.054608e+07
15 2021
                         32314997.0
                                        2.766247e+07
           Italy
16 2021 Scotland
                                        4.881100e+07
                         48811000.0
17 2021
           Wales
                         43800000.0
                                        4.380000e+07
In [633]:
#Cleaning data
six nations data['Year'] = six nations data['Year'].astype(str).str.strip()
investment data['Year'] = investment data['Year'].astype(str).str.strip()
six nations data['Points'] = pd.to numeric(six nations data['Points'], errors='coerce')
#Filter Six Nations data for the years 2022 to 2024
six nations filtered = six nations data[six nations data['Year'].isin(['2024', '2023', '
2022'])]
average scores = six nations filtered.groupby('Team')['Points'].mean().reset index()
average investment = investment data.groupby('Team')['Expenditure (£)'].mean().reset ind
ex()
#Merge the averaged scores and investments
merged investment data = pd.merge(average scores, average investment, on='Team', how='in
ner')
print(merged investment data)
              Points Expenditure (£)
      Team
   England 11.333333
                         7.806667e+07
0
1
    France 20.000000
                          1.018083e+08
   Ireland 22.666667
                          8.471762e+07
     Italy 5.333333
3
                         3.020326e+07
4 Scotland 12.333333
                         6.174800e+07
5
     Wales 5.666667
                         6.446667e+07
In [635]:
import matplotlib.ticker as ticker
#Plotting the relationship between Investment and Ranking
plt.figure(figsize=(10, 6))
ax = sns.scatterplot(data=merged investment data, x='Expenditure (£)', y='Points', hue='
Team', s=100, style='Team')
plt.title('Financial Investment vs Final Points in Six Nations 2024')
plt.xlabel('Financial Investment in GBP')
plt.ylabel('Final Points')
plt.grid(True)
#Format the x-axis
ax.xaxis.set major formatter(ticker.FuncFormatter(lambda x, pos: '{:,.0f}M'.format(x/1e6
```

)))

In [637]:

print(investment_data)

0	Year 2023	Team England	Expenditure (£/€) 99400000.0	Expenditure (£) 9.940000e+07
1	2023	France	142944183.0	1.223639e+08
2	2023	Ireland	93118736.0	7.971203e+07
3	2023	Italy	37496556.9	3.209802e+07
4	2023	Scotland	75382000.0	7.538200e+07
5	2023	Wales	79500000.0	7.950000e+07
6	2022	England	77400000.0	7.740000e+07
7	2022	France	125699609.0	1.076021e+08
8	2022	Ireland	109686828.0	9.389475e+07
9	2022	Italy	36037805.5	3.084929e+07
10	2022	Scotland	61051000.0	6.105100e+07
11	2022	Wales	70100000.0	7.010000e+07
12	2021	England	5740000.0	5.740000e+07
13	2021	France	88150169.0	7.545881e+07
14	2021	Ireland	94093057.0	8.054608e+07
15	2021	Italy	32314997.0	2.766247e+07
16	2021	Scotland	48811000.0	4.881100e+07
17	2021	Wales	43800000.0	4.380000e+07

In [639]:

print(merged_data_1)

	Year	Rank	Team	Points	Expenditure (£/€)	Expenditure (£)	\
0	2023	1.	Ireland	27	93118736.0	7.971203e+07	
1	2023	2.	France	20	142944183.0	1.223639e+08	
2	2023	3.	Scotland	15	75382000.0	7.538200e+07	
3	2023	4.	England	10	99400000.0	9.940000e+07	
4	2023	5.	Wales	6	79500000.0	7.950000e+07	
5	2023	6.	Italy	1	37496556.9	3.209802e+07	
6	2022	1.	France	25	125699609.0	1.076021e+08	
7	2022	2.	Ireland	21	109686828.0	9.389475e+07	
8	2022	3.	England	10	77400000.0	7.740000e+07	
9	2022	4.	Scotland	10	61051000.0	6.105100e+07	
10	2022	5.	Wales	7	70100000.0	7.010000e+07	
11	2022	6.	Italy	4	36037805.5	3.084929e+07	
12	2021	1.	Wales	20	43800000.0	4.380000e+07	
13	2021	2.	France	16	88150169.0	7.545881e+07	
14	2021	3.	Ireland	15	94093057.0	8.054608e+07	
15	2021	4.	Scotland	15	48811000.0	4.881100e+07	
16	2021	5.	England	10	57400000.0	5.740000e+07	

```
Expenditure per Point (£)
0
                2.952298e+06
1
                6.118195e+06
2
                5.025467e+06
3
                9.940000e+06
4
                1.325000e+07
5
                3.209802e+07
6
                4.304084e+06
7
                4.471178e+06
8
                7.740000e+06
9
                6.105100e+06
10
                1.001429e+07
11
                7.712322e+06
12
                2.190000e+06
13
                4.716176e+06
14
                5.369738e+06
15
                3.254067e+06
                5.740000e+06
16
17
                0.000000e+00
In [640]:
#Clean data
merged data 1['Points'] = merged data 1['Points'].astype(int)
merged data 1['Year'] = merged data 1['Year'].astype(int)
#Calculate 'Expenditure per Point (£)'
merged data 1['Expenditure per Point (£)'] = merged data <math>1['Expenditure (£)'] / merged da
ta 1['Points']
#Handling infinite values
merged data 1['Expenditure per Point (£)'].replace([np.inf, -np.inf], np.nan, inplace=Tr
ue)
merged data 1['Expenditure per Point (£)'].fillna(0, inplace=True) # Assuming you want
to set 0 where calculation was not possible
print("\nFinal Data with Expenditure per Point:\n")
print (merged data 1[['Year', 'Team', 'Points', 'Expenditure (£)', 'Expenditure per Point
(£)']])
Final Data with Expenditure per Point:
   Year
             Team Points Expenditure (£) Expenditure per Point (£)
         Ireland 27
\cap
   2023
                          7.971203e+07
                                                        2.952298e+06
                      20
1
   2023
                             1.223639e+08
                                                        6.118195e+06
          France
2
   2023 Scotland
                      15
                             7.538200e+07
                                                        5.025467e+06
3
   2023 England
                      10
                             9.940000e+07
                                                        9.940000e+06
   2023
           Wales
                      6
                             7.950000e+07
                                                        1.325000e+07
                            3.209802e+07
5
   2023
                       1
           Italy
                                                        3.209802e+07
                     25
   2022
          France
                            1.076021e+08
                                                        4.304084e+06
         Ireland
7
   2022
                     21
                             9.389475e+07
                                                        4.471178e+06
                                                        7.740000e+06
8
   2022
         England
                     10
                             7.740000e+07
9
   2022 Scotland
                      10
                             6.105100e+07
                                                        6.105100e+06
10 2022
                       7
                             7.010000e+07
           Wales
                                                        1.001429e+07
                       4
   2022
                             3.084929e+07
11
            Italy
                                                        7.712322e+06
   2021
                       20
12
            Wales
                             4.380000e+07
                                                        2.190000e+06
13
   2021
                       16
                             7.545881e+07
           France
                                                        4.716176e+06
```

32314997.0

2.766247e+07

0

In [641]:

2021

2021

2021

2021

15

16

17

Ireland

England

Italy

Scotland

15

15

10

0

17 2021

6.

Italy

```
#Define custom palette
team_colors = {
    'Ireland': '#169b62',
    'France': '#2033a0',
    'England': '#000000',
```

5.369738e+06

3.254067e+06

5.740000e+06

0.000000e+00

8.054608e+07

4.881100e+07

5.740000e+07

2.766247e+07

```
'Scotland': '#0065bf',
    'Italy': '#ADD8E6',
    'Wales': '#d30731'
plt.figure(figsize=(12, 8))
ax = sns.lineplot(data=merged data 1, x='Year', y='Expenditure per Point (£)', hue='Team
', marker='o', palette=team colors)
plt.title('Yearly Expenditure per Point for Six Nations Teams')
plt.xlabel('Year')
plt.ylabel('Expenditure per Point (£)')
plt.grid(True)
ax.set xticks(merged data 1['Year'].unique())
ax.set xticklabels(merged data 1['Year'].unique(), rotation=45)
#Format the y-axis to display currency
formatter = ticker.FuncFormatter(lambda x, pos: f'f{x:,.0f}')
ax.yaxis.set_major_formatter(formatter)
plt.legend(title='Team')
plt.tight_layout()
plt.show()
```


In [702]:

```
#Define team colors for consistency
team colors = {
    'Ireland': '#169b62',
    'France': '#2033a0',
    'England': '#FFFFFF',
    'Scotland': '#0065bf',
    'Italy': '#ADD8E6',
    'Wales': '#d30731'
#Define border colors
border colors = {
    'Ireland': '#169b62',
    'France': '#2033a0',
    'England': 'red',
    'Scotland': '#0065bf',
    'Italy': '#ADD8E6',
    'Wales': 'darkgreen'
#Create the Plotly figure
fig = go.Figure()
#Add bars for Expenditure
fig.add trace(go.Bar(
    x=average data['Team'],
    y=average data['Expenditure (£)'],
   name='Average Expenditure (£)',
    #Apply colours
   marker color=[team colors[team] for team in average data['Team']],
   marker line color=[border colors[team] for team in average data['Team']],
   marker line width=5,
    #Add hover pop-up box with key info
    hoverinfo="text",
    hovertemplate=(
        "Team: %{x}<br>" +
        "Average Expenditure: £%{y:,.0f}<br>" +
        "Expenditure per Point: £%{customdata:.2f}<extra></extra>"
    ),
    customdata=average data['Expenditure per Point (£)'],
    showlegend=False
) )
#Add a line for Points with secondary Y-axis
fig.add trace(go.Scatter(
    x=average data['Team'],
    y=average_data['Points'],
   name='Points',
   mode='lines+markers',
    line=dict(color='gold', width=3),
    yaxis='y2'
) )
#layout of both y-axis
fig.update layout(
    title='Financial Investment vs Final Points in Six Nations 2022-2024',
    xaxis title='Countries',
    yaxis=dict(
        title='Average Investment (£)',
        titlefont=dict(color='blue'),
        tickfont=dict(color='blue'),
        tickprefix="£",
        ticksuffix="M",
        position=0
    ),
    yaxis2=dict(
        title='Average Points',
        titlefont=dict(color='gold'),
        tickfont=dict(color='gold'),
        overlaying='y',
        side='right',
```

```
position=1
   ),
   plot bgcolor='white',
   legend=dict(x=0.70, y=0.99, bordercolor='black', borderwidth=1)
#Remove grid lines for clarity
fig.update_xaxes(showgrid=False, linewidth=1, linecolor='black')
fig.update yaxes(showgrid=False, linewidth=1, linecolor='black')
#Add a subnote
fig.add annotation(
   x=0.5,
   y=-0.2,
   xref="paper",
   yref="paper",
   text="Data ordered from highest to lowest Expenditure per Point",
   showarrow=False,
   font=dict(
       family="Arial, sans-serif",
       size=12,
       color="black"
   ),
   align="center"
fig.show()
```

World Cup Quarter Finalists (Top 8) Analysis

```
In [644]:
```

```
#Filter the data to include only Six Nations teams
six_nations_teams = ['England', 'Scotland', 'Wales', 'Ireland', 'France', 'Italy'] # As
suming Italy is included in the Six Nations
six_nations_data_teams = world_cup_quarterfinalists[world_cup_quarterfinalists['Country']
```

```
.isin(six_nations_teams)]
#Pivot the dataFrame to get the count of appearances for each team in each year
heatmap data quarters = six nations data teams.pivot table(index='Country', columns='Yea
r', aggfunc='size', fill value=0)
#Not all Six Nations teams will have made the quarter finals ever, so append them in for
consistency
for team in six nations teams:
    if team not in heatmap data quarters.index:
        heatmap data quarters.loc[team] = [0] * len(heatmap data quarters.columns)
print(heatmap data quarters)
                             1999
                                          2007
          1987
                1991
                       1995
                                    2003
                                                 2011
                                                       2015
                                                             2019
                                                                    2023
Year
Country
England
             1
                          1
                                 1
                                       1
                                              1
                                                    1
                                                          0
                                                                 1
                                                                       1
             1
                          1
                                       1
                                                    1
                                                                 1
France
                    1
                                 1
                                             1
                                                          1
                                                                       1
Ireland
             1
                    1
                          1
                                 1
                                       1
                                              0
                                                    1
                                                          1
                                                                 1
                                                                       1
Scotland
             1
                    1
                          1
                                 1
                                       1
                                             1
                                                    0
                                                          1
                                                                 0
                                                                       0
Wales
             1
                    0
                          0
                                       1
                                             0
                                                    1
                                                                 1
                                 1
                                                          1
                                                                       1
```

 \cap

Visualisation of Quarterfinals Apperences of Six Nations Teams

In [645]:

Italy

```
#Create the heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(heatmap_data_quarters, cmap='YlGnBu', annot=True, fmt='d', linewidths=0.5, li
necolor='black')
plt.title('Six Nations Teams World Cup Quarter-Final Appearances')
plt.xlabel('Year')
plt.ylabel('Team')
plt.xticks(rotation=45)
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()
```


Year

In [646]:

```
#Reshape the dataFrame
long_format = pd.melt(world_cup_data, id_vars='Year', value_vars=['Champion', 'Runner-up
', 'Third'], var_name='Placement', value_name='Country')
filtered_data = long_format[long_format['Country'].isin(six_nations_teams)]

#Pivot table
heatmap_data_top3 = filtered_data.pivot_table(index='Country', columns='Year', aggfunc='size', fill_value=0)

#Same as above not all teams from the Six Nations will have reached a Top 3 position in the World Cup
for team in six_nations_teams:
    if team not in heatmap_data_top3.index:
        heatmap_data_top3.loc[team] = [0] * len(heatmap_data_top3.columns) # Add a row
of zeros

#Ensure the team order in the heatmap matches quarter finalists
heatmap_data = heatmap_data_top3.loc[six_nations_teams]
```

In [647]:

```
#Create the heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(heatmap_data_top3, cmap='YlGnBu', annot=True, fmt='d', linewidths=0.5, lineco
lor='black')
plt.title('Six Nations Teams World Cup Top-3 Positions')
plt.xlabel('Year')
plt.ylabel('Team')
plt.yticks(rotation=45)
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()
```



```
In [648]:
#Sort the indices of the DataFrame
heatmap data quarters = heatmap data quarters.sort index()
heatmap data top3 = heatmap data top3.sort index()
#Combine plots into one frame
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(24, 10)) # Adjust figsize as needed
#World Cup Quarter-Final Appearances
sns.heatmap(heatmap data quarters, cmap='YlGnBu', annot=True, fmt='d', linewidths=0.5, li
necolor='black', ax=axes[0], cbar=False)
axes[0].set title('Six Nations Teams World Cup Quarter-Final Appearances')
axes[0].set_xlabel('Year')
axes[0].set_ylabel('Team')
axes[0].set xticklabels(axes[0].get xticklabels(), rotation=45)
axes[0].set yticklabels(axes[0].get yticklabels(), rotation=0)
#World Cup Top-3 Appearances
sns.heatmap(heatmap data top3, cmap='YlGnBu', annot=True, fmt='d', linewidths=0.5, lineco
lor='black', ax=axes[1], cbar=False)
axes[1].set title('Six Nations Teams World Cup Top-3 Positions')
axes[1].set xlabel('Year')
axes[1].set ylabel('Team')
axes[1].set xticklabels(axes[1].get xticklabels(), rotation=45)
axes[1].set yticklabels(axes[1].get yticklabels(), rotation=0)
plt.tight layout()
plt.show()
print (heatmap data top3)
                Six Nations Teams World Cup Quarter-Final Appearances
                                                                  Six Nations Teams World Cup Top-3 Position
```


Correlation between Six Nations performance and reaching World Cup Quarterfinals

0

 \cap

 \cap

0

 \cap

 \cap

0

 \cap

Λ

 \cap

0

1

In [649]:

Italy

Wales

Scotland

```
#Reshape and Clean Data
heatmap data long = heatmap data quarters.reset index().melt(id vars='Country', var name
='Year', value name='QuarterFinalist')
heatmap data long['Year'] = heatmap data long['Year'].astype(int)
```

0

0

0

 \cap

0

 \cap

 \cap

 \cap

```
#Rename columns for clarity and consistency
heatmap data long.rename(columns={'Country': 'Team'}, inplace=True)
#Clean six nations data
six nations data['Year'] = six nations data['Year'].astype(int)
six nations data['Points'] = pd.to numeric(six nations data['Points'])
six nations data['Points Scored'] = pd.to numeric(six nations data['Points Scored'])
six nations data['Points Conceded'] = pd.to numeric(six nations data['Points Conceded'])
merged data = pd.merge(six nations data, heatmap data long, on=['Year', 'Team'])
#Calculate the correlations
correlation points = merged data['Points'].corr(merged data['QuarterFinalist'])
correlation points scored = merged data['Points Scored'].corr(merged data['QuarterFinalis
correlation points conceded = merged data['Points Conceded'].corr(merged data['QuarterFi
nalist'])
print(f"The correlation between Six Nations total points and reaching the World Cup quart
er-finals is: {correlation points:.3f}")
print(f"The correlation between Six Nations points scored and reaching the World Cup quar
ter-finals is: {correlation_points_scored:.3f}")
print(f"The correlation between Six Nations points conceded and reaching the World Cup qu
arter-finals is: {correlation points conceded:.3f}")
The correlation between Six Nations total points and reaching the World Cup quarter-final
s is: 0.334
The correlation between Six Nations points scored and reaching the World Cup quarter-fina
ls is: 0.291
The correlation between Six Nations points conceded and reaching the World Cup quarter-fi
nals is: -0.427
In [650]:
plt.figure(figsize=(10, 12))
#Subplot 1: Total Points
plt.subplot(3, 1, 1) # 3 rows, 1 column, 1st subplot
sns.regplot(x='Points', y='QuarterFinalist', data=merged_data, logistic=True, ci=None, s
```

```
catter kws={'color': 'blue'}, line kws={'color': 'red'})
plt.title('Relationship Between Total Six Nations Points and World Cup Quarter-Finals App
earance')
plt.xlabel('Total Six Nations Points')
plt.ylabel('World Cup Quarter-Finals Appearance (1 = Yes, 0 = No)')
#Subplot 2: Points Scored
plt.subplot(3, 1, 2) # 3 rows, 1 column, 2nd subplot
sns.regplot(x='Points Scored', y='QuarterFinalist', data=merged data, logistic=True, ci=
None, scatter kws={'color': 'green'}, line kws={'color': 'black'})
plt.title('Relationship Between Six Nations Points Scored and World Cup Quarter-Finals Ap
pearance')
plt.xlabel('Six Nations Points Scored')
plt.ylabel('World Cup Quarter-Finals Appearance (1 = Yes, 0 = No)')
#Subplot 3: Points Conceded
plt.subplot(3, 1, 3) # 3 rows, 1 column, 3rd subplot
sns.regplot(x='Points Conceded', y='QuarterFinalist', data=merged_data, logistic=True, c
i=None, scatter kws={'color': 'red'}, line kws={'color': 'blue'})
plt.title('Relationship Between Six Nations Points Conceded and World Cup Quarter-Finals
Appearance')
plt.xlabel('Six Nations Points Conceded')
plt.ylabel('World Cup Quarter-Finals Appearance (1 = Yes, 0 = No)')
plt.tight layout()
plt.show()
```

Yes,

In [651]:

```
import statsmodels.api as sm
#Add a constant to the independent variable
merged data['intercept'] = 1.0
#Total Points Model
logit model points = sm.Logit(merged data['QuarterFinalist'], merged data[['intercept',
'Points']])
result points = logit model points.fit()
print("Model Summary for Total Points:")
print(result points.summary())
#Points Scored Model
logit model points scored = sm.Logit(merged data['QuarterFinalist'], merged data[['inter
cept', 'Points Scored']])
result_points_scored = logit_model_points_scored.fit()
print("\nModel Summary for Points Scored:")
print(result_points_scored.summary())
#Points Conceded Model
logit model points conceded = sm.Logit(merged data['QuarterFinalist'], merged data[['int
ercept', 'Points Conceded']])
result points conceded = logit model points conceded.fit()
```

```
print(result_points_conceded.summary())
Optimization terminated successfully.
     Current function value: 0.566361
      Iterations 6
Model Summary for Total Points:
                 Logit Regression Results
______
Dep. Variable: QuarterFinalist No. Observations:
Model:
               Logit Df Residuals:
                                                  34
                     MLE Df Model:
Method:
                                                  1
             Mon, 06 May 2024 Pseudo R-squ.:
Date:
                                               0.1102
             rseudo K-squ.:
15:26:56 Log-Likelihood:
                                              -20.389
Time:
converged:
                  True LL-Null:
             nonrobust LLR p-value:
Covariance Type:
______
         coef std err z P>|z| [0.025 0.975]
intercept -0.3878 0.626 -0.619 0.536 -1.615 0.840 Points 0.1688 0.091 1.846 0.065 -0.010 0.348
______
Optimization terminated successfully.
     Current function value: 0.590113
     Iterations 6
Model Summary for Points Scored:
     Logit Regression Results
______
Dep. Variable: QuarterFinalist No. Observations:
Model:
               Logit Df Residuals:
Method:
                     MLE Df Model:
                                                  1
Date:
            Mon, 06 May 2024 Pseudo R-squ.:
                                              0.07290
Time:
                  15:26:57 Log-Likelihood:
                                               -21.244
converged:
                    True LL-Null:
Covariance Type: nonrobust LLR p-value:
______
                            z  P>|z|  [0.025  0.975]
            coef std err
______
intercept -1.7650 1.465 -1.205 0.228 -4.636
Points Scored 0.0227 0.014 1.668 0.095 -0.004
                                              0.049
______
Optimization terminated successfully.
     Current function value: 0.540494
     Iterations 6
Model Summary for Points Conceded:
                Logit Regression Results
______
Dep. Variable: QuarterFinalist No. Observations:
              Logit Df Residuals:
                                                  34
Model:
Method:
                     MLE Df Model:
            Mon, 06 May 2024 Pseudo R-squ.:
                                               0.1509
Date:
                  15:26:57 Log-Likelihood:
Time:
                                               -19.458
converged:
                   True LL-Null:
Covariance Type: nonrobust LLR p-value: 0.008555
_____
     coef std err z P>|z| [0.025 0.975]
intercept 4.2012 1.579 2.660 0.008 1.106 7.297 Points Conceded -0.0299 0.013 -2.360 0.018 -0.055 -0.005
In [652]:
from sklearn.tree import DecisionTreeClassifier, plot tree
```

print("\nModel Summary for Points Conceded:")

#Iterate through each feature and build a separate model

class names = ['No QF', 'Yes QF']

features = ['Points', 'Points Scored', 'Points Conceded']

feature names = [['Points'], ['Points Scored'], ['Points Conceded']]

```
for feature, name in zip(features, feature names):
    tree model = DecisionTreeClassifier(max depth=3)
    tree model.fit(merged data[name], merged data['QuarterFinalist'])
     #Plot the decision tree
    plt.figure(figsize=(20,10))
    plot tree(tree model, filled=True, feature names=name, class names=class names)
    plt.title(f"Decision Tree for {name[0]}")
    plt.show()
                                                 Decision Tree for Points
                                                Points \leq 3.0
                                                 gini = 0.444
                                                samples = 36
                                               value = [12, 24]
                                                class = Yes QF
               Points <= 0.5
                                                                                 Points <= 16.5
                gini = 0.42
                                                                                  gini = 0.311
               samples = 10
                                                                                  samples = 26
               value = [7, 3]
                                                                                 value = [5, 21]
               class = No QF
                                                                                 class = Yes QF
                                                                      Points <= 14.5
                          Points <= 1.5
     gini = 0.444
                                                                                               gini = 0.0
                           gini = 0.245
                                                                       gini = 0.351
    samples = 3
                                                                                              samples = 4
                           samples = 7
                                                                       samples = 22
    value = [1, 2]
                                                                                             value = [0, 4]
                          value = [6, 1]
                                                                      value = [5, 17]
                                                                                             class = Yes QF
   class = Yes QF
                          class = No QF
                                                                      class = Yes QF
                                                            gini = 0.308
                 gini = 0.0
                                      gini = 0.278
                                                                                    gini = 0.0
                                      samples = 6
                                                           samples = 21
                samples = 1
                                                                                  samples = 1
               value = [1, 0]
                                     value = [5, 1]
                                                           value = [4, 17]
                                                                                  value = [1, 0]
               class = No QF
                                     class = No QF
                                                           class = Yes QF
                                                                                  class = No QF
                                              Decision Tree for Points Scored
                                              Points Scored <= 91.0
                                                  gini = 0.444
                                                  samples = 36
                                                 value = [12, 24]
                                                 class = Yes QF
            Points Scored <= 71.5
                                                                              Points Scored <= 165.0
                 gini = 0.48
                                                                                   gini = 0.355
                samples = 10
                                                                                   samples = 26
                value = [6, 4]
                                                                                  value = [6, 20]
                class = No QF
                                                                                   class = Yes QF
                                                                   Points Scored <= 156.0
                        Points Scored <= 85.0
                                                                                                gini = 0.0
       gini = 0.0
                                                                        gini = 0.386
                             gini = 0.5
      samples = 2
                                                                                               samples = 3
                            samples = 8
                                                                        samples = 23
     value = [2, 0]
                                                                                              value = [0, 3]
                           value = [4, 4]
                                                                       value = [6, 17]
     class = No QF
                                                                                              class = Yes QF
                           class = No QF
                                                                       class = Yes QF
                 gini = 0.444
                                                             gini = 0.351
                                        gini = 0.0
                                                                                     gini = 0.0
                 samples = 6
                                       samples = 2
                                                             samples = 22
                                                                                    samples = 1
                                                                                   value = [1, 0]
                value = [2, 4]
                                       value = [2, 0]
                                                            value = [5, 17]
                                      class = No QF
                                                                                   class = No QF
                class = Yes QF
                                                            class = Yes QF
                                             Decision Tree for Points Conceded
                                                        Points Conceded <= 164.0
                                                               gini = 0.444
                                                               samples = 36
                                                              value = [12, 24]
                                                              class = Yes QF
                                           Points Conceded <= 97.5
                                                                              gini = 0.0
                                                 gini = 0.397
                                                                             samples = 3
                                                 samples = 33
                                                                             value = [3, 0]
                                                value = [9, 24]
                                                                             class = No QF
                                                class = Yes OF
               Points Conceded <= 82.5
                                                                       Points Conceded <= 99.0
```

```
gini = 0.48
               gini = 0.142
              samples = 13
                                                                       samples = 20
             value = [1, 12]
                                                                      value = [8, 12]
              class = Yes QF
                                                                       class = Yes OF
  gini = 0.0
                                                                                      gini = 0.465
                             gini = 0.278
                                                           gini = 0.0
samples = 7
                             samples = 6
                                                                                     samples = 19
                                                         samples = 1
value = [0, 7]
                            value = [1, 5]
                                                         value = [1, 0]
                                                                                     value = [7, 12]
class = Yes QF
                            class = Yes QF
                                                         class = No QF
                                                                                     class = Yes QF
```

In [653]:

```
#Create and fit the model using all features
combined_tree_model = DecisionTreeClassifier(max_depth=3)
combined_tree_model.fit(merged_data[features], merged_data['QuarterFinalist'])

#Plot the decision tree for the combined model
plt.figure(figsize=(20,10))
plot_tree(combined_tree_model, filled=True, feature_names=features, class_names=class_names)
plt.title("Decision Tree using Points, Points Scored, and Points Conceded")
plt.show()
```

Decision Tree using Points, Points Scored, and Points Conceded

Average performances in Six Nations to reach World Cup Quarterfinals and Top 3

In [684]:

```
#Average Total Points
#Reshape world_cup_data to have a single 'Country' column for teams in top 3
top3_teams = world_cup_data.melt(id_vars='Year', value_vars=['Champion', 'Runner-up', 'Th
ird'], var_name='Position', value_name='Team')

#Clean data
six_nations_data['Team'] = six_nations_data['Team'].str.strip()
top3_teams['Team'] = top3_teams['Team'].str.strip()
world_cup_quarterfinalists['Country'] = world_cup_quarterfinalists['Country'].str.strip()

#Make merged dataframes
top3_merge = pd.merge(six_nations_data, top3_teams, on=['Year', 'Team'])
quarterfinals_merge = pd.merge(six_nations_data, world_cup_quarterfinalists, left_on=['Year', 'Team'], right_on=['Year', 'Country'])

#Calculate averages
average_points_top3 = top3_merge['Points'].mean()
```

```
average_points_quarterfinals = quarterfinals_merge['Points'].mean()
print(f"Average Six Nations points for top 3 positions in the World Cup: {average_points_
top3}")
print(f"Average Six Nations points for World Cup quarterfinals qualification: {average_po
ints_quarterfinals}")
```

Average Six Nations points for top 3 positions in the World Cup: 10.0 Average Six Nations points for World Cup quarterfinals qualification: 9.0833333333333334

In [688]:

```
#Average Points Scored
#Calculate averages
average_points_scored_top3 = top3_merge['Points Scored'].mean()
average_points_scored_quarterfinals = quarterfinals_merge['Points Scored'].mean()

print(f"Average Six Nations points for top 3 positions in the World Cup: {average_points_scored_top3}")
print(f"Average Six Nations points for World Cup quarterfinals qualification: {average_points_scored_quarterfinals}")
```

Average Six Nations points for top 3 positions in the World Cup: 138.6 Average Six Nations points for World Cup quarterfinals qualification: 119.0

Correlation between Six Nations Winner and reaching World Cup Top 3

In [689]:

```
#Find the winners from each six nations
six_nations_data['Rank'] = six_nations_data['Rank'].str.strip() # Clean any whitespace
six_nations_winners = six_nations_data[six_nations_data['Rank'] == '1.']
print(six_nations_winners)
```

	Year	Rank	Team	Points	Points Scored	Points Conceded	\
0	2024	1.	Ireland	20	144	60	
6	2023	1.	Ireland	27	151	72	
12	2022	1.	France	25	141	73	
18	2021	1.	Wales	20	164	103	
24	2020	1.	England	18	121	77	
30	2019	1.	Wales	23	114	65	
36	2018	1.	Ireland	23	160	82	
42	2017	1.	England	19	146	81	
48	2016	1.	England	10	132	70	
54	2015	1.	Ireland	8	119	56	
60	2014	1.	Ireland	8	132	49	
66	2013	1.	Wales	8	122	66	
72	2012	1.	Wales	10	109	58	
78	2011	1.	England	8	132	81	
84	2010	1.	France	10	135	69	
90	2009	1.	Ireland	10	121	73	
96	2008	1.	Wales	10	148	66	
102	2007	1.	France	8	155	86	
108	2006	1.	France	8	148	85	
114	2005	1.	Wales	10	151	77	
120	2004	1.	France	10	144	60	
126	2003	1.	England	10	173	46	
132	2002	1.	France	10	156	75	
138	2001	1.	England	8	229	80	
144	2000	1.	England	8	183	70	

	LOTHER	DITTCICHCC
0		84
6		79
12		68
18		61
24		44
30		49
36		78
42		65

48

54

Points Difference

62 63

```
66
                    56
72
                    51
78
                    51
84
                    66
90
                    48
96
                    82
102
                    69
108
                    63
114
                    74
120
                   84
                   127
126
132
                   81
138
                   149
144
                   113
In [692]:
#Merge Six Nations winners with World Cup top 3 data
winners top3 merge = pd.merge(six nations winners, top3 teams, left on=['Year', 'Team'],
right on=['Year', 'Team'])
#Create a binary column indicating if the Six Nations winner was in the top 3 of the Worl
d Cup
winners top3 merge['Top 3 Finish'] = 1
print(winners top3 merge)
   Year Rank
                 Team Points Points Scored Points Conceded
0 2003 1. England
                          10
  Points Difference Top 3 Finish Position
                 127
                                 1 Champion
In [707]:
#Correlation Calculations
#Ensure 'six nations winners' is independent
six nations winners = six nations data[six nations data['Rank'].str.strip() == '1.'].cop
y()
#To remove the copy of a slice error
six nations winners.loc[:, 'Top 3 Finish'] = six nations winners.apply(
    lambda row: 1 if (row['Year'], row['Team']) in list(zip(winners top3 merge['Year'],
winners top3 merge['Team'])) else 0,
    axis=1
#Correlation calc
from scipy.stats import pearsonr
correlation, p value = pearsonr(six nations winners['Points'], six nations winners['Top 3
Finish'])
print("Correlation coefficient:", correlation)
print("P-value:", p value)
Correlation coefficient: -0.10305766184139871
P-value: 0.6239809121574545
In [710]:
import statsmodels.api as sm
six nations winners['Non Top 3 Finish'] = six nations winners['Top 3 Finish'].apply(lambd
a x: 1 if x == 0 else 0)
#Add an intercept term
six nations winners['intercept'] = 1
#Logistic regression model
logit model = sm.Logit(six nations winners['Non Top 3 Finish'], six nations winners[['int
ercept', 'Points']])
```

60

83

```
result = logit_model.fit()
print(result.summary())
Optimization terminated successfully.
```

Current function value: 0.161135

Iterations 9

Logit Regression Results

Dep. Variable Model: Method: Date: Time: converged: Covariance Type	М	on, 06 May 20 21:15	git Df F MLE Df M D24 Pseu :59 Log- rue LL-N	No. Observations: Df Residuals: Df Model: Pseudo R-squ.: Log-Likelihood: LL-Null: LLR p-value:		25 23 1 0.04054 -4.0284 -4.1986 0.5596	
=========	coef	std err	======== Z	P> z	[0.025	0.975]	
intercept Points	1.6967 0.1305	2.986 0.279	0.568 0.468	0.570 0.640	-4.155 -0.416	7.548 0.677	

In []: