Introduction

- Ubiquitous threat of antibiotic resistant bacteria
- Investigate effect of different cellular transformation rates on antibiotic resistant bacterial population growth

Diagram of cell with plasmids

Biological Background

- Plasmids
- Fitness cost
- Transformation

Simulation Methods

- Combined approach of Kinetic Monte Carlo simulation and numerical modeling
- Gillespie algorithm
- Well-mixed population
- Carrying capacity
- Constant, Linear, Recycled α
- Symmetric division

Constant α

Reactions $S \xrightarrow{b_S} 2S$ $S \xrightarrow{\alpha} R$ $R \xrightarrow{b_R} 2R$ $R \xrightarrow{\delta} \emptyset$

Equations

$$\frac{dS}{dt} = \mu_1 \left(1 - \frac{S+R}{K} \right) S - \alpha S$$

$$\frac{dR}{dt} = \mu_2 \left(1 - \frac{S+R}{K} \right) R + \alpha S - \delta R$$

Reactions

$$S \xrightarrow{b_S} 2S$$
$$S + P \xrightarrow{\alpha} R$$

$$R \xrightarrow{b_R} 2R$$

$$R \xrightarrow{\delta} \varnothing$$

Equations

$$\frac{dS}{dt} = \mu_1 \left(1 - \frac{S+R}{K} \right) S - \alpha \left(\frac{P}{P_0} \right) S$$

$$\frac{dR}{dt} = \mu_2 \left(1 - \frac{S+R}{K} \right) R + \alpha \left(\frac{P}{P_0} \right) S - \delta R$$

$$\frac{dP}{dt} = -\alpha \left(\frac{P}{P_0}\right) S$$

Recycled α

Reactions

$$S \to 2S$$

$$S + P \to R$$

$$R \to 2R$$

$$R \to 2R$$

$$R \to \emptyset + P$$

Equations

$$\frac{dS}{dt} = \mu_1 \left(1 - \frac{S+R}{K} \right) S - \alpha \left(\frac{P}{P_0} \right) S + \mu_2 \left(1 - \frac{S+R}{K} \right) R$$

$$\frac{dR}{dt} = \alpha \left(\frac{P}{P_0} \right) S - \delta R$$

$$\frac{dP}{dt} = -\alpha \left(\frac{P}{P_0} \right) S + \delta R(t)$$

Conclusions

- Point
- Point
- Point

Future Work

- Simulation on a lattice
- Adding antibiotics
- Asymmetric division

Acknowledgements/References

Thank you etc etc

- Source 1
- Source 2