Université Hassiba Benbouali Chlef MI/Informatique - Master 1 IL Examen Sécurité Informatique - 2015

Note : Toute réponse doit être justifiée et argumentée de façon claire.

Exercice___01[4pts]:

SI : Quelle condition doit avoir une solution de sécurité pour un objet X à protéger ?

CF : Quelle est la taille de la clé d'un cryptage par flux?

CB: Quelles sont les différences entre DES et AES?

CA: Quel objectif de sécurité qui n'est pas réalisé par RSA?

AP : Protocole **Diffie-Hellman** résout quel problème en utilisant quel **mécanisme**?

Exercice 02[17pts]:

A- Hill Cipher (4)

Soit K une matrice de dimension 2 dans Z_n , On définit une fonction f sur $(Z_n)^2$

$$f : (Z_n)^2 & \cdots > (Z_n)^2 & K = [a b], C=(x,y) \\ M=(m,n) & \cdots > f(M)= K.M[n]=C & [c d]$$

2.1- Dans quel cas f accepte une fonction inverse f⁻¹?

Avec (f, f^1, K) on définit un crypto-system sur $(Z_n)^2$ dont la clé est la matrice K

- 2.2- Quelle est les caractéristiques de ce crypto-system (sa classe) ?
- 2.3- En donnant K: a=3, b=2, c=3 et d=5, décrypter C = (24,16).

B- Cryptographie moderne (8)

2.4- **4 cases-LFSR** dont la première et la dernière exorées et attachée à l'entrée. Pour une séquence d'initialisation **0001**, donnez sa **table d'état** (jusqu'à sa récurrence).

On dit qu'une fonction f **involutive** ssi f(f(x))=x.

On dit que la clé K de DES est faible si DES avec cette clé K est involutive.

- 2.5- Décrire la relation entre les sous clés pour un DES involutive?
- 2.6- Il y a 4 clés faibles les quelles?

2.7- RSA soit PK(55,7), encrypter M=10, casser ce crypto système en trouvant sa clé VP. Décrypter C=35.

D-Application (4)

Une solution de Vote électronique (e-Vote qui remplace **vote à bulletin secret classique**) doit offrir quels **services de sécurité**?

On va simuler de façon électronique un **vote sans anonymat** ou on peut savoir qui a voté quoi (lever de main lors d'une réunion). Un ensemble de **clients (électeur)** connectés au **serveur (centre d'élection)** qui vont remplir le bulletin **e-vote**.

2.8- Proposer une **solution de sécurité** (en utilisant un schéma) pour cette situation en justifiant comment va éviter les **fraudes électorales**.

Université Hassiba Benbouali Chlef MI/Informatique - Master 1 IL Solution de l'examen Sécurité Informatique - 2015

Exercice___01[4pts]:

SI : La solution de sécurité doit avoir un cout inferieur à la valeur de l'objet X.

CF : La taille de la clé d'un cryptage par flux est infinie.

CB: **DES[Symétrique, 16** Rounds, Clé **56bits] AES[Asymétrique, 10/12/14** Rounds, Clé **128/192/256b**its]

CA: L'objectif de sécurité qui n'est pas réalisé par RSA est la disponibilité.

AP : Protocole **Diffie-Hellman** résout le problème de l'échange des clés en utilisant un cryptage asymétrique pour échanger les clés symétrique.

Exercice 02[17pts]:

A- Hill Cipher (4)

Soit K une matrice de dimension 2 dans Z_n , On définit une fonction f sur $(Z_n)^2$

$$f : (Z_n)^2 \qquad \cdots > (Z_n)^2 \qquad K = [a b], C = (x,y) \\ M = (m,n) \qquad \cdots > f(M) = K.M[n] = C \qquad [c d]$$

2.1- \mathbf{f} accepte une **fonction inverse** \mathbf{f}^{-1} , Si la matrice inverse de K existe (K^{-1}) det(K) !=0.

Avec (f, f^{-1}, K) on définit un crypto-system sur $(Z_n)^2$ dont la clé est la matrice K

2.2- les caractéristiques de ce crypto-system Symétrique, Bloc, $E_K = f$, $D_K = f^{-1}$

2.3- En donnant K : a=3, b=2, c=3 et $d=5 \Rightarrow K.K⁻¹ = I,I matrice d'identité$

3*a'+2*b'=1 et 3*a'+2*b'=1 => a' = 15, b'=20, c'=17, d'=9 //résolution système 2 équations. 3*a'+5*b'=0 et 3*a'+2*b'=1,

Décrypter C = (24,16). => x = (15*24+20*16)[26] = 4 et y = (17*24+9*16)[26] = 6, **M=(4,6)**

B- Cryptographie moderne (8)

2.4- **4 cases-LFSR** dont la première et la dernière exorées et attachée à l'entrée. Pour une séquence d'initialisation **0001**, donnez sa **table d'état** (jusqu'à sa récurrence).

			-						-			
	->-[0 0 0 1]->	1	2	3	4	5	6	7	8	9	10	11
	+-	0001	1000	1100	1110	1111	0111	1011	0101	1010	1101	0110

On dit qu'une fonction f involutive ssi f(f(x))=x.

On dit que la clé K de DES est faible si DES avec cette clé K est involutive.

2.5- La relation entre les sous clés pour un DES involutive

Puisque DES involutive donc $DES_K(DES_K(x)) = x \Rightarrow DES_K(x) = DES^{-1}_K(x)$ (cryptage = décryptage) Puisque le décryptage utilise les sous clés dans l'ordre inverse (K16..K1) alors $K_i = K_{17-i}$ i :1..16 $K_8 = K_9$ et K_9 = rotation(K_8)= K_8 donc la rotation doit ne pas avoir d'effet => ss-clés sont **égaux**. 2.6- **4 clés faibles** dont la rotation n'a pas d'effet => **1-0**²⁸-**0**²⁸, **2-0**²⁸-**1**²⁸, **3-1**²⁸-**0**²⁸, **4-1**²⁸-**1**²⁸

2.7- RSA soit PK(55,7),

- Crypter M=10, $E_{PK}(M)=M^{e}[n]=10^{7}[55]=10$, $[10^{2}[55]=45=-10 \Rightarrow 10^{4}[55]=-10 \Rightarrow 10^{6}[55]=-10$
- Casser ce crypto système : comme 55=11*5 unique factorisation donc => p=11 et q=5 alors phi(n)=(p-1)*(q-1)=10*4=40

D-Application (4)

Une solution de Vote électronique (e-Vote qui remplace **vote à bulletin secret classique**) les **services de sécurité** : Confidentialité et Intégrité

2.8- Une **solution de sécurité (intégrité)**. e-Vote Forme disponible sur le site de CE publiquement.

Génération des clés : AC génère et distribue les clés (PK_{EL}, VK_{EL}) et (PK_{CE}, VK_{CE}).

- Bonne Chance -