MAD 350

Project : Application of Measure Theory in Finance

Date: December 1, 2011

Piyush Ahuja Undergraduate, Department of Mathematics IIT Delhi 2008MT50454

Content

Capturing Information Flow in Financial Markets

Motivation and Definition of Conditional Expectation

Proof of Existence by Radon-Nikodym theorem

Alternative Construction for Finite Variance Random Variables

Generalization for Random Variables whose Lebesgue Integral exists

A Topological Approach (Hilbert Spaces)

Some Nice Properties

Capturing Information Flow in Financial Markets

• Structure of a σ -algebra is specially suited to model information

Definition 1. A family $\mathbb X$ of subsets of a set X is said to be a σ -algebra in case :

- i) \emptyset , X belong to \mathbb{X} .
- ii) If A belongs to X, then A^{\complement} belongs to \mathbb{X} .
- iii) If (A_n) is a sequence of sets in \mathbb{X} , then the union $\bigcup_{n=1}^{\infty} A_n \in \mathbb{X}$.

An ordered pair (X, \mathbb{X}) consisting of a set X and a σ - algebra \mathbb{X} is called a measurable space.

- Let the set of all outcomes of a random experiment be the set Ω , and let ω be a particular outcome
- ullet We have some information, which may or may not us in evaluating ω
- ullet If we know, for a set A , whether the eventual ω lies in it or not, then it is said to be $\ensuremath{\textit{resolved}}$
 - i) \emptyset , X are always resolved.
 - ii) If A is resolved then A^{\complement} is also resolved.
 - iii) If (A_n) is a sequence of resolved sets, then the union $\bigcup_{n=1}^{\infty} A_n$ is also resolved.

Capturing Information Flow in Financial Markets

Definition 5. Let Ω be a non-empty set. Let T be a fixed positive number, and assume that for each $t \in [0,T]$ there is an associated σ - algebra F(t). Assume further that if $s \le t$, then $F(s) \subseteq F(t)$. Then the collection of σ - algebras, F(t), $0 \le t \le T$, is called a filtration.

- •When we get to time t, we will know for each set in F(t) whether the eventual ω lies in that set or not.
- In mathematical finance, a filtration represents the information available up to and including each time *t*, and is more and more precise (the set of measurable events is staying the same or increasing) as more information from the evolution of the stock price becomes available.
- Knowing the value of $S(\omega)$, does give us some information
- •, Resolves every set of the form $\{\omega : S(\omega) \text{ belongs to B, where B of B(R)}\}$.
- Information provided by S is captured by $\sigma(S)$. *

Definition 8. Let Ω be a nonempty sample space equipped with a filtration $\mathscr{F}(t), 0 \leq t \leq T$. Let S(t) be a collection of random variables indexed by $t \in [0,T]$. We say this collection of random variables is an *adapted stochastic process* if, for each t, the random variable S(t) is $\mathscr{F}(t)$ measurable.

• Introduce the notion of stochastic processes for asset prices, portfolio processes, and wealth process (value of a portfolio), and these are adapted to a filtration that we regard as a model of the flow of public information.

Towards Conditional Expectation

In general, there are three cases that arise when we have a random variable S and a σ - algebra \mathcal{G} :

- 1. The information contained in the \mathcal{G} is sufficient to determine the value of S. In this case, S is \mathcal{G} measurable.
- 2. The information contained in \mathcal{G} gives us no clue about the value of \mathcal{S} . In this case, we say that \mathcal{S} is independent of \mathcal{G} .
- 3. The information contained in G is not sufficient to evaluate S, but we can get some estimate of S based on the information in G.

Definition 2. Let (Ω, \mathcal{F}, P) be a probability space, let \mathcal{G} be a $sub-\sigma-algebra$ of \mathcal{F} , and let S be a random variable that is either nonnegative or integrable. The conditional expectation of S given \mathcal{G} , denoted by $\mathbb{E}[S|\mathcal{G}]$, is any random variable that satisfies:

- 1) (Measurability) $\mathbb{E}[S|\mathcal{G}]$ is \mathcal{G} -measurable, and
- 2) (Partial Averaging)

$$\int_{C} \mathbb{E}[S|\mathcal{G} dP = \int_{C} S dP \text{ for all } C \in \mathcal{G}$$

- But does it exists?
- Proof by Radon Nikodym Theorem
- Can also prove other properties.

Alternative View

• Closest approximation to a random variable S if we restrict ourselves to random variables belonging to some smaller σ -algebra . (sub- σ -algebra)

Definition 7. Let $\mathcal{G} \subseteq \mathcal{F}$ be $\sigma-algebras$ and S be a random variable on (Ω, \mathcal{F}, P) . Assume $< \infty$. Then the conditional expectation is an almost surely unique \mathcal{G} -measurable Y_G such that $\mathbb{E}[(S-Y_G)^2] = inf_z\mathbb{E}[(S-Z)^2]$, where the infimum is over all \mathcal{G} -measurable random variables. Note: We denote the minimizing Y_G by $\mathbb{E}[S|\mathcal{G}]$.

• Claim 1: The Y_G in Definition 7 satisfies, for each $C \in \mathcal{G}$,:

$$\int_C Y_G dP = \int_C S dP$$

- Claim 2 : If $G = \{ \phi, \Omega \}$, then $Y_G = E[S]$
- Claim 3 : If $\mathcal{G} = \{\Omega, AA^{\complement}\emptyset\}$, for some event A. then

$$Y_G = \begin{cases} \mathbb{E}[SI_A]/P(A) \text{ for } \omega \in A\\ \mathbb{E}[SI_B]/P(B) \text{ for } \omega \in B \end{cases}$$

• Claim 4 : If G is generated by a finite partition $\{A_1, A_2,A_N\}$, then :

$$Y_g = \sum_{i=1}^{n} c_i I_{A_i}(\omega)$$
 where $c_i = \mathbb{E}[SI_{A_i}]/P(A_i)$

A Topological Approach (Hilbert Spaces)

- Two ways of looking at the same general, more abstract concept of Conditional Expectation
- Existence of Conditional Expectation arises as a direct consequences of the special structure of Hilbert Spaces

Theorem 14. If $1 \le p < \infty$, then the space $\mathcal{L}_{\mathcal{P}}$ is a complete normed linear space (Banach) under the norm

$$|| S ||_p = \left\{ \int |S|^p \right\}^{\frac{1}{p}}$$

Proof: Robert G. Bartle. The Elements of Integration and Lebesgue Measure. Theorem 6.14. Pg 69.

Lemma 16. L_2 spaces are Hilbert Spaces with the inner product being defined by :

$$\langle X, Y \rangle = \int_C XY \, dP \, or \, \mathbb{E}[XY]$$

Theorem 15. Hilbert Space Projection Theorem. For every point x in a Hilbert space H and every closed convex set $C \subset H$, there exists a unique point z_0 for which $\parallel x - z \parallel$ is minimized over C. This is, in particular, true for any closed subspace M of H. In that case, a necessary and sufficient condition for y is that the vector x - y be orthogonal to M.

A Topological Approach (Hilbert Spaces)

• Proof of Existence of Conditional Expectation by Hilbert Space Projection Theorem

Thus, the Conditional Expectation is:

- > the best approximation of S
- \succ the function in the sub- σ -algebra G closest to S, where the distance is given by the L₂ norm
- > the orthogonal projection of S onto G.
- can extend to all non-negative random variables
- can extend all integrable random variables

The special stucture of the L_2 Hilbert Space (one-to-one correspondence between closed subspaces and orthogonal projections) and σ -algebras allow us to model public information in such a way that we can estimate any random variable (like future Stock Price), whose Lebesgue Integral exists.

Some Useful Properties

• Linearity of Conditional Expectation: If X and Y are integrable random variables and c_1 and c_2 are constants, then :

$$E[(c_1X + c_2Y)|G] = c_1E[X|G] + c_2E[Y|G]$$

• **Taking out what is known**: If *X* and *Y* are integrable random variables, *XY* is integrable, and *X* is G-measurable, then:

$$E[XY|G] = XE[X|G]$$

• **Iterated Conditioning** : If H is a sub- σ -algebra of G, and X is an integrable random variable, then :

$$E[E[X|G]|H] = E[X|H]$$

• **Independence** : If X is integrable and independent of G, then:

$$E[X|G] = E[X]$$

References

- 1. Robert G. Bartle. The Elements of Integration and Lebesgue Measure (Wiley Classics Library Edition 1995)
- 2. S.E Shreve. Stochastic Calculus for Finance Volume I and II. (Springer, 2004)
- 3. Robert B. Ash and Catherine A.Doleans-Dade, Probability and Measure Theory.(Elsevier)
- 4. http://planetmath.org

Acknowledgements

I'd like to express my sincere gratitude to my supervisor Professor S. Kundu, who is responsible for my good foundations in Analysis, Linear Algebra, Measure Theory and Topology – all 4 courses which I've had the fortune of doing under him.

I'd like to thank my course co-ordinator Professor Sreenadh, who was very kind in accomodating me even though I missed the deadline for registering.