Algebraic Geometry : Functor of Points POV

Ken Lee

2020 Winter

Contents

1	Schemes		
	1.1	Z-Functors	2
	1.2	Covers and Open Subfunctors	4
	1.3	The Big and Small Zariski Site	7
	1.4	Schemes	10
		perties of Schemes Zariski-Local Properties of Schemes	13 13
3	3.1	Perties of Morphisms Permanence Zariski-Local Properties of Morphisms of Schemes	

Goal: Develop all of basic scheme theory without a single mention of locally ringed spaces.

1 Schemes

1.1 \mathbb{Z} -Functors

Definition – \mathbb{Z} -Functor

Define $\mathbb{M} := \mathbb{Z}\mathbf{Alg}^{op}$. The *category of* \mathbb{Z} -*functors* $\mathbb{M}\mathbf{Set}$ is define to be the category of presheaves of sets on \mathbb{M} . For $X \in \mathbb{M}\mathbf{Set}$ and $A^{op} \in \mathbb{M}$, elements of $X(A^{op})$ are called *morphisms from* A^{op} *to* X.

Define $\operatorname{Sp}: \mathbb{M} \to \mathbb{M}$ Set to be the fully faithful Yoneda embedding $A^{op} \mapsto \mathbb{M}(-, A^{op})$. For $A \in \mathbb{Z}$ Alg, $\operatorname{Sp} A$ is called the *spectrum of* A. The *category of affine schemes* is defined to be the essential image of Sp . We will denote it with Aff.

Proposition - Yoneda

The following are true:

- ("Morphisms from A^{op} to X are Morphisms from $\operatorname{Sp} A$ to X") For $X \in \mathbb{M}$ Set and $A^{op} \in \mathbb{M}$,

$$\mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) \xrightarrow{\sim} X(A^{op})$$

by $\alpha \mapsto \alpha_{A^{op}}(\mathbb{1}_{A^{op}})$. Furthermore, this is functorial in A^{op} and X.

- (Density of Representables / "The data of X is precisely how test spaces map into it") For $X \in \mathbb{M}\mathbf{Set}$, X is the colimit of the diagram $\mathrm{Sp} \downarrow X \to \mathbb{M}\mathbf{Set}$, i.e. morphisms out of X are determined by restricting along morphisms from affine schemes to X.

Proof. Straightforward.

Proposition – Affine Line

Let $n \in \mathbb{N}$. Define affine n-space to be $\mathbb{A}^n \in \mathbb{M}$ Set sending $A^{op} \mapsto A^n$. Then

- \mathbb{A}^n is representable by $\mathbb{Z}[T_1,\ldots,T_n]^{op}$. Hence $\mathbb{A}^n \in \mathbf{Aff}$.
- for n=1, \mathbb{A}^1 is a ring object in $\mathbb{M}\mathbf{Set}$. Hence for $X\in\mathbb{M}\mathbf{Set}$, $\mathcal{O}(X):=\mathbb{M}\mathbf{Set}(X,\mathbb{A}^1)\in\mathbb{Z}\mathbf{Alg}$. This is called the *ring of global functions on* X and gives a functor $\mathcal{O}(\star):\mathbb{M}\mathbf{Set}\to\mathbb{Z}\mathbf{Alg}^{op}$. We call elements of $\mathcal{O}(X)$ functions on X.

Concretely on morphisms $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$, the corresponding ring morphism $\varphi^{\flat} : \mathcal{O}(X) \to \mathcal{O}(Y)$ is given by $f \mapsto f \circ \varphi$, i.e. pulling back along φ .

- (Spec, Global Function Adjunction)

$$\mathbb{M}\mathbf{Set}(-,\operatorname{Sp}\star)\cong\mathbb{Z}\mathbf{Alg}(\star,\mathcal{O}(-))$$

- (Canonical Choice of Spectrum for Affine Schemes) for $X \in \mathbb{M}$, X is affine if and only if $\mathbb{1}^{\perp}_{\mathcal{O}(X)}: X \to \operatorname{Sp} \mathcal{O}(X)$ is an isomorphism of \mathbb{Z} -functors, where $\mathbb{1}^{\perp}_{\mathcal{O}(X)}$ is the adjunct of $\mathbb{1}_{\mathcal{O}(X)}$ under the previous adjunction.

Proof. (Spec, Global Function Adjunction) Follows from this chain of bijections functorial in A and X given by

the density of representables:

$$\begin{split} \mathbb{M}\mathbf{Set}(X,\operatorname{Sp} A) &\cong \varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{M}\mathbf{Set}(\operatorname{Sp} B,\operatorname{Sp} A) \cong \varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{Z}\mathbf{Alg}(A,B) \cong \mathbb{Z}\mathbf{Alg}\left(A,\varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} B\right) \\ &\cong \mathbb{Z}\mathbf{Alg}\left(A,\varprojlim_{(B,\beta) \in \operatorname{Sp} \downarrow X} \mathbb{M}\mathbf{Set}(\operatorname{Sp} B,\mathbb{A}^1)\right) \cong \mathbb{Z}\mathbf{Alg}(A,\mathbb{M}\mathbf{Set}(X,\mathbb{A}^1)) = \mathbb{Z}\mathbf{Alg}(A,\mathcal{O}(X)) \end{split}$$

(*Affine Schemes*) The reverse implication is clear. Let $X \xrightarrow{\sim} \operatorname{Sp} A$ be an isomorphism in $\mathbb{M}\mathbf{Set}$. The adjunction $\mathbb{M}\mathbf{Set}(X,\operatorname{Sp} A) \cong \mathbb{Z}\mathbf{Alg}(A,\mathcal{O}(X)) \cong \mathbb{M}\mathbf{Set}(\operatorname{Sp} \mathcal{O}(X),\operatorname{Sp} A)$ gives the commutative diagram :

where the dashed has the composition of the other two morphisms as an inverse, and hence an isomorphism.

Remark – *Intuition of Affine n-Space.* For a smooth manifold X, a smooth map $\varphi: X \to \mathbb{R}^n$ is equivalent to the data of n global smooth functions f_1, \ldots, f_n on X, i.e.

$$C^{\infty}\mathbf{Mfd}(X,\mathbb{R}^n) \cong C^{\infty}(X)^n$$

" \mathbb{R}^n is the classifying space of n-tuples of global smooth functions." In the functorial POV of algebraic geometry, we take this as our definition of affine n-space.

Proposition – Categorical Properties of Z-Functors

The following are true:

– (Completeness and Cocompleteness) $\mathbb{M}\mathbf{Set}$ has all (small) limits and colimits, all computed pointwise.

In particular, a morphism $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$ is respectively a mono/epi/isomorphism if and only if for all $A \in \mathbb{M}^{op}$, $\varphi_A : Y(A) \to X(A)$ is injective/surjective/bijective.

- (Base Change) For $K \in \mathbf{CRing}$, define the *category of K-functors* to be the over-category $\mathbb{M}\mathbf{Set}/\operatorname{Sp} K$. In particular, we call $\mathbf{Aff}/\operatorname{Sp} K$ the *category of affine K-schemes*.

Then we have for $\varphi \in \mathbb{M}\mathbf{Set}(\operatorname{Sp} L, \operatorname{Sp} K)$, we have the following adjunction

$$(\mathbb{M}\mathbf{Set}/\operatorname{Sp} L)(-,\operatorname{Sp} L\times_{\operatorname{Sp} K}(\star))\cong (\mathbb{M}\mathbf{Set}/\operatorname{Sp} K)(-,\star)$$

Furthermore, this restricts to an adjunction between $\mathbf{Aff}/\operatorname{Sp} L$ and $\mathbf{Aff}/\operatorname{Sp} K$, i.e. the pullback of affine schemes is affine.

Proof. (*Base Change*) The first adjunction is categorical. For the restriction to affine schemes over K and L, note that for any K-algebra A,

$$\operatorname{Sp} L \times_{\operatorname{Sp} K} \operatorname{Sp} A "=" \operatorname{Sp} (L \otimes_K A)$$

1.2 Covers and Open Subfunctors

Remark. A scheme will be a "space modelled on \mathbb{M} with an open cover by affine schemes". This section defines the notion of "open subfunctors" of a \mathbb{Z} -functor and an "open cover". Since \mathbb{Z} -functors are meant to be modelled on \mathbb{M} , we first define everything for affine schemes.

Somehow, no one could eradicate the special role of fields as "points".

Definition – Points and Covers

^a Define the *category of test points*, Pts, to be the full subcategory of \mathbb{M} consisting of K^{op} where K is a field. For $X \in \mathbb{M}\mathbf{Set}$, a *point of* X is defined to be a morphism $x \in \mathbb{M}\mathbf{Set}(\operatorname{Sp} K, X)$ where $K^{op} \in \operatorname{Pts}$. For $\varphi \in \mathbb{M}\mathbf{Set}(X, Y)$, we will use $\varphi(x)$ to denote $\varphi \circ x$. For $f \in \mathcal{O}(X)$, we will use ev_x to denote the pullback $x^\flat : \mathcal{O}(X) \to \mathcal{O}(K)$.

For $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$, we will use $Y^{\mathrm{Pts}}, X^{\mathrm{Pts}}$ to denote the restriction of Y,X to Pts^{op} and $\varphi^{\mathrm{Pts}}: Y^{\mathrm{Pts}} \to X^{\mathrm{Pts}}$ the restricted morphism. Then we say φ is *surjective on points* when φ^{Pts} is an epimorphism (equivalently, component-wise surjective).

For a subset $\mathcal{U} \subseteq \mathbb{M}\mathbf{Set} \downarrow X$ for any $X \in \mathbb{M}\mathbf{Set}$, we say \mathcal{U} covers X when $\coprod \mathcal{U} \to X$ is surjective on points. Equivalently, for all points $x : \operatorname{Sp} K \to X$ of X, there exists $U \in \mathcal{U}$ with a factoring

^aPts and "surjective on points" is non-standard definition.

Counter Example (Surjective on Points implies Surjective). Consider $\operatorname{Sp} \mathbb{F}_2 \to \operatorname{Sp} \mathbb{F}_2[dT]$ where $dT^2 := 0$. $(\operatorname{Sp} \mathbb{F}_2)^{\operatorname{Pts}} \cong (\operatorname{Sp} \mathbb{F}_2[dT])^{\operatorname{Pts}}$ but $(\operatorname{Sp} \mathbb{F}_2[dT])(\mathbb{F}_2[dT])$ bijects with \mathbb{F}_2 whilst $(\operatorname{Sp} \mathbb{F}_2)(\mathbb{F}_2[dT])$ is singleton.

Proposition – Base Change of Cover

Let \mathcal{U} be a cover of $X \in \mathbb{M}\mathbf{Set}$. Then for all $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$, the set $\varphi^{-1}\mathcal{U}$ of pullbacks of morphisms in \mathcal{U} forms a cover of Y.

Proof. Follows from fiber product in MSet being computed component-wise.

Proposition - Multiplicative Group Scheme

Consider the functor $\mathbb{G}^{\times} \in \mathbb{M}$ **Set** defined by $A \in \mathbb{M}^{op} \mapsto A^{\times}$. Then

- \mathbb{G}^{\times} is representable by the ring $\mathbb{Z}[T,T^{-1}]$ and hence affine.
- $\mathbb{G}^{\times} \text{ is a group object in } \mathbb{M}\mathbf{Set}. \text{ In fact, for any } X \in \mathbb{M}\mathbf{Set}, \mathbb{M}\mathbf{Set}(X, \mathbb{G}^{\times}) = \mathcal{O}(X)^{\times}.$

Proof. UP of $\mathbb{Z}[T, T^{-1}]$ implies it represents \mathbb{G}^{\times} . The second property can be straightforwardly deduced either from the Spec-global functions adjunction or elementarily.

Proposition − Basic Opens of a Z-Functor

Let $X \in \mathbb{M}$ Set and $f \in \mathcal{O}(X)$. The *support of* f, X_f , is defined as the subfunctor of X sending $A \in \mathbb{M}^{op}$ to the set of $\alpha \in \mathbb{M}$ Set $(\operatorname{Sp} A, X)$ such that $\varphi^{\flat}(f) \in A^{\times}$.

Then X_f is the pullback of \mathbb{G}^{\times} along $f:X\to\mathbb{A}^1$.

$$\begin{array}{ccc} X_f & \longrightarrow X \\ \downarrow & & \downarrow \\ \mathbb{G}^{\times} & \longrightarrow \mathbb{A}^1 \end{array}$$

Subfunctors of X of the form X_f are called *basic opens*.

Proof. Easy.

Remark – Intuition of Multiplicative Group Scheme and Basic Opens. For a smooth manifold *X*,

$$C^{\infty}\mathbf{Mfd}(X,\mathbb{R}^{\times}) \cong C^{\infty}(X)^{\times}$$

" \mathbb{R}^{\times} is classifying space for invertible global functions on X." One can thus think of \mathbb{G}^{\times} as " $\mathbb{A}^1 \setminus \{0\}$ ". A basic open X_f is then just the preimage of " $\mathbb{A}^1 \setminus \{0\}$ " under $f: X \to \mathbb{A}^1$.

Proposition - Opens of Affine Schemes

Let $X \in \mathbf{Aff}$. For $I \in \mathrm{Ideal}\,\mathcal{O}(X)$, define $D(I) \in \mathbf{SubMSet}(X)$ by

$$A \in \mathbb{M}^{op} \mapsto \left\{ \varphi \in \mathbf{Aff}(\operatorname{Sp} A, X) \, | \, A\varphi^{\flat}I = A \right\}$$

In particular, for I = (f), we have $D(I) = X_f$. Sometimes, we use D(f) to denote X_f .

Then

- (Basic Opens are Affine) for $f \in \mathcal{O}(X)$, D(f) is representable by $\mathcal{O}(X)[f^{-1}]$.
- (Ideals to Opens) For $I, J \in \text{Ideal } \mathcal{O}(X)$, $I \subseteq J$ implies $D(I) \subseteq D(J)$.

This defines $D : \text{Ideal } \mathcal{O}(X) \to \mathbf{SubMSet}(X)$. The category Open X of *opens of X* is defined as the essential image of D. We call $U \in \text{Open } X$ an *open of X*.

- (Intuitive Definition of Opens) for *I* ∈ Ideal $\mathcal{O}(X)$, $\{D(f)\}_{f \in I}$ covers D(I).
- (Partition of Unity) For $I \in \text{Ideal } \mathcal{O}(X)$, D(I) covers X if and only if there exists finite $I_0 \subseteq I$ such that $AI_0 = A$. Such $I_0 \subseteq A$ are called *partitions of unity*.
- − (Base Change / "Preimage of Opens are Open") Let $\varphi \in \mathbf{Aff}(Y, X)$, $I \in \mathrm{Ideal}\,\mathcal{O}(X)$. Let the following be a pullback diagram :

$$Y \xrightarrow{\varphi} X$$

$$\uparrow \qquad \uparrow$$

$$\varphi^{-1}D(I) \longrightarrow D(I)$$

Then $\varphi^{-1}D(I) = D(\varphi^{\flat}I)$.

- (Fiber Product) Let $X, X_1 \in \mathbf{Aff}/Y$ where $Y \in \mathbf{Aff}$. Let I, I_1 be ideals of $\mathcal{O}(X)$, $\mathcal{O}(X_1)$ respectively. Then we have the pullback diagram :

$$D(I) \longrightarrow Y$$

$$\uparrow \qquad \qquad \uparrow$$

$$D(I \otimes_{\mathcal{O}(Y)} I_1) \longrightarrow D(I_1)$$

In particular, $X = X_1 = Y$ implies the intersection of two opens of X is an open of X. The special case of D(I) = D(f) and $D(I_1) = D(f_1)$ yields $D(f) \cap D(f_1) = D(ff_1)$.

Proof.

(Basic Opens are Affine) UP of $\mathcal{O}(X)[f^{-1}]$ as an $\mathcal{O}(X)$ algebra.

(Intuitive Def of Opens) Let $x: \operatorname{Sp} K \to X$ be a point of X. Then $Kx^{\flat}I = K$ if and only if there exists $f \in I$ with $f(x) \in K^{\times}$.

(Partition of Unity) Having finite $I_0 \subseteq I$ with $AI_0 = A$ is equivalent to AI = A. Clearly, AI = A implies D(I) covers $\operatorname{Sp} A$. Conversely, suppose $AI \subsetneq A$. D(I) not covering $\operatorname{Sp} A$ is the same as it "missing a point of $\operatorname{Sp} A$ ", that is to say we are looking for a point $x : \operatorname{Sp} K \to \operatorname{Sp} A$ of $\operatorname{Sp} A$ that doesn't admit a lift across $D(I) \to \operatorname{Sp} A$. This is the same as $I \subseteq \ker \operatorname{ev}_x$. Well, $AI \subsetneq A$ implies by Zorn's lemma the existence of a map $\operatorname{ev}_x : A \to K$ where K is a field with the desired property.

Counter Example $(\bigcup_{f \in I} D(f) = D(I))$.

Consider the ring $\mathbb{F}_2 \times \mathbb{F}_2$ and elements (1,0),(0,1). The ideal I generated by these is the whole ring. But $D((1,0))(\mathbb{F}_2 \times \mathbb{F}_2) \cup D((0,1))(\mathbb{F}_2 \times \mathbb{F}_2) \subseteq D(I)(\mathbb{F}_2 \times \mathbb{F}_2)$ since the ring endomorphism $(a,b) \mapsto (b,a)$ doesn't map any of (1,0),(0,1) to units. Thus $D((1,0)) \cup D((0,1)) \subseteq D(I)$.

Definition – Open Subfunctor

Let $X \in \mathbb{M}\mathbf{Set}$. For $U \in \mathbf{SubMSet}(X)$, U is called *open* when for all $\varphi : \operatorname{Sp} A \to X$, the pullback $\varphi^{-1}U$ of U along φ is an open of $\operatorname{Sp} A$.

$$\begin{array}{ccc}
\operatorname{Sp} A & \stackrel{\varphi}{\longrightarrow} X \\
\uparrow & & \uparrow \\
\varphi^{-1}U & \longrightarrow U
\end{array}$$

We will use $\operatorname{Open} X$ to denote the full subcategory of opens of X in $\operatorname{\mathbf{SubMSet}}(X)$. When X is affine, this agrees with our specialized notion for affine schemes.

Proposition – Basic Facts about Open Subfunctors

The following are true:

- ("Extensionality") Let $U, V \in \text{Open } X$. Then U = V if and only if $U^{\text{Pts}} = V^{\text{Pts}}$.
- (Composition) Let $V \in \operatorname{Open} U$, $U \in \operatorname{Open} X$, $X \in \mathbb{M}\mathbf{Set}$. Then $V \in \operatorname{Open} X$.
- (Base Change/"Preimage of Opens are Opens") Let $X \in \mathbb{M}\mathbf{Set}$, $U \in \mathrm{Open}\,X$ and $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$. Then the pullback $\varphi^{-1}U$ of U along φ is an open of Y.

$$\begin{array}{ccc} Y & \stackrel{\varphi}{\longrightarrow} & X \\ \uparrow & & \uparrow \\ \varphi^{-1}U & \longrightarrow & U \end{array}$$

- (Fiber Product) Let U, U_1 be opens of $X, X_1 \in \mathbb{M}$ Set respectively. Then for any $X \to S, X_1 \to S$, the fiber product $U \times_S U_1$ is an open of $X \times_S X_1$. In particular, for $X = X_1 = S$, this proves the intersection of two opens of X is again an open of X.

Proof. (Extensionality) Reduce to affine global case and use partition of unity.

1.3 The Big and Small Zariski Site

Proposition - Big Zariski Site on MSet

For $X \in \mathbb{M}\mathbf{Set}$ and $\mathcal{U} \subseteq \mathbb{M}\mathbf{Set}/X$ a collection of morphisms into X, define $\mathcal{U} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$ when " \mathcal{U} is isomorphic to an open cover", meaning there exists $\{U_i\}_{i \in \mathcal{U}} \subseteq \mathrm{Open}\,X$ such that $\{U_i\}_{i \in \mathcal{U}}$ is a cover of X and for all $i \in \mathcal{U}$, $(i:s(i) \to X) \cong (U_i \to X)$ in $\mathbb{M}\mathbf{Set}/X$. Then the above defines a Grothendieck pretopology of $\mathbb{M}\mathbf{Set}$. Specifically:

– (Isomorphisms are Covers) For $X \in \mathbb{M}\mathbf{Set}$ and $\varphi \in \mathbb{M}\mathbf{Set}(U,X)$, φ iso implies $\{\varphi\} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$.

- (Pullback of Covers) For all $\varphi \in \mathbb{M}\mathbf{Set}(Y,X)$ and $\mathcal{U} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$, $\varphi^{-1}\mathcal{U} := \{Y \times_X s(i) \to Y\}_{i \in \mathcal{U}} \in \text{Cov}_{\text{Zar}}(Y).$
- (Composite of Covers) Let $X \in \mathbb{M}\mathbf{Set}$, $\mathcal{U} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$ and for each $i \in \mathcal{U}$, let $\mathcal{U}_i \in \mathrm{Cov}_{\mathbf{Zar}}(s(i))$. Then $\{s(j_i) \to s(i) \to X \mid i \in \mathcal{U}, j_i \in \mathcal{U}_i\} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$.

We will use $MSet_{Zar}$ to denote the site MSet endowed with the topology generated by the above pretopology. We will call $M\mathbf{Set}_{\mathbf{Zar}}$ the big Zariski site. $\mathcal{X} \in \mathrm{Cov}_{\mathbf{Zar}}(X)$ are called Zariski covers of X.

Proof. Only slightly non-trivial part is pullback of covers. Use opens and covers preserved under base change.

Remark – *Intuition of Sheaves on* $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$. For $X \in \mathbb{M}\mathbf{Set}$, if X is to be a "space" then for any other $Y \in \mathbb{M}\mathbf{Set}$ and open cover \mathcal{U} of Y, the data of a morphism $Y \to X$ should be the same as a collection of morphisms $(U \to X)_{U \in \mathcal{U}}$ that agree on pairwise intersection. This is precisely what it means for $\mathbb{M}\mathbf{Set}(-,X)$ to be a sheaf on the site $MSet_{Zar}$.

Remark. The following is a smaller site Aff_{Zar} on affine schemes, where open covers consists only of basic opens. Since basic opens generate opens for affine schemes and affine schemes generate MSet with compatible notion of opens, sheaves on $\mathbb{M}\mathbf{Set}_{\mathrm{Zar}}$ will be the same as sheaves of $\mathbf{Aff}_{\mathrm{Zar}}$. This gives an easier check for when $X \in MSet$ is a sheaf on $MSet_{Zar}$.

Proposition – Small Zariski Site on Aff

For $X \in \mathbf{Aff}$ and $\mathcal{U} \subseteq \mathbf{Aff}/X$, $\mathcal{U} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$ when " \mathcal{U} is isomorphic to a cover of X by basic opens", meaning there exists a cover $\{X_{f_{\iota}}\}_{{\iota}\in\mathcal{U}}$ where for all ${\iota}\in\mathcal{U}$, $(s({\iota})\to X)\cong(D(f_{\iota})\to X)$ in \mathbf{Aff}/X . Then the above defines a Grothendieck pretopology on \mathbf{Aff} , specifically:

- (Isomorphisms are Covers) For all $X \in \mathbf{Aff}$ and $\iota \in \mathbf{Aff}(U,X)$, ι isomorphism implies $\{\iota\} \in \operatorname{Cov}_{\operatorname{Zar}}(X).$
- (Pullback of Covers) For all φ ∈ **Aff**(Y, X) and U ∈ Cov_{Zar}(X), $\varphi^{-1}\mathcal{U} := \{Y \times_X s(\iota) \to Y \mid \iota \in \mathcal{U}\} \in \text{Cov}_{\text{Zar}}(Y).$
- (Composite of Covers) Let $\mathcal{U} \in \text{Cov}_{\text{Zar}}(X)$ and for each $i \in \mathcal{U}$, let $\mathcal{U}_i \in \text{Cov}_{\text{Zar}}(s(i))$. Then $\{s(j_i) \to s(i) \to X \mid i \in \mathcal{U}, j_i \in \mathcal{U}_i\} \in \text{Cov}_{\text{Zar}}(X)$.

We will use $\mathbf{Aff}_{\mathrm{Zar}}$ to denote the site \mathbf{Aff} with the topology given by the above pretopology. We will call $\mathbf{Aff}_{\mathrm{Zar}}$ the small Zariski site. $\mathcal{X} \in \mathrm{Cov}_{\mathrm{Zar}}(X)$ will be called basic Zariski covers of X.

Proof. UP of tensor products and localization.

 $\begin{aligned} &\textbf{Proposition - Sheaves on Big and Small Zariski Site are the Same} \\ &\textbf{Let } X \in \mathbb{M}\mathbf{Set}. \ \ \textbf{Then } \mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathrm{Zar}}) \ \ \text{if and only if } \mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbf{Aff}_{\mathrm{Zar}}). \end{aligned}$

Proof. Forward implication follows since the covers in \mathbf{Aff}_{Zar} are covers in \mathbf{MSet}_{Zar} .

^aThis is non-standard terminology, but helps avoid confusion between the topology on Aff just defined and the induced topology from $M\mathbf{Set}_{\mathbf{Zar}}$.

Now let $\mathbb{M}\mathbf{Set}(-,X) \in \mathbf{Sh}(\mathbf{Aff}_{\mathbf{Zar}})$. Let $U \in \mathbb{M}\mathbf{Set}$ and $\mathcal{U} \in \mathbf{Cov}_{\mathbf{Zar}}(U)$. Then for $(A,\alpha) \in \mathrm{Sp} \downarrow U$, the pullback $\alpha^{-1}\mathcal{U}$ of \mathcal{U} is a cover of $\mathrm{Sp}\,A$ in the big Zariski site. The chain of isomorphisms to be justified is :

$$\begin{split} \mathbb{M}\mathbf{Set}(U,X) &\overset{(1)}{\cong} \underbrace{\lim_{(A,\alpha) \in \operatorname{Sp} \downarrow U}} \mathbb{M}\mathbf{Set}(\operatorname{Sp} A,X) \overset{(2)}{\cong} \underbrace{\lim_{(A,\alpha) \in \operatorname{Sp} \downarrow U}} \underbrace{\lim_{V,W \in \mathcal{U}}} \mathbb{M}\mathbf{Set}(\alpha^{-1}V \cap \alpha^{-1}W,X) \\ &\overset{(3)}{\cong} \underbrace{\lim_{V,W \in \mathcal{U}}} \underbrace{\lim_{(A,\alpha) \in \operatorname{Sp} \downarrow U}} \mathbb{M}\mathbf{Set}(\alpha^{-1}V \cap \alpha^{-1}W,X) \overset{(4)}{\cong} \underbrace{\lim_{V,W \in \mathcal{U}}} \mathbb{M}\mathbf{Set}(V \cap W,X) \end{split}$$

- (1) Density of representables. (3) Limits commute with limits.
- (4) We know $\alpha^{-1}(V \cap W) = \alpha^{-1}V \cap \alpha^{-1}W$, so it suffices to prove the following.

Lemma. For
$$U \in \mathbb{M}\mathbf{Set}$$
 and $Z \in \mathbf{Sub}\mathbb{M}\mathbf{Set}(U)$, we have $Z = \varprojlim_{(A,\alpha) \in \operatorname{Sp} \downarrow U} \alpha^{-1}Z$

Proof. The forgetful functor $\operatorname{Sp} \downarrow Z \to \operatorname{Sp} \downarrow U$ is a "section" of the pullback functor $\operatorname{Sp} \downarrow U \to \operatorname{Sp} \downarrow Z$, meaning for $(A, \alpha) \in \operatorname{Sp} \downarrow Z$, the following is a pullback diagram :

$$Z \longrightarrow U$$

$$\stackrel{\alpha}{\uparrow} \qquad \uparrow$$

$$\operatorname{Sp} A \stackrel{\mathbb{I}}{\longrightarrow} \operatorname{Sp} A$$

This implies pulling the diagram $\operatorname{Sp} \downarrow U$ back to $\operatorname{Sp} \downarrow Z$ only introduces duplicate objects with identity morphisms in between them. Hence $\varprojlim_{(A,\alpha)\in\operatorname{Sp}\downarrow U}\alpha^{-1}Z=\varprojlim_{(A_1,\alpha_1)\in\operatorname{Sp}\downarrow Z}\operatorname{Sp}A=Z$ by the density of representables.

(2) We need to show that $\mathbb{M}\mathbf{Set}(-,X)$ is a sheaf for \mathbf{Aff} with covers from the big Zariski site $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$. The key is that basic opens cover opens for affine schemes.

Let $A \in \mathbb{M}^{op}$ and \mathcal{U} be a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ -cover of $\operatorname{Sp} A$. For each $i \in \mathcal{U}$, let $I_i \in \operatorname{Ideal} A$ with $i = D(I_i)$. Let $I := \bigsqcup_{i \in \mathcal{U}} I_i$. Then since $\{D(f)\}_{f \in I_i}$ is a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ -cover of i for every $i \in \mathcal{U}$, $\{D(f)\}_{f \in I_i}$ is also a $\mathbb{M}\mathbf{Set}_{\mathbf{Zar}}$ -cover of $\operatorname{Sp} A$. We then have the commutative diagram :

$$\begin{split} \mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) & \longrightarrow \varprojlim_{i,j \in \mathcal{U}} \mathbb{M}\mathbf{Set}(i \cap j, X) \\ & \downarrow_{\mathbb{T}} & \downarrow_{\sim} \\ \mathbb{M}\mathbf{Set}(\operatorname{Sp} A, X) & \stackrel{\sim}{\longrightarrow} \varprojlim_{f,g \in I} \mathbb{M}\mathbf{Set}(D(f) \cap D(g), X) \end{split}$$

where the horizontal isomorphism to due to MSet(-, X) being a sheaf on Aff_{Zar} .

It remains to justify the vertical isomorphism. To do this, we apply the same argument as we're trying to do now, but on $i\cap j$. It's easy to see that $\{D(f)\cap D(g)\}_{f\in I_i,g\in I_j}$ covers $i\cap j$, so we get

$$\begin{split} \mathbb{M}\mathbf{Set}(i\cap j,X) &\cong \varprojlim_{(A_{1},\alpha_{1})\in \operatorname{Sp}\downarrow(i\cap j)} \mathbb{M}\mathbf{Set}(\operatorname{Sp}A_{1},X) \cong \varprojlim_{(A_{1},\alpha_{1})\in \operatorname{Sp}\downarrow(i\cap j)} \varprojlim_{(A_{1},\alpha_{1})\in \operatorname{Sp}\downarrow(i\cap j)} \mathbb{M}\mathbf{Set}(D(\alpha_{1}^{\flat}(f))\cap D(\alpha_{1}^{\flat}(g)),X) \\ &\cong \varprojlim_{f\in I_{i},g\in I_{j}} \varprojlim_{(A_{1},\alpha_{1})\in \operatorname{Sp}\downarrow U} \mathbb{M}\mathbf{Set}(\alpha_{1}^{-1}\left(D(f)\cap D(g)\right),X) \overset{(4)}{\cong} \varprojlim_{f\in I_{i},g\in I_{j}} \mathbb{M}\mathbf{Set}(D(f)\cap D(g),X) \end{split}$$

where (4) is as before.

1.4 Schemes

- Let $X \in \mathbb{M}\mathbf{Set}$. Then X is called a *scheme* when we have :

 ("Is a Space") $X \in \mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathrm{Zar}})$, equivalently $\mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathrm{Zar}})$.

 (Open cover by Affine schemes) there exists $\mathcal{U} \subseteq \mathrm{Open}\,X$ such that \mathcal{U} covers X and every $U \in \mathcal{U}$ is affine.

We use \mathbf{Sch} to denote the full subcategory of schemes in $\mathbb{M}\mathbf{Set}.$

Remark – *Intuition of Definition of Schemes.* In the same way that smooth manifolds are spaces modeled on \mathbb{R}^n that is locally \mathbb{R}^n , schemes are spaces modeled on \mathbb{M} that is "locally \mathbb{M} ". In particular, objects of \mathbb{M} ought to be schemes.

$\begin{tabular}{ll} \textbf{Proposition - Affine Schemes are Schemes} \\ \textbf{Let } X \in \textbf{Aff. Then } X \in \textbf{Sch.} \\ \end{tabular}$

Proof. X is an affine open cover of itself, so it suffices to check the sheaf condition. Since $\mathbf{Sh}(\mathbb{M}\mathbf{Set}_{\mathrm{Zar}})$ $\mathbf{Sh}(\mathbf{Aff}_{\mathbf{Zar}})$, it suffices to check that for $(A, \alpha) \in \mathrm{Sp} \downarrow X$, \mathcal{U} a $\mathbf{Aff}_{\mathbf{Zar}}$ -cover of $\mathrm{Sp}\,A$, we have

$$\mathbb{M}\mathbf{Set}(\operatorname{Sp} A,X) \xrightarrow{\sim} \varprojlim_{U,V \in \mathcal{U}} \mathbb{M}\mathbf{Set}(U \cap V,X)$$

Since $X = \operatorname{Sp} \mathcal{O}(X)$ and $\operatorname{Sp} : \mathbb{M}^{op} \to \mathbb{M}\mathbf{Set}$ is fully faithful, this is equivalent to

$$\mathbb{Z}\mathbf{Alg}(\mathcal{O}(X),\mathcal{O}(\operatorname{Sp} A)) \xrightarrow{\sim} \mathbb{Z}\mathbf{Alg}(\mathcal{O}(X), \varprojlim_{U,V \in \mathcal{U}} \mathcal{O}(U \cap V))$$

It thus suffices to show that

$$A = \mathcal{O}(\operatorname{Sp} A) \xrightarrow{\sim} \varprojlim_{U,V \in \mathcal{U}} \mathcal{O}(U \cap V)$$

where the isomorphism is from the restriction maps $\mathcal{O}(\operatorname{Sp} A) \to \mathcal{O}(U \cap V)$.

Let $(f_V \in \mathcal{O}(V))_{V \in \mathcal{U}}$ that agrees on pairwise intersections. Suppose for a moment, for any finite subcover $\mathcal{U}_0 \subseteq \mathcal{U}$, we have a unique $f_{\mathcal{U}_0} \in A$ that agree with f_V on $V \in \mathcal{U}_0$. WLOG $\mathcal{U} = \{D(f)\}_{f \in I}$ for some $I \subseteq A$. Then \mathcal{U} covers $\operatorname{Sp} A$ implies D(I) covers $\operatorname{Sp} A$, which implies AI = A, which gives a *finite* subset $I_0 \subseteq I$ where $AI_0 = A$. Hence, we do have a finite subcover \mathcal{U}_0 and such $f_{\mathcal{U}_0}$. Furthermore, for any $V \in \mathcal{U}$, $f_{\mathcal{U}_0} = f_{\mathcal{U}_0 \cup \{V\}}$ by uniqueness of $f_{\mathcal{U}_0}$ on \mathcal{U}_0 so

$$\downarrow^V f_{\mathcal{U}_0} = \downarrow^V f_{\mathcal{U}_0 \cup \{V\}} = f_V$$

So $f_{\mathcal{U}_0}$ actually agrees with f_V on all $V \in \mathcal{U}$. Furthermore, it is unique, again by uniqueness on \mathcal{U}_0 . Thus, it suffices to do the case of \mathcal{U} finite.

The naive idea is this: if each $f_V = g_V/h_V$ with $V = D(h_V)$, then "agreeing on intersections" should mean $g_V h_W = g_W h_V \in \mathcal{O}(U) = A$. We can then use a partition of unity $1 = \sum_{V \in \mathcal{U}} \lambda_V h_V$ to patch:

$$f_V = \frac{g_V}{h_V} = \frac{\sum_{W \in \mathcal{U}} \lambda_W g_V h_W}{h_V} = \frac{\sum_{W \in \mathcal{U}} \lambda_W g_W h_V}{h_V} = \frac{\sum_{W \in \mathcal{U}} \lambda_W g_W}{1}$$

So $f:=\sum_{W\in\mathcal{U}}\lambda_Wg_W\in A=\mathcal{O}_{\operatorname{Spec}\,A}(U)$ is the guy we want. This is even unique since if we have another such f_1 , then $f/1=f_1/1\in\mathcal{O}(V)\cong A_{h_V}$ implies the existence of $N_V\in\mathbb{N}$ such that $(f-f_1)h_V^{N_V}=0$. By finiteness of \mathcal{U} , we can pick a single $N\in\mathbb{N}$ with $(f-f_1)h_V^N=0$ for all $V\in\mathcal{U}$. Then using another partition of unity $1=\sum_{V\in\mathcal{U}}\mu_Vh_V^N$, we have

$$f - f_1 = \sum_{V \in \mathcal{U}} \mu_V (f - f_1) h_V^N = 0$$

It thus suffices to write for all $V \in \mathcal{U}$, $f_V = g_V/h_V$ such that for all $W \in \mathcal{U}$, $g_V h_W = g_W h_V$.

Well, for each $V \in \mathcal{U}$, let $h_V \in A$ with $V = D(h_V)$. Then $f_V = g_V/h_V^{n_V}$. Since $D(h_V) = D(h_V^{n_V})$, WLOG $f_V = g_V/h_V$ with $V = D(h_V)$ Now, since f_V and f_W agree on $V \cap W = D(h_V h_W)$, we have $g_V h_W/h_V h_W = \downarrow^{V \cap W} g_V/h_V = \downarrow^{V \cap W} g_W/h_V = g_W h_V/h_V h_W$ and so the existence of $n(V, W) \in \mathbb{N}$ such that

$$(g_V h_W - g_W h_V)(h_V h_W)^{n(V,W)} = 0$$

Smashing it again with *finiteness of* \mathcal{U} , we can choose a single $N \in \mathbb{N}$ such that

$$(g_V h_W - g_W h_V)(h_V h_W)^N = 0$$

for all $V,W\in\mathcal{U}$. Then, since $g_V/h_V=g_Vh_V^N/h_V^{N+1}$ and $D(h_V)=D(h_V^{N+1})$, we can WLOG $f_V=g_V/h_V$ with $V=D(h_V)$ and

$$g_V h_W - g_W h_V = 0$$

as desired, finishing the proof.

Proposition – Opens Subschemes

Let $X \in \mathbf{Sch}$, $U \in \mathrm{Open}\,X$. Then $U \in \mathbf{Sch}$. We call U an open subscheme of X.

Proof. (Sheaf)

Lemma (*Opens of Sheaves are Sheaves*). Let $U \in \operatorname{Open} X$ where $X \in \operatorname{\mathbf{Sh}}(\mathbb{M}\mathbf{Set}_{\operatorname{Zar}})$. Then $U \in \operatorname{\mathbf{Sh}}(\mathbb{M}\mathbf{Set}_{\operatorname{Zar}})$.

Proof. Given $Y \in \mathbb{M}\mathbf{Set}$, a compatible system $(\varphi_i)_{Y_i \in \mathcal{Y}}$ of morphisms from an open cover \mathcal{Y} of Y to U glues uniquely to a morphism $\varphi: Y \to X$. Factoring φ through U is equivalent to $\varphi^{-1}U = Y$, which is true from $\varphi^{-1}U$ "containing" the cover \mathcal{Y} , and so is single open covering Y, and hence is equal to Y by extensionality of opens.

(Affine Open Cover) Let $\mathcal{U} \subseteq \operatorname{Open} X$, \mathcal{U} consists of affine opens and covers X. Since opens and covers are preserved under base change, $\{U \cap V\}_{V \in \mathcal{U}}$ is an open cover of U. For each $V \in \mathcal{U}$, $U \cap V$ is also an open of V. By affineness of V, $U \cap V$ has a cover by basic opens V_f of V. The V_f are open in $U \cap V$ by base change and hence open in U by composition. This gives an affine open cover of $U \cap V$, and hence an affine open cover of U by taking the composite of these covers.

Proposition – Fiber Product of Schemes

Let $X,Y,S\in\mathbf{Sch}$ and $\varphi\in\mathbf{Sch}(X,S)$, $\psi\in\mathbf{Sch}(Y,S)$. Then the fiber product $X\times_S Y$ in $\mathbb{M}\mathbf{Set}$ is a scheme and is the fiber product of X,Y over S in \mathbf{Sch} .

2 Properties of Schemes

2.1 Zariski-Local Properties of Schemes

Definition - Zariski-Local Properties

Let $P : \mathbf{Sch} \to \mathbf{Prop}$ be a predicate on schemes. Then P is called Zariski-local when for all $X \in \mathbf{Sch}$ and Zariski covers \mathcal{X} of X, P(X) is true if and only if for all $X_i \in \mathcal{X}$, $P(X_i)$ is true.

Definition – Affine-Local Properties

Let $P : \mathbf{Aff} \to \mathbf{Prop}$ be a predicate on affine schemes. Then P is called *affine-local* when for all $X \in \mathbf{Aff}$ and basic Zariski covers \mathcal{X} of X, P(X) is true if and only if for all $X_i \in \mathcal{U}$, $P(X_i)$ is true.

Proposition - Affine-Locality

Let $P : \mathbf{Aff} \to \mathbf{Prop}$ be affine-local. Define the predicate locally $P : \mathbf{Sch} \to \mathbf{Prop}$ by setting X is locally P when there exists an affine Zariski-cover \mathcal{X} of X such that all $X_i \in \mathcal{X}$ satisfy P.

Then TFAE:

- 1. *X* is locally *P*
- 2. All opens U of X are locally P.
- 3. All affine opens U of X satisfy P.
- 4. There exists a Zariski cover \mathcal{X} of X where all $X_i \in \mathcal{X}$ are locally P.

In particular, "locally P" is a Zariski-local property of schemes.

Proof.

 $(1\Rightarrow 2)$ Let $U\in \operatorname{Open} X$. Let $\mathcal X$ be an affine Zariski cover of X where all $X_i\in \mathcal X$ satisfy P. For each X_i , $X_i\cap U$ is an open of X_i and hence admits a Zariski covering $\mathcal U_i$ by basic opens of X_i . Since $P(X_i)$ is true, for every $U_{i,j}\in \mathcal U_i$, $P(U_{i,j})$ is true as well. Then note that $U_{i,j}$ are affine since X_i is and also open in U so the composite $\mathcal U:=\bigcup_{X_i\in \mathcal X}\mathcal U_i$ gives an Zariski cover of U consisting of affines satisfying P.

 $(2 \Rightarrow 3)$ Let $U \in \text{Open } X$ be affine. We have an affine Zariski cover \mathcal{U} of U consisting of opens satisfying P. Since P is affine-local, it suffices to find a Zariski cover of each $U_i \in \mathcal{U}$ by opens that are basic in *both* U and U_i . Well, we can certainly find a Zarisk cover \mathcal{U}_i of U_i by basic opens of U. Then $\mathcal{U}_i \cup \{U\}$ is a basic Zariski cover of U, so its pullback is a basic Zariski cover of U_i . But its pullback is just \mathcal{U}_i so \mathcal{U}_i works.

 $(3 \Rightarrow 4)$ By X being a scheme. $(4 \Rightarrow 1)$ Composites of open covers.

Proposition – Examples of Affine-Local Properties

The following predicates on ${\bf Aff}$ are affine-local :

1. For $X \in \mathbf{Aff}$, say X is Noetherian when $\mathcal{O}(X)$ is Noetherian.

2. For $X \in \mathbf{Aff}$, say X is *reduced* when $\mathcal{O}(X)$ has no nilpotent elements.

Definition - Globally

Let P be a affine-local property of affine schemes and $X \in \mathbf{Sch}$. We say X is *globally* P^a when X is locally P and X is quasi-compact.

 $[^]a$ This is non-standard terminology. A lot of affine-local properties are extended to schemes by quasi-compact + locally P. In this case, it is standard terminology to say simply say "X is P". However, this clashes with properties of schemes not coming from affine-local properties. The addition of the adverb "globally" is an attempt to highlight the fact that the property P is affine-local.

3 Properties of Morphisms

3.1 Permanence

Definition – Permanence

Let $P: Mor(\mathbf{Sch}) \to \mathbf{Prop}$ be a predicate on morphisms of schemes. Then we say:

- *P* is *stable under composition* when for all $X \to Y \to Z$ in Sch, $P(X \to Y)$ and $P(Y \to Z)$ implies $P(X \to Z)$.
- *P* is *stable under base change* when for all pullback diagrams

$$\begin{array}{c} X \longrightarrow S \\ \uparrow \qquad \qquad \uparrow \\ X \times_S Y \longrightarrow Y \end{array}$$

 $P(X \to S)$ implies $P(X \times_S Y \to Y)$.

– P is stable under fiber product when for all pullback diagrams as the above, $P(X \to S)$ and $P(Y \to S)$ implies $P(X \times_S Y \to S)$.

3.2 Zariski-Local Properties of Morphisms of Schemes

Definition - Zariski-Local on Target, on Source

Let $P:\operatorname{Mor}(\operatorname{\mathbf{Sch}})\to\operatorname{\mathbf{Prop}}$ be a predicate on morphisms of schemes. Then we say :

- P is Zariski-local on target when for all $\varphi \in \mathbf{Sch}(X,Y)$ and Zariski covers $\mathcal Y$ of Y, $P(\varphi:X \to Y)$ is true if and only if for all $Y_i \in \mathcal Y$, $P(\varphi^{-1}Y_i \to Y_i)$ is true.
- P is Zariski-local on source when for all $\varphi \in \mathbf{Sch}(X,Y)$ and Zariski covers \mathcal{X} of X, $P(\varphi : X \to Y)$ is true if and only if for all $X_i \in \mathcal{X}$, $P(X_i \to X \to Y)$ is true.

Definition – Affine-Local Properties of Morphisms

Let $P: Mor(\mathbf{Aff}) \to \mathbf{Prop}$ be a predicate on morphisms of affine schemes. Then we say :

- P is affine-local on target when for all $\varphi \in \mathbf{Aff}(X,Y)$ and basic Zariski covers \mathcal{Y} of Y, $P(\varphi:X\to Y)$ is true if and only if for all $Y_i\in\mathcal{Y}$, $P(\varphi^{-1}Y_i\to Y_i)$ is true.
- P is affine-local on source when for all $\varphi \in \mathbf{Aff}(X,Y)$ and basic Zariski covers \mathcal{X} of X, $P(\varphi:X\to Y)$ is true if and only if for all $X_i\in\mathcal{X}$, $P(X_i\to X\to Y)$ is true.
- *P* is *affine-local* when the following three things are true :
 - (Half of Affine-Local on Target) For $\varphi \in \mathbf{Aff}(X,Y)$ and $f \in \mathcal{O}(Y)$, $P(\varphi : X \to Y)$ implies $P(\varphi^{-1}Y_f \to Y_f)$.
 - (Half of Affine-Local on Source) For $\varphi \in \mathbf{Aff}(X,Y)$ and basic Zariski cover \mathcal{X} of X, if $P(X_i \to X \to Y)$ for every $X_i \in \mathcal{X}$, then $P(X \to Y)$.

- ("Zig-Zag") For $\varphi \in \mathbf{Aff}(X,Y)$, $f \in \mathcal{O}(X)$ and $g \in \mathcal{O}(Y)$, $X_f \longrightarrow X$ $Y_g \longrightarrow Y$

$$P(X \to Y_g)$$
 implies $P(X_f \to Y)$.

Remark – Frustration with Affine-Local Properties. It is true for properties of morphisms of affine schemes P that P affine-local implies P affine-local on target and source. I was hoping for this to be an equivalence, however the "zig-zag" seems to contain the extra information that $P(\operatorname{Sp} B \to (\operatorname{Sp} A)_f)$ implies $P(\operatorname{Sp} B \to \operatorname{Sp} A)$.

Proposition – Affine-Locality for Morphisms