Computational Finance FIN-472

Take-Home Exam 3 Polynomial expansion methods

October 28, 2022

- Please upload your solutions on moodle by Friday 11.11.2022 at 8h15.
- Please do not forget to upload in Moodle your Matlab codes. You should submit Matlab files for parts f),g),h), for a total of 3 Matlab files.
- You should also upload one PDF file containing the solutions to all parts-including the Matlab codes for parts f),g),h) and the plot for part h).

Consider a GARCH model $(X_t)_{0 \le t \le T}$ of the form

$$dX_t = \kappa(\theta - X_t) dt + \sigma X_t dW_t,$$

where κ , θ and σ are model parameters.

- a) (1/20) Prove that X_t is a polynomial diffusion and write its infinitesimal generator \mathcal{G} .
- b) (2/20) For $u \in \mathbb{R}$, define v as

$$v(t,x) = \mathbb{E}[\exp(iuX_T)|X_t = x].$$

If the conditions of the Feyman-Kac theorem are satisfied, v solves the equation

$$v_t + \mathcal{G}v = 0$$
, $v(T, x) = \exp(iux)$.

Can we write the solution of the PDE as

$$v(t,x) = \exp(\phi(T-t) + \psi(T-t)x)$$

for some function ϕ and ψ with $\phi(0) = 0$ and $\psi(0) = iu$?

c) (2/20) Solve explicitly the differential equation for X_t .

Hint: Apply Itô to $L_t := e^{\left(\kappa + \frac{\sigma^2}{2}\right)t - \sigma W_t} X_t$.

d) (1/20) For $N \in \mathbb{N}$, write the matrix representation G_N of the infinitesimal generator restricted to $\operatorname{Pol}_N(\mathbb{R})$, with respect to the monomial basis given by

$$H_N(x) = (1, x, x^2, \cdots, x^N).$$

- e) (2/20) Use the moment formula for polynomial diffusions to calculate the first moment $\mathbb{E}[X_T]$. Check that the obtained result is coherent with what one gets from the explicit formula derived in part c).
- f) (4/20) Consider the set of parameters

$$\kappa = 0.5, \ \theta = 0.4, \ \sigma = 0.2, \ X_0 = 1, \ T = 0.5.$$

Use the moment formula for polynomial diffusions to find the first 4 moments

$$\mathbb{E}[X_T], \ \mathbb{E}[X_T^2], \ \mathbb{E}[X_T^3], \ \mathbb{E}[X_T^4].$$

- g) (4/20) Compare the results of the previous part with the moments computed via a Monte Carlo simulation, where you use a forward Euler scheme to simulate $N_{sim} = 10^6$ realizations of X_T and use $N_{time} = 100$ for the time discretization.
- h) (4/20) Using the moments calculated in part f), calculate the 4-order "approximation" of the density of X_T with a Gaussian that matches the first two moments. Plot the density approximation for orders 1, 2, 3, 4.