Package 'MetaP'

Christina Hartnett, Matthew Brulhardt, Joshua Foote, Natalie Murawski May 7th 2019

OVERVIEW

This package provides a method for pooling p-values of biomarkers using Fisher, Stouffer, Min or Max tests for the given multiple (2 to 5) data frames.

library(MetaP)

Workflow

Project

Description

This function uses different tests (Fisher, Stouffer, Min, Max) to pool data from different data frames.

Usage

Project(x1, x2, x3, x4, x5, test)

Arguments

x1, x2, x3, x4, x5 are data frames with each data frame consisting of identical number of columns. Must input at least 2 but at most 5 data frames.

Test takes values of:

- "fisher" for Fisher
- "stouffer" for Stouffer
- "min" for Minimum P-value
- "max" for Maximum P-value

Value

Returns a vector of p-values for all Biomarkers being pooled from our data frames.

Group Difference

Description

This function determines our p-values based on different factors of the data frame. The test determines if the data is normally distributed then based on amount of groups will perform the proper test. For a data frame with 2 groups we will perform either a two sample t-test or Wilcoxon rank sum test. For a data frame with more than 2 groups we will perform ANOVA or Kruskal Wallis test.

Usage

GroupDifference(x)

Arguments

x is a data frame, can be normally distributed or not normally distributed. For 2 groups we will perform a two sample t-test or Wilcoxon rank sum test based on Normality. For more than 2 groups we will perform ANOVA or Kruskal Wallis test based on Normality.

Value

Returns a list of p-values

check.input

Description

This checks our inputs for our main function.

This function checks that:

- All inputs are lists/ Data Frames
- There are the same number of columns in each Data Frame
- That row 1 is group and rows 2 to p are biomarkers (p is length on data frame)
- The group membership column will take at least two unique values

Usage

check.input(frames)

Arguments

frames is a list of 2 to 5 Data Frames

pool.fisher

Description

This function sums the log-transformed p-values, following a chi-squared distributions with 2k degrees of freedom.

$$\chi_{\text{Fisher}}^2 = -2 \sum_{i=1}^k \log(P_i)$$

Usage

pool.fisher(pvalues)

Arguments

pvalues is a list of p-values

Value

Returns a pooled p-value for the list of p-values given.

pool.stouffer

Description

This function sums the inverse normal p-values, following a standard normal distribution.

$$T_{\text{Stouffer}} = \sum\nolimits_{i=1}^{k} {{z_i}} / {\sqrt k {\left({{z_i}{\Phi ^{ - 1}}\left({{p_i}} \right),} \right.} }$$

Usage

pool.stouffer(pvalues)

Arguments

pvalues is a list of p-values.

Value

Returns a pooled p-value for the list of p-values given.

pool.min

Description

This function follows a beta distribution with degrees of freedom $\alpha = 1$ and $\beta = k$

Usage

pool.min(pvalues)

Arguments

pvalues is a list of p-values.

Value

Returns a pooled p-value for the list of p-values given.

pool.max

Description

This function follows a beta distribution with degrees of freedom $\alpha = k$ and $\beta = 1$

Usage

pool.max(pvalues)

Arguments

pvalues is a list of p-values.

Value

Returns a pooled p-value for the list of p-values given.

REFERENCES

Lun-Ching Chang, Hui-Min Lin, et al. "Meta-Analysis Methods for Combining Multiple Expression Profiles: Comparisons, Statistical Characterization and an Application Guideline. *BMC Bioinformatics*, BioMed Central, 21 Dec. 2013, bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-368.