(resumen teórico)

- 5.1 Introducción
- 5.2 Teorema de Taylor
- 5.3 Fórmula de Taylor para funciones elementales
- 5.4 Acotación del error
- 5.5 Estudio local de funciones

5.1 Introducción

Un recurso para estudiar el comportamiento de una función en un entorno de un punto es aproximarla mediante alguna otra función fácil de evaluar, particularmente por un polinomio.

Sea f una función n veces derivable en el punto a. El polinomio de Taylor de grado n para f en a es el polinomio

$$P_n(f, a, x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n.$$

La diferencia $R_n(f, a, x) = f(x) - P_n(f, a, x)$ se denomina resto n-ésimo de Taylor de la función f en el punto a.

Nótese que la existencia de $f^{(n)}(a)$ requiere la existencia de $f^{(k)}(x)$ en un entorno U de a, para $k=1,2,\ldots,n-1$.

Notemos también que $y = P_1(f, a, x)$ es la ecuación de la recta tangente a la gráfica de f en el punto (a, f(a)). Se cumplen las dos propiedades siguientes.

■ El valor del polinomio $P_n(f, a, x)$ y el de todas sus derivadas hasta orden n en el punto a coinciden con los de la función f en este punto; es decir,

$$P_n^{(i)}(f, a, a) = f^{(i)}(a), \quad i = 0, \dots, n.$$

 $\blacksquare \lim_{x \to a} \frac{R_n(f, a, x)}{(x - a)^n} = 0.$

El límite anterior puede interpretarse en el sentido de que la similitud entre f(x) y $P_n(f, a, x)$ es más acusada cuanto mayor es el grado y cuanto más cerca esté x de a.

La expresión

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(f, a, x)$$

se conoce como Fórmula de Taylor de orden n para f en a.¹.

Describimos, a continuación, el comportamiento de los polinomios de Taylor respecto a las operaciones con funciones. Enunciamos los resultados en el punto 0. Los resultados correspondientes en un punto a se obtienen mediante el cambio de variable $x \mapsto t = x - a$.

Sean f y g dos funciones con derivadas n-ésimas en el punto 0 y sean $p = P_n(f,0,x)$ y $q = P_n(g,0,x)$ los correspondientes polinomios de Taylor de grado n. Entonces,

- Si α y β son números reales, el polinomio de Taylor de grado n de $\alpha f + \beta g$ en el punto 0 es $\alpha p + \beta q$.
- El polinomio de Taylor de grado n de $f \cdot g$ en el punto 0 es el polinomio obtenido de pq suprimiendo los términos de grado > n.
- Si $g(0) \neq 0$, el polinomio de Taylor de grado n de f/g en el punto 0 es el cociente de la división de p por q según potencias de x crecientes hasta el grado n incluido.
- Si f(0) = 0, el polinomio de Taylor de grado n de $g \circ f$ en el punto 0 es el polinomio obtenido de $g \circ p$ suprimiendo los términos de grado > n.

La sustitución de funciones f(x) por las expresiones $P_n(f, a, x) + R_n(f, a, x)$ puede ser útil en el cálculo de límites en el punto a.

5.2 Teorema de Taylor

En el caso de que f sea una función n+1 veces derivable en un entorno de a, se dispone de la siguiente expresión del resto.

Teorema de Taylor. Sea f una función n+1 veces derivable en un entorno U de a. Entonces, para cada $x \in U \setminus \{a\}$ existe un punto c entre x y a tal que

$$R_n(f, a, x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$

La expresión anterior se denomina resto de Lagrange.

 $^{^{1}}$ Para el caso particular a=0, se le llama también Fórmula de MacLaurin

Fórmula de Taylor 3

En las condiciones del teorema de Taylor, tenemos

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^n(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},$$

expresión que se denomina fórmula de Taylor de orden n de la función f en el punto a,con resto de Lagrange.

5.3 Fórmula de Taylor para funciones elementales

A continuación se dan las fórmulas de Taylor de grado n de algunas funciones en el punto 0. El valor c es intermedio entre 0 y x.

•
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + e^c \frac{x^{n+1}}{(n+1)!}$$
.

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+c)^{n+1}}, \quad (x > -1).$$

$$\bullet \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + (-1)^n \frac{x^{2n+1}}{(2n+1)!} \cos c.$$

$$\bullet \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + (-1)^{n+1} \frac{x^{2n+2}}{(2n+2)!} \sin c.$$

$$\bullet (1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1} x + {\alpha \choose 2} x^2 + \dots + {\alpha \choose n} x^n + {\alpha \choose n+1} \frac{x^{n+1}}{(1+c)^{n+1-\alpha}} ,$$

donde α es un número real, x > -1 y, para todo entero $k \ge 0$,

$$\binom{\alpha}{k} = \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{k!}.$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + \frac{x^{2n+1}}{(2n+1)!} \cosh c.$$

$$\bullet \cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \frac{x^{2n+2}}{(2n+2)!} \sinh c.$$

5.4 Acotación del error

La siguiente terminología será de utilidad. Sean I un intervalo (de cualquier tipo) y $n \ge 0$ un entero. La clase $C^n(I)$ está formada por todas las funciones f cuyo dominio contiene I y tales que, en todo $x \in I$, existe la derivada n-ésima $f^{(n)}$ y esta derivada es continua. En particular, la clase $C^0(I) = C(I)$ está formada por todas las funciones continuas en I. Es

claro, además, que si n > m, entonces $\mathcal{C}^n(I) \subset \mathcal{C}^m(I)$. La clase $\mathcal{C}^{\infty}(I)$ está formada por las funciones que tienen derivadas de todos los órdenes en I. Análogamente, si $a \in \mathbb{R}$, las clases $\mathcal{C}^n(a)$ y $\mathcal{C}^{\infty}(a)$ están formadas por las funciones que tienen derivada n-ésima continua en a y por las que tienen derivadas de todos los órdenes en el punto a, respectivamente.

Sea f una función n+1 veces derivable en un entorno U de a, y supongamos que la función $f^{(n+1)}$ está acotada por una constante K en el intervalo abierto de extremos a y $x \in U$. Entonces,

$$|f(x) - P_n(f, a, x)| = |R_n(f, x, a)| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1} \right| \le \frac{K}{(n+1)!} (x - a)^{n+1}.$$

Ello permite aproximar f(x) por $P_n(f, a, x)$ en un entorno de a y acotar el error cometido con la aproximación. En particular, si I es el intervalo [a, x] o [x, a] y $f \in \mathcal{C}^{n+1}(I)$, entonces la función $f^{(n+1)}$ es continua en el intervalo cerrado I y, por tanto, tiene máximo absoluto en I, por lo que puede tomarse como K dicho máximo.

5.5 Estudio local de funciones

El polinomio de Taylor permite generalizar las condiciones suficientes para monotonía, extremos relativos y convexidad vistos anteriormente. Con respecto a la monotonía y los extremos relativos, tenemos las siguientes condiciones suficientes.

Sea f una función de clase $\mathcal{C}^n(a)$ tal que

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0, \quad f^{(n)}(a) \neq 0.$$

Entonces, se tiene que

- $\qquad \qquad \text{$n$ par y $f^{(n)}(a)>0$} \ \Rightarrow \ f \text{ tiene un mínimo relativo en a};$
- $\qquad \qquad \text{$n$ par y $f^{(n)}(a) < 0$} \ \Rightarrow \ f \text{ tiene un máximo relativo en a};$
- lacksquare n impar y $f^{(n)}(a)>0 \ \Rightarrow \ f$ es estrictamente creciente en un entorno de a.
- lacksquare n impar y $f^{(n)}(a) < 0 \implies f$ es estrictamente decreciente en un entorno a.

Con respecto a la convexidad, tenemos las siguientes condiciones suficientes.

Sea f una función de clase $\mathcal{C}^n(a)$ tal que $f''(a) = \cdots = f^{(n-1)}(a) = 0, \quad f^{(n)}(a) \neq 0.$ Entonces, se tiene que

- $\qquad \qquad \text{$n$ par y $f^{(n)}(a)>0$} \ \Rightarrow \ f \text{ es convexa en un entorno de a}.$
- $\qquad \qquad \text{$n$ par y $f^{(n)}(a) < 0$} \ \Rightarrow \ f \text{ es concava en un a}.$
- $n \text{ impar } \Rightarrow f \text{ tiene un punto de inflexión en } a.$