MA 110: Lecture 04

Saurav Bhaumik Department of Mathematics IIT Bombay

Spring 2025

Recall: A square matrix $\mathbf{A} \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}}$ is said to be invertible if there is $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that

$$AB = I = BA$$

and in this case, **B** is called an inverse of **A**.

We have seen examples of square matrices that are invertible and also those that are not invertible. Further we noted that:

- If a square matrix $\mathbf{A} \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}}$ is invertible, then it has a unique inverse, and it is denoted by \mathbf{A}^{-1}
- If a square matrix $\mathbf{A} \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}}$ is invertible, then so is its transpose \mathbf{A}^T and in this case,

$$(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}.$$

We now relate the invertibility of a square matrix ${\bf A}$ to the solutions of the homogeneous system ${\bf A}{\bf x}={\bf 0}$.

Proposition

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then \mathbf{A} is invertible if and only if the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the zero solution.

Proof. Suppose **A** is invertible. Then by definition, there is $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that $\mathbf{B} \mathbf{A} = \mathbf{I}$. If $\mathbf{x} \in \mathbb{R}^{n \times 1}$ satisfies $\mathbf{A} \mathbf{x} = \mathbf{0}$, then $\mathbf{x} = \mathbf{B} \mathbf{A} \mathbf{x} = \mathbf{B} (\mathbf{A} \mathbf{x}) = \mathbf{B} \mathbf{0} = \mathbf{0}$. Thus the linear system $\mathbf{A} \mathbf{x} = \mathbf{0}$ has only the zero solution.

Conversely, suppose the linear system $\mathbf{A}\mathbf{x}=\mathbf{0}$ has only the zero solution. Let $\mathbf{y}=\begin{bmatrix}y_1&\cdots&y_n\end{bmatrix}^T\in\mathbb{R}^{n\times 1}$. We transform the augmented matrix $[\mathbf{A}|\mathbf{y}]$ to a matrix $[\mathbf{A}'|\mathbf{y}']$, where \mathbf{A}' is in REF. By our previous result, \mathbf{A}' has n nonzero rows, and so back substitution gives a unique $\mathbf{x}=\begin{bmatrix}x_1&\cdots&x_n\end{bmatrix}^T\in\mathbb{R}^{n\times 1}$ such that $\mathbf{A}'\mathbf{x}=\mathbf{y}'$. Hence $\mathbf{A}\mathbf{x}=\mathbf{y}$.

Further, the process of the back substitution shows that the entries x_1, \ldots, x_n of **x** are given as follows:

$$x_{n} = c'_{nn}y'_{n}$$

$$x_{n-1} = c'_{(n-1)(n-1)}y'_{n-1} + c'_{(n-1)n}y'_{n}$$

$$\vdots \quad \vdots \quad \vdots \qquad \vdots$$

$$x_{2} = c'_{22}y'_{2} + \dots + \dots + c'_{2n}y'_{n}$$

$$x_{1} = c'_{11}y'_{1} + c'_{12}y'_{2} + \dots + \dots + \cdots + c'_{1n}y'_{n},$$

where $\mathbf{y}' = \begin{bmatrix} y_1' & \cdots & y_n' \end{bmatrix}^\mathsf{T}$ and $c_{jk}' \in \mathbb{R}$ for $j, k = 1, \dots, n$.

Also, since \mathbf{y}' is obtained from \mathbf{y} by performing EROs (which are of the type $R_i \longleftrightarrow R_j$, $R_i + \alpha R_j$ and αR_j) on $[\mathbf{A}|\mathbf{y}]$, we see that each y_1', \ldots, y_n' is a linear combination of the entries y_1, \ldots, y_n of \mathbf{y} . As a result, each x_1, \ldots, x_n is a linear combination of y_1, \ldots, y_n .

Thus there is $c_{ik} \in \mathbb{R}$ for j, k = 1, ..., n (not depending on y_1, \ldots, y_n) such that

$$x_{1} = c_{11}y_{1} + c_{12}y_{2} + \dots + c_{1n}y_{n}$$

$$x_{2} = c_{21}y_{1} + c_{22}y_{2} + \dots + c_{2n}y_{n}$$

$$\vdots \quad \vdots \qquad \vdots \qquad \vdots$$

$$x_{n} = c_{n1}y_{1} + c_{n2}y_{2} + \dots + c_{nn}y_{n}.$$

Define $\mathbf{C} := [c_{jk}] \in \mathbb{R}^{n \times n}$. Then $\mathbf{x} = \mathbf{C}\mathbf{y}$, and so ACy = A(Cy) = Ax = y. Letting $y := e_k \in \mathbb{R}^{n \times 1}$, we see that $(\mathbf{AC})\mathbf{e_k} = \mathbf{e_k}$ for k = 1, ..., n. Hence $\mathbf{AC} = \mathbf{I}$. We still need to show that CA = I. For this, consider the linear system Cx = 0. Note that $Cx = 0 \Rightarrow x = ACx = A(Cx) = A0 = 0$. Thus the linear system Cx = 0 has only the zero solution.

Hence by what we have proved above, there is $\mathbf{D} \in \mathbb{R}^{n \times n}$ such that CD = I. Now, D = ID = (AC)D = A(CD) = AI = A. Thus AC = I = CA, and so A is invertible.

Corollary

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. If there is $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that either $\mathbf{B}\mathbf{A} = \mathbf{I}$ or $\mathbf{A}\mathbf{B} = \mathbf{I}$, then \mathbf{A} is invertible, and $\mathbf{A}^{-1} = \mathbf{B}$.

Proof. Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be such that $\mathbf{B} \mathbf{A} = \mathbf{I}$. If $\mathbf{x} \in \mathbb{R}^{n \times 1}$ satisfies $\mathbf{A} \mathbf{x} = \mathbf{0}$, then $\mathbf{x} = \mathbf{B} \mathbf{A} \mathbf{x} = \mathbf{B} (\mathbf{A} \mathbf{x}) = \mathbf{B} \mathbf{0} = \mathbf{0}$. Thus the linear system $\mathbf{A} \mathbf{x} = \mathbf{0}$ has only the zero solution. By the previous proposition, \mathbf{A} is invertible. Then there is $\mathbf{C} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A} \mathbf{C} = \mathbf{I}$, and $\mathbf{B} = \mathbf{C}$. Hence $\mathbf{A}^{-1} = \mathbf{B}$.

Next, let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be such that $\mathbf{A}\mathbf{B} = \mathbf{I}$. Then $\mathbf{B}^\mathsf{T}\mathbf{A}^\mathsf{T} = \mathbf{I}^\mathsf{T} = \mathbf{I}$. By what we have just proved, \mathbf{A}^T is invertible, and $(\mathbf{A}^\mathsf{T})^{-1} = \mathbf{B}^\mathsf{T}$. Hence $\mathbf{A} = (\mathbf{A}^\mathsf{T})^\mathsf{T}$ is invertible, and $\mathbf{A}^{-1} = (\mathbf{B}^\mathsf{T})^\mathsf{T} = \mathbf{B}$.

Note: The above result is a definite improvement over requiring the existence of a matrix \mathbf{B} satisfying both $\mathbf{B}\mathbf{A} = \mathbf{I}$ and $\mathbf{A}\mathbf{B} = \mathbf{I}$ for the invertibility of a square matrix \mathbf{A} .

Proposition

Let **A** and **B** be square matrices. Then **AB** is invertible if and only if **A** and **B** are invertible, and then $(AB)^{-1} = B^{-1}A^{-1}$.

Proof. Let $\bf A$ and $\bf B$ be invertible. Using the associativity of matrix multiplication, we easily see that

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}B = I.$$

Hence AB is invertible and $(AB)^{-1}=B^{-1}A^{-1}$ by the previous corollary.

Conversely, let AB be invertible. Then there is C such that (AB)C = I = C(AB). Since A(BC) = (AB)C = I, we see that A is invertible, and $A^{-1} = BC$. Also, since (CA)B = C(AB) = I, we see that B is invertible and $B^{-1} = CA$, again by the previous corollary.

Proposition

Let A be an $n \times m$ matrix.

- (i) If there is an $m \times n$ matrix B such that $BA = I_{m \times m}$ then $n \leq m$.
- (ii) If there is an $n \times m$ matrix C such that $AC = I_{n \times n}$ then $m \le n$.
- (iii) If there are matrices B and C such that BA = I, AC = I then m = n and B = C.

Proof. Indeed, if BA = I and if $x \in \mathbb{R}^{n \times 1}$ is a vector such that Ax = 0 then x = Ix = BAx = 0. On the other hand if n > m then there is at least one nonzero solution to Ax = 0. This proves (i). For (ii), note that AC = I implies $I = C^T A^T$, so by (i), as A^T is of order $n \times m$, $m \le n$. For (iii), if BA = I = AC then by (i) and (ii) we know n = m. Again, B = BI = B(AC) = (BA)C = IC = C.

Row Canonical Form (RCF)

As we have seen, a matrix **A** may not have a unique REF. However, a special REF of **A** turns out to be unique.

An $m \times n$ matrix **A** is said to be in a **row canonical form** (RCF) or a reduced row echelon form (RREF) if

- (i) it is in a row echelon form (REF),
- (ii) all pivots are equal to 1 and
- (iii) in each pivotal column, all entries above the pivot are (also) equal to 0.

For example, the matrix

$$\mathbf{A} := \begin{bmatrix} 0 & \mathbf{1} & * & 0 & 0 & * \\ 0 & 0 & 0 & \mathbf{1} & 0 & * \\ 0 & 0 & 0 & 0 & \mathbf{1} & * \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

is in a RCF, where * denotes any real number.

Note: If **A** is in REF, then in each pivotal column, all entries below the pivot are 0. If **A** is in fact in RCF and has r nonzero rows, then the $r \times r$ submatrix formed by the first r rows and the r pivotal columns is the $r \times r$ identity matrix **I**.

Suppose an $m \times n$ matrix **A** is in RCF and has r nonzero rows. If r = n, then it has n pivotal columns, that is, all its columns

are pivotal, and so
$$\mathbf{A} = \mathbf{I}$$
 if $m = n$, and $\mathbf{A} = \begin{bmatrix} \mathbf{I} \\ \mathbf{O} \end{bmatrix}$ if $m > n$,

where **I** is the $n \times n$ identity matrix and **O** is the $(m - n) \times n$ zero matrix.

To transform an $m \times n$ matrix to a RCF, we first transform it to a REF by elementary row operations of type I and II. Then we multiply a row containing a pivot p by 1/p (which is an elementary row operation of type III), and then we add a suitable nonzero multiple of this row to each preceding row. Every matrix has a unique RCF. (Proof by induction on n)

Example

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 16 \end{bmatrix} \xrightarrow{\mathsf{EROs}} \begin{bmatrix} \mathbf{1} & 3 & -2 & 0 & 2 & 0 \\ 0 & 0 & -1 & -2 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

which is in REF,

which is in RCF.

Recall: A square matrix ${\bf A}$ is invertible if and only if the homogeneous linear system ${\bf A}{\bf x}={\bf 0}$ has only the zero solution.

Proposition

An $n \times n$ matrix is invertible if and only if it can be transformed to the $n \times n$ identity matrix by EROs.

Proof. Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible. Using EROs, transform \mathbf{A} to a matrix $\mathbf{A}' \in \mathbb{R}^{n \times n}$ such that \mathbf{A}' is in a RCF. Since \mathbf{A} is invertible, the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the zero solution. Hence \mathbf{A}' has n nonzero rows, and so each of the n columns of \mathbf{A}' is pivotal. Also, the number of rows of \mathbf{A} is equal to the number of its columns, that is, m = n. Therefore $\mathbf{A}' = \mathbf{I}$.

Conversely, suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be transformed to the $n \times n$ identity matrix \mathbf{I} by EROs. Since $\mathbf{I}\mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$ for $\mathbf{x} \in \mathbb{R}^{n \times 1}$, we see that the linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the zero solution. Hence \mathbf{A} is invertible.