

2. Infraestructura UML y MOF

Antonio Navarro Martín

Profesor Titular de Universidad

Dpto. Ingeniería del Software e Inteligencia Artificial

Universidad Complutense de Madrid

anavarro@fdi.ucm.es

Referencias

 OMG MOF 2.0/XMI Mapping, Version 2.1.1, 2007 http://www.omg.org/spec/XMI/2.1.1/PDF/

Referencias

- OMG Unified Modeling Language (UML)
 Infrastructure, V2.3, 2010
 http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/
- OMG Meta Objetc Facility (MOF) Specification, V2.0, 2006 http://www.omg.org/spec/MOF/2.0/PDF/

Infraestructura UML y MOF Antonio Navarro

Índice

- Introducción
- Metamodelo UML
- Paquete Core
- Fusión de paquetes
- Paquete Core::PrimitiveTypes
- Paquete Core::Constructs

Índice

- Paquete Core::Profiles
- MOF
- Superestructura UML
- XMI

Infraestructura UML y MOF Antonio Navarro

5

Introducción

- Desde la versión 2.0 UML está dividido en dos especificaciones:
 - La infraestructura UML
 - La superestructura UML
- La infraestructura UML define un núcleo de metamodelado que sirve para definir metametamodelos como MOF

Infraestructura UML y MOF Antonio Navarro _

Introducción

- La superestructura UML es el metamodelo de UML descrito en MOF
- Hay un alineamiento arquitectónico
- Así, básicamente el metamodelo para clases
 UML coincide con el meta-metamodelo de
 MOF

Metamodelo de UML

- UML se utiliza como notación visual para caracterizar modelos durante el análisis, diseño y despliegue de sistemas
- UML está descrito utilizando un metamodelo
- Dicho metamodelo se ajusta a una serie de principios:
 - Modularidad
 - División según la arquitectura de cuatro capas OMG

Metamodelo de UML

- División
- Extensibilidad
 - Modificación del metamodelo
 - Perfiles UML
- Reusabilidad
- La infraestructura de UML está definida en la InfrastructureLibrary

Infraestructura UML y MOF Antonio Navarro

0

11

Metamodelo de UML

- Dicha InfrastructureLibrary cumple con varias requisitos:
 - Definir un metalenguaje básico que pueda ser reutilizad para definir distintos metamodelos como UML o MOF
 - Alinear arquitectónicamente UML, MOF y XML para soportar el intercambio de modelos
 - Permitir personalizaciones de UML mediante perfiles, y la creación de nuevos lenguajes basados en el mismo núcleo de metalenguaje que UML

Infraestructura UML y MOF Antonio Navarro

10

Metamodelo de UML

- La InfrastructureLibrary está formada por dos paquetes:
 - Core
 - Profiles

Paquete Core

- El paquete Core es un metamodelo completo diseñado para una alta reusabilidad
 - Otros metamodelos al mismo metanivel importan o especializan sus metaclases
 - Es el núcleo de MDA

Paquete Core

El paquete Core como el núcleo de MDA

Infraestructura UML y MOF Antonio Navarro

13

15

Paquete Core

- El paquete Core está formado por otros cuatro paquetes:
 - PrimitiveTypes: tipos predefinidos
 - Abstractions: metaclases abstractas reutilizables por otros metamodelos
 - Constructs: metaclases concretas para modelado orientado a objetos. Reutilizada por MOF y UML
 - Basic: fundamentos para el XMI generado para UML y MOF, entre otros

Infraestructura UML y MOF Antonio Navarro

14

Paquete Core

El paquete Core

Paquete Core

- El paquete Core logra el alineamiento arquitectónico entre MOF y UML:
 - Core es el núcleo
 - MOF está descrito a través de Core
 - UML es una instancia de MOF, cuya representación coincide con el propio Core

Paquete Core

Alineamiento arquitectónico entre Core, MOF y UML Superstructure

Infraestructura UML y MOF Antonio Navarro

17

19

Fusión de paquetes

- Una herramienta fundamental en MDA es el package merge o fusión entre paquetes:
 - La fusión es una relación entre dos paquetes que indica que los contenidos de ambos son combinados
 - Se utiliza cuando elementos definidos en distintos paquetes tienen el mismo nombre y representan el mismo concepto
 - También se utiliza para proporcionar distintas definiciones de un concepto para distintos propósitos partiendo de una definición base común

Infraestructura UML y MOF Antonio Navarro

18

Fusión de paquetes

- Una fusión entre dos paquetes implica un conjunto de transformaciones, donde los contenidos del paquete a ser fusionado se combinan con los contenidos del paquete receptor
- Si un elemento está repetido en ambos paquetes, se combina en un único elemento resultante

Fusión de paquetes

Vista conceptual de la semántica de la fusión de paquetes

Fusión de paquetes

Fusión de paquetes

Fusión de paquetes

Ejemplo fusión de paquetes

Infraestructura UML y MOF Antonio Navarro

23

Fusión de paquetes

Paquete Core::PrimitiveTypes

• El subpaquete PrimitiveTypes del paquete Core define los diferentes tipos de valores primitivos que se utilizan para definir el metamodelo Core

Los elementos del paquete PrimitiveTypes

Infraestructura UML y MOF Antonio Navarro

25

Paquete Core::Constructs

- El subpaquete Constructs del paquete Core importa los elementos del paquete PrimitiveTypes y fusiona múltiples paquetes definidos en el paquete Abstractions
- Está formado por nueve diagramas:
 - Root
 - Namespaces
 - Packages

Infraestructura UML y MOF Antonio Navarro

26

Paquete Core::Constructs

- Classifiers
- Classes
- Operations
- Constraints
- Expressions
- Datatypes

Paquete Core::Constructs

El diagrama Root del paquete Constructs

Infraestructura UML y MOF Antonio Navarro

Paquete Core::Constructs

El diagrama Packages del paquete Constructs

Infraestructura UML y MOF Antonio Navarro

30

Paquete Core::Constructs

29

El diagrama Classifiers del paquete Constructs

El diagrama Classes del paquete Constructs

El diagrama Classes del paquete Basic

33

35

El diagrama Operations del paquete Constructs

34

Paquete Core::Constructs

El diagrama Constraints del paquete Constructs

Paquete Core::Constructs

El diagrama Expressions del paquete Constructs

Infraestructura UML y MOF Antonio Navarro Infraestructura UML y MOF Antonio Navarro

Paquete Core::Constructs

El diagrama DataTypes del paquete Constructs

Infraestructura UML y MOF Antonio Navarro

37

Paquete Core::Profiles

- El paquete Profiles contiene los mecanismos que permiten extender metaclases de metamodelos existentes para adaptarlas a distintos propósitos
 - Por ejemplo, adaptar el metamodelo UML a plataformas (J2EE) o dominios (p.e. tiempo real)

Infraestructura UML y MOF Antonio Navarro

38

Paquete Core::Profiles

- Este paquete está definido al nivel metametamodelo (como MOF)
- Así los estereotipos pueden afectar a elementos del metamodelo (p.e. clases, estados, casos de uso UML)
- Los perfiles no modifican un metamodelo, lo adaptan para usos concretos

Paquete Core::Profiles

El paquete Core::Profiles

Paquete Core::Profiles

Definición y uso del estereotipo Clock

Infraestructura UML y MOF Antonio Navarro

42

Paquete Core::Profiles

Definición del estereotipo Clock en términos de la instancia de las clases definidas en Core::Profiles

Paquete Core::Profiles

Ejemplo de perfil EJB para UML

MOF

- MOF (Meta Object Facility) es el metametamodelo OMG
- Al hacer la fusión del paquete Core, al igual que UML, básicamente permite definir modelos utilizando una sintaxis visual similar a la de UML

Infraestructura UML y MOF
Antonio Navarro

45

47

Common Comports | Common Common Common Common Common Common Comports Common Common Comports Common Common Comports Common Comports Common Common Comports Common Comports Common Comports Common Comports Common Comports Comports

MOF

- MOF está dividido en dos paquetes, según hagan la fusión de Core::Basics o de Core::Constructs:
 - EMOF (Essential MOF)
 - CMOF (Complete MOF)

Infraestructura UML y MOF Antonio Navarro

16

MOF

- La principal característica que añade MOF es el de la reflexión:
 - Cada elemento tiene una clase que define sus propiedades y operaciones
- Por lo demás, básicamente reutiliza la definición de Core

MOF

49

51

Superestructura UML

- La superestructura UML es el metamodelo UML:
 - Instancia de MOF
 - Que hace la fusión de paquetes de Core::Constructs
- Es igual al estar alineados arquitectónicamente

Infraestructura UML y MOF Antonio Navarro

50

Superestructura UML

• Ejemplo

El paquete Kernel de la superestructura UML

Superestructura UML

El diagrama Classes del paquete Kernel

Infraestructura UML y MOF Antonio Navarro Infraestructura UML y MOF Antonio Navarro

Superestructura UML

El diagrama Components de la superestructura UML

Infraestructura UML y MOF Antonio Navarro

53

55

XMI

- XML Metadata Interchange (XMI) es un mecanismo para generar esquemas XML a partir de un metamodelo descrito en MOF
- Permite por tanto serializar como documentos XML modelos instancia del metamodelo descrito en MOF

Infraestructura UML y MOF Antonio Navarro

54

XMI

• Por niveles:

Nivel	Modelado	Representación XML
M3	MOF	XML + reglas XMI
M2	UML	Esquema XML de UML
M1	Modelo empresa	Documento XML instancia del esquema

Ejemplo de uso de XMI

XMI

• Ejemplo:

Metamodelo MOF de un sistema de información geográfica

```
<xsd:complexType name="CityFeature">
  <xsd:choice minOccurs="0" maxOccurs="unbounded">
   <xsd:element ref="xmi:Extension"/>
  </xsd:choice>
  <xsd:attribute ref="xmi:id"/>
  <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="CityFeature" type="CityFeature"/>
 <xsd:complexType name="River">
  <xsd:choice minOccurs="0" maxOccurs="unbounded">
   <xsd:element name="centerLineOf" type="xsd:string" nillable="true"/>
   <xsd:element ref="xmi:Extension"/>
  </xsd:choice>
  <xsd:attribute ref="xmi:id"/>
  <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
  <xsd:attribute name="centerLineOf" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:element name="River" type="River"/>
Fragmentos del esquema XML generado a partir del metamodelo anterior
```

Infraestructura UML y MOF

Antonio Navarro

XMI

- A veces hay que elaborar el esquema XML generado automáticamente con las reglas XMI ya que este esquema puede no estar optimizado
 - P. ej., al no haber herencia múltiple en los esquemas XML, los atributos heredados se repiten en cada clase

Infraestructura UML y MOF Antonio Navarro

58

2. Infraestructura UML y MOF

Antonio Navarro Martín

Profesor Titular de Universidad Dpto. Ingeniería del Software e Inteligencia Artificial Universidad Complutense de Madrid anavarro@fdi.ucm.es