Statistics for Data Science -1

Lecture 7.5: Conditional Probability: Independent events-examples

Usha Mohan

Indian Institute of Technology Madras

Learning objectives

1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.

Learning objectives

- 1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 2. Distinguish between independent and dependent events.

Learning objectives

- 1. Understand notion of conditional probability, i.e find the probability of an event given another event has occurred.
- 2. Distinguish between independent and dependent events.
- 3. Solve applications of probability.

Independent events: example Rolling a dice Deck of cards

Experiment: Roll a dice twice

- Experiment: Roll a dice twice
- Sample space:

$$S = \left\{ \begin{array}{l} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \end{array} \right\}$$

- Experiment: Roll a dice twice
- Sample space:

$$S = \left\{ \begin{array}{l} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \end{array} \right\}$$

- ► Define the following events
 - \triangleright E_1 : The first outcome is a 3
 - \triangleright E_2 : Sum of outcomes is 8
 - ► E₃: Sum of outcomes is 7

- Experiment: Roll a dice twice
- Sample space:

$$S = \left\{ \begin{array}{l} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \end{array} \right\}$$

- Define the following events
 - $ightharpoonup E_1$: The first outcome is a 3
 - ► *E*₂: Sum of outcomes is 8
 - E₃: Sum of outcomes is 7
- \triangleright Are events E_1 and E_2 independent?

- Experiment: Roll a dice twice
- Sample space:

$$S = \left\{ \begin{array}{l} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), \\ (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), \\ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), \\ (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), \\ (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), \\ (6,1), (6,2), (6,3), (6,4), (6,5), (6,6), \end{array} \right\}$$

- Define the following events
 - $ightharpoonup E_1$: The first outcome is a 3
 - ► *E*₂: Sum of outcomes is 8
 - E₃: Sum of outcomes is 7
- Are events E₁ and E₂ independent?
- \triangleright Are events E_1 and E_3 independent?

$$P(E_1 \cap E_2) =$$

$$P(E_1 \cap E_2) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(E_1 \cap E_2) = P(\{(3,5)\}) = \frac{1}{36}$$

▶
$$P(E_1) =$$

$$P(E_1 \cap E_2) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$$

$$P(E_1 \cap E_2) = P(\{(3,5)\}) = \frac{1}{36}$$

$$P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$$

$$ightharpoonup P(E_2) =$$

$$P(E_1 \cap E_2) = P(\{(3,5)\}) = \frac{1}{36}$$

- $P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$
- $P(E_2) = P(\{(2,6),(3,5),(4,4),(5,3),(6,2)\}) = \frac{5}{36}$

$$P(E_1 \cap E_2) = P(\{(3,5)\}) = \frac{1}{36}$$

- $P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$
- $P(E_2) = P(\{(2,6),(3,5),(4,4),(5,3),(6,2)\}) = \frac{5}{36}$
- Since $\frac{1}{36} \neq \frac{6}{36} \times \frac{5}{36}$ we see that $P(E_1 \cap E_2) \neq P(E_1) \times P(E_2)$, so events

$$P(E_1 \cap E_2) = P(\{(3,5)\}) = \frac{1}{36}$$

- $P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$
- $P(E_2) = P(\{(2,6),(3,5),(4,4),(5,3),(6,2)\}) = \frac{5}{36}$
- ▶ Since $\frac{1}{36} \neq \frac{6}{36} \times \frac{5}{36}$ we see that $P(E_1 \cap E_2) \neq P(E_1) \times P(E_2)$, so events E_1 and E_2 are not independent.

$$P(E_1 \cap E_3) =$$

$$P(E_1 \cap E_3) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(E_1 \cap E_3) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) =$$

$$P(E_1 \cap E_3) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$$

$$P(E_1 \cap E_3) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$$

$$ightharpoonup P(E_3) =$$

$$P(E_1 \cap E_3) = P(\{(3,4)\}) = \frac{1}{36}$$

$$P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$$

$$P(E_3) = P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}) = \frac{6}{36}$$

$$P(E_1 \cap E_3) = P(\{(3,4)\}) = \frac{1}{36}$$

- $P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$
- $P(E_3) = P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}) = \frac{6}{36}$
- ▶ Since $\frac{1}{36} = \frac{6}{36} \times \frac{6}{36}$ we see that $P(E_1 \cap E_3) = P(E_1) \times P(E_3)$, so

Rolling a dice

Are E_1 and E_3 independent?-solution

$$P(E_1 \cap E_3) = P(\{(3,4)\}) = \frac{1}{36}$$

- $P(E_1) = P(\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\}) = \frac{6}{36}$
- $P(E_3) = P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}) = \frac{6}{36}$
- Since $\frac{1}{36} = \frac{6}{36} \times \frac{6}{36}$ we see that $P(E_1 \cap E_3) = P(E_1) \times P(E_3)$, so events E_1 and E_3 are independent.

Example: deck of cards

Example: deck of cards

- ► Define the following events
 - \triangleright E_1 : A face card is selected.
 - \triangleright E_2 : A king is selected.
 - \triangleright E_3 : A heart is selected.

└ Deck of cards

Example: deck of cards

- Define the following events
 - \triangleright E_1 : A face card is selected.
 - \triangleright E_2 : A king is selected.
 - \triangleright E_3 : A heart is selected.
- ightharpoonup Are E_1 and E_2 independent?

Example: deck of cards

- Define the following events
 - ► *E*₁: A face card is selected.
 - ► *E*₂: A king is selected.
 - \triangleright E_3 : A heart is selected.
- \triangleright Are E_1 and E_2 independent?
- \triangleright Are E_2 and E_3 independent?

$$P(E_1 \cap E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$$

$$P(E_1 \cap E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$$

►
$$P(E_1) = P(\{JH, JC, JS, JD, KH, KC, KS, KD, QH, QC, QS, QD\}) = \frac{12}{52}$$

$$P(E_1 \cap E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$$

- ► $P(E_1) = P(\{JH, JC, JS, JD, KH, KC, KS, KD, QH, QC, QS, QD\}) = \frac{12}{52}$
- ► $P(E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$

$$P(E_1 \cap E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$$

- ► $P(E_1) = P(\{JH, JC, JS, JD, KH, KC, KS, KD, QH, QC, QS, QD\}) = \frac{12}{52}$
- $P(E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$
- Since $\frac{4}{52} \neq \frac{12}{52} \times \frac{4}{52}$ we see that $P(E_1 \cap E_2) \neq P(E_1) \times P(E_2)$, so events E_1 and E_2 are not independent.

▶ $E_2 \cap E_3$ is the event that a king and a heart is selected which is the event a kingheart is selected.

$$P(E_1 \cap E_2) = P(\{KH\}) = \frac{1}{52}$$

►
$$P(E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$$

└ Deck of cards

Are E_2 and E_3 independent?-solution

▶ $E_2 \cap E_3$ is the event that a king and a heart is selected which is the event a kingheart is selected.

$$P(E_1 \cap E_2) = P(\{KH\}) = \frac{1}{52}$$

- ► $P(E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$
- ► $P(E_3) = P({AH, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H, 10H, JH, KH, QH}) = \frac{13}{52}$

▶ $E_2 \cap E_3$ is the event that a king and a heart is selected which is the event a kingheart is selected.

$$P(E_1 \cap E_2) = P(\{KH\}) = \frac{1}{52}$$

- ► $P(E_2) = P(\{KH, KC, KS, KD\}) = \frac{4}{52}$
- ► $P(E_3) = P({AH, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H, 10H, JH, KH, QH}) = \frac{13}{52}$
- ▶ Since $\frac{1}{52} = \frac{4}{52} \times \frac{13}{52}$ we see that $P(E_2 \cap E_3) = P(E_2) \times P(E_3)$, so events E_2 and E_3 are independent.

Section summary

Examples of independent and dependent events.