컴퓨터공학실험2 5주차 결과보고서

전공: 컴퓨터공학과

학년: 2

학번: 20191559 이름: 강상원

- 1. De Morgan의 제 1,2 법칙의 simulation 결과 및 과정에 대해서 설명하시오. (NAND,NOR과의 비교 포함)
 - 제1법칙
 - (A) 는 assign c=~(a|b)와 같이 나타낼 수 있다. Schematic과 Simulation 결과는 아래와 같다.

(B) 는 $assign c = (\sim a) \& (\sim b)$ 와 같이 나타낼 수 있다. Schematic과 Simulation 결과는 아래와 같다.

(A)와 (B)의 시뮬레이션 결과를 비교해 보면 최종 결과값이 같게 나타남을 알 수 있다. 드모르 간의 제1법칙이 성립함을 Verilog 시뮬레이션을 통해 증명할 수 있었다.

※ 드모르간의 제1법칙 : (A+B)'=A'•B'

위 (A)와 (B) 모두 NOR gate와 동일한 기능을 수행함을 알 수 있다. (OR gate의 부정형)

- 제2법칙

(A) 는 assign $c = \sim (a \& b)$ 와 같이 나타낼 수 있다. Schematic과 Simulation 결과는 아래와 같다.

```
1
     `timescale 1ns / 1ps
2
3 ⊨ module De_Morgan_two_a(
4
         input a, b,
5
         output c
6
         );
 7
         assign c = (a \& b);
8
9
10 ॑ endmodule
11 ¦
```


(B) 는 assign c = (~a) | (~b)와 같이 나타낼 수 있다. Schematic과 Simulation 결과는 아래와 같다.

```
1 ¦
          timescale 1ns / 1ps
2
3 🖨
          module De_Morgan_two_b(
4
              input a, b,
5
              output c
              );
6
7
8 ¦
     0
              assign c = (\sim a) \mid (\sim b);
9
          endmodule
10 🖨
```


(A)와 (B)의 시뮬레이션 결과를 비교해 보면 최종 결과값이 같게 나타남을 알 수 있다. 드 모르간의 제2법칙이 성립함을 Verilog 시뮬레이션을 통해 증명할 수 있었다.

※ 드모르간의 제2법칙 : (A • B)' = A' + B'

위 (A)와 (B) 모두 NAND gate와 동일한 기능을 수행함을 알 수 있다. (OR gate의 부정형)

2. (A'+B')*C' = ((A*B)+C)' 의 simulation 결과 및 과정에 대해서 설명하시오.

[+ 및 * 위치 바꾼 모양도 수행]

- (A'+B')*C'

assign $d = ((\sim a) \mid (\sim b))$ & $(\sim c)$ 와 같이 나타낼 수 있다. Schematic과 Simulation 결과는 아래와 같다.

```
1 :
          timescale 1ns / 1ps
2 ¦
3 🖨
          module Boolean_Func_one_a(
              input a, b, c,
4 ¦
5 !
              output d
6 ¦
              );
7
8 | 0 |
             assign d = ((^a) | (^b)) & (^c);
9 ¦
10 🖒
          endmodule
11 ¦
```


Name	Value	0.000 пs		200.000 ns				600.000 ns		800.00
¼ aa	1									
₩ bb	1									
₩ сс	1									
16 d	0									

- $((A^*B)+C)'$ assign $d=\sim((a\&b)|c)$ 와 같이 나타낼 수 있다. Schematic과 Simulation 결과는 아래와 같다.

Name	Value	0.000 ns	 200.000 г	IS	400.000 п	ıs	600.000 г I	is	800.0
<mark>W</mark> aa	1								
₩ bb	1								
<mark>₩</mark> сс	1								
1ĕ d	0								

(A'+B')*C'와 ((A*B)+C)'의 시뮬레이션 결과를 비교해 보면 최종 결과값이 같게 나타남을 알 수 있다. 드모르간의 법칙을 이용하면 두 식이 같음을 증명할 수 있다.

- (A'*B')+C'

assign d = $((\sim a) \& (\sim b)) \mid (\sim c)$ 와 같이 나타낼 수 있다. Schematic과 Simulation 결과는 아래와 같다.

- ((A+B)*C)'

assign $d = \sim ((a \mid b) \& c)$ 와 같이 나타낼 수 있다. Schematic과 Simulation 결과는 아래와 같다.

Name	Value	0.000 ns	L	200.000 г	IS	400.000 г	ıs	600.000 г	is	800.0
₩ aa	1									
¼ bb	1									
¼ cc	1									
l ⊌ d	0									

(A'*B')+C'와 ((A+B)*C)'의 시뮬레이션 결과를 비교해 보면 최종 결과값이 같게 나타남을 알 수 있다. 드모르간의 법칙을 이용하면 두 식이 같음을 증명할 수 있다.

1Bit 비교기의 simulation 결과 및 과정에 대해서 설명하시오. (2 input, 4 output)[진리표 작성]

A=B 출력값은 두 입력값이 같을 때 1을 출력하므로 다음과 같이 표현할 수 있다. (A⊕B)'A≠B 출력값은 두 입력값이 다를 때 1을 출력하므로 다음과 같이 표현할 수 있다. A⊕B A>B 출력값은 A=1, B=0일 때 1을 출력하므로 다음과 같이 표현할 수 있다. A*B'A>B 출력값은 A=0, B=1일 때 1을 출력하므로 다음과 같이 표현할 수 있다. A'*B

assign c = a ^ (~b), assign d = a ^ b, assign e = a & (~b), assign f = (~a) & b와 같이 나타낼 수 있다. 여기서 c, d, e, f는 각각 A=B, A \neq B, A>B, A<B의 결과값을 의미한다. Schematic과 Simulation 결과는 아래와 같다.

```
1 :
         timescale Ins / 1ps
 2 ¦
         module One_Bit_Comp(
 3 🗇
              input a, b,
 4
 5 !
              output c, d, e, f
             );
 6 ¦
 7
 8 | 0
             assign c = a (\sim b);
9; 0
             assign d = a \hat{b};
     0
10
             assign e = a & (\sim b);
11 ¦ O
              assign f = (\sim a) \& b;
12
13 🖨
         endmodule
14 ¦
```


A=B 출력값은 두 입력값이 같을 때 1을 출력하므로 다음과 같이 표현할 수 있다. (A⊕B)' A≠B 출력값은 두 입력값이 다를 때 1을 출력하므로 다음과 같이 표현할 수 있다. A⊕B A>B 출력값은 A=1, B=0일 때 1을 출력하므로 다음과 같이 표현할 수 있다. A*B' A<B 출력값은 A=0, B=1일 때 1을 출력하므로 다음과 같이 표현할 수 있다. A'*B

아래는 1Bit 비교기의 진리표이다.

Input a	Input b	a=b	a≠b	a>b	a <b< th=""></b<>
0	0	1	0	0	0
0	1	0	1	0	1
1	0	0	1	1	0
1	1	1	0	0	0