DL de solutions d'une équation différentielle

Les fonctions considérées ici sont toutes réelles.

- 1. Résoudre sur $I = \left] \pi/2, \pi/2 \right[$ l'équation différentielle $\cos(t)z''(t) 2\sin(t)z'(t) \cos(t)z(t) = 0$. On pourra réaliser le changement de fonction inconnue : $\varphi(t) = \cos(t).z(t)$.
- 2. Résoudre sur J=]-1,1[l'équation différentielle $(1-x^2)y''(x)-3xy'(x)-y(x)=0$. On pourra réaliser le changement de variable : $x=\sin t$.
- 3. Soit f une solution de l'équation précédente.
- 3.a Justifier que f est C^{∞} .
- 3.b Observer que $\forall n \in \mathbb{N}$, $(1-x^2)f^{(n+2)}(x) (2n+3)xf^{(n+1)}(x) (n+1)^2f^{(n)}(x) = 0$.
- 3.c Pour tout $n \in \mathbb{N}$, on pose $a_n = f^{(n)}(0)$. Former une relation liant a_{n+2} et a_n .
- 3.d Exprimer a_{2p+1} et a_{2p} en fonction respectivement de a_1 et a_0 , et à l'aide de nombres factoriels.
- 4. Exprimer:
- a. Le $DL_{2n+1}(0)$ de $x \mapsto \frac{\arcsin x}{\sqrt{1-x^2}}$,
- b. Le $DL_{2n}(0)$ de $x \mapsto \frac{1}{\sqrt{1-x^2}}$,
- c. Le $DL_{2n+1}(0)$ de $x \mapsto \arcsin x$.
- 5. En déterminant le coefficient de x^{2n+1} dans le produit des deux derniers développements limités obtenir la formule : $\sum_{k=0}^{n} \frac{1}{2k+1} \binom{2k}{k} \binom{2(n-k)}{n-k} = \frac{16^{n}}{(n+1) \binom{2n+1}{n}}.$