章节 06 类型的幂

LATEX Definitions are here.

泛性质

默认函子 $\overset{c}{\rightarrow}: \mathcal{C} \overset{\mathcal{C}at}{\times} \mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{C}$ 在范畴 \mathcal{C} 中有下述性质:

• $(\mathbf{a} \overset{c}{\times} \mathbf{x}) \xrightarrow{c} \mathbf{b} \cong \mathbf{x} \xrightarrow{c} (\mathbf{a} \xrightarrow{c} \mathbf{b}) \cong \mathbf{a} \xrightarrow{c} (\mathbf{x} \xrightarrow{c} \mathbf{b})$, \mathbf{x} 为任意 \mathcal{C} 中对象 —— **泛性质**, 指数与加乘法运算间的关系。 下图便干理解证明:

函子性

如何证明 $\stackrel{c}{\rightarrow}$ 构成函子呢 ? 请看

- $\overset{c}{
 ightarrow}:({}_{:a_1}\mathrm{id}:{}_{:b_1}\mathrm{id})\longmapsto{}_{:(a_1}\overset{c}{
 ightarrow}{}_{b_1)}\mathrm{id}$ ——即函子 $\overset{c}{
 ightarrow}$ 能保持恒等箭头;
- $\overset{c}{\rightarrow}: (f_2 \overset{c}{\circ} f_1 \overset{c}{\cdot} g_1 \overset{c}{\circ} g_2) \longmapsto h_1 \overset{c}{\circ} h_2$ —— 即函子 $\overset{c}{\rightarrow}$ **保持箭头复合运算**。

 下图有助于形象理解证明过程:

下图 (自上到下分别为图 1 和图 2)后面会用到。

范畴 $\mathcal C$ 内任意两对象 $\mathsf a_1$ 和 $\mathsf b_1$ 间的箭头构成一个集合 $\mathsf a_1 \overset{\mathcal C}{ o} \mathsf b_1$,说明 $\overset{\mathcal C}{ o}$ 只能将两个对象打到一个集合。下面使 $\overset{\mathcal C}{ o}$ 升级为函子:若还知道箭头 $f_1: \mathsf a_2 \overset{\mathcal C}{ o} \mathsf a_1$ 以及 $g_1: \mathsf b_1 \overset{\mathcal C}{ o} \mathsf b_2$,则规定

•
$$(-\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1):\mathcal{C}^{\mathrm{op}}\overset{\mathcal{C}at}{\longrightarrow}\mathcal{C}\overset{\mathcal{C}at}{\longrightarrow}\mathcal{S}et$$
 为函子且 $(-\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1):\mathsf{a}_1\longmapsto (\mathsf{a}_1\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1)$, 并且有 $(-\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1):f_1\longmapsto (f_1\stackrel{c}{\underset{c}{\rightarrow}}\mathsf{b}_1)=(f_1\stackrel{c}{\underset{:\mathsf{b}_1}{\rightarrow}}\mathsf{id})=\mathsf{b}_1^{(f_1\stackrel{c}{\underset{c}{\rightarrow}})}$

图 1 有助于理解。

图 2 有助于理解。

(i) Note

不难看出

• よ:
$$\mathcal{C} \xrightarrow{\mathcal{C}at} (\mathcal{C}^{\mathrm{op}} \xrightarrow{\mathcal{C}} \mathcal{S}et)$$

• よ: $\mathcal{C} \xrightarrow{\mathcal{C}at} (\mathcal{C}^{\mathrm{op}} \xrightarrow{\mathcal{C}} \mathcal{S}et)$

• ね成一个函子,称作预层

 $g_1 \longmapsto (_ \xrightarrow{\mathcal{C}} g_1) = (_ \circ g_1)$ 构成一个函子间映射,即自然变换

•
$$(\mathsf{a}_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}}): \overset{\mathcal{C}^{\mathrm{op}} \overset{\mathcal{C}_{at}}{\nearrow}}{\underset{\mathcal{C}}{\nearrow}} \overset{\mathcal{C}_{at}}{\underset{\mathcal{C}}{\longrightarrow}} \overset{\mathcal{C}_{at}}{\nearrow} \overset{\mathcal{C}$$

图 2 有助于理解。

$$\begin{array}{l} (f_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}}): \mathcal{C}^{\circ \circ \overset{\mathcal{C}at}{\longrightarrow}} \mathcal{E}^{ct} \, \text{为函子且} \\ (f_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}}): \mathsf{b}_1 \longmapsto (f_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}} \mathsf{b}_1) = (f_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}} :_{\mathsf{b}_1} \mathrm{id}) = \mathsf{b}_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}} :_{\mathsf{c}} \\ (f_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}}): g_1 \longmapsto (f_1 \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}} g_1) = (f_1 \overset{\mathcal{C}}{\circ}) \overset{\mathcal{C}}{\underset{\mathcal{C}}{\longrightarrow}} :_{\mathsf{c}} :_{\mathsf{c}}$$

图 1 有助于理解。

不难看出

• 尤:
$$\mathcal{C}^{\mathrm{op}} \xrightarrow{\mathcal{C}at} (\mathcal{C} \xrightarrow{\mathcal{C}} \mathcal{S}et)$$
 $\mathbf{a}_1 \longmapsto (\mathbf{a}_1 \xrightarrow{\mathcal{C}} _)$ 构成一个函子
 $f_1 \longmapsto (f_1 \xrightarrow{\mathcal{C}} _) = (f_1 \circ _)$ 构成一个函子间映射,即自然变换
该函子戏称为**尤达嵌入**。

积闭范畴

这里插个题外话:

若范畴包含终对象,所有类型的积以及指数,则可将其称作积闭范畴;

若范畴包含始对象 , 所有类型的和 , 则可将其称作是**余积闭范畴** ;

若范畴满足上述条件,则可称作双积闭范畴。

很明显我们讨论的范畴 C 就是**双积闭范畴**。