** In The Name OF God **

Latex: 621-624

F. Vadoody

Student ID: 949737463

Computer Engineering Student

 $Majoring\ In\ Information \ Technology$

Payame Noor University of Tehran, Pardis New City Branch Now take a sequence 1001. Let us construct the sequence to \mathbf{t}_3 using wrap around and null stufng technique.

Wrap Around:

t_0	1	0	0	1
t_1	1	1	1	0
t_2	0	1	1	0
t_3	1	0	1	1

The cells representation are given below

Null Stuffed:

In null stuffed two '0' are added at both sides of the original string.

t_0	0	1	0	0	1	0
t_1	0	0	1	1	0	0
t_2	0	1	0	1	1	0
t_3	0	0	0	0	1	0

The cells representation are given below

Example 14.5: Find the update of a one-dimensional CA rules for 212.

Solution:

The binary equivalent of 212 is 11010100. The rules are

Decimal	7	6	5	4	3	2	1	0
Binary	111	110	101	100	011	010	001	000
212	1	1	0	1	0	1	0	0

 $622 \mid$ Introduction to Automata Theory, Formal Languages and Computation

14.3.2 Applications of Cellular Automata

Cellular automata is not only used in Computer Science field, it also has different applications in other fields.

In the Field of Computer Science

- Cryptography
- Detecting fault tolerance in digital circuit
- Simulation of complex system

Beyond the Field of Computer Science

- Simulation of gas behavior
- Simulation of forest fire propagation
- Simulation of bone erosion.

Cellular automata are used to identify fault in some digital circuits. Let consider an OR gate Its truth table is

X	Y	O/P
0	0	0
0	1	1
1	0	1
1	1	1

It may happen that the input Y is faulty. It takes ' 1 ' for any input applied to it. Thus the output that we get will always be ' 1 '. This is called 'Struck at 1 '. Similarly the problem 'Struck at 0 ' can occur for a digital circuit.

 $\pmb{Rule\ 192:}$ Binary of 192 is 11000000

The rule is

	7	6	5	4	3	2	1	0
	111	110	101	100	011	010	001	000
192	1	1	0	0	0	0	0	0

Let the initial sequence is 1111 .

By null stuffing at both sides the sequence become 011110 . So

t_0	0	1	1	1	1	0
t_0	0	0	1	1	1	0

Let it t_0 the bits are labeled as $S_0, S_1, S_2, \ldots, S_5$.

State S_1 in t_1 depends on S_0 , S_1 and S_2 of t_0 .

The bit pattern is 011, so the value of \mathbf{S}_1 in \mathbf{t}_1 is 0 (according to rule 192). By the same way all the other bits are placed. By the same way the patterns for \mathbf{t}_2 and \mathbf{t}_3 are generated.

t_2	0	0	0	1	1	0
t_3	0	0	0	0	1	0

Let a digital circuit has four inputs.

To identify the 'Struck at 0' problem all bits are taken as '1' and patterns are generated for next (n-1) steps, where n is the number of input line. If the LSB is other than '1' in t_{n-1} step then we can say that the circuit is faulty.

 ${f 624}$ | Introduction to Automata Theory, Formal Languages and Computation

This page is intentionally left blank.