FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY 2110327 ALGORITHM DESIGN

Year II, Second Semester, Midterm Examination, March 6, 2020 13:00-16:00

ชื่อ-นามสกุล	เลขประจำตัว	ตอนเรียนที่	เลขที่ใน CR58
<u>หมายเหต</u>			

- 1. ข้อสอบมีทั้งหมด 9 ข้อ ในกระดาษคำถามคำตอบ 7 หน้า
- 2. ไม่อนุญาตให้น้ำตำราและเอกสารใดๆ เข้าในห้องสอบ
- 3. ไม่อนุญาตให้ใช้เครื่องคำนวณใดๆ
- 4. ห้ามการหยิบยืมสิ่งใดๆ ทั้งสิ้น จากผู้สอบอื่นๆ เว้นแต่เจ้าหน้าที่ควบคุมการสอบจะหยิบยืมให้
- 5. ห้ามนำส่วนใดส่วนหนึ่งของข้อสอบและสมุดคำตอบออกจากห้องสอบ
- 6. ผู้เข้าสอบสามารถออกจากห้องสอบได้ หลังจากผ่านการสอบไปแล้ว 45 นาที
- 7. เมื่อหมดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใดๆ ทั้งสิ้น
- 8. นิสิตกระทำผิดเกี่ยวกับการสอบ ตามข้อบังคับจุฬาลงกรณ์มหาวิทยาลัย มีโทษ คือ พ้นสภาพการเป็นนิสิต หรือ ได้รับ สัญลักษณ์ F ในรายวิชาที่กระทำผิด และอาจพิจารณาให้ถอนรายวิชาอื่นทั้งหมดที่ลงทะเบียน ไว้ในภาคการศึกษานี้

ห้ามนิสิตพกโทรศัพท์และอุปกรณ์สื่อสารไว้กับตัวระหว่างสอบ หากตรวจพบจะถือว่า นิสิตกระทำผิดเกี่ยวกับการสอบ อาจต้องพ้นสภาพการเป็นนิสิต หรือ ให้ได้รับ F และ อาจพิจารณาให้ถอนรายวิชาอื่นทั้งหมดที่ลงทะเบียนไว้ในภาคการศึกษานี้

* ร่วมรณรงค์การไม่กระทำผิดและไม่ทุจริตการสอบที่คณะวิศวกรรมศาสตร์ *

ข้าพเจ้ายอมรับในข้อกำหนดที่กล่าวมานี้ ข้าพเจ้าเป็นผู้ทำข้อสอบนี้ด้วยตนเองโดยมิได้รับการช่วยเหลือ หรือให้ความช่วยเหลือ ในการทำข้อสอบนี้

ลงชื่อนิสิต	
วันที่	

7						//////////////////////////////////////	
12	مرمور احسموم			2000000	ເລຍທີ່ໃນໃນເສ້ນ	a 9	ນ ດີ ດ
0	ใยผกวรภาพา			ับถายถูก	เลขทเนเบเขน	ผูอเผายุฏก 📗	ทนเท่า
12							haaaaaaaaaa

(10 คะแนน) จงวิเคราะห์ประสิทธิภาพเชิงเวลาของขั้นตอนวิธีแต่ละข้อดังต่อไปนี้
สำหรับบางข้อที่สามารถใช้ Mater Theorem ได้ กำหนดให้ Master Theorem มีนิยามคือ
สำหรับ Recurrence relation T(n) = aT (n/b) + f (n) เมื่อ a ≥ 1 และ b > 1 เป็นค่างคงที่ และ f(n) เป็นค่ฟังก์ชันที่มีค่าเป็นบวกเสมอ
เราสามารถคำนวณ T(n) ได้ตามกรณีต่าง ๆ ดังต่อไปนี้

$T(n) = \Theta(n^{\log_b(a)})$	ถ้า $f(n) = O(n^{\log b}(a-\epsilon))$
$T(n) = \Theta(n^{\log_b(a)} \log^{k+1} n)$	ถ้า $f(n) = \Theta(n^{log}b(a)\log^k(n))$ และ $k \ge 0$
$T(n) = \Theta(f(n))$	ถ้า $f(n) = \Omega(n^{\mbox{log}b}(a+\epsilon))$ และ $\epsilon > 0$ และ
	$af(n/b) \leq kf(n)$ เมื่อมีค่าคงที่ k < 1 และ n ขนาดใหญ่มาก

และให้ถือว่า T(1) = 1 เสมอ

ข้อ	[PID 9 I(T) = T RU까요	المام
		Big O หรือ 0 ()
1.	<pre>sum = 0 for(int i=n; i>0; i/=2) { for(int j=1; j<n; for(int="" j*="2)" k="0;" k+="2)" k<n;="" pre="" sum++;="" {="" }="" }<=""></n;></pre>	
2.	<pre>void c2110327() { for (int i=1; i<=n; i++) for (int j=1; j<=log(i); j++) printf("2110327"); }</pre>	
3.	A(n) { if(n<=1) return 1; else return A(√n); // √n is square root of n }	
4.	<pre>for(i = 0; i < n; i++) { for(j = 0; j < n; j++) a[j] = randomValue(i); // randomValue is O(1) goodSort(a); // goodSort is O(n log n) }</pre>	
5.	การเรียงลำดับข้อมูลของ Quicksort เมื่อใช้ pivot เป็นค่า mean ที่ใช้เวลา หา O(n)	
6.	T(n) = T(n-1) + O(1)	
7.	T(n)=3T(n/2) + n	
8.	$T(n) = 64T(n/8) + n^2 \log n$	
9.	$T(n) = T(n/2) + n^{(2 - \cos n)}$	
10.	T(n) = 16T(n/4)+n!	

i = 1 i = 2 i = 3 i = 4	0	750 0	200		j=5	j=6	กำหนดให้ขนาดข	อง แต่ล	าะ mati	nx เบนห	11118					
i = 3 i = 4		0		230	370	720	Matrix	A1	A2	A3	A	4	A5	Α6		
i = 3 i = 4		U	50	70	170	470	จำนวนแถว	15	10	5	1		2	10		
i = 4							จำนวนคอลัมน์	10	5	1	2		10	20		
			0	10	70	320	การคูณ matrix เหล่านี้ทำได้โดยใช้จำนวนครั้งในการคูณเลขน้อยสูเ									
				0	20	220	กาวซูณ maunx เ ด้วยการใส่วงเล็บ		ונאונאוט	เขาเน่า	ML19/1P	เรเบาร์ผู	[សេស	นถถ		
i = 5					0	400	71 8011 18 661 8 N661 O	// IN IS								
i = 6						0	(ให้ตอบโดยการใ	ส่วงเล็บ	ตัวอย่า	งเช่น ((A	41A2)((A3(A4	1A5))))		
	min(C(a, b -				;	l && b < v[a]) l && b >= v[a]) นี้ v = [1,3,4,7,12]									
จงเติมตาร: \b 1	างสำห 2	รับค่า C 3	(a, b) ดื่ 4	ัานล่างเ 5	นี้ เมื่อกำ 6	หนดให้ 7	านี ∨ = [1,3,4,7,12] 	12	13	14	15	16	17			
	_					•										

 $G(n,\,k) = \max(\,G(n\text{-}1,\,1) + a[1],\,G(n\text{-}1,\,2) + a[2],\,...,\,G(n\text{-}1,k\text{-}1) + a[k\text{-}1]\,)$

ห้องสอบ.....เลขที่ในใบเซ็นชื่อเข้าสอบ

เลขประจำตัว

llow	ขประจ์	าตัว ท้องสอบเลขที่ในใบเซ็นชื่อเข้าสอบ หน้าที่ 4
5.		คะแนน) ปัญหาเชิญคนมางานปาร์ตี้ เป็นดังนี้ มีแขกทั้งหมด n คน กำกับด้วยหมายเลข 1 ถึง n เราต้องการเชิญคนเหล่านี้มางานปาร์ตี้
		ใรก็ตาม แขกบางคนไม่ถูกกัน ให้ dislike(a, b) เป็นฟังก์ชันที่คืนค่า true เมื่อแขก a และ b นั้นเกลียดกัน แขกที่เราเชิญมา จะต้องไม่มี
	Ü	แลยที่เกลียดกัน
		จงเขียน Recurrence relation สำหรับการคำนวณหาจำนวนคนมากที่สุดที่เราสามารถเชิญมางานปาร์ตี้ได้ กำหนดให้ MaxGuest(i, S) คือ จำนวนคนที่สามารถเชิญมาร่วมงานได้มากที่สุด เมื่อเราพิจารณาเฉพาะคนหมายเลขที่ 1 ถึง i โดยที่ S คือคนหมายเลย i+1 ถึง n ที่
		เราเลือกเชิญมาก่อนแล้ว และ S ไม่มีคนที่เกลียดกันเลย ซึ่งคำตอบที่เราต้องการคือ MaxGuest(n, {})
		// กรณีพื้นฐาน (trivial case)
		MaxGuest(0, S) =
		// ทั่วไป (trivial case)
		MaxGuest(i, S) =
	5.2.	กำหนดให้ prefer(a) คือค่าที่บอกว่าแขก a นั้นเป็นที่ชื่นชอบขนาดไหน เราต้องการให้ผลรวมของค่า prefer ของแขกที่เชิญทั้งหมดนั้น
		มากที่สุด กำหนดให้ Best(i, S) คือค่ามากสุดของผลรวมของค่า prefer เมื่อเราพิจารณาเฉพาะคนหมายเลขที่ 1 ถึง i โดยที่ S คือคน
		หมายเลย i+1 ถึง n ที่เราเลือกเชิญมาก่อนแล้ว และ S ไม่มีคนที่เกลียดกันเลย ซึ่งคำตอบที่เราต้องการคือ Best(n, {}) จงเขียน
		v.
		Recurrence relation นี้
		Recurrence relation นี้ // กรณีพื้นฐาน (trivial case)
		Recurrence relation นี้
		Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) =
		Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) = // ทั่วไป (trivial case)
		Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) =
		Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) = // ทั่วไป (trivial case)
		Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) = // ทั่วไป (trivial case)
	สำหรั	Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) = // ทั่วไป (trivial case)
		Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) = // ทั่วไป (trivial case) Best(i,S) =
6.	code (10 ค	Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) = // ทั่วไป (trivial case) Best(i,S) = ทับข้อ 6 – 9 นั้น จะเป็นการออกแบบอัลกอริทึม ในแต่ละข้อนั้นสามารถอธิบายอัลกอริทึมที่ออกแบบด้วย รหัสเทียม (pseudo e) หรือว่า programming language ภาษาใดที่เคยเรียนมาก็ได้ แต่ทุกข้อให้ระบุประสิทธิภาพเชิงเวลาด้วย เะแนน) มีอาเรย์ A[15][1] ซึ่งเป็นอาเรย์ 2 มิติขนาด 5 แถว ก คอลัมน์ เราต้องเลือกข้อมูลบางตัวมาจากอาเรย์นี้ โดยต้องเลือกข้อมูล
6.	code (10 ค 1 ตัวม	Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) = // ทั่วไป (trivial case) Best(i,S) = ทั้งข้อ 6 – 9 นั้น จะเป็นการออกแบบอัลกอริทึม ในแต่ละข้อนั้นสามารถอธิบายอัลกอริทึมที่ออกแบบด้วย รหัสเทียม (pseudo e) หรือว่า programming language ภาษาใดที่เคยเรียนมาก็ได้ แต่ทุกข้อให้ระบุประสิทธิภาพเชิงเวลาด้วย เะแนน) มีอาเรย์ A[15][1n] ซึ่งเป็นอาเรย์ 2 มิติขนาด 5 แถว n คอลัมน์ เราต้องเลือกข้อมูลบางตัวมาจากอาเรย์นี้ โดยต้องเลือกข้อมูล มาจากแต่ละคอลัมน์ โดยมีกฎดังนี้ 1) ต้องเลือกทีละตัว จาก คอลัมน์ 1 ไปยังคอลัมน์ n 2) ในคอลัมน์ที่ 1 จะเลือกข้อมูลตัวใดก็ได้ 3) ถ้า
6.	code (10 ค 1 ตัวม	Recurrence relation นี้ // กรณีพื้นฐาน (trivial case) Best(0, S) = // ทั่วไป (trivial case) Best(i,S) = ทับข้อ 6 – 9 นั้น จะเป็นการออกแบบอัลกอริทึม ในแต่ละข้อนั้นสามารถอธิบายอัลกอริทึมที่ออกแบบด้วย รหัสเทียม (pseudo e) หรือว่า programming language ภาษาใดที่เคยเรียนมาก็ได้ แต่ทุกข้อให้ระบุประสิทธิภาพเชิงเวลาด้วย เะแนน) มีอาเรย์ A[15][1] ซึ่งเป็นอาเรย์ 2 มิติขนาด 5 แถว ก คอลัมน์ เราต้องเลือกข้อมูลบางตัวมาจากอาเรย์นี้ โดยต้องเลือกข้อมูล

B(r, c) = max(B(r, c-1), B(r+1, c-1)) + A[r][c] ; if (c > 1 && r == 1)

B(r, c) = max(B(r-1, c-1), B(r, c-1), B(r+1, c-1)) + A[r][c] ; if (c > 1 && r > 1 && r < 5)

B(r, c) = max(B(r-1, c-1), B(r, c-1),) + A[r][c] ; if (c > 1 && r == 5)

จงเขียนรหัสเทียมในการคำนวณค่า B ใด ๆ โดยใช้วิธี Dynamic Programming แบบ bottom up และให้เก็บผลลัพธ์ลงในตัวแปร B

B(r, c) = A[r][c]; if (c == 1)

เลข (///	ประจำตัว								ห้องสอบ	//////////////////////////////////////	เลขที่ในใบเซ็นชื่อเข้าสอบ	หน้าที่ 5
	Solve(n	, A[1!	5][1	n])							ยกตัวอย่างประกอบ	
	returi		// ต้องคื					ลับมา				
	ประสิทธิภาพในการทำงานของอัลกอริทึมนี้คือ											
	Count(A	, n)									ยกตัวอย่างประกอบ	
	ประสิทธิภ	าาพใจเการ		 ของจัก	•กอริที <u>้</u>	<u>्</u> बुब सम्ब	1					

lระจำตัว		ห้องสอบ	เลขที่ในใบเซ็นชื่อเข้าสอบ	หน้าที่ 6					
คิดกัน เช่น เมื่อ n เป็ ออกแบบอัลกอริทึมที่	าะแนน) เราต้องการ <u>นับจำนวน</u> string ความยาว n ที่ประกอบด้วยตัวเลข 0 หรือ 1 เท่านั้นที่มีเงื่อนไขคือ string นั้นจะต้องไม ม เช่น เมื่อ n เป็น 3 จะมี string ที่ตรงกับเงื่อนไขคือ "000", "001", "010", "100" และ "101" เท่านั้น รวมทั้งหมด 5 แ เบบอัลกอริทึมที่นับจำนวน string ดังกล่าวเมื่อระบุค่า n เป็น input ด้วยวิธี Divide & Conquer หรือ Dynamic Programi จงกำหนดนิยามของ Recurrence relation ของปัญหานี้ โดยให้นิยาม function ที่ใช้ พร้อมทั้ง parameter ที่เกี่ยวข้อง								
3.2. จงเขียนสมการ	ของ Recurrence rela	ation ในข้อ 8.1							
		2							
3.3. จงออกแบบอัลเ	าอริทีมสำหรับปัญหานี้ 	นี (ไม่จำเป็นต้องทำตามข้อ	8.1 หรือ 8.2 ก็ได้ ขอให้ทำงานได้ถูกต้อง)						

U	ประจำตัว	ห้องสอบ	เลขที่ในใบเซ็นชื่อเข้าสอบ หน้าที่	7
	(10 คะแนน) เกมตำรวจจับโจรเป็นดังนี้ มีโจรและตำ	รวจเข้าแถวเป็นเส้นตรงผ	อยู่ เราสามารถแทนตำแหน่งของโจรและตำรวจด้วย อาเร	รย์
	A[1n] โดยที่ A[i] มีค่าเป็น 0 หมายความว่าตำแหน่ง สามารถจับโจรได้คนเดียวเท่านั้น และตำรวจ ที่อยู่ ณ จาก A ที่กำหนดให้ มีโจรโดนจับมากสุดกี่คน ตัวอย่าง	ที่ i มีโจรอยู่ แต่ถ้า A[i] ตำแหน่ง i สามารถจับโ แช่น A = [0, 1, 1, 1, 0	มีค่าเป็น 1 แสดงว่าตำแหน่ง i มีตำรวจยืนอยู่ ตำรวจแต่ก็ โจรที่อยู่ที่ตำแหน่งตั้งแต่ i-k ถึง i+k ได้เท่านั้น เราอยากท , 0, 0] และ k = 1 จะจับโจรได้สองคน คือ โจรที่ตำแหน่), 0, 1, 1, 1, 0, 0] และ k = 2 จะสามารถจับโจรได้มากล	่เละ ทรา ม่ง 1
	Catch(A[1n], k)		ยกตัวอย่างประกอบ	