

AQUAFORCE® 30XA080-500 **Air-Cooled Liquid Chillers**

Installation Instructions

CONTENTS

Pag	ge
SAFETY CONSIDERATIONS	
INTRODUCTION	
INSTALLATION	
Storage	1
Step 1 — Inspect Shipment	1
• PLACING UNIT	2
MOUNTING UNIT	
• RIGGING UNIT	
Step 3 — Cooler Fluid and Drain Piping	
Connections	1
• GENERAL	_
 UNITS WITH A HYDRONIC PUMP PACKAGE 	
 UNITS WITHOUT A HYDRONIC PUMP PACKAGE 	
 DUAL CHILLER CONTROL 	
 COOLER PUMP CONTROL 	
BRINE UNITS	
 PREPARATION FOR YEAR-ROUND OPERATION 	
Step 4 — Fill the Chilled Water Loop	6
WATER SYSTEM CLEANING	
WATER TREATMENT	
SYSTEM PRESSURIZATION THE SYSTEM PRESSURIZ	
• FILLING THE SYSTEM	
SET WATER FLOW RATE PLANTAGE ATTOM TO BE A TOM T	
 PUMP MODIFICATION/TRIMMING FREEZE PROTECTION 	
FREEZE PROTECTIONPREPARATION FOR WINTER SHUTDOWN	
Step 5 — Make Electrical Connections	2
• POWER SUPPLY	12
FIELD POWER CONNECTIONS	
• POWER WIRING	
FIELD CONTROL POWER CONNECTIONS	
 CARRIER COMFORT NETWORK® 	
COMMUNICATION BUS WIRING	
 NON-CCN COMMUNICATION WIRING 	
 FIELD CONTROL OPTION WIRING 	
 DUAL CHILLER LEAVING WATER SENSOR 	
Step 6 — Install Accessories	7
ENERGY MANAGEMENT MODULE	
REMOTE ENHANCED DISPLAY REMOTE ENHANCED	
LOW AMBIENT TEMPERATURE OPERATION MINIMUM AND ACCESSORY	
MINIMUM LOAD ACCESSORY HINT SECURITY/PROTECTION ACCESSORIES	
UNIT SECURITY/PROTECTION ACCESSORIESCOMMUNICATION ACCESSORIES	
 COMMUNICATION ACCESSORIES SERVICE OPTIONS 	
SERVICE OFTIONSCONTROL TRANSFORMER	
Sten 7 — I eak Test Unit	7
Step 7 — Leak Test Unit	7
• DEHYDRATION	,

SAFETY CONSIDERATIONS

Installing, starting up, and servicing this equipment can be hazardous due to system pressures, electrical components, and equipment location. Only trained, qualified installers and service mechanics should install, start up, and service this equipment.

When working on the equipment, observe precautions in the literature, and on tags, stickers, and labels attached to the equipment.

- Follow all safety codes.
- Wear safety glasses and work gloves.
- Use care in handling, rigging, and setting bulky equipment.

⚠ WARNING

Electrical shock can cause personal injury and death. Shut off all power to this equipment during installation. There may be more than one disconnect switch. Tag all disconnect locations to alert others not to restore power until work is completed.

IMPORTANT: This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with these instructions may cause radio interference. It has been tested and found to comply with the limits of a Class A computing device as defined by FCC (Federal Communications Commission, U.S.A.) regulations, Subpart J of Part 15, which are designed to provide reasonable protection against such interference when operated in a commercial environment.

INTRODUCTION

These instructions cover installation of 30XA080-500 aircooled liquid chillers with electronic controls and units with factory-installed options (FIOPs). See Fig. 1.

INSTALLATION

Storage — If the unit is to be stored for a period of time before installation or start-up, be sure to protect the machine from construction dirt. Keep protective shipping covers in place until the machine is ready for installation.

Step 1 — Inspect Shipment — Inspect unit for damage upon arrival. If damage is found, immediately file a claim with the shipping company, and contact your local Carrier representative.

REFRIGERANT CHARGE

Step 2 — Place, Mount, and Rig the Unit —

When considering a location for the unit, be sure to consult NEC (National Electrical Code, U.S.A.) and/or local code requirements. Allow sufficient space for airflow, wiring, piping, and service. See Fig. 2-14.

NOTE: To facilitate refrigerant vent piping, all units have fusible plugs with $^{1}/_{4}$ in. SAE (Society of Automotive Engineers) flares and pressure reliefs with $^{3}/_{4}$ in. NPT fittings (if required by local codes).

PLACING UNIT — Locate the unit so that the condenser airflow is unrestricted both above and on the sides of the unit. Airflow and service clearances are 6 ft (1.8 m) around the unit. Acceptable clearance on the sides or ends without control boxes can be reduced to 3 ft (1 m) without sacrificing performance as long as the remaining three sides are unrestricted. Acceptable clearance on the side with a control box can be reduced to 4 ft (1.3 m) due to NEC regulations, without sacrificing performance as long as the remaining three sides are unrestricted. Provide ample room for servicing and removing the cooler. See Fig. 2-14 for required clearances. Local codes for clearances take precedence

over the manufacturer's recommendations when local codes call for greater clearances.

If multiple units are installed at the same site, a separation of 10 ft (3 m) between the sides of the machines is required to maintain proper airflow and minimize the chances of condenser air recirculation.

MOUNTING UNIT — The unit may be mounted on a level pad directly on the base rails, on a raised mounting rail around the unit, or on vibration isolation springs. For all units, ensure placement area is strong enough to support unit operating weight. See Tables 1A and 1B. Mounting holes are provided for securing the unit to the pad, mounting rail or vibration isolation springs. Bolt the unit securely to pad or rails. If vibration isolators (field-supplied) are required for a particular installation, refer to unit weight distribution in Fig. 15A-15C to aid in the proper selection of isolators. The 30XA units can be mounted directly on spring isolators. Once installed, the unit must be level to within $^{1}/_{8}$ -in. per ft (1 cm per meter) along the long axis of the oil separator. This is required for oil return to the compressor(s).

LEGEND

CFSP — Coil Face Shipping Protection
EMM — Energy Management Module
LON — Local Operating Network
MCHX — Microchannel Heat Exchanger
XL — Across-the-Line Starter

Quality Assurance

Certified to ISO 9001:2000

Fig. 1 — AquaForce® Chiller Model Number Designation

Fig. 2 — 30XA080 Air-Cooled Liquid Chiller Dimensions

Fig. 2 — 30XA080 Air-Cooled Liquid Chiller Dimensions (cont)

MOUNTING PLATE CONTACT SURFACE TYPICAL 4 PLACES

1.31

0.875 DIA.[22.2] — MOUNTING HOLE

MOUNTING PLATE

DETAIL "A"

7.4

1.50 DIA. [38.1]-RIGGING HOLE

5.0 [127]

3.93

7.88

blies and have 1/4-in. flare connection. 3/9-in. NPT vents and drains located in each cooler head at each end of cooler. Drawing depicts unit with single-point power and standard two-pass cooler. Befer to the Packaged Chiller Builder program for other configurations. Dimensions are shown in inches. Dimensions in [] are in millimeters. Allow 8 ft (2.4 m) on either side of unit for condenser coil removal. ω 4.

6.5

Fig. 3 — 30XA090-120 Air-Cooled Liquid Chiller without Pump Dimensions

Fig. 3 — 30XA090-120 Air-Cooled Liquid Chiller without Pump Dimensions (cont)

PLATE

30XA UNIT	A	В
060	44.11 [1120]	86.93 [2208]
100	44.11 [1120]	22
110	44.11 [1120]	87.62 [2226]
120	44.11 [1120]	12

- 1. Unit must have clearances as follows:
 1. Unit must have clearances as follows:
 1. Top Do not restrict
 Sides and Ends 6 ft (1.8 m) from solid surface.
 2. Temperature relief devices are located on liquid line and economizer assemblies and have \(V_4 = \ni \). flare connection.
 3. \(\text{3}_{e-\ni} \n). NPT vents and drains located in each cooler head at each end of cooler.
 4. Drawing depicts unit with single-point power and standard two-pass cooler. Refer to the Packagad Chiller Builder program for other configurations.
 5. Dimensions are shown in inches. Dimensions in [] are in millimeters.
 6. Allow 8 ft (2.4 m) on either side of unit for condenser coil removal.

Fig. 4 — 30XA090-120 Air-Cooled Liquid Chiller with Pump Dimensions

Fig. 4 — 30XA090-120 Air-Cooled Liquid Chiller with Pump Dimensions (cont)

Fig. 5 — 30XA140,160 Air-Cooled Liquid Chiller without Pump Dimensions

Fig. 5 — 30XA140,160 Air-Cooled Liquid Chiller without Pump Dimensions (cont)

Fig. 6 — 30XA140,160 Air-Cooled Liquid Chiller with Pump Dimensions

Fig. 6 — 30XA140,160 Air-Cooled Liquid Chiller with Pump Dimensions (cont)

Fig. 7 — 30XA180,200 Air-Cooled Liquid Chiller Dimensions

Fig. 7 — 30XA180,200 Air-Cooled Liquid Chiller Dimensions (cont)

Fig. 8 — 30XA220,240 Air-Cooled Liquid Chiller Dimensions

Fig. 8 — 30XA220,240 Air-Cooled Liquid Chiller Dimensions (cont)

Fig. 9 — 30XA260-300 Air-Cooled Liquid Chiller Dimensions

Fig. 9 — 30XA260-300 Air-Cooled Liquid Chiller Dimensions (cont)

Fig. 10 — 30XA325,350 Air-Cooled Liquid Chiller Dimensions

Fig. 10 — 30XA325,350 Air-Cooled Liquid Chiller Dimensions (cont)

Fig. 11 — 30XA400 Air-Cooled Liquid Chiller with Single Point Connections Dimensions

Fig. 11 — 30XA400 Air-Cooled Liquid Chiller with Single Point Connections Dimensions (cont)

Fig. 12 — 30XA400 Air-Cooled Liquid Chiller with Dual Point Connections Dimensions

Fig. 12 — 30XA400 Air-Cooled Liquid Chiller with Dual Point Connections Dimensions (cont)

Fig. 13 — 30XA450,500 Air-Cooled Liquid Chiller with Single Point Connections Dimensions

Fig. 13 — 30XA450,500 Air-Cooled Liquid Chiller with Single Point Connections Dimensions (cont)

Fig. 14 — 30XA450,500 Air-Cooled Liquid Chiller with Dual Point Connections Dimensions

Fig. 14 — 30XA450,500 Air-Cooled Liquid Chiller with Dual Point Connections Dimensions (cont)

30XA		MOUNT				•											
UNIT SIZE	Α	В	C	D	Total												
080	1947	1673	1670	1943	7234												
30XA	MOUN	NTING W	EIGHT (b) MCH	X COND	ENSER (COILS										
UNIT SIZE	Α	В	С	D	E	F	Total										
090	1201	2043	750	951	1983	1199	8127										
100	1226	2098	780	981	2038	1224	8348										
110	1239	2136	798	1006	2075	1229	8483										
120	1272	2174	800	1007	2106	1263	8622			-							
30XA		MOUN	NTING W	EIGHT (Ib) MCH	X COND	ENSER (COILS		•							
UNIT SIZE	Α	В	С	D	E	F	G	Н	Total								
140	1897	1444	864	1181	1217	883	1584	1699	10,768								
160	1949	1469	878	1206	1246	899	1603	1750	11,000								
30XA		•				-, -	X COND		COILS								
UNIT SIZE	Α	В	С	D	E	F	G	Н	I	J	Total						
180	905	1484	1164	1849	1187	1224	1868	840	1289	888	12,699						
200	909	1499	1188	1870	1192	1232	1879	848	1299	893	12,810			į.			
30XA							Ib) MCH		ENSER (
UNIT SIZE	Α	В	С	D	E	F	G	Н	1	J	K	L	Total				
220	813	1196	1592	1498	828	1216	1259	848	1363	1064	1237	832	13,748				
240	829	1218	1617	1520	830	1218	1261	850	1371	1073	1260	849	13,897				
260	495	1431	1630	763	2465	1013	1528	2380	800	1333	1386	495	15,720				
280 300	497 502	1451 1465	1663 1686	771 786	2497 2568	1015 1027	1530 1557	2390 2454	803 811	1358 1367	1406 1417	497 502	15,878				
	502	1405	1000	780			EIGHT (502	16,141			•	
30XA UNIT SIZE	Α	В	С	D	E	F	G	H	Y COND	J	K	L	М	N	Total	•	
325	742	742	978	1531	783	2546	1067	1563	2334	804	1646	1247	742	742	17.467	•	
350	745	745	982	1546	792	2598	1077	1589	2386	808	1651	1249	745	745	17,659	•	
30XA	7.10	,	002	.0.0	.02		NTING W								,000		
UNIT SIZE	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Total
400	847	1234	1511	2965	1255	789	2214	1071	1566	2286	747	1265	2152	991	1277	868	23,038
450	856	1179	2160	2282	905	1057	2030	2053	2711	1934	1551	1266	1440	1385	1216	876	24,901
500	843	1236	2207	2334	909	1060	2037	2060	2718	1941	1555	1269	1457	1401	1279	863	25,167

UNITS WITHOUT PUMPS — SI

30XA UNIT SIZE			ING WEI														
UNII SIZE	Α	В	С	D	Total												
080	883	759	758	882	3281												
30XA	MOUN	NTING W	EIGHT (I	(g) MCH	X COND	ENSER	COILS										
UNIT SIZE	Α	В	С	D	E	F	Total	i									
090	545	927	340	431	899	544	3686										
100	556	952	354	445	924	555	3786										
110	562	969	362	456	941	558	3848										
120	577	986	363	457	955	573	3911			-							
30XA		MOUN	ITING W	EIGHT (I	(g) MCH			COILS		•							
UNIT SIZE	Α	В	С	D	E	F	G	Н	Total	•							
140	860	655	392	536	552	401	719	771	4884	-							
160	884	666	398	547	565	408	727	794	4990								
30XA			MOUN	ITING W	EIGHT (I	(g) MCH	X COND	ENSER	COILS			-					
UNIT SIZE	Α	В	С	D	E	F	G	Н	I	J	Total						
180	410	673	528	839	538	555	847	381	584	403	5760	-					
200	412	680	539	848	541	559	852	385	589	405	5811						
30XA							kg) MCH		ENSER	COILS							
UNIT SIZE	Α	В	С	D	E	F	G	Н	ı	J	K	L	Total				
220	369	542	722	680	376	552	571	385	618	483	561	378	6236				
240	376	552	734	690	377	553	572	386	622	487	572	385	6304				
260	225	649	740	346	1118	460	693	1079	363	605	629	225	7130				
280	225	658	754	350	1133	461	694	1084	364	616	638	225	7202				
300	228	664	765	357	1165	466	706	1113	368	620	643	228	7322				
30XA							EIGHT (I		X COND								
UNIT SIZE	Α	В	С	D	E	F	G	Н	ı	J	K	L	М	N	Total		
325	337	337	444	695	355	1155	484	709	1058	365	746	565	337	337	7923		
350	338	338	446	701	359	1179	488	721	1082	367	749	567	338	338	8010		
30XA							ITING W		kg) MCH			COILS					
UNIT SIZE	Α	В	С	D	E	F	G	Н	l l	J	K	L	M	N	0	Р	Total
400	384	560	685	1345	569	358	1004	486	710	1037	339	574	976	450	579	394	10 450
450	388	535	980	1035	411	479	921	931	1230	877	704	574	653	628	551	397	11 295
500	382	561	1001	1059	412	481	924	934	1233	880	705	576	661	635	580	391	11 416

Fig. 15A — Unit Mounting Weights (Units with MCHX Condenser Coils)

G H J J COMPRESSOR SIDE Fig. 15A — Unit Mounting Weights (Units with MCHX Condenser Coils) (cont)

SINGLE PUMP UNITS — ENGLISH

30XA	MOUN	ITING W	EIGHT (lb) MCH	X COND	ENSER (COILS		
UNIT SIZE	Α	В	C	D	Е	F	Total		
090	1201	2754	1087	900	1944	1199	9085	.'	
100	1226	2814	1123	924	1995	1224	9306		
110	1239	2855	1145	945	2027	1229	9441		
120	1272	2893	1147	947	2059	1263	9580		
30XA		MOUN	ITING W	EIGHT (lb) MCH	X COND	ENSER (COILS	
UNIT SIZE	Α	В	С	D	E	F	G	Н	Total
140	1897	1444	1609	1606	1078	810	1584	1699	11,726
160	1949	1469	1626	1635	1103	824	1603	1750	11,958

SINGLE PUMP UNITS — SI

30XA	MOUN	ITING W	EIGHT (I	kg) MCH	X COND	ENSER	COILS		
UNIT SIZE	Α	В	С	D	E	F	Total		
090	545	1249	493	408	882	544	4121	.'	
100	556	1276	510	419	905	555	4221		
110	562	1295	519	429	920	558	4282		
120	577	1312	520	430	934	573	4346		
30XA		MOUN	ITING W	EIGHT (I	kg) MCH	X COND	ENSER (COILS	
UNIT SIZE	Α	В	С	D	E	F	G	Η	Total
140	860	655	730	728	489	367	719	771	5319
160	884	666	737	742	500	374	727	794	5424

COOLER SIDE C B A D E F COMPRESSOR SIDE

LEGEND

MCHX — Microchannel Heat Exchanger

Fig. 15A — Unit Mounting Weights (Units with MCHX Condenser Coils) (cont)

DUAL PUMP UNITS — ENGLISH

30XA	MOUN	ITING W	EIGHT (lb) MCH	X COND	ENSER (COILS		
UNIT SIZE	Α	В	С	D	E	F	Total		
090	1201	2962	1176	900	1944	1199	9382	.'	
100	1226	3022	1212	924	1995	1224	9603		
110	1239	3064	1234	945	2027	1229	9738		
120	1272	3101	1236	947	2059	1263	9877		
30XA		NOU	NTING W	EIGHT (lb) MCH	X COND	ENSER (COILS	
UNIT SIZE	Α	В	С	D	Е	F	G	Η	Total
140	1897	1444	1818	1694	1078	810	1584	1699	12,023
160	1949	1469	1834	1724	1103	824	1603	1750	12,255
160	1949	1469	1834	1/24	1103	824	1603	1/50	12,255

DUAL PUMP UNITS — SI

30XA	MOUN	ITING W	EIGHT (I	kg) MCH	X COND	ENSER	COILS		
UNIT SIZE	Α	В	C	D	Е	F	Total		
090	545	1343	533	408	882	544	4255		
100	556	1371	550	419	905	555	4356		
110	562	1390	560	429	920	558	4417		
120	577	1407	560	430	934	573	4480		
30XA		MOUN	ITING W	EIGHT (I	(g) MCH	X COND	ENSER (COILS	
UNIT SIZE	Α	В	C	D	Е	F	G	Η	Total
140	860	655	825	769	489	367	719	771	5454
160	884	666	832	782	500	374	727	794	5559

LEGEND

MCHX — Microchannel Heat Exchanger

Fig. 15A — Unit Mounting Weights (Units with MCHX Condenser Coils) (cont)

30XA	MOU	INTING V	VEIGHT	(lb) — A	I/Cu*												
UNIT SIZE	Α	В	С	D	Total												
080	2059	1785	1778	2051	7674												
30XA		MOU	NTING V	VEIGHT	(lb) — A	I/Cu*											
UNIT SIZE	Α	В	C	D	Е	F	Total										
090	1273	2188	822	1023	2127	1271	8704										
100	1299	2244	853	1054	2184	1297	8931										
110	1312	2284	872	1079	2222	1303	9071										
120	1346	2322	874	1082	2255	1337	9216										
30XA			MOU	NTING \	VEIGHT	(lb) — A	I/Cu*										
UNIT SIZE	Α	В	С	D	E	F	G	Н	Total								
140	2007	1554	938	1254	1291	957	1695	1809	11,505								
160	2061	1581	953	1281	1321	974	1715	1862	11,748								
30XA				MOU	NTING V	VEIGHT	(lb) — A	I/Cu*									
UNIT SIZE	Α	В	С	D	E	F	G	Н	ı	J	Total						
180	979	1558	1239	1998	1261	1298	2016	915	1363	962	13,590						
200	984	1574	1263	2020	1267	1308	2029	923	1375	968	13,712						
30XA					MOU	NTING V	VEIGHT	(lb) — A	I/Cu*								
30XA UNIT SIZE	Α	В	С	D	MOU E	NTING V	VEIGHT G	(lb) — A H	I/Cu*	J	K	L	Total				
UNIT SIZE 220	883	1266	1697	1603	E 898	F 1286	G 1329	H 918	I 1468	J	1307	902	14,727	•			
UNIT SIZE			_		Е	F	G	H	ı					•			
220 240 260	883 900 566	1266 1288 1572	1697 1723 1701	1603 1626 834	898 901 2607	F 1286 1289 1084	G 1329 1331 1599	918 921 2521	1468 1477 871	1169 1179 1404	1307 1331 1528	902 920 566	14,727 14,887 16,853				
220 240 260 280	883 900 566 569	1266 1288 1572 1594	1697 1723 1701 1734	1603 1626 834 843	898 901 2607 2640	F 1286 1289 1084 1087	G 1329 1331 1599 1601	H 918 921 2521 2533	1 1468 1477 871 875	1169 1179	1307 1331	902 920 566 569	14,727 14,887 16,853 17,022				
220 240 260	883 900 566	1266 1288 1572	1697 1723 1701	1603 1626 834	898 901 2607	F 1286 1289 1084 1087 1103	G 1329 1331 1599 1601 1633	H 918 921 2521 2533 2607	1468 1477 871 875 887	1169 1179 1404 1429 1444	1307 1331 1528	902 920 566	14,727 14,887 16,853				
220 240 260 280 300 30XA	883 900 566 569 578	1266 1288 1572 1594 1617	1697 1723 1701 1734 1762	1603 1626 834 843 862	898 901 2607 2640 2720	F 1286 1289 1084 1087 1103 MOU	G 1329 1331 1599 1601 1633 NTING V	H 918 921 2521 2533 2607 VEIGHT	1468 1477 871 875 887	1169 1179 1404 1429 1444	1307 1331 1528 1549 1570	902 920 566 569	14,727 14,887 16,853 17,022 17,362				
220 240 260 280 300 30XA UNIT SIZE	883 900 566 569 578	1266 1288 1572 1594 1617	1697 1723 1701 1734 1762	1603 1626 834 843 862	E 898 901 2607 2640 2720	F 1286 1289 1084 1087 1103 MOU F	G 1329 1331 1599 1601 1633 NTING V	H 918 921 2521 2533 2607 VEIGHT H	I 1468 1477 871 875 887 (lb) — A	1169 1179 1404 1429 1444 I/Cu* J	1307 1331 1528 1549 1570	902 920 566 569 578	14,727 14,887 16,853 17,022 17,362	N	Total		
220 240 260 280 300 30XA UNIT SIZE	883 900 566 569 578 A 856	1266 1288 1572 1594 1617 B 856	1697 1723 1701 1734 1762 C 1054	1603 1626 834 843 862 D 1607	E 898 901 2607 2640 2720 E 859	F 1286 1289 1084 1087 1103 MOU F 2697	G 1329 1331 1599 1601 1633 NTING V G 1143	H 918 921 2521 2533 2607 VEIGHT H 1639	I 1468 1477 871 875 887 (Ib) — A I 2485	1169 1179 1404 1429 1444 I/Cu* J 880	1307 1331 1528 1549 1570 K 1722	902 920 566 569 578 L	14,727 14,887 16,853 17,022 17,362 M 856	856	18,834		
220 240 260 280 300 30XA UNIT SIZE	883 900 566 569 578	1266 1288 1572 1594 1617	1697 1723 1701 1734 1762	1603 1626 834 843 862	E 898 901 2607 2640 2720	F 1286 1289 1084 1087 1103 MOU F	G 1329 1331 1599 1601 1633 NTING V G 1143 1153	H 918 921 2521 2533 2607 VEIGHT H 1639 1666	I 1468 1477 871 875 887 (Ib) — A I 2485 2539	1169 1179 1404 1429 1444 I/Cu* J 880 885	1307 1331 1528 1549 1570 K 1722 1727	902 920 566 569 578	14,727 14,887 16,853 17,022 17,362				
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA	883 900 566 569 578 A 856 860	1266 1288 1572 1594 1617 B 856 860	1697 1723 1701 1734 1762 C 1054 1059	1603 1626 834 843 862 D 1607 1623	E 898 901 2607 2640 2720 E 859 869	F 1286 1289 1084 1087 1103 MOU F 2697 2752	G 1329 1331 1599 1601 1633 NTING V G 1143 1153 MOU	H 918 921 2521 2533 2607 VEIGHT H 1639 1666 NTING V	I 1468 1477 871 875 887 (Ib) — A I 2485	1169 1179 1404 1429 1444 I/Cu* J 880 885	1307 1331 1528 1549 1570 K 1722 1727 I/Cu*	902 920 566 569 578 L	14,727 14,887 16,853 17,022 17,362 M 856 860	856 860	18,834 19,040		
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE	883 900 566 569 578 A 856 860	1266 1288 1572 1594 1617 B 856 860	1697 1723 1701 1734 1762 C 1054 1059	1603 1626 834 843 862 D 1607 1623	E 898 901 2607 2640 2720 E 859 869	F 1286 1289 1084 1087 1103 MOU F 2697 2752	G 1329 1331 1599 1601 1633 NTING V G 1143 1153 MOU G	H 918 921 2521 2533 2607 VEIGHT H 1639 1666 NTING V	I 1468 1477 871 875 887 (Ib) — A I 2485 2539 VEIGHT	1169 1179 1404 1429 1444 I/Cu* J 880 885 (Ib) — A	1307 1331 1528 1549 1570 K 1722 1727 I/Cu*	902 920 566 569 578 L 1322 1326	14,727 14,887 16,853 17,022 17,362 M 856 860	856 860 N	18,834 19,040	P	Total
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE 400	883 900 566 569 578 A 856 860	1266 1288 1572 1594 1617 B 856 860	1697 1723 1701 1734 1762 C 1054 1059	1603 1626 834 843 862 D 1607 1623 D	E 898 901 2607 2640 2720 E 859 869 E 1332	F 1286 1289 1084 1087 1103 MOU F 2697 2752	G 1329 1331 1599 1601 1633 NTING V G 1143 1153 MOU G 2368	H 918 921 2521 2533 2607 VEIGHT H 1639 1666 NTING V H 1148	I 1468 1477 871 875 887 (Ib) — A I 2485 2539 VEIGHT I 1643	1169 1179 1404 1429 1444 I/Cu* J 880 885 (Ib) — A J	1307 1331 1528 1549 1570 K 1722 1727 I/Cu* K	902 920 566 569 578 L 1322 1326	14,727 14,887 16,853 17,022 17,362 M 856 860 M	856 860 N 1069	18,834 19,040 O 1354	945	24,578
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE	883 900 566 569 578 A 856 860	1266 1288 1572 1594 1617 B 856 860	1697 1723 1701 1734 1762 C 1054 1059	1603 1626 834 843 862 D 1607 1623	E 898 901 2607 2640 2720 E 859 869	F 1286 1289 1084 1087 1103 MOU F 2697 2752	G 1329 1331 1599 1601 1633 NTING V G 1143 1153 MOU G	H 918 921 2521 2533 2607 VEIGHT H 1639 1666 NTING V	I 1468 1477 871 875 887 (Ib) — A I 2485 2539 VEIGHT	1169 1179 1404 1429 1444 I/Cu* J 880 885 (Ib) — A	1307 1331 1528 1549 1570 K 1722 1727 I/Cu*	902 920 566 569 578 L 1322 1326	14,727 14,887 16,853 17,022 17,362 M 856 860	856 860 N	18,834 19,040		

 $[\]hbox{^*Condenser Coil: Aluminum Fins/Copper Tubing.}\\$

UNITS WITHOUT PUMPS — SI

30XA	MOU	NTING V	VEIGHT	(kg) — A	I/Cu*												
UNIT SIZE	Α	В	С	D	Total	='											
080	934	810	807	930	3481			-									
30XA		MOU	NTING V	VEIGHT	(kg) — A	I/Cu*		•									
UNIT SIZE	Α	В	С	D	E	F	Total	-									
090	578	992	373	464	965	576	3948	-									
100	589	1018	387	478	991	588	4051										
110	595	1036	396	489	1008	591	4115	='									
120	611	1053	397	491	1023	607	4181	-'									
30XA			MOU	NTING V	VEIGHT	(kg) — A	I/Cu*										
UNIT SIZE	Α	В	С	D	E	F	G	Н	Total								
140	910	705	425	569	585	434	769	821	5219								
160	935	717	432	581	599	442	778	845	5329			•					
30XA				MOU	NTING V	VEIGHT	(kg) — A	I/Cu*				-					
UNIT SIZE	Α	В	С	D	E	F	G	Н	I	J	Total	•					
180	444	707	562	906	572	589	915	415	618	436	6164	-					
200	446	714	573	916	575	593	920	419	624	439	6220						
30XA					MOU	NTING V	VEIGHT	(kg) — A	I/Cu*					·			
UNIT SIZE	Α	В	С	D	Е	F	G	H	I	J	K	L	Total				
UNIT SIZE	401	574	770	727	E 407	F 583	G 603	H 416	I 666	530	593	409	6680	•			
220 240	401 408	574 584	770 782	727 738	E 407 409	F 583 585	G 603 604	H 416 418	666 670	530 535	593 604	409 417	6680 6753	•			
220 240 260	401 408 257	574 584 713	770 782 772	727 738 378	407 409 1182	F 583 585 492	G 603 604 725	H 416 418 1144	666 670 395	530 535 637	593 604 693	409 417 257	6680 6753 7644				
220 240 260 280	401 408 257 258	574 584 713 723	770 782 772 787	727 738 378 382	407 409 1182 1197	F 583 585 492 493	G 603 604 725 726	H 416 418 1144 1149	666 670 395 397	530 535 637 648	593 604 693 703	409 417 257 258	6680 6753 7644 7721				
220 240 260	401 408 257	574 584 713	770 782 772	727 738 378	407 409 1182	F 583 585 492 493 501	G 603 604 725 726 741	H 416 418 1144 1149 1182	666 670 395 397 402	530 535 637 648 655	593 604 693	409 417 257	6680 6753 7644				
220 240 260 280 300 30XA	401 408 257 258 262	574 584 713 723 734	770 782 772 787 799	727 738 378 382 391	E 407 409 1182 1197 1234	F 583 585 492 493 501 MOU	G 603 604 725 726 741 NTING V	H 416 418 1144 1149 1182 VEIGHT	666 670 395 397 402	530 535 637 648 655	593 604 693 703 712	409 417 257 258	6680 6753 7644 7721 7876				
220 240 260 280 300 30XA UNIT SIZE	401 408 257 258 262	574 584 713 723 734	770 782 772 787 799	727 738 378 382 391	E 407 409 1182 1197 1234	F 583 585 492 493 501 MOU	G 603 604 725 726 741 NTING V	H 416 418 1144 1149 1182 VEIGHT H	1 666 670 395 397 402 (kg) — A	530 535 637 648 655 I/Cu*	593 604 693 703 712	409 417 257 258 262	6680 6753 7644 7721 7876	N	Total		
220 240 260 280 300 30XA UNIT SIZE	401 408 257 258 262 A 388	574 584 713 723 734 B 388	770 782 772 787 799 C 478	727 738 378 382 391 D 729	E 407 409 1182 1197 1234 E 390	F 583 585 492 493 501 MOU F 1224	G 603 604 725 726 741 NTING V G 518	H 416 418 1144 1149 1182 VEIGHT H 744	666 670 395 397 402 (kg) — A 1	530 535 637 648 655 I/Cu* J	593 604 693 703 712 K 781	409 417 257 258 262 L 600	6680 6753 7644 7721 7876 M 388	388	8543		
220 240 260 280 300 30XA UNIT SIZE	401 408 257 258 262	574 584 713 723 734	770 782 772 787 799	727 738 378 382 391	E 407 409 1182 1197 1234	F 583 585 492 493 501 MOU	G 603 604 725 726 741 NTING V G 518 523	H 416 418 1144 1149 1182 VEIGHT H 744 756	1 666 670 395 397 402 (kg) — A 1 1127 1152	530 535 637 648 655 LI/Cu* J 399 401	593 604 693 703 712 K 781 784	409 417 257 258 262	6680 6753 7644 7721 7876				
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA	401 408 257 258 262 A 388 390	574 584 713 723 734 B 388 390	770 782 772 787 799 C 478 480	727 738 378 382 391 D 729 736	E 407 409 1182 1197 1234 E 390 394	F 583 585 492 493 501 MOU F 1224 1248	G 603 604 725 726 741 NTING V G 518 523 MOU	H 416 418 1144 1149 1182 VEIGHT H 744 756 NTING V	1 666 670 395 397 402 (kg) — A 1 1127 1152	530 535 637 648 655 I/Cu* J 399 401 (kg) — A	593 604 693 703 712 K 781 784	409 417 257 258 262 L 600 601	6680 6753 7644 7721 7876 M 388 390	388 390	8543 8636		
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE	401 408 257 258 262 A 388 390	574 584 713 723 734 B 388 390	770 782 772 787 799 C 478 480	727 738 378 382 391 D 729 736	E 407 409 1182 1197 1234 E 390 394	F 583 585 492 493 501 MOU F 1224 1248	G 603 604 725 726 741 NTING V G 518 523 MOU	H 416 418 1144 1149 1182 VEIGHT H 744 756 NTING V	1 666 670 395 397 402 (kg) — # 1 1127 1152 VEIGHT	530 535 637 648 655 I/Cu* J 399 401 (kg) — A	593 604 693 703 712 K 781 784 I/Cu*	409 417 257 258 262 L 600 601	6680 6753 7644 7721 7876 M 388 390	388 390 N	8543 8636 O	P	Total
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE 400	401 408 257 258 262 A 388 390 A	574 584 713 723 734 B 388 390 B 595	770 782 772 787 799 C 478 480 C	727 738 378 382 391 D 729 736 D	E 407 409 1182 1197 1234 E 390 394 E 604	F 583 585 492 493 501 MOU F 1224 1248 F 393	G 603 604 725 726 741 NTING V G 518 523 MOU G	H 416 418 1144 1149 1182 VEIGHT H 744 756 NTING V H 521	1 666 670 395 397 402 (kg) — A 1 1127 1152 VEIGHT 1 745 1	530 535 637 648 655 I/Cu* J 399 401 (kg) — A	593 604 693 703 712 K 781 784 I/Cu* K 374	409 417 257 258 262 L 600 601	6680 6753 7644 7721 7876 M 388 390 M	388 390 N 485	8543 8636 O 614	428	11 149
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE	401 408 257 258 262 A 388 390	574 584 713 723 734 B 388 390	770 782 772 787 799 C 478 480	727 738 378 382 391 D 729 736	E 407 409 1182 1197 1234 E 390 394	F 583 585 492 493 501 MOU F 1224 1248	G 603 604 725 726 741 NTING V G 518 523 MOU	H 416 418 1144 1149 1182 VEIGHT H 744 756 NTING V	1 666 670 395 397 402 (kg) — # 1 1127 1152 VEIGHT	530 535 637 648 655 I/Cu* J 399 401 (kg) — A	593 604 693 703 712 K 781 784 I/Cu*	409 417 257 258 262 L 600 601	6680 6753 7644 7721 7876 M 388 390	388 390 N	8543 8636 O		

^{*}Condenser Coil: Aluminum Fins/Copper Tubing.

Fig. 15B — Unit Mounting Weights (Units with Al/Cu Condenser Coils)

Fig. 15B — Unit Mounting Weights (Units with Al/Cu Condenser Coils) (cont)

SINGLE PUMP UNITS — ENGLISH

30XA		MOU	NTING V	VEIGHT	(lb) — A	I/Cu*			
UNIT SIZE	Α	В	C	D	Е	F	Total		
090	1273	2898	1160	972	2089	1271	9,662		
100	1299	2959	1196	997	2140	1297	9,889		
110	1312	3002	1219	1019	2175	1303	10,029		
120	1346	3041	1221	1021	2208	1337	10,174		
30XA			MOU	INTING \	VEIGHT	(lb) — A	I/Cu*		
UNIT SIZE	Α	В	C	D	Е	F	G	Н	Total
140	2007	1554	1683	1679	1152	883	1695	1809	12,463
160	2061	1581	1701	1710	1178	898	1715	1862	12,706

${\rm SINGLE\ PUMP\ UNITS-SI}$

30XA		MOU	NTING V	VEIGHT	(kg) — A	\I/Cu*		1	
UNIT SIZE	Α	В	С	D	E	F	Total		
090	578	1314	526	441	947	576	4383	='	
100	589	1342	543	452	971	588	4485		
110	595	1362	553	462	986	591	4549		
120	611	1379	554	463	1001	607	4615	•'	
30XA			MOU	NTING V	VEIGHT	(kg) — A	I/Cu*		
UNIT SIZE	Α	В	С	D	E	F	G	Н	Total
140	910	705	763	762	523	401	769	821	5653
160	935	717	771	776	534	408	778	845	5763

^{*}Condenser Coil: Aluminum Fins/Copper Tubing.

Fig. 15B — Unit Mounting Weights (Units with Al/Cu Condenser Coils) (cont)

DUAL PUMP UNITS — ENGLISH

30XA		MOU	NTING V	VEIGHT	(lb) — A	I/Cu*			
UNIT SIZE	Α	В	C	D	Е	F	Total		
090	1273	3106	1248	972	2089	1271	9,959		
100	1299	3168	1285	997	2140	1297	10,186		
110	1312	3211	1307	1019	2175	1303	10,326		
120	1346	3249	1310	1021	2208	1337	10,471		
30XA			MOU	INTING \	VEIGHT	(lb) — A	I/Cu*		
UNIT SIZE	Α	В	C	D	Е	F	G	Н	Total
140	2007	1554	1891	1768	1152	883	1695	1809	12,760
160	2061	1581	1909	1799	1178	898	1715	1862	13,003

DUAL PUMP UNITS — SI

30XA		MOU	NTING V	VEIGHT	(kg) — A	I/Cu*			
UNIT SIZE	Α	В	C	D	Е	F	Total		
090	578	1409	566	441	947	576	4517		
100	589	1437	583	452	971	588	4620		
110	595	1456	593	462	986	591	4684		
120	611	1474	594	463	1001	607	4750		
30XA			MOU	NTING V	VEIGHT	(kg) — A	I/Cu*		
UNIT SIZE	Α	В	C	D	Е	F	G	Η	Total
140	910	705	858	802	523	401	769	821	5788
160	935	717	866	816	534	408	778	845	5898

^{*}Condenser Coil: Aluminum Fins/Copper Tubing.

Fig. 15B — Unit Mounting Weights (Units with Al/Cu Condenser Coils) (cont)

30XA	MOU	NTING V	/EIGHT	(lb) — C	u/Cu*												
UNIT SIZE	Α	В	С	D	Total												
080	2244	1970	1956	2228	8398												
30XA		MOU	NTING V	VEIGHT	(lb) — Cı	u/Cu*											
UNIT SIZE	Α	В	С	D	E	F	Total										
090	1394	2429	943	1144	2368	1392	9,669										
100	1420	2485	974	1174	2425	1418	9,896										
110	1433	2525	993	1200	2463	1424	10,036										
120	1467	2563	995	1202	2496	1458	10,181										
30XA			MOU	NTING V	VEIGHT ((lb) — C	u/Cu*										
UNIT SIZE	Α	В	C	D	Е	F	G	Н	Total								
140	2188	1735	1058	1375	1411	1078	1876	1990	12,711								
160	2242	1762	1074	1401	1442	1095	1896	2043	12,954								
30XA		•		MOU	NTING V	/EIGHT	(lb) — Cı	u/Cu*									
UNIT SIZE	Α	В	С	D	E	F	G	Н	ı	J	Total						
180	1099	1679	1359	2239	1382	1419	2258	1035	1483	1083	15,037						
200	1105	1695	1384	2261	1388	1428	2271	1044	1495	1089	15,159						
30XA					MOU	NTING V	VEIGHT ((lb) — C	u/Cu*								
UNIT SIZE	Α	В	С	D	E	F	G	Н	I	J	K	L	Total				
220	995	1378	1865	1771	1010	1398	1441	1030	1636	1337	1419	1014	16,295				
240	1012	1400	1891	1794	1013	1401	1443	1033	1645	1347	1443	1032	16,455				
260	679	1798	1814	947	2833	1197	1712	2748	984	1517	1754	679	18,662				
260 280	679 682	1798 1820	1814 1847	947 956	2833 2866	1197 1200	1712 1715	2748 2759	984 988	1517 1542	1754 1775	679 682	18,662 18,831				
260	679	1798	1814	947	2833	1197 1200 1224	1712 1715 1754	2748 2759 2848	984 988 1008	1517 1542 1564	1754	679	18,662				
260 280 300 30XA	679 682 699	1798 1820 1858	1814 1847 1883	947 956 983	2833 2866 2962	1197 1200 1224 MOU	1712 1715 1754 NTING V	2748 2759 2848 /EIGHT	984 988 1008	1517 1542 1564	1754 1775 1811	679 682	18,662 18,831 19,292				
260 280 300 30XA UNIT SIZE	679 682 699	1798 1820 1858 B	1814 1847 1883	947 956 983 D	2833 2866 2962	1197 1200 1224 MOU	1712 1715 1754 NTING V	2748 2759 2848 /EIGHT (984 988 1008 (lb) — Cu	1517 1542 1564 u/Cu* J	1754 1775 1811	679 682 699	18,662 18,831 19,292 M	N	Total		
260 280 300 30XA UNIT SIZE 325	679 682 699 A 1037	1798 1820 1858 B 1037	1814 1847 1883 C 1175	947 956 983 D 1728	2833 2866 2962 E 980	1197 1200 1224 MOU F 2939	1712 1715 1754 NTING W G 1263	2748 2759 2848 /EIGHT (H 1760	984 988 1008 (lb) — C t 1	1517 1542 1564 u/Cu* J	1754 1775 1811 K 1842	679 682 699 L 1443	18,662 18,831 19,292 M 1037	1037	21,005		
260 280 300 30XA UNIT SIZE	679 682 699	1798 1820 1858 B	1814 1847 1883	947 956 983 D	2833 2866 2962	1197 1200 1224 MOU	1712 1715 1754 NTING W G 1263 1274	2748 2759 2848 /EIGHT (H 1760 1786	984 988 1008 (Ib) — Cu 1 2727 2780	1517 1542 1564 u/Cu* J 1001 1006	1754 1775 1811 K 1842 1848	679 682 699	18,662 18,831 19,292 M				
260 280 300 30XA UNIT SIZE 325 350 30XA	679 682 699 A 1037 1041	1798 1820 1858 B 1037 1041	1814 1847 1883 C 1175 1180	947 956 983 D 1728 1743	2833 2866 2962 E 980 990	1197 1200 1224 MOU F 2939 2993	1712 1715 1754 NTING W G 1263 1274 MOU	2748 2759 2848 /EIGHT (H 1760 1786 NTING V	984 988 1008 (lb) — C t 1	1517 1542 1564 u/Cu* J 1001 1006 (lb) —Cu	1754 1775 1811 K 1842 1848 u/Cu*	679 682 699 L 1443	18,662 18,831 19,292 M 1037 1041	1037 1041	21,005 21,211		
260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE	679 682 699 A 1037 1041	1798 1820 1858 B 1037 1041	1814 1847 1883 C 1175 1180	947 956 983 D 1728 1743	2833 2866 2962 E 980 990	1197 1200 1224 MOU F 2939 2993	1712 1715 1754 NTING W G 1263 1274 MOU G	2748 2759 2848 /EIGHT (H 1760 1786 NTING V	984 988 1008 (lb) — Ct I 2727 2780 VEIGHT I	1517 1542 1564 u/Cu* J 1001 1006 (lb) —Cu	1754 1775 1811 K 1842 1848 u/Cu*	679 682 699 L 1443 1447	18,662 18,831 19,292 M 1037 1041	1037 1041 N	21,005 21,211	P	Total
260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE 400	679 682 699 A 1037 1041 A	1798 1820 1858 B 1037 1041 B	1814 1847 1883 C 1175 1180 C	947 956 983 D 1728 1743 D	2833 2866 2962 E 980 990 E 1453	1197 1200 1224 MOU F 2939 2993 F 987	1712 1715 1754 NTING V G 1263 1274 MOU G 2609	2748 2759 2848 /EIGHT (H 1760 1786 NTING V H	984 988 1008 (lb) — Ct I 2727 2780 VEIGHT I 1764	1517 1542 1564 u/Cu* J 1001 1006 (lb) —Cu J	1754 1775 1811 K 1842 1848 u/Cu* K	679 682 699 L 1443 1447 L	18,662 18,831 19,292 M 1037 1041 M 2547	1037 1041 N 1189	21,005 21,211 O 1474	1065	26,990
260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE	679 682 699 A 1037 1041	1798 1820 1858 B 1037 1041	1814 1847 1883 C 1175 1180	947 956 983 D 1728 1743	2833 2866 2962 E 980 990	1197 1200 1224 MOU F 2939 2993	1712 1715 1754 NTING W G 1263 1274 MOU G	2748 2759 2848 /EIGHT (H 1760 1786 NTING V	984 988 1008 (lb) — Ct I 2727 2780 VEIGHT I	1517 1542 1564 u/Cu* J 1001 1006 (lb) —Cu	1754 1775 1811 K 1842 1848 u/Cu*	679 682 699 L 1443 1447	18,662 18,831 19,292 M 1037 1041	1037 1041 N	21,005 21,211		

^{*}Condenser Coil: Copper Fins/Copper Tubing.

UNITS WITHOUT PUMPS — SI

30XA	MOU	NTING W	/EIGHT (kg) — C	u/Cu*												
UNIT SIZE	A	В	С	D	Total												
080	1018	893	887	1011	3809												
30XA		MOUI	NTING W	/EIGHT ((kg) — C	u/Cu*											
UNIT SIZE	Α	В	С	D	E	F	Total										
090	632	1102	428	519	1074	631	4386										
100	644	1127	442	533	1100	643	4489										
110	650	1145	450	544	1117	646	4552										
120	665	1163	451	545	1132	661	4618										
30XA			MOUI	NTING W	/EIGHT (kg) — C	u/Cu*										
UNIT SIZE	Α	В	С	D	E	F	G	Н	Total								
140	992	787	480	624	640	489	851	903	5766								
160	1017	799	487	636	654	497	860	927	5876								
30XA				MOU	NTING W	/EIGHT (kg) — C	u/Cu*									
UNIT SIZE	Α	В	С	D	E	F	G	Н	ı	J	Total						
180	499	762	617	1016	627	644	1024	470	673	491	6821						
200	501	769	628	1026	630	648	1030	474	678	494	6876						
														•			
30XA			ı				/EIGHT (kg) — C	u/Cu*		ı						
30XA UNIT SIZE	Α	В	С	D	MOUI E	NTING W	G	kg) — C H	u/Cu*	J	К	L	Total	· -			
UNIT SIZE 220	451	625	846	804	E 458	F 634	G 653	H 467	I 742	607	644	460	7391	· - ·			
220 240	451 459	625 635	846 858	804 814	E 458 460	F 634 635	G 653 655	Н	742 746	607 611	644 654	460 468	7391 7464	•			
220 240 260	451 459 308	625 635 816	846 858 823	804 814 429	458 460 1285	F 634 635 543	G 653 655 777	H 467 469 1246	742 746 446	607 611 688	644 654 796	460 468 308	7391 7464 8465	· · · · ·			
220 240 260 280	451 459 308 309	625 635 816 826	846 858 823 838	804 814 429 434	458 460 1285 1300	F 634 635 543 544	G 653 655 777 778	H 467 469 1246 1252	742 746 446 448	607 611 688 700	644 654 796 805	460 468 308 309	7391 7464 8465 8542	• • • •			
220 240 260	451 459 308	625 635 816	846 858 823	804 814 429	458 460 1285	F 634 635 543 544 555	G 653 655 777 778 796	H 467 469 1246 1252 1292	742 746 446 448 457	607 611 688 700 710	644 654 796	460 468 308	7391 7464 8465				
220 240 260 280 300 30XA	451 459 308 309 317	625 635 816 826 843	846 858 823 838 854	804 814 429 434 446	458 460 1285 1300 1343	F 634 635 543 544 555 MOU	G 653 655 777 778 796 NTING W	H 467 469 1246 1252 1292 /EIGHT (742 746 446 448 457	607 611 688 700 710	644 654 796 805	460 468 308 309	7391 7464 8465 8542 8751		-		
220 240 260 280 300 30XA UNIT SIZE	451 459 308 309 317	625 635 816 826 843	846 858 823 838 854	804 814 429 434 446	E 458 460 1285 1300 1343	F 634 635 543 544 555 MOU	G 653 655 777 778 796 NTING W	H 467 469 1246 1252 1292 /EIGHT (I 742 746 446 448 457 kg) — C	607 611 688 700 710 u/Cu*	644 654 796 805 821	460 468 308 309 317	7391 7464 8465 8542 8751	N	Total	• •	
220 240 260 280 300 30XA UNIT SIZE	451 459 308 309 317 A 470	625 635 816 826 843 B 470	846 858 823 838 854 C 533	804 814 429 434 446 D 784	E 458 460 1285 1300 1343 E 445	F 634 635 543 544 555 MOU F 1333	G 653 655 777 778 796 NTING W G 573	H 467 469 1246 1252 1292 /EIGHT (H 798	I 742 746 446 448 457 kg) — C I	607 611 688 700 710 u/Cu* J 454	644 654 796 805 821 K 836	460 468 308 309 317 L 655	7391 7464 8465 8542 8751 M 470	470	9528	• • •	
220 240 260 280 300 30XA UNIT SIZE	451 459 308 309 317	625 635 816 826 843	846 858 823 838 854	804 814 429 434 446	E 458 460 1285 1300 1343	F 634 635 543 544 555 MOU	G 653 655 777 778 796 NTING W G 573 578	H 467 469 1246 1252 1292 /EIGHT (H 798 810	I 742 746 446 448 457 kg) — C I 1237 1261	607 611 688 700 710 u/Cu* J 454 456	644 654 796 805 821 K 836 838	460 468 308 309 317	7391 7464 8465 8542 8751			• • •	
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA	451 459 308 309 317 A 470 472	625 635 816 826 843 B 470 472	846 858 823 838 854 C 533 535	804 814 429 434 446 D 784 791	E 458 460 1285 1300 1343 E 445 449	F 634 635 543 544 555 MOU F 1333 1358	G 653 655 777 778 796 NTING W G 573 578	H 467 469 1246 1252 1292 /EIGHT (H 798 810	I 742 746 446 448 457 kg) — C I 1237 1261	607 611 688 700 710 u/Cu* J 454 456 kg) — C	644 654 796 805 821 K 836 838 u/Cu*	460 468 308 309 317 L 655 656	7391 7464 8465 8542 8751 M 470 472	470 472	9528 9621		
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE	451 459 308 309 317 A 470 472	625 635 816 826 843 B 470 472	846 858 823 838 854 C 533 535	804 814 429 434 446 D 784 791	E 458 460 1285 1300 1343 E 445 449	F 634 635 543 544 555 MOU F 1333 1358	G 653 655 777 778 796 NTING W 573 578 MOUL G	H 467 469 1246 1252 1292 /EIGHT (798 810 NTING W	1 742 746 446 448 457 kg) — C 1 1237 1261	607 611 688 700 710 w/Cu* J 454 456 kg) — C	644 654 796 805 821 K 836 838 u/Cu*	460 468 308 309 317 L 655 656	7391 7464 8465 8542 8751 M 470 472	470 472 N	9528 9621 O		Total
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE 400	451 459 308 309 317 A 470 472 A	625 635 816 826 843 B 470 472 B 649	846 858 823 838 854 C 533 535 C	804 814 429 434 446 D 784 791	E 458 460 1285 1300 1343 E 445 449 E 659	F 634 635 543 544 555 MOU F 1333 1358	G 653 655 777 778 796 NTING W G 573 578 MOUL G 1183	H 467 469 1246 1252 1292 /EIGHT (H 798 810 NTING W H 576	I 742 746 446 448 457 kg) — C I 1237 1261 /EIGHT (607 611 688 700 710 w/Cu* J 454 456 kg) — C J	644 654 796 805 821 K 836 838 u/Cu* K	460 468 308 309 317 L 655 656	7391 7464 8465 8542 8751 M 470 472 M	470 472 N 539	9528 9621 O 669	483	12 243
220 240 260 280 300 30XA UNIT SIZE 325 350 30XA UNIT SIZE	451 459 308 309 317 A 470 472	625 635 816 826 843 B 470 472	846 858 823 838 854 C 533 535	804 814 429 434 446 D 784 791	E 458 460 1285 1300 1343 E 445 449	F 634 635 543 544 555 MOU F 1333 1358	G 653 655 777 778 796 NTING W 573 578 MOUL G	H 467 469 1246 1252 1292 /EIGHT (798 810 NTING W	1 742 746 446 448 457 kg) — C 1 1237 1261	607 611 688 700 710 w/Cu* J 454 456 kg) — C	644 654 796 805 821 K 836 838 u/Cu*	460 468 308 309 317 L 655 656	7391 7464 8465 8542 8751 M 470 472	470 472 N	9528 9621 O		

^{*}Condenser Coil: Copper Fins/Copper Tubing.

Fig. 15C — Unit Mounting Weights (Units with Cu/CU Condenser Coils)

Fig. 15C — Unit Mounting Weights (Units with Cu/Cu Condenser Coils) (cont)

SINGLE PUMP UNITS — ENGLISH

30XA		MOU	NTING V	VEIGHT	(lb) — C	u/Cu*			
UNIT SIZE	Α	В	C	D	Е	F	Total		
090	1394	3139	1280	1093	2330	1392	10,627		
100	1420	3201	1317	1117	2382	1418	10,854		
110	1433	3244	1339	1139	2416	1424	10,994		
120	1467	3282	1342	1142	2449	1458	11,139		
30XA			MOU	NTING V	VEIGHT	(lb) — C	u/Cu*		
UNIT SIZE	Α	В	С	D	E	F	G	Н	Total
140	2188	1735	1804	1800	1273	1004	1876	1990	13,669
160	2242	1762	1821	1831	1299	1019	1896	2043	13,912

SINGLE PUMP UNITS — SI

30XA		MOU	NTING W	/EIGHT ((kg) — C	u/Cu*		•	
UNIT SIZE	Α	В	С	D	Е	F	Total		
090	632	1424	581	496	1057	631	4820	='	
100	644	1452	597	507	1080	643	4923		
110	650	1471	607	517	1096	646	4987		
120	665	1489	609	518	1111	661	5053	•'	
30XA			MOU	NTING W	/EIGHT ((kg) — C	u/Cu*		<u></u>
UNIT SIZE	Α	В	С	D	Е	F	G	Н	Total
140	992	787	818	816	577	455	851	903	6200
160	1017	799	826	830	589	462	860	927	6310

^{*}Condenser Coil: Copper Fins/Copper Tubing.

30XA090-120

30XA140,160

Fig. 15C — Unit Mounting Weights (Units with Cu/Cu Condenser Coils) (cont)

DUAL PUMP UNITS — ENGLISH

30XA		MOU	NTING V	VEIGHT	(lb) — C	u/Cu*			
UNIT SIZE	Α	В	C	D	E	F	Total		
090	1394	3347	1369	1093	2330	1392	10,924	.'	
100	1420	3409	1406	1117	2382	1418	11,151		
110	1433	3452	1428	1139	2416	1424	11,291		
120	1467	3491	1430	1142	2449	1458	11,436		
30XA			MOU	NTING V	VEIGHT	(lb) — C	u/Cu*		
UNIT SIZE	Α	В	U	D	E	F	G	Η	Total
140	2188	1735	2012	1889	1273	1004	1876	1990	13,966
160	2242	1762	2029	1919	1299	1019	1896	2043	14,209

DUAL PUMP UNITS — SI

30XA		MOU	NTING W	/EIGHT ((kg) — C	u/Cu*		i)	
UNIT SIZE	Α	В	С	D	E	F	Total		
090	632	1518	621	496	1057	631	4955	.'	
100	644	1546	638	507	1080	643	5058		
110	650	1566	648	517	1096	646	5122		
120	665	1583	649	518	1111	661	5187		
30XA			MOU	NTING W	/EIGHT ((kg) — C	u/Cu*		
UNIT SIZE	Α	В	С	D	Е	F	G	Η	Total
140	992	787	913	857	577	455	851	903	6335
160	1017	799	921	871	589	462	860	927	6445

^{*}Condenser Coil: Copper Fins/Copper Tubing

Fig. 15C — Unit Mounting Weights (Units with Cu/Cu Condenser Coils) (cont)

RIGGING UNIT (See Fig. 16-18) — The 30XA080-500 units are designed for overhead rigging and it is important that this method be used. Holes are provided in frame base channels, marked for rigging (see rigging label on unit). Field-supplied shackles are required to facilitate lifting. Secure the shackles to the base rails at the points noted on the rigging label. See Table 2 for the number of lifting points for each unit.

Do not use a forklift truck to move the units.

Use spreader bars to keep cables or chains clear of unit sides. As further protection plywood sheets may be placed against sides of unit, behind cables or chains. Run cables or chains to a central suspension point so that angle from horizontal is not less than 45 degrees. Raise and set unit down carefully.

See Fig. 16-18 for rigging centers of gravity.

For shipping, some domestic units and all export units are mounted on a wooden skid under entire base of unit. Skid can be removed before unit is moved to installation site. Lift the unit from above to remove skid. See Fig. 16-18 for rigging center of gravity. On export units, the top skid can be used as the spreader bars. If the unit was shipped with a shipping bag, the bag must be removed to gain access to the rigging holes in the base rail

If overhead rigging is not available, the unit can be moved on rollers or dragged. When unit is moved on rollers, the unit skid, if equipped, must be removed. To lift the unit, use jacks at the rigging points. Use a minimum number of rollers to distribute the load such that the rollers are no more than 6 ft (1.8 m) apart. If the unit is to be dragged, lift the unit as described above, and place unit on a pad. Apply moving force to the pad, and not the unit. When in its final location, raise the unit and remove the pad. If the unit was shipped with coil protection, it must be removed before start-up. The shipping bag for export units must be removed before start-up.

Step 3 — Cooler Fluid and Drain Piping Connections — See Fig. 19-22 for piping applications.

⚠ CAUTION

Remove the chilled water flow switch, entering and leaving water thermistors before welding connecting piping. Reinstall flow switch and thermistors after welding is complete. Failure to remove these devices may cause unit damage.

GENERAL — The factory-installed victaulic connections allow clamp-on connection of water lines to the coolers in all 30XA units. A flow sensor is factory-installed in the side of the entering fluid nozzle. See Fig. 23. See Table 3 for 30XA unit operating range. See Fig. 20 for cooler option dimensions.

Table 1A — Physical Data, 30XA080-500 — English

UNIT 30XA	080	090	100	110	120	140	160	180	200	220
OPERATING WEIGHT (Ib)* AI-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils	7,674 8,398 7,234	9,959 10,924 9,382	10,186 11,151 9,603	10,326 11,291 9,738	10,471 11,436 9,877	12,760 13,966 12,023	13,003 14,209 12,255	13,590 15,037 12,699	13,712 15,159 12,810	14,727 16,295 13,748
REFRIGERANT TYPE Refrigerant Charge (Ib) Ckt A/Ckt B/Ckt C Refrigerant Charge (Ib) Ckt A/Ckt B/Ckt C (MCHX)	110/110/— 98/98/—	110/110/— 94/94/—	120/120/— 96/96/—	R- 135/120/— 100/96/—	134a, EXV Cor 135/135/— 100/100/—	ntrolled System 202/121/— 137/96/—	225/159/— 135/100/—	205/205/— 141/141/—	225/225/— 161/161/—	270/225/— 170/161/—
COMPRESSORS Quantity Speed (rpm)	2	2	2	2	ni-Hermetic Twi 2 350	[2	2	2	2
(Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (gal), Ckt A/Ckt B/Ckt C	(1) 06TS-137† (1) 06TS-137† N/A 5.5/5.5/—	(1) 06TS-137 (1) 06TS-137 N/A 5.5/5.5/—	(1) 06TS-155 (1) 06TS-155 N/A 5.5/5.5/—	(1) 06TS-186 (1) 06TS-155 N/A 5.5/5.5/—	(1) 06TS-186 (1) 06TS-186 N/A 5.5/5.5/—	(1) 06TT-266 (1) 06TS-155 N/A 6.25/5.5/—	(1) 06TT-301 (1) 06TS-186 N/A 6.25/5.5/—	(1) 06TT-266 (1) 06TT-266 N/A 6.25/6.25/—	(1) 06TT-301 (1) 06TT-301 N/A 6.25/6.25/—	(1) 06TT-356 (1) 06TT-301 N/A 6.75/6.25/—
Minimum Capacity Step (%) Standard Optional	15 9	15 9	15 9	14 8	15 10	11 7	11 8	15 10	15 10	14 10
COOLER Net Fluid Volume (gal.) Maximum Refrigerant Pressure (psig) Maximum Water Side Pressure without Pumps (psig) Maximum Water Side Pressure with Pumps (psig)	16.5 220 300	18.5 220 300 150	18.5 220 300 150	20.0 220 300 150	Flooded, Shell a 23.0 220 300 150	nd Tube Type 25.5 220 300 150	27.5 220 300 150	31.5 220 300	34.0 220 300	37.0 220 300
WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes	^{3/8} 5 2 5 1 4	^{3/8} 5 2 5 1 4	³ / ₈ 5 2 5 1 4	^{3/,8} 5 2 5 1 4	³ / ₈ 5 2 5 1 4	^{3/8} 5 2 5 1 5 3	³ / ₈ 5 2 5 1 5	3/ ₈ 6 2 8 1 6	3/ ₈ 6 2 8 1 6	3/ ₈ 6 2 8 1 6
CONDENSER FANS Fan Speed (rpm) Standard/High Ambient** No. BladesDiameter (in.) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (cfm) 850 rpm Total Airflow (rfm) 1140 rpm	850/— 930 3/3/— 55,800	850/— 930 4/4/— 74,400	850/— 930 4/4/— 74,400		ded Axial Type, 850/— 930 4/4/— 74,400	Ů	Ŭ	850/1140 930 6/6/— 111,600 148,800	850/1140 930 6/6/— 111,600 148,800	850/1140 930 7/6/— 120,900 161,200
CONDENSER COILS No. Coils (Ckt A/Ckt B/Ckt C) Total Face Area (sq ft)	3/3/— 141	4/4/— 188	4/4/— 188	4/4/— 188	4/4/— 188	6/4/— 234	6/4/— 234	6/6/— 281	6/6/— 281	7/6/— 305
HYDRONIC MODULE (Optional) Pump	N/A	Р	ump(s) with pre		ture taps and co	ombination valv	e.		N/A	
CHASSIS DIMENSIONS (ft-in.) Length Width Height	11-10	l	15	i-9	7-4 7-6)-8	23	3-7	27-6

INUT ANYA			1			252	1 400	450	500
UNIT 30XA	240	260	280	300	325	350	400	450	500
OPERATING WEIGHT (Ib)* Al-Cu Condenser Coils Cu-Cu Condenser Coils	14,887 16,455	16,853 18,662	17,022 18,831	17,362 19,292	18,834 21,005	19,040 21,211	24,578 26,990	26,600 29,254	26,894 29,547
MCHX Condenser Coils	13,897	15,720	15,878	16,141	17,467	17,659	23,038	24,901	25,167
REFRIGERANT TYPE					, EXV Controlled				
Refrigerant Charge (Ib) Ckt A/Ckt B/Ckt C Refrigerant Charge (Ib) Ckt A/Ckt B/Ckt C (MCHX)	270/270/— 170/168/—	375/220/— 247/165/—	375/270/— 240/170/—	415/270/— 245/170/—	375/375/— 240/240/—	415/375/— 245/240/—	270/270/375 170/170/215	415/205/415 236/170/227	415/270/415 243/177/227
COMPRESSORS					rmetic Twin Rota				
Quantity Speed (rpm)	2	2	2	2	2 3500	2	3	3	3
(Qty) Compressor Model Number Ckt A	(1) 06TT-356	(1) 06TU-483	(1) 06TU-483	(1) 06TU-554	(1) 06TU-483	(1) 06TU-554	(1) 06TT-356	(1) 06TU-554	(1) 06TU-554
(Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C	(1) 06TT-356 N/A	(1) 06TT-301 N/A	(1) 06TT-356 N/A	(1) 06TT-356 N/A	(1) 06TU-483 N/A	(1) 06TU-483 N/A	(1) 06TT-356 (1) 06TU-483	(1) 06TT-266 (1) 06TU-554	(1) 06TT-356 (1) 06TU-554
Oil Charge (gal), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%)	6.75/6.75/—	7.5/6.75/—	7.5/6.75/—	7.5/6.75/—	7.5/7.5/—	7.5/7.5/—	6.75/6.75/7.5	7.5/6.25/7.5	7.5/6.75/7.5
Standard Optional	15 10	11 8	13 9	12 7	15 10	15 10	9 6	6 4	7 5
COOLER				Floode	ed, Shell and Tub	e Type			
Net Fluid Volume (gal.)	39.0	42.0	44.0 220	48.5 220	50.5 220	53.4	68.0	75.0	83.0 220
Maximum Refrigerant Pressure (psig) Maximum Water Side Pressure without Pumps (psig)	220 300	220 300	300	300	300	220 300	220 300	220 300	300
Maximum Water Side Pressure with Pumps (psig)	_	_	_	_	_	_	_	_	_
WATER CONNECTIONS									
Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.)	3/ ₈ 6	3/ ₈ 8	3/ ₈ 8	^{3/} 8	3/ ₈ 8	^{3/8}	3/ ₈ 8	3/ ₈ 8	^{3/8}
Number of Passes	2	2	2	2	2	2	1 1	lů	1
Minus 1 Pass, Inlet and Outlet, Victaulic (in.)	8	8	8	8	8	8	_	_	_
Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.)	1 6	1 8	1 8	1 8	1 8	1 8	_	_	_
Number of Passes	3	3	3	3	3	3			
CONDENSER FANS		L	I	Shrouded A	xial Type. Vertica	al Discharge	I	L	L
Fan Speed (rpm) Standard/High Ambient**	850/1140	850/1140	850/1140	850/1140	850/1140	850/1140	850/1140	850/1140	850/1140
No. BladesDiameter (in.) No. Fans (Ckt A/Ckt B/Ckt C)	930 7/6/—	930 9/6/—	930 9/7/—	930 10/6/—	930 9/9/—	930 9/9/—	930 6/6/8	930 8/6/8	930 8/6/8
Total Airflow (cfm) 850 rpm	120,900	139,500	148,800	148,800	167,400	167,400	186,000	204,600	204,600
Total Airflow (cfm) 1140 rpm	161,200	186,000	198,400	198,400	223,200	223,200	248,000	272,800	272,800
CONDENSER COILS No. Coils (Ckt A/Ckt B/Ckt C)	7/6/—	I 9/6/—	I 9/7/—	10/6/—	I 9/9/—	9/9/—	I 6/6/8	I 8/6/8	I 8/6/8
Total Face Area (sq ft)	305	352	375	375	422	422	469	516	516
HYDRONIC MODULE (Optional) Pump					N/A				
CHASSIS DIMENSIONS (ft-in.)									
Length Width	27-6	l	31-5			i-4	39-3	43	3-2
Width Height					7-4 ³ / ₄ 7-6 ⁷ / ₁₆				
					. 0 / 16				

LEGEND

Cu — Copper
AI — Aluminum
EXV — Electronic Expansion Valve
MCHX — Microchannel Heat Exchanger
N/A — Not Applicable

*Operating weight includes 2 pumps on models 30XA090-160. No pumps are available on 30XA080 or 30XA180-500. All weights include coil trim panels. See Fig. 15A and 15B for mounting weights for units without pumps and units with single pump packages. †30XA080 unit does not have an economizer.

**The high ambient temperature option is not available on 30XA080-120 units.

Table 1B — Physical Data, 30XA080-500 — SI

	ı	T		1						
UNIT 30XA	080	090	100	110	120	140	160	180	200	220
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils	3 481 3 809 3 281	4 517 4 955 4 255	4 620 5 058 4 356	4 684 5 122 4 417	4 750 5 187 4 480	5 788 6 335 5 454	5 898 6 445 5 559	6 164 6 821 5 760	6 220 6 876 5 811	6 680 7 391 6 236
REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX)	50/50/— 44.5/44.5/—	50/50/— 42.6/42.6/—	54/54/— 43.6/43.6/—	R- 61/61/— 45.4/45.4/—	134a, EXV Con 61/61/— 43.4/43.4/—	trolled System 92/55/— 62.1/43.6/—	102/72/— 62.1/45.3/—	93/93/- 64.0/64.0		
COMPRESSORS Quantity	2	2	2	Sem 2	ii-Hermetic Twir 2	2	2	2	2	2
Speed (r/s) (Oty) Compressor Model Number Ckt A (Oty) Compressor Model Number Ckt B (Oty) Compressor Model Number Ckt C Oil Charge (liters), Ckt A/Ckt B/Ckt C	(1) 06TS-137† (1) 06TS-137† N/A 20.8/20.8/—	(1) 06TS-137 (1) 06TS-137 N/A 20.8/20.8/—	(1) 06TS-155 (1) 06TS-155 N/A 20.8/20.8/—	(1) 06TS-186 (1) 06TS-155 N/A 20.8/20.8/—	58.3 (1) 06TS-186 (1) 06TS-186 N/A 20.8/20.8/—	(1) 06TT-266 (1) 06TS-155 N/A 23.7/20.8/—	(1) 06TT-301 (1) 06TS-186 N/A 23.7/23.7/—	(1) 06TT-2 (1) 06TT-2 N/A 23.7/23.7	266 (1) 06TT-3 N/A	N/A
Minimum Capacity Step (%) Standard	15 9	15 9	15	14	15	11 7	11	15 10	15	14
Optional COOLER	9	9	9	8 F	10 looded, Shell a		8	10	10	10
Net Fluid Volume (liters) Maximum Refrigerant Pressure (kPa) Maximum Water Side Pressure without Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa)	62.5 1516.8 2 068	70.0 1516.8 2 068 1 034	70.0 1516.8 2 068 1 034	75.7 1516.8 2 068 1 034	87.1 1516.8 2 068 1 034	96.5 1516.8 2 068 1 034	104.1 1516.8 2 068 1 034	119.2 1516.8 2 068	128.7 1516.8 2 068	140.1 1516.8 2 068
WATER CONNECTIONS		1 004	1 00+	1 004	1 004	1 004	1 004	I.		
Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.)	^{3/} 8 5 2 5 1 4	^{3/₈} 5 2 5 1	^{3/8} 5 2 5 1 4	^{3/₈} 5 2 5 1 4	^{3/} 8 5 2 5 1 4	^{3/} 8 5 2 5 1 5	^{3/} 8 5 2 5 1 5	3/ ₈ 6 2 8 1	3/ ₈ 6 2 8 1	3/ ₈ 6 2 8 1
Number of Passes	3	3	3	3	3	3	3	3	3	3
CONDENSER FANS Fan Speed (r/s) Standard/High Ambient** No. BladesDiameter (mm) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (L/s) 14.2.r/s Total Airflow (L/s) 19.0 r/s	14.2/— 9762 3/3/— 26 335	14.2/— 9762 4/4/— 35 113	14.2/— 9762 4/4/— 35 113	Shroud 14.2/— 9762 4/4/— 35 113	ded Axial Type, 14.2/— 9762 4/4/— 35 113	Vertical Discha 14.2/19.0 9762 6/4/— 43 891 58 522	rge 14.2/19.0 9762 6/4/— 43 891 58 522	14.2/19 9762 6/6/— 52 669 70 226	9762 6/6/— 52 669	9762 7/6/— 57 059
CONDENSER COILS No. Coils (Ckt A/Ckt B/Ckt C)	3/3/— 13	4/4/— 17	4/4/— 17	4/4/— 17	4/4/— 17	6/4/— 22	6/4/—	6/6/—	6/6/—	7/6/— 28
Total Face Area (sq m) HYDRONIC MODULE (Optional) Pump	N/A		pressure/tempe					20	N/A	20
CHASSIS DIMENSIONS (mm) Length Width Height	3 606	Tump(s) with	4 8	•	225: 230	5 9		I	7 188	8 382
	L									
UNIT 30XA	240	260	280	300	325	350	40	0	450	500
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils	240 6 753 7 464 6 304	260 7 644 8 465 7 130	280 7 721 8 542 7 202	300 7 876 8 751 7 322	325 8 543 9 528 7 923	350 8 636 9 621 8 010	11 1 12 2 10 4	149 243	12 066 13 269	500 12 199 13 402 11 416
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils	6 753 7 464	7 644 8 465 7 130	7 721 8 542 7 202	7 876 8 751 7 322	8 543 9 528 7 923 134a, EXV Cor	8 636 9 621 8 010 trolled System	11 1 12 2 10 4	149 243 150 2.5/170.1 1	12 066 13 269 11 295 88.3/102/188.3	12 199 13 402
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/—	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/—	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/—	7 876 8 751 7 322 R- 188.3/122.5/- 111.4/77.3/- Sem	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 109.1/109.1/ ii-Hermetic Twi	8 636 9 621 8 010 trolled System 1 188.3/170. 111.4/109.	11 1 12 2 10 4 1/— 122.5/122 1/— 77.3/77	243 150 2.5/170.1 18 3/97.7 10	12 066 13 269 11 295 88.3/102/188.3 07.3/77.3/103.2	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (t/s) (Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C	6 753 7 464 6 304	7 644 8 465 7 130	7 721 8 542 7 202	7 876 8 751 7 322 R- 188.3/122.5/- 111.4/77.3/-	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 109.1/109.1/ ii-Hermetic Twi 2 350 (1) 06TU-48	8 636 9 621 8 010 trolled System — 188.3/170. 111.4/109. 1 Rotary Screw: 2 3 (1) 06TU-5 3 (1) 06TU-5 3 (N/A	11 1 1 1 1 2 2 10 4 1 1	2.5/170.1 11 3/97.7 10 T-356 U-483	12 066 13 269 11 295 88.3/102/188.3	12 199 13 402 11 416 188.3/188.3/122.5
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (r/s) (Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TT-301 N/A	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TT-356 N/A	7 876 8 751 7 322 R- 188.3/122.5/- 111.4/77.3/- Serr 2 2 (1) 06TU-554 (1) 06TU-554 N/A	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 1 109.1/109.1/ ii-Hermetic Twi 2 350 (1) 06TU-48 (1) 06TU-48 (1) 06TU-48	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 1 Rotary Screw: 2 3 (1) 06TU-5 3 (1) 06TU-5 N/A	11.1 12.2 10.4 1/— 122.5/122 1/— 77.3/77 8 3554 (1) 06T (1) 06T (1) 06T	2.5/170.1 11 3/97.7 10 T-356 T-356 U-483 .6/28.4 2	12 066 13 269 11 295 38.3/102/188.3 77.3/77.3/103.2 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TT-356 (1) 06TT-356
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (r/s) (dty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/— 15	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TT-301 N/A 28.4/25.6/— 10	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TT-356 N/A 28.4/25.6/— 13 9	7 876 8 751 7 322 R- 188.3/122.5/- 111.4/77.3/- Sen 2 (1) 06TU-554 (1) 06TT-356 N/A 28.4/25.6/-	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 109.1/109.1/ ii-Hermetic Twii 2 350 (1) 06TU-4E (1) 06TU-4E (1) 28.4/28.4/- 15 10	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. n Rotary Screw: 2 3 (1) 06TU-5 3 (1) 06TU-5 3 (1) 06TU-6 10 06TU-6	11/1 12.5/122 10.4 11/- 122.5/122 77.3/77. 3 3 554 (1) 06T (1) 06T (1) 06T (1) 06T (2) 6/25 9 6	149 243 150 2.5/170.1 11 3/97.7 10 T-356 T-356 U-483 6/28.4 2	12 066 13 269 11 295 38.3/102/188.3 77.3/77.3/103.2 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-584 8.4/23.7/28.4	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TT-356 (1) 06TU-554 28.4/25.6/28.4
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (r/s) (Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Refrigerant Pressure (kPa) Maximum Water Side Pressure without Pumps (kPa)	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/—	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TT-301 N/A 28.4/25.6/— 10	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TT-356 N/A 28.4/25.6/— 13	7 876 8 751 7 322 R- 188.3/122.5/- 111.4/77.3/- Sem 2 (1) 06TU-554 (1) 06TU-556 N/A 28.4/25.6/-	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 1 109.1/109.1/ ii-Hermetic Twi 2 350 (1) 06TU-48 N/A 28.4/28.4/-	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 1 Rotary Screw: 2 1 2 3 (1) 06TU-5 3 (1) 06TU-5 N/A 28.4/28.4/ 14 10	1/— 122.5/122 10.4 1/— 122.5/122 1/— 77.3/77 3 354 (1) 06T (1) 06T 25.6/25	149 149 143 150 2.5/170.1 11 3/97.7 10 17-356 1	12 066 13 269 11 295 38.3/102/188.3 37.3/77.3/103.2 3 (1) 06TU-554 (1) 06TT-266 (1) 06TU-554 (1) 0FT-286 (1) 0FT-286	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 7
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (r/s) (Oty) Compressor Model Number Ckt A (Oty) Compressor Model Number Ckt B (Oty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Water Side Pressure (kPa) Maximum Water Side Pressure with Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa) WATER CONNECTIONS	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/— 15 10 147.6 1516.8 2 068	7 644 8 465 7 130 170,1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TU-301 N/A-301 N/A-301 0 8 159.0 1516.8 2 068 —	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TU-483 (1) 06TU-483 8.4/25.6/— 13 9 166.6 1516.8 2 068	7 876 8 751 7 322 R- 188.3/122.5/- 111.4/77.3/- Serr 2 2 (1) 06TU-554 (1) 06TU-554 (1) 06TT-356 N/A 28.4/25.6/- 12 7	8 543 9 528 7 923 1344, EXV Cor - 170.1/170.1/ 109.1/109.1/ 109.1/109.1/ 2 350 (1) 06TU-48 N/A 28.4/28.4/- 15 10 looded, Shell a 191.2 1516.8 2 068	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 1 Rotary Screw. 2 03 3 (1) 06TU-2 N/A 28.4/28.4/ 14 10 10 d Tube Type 202.1 1516.8 2 068	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	149 149 143 150 2.5/170.1 11 3/97.7 10 17-356 17-356 19-483 10-483 10-6/28.4 2	12 066 13 269 11 295 88.3/102/188.3 77.3/77.3/103.2 3 (1) 06TU-554 (1) 06TU-554 8.4/23.7/28.4 6 4 283.9 1516.8 2 068	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 28.4/25.6/28.4 7 5 314.2 1516.8 2 068
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (r/s) (Ctty) Compressor Model Number Ckt A (Ctty) Compressor Model Number Ckt B (Ctty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Refrigerant Pressure (kPa) Maximum Water Side Pressure without Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa) WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.)	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/— 15 10 147.6 1516.8 2 068 —	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TT-301 N/A 28.4/25.6/— 10 8 159.0 1516.8 2 068 —	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TT-356 N/A 28.4/25.6/— 13 9 166.6 1516.8 2 068 —	7 876 8 751 7 322 R- 1188.3/122.5/- 111.4/77.3/- Serr 2 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 (1) 06TU-556 (1) 06TU-556 (8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 109.1/109.1/ 109.1/109.1/ 2 350 (1) 06TU-48 N/A 28.4/28.4/- 15 10 looded, Shell a 191.2 1516.8 2 068 —	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 1 Rotary Screw. 2 03 3 (1) 06TU-2 3 (1) 06TU-2 4 10 10 Tube Type 202.1 1516.8 2 068 — 3/8 8	1/— 122.5/122 10.4 1/— 122.5/122 1/— 77.3/77 3 3554 (1) 06T (1) 06T (1) 06T 25.6/25 257 1511 2 0 3/,8	149 149 143 150 2.5/170.1 11 3.3/97.7 10 T-356 T-356 T-356 U-483 6/28.4 2	12 066 13 269 11 295 38.3/102/188.3 37.3/77.3/103.2 3 (1) 06TU-554 (1) 06TT-266 4 (1) 06TT-286 88.4/23.7/28.4 6 4 283.9 1516.8 2 068 —	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TT-356 (1) 06TT-554 (28.4/25.6/28.4) 7 5 314.2 1516.8 2 068 —
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (r/s) (dty) Compressor Model Number Ckt A (dty) Compressor Model Number Ckt B (dty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Refrigerant Pressure (kPa) Maximum Water Side Pressure without Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa) WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.)	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/— 15 10 147.6 1516.8 2 068 —	7 644 8 465 7 130 170,1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TU-301 N/A-301 N/A-301 0 8 159.0 1516.8 2 068 —	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TU-483 (1) 06TU-483 8.4/25.6/— 13 9 166.6 1516.8 2 068	7 876 8 751 7 322 R- 1188.3/122.5/- 111.4/77.3/- Serr 2 (1) 06TU-554 (1) 06TU-556 N/A 28.4/25.6/- 12 7 F 183.6 1516.8 2 068 - -	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 109.1/109.1/ ii-Hermetic Twi 2 350 (1) 06TU-4E (1) 06TU-4E (1) 06TU-4E 15 10 looded, Shell a 191.2 1516.8 2 068	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 1 Rotary Screw. 3 (1) 06TU-5 3 (1) 06TU-5 3 (1) 06TU-6 4 10 10 Tube Type 202.1 1516.8 2 068 3/8 8 2 8	11/1 12 2 10 4 11/- 122.5/122 77.3/77. 3 3 554 (1) 06T (1) 06T (1) 06T (1) 06T (25.6/25 9 6 6 7 151) 2 0 0	2.5/170.1 113.3/97.7 110.3/97.7 110.3/97.7 110.3/97.7 110.3/97.8 2.5/170.1 113.3/97.7 110.3/97.3/97.3/97.3/97.3/97.3/97.3/97.3/97	12 066 13 269 11 295 38.3/102/188.3 77.3/77.3/103.2 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-584 (1) 06TU-584 (1) 06TU-584 (1) 06TU-584 (1) 06TU-584 (1) 06TU-584 (1) 06TU-584 (1) 06TU-88 (1)	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 28.4/25.6/28.4 7 5 314.2 1516.8 2 068
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (r/s) (Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Water Side Pressure without Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa) WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/— 15 10 147.6 1516.8 2 068 —	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TT-301 N/A 28.4/25.6/— 10 8 159.0 1516.8 2 068 —	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TT-356 N3 28.4/25.6/— 13 9 166.6 1516.8 2 068 —	7 876 8 751 7 322 R- 188.3/122.5/- 111.4/77.3/- 2 Sen 2 (1) 06TU-554 (1) 06TT-356 N/A 28.4/25.6/- 12 7 F 183.6 1516.8 2 068 	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 109.1/109.1/109.1/109.1/ 109.1/109.1/ 109.1/109.1/ 10	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	149 149 143 150 2.5/170.1 11 3.3/97.7 11 17-356	12 066 13 269 11 295 88.3/102/188.3 77.3/777.3/103.2 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 8.4/23.7/28.4 6 4 283.9 1516.8 2 068 —	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TT-356 (1) 06TT-554 (28.4/25.6/28.4) 7 5 314.2 1516.8 2 068 —
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (MCHX) COMPRESSORS Quantity Speed (r/s) (Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Water Side Pressure without Pumps (kPa) Maximum Water Side Pressure without Pumps (kPa) Maximum Water Side Pressure without Pumps (kPa) WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes CONDENSER FANS Fan Speed (r/s) Standard/High Ambient** No. BladesDiameter (mm) No. Fans (Ckt A/Ckt B/Ckt C) Total Airfilow (L/s) 14.2 r/s	6 753 7 464 6 304 122.5/122.5/	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TT-301 N/A 28.4/25.6/— 10 8 159.0 1516.8 2 068 — 3/8 8 2 8 1 8 3 3	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TT-356 N3 28.4/25.6/— 13 9 166.6 1516.8 2 068 — 3/8 8 2 8 1 1 8 3 3	7 876 8 751 7 322 188.3/122.5/- 111.4/77.3/- 2 Sen 2 Control 106TJ-554 (1) 06TJ-554 (1) 06TJ-554	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/10.1/170.1/10.1/10.1/10.1/10	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 8 10 8 10 8 10 8 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5/170.1 113.3/97.7 110. 1.3.3/97.7 11	12 066 13 269 11 295 88.3/102/188.3 17.3/77.3/103.2 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 88.4/23.7/28.4 6 4 283.9 1516.8 2 068 — 3/6 8 1 — — 14.2/19.0 9762 8/6/8 96 561	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 28.4/25.6/28.4 7 5 314.2 1516.8 2 068 — 3/8 8 1 — — — 14.2/19.0 9762 8/6/8 96 561
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C COMPRESSORS Quantity Speed (r/s) (Cty) Compressor Model Number Ckt A (Cty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Water Side Pressure (kPa) Maximum Water Side Pressure with out Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa) MAXIMIM Water Side Pressure with Pumps (kPa) MAXIMIM Water Side Pressure with Pumps (kPa) MATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes CONDENSER FANS Fan Speed (r/s) Standard/High Ambient** No. BladesDiameter (mm) No. Fans (Ckt A/Ckt B/Ckt C)	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/— 15 10 147.6 6 2 2 068 — 3/8 6 6 2 8 1 1 6 3 3 14.2/19.0 9762 7/6/— 57 059 76 078	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TT-301 N/A 28.4/25.6/— 10 8 159.0 1516.8 2 068 — 3/8 8 2 8 1 8 3 3 14.2/19.0 9/6/— 65 837 87 782	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TT-356 N3 28.4/25.6/— 13 9 166.6 1516.8 2 068 — 3/8 8 2 8 1 1 8 3 3 1 14.2/19.0 9.3/62 97/—	7 876 8 751 7 322 1188.3/122.5/- 1111.4/77.3/- Serr 2 (1) 06TU-554 (1) 06TU-556 N/A 28.4/25.6/- 12 7 F 183.6 1516.8 2 068 3/6 8 2 1 8 3 3 Shrout 14.2/19.0 9762	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 109.1/109.1/109.1/109.1/ 109.1/109.1/ 109.1/109.1/ 10	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 1 Rotary Screw. 3 (1) 06TU-5 8 2 068	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	149 149 143 150 150 17-356 17-356 17-356 17-356 17-356 17-356 17-356 17-356 17-356 18-356 19-35	12 066 13 269 11 295 88.3/102/188.3 97.3/77.3/103.2 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-584 (1) 06TU-268 8.4/23.7/28.4 6 4 283.9 1516.8 2 068 — — — — — — — — — — — — — — — — — — —	12 199 13 402 11 416 1188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 28.4/25.6/28.4 7 5 314.2 1516.8 2 068 — 3/ ₆ 8 1 — — — — — — — — — — — — — — — — — —
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C (CMPRESSORS Quantity Speed (r/s) (Qty) Compressor Model Number Ckt A (Qty) Compressor Model Number Ckt B (Qty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Water Side Pressure (kPa) Maximum Refrigerant Pressure without Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa) WATER CONNECTIONS Drain (NPT, in.) Standard, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Plus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes CONDENSER FANS Fan Speed (r/s) Standard/High Ambient** No. BladesDiameter (mm) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (L/s) 14.2 r/s Total Airflow (L/s) 14.2 r/s Total Airflow (L/s) 19.0 r/s CONDENSER COILS	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/— 15 10 147.6 1516.8 2 068 — 3/8 6 6 2 8 1 1 6 3 3 1 1 6 1 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 644 8 465 7 130 170,1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TU-483 (1) 06TU-483 (1) 06TU-69 0 1516.8 2 068 — 159.0 1516.8 2 068 — 3/8 8 2 8 1 1 8 3 3	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TU-483 (1) 06TU-483 8.4/25.6/— 13 9 166.6 1516.8 2 068 — 3/8 8 2 2 1 8 3 1 1 8 3	7 876 8 751 7 322 R- 1188.3/122.5/- 111.4/77.3/- 2 Serri 2 Serri 1 2 Serri 1 3 Serri 1 3 Serri 1 3 Serri 1 3 Serri 1 4 Serri 1 4 Serri 1 4 Serri 1 4 Serri 1 4 Serri 1 4 Serri 1 5 Serri 1 6 Serri 1 7 Serri 1 8 Serri 1	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/10.1/170.1/10.1/10.1/10.1/10	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 8 10 Rotary Screw 1 2 3 (1) 06TU-2 3 (1) 06TU-2 3 (1) 06TU-2 10 ROTU-2	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5/170.1 113.3/97.7 110 2.5/170.1 113.3/97.7 110 1.7-356 1.	12 066 13 269 11 295 88.3/102/188.3 17.3/77.3/103.2 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 8.4/23.7/28.4 6 4 283.9 1516.8 2 068 — 3/ ₈ 1 — — — 14.2/19.0 9762 8.96 561 128 747	12 199 13 402 11 416 188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 (28.4/25.6/28.4 7 5 314.2 1516.8 2 068 — 3/8 8 1 — — — — — — — — — — — — —— —— ———————
OPERATING WEIGHT (kg)* Al-Cu Condenser Coils Cu-Cu Condenser Coils MCHX Condenser Coils MCHX Condenser Coils REFRIGERANT TYPE Refrigerant Charge (kg) Ckt A/Ckt B/Ckt C Refrigerant Charge (later) Sepect (r/s) (Cty) Compressor Model Number Ckt A (Cty) Compressor Model Number Ckt C Oil Charge (liter), Ckt A/Ckt B/Ckt C Minimum Capacity Step (%) Standard Optional COOLER Net Fluid Volume (liters) Maximum Refrigerant Pressure (kPa) Maximum Water Side Pressure without Pumps (kPa) Maximum Water Side Pressure with Pumps (kPa) MAXIMUM Water Side Pressure with Pumps (kPa) MAXIMUM Water Side Pressure with Pumps (kPa) MAXIMUM Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes Minus 1 Pass, Inlet and Outlet, Victaulic (in.) Number of Passes CONDENSER FANS Fan Speed (r/s) Standard/High Ambient** No. BladesDiameter (mm) No. Fans (Ckt A/Ckt B/Ckt C) Total Airflow (L/s) 14.2 r/s Total Airflow (L/s) 19.0 r/s CONDENSER COILS No. Coils (Ckt A/Ckt B/Ckt C)	6 753 7 464 6 304 122.5/122.5/— 77.3/76.4/— 2 (1) 06TT-356 (1) 06TT-356 N/A 25.6/25.6/— 15 10 147.6 6 2 2 068 — 3/8 6 6 2 8 1 1 6 3 3 14.2/19.0 9762 7/6/— 57 059 76 078	7 644 8 465 7 130 170.1/99.8/— 112.3/75.0/— 2 (1) 06TU-483 (1) 06TT-301 N/A 28.4/25.6/— 10 8 159.0 1516.8 2 068 — 3/8 8 2 8 1 8 3 3 14.2/19.0 9/6/— 65 837 87 782	7 721 8 542 7 202 170.1/122.5/— 109.1/77.3/— 2 (1) 06TU-483 (1) 06TT-356 N3 28.4/25.6/— 13 9 166.6 1516.8 2 068 — 3/8 8 2 8 1 1 8 3 3 1 14.2/19.0 9.3/62 97/—	7 876 8 751 7 322 188.3/122.5/- 111.4/77.3/- Serr 2 (1) 06TU-554 (1) 06TT-356 NA/25.6/- 12 7 183.6 1516.8 2 068 3/8 8 2 2 8 1 1 8 3 Shrout 14.2/19.0 9762 10/6/- 7 0 226 93 634	8 543 9 528 7 923 134a, EXV Cor - 170.1/170.1/ 109.1/109.1/ 109.1/109.1/ 109.1/109.1/ 106TU-4E (1) 06TU-4E (1) 06TU-4E (1) 06TU-4E (1) 106 000000000000000000000000000000000	8 636 9 621 8 010 trolled System 188.3/170. 111.4/109. 189.3/170. 110.4/109. 10 67U-6 3 (1) 06TU-6 3 (1) 06TU-6 3 (1) 06TU-6 10 6TU-6 10 6	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5/170.1 11 3.997.7 10 3.5/170.1 11 3.997.7 10 4.7.356 1.356 1.356 1.45	12 066 13 269 11 295 38.3/102/188.3 77.3/77.3/103.2 3 (1) 06TU-554 (1) 06TU-554 (1) 06TU-554 (1) 06TU-584 28.3/9 1516.8 2 068 — 3/8 8 1 — — — — — — — — — — — — — — — — —	12 199 13 402 11 416 188.3/188.3/122.5 110.5/80.5/103.5 3 (1) 06TU-554 (1) 06TU-554 (1) 06TT-356 (1) 06TU-554 28.4/25.6/28.4 7 5 314.2 1516.8 2 068 — 3/8 8 1 — — — — 14.2/19.0 9762 8/6/8 96 561 128 747

LEGEND

Cu — AI — EXV — MCHX — N/A — Copper Aluminum Electronic Expansion Valve Microchannel Heat Exchanger Not Applicable *Operating weight includes 2 pumps on models 30XA090-160. No pumps are available on 30XA080 or 30XA180-500. All weights include coil trim panels. See Fig. 15A and 15B for mounting weights for units without pumps and units with single pump packages. †30XA080 unit does not have an economizer.

**The high ambient temperature option is not available on 30XA080-120 units.

A CAUTION - NOTICE TO RIGGERS:

ALL PANELS MUST BE IN PLACE WHEN RIGGING. DO NOT ATTEMPT TO FORK THESE UNITS IF NO SKID IS SUPPLIED.

NOTES

- 1. 1.50 dia. (38.1mm) lifting holes provided for field supplied clevis.
- 2. Rig with a minimum of 25 ft (7620mm) length chains or cables.
- 3. If central lifting point is used, it must be a minimum of 13 ft. (3962mm) above the top of the unit.
- 4. Spreader bars made from steel or double nailed, and notched 2x6's approximately 8 ft. (2438mm) long, must be placed just above the top of the unit (and stacks) to reduce the risk of damage to the top of the unit and coils
- 5. If overhead rigging is not available, the unit can be moved on rollers or dragged. When unit is moved on rollers, the unit skid, if equipped, must be removed. To lift the unit, use jacks at the rigging points. Use a minimum of one roller every 6 ft. (1829mm) to distribute the load. If the unit is to be dragged, lift the unit as described above, and place unit on a pad. Apply moving force to the pad, not the unit. When in its final location, raise the unit and remove the pad.

MODEL	MAX. SH	IPPING		HIPPING WITH					LIFTIN	IG HOLES	;				CEN	TER O	GRAV	ITY
NUMBER	PÄCKA			AGING	" A	1 "	" A	2"	" A	3"	" A	4"	",	A5"	"E	3 "	"(C"
	LBS	KGS	LBS	KGS	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM
30XA080	8849	4021	9829	4466	16.1	408.9	109.03	2769.3							75.5	1919	43.9	1114
30XA080-CU	9573	4350	10553	4795	16.1	408.9	109.03	2769.3							75.1	1908	43.9	1116
30XA090	9866	4483	10936	4969	16.1	408.9	78.02	1981.7	78.02	1981.7					101.3	2573	44.1	1120
30XA090-CU	10831	4922	11901	5408	16.1	408.9	78.02	1981.7	78.02	1981.7					100.6	2555	44.2	1122
30XA100	10092	4586	11162	5072	16.1	408.9	78.02	1981.7	78.02	1981.7					101.0	2566	44.1	1120
30XA100-CU	11057	5024	12127	5511	16.1	408.9	78.02	1981.7	78.02	1981.7					100.4	2549	44.2	1122
30XA110	10223	4645	11293	5132	16.1	408.9	78.02	1981.7	78.02	1981.7					100.6	2556	44.1	1120
30XA110-CU	11188	5084	12258	5570	16.1	408.9	78.02	1981.7	78.02	1981.7					100.0	2540	44.2	1122
30XA120	10357	4706	11427	5193	16.1	408.9	78.02	1981.7	78.02	1981.7					101.1	2569	44.1	1120
30XA120-CU	11322	5145	12392	5631	16.1	408.9	78.02	1981.7	78.02	1981.7					100.5	2552	44.2	1122
30XA140	12628	5739	13788	6266	16.1	408.9	62.02	1575.3	32.00	812.7	109.03	2769.3			119.4	3033	44.6	1134
30XA140-CU	13834	6287	14994	6814	16.1	408.9	62.02	1575.3	32.00	812.7	109.03	2769.3			119.2	3029	44.7	1134
30XA160	12858	5843	14018	6371	16.1	408.9	62.02	1575.3	32.00	812.7	109.03	2769.3			119.6	3039	44.6	1133
30XA160-CU	14065	6392	15225	6919	16.1	408.9	62.02	1575.3	32.00	812.7	109.03	2769.3			119.5	3034	44.6	1134
30XA180	14675	6669	15925	7237	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	62.02	1575.3	139.2	3536	46.1	1171
30XA180-CU	16122	7327	17372	7895	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	62.02	1575.3	139.4	3541	46.0	1168
30XA200	14780	6717	16030	7285	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	62.02	1575.3	139.3	3538	46.1	1172
30XA200-CU	16227	7375	17477	7943	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	62.02	1575.3	139.5	3543	46.0	1169
SUBSTRA	CT THESE	ALUES I	FOR UNIT	S W/O PU	MPS				-									
	SIN	GLE PUN	ΛP	DUAL	PUMP	\neg												
0074000 400	LBS	K	GS .	LBS	KGS	5												

Fic	ı. 16 — Unit Rigging Label Detail 30XA080-200
• •;	i i o oint ingging Labor Botan coxixtoco Loc

A CAUTION - NOTICE TO RIGGERS:

ALL PANELS MUST BE IN PLACE WHEN RIGGING. DO NOT ATTEMPT TO FORK THESE UNITS IF NO SKID IS SUPPLIED.

NOTES

- 1. 1.50 dia. (38.1mm) lifting holes provided for field supplied clevis.
- 2. Rig with a minimum of 25 ft (7620mm) length chains or cables.
- 3. If central lifting point is used, it must be a minimum of 13 ft. (3962mm) above the top of the unit.
- 4. Spreader bars made from steel or double nailed, and notched 2x6's approximately 8 ft. (2438mm) long, must be placed just above the top of the unit (and stacks) to reduce the risk of damage to the top of the unit and coils
- 5. If overhead rigging is not available, the unit can be moved on rollers or dragged. When unit is moved on rollers, the unit skid, if equipped, must be removed. To lift the unit, use jacks at the rigging points. Use a minimum of one roller every 6 ft. (1829mm) to distribute the load. If the unit is to be dragged, lift the unit as described above, and place unit on a pad. Apply moving force to the pad, not the unit. When in its final location, raise the unit and remove the pad.
- 6. Check bill of lading for shipping weight of unit.

MODEL	MAX. SH	IPPING	MAX. SI WT.	IPPING						LIFTI	NG HOLES	6					CEN	ITER OF	F GRAVI	YTI
NUMBER	PACKA		PACK		" #	\1"		A2"	"/	13"	",	4"		A5"	",	\6 "	"E	3"	"C	,"
	LBS	KGS	LBS	KGS	IN	MM	IN	MM	IN	MM	IN	ММ	IN	MM	IN	MM	IN	MM	IN	MM
30XA220	14522	6601	15862	7210	16.1	408.9	62.02	1575.3	32.00	812.7	109.03	2769.3	32.00	812.7	62.02	1575.3	157.9	4010	46.2	1173
30XA220-CU	16090	7314	17430	7923	16.1	408.9	62.02	1575.3	32.00	812.7	109.03	2769.3	32.00	812.7	62.02	1575.3	158.5	4027	46.0	1170
30XA240	14668	6667	16008	7276	16.1	408.9	62.02	1575.3	32.00	812.7	109.03	2769.3	32.00	812.7	62.02	1575.3	158.5	4025	46.2	1174
30XA240-CU	16236	7380	17576	7989	16.1	408.9	62.02	1575.3	32.00	812.7	109.03	2769.3	32.00	812.7	62.02	1575.3	159.1	4040	46.1	1171
30XA260	16615	7552	18045	8202	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	78.02	1981.7	78.02	1981.7	160.1	4066	44.2	1123
30XA260-CU	18424	8374	19854	9024	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	78.02	1981.7	78.02	1981.7	162.8	4136	44.3	1125
30XA280	16769	7622	18199	8272	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	78.02	1981.7	78.02	1981.7	160.4	4074	44.3	1125
30XA280-CU	18578	8445	20008	9095	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	78.02	1981.7	78.02	1981.7	163.1	4143	44.4	1127
30XA300	17082	7765	18512	8415	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	78.02	1981.7	78.02	1981.7	160.1	4066	44.3	1126
30XA300-CU	19012	8642	20442	9292	16.1	408.9	78.02	1981.7	78.02	1981.7	32.00	812.7	78.02	1981.7	78.02	1981.7	162.9	4138	44.4	1127
30XA325	18539	8427	20059	9118	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	177.1	4499	42.9	1090
30XA325-CU	20710	9414	22230	10105	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	180.7	4591	43.1	1095
30XA350	18727	8512	20247	9203	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	176.6	4485	42.9	1090
30XA350-CU	20898	9499	22418	10190	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	180.2	4577	43.1	1096

Fig. 17 — Unit Rigging Label Detail 30XA220-350

Table 2 — Number of Lifting Points for 30XA080-500

30XA UNIT SIZE	NUMBER OF LIFTING POINTS
080	4
090-120	6
140, 160	8
180, 200	10
220-400	12
450, 500	14

A CAUTION - NOTICE TO RIGGERS:

ALL PANELS MUST BE IN PLACE WHEN RIGGING. DO NOT ATTEMPT TO FORK THESE UNITS IF NO SKID IS SUPPLIED.

NOTES:

- 1. 1.50 dia. (38.1mm) lifting holes provided for field supplied clevis.
- 2. Rig with a minimum of 25 ft (7620mm) length chains or cables.
- 3. If central lifting point is used, it must be a minimum of 13 ft. (3962mm) above the top of the unit.
- 4. Spreader bars made from steel or double nailed, and notched 2x6's approximately 8 ft. (2438mm) long, must be placed just above the top of the unit (and stacks) to reduce the risk of damage to the top of the unit and coils
- 5. If overhead rigging is not available, the unit can be moved on rollers or dragged. When unit is moved on rollers, the unit skid, if equipped, must be removed. To lift the unit, use jacks at the rigging points. Use a minimum of one roller every 6 ft. (1829mm) to distribute the load. If the unit is to be dragged, lift the unit as described above, and place unit on a pad. Apply moving force to the pad, not the unit. When in its final location, raise the unit and remove the pad.
- 6. Check bill of lading for shipping weight of unit.

MODEL		HIPPING W/O	MAX. SI WT.	IPPING							LIFTI	NG HOLE	S						CEN	ITER OF	GRAV]	ITY
NUMBER		AGING		AGING	" A	1"	".	A2"	"A	3"	"/	۱4"	" A	5"	"A	6"	"/	47"	"E	3"	"C	;"
	LBS	KGS	LBS	KGS	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM	IN	MM
30XA400	24214	11006	25824	11738	16.1	408.9	78.02	1981.7	110.02	2794.5	78.02	1981.7	110.02	2794.5	62.02	1575.3			229.6	5831	45.8	1163
30XA400-CU	26626	12103	28236	12835	16.1	408.9	78.02	1981.7	110.02	2794.5	78.02	1981.7	110.02	2794.5	62.02	1575.3			230.1	5844	45.7	1161
30XA450	26175	11898	27875	12671	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	94.02	2388.1	252.6	6416	44.7	1136
30XA450-CU	28829	13104	30529	13877	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	94.02	2388.1	253.2	6430	44.7	1136
30XA500	26436	12017	28136	12789	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	94.02	2388.1	253.3	6434	44.8	1137
30XA500-CU	29090	13223	30790	13995	16.1	408.9	78.02	1981.7	110.02	2794.5	62.02	1575.3	32.00	812.7	109.03	2769.3	94.02	2388.1	253.8	6447	44.8	1138
1																						

Fig. 18 — Unit Rigging Label Detail 30XA400-500

Minimum Loop Volume — The preferred minimum loop volume is dependent on the type of application. In order to obtain leaving water temperature stability for comfort cooling applications, a minimum of 3 gallons per ton (3.25 liters per kW) is required on all unit sizes. For process cooling applications, applications where high stability is critical, or operation at ambient temperatures below 32 F (0° C) is expected, the loop volume should be increased to 6 to 10 gallons per ton (6.46 to 10.76 liters per kW) of cooling. In order to achieve this volume, it may be necessary to add a water storage tank to the water loop. If a storage tank is added to the system, it should be properly vented so that the tank can be completely filled and all air eliminated. Failure to do so could cause lack of pump stability and poor system operation. Any storage tank that is placed in the water loop should have internal baffles to allow thorough mixing of the fluid. See Fig. 24.

System Piping — Proper system design and installation procedures should be followed closely. The system must be constructed with pressure tight components and thoroughly tested for installation leaks. Factory-supplied hydronic systems are available with single or dual (for back-up) pumps. The factory-installed system includes all of the components above the line in Fig. 25 and 26.

Installation of water systems should follow sound engineering practice as well as applicable local and industry standards. Improperly designed or installed systems may cause unsatisfactory operation and/or system failure. Consult a water treatment specialist or appropriate literature for information regarding filtration, water treatment, and control devices. Figures 25 and 26 show a typical installation with components that might be installed with the hydronic package of the 30XA unit.

Fig. 19A — 30XA Typical Piping and Wiring (Units without Hydronic Package)

Refrigeration, and Air Conditioning Engineers) handbook for details.

5. A 20 mesh strainer is required withinh 10 ft (3 m) of the cooler.

Power Wiring

*Field-installed.

		Victaulic Connection Size (in.)	5.0	2.0	2.0	2.0	2.0	0.9	0.9	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
		Height Entering Water Connection (in.)	14.9	14.9	14.9	14.9	14.9	15.9	15.9	13.2	13.2	13.2	13.2	16.3	16.3	16.3	16.3	16.3	
	MINUS ONE PASS COOLER	Distance to Entering Water Connection (in.)	124.8	124.5	124.5	124.5	124.5	124.8	124.8	180.6	180.2	227.6	227.6	310.3	310.3	310.3	354.7	354.7	
	MINUS ONE P	Distance to Leaving/ Entering Water Connection (in.)	68.1	68.1	68.1	68.1	68.1	69.1	69.1	70.2	70.2	70.2	70.2	71.1	71.1	71.1	71.1	71.1	
		Height Leaving Water Connection (in.)	14.9	14.9	14.9	14.9	14.9	15.9	15.9	13.2	13.2	13.2	13.2	16.3	16.3	16.3	16.3	16.3	
		Distance to Leaving Water Connection (in.)	-2.2	-2.5	-2.5	-2.5	-2.5	-2.2	-2.2	53.6	53.2	100.6	100.6	180.3	180.3	180.3	224.7	224.7	
		Victaulic Connection Size (in.)	4.0	4.0	4.0	4.0	4.0	2.0	2.0	0.9	0.9	0.9	0.9	8.0	8.0	8.0	8.0	8.0	
		Height Entering Water Connection (in.)	10.3	10.3	10.3	10.3	10.3	10.6	10.6	11.4	11.4	11.4	11.4	12.5	12.5	12.5	12.5	12.5	
Ж	PLUS ONE PASS COOLER	Distance to Entering Water Connection (in.)	121.2	120.9	120.9	120.9	120.9	121.5	121.5	180.6	180.2	227.6	227.6	310.3	310.3	310.3	354.7	354.7	
ENGLISH	PLUS ONE P.	Distance to Leaving/ Entering Water Connection (in.)	68.1	68.1	68.1	68.1	68.1	69.1	69.1	70.2	70.2	70.2	70.2	71.1	71.1	71.1	71.1	71.1	SI
		Height Leaving Water Connection (in.)	19.6	19.6	19.6	19.6	19.6	21.3	21.3	22.4	22.4	22.4	22.4	23.4	23.4	23.4	23.4	23.4	
		Distance to Leaving Water Connection (in.)	1.5	1.2	1.2	1.2	1.2	1.2	1.2	53.6	53.2	100.6	100.6	180.3	180.3	180.3	224.7	224.7	
		Victaulic Connection Size (in.)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.9	0.9	0.9	0.9	8.0	8.0	8.0	8.0	8.0	
		Height Entering Water Connection (in.)	10.8	10.8	10.8	10.8	10.8	10.6	10.6	11.3	11.3	11.3	11.3	12.2	12.2	12.2	12.2	12.2	
	STANDARD COOLER	Distance to Entering Water Connection (in.)	121.2	120.9	120.9	120.9	120.9	121.5	121.5	177.7	177.3	224.7	224.7	304.7	304.7	304.7	349.0	349.0	
	STANDAR	Distance to Leaving/ Entering Water Connection (in.)	68.1	68.1	68.1	68.1	68.1	69.1	69.1	70.2	70.2	70.2	70.2	71.1	71.1	71.1	71.1	71.1	
		Height Leaving Water Connection (in.)	19.1	19.1	19.1	19.1	19.1	21.3	21.3	22.5	22.5	22.5	22.5	23.6	23.6	23.6	23.6	23.6	
		Distance to Leaving Water Connection (in.)	121.2	120.9	120.9	120.9	120.9	121.5	121.5	177.7	177.3	224.7	224.7	304.7	304.7	304.7	349.0	349.0	
		30XA UNIT SIZE*	080	060	9	19	120	140	160	180	200	220	240	260	280	300	325	320	

STANDARD COOLER STANDARD C	Public Distance to Height Distance to	320	349.0	23.6	71.1	349.0	12.2	8.0	224.7	23.4	71.1	354.7	12.5	8.0	224.7	16.3	71.1	354.7	16.3	8.0
Distance to Height Leaving Cumenton C	nt Distance to Leaving Entering (mm) Height Connection (mm) Ustance to Leaving Entering (mm) Height Connection (mm) Distance to Leaving Entering (mm) Height Destroy (mm) Height Destroy (mm) Height Entering (mm) Height (mm) Height Entering (mm) Height (mm) H										S									
Distance to Leaving Value Distance to Leaving Value Distance to Leaving Leaving Value Distance to Leaving Le	ht Distance to leaving exempted Theight connection connection Victability connection connection Upstance to leaving exempted Height connection connection (water size) Distance to leaving exempted Height connection (water size) Leaving Leaving Entering water (mm) Leaving Entering water (mm) Height connection (mm) He				STANDARD	COOLER				1	PLUS ONE PA	4SS COOLER					MINUS ONE P.	ASS COOLER		
3077.8 484.0 1728.7 3077.8 497.2 1728.7 3077.8 484.0 1728.7 379.1 1728.7 379.1 1728.7 379.1 1728.7 379.1 1728.7 379.1 1728.7 379.1 1728.7 379.1 1728.7 379.1 1728.7 379.1 1728.7 379.1 1728.7 379.1<	2 1728.7 3077.8 261.0 101.6 -55.1 379.1 1728.7 3170.7 379.1 2 1728.7 30696 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 2 1728.7 30696 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 2 1728.7 30696 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 3 1756.2 3069.6 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 5 1756.2 3069.6 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 5 1776.2 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2 379.1 5 1776.1 268.7 127.0 -55.0 404.6 1776.2 317.08 404.6 5 1772.1 2781.1	30XA UNIT SIZE*			Distance to Leaving/ Entering Water Connection (mm)		Height Entering Water Connection (mm)	Victaulic Connection Size (mm)	g to	u	Distance to Leaving/ Entering Water Connection (mm)	Distance to Entering Water Connection (mm)	_	Victaulic Connection Size (mm)			Distance to Leaving/ Entering Water Connection (mm)	Distance to Entering Water Connection (mm)	Height Entering Water Connection (mm)	Victaulic Connectic Size (mm)
30696 484.0 1728.7 3069.6 274.2 1728.7 3069.6 261.0 1016 -63.2 379.1 1728.7 316.26 379.1 3069.6 484.0 1728.7 3069.6 274.2 127.0 29.7 497.2 1728.7 3069.6 274.2 127.0 29.7 497.2 1728.7 3069.6 274.2 1728.7 316.2 379.1 1728.7 316.2 379.1 3069.6 484.0 1728.7 3069.6 274.2 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2 379.1 3069.6 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2 379.1 3069.6 274.2 172.0 29.7 497.2 1728.7 3069.6 274.2 1776.2 379.1 1728.7 316.2 379.1 3069.6 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2	2 1728.7 30696 26.2 379.1 1728.7 3162.6 379.1 2 1728.7 30696 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 2 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 5 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 5 1756.2 3065.8 281.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 5 1756.2 3065.8 288.7 127.0 -55.0 404.6 1756.2 3170.8 404.6 5 1782.1 288.5 152.4 1351.6 336.0 1782.1 4577.2 336.0 5 1782.1 288.5 152.4 2555.3 336.0 1782.1 4577.4 336.0 5 1782.1 288.5 152.4 2555.3 336.0	080		484.0	1728.7	3077.8	274.2	127.0	37.9	497.2	1728.7	3077.8	261.0	101.6	-55.1	379.1	1728.7	3170.7	379.1	127.0
30696 484.0 1728.7 3069.6 261.0 1016 -63.2 379.1 1728.7 316.2 379.1 3069.6 484.0 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2 379.1 3069.6 274.2 127.0 29.7 497.2 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2 379.1 3069.6 274.2 127.0 29.7 497.2 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2 379.1 3069.6 274.2 127.0 29.7 497.2 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2 379.1 3069.6 274.2 127.0 29.7 497.2 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 316.2 379.1 379.1 3085.8 260.5 1776.2 308	2 1728.7 30696 26.2 379.1 1728.7 3162.6 379.1 2 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 5 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 5 1728.7 3069.6 261.0 101.6 -63.2 379.1 1728.7 3162.6 379.1 5 1728.7 3068.8 268.7 127.0 -55.0 404.6 1756.2 317.0.8 404.6 5 1782.1 4587.2 288.5 152.4 1361.0 336.0 1782.1 4587.2 336.0 5 1782.1 4587.2 388.5 152.4 2555.3 336.0 1782.1 4587.2 336.0 5 1782.1 5781.1 336.0 1782.1 4587.4 336.0 5 1782.1 5781.1 336.0 1782.1 5781.1 336.0 </td <th>060</th> <td></td> <td>484.0</td> <td>1728.7</td> <td>9.6908</td> <td>274.2</td> <td>127.0</td> <td>29.7</td> <td>497.2</td> <td>1728.7</td> <td>9.6908</td> <td>261.0</td> <td>101.6</td> <td>-63.2</td> <td>379.1</td> <td>1728.7</td> <td>3162.6</td> <td>379.1</td> <td>127.0</td>	060		484.0	1728.7	9.6908	274.2	127.0	29.7	497.2	1728.7	9.6908	261.0	101.6	-63.2	379.1	1728.7	3162.6	379.1	127.0
30696 484.0 1728.7 3069.6 484.0 1728.7 3069.6 274.2 1728.7 3069.6 274.2 1728.7 3069.6 643.2 379.1 1728.7 316.2 379.1 3069.6 274.2 127.0 29.7 497.2 1728.7 3069.6 274.2 1728.7 316.2 379.1 3069.6 274.2 127.0 30.1 540.5 1756.2 3069.8 261.0 101.6 -65.0 404.6 1756.2 317.08 404.6 306.8 260.5 1756.2 3069.8 268.7 127.0 404.6 1756.2 317.08 404.6	2 1728.7 30696 26.2 379.1 1728.7 316.2 379.1 5 1756.2 3069.6 261.0 101.6 -65.2 379.1 1728.7 316.2 379.1 5 1756.2 3068.8 268.7 127.0 -65.0 404.6 1766.2 317.08 404.6 5 1782.1 268.7 127.0 -65.0 404.6 1766.2 317.08 404.6 5 1782.1 4577.4 268.5 152.4 1361.6 336.0 1782.1 4587.2 336.0 5 1782.1 2781.1 228.5 152.4 1361.6 336.0 1782.1 4587.2 336.0 5 1782.1 2781.1 228.5 356.0 1782.1 4587.2 336.0 5 1782.1 2781.1 238.5 152.4 2555.3 336.0 1782.1 4577.4 336.0 5 1782.1 2782.8 413.3 1804.9 7882.8 413.3	9		484.0	1728.7	9.6908	274.2	127.0	29.7	497.2	1728.7	9.6908	261.0	101.6	-63.2	379.1	1728.7	3162.6	379.1	127.0
986.6 484.0 1728.7 3069.6 484.0 1728.7 3069.6 484.0 1728.7 3069.6 484.0 1728.7 316.2 379.1 1728.7 316.2 379.1 379.1 379.1 379.1 379.1 404.6	2 1728.7 3085.6 2810.6 63.2 379.1 1728.7 3162.6 379.1 5 1756.2 3085.8 286.7 127.0 -55.0 404.6 1756.2 3170.8 404.6 5 1756.2 3085.8 288.7 127.0 -55.0 404.6 1756.2 3170.8 404.6 5 1782.1 4587.2 288.5 152.4 1361.4 386.0 1782.1 4587.2 338.0 5 1782.1 4577.4 288.5 152.4 255.3 386.0 1782.1 4577.4 336.0 5 1782.1 5781.1 288.5 152.4 255.3 386.0 1782.1 4577.4 336.0 5 1782.1 5781.1 288.5 152.4 255.3 386.0 1782.1 5781.1 336.0 1804.9 7882.8 316.5 203.2 450.8 413.3 1804.9 7882.8 413.3 1804.9 9008.4 316.5 2	19		484.0	1728.7	9.6908	274.2	127.0	29.7	497.2	1728.7	9.6908	261.0	101.6	-63.2	379.1	1728.7	3162.6	379.1	127.0
3085.8 540.5 1756.2 3085.8 268.7 1756.2 3085.8 268.7 1756.2 3085.8 268.7 1756.2 3085.8 268.7 1756.2 3085.8 268.7 1756.2 3085.8 268.7 1756.2 3170.8 404.6 1756.2 3170.8 404.6	5 1756.2 3085.8 268.7 127.0 -55.0 404.6 1756.2 3170.8 404.6 5 1756.2 3085.8 268.7 127.0 -55.0 404.6 1756.2 3170.8 404.6 5 1782.1 4587.2 288.5 152.4 1361.6 386.0 1782.1 4587.2 336.0 5 1782.1 4577.4 386.0 1782.1 4587.2 336.0 5 1782.1 5781.1 288.5 152.4 255.3 336.0 1782.1 5781.1 336.0 5 1782.1 5781.1 288.5 152.4 255.3 336.0 1782.1 5781.1 336.0 5 1782.1 5781.1 336.0 1782.1 5781.1 336.0 1804.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 <	120		484.0	1728.7	9.6908	274.2	127.0	29.7	497.2	1728.7	9.6908	261.0	101.6	-63.2	379.1	1728.7	3162.6	379.1	127.0
3085.8 540.5 1786.2 3085.8 540.5 1776.2 3085.8 540.5 1776.2 3085.8 540.5 1776.2 3085.8 540.5 1776.2 3085.8 540.5 1782.1 4587.4 1370.8 404.6 1776.2 336.0 404.6 1776.2 336.0 404.6<	5 1756.2 3085.8 268.7 127.0 -55.0 40.4 6 1756.2 3170.8 404.6 5 1782.1 4587.2 288.5 152.4 1381.4 386.0 1782.1 4577.2 336.0 5 1782.1 4577.4 288.5 152.4 255.3 386.0 1782.1 4577.4 336.0 5 1782.1 5781.1 288.5 152.4 255.3 386.0 1782.1 4577.1 336.0 5 1782.1 5781.1 288.5 152.4 255.3 386.0 1782.1 5781.1 336.0 5 1804.9 7882.8 316.5 203.2 450.8 413.3 1804.9 7882.8 413.3 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	140		540.5	1756.2	3085.8	268.7	127.0	30.1	540.5	1756.2	3085.8	268.7	127.0	-55.0	404.6	1756.2	3170.8	404.6	152.4
4512.3 571.0 1782.1 4512.3 288.5 1782.4 1361.4 569.5 1782.1 4587.2 288.5 152.4 1361.6 336.0 1782.1 4587.2 336.0	5 1782.1 4587.2 288.5 152.4 1561.4 336.0 1782.1 4587.2 336.0 5 1782.1 4577.4 288.5 152.4 152.4 255.3 336.0 1782.1 4577.4 336.0 5 1782.1 5781.1 288.5 152.4 2555.3 336.0 1782.1 5781.1 336.0 9 1782.1 5781.1 288.5 152.4 2555.3 336.0 1782.1 5781.1 336.0 9 1804.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 9 1804.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 9 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	160		540.5	1756.2	3085.8	268.7	127.0	30.1	540.5	1756.2	3085.8	268.7	127.0	-55.0	404.6	1756.2	3170.8	404.6	152.4
4502.4 571.0 1782.1 457.2 255.3 1782.1 457.4 258.5 152.4 152.4 255.3 360.5 1782.1 457.4 256.3 360.5 1782.1 457.4 256.3 360.5 1782.1 457.4 256.3 360.0 1782.1 457.4 256.3 360.0 1782.1 457.4 256.3 360.0 1782.1 457.4 256.3 360.0 1782.1 457.1 360.0 1782.1 450.0 1782.1 457.1 360.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 450.0 1782.1 4782.1 4782.1 450.0 1782.1 4782.8 473.3 480.0 473.3 473.3 473.3 473.3 473.3 473.3 473.3 473.3 473.3 473.3 473.3	5 1782.1 4577.4 288.5 152.4 1551.6 336.0 1782.1 4577.4 336.0 5 1782.1 5781.1 288.5 152.4 2555.3 336.0 1782.1 5781.1 336.0 5 1782.1 5781.1 288.5 152.4 2555.3 336.0 1782.1 5781.1 336.0 9 1804.9 7882.8 316.5 203.2 450.8 413.3 1804.9 7882.8 413.3 9 1804.9 7882.8 316.5 203.2 450.8 413.3 1804.9 7882.8 413.3 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	8		571.0	1782.1	4512.3	287.0	152.4	1361.4	569.5	1782.1	4587.2	288.5	152.4	1361.4	336.0	1782.1	4587.2	336.0	203.2
5706.2 571.0 1782.1 5706.2 285.3 569.5 1782.1 5781.1 288.5 152.4 255.3 336.0 1782.1 5781.1 336.0 7306.2 571.0 1782.1 5706.2 1782.1 5781.1 288.5 188.5 122.4 255.3 336.0 1782.1 5781.1 336.0 7306.2 1780.2 1782.1 5706.2 1782.1 5781.1 336.0 1782.1 5781.1 336.0 7739.6 600.2 1804.9 7739.6 1804.9 7782.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8	5 1782.1 5781.1 288.5 152.4 255.3 336.0 1782.1 5781.1 336.0 9 1804.9 7882.8 316.5 203.2 4508.8 413.3 1804.9 7882.8 413.3 9 1804.9 7882.8 316.5 203.2 4500.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	200		571.0	1782.1	4502.4	287.0	152.4	1351.6	569.5	1782.1	4577.4	288.5	152.4	1351.6	336.0	1782.1	4577.4	336.0	203.2
77062 5710 1782.1 5706.2 1782.1 5781.2 588.2 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7808.4 413.3 1804.9 7808.4 413.3 180	5 1782.1 5781.1 288.5 152.4 2555.3 336.0 1782.1 5781.1 336.0 9 1804.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 9 1804.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 9 1804.9 7882.8 316.5 203.2 5706.4 413.3 1804.9 7882.8 413.3 9 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	220		571.0	1782.1	5706.2	287.0	152.4	2555.3	569.5	1782.1	5781.1	288.5	152.4	2555.3	336.0	1782.1	5781.1	336.0	203.2
7396 600.2 1804.9 7739.6 600.2 1804.9 7739.6 600.2 1804.9 7739.6 600.2 1804.9 7739.6 600.2 1804.9 7739.6 600.2 1804.9 7739.6 310.1 203.2 4580.8 593.9 1804.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 9008.4 413.3 1804.9 9008.4 413.3	9 1804.9 7882.8 316.5 203.2 450.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 7882.8 413.3 1804.9 9008.4 413.3 1804.9 9008.4 413.3 1804.9 9008.4 413.3	240		571.0	1782.1	5706.2	287.0	152.4	2555.3	569.5	1782.1	5781.1	288.5	152.4	2555.3	336.0	1782.1	5781.1	336.0	203.2
7739.6 600.2 1804.9 7739.6 600.2 1804.9 7782.8 316.5 203.2 4580.8 593.9 1804.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3	9 1804.9 7882.8 316.5 203.2 450.8 413.3 1804.9 7882.8 413.3 1904.9 7882.8 316.5 203.2 4580.8 413.3 1804.9 7882.8 413.3 9 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	290		600.2	1804.9	7739.6	310.1	203.2	4580.8	593.9	1804.9	7882.8	316.5	203.2	4580.8	413.3	1804.9	7882.8	413.3	203.2
77396 600.2 1804.9 77396 310.1 203.2 4580.8 593.9 1804.9 7882.8 316.5 203.2 5706.4 1833 1804.9 9008.4 316.5 203.2 5706.4 18865.1 310.1 203.2 5706.4 593.9 1804.9 9008.4 316.5 203.2 5706.4 1413.3 1804.9 9008.4 413.3 1804.9 9008.4 413.3	9 1804.9 7882.8 316.5 203.2 4560.8 413.3 1804.9 7882.8 413.3 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3 1804.9 9008.4 413.3	780		600.2	1804.9	7739.6	310.1	203.2	4580.8	593.9	1804.9	7882.8	316.5	203.2	4580.8	413.3	1804.9	7882.8	413.3	203.2
8865.1 600.2 1804.9 8865.1 310.1 203.2 5706.4 593.9 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3 1804.9 9008.4 1805.1 600.2 1804.9 8865.1 310.1 203.2 5706.4 593.9 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	9 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	8		600.2	1804.9	7739.6	310.1	203.2	4580.8	593.9	1804.9	7882.8	316.5	203.2	4580.8	413.3	1804.9	7882.8	413.3	203.2
8865.1 600.2 1804.9 8865.1 310.1 203.2 5706.4 53.9 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	9 1804.9 9008.4 316.5 203.2 5706.4 413.3 1804.9 9008.4 413.3	352		600.2	1804.9	8865.1	310.1	203.2	5706.4	593.9	1804.9	9008.4	316.5	203.2	5706.4	413.3	1804.9	9008.4	413.3	203.2
	3	320		600.2	1804.9	8865.1	310.1	203.2	5706.4	593.9	1804.9	9008.4	316.5	203.2	5706.4	413.3	1804.9	9008.4	413.3	203.2
	;	SUXA FILE	4400-500 units ar Bofor to dimone	e equipped with	for all other up	ilers only. Refer	to unit dimens	sionai drawings	tor cooler alm.	ensions.										
-30X-Appear with stated coolers only. Helet to unit dimensional drawings for cooler dimensions. MATE: Defector dimensional decisional decisiona		2	אוסוווע טווסוסר ::	SIUI di diawii iyo	מון מוומ הו	III dilligi ioi oi oi				ŀ					•					

Side View

Top View

Fig. 20 — Cooler Option Dimensions

Fig. 21 — Parallel Dual Chiller Operation

Fig. 22 — Series Dual Chiller Operation

Fig. 25 — Typical Piping Diagram on 30XA Units with Hydronic Package — Single Pump

D' E FS

T1

T2

Fig. 26 — Typical Piping Diagram on 30XA Units with Hydronic Package — Dual Pumps

NOTE: It is recommended for units with the hydronic package that an inlet isolation (shut-off) valve be placed exterior to the unit to allow removal and service of the entire pump assembly, if necessary. The hydronic package is supplied from the factory with a combination valve for isolation of leaving water. Also, if the unit is isolated with valves, a properly sized pressure relief valve is recommended and should be installed in the piping between the unit and the valves, following all applicable local codes.

<u>Air Separation</u> — For proper system operation, it is essential that water loops be installed with proper means to manage air in the system. Free air in the system can cause noise, reduce terminal output, stop flow, or even cause pump failure due to pump cavitation. For closed systems, equipment should be provided to eliminate all air from the system.

The amount of air that water can hold in solution depends on the pressure and temperature of the water/air mixture. Air is less soluble at higher temperatures and at lower pressures. Therefore, separation can best be done at the point of highest water temperature and lowest pressure. Typically, this point would be on the suction side of the pump as the water is returning from the system or terminals. This is generally the optimal place to install an air separator, if possible.

1. Install automatic air vents at all high points in the system. (If the 30XA unit is located at the high point of the sys-

- tem, a vent can be installed on the piping leaving the heat exchanger on the ¹/₄ in. NPT female port.)
- 2. Install an air separator in the water loop, at the place where the water is at higher temperatures and lower pressures usually in the chilled water return piping. On a primary-secondary system, the highest temperature water is normally in the secondary loop, close to the decoupler. Preference should be given to that point on the system (see Fig. 27). In-line or centrifugal air separators are readily available in the field.

It may not be possible to install air separators at the place of the highest temperature and lowest pressure. In such cases, preference should be given to the points of highest temperature. It is important that the pipe be sized correctly so that free air can be moved to the point of separation. Generally, a water velocity of at least 2 feet per second (0.6 m per second) will keep free air entrained and prevent it from forming air pockets. Automatic vents should be installed at all physically elevated

points in the system so that air can be eliminated during system operation. Provisions should also be made for manual venting during the water loop fill.

UNITS WITH HYDRONIC PUMP PACKAGE — The 30XA090-160 units can be equipped with a factory-installed hydronic pump package consisting of a suction guide/strainer, pump, combination valve, internal piping and wiring connected at the factory.

The combination valve performs the following functions:

- drip-tight shut-off valve
- spring closure design with a non-slam check valve
- flow-throttling valve

When facing the cooler side of unit, the inlet (return) water connection is on the bottom. The outlet (supply) water connection is on the top. The inlet is connected to the suction guide/ strainer of the pump via a Victaulic-type connection. The cooler supply has water-side Victaulic-type connections (follow connection directions as provided by the coupling manufacturer). Provide proper support for the piping. If accessory security grilles have been added, holes must be cut in the grilles for field piping and insulation.

There is a factory supplied, insulated 45-degree elbow pipe and a victaulic coupling shipped with units ordered with a hydronic pump package. Before starting field piping, use the victaulic coupling to connect this elbow pipe to the outlet of the combination valve.

The suction guide/strainer is shipped from the factory with a run-in screen. This screen is a temporary device used during the start-up/clean-up process of the chilled water circuit to prevent construction debris from damaging the pump or internal tubes of the cooler. After all debris has been removed or a maximum of 24 running hours the temporary screen must be removed. See the Start-Up, Controls, Operation and Troubleshooting guide for further information.

A CAUTION

The suction guide/strainer is shipped from the factory with a run-in screen. This temporary screen must be removed after all debris has been removed or a maximum of 24 running hours. Failure to remove the temporary screen may result in damage to the pump or cooler.

NOTE: It is required that a 20 mesh field-supplied strainer be installed in the inlet piping to the cooler on open loop systems.

A ³/₄ in. NPT fitting is installed in the inlet piping of the pump for connection to an expansion tank. Install the tank in accordance with the manufacturer's instructions.

Figures 25 and 26 illustrate typical single and dual pump packages.

Three drain connections are provided and are located at leaving water (supply) end of cooler, pump volute, and the suction guide. See Fig. 2-14 for connection location. Insulate the drain piping (in the same manner as the chilled water piping) for at least 12 in. (305 mm) from the cooler.

UNITS WITHOUT HYDRONIC PUMP PACKAGE — When facing the cooler side of the unit, the inlet (return) water connection is on the bottom. It is required that a field-supplied strainer with a minimum size of 20 mesh be installed within 10 ft (3.05 m) of the cooler inlet to prevent debris from damaging

internal tubes of the cooler. The outlet (supply) water connection is on the top. The cooler has water-side victaulic-type connections (follow connection directions as provided by the coupling manufacturer). Provide proper support for the piping. If accessory security grilles have been added, holes must be cut in the grilles for field piping and insulation. See Fig. 28 for a typical piping diagram of a 30XA unit without a hydronic pump package.

A drain connection is located at the leaving water (supply) end of cooler. See Fig. 2-14 for connection location. Insulate the drain piping (in the same manner as the chilled water piping) for at least 12 in. (305 mm) from the unit.

DUAL CHILLER CONTROL — the *Comfort*LinkTM controller allows 2 chillers (piped in parallel or series) to operate as a single chilled water plant with standard control functions coordinated through the master chiller controller. This standard *Comfort*Link feature requires a communication link between the 2 chillers.

There are several advantages to this type of control:

- redundancy (multiple circuits)
- better low load control, (lower tonnage capability)
- lower rigging lift weights (2 machines rather than 1 large machine)
- chiller lead-lag operation (evens the wear between the two machines)

<u>Dual Chiller Leaving Water Sensor</u>—If the dual chiller algorithm is used, and the machines are installed in parallel, a dual chilled water sensor must be installed for each module. Install the well in the common leaving water header. See Fig. 21. The series dual chiller application is shown in Fig. 22.

<u>Parallel Dual Chiller Operation</u> — Parallel chiller operation is the recommended option for dual chiller control. In this case, each chiller must control its own dedicated pump or isolation valve. Balancing valves are recommended to insure proper flow in each chiller. Two field-supplied and installed dual chiller leaving water temperature sensors are required, one for each module for this function to operate properly.

Consider adding additional isolation valves to isolate each chiller to allow for service on a machine, and still allow for partial capacity from the other chiller. See Fig 21.

<u>Series Dual Chiller Operation</u> — Series chiller operation is an alternate control method supported by the *Comfort*LinkTM control system. Certain applications might require that the two chillers be connected in series. For nominal 10° F (5.6° C) cooler ranges, use the minus 1 pass cooler arrangements to reduce the fluid-side pressure drop. Use the standard cooler pass arrangement for low flow, high cooler temperature rise applications.

Consider adding additional piping and isolation valves to isolate each chiller to allow for service on a machine, and still allow for partial capacity from the other chiller. See Fig. 22.

NOTE: Expansion tanks for 30XA hydronic kits must be installed for chillers piped in parallel in the primary water loop.

Fig. 27 — Typical Air Separator and Expansion Tank Location on Primary-Secondary Systems

Fig. 28 — Typical Piping Diagram on 30XA Units without Hydronic Package

IMPORTANT: Automatic vents should be located in accessible locations for maintenance purposes and protected from freezing.

COOLER PUMP CONTROL — It is required that cooler pump control be utilized on all chillers unless the chilled water pump runs continuously or the chilled water system contains a suitable antifreeze solution. Control of dual external pumps requires installation of the external pump control accessory package (Part No. 00EFN900003200A).

MWARNING

Applications that utilize fresh water as the circulated fluid require that the circulating pump be controlled directly by the chiller. Operation with fresh water is not fail-safe should there be a loss of power to the chiller or to the circulating pump. Freeze damage due to power loss or disabling chiller pump control in fresh water systems will impair or otherwise negatively affect the warranty.

If cooler pump control is not utilized, it is required that the chiller be electrically interlocked with the chilled water pump starter. The interlock should be wired to terminals TB5-1 and TB5-2. It is also required that the cooler pump output be used as an override to the chilled water pump control circuit to provide additional freeze protection.

Refer the control and power wiring schematic on page 63 for proper connection of the cooler pump output. The cooler pump output will remain energized for 30 seconds after all compressors stop due to an OFF command. In the event a freeze protection alarm is generated, the cooler pump output will be energized regardless of the cooler pump control software configuration. The cooler pump output is also energized anytime a compressor is started and when certain alarms are generated. A thermal flow sensor is factory installed in the entering fluid nozzle to prevent operation without flow through the cooler. See Fig. 29. The flow sensor is factory wired.

Proper software configuration of the cooler pump control parameters is required to prevent possible cooler freeze-up. Refer to the Controls, Start-Up, Operation, Service and Troubleshooting guide for more information.

BRINE UNITS — Special factory modifications to the units are required to allow them to operate at fluid temperatures less than 40 F (4.4 C). Be sure that the fluid has sufficient

inhibited glycol or other suitable corrosion-resistant antifreeze solution to prevent cooler freeze-up.

PREPARATION FOR YEAR-ROUND OPERATION — In areas where the piping or unit is exposed to 32 F (0° C) or lower ambient temperatures, freeze-up protection is required using inhibited glycol or other suitable corrosion-resistant antifreeze solution and electric heater tapes. Heater tapes on piping should have a rating for area ambient temperatures and be covered with a suitable thickness of closed-cell insulation. Route power for the heater tapes from a separately fused disconnect. Mount the disconnect within sight from the unit per local or NEC (National Electric Code) codes. Identify disconnect at heater tape power source with a warning that power must not be turned off except when servicing unit.

IMPORTANT: Adding antifreeze solution is the only certain means of protecting the unit from freeze-up if heater fails or electrical power is interrupted or lost while temperatures are below 32 F (0° C).

A drain connection is located at the bottom of the cooler head. See Fig. 2-14 for connection location. Install shut-off valves to the drain line before filling the system with fluid.

Fig. 29 — Thermal Flow Sensor

Table 3 — 30XA Minimum and Maximum Cooler Flow Rates

ITEM Cooler Leaving Water Temperature*			MINII			MAXIMUM NOMINAL			
			40 F (4	I.4 C)	60 F	(15 C)	_		
Cool	er Entering Water Temper	ature†	45 F (7.2 C)	70 F (21.1 C)	_		
30XA	Oneles	Number of	Minimum I	low Rate	Maximum	Flow Rate	Nominal F	low Rate	
UNIT SIZE	Cooler	Passes	(gpm)	(L/s)	(gpm)	(L/s)	(gpm)	(L/s	
	Standard	2	95	6.0	379	23.9			
080	Plus one pass	3	43	2.7	192	12.1	180.4	11.4	
	Minus one pass	1	196	12.4	782	49.3			
	Standard	2	101	6.4	403	25.4			
090	Plus one pass	3	43	2.7	200	12.6	201.9	12.7	
050	Minus one pass	1	229	14.4	917	57.9	201.5	12.	
		2	101					-	
400	Standard			6.4	403	25.4	005.5		
100	Plus one pass	3	43	2.7	200	12.6	225.5	14.	
	Minus one pass	1	229	14.4	917	57.9			
	Standard	2	125	7.9	501	31.6			
110	Plus one pass	3	61	3.8	244	15.4	244.9	15.	
	Minus one pass	1	254	16.0	1014	64.0			
	Standard	2	125	7.9	501	31.6			
120	Plus one pass	3	73	4.6	293	18.5	264.8	16.	
	Minus one pass	1	281	17.7	1124	70.9			
	Standard	2	134	8.5	538	33.9			
140	Plus one pass	3	73	4.6	293	18.5	317.8	20.	
İ	Minus one pass	1	324	20.4	1296	81.8			
	Standard	2	165	10.4	660	41.6			
160	Plus one pass	3	98	6.2	391	24.7	365.1	23.	
100	Minus one pass	1	354	22.3	1418	89.5	000.1	20.	
		2	202	12.7				+	
400	Standard				807	50.9	400.0	0.5	
180	Plus one pass	3	73	4.6	391	24.7	409.6	25.	
	Minus one pass	1	416	26.2	1662	104.9			
	Standard	2	223	14.1	892	56.3			
200	Plus one pass	3	98	6.2	391	24.7	463.9	29.	
	Minus one pass	1	458	28.9	1833	115.6			
	Standard	2	235	14.8	941	59.4			
220	Plus one pass	3	122	7.7	489	30.9	505.9	31.	
	Minus one pass	1	501	31.6	2004	126.4			
	Standard	2	266	16.8	1063	67.1			
240	Plus one pass	3	147	9.3	587	37.0	545.8	34.	
_	Minus one pass	1	538	33.9	2151	135.7			
	Standard	2	257	16.2	1027	64.8			
260	Plus one pass	3	141	8.9	562	35.5	600.3	37.	
200		1	584		2334		000.5	37.	
	Minus one pass			36.8		147.3			
	Standard	2	293	18.5	1173	74.0		4.0	
280	Plus one pass	3	141	8.9	562	35.5	642.2	40.	
	Minus one pass	1	620	39.1	2481	156.5			
	Standard	2	327	20.6	1308	82.5			
300	Plus one pass	3	174	11.0	697	44.0	687.5	43.	
	Minus one pass	1	687	43.3	2750	173.5		<u> </u>	
	Standard	2	361	22.8	1442	91.0		1	
325	Plus one pass	3	211	13.3	843	53.2	733.4	46.	
	Minus one pass	1	724	45.7	2897	182.8			
	Standard	2	379	23.9	1516	95.6			
350	Plus one pass	3	244	15.4	978	61.7	775.4	48.	
	Minus one pass	1	767	48.4	3068	193.6	1	1	
	Standard	1	501	31.6	2004	126.4		1	
400	Plus one pass	_		- 31.0		120.4	917.6	57.	
400				+			317.0	57.	
	Minus one pass	_		_		_		1	
	Standard	1	501	1	2004		40		
450	Plus one pass	_		_	_		1019.3	64.	
	Minus one pass	_	_	_		_			
Į	Standard	1	501		2004]	1	
500	Plus one pass	_	_	_		_	1092.8	68.	
	Minus one pass	_	_	_	_	_	1	1	

^{*} For applications requiring cooler leaving water temperature operation at less than 40 F (4.4 C), the units require the use of antifreeze and application may require one of the special order brine option. Contact your local Carrier representative for more information.

For applications requiring cooler entering water temperature operation at less than 45 F (7.2 C), contact your local Carrier representative for unit selection using the Carrier electronic catalog.

NOTE: Nominal flow rates required at ARI (Air Conditioning and Refrigeration Institute) conditions 44 F (7 C) leaving fluid temperature, 54 F (12 C) entering water temperature, 95 F (35 C) ambient. Fouling factor 0.00010 ft²-hr-F/Btu (0.000018 m²-K/kW).

Low Ambient Temperature Head Pressure Control — If the unit is equipped with the low ambient temperature head pressure control option, field-fabricated and field-installed wind baffles are required if the wind velocity is anticipated to be greater than 5 mph (8 km/h). Two different baffles may be required, facing the control box. Wind baffles should be constructed with minimum 18-gage galvanized sheet metal or other suitable corrosion-resistance material with cross breaks for strength. See Fig. 30. Use field-supplied screws to attach baffles to the corner posts of the machine. Be sure to hem or turn a flange on all edges to eliminate sharp edges on the baffles.

MARNING

Disconnect all power to the unit before performing maintenance or service. Electrical shock and personal injury could result.

ACAUTION

To avoid damage to the refrigerant coils and electrical components, use extreme care when drilling screw holes and screwing in fasteners.

Mount the smaller height baffle on units with a control box located on the end of the unit. It is recommended that the upper notches be used for mounting the baffles. This reduces the risk of damaging the coil while drilling a mounting hole. Loosen the upper corner post bolts and slide the baffle under the bolt and washer. Tighten the bolt. Drill holes in the bottom of the flange of the baffle and mount with two screws to secure the bottom of the baffle to the corner post. Repeat the process for the opposite end. See Fig. 30.

POSITION	BAFFLE H	EIGHT (X)
POSITION	RIGHT END	LEFT END
30XA080-120 (Facing the control box end)	1040 [41.0]	635 [25.0]
30XA140-500 (Facing the control box end)	1040 [41.0]	1040 [41.0]

NOTES:

- 1. Material: 18 ga. Corrosion Resistant Sheet Metal.
- 2. Dimensions are in mm [inches].

Fig. 30 — Field-Fabricated and Field-Installed Wind Baffles

Step 4 — Fill the Chilled Water Loop.

IMPORTANT: Before starting unit, be sure all of the air has been purged from the system.

MARNING

In low ambient (below 32 F [0° C]) and/or low leaving fluid temperature applications (below 40 F [4.4° C]), a suitable antifreeze solution of the proper concentration for the specific operating conditions must be used as the fluid circulated through the cooler to prevent freezing and damage to the system. Failure to operate the system with an antifreeze solution of the proper concentration will void the warranty should damage result from freezing.

The chilled water pump (if equipped) is rated for 150 psig (1034 kPa) duty. The maximum cooler fluidside pressure is 300 psig (2068 kPa). Check the pressure rating for all of the chilled water devices installed. Do not exceed the lowest pressure rated device.

WATER SYSTEM CLEANING — Proper water system cleaning is of vital importance. Excessive particulates in the water system can cause excessive pump seal wear, reduce or stop flow, and cause damage of other components.

- 1. Install a temporary bypass around the chiller to avoid circulating dirty water and particulates into the pump package and chiller during the flush. Use a temporary circulating pump during the cleaning process. Also, be sure that there is capability to fully drain the system after cleaning. See Fig. 31.
- Be sure to use a cleaning agent that is compatible with all system materials. Be especially careful if the system contains any galvanized or aluminum components. Both detergent-dispersant and alkaline-dispersant cleaning agents are available.
- It is recommended to fill the system through a water meter. This provides a reference point for the future for loop volume readings, and it also establishes the correct quantity of cleaner needed in order to reach the required concentration.
- 4. Use a feeder/transfer pump to mix the solution and fill the system. Circulate the cleaning system for the length of time recommended by the cleaning agent manufacturer.
 - a. After cleaning, drain the cleaning fluid and flush the system with fresh water.
 - b. A slight amount of cleaning residue in the system can help keep the desired, slightly alkaline, water pH of 8 to 9. Avoid a pH greater than 10, since this will adversely affect pump seal components.
 - c. A side stream filter is recommended (see Fig. 32 during the cleaning process). Filter side flow rate should be enough to filter the entire water volume every 3 to 4 hours. Change filters as often as necessary during the cleaning process.
 - d. Remove temporary bypass when cleaning is complete.

A suction guide with an internal strainer is standard on all 30XA units with factory-installed hydronic packages. This strainer allows removal of particulates from the chilled water loop. Using the combination valve and the field-installed isolation valve at the inlet, the strainer can be isolated from the chilled water loop to be cleaned.

Fig. 31 — Typical Set Up for Cleaning Process

Fig. 32 — Cleaning Using a Side Stream Filter

The Carrier *Comfort*LinkTM controls provided have a builtin feature to remind building owners or operators to clean the strainer at a pre-set time interval. Properly installed, cleaned and maintained systems will rarely need the strainer cleaned after the initial fill. This time interval is user-configurable.

Ideally, the chilled water loop will be cleaned before the unit is connected. If the run-in screen is left in the suction guide/strainer, it is recommended that the Service Maintenance be set to alert the operator within 24 hours of start-up to be sure that the run-in screen in the suction guide/strainer is removed after 24 hours of operation.

NOTE: The suction guide/strainer must be removed after the first 24 hours of operation.

To set the time for the parameter, go to *Time Clock* $\rightarrow MCFG \rightarrow W.FIL$ in the handheld NavigatorTM display. To set the time for the parameter with the Touch PilotTM display, go to *Main Menu* $\rightarrow Service \rightarrow MAINTCFG \rightarrow wfilter_c$. Values for this item are input in days.

WATER TREATMENT — Fill the fluid loop with water (or brine) and a corrosion-resistant inhibitor suitable for the water of the area. Consult the local water treatment specialist for characteristics of system water and a recommended inhibitor for the cooler fluid loop.

Untreated or improperly treated water may result in corrosion, scaling, erosion, or algae. The services of a qualified water treatment specialist should be obtained to develop and monitor a treatment program.

⚠ CAUTION

Water must be within design flow limits, clean, and treated to ensure proper chiller performance and reduce the potential of tube damage due to corrosion, scaling, erosion, and algae. Carrier assumes no responsibility for chiller damage resulting from untreated or improperly treated water.

NOTE: Do not use automobile anti-freeze, or any other fluid that is not approved for heat exchanger duty. Only use appropriately inhibited glycols, concentrated to provide adequate protection for the temperature considered.

SYSTEM PRESSURIZATION — A proper initial cold fill pressure must be established before filling of the unit. The initial cold fill pressure is the pressure applied at the filling point to fill a system to its highest point, plus a minimum pressure at the top of the system (4 psig minimum [27.6 kPa]) to operate air vents and positively pressurize the system. The expansion tank is very important to system pressurization. The expansion tank serves several purposes:

- Provide NPSHR (Net Positive Suction Head Required) for the pump to operate satisfactorily.
- 2. Set system pressure.
- Accommodate expansion/contraction of water due to temperature changes.
- 4. Acts as a pressure reference for the pump.

The expansion tank pressure must be set BEFORE the system is filled. Follow the manufacturer's recommendation for instructions on setting the pressure in the expansion tank. NPSHR information is provided on the Pump Curves in Fig. 33-36 for units with factory-installed hydronic kits. See Table 4 for pump impeller sizes.

Once the system is pressurized, the pressure at the connection point of the expansion tank to water piping will not change unless the water loop volume changes (either due to addition/subtraction of water or temperature expansion/contraction). The pressure at this point remains the same regardless of whether or not the pump is running.

Since the expansion tank acts as a reference point for the pump, there cannot be two reference points (two expansion tanks) in a system, unless manifolded together. Where two or more 30XA chillers with the hydronic option are installed in parallel, there should not be more than one expansion tank in the system, unless manifolded together as seen in Fig. 27. It is permissible to install the expansion tank(s) in a portion of the return water line that is common to all pumps, providing that the tank is properly sized for combined system volume.

If the application involves two or more chillers in a primary secondary system, a common place for mounting the expansion tank is in the chilled water return line, just before the decoupler. See Fig. 27 for placement of expansion tank in primary-secondary systems.

If a diaphragm expansion tank is utilized (a flexible diaphragm physically separates the water/air interface) it is not recommended to have any air in the water loop. See the section on air separation on page 51 for instructions on providing air separation equipment.

FILLING THE SYSTEM — The initial fill of the chilled water system must accomplish three goals:

- 1. The entire piping system must be filled with water.
- 2. The pressure at the top of the system must be high enough to vent air from the system (usually 4 psig [27.6 kPa] is adequate for most vents).

3. The pressure at all points in the system must be high enough to prevent flashing in the piping or cavitation in the pump.

The pressure created by an operating pump affects system pressure at all points except one — the connection of the expansion tank to the system. This is the only location in the system where pump operation will not give erroneous pressure indications during the fill. Therefore, the best location to install the fill connection is close to the expansion tank. An air vent should be installed close by to help eliminate air that enters during the fill procedure.

When filling the system, ensure the following:

- Remove temporary bypass piping and cleaning/flushing equipment.
- 2. Check to make sure all drain plugs are installed.

Normally, a closed system needs to be filled only once. The actual filling process is a fairly simple procedure. All air should be purged or vented from the system. Thorough venting at high points and circulation at room temperature for several hours is highly recommended.

NOTE: Local codes concerning backflow devices and other protection of the city water system should be consulted and followed to prevent contamination of the public water supply. This is critical when antifreeze is used in the system.

SET WATER FLOW RATE — Once the system is cleaned, pressurized, and filled, the flow rate through the chiller needs to be established. On units with the hydronic package, this can be accomplished by using the balancing valve. Follow the manufacturer's recommendations for setting the balancing valve. Local codes may prohibit restricting the amount of water using the balancing valve for a given motor horsepower. In this case, use the method listed in the Pump Modification/Trimming section. See below for the type of combination valve in 30XA units with the optional hydronic package.

30XA UNIT SIZE	SINGLE/DUAL PUMP
090-160	FTV-5 in.

NOTE: Carrier recommends a differential pressure gage when measuring pressures across the pumps or balancing valves. This provides for greater accuracy and reduces error build-up that often occurs when subtracting pressures made by different gages.

A rough estimate of water flow can also be obtained from the pressure gages across the 30XA heat exchanger.

Figure 33 and 34 shows the relationship between gpm and heat exchanger pressure drop. It should be noted that these curves are for fresh water and "clean" heat exchangers; they do not apply to heat exchangers with fouling. To read the chart, subtract the readings of the two pressure gages on the hydronic kit. This number is the pressure drop across the heat exchanger. Adjust the factory-installed balancing valve or external balancing valve (in units without hydronic package) until the correct pressure drop is obtained for the required flow.

Гable 4 —	Pump	Impeller	Sizes
-----------	------	-----------------	-------

30XA	PUMP		SIN	IGLE PUMP			DUA	L PUMP	
UNIT SIZE	Нр	Option Code*	Rpm	Impeller Dia. (in.)	Pump Curve	Option Code*	Rpm	Impeller Dia. (in.)	Pump Curve
	5	1	3450	4.5	I	7	3450	4.5	II
090-160	7.5	2	3450	5	I	8	3450	5	II
090-160	10	3	3450	5.4	I	В	3450	5.4	II
	15	4	3450	6.1	I	С	3450	6.1	II

^{*}Option Code refers to the Hydronics Option (position 11) in the model number. See Fig. 1 for option identification.

30XA090,100

30XA140

30XA110

30XA160

30XA120

Selection	Pump
1	Single 5HP
2	Single 7.5HP
3	Single 10HP
4	Single 10HP Single 15HP

Fig. 33 — 30XA090-160 Single Pump Envelope Curves

30XA090,100

30XA140

30XA110

30XA160

30XA120

Selection Pump
7 Dual 5HP
8 Dual 7.5HP
B Dual 10HP
C Dual 15HP

Fig. 34 — 30XA090-160 Dual Pump Envelope Curves

NPSHr — Net Positive Suction Head (Pressure) Required

NOTE: Refer to Fig. 1 for option identification. Refer to Table 4 for more information.

Fig. 35 — Pump Curve I for Hydronic Package Single Pump (Fresh Water)

LEGEND

NPSHr — Net Positive Suction Head (Pressure) Required

NOTE: Refer to Fig. 1 for option identification. Refer to Table 4 for more information.

Fig. 36 — Pump Curve II for Hydronic Package Dual Pump (Fresh Water)

PUMP MODIFICATION/TRIMMING — Since the pumps are constant speed, the only way to obtain greater flow with a given pump/impeller is to decrease system head. This will allow the pump to "ride" its curve to the right, resulting in increased flow. If greater flow is necessary, consider opening the combination valve. Also, verify that the strainer is clean, and that no unnecessary system resistance is present, such as partially closed isolation valves.

Once the combination valve is set, note the stem position. If later service work requires the valve to be closed, it will be easier to re-balance the system, if the original balance point is known.

Increasing system resistance by closing the balancing valve will force the pump to "ride" its curve to the left, resulting in less flow. Although this does reduce power consumption slightly, it may not be the desirable method of reducing the flow, especially if a large reduction is needed.

The other method for reducing flow on a constant speed pump is impeller trimming. The impellers in the pumps provided in the 30XA hydronic kit can be easily removed for this purpose. Refer to the vendor literature packet supplied with the hydronic package information on Seal Replacement in the Service section, and follow instructions for impeller removal and trimming. See Fig. 33 and 34 for pump envelope curve information. Trimming should only be done by a qualified machine shop that has experience in this operation. Contact your local Carrier representative for a recommended machine shop.

A CAUTION

After trimming, the impeller MUST be balanced. Failure to balance trimmed impellers can result in excessive vibration, noise, and premature bearing failure.

Impeller trimming has the added benefit of maximum bhp (brake horsepower) savings, which can recover the cost incurred by performing the impeller trimming.

FREEZE PROTECTION — The 30XA units are provided with a flow switch to protect against freezing situations that occur from no water flow. While the flow switch is helpful in preventing freezing during no-flow situations, it does not protect the chiller in case of power failure during sub-freezing ambient temperatures, or in other cases where water temperature falls below the freezing mark. Appropriate concentrations of inhibited propylene or ethylene glycol or other suitable inhibited antifreeze solution should be considered for chiller protection where ambient temperatures are expected to fall below 32 F (0° C). Consult local water treatment specialist on characteristics of the system water and add a recommended inhibitor to the chilled water. The Carrier warranty does not cover damage due to freezing.

If the pump will be subjected to freezing temperatures, steps must be taken to prevent freeze damage. If the pump will not be used during this time, it is recommended to drain the pump and hydronic package and these components are backflushed with inhibited glycol. Otherwise, a glycol-water solution should be considered as the heat transfer fluid. Drains are located on the pump(s) and suction guide/strainer for units with hydronic kits. Units without hydronic kits have a drain plug mounted on the bottom of the cooler head at each end of the cooler.

NOTE: Do not use automobile anti-freeze, or any other fluid that is not approved for heat exchanger duty. Only use

appropriately inhibited glycols, concentrated to provide adequate protection for the temperature considered.

Use an electric tape heater for the external piping, if unit will be exposed to freezing temperatures.

Ensure that power is available to the chiller at all times, even during the off-season, so that the pump and cooler heaters have power. Also make sure that the piping tape heaters have power.

On units with pump packages, a heater is supplied with the hydronic package that will protect this section from freezing in outdoor-air temperatures down to $-20 \,\mathrm{F}$ ($-29 \,\mathrm{C}$), except in the case of a power failure. The Carrier warranty does not cover damage due to freezing.

All units are equipped with cooler heaters. Units are protected from freezing down to 0° F (-18 C) through the cooler heaters and control algorithms. If the unit controls the chilled water pump and valves, allowing flow through the cooler, the unit is protected from freezing down to -20 F (-29 C). The Carrier warranty does not cover damage due to freezing.

PREPARATION FOR WINTER SHUTDOWN — If the unit is not operational during the winter months, at the end of cooling season complete the following steps.

⚠ CAUTION

Failure to remove power before draining heater equipped coolers and hydronic packages can result in heater tape and insulation damage.

- If the unit has optional heater tapes on the cooler and the cooler will not be drained, do not shut off power disconnect during off-season shutdown. If the unit has optional heater tapes on the cooler and the cooler is drained, open the circuit breaker for the heater, CB-13 or shut off power during off-season shutdown.
- Draining the fluid from the system is highly recommended. If the unit is equipped with a hydronic package, there are additional drains in the pump housing and strainer that must be opened to allow for all for all of the water to drain.
- 3. Isolate the cooler from the rest of the system with water shutoff valves.
- 4. Replace the drain plug and completely fill the cooler with a mixture of water and a suitable corrosion-inhibited antifreeze solution such as propylene glycol. The concentration should be adequate to provide freeze protection to 15° F (8.3° C) below the expected low ambient temperature conditions. Antifreeze can be added through the vent on top of the cooler. If the unit has a hydronic pump package, the pump must be treated in the same manner.
- Leave the cooler filled with the antifreeze solution for the winter, or drain if desired. Be sure to deenergize heaters (if installed) as explained in Step 1 to prevent damage. Use an approved method of disposal when removing antifreeze solution.

At the beginning of the next cooling season, be sure that there is refrigerant pressure on each circuit before refilling cooler, add recommended inhibitor, and reset the CB-HT (circuit breaker heater) (if opened) or restore power.

Step 5 — Make Electrical Connections

MARNING

Electrical shock can cause personal injury and death. Shut off all power to this equipment during installation. There may be more than one disconnect switch. Tag all disconnect locations to alert others not to restore power until work is completed.

POWER SUPPLY — The electrical characteristics of the available power supply must agree with the unit nameplate rating. Supply voltage must be within the limits shown. See Tables 5-11 for electrical and configuration data.

FIELD POWER CONNECTIONS (See Fig. 37) — All power wiring must comply with applicable local and national codes. Install field-supplied, branch circuit fused disconnect(s) of a type that can be locked off or open. Disconnect(s) must be located within sight and readily accessible from the unit in compliance with NEC Article 440-14 (U.S.A.). See Tables 5-11 for unit electrical data.

IMPORTANT: The 30XA units have a factory-installed option available for a non-fused disconnect for unit power supply. If the unit is equipped with this option, all field power wiring should be made to the non-fused disconnect since no terminal blocks are supplied.

Maximum wire size that the unit terminal block or nonfused disconnect will accept is 500 kcmil.

POWER WIRING — All power wiring must comply with applicable local and national codes. Install field-supplied branch circuit fused disconnect per NEC of a type that can be locked OFF or OPEN. Disconnect must be within sight and readily accessible from the unit in compliance with NEC Article 440-14. In the power box, $\frac{7}{8}$ in. holes are provided for power entry. The holes will need to bee enlarged to accept the appropriate conduit. NEC also requires all conduits from a conditioned space to the power box(es) be sealed to prevent airflow and moisture into the control box.

The 30XA units require 1 or 2 power supplies, depending on the unit and circuit voltage. See Tables 5-8 for chiller electrical data. Cooler and pump heaters, if factory-installed, are wired in the control circuit. Heaters on chillers with the optional control transformer will be capable of operation only when the main power supply to the chiller is on. On chillers with separate control power, the heaters are capable of operation whenever the control power is supplied.

FIELD CONTROL POWER CONNECTIONS (See Fig. 37) — All units require 115-1-60 control circuit power, unless the control transformer option is installed.

Terminals TB5-1 and TB5-2 are provided for field installation of a chilled water (fluid) pump interlock (CWPI). The chilled water (fluid) flow sensor (CWFS) is factory installed. These devices are to be installed in series. Contacts must be rated for dry-circuit applications capable of handling a 24-vac at 50 mA load.

An accessory remote on-off switch can be wired into TB5-9 and TB5-10. Contacts must be rated for dry-circuit applications capable of handling a 24-vac at 50 mA load.

⚠ CAUTION

Do not use interlocks or other safety device contacts connected between TB5-9 and TB5-10 as remote on-off. Connection of safeties or other interlocks between these 2 terminals will result in an electrical bypass if the ENABLE-OFF-REMOTE contact switch is in the ENABLE position. If remote on-off unit control is required, a field-supplied relay must be installed in the unit control box and wired as shown in Fig. 37. Failure to wire the remote on-off as recommended may result in tube freeze damage.

Terminals 11 and 13 of TB5 are for control of the chilled water pump 1 (PMP1) starter. Terminals 13 and 15 of TB5 are for control of the chilled water pump 2 (PMP2) starter.

CARRIER COMFORT NETWORK® COMMUNICATION BUS WIRING (See Fig. 38) — The communication bus wiring is a shielded, 3-conductor cable with drain wire and is field supplied and installed in the field.

The system elements are connected to the communication bus in a daisy chain arrangement. The positive pin of each system element communication connector must be wired to the positive pins of the system elements on either side of it. This is also required for the negative and signal ground pins of each system element. Wiring connections for CCN (Carrier Comfort Network) should be made at TB (terminal block) 3. Consult the CCN Contractor's Manual for further information. See Fig. 38.

NOTE: Conductors and drain wire must be 20 AWG (American Wire Gage) minimum stranded, tinned copper. Individual conductors must be insulated with PVC, PVC/nylon, vinyl, Teflon, or polyethylene. An aluminum/polyester 100% foil shield and an outer jacket of PVC, PVC/nylon, chrome vinyl, or Teflon with a minimum operating temperature range of –4 F (–20 C) to 140 F (60 C) is required. See Table 12 for a list of manufacturers that produce CCN bus wiring that meet these requirements.

It is important when connecting to a CCN communication bus that a color coding scheme be used for the entire network to simplify the installation. It is recommended that red be used for the signal positive, black for the signal negative, and white for the signal ground. Use a similar scheme for cables containing different colored wires. At each system element, the shields of its communication bus cables must be tied together. If the communication bus is entirely within one building, the resulting continuous shield must be connected to a ground at one point only. If the communication bus cable exits from one building and enters another, the shields must be connected to grounds at the lightning suppressor in each building where the cable enters or exits the building (one point per building only).

To connect the unit to the network:

- 1. Turn off power to the control box.
- Cut the CCN wire and strip the ends of the red (+), white (ground), and black (-) conductors. Substitute appropriate colors for different colored cables.
- Connect the red wire to (+) terminal on TB3 of the plug, the white wire to COM terminal, and the black wire to the (-) terminal.

Fig. 37 — Control and Power Wiring Schematic

Table 5 — 30XA080-500 Electrical Data, Single Point (Standard Condenser Fan Motors)

	UNIT	VOLTA	GE	NUMBER	N	IO HYDR	ONIC PA	CKAGE			5 HP P	UMP, 34	50 RPM			7.5 HP I	PUMP, 34	50 RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz (3 Ph)	Sup	plied	OF COND	MCA	МОСР	WD IC		Rec Fuse	МСА	МОСР	WD	CF	Rec Fuse	MCA	МОСР		F	Rec Fuse	Voltage 1 PH,	MCA and
080	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	FANS 6 6 6 6 6 6	315.5 347.6 157.7 121.2 183.5	400 450 200 150 250	484.2 549.6 242.1 191.9 289.7	XL 1170.2 1338.6 585.1 465.9 704.7	350 400 175 150 225	_ _ _ _		— — — — —		Size			— — — — —	XL - - - - -	Size	115 115 115 115 115 115	40 40 40 40 40 40
090	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	8 8 8 8	334.0 368.0 167.0 128.5 194.5	450 500 225 175 250	499.1 566.0 249.6 197.8 298.6	1185.1 1355.0 592.6 471.8 713.6	400 450 200 150 225	350.0 385.7 175.0 134.9 204.2	450 500 225 175 250	515.1 583.7 257.6 204.2 308.3	1201.1 1372.7 600.6 478.2 723.3	400 450 200 150 225	357.2 393.6 178.6 137.7 208.6	450 500 225 175 250	522.3 591.7 261.2 207.0 312.6	1208.3 1380.7 604.2 481.0 727.6	400 450 200 150 250	115 115 115 115 115	40 40 40 40 40
100	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	8 8 8 8	364.6 401.3 182.3 139.5 212.7	500 500 250 175 250	536.7 607.8 268.4 211.7 321.7	1278.7 1461.8 639.4 508.7 770.7	400 450 200 175 250	380.6 419.0 190.3 145.9 222.4	500 500 250 175 300	552.7 625.5 276.4 218.1 331.3	1294.7 1479.5 647.4 515.1 780.3	450 500 225 175 250	387.8 427.0 193.9 148.8 226.7	500 500 250 200 300	559.9 633.5 280.0 220.9 335.7	1301.9 1487.5 651.0 517.9 784.7	450 500 225 175 250	115 115 115 115 115	40 40 40 40 40
110	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	8 8 8 8 8	405.7 446.2 202.4 155.5 236.4	500 600 250 200 300	536.7 607.8 268.4 211.7 321.7	 639.4 508.7 770.7	450 500 225 175 300	421.7 463.9 210.4 161.9 246.1	500 600 250 225 300	552.7 625.5 276.4 218.1 331.3	— 647.4 515.1 780.3	500 600 250 200 300	428.9 471.9 214.0 164.8 250.4	600 600 300 225 350	559.9 633.5 280.0 220.9 335.7	— 651.0 517.9 784.7	500 600 250 200 300	115 115 115 115 115	40 40 40 40 40
120	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	8 8 8 8 8	438.6 482.2 218.4 168.4 255.3	600 600 300 225 350	569.6 643.8 284.4 224.5 340.6	— 655.4 521.5 789.6	500 600 250 200 300	454.6 499.9 226.4 174.8 265.0	600 600 300 225 350	585.6 661.5 292.4 230.9 350.3	663.4 527.9 799.3	500 600 250 200 300	461.8 507.8 230.0 177.7 269.4	600 600 300 225 350	592.8 669.4 296.0 233.8 354.7	— 667.0 530.8 803.7	600 600 300 200 300	115 115 115 115 115	40 40 40 40 40
140	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	10 10 10 10 10	534.7 588.5 267.3 205.0 311.2	800 800 400 300 450	796.7 906.1 398.4 315.5 478.9	— 1030.4 821.5 1243.9	700 700 350 250 350	550.7 606.2 275.3 211.4 320.9	800 800 400 300 450	812.7 923.8 406.4 321.9 488.6	1038.4 827.9 1253.6	700 700 350 250 400	557.9 614.1 278.9 214.3 325.3	800 800 400 300 450	819.9 931.8 410.0 324.7 493.0	 1042.0 830.7 1258.0	700 700 350 250 400	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	10 10 10 10 10	621.1 682.8 309.7 238.1 361.1	800 1000 450 350 500	997.6 1136.1 498.4 396.3 598.9	1306.4 1042.3 1577.9	700 800 350 300 450	637.1 700.5 317.7 244.5 370.8	800 1000 450 350 500	1013.6 1153.8 506.4 402.7 608.6	 1314.4 1048.7 1587.6	800 800 400 300 450	644.3 708.5 321.3 247.4 375.2	800 1000 450 350 500	1020.8 1161.7 510.0 405.6 612.9	 1318.0 1051.6 1591.9	800 800 400 300 450	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	12 12 12 12 12	673.2 740.9 336.6 258.3 391.5	800 1000 450 350 500	935.2 1058.5 467.6 368.8 559.2	— 1099.6 874.8 1324.2	800 1000 400 300 450											115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	12 12 12 12 12	769.6 846.0 383.9 294.8 447.2	1000 1000 500 400 600	1146.0 1299.2 572.6 453.0 685.0	1380.6 1099.0 1664.0	1000 1000 450 350 500				_ _ _ _							115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	13 13 13 13 13	850.2 935.1 424.7 326.3 494.5	1200 1200 600 450 700	1152.0 1305.9 575.6 455.4 688.6	1383.6 1101.4 1667.6	1000 1200 500 400 600				_ _ _ _							115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	13 13 13 13 13	910.0 1001.1 455.0 349.6 529.5	1200 1200 600 450 700	1211.8 1371.8 605.9 478.7 723.5	— 1413.9 1124.7 1702.5	1200 1200 600 400 600		11111	11111		11111				11111	11111	115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	15 15 15	516.5 396.4 600.2	700 500 800	777.6 616.2 933.9	1999.6 1594.2 2412.9	600 450 700			_	_	_	_	_ 	=		_	115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	16 16 16	549.7 422.1 638.7	800 600 800	810.9 641.9 972.4	2032.9 1619.9 2451.4	700 500 800	_		_	_ _ _	=	_ _	_ _ _	_		=	115 115 115	40 40 40
300	460-60 575-60 380-60	414 518	506 633 418	16 16 16	610.9 468.7 710.3	800 600 1000	810.9 641.9 972.4	2032.9 1619.9 2451.4	700 600 800	_	_	_	_	_	_	_	_	_	_	115 115 115	40 40 40
325	460-60 575-60 380-60	414 518	506 633 418	18 18 18	624.3 479.1 724.7	800 600 1000	885.5 698.9 1058.4	2107.5 1676.9 2537.4	700 600 800	_		_	_	=	_	_	=		=	115 115 115 115	40 40 40
350	460-60 575-60 380-60	414 518	506 633 418	18 18 18	685.5 525.7 796.3	800 700 1000	885.5 698.9 1058.4	2107.5 1676.9 2537.4	800 600 1000	_	_	=		_			=		_	115 115 115 115	40 40 40
400	460-60 575-60 380-60	414 518	506 633 418	20 20 20 20	746.6 573.2 867.6	1000 1000 700 1000	1007.8 793.1 1201.3	2229.8 1771.1 2680.3	1000 700 1000	=									=	115 115 115 115	50 50 50
450	460-60 575-60 380-60	414 518	506 633 418	22 22 22 22	880.0 674.6 1022.7	1000 1000 800 1200	1080.0 847.8 1284.8	2302.0 1825.8 2763.8	1000 800 1200											115 115 115 115	50 50 50 50
500	460-60 575-60 380-60	414 518	506 633 418	22 22 22 22	931.3 714.1 1082.4	1200 800 1200	1131.3 887.3 1344.5	2353.3 1865.3 2823.5	1200 800 1200	=	_ _ _	_ _ _ _	=	=		_ _ _	_ _ _	_ _ _	=	115 115 115	50 50 50

ICF MCA MOCP WD XL Instantaneous Current Flow Minimum Circuit Amps Maximum Overcurrent Protection Wye-Delta

Across-the-Line

NOTES:

- Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

- For MCA between 381-760 amps, 6 conductors are required.
 For MCA between 761-1140 amps, 9 conductors are required.
 For MCA between 1141-1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.

 4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
 d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.
 5. Data provided circuit 1/circuit 2 where there are two circuits.
- 5. Data provided circuit 1/circuit 2 where there are two circuits.

Table 5 — 30XA080-500 Electrical Data, Single Point (Standard Condenser Fan Motors) (cont)

	UNIT	VOLTA	GE	NUMBER		10 HP	PUMP, 3450	RPM			15 HP	PUMP, 3450	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz (3 Ph)	Sup Min	plied Max	OF COND FANS	MCA	МОСР	WD IC	F XL	Rec Fuse Size	МСА	МОСР	WD	F XL	Rec Fuse Size	Voltage 1 PH, 60 Hz	MCA and MOCP
080	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6 6 6 6		 - -				 	 - - -				115 115 115 115 115 115	40 40 40 40 40 40
090	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	8 8 8 8	364.4 401.6 182.2 140.6 212.9	450 500 225 175 250	529.5 599.6 264.8 209.9 317.0	1215.5 1388.6 607.8 483.9 732.0	400 450 200 175 250	379.0 417.7 189.5 146.5 221.8	500 500 250 175 250	544.1 615.8 272.1 215.8 325.8	1230.1 1404.8 615.1 489.8 740.8	450 500 225 175 250	115 115 115 115 115	40 40 40 40 40
100	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	8 8 8 8	395.0 434.9 197.5 151.7 231.1	500 500 250 200 300	567.1 641.5 283.6 223.8 340.1	1309.1 1495.5 654.6 520.8 789.1	450 500 225 175 300	409.6 451.1 204.8 157.5 239.9	500 600 250 200 300	581.7 657.6 290.9 229.7 348.9	1323.7 1511.6 661.9 526.7 797.9	450 500 225 175 300	115 115 115 115 115	40 40 40 40 40
110	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	8 8 8 8	436.1 479.9 217.6 167.7 254.8	600 600 300 225 350	567.1 641.5 283.6 223.8 340.1	654.6 520.8 789.1	500 600 250 200 300	450.7 496.0 224.9 173.5 263.6	600 600 300 225 350	581.7 657.6 290.9 229.7 348.9	661.9 526.7 797.9	500 600 250 200 300	115 115 115 115 115	40 40 40 40 40
120	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	8 8 8 8	469.0 515.8 233.6 180.5 273.7	600 700 300 225 350	600.0 677.4 299.6 236.7 359.0	670.6 533.7 808.0	600 600 300 200 300	483.6 531.9 240.9 186.4 282.6	600 700 300 250 350	614.6 693.5 306.9 242.5 367.9	 677.9 539.5 816.9	600 600 300 225 350	115 115 115 115 115	40 40 40 40 40
140	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	10 10 10 10 10	565.1 622.1 282.5 217.1 329.6	800 800 400 300 450	827.1 939.7 413.6 327.6 497.3	1045.6 833.6 1262.3	700 700 350 250 400	579.7 638.2 289.8 223.0 338.5	800 800 400 300 450	841.7 955.9 420.9 333.5 506.2	 1052.9 839.5 1271.2	700 800 350 250 400	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	10 10 10 10 10	651.5 716.4 324.9 250.2 379.5	800 1000 450 350 500	1028.0 1169.7 513.6 408.5 617.3	1321.6 1054.5 1596.3	800 1000 400 300 450	666.1 732.6 332.2 256.1 388.4	800 1000 450 350 500	1042.6 1185.8 520.9 414.3 626.1	1328.9 1060.3 1605.1	800 1000 400 300 450	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	12 12 12 12 12	1111	1111	1111	1111			1111	1111	1111		115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	12 12 12 12 12				11111				11111	11111		115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	13 13 13 13 13						— — —		11111			115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	13 13 13 13 13			1111	1111				11111	1111		115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	15 15 15											115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	16 16 16	1 1		— —								115 115 115	40 40 40
300	460-60 575-60 380-60	414 518 342	506 633 418	16 16 16											115 115 115	40 40 40
325	460-60 575-60 380-60	414 518 342	506 633 418	18 18 18				_ _ _		_ _ _			_ _ _		115 115 115	40 40 40
350	460-60 575-60 380-60	414 518 342	506 633 418	18 18 18				_ _ _		_ _ _			_ _ _		115 115 115	40 40 40
400	460-60 575-60 380-60	414 518 342	506 633 418	20 20 20											115 115 115	50 50 50
450	460-60 575-60 380-60	414 518 342	506 633 418	22 22 22											115 115 115	50 50 50
500	460-60 575-60 380-60	414 518 342	506 633 418	22 22 22		1 1 1			_ _ _					 - 	115 115 115	50 50 50

ICF — MCA — MOCP — WD — XL — Instantaneous Current Flow
 Minimum Circuit Amps
 Maximum Overcurrent Protection
 Wye-Delta
 Across-the-Line

NOTES:

Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.
 Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.
 For MCA that is less than or equal to 380 amps, 3 conductors are required.
 For MCA between 381-760 amps, 6 conductors are required.

For MCA between 761-1140 amps, 9 conductors are required.
For MCA between 1141-1520 amps, 12 conductors are required.
Calculation of conductors required is based on 75 C copper wire.
4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.

3/0 to 500 kcmil.

c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.

d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

5. Data provided circuit 1/circuit 2 where there are two circuits.

Table 6 — 30XA080-500 Electrical Data, Dual Point (Standard Condenser Fan Motors)

	UNIT	VOLT/	GE	NUMBER		ио н	NO HYDRONIC PACKAGE 5 HP PUMP, 3450 RPM								CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	olied	OF COND	MCA	МОСР	ı	CF	Rec Fuse	MCA	МОСР	l	CF	Rec Fuse	Voltage 1 PH,	MCA and
080	230-60 200-60 460-60	Min 207 187 414	253 220 506	3/3 3/3 3/3 3/3	173.3/173.3 190.9/190.9 86.6/ 86.6	250/ 250 300/ 300 125/ 125	WD 342.0/342.0 392.9/392.9 171.0/171.0	XL 1028.0/1028.0 1181.9/1181.9 514.0/ 514.0	Size 225/225 250/250 110/110			WD 	XL 	Size	115 115 115 115	40 40 40 40
	575-60 380-60 230-60 200-60	518	633 418 253 220	3/3 3/3 4/4 4/4	66.5/ 66.5 100.7/100.7 182.9/182.9 201.5/201.5	110/ 110 150/ 150 300/ 300 300/ 300	137.2/137.2 206.9/206.9 348.0/348.0 399.5/399.5	411.2/ 411.2 621.9/ 621.9 1034.0/1034.0 1188.5/1188.5	80/ 80 125/125 225/225 250/250	- 182.9/198.9 201.5/219.2	300/300 300/350	348.0/364.0 399.5/417.2	1034.0/1050.0 1188.5/1206.2	 225/250 250/300	115 115 115 115	40 40 40 40
090	460-60 575-60 380-60	414 518 342	506 633 418	4/4 4/4 4/4	91.4/ 91.4 70.3/ 70.3 106.5/106.5	150/ 150 110/ 110 175/ 175	174.0/174.0 139.6/139.6 210.5/210.5	517.0/ 517.0 413.6/ 413.6 625.5/ 625.5	110/110 90/ 90 125/125	91.4/ 99.4 70.3/ 76.7 106.5/116.1	150/150 110/125 175/175	174.0/182.0 139.6/146.0 210.5/220.2	517.0/ 525.0 413.6/ 420.0 625.5/ 635.2	110/125 90/ 90 125/150	115 115 115	40 40 40
100	230-60 200-60 460-60 575-60 380-60	414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	199.9/199.9 220.0/220.0 99.9/ 99.9 76.4/ 76.4 116.5/116.5	300/ 300 350/ 350 150/ 150 125/ 125 175/ 175	372.0/372.0 426.5/426.5 186.0/186.0 148.6/148.6 225.5/225.5	1114.0/1114.0 1280.5/1280.5 557.0/ 557.0 445.6/ 445.6 674.5/ 674.5	250/250 300/300 125/125 90/ 90 150/150		300/350 350/350 150/175 125/125 175/200	372.0/388.0 426.5/444.2 186.0/194.0 148.6/155.0 225.5/235.2	1114.0/1130.0 1280.5/1298.2 557.0/ 565.0 445.6/ 452.0 674.5/ 684.2	250/300 300/300 125/150 90/100 150/150	115 115 115 115 115	40 40 40 40 40
110	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	241.0/199.9 264.9/220.0 120.0/ 99.9 92.5/ 76.4 140.2/116.5	400/ 300 450/ 350 200/ 150 150/ 125 225/ 175	372.0/372.0 426.5/426.5 186.0/186.0 148.6/148.6 225.5/225.5	— 557.0/557.0 445.6/445.6 674.5/674.5	300/250 350/300 150/125 110/ 90 175/150	241.0/215.9 264.9/237.7 120.0/107.9 92.5/ 82.8 140.2/126.2	400/350 450/350 200/175 150/125 225/200	372.0 /388.0 426.5/444.2 186.0/194.0 148.6/155.0 225.5/235.2	— 557.0/ 565.0 445.6/ 452.0 674.5/ 684.2	300/300 350/300 150/150 110/100 175/150	115 115 115 115 115	40 40 40 40 40
120	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	241.0/241.0 264.9/264.9 120.0/120.0 92.5/ 92.5 140.2/140.2	400/ 400 450/ 450 200/ 200 150/ 150 225/ 225	372.0/372.0 426.5/426.5 186.0/186.0 148.6/148.6 225.5/225.5	 557.0/557.0 445.6/445.6 674.5/674.5	300/300 350/350 150/150 110/110 175/175	241.0/257.0 264.9/282.6 120.0/128.0 92.5/ 98.9 140.2/149.9	400/400 450/450 200/200 150/150 225/250	372.0/388.0 426.5/444.2 186.0/194.0 148.6/155.0 225.5/235.2	 557.0/ 565.0 445.6/ 452.0 674.5/ 684.2	300/350 350/350 150/150 110/125 175/200	115 115 115 115 115	40 40 40 40 40
140	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	370.0/199.9 407.2/220.0 185.0/ 99.9 141.9/ 76.4 215.1/116.5	600/ 300 700/ 350 300/ 150 225/ 125 350/ 175	632.0/372.0 724.8/426.5 316.0/186.0 252.4/148.6 382.8/225.5	— 948.0/557.0 758.4/445.6 1147.8/674.5	450/250 500/300 225/125 175/ 90 300/150	370.0/215.9 407.2/237.7 185.0/107.9 141.9/ 82.8 215.1/126.2	600/350 700/350 300/175 225/125 350/200	632.0/388.0 724.8/444.2 316.0/194.0 252.4/155.0 382.8/235.2	948.0/ 565.0 758.4/ 452.0 1147.8/ 684.2	450/300 500/300 225/150 175/100 300/150	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	414 518	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	423.5/241.0 465.6/264.9 211.3/120.0 162.2/ 92.5 246.0/140.2	700/ 400 800/ 450 350/ 200 250/ 150 400/ 225	800.0/372.0 918.8/426.5 400.0/186.0 320.4/148.6 483.8/225.5		600/300 600/350 250/150 200/110 300/175		700/400 800/450 350/200 250/150 400/250	800.0/388.0 918.8/444.2 400.0/194.0 320.4/155.0 483.8/235.2	1208.0/ 565.0 966.4/ 452.0 1462.8/ 684.2	600/350 600/350 250/150 200/125 300/200	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60		253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	370.0/370.0 407.2/407.2 185.0/185.0 141.9/141.9 215.1/215.1	600/ 600 700/ 700 300/ 300 225/ 225 350/ 350	632.0/632.0 724.8/724.8 316.0/316.0 252.4/252.4 382.8/382.8	948.0/ 948.0 758.4/ 758.4 1147.8/1147.8	450/450 500/500 225/225 175/175 300/300	11111		11111	11111		115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	414	253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	423.5/423.5 465.6/465.6 211.3/211.3 162.2/162.2 246.0/246.0	700/ 700 800/ 800 350/ 350 250/ 250 400/ 400	800.0/800.0 918.8/918.8 400.0/400.0 320.4/320.4 483.8/483.8	1208.0/1208.0 966.4/ 966.4 1462.8/1462.8	600/600 600/600 250/250 200/200 300/300				- - -		115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6	504.2/423.5 554.7/465.6 252.1/211.3 193.7/162.2 293.3/246.0	800/ 700 800/ 800 400/ 350 300/ 250 500/ 400	806.0/800.0 925.4/918.8 403.0/400.0 322.8/320.4 487.4/483.8	— 1211.0/1208.0 968.8/ 966.4 1466.4/1462.8	600/600 700/600 300/250 250/200 350/300		 - - -				115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	414 518	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6	504.2/498.2 554.7/548.0 252.1/249.1 193.7/191.3 293.3/289.7	800/ 800 800/ 800 400/ 400 300/ 300 500/ 500	806.0/800.0 925.4/918.8 403.0/400.0 322.8/320.4 487.4/483.8	 1211.0/1208.0 968.8/ 966.4 1466.4/1462.8	600/600 700/700 300/300 250/250 350/350		_ _ _ _			 	115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	342	506 633 418	9/6 9/6 9/6	343.9/211.3 263.8/162.2 399.0/246.0	500/ 350 450/ 250 600/ 400	605.0/400.0 483.6/320.4 732.7/483.8	1827.0/1208.0 1461.6/ 966.4 2211.7/1462.8	450/250 350/200 500/300	_ _ _	_ _ _				115 115 115	40 40 40
280	460-60 575-60 380-60	342	506 633 418	9/7 9/7 9/7	343.9/252.1 263.8/193.7 399.0/293.3	500/ 400 450/ 300 600/ 500		1827.0/1211.0 1461.6/ 968.8 2211.7/1466.4	450/300 350/250 500/350	_ _ _	_ _ _	_ _ _	_ _ _		115 115 115	40 40 40
300	460-60 575-60 380-60		506 633 418	10/6 10/6 10/6	408.0/249.1 312.8/191.3 474.2/289.7	700/ 400 500/ 300 800/ 500	486.0/320.4 736.3/483.8	1830.0/1208.0 1464.0/ 966.4 2215.3/1462.8	500/300 400/250 600/350	_ _ _	_ _ _	_ _ _	_ _ _	<u>-</u>	115 115 115	40 40 40
325	460-60 575-60 380-60	518 342	506 633 418	9/9 9/9 9/9	343.9/343.9 263.8/263.8 399.0/399.0	500/ 500 450/ 450 600/ 600	732.7/732.7	1827.0/1827.0 1461.6/1461.6 2211.7/2211.7	450/450 350/350 500/500	_ _ _	_ _ _				115 115 115	40 40 40
350	460-60 575-60 380-60	518 342	506 633 418	9/9 9/9 9/9	405.0/343.9 310.4/263.8 470.5/399.0	700/ 500 500/ 450 800/ 600	483.6/483.6 732.7/732.7	1827.0/1827.0 1461.6/1461.6 2211.7/2211.7	500/450 400/350 600/500	_ _ _	_ _ _	_ _ _	_ _ _	_	115 115 115	40 40 40
400	460-60 575-60 380-60	518 342	506 633 418	8/12 8/12 8/12	340.9/452.0 261.4/347.2 395.4/525.8	500/ 600 450/ 450 600/ 700	729.1/719.9	1824.0/1410.9 1459.2/1122.3 2208.1/1698.9	450/500 350/400 500/600		_ _ _	_ _ _		_ 	115 115 115	50 50 50
450	460-60 575-60 380-60	518 342	506 633 418	8/14 8/14 8/14	402.0/553.6 308.0/424.4 466.9/643.3	700/ 800 500/ 600 800/ 800		1824.0/1975.6 1459.2/1575.6 2208.1/2384.5	500/700 400/500 600/800		_ _ _	_ 		_ 	115 115 115	50 50 50
500	460-60 575-60 380-60	518	506 633 418	8/14 8/14 8/14	402.0/604.9 308.0/463.9 466.9/703.0	700/ 800 500/ 600 800/1000	602.0/804.9 481.2/637.1 729.1/965.2	1824.0/2026.9 1459.2/1615.1 2208.1/2444.2	500/700 400/600 600/800	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	115 115 115	50 50 50
		LEGE	ND							For MCA by	otwoon 28	1-760 amps 6	conductors are r	oquirod		

ICF MCA MOCP WD XL Instantaneous Current Flow Minimum Circuit Amps Maximum Overcurrent Protection Wye-Delta

Across-the-Line

NOTES:

- Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 For MCA that is less than or equal to 380 amps, 3 conductors are required.

- For MCA between 381-760 amps, 6 conductors are required.
 For MCA between 761-1140 amps, 9 conductors are required.
 For MCA between 1141-1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.

 4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
 d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.
 5. Data provided circuit 1/circuit 2 where there are two circuits.
- 5. Data provided circuit 1/circuit 2 where there are two circuits.

Table 6 — 30XA080-500 Electrical Data, Dual Point (Standard Condenser Fan Motors) (cont)

	UNIT	/OLT/	GE	NUMBER		7.5 l	HP PUMP, 345	0 RPM			10 H	IP PUMP, 345	0 RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz (3 Ph)		plied	OF COND	MCA	МОСР		CF	Rec Fuse	MCA	МОСР		CF	Rec Fuse	Voltage 1 PH,	MCA and
080	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	3/3 3/3 3/3 3/3 3/3 3/3			WD 	XL — — — —	Size	_ _ _ _ _		WD 	XL - - - - -	Size	115 115 115 115 115 115	40 40 40 40 40 40
090	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	182.9/206.1 201.5/227.1 91.4/103.0 70.3/ 79.6 106.5/120.5	300/300 300/350 150/150 110/125 175/175	348.0/371.2 399.5/425.2 174.0/185.6 139.6/148.9 210.5/224.6	1034.0/1057.2 1188.5/1214.2 517.0/ 528.6 413.6/ 422.9 625.5/ 639.6	225/250 250/300 110/125 90/100 125/150	182.9/213.3 201.5/235.1 91.4/106.6 70.3/ 82.5 106.5/124.9	300/300 300/350 150/150 110/125 175/175	348.0/378.4 399.5/433.2 174.0/189.2 139.6/151.8 210.5/228.9	1034.0/1064.4 1188.5/1222.2 517.0/ 532.2 413.6/ 425.8 625.5/ 643.9	225/250 250/300 110/125 90/100 125/150	115 115 115 115 115	40 40 40 40 40
100	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	199.9/223.1 220.0/245.7 99.9/111.5 76.4/ 85.7 116.5/130.6	300/350 350/400 150/175 125/125 175/200	372.0/395.2 426.5/452.2 186.0/197.6 148.6/157.9 225.5/239.6	1114.0/1137.2 1280.5/1306.2 557.0/ 568.6 445.6/ 454.9 674.5/ 688.6	250/300 300/300 125/150 90/100 150/175	199.9/230.3 220.0/253.6 99.9/115.1 76.4/ 88.6 116.5/134.9	300/350 350/400 150/175 125/125 175/200	372.0/402.4 426.5/460.2 186.0/201.2 148.6/160.8 225.5/243.9	1114.0/1144.4 1280.5/1314.2 557.0/ 572.2 445.6/ 457.8 674.5/ 692.9	250/300 300/300 125/150 90/110 150/175	115 115 115 115 115	40 40 40 40 40
110	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	241.0/223.1 264.9/245.7 120.0/111.5 92.5/ 85.7 140.2/130.6	400/350 450/400 200/175 150/125 225/200	372.0/395.2 426.5/452.2 186.0/197.6 148.6/157.9 225.5/239.6	 557.0/ 568.6 445.6/ 454.9 674.5/ 688.6	300/300 350/300 150/150 110/100 175/175	241.0/230.3 264.9/253.6 120.0/115.1 92.5/ 88.6 140.2/134.9	400/350 450/400 200/175 150/125 225/200	372.0/402.4 426.5/460.2 186.0/201.2 148.6/160.8 225.5/243.9	 557.0/ 572.2 445.6/ 457.8 674.5/ 692.9	300/300 350/300 150/150 110/110 175/175	115 115 115 115 115	40 40 40 40 40
120	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	241.0/264.2 264.9/290.6 120.0/131.6 92.5/101.8 140.2/154.3	400/400 450/450 200/200 150/150 225/250	372.0/395.2 426.5/452.2 186.0/197.6 148.6/157.9 225.5/239.6	— 557.0/ 568.6 445.6/ 454.9 674.5/ 688.6	300/350 350/350 150/175 110/125 175/200	241.0/271.4 264.9/298.5 120.0/135.2 92.5/104.6 140.2/158.6	400/400 450/450 200/200 150/150 225/250	372.0/402.4 426.5/460.2 186.0/201.2 148.6/160.8 225.5/243.9	— 557.0/ 572.2 445.6/ 457.8 674.5/ 692.9	300/350 350/350 150/175 110/125 175/200	115 115 115 115 115	40 40 40 40 40
140	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	370.0/223.1 407.2/245.7 185.0/111.5 141.9/ 85.7 215.1/130.6	600/350 700/400 300/175 225/125 350/200	632.0/395.2 724.8/452.2 316.0/197.6 252.4/157.9 382.8/239.6	948.0/ 568.6 758.4/ 454.9 1147.8/ 688.6	450/300 500/300 225/150 175/100 300/175	370.0/230.3 407.2/253.6 185.0/115.1 141.9/ 88.6 215.1/134.9	600/350 700/400 300/175 225/125 350/200	632.0/402.4 724.8/460.2 316.0/201.2 252.4/160.8 382.8/243.9	948.0/ 572.2 758.4/ 457.8 1147.8/ 692.9	450/300 500/300 225/150 175/110 300/175	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	423.5/264.2 465.6/290.6 211.3/131.6 162.2/101.8 246.0/154.3	700/400 800/450 350/200 250/150 400/250	800.0/395.2 918.8/452.2 400.0/197.6 320.4/157.9 483.8/239.6	 1208.0/ 568.6 966.4/ 454.9 1462.8/ 688.6	600/350 600/350 250/175 200/125 300/200	423.5/271.4 465.6/298.5 211.3/135.2 162.2/104.6 246.0/158.6	700/400 800/450 350/200 250/150 400/250	800.0/402.4 918.8/460.2 400.0/201.2 320.4/160.8 483.8/243.9	— 1208.0/ 572.2 966.4/ 457.8 1462.8/ 692.9	600/350 600/350 250/175 200/125 300/200	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	_ _ _ _				 - -	_ _ _ _	_ _ _ _				115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	11111		11111	1111				11111	11111		115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6		1111	1111	11111		 		1111	11111		115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6	11111	11111	11111	11111	11111			11111	11111	11111	115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	9/6 9/6 9/6	_ _ _	_	_ 	_ _ _		_ _ _	_		_ _ _	_	115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	9/7 9/7 9/7	_ _ _	1 1		_	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _		115 115 115	40 40 40
300	460-60 575-60 380-60	414	506	10/6 10/6 10/6	_ _ _		_ _		_ _ _	_	_	_ _	_ _ _	_ _ _	115 115 115	40 40 40
325	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9						_ _ _	_			_	115 115 115 115	40 40 40
350	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9											115 115 115 115	40 40 40 40
400	460-60 575-60	414 518	506 633	8/12 8/12											115 115	50 50
450	380-60 460-60 575-60	342 414 518	506 633	8/12 8/14 8/14											115 115 115	50 50 50
500	380-60 460-60 575-60 380-60	342 414 518 342	506 633 418	8/14 8/14 8/14 8/14		-		_ _ _				<u> </u>	_ _ _ _		115 115 115 115	50 50 50 50

ICF — Instantaneous Current Flow
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
WD — Wye-Delta
XL — Across-the-Line

NOTES:

- Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 For MCA that is less than or equal to 380 amps, 3 conductors are required.

- For MCA between 381-760 amps, 6 conductors are required.
 For MCA between 761-1140 amps, 9 conductors are required.
 For MCA between 761-1140 amps, 9 conductors are required.
 For MCA between 1141-1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.

 4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
 d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 5. Data provided circuit 1/circuit 2 where there are two circuits.

Table 6 — 30XA080-500 Electrical Data, Dual Point (Standard Condenser Fan Motors) (cont)

	UNIT	VOLTAG	iΕ	NUMBER			15 HP PUMP, 3450 I	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	-	plied	OF COND	MCA	MOCP		ICF	Rec Fuse	Voltage 1 PH,	MCA and
080	230-60 200-60 460-60 575-60	207 187 414 518	253 220 506 633	3/3 3/3 3/3 3/3 3/3	182.9/227.9 201.5/251.2 91.4/113.9 70.3/ 88.3	300/350 300/350 150/175 110/125	348.0/393.0 399.5/449.3 174.0/196.5 139.6/157.6	XL 1034.0/1079.0 1188.5/1238.3 517.0/ 539.5 413.6/ 431.6	Size 225/300 250/300 110/150 90/110	60 Hz 115 115 115 115 115	40 40 40 40 40
090	380-60 230-60 200-60 460-60 575-60 380-60	342 207 187 414 518 342	253 220 506 633 418	3/3 4/4 4/4 4/4 4/4 4/4	106.5/133.7 199.9/244.9 220.0/269.8 99.9/122.4 76.4/ 94.4 116.5/143.8	175/200 300/350 350/400 150/175 125/125 175/225	210.5/237.8 372.0/417.0 426.5/476.3 186.0/208.5 148.6/166.6 225.5/252.8	625.5/ 652.8 1114.0/1159.0 1280.5/1330.3 557.0/ 579.5 445.6/ 463.6 674.5/ 701.8	125/175 250/300 300/350 125/150 90/110 150/175	115 115 115 115 115 115	40 40 40 40 40 40
100	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	241.0/244.9 264.9/269.8 120.0/122.4 92.5/ 94.4 140.2/143.8	400/350 450/400 200/175 150/125 225/225	372.0/417.0 426.5/476.3 186.0/208.5 148.6/166.6 225.5/252.8	557.0/ 579.5 445.6/ 463.6 674.5/ 701.8	300/300 350/350 150/150 110/110 175/175	115 115 115 115 115 115	40 40 40 40 40
110	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	241.0/286.0 264.9/314.7 120.0/142.5 92.5/110.5 140.2/167.5	400/450 450/500 200/225 150/175 225/250	372.0/417.0 426.5/476.3 186.0/208.5 148.6/166.6 225.5/252.8	 557.0/ 579.5 445.6/ 463.6 674.5/ 701.8	300/350 350/400 150/175 110/150 175/200	115 115 115 115 115	40 40 40 40 40
120	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	4/4 4/4 4/4 4/4 4/4	370.0/244.9 407.2/269.8 185.0/122.4 141.9/ 94.4 215.1/143.8	600/350 700/400 300/175 225/125 350/225	632.0/417.0 724.8/476.3 316.0/208.5 252.4/166.6 382.8/252.8	948.0/ 579.5 758.4/ 463.6 1147.8/ 701.8	450/300 500/350 225/150 175/110 300/175	115 115 115 115 115 115	40 40 40 40 40
140	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	423.5/286.0 465.6/314.7 211.3/142.5 162.2/110.5 246.0/167.5	700/450 800/500 350/225 250/175 400/250	800.0/417.0 918.8/476.3 400.0/208.5 320.4/166.6 483.8/252.8	1208.0/ 579.5 966.4/ 463.6 1462.8/ 701.8	600/350 600/400 250/175 200/150 300/200	115 115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	_ _ _ _		_ _ _ _	_ _ _ _ _		115 115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _		115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	_ _ _ _	_ _ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	115 115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6 7/6	_ _ _ _	_ _ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _ _	115 115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6 7/6	_ _ _ _	_ _ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _ _	115 115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	9/6 9/6 9/6	_ _ _	_ 	_ _ _	_ _ _		115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	9/7 9/7 9/7	_ _ _	_ _ _	_ _ _	_ _ _		115 115 115	40 40 40
300	460-60 575-60 380-60	414 518 342	506 633 418	10/6 10/6 10/6	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	115 115 115	40 40 40
325	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9	_ _ _		_ _ _	_ _ _	_ _ _	115 115 115	40 40 40
350	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	115 115 115	40 40 40
400	460-60 575-60 380-60	414 518 342	506 633 418	8/12 8/12 8/12	_ _ _	=	_ _ _	_ _ _	=	115 115 115	50 50 50
450	460-60 575-60 380-60	414 518 342	506 633 418	8/14 8/14 8/14	_ _ _	=	_ _ _	_ _ _	=	115 115 115	50 50 50
500	460-60 575-60 380-60	414 518 342	506 633 418	8/14 8/14 8/14	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	115 115 115	50 50 50

ICF MCA MOCP WD XL Instantaneous Current Flow Minimum Circuit Amps Maximum Overcurrent Protection Wye-Delta

Across-the-Line

NOTES:

Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

For MCA that is less than or equal to 380 amps, 3 conductors are required.

- For MCA between 381-760 amps, 6 conductors are required.
 For MCA between 761-1140 amps, 9 conductors are required.
 For MCA between 1141-1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.

 4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
 b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.
 c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.
 d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.
 5. Data provided circuit 1/circuit 2 where there are two circuits.

- 5. Data provided circuit 1/circuit 2 where there are two circuits.

Table 7 — 30XA140-500 Electrical Data, Single Point (High Ambient Option)

	UNIT	VOLTA	GE	NUMBER	١	IO HYDR	ONIC PA	CKAGE			5 HP PI	JMP, 345	0 RPM			7.5 HP I	PUMP, 34	50 RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	olied	OF COND			IC	F	Rec			İC	F	Rec			IC	F	Rec	Voltage	MCA
JUAA	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
140	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	10 10 10 10 10	562.0 618.8 281.0 216.3 328.3	800 800 400 300 450	838.9 952.8 419.5 332.5 504.6	 1051.5 838.5 1269.6	700 700 350 250 400	578.0 636.5 289.0 222.7 338.0	800 800 400 300 450	854.9 970.5 427.5 338.9 514.3	 1059.5 844.9 1279.3	700 800 350 250 400	585.2 644.4 292.6 225.6 342.3	800 800 400 300 450	862.1 978.5 431.1 341.8 518.7	 1063.1 847.8 1283.7	700 800 350 250 400	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	10 10 10 10 10	642.7 706.9 320.5 247.2 374.9	800 1000 450 350 500	1036.7 1179.4 518.0 412.1 622.8	1326.0 1058.1 1601.8	800 800 400 300 450	658.7 724.5 328.5 253.6 384.6	800 1000 450 350 500	1052.7 1197.1 526.0 418.5 632.5	1334.0 1064.5 1611.5	800 1000 400 300 450	665.9 732.5 332.1 256.5 388.9	800 1000 450 350 500	1059.9 1205.0 529.6 421.4 636.8	— 1337.6 1067.4 1615.8	800 1000 400 300 450	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	12 12 12 12 12	703.9 775.0 351.9 271.1 410.8	800 1000 450 350 500	980.8 1109.1 490.4 387.3 587.2	— 1122.4 893.3 1352.2	800 1000 400 300 450											115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	12 12 12 12 12	795.6 875.0 396.9 305.8 463.8	1000 1200 500 400 600	1189.6 1347.5 594.4 470.7 711.7	 1402.4 1116.7 1690.7	1000 1000 450 350 600											115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	13 13 13 13 13	876.7 964.6 438.0 337.6 511.5	1200 1200 600 450 700	1200.4 1359.4 599.8 475.0 718.3	 1407.8 1121.0 1697.3	1000 1200 500 400 600											115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	13 13 13 13 13	933.0 1026.7 466.5 359.5 544.4	1200 1200 600 450 700	1256.7 1421.6 628.3 497.0 751.2	1436.3 1143.0 1730.2	1200 1200 600 400 600											115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	15 15 15	529.1 407.4 616.7	700 500 800	806.6 639.7 969.3	2028.6 1617.7 2448.3	600 500 700				_	_	_	_				115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	16 16 16	563.0 433.6 656.2	800 600 800	840.5 665.9 1008.8	2062.5 1643.9 2487.8	700 500 800	111			111		111		111			115 115 115	40 40 40
300	460-60 575-60 380-60	414 518 342	506 633 418	16 16 16	619.6 476.7 722.3	800 600 1000	840.5 665.9 1008.8	2062.5 1643.9 2487.8	700 600 1000	111		111	111		111	111	111			115 115 115	40 40 40
325	460-60 575-60 380-60	414 518 342	506 633 418	18 18 18	638.1 491.2 743.0	800 600 1000	915.6 723.5 1095.6	2137.6 1701.5 2574.6	700 600 1000	111				_ 	1 1 1					115 115 115	40 40 40
350	460-60 575-60 380-60	414 518 342	506 633 418	18 18 18	694.6 534.2 809.1	800 700 1000	915.6 723.5 1095.6	2137.6 1701.5 2574.6	800 600 1000	111				_ _ _	111					115 115 115	40 40 40
400	460-60 575-60 380-60	414 518 342	506 633 418	20 20 20	760.8 585.7 886.5	1000 700 1000	1038.3 818.1 1239.1	2260.3 1796.1 2718.1	1000 700 1000	111				_ _ _	111					115 115 115	50 50 50
450	460-60 575-60 380-60	414 518 342	506 633 418	22 22 22	889.1 683.4 1035.9	1000 800 1200	1110.0 872.7 1322.4	2332.0 1850.7 2801.4	1000 800 1200	111		111	111	_ _ _	111	111	111			115 115 115	50 50 50
500	460-60 575-60 380-60	414 518 342	506 633 418	22 22 22	937.6 720.8 1092.4	1200 800 1200	1158.5 910.0 1378.8	2380.5 1888.0 2857.8	1200 800 1200	111		111	111		111	111	111		111	115 115 115	50 50 50

ICF — Instantaneous Current Flow
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
WD — Wye-Delta
XL — Across-the-Line

NOTES:

Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

For MCA that is less than or equal to 380 amps, 3 conductors are required.

For MCA between 381-760 amps, 6 conductors are required.
For MCA between 761-1140 amps, 9 conductors are required.
For MCA between 1141-1520 amps, 12 conductors are required.
Calculation of conductors required is based on 75 C copper wire.

4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.

- to 500 kcmil.

 b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.

 c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.

 d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 5. Data provided circuit 1/circuit 2 where there are two circuits.

Table 7 — 30XA140-500 Electrical Data, Single Point (High Ambient Option) (cont)

	OINI	VOLTAC	βE	NUMBER		10 HP	PUMP, 3450	RPM			15 HP	PUMP, 3450	RPM	_	CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND		моор	IC	F	Rec		МОСР	IC	F	Rec	Voltage	MCA
JUNA	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
140	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	10 10 10 10 10	592.4 652.4 296.2 228.4 346.7	800 800 400 300 450	869.3 986.5 434.7 344.6 523.0	— 1066.7 850.6 1288.0	700 800 350 300 400	607.0 668.6 303.5 234.3 355.5	800 800 400 300 500	883.9 1002.6 442.0 350.5 531.9	— 1074.0 856.5 1296.9	700 800 350 300 400	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	10 10 10 10 10	673.1 740.5 335.7 259.4 393.3	800 1000 450 350 500	1067.1 1213.0 533.2 424.3 641.2	— 1341.2 1070.3 1620.2	800 1000 400 300 450	687.7 756.6 343.0 265.2 402.1	800 1000 450 350 500	1081.7 1229.1 540.5 430.1 650.0	1348.5 1076.1 1629.0	800 1000 400 300 450	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	12 12 12 12 12	-		1111	1111		11111	- - - -	- - - -	1111		115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	12 12 12 12 12	-		1111	1111		11111	- - - -	- - - -	1111		115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	13 13 13 13 13	-		1111	11111		11111	_ _ _ _	- - -	1111		115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	13 13 13 13 13	-		1111	1111		11111	- - - -	- - - -	1111		115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	15 15 15		1 1 1		111		1 1 1	1 1 1		111		115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	16 16 16		1 1 1			_ 	1 1 1	_ _ _	_ _ _		_ _ _	115 115 115	40 40 40
300	460-60 575-60 380-60	414 518 342	506 633 418	16 16 16		1 1 1			_ _ _	1 11	_ _ _			_ _ _	115 115 115	40 40 40
325	460-60 575-60 380-60	414 518 342	506 633 418	18 18 18		1 1 1			_ _ _	1 11	_ _ _			_ _ _	115 115 115	40 40 40
350	460-60 575-60 380-60	414 518 342	506 633 418	18 18 18		1 1 1		1 1 1							115 115 115	40 40 40
400	460-60 575-60 380-60	414 518 342	506 633 418	20 20 20	 			111		111		_ _ _		_ _ _	115 115 115	50 50 50
450	460-60 575-60 380-60	414 518 342	506 633 418	22 22 22	 			111		111		_ _ _		_ _ _	115 115 115	50 50 50
500	460-60 575-60 380-60	414 518 342	506 633 418	22 22 22	_ _ _	1				111	_ _ _			_ _ _	115 115 115	50 50 50

ICF — Instantaneous Current Flow
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
WD — Wye-Delta
XL — Across-the-Line

NOTES:

Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

For MCA that is less than or equal to 380 amps, 3 conductors are required.

- For MCA between 381-760 amps, 6 conductors are required.
 For MCA between 761-1140 amps, 9 conductors are required.
 For MCA between 1141-1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.

 4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage)
 to 500 kcmil.
- to 500 kcmil.

 b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.

 c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.

 d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 5. Data provided circuit 1/circuit 2 where there are two circuits.

Table 8 — 30XA140-500 Electrical Data, Dual Point (High Ambient Option)

	UNIT	VOLTA	GE	NUMBER		NO H	YDRONIC PAG	CKAGE			5 H	P PUMP, 3450	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND	MCA	МОСР	I	CF	Rec	MCA	МОСР	I	CF	Rec	Voltage 1 PH.	MCA
JUAN	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	WCA	MOCP	WD	XL	Fuse Size	60 Hz	and MOCP
140	230-60 200-60 460-60 575-60 380-60		253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	383.8/211.9 422.6/233.3 191.9/105.9 147.7/ 81.4 223.9/124.0	600/ 300 700/ 350 300/ 150 225/ 125 350/ 200	660.8/391.2 756.7/447.8 330.4/195.6 263.9/156.3 400.2/237.1	962.4/ 566.6 769.9/ 453.3 1165.2/ 686.1	450/250 500/300 225/125 175/100 300/150	383.8/227.9 422.6/251.0 191.9/113.9 147.7/ 87.8 223.9/133.7	600/350 700/350 300/175 225/125 350/200	660.8/407.2 756.7/465.5 330.4/203.6 263.9/162.7 400.2/246.8	962.4/574.6 769.9/459.7 1165.2/695.8	450/300 500/300 225/150 175/110 300/175	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60		253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	434.8/249.1 478.1/273.9 216.9/124.1 167.0/ 95.9 253.3/145.4	700/ 400 800/ 450 350/ 200 250/ 150 400/ 225	828.8/391.2 950.7/447.8 414.4/195.6 331.9/156.3 501.2/237.1	 1222.4/ 566.6 977.9/ 453.3 1480.2/ 686.1	600/300 600/350 300/150 200/125 300/175	434.8/265.1 478.1/291.6 216.9/132.1 167.0/102.3 253.3/155.1	700/400 800/450 350/200 250/150 400/250	828.8/407.2 950.7/465.5 414.4/203.6 331.9/162.7 501.2/246.8	— 1222.4/574.6 977.9/459.7 1480.2/695.8	600/350 600/350 300/175 200/125 300/200	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60		253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	383.8/383.8 422.6/422.6 191.9/191.9 147.7/147.7 223.9/223.9	600/ 600 700/ 700 300/ 300 225/ 225 350/ 350	660.8/660.8 756.7/756.7 330.4/330.4 263.9/263.9 400.2/400.2	962.4/ 962.4 769.9/ 769.9 1165.2/1165.2	450/450 500/500 225/225 175/175 300/300				11111		115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60		253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	434.8/434.8 478.1/478.1 216.9/216.9 167.0/167.0 253.3/253.3	700/ 700 800/ 800 350/ 350 250/ 250 400/ 400	828.8/828.8 950.7/950.7 414.4/414.4 331.9/331.9 501.2/501.2	 1222.4/1222.4 977.9/ 977.9 1480.2/1480.2	600/600 600/600 300/300 200/200 300/300				11111		115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	414 518	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6	515.9/434.8 567.8/478.1 258.0/216.9 198.8/167.0 301.0/253.3	800/ 700 800/ 800 400/ 350 300/ 250 500/ 400	839.6/828.8 962.6/950.7 419.8/414.4 336.2/331.9 507.8/501.2	 1227.8/1222.4 982.2/ 977.9 1486.8/1480.2	700/600 700/600 350/300 250/200 400/300	_ _ _ _		11111	11111		115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	414	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6	515.9/505.1 567.8/555.8 258.0/252.6 198.8/194.5 301.0/294.5	800/ 800 800/ 800 400/ 400 300/ 300 500/ 450	839.6/828.8 962.6/950.7 419.8/414.4 336.2/331.9 507.8/501.2	 1227.8/1222.4 982.2/ 977.9 1486.8/1480.2	700/600 700/700 350/300 250/250 400/350	_ _ _ _		11111	11111		115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	9/6 9/6 9/6	349.1/216.9 268.6/167.0 406.2/253.3	500/ 350 450/ 250 600/ 400	626.6/414.4 500.9/331.9 758.8/501.2	1848.6/1222.4 1478.9/ 977.9 2237.8/1480.2	450/300 350/200 500/300			111	111		115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	9/7 9/7 9/7	349.1/258.0 268.6/198.8 406.2/301.0	500/ 400 450/ 300 600/ 500	626.6/419.8 500.9/336.2 758.8/507.8	1848.6/1227.8 1478.9/ 982.2 2237.8/1486.8	450/350 350/250 500/400			111	111		115 115 115	40 40 40
300	460-60 575-60 380-60	414 518 342	506 633 418	10/6 10/6 10/6	411.0/252.6 315.9/194.5 478.9/294.5	600/ 400 500/ 300 800/ 450	632.0/414.4 505.2/331.9 765.4/501.2	1854.0/1222.4 1483.2/ 977.9 2244.4/1480.2	500/300 400/250 600/350	_ _ _					115 115 115	40 40 40
325	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9	349.1/349.1 268.6/268.6 406.2/406.2	500/ 500 450/ 450 600/ 600	626.6/626.6 500.9/500.9 758.8/758.8	1848.6/1848.6 1478.9/1478.9 2237.8/2237.8	450/450 350/350 500/500	_ _ _	_ _ _	111			115 115 115	40 40 40
350	460-60 575-60 380-60		506 633 418	9/9 9/9 9/9	405.6/349.1 311.6/268.6 472.4/406.2	600/ 500 500/ 450 800/ 600	626.6/626.6 500.9/500.9 758.8/758.8	1848.6/1848.6 1478.9/1478.9 2237.8/2237.8	500/450 400/350 600/500	_ _ _					115 115 115	40 40 40
400	460-60 575-60 380-60		506 633 418	8/12 8/12 8/12	343.7/461.1 264.2/355.2 399.7/537.9	500/ 600 400/ 450 600/ 700	621.2/622.9 496.6/492.7 752.3/744.6	1843.2/1430.9 1474.6/1138.7 2231.3/1723.6	450/600 350/400 500/600	_ _ _	_ _ _				115 115 115	50 50 50
450	460-60 575-60 380-60		506 633 418	8/14 8/14 8/14	400.2/560.2 307.3/430.7 465.8/652.8	600/ 800 500/ 600 700/ 800	621.2/781.2 496.6/619.9 752.3/939.2	1843.2/2003.2 1474.6/1597.9 2231.3/2418.2	500/700 400/500 600/800	_ _ _	_ _ _				115 115 115	50 50 50
500	460-60 575-60 380-60		506 633 418	8/14 8/14 8/14	400.2/608.8 307.3/468.0 465.8/709.3	600/ 800 500/ 600 700/1000	621.2/829.7 496.6/657.3 752.3/995.7	1843.2/2051.7 1474.6/1635.3 2231.3/2474.7	500/700 400/600 600/800	_ _ _	_ _ _		_ _ _	_ _ _	115 115 115	50 50 50

ICF — Instantaneous Current Flow
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
WD — Wye-Delta
XL — Across-the-Line

NOTES:

Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

For MCA that is less than or equal to 380 amps, 3 conductors are required.

For MCA between 381-760 amps, 6 conductors are required.
For MCA between 761-1140 amps, 9 conductors are required.
For MCA between 1141-1520 amps, 12 conductors are required.
Calculation of conductors required is based on 75 C copper wire.

4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.

- to 500 kcmil.

 Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.

 Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.

 Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit 1/circuit 2 where there are two circuits.

Table 8 — 30XA140-500 Electrical Data, Dual Point (High Ambient Option) (cont)

	UNIT	VOLTA	GE	NUMBER		7.5 H	IP PUMP, 345	0 RPM			10 H	IP PUMP, 3450	RPM		CONTROL	CIRCUIT
UNIT 30XA	V-Hz	Sup	plied	OF COND	MCA	MOOD	l.	CF	Rec	MCA	MOOD	I I	CF	Rec	Voltage	MCA
JUAA	(3 Ph)	Min	Max	FANS	MCA	MOCP	WD	XL	Fuse Size	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
140	230-60 200-60 460-60 575-60 380-60	342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	383.8/235.1 422.6/259.0 191.9/117.5 147.7/ 90.7 223.9/138.0	600/350 700/400 300/175 225/125 350/200	660.8/414.4 756.7/473.4 330.4/207.2 263.9/165.6 400.2/251.2	962.4/578.2 769.9 /462.6 1165.2/700.2	450/300 500/300 225/150 175/110 300/175	383.8/242.3 422.6/266.9 191.9/121.1 147.7/ 93.5 223.9/142.4	600/350 700/400 300/175 225/125 350/200	660.8/421.6 756.7/481.4 330.4/210.8 263.9/168.4 400.2/255.5	962.4/581.8 769.9/465.4 1165.2/704.5	450/300 500/350 225/150 175/110 300/175	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	434.8/272.3 478.1/299.6 216.9/135.7 167.0/105.2 253.3/159.5	700/400 800/450 350/200 250/150 400/250	828.8/414.4 950.7/473.4 414.4/207.2 331.9/165.6 501.2/251.2	— 1222.4/578.2 977.9/462.6 1480.2/700.2	600/350 600/350 300/175 200/125 300/200	434.8/279.5 478.1/307.6 216.9/139.3 167.0/108.1 253.3/163.8	700/400 800/450 350/200 250/150 400/250	828.8/421.6 950.7/481.4 414.4/210.8 331.9/168.4 501.2/255.5	— 1222.4/581.8 977.9/465.4 1480.2/704.5	600/350 600/400 300/175 200/125 300/200	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60		253 220 506 633 418	6/6 6/6 6/6 6/6 6/6				11111	 - -	11111			11111		115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	518	253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	 			11111		11111		 	11111		115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60		253 220 506 633 418	7/6 7/6 7/6 7/6 7/6	_ _ _ _			11111	_ _ _ _			_ _ _ _	11111		115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6				11111		11111			11111		115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	9/6 9/6 9/6	_ _ _		_ _ _	_ _ _	_ _ _	_ _ _		_ _ _	_ _ _		115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	9/7 9/7 9/7		_ _ _		_ _ _	_ _ _	_ _ _			_ _ _	_ _ _	115 115 115	40 40 40
300	460-60 575-60 380-60	414 518 342	506 633 418	10/6 10/6 10/6		111		111	 - -	111			111		115 115 115	40 40 40
325	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9	 		_ _ _	1 1 1	_ _ _		_ _ _	 		_ _ _	115 115 115	40 40 40
350	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9	_ _ _	111	_ _ _		 			_ _ _			115 115 115	40 40 40
400	460-60 575-60 380-60	414 518 342	506 633 418	8/12 8/12 8/12	_ _ _	111	_ _ _		 			_ _ _			115 115 115	50 50 50
450	460-60 575-60 380-60	414 518 342	506 633 418	8/14 8/14 8/14	_ _ _	111	_ _ _		_ _ _	111		_ _ _		_ _ _	115 115 115	50 50 50
500	460-60 575-60 380-60	414 518 342	506 633 418	8/14 8/14 8/14	_ _ _	111	_ _ _		_ _ _		_ _ _	_ _ _		_ _ _	115 115 115	50 50 50

ICF — Instantaneous Current Flow
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
WD — Wye-Delta
XL — Across-the-Line

NOTES:

- Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

 Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

 For MCA that is less than or equal to 380 amps, 3 conductors are required.

- For MCA between 381-760 amps, 6 conductors are required.
 For MCA between 761-1140 amps, 9 conductors are required.
 For MCA between 1141-1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.

 4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage)
 to 500 kcmil.
- to 500 kcmil.

 b. Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.

 c. Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.

 d. Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 5. Data provided circuit 1/circuit 2 where there are two circuits.

Table 8 — 30XA140-500 Electrical Data, Dual Point (High Ambient Option) (cont)

	UNIT	VOLTAG	iΕ	NUMBER			15 HP PUMP, 3450 R	PM		CONTROL	CIRCUIT
UNIT	V-Hz	Sup	plied	OF				ICF	Rec	Voltage	MCA
30XA	(3 Ph)	Min	Max	COND FANS	MCA	MOCP	WD	XL	Fuse Size	1 PH, 60 Hz	and MOCP
140	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	383.8/256.9 422.6/283.1 191.9/128.4 147.7/ 99.4 223.9/151.2	600/350 700/400 300/175 225/150 350/225	660.8/436.2 756.7/497.5 330.4/218.1 263.9/174.3 400.2/264.4	962.4/589.1 769.9/471.3 1165.2/713.4	450/300 500/350 225/150 175/125 300/175	115 115 115 115 115	40 40 40 40 40
160	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/4 6/4 6/4 6/4 6/4	434.8/294.1 478.1/323.7 216.9/146.6 167.0/113.9 253.3/172.7	700/450 800/500 350/225 250/175 400/250	828.8/436.2 950.7/497.5 414.4/218.1 331.9/174.3 501.2/264.4	 1222.4/589.1 977.9/471.3 1480.2/713.4	600/350 600/400 300/175 200/150 300/200	115 115 115 115 115	40 40 40 40 40
180	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/6 6/6 6/6 6/6 6/6	_ _ _ _	11111	_ _ _ _	_ _ _ _	_ _ _ _	115 115 115 115 115	40 40 40 40 40
200	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	6/6 6/6 6/6 6/6 6/6		11111		_ _ _ _ _		115 115 115 115 115	40 40 40 40 40
220	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6	_ _ _ _	11111	_ _ _ _	_ _ _ _ _		115 115 115 115 115	40 40 40 40 40
240	230-60 200-60 460-60 575-60 380-60	207 187 414 518 342	253 220 506 633 418	7/6 7/6 7/6 7/6 7/6	_ _ _	1111		_ _ _ _	 - -	115 115 115 115 115	40 40 40 40 40
260	460-60 575-60 380-60	414 518 342	506 633 418	9/6 9/6 9/6	=	 	_ _ _		=	115 115 115	40 40 40
280	460-60 575-60 380-60	414 518 342	506 633 418	9/7 9/7 9/7	_ _ _	111	_ _ _	_ _ _	=	115 115 115	40 40 40
300	460-60 575-60 380-60	414 518 342	506 633 418	10/6 10/6 10/6	_ _ _	111		_ _ _		115 115 115	40 40 40
325	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9	_ _ _	111	_ _ _	_ _ _		115 115 115	40 40 40
350	460-60 575-60 380-60	414 518 342	506 633 418	9/9 9/9 9/9		111	 - 	_ _ _	111	115 115 115	40 40 40
400	460-60 575-60 380-60	414 518 342	506 633 418	8/12 8/12 8/12	_ _ _		_ _ _	_ _ _	_ _ _	115 115 115	50 50 50
450	460-60 575-60 380-60	414 518 342	506 633 418	8/14 8/14 8/14					-	115 115 115	50 50 50
500	460-60 575-60 380-60	414 518 342	506 633 418	8/14 8/14 8/14	_ _ _		_ _ _	_ _ _	_ _ _	115 115 115	50 50 50

ICF — Instantaneous Current Flow
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
WD — Wye-Delta
XL — Across-the-Line

NOTES:

Units are suitable for use on electrical systems where voltage supplied to the unit terminals is not below or above the listed minimum and maximum limits. Maximum allowable phase imbalance is: voltage, 2%; amps 10%.

Cooler heater is wired into the control circuit so it is always operable as long as the control power supply disconnect is on, even if any safety device is open.

For MCA that is less than or equal to 380 amps, 3 conductors are required.

- For MCA between 381-760 amps, 6 conductors are required.
 For MCA between 761-1140 amps, 9 conductors are required.
 For MCA between 1141-1520 amps, 12 conductors are required.
 Calculation of conductors required is based on 75 C copper wire.

 4. Wiring for main field supply must be rated 75 C minimum. Use copper for all units.
 a. Incoming wire size range for the terminal block is no. 4 AWG (American Wire Gage) to 500 kcmil.
- to 500 kcmil.

 Incoming wire size range of non-fused disconnect with MCA up to 599.9 amps is 3/0 to 500 kcmil.

 Incoming wire size range of non-fused disconnect with MCA from 600 to 799.9 amps is 1/0 to 500 kcmil.

 Incoming wire size range of non-fused disconnect with MCA from 800 to 1199.9 amps is 250 kcmil to 500 kcmil.

 Data provided circuit 1/circuit 2 where there are two circuits.

Table 9 — Power and Control Connections

		VOLTAGE		PO	WER AND CONTROL	CONNECTIO	ONS	
30XA	TYPE	3 PH	COMBI	*	PEB1†		PEB2†	
		60 Hz	Power	Control	Power	Control	Power	Control
		200	Circuit 1	Yes				
	CINICIE	230	Circuit 1	Yes				
	SINGLE POINT	380	Circuit 1	Yes				
080		460	Circuit 1	Yes				
090 100		575	Circuit 1	Yes				
110		200	Circuit 1 and 2	Yes				
120	DUAL	230	Circuit 1 and 2	Yes				
	DUAL POINT	380	Circuit 1 and 2	Yes				
		460	Circuit 1 and 2	Yes				
		575	Circuit 1 and 2	Yes				
		200	Circuit 1			Yes		
	SINGLE	230	Circuit 1			Yes		
	POINT	380			Circuit 1	Yes		
140		460			Circuit 1	Yes		
160		575			Circuit 1	Yes		
180 200		200	Circuit 1 and 2			Yes		
200	DUAL	230	Circuit 1 and 2			Yes		
	DUAL POINT	380			Circuit 1 and 2	Yes		
		460			Circuit 1 and 2	Yes		
		575			Circuit 1 and 2	Yes		
		200				Yes	Circuit 1	
	OINIOLE	230				Yes	Circuit 1	
	SINGLE POINT	380			Circuit 1	Yes		
		460			Circuit 1	Yes		
220		575			Circuit 1	Yes		
240		200				Yes	Circuit 1 and 2	
	DUAL	230				Yes	Circuit 1 and 2	
	POINT	380			Circuit 1 and 2	Yes		
		460			Circuit 1 and 2	Yes		
		575			Circuit 1 and 2	Yes		
		200						
	SINGLE	230						
	POINT	380			Circuit 1	Yes		
260		460			Circuit 1	Yes		
280 300		575			Circuit 1	Yes		
325		200						
350	DUAL	230						
	POINT	380			Circuit 1 and 2	Yes		
		460			Circuit 1 and 2	Yes		
		575			Circuit 1 and 2	Yes		
		200						
	SINGLE	230						
	POINT	380					Circuit 1	Yes
400		460					Circuit 1	Yes
400 450		575					Circuit 1	Yes
500		200						
	DUAL	230						
	POINT	380			Circuit 1		Circuit 2	Yes
		460			Circuit 1		Circuit 2	Yes
		575			Circuit 1		Circuit 2	Yes

^{*}COMBI box is located at the end of the unit.
†PEB1 and PEB2 boxes are located on the side of the unit. If both boxes are used, the one on the left (viewing from the front of the boxes) is PEB1.

Shaded area means that box is not used on this model.

Table 10 — Compressor and Fan Electrical Data

		ı			J.O . C		•				MPRESSOR					
			CONDI				Α			CO	B B				С	
	UNIT		FA	NS	LRA (AI	l Units)	RI	_A	LRA (AI	Units)		LA	LRA (A	II Units)		_A
30XA UNIT SIZE	VOLTAGE V-Hz (3 Ph, 60 Hz)	NUMBER OF COND FANS*	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	XL	WD	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	XL	WD	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)	ХL	WD	High Ambient Temp Cond. Fans (1140 rpm)	Standard Cond. Fans (850 rpm)
	200	3/3	11.9	6.6	1081.0	345.0	130.9	136.8	1081.0	345.0	130.9	136.8	_			
080	230	3/3	10.8	6.0	940.0	300.0	118.9	124.2	940.0	300.0	118.9	124.2				
080	380 460	3/3 3/3	6.5 5.4	3.6	569.0 470.0	182.0 150.0	68.8 59.4	71.9 62.1	569.0 470.0	182.0 150.0	68.8 59.4	71.9 62.1	_	_		
	575	3/3	4.3	2.4	376.0	120.0	45.4	47.5	376.0	120.0	45.4	47.5				
	200	4/4	11.9	6.6	1081.0	345.0	134.3	140.0	1081.0	345.0	134.3	140.0	_	_	_	_
	230	4/4	10.8	6.0	940.0	300.0	122.0	127.1	940.0	300.0	122.0	127.1	_	_	_	_
090	380	4/4	6.5	3.6	569.0	182.0	70.6	73.5	569.0	182.0	70.6	73.5	_		_	_
	460	4/4	5.4	3.0	470.0	150.0	61.0	63.6	470.0	150.0	61.0	63.6	_	_	_	
	575 200	4/4 4/4	4.3 11.9	2.4 6.6	376.0 1357.0	120.0	46.6 148.4	48.6 154.8	376.0 1357.0	120.0 437.0	46.6 148.4	48.6 154.8	-			
	230	4/4	10.8	6.0	1180.0	437.0 380.0	134.9	140.7	1180.0	380.0	134.9	140.7				
100	380	4/4	6.5	3.6	714.0	230.0	78.3	81.6	714.0	230.0	78.3	81.6		_		
	460	4/4	5.4	3.0	590.0	190.0	67.5	70.4	590.0	190.0	67.5	70.4	_	_	_	_
	575	4/4	4.3	2.4	472.0	152.0	51.3	53.5	472.0	152.0	51.3	53.5	_	_	_	
	200	4/4	11.9	6.6	1357.0	437.0	180.9	190.7	1357.0	437.0	148.4	154.8	_		_	_
	230	4/4	10.8	6.0	1180.0	380.0	164.7	173.6	1180.0	380.0	134.9	140.7	_	_		
110	380	4/4 4/4	6.5	3.6	714.0	230.0	95.4	100.6	714.0	230.0	78.3	81.6	-			
	460 575	4/4	5.4 4.3	3.0 2.4	590.0 472.0	190.0 152.0	82.0 62.9	86.4 66.3	590.0 472.0	190.0 152.0	67.5 51.3	70.4 53.5	=	_		
$\overline{}$	200	4/4	11.9	6.6	1357.0	437.0	180.9	190.7	1357.0	437.0	180.9	190.7	_			
	230	4/4	10.8	6.0	1180.0	380.0	164.7	173.6	1180.0	380.0	164.7	173.6	=			
120	380	4/4	6.5	3.6	714.0	230.0	95.4	100.6	714.0	230.0	95.4	100.6	L-			
	460	4/4	5.4	3.0	590.0	190.0	82.0	86.4	590.0	190.0	82.0	86.4	_			
	575	4/4	4.3	2.4	472.0	152.0	62.9	66.3	472.0	152.0	62.9	66.3		_	_	
	200	6/4	11.9	6.6	2162.0	690.0	280.8	293.9	1357.0	437.0	148.4	154.8	_			
140	230 380	6/4 6/4	10.8 6.5	6.0 3.6	1880.0 1138.0	600.0 363.0	255.2 147.7	267.2 154.6	1180.0 714.0	380.0 230.0	134.9 78.3	140.7 81.6	$\vdash = \vdash$			
140	460	6/4	5.4	3.0	940.0	300.0	127.6	133.6	590.0	190.0	67.5	70.4	-			
	575	6/4	4.3	2.4	752.0	240.0	97.5	102.0	472.0	152.0	51.3	53.5				
	200	6/4	11.9	6.6	2714.0	863.0	325.2	340.6	1357.0	437.0	180.9	190.7	_	_	_	_
	230	6/4	10.8	6.0	2360.0	750.0	296.0	310.0	1180.0	380.0	164.7	173.6	_	_	_	_
160	380	6/4	6.5	3.6	1428.0	454.0	171.3	179.4	714.0	230.0	95.4	100.6	_	_		
	460	6/4	5.4	3.0	1180.0	375.0	147.6	154.6	590.0	190.0	82.0	86.4	_	_		
$\overline{}$	575 200	6/4 6/6	4.3 11.9	2.4 6.6	944.0 2162.0	300.0 690.0	112.9 280.8	118.2 293.9	472.0 2162.0	152.0 690.0	62.9 280.8	66.3 293.9		_		
	230	6/6	10.8	6.0	1880.0	600.0	255.2	267.2	1880.0	600.0	255.2	267.2	ΗΞ-			
180	380	6/6	6.5	3.6	1138.0	363.0	147.7	154.6	1138.0	363.0	147.7	154.6	_	_	_	
	460	6/6	5.4	3.0	940.0	300.0	127.6	133.6	940.0	300.0	127.6	133.6	_	_	_	
	575	6/6	4.3	2.4	752.0	240.0	97.5	102.0	752.0	240.0	97.5	102.0	_	_	_	_
	200	6/6	11.9	6.6	2714.0	863.0	325.2	340.6	2714.0	863.0	325.2	340.6	_	_	_	
	230	6/6	10.8	6.0	2360.0	750.0	296.0	310.0	2360.0	750.0	296.0	310.0		_		
200	380 460	6/6 6/6	6.5 5.4	3.6 3.0	1428.0 1180.0	454.0 375.0	171.3 147.6	179.4 154.6	1428.0 1180.0	454.0 375.0	171.3 147.6	179.4 154.6		_		
	575	6/6	4.3	2.4	944.0	300.0	112.9	118.2	944.0	300.0	112.9	118.2	Η=			
	200	7/6	11.9	6.6	2714.0	863.0	387.3	406.6	2714.0	863.0	325.2	340.6	_	_		
	230	7/6	10.8	6.0	2360.0	750.0	352.3	369.8	2360.0	750.0	296.0	310.0	_	_	_	
220	380	7/6	6.5	3.6	1428.0	454.0	204.2	214.3	1428.0	454.0	171.3	179.4	_	_	_	
	460	7/6	5.4	3.0	1180.0	375.0	176.1	184.9	1180.0	375.0	147.6	154.6			_	
$\overline{}$	575	7/6	4.3	2.4	944.0	300.0	134.8	141.5	944.0	300.0	112.9	118.2	_		_	
	200 230	7/6 7/6	11.9	6.6	2714.0		387.3	406.6	2714.0	863.0	387.3	406.6	_			
240	380	7/6	10.8 6.5	3.6	2360.0 1428.0	750.0 454.0	352.3 204.2	369.8 214.3	2360.0 1428.0	750.0 454.0	352.3 204.2	369.8 214.3	$\vdash \equiv \vdash$	_	_	
0	460	7/6	5.5	3.0	1180.0	375.0	176.1	184.9	1180.0	375.0	176.1	184.9	_		_	
_	575	7/6	4.3	2.4	944.0	300.0	134.8	141.5	944.0	300.0	134.8	141.5	_	_	_	
	380	9/6	6.5	3.6	2143.0	684.0	277.9	293.0	1428.0	454.0	171.3	179.4	_	_	_	
260	460	9/6	5.4	3.0	1770.0	565.0	240.4	253.5	1180.0	375.0	147.6	154.6			_	
	575	9/6	4.3	2.4	1416.0	452.0	183.7	193.7	944.0	300.0	112.9	118.2				
280	380 460	9/7 9/7	6.5 5.4	3.6 3.0	2143.0 1770.0	684.0 565.0	277.9 240.4	293.0 253.5	1428.0 1180.0	454.0 375.0	204.2 176.1	214.3 184.9	-			
200	575	9/7	4.3	2.4	1416.0	452.0	183.7	193.7	944.0	300.0	134.8	141.5	-			
-	380	10/6	6.5	3.6	2143.0	684.0	330.8	350.3	1428.0	454.0	204.2	214.3	$\vdash \equiv \vdash$			
300	460	10/6	5.4	3.0	1770.0	565.0	285.6	302.4	1180.0	375.0	176.1	184.9	_	_	_	
	575	10/6	4.3	2.4	1416.0	452.0	218.2	231.0	944.0	300.0	134.8	141.5	_		_	
	380	9/9	6.5	3.6	2143.0	684.0	277.9	293.0	2143.0	684.0	277.9	293.0	_	_	_	_
325	460	9/9	5.4	3.0	1770.0	565.0	240.4	253.5	1770.0	565.0	240.4	253.5				
	575	9/9	4.3	2.4	1416.0	452.0	183.7	193.7	1416.0	452.0	183.7	193.7		_		
350	380 460	9/9 9/9	6.5 5.4	3.6 3.0	2143.0 1770.0	684.0 565.0	330.8 285.6	350.3 302.4	2143.0 1770.0	684.0 565.0	277.9 240.4	293.0 253.5	_	_		
330	575	9/9	4.3	2.4	1416.0	452.0	218.2	231.0	1416.0	452.0	183.7	193.7	-			
-	380	8/12	6.5	3.6	1428.0	454.0	204.2	214.3	1428.0	454.0	204.2	214.3	2143.0	293.0	277.9	293.0
400	460	8/12	5.4	3.0	1180.0	375.0	176.1	184.9	1180.0	375.0	176.1	184.9	1770.0	253.5	240.4	253.5
	575	8/12	4.3	2.4	944.0	300.0	134.8	141.5	944.0	300.0	134.8	141.5	1416.0	193.7	183.7	193.7
	380	8/14	6.5	3.6	2143.0	684.0	330.8	350.3	1138.0	363.0	147.7	154.6	2143.0	684.0	330.8	350.3
450	460	8/14	5.4	3.0	1770.0	565.0	285.6	302.4	940.0	300.0	127.6	133.6	1770.0	565.0	285.6	302.4
	575	8/14	4.3	2.4	1416.0	452.0	218.2	231.0	752.0	240.0	97.5	102.0	1416.0	452.0	218.2	231.0
500	380	8/14	6.5 5.4	3.6	2143.0	684.0	330.8	350.3	1428.0	454.0 375.0	204.2	214.3	2143.0	684.0 565.0	330.8	350.3
300	460 575	8/14 8/14	5.4 4.3	3.0 2.4	1770.0 1416.0	565.0 452.0	285.6 218.2	302.4 231.0	1180.0 944.0	375.0 300.0	176.1 134.8	184.9 141.5	1770.0 1416.0	565.0 452.0	285.6 218.2	302.4 231.0
	5/5	LEGE	•	4.7	1-710.0	70L.U	£10.£		NOTES:	000.0	107.0	171.0	1-710.0	-∪£.U	۷.۱۷.۷	201.0
		LEGE	INL													

LRA — Locked Rotor Amps RLA — Rated Load Amps WD — Wye Delta XL — Across-the-Line

 ${}^\star\text{Quantity}$ of fan motors for incoming power supply Circuit 1/Circuit 2.

NOTES:

Table 11 — Pump Electrical Data

PUMP HP	UNIT VOLTAGE V-Hz (3 Ph)	HYDRONIC SYSTEM (SINGLE OR DUAL) FLA (Each)	30XA UNIT SIZE
5	230-60 200-60 460-60 575-60 380-60	11.6 12.6 5.8 4.6 7.0	090-160
7.5	230-60 200-60 460-60 575-60 380-60	17.4 18.5 8.7 7.0 10.4	090-160
10	230-60 200-60 460-60 575-60 380-60	23.0 25.0 11.5 9.2 14.0	090-160
15	230-60 200-60 460-60 575-60 380-60	34.0 36.7 17.0 14.0 21.0	090-160

FLA — Full Load Amps

Table 12 — CCN Communication Bus Wiring

MANUFACTURER	PART NUMBER		
WANUFACTUREN	Regular Wiring	Plenum Wiring	
Alpha	1895	_	
American	A21451	A48301	
Belden	8205	884421	
Columbia	D6451	_	
Manhatten	M13402	M64430	
Quabik	6130	_	

4. The RJ14 CCN connector on TB3 can also be used, but is only intended for temporary connection (for example, a laptop computer running service tool).

IMPORTANT: A shorted CCN bus cable will prevent some routines from running and may prevent the unit from starting. If abnormal conditions occur, disconnect the machine from the CCN. If conditions return to normal, check the CCN connector and cable. Run new cable if necessary. A short in one section of the bus can cause problems with all system elements on the bus.

NON-CCN COMMUNICATION WIRING — The 30XA units offer several non-CCN translators. Refer to the separate installation instructions for additional wiring steps.

FIELD CONTROL OPTION WIRING — Install field control wiring options. Some options, such as 4 to 20 mA demand limit that requires the energy management module, may require that accessories be installed first (if not factory installed) for terminal connections.

DUAL CHILLER LEAVING WATER SENSOR — If the dual chiller algorithm is used and the machines are installed in parallel, an additional chilled water sensor must be installed for each chiller. Install the wells in the common leaving water header. See Fig 39. DO NOT relocate the chiller's leaving water thermistors. They must remain in place for the unit to operate properly.

The thermistor well is a ¹/₄ in. NPT fitting for securing the well in the piping. The piping must be drilled and tapped for the well. Select a location that will allow for removal of the thermistor without any restrictions.

Once the well is inserted, install the thermistors. Insert the thermistor into the well until the o-ring reaches the well body. Use the nut on the thermistor to secure the thermistor in place. Once the thermistor is in place, it is recommended that a thermistor wire loop be made and secured with a wire tie to the chilled water pipe. See Fig. 39.

For dual chiller control a CCN bus must be connected between the two modules. See the Carrier Comfort Network Communication Bus Wiring section for additional information.

LEGEND

CCN — Carrier Comfort Network® LEN — Local Equipment Network

Fig. 38 — TB3 — CCN Wiring

Fig. 39 — Dual Leaving Water Thermistor Well (Part No. 00PPG000008000A) and Dual Leaving Water Thermistor (Part No. 00PPG000008105A)

Step 6 — **Install Accessories** — A number of accessories are available to provide the following optional features (for details, refer to the Controls and Troubleshooting guide shipped with the unit).

ENERGY MANAGEMENT MODULE — The energy management module is used for any of the following types of temperature reset, demand limit and ice features:

- 4 to 20 mA inputs for cooling set point reset and capacity limit (requires field-supplied 4 to 20 mA generator)
- 0 to 10 v output for percentage total capacity running
- 24 v discrete outputs for shutdown and running relays
- 10k space temperature input

Discrete inputs for occupancy override, demand limit switch 2 (step 1 demand limit is wired to the base board, requires field-supplied dry contacts), remote lockout switch and ice done switch (requires field-supplied dry contacts).

REMOTE ENHANCED DISPLAY (OR TOUCH PILOTTM DISPLAY) — For applications where remote monitoring of the equipment is required; the remote enhanced display (or Touch Pilot display) provides an indoor display, capable of monitoring any equipment on the Carrier Comfort Network® (CCN) bus. A CCN bus is required.

LOW AMBIENT TEMPERATURE OPERATION — If outdoor ambient operating temperatures below 32 F (0 $^{\circ}$ C) are expected, refer to separate installation instructions for low-ambient operation using the low ambient temperature head pressure control accessory.

MINIMUM LOAD ACCESSORY — Contact your local Carrier representative for more details if a minimum load accessory is required for a specific application. For installation details, refer to separate installation instructions supplied with the accessory package.

UNIT SECURITY/PROTECTION ACCESSORIES — For applications with unique security and/or protection requirements, several options are available for unit protection. Security grilles and hail guards are available. Contact a local Carrier representative for more details. For installation details, refer to separate installation instructions supplied with the accessory package.

COMMUNICATION ACCESSORIES — A number of communication options are available to meet any requirement. Contact your local Carrier representative for more details. For

installation details, refer to separate installation instructions supplied with the accessory package.

SERVICE OPTIONS — Two accessories are available to aid in servicing 30XA units: a ground fault convenience outlet (GFI-CO) and a remote service port.

The GFI-CO is a convenience outlet with a 4-amp GFI receptacle.

The remote service port is housed in a weather-proof enclosure with a communication port to plug in the NavigatorTM device.

Contact your local Carrier representative for more details. For installation details, refer to separate installation instructions supplied with each accessory package.

CONTROL TRANSFORMER — The control transformer accessory eliminates the need for a separate power supply.

Step 7 — **Leak Test Unit** — The 30XA units are shipped with a complete operating charge of R-134a (see Tables 1A and 1B) and should be under sufficient pressure to conduct a leak test.

IMPORTANT: These units are designed for use with R-134a only. DO NOT USE ANY OTHER refrigerant in these units.

Perform a leak test to ensure that leaks have not developed during unit shipment. Dehydration of the system is not required unless the entire refrigerant charge has been lost. There are several O-ring face seal fittings utilized in the oil line piping. If a leak is detected at any of these fittings, open the system and inspect the O-ring surface for foreign matter or damage. Do not reuse O-rings. Repair any leak found following good refrigeration practice.

ACAUTION

DO NOT OVERTIGHTEN THESE FITTINGS. Overtightening will result in O-ring damage.

Step 8 — Refrigerant Charging

DEHYDRATION — Refer to Carrier Standard Service Techniques Manual, Chapter 1, Refrigerants, Sections 6 and 7 for details. Do not use compressor to evacuate system.

REFRIGERANT CHARGE

IMPORTANT: These units are designed for use with R-134a only. DO NOT USE ANY OTHER refrigerant in these units.

The liquid charging method is recommended for complete charging or when additional charge is required.

A CAUTION

When charging, circulate water through the cooler at all times to prevent freezing. Freezing damage is considered abuse and may void the Carrier warranty.

⚠ CAUTION

DO NOT OVERCHARGE system. Overcharging results in higher discharge pressure with higher cooling fluid consumption, possible compressor damage, and higher power consumption.

The 30XA units are shipped from the factory with a full charge of R-134a. The unit should not need to be charged at installation unless a leak was detected in Step 6 — Leak Test Unit section. If dehydration and recharging is necessary, use industry standard practices or refer to Carrier Standard Service Techniques Manual as required.

