

Tema 5: Relaciones de recurrencia

- 1. Resuelve las siguientes relaciones de recurrencia homogéneas, con sus condiciones iniciales:
 - a) $a_n = 4a_{n-1} 4a_{n-2}$, con $n \ge 2$, $a_0 = 6$, $a_1 = 8$.
 - b) $a_n = 7a_{n-1} 10a_{n-2}$, con $n \ge 2$, $a_0 = 2$, $a_1 = 1$.
 - c) $a_n = 2a_{n-1} a_{n-2}$, con $n \ge 2$, $a_0 = 4$, $a_1 = 1$.
 - d) $a_{n+2} = -4a_{n+1} + 5a_n$, con $n \ge 0$, $a_0 = 2$, $a_1 = 8$.
 - e) $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$, con $n \ge 3$, $a_0 = 2$, $a_1 = 5$, $a_2 = 15$.
 - f) $a_n = 5a_{n-1} 6a_{n-2}$, con $n \ge 2$, $a_0 = 1$, $a_1 = 0$.
 - g) $a_n = -6a_{n-1} 9a_{n-2}$, con $n \ge 2$, $a_0 = 1$, $a_1 = -6$.

- Solution: a) $a_n = (3 n) \cdot 2^{n+1}$ b) $a_n = -5^n + 3 \cdot 2^n$ c) $a_n = 4 3n$ d) $a_n = 3 (-5)^n$ e) $a_n = 1 2^n + 2 \cdot 3^n$ f) $a_n = -2 \cdot 3^n + 3 \cdot 2^n$ g) $a_n = (1 + n)(-3)^n$
- **2.** Sea a_n el número de palabras de longitud n formadas con los dígitos $\{0, 1\}$, que no tienen dos ceros consecutivos. Encuentra una relación de recurrencia para calcular a_n y resuélvela.

Solución:

$$\begin{cases} a_1 = 2, \ a_2 = 3 \\ a_n = a_{n-1} + a_{n-2} \end{cases}$$

Fórmula explícita:

$$a_n = \left(\frac{5+3\sqrt{5}}{10}\right) \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{5-3\sqrt{5}}{10}\right) \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n$$

3. Halla una relación de recurrencia para el número de formas en que una persona puede subir nescalones, si puede subir uno o dos peldaños en cada paso.

Solución:

$$\begin{cases} a_1 = 1, \ a_2 = 2 \\ a_n = a_{n-1} + a_{n-1} \end{cases}$$

Fórmula explícita:

$$a_n = \left(\frac{5+\sqrt{5}}{10}\right) \cdot \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{5-\sqrt{5}}{10}\right) \cdot \left(\frac{1-\sqrt{5}}{2}\right)^n$$

- 4. Sean n rectas trazadas en el plano de forma que cada recta corte a las restantes, pero que no haya tres coincidentes en un mismo punto. Para cada $n \ge 0$, sea a_n el número de regiones en que las n rectas dividen al plano y sea b_n el número de regiones infinitas.
 - a) Encuentra una relación de recurrencia para calcular a_n y resuélvela.
 - b) Encuentra una relación de recurrencia para calcular b_n y resuélvela.

a) La recurrencia es

$$\begin{cases} a_1 = 2, \\ a_n = a_{n-1} + n. \end{cases}$$

Solución a la ecuación homogénea: S(n) = A.

Solución particular de la completa: $P(n) = \frac{1}{2}n^2 + \frac{1}{2}n$

Solución general de la completa: $a_n = \frac{1}{2}n^2 + \frac{1}{2}n + A$

Solución final con las condiciones iniciales: $a_n = \frac{1}{2}n^2 + \frac{1}{2}n + 1$

b) La recurrencia es

$$\begin{cases} b_1 = 2, \\ b_n = b_{n-1} + 2 \end{cases}$$

Solución a la ecuación homogénea: S(n) = A

Solución particular de la completa: P(n) = 2n

Solución general de la completa: $a_n = 2n + A$

Solución final con las condiciones iniciales: $a_n = 2n$

5. Problema de las Torres de Hanoi (Ëdouard Lucas): Se tienen n discos y 3 estacas. Los discos están apilados en la estaca 1, ordenados de mayor a menor. El objetivo es pasar los discos uno por uno a otra estaca, colocados en el orden original. En el proceso no se permite que un disco mayor se coloque sobre otro menor. Si a_n es el número de movimientos que se requieren para hacer esto, encuentra una relación de recurrencia para calcular a_n , y resuélvela.

Solución:

$$\begin{cases} a_n = 2a_{n-1} + 1 \\ a_1 = 1 \end{cases}$$

Solución a la ecuación homogénea: $S(n) = A \cdot 2^n$

Solución particular de la completa: P(n) = -1

Solución general de la completa: $a_n = -1 + A \cdot 2^n$

Solución final con las condiciones iniciales: $a_n = -1 + 2^n$

6. Resuelve las siguientes relaciones de recurrencia no homogéneas, con sus condiciones iniciales:

2

a)
$$\begin{cases} a_1 = 1, \\ a_n = a_{n-1} + 2n - 1. \end{cases}$$

b)
$$\begin{cases} a_0 = 7, \\ a_n = a_{n-1} + 3n^2. \end{cases}$$

c)
$$\begin{cases} a_0 = 2, \\ a_n = 3a_{n-1} + 7^n 5. \end{cases}$$

$$d) \begin{cases} a_0 = 2, \\ a_n = 3a_{n-1} + 3^n 5. \end{cases}$$

e)
$$\begin{cases} a_0 = 11, \ a_1 = 1, \ a_2 = -1, \\ a_n = 3a_{n-1} - 4a_{n-3} + n^2. \end{cases}$$

$$f) \begin{cases} a_0 = 1, \ a_1 = 3, \\ a_n = 4a_{n-1} - 4a_{n-2} + n. \end{cases}$$

g)
$$\begin{cases} a_0 = 1, \ a_1 = 0, \\ a_n = 3a_{n-1} + 4a_{n-2} - 5 \cdot 4^n \end{cases}$$
i)
$$\begin{cases} a_0 = 2, \ a_1 = 4, \\ a_n = 3a_{n-1} - 2a_{n-2} + 5 \cdot 2^n \end{cases}$$

h)
$$\begin{cases} a_1 = 2, \ a_2 = 3, \\ a_n = 2a_{n-1} - a_{n-2} + 1 \end{cases}$$

i)
$$\begin{cases} a_0 = 2, \ a_1 = 4, \\ a_n = 3a_{n-1} - 2a_{n-2} + 5 \cdot 2^n \end{cases}$$

a)
$$\begin{cases} a_1 = 1, \\ a_n = a_{n-1} + 2n - 1. \end{cases}$$

Solución a la ecuación homogénea: S(n) = C

Solución particular de la completa: $P(n) = n^2$

Solución general de la completa: $a_n = n^2 + C$

Solución final con las condiciones iniciales: $a_n = n^2$

$$b) \begin{cases} a_0 = 7, \\ a_n = a_{n-1} + 3n^2. \end{cases}$$

Solución a la ecuación homogénea: S(n) = C

Solución particular de la completa: $P(n) = n^3 + \frac{3}{2}n^2 + \frac{1}{2}n$

Solución general de la completa: $a_n = n^3 + \frac{3}{2}n^2 + \frac{1}{2}n + C$

Solución final con las condiciones iniciales: $a_n = n^3 + \frac{3}{2}n^2 + \frac{1}{2}n + 7$

c)
$$\begin{cases} a_0 = 2, \\ a_n = 3a_{n-1} + 7^n 5. \end{cases}$$

Solución a la ecuación homogénea: $S(n) = A \cdot 3^n$

Solución particular de la completa: $P(n) = \frac{35}{4} \cdot 7^n$

Solución general de la completa: $a_n = \frac{35}{4} \cdot 7^n + A \cdot 3^n$

Solución final con las condiciones iniciales: $a_n = \frac{35}{4} \cdot 7^n - \frac{27}{4} \cdot 3^n = \frac{35}{4} \cdot (7^n - 3^n)$

$$d) \begin{cases} a_0 = 2, \\ a_n = 3a_{n-1} + 3^n 5 \end{cases}$$

Solución a la ecuación homogénea: $S(n) = A \cdot 3^n$

Solución particular de la completa: $P(n) = 5 \cdot n \cdot 3^n$

Solución general de la completa: $a_n = 5 \cdot n \cdot 3^n + A \cdot 3^n$

Solución final con las condiciones iniciales: $a_n = 5 \cdot n \cdot 3^n + 2 \cdot 3^n = (5n + 2) \cdot 3^n$

e)
$$\begin{cases} a_0 = 11, \ a_1 = 1, \ a_2 = -1, \\ a_n = 3a_{n-1} - 4a_{n-3} + n^2. \end{cases}$$

Sol. Ec. homogén: $S(n) = A \cdot 2^n + B \cdot n \cdot 2^n + C \cdot (-1)^n$

Solución particular de la completa: $P(n) = \frac{1}{2} \cdot n^2 + \frac{9}{2} \cdot n + 12$

Solución general de la completa: $a_n = \frac{1}{2} \cdot n^2 + \frac{9}{2} \cdot n + 12 + A \cdot 2^n + B \cdot n \cdot 2^n + C \cdot (-1)^n$

Sol. Final con las cond. Inicial. : $a_n = \frac{1}{2} \cdot n^2 + \frac{9}{2} \cdot n + 12 - 5 \cdot 2^n - n \cdot 2^n + 4 \cdot (-1)^n$

$$f) \begin{cases} a_0 = 1, \ a_1 = 3, \\ a_n = 4a_{n-1} - 4a_{n-2} + n. \end{cases}$$

Solución a la ecuación homogénea: $S(n) = A \cdot 2^n + B \cdot n \cdot 2^n$

Solución particular de la completa: P(n) = n + 4

Solución general de la completa: $a_n = n + 4 + A \cdot 2^n + B \cdot n \cdot 2^n$

Solución final con las condiciones iniciales: $a_n = n + 4 - 3 \cdot 2^n + 2 \cdot n \cdot 2^n = n + 4 + (-3 + 2n) \cdot 2^n$

g)
$$\begin{cases} a_0=1,\ a_1=0,\\ a_n=3a_{n-1}+4a_{n-2}-5\cdot 4^n \end{cases}$$
 Solución a la ecuación homogénea: $S\left(n\right)=A\cdot 4^n+B\cdot (-1)^n$

Solución particular de la completa: $P(n) = -n \cdot 4^{n+1}$

Solución general de la completa: $a_n = -n \cdot 4^{n+1} + A \cdot 4^n + B \cdot (-1)^n$

Solución final con las condiciones iniciales: $a_n = -n \cdot 4^{n+1} + \frac{17}{5} \cdot 4^n - \frac{12}{5} \cdot (-1)^n$

h)
$$\begin{cases} a_1 = 2, \ a_2 = 3, \\ a_n = 2a_{n-1} - a_{n-2} + 1 \end{cases}$$

Solución a la ecuación homogénea: S(n) = A + Bn

Solución particular de la completa: $P(n) = \frac{1}{2} \cdot n^2$

Solución general de la completa: $a_n = \frac{1}{2} \cdot n^2 + A + Bn$

Solución final con las condiciones iniciales: $a_n = \frac{1}{2} \cdot n^2 + 2 - \frac{1}{2} \cdot n$

i)
$$\begin{cases} a_0 = 2, \ a_1 = 4, \\ a_n = 3a_{n-1} - 2a_{n-2} + 5 \cdot 2^n \end{cases}$$

Solución a la ecuación homogénea: $S(n) = A \cdot 2^n + B$

Solución particular de la completa: $P(n) = 10 \cdot n \cdot 2^n$

Solución general de la completa: $a_n = 10 \cdot n \cdot 2^n + A \cdot 2^n + B$

Solución final con las condiciones iniciales: $a_n = 10 \cdot n \cdot 2^n - 18 \cdot 2^n + 20$

7. Sea $M = \{A, B, C\}$ y sea S_n el conjunto de sucesiones de longitud n, formadas con las letras de M, en las que todas las cadenas de A-es son de longitud par. Encuentra una relación de recurrencia para calcular S_n y resuélvela.

Solución: La relación de recurrencia es

$$\begin{cases} a_1 = 2, \\ a_2 = 5, \\ a_n = 2a_{n-1} + a_{n-2}. \end{cases}$$

Su expresión general es

$$a_n = \left(\frac{2+\sqrt{2}}{4}\right) \cdot \left(1+\sqrt{2}\right)^n + \left(\frac{2-\sqrt{2}}{4}\right) \cdot \left(1-\sqrt{2}\right)^n.$$

- 8. Se pretende diseñar una bandera con n franjas horizontales, cada una de las cuales puede ser de color rojo, azul, verde o amarillo. Hallar cuántas son las banderas posibles en cada una de las siguientes situaciones:
 - a) No hay restricciones sobre el color de cada franja.
 - b) Dos franjas adyacentes nunca pueden ser del mismo color.
 - c) Sea a_n el número de banderas que se pueden formar con n franjas horizontales, con los cuatro colores dados y tales que dos franjas adyacentes no sean del mismo color ni tampoco sean del mismo color la primera y la última franja. Hallar una relación de recurrencia para a_n . (Indicación: Hacer n = 4 y generalizar para n, con $a_1 = 0$.)
 - d) Resolver la ecuación de recurrencia obtenida en el apartado anterior

a)
$$4^n$$

b) $4 \cdot 3 \cdot \dots \cdot 3 = 4 \cdot 3^{n-1}$
c)
$$\begin{cases} a_1 = 0, \\ a_2 = 12, \\ a_n = 2a_{n-1} + 3a_{n-2}. \end{cases}$$

- 9. Halla, mediante una relación de recurrencia, la suma $a_n = \sum_{k=0}^n 2^k$, en función de n.

Solución:

$$a_n = \sum_{k=0}^{n} 2^k = \sum_{k=0}^{n-1} 2^k + 2^n = a_{n-1} + 2^n$$

$$\begin{cases} a_1 = 3, \\ a_n = a_{n-1} + 2^n \end{cases}$$

Ecuación homogénea: S(n) = A.

Solución particular de la completa: $P(n) = 2 \cdot 2^n$.

Solución general de la completa: $a_n = 2 \cdot 2^n + A$.

Solución final con condición inicial.: $a_n = 2^{n+1} - 1$.

10. Hallar una relación de recurrencia para el número de listas a_n de longitud n formadas con los elementos 0, 1 y 2, en las que el elemento 1 no aparece nunca en el lugar posterior a un 2.

Solución:

$$\begin{cases} a_1 = 3, \\ a_2 = 8, \\ a_n = 3a_{n-1} - a_{n-2}. \end{cases}$$

11. Sea

$$g(n) = \binom{n}{k},$$

donde ambos números son naturales, $n \geq k$, y k fijo. Obtener una relación de recurrencia para calcular q(n).

Solución:

$$\begin{cases} g(k) = {k \choose k} = 1, \\ g(n) = \frac{n}{n-k} g(n-1). \end{cases}$$

12. Sea

$$A_n = \begin{pmatrix} 2 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2 \end{pmatrix} \text{ con } n \in \mathbb{N}.$$

- a) Halla una relación de recurrencia para la sucesión cuyo término general es $D_n = \det A_n$
- b) Resuelve la relación de recurrencia $D_n=2D_{n-1}-D_{n-2}+1$, con las condiciones iniciales $D_1=2$, $D_2 = 3$.

a)
$$\begin{cases} D_1 = 2, \\ D_2 = 3, \\ D_n = 2D_{n-1} - D_{n-2}. \end{cases}$$
b)
$$D_n = 2 - \frac{1}{2} n + \frac{1}{2} n^2.$$

b)
$$D_n = 2 - \frac{1}{2} n + \frac{1}{2} n^2$$
.

13. Se tiene una cantidad ilimitada de cubos de lado 1 cm, 2 cm y 4 cm, y se quiere construir una torre apilando cubos. Encuentra una relación de recurrencia para hallar el número de formas distintas T_n de construir una torre de altura n cm.

Solución:

$$\left\{ \begin{array}{l} T_1=1,\ T_2=2,\ T_3=3,\ T_4=6,\\ T_n=T_{n-1}+T_{n-2}+\ T_{n-4}. \end{array} \right.$$