Statistics & Probability | 3rd Quarter

February 11 2021

Page 130 C

A population consists of the five measurements 2, 6, 8, 0, and 1.

1. What are the mean ($\,\mu\,$) and standard deviation ($\,\sigma\,$) of the population?

$$\mu = 3\frac{2}{5} = 3.4$$
 $\sigma = 3.07$

2. How many different samples of size n=2 can be drawn from the population? List them with their corresponding means.

Sample	Mean
2, 6	4
2, 8	5
2, 0	1
2, 1	1.5
6, 8	7
6, 0	3
6, 1	3.5
8, 0	4
8, 1	4.5
0, 1	0.5

3. Construct the sampling distribution of the sample means.

Sample Mean $ar{X}$	Frequency	Probability $P(ar{X})$
4	2	1/5
5	1	1/10
1	1	1/10
1.5	1	1/10
7	1	1/10
3	1	1/10
3.5	1	1/10
4.5	1	1/10
0.5	1	1/10

4. What is the mean of ($\mu_{\bar{\chi}}$) of the sampling distribution of the sample means? Compare this to the mean of the population.

$ar{X}$	$P(ar{X})$	$ar{X} \cdot P(ar{X})$	
4	<u>1</u> 5	0.80	
5	$\frac{1}{10}$	0.50	
1	$\frac{1}{10}$	0.10	
1.5	$\frac{1}{10}$	0.15	
7	$\frac{1}{10}$	0.70	
3	$\frac{1}{10}$	0.30	
3.5	$\frac{1}{10}$	0.35	
4.5	$\frac{1}{10}$	0.45	
0.5	$\frac{1}{10}$	0.05	

$$\mu_{\bar{X}} = 3.4$$
 $\mu = 3.4$

They are the same and equal.

5. What is the standard deviation ($\sigma_{\bar{x}}$) of the sampling distribution of the sample means? Compare this to the standard deviation of the population.

\bar{X}	$P(ar{X})$	$\bar{X} - \mu$	$(\bar{X}-\mu)^2$	$P(\bar{X})\cdot(\bar{X}-\mu)^2$
4	<u>1</u> 5	0.6	0.36	0.072
5	$\frac{1}{10}$	1.6	2.56	0.256
1	$\frac{1}{10}$	-2.4	5.76	0.576
1.5	$\frac{1}{10}$	-1.9	3.61	0.361
7	$\frac{1}{10}$	3.6	12.96	1.296
3	$\frac{1}{10}$	-0.4	0.16	0.016
3.5	$\frac{1}{10}$	0.1	0.1	0.010
4.5	$\frac{1}{10}$	1.1	1.21	0.121
0.5	$\frac{1}{10}$	-2.9	8.41	0.841

$$\sigma = \sqrt{\sum (X - \mu)^2 \cdot P(X)}$$

$$\sigma = \sqrt{3.549}$$

$$\sigma_{\bar{X}} = 1.88$$

$$\sigma = 3.07$$

They are different, and the standard deviation of the population is higher than that of the sampling distribution of the sample means.

Page 131 D

Given the population 1, 3, 4, 6, and 8. Suppose samples of size 3 are drawn from this population.

1. What are the mean (μ) and standard deviation (σ) of the population?

$$\mu$$
=4.4 σ =2.42

2. How many different samples of size n=3 can be drawn from the population? List them with their corresponding means.

Sample	Mean
1,3,4	2.67
1,3,6	3.33
1,3,8	4
1,4,6	3.67
1,4,8	4.33
1,6,8	5
3,4,6	4.33
3,4,8	5
3,6,8	5.67
4,6,8	6

3. Construct the sampling distribution of the sample means.

Sample Mean $ar{X}$	Frequency	Probability $P(ar{X})$	
2.67	1	<u>1</u> 8	
3.33	1	$\frac{1}{8}$	
4	1	$\frac{1}{8}$	
3.67	1	<u>1</u> 8	
4.33	2	$\frac{1}{4}$	
5	2	$\frac{1}{4}$	
5.67	1	<u>1</u> 8	
6	1	<u>1</u> 8	

4. What is the mean ($~\mu_{\bar{\chi}}~$) of the sampling distribution of the sample means? Compare this to the mean of the population.

$ar{X}$	$P(ar{X})$	$ar{X} \cdot P(ar{X})$
2.67	<u>1</u> 8	0.3338
3.33	<u>1</u> 8	0.4162
4	<u>1</u> 8	0.5000
3.67	<u>1</u> 8	0.4588
4.33	$\frac{1}{4}$	1.0825
5	$\frac{1}{4}$	1.2500
5.67	<u>1</u> 8	0.7088
6	<u>1</u> 8	0.7500

$$\mu_{\bar{X}} = 5.5$$
 $\mu = 4.4$

5. What is the standard deviation ($\sigma_{\bar{\chi}}$) of the sampling distribution of the sample means? Compare this to the standard deviation of the population.

$ar{X}$	$P(ar{X})$	$(\bar{X}-\mu)$	$(\bar{X}-\mu)^2$	$P(\bar{X})\cdot(\bar{X}-\mu)^2$
2.67	$\frac{1}{8}$	-2.83	8.0089	1.0011125
3.33	$\frac{1}{8}$	-2.17	4.7089	0.5886125
4	<u>1</u> 8	-1.5	2.25	0.28125
3.67	<u>1</u> 8	-1.83	3.3489	0.4186125
4.33	$\frac{1}{4}$	-1.17	1.3689	0.342225
5	$\frac{1}{4}$	-0.5	0.25	0.0625
5.67	<u>1</u> 8	0.17	0.0289	0.0036125
6	<u>1</u> 8	0.5	0.25	0.03125

$$\sigma_{\bar{X}} = \sqrt{\sum_{\bar{X}} P(\bar{X}) \cdot (\bar{X} - \mu)^2}$$

$$\sigma_{\bar{X}} = \sqrt{2.729175}$$

$$\sigma_{\bar{X}} = 1.652$$

$$\sigma = 2.42$$

Obviously, the standard deviation of the population is significantly bigger than the standard deviation of the sampling distribution of the samples.