Uni.lu HPC School 2018

PS10: Scientific computing using MATLAB and Mathematica

Uni.lu High Performance Computing (HPC) Team V. Plugaru

University of Luxembourg (UL), Luxembourg http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials:

UL HPC School:

PS10 tutorial sources:

https://github.com/ULHPC/tutorials

http://hpc.uni.lu/hpc-school/

https://ulhpc-tutorials.rtfd.io.rtfd.io/en/latest/maths/matlab/basics/

2018

Summary

- Practical Session Objectives
- 2 MATLAB on UL HPC Prerequisites Using MATLAB

Session Objectives

- running in interactive mode
 - → with either the full graphical or the text-mode interface
 - - √ will be deprecated in favor of a new OnDemand platform

Session Objectives

- running in interactive mode
 - → with either the full graphical or the text-mode interface
 - - √ will be deprecated in favor of a new OnDemand platform
- running in passive mode

Session Objectives

- running in interactive mode
 - → with either the full graphical or the text-mode interface
 - - √ will be deprecated in favor of a new OnDemand platform
- running in passive mode
- checking available toolboxes & licenses status

Session Objectives

- running in interactive mode
 - → with either the full graphical or the text-mode interface
 - - √ will be deprecated in favor of a new OnDemand platform
- running in passive mode
 - → several ways of submitting MATLAB jobs
- checking available toolboxes & licenses status
- using script (.m) files

Session Objectives

- running in interactive mode
 - → with either the full graphical or the text-mode interface
 - - √ will be deprecated in favor of a new OnDemand platform
- running in passive mode
- checking available toolboxes & licenses status
- using script (.m) files
- plotting data, saving the plots to file

MATLAB on UL HPC

Summary

- Practical Session Objectives
- MATLAB on UL HPC
 Prerequisites
 Using MATLAB

Tutorial files

Sample MATLAB scripts used in the tutorial

download only the scripts

or download the full repository and link to the MATLAB tutorial

```
git clone https://github.com/ULHPC/tutorials.git
ln -s tutorials/maths/matlab/basics $HOME/matlab-tutorial
```


X Window System

In order to see locally the MATLAB graphical interface, a package providing the X Window System is required:

on OS X: XQuartzon Windows: VcXsrv

http://xquartz.macosforge.org/landing/

http://sourceforge.net/projects/vcxsrv/

Now you will be able to connect with X11 forwarding enabled:

- on Linux & macOS: ssh access-gaia.uni.lu -X
- on Windows, with Putty: Connection \to SSH \to X11 \to Enable X11 forwarding

Scripts and plots

example1.m: non-interactive script that shows

- the use of a stopwatch timer
- how to use an external function (financial data retrieval)
- how to use different plotting methods
- how to export the plots in different graphic formats

Parallelization

example2.m: non-interactive script that shows

• the serial execution of time consuming operations

Parallelization

example2.m: non-interactive script that shows

- the serial execution of time consuming operations
- and revisited in the second part of the tutorial:
 - $\,\hookrightarrow\,$ the parallel execution and relative speedup vs serial execution
 - \hookrightarrow setting the # of parallel threads through environment variables
 - → GPU-based parallel execution

Exercises - your mission today

- Read and understand the MATLAB tutorial
 - https://github.com/ULHPC/tutorials/tree/devel/maths/matlab
 - \hookrightarrow all provided scripts are fully commented
- Run all the examples
 - → launching interactive/passive mode MATLAB
 - → plotting script
 - → parallel execution script

Useful links

• Getting Started with Parallel Computing Toolbox

http://nl.mathworks.com/help/distcomp/getting-started-with-parallel-computing-toolbox.html

Parallel for-Loops (parfor) documentation

https://nl.mathworks.com/help/distcomp/parfor.html

GPU Computing documentation

https://nl.mathworks.com/discovery/matlab-gpu.html

What we've seen so far

- MATLAB execution modes on the Uni.lu HPC Platform
- Checking for available toolboxes and licenses
- Basics of plotting

Perspectives

- Personalize the UL HPC launchers with the MATLAB commands
- ullet Check example #2 M-file for insight into basic parallel execution
- Parallelize your own tasks using parfor/GPU-enabled instructions

Questions?

http://hpc.uni.lu

High Performance Computing @ uni.lu

Prof. Pascal Bouvry Dr. Sebastien Varrette Valentin Plugaru Sarah Peter Hyacinthe Cartiaux Clement Parisot

University of Luxembourg, Belval Campus Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: hpc@uni.lu

Practical Session Objectives

