BIOMENG 261

TISSUE AND BIOMOLECULAR ENGINEERING

Module I: Reaction kinetics and systems biology

Oliver Maclaren oliver.maclaren@auckland.ac.nz

MODULE OVERVIEW

Reaction kinetics and systems biology (*Oliver Maclaren*)
[11 lectures/3 tutorials/2 labs]

- 1. Basic principles: modelling with reaction kinetics [4 lectures]

 Physical principles: conservation, directional and constitutive. Reaction modelling. Mass action.

 Enzyme kinetics. Enzyme regulation. Mathematical/graphical tools for analysis and fitting.
- 2. Systems biology I: signalling and metabolic systems [2 lectures]

 Overview of systems biology. Modelling signalling systems using reaction kinetics. Introduction to parameter estimation. Modelling metabolic systems using reaction kinetics. Flux balance analysis and constraint-based methods.
- 3. Systems biology II: genetic systems [3 lectures]

 Modelling genes and gene regulation using reaction kinetics. Gene regulatory networks, transcriptomics and analysis of microarray data.

COURSE

- Reaction kinetics and systems of reactions (weeks 1-4)
- Biological engineering laboratory techniques (weeks 5-10)
- Ethics in biomedical engineering practice and research (weeks 11-12)

PEOPLE

Oliver Maclaren oliver.maclaren@auckland.ac.nz

2

Vinod Suresh v.suresh@auckland.ac.nz

4

ASSESSMENT

Coursework: 60%, Exam: 40%

- Module 1 Coursework:
 - Computer lasb/assignments (2 x 2.5%)
 - Test (5%)
- Module 2 Coursework:
 - Lab assessments (6 labs, 35%)
 - Test (5%)
- Module 3 Coursework:
 - Assignment (10%)

SCHEDULE

5

6

Module 1 (4 weeks)

- Lectures: Monday (4-5pm), Tuesday (3-4pm), Wednesday (2-3pm)
- Tutorials: Thursday (1-2pm) from week 2 on. Optional; do sheets in own time, can ask questions, discuss in tutorial.
- Labs: Friday (10am-1pm or 2-5pm) weeks 2 and 3 only. Will form basis of computer assignments.

REFERENCES

No course book...but see Canvas handout for recommended resources.

MOTIVATION

7

8

...understanding, simulating, analysing, creating...biological systems using mathematics, computation and experimentation

Biology is hard! (Arguably) more difficult than traditional engineering, physics etc.

Why? *Complexity!* Molecules, Genes, Proteins, Cells, Tissues, Organs, Organisms...

MOTIVATION

How do we integrate all this and understand such complex systems?

Modelling, simulation, data analysis, experiments...etc.

Trade-offs are key: prediction vs understanding, fit vs complexity, reduction vs emergence, theory vs experiment etc

Also: need basic physical principles and mathematical language(s)

9

10

LECTURE 1 BASIC PRINCIPLES OF REACTION MODELLING

- Physical principles: conservation, directional, constitutive
- Reactions and their graphical representations
- Units and dimensions
- Reversible/irreversible reactions

BASIC PHYSICAL PRINCIPLES FOR UNDERSTANDING BIOLOGICAL SYSTEMS

Conservation: energy, mass, momementum

Directional: entropy increases, free energy decreases

Constitutive: the 'law' of mass action (reaction rates proportional to chances of collisions)

BASIC PHYSICAL PRINCIPLES FOR UNDERSTANDING BIOLOGICAL SYSTEMS

Conservation: possible

Directional: probable

Constitutive: actual

REACTIONS

A surprising number of biological phenomena can be considered as *built up from simple reactions of the form*

i.e.

$$A + B \longrightarrow C$$

This module will largely focus on setting up, modelling, computing and analysing systems built up from such reactions using physical principles

GRAPHICAL REPRESENTATIONS

Chemical/stoichiometric equation: $A + B \rightarrow C$

Reaction graph:

Petri-net-style representation:

EXAMPLE

Steps

Conservation of mass

13

14

• Constitutive equation ('law of mass action') for rate

LAW OF MASS ACTION

A 'law' in the way Newton's law of cooling, Hooke's law of elasticity, Ohm's law etc are 'laws' (i.e. not really!)

the rate of a chemical reaction is directly proportional to the product of all of the concentrations (or chemical activities in general) of the reactants

Can be motivated 'microscopically' or 'mechanistically' by collision theory.

MORE EXAMPLES

Example 1:

$$A+A \xrightarrow{k} C$$

Example 2:

$$aA+bB \xrightarrow{k} C$$

ORDER OF A REACTION

The partial order of a (mass-action-based) reaction for a given substance is the exponent (power) to which it is raised in the rate law.

The overall order of a (mass-action-based) reaction is the sum of the exponents of all the reactants in the rate law.

Q: What are the orders for the previous two examples?

COMPLICATIONS

- Units and dimensions
- Reversible/irreversible reactions

AMOUNTS VS CONCENTRATIONS

- Amounts (or numbers or masses etc) are conserved.
 - Dimensions: amount, number, etc
 - Units: moles, mol

17

18

- Concentrations are not, unless volume is constant.
- Dimensions: amount per volume
 - Units: Molar, M = mol/L

Example.

REVERSIBLE VS IRREVERSIBLE REACTIONS

Microscopically: all reactions are reversible (bidirectional)

Macroscopically: some more likely to occur than others (effectively unidirectional)

Remember: possible is not the same as probable

Example, including determining equilibrium constants K_{eq} for reactions

21

22

EQUILIBRIUM VS STEADY STATE

- *Equilibrium*: forward and backward components of a *single reaction balanced*
- Steady state: concentrations constant in time
 - multiple reactions into a particular compartment balance each other; may be unbalanced elsewhere

Biomeny 261 beetine 1: Basic principles of Reaction modelling.

Ideal: The behaviour of cells can (partially)
be understood/modelled using
chemical reaction modelling

Cheeral

- conservation { mass

[possible] symmetry { energy

momentum

- direction { entropy

[probable] crsymmetry { there:

lactual] - constitutive } form

equations { of mass

oction

Specific [*_siche 'Hodge'slam', F=lex

or Newton's gran Natural F = GmM "law"

but not all.

-> valued for class of systems

> think force / flux

modelling

Graphical representations Poactants -> Products Storchiometric R: A+B > C equation leactur graph Cexplicat rep. of reaction R with square Noor helpful to treat reaction ors 'object' of interest

$$\begin{array}{c|c} A & & \\ & & \\ & & \\ & & \\ \end{array} \longrightarrow C \\ \end{array}$$

1. Conservation of mass

Kly: think in terms of the veaction itself:

each step, [IAJ, IBJ, ICT]

Flux I of Weacher

$$\frac{dA}{dt} = -\widehat{J}$$

$$\frac{dB}{dt} = -\widehat{J}$$

$$\frac{\partial B}{\partial t} = -\widehat{J}$$

$$\frac{dC}{dt} = +\hat{J}$$

why J & not J?
- Tunuts!!
L see later

2. Specific model for flux I

Law of mass action.

- for 'elementary' reactions

- well assume more complex
reactions built up from
sumple.

Intuition: collision theory

IA The collide = 10 reaction ~> 10

vate & number of collisions

~ number of A molecules x number of B molecules

= AXB (for AHB>C)

k: reaction vale 'constant'

(also depends on ey temperate hotter = more collisions]

Finally . --

$$\frac{dA}{dt} = -k \cdot A \cdot B$$

$$\frac{dB}{dt} = -k \cdot A \cdot B$$

$$\frac{dC}{dt} = + k \cdot A \cdot B$$

Mass action:

rate & number of collisions of reactants

Order of reaction?

number of reactant

Examples

2.
$$A+B \rightarrow C+D$$

$$G$$
 $d[A] = -a.J$, $d[B] = -b.J$
 $dE = J$, $J = k[A]^{9}[B]^{6}$
 $dE = J$, $J = k[A]^{9}[B]^{6}$
 $dE = a+b$

Complications

· Units & dimensions

. Reversible/irreversible reactions

Amounts ve concentrations?

0: what is conserved?

A: amount

Amount = (Amount/Volume) × Volume = [A] × V

if Not = Corretaint

I mol: Avogadro's number of molecules (6-022x1023)
[Molar: I mol/Litre: concentration

L Mpcal: MM-mM

J: amount/time

(mol/sec)

J = J = amount/volume.time = concentration/time (eg M/see)

Typically

d[A] = J } we will often

orsume in

terms of

Concertrations

Leg if vol. 15 changing

Order & rate dimensions/units

1storder

J = k[A] = d[A] > k: I (eq 1/sec)

2nd order

$$J = k[A[B] = d[A] \Rightarrow k : L$$

$$conc. true$$

$$(eg M-1s-1)$$

We will look at Timensiand analysis

Le scaling later

Reversible à invenerable reactions Microscopic revensibility: [kjuetics] - all elementary reactions can proceed in both directions - BUT: one direction might be more Whely Possible + Probable | glass breaking glass spontaneously forming. A+B>C

Special

Ways of

encavaging

ore

dure et in Macroscopic wreversibility: [thermolyn.] asymmetric { [entropy (increases) (or hubbs free energy decreases)

Example Model A+B > C Really should be } key bt & k- possible

A+R = C } key

Let Fk- probably ky: forward reaction A+B-> (R_: reverse reaction C > A+B $\int_{\Gamma} d\Gamma d\Gamma = d\Gamma d\Gamma = -J_{+} + J_{-}$ 2. J4 = K[A][B] J = k [C] $\Rightarrow \begin{cases} d[A] = d[B] = k[C] - k_{+}[A][B] \\ d[C] = k_{+}[A][B] - k_{-}[C] \end{cases}$

Assure let fle.
But: how do we weasheldet. let > le - or

· Equilibrim: reactions balanced

· Steady State: change in concentrations = 0

(there: Same. But not always !,)

Set (eg want a long hume)

R-[C]- k+[A][B]= 0

Keq:= k- = [A]eq[B]eq } can
[C]eq := k- = [C]eq | Measure

If Keq { large: [A]ex[18]ex >> [C]ex small: [A]ex[18]ex << [C]ex

(e $\stackrel{h}{\leftarrow}$ reverse dominates $\stackrel{h}{\rightarrow}$ forward dominates

If k + >> k - we often appear as $\begin{cases} \begin{cases} k >> k \\ \end{cases} \end{cases}$ forward, $\begin{cases} k >> k \\ \end{cases}$ veacher

ATherno: Keg & Vence ration of rodes by, b-etc can be related to colds free