- 46. Descreva por extensão:
 - a) $\mathcal{P}(\emptyset)$
- b) $\mathcal{P}(\mathcal{P}(\emptyset))$
- c) $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$
- 47. Sejam A e B conjuntos.
 - a) Mostre que $A \subseteq B$ se e só se $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
 - b) Conclua que A = B se e só se $\mathcal{P}(A) = \mathcal{P}(B)$.
- 48. Seja E o conjunto $\{1, \{1\}, 2, \{1, 2\}\}$. Determine:
 - a) $\mathcal{P}(E)$.
 - b) $E \cap \mathcal{P}(E)$.
- 49. Considere o conjunto $\mathbb N$ dos números naturais e sejam F,G e H os seus seguintes subconjuntos

$$F = \{a \in \mathbb{N} \mid a < 10\}; \quad G = \{a \in \mathbb{N} \mid a > 5\}; \quad H = \{a \in \mathbb{N} \mid a \text{ \'e divis\'ivel por 3}\}.$$

Determine cada um dos seguintes conjuntos: $F \cap G$, $F \cap H$, $G \cap H$, $F \cup G$, $F \cup H$, $G \cup H$.

- 50. Seja $X = \{a, b, c, d, e\}$. Indique três subconjuntos A, B e C de X, disjuntos dois a dois, tais que $A \cup B \cup C = X$.
- 51. Mostre que uma condição necessária para que $(A \cap B) \cup C = A \cap (B \cup C)$ é que $C \subseteq A$. Esta condição será suficiente?
- 52. Considere A e B quaisquer subconjuntos de um conjunto E. Prove que:
 - a) $A \subseteq B \Leftrightarrow A \cap B = A$.
 - b) $A \subseteq B \Leftrightarrow A \cup B = B$.
 - c) $A \subseteq B \Leftrightarrow A \backslash B = \emptyset$.
 - d) $(A \setminus B) \cap B = \emptyset$.
 - e) $A \cap B \subseteq A \subseteq A \cup B$.
 - f) $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
 - g) $\overline{A} \setminus \overline{B} = B \setminus A$.
- 53. Sejam A e B conjuntos tais que $A \subseteq B$. Prove que existe um único subconjunto X de B tal que $X \cup A = B$ e $X \cap A = \emptyset$.
- 54. Determine o complementar de A, \overline{A} , no universo X, sendo
 - a) $X = \{0, 1, 2, 3, 4, 5\}$ e $A = \{0, 2, 4\}$.
 - b) $X = \{0, 1, 2, 3, 4, 5\}$ e $A = \{a \in X \mid a \text{ \'e impar}\}.$
 - c) $X = \mathbb{N} \ e \ A = \{ a \in \mathbb{N} \ | \ \exists_{n \in \mathbb{N}} : a = 2n \}.$
 - d) $X = \mathbb{Z}$ e $A = \{a \in \mathbb{Z} \mid \exists_{n \in \mathbb{N}} : a = 2n\}.$
- 55. Determine $\bigcup_{i \in \mathbb{N}} B_i$ e $\bigcap_{i \in \mathbb{N}} B_i$ onde, para cada $i \in \mathbb{N}$,
 - a) $B_i = \{0, 1, 2, 3, \dots, 2i\}$
 - b) $B_i = \{i 1, i, i + 1\}$
 - c) $B_i = \left[-1, 3 + \frac{1}{i} \right]$
 - d) $B_i = \left[\frac{3}{i}, 5 + \frac{2}{i} \right]$

56. Prove, por indução, que

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i}$$

onde os A_i são subconjuntos de um conjunto X.

- 57. Dados os conjuntos $A = \{0, 2\}$ e $B = \{0, 1, 2, 3\}$, determine cada um dos conjuntos seguintes:
 - a) $A \times B$
 - b) $B \times A$
 - c) $(A \times B) \cap (B \times A)$
 - d) $(A \times B) \setminus (B \times A)$
 - e) $(B \times A) \setminus (A \times B)$
- 58. Sejam A, B, C conjuntos. Prove que:
 - a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
 - b) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
 - c) $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$.
 - d) Se A e B são não vazios, então $(A \times B) \cup (B \times A) = C \times C \Leftrightarrow A = B = C$.
 - e) $A \times B = \emptyset$ se e só se $A = \emptyset$ ou $B = \emptyset$.
- 59. Sejam A e B conjuntos. Mostre que
 - a) se $A' \subseteq A$, $B' \subseteq B$ e $C = A' \times B'$, então $C \subseteq A \times B$.
 - b) se $D \subseteq A \times B$, podem não existir $A'' \subseteq A$ e $B'' \subseteq B$ tais que $D = A'' \times B''$.
- 60. Para cada uma das relações seguintes indique os respetivos domínio e contradomínio.
 - a) $S \notin a \text{ relação } S = \{(0, 1), (1, 1), (2, 2), (3, 2), (4, 3)\} \text{ de } A = \{0, 1, 2, 3, 4, 5\} \text{ para } B = \{0, 1, 2, 3, 4, 5\}$ $\{1, 2, 3\}.$
 - b) R é a relação em \mathbb{R} dada por $R = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$.
 - c) | é a relação "divide" em {2, 3, 4, 6, 9, 10, 12, 20} definida por

$$a \mid b \Leftrightarrow \exists_{n \in \mathbb{N}} : b = na.$$

- d) Dado um conjunto não vazio A, T é a relação $T = \{(x, X) \mid x \in X\}$ de A para $\mathcal{P}(A)$.
- e) < é a relação "menor" usual em N.
- 61. Seja $A = \{2, 4, 6, 8, 10\}$. Considere as seguintes relações em $A: R = \{(2, 2), (2, 4), (2, 6), (10, 8)\}$, $S = \{(10, 2), (10, 8)\}\ e\ T = \{(6, 2), (6, 4), (8, 10)\}.$ Determine
 - a) R^{-1}
- b) $R^{-1} \cup S^{-1}$
- c) $T \setminus S^{-1}$ d) $T^{-1} \cap S$ g) $S^{-1} \circ T^{-1}$ h) $S^{-1} \circ S$

- e) *S T*
- f) $R \circ T$

- 62. Seja $A = \{1, 2, 3, 4\}$. Considere as seguintes relações em A:

$$R_1 = \{(1, 1), (1, 2)\}$$

$$R_2 = \{(1, 1), (2, 3), (4, 1)\}$$

$$R_3 = \{(1, 3), (2, 2), (2, 4), (4, 2)\}\ R_4 = \{(1, 1), (2, 2), (3, 3)\}\$$

$$R_4 = \{(1, 1), (2, 2), (3, 3)\}$$

$$R_5 = A \times A$$

$$R_6 = \emptyset$$

Diga quais destas relações são

- i) reflexivas em *A*;
- ii) simétricas;
- iii) transitivas;
- iv) anti-simétricas.