In the Claims

The status of claims in the case is as follows:

1. [Currently amended] A method for workload planning, comprising the steps of:

determining for each of a plurality of prospective customers, a projected volume of material for processing;

determining for each customer a complexity factor for processing said material, including identifying any critical factors, dismantling prototype machines, identifying work content and resulting saleable, commodity, and trash items, said complexity factor representing processing time divided by said volume as defined during prototype dismantling and subsequently modified by actual experience;

said critical factors including specific asset
protection requirements, destruction, and impairment
techniques, regardless of any financial benefit or
cost;

utilizing periodic updates of said projected volume and of said critical factors and of any other factors.

prior customer product shipment experience and new demanufacturing product prototyping to establish and adjust said complexity factor for each of said plurality of customers; and

END920010061US1

responsive to said projected volume and said complexity factor for each of said plurality of customers, determining staffing requirements and productivity targets for a demanufacturing enterprise for processing said material for a plurality of future periods to facilitate advanced warning and the time to preclude any future staffing or capacity issues.

- 1 2. Canceled
- 1 3. [Original] The method of claim 1, further comprising
- 2 the step of converting said volume to weight.
- 1 4. [Currently amended] The method of claim 2 claim 1,
- 2 further comprising the steps of converting said volume to
- 3 weight, and determining said complexity factor by
- 4 prototyping.
- 1 5. [Original] The method of claim 4, said prototyping
- 2 including the step of disassembly prototyping.
- 1 6. [Original] The method of claim 5, said disassembly
- 2 prototyping step being applied to new material and further
- 3 comprising the step of accumulating historical data for
- 4 determining said complexity factor for previously
- 5 disassembled material.
- 7. [Currently amended] The method of claim 2 claim 1,
- 2 said projecting step further comprising the step of
- 3 determining an expected number of truckloads of said
- 4 material.

END920010061US1

- 1 8. [Original] The method of claim 5, said disassembly
- 2 prototyping further including the step of determining
- 3 salvageable and disposable content for said material of a
- 4 given equipment type.
- 9. [Original] The method of claim 1, further comprising
- 2 the steps of applying said quantity projections and
- 3 complexity factors to workload planning model for
- 4 forecasting workload requirements for said processing; and
- 5 responsive to said workload requirements determining
- 6 staffing requirements and resource balancing between
- 7 projects.
- 1 10. [Original] The method of claim 9, further comprising
- 2 the steps of adjusting said workload requirements for
- 3 absenteeism, fatigue, breaks, and vacation pattern factors.
- 1 11. [Original] The method of claim 9, said workload
- 2 planning model being implemented as a computer spreadsheet.
- 1 12. [Original] The method of claim 11, further comprising
- 2 the step of periodically updating said workload planning
- 3 model based upon actual and anticipated changes in quantity
- 4 projections and complexity factors.
- 1 13. [Previously presented] The method of claim 12, further
- 2 comprising the step of calculating said productivity targets
- 3 for a demanufacturing enterprise using said quantity
- 4 projections and complexity factors.
- 1 14. [Currently amended] A method for forecasting staffing
- 2 requirements for a demanufacturing enterprise, comprising

5

3	the	steps of:	
4		determining for each of a plurality of prospective	
5		customers, a projected volume of material returns for	
6		processing;	
7		determining for each customer a complexity factor for	
8 -		processing said material, including identifying any	
9		critical factors;	
10		said critical factors including specific asset	
11		protection requirements, destruction, and impairment	
12		techniques, regardless of any financial benefit or cos	t
13		factors:	
14		converting projected customer material returns for eac	h
15		said customer to weight, multiplying said weight by a	
16		complexity factor determined initially by disassembly	
17		prototyping and subsequently modified by actual	
18		experience to generate a staff requirement for each of	
19		a plurality of customers, said disassembly prototyping	
20		including dismantling prototype machines in accordance	
21		with said financial benefit and cost factors and	
22		further with respect to any said critical factors,	
23		identifying work content and resulting saleable,	
24		commodity, and trash items, said complexity factor	
25		initially representing time for said disassembly	
26		prototyping divided by said weight;	
27		utilizing periodic updates, prior customer product	
28		shipment experience and new demanufacturing product	
29		prototyping to establish and adjust said complexity	•
	END	920010061US1 6 S/N 09/923,470	

30	factor for each of said plurality of customers;		
31	generating a summation of said staff requirements for		
32	all customers at a plurality of future checkpoint to		
33	facilitate advanced warning and the time to preclude		
34	any future staffing or capacity issues; and		
35	adjusting said staff requirements for all customers by		
36	an expected absenteeism factor, fatigue factor, breaks		
37	requirements, and vacation patterns to generate said		
38	staffing requirements and productivity targets for said		
39	demanufacturing enterprise.		
1	15. [Original] The method of claim 14, further comprising		
2	the step of executing said converting, generating, and		
3	adjusting steps in a spreadsheet model.		
1	16-18. Canceled		
2	19. [Currently amended] A program storage device readable		
3	by a machine, tangibly embodying a program of instructions		
4	executable by a machine to perform method steps for workload		
5	planning, said method steps comprising:		
6	determining for each of a plurality of prospective		
7	customers, a projected quantity of material for		
8	processing;		
9	determining for each customer a complexity factor for		
10	processing said material, including, dismantling		
11	prototype machines, identifying work content including		
12	identifying any critical factors and resulting		
	END920010061US1 7 S/N 09/923,470		

13		saleable, commodity, and trash items, said complexity
14		factor representing processing time divided by said
15		projected quantity as initially defined during
16		prototype dismantling and subsequently modified by
17		actual experience;
18		said critical factors including specific asset
19		protection requirements, destruction, and impairment
20		techniques, regardless of any financial benefit or cost
21		factors:
22		utilizing periodic updates, prior customer product
23		shipment experience and new demanufacturing product
24		prototyping to establish and adjust said complexity
25		factor for each of said plurality of customers; and
26		responsive to said projected quantity and said
27		complexity factor, determining staffing requirements
28		and productivity targets for processing said material
29		at a plurality of future checkpoint to facilitate
30		advanced warning and the time to preclude any future
31		staffing or capacity issues.
1	20.	[Original] The program storage device of claim 19,
2	said	method steps further comprising the step of projecting
3	said	quantity by volume.
1	21.	-
2	said	method steps further comprising the step of converting
3	said	volume to weight.
1.	22.	[Original] The program storage device of claim 20,
		7/7- 40/000 450
	END9	20010061US1 8 S/N 09/923,470

- 2 said method steps further comprising the step of converting
- 3 said volume to weight, and determining said complexity
- 4 factor by prototyping.
- 1 23. [Original] The program storage device of claim 22,
- 2 said prototyping step including the step of disassembly
- 3 prototyping.
- 1 24. [Original] The program storage device of claim 23,
- 2 said disassembly prototyping step being applied to new
- 3 material and further comprising the step of accumulating
- 4 historical data for determining said complexity factor for
- 5 previously disassembled material.
- 1 25. [Original] The program storage device of claim 20,
- 2 said projecting step further comprising the step of
- 3 determining an expected number of truckloads of said
- 4 material.
- 1 26. [Original] The program storage device of claim 23,
- 2 said disassembly prototyping further including the step of
- 3 determining salvageable and disposable content for said
- 4 material of a given equipment type.
- 1 27. [Original] The program storage device of claim 19,
- 2 said method steps further comprising the steps of applying
- 3 said quantity projections and complexity factors to workload
- 4 planning model for forecasting workload requirements for
- 5 said processing; and responsive to said workload
- 6 requirements determining staffing requirements and resource

9

7 balancing between projects.

END920010061US1

- 1 28. [Original] The program storage device of claim 27,
- 2 said method steps further comprising the step of adjusting
- 3 said workload requirements for absenteeism, fatigue, breaks,
- 4 and vacation pattern factors.
- 1 29. [Original] The program storage device of claim 27,
- 2 said workload planning model being implemented as a computer
- 3 spreadsheet.
- 1 30. [Original] The program storage device of claim 29,
- 2 said method steps further comprising the step of
- 3 periodically updating said workload planning model based
- 4 upon actual and anticipated changes in quantity projections
- 5 and complexity factors.
- 1 31. [Original] The program storage device of claim 28,
- 2 said method steps further comprising the step of calculating
- 3 said productivity targets for a demanufacturing enterprise
- 4 using said quantity projections and complexity factors.
- 1 32. [Currently amended] A computer program product for
- 2 forecasting staffing requirements for a demanufacturing
- 3 enterprise, comprising:
- 4 a computer readable medium;
- 5 first program instructions for converting projected
- 6 customer returns to weight, multiplying said weight by
- 7 a complexity factor determined initially by disassembly
- 8 prototyping and thereafter modified by experience to
- generate a staff requirement for each of a plurality of
- 10 customers, said disassembly prototyping including

10

11	dismantling prototype machines, identifying work
12	content including identifying any critical factors and
13	resulting saleable, commodity, and trash items, said
14	complexity factor calculated as processing time divided
15	by said weight;
16	said critical factors including specific asset
17	protection requirements, destruction, and impairment
18	techniques, regardless of any financial benefit or cost
19	factors:
20	second program instructions, utilizing periodic
21	updates, prior customer product shipment experience and
22	new demanufacturing product prototyping, for
23	establishing and adjust said complexity factor for each
24	of said plurality of customers;
25	second third program instructions for generating a
26	summation of said staff requirements for all customers;
27	and
28	third fourth program instructions for adjusting said
29	staff requirements for all customers by an expected
30	absenteeism factor, fatigue factor, breaks
31	requirements, and vacation patterns to generate said
32	staffing requirements and productivity targets for said
33	demanufacturing enterprise; and wherein
34	said first, second, and third third, and fourth program
3 5	instructions are recorded on said computer readable
36	medium.

11