Санкт–Петербургский государственный университет Кафедра компьютерного моделирования и многопроцессорных систем

Мирошниченко Александр Сергеевич

Выпускная квалификационная работа бакалавра

Разработка системы распознавания речевых команд при помощи методов машинного обучения

 $\label{eq:1.03.02}$ «Прикладная математика и информатика»

Научный руководитель, кандидат физ.-мат. наук, доцент Козынченко В. А.

Содержание

ведение	3
остановка задачи	3
бзор литературы	3
ава 1. Теоретические сведения	3
ава 2. Описание решения	3
ава 3. Результаты вычислений	3
ыводы	4
аключение	5
писок литературы	6
	e

Введение

Постановка задачи

Обзор литературы

Глава 1. Теоретические сведения

Глава 2. Описание решения

Глава 3. Результаты вычислений

Было проведено 3 вычислительных эксперемента для каждого из 2-х типов нейронной сети: MLP и CNN. Структуры приведены на рис 1,2

Датасет состоит из 6 дикторов. Каждый диктор работал с 11 командами : 'back', 'down', 'menu', 'off', 'on', 'open', 'play', 'power', 'stop', 'up', 'volume'.

Диктор	Тип голоса	Кол-во звук. до-	Сумм. кол-во звук.
		рожек на каждую	дорожек
		команду	
speaker1	Мужской	50	550
speaker2	Мужской	40	440
speaker3	Мужской	40	440
speaker4	Мужской	40	440
speaker5	Мужской	50	550
speaker6	Женский	50	550

Первый эксперимент: нейронная сеть обучается на первом дикторе с мужским голосом, тестирование производится на каждом дикторе.

Второй эксперимент: нейронная сеть обучается на всех дикторах с мужским голосом, тестирование производится на каждом дикторе.

Третий эксперимент: нейронная сеть обучается на всех дикторах, тестирование производится на каждом дикторе.

Датасет предварительно разделяется на тренировочную и тестовую части. На тренировочную часть отводится 70% данных диктора, на тестовую часть - 30%. В процессе тренировки после каждой эпохи тренировочные данные перемешиваются. 15% тренировочных данных в каждой эпохе - валидационным.

В конце каждого эксперимента помимо тестирования производится построение матрицы ошибок (confusion matrix) для каждого диктора и для каждого из четырех пороговых значений: 0.5, 0.6, 0.7, 0.8.

Графики обучения для каждого из экспериментов приведены на рисунках.

Таблица с результатам

Выводы

Заключение

В данной работе:

- Проведена предобработка звуковых дорожек, содержащих команды
- Разработан алгоритм распознавания речевых команд
- Реализован алгоритм распознавания речевых команд
- Проведены вычислительные эксперименты, в результате которых показана работоспособность и эффективность работы алгоритма распознавания речевых команд.

Список литературы

- [1] Aurélien G. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems / Aurélien G. 2nd Edition O'Reilly Media, 2019.
- [2] Kailash A. Generative Adversarial Networks Projects: Build next-generation generative models using TensorFlow and Keras / Kailash A. Packt Publishing, 2019.
- [3] Документация TensorFlow [Электронный ресурс]. Режим доступа: https://www.tensorflow.org/api docs/python/tf
- [4] Портал ML Glossary [Электронный ресурс]. Режим доступа: https://ml-cheatsheet.readthedocs.io
- [5] Курс на платформе Coursera [Электронный ресурс]. Режим доступа: https://www.coursera.org/learn/getting-started-with-tensor-flow2

Приложение

Ссылка на репозиторий с кодом: https://gitlab.com/polotent/boxy