Matemáticas Discretas Funciones y Cardinalidad

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl

Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

27 de septiembre de 2023

Objetivos

1 Formular enunciados formales en notación matemática usando lógica, conjuntos, relaciones, funciones, cardinalidad, y otras herramientas, desarrollando definiciones y teoremas al respecto, así como demostrar o refutar estos enunciados, usando variadas técnicas.

Contenidos

1 Introducción

2 Funciones

Introducción

¿Funciones... de nuevo?

Introducción

¿Por qué queremos funciones en Ciencia de la Computación?

- Calcular → métodos
- Modelar → simulación
- Estructuras de datos y algoritmos → hashing, map reduce, ordenamiento
- Encriptar → MD5, SHA-1
- Contar

Introducción

¿Por qué queremos funciones en Ciencia de la Computación?

- Calcular → métodos
- Modelar → simulación
- Estructuras de datos y algoritmos → hashing, map reduce, ordenamiento
- Encriptar → MD5, SHA-1
- ¡Contar o indexar!

Formalizaremos el concepto y lo aplicaremos.

Definición

Sea f una relación binaria de A en B; es decir, $f\subseteq A\times B$. Diremos que f es una **función** de A en B si dado cualquier elemento $a\in A$, si existe un elemento en $b\in B$ tal que afb, este es único:

$$afb \land afc \Rightarrow b = c$$

Si afb, escribimos b = f(a).

- b es la imagen de a.
- a es la preimagen de b.

Notación: $f: A \rightarrow B$

Una función $f:A\to B$ se dice **total** si todo elemento en A tiene imagen.

- Es decir, si para todo $a \in A$ existe $b \in B$ tal que b = f(a).
- Una función que no sea total se dice parcial.
- De ahora en adelante, toda función será total a menos que se diga lo contrario.

Ejemplos

Las siguientes relaciones son todas funciones de \mathbb{N}_4 en \mathbb{N}_4 :

$$f_1 = \{(0,0), (1,1), (2,2), (3,3)\}$$

$$f_2 = \{(0,1), (1,1), (2,1), (3,1)\}$$

$$f_3 = \{(0,3), (1,2), (2,1), (3,0)\}$$

¿Cuántas funciones $f: \mathbb{N}_4 \to \mathbb{N}_4$ podemos construir?

Respuesta: $4^4 = 256$.

También podemos definir funciones mediante expresiones que nos den el valor de f(x).

Ejemplos

Las siguientes son definiciones para funciones de \mathbb{R} en \mathbb{R} :

$$\forall x \in \mathbb{R}, f_1(x) = x^2 + 1$$

$$\forall x \in \mathbb{R}, f_2(x) = \lfloor x + \sqrt{x} \rfloor$$

$$\forall x \in \mathbb{R}, f_3(x) = 0$$

$$\forall x \in \mathbb{R}, f_4(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

Ejemplos

Dado un conjunto A cualquiera, las siguientes son definiciones para funciones de A en $\mathcal{P}(A)$:

$$\forall a \in A, f_1(a) = \{a\}$$

$$\forall a \in A, f_2(a) = A \setminus \{a\}$$

$$\forall a \in A, f_3(a) = \emptyset$$

Definición

Diremos que una función $f:A\to B$ es:

- **1 Inyectiva** (o 1-1) si para cada par de elementos $x,y\in A$ se tiene que $f(x)=f(y)\Rightarrow x=y$. Es decir, no existen dos elementos distintos en A con la misma imagen.
- **2 Sobreyectiva** (o sobre) si cada elemento $b \in B$ tiene preimagen. Es decir, para todo $b \in B$ existe $a \in A$ tal que b = f(a).
- 3 Biyectiva si es inyectiva y sobreyectiva a la vez.

Ejercicio

Determine qué propiedades cumplen o no cumplen las siguientes funciones:

- $f: \mathbb{N} \to \mathbb{N}_4$, $\forall n \in \mathbb{N}, f(n) = n \mod 4$
- 1 es inyectiva y no sobreyectiva.
- 2 ni inyectiva ni sobreyectiva.
- 3 es sobreyectiva y no inyectiva.
- 4 es inyectiva, sobreyectiva y biyectiva.

- Recordemos que las relaciones (y por lo tanto las funciones) son conjuntos (de pares ordenados).
- Esto significa que podemos usar las operaciones de conjuntos.
 - Unión
 - Intersección
 - Complemento
 - ...
- Existen también operaciones exclusivas para relaciones (y funciones).

Definición

Dada una relación R de A en B, la **relación inversa** de R es una relación de B en A definida como

$$R^{-1} = \{(b, a) \in B \times A \mid aRb\}$$

Definición

Dada una función f de A en B, diremos que f es **invertible** si su relación inversa f^{-1} es una función de B en A.

Definición

Dadas relaciones R de A en B y S de B en C, la **composición** de R y S es una relación de A en C definida como

$$S \circ R = \{(a,c) \in A \times C \mid \exists b \in B \text{ tal que } aRb \land bSc\}$$

Proposición

Dadas funciones f de A en B y g de B en C, la **composición** $g \circ f$ es una función de A en C.

Ejercicio

Demuestre la proposición.

Proposición

Dadas funciones f de A en B y g de B en C, la **composición** $g \circ f$ es una función de A en C.

 $\mathbf{0}$ $g \circ f$ es función: supongamos que

$$(g\circ f)(x)=z_1$$
 y $(g\circ f)(x)=z_2$, con $x\in A, z_1, z_2\in C.$

Por definición de composición:

$$g(f(x)) = z_1 \text{ y } g(f(x)) = z_2, \text{ con } x \in A, z_1, z_2 \in C.$$

Como f es función, existe un único $y \in B$ tal que y = f(x), y luego

$$g(y) = z_1 \text{ y } g(y) = z_2, \text{ con } x \in A, y \in B, z_1, z_2 \in C$$

y como g también es función, $z_1 = z_2$. Concluimos que $g \circ f$ es función.

Proposición

Dadas funciones f de A en B y g de B en C, la **composición** $g \circ f$ es una función de A en C.

 $2 g \circ f \text{ es total: sea } x \in A.$

 $\overline{\text{Como }f\text{ es función total, }}\exists y\in B\text{ tal que }(x,y)\in f.$

Similarmente, como g es función total, $\exists z \in C$ tal que $(y,z) \in g$.

Luego, $(x,z) \in g \circ f$.

Como para cada $x \in A$ existe $z \in C$ tal que $z = (g \circ f)(x)$, $g \circ f$ es total.

Teorema

Si $f:A\to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

Ejercicio

Demuestre el teorema.

Corolario

Si f es biyectiva, entonces es invertible.

Teorema

Si $f:A\to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- Función: supongamos que $yf^{-1}x_1$ e $yf^{-1}x_2$, con $y \in B$ y $x_1, x_2 \in A$. Por definición de relación inversa, esto significa que x_1fy y x_2fy . Como f es inyectiva, $x_1 = x_2$, y por lo tanto f^{-1} es función.
- 2 Total: como f es sobre, para todo $y \in B$ existe $x \in A$ tal que y = f(x). Luego, para todo $y \in B$ existe $x \in A$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es total.

Teorema

Si $f:A\to B$ es biyectiva, entonces la relación inversa f^{-1} es una función biyectiva de B en A.

- 3 Inyectiva: supongamos que $f^{-1}(y_1) = f^{-1}(y_2) = x$, con $y_1, y_2 \in B$ y $x \in A$. Por definición de relación inversa, esto significa que $f(x) = y_1$ y $f(x) = y_2$. Como f es función, $y_1 = y_2$, y por lo tanto f^{-1} es inyectiva.
- **4** Sobre: como f es total, para todo $x \in A$ existe $y \in B$ tal que y = f(x). Luego, para todo $x \in A$ existe $y \in B$ tal que $x = f^{-1}(y)$, y por lo tanto f^{-1} es sobre.

Teorema

Dadas dos funciones $f: A \rightarrow B$ y $g: B \rightarrow C$:

- **1** Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- **2** Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.

Ejercicio

Demuestre el teorema.

Corolario

Si f y g son biyectivas, entonces $g \circ f$ también lo es.

Teorema

Dadas dos funciones $f: A \rightarrow B$ y $g: B \rightarrow C$:

- **1** Si f y g son inyectivas, entonces $g \circ f$ también lo es.
- **2** Si f y g son sobreyectivas, entonces $g \circ f$ también lo es.
- **1** Supongamos que $(g \circ f)(x_1) = (g \circ f)(x_2)$, con $x_1, x_2 \in A$. Por definición de composición, $g(f(x_1)) = g(f(x_2))$. Como g es inyectiva, se tiene que $f(x_1) = f(x_2)$, y como f también es inyectiva, $x_1 = x_2$. Por lo tanto, $g \circ f$ es inyectiva.
- 2 Sea $z \in C$. Como g es sobre, sabemos que existe $y \in B$ tal que z = g(y). Similarmente, como f es sobre, sabemos que existe $x \in A$ tal que y = f(x). Entonces, tenemos que $z = g(y) = g(f(x)) = (g \circ f)(x)$, y por lo tanto para cada $z \in C$ existe $x \in A$ tal que $z = (g \circ f)(x)$. Concluimos que $g \circ f$ es sobre.

Matemáticas Discretas Funciones y Cardinalidad

Nicolás Alvarado nfalvarado@mat.uc.cl

Sebastián Bugedo bugedo@uc.cl

Bernardo Barías bjbarias@uc.cl

Gabriel Diéguez gsdieguez@ing.puc.cl

Departamento de Ciencia de la Computación Escuela de Ingeniería Pontificia Universidad Católica de Chile

27 de septiembre de 2023