FIT9137 Introduction to Computer Architecture and Networks

Week 8: Workshop on Network Layer

Dr. Muhammed Esgin

www.shutterstock.com • 1322202464

Today

How long?	What?	Why?
20 mins	Network Layer Addressing & Resolution	Recap from pre-class activities and recorded videos
	Flux Q&A	Recap
30 mins	Activity 1: Address Resolution	 Examine Network Addressing, Network & Subnets.
		 Domain Name Resolution (DNS)
		 Address Resolution Protocol (arp)
5 mins	Take-home message	Conclusion
15 mins	Overview of DHCP and Flux Q&A	Recap on DHCP
35 mins	Activity 2: DHCP	Apply your knowledge in Network Layer
		DHCP Dynamic Host Configuration Protocol
5 mins	Take-home message	Conclusion

Network Layer:

Addressing

Networks & Subnets

Address Resolution

Dynamic IP addressing

DHCP

Network Layer

Network Layer:

- addressing and routing of packets
- connecting different networks

Addressing

Addressing applications

Addressing applications

One address per

Application Layer

URL (e.g. http://www.csse.monash.edu)

Transport Layer (TCP)

- Port number (e.g. 80 for HTTP)
- identifies the application that handles a message

Network Layer (IP)

- IP address (e.g. 130.194.66.43)
- used for identifying devices across networks

Data Link Layer (Ethernet)

- MAC address (e.g. 00:23:ae:e7:52:85)
- used for sending frames in a LAN

Layers

Application layer

Transport layer

Network layer

Data-link layer

Physical layer

Where to get an address?

DNS entries

- ICANN/Registrars manage top-level and second-level domains
- Network admins manage DNS for their assigned domains

Port numbers

IANA maintains official <u>list of port numbers</u>

IP addresses

- IANA and 5 RIRs allocate blocks of addresses, local registries redistribute to customers
- Network admins configure (static or dynamic) addresses in their assigned block

MAC addresses

Unique addresses allocated by hardware manufacturers

Addressing devices

IP version 4

32 bit addresses

Written using "dotted decimal" notation

Example: 130.194.66.43

Hierarchy used for routing

You can immediately see if a destination address is in the same subnet!

Subnet mask: 255.255.255.192 or /26

Subnets

Address resolution

Assume we browse to http://www.google.com.au

- We know client use random tcp port & server uses destination port 80 for http
- We have to translate <u>www.google.com.au</u> into an IP address: 216.58.220.99 (domain name resolution)
- We send a request through the Internet to that IP address
- The router in the destination LAN of 216.58.220.99 needs to know the MAC address for 216.58.220.99 to deliver the frame (MAC address resolution)

This is known as Name resolution or address resolution.

Address resolution: Application Layer

DNS (Domain Name System)

- Application layer protocol for address resolution
- Client sends request to DNS server to get IP address registered for a name

DNS Servers

- Implement a distributed database of names
- Are organised in a hierarchy reflecting the structure of the domain names

DNS Query

Name Servers

 To resolve a domain name, a resolver queries a distributed hierarchy of DNS servers also called name servers (NS)

Address resolution: Data Link Layer

How to find the MAC address for an IP address:

Address Resolution Protocol (ARP)

Arp /? command for ARP MAC address to IP_Address resolution

FLUX Question: arp(1)

In Address Resolution Protocol (ARP), the *arp* request message is encapsulated as a:

To participate, go to

- A. Data Link integer
- B. Data Link header
- C. Data Link frame check sequence
- D. Data Link frame

flux.qa/JSBJLK

https://flux.qa/JSBJLK

FLUX Question: arp(2)

Address Resolution Protocol (ARP) request is sent as a broadcast message, the reply is: To participate, go to

- A. Unicast message
- Broadcast message
- Multicast message
- D. Generated locally

flux.qa/JSBJLK

https://flux.qa/JSBJLK

FLUX Question: Domain Name System

Mapping a name to an address or an address to a name is called:

To participate, go to

- A. Name-address Generations
- B. Name-address Abbreviations
- C. Name-address Resolution
- D. Name-address Information

flux.qa/JSBJLK

https://flux.qa/JSBJLK

Activity A: Address Resolution

<u>Download File inside VM (no spaces or new lines):</u>

https://drive.google.com/file/d/1lJcCVJ_p8Y h1vtvSwLQPilC9nx_Zm6wy/view

Activity A

Configuring IP addresses

Every device on the network needs an IP address

- Doesn't change for servers and routers, so configure statically
- Probably doesn't need to change for workstations, but configuring is time consuming
- Infeasible to allocate statically for mobile devices

Dynamic Addressing IPv4

Dynamic Host Configuration Protocol (DHCP)

- Send broadcast to DHCP server to get an address and subnet mask
- Addresses are only leased for a limited time
- Makes efficient use of limited IPv4 address space (since only computers currently connected to the network get an address)
- Much easier for admins to manage than static addresses

Activity B: DHCP

Normal DHCP Operation

Client IP: 192.168.1.10/24

Gateway: 192.168.1.1

DNS: 192.168.1.6

DHCPDISCOVER

Broadcast for a DHCP Server

DHCPOFFER

MAC unicast with configuration information

DHCPREQUEST

Broadcast requesting configuration information sent in DHCPOFFER

DHCPACK

Acknowledge configuration information and begins lease

Pool: 192.168.1.0/24

Gateway: 192.168.1.1

DNS Server: 192.168.1.6

FLUX Question: DHCP

The DHCP (Dynamic Host Configuration Protocol)

server _____

To participate, go to

flux.qa/JSBJLK

- A. Maintains a database of available IP addresses
- B. Maintains the information about client configuration parameters
- C. Grants an IP address when receives a request from a client
- D. All of the above

https://flux.qa/JSBJLK

FIT913 28

Activity B

End