EC569 Economic Growth Technology and Efficiency (Lecture 7)

ilhan Güner School of Economics, University of Kent

February 26, 2018

Technology Production Function

 Last lecture, we assumed technology growth rate is independent of current technology level:

$$\hat{A} = \frac{L_A}{\mu}$$

 However, technology is cumulative: Researchers begin their investigations where those who came before them left off.

Cumulative Nature of Technology Development

Positive

- Isaac Newton: If I have seen father than others, it is because I have stood on the shoulders of giants.
- · Larger base of knowledge
- Larger set of tools
- Negative
 - Fishing out effect: easiest discoveries have already been made
 - More is known today, more effort for a researcher to learn everything required
- 18th and 19th century discoveries: lone scientists and inventors
- late 20th century discoveries: large and well-funded research teams

$$\hat{A} = \frac{L_A}{\mu} A^{-\phi}, \quad 0 < \phi < 1$$

Decreasing Returns to Scale in Technology Production

- Non-rivalry of knowledge
- Efforts of most of the researchers will be wasted if many are working at the same project
- Charles Darwin came up earlier with 'natural selection' than Alfred Wallace
- Two teams completed the sequencing of human genome simultaneously

$$\hat{A} = \frac{L_A^{\lambda}}{\mu}, \quad 0 < \lambda < 1$$

Combining with cumulative nature of technology

$$\hat{A} = \frac{1}{\mu} L_A^{\lambda} A^{-\phi}$$

Figure 3: The Steady Exponential Growth of Moore's Law

Source: Wikipedia, https://en.wikipedia.org/wiki/Moores_law.

Source: Bloom, N., Jones, C. I., Van Reenen, J., & Webb, M. (2017). Are ideas getting harder to find? (No. w23782). National Bureau of Economic Research.

Figure 4: Data on Moore's Law

Note: The effective number of researchers is measured by deflating the nominal semiconductor R&D expenditures of key firms by the average wage of high-skilled workers. The R&D data includes research by Intel, Fairchild, National Semiconductor, Texas Instruments, Motorola, and more than two dozen other semiconductor firms and equipment manufacturers; see Table 1 for more details.

Source: Bloom, N., Jones, C. I., Van Reenen, J., & Webb, M. (2017). Are ideas getting harder to find? (No. w23782). National Bureau of Economic Research. Read the op-ed on the article.

Implications for the Future of Technological Change

- From 1950 to 2007, the number of researchers in the G-5 countries grew from 251K to 3.5M
- The overall labor force could grow
- The fraction of labor force engaged in research could grow
 - In the US, .25% in 1950 to .92% in 2007
- New members could be added to the set of countries doing cutting-edge research

Differential Technological Progress

- So far, we have assumed pace of technological change is same across sectors of a country.
- Some industries radically changed: communications
- Some industries have been created: television, air travel
- Some industries barely changed: barbers, education

Differential Technological Progress, cont'd

- What do these differential rates of technological progress imply for the economic growth?
- Technological progress is more important when it occurs in a larger sector.
- High productivity growth in toothbrush-producing industry vs a small productivity improvement in the automobile industry.
- Average rate of technological progress in the whole economy
 weighted average of technological progress in each industry
- Weights = fraction of total output produced in that sector

Differential Technological Progress, Theory

- Bread and cheese: perfect complements
 - Movement of factors from high productivity industry (bread) to low productivity industry (cheese)
 - Slowdown in productivity growth
- Butter and margarine: perfect substitute
 - Produce more margarine (high productivity)
 - Growth rate of the economy increases
- Key difference: what happens to share of spending on high productivity sector

Differential Technological Progress, Examples

- In 1927, a pair of Levi's jeans cost 13 × a woman's haircut
- In 2011, a pair of Levi's jeans cost $1.5 \times$ a woman's haircut
- Service consumption rose from 40% of GDP in 1950 to 67% in 2010.
- Shift to the sector with low productivity growth
- Cost disease: relative costs rise in the sector with slow productivity growth

Figure 9.5: Price of Computers, 1982-2010

Source: U.S. Department of Commerce, National Income and Product Accounts, Table 1.5.4. Includes both computers and peripherals.

Figure 9.6: Investment in Computers as a Percentage of GDP, 1982-2009

Source: U.S. Department of Commerce, National Income and Product Accounts, Table 5.5.5. Includes both computers and peripherals.

Efficiency

$$A = T \times E$$

- Technology: Knowledge about how factors of production can be combined to produce output
- Efficiency: How effectively given technology and factors of production actually used
- Productivity is much lower in poor countries than in rich countries
- Not obvious the only reason is a gap of technology
- Many of the most advanced technologies are being used in poor countries

Measuring Efficiency

- World Management Survery (Bloom, Sadun, and Van Reenen (2017))
- http://worldmanagementsurvey.org
- 12,000 organizations across 34 countries
- Core management practices
 - setting sensible targets
 - providing proper incentives
 - credibly monitoring performance
- Read the op-ed on the article

Figure 1: Average Management Scores by Country

Note: Unweighted average management scores; # interviews in right column (total = 15,489); all waves pooled (2004-2014)

Source: Bloom, Sadun, and Van Reenen (2017)

Notes: This plots the lowess predicted valued of TFP against management (bandwidth=0.5). TFP calculated as residual of regression of ln(sales) on ln(capital) and ln(labor) plus a full set of 3 digit industry, country and year dummies controls. N = 10.900.

Management

Source: Bloom, Sadun, and Van Reenen (2017)

2

5

Types of Inefficiency

- Unproductive activities
- Idle resources
- Misallocation among sectors
- Misallocation among firms
- Technology blocking

Unproductive Activities

- rent seeking: involve the use of laws or government institutions to bring private benefits
- Economic rent: payment to a factor of production in excess of what is required to elicit the supply of that factor
- E.g.: quotas to limit the imports of some goods, lobbying, ...
- Costs: a good deal of effort, bright people work in unproductive activities
- Illegal activities: theft, smuggling, kidnapping for ransom, ...

Idle Resources

- Factors of production not used at all
- Unemployment, underemployment
- Factory that sits unused
- Factory running at less than full capacity
- capital hoarding: factory shutdown during recessions
- Example: Air Afrique: 500 employees per airplane, EasyJet: 66 employees per airplane
- 'Fireman' employed in diesel engines of the United States and Canada railroads during the middle of the 20th century

Misallocation Among Sectors

Misallocation among sectors: marginal product of inputs are not equal across sectors

- barriers to mobility
 - geographical isolation
 - wage policy: e.g. sectoral minimum wage
- wages ≠ marginal product of labor
 - market segmentation: potentially productive people are unable to work in certain sectors

Figure 10.3: Efficient Allocation of Labor between Sectors

Figure 10.4: Overallocation of Labor to Sector 1

Units of output

Figure 10.5: Overallocation of Labor to Farming When Farmworkers are Paid Their Average Product

Efficiency Gains from Sectoral Reallocation

Reallocation from agriculture to manufacture

- Taiwan: 0.7% of 5.4% annual growth over 1966-1991
- Korea: 0.7% of 5.7% annual growth over 1960-1990
- US: fraction of agricultural labor 50% to 3% over 1880-1980
- China: fraction of agricultural labor 69% to 40% over 1980-2009

Misallocation Among Firms

Misallocation among firms: marginal product of inputs are not equal across firms

- government-owned firms over-employ: political power
- monopolies under-employ: monopolistic profit
- financial frictions prevent efficient allocation of capital: financial development and growth

Technology Blocking

Agents deliberately prevent the use of technology

- Gutenbergs printing press (1453): scribes
- automated weaving loom (19th century): Luddites
- margarine (late 19th century): dairy farmers
- Netscape browser: Microsoft

Isn't technological progress beneficial to the economy?

- creative destruction and technology blocking
- the success of technology blocking depends on the relative power of the opposer/supporter
- rich countries are more prone to technology blocking
- technology blocking requires a well functioning government