ALGORYTMY I STRUKTURY DANYCH

STRUKTURA DANYCH - GRAF

Minimalne drzewo rozpinające

Dany jest graf G spójny z wagami.

Drzewo rozpinające – podgraf grafu *G*, który jest drzewem zawierającym *wszystkie wierzchołki* grafu *G*. **Minimalne drzewo rozpinające** – drzewo rozpinające, dla którego *suma wag krawędzi jest minimalna*. Graf nieskierowany jest **spójny**, jeśli każdy wierzchołek jest osiągalny ze wszystkich innych wierzchołków.

Przykład

Przy projektowaniu układów elektronicznych często końcówki wielu elementów składowych należy uczynić elektrycznie równoważnymi, łącząc je przewodami. Do połączenia zbioru *n* końcówek możemy użyć *n*-1 przewodów, z których każdy łączy dwie końcówki. Ze wszystkich możliwych sposobów połączeń najbardziej pożądany jest zazwyczaj ten, który **minimalizuje łączną długość użytych przewodów**.

Problem łączenia końcówek można modelować za pomocą spójnego grafu nieskierowanego z wagami G = (V, E, w), w którym V jest zbiorem końcówek, a E jest zbiorem możliwych połączeń między parami końcówek. Z każdą krawędzią jest związana waga określająca koszt (długość potrzebnego przewodu) połączenia dwóch wierzchołków.

Problem: Znaleźć acykliczny podzbiór krawędzi $T \subset E$, który łączy wszystkie wierzchołki i którego łączna waga jest najmniejsza.

Rozwiązanie: minimalne drzewo rozpinające.

Reguła zachłanna:

- w algorytmie Kruskala zbiór *T* jest lasem. Do *T* jest zawsze dodawana ta krawędź w grafie, która ma najmniejszą wagę i która łączy dwie różne składowe (tzn. dwa drzewa z lasu).
- w algorytmie **Prima** zbiór T jest zawsze **pojedynczym drzewem**. Do T jest zawsze dodawana ta krawędź w grafie, która ma najmniejszą wagę i która łączy drzewo wyznaczone przez T z wierzchołkiem spoza tego drzewa.

Algorytm Kruskala

Algorytm Kruskala jest algorytmem zachłannym znajdującym minimalne drzewo rozpinające danego grafu spójnego z wagami. *Reguła zachłanna*: dodaj krawędź o minimalnej wadze, która nie tworzy cyklu. Rozwiązanie częściowe nie musi być drzewem.

Wejście: G = (V, E, w) – graf spójny nieskierowany z wagami. **Wyjście**: T – zbiór krawędzi minimalnego drzewa rozpinającego grafu G.

_ _

Algorytm:

```
1  T = Ø
2  utwórz rozłączne podzbiory zbioru V (każdy podzbiór zawiera jeden wierzchołek ze zbioru V);
3  sortuj zbiór krawędzi E w porządku niemalejącym ze względu na wagi krawędzi;
4  for (każda krawędź (u, v) z uporządkowanego zbioru krawędzi E)
5  if(u i v należą do podzbiorów rozłączonych)
6  { połącz podzbiory zawierające u i v;
7  dodaj krawędź (u, v) do zbioru T
8  }
```


Zadanie 1. Wykonaj krokową analizę działania algorytmu Kruskala dla powyższego grafu. (*Pliki do wykorzystania*: *Lab9_zadania_algorytm_Kruskala_Prima.xlsx*, arkusz *zadanie_1*).

Zadanie 2. Znajdź minimalne drzewo rozpinające dla poniższego grafu. (*Pliki do wykorzystania*: Lab9_zadania_algorytm_Kruskala_Prima.xlsx, arkusz zadanie_2).

Algorytm Prima

Algorytm Prima jest algorytmem zachłannym znajdującym minimalne drzewo rozpinające danego grafu spójnego z wagami.

Reguła zachłanna: dodaj krawędź o minimalnej wadze, która ma jeden wierzchołek w bieżącym drzewie a drugi, który nie należy do bieżącego drzewa.

Każde rozwiązanie częściowe jest drzewem.

Wejście: G = (V, E, w) – graf spójny z wagami, s - wierzchołek startowy. **Wyjście**: T – zbiór krawędzi minimalnego drzewa rozpinającego grafu G.

Algorytm:

```
1 T = \emptyset

2 U = \{s\}

3 while (U ! = V)

4 { znajdź krawędź (u, v) \in E o minimalnej wadze taką, że u \in U oraz v \in V - U;

5 T = T \cup \{(u, v)\};

6 U = U \cup \{v\};

7 }
```


Zadanie 3. Wykonaj krokową analizę działania algorytmu Prima dla powyższego grafu. (*Pliki do wykorzystania*: *Lab9_zadania_algorytm_Kruskala_Prima.xlsx*, arkusz *zadanie_3*).

Zadanie 4. Chcemy znaleźć minimalne drzewo rozpinające dla poniższego grafu.

- a) wykonaj algorytm Prima; za każdym razem, gdy pojawia się wybór wierzchołka, zawsze użyj tego, który jest pierwszy w kolejności alfabetycznej (startując od wierzchołka A).
- b) Na tym samym grafie wykonaj algorytm Kruskala.

Zadanie 5. Pokaż, jak znaleźć maksymalne drzewo rozpinające grafu, tzn. drzewo rozpinające o możliwie największej łącznej wadze.

Bibliografia

T. H. Cormen, Ch. E. Leiserson,	R. L. Rivest: <i>Wprowadzenie do algorytmów.</i>	WNT Warszawa 2012.