Exercices du chapitre 2

1. Les applications f suivantes sont-elles continues? différentiables? de classe \mathcal{C}^1 ?

a)
$$f(x,y) = \frac{xy}{\sqrt{x^2+y^2}}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

b)
$$f(x,y) = \frac{xy}{x^2+y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

c)
$$f(x,y) = \frac{(y^2-x)^2}{x^2+y^4}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

d)
$$f(x,y) = y^2 \sin\left(\frac{x}{y}\right)$$
 si $y \neq 0$, et $f(x,0) = 0$.

e)
$$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

f)
$$f(x,y) = \frac{x^2y}{x^2+y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

g)
$$f(x,y) = \frac{x^2y^2}{x^2+y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

2. Soit f définie sur \mathbb{R}^2 par $f(x,y) = xy \sin\left(\frac{\pi}{2}\left(\frac{x-y}{x+y}\right)\right)$ si $x+y \neq 0$, et f(x,-x) = 0.

- a) Etudier la continuité et la différentiabilité de f.
- b) Calculer $D_1D_2f(0,0)$ et $D_2D_1f(0,0)$. f est-elle de classe \mathcal{C}^2 ?

3. Soit $A \in \mathcal{S}_n(\mathbb{R})$ et $f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$, $x \mapsto \frac{\langle Ax, x \rangle}{\|x\|^2}$. Calculer $\nabla f(x)$ et le comparer à la projection orthogonale de Ax sur $(\mathbb{R}x)^{\perp}$.

4. Soit $\mathcal{M}_n(\mathbb{R})$ espace euclidien muni du produit scalaire $\langle \langle A, B \rangle \rangle = \operatorname{tr}({}^t A B)$; soit Ω l'ouvert de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices inversibles. Déterminer les différentielles des applications suivantes (si elles existent):

- a) $\operatorname{tr}: A \in \mathcal{M}_n(\mathbb{R}) \to \operatorname{tr}(A) \in \mathbb{R}$;
- **b)** det : $A \in \mathcal{M}_n(\mathbb{R}) \to \det(A) \in \mathbb{R}$;
- c) $g: A \in \Omega \mapsto \ln|\det A| \in \mathbb{R}$;
- **d)** $f_{-1}: A \in \Omega \to A^{-1} \in \Omega$;
- e) $p \in \mathbb{N}^*, f_p : A \in \mathcal{M}_n(\mathbb{R}) \to A^p \in \mathcal{M}_n(\mathbb{R}) ;$
- f) $p \in \mathbb{N}^*, f_{-p} : A \in \Omega \to A^{-p} \in \Omega.$