₽

→ Mini Project by:

Saneet Saluja, Omkar Londhe, Rusheil Baath, Swarup Satav, Jatin Garad

Panel 2 CSE AI-DS Batch: B1

import pandas as pd
import numpy as np

#importing datasets
df=pd.read_csv("/content/heart-statlog_csv.csv")

	age	sex	chest	resting_blood_pressure	serum_cholestoral	fasting_blood_sugar	re
0	70	1	4	130	322	0	
1	67	0	3	115	564	0	
2	57	1	2	124	261	0	
3	64	1	4	128	263	0	
4	74	0	2	120	269	0	
265	52	1	3	172	199	1	
266	44	1	2	120	263	0	
267	56	0	2	140	294	0	
268	57	1	4	140	192	0	
269	67	1	4	160	286	0	
270 rd	ows ×	14 col	umns				
4							•

#display first 5 records
df.head()

	age	sex	chest	resting_blood_pressure	serum_cholestoral	<pre>fasting_blood_sugar</pre>	resting_electrocard
0	70	1	4	130	322	0	
1	67	0	3	115	564	0	
2	57	1	2	124	261	0	
3	64	1	4	128	263	0	
4	74	0	2	120	269	0	

#display last 5 records
df.tail()

	age	sex	chest	resting_blood_pressure	serum_cholestoral	fasting_blood_sugar	resting_electroca
265	52	1	3	172	199	1	
266	44	1	2	120	263	0	
267	56	0	2	140	294	0	
268	57	1	4	140	192	0	
269	67	1	4	160	286	0	

#show all attributes with data types
df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 270 entries, 0 to 269
Data columns (total 14 columns):
# Column
                                         Non-Null Count Dtype
                                         -----
0 age
                                         270 non-null
                                                        int64
                                         270 non-null
                                                        int64
    sex
2
    chest
                                         270 non-null
                                                        int64
    resting_blood_pressure
3
                                         270 non-null
                                                        int64
4
    serum_cholestoral
                                         270 non-null
                                                        int64
                                         270 non-null
    fasting blood sugar
                                                        int64
    resting_electrocardiographic_results 270 non-null
                                                        int64
6
    maximum_heart_rate_achieved
                                         270 non-null
                                                        int64
    exercise_induced_angina
                                         270 non-null
                                                        int64
9
    oldpeak
                                         270 non-null
                                                        float64
10 slope
                                         270 non-null
                                                        int64
11 number_of_major_vessels
                                         270 non-null
                                                         int64
                                         270 non-null
12 thal
                                                        int64
```

#show statistical info
df.describe()

memory usage: 29.7+ KB

13 class

dtypes: float64(1), int64(12), object(1)

	age	sex	chest	resting_blood_pressure	$serum_cholestoral$	<pre>fasting_blood_suga</pre>
count	270.000000	270.000000	270.000000	270.000000	270.000000	270.00000
mean	54.433333	0.677778	3.174074	131.344444	249.659259	0.14814
std	9.109067	0.468195	0.950090	17.861608	51.686237	0.35590
min	29.000000	0.000000	1.000000	94.000000	126.000000	0.00000
25%	48.000000	0.000000	3.000000	120.000000	213.000000	0.00000
50%	55.000000	1.000000	3.000000	130.000000	245.000000	0.00000
75%	61.000000	1.000000	4.000000	140.000000	280.000000	0.00000
max	77.000000	1.000000	4.000000	200.000000	564.000000	1.00000

270 non-null

object

#display data types of attributes df.dtypes

```
int64
age
sex
                                           int64
                                           int64
chest
resting_blood_pressure
                                           int64
serum_cholestoral
                                           int64
fasting blood sugar
                                           int64
resting_electrocardiographic_results
                                           int64
maximum_heart_rate_achieved
                                           int64
exercise_induced_angina
                                           int64
                                         float64
oldpeak
slope
                                           int64
number_of_major_vessels
                                           int64
thal
                                           int64
class
                                          object
dtype: object
```

#to get the column labels of dataframe
df.columns

#get the index (row labels) of dataframe
df.index

```
RangeIndex(start=0, stop=270, step=1)
```

 $\mbox{\tt \#get}$ the total number of elements from the data frame $\mbox{\tt df.size}$

3780

#get the dimensionality of data frame
df.shape

(270, 14)

#slice the result for first 5 rows
df[0:5]

	age	sex	chest	resting_blood_pressure	serum_cholestoral	fasting_blood_sugar	resting_electrocard
0	70	1	4	130	322	0	
1	67	0	3	115	564	0	
2	57	1	2	124	261	0	
3	64	1	4	128	263	0	
4	74	0	2	120	269	0	

 $\label{eq:continuous_def} \mbox{\tt \#the number of axes/array dimensions} \\ \mbox{\tt df.ndim}$

2

#checking for missing values
df.isnull()

	age	sex	chest	resting_blood_pressure	serum_cholestoral	fasting_blood_sugar	resting_electr
0	False	False	False	False	False	False	
1	False	False	False	False	False	False	
2	False	False	False	False	False	False	
3	False	False	False	False	False	False	
4	False	False	False	False	False	False	
265	False	False	False	False	False	False	
266	False	False	False	False	False	False	
267	False	False	False	False	False	False	
268	False	False	False	False	False	False	
269	False	False	False	False	False	False	

270 rows × 14 columns

#The number of NULL values in each column
df.isnull().sum()

age	0
sex	0
chest	0
resting_blood_pressure	0
serum_cholestoral	0
fasting_blood_sugar	0
resting_electrocardiographic_results	0
maximum_heart_rate_achieved	0

```
exercise_induced_angina
                                                                0
      oldpeak
                                                                0
      slope
      number_of_major_vessels
      thal
                                                                0
      class
      dtype: int64
df.shape
       (270, 14)
df.duplicated(subset=None, keep="first").value_counts()
      False
      dtype: int64
df.columns
      Index(['age', 'sex', 'chest', 'resting_blood_pressure', 'serum_cholestoral',
    'fasting_blood_sugar', 'resting_electrocardiographic_results',
    'maximum_heart_rate_achieved', 'exercise_induced_angina', 'oldpeak',
                 'slope', 'number_of_major_vessels', 'thal', 'class'],
               dtype='object')
```

▼ Data Visualisation using Matplotlib

```
import matplotlib.pyplot as plt

#No of patient who have heart disease and who don't
plt.hist(df['age'],color='green',edgecolor='white',bins=5)
plt.title('histrogram of Age')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
```



```
#most of our patients have resting blood pressure between 120 and 150
#line graph
plt.plot(df['resting_blood_pressure'],df['class'],label="Line L")
plt.plot()
plt.xlabel("Resting Blood Pressure")
plt.ylabel("Class")
plt.title("Line Graph ")
plt.legend()
plt.show()
```



```
df["class"].value_counts().plot(kind='bar')
plt.xlabel("Class")
plt.ylabel("Frequency")
plt.title("Bar Graph ")
```

Text(0.5, 1.0, 'Bar Graph ')


```
plt.scatter(df['serum_cholestoral'],df['age'],marker='*',color='r')
plt.scatter(df['resting_blood_pressure'],df['age'],marker='^',color='b')
plt.scatter(df['maximum_heart_rate_achieved'],df['age'],marker='.',color='g')
plt.title("Scatter Plot ")
plt.xlabel("Cholestrol/Blood Pressure/Heart Rate")
plt.ylabel("Age")
plt.legend()
plt.show()
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label

df.boxplot(column = 'serum_cholestoral', by = 'chest')
plt.suptitle('') # remove the automatic title
plt.title('Box Plot')
plt.ylabel('Cholestrol Level')
plt.xlabel('Chest')

Text(0.5, 0, 'Chest')

→ Correlation Analysis

#correlation heatmap
#The lighter the shade,greater is the correlation
import seaborn as sns
corel=df.corr()
sns.heatmap(corel,vmax=0.6,square=True)
plt.show()

corel=df.corr()
sns.heatmap(corel,vmax=0.6,square=True,annot=True)
plt.show()

<ipython-input-446-dee615822d96>:1: FutureWarning: The default value of numeric_only in DataFrame.corr
 corel=df.corr()

Data Visualisation using Seaborn

#regression plot
sns.set(style="darkgrid")

 $sns.regplot(x=df['number_of_major_vessels'], y=df['resting_electrocardiographic_results']) \\ plt.show()$

#lm plot
sns.lmplot(x='maximum_heart_rate_achieved',y='age',data=df,fit_reg=False,hue='thal',legend=True,palette='Set1')
plt.show()

sns.boxplot(y=df['maximum_heart_rate_achieved'])
plt.show()

df.hist()
plt.show()

sns.violinplot(x=df['class'],y=df['resting_blood_pressure'])
plt.show

→ Prediction using Decision Tree

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
encoded=le.fit_transform(df['class'])
df['encoded_class']=encoded
print(df)
          age
               sex
                     chest
                            resting_blood_pressure serum_cholestoral
     0
           70
                 1
                                                130
     1
           67
                 0
                         3
                                                115
                                                                    564
           57
                 1
                                                124
                                                                    261
     3
           64
                 1
                                                128
                                                                    263
     4
           74
                 0
                         2
                                                120
                                                                    269
     265
           52
                                                172
                                                                    199
     266
           44
                                                120
                                                                    263
                 1
     267
           56
                         2
                                                140
                                                                    294
     268
           57
                                                140
                                                                    192
     269
           67
                                                160
                                                                    286
          fasting_blood_sugar
                                resting_electrocardiographic_results \
     0
     1
                             0
     2
     3
                                                                     0
     4
                             0
                                                                     2
                                                                     0
     266
                                                                     0
     267
     268
     269
          maximum_heart_rate_achieved
                                        exercise_induced_angina
                                                                  oldpeak
                                                                            slope \
     0
                                   109
                                                                       2.4
     1
                                   160
                                                               0
                                                                       1.6
     2
                                   141
                                                               0
                                                                       0.3
                                                                                1
                                   105
     4
                                   121
                                                               1
                                                                       0.2
                                                                                1
     265
                                   162
                                                               0
                                                                       0.5
     266
                                   173
                                                                       0.0
     267
                                   153
                                                               0
                                                                       1.3
     268
                                   148
                                                               0
                                                                       0.4
     269
                                   108
          number_of_major_vessels
                                   thal
                                             class encoded_class
     0
                                 3
                                       3
                                           present
     1
                                 0
                                           absent
     2
                                 0
                                           present
     3
                                 1
                                           absent
                                                                 0
                                            absent
     265
                                            absent
     266
                                            absent
     267
                                 0
                                       3
                                            absent
     268
                                 0
                                            absent
                                       6
                                                                 0
                                           present
```

[270 rows x 15 columns]

Х

	age	sex	chest	resting_blood_pressure	serum_cholestoral	fasting_blood_sugar	resting_electroca
0	70	1	4	130	322	0	
1	67	0	3	115	564	0	
2	57	1	2	124	261	0	
3	64	1	4	128	263	0	
4	74	0	2	120	269	0	
265	52	1	3	172	199	1	
266	44	1	2	120	263	0	
267	56	0	2	140	294	0	
268	57	1	4	140	192	0	
269	67	1	4	160	286	0	

270 rows × 13 columns

Υ

```
encoded_class
       0
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=42)
x_train.shape
     (202, 13)
x_test.shape
     (68, 13)
#using decision tree model
from sklearn.tree import DecisionTreeClassifier
regressor=DecisionTreeClassifier(criterion='gini',max depth=5,splitter='best')
regressor.fit(x_train,y_train)#training of classifier
             {\tt DecisionTreeClassifier}
     DecisionTreeClassifier(max depth=5)
y_test['Predicted']=regressor.predict(x_test)
y_test
           encoded_class Predicted
      30
                                  0
      116
                                  1
      79
                       0
                                  0
      127
                       0
                                  0
                       O
      196
      ...
      10
                       n
                                  1
      233
      66
                       0
                                  0
                       0
                                  0
      253
      225
     68 rows × 2 columns
from sklearn.metrics import classification_report,confusion_matrix,accuracy_score
print(confusion_matrix(y_test['encoded_class'],y_test['Predicted'],))
     [[30 10]
      [ 6 22]]
accuracy=accuracy_score(y_test['encoded_class'],y_test['Predicted'])
accuracy=np.round(accuracy,2)
print("Accuracy of the model is : ",accuracy)
     Accuracy of the model is : 0.76
print(classification_report(y_test['encoded_class'],y_test['Predicted']))
                                recall f1-score
                   precision
                                                    support
                        0.83
                                  0.75
                                             0.79
                                                         40
```

```
0.69
                             0.79
                                        0.73
                                                    28
                                        0.76
                                                    68
    accuracy
                   0.76
                             0.77
                                        0.76
                                                    68
   macro avg
weighted avg
                   0.77
                             0.76
                                        0.77
                                                    68
```

```
from six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import pydotplus
feature_cols=['age', 'sex', 'chest', 'resting_blood_pressure', 'serum_cholestoral',
                      'maximum_heart_rate_achieved', 'exercise_induced_angina', 'oldpeak',
                      'slope', 'number_of_major_vessels', 'thal']
dot_data=StringIO()
#regressor is the decision tree model
#filled= true so that different colours of boxes with different significance
#boxes have rounded corners
#feature names-names of each box , if we dont define it'll take 0,1,2 etc. as default
export\_graph viz (regressor, out\_file=dot\_data, filled=True, rounded=True, special\_characters=True, rounded=True, special\_characters=True, rounded=True, special\_characters=True, rounded=True, special\_characters=True, rounded=True, rounded=True, special\_characters=True, rounded=True, rounded=True, special\_characters=True, rounded=True, rounded=True,
                                                 feature_names=feature_cols,class_names=['0','1'])
graph=pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_png("tree.png")
Image(graph.create_png())
```



```
d1=X.iloc[16]
d1
```

age	46.0
sex	1.0
chest	4.0
resting_blood_pressure	140.0
serum_cholestoral	311.0
fasting_blood_sugar	0.0
resting_electrocardiographic_results	0.0
maximum_heart_rate_achieved	120.0
exercise_induced_angina	1.0
oldpeak	1.8
slope	2.0
number_of_major_vessels	2.0
thal	7.0
Name: 16, dtype: float64	

val_data=pd.DataFrame(d1)
val_data.transpose()

	age	sex	chest	resting_blood_pressure	serum_cholestoral	fasting_blood_sugar	resting_electroca
16	46.0	1.0	4.0	140.0	311.0	0.0	

#predicting class for a random record
y_pred=regressor.predict(val_data.transpose())
print("Prediction: ",y_pred)

Prediction: [1]

df.iloc[16]

age	46.0
sex	1.0
chest	4.0
resting_blood_pressure	140.0
serum_cholestoral	311.0
fasting_blood_sugar	0.0
resting_electrocardiographic_results	0.0
maximum_heart_rate_achieved	120.0
exercise_induced_angina	1.0
oldpeak	1.8
slope	2.0
number of major vessels	2.0
thal	7.0
encoded_class	1.0
Name: 16, dtype: float64	

• x