ANALYSES AND PREDICTION ON LOAN DEFAULTS

Beverly Yang 05MAR23

CONTENTS

- 1. Summary and Goal
- 2. Exploratory Data Analysis (EDA)
- 3. Feature Selection and Engineering
- 4. Machine Learning Modeling
- 5. Model Performance
- 6. Model Selection
- 7. Improvements

SUMMARY AND GOAL

- Better assess the risk of potential borrowers
- Assumption:
 - Revolving credit features more important than installment features
 - Derogatory and delinquency remarks are considered
 - Select model based on highest ROCAUC score
- Most of categorical features removed
- Saga-lasso logistic regression model is the best at detecting loan default

EXPLORATORY DATA ANALYSIS

- Data Cleaning and Preprocessing
 - Charged off event rate is: 7.31%
- Numeric: Pearson's correlation
- Categorical: Chi-square, and Cramer V score
- Most numerical data skew to the right

cr_dur_yr

Real number (\mathbb{R})

Distinct	2775
Distinct (%)	0.2%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	18.68857259

Minimum	3.079452055
Maximum	84.89589041
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	13.9 MiB

gı

Categorical

Distinct	
Distinct (%)	
Missing	
Missing (%)	
Memory size	

FEATURE SELECTION AND ENGINEERING

total_rec_int	6.33E-03	num_accts_ever_120_pd	-1.01E-06
loan_amnt	5.67E-03	mort_acc	-6.02E-07
recoveries	3.80E-03	num_tl_op_past_12m	-4.03E-07
total_rec_late_fee	2.67E-05	pub_rec_bankruptcies	-3.22E-07
revol_bal	1.95E-05	pub_rec	-2.99E-07

- Impute numeric values: dti, inq
- Create credit history feature
- 44 features are used for training

Feature importance:

- Baseline logistic regression model
- PC performance
- Decision Tree Regressor

MACHINE LEARNING MODELING

Simple logistic regression modeling

- 1. Helper functions for one-hot encoding, scoring, plotting ROCAUC
- 2. Prepare features and target
- 3. Split training dataset into training and validation set. Use all test data for prediction
- 4. Normalization
- 5. Fit various logistic models
- 6. Predict use trained model

solver	'liblinear'	'lbfgs'	'newton-cg'	'sag'	'saga'
Multinomial + L2 penalty	no	yes	yes	yes	yes
OVR + L2 penalty	yes	yes	yes	yes	yes
Multinomial + L1 penalty	no	no	no	no	yes
OVR + L1 penalty	yes	no	no	no	yes

MODEL PERFORMANCE USING TRAINING SET

- Most accurate and precise:
 - base normalized
 - 93% accuracy
 - 70% Precision
- Best recall:
 - newton-Cholesky: 83%

• Saga for detection

- 42.9% default predicted in test
- Low Precision & High Recall

Prediction

```
Actual 0 1
0 240782 98072
1 4529 22042
```

None

Accuracy: 0.7192282958199356

Precision: 0.18350899978353896

Recall: 0.829551014263671

Specificity: 0.7105774168225844

F1 SCORE for Default: 0.30053516037768

MODEL SELECTION

IMPROVEMENTS

- Under-sampling
- EDA:
 - Text mining and refining emp_title columns
 - Remove all rows with NaNs
 - Investigate geographic implications
- Feature Engineering
 - Assign class weight
 - Advanced imputations
- Narrow down more features (GridSearch)
- XGBoost Tree
- Business understanding

THANK YOU!