1

明細書

ポジ型感光性樹脂組成物

技術分野

本発明はポジ型感光性樹脂組成物に関する。さらに詳しくはディスプレイ材料用途として好適なポジ型感光性樹脂組成物に関する。

背景技術

一般に、薄膜トランジスタ(TFT)型液晶表示素子、有機EL素子等のディスプレイ素子においてはパターン形成された電極保護膜、平坦化膜、絶縁膜等が設けられている。これらの膜を形成する材料としては、必要とするパターン形状を得るための工程数が少なく、しかも十分な平坦性を有するという特徴を持つ、感光性樹脂組成物が幅広く使用されている。そして、これらの膜には、耐熱性、耐溶剤性、長時間焼成耐性などのプロセス耐性、高透明性、下地との密着性等の諸特性が要求されている。

したがって、これらの膜を形成する感光性樹脂組成物としては、上記諸特性に優れた硬化物を与え得ることが必要である。また、これに加えて感光性樹脂組成物の保存安定性のよいこと、使用目的に合わせた様々なプロセス条件でパターンを形成し得る広いプロセスマージンを有することも望まれている。さらには、解像度、感度等の感光特性も重要となる。一方、液晶表示素子用途においては、例えば液晶を汚染しないといった信頼性の高い材料も必要不可欠である。

このように、ディスプレイ材料用途における感光性樹脂組成物には、様々な特性が必要となる。これに対し、感光性樹脂組成物の個々の特性に関しては、これまでも様々な検討がなされてきた。例えば、高耐熱性・高透明性を両立させるものとして、アルカリ可溶性樹脂中にグリシジル基を有する材料が報告されている(特開平8-262709号公報)。一方、高感度・高解像度を実現するものとして、1,2-ナフトキノンジアジド化合物を用いた材料が報告されている(特

開平4-211255号公報)。

しかしながら、上記の種々の諸特性を全て満足できる感光性樹脂組成物を開発することは必ずしも容易ではなく、従来技術の単なる組み合わせでは困難であった。また、液晶表示素子用途として、電気特性を悪化させない信頼性の高い材料は、これまでに報告例がない。

発明の開示

本発明の目的は、耐熱性、耐溶剤性、長時間焼成耐性等のプロセス耐性、及び透明性に優れる硬化膜を作製することができ、かつ、解像度、感度等の感光特性に優れ、保存安定性が高くプロセスマージンの広いポジ型感光性樹脂組成物、さらには液晶表示素子用途として、電気特性の悪化を招くことのない信頼性の高いポジ型感光性樹脂組成物を提供することにある。

本発明の課題は、以下に示すポジ型感光性樹脂組成物によって達成される。

1. 不飽和カルポン酸誘導体とN-置換マレイミドとを必須とする共重合体であり、数平均分子量が2,000~20,000のアルカリ可溶性樹脂と、一般式(1)

$$\begin{array}{c} P_1 \\ P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_6 \\ P_7 \\$$

(式中、Dはそれぞれ独立に水素原子又は 1 、 2 ーキノンジアジド基を有する有機基であり、 R_1 は炭素原子又は 4 価の有機基である。ただし、Dの少なくとも 1 つは、 1 、 2 ーキノンジアジド基を有する有機基である。)

で示される1、2-キノンジアジド化合物と、アルカリ可溶性樹脂100重量部

に対して5~50重量部の一般式(2)

(式中、nは $2\sim10$ の整数、mは $0\sim4$ の整数を示し、 R_2 はn価の有機基を表す)

で表される架橋性化合物とを含有することを特徴とするポジ型感光性樹脂組成物

- 2. アルカリ可溶性樹脂の残留モノマー率が2.5重量%以下である、上記1に記載のポジ型感光性樹脂組成物。
- 3.1,2-キノンジアジド化合物が、アルカリ可溶性樹脂100重量部に対して5~100重量部含有される、上記1又は2に記載のポジ型感光性樹脂組成物。
 - 4. 1, 2-キノンジアジド化合物が下記式(3)

(式中、Dはそれぞれ独立に水素原子又は1, 2-キノンジアジド基を有する有機基であり、Dの少なくとも1つは、1, 2-キノンジアジド基を有する有機基である。)

で示される化合物である、上記1、2又は3に記載のポジ型感光性樹脂組成物。

5. 1.2-キノンジアジド化合物が下記式(4)

(式中、Dはそれぞれ独立に水素原子又は1,2-キノンジアジド基を有する有機基であり、Dの少なくとも1つは、1,2-キノンジアジド基を有する有機基である。)

で示される化合物である、上記1、又は3に記載のポジ型感光性樹脂組成物。

- 6. アルカリ可溶性樹脂がエポキシ基を有さない、上記1~5のいずれかに 記載のポジ型感光性樹脂組成物。
- 7. 架橋性化合物が、一般式(2)中のnが3~10であり、かつmが2である、上記1~6のいずれかに記載のポジ型感光性樹脂組成物。
- 8. 界面活性剤が、アルカリ可溶性樹脂100重量部に対して0.01~5重量部含有される、上記1~7のいずれかに記載のポジ型感光性樹脂組成物。
- 9. ポジ型感光性樹脂組成物が、固形分濃度が1~50重量%の溶液である、上記1~8のいずれかに記載に記載のポジ型感光性樹脂組成物。

本発明によれば、耐熱性、耐溶剤性、長時間焼成耐性等のプロセス耐性、及び透明性に優れる硬化膜を作製することができ、かつ、解像度、感度等の感光特性に優れ、保存安定性が高くプロセスマージンの広いポジ型感光性樹脂組成物が提供され、さらには液晶表示素子用途として、電気特性の悪化を招くことのない信頼性の高い硬化膜が提供される。

発明を実施するための最良の形態

以下、本発明の感光性樹脂組成物について具体的に説明する。

<アルカリ可溶性樹脂>

本発明のポジ型感光性樹脂組成物に含有されるアルカリ可溶性樹脂は、不飽和 カルボン酸誘導体とN-置換マレイミドとを必須成分とする共重合体(以下、特 定共重合体と表記する)であり、その数平均分子量は2,000~20,000 である。

この特定共重合体を構成する不飽和カルボン酸誘導体は特に限定されないが、 具体例としてはメタクリル酸、メタクリル酸メチルメタクリレート、エチルメタクリレート、nーブチルメタクリレート、secーブチルメタクリレート、tーブチルメタクリレート、secーブチルメタクリレート、tーブチルメタクリレートなどのメタクリル酸アルキルエステル類;アクリル酸、メチルアクリレート、イソプロピルアクリレートなどのアクリル酸アルキルエステル類;シクロヘキシルメタクリレート、2ーメチルシクロヘキシルメタクリレート、ジシクロペンタニルオキシエチルメタクリレート、イソボロニルメタクリレート、ジシクロペンタニルオキシエチルアクリレート、イソボロニルアクリレート、ジシクロペンタニルオキシエチルアクリレート、イソボロニルアクリレートなどのアクリル酸環状アルキルエステル類;フェニルアクリレートなどのアクリル酸アリールエステル類;フェニルアクリレート、ベンジルアクリレートなどのアクリル酸アリールエステル類;マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチルなどのジカルボン酸ジエステル;2ーヒドロキシエチルメタクリレート、2ーヒドロキシプロピルメタクリレート、2ーヒドロキシエチルメタクリレート 、などのヒドロキシアルキルエステル類;ビシクロ〔2.2.1〕ヘプトー2-エン、5-メチルビシクロ[2.2.1] ヘプト-2-エン、5-エチルビシク ロ[2.2.1] ヘプト-2-エン、5-ヒドロキシピシクロ[2.2.1] ヘ プトー2-エン、5-カルボキシビシクロ[2.2.1] ヘプトー2-エン、5 ーヒドロキシメチルビシクロ[2.2.1] ヘプト-2-エン、5-(2'-ヒ ドロキシエチル) ビシクロ [2.2.1] ヘプト-2-エン、5-メトキシビシ クロ[2.2.1] ヘプトー2ーエン、5ーエトキシビシクロ[2.2.1] ヘ プトー2ーエン、5,6ージヒドロキシビシクロ[2.2.1] ヘプトー2ーエ ン、5,6-ジカルボキシビシクロ[2.2.1] ヘプト-2-エン、5,6-ジ(ヒドロキシメチル)ビシクロ[2.2.1]ヘプト-2-エン、5.6-ジ (2'-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5.6 ージメトキシビシクロ [2.2.1] ヘプトー2ーエン、5.6ージエトキシビ シクロ[2.2.1] ヘプトー2ーエン、5ーヒドロキシー5ーメチルビシクロ [2.2.1] ヘプト-2-エン、5-ヒドロキシ-5-エチルビシクロ「2. 2. 1] ヘプトー2ーエン、5ーカルボキシー5ーメチルビシクロ[2. 2. 1 「ヘプトー2ーエン、5ーカルボキシー5ーエチルビシクロ[2.2.1] ヘプ トー2-エン、5-ヒドロキシメチル-5-メチルビシクロ[2.2.1] ヘプ トー2ーエン、5ーカルボキシー6ーメチルビシクロ[2.2.1] ヘプトー2 ーエン、5 - カルボキシー6 - エチルビシクロ[2.2.1] ヘプトー2 - エン 、5.6-ジカルボキシビシクロ[2.2.1] ヘプト-2-エン無水物(ハイ ミック酸無水物)、5-t-ブトキシカルポニルビシクロ[2.2.1] ヘプト - 2 - エン、5 - シクロヘキシルオキシカルボニルビシクロ [2.2.1] ヘプ トー2-エン、5-フェノキシカルボニルビシクロ[2.2.1] ヘプトー2-エン、5,6-ジ(t-プトキシカルボニル)ビシクロ[2.2.1] ヘプトー 2-エン、5,6-ジ(シクロヘキシルオキシカルポニル)ビシクロ[2.2. 1] ヘプト-2-エン等のビシクロ不飽和化合物類;などが挙げられる。これら の不飽和カルボン酸誘導体は単独でも2種以上で併用してもよい。

特定共重合体における不飽和カルポン酸誘導体の比率は、好ましくは10~9

7

9 重量%、より好ましくは30~95 重量%、最も好ましくは60~80 重量%である。不飽和カルボン酸誘導体が10 重量%未満の場合には、共重合体のアルカリ溶解性が不足する。

特定共重合体を構成するNー置換マレイミドは特に限定されないが、具体例としてはシクロヘキシルマレイミド、フェニルマレイミド、メチルマレイミド、エチルマレイミドなどが挙げられる。透明性の観点から芳香環を有さない物が好ましく、現像性、透明性、耐熱性の点から脂環骨格を有するものがより好ましく、中でもシクロヘキシルマレイミドが最も好ましい。

特定共重合体におけるNー置換マレイミドの比率は、好ましくは $1\sim90$ 重量%、より好ましくは $5\sim50$ 重量%、最も好ましいのは $20\sim40$ 重量%である。Nー置換マレイミドが1重量%未満の場合は共重合体のTgが低くなり、耐熱性に劣る場合があり、また、90重量%を超える場合には、透明性が低下する場合がある。

特定共重合体を構成する成分は、不飽和カルボン酸誘導体、N-置換マレイミドを必須とし、さらに、共重合可能なその他のエチレン性化合物を加えても良い。このようなエチレン性化合物の具体例としては、スチレン、αーメチルスチレン、mーメチルスチレン、pーメチルスチレン、ビニルトルエン、pーメトキシスチレン、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミド、酢酸ビニル、1,3ーブタジエン、イソプレン、2,3ージメチル-1,3ーブタジエン、などが挙げられる。これらのエチレン性化合物は、特定共重合体の溶解性、疎水性などの調整、及び分子量を制御する目的で導入することができる。

特定共重合体において、その他のエチレン性化合物の比率は80重量%以下であることが好ましく、より好ましくは50重量%以下であり、さらに好ましくは20重量%以下である。80重量%よりも多くなると相対的に必須成分が減るため、本発明の効果を十分に得ることが困難になる。

特定共重合体においては、共重合体同士が反応し得る官能基を有さないことが好ましく、特にエポキシ基を含まないことが好ましい。共重合体同士が反応し得

8

る官能基を有する場合、組成物の溶液の粘度、及び感度の保存安定性が低下する 場合がある。

かくして、特定共重合体を構成する各モノマーの最も好ましい比率の例としては、不飽和カルボン酸誘導体が $60\sim80$ 重量%、N-置換マレイミドが $20\sim40$ 重量%が挙げられる、更に、その他のエチレン性化合物を含有する場合には、不飽和カルボン酸誘導体が $60\sim80$ 重量%、N-置換マレイミドが $20\sim4$ 0重量%、その他のエチレン性化合物が $0.1\sim20$ 重量%が挙げられる。

本発明に用いる特定共重合体を得る方法は特には限定されない。一般的には前記したモノマーを重合溶媒中でラジカル重合することにより製造される。また、必要に応じて、モノマーの官能基を保護した状態でこれらを重合し、その後、脱保護処理を行ってもよい。

特定共重合体を製造するために用いられる重合溶媒としては、例えばメタノー ル、エタノール、プロパノール、ブタノール等のアルコール類;テトラヒドロフ ラン、ジオキサン等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭 化水素類:N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン等の極 性溶媒、酢酸エチル、酢酸プチル、乳酸エチル等のエステル類:3-メトキシプ ロピオン酸メチル、2-メトキシプロピオン酸メチル、3-メトキシプロピオン 酸エチル、2-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル 、2-エトキシプロピオン酸エチル等のアルコキシエステル類:エチレングリコ ールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレング リコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、プロ ピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル 等の(ジ)グリコールジアルキルエステル類;エチレングリコールモノメチルエ ーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメ チルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコー ルモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレ ングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル 等の(ジ)グリコールモノアルキルエーテル類:プロピレングリコールモノメチ

9

ルエーテルアセテート、カルビトールアセテート、エチルセロソルプアセテート等のグリコールモノアルキルエーテルエステル類;シクロヘキサノン、メチルエチルケトン、メチルイソプチルケトン、2-ヘプタノン等のケトン類を挙げることができる。これらの重合溶媒は単独でも2種類以上を組み合わせて用いることもできる。

本発明のポジ型感光性樹脂組成物に用いる特定共重合体(アルカリ可溶性樹脂)は、ポリスチレン換算の数平均分子量が、2, 000~20, 000が好ましく、より好ましくは3, 000~1, 5000であり、更に好ましくは3, 000~10, 000のものである。数平均分子量が2, 000以下の場合には、得られるパターンの形状が不良なものとなったり、パターン状塗膜の残膜率が低下したり、パターンの耐熱性が低下したりする場合がある。一方、数平均分子量が20, 000を超える場合には、感光性樹脂組成物の塗布性が不良なものとなったり、現像性が低下したり、また、得られるパターンの形状が不良なものとなったりする場合や、50 μ m以下のパターン間に残膜が存在し解像度が低下する場合がある。

また、本発明のポジ型感光性樹脂組成物に含有されるアルカリ可溶性樹脂は、 残留モノマー率が低いものを用いることが好ましい。ここで示す残留モノマーと は、前記特定共重合体を合成した後に残存する、特定共重合体を構成する各モノ マー成分の未反応物のことである。残留モノマー率は、特定共重合体を合成反応 する際に使用した全モノマー成分量に対する残留モノマー成分全量の比率を重量 %で表したものである。残留モノマー率は、例えば、反応液を液体クロマトグラ フィーなど用いて分析することにより確認することができる。

好ましい残留モノマー率を具体的に示すならば、2.5重量%以下であり、2.0%重量以下がより好ましく、1.5重量%以下が最も好ましい。残留モノマー率が2.5重量%を超える場合には、表示素子の電気特性が低下する場合がある。

アルカリ可溶性樹脂中の残留モノマーを低減させる手法は特に限定されないが、例えば、高分子有機合成において一般的に知られている再沈殿等の精製を行う

か、もしくは重合の最終段階で反応温度を上昇させることで得ることができる。 <1,2-キノンジアジド化合物>

本発明のポジ型感光性樹脂組成物に用いる1,2-キノンジアジド化合物としては、一般式(1)

(式中、Dはそれぞれ独立に水素原子又は1, 2-キノンジアジド基を有する有機基であり、 R_1 は4価の有機基である。ただし、Dの少なくとも1つは、1, 2-キノンジアジド基を有する有機基である。)

で表されるものでれば、特に限定されない。あえてその具体例を挙げるならば、 感度、解像度、透明性の観点から下式(3)又は(4)で表される化合物が好ま しい

(式中、Dはそれぞれ独立に水素原子又は1,2-キノンジアジド基を有する有機基であり、Dの少なくとも1つは、1,2-キノンジアジド基を有する有機基

である。)

$$CH_3$$
 OD H_3C CH_3 OD OD

(式中、Dはそれぞれ独立に水素原子又は1,2-キノンジアジド基を有する有機基であり、Dの少なくとも1つは、1,2-キノンジアジド基を有する有機基である。)

本発明のポジ型感光性樹脂組成物における、1, 2-キノンジアジド化合物の含有量は、アルカリ可溶性樹脂成分100重量部に対して、好ましくは $5\sim1$ 00重量部、より好ましくは10 ~5 0重量部、最も好ましいのは10 ~3 0重量部である。

1,2-キノンジアジド化合物の量が、アルカリ可溶性樹脂成分100重量部に対して5重量部未満であると、ポジ型感光性樹脂組成物の、露光部と未露光部の現像液溶解度差が小さくなって現像によるパターンの形成(パターニング)が困難になることがある。一方、100重量部を超えると、短時間の露光では1,2-キノンジアジド化合物が充分に分解されず、感度が低下してしまうことがある。

<架橋性化合物>

本発明のポジ型感光性樹脂組成物に用いる架橋性化合物は、一般式 (2)

(式中、nは $2\sim10$ の整数、mは $0\sim4$ の整数を示し、 R_2 はn価の有機基を表す)

で表されるものであれば特に限定されない。その具体例としては、シクロヘキセンオキサイド構造を有するエポキシ樹脂であるエポリードGT-401、同GT-403、同GT-301、同GT-302、セロキサイド2021、セロキサイド3000(ダイセル化学(株)製)、脂環式エポキシ樹脂であるデナコールEX-252(ナガセケムッテクス(株)製)、CY175、CY177、CY179(以上、CIBA-GEIGY A. G製)、アラルダイトCY-182、同CY-192、同CY-184(以上、CIBA-GEIGY A. G製)、エピクロン200、同400(以上、大日本インキ工業(株)製)、エピコート871、同872(以上、油化シェルエポキシ(株)製)、ED-5661、ED-5662(以上、セラニーズコーティング(株)製)、等を挙げることができる。また、これらの架橋性化合物は、単独又は2種類以上を組み合わせて用いることができる。

これらのうち、耐熱性、耐溶剤性、耐長時間焼成耐性等の耐プロセス性、及び透明性の観点から、一般式(2)のmが2であるシクロヘキセンオキサイド構造を有するエポキシ樹脂が好ましい。なかでも、一般式(2)のmが3~10であり、かつmが2であるシクロヘキセンオキサイド構造を有するエポキシ樹脂が好ましく、特には、一般式(2)のnが4であり、かつmが2である式(5)で表されるエポキシ樹脂が好ましい。

上記架橋性化合物の含有量は、アルカリ可溶性樹脂成分100重量部に対して5~50重量部が好ましく、より好ましくは10~40重量部であり、更に好ましくは15~30重量部である。架橋性化合物の含有量が5重量部未満の場合には、ポジ型感光性樹脂組成物を用いて得られる塗膜の架橋密度が不十分となるため、パターン形成後の塗膜の耐熱性、耐溶剤性、耐長時間焼成耐性等の耐プロセス性が低下する。また、架橋性化合物の含有量を10重量部以上にした場合は、残留モノマー率が2.5重量%を超える場合でも、表示素子の電気特性を低下させない効果がある。一方、この含有量が50重量部を超える場合には、未架橋の架橋性化合物が存在する場合があり、パターン形成後の塗膜の耐熱性、耐溶剤性、耐長時間焼成耐性等の耐プロセス性が低下し、感光性樹脂組成物の保存安定性が悪くなる場合がある。

かくして、本発明のポジ型感光性樹脂組成物に含有される各成分の最も好ましい含有量の例は、アルカリ可溶性樹脂成分 100重量部に対して、1,2-キノンジアジド化合物が 10~30重量部、2個以上のエポキシ基を含有する架橋性化合物が 15~30重量部、である。

< その他含有しても良い成分>

本発明のポジ型感光性樹脂組成物は、塗布性を向上させる目的で、界面活性剤を含んでいることは勿論好ましい。このような界面活性剤は、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤など特に限定されないが、塗布性改善効果の高さからフッ素系界面活性剤が好ましい。フッ素系界面活性剤の具体例としては、エフトップEF301、EF303、EF352((株)トーケムプロダクツ製)、メガファックF171、F173、R-30(大日本インキ(株)製)、フロラードFC430、FC431(住友スリーエム(株)製

)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等が挙げられるが、これらに限定されるものではない。

本発明のポジ型感光性樹脂組成物における界面活性剤の含有量は、アルカリ可溶性樹脂成分100重量部に対して、好ましくは0.01~5重量部、より好ましくは0.01~3重量部、最も好ましくは0.01~2重量部である。界面活性剤の含有量が5重量部よりも多くなると塗膜がムラになりやすく、0.01重量部よりも下回る場合には、塗膜にストリエーション等が発生しやすくなる。

本発明のポジ型感光性樹脂組成物は、現像後の基板との密着性を向上させる目 的で、密着促進剤を含んでいることは勿論好ましい。このような密着促進剤の具 体例としては、トリメチルクロロシラン、ジメチルビニルクロロシラン、メチル ジフエニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン 類:トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシ シラン、ジメチルビニルエトキシシラン、ジフエニルジメトキシシラン、フエニ ルトリエトキシシラン等のアルコキシシラン類:ヘキサメチルジシラザン、N. N'-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、ト リメチルシリルイミダゾール等のシラザン類:ビニルトリクロロシラン、ァーク ロロプロピルトリメトキシシラン、ァーアミノプロピルトリエトキシシラン、ァ ーメタクリロキシプロピルトリメトキシシラン、ィーグリシドキシプロピルトリ メトキシシラン等のシラン類;ベンゾトリアゾール、ベンズイミダゾール、イン ダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプト ベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラ シル、メルカプトイミダゾール、メルカプトピリミジン等の複素環状化合物類; 、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素類;又はチオ尿素 化合物を挙げることができる。

これらの密着促進剤は、アルカリ可溶性樹脂成分100重量部に対して、通常、20重量部以下、好ましくは0.05~10重量部、特に好ましくは1~10重量部である。

15

本発明のポジ型感光性樹脂組成物は、その他、必要に応じて顔料、染料、保存安定剤、消泡剤などを含んでいてもよい。

<ポジ型感光性樹脂組成物>

本発明のポジ型感光性樹脂組成物は、上記の各成分を均一に混合することによ って容易に調製することができ、通常、適当な溶剤に溶解した溶液状態で用いら れる。例えば、アルカリ可溶性樹脂を溶剤に溶解し、この溶液に1、2-キノン ジアジド化合物、架橋性化合物、界面活性剤及び必要に応じて他の成分を所定の 割合で混合することにより、溶液として感光性樹脂組成物を調製することができ る。本発明に用いる溶剤は、エチレングリコールモノメチルエーテル、エチレン グリコールモノエチルエーテル、メチルセロソルプアセテート、エチルセロソル プアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコー ルモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチ ルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレン グリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケ トン、シクロペンタノン、シクロヘキサノン、2-ヒドロキシプロピオン酸エチ ル、2-ヒドロキシー2-メチルプロピオン酸エチル、エトシキ酢酸エチル、ヒ ドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキ シプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピ オン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン 酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等を用いることが できる。これらの有機溶剤は単独又は2種以上を組み合せて用いることができる

さらに、プロピレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルアセテート等の高沸点溶剤を混合して使用することができる。 これらの溶剤の中でプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、及びシクロヘキサノンがレベリング性の向上に対して好ましい。

本発明のポジ型感光性樹脂組成物を溶液とした時の固形分濃度は、各成分が均

ーに溶解している限りは、特に限定されない。通常は加工面の容易さから、 $1\sim 50$ 重量%の範囲で使用するのが一般的である。また、上記のように調製されたポジ型感光性樹脂組成物溶液は、孔径が 0.5μ m程度のフィルタなどを用いて濾過した後、使用することが好ましい。このように調製されたポジ型感光性樹脂組成物の溶液は、室温で長期間の保存安定性にも優れる。

本発明のポジ型感光性樹脂組成物の溶液は、ガラス基板、シリコーンウェハー、酸化膜、窒化膜などの基材上に回転塗布した後、80~130℃で30秒~6 00秒予備乾燥して塗膜を形成することができる。

上記の様に形成した塗膜上に所定のパターンを有するマスクを装着し、紫外線等の光を照射し、アルカリ現像液で現像することにより、露光部が洗い出されて端面のシャープなレリーフパターンが得られる。この際使用される現像液はアルカリ水溶液であればどのようなものでもよく、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液を例として挙げることができる。

前記アルカリ現像液は10重量%以下の水溶液であることが一般的で、好ましくは0.1~3.0重量%の水溶液などが用いられる。本発明の感光性樹脂組成物はフォトレジストで一般的に使用される水酸化テトラエチルアンモニウム0.4~2.38重量%水溶液で膨潤などの問題なく現像することができる。さらに上記現像液にアルコール類や界面活性剤を添加して使用することもできる。これらはそれぞれ、現像液100重量部に対して、0.05~10重量部の範囲で配合することが好ましい。

現像時間は、通常15~180秒間である。また現像方法は液盛り法、ディッピング法などのいずれでもよい。現像後、流水洗浄を20~90秒間行い、圧縮空気や圧縮窒素で風乾させることによって、基板上の水分を除去し、パターン状塗膜が形成される。その後、このパターン状塗膜に、高圧水銀灯などによる光を全面照射し、パターン状塗膜中に残存する1,2~キノンジアジド化合物を完全

に分解させる。続いて、ホットプレート、オーブンなどにより、ポストベークをすることによって、耐熱性、透明性、平坦化性、低吸水性、耐薬品性に優れ、良好なレリーフパターンを有する硬化膜を得ることができる。ポストベークは、例えば温度 $140\sim250$ で、ホットプレート上なら $5\sim30$ 分間、オーブン中では $30\sim90$ 分間処理すればよい。

【実施例】

以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。

<合成例1>特定共重合体(P1~P4)

特定共重合体を構成するモノマー成分として、メタクリル酸13.5g、N-シクロヘキシルマレイミド35.3g、メタクリル酸ヒドロキシエチル25.5g、メタクリル酸メチル25.7gを使用し、ラジカル重合開始剤としてアゾビスイソブチロニトリルを使用し、プロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと略す)中で、60~100℃で反応させることにより、以下に示す特定共重合体のPGMEA溶液を得た。

残留モノマー率の測定は、液体クロマトグラフィー(日本分光(株)製LC2000 Plusシステム、カラム: ODS-2)を使用して測定した。

(P1):数平均分子量 4,100 ;残留モノマー率 1.5重量%

(P2):数平均分子量 9,500 ;残留モノマー率 1.6重量%

(P3):数平均分子量 4,200 ;残留モノマー率 0.5重量%

(P4):数平均分子量 4,300 ;残留モノマー率 5.0重量%

<合成例2>特定共重合体(P5)

合成例1において、PGMEAに換えて、シクロヘキサノンを使用し、合成例 1と同様にして以下に示す特定共重合体のシクロヘキサノン溶液を得た。

(P5):数平均分子量 4,500 ;残留モノマー率 1.1重量% <合成例3>特定共重合体(P6)

合成例1において、N-シクロヘキシルマレイミド35.3gに換えて、N-フェニルマレイミド35.3gを使用し、合成例1と同様にして以下に示す特定

共重合体のPGMEA溶液を得た。

(P6):数平均分子量 5,100 ;残留モノマー率 1.4重量%<合成例4>特定共重合体(P7)

合成例1において、メタクリル酸ヒドロキシエチル25.5g及びメタクリル酸メチル25.7gに換えて、メタクリル酸ヒドロキシブチル25.5g及びマレイン酸ジエチル25.7gを使用し、合成例1と同様にして以下に示す特定共重合体のPGMEA溶液を得た。

(P7):数平均分子量 4,100 ;残留モノマー率 1.3重量% <合成例5>特定共重合体(P8)

特定共重合体を構成するモノマー成分として、メタクリル酸 9.0g、N-シクロヘキシルマレイミド 32.8g、メタクリル酸ヒドロキシエチル 25.4g、メタクリル酸メチル 32.8gを使用し、合成例 1と同様にして以下に示す特定共重合体のPGMEA溶液を得た。

(P8):数平均分子量 3,800 ;残留モノマー率 1.6重量%<合成例6>共重合体(P9)

共重合体を構成するモノマー成分として、メタクリル酸13.5g、メタクリル酸ヒドロキシエチル25.5g、メタクリル酸メチル61.0gを使用し、合成例1と同様にして以下に示す共重合体のPGMEA溶液を得た。

(P9):数平均分子量 4,400 ;残留モノマー率 1.4重量% <実施例1>

[組成物の各成分]

[アルカリ可溶性樹脂] 合成例1で得られた特定共重合体 (P1)

[1,2-キノンジアジド化合物] 下記構造で示されるトリスフェノール1molと、1,2-ナフトキノン-2-ジアジド-5-スルホニルクロライド2.5molとの縮合反応によって合成される感光剤。

[架橋性化合物] 4官能のシクロヘキセンオキサイド構造を有する下記式(5)の化合物。

[ポジ型感光性樹脂組成物の調製]

樹脂濃度27%のPGMEA溶液に調製したアルカリ可溶性樹脂溶液82.1gに、1,2-キノンジアジド化合物4.2g、架橋性化合物4.9g、さらに界面活性剤として、フッ素系の界面活性剤であるメガファックR-30(大日本インキ化学製)0.02g、密着助剤としてア・メタクリロキシプロピルトリメトキシシラン1.0gを添加後、室温で1時間攪拌し、本発明のポジ型感光性樹脂組成物である組成物溶液(1)を調製した。この組成物溶液(1)の粘度は21.0mPa・sであった。また、組成物溶液(1)を室温で3ヶ月放置した後でも粘度の変化は見られなかった。

[硬化膜の作成]

組成物溶液(1)を酸化シリコン付ガラス基板上にスピンコーターを用いて塗布した後、115で90秒ホットプレート上でプリベークして膜厚 2.7μ mの塗膜を形成した。得られた塗膜全面に420nmにおける光強度が15mW/

 cm^2 の紫外線を60秒間($900mJ/cm^2$)照射した。紫外線照射後の塗膜を、ホットプレートを用いて230℃で30分間加熱することによりポストベークを行い、膜厚 2.5μ mの硬化膜を形成した。こうして形成された硬化膜を光学顕微鏡により観察したところ、ストリエーションの発生等の異常は見られなかった。

[硬化膜のプロセス耐性評価]

耐熱性:前記と同様に作製した硬化膜を基板から削り取り、TG-DTA測定により耐熱性の評価をした。その結果、熱分解開始温度は270℃、5%重量減少温度は330℃であった。また、ガラス転移温度は200℃以上であった。

耐溶剤性:酸化シリコン付ガラス基板の代わりに石英基板を用い、前記の硬化膜の作成に記載と同様の方法で 2.5μ mの硬化膜を得た。この硬化膜をモノエタノールアミン、N-メチルピロリドン、 $\gamma-$ ブチルラクトン、ブチルセルソルプ、10% H C 1 の各溶液中に、60%、20% 間浸し、各溶液から取り出した硬化膜をホットプレート上で 180%、10% 間加熱した。得られた硬化膜の透明性を分光光度計を用いて 200-800 n mの波長で測定したところ、400 n mでの透過率は 95%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 2.5μ mで膜減りは全く見られなかった。

長時間焼成耐性:酸化シリコン付ガラス基板の代わりに石英基板を用い、前記の硬化膜の作成に記載と同様の方法で 2.5μ mの硬化膜を得た。この硬化膜をさらに 230 \mathbb{C} で 90 分間加熱した後に膜厚を測定した結果、約 2.5μ mで膜の収縮は全くみられなかった。

[硬化膜の透明性評価]

酸化シリコン付ガラス基板の代わりに石英基板を用い、前記の硬化膜の作成に記載と同様の方法で 2.5μ m硬化膜を得た。この硬化膜を分光光度計を用いて 200-800 n mの波長で測定したところ、400 n mでの透過率は 95% であった。 さらにこの硬化膜を 230%で 90分間加熱した後に、分光光度計を用いて <math>200-800 n mの波長で測定したところ、400 n mでの透過率は 94% であった。組成物溶液を室温で 25% に様の評価を行った結果、透過

21

率の低下は見られなかった。

[硬化膜の信頼性評価]

前記と同様に、酸化シリコン付ガラス基板上に作製した硬化膜を基板から削り取り、この粉末 25 m g をネマチック液晶(メルク社製 ZLI-2293) 1.5 g に添加した。この混合物を100 \mathbb{C} 、24 時間加熱して得られた混合物を0.45 μ mのフィルターでろ過することにより、信頼性試験サンプル液晶を得た。一方、硬化膜を加えずに100 \mathbb{C} 、24 時間加熱した液晶を比較液晶とした。

上記2種類の液晶を用いて液晶セルを作製し、電圧保持率の比較を行った。その結果、信頼性試験サンプル液晶の電圧保持率は、23℃で98%、80℃で89%、80℃で89%であり、同等の値を示した。

なお、液晶セルは、透明電極付き基板 2 枚を一組とし、一方の基板の電極面に 6 μ mのスペーサーを散布し、電極面を内側にして 2 枚を張り合わせた後、液晶を注入して作製した。また、電圧保持率の測定は、(株)東陽テクニカ製HR-1 電圧保持率測定装置を用いて、 $Voltage: \pm 4V$ 、 $pulse\ width: 60$ μ s、 $flame\ period: 16.67ms の設定で測定した。$

[感光特性の評価]

組成物溶液(1)を酸化シリコン付ガラス基板上にスピンコーターを用いて塗布した後、115℃で90 秒ホットプレート上においてプリベークを行い膜厚2. 7μ mの塗膜を形成した。この塗膜にテストマスクを通してキャノン製紫外線照射装置 P L A -50 1 により、420 n mにおける光強度が15 m W / c m 2 の紫外線を4 秒間(60 m J / c m 2)照射した。次いで、23 ℃ 00. $2\sim2$. 38% T M A H 水溶液に80 秒間浸漬して、現像を行った後、超純水で20 秒間の流水洗浄を行いポジ型のパターンを形成させた。現像後の未露光部の膜厚は約 2.7μ m で膜減りは全く見られなかった。

解像度:パターン解像度は、ライン/スペースで $3 \mu m$ までパターン剥離なく形成された。その後、全面に 4 2 0 n mにおける光強度が $1 5 m W / c m^2$ の紫

外線を20秒間(300mJ/cm²) 照射し、230 $\mathbb C$ で30分間のポストベークを行い、膜厚2.5 μ mのパターンが得られた。

感度:上記のパターン形成において、現像前の紫外線の照射量を10mJ/cm²ずつ変えて紫外線照射処理を行い、露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、40mJ/cm²の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

<実施例2>

実施例1において、1,2ーキノンジアジド化合物として、下記構造で示されるトリスフェノール1molと、1,2ーナフトキノンー2ージアジドー5ースルホニルクロライド2.0molとの縮合反応によって合成される感光剤を使用した以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液(2)を得た。

この組成物溶液(2)を用いて、実施例1と同様に評価を行った。

[硬化膜のプロセス耐性]

耐熱性:熱分解開始温度は270 \mathbb{C} 、5% 重量減少温度は330 \mathbb{C} であった。また、ガラス転移温度は200 \mathbb{C} 以上であった。

耐溶剤性:400nmでの透過率は96%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 2.5μ mで膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400nmでの透過率は96%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400nmでの透過率は95%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

[硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で98%、80℃で88%であり、比較液晶の電圧保持率と同等の値を示した。

[感光特性]

解像度: パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に 4 20 n mにおける光強度が 15 mW/c m 2 の紫外線を 20 秒間(300 m J/c m 2)照射し、 230 ℃で 30 分間のポストベークを行い、膜厚 2.5μ mのパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、50mJ/cm²の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

く実施例3>

実施例1において、アルカリ可溶性樹脂として、合成例1で得られた特定共重合体 (P2)を使用した以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液 (3)を得た。この組成物溶液 (3)を用いて、実施例1と同様に評価を行った。

[硬化膜のプロセス耐性]

耐熱性:熱分解開始温度は270 \mathbb{C} 、5% 重量減少温度は330 \mathbb{C} であった。また、ガラス転移温度は200 \mathbb{C} 以上であった。

耐溶剤性:400nmでの透過率は96%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 2.5μ mで膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400 n m での透過率は96%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400 n m での透過率は95%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

[硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で98%、80℃で88%であり、比較液晶の電圧保持率と同等の値を示した。

[感光特性]

解像度:パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に420nmにおける光強度が15mW/cm²の紫外線を20秒間(300mJ/cm²)照射し、230℃で30分間のポストペークを行い、膜厚 2.5μ mのパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、45 m J / c m² の照射で完全に溶解した。組成物溶液を室温で2 ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

<実施例4>

実施例1において、アルカリ可溶性樹脂として、合成例1で得られた特定共重合体(P3)を使用した以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液(4)を得た。この組成物溶液(4)を用いて、実施例1と同様に評価を行った。

[硬化膜のプロセス耐性]

また、ガラス転移温度は200℃以上であった。

耐溶剤性:400nmでの透過率は96%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 $2.5\mum$ で膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400 n m での透過率は96%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400 n m での透過率は96%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

[硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で98%、80℃で89%であり、比較液晶の電圧保持率と同等の値を示した。

[感光特性]

解像度:パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に 420 n mにおける光強度が 15 mW/c m² の紫外線を 20 秒間(300 m J/c m²)照射し、 230 ℃で 30 分間のポストベークを行い、膜厚 2.5μ m のパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、40mJ/cm²の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

<実施例5>

実施例1において、アルカリ可溶性樹脂として、合成例1で得られた特定共重合体(P3)を使用し、架橋性化合物の添加量を3.4gにした以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液(5)を用いて、実施例1と同様に評価を行った。

[硬化膜のプロセス耐性]

また、ガラス転移温度は200℃以上であった。

耐溶剤性:400nmでの透過率は96%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 2.5μ mで膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400 n m での透過率は96%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400 n m での透過率は95%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

「硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で98%、80℃で89%であり、比較液晶の電圧保持率と同等の値を示した。

[感光特性]

解像度: パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に 4 2 0 n mにおける光強度が 1 5 mW/c m²の紫外線を 2 0 秒間(3 0 0 m J/c m²)照射し、 2 3 0 $\mathbb C$ で 3 0 分間のポストベークを行い、膜厚 $2 .5 \mu$ mのパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、40mJ/cm²の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

<実施例6>

実施例1において、アルカリ可溶性樹脂として、合成例1で得られた特定共重合体(P4)を使用し、架橋性化合物の添加量を3.4gにした以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液(6)を得た。この組成物溶液(6)を用いて、実施例1と同様に評価を行った。

[硬化膜のプロセス耐性]

また、ガラス転移温度は200℃以上であった。

耐溶剤性:400nmでの透過率は95%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 $2.5\mum$ で膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400 n m での透過率は95%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400 n m での透過率は94%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

[硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で97%、80℃で84%であり、比較液晶の電圧保持率とほぼ同等の値を示した。

[感光特性]

解像度:パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に 4 2 0 n mにおける光強度が 15 mW/cm^2 の紫外線を 20 秒間(300 mJ/cm^2)照射し、 230 C で 30 分間のポストペークを行い、膜厚 2.5μ mのパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、40mJ/cm²の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

く実施例7>

実施例1において、アルカリ可溶性樹脂として、合成例2で得られた特定共重合体(P5)を使用し、これを樹脂濃度27%のシクロヘキサノン溶液に調製したアルカリ可溶性樹脂溶液を使用した以外は実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液(7)を得た。この組成物溶液(7)を用いて、実施例1と同様に評価を行った。

[硬化膜のプロセス耐性]

また、ガラス転移温度は200℃以上であった。・

耐溶剤性:400nmでの透過率は96%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 2.5μ mで膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400 n m での透過率は96%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400 n m での透過率は95%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

「硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で98%、80℃で89%であり、比較液晶の電圧保持率と同等の値を示した。

[感光特性]

解像度:パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に 4 2 0 n mにおける光強度が 1 5 mW/c m²の紫外線を 2 0 秒間(3 0 0 m J/c m²)照射し、 2 3 0 $\mathbb C$ で 3 0 分間のポストベークを行い、膜厚 $2 .5 \mu$ mのパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、40mJ/cm²の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

<実施例8>

実施例1において、アルカリ可溶性樹脂として、合成例3で得られた特定共重合体(P6)を使用した以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液(8)を得た。この組成物溶液(8)を用いて、実施例1と同様に評価を行った。

[硬化膜のプロセス耐性]

耐熱性:熱分解開始温度は270 \mathbb{C} 、5% 重量減少温度は335 \mathbb{C} であった。また、ガラス転移温度は200 \mathbb{C} 以上であった。

耐溶剤性:400nmでの透過率は95%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 $2.5\mum$ で膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400 n mでの透過率は95%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400 n m での透過率は94%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

[硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で97%、80℃で88%であり、比較液晶の電圧保持率と同等の値を示した。

[感光特性]

解像度:パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に420nmにおける光強度が15mW/cm²の紫外線を20秒間(300mJ/cm²)照射し、230℃で30分間のポストペークを行い、膜厚 2.5μ mのパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、40 m J / c m²の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

<実施例9>

実施例1において、アルカリ可溶性樹脂として、合成例4で得られた特定共重合体(P7)を使用した以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液(9)を得た。この組成物溶液(9)を用いて、実施例1と同様に評価を行った。

[硬化膜のプロセス耐性]

耐熱性:熱分解開始温度は265℃、5%重量減少温度は325℃であった。また、ガラス転移温度は200℃以上であった。

耐溶剤性:400nmでの透過率は95%で溶剤処理前からの低下はみられな

かった。また、溶剤処理後の膜厚は約2.5μmで膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400 n m での透過率は95%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400 n m での透過率は94%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

「硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で98%、80℃で88%であり、比較液晶の電圧保持率と同等の値を示した。

[感光特性]

解像度: パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に 420 n mにおける光強度が 15 mW/c m² の紫外線を 20 秒間(300 m J/c m²)照射し、 230 ℃で 30 分間のポストペークを行い、膜厚 2.5μ m のパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、45 m J / c m² の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

<実施例10>

実施例1において、アルカリ可溶性樹脂として、合成例5で得られた特定共重合体(P8)を使用した以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、本発明のポジ型感光性樹脂組成物である組成物溶液(10)を得た。この組成物溶液(10)を用いて、実施例1と同様に評価を行った。

「硬化膜のプロセス耐性」

耐熱性:熱分解開始温度は270 \mathbb{C} 、5% 重量減少温度は310 \mathbb{C} であった。また、ガラス転移温度は200 \mathbb{C} 以上であった。

耐溶剤性:400nmでの透過率は95%で溶剤処理前からの低下はみられなかった。また、溶剤処理後の膜厚は約 2.5μ mで膜べりは全く見られなかった

長時間焼成耐性:膜の収縮は全くみられなかった。

[硬化膜の透明性]

400 n m での透過率は95%であった。さらにこの硬化膜を230℃で90分間加熱した後に、400 n m での透過率は94%であった。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、透過率の低下は見られなかった。

[硬化膜の信頼性]

信頼性試験サンプル液晶の電圧保持率は、23℃で98%、80℃で88%であり、比較液晶の電圧保持率と同等の値を示した。

[感光特性]

解像度:パターン解像度は、ライン/スペースで 3μ mまでパターン剥離なく形成された。その後、全面に 420 n mにおける光強度が 15 mW/c m²の紫外線を 20 秒間(300 m J/c m²)照射し、 230 ℃で 30 分間のポストペークを行い、膜厚 2.5μ mのパターンが得られた。

感度:露光部が現像液に完全に溶解するために必要な最小の紫外線照射量を測定しところ、45mJ/cm²の照射で完全に溶解した。組成物溶液を室温で2ヶ月保存後、同様の評価を行った結果、感度の低下は見られなかった。

<比較例1>

実施例1において、アルカリ可溶性樹脂として、合成例6で得られた共重合体 (P9)を使用した以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、ポジ型感光性樹脂組成物である組成物溶液 (9)を得た。この組成物溶液 (9)を用いて、実施例1と同様に評価を行った。

その結果、硬化膜のプロセス耐性評価において、5%重量減少温度は290℃であり、耐熱性に劣るものであった。

<比較例2>

実施例1において、アルカリ可溶性樹脂として、合成例1で得られた特定共重合体(P4)を使用し、架橋性化合物の添加量を1.0gにした以外は、実施例1と同様にポジ型感光性樹脂組成物を調製し、ポジ型感光性樹脂組成物である組

成物溶液(10)を得た。この組成物溶液(10)を用いて、実施例1と同様に 評価を行った。

その結果、硬化膜のプロセス耐性評価において、溶剤処理後の膜に透明化率の低下と、膜厚の減少がみられ、特にモノエタノールアミンを用いた場合は、400 の 100 の 100

<比較例3>

実施例1において、1,2-キノンジアジド化合物として、下記構造で示されるトリスフェノール1molと、1,2-ナフトキノン-2-ジアジド-5-スルホニルクロライド3.0molとの縮合反応によって合成される感光剤を使用した以外は実施例1と同様に調製し、ポジ型感光性樹脂組成物である組成物溶液(11)を得た。

この組成物溶液(11)を用いて、実施例1と同様に評価を行った。

その結果、透明性の評価において、得られた硬化膜を分光光度計を用いて200-800nmの波長で測定したところ、400nmでの透過率は89%と低い値を示し、さらにこの硬化膜を230%で90分間加熱した後に、分光光度計を用いて200-800nmの波長で測定したところ、400nmでの透過率は80%であった。

<比較例4>

実施例1において、架橋性化合物として、ヘキサメトキシメチロールメラミンを使用した以外は実施例1と同様に調製し、ポジ型感光性樹脂組成物である組成物溶液(12)を得た。この組成物溶液(12)を用いて、実施例1と同様に評価を行った。

その結果、硬化膜のプロセス耐性評価において、5%重量減少温度は290%と耐熱性に劣るものであった。また、透明性の評価において、400nmでの透過率は88%と低い値を示し、さらにこの硬化膜を230%で90分間加熱した後に、分光光度計を用いて200-800nmの波長で測定したところ、400nmでの透過率は79%であった。

産業上の利用可能性

本発明のポジ型感光性樹脂組成物は、パターン形成が必要な硬化膜でかつ、平 坦性、耐熱性、耐溶剤性、長時間焼成耐性、高透明性、等の諸特性が必要な硬化 膜を得ることができる。

本発明のポジ型感光性樹脂組成物は、薄膜トランジスタ(TFT)型液晶表示素子、有機EL素子等のディスプレイにおける、保護膜、平坦化膜、絶縁膜等を形成する材料として好適であり、特に、TFTの層間絶縁膜、カラーフィルターの保護膜、平坦化膜、反射型ディスプレイの反射膜下の凹凸膜、マイクロレンズ材料、有機EL素子の絶縁膜等を形成する材料として好適である。

請求の範囲

1. 不飽和カルボン酸誘導体とN-置換マレイミドとを必須とする共重合体であり、数平均分子量が2,000~20,000アルカリ可溶性樹脂と、一般式(1)、

$$\begin{array}{c} P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_5 \\ P_6 \\ P_7 \\$$

(式中、Dはそれぞれ独立に水素原子又は1, 2-キノンジアジド基を有する有機基であり、 R_1 は炭素原子又は4価の有機基である。ただし、Dの少なくとも1つは、1, 2-キノンジアジド基を有する有機基である。)

で示される 1, 2 ーキノンジアジド化合物と、アルカリ可溶性樹脂 1 0 0 重量部 に対して $5 \sim 5$ 0 重量部の一般式 (2)、

(式中、nは $2\sim10$ の整数、mは $0\sim4$ の整数を示し、 R_2 はn価の有機基を表す)

で表される架橋性化合物とを含有することを特徴とするポジ型感光性樹脂組成物

2. アルカリ可溶性樹脂の残留モノマー率が2. 5重量%以下である、請求項1

に記載のポジ型感光性樹脂組成物。

3. 1, 2-キノンジアジド化合物が、アルカリ可溶性樹脂100重量部に対して5~100重量部含有される、請求項1又は2に記載のポジ型感光性樹脂組成物。

4. 1, 2-キノンジアジド化合物が、下記式(3)、

(式中、Dはそれぞれ独立に水素原子又は1,2-キノンジアジド基を有する有機基であり、Dの少なくとも1つは、1,2-キノンジアジド基を有する有機基である。)

で示される化合物である、請求項1、2又は3に記載のポジ型感光性樹脂組成物

5. 1, 2-キノンジアジド化合物が下記式(4)、

(式中、Dはそれぞれ独立に水素原子又は1,2-キノンジアジド基を有する有機基であり、Dの少なくとも1つは、1,2-キノンジアジド基を有する有機基である。)

で示される化合物である、請求項1、2又は3に記載のポジ型感光性樹脂組成物。

- 6. アルカリ可溶性樹脂がエポキシ基を有さない、請求項1~5のいずれかに記載のポジ型感光性樹脂組成物。
- 7. 架橋性化合物が、一般式(2)中のnが3~10であり、かつmが2である、請求項1~6のいずれかに記載のポジ型感光性樹脂組成物。
- 8. 界面活性剤が、アルカリ可溶性樹脂100重量部に対して0.01~5重量 部含有される、請求項1~7のいずれかに記載ポジ型感光性樹脂組成物。
- 9. ポジ型感光性樹脂組成物が、固形分濃度が1~50重量%の溶液である、請求項1~8のいずれかに記載のポジ型感光性樹脂組成物。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/011103

A. CLASSIFIC	CATION OF SUBJECT MATTER				
Int.Cl ⁷ G03F7/022, 7/023, 7/004					
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SE.	ARCHED nentation searched (classification system followed by cla	esification cumbole)			
Int.C1	G03F7/004-7/18	issincation symbols)			
			<u> </u>		
	searched other than minimum documentation to the exter Shinan Koho 1922–1996 Jit	nt that such documents are included in the tsuyo Shinan Toroku Koho	fields searched 1996–2004		
		roku Jitsuyo Shinan Koho	1994-2004		
Electronic data b	pase consulted during the international search (name of d	lata base and, where practicable, search te	rms used)		
		•			
C DOCUMEN	VTS CONSIDERED TO BE RELEVANT				
	<u> </u>		Delenera de Si		
Category*	Citation of document, with indication, where app		Relevant to claim No.		
X .	JP 2003-195501 A (Fuji Film 7 09 July, 2003 (09.07.03),	Arch Co., Ltd.),	1-9		
	Full text				
	(Family: none)	·			
Y	JP 2001-242616 A (Fuji Film)		1-9		
	07 September, 2001 (07.09.01) Full text				
	(Family: none)	1	-		
Y	JP 2001-354822 A (JSR Corp.)		1-9		
	25 December, 2001 (25.12.01), Full text				
	& TW 527394 B				
			ŀ		
	1	. !			
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.			
Special cate	gories of cited documents:	"T" later document published after the inte			
to be of part	lefining the general state of the art which is not considered ticular relevance	date and not in conflict with the applic the principle or theory underlying the i	ation but cited to understand		
"E" earlier appli filing date	ication or patent but published on or after the international	"X" document of particular relevance; the considered novel or cannot be consi	dered to involve an inventive		
"L" document which may throw doubts on priority claim(s) or which is		step when the document is taken alone "Y" document of particular relevance; the			
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means		considered to involve an inventive combined with one or more other such	step when the document is		
"P" document published prior to the international filing date but later than		being obvious to a person skilled in the "&" document member of the same patent	e art		
use priority					
Date of the actual completion of the international search 27 August, 2004 (27.08.04)		Date of mailing of the international sear 14 September, 2004			
		, 11 Jopacimer, 2004	,,		
	ng address of the ISA/	Authorized officer			
Japanese Patent Office					
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/011103

Category* Y A A	Citation of document, with indication, where appropriate, of the relevant JP 7-120925 A (Tosoh Corp.), 12 May, 1995 (12.05.95), Full text (Family: none) JP 6-95386 A (Tosoh Corp.), 08 April, 1994 (08.04.94), Full text (Family: none) JP 4-211255 A (Japan Synthetic Rubber Co. Ltd.), 03 August, 1992 (03.08.92), Full text & EP 443820 B1 & US 5238775 A JP 4-211254 A (Japan Synthetic Rubber Co.		Relevant to claim No. 1-9 1-9
A A	JP 7-120925 A (Tosoh Corp.), 12 May, 1995 (12.05.95), Full text (Family: none) JP 6-95386 A (Tosoh Corp.), 08 April, 1994 (08.04.94), Full text (Family: none) JP 4-211255 A (Japan Synthetic Rubber Co. Ltd.), 03 August, 1992 (03.08.92), Full text & EP 443820 Bl & US 5238775 A		1-9
A A	12 May, 1995 (12.05.95), Full text (Family: none) JP 6-95386 A (Tosoh Corp.), 08 April, 1994 (08.04.94), Full text (Family: none) JP 4-211255 A (Japan Synthetic Rubber Co. Ltd.), 03 August, 1992 (03.08.92), Full text & EP 443820 Bl & US 5238775 A		1-9
A	08 April, 1994 (08.04.94), Full text (Family: none) JP 4-211255 A (Japan Synthetic Rubber Co. Ltd.), 03 August, 1992 (03.08.92), Full text & EP 443820 B1 & US 5238775 A	•	
	Ltd.), 03 August, 1992 (03.08.92), Full text & EP 443820 Bl & US 5238775 A	,	1-9
A	JP 4-211254 A (Japan Synthetic Rubber Co.		
	Ltd.), 03 August, 1992 (03.08.92), Full text & EP 443820 B1 & US 5238775 A		1-9
			·

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ GO3F7/O22, 7/O23, 7/O04				
調査を行った最	fった分野 d小限資料(国際特許分類(IPC)) Cl' G03F7/004-7/18			
日本国纪日本国纪日本国纪日本国纪日本国纪日本国纪日本国纪	トの資料で調査を行った分野に含まれるもの 利用新案公報 1922-1996年 公開実用新案公報 1971-2004年 利用新案登録公報 1996-2004年 登録実用新案公報 1994-2004年 日した電子データベース(データベースの名称、	E E		
	ると認められる文献			
引用文献の カテゴリー*	 引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	関連する 請求の範囲の番号	
Х	JP 2003-195501 A(富 2003.07.09,全文(ファミ		1 — 9	
Y	JP 2001-242616 A (富 2001. 09. 07, 全文 (ファミ		1 — 9	
Y·	JP 2001-354822 A (シ 2001. 12. 25, 全文 & TV		1 — 9	
区欄の続	 きにも文献が列挙されている。		紙を参照。	
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献で出願と矛盾するものではなく、発明の原理又の理解のために引用するもの以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献であって、当該文献と他文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願「&」同一パテントファミリー文献		発明の原理又は理論 当該文献のみで発明 えられるもの 当該文献と他の1以 自明である組合せに		
国際調査を完了した日 27.08.2004 国際調査報告の発送日 14.9.		2004		
日本	の名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 都千代田区段が関三丁目4番3号	特許庁審査官(権限のある職員) 伊藤 裕美 電話番号 03-3581-1101	内線 3229	

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 7-120925 A (東ソー株式会社) 1995.05.12,全文 (ファミリーなし)	1 - 9
A	JP 6-95386 A (東ソー株式会社) 1994.04.08,全文(ファミリーなし)	1 — 9
A	JP 4-211255 A (日本合成ゴム株式会社) 1992. 08. 03, 全文 & EP 443820 B1 & US 5238775 A	1 — 9
A	JP 4-211254 A (日本合成ゴム株式会社) 1992. 08. 03, 全文 & EP 443820 B1 & US 5238775 A	1 – 9
·		
		·