

OV9650S1G Color CMOS SXGA (1.3 MegaPixel) with OmniPixelTM Technology Concept Camera Module for Socket Solution

General Description

The OV9650S1G is a sensor on-board camera and lens module designed for mobile applications where low power consumption and small size are of utmost importance.

Proprietary sensor technology utilizes advanced algorithms to cancel Fixed Pattern Noise (FPN), eliminate smearing, and drastically reduce blooming. All required camera functions are programmable through the serial SCCB interface.

The OV9650S1G features the OV9650 CAMERACHIPTM. Refer to the *OV9650 Datasheet* for chip-specific information.

Caution: READ THIS FIRST!
Prior to finalizing any mechanical or electrical design for production, consult with OmniVision to confirm any final dimensional or electrical pinout data.

Features

- Improved sensor sensitivity and image quality
- · Low-profile socket with lock
- 8 x 8 x 7.20 mm compact module dimensions
- · Optional EMI top shield available
- 24-pin connection to PCB
- Easy to extract for rework purposes
- Function controls via SCCB interface:
 - Exposure control
 - White balance
 - Color saturation
 - Windowing
 - Gamma
 - Color matrix
 - Hue control

Applications

- · Cellular and Picture Phones
- Tovs
- · PC Multimedia

Ordering Information

Product	Package
OV09650-S1G0	8 mm x 8 mm x 7.20 mm

Key Specifications

		11000
	Array Size	1300 x 1028
	Core	1.8VDC <u>+</u> 10%
Power Supply	Analog	1.8VDC <u>+</u> 10% 2.45 to 2.8 VDC 2.5V to 3.3V
	1/0	2.5V to 3.3V
Power	Active	50 mW (15 fps, no I/O
Requirements		power)
-	Standby	
Temperature	Operation	-20°C to 70°C
Range	Stable Image	
		YUV/YCbCr 4:2:2
O	utput Formats (8-bit)	
		 Raw RGB Data
Maximum		15 fps
Image	VGA	
Transfer Rate	QVGA, QQVGA, CIF	
Transition Trans	QCIF, QQCIF	
	Sensitivity	
	S/N Ratio	
7	Dynamic Range	
		Progressive
Ma	x. Exposure Interval	
	Gamma Correction	Programmable
	Pixel Size	3.18 µm x 3.18 µm
		30 mV/s at 60°C
	Well Capacity	28 K e
	Fixed Pattern Noise	
	Optical Format	1/4"
F	Field-of-Vision (FOV)	62°
	F/No.	2.8
	TV Distortion	< 0.51%
	Focus	60cm to ∞
	Construction	1G3P
	Relative Illumination	54%
	Module Dimensions	
	Socket Dimensions	10.2 x 10.2 x 4.5mm (H)
Total Module	e Height with Socket	
		SMK CLK9024-0201E

Figure 1 OV9650S1G Pin Diagram (Bottom View)

Functional Description

Figure 2 shows the functional block diagram of the OV9650S1G Camera Module. The OV9650S1G includes:

- 1/4" lens
- OV9650 CAMERACHIP image sensor
- Socket connector

Figure 2 Functional Block Diagram

AGND

Note:

Connector PWDN and RESET should be connected to ground if unused.

AVDD is 2.5V sensor analog power.

DVDD is 1.8V sensor digital power.

DOVDD is 2.5V to 3.3V sensor digital IO power. Sensor AGND and DGND should be separated and connect to a single

point at outside PCB (Don't connect inside module).

C1 should close to sensor DOVDD and DOGND.

C2 should close to sensor DVDD and DOGND. C3 should close to sensor NVDD and AGND.

C4 should close to sensor VREF and AGND.

C5 should close to sensor AVDD and AGND.

Y9:Y2 is module YUV and RGB 8bits output (Y9:MSB, Y2:LSB).

Y9:Y0 is module RGB 10 bits output (Y9:MSB, Y0:LSB).

Imaging Specifications

Table 1 Sensor Image Functions

Sensor Imaging Functions	Description		
Auto Exposure	Module automatically sets correct exposure time.		
Auto Exposure ON/OFF	Auto exposure can be turned off so the exposure can be set manually.		
Auto White Balance (AWB)	AWB without companion processor interaction.		
Auto White Balance OFF	AWB can be turned off.		
Color Correction	It is possible to adjust for the color filter response of the image sensor as well as for human eye sensitivity.		
Bayer Pattern Interpolation	(Mosaic or equivalent) The interpolation must be done prior to downsizing the image to avoid artifacts due to incorrect interpolation.		
Electrical Illumination Flicker Elimination	Interference from 50Hz or 60Hz illumination can be suppressed with manually set frame rate divider.		
Gamma Correction	Built-in 0.45/1.0		
Color Space Conversion	Bayer raw RGB is converted to YCbCr/YUV color space.		
Image Size Decimation	Size can be altered using the windowing registers. Quarter-format sub-sampling is also provided.		
Image ON/OFF	Image ON/OFF can be controlled by register settings.		
RGB Output	RGB raw data output available.		
AGC Gain	Automatic Gain Control (AGC)		
White Balance	Automatic White Balance		

NOTE: OV9650S1G features the OV9650 CAMERACHIP. Refer to the OV9650 Datasheet for chip-specific information.

Table 2 Output Specifications

Output Image Formats	Description		
Output Formats	SXGA (1280 x 1024 pixels) Super Extended Graphics Array		
Output rollinats	VGA (640 x 480 pixels) Video Graphics Array		
YUV Format	4:2:2 compliant with CCIR656		
YUV Order	YUYV or UYVY		
Embedded Sync Codes	Sync signals coded in with data output (CCIR656) or output separately.		
Data Clipping	According to CCIR656 or no clipping.		
Format in Decimation Mode	PCLK verifies whether or not there is data on every cycle.		

Pin Description

Table 3 Pin Description

Pin Number	Name	Pin Type	Function/Description
01	VSYNC	Output	Vertical sync output
02	HREF	Output	HREF output
03	PCLK	Output	Pixel clock output
04	DOVDD	Power	Digital power supply (V _{DD-IO} = 2.5 to 3.3 VDC) for I/O
05	RESET	Function (default = 0)	Clears all registers and resets them to their default values. Active high, internal pull-down resistor.
06	Y9	Output	Output bit[9] - MSB for 10-bit RGB and 8-bit YUV
07	Y7	Output	Output bit[7]
08	Y8	Output	Output bit[8]
09	Y6	Output	Output bit[6]
10	DGND	Power	Digital ground
11	Y1	Output	Output bit[1] - for 10-bit RGB only
12	Y3	Output	Output bit[3]
13	Y5	Output	Output bit[5]
14	Y4	Output	Output bit[4]
15	Y2	Output	Output bit[2] - LSB for 8-bit YUV
16	SIO_D	1/0	SCCB serial interface data I/O
17	AVDD	Power	Analog power supply (V _{DD-A} = 2.45 to 2.8 VDC)
18	AGND	Power	Analog ground
19	NC	<u> </u>	Reserved - no connect
20	PWDN	Function (default = 0)	Power Down Mode Selection - active high, internal pull-down resistor. 0: Normal mode 1: Power down mode
21	SIO_C	Input	SCCB serial interface clock input
22	DVDD	Power	Power supply (V _{DD-C} = 1.8 VDC <u>+</u> 10%) for digital core logic
23	XVCLK1	Input	Crystal clock input
24	Y0	Output	Output bit[0] - LSB for 10-bit RGB only

NOTE:

Y[9:2] for 8-bit YUV or RGB (Y9 MSB, Y2 LSB)

Y[9:0] for 10-bit RGB (Y9 MSB, Y0 LSB)

Electrical Characteristics

Table 4 Absolute Maximum Ratings

Ambient Storage Temperature	-40°C to +95°C	
	V _{DD-A}	4.5 V
Supply Voltages (with respect to Ground)	V _{DD-C}	3 V
	V _{DD-IO}	4.5 V
All Input/Output Voltages (with respect to Ground)	-0.3V to V _{DD-IO} +1V	
Lead Temperature, Surface-mount process	+230°C	
ESD Rating, Human Body model	2000V	

NOTE: Exceeding the Absolute Maximum ratings shown above invalidates all AC and DC electrical specifications and may result in permanent device damage.

Table 5 DC Characteristics (-20°C < T_A < 70°C)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{DD-A}	DC supply voltage – Analog	-	2.45	2.5	2.8	V
V _{DD-C}	DC supply voltage – Core		1.62	1.8	1.98	V
V _{DD-IO}	DC supply voltage – I/O power	-	2.25	-	3.6	V
I _{DDA}	Active (Operating) Current	See Note ^a		20		mA
I _{DDS-SCCB}	Standby Current	See Note ^b		1		mA
I _{DDS-PWDN}	Standby Current	See Note		10		μΑ
V _{IH}	Input voltage HIGH	CMOS	0.7 x V _{DD-IO}			V
V _{IL}	Input voltage LOW				0.3 x V _{DD-IO}	V
V _{OH}	Output voltage HIGH	CMOS	0.9 x V _{DD-IO}			V
V _{OL}	Output voltage LOW				0.1 x V _{DD-IO}	V
I _{ОН}	Output current HIGH	See Note ^c	8			mA
I _{OL}	Output current LOW		15			mA
IL	Input/Output Leakage	GND to V _{DD-IO}			± 1	μΑ

a. V_{DD-A} = 2.5V, V_{DD-C} = 1.8V, V_{DD-IO} = 3.0V I_{DDA} = Σ { I_{DD-IO} + I_{DD-C} + I_{DD-A} }, I_{DLA} = 24MHz at 7.5 fps YUV output, no I/O loading

b. $V_{DD-A} = 2.5V$, $V_{DD-C} = 1.8V$, $V_{DD-IO} = 3.0V$ $I_{DDS:SCCB}$ refers to a SCCB-initiated Standby, while $I_{DDS:PWDN}$ refers to a PWDN pin-initiated Standby

c. Standard Output Loading = 25pF, $1.2K\Omega$

Table 6 Functional and AC Characteristics (-20°C < T_A < 70°C)

Symbol	Parameter	Min	Тур	Max	Unit					
Functional Cl	Functional Characteristics									
	A/D Differential Non-Linearity		<u>+</u> 1/2		LSB					
	A/D Integral Non-Linearity		<u>+</u> 1		LSB					
	AGC Range		40	18	dB					
Inpute (DW/DN	Red/Blue Adjustment Range N, CLK, RESET)		12		dB					
f _{CLK}	Input Clock Frequency	10	24	48	MHz					
	Input Clock Period	21	42	100	ns					
t _{CLK}		45	50	55	%					
t _{CLK:DC}	Clock Duty Cycle	45	50							
t _{S:RESET}	Setting time after software/hardware reset			1	ms					
t _{S:REG}	Settling time for register change (10 frames required)	79.		300	ms					
	(see Figure 4)		l							
f _{SIO_C}	Clock Frequency			400	KHz					
t _{LOW}	Clock Low Period	1.3			μS					
t _{HIGH}	Clock High Period	600			ns					
t _{AA}	SIO_C low to Data Out valid	100		900	ns					
t _{BUF}	Bus free time before new START	1.3			μS					
t _{HD:STA}	START condition Hold time	600			ns					
t _{SU:STA}	START condition Setup time	600			ns					
t _{HD:DAT}	Data-in Hold time	0			μS					
t _{SU:DAT}	Data-in Setup time	100			ns					
t _{SU:STO}	STOP condition Setup time	600			ns					
t _{R,} t _F	SCCB Rise/Fall times			300	ns					
t _{DH}	Data-out Hold time	50			ns					
Outputs (VSY	NC, HREF, PCLK, and Y[9:0] (see Figure 5, Figure 6, Fig	gure 7, Figure	e 8, Figure 1	0, and Figure	11)					
t _{PDV}	PCLK[↓] to Data-out Valid			5	ns					
t _{SU}	Y[9:0] Setup time	15			ns					
t _{HD}	Y[9:0] Hold time	8			ns					
t _{PHH}	PCLK[↓] to HREF[↑]	0		5	ns					
t _{PHL}	PCLK[↓] to HREF[↓]	0		5	ns					
AC Conditions:	$ \begin{array}{lll} \bullet \ \ V_{DD}: & V_{DD-C}=1.8V, \ V_{DD-A}=2.5V, \ V_{DD-IO}=3.0V \\ \bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$									

Timing Specifications

Figure 4 SCCB Timing Diagram

Figure 5 Horizontal Timing

Figure 6 SXGA Frame Timing

Figure 7 VGA Frame Timing

Figure 8 QVGA Frame Timing

Figure 9 QQVGA Frame Timing

Figure 10 CIF Frame Timing

Figure 11 QCIF Frame Timing

Figure 12 QQCIF Frame Timing

Figure 13 RGB 565 Output Timing Diagram

Figure 14 RGB 555 Output Timing Diagram

Register Set

Table 7 shows detailed descriptions of the Device Control registers. The device slave addresses for the OV9650S1G are 60 for write and 61 for read.

Table 7 Device Control Register List

Address (Hex)	Register Name	Default (Hex)	R/W	Description		
00	GAIN	00	RW	AGC[7:0] – Gain control gain setting • Range: [00] to [FF]		
01	BLUE	80	RW	AWB – Blue channel gain setting • Range: [00] to [FF]		
02	RED	80	RW	AWB – Red channel gain setting • Range: [00] to [FF]		
03	VREF	12	RW	Vertical Frame Control Bit[7:6]: AGC[9:8] (see register GAIN for AGC[7:0]) Bit[5:3]: VREF end low 3 bits (high 8 bits at VSTOP[7:0] Bit[2:0]: VREF start low 3 bits (high 8 bits at VSTRT[7:0]		
04	COM1	00	RW	Common Control 1 Bit[7]: Reserved Bit[6]: CCIR656 format Bit[5]: QQVGA or QQCIF format. Effective only when QVGA or QCIF output is selected (register bit COM7[4]) and related HREF skip mode based on format is selected (register COM1[3:2]) Bit[4]: Reserved Bit[3:2]: HREF skip option 00: No skip 01: YUV/RGB skip every other row for YUV/RGB, skip 2 rows for every 4 rows for Raw data 1x: Skip 3 rows for every 4 rows for YUV/RGB, skip 6 rows for every 8 rows for Raw data Bit[1:0]: AEC low 2 LSB (see registers AECHM for AEC[15:10] and AECH for AEC[9:2])		
05	BAVE	00	RW	U/B Average Level Automatically updated based on chip output format		
06	GEAVE	00	RW	Y/Ge Average Level Automatically updated based on chip output format		
07	RSVD	00	_	Reserved		
08	RAVE	00	RW	V/R Average Level Automatically updated based on chip output format		

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
09	COM2	01	RW	Common Control 2 Bit[7:5]: Reserved Bit[4]: Soft sleep mode Bit[3:2]: Reserved Bit[1:0]: Output drive capability 00: 1x 01: 2x 10: 2x 11: 4x
0A	PID	96	R	Product ID Number MSB (Read only)
0B	VER	50	R	Product ID Number LSB (Read only)
0C	СОМЗ	00	RW	Common Control 3 Bit[7]: Reserved Bit[6]: Output data MSB and LSB swap Bit[5:4]: Reserved Bit[3]: Pin selection 1: Change RESET pin to EXPST_B (frame exposure mode timing) and change PWDN pin to FREX (frame exposure enable) Bit[2]: VarioPixel for VGA and CIF Bit[1]: Reserved Bit[0]: Single frame output (used for Frame Exposure mode only)
OD /	COM4	00	RW	Common Control 4 Bit[7]: VarioPixel for QVGA, QCIF, QQVGA, and QQCIF Bit[6]: Reserved Bit[5]: Pixels for sub-sampling mode 0: Get average neighbor pixel in sub-sampling mode 1: Get sum instead of average neghbor pixel in sub-sampling mode Bit[4:3]: Reserved Bit[2]: Tri-state option for output clock at power-down period 0: Tri-state at this period 1: No tri-state at this period Bit[1]: Tri-state option for output data at power-down period 0: Tri-state at this period 1: No tri-state at this period Bit[0]: Reserved

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
0E	COM5	01	RW	Common Control 5 Bit[7]: System clock selection. If the system clock is 48 MHz, this bit should be set to high to get 15 fps for YUV or RGB Bit[6:5]: Reserved Bit[4]: Slam mode enable 0: Master mode 1: Slam mode (used for slave mode) Bit[3]: ADC offset manual control 0: Offset is controlled automatically 1: Register OFON[7:4] can enable ADC offset addition Bit[2:1]: Reserved Bit[0]: Exposure step can be set longer than VSYNC time 1: In Normal mode, AEC changes by 1/16 and in Fast mode, AEC changes by double
0F	СОМ6	43	RW	Common Control 6 Bit[7]: Output of optical black line option 0: Disable HREF at optical black 1: Enable HREF at optical black Bit[6:5]: Reserved Bit[4]: HREF is high from optical black line Bit[3]: Enable bias for ADBLC Bit[2]: ADBLC offset 0: Use 4-channel ADBLC 1: Use 2-channel ADBLC Bit[1]: Reset all timing when format changes Bit[0]: Enable ADBLC option
10	AECH	40	RW	Exposure Value Bit[7:0]: AEC[9:2] (see registers AECHM for AEC[15:10] and COM1 for AEC[1:0])
11	CLKRC	00	RW	Data Format and Internal Clock Bit[7]: Digital PLL option 0: Disable double clock option, meaning the maximum PCLK can be as high as half input clock 1: Enable double clock option, meaning the maximum PCLK can be as high as input clock Bit[6]: Use external clock directly (no clock pre-scale available) Bit[5:0]: Internal clock pre-scalar F(internal clock) = F(input clock)/(Bit[5:0]+1) • Range: [0 0000] to [1 1111]

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description		
12	COM7	00	RW	Common Control 7 Bit[7]: SCCB Register Reset 0: No change 1: Resets all registers to default values Bit[6]: Output format - VGA selection Bit[5]: Output format - CIF selection Bit[4]: Output format - QVGA selection Bit[3]: Output format - QCIF selection Bit[2]: Output format - RGB selection Bit[1]: Reserved Bit[0]: Output format - Raw RGB (COM7[2] must be set high)		
13	СОМ8	8F	RW	Common Control 8 Bit[7]: Enable fast AGC/AEC algorithm Bit[6]: AEC - Step size limit (used only in fast condition and COM5[0] is low) 0: Fast condition change maximum step is VSYNC 1: Unlimited step size Bit[5]: Banding filter ON/OFF Bit[4]: Reserved Bit[3]: Enable AEC time can be less than 1 line option Bit[2]: AGC Enable Bit[1]: AWB Enable Bit[0]: AEC Enable		
14	СОМ9	4A	RW	Common Control 9 Bit[7]: Reserved Bit[6:4]: Automatic Gain Ceiling - maximum AGC value 000: 2x 001: 4x 010: 8x 011: 16x 100: 32x 101: 64x 110: 128x Bit[3]: Exposure timing can be less than limit of banding filter when light is too strong Bit[2]: Data format - VSYNC drop option 0: VSYNC always exists 1: VSYNC will drop when frame data drops Bit[1]: Enable drop frame when AEC step is larger than VSYNC Bit[0]: Freeze AGC/AEC		

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
15	COM10	00	RW	Common Control 10 Bit[7]: Set pin definition 1: Set RESET to SLHS (slave mode horizontal sync) and set PWDN to SLVS (slave mode vertical sync) Bit[6]: HREF changes to HSYNC Bit[5]: PCLK output option 0: PCLK always output 1: No PCLK output when HREF is low Bit[4]: PCLK reverse Bit[3]: HREF reverse Bit[2]: Reset signal end point option Bit[1]: VSYNC negative Bit[0]: HSYNC negative	
16	RSVD	00	_	Reserved	
17	HSTART	1A	RW	Output Format - Horizontal Frame (HREF column) start high 8-bit (low 3 bits are at HREF[2:0])	
18	HSTOP	ВА	RW	Output Format - Horizontal Frame (HREF column) end high 8-bit (low 3 bits are at HREF[5:3])	
19	VSTRT	01	RW	Output Format - Vertical Frame (row) start high 8-bit (low 2 bits are at VREF[1:0])	
1A	VSTOP	81	RW	Output Format - Vertical Frame (row) end high 8-bit (low 2 bits are at VREF[3:2])	
1B	PSHFT	00	RW	Data Format - Pixel Delay Select (delays timing of the Y[9:0] data relative to HREF in pixel units) Range: [00] (no delay) to [FF] (256 pixel delay which accounts for whole array)	
1C	MIDH	7 F	R	Manufacturer ID Byte – High (Read only = 0x7F)	
1D	MIDL	A2	R	Manufacturer ID Byte – Low (Read only = 0xA2)	
1E	MVFP	00	RW	Mirror/VFlip Enable Bit[7:6]: Reserved Bit[5]: Mirror 0: Normal image 1: Mirror image Bit[4]: VFlip enable 0: VFlip disable 1: VFlip enable Bit[3:0]: Reserved	
1F	LAEC	00	RW	Reserved	
20	BOS	80	RW	B Channel ADBLC Result Bit[7]: Offset adjustment sign 0: Add offset 1: Subtract offset Bit[6:0]: Offset value of 10-bit range (high 7 bits)	

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
21	GBOS	80	RW	Gb channel ADBLC result Bit[7]: Offset adjustment sign 0: Add offset 1: Subtract offset Bit[6:0]: Offset value of 10-bit range	
22	GROS	80	RW	Gr channel ADBLC result Bit[7]: Offset adjustment sign 0: Add offset 1: Subtract offset Bit[6:0]: Offset value of 10-bit range	
23	ROS	80	RW	R channel ADBLC result Bit[7]: Offset adjustment sign 0: Add offset 1: Subtract offset Bit[6:0]: Offset value of 10-bit range	
24	AEW	78	RW	AGC/AEC - Stable Operating Region (Upper Limit)	
25	AEB	68	RW	AGC/AEC - Stable Operating Region (Lower Limit)	
26	VPT	D4	RW	AGC/AEC Fast Mode Operating Region Bit[7:4]: Upper limit of 4 MSB Bit[3:0]: Lower limit of 4 LSB	
27	BBIAS	80	RW	B Channel Signal Output Bias (effective only when COM6[0] = 1) Bit[7]: Bias adjustment sign 0: Add bias 1: Subtract bias Bit[6:0]: Bias value of 10-bit range	
28	GbBIAS	80	RW	Gb Channel Signal Output Bias (effective only when COM6[0] = 1) Bit[7]: Bias adjustment sign 0: Add bias 1: Subtract bias Bit[6:0]: Bias value of 10-bit range	
29	Gr_COM	00	RW	Analog BLC and Regulator Control Bit[7:6]: Reserved Bit[5]: Bypass Analog BLC Bit[4]: Bypass regulator Bit[3:0]: Reserved	
2A	EXHCH	00	RW	Dummy Pixel Insert MSB Bit[7:4]: 4 MSB for dummy pixel insert in horizontal direction Bit[3:2]: HSYNC falling edge delay 2 MSB Bit[1:0]: HSYNC rising edge delay 2 MSB	
2В	EXHCL	00	RW	Dummy Pixel Insert LSB 8 LSB for dummy pixel insert in horizontal direction	

Table 7 Device Control Register List (Continued)

A ddrago	Address Register Default				
(Hex)	Name	(Hex)	R/W	Description	
2C	RBIAS	80	RW	R Channel Signal Output Bias (effective only when COM6[0] = 1) Bit[7]: Bias adjustment sign 0: Add bias 1: Subtract bias Bit[6:0]: Bias value of 10-bit range	
2D	ADVFL	00	RW	LSB of insert dummy lines in vertical direction (1 bit equals 1 line)	
2E	ADVFH	00	RW	MSB of insert dummy lines in vertical direction	
2F	YAVE	00	RW	Y/G Channel Average Value	
30	HSYST	08	RW	HSYNC Rising Edge Delay (low 8 bits)	
31	HSYEN	30	RW	HSYNC Falling Edge Delay (low 8 bits)	
32	HREF	A4	RW	HREF Control Bit[7:6]: HREF edge offset to data output Bit[5:3]: HREF end 3 LSB (high 8 MSB at register HSTOP) Bit[2:0]: HREF start 3 LSB (high 8 MSB at register HSTART)	
33	CHLF	00	RW	Bit[7:0]: Reserved	
34	ARBLM	03	RW	Bit[7:0]: Reserved	
35-36	RSVD	XX	-	Reserved	
37	ADC	04	RW	Bit[7:0]: Reserved	
38	ACOM	12	RW	Bit[7:0]: Reserved	
39	OFON	00	RW	Bit[7:4]: Reserved Bit[3]: Line buffer power down - must be set to "1" before chip power down Bit[2:0]: Reserved	
3A	TSLB	ОС	RW	Line Buffer Test Option Bit[7:6]: Reserved Bit[5]: Bit-wise reverse Bit[4]: UV output value 0: Use normal UV output 1: Use fixed UV value set in registers MANU and MANV as UV output instead of chip output Bit[3]: Output sequence is Y U Y V instead of U Y V Y Bit[2]: Output sequence is Y V Y U instead of Y U Y V Bit[1]: Reserved Bit[0]: Digital BLC	

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description
3В	COM11	00	RW	Common Control 11 Bit[7]: Night mode 0: Night mode disable 1: Frame rate will adjust based on COM11[6:5] before AGC gain increases more than 2. Also, ADVFL and ADVFL will be automatically updated. Bit[6:5]: Night mode insert frame option 00: Normal frame rate 01: 1/2 frame rate 10: 1/4 frame rate 11: 1/8 frame rate Bit[4:3]: Average calculation window option 00: Use full frame 01: Use half frame 10: Use quarter frame 11: Use lower two-thirds Bit[2:1]: Reserved Bit[0]: Manual banding filter mode
3C	COM12	40	RW	Common Control 12 Bit[7]: HREF option 0: No HREF when VREF is low 1: Always has HREF Bit[6:3]: Reserved Bit[2]: Enable YUV average Bit[1:0]: Reserved
3D	COM13	99	RW	Common Control 13 Bit[7:6]: Gamma selection for signal 00: No gamma function 01: Gamma used for Y channel only 10: Gamma used for Raw data before interpolation 11: Not allowed Bit[5]: Reserved Bit[4]: Enable color matrix for RGB or YUV Bit[3]: Enable Y channel delay option 0: Delay UV channel 1: Delay Y channel Bit[2:0]: Output Y/UV delay
3E	COM14	0E	RW	Common Control 14 Bit[7:2]: Reserved Bit[1]: Enable edge enhancement for YUV output (effective only for YUV/RGB, no use for Raw data) Bit[0]: Edge enhancement option 0: Edge enhancement factor = EDGE[3:0] 1: Edge enhancement factor = 2 x EDGE[3:0]

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
3F	EDGE	88	RW	Edge Enhancement Adjustment Bit[7:4]: Edge enhancement threshold[3:0]	
40	COM15	CO	RW	Common Control 15 Bit[7:6]: Data format - output full range enable 0x: Output range: [10] to [F0] 10: Output range: [01] to [FE] 11: Output range: [00] to [FF] Bit[5:4]: RGB 555/565 option (must set COM7[2] high) x0: Normal RGB output 01: RGB 565 11: RGB 555 Bit[3]: Swap R/B in RGB565/RGB555 format Bit[2:0]: Reserved	
41	COM16	10	RW	Common Control 16 Bit[7:2]: Reserved Bit[1]: Color matrix coefficient double option Bit[0]: Reserved	
42	COM17	08	RW	Common Control 17 Bit[7:5]: Reserved Bit[4]: Edge enhancement option Bit[3]: Reserved Bit[2]: Select single frame out Bit[1]: Tri-state output Bit[0]: Reserved	
43-4E	RSVD	XX	\-	Reserved	
4F	MTX1	58	RW	Matrix Coefficient 1	
50	MTX2	48	RW	Matrix Coefficient 2	
51	MTX3	10	RW	Matrix Coefficient 3	
52	MTX4	28	RW	Matrix Coefficient 4	
53	MTX5	48	RW	Matrix Coefficient 5	
54	MTX6	70	RW	Matrix Coefficient 6	
55	MTX7	40	RW	Matrix Coefficient 7	
56	MTX8	40	RW	Matrix Coefficient 8	
57	MTX9	40	RW	Matrix Coefficient 9	
58	MTXS	0F	RW	Matrix Coefficient Sign for coefficient 9 to 2 0: Plus 1: Minus	
59-61	RSVD	XX	-	Reserved	

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
62	LCC1	00	RW	Lens Correction Option 1	
63	LCC2	00	RW	Lens Correction Option 2	
64	LCC3	10	RW	Lens Correction Option 3	
65	LCC4	80	RW	Lens Correction Option 4	
66	LCC5	00	RW	Lens Correction Control	
67	MANU	80	RW	Manual U Value (effective only when register TSLB[4] is high)	
68	MANV	80	RW	Manual V Value (effective only when register TSLB[4] is high)	
69	HV	00	RW	Manual Banding Filter MSB Bit[7:1]: Reserved Bit[0]: Matrix coefficient 1 sign	
6A	MBD	00	RW	LSB of Banding Filter Value (effective only when COM11[0] is high).	
6B	DBLV	0A	RW	Bit[7:0]: Reserved	
6C-7B	GSP	XX	RW	Gamma curve	
7C-8A	GST	XX	RW	Gamma curve	
8B	COM21	04	RW	Common Control 21 Bit[7:4]: Reserved Bit[3]: VGA option - use VGA window mode Bit[2]: Reserved Bit[1]: Digital BLC option Bit[0]: UV channel uses sum or average of neighbor pixel in sub-sampling mode	
8C	COM22	00	RW	Common Control 22 Bit[7:6]: Edge enhancement threshold[5:4]	
8D	COM23	00	RW	Common Control 23 Bit[7:5]: Reserved Bit[4]: Color bar test mode Bit[3:2]: Reserved Bit[1]: Digital AWB enable Bit[0]: Reserved	
8E	COM24	00	RW	Common Control 24 Bit[7:0]: Reserved	

Table 7 Device Control Register List (Continued)

Address (Hex)	Register Name	Default (Hex)	R/W	Description	
8F	DBLC1	0F	RW	Digital BLC Offset Sign Bit[7:4]: Reserved Bit[3]: Digital BLC B offset sign Bit[2]: Digital BLC R offset sign Bit[1]: Digital BLC Gb offset sign Bit[0]: Digital BLC Gr offset sign	
90	DBLC_B	00	RW	Digital BLC B Channel Offset Value Bit[7:0]: Digital BLC B channel offset value	
91	DBLC_R	00	RW	Digital BLC R Channel Offset Value Bit[7:0]: Digital BLC R channel offset value	
92	DM_LNL	00	RW	Dummy Line low 8 bits Bit[7:0]: Control insert Dummy line[7:0]	
93	DM_LNH	00	RW	Dummy Line high 8 bits Bit[7:0]: Control insert Dummy line[15:8]	
94-9C	RSVD	XX	_	Reserved	
9D	LCCFB	00	RW	Lens Correction B Channel Control	
9E	LCCFR	00	RW	Lens Correction R Channel Control	
9F	DBLC_Gb	00	RW	Digital BLC Gb Channel Offset Value Bit[7:0]: Digital BLC Gb channel offset value	
A0	DBLC_Gr	00	RW	Digital BLC Gr Channel Offset Value Bit[7:0]: Digital BLC Gr channel offset value	
A1	AECHM	40	RW	Exposure Value - AEC MSB 5 bits Bit[7:6]: Reserved Bit[5:0]: AEC[15:10] (see registers AECH for AEC[9:2] and COM1 for AEC[1:0])	
A2-A3	RSVD	XX	-	Reserved	
A4 /	COM25	00	RW	Common Control 25 Bit[7:0]: Reserved	
A5	COM26	00	RW	Common Control 26 Bit[7:0]: Reserved	
A6	G_GAIN	80	RW	Green Gain Option Bit[7:0]: Green gain when using digital AWB	
A7	VGA_ST	14	RW	Vertical Start Point for VGA Bit[7:0]: Define vertical start point in VGA sub-windowing mode	
A8-AA	ACOM	XX	_	Reserved	
NOTE: All	NOTE: All other registers are factory-reserved. Please contact OmniVision Technologies for reference register settings.				

Package Specifications

Refer to Figure 15 for package information on the OV9650S1G module.

Figure 15 OV9650S1G Package Specifications

Mechanical Specifications

Table 8 Mechanical Dimensions

Parameter	Specification	Comments
Sensor	5.1 mm x 5.72 mm	CMOS in housing
Lens	Glass/Plastic	
Connection Type	10.2 x 10.2 x 4.5 mm	SMK socket (consult OmniVision for details)
Module Housing	8 mm x 8 mm x 7.20 mm	

Connector Information

The OV9650S1G uses a 24-pin socket connector. Table 9 shows a listing of some recommended connectors.

Table 9 Recommended Connectors

Manufacturer	Part No.	Description
SMK	CLE9024-0201E CLE9024-0301F T-54-10499 T-347379-JIGU	Socket connector Shield case (optional) Socket without locking mechanism (for testing purposes) Module extraction jig

Optical Specifications

Table 10 Optical Specifications

Parameter	Specification	Comments
Lens Elements	Glass/Plastic Hybrid	1 glass, 3 plastic (aspheric) fixed focus
Viewing Angle	60° diagonal	
Focal Length	4.7 mm	
F Number	2.8	
Focus Range	30 cm → ∞	
Filter	IR cut	Included
Mount Description	M7 x 0.35P	
TV Distortion	0.51%	
Focus Adjustment	Fixed	80 cm

Handling Precautions

WARNING: READ THIS FIRST!

Prior to handling any OmniVision camera module, read the following precautions.

- DO NOT try to open the unit enclosure as there is no user-serviceable component inside.
- To prevent damage to the camera module by electrostatic discharge, handle the camera module ONLY after discharging ALL static electricity from yourself and ensuring a static-free environment for the camera module.
- DO NOT touch the top surface of the lens.
- DO NOT press down on the lens.
- DO NOT try to focus the lens.
- DO NOT put the camera module in a dusty environment.
- To reduce the risk of electrical shock and damage to the camera module, turn OFF the power before connect and disconnect the camera module.
- DO NOT drop the camera module more than 60 cm onto any hard surface.
- To prevent fire or shock hazard, DO NOT expose camera module to rain or moisture.
- DO NOT expose camera module to direct sunlight.
- DO NOT put camera module in a high temperature environment.
- DO NOT use liquid or aerosol cleaners to clean the lens.
- DO NOT make any changes or modifications to camera module.
- DO NOT subject camera module to strong electromagnetic field.
- DO NOT subject the camera module to excessive vibration or shock.

Note:

- All information shown herein is current as of the revision and publication date. Please refer to the OmniVision web site (http://www.ovt.com) to obtain the current versions of all documentation.
- OmniVision Technologies, Inc. reserves the right to make changes to their products or to discontinue any product or service without further notice (It is advisable to obtain current product documentation prior to placing orders).
- Reproduction of information in OmniVision product documentation and specifications is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. In such cases, OmniVision is not responsible or liable for any information reproduced.
- This document is provided with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. Furthermore, OmniVision Technologies Inc. disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document. No license, expressed or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.
- 'OmniVision', 'CameraChip', and 'OmniPixel' are trademarks of OmniVision Technologies, Inc. All other trade, product or service names referenced in this release may be trademarks or registered trademarks of their respective holders. Third-party brands, names, and trademarks are the property of their respective owners.

For further information, please feel free to contact OmniVision at info@ovt.com.

OmniVision Technologies, Inc. 1341 Orleans Drive Sunnyvale, CA USA (408) 542-3000

