# Introduction aux espaces vectoriels

## Motivation

Nous avons jusqu'ici rencontré de nombreux ensembles stables par addition et multiplication par un réel :

- Si f et g sont deux fonctions sur un domaine D et si  $\lambda \in \mathbb{R}$ , alors  $f + g \in \mathcal{F}(D, \mathbb{R}), \lambda f \in \mathcal{F}(D, \mathbb{R})$ .
- Si P et Q sont deux polynômes de  $\mathbb{R}[X]$  et si  $\lambda \in \mathbb{R}$ , alors  $P + Q \in \mathbb{R}[X]$  et  $\lambda P \in \mathbb{R}[X]$ .
- Si  $X = (x_1, \ldots, x_p)$  et  $Y = (y_1, \ldots, y_p)$  sont deux solutions d'un système linéaire <u>homogène</u> et si  $\lambda \in \mathbb{R}$ , alors X + Y et  $\lambda X$  sont aussi solutions.
- Si A et B sont deux matrices de  $\mathcal{M}_{n,p}(\mathbb{R})$  et si  $\lambda \in \mathbb{R}$ , alors  $A + B \in \mathcal{M}_{n,p}(\mathbb{R})$  et  $\lambda A \in \mathcal{M}_{n,p}(\mathbb{R})$ .

Nous allons unifier l'étude de tels ensembles en mettant en place une théorie générale, nécessairement abstraite pour pouvoir s'appliquer aux différents exemples ci-dessus.

Ces objets qui, selon le contexte, seront des fonctions, des polynômes, des matrices, des suites, des couples de réels, etc... seront appelés **vecteurs**.

L'ensemble E de ces vecteurs sera appelé un **espace vectoriel**.

Les réels  $\lambda \in \mathbb{R}$  par lesquels on multiplie seront appelés des scalaires.

Un tel ensemble E est ainsi muni de deux opérations : la somme qui est une loi de composition interne, et le produit par un scalaire qui est une loi de composition externe.

## **■** Définition 1 (Loi de composition interne / externe)

Soit E un ensemble.

Une loi de composition interne sur E est une application de  $E \times E$  dans E.

Une loi de composition externe sur E est une application de  $\mathbb{R} \times E$  dans E.

Dans tout ce chapitre, on utilisera en général les notations u, v, w pour désigner des vecteurs, c'est à dire des éléments d'un espace vectoriel général E.

Bien-sûr, dans les exemples, on choisira des noms plus "appropriés" pour les vecteurs :

- Un "vecteur" de l'espace vectoriel  $\mathcal{F}(D,\mathbb{R})$  sera plutôt noté f,g,h...
- Un "vecteur" de l'espace vectoriel  $\mathbb{R}[X]$  sera plutôt noté P, Q, R...
- Un "vecteur de l'espace vectoriel  $\mathcal{M}_{n,p}(\mathbb{R})$  sera plutôt noté A, B, M, etc...!

## 1 Espaces vectoriels

## 1.1 Définition et exemples fondamentaux

## Définition 2 (Espace vectoriel)

On dit qu'un ensemble non-vide E est un **espace vectoriel** lorsque :

- $\bullet$  E est muni d'une addition, notée +, satisfaisant :
- (A1) (Stabilité)  $\forall (u,v) \in E^2, u+v \in E$  ("+" est bien une loi de composition interne!)
- (A2) (Associativité)  $\forall (u, v, w) \in E^3, (u+v)+w=u+(v+w)$
- (A3) (Commutativité)  $\forall (u,v) \in E^2, u+v=v+u$
- (A4) (Existence d'un élément neutre) Il existe un élément noté  $0_E \in E$  tel que :

$$\forall v \in E, \ v + 0_E = 0_E + v = v.$$

(A5) (Existence d'opposés) Pour tout  $v \in E$ , il existe un élément noté  $-v \in E$  tel que :

$$v + (-v) = (-v) + v = 0_E.$$

- $\bullet$  E est muni d'une multiplication par un scalaire, notée  $\cdot$  , satisfaisant :
- (M1) (**Stabilité**)  $\forall (\lambda, v) \in \mathbb{R} \times E, \ \lambda \cdot v \in E$  ("·" est bien une loi de composition externe!)
- (M2) (Distributivité à gauche)  $\forall (\lambda, \mu) \in \mathbb{R}^2, \forall v \in E, (\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$
- (M3) (Distributivité à droite)  $\forall \lambda \in \mathbb{R}, \forall (u,v) \in E^2, \ \lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v$
- (M4) (Multiplications successives)  $\forall (\lambda, \mu) \in \mathbb{R}^2, \forall v \in E, \ \lambda \cdot (\mu \cdot v) = (\lambda \times \mu) \cdot v = \mu \cdot (\lambda \cdot v)$
- (M5) (Multiplication par l'unité)  $\forall v \in E, 1 \cdot v = v$

Les éléments de  $v \in E$  sont appelés des vecteurs , les éléments  $\lambda \in \mathbb{R}$  sont appelés des scalaires.

## Remarques 1

- Du fait de l'associativité (A2), on pourra noter sans ambiguïté u + v + w.
- L'élément neutre pour l'addition  $0_E$  est en fait unique! On l'appelle le vecteur nul de E.
- L'addition u + (-v) sera notée u v: on définit la soustraction comme l'addition de l'opposé!
- Il arrivera souvent que l'on omette le point "·" pour désigner la multiplication par un scalaire. On notera ainsi volontiers  $\lambda v$  plutôt que  $\lambda \cdot v$ .

# **★** Théorème 1 (Espaces vectoriels fondamentaux)

- Pour tout  $n \in \mathbb{N}^*$ ,  $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n), x_1, x_2, \dots, x_n \in \mathbb{R}\}$  est un espace vectoriel.
- $\mathbb{R}[X]$  est un  $\mathbb{R}$ -espace vectoriel.
- Pour tous  $n, p \in \mathbb{N}^*$ ,  $M_{n,p}(\mathbb{R})$  est un espace vectoriel.
- $\mathbb{R}^{\mathbb{N}} = \{(u_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, u_n \in \mathbb{R}\}$  est un espace vectoriel
- Pour toute partie  $D \subset \mathbb{R}$ ,  $\overline{\mathcal{F}(D,\mathbb{R})}$  est un espace vectoriel.

#### Preuve:

On a déjà vu que ces espaces étaient munis d'une addition et d'une multiplication par un scalaire. Il suffit de vérifier que toutes les propriétés de la définition précédentes sont satisfaites.  $\Box$ 

### Addition, multiplication par un scalaire, vecteur nul dans ces espaces :

Dans  $\mathbb{R}^n$ : Pour tous  $u = (x_1, \dots, x_n) \in \mathbb{R}^n$ ,  $v = (y_1, \dots, y_n) \in \mathbb{R}^n$  et  $\lambda \in \mathbb{R}$ ,

 $u + v = (x_1 + y_1, \dots, x_n + y_n)$  et  $\lambda \cdot u = (\lambda x_1, \dots, \lambda x_n)$ 

Le vecteur nul est :  $0_{\mathbb{R}^n} = \underbrace{(0,0,\ldots,0)}_{n \text{ fois.}}$ 

Exemple: Dans  $\mathbb{R}^3$ , (x, y, z) - 2(a, b, c) = (x - 2a, y - 2b, z - 2c).

 $\boxed{\text{Dans } \mathcal{M}_{n,p}(\mathbb{R})} : \text{ Pour tous } A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in \mathcal{M}_{n,p}(\mathbb{R}), \quad B = (b_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in \mathcal{M}_{n,p}(\mathbb{R}) \quad \text{et } \lambda \in \mathbb{R},$ 

$$A + B = (a_{ij} + b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}} \quad \text{et} \quad \lambda \cdot A = (\lambda a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Le vecteur nul est :  $0_{\mathcal{M}_{n,p}(\mathbb{R})} = 0_{n,p}$  (matrice nulle de taille  $n \times p$ )

 $\underline{\text{Exemple}:} \ \mathrm{Dans} \ \mathcal{M}_2(\mathbb{R}), \quad \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} + 2 \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ -1 & 4 \end{pmatrix}$ 

Dans  $\mathbb{R}[X]$ : Pour tous  $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{R}[X], \quad Q = \sum_{k=0}^{n} b_k X^k \in \mathbb{R}[X], \quad \text{et } \lambda \in \mathbb{R},$ 

$$P + Q = \sum_{k=0}^{n} (a_k + b_k) X^k$$
 et  $\lambda \cdot P = \sum_{k=0}^{n} \lambda a_k X^k$ 

Le vecteur nul est :  $0_{\mathbb{R}[X]} = \text{Le polynôme nul (souvent noté 0)}$ 

Exemple: Dans  $\mathbb{R}[X]$ ,  $(3X^3 - X + 2) + 3 \cdot (2X^4 + X^2 - 1) = 6X^4 + 3X^3 + 3X^2 - X - 1$ 

Dans  $\mathbb{R}^{\mathbb{N}}$ : Pour tous  $u = (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \quad v = (v_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \quad \text{et } \lambda \in \mathbb{R},$ 

$$u + v = (u_n + v_n)_{n \in \mathbb{N}}$$
 et  $\lambda \cdot u = (\lambda u_n)_{n \in \mathbb{N}}$ 

Le vecteur nul est :  $0_{\mathbb{R}^{\mathbb{N}}} = \text{La suite constante égale à 0 (souvent notée 0)}$ 

Exemple: Si  $\forall n \in \mathbb{N}, \ u_n = \frac{1}{n+1} \text{ et } v_n = 2^n, \text{ alors} \quad 2u + v = w, \text{ où } \forall n \in \mathbb{N}, \ w_n = \frac{2}{n+1} + 2^n.$ 

Dans  $\mathcal{F}(D,\mathbb{R})$ : Pour tous  $f \in \mathcal{F}(D,\mathbb{R}), g \in \mathcal{F}(D,\mathbb{R}), \text{ et } \lambda \in \mathbb{R},$ 

$$f + g: x \mapsto f(x) + g(x)$$
 et  $\lambda \cdot f: x \mapsto \lambda f(x)$ 

Le vecteur nul est :  $0_{\mathcal{F}(D,\mathbb{R})}$  = La fonction constante égale à 0 sur D (souvent notée 0)

Exemple: Si  $\forall x \in [0, 1], \ f(x) = x^2 \text{ et } g(x) = e^x, \text{ alors } \forall x \in [0, 1], \ (f - g)(x) = x^2 - e^x.$ 

## 1.2 Propriétés additionnelles

A partir de la Définition 2 d'espace vectoriel, on a automatiquement les propriétés suivantes :

# Proposition 1 ("Produit" nul)

Soit E un espace vectoriel. Pour tous  $\lambda \in \mathbb{R}$  et  $v \in E$ , on a l'équivalences :

$$\lambda \cdot v = 0_E \iff \lambda = 0 \text{ ou } v = 0_E.$$

#### Preuve:

- Montrons le sens réciproque ⇐
- Vérifions que  $\underline{0 \cdot v = 0_E}$ . Comme 0 = 0 + 0, d'après (M2) :  $0 \cdot v = (0 + 0) \cdot v = 0 \cdot v + 0 \cdot v$ . En ajoutant l'opposé  $-(0 \cdot v)$  de chaque côté, on obtient  $0_E = 0 \cdot v$ .
- Vérifions que  $\underline{\lambda \cdot 0_E = 0_E}$ . Comme  $0_E = 0_E + 0_E$ , d'après (M3) :  $\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E) = \lambda \cdot 0_E + \lambda \cdot 0_E$ . En ajoutant l'opposé  $-(\lambda \cdot 0_E)$  de chaque côté, on obtient  $0_E = \lambda \cdot 0_E$ .
- Montrons le sens direct :  $\Longrightarrow$ . Supposons  $\lambda \cdot v = 0_E$ . Alors :
- Soit  $\lambda = 0$ .
- Soit  $\lambda \neq 0$  et alors, d'après (M5), (M4) et le point précédent :

$$v = 1 \cdot v = (\lambda^{-1} \times \lambda) \cdot v = \lambda^{-1} \cdot (\lambda \cdot v) = \lambda^{-1} \cdot 0_E = 0_E.$$

## Ocrollaire 1

Soit E un espace vectoriel. Pour tous  $\lambda, \mu \in \mathbb{R}$  et  $u, v \in E$ , on a les équivalences suivantes :

• 
$$\lambda \cdot v = \mu \cdot v \iff \lambda = \mu \text{ ou } v = 0_E$$
.

• 
$$\lambda \cdot u = \lambda \cdot v \iff \lambda = 0$$
 ou  $u = v$ .

### Preuve ("méthode" à retenir):

- $\lambda \cdot v = \mu \cdot v \iff \lambda \cdot v \mu \cdot v = 0_E \iff (\lambda \mu) \cdot v = 0_E \iff \lambda \mu = 0 \text{ ou } v = 0_E.$
- $\lambda \cdot u = \lambda \cdot v \iff \lambda \cdot u \lambda \cdot v = 0_E \iff \lambda \cdot (u v) = 0_E \iff \lambda = 0 \text{ ou } u v = 0_E.$

# Proposition 2 (Propriétés liées à l'opposé)

Soit E un espace vectoriel. Alors les propriétés suivantes sont satisfaites :

- (a) L'élément neutre  $0_E$  est unique.
- (b) Chaque élément de E admet un unique opposé.
- (c)  $\forall \lambda \in \mathbb{R}, \ \forall v \in E, \ (-\lambda) \cdot v = \lambda \cdot (-v) = -(\lambda \cdot v)$

#### Preuve:

(a) Supposons qu'il existe un autre élément neutre  $0_E'$ . Alors d'après (A4) avec  $v=0_E$  et  $v=0_E'$ :

$$0_E + 0_E' = 0_E$$
 et  $0_E + 0_E' = 0_E'$ , d'où  $0_E = 0_E'$ .

(b) Soit  $v \in E$ . Supposons qu'il admet deux opposés  $v_1$  et  $v_2$ . Alors :

$$v + v_1 = 0_E$$
 donc  $v + v_1 + v_2 = v_2$  donc  $\underbrace{(v + v_2)}_{0_E} + v_1 = v_2$  donc  $v_1 = v_2$ .

(c) On vérifie que  $(-\lambda) \cdot v$  est l'opposé de  $\lambda \cdot v$ . D'après (M2) :

$$(-\lambda) \cdot v + \lambda \cdot v = (-\lambda + \lambda) \cdot v = 0 \cdot v = 0_E$$
. Ainsi  $(-\lambda) \cdot v = -(\lambda \cdot v)$ .

On vérifie que  $\lambda \cdot (-v)$  est aussi l'opposé de  $\lambda \cdot v$ . D'après (M3) :

$$\lambda \cdot (-v) + \lambda \cdot v = \lambda \cdot (-v + v) = \lambda \cdot 0_E = 0_E$$
. Ainsi  $\lambda \cdot (-v) = -(\lambda \cdot v)$ .

### 1.3 Notion de combinaison linéaire de vecteurs

Dans cette section, on considère E un espace vectoriel fixé.

# $\blacksquare$ Définition 3 (Famille de vecteurs de E)

Une famille finie de E est une liste  $\mathcal{F} = (v_1, \dots, v_p)$  de vecteurs de E.

On dit que  $p \in \mathbb{N}^*$  est le "cardinal" de cette famille.

## A Attention!

Autrement dit  $\mathcal{F} = (v_1, \dots, v_p) \in E^p$  est un p-uplet d'élément de E, et non une partie de E. En particulier, il peut tout à fait y avoir des répétitions dans cette liste de vecteurs.

## **Exemples**

- Une famille de 3 vecteurs de  $\mathbb{R}^2$  :  $((1,-1),\,(2,0),\,(0,1))$
- Une famille de 2 vecteurs de  $\mathbb{R}^3$ : ((1,2,3), (0,0,-1))
- Une famille de 3 vecteurs de  $\mathbb{R}[X]$ :  $(1, 2X + 1, 3X^4 2X^2 + 1)$
- Une famille de 2 vecteurs de  $\mathcal{M}_2(\mathbb{R})$ :  $\left(\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}\right)$

# Définition 4 (Combinaison linéaire)

Soit  $(v_1, \ldots, v_p)$  une famille de vecteurs de E.

On appelle **combinaison linéaire de la famille**  $(v_1, \ldots, v_p)$  tout vecteur  $v \in E$  de la forme :

$$v = \lambda_1 v_1 + \ldots + \lambda_p v_p = \sum_{i=1}^p \lambda_i v_i$$
 avec  $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$ .

Les scalaires  $\lambda_1, \dots, \lambda_p$  sont appelés les coefficients de cette combinaison linéaire.

On dit parfois plus simplement que v est "combinaison linéaire des vecteurs  $v_1, \dots v_p$ ".

# Remarque 2

Puisqu'un espace vectoriel est stable par addition et multiplication par un scalaire, toute combinaison linéaire de vecteurs de E est toujours un élément de E!

On peut ainsi dire qu'un espace vectoriel est "stable par combinaisons linéaires".

# **Exemples**

- Dans  $\mathbb{R}^2$ : le vecteur v=(-5,2) est une combinaison linéaire de  $v_1=(1,2)$  et  $v_2=(3,0)$  car:  $(-5,2)=(1,2)-2\cdot(3,0)$
- Dans  $\mathbb{R}^3$ : (1,0,6) est une combinaison linéaire de  $\Big((1,1,1),(0,-1,2),(0,0,1)\Big)$  car :

$$(1,0,6) = (1,1,1) + (0,-1,2) + 3 \cdot (0,0,1)$$



• Dans  $\mathbb{R}[X]:(X-3)^2$  est une combinaison linéaire de la famille  $(1,X,X^2)$ , car :

$$(X-3)^2 = X^2 - 6X + 9 = 1 \cdot X^2 - 6 \cdot X + 9 \cdot 1$$

• Dans  $\mathcal{F}(\mathbb{R}, \mathbb{R})$ : la fonction  $\cosh: x \mapsto \frac{e^x + e^{-x}}{2}$  (cosinus hyperbolique) est une combinaison linéaire des vecteurs  $f: x \mapsto e^x$  et  $g: x \mapsto e^{-x}$ :  $\cosh = \frac{1}{2}f + \frac{1}{2}g$ .

## 2 Sous-espaces vectoriels

Dans toute cette partie, on considère E un espace vectoriel fixé.

## 2.1 Définition, caractérisations, exemples.

## $\blacksquare$ Définition 5 (Sous-espace vectoriel de E)

On dit qu'une partie  $F \subset E$  est un sous-espace vectoriel de E lorsque :

- (a)  $F \neq \emptyset$  (Non vide)
- (b)  $\forall (u, v) \in F^2$ ,  $u + v \in F$  (Stable par addition)
- (c)  $\forall \lambda \in \mathbb{R}, \forall v \in F, \lambda \cdot v \in F$ . (Stable par multiplication par un scalaire)

## Remarque 3

Un espace vectoriel E contient toujours au moins deux sous-espaces vectoriels : E et  $\{0_E\}$ . On les appelle parfois les sous-espaces vectoriels "triviaux".

Ces "trois conditions" à vérifier peuvent être réduites à deux conditions, pour une rédaction plus succincte :

## ₩ Méthode : (Caractérisation pratique d'un sous-espace vectoriel)

Une partie  $F \subset E$  est un sous-espace vectoriel de E si et seulement si :

- $0_E \in F$
- $\boxed{2} \quad \forall \lambda \in \mathbb{R}, \ \forall (u, v) \in F^2, \quad u + \lambda \cdot v \in F$

On pourra donc rédiger ainsi :

- On a bien  $0_E \in F$  (car ...)
- Soient  $u, v \in F$  et  $\lambda \in \mathbb{R}$ . Montrons que  $u + \lambda v \in F$ ...

# Preuve de l'équivalence entre (a), (b), (c) et 1,2:

- Supposons (a), (b) et (c).
- D'après (a),  $F \neq \emptyset$ . On peut donc introduire  $v \in F$ .

Puis, d'après (c) avec  $\lambda = 0$ , on a  $0 \cdot v \in F$ , c'est à dire  $0_E \in F$ . On a bien montré 1.

- Soient  $u, v \in E$  et  $\lambda \in \mathbb{R}$ . D'après (c) on a  $\lambda \cdot v \in E$ .

Puis, d'après (b),  $\underbrace{u}_{\in E} + \underbrace{\lambda \cdot v}_{\in E} \in E$ . On a bien montré  $\boxed{2}$ 

- Supposons 1 et 2.
- D'après  $\boxed{1}$ ,  $0_E \in F$  donc  $F \neq \emptyset$ . On a bien montré (a).
- D'après  $\boxed{2}$  avec  $\lambda=1: \forall (u,v)\in F^2,\ u+v\in F.$  On a bien montré (b).
- D'après 2 avec  $u = 0_E : \forall \lambda \in \mathbb{R}, \forall v \in F, \ \lambda \cdot v \in F$ . On a bien montré (c).

#### Remarques 4

- On peut aussi remplacer la condition 2 par :  $\forall (\lambda, \mu) \in \mathbb{R}^2, \ \forall (u, v) \in F^2, \ \lambda \cdot u + \mu \cdot v \in F$ . et l'équivalence tient toujours.
- De manière générale, on voit que la Définition 5 garantit que :

Un sous-espace vectoriel F est "stable par combinaisons linéaires".

Autrement dit, toute combinaison linéaire de vecteurs de F reste un élément de F!

#### Exercice 1

- 1. Montrer que  $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x 3y + z = 0\}$  est un sous-espace vectoriel de  $\mathbb{R}^3$ .
- 2. Montrer que  $G = \{ P \in \mathbb{R}[X] \mid P'(1) = 0 \}$  est un sous-espace vectoriel de  $\mathbb{R}[X]$ .

1.

- D'abord on a  $(0,0,0) \in F$  car :  $2 \cdot 0 3 \cdot 0 + 0 = 0$ .
- Soient  $v_1=(x_1,y_1,z_1)\in F$ ,  $v_2=(x_2,y_2,z_2)\in F$  et  $\lambda\in\mathbb{R}$ . Vérifions que  $v=v_1+\lambda v_2\in F$ .

Par définition  $v = (x_1, y_1, z_1) + \lambda(x_2, y_2, z_2) = (x, y, z)$ 

avec  $x = x_1 + \lambda x_2$ ,  $y = y_1 + \lambda y_2$ ,  $z = z_1 + \lambda z_2$ .

Ainsi on a:

$$2x - 3y + z = 2(x_1 + \lambda x_2) - 3(y_1 + \lambda y_2) + (z_1 + \lambda z_2)$$

$$= 2x_1 + 2\lambda x_2 - 3y_1 - 3\lambda y_2 + z_1 + \lambda z_2$$

$$= \underbrace{(2x_1 - 3y_1 + z_1)}_{=0 \text{ car } v_1 \in F} + \lambda \underbrace{(2x_2 - 3y_2 + z_2)}_{=0 \text{ car } v_2 \in F} = 0$$

On a bien montré que  $v \in F$ .

Conclusion : F est un SEV de  $\mathbb{R}^3$ .

2.

- D'abord le polynôme nul appartient à G car pour P=0 on a bien P'(1)=0.
- Soient  $P \in F$ ,  $Q \in F$  et  $\lambda \in \mathbb{R}$ . Vérifions que  $P + \lambda Q \in F$ .

On a:

$$(P + \lambda Q)'(1) = (P' + \lambda Q')(1) = \underbrace{P'(1)}_{=0 \text{ car } P \in G} + \lambda \underbrace{Q'(1)}_{=0 \text{ car } Q \in G} = 0.$$

On a bien montré que  $P + \lambda Q \in G$ .

Conclusion : G est un SEV de  $\mathbb{R}[X]$ .

Citons quelques exemples fondamentaux de sous-espaces vectoriels (se convaincre que se sont bien des SEV!):

#### **Exemples**

• L'ensemble des solutions  $(x_1, ..., x_n)$  d'un système linéaire <u>homogène</u> à n inconnues est toujours un sous-espace vectoriel de  $\mathbb{R}^n$ .

Exemple:  $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + z = 0 \text{ et } x - 2y = 0\}$  est un SEV de  $\mathbb{R}^3$ .

• Pour tout  $n \in \mathbb{N}$ ,  $\mathbb{R}_n[X] = \{P \in \mathbb{R}[X] \mid \deg(P) \leqslant n\}$  est un sous-espace vectoriel de  $\mathbb{R}[X]$ .

(Attention : L'ensemble  $F = \{P \in \mathbb{R}[X] \mid \deg(P) = n\}$  n'est pas un sous-espace vectoriel de  $\mathbb{R}[X]$ !)

- Pour tout  $n \in \mathbb{N}^*$ , l'espace vectoriel  $\mathcal{M}_n(\mathbb{R})$  admet les sous-espaces vectoriels suivants :
- $\mathcal{T}_n^+(\mathbb{R})$  ensemble des matrices triangulaires supérieures,
- $\mathcal{T}_n^-(\mathbb{R})$  ensemble des matrices triangulaires inférieures
- $\mathcal{D}_n(\mathbb{R})$  ensemble des matrices diagonales
- $S_n(\mathbb{R})$  ensemble des matrices symétriques.
- $\mathcal{A}_n(\mathbb{R})$  ensemble des matrices anti-symétriques

(Attention: L'ensemble  $GL_n(\mathbb{R})$  des matrices inversibles n'est pas un SEV de  $\mathcal{M}_n(\mathbb{R})$ !)

• Si I est un intervalle,  $C(I,\mathbb{R})$ ,  $D(I,\mathbb{R})$ ,  $C^1(I,\mathbb{R})$  sont des sous-espaces vectoriels de  $\mathcal{F}(I,\mathbb{R})$ .

### Remarque 5

On a vu que tout sous-espace vectoriel de E contient automatiquement  $0_E$ . Ainsi, si  $0_E \notin F$ , alors F ne peut pas être un sous-espace vectoriel de E!

### **Exemples**

- Pour  $n \in \mathbb{N}$ ,  $F = \{P \in \mathbb{R}[X] \mid \deg(P) = n\}$  n'est pas un SEV de  $\mathbb{R}[X]$  car il ne contient pas le polynôme nul.
- $GL_n(\mathbb{R})$  n'est pas un SEV de  $\mathcal{M}_n(\mathbb{R})$  car il ne contient pas la matrice nulle.
- $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y 3 = 1\}$  n'est pas un SEV de  $\mathbb{R}^3$  car il ne contient pas (0, 0, 0).
- Attention,  $G = \{(x, y) \in \mathbb{R}^2 \mid x + y^2 = 0\}$  contient bien (0, 0), mais ce n'est pas un SEV de  $\mathbb{R}^2$ ! Par exemple : on a  $v = (-1, 1) \in G$  mais  $-v = (1, -1) \notin G$ .

Bien-sûr, l'intérêt de parler de sous-espace vectoriel est le suivant :

# Proposition 3 ("Un SEV est un EV!")

Soit F un sous-espace vectoriel de E.

Les restrictions des opérations "+" et " $\cdot$ " à F confèrent à F une structure d'espace vectoriel.

Autrement dit, un sous-espace vectoriel de E est lui-même un espace vectoriel, avec les mêmes "règles" d'addition et de multiplication par un scalaire que dans E.

#### Preuve:

On doit vérifier les différentes propriétés de la Définition 2 pour F.

Les stabilités (A1) et (M1) découlent de la définition de sous-espace vectoriel.

Les autres propriétés (associativité, commutativité, etc...) sont vraies pour des éléments de E, donc restent vraies en particulier pour des éléments de F (puisque  $F \subset E$ ).

Intérêt pratique : Pour montrer qu'un ensemble F est un espace vectoriel, on ne vérifiera jamais toutes les propriétés (A1)-(A5), (M1)-(M5) de la Définition 2 (ce serait pénible!). On se contentera en général de montrer qu'il s'agit d'un sous-espace vectoriel d'un espace vectoriel E connu ( $\mathbb{R}^n$ ,  $\mathbb{R}[X]$ ,  $\mathcal{M}_{n,p}(R)$ , etc...)

#### Exercice 2

Montrer que l'ensemble des suites réelles convergentes est un espace-vectoriel.

Notons cet ensemble :  $E = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \exists \ell \in \mathbb{R}, \lim_{n \to +\infty} u_n = \ell \right\}$ . On a bien-sûr  $E \subset \mathbb{R}^{\mathbb{N}}$ .

- La suite nulle appartient à E (car elle converge vers 0).
- Soient  $u = (u_n)_{n \in \mathbb{N}} \in E$ ,  $v = (v_n)_{n \in \mathbb{N}} \in E$  et  $\lambda \in \mathbb{R}$ . Vérifions que  $w = u + \lambda v \in E$ :

Puisque les suites u et v convergent, on sait que w, donnée par  $\forall n \in \mathbb{N}, w_n = u_n + \lambda v_n$  converge aussi! (vers  $\lim_{n \to +\infty} u_n + \lambda \lim_{n \to +\infty} v_n$ ).

Donc  $w \in E$ .

Conclusion : E est un SEV de  $\mathbb{R}^{\mathbb{N}}$ , c'est donc un espace-vectoriel.

Terminons avec une dernière propriété générale:

# Proposition 4 (Intersection de sous espaces vectoriels)

L'intersection de deux sous-espaces vectoriels de E est un sous-espace vectoriel de E.

### Preuve de la Proposition 4:

Soient  $F_1$ ,  $F_2$  deux SEV de E. Montrons que  $F_1 \cap F_2$  est un SEV de E:

- $0_E \in F_1$  et  $0_E \in F_2$ , donc  $0_E \in F_1 \cap F_2$ .
- Soient  $u \in F_1 \cap F_2$ ,  $v \in F_1 \cap F_2$  et  $\lambda \in \mathbb{R}$ . Vérifions que  $u + \lambda v \in F_1 \cap F_2$ .

Puisque  $u, v \in F_1$  qui est un SEV de  $E: u + \lambda v \in F_1$ .

Puisque  $u, v \in F_2$  qui est un SEV de  $E : u + \lambda v \in F_2$ .

Ainsi on a bien  $u + \lambda v \in F_1 \cap F_2$ .

## **Exemple**

On a vu que  $G = \{ P \in \mathbb{R}[X] \mid P'(1) = 0 \}$  est un SEV de  $\mathbb{R}[X]$ .

Pour tout  $n \in \mathbb{N}$ , on peut affirmer que  $G_n = \{P \in \mathbb{R}_n[X] \mid P'(1) = 0\}$  est aussi un SEV de  $\mathbb{R}[X]$ , car  $G_n = G \cap \mathbb{R}_n[X]$  (et  $\mathbb{R}_n[X]$  est un SEV de  $\mathbb{R}[X]$ ).

#### **A** Attention!

Si F et G sont deux sous-espaces vectoriels de E, leur union  $F \cup G$  n'est pas un sous-espace vectoriel de E en général... (Chercher des contre-exemples!)

### 2.2 Sous-espace vectoriel engendré par une famille de vecteurs

# lacktriangle Définition 6 (Sous-espace vectoriel engendré par $(v_1,\ldots,v_p)$ )

Soit  $(v_1, \ldots, v_p)$  une famille de vecteurs de E.

On appelle sous-espace vectoriel engendré par  $(v_1, \ldots, v_p)$ , et on note  $Vect(v_1, \ldots, v_p)$ ,

l'ensemble de toutes les combinaisons linéaires de  $(v_1, \ldots, v_p)$ . Autrement dit :

$$Vect(v_1, \dots, v_p) = \left\{ \sum_{i=1}^p \lambda_i v_i , (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p \right\}$$

C'est un sous-espace vectoriel de E.

#### Preuve du fait que c'est un SEV:

- On peut écrire  $0_E = 0 \cdot v_1 + 0 \cdot v_2 + \ldots + 0 \cdot v_p$ , c'est donc que  $0_E \in Vect(v_1, \ldots, v_p)$ .
- Soient  $u, v \in Vect(v_1, \ldots, v_p)$  et  $\lambda \in \mathbb{R}$ .

Il existe donc des coefficients  $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$  et  $(\mu_1, \ldots, \mu_p) \in \mathbb{R}^p$  tels que :

$$u = \sum_{i=1}^{p} \lambda_i v_i$$
 et  $v = \sum_{i=1}^{p} \mu_i v_i$ .

Vérifions que  $u + \lambda v \in Vect(v_1, \dots, v_p)$ : on peut écrire :

$$u + \lambda v = \sum_{i=1}^{p} \lambda_i v_i + \lambda \sum_{i=1}^{p} \mu_i v_i = \sum_{i=1}^{p} \underbrace{(\lambda_i + \lambda \mu_i)}_{=\lambda_i' \in \mathbb{R}} v_i.$$

On a bien écrit  $u + \lambda v$  comme combinaison linéaire de  $(v_1, \dots, v_p)^{\hat{i}}$ .

C'est donc que  $u + \lambda v \in Vect(v_1, \dots, v_p)$ .

### Remarque 6

Notons que l'ordre des vecteurs  $(v_1, \ldots, v_p)$  n'importe pas pour déterminer  $Vect(v_1, \ldots, v_p)$ .

Exemple: Vect(u, v, w) = Vect(v, u, w) = Vect(w, u, v) etc...

### **Exemples**

- Dans  $\mathbb{R}^2$ :  $Vect((1,0),(0,1)) = {\lambda(1,0) + \mu(0,1), \ \lambda, \mu \in \mathbb{R}} = {(\lambda,\mu), \ \lambda, \mu \in \mathbb{R}} = \mathbb{R}^2$ .
- Dans  $\mathbb{R}^3$ :

$$Vect\Big((1,-1,0),(2,1,1)\Big) = \Big\{\lambda(1,-1,0) + \mu(2,1,1),\ \lambda,\mu \in \mathbb{R}\Big\} = \Big\{(\lambda+2\mu,-\lambda+\mu,\mu),\ \lambda,\mu \in \mathbb{R}\Big\}.$$

- Dans  $\mathcal{M}_2(\mathbb{R}): Vect\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right) = \left\{a\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, a, b \in \mathbb{R}\right\} = \left\{\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, a, b \in \mathbb{R}\right\} = D_2(\mathbb{R}).$
- Dans  $\mathbb{R}[X]$ :  $Vect(1, X, X^2) = \{a + bX + cX^2, a, b, c \in \mathbb{R}\} = \mathbb{R}_2[X].$

On peut voir  $Vect(v_1, \ldots, v_p)$  comme "le plus petit" sous-espace vectoriel de E contenant les vecteurs  $v_1, \ldots, v_p$ :

# Proposition 5 (Espace vectoriel contenant une famille)

Si un espace vectoriel F contient les vecteurs  $v_1, \ldots, v_p$ , alors  $Vect(v_1, \ldots, v_p) \subset F$ .

#### Preuve:

C'est évident puisqu'un espace vectoriel F est "stable par combinaison linéaire" : s'il contient les vecteurs  $v_1, \ldots, v_p$  alors il doit contenir tous les vecteurs de la forme  $v = \sum_{i=1}^p \lambda_i v_i$ .  $\square$ 

### **♠** Exercice 3

Montrer que Vect((1,2),(0,3)) = Vect((1,0),(0,1)).

Notons F = Vect((1,2), (0,3)) et G = Vect((1,0), (0,1)).

- On a  $(1,2) = (1,0) + 2 \cdot (0,1)$  donc  $(1,2) \in Vect((1,0),(0,1))$  i.e  $\underline{(1,2) \in G}$ .
- On a  $(0,3) = 0 \cdot (1,2) + 3(0,1)$  donc  $(0,3) \in Vect((1,0),(0,1))$  i.e  $\underline{(0,3) \in G}$ .

Comme G est un espace-vectoriel, on en déduit que  $Vect\Big((1,2),(0,3)\Big)\subset G$ , i.e  $F\subset G$ .

#### Inversement,

- On a  $(1,0) = \dots$  donc  $(1,0) \in F$ .
- On a  $(0,1) = \dots$  donc  $(0,1) \in F$  (faites-le!)

Comme F est un espace vectoriel, on en déduit que  $Vect((1,0),(0,1)) \subset F$ , i.e  $G \subset F$ .

Conclusion : F = G.

### Remarque 7

Ainsi, des familles de vecteurs différentes peuvent très bien engendrer le même sous-espace vectoriel!

# **★** Théorème 2 ("Simplification d'un Vect")

Soit  $(v_1, \ldots, v_p)$  une famille de vecteur de E.

L'espace vectoriel  $Vect(v_1, v_2, \dots, v_p)$  reste inchangé par les opérations suivantes :

- (a) Changer l'ordre des vecteurs de la famille.
- (b) Multiplier un vecteur par une constante non nulle :

 $\forall \lambda \in \mathbb{R}^*, \ Vect(\lambda v_1, v_2, \dots, v_p) = Vect(v_1, v_2, \dots, v_p).$ 

- (c) Additionner à un vecteur un autre vecteur de la famille, multiplié par une constante :  $\forall \lambda \in \mathbb{R}, \ Vect(v_1 + \lambda v_2, v_2, \dots, v_p) = Vect(v_1, v_2, \dots, v_p).$
- (d) Retirer de la famille un vecteur qui est combinaison linéaire des autres :

Si  $v_1 \in Vect(v_2, \dots, v_p)$ ,  $Vect(v_1, v_2, \dots, v_p) = Vect(v_2, \dots, v_p)$ .

En particulier, on peut toujours supprimer le vecteur nul :  $Vect(0_E, v_2, \dots, v_p) = Vect(v_2, \dots, v_p)$ 

## Preuve rapide:

- (a) Propriété déjà évoquée en Remarque 6. Pour toutes les autres, on procède par double inclusion :
- (b) Soit  $x \in Vect(\lambda v_1, v_2, \dots, v_p)$ . Alors x s'écrit sous la forme :

$$x = \lambda_1(\lambda v_1) + \lambda_2 v_2 + \ldots + \lambda_p v_p = (\lambda_1 \lambda) v_1 + \lambda_2 v_2 + \ldots + \lambda_p v_p \in Vect(v_1, v_2, \ldots, v_p).$$

• Inversement, soit  $x \in Vect(v_1, v_2, \dots, v_p)$ . Alors x s'écrit sous la forme :

$$x = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_p v_p = \frac{\lambda_1}{\lambda} (\lambda v_1) + \lambda_2 v_2 + \ldots + \lambda_p v_p \in Vect(\lambda v_1, v_2, \ldots, v_p).$$

(c) • Soit  $x \in Vect(v_1 + \lambda v_2, v_2, \dots, v_p)$ . Alors x s'écrit sous la forme :

$$x = \lambda_1(v_1 + \lambda v_2) + \lambda_2 v_2 + \ldots + \lambda_p v_p = \lambda_1 v_1 + (\lambda_1 \lambda + \lambda_2) v_2 + \ldots + \lambda_p v_p \in Vect(v_1, v_2, \ldots, v_p).$$

• Inversement, soit  $x \in Vect(v_1, v_2, \dots, v_p)$ . Alors x s'écrit sous la forme :

$$x = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_p v_p = \lambda_1 (v_1 + \lambda v_2) + (\lambda_2 - \lambda_1 \lambda) v_2 + \ldots + \lambda_p v_p \in Vect(v_1 + \lambda v_2, v_2, \ldots, v_p).$$

- (d) On suppose que  $v_1 \in Vect(v_2, \ldots, v_p)$ , donc on peut l'écrire sous la forme :  $v_1 = \sum_{i=2}^p \mu_i v_i$ .
- Soit  $x \in Vect(v_1, v_2, \dots, v_p)$ . Alors x s'écrit sous la forme :

$$x = \lambda_1 v_1 + \sum_{i=2}^{p} \lambda_i v_i = \lambda_1 \left( \sum_{i=2}^{p} \mu_i v_i \right) + \sum_{i=2}^{p} \lambda_i v_i = \sum_{i=2}^{p} (\lambda_1 \mu_i + \lambda_i) v_i \in Vect(v_2, \dots, v_p).$$

• Inversement, soit  $x \in Vect(v_2, \ldots, v_p)$ . Alors x s'écrit sous la forme :

$$x = \sum_{i=2}^{p} \lambda_i v_i = 0 \cdot v_1 + \sum_{i=2}^{p} \lambda_i v_i \in Vect(v_1, v_2, \dots, v_p).$$

#### Remarque 8

Les propriétés (a), (b), (c) rappellent les "opérations élémentaires" sur les lignes d'un système ou d'une matrice :  $L_i \leftrightarrow L_j$ ,  $L_i \leftarrow \lambda L_i$  et  $L_i \leftarrow L_i + \lambda L_j$ .

On pourra ainsi utiliser une suite d'opérations similaire au **pivot de Gauss** pour "simplifier des Vect", en retirant au fur et à mesure les vecteurs "redondants"!

#### 

En partant de  $Vect(v_1, \ldots, v_p)$ :

- Effectuer des "opérations élémentaires" (changer, au besoin, l'ordre des vecteurs)
- Dès que l'on repère qu'un vecteur est combinaison linéaire des autres, on peut le supprimer.
- En particulier, on peut toujours supprimer le vecteur nul.

## Exercice 4

- 1. Simplifier le SEV de  $\mathbb{R}^3$ :  $F = Vect\Big((1,1,-1),(0,0,0),(-1,-1,1),(0,2,1),(1,-1,-2),(1,3,0)\Big)$  (jusqu'à ce qu'on ne puisse plus "retirer" de vecteurs.)
- 2. Déterminer plus simplement le SEV de  $\mathbb{R}[X]$  :  $Vect(X+X^3,1,X,X^2+1,X^3)$ .
- 1. Déjà on peut retirer le vecteur nul :  $F = Vect\Big((1,1,-1),(-1,-1,1),(0,2,1),(1,-1,-2),(1,3,0)\Big)$
- On a (-1,-1,1) = -(1,1,-1) : il est donc combinaison linéaire des autres vecteurs. On peut le retirer :  $F = Vect\Big((1,1,-1),(0,2,1),(1,-1,-2),(1,3,0)\Big)$
- Pour simplifier d'avantage, on peut aligner les vecteurs verticalement "comme une matrice", et effectuer le Pivot de Gauss :

$$F = Vect \begin{pmatrix} (1, 1, -1) \\ (0, 2, 1) \\ (1, -1, -2) \\ (1, 3, 0) \end{pmatrix} = Vect \begin{pmatrix} (1, 1, -1) \\ (0, 2, 1) \\ (0, -2, -1) \\ (0, 2, 1) \end{pmatrix}$$

On voit déjà à ce stade que l'on peut retirer (0, -2, -1) et (0, 2, 1), qui sont combinaisons linéaires des autres vecteurs. Ou alors on poursuit le "pivot" :

$$F = Vect \begin{pmatrix} (1, 1, -1) \\ (0, 2, 1) \\ (0, 0, 0) \\ (0, 0, 0) \end{pmatrix} = Vect \begin{pmatrix} (1, 1, -1) \\ (0, 2, 1) \end{pmatrix}$$

Finalement : F = Vect((1, 1, -1), (0, 2, 1)).

(On voit qu'on ne peut pas simplifier davantage car aucun de ces deux vecteurs n'est combinaison linéaire de l'autre).

2. Déjà, on peut retirer  $X+X^3$  qui est combinaison linéaire de X et  $X^3$  :

$$Vect\Big(X+X^{3},1,X,X^{2}+1,X^{3}\Big) = Vect\Big(1,X,X^{2}+1,X^{3}\Big) = Vect\Big(1,X,X^{2},X^{3}\Big)$$

Notons que, par définition :  $Vect(1, X, X^2, X^3) = \{a + bX + cX^2 + dX^3, (a, b, c, d) \in \mathbb{R}^4\} = \mathbb{R}_4[X].$ 

Ainsi, 
$$Vect(X + X^3, 1, X, X^2 + 1, X^3) = \mathbb{R}_4[X].$$

# 3 Familles génératrices, familles libres, bases

Dans toute cette partie, on considère E un espace vectoriel fixé.

## 3.1 Familles génératrices

## Définition 7 (Famille génératrice d'un espace vectoriel)

On dit qu'une famille  $(v_1, \ldots, v_p)$  de vecteurs de E est une famille génératrice de E (ou bien qu'elle "engendre" E) lorsque :

Tout vecteur  $v \in E$  s'écrit comme combinaison linéaire de  $(v_1, \ldots, v_p)$ .

c'est à dire :

$$\forall v \in E, \ \exists (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p, \ v = \lambda_1 v_1 + \dots + \lambda_p v_p$$

ou, pour le dire autrement :

$$Vect(v_1,\ldots,v_n)=E.$$

## **Exemples**

Dans  $\mathbb{R}^2$ :

• Tout vecteur  $(x,y) \in \mathbb{R}^2$  peut s'écrire :

 $(x,y) = x \cdot (1,0) + y \cdot (0,1).$ 

N'importe quel vecteur de  $\mathbb{R}^2$  s'écrit donc comme combinaison linéaire de (0,1) et (1,0):

((1,0),(0,1)) est une famille génératrice de  $\mathbb{R}^2$ .

✓ Dessin :

 $\bullet \ Vect\Big((1,1),(1,2)\Big) = Vect\Big((1,1),(0,1)\Big)$   $= Vect\Big((1,0),(0,1)\Big) = \mathbb{R}^2$ 

donc ((1,1),(1,2)) est aussi une famille génératrice de  $\mathbb{R}^2$ .

✓ Dessin :

### **Exemple**

Dans  $\mathbb{R}^n$  : Tout vecteur  $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$  peut s'écrire :

$$(x_1, x_2, \dots, x_n) = x_1 \cdot (1, 0, \dots, 0) + x_2 \cdot (0, 1, 0, \dots, 0) + \dots + x_n \cdot (0, 0, \dots, 0, 1).$$

Donc en notant, pour  $i \in [1, n]$ ,  $e_i = (0, \dots, 0, \underbrace{1}_{\text{i-ème coordonnée}}, 0, \dots, 0) \in \mathbb{R}^n$ 

on voit que  $(e_1, e_2, \dots, e_n)$  est un famille génératrice de  $\mathbb{R}^n$ .

### **Exemple**

Notons que  $\mathbb{R}_n[X] = \{ P \in \mathbb{R}[X] \mid \deg(P) \leq n \} = \{ a_0 1 + a_1 X + \dots + a_n X^n, \ (a_0, a_1, \dots, a_n) \in \mathbb{R}^{n+1} \}$ =  $Vect(1, X_1, X^2, \dots, X^n)$ .

Ainsi  $(1, X, X^2, \dots, X^n)$  est une famille génératrice de  $\mathbb{R}_n[X]$ .

## $\Xi$ Méthode : Montrer qu'une famille est génératrice d'un espace vectoriel E

Pour montrer qu'une famille  $(v_1, \ldots, v_p)$  est génératrice d'un espace vectoriel E, on peut :

- Introduire  $v \in E$  quelconque et montrer qu'il existe  $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$  tels que  $v = \lambda_1 v_1 + \lambda_2 v_2 + \ldots \lambda_p v_p$ . (Cela revient à résoudre un système linéaire d'inconnues  $\lambda_1, \ldots, \lambda_p$ .)
- En "simplifiant le Vect" à l'aide d'opérations élémentaires, montrer que  $Vect(v_1,\ldots,v_p)=E$ .

## **ℰ** Exercice 5

Montrer que la famille ((1,0,1),(1,1,1),(0,1,-1)) est génératrice de  $\mathbb{R}^3$ .

Appliquons par exemple la méthode 1 :

Soit  $(x,y,z)\in\mathbb{R}^3$  quel conque. Montrons que l'on peut trouver  $a,b,c\in\mathbb{R}$  tels que

$$(x, y, z) = a(1, 0, 1) + b(1, 1, 1) + c(0, 1, -1).$$

Cette égalité équivaut à :

$$(x,y,z) = (a+b,b+c,a+b-c) \Longleftrightarrow \left\{ \begin{array}{ll} a+b & = x \\ b+c & = y \\ a+b-c & = z \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{ll} a+b & = x \\ b+c & = y \\ -c & = z-x \end{array} \right.$$

On voit que ce système admet une solution (et même une unique solution!). Il existe donc bien de tels réels a,b,c. Conclusion : la famille est génératrice.

## $\Xi$ Méthode : Déterminer une famille génératrice d'un espace vectoriel E

- I Si l'ensemble E est donné "sous forme explicite", reconnaitre qu'il s'agit d'un ensemble de combinaisons linéaires, et l'écrire comme un "Vect" : on en déduit une famille génératrice.
- $\fbox{2}$  Si l'ensemble E est donné "sous forme implicite", le ré-exprimer sous forme explicite. Appliquer alors le point 1.

(On cherchera souvent à obtenir une famille génératrice avec le moins de vecteurs possibles)

### Exercice 6

- 1. Montrer que  $E = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix}, (a, b) \in \mathbb{R}^2 \right\}$  est un SEV de  $\mathcal{M}_2(\mathbb{R})$  et en déterminer une famille génératrice.
- 2. Donner une famille génératrice de l'ensemble des solutions du système homogène suivant :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 0 \text{ et } x - y + z = 0\}$$

- 3. Montrer que  $G = \{P \in \mathbb{R}_3[X] \mid P(1) = 0\}$  est un SEV de  $\mathbb{R}_3[X]$  et en déterminer une famille génératrice.
- $1. \ E = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix}, \ (a,b) \in \mathbb{R}^2 \right\} = \left\{ a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ (a,b) \in \mathbb{R}^2 \right\} = Vect \left( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right).$

C'est donc bien un SEV de  $\mathcal{M}_2(\mathbb{R})$  et une famille génératrice est  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ .

2. On sait que F est un SEV de  $\mathbb{R}^3$  car c'est l'ensemble des solutions d'un système linéaire homogène ! Ensemble sous forme implicite...

$$\left\{ \begin{array}{ll} x + 2y - z &= 0 \\ x - y + z &= 0 \end{array} \right. \iff \left\{ \begin{array}{ll} x + 2y - z &= 0 \\ -3y + 2z &= 0 \end{array} \right. \iff \left\{ \begin{array}{ll} x &= -2y + z = -2y - \frac{3}{2}y = -\frac{7}{2}y \\ z &= -\frac{3}{2}y \end{array} \right.$$

Ainsi on a explicité l'ensemble des solutions :

$$F = \left\{ (-\frac{7}{2}y, y, -\frac{3}{2}y), \ y \in \mathbb{R} \right\} = \left\{ y(-\frac{7}{2}, 1, -\frac{3}{2}), \ y \in \mathbb{R} \right\} = Vect\left( (-\frac{7}{2}, 1, -\frac{3}{2}) \right) = Vect\left( (-7, 2, -3) \right).$$

F est donc généré par un seul vecteur :  $(-7,2,-3) \in F$ . (On dira que c'est une "droite vectorielle")

3. Ensemble G sous forme implicite : explicitons-le! Pour tout  $P \in \mathbb{R}_3[X]$ , on a les équivalences :

$$P(1) = 0 \iff (X - 1) \text{ divise } P \iff \exists Q \in \mathbb{R}_2[X], \ P = (X - 1)Q \ (\text{car deg}(Q) = \text{deg}(P) - 1 \leqslant 2)$$
  
 $\iff \exists (a, b, c) \in \mathbb{R}^3, \ P = (X - 1)(aX^2 + bX + c).$ 

Ainsi:

$$G = \left\{ (X-1)(aX^2 + bX + c), \ (a,b,c) \in \mathbb{R}^3 \right\} = \left\{ a(X-1)X^2 + b(X-1)X + c(X-1), \ (a,b,c) \in \mathbb{R}^3 \right\}$$
$$= Vect\left( (X-1)X^2, (X-1)X, X-1 \right)$$

G est donc bien un SEV de  $\mathbb{R}[X]$  et une famille génératrice est :  $((X-1)X^2, (X-1)X, X-1)$ .

#### 3.2 Familles liées, familles libres

Si  $(v_1, \ldots, v_p)$  est une famille de vecteur de E, il existe toujours une combinaison linéaire de ces vecteurs qui donne le vecteur nul : la **combinaison linéaire triviale** qui consiste à poser  $\lambda_1 = \lambda_2 = \ldots = \lambda_p = 0$  :

$$0 \cdot v_1 + 0 \cdot v_2 + \ldots + 0 \cdot v_p = 0_E.$$

## Définition 8 (Famille liée / Famille libre)

• On dit qu'une famille  $(v_1, \ldots, v_p)$  de vecteurs de E est une **famille liée** lorsqu'il existe une combinaison linéaire <u>non-triviale</u> de ces vecteurs qui donne le vecteur nul.

Autrement dit, la famille  $(v_1, \ldots, v_p)$  est liée si et seulement si :

$$\exists (\lambda_1, \dots, \lambda_p) \neq (0, \dots, 0), \quad \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p = 0_E.$$

• On dit qu'une famille  $(v_1, \ldots, v_p)$  de vecteurs de E est une **famille libre** lorsqu'elle n'est pas liée : seule la combinaison linéaire triviale peut donner le vecteur nul.

Autrement dit, la famille  $(v_1, \ldots, v_p)$  est libre si et seulement si :

$$\forall (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p, \quad \left(\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p = 0_E \implies \lambda_1 = \lambda_2 = \dots = \lambda_p = 0\right)$$

## **A** Attention!

Dans la définition de famille liée :  $(\lambda_1, \dots, \lambda_p) \neq (0, \dots, 0)$  signifie qu'au moins un des  $\lambda_i$  est non nul (et non pas que chaque coefficient  $\lambda_i$  est non nul!)

Une autre caractérisation, plus intuitive, de la notion de famille liée/libre est la suivante :

# Proposition 6 (Famille liée et "vecteur redondant")

La famille  $(v_1, \ldots, v_p)$  est liée si et seulement si l'un des vecteurs de la famille peut s'écrire comme combinaison linéaire des autres. Autrement dit,  $(v_1, \ldots, v_p)$  est liée si et seulement si :

$$\exists i_0 \in [1, p], \quad v_{i_0} \in Vect(v_1, \dots, v_{i_0-1}, v_{i_0+1}, \dots, v_p)$$

À l'inverse, la famille  $(v_1, \ldots, v_p)$  est libre si et seulement si aucun vecteur ne peut s'exprimer comme combinaison linéaire des autres.

### Preuve:

• Supposons  $(v_1, \ldots, v_p)$  liée : il existe donc  $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ , non tours nuls, tels que  $\sum_{i=1}^p \lambda_i v_i = 0_E$ .

Au moins l'un des coefficients est non nul, disons  $\lambda_{i_0} \neq 0$  pour un  $i_0 \in [1, p]$ . On a donc:

$$\sum_{i=1}^{p} \lambda_i v_i = 0_E \iff \lambda_{i_0} v_{i_0} + \sum_{i \neq i_0} \lambda_i v_i = 0_E \iff \lambda_{i_0} v_{i_0} = -\sum_{i \neq i_0} \lambda_i v_i \iff v_{i_0} = -\sum_{i \neq i_0} \frac{\lambda_i}{\lambda_{i_0}} v_i \quad (\text{car } \lambda_{i_0} \neq 0)$$

Ainsi le vecteur  $v_{i_0}$  est bien combinaison linéaire des autres.

 $\bullet$  Supposons qu'il existe  $i_0 \in [\![1,p]\!]$  tel que  $v_{i_0}$  s'écrive comme combinaison linéaire des autres :

$$v_{i_0} = \sum_{i \neq i_0} \lambda_i v_i$$
 avec des coefficients  $\lambda_1, \dots, \lambda_{i_0-1}, \lambda_{i_0+1}, \dots, \lambda_p \in \mathbb{R}$ .

Ceci se ré-écrit :  $\sum_{i \neq i_0} \lambda_i v_i - v_{i_0} = 0_E$ , c'est à dire :

$$\lambda_1 v_1 + \ldots + \lambda_{i_0 - 1} v_{i_0 - 1} + \underbrace{(-1)}_{\neq 0} v_{i_0} + \lambda_{i_0 + 1} v_{i_0 + 1} + \ldots + \lambda_p v_p = 0_E.$$

On a donc une combinaison linéaire non-triviale qui donne le vecteur nul :  $(v_1, \ldots, v_p)$  est liée.  $\square$ 

### Remarques 9

- En particulier : une famille qui contient le vecteur nul est liée, une famille qui contient deux fois le même vecteur est liée.
- Le cas d'une famille liée est exactement le cas où on peut "simplifier le Vect" en retirant un vecteur : si  $v_{i_0}$  s'écrit comme combinaison linéaire des autres :

$$Vect(v_1, ..., v_p) = Vect(v_1, ..., v_{i_0-1}, v_{i_0+1}, ..., v_p)$$

(on peut retirer  $v_{i_0}$  et conserver le même sous espace-vectoriel engendré)

• À l'inverse, lorsqu'une famille est libre, aucun vecteur ne s'écrit comme combinaison linéaire des autres, et on ne peut donc pas "simplifier le Vect" davantage (retirer un vecteur)!

### **Exemples**

• Dans  $\mathbb{R}^3$ , la famille ((0,1,2),(1,1,0)) est libre.

En effet, pour tous  $\lambda, \mu \in \mathbb{R}$ :

$$\lambda(0,1,2) + \mu(1,1,0) = \underbrace{(0,0,0)}_{0_{\mathbb{R}^3}} \Longleftrightarrow (\mu,\lambda+\mu,2\lambda) = (0,0,0) \Longleftrightarrow \left\{ \begin{array}{cc} \mu &=0 \\ \lambda+\mu &=0 \\ 2\lambda &=0 \end{array} \right. \Longleftrightarrow \lambda = \mu = 0.$$

La seule combinaison linéaire donnant (0,0,0) est donc la combinaison triviale.

 $\bullet$  Dans  $\mathbb{R}^3,$  la famille  $\Big((0,1,2),(1,1,0),(2,3,2)\Big)$  est liée.

En effet, pour tous  $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ :

$$\lambda_{1}(0,1,2) + \lambda_{2}(1,1,0) + \lambda_{3}(2,3,2) = (0,0,0) \iff (\lambda_{2} + 2\lambda_{3}, \lambda_{1} + \lambda_{2} + 3\lambda_{3}, 2\lambda_{1} + 2\lambda_{3}) = (0,0,0)$$

$$\iff \begin{cases} \lambda_{2} + 2\lambda_{3} &= 0 \\ \lambda_{1} + \lambda_{2} + 3\lambda_{3} &= 0 \\ 2\lambda_{1} &+ 2\lambda_{3} &= 0 \end{cases} \iff \begin{cases} \lambda_{1} + \lambda_{2} + 3\lambda_{3} &= 0 \\ \lambda_{1} &+ \lambda_{3} &= 0 \\ \lambda_{2} + 2\lambda_{3} &= 0 \end{cases} \iff \begin{cases} \lambda_{1} + \lambda_{2} + 3\lambda_{3} &= 0 \\ \lambda_{2} + 2\lambda_{3} &= 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} + \lambda_{2} + 3\lambda_{3} &= 0 \\ \lambda_{2} + 2\lambda_{3} &= 0 \end{cases} \iff \begin{cases} \lambda_{1} &= -\lambda_{2} - 3\lambda_{3} = -\lambda_{3} \\ \lambda_{2} &= -2\lambda_{3} \end{cases}$$

En choisissant par exemple  $\lambda_3 = 1$ , on a la solution  $(\lambda_1, \lambda_2, \lambda_3) = (-1, -2, 1)$ .

On obtient ainsi une combinaison non-triviale donnant le vecteur nul:

$$-(0,1,2)-2(1,1,0)+(2,3,2)=(0,0,0)$$
. La famille est donc liée.

On aurait aussi pu remarquer directement que : (2,3,2) = (0,1,2) + 2(1,1,0).

Un vecteur s'écrit comme combinaison linéaire des autres : la famille est donc liée.

# Proposition 7 (Familles liées/libres à 1 ou 2 vecteurs)

- Une famille à un seul vecteur  $(v_1)$  est libre si et seulement si  $v_1 \neq 0_E$ .
- Une famille à deux vecteurs  $(v_1, v_2)$  est liée si et seulement ces vecteurs sont **colinéaires** (i.e "proportionnels") :  $\exists \lambda \in \mathbb{R}, \ v_1 = \lambda v_2 \text{ ou } v_2 = \lambda v_1$ .

Ainsi, une famille de deux vecteurs non-colinéaires est libre.

### Preuve:

- Par définition, dire que la famille  $(v_1)$  est libre, c'est dire :  $\forall \lambda \in \mathbb{R}, \ (\lambda \cdot v_1 = 0_E \Longrightarrow \lambda = 0)$ . C'est vrai si et seulement si  $v_1 \neq 0_E$  (cf. Proposition 1)
- Avec la caractérisation de la Proposition 6, la famille  $(v_1, v_2)$  est liée si et seulement si l'un des vecteurs est combinaison linéaire des autres : c'est bien dire que  $v_1$  et  $v_2$  sont colinéaires.

#### **Exemples**

- Dans  $\mathbb{R}^4$ : ((1,2,3,4),(0,2,1,1)) est libre car les deux vecteurs sont clairement non-colinéaires.
- Dans  $\mathcal{F}(\mathbb{R}, \mathbb{R})$ : la famille (cos, sin) est libre, car ces deux fonctions ne sont pas proportionnelles! (Exercice: pourquoi?)

#### Attention!

Pour montrer qu'une famille de  $\underline{3}$  vecteurs ou plus est libre, il n'est pas suffisant de vérifier que les vecteurs sont deux à deux non-colinéaires!

Exemple : La famille ((0,1,2),(1,1,0),(2,3,2)) est composée de vecteurs non-colinéaires, pourtant on a vu qu'elle était liée.

### Æ Méthode : Montrer qu'une famille est libre / liée

Pour montrer qu'une famille  $(v_1, \ldots, v_p)$  est **liée**, on peut :

- Repérer qu'un vecteur s'écrit comme combinaison linéaire des autres. (en particulier si la famille contient le vecteur nul, ou deux fois le même vecteur...)
- Démontrer qu'il existe  $(\lambda_1, \ldots, \lambda_p) \neq (0, \ldots, 0)$  tel que  $\lambda_1 v_1 + \ldots + \lambda_p v_p = 0_E$ .

Pour cela, on pose l'égalité  $\lambda_1 v_1 + \ldots + \lambda_p v_p = 0_E$ , on identifie les coefficients, et on raisonne par équivalences pour trouver les solutions  $(\lambda_1, \ldots, \lambda_p)$ .

Cela revient en général à résoudre un système linéaire homogène! (cf. Exemples page précédente)

Pour montrer qu'une famille  $(v_1, \ldots, v_p)$  est **libre**, on peut :

- Pour une famille d'un seul vecteur, annoncer que ce vecteur est non nul.
- Pour une famille de deux vecteurs, vérifier qu'ils ne sont pas colinéaires.
- Pour une famille d'au moins 3 vecteurs : introduire  $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$  tels que  $\lambda_1 v_1 + \ldots + \lambda_p v_p = 0_E$  et montrer qu'on a nécessairement  $\lambda_1 = \ldots = \lambda_p = 0$ .

Pour cela, on pose l'égalité  $\lambda_1 v_1 + \ldots + \lambda_p v_p = 0_E$ , on identifie les coefficients, et on raisonne par équivalences : cela revient à résoudre un système linéaire homogène d'inconnues  $(\lambda_1, \ldots, \lambda_p)$ ! (cf. Exemples page précédente)

Dans les espaces vectoriels  $\mathbb{R}^{\mathbb{N}}$  ou  $\mathcal{F}(\mathbb{R}, \mathbb{R})$ , il peut être nécessaire de raisonner autrement. (On peut choisir des valeurs de  $n \in \mathbb{N}$  ou de  $x \in \mathbb{R}$  particulières pour obtenir un système à résoudre, on peut aussi exploiter les limites, dériver, etc...)

(On cherchera souvent à obtenir une famille libre avec le plus de vecteurs possibles)

#### Exercice 7

Montrer que les familles suivantes sont libres :

- 1. Dans  $\mathbb{R}^4$ : ((1,0,2,0),(0,1,2,1),(1,1,0,-1))
- 2. Dans  $\mathbb{R}[X]$ :  $(2X, X+1, 3X^2-2X+1)$
- 3. Dans  $\mathcal{F}(\mathbb{R}, \mathbb{R}) : (f_1, f_2, f_3)$ , où  $f_k : x \mapsto \cos(kx)$ .

```
1. Soient a, b, c \in \mathbb{R}.
Supposons a(1,0,2,0) + b(0,1,2,1) + c(1,1,0,-1) = (0,0,0,0) et montrons que a = b = c = 0.
a(1,0,2,0) + b(0,1,2,1) + c(1,1,0,-1) = (0,0,0,0) \Longleftrightarrow (a+b,b+c,2a+2b,b-c) = (0,0,0,0)
```

$$\iff \begin{cases} a + c = 0 \\ b + c = 0 \\ 2a + 2b = 0 \\ b - c = 0 \end{cases} \iff [...] \iff \begin{cases} a + c = 0 \\ b + c = 0 \\ c = 0 \end{cases}$$

On voit que ce système homogène est de Cramer, donc admet l'unique solution : a = b = c = 0. La famille est donc libre.

2. Soient  $a, b, c \in \mathbb{R}$ .

Supposons  $a \cdot 2X + b(X+1) + c(3X^2 - 2X + 1) = \underbrace{0}_{\text{polynôme nul}}$  et montrons que a = b = c = 0.

$$a \cdot 2X + b(X+1) + c(3X^2 - 2X + 1) = 0 \iff 3cX^2 + (a+b-2c)X + b + c = 0$$

Or un polynôme est nul si et seulement si tous ces coefficients sont nuls :

$$\iff \left\{ \begin{array}{rr} 3c & = 0 \\ a+b-2c & = 0 \\ b+c & = 0 \end{array} \right. \iff \left\{ \begin{array}{rr} c=0 \\ a+b=0 \\ b=0 \end{array} \right. \iff a=b=c=0.$$

La famille est donc libre.

3. Soient  $a, b, c \in \mathbb{R}$ . Supposons que  $af_1 + bf_2 + cf_3 = \underbrace{0}_{\text{fonction nulle}}$  et montrons que a = b = c = 0.

L'égalité  $af_1 + bf_2 + cf_3 = 0$  signifie :  $\forall x \in \mathbb{R}, \ af_1(x) + bf_2(x) + cf_3(x) = 0.$ 

c'est à dire :  $\forall x \in \mathbb{R}, \ a\cos(x) + b\cos(2x) + c\cos(3x) = 0.$ 

On ne peut pas vraiment "identifier les coefficients" et raisonner par équivalences ici!

En évaluant en x = 0: a + b + c = 0.

En évaluant en  $x = \frac{\pi}{2}$ : -b = 0.

En évaluant en  $x = \frac{\pi}{3}$ :  $\frac{a}{2} - \frac{b}{2} - c = 0$ .

À partir de ces 3 équations, on obtient facilement a = b = c = 0. La famille est donc libre.

# Proposition 8 (Famille de polynômes de degrés échelonnés)

Dans  $\mathbb{R}[X]$ : on dit qu'une famille de polynômes non nuls  $(P_1, P_2, \dots, P_p)$  est de degrés échelonnés lorsqu'elle est constituée de polynômes de degrés deux à deux distincts.

Toute famille de polynômes de degrés échelonnés est libre.

#### Preuve:

Soit  $(P_1, \ldots, P_p)$  une famille de polynômes de degrés échelonnés.

Quitte à changer l'ordre des polynômes, on peut supposer  $0 \leq \deg(P_1) < \deg(P_2) < \ldots < \deg(P_p)$ .

Raisonnons par l'absurde en supposant que la famille  $(P_1,\ldots,P_p)$  soit liée :

il existe donc des coefficients  $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ , non tous nuls, tels que  $\lambda_1 P_1 + \ldots + \lambda_p P_p = 0$ .

Au moins l'un des  $\lambda_i$  est non nul : choisissons  $i_0 \in [1, p]$  le plus grand indice possible tel que  $\lambda_{i_0} \neq 0$ .

Ainsi : 
$$\lambda_1 P_1 + \ldots + \lambda_{i_0-1} P_{i_0-1} + \underbrace{\lambda_{i_0}}_{\neq 0} P_{i_0} + \underbrace{\lambda_{i_0+1}}_{=0} P_{i_0+1} + \ldots + \underbrace{\lambda_p}_{=0} P_p = 0$$
On obtient donc :  $\underbrace{\lambda_1 P_1 + \ldots + \lambda_{i_0-1} P_{i_0-1}}_{\text{degr\'e} < \text{deg}(P_{i_0})} + \underbrace{\lambda_{i_0} P_{i_0}}_{\text{degr\'e} = \text{deg}(P_{i_0})} = 0.$ 

On obtient donc: 
$$\lambda_1 P_1 + \ldots + \lambda_{i_0-1} P_{i_0-1} + \underbrace{\lambda_{i_0} P_{i_0}}_{\text{degré} \sim \text{deg}(P_1)} = 0.$$

Or on voit que le degré de ce polynôme est  $\deg(P_{i_0}) \ge 0$ : il ne peut pas être nul. Contradiction!

#### **Exemple**

La famille  $(3, 2X - 1, 3X^3 - X^2 + 2, X^4 + X^2)$  est libre dans  $\mathbb{R}[X]$ , car de degrés échelonnés.

#### 3.3 Bases

Rappelons qu'une famille  $(v_1, \ldots, v_p)$  est génératrice de E lorsque n'importe quel vecteur  $v \in E$  peut s'écrire comme une combinaison linéaire de ces vecteurs :  $v = \lambda_1 v_1 + \ldots + \lambda_p v_p$ .

Néanmoins, cette "décomposition" n'est pas nécessairement unique! Il peut y avoir plusieurs façon d'exprimer un même vecteur  $v \in E$  comme combinaison linéaire de  $(v_1, \ldots, v_p)$ ...

### **Exemple**

La famille  $\Big((1,0),(0,1),(1,1)\Big)$  est génératrice de  $\mathbb{R}^2$ . (cf. Exemples page 13).

Le vecteur  $(2,3) \in \mathbb{R}^2$  peut s'écrire :  $(2,3) = 2 \cdot (1,0) + 3 \cdot (0,1) + 0 \cdot (1,1)$ .

Mais il peut aussi s'écrire :  $(2,3) = 1 \cdot (1,0) + 2 \cdot (0,1) + 1 \cdot (1,1)!$ 

Ce constat justifie que l'on introduise la notion plus précise de base de E.

## Définition 9 (Base)

Une famille  $(v_1, \ldots, v_p)$  est une base de E lorsque : c'est une famille libre et génératrice de E.

### **Exemples**

- La famille ((1,0),(0,1),(1,1)) est génératrice de  $\mathbb{R}^2$  mais n'est pas libre  $(\operatorname{car}(1,1)=(1,0)+(0,1))$ . Ce n'est pas une base de  $\mathbb{R}^2$ .
- La famille ((1,0),(0,1)) est génératrice de  $\mathbb{R}^2$  et est libre (2 vecteurs non-colinéaires). C'est une base de  $\mathbb{R}^2$ !
- $\bullet$  La famille  $\Big((1,-1),(2,2)\Big)$  est une autre base de  $\mathbb{R}^2.$  (vérifiez-le)

# ★ Théorème 3 (Unicité de la décomposition dans une base)

Soit  $\mathcal{B} = (e_1, \dots, e_p)$  une base E. Alors :

Tout vecteur  $v \in E$  s'écrit de manière unique comme combinaison linéaire de  $(e_1, \ldots, e_p)$ .

c'est à dire :

$$\forall v \in E, \exists! (\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p, v = \lambda_1 e_1 + \dots + \lambda_p e_p$$

Les scalaires  $\lambda_1, \ldots, \lambda_p$  (uniques!) sont alors appelés coordonnées de v dans la base  $(e_1, \ldots, e_p)$ .

On peut les noter dans la "matrice colonne des cordonnées de v dans la base  $\mathcal{B} = (e_1, \dots, e_p)$ ":

$$Mat_{\mathcal{B}}(v) = \left(egin{array}{c} \lambda_1 \ \lambda_2 \ dots \ \lambda_p \end{array}
ight) \in \mathcal{M}_{p,1}(\mathbb{R}).$$

#### Preuve:

Soit  $v \in E$ . Montrons l'existence et l'unicité annoncée dans le Théorème.

- Comme  $(e_1, \ldots, e_p)$  est une famille génératrice de E, par définition, on sait qu'il existe  $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$  tel que  $v = \lambda_1 e_1 + \ldots + \lambda_p e_p$ .
- Supposons qu'il existe d'autres scalaires  $(\lambda'_1, \dots, \lambda'_p) \in \mathbb{R}^p$  tels que  $v = \lambda'_1 e_1 + \dots + \lambda'_p e_p$ . Alors en faisant la différence des deux égalités :  $v - v = (\lambda_1 - \lambda'_1)e_1 + \dots + (\lambda_p - \lambda'_p)e_p$ , ce qui donne :

$$(\lambda_1 - \lambda_1')e_1 + \ldots + (\lambda_p - \lambda_p')e_p = 0_E.$$

Comme la famille  $(e_1, \ldots, e_p)$  est libre, par définition, ceci implique :  $\lambda_1 - \lambda_1' = 0, \ldots, \lambda_p - \lambda_p' = 0$ . Autrement dit :  $\forall i \in [1, n], \ \lambda_i' = \lambda_i$ . La décomposition est donc unique.

### Donnons quelques bases fondamentales d'espaces usuels :

## **Exemples**

• Dans  $\mathbb{R}^n$ : En notant, pour tout  $i \in [1, n]$ ,  $e_i = (0, \dots, 0, \underbrace{1}_{\text{i-ème coordonnée}}, 0, \dots, 0) \in \mathbb{R}^n$ 

la famille  $(e_1, e_2, \dots, e_n)$  est une base de  $\mathbb{R}^n$ .

On l'appelle la base canonique de  $\mathbb{R}^n$ .

En effet : On a déjà vu que c'est une famille génératrice de  $\mathbb{R}^n$ . Vérifiez qu'elle est libre!

• Dans  $\mathbb{R}_n[X]$ : La famille  $(1, X, 2, \dots, X^n)$  est une base de  $\mathbb{R}_n[X]$ .

On l'appelle la base canonique de  $\mathbb{R}_n[X]$ .

En effet : On a déjà vu que c'est une famille génératrice de  $\mathbb{R}_n[X]$ . Elle est libre car c'est une famille de polynômes de degrés échelonnés.

• Dans  $\mathcal{M}_{n,p}(\mathbb{R})$ : En notant, pour tout  $(i,j) \in [1,n] \times [1,p]$ ,

 $E_{i,j} = \text{matrice dont tous les coeffs. sont nuls, sauf un 1 sur la <math>i$ -ème ligne et la j-ième colonne.

la famille  $(E_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$  est une base de  $\mathcal{M}_{n,p}(\mathbb{R})$ .

On l'appelle la base canonique de  $\mathcal{M}_{n,p}(\mathbb{R})$ .

En effet : On remarque que pour tout  $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \in \mathcal{M}_{n,p}(\mathbb{R})$ , on peut écrire :  $A = \sum_{i=1}^n \sum_{j=1}^p a_{i,j} E_{i,j}$ .

C'est donc une famille génératrice!

De plus, si des scalaires  $(\lambda_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$  satisfont  $\sum_{i=1}^n \sum_{j=1}^p \lambda_{i,j} E_{i,j} = 0_{n,p}$ , cela revient à dire que la matrice

 $\Lambda = (\lambda_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$  est nulle, c'est à dire que tous les scalaires  $\lambda_{i,j}$  sont nuls. C'est donc une famille libre!

 $\underline{\mathrm{Par}\ \mathrm{exemple}:}\ \mathrm{La\ base\ canonique\ de}\ \mathcal{M}_2(\mathbb{R})\ \mathrm{est}:\ \left(\left(\begin{smallmatrix}1&0\\0&0\end{smallmatrix}\right),\left(\begin{smallmatrix}0&1\\0&0\end{smallmatrix}\right),\left(\begin{smallmatrix}0&0\\1&0\end{smallmatrix}\right),\left(\begin{smallmatrix}0&0\\0&1\end{smallmatrix}\right)\right).$ 

En particulier: La base canonique de  $\mathcal{M}_{n,1}(\mathbb{R})$  est:  $\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \end{pmatrix}$ 

## 

- Montrer qu'une famille de vecteurs  $(e_1,\ldots,e_p)$  est une base de E :
- On peut montrer que c'est une famille génératrice et libre (cf. méthodes associées).
- On peut introduire  $v \in E$  quelconque et montrer qu'il <u>existe</u> un <u>unique</u>  $(\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p$  tel que

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_p e_p.$$

Cela revient à résoudre un système linéaire d'inconnues  $\lambda_1, \ldots, \lambda_p$ .

- $\bullet$  Déterminer une base d'un espace vectoriel E :
- Déterminer une famille génératrice (cf. méthode associée).
- Si cette famille est également libre (c'est très souvent le cas!) alors c'est une base. Sinon, "simplifier le Vect" en supprimant des vecteurs jusqu'à obtenir une famille libre.
- ullet Déterminer les coordonnées d'un vecteur  $v \in E$  dans une base  $(e_1, \dots, e_p)$  :

Déterminer l'unique  $(\lambda_1, \ldots, \lambda_p) \in \mathbb{R}^p$  tel que  $v = \lambda_1 e_1 + \ldots + \lambda_p e_p$ . Cela revient à résoudre un système linéaire d'inconnues  $\lambda_1, \ldots, \lambda_p$ .

### **♠** Exercice 8

- 1. (a) Montrer que  $\mathcal{B} = (2, -X + 1, 2X^2 2X + 1)$  est une base de  $\mathbb{R}_3[X]$ .
- (b) Donner la matrice des coordonnées de  $P = X^2 + 2X 3 \in \mathbb{R}_2[X]$  dans : La base canonique  $\mathcal{B}_0 = (1, X, X^2)$  de  $\mathbb{R}_2[X]$ . La base  $\mathcal{B}$ .
- 2. Déterminer une base du plan de  $\mathbb{R}^3$  d'équation x-2y+z=0 :

$$F = \left\{ (x, y, z) \in \mathbb{R}^3 \,|\, x - 2y + z = 0 \right\}.$$

- 1. (a)  $\mathcal{B}$  est une famille libre, car les polynômes sont de degré échelonnés.
- Montrons que  $\mathcal{B}$  est une famille génératrice de  $\mathbb{R}_2[X]$  :

$$Vect(2, -X + 1, 2X^{2} - 2X + 1) = Vect(1, -X + 1, 2X^{2} - 2X + 1) = Vect(1, -X, 2X^{2} - 2X)$$
$$= Vect(1, X, X^{2} - X) = Vect(1, X, X^{2}) = \mathbb{R}_{2}[X] \quad \text{d'où le résultat.}$$

Ainsi  $\mathcal{B}$  est une base de  $\mathbb{R}_2[X]$ .

1.(b) P s'écrit :  $P = -3 \cdot 1 + 2 \cdot X + 1 \cdot X^2$  donc ses coordonnées dans la base  $\mathcal{B}_0 = (1, X, X^2)$  sont :

$$Mat_{\mathcal{B}_0}(P) = \begin{pmatrix} -3\\2\\1 \end{pmatrix}.$$

Comme  $\mathcal{B} = (2, -X + 1, 2X^2 - 2X + 1)$  est aussi une base de  $\mathbb{R}_2[X]$ , on sait qu'il existe un unique  $(a, b, c) \in \mathbb{R}^3$  tel que

$$P = a \cdot 2 + b \cdot (-X + 1) + c \cdot (2X^2 - 2X + 1).$$

Déterminons ces coordonnées :

$$P = 2a + b(-X + 1) + c(2X^{2} - 2X + 1) \iff X^{2} + 2X - 3 = (2c)X^{2} + (-b - 2c)X + (2a + b + c)$$

$$\iff \begin{cases} 2c &= 1 \\ -b - 2c &= 2 \\ 2a + b + c &= -3 \end{cases} \iff \begin{cases} c &= \frac{1}{2} \\ b &= -2c - 2 = -1 - 2 = -3 \\ 2a &= -3 - b - c = -3 + 3 - \frac{1}{2} = -\frac{1}{2} \end{cases} \iff \begin{cases} c &= \frac{1}{2} \\ b &= -3 \\ a &= -\frac{1}{4} \end{cases}$$

Ainsi, P s'écrit :  $P = -\frac{1}{4} \cdot 2 - 3 \cdot (-X+1) + \frac{1}{2}(2X^2 - 2X+1)$  donc ses coordonnées dans la base  $\mathcal{B} = (2, -X+1, 2X^2 - 2X+1)$  sont :

$$Mat_{\mathcal{B}}(P) = \begin{pmatrix} -\frac{1}{4} \\ -3 \\ \frac{1}{2} \end{pmatrix}$$

2. On pourrait vérifier que F est bien un SEV de  $\mathbb{R}^3$ . En fait on va montrer que c'est un "Vect", donc cela montrera au passage que c'est un SEV!

On l'écrit sous forme explicite :  $F = \{(x, y, z) \in \mathbb{R}^3 \mid x = 2y - z\} = \{(2y - z, y, z), (y, z) \in \mathbb{R}^2\}.$ 

$$\text{Ainsi}: F = \Big\{y(2,1,0) + z(-1,0,1), \ (y,z) \in \mathbb{R}^2\Big\} = Vect\Big((2,1,0),(-1,0,1)\Big).$$

F est donc un SEV de  $\mathbb{R}^3$ , dont une famille génératrice est ((2,1,0),(-1,0,1)).

De plus cette famille est libre, car composée de deux vecteurs non-colinéaires.

Une base de F est donc : ((2,1,0),(-1,0,1)).

## À savoir faire à l'issue de ce chapitre :



Au minimum

- Connaître les espaces vectoriels usuels et les règles de calculs dans ces espaces.
- Montrer et répérer qu'un vecteur est combinaison linéaire d'autres vecteurs.
- Montrer qu'un ensemble est un SEV d'un espace vectoriel usuel.
- Comprendre et manipuler  $Vect(v_1, \ldots, v_p)$ .
- Déterminer une famille génératrice d'un espace vectoriel.
- Montrer qu'une famille est libre ou liée.
- Connaître les bases canoniques des espaces vectoriels usuels.



- Montrer qu'une famille est une base d'un espace vectoriel.
- Déterminer la matrice des coordonnées d'un vecteur dans une base.



Pour suivre

Pour les ambitieux

- Connaître la définition théorique d'un espace vectoriel (liste de propriétés).
- Maîtriser toutes les preuves du cours.