MP Programme de colle n° 18

Cours:

Chapitre 10

Variables aléatoires discrètes

- 5. Couple et famille de variables aléatoires discrètes
- 6. Fonction génératrice

Chapitre 13

Equations différentielles linéaires

1. Equations différentielles linéaires scalaires du 1^{er} ordre

Les démos à connaître (en rouge les plus conséquentes ou délicates)

Chapitre 10

5.2.b

<u>Caractérisation</u> X et Y sont indépendantes si et seulement si $\forall (x,y) \in X(\Omega) \times Y(\Omega)$, $P(\{X=x\} \cap \{Y=y\}) = P(\{X=x\}) \times P(\{Y=y\})$.

<u>Théorème</u> Soient $f: X(\Omega) \to E$ et $g: Y(\Omega) \to F$.

Si X et Y sont indépendantes, alors f(X) et g(Y) sont indépendantes.

5.2.c

<u>Théorème</u>

- Si X et Y sont deux variables aléatoires indépendantes d'espérances finies, alors XY est d'espérance finie égale à $E(XY) = E(X) \times E(Y)$ On a notamment : $E(XY) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xyP((X=x) \cap (Y=y))$
- $riangleq ext{Si } X_1, X_2, ..., X_n ext{ sont mutuellement indépendantes d'espérance finie,}$ alors $\prod_{k=1}^n X_k ext{ est d'espérance finie et } E\left(\prod_{k=1}^n X_k\right) = \prod_{k=1}^n E(X_k).$

5.3.c

Corollaire $|\operatorname{cov}(X,Y)| \leqslant \sigma(X)\sigma(Y)$

Soient $X,\ Y,\ X_1,X_2,...,X_n$ des variables aléatoires discrètes <u>Théorème</u> possédant des moments d'ordre 2.

$$V(X + Y) = V(X) + V(Y) + 2 \operatorname{cov}(X, Y)$$

$$\qquad \qquad V \Biggl(\sum_{i=1}^n X_i \Biggr) = \sum_{i=1}^n V(X_i) + 2 \sum_{1 \leqslant i < j \leqslant n} \quad \operatorname{cov}(X_i, Y_j)$$

5.4

<u>Théorème</u>

Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires deux à deux indépendantes, de même loi, d'espérance m et admettant une variance $V = \sigma^2$.

Soit
$$S_n = \sum_{k=1}^n X_k$$
. Alors, $\forall \varepsilon > 0$: $\left| P\left(\left| \frac{S_n}{n} - m \right| \geqslant \varepsilon \right) \xrightarrow[n \to +\infty]{} 0 \right|$

6.1

Propriété préliminaire Soit X une variable aléatoire à valeurs dans \mathbb{N} .

Soit la série entière $\sum P(X=n)t^n$.

- Son rayon de convergence vérifie $R \geqslant 1$.
- Elle converge normalement sur [-1,1].
- Sa somme G_X est continue sur [-1,1] et si R > 1 sur]-R,R[. $\forall t \in]-R,R[\cup [-1,1],\ t^X$ est d'espérance finie et $\boxed{G_X(t)=E(t^X)}$

6.2

Loi de X	Notation	Fonction génératrice	Rayon
de Bernoulli	$\mathcal{B}(p)$	$G_{X}(t) = q + pt$	$+\infty$
Binomiale	$\mathcal{B}(n,p)$	$G_{X}(t) = (q + pt)^{n}$	$+\infty$
Géométrique	$\mathcal{G}(p)$	$G_{\scriptscriptstyle X}(t) = \frac{pt}{1-qt}$	$\frac{1}{q}$
de Poisson	$\mathcal{P}(\lambda)$	$G_{\scriptscriptstyle X}(t)=e^{\lambda(t-1)}$	$+\infty$

Exercices

- Un ou deux exercice sur le chapitre 10 § 5 et 6
- Un eexercice sur les équations différetielles du premier ordre
 - E.D.L. scalaires du premier ordre et raccordements