计网Homework6

Q5

D是1010101010, R是 $D \times 2^4$, 也就是10101010100000, 除以G = 10011, 余数R是0100, 商是1011011100。

Q8

(a)

表达式记为 $h(p) = Np(1-p)^{N-1}$

求导得到

$$h'(p) = N \left[-p(1-p)^{N-2}(N-1) + (1-p)^{N-1} \right] = N(1-p)^{N-2}(1-Np) = 0$$

得到 $p=rac{1}{N}$,可以判断的是 $rac{1}{N}$ 是极值点,且是极大值。

所以让这个表达式最大化的p值为 $\frac{1}{N}$ 。

(b)

当 $p=rac{1}{N}$ 时隙ALOHA的效率式

$$\eta = lim_{N o\infty}Np(1-p)^{N-1} = \lim_{N o\infty}\left(1-rac{1}{N}
ight)^{N-1} = \lim_{N o\infty}\left(1-rac{1}{N}
ight)^{N}(rac{N}{N-1}) = rac{1}{\mathrm{e}}$$

Q11

(a)

每次成功的概率 $p_a = p(1-p)^3$

时隙5首先成功意味着前四次都失败第五次才成功:

$$p_A = p_{\text{MV}}^4 imes p_a = (1 - p(1-p)^3)^4 p(1-p)^3$$

(b) A、B、C、D在时隙4成功的的概率都是 $p(1-p)^3$,因此某个节点在时隙4成功的概率是 $4p(1-p)^3$

(c)时隙3首先成功意味着时隙1、2都失败时隙3才成功:

$$p_3 = (1 - 4p(1-p)^3)^2 \times 4p(1-p)^3$$

(d)效率 $\eta = p$ (在任意时隙中成功) = $4p(1-p)^3$

Q23

9台主机,两台服务器,要使总聚合吞吐量最大,则需要所有链路都满载,都用100Mbps的速率传输,此时总聚合吞吐量是1100Mbps。

Q24

3个交换机被集线器替换后,由于集线器本身就是一个冲突域,这意味着每个系中的3台主机都共享同一个冲突域。在这种配置下,集线器的聚合吞吐量限制为100Mbps,仅一台主机被允许传输数据包。此外,两台服务器能够保持100Mbps的数据传输速度,由此整体的最大聚合带宽(3+2条链路满载)达到了500Mbps。

Q25

交换机用集线器来替代,所有节点在同一冲突域上,每次只有一个服务器能转发分组,否则会冲突,因此最大总聚合吞吐量是100Mbps。

Q26

行为	表状态	链路包前往	解释
B发送 一帧 给E	记录B的MAC 地址与到达的 端口	A,C,D,E,F	由于交换机的表为空,它无法识别与E的MAC 地址相匹配的接口。因此,交换机将把这个 帧转发给A、C、D、E和F。
E回答 一帧 给B	记录E的MAC 地址和到达的 端口	В	因为交换机有B的MAC地址及对应的接口,所 以向B转发
A发送 一帧 给B	记录A的MAC 地址和到达的 端口	В	由于交换机有B的MAC地址对应的接口,所以 向B转发
B回答 一帧 给A	交换机保持表 的状态不变	А	由于交换机有A的MAC地址及对应的接口,所 以向A转发