Aufgabe 1

Implementieren Sie in der Programmiersprache Ihrer Wahl die symmetrischen Grupen. Ihre Implementation soll folgendes erfüllen:

- Modellieren Sie Permutationen (z.B. als Arrays)
- Implementieren Sie eine Funktion inv, die eine gegebene Permutation invertiert (ihr Inverses zurückgibt).
- Implementieren Sie die Verknüpfung o als zweistellige Funktion, die von zwei gegebenen Permutationen deren Komposition berechnet.
- Implementieren sie zwei Funktionen print und printCyclic, die eine gegebene Permutation als String ausgeben (in der zyklischen Schreibweise bei printCyclic).

Aufgabe 2

Geben Sie alle Verknüpfungen an, die zusammen mit der Menge $\{a,b\}$ eine Gruppe bilden. Skizzieren Sie die Verknüpfungstabellen.

Aufgabe 3

Es seien die folgenden Gruppenstrukturen auf den Menge $\{a, b, c\}$ wie folgt durch Verknüpfungstabellen gegeben:

*	a	b	\mathbf{c}
a	a	b	\mathbf{c}
b	b	c	a
c	c	a	b

•	a	b	\mathbf{c}
a	c	a	b
b	a	b	c
c	b	c	a

Abgabe: Kalenderwoche 12

Geben Sie einen bijektive Gruppenhomomorphismus von $(\{a,b,c\},\star)$ nach $(\{a,b,c\},\bullet)$ an.

Aufgabe 4

Es sei $f:(\mathbb{Z},+)\to(\mathbb{Z}/12,+)$ mit $f(x)=[x]_{12}$ gegeben. Bestimmen Sie ker(f).

Aufgabe 5

Zeigen Sie, Wenn (G, \star) eine Gruppe ist in der jedes Element sein eigenes Inverses ist, dann ist (G, \star) eine kommutative Gruppe.

Augasen

(L)

Aufgabe 2 Geben Sie alle Verknüpfungen an, die zusammen mit der Menge {a, b} eine Gruppe bilden. Skizzieren Sie die Verknüpfungstabellen.

Groppe: associativ, neutrales Element, invoser Element

*		5
a	0	5
5	6	a

auf jeur spelle/féle loumné mind. 1x das neubrale Element vor

Aufgabe 3

Es seien die folgenden Gruppenstrukturen auf den Menge $\{a,b,c\}$ wie folgt durch Verknüpfungstabellen gegeben:

*	a	b	c
a	a	b	c
b	b	c	a
c	c	a	b

•	a	b	c
a	\mathbf{c}	a	b
b	a	b	c
c	b	c	a

Geben Sie einen bijektive Gruppenhomomorphismus von $(\{a,b,c\},\star)$ nach $(\{a,b,c\},\bullet)$ an.

$$f(c) = 5$$

$$f(5) = c$$

$$f(c) = a$$