《算法设计与分析》

第十二章 线性规划

马丙鹏 2023年12月25日

第十二章 线性规划

- 12.1 数学模型
- 12.2 图解法
- 12.3 标准型
- 12.4 基本概念
- 12.5 单纯形法

■ 2. 大M单纯形法

- □在实际问题中有些模型并不含有单位矩阵,为了得到
 - 一组基向量和初基可行解,在约束条件的等式左端加
 - 一组虚拟变量,得到一组基变量。
- □这种人为加的变量称为人工变量,构成的可行基称为 人工基,用大M法或两阶段法求解,这种用人工变量 作桥梁的求解方法称为人工变量法。
- □例12-20 用大M法解下列线性规划 $\max Z = 3x_1 + 2x_2 - x_3$

$$\begin{cases} -4x_1 + 3x_2 + x_3 \ge 4 \\ x_1 - x_2 + 2x_3 \le 10 \\ -2x_1 + 2x_2 - x_3 = -1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 2. 大M单纯形法
 - □例12-20 用大M法解下列线性规划
 - >【解】首先将数学模型化为标准形式

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$\begin{cases}
-4x_1 + 3x_2 + x_3 - x_4 = 4 \\
x_1 - x_2 + 2x_3 + x_5 = 10
\end{cases}$$

$$2x_1 - 2x_2 + x_3 = 1$$

$$x_j \ge 0, j = 1, 2, \dots, 5$$

- 2. 大M单纯形法
 - □例12-20 用大M法解下列线性规划
 - 文式中 x_4 , x_5 为松弛变量, x_5 可作为一个基变量,第一、三约束中分别加入人工变量 x_6 、 x_7 ,目标函数中加入 -M x_6 -M x_7 一项,得到人工变量单纯形法数学模型

$$\max Z = 3x_1 + 2x_2 - x_3 - Mx_6 - Mx_7$$

$$\begin{cases} -4x_1 + 3x_2 + x_3 - x_4 + x_6 = 4 \\ x_1 - x_2 + 2x_3 + x_5 = 10 \end{cases}$$

$$2x_1 - 2x_2 + x_3 + x_7 = 1$$

$$x_j \ge 0, j = 1, 2, \dots, 7$$

>用单纯形法求解,见下表。

	7	2	2	1	Λ	Λ		N /	
	·	3	2	-1	0	0	$-\mathbf{M}$	$-\mathbf{M}$	b
C_B	X_B	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
$\mid -\mathbf{M} \mid$	x_6	-4	3	1	-1	0	1	0	4
0	x_5	1	-1	2	0	1	0	0	10
$-\mathbf{M}$	x_7	2	-2	[1]	0	0	0	1	1 -
λ	j	3-2M	2+M	-1+2M	$-\mathbf{M}$	0	0	0	5M
$-\mathbf{M}$	x_6	-6	[5]	0	-1	0	1		3 —
0	x_5	-3	3	0	0	1	0		8
-1	x_3	2	-2	1	0	0	0		1
λ	j	5-6M	5 M↑	0	$-\mathbf{M}$	0	0		1+3M
2	x_2	-6/5	1	0	-1/5	0			3/5
0	x_5	[3/5]	0	0	3/5	1			31/5
-1	x_3	-2/5	0	1	-2/5	0			11/5
λ_j		5↑	0	0	0	0			1
2	x_2	0	1	0	1	2			13
3	x_1	1	0	0	1	5/3			31/3
-1	x_3	0	0	1	0	2/3			19/3
λ	j	0	0	0	-5	-25/3		nnese Academ	-152/3

- 2. 大M单纯形法
 - □例12-20 用大M法解下列线性规划
 - ▶最优解X=(31/3, 13, 19/3, 0, 0)^T;
 - ➤最优值Z=152/3
 - ≻注意:
 - ① M是一个很大的抽象数,不需要给出具体的数值,可以理解为它能大于给定的任何一个确定数值

- 2. 大M单纯形法
 - □例12-20 用大M法解下列线性规划
 - ② 初始表中的检验数有两种算法,
 - ✓第一种算法是利用第一、三约束将 x_6 、 x_7 的表 达式代入目标涵数消去 x_6 和 x_7 ,得到用非基变 量表达的目标函数,其系数就是检验数;
 - ✓第二种算法是利用公式计算,如

$$\lambda_{1} = C_{1} - C_{B}P_{1} = 3 - (-M, 0, -M)\begin{bmatrix} -4\\1\\2 \end{bmatrix}$$
$$= 3 - [(-M) \times (-4) + 0 \times 1 + (-M) \times 2] = 3 - 2M$$

- 2. 大M单纯形法 □例12-21 求解线性规划
 - $ightharpoonspine 解加入松驰变量<math>x_3$ 、 x_4 化为标准型

ho在第二个方程中加入 人工变量 x_5 ,目标函 数中加上 Mx_5 一项, 得到

$$\min Z = 5x_1 - 8x_2$$

$$\begin{cases} 3x_1 + x_2 \le 6 \\ x_1 - 2x_2 \ge 4 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\min Z = 5x_1 - 8x_2$$

$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 - 2x_2 - x_4 = 4 \\ x_j \ge 0, j = 1, 2, \dots, 4 \end{cases}$$

$$\min Z = 5x_1 - 8x_2 + Mx_5$$

$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 - 2x_2 - x_4 + x_5 = 4 \\ x_1 \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

■ 2. 大M单纯形法

□例12-20 用大M法解下列线性规划

▶用单纯形法计算如下表所示。

C_{j}		5	-8	0	0	M	- b	
C_B	x_B	x_1	x_2	x_3	x_4	x_5	D	
0	x_3	[3]	1	1 0		0	6→	
M	x_5	1	-2	0	-1	1	4	
7	$\lambda_{f j}$		-8+2M	0	M	0	-4M	
5	x_1	1	1/3	1/3	0	0	2	
M	x_5	0	—7/3	—1/3	-1	1	2	
7	$\lambda_{\mathbf{j}}$ 0		-29/3+7/3M	-5/3+1/3M	M	0	-10-2M	

- 2. 大M单纯形法
 - □例12-20 用大M法解下列线性规划
 - >表中 $\lambda_j \ge 0$,j=1, 2, ..., 5,从而得到最优解X=(2, 0, 0, 0, 2), Z=10+2M。
 - ightharpoons 但最优解中含有人工变量 $x_5 \neq 0$ 说明这个解是伪最优解,是不可行的,因此原问题无可行解。

- 3. 两阶段单纯形法
 - □两阶段单纯形法与大M单纯形法的目的类似,将人工变量从基变量中换出,以求出原问题的初始基本可行解。
 - 口将问题分成两个阶段求解,第一阶段的目标函数是 $\min w = \sum_{i=1}^{m} R_i$
 - □约束条件是加入人工变量后的约束方程,当第一阶段的最优解中没有人工变量作基变量时,得到原线性规划的一个基本可行解,第二阶段就以此为基础对原目标函数求最优解。
 - □当第一阶段的最优解*w≠*0时,说明还有不为零的人工变量是基变量,则原问题无可行解。

- 3. 两阶段单纯形法
 - □例12-22用两阶段单纯形法求解例19的线性规划。
 - >【解】标准型为

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$\begin{cases}
-4x_1 + 3x_2 + x_3 - x_4 = 4 \\
x_1 - x_2 + 2x_3 + x_5 = 10
\end{cases}$$

$$2x_1 - 2x_2 + x_3 = 1$$

$$x_j \ge 0, j = 1, 2, \dots, 5$$

- 3. 两阶段单纯形法
 - 口例12-22用两阶段单纯形法求解例19的线性规划。
 - 〉在第一、三约束方程中加入人工变量 x_6 、 x_7 后,第一阶段问题为

$$\min w = x_6 + x_7$$

$$\begin{cases}
-4x_1 + 3x_2 + x_3 - x_4 + x_6 = 4 \\
x_1 - x_2 + 2x_3 + x_5 = 10
\end{cases}$$

$$2x_1 - 2x_2 + x_3 + x_7 = 1$$

$$x_i \ge 0, j = 1, 2, \dots, 7$$

▶用单纯形法求解,得到第一阶段问题的计算表如下:

(Zj	0	0	0	0	0	1	1	L
C_B	X_B	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	b
1	x_6	-4	3	1	-1	0	1	0	4
0	x_5	1	-1	2	0	1	0	0	10
1	x_7	2	-2	[1]	0	0	0	1	1 →
7	√j	2	-1	-2↑	1	0	0	0	-5
1	x_6	-6	[5]	0	-1	0	1		3 ->
0	x_5	-3	3	0	0	1	0		8
0	x_3	2	-2	1	0	0	0		1
7	∀j	6	-5↑	0	1	0	0		-3
0	x_2	-6/5	1	0	- 1/5	0			3/5
0	x_5	3/5	0	0	3/5	1			31/5
0	x_3	- 2/5	0	1	- 2/5	0			11/5
7	$ abla_j$	0	0	0	0	0			0

- 3. 两阶段单纯形法
 - □例12-22用两阶段单纯形法求解例19的线性规划。
 - ▶最优解为 $X = (0, \frac{3}{5}, \frac{11}{5}, 0, \frac{31}{5})$,最优值w = 0。
 - ▶第一阶段最后一张最优表说明找到了原问题的一组基可行解,将它作为初始基可行解,求原问题的最优解,即第二阶段问题为

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$\begin{cases} -\frac{6}{5}x_1 + x_2 - \frac{1}{5}x_4 &= \frac{3}{5} \\ \frac{3}{5}x_1 + \frac{3}{5}x_4 + x_5 &= \frac{31}{5} \\ -\frac{2}{5}x_1 + x_3 - \frac{2}{5}x_4 &= \frac{11}{5} \\ x_i \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

▶用单纯形法计算得到下表

C_{j}		0	0	0	0	0	b
C_B	X_B	x_1	x_2	x_3	x_4	x_5	D
2	x_2	-6/5	1	0	- 1/5	0	3/5
0	x_5	[3/5]	0	0	3/5	1	31/5 →
-1	x_3	- 2/5	0	1	- 2/5	0	11/5
λ	λ_{j}		0	0	0	0	1
2	x_2	0	1	0	1	2	13
3	x_1	1	0	0	1	5/3	31/3
-1	x_3	0	0	1	0	2/3	19/3
λ	λ_j		0	0	-5	-25/3	-152/3

- >最优解 $X = (31/3, 13, 19/3, 0, 0)^T;$
- ▶最优值Z=152/3

- 3. 两阶段单纯形法
- $\begin{cases} 3x_1 + x_2 \le 6 \\ x_1 2x_2 \ge 4 \\ x_1, x_2 \ge 0 \end{cases}$ 口例12-23 用两阶段法求解例12-21的线性规划。
 - >【解】例12-21的第一阶段问题为 $\min w = x_5$

$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 - 2x_2 - x_4 + x_5 = 4 \\ x_j \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

▶用单纯形法计算如下表:

C_{j}		0	0	0	0	1	1.
C_B	X_B	x_1	x_2	x_3	x_4	<i>x</i> ₅	b
0	x_3	[3]	1	1	0	0	6 →
1	x_5	1	-2	0	-1	1	4
7	λ_j		2	0	1	0	-4
0	x_1	1	1/3	1/3	0	0	2
-1	x_5	0	-7/3	-1/3	-1	1	2
7	λ_j		7/3	1/3	1	0	-2

 $> \lambda_j \ge 0$,得到第一阶段的最优解 $X = (2, 0, 0, 0, 2)^T$,最优目标值 $w = 2 \ne 0$, x_5 仍在基变量中,从而原问题无可行解。 中国科学院大学

University of Chinese Academy of Sciences 9

- 3. 两阶段单纯形法
 - □解的判断
 - ▶唯一最优解的判断:
 - ✓最优表中所有非基变量的检验数非零,则线规 划具有唯一最优解
 - >多重最优解的判断:
 - ✓最优表中存在非基变量的检验数为零,则线则 性规划具有多重最优解
 - >无界解的判断:
 - ✓某个 λ_k >0且 a_{ik} ≤0 (i=1, 2, ..., m)则线性规划具有 无界解

- 3. 两阶段单纯形法
 - □解的判断
 - >无可行解的判断:
 - ① 大M法求解时,最优解中含有不为零的人工变量,原问题无可行解
 - ② 两阶段法计算时,当第一阶段的最优值w≠0 时,则原问题无可行解
 - ▶退化基本可行解的判断:
 - ✓存在某个基变量为零的基本可行解。

- 4. 计算公式
 - □设有线性规划

$$\max Z = CX$$

$$\begin{cases} AX = b \\ X \ge 0 \end{cases}$$

>其中 $A_{m\times n}$ 且 $\mathbf{r}(A)=m$,

$$X = (x_1, x_2, \dots, x_n)^T$$
$$C = (c_1, c_2, \dots c_n)$$

$$b = (b_1, b_2, \cdots, b_m)^T$$

 $>X \ge 0$ 应理解为X大于等于零向量,即 $x_j \ge 0, j=1, 2...,n$ 。

- 4. 计算公式
 - 口不妨假设 $A = (P_1, P_2, ..., P_n)$ 中前m个列向量构成一个可行基,记为 $B = (P_1, P_2, ..., P_m)$ 。
 - 口矩阵A中后n-m列构成的矩阵记为 $N=(P_{m+1},...,P_n)$,则 A可以写成分块矩阵A=(B,N)。
 - 口对于基B, 基变量为 $X_B = (x_1, x_2, ..., x_m)^T$, 非基变量为 $X_N = (x_{m+1}, x_{m+2}, ... x_n)^T$ 。
 - **□**则X可表示成 $X = \begin{bmatrix} X_B \\ X_N \end{bmatrix}$
 - 口同理将C写成分块矩阵 $C = (C_B, C_N)$, $C_B = (C_1, C_2, ..., C_m)$, $C_N = (C_{m+1}, C_{m+2}, ..., C_N)$

- 4. 计算公式
 - \square 则AX=b可写成

$$(B, N) \begin{bmatrix} X_B \\ X_N \end{bmatrix} = BX_B + NX_N = b$$

口因为r(B)=m(或 $|B|\neq 0$)所以 B^{-1} 存在,因此可有

$$BX_B = b - NX_N$$

$$X_B = B^{-1}(b - NX_n)$$

$$=B^{-1}b-B^{-1}NX_{N}$$

 \Box 令非基变量 $X_N=0$, $X_B=B^{-1}$ b,由B是可行基的假设,则得到基本可行解

$$X = (B^{-1}b, 0)^T$$

- 4. 计算公式
 - □将目标函数写成

$$Z = (C_B, C_N) \begin{bmatrix} X_B \\ X_N \end{bmatrix} = C_B X_B + C_N X_N$$
$$= C_B (B^{-1}b - B^{-1}NX_N) + C_N X_N$$
$$= C_B B^{-1}b + (C_N - C_B B^{-1}N) X_N$$

$$Z = C_B B^{-1} b + (C_N - C_B B^{-1} N) X_N$$

■ 4. 计算公式

 $\Box \diamondsuit X_N = 0$,得到下列五个计算公式:

1.
$$X_{R} = B^{-1}b$$

2.
$$\bar{N} = B^{-1}N$$

3.
$$\lambda_N = C_N - C_B B^{-1} N$$
 $\lambda = C - C_B B^{-1} A$

$$\lambda_{j} = c_{j} - \sum_{i} c_{i} \overline{a}_{ij} \quad \sharp \oplus \quad \overline{a}_{ij} = (B^{-1}N)_{j}$$

4.
$$Z_0 = C_B B^{-1} b$$

- 4. 计算公式
 - □上述公式可用下面较简单的矩阵表格运算得到,
 - □设初始矩阵单纯形表12-16

表12-16

	X_B	X_N	b
X_B	В	N	b
C_j - Z_j	C_B	C_N	0

- 4. 计算公式
 - 口将B化为I(I为m阶单位矩阵), C_B 化为零,即求基本可行解和检验数。
 - □用 B^{-1} 左乘表中第二行,得到表12-17

表12-17

	X_B	X_N	b
X_{B}	I	B-1N	B-1b
C_j - Z_j	C_B	C_N	0

■ 4. 计算公式

口再将第二行左乘一 C_B 后加到第三行,得到

表12-18

	X_B	X_N	b					
X_B	I	$B^{-1}N$	$B^{-1}b$					
$\lambda = C_j - Z_j$	0	C_N - $C_BB^{-1}N$	$-C_BB^{-1}b$					
$\overline{\overline{N}}$ λ_N X_B $-\mathbf{Z}_0$								

- 4. 计算公式
 - □五个公式的应用
 - >【例12-24】线性规划
 - ▶已知可行基
 - >求(1)单纯形乘子π;
 - ▶(2)基可行解及目标值;
 - >(3)求 λ_3 ;
 - \triangleright (4) B_1 是否是最优基,为什么;

$$P(4)B_1$$
是否是最优基,为什么;
 $P(5)$ 当可行基为 $B_2 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$ 时求 λ_1 及 λ_3 。
中国科学院大学

$$\max Z = x_1 + 2x_2 + x_3$$

$$\begin{cases} 2x_1 - 3x_2 + 2x_3 + x_4 = 15 \\ \frac{1}{3}x_1 + x_2 + 5x_3 + x_5 = 20 \\ x_j \ge 0, j = 1, \dots, 5 \end{cases}$$

$$B_1 = \begin{bmatrix} 2 & -3 \\ \frac{1}{3} & 1 \end{bmatrix}$$

- 4. 计算公式
 - □五个公式的应用
 - \triangleright 【解】(1)因为 B_1 由A中第一列、第二列组成,故 x_1 、 x_2 为基变量, x_3 、 x_4 、 x_5 为非基变量,有关矩阵为

$$x_2$$
为基变量, x_3 、 x_4 、 x_5 为非基变量,有为
 $C_B = (c_1, c_2) = (1, 2)$
 $C_N = (c_3, c_4, c_5) = (1, 0, 0)$
 $B_1^{-1} = \begin{bmatrix} \frac{1}{3} & 1\\ -\frac{1}{9} & \frac{2}{3} \end{bmatrix}$

▶故单纯形乘子

故单纯形乘子
$$\pi = C_B B^{-1} = (1,2) \begin{bmatrix} \frac{1}{3} & 1 \\ -\frac{1}{9} & \frac{2}{3} \end{bmatrix} = (\frac{1}{9}, \frac{7}{3})$$
中国科学院大学
University of Chinese Academy of Science 31

- 4. 计算公式
 - □五个公式的应用
 - ▶(2)基变量的解为

全面的解为

$$X_{B} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = B^{-1}b = \begin{bmatrix} \frac{1}{3} & 1 \\ -\frac{1}{9} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 15 \\ 20 \end{bmatrix} = \begin{bmatrix} 25 \\ \frac{35}{3} \end{bmatrix}$$

$$X = (25, \frac{35}{3}, 0, 0, 0, 0)^T$$

⇒ 故基本可行解为
$$X = (25, \frac{35}{3}, 0, 0, 0, 0)^{T}$$
⇒目标函数值为
$$Z_{0} = C_{B}B^{-1}b = C_{B}X_{B} = (1,2)\begin{bmatrix} 25\\ 35\\ 3 \end{bmatrix} = \frac{145}{3}$$
University of Chinese Academy of Science 32

- 4. 计算公式
 - □五个公式的应用

>(3) 求 λ_3

$$P_3 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, C_B B^{-1} P_3 = \pi P_3 = (\frac{1}{9}, \frac{7}{3}) \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \frac{107}{9}$$

$$\lambda_3 = c_3 - C_B B^{-1} P_3 = 1 - \frac{107}{9} = -\frac{98}{9}$$

- 4. 计算公式
 - □五个公式的应用
 - \triangleright (4) 要判断 B_1 是不是最优基,亦是要求出所有检验数则否满足 $\lambda_i \leq 0, j=1...,5$ 。 x_1, x_2 是基变量,
 - \rightarrow 故 λ_1 =0, λ_2 =0, 而 λ_3 = $-\frac{98}{9}$ < 0, 剩下来求 λ_4 , λ_5 , 由 λ_N 计算公式得

$$(\lambda_4, \lambda_5) = (c_4, c_5) - C_B B^{-1}(P_4 P_5)$$

$$= (0,0) - (\frac{1}{9}, \frac{7}{3}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = (-\frac{1}{9}, -\frac{7}{3})$$

 \triangleright 因 $\lambda_j \leq 0, j=1...,5$,故 B_1 是最优基。

- 4. 计算公式
 - □五个公式的应用
 - \triangleright (5) 因 B_2 是A中第四列与第二列组成的, x_4 、 x_2 是基变量 x_1 、 x_3 、 x_5 是非基变量,这时有

$$C_B = (c_4, c_2) = (0, 2), B^{-1} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, C_B B^{-1} = (0, 2)$$

$$(\lambda_1, \lambda_3) = (c_1, c_3) - C_B B^{-1}(P_1 P_3)$$

$$= (1,1) - (0,2) \begin{vmatrix} 2 & 2 \\ 1 & 5 \end{vmatrix} = (\frac{1}{3}, -9)$$

➢即

$$\lambda_1 = \frac{1}{3}, \lambda_3 = -9$$

- 5. 退化与循环
 - □基本可行解中存在基变量等于0时,称为退化基本可行解
 - □【例12-26】求解线性规划

$$\min Z = x_1 + 2x_2 + x_3$$

$$\begin{cases} x_1 - 2x_2 + 4x_3 = 4 \\ 4x_1 - 9x_2 + 14x_3 = 16 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

)解用大M单纯形法,加入人工变量 x_4 、 x_5 ,构造数学模型 $\min Z = x_1 + 2x_2 + x_3 + Mx_4 + Mx_5$

$$\begin{cases} x_1 - 2x_2 + 4x_3 + x_4 = 4 \\ 4x_1 - 9x_2 + 14x_3 + x_5 = 16 \\ x_j \ge 0, j = 1, \dots, 5 \end{cases}$$
 中国科学院大学 University of Chinese Academy of Science 36

表12-19

	C_j		1	2	1	M	M	b	θ
	C_B	X_B	x_1	x_2	x_3	x_4	x_5		U
(1)	M	<i>x</i> ₄	1	-2	[4]	1	0	4 -	→ 1
(1)	M	<i>x</i> ₅	4	-9	14	0	1	16	8/7
	λ_j		1-5M	2+11M	1-18M ↑	0	0	-20M	
(2)	1	<i>x</i> ₃	[1/4]	-1/2	1	1/4	0	1 -	→ 4
(2)	M	x_5	1/2	-2	0	-7/2	1	2	4
	λ_j	,	3/4-1/2M↑	5/2+2M	0	-1/4+9/2M	0	-1-2M	
(2)	1	x_1	1	-2	4	1	0	4	
(3)	M	x_5	0	[-1]	-2	-4	1	0 -	→
	λ_j		0	4+M ↑	-3+2M	-1+5M	0	-4	
(4)	1	x_1	1	0	8	9	-2	4	
(4)	2	x_2	0	1	[2]	4	-1	0 -	→
	λ_j		0	0	-11↑	M-17	M-4	-4	
(F)	1	x_1	1	-4	0	1	2	4	
(5)	1	x_3	0	1/2	1	2	-1/2	0	
	λ_j		0	15/2	0	M-17	M-3/2	-4	0 . 37

University of Chinese Academy of Sciences 7

- 5. 退化与循环
 - □【例12-26】求解线性规划
 - ▶不难看出,表12-19(3)~(5)的右端常数没有发生变化,表12-19(2)的最小比值相同,导致出现退化。
 - ightharpoonup若在表12-19(2)中选 x_5 出基便得到表 12-19(5),或在表12-19(3)中选 x_3 进基也得到表12-19(5)。
 - ▶表12-19(3)和(5)的最优解从数值上看相同,但它们 是两个基本可行解,对应于同一个极点。
 - ▶表12-19(3)的常数是零,可以选出基行任意非基变 量的非零系数作主元素。

■ 5. 退化与循环

- □单纯形法迭代对于大多数退化解时是有效的,很少出现不收敛的情形.
- □1955年Beale提出了一个用单纯形法计算失效的模型

$$\min Z = -\frac{3}{4}x_1 + 15x_2 - \frac{1}{2}x_3 + 6x_4$$

$$\begin{cases} \frac{1}{4}x_1 - 6x_2 - x_3 + 9x_4 \le 0\\ \frac{1}{2}x_1 - 9x_2 - \frac{1}{2}x_3 + 3x_4 \le 0\\ x_3 \le 1\\ x_j \ge 0, j = 1, 2, 3, 4 \end{cases}$$

■ 5. 退化与循环

- □加入松弛变量后用单纯形法计算并且按字典序方法 (按变量下标顺序)选进基变量,迭代6次后又回到 初始表,继续迭代出现了无穷的循环,永远得不到最 优解
- □但该模型的最优解为 $X=(1,0,1,0)^T$,Z=-5/4.
- □实际中几乎不会出现循环现象,如有相同的比值时,还是任意选择出基变量,不必考虑出现循环的后果。

作业-课后练习31

■ 分别用大 M 法和两阶段法求解下列线性规划

(1)
$$\max Z = 10x_1 - 5x_2 + x_3$$

$$\begin{cases} 5x_1 + 3x_2 + x_3 = 10 \\ -5x_1 + x_2 - 10x_3 \le 15 \\ x_j \ge 0, j = 1, 2, 3 \end{cases}$$

(2)
$$\min Z = 5x_1 - 6x_2 - 7x_3$$

$$\begin{cases} x_1 + 5x_2 - 3x_3 \ge 15 \\ 5x_1 - 6x_2 + 10x_3 \le 20 \\ x_1 + x_2 + x_3 = 5 \\ x_j \ge 0, j = 1, 2, 3 \end{cases}$$

作业-课后练习32

- 已知线性规划的最优基为 $B = \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix}$, 试用矩阵公式求:
 - ① 最优解
 - ② 单纯形乘子
 - ③ \bar{N}_1 和 \bar{N}_3
 - ④ 礼和礼

$$\max Z = 5x_1 + 8x_2 + 7x_3 + 4x_4$$

$$\begin{cases} 2x_1 + 3x_2 + 3x_3 + 2x_4 \le 20 \\ 3x_1 + 5x_2 + 4x_3 + 2x_4 \le 30 \\ x_j \ge 0, j = 1, 2, 3, 4 \end{cases}$$

End

