

Batch Normalization

- What about hidden layer?
- □ After all activations from previous layer are inputs for current layer...

□ Will it help if we normalize the hidden layers too?

5/21/2024

Batch Normalization

- □ Batch normalization (also known as batch norm) [by Sergey Loffe and Christian Szegedy in 2015]
 - Make artificial neural networks faster
 - * More stable through normalization of the input layer by re-centering and re-scaling
 - Wider choices of hyper- parameter...
- ☐ In theory, its normalizing activation values of the respective layers
- □ In practice, it works better if we normalize 'z'
 - * Look at the documentation for details

5

Batch Normalization

 \Box In General, any Z^i can be normalized

mean
$$\mu = \frac{\sum Z^i}{m}$$

std $\sigma^2 = \frac{1}{m} \Sigma (Z^i - \mu)^2$

5/21/2024

6

Batch Normalization

 $\ \square$ In General, any Z^i can be normalized

mean
$$\mu = \frac{\sum Z^i}{m}$$

std $\sigma^2 = \frac{1}{m} \sum (Z^i - \mu)^2$

$$z^{i}_{Norm} = \frac{z^{i} - \mu}{\sqrt{\sigma^{2}}}$$
 $\hat{z} = \gamma \cdot z^{i}_{Norm} + \beta$

 $\ \square$ where γ and β are parameters, we can $\$ Train

Instead of using $z^i_{Norm,}$ researchers realized that its better to derive \hat{z} with two trainable parameters.

Intuition is that by normalizing z, we are introducing bias in the system. Hence it makes sense to train these parameters

Batch Normalization

 $\ \square$ In General, any Z^i can be normalized

mean
$$\mu = \frac{\sum Z^i}{m}$$

std $\sigma^2 = \frac{1}{m} \sum (Z^i - \mu)^2$

$$z^{i}_{Norm} = \frac{z^{i} - \mu}{\sqrt{\sigma^{2} + \epsilon}}$$

$$\hat{z} = \gamma \cdot z^i_{Norm} + \mu$$

 $\ \square$ where γ and β are parameters, we can train

$$\Box \text{ if } \gamma = \frac{1}{\sqrt{\sigma^2 + \varepsilon}} \text{ and } \beta = \frac{\mu}{\sqrt{\sigma^2 + \varepsilon}}; \ z^i_{\text{Norm}} = \hat{z}^i$$

Lets add a small ε to prevent zero divide error...

5/21/2024

Batch Normalization

 $f \square$ In General, any Z^i can be normalized

mean
$$\mu = \frac{\sum Z^i}{m}$$

std $\sigma^2 = \frac{1}{m} \sum (Z^i - \mu)^2$

$$z^{i}_{Norm} = \frac{z^{i} - \mu}{\sqrt{\sigma^{2} + \varepsilon}}$$
 $\hat{z} = \gamma \cdot z^{i}_{Norm} + \beta$

$$\hat{z} = \gamma \cdot z^i_{Norm} + \beta$$

 \Box where γ and β are parameters, we can train

$$\Box$$
 if $\gamma = \frac{1}{\sqrt{\sigma^2 + \varepsilon}}$ and $\beta = \frac{\mu}{\sqrt{\sigma^2 + \varepsilon}}$; $z^i_{Norm} = \hat{z}^i$

