- 1. The hedgehog Melissa starts at the vertex A of a triangle ΔABC . Each minute she randomly moves to an adjacent vertex with probabilities $\mathbb{P}(A \to B) = 0.6$, $\mathbb{P}(A \to C) = 0.4$, $\mathbb{P}(B \to C) = \mathbb{P}(B \to A) = 0.5$, $\mathbb{P}(C \to B) = \mathbb{P}(C \to A) = 0.5$.
 - (a) What is the probability that she will be in vertex C after 3 steps?
 - (b) Write down the transition matrix of this Markov chain.
 - (c) What is the expected time to get from the state A back to it?
- 2. The number of players N who will win the lottery is a random variable with probability mass function $\mathbb{P}(N=k+1)=\exp(-1)/k!$ for $k\geq 0$. Each player will get a random prize $X_i\sim U[0;1]$. All random variables are independent. Let S be the sum of all the prizes.
 - (a) Find $Var(S \mid N)$ and conditional moment generating function $M_{S|N}(u)$ for fixed value of N.
 - (b) Find the unconditional moment generating function $M_S(u)$.

Note: you don't need to calculate the value in (c).

- 3. Consider the stochastic process (X_n) , where X_0 is uniform on [0; 2] and X_n is uniformly selected on $[0; X_{n-1}]$ given X_{n-1} .
 - (a) Find $\mathbb{E}(X_n)$ and $\mathbb{V}ar(X_n)$.
 - (b) Find the probability limit plim X_n .
- 4. Students arrive in the Grusha café according to the Poisson arrival process (X_t) with constant rate λ . Let's measure time in minutes.

The probability of no visitors during 5 minutes is 0.10.

- (a) Find the value of λ .
- (b) Plot the probability $\mathbb{P}(X_t = X_{10})$ as a function of t.
- (c) Plot the variance $Var(X_t X_{10})$ as a function of t.
- 5. The random variables X_1 and X_2 are independent and normally distributed, $X_1 \sim \mathcal{N}(1;1)$, $X_2 \sim \mathcal{N}(2;2)$. I choose X_1 with probability 0.3 and X_2 with probability 0.7 without knowing their values.

Casino pays me the value Y that is equal to the chosen random variable.

Let the indicator I be equal to 1 if I choose X_1 and 0 otherwise.

- (a) Express Y in terms of X_1 , X_2 and I.
- (b) Find $\mathbb{E}(I \mid Y)$ and \mathbb{V} ar $(I \mid Y)$.
- (c) Find $\mathbb{C}ov(I, Y)$.
- 6. The joint distribution of X and Y is given in the table

	X = -1	X = 0	X = 1
Y = -1	0.1	0.2	0.3
Y = 1	0.2	0.1	0.1

- (a) Explicitely find the σ -algebra $\sigma(\min\{X+Y,0\})$.
- (b) How many elements are there in $\sigma(X+Y)$?