VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wananga o te Upoko o te Ika a Maui

School of Engineering and Computer Science

COMP 307 — Lecture 13

Uncertainty and Probability 1

Reasoning Under Uncertainty Basics

Dr Bing Xue

bing.xue@ecs.vuw.ac.nz

COMP307

Uncertainty

- Many algorithms are designed as if knowledge is perfect, but it rarely is.
- There are almost always things that are unknown, or not precisely known.
- Fundamental role of uncertainty in AI
- Probability theory can be applied to many problems

COMP307

Outline

Uncertainty: 2

- Introduction
- Product Rule
- Sum Rule
- Normalisation
- Independence
- Summary

COMP307

Uncertainty: 3

Uncertainty: 5

Basics

- Unconditional/prior probability
 - P(X): the probability of X occurring
- Conditional/posterior probability
 - P(X|Y): the probability of X occurring given Y has occurred.
- Joint probability
 - P(X, Y): probability of X and Y occurring

COMP307

General Example

V(chano)

X	
(fill	?)

	Α	В	С
т			
¬Т			
	7	5	6

Uncertainty: 8

The Sum Rule

X	Α	В	С	
Т	4	2	3	9
¬Т	3	3	3	9
	7	5	6	<u>18</u>

• P(X=T, Y=A) = 4/18

18

- P(X=T, Y=B) = 2/18
- P(X=T, Y=C) = 3/18
- P(X=T) = 9/18
- P(X=T) = P(X=T, Y=A) + P(X=T, Y=B) + P(X=T, Y=C)
- The Sum Rule:

$$P(X) = \sum_{y} P(X, Y)$$

The Product Rule

X	Α	В	С	
т	4	2	3	9
¬Т	3	3	3	9
	7	5	6	18

- P(A) = 7/18
- P(X=T) = 9/18
- P(X=T, Y=A) = 4/18
- P(X=T|Y=A) = 4/7
- P(Y=A|X=T) = 4/9
- P(X=T, Y=A) = P(X=T)*P(Y=A/X=T)
- The Product Rule: P(X,Y)=P(X)*P(Y|X)

COMP307

COMP307

Uncertainty: 9

The Normalisation Rule

- P(X=T) = 9/18
- $P(X=\neg T) = 9/18$
- P(Y=A|X=T) = 4/9
- P(Y=B|X=T) = 2/9
- P(Y=C|X=T) = 3/9

- $P(X=T) + P(X=\neg T) = 1$
- P(Y=A|X=T) + P(Y=B|X=T) + P(Y=C|X=T) = 1
- The Normalisation Rule:

$$\sum_{x} P(X)=1$$

$$\sum_{x} P(X/Y) = 1$$

Question

- If P(D|E) = 1/4,
- do we know
 - P(D|¬E) ?
 - P(¬D|E) ?
 - P(¬D|¬E) ?

COMP307

Uncertainty: 12

Independence

HH

 $0.5 \times 0.5 = 0.25$ (or $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$)

 $0.5 \times 0.5 \times 0.5 = 0.125$ (or $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$)

- Independence $X \perp \!\!\! \perp Y$
- $\bullet \leftrightarrow P(X|Y) = P(X)$
- \leftrightarrow P(X, Y) = P(X) * P(Y)

Independence

• Independence: two variables are independent when neither event can be related to the other events occurrence.

• Variable X1: the firs flip

• $P(X_1=H, X_2=H) = P(X_1=H) * P(X_2=H \mid X_1=H)$

- $P(X_2=H) = P(X_2=H \mid X_1=H)$ because X_1 and X_2 are independent to each other
- $P(X_1=H, X_2=H) = P(X_1=H) *P(X_2=H)$

COMP307

Uncertainty: 13

Example: Rolling a Die

- What is the probability to get a "1"?
- What is the probability to get a "6"?

- If rolling twice, what is the probability of get a "2" at the first time, then get a "3" the second time?
- Further:
 - If rolling twice, what is the probability of get two "6"s?
 - If rolling once, what is the probability of a "2" or a "5"?

COMP307

Example

- Windy or Calm
- **D**ay 1 —->**D**ay 2
- P(D1=W) = 0.5
- P(D1=C) = 0.5
- P(D2=W|D1=W) = 0.6 P(D2=C|D1=W) = 0.4
- P(D2=W|D1=C) = 0.3
- P(D2=C|D1=C) = 0.7
- Question: P(D2=W) ?

		√
Hand	Frequency	Probability
Royal Flush	4	0.00015%
Straight Flush	36	0.00138%
Four of a Kind	624	0.02401%
Full House	3,744	0.14405%
Flush	5,108	0.19654%
Straight	10,200	0.39246%
Three of a Kind	54,912	2.11285%
2 Pair	123,552	4.75390%
Pair	1,098,240	42.25690%
High Card	1,302,540	50.11774%

http://www.google.com/patents/WO2013009963A1?cl=e

n

COMP307 Uncertainty: 16 Summary

- Uncertainty is everywhere
- Different rules
- Frequentist probability VS Bayesian probability
- Next Lectures: Bayes Rules and Naive Bayes

COMP307 Uncertainty: 17