Лабораторная работа №6

Математические основы защиты информации и информационной безопасности

Леонтьева Ксения Андреевна | НПМмд-02-23

Содержание

1	Цель работы	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	6
4	Выводы	8
Сп	исок литературы	9

Список иллюстраций

3.1 р-метод Полларда		1
----------------------	--	---

1 Цель работы

Реализовать на языке программирования р-метод Полларда.

2 Теоретическое введение

Задача разложения составного числа на множители формулируется следующим образом: для данного положительного целого числа n найти его каноническое разложение $n=p_1^{\alpha_1}p_2^{\alpha_2}...p_s^{\alpha_s}$, где p_i - попарно различные простые числа, $\alpha_i \geq 1$.

На практике необязательно находить каноническое разложение числа n. Достаточно найти его разложение на два нетривиальных сомножителя: $n=pq, 1 \leq p \leq q < n.$

р-метод Полларда. Пусть n - нечетное составное число, $S=\{0,1,...,n-1\}$ и $f:S\to S$ - случайное отображение, обладающее сжимающими свойствами, например, $f(x)\equiv (x^2+1)(mod\ n)$. Основная идея метода состоит в следующем. Выбираем случайный элемент $x_0\in S$ и строим последовательность $x_0,x_1,x_2,...$, определяемую рекуррентным соотношением

$$x_{i+1} = f(x_i),$$

где $i\geq 0$, до тех пор, пока не найдем такие числа i,j, что i< j и $x_i=x_j$. Поскольку множество S конечно, такие индексы i,j существуют. Последовательность $\{x_i\}$ будет состоять из "хвоста" $x_0,x_1,...,x_{i-1}$ длины $O(\sqrt{\frac{\pi n}{8}})$ и цикла $x_i=x_j,x_{i+1},...,x_{j-1}$ той же длины.

Более подробно см. в [1].

3 Выполнение лабораторной работы

р-метод Полларда реализуем по следующей схеме:

На вход подается число n, начальное значение c, функция f, обладающая сжимающими свойствами.

- 1. Положить $a \leftarrow c, b \leftarrow c$.
- 2. Создать функцию $f(x,n) = (x^2 + 5) (mod \, n)$
- 3. Вычислить $a \leftarrow f(a,n), b \leftarrow f(f(b,n),n).$
- 4. Найти $d \leftarrow$ НОД (a-b,n)
- 5. Если 1 < d < n, то положить $p \leftarrow d$ и результат: p. При d = n результат: "Делитель не найден"; при d = 1 вернуться на шаг 2.

Код программы (рис. 3.1).

```
import numpy as np
import math
def f(x, n):
   return (x ** 2 + 5) % n
n = 1359331
a = b = 1
d = 1
i = 0
while d == 1:
   a = f(a,n)
   b = f(f(b,n),n)
   d = math.gcd(a - b, n)
   print('Итерация', i+1, ' ', 'a =',a, ' ', 'b =',b, ' ', 'd =',d)
   i = i + 1
if d == n:
   print('Делитель не найден')
else:
   print('Нетривиальный делитель числа', n, 'равен', d)
Итерация 1 a = 6 b = 41 d = 1
Итерация 2
           a = 41 b = 123939
                                d = 1
Итерация 3
           a = 1686 b = 391594 d = 1
Итерация 4
            a = 123939 b = 438157
Итерация 5
            a = 435426 b = 582738 d = 1
Итерация 6
            a = 391594 b = 1144026 d = 1
Итерация 7
           a = 1090062 b = 885749
                                    d = 1181
Нетривиальный делитель числа 1359331 равен 1181
```

Рис. 3.1: р-метод Полларда

4 Выводы

В ходе выполнения данной лабораторной работы был реализован p-метод Полларда.

Список литературы

1. p-метод Полларда [Электронный pecypc]. URL: https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm.