Conic Sections Cheatsheet: Class 12, Chapter 6, Exercise 6.7

This cheatsheet summarizes tangent and normal equations for conic sections, with examples from Exercise 6.7.

1. Tangent Equations

- (i) Circle $(x^2+y^2=a^2)$: Point form at (x_1,y_1) : $xx_1+yy_1=a^2$ Slope form with slope m: $y=mx\pm a\sqrt{1+m^2}$ (where $c^2=a^2(1+m^2)$)
- (ii) Parabola $(y^2=4ax)$: Point form at $(at^2,2at)$: $y\cdot 2at=2a(x+at^2)$ or $yt=x+at^2$ Slope form: $y=mx+\frac{a}{m}$ (condition of tangency)
- (iii) Ellipse $(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1)$: Point form at $(a\cos\theta, b\sin\theta)$: $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$
- (iv) Hyperbola $(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1)$: Point form at $(a \sec \theta, b \tan \theta)$: $\frac{x}{a} \sec \theta \frac{y}{b} \tan \theta = 1$

2. Normal Equations

- (i) Parabola ($y^2 = 4ax$): At (x_1, y_1) : $y y_1 = \frac{-y_1}{2a}(x x_1)$
- (ii) Ellipse $(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1)$: At (x_1, y_1) : $\frac{a^2x}{x_1} \frac{b^2y}{y_1} = a^2 b^2$
- (iii) Hyperbola $(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1)$: At (x_1, y_1) : $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$

3. Tangent Through a Point

- **Circle**: Solve $c^2 = a^2(1+m^2)$ with the point (x_0,y_0) in y = mx + c. - **Parabola**: Use $c = \frac{a}{m}$ and solve with the point. - **Hyperbola**: Use $c^2 = a^2m^2 - b^2$ and solve with the point.

4. Parallel Tangents

- Match slope m of the given line, then use the conic's tangency condition (e.g., $c^2 = a^2m^2 - b^2$ for hyperbola).

5. Common Tangents

- Solve for m and c using the discriminant condition (disc = 0) for one conic and tangency for the other.

6. Examples from Exercise 6.7

Q.1(i)
$$y^2 = 4ax$$
 at $(at^2, 2at)$: - Tangent: $yt = x + at^2$ - Normal: $tx + y - at - at^3 = 0$

Q.2(i)
$$3x^2 = -16y$$
 at $y = -3$ (points $(4, -3)$, $(-4, -3)$): - Tangent at $(4, -3)$: $3x + 2y - 6 = 0$ - Tangent at $(-4, -3)$: $3x - 2y + 6 = 0$

Q.3(i)
$$x^2 + y^2 = 25$$
 through $(7, -1)$: - Tangents: $4x + 3y - 25 = 0$, $4x + 3y + 25 = 0$

Q.5
$$x^2/4 + y^2 = 1$$
 parallel to $2x - 4y + 5 = 0$ (slope $m = 1/2$): - Tangent: $x - 2y \pm 2\sqrt{2} = 0$

Q.6
$$9x^2 - 4y^2 = 36$$
 parallel to $5x - 2y + 7 = 0$ (slope $m = 5/2$): - Tangent: $5x - 2y \pm 8 = 0$ Q.7(i) $x^2 = 80y$ and $x^2 + y^2 = 81$: - Common tangent: $\pm 3x - 4y - 45 = 0$

7. Tips

- Differentiate implicitly to find slopes for general conics. - Check tangency conditions to ensure the line touches the conic at one point. - Simplify equations by completing the square when shifting points.