QUESTION PAPER

Physics

- A solid sphere of mass M and radius R is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation $(E_{\text{sphere}}/E_{\text{cylinder}})$ will be
 - (1) 1:5

(2) 1:4

(3) 3:1

- (4) 2:3
- A light rod of length l has two masses m_1 and m_2 attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass
- (2) $(m_1 + m_2)l^2$
- $(4) \quad \frac{m_1 m_2}{m_1 + m_2} l^2$
- Starting from the centre of the earth having radius R, the variation of g (acceleration due to gravity) is shown by

- A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of g_0 , the value of acceleration due to gravity at the earth's surface, is

- A rectangular film of liquid is extended from $(4 \text{ cm} \times 2 \text{ cm})$ to (5 cm \times 4 cm). If the work done is 3×10^{-4} J, the value of the surface tension of the liquid is
 - (1) 0.125 Nm⁻¹
- (2) 0.2 Nm⁻¹
- (3) 8.0 Nm⁻¹
- (4) 0.250 Nm⁻¹
- Three liquids of densities ρ_1 , ρ_2 and ρ_3 (with $\rho_1 > \rho_2 > \rho_3$), having the same value of surface tension T, rise to the same height in three identical capillaries. The angles of contact θ_1 , θ_2 and θ , obey
 - $(1) \quad 0 \le \theta_1 < \theta_2 < \theta_3 < \frac{\pi}{2}$ $(2) \quad \frac{\pi}{2} < \theta_1 < \theta_2 < \theta_3 < \pi$ $(3) \quad \pi > \theta_1 > \theta_2 > \theta_3 > \frac{\pi}{2}$ $(4) \quad \frac{\pi}{2} > \theta_1 > \theta_2 > \theta_3 \ge 0$
- Two identical bodies are made of a material for which the heat capacity increases with temperature. One of these is at 100°C, while the other one is at 0°C. If the two bodies are brought into contact, then, assuming no heat loss, the final common temperature is
 - more than 50°C.
 - less than 50°C but greater than 0°C.
 - 0°C. (3)
 - 50°C.
- A body cools from a temperature 3T to 2T in 10 min. The room temperature is T. Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next 10 min will be

(3)

- One mole of an ideal monatomic gas undergoes a process described by the equation PV^3 = constant. The heat capacity of the gas during this process is

- 10. The temperature inside a refrigerator is t_2 °C and the room temperature is t_1 °C. The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be

- 11. A given sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T. The mass of each molecule of the gas is m. Which of the following gives the density of the gas?
 - (1) Pm/(kT)
- (2) P/(kTV)

(3) mkT

- (4) P/(kT)
- **12.** A body of mass m is attached to the lower end of a spring whose upper end is fixed. The spring has negligible mass. When the mass m is slightly pulled down and released, it oscillates with a time period of 3 s. When the mass m is increased by 1 kg, the time period of oscillations becomes 5 s. The value of m in kg is

- 13. The second overtone of an open organ pipe has the same frequency as the first overtone of a closed pipe L metre long. The length of the open pipe will be
 - (1) 2L

(3) 4L

- **14.** Three sound waves of equal amplitudes have frequencies (n-1), n, (n + 1). They superimpose to give beats. The number of beats produced per second will be
 - (1) 4

(2) 3

(3) 2

- (4) 1
- 15. An electric dipole is placed at an angle of 30° with electric field intensity 2×10^5 N C⁻¹. It experiences a torque equal to 4 N m. The charge on the dipole, if the dipole length is 2 cm, is
 - (1) 2 mC

(2) 5 mC

(3) $7 \mu C$

- (4) 8 mC
- **16.** A parallel-plate capacitor of area A, plate separation d and capacitance C is filled with four dielectric materials having dielectric constants k_1 , k_2 , k_3 and k_4 as shown in the figure below. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by

- (1) $k = \frac{2}{3}(k_1 + k_2 + k_3) + 2k_4$
- (2) $\frac{2}{k} = \frac{3}{k_1 + k_2 + k_3} + \frac{1}{k_4}$
- (3) $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \frac{3}{2k_4}$ (4) $k = k_1 + k_2 + k_3 + 3k_4$

17. The potential difference $(V_{\Delta} - V_{B})$ between the points A and B in the given figure is

(1) +3 V

(2) +6 V

+9 V (3)

- (4) -3 V
- 18. A filament bulb (500 W, 100 V) is to be used in a 230 V main supply. When a resistance R is connected in series, it works perfectly and the bulb consumes 500 W. The value of R is
 - (1) 46Ω

(2) 26 Ω

 13Ω

- (4) 230Ω
- 19. A long wire carrying a steady current is bent into a circular loop of one turn. The magnetic field at the centre of the loop is B. It is then bent into a circular coil of n turns. The magnetic field at the centre of this coil of n turns will be
 - (1) n^2B

(2) 2nB

(3) $2n^2B$

- (4) nB
- 20. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in equilibrium state. The energy required to rotate it by 60° is W. Now the torque required to keep the magnet in this new position is
 - $\sqrt{3}W$

- 21. An electron is moving in a circular path under the influence of a transverse magnetic field of 3.57×10^{-2} T. If the value of e/m is 1.76×10^{11} C kg⁻¹, the frequency of revolution of the electron is
 - (1) 100 MHz
- (2) 62.8 MHz
- 6.28 MHz
- (4) 1 GHz
- 22. Which of the following combinations should be selected for better tuning of an LCR circuit used for communication?
 - (1) $R = 25 \Omega$, L = 2.5 H, $C = 45 \mu F$
 - (2) $R = 15 \Omega$, L = 3.5 H, $C = 30 \mu F$
 - (3) $R = 25 \Omega$, L = 1.5 H, $C = 45 \mu F$
 - $R = 20 \Omega$, L = 1.5 H, $C = 35 \mu F$
- 23. A uniform magnetic field is restricted within a region of radius r. The magnetic field changes with time at a rate $\frac{dB}{dt}$. Loop 1 of radius R > r encloses the region r and loop 2 of radius R is outside the region of magnetic field as shown in the figure below. Then the emf generated is

- (1) $-\frac{d\vec{B}}{dt} \pi r^2$ in loop 1 and $-\frac{d\vec{B}}{dt} \pi r^2$ in loop 2
- (2) $-\frac{d\vec{B}}{dt} \pi R^2$ in loop 1 and zero in loop 2
- (3) $-\frac{d\vec{B}}{dt} \pi r^2$ in loop 1 and zero in loop 2
- (4) zero in loop 1 and zero in loop 2
- **24.** The potential differences across the resistance, capacitance and inductance are 80 V, 40 V and 100 V respectively in an *LCR* circuit. The power factor of this circuit is
 - (1) 0.5

(2) 0.8

(3) 1.0

- (4) 0.4
- **25.** A 100 Ω resistance and a capacitor of 100 Ω reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement current is
 - (1) 11 A

- (2) 4.4 A
- (3) $11\sqrt{2}$ A
- (4) 2.2 A
- **26.** Two identical glass ($\mu_{\rm g} = 3/2$) equiconvex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water ($\mu_{\rm w} = 4/3$). The focal length of the combination is
 - (1) f

(2) 4f/3

(3) 3f/4

- (4) f/3
- 27. An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is
 - (1) 10

(2) 12

(3) 16

- (4) 8
- **28.** The interference pattern is obtained with, two coherent light sources of intensity ratio n. In the interference pattern, the ratio I = I

$$\frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$
 will be

 $(1) \quad \frac{2\sqrt{n}}{n+1}$

- $(2) \quad \frac{\sqrt{n}}{(n+1)^n}$
- $(3) \quad \frac{2\sqrt{n}}{(n+1)^2}$

 $(4) \quad \frac{\sqrt{n}}{n+1}$

- **29.** A person can see clearly objects only when they lie between 50 cm and 400 cm from his eyes. In order to increase the maximum distance of distinct vision to infinity, the type and power of the correcting lens, the person has to use, will be
 - (1) concave, -0.25 D.
- (2) concave, -0.2 D.
- (3) convex, +0.15 D.
- (4) convex, +2.25 D.
- **30.** A linear aperture whose width is 0.02 cm is placed immediately in front of a lens of focal length 60 cm. The aperture is illuminated normally by a parallel beam of wavelength 5×10^{-5} cm. The distance of the first dark band of the diffraction pattern from the centre of the screen is
 - (1) 0.25 cm
- (2) 0.20 cm
- (3) 0.15 cm
- (4) 0.10 cm
- 31. Electrons of mass m with de Broglie wavelength λ fall on the target in an X-ray tube. The cutoff wavelength (λ_0) of the emitted X-ray is
 - $(1) \qquad \lambda_0 = \frac{2h}{mc}$
- $(2) \qquad \lambda_0 = \frac{2m^2c^2\lambda^3}{h^2}$
- (3) $\lambda_0 = \lambda$
- $(4) \quad \lambda_0 = \frac{2mc\lambda^2}{h}$
- **32.** Photons with energy 5 eV are incident on a cathode C in a photoelectric cell. The maximum energy of emitted photoelectrons is 2 eV. When photons of energy 6 eV are incident on C, no photoelectrons will reach the anode A, if the stopping potential of A relative to C is
 - (1) +4 V

(2) -1 V

(3) -3 V

- (4) +3 V
- **33.** If an electron in a hydrogen atom jumps from the 3^{rd} orbit to the 2^{nd} orbit, it emits a photon of wavelength λ . When it jumps from the 4^{th} orbit to the 3^{rd} orbit, the corresponding wavelength of the photon will be
 - $(1) \quad \frac{9}{16}\lambda$

(2) $\frac{20}{7}$

(3) $\frac{20}{13}\lambda$

- (4) $\frac{16}{25}$
- **34.** The half-life of a radioactive substance is 30 min. The time (in minutes) taken between 40% decay and 85% decay of the same radioactive substance is
 - (1) 30

(2) 45

(3) 60

- (4) 15
- 35. For CE transistor amplifier, the audio signal voltage across the collector resistance of 2 k Ω is 4 V. If the current amplification factor of the transistor is 100 and the base resistance is 1 k Ω , then the input signal voltage is
 - (1) 20 mV

(2) 30 mV

(3) 15 mV

- (4) 10 mV
- **36.** The given circuit has two ideal diodes connected as shown in the figure below. The current flowing through the resistance R_1 will be

(1) 10.0 A

(2) 1.43 A

(3) 3.13 A

- (4) 2.5 A
- **37.** What is the output Y in the following circuit, when all the three inputs A, B, C are first 0 and then 1?

(1) 0, 0

(2) 1, 0

(3) 1, 1

- (4) 0, 1
- **38.** Planck's constant (h), speed of light in vacuum (c) and Newton's gravitational constant (G) are three fundamental constants. Which of the following combinations of these has the dimension of length?
 - $(1) \quad \frac{\sqrt{hG}}{c^{5/2}}$

(2) $\sqrt{\frac{hc}{G}}$

 $(3) \quad \sqrt{\frac{Gc}{h^{3/2}}}$

- $(4) \quad \frac{\sqrt{hG}}{c^{3/2}}$
- **39.** Two cars P and Q start from a point at the same time in a straight line and their positions are represented by $x_p(t) = at + bt^2$ and $x_0(t) = ft t^2$. At what time do the cars have the same velocity?
 - $(1) \quad \frac{a+f}{2(b-1)}$
- $(2) \quad \frac{a+f}{2(1+b)}$
- (3) $\frac{f-a}{2(1+b)}$
- $(4) \quad \frac{a-f}{1+h}$
- **40.** In the given figure, $a = 15 \text{ ms}^{-2}$ represents the total acceleration of a particle moving in the clockwise direction in a circle of radius R = 2.5 m at a given instant of time. The speed of the particle is

- (1) 5.0 ms^{-1}
- (2) 5.7 ms⁻¹
- (3) 6.2 ms⁻¹
- (4) 4.5 ms⁻¹
- **41.** A rigid ball of mass m strikes a rigid wall at 60° and gets reflected without loss of speed as shown in the figure below. The value of impulse imparted by the wall on the ball will be

(1) 2mv

 $(2) \quad \frac{m_1}{2}$

 $(3) \frac{mv}{3}$

- (4) mv
- **42.** A bullet of mass 10 g moving horizontally with a velocity of 400 ms⁻¹ strikes a wooden block of mass 2 kg which is suspended by a light inextensible string of length 5 m. As a result, the centre of gravity of the block is found to rise a vertical distance of 10 cm. The speed of the bullet after it emerges out horizontally from the block will be
 - (1) 80 ms⁻¹
- (2) 120 ms⁻¹
- (3) 160 ms⁻¹
- (4) 100 ms⁻¹
- **43.** Two identical balls A and B having velocities of 0.5 ms⁻¹ and -0.3 ms⁻¹ respectively collide elastically in one dimension. The velocities of B and A after the collision respectively will be
 - (1) $0.5 \text{ ms}^{-1} \text{ and } -0.3 \text{ ms}^{-1}$
 - (2) $-0.3 \text{ ms}^{-1} \text{ and } 0.5 \text{ ms}^{-1}$
 - (3) $0.3 \text{ ms}^{-1} \text{ and } 0.5 \text{ ms}^{-1}$
 - (4) $-0.5 \text{ ms}^{-1} \text{ and } 0.3 \text{ ms}^{-1}$
- **44.** A particle moves from a point $(-2\hat{i} + 5\hat{j})$ to $(4\hat{j} + 3\hat{k})$ when a force of $(4\hat{i} + 3\hat{j})$ N is applied. How much work has been done by the force?
 - (1) 11 J

(2) 5 J

(3) 2 J

- (4) 8 J
- **45.** Two rotating bodies A and B of masses m and 2m with moments of inertia I_A and I_B ($I_B > I_A$) have equal kinetic energy of rotation. If L_A and L_B be their angular momenta respectively, then
 - $(1) \quad L_{\rm A} = 2L_{\rm B}$
- $(2) \quad L_{\rm B} > L_{\rm A}$
- $(3) \quad L_{\rm A} > L_{\rm B}$
- $(4) \quad L_{\rm A} = \frac{L_{\rm B}}{2}$

Chemistry

- **46.** Which one of the following is **incorrect** for ideal solution?
 - (1) $\Delta U_{\text{mix}} = 0$
 - (2) $\Delta p = p_{\text{obs}} p_{\text{calculated by Raoult's law}} = 0$
 - (3) $\Delta G_{\text{mix}} = 0$
 - $(4) \quad \Delta H_{\rm mix} = 0$
- **47.** The solubility of AgCl (s) with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be
 - (1) $1.6 \times 10^{-9} \text{ M}$
- (2) $1.6 \times 10^{-11} \text{ M}$

(3) zero

(4) $1.26 \times 10^{-5} \text{ M}$

- **48.** Suppose the elements X and Y combine to form two compounds XY, and X, Y,. When 0.1 mol of XY, weighs 10 g and 0.05 mol of X, Y, weighs 9 g, the atomic weights of X and Y are
 - (1) 60, 40

(2) 20, 30

30, 20 (3)

- (4) 40, 30
- 49. The number of electrons delivered at the cathode during electrolysis by a current of 1 A in 60 s is (charge on electron = $1.60 \times 10^{-19} \text{ C}$
 - (1) 6×10^{20}
- (2) 3.75×10^{20}
- (3) 7.48×10^{23}
- (4) 6×10^{23}
- 50. Boric acid is an acid because its molecule
 - (1) gives up a proton.
 - (2) accepts OH- from water releasing proton.
 - (3) combines with proton from water molecule.
 - (4) contains replaceable H⁺ ion.
- 51. AlF, is soluble in HF only in presence of KF. It is due to the formation of
 - (1) $K_{3}[AlF_{6}]$
- (2) AlH₂
- (3) K[AlF₂H]
- (4) $K_{2}[AlF_{2}H_{2}]$
- 52. Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because
 - (1) zinc has lower melting point than iron.
 - zinc has lower negative electrode potential than iron.
 - zinc has higher negative electrode potential than iron.
 - zinc is lighter than iron.
- 53. The suspension of slaked lime in water is
 - (1) quick lime.
 - (2) milk of lime.
 - (3) aqueous solution of slaked lime.
 - (4) lime water.
- **54.** The hybridizations of atomic orbitals of nitrogen in NO₂⁺, NO₃⁻ and NH₄ respectively are
 - (1) sp^2 , sp^3 and sp.
- (2) sp, sp^2 and sp^3 .
- (3) sp^2 , sp and sp^3 .
- (4) sp, sp^3 and sp^2 .
- 55. Which of the following fluoro compounds is most likely to behave as a Lewis base?
 - (1) PF,

(2) CF₄

(3) SiF₄

- (4) BF,
- 56. Which of the following pairs of ions is isoelectronic and isostructural?
 - ClO_{2}^{-}, CO_{2}^{2-} (1)
- (2) SO_{2}^{2-}, NO_{2}^{-}
- ClO_{2}^{-}, SO_{2}^{2-}
- (4) CO_{2}^{2-}, NO_{2}^{-}
- 57. In context with beryllium, which one of the following statements is incorrect?
 - (1) It forms Be₂C.
 - (2) Its salts rarely hydrolyzed.
 - (3) Its hydride is electron-deficient and polymeric.
 - (4) It is rendered passive by nitric acid.

- 58. Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behaviour?
 - (1) $3S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O$
 - (2) $C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2O$
 - (3) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$
 - (4) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O_4$
- **59.** Which of the following pairs of *d*-orbitals will have electron density along the axes?
 - (1) d_{yz}, d_{yz}

- (2) d_{2}, d_{2}, d_{2}
- (3) $d_{...}, d_{...}$
- (4) d_{1}, d_{2}
- **60.** The **correct** geometry and hybridization for XeF, are
 - trigonal bipyramidal, sp^3d .
- (2) planar triangle, sp^3d^3 .
- square planar, sp^3d^2 .
- (4) octahedral, sp^3d^2 .
- **61.** Among the following, which one is a **wrong** statement?
 - (1) $p\pi$ - $d\pi$ bonds are present in SO₂.
 - (2) SeF₄ and CH₄ have same shape.
 - (3) I_2^+ has bent geometry.
 - PH, and BiCl, do not exist.
- **62.** The **correct** increasing order of *trans*-effect of the following species is
 - (1) $CN^- > C_{\epsilon}H_{\epsilon}^- > Br^- > NH$,
 - (2) $Br^- > CN^- > NH_3 > C_6H_5^-$
 - (3) $CN^- > Br^- > C_6H_5^- > NH_3$
 - (4) $NH_{2} > CN^{-} > Br^{-} > C_{4}H_{5}^{-}$
- 63. Which one of the following statements related to lanthanons is incorrect?
 - (1) The basicity decreases as the ionic radius decreases from Pr to Lu.
 - All the lanthanons are much more reactive than
 - Ce (+4) solutions are widely used as oxidizing agent in volumetric analysis.
 - Europium shows +2 oxidation state.
- **64.** Jahn–Teller effect is **not** observed in high spin complexes of
 - (1) d^8

(2) d^4

(3) d^9

- (4) d^7
- 65. Which of the following can be used as the halide component for Friedel-Crafts reaction?
 - (1) Bromobenzene
- (2) Chloroethene
- Isopropyl chloride
- (4) Chlorobenzene

66. In which of the following molecules, all atoms are coplanar?

67. Which one of the following structures represents nylon 6,6 polymer?

(1)
$$\begin{pmatrix} H_2 & H_2 \\ C & C & C \\ & & & \\ NH_9 & NH_9 \end{pmatrix}_{66}$$

(3)
$$\begin{pmatrix} O & H_2 & H_2 \\ C & C & 2 & N \end{pmatrix} \leftarrow CH_2)_6 - NH$$

$$\begin{pmatrix} H_2 & H_2 & H_2 \\ H_2 & H_2 & N \end{pmatrix}$$

$$\begin{pmatrix} H_{2} & H_{2} & H_{2} \\ C & C & C \\ & | & | \\ NH_{2} & CH_{3} \end{pmatrix}_{66}$$

68. In pyrrole

the electron density is maximum on

- (1) 3 and 4.
- (2) 2 and 4.
- (3) 2 and 5.
- (4) 2 and 3.

69. Which of the following compounds shall **not** produce propene by reaction with HBr followed by elimination or direct only elimination reaction?

- (1) $H_3C CH_2 CH_2OH$
- (2) $H_9C = C = O$
- (3) $H_3C CH_2 CH_2Br$
- (4) H₂C CH

70. Which one of the following nitro-compounds **does not** react with nitrous acid?

(3)
$$CH_3$$
 (4) H_3C CH_2 NO_2 CH_2 NO_2

- **71.** The central dogma of molecular genetics states that the genetic information flows from
 - (1) DNA \rightarrow Carbohydrates \rightarrow Proteins.
 - (2) DNA \rightarrow RNA \rightarrow Proteins.
 - (3) DNA \rightarrow RNA \rightarrow Carbohydrates.
 - (4) Amino acids \rightarrow Proteins \rightarrow DNA.

72. The **correct** corresponding order of names of four aldoses with configuration given below

respectively, is

- (1) D-threose, D-erythrose, L-threose, L-erythrose.
- (2) L-erythrose, L-threose, D-erythrose, D-threose.
- (3) D-erythrose, D-threose, L-erythrose, L-threose.
- (4) L-erythrose, L-threose, L-erythrose, D-threose.

73. In the given reaction

$$+ \bigcirc \longrightarrow P$$

the product P is

74. A given nitrogen-containing aromatic compound A reacts with Sn/HCl, followed by HNO₂ to give an unstable compound B. B, on treatment with phenol, forms a beautiful coloured compound C with the molecular formula C₁₂H₁₀N₂O. The structure of compound A is

75. Consider the reaction

CH,CH,CH,Br + NaCN → CH,CH,CH,CN + NaBr

This reaction will be the fastest in

- (1) methanol.
- (2) N,N'-dimethylformamide (DMF).
- (3) water.
- (4) ethanol.

76. The correct structure of the product A formed in the reaction

is

77. Which among the given molecules can exhibit tautomerism?

- Both I and III
- (2) Both I and II
- Both II and III
- (4) III only

78. The correct order of strengths of the carboxylic acids is

- (1) II > III > I
- (2) III > II > I
- II > I > III
- (4) I > II > III

79. The compound that will react most readily with gaseous bromine has the formula

(1) C,H,

(2) C_4H_{10}

(3) C_2H_4

(4) C,H

80. Which one of the following compounds shows the presence of intramolecular hydrogen bond?

(1) HCN

- (2) Cellulose
- (3) Concentrated acetic acid
- (4) H₂O₂

81. The molar conductivity of a 0.5 mol dm⁻³ solution of AgNO, with electrolytic conductivity of 5.76×10^{-3} S cm⁻¹ at 298 K is

- 11.52 S cm² mol⁻¹
- (2) 0.086 S cm² mol⁻¹
- 28.8 S cm2 mol-1
- (4) 2.88 S cm² mol⁻¹

82. The decomposition of phosphine (PH₂) on tungsten at low pressure is a first-order reaction. It is because the

- (1) rate is inversely proportional to the surface coverage.
- rate is independent of the surface coverage. (2)
- rate of decomposition is very slow.
- rate is proportional to the surface coverage.

83. The coagulation values in millimoles per litre of the electrolytes used for the coagulation of As₂S₃ are given below:

I. (NaCl) = 52,

II. $(BaCl_2) = 0.69$,

III. $(MgSO_4) = 0.22$

The **correct** order of their coagulating power is

- (1) II > I > III
- (2) III > II > I
- (3) III > I > II
- (4) I > II > III

84. During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 A is

- (1) 110 min
- (2) 220 min
- (3) 330 min
- (4) 55 min

85. How many electrons can fit in the orbital for which n = 3 and l = 1?

(1) 6

(2) 10

(3) 14

(4) 2

86. For a sample of perfect gas when its pressure is changed isothermally from p_i to p_i , the entropy change is given by

- (1) $\Delta S = nR \ln \left(\frac{p_i}{p_f} \right)$ (2) $\Delta S = nRT \ln \left(\frac{p_f}{p_i} \right)$
- (3) $\Delta S = RT \ln \left(\frac{p_i}{p_c} \right)$ (4) $\Delta S = nR \ln \left(\frac{p_f}{p_c} \right)$

87. The van't Hoff factor (i) for a dilute aqueous solution of the strong electrolyte barium hydroxide is

(1) - 1 (2) 2

(3) 3 (4) 0

88. The percentage of pyridine (C_sH_sN) that forms pyridinium ion (C₅H₅N⁺H) in a 0.10 M aqueous pyridine solution (K_b for $C_5H_5N = 1.7 \times 10^{-9}$) is

- (1) 0.013%
- (2) 0.77%

1.6% (3)

(4) 0.0060%

89. In calcium fluoride, having the fluorite structure, the coordination numbers for calcium ion (Ca2+) and fluoride ion (F-) are

- (1) 6 and 6
- (2) 8 and 4
- (3) 4 and 8
- (4) 4 and 2

90. If the E_{cell}^{o} for a given reaction has a negative value, which of the following gives the correct relationships for the values of ΔG° and $K_{\circ \circ}$?

- (1) $\Delta G^{\circ} > 0; K_{eq} > 1$
- (2) $\Delta G^{\circ} < 0; K_{eq} > 1$
- (3) $\Delta G^{\circ} < 0; K_{eq} < 1$ (4) $\Delta G^{\circ} > 0; K_{eq} < 1$

Biology

- **91.** A non-proteinaceous enzyme is
 - (1) ribozyme.
- (2) ligase.
- (3) deoxyribonuclease.
- (4) lysozyme.
- 92. Select the mismatch.
 - (1) Large central vacuoles—Animal cells
 - (2) Protists—Eukaryotes
 - (3) Methanogens—Prokaryotes
 - (4) Gas vacuoles—Green bacteria
- 93. Select the wrong statement.
 - Pili and fimbriae are mainly involved in motility of bacterial cells.
 - (2) Cyanobacteria lack flagellated cells.
 - (3) Mycoplasma is a wall-less microorganism.
 - (4) Bacterial cell wall is made up of peptidoglycan.
- **94.** A cell organelle containing hydrolytic enzymes is
 - (1) microsome.
- (2) ribosome.
- (3) mesosome.
- (4) lysosome.
- 95. During cell growth, DNA synthesis takes place in
 - (1) G₁ phase.
- (2) G, phase.
- (3) M phase.
- (4) S phase.
- **96.** Which of the following biomolecules is common to respiration-mediated breakdown of fats, carbohydrates and proteins?
 - (1) Fructose 1,6-bisphosphate
 - (2) Pyruvic acid
 - (3) Acetyl CoA
 - (4) Glucose-6-phosphate
- **97.** A few drops of sap were collected by cutting across a plant stem by a suitable method. The sap was tested chemically. Which one of the following test results indicates that it is phloem sap?
 - (1) Alkaline
- (2) Low refractive index
- (3) Absence of sugar
- (4) Acidic
- **98.** You are given a tissue with its potential for differentiation in an artificial culture. Which of the following pairs of hormones would you add to the medium to secure shoots as well as roots?
 - (1) Auxin and cytokinin
 - (2) Auxin and abscisic acid
 - (3) Gibberellin and abscisic acid
 - (4) IAA and gibberellin
- 99. Phytochrome is a
 - (1) glycoprotein.
- (2) lipoprotein.
- (3) chromoprotein.
- (4) flavoprotein.
- **100.** Which is essential for the growth of root tip?
 - (1) Fe

(2) Ca

(3) Mn

(4) Zn

- 101. The process which makes major difference between $\rm C_3$ and $\rm C_4$ plants is
 - (1) Calvin cycle.
- (2) photorespiration.
- (3) respiration.
- (4) glycolysis.
- **102.** Which one of the following statements is **not** correct?
 - (1) Microscopic, motile asexual reproductive structures are called zoospores.
 - (2) In potato, banana and ginger, the plantlets arise from the *internodes* present in the modified stem.
 - (3) Water hyacinth, growing in the standing water, drains oxygen from water that leads to the death of fishes.
 - (4) Offspring produced by the asexual reproduction are called clone.
- **103.** Which one of the following generates new genetic combinations leading to variation?
 - (1) Parthenogenesis
 - (2) Sexual reproduction
 - (3) Nucellar polyembryony
 - (4) Vegetative reproduction
- 104. Match Column I with Column II and select the correct option using the codes given below:

Column I	Column II				
(a) Pistils fused	(i) Gametogenesis together				
(b) Formation of	(ii) Pistillate gametes				
(c) Hyphae of higher	(iii) Syncarpous Ascomycetes				
(d) Unisexual female	(iv) Dikaryotic flower				

Codes:

	(a)	(b)	(c)	(d)
(1)	(ii)	(i)	(iv)	(iii
(2)	(i)	(ii)	(iv)	(iii
(3)	(iii)	(i)	(iv)	(ii)
(4)	(iv)	(iii)	(i)	(ii)

- 105. In majority of angiosperms
 - (1) there are numerous antipodal cells.
 - (2) reduction division occurs in the megaspore mother cells.
 - (3) a small central cell is present in the embryo sac.
 - (4) egg has a filiform apparatus.
- **106.** Pollination in water hyacinth and water lily is brought about by the agency of
 - (1) insects or wind.
- (2) birds.

(3) bats.

- (4) water.
- **107.** The ovule of an angiosperm is technically equivalent to
 - (1) megasporophyll.
 - (2) megaspore mother cell.
 - (3) megaspore.
 - (4) megasporangium.

108.	Taylor conducted the experimen mode of chromosome replication		prove semiconservative	118.		v many hot spots of biodiv tified till date by Norman N	-	the world have been
	(1) Vicia faba.				(1)	25	(2) 3	4
	(2) Drosophila melanogaster.				(3)	43	(4) 1	7
	(3) E. coli.			119.	The	primary producers of the	deen-sea	hydrothermal vent
	(4) Vinca rosea.			117.		system are	асер вса	, ily di othermar vent
109.	The mechanism that causes a ger group to another is called	ne to	move from one linkage		(1) (3)	chemosynthetic bacteria.		lue-green algae. reen algae.
	(1) duplication.	(2)	translocation.	120	W/lo	ah af tha fallowing is as we	at for a c	alastad amasisa?
	(3) crossing-over.	(4)	inversion.	120.		ich of the following is corre		-
110	The equivalent of a structural gen	ne is			(1) (2)	Large number of progeny Small number of progeny	_	
110.	(1) cistron.	(2)	operon.		(3)	Small number of progeny		
	(3) recon.	(4)	muton.		(4)	Large number of progeny	-	
	(3) 100011.	(+)	muton.					
111.	A true breeding plant is (1) produced due to cross-p	ollina	tion among unrelated	121.	to d	+' sign is assigned to be letrimental and '0' sign to ulation interaction represent	neutral	interaction, then the
	plants.					•	•	
	(2) near homozygous and pro	oduce	s offspring of its own		(1)	amensalism.	` /	ommensalism.
	kind.	ivo in	ita canatia constitution		(3)	parasitism.	(4) n	nutualism.
							ectly mate	hed?
	(4) One that is able to breed on	ns o	VII.		(1)	Age pyramid—Biome		
112.	Which of the following rRNAs a	cts as	structural RNA as well		(2)	Parthenium hysterophoru.	s—Threat	to biodiversity
	as ribozyme in bacteria?				(3)	Stratification—Population	1	
	(1) 18 S rRNA	(2)	23 S rRNA		(4)	Aerenchyma— Opuntia		
	(3) 5.8 S rRNA	(4)	5 S rRNA	123.	Red	list contains data or inform	ation on	
113.	Stirred-tank bioreactors have bee	n des	igned for		(1)	plants whose products are		ational trade.
	(1) addition of preservatives to	the p	oroduct.		(2)	threatened species.		
	(2) availability of oxygen throu	ıghot	t the process.		(3)	marine vertebrates only.		
	(3) ensuring anaerobic condition	ons in	the culture vessel.		(4)	all economically importar	nt plants.	
	(4) purification of product.						-	a
114	A foreign DNA and plasmid	out h	y the same restriction	124.		ich one of the following is v	0	
114.	endonuclease can be joined to f		-		(1)	All fungi possess a purely	cellulosi	c cell wall.
	using		w 1000momum padomia		(2)	They are heterotrophic.	1 1.1	
	(1) <i>Taq</i> polymerase.	(2)	polymerase III.		(3)	They are both unicellular	and multi	cellular.
	(3) ligase.	(4)	Eco RI.		(4)	They are eukaryotic.		
115	Will Cal Cil :		C 1	125.	Met	hanogens belong to		
115.	Which of the following is not a processing?	a con	iponent of downstream		(1)	archaebacteria.	(2) d	inoflagellates.
	(1) Purification	(2)	Preservation		(3)	slime moulds.	(4) e	ubacteria.
	(3) Expression	(4)	Separation	126	Sele	ect the wrong statement.		
		. ,	-	120.		Diatomaceous earth is	formed b	y the call walls of
116.	Which of the following restrict ends?	ion e	nzymes produces blunt		(1)	diatoms.		
	(1) Eco RV	(2)	Xho		(2)	Diatoms are chief produce		
	(3) Hind III	(4)	Sal I		(3)	Diatoms are microscopic		
117.	Which kind of therapy was give	n in	1990 to a four-vear-old		(4)	The walls of diatoms are	casily des	u ucubie.
/•	girl with adenosine deaminase (A			127.	The	label of a herbarium sheet	does not	carry information on
	(1) Chemotherapy		Immunotherapy		(1)	name of collector.	(2) lo	ocal names.

(3) height of the plant.

(4) date of collection.

(1) Chemotherapy

(3) Radiation therapy

(2) Immunotherapy

(4) Gene therapy

(d) Zygotene

(iv) Chromosomes align at equatorial

plate

128.		ifers are ad	-	te e	extreme environmental		Cod	es: (a)	(b)	(c)	(d)		
	(1)	superficial:	stomata.	(2)	thick cuticle.		(1)	(i)	(iv)	(ii)	(i)		
	(3)	presence of		(4)	broad hardy leaves.		(2)	(ii)	(iv)	(iii)	(i)		
120	****	•			•		(3)	(iv)	(iii)	(ii)	(i)		
129.			following staten		_		(4)	(iii)	(iv)	(ii)	(i)		
	(1)	brown algae	e		e, and carrageenan from	137.			nones do carbonato		te the pi	roduction of pancr	eatic
	(2)	Agar-agar i	s obtained from	Geli	dium and Gracilaria.		(1)	Gastri	n and ins	sulin			
	(3)	Laminaria	and Sargassum a	re us	sed as food.		(2)	Chole	cystokini	in and se	cretin		
	(4)	-	ease the level o environment.	f di	ssolved oxygen in the	(3) Insulin and glucagon (4) Angiotensin and epinephrine							
130.	The	term polyade	elphous is related	to		138.	The	partial p	pressure	of oxyge	n in the a	alveoli of the lungs	is
	(1)	androecium	1.	(2)	corolla.		(1)	-	than that				
	(3)	calyx.		(4)	gynoecium.		(2)	less th	an that is	n the bloo	od.		
131.	How	many plants	s among <i>Indigofei</i>	a S	esbania, Salvia, Allium,		(3)	less th	an that o	f carbon	dioxide.		
					gram and turnip have		(4)	equal	to that in	the bloo	d.		
	stam	ens with diff	ferent lengths in t	heir	flowers?	139.	Cho	ose the	correct s	statement	t.		
	(1)	Four		(2)	Five		(1)	Meiss	ner's cor	puscles a	re therm	o-receptors.	
	(3)	Six		(4)	Three		(2)					e are depolarized du	
132.	Radi	al symmetry	is found in the fl	owe	rs of				ess and b timulus.	ecome h	yperpola	rized in response to	o the
	(1)	Trifolium		(2)	Pisum		(3)	_		ot produ	ce orađe	d potentials.	
	(3)	Cassia		(4)	Brassica		(4)					in pressure.	
133.	Free	-central place	entation is found	in		140			ase is car	-	_	m pressure.	
	(1)	Argemone.		(2)	Brassica.	140.	(1)		secretion				
	(3)	Citrus.		(4)	Dianthus.		(2)		ecretion				
134	Cort	ex is the regi	on found between	n			(3)		secretion		_		
154.	(1)		nd endodermis.				(4)		ecretion		-		
	(2)	endodermis				141.	Nan	ne the i	on respo	nsible fo	r unmas	king of active sites	s for
	(3)		s and prin. s and vascular bu	ndle		1111						g muscle contraction	
	(4)	epidermis a		iidic	•		(1)	Magn	esium		(2)	Sodium	
		-					(3)	Potass	ium		(4)	Calcium	
135.		-	ed structures cal	led t	yloses	142.	Nan	ne the b	lood cell	s, whose	reduction	on in number can c	ause
	(1)		e the sapwood.						order, lea	ding to e	excessive	loss of blood fron	n the
	(2)				yma cells into vessels.		body				(2)		
	(3)			-	rough xylem vessels.		(1)	Leuco	-		(2)	Neutrophils	
	(4)	originate in	the lumen of ves	ssels			(3)		nbocytes		(4)	Erythrocytes	
136.	featu	ires in Colun	nn II and select t		I to their characteristic orrect option using the	143.		ocytes a	nd enhan			mainly on hepatoc se uptake and utiliza	
	code	s given below	w:				(1)	Gluca			(2)	Secretion	
	Colu	ımn I	Column II				(3)	Gastri	n		(4)	Insulin	
		Pachytene	(i) Pairing of chromosor		ologous	144.	Osteoporosis, an age-related disease of skeletal system, ma occur due to				may		
	(b) N	Metaphase I	(ii) Terminaliz		n of chiasmata		(1)	high c	oncentra	tion of C	a ⁺⁺ and N	Na ⁺ .	
		Diakinesis	(iii) Crossing-c				(2)		ised leve		-		
	(-)		(, 5.0001115	, -1	P	1	(3)	0.0011112	ulation a	furio acid	1 landing	to inflammation of ic	ainte

(3)

leading to fatigue.

accumulation of uric acid leading to inflammation of joints.

immune disorder affecting neuro-muscular junction

- **145.** Serum differs from blood in
 - (1) lacking albumins.
 - (2) lacking clotting factors.
 - (3) lacking antibodies.
 - (4) lacking globulins.
- **146.** Lungs do not collapse between breaths and some air always remains in the lungs which can never be expelled because
 - (1) there is a negative intrapleural pressure pulling at the lung walls.
 - (2) there is a positive intrapleural pressure.
 - (3) pressure in the lungs is higher than the atmospheric pressure.
 - (4) there is a negative pressure in the lungs.
- **147.** The posterior pituitary gland is **not** a true endocrine gland because
 - (1) it only stores and releases hormones.
 - (2) it is under the regulation of hypo-thalamus.
 - (3) it secretes enzymes.
 - (4) it is provided with a duct.
- 148. The part of nephron involved in reabsorption of sodium is
 - (1) proximal convoluted tubule.
 - (2) Bowman's capsule.
 - (3) descending limb of Henle's loop.
 - (4) distal convoluted tubule.
- **149.** Which of the following is releasing IUD?
 - (1) Multiload 375
- (2) Lippes loop

(3) Cu7

- (4) LNG-20
- **150.** Which of the following is **incorrect** regarding vasectomy?
 - (1) No sperm occurs in epididymis
 - (2) Vasa deferentia is cut and tied
 - (3) Irreversible sterility
 - (4) No sperm occurs in seminal fluid
- **151.** Embryo with more than 16 blastomeres formed due to *in vitro* fertilization is transferred into
 - (1) fallopian tube.
- (2) fimbriae.
- (3) cervix.
- (4) uterus.
- **152.** Which of the following depicts the **correct** pathway of transport of sperms?
 - Rete testis → Epididymis → Efferent ductules → Vas deferens
 - (2) Rete testis \rightarrow Vas deferens \rightarrow Efferent ductules \rightarrow Epididymis
 - (3) Efferent ductules → Rete testis → Vas deferens → Epididymis
 - (4) Rete testis → Efferent ductules → Epididymis → Vas
- **153.** Match Column I with Column II and select the correct option using the codes given below :

Column I	Column II				
(a) Mons pubis	(i) Embryo formation				
(b) Antrum	(ii) Sperm				
(c) Trophectodem	(iii) Female external				
(d) Nebenkern	(iv) Graafian follicle				

Codes:

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(i)	(ii)
(2)	(iii)	(i)	(iv)	(ii)
(3)	(i)	(iv)	(iii)	(ii)
(4)	(iii)	(iv)	(ii)	(i)

- **154.** Several hormones like hCG, hPL, estrogen, progesterone are produced by
 - (1) placenta.
- (2) fallopian tube.
- (3) pituitary.
- (4) ovary.
- **155.** If a colour-blind man marries a woman who is homozygous for normal colour vision, the probability of their son being colour-blind is
 - (1) 0.5

(2) 0.75

(3) 1

- (4) 0
- 156. Genetic drift operates in
 - (1) large isolated population.
 - (2) non-reproductive population.
 - (3) slow reproductive population.
 - (4) small isolated population.
- 157. In Hardy–Weinberg equation, the frequency of heterozygous individual is represented by
 - (1) 2*pq*

(2) pq

(3) q^2

- (4) p^2
- **158.** The chronological order of human evolution from early to the recent is
 - (1) Ramapithecus \rightarrow Australopithecus \rightarrow Homo habilis \rightarrow Homo erectus
 - (2) Ramapithecus → Homo habilis → Australopithecus → Homo erectus
 - (3) Australopithecus → Homo habilis → Ramapithecus → Homo erectus
 - (4) Australopithecus → Ramapithecus → Homo habilis → Homo erectus
- **159.** Which of the following is the **correct** sequence of events in the origin of life?
 - I. Formation of protobionts
 - II. Synthesis of organic monomers
 - III. Synthesis of organic polymers
 - IV. Formation of DNA based genetic systems
 - (1) I, III, II, IV
- (2) II, III, I, IV
- (3) II, III, IV, I
- (4) I, II, III, IV
- **160.** A molecule that can act as a genetic material must fulfill the traits given below, **except**
 - (1) it should be able to generate its replica.
 - (2) it should be unstable structurally and chemically.

- (3) it should provide the scope for slow changes that are required for evolution.
- (4) it should be able to express itself in the form of Mendelian characters.
- **161.** DNA dependent RNA polymerase catalyses transcription on one strand of the DNA which is called the
 - (1) coding strand.
- (2) alpha strand.
- (3) antistrand.
- (4) template strand.
- 162. Interspecific hybridization is the mating of
 - (1) two different related species.
 - (2) superior males and females of different breeds.
 - (3) more closely related individuals within same breed for 4-6 generations.
 - (4) animals within same breed without having common ancestors
- **163.** Which of the following is **correct** regarding AIDS causative agent HIV?
 - (1) HIV is enveloped virus that contains two identical molecules of single-stranded RNA and two molecules of reverse transcriptase
 - (2) HIV is unenveloped retrovirus.
 - (3) HIV does not escape but attacks the acquired immune response.
 - (4) HIV is enveloped virus containing one molecule of single-stranded RNA and one molecule of reverse transcriptase.
- **164.** Among the following edible fishes, which one is a marine fish having rich source of omega-3 fatty acids?
 - (1) Mangur
- (2) Mrigala
- (3) Mackerel
- (4) Mystus
- **165.** Match Column I with Column II and select the **correct** option using the codes given below:

Colu	ımn I		Column II				
(a) (Citric ac	id	(i) Trichoderma				
(b) (Cyclosp	orin A	(ii) Clostridium				
(c) S	Statins		(iii) Aspergillus				
(d)	Butyric	acid	(iv) Monascus				
Cod	es:						
	(a)	(b)	(c)	(d)			
(1)	(iii)	(i)	(iv)	(ii)			
(2)	(i)	(iv)	(ii)	(iii)			

(i)

(ii)

166. Biochemical Oxygen Demand (BOD) may **not** be a good index for pollution for water bodies receiving effluents from

(ii)

(iv)

(1) dairy industry.

(iii)

(iii)

(iv)

(i)

(3)

(4)

- (2) petroleum industry.
- (3) sugar industry.
- (4) domestic sewage.
- 167. The principle of competitive exclusion was stated by
 - (1) G. P. Cause.
- (2) MacArthur.
- (3) Verhulst and Pearl.
- (4) C. Darwin.

- **168.** Which of the following National Parks is home to the famous musk deer or hangul?
 - (1) Bandhavgarh National Park, Madhya Pradesh
 - (2) Eaglenest Wildlife Sanctuary, Arunachal Pradesh
 - (3) Dachigam National Park, Jammu & Kashmir
 - (4) Keibul Lamjao National Park, Manipur
- 169. A lake which is rich in organic waste may result in
 - (1) drying of the lake due to algal bloom.
 - (2) increased population of fish due to lots of nutrients.
 - (3) mortality of fish due to lack of oxygen.
 - increased population of aquatic organisms due to minerals.
- **170.** The highest DDT concentration in aquatic food chain shall occur in
 - (1) Seagull.
- (2) Crab.

(3) Eel.

- (4) Phytoplankton.
- **171.** Which of the following sets of diseases is caused by bacteria?
 - (1) Typhoid and smallpox
- (2) Tetanus and mumps
- (3) Herpes and influenza
- (4) Cholera and tetanus
- **172.** Match Column I with Column II for housefly classification and select the **correct** option using the codes given below:

Column I	Column II
(a) Family	(i) Diptera
(b) Order	(ii) Arthropoda
(c) Class	(iii) Muscidae
(d) Phylum	(iv) Insecta

Codes:

	(a)	(b)	(c)	(d)
(1)	(iii)	(ii)	(iv)	(i)
(2)	(iv)	(iii)	(ii)	(i)
(3)	(iv)	(ii)	(i)	(iii)
(4)	(iii)	(i)	(iv)	(ii)

- **173.** Choose the **correct** statement.
 - (1) All cyclostomes do not possess jaws and paired fins.
 - (2) All reptiles have a three-chambered heart.
 - (3) All pisces have gills covered by an operculum.
 - (4) All mammals are viviparous.
- **174.** Study the four statements (A–D) given below and select the two **correct** ones out of them:
 - (A) Definition of biological species was given by Ernst Mayr.
 - (B) Photoperiod does not affect reproduction in plants
 - (C) Binomial nomenclature system was given by R. H. Whittaker
 - (D) In unicellular organisms, reproduction is synonymous with growth.

The two **correct** statements are

- (1) C and D
- (2) A and D
- (3) A and B
- (4) B and C
- **175.** In male cockroaches, sperms are stored in which part of the reproductive system?
 - (1) Mushroom glands
- (2) Testes
- (3) Vas deferens
- (4) Seminal vesicles
- 176. Smooth muscles are
 - (1) voluntary, multinucleate, cylindrical.
 - (2) involuntary, cylindrical, striated.
 - (3) voluntary, spindle-shaped, uninucleate.
 - (4) involuntary, fusiform, non-striated.
- 177. Oxidative phosphorylation is
 - (1) oxidation of phosphate group in ATP.
 - (2) addition of phosphate group to ATP.
 - (3) formation of ATP by energy released from electrons, removed during substrate oxidation.
 - (4) formation of ATP by transfer of phosphate group from a substrate to ADP.
- **178.** Which of the following is the least likely to be involved in stabilizing the three-dimensional folding of most proteins?
 - (1) Electrostatic interaction
 - (2) Hydrophobic interaction
 - (3) Ester bonds
 - (4) Hydrogen bonds

179. Which of the following describes the given graph correctly?

- Exothermic reaction with energy A in presence of enzyme and B in absence of enzyme
- (2) Endothermic reaction with energy A in absence of enzyme and B in presence of enzyme
- (3) Exothermic reaction with energy A in absence of enzyme and B in presence of enzyme
- (4) Endothermic reaction with energy A in presence of enzyme and B in absence of enzyme
- **180.** When cell has stalled DNA replication fork which checkpoint should be predominantly activated?
 - (1) G_2/M
- (2) M
- (3) G_2/M and M
- (4) G_{1}/S

ANSWER KEY									
Physics									
1. (1)	2. (4)	3. (1)	4. (1)	5. (1)	6. (1)	7. (1)	8. (1)	9. (3)	10. (2)
11. (1)	12. (3)	13. (1)	14. (3)	15. (1)	16. (2)	17. (3)	18. (2)	19. (1)	20. (1)
21. (4)	22. (2)	23. (3)	24. (2)	25. (4)	26. (3)	27. (2)	28. (1)	29. (1)	30. (3)
31. (4)	32. (3)	33. (2)	34. (3)	35. (1)	36. (4)	37. (2)	38. (4)	39. (3)	40. (2)
41. (4)	42. (2)	43. (1)	44. (2)	45. (2)					
Chemist	ry								
46. (3)	47. (1)	48. (4)	49. (2)	50. (2)	51. (1)	52. (3)	53. (2)	54. (2)	55. (1)
56. (2), (3		57. (2)	58. (3)	59. (2)	60. (3)	61. (2)	62. (1)	63. (2)	64. (1)
65. (3)	66. (4)	67. (3)	68. (3)	69. (2)	70. (2)	71. (2)	72. (3)	73. (2)	74. (1)
75. (2)	76. (1)	77. (4)	78. (1)	79. (4)	80. (2)	81. (1)	82. (4)	83. (2)	84. (1)
85. (4)	86. (1)	87. (3)	88. (1)	89. (2)	90. (3)				
Biology									
91. (1)	92. (1)	93. (1)	94. (4)	95. (4)	96. (3)	97. (1)	98. (1)	99. (3)	100. (2)
101. (2)	102. (2)	103. (2)	104. (3)	105. (2)	106. (1)	107. (4)	108. (1)	109. (2)	110. (1)
111. (2)	112. (2)	113. (2)	114. (3)	115. (3)	116. (1)	117. (4)	118. (2)	119. (1)	120. (4)
121. (3)	122. (2)	123. (2)	124. (4)	125. (1)	126. (4)	127. (3)	128. (2)	129. (1)	130. (1)
131. (1)	132. (4)	133. (4)	134. (4)	135. (2)	136. (4)	137. (2)	138. (1)	139. (2)	140. (1)
141. (4)	142. (3)	143. (4)	144. (2)	145. (2)	146. (1)	147. (1)	148. (1)	149. (4)	150 . (1)
151. (4)	152. (4)	153. (1)	154. (1)	155. (4)	156. (4)	157. (1)	158. (1)	159. (2)	160 . (2)
161. (4)	162. (1)	163. (1)	164. (3)	165. (1)	166. (2)	167. (1)	168. (3)	169. (3)	170. (1)
171. (4)	172. (4)	173. (4)	174. (2)	175. (4)	176. (4)	177. (3)	178. (3)	179. (1)	180. (4)