B022314(022)

B. Tech. (Third Semester) Examination, Nov.-Dec. 2020

(Computer Science and Engg. Branch)

DIGITAL ELECTRONICS and LOGIC DESIGN

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt all questions. Each question carries equal makers. Part (a) is compulsory and answer any two parts from (b), (c) and (d).

- - B022314(022)

(b) Solve the following using K-map:

- (i) $F1(A, B, C, D) = \Sigma m(1, 5, 6, 12, 13, 14) + \Sigma d(24)$
- (ii) $F2(A, B, C, D) = \Pi m(0, 1, 2, 4, 6, 8, 9, 11, 12)$
- (c) Simplify the following using Tabulation method: 8

 $F(A, B, C, D) = \Sigma m(1, 3, 5, 8, 9, 11, 15) + d(2, 13)$

- (d) The message below coded in the 7-bit hamming code is transmitted through channel. Decode the message assuming that single error occurred in each code word.
 - (i) 1001001
 - (ii) 0111001
 - (iii) 1110110
 - (iv) 0011011

Find the correct code in each case.

8

- 2. (a) Compare RTL, DTL, TTL and ECL on the basis of: 4
 - (i) Component used
 - (ii) Fan out a label of show sample sums in
 - (iii) Propagation delay and
 - (iv) Application and approximately all solves and all solves and all solves are solves are solves and all solves are sol

- (b) With the help of neat diagram, explain the working of:
 - (i) CMOS inverter and
 - (ii) CMOS NOR gate

8

8

- (c) Explain the working of TTL circuit with Totem pole output configuration.
- (d) Implement the fgollowing Boolean function using :
 - (i) PLA
 - (ii) PLA

$$F1(A, B, C) = \Sigma m(3, 4, 5, 6, 7)$$

$$F2(A, B, C) = \Sigma m(2, 5, 6, 7)$$

3. (a) Fill in the blanks:

-

- (i) consists of logic gates where output at any instant is determined by present combination of input as well as previous state of output.
- (ii)is an example of combinational circuit.
- (iii) Logical expression of carry out in half adder is

[4]

		(iv) Minimum number of NAND gates required for designing Half Adder is	
	(b)	Design 4-bit look ahead carry adder with suitable diagram.	8
	(c)	Design full adder using 4: 1 MUX.	8
	(d)	Design and implement comparator.	8
1.	(a)	Convert SR flip-flop to T flip-flop.	4
	(b)	What is race around condition for J-K flip-flop? How it can be avoided in master slave flip-flop?	8
	(c)	Design and implement 4 bit synchronous up counter.	8
	(d)	Design Serial in Serial Out (SISO) and parallel in Serial Out (PISO) shift register using D flip-flop.	. 8
5.	(a)	Discuss the various operators used in VHDL.	4
	(b)	Write short notes on Mealy and Moore machine.	8
	(c)	Write a program in VHDL using data flow modelling for half adder.	8
		oblan Hjul je zam gjunje to mjessom, ov lezdem 1 (al)	
	(d)	Write a program in VHDL using behavioural modelling for AND gate.	8

B022314(022)

100]

Printed Pages - 3

Roll No.:

F

B022314(022)

B. Tech. (Third Semester) Examination,
Nov.-Dec. 2021

(AICTE Scheme)

(CSE Engg. Branch)

DIGITAL ELECTRONICS & LOGIC DESIGN

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Part (a) is compulsory and attempt any two parts from (b), (c) and (d).

Unit-I

1. (a) Convert 10101001 in Gray code.

4

[2]

	(b) State and prove Demorgan's law.	8
	(c) Describe NAND and NOR gate as universal gate.	8
	(d) For 7 bit hamming code received code is 1111101 find error use even parity.	8
	Unit-II	
2.	(a) Define Fan in and Fan out.	4
	(b) Describe CMOS NAND gate.	8
	(c) Describe CMOS NOR gate.	8
	(d) Describe TTL open collector circuit.	8
	Unit-III	
3.	(a) Define the term Combinational Circuit.	4
	(b) Describe full adder circuit with diagram and truth table.	8
	(c) Design 4×16 decoder using 3×8 decoder.	8
	(d) Implement the Boolean expression $F(A, B, C) = \sum m(0, 2, 5, 6)$	
	1-60: 1	8
	using 4: 1 multiplexer.	O

[3]

Unit-IV

4.	(a) Define sequential circuits.	4
	(b) Describe S-R flip-flop with diagram.	8
	(c) What is race around condition and also describe master slave flip-flop?	8
	(d) Describe how to convert D flip flop into T flip-flop.	8
	Unit-V	
5.	(a) Define state diagram.	4
	(b) Describe Mealy State Machine.	8
	(c) Describe Moore State Machine.	8
	(d)Describe basic components of ASM charts.	8

Printed Pages – 4

Roll No.:

B022314(022)

B. Tech. (Third Semester) Examination, April-May 2021 2022

(AICTE Scheme)

(CSE Engg. Branch)

DIGITAL ELECTRONICS & LOGIC DESIGN

Time Allowed: Three hours

Maximum Marks: 100

Minimum Rassing Marks - 35

Note: Part (a) is compulsory and attempt any two parts from (b), (c) and (d).

Unit-I

1. (a) Explain laws of Boolean Algebra.

4

(b)	Minimize the following expression using k-map and
	realize using logic gates.
	(i) $F1(w, x, y, z) = $

8

8

(i)
$$F1(w, x, y, z) = \sum m(0, 3, 4, 8, 10, 12, 15) + d(1, 13)$$

(ii) F2 (A, B, C, D)
=
$$\pi$$
 m (2, 4, 5, 6, 8, 9, 12, 13, 15)

- (c) The Hamming code 101101101 is received. Correct it if any errors. Odd parity is used.
- (d) Minimize the following digital function using Mc_Cluskey method.

$$F(P, Q, R, S) = \sum (0, 1, 5, 8, 9, 10, 11, 13) + \sum d(4, 12, 14)$$

Unit-H why many many

- 2. (a) Write short notes on:
 - (i) Noise margin
 - (ii) Propagation Delay

(b) Compare the performance TTL, CMOS and ECL logic.

(c) Implement following function using PLA. 8 $F1(A, B, C) = \sum_{n} m(4, 5, 7)$

$$F2(A, B, C) = \sum m(4, 5, 7)$$

(d) Implement following function using suitable PAL. $W(A, B, C, D) = \sum m (1, 3, 4, 6, 9, 11, 12, 14)$ $X(A, B, C, D) = \sum m (1, 3, 4, 6, 9, 11, 12, 14, 15)$ $y(A, B, C, D) = \sum m (0, 2, 4, 6, 8, 12)$ $z(A, B, C, D) = \sum m (2, 3, 8, 9, 12, 13)$

Unit-III

3. (a) What is Multiplexer? Explain with example.

(b) Design BCD adder to add to BCD number.

(c) Give a block diagram of 4 × 16 Decoder using 3 × 8 decoders and explain its working.

(d) Design full adder using multiplexer.

Unit-IV

4. (a) What is flip flop?

4

PTO

4

8

8

8

8

	(b)	What is Shift Register? Explain application of Shift	
		Register.	8
	(c)	Design mod 5 synchronous counter.	8
	(d)	Design UP/DOWN ripple counter.	8
5.	(a)	Unit-V Write difference between Moore and Mealy Machine.	4
	(b)	Explain lexical element and data object types in VHDL.	8
	(c)	Write syntax for: (i) entity and (ii) architecture in VHDL	3
	(d)	Explain Mealy machine with example.	8
		(c) Give a block diagram of 4 ~ 16 Decodur using 3 decoders and expluin associating.	
		(d) Design fidhadder using muliipleses: . Unit-IV	