Discrete Mathematics

the halting problem, countable, Schröder-Bernstein theorem the sum rule, the product rule, the bijection rule permutations of set and multiset, T-Route

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

The Halting Problem

HALT $(P, I) = \{ \text{"halts"} & \text{if } P(I) \text{ halts;} \\ \text{"loops for ever"} & \text{if } P(I) \text{ loops for ever.} \}$

• *P*: a program; *I*: an input to the program *P*.

QUESTION: Is there a Turing machine **HALT**?

- Turing machine: can be represented as an element of $\{0,1\}^*$
 - $\{0,1\}^* = \bigcup_{n\geq 0} \{0,1\}^n$: the set of all finite bit strings

THEOREM: There is no Turing machine **HALT**.

- Assume there is a Turing machine **HALT**
- Define a new Turing machine **Turing**(*P*) that runs on any Turing machine *P*
- If HALT(P, P) = "halts", loops forever
 If HALT(P, P) = "loops forever", halts
- Turing(Turing) loops forever⇒ HALT(Turing, Turing) = "halts"⇒Turing(Turing) halts
 - Turing(Turing) halts \Rightarrow HALT(Turing, Turing) = "loops forever"⇒**Turing(Turing)** loops forever

Countable and Uncountable

DEFINITION: A set *A* is **countable** if $|A| < \infty$ or $|A| = |\mathbb{Z}^+|$; otherwise, it is said to be **uncountable**?

• countably infinite: $|A| = |\mathbb{Z}^+|$ 可到天宪集合

EXAMPLE:

- Z⁻, Z⁺, Z, Q⁻, Q⁺, Q, N, N × N, are countable
- \mathbb{R}^- , \mathbb{R}^+ , \mathbb{R} , (0,1), [0,1], (0,1], [0,1), (a,b), [a,b] are uncountable
- **THEOREM:** A set *A* is countably infinite iff its elements can be arranged as a sequence $a_1, a_2, ...$
 - If A is countably infinite, then there is a bijection $f: \mathbb{Z}^+ \to A$ • $a_i = f(i)$ for every i = 1,2,3...
 - If $A = \{a_1, a_2, ...\}$, then the $f: \mathbb{Z}^+ \to A$ defined by $f(i) = a_i$ is a bijection

Countable and Uncountable

THEOREM: If *A* is countably infinite, then any infinite subset $X \subseteq A$ is countable.

• Let $A = \{a_1, a_2, ...\}$. Then $X = \{a_{i_1}, a_{i_2}, ...\}$ X is countable

THEOREM: If *A* is uncountable, then any super set $X \supseteq A$ is uncountable.

If X is countable, then A is finite or countably infinite \times

THEOREM: If A, B are countably infinite, then so is $A \cup B$

- $A = \{a_1, a_2, a_3, ...\}, B = \{b_1, b_2, b_3, ...\}$
- A ∪ B = {a₁, b₁, a₂, b₂, a₃, b₃, ...} //no elements will be included twice
 application: the set of irrational numbers is uncountable

THEOREM: If A, B are countably infinite, then so is $A \times B$

- $A = \{a_1, a_2, a_3, ...\}, B = \{b_1, b_2, b_3, ...\}$
- $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_1, b_3), (a_2, b_2), (a_3, b_1), (a_1, b_4), \dots \}$

Schröder-Bernstein Theorem

(2+ \S(w)) NH> =n

月一日单的

PIAATBASH

QUESTION: How to compare the cardinality of sets in general?

- $|\mathbb{Z}^-| = |\mathbb{Z}^+| = |\mathbb{Z}| = |\mathbb{Q}^-| = |\mathbb{Q}^+| = |\mathbb{Q}| = |\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$ • $|\mathbb{R}^-| = |\mathbb{R}^+| = |\mathbb{R}| = |(0,1)| = |[0,1]| = |(0,1)| = |[0,1)|$
- $|\mathbb{Z}^+| \neq |(0,1)|$: In fact, we have that $|\mathbb{Z}^+| < |(0,1)| = |\mathbb{R}|$
- $|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)|$
- $|\mathbb{R}|$? $|\mathcal{P}(\mathbb{Z}^+)|$: which set has more elements? $|\mathcal{Z}^+| \neq |\mathcal{V}^{(1)}|$

THEOREM: If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

EXAMPLE: Show that |(0,1)| = |[0,1)|

- $|(0,1)| \le |[0,1)|$
 - $f: (0,1) \to [0,1)$ $x \to \frac{x}{2}$ is injective
- $|[0,1)| \le |(0,1)|$
 - $g: [0,1) \to (0,1) \ x \to \frac{x}{4} + \frac{1}{2}$ is injective

Schröder-Bernstein Theorem

EXAMPLE:
$$|\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = (|\mathbb{R}|)$$

- $|\mathcal{P}(\mathbb{Z}^+)| \leq |[0,1)|$
 - $f: \mathcal{P}(\mathbb{Z}^+) \to [0,1)$ $\{a_1, a_2, ...\} \mapsto 0. \circ \cdot 1_{a_1} \circ \cdot 1_{a_2} \cdots$ is an injection.
- $|[0,1)| \le |\mathcal{P}(\mathbb{Z}^+)|$
- $| [0,1) | \le | \mathcal{P}(\mathbb{Z}^{\top}) |$ $\forall x \in [0,1), \ x = 0. \ r_1 r_2 \cdots \ (r_1, r_2, \cdots \in \{0, ..., 9\}, \ \text{no} \ \dot{9})$

 - x has a binary representation $x = 0.b_1b_2\cdots$
 - $f: [0,1) \to \mathcal{P}(\mathbb{Z}^+) \ x \mapsto \{i: i \in \mathbb{Z}^+ \land b_i = 1\} \text{ is an injection }$

THEOREM:
$$|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = |(0,1)| = |\mathbb{R}|$$
The continuum hypothesis: There is no cardinal number

between \aleph_0 and c, i.e., there is no set A s.t. $\aleph_0 < |A| < c$.

$$|Z^{\dagger}| < (|Z^{\dagger}|) | < (PCP(2^{\dagger})) |$$

Basic Rules of Counting

DEFINITION: Let *A* be a finite set. A **partition** of set *A* is a family $\{A_1, A_2, ..., A_k\}$ of nonempty subsets of A such that

• $\bigcup_{i=1}^k A_i = A \text{ and } A_i \cap A_j = \emptyset \text{ for all } i, j \in [k] \text{ with } i \neq j.$

The Sum Rule: Let A be a finite set. Let $\{A_1, A_2, ..., A_k\}$ be a partition of A. Then $|A| = |A_1| + |A_2| + \cdots + |A_k|$.

The Product Rule: Let $A_1, A_2, ..., A_k$ be finite sets. Then

$$|A_1 \times A_2 \times \cdots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|.$$

 $|A_1 \times A_2 \times \cdots \times A_k| = |A_1| \times |A_2| \times \cdots \times |A_k|.$ **The Bijection Rule:** Let *A* and *B* be two finite sets. If there is a bijection $f: A \rightarrow B$, then |A| = |B|.

Basic Rules of Counting

EXAMPLE: Find # of all/composite divisors of $N = 2^{100} \times 3^{200}$.

- $A = \{n \in \mathbb{Z}^+ : n | N\}$: the # of all divisors of N is |A|
 - n|N must have the form $n=2^a3^b$, $0 \le a \le 100$, $0 \le b \le 200$
 - |A| = # of ways of constructing an integer of the form $2^a 3^b$
 - $D_1 = \{2^0, 2^1, ..., 2^{100}\}; D_2 = \{3^0, 3^1, ..., 3^{200}\}$
 - $|A| = |D_1 \times D_2| = |D_1| \times |D_2| = 101 \times 201$
- $A_1 = \{n \in A : n \text{ is prime}\}; A_2 = \{n \in A : n \text{ is composite}\}; A_3 = \{1\}$
 - # of composite divisors of N is $|A_2|$
 - $\{A_1, A_2, A_3\}$ is a partition of A.
 - $|A| = |A_1| + |A_2| + |A_3|$
 - $|A_2| = |A| |A_1| |A_3|$
 - $|A_1| = 2$, $|A_3| = 1$
 - $|A_2| = 101 \times 201 2 1 = 20298$

Permutations of Set

- **DEFINITION:** Let $A = \{a_1, ..., a_n\}$ and $r \in [n]$. An r-permutation of A is a sequence of r distinct elements of A.
 - An *n*-permutation of *A* is simply called a **permutation** of *A*.
 - The 2-permutations of $A = \{1,2,3\}$ are 1,2; 1,3; 2,1; 2,3; 3,1; 3,2
- **THEOREM:** An *n*-element set has P(n,r) = n!/(n-r)! Different *r*-permutations.
- **DEFINITION:** Let $A = \{a_1, ..., a_n\}$ and $r \in [n]$. An r-permutation of A with repetition is a sequence of r elements of A.
 - The 2-permutations of $A = \{1,2,3\}$ with repetition are
 - 1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3
- **THEOREM:** An n-element set has n^r different r-permutations with repetition.

Multiset

多重集(元素可重

DEFINITION: A **multiset** is a collection of elements which are not necessarily different from each other.

- An element $x \in A$ has **multiplicity** m if it appears m times in A.
- A multiset A is called an **n-multiset** if it has n elements.
- $A = \{n_1 \cdot a_1, n_2 \cdot a_2, ..., n_k \cdot a_k\}$: an $(n_1 + n_2 + \cdots + n_k)$ -multiset
 - a_i has multiplicity n_i for all $i \in [n]$.
- $T = \{t_1 \cdot a_1, t_2 \cdot a_2, ..., t_k \cdot a_k\}$ is called an **r-subset** of A if
 - $0 \le t_i \le n_i$ for every $i \in [k]$, and
 - $t_1 + t_2 + \cdots + t_k = r$

EXAMPLE: $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c, 100 \cdot z\}, T = \{1 \cdot b, 98 \cdot z\}$

- A is a 106-multiset; the multiplicities of a, b, c, z are 1,2,3,100, resp.
- *T* is a 99-subset of *A*

Permutations of Multiset

DEFINITION: Let $A = \{n_1 \cdot a_1, ..., n_k \cdot a_k\}$ be an n-multiset. A **permutation** of A is a sequence $x_1, x_2, ..., x_n$ of n elements, where a_i appears exactly n_i times for every $i \in [k]$.

- r-permutation of A: a permutation of some r-subset of A

 - a, b, c, b, c, c is a permutation of *A*; bcb is a 3-permutation of *A*;

THEOREM: Let $A = \{n_1 \cdot a_1, n_2 \cdot a_2, ..., n_k \cdot a_k\}$ be a multiset.

Then *A* has exactly $\frac{(n_1 + n_2 + \cdots + n_k)!}{n_1! n_2! \cdots n_k!}$ permutations.

REMARK: Let $A = \{a_1, a_2, ..., a_n\}$ be a set of n elements.

- r-permutation of A w/o repetition: r-permutation of $\{1 \cdot a_1, ..., 1 \cdot a_n\}$.
- *r*-permutation of *A* with repetition: *r*-permutation of $\{\infty \cdot a_1, ..., \infty \cdot a_n\}$.

Shortest Path

DEFINITION: A $p \times q$ -grid is a collection of pq squares of side length 1, organized as a rectangle of side length p and q.

THEOREM: # of shortest paths from (0,0) to (p,q) is $\frac{(p+q)!}{p!q!}$.

- Let $A = \{p \rightarrow , q \uparrow\}$ be a (p + q)-multiset.
- # of shortest paths=# of permutations of *A*.

T-Route The

DEFINITION: Let A = (x, y), $B \in \mathbb{Z}^2$. //integral points

- A **T-Step** at *A* is a segment from *A* to (x + 1, y + 1) or (x + 1, y 1).
- A **T-Route** from *A* to *B* is a route where each step is a T-step.

