

Funciones Trigonométricas

1 Representación polar de un número complejo

La función $\varphi:\mathbb{C}\to\mathbb{R}^2$ dada por $\varphi(z)=(\mathrm{Re}\{z\},\mathrm{Im}\{z\})$ es una biyección entre el conjunto de los números complejos y el plano cartesiano. Entonces todo número complejo se puede escribir en forma binomial z=a+bi o como un par ordenado z=(a,b).

DEFINICIÓN (Forma Polar)

Dada $z=a+bi\in\mathbb{C}$ la forma polar de z es

$$z = r(\cos\theta + i\sin\theta) ,$$

donde r=|z| es el módulo de z y θ es la medida del ángulo dado por la ecuación

$$\tan \theta = \frac{b}{a}$$
.

El ángulo θ es llamado el argumento de z.

Si se toma $\tan\theta=b/a$, se obtiene que $\theta=\tan^{-1}(b/a)$, $a\neq 0$. Como la imagen de \tan^{-1} es $-\pi/2<\theta<\pi/2$, entonces el valor de θ que se obtiene de la ecuación anterior no representa ningún punto a la izquierda del eje y. Existen varias formas para salir de este embrollo. Una forma es utilizar la fórmula

$$\theta = \begin{cases} \tan^{-1}\left(\frac{b}{a}\right) & \text{si } (a,b) \in I \text{ o } IV \text{ cuadrante} \\ \tan^{-1}\left(\frac{b}{a}\right) + \pi & \text{si } (a,b) \in II \text{ o } III \text{ cuadrante} \\ \\ \frac{\pi}{2} & \text{si } a = 0 \text{ y } b > 0 \\ \\ -\frac{\pi}{2} & \text{si } a = 0 \text{ y } b < 0 \end{cases}$$

Notación: Abreviamos la función $\cos \theta + i \sin \theta$ por $\operatorname{cis}(\theta)$.

EJEMPLO 1 . Escriba en forma polar los número complejos

a)
$$z_1 = 1 + i$$
 b) $z_2 = -1 + \sqrt{3}i$ c) $z_3 = -4\sqrt{3} - 4i$.

PROPOSICIÓN 1 Sean $z_1 = r_1 \text{cis}(\theta_1)$, $z_2 = r_2 \text{cis}(\theta_2)$. Entonces,

$$z_1 z_2 = r_1 r_2 \mathsf{cis}(\theta_1 + \theta_2) \ .$$

SEMANA 9 Pág. 1 - 6

Por inducción tomando $z_k = r_k \operatorname{cis}(\theta_k)$, $1 \leqslant k \leqslant n$.

$$z_1 z_2 \cdots z_n = r_1 r_2 \cdots r_n \operatorname{cis}(\theta_1 + \cdots + \theta_n)$$

En particular

$$z^n = r^n \operatorname{cis}(n\theta) ,$$

para todo entero $n \geqslant 0$. Más aún, si $z \neq 0$, $z \cdot [r^{-1} \operatorname{cis}(-\theta)] = 1$.

Como un caso especial de la fórmula de arriba se tiene la

TEOREMA 1 (Teorema de Moivre)

Para todo $n \in \mathbb{N}$ se tiene

$$(\cos(\theta) + i \sin(\theta))^n = \cos(n\theta) + i \sin(n\theta).$$

EJEMPLO 2 . Calcular z^{10} donde z = 1 + i.

Ahora consideraremos el siguiente problema: Para un número complejo dadao $a \neq 0$ y un entero $n \geqslant 2$, ¿podemos hallar un número complejo z que satisfaga $z^n = a$? ¿Cuántos z se pueden hallar?

DEFINICIÓN (Raíz *n*-ésima)

La raíz n-ésima de un número complejo ω es un número complejo z tal que $z^n = \omega$.

EJEMPLO 3 . Determine las raíces cúbicas de 1. [La idea es que la encuentren mendiante factorización].

TEOREMA 2 Sea $\omega=r\mathrm{cis}(\theta).$ Entonces ω tiene n raíces n-ésimas distintas y están dadas por

$$z_k = \sqrt[n]{r} \operatorname{cis}\left(\frac{\theta + 2k\pi}{n}\right) ,$$

para $k = 0, 1, 2, \dots, n - 1$.

EJEMPLO 4 . Encontrar las soluciones de la ecuación $z^3 + 27 = 0$

EJEMPLO 5 . Resolver la ecuación $x^6-3x^5-4x^4+16x^2-48x-64=0$, sabiendo que -1 y 4 son raíces.

SEMANA 9 Pág. 2 - 6

2 Inversas de las funciones trigonométricas

2.1 Función inversa del seno

La función $y=\sin(x)$ no es inyectiva en $\mathbb R$. Podemos restringir el dominio a $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ para obtener una función inyectiva con recorrido [-1,1].

Definimos la función inversa:

$$\arcsin(y) = x \iff (\sin(x) = y) \land \left(-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}\right)$$

la gráfica de la función inversa es

EJEMPLO 6 Encuentre el valor de:

1.
$$\arcsin\left(\sin\left(\frac{\pi}{3}\right)\right)$$

2.
$$\arcsin\left(\sin\left(\frac{2\pi}{3}\right)\right)$$

2.2 Función inversa del coseno

Para obtener la inversa de la función coseno se restringe el dominio al intervalo $[0,\pi]$

SEMANA 9 Pág. 3 - 6

con lo cual se puede definir

$$arc cos(y) = x \iff (cos(x) = y) \land (0 \leqslant x \leqslant \pi)$$

la gráfica de la función inversa es

2.3 Función inversa de tangente

Para obtener la inversa, la función tangente se restringe el dominio $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ con lo cual se define

$$\arctan(y) = x \Longleftrightarrow (\tan(x) = y) \land \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$$

EJEMPLO 7 Expresar en términos de x la función $\cos(\arctan(x))$

EJEMPLO 8 Expresar en términos de x la función sen(2 arc cos(x)).

EJEMPLO 9 Demostrar que

$$\arcsin(x) + \arccos(x) = \frac{\pi}{2}$$
.

3 Ecuaciones Trigonométricas

Son ecuaciones donde las variables o incógnitas solo aparecen en los argumentos de las funciones trigonométricas. Debido a la periodicidad de las funciones trigonométricas, si una

SEMANA 9 Pág. 4 - 6

ecuación tiene una solución x_0 , entonces tiene infinitas soluciones $x_0 + 2\pi k$ con $k \in \mathbb{Z}$. Por lo que basta encontrar las soluciones de una ecuación trigonométrica en el intervalo $[0,2\pi)$. Estas soluciones se llaman soluciones básicas.

Usando la circunferencia unitaria se deducen las soluciones de la ecuación sen(x) = a y cos(x) = b con $a, b \in [-1, 1]$.

■ Conjunto solución de sen(x) = a es $S = \{k\pi + (-1)^k\alpha \mid k \in \mathbb{Z}\}$ donde α es una solución básica de sen(x) = a que está en el primer o cuarto cuadrante.

■ Conjunto solución de $\cos(x) = b$ es $S = \{2k\pi \pm \alpha \mid k \in \mathbb{Z}\}$ donde α es una solución básica de $\cos(x) = b$ que está en el primer o segundo cuadrante.

■ Conjunto solución de $\tan(x) = c$ es $S = \{k\pi + \gamma \mid k \in \mathbb{Z}\}$ donde γ es una solución básica de $\tan(x) = c$ que está en el primer o cuarto cuadrante.

EJEMPLO 10 Determine las soluciones de las ecuaciones:

- = sen(x) = sen(2x)
- \bullet sen $(x) = \cos(x)$
- $(1 \tan(x))(\sin(2x) + 1) = (1 + \tan(x)).$

SEMANA 9 Pág. 5 - 6

4 Guía de Ejercicios

- 1. Encuentre todas las soluciones complejas de la ecuación $x^8-16=0$ y escríbalas en la forma a+bi.
- 2. Encuentre todos los valores de $x \in [0, \pi]$ que satisfacen la ecuación

$$sen(3x) - sen(5x) = 0.$$

R:
$$\left\{0, \pi, \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}\right\}$$
.

3. Demuestre que

$$\arctan(2) + \arctan(5) + \arctan(8) = \frac{5\pi}{4}$$
.

4. Resuelva la siguiente ecuación trigonométrica

$$\sec^{4}(x) + \cos^{4}(x) = \frac{5}{8} .$$

R:
$$x = (-1)^k \left(\pm \frac{\pi}{3} \right) + k\pi$$
, $x = (-1)^k \left(\pm \frac{\pi}{6} \right) + k\pi$, $k \in \mathbb{Z}$.

5. Encuentre los valores de $n \in \mathbb{N}$ que resuelven la ecuación

$$\left(\frac{\sqrt{3}-i}{2}\right)^{2n} - \left(\frac{\sqrt{3}+i}{2}\right)^{2n} = i\sqrt{3}.$$

R:
$$n = 3k + (-1)^k$$
, $k \in \mathbb{N} \cup \{0\}$

- 6. Resuelva la ecuación $2x^4+x^2-x+1=0$, sabiendo que una de sus raíces es la raíz cúbica de la unidad ω . R: $-\frac{1}{2}\pm\frac{\sqrt{3}}{2}i$, $\frac{1}{2}(1\pm i)$.
- 7. Resolver la ecuación $3\tan^2(x) + 5 = \frac{7}{\cos(x)}$.

$$\mathsf{R} \colon \Big\{ 2k\pi \pm \frac{\pi}{3} \mid k \in \mathbb{Z} \Big\}.$$

- 8. Sea $z \in \mathbb{C}$ tal que $|z| \neq 1$ y considere $n \in \mathbb{N}$. Probar que $\frac{1}{1+z^n} + \frac{1}{1+(\overline{z})^n}$ es un número real.
- 9. Resuelva la ecuación $z^4 + z^3 + z^2 + z + 1 = 0$.

R: 1,
$$cis(2k\pi/5)$$
, $k = 1, 2, 3, 4$

SEMANA 9 Pág. 6 - 6