CSCI 5541: Homework 3

Manpreet Singh

sing1174@umn.edu

1 Generative Classifier

1.1 Encoding Type:

UTF-8 encoding type was chosen its the recommended one and supports a wider range of characters.

1.2 Information in the Model:

The authors' generative models leverages NLTK's word_tokenize function to convert sentences into sequences of words, which can then be processed for n-gram modeling.

Padding with NLTK function **pad_both_ends** adds special tokens to the beginning and end of sequences to ensure that all sequences are of a uniform length and that the model can learn context better.

The function **padded_everygram_pipeline**, generates all possible n-grams from the padded tokenized sentences, enabling the author model to learn the likelihood of word combinations.

Each author model is designed to work with unigrams, bigrams as well as trigrams using (n=3) by default. However, it can be easily adjusted to n-grams for (n=2 or n=1) as well. The models capture the conditional probabilities of sequences of words based on the specified n-gram size.

1.3 Smoothing/Interpolation/Backoff:

Initially, **MLE** author models were tested on the development set, however, the accuracies on dev set were below random chance (i.e. below 25%). So a number of smoothing, interpolation and backoff models (Toolkit, 2024b) were trained and tested.

• Laplace Smoothing: adds one to the count of each n-gram, ensuring that no n-gram has a probability of zero, which helps avoid undefined probabilities.

- Lidstone Smoothing: allows for a customizable smoothing parameter (gamma). In the code, it's initialized with a gamma value of 0.05.
- Witten-Bell Interpolation: this combines counts from observed and unobserved events based on their context.
- Stupid Backoff: backs off to lower-order ngrams when model encounters an unseen ngrams

1.4 Results in development mode

The table below shows the results on development set of each of the four author models. Results from the four different types of generative models are reported:

Author	Laplace	Lidstone	Witten-	Stupid
			Bell	Back-
				off
Austen	79.85%	69.31%	53.85%	51.23%
Dickens	57.12%	67.58%	58.65%	55.27%
Tolstoy	54.11%	58.87%	54.78%	53.13%
Wilde	50.21%	55.73%	51.73%	50.43%

Table 1: Accuracy results of author models on the development set

1.5 Top 5 representative features for each N-gram model

Table 2 shows the top 5 most representative features of the **StupidBackoff** author models. The top 5 n-grams along with the model's probability scores are displayed in the table.

1.6 Failure Cases for generative models

Author classification task: A few failure cases for the Laplace n-gram model are shown in Table 3. The failure cases indicate that the model

Author	Features	Probability
		Score
Austen	('the', 'night', 'be-	1.0
	fore')	
	('fall', 'in', 'love')	1.0
	('i', 'don', "')	1.0
	('don', "', 't')	1.0
	(',', 'remember', ',')	1.0
Dickens	('fall', 'in', 'love')	1.0
	('i', 'don', "')	1.0
	('don', "', 't')	1.0
	(',', 'remember', ',')	1.0
	("', 'it', 'was')	1.0
Tolstoy	('i', 'don', "')	1.0
	('don', "', 't')	1.0
	('minister', 'and',	1.0
	'his')	
	('`', 'i', "')	1.0
	('can', "', 't')	1.0
Wilde	('curtain', 'was', 'ly-	1.0
	ing')	
	('lying', '.', 'he')	1.0
	('how', 'you', 'men')	1.0
	('can', 'fall', 'in')	1.0
	('fall', 'in', 'love')	1.0

Table 2: Top 5 features of author models with probability scores for each n-gram.

Sentence	Predicted	True
	Author	Author
"To whom?"	Tolstoy	Wilde
'I know that, but you	Dickens	Wilde
might tell me.'		
must be a good-	Austen	Wilde
looking chap."		
"Yes; but I can't help it.	Wilde	Tolstoy
You don't know what I		
have suffered waiting		
little, I mean a	Austen	Tolstoy
good deal, a great		
deal—forty three		
thousand."		

Table 3: Failure cases for author prediction Laplace n-gram model

misclassifies sentences particularly when dealing with common expressions or short sentences. Sentences that lack context, distinctiveness or share similar styles across authors result in higher misclassification rates, as seen in Wilde being confused with Tolstoy and Austen.

2 Discriminative Classifier

The primary objective of the Discriminative Authorship Classifier is to accurately predict the author of a given sentence among Austen, Dickens, Tolstoy or Wilde. Thus we have a total of **k=4 labels** due the above four authors present. **Huggingface pretrained tokenizer DistilBERT** (Sanh et al., 2020) has been finetuned on the author's text files to get the sequence classification model.

2.1 Data Preparation

For preparing the train and evaluation dataset, first we map the author labels from string to numeric values. Then utilizing sklearn's train_test_split, the labelled dataset is split into train set with 90% data and eval set with the remaining 10%.

To prepare the text data for input into the model, the sentences are tokenized using pre-trained HuggingFace tokenizer i.e **DistilBERT**. Finally, the tokenized datasets are converted into the appropriate format for PyTorch, specifying the columns to be used as input (input_ids, attention_mask) and output (label).

Metric	Value
Number of examples	5600
Batch size	16
Evaluation loss	0.6958
Evaluation accuracy	71.32%
Evaluation runtime	32.47 seconds
Evaluation samples per second	172.49
Evaluation steps per second	10.78
Epoch	1.0

Table 4: Development Set Evaluation Results.

2.2 Training with Huggingface Trainer

For training the discriminative classifier on author prediction, the following hyperparameters were employed.

• Batch Size for train and eval set: 16

• Learning Rate: 3e-5

• Optimizer: AdamW

• Weight Decay: 0.01

• Number of epochs: 1

• Learning rate scheduler: linear

2.3 Results in development mode

In the development mode, there were 5600 samples (10%) of entire dataset in evaluation set, and with 1 epoch of training the evaluation accuracy was 71.32%.

2.4 Analysis of Failure cases - Discriminative model

Table 5 below shows a few examples of incorrect author predictions by the Discriminative classifier.

The misclassifications highlights a few key issues with the discriminative classifier's performance in predicting the correct author:

- Inability to Capture Nuances: Model struggles to grasp the subtle differences in writing styles and themes among the authors. For instance, Jane Austen's commentary on social norms is often mistaken for the more dramatic tones of Charles Dickens.
- Short Inputs and Ambiguity: Short sentences can pose significant challenges, particularly when it lacks context. A phrase like "shocking affair" could fit various narratives depending on its surrounding content.

Input Text	True	Predicted
	Author	Author
beau, Nancy,' my cousin	Austen	Dickens
said t'other day, when		
she saw him crossing the		
shocking affair.	Austen	Tolstoy
""We shall have to hurry,"	Dickens	Tolstoy
he said, "the train won't		
wait."		
"Is there any other man	Wilde	Austen
like him?" she asked with		
a smirk.		
"She had been silent,	Tolstoy	Dickens
but not because she was		
afraid."		
His health was failing,	Tolstoy	Austen
and every day seemed		
longer than the last.		
""You must marry her,	Dickens	Austen
there is no other way."		
""We are none of us per-	Dickens	Tolstoy
fect, sir, but we do our		
best."		
"He was a strange, lonely	Wilde	Dickens
man, with no desire to fit		
in with society."		

Table 5: Failure Cases for Author Prediction by Discriminative classifier

• Contextual Overlap: Many classic authors explore similar linguistic themes, such as love, morality, and society and the model struggles to distinguish between them.

2.5 Discriminative models analysis

Discriminative models focus exclusively on learning the **conditional probability** P(Y|X) which directly predicts the label Y given the input features X. These models emphasize the decision boundary between classes rather than the underlying data distribution.

Few examples of success cases for both generative and discriminative models are shown in Tables 6 and 7.

3 Acknowledgements

I used insights from ChatGPT (OpenAI, 2024), NLTK libraries (Toolkit, 2024b), (Toolkit, 2024a) and other resources referenced below. I also discussed some basic questions about this homework,

Sentence	Predicted	True
	Author	Author
cast for the girls' parts,	wilde	wilde
and when As You Like It		
was produced he		
"If you are refusing for	tolstoy	tolstoy
my sake, I am afraid that		
I"		
of respectability, unaf-	dickens	dickens
fected by the east wind of		
January, and not		
and the interesting em-	austen	austen
ployment had followed,		
of reckoning up exactly		

Table 6: Success cases for NLTK Author Models

Sentence	Predicted	True
	Author	Author
money matter? Love is	wilde	wilde
more than money."		
"Where are you off to?	tolstoy	tolstoy
Stay a little longer," he		
said to Varenka.		
night sky, concentrated	dickens	dickens
into a faint hair-breadth		
line. So does a whole		
indeed, though my	austen	austen
mother's eyes are not so		
good as they were, she		
can		

Table 7: Success cases for Discriminative Model

with my classmate, *Sharan Rajamanoharan*, to better understand the project requirements.

References

OpenAI. 2024. Chatgpt: Artificial intelligence language model.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. *Preprint*, arXiv:1910.01108.

Natural Language Toolkit. 2024a. nltk api documentation. https://www.nltk.org/api/nltk.html. Accessed: 2024-10-08.

Natural Language Toolkit. 2024b. nltk.lm.smoothing documentation. https://www.nltk.org/api/nltk.lm.smoothing.html. Accessed: 2024-10-08.