Behaviour Planner

How to launch Behaviour Planner separately

roslaunch agv behaviour_planner_node.launch

Can just type "be" and (tab)(tab) to auto fill

Nodes

1. Publishers and Subscribers

(1) behaviour_planner_node.cpp

Subscribe to	Publish to
/odometry/filtered	/nav_cmd_vel
/output_path	/front_left_obs_topic
/desired_steering_angle	/front_right_obs_topic
/present_steering_angle	/back_left_obs_topic
/collision_detector	/back_right_obs_topic
/special_waypoint	/stopwall_marker (rviz)
/obstacles (3D LiDAR)	
/obstacles2 (Front 2D LiDAR)	
/obstacles3 (Left & Right Back 2D LiDARs)	
/lane_info_topic	

(2) collision_detector.cpp

Subscribe to	Publish to
/odometry/filtered	/collision_detector
/obstacles (3D LiDAR)	/predicted_trajectory (rviz)
/obstacles2 (Front 2D LiDAR)	
/obstacles3 (Left & Right Back 2D LiDARs)	
/present_steering_angle	

(3) lane_publisher.cpp

Subscribe to	Publish to
/odometry/filtered	/lane_info_topic
/path_filename_topic	/left_boundary_xa_topic (rviz)
	/left_boundary_ax_topic (rviz)
	/right_boundary_topic (rviz)
	/centerline_topic (rviz)
	/waypoints_info_topic (rviz)
	/special_waypoint

2. Features

(1) behaviour_planner_node.cpp

- **Gets desired modes from** *collision_detector* **and** *special_waypoint* (red words are the name of the file)
- Publish final mode to /nav_cmd_vel (choose the most conservative mode -- smaller of collision_mode and waypoint_mode)
- **6 Possible States**: (Capital names are the constants in code, the number in bracket is the default value of the constants)
 - DYNAMIC_OBSTACLE_STOP
 - When dynamic obstacle is detected to collide with buggy in 2.5 5 s, and moving faster than buggy's current speed (Currently, we didn't differentiate the directions of moving, this can be of the future improvement)
 - **Brake**: DYNAMIC_OBSTACLE_BRAKE (0.7)
 - **Desired speed**: 0 m/s
 - Stop for 3 seconds before executing new path
 - STATIC_OBSTACLE_STOP
 - When static obstacle is detected in buggy's projected path and will collide with buggy in COLLISION_TIME_THRESHOLD (2.5 s)
 - **Brake**: STATIC_OBSTACLE_BRAKE (0.7)
 - **Desired speed**: 0 m/s
 - ENDPOINT_STOP
 - Nearing endpoint
 - **Brake**: ENDPOINT_BRAKE (0.5)
 - **Desired speed**: 0 m/s
 - SLOPE_SLOWDOWN (Only for slope down)
 - Slope detected
 - Brake: SLOPE_BRAKE (0)
 - **Desired speed**: SLOPE_SLOWDOWN_SPEED (1.2 m/s)
 - NORMAL_SLOWDOWN
 - A static obstacle is detected in buggy's projected path but will <u>not</u> collide with buggy in COLLISION_TIME_THRESHOLD (2.5 s), or
 - Turning point detected
 - **Desired speed**: NORMAL_SLOWDOWN_SPEED (1.5 m/s)

- NORMAL_SPEED
 - Desired speed: NORMAL_CRUISE_SPEED (2.5 m/s)

(2) collision_detector.cpp

Buggy's projected path:

Position of the buggy for the next 5 seconds is predicted using (current_x, current_y, current_speed, current_steering_angle)

- The desired_mode is initialized as NORMAL_SPEED
- Coordinates of the buggy's center of gravity (COG) and frontlink are determined by transforming the baselink coordinates (current_x, current_y)
- Project the path 5 seconds forward from the frontlink.
- Use front 2D and 3D LiDARs to detect obstacles and calculate the distance between each predicted point on the projected path with obstacles (considering a safety margin). If their distance is smaller than a set threshold, the collision_flag is set to true.
- If collision_flag is true and obstacles are static, desired_mode is updated to
 NORMAL_SLOWDOWN or STATIC_OBSTACLE_STOP based on the estimated time to collision
 (In the above image, 0 2.5 s is the "stopping" zone, 2.5 5 s is the "slowdown" zone).
- If the collision_flag is true and the maximum speed of the obstacles (speed detected by 2D and 3D LiDARs) is faster than buggy's current_speed and the time to collision is less than 2.5 s, desired_mode is updated to DYNAMIC_OBSTACLE_STOP.
- desired_mode is published to /collision_detector topic.

Back Left and Right 2D LiDARs

- The other two 2D LiDARs at the back are specially used for detecting "dynamic obstacles".
- The distance between the dynamic obstacles with the baselink of the buggy and center of gravity including a back safety margin) is calculated.
- If the collision_flag is *true* and the dynamic obstacle speed is faster than the buggy's current _speed, the desired_mode is updated to DYNAMIC_OBSTACLE_STOP.

Dynamic obstacle predicted path

- Assume the detected obstacle is moving in a straight line.
- Predict the path of the obstacle for the next 5 seconds and display on rviz.
- Future Improvement Part: This path can be used to improve the algorithm of dynamic obstacle detection and behaviour.

(3) lane_publisher.cpp

- Display lane boundaries on rviz
 - Read coordinates from lane files (in lanes folder):
 - left_boundary_xa
 - left_boundary_ax
 - right_boundary
- Publish lane info to /lane_info_topic
 - Lane info includes {x, y, dx, dy, s, left_width, right_width, far_right_width, special_point} for each waypoint
 - o Refer to Lanes Documentation for details
- Display waypoints on rviz
 - The red arrows indicate target heading of buggy
- Check for special waypoints
 - Detect if buggy has entered the radius of endpoint, turning or slope points (determine the distance between buggy's baselink and the special waypoint)
 - If endpoint detected, desired_mode is set to ENDPOINT_STOP
 - If turning point detected, desired_mode is set to NORMAL_SLOWDOWN
 - If slope point detected, desired_mode is set to SLOPE_SLOWDOWN
 - else, desired_mode is set to NORMAL_SPEED
 - desired_mode is published to /special_waypoint topic