UNIVERSIDADE FEDERAL DE VIÇOSA – UFV DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL CURSO DE ENGENHARIA ELÉTRICA

<u>1^a PROVA DE SISTEMAS DE CONTROLE I – ELT 330</u> VALOR: 35 PONTOS

(Prof. Tarcísio Pizziolo) **09/03/2021** - (PVANet – 09 às 12 h)

ALUNO:	Matrícula:	

QUESTÕES

1) (10 pts) Seja o sistema mecânico ilustrado na figura a seguir representando parte da suspensão de um automóvel considerando os parâmetros e as variáveis dados nas tabelas abaixo.

Parâmetro	Descrição	Valor	Variável	Descrição
Мс	1/4 da massa do chassi	253 kg	Xe(t)	relevo da estrada (m)
Ks	elasticidade da suspensão	8090 N/m	Xr(t)	deslocamento vertical do eixo da roda (m)
Bs	amortecimento da suspensão	1145 Ns/m		
Mr	massa da roda	26 kg	Xc(t)	deslocamento vertical do chassi (m)
Kr	elasticidade do pneu	102000 N/m	F(t)	força exercida pelo atuador hidráulico (N)

- a) (5 pts) Obter a função de transferência que determinar a resposta do sistema quando a saída for o deslocamento vertical do chassi.
- b) (5 pts) Obter a função de transferência que determinar a resposta do sistema quando a saída for o deslocamento vertical do eixo da roda.

2) (10 pts) Seja o sistema hidráulico abaixo. Considere $R_h = 1 \text{ s/m}^2 \text{ e } C_h = 1 \text{ m}^2$.

- a) (4 pts) Determine a Função de Transferência Qo(s)/Qi(s).
- b) (2 pts) Considerando o reservatório vazio em $t = 0^{-}$, determine a altura h do nível no reservatório quando é aplicada uma vazão q_i constante de valor igual a 1 m³/s em t = 3 s.
- c) (4 pts) Construa o circuito análogo elétrico para analogia vazão-corrente.

3) (10 pts) Determinar a função de transferência para o diagrama de blocos dado a seguir aplicando redução por álgebra de diagramas de blocos.

4) (**5 pts**) Determinar a função de transferência para o gráfico de fluxo de sinais dado a seguir aplicando a Fórmula de Mason.

