1

Monte Carlo-driven Adaptive Resource Allocation for Dynamic Multi-objective Optimization

Zhenzhong Wang, Haokai Hong, Min Jiang, Senior Member, IEEE, and Kay Chen Tan, Fellow, IEEE

Abstract

This supplemental file includes six tables and six figures.

Table S-I reports the average MHV values of the seven compared algorithms.

To validate the effectiveness of the proposed method in adjusting the genetic operators, Tables S-II and S-III report the average MIGD and average MHV values of MCTS-DMOEA, MCTS-DMOEA-SBX, MCTS-DMOEA-DE, and MCTS-DMOEA-Rand.

To investigate the runtime of the proposed MCTS-DMOEA, Table S-IV lists the running time of the seven compared algorithms.

Table S-V lists the five operational conditions for the raw ore allocation problem. Table S-VI enumerates the properties of the six types of raw ore.

Fig. S-1 presents the convergence traces of MIGD values obtained by competing algorithms under test problems DF8-DF14.

Fig. S-2 and Fig. S-3 plot the convergence profiles of MIGD values obtained by MCTS-DMOEA, MCTS-DMOEA₁, and MCTS-DMOEA₂ under test problems DF1-DF14.

Fig. S-4 and Fig. S-5 plot the convergence traces obtained by MCTS-DMOEA, MCTS-DMOEA-SBX, MCTS-DMOEA-DE, and MCTS-DMOEA-Rand under test problems DF1-DF14.

Fig. S-6 displays the percentage allocation of computing resources, i.e., evaluations, to the SBX and DE operators by MCTS-DMOEA.

This work was supported in part by the National Natural Science Foundation of China under Grant U21A20512; in part by the Research Grants Council of the Hong Kong under Grant PolyU11211521 and Grant PolyU15218622; in part by the Hong Kong Polytechnic University (Project No.: 1-ZE0C); in part by the National Natural Science Foundation of China under Grant 62276222. (*Corresponding authors: Min Jiang and Kay Chen Tan*).

Zhenzhong Wang and Kay Chen Tan are with the Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR, China (e-mail: zhenzhong16.wang@connect.polyu.hk; kctan@polyu.edu.hk).

Min Jiang and Hongkai Hong are with the Department of Artificial Intelligence, Key Laboratory of Digital Protection and Intelligent Processing of Intangible Cultural Heritage of Fujian and Taiwan, Ministry of Culture and Tourism, School of Informatics, Xiamen University, Xiamen 361005, Fujian, China (e-mail: minjiang@xmu.edu.cn; haokaihong@stu.xmu.edu.cn).

Fig. S-1. Convergence traces of average MIGD values obtained by competing algorithms under test problems DF8-DF14 with dynamic test setting $(n_t = 10, \tau_t = 10 \cdot S)$.

Fig. S-2. Convergence traces of average MIGD values obtained by MCTS-DMOEA, MCTS-DMOEA₁ and MCTS-DMOEA₂ under test problems DF1-DF7 with dynamic test setting $(n_t = 10, \tau_t = 10 \cdot S)$.

Fig. S-3. Convergence traces of average MIGD values obtained by MCTS-DMOEA, MCTS-DMOEA₁ and MCTS-DMOEA₂ under test problems DF8-DF14 with dynamic test setting $(n_t = 10, \tau_t = 10 \cdot S)$.

Fig. S-4. Convergence traces of average MIGD values obtained by MCTS-DMOEA, MCTS-DMOEA-SBX, MCTS-DMOEA-DE, and MCTS-DMOEA-Rand under test problems DF1-DF7 with dynamic test setting ($n_t = 10, \tau_t = 10 \cdot S$).

Fig. S-5. Convergence traces of average MIGD values obtained by MCTS-DMOEA, MCTS-DMOEA-SBX, MCTS-DMOEA-DE, and MCTS-DMOEA-Rand under test problems DF8-DF14 with dynamic test setting ($n_t = 10, \tau_t = 10 \cdot S$).

Fig. S-6. The proportion of allocation of computing resources to SBX and DE operators.

TABLE S-I MEAN AND VARIANCE VALUES OF MHV METRIC OBTAINED BY COMPETING ALGORITHMS FOR DIFFERENT DYNAMIC TEST FUNCTIONS UNDER VARIOUS TEST SETTINGS

Problem	n_t, au_t	MCTS-DMOEA	MDP	MMTL	SVR	IGP	TK-DMOEA	CT-DMOEA
	10,10	1.34e-01(8.77e-05)	3.02e-01(1.26e-04)-	5.37e-01(6.23e-05)-	4.59e-01(1.54e-05)-	5.32e-01(9.05e-05)-	5.05e-01(1.32e-04)-	5.95e-01(2.97e-06)-
DF1	5,10	1.22e-01(9.85e-04)	3.06e-01(2.29e-04)-	4.92e-01(7.18e-05)-	4.53e-01(2.73e-05)-	5.39e-01(4.21e-05)-	4.89e-01(1.92e-04)-	5.79e-01(3.21e-06)-
	10,5	1.19e-01(2.71e-04)	2.76e-01(4.26e-04)-	4.70e-01(5.36e-04)-	3.21e-01(6.82e-05)-	4.45e-01(1.46e-04)-	4.40e-01(2.50e-05)-	5.56e-01(3.15e-05)-
	10,10	8.16e-01(1.15e-05)	5.13e-01(3.61e-04)+	7.63e-01(1.42e-04)+	7.37e-01(9.32e-06)+	7.72e-01(3.24e-05)+	7.46e-01(6.23e-05)+	8.03e-01(1.61e-05)=
DF2	5,10	8.14e-01(6.94e-05)	4.88e-01(3.69e-04)+	7.35e-01(1.23e-04)+	7.30e-01(1.81e-05)+	7.75e-01(5.20e-05)+	7.49e-01(5.82e-05)+	8.03e-01(2.92e-05)=
	10,5	8.08e-01(7.73e-06)	4.96e-01(9.93e-05)+	7.03e-01(1.31e-04)+	6.00e-01(7.46e-05)+	6.92e-01(1.63e-04)+	6.98e-01(1.02e-04)+	7.81e-01(1.10e-05)+
	10,10	5.35e-01(1.03e-04)	1.81e-01(1.88e-04)+	2.79e-01(1.00e-04)+	1.60e-01(3.92e-05)+	1.98e-01(1.20e-04)+	2.46e-01(1.07e-04)+	4.43e-01(6.43e-05)+
DF3	5,10	5.34e-01(1.33e-04)	1.65e-01(4.85e-04)+	2.43e-01(1.59e-04)+	1.78e-01(5.49e-05)+	1.89e-01(1.65e-04)+	2.31e-01(9.40e-05)+	4.25e-01(7.58e-05)+
	10,5	5.35e-01(1.26e-04)	1.29e-01(1.75e-04)+	2.50e-01(1.36e-04)+	1.01e-01(4.36e-05)+	1.84e-01(4.12e-05)+	2.18e-01(1.05e-04)+	3.93e-01(7.40e-05)+
	10,10	5.58e+00(4.56e-02)	1.48e+00(1.42e-01)+	3.20e+00(8.30e-04)+	4.50e+00(3.90e-03)+	2.53e+00(8.07e-02)+	3.10e+00(3.59e-03)+	5.12e+00(6.41e-05)+
DF4	5,10	5.69e+00(2.77e-02)	1.60e+00(4.97e-02)+	3.18e+00(2.31e-03)+	4.72e+00(6.76e-03)+	2.65e+00(2.53e-02)+	3.16e+00(5.70e-03)+	4.97e+00(3.18e-05)+
	10,5	5.56e+00(2.37e-02)	8.60e-01(6.67e-02)+	3.14e+00(3.19e-03)+	2.90e+00(1.94e-02)+	2.54e+00(4.51e-02)+	2.99e+00(2.69e-03)+	5.01e+00(8.04e-04)+
	10,10	6.36e-01(5.40e-05)	2.35e-01(7.56e-05)+	4.13e-01(8.69e-05)+	3.22e-01(2.75e-05)+	1.97e-01(1.04e-04)+	4.06e-01(1.90e-05)+	5.70e-01(8.61e-07)+
DF5	5,10	6.35e-01(6.41e-05)	2.53e-01(6.96e-05)+	4.03e-01(1.74e-04)+	2.98e-01(3.00e-05)+	2.06e-01(7.76e-05)+	4.14e-01(8.50e-05)+	5.64e-01(7.44e-06)+
	10,5	6.35e-01(2.16e-05)	2.18e-01(2.83e-04)+	3.73e-01(7.28e-05)+	1.98e-01(4.46e-05)+	1.46e-01(1.77e-04)+	3.59e-01(1.48e-04)+	5.41e-01(1.54e-06)+
	10,10	9.13e-01(6.77e-06)	3.59e-02(9.46e-04)+	1.24e-01(1.35e-03)+	00(00)+	2.21e-01(1.57e-03)+	2.26e-01(2.13e-03)+	5.65e-01(1.79e-04)+
DF6	5,10	8.91e-01(4.32e-06)	1.56e-02(1.71e-04)+	1.21e-01(1.13e-03)+	1.13e-04(1.01e-07)+	2.12e-01(1.11e-03)+	1.59e-01(4.43e-04)+	5.64e-01(3.17e-03)+
	10,5	9.11e-01(2.44e-06)	2.00e-02(2.69e-04)+	1.26e-01(1.02e-03)+	00(00)+	1.12e-01(1.16e-03)+	1.27e-01(7.63e-04)+	4.88e-01(1.79e-04)+
	10,10	2.90e+00(3.58e+00)	1.92e+00(4.63e-03)+	2.02e+00(3.19e-03)+	2.47e+00(5.77e-04)+	2.21e+00(2.31e-04)+	2.04e+00(1.92e-03)+	4.86e-03(7.38e-06)+
DF7	5,10	5.98e+00(3.25e+01)	2.65e+00(7.53e-03)+	2.60e+00(6.34e-03)+	3.23e+00(3.83e-04)+	2.89e+00(9.91e-04)+	2.48e+00(8.14e-02)+	2.95e-01(2.51e-02)+
	10,5	2.90e+00(3.21e+00)	1.52e+00(4.48e-03)+	1.97e+00(3.45e-03)+	2.15e+00(5.02e-03)+	2.23e+00(1.60e-03)+	1.95e+00(7.76e-03)+	3.21e-03(1.03e-05)+
	10,10	4.33e+01(3.23e+00)	4.61e+01(6.56e-03)=	4.55e+01(3.72e-02)=	4.60e+01(4.28e-04)=	4.59e+01(4.28e-02)=	4.56e+01(4.86e-01)=	4.36e+01(1.38e-03)=
DF8	5,10	4.04e+01(2.25e+00)	4.31e+01(9.69e-04)-	4.24e+01(7.89e-02)=	4.31e+01(1.83e-03)=	4.28e+01(4.70e-02)=	4.20e+01(2.48e+00)=	4.33e+01(4.55e-02)=
	10,5	4.30e+01(3.39e+00)	4.58e+01(3.02e-03)=	4.55e+01(3.35e-02)=	4.56e+01(1.04e-03)=	4.57e+01(7.10e-02)=	4.56e+01(6.15e-01)=	4.37e+01(3.13e-04)=
	10,10	2.58e+01(1.00e-02)	1.69e+01(3.11e-01)+	1.63e+01(3.38e-01)+	1.88e+01(2.67e-02)+	1.85e+01(7.14e-02)+	1.80e+01(4.66e-02)+	2.14e+01(4.86e-02)+
DF9	5,10	2.45e+01(1.90e-02)	1.52e+01(2.86e-01)+	1.52e+01(2.66e-01)+	1.82e+01(1.52e-02)+	1.71e+01(7.77e-02)+	1.65e+01(8.49e-02)+	2.00e+01(3.36e-02)+
	10,5	2.58e+01(1.63e-02)	1.61e+01(6.81e-01)+	1.61e+01(4.24e-01)+	1.75e+01(3.64e-02)+	1.82e+01(1.22e-01)+	1.78e+01(4.65e-02)+	2.13e+01(5.12e-02)+
	10,10	7.50e-01(3.39e-03)	4.60e-01(8.24e-05)+	7.11e-01(7.97e-05)+	5.42e-01(2.49e-05)+	6.04e-01(8.64e-05)+	6.46e-01(5.90e-04)+	7.13e-01(5.25e-04)=
DF10	5,10	7.83e-01(1.24e-03)	5.88e-01(7.04e-05)+	8.05e-01(4.82e-05)=	7.02e-01(2.60e-05)+	7.17e-01(7.19e-05)+	7.62e-01(5.15e-04)=	7.35e-01(4.09e-05)=
	10,5	7.81e-01(3.42e-03)	4.07e-01(2.84e-04)+	6.71e-01(7.36e-05)+	4.79e-01(1.64e-05)+	5.31e-01(1.67e-04)+	5.93e-01(4.18e-04)+	7.32e-01(3.25e-04)=
	10,10	2.54e-01(1.55e-02)	6.64e-01(2.16e-03)-	7.62e-01(8.47e-05)-	5.97e-01(2.53e-04)-	6.12e-01(6.58e-04)-	7.16e-01(1.02e-04)-	8.10e-01(1.66e-05)-
DF11	5,10	3.25e-01(3.86e-02)	6.32e-01(2.26e-03)-	7.59e-01(2.41e-05)-	5.96e-01(2.69e-04)-	6.19e-01(8.00e-04)-	7.15e-01(3.76e-04)-	7.94e-01(2.01e-05)-
	10,5	2.32e-01(2.82e-02)	4.04e-01(4.95e-04)-	7.22e-01(1.29e-04)-	3.36e-01(1.49e-04)-	4.97e-01(2.86e-04)-	6.54e-01(5.39e-04)-	7.74e-01(2.10e-05)-
	10,10	9.80e+00(3.43e-01)	9.25e+00(6.91e-04)+	9.38e+00(00)+	9.33e+00(9.72e-05)+	9.28e+00(3.89e-03)+	9.38e+00(1.85e-04)+	4.19e+00(8.94e-05)+
DF12	5,10	9.27e+00(3.28e-01)	8.55e+00(2.04e-02)+	8.95e+00(00)+	8.51e+00(3.71e-03)+	8.52e+00(1.33e-02)+	8.54e+00(1.44e-02)+	3.88e+00(3.99e-04)+
	10,5	9.89e+00(7.81e-02)	8.97e+00(1.37e-02)+	9.38e+00(6.63e-08)+	9.11e+00(7.10e-04)+	9.24e+00(6.65e-03)+	9.38e+00(4.74e-05)+	4.10e+00(3.43e-04)+
	10,10	1.99e-01(1.71e-02)	9.87e-02(1.37e-05)+	1.26e-01(9.39e-06)+	1.18e-01(9.12e-06)+	1.21e-01(5.73e-06)+	1.23e-01(1.16e-05)+	2.66e+00(1.87e-03)-
DF13	5,10	2.92e-01(5.52e-03)	1.01e-01(1.04e-05)+	1.31e-01(1.68e-05)+	1.13e-01(1.70e-05)+	1.25e-01(1.82e-05)+	1.27e-01(1.25e-05)+	2.67e+00(6.16e-04)-
	10,5	2.75e-01(9.30e-03)	9.05e-02(1.07e-05)+	1.14e-01(2.79e-05)+	8.88e-02(3.18e-06)+	1.03e-01(1.96e-05)+	1.05e-01(1.19e-05)+	2.60e+00(6.58e-04)-
	10,10	2.86e-02(1.87e-04)	9.42e-02(2.89e-05)-	2.24e-01(4.80e-06)-	1.53e-01(7.90e-05)-	2.05e-01(5.50e-05)-	2.19e-01(1.21e-05)-	3.59e-01(2.36e-06)-
DE14	5,10	2.89e-02(1.08e-04)	1.14e-01(8.66e-05)-	2.16e-01(1.12e-05)-	1.29e-01(3.94e-05)-	2.07e-01(1.98e-05)-	2.11e-01(1.98e-05)-	3.72e-01(1.01e-05)-
DF14	10,5	3.30e-02(3.57e-04)	1.18e-01(1.28e-05)-	2.11e-01(1.80e-05)-	9.55e-02(4.05e-05)-	1.79e-01(1.10e-04)-	2.00e-01(3.39e-05)-	3.53e-01(1.59e-06)-
+/=/-		·/=/-	30/2/10	29/4/9	30/3/9	29/4/9	29/4/9	22/8/12

TABLE S-II
MEAN AND VARIANCE VALUES OF MIGD METRIC OBTAINED BY MCTS-DMOEA, MCTS-DMOEA-SBX,
MCTS-DMOEA-DE, AND MCTS-DMOEA-RAND FOR DIFFERENT DYNAMIC TEST FUNCTIONS UNDER VARIOUS TEST
SETTINGS

Problem	n , τ .	MCTS-DMOEA	MCTS-DMOEA-SBX	MCTS-DMOEA-DE	MCTS-DMOEA-Rand
TOUCH	n_t, τ_t				
DF1	10,10	5.78e-01(1.65e-03)	6.27e-01(3.08e-04)=	5.60e-01(4.38e-04)=	5.80e-01(2.61e-03)=
	5,10	5.92e-01(3.72e-03)	6.52e-01(3.81e-03)=	5.77e-01(7.91e-04)=	6.08e-01(4.84e-03)=
	10,5	5.79e-01(2.65e-03)	6.69e-01(1.04e-04)+	5.98e-01(2.28e-03)=	6.08e-01(3.95e-03)=
	10,10	4.20e-02(6.68e-06)	3.67e-01(2.52e-02)+	3.33e-02(2.05e-04)=	1.86e-01(5.26e-02)+
DF2	5,10	4.36e-02(2.77e-05)	3.83e-01(2.85e-02)+	3.37e-02(1.91e-04)=	1.59e-01(3.36e-02)+
	10,5	4.69e-02(7.07e-06)	3.45e-01(2.22e-02)+	3.69e-02(1.75e-04)=	1.73e-01(4.27e-02)+
	10,10	5.29e-02(5.88e-05)	4.43e-01(3.50e-02)+	3.64e-02(4.21e-04)=	2.02e-01(5.97e-02)+
DF3	5,10	5.17e-02(7.09e-05)	4.22e-01(3.20e-02)+	3.51e-02(3.33e-04)=	1.89e-01(5.00e-02)+
	10,5	5.43e-02(5.40e-05)	4.41e-01(3.51e-02)+	3.73e-02(3.58e-04)=	1.93e-01(5.27e-02)+
	10,10	2.30e-01(3.28e-03)	1.75e+00(4.88e-01)+	2.31e-01(6.36e-03)=	8.46e-01(8.54e-01)+
DF4	5,10	2.27e-01(2.98e-03)	1.82e+00(5.56e-01)+	2.13e-01(5.59e-03)=	8.51e-01(8.75e-01)+
	10,5	2.42e-01(2.40e-03)	1.87e+00(5.89e-01)+	2.41e-01(5.51e-03)=	8.65e-01(9.61e-01)+
	10,10	4.10e-02(2.36e-05)	6.15e-01(7.81e-02)+	3.68e-02(3.61e-04)=	2.35e-01(8.96e-02)+
DF5	5,10	4.27e-02(2.82e-05)	6.06e-01(7.28e-02)+	3.58e-02(3.11e-04)=	2.66e-01(1.20e-01)+
	10,5	4.15e-02(1.16e-05)	6.47e-01(8.42e-02)+	3.80e-02(3.74e-04)=	2.67e-01(1.18e-01)+
	10,10	6.54e-02(1.98e-05)	1.02e+01(2.54e+01)+	4.71e-02(1.90e-04)=	4.28e+00(4.29e+01)+
DF6	5,10	6.45e-02(3.45e-05)	1.01e+01(2.71e+01)+	4.53e-02(1.35e-04)-	4.31e+00(4.35e+01)+
	10,5	7.28e-02(2.21e-05)	1.14e+01(3.13e+01)+	5.04e-02(2.53e-04)=	4.84e+00(5.49e+01)+
	10,10	1.02e+00(2.65e-01)	1.44e+01(4.99e+01)+	1.52e+00(1.84e-01)=	6.12e+00(5.17e+01)+
DF7	5,10	1.09e+00(9.27e-03)	1.51e+01(5.17e+01)+	1.24e+00(1.29e-02)=	5.92e+00(5.32e+01)+
	10,5	1.01e+00(2.70e-01)	1.78e+01(6.84e+01)+	1.54e+00(1.82e-01)=	7.96e+00(9.75e+01)+
DF8	10,10	5.47e-01(4.54e-03)	4.65e-01(3.59e-04)=	6.37e-01(6.86e-03)+	4.62e-01(4.30e-04)-
	5,10	5.18e-01(3.97e-03)	4.52e-01(2.87e-04)=	6.29e-01(7.43e-03)+	4.57e-01(3.62e-04)-
	10,5	5.58e-01(5.10e-03)	4.57e-01(3.02e-04)-	6.35e-01(6.50e-03)=	4.80e-01(3.40e-04)-
	10,10	6.50e-01(2.88e-03)	7.79e-01(2.07e-03)+	1.25e+00(2.07e-01)+	7.42e-01(3.91e-04)+
DF9	5,10	6.42e-01(2.39e-03)	7.96e-01(2.24e-03)+	1.25e+00(1.94e-01)+	7.05e-01(3.27e-03)=
	10,5	6.61e-01(5.39e-03)	8.24e-01(2.12e-03)+	1.26e+00(2.09e-01)=	7.17e-01(7.44e-03)=
	10,10	1.75e-01(3.26e-05)	1.84e-01(7.25e-04)=	4.36e-01(2.20e-02)+	2.23e-01(1.98e-03)=
DF10	5,10	1.64e-01(6.48e-06)	1.71e-01(4.07e-04)=	4.24e-01(2.45e-02)+	2.13e-01(2.69e-03)=
	10,5	1.64e-01(4.52e-05)	1.88e-01(6.89e-04)+	4.54e-01(2.79e-02)+	2.28e-01(2.14e-03)+
	10,10	6.33e-01(2.42e-03)	5.46e-01(1.22e-03)-	6.28e-01(9.66e-04)=	5.69e-01(1.41e-03)-
DF11	5,10	6.41e-01(5.63e-04)	5.63e-01(1.89e-03)-	6.68e-01(1.11e-03)=	5.84e-01(2.71e-03)-
	10,5	6.60e-01(3.59e-04)	5.83e-01(6.35e-04)-	6.49e-01(4.97e-04)=	5.89e-01(6.26e-04)-
	10,10	2.44e-01(2.20e-03)	2.53e-01(1.19e-04)=	3.80e-01(3.27e-03)+	2.57e-01(4.86e-04)=
DF12	5,10	2.50e-01(1.94e-03)	2.47e-01(1.48e-04)=	3.74e-01(2.55e-03)+	2.56e-01(4.43e-04)=
	10,5	2.47e-01(2.89e-03)	2.53e-01(3.72e-04)=	3.91e-01(2.83e-03)+	2.73e-01(1.39e-03)=
	10,10	1.41e+00(4.47e-03)	1.16e+00(4.99e-03)-	1.83e+00(1.22e-01)=	1.33e+00(2.08e-02)=
DF13	5,10	1.35e+00(2.47e-03)	1.19e+00(9.32e-03)-	1.70e+00(8.08e-02)=	1.33e+00(1.78e-02)=
D1 13	10,5	1.41e+00(7.67e-03)	1.18e+00(1.29e-02)-	1.96e+00(1.72e-01)+	1.30e+00(4.23e-02)=
	10,10	5.94e-01(2.68e-03)	5.53e-01(2.81e-03)=	9.90e-01(8.01e-02)+	6.94e-01(1.79e-02)=
DE14	5,10	5.96e-01(5.65e-03)	5.84e-01(2.87e-03)=	9.56e-01(8.40e-02)=	6.73e-01(8.21e-03)+
DF14	10,5	5.81e-01(5.09e-03)	5.78e-01(9.36e-04)=	9.71e-01(1.05e-01)=	7.53e-01(3.89e-02)+
	+	·/=/-	23/12/7	12/29/1	22/14/6

TABLE S-III
MEAN AND VARIANCE VALUES OF MHV METRIC OBTAINED BY MCTS-DMOEA, MCTS-DMOEA-SBX,
MCTS-DMOEA-DE, AND MCTS-DMOEA-RAND FOR DIFFERENT DYNAMIC TEST FUNCTIONS UNDER VARIOUS TEST
SETTINGS

Problem	n_t, au_t	MCTS-DMOEA	MCTS-DMOEA-SBX	MCTS-DMOEA-DE	MCTS-DMOEA-Rand
<u> </u>	10,10	1.34e-01(8.77e-05)	1.66e-01(5.18e-04)-	1.24e-01(1.53e-04)+	1.46e-01(7.40e-04)=
DF1	5,10	1.22e-01(9.85e-04)	1.54e-01(4.22e-04)-	1.26e-01(2.04e-05)=	1.48e-01(6.39e-04)-
	10,5	1.19e-01(2.71e-04)	1.28e-01(7.12e-04)-	1.10e-01(6.34e-04)=	1.28e-01(8.49e-04)-
	10,10	8.16e-01(1.15e-05)	4.51e-01(3.06e-02)+	8.34e-01(3.31e-04)-	6.69e-01(5.57e-02)+
DF2	5,10	8.14e-01(6.94e-05)	4.41e-01(3.30e-02)+	8.34e-01(2.98e-04)-	6.77e-01(4.85e-02)+
	10,5	8.08e-01(7.73e-06)	4.53e-01(3.18e-02)+	8.31e-01(2.73e-04)-	6.68e-01(5.48e-02)+
	10,10	5.35e-01(1.03e-04)	1.57e-01(3.26e-02)+	5.66e-01(6.88e-04)-	3.92e-01(5.75e-02)+
DF3	5,10	5.34e-01(1.33e-04)	1.64e-01(3.08e-02)+	5.63e-01(5.78e-04)-	3.94e-01(5.32e-02)+
	10,5	5.35e-01(1.26e-04)	1.49e-01(3.42e-02)+	5.64e-01(5.29e-04)-	3.96e-01(5.52e-02)+
	10,10	5.58e+00(4.56e-02)	1.49e+00(3.62e+00)+	5.80e+00(5.21e-02)-	3.96e+00(6.92e+00)+
DF4	5,10	5.69e+00(2.77e-02)	1.38e+00(4.16e+00)+	5.92e+00(4.06e-02)-	4.03e+00(7.05e+00)+
	10,5	5.56e+00(2.37e-02)	1.41e+00(4.09e+00)+	5.80e+00(3.03e-02)-	4.09e+00(6.37e+00)+
	10,10	6.36e-01(5.40e-05)	2.17e-01(4.02e-02)+	6.61e-01(6.05e-04)-	4.80e-01(6.73e-02)+
DF5	5,10	6.35e-01(6.41e-05)	2.16e-01(4.11e-02)+	6.64e-01(5.22e-04)-	4.82e-01(6.65e-02)+
	10,5	6.35e-01(2.16e-05)	2.11e-01(4.07e-02)+	6.60e-01(5.89e-04)-	4.76e-01(6.71e-02)+
	10,10	9.13e-01(6.77e-06)	1.53e-01(1.40e-01)+	9.21e-01(3.38e-05)-	6.12e-01(2.25e-01)+
DF6	5,10	8.91e-01(4.32e-06)	1.49e-01(1.32e-01)+	8.98e-01(2.49e-05)-	5.95e-01(2.13e-01)+
	10,5	9.11e-01(2.44e-06)	1.52e-01(1.39e-01)+	9.19e-01(3.41e-05)-	6.11e-01(2.24e-01)+
	10,10	2.90e+00(3.58e+00)	8.36e-01(4.19e+00)+	2.17e+00(1.55e+00)+	3.31e+00(6.63e+00)=
DF7	5,10	5.98e+00(3.25e+01)	2.19e+00(2.16e+01)+	3.06e+00(1.96e+01)+	8.33e+00(4.19e+01)-
	10,5	2.90e+00(3.21e+00)	8.77e-01(4.53e+00)+	2.15e+00(1.67e+00)+	3.37e+00(6.84e+00)=
	10,10	4.33e+01(3.23e+00)	4.57e+01(7.75e-02)-	4.31e+01(1.03e+00)=	4.52e+01(3.23e-01)=
DF8	5,10	4.04e+01(2.25e+00)	4.26e+01(9.56e-02)-	4.02e+01(9.04e-01)=	4.21e+01(2.44e-01)=
	10,5	4.30e+01(3.39e+00)	4.56e+01(1.67e-01)-	4.28e+01(1.04e+00)=	4.49e+01(2.56e-01)=
	10,10	2.58e+01(1.00e-02)	1.85e+01(1.36e+00)+	2.10e+01(2.12e-02)+	2.00e+01(2.28e+00)=
DF9	5,10	2.45e+01(1.90e-02)	1.72e+01(1.64e+00)+	1.97e+01(1.71e-02)+	1.87e+01(2.43e+00)=
	10,5	2.58e+01(1.63e-02)	1.83e+01(1.64e+00)+	2.10e+01(2.36e-02)+	1.99e+01(2.62e+00)=
	10,10	7.50e-01(3.39e-03)	8.19e-01(3.11e-03)-	3.35e-01(9.30e-02)+	6.83e-01(2.25e-02)=
DF10	5,10	7.83e-01(1.24e-03)	8.71e-01(2.42e-03)-	3.95e-01(8.26e-02)+	7.33e-01(1.46e-02)=
	10,5	7.81e-01(3.42e-03)	8.17e-01(8.37e-04)=	3.61e-01(1.14e-01)+	6.67e-01(2.53e-02)+
	10,10	2.54e-01(1.55e-02)	2.06e-01(1.29e-03)=	1.38e-01(1.94e-02)+	1.78e-01(4.45e-04)=
DF11	5,10	3.25e-01(3.86e-02)	1.75e-01(2.14e-03)=	1.43e-01(3.97e-02)+	1.87e-01(3.09e-03)=
	10,5	2.32e-01(2.82e-02)	1.80e-01(2.33e-03)=	1.15e-01(1.20e-02)+	1.60e-01(1.93e-03)+
	10,10	9.80e+00(3.43e-01)	8.56e+00(4.37e-02)=	7.41e+00(1.03e+00)+	8.09e+00(2.70e-01)+
DF12	5,10	9.27e+00(3.28e-01)	7.81e+00(2.16e-02)=	6.98e+00(1.03e+00)+	7.52e+00(7.66e-02)+
2112	10.5	9.89e+00(7.81e-02)	8.43e+00(6.03e-02)+	7.15e+00(1.13e+00)+	7.79e+00(4.61e-01)+
	10,5	2.03C100(7.01C-02)			
	10,5	1.99e-01(1.71e-02)	6.37e-01(3.60e-02)-	1.29e-01(4.36e-03)+	5.39e-01(4.20e-02)-
 DF13				1.29e-01(4.36e-03)+ 1.64e-01(1.14e-02)+	5.39e-01(4.20e-02)- 5.37e-01(7.31e-02)-
DF13	10,10	1.99e-01(1.71e-02)	6.37e-01(3.60e-02)-		
DF13	10,10 5,10	1.99e-01(1.71e-02) 2.92e-01(5.52e-03)	6.37e-01(3.60e-02)- 7.30e-01(4.76e-02)-	1.64e-01(1.14e-02)+	5.37e-01(7.31e-02)-
	10,10 5,10 10,5	1.99e-01(1.71e-02) 2.92e-01(5.52e-03) 2.75e-01(9.30e-03)	6.37e-01(3.60e-02)- 7.30e-01(4.76e-02)- 6.58e-01(2.01e-02)-	1.64e-01(1.14e-02)+ 1.71e-01(1.53e-02)+	5.37e-01(7.31e-02)- 5.67e-01(4.48e-02)-
DF13	10,10 5,10 10,5	1.99e-01(1.71e-02) 2.92e-01(5.52e-03) 2.75e-01(9.30e-03) 2.86e-02(1.87e-04)	6.37e-01(3.60e-02)- 7.30e-01(4.76e-02)- 6.58e-01(2.01e-02)- 4.15e-02(2.29e-04)-	1.64e-01(1.14e-02)+ 1.71e-01(1.53e-02)+ 7.08e-03(8.56e-05)+	5.37e-01(7.31e-02)- 5.67e-01(4.48e-02)- 2.50e-02(1.50e-04)=

TABLE S-IV MEAN VALUES OF RUNTIME OBTAINED BY COMPARED ALGORITHMS AT τ_t =10 AND τ_t =5. (IN SECONDS)

Problem	$ au_t$	MCTS-DMOEA	MDP	MMTL	SVR	IGP	TK-DMOEA	CT-DMOEA
DF1	10	7.33e-01	1.01e-01	2.85e+00	5.78e-02	1.55e+00	1.62e+00	1.97e+01
	5	3.90e-01	4.98e-02	1.58e+00	4.83e-02	7.40e-01	8.77e-01	1.02e+01
DF2	10	6.70e-01	7.91e-02	2.77e+00	5.58e-02	1.56e+00	1.67e+00	1.94e+01
	5	3.54e-01	4.12e-02	1.65e+00	4.85e-02	8.35e-01	9.41e-01	9.40e+00
DF3	10	6.23e-01	1.27e-01	2.52e+00	6.13e-02	1.15e+00	1.33e+00	1.36e+01
	5	3.22e-01	7.03e-02	1.48e+00	5.35e-02	5.49e-01	8.30e-01	6.67e+00
DF4	10	6.14e-01	1.53e-01	2.30e+00	7.13e-02	1.20e+00	1.30e+00	2.01e+01
	5	3.24e-01	7.57e-02	1.36e+00	5.78e-02	6.04e-01	7.22e-01	1.19e+01
DF5	10	5.88e-01	6.61e-02	3.31e+00	5.59e-02	1.40e+00	1.71e+00	2.06e+01
	5	3.33e-01	3.10e-02	1.85e+00	4.96e-02	7.10e-01	9.37e-01	1.05e+01
DF6	10	7.84e-01	6.39e-02	2.52e+00	5.52e-02	1.31e+00	1.44e+00	1.45e+01
	5	4.27e-01	3.25e-02	1.51e+00	4.72e-02	6.13e-01	7.75e-01	8.11e+00
DF7	10	7.00e-01	5.30e-02	2.54e+00	6.08e-02	1.09e+00	1.06e+00	1.82e+01
	5	4.13e-01	3.13e-02	1.76e+00	5.33e-02	5.39e-01	6.17e-01	9.95e+00
DF8	10	7.02e-01	9.62e-02	2.60e+00	5.71e-02	1.49e+00	1.59e+00	1.60e+01
	5	3.74e-01	5.15e-02	1.48e+00	5.38e-02	7.41e-01	8.69e-01	6.92e+00
DF9	10	6.90e-01	8.96e-02	2.66e+00	6.66e-02	1.17e+00	1.55e+00	1.42e+01
	5	3.67e-01	4.43e-02	1.72e+00	5.50e-02	5.79e-01	8.43e-01	6.19e+00
DF10	10	6.43e-01	7.21e-02	3.95e+00	6.06e-02	1.38e+00	2.11e+00	1.91e+01
	5	3.69e-01	4.45e-02	2.28e+00	5.79e-02	6.89e-01	1.27e+00	1.04e+01
DF11	10	7.39e-01	4.06e-02	4.31e+00	5.28e-02	1.53e+00	2.19e+00	2.18e+01
	5	3.94e-01	4.24e-02	2.62e+00	4.72e-02	7.54e-01	1.38e+00	1.23e+01
DF12	10	6.93e-01	9.42e-02	1.57e+00	6.06e-02	7.91e-01	1.25e+00	2.27e+01
	5	3.77e-01	4.67e-02	9.23e-01	5.35e-02	4.06e-01	8.61e-01	1.26e+01
DF13	10	6.33e-01	3.47e-02	5.20e+00	6.63e-02	1.48e+00	2.09e+00	2.17e+01
	5	3.37e-01	1.91e-02	3.11e+00	5.42e-02	7.34e-01	1.39e+00	1.23e+01
DF14	10	6.76e-01	3.45e-02	4.98e+00	6.27e-02	1.49e+00	2.14e+00	1.95e+01
	5	3.60e-01	2.35e-02	2.83e+00	5.57e-02	7.22e-01	1.33e+00	9.74e+00
Rank		3	2	6	1	4	5	7

TABLE S-V FIVE ENVIRONMENTAL STEP FOR RAW ORE ALLOCATION OF MINERAL PROCESSING

Series Number	Parameters	Step 1	Step 2	Step 3	Step 4	Step 5
	Capacity (N_k)	80.60	58.56	36.52	36.52	36.52
1	Running Time (T_k)	2.08	2.08	2.08	2.08	2.08
	Capacity (N_k)	80.60	80.60	80.60	80.60	80.60
2	Running Time (T_k)	2.08	2.08	2.08	2.08	2.08
	Capacity (N_k)	80.60	80.60	80.60	80.60	80.60
3	Running Time (T_k)	2.08	2.08	2.08	2.08	2.08
	Capacity (N_k)	80.60	80.60	80.60	80.60	80.60
4	Running Time (T_k)	27.08	27.08	27.08	25.37	23.66
	Capacity (N_k)	80.60	80.60	80.60	80.60	80.60
5	Running Time (T_k)	27.08	27.08	27.08	27.08	27.08
	Capacity (N_k)	80.60	80.60	80.60	80.60	80.60
6	Running Time (T_k)	27.08	27.08	27.08	27.08	27.08
	Capacity (N_k)	80.60	80.60	80.60	80.60	80.60
7	Running Time (T_k)	27.08	27.08	27.08	27.08	27.08

TABLE S-VI RAW ORE PROPERTIES

i	α_i (%)	$\beta_{1,i}$ (%)	$\beta_{2,i}$ (%)	u_i (%)	$k_{1,i}$ (times)	$k_{2,i}$ (times)
1	33.3	47.5	56.1	62.0	2.3	2.0
2	34.1	47.5	56.1	54.0	2.0	1.92
3	32.5	47.0	54.0	50.0	2.3	2.2
4	33.1	44.5	52.0	65.0	2.8	2.4
5	55.0	60.0	61.0	55.0	1.45	1.4
6	52.0	60.0	0.0	0.0	1.3	2.0