Autômatos Finitos e Linguagens Regulares

Prof. Hamilton José Brumatto

CIC-UESC

24 de dezembro de 2024

- 1 Automatos Finitos Não Determinísticos
 - Determinismo
 - Não Determinismo
 - Exemplos de AFN
- 2 Teoria do Autômato
 - Definição Formal de um AFN
 - Computação do AFN
 - Equivalência AFN e AFD
 - AFN e Linguagem Regular
- Operações Regulares
 - Fecho das Operações
 - União
 - Concatenação
 - Concatenação
- 4 Atividades

Onde está o Determinismo?

- Todo passo da computação segue da seguinte forma:
 - Dado um estado, ao receber uma entrada ele segue para o estado seguinte.
 - O estado seguinte é dado por uma função de relação entre o estado anterior e a entrada.
 - Ao repetir a sequência, obtém-se o mesmo estado. ESTÁ DETERMINADO.
- Em um Autômato Finito Não Determinístico (AFN em contraposição com AFD) várias escolhas de estado podem existir para o próximo estado, em qualquer ponto.

Um exemplo de AFN e as diferenças

Um exemplo de AFN e as diferenças

Diferenças:

- Não existem setas de transição para todos símbolos em cada estado.
- Mais de uma seta de transição para um mesmo símbolo.
- ullet Existe seta de transição com o rótulo arepsilon

No AFD a máquina está sempre em um estado e um único estado. No AFN ela pode estar em vários estados simultaneamente. Se, no final da cadeia, um dos estados é um estado de aceitação então a cadeia é aceita.

No AFD a máquina está sempre em um estado e um único estado. No AFN ela pode estar em vários estados simultaneamente. Se, no final da cadeia, um dos estados é um estado de aceitação então a cadeia é aceita.

No AFD a máquina está sempre em um estado e um único estado. No AFN ela pode estar em vários estados simultaneamente. Se, no final da cadeia, um dos estados é um estado de aceitação então a cadeia é aceita.

No AFD a máquina está sempre em um estado e um único estado. No AFN ela pode estar em vários estados simultaneamente. Se, no final da cadeia, um dos estados é um estado de aceitação então a cadeia é aceita.

No AFD a máquina está sempre em um estado e um único estado. No AFN ela pode estar em vários estados simultaneamente. Se, no final da cadeia, um dos estados é um estado de aceitação então a cadeia é aceita.

No AFD a máquina está sempre em um estado e um único estado. No AFN ela pode estar em vários estados simultaneamente. Se, no final da cadeia, um dos estados é um estado de aceitação então a cadeia é aceita.

Vamos simular a cadeia 01010 para o autômato N_1 abaixo: 01010

Esta cadeia é aceita?

Árvore de Possibilidades

Execução da cadeia 01010 na máquina N_1 vista como uma árvore:

Qual a linguagem que o autômato reconhece?

Qual a linguagem que o autômato N_1 reconhece?

Qual a linguagem que o autômato reconhece?

Qual a linguagem que o autômato N_1 reconhece?

 $L = \{w | w \text{ contém a subcadeia } 11 \text{ ou } 101\}$

Vantagem da transição arepsilon

Veja abaixo na linguagem de *alfabeto unário* (só um símbolo): $\Sigma = \{0\}$

A linguagem deste autômato é: $L=\{w|w=0^k,k|2\equiv 0\lor k|3\equiv 0\}$ Com a transição ε começamos 2 autômatos distintos simultâneamente, um para numeros pares de 0 e outro para números múltiplos de 3 de zeros.

Exemplo de AFN

Um AFN é mais simples de se projetar e de se interpretar. Veja um exemplo de um AFN para a linguagem $L = \{w | w \text{ termina com a cadeia } uva\}$, no alfabeto $\Sigma = \{a, u, v\}$.

Exemplo de AFN

A aresta de instrução ε é muito útil, bem como a ausência de transição. Veja um exemplo de um AFN N_2 para a linguagem $L = \{w | w \text{ termina com uma cadeia de 1 ou 2 } a \text{ após um } b\}$, no alfabeto $\Sigma = \{a, b\}$.

Definição Formal de um AFN

- Um AFN é definido tal qual um AFD, a diferença está na função de relação:
- Seja $N = \{Q, \Sigma, \delta, q_0, F\}$ um autômato finito não determinístico:
 - *Q* representa o conjunto de estados do autômato.
 - ullet representa o alfabeto que o autômato aceita.
 - δ a função de relação para o autômato, neste caso esta função aceita ε como uma transição e \emptyset como um estado de destino, além disto, uma transição remete a um conjunto de estados e não mais a um estado. $\delta: \Sigma_\varepsilon \times Q \to \mathcal{P}(Q)$, onde $\mathcal{P}(Q)$ é chamado de conjunto de partes de Q.
 - q₀ o estado inicial do autômato.
 - F o conjunto de estados de aceitação.

Podemos reparar nesta definição formal que o AFD é um caso particular do AFN, basta fazer qualquer transição ε para um estado \emptyset .

Exemplo da definição formal

Vamos considerar a máquina N_2 e sua definição formal:

Exemplo da definição formal

Vamos considerar a máquina N_2 e sua definição formal:

$$N_2 = \{\{s, q_b, q_{ba.a}, q_{baa}\}, \{a, b\}, \delta_2, s, \{q_{baa}\}\}$$
, onde:

Exemplo da definição formal

Vamos considerar a máquina N_2 e sua definição formal:

$$N_2 = \{\{s, q_b, q_{ba.a}, q_{baa}\}, \{a, b\}, \delta_2, s, \{q_{baa}\}\}, \text{ onde: }$$

δ_2	a	Ь	ε
S	{s}	$\{s,q_b\}$	Ø
q_b	$\{q_{ba.a}\}$	Ø	Ø
$q_{ba.a}$	$\{q_{baa}\}$	Ø	$\{q_{baa}\}$
q_{baa}	Ø	Ø	Ø

Seja o AFN N_3 apresentado abaixo:

Seja o AFN N_3 apresentado abaixo:

 $N_3 = \{\{q_1, q_2, q_3\}, \{a, b\}, \delta_3, q_1, \{q_1\}\}, \text{ onde: }$

Seja o AFN N_3 apresentado abaixo:

$$N_3 = \{\{q_1, q_2, q_3\}, \{a, b\}, \delta_3, q_1, \{q_1\}\}, \text{ onde: }$$

•	((1 - / 1 - /		, ,	•
δ_3	а	b	ε	
q_1	Ø	$\{q_2\}$	{ <i>q</i> ₃ }	
q_2	$\{q_2,q_3\}$	$\{q_3\}$	Ø	
q_3	$\{q_1\}$	Ø	Ø	

Seja o AFN N_3 apresentado abaixo:

$$N_3 = \{\{q_1, q_2, q_3\}, \{a, b\}, \delta_3, q_1, \{q_1\}\}, \text{ onde: }$$

δ_3	а	b	ε
q_1	Ø	$\{q_{2}\}$	$\{q_3\}$
q_2	$\{q_2,q_3\}$	$\{q_3\}$	Ø
q_3	$\{q_1\}$	Ø	Ø

Qual a linguagem que este autômato reconhece? (Exercício)

Definição Formal de Computação para o AFN

Seja $N = \{Q, \Sigma, \delta, q_0, F\}$ um AFN e w uma cadeia sobre o alfabeto Σ . Então dizemos que N aceita w se podemos escrever $w = w_1 w_2 \dots w_n$, onde cada w_i é um membro de $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ e existe uma sequência de estados $r_0 r_1 \dots r_n$ em Q com três condições:

- $0 r_0 = q_0$
- 2 $R_{i+1} = \delta(r_i, w_{i+1})$, para i = 0, 1, ..., n-1, e
- \circ $r_n \in F$.

Equivalência entre AFNs e AFDs

- AFNs e AFDs reconhecem a mesma classe de linguagem.
- A vantagem é que escrever um AFN para uma linguagem às vezes é mais simples.
- Duas máquinas são equivalentes se elas reconhecem a mesma linguagem.
- Cada AFN possui um AFD equivalente.

Teorema de Equivalência AFN e AFD

Teorema

Todo autômato finito não determinístico possui um autômato finito determinístico equivalente.

Para a demonstração:

- Q é o conjunto de estados do AFN que podem ser atingidos por transições.
- Σ é o mesmo.
- **3** δ indica uma transição de um estado que representa um conjunto de estados do AFN para outro, considerando-se, também, as ε .
- **4** q_0 é o conjunto $\{q_{0_{AFN}}\}$.
- O conjunto de estados de aceitação é a coleção de conjunto de estados do AFN que possui um estado de aceitação do AFN.

Demonstração

Seja $N = \{Q, \Sigma, \delta, q_0, F\}$ o AFN que reconhece alguma linguagem A. Construímos um AFD $M = \{Q', \Sigma, \delta', q'_0, F'\}$ que reconhece A.

Todo estado de M é um conjunto de estados de N. De forma que cada elemento de Q' represente um conjunto de estados simultâneos de Q no qual a máquina N pode se encontrar.

- $2 \Sigma \equiv \Sigma.$
- Para R ∈ Q' e a ∈ Σ, seja δ'(R, a) = {q ∈ Q | q ∈ E(δ(r, a)) para algum r ∈ R}.

Sendo: $E(R) = \{q | q \text{ pode ser atingido a partir de } R \text{ viajando-se ao longo de 0 ou mais setas } \varepsilon\}$

$$\delta'(R,a) = E\left(\bigcup_{r\in R} \delta(r,a)\right).$$

...continuando a Demonstração

- q'₀ = E(q₀)
 O estado inicial de M é o conjunto com o estado inicial de N e os estados atingíveis de N por transições ε.
- F' = {R ∈ Q' | R contém um estado de aceitação de N}.
 A máquina M aceita se um dos possíveis estados de N que a máquina pudesse estar é um estado de aceitação.

A construção de M funciona corretamente. Em todo passo na computação de M sobre uma entrada, ela claramente entra num estado que corresponde ao subconjunto de estados nos quais N poderia estar nesse ponto.

Considere o seguinte AFN N_3 que usamos:

Vamos construir um AFD que simule este AFN.

- **1** Q': São 3 estados em Q, logo teremos 2^3 estados em Q': $Q' = \{\emptyset, \{q_1\}, \{q_2\}, \{q_3\}, \{q_1, q_2\}, \{q_1, q_3\}, \{q_2, q_3\}, \{q_1, q_2, q_3\}\}$
 - (Ø)

 q_1

 q_2

 q_{12}

 (q_3)

 q_{13}

 q_{23}

 $\left(q_{123}\right)$

Todos estados que contém q_1 pertencem a F'

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|ccccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2,q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

$$\begin{array}{c|cccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2, q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

Precisamos calcular a função de transformação:

$$\begin{array}{c|ccccc} \delta & q_1 & q_2 & q_3 \\ \hline a & \emptyset & \{q_2,q_3\} & \{q_1\} \\ b & \{q_2\} & \{q_3\} & \emptyset \\ \varepsilon & \{q_3\} & \emptyset & \emptyset \\ \end{array}$$

Qual o estado inicial?

- **3** δ' : a função de relação $\Sigma \times Q' \rightarrow Q'$:
- 4 Removendo estados inatingíveis
- 5 Removendo estados que não levam à aceitação

- **3** δ' : a função de relação $\Sigma \times Q' \rightarrow Q'$:
- Removendo estados inatingíveis
- 3 Removendo estados que não levam à aceitação

- **3** δ' : a função de relação $\Sigma \times Q' \rightarrow Q'$:
- Removendo estados inatingíveis
- Removendo estados que não levam à aceitação

Corolário do teorema

Corolário

Uma linguagem é regular se e somente se um autômato finito não determinístico a reconhece.

Demonstração: \Rightarrow (somente se): Linguagem Regular \rightarrow AFN reconhece.

Todo AFD é um AFN, logo: Uma linguagem é regular então podemos criar um AFD que a reconhece, por extensão, um AFN a reconhece.

⟨se⟩: Linguagem Regular ← AFN reconhece.

Se um AFN reconhece uma linguagem, nós podemos criar um AFD que simule este AFN e que reconheça a linguagem, logo a linguagem é regular.

Fecho de Operações sobre Linguagens Regulares

Vamos retomar as operações regulares:

- União : sejam A e B linguagens regulares, $L = A \cup B$ é uma linguagem regular
- Concatenação : Sejam A e B linguagens regulares, $L = A \circ B$ é uma linguagem regular
 - Estrela : Seja A uma linguagem regular, $L = A^*$ é uma linguagem regular.
- Já provamos o caso de união, mas vamos retomar sob o ponto de vista de AFNs.

Fecho na União

Sejam A e B linguagens regulares, \mathcal{N}_A um AFN que reconhece A e \mathcal{N}_B um AFN reconhece B. Vamos construir B um AFN que reconhece B:

Fecho na União

Sejam A e B linguagens, \mathcal{N}_A um AFN que reconhece A e \mathcal{N}_B um AFN reconhece B. Vamos construir N um AFN que reconhece $A \cup B$:

•
$$\mathcal{N}_A = \{Q_A, \Sigma, \delta_A, q_A, F_A\}$$

•
$$\mathcal{N}_B = \{Q_B, \Sigma, \delta_B, q_B, F_B\}$$

•
$$\mathcal{N} = \{Q, \Sigma, \delta, q_0, F\}$$

•
$$Q = \{q_0\} \cup Q_A \cup Q_B$$

•
$$F = F_A \cup F_B$$

$$\delta(q, a) = \begin{cases} \delta_A(q, a) & q \in Q_A \\ \delta_B(q, a) & q \in Q_B \\ \{q_A, q_b\} & q = q_0 \land a = \varepsilon \\ \emptyset & q = q_0 \land a \neq \varepsilon \end{cases}$$

Fecho na Concatenação

Sejam A e B linguagens regulares, \mathcal{N}_A um AFN que reconhece A e \mathcal{N}_B um AFN reconhece B. Vamos construir N um AFN que reconhece $A \circ B$:

Fecho na Concatenação

Sejam A e B linguagens regulares, \mathcal{N}_A um AFN que reconhece A e \mathcal{N}_B um AFN reconhece B. Vamos construir N um AFN que reconhece $A \cup B$:

•
$$\mathcal{N}_A = \{Q_A, \Sigma, \delta_A, q_A, F_A\}$$

•
$$\mathcal{N}_B = \{Q_B, \Sigma, \delta_B, q_B, F_B\}$$

•
$$\mathcal{N} = \{Q, \Sigma, \delta, q_A, F_B\}$$

$$\bullet \quad Q = Q_A \cup Q_B$$

$$\bullet \quad \delta(q, a) = \begin{cases} \delta_A(q, a) & q \in Q_A \land q \notin F_A \\ \delta_A(q, a) & q \in F_a \land a \neq \varepsilon \\ \delta_A(q, a) \cup \{q_B\} & q \in F_a \land a = \varepsilon \\ \delta_B(q, a) & q \in Q_B \end{cases}$$

Fecho na Estrela

Seja A linguagem regular, \mathcal{N}_A um AFN que reconhece A. Vamos construir N um AFN que reconhece A^* :

Fecho na Estrela

Seja A linguagem regular, \mathcal{N}_A um AFN que reconhece A. Vamos construir N um AFN que reconhece A^* :

$$\mathcal{N}_{A} = \{Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\}$$

$$\mathcal{N} = \{Q, \Sigma, \delta, q_{0}, F\}$$

$$\mathcal{Q} = \{q_{0}\} \cup Q_{A}$$

$$\mathcal{F} = \{q_{0}\} \cup F_{A}$$

$$\delta(q, a) = \begin{cases} \delta_{A}(q, a) & q \in Q_{A} \land q \notin F_{A} \\ \delta_{A}(q, a) & q \in F_{a} \land a \neq \varepsilon \end{cases}$$

$$\delta(q, a) = \begin{cases} \delta_{A}(q, a) & q \in F_{a} \land a = \varepsilon \\ \{q_{A}\} & q \in F_{a} \land a = \varepsilon \\ \{q_{A}\} & q \in F_{a} \land a \neq \varepsilon \end{cases}$$

$$\delta(q, a) = \begin{cases} \delta_{A}(q, a) \cup \{q_{A}\} & q \in F_{a} \land a = \varepsilon \\ \{q_{A}\} & q \in F_{a} \land a \neq \varepsilon \end{cases}$$

Atividades baseadas no Sipser

- Concluir a leitura do capítulo 1.2
- resolver os exercícios: 1.7, 1.8, 1.9, 1.10, 1.11, 1.14, 1.15, 1.16.