Analisi Esperimenti Ca214

October 21, 2022

1 Esperimenti

Foglio di sintesi degli esperimenti effettuati su campioni di Ca214 per la caratterizzazione elettrica. La caratterizzazione è realizzata con connessione a 2-fili iniettando corrente lungo l'asse C e misurando la tensione risultante in funzione della temperatura. Gli esperimenti sono effettuati sia con corrente costante che variabile nella forma di una rampa lineare o di onda quadra.

1.1 Strumentazione

Negli esperimenti sono stati utilizzati due diversi generatori di corrente i modelli 2400 e 6221 della Keithley Inc. e come voltmetro il modello 2182A sempre della Keithley Inc., montati secondo lo schema seguente:

Source Meter KEITHLEY INSTRUMENTS INC., MODEL 6221 or 2400

Nanovolt Meter KEITHLEY INSTRUMENTS INC., MODEL 2182A

La temperatura è stata misurata con un sensore al Si modello DT-400 della LakeShore collegato al multimetro della Keithley modello 2700.

1.2 Realizzazione dei Contatti

I contatti sul cristallo sono stati realizzati a freddo usando una pasta saldante a base di Ag, sono state sperimentate due diverse paste saldanti.

Esempio di contatto su CA12X_C5:

Per alcuni cristalli è stata creata una piazzola depositando Ag su entrambe le facce con il metodo della polverizzazione catodica per migliorare la qualità del contatto.

Esempio di deposizione su CA12X2_C1:

1.3 Esempi di caratteristica

Esperimento su campione di CA15A a corrente variabile a temperatura di 295°K:

Esperimento su campione di CPRO_03_CE2_A1 a temperatura variabile e corrente di 30uA:

1.4 Oscillazioni del campo elettrico

Durante le sperimentazioni, per alcuni cristalli (si vedano i paragrafi 1.4 e 1.5), si è misurata un'oscillazione del campo elettrico in certe condizioni di temperatura e corrente. Il fenomeno è stato registrato con diverse strumentazioni e modalità di contatti e si è evidenziato a **temperature** inferiori di 130°K e per densità di corrente inferiori a 100 uA/cm2.

Di queste oscillazioni sono state misurate l'ampiezza e il periodo riscontrando per queste grandezze un intervallo di [~100, ~450]V/cm per la prima e [~2000, ~2800]ms per la seconda, si veda il paragrafo 3.1.4. Il valore inferiore di ~2s del periodo potrebbe dipendere dai limiti del sistema di misurazione.

Dalla valutazione complessiva dei dati non si evidenzia alcuna correlazione diretta del periodo e dell'ampiezza delle oscillazioni con la temperatura e la densità di corrente, si consultino le matrici di correlazione della sezione 4.

1.4.1 Innesco dovuto alla temperatura

Esempio dell'innesco delle oscillazioni per effetto della temperatura sul campione di cristallo CA12_01_A. L'esperimento CA12_01_A_current_from_1e-7_to_10e-7A-2022042914575 consiste nella polarizzazione del campione con una rampa di corrente da 0.1uA a 1uA ripetuta per quattro volte con la temperatura che parte da 137.67°K e scende fino a 126.56°K. Le prime due rampe di corrente non presentano oscillazioni, la terza presenta oscillazioni appena la temperatura scende sotto 130°K, oscillazioni che si ripresentano nella quarta e ultima rampa. In quest'ultima la temperatura è più bassa e l'innesco avviene a una corrente più bassa rispetto alla rampa precedente.

Current Density, Temperature

È da notare che la pendenza della densità di corrente si riduce all'innesco delle oscillazioni, questo aspetto è comune a tutti gli esperimenti con rampa.

1.4.2 Innesco dovuto alla corrente

In questo caso è preso in esame il campione ${\bf CA12X_C5}$ polarizzato con corrente costante con una sequenza di esperimenti alla temperatura di ${\bf 113^oK}$

Esperimento CA12X_C5_at_fixed_current_1e-7A-20220413144028 con corrente costante di **0.1uA**, non presenta oscillazioni del campo elettrico

Esperimento CA12X_C5_at_fixed_current_2e-7A-20220413144122 con corrente costante di ${\bf 0.2uA}$, non presenta oscillazioni del campo elettrico

Presenza delle oscillazioni nell'esperimento CA12X_C5_at_fixed_current_3e-7A-20220413144233 con corrente costante di ${\bf 0.3uA}$

Presenza ancora delle oscillazioni nell'esperimento CA12X_C5_at_fixed_current_3.5e-7A-20220413144545 con corrente costante di ${\bf 0.35uA}$

Presenza ancora delle oscillazioni nell'esperimento CA12X_C5_at_fixed_current_4e-7A-20220413143802 con corrente costante di ${\bf 0.4uA}$

Presenza ancora delle oscillazioni nell'esperimento CA12X_C5_at_fixed_current_4.5e-7A-20220413144649 con corrente costante di ${\bf 0.45uA}$

Asenza di oscillazioni nell'esperimento CA12X_C5_at_fixed_current_5e-7A-20220413144412 con corrente costante di $\bf 0.5uA$

Si riscontra la stessa modalità di comportamento polarizzando con una rampa il campione nelle stesse condizioni di temperatura di $113^{\circ}K$

Esperimento CA12X_C5_current_from_1e-7_to_3.5e-7A-20220413145630 con rampa **0.1uA -> 0.35uA**, avvio delle oscillazioni per corrente **>0.2uA**

Esperimento CA12X_C5_current_from_3.5e-7_to_5e-7A-20220413145837 con rampa $\bf 0.35uA$ - $\bf > 0.5uA$, arresto delle oscillazioni per corrente $\bf > 0.45uA$

Si possono vedere i dettagli degli esperimenti citati nella sezione 2.

1.4.3 Finale inatteso

Osservando gli esperimenti dei paragrafi 1.3.1 e 1.3.2 relativi agli inneschi, si nota che al termine della fase oscillatoria il campo elettrico si assesta al valore più basso raggiunto durante questa fase, col segnale a rampa è evidente visivamente.

Un altro esempio con rampe di corrente ripetute relativo al campione CA12X2_C1 nell'esperimento CA12X2_C1_current_from_0.5e-6_to_1e-6A-20220428154754

Electric field, Resistivity

Current Density, Temperature

Dettaglio delle oscillazioni della prima rampa

Current density vs E

La fase oscillatoria introduce una discontinuità di comportamento tale da avere un campo elettrico inferiore a quello pre-oscillatorio sebbene le correnti siano maggiori.

1.4.4 Stati Indipendenti

Nella sequenza degli esperimenti a corrente costante del paragrafo 1.3.2 il comportamento è equivalente alla rampa dello stesso paragrafo. Però, rispetto alla rampa, la sequenza degli incrementi di corrente non è stata applicata in ordine cronologico:

Ordine Cronologico	Corrente [uA]	Campo [V/cm]
2	0.1	408
3	0.2	768
4	0.3	osc. min 170, max 620
6	0.35	osc. min 198, max 663
1	0.4	osc. min 226, max 692
7	0.45	osc. min 255, max 716
5	0.5	283

Il valore finale di 0.5uA è applicato prima dei valori 0.35uA e 0.45uA. La risposta del cristallo appare quasi deterministica e non sembra dipendere dallo stato precedente.

1.4.5 Simmetria e Specularità

Esempi di esperimenti che evidenziano la caratteristica di specularità e di simmetria del fenomeno.

L'esperimento CA8_01_A_square_waveform_value_3.5e-08A-20220413144649 con sorgente di corrente a onda quadra simmetrica di **0.035uA** mostra questo comportamento:

Current Density, Temperature

Gli esperimenti seguenti con forma d'onda triangolare mostrano caratteristiche di specularità: Esperimento CA12X2_current_from_1e-9_to_1000e-9A_flipped-20220315170952

Current Density, Temperature

 $Esperimento~CA12X2_current_from_10e-9_to_100e-9A_flipped-20220315155945$

Current Density, Temperature

Questi andamenti sembrano confermare le deduzioni del paragrafo 1.3.4

1.4.6 Discontinuità

Quando non si innescano le oscillazioni appaiano dei salti, succede così per il campione CA12X2_C3 sottoposto a una sequenza di onde triangolari da 1uA con picco a 12uA a temperature decrescenti nell'esperimento CA12X2_C3_current_from_1e-6_to_12e-6A_flipped-20220404182243:

Temperatura di $116^{\circ}K$, nessun salto evidente

Temperatura di 109°K

Electric field, Resistivity

Temperatura di $92^{\circ}K$

Temperatura di $83^{\circ}\mathrm{K}$

Electric field, Resistivity

Allo scendere della temperatura i salti avvengono a correnti più basse come per gli inneschi delle oscillazioni

1.5 Cronologia degli esperimenti

Cronologia per campione con percentuale degli esperimenti con oscillazioni

Loading [MathJax]/extensions/MathMenu.js

1.6 Distribuzione degli esperimenti

Corrente e Temperatura Media degli Esperimenti

2 Esperimenti con Oscillazioni

Dettaglio degli esperimenti sui campioni che hanno presentato oscillazioni del campo elettrico.

3 Analisi delle Oscillazioni

Analisi delle oscillazioni del campo elettrico riscontrate negli esperimenti confrontando ampiezza e periodo in funzione di temperatura e della sorgente di corrente.

3.1 Analisi degli Esperimenti a Corrente costante

Corrente e Temperatura degli Esperimenti

3.1.1 Oscillazioni in funzione della temperatura

Ampiezza delle oscillazioni in funzione della temperatura

Periodo delle oscillazioni in funzione della temperatura

3.1.2 Oscillazioni in funzione della corrente

Ampiezza delle oscillazioni in funzione della corrente

Periodo delle oscillazioni in funzione della corrente

3.1.3 Periodo vs Ampiezza

Confronto dell'ampiezza e del periodo

3.1.4 Distribuzione delle oscillazioni in funzione di corrente e temperatura

Distribuzione dell'Ampiezza in funzione di corrente e temperatura

Distribuzione del Periodo in funzione della corrente e temperatura

3.2 Analisi degli Esperimenti a Corrente variabile

3.2.1 Distribuzione degli esperimenti in funzione della temperatura e della corrente

Corrente e Temperatura degli Esperimenti

3.2.2 Oscillazioni in funzione della temperatura

Ampiezza delle oscillazioni in funzione della temperatura

Periodo delle oscillazioni in funzione della temperatura

3.2.3 Oscillazioni in funzione della corrente

Ampiezza delle oscillazioni in funzione della corrente

Periodo delle oscillazioni in funzione della corrente

3.2.4 Periodo vs Ampiezza

Confronto dell'ampiezza e del periodo

3.2.5 Distribuzione delle oscillazioni in funzione di corrente e temperatura

Distribuzione dell'Ampiezza in funzione di corrente e temperatura

4 Correlazioni

Calcolo della matrice di correlazione delle grandezze di ciascun esperimento durante il fenomeno dell'oscillazione.

I valori rappresentati sono compresi tra -1 e 1. Il valore 1 indica la massima correlazione positiva, le grandezze crescono all'unisono; il valore -1 anch'esso è indice di una perfetta correlazione dove l'incremento dell'una corrisponde un decremento di pari misura dell'altra. Un valore assoluto maggiore di 0.6 è considerato un indice di buona correlazione.

4.1 Esperimenti con corrente costante

4.2 Esperimenti con corrente variabile

5 Diffrattogrammi a raggi X

Tra i campioni analizzati c'è una differenza dal punto di vista cristallino:

- Ca0_01_a è puro
- Ca12_01_a ha qualche inclusione di Ru metallico, visibile al microscopio ottico ma non ai raggi ${\bf X}$
- Ca12 X c5 ha probabilmente una percentuale leggermente più alta di inclusioni e un po' di fase CaRuO3
- Ca12_x2 ha più rutenio degli altri, CaRuO3 e anche Ca3Ru2O7 (?).