Playing to Program: An Intelligent Programming Tutor for RUR-PLE

Marie des Jardins and an Ensemble of Students

University of Maryland, Baltimore County 1000 Hilltop Circle Baltimore MD 21250 mariedj@cs.umbc.edu

Abstract

Intelligent tutoring systems (ITSs) have proven their effectiveness in contributing to student learning. ITSs are automated programs that provide students with a one-on-one tutor, allowing them to work at their own pace, so they can spend more time on their weaker areas of the subject matter. RUR-Python Learning Environment (RUR-PLE), a virtual environment to help students learn to program in Python, provides an interface for students to write their own Python code and then be presented with a visualization of that same code [CITE]. The RUR-PLE system provides a sequence of learning lessons for students to explore. We have extended RUR-PLE to provide an intelligent tutoting system interface that consists of three components: (1) a student model that tracks student understanding, (2) a diagnosis module that provides tailored feedback to students, and (3) a problem selection module that guides the student's learning process. In this paper, we describe the basis RUR-PLE system and our extensions, and present the results of a user study in which we evaluated the effectiveness of our three ITS modules.

1. Introduction and Related Work

ADD introduction and motivation.

2. Infrastructure

ADD description of concept map, how we built/tested it (i.e., justification for these concepts and why they're connected as they are, and how we instantiate and track it for a specific user (presumably using some kind of Bayesian updating). Idea: validate/finalize it by some testing process on a group of students (i.e., is it in fact the case that students in general need to understand concept X before they can apply concept Y) – use a problem suite (where each problem includes known concepts) to measure these dependencies.

3. Pre-test and Problem Selection

ADD: How is the student model used to generate and select problems for the student to work on? What is the motivation for our approach, and how does it work?

Copyright © 2011, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

4. Experimental Design

ADD: Methodology: design of the user study (set up in such a

5. Conclusions and Future Work

ADD: What have we contributed? What are the takeaway lessons? What would we work on next?

References