Lecture 4: Neural Networks and Backpropagation

Where we are...

$$s = f(x; W) = Wx$$
 Linear score function

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \quad \text{SVM loss (or softmax)}$$

$$L = rac{1}{N} \sum_{i=1}^N L_i + \lambda \sum_k W_k^2$$
 data loss + regularization

How to find the best W?

Finding the best W: Optimize with Gradient Descent


```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

<u>Landscape image</u> is <u>CC0 1.0</u> public domain <u>Walking man image</u> is <u>CC0 1.0</u> public domain

Problem: Linear Classifiers are not very powerful

Visual Viewpoint

Linear classifiers learn one template per class

Geometric Viewpoint

Linear classifiers can only draw linear decision boundaries

One Solution: Feature Transformation

Histogram of Oriented Gradients (HoG)

Image features vs ConvNets

Today: Neural Networks

(**Before**) Linear score function:
$$f=Wx$$

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

(**Before**) Linear score function: f = Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

(**Before**) Linear score function: f=Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

(**Before**) Linear score function: f=Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

(**Before**) Linear score function: f = Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

(**Before**) Linear score function: f=Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation functions

ReLU is a good default choice for most problems

Sigmoid $\sigma(x) = \frac{1}{1 + e^{-x}}$

Leaky ReLU $\max(0.1x, x)$

tanh

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Neural networks: Architectures

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)

x = np.random.randn(3, 1) # random input vector of three numbers (3x1)

h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1)

h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1)

out = np.dot(W3, h2) + b3 # output neuron (1x1)
```

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
     from numpy random import randn
    N, D_{in}, H, D_{out} = 64, 1000, 100, 10
    x, y = randn(N, D in), randn(N, D out)
    w1, w2 = randn(D_in, H), randn(H, D_out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
      y_pred = h.dot(w2)
10
      loss = np.square(y_pred - y).sum()
11
      print(t, loss)
12
13
14
      grad_y_pred = 2.0 * (y_pred - y)
15
      grad_w2 = h.T.dot(grad_y_pred)
      grad_h = grad_y_pred.dot(w2.T)
      grad w1 = x.T.dot(grad h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * qrad w1
20
      w2 -= 1e-4 * grad w2
```

Setting the number of layers and their sizes

Do not use size of neural network as a regularizer. Use stronger regularization instead:

(Web demo with ConvNetJS: http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

This image by Fotis Bobolas is licensed under CC-BY 2.0

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Problem: How to compute gradients?

$$s = f(x; W_1, W_2) = W_2 \max(0, W_1 x)$$
 Nonlinear score function

$$L_i = \sum_{i \neq u_i} \max(0, s_j - s_{y_i} + 1)$$
 SVM Loss on predictions

$$R(W) = \sum_k W_k^2 \quad \text{Regularization}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss: data loss + regularization

If we can compute $\frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}$ then we can learn W_1 and W_2