

Computer Networks 컴퓨터네트워크

(L4: Ch. 3. Transport Layer)

Wonjun Lee, Ph.D., IEEE Fellow

Network and Security Research Lab. (NetLab)

http://netlab.korea.ac.kr http://mobile.korea.ac.kr Korea University

UDP segment header

TCP segment structure

IP datagram format

32 bits _____

ver head len	. type of service	length	
16-bit identifier		flgs	fragment offset
time to	upper	header	
live	layer	checksum	
32 bit source IP address			
32 bit destination IP address			
options (if any)			
data			

how much overhead?

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

data
(variable length,
typically a TCP
or UDP segment)

IP address classes (in Chap. 4)

IPv6 datagram format

What's missing (compared with IPv4):

- no checksum (to speed processing at routers)
- no fragmentation/reassembly
- no options (available as upper-layer, next-header protocol at router)

Socket Interfaces

TCP sequence numbers, ACKs

Sequence numbers:

 byte stream "number" of first byte in segment's data

Acknowledgements:

- seq # of next byte expected from other side
- cumulative ACK

Q: how receiver handles out-oforder segments

 <u>A:</u> TCP spec doesn't say, - up to implementor

TCP sequence numbers, ACKs

simple telnet scenario

TCP round trip time, timeout

- Q: how to set TCP timeout value?
- longer than RTT, but RTT varies!
- too short: premature timeout, unnecessary retransmissions
- too long: slow reaction to segment loss

- Q: how to estimate RTT?
- SampleRTT: measured time from segment transmission until ACK receipt
 - ignore retransmissions
- SampleRTT will vary, want estimated RTT "smoother"
 - average several recent measurements, not just current SampleRTT

TCP round trip time, timeout

EstimatedRTT = $(1-\alpha)$ *EstimatedRTT + α *SampleRTT

- <u>e</u>xponential <u>w</u>eighted <u>m</u>oving <u>a</u>verage (EWMA)
- influence of past sample decreases exponentially fast
- typical value: α = 0.125

TCP round trip time, timeout

- timeout interval: EstimatedRTT plus "safety margin"
 - large variation in **EstimatedRTT:** want a larger safety margin

DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

DevRTT =
$$(1-\beta)*DevRTT + \beta*|SampleRTT-EstimatedRTT|$$
 (typically, $\beta = 0.25$)

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Announcements

6/12: Final exam