

EP3260: Machine Learning Over Networks

Lecture 1: Introduction

Hossein S. Ghadikolaei

Division of Network and Systems Engineering School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Stockholm, Sweden https://sites.google.com/view/mlons2023/home

January 2023

Outline

1. Logistics

2. Course Contents

3. Lectures

Outline

1. Logistics

Course Contents

3. Lectures

Logistics

- 10 credits advanced Ph.D. course
- 14 lectures:
 Fundamentals (Lectures 1-8), Special Topics (Lectures 9-14)
- 3 Homework and computer assignment sessions
- Student groups for homework (HW) and computer assignments (CAs)
 - 2-3 students per group
 - Deadline for groups formation: end of Lecture 2
- (preliminary) 3 HW and 6 CAs for groups
 HW due in one week, CA due in two weeks
 peer-to-peer review of HW and CAs

Logistics cont.

- Last round of the course: https://sites.google.com/view/mlons2020/home
- 14 participants
- Email: hossein.shokri.ghadikolaei@ericsson.com, carlofi@kth.se
 (please use "MLoN-2023:" in the email subject)
- Course website: https://sites.google.com/view/mlons2023/home
- YouTube channel: https://www.youtube.com/channel/ UCoFj1tFuK4b_Wh21-KQoU5g?view_as=subscriber
- GitHub account for HW and CA submissions:
 https://github.com/hshokrig/EP3260-MLoNs-2023

Outline

1. Logistics

2. Course Contents

Lectures

Course contents

Machine learning!

- ullet Unsupervised learning (e.g., k-means) learning from unlabeled data: identifies commonalities
- Supervised learning (e.g., deep neural networks)
 learning from labeled data: regression and classification
- Reinforcement learning (e.g., Q-learning)
 learning by interacting with an unknown environment (modeled by a Markov decision process)
 - sequential decision making, lack of correct dataset a priori, suboptimal actions are allowed in the learning process

Supervised learning

ullet instead of \mathcal{H} , e.g., an easier class of mappings like linear regression or neural networks

Supervised learning

- A dataset of N training samples $\mathcal{D} = \{(\boldsymbol{x}_i, y_i = h(\boldsymbol{x}_i))\}_{i=1}^N$
- Our prediction: $\hat{y} = f(x), f \in \mathcal{F}$
- Loss on a single observation: $\ell({\boldsymbol x}, h({\boldsymbol x}), f({\boldsymbol x}))$
- Expected risk (test error): $L = \mathbb{E}_{(x,y)} [\ell(x, h(x), f(x))]$
- Empirical risk (training error): $\hat{L} = \frac{1}{N} \sum_{i \in [N]} \ell(\boldsymbol{x}_i, h(\boldsymbol{x}_i), f(\boldsymbol{x}_i))$
- Assume w parameterizes both h and f, and w^{\star} is the solution of our algorithm.

$$\begin{split} f(\boldsymbol{w}^{\star}) - \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) &= \left(f(\boldsymbol{w}^{\star}) - \min_{\boldsymbol{w} \in \mathcal{W}} f(\boldsymbol{w}) \right) + \left(\min_{\boldsymbol{w} \in \mathcal{W}} f(\boldsymbol{w}) - \min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) \right) \\ &\text{estimation error} \quad + \quad \text{approximation error} \end{split}$$

Some examples

Linear ridge regression:

$$f(m{x}; m{w}) = rac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \left(y_i - m{w}^T m{x}_i
ight)^2 + \lambda \|m{w}\|_2^2$$
 data fitting + regularizer

Linear LASSO regression:

$$f(\boldsymbol{x}; \boldsymbol{w}) = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \left(y_i - \boldsymbol{w}^T \boldsymbol{x}_i \right)^2 + \lambda \|\boldsymbol{w}\|_1$$

Support vector machine (binary classification):

$$f(\boldsymbol{x}; \boldsymbol{w}) = \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \max \left(0, 1 - y_i \left(\boldsymbol{w}^T \boldsymbol{x}_i - b\right)\right) + \lambda \|\boldsymbol{w}\|_2^2$$

Optimization

Convexity

convex set: $\mathcal{X} \subseteq \mathbb{R}^d$ is convex if

$$\forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathcal{X}, \theta \in [0, 1], \theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2 \in \mathcal{X}$$

convex function: $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ for convex \mathcal{X} is convex if

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d, \lambda \in [0, 1], f(\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}) \le \lambda f(\boldsymbol{x}) + (1 - \lambda)f(\boldsymbol{y})$$

convex function: its epigraph $\{(t, \boldsymbol{x}): f(x) \leq t\}$ is a convex set

strictly convex function: convex f for which < holds

Useful forms of Jensen's inequality: f is convex, $\{x_i\}_i$ are deterministic real numbers, $a_i > 0$, X is random variable (proof?):

$$f\left(\frac{\sum a_i x_i}{\sum a_i}\right) \le \frac{\sum a_i f(x_i)}{\sum a_i}, \quad f(E[X]) \le E[f(X)]$$

Optimization

Convex optimization

f and $\mathcal W$ are convex, then: $\min_{\ensuremath{\boldsymbol{w}} \in \mathcal W} f(\ensuremath{\boldsymbol{w}})$

 $local \ optimum \Rightarrow global \ optimum$

Linear convergence with strongly convex and smooth f

• Efficient solvers. Let $f(w) := \frac{1}{N} \sum_{i=1}^{N} f(x_i; w)$.

Gradient descent: $\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \nabla_w f(\mathbf{w}_k)$

Stochastic gradient descent (SGD): $w_{k+1} = w_k - \alpha_k \nabla_w f(x_\zeta; w_k)$

SGD with memory, e.g., stochastic average gradient

Acceleration: $\mathbf{v}_{k+1} = \gamma \mathbf{v}_k - \alpha_k \nabla_{\mathbf{w}} f(\mathbf{w}_k), \mathbf{w}_k = \mathbf{w}_{k-1} - \mathbf{v}_k$

Optimization

Non-convex optimization

local optimum → global optimum

saddle points: $f(x,y) = y^2 - x^2$

perturbed gradient descent

Networked systems

 $\bullet \ \mathsf{Graph} \ \mathcal{G}(\mathcal{V},\mathcal{E})$

 \mathcal{V} : set of vertices

 \mathcal{E} : set of edges

Example	$v_i \in \mathcal{V}$	$e_{ij} \in \mathcal{E}$
Computer networks	worker $\it i$	communication link $v_i o v_j$
Wireless networks	$link\ i$	interference from \emph{v}_i to \emph{v}_j
Biological networks	$sensor\ i$	communication link $v_i ightarrow v_j$

Example 1: Large-scale learning

- Large *N* parallel processing? random sampling?
- Large d: sparse solutions? quantization?

Example 2: Multiagent systems

$$\underset{\boldsymbol{w} \in \mathbb{R}^d}{\operatorname{minimize}} \ \frac{1}{N} \sum_{i=1}^N f_i(\boldsymbol{w})$$

d combined decision variables

- Local variables: $oldsymbol{w}_1
 eq oldsymbol{w}_2$
- Private information: $f_i(\boldsymbol{w}) = \frac{1}{N_i} \sum_{i=1}^{N_i} h(\boldsymbol{w}; \boldsymbol{x}_{ij})$
- Consensus form (separable ⁽²⁾)

$$egin{aligned} \mathsf{minimize} & \sum_{i=1}^N f_i(oldsymbol{z}_i) \ & \mathsf{s.t.} oldsymbol{z}_i = oldsymbol{z}_i \in \mathbb{R}^d \end{aligned}$$

Example 3: Distributed systems

- Local information
- Privacy constraints
- Security challenges

Example 4: Intra-body sensor networks

- Abstractly, same as before
- Low processing power
- Harsh communication environment
- Higher system dynamics
- Time-sensitive decisions

Image source: "Wearable Health Monitoring Using Capacitive Voltage-Mode Human Body Communication," arXiv'17.

Outline

1. Logistics

2. Course Contents

3. Lectures

Lectures

- Lecture 1: Introduction, Jan. 16, 2023, 10:00-12:00.
- Lecture 2: Centralized Convex ML (deterministic algorithms), Jan. 23, 2023, 10:00-12:00.
- Lecture 3: Centralized Convex ML (stochastic algorithms), Jan. 30, 2023, 10:00-12:00.
- Computer Assignment Session and Homework (part 1), Feb. 1, 2023, 10:00-12:00.
- Lecture 4: Centralized Nonconvex ML, Feb. 6, 2023, 10:00-12:00.
- Lecture 5: Distributed ML, Feb. 13, 2023, 10:00-12:00.
- Computer Assignment Session and Homework (part 2), Feb. 15, 2023, 10:00-12:00.
- Lecture 6: ADMM, Feb. 20, 2023, 10:00-12:00.
- Lecture 7: Communication Efficiency, Feb. 27, 2023, 10:00-12:00.
- Lecture 8: Deep Neural Networks, Mar. 6, 2023, 10:00-12:00.
- Computer Assignment Session and Homework (part 3), Mar. 8, 2023, 10:00-12:00.
- Lecture 9-11: Special Topics 1, 2, and 3, Mar. 30, 2023, 10:00-18:00.
- Lecture 12-14: Special Topics 4, 5, and 6, Mar. 31, 2023, 10:00-18:00.

Special topics: two-days workshop

- Poster workshop for Lectures 9-14
- Date: March 30 and 31, 2023, 10:00-18:00
- Some invited talks, one 30-min oral presentation per group, integrated into poster sessions
- Panel discussion on recent progresses and the future of machine learning

Networking!

Some references

- S. Bubeck, "Convex optimization: Algorithms and complexity," Foundations and Trends in Machine Learning, 2015.
- L. Bottou, F. Curtis, and J. Norcedal, "Optimization methods for large-scale machine learning," SIAM Rev., 2018.
- S. Boyd, et al. "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations and Trends in Machine Learning, 2011.
- M.I. Jordan, J.D. Lee, and Y. Yang, "Communication-efficient distributed statistical inference," Journal of the American Statistical Association, 2018.
- M. Schmidt, N. Le Roux, and F. Bach, "Minimizing finite sums with the stochastic average gradient," Mathematical Programming, 2017.
- Goodfellow, Y. Bengio, and A. Courville, "Deep Learning," MIT press 2016.
- S. Sra, S. Nowozin, and S.J. Wright (eds), "Optimization for machine learning" Mit Press. 2012.

EP3260: Machine Learning Over Networks

Lecture 1: Introduction

Hossein S. Ghadikolaei

Division of Network and Systems Engineering School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Stockholm, Sweden https://sites.google.com/view/mlons2023/home

January 2023