Yazılım Mühendisliği Temel Süreçler - PLANLAMA

✓ Proje kaynakları İnsan, donanım ve yazılım kaynakları

Proje planlama aşamasında yapılan işlemler

- Kaynakların Belirlenmesi
- Maliyetlerin Kestirilmesi
- Proje Ekip Yapısının Oluşturulması
- Ayrıntılı Proje Planının Yapılması
- Projenin İzlenme Yönteminin Belirlenmesi

Çıktı: Proje Planı

Proje planı, tüm proje süresince güncellenerek, kaynak kullanım planlarının doğruluğu gözlemlenir.

Proje Kaynakları

- ✓İnsan Kaynakları
- ✓ Donanım Kaynakları
- ✓ Yazılım Kaynakları

Planlama; bu kaynakların tanımını yapar ve zaman kullanımı, görev süreleri, edinilme zamanlarını planlar

İnsan Kaynakları

✓ Planlama; hangi tür elemanların, hangi süre ile ve projenin hangi aşamalarında yer alacağını belirler

Proje Yöneticisi	Donanım Ekip Lideri
Yazılım Ekip Lideri	Donanım Mühendisi
Web Tasarımcısı	Ağ Uzmanı
Sistem Tasarımcısı	Yazılım Destek Elemanı
Programcı	Donanım Destek Elemanı
Programcı Sistem Yöneticisi	Donanım Destek Elemanı Eğitmen

Donanım Kaynakları

- ✓ Donanım Kaynakları:
 - Ana Bilgisayarlar
 - Sunucular (Web, E-posta, Veri Tabanı)
 - Kullanıcı Bilgisayarları (PC)
 - Yerel Alan Ağı (LAN) Alt Yapısı
 - Geniş Alan Ağı (WAN) Alt Yapısı
- ✓ Yazılımın geliştirileceği ortam, gerçek kullanım ortamı dışında olmalıdır.
- ✓ Öte yandan, geliştirme ve uygulama ortamlarının aynı konfigürasyonda olmaları, ileride kurulum sırasında ortaya çıkabilecek taşıma sorunlarını büyük ölçüde giderecektir.

Yazılım Kaynakları

- ✓ Büyük ölçekte otomatik hale getirilmiş ve bilgisayar destekli olarak kullanılmaktadır.
- ✓ Bilgisayar Destekli Tasarım (CAD) ve Bilgisayar Destekli Mühendislik (CASE) araçları olarak bilinmektedirler

✓ Test araçları

 Yazılımı doğrulama ve geçerleme işlemlerinde kullanılır. Test verisi üreticiler, otomatik test yordamları, ...

✓ Prototipleme ve simülasyon araçları

 Geliştirmenin erken aşamalarında kullanıcıya, sonuç ürünün çalışması ile ilgili fikir veren ve yönlendiren araçlar.

✓ Bakım araçları

 Programın bakımını kolaylaştıran, bir kaynak koddan program şemalarının üretilmesini, veri yapısının ortaya çıkarılmasını sağlayan araçlar.

✓ Destek araçları

• İşletim sistemleri, ağ yazılımları, e-posta ve ortam yönetim araçları.

Proje Maliyetleri

✓ Maliyet kestirimi; bir bilgi sistemi ya da yazılım için gerekebilecek iş gücü ve zaman maliyetlerinin üretimden önce belirlenebilmesi için yapılan işlemlerdir.

✓ Kullanılan Unsurlar

- Geçmiş projelere ilişkin bilgiler
- Proje ekibinin deneyimleri
- İzlenen geliştirme modeli

birden çok kez uygulanabilir

Maliyet yönetimi sayesinde;

- ✓ Gecikmeler önlenir
- ✓ Bilgi sistemi geliştirme süreci kolaylaştırılır
- ✓ Daha etkin kaynak kullanımı sağlanır
- ✓İş zaman planı etkin olarak gerçekleştirilir
- ✓ Ürün sağlıklı olarak fiyatlandırılır
- ✓ Ürün zamanında ve hedeflenen bütçe sınırları içerisinde bitirilir

Gözlemlenebilecek değerler

- ✓ Projenin toplam süresi
- ✓ Projenin toplam maliyeti
- ✓ Projede çalışan eleman sayısı, niteliği, çalışma süresi
- √ Toplam satır sayısı
- ✓ Bir satırın maliyeti (ortalama)
- ✓ Bir kişi/ay'da gerçekleştirilen satır sayısı
- ✓ Toplam işlev sayısı
- ✓ Bir işlevin maliyeti
- ✓ Bir kişi/ay'da gerçekleştirilen işlev sayısı
- ✓ Bir kişi/ay'da maliyeti

Maliyet Kestirim Yöntemleri

1. Projenin boyut türüne göre

- Proje büyüklüğünü kestiren yöntemler
- Proje zaman ve işgücünü kestiren yöntemler

2. Projelerin büyüklüğüne göre

- Makro yöntemler (büyük boyutlu projeler 30 kişi-yıl)
- Mikro Yöntemler (orta ve küçük boyutlu projeler)

3. Uygulanış biçimlerine göre

- Yalın düzeyde
- Orta düzeyde
- Ayrıntılı düzeyde

Maliyet Kestirim Yöntemleri

4. Değişik aşamalarda kullanılabilirlik

- Planlama ve analiz aşamasında kullanılabilen
- Tasarım aşamasında kullanılabilen
- Gerçekleştirim aşamasında kullanılabilen yöntemler

5. Yöntemlerin yapılarına göre

- Uzman deneyimine gereksinim duyan
- Önceki projelerdeki bilgileri kullanan yöntemler

İşlev Noktaları Yöntemi

✓İşlev noktaları geliştirmenin erken aşamalarında (analiz aşamasında) saptanan bir değerdir.

- ✓ Sistemin oluşturulduğu ortamdan bağımsız elde edilir.
- ✓ Problem tanımı girdi olarak alınarak üç temel adım izlenir:
 - Problemin bilgi ortamının incelenmesi
 - Problemin teknik karmaşıklığının incelenmesi
 - İşlev noktası hesaplama

Problemin bilgi ortamının incelenmesi

- ✓ Kullanıcı Girdileri: personel sicil bilgileri, personel izin bilgileri gibi
- ✓ Kullanıcı Çıktıları: her türlü mantıksal çıktı; raporlar, ekran çıktıları, hata iletileri,...
- ✓ Kullanıcı Sorguları: personel sicil bilgilerinin sorgulaması, personel maaş bilgilerinin sorgulaması
- ✓ Dosyalar: Her türlü mantıksal bilgi yığını, tablolar, veri tabanları
- ✓ Dışsal arayüzler: Başka programlarla veri iletimi. import/export

Yukarıda verilen durumlara ait sayılar ağırlık faktörleriyle çarpılarak toplam işlemi yapılır. Çıkan değer Ayarlanmamış İşlev Noktası (AİN) olarak adlandırılır.

Problemin teknik karmaşıklığının incelenmesi

- 1. Uygulama, güvenilir yedekleme ve kurtarma gerektiriyor mu?
- 2. Veri iletişimi gerektiriyor mu?
- 3. Dağıtılmış İşlemler var mı?
- 4. Performans kritik mi?
- 5. Girdiler, çıktılar, dosyalar ya da sorgular karmaşık mı?
- 6. İçsel işlemler karmaşık mı?
- 7. Tasarlanacak kod yeniden kullanılabilir mi?
- 8. Dönüştürme ve kurulun tasarımda dikkate alınacak mı?

Cevaplar 0 ile 5 arasında puanlandırılır

Bunlar hesaplanıp toplanarak Teknik Karmaşıklık Faktörü (TKF) elde edilir.

İşlev noktası sayısı hesaplama

```
✓iN=AiN*(0,65*0,01*TKF)
```

Değişik amaçlarla kullanılabilir

- Üretkenlik = İN / Kişi-Ay
- Kalite = Hatalar / İN
- Maliyet= \$ / IN

Satır Sayısı Kestirimi

Assembly	300
Cobol	100
Fortran	100
Pascal	90
С	90
Ada	70
Nesne Kökenli Diller	30
4. Kuşak Dilleri	20
Kod Üreticiler	15

Örneğin, IN=300 ise ve Nesne Tabanlı bir dilde geliştirme yapılırsa Satır Sayısı=300*30, kod üreteçleri ile geliştirme yapılırsa Satır Sayısı=300*15 satır kadarlık kod yazılması gerekir. Buradaki kod satır sayısını açıklamalar hariç olarak düşünmek gerekir.

Kaynaklar

- ✓-Doç. Dr. Recep ERYİĞİT
- **√** Doç. Dr. Resul DAŞ
- **✓** Doç. Dr. Fatih ÖZKAYNAK