- 1. Conjugate harmonic function of $ln(x^2 + y^2)$ is:
 - \circ 5 cot⁻¹ $\left(\frac{2x}{y}\right)$
 - $\circ 2 \cot^{-1} \left(\frac{y}{x} \right)$
 - \circ 5 tan⁻¹ $\left(\frac{2x}{y}\right)$
 - $\odot 2 \tan^{-1} \left(\frac{y}{x} \right)$
- 2. Value of the integral $\int_0^{1+i} (x y + ix^2) dz$
 - $\circ \frac{5}{2} + \frac{5}{7}i$
 - $\circ \frac{3}{2} + \frac{5}{6}i$

 - $\circ \frac{1}{2} + \frac{1}{6}i$
- 3. Evaluate $\int_{[z_1,z_2]} (x^2 + y^2) dz$ where $z_1 = 2 + i$, $z_2 = -1 i$
 - \circ $-6-\frac{1}{3}i$
 - $-4 \frac{8}{3} i$
 - $\circ -1 \frac{2}{3}i$
 - \circ $-3-\frac{4}{3}i$

- 4. The line integral $\oint z^2 dz$ where C is the parabolic path of $y = 2x^2$ is

 - $\circ \frac{4}{3}(5-2i)$
 - $\circ \frac{2}{5}(3+7i)$
 - $\circ \frac{2}{3}(-13+5i)$
- 5. Evaluate the limit of $\lim_{z \to i} \frac{z^3 + (1-3i)z^2 + (i-3)z + 2 + i}{z i}$ using L'Hospital's rule.
 - o i
 - $\circ \frac{i}{3}$
 - 0 3
 - **◎** 3i