Chapter 8 Introduction to Graphs

Discrete Structures for Computing on December 14, 2014

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Evercise

Graph Bipartie graph

Isomorphism

Huynh Tuong Nguyen, Tran Vinh Tan Faculty of Computer Science and Engineering University of Technology - VNUHCM

Contents

1 Graph definitions

Terminology Special Simple Graphs

2 Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

3 Exercise

Graph Bipartie graph Isomorphism

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions
Terminology

Special Simple Graphs

Representing Graphs and Graph

Isomorphism
Representing Graphs
Graph Isomorphism

_

Exercise

LACICISC

Graph

Motivations

The need of the graph

- Representation/Storing
- Searching/sorting
- Optimization

Its applications

- Electric circuit/board
- Chemical structure
- Networking
- Map, geometry
- . .

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions
Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph

Graph

Definition

A graph $(d\hat{\delta} thi)$ G is a pair of (V, E), which are:

- ullet V nonempty set of vertices (nodes) (\emph{dinh})
- *E* set of edges (*canh*)

A graph captures abstract relationships between vertices.

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definition

Terminology Special Simple Graphs

Representing Graphs and Graph

Isomorphism
Representing Graphs

Graph Isomorphism

Exercise

Graph Bipartie graph

Undirected Graph (Đồ thị vô hướng)

Definition (Simple graph (đơn đồ thị))

- · Each edge connects two different vertices, and
- No two edges connect the same pair of vertices

An edge between two vertices u and v is denoted as $\{u,v\}$

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definition

Terminology Special Simple Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Undirected Graph

Definition (Multigraph (đa đồ thị))

Graphs that may have multiple edges connecting the same vertices.

An unordered pair of vertices $\{u,v\}$ are called multiplicity m ($b\hat{\varrho}i$ m) if it has m different edges between.

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs
Graph Isomorphism

Exercise

Graph

Undirected Graph

Definition (Pseudograph (giả đồ thị))

Are multigraphs that have

• loops (khuyên) - edges that connect a vertex to itself

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

raph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph

Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Directed Graph

Definition (Directed Graph (đồ thị có hướng))

A directed graph G is a pair of (V, E), in which:

- ullet V nonempty set of vertices
- E set of directed edges (cạnh có hướng)

A directed edge start at u and end at v is denoted as (u, v).

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph

Isomorphism

Representing Graphs

Graph Isomorphism

Evercise

xercise

Graph Bipartie graph

Terminologies For Undirected Graph

Neighborhood

In an undirected graph G = (V, E),

- two vertices \underline{u} and $\underline{v} \in V$ are called **adjacent** (*liền kề*) if they are end-points (diem dau mut) of edge $e \in E$, and
- e is incident with (canh liên thuộc) u and v
- e is said to **connect** (canh nối) u and v;

The degree of a vertex

The **degree of a vertex** (bậc của một đỉnh), denoted by deg(v) is the number of edges incident with it, except that a loop contributes twice to the degree of that vertex.

- isolated vertex (đỉnh cô lập): vertex of degree 0
- pendant vertex (dinh treo): vertex of degree 1

Introduction to Graphs

Huvnh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Evercise

Granh

Example

Example

What are the degrees and neighborhoods of the vertices in these graphs?

Solution

In
$$G$$
, $deg(a) = 2$, $deg(b) = deg(c) = deg(f) = 4$, $deg(d) = 1$, ...
Neiborhoods of these vertices are

$$N(a) = \{b, f\}, N(b) = \{a, c, e, f\}, \dots$$

In H,
$$deg(a) = 4$$
, $deg(b) = deg(e) = 6$, $deg(c) = 1$, ...

Neiborhoods of these vertices are

$$N(a) = \{b, d, e\}, N(b) = \{a, b, c, d, e\}, \dots$$

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph Bipartie graph

Basic Theorems

Theorem (The Handshaking Theorem)

Let G = (V, E) be an undirected graph with m edges. Then

$$2m = \sum_{v \in V} deg(v)$$

(Note that this applies even if multiple edges and loops are present.)

Theorem

An undirected graph has an even number of vertices of odd degree.

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph Bipartie graph

Terminologies for Directed Graph

Neighborhood

In an directed graph G = (V, E),

- u is said to be **adjacent to** $(n \hat{o} i \ t \acute{o} i) \ v$ and v is said to be adjacent from $(\textit{d} u \not o c \ n \acute{o} i \ t \grave{u}) \ u$ if (u,v) is an edge of G, and
- u is called **initial vertex** (dinh dâu) of (u, v)
- v is called **terminal** (dinh cuôi) or **end vertex** of (u, v)
- the initial vertex and terminal vertex of a loop are the same.

The degree of a vertex

In a graph ${\cal G}$ with directed edges:

- in-degree ($b\hat{a}c\ v\hat{a}o$) of a vertex v, denoted by $\deg^-(v)$, is the number of edges with v as their terminal vertex.
- out-degree ($b\hat{a}c$ ra) of a vertex v, denoted by $deg^+(v)$, is the number of edges with v as their initial vertex.

Note: a loop at a vertex contributes 1 to both the in-degree and the out-degree of this vertex.

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Basic Theorem

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Theorem

Let G = (V, E) be a graph with directed edges. Then

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|.$$

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Complete Graphs

A complete graph ($d\hat{o}$ thị $d\hat{a}$ y $d\hat{u}$) on n vertices, K_n , is a simple graph that contains exactly one edge between each pair of distinct vertices.

 K_4

 K_5

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Evercise

Graph

Bipartie graph

Cycles

A cycle (đồ thị vòng) C_n , $n\geq 3$, consists of n vertices v_1,v_2,\ldots,v_n and edges $\{v_1,v_2\},\{v_2,v_3\},\ldots,\{v_{n-1},v_n\}$, and $\{v_n,v_1\}$.

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Wheels

We obtain a wheel ($d\hat{o}$ thi hình bánh xe) W_n when we add an additional vertex to a cycle C_n , for $n \geq 3$, and connect this new vertex to each of the n vertices in C_n .

 W_5 W_4

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph

n-cube

An n-dimensional hypercube ($kh\acute{b}i \ n \ chi\grave{e}u$), Q_n , is a graph that has vertices representing the 2^n bit strings of length n. Two vertices are adjacent iff the bit strings that they represent differ in exactly one bit position.

What's about Q_4 ?

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Applications of Special Graphs

- Local networks topologies
 - Star, ring, hybrid
- Parallel processing
 - Linear array
 - Mesh network

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Exercise Graph

Bipartie graph

Exercise

Exercise (1)

Is there any undirected simple graph including four vertices that their degrees are respectively 1, 1, 2, 2 ?

Exercise (2)

Is there any undirected simple graph including six vertices that their degree are respectively 2, 3, 3, 3, 3, 3 ?

Exercise (3)

What is the largest number of edges a undirected simple graph with 10 vertices can have ?

Exercise (4)

An undirected simple graph G has 15 edges, 3 vertices of degree 4 and other vertices having degree 3. What is the number of vertices of the graph G?

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph Bipartie graph

Bipartite Graphs

Definition

A simple graph G is called bipartite $(d\hat{o} \ thi \ ph\hat{a} n \ d\hat{o} i)$ if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2)

Example

C_6 is bipartite

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Granh

Bipartie graph

Complete Bipartite Graphs

Definition

A complete bipartite $K_{m,n}$ is a graph that

- has its vertex set partitioned into two subsets of m and n vertices, respectively,
- with an edge between two vertices iff one vertex is in the first subset and the other is in the second one

 $K_{3,3}$

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions
Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph Bipartie graph

Bipartite graphs

Example (Bipartite graphs?)

- C₆
- C
- *K*₃
- \bullet K_n
- the following graph

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph

New Graph From Old

Definition

A subgraph ($d\hat{o}$ thi con) of a graph G=(V,E) is a graph H=(W,F) where $W\subseteq V$ and $F\subseteq E$.

Definition

The **union** $(h \circ p)$ of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$. The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.

 G_1

 G_2

 $G_1 \cup G_2$

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions
Terminology

Special Simple Graphs

Representing Graphs and Graph Isomorphism

> Representing Graphs Graph Isomorphism

Evercise

Graph

Adjacency Lists (Danh sách kề)

Vertex	Adjacent vertices
а	b, c, e
b	a
С	a, d, e
d	c, e
l e	a. c. d

Initial vertex	Terminal vertices
а	b, c, d, e
b	b, c, d, e b, d
С	a, c, e
d	c, e
e	b. c. d

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions
Terminology
Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Adjacency Matrices

Definition

Adjacency matrix ($Ma\ tr\hat{q}n\ k\hat{e}$) A_G of G=(V,E)

- Dimension $|V| \times |V|$
- $a_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } (v_i, v_j) \in E \\ 0 & \text{otherwise} \end{array} \right.$

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions
Terminology
Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graphi isomorphism

Exercise Graph

Bipartie graph

Examples

Example

Give the graph defined by the following adjacency matrix

	A	B	C	D	E	
A	0	0	1	1	0	
$egin{array}{c} A \\ B \\ C \\ D \\ E \end{array}$	0	0	0	1	0	
C	1	0	0	1	0	
D	1	1	1	0	1	
E	0	0	0	1	0	

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Graph Bipartie graph

Adjacency Matrices

Introduction to Graphs Huynh Tuong Nguyen,

Huynh Tuong Nguyen Tran Vinh Tan

Example

Give the directed graph defined by the following adjacency matrix \boldsymbol{x}

	_	A	B	C	D	E	_
A B C D E		0 1	0	0 0 1		0 0 1	-
	L						_

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs

and Graph Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph Bipartie graph

Incidence Matrices

Definition

Incidence matrix (ma trận liên thuộc) M_G of G = (V, E)

- Dimension $|V| \times |E|$
- Matrix elements

$$m_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise} \end{cases}$$

		e_1	e_2	e_3	e_4
$\begin{bmatrix} a \\ b \end{bmatrix}$	Γ	1	1	1	0
b		0	1	0	1
c		1	0	0	1
d		0	0	1	0

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions
Terminology
Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Graphi isomorphism

Exercise

Examples

Example

Give the incidence matrix according to the following graph

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph

Isomorphism Representing Graphs

Graph Isomorphism

Exercise

Graph

Bipartie graph

Graph Isomorphism

Definition

 $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are **isomorphic** $(d\mathring{a}ng\ c\^{a}u)$ if there is a **one-to-one function** f from V_1 to V_2 with the property that a and b are adjacent in G_1 iif f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an **isomorphism** $(m\hat{o}t\ d\mathring{a}ng\ c\^{a}u)$.

(i.e. there is a one-to-one correspondence between vertices of the two graphs that preserves the adjacency relationship.)

Isomorphism function $f:U\longrightarrow V$ with $f(u_1)=v_1 \qquad f(u_2)=v_4 \qquad f(u_3)=v_3 \qquad f(u_4)=v_2$

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs
Graph Isomorphism

Evercise

Exercise

Bipartie graph

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph

Isomorphism?

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Exercise Graph

Bipartie graph

Isomorphism?

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs
Graph Isomorphism

Exercise

Graph

Bipartie graph

Isomorphism?

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph

Isomorphism

Representing Graphs

Graph Isomorphism

Exercise

Graph

Bipartie graph

Isomorphism

Are the simple graphs with the following adjacency matrices isomorphic?

$$\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

$$\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right)$$

$$\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\quad
\begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

Introduction to Graphs

Huynh Tuong Nguyen Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Exercise

Graph

Bipartie graph

Isomorphism

Determine whether the graphs without loops with the incidence matrices are isomorphic.

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

- Extend the definition of isomorphism of simple graphs to undirected graphs containing loops and multiple edges.
- Define isomorphism of directed graphs

Introduction to Graphs

Huynh Tuong Nguyen, Tran Vinh Tan

Contents

Graph definitions

Terminology Special Simple Graphs

Representing Graphs and Graph Isomorphism

Representing Graphs Graph Isomorphism

Evercise

Graph

Bipartie graph