SN76489 Sound Generator Chip

Pinout

Warning

NB: Texas Instruments at one time decided to name the most significant bit as bit zero, and increment into the less significant bits. Thus, a byte would be labelled as D0 to D7, instead of D7 to D0 like everyone else. This chip and its data sheet are from that time but this on-line document uses the standard convention to avoid confusion. The figures have been edited too.

VHDL description

This chip has a synthesisable model, written by Arnim Läuger, for his <u>VHDL implementation of the Colecovision</u>. It can be extracted for implementing other machines such as the BBC micro.

Data Sheet

Features

- 3 Programmable Tone Generators
- Programmable White Noise Generator
- Programmable Attenuation

- Simultaneous Sounds
- TTL Compatible
- Up to 4 MHz Clock input*

TEXAS INSTRUMENTS RESERVES THE RIGHT TO MAKE CHANGES AT ANY TIME IN ORDER TO IMPROVE DESIGN AND TO SUPPLY THE BEST PRODUCT POSSIBLE

Description

The SN76489AN digital complex sound generator is an I2L/Bipolar IC designed to provide low-cost tone/noise generation capability in microprocessor systems. The SN76489AN is a data bus based I/O peripheral.

Recommended Operating Conditions

Parameter	Min.	Typ.	Max.	Units
Supply Voltage, VCC	4.5	5.0	5.5	V
High-Level Output Voltage, V _{OH} (pin 4)			5.5	V
High-Level Output Current, I _{OL} (pin 4)			2	mA
Operating Free-Air Temperature, T _A	0		70	°C

1. TONE GENERATORS

Each tone generator consists of a frequency synthesis section and an attenuation section. The frequency synthesis section requires 10 bits of information (F9-F0) to define half the period of the desired frequency (n). F9 is the most significant bit and F0 is the least significant bit. This information is loaded into a 10 stage tone counter, which is decremented at a N/16 rate where N is the input clock frequency. When the tone counter decrements to zero, a borrow signal is produced. This borrow signal toggles the frequency flip-flop and also reloads the tone counter. Thus, the period of the desired frequency is twice the value of the period register.

The frequency can be calculated by the following:

f = N / 32n

^{*} Part SN76489N is identical to the SN76489A except that the maximum clock input frequency is 500 kHz. A "divide by eight" stage is deleted from the input circuitry and only 4 clock pulses are required to load the data, compared to 32 pulses from the SN76489AN.

where N = ref clock in Hzn = 10 bit binary number

The output of the frequency flip-flop feeds into a four stage attenuator. The attenuator values, along with their bit position in the data word, are shown in Table 1. Multiple attenuation control bits may be true simultaneously. Thus, the maximum attenuation is 28 dB.

Table 1: ATTENUATION CONTROL BIT POSITION

A30	Attenuation weight / dB
0001	2
0010	4
0100	8
1000	16
1111	Off

2. NOISE GENERATOR

The Noise Generator consists of a noise source and an attenuator. The noise source is a shift register with an exclusive OR feedback network. The feedback network has provisions to protect the shift register from being locked in the zero state.

Table 2: NOISE FEEDBACK CONTROL

FB	Configuration
0	"Periodic" Noise
1	"White" Noise

Whenever the noise control register is changed, the shift register is cleared. The shift register will shift at one of four rates as determined by the two NF bits. The fixed shift rates are derived from the input clock.

Table 3: NOISE GENERATOR FREQUENCY CONTROL

NF bits	Shift rate

00	N/512
01	N/1024
10	N/2048
11	Tone Generator #3 Output

The output of the noise source is connected to a programmable attenuator as shown in Figure 4.

3. OUTPUT BUFFER/AMPLIFIER

The output buffer is a conventional operational amplifier summing circuit. It sums the three tone generator outputs, and the noise generator output. The output buffer will generate up to 10 mA.

4. CPU to SN76489AN INTERFACE

The microprocessor interfaces with the SN76489AN by means of the 8 data lines and 3 control lines (!WE, !CE and READY). Each tone generator requires 10 bits of information to select the frequency and 4 bits of information to select the attenuation. A frequency update requires a double byte transfer, while an attenuator update requires a single byte transfer.

If no other control registers on the chip are accessed, a tone generator may be rapidly updated by initially sending both bytes of frequency and register data, followed by just the second byte of data for succeeding values. The register address is latched on the chip, so the data will continue going into the same register. This allows the 6 most significant bits to be quickly modified for frequency sweeps.

5. CONTROL REGISTERS

The SN76489AN has 8 internal registers which are used to control the 3 tone generators and the noise source. During all data transfers to the SN76489AN, the first byte contains a three bit field which determines the destination control register. The register address codes are shown in Table 4

Table 4: REGISTER ADDRESS FIELD

R20	Destination control register						
000	Frequency	Tone 1					

001	Attenuation	
010	Frequency	Tone 2
011	Attenuation	10116 2
100	Frequency	Tone 3
101	Attenuation	10116 3
110	Control	Noise
111	Attenuation	indise

6. DATA FORMATS

The formats required to transfer data are shown below.

_7	_6	_5	_4	_3	_2	_1	_0	Conventional data bus bits (D7=MSB on Left, D0=LSB on Right)				
1	R2	R1	R0	F9	F8	F7	F6	- Undate frequency (double byte transfer)				
0	X	F5	F4	F3	F2	F1	F0	Update frequency (double byte transfer)				
1	R2	R1	R0	X	FB	N	F	Update noise source (single byte transfer)				
1	R2	R1	R0	A3	A2	A 1	A0	Update attenuator (single byte transfer)				

7. DATA TRANSFER

The microprocessor selects the SN76489AN by asserting !CE (active low). Unless !CE is asserted, no data transfer can occur. When !CE is asserted, the !WE signal strobes the contents of the data bus to the appropriate control register. The data bus contents must be valid at this time.

The SN76489AN requires approximately 32 clock cycles to load the data into the control register. The open-collector READY output is used to synchronize the microprocessor to this transfer and is pulled low immediately following the leading edge of !CE. It is released to be pulled high (by an external pullup resistor) when the data transfer is complete.

The data transfer timing is shown below.

Figure 1. DATA TRANSFER TIMING

Table 5: FUNCTION TABLE*

Inp	outs	Output
!CE	!WE	READY
0	0	0
0 1		0
1	0	1
1	1	1

^{*} This table is valid when the device is:

- 1. not being clocked, and
- 2. is initialized by pulling !WE and !CE high.

PIN ASSIGNMENT

The table below defines the SN76489AN pin assignment and describes the function of each pin.

Name	Pin	I/O	Function
!CE	6	In	!Chip Enable – when active (low) date may be transferred from CPU to the SN76489AN.
D7 (MSB)	3		
D6	2		
D5	1		
D4	15	T	The date has through which control date an input
D3	13	In	The data bus through which control data are input.
D2	12		
D1	11		
D0 (LSB)	10		
VCC	16	In	Supply Voltage (5V nominal)
GND	8		Ground Reference
CLOCK	14	In	Input Clock
!WE	5	In	Write Enable – when active (low), !WE indicates that data is available from the CPU to the SN76489AN.
READY	4	Out	When active (high), READY indicates that the data has been read. When READY is low, the microprocessor should enter a wait state until READY is high.
N.C.	9		No external connection should be made in this pin.
AOUT	7	Out	Audio Drive Out

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED)

0.2020				• • • • • • • • • • • • • • • • • • • •	0.00.00	una ocno	. a.to. op	
	PARAMETER	TEST CONDITION	NS	MIN	TYP	MAX	UNITS	
I_{I}	In most Comment	$V_{IN} = GND \text{ to } V_{CC}$!CE		-25	175		
11	Input Current	VIN GIAD 10 ACC	D0-D7, !WE, CLK		-10	-10	μΑ	
V _{OL}	Low Level Output Voltage	$I_{OUT} = 2 \text{ mA READ}$	I _{OUT} = 2 mA READY				V	
I_{CC}	Supply Current	Outputs Open			30	50	mA	
$C_{\rm I}$		Input Capacitance	Input Capacitance				pF	
T	High Level Output current	Vcc < 5.0V				20		
I_{OH}		5.0V < VCC < 5.5V				300	μΑ	
V _{IH}	High Level Input Voltage	D0-D7, !WE, !CE, CLK		2			V	
$V_{\rm IL}$	Low Level Input Voltage	D0-D7, ! WE, !CE, C	LLK			.8	V	
2 dB				1	2	3		
4 dB	Attenuation			3	4	5	dB	
8 dB	Auchanon			7	8	9	l ub	
16 dB				15	16	17		

Figure 2. EXTERNAL AUDIO INPUT INTERFACE

** These capacitance values are determined by the frequency response desired and the audio amplifier used.

SWITCHING CHARACTERISTICS, Vcc = 5V, TA = 25°C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
*!CE to READY	$C_L = 225 pF$					
t _{PLL} , 50% to 50%	$R_L = 2K$ to VCC		90	150	ns	
f _{clock} , Input Clock Frequency	Clock Transition Time (10% to 90%) 10 μs	DC	3.579	4	MHz	
Setup Time, t _{su} (see Figure 1)	DATA w.r.t. !WE	0				
Setup Time, t _{su} (see Figure 1)	!CE w.r.t. !WE	0			ns	
Hold Time, t _h (see Figure 1)	DATA w.r.t. READY	0				

*!CE Pulse: 0-3V, $t_{rise} \le 7 \text{ns}$, $t_{fall} \le 7 \text{ns}$

Figure 3. t_{PLL} TEST CIRCUIT

BLOCK DIAGRAM

BLOCK DIAGRAM DESCRIPTION

This device consists of three programmable tone generators, a programmable noise generator, a clock scaler, individual generator attenuators and an audio summer output buffer. The SN76489AN has a parallel 8 bit interface through which the microprocessor transfers the data which controls the audio output.

OUTPUT