Domande di Reti Logiche - compito del 19/07/2016

Barrare una sola risposta per ogni domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

•		•	OAND
	•		AND
X	· · · ·	(1 X	

Il circuito di figura:

è affetto da alee statiche del 1° ordine sul livello 1
è affetto da alee statiche del 1° ordine sul livello 0
è affetto da A.S. del 1° ordine sui livelli 0 ed 1
non è affetto da alee statiche del 1° ordine

L'uscita z della rete di figura, quando b=0:

- ☐ È in alta impedenza
- ☐ È nella fascia di indeterminazione
- Nessuna delle precedenti

La conversione tra rappresentazione in modulo e segno (MS), con modulo su n bit, e rappresentazione in complemento alla radice (CR) su n bit può generare overflow:

Solo	da	MS	a	CR

- □ Solo da CR a MS
- ☐ In entrambe le direzioni
- ☐ In nessuna delle due direzioni

L'operazione di estensione di campo per gli interi rappresentati in complemento alla radice

- ☐ Non richiede mai logica, qualunque sia la base
- □ Non richiede logica per la base 2
- ☐ Richiede sempre logica, qualunque sia la base
- □ Nessuna delle precedenti

\ x₁x₀							
	00	01	11	10	z		
SO	SO)	S1	SO	SO)	0		
S1	S0	S1	S2	1	0		
S2		S1	S2	S0	1		

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

□ Falso

Nella scomposizione di una rete in Parte Operativa/ Parte Controllo (PO/PC) vista a lezione (e priva di registro MJR):

☐ La PO è una rete di Moore, la PC di Mealy

La PO è una rete di Mealy, la PC di Moore

- Entrambe sono reti di Mealy
- ☐ Entrambe sono reti di Moore

30. [] MATI - 731 []	S0:	[]	WAIT<=25;	[]
----------------------	-----	-----	-----------	-----

S1: [...] WAIT<=WAIT-1; [...]

S2: [...] WAIT<=(WAIT==0)?25:WAIT-1;[...]

S3: [...] //nessun assegnamento [...]

S4: [...] //nessun assegnamento [...]

La descrizione di sopra riporta i soli assegnamenti al registro operativo WAIT. Quante variabili di comando sono necessarie per sintetizzare la porzione di parte operativa relativa a WAIT?

- □ **2**
- Non è possibile stabilirlo

Date A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,

- ☐ A<B implica che a<b
- \Box A<=B implies the a<=b
- □ A>B implica che a<b
- ☐ Nessuna delle precedenti

Durante l'ingresso a interruzione di programma, il semaforo viene messo a *rosso* durante l'esecuzione:

- Della primitiva start_in
- ☐ Della primitiva *wait_in*
- ☐ Del driver *driver_in*
- ☐ Nessuna delle precedenti

- ☐ Una rete sequenziale asincrona
- Una rete sequenziale sincronizzata di Moore
- Una rete sequenziale sincronizzata di Mealy Rit.
- ☐ Nessuna delle precedenti

		Domande di Reti Logiche	– compito del	19/07/2016	
	Cognome e	nome:			
	M	latricola:			
\		Consegna:	Sì 🗌	No	

Domande di Reti Logiche - compito del 19/07/2016

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

Il circuito di figura:

	è affetto da alee statiche del 1° ordine sul livello 1
	è affetto da alee statiche del 1° ordine sul livello 0
	è affetto da A.S. del 1° ordine sui livelli 0 ed 1
П	non è affetto da alee statiche del 1° ordine

L'uscita z della rete di figura, quando b=0:

- ☐ È in alta impedenza
- È nella fascia di indeterminazione
- ☐ Nessuna delle precedenti

La conversione tra rappresentazione in modulo e segno (MS), con modulo su n bit, e rappresentazione in complemento alla radice (CR) su n bit può generare overflow:

□ Solo da MS a CI

- □ Solo da CR a MS
- ☐ In entrambe le direzioni
- ☐ In nessuna delle due direzioni

L'operazione di estensione di campo per gli interi rappresentati in complemento alla radice

- ☐ Non richiede mai logica, qualunque sia la base
- ☐ Non richiede logica per la base 2
- ☐ Richiede sempre logica, qualunque sia la base
- ☐ Nessuna delle precedenti

\X ₁ X ₀								
	00	01	11	10	Z			
S 0	SO)	S1	SO	SO)	0			
S1	S0	S1	S2	1	0			
S2		S1	S2	S0	1			

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

- □ Vero
- □ Falso

Nella scomposizione di una rete in Parte Operativa/ Parte Controllo (PO/PC) vista a lezione (e priva di registro MJR):

- ☐ La PO è una rete di Moore, la PC di Mealy
 - La PO è una rete di Mealy, la PC di Moore
- Entrambe sono reti di Mealy
- ☐ Entrambe sono reti di Moore

S0:	[]	WAIT<=25;	[]
-----	----	-----------	----

S1: [...] WAIT<=WAIT-1; [...]

S2: [...] WAIT<=(WAIT==0)?25:WAIT-1;[...]

S3: [...] //nessun assegnamento [...]

S4: [...] //nessun assegnamento [...]

La descrizione di sopra riporta i soli assegnamenti al registro operativo WAIT. Quante variabili di comando sono necessarie per sintetizzare la porzione di parte operativa relativa a WAIT?

- □ 1
- □ 2
- □ Non è possibile stabilirlo

Date A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,

- ☐ A<B implica che a<b
- \Box A<=B implies the a<=b
- □ A>B implica che a<b
- ☐ Nessuna delle precedenti

Durante l'ingresso a interruzione di programma, il semaforo viene messo a *rosso* durante l'esecuzione:

- Della primitiva start_in
- ☐ Della primitiva *wait_in*
 - Del driver *driver_in*
- ☐ Nessuna delle precedenti

- ☐ Una rete sequenziale asincrona
- Una rete sequenziale sincronizzata di Moore
- Una rete sequenziale sincronizzata di Mealy Rit.
- ☐ Nessuna delle precedenti

	Do	mande di Reti Logiche	– compito del 1	19/07/2016	
	Cognome e no	me:			
	Matri	icola:			
		Consegna:	Sì 🗌	No	
-	 				

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

Il circuito di figura:

è affetto da alee statiche del 1° ordine sul livello 1
è affetto da alee statiche del 1° ordine sul livello 0
è affetto da A.S. del 1° ordine sui livelli 0 ed 1
non è affetto da alee statiche del 1° ordine

L'uscita z della rete di figura, quando b=0:

- ☐ È in alta impedenza
- ☐ È nella fascia di indeterminazione
- Nessuna delle precedenti

La conversione tra rappresentazione in modulo e segno (MS), con modulo su n bit, e rappresentazione in complemento alla radice (CR) su n bit può generare overflow:

Solo	da	MS	a	CR

- □ Solo da CR a MS
- ☐ In entrambe le direzioni
- ☐ In nessuna delle due direzioni

L'operazione di estensione di campo per gli interi rappresentati in complemento alla radice

- □ Non richiede mai logica, qualunque sia la base
- ☐ Non richiede logica per la base 2
- Richiede sempre logica, qualunque sia la base
- ☐ Nessuna delle precedenti

\ X₁X₀							
	00	01	11	10	z		
SO	SO)	S1	SO	SO)	0		
S1	S0	S1	S2	1	0		
S2		S1	S2	S0	1		

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

□ Falso

Nella scomposizione di una rete in Parte Operativa/ Parte Controllo (PO/PC) vista a lezione (e priva di registro MJR):

La PO è una rete di Moore, la PC di Mealy

La PO è una rete di Mealy, la PC di Moore

- Entrambe sono reti di Mealy
- ☐ Entrambe sono reti di Moore

S0:	[]	WAIT<=25;	[]

S1: [...] WAIT<=WAIT-1; [...]

S2: [...] WAIT<=(WAIT==0)?25:WAIT-1;[...]

S3: [...] //nessun assegnamento [...]

S4: [...] //nessun assegnamento [...]

La descrizione di sopra riporta i soli assegnamenti al registro operativo WAIT. Quante variabili di comando sono necessarie per sintetizzare la porzione di parte operativa relativa a WAIT?

- □ 2
- □ 3
- □ Non è possibile stabilirlo

Date A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,

- □ A<B implica che a<b
- \Box A<=B implies the a<=b
- □ A>B implica che a<b
- ☐ Nessuna delle precedenti

Durante l'ingresso a interruzione di programma, il semaforo viene messo a *rosso* durante l'esecuzione:

- Della primitiva start_in
- ☐ Della primitiva *wait_in*
 - Del driver *driver_in*
- ☐ Nessuna delle precedenti

- ☐ Una rete sequenziale asincrona
- ☐ Una rete sequenziale sincronizzata di Moore
- Una rete sequenziale sincronizzata di Mealy Rit.
- ☐ Nessuna delle precedenti

Domande di Re	eti Logiche -	– compito del 1	9/07/2016	
Cognome e nome:				
Matricola:				
Conse	egna:	Sì 🗌	No	

Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

Il circuito di figura:

ὰ affetto da alee statiche del 1° ordine sul livello 1
ὰ affetto da alee statiche del 1° ordine sul livello 0
ὰ affetto da A.S. del 1° ordine sui livelli 0 ed 1
non è affetto da alee statiche del 1° ordine

L'uscita z della rete di figura, quando b=0:

- ☐ È in alta impedenza
- ☐ È nella fascia di indeterminazione
 - Nessuna delle precedenti

La conversione tra rappresentazione in modulo e segno (MS), con modulo su n bit, e rappresentazione in complemento alla radice (CR) su n bit può generare overflow:

- □ Solo da MS a CR
- Solo da CR a MS
- ☐ In entrambe le direzioni
- ☐ In nessuna delle due direzioni

L'operazione di estensione di campo per gli interi rappresentati in complemento alla radice

- Non richiede mai logica, qualunque sia la base
- Non richiede logica per la base 2
- ☐ Richiede sempre logica, qualunque sia la base
- ☐ Nessuna delle precedenti

\x ₁ x ₀						
/	00	01	11	10	_	
SO	SO)	S1	SO	SO)	0	
S1	S0	S1	S2		0	
S2		S1	S2	S0	1	

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

- \square Vero
- □ Falso

Nella scomposizione di una rete in Parte Operativa/ Parte Controllo (PO/PC) vista a lezione (e priva di registro MJR):

- ☐ La PO è una rete di Moore, la PC di Mealy
 - La PO è una rete di Mealy, la PC di Moore
- Entrambe sono reti di Mealy
- ☐ Entrambe sono reti di Moore

S0: []	WAIT<=25;	[]
-------	---	-----------	----

S1: [...] WAIT<=WAIT-1; [...]

S2: [...] WAIT<=(WAIT==0)?25:WAIT-1;[...]

S3: [...] //nessun assegnamento [...]

S4: [...] //nessun assegnamento [...]

La descrizione di sopra riporta i soli assegnamenti al registro operativo WAIT. Quante variabili di comando sono necessarie per sintetizzare la porzione di parte operativa relativa a WAIT?

- □ 1
- □ **2**
- ☐ Non è possibile stabilirlo

Date A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,

- ☐ A<B implica che a<b
- \Box A<=B implies the a<=b
- ☐ A>B implica che a<b
- ☐ Nessuna delle precedenti

Durante l'ingresso a interruzione di programma, il semaforo viene messo a *rosso* durante l'esecuzione:

- Della primitiva start_in
- ☐ Della primitiva *wait_in*
 - Del driver driver_in
- ☐ Nessuna delle precedenti

- ☐ Una rete sequenziale asincrona
- Una rete sequenziale sincronizzata di Moore
- Una rete sequenziale sincronizzata di Mealy Rit.
- ☐ Nessuna delle precedenti

	Domande di Reti Logiche – compito del 19/07/2016						
		Cognome e noi	me:				
		Matri	icola:				
			Consegna:	Sì 🗌	No 🗌		
-							