Летняя ШОП 2017, параллель С+, день 9, Строки Россия, Иннополис, 12 июня 2017

Задача А. Тандемный повтор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Требуется проверить, является ли строка тандемным повтором, то есть является ли конкантенацией двух одинаковых строк.

Формат входных данных

На вход подается строка из строчных латинских букв длины не более 1000 символов

Формат выходных данных

В единственной строке выведите «YES», без кавычек, если строка является тандемным повтором, иначе выведите «NO», так же без кавычек.

стандартный ввод	стандартный вывод
aaaa	YES
abcde	NO
abba	NO

Задача В. Слова не пройдут

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дети, как известно, все раньше и раньше начинают пользоваться интернетом. Теперь, когда у них возникают вопросы, они не бегут к родителям, а заходят в свою любимую поисковую систему и узнают ответ в интернете. Но вдруг они случайно найдут что-нибудь, что им знать пока рановато? Или, может быть, лучше не знать вообще никогда?

В одной стране эту проблему решили очень просто: был создан список запрещенных для использования в интернете слов. Ведь очевидно, что статья, в которой упоминается какое-нибудь нехорошее слово, не может научить ребенка ничему хорошему. Любой сайт, содержащий хотя бы одно слово из этого списка, теперь подлежит мгновенной блокировке. Невинный ребенок никогда не натолкнется на что-нибудь, про что ему еще рановато знать — такой статьи просто не найдется в интернете. Но злобные сайтовладельцы придумали способ обойти этот запрет: если вместо некоторых букв написать внешне похожие на них цифры, то прочитать этот текст все равно будет можно, а робот, проверяющий сайты на пригодность, не распознает в слове запрещенное — ведь формально его нет на сайте.

Ваша задача — помочь правительству этой страны защитить детей от вредной информации. Напишите программу, которая будет проверять, нет ли в данной строке запрещенного слова, учитывая возможное коварство сайтовладельцев. Известно, что сайтовладельцы иногда делают следующие замены: $e \Rightarrow 3$, $o \Rightarrow 0$, $i \Rightarrow 1$, $t \Rightarrow 7$, $a \Rightarrow 4$, $s \Rightarrow 5$.

Формат входных данных

В первой строке входных данных дана строка — текст с сайта. Во второй строке входных данных дана другая строка — запрещенное слово. Первая строка состоит из маленьких латинских букв и цифр, вторая строка состоит только из маленьких латинских букв. Длина каждой строки не превышает 100.

Формат выходных данных

Выведите «YES», если запрещенное слово встречается как подстрока в строке с сайта, и «NO» иначе. Возможно, в строке с сайта некоторые буквы изначально были заменены на цифры в соответствии с приведенными выше правилами.

стандартный ввод	стандартный вывод
inah0leinthegroundthereliv3dah0bb1t	YES
hobbit	
whath4v3igotinmypocket	NO
handses	
whath4veig0t1nmyp0ck37	NO
knife	
wh4thav31go71nmyp0ck3t	NO
stringofnothing	

Задача С. Префикс-функция

Имя входного файла: prefix.in Имя выходного файла: prefix.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Постройте префикс-функцию для заданной строки s.

Формат входных данных

Первая строка входного файла содержит s ($1\leqslant |s|\leqslant 10^6$). Строка состоит из букв латинского алфавита.

Формат выходных данных

Выведите значения префикс-функции строки s для всех индексов $1, 2, \ldots, |s|$.

prefix.in	prefix.out
aaaAAA	0 1 2 0 0 0

Задача D. Z-функция

 Имя входного файла:
 z.in

 Имя выходного файла:
 z.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Постройте Z-функцию для заданной строки s.

Формат входных данных

Первая строка входного файла содержит s ($1\leqslant |s|\leqslant 10^6$). Строка состоит из букв латинского алфавита.

Формат выходных данных

Выведите значения Z-функции строки s для индексов $2, 3, \ldots, |s|$.

z.in	z.out
aaaAAA	2 1 0 0 0
abacaba	0 1 0 3 0 1

Задача Е. Кубики

Имя входного файла: cubes.in
Имя выходного файла: cubes.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Привидение Петя любит играть со своими кубиками. Он любит выкладывать их в ряд и разглядывать свое творение. Однако недавно друзья решили подшутить над Петей и поставили в его игровой комнате зеркало. Ведь всем известно, что привидения не отражаются в зеркале! А кубики отражаются.

Теперь Петя видит перед собой N цветных кубиков, но не знает, какие из этих кубиков нестоящие, а какие — всего лишь отражение в зеркале. Помогите Пете! Выясните, сколько кубиков может быть у Пети. Петя видит отражение всех кубиков в зеркале и часть кубиков, которая находится перед ним. Часть кубиков может быть позади Пети, их он не видит.

Формат входных данных

Первая строка входного файла содержит число N ($1 \le N \le 100\,000$) и количество различных цветов, в которые могут быть раскрашены кубики — M ($1 \le M \le 100\,000$). Следующая строка содержит N целых чисел от 1 до M — цвета кубиков.

Формат выходных данных

Выведите в выходной файл все такие K, что у Пети может быть K кубиков.

Пример

cubes.in	cubes.out
6 2	6 5 3
1 1 2 2 1 1	

Замечание

В приведенном примере взаимные расположения Пети, кубиков и зеркала приведены на рисунке. Петя смотрит вправо, затененные на рисунке кубики находятся позади Пети и поэтому он их не видит.

Задача F. Подстроки-3

Имя входного файла: substr3.in Имя выходного файла: substr3.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны K строк из маленьких латинских букв. Требуется найти их наибольшую общую подстроку.

Формат входных данных

В первой строке число K $(1 \leqslant K \leqslant 10)$.

В следующих K строках — собственно K строк (длины строк от 1 до 10 000).

Формат выходных данных

Наибольшая общая подстрока.

substr3.in	substr3.out
3	cab
abacaba	
mycabarchive	
acabistrue	

Задача G. Помогите, спасите!

Имя входного файла: keepcounted.in Имя выходного файла: keepcounted.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка. Найдите для каждого её префикса количество различных подстрок в нём.

Формат входных данных

В единственной строке входных данных содержится непустая строка S, состоящая из N ($1 \le N \le 10^4$) маленьких букв английского алфавита.

Формат выходных данных

Выведите N строк, в i-й строке должно содержаться количество различных подстрок в i-м префиксе строки S.

keepcounted.in	keepcounted.out
aabab	1
	2
	5
	8
	11
atari	1
	3
	5
	9
	14

Задача Н. Ретростроки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Строкой S называется последовательность символов $S_1,...,S_n$, где |S|=n — это длина строки S.

Для любого k ($1 \le k \le |S|$) k-м префиксом строки S называется строка $S_1, ..., S_k$ длины k. Если k < |S|, то префикс называется собственным.

Аналогично для любого k ($1 \leqslant k \leqslant |S|$) k-м $cy\phi\phi$ иксом строки S называется строка $S_{|S|-k+1},...,S_{|S|}$ длины k. Если k < |S|, то суффикс также называется собственным.

Назовём числом nовторяемости строки S количество её различных собственных суффиксов, каждый из которых совпадает с префиксом той же длины, что и этот суффикс.

Назовём строку *ретрострокой*, если её число повторяемости строго больше чисел повторяемости всех её собственных префиксов.

Дана строка S. Нужно найти её префикс максимальной длины (не обязательно собственный), являющийся ретрострокой.

Формат входных данных

В первой строке входного файла записана строка $S, 1 \leq |S| \leq 1000000$. Строка содержит лишь символы с ASCII-кодом от 33 до 126.

Формат выходных данных

В первой строке выходного файла должен быть выведен префикс S максимальной длины, являющийся ретрострокой.

стандартный ввод	стандартный вывод
z	Z
aabaabaabaabaaba	aabaabaabaa

Задача І. Поиск периода

Имя входного файла: period.in Имя выходного файла: period.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дана строка s. Требуется найти минимальную по длине строку t, такую что s представима в виде конкатенации одной или нескольких строк t.

Формат входных данных

Первая строка входного файла содержит s ($1\leqslant |s|\leqslant 10^6$). Строка состоит из букв латинского алфавита.

Формат выходных данных

Выведите длину искомой строки t.

period.in	period.out
abcabcabc	3
abacaba	7

Задача Ј. Словарь

Имя входного файла: dictionary.in Имя выходного файла: dictionary.out Ограничение по времени: 2 секунды 256 мегабайт

Дан набор слов и текст, требуется определить для каждого слова, присутствует ли оно в тексте как подстрока.

Формат входных данных

Ограничение по памяти:

В первой строке дан текст (не более 10^6 строчных латинских букв). Далее дано число M количество слов в словаре.

В следующих M строках записаны слова (не более 30 строчных латинских букв). Слова различны и отсортированы в лексикографическом порядке.

Суммарная длина слов в словаре не более 10^5 .

Формат выходных данных

M строк вида Yes, если слово присутствует, и No иначе.

dictionary.in	dictionary.out
trololo	No
3	Yes
abacabadabacaba	Yes
olo	
trol	

Задача К. Быстрый поиск подстроки в строке

Имя входного файла: search2.in Имя выходного файла: search2.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Даны строки p и t. Требуется найти все вхождения строки p в строку t в качестве подстроки.

Формат входных данных

Первая строка входного файла содержит p, вторая — t ($1\leqslant |p|,|t|\leqslant 10^6$). Строки состоят из букв латинского алфавита.

Формат выходных данных

В первой строке выведите количество вхождений строки p в строку t. Во второй строке выведите в возрастающем порядке номера символов строки t, с которых начинаются вхождения p. Символы нумеруются с единицы.

search2.in	search2.out
aba	2
abaCaba	1 5

Задача L. Сравнения подстрок

Имя входного файла: substrcmp.in Имя выходного файла: substrcmp.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана строка. Нужно уметь отвечать на запросы вида: равны ли подстроки [a..b] и [с..d].

Формат входных данных

Сперва строка S (не более 10^5 строчных латинских букв). Далее число M — количество запросов. В следующих M строках запросы a,b,c,d. $0\leqslant M\leqslant 10^5,1\leqslant a\leqslant b\leqslant |S|,1\leqslant c\leqslant d\leqslant |S|$

Формат выходных данных

M строк. Выведите Yes, если подстроки совпадают, и No иначе.

substrcmp.in	substrcmp.out
trololo	Yes
3	Yes
1 7 1 7	No
3 5 5 7	
1 1 1 5	

Задача M. String Game

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Любимое занятие Чебурашки — вычеркивать буквы из слова, чтобы получилось другое слово. Но получается это у него довольно плохо, потому что он еще маленький, да и вообще его никто не учил писать и читать. Поэтому ему всегда помогает его лучший друг Гена.

Гена дал Чебурашке слово t и хочет, чтобы из него получилось слово p. Чебурашка начинает вычеркивать буквы в некотором порядке, который задан перестановкой номеров букв слова t: $a_1 \dots a_{|t|}$. Заметим, что после вычеркивания буквы нумерация не меняется. Этот порядок изначально известен Гене. Задача крокодила Гены состоит в том, чтобы в некоторый момент времени остановить друга и закончить вычеркивание самому, получив после этого слово p. Так как Чебурашке нравится это занятие, Гена хочет остановить его как можно позже. Ваша задача — сообщить, сколько букв может вычеркнуть Чебурашка до того, как его остановит Гена.

Гарантируется, что слово p можно получить вычеркиванием букв из t.

Формат входных данных

Первая и вторая строки входного файла содержат слова t и p, соответственно. Слова состоят из строчных букв латинского алфавита $(1 \le |p| < |t| \le 200\,000)$.

Следующая строка содержит перестановку $a_1 \dots a_{|t|}$ номеров букв, задающую порядок, в котором Чебурашка вычеркивает буквы слова t ($1 \le a_i \le |t|$, все a_i различны).

Формат выходных данных

Выведите одно число — максимальное число букв, которые может вычеркнуть Чебурашка.

Пример

стандартный ввод	стандартный вывод
ababcba	3
abb	
5 3 4 1 7 6 2	

Пояснение к примеру

Последовательность вычеркивания букв Чебурашкой выглядит так:

Продолжать вычеркивать Чебурашка не может, потому что из «abab¢ba» нельзя получить «abb».

Таким образом, Чебурашка может вычеркнуть только три буквы в свой последовательности.