

Generic Machine Learning

Clustering and Classification

TCTI-VKAAI-17: Applied Artificial Intelligence

1

Classification

- The problem of identifying to which set of categories a new observation belongs
 - On the basis of a training data set containing observations whose category is known
- Examples:
 - Spam filtering, Optical Character Recognition (OCR), Search Engines, Computer Vision

Intuition of Classification

- Set of points (x,y)
 - Two classes (red / blue)
- Is the box red or blue?
- How did you do it?
 - Calculate prior?
 - Gaussian probability?
- Nearby points are red
 - Use as basis for learning algorithm

3

Nearest Neighbor Classification

- Use the intuition to classify new point x:
 - Find the most similar training example x'
 - Predict its class y'
- Voronoi tesselation
 - Partitions in space into regions
 - Boundary: points at same distance from two different training examples
- Classification boundary
 - Non-linear, reflects classes well
 - Impressive for simple method

Nearest Neighbor: Outliers

- Algorithm sensitive to outliers
 - Single mislabeled example dramatically changes boundary
- Overfitting
 - Boundary exactly follows your training data
- Idea:
 - Use more than one nearest neighbor to make decision
 - Count class labels in k most similar training examples
 - Many "triangles" will outweigh single "circular" outlier

5

kNN Classification Algorithm

- Given:
 - Training examples $\{x_i, y_i\}$
 - \mathbf{x}_i ... attribute-value representation of examples
 - y_i . . . class labels: {ham, spam}, digit {0, 1, ..9} etc.
 - Testing point x that we want to classify
- Algorithm:
 - Compute distance $D(x, x_i)$ to every training example x_i
 - Select k closest instances x_{i_1}, \ldots, x_{i_k} and their labels y_{i_1}, \ldots, y_{i_k}
 - Output the class y* which is most frequent in y_{i_1},\ldots,y_{i_k}

Choosing value of k

- Value of k has strong effect on kNN performance
 - Large value → everything classified as most frequent class in training set
 - Small value → highly variable, unstable decision boundaries
 - Small changes to training set→ large changes in classification
 - Affects 'smoothness' of the boundary
- Selecting the value of k
 - Set aside a portion of the training data (validation set)
 - Vary k, observe training → validation error
 - Pick k that gives best generalisation performance

7

Training & Validation Data

- A common method to validate the performance of machine learning algorithms
 - Split available set of data into
 - Training Data
 - 2. Validation Data
 - Train algorithm on Training Data
 - Use Validation Data to see how well the algorithm performs on 'new' cases.
- Why should you never validate on training data?

Practical Issues of kNN

- Resolving ties:
 - Equal number of positive/negative neighbors
 - Use odd k (does not solve multi-class)
 - Breaking ties:
 - Random: flip a coin
 - Prior: pick the most common class
 - Nearest: use 1-nn classifier to decide
- K-Nearest Neighbors is a slow mechanism!

9

Why is kNN slow?

What you see

Find nearest neighbors of testing point (red)

What the algorithm sees

```
data = np.array([
    (1, 9), (2, 3), (4, 1), (3,7),
    (5, 4), (6, 8), (7, 2), (8, 8),
    (7, 9), (9, 6)
])
testPoint = (7, 4)
```

- Nearest neighbors?
 - Compare one-by-one to each training instance
- n comparisons
- Each takes d operations

Making kNN fast

- Reduce dimensions
 - Simple feature selection (throw away attributes that do not look promising)
- Reduce number of examples
 - Idea: quickly identify m << n potential near neighbors</p>
 - Compare only to those neighbors