Lois de probabilité classiques

Ci-dessous, pour chaque loi, on désigne par X une variable aléatoire suivant la dite loi.

Lois discrètes

Loi de Bernoulli de paramètre p

Valeurs prises: 0,1.

Loi:
$$\mathbb{P}(X=1) = p$$
 $\mathbb{P}(X=0) = 1 - p$.

$$\mathbb{E}(X) = p$$
 $Var(X) = p(1-p).$

Loi binomiale de paramètre n, p.

Valeurs prises : 0,1,...,n.

Loi:
$$\mathbb{P}(X = k) = \binom{p}{k} p^k (1 - p)^{n-k}$$
.

$$\mathbb{E}(X) = np \qquad Var(X) = np(1-p).$$

Loi hypergéométrique de paramètre n, N_1, N_2 .

Loi:
$$\mathbb{P}(X = k) = \frac{\binom{N_1}{k}\binom{N_2}{n-k}}{\binom{N_1+N_2}{k}}$$

Valeurs prises : 0,1,...,
$$n$$
. Loi : $\mathbb{P}(X=k) = \frac{\binom{N_1}{N_1}\binom{N_2}{n-k}}{\binom{N_1+N_2}{n}}$. $\mathbb{E}(X) = n\frac{N_1}{N_1+N_2} \qquad Var(X) = n\frac{N_1}{N_1+N_2}\frac{N_2}{N_1+N_2}\frac{N_1+N_2-n}{N_1+N_2-1}$.

Loi de Poisson de paramètre λ .

Valeurs prises: tous les entiers naturels.

Loi:
$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Loi :
$$\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
.
 $\mathbb{E}(X) = \lambda \quad Var(X) = \lambda$.

Loi géométrique de paramètre p.

Valeurs prises: les entiers naturels strictement positifs.

Loi :
$$\mathbb{P}(X = k) = p(1 - p)^{k-1}$$
.

$$\mathbb{E}(X) = 1/p$$
 $Var(X) = (1-p)/p^2$.

Lois continues

Loi exponentielle de paramètre λ .

Valeurs prises : les réels positifs.

Densité :
$$\lambda e^{-\lambda x}$$
.
 $\mathbb{E}(X) = 1/\lambda$ $Var(X) = 1/\lambda^2$.

Loi normale de paramètre m, σ^2 .

Valeurs prises : les réels.

Densité:
$$\frac{1}{2\pi\sigma^2}e^{-\frac{(x-m)^2}{2\sigma^2}}$$
. $\mathbb{E}(X) = m$ $Var(X) = \sigma^2$.

$$\mathbb{E}(X) = m$$
 $Var(X) = \sigma^2$.