WHAT IS CLAIMED IS:

1	1. An EEPROM integrated circuit structure, the structure comprising:
2	a substrate including a surface region, the surface region being provided within a first cell
3	region; a gate dielectric layer of first thickness overlying the surface of the substrate
4	region; a select gate overlying a first portion of the gate dielectric layer; a floating gate
5	floating gate overlying a second portion of the gate dielectric layer and coupled to the
6	select gate;
7	an insulating layer overlying the floating gate; a control gate
8	overlying the floating gate overlying the insulating layer and coupled to the floating gate;
9	a tunnel window provided in a stripe configuration within a portion of the gate dielectric
10	layer, the portion of the gate dielectric layer being of a second thickness, the second
11	thickness being less than the first thickness.
1	2. The structure of claim 1 wherein the gate dielectric layer comprises
2	a silicon dioxide.
2	a sincon dioxide.
1	3. The structure of claim 1 wherein the tunnel window is characterized
2	by a width of less than 0.25 microns.
1	
1	4. The structure of claim 1 wherein the insulating layer is an ONO
2	layer coupled between the floating gate and the control gate.
1	5. The structure of claim 1 wherein the floating gate has a design
2	width of 1.5 microns.
1	6. The structure of claim 1 wherein the tunnel window is provided
2	using a phase shift mask.
1	7. The structure of claim 1 wherein the stripe configuration extends
2	through a plurality of cells, each of the cells being separated by a field oxide region.
1	8. The structure of claim 1 wherein the substrate is a semiconductor
2	wafer.

1	9. The structure of claim 1 wherein the select gate, floating gate, and
2	control gate are provided within a cell region, the cell region being provided within an
3	isolation region.
1	. 10 The atmentions of plains 1 wherein the atmine configuration wing
1	10. The structure of claim 1 wherein the stripe configuration runs
2	through the first cell region to other cell regions numbered from 2 through N, where N is
3	an integer greater than 2.
1	11. An EEPROM integrated circuit structure, the structure comprising:
2	providing a substrate including a surface region, the surface region being provided within
3	a first cell region; forming a gate dielectric layer of first thickness overlying the surface of
4	the substrate region; patterning the gate dielectric layer to form a plurality of stripes, each
5	of the stripes being characterized by a second thickness, the second thickness being less
6	than the first thickness, each of the stripes having a predetermined width and a
7	predetermined length, at least one of the stripes including a stripe portion traversing
8	through a portion of the first cell region and other cell regions;
9	forming a floating gate overlying a portion of the gate dielectric
10	layer, the portion of the gate dielectric layer including the strip portion traversing through
11	the portion of the gate dielectric layer;
12	forming an insulating layer overlying the floating gate; forming a
13	control gate overlying the floating gate overlying the insulating layer and coupled to the
14	floating gate; and
15	wherein the stripe portion traverses through the portion of the first
16	cell region includes a tunnel window for a memory device.
1	12. The method of claim 11 wherein the gate dielectric Idyer comprises
2	a silicon dioxide.
_	
1	13. The method of claim 11 wherein the tunnel window is characterized
2	by a width of less than 0.25 microns.
1	14. The method of claim 11 wherein the insulating layer is an ONO
2	layer coupled between the floating gate and the control gate.

1 15. The method of claim 11 wherein the floating gate has a design 2 width of 1.5 microns. 1 16. The method of claim 11 wherein the tunnel window is provided 2 using a phase shift mask. 1 17. The method of claim 11 wherein the stripe configuration extends 2 through a plurality of cells, each of the cells being separated by a field oxide region. 1 18. The method of claim 11 wherein the substrate is a semiconductor 2 wafer. 19. 1 The method of claim 11 wherein the floating gate and the control 2 gate are provided within a cell region, the cell region being provided within an isolation 3 region. 1 20. The method of claim 11 wherein the stripe configuration runs 2 through the first cell region to the other cell regions, the other cell regions being numbered

from 2 through N, where N is an integer greater than 2.

3