True positive rate (Sensitivity)

true positive rate =
$$\frac{\text{# of true positives}}{\text{# of known positives}}$$

(Proportion of actual positives that are correctly identified)

True negative rate (Specificity)

true negative rate =
$$\frac{\text{# of true negatives}}{\text{# of known negatives}}$$

(Proportion of actual negatives that are correctly identified)

False positive rate (1 – Specificity)

false positive rate =
$$\frac{\text{# of false positives}}{\text{# of known negatives}}$$

(Proportion of actual negatives that are incorrectly identified)

Sensitivity and specificity depend on a chosen cutoff

Sensitivity and specificity depend on a chosen cutoff

We usually plot the true pos. rate vs. the false pos. rate for all possible cutoffs

ROC curve

Receiver
Operating
Characteristic
curve

Image from: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

The area under the curve tells us how good a model's predictions are

Let's look at the performance of several different models for the biopsy data set

| bland_chromatin

bland_chromatin

Model	Area Under Curve (AUC)
M1	0.940
M2	0.974
M3	0.985
M4	0.995
M5	0.996

Things usually look much worse in real life

Keller, Mis, Jia, Wilke. Genome Biol. Evol. 4:80-88, 2012