UVA CS 6316: Machine Learning

Lecture 9: K-nearest-neighbor

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Course Content Plan Six major sections of this course

☐ Regression (supervised)
 ☐ Classification (supervised)
 ☐ Unsupervised models
 ☐ Learning theory

Y is a continuous
Y is a discrete
NO Y
About f()

☐ Graphical models

☐ Reinforcement Learning

About interactions among X1,... Xp

Learn program to Interact with its environment

Last Recap: Supervised Classifiers

Three major sections for classification

 We can divide the large variety of classification approaches into roughly three major types

1. Discriminative

directly estimate a decision rule/boundary

e.g., support vector machine, decision tree, logistic regression,

e.g. neural networks (NN), deep NN

2. Generative:

build a generative statistical model e.g., Bayesian networks, Naïve Bayes classifier

- Use observation directly (no models)
- e.g. K nearest neighbors

(1) K-Nearest Neighbor

For example: Vector Space Representation of Text

• Each document is a vector, one component for each term (= word).

	Doc 1	Doc 2	Doc 3	
Word 1	3	0	0	•••
Word 2	0	8	1	•••
Word 3	12	1	10	
	0	1	3	
	0	0	0	•••

- High-dimensional vector space:
 - Terms are axes, 10,000+ dimensions, or even 100,000+
 - Docs are vectors in this space
 - Normally Normalize to unit length.

Multiple Classes in a Vector Space

Test Document = ?

Instance-based Learning

- Simplest form of learning:
 - Training instances are searched for those that most closely resembles new instance
 - The instances themselves represent the knowledge
- Similarity function defines what's "learned"
- Instance-based learning is lazy learning

Instance-based Learning

- K-Nearest Neighbor Algorithm
- Weighted Regression
- Case-based reasoning

What makes an Instance-Based Learner?

- A distance metric
 - •How many nearby neighbors to look at?
 - A weighting function (optional)
 - How to relate to the local points?

Popular Distance Metric

Euclidean

$$D(x,x') = \sqrt{\sum_{i} \sigma_i^2 (x_i - x_i')^2}$$

• Or equivalently,

$$D(x, x') = \sqrt{(x - x')^T \Sigma(x - x')}$$

- Other metrics:
 - L₁ norm: |x-x'|
 - L_∞ norm: max |x-x'| (elementwise ...)
 - Mahalanobis: where Σ is full, and symmetric
 - Correlation
 - Angle
 - Hamming distance, Manhattan distance
 - ...

Feature Scaling in Nearest neighbor method

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5 m to 1.8 m
 - weight of a person may vary from 90 lb to 300 lb
 - income of a person may vary from \$10K to \$1M

The relative scalings in the distance metric affect region shapes.

What makes an Instance-Based Learner?

- A distance metric
- •How many nearby neighbors to look at?
- A weighting function (optional)
- How to relate to the local points?

Nearest neighbor is instance-based method

Requires three inputs:

- The set of stored training samples
- 2. Distance metric to compute distance between samples
- 3. The value of k, i.e., the number of nearest neighbors to retrieve

9/30/19 Dr. Yanjun Qi / UVA CS 16

Nearest neighbor classifiers

Requires three inputs:

- The set of stored training samples
- 2. Distance metric to compute distance between samples
- 3. The value of k, i.e., the number of nearest neighbors to retrieve

9/30/19

Dr. Yanjun Qi / UVA CS

Nearest neighbor classifiers

To classify unknown sample:

- Compute distance to training records
- 2. Identify *k* nearest neighbors
- 3. Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

1-Nearest Neighbor

3-Nearest Neighbor

-> Step1: (727, 7ntr)

 $d(\vec{x}_i, \vec{x}_i)$

pick top K from Ner 0(ntr)

K-Nearest Neighbor: How to decide:

- Decision of output value is delayed till a new instance arrives
- Target variable may be discrete or real-valued
 - When target is discrete, the naïve prediction is the majority vote

$$y:=\frac{1}{K}\sum_{j \in NNN} (x?)$$
 $y \in \{0,1\}$
 $y \in \{0,1\}$

e.g., 1-nearest neighbor

Voronoi diagram:

partitioning of a
 plane into
 regions based
 on distance to
 points in a
 specific subset
 of the plane.

e.g. Decision boundary implemented by 3NN

The boundary is always the perpendicular bisector of the line between two points (Vornoi tesselation)

k-nearest neighbors of a sample x are datapoints that have the *k* smallest distances to x

K-Nearest Neighbor: How to decide:

- Decision of output value is delayed till a new instance arrives
- Target variable may be discrete or real-valued
 - When target is discrete, the naïve prediction is the majority vote
 - When target is continuous, the naïve prediction is the mean value of the k nearest training examples

Nearest Neighbor (1D input) for Regression

K=5-Nearest Neighbor (1D input) for Regression

Probabilistic Interpretation of KNN

- •Estimate conditional probability Pr(y|x)
 - •Count of data points in class y in the neighborhood of x

Summary of Nearest neighbor methods

• For regression, average the predictions of the K nearest neighbors.

- For classification, pick the class with the most votes.
 - How should we break ties?
 - E.g., Let the k'th nearest neighbor contribute a count that falls off with k. For example, $1 + \frac{1}{2^k}$

What makes an Instance-Based Learner?

- A distance metric
- How many nearby neighbors to look at?
 - A weighting function (optional)
 - How to relate to the local points?

9/30/19 Dr. Yanjun Qi / UVA CS 35

Play Ren Ridge KNN k L model complexing model luge Small

Decision boundaries in Linear vs. kNN models (Later)

15-nearest neighbor

1-nearest neighbor

Low Variance / High Bias

linear regression

- global
- stable
- can be inaccurate

- local
- accurate
- unstable

Low Bias
/ High Variance

What ultimately matters: **GENERALIZATION**

Model Selection for Nearest neighbor classification

- Choosing the value of *k*:
 - If *k* is too small, sensitive to noise points
 - If *k* is too large, neighborhood may include points from other classes

KU flexible varies a lot KT Smooth/varies little

- •Bias and variance tradeoff
 - •A small neighborhood → large variance → unreliable estimation
 - •A large neighborhood → large bias → inaccurate estimation

What makes an Instance-Based Learner?

- A distance metric
- •How many nearby neighbors to look at?
- •A weighting function (optional)
 - How to relate to the local points?

Nearest neighbor Variations

- Options for determining the class from nearest neighbor list
 - 1. majority vote of class labels among the k-nearest neighbors
 - 2. Weight the votes according to distance
 - example: weight factor w = 1 / d²

$$y_{?} = \frac{1}{\sqrt{2}} \sum_{j \in NN(x_{?})} W_{j}$$

$$w_{j} = \frac{1}{\sqrt{2}} \sum_{j \in NN(x_{?})} W_{j}$$

$$w_{j} = \frac{1}{\sqrt{2}} \sum_{j \in NN(x_{?})} W_{j}$$

$$w_{j} = \frac{1}{\sqrt{2}} \sum_{j \in NN(x_{?})} W_{j}$$

Spurious or less relevant points need to be downweighted

Another Weighted kNN

- Weight the contribution of each close neighbor based on their distances
- Weight function

$$w(\mathbf{x}, \mathbf{x}_i) = \exp\left(-\lambda |\mathbf{x} - \mathbf{x}_i|_2^2\right)$$

• Prediction

$$\Pr(y|\mathbf{x}) = \frac{\sum_{i=1}^{n} w(\mathbf{x}, \mathbf{x}_i) \delta(y, y_i)}{\sum_{i=1}^{n} w(\mathbf{x}, \mathbf{x}_i)}$$

$$\delta(y, y_i) = \begin{cases} 1 & y = y_i \\ 0 & y \neq y_i \end{cases}$$

Variants: Distance-Weighted k-Nearest Neighbor Algorithm

- Assign weights to the neighbors based on their "distance" from the query point
 - Weight "may" be inverse square of the distances $w = 1 / d^2$
- Extreme Option: All training points may influence a particular instance
 - E.g., Shepard's method/ Modified Shepard, ... by Geospatial Analysis

e.g.
$$\widetilde{\mathcal{I}} = \frac{1}{12} \sum_{i \in N_{k}(X_{i})} \widetilde{\mathcal{I}}_{i}$$

$$F_{i}(X_{i}, X_{0})$$

$$F_{i}(X_{i}, X_{0})$$

K-Nearest Neighbor

Computational Scalable?

Computational Time Cost

	Train (n)	Test (m=1)
Linear Regtession	$O(nP^2+P^3)$	0(4)
KNN	(I) P	0 (np)+ 0 (sort n-k) ???? = 30.000

K-Nearest Neighbor

Asymptotically Sound?

Is kNN ideal? ... See Extra

References

- Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
- ☐ Prof. Andrew Moore's slides
- ☐ Prof. Eric Xing's slides
- ☐ Hastie, Trevor, et al. *The elements of statistical learning*. Vol. 2. No.
 - 1. New York: Springer, 2009.