Series

Paolo Bettelini

Contents

1	Divergence and convergence	2
2	Properties	2
3	Covergence theorem	2
4	Divergence test	2
5	Absolute and conditional convergence	2
6	Riemann rearrangement theorem	2
7	Geometric series	2
8	Telescoping series	3
9	Harmonic series	3
10	Integral test	3

1 Divergence and convergence

An infinite series converges if the limit of its partial sum sequence also converges, otherwise it diverges.

2 Properties

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

3 Covergence theorem

Theorem. If $\sum a_n$ converges then $\lim_{n\to\infty} a_n = 0$

Proof. Consider the partial sum

$$s_n = \sum_{k=1}^n a_k$$

The sequence a_n can now be expressed as

$$a_n = s_n - s_{n-1}$$

Since $\sum a_n$ converges, $\lim_{n\to\infty} s_n = L$ for L finite.

The limit $\lim_{n\to\infty} s_{n-1} = L$ because $n-1\to\infty$ as $n\to\infty$. This implies the following

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} s_n - s_{n-1} = L - L = 0$$

4 Divergence test

If $\lim_{n\to\infty} a_n \neq 0$ then $\sum a_n$ diverges.

5 Absolute and conditional convergence

A series $\sum a_n$ is said to converge absolutely if $\sum |a_n|$ converges. This is a stronger type of convergence. Every absolutely convergent series is also convergent.

A series that is convergent but not absolutely convergent is called conditionally convergent.

6 Riemann rearrangement theorem

If a series is conditionally convergent, then its terms can be rearranged such that the series converges to any $r \in \mathbb{R}$ or such that it diverges (to infinity or no finite value). If the series is absolutely convergent then any rearrangement of its terms will converge to the same value.

7 Geometric series

A geometric series is a series of the form

$$\sum_{n=0}^{\infty} r^n$$

meaning that the ratio between two adject terms is constant. This type of series converges for |r| < 1 and always converges absolutely.

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

8 Telescoping series

A telescoping series is a series where the terms in the partial sums cancel eachother, leaving a finite number of terms.

For example:

$$\begin{split} &\sum_{n=0}^{\infty} \frac{1}{n^2 + 3n + 2} = \sum_{n=0}^{\infty} \left[\frac{1}{n+1} - \frac{1}{n+2} \right] = \lim_{N \to \infty} \sum_{n=0}^{N} \left[\frac{1}{n+1} - \frac{1}{n+2} \right] \\ &= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} \\ &= \lim_{N \to \infty} 1 - \frac{1}{n+2} = 1 \end{split}$$

9 Harmonic series

The harmonic series is the following digergent series

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

10 Integral test

Let f(x) be a continuous function on $[k; \infty)$ such that it is decreasing and positive on the interval $[N; \infty)$ for some N.

$$\int\limits_{k}^{\infty} f(x) \, dx \text{ converges } \implies \sum_{n=k}^{\infty} f(n) \text{ converges}$$

and

$$\int_{1}^{\infty} f(x) dx \text{ diverges } \implies \sum_{n=k}^{\infty} f(n) \text{ diverges}$$