Widerlegungs-Vollständigkeit der Schnitt-Regel

Definition 1 (⊢)

M: Menge von Klauseln

f: Klausel

Induktive Definition der Relation $M \vdash f$

- 1. $M \vdash \top$
- 2. Wenn $f \in M$, dann $M \vdash f$.
- 3. Wenn $M \vdash k_1 \cup \{p\}$ und $M \vdash \{\neg p\} \cup k_2$, dann $M \vdash k_1 \cup k_2$.

Definition 2 (Folgerungs-Begiff)

Vor.: *M:* Menge von AL-Formeln

f: AL-Formel

Def.: $M \models f$ g.d.w.

 $orall \mathcal{I} \in \mathsf{Ali} : \big((orall g \in M : \mathcal{I}(g) = \mathsf{true}) o \mathcal{I}(f) = \mathsf{true} \big)$

Satz 3 (Korrektheits-Satz)

Vor.: $\{k_1, \dots, k_n\}$: Menge von Klauseln

k: Klausel

Beh.: $\{k_1, \dots, k_n\} \vdash k \implies \{k_1, \dots, k_n\} \models k$.

Satz 4 (Widerlegungs-Vollständigkeits-Satz)

Vor.: $\{k_1, \dots, k_n\}$: Menge von Klauseln

k: Klausel

Beh.: $\{k_1, \dots, k_n\} \models \bot \quad \Rightarrow \quad \{k_1, \dots, k_n\} \vdash \bot$.

Definition 5 (Redukt)

Vor.: *M:* Menge von Klauseln

k: Klausel

l: Literal

 $\mathbf{Def.:} \ \mathit{redukt}(k,l) \quad := \left\{ \begin{array}{l} \top & \mathsf{falls} \ l \in k; \\ k \setminus \left\{ \overline{l} \right\} & \mathsf{falls} \ l \not \in k \ \mathsf{und} \ \overline{l} \in k; \\ k & \mathsf{sonst.} \end{array} \right.$

 $Redukt(M,l) := \{ redukt(k,l) \mid k \in M \}.$

Idee: Vereinfache k unter Annahme l

Satz 6 (Semantische Eigenschaften von Redukt)

Vor.: $M \subseteq \mathcal{K}$

 $l \in \mathcal{L}$

Beh.: $M \models \bot \Rightarrow Redukt(M, l) \models \bot$

Widerlegungs-Vollständigkeit der Schnitt-Regel

Satz 7 (Syntaktische Eigenschaften von Redukt)

Vor.: *M:* Menge von Klauseln

f: Klausel

l: Literal

Beh.: $Redukt(M, l) \vdash f \Rightarrow M \vdash f \text{ oder } M \vdash f \cup \{\overline{l}\}\$

Davis-Putnam Verfahren

Geg.: K Menge von Klauseln

Ges.: \mathcal{I} aussagenlogische Belegung mit

 $\forall k \in K : \mathcal{I}(k) = \text{true}$

Algorithmus

- 1. Führe alle mögl. Schnitte mit Unit-Klauseln durch.
- 2. Vereinfache mit Subsumption.
- 3. Falls *K* trivial: fertig!
- 4. Wähle aussagenlogische Variable p aus K.
 - (a) Suche rekursiv Lösung für \mathcal{I} für $K \cup \{\{p\}\}$.
 - (b) Falls (a) erfolglos ist: Suche rekursiv Lösung für \mathcal{I} für $K \cup \{\{\neg p\}\}$

8-Damen-Problem

Können 8 Damen so auf einem Schach-Brett aufgestellt werden, dass keine Dame eine andere Dame schlagen kann?

Eine Dame kann eine andere schlagen falls diese

- in der selben Reihe steht,
- in der selben Spalte steht, oder
- in der selben Diagonale steht.

Repräsentation des Problems

p11	p12	p13	p14	p15	p16	p17	p18
p21	p22	p23	p24	p25	p26	p27	p28
p31	p32	p33	p34	p35	p36	p37	p38
p41	p42	p43	p44	p45	p46	p47	p48
p51	p52	p53	p54	p55	p56	p57	p58
p61	p62	p63	p64	p65	p66	p67	p68
p71	p72	p73	p74	p75	p76	p77	p78
p81	p82	p83	p84	p85	p86	p87	p88