

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/559,697	08/26/2006	Axel Clausen	1890-0335	3817
7590	01/05/2010			
Harold C Moore Maginot Moore & Beck Chase Tower 111 Monument Circle, Suite 3250 Indianapolis, IN 46204			EXAMINER NEFF, MICHAEL R	
			ART UNIT 2611	PAPER NUMBER
			MAIL DATE 01/05/2010	DELIVERY MODE PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/559,697	Applicant(s) CLAUSEN ET AL.
	Examiner MICHAEL R. NEFF	Art Unit 2611

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If no period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 13 October 2009.
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 8-27 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 8-27 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date _____

4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____
 5) Notice of Informal Patent Application
 6) Other: _____

DETAILED ACTION

Response to Arguments

1. Applicant's arguments filed 10/13/2009 have been fully considered but they are not persuasive. The examiner thoroughly reviewed the applicant's arguments but firmly believes that the cited reference reasonably and properly meets the claimed limitation as rejected.

Applicant's arguments: Applicant has argued that the combination of references Awater, Schenk, and Henkel are not properly combined and thus the application is in condition for allowance.

Examiner's response: In response to applicant's arguments against the references individually, one cannot show nonobviousness by attacking references individually where the rejections are based on combinations of references. See *In re Keller*, 642 F.2d 413, 208 USPQ 871 (CCPA 1981); *In re Merck & Co.*, 800 F.2d 1091, 231 USPQ 375 (Fed. Cir. 1986).

The examiner has thoroughly reviewed the provided response to the office action but firmly believes that the provided rejection is proper. The applicant's response seems to focus on the application of redundant and non redundant PAR reduction. While the individual references may teach different means, they still are focused on the same scope and desired outcome, that outcome being a reduced PAR/crest factor. This, the examiner maintains that it would be obvious to one of ordinary skill in the art to utilize known functional designs within a

common scope in combination to achieve a desired outcome. Therefore the grounds of rejection have been maintained.

Claim Rejections - 35 USC § 103

2. The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.
3. **Claims 16 and 17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Awater et al. (herein after Awater) (US Patent 6,175,551 B1, see IDS).**

Re claim 16 Awater discloses a method for reducing the crest factor of a data symbol to be transmitted in a multi-carrier data transmission system (Col. 1 line 17-51), the data symbol being a function of a plurality of signals provided within a predetermined data frame (Col. 1 line 17-37), each of the plurality of signals allocated to a carrier (Col. 1 line 17-37), each carrier occupying at least one frequency from a transmit data spectrum (Col. 1 line 17-37), the method comprising: (a) receiving the predetermined data frame, the predetermined data frame having the data symbol and a prefix which is derived from a part of the data symbol (Col. 3 line 54-Col. 4 line 13); and (b) performing crest factor reduction corresponding to the predetermined data frame based at least in part on peak values within the cyclic prefix of the predetermined data frame (Col. 3 line 54-Col. 4 line 30; Figure 2 elements 30, 34).

Within the disclosure and cited areas, Awater does not specifically discuss reducing the crest factor of the multi-carrier signal. However, based on the disclosure of the applicant at Paragraph 0006 of the current application, the PAP ratio is directly

Art Unit: 2611

correlated to the derivation of the crest factor; therefore it would have been obvious to one of ordinary skill in the art that the PAP ratio reduction would result in the reduction of the crest factor for the multi-carrier signal.

Re claim 17, Awater discloses the method as claimed in claim 16, wherein the step (b) further comprises searching for peak values exceeding a first threshold in the data symbol and in the cyclic prefix (Col. 4 lines 14-30).

4. Claims 8 and 9 are rejected under 35 U.S.C. 103(a) as being unpatentable over Awater in view of Schenk (US Patent 6,529,925 B1, see IDS).

Re claim 8 Awater discloses a method for reducing the crest factor of a data symbol to be transmitted in a multi-carrier data transmission system (Col. 1 line 17-51), the data symbol being a function of a plurality of signals provided within a predetermined data frame (Col. 1 line 17-37), each of the plurality of signals allocated to a carrier (Col. 1 line 17-37), each carrier occupying at least one frequency from a transmit data spectrum (Col. 1 line 17-37), the method comprising: receiving the predetermined data frame, the predetermined data frame exhibiting the data symbol and a cyclic prefix which is derived from a part of the data symbol (Col. 3 line 54-Col. 4 line 13); and performing crest factor reduction corresponding to the predetermined data frame based at least in part on peak values within the cyclic prefix of the predetermined data frame (Col. 3 line 54-Col. 4 line 30; Figure 2 elements 30, 34).

Within the disclosure and cited areas, Awater does not specifically discuss reducing the crest factor of the multi-carrier signal. However, based on the disclosure of the applicant at Paragraph 0006 of the current application, the PAP ratio is directly correlated to the derivation of the crest factor; therefore it would have been obvious to one of ordinary skill in the art that the PAP ratio reduction would result in the reduction of the crest factor for the multi-carrier signal.

Further the disclosure of Awater fails to explicitly disclose the limitation of at least one carrier being reserved which is not provided for the data transmission. This method is however rendered obvious by the disclosure of Schenk. Schenk discloses where at least one carrier being reserved which is not provided for the data transmission (Col. 1 lines 48-60) as being a well known tactic in the area of multi-carrier communication as a means for providing an initial reduction to the crest factor. Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made to implement this well known method to provide further reduction of the crest factor for the multi-carrier signal.

Re claim 9, the combined disclosure of Awater and Schenk as a whole disclose the method of claim 8, Awater further discloses wherein the step of performing crest factor reduction further comprises performing crest factor reduction based at least in part on peak values within the data symbol of the predetermined data frame (Col. 3 line 54-Col. 4 line 30; Figure 2 elements 30, 34).

5. Claims 10-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Awater and Schenk as applied to claim 8 above, and further in view of Henkel et al. (herein after Henkel) (US Publication “PAR reduction revisited: an extension of Tellado’s method”, see IDS).

Re claim 10, the combined disclosure of Awater and Schenk as a whole disclose the method of claim 8, however they fail to explicitly disclose the method further comprising: (a) filtering the data symbol and the cyclic prefix; (b) determining whether a time-domain function of the data symbol and of the cyclic prefix within the predetermined data frame exhibits at least one peak value that exceeds a first threshold; (c) determining an amplitude of an exhibited peak value and an associated position within the predetermined data frame; (d) generating a correction function by scaling and transposing a sample correction function in dependence on the amplitude and associated position of the exhibited peak value; and (e) modifying the data symbol to be transmitted by superimposing the correction function.

This method is however disclosed by Henkel. Henkel discloses the method comprising: (a) filtering the data symbol and the cyclic prefix (Page 31-2, Section II Paragraphs 1-2; Section IV); (b) determining whether a time-domain function of the data symbol and of the cyclic prefix within the predetermined data frame exhibits at least one peak value that exceeds a first threshold (Page 31-1 column 2); (c) determining an amplitude of an exhibited peak value and an associated position within the predetermined data frame (Page 31-2 Col. 2); (d) generating a correction function by scaling and transposing a sample correction function in dependence on the amplitude

and associated position of the exhibited peak value (Page 31-2 Col. 1-2); and (e) modifying the data symbol to be transmitted by superimposing the correction function (Page 31-2 - Page 31-3 Col. 1).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made to incorporate peak detections and reduction method as disclosed by Henkel within the combined crest factor reduction method disclosed by Awater and Schenk in order to gain the added benefit of further detail and efficiency in the peak reduction processing methods.

Re Claim 11, the combined disclosure of Awater, Schenk and Henkel as a whole disclose the method as claimed in claim 10, Henkel further discloses the method further comprising repeating steps (b) - (e) until the data symbol no longer exhibits any peak values above the first threshold and/or a predetermined number of iteration steps has been reached (Page 31-1, Col. 2 last paragraph).

Re Claim 12, the combined disclosure of Awater, Schenk and Henkel as a whole disclose the method as claimed in claim 10, Henkel further discloses the method comprising repeating steps (a) - (e) are repeated until the data symbol no longer exhibits any peak values above the first threshold and/or a predetermined number of iteration steps has been reached, the data symbol modified by the correction function being used for the filtering in step (a) (Page 31-1, Col. 2 last paragraph).

Re Claim 13, the combined disclosure of Awater, Schenk and Henkel as a whole disclose the method as claimed in claim 10, Henkel further discloses the method further comprising oversampling at least the data symbol prior to step (b) (Page 31-2 Section II).

Re Claim 14, the combined disclosure of Awater, Schenk and Henkel as a whole disclose the method as claimed in claim 10, Henkel further discloses the method wherein step (d) further comprises using a dirac-like function as the sample correction function (Page 31-2 Section II).

Re Claim 15, the combined disclosure of Awater, Schenk and Henkel as a whole disclose the method as claimed in claim 10, Henkel further discloses the method wherein step (d) further comprises using the at least one carrier which is not available for data transmission for generating the sample correction function in the time domain (Page 31-2 Section II).

6. Claims 18-27 are rejected under 35 U.S.C. 103(a) as being unpatentable over Awater as applied to claim 17 above, and further in view of Henkel.

Re claim 18; Awater discloses the method as claimed in claim 17, but fails to explicitly disclose wherein in step (b) further comprises filtering the data symbol and the cyclic prefix over the predetermined data frame prior to searching for peak values.

This method is however disclosed by Henkel. Henkel discloses the method wherein in step (b) further comprises filtering the data symbol and the cyclic prefix over the predetermined data frame prior to searching for peak values (Section II; IV).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made to incorporate peak detections and reduction method as disclosed by Henkel within the combined crest factor reduction method disclosed by Awaterr and Schenk in order to gain the added benefit of further detail and efficiency in the peak reduction processing methods.

Re Claim 19, the combined disclosures of Awaterr and Henkel disclose the method as claimed in claim 18, Henkel further discloses the method wherein filtering the data symbol and cyclic prefix further comprises using filtering characteristics corresponding to a downstream filter of the multi-carrier data transmission system (Section II; IV).

Re Claim 20, the combined disclosures of Awaterr and Henkel disclose the method as claimed in claim 18, Henkel further discloses the method wherein step (b) further comprises determining an amplitude of an identified peak value and an associated position within the predetermined data frame; and generating a correction function by scaling and transposing a sample correction function in dependence on the amplitude and associated position of the identified peak value (Section II).

Re Claim 21, the combined disclosures of Awater and Henkel disclose the method as claimed in claim 20, Henkel further discloses the method wherein step (b) further comprises modifying the data symbol to be transmitted by superimposing the correction function (Section II).

Re Claim 22, Awater discloses the method as claimed in claim 17, but fails to explicitly disclose wherein step (b) further comprises oversampling at least the data symbol prior to searching for peak values.

This method is however disclosed by Henkel. Henkel discloses the method wherein step (b) further comprises oversampling at least the data symbol prior to searching for peak values (Section II).

Therefore it would have been obvious to one of ordinary skill in the art at the time the invention was made to incorporate peak detections and reduction method as disclosed by Henkel within the combined crest factor reduction method disclosed by Awater and Schenk in order to gain the added benefit of further detail and efficiency in the peak reduction processing methods.

Re Claim 23, the combined disclosures of Awater and Henkel disclose the method as claimed in claim 20, Henkel further discloses the method wherein step (d) further comprises using a dirac-like function as the sample correction function (Section II).

Re Claim 24, the combined disclosures of Awater and Henkel disclose the method as claimed in claim 20, Henkel further discloses the method wherein step (b) further comprises using the at least one carrier which is not available for data transmission for generating the sample correction function in the time domain (Page 31-2 Col. 2).

Re Claim 25, the combined disclosures of Awater and Henkel disclose the method as claimed in claim 20, Henkel further discloses the method wherein step (b) further comprises oversampling at least the data symbol prior to searching for peak values (Section II).

Re Claim 26, the combined disclosures of Awater and Henkel disclose the method as claimed in claim 25, Henkel further discloses the method wherein step (d) further comprises using a dirac-like function as the sample correction function (Section II paragraphs 1-2).

Re Claim 27, the combined disclosures of Awater and Henkel disclose the method as claimed in claim 25, Henkel further discloses the method wherein step (b) further comprises using the at least one carrier which is not available for data transmission for generating the sample correction function in the time domain (Page 31-2 Col. 2).

Conclusion

7. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to MICHAEL R. NEFF whose telephone number is (571)270-1848. The examiner can normally be reached on Monday - Friday 8:00am - 4:30pm EST ALT Fridays.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Shuwang Liu can be reached on (571)272-3036. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/MICHAEL R. NEFF/
Examiner, Art Unit 2611
/Shuwang Liu/
Supervisory Patent Examiner, Art Unit 2611