Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Matemàtiques

Sèrie 1

Responeu a CINC de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2 punts.

Podeu utilitzar calculadora, però no s'autoritzarà l'ús de calculadores o altres aparells que permetin emmagatzemar dades o que puguin transmetre o rebre informació.

- 1. Siguin les matrius $M = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ t & 2 \end{pmatrix}$ i $N = \begin{pmatrix} -1 & t & 2 \\ 1 & 0 & -1 \end{pmatrix}$.
 - *a*) Calculeu $M \cdot N$ i comproveu que la matriu resultant no és invertible. [1 punt]
 - **b)** Trobeu els valors de t per als quals la matriu $N \cdot M$ és invertible. [1 punt]
- **2.** Sigui *r* la recta que passa pels punts A = (0, 1, 1) i B = (1, 1, -1).
 - *a*) Trobeu l'equació paramètrica de la recta *r*. [1 punt]
 - **b)** Calculeu tots els punts de la recta r que estan a la mateixa distància dels plans π_1 : x+y=-2 i π_2 : x-z=1. [1 punt]

Nota: Podeu calcular la distància d'un punt de coordenades (x_0, y_0, z_0) al pla d'equació

$$Ax + By + Cz + D = 0$$
 amb l'expressió $\frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$.

- 3. Sigui la funció $f(x) = x^3 x^2$.
 - *a*) Trobeu l'equació de la recta tangent a la gràfica i que és paral·lela a la recta d'equació x + 3y = 0.

 [1 punt]
 - b) Calculeu, si n'hi ha, els punts de la gràfica en què la funció presenta un màxim o mínim relatiu o un punt d'inflexió.
 [1 punt]

- 4. Considereu els punts P = (3, -2, 1), Q = (5, 0, 3), R = (1, 2, 3) i la recta $r: \begin{cases} x + y + 1 = 0 \\ 2y + 3z 5 = 0 \end{cases}$
 - a) Determineu l'equació general (és a dir, que té la forma Ax + By + Cz = D) del pla que passa per P i Q i és paral·lel a la recta r.
 - **b**) Donats el pla $x + 2y + m \cdot z = 7$ i el pla que passa per P, Q i R, trobeu m perquè siguin paral·lels i no coincidents. [1 punt]
- 5. Sigui la funció $f(x) = \sqrt{x} + x 2$.
 - a) Comproveu que la funció f(x) compleix l'enunciat del teorema de Bolzano a l'interval [0,2] i que, per tant, l'equació f(x)=0 té alguna solució a l'interval (0,2). Comproveu que x=1 és una solució de l'equació f(x)=0 i raoneu, tenint en compte el signe de f'(x), que la solució és única.
 - *b*) A partir del resultat final de l'apartat anterior, trobeu l'àrea limitada per la gràfica de la funció f(x), l'eix de les abscisses i les rectes x = 0 i x = 1. [1 punt]
- **6.** Uns estudiants de batxillerat han programat un full de càlcul com el de la figura següent que dona la solució d'un sistema d'equacions compatible determinat d'una manera automàtica:

- *a*) Escriviu el sistema i comproveu que els valors proposats com a solució són correctes. [1 punt]
- **b)** Quin valor s'hauria de posar en lloc del 2 que està emmarcat en la imatge, corresponent a la cel·la E8 (a_{33} de la matriu de coeficients), perquè el sistema fos incompatible? [1 punt]

Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Matemàtiques

Sèrie 5

Responeu a CINC de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2 punts.

Podeu utilitzar calculadora, però no s'autoritzarà l'ús de calculadores o altres aparells que permetin emmagatzemar dades o que puguin transmetre o rebre informació.

- 1. Considered el sistema d'equacions lineals $\begin{cases} 6x + 3y + 2z = 5\\ 3x + 4y + 6z = 3, \text{ per a } m \in \mathbb{R}.\\ x + 3y + 2z = m \end{cases}$
 - *a*) Expliqueu raonadament que per a qualsevol valor del paràmetre *m* el sistema té una única solució.

[1 punt]

- b) Resoleu el sistema i trobeu l'expressió general del punt solució.
 [1 punt]
- **2.** Siguin el pla d'equació π : x + y z = 0 i el punt P = (2, 3, 2).
 - a) Calculeu el punt simètric del punt P respecte del pla π .
 - **b**) Calculeu l'equació cartesiana (és a dir, que té la forma Ax + By + Cz = D) dels dos plans paral·lels a π que estan a una distància $\sqrt{3}$ del punt P. [1 punt]

Nota: Podeu calcular la distància d'un punt de coordenades (x_0, y_0, z_0) al pla d'equació

$$Ax + By + Cz + D = 0$$
 amb l'expressió $\frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$.

- 3. Sigui la funció $f(x) = a \cdot e^{-x^2 + bx}$, amb $a \ne 0$ i $b \ne 0$.
 - *a*) Calculeu els valors de *a* i de *b* que fan que la funció tingui un extrem relatiu en el punt (1, e).

[1 punt]

b) Per al cas a=3 i b=5, calculeu l'asímptota horitzontal de la funció f quan x tendeix $a+\infty$.

[1 punt]

- 4. Sabem que una funció f(x) està definida per a tots els nombres reals i que és derivable dues vegades. Sabem també que té un punt d'inflexió en el punt d'abscissa x = 2, que l'equació de la recta tangent a la gràfica de la funció f(x) en aquest punt és y = -124x + 249 i que f(-3) = -4.
 - *a*) Calculeu f''(2), f'(2) i f(2).

b) Calculeu
$$\int_{-3}^{2} f'(x) dx$$
.

[1 punt]

- 5. Siguin les rectes r_1 : $x-1=\frac{y-2}{-1}=z-5$ i r_2 : $(x, y, z)=(2-3\lambda, -1+\lambda, 2)$.
 - a) Trobeu l'equació cartesiana (és a dir, que té la forma Ax + By + Cz = D) del pla que conté la recta r_1 i és parallel a la recta r_2 .
 - b) Digueu quina condició s'ha de complir perquè existeixi un pla que contingui la recta r_1 i sigui perpendicular a la recta r_2 . Amb les rectes r_1 i r_2 de l'enunciat, comproveu si existeix un pla que contingui la recta r_1 i sigui perpendicular a la recta r_2 . [1 punt]
- 6. Considereu la matriu $A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.
 - a) Si $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ és la matriu identitat d'ordre 3, calculeu per a quins valors de k la

matriu A + kI té inversa. Trobeu, si existeix, la matriu inversa de A - 2I.

b) Calculeu la matriu X que satisfà l'equació $X \cdot A + A^{T} = 2 \cdot X$, en què A^{T} és la matriu transposada de la matriu A.

[1 punt]