Modelos Multiescala para Simulación de Turbulencia de la Capa Límite Planetaria en su Interacción con el Terreno Complejo

P. Cárdenas

Departamento de Ing. Mecánica Universidad Técnica Federico Santa María

Seminario de Investigación en Ing. Mecánica, 2016

► Naturaleza del recurso viento.

- ▶ Naturaleza del recurso viento.
- ▶ Viento como recurso energético.

- ▶ Naturaleza del recurso viento.
- Viento como recurso energético.
- ▶ Potencial eólico.

- Naturaleza del recurso viento.
- Viento como recurso energético.
- Potencial eólico.

$$P = \frac{1}{2}\rho A v^3 \tag{1}$$

- Naturaleza del recurso viento.
- Viento como recurso energético.
- Potencial eólico.

$$P = \frac{1}{2}\rho A v^3 \tag{1}$$

▶ Interacción con la superficie.

Problemática de Investigación

Tener una herramienta confiable para el diagnóstico del comportamiento atmosférico en su interacción con el terreno complejo.

Resumen

Para estimar el potencial eólico de una zona se debe conocer el comportamiento de la atmósfera dentro de la región.

Resumen

- Para estimar el potencial eólico de una zona se debe conocer el comportamiento de la atmósfera dentro de la región.
- Este comportamiento está en directa relación con lo que sucede en la CLP, zona donde no se pueden despreciar los efectos de la turbulencia ni la disipación viscosa.

Resumen

- Para estimar el potencial eólico de una zona se debe conocer el comportamiento de la atmósfera dentro de la región.
- Este comportamiento está en directa relación con lo que sucede en la CLP, zona donde no se pueden despreciar los efectos de la turbulencia ni la disipación viscosa.
- ► Se plantea acoplar WRF a otro modelo microescala para resolver la turbulencia en la CLP.

Marco Teórico: Variabilidad y Escalas

Fuentes de variabilidad del viento:

- Geográficas.
 - Escala Planetaria.
 - Escala Sinóptica.
 - ► Mesoescala.
 - Microescala.
- Temporales.
 - ► Inter-Anuales.
 - Anuales.
 - Diarias.
 - Microescala.

Marco Teórico: Ecuaciones Primitivas

Son las ecuaciones que describen completamente el movimiento atmosférico junto con la conservación de la masa y la energía:

Marco Teórico: Ecuaciones Primitivas

Son las ecuaciones que describen completamente el movimiento atmosférico junto con la conservación de la masa y la energía:

$$\frac{Du}{Dt} - \frac{uv\tan\phi}{a} + \frac{uw}{a} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + 2\Omega v\sin\phi - 2\Omega w\cos\phi + F_{rx}$$
 (2)

$$\frac{Dv}{Dt} - \frac{u^2 \tan \phi}{a} + \frac{vw}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial y} - 2\Omega u \sin \phi + F_{ry}$$
 (3)

$$\frac{Dw}{Dt} - \frac{u^2 + v^2}{a} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g + 2\Omega u \cos \phi + F_{rz}$$
 (4)

Marco Teórico: Ecuaciones Primitivas

Algunas aproximaciones relevantes:

► Flujo Geostrófico.

Marco Teórico: Ecuaciones Primitivas

Algunas aproximaciones relevantes:

- ► Flujo Geostrófico.
- Viento Térmico.

Marco Teórico: Ecuaciones Primitivas

Algunas aproximaciones relevantes:

- Flujo Geostrófico.
- Viento Térmico.
- Flujo Barotrópico.

Marco Teórico: Ecuaciones Primitivas

Algunas aproximaciones relevantes:

- Flujo Geostrófico.
- Viento Térmico.
- Flujo Barotrópico.
- Aproximaciones de CLP.

Marco Teórico: Aproximaciones de CLP

- Porción de la atmósfera en la cual el campo se flujo se ve afectado por la superficie terrestre.
- Estabilidad en la CLP: Temperatura Potencial.

$$\theta = T \left(\frac{p_s}{p}\right)^{R/c_p} \tag{5}$$

- Tratamiento de la turbulencia.
 - Aproximación de Boussinesq.
 - Promedios de Reynolds.
 - Energía cinética turbulenta.

$$\frac{\bar{D}(\mathsf{TKE})}{Dt} = \mathsf{MP} + \mathsf{BPL} + \mathsf{TR} + \varepsilon \tag{6}$$

Marco Teórico: Aproximaciones de CLP

Las ecuaciones primitivas se pueden reducir considerando la estratificación y los mecanismos físicos preponderantes. Se describen las siguientes capas:

- Capa de Mezcla (Well-Mixed BL).
- K-Theory.
- Hipótesis de Longitud de Mezcla.
- Capa de Ekman.
- Capa Superficial.
- Ekman Modificado.

Marco Teórico: Fenómenos de la Mesoescala

Procesos naturales que afectan a la atmósfera en esta escala tales como: formación de nubes, tornados, huracanes, frontogénesis y ondas de gravedad.

Marco Teórico: Modelos Numéricos y WRF

Son modelos matemáticos computacionales que se construyen enmarcando el sistema de ecuaciones primitivo.

- Existen numerosos modelos en la actualidad.
 - Globales: GFS, NOGAPS, GEM, etc.
 - ► Regionales: NAM, RAMS, MM5, WRF, etc.
- Estado actual de los modelos.

Propuesta de Investigación

Hipótesis

Mejorar la precisión de las simulaciones atmosféricas por métodos convencionales utilizando un modelo multiescala que se encargue de resolver la turbulencia en la microescala.

Objetivos del Trabajo

Objetivos Principales:

- Acoplar el modelo WRF mesoescala con un modelo microescala que permita parametrizar, o resolver, los fenómenos turbulentos desarrollados en la capa límite planetaria en su interacción con el terreno complejo.
- Desarrollar un algoritmo computacional capaz de optimizar y mejorar los resultados obtenidos en los cálculos de turbulencia dentro de la capa límite planetaria.

Objetivos del Trabajo

Objetivos Secundarios:

- Estudiar a profundidad los fenómenos de transporte atmosférico para la evaluación del recurso viento.
- Estudiar alternativas de simulación precisa multiescala del viento sobre terreno complejo.
- Desarrollar y optimizar los códigos para modelación atmosférica multiescala.
- Verificar y validar resultados obtenidos con aquellos presentes en el estado del arte y experiencias reales.
- ► Entregar a la comunidad una herramienta fiel de diagnostico de la atmósfera en su interacción con terreno complejo.

Bibliografía I

- J. Manwell., J. McGowan., A. Rogers. Wind Energy Explained. Theory, Desing and Application. 2nd Edition, 2009.
- R. Holton.An Introduction to Dynamic Meteorology.3rd Edition, 1992.
- R. Pielker.

 Mesoscale Meteorological Modeling.

 1984.
- R. Stull. Meteorology for Scientist and Engineers. 2nd Edition, 2000.

Bibliografía II

MMMD, NCAR.

ARW User Guide V3.

2016.

NCAR.

ARW NCAR Tech Notes.

2008.

NOAA, NCEP.

NMM User Guide V3.

2014.

NCAR
NMM NCAR Tech Notes.
2010.

Bibliografía III

- American Meteorological Society.

 Monthly Weather Review.
- Springer.

 Boundary-Layer Meteorlogy.
- American Meteorological Society.

 Journal of the Atmospheric Sciences.
- Royal Meteological Society.

 Quarterly Journal of the Royal Meteorological Society.
- World Renewable Energy Network. Renewable Energy.
- Elsevier.

 Computer and Fluids.
- American Meteorological Society.

 Journal of Applied Meteorology and Climatology.

Modelos Multiescala para Simulación de Turbulencia de la Capa Límite Planetaria en su Interacción con el Terreno Complejo

P. Cárdenas

Departamento de Ing. Mecánica Universidad Técnica Federico Santa María

Seminario de Investigación en Ing. Mecánica, 2016