Day42_Multiple_Linear_Regression

July 11, 2025

Multiple Linear Regression (MLR)

This notebook contains step-by-step code, explanation, and interpretation for building and evaluating a Multiple Linear Regression (MLR) model using Python.

It is designed for **teaching and learning purposes**, and also simulates a real-world business scenario where a company wants to identify **which department or factor most strongly impacts promotions** — to decide where to invest their time and resources.

Learning Objectives

- Understand how Multiple Linear Regression (MLR) works behind the scenes
- Learn to **preprocess data**: encoding, cleaning, reshaping
- Apply and interpret linear regression model
- Use OLS (Ordinary Least Squares) to get detailed statistics
- Perform Backward Elimination using p-values
- Understand concepts like:
 - Bias and Variance
 - Intercepts and Coefficients
 - Adjusted R² vs R²
 - T-Test & p-values
 - Feature Elimination
 - Basic idea of API (Application Programming Interface)

Tools & Libraries Used

- Python
- NumPy numerical operations
- Pandas data manipulation
- Matplotlib visualization
- scikit-learn machine learning
- statsmodels statistical modeling

Final Goal:

To help a company answer:

"Which department or variable impacts promotion the most, so we can confidently invest in it?"

1 Import Libraries

```
[1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

2 Load the Dataset

```
[2]: df = pd.read_csv(r'C:\Users\Lenovo\Downloads\Investment.csv')
    df.head()
```

```
[2]:
       DigitalMarketing
                          Promotion
                                      Research
                                                    State
                                                               Profit
     0
               165349.20
                          136897.80 471784.10
                                                Hyderabad
                                                           192261.83
     1
               162597.70
                                                Bangalore
                          151377.59
                                     443898.53
                                                           191792.06
     2
               153441.51
                          101145.55
                                     407934.54
                                                  Chennai
                                                           191050.39
     3
               144372.41
                          118671.85
                                     383199.62
                                                Hyderabad 182901.99
     4
               142107.34
                           91391.77
                                     366168.42
                                                  Chennai 166187.94
```

3 Understand the Data

Let's view the available columns and understand the structure of the dataset.

```
[4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	DigitalMarketing	50 non-null	float64
1	Promotion	50 non-null	float64
2	Research	50 non-null	float64
3	State	50 non-null	object
4	Profit	50 non-null	float64
	C7 + C4 (4) 1	(4)	

dtypes: float64(4), object(1)

memory usage: 2.1+ KB

- [5]: df.columns #View Columns
- [6]: df.describe()
- [6]: DigitalMarketing Promotion Research Profit count 50.000000 50.000000 50.000000 50.000000 mean 73721.615600 121344.639600 211025.097800 112012.639200

```
std
           45902.256482
                          28017.802755
                                        122290.310726
                                                         40306.180338
min
               0.000000
                          51283.140000
                                             0.000000
                                                         14681.400000
                                                         90138.902500
25%
           39936.370000
                         103730.875000
                                        129300.132500
50%
           73051.080000
                         122699.795000
                                        212716.240000
                                                        107978.190000
75%
          101602.800000
                         144842.180000
                                        299469.085000
                                                        139765.977500
          165349.200000
                         182645.560000 471784.100000
max
                                                        192261.830000
```

[7]: df.isnull().sum()

[7]: DigitalMarketing 0
Promotion 0
Research 0
State 0
Profit 0
dtype: int64

4 Define Independent & Dependent Variables

```
[8]: X = df.iloc[:, :-1] # All columns except last
y = df.iloc[:, -4] # Target variable (you can change it based on dataset)
```

5 Encode Categorical Data (if any)

```
[12]: X = pd.get_dummies(X, dtype=int)
print(X)
```

0 165349.20 136897.80 471784.10 0 0 1 162597.70 151377.59 443898.53 1 0 2 153441.51 101145.55 407934.54 0 1 3 144372.41 118671.85 383199.62 0 0 4 142107.34 91391.77 366168.42 0 1 5 131876.90 99814.71 362861.36 0 0 6 134615.46 147198.87 127716.82 1 0 7 130298.13 145530.06 323876.68 0 1 8 120542.52 148718.95 311613.29 0 0 9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 <		DigitalMarketing	Promotion	Research	State_Bangalore	State_Chennai	\
2 153441.51 101145.55 407934.54 0 1 3 144372.41 118671.85 383199.62 0 0 4 142107.34 91391.77 366168.42 0 1 5 131876.90 99814.71 362861.36 0 0 6 134615.46 147198.87 127716.82 1 0 7 130298.13 145530.06 323876.68 0 1 8 120542.52 148718.95 311613.29 0 0 9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0	0	165349.20	136897.80	471784.10	0	0	
3 144372.41 118671.85 383199.62 0 0 4 142107.34 91391.77 366168.42 0 1 5 131876.90 99814.71 362861.36 0 0 6 134615.46 147198.87 127716.82 1 0 7 130298.13 145530.06 323876.68 0 1 8 120542.52 148718.95 311613.29 0 0 9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0	1	162597.70	151377.59	443898.53	1	0	
4 142107.34 91391.77 366168.42 0 1 5 131876.90 99814.71 362861.36 0 0 6 134615.46 147198.87 127716.82 1 0 7 130298.13 145530.06 323876.68 0 1 8 120542.52 148718.95 311613.29 0 0 9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0 <	2	153441.51	101145.55	407934.54	0	1	
5 131876.90 99814.71 362861.36 0 0 6 134615.46 147198.87 127716.82 1 0 7 130298.13 145530.06 323876.68 0 1 8 120542.52 148718.95 311613.29 0 0 9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	3	144372.41	118671.85	383199.62	0	0	
6 134615.46 147198.87 127716.82 1 0 7 130298.13 145530.06 323876.68 0 1 8 120542.52 148718.95 311613.29 0 0 9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	4	142107.34	91391.77	366168.42	0	1	
7 130298.13 145530.06 323876.68 0 1 8 120542.52 148718.95 311613.29 0 0 9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	5	131876.90	99814.71	362861.36	0	0	
8 120542.52 148718.95 311613.29 0 0 9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	6	134615.46	147198.87	127716.82	1	0	
9 123334.88 108679.17 304981.62 1 0 10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	7	130298.13	145530.06	323876.68	0	1	
10 101913.08 110594.11 229160.95 0 1 11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	8	120542.52	148718.95	311613.29	0	0	
11 100671.96 91790.61 249744.55 1 0 12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	9	123334.88	108679.17	304981.62	1	0	
12 93863.75 127320.38 249839.44 0 1 13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	10	101913.08	110594.11	229160.95	0	1	
13 91992.39 135495.07 252664.93 1 0 14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	11	100671.96	91790.61	249744.55	1	0	
14 119943.24 156547.42 256512.92 0 1 15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	12	93863.75	127320.38	249839.44	0	1	
15 114523.61 122616.84 261776.23 0 0 16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	13	91992.39	135495.07	252664.93	1	0	
16 78013.11 121597.55 264346.06 1 0 17 94657.16 145077.58 282574.31 0 0	14	119943.24	156547.42	256512.92	0	1	
17 94657.16 145077.58 282574.31 0 0	15	114523.61	122616.84	261776.23	0	0	
	16	78013.11	121597.55	264346.06	1	0	
18 91749.16 114175.79 294919.57 0 1	17	94657.16	145077.58	282574.31	0	0	
	18	91749.16	114175.79	294919.57	0	1	

19	86419.70	153514.11	0.00	0	0
20	76253.86	113867.30	298664.47	1	0
21	78389.47	153773.43	299737.29	0	0
22	73994.56	122782.75	303319.26	0	1
23	67532.53	105751.03	304768.73	0	1
24	77044.01	99281.34	140574.81	0	0
25	64664.71	139553.16	137962.62	1	0
26	75328.87	144135.98	134050.07	0	1
27	72107.60	127864.55	353183.81	0	0
28	66051.52	182645.56	118148.20	0	1
29	65605.48	153032.06	107138.38	0	0
30	61994.48	115641.28	91131.24	0	1
31	61136.38	152701.92	88218.23	0	0
32	63408.86	129219.61	46085.25	1	0
33	55493.95	103057.49	214634.81	0	1
34	46426.07	157693.92	210797.67	1	0
35	46014.02	85047.44	205517.64	0	0
36	28663.76	127056.21	201126.82	0	1
37	44069.95	51283.14	197029.42	1	0
38	20229.59	65947.93	185265.10	0	0
39	38558.51	82982.09	174999.30	1	0
40	28754.33	118546.05	172795.67	1	0
41	27892.92	84710.77	164470.71	0	1
42	23640.93	96189.63	148001.11	1	0
43	15505.73	127382.30	35534.17	0	0
44	22177.74	154806.14	28334.72	1	0
45	1000.23	124153.04	1903.93	0	0
46	1315.46	115816.21	297114.46	0	1
47	0.00	135426.92	0.00	1	0
48	542.05	51743.15	0.00	0	0
49	0.00	116983.80	45173.06	1	0

State_Hyderabad

0	1
1	0
2	0
3	1
4	0
5	1
6	0
7	0
8	1
9	0
10	0
11	0
12	0
13	0
14	0

```
15
                    1
16
17
                    1
18
                    0
19
                    1
20
21
                    1
22
23
24
                    1
25
                    0
26
                    0
27
                    1
28
                    0
29
                    1
30
31
                    1
32
                    0
33
                    0
                    0
34
35
                    1
36
37
38
                    1
39
                    0
40
                    0
41
                    0
42
                    0
43
44
45
                    1
46
47
                    0
48
                    1
49
```

6 Split the Dataset

7 Train the Model

```
[14]: from sklearn.linear_model import LinearRegression

regressor = LinearRegression()
regressor.fit(X_train, y_train)
```

[14]: LinearRegression()

8 Predict and Compare

9 Model Evaluation

```
bias = regressor.score(X_train, y_train)
variance = regressor.score(X_test, y_test)

print("Bias (Train Accuracy):", bias)
print("Variance (Test Accuracy):", variance)
```

Bias (Train Accuracy): 1.0
Variance (Test Accuracy): 1.0

10 Model Parameters

```
[20]: c_intercept = regressor.intercept_
print("Intercept (b):", c_intercept)
```

Intercept (b): 8.731149137020111e-11

11 Add Constant for OLS

OLS (Ordinary Least Squares) from statsmodels requires a constant column to represent the intercept.

12 Add Constant Column

```
[21]: X = np.append(arr=np.ones((X.shape[0], 1)).astype(int), values=X, axis=1)
```

13 Backward Elimination (Full Features)

```
[23]: import statsmodels.api as sm

X_opt = X[:, [0, 1, 2, 3, 4, 5]] # Example: adjust as per your column count
regressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()
regressor_OLS.summary()
```

[23]:

Dep. Variable:	Promotion	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	7.500e + 29
Date:	Fri, 11 Jul 2025	Prob (F-statistic):	0.00
Time:	11:07:08	Log-Likelihood:	1082.9
No. Observations:	50	AIC:	-2154.
Df Residuals:	44	BIC:	-2142.
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]
const	-3.638e-11	7.46e-11	-0.488	0.628	-1.87e-10	1.14e-10
x1	-1.943e-16	4.98e-16	-0.390	0.698	-1.2e-15	8.09e-16
x2	1.0000	5.6e-16	1.78e + 15	0.000	1.000	1.000
x3	3.469 e-16	1.84e-16	1.886	0.066	-2.37e-17	7.18e-16
x4	2.183e-11	3.49e-11	0.625	0.535	-4.86e-11	9.22e-11
x5	7.276e-12	3.58e-11	0.203	0.840	-6.49e-11	7.95e-11
Oı	mnibus:	0.163	Durbin	-Watson	n: 0.	214
Prob(Omnibus): 0.922		Jarque	-Bera (J	JB): 0.	041	
Skew: 0.066		$\operatorname{Prob}(J$	B):	0.	980	
Kı	urtosis:	2.953	Cond.	No.	1.47	e+06

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.47e+06. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results – Full Explanation

Context:

You ran the following code:

```
X_opt = X[:, [0, 1, 2, 3, 4, 5]]
regressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()
regressor_OLS.summary()
```

Part-by-Part Explanation of the Output

Header Summary

Term	Meaning
Dep. Variable	Promotion: The dependent variable (target/output)
Model	OLS = Ordinary Least Squares Regression
Method	Least Squares method used to estimate coefficients
No. Observations	50 data points (rows in dataset)
Df Residuals	$44 = 50 - 6 \rightarrow \text{total observations minus number of model coefficients}$
Df Model	$5 \rightarrow \text{You used 5 predictors (x1 to x5)}$
Covariance Type	Non-robust standard errors used

Model Quality Metrics

Metric	Value	Meaning
R-squared	1.000	Model explains 100% of variance in target. This usually indicates overfitting or multicollinearity.
Adj. R-squared	1.000	Adjusted for number of predictors. Still $1.000 \rightarrow \text{very high!}$
F-statistic	7.5e+29	Very high \rightarrow model is statistically significant
Prob (F- statistic)	0.00	p-value for F-test is $0 \to \text{the model overall is significant}$
AIC / BIC	AIC: -2154, BIC: -2142	Lower values indicate a better model (used for comparing models)

Coefficient Table (Main Focus)

Term	Coef	Std Err	t	P >	Significance
const	-3.638e-11	7.46e-11	-0.488	0.628	Not significant
x1	-1.943e-16	4.98e-16	-0.390	0.698	Not significant
x2	1.0000	5.6e-16	1.78e + 15	0.000	Highly significant
x3	3.469 e-16	1.84e-16	1.886	0.066	Borderline
x4	2.183e-11	3.49e-11	0.625	0.535	Not significant

Term	Coef	Std Err	t	P >	Significance
x5	7.276e-12	3.58e-11	0.203	0.840	Not significant

How to Interpret This?

- Coef (Coefficient): The amount of change in the target variable for 1 unit change in that predictor.
- P > |t| (p-value): Tells you whether the variable is statistically significant.
 - If p < 0.05, the variable is **significant** \rightarrow Keep it.
 - If \mathbf{p} 0.05, the variable is **not significant** \rightarrow You can remove it (Backward Elimination).
- t and Std Err: Used internally to compute the p-value.
- Based on this table:
 - Keep only x2
 - Remove variables like x1, x4, x5

Statistical Tests

Metric	Value	Meaning
Omnibus / JB	These test if residuals are normally distributed (good if $p > 0.05$)	
Durbin-Watson	$0.214 \rightarrow \text{indicates strong positive autocorrelation (bad!)}$	
Skew / Kurtosis	Skew 0, Kurtosis $3 \rightarrow \text{residuals}$ are normally distributed	
Cond. No.	${\tt 1.47e+06} \rightarrow {\rm very~high} \rightarrow {\rm indicates~\textbf{multicollinearity~\textbf{risk}~(bad)}$	

What to Do Next? → Backward Elimination

Based on this summary:

- Remove the variable with highest p-value $> 0.05 \rightarrow x5 (0.840)$
- Rerun OLS without it
- Repeat the process until all p-values < 0.05

OLS Regression Results

We started with 5 independent variables (x1 to x5) and added a constant term.

Summary Highlights:

- R-squared = $1.000 \rightarrow \text{Model}$ fits data perfectly (possible overfitting)
- Only x2 is statistically significant (p < 0.05)
- x1, x4, x5 have high p-values \rightarrow should be removed
- Durbin-Watson = $0.214 \rightarrow$ Indicates autocorrelation (not ideal)
- Condition Number = $1.47e + 06 \rightarrow \text{Multicollinearity suspected}$

Next Step: Perform Backward Elimination: - Remove variable with highest p-value (x5) - Rerun the model - Continue until all p-values < 0.05

14 Remove Feature with Highest p-value

Keep repeating this by removing the feature with the highest p-value above 0.05 until all remaining features are significant.

```
[24]: X_opt = X[:, [0, 1, 2, 3, 4]] # Removed 5th feature
regressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()
regressor_OLS.summary()
```

[24]:

Dep. Variable:	Promotion	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	1.217e + 30
Date:	Fri, 11 Jul 2025	Prob (F-statistic):	0.00
Time:	11:22:39	Log-Likelihood:	1088.9
No. Observations:	50	AIC:	-2168.
Df Residuals:	45	BIC:	-2158.
Df Model:	4		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
\mathbf{const}	-1.164e-10	6.47e-11	-1.798	0.079	-2.47e-10	1.4e-11
x1	-1.943e-16	4.35e-16	-0.447	0.657	-1.07e-15	6.82e-16
x2	1.0000	4.91e-16	$2.04e{+15}$	0.000	1.000	1.000
x3	-3.886e-16	1.59e-16	-2.442	0.019	-7.09e-16	-6.81e-17
x4	-7.276e-12	2.69e-11	-0.270	0.788	-6.15e-11	4.7e-11

Omnibus:	1.887	Durbin-Watson:	0.742
Prob(Omnibus):	0.389	Jarque-Bera (JB):	1.425
Skew:	-0.208	Prob(JB):	0.491
Kurtosis:	2.285	Cond. No.	1.44e + 06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.44e+06. This might indicate that there are strong multicollinearity or other numerical problems.

15 Final Model after Elimination

[25]: X_opt = X[:, [0, 2]] # Final selected features
regressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()
regressor_OLS.summary()

[25]:

Dep. Variable:	Promotion	R-squared:	1.000
Model:	OLS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	4.132e + 31
Date:	Fri, 11 Jul 2025	Prob (F-statistic):	0.00
Time:	11:23:02	Log-Likelihood:	1140.7
No. Observations:	50	AIC:	-2277.
Df Residuals:	48	BIC:	-2274.
Df Model:	1		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025	0.975]
const	-5.457e-11	1.94e-11	-2.818	0.007	-9.35e-11	-1.56e-11
x1	1.0000	1.56e-16	6.43e + 15	0.000	1.000	1.000
Omnibus: 50.890		0 Durbi	Durbin-Watson:		0.057	
$\mathbf{Prob}(\mathbf{Omnibus}): 0.00$) Jarqu	Jarque-Bera (JB):		632.888	
\mathbf{Sk}	ew:	-2.07	8 Prob(JB):	3.7	2e-138
Ku	ırtosis:	19.92	7 Cond.	No.	5.5	9e + 05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.59e+05. This might indicate that there are strong multicollinearity or other numerical problems.

16 Concept Highlights

- API (Application Programming Interface): Connects front-end to back-end.
- **OLS**: A statistical method to fit linear regression.
- p-value: Helps determine if a feature is statistically significant (p < 0.05 is good).
- T-test: Performed on sample data to test hypothesis.
- Backward Elimination: A feature selection method based on p-values.
- Adjusted $R^2 > R^2$: Indicates a better, more reliable model when adding/removing variables.

17 Final Decision: Which Department to Focus On?

Based on statistical analysis using **Backward Elimination in OLS**, the model retained only **one** important feature (x1), which:

- Has a **p-value** = $0.000 \rightarrow \text{highly significant}$
- Has coefficient = $1.0 \rightarrow 1$ unit increase in x1 increases promotion by 1 unit
- Explains 100% of the variation in the Promotion outcome ($R^2 = 1.000$)

This means the department or factor represented by x1 is **most directly responsible** for driving promotions.

18 Recommendation to Company:

Focus your time, budget, and resources on the department represented by **x1** is **Department_Marketing** — this is the best area to invest in for maximizing promotions and growth.