30. a. The following data relate to the marks obtained by 11 students in 2 tests, one held at the beginning of a year and the other at the end of the year after intensive coaching.

Test 1	19	23	16	24	17	18	20	18	21	19	20
Test 2	17	24	20	24	20 -	22	20	20	18	22	19

Do the data indicate that the students have benefited by coaching?

(OR)

b. The nicotine contents in two random samples of tobacco are given below.

.,	COULTO COLLE	OHIOD HI CIIO	Toursell Down	Pres ex teet			
	Sample 1	21	24	25	26	27	
	Sample 2	22	27	28	30	31	36

Can you say that the two samples came from the same population?

- 31. a. Arrivals at a telephone booth are considered to be Poisson with an average time of 10 min between one arrival and the next. The length of a phone call is assumed to be distributed exponentially with mean 3 min.
 - Find the average number of persons waiting in the system
 - What is the probability that a person arriving at the booth will have to wait in the queue?
 - What is the probability that it will take him more than 10 min altogether to wait for phone and complete his call?
 - The telephone department will install a second booth when convinced that an arrival has to wait on the average for atlest 3 min for phone. By how much the flow of arrivals should increase in order to justify a second booth?

(OR)

- b. Patients arrive at a clinic according to Poisson distribution at a rate of 30 patients per hour. The waiting room cannot accommodate more than 14 patients. Examination time per patient is exponential with mean rate of 20 per hour.
 - Find the effective arrival rate at the clinic?
 - What is the probability that an arriving patient will not wait?
 - What is the expected waiting time until a patient is discharged from the clinic?
- 32. a. The three state Makov chain is given by the tpm P = 1/2 0 1/2
 - Classify the states of the Markov chain,
 - Find the steady state distribution of the chain.

b. There are two white marbles in urn A and 3 red marbles in urn B. At each step of the process a marble is selected from each urn and the marbles selected are interchanged. Let a_i of the system be the number of red marbles in A after i changes. What is the probability that there are 2 red marbles in A after 3 steps? In the long run, what is the probability that there are two red marbles in urn A?

	Γ. Ι		T			· · · · · · · · · · · · · · · · · · ·	•			
Reg. No.								-		

B.Tech. DEGREE EXAMINATION, NOVEMBER 2019

Fourth Semester

MA1014 - PROBABILITY AND QUEUING THEORY

(For the candidates admitted during the academic year 2013 – 2014 and 2014 -2015) (Statistical table, normal distribution table, t-table, f-table chi-square table to be provided)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

1. If a random variable X has the pdf $f(x) = \begin{cases} 3x, & 0 < x < 1 \\ 0, & otherwise \end{cases}$ then the pdf of y = 4x + 3 is

(A)
$$\frac{3}{4}(y-3)$$

(B)
$$\frac{3}{16}(y-3)$$

(C)
$$\frac{1}{4}(y-3)$$

(D)
$$\frac{3}{2}(y-3)$$

2.
$$Var(4x+8)$$
 is

(A)
$$12 \cdot Var(x)$$

(B)
$$4 \cdot Var(x) + 8$$

(C)
$$16 \cdot Var(x)$$

(D)
$$16 \cdot Var(x) + 8$$

3. A random variable X has mean $\mu=12$ and variance $\sigma^2=9$ and an unknown probability distribution, then P(6 < x < 18) is

4. The expectation of the number on a die when thrown is

5. Mean of the Poisson distribution is

(A)
$$\lambda$$
 (C) λ^2

(B)
$$\lambda + 1$$
 (D) $\lambda - 1$

6. If X is uniformly distributed in (0, 10), then P(X > 8) is

Page 1 of 4

7. If X is exponentially distributed with mean 10, then the pdf is

(A)
$$10e^{-10x}, x \ge 0$$

(B)
$$\frac{1}{10}e^{-10x}, x \ge 0$$

(C)
$$\frac{1}{10}e^{x/10}, x \ge 0$$

(D)
$$\frac{1}{10}e^{-x/10}, x \ge 0$$

. 0.		a standard normal variable, the mean		
	, ,	1 and 0		μ and σ^2
	(C)	0 and 1	(D)	μ and σ
9.		form of the alternative hypothesis ca	n be	
	(A)	One-tailed	(B)	Two-tailed
	(C)	Neither one nor two tailed	(D)	One or two tailed
10.	The	value set for α is known as		
	(A)	The rejection level	(B)	The acceptance level
		The significance level		The error in the hypothesis test
	` ,			71
11.	The	Chi-square test is not very effective i	f the sa	ample is
		Small		Large
	. ,	Irregular	` ,	Heterogeneous
	(0)		(3)	Tieterogeneous
12	Wha	en the researcher rejects a true null hy	nothes	is a error occurs
12.		Type I	-	Type A
		Type II		Type B
	(C)	Турс п	. (D)	Type B
12	In T	thigh bogin the convincing in anaryided in		og the come
13.		which basis the service is provided in a	~	•
	` '	LCFO	, ,	LIFO
	(C)	FCFS	(D)	FCLS
11	raevi .	1 12 4 4 6 6 1		11
14.		symbolic notations of queueing mode		•
		Kendall	. ,	Euler
	(C)	Fisher	(D)	Neumann
15.		probability that the system is idle is d	lenoted	by
	(A)	·	(B)	P_1
	(C)	P_2	(D)	P_n
16.	the t	raffic intensity of a queueing system	is	
	(A)	λ.	(B)	μ
	(C)	λ/μ	(D)	μ/λ
17.	Mar	kov process is one in which the future	e value	is independent of value.
		Present		Past
	(C)		(D)	
	(-)		(2)	· · · · · · · · · · · · · · · · · · ·
18.	Cha	oman-Kolmogorov theorem states tha	t	
	(+ +)	$ P_{ij}^{(n)} = P_{ij} $	(1)	$\left[P_{(n)}\right] = \left[P_{ij}\right]^n$
	(C)	$ \begin{bmatrix} P_{ij}^{(n)} \end{bmatrix} = \begin{bmatrix} P_{ij} \end{bmatrix}^n \\ \begin{bmatrix} nP_{ij} \end{bmatrix} = \begin{bmatrix} P_{ij} \end{bmatrix}^n $		·
	(0)	$ nP_{ii} = P_{ii} ^{"}$	(D)	$\left[\frac{1}{n}P_{ij}\right] = \left[P_{ij}\right]^n$
19.		sition matrix is a with sum of	the ro	w as 1.
	(A)	Zero matrix	(B)	Square matrix
	(C)	Rectangular matrix	(D)	Triangular matrix

The standard control of the standard control of

20.	The limiting probability	$\lim p^{(n)}$
		$n \rightarrow \infty$

(A) 0(C) π

(B) 1 (D) P

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. If the random variable 'X' takes the values 1, 2, 3, 4 such that 2P(X=1)=3P(X=2)=P(X=3)=5P(X=4), find the probability distribution.
- 22. If a random variable X has the MGF $M_X(t) = \frac{3}{3-t}$, find the mean and variance of X.
- 23. It is known that the probability of an item produced by a certain machine will be defective is 0.05. If the produced items are sent to the market in packets of 20, find the probability of atmost 2 defectives using Poisson distribution.
- 24. Define Type I error and type II error.
- 25. The mean life time of a sample of 125 bulbs is found as 1550 hrs. The company manufacturing bulbs claims that the average life of their bulbs is 1600 hrs. Is the claim acceptable at 5% LOS?
- 26. Explain the symbolic representation of kendals notation in queueing model.
- 27. A student's study habits are as follows: If he studies one night, he is 70% sure not to study the next night. On the other hand, if he does not study one night, he is 60% sure not to study the next night as well. Find the transition probability matrix of a Markov chain.

PART – C $(5 \times 12 = 60 \text{ Marks})$ Answer ALL Questions

28.a. A random variable X has the following probability distribution

	х	0 -	1	2	- 3	4	5	6	7.
ĺ	p(x)	0	K	2k	2k	3k	k ²	$2k^2$	$7k^2+k$

Find (i) the value of k (ii) P(1.5 < X < 4.5/X > 2) and (ii) the smallest value of c for which $P(X \le c) > 1/2$.

(OR)

- b. A fair die is tossed 720 times. Use Tchebycheff's inequality to find a lower bound for the probability of getting 100 to 140 sixes.
- 29. a. Fit a Poisson distribution to the following data and calculate the theoretical frequencies.

Death	0	1	2	3	4	Total
Frequency	122	60	15	2	1	200

(OR)

b. In a normal distribution, 70% of the items are under 35 and 89% are under 63. What are the mean and standard deviation of the distribution? What percentage of items are under 49?