

Implementació en FPGA d'un control de camp orientat amb debilitament de camp per motors IPMSM

Treball Fi de Grau

realitzat per

Francisco Marí Prats

En compliment parcial dels requisits per al Grau en Enginyeria Electrònica de Telecomunicació

Director: Domingo Biel Solé

Índex

- 1. Introducció
- 2. Objectius
- 3. Marc teòric del control motor
- 4. Disseny i implementació
- **5.** Resultats
- 6. Conclusions

1 | Introducció

Introducció | Formula Student

Objectiu: Promoure l'excel·lència en enginyeria

BCN eMotorsport CAT14x

Introducció | Tren de potència

Tren de potència del CAT14x

Introducció | Inversor trifàsic

Especificacions:

- Tecnologia MOSFET IGBT
- Potència màxima 36 kW
- Pes 7,4 kg
- Dimensions 31 cm × 35 cm × 7,5 cm
- Concebut per autobusos

Projecte d'inversor propi:

- Funcionament intern conegut
- La comunicació no està limitada
- Pas a tecnologia Silicon Carbide:
 - Pèrdues per commutació més baixes
- Control per FPGA
- Nova carcassa amb un pes reduït

2 | Objectius

- 1. Elecció de la placa FPGA
- 2. Millora de l'algorisme de control
- 3. Implementació de l'algorisme de control en lògica programable
- **4.** Validació de l'algorisme implementat
- 5. Implementació del programari per gestionarl'arrencada, la parada i la comunicació per bus CAN

3 | Marc teòric del control motor

Marc teòric | Control de camp orientat (FOC)

Marc teòric | Space Vector PWM

L'algorisme de SVPWM emprat es detalla en les pàgines 32-37 de la memòria.

Marc teòric | Diagrama de blocs del control

4 | Disseny i implementació

Implementació | Disseny de l'arquitectura

Implementació | Selecció de la placa SoM

Digilent Cora Z7

Custom board

Control específic (ex: B-Board Pro)

Implementació | Model previ de Simulink

Implementació | Vitis Model Composer

Implementació | Vivado

control processing_system7_0 FIXED_IO fpga_logic_0 USBIND_0 + MAXILGPOLACLK 7YNO M_AXI_GP0 + angle[15:0] FCLK_CLK0 FCLK_RESETO_N current_tarque [15:0] dkaw[15:0] control3_axi_0 /NQ7 Processing System dkits[15:0] **fwactivate** rst_ps7_0_50M fwkits[15:0] dkp[15:0] fwkp[15:0] ps7_0_axi_periph iq[15:0] bus_struct_reset[0:0] id[15:0] imax[15:0] ext_reset_in # \$00_AXI angle[15:0] peripheral reset(0.01 aux reset in mb_debug_sys_rst ACLK current_torque[15:0] ARESETN dkaw[15:0] ■ X ■ M00,AXI + **g**1[0:0] SOO_ACLK dkits[15:0] idmin[15:0] Processor System SOO_A RESETN dkp[15:0] M00_ACLK fluxlinkage[23:0] iqmin[15:0] M00_ARESETN imax[15:0] **D** g2[0:0] i_a[15:0] qkaw[15:0] i_b[15:0] + S00 AXI Configuració del idmin(15:0) s00_axi_adk gkits [15:0] Bloc de reset **g**3[0:0] igmin(15:0) sistema pole pairs_in_rad[15:0] qkp[15:0] autogenerat per qkaw[15:0] speed[23:0] gkits [15:0] processador Vivado qkp[15:0] **9**4[0:0] speed ref[23:0] speed[23:0] tarquekits[15:0] speed_ref[23:0] tarquekits[15:0] tarquekp(15:0) Interconnexió AXI tarquekp[15:0] g5[0:0] tarquemax[15:0] tarquemax[15:0] tarquemin[15:0] tarquemin[15:0] autogenerada per tarque_ref[15:0] tarque_ref(15:0) **g**6[0:0] Vivado vbusdc[15:0] vmax[15:0] vbusdc[15:0] vphaseinv[15:0] rmax[15:0] control3_axi_v1.0 (Pre-Production) fwkits[15:0] fwkp[15:0] AXI custom IP Id[15:0] Iq[15:0] fpga_logic (Beta)

Algoritme de

Implementació | Disseny de l'aplicació en C++

5 | Resultats

Resultats | Tests unitaris

Resultats | Simulació completa

Resultats | Simulació completa

Resultats | Simulació completa

6 | Conclusions

Conclusions | Encerts i dificultats

Dificultats:

- Dependència del hardware per a la validació
- 2. Problemes amb Simulink

Encerts:

- 1. Ús de Simulink per testeig
- 2. Aposta per la flexibilitat en l'arquitectura
- Disseny i realització de tests unitaris

Conclusions | Treball futur

- 1. Validació de la comunicació CAN amb el circuit de precàrrega i la unitat de processament del vehicle
- 2. Implementació d'un **observador** per augmentar la robustesa del control
- 3. Implementació de la detecció de l'angle i la velocitat angular en FPGA en comptes d'un integrat dedicat
- **4.** Valoració de la implementació d'un *Hardware in the loop* per validar la robustesa del control

Introducció | Formula Student

Objectiu: Promoure l'excel·lència en enginyeria

Introducció | Bateria

Especificació	Valor nominal	Valor màxim	
Voltatge total	525, 4V	596,4 V	
Energia total	7145, 44 Wh	8111,04 Wh	
Potència total	15,4 kW	$35,366 \ kW$	
Disposició de cel·les	142s2p		
Capacitat total	13,6 Ah		
Pes	35, 5 kg		

Introducció | Motor

Especificació	Valor nominal	Valor màxim	
Parell	11,1 Nm	$29,1 \ Nm$	
Corrent eficaç	$22,6 A_{rms}$	$29, 1 A_{rms}$	
Velocitat angular	$13250 \ rpm$	$20000 \ rpm$	
Potència	15,4~kW	35, 366 kW	
Voltatge bus DC	600 V		
Número de parells de pols	4		
Resistència	0, 12	6 Ω	
Inductància	0,393	mH	
Tipus de connexió	Estr	ella	
Velocitat al parell màxim	11600 rpm		
Pes	4,5 kg		

Introducció | Inversor trifàsic

Especificació	Mínima	Nominal	Màxima	
Voltatge bus DC	100 V	800 V	848 V	
Tensió de sortida per fase	0 <i>V</i>	50	510 V	
Freqüència de sortida	-599~Hz	<u>-</u>	599 Hz	
Corrent de curtcircuit a l'apagada	(1 <u>2</u> 1)	96, 2 A	1 <u>0</u> 8	
Consum de corrent	um de corrent -		70,5 A	
Potència de sortida	. 6 5 6	$20 \ kW$	$36 \ kW$	
Corrent de sortida (se- gons conmutació)	16 A (16 kHz)	28,8 A (8 kHz)	51, 2 A (2 kHz)	
Pes	7,4~kg			
Dimensions	$310,6mm \times 354,5mm \times 75mm$			

Marc teòric | Diagrama de blocs del control

Marc teòric | Cicles de treball

Marc teòric | Pulse Width Modulation

Implementació | Flux de treball

Implementació | Blocs de model composer (II)

Implementació | Blocs de model composer (II)

Implementació | Utilització de la lògica programable

Implementació | Temporització i potència

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	2,176 ns	Worst Hold Slack (WHS):	0,020 ns	Worst Pulse Width Slack (WPWS):	4,020 ns
Total Negative Slack (TNS):	0,000 ns	Total Hold Slack (THS):	0,000 ns	Total Pulse Width Negative Slack (TPWS):	0,000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	8445	Total Number of Endpoints:	8445	Total Number of Endpoints:	3591

All user specified timing constraints are met.

Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis. **Total On-Chip Power:** 1.488 W **Not Specified** Design Power Budget: Power Budget Margin: N/A Junction Temperature: 42,2°C Thermal Margin: 42,8°C (3,6 W) Effective &JA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: Medium Launch Power Constraint Advisor to find and fix invalid switching activity

Implementació | Arquitectura del programari

