LANGUAGES OF PDA

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To Design pushdown automata for any CFL (K3)
 - To understand the languages of PDA

ACCEPTANCE BY FINAL STATE

- Acceptance by final state
 - Let M = (Q, Σ, Γ, δ, q_0 , z_0 , F) be a PDA.
 - The language accepted by final state is denoted by $L_F(M)$

$$L_F(M) = \{w \mid (q_0, w, z_0) \mid --* (p, \varepsilon, \gamma) \text{ for some p in F and } \gamma \text{ in } \Gamma^* \}$$

PALINDROME L_{WWR}

1.
$$\delta(q_0,0,Z)=\{(q_0,0Z)\}$$

2.
$$\delta(q_0, 1, Z) = \{(q_0, 1Z)\}$$

3.
$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

4.
$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

7.
$$\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \varepsilon, Z) = \{(q_1, Z)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

11. $\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$

11.
$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

12.
$$\delta(q_1, \varepsilon, Z) = \{(q_2, Z)\}$$

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode (boundary between w and w^R)

Shrink the stack by popping matching symbols (w^R-part)

Reach Final State

ACCEPTANCE BY EMPTY STACK

- Acceptance by empty stack
 - -Let M = (Q, Σ, Γ, δ, q_0 , z_0 , F) be a PDA.
 - The language accepted by empty stack is denoted by $L_{E}(M)$

$$L_E(M) = \{w \mid (q_0, w, z_0) \mid -* (p, \varepsilon, \varepsilon) \text{ for some p in } Q\}$$

PALINDROME L_{WWR}

1.
$$\delta(q_0,0,Z) = \{(q_0,0Z)\}$$

2. $\delta(q_0,1,Z) = \{(q_0,1Z)\}$

First symbol push on stack

3.
$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

2.

7.

4.
$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

$$\delta(q_0, \varepsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \varepsilon, Z) = \{(q_1, Z)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

11. $\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$

12.
$$\delta(q_1, \varepsilon, Z) = \{(q_1, \varepsilon)\}$$

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode (boundary between w and w^R)

Shrink the stack by popping matching symbols (w^R-part)

Empty the stack

ACCEPTANCE BY FINAL STATE AND EMPTY STACK

- Acceptance by final state and empty stack
 - Let M = (Q, Σ, Γ, δ, q_0 , z_0 , F) be a PDA.
 - The language accepted by empty stack and final state is denoted L(M)

$$L(M) = \{w \mid (q_0, w, z_0) \mid -- * (p, \varepsilon, \varepsilon) \text{ for some p in F} \}$$

PALINDROME L_{WWR}

1.
$$\delta(q_0, 0, Z) = \{(q_0, 0Z)\}$$

2. $\delta(q_0, 1, Z) = \{(q_0, 1Z)\}$

First symbol push on stack

3.
$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

2.

4.
$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

7.
$$\delta(q_0, \varepsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \varepsilon, Z) = \{(q_1, Z)\}$$

Switch to popping mode (boundary between w and w^R)

10.
$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

11. $\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$

11.
$$\delta(q_1, 1, 1) = \{(q_1, \varepsilon)\}$$

12.
$$\delta(\mathbf{q}_1, \varepsilon, \mathbf{Z}) = \{(\mathbf{q}_2, \varepsilon)\}$$

Shrink the stack by popping matching symbols (w^R-part)

Reach Final State and empty the stack

EMPTY STACK TO FINAL STATE

Theorem

If A = (Q, Σ , Γ , δ , q₀, z₀, F) is a PDA accepting L by empty stack, we can find a PDA B=(Q[|], Σ , Γ |, δ _B, p₀, z₀[|], F[|]) which accepts L by final state i.e. L = L(A) = L(B)

EMPTY STACK TO FINAL STATE

$$R_1 : \delta_B(p_0, \lambda, z_0^1) = \{(q_0, z_0^1)\}$$

 $R_2: \delta_B(q, a, z) = \delta(q, a, z)$ for all q in Q, a in Σ or λ and z in Γ

$$R_3 : \delta_B (q, \lambda, z_0^1) = \{(p_f, \lambda)\}$$

By theorem

$$(q, x, \alpha) \stackrel{*}{\models} (p, y, \beta) \Rightarrow (q, xw, \alpha\gamma) \stackrel{*}{\models} (p, yw, \beta\gamma)$$

we get

$$(q_0, w, z_0 z_0^{-1}) \mid_{A}^{*} (q, \lambda, z_0^{-1})$$

Since null store (or) empty store (δ) is a subset of $\delta_{\rm B}$

i.e.. $\delta \subset \delta_{_{\rm B}}$ we have

EMPTY STACK TO FINAL STATE

$$(p_{0}, w, z_{0}^{1}) \mid_{\overline{B}} (q_{0}, w, z_{0}z_{0}^{1})$$

$$\mid_{\overline{B}} (q, \lambda, z_{0}^{1})$$

$$\mid_{\overline{B}} (p_{f}, \lambda, \lambda)$$

FINAL STATE TO EMPTY STACK

• If A = $(Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ accepts L by final state, we can find a PDA B, accepting L by empty store.

i.e.,
$$L = T(A) = N(B)$$

FINAL STATE TO EMPTY STACK

$$R_1: \delta_B(p_0, \lambda, z_0^1) = \{(q_0, z_0^2 z_0^1)\}$$

$$R_2: \delta_B(p, \lambda, z) = \{(p, \lambda)\} \text{ for all } z \in \Gamma \cup \{z_0^{-1}\}$$

$$R_3: \delta_B(q, a, z) = \delta(q, a, z)$$
 for all $a \in \mathbb{Z}, q \in \mathbb{Q}, z \in \Gamma$.

$$R_4: \delta_B(q, \lambda, z) = \delta(q, \lambda, z) \cup \{(p, \lambda)\} \text{ for all } z \in \Gamma \cup \{z_0^{-1}\} \text{ and } q \in F.$$

SUMMARY

- Different Languages of PDA
 - Acceptance by Final State
 - Acceptance by Empty Stack
 - From Empty stack to final state
 - From Final state to empty stack

TEST YOUR KNOWLEDGE

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

