Videregående kvantitative metoder i studiet af politisk adfærd

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghjorth

Institut for Statskundskab Københavns Universitet

24. oktober 2016

- 1 Formalia
- 2 Opsamling fra sidst
- 3 Mere om potential outcomes framework
- 4 Randomisering i praksis
- 5 Faldgruber ved eksperimentelle designs
- 6 Case: Gerber & Green (2000)
- 7 Kig fremad

Uge	Dato	Tema	Litteratur	Case
1	5/9	Introduktion til R	lmai kap 1	
2	12/9	Regression I: OLS	GH kap 3, MM kap 2	Gilens & Page (2014
3	26/9	Regression II: Paneldata	GH kap 11	Larsen et al. (2016)
4	29/9	Regression III: Multileveldata, interaktioner	GH kap 12	Berkman & Plutzer
5	3/10	Introduktion til kausal inferens	Hariri (2012), Samii (2016)	
6	10/10	Matching	Justesen & Klemmensen (2014)	Ladd & Lenz (2009)
	17/10	*Efterårsferie*	, ,	, ,

Uge	Dato	Tema	Litteratur	Case
	17/10	*Efterårsferie*		
7	24/10	Eksperimenter I	MM kap 1, GG kap $1+2$	Gerber et al. (2008)
8	31/10	Eksperimenter II	GG kap 3+4+5	Gerber & Green (2000)
9	10/11	Instrumentvariable	MM kap 3	Arunachalam & Watso
10	14/11	Regressionsdiskontinuitetsdesigns	MM kap 4	Eggers & Hainmueller
11	21/11	Difference-in-difference designs	MM kap 5	Enos (2016)
12	28/11	'Big data' og maskinlæring	Grimmer (2015), Varian (2014)	,
13	5/12	Scraping af data fra online-kilder	MRMN kap 9	
14	12/12	Tekst som data	Grimmer & Stewart (2013), Imai kap 5	
-				

Formalia 000

- introduktion til potential outcomes framework
- problemer ved ekstrapolation og modelafhængighed
- common support

Opsamling

- propensity score matching
- coarsened exact matching
- balance checks
- case: Ladd & Lenz (2009)

Centrale tendenser i midterms:

Opsamling

- mere omfangsrig end estimeret
- stor grundighed i opgaveløsningen
- positivt: styr på fortolkninger, implementering i R
- negativt: lidt meget pensumrepetition ctr. overvejelser knyttet til problemstillingen

Frederik Hjorth

Motiverende eksempel: NHIS ($N \approx 18.600$)

TABLE 1.1 Health and demographic characteristics of insured and uninsured couples in the NHIS

	7 '1	Husbands			Wives		
	Some HI (1)	No HI (2)	Difference (3)	Some HI (4)	No HI (5)	Difference (6)	
		2 ¹⁰ 1 (10) 2	A. Health	in site of si	5 148 89	grit tijk – t	
Health index	4.01 [.93]	3.70 [1.01]	.31 (.03)	4.02 [.92]	3.62 [1.01]	.39 (.04)	
		В. С	Characteristic	s			
Nonwhite	.16	.17	01 (.01)	.15	.17	02 (.01)	
Age	43.98	41.26	2.71 (.29)	42.24	39.62	2.62 (.30)	
Education	14.31	11.56	2.74 (.10)	14.44	11.80	2.64 (.11)	
Family size	3 50	3 98	_ 47	3 49	3 93	43	

To MIT-studerende, Khuzdar & Maria

$$Y_{1K} - Y_{0K} = 4 - 3 = 1 \tag{1}$$

$$Y_{1M} - Y_{0M} = 5 - 5 = 0 (2)$$

Fuldt potential outcomes schedule:

	Khuzdar	Maria
Y_{0i}	3	5
Y_{1i}	4	5
D_i	1	0
Y_i	4	5
$Y_{1i}-Y_{0i}$	1	0

Observerede outcomes:

	Khuzdar	Maria
Y_{0i}	?	5
Y_{1i}	4	?

$$\to \, \bar{Y}_1 - \, \bar{Y}_0 = 4 - 5 = -1$$

Den direkte sammenligning afspeiler både ATE hos de treatede + selection bias:

$$Y_{K} - Y_{M} = Y_{1K} - Y_{0M} \tag{3}$$

$$= Y_{1K} - Y_{0K} + Y_{0K} - Y_{0M} (4)$$

$$= 1 + (-2) \tag{5}$$

$$=-1 \tag{6}$$

M. mere generel notation i GG:

$$E[Y_{1i}|D_i=1] - E[Y_{0i}|D_i=1] =$$

 $E[Y_{1i}-Y_{0i}|D_i=1] + E[Y_{0i}|D_i=1] - E[Y_{0i}|D_i=0]$ (7)

når treatment randomiseres er Y_0i uafhængig af D_i :

$$E[Y_{0i}|D_i=1]-E[Y_{0i}|D_i=0]=0$$
 (8)

Formalia

Succesfuld randomisering kan efterprøves m. balance tests

Table 1.3

Demographic characteristics and baseline health in the RAND HIE

	Means	Differences between plan groups			
	Catastrophic plan (1)	Deductible – catastrophic (2)	Coinsurance – catastrophic (3)	Free – catastrophic (4)	Any insuranc catastrophi (5)
	Α.	Demographic o	characteristics	212 9	
Female	.560	023 (.016)	025 (.015)	038 (.015)	030 (.013)
Nonwhite	.172	019 (.027)	027 (.025)	028 (.025)	025 (.022)
Age	32.4 [12.9]	.56 (.68)	.97 (.65)	.43 (.61)	.64 (.54)
Education	12.1 [2.9]	16 (.19)	06 (.19)	26 (.18)	17 (.16)
Family income	31,603 [18,148]	-2,104 (1,384)	970 (1,389)	-976 (1,345)	-654 (1,181)
Hospitalized last year	.115	.004	002	.001	.001
					Institut for St

»First, determine N, the number of subjects in your experiment, and m, the number of subjects who will be allocated to the treatment group. Second, set a random number 'seed' using a statistics package, so that your random numbers may be reproduced by anyone who cares to replicate your work. Third, generate a random number for each subject. Fourth, sort the subjects by the random numbers in ascending order. Finally, classify the first m observations as the treatment group. « (37)

Formalia

Frederik Hjorth

To kritiske antagelser om potential outcomes:

- excludability
- non-interferens (SUTVA)

Ad (1):

Lad $Y_i(z,d)$ være potential outcome for treatment assignment $z_i=z$ og faktisk treatment status $d_i=d$

Eksklusionsrestriktionsantagelsen: $Y_i(1, d) = Y_i(0, d)$

Lad $Y_i(\mathbf{z}, \mathbf{d})$ være PO for Y_i for den fulde mængde af assignments og treatments

Under non-interferens: $Y_i(\mathbf{z}, \mathbf{d}) = Y_i(z, d)$

Frederik Hjorth

TABLE 2. Effects of Four Mail Treatments on Voter Turnout in the August 2006 Primary Election

	Experimental Group				
	Control	Civic Duty	Hawthorne	Self	Neighbors
Percentage Voting N of Individuals	29.7% 191,243	31.5% 38,218	32.2% 38,204	34.5% 38,218	37.8% 38,201

Neighbors mailing

30423-3 ||| || || ||

For more information: (517) 351-1975 email: etov@grebner.com Practical Political Consulting P. O. Box 6249 East Lansing, MI 48826 PRSAT STD U.S. Postage PAID Lansing, MI Permit #444

ECRLOT **C050 THE JACKSON FAMILY 9999 MAPLE DR FLINT MI 48507

Dear Registered Voter:

WHAT IF YOUR NEIGHBORS KNEW WHETHER YOU VOTED?

Why do so many people fail to vote? We've been talking about the problem for years, but it only seems to get worse. This year, we're taking a new approach. We're sending this mailing to you and your neighbors to publicize who does and does not vote.

The chart shows the names of some of your neighbors, showing which have voted in the past. After the August 8 election, we intend to mail an updated chart. You and your neighbors will all know who voted and who did not.

DO YOUR CIVIC DUTY - VOTE!

MAPLE DR	Aug 04	Nov 04	Aug 06
9995 JOSEPH JAMES SMITH	Voted	Voted	
9995 JENNIFER KAY SMITH		Voted	
9997 RICHARD B JACKSON		Voted	
9999 KATHY MARIE JACKSON		Voted	

Hey @tedcruz your brilliant public shaming campaign has inspired me to caucus on Monday...For @marcorubio

Næste gang:

- eksperimenter II
- fokus: cluster random assignment, covariate adjustment, noncompliance
- case: Gerber & Green (2000)

Tak for i dag!

Kig fremad ○●