Problemas del Tema 3

- 1.- Sean S y \widetilde{S} dos superficies regulares difeomorfas. Demuestra que o bien ambas son simultáneamente orientables o bien no orientables.
- 2.- Considera una superficie regular S que tiene la siguiente propiedad: existe un vector $v \in \mathbb{R}^3$, $v \neq 0$, de manera que $v \notin T_pS$, para todo $p \in S$. Prueba que S es orientable. Encuentra un ejemplo de una superficie regular orientable que no cumpla la anterior condición suficiente.
- 3.- Considera una superficie regular orientable $S, p \in S$ y el endomorfismo de Weingarten correspondiente a una de las orientaciones de $S, A_p : T_pS \longrightarrow T_pS$. Comprueba que si (w_1, w_2) es una base de T_pS se cumple
 - (a) $A_p(w_1) \times A_p(w_2) = K(p) w_1 \times w_2$, $A_p(w_1) \times w_2 + w_1 \times A_p(w_2) = 2H(p) w_1 \times w_2$.
 - (b) Particulariza al caso en que $w_1 = \frac{\partial \bar{\mathbf{x}}}{\partial u}(u_0, v_0), \ w_2 = \frac{\partial \bar{\mathbf{x}}}{\partial v}(u_0, v_0), \ \text{para una parametrización local } \bar{\mathbf{x}} \text{ de } S \text{ con } \bar{\mathbf{x}}(u_0, v_0) = p.$
 - (c) Da una aplicación práctica concreta de las anteriores fórmulas al cálculo de K y de H.
- **4.-** Considera el elipsoide $E=\left\{(x,y,z)\in\mathbb{R}^3\ :\ \frac{x^2}{4}+y^2+z^2=1\right\}.$
 - (a) Prueba que es orientable y calcula un campo de vectores normales unitarios N globalmente definido sobre él.
 - (b) Demuestra que $N: E \longrightarrow \mathbb{S}^2$ es un difeomorfismo.
 - (c) Calcula K(0,1,0), H(0,1,0), $k_1(0,1,0)$ y $k_2(0,1,0)$.
- **5.-** Considera un elipsoide genérico $E = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\}, \ a > b > c > 0.$

Comprueba que la curvatura de Gauss en todo punto $(x,y,z)\in E$ es

$$K(x,y,z) = \frac{1}{a^2b^2c^2} \frac{1}{\left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^2}.$$

¿Donde alcanza Kel valor máximo? ¿Donde alcanza el valor mínimo?

- **6.-** Considera el paraboloide hiperbólico $H = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 y^2\}.$
 - (a) Prueba que es orientable y calcula un campo de vectores normales unitarios N globalmente definido sobre él.
 - (b) Calcula su segunda forma fundamental en todo punto respecto a su parametrización global natural.

1

- (c) Calcula sus funciones curvatura de Gauss, curvatura media y curvaturas principales.
- (d) ¿Tiene algún punto parabólico? ¿Tiene algún punto umbilical?
- 7.- Prueba que no existe ninguna superficie regular orientable S de manera que su curvatura de Gauss y su curvatura media cumplan en un mismo punto $p_0 \in S$, $K(p_0) = 1$, $H(p_0) = \frac{1}{2}$.
- **8.-** Sean S una superficie regular y $f: S \to \mathbb{R}$ una función diferenciable que tiene un punto crítico $p_0 \in S$. Se define $H_{p_0}(f)(w) := \frac{d^2}{dt^2}\Big|_{t=0} (f \circ \alpha)(t)$, donde $\alpha:]-\epsilon, \epsilon[\to S, \ \epsilon > 0$, es una curva diferenciable que cumple $\alpha(0) = p_0, \ \alpha'(0) = w$.
 - (a) Prueba que $H_{p_0}(f)(w)$ no depende de α con tal de que $\alpha(0) = p_0$ y $\alpha'(0) = w$, i.e., para esta f dada, sólo depende de p_0 y w ($H_{p_0}(f)$ se llama el hessiano de f en p_0).
 - (b) Prueba que si f alcanza en p_0 un valor máximo local (resp. mínimo local) entonces $H_{p_0}(f)(w) \le 0$ (resp. $H_{p_0}(f)(w) \ge 0$) para todo $w \in T_{p_0}S$.
 - (c) Prueba que si se cumple $H_{p_0}(f)(w) \leq 0$, para todo $w \in T_{p_0}S$, dándose la igualdad si y sólo si w = 0, entonces f alcanza en p_0 un valor máximo local. Prueba, finalmente, que si se cumple $H_{p_0}(f)(w) \geq 0$, para todo $w \in T_{p_0}S$ entonces f alcanza en p_0 un valor mínimo local.
- 9.- Sea S una superficie regular orientable y compacta. Considera la función $f:S\longrightarrow \mathbb{R}$ dada por $f(p)=|p|^2$, para todo $p\in S$.
 - (a) Demuestra que p_0 es un punto crítico de f si y sólo si $p_0 = \lambda N_{p_0}$, con $\lambda \in \mathbb{R}$, (N es un campo de vectores normales unitarios sobre S).
 - (b) Prueba que $H_{p_0}(f)(w) = 2\{ |w|^2 + \lambda \langle A_{p_0}(w), w \rangle \}$, para todo $w \in T_{p_0}(S)$
 - (c) Prueba que si f alcanza en p_0 su máximo entonces $\lambda \neq 0$ y ocurre $K(p_0) \geq \frac{1}{\lambda^2} > 0$ (por tanto, S tiene un punto elíptico).
 - (d) Prueba que es imposible que H = 0.
 - (d) Finalmente, si S está contenida en una bola cerrada de centro el origen y radio r > 0, concluye la estimación $K(p_0) \ge \frac{1}{r^2}$.
- 10.- Para cada número real $\lambda > 0$, considera $F_{\lambda} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la correspondiente homotecia (vectorial), $F_{\lambda}(v) = \lambda v$, para todo $v \in \mathbb{R}^3$.
 - (a) Prueba que F_{λ} es un difeomorfismo.
 - (b) Si S es una superficie regular orientable también lo es $\widetilde{S}:=F_{\lambda}(S)$.

(c) Si $\varphi := F|_S : S \longrightarrow \widetilde{S}$, prueba que

$$\widetilde{K} \circ \varphi = \frac{1}{\lambda^2} K$$
 y $\widetilde{H} \circ \varphi = \frac{1}{\lambda} H$,

donde H, \widetilde{H} son las curvaturas medias de S, \widetilde{S} relativas a $N, \widetilde{N} =: N \circ \varphi^{-1}$, respectivamente.

- (d) Encuentra una aplicación práctica concreta de las fórmulas del apartado anterior.
- 11.- Considera una superficie regular orientable S. Supongamos que para cada punto $p \in S$ existe una parametrización local $\bar{\mathbf{x}}$ de S, que contiene a p en el correspondiente entorno coordenado, cuyos coeficientes de la primera forma fundamental cumplen E = G > y F = 0 y tal que $\frac{\partial^2 \bar{\mathbf{x}}}{\partial u^2} + \frac{\partial^2 \bar{\mathbf{x}}}{\partial v^2} = 0$. Prueba que la curvatura media de S cumple H = 0.
- **12.-** Sea la catenoide $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \cosh^2 z = 0\}$. Prueba que $K(x, y, z) = \frac{-1}{\cosh^4 z}$ y que H = 0. Calcula también k_1 y k_2 para una orientación elegida.
- **13.-** Dado el helicoide $\bar{\mathbf{x}}: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $\bar{\mathbf{x}}(u,v) = (v\cos u, v \sin u, u)$, comprueba que $K(\bar{\mathbf{x}}(u,v)) = \frac{-1}{(1+v^2)^2}$ y que H=0. Calcula también k_1 y k_2 para una orientación elegida.
- **14.-** Sea el hiperboloide $H = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}$. Considera la aplicación de Gauss $N(x,y,z) = \frac{-1}{\sqrt{x^2 + y^2 + x^2}} (x,y,-z)$. Comprueba que $K(x,y,z) = \frac{-1}{(x^2 + y^2 + z^2)^2}$ y $H(x,y,z) = \frac{1}{2} \frac{x^2 + y^2 + z^2 1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$.
- 15.- Calcula los símbolos de Christoffel correspondientes a la parametrización local por coordenadas polares del plano z=0. Usando la ecuación Gauss (para esta parametrización) comprueba que K=0.
- **16.-** Prueba que no existe ninguna superficie regular S con una parametrización local $\bar{\mathbf{x}}: \mathbb{R}^2 \longrightarrow S$ de manera que E = G = 1, F = 0 y e = -g = 1, f = 0.
- 17.- Dadas las superficies regulares $C=\{(x,y,z)\in\mathbb{R}^3: x^2+y^2-\cosh^2z=0\}$ y $S=\{(x,y,z)\in\mathbb{R}^3: x=y^2\}$, prueba que no existen abiertos U de C y V de S que sean isométricos.