अवकलज के अनुप्रयोग (Application of Derivatives)

❖ With the Calculus as a key, Mathematics can be successfully applied to the explanation of the course of Nature — WHITEHEAD ❖

6.1 भूमिका (Introduction)

अध्याय 5 में हमने संयुक्त फलनों, प्रतिलोम त्रिकोणिमतीय फलनों, अस्पष्ट फलनों, चरघातांकीय फलनों और लघुघातांकीय फलनों का अवकलज ज्ञात करना सीखा है। प्रस्तुत अध्याय में, हम गणित की विभिन्न शाखाओं में अवकलज के अनुप्रयोग का अध्ययन करेंगे यथा इंजिनियरिंग, विज्ञान, सामाजिक विज्ञान और कई दूसरे क्षेत्र। उदाहरण के लिए हम सीखेंगे कि किस प्रकार अवकलज का उपयोग (i) राशियों के परिवर्तन की दर ज्ञात करने में, (ii) किसी बिंदु पर स्पर्श रेखा तथा अभिलंब की समीकरण ज्ञात करने में, (iii) एक फलन के आलेख पर वर्तन बिंदु ज्ञात करने में, जो हमें उन बिंदुओं को ज्ञात करने में सहायक होता है जिन पर फलन का अधिकतम या न्यूनतम मान होता है। हम उन अंतरालों को ज्ञात करने में भी अवकलज का उपयोग करेंगे, जिनमें एक फलन वर्धमान या हासमान होता है। अंततः हम कुछ राशियों के सिन्तकट मान प्राप्त करने में अवकलज प्रयुक्त करेंगे।

6.2 राशियों के परिवर्तन की दर (Rate of Change of Quantities)

पुन: स्मरण कीजिए कि अवकलज $\frac{ds}{dt}$ से हमारा तात्पर्य समय अंतराल t के सापेक्ष दूरी s के परिवर्तन की दर से है। इसी प्रकार, यदि एक राशि y एक दूसरी राशि x के सापेक्ष किसी नियम y=f(x) को संतुष्ट करते हुए परिवर्तित होती है तो $\frac{dy}{dx}$ (या f'(x)), x के सापेक्ष y के परिवर्तन की दर को प्रदर्शित करता है और $\frac{dy}{dx}\Big|_{x=x_0}$ (या $f'(x_0)$) $x=x_0$ पर) x के सापेक्ष y की परिवर्तन की दर को प्रदर्शित करता है।

211

इसके अतिरिक्त, यदि दो राशियाँ x और y, t के सापेक्ष परिवर्तित हो रही हों अर्थात् x=f(t) और y=g(t) है तब शृंखला नियम से

$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$$
, यदि $\frac{dx}{dt} \neq 0$ प्राप्त होता है।

इस प्रकार, x के सापेक्ष y के परिवर्तन की दर का परिकलन t के सापेक्ष y और x के परिवर्तन की दर का प्रयोग करके किया जा सकता है।

आइए हम कुछ उदाहरणों पर विचार करें।

उदाहरण 1 वृत्त के क्षेत्रफल के परिवर्तन की दर इसकी त्रिज्या r के सापेक्ष ज्ञात कीजिए जब $r=5~\mathrm{cm}$ है।

हल क्रिज्या r वाले वृत्त का क्षेत्रफल $A=\pi r^2$ से दिया जाता है। इसलिए, r के सापेक्ष A के परिवर्तन की दर $\frac{dA}{dr}=\frac{d}{dr}(\pi r^2)=2\pi r$ से प्राप्त है। जब r=5 cm तो $\frac{dA}{dr}=10\pi$ है। अत: वृत्त का क्षेत्रफल 10π cm²/cm की दर से बदल रहा है।

उदाहरण 2 एक घन का आयतन 9 cm³/s की दर से बढ़ रहा है। यदि इसके कोर की लंबायीं 10 cm है तो इसके पृष्ठ का क्षेत्रफल किस दर से बढ़ रहा है।

हल मान लीजिए कि घन की एक कोर की लंबायीं $x \, \mathrm{cm}$ है। घन का आयतन V तथा घन के पृष्ठ का क्षेत्रफल S है। तब, $V=x^3$ और $S=6x^2$, जहाँ x समय t का फलन है।

अब
$$\frac{dV}{dt} = 9 \text{ cm}^3 / \text{s} \quad (दिया \ \, \dot{\overline{\epsilon}})$$
 इसलिए
$$9 = \frac{dV}{dt} = \frac{d}{dt} (x^3) = \frac{d}{dt} (x^3) \cdot \frac{dx}{dt} \quad (शृंखला \ \, \dot{\overline{r}})$$
 ्या
$$= 3x^2 \cdot \frac{dx}{dt}$$
 ्या
$$\frac{dx}{dt} = \frac{3}{x^2} \qquad ... (1)$$
 अब
$$\frac{dS}{dt} = \frac{d}{dt} (6x^2) = \frac{d}{dt} (6x^2) \cdot \frac{dx}{dt} \quad (शृंखला \ \, \dot{\overline{r}})$$
 ्या (1) के प्रयोग से)
$$= 12x \cdot \left(\frac{3}{x^2}\right) = \frac{36}{x} \qquad ((1) \ \, \dot{\overline{r}})$$
 अत:, जब
$$x = 10 \ \, \text{cm}, \frac{dS}{dt} = 3.6 \ \, \text{cm}^2 / \text{s}$$

उदाहरण 3 एक स्थिर झील में एक पत्थर डाला जाता है और तरंगें वृत्तों में 4 cm/s की गित से चलती हैं। जब वृत्ताकार तरंग की त्रिज्या 10 cm है, तो उस क्षण, घिरा हुआ क्षेत्रफल कितनी तेजी से बढ़ रहा है?

हल त्रिज्या r वाले वृत्त का क्षेत्रफल $A=\pi r^2$ से दिया जाता है। इसलिए समय t के सापेक्ष क्षेत्रफल A के परिवर्तन की दर है

$$\frac{d\mathbf{A}}{dt} = \frac{d}{dt}(\pi r^2) = \frac{d}{dr}(\pi r^2) \cdot \frac{dr}{dt} = 2\pi r \frac{dr}{dt}$$
 (शृंखला नियम से)

यह दिया गया है कि

$$\frac{dr}{dt} = 4 \text{ cm}$$

इसलिए जब

$$r = 10 \text{ cm}$$

$$\frac{dA}{dt} = 2\pi (10) (4) = 80\pi$$

अत: जब $r=10~\mathrm{cm}$ तब वृत्त से घिरे क्षेत्र का क्षेत्रफल $80\pi~\mathrm{cm}^2/\mathrm{s}$ की दर से बढ़ रहा है।

टिप्पणी x का मान बढ़ने से यदि y का मान बढ़ता है तो $\frac{dy}{dx}$ धनात्मक होता है और x

का मान बढ़ने से यदि y का मान घटता है, तो $\frac{dy}{dx}$ ऋणात्मक होता है।

उदाहरण 4 किसी आयत की लंबायीं x, 3 cm/min की दर से घट रही है और चौड़ाई y, 2 cm/min की दर से बढ़ रही है। जब x = 10 cm और y = 6 cm है तब आयत के (a) परिमाप और

(b) क्षेत्रफल में परिवर्तन की दर ज्ञात कीजिए।

हल क्योंकि समय के सापेक्ष लंबायीं x घट रही है और चौड़ाई y बढ़ रही है तो हम पाते हैं कि

$$\frac{dx}{dt} = -3 \text{ cm/min}$$
 और $\frac{dy}{dt} = 2 \text{ cm/min}$

(a) आयत का परिमाप P से प्रदत्त है, अर्थात्

$$P = 2(x + y)$$

इसलिए

$$\frac{dP}{dt} = 2\left(\frac{dx}{dt} + \frac{dy}{dt}\right) = 2(-3+2) = -2 \text{ cm/min}$$

(b) आयत का क्षेत्रफल A से प्रदत्त है यथा

$$A = x \cdot y$$

इसलिए
$$\frac{dA}{dt} = \frac{dx}{dt} \cdot y + x \cdot \frac{dy}{dt}$$
$$= -3(6) + 10(2) \text{ (क्योंक } x = 10 \text{ cm } \text{ और } y = 6 \text{ cm})$$
$$= 2 \text{ cm}^2/\text{min}$$

उदाहरण 5 किसी वस्तु की x इकाइयों के उत्पादन में कुल लागत C(x) रुपये में

$$C(x) = 0.005 x^3 - 0.02 x^2 + 30x + 5000$$

से प्रदत्त है। सीमांत लागत ज्ञात कीजिए जब 3 इकाई उत्पादित की जाती है। जहाँ सीमांत लागत (marginal cost या MC) से हमारा अभिप्राय किसी स्तर पर उत्पादन के संपूर्ण लागत में तात्कालिक परिवर्तन की दर से है।

हल क्योंकि सीमांत लागत उत्पादन के किसी स्तर पर x इकाई के सापेक्ष संपूर्ण लागत के परिवर्तन की दर है। हम पाते हैं कि

सीमांत लागत
$$MC = \frac{dC}{dx} = 0.005(3x^2) - 0.02(2x) + 30$$
 जब $x = 3$ है तब
$$MC = 0.015(3^2) - 0.04(3) + 30$$

$$= 0.135 - 0.12 + 30 = 30.015$$

अत: अभीष्ट सीमांत लागत अर्थात लागत प्रति इकाई Rs 30.02 (लगभग) है।

उदाहरण 6 किसी उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय रुपये में $R(x) = 3x^2 + 36x + 5$ से प्रदत्त है। जब x = 5 हो तो सीमांत आय ज्ञात कीजिए। जहाँ सीमांत आय (marginal revenue or MR) से हमारा अभिप्राय किसी क्षण विक्रय की गई वस्तुओं के सापेक्ष संपूर्ण आय के परिवर्तन की दर से है।

हल क्योंकि सीमांत आय किसी क्षण विक्रय की गई वस्तुओं के सापेक्ष आय परिवर्तन की दर होती है। हम जानते हैं कि

सीमांत आय
$$MR = \frac{dR}{dx} = 6x + 36$$

ਯਕ
$$x = 5$$
 है तब $MR = 6(5) + 36 = 66$

अत: अभीष्ट सीमांत आय अर्थात आय प्रति इकाई Rs 66 है।

प्रश्नावली 6.1

1. वृत्त के क्षेत्रफल के परिवर्तन की दर इसकी त्रिज्या r के सापेक्ष ज्ञात कीजिए जबकि

(a)
$$r = 3 \text{ cm } \hat{\mathbf{E}}$$
 (b) $r = 4 \text{ cm } \hat{\mathbf{E}}$

- एक घन का आयतन 8 cm³/s की दर से बढ़ रहा है। पृष्ठ क्षेत्रफल किस दर से बढ़ रहा है जबिक इसके किनारे की लंबायीं 12 cm है।
- 3. एक वृत्त की त्रिज्या समान रूप से 3 cm/s की दर से बढ़ रही है। ज्ञात कीजिए कि वृत्त का क्षेत्रफल किस दर से बढ़ रहा है जब त्रिज्या 10 cm है।
- 4. एक परिवर्तनशील घन का किनारा 3 cm/s की दर से बढ़ रहा है। घन का आयतन किस दर से बढ़ रहा है जबकि किनारा 10 cm लंबा है?
- 5. एक स्थिर झील में एक पत्थर डाला जाता है ओर तरंगें वृत्तों में 5 cm/s की गित से चलती हैं। जब वृत्ताकार तरंग की त्रिज्या 8 cm है तो उस क्षण, घिरा हुआ क्षेत्रफल किस दर से बढ़ रहा है?
- 6. एक वृत्त की त्रिज्या 0.7 cm/s की दर से बढ़ रही है। इसकी परिधि की वृद्धि की दर क्या है जब r=4.9 cm है?
- 7. एक आयत की लंबायीं x, 5 cm/min की दर से घट रही है और चौड़ाई y, 4 cm/min की दर से बढ़ रही है। जब x=8 cm और y=6 cm हैं तब आयत के (a) परिमाप (b) क्षेत्रफल के परिवर्तन की दर ज्ञात कीजिए।
- 8. एक गुब्बारा जो सदैव गोलाकार रहता है, एक पंप द्वारा 900 cm³ गैस प्रति सेकंड भर कर फुलाया जाता है। गुब्बारे की त्रिज्या के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 15 cm है।
- 9. एक गुब्बारा जो सदैव गोलाकार रहता है, की त्रिज्या परिवर्तनशील है। त्रिज्या के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 10 cm है।
- 10. एक 5 m लंबी सीढ़ी दीवार के सहारे झुकी है। सीढ़ी का नीचे का सिरा, जमीन के अनुदिश, दीवार से दूर 2 cm/s की दर से खींचा जाता है। दीवार पर इसकी ऊँचाई किस दर से घट रही है जबिक सीढ़ी के नीचे का सिरा दीवार से 4 m दूर है?
- 11. एक कण वक्र $6y = x^3 + 2$ के अनुगत गित कर रहा हैं। वक्र पर उन बिंदुओं को ज्ञात कीजिए जबिक x-निर्देशांक की तुलना में y-निर्देशांक 8 गुना तीव्रता से बदल रहा है।
- 12. हवा के एक बुलबुले की त्रिज्या $\frac{1}{2}$ cm/s की दर से बढ़ रही है। बुलबुले का आयतन किस दर से बढ़ रहा है जबिक त्रिज्या 1 cm है?
- 13. एक गुब्बारा, जो सदैव गोलाकार रहता है, का परिवर्तनशील व्यास $\frac{3}{2}(2x+1)$ है। x के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए।
- 14. एक पाइप से रेत 12 cm³/s की दर से गिर रही है। गिरती रेत जमीन पर एक ऐसा शंकु बनाती है जिसकी ऊँचाई सदैव आधार की त्रिज्या का छठा भाग है। रेत से बने के शंकु की ऊँचाई किस दर से बढ़ रही है जबिक ऊँचाई 4 cm है?

15. एक वस्तु की x इकाइयों के उत्पादन से संबंध कुल लागत C(x) (रुपये में) $C(x) = 0.007x^3 - 0.003x^2 + 15x + 4000$

से प्रदत्त है। सीमांत लागत ज्ञात कीजिए जबिक 17 इकाइयों का उत्पादन किया गया है।

16. किसी उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय R(x) रुपयों में

$$R(x) = 13x^2 + 26x + 15$$

से प्रदत्त है। सीमांत आय ज्ञात कीजिए जब x = 7 है। प्रश्न 17 तथा 18 में सही उत्तर का चयन कीजिए:

- 17. एक वृत्त की त्रिज्या r=6 cm पर r के सापेक्ष क्षेत्रफल में परिवर्तन की दर है:
 - (A) 10π
- (B) 12π
- (C) 8π
- **18.** एक उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय रुपयों में $R(x) = 3x^2 + 36x + 5$ से प्रदत्त है। जब x = 15 है तो सीमांत आय है:
 - (A) 116
- (B) 96
- (C) 90
- (D) 126

6.3 वर्धमान (Increasing) और हासमान (Decreasing) फलन

इस अनुच्छेद में हम अवकलन का प्रयोग करके यह ज्ञात करेंगे कि फलन वर्धमान है या ह्रासमान या इनमें से कोई नहीं है।

 $f(x) = x^2, x \in \mathbf{R}$ द्वारा प्रदत्त फलन f पर विचार कीजिए। इस फलन का आलेख आकृति 6.1 में दिया गया है।

मूल बिंदु के बायीं ओर का मान

x	$f\left(x\right) = x^2$
-2	4
$-\frac{3}{2}$	9/4
-1	1
$-\frac{1}{2}$	$\frac{1}{4}$
0	0

जैसे जैसे हम बाँए से दाँए ओर बढ़ते जाते हैं तो आलेख की ऊँचाई घटती जाती है।

आकृति 6.1

 $f(x) = x^2$ 0 1 $\frac{-}{2}$ 1 1 3 9 $\frac{1}{2}$ 4

जैसे जैसे हम बाँए से दाँए ओर बढ़ते जाते है तो आलेख की ऊँचाई बढती जाती है।

सर्वप्रथम मूल बिंदु के दायीं ओर के आलेख (आकृति 6.1) पर विचार करते हैं। यह देखिए कि आलेख के अनुदिश जैसे जैसे बाएँ से दाएँ ओर जाते हैं, आलेख की ऊँचाई लगातार बढ़ती जाती है। इसी कारण वास्तविक संख्याओं x > 0 के लिए फलन वर्धमान कहलाता है।

अब मूल बिंदु के बायीं ओर के आलेख पर विचार करते हैं। यहाँ हम देखते हैं कि जैसे जैसे आलेख के अनुदिश बाएँ से दाएँ की ओर जाते हैं, आलेख की ऊँचाई लगातार घटती जाती है। फलस्वरूप वास्तविक संख्याओं x < 0 के लिए फलन ह्वासमान कहलाता है।

हम अब एक अंतराल में वर्धमान या ह्रासमान फलनों की निम्नलिखित विश्लेषणात्मक परिभाषा देंगे। परिभाषा 1 मान लीजिए वास्तविक मान फलन f के प्रांत में I एक अंतराल है। तब f

- (i) अंतराल I में वर्धमान है, यदि I में $x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$ सभी $x_1, x_2 \in I$ के लिए
- (ii) अंतराल I में निरंतर वर्धमान है, यदि I में $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ सभी $x_1, x_2 \in I$ के लिए
- (iii) अंतराल I में हासमान है, यदि I में $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$ सभी $x_1, x_2 \in I$ के लिए
- (iv) अंतराल I में निरंतर ह्वासमान है, यदि I में $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$ सभी $x_1, x_2 \in I$ के लिए

इस प्रकार के फलनों का आलेखीय निरूपण आकृति 6.2 में देखिए।

अब हम एक बिंदु पर वर्धमान या ह्रासमान फलन को परिभाषित करेंगे।

 \mathbf{v} िरभाषा $\mathbf{2}$ मान लीजिए कि वास्तविक मानों के परिभाषित फलन f के प्रांत में एक बिंदु x_0 है तब $x_{_0}$ पर f वर्धमान, निरंतर वर्धमान, हासमान और निरंतर हासमान कहलाता है यदि $x_{_0}$ को अंतर्विष्ट करने वाले एक ऐसे विवृत्त अंतराल I का अस्तित्व इस प्रकार है कि I में, f क्रम $^{\circ}$: वर्धमान, निरंतर वर्धमान, ह्रासमान और निरंतर ह्रासमान है

आइए इस परिभाषा को वर्धमान फलन के लिए स्पष्ट करते हैं।

 x_0 पर f वर्धमान कहलाता है यदि एक अंतराल $I=(x_0-h,x_0+h),\,h>0$ का अस्तित्व इस प्रकार है कि $x_1, x_2 \in I$ के लिए

$$x_1 < x_2 \implies f(x_1) \le f(x_2)$$

 $x_1 < x_2 \ \Rightarrow f(x_1) \leq \ f(x_2)$ अन्य दशाओं का इसी प्रकार से स्पष्टीकरण दिया जा सकता है।

उदाहरण 7 दिखाइए कि प्रदत्त फलन f(x) = 7x - 3, **R** पर एक निरंतर वर्धमान फलन है।

हल मान लीजिए \mathbf{R} में x_1 और x_2 कोई दो संख्याएँ हैं, तब

$$x_1 < x_2 \Rightarrow 7x_1 < 7x_2$$

$$\Rightarrow 7x_1 - 3 < 7x_2 - 3$$

$$\Rightarrow f(x_1) < f(x_2)$$

इस प्रकार, परिभाषा 1 से परिणाम निकलता है कि ${f R}$ पर f एक निरंतर वर्धमान फलन है। अब हम वर्धमान और ह्रासमान फलनों के लिए प्रथम अवकलज परीक्षण प्रस्तुत करेंगे। इस परीक्षण की उपपत्ति में अध्याय 5 में अध्ययन की गई मध्यमान प्रमेय का प्रयोग करते हैं।

प्रमेय 1 मान लीजिए कि f अंतराल [a,b] पर संतत और विवृत्त अंतराल (a,b) पर अवकलनीय है। तब

- [a,b] में f निरंतर वर्धमान है यदि प्रत्येक $x \in (a,b)$ के लिए f'(x) > 0 है।
- (b) [a,b] में f निरंतर ह्वासमान है यदि प्रत्येक $x \in (a,b)$ के लिए f'(x) < 0 है।
- (c) [a,b] में f एक अचर फलन है यदि प्रत्येक $x \in (a,b)$ के लिए f'(x) = 0 है।

उपपत्ति (a) मान लीजिए $x_1, x_2 \in [a, b]$ इस प्रकार है कि $x_1 < x_2$ तब मध्य मान प्रमेय से x_1 और x के मध्य एक बिंदु c का अस्तित्व इस प्रकार है कि

$$f(x_2)-f(x_1)=f'(c)\ (x_2-x_1)$$
 अर्थात्
$$f(x_2)-f(x_1)>0 \qquad \qquad \text{(क्योंक } f'(c)>0\text{)}$$
 अर्थात्
$$f(x_2)>f(x_1)$$

इस प्रकार, हम देखते हैं, कि

$$[a,b]$$
 के सभी x_1, x_2 के लिए $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

अत: [a,b] में f एक वर्धमान फलन है।

भाग (b) और (c) की उपपत्ति इसी प्रकार है। पाठकों के लिए इसे अभ्यास हेतु छोड़ा जाता है।

टिप्पणी

- (i) इस सदंर्भ में एक अन्य सामान्य प्रमेय के अनुसार यदि किसी अंतराल के अंत्य बिंदुओं के अितरिक्त f'(x) > 0 जहाँ x, अंतराल में कोई अवयव है और f उस अंतराल में संतत है तब f को निरंतर वर्धमान कहते हैं। इसी प्रकार यदि किसी अंतराल के अंत्य बिंदुओं के सिवाय f'(x) < 0 जहाँ x अंतराल का कोई अवयव है और f उस अंतराल में संतत है तब f को निरंतर हासमान कहते हैं।
- (ii) यदि कोई फलन किसी अंतराल I में निरंतर वर्धमान या निरंतर ह्रासमान है तो निश्चित रूप से f उस अंतराल I में वर्धमान या ह्रासमान है। परन्तु, इसका विपरीत कथन का सत्य होना आवश्यक नहीं है।

उदाहरण 8 दिखाइए कि प्रदत्त फलन f

$$f(x) = x^3 - 3x^2 + 4x, x \in \mathbf{R}$$

R पर निरंतर वर्धमान फलन है।

हल ध्यान दीजिए कि

$$f'(x) = 3x^2 - 6x + 4$$
$$= 3(x^2 - 2x + 1) + 1$$
$$= 3(x - 1)^2 + 1 > 0, \text{ सभी } x \in \mathbf{R} \text{ के लिए}$$

इसलिए फलन f, \mathbf{R} पर निरंतर वर्धमान है।

उदाहरण 9 सिद्ध कीजिए कि प्रदत्त फलन $f(x) = \cos x$

- (a) $(0, \pi)$ में निरंतर ह्रासमान है
- (b) $(\pi, 2\pi)$, में निरंतर वर्धमान है
- (c) $(0, 2\pi)$ में न तो वर्धमान और न ही ह्रासमान है।

हल ध्यान दीजिए कि $f'(x) = -\sin x$

- (a) चूँिक प्रत्येक $x \in (0, \pi)$ के लिए $\sin x > 0$, हम पाते हैं कि f'(x) < 0 और इसलिए $(0, \pi)$ में f निरंतर ह्रासमान है।
- (b) चूँकि प्रत्येक $x \in (\pi, 2\pi)$ के लिए $\sin x < 0$, हम पाते हैं कि f'(x) > 0 और इसलिए $(\pi, 2\pi)$ में f निरंतर वर्धमान है।
- (c) उपरोक्त (a) और (b) से स्पष्ट है कि $(0, 2\pi)$ में f न तो वर्धमान है और न ही ह्रासमान है। उदाहरण 10 अंतराल ज्ञात कीजिए जिनमें $f(x) = x^2 - 4x + 6$ से प्रदत्त फलन f
 - (a) निरंतर वर्धमान है (b) निरंतर ह्रासमान है

हल यहाँ

या

$$f(x) = x^2 - 4x + 6$$
$$f'(x) = 2x - 4$$

इसलिए, f'(x) = 0 से x = 2 प्राप्त होता है। अब बंदु x = 2 वास्तविक रेखा को दो असंयुक्त अंतरालों, 2 + ∞ नामत: $(-\infty, 2)$ और $(2, \infty)$ (आकृति 6.3) में विभक्त करता है। अंतराल $(-\infty, 2)$ में f'(x) = 2x - 4 < 0 है।

इसलिए, इस अंतराल में, f निरंतर ह्रासमान है। अंतराल $(2,\infty)$, में f'(x)>0 है, इसलिए इस अंतराल में फलन f निरंतर वर्धमान है।

उदाहरण 11 वे अंतराल ज्ञात कीजिए जिनमें $f(x) = 4x^3 - 6x^2 - 72x + 30$ द्वारा प्रदत्त फलनf, (a) निरंतर वर्धमान (b) निरंतर हासमान है।

हल यहाँ

$$f(x) = 4x^3 - 6x^2 - 72x + 30$$

या
$$f'(x) = 12x^2 - 12x - 72$$

$$= 12(x^2 - x - 6)$$

$$= 12(x - 3) (x + 2)$$

$$3 + \infty$$

इसलिए f'(x)=0 से x=-2, 3 प्राप्त होते हैं। x=-2 और x=3 वास्तविक रेखा को तीन असंयुक्त अंतरालों, नामत: $(-\infty,-2),(-2,3)$ और $(3,\infty)$ में विभक्त करता है (आकृति 6.4)। अंतरालों $(-\infty,-2)$ और $(3,\infty)$ में f'(x) धनात्मक है जबिक अंतराल (-2,3) में f'(x) ऋणात्मक है। फलस्वरूप फलन f अंतरालों $(-\infty,-2)$ और $(3,\infty)$ में निरंतर वर्धमान है जबिक अंतराल (-2,3) में फलन निरंतर हासमान है। तथापि f, \mathbf{R} पर \mathbf{r} तो वर्धमान है और \mathbf{r} ही हासमान है।

अंतराल	f'(x) का चिह्न	फलन f की प्रकृति
$(-\infty, -2)$	(-) (-) > 0	f निरंतर वर्धमान है
(-2, 3)	(-) (+) < 0	f निरंतर हासमान है
(3, ∞)	(+) (+) > 0	<i>f</i> निरंतर वर्धमान है

उदाहरण 12 अंतराल ज्ञात कीजिए जिनमें प्रदत्त फलन $f(x) = \sin 3x, \ x \in \left[0, \frac{\pi}{2}\right]$ में (a) वर्धमान है। (b) हासमान है।

 $f(x) = \sin 3x$

 $f'(x) = 3\cos 3x$

हल ज्ञात है कि

0 $\frac{\pi}{6}$ $\frac{\pi}{2}$ आकृति 6.5

या

इसलिए, f'(x) = 0 से मिलता है $\cos 3x = 0$ जिससे $3x = \frac{\pi}{2}, \frac{3\pi}{2}$ (क्योंकि $x \in \left[0, \frac{\pi}{2}\right]$

 $\Rightarrow 3x \in \left[0, \frac{3\pi}{2}\right]$) प्राप्त होता है। इसलिए, $x = \frac{\pi}{6}$ और $\frac{\pi}{2}$ है। अब बिंदु $x = \frac{\pi}{6}$, अंतराल $\left[0, \frac{\pi}{2}\right]$

को दो असंयुक्त अंतरालों $\begin{bmatrix} 0, \pi \\ 6 \end{bmatrix}$ और $\begin{bmatrix} \pi, \pi \\ 6, 2 \end{bmatrix}$ में विभाजित करता है।

पुन: सभी $x \in \left[0, \frac{\pi}{6}\right]$ के लिए f'(x) > 0 क्योंकि $0 \le x < \frac{\pi}{6} \Rightarrow 0 \le 3x < \frac{\pi}{2}$ और सभी

 $x \in \begin{pmatrix} \pi & \pi \\ 6 & 2 \end{pmatrix}$ के लिए f'(x) < 0 क्योंकि $\frac{\pi}{6} < x \le \frac{\pi}{2} \Rightarrow \frac{\pi}{2} < 3x \le \frac{3\pi}{2}$

इसलिए, अंतराल $\begin{bmatrix} 0, \frac{\pi}{6} \end{bmatrix}$ में f निरंतर वर्धमान है और अंतराल $\begin{pmatrix} \pi, \pi \\ 6, 2 \end{pmatrix}$ में निरंतर हासमान है।

इसके अतिरिक्त दिया गया फलन x=0 तथा $x=\frac{\pi}{6}$ पर संतत भी है। इसलिए प्रमेय 1 के द्वारा, f,

$$\begin{bmatrix} 0, \frac{\pi}{6} \end{bmatrix}$$
 में वर्धमान और $\begin{bmatrix} \pi & \pi \\ 6 & 2 \end{bmatrix}$ में हासमान है।

उदाहरण 13 अंतराल ज्ञात कीजिए जिनमें $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ द्वारा प्रदत्त फलन f, निरंतर वर्धमान या निरंतर ह्वासमान है।

हल ज्ञात है कि

$$f(x) = \sin x + \cos x, \qquad 0 \le x \le 2\pi$$

$$f'(x) = \cos x - \sin x$$

या

अब f'(x) = 0 से $\sin x = \cos x$ जिससे हमें $x = \frac{\pi}{4}$, $\frac{5\pi}{4}$ प्राप्त होते हैं। क्योंकि $0 \le x \le 2\pi$,

बिंदु
$$x = \frac{\pi}{4}$$
 और $x = \frac{5\pi}{4}$ अंतराल $[0, 2\pi]$ को तीन असंयुक्त अंतरालों, नामत: $\left[0, \frac{\pi}{4}\right]$, $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$ और $\left(\frac{5\pi}{4}, 2\pi\right]$ में विभक्त करते हैं। $\left(\frac{5\pi}{4}, 2\pi\right]$ आकृति 6.6 ध्यान दीजिए कि $f'(x) > 0$ यदि $x \in \left(0, \frac{\pi}{4}\right) \cup \left(\frac{5\pi}{4}, 2\pi\right]$ अत: अंतरालों $\left(0, \frac{\pi}{4}\right)$ और $\left(\frac{5\pi}{4}, 2\pi\right]$ में फलन f निरंतर वर्धमान है। और $f'(x) < 0$, यदि $x \in \left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$ अत: f अंतराल $\left(\frac{\pi}{4}, \frac{5\pi}{4}\right)$ में निरंतर हासमान है।

अंतराल	f'(x)का चिह्न	फलन की प्रकृति
$\left[0,\frac{\pi}{4}\right]$	>0	f वर्धमान है
$\left(\frac{\pi}{4},\frac{5\pi}{4}\right)$	< 0	f हासमान है
$\left[\frac{5\pi}{4}, 2\pi\right]$	> 0	f वर्धमान है

प्रश्नावली 6.2

- **1.** सिद्ध कीजिए **R** पर f(x) = 3x + 17 से प्रदत्त फलन निरंतर वर्धमान है।
- 2. सिद्ध कीजिए कि **R** पर $f(x) = e^{2x}$ से प्रदत्त फलन निरंतर वर्धमान है।
- 3. सिद्ध कीजिए $f(x) = \sin x$ से प्रदत्त फलन

अत:

(a) $\left(0, \frac{\pi}{2}\right)$ में निरंतर वर्धमान है (b) $\left(\frac{\pi}{2}, \pi\right)$ में निरंतर ह्रासमान है (c) $(0, \pi)$ में न तो वर्धमान है और न ही ह्रासमान है।

222	માંગલ	
4.	अंतराल ज्ञात कीजिए जिनमें $f(x) = 2x^2 - 3x$ से प्रदत्त फलन f	
	(a) निरंतर वर्धमान (b) निरंतर ह्रासमान	
5.	अंतराल ज्ञात कीजिए जिनमें $f(x) = 2x^3 - 3x^2 - 36x + 7$ से प्रदत्त फलन f	
	(a) निरंतर वर्धमान (b) निरंतर ह्रासमान	
6.	अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f निरंतर वर्धमान या ह्वासमान है:	
	(a) $f(x)x^2 + 2x + 5$ (b) $f(x)10 - 6x - 2x^2$	
	(c) $f(x) -2x^3 - 9x^2 - 12x + 1$ (d) $f(x) 6 - 9x - x^2$	
	(e) $f(x) (x+1)^3 (x-3)^3$	
7.	सिद्ध कीजिए कि $y = \log(1+x) - \frac{2x}{2+x}$, $x > -1$, अपने संपूर्ण प्रांत में एक वर्धमान फलन है	
8.	x के उन मानों को ज्ञात कीजिए जिनके लिए $y = [x(x-2)]^2$ एक वर्धमान फलन है।	
9.	सिद्ध कीजिए कि $\left[0,\frac{\pi}{2}\right]$ में $y = \frac{4\sin\theta}{(2+\cos\theta)} - \theta$, θ का एक वर्धमान फलन है।	
10.	सिद्ध कीजिए कि लघुगणकीय फलन $(0,\infty)$ में निरंतर वर्धमान फलन है।	
11.	सिद्ध कीजिए कि $(-1,1)$ में $f(x)=x^2-x+1$ से प्रदत्त फलन न तो वर्धमान है और न ही हासमान है।	
12.	निम्नलिखित में कौन से फलन $\left(0,\frac{\pi}{2}\right)$ में निरंतर ह्रासमान है ?	
13.	(A) $\cos x$ (B) $\cos 2x$ (C) $\cos 3x$ (D) $\tan x$ निम्नलिखित अंतरालों में से किस अंतराल में $f(x) = x^{100} + \sin x - 1$ द्वारा प्रदत्त फलन f निरंतर हासमान है?	
	(A) $(0,1)$ (B) $\binom{\pi}{2},\pi$ (C) $\binom{0}{2}$ (D) इनमें से कोई नही	
14.	a का वह न्यूनतम मान ज्ञात कीजिए जिसके लिए अंतराल $[1,2]$ में $f(x)=x^2+ax+1$ से प्रदत्त फलन निरंतर वर्धमान है।	
15.	मान लीजिए $[-1,1]$ से असंयुक्त एक अंतराल I हो तो सिद्ध कीजिए कि I में $f(x)=x+rac{1}{x}$	
	से प्रदत्त फलन f , निरंतर वर्धमान है।	
16.	सिद्ध कीजिए कि फलन $f(x) = \log \sin x$, $\left(0, \frac{\pi}{2}\right)$ में निरंतर वर्धमान और $\left(\frac{\pi}{2}, \pi\right)$ मे	
	निरंतर ह्वासमान है।	

- 17. सिद्ध कीजिए कि फलन $f(x) = \log \left| \cos x \right| \left(0, \frac{\pi}{2} \right)$ में निरंतर वर्धमान और $\left(\frac{3\pi}{2}, 2\pi \right)$ में निरंतर हासमान है।
- **18.** सिद्ध कीजिए कि **R** में दिया गया फलन $f(x) = x^3 3x^2 + 3x 100$ वर्धमान है।
- **19.** निम्नलिखित में से किस अंतराल में $y = x^2 e^{-x}$ वर्धमान है?

(A)
$$(-\infty, \infty)$$

(B)
$$(-2,0)$$
 (C) $(2,\infty)$

$$(C)$$
 $(2, \infty)$

(D)
$$(0,2)$$

6.4 स्पर्श रेखाएँ और अभिलंब (Tangents and Normals)

इस अनुच्छेद में हम अवकलन के प्रयोग से किसी वक्र के एक दिए हुए बिंदू पर स्पर्श रेखा और अभिलंब के समीकरण जात करेंगे।

स्मरण कीजिए कि एक दिए हुए बिंदु (x_0, y_0) से जाने वाली तथा परिमित प्रवणता (slope) mवाली रेखा का समीकरण

$$y-y_0=m(x-x_0)$$
 से प्राप्त होता है।

ध्यान दीजिए कि वक्र y = f(x) के बिंदु (x_0, y_0) पर स्पर्श रेखा की

प्रवणता $\frac{dy}{dx}\Big|_{(x_0,y_0)} [=f'(x_0)]$ से दर्शाई जाती है। इसलिए

 (x_0, y_0) पर वक्र y = f(x) की स्पर्श रेखा का समीकरण

$$y - y_0 = f'(x_0)(x - x_0)$$
 होता है।

इसके अतिरिक्त, क्योंकि अभिलंब स्पर्श रेखा पर लंब होता है

इसलिए y = f(x) के (x_0, y_0) पर अभिलंब की प्रवणता $\frac{-1}{f'(x_0)}$ है।

चूँकि $f'(x_0) \neq 0$ है, इसलिए वक्र y = f(x) के बिंदु (x_0, y_0) पर अभिलंब का समीकरण निम्नलिखित है:

$$y - y_0 = \frac{-1}{f'(x_0)} (x - x_0)$$

अर्थात्

$$(y-y_0)f'(x_0) + (x-x_0) = 0$$

ट टिप्पणी यदि y=f(x) की कोई स्पर्श रेखा x-अक्ष की धन दिशा से θ कोण बनाएँ, तब

$$\frac{dy}{dx}$$
 = स्पर्श रेखा की प्रवणता = $\tan \theta$

विशेष स्थितियाँ (Particular cases)

- (i) यदि स्पर्श रेखा की प्रवणता शून्य है, तब $\tan\theta=0$ और इस प्रकार $\theta=0$ जिसका अर्थ है कि स्पर्श रेखा x-अक्ष के समांतर है। इस स्थिति में, (x_0,y_0) पर स्पर्श रेखा का समीकरण $y=y_0$ हो जाता है।
- (ii) यदि $\theta \to \frac{\pi}{2}$, तब $\tan \theta \to \infty$, जिसका अर्थ है कि स्पर्श रेखा x-अक्ष पर लंब है अर्थात् y-अक्ष के समांतर है। इस स्थिति में (x_0, y_0) पर स्पर्श रेखा का समीकरण $x = x_0$ होता है (क्यों?)।

उदाहरण 14 x=2 पर वक्र $y=x^3-x$ की स्पर्श रेखा की प्रवणता ज्ञात कीजिए।

हल दिए वक्र की x = 2 पर स्पर्श रेखा की प्रवणता

$$\frac{dy}{dx}\bigg|_{x=2} = 3x^2 - 1\bigg|_{x=2} = 11 \frac{8}{6}$$

उदाहरण 15 वक्र $y = \sqrt{4x - 3} - 1$ पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता $\frac{2}{3}$ है।

हल दिए गए वक्र के किसी बिंदु (x, y) पर स्पर्श रेखा की प्रवणता

$$\frac{dy}{dx} = \frac{1}{2}(4x-3)^{\frac{-1}{2}} \cdot 4 = \frac{2}{\sqrt{4x-3}}$$

क्योंकि प्रवणता $\frac{2}{3}$ दिया है। इसलिए

 $\frac{2}{\sqrt{4x - 3}} = \frac{2}{3}$ 4x - 3 = 9

या या

अब $y = \sqrt{4x-3} - 1$ है। इसलिए जब x = 3, $y = \sqrt{4(3)-3} - 1 = 2$ है। इसलिए, अभिष्ट बिंदु (3, 2) है।

उदाहरण 16 प्रवणता 2 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र $y + \frac{2}{(x-3)} = 0$ को स्पर्श करती है।

हल दिए वक्र के बिंदु (x,y) पर स्पर्श रेखा की प्रवणता

$$\frac{dy}{dx} = \frac{2}{(x-3)^2} \, \stackrel{\triangle}{\epsilon} \, |$$

क्योंकि प्रवणता 2 दिया गया है इसलिए.

$$\frac{2}{(x-3)^2} = 2$$

या
$$(x-3)^2 = 1$$

या
$$x-3 = \pm 1$$

या
$$x = 2, 4$$

अब x = 2 से y = 2 और x = 4 से y = -2 प्राप्त होता है। इस प्रकार, दिए वक्र की प्रवणता 2 वाली दो स्पर्श रेखाएँ हैं जो क्रमशः बिंदुओं (2,2) और (4,-2) से जाती है। अतः (2,2) से जाने वाली स्पर्श रेखा का समीकरणः

$$y-2=2(x-2) \ \ \dot{\xi}$$
या
$$y-2x+2=0$$
 तथा $(4,-2)$ से जाने वाली स्पर्श रेखा का समीकरण

$$y - (-2) = 2(x - 4)$$

 $y - 2x + 10 = 0$ है।

या

उदाहरण 17 वक्र $\frac{x^2}{4} + \frac{y^2}{25} = 1$ पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ (i) x-अक्ष के समांतर हों (ii) y-अक्ष के समांतर हों।

हल $\frac{x^2}{4} + \frac{y^2}{25} = 1$ का x, के सापेक्ष अवकलन करने पर हम प्राप्त करते हैं:

$$\frac{x}{2} + \frac{2y}{25} \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-25}{4} \frac{x}{y}$$

या

(i) अब, स्पर्श रेखा x-अक्ष के समांतर है यदि उसकी प्रवणता शून्य है, जिससे $\frac{dy}{dx} = 0 \Rightarrow \frac{-25}{4} \frac{x}{y} = 0 \text{ प्राप्त होता है। यह तभी संभव है जब } x = 0 \text{ हो। तब } \frac{x^2}{4} + \frac{y^2}{25} = 1$ से x = 0 पर $y^2 = 25$, अर्थात् $y = \pm 5$ मिलता है। अतः बिंदु (0,5) और (0,-5) ऐसे हैं जहाँ पर स्पर्श रेखाएँ x-अक्ष के समांतर हैं।

(ii) स्पर्श रेखा y-अक्ष के समांतर है यदि इसके अभिलंब की प्रवणता शून्य है जिससे $\frac{4y}{25x} = 0$,

या y=0 मिलता है। इस प्रकार, $\frac{x^2}{4}+\frac{y^2}{25}=1$ से y=0 पर $x=\pm 2$ मिलता है। अतः वे बिंदु (2,0) और (-2,0) हैं, जहाँ पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।

उदाहरण 18 वक्र $y = \frac{x-7}{(x-2)(x-3)}$ के उन बिंदुओं पर स्पर्श रेखाएँ ज्ञात कीजिए जहाँ यह x-अक्ष को काटती है।

हल ध्यान दीजिए कि x-अक्ष पर y=0 होता है। इसिलए जब y=0 तब वक्र के समीकरण से x=7 प्राप्त होता है। इस प्रकार वक्र x-अक्ष को (7,0) पर काटता है। अब वक्र के समीकरण को x के सापेक्ष अवकलन करने पर

$$\frac{dy}{dx} = \frac{1 - y(2x - 5)}{(x - 2)(x - 3)}$$

$$\frac{dy}{dx}\Big|_{x = 0} = \frac{1 - 0}{(5)(4)} = \frac{1}{20} \text{ प्राप्त होता है।}$$

या

इसलिए, स्पर्श रेखा की (7,0) पर प्रवणता $\frac{1}{20}$ है। अतः (7,0) पर स्पर्श रेखा का समीकरण है:

$$y-0=\frac{1}{20}(x-7)$$
 या $20y-x+7=0$ है।

उदाहरण 19 वक्र $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ के बिंदु (1,1) पर स्पर्श रेखा तथा अभिलंब के समीकरण ज्ञात कीजिए। $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ का x, के सापेक्ष अवकलन करने पर,

$$\frac{2}{3}x^{\frac{-1}{3}} + \frac{2}{3}y^{\frac{-1}{3}}\frac{dy}{dx} = 0$$

या

$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$$

इसलिए, (1,1) पर स्पर्श रेखा की प्रवणता $\frac{dy}{dx}\bigg|_{(1,1)}=-1$ है।

इसलिए (1,1) पर स्पर्श रेखा का समीकरण

$$y-1=-1 (x-1)$$
 या $y+x-2=0$ है

तथा (1, 1) पर अभिलंब की प्रवणता

$$\frac{-1}{(1,1) \text{ पर स्पर्शी की प्रवणता}} = 1 \text{ } \frac{}{8}$$
।

इसलिए, (1, 1) पर अभिलंब का समीकरण

$$y - 1 = 1 (x - 1)$$
 या $y - x = 0 \$ है।

उदाहरण 20 दिए गए वक्र

$$x = a \sin^3 t$$
, $y = b \cos^3 t$... (1)

के एक बिंदु, जहाँ $t = \frac{\pi}{2}$ है, पर स्पर्श रेखा का समीकरण ज्ञात कीजिए।

हल (1) का t के सापेक्ष अवकलन करने पर

या
$$\frac{dx}{dt} = 3a\sin^2 t \cos t \qquad \pi = \frac{dy}{dt} = -3b\cos^2 t \sin t$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-3b\cos^2 t \sin t}{3a\sin^2 t \cos t} = \frac{-b}{a} \frac{\cos t}{\sin t}$$

जब

$$t = \frac{\pi}{2} \operatorname{da} \left[\frac{dy}{dx} \right]_{t=\frac{\pi}{2}} = \frac{-b\cos\frac{\pi}{2}}{a\sin\frac{\pi}{2}} = 0$$

और जब $t=\frac{\pi}{2}$, तब x=a तथा y=0 है अतः $t=\frac{\pi}{2}$ पर अर्थात् (a,0) पर दिए गए वक्र की स्पर्श रेखा का समीकरण y-0=0 (x-a) अर्थात् y=0 है।

प्रश्नावली 6.3

- **1.** वक्र $y = 3x^4 4x$ के x = 4 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
- **2.** वक्र $y = \frac{x-1}{x-2}$, $x \neq 2$ के x = 10 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।

- 3. वक्र $y = x^3 x + 1$ की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 2 है।
- **4.** वक्र $y = x^3 3x + 2$ की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 3 है।
- 5. वक्र $x = a\cos^3\theta$, $y = a\sin^3\theta$ के $\theta = \frac{\pi}{4}$ पर अभिलंब की प्रवणता ज्ञात कीजिए।
- **6.** वक्र $x = 1 a\sin\theta$, $y = b\cos^2\theta$ के $\theta = \frac{\pi}{2}$ पर अभिलंब की प्रवणता ज्ञात कीजिए।
- 7. वक्र $y = x^3 3x^2 9x + 7$ पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ x-अक्ष के समांतर है।
- **8.** वक्र $y = (x-2)^2$ पर एक बिंदु ज्ञात कीजिए जिस पर स्पर्श रेखा, बिंदुओं (2, 0) और (4, 4) को मिलाने वाली रेखा के समांतर है।
- **9.** वक्र $y = x^3 11x + 5$ पर उस बिंदु को ज्ञात कीजिए जिस पर स्पर्श रेखा y = x 11 है।
- 10. प्रवणता -1 वाली सभी रेखाओं का समीकरण ज्ञात की जिए जो वक्र $y = \frac{1}{x-1}, x \neq -1$ को स्पर्श करती है।
- 11. प्रवणता 2 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र $y = \frac{1}{x-3}, x \neq 3$ को स्पर्श करती है।
- 12. प्रवणता 0 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र $y = \frac{1}{x^2 2x + 3}$ को स्पर्श करती है।
- **13.** वक्र $\frac{x^2}{9} + \frac{y^2}{16} = 1$ पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ
 - (i) x-अक्ष के समांतर है
- (ii) y-अक्ष के समांतर है
- 14. दिए वक्रों पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
 - (i) $y = x^4 6x^3 + 13x^2 10x + 5$ के (0, 5) पर
 - (ii) $y = x^4 6x^3 + 13x^2 10x + 5 \Rightarrow (1, 3) \text{ TR}$
 - (iii) $y = x^3 के (1, 1)$ पर
 - (iv) $y = x^2$ के (0, 0) पर
 - (v) $x = \cos t$, $y = \sin t$ के $t = \frac{\pi}{4}$ पर

- **15.** वक्र $y = x^2 2x + 7$ की स्पर्श रेखा का समीकरण ज्ञात कीजिए जो
 - (a) रेखा 2x y + 9 = 0 के समांतर है।
 - (b) रेखा 5y 15x = 13 पर लंब है।
- **16.** सिद्ध कीजिए कि वक्र $y = 7x^3 + 11$ के उन बिंदुओं पर स्पर्श रेखाएँ समांतर है जहाँ x = 2 तथा x = -2 है।
- 17. वक्र $y = x^3$ पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के y-निर्देशांक के बराबर है।
- 18. वक्र $y=4x^3-2x^5$, पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ मूल बिंदु से होकर जाती हैं।
- 19. वक्र $x^2 + y^2 2x 3 = 0$ के उन बिंदुओं पर स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जहाँ पर वे x-अक्ष के समांतर हैं।
- **20.** वक्र $ay^2 = x^3$ के बिंदु (am^2, am^3) पर अभिलंब का समीकरण ज्ञात कीजिए।
- **21.** वक्र $y = x^3 + 2x + 6$ के उन अभिलंबों के समीकरण ज्ञात कीजिए जो रेखा x + 14y + 4 = 0 के समांतर है।
- **22.** परवलय $y^2 = 4ax$ के बिंदु $(at^2, 2at)$ पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए।
- 23. सिद्ध कीजिए कि वक्र $x = y^2$ और xy = k एक दूसरे को समकोण* पर काटती है, यदि $8k^2 = 1$ है।
- **24.** अतिपरवलय $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ के बिंदु (x_0, y_0) पर स्पर्श रेखा तथा अभिलंब के समीकरण ज्ञात कीजिए।
- **25.** वक्र $y = \sqrt{3x-2}$ की उन स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा 4x-2y+5=0 के समांतर है।

प्रश्न 26 और 27 में सही उत्तर का चुनाव कीजिए

26. वक्र $y = 2x^2 + 3 \sin x$ के x = 0 पर अभिलंब की प्रवणता है:

(A) 3 (B)
$$\frac{1}{3}$$
 (C) -3 (D) $-\frac{1}{3}$

27. किस बिंदु पर y = x + 1, वक्र $y^2 = 4x$ की स्पर्श रेखा है?

(A)
$$(1,2)$$
 (B) $(2,1)$ (C) $(1,-2)$ (D) $(-1,2)$ $\stackrel{\diamond}{\epsilon}$

6.5 सन्निकटन (Approximation)

इस अनुच्छेद में हम कुछ राशियों के सन्निकट मान को ज्ञात करने के लिए अवकलों का प्रयोग करेंगे।

^{*} दो वक्र परस्पर समकोण पर काटते हैं यदि उनके प्रतिच्छेदन बिंदु पर स्पर्श रेखाएँ परस्पर लंब हों।

मान लीजिए $f\colon D\to \mathbf{R},\,D\subset \mathbf{R},\,$ एक प्रदत्त फलन है और y=f(x) दी गई वक्र है। मान लीजिए x में होने वाली किसी अल्प वृद्धि को प्रतीक Δx से प्रकट करते हैं। स्मरण कीजिए कि x में हुई अल्प वृद्धि Δx के संगत y में हुई वृद्धि को Δy से प्रकट करते है जहाँ $\Delta y=f(x+\Delta x)-f(x)$ है। हम अब निम्नलिखित को परिभाषित करते हैं:

- (i) x के अवकल को dx से प्रकट करते हैं तथा $dx = \Delta x$ से परिभाषित करते है।
- (ii) y के अवकल को dy से प्रकट करते हैं तथा

$$dy = f'(x) \ dx$$
 अथवा $dy = \left(\frac{dy}{dx}\right) \Delta x$ सं
परिभाषित करते हैं।

इस दशा में x की तुलना में $dx = \Delta x$ अपेक्षाकृत छोटा होता है तथा Δy का एक उपयुक्त सन्निकटन dy होता है और इस बात को हम $dy \approx \Delta y$ द्वारा प्रकट $\mathbf{X}' \leftarrow$ करते हैं।

 $\Delta x, \Delta y, \ dx$ और dy के ज्यामितीय व्याख्या के लिए आकृति 6.8 देखिए।

टिप्पणी उपर्युक्त परिचर्चा तथा आकृति को ध्यान में रखते हुए हम देखते हैं कि परतंत्र चर (Dependent variable) का अवकल चर की वृद्धि के समान नहीं है जब कि स्वतंत्र चर (Independent variable) का अवकल चर की वृद्धि के समान है।

उदाहरण 21 $\sqrt{36.6}$ का सन्निकटन करने के लिए अवकल का प्रयोग कीजिए।

हल $y = \sqrt{x}$ लीजिए जहाँ x = 36 और मान लीजिए $\Delta x = 0.6$ है।

বৰ
$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} = \sqrt{36.6} - \sqrt{36} = \sqrt{36.6} - 6$$

$$\sqrt{36.6} = 6 + \Delta y$$

अब Δy सिन्नकटत: dy के बराबर है और निम्नलिखित से प्रदत्त है:

$$dy = \left(\frac{dy}{dx}\right) \Delta x = \frac{1}{2\sqrt{x}}(0.6) \quad (क्योंकि \quad y = \sqrt{x})$$
$$= \frac{1}{2\sqrt{36}} (0.6) = 0.05$$

इस प्रकार, $\sqrt{36.6}$ का सन्निकट मान 6 + 0.05 = 6.05 है।

उदाहरण 22 (25)³ का सन्निकटन करने के लिए अवकल का प्रयोग कीजिए।

मान लीजिए $y=x^{\frac{1}{3}}$ जहाँ x=27 और $\Delta x=-2$ है। हल

तब

$$\Delta y = (x + \Delta x)^{\frac{1}{3}} - x^{\frac{1}{3}}$$
$$= (25)^{\frac{1}{3}} - (27)^{\frac{1}{3}} = (25)^{\frac{1}{3}} - 3$$

$$(25)^{\frac{1}{3}} = 3 + \Delta y$$

या $(25)^{\frac{1}{3}} = 3 + \Delta y$ अब Δy सिन्नकटत: dy के बराबर है और

$$dy = \left(\frac{dy}{dx}\right) \Delta x$$

$$= \frac{1}{3x^{\frac{2}{3}}}(-2) \qquad (क्योंकि $y = x^{\frac{1}{3}})$

$$= \frac{1}{3((27)^{\frac{1}{3}})^2}(-2) = \frac{-2}{27} = -0.074$$$$

इस प्रकार, $(25)^{\frac{1}{3}}$ का सन्निकट मान है:

$$3 + (-0.074) = 2.926$$

उदाहरण 23 f(3.02) का सन्निकट मान ज्ञात कीजिए जहाँ $f(x) = 3x^2 + 5x + 3$ है।

हल मान लीजिए x = 3 और $\Delta x = 0.02$ है।

$$f(3.02) = f(x + \Delta x) = 3(x + \Delta x)^2 + 5(x + \Delta x) + 3$$

ध्यान दीजिए कि $\Delta y = f(x + \Delta x) - f(x)$ है।

इसलिए

$$f(x + \Delta x) = f(x) + \Delta y$$

 $\approx f(x) + f'(x) \Delta x$ (क्योंकि $dx = \Delta x$)
 $\approx (3x^2 + 5x + 3) + (6x + 5) \Delta x$

$$f(3.02) = (3(3)^2 + 5(3) + 3) + (6(3) + 5) (0.02)$$
 (क्योंकि $x=3$, $\Delta x = 0.02$)
= $(27 + 15 + 3) + (18 + 5) (0.02)$
= $45 + 0.46 = 45.46$

अत: f(3.02) का सन्निकट मान 45.46 है।

उदाहरण 24 x मीटर भुजा वाले घन की भुजा में 2% की वृद्धि के कारण से घन के आयतन में सिन्निकट परिवर्तन ज्ञात कीजिए।

हल ध्यान दीजिए कि

$$V = x^3$$

$$dV = \left(\frac{dV}{dx}\right) \Delta x = (3x^2) \Delta x$$

$$= (3x^2) (0.02x) \qquad (क्योंकि x का 2% = .02x)$$

$$= 0.06x^3 \text{ m}^3$$

इस प्रकार, आयतन में सन्निकट परिवर्तन 0.06 x³ m³ है

उदाहरण 25 एक गोले की त्रिज्या 9 cm मापी जाती है जिसमें 0.03 cm की त्रुटि है। इसके आयतन के परिकलन में सन्निकट त्रुटि ज्ञात कीजिए।

हल मान लीजिए कि गोले की त्रिज्या r है और इसके मापन में त्रुटि Δr है। इस प्रकार $r=9~{\rm cm}$ और $\Delta r=0.03~{\rm cm}$ है। अब गोले का आयतन V

$$V = \frac{4}{3}\pi r^3$$
 से प्रदत्त है।
$$\frac{dV}{dr} = 4\pi r^2$$

या

या

 $\frac{dr}{dr}$

इसलिए $dV = \left(\frac{dV}{dr}\right)\Delta r = (4\pi \ r^2)\Delta r$

= $[4\pi(9)^2]$ (0.03) = 9.72 π cm³

अत: आयतन के परिकलन में सन्निकट त्रुटि $9.72\pi~{
m cm}^3$ है।

प्रश्नावली 6.4

 अवकल का प्रयोग करके निम्नलिखित में से प्रत्येक का सिन्नकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:

(i)
$$\sqrt{25.3}$$
 (ii) $\sqrt{49.5}$ (iii) $\sqrt{0.6}$ (iv) $(0.009)^{\frac{1}{3}}$ (v) $(0.999)^{\frac{1}{10}}$ (vi) $(15)^{\frac{1}{4}}$

(vii)
$$(26)^{\frac{1}{3}}$$
 (viii) $(255)^{\frac{1}{4}}$ (ix) $(82)^{\frac{1}{4}}$

(x)
$$(401)^{\frac{1}{4}}$$
 (xi) $(0.0037)^{\frac{1}{2}}$ (xii) $(26.57)^{\frac{1}{3}}$ (xiii) $(81.5)^{\frac{1}{4}}$ (xiv) $(3.968)^{\frac{3}{2}}$ (xv) $(32.15)^{\frac{1}{5}}$

- **2.** f(2.01) का सिन्नकट मान ज्ञात कीजिए जहाँ $f(x) = 4x^2 + 5x + 2$ है।
- **3.** f(5.001) का सिन्नकट मान ज्ञात कीजिए जहाँ $f(x) = x^3 7x^2 + 15$ है।
- 4. xm भुजा वाले घन की भुजा में 1% वृद्धि के कारण घन के आयतन में होने वाला सन्निकट परिवर्तन ज्ञात कीजिए।
- 5. $x \, \mathrm{m}$ भुजा वाले घन की भुजा में 1% हास के कारण घन के पृष्ठ क्षेत्रफल में होने वाले सन्निकट परिवर्तन ज्ञात कीजिए।
- 6. एक गोले की त्रिज्या 7 m मापी जाती है जिसमें 0.02 m की त्रुटि है। इसके आयतन के परिकलन में सन्निकट त्रुटि ज्ञात कीजिए।
- 7. एक गोले की त्रिज्या 9 m मापी जाती है जिसमें 0.03 cm की त्रुटि है। इसके पृष्ठ क्षेत्रफल के परिकलन में सन्निकट त्रुटि ज्ञात कीजिए।
- **8.** $a=\frac{1}{2}$ $a=\frac{1}{2}$
- (B) 57.66 (C) 67.66
- (D) 77.66
- 9. भुजा में 3% वृद्धि के कारण भुजा x के घन के आयतन में सिन्नकट परिवर्तन है:
 - (A) $0.06 x^3 m^3$ (B) $0.6 x^3 m^3$ (C) $0.09 x^3 m^3$ (D) $0.9 x^3 m^3$

6.6 उच्चतम और निम्नतम (Maxima and Minima)

इस अनुच्छेद में, हम विभिन्न फलनों के उच्चतम और निम्नतम मानों की गणना करने में अवकलज की संकल्पना का प्रयोग करेंगे। वास्तव में हम एक फलन के आलेख के वर्तन बिंदुओं (Turning points) को ज्ञात करेंगे और इस प्रकार उन बिंदुओं को ज्ञात करेंगे जिन पर आलेख स्थानीय अधिकतम (या न्यूनतम) पर पहुँचता है। इस प्रकार के बिंदुओं का ज्ञान एक फलन का आलेख खींचने में बहुत उपयोगी होता है। इसके अतिरिक्त हम एक फलन का निरपेक्ष उच्चतम मान (Absolute maximum value) ओर निरपेक्ष न्यूनतम मान (Absolute minimum value) भी ज्ञात करेंगे जो कई अनुप्रयुक्त समस्याओं के हल के लिए आवश्यक हैं।

आइए हम दैनिक जीवन की निम्नलिखित समस्याओं पर विचार करें

(i) संतरों के वृक्षों के एक बाग से होने वाला लाभ फलन $P(x) = ax + bx^2$ द्वारा प्रदत्त है जहाँ a,b अचर हैं और x प्रति एकड़ में संतरे के वृक्षों की संख्या है। प्रति एकड़ कितने वृक्ष अधिकतम लाभ देगें?

- (ii) एक 60 m ऊँचे भवन से हवा में फेंकी गई एक गेंद $h(x) = 60 + x \frac{x^2}{60}$ के द्वारा निर्धारित पथ के अनुदिश चलती है, जहाँ x भवन से गेंद की क्षैतिज दूरी और h(x) उसकी ऊँचाई है। गेंद कितनी अधिकतम ऊँचाई तक पहुँचेगी?
- (iii) शत्रु का एक अपाचे हेलिकॉप्टर वक्र $f(x) = x^2 + 7$ द्वारा प्रदत्त पथ के अनुदिश उड़ रहा है। बिंदु (1,2) पर स्थित एक सैनिक उस हेलिकॉप्टर को गोली मारना चाहता है जब हेलिकॉप्टर उसके निकटतम हो। यह निकटतम दूरी कितनी है? उपर्युक्त समस्याओं में कुछ सर्वसामान्य है अर्थात् हम प्रदत्त फलनों के उच्चतम अथवा निम्नतम मान ज्ञात करना चाहते हैं। इन समस्याओं को सुलझाने के लिए हम विधिवत एक फलन का अधिकतम मान या न्यूनतम मान व स्थानीय उच्चतम व स्थानीय निम्नतम के बिंदुओं और इन बिंदुओं को निर्धारित करने के परीक्षण को परिभाषित करेंगे।

परिभाषा 3 मान लीजिए एक अंतराल I में एक फलन f परिभाषित है, तब

- (a) f का उच्चतम मान I में होता है, यदि I में एक बिंदु c का अस्तित्व इस प्रकार है कि $f(c) \ge f(x)$, $\forall x \in I$
 - संख्या f(c) को I में f का उच्चतम मान कहते हैं और बिंदु c को I में f के उच्चतम मान वाला बिंदु कहा जाता है।
- (b) f का निम्नतम मान I में होता है यदि I में एक बिंदु c का अस्तित्व है इस प्रकार कि $f(c) \le f(x), \ \forall \ x \in I$ संख्या f(c) को I में f का निम्नतम मान कहते हैं और बिंदु c को I में f के निम्नतम मान वाला बिंदु कहा जाता है।
- (c) I + f एक चरम मान (extreme value) रखने वाला फलन कहलाता है यदि I + f एक ऐसे बिंदु f का अस्तित्व इस प्रकार है कि f का उच्चतम मान अथवा निम्नतम मान है। इस स्थिति f के f का चरम मान कहलाता है और बिंदु f एक चरम बिंदु कहलाता है।

टिप्पणी आकृति 6.9 (a), (b) और (c) में हमने कुछ विशिष्ट फलनों के आलेख प्रदर्शित किए हैं जिनसे हमें एक बिंदु पर उच्चतम मान और निम्नतम मान ज्ञात करने में सहायता मिलती है। वास्तव में आलेखों से हम उन फलनों के जो अवकलित नहीं होते हैं। उच्चतम / निम्नतम मान भी ज्ञात कर सकते हैं, (उदाहरण 27)।

उदाहरण 26 $f(x) = x^2, x \in \mathbf{R}$ से प्रदत्त फलन f के उच्चतम और निम्नतम मान, यदि कोई हों तो, ज्ञात कीजिए।

हल दिए गए फलन के आलेख (आकृति 6.10) से हम कह सकते हैं कि f(x) = 0 यदि x = 0 है और

$$f(x) \ge 0$$
, सभी $x \in \mathbf{R}$ के लिए।

इसलिए, f का निम्नतम मान 0 है और f के निम्नतम मान का बिंदु x=0 है। इसके अतिरिक्त आलेख से यह भी देखा जा $\mathbf{X}' \leftarrow$ सकता है कि फलन f का कोई उच्चतम मान नहीं है, अत: \mathbf{R} में f के उच्चतम मान का बिंदु नहीं है।

टिप्पणी यदि हम फलन के प्रांत को केवल [-2, 1] तक सीमित करें तब x = -2 पर f का उच्चतम मान $(-2)^2 = 4$ है।

उदाहरण 27 $f(x) = |x|, x \in \mathbf{R}$ द्वारा प्रदत्त फलन f के उच्चतम और निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए। हल दिए गए फलन के आलेख (आकृति 6.11) से $f(x) \ge 0$, सभी $x \in \mathbf{R}$ और f(x) = 0 यदि x = 0 है। इसलिए, f का निम्नतम मान 0 है और f के निम्नतम मान का बिंदु x = 0 है। और आलेख से यह भी स्पष्ट है \mathbf{R} में f का कोई उच्चतम मान नहीं है। अतः \mathbf{R} में कोई उच्चतम मान का बिंदु नहीं है।

टिप्पणी

- (i) यदि हम फलन के प्रांत को केवल [-2,1] तक सीमित करें, तो f का उच्चतम मान |-2|=2 होगा।
- (ii) उदाहरण 27 में ध्यान दें कि फलन f, x = 0 पर अवकलनीय नहीं है।

उदाहरण 28 $f(x) = x, x \in (0, 1)$ द्वारा प्रदत्त फलन के उच्चतम और निम्नतम मान, यदि कोई हो तो, ज्ञात कीजिए।

हल दिए अंतराल (0,1) में दिया फलन एक निरंतर वर्धमान फलन है। फलन f के आलेख (आकृति 6.12) से ऐसा प्रतीत होता है कि फलन का निम्नतम मान 0 के दायीं ओर के निकटतम बिंदु और उच्चतम मान 1 के बायीं ओर के निकटतम बिंदु पर होना चाहिए। क्या ऐसे बिंदु उपलब्ध हैं? ऐसे बिंदुओं को अंकित करना संभव नहीं है। वास्तव में, यदि

0 का निकटतम बिंदु x_0 हो तो $\frac{x_0}{2} < x_0$ सभी $x_0 \in (0,1)$

के लिए और यदि 1 का निकटतम बिंदु x_1 हो तो सभी $x_1 \in (0,1)$ के लिए $\frac{x_1+1}{2} > x_1$ है।

इसलिए दिए गए फलन का अंतराल (0, 1) में न तो कोई उच्चतम मान है और न ही कोई निम्नतम मान है।

टिप्पणी पाठक देख सकते हैं कि उदाहरण 28 में यदि f के प्रांत में 0 और 1 को सम्मिलित कर लिया जाए अर्थात f के प्रांत को बढ़ाकर [0, 1] कर दिया जाए तो फलन का निम्नतम मान x = 0 पर 0 और उच्चतम मान x = 1 पर 1 है। वास्तव में हम निम्नलिखित परिणाम पाते हैं (इन परिणामों की उपपत्ति इस पुस्तक के क्षेत्र से बाहर है)।

प्रत्येक एकदिष्ट (monotonic) फलन अपने परिभाषित प्रांत के अंत्य बिंदुओं पर उच्चतम र्निम्नतम ग्रहण करता है।

इस परिणाम का अधिक व्यापक रूप यह है कि संवृत्त अंतराल पर प्रत्येक संतत फलन के उच्चतम और निम्नष्ठ मान होते हैं।

टप्पणी किसी अंतराल I में एकदिष्ट फलन से हमारा अभिप्राय है कि I में फलन या तो वर्धमान है या ह्रासमान है।

इस अनुच्छेद में एक संवृत्त अंतराल पर परिभाषित फलन के उच्चतम और निम्नतम मानों के बारे में बाद में विचार करेंगे।

आइए अब आकृति 6.13 में दर्शाए गए किसी फलन के आलेख का अध्ययन करें। देखिए कि फलन का आलेख बिंदुओं A, B, C तथा D पर वर्धमान से ह्रासमान या विलोमत: ह्रासमान से वर्धमान होता है। इन बिंदुओं को फलन के वर्तन बिंदु कहते हैं। पुन: ध्यान दीजिए कि वर्तन बिंदुओं पर आलेख में एक छोटी पहाड़ी या छोटी घाटी बनती है। मोटे तौर पर बिंदुओं A तथा C में से प्रत्येक के सामीप्य (Neighbourhood)में फलन का निम्नतम मान है, जो उनकी अपनी-अपनी घाटियों के अधोभागों

(Bottom) पर है। इसी प्रकार बिंदुओं B तथा D में से प्रत्येक के सामीप्य में फलन का उच्चतम मान है, जो उनकी अपनी-अपनी पहाड़ियों के शीर्षों पर है। इस कारण से बिंदुओं A तथा C को स्थानीय निम्नतम मान (या सापेक्ष निम्नतम मान) का बिंदु तथा B और D को स्थानीय उच्चतम मान (या सापेक्ष उच्चतम मान) के बिंदु समझा जा सकता है। फलन के स्थानीय उच्चतम मान और स्थानीय निम्नतम मानों को क्रमश: फलन का स्थानीय उच्चतम और स्थानीय निम्नतम कहा जाता है।

अब हम औपचारिक रूप से निम्नलिखित परिभाषा देते हैं।

परिभाषा 4 मान लीजिए f एक वास्तविक मानीय फलन है और c फलन f के प्रांत में एक आंतरिक बिंदु है। तब

- (a) c को स्थानीय उच्चतम का बिंदु कहा जाता है यदि एक ऐसा h>0 है कि (c-h,c+h) में सभी x के लिए $f(c)\geq f(x)$ हो। तब f(c), फलन f का स्थानीय उच्चतम मान कहलाता है।
- (b) c को स्थानीय निम्नतम का बिंदु कहा जाता है यदि एक ऐसा h > 0 है कि (c h, c + h) में सभी x के लिए $f(c) \le f(x)$ हो। तब f(c), फलन f का स्थानीय निम्नतम मान कहलाता है।

ज्यामितीय दृष्टिकोण से, उपर्युक्त परिभाषा का अर्थ है कि यदि x=c, फलन f का स्थानीय उच्चतम का बिंदु है, तो c के आसपास का आलेख आकृति 6.14(a) के अनुसार होगा। ध्यान दीजिए कि अंतराल (c-h,c) में फलन f वर्धमान (अर्थात् f'(x)>0) और अंतराल (c,c+h) में फलन हासमान (अर्थात् f'(x)<0) है।

इससे यह निष्कर्ष निकलता है कि f'(c) अवश्य ही शून्य होना चाहिए।

इसी प्रकार, यदि c, फलन f का स्थानीय निम्नतम बिंदु है तो c के आसपास का आलेख आकृति 6.14(b) के अनुसार होगा। यहाँ अंतराल (c-h,c) में f ह्रासमान (अर्थात् f'(x)<0) है और अंतराल (c,c+h) में f वर्धमान (अर्थात, f'(x)>0) है। यह पुन: सुझाव देता है कि f'(c) अवश्य ही शून्य होना चाहिए।

उपर्युक्त परिचर्चा से हमें निम्नलिखित परिभाषा प्राप्त होती है (बिना उपपत्ति)।

प्रमेय 2 मान लीजिए एक विवृत्त अंतराल I में f एक परिभाषित फलन है। मान लीजिए $c \in I$ कोई बिंदु है। यदि f का x = c पर एक स्थानीय उच्चतम या एक स्थानीय निम्नतम का बिंदु है तो f'(c) = 0 है या f बिंदु c पर अवकलनीय नहीं है।

टिप्पणी उपरोक्त प्रमेय का विलोम आवश्यक नहीं है कि सत्य हो जैसे कि एक बिंदु जिस पर अवकलज शून्य हो जाता है तो यह आवश्यक नहीं है कि वह स्थानीय उच्चतम या स्थानीय निम्नतम का बिंदु है। उदाहरणतया यदि $f(x)=x^3$ हो तो $f'(x)=3x^2$ और इसलिए f'(0)=0 है। परन्तु 0 न तो स्थानीय उच्चतम और न ही स्थानीय निम्नतम बिंदु है। आकृति 6.15

िष्पणी फलन f के प्रांत में एक बिंदु c, जिस पर या तो f'(c) = 0 है या f अवकलनीय नहीं है, f का क्रांतिक बिंदु (Critical Point) कहलाता है। ध्यान दीजिए कि यदि f बिंदु c पर संतत है और f'(c) = 0 है तो यहाँ एक ऐसे h > 0 का अस्तित्व है कि अंतराल (c - h, c + h) में f अवकलनीय है।

अब हम केवल प्रथम अवकलजों का प्रयोग करके स्थानीय उच्चतम बिंदु या स्थानीय निम्नतम बिंदुओं को ज्ञात करने की क्रियाविधि प्रस्तुत करेंगे।

प्रमेय 3 (प्रथम अवकलज परीक्षण) मान लीजिए कि एक फलन f किसी विवृत्त अंतराल I पर परिभाषित है। मान लीजिए कि f अंतराल I में स्थित क्रांतिक बिंदु c पर संतत है। तब

- (i) x के बिंदु c से हो कर बढ़ने के साथ–साथ, यिद f'(x) का चिह्न धन से ऋण में परिवर्तित होता है अर्थात् यिद बिंदु c के बायों ओर और उसके पर्याप्त निकट के प्रत्येक बिंदु पर f'(x) > 0 तथा c के दायों ओर और पर्याप्त निकट के प्रत्येक बिंदु पर f'(x) < 0 हो तो c स्थानीय उच्चतम एक बिंदु है।
- (ii) x के बिंदु c से हो कर बढ़ने के साथ-साथ यिद f'(x) का चिह्न ऋण से धन में परिवर्तित होता है, अर्थात् यिद बिंदु c के बायीं ओर और उसके पर्याप्त निकट के प्रत्येक बिंदु पर f'(x) < 0 तथा c के दायीं ओर और उसके पर्याप्त निकट के प्रत्येक बिंदु पर f'(x) > 0 हो तो c स्थानीय निम्नतम बिंदु है।

(iii) x के बिंदु c से हो कर बढ़ने के साथ यदि f'(x) का चिह्न परिवर्तित नहीं होता है, तो c न तो स्थानीय उच्चतम बिंदु है और न स्थानीय निम्नतम बिंदु। वास्तव में, इस प्रकार के बिंदु को नित परिवर्तन बिंदु (Point of Inflection) (आकृति 6.15) कहते हैं।

टिप्पणी यदि c फलन f का एक स्थानीय उच्चतम बिंदु है तो f(c) फलन f का स्थानीय उच्चतम मान है। इसी प्रकार, यदि c फलन f का एक स्थानीय निम्नतम बिंदु है, तो f(c) फलन f का स्थानीय निम्नतम मान है। आकृतियाँ 6.15 और 6.16 प्रमेय 3 की ज्यामितीय व्याख्या करती है।

उदाहरण $29 f(x) = x^3 - 3x + 3$ द्वारा प्रदत्त फलन के लिए स्थानीय उच्चतम और स्थानीय निम्नतम के सभी बिंदुओं को ज्ञात कीजिए।

हल यहाँ
$$f(x) = x^3 - 3x + 3$$
 या
$$f'(x) = 3x^2 - 3 = 3(x - 1)(x + 1)$$
 या
$$f'(x) = 0 \Rightarrow x = 1$$
 और $x = -1$

इस प्रकार, केवल $x=\pm 1$ ही ऐसे क्रांतिक बिंदु हैं जो f के स्थानीय उच्चतम और/या स्थानीय निम्नतम संभावित बिंदु हो सकते हैं। पहले हम x=1 पर परीक्षण करते हैं।

ध्यान दीजिए कि 1 के निकट और 1 के दायीं ओर f'(x)>0 है और 1 के निकट और 1 के बायीं ओर f'(x)<0 है। इसलिए प्रथम अवकलज परीक्षण द्वाराx=1, स्थानीय निम्नतम बिंदु है और स्थानीय निम्नतम मान f(1)=1 है।

x=-1 की दशा में, -1 के निकट और -1 के बायीं ओर f'(x)>0 और -1 के निकट और -1 के दायीं ओर f'(x)<0 है। इसिलए प्रथम अवकलज परीक्षण द्वारा x=-1 स्थानीय उच्चतम का बिंदु है और स्थानीय उच्चतम मान f(-1)=5 है।

<i>x</i> के मान	f'(x) = 3(x-1)(x+1) का चिह्न
1 के निकट र्दायीं ओर (माना 1.1) बायीं ओर (माना 0.9)	>0
_1 के निकट बायीं ओर(माना — 0.9) बायीं ओर(माना — 1.1)	< 0 > 0

उदाहरण 30 $f(x) = 2x^3 - 6x^2 + 6x + 5$ द्वारा प्रदत्त फलन f के स्थानीय उच्चतम और स्थानीय निम्नतम बिंदु ज्ञात कीजिए।

हल यहाँ

$$f(x) = 2x^3 - 6x^2 + 6x + 5$$

या
$$f'(x) = 6x^2 - 12x + 6 = 6(x - 1)^2$$

या
$$f'(x) = 0 \Rightarrow x = 1$$

इस प्रकार केवल x=1 ही f का क्रांतिक बिंदु है। अब हम इस बिंदु पर f के स्थानीय उच्चतम या स्थानीय निम्नतम के लिए परीक्षण करेंगे। देखिए कि सभी $x\in \mathbf{R}$ के लिए $f'(x)\geq 0$ और विशेष रूप से 1 के समीप और 1 के बायीं ओर और दायीं ओर के मानों के लिए f'(x)>0 है। इसलिए प्रथम अवकलज परीक्षण से बिंदु x=1न तो स्थानीय उच्चतम का बिंदु है और न ही स्थानीय निम्नतम का बिंदु है। अत: x=1 एक नित परिवर्तन (inflection) बिंदु है।

टिप्पणी ध्यान दीजिए कि उदाहरण 30 में f'(x) का चिह्न अंतराल \mathbf{R} में कभी भी नहीं बदलता। अत: f के आलेख में कोई भी वर्तन बिंदु नहीं है और इसलिए स्थानीय उच्चतम या स्थानीय निम्नतम का कोई भी बिंदु नहीं है।

अब हम किसी प्रदत्त फलन के स्थानीय उच्चतम और स्थानीय निम्नतम के परीक्षण के लिए एक दूसरी क्रियाविधि प्रस्तुत करेंगे। यह परीक्षण प्रथम अवकलज परीक्षण की तुलना में प्राय: सरल है। प्रमेय 4 मान लीजिए कि ƒ; किसी अंतराल I में परिभाषित एक फलन है तथा c ∈ I है। मान लीजिए

कि f, c पर दो बार लगातार अवकलनीय है। तब

- (i) यदि f'(c) = 0 और f''(c) < 0 तो x = c स्थानीय उच्चतम का एक बिंदु है। इस दशा में f का स्थानीय उच्चतम मान f(c) है।
- (ii) यदि f'(c) = 0 और f''(c) > 0 तो x = c स्थानीय निम्नतम का एक बिंदु है। इस दशा में f का स्थानीय निम्नतम मान f(c) है।
- (iii) यदि f'(c) = 0 और f"(c) = 0 है तो यह परीक्षण असफल हो जाता है।
 इस स्थिति में हम पुन: प्रथम अवकलज परीक्षण पर वापस जाकर यह ज्ञात करते हैं कि c
 उच्चतम, निम्नतम या नित परिवर्तन का बिंदु है।

टिप्पणी बिंदु c पर f दो बार लगातार अवकलनीय है इससे हमारा तात्पर्य कि c पर f के द्वितीय अवकलज का अस्तित्व है।

उदाहरण 31 $f(x)=3+|x|, x\in \mathbf{R}$ द्वारा प्रदत्त फलन f का स्थानीय निम्नतम मान ज्ञात कीजिए। हल ध्यान दीजिए कि दिया गया x=0 पर अवकलनीय नहीं है। इस प्रकार द्वितीय अवकलज परीक्षण असफल हो जाता है। अब हम प्रथम अवकलज परीक्षण करते हैं। नोट कीजिए कि 0 फलन f का एक क्रांतिक बिंदु है। अब 0 के बायों ओर, f(x)=3-x और इसलिए f'(x)=-1<0 है साथ ही 0 के दायों ओर, f(x)=3+x है और इसलिए f'(x)=1>0 है। अतएव, प्रथम अवकलज परीक्षण द्वारा x=0,f का स्थानीय निम्नतम बिंदु है तथा f का स्थानीय न्यूनतम मान f(0)=3 है।

उदाहरण 32 $f(x) = 3x^4 + 4x^3 - 12x^2 + 12$ द्वारा प्रदत्त फलन f के स्थानीय उच्चतम और स्थानीय निम्नतम मान ज्ञात कीजिए।

हल यहाँ

म
$$f(x) = 3x^4 + 4x^3 - 12x^2 + 12$$
 $f'(x) = 12x^3 + 12x^2 - 24x = 12x (x - 1) (x + 2)$
 $f''(x) = 12x^3 + 12x^2 - 24x = 12x (x - 1) (x + 2)$
 $f''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$
 $f'''(x) = 36x^2 + 24x - 24 = 12(3x^2 + 2x - 1)$

इसलिए, द्वितीय अवकलज परीक्षण द्वारा x=0 स्थानीय उच्चतम बिंदु है और f का स्थानीय उच्चतम मान f(0)=12 है। जबिक x=1 और x=-2 स्थानीय निम्नतम बिंदु है और स्थानीय निम्नतम मान f(1)=7 और f(-2)=-20 है।

उदाहरण 33 $f(x) = 2x^3 - 6x^2 + 6x + 5$ द्वारा प्रदत्त फलन f के स्थानीय उच्चतम और स्थानीय निम्नतम के सभी बिंदु ज्ञात कीजिए।

हल यहाँ पर

$$f(x) = 2x^3 - 6x^2 + 6x + 5$$

$$\begin{cases} f'(x) = 6x^2 - 12x + 6 = 6(x - 1)^2 \\ f''(x) = 12(x - 1) \end{cases}$$

अब f'(x) = 0 से x = -1 प्राप्त होता है। तथा f''(1) = 0 है। इसलिए यहाँ द्वितीय अवकलज परीक्षण असफल है। अतः हम प्रथम अवकलज परीक्षण की ओर वापस जाएँगे।

हमने पहले ही (उदाहरण 30) में देखा है कि प्रथम अवकलज परीक्षण की दृष्टि से x=1 न तो स्थानीय उच्चतम का बिंदु है और न ही स्थानीय निम्नतम का बिंदु है अपितु यह नित परिवर्तन का बिंदु है। उदाहरण 34 ऐसी दो धन संख्याएँ ज्ञात कीजिए जिनका योग 15 है और जिनके वर्गों का योग न्यूनतम हो।

हल मान लीजिए पहली संख्या x है तब दूसरी संख्या 15-x है। मान लीजिए इन संख्याओं के वर्गों का योग S(x) से व्यक्त होता है। तब

$$S(x) = x^{2} + (15 - x)^{2} = 2x^{2} - 30x + 225$$

$$\int S'(x) = 4x - 30$$

$$S''(x) = 4$$

या

अब S'(x) = 0 से $x = \frac{15}{2}$ प्राप्त होता है तथा $S''\left(\frac{15}{2}\right) = 4 > 0$ है। इसलिए द्वितीय अवकलज

परीक्षण द्वारा S के स्थानीय निम्नतम का बिंदु $x = \frac{15}{2}$ है। अतः जब संख्याएँ $\frac{15}{2}$ और $15 - \frac{15}{2} = \frac{15}{2}$ हो तो संख्याओं के वर्गों का योग निम्नतम होगा।

टिप्पणी उदाहरण 34 की भाँति यह सिद्ध किया जा सकता है कि ऐसी दो घन संख्याएँ जिनका योग k है और जिनके वर्गों का योग न्यूनतम हो तो ये संख्याएँ $\frac{k}{2}, \frac{k}{2}$ होंगी।

उदाहरण 35 बिंदु (0,c) से परवलय $y=x^2$ की न्यूनतम दूरी ज्ञात कीजिए जहाँ $0 \le c \le 5$ है। हल मान लीजिए परवलय $y=x^2$ पर (h,k) कोई बिंदु है। मान लीजिए (h,k) और (0,c) के बीच दूरी D है। तब

$$D = \sqrt{(h-0)^2 + (k-c)^2} = \sqrt{h^2 + (k-c)^2} \qquad \dots (1)$$

क्योंकि (h, k) परवलय $y = x^2$ पर स्थित है अतः $k = h^2$ है। इसलिए (1) से

$$D \equiv D(k) = \sqrt{k + (k - c)^2}$$

या

$$D'(k) = \frac{1 + 2(k - c)}{\sqrt{k + (k - c)^2}}$$

अब
$$\mathrm{D}'(k) = 0 \ \mathrm{t} \mathrm{i} \ k = \frac{2c-1}{2} \ \mathrm{yr} \mathrm{t} \mathrm{r} \mathrm{i} \mathrm{d} \mathrm{n} \ \mathrm{g}$$

ध्यान दीजिए कि जब $k < \frac{2c-1}{2}$, तब 2(k-c)+1 < 0 , अर्थात् D'(k) < 0 है तथा जब $k > \frac{2c-1}{2}$

तब 2(k-c)+1>0 है अर्थात् D'(k)>0 (इस प्रकार प्रथम अवकलज परीक्षण से $k=\frac{2c-1}{2}$ पर k निम्नतम है। अतः अभीष्ट न्यूनतम दूरी

$$D\left(\frac{2c-1}{2}\right) = \sqrt{\frac{2c-1}{2} + \left(\frac{2c-1}{2} - c\right)^2} = \frac{\sqrt{4c-1}}{2} \stackrel{\triangle}{\epsilon}$$

टिप्पणी पाठक ध्यान दें कि उदाहरण 35 में हमने द्वितीय अवकलज परीक्षण के स्थान पर प्रथम अवकलज परीक्षण का प्रयोग किया है क्योंकि यह सरल एवं छोटा है।

उदाहरण 36 मान लीजिए बिंदु A और B पर क्रमश: AP तथा BQ दो उर्ध्वाधर स्तंभ है। यदि AP=16 m, BQ=22 m और AB=20 m हों तो AB पर एक ऐसा बिंदु R ज्ञात कीजिए ताकि RP^2+RQ^2 निम्नतम हो।

16 m

 $x \rightarrow R$

(20 - x) m

20 m

आकृति 6.18

हल मान लीजिए AB पर एक बिंदु R इस प्रकार है कि AR = x m है। तब RB = (20 - x)m (क्योंकि AB = 20 m) आकृति 6.18 से

$$RP^2 = AR^2 + AP^2$$

और

$$RO^2 = RB^2 + BO^2$$

इसलिए
$$RP^2 + RQ^2 = AR^2 + AP^2 + RB^2 + BQ^2$$

= $x^2 + (16)^2 + (20 - x)^2 + (22)^2$

$$=2x^2-40x+1140$$

मान लीजिए कि

$$S \equiv S(x) = RP^2 + RQ^2 = 2x^2 - 40x + 1140 \$$

अत:
$$S'(x) = 4x - 40$$
 है।

अब S'(x)=0 से x=10 प्राप्त होता है और सभी x के लिए S''(x)=4>0 है और इसलिए S''(10)>0 है। इसलिए द्वितीय अवकलज परीक्षण से x=10, S का स्थानीय निम्नतम का बिंदु है। अत: AB पर R की A से दूरी AR=x=10 m है।

उदाहरण 37 यदि एक समलंब चतुर्भुज के आधार के अतिरिक्त तीनों भुजाओं की लंबायीं 10 cm है तब समलंब चतुर्भुज का अधिकतम क्षेत्रफल ज्ञात कीजिए। हल अभीष्ट समलंब को आकृति 6.19 में दर्शाया गया है। AB पर DP तथा CQ लंब खींचिए। मान लीजिए AP = x cm है। ध्यान दीजिए कि Δ APD $\cong \Delta$ BQC है इसलिए QB = x cm है। और पाइथागोरस प्रमेय से, DP = QC = $\sqrt{100-x^2}$ है। मान लीजिए A^4 समलंब चतुर्भुज का क्षेत्रफल A है।

अत:
$$A \equiv A(x)$$

$$= \frac{1}{2} (समांतर भुजाओं का योग) (ऊँचाई)$$

$$= \frac{1}{2} (2x+10+10) (\sqrt{100-x^2})$$

$$= (x+10) (\sqrt{100-x^2})$$

$$= (x+10) \frac{(-2x)}{\sqrt{100-x^2}} + (\sqrt{100-x^2})$$

$$= \frac{-2x^2 - 10x + 100}{\sqrt{100-x^2}}$$

अब A'(x) = 0 से $2x^2 + 10x - 100 = 0$, जिससे x = 5 और x = -10 प्राप्त होता है। क्योंकि x दूरी को निरूपित करता है इसलिए यह ऋण नहीं हो सकता है। इसलिए x = 5 है। अब

$$A''(x) = \frac{\sqrt{100 - x^2} \left(-4x - 10\right) - \left(-2x^2 - 10x + 100\right) \frac{\left(-2x\right)}{\sqrt[2]{100 - x^2}}}{100 - x^2}$$

$$= \frac{2x^3 - 300x - 1000}{\left(100 - x^2\right)^{\frac{3}{2}}} \left(\text{सरल करने पर} \right)$$

अत:
$$A''(5) = \frac{2(5)^3 - 300(5) - 1000}{(100 - (5)^2)^{\frac{3}{2}}} = \frac{-2250}{75\sqrt{75}} = \frac{-30}{\sqrt{75}} < 0$$

इस प्रकार, x = 5 पर समलंब का क्षेत्रफल अधिकतम है और अधिकतम क्षेत्रफल

A (5) =
$$(5+10)\sqrt{100-(5)^2} = 15\sqrt{75} = 75\sqrt{3} \text{ cm}^2 \frac{1}{6}$$

उदाहरण 38 सिद्ध कीजिए कि एक शंकु के अंतर्गत महत्तम वक्रपृष्ठ वाले लंब वृत्तीय बेलन की त्रिज्या शंकु की त्रिज्या की आधी होती है।

हल मान लीजिए शंकु के आधार की त्रिज्या OC = r और ऊँचाई OA = h है। मान लीजिए कि दिए हुए शंकु के अंतर्गत बेलन के आधार के वृत्त की त्रिज्या OE = x है (आकृति 6.20)। बेलन की ऊँचाई OE के लिए:

 $\frac{QE}{OA} = \frac{EC}{OC}$ (क्योंकि ΔQEC ~ΔAOC) $\frac{QE}{h} = \frac{r-x}{r}$ $QE = \frac{h(r-x)}{r}$

मान लीजिए बेलन का वक्रपृष्ठ S है। तब

$$S = S(x) = \frac{2\pi x h(r-x)}{r} = \frac{2\pi h}{r} (rx - x^2)$$

$$\begin{cases} S'(x) = \frac{2\pi h}{r} (r - 2x) \\ S''(x) = \frac{-4\pi h}{r} \end{cases}$$

या

या

या

अब S'(x)=0 से $x=\frac{r}{2}$ प्राप्त होता है। क्योंकि सभी x के लिए S''(x)<0 है। अतः

 $S'\left(\frac{r}{2}\right) < 0$ है। इसलिए $x = \frac{r}{2}$, S का उच्चतम बिंदु है। अतः दिए शंकु के अंतर्गत महत्तम वक्र पृष्ठ के बेलन की त्रिज्या शंकु की त्रिज्या की आधी होती है।

6.6.1 एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान (Maximum and Minimum Values of a Function in a Closed Interval)

मान लीजिए $f(x) = x + 2, x \in (0, 1)$ द्वारा प्रदत्त एक प्रलन f है।

ध्यान दीजिए कि (0,1) पर फलन संतत है और इस अंतराल में न तो इसका कोई उच्चतम मान है और न ही इसका कोई निम्नतम मान है।

तथापि, यदि हम f के प्रांत को संवृत्त अंतराल [0,1] तक बढ़ा दें तब भी f का शायद कोई स्थानीय उच्चतम (निम्नतम) मान नहीं होगा परंतु इसका निश्चित ही उच्चतम मान 3 = f(1) और

निम्नतम मान 2 = f(0) हैं। x = 1 पर f का उच्चतम मान 3, [0, 1] पर f का निरपेक्ष उच्चतम मान (महत्तम मान) (absolute maximum value) या सार्वित्रिक अधिकतम मान (global maximum or greatest value) कहलाता है। इसी प्रकार, x = 0 पर f का निम्नतम मान 2, [0, 1] पर f का निरपेक्ष निम्नतम मान (न्यूनतम मान) (absolute minimum value) या सार्वित्रक न्यूनतम मान (global minimum or least value) कहलाता है।

एक संवृत्त अंतराल [a,b] पर परिभाषित किसी संतत फलन f के संगत आकृति 6.21 में प्रदर्शित आलेख पर विचार कीजिए कि x=b पर फलन f का स्थानीय निम्नतम है तथा स्थानीय निम्नतम मान f(b) है। फलन का x=c पर स्थानीय उच्चतम बिंदू है तथा स्थानीय उच्चतम मान f(c) है।

साथ ही आलेख से यह भी स्पष्ट है कि f का निरपेक्ष उच्चतम मान f(a) तथा निरपेक्ष निम्नतम मान f(d) है। इसके अतिरिक्त ध्यान दीजिए कि f का निरपेक्ष उच्चतम (निम्नतम) मान स्थानीय उच्चतम (निम्नतम) मान से भिन्न है।

अब हम एक संवृत्त अंतराल I में एक फलन के निरपेक्ष उच्चतम और निरपेक्ष निम्नतम के विषय में दो परिणामों (बिना उपपत्ति) के कथन बताएँगे।

प्रमेय 5 मान लीजिए एक अंतराल I = [a, b] पर f एक संतत फलन है। तब f का निरपेक्ष उच्चतम मान होता है और I में कम से कम एक बार f यह मान प्राप्त करता है तथा f का निरपेक्ष निम्नतम मान होता है और I में कम से कम एक बार f यह मान प्राप्त करता है।

प्रमेय 6 मान लीजिए संवृत्त अंतराल I पर f एक अवकलनीय फलन है और मान लीजिए कि I का कोई आंतरिक बिंदु c है। तब

- (i) यदि c पर f निरपेक्ष उच्चतम मान प्राप्त करता है, तो f'(c)=0
- (ii) यदि c पर f निरपेक्ष निम्नतम मान प्राप्त करता है, तो f'(c) = 0

उपर्युक्त प्रमेयों के विचार से, दिए गए संवृत्त अंतराल में किसी फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात करने के लिए विधि निम्नलिखित हैं।

व्यावहारिक विधि (Working Rule)

चरण 1: दिए गए अंतराल में f के सभी क्रांतिक बिंदु ज्ञात कीजिए अर्थात् x के वह सभी मान ज्ञात कीजिए जहाँ या तो f'(x) = 0 या f अवकलनीय नहीं है।

चरण 2: अंतराल के अंत्य बिंदु लीजिए।

चरण 3: इन सभी बिंदुओं पर (चरण 1 व 2 में सूचीबद्ध) f के मानों की गणना कीजिए।

चरण 4: चरण 3 में गणना से प्राप्त f के मानों में से उच्चतम और निम्नतम मानों को लीजिए। यही उच्चतम मान, f का निरपेक्ष उच्चतम मान और निम्नतम मान, f का निरपेक्ष निम्नतम मान होंगे।

उदाहरण 39 अंतराल [1,5] में $f(x) = 2x^3 - 15x^2 + 36x + 1$ द्वारा प्रदत्त फलन के निरपेक्ष उच्चतम और निरपेक्ष निम्नतम मानों को ज्ञात कीजिए।

हल हमें ज्ञात है

$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

$$f'(x) = 6x^2 - 30x + 36 = 6(x - 3)(x - 2)$$

या

ध्यान दीजिए f'(x) = 0 से x = 2 और x = 3 प्राप्त होते हैं।

अब हम इन बिंदुओं और अंतराल [1, 5] के अंत्य बिंदुओं अर्थात् x = 1, x = 2, x = 3 और x = 5 पर f के मान का परिकलन करेंगे। अब:

$$f(1) = 2(1^{3}) - 15(1^{2}) + 36(1) + 1 = 24$$

$$f(2) = 2(2^{3}) - 15(2^{2}) + 36(2) + 1 = 29$$

$$f(3) = 2(3^{3}) - 15(3^{2}) + 36(3) + 1 = 28$$

$$f(5) = 2(5^{3}) - 15(5^{2}) + 36(5) + 1 = 56$$

इस प्रकार, हम इस निष्कर्ष पर पहुँचते हैं कि अंतराल [1,5] पर फलन f के लिए x=5 पर निरपेक्ष उच्चतम मान 56 और x=1 पर निरपेक्ष निम्नतम मान 24 है।

उदाहरण 40 $f(x) = 12x^{\frac{4}{3}} - 6x^{\frac{1}{3}}, x \in [-1, 1]$ द्वारा प्रदत्त एक फलन f के निरपेक्ष उच्चतम और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

हल हमें ज्ञात है कि

$$f(x) = 12x^{\frac{4}{3}} - 6x^{\frac{1}{3}}$$
$$f'(x) = 16x^{\frac{1}{3}} - \frac{2}{x^{\frac{2}{3}}} = \frac{2(8x-1)}{x^{\frac{2}{3}}}$$

या

इस प्रकार f'(x)=0 से $x=\frac{1}{8}$ प्राप्त होता है। और ध्यान दीजिए कि x=0 पर f'(x) परिभाषित नहीं है। इसलिए क्रांतिक बिंदु x=0 और $x=\frac{1}{8}$ हैं। अब क्रांतिक बिंदुओं $x=0,\frac{1}{8}$ और अंतराल के अंत्य बिंदुओं x=-1 व x=1 पर फलन f के मान का परिकलन करने से

$$f(-1) = 12(-1^{\frac{4}{3}}) - 6(-1^{\frac{1}{3}}) = 18$$

$$f(0) = 12(0) - 6(0) = 0$$

$$f(\frac{1}{8}) = 12(\frac{1}{8})^{\frac{4}{3}} - 6(\frac{1}{8})^{\frac{1}{3}} = \frac{-9}{4}$$

$$f(1) = 12(1^{\frac{4}{3}}) - 6(1^{\frac{1}{3}}) = 6$$

प्राप्त होते हैं। इस प्रकार हम इस निष्कर्ष पर पहुँचते है कि x=-1 पर f का निरपेक्ष उच्चतम

मान 18 है और $x = \frac{1}{8}$ पर f का निरपेक्ष निम्नतम मान $\frac{-9}{4}$ है।

उदाहरण 41 शत्रु का एक अपाचे हेलिकॉप्टर वक्र $y = x^2 + 7$ के अनुदिश प्रदत्त पथ पर उड़ रहा है। बिंदु (3,7) पर स्थित एक सैनिक अपनी स्थिति से न्यूनतम दूरी पर उस हेलिकॉप्टर को गोली मारना चाहता है। न्यूनतम दूरी ज्ञात कीजिए।

हल x के प्रत्येक मान के लिए हेलिकॉप्टर की स्थिति बिंदु (x,x^2+7) है। इसलिए (3,7) पर स्थित सैनिक और हेलिकॉप्टर के बीच दूरी $\sqrt{(x-3)^2+(x^2+7-7)^2}$, अर्थात् $\sqrt{(x-3)^2+x^4}$ है।

मान लीजिए कि

$$f(x) = (x - 3)^2 + x^4$$

या

$$f'(x) = 2(x-3) + 4x^3 = 2(x-1)(2x^2 + 2x + 3)$$

इसलिए f'(x) = 0 से x = 1 प्राप्त होता है तथा $2x^2 + 2x + 3 = 0$ से कोई वास्तविक मूल प्राप्त नहीं होता है। पुन: अंतराल के अंत्य बिंदु भी नहीं है, जिन्हें उस समुच्चय में जोड़ा जाए जिनके लिए f' का मान शून्य है अर्थात् केवल एक बिंदु, नामत: x = 1 ही ऐसा है। इस बिंदु पर f का मान $f(1) = (1-3)^2 + (1)^4 = 5$ से प्रदत्त है। इस प्रकार, सैनिक एवं हेलिकॉप्टर के बीच की दूरी $\sqrt{f(1)} = \sqrt{5}$ है।

ध्यान दीजिए कि $\sqrt{5}$ या तो उच्चतम मान या निम्नतम मान है। क्योंकि

$$\sqrt{f(0)} = \sqrt{(0-3)^2 + (0)^4} = 3 > \sqrt{5} \, \stackrel{\$}{\text{El}}$$

इससे यह निष्कर्ष निकला कि $\sqrt{f(x)}$ का निम्नतम मान $\sqrt{5}$ है। अतः सैनिक और हेलिकॉप्टर के बीच की निम्नतम दूरी $\sqrt{5}$ है।

प्रश्नावली 6.5

- 1. निम्नलिखित दिए गए फलनों के उच्चतम या निम्नतम मान, यदि कोई तो, ज्ञात कीजिए:

(i)
$$f(x) = (2x - 1)^2 + 3$$
 (ii) $f(x) = 9x^2 + 12x + 2$

(iii)
$$f(x) = -(x-1)^2 + 10$$
 (iv) $g(x) = x^3 + 1$

(iv)
$$g(x) = x^3 + 1$$

2. निम्नलिखित दिए गए फलनों के उच्चतम या निम्नतम मान, यदि कोई हों, तो ज्ञात कीजिए:

(i)
$$f(x) = |x + 2| - 1$$

(ii)
$$g(x) = -|x+1| + 3$$

(iii)
$$h(x) = \sin(2x) + 5$$
 (iv) $f(x) = |\sin 4x + 3|$

(iv)
$$f(x) = |\sin 4x + 3|$$

(v)
$$h(x) = x + 1, x \in (-1, 1)$$

3. निम्नलिखित फलनों के स्थानीय उच्चतम या निम्नतम, यदि कोई हों तो, ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम मान, जैसी स्थिति हो, भी ज्ञात कीजिए।

(i)
$$f(x) = x^2$$

(ii)
$$g(x) = x^3 - 3x$$

(iii)
$$h(x) = \sin x + \cos x, 0 < x < \frac{\pi}{2}$$

(iv)
$$f(x) = \sin x - \cos x$$
, $0 < x < 2\pi$

(v)
$$f(x) = x^3 - 6x^2 + 9x + 15$$
 (vi) $g(x) = \frac{x}{2} + \frac{2}{x}$, $x > 0$

(vi)
$$g(x) = \frac{x}{2} + \frac{2}{x}$$
, $x > 0$

(vii)
$$g(x) = \frac{1}{x^2 + 2}$$

(vii)
$$g(x) = \frac{1}{x^2 + 2}$$
 (viii) $f(x) = x\sqrt{1 - x}, \ 0 < x < 1$

4. सिद्ध कीजिए कि निम्नलिखित फलनों का उच्चतम या निम्नतम मान नहीं है:

(i)
$$f(x) = e^x$$

(ii)
$$g(x) = \log x$$

(iii)
$$h(x) = x^3 + x^2 + x + 1$$

प्रदत्त अंतरालों में निम्नलिखित फलनों के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।

(i)
$$f(x) = x^3, x \in [-2, 2]$$

(i)
$$f(x) = x^3, x \in [-2, 2]$$
 (ii) $f(x) = \sin x + \cos x, x \in [0, \pi]$

(iii)
$$f(x) = 4x - \frac{1}{2}x^2$$
, $x \in \left[-2, \frac{9}{2} \right]$ (iv) $f(x) = (x - 1)^2 + 3$, $x \in [-3, 1]$

- **6.** यदि लाभ फलन $p(x) = 41 72x 18x^2$ से प्रदत्त है तो किसी कंपनी द्वारा अर्जित उच्चतम लाभ ज्ञात कीजिए।
- 7. अंतराल [0,3] पर $3x^4 8x^3 + 12x^2 48x + 25$ के उच्चतम मान ओर निम्नतम मान ज्ञात कीजिए।
- **8.** अंतराल $[0, 2\pi]$ के किन बिंदुओं पर फलन $\sin 2x$ अपना उच्चतम मान प्राप्त करता है?
- 9. फलन $\sin x + \cos x$ का उच्चतम मान क्या है?

- **10.** अंतराल [1,3] में $2x^3 24x + 107$ का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3,-1] में भी महत्तम मान ज्ञात कीजिए।
- 11. यदि दिया है कि अंतराल [0,2] में x=1 पर फलन x^4-62x^2+ax+9 उच्चतम मान प्राप्त करता है, तो a का मान ज्ञात कीजिए।
- **12.** $[0, 2\pi]$ पर $x + \sin 2x$ का उच्चतम और निम्नतम मान ज्ञात कीजिए।
- 13. ऐसी दो संख्याएँ ज्ञात कीजिए जिनका योग 24 है और जिनका गुणनफल उच्चतम हो।
- 14. ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए ताकि x+y=60 और xy^3 उच्चतम हो।
- 15. ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए जिनका योग 35 हो और गुणनफल $x^2 y^5$ उच्चतम हो।
- ऐसी दो धन संख्याएँ ज्ञात कीजिए जिनका योग 16 हो और जिनके घनों का योग निम्नतम हो।
- 17. 18 cm भुजा के टिन के किसी वर्गाकार टुकड़े से प्रत्येक कोने पर एक वर्ग काटकर तथा इस प्रकार बनें टिन के फलकों को मोड़ कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम हो?
- 18. 45 cm × 24 cm की टिन की आयताकार चादर के कोनों पर वर्ग काटकर तथा इस प्रकार बनें टिन के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम हो।
- 19. सिद्ध किजिए कि एक दिए वृत्त के अंतर्गत सभी आयतों में वर्ग का क्षेत्रफल उच्चतम होता है।
- 20. सिद्ध किजिए कि प्रदत्त पृष्ठ एवं महत्तम आयतन के बेलन की ऊँचाई, आधार के व्यास के बराबर होती है।
- 100 cm³ आयतन वाले डिब्बे सभी बंद बेलनाकार (लंब वृत्तीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात किजिए।
- 22. एक 28 cm लंबे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे वे वृत्त बनाया जाना है। दोनों टुकड़ों की लंबायीं कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का सम्मिलित क्षेत्रफल न्यूनतम हो?
- 23. सिद्ध कीजिए कि R त्रिज्या के गोले के अंतर्गत विशालतम शंकु का आयतन, गोले के आयतन का $\frac{8}{27}$ होता है।
- 24. सिद्ध कीजिए कि न्यूनतम पृष्ठ का दिए आयतन के लंब वृत्तीय शंकु की ऊँचाई, आधार की त्रिज्या की 7 गुनी होती है।
- 25. सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्ध शीर्ष कोण $\tan^{-1}\sqrt{2}$ होता है।

26. सिद्ध कीजिए कि दिए हुए पृष्ठ और महत्तम आयतन वाले लंब वृत्तीय शंकु का अर्ध शीर्ष कोण $\sin^{-1}\left(\frac{1}{3}\right)$ होता है।

प्रश्न संख्या 27 से 29 में सही उत्तर का चुनाव कीजिए।

- **27.** $aga x^2 = 2y$ पर (0, 5) से न्यूनतम दूरी पर स्थित बिंदु है:

 - (A) $(2\sqrt{2},4)$ (B) $(2\sqrt{2},0)$ (C) (0,0)
- **28.** x, के सभी वास्तविक मानों के लिए $\frac{1-x+x^2}{1+x+x^2}$ का न्यूनतम मान है:

- (A) 0 (B) 1 (C) 3

 29. $[x(x-1)+1]^{\frac{1}{3}}$, $0 \le x \le 1$ का उच्चतम मान है:
 - (A) $\left(\frac{1}{3}\right)^{\frac{1}{3}}$ (B) $\frac{1}{2}$ (C) 1

उदाहरण 42 एक कार समय t=0 पर बिंदु P से चलना प्रारंभ करके बिंदु Q पर रुक जाती है। कार द्वारा t सेकंड में तय की दूरी, x मीटर में

$$x = t^2 \left(2 - \frac{t}{3}\right)$$
 द्वारा प्रदत्त है।

कार को Q तक पहुँचने में लगा समय ज्ञात कीजिए और P तथा Q के बीच की दूरी भी ज्ञात कीजिए। हल मान लीजिए t सेकंड में कार का वेग v है।

अब

$$x = t^2 \left(2 - \frac{t}{3} \right)$$

या

$$v = \frac{dx}{dt} = 4t - t^2 = t(4 - t)$$

इस प्रकार

v=0 से t=0 या t=4 प्राप्त होते हैं।

अब P और Q पर कार का वेग v=0 है। इसलिए Q पर कार 4 सेकंडों में पहुँचेगी। अब 4 सेकंडों में कार द्वारा तय की गई दूरी निम्नलिखित है:

$$x$$
_{t=4} = $4^2 \left(2 - \frac{4}{3}\right) = 16 \left(\frac{2}{3}\right) = \frac{32}{3}$ m

उदाहरण 43 पानी की एक टंकी का आकार, उर्ध्वाधर अक्ष वाले एक उल्टे लंब वृत्तीय शंकु है जिसका शीर्ष नीचे है। इसका अर्द्ध शीर्ष कोण $\tan^{-1}(0.5)$ है। इसमें $5 \text{ m}^3/\text{min}$ की दर से पानी भरा जाता है।

पानी के स्तर के बढ़ने की दर उस क्षण ज्ञात कीजिए जब टंकी में पानी की ऊँचाई 10 m है।

हल मान लीजिए कि r,h और lpha आकृति 6.22 के अनुसार है। तब

$$\tan \alpha = \frac{r}{h}$$
 है।

$$\alpha = \tan^{-1}\left(\frac{r}{h}\right) = \tan^{-1}(0.5) \quad (\text{$(\vec{x}$ at \vec{x})})$$

$$\frac{r}{h} = 0.5$$
 या $r = \frac{h}{2}$

मान लीजिए शंकु का आयतन V है। तब

आकृति 6.22

$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{\pi h^3}{12}$$

अत:

$$rac{dV}{dt} = rac{d}{dh} \left(rac{\pi h^3}{12}
ight) \cdot rac{dh}{dt}$$
 (शृंखला नियम द्वारा)
$$= rac{\pi}{4} h^2 rac{dh}{dt}$$

अब आयतन के परिवर्तन की दर अर्थात् $\frac{dV}{dt} = 5 \text{ cm}^3/\text{min}$ और h = 4 m है।

इसलिए

$$5 = \frac{\pi}{4} (4)^2 \cdot \frac{dh}{dt}$$

या

$$\frac{dh}{dt} = \frac{5}{4\pi} = \frac{35}{88} \text{ m/min} \left(\pi = \frac{22}{7}\right)$$

अतः पानी के स्तर के उठने की दर $\frac{35}{88}$ m/min है।

उदाहरण 44 2 m ऊँचाई का आदमी 6 m ऊँचे बिजली के खंभे से दूर 5 km/h की समान चाल से चलता है। उसकी छाया की लंबायीं की वृद्धि दर ज्ञात कीजिए।

हल आकृति 6.23 में, मान लीजिए, AB एक बिजली का खंभा है। B बिंदु पर बल्ब है और मान लीजिए कि एक विशेष समय t पर आदमी MN है। मान लीजिए AM = l m और व्यक्ति की छाया MS है। और मान लीजिए MS = s m है।

ध्यान दीजिए कि $\Delta ASB \sim \Delta MSN$

या
$$\frac{MS}{AS} = \frac{MN}{AB}$$

या AS = 3s

[(क्योंकि MN = 2 m और AB = 6 m (दिया है)]

इस प्रकार
$$AM = 3s - s = 2s$$
 है। परन्तु $AM = l$ मीटर है।

इसलिए
$$l = 2s$$

अत:
$$\frac{dl}{dt} = 2\frac{ds}{dt}$$

क्योंकि $\frac{dl}{dt} = 5 \text{ km/h}$ है। अतः छाया की लंबायीं में वृद्धि $\frac{5}{2} \text{ km/h}$ की दर से होती है।

उदाहरण 45 वक्र $x^2 = 4y$ के किसी बिंदु पर अभिलंब का समीकरण ज्ञात कीजिए जो बिंदु (1, 2) से होकर जाता है।

हल $x^2 = 4y$ का, x के सापेक्ष अवकलन करने पर:

$$\frac{dy}{dx} = \frac{x}{2}$$

मान लीजिए वक्र $x^2 = 4y$ के अभिलंब के संपर्क बिंदु के निर्देशांक (h,k) हैं। अब (h,k) पर स्पर्श रेखा की प्रवणता

$$\left.\frac{dy}{dx}\right]_{(h,\,k)} = \frac{h}{2}$$

$$\Rightarrow$$
 (h, k) पर अभिलंब की प्रवणता $= \frac{-2}{h}$ है।

इसलिए (h, k) पर अभिलंब का समीकरण है

$$y - k = \frac{-2}{h}(x - h)$$
 ... (1)

परंतु यह बिंदु (1, 2) से गुजरता है। हम पाते हैं कि

$$2-k = \frac{-2}{h}(1-h)$$
 या $k = 2 + \frac{2}{h}(1-h)$... (2)

क्योंकि (h, k) वक्र $x^2 = 4y$ पर स्थित है। इसलिए

$$h^2 = 4k \qquad \dots (3)$$

अब (2) व (3), से h=2 और k=1 प्राप्त होता है। h और kके इन मानों को (1) में रखने पर अभिलंब का अभीष्ट समीकरण निम्निलिखित प्राप्त होता है।

$$y-1=\frac{-2}{2}(x-2)$$
 या $x+y=3$

उदाहरण 46 वक्र $y = \cos(x+y), -2\pi \le x \le 2\pi$ की स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा x+2y=0 के समांतर है

हल $y = \cos(x + y)$ का x, के सापेक्ष अवकलन करने पर,

$$\frac{dy}{dx} = \frac{-\sin(x+y)}{1+\sin(x+y)}$$

या (x,y) पर स्पर्श रेखा की प्रवणता = $\frac{-\sin(x+y)}{1+\sin(x+y)}$

चूँकि दिए गए वक्र की स्पर्श रेखा x + 2y = 0 के समांतर है जिसकी प्रवणता $\frac{-1}{2}$ है। अतः

या
$$\frac{-\sin(x+y)}{1+\sin(x+y)} = \frac{-1}{2}$$
या
$$\sin(x+y) = 1$$

$$x+y = n\pi + (-1)^n \frac{\pi}{2}, n \in \mathbb{Z},$$
तब
$$y = \cos(x+y) = \cos\left(n\pi + (-1)^n \frac{\pi}{2}\right), n \in \mathbb{Z},$$

$$= 0 सभी n \in \mathbb{Z}$$
 के लिए

पुन: क्योंकि $-2\pi \le x \le 2\pi$, इसलिए $x=-\frac{3\pi}{2}$ और $x=\frac{\pi}{2}$ है। अत: दिए गए वक्र के केवल बिंदुओं $\left(-\frac{3\pi}{2},0\right)$ और $\left(\frac{\pi}{2},0\right)$ पर स्पर्श रेखाएँ, रेखा x+2y=0 के समांतर हैं। इसलिए अभीष्ट स्पर्श रेखाओं के समीकरण

$$y-0 = \frac{-1}{2} \left(x + \frac{3\pi}{2} \right)$$
 या $2x + 4y + 3\pi = 0$
 $y-0 = \frac{-1}{2} \left(x - \frac{\pi}{2} \right)$ या $2x + 4y - \pi = 0$ है।

और

उदाहरण 47 उन अंतरालों को ज्ञात कीजिए जिनमें फलन

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

(a) निरंतर वर्धमान (b) निरंतर ह्रासमान है।

हल हमें ज्ञात है कि

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

$$f'(x) = \frac{3}{10}(4x^3) - \frac{4}{5}(3x^2) - 3(2x) + \frac{36}{5}$$

$$= \frac{6}{5}(x-1)(x+2)(x-3)$$
 (सरल करने पर)

या

अब f'(x) = 0 से x = 1, x = -2, और x = 3 प्राप्त होते हैं। x = 1, -2, और 3 वास्तविक रेखा को चार असंयुक्त अंतरालों नामत: $(-\infty, -2), (-2, 1), (1, 3)$ और $(3, \infty)$ में विभक्त करता है। (आकृति 6.24)

-2 -1 0 1 2 3 आकृति 6.24

अंतराल $(-\infty, -2)$ को लीजिए अर्थात् जब $-\infty < x < -2$ है।

इस स्थिति में हम x-1 < 0, x+2 < 0 और x-3 < 0 प्राप्त करते हैं।

(विशेष रूप से x = -3 के लिए देखिए कि, f'(x) = (x - 1)(x + 2)(x - 3)

$$= (-4)(-1)(-6) < 0)$$
 इसलिए, जब $-\infty < x < -2$ है, तब $f'(x) < 0$ है।

अतः $(-\infty, -2)$ में फलन f निरंतर ह्रासमान है।

अंतराल (-2, 1), को लीजिए अर्थात् जब -2 < x < 1 है।

इस दशा में x-1 < 0, x+2 > 0 और x-3 < 0 है।

(विशेष रूप से x=0, के लिए ध्यान दीजिए कि, f'(x)=(x-1)(x+2)(x-3)=(-1) (2) (-3)=6>0)

इसलिए जब -2 < x < 1 है, तब f'(x) > 0 है।

अत: (-2, 1) में फलन f निरंतर वर्धमान है।

अब अंतराल (1,3) को लीजिए अर्थात् जब 1 < x < 3 है। इस दशा में कि x-1 > 0, x+2 > 0 और x-3 < 0 है।

इसलिए, जब 1 < x < 3 है, तब f'(x) < 0 है।

अत: (1,3) में फलन f निरंतर ह्रासमान है। अंत में अंतराल $(3,\infty)$, को लीजिए अर्थात् जब $3 < x < \infty$ है। इस दशा में x-1>0, x+2>0 और x-3>0 है। इसलिए जब x>3 है तो f'(x)>0 है।

अत: अंतराल $(3, \infty)$ में फलन f निरंतर वर्धमान है।

उदाहरण 48 सिद्ध कीजिए कि $f(x) = \tan^{-1}(\sin x + \cos x), x > 0$ से प्रदत्त फलन $f(0, \frac{\pi}{4})$ में

निरंतर वर्धमान फलन है।

हल यहाँ

$$f(x) = \tan^{-1}(\sin x + \cos x), x > 0$$

या

$$f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} (\cos x - \sin x)$$
$$= \frac{\cos x - \sin x}{2 + \sin 2x}$$
(सरल करने पर)

ध्यान दीजिए कि $\left(0,\frac{\pi}{4}\right)$ में सभी x के लिए $2+\sin 2x>0$ है।

इसलिए f'(x) > 0 यदि $\cos x - \sin x > 0$

या f'(x) > 0 यदि $\cos x > \sin x$ या $\cot x > 1$

अब $\cot x > 1$ यदि $\tan x < 1$, अर्थात्, यदि $0 < x < \frac{\pi}{4}$

इसलिए अंतराल $\left(0,\frac{\pi}{4}\right)$ में f'(x) > 0 है।

अतः $\left(0,\frac{\pi}{4}\right)$ में f एक निरंतर वर्धमान फलन है।

उदाहरण 49 3 cm त्रिज्या की एक वृत्ताकार डिस्क को गर्म किया जाता है। प्रसार के कारण इसकी त्रिज्या 0.05 cm/s की दर से बढ़ रही है। वह दर ज्ञात कीजिए जिससे इसका क्षेत्रफल बढ़ रहा है जब इसकी त्रिज्या 3.2 cm है।

हल मान लीजिए कि दी गई तश्तरी की त्रिज्या r और इसका क्षेत्रफल A है।

तब
$$A=\pi \ r^2$$
 या
$$\frac{dA}{dt}=2\pi r\frac{dr}{dt} \qquad \qquad (शृंखला नियम द्वारा)$$

अब त्रिज्या की वृद्धि की सिन्निकट दर = $dr = \frac{dr}{dt} \Delta t = 0.05 \, \mathrm{cm/s} \, \mathrm{\ref{k}}$ । इसिलिए क्षेत्रफल में वृद्धि की सिन्निकट दर निम्नांकित है

$$dA = \frac{dA}{dt}(\Delta t)$$

$$= 2\pi r \left(\frac{dr}{dt}\Delta t\right) = 2\pi r (dr)$$

$$= 2\pi (3.2) (0.05) \qquad (r = 3.2 \text{ cm})$$

$$= 0.320\pi \text{ cm}^2/\text{s}$$

उदाहरण 50 ऐल्यूमिनियम की $3 \text{ m} \times 8 \text{ m}$ की आयताकार चादर के प्रत्येक कोने से समान वर्ग काटने पर बने एल्यूमिनियम के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। इस प्रकार बने संदूक का अधिकतम आयतन ज्ञात कीजिए।

हल मान लीजिए कि अलग किए गए वर्ग की भुजा की लंबायीं x m है, तब बाक्स की ऊँचाई x, लंबायीं 8-2x और चौड़ाई 3-2x (आकृति 6.25) है। यदि संद्रक का आयतन V(x) है तब

अब
$$V'(x) = 0$$
 से $x = \frac{2}{3}$ और $x = 3$ प्राप्त होता है। परन्तु $x \neq 3$ (क्यों?) इसलिए $x = \frac{2}{3}$ अब $V''\left(\frac{2}{3}\right) = 24\left(\frac{2}{3}\right) - 44 = -28 < 0$

इसलिए $x = \frac{2}{3}$ उच्चतम का बिंदु है अर्थात् यदि हम चादर के प्रत्येक किनारे से $\frac{2}{3}$ m भुजा के वर्ग हटा दें और शेष चादर से एक संदूक बनाए तो संदूक का आयतन अधिकतम होगा जो निम्नलिखित है:

$$V\left(\frac{2}{3}\right) = 4\left(\frac{2}{3}\right)^3 - 22\left(\frac{2}{3}\right)^2 + 24\left(\frac{2}{3}\right) = \frac{200}{27}m^3$$

उदाहरण 51 एक निर्माता $\operatorname{Rs}\left(5-\frac{x}{100}\right)$ प्रति इकाई की दर से x इकाइयाँ बेच सकता है।

x इकाइयों का उत्पाद मूल्य $\operatorname{Rs}\left(\frac{x}{5} + 500\right)$ है। इकाइयों की वह संख्या ज्ञात कीजिए जो उसे अधिकतम लाभ अर्जित करने के लिए बेचनी चाहिए।

हल मान लीजिए x इकाइयों का विक्रय मूल्य S(x) है और x इकाइयों का उत्पाद मूल्य C(x) है। तब हम पाते हैं

$$S(x) = \left(5 - \frac{x}{100}\right)x = 5x - \frac{x^2}{100}$$
$$C(x) = \frac{x}{5} + 500$$

और

इस प्रकार, लाभ फलन P(x) निम्नांकित द्वारा प्रदत्त है।

$$P(x) = S(x) - C(x) = 5x - \frac{x^2}{100} - \frac{x}{5} - 500$$

$$P(x) = \frac{24}{5}x - \frac{x^2}{100} - 500$$

ઝથાત્

या

$$P'(x) = \frac{24}{5} - \frac{x}{50}$$

अब P'(x) = 0 से x = 240 प्राप्त होता है और $P''(x) = \frac{-1}{50}$. इसलिए $P''(240) = \frac{-1}{50} < 0$ है।

इस प्रकार x = 240 उच्चतम का बिंदु है। अत: निर्माता अधिकतम लाभ अर्जित कर सकता है यदि वह 240 इकाइयाँ बेचता है।

अध्याय 6 पर विविध प्रश्नावली

अवकलज का प्रयोग करके निम्नलिखित में से प्रत्येक का सिन्नकट मान ज्ञात कीजिए:

(a)
$$\left(\frac{17}{81}\right)^{\frac{1}{4}}$$
 (b) $(33)^{-\frac{1}{5}}$

- 2. सिद्ध कीजिए कि $f(x) = \frac{\log x}{x}$ द्वारा प्रदत्त फलन x = e पर उच्चतम है।
- 3. किसी निश्चित आधार b के एक समिद्धबाहु त्रिभुज की समान भुजाएँ 3 cm/s की दर से घट रहीं है। उस समय जब त्रिभुज की समान भुजाएँ आधार के बराबर हैं, उसका क्षेत्रफल कितनी तेजी से घट रहा है।
- **4.** वक्र $x^2 = 4y$ के बिंदु (1, 2) पर अभिलंब का समीकरण ज्ञात कीजिए।
- 5. सिद्ध कीजिए कि वक्र $x = a\cos\theta + a\theta\sin\theta$, $y = a\sin\theta a\theta\cos\theta$ के किसी बिंदु θ पर अभिलंब मूल बिंदु से अचर दूरी पर है।
- 6. अंतराल ज्ञात कीजिए जिन पर

$$f(x) = \frac{4\sin x - 2x - x\cos x}{2 + \cos x}$$

से प्रदत्त फलन f(i) निरंतर वर्धमान (ii) निरंतर ह्रासमान है।

- 7. अंतराल ज्ञात कीजिए जिन पर $f(x) = x^3 + \frac{1}{x^3}, x \neq 0$ से प्रदत्त फलन
 - (i) वर्धमान (ii)हासमान है।
- 8. दीर्घवृत्त $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ के अंतर्गत उस समद्भिबाहु त्रिभुज का महत्तम क्षेत्रफल ज्ञात कीजिए जिसका शीर्ष दीर्घ अक्ष का एक सिरा है।
- 9. आयताकार आधार व आयताकार दीवारों की 2 m गहरी और 8 m³ आयतन की एक बिना ढक्कन की टंकी का निर्माण करना है। यदि टंकी के निर्माण में आधार के लिए Rs 70/m² और दीवारों पर Rs 45/m² व्यय आता है तो निम्नतम खर्च से बनी टंकी की लागत क्या है?

- 10. एक वृत्त और एक वर्ग के परिमापों का योग kहै, जहाँ k एक अचर है। सिद्ध कीजिए कि उनके क्षेत्रफलों का योग निम्नतम है, जब वर्ग की भुजा वृत्त की त्रिज्या की दुगुनी है।
- 11. किसी आयत के ऊपर बने अर्धवृत्त के आकार वाली खिड़की है। खिड़की का संपूर्ण पिरमाप 10 m है। पूर्णतया खुली खिड़की से अधिकतम प्रकाश आने के लिए खिड़की की विमाएँ ज्ञात कीजिए।
- 12. त्रिभुज की भुजाओं से a और b दूरी पर त्रिभुज के कर्ण पर स्थित एक बिंदु है। सिद्ध कीजिए कि कर्ण की न्यूनतम लंबायीं $\left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{3}{2}}$ है।
- **13.** उन बिंदुओं को ज्ञात कीजिए जिन पर $f(x) = (x-2)^4 (x+1)^3$ द्वारा प्रदत्त फलन f का,
 - (i) स्थानीय उच्चतम बिंदु है
- (ii) स्थानीय निम्नतम बिंदु है
- (iii) नत परिवर्तन बिंदु है।
- **14.** $f(x) = \cos^2 x + \sin x, x \in [0, \pi]$ द्वारा प्रदत्त फलन fका निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।
- 15. सिद्ध कीजिए कि एक r त्रिज्या के गोले के अंतर्गत उच्चतम आयतन के लंब वृत्तीय शंकु की ऊँचाई $\frac{4r}{3}$ है।
- **16.** मान लीजिए [a,b] पर परिभाषित एक फलन f है इस प्रकार कि सभी $x \in (a,b)$ के लिए f'(x) > 0 है तो सिद्ध कीजिए कि (a,b) पर f एक वर्धमान फलन है।
- 17. सिद्ध कीजिए कि एक R त्रिज्या के गोले के अंतर्गत अधिकतम आयतन के बेलन की ऊँचाई $\frac{2R}{\sqrt{3}}$ है। अधिकतम आयतन भी ज्ञात कीजिए।
- 18. सिद्ध कीजिए कि अर्द्धशीर्ष कोण α और ऊँचाई h के लंब वृत्तीय शंकु के अंतर्गत अधिकतम आयतन के बेलन की ऊँचाई, शंकु के ऊँचाई की एक तिहाई है और बेलन का अधिकतम आयतन $\frac{4}{27}\pi h^3 \tan^2 \alpha$ है।
- 19 से 24 तक के प्रश्नों के सही उत्तर चुनिए।
- 19. एक 10~m त्रिज्या के बेलनाकार टंकी में $314~m^3/h$ की दर से गेहूँ भरा जाता है। भरे गए गेहूँ की गहराई की वृद्धि दर है:
 - (A) 1 m/h

(B) 0.1 m/h

(C) 1.1 m/h

(D) $0.5 \, \text{m/h}$

20.	वक्र	$x = t^2 + 3t -$	8 v = 2f	2 - 2t - 5	के	बिंद (2	. – 1) प	र स्पर्श	रेखा	की	प्रवणता	है:
4 0 •	431	$\lambda = \iota + J\iota =$	$0, y - 2\iota$	$-2\iota-3$	٧,	193 (4	,— <i>1)</i> 1	/ / 171	\GI	7/1	7141/11	6. *

- (A) $\frac{22}{7}$ (B) $\frac{6}{7}$ (C) $\frac{7}{6}$ (D) $\frac{-6}{7}$

- **21.** रेखा y = mx + 1, वक्र $y^2 = 4x$ की एक स्पर्श रेखा है यदि m का मान है:
 - (A) 1
- (B) 2
- (C) 3
- (D) $\frac{1}{2}$

22. वक्र
$$2y + x^2 = 3$$
 के बिंदु (1,1) पर अभिलंब का समीकरण है:

(A) x + y = 0

(B) x - y = 0

(C) x + y + 1 = 0

- (D) x y = 1
- **23.** वक्र $x^2 = 4y$ का बिंदु (1,2) से हो कर जाने वाला अभिलंब है:
 - (A) x + y = 3

(B) x - y = 3

(C) x + y = 1

- (D) x y = 1
- 24. वक्र $9y^2 = x^3$ पर वे बिंदु जहाँ पर वक्र का अभिलंब अक्षों से समान अंत: खंड बनाता है:
 - (A) $\left(4,\pm\frac{8}{3}\right)$

(C) $\left(4,\pm\frac{3}{8}\right)$

यदि एक राशि y एक दूसरी राशि x के सापेक्ष किसी नियम y = f(x) को संतुष्ट करते हुए परिवर्तित होती है तो $\frac{dy}{dx}$ (या f'(x)) x के सापेक्ष y के परिवर्तन की दर को निरूपित

करता है और $\frac{dy}{dx}\Big|_{x=x_0}$ (या $f'(x_0)$) $x=x_0$ पर) x के सापेक्ष y के निरूपित की दर को निरूपित करता है।

यदि दो राशियाँ x और y, t के सापेक्ष परिवर्तित हो रही हों अर्थात् x = f(t) और y = g(t), तब शृंखला नियम से

$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$$
, यदि $\frac{dx}{dt} \neq 0$

- \diamond एक फलन f
 - (a) अंतराल [a, b] में वर्धमान है यदि [a, b] में $x_1 < x_2 \implies f(x_1) \le f(x_2)$, सभी $x_1, x_2 \in (a, b)$ के लिए विकल्पत: यदि प्रत्येक $x \in [a, b]$ के लिए $f'(x) \ge 0$, है।
 - (b) अंतराल [a,b] में हासमान है यदि [a,b] में $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$, सभी $x_1, x_2 \in (a,b)$ के लिए विकल्पत: यदि प्रत्येक $x \in [a,b]$ के लिए $f'(x) \le 0$ है।
- वक्र y = f(x) के बिंदु (x_0, y_0) पर स्पर्श रेखा का समीकरण

$$y - y_0 = \frac{dy}{dx}\Big|_{(x_0, y_0)} (x - x_0) \stackrel{\triangle}{=} 1$$

- यदि बिंदु (x_0,y_0) पर $\frac{dy}{dx}$ का अस्तित्व नहीं है, तो इस बिंदु पर स्पर्श रेखा y-अक्ष के समांतर है और इसका समीकरण $x=x_0$ है।
- यदि वक्र y = f(x) की स्पर्श रेखा $x = x_0$ पर, x-अक्ष के समांतर है, तो $\frac{dy}{dx}\Big|_{x=x_0} = 0$ है।
- वक्र y = f(x) के बिंदु (x_0, y_0) पर अभिलंब का समीकरण

$$y - y_0 = \frac{-1}{\frac{dy}{dx}} (x - x_0) \frac{1}{8}$$

- यदि बिंदु (x_0,y_0) पर $\frac{dy}{dx}=0$ तब अभिलंब का समीकरण $x=x_0$ है।
- यदि बिंदु (x_0,y_0) पर $\frac{dy}{dx}$ का अस्तित्व नहीं है तब इस बिंदु पर अभिलंब x-अक्ष के समांतर है और इसका समीकरण $y=y_0$ है।
- मान लीजिए y = f(x) और Δx , x में छोटी वृद्धि है और x की वृद्धि के संगत y में वृद्धि Δy है अर्थात् $\Delta y = f(x + \Delta x) f(x)$ तब

$$dy = f'(x)dx$$
 या $dy = \left(\frac{dy}{dx}\right)\Delta x$

- जब $dx = \Delta x$ अपेक्षाकृत बहुत छोटा है तो यह Δy का एक अच्छा सिन्नकटन है। इसे हम $dy \approx \Delta y$ के द्वारा निरूपित करते हैं।
- फलन f के प्रांत में एक बिंदु c जिस पर या तो f'(c) = 0 या f अवकलनीय नहीं है, f का क्रांतिक बिंदु कहलाता है।
- प्रथम अवकलज परीक्षण मान लीजिए एक विवृत्त अंतराल I पर फलन f परिभाषित है।
 मान लीजिए I में एक क्रांतिक बिंदु c पर फलन f संतत है तब
 - (i) जब x बिंदु c के बायों ओर से दायों ओर बढ़ता है तब f'(x) का चिह्न धन से ऋण में परिवर्तित होता है अर्थात् c के बायों ओर और पर्याप्त निकट प्रत्येक बिंदु पर यदि f'(x) > 0 तथा c के दायों ओर और पर्याप्त निकट प्रत्येक बिंदु पर यदि f'(x) < 0 तब c स्थानीय उच्चतम का एक बिंदु है।
 - (ii) जब x बिंदु c के बायीं ओर से दायीं ओर बढ़ता है तब f'(x) का चिह्न ऋण से धन में परिवर्तित होता है अर्थात् c के बायीं ओर और पर्याप्त निकट प्रत्येक बिंदु पर यदि f'(x) < 0 तथा c के दायीं ओर और पर्याप्त निकट प्रत्येक बिंदु पर यदि f'(x) > 0 तब c स्थानीय निम्नतम का एक बिंदु है।
 - (iii) जब x बिंदु c के बायों ओर से दायों ओर बढ़ता है तब f'(x) परिवर्तित नहीं होता है तब c न तो स्थानीय उच्चतम का बिंदु है और न ही स्थानीय निम्नतम का बिंदु। वास्तव में इस प्रकार का बिंदु एक नित परिवर्तन बिंदु है।
- द्वितीय अवकलज परीक्षण मान लीजिए एक अंतराल I पर f एक परिभाषित फलन है
 और c ∈ I है। मान लीजिए f, c पर लगातार दो बार अवकलनीय है। तब
 - (i) यदि f'(c) = 0 और f''(c) < 0 तब x = c स्थानीय उच्चतम का एक बिंदु है। f का स्थानीय उच्चतम मान f(c) है।
 - (ii) यदि f'(c) = 0 और f''(c) > 0 तब x = c स्थानीय निम्नतम का एक बिंदु है। इस स्थिति में f का स्थानीय निम्नतम मान f(c) है।
 - (iii) यदि f'(c) = 0 और f"(c) = 0, तब यह परीक्षण असफल रहता है।
 इस स्थिति में हम पुन: वापस प्रथम अवकलज परीक्षण का प्रयोग करते हैं और यह ज्ञात करते हैं कि c उच्चतम, निम्नतम या नित परिवर्तन का बिंदु है।
- निरपेक्ष उच्चतम और निरपेक्ष निम्नतम मानों को ज्ञात करने की व्यावहारिक विधि है: चरण 1: अंतराल में f के सभी क्रांतिक बिंदु ज्ञात कीजिए अर्थात् x के वे सभी मान ज्ञात कीजिए जहाँ या तो f'(x) = 0 या f अवकलनीय नहीं है।

चरण 2: अंतराल के अंत्य बिंदु लीजिए।

चरण 3: (चरण 1 व 2 से प्राप्त) सभी बिंदुओं पर f के मानों की गणना कीजिए। चरण 4: चरण 3 में गणना से प्राप्त f के सभी मानों में से उच्चतम और निम्नतम मानों को लीजिए। यही उच्चतम मान, f का निरपेक्ष उच्चतम मान और निम्नतम मान, f का

निरपेक्ष निम्नतम मान होंगे।