

Análisis amortizado: Teoría y Ejemplo

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Motivación

- Cuando analizamos un algoritmo utilizamos como medida su complejidad asintótica.
- Evaluamos para cada operación su "peor caso"
- Existen situaciones donde esto nos retornará un análisis incorrecto.

¿Qué es?

- Técnica para analizar el tiempo de ejecución de un algoritmo.
- Determina el rendimiento promedio de cada operación en el peor de los casos
- Apropiada cuando lo que interesa entender es el comportamiento asintótico de una secuencia de operaciones
- Puede mostrar que aún existiendo algunas operaciones costosas – en promedio el costo es pequeño

¿Cuándo se originó?

• Presentado en 1985 como una técnica de análisis de algoritmos.

En el paper "AMORTIZED COMPUTATIONAL COMPLEXITY" por Robert Endre Tarjan".

• Engloba varios métodos

Acredita a diferentes autores por su invención

Métodos

Aggregate analysis

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1974. The design and analysis of computer algorithms

Accounting method

Brown, M. R., and R. E. Tarjan. 1980. "Design and analysis of a data structure for representing sorted lists." SIAM Journal on Computing

Potential method

D. Sleator (1983?)

Aggregate analysis

Demuestra que, para todo n, una secuencia de n operaciones requiere un tiempo total en el peor de los casos de T(n)

Se debe acotar a aquellas secuencias posibles de operaciones por la naturaleza racional de su uso.

Por lo tanto, el costo amortizado por operación es T(n) / n

A todas las operaciones – no importa si son diferentes – le asigna el mismo costo amortizado.

Aggregate analysis: PILA

Tenemos la estructura "PILA", que contiene las siguientes operaciones:

PUSH (x): Agrega a la pila el elemento $x \to O(1)$

POP(): Extrae un elemento de la pila \rightarrow O(1)

MULTIPOP(k): Extrae k elementos \rightarrow O(k), O(n) si k>=n

Mientras haya elementos en pila y K>0
 pop()
 k--

Aggregate analysis: PILA (cont.)

Cual es el peor costo posible de n operaciones?

El peor costo de una operación es de multipop O(n)

Puedo realizar n multipop? \rightarrow n* O(n) = O(n²) N \bigcirc !!

Para realizar n pop, primero se deben realizar n push

#pop + #multipops ≤ #push

Por lo tanto en el peor de los casos puedo hacer "n-1" push y 1 multipop de "n-1" elementos.

 $(n-1)*O(1) + 1*O(n-1) \rightarrow O(n)$

Por lo tanto T(n) = n

Y el costo amortizado de cada operación T(n)/n → O(1)

Accounting method

Este método es conocido también como "el método del banquero"

Se asignan diferentes costos a las diferentes operaciones

Algunas con valor mayor y otras menor al costo real (C_i)

El costo de la operación asignado se conoce como "costo amortizado" (\hat{C}_i)

Si el costo amortizado es mayor al real → la diferencia es un crédito

Este crédito se puede utilizar para pagar futuras operaciones con costo real mayor a su costo amortizado.

Accounting method (cont.)

Usaremos al costo amortizado como la cota superior del costo real

Pediremos que para toda operación "n" cumpla con la cota:

$$\sum_{i=1}^{n} \hat{C}_{i} \geqslant \sum_{i=1}^{n} C_{i}$$

Por lo tanto el crédito para cualquier "n" no debe ser negativo

Y tenemos el costo amortizado como cota:

$$T(n) = \sum_{i=1}^{n} \hat{C}_{i}$$

Accounting method: PILA

Los costos reales de las operaciones son:

 $PUSH \rightarrow 1$

 $POP \rightarrow 1$

 $MULTIPOP \rightarrow min(k, #S)$

Proponemos los siguientes costos amortizados:

 $PUSH \rightarrow 2$

 $POP \rightarrow 0$

MULTIPOP → 0

Accounting method: PILA (cont.)

El costo del PUSH "paga" su costo y el de un futuro POP (o

multipop)

PUSH → 1	
POP → 1	
MULTIPOP → min (k, #S)	

PUSH → 2
$POP \rightarrow 0$
MULTIPOP → 0

	$\Sigma \hat{C}_{i}$	ΣC_i
PUSH	2	1
PUSH	4	2
POP	4	3
PUSH	6	4
PUSH	8	5
MULTIPO P (3)	8	8
PUSH	10	9
PUSH	12	10
POP	12	11

PILA

Accounting method: PILA (cont.)

Finalmente:

$$T(n) = \sum_{i=1}^{n} \hat{C}_{i}$$

$$Y T(n)/n = O(1)$$

Potential method

El trabajo prepagado se representa como "energia potencial"

Con eso se pagan operaciones futuras

El potencial esta asociado a toda la estructura de datos (y no a objectos especificos dentro de ella)

Llamaremos:

C_i el costo real de la operación i-esima

D_i la estructura de datos resultante de aplicar la operación i-esima a D_{i-1}

Φ(D_i) es la funcion de potencial que asigna un numero real a D_i

Potential method (cont.)

Definimos:

El costo amortizado de la operación i-esima como:

$$\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1})$$

Podemos calcular el costo amortizado total de n operaciones:

$$\begin{split} \sum_{i=1}^{n} \hat{C}_{i} &= \sum_{i=1}^{n} \left(C_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) \right) \\ &= \sum_{i=1}^{n} \left(C_{i} \right) + \Phi(D_{n}) - \Phi(D_{0}) \end{split}$$

Potential method (cont.)

Si podemos definir Φ tal que $\Phi(D_n) \ge \Phi(D_o)$

Entonces el costo amortizado $\sum_{i=1}^{n} \hat{C}_{i}$ nos sirve como cota superior del costo real $\sum_{i=1}^{n} C_{i}$

Pedimos que $\Phi(D_i) \ge \Phi(D_o)$ para todo i.

Entonces garantizamos el "pago en adelanto" (como en el metodo del banquero)

Usualmente se define Φ(D₀)=0 y se prueba que Φ(D₀)≥0 para toda operación i

Potential method: PILA

Definimos la función potencial como la cantidad de elementos en la pila.

 $\Phi(D_0)=0$ (inicialmente hay 0 elementos en la pila)

Φ(D_i)≥0 (no pueden existir cantidad negativo de elementos)

Calculamos el costo costo de las diferentes operaciones de la pila:

PUSH:

$$C_i = 1$$

$$\Phi(D_i) - \Phi(D_{i-1}) = (s+1) - s = 1$$

$$\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2$$

Potential method: PILA (cont.)

POP:

$$C_i = 1$$

$$\Phi(D_i) - \Phi(D_{i-1}) = s - (s+1) = -1$$

$$\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 - 1 = 0$$

MULTIPOP:

$$C_i = k$$

$$\Phi(D_i) - \Phi(D_{i-1}) = s - (s+k) = -k$$

$$\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1}) = k - k = 0$$

Análisis amortizado: Contador Binario

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Contador binario

Tenemos un contador binario

Utilizamos un vector A de k bits

Comienza en cero

Para incrementar en 1:

En el peor caso la complejidad del contador es O(k).

Realizar n operaciones es O(nk) NO!!

Contador binario - Aggregate analysis

Contador	A[3]	A[2]	A[1]	A[0]	Costo operación	Costo acumulado
0	0	0	0	0	0	0
1	0	0	0	1	1	1
2	0	0	1	0	2	3
3	0	0	1	1	1	4
4	0	1	0	0	3	7
5	0	1	0	1	1	8
6	0	1	1	0	2	10
7	0	1	1	1	1	11
8	1	0	0	0	4	15
9	1	0	0	1	1	16
10	1	0	1	0	2	18
"n/8"					Camhia siemr	ore ("n" veces)

Contador binario - Aggregate analysis (cont.)

En general, el bit A[i] cambio [n/2i] veces

En una secuencia de n operaciones de incremento

La cantidad total de cambios de bits en n operaciones

En una secuencia de n operaciones de incremento

$$\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n * \sum_{i=0}^{\infty} \left(\frac{1}{2^i} \right) = 2n$$

Realizar n operaciones es – por lo tanto – O(n)

El costo amortizado de cada operación es O(1)

Contador binario - Accounting method

Los costos de la operación "incrementar" son variables

Dependen de la cantidad de bits modificados

Proponemos:

Costo amortizado de 2 por cada bit cambiado a 1.

Inicialmente el crédito es 0

No hay operaciones con crédito negativo (en el caso extremo no hay bits a 1).

Los costos de cambiar a 0 se "pagan" con lo ahorrado en el cambio a bits a 1.

Contador binario - Accounting method (cont.)

Contador	A[3]	A[2]	A[1]	A[0]	Costo operación	Costo amortizado	Crédito
0	0	0	0	0	0	0	0
1	0	0	0	1	1	2	1
2	0	0	1	0	2	2	1
3	0	0	1	1	1	2	2
4	0	1	0	0	3	2	1
5	0	1	0	1	1	2	2
6	0	1	1	0	2	2	2
7	0	1	1	1	1	2	3
8	1	0	0	0	4	2	1
9	1	0	0	1	1	2	2
10	1	0	1	0	2	2	2

Contador binario - Accounting method (cont)

Se cumple – como se requiere - que $\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$

Ademas tenemos que
$$T(n) = \sum_{i=1}^{n} \hat{C}_i$$
 es O(n)

$$YT(n)/n = O(1)$$

Contador binario - Potential method

Definimos:

 $\Phi(D_i) = b_i$ El numero de 1 en el contador luego de la operación i

t_i = cantidad de bits reseteados a 0

6 5 4 3 2 1 0

Vemos que:

El costo real de la operación es $Ci \le t_i + 1$ (cuando paso todos los bits a 0 es t_i)

Si $b_i = 0 \rightarrow la$ operación i resetea los k bits a 0.

Entonces $b_{i-1} = t_i = k$

Si $b_i > 0 \rightarrow b_i = b_{i-1} - t_i + 1$

Tenemos que: $b_i \le b_{i-1} - t_i + 1$

i	b	t	С	
1	1	0	1	1
2	1	1	2	10
3	2	0	1	11
4	1	2	3	100
5	2	0	1	101

Contador binario - Potential method

Definimos:

 $\Phi(D_i) = b_i$ El numero de 1 en el contador luego de la operación i

t_i = cantidad de bits reseteados a 0

Vemos que:

El costo real de la operación es $Ci \le t_i + 1$ (cuando paso todos los bits a 0 es t_i)

Si $b_i = 0 \rightarrow la$ operación i resetea los k bits a 0.

Entonces $b_{i-1} = t_i = k$

Si $b_i > 0 \rightarrow b_i = b_{i-1} - t_i + 1$

Tenemos que: $b_i \le b_{i-1} - t_i + 1$

Contador binario - Potential method (cont.)

Finalmente vemos que:

$$\begin{split} &\Phi(D_i) - \Phi(D_{i-1}) \leq (b_{i-1} - t_i + 1) - b_{i-1} = 1 - t_i \\ &\hat{C}_i = C_i + \Phi(D_i) - \Phi(D_{i-1}) \\ &\leq (t_i + 1) + (1 - t_i) \\ &= 2 \end{split}$$

Y tenemos que

 $\Phi(D_0)=0$ y $\Phi(D_i)\geq 0$ para todo i>0

Por lo tanto $\sum_{i=1}^{n} \hat{C}_{i}$ es O(n) y el costo de una operación amortizadas es O(1)

Análisis amortizado: Expansión de tablas

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Tablas (Lista, Hash...)

Diversas estructuras de datos utilizan <u>vectores</u> para almacenar datos.

La cantidad de datos a almacenar varia (aumentando o disminuyendo)

En ocasiones se requiere expandir (o contraer) el vector.

Este redimensión implica "mover" todos los datos a un nuevo vector.

Se debe definir en base al factor de carga

Cuando expandirse

Cuando contraerse

Primera aproximación (simplificada)

Se permitirá únicamente expandir la tabla

TABLE_INSERT(x)

Se expandirá:

Cuando el vector se llene

Al doble del tamaño actual

Definimos factor de carga a:

#T / size(T) donde size(T) capacidad de la tabla

y #T cantidad de elementos en la tabla.

TABLE_INSERT(x)

```
Si size(T)==0
                                                          Inicialización
    Crear T con size(T)=1
Si #T == size(T)
   Crear T' con size(T') = 2*size(T)
Copiar T a T'
                                                          Expansión
    Liberar T
    T = T'
insertar x en T
                                                          Inserción
Incrementar #T
```


Costo de la inserción

El costo de la inserción i-esima es

1 si la tabla tiene lugar

i si la tabla esta llena (copiar i-1 elementos + insertar elemento i)

La tabla se expande cuando i-1 es potencia de 2

Expansión de tablas - Aggregate analysis

Si insertamos n elementos tendremos:

Llog₂ n J expansiones

n inserciones

El costo de las n operaciones:

$$\sum_{i=1}^{n} C_{i} \leq n + \sum_{i=1}^{\lfloor \log(n) \rfloor} 2^{i} < n + 2n = 3n$$

El costo amortizado de cada operación:

$$3 \rightarrow O(1)$$

Expansión de tablas - Accounting method

Los costos de la operación "insertar" son variables

Dependen de si se requiere expansión o no

Proponemos:

Costo amortizado de 3 por cada inserción (1 de inserción + 2 "a cuenta").

Inicialmente el crédito es 0

Los costos de expansión se pagan con lo ahorrado por las inserciones

- 1 para moverse a si mismo
- 1 para mover otro elemento previo a la expansión anterior.

Expansión de tablas - Potential method

Definimos:

 $\Phi(D_i) = 2*num(T) - size(T)$

Inicialmente $\Phi(D_0) = 0$

Al estar siempre la mitad o mas de la tabla ocupada $\rightarrow \Phi(D_i) \ge 0$

Debemos analizar el costo amortizado para:

Inserción si no hay expansión

Inserción si hay expansión

Expansión de tablas - Potential method (cont.)

Si inserto el elemento i y no hay expansión:

$$\begin{split} \hat{C}_{i} &= C_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) & C_{i} = 1 \\ \Phi(D_{i}) &= 2 n u m(T_{i}) - \text{size}(T_{i}) & \Phi(D_{i-1}) = 2 n u m(T_{i-1}) - \text{size}(T_{i-1}) \\ \text{size}(T_{i-1}) &= \text{size}(T_{i}) & n u m(T_{i}) = n u m(T_{i-1}) + 1 \\ \hat{C}_{i} &= 1 + [2 n u m(T_{i}) - \text{size}(T_{i})] - [2 n u m(T_{i-1}) - \text{size}(T_{i-1})] \\ \hat{C}_{i} &= 1 + 2[n u m(T_{i-1}) + 1] - 2 n u m(T_{i-1}) \\ \hat{C}_{i} &= 3 \end{split}$$

Expansión de tablas - Potential method (cont.)

Si inserto el elemento i y hay expansión:

$$\begin{split} \hat{C}_{i} = & C_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) & C_{i} = num(T_{i}) \\ \Phi(D_{i}) = & 2num(T_{i}) - \text{size}(T_{i}) & \Phi(D_{i-1}) = 2num(T_{i-1}) - \text{size}(T_{i-1}) \\ & 2 \text{size}(T_{i-1}) = \text{size}(T_{i}) & num(T_{i}) = num(T_{i-1}) + 1 \\ & \text{size}(T_{i-1}) = num(T_{i-1}) \\ \hat{C}_{i} = & num(T_{i}) + [2num(T_{i}) - \text{size}(T_{i})] - [2num(T_{i-1}) - \text{size}(T_{i-1})] \\ & = num(T_{i}) + [2num(T_{i}) - 2 \text{size}(T_{i-1})] - [2num(T_{i-1}) - (num(T_{i} - 1))] \\ = & num(T_{i-1}) + 1 + [2(num(T_{i-1} + 1)) - 2 \text{num}(T_{i-1})] - [2num(T_{i-1}) - (num(T_{i} - 1))] \\ \hat{C}_{i} = & 3 \end{split}$$

Agregando la eliminación

Si permitimos la eliminación de elementos

Se requiere contraer la tabla cuando el factor de carga sea menor a un valor

Elegir incorrectamente el factor puede generar problemas (ej: 1/2)

Llamaremos al método

TABLE_DELETE(x)

Proponemos

Mantener el criterio de expansión

Contraer la tabla a la mitad cuando el factor de carga sea menor a 1/4

Redimensión de tablas - Potential method

Definimos:

$$\Phi(\mathsf{D}_{\mathsf{i}}) = \begin{cases}
2 \operatorname{num}(T) - \operatorname{size}(T) & \text{si factor carga } \ge 1/2 \\
\operatorname{size}(T)/2 - \operatorname{num}(T) & \text{si factor carga } < 1/2
\end{cases}$$

Inicialmente $\Phi(D_0) = 0$

La energía potencial siempre es mayor a cero.

Debemos analizar el costo amortizado para:

i-esa operación es Inserción

Si factor de carga ≥ ½ y no hay expansión

Si factor de carga ≥ ½ y hay expansión

Es valido el análisis del modelo simplificado

Si factor de carga es < ½ y luego de insertar el factor sigue por debajo de ½

Si factor de carga es < ½ y luego de insertar el factor es ,mayor o igual a ½

Redimensión de tablas - Potential method (cont.)

Debemos analizar el costo amortizado para (cont):

I-esima operación es eliminación

Si factor de carga < ½ y luego de eliminar el factor es mayor a ¼ (sin contracción)

Si factor de carga < ½ y luego de eliminar el factor es menor o igual a ¼ (contracción)

Si factor de carga es ≥ ½ y luego de eliminar el factor sigue por arriba del ½

Si factor de carga es ≥ ½ y luego de eliminar el factor es menor a ½

Para cada uno de estos casos

Determinar costo real, ecuación de potencial i-1 y ecuación de potencial i, equivalencias entre size y num de la tabla

Calcular el costo amortizado (llegaremos a valores de 0,1,2,3)

Por lo tanto podemos determinar que cada operación es general es O(1)

Presentación realizada en Abril de 2020