Row picture * Column picture Matur form

$$2x \cdot y = 0$$

$$-x + 2y = 3$$

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ m \end{bmatrix}$$

$$A \times = b$$

Find the linear combination of the columns to produce [3]

John x=1 and y=2

Take all of the combinations

of [2] + y [2] ; which fells the plane.

Col2 (0,3)

(cl2 +2 col 2

-1 col2 col 1

$$2x-y = 0$$

 $-x+2y-z=-1$
 $-3y+4z=4$

$$A = \begin{bmatrix} 2 - 1 & 0 \\ -1 & 2 - 1 \\ 0 & -3 & 4 \end{bmatrix}$$

$$b = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$$

Row picture 2 -3yr4=4

The 3 planes macet in one point Column picture

$$\chi \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix} + z \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$$

Linear combination of 3-30 vectors

$$cd^{2}$$

$$mub b cd^{2}$$

x=0, y=0, 2=1

Suppose $b = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

$$\gamma \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix} + z \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix}$$

$$\Rightarrow x^{21}, y = 1, z = 0$$

Lecture 2

Can I solve A = 6 for every 6?

On the linear combinations of the columns fill 3-0 space?

For this A, the answer is yes.

Ax=b

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 7 \end{bmatrix}$$

Ax is a combination of the columns of A

Elimenotion < Sucress failure

X +24+ 2

Back-Substitution Eliminatein Matrices Matrix Multiplication

$$x + 2y + 2 = 2$$

 $3x + 8y + 2 = 12$
 $4y + 2 = 2$

U (repper treangelon)

Flors. 35500

$$U_{X}=C:$$
 $x+2y+z=2$, $x=2$
 $2y-2z=6$, $y=1$
 $5z=-10$, $z=-2$

$$[127] = 1 \cdot now 2 + 2 \cdot now 2 + 7 \cdot now 3$$

$$[13]$$

row x matrix = row

$$\begin{bmatrix}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 \\
3 & 8 & 1 \\
0 & 4 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 2 & 1 \\
0 & 2 & -2 \\
0 & 4 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 \\
0 & 2 & -2
\end{bmatrix}
=
\begin{bmatrix}
1 & 2 & 1 \\
0 & 2 & -2 \\
0 & 0 & 5
\end{bmatrix}$$

$$\begin{bmatrix}
5 & 2 & 1 \\
0 & -2 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 2 & -2 \\
0 & 0 & 5
\end{bmatrix}$$

Step 1. Subtract 3 row 1 from row 2 and gives new row 2

Step ?: Subtrad 2 now 2 from now 3 to get new row 3

$$E_{32}(E_{21}A) = U \Rightarrow associativity$$

 $(E_{32}E_{21})A = U$

Permutation matrix =) Exchange rows

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Multiply on left does now operations

row, A.B c rows of & are combinations of rows of B C mxp

AB= Sum of (columns of A) × (nowoffs)

$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 16 \\ 16 \end{bmatrix} = \begin{bmatrix} 2 & 12 \\ 3 & 18 \\ 4 & 24 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 7 \\ 3 & 8 \\ 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 9 \\ 4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 9 \\ 4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 9 \\ 4 & 24 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Block Wultiplication

$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} B_1 & B_2 \\ B_3 & B_4 \end{bmatrix} = \begin{bmatrix} A_1B_1 + A_2B_3 \\ A_1B_2 + A_2B_4 \end{bmatrix}$$

$$A = B$$

Inverses (square motrices)

$$A^{-1}A = I = AA^{-1}$$
 Called invertible, nonsingular

if this oxists

Singular Case: no mouse

no inverse because we can find a vector X to with Ax=6

$$Ax = \begin{bmatrix} 1 & 3 \\ 26 \end{bmatrix} \begin{bmatrix} 37 \\ -17 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow A^{-1}Ax = A^{-1}O \Rightarrow x = 0$$

$$\text{But } x \neq 0$$

Buch to invertible case

$$\begin{bmatrix}
1 & 3 \\
2 & 7
\end{bmatrix}
\begin{bmatrix}
0 & C \\
0 & d
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}$$
A x column; A⁻¹ = column; of I

= [10][20][1/2]

Gauss-Jordan (Solve 2 egns at once)

$$\begin{bmatrix} 1 & 3 & 9 \\ 2 & 7 & 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 1 \\ 2 & 7 & 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 1 \\ 2 & 7 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & -21 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -21 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -21 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -21 \end{bmatrix}$$

$$A \quad I \qquad \qquad I \qquad \qquad I$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -21 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -21 \end{bmatrix}$$

$$A \quad I \qquad \qquad I \qquad \qquad I$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -21 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -21 \end{bmatrix}$$

$$A \quad I \qquad \qquad I \qquad \qquad I$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 7 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}$$

$$E_{32} = E_{21}$$

$$\begin{bmatrix} 1007 & 100 \\ 010 & -210 \\ 051 & -001 \end{bmatrix} = \begin{bmatrix} 100 \\ -210 \\ 051 \end{bmatrix} \quad EA = U$$

Inverses

A=LU

If no now exchanges, the multipliers go deretty into L.

How many operations on an uxu matrix A? (multiply + cultipat) Jaken=100

of opo ~ $n^2 + (n-1)^2 + \dots + 3^2 + 2^2 + 1^2 \approx \frac{1}{3} n^3$ on A Cost for every RHS is n2

$$\frac{P_{\text{evmutations}}}{I = \begin{bmatrix} 100 \\ 010 \\ 001 \end{bmatrix}, P_{12} = \begin{bmatrix} 010 \\ 100 \\ 100 \end{bmatrix}, P_{13} = \begin{bmatrix} 001 \\ 010 \\ 100 \end{bmatrix}, P_{23} = \begin{bmatrix} 100 \\ 010 \\ 010 \end{bmatrix}, P_{23} = \begin{bmatrix} 100 \\$$

 $P_{123} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad P_{132} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

P12 = P12 P-1=P for permutation

YXY permutation matrices = 24

Section 2.7 PA=LU

Section 3.1 Vector Spaces and Subspaces

Permutations P: execute now exchanges

A=LU = [1 0] [A] (no now exchanges)

becomes PA=LU (with row exchanges)
for any invertible A

P= identity matrix with rendered rows.

n. permutation matrices of size n.

P-= PT (=> PTP=I

Transposes $\begin{array}{c}
T = \begin{bmatrix} 1 & 3 \\ 23 \\ 41 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 3 & 1 \end{bmatrix} \\
T = \begin{bmatrix} 1 & 2 & 4 \\ 3 & 3 & 1 \end{bmatrix}
\end{array}$

 $(A^T)_{ij} = A_{ji}$

Symmetric Matrices: AT=A

Ex. (3 1 7) 129 794 R'R is always symmetrie

 $\begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 24 \\ 3 & 31 \end{bmatrix} = \begin{bmatrix} 10 & 11 & 7 \\ 11 & 13 & 11 \\ 7 & 11 & 12 \end{bmatrix}$

 $(R^TR)^T = R^TR^{T^T} = R^TR$

Vector Spaces

Examples: $\mathbb{R}^2 = \text{all } 2\text{-dim rest vectors such as } \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \overline{\mathbb{H}} \end{bmatrix},$

2 nd component (3)

Bteomponent (8)

R = "x-y plane"

R3= all vectors with 3 real components [3]

IR" = ellevectors with n real components

7 OPS. 35500 Vector Spaces and Subspaces Column space of A : Solving Ax = b Hull space of A

Vector Space requirements: V+W and CW are in the space all combinations [CV+dw] are in the space.

2 Subspaces: Pand L PUL = all vectors in Pa Lor both This () (isnot) a subspace

PML = all vectors in both Pand L This is a vector space

Subspaces Sand T: SAT is a subspace

C(A): Column Space of A (is a subspace of IR" here)

Which is allow this system to be solved?? b=0 always $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\chi = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$ works $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\chi = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$ works

Exactly when $b \in C(A)$

In this case C(A) is a 2-0 subspace of IR4

N(A): Mullapose of $A = all \ N's \ that police \ A_{K} = O \ (in R^3 \ here)$ $A_{K} = \begin{bmatrix} 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{bmatrix} \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \\ A_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \ O(A) \ contains \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} C \\ -1 \end{bmatrix}$ $O(A) \ contains \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} C \\ -1 \end{bmatrix}$

N(A) contains c[i] for any c

Check that solutions to $A_X=0$ always give a subspace If $A_V=0$ and $A_W=0$ then A(v+w)=0 $A(v+w)=A_V+A_W=0+0=0$

If Av=0 then A(cv)=0A(cv)=cAv=c0=0

 $A\chi = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 5 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$

Do the solution form a subspace? No No O-vector to start

 $N = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a solution $N = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ is a solution

Computing the nullspace (AK=6) Pivot Donables - free variables Special Solutions - rref(A)=R

 $A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0$

Lecture 7

The rank of A = number of pivots = 2 in this case

$$X = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \in N(A) \quad || \quad 2n_3 + 2n_4 = 0$$

$$N(A) \quad || \quad 2n_3 + 4n_4 = 0$$

$$N(A) \quad || \quad 2n_4 + 4n_4 = 0$$

Charge
$$4_2=0$$
, $4_4=1 \Rightarrow 4_1+2x_3+2=0$

$$\gamma = \begin{pmatrix} 2 \\ 0 \\ -2 \\ 1 \end{pmatrix} \in \mathcal{N}(A)$$

4, +2=0

$$d\begin{bmatrix} 2 \\ -\frac{2}{1} \end{bmatrix} \in N(A)$$

$$C\begin{bmatrix} -2 \\ 0 \end{bmatrix} + d\begin{bmatrix} 2 \\ 0 \\ -2 \end{bmatrix} \in N(A)$$

Ranh r=2 = # of privat variables

 $N-\Gamma=4-2=2$ free variables

R=reduced row echelon form has zeros above and below

\[
\begin{bmatrix}
1 & 2 & 2 & 7 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
1 & 2 & 0 & -2 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
1 & 2 & 0 & -2 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix}
0

Notice (0,) = I in pivol rows and columns

$$x_1 + 2x_2$$
 $-2x_4 = 0$ $Rx = 0$
 $x_3 + 2x_4 = 0$

Signo are flypped for free variables

ref form

R=[IF] r pivot rows

r pivot

r pivot

n-r free colo

RX=0 nullapace motrix N (columns are special solutions)

$$RN = 0$$

$$N = \begin{bmatrix} -F \\ I \end{bmatrix}$$

$$RX = 0$$

$$N = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 23 \\ 0 & 02 \\ 0 & 24 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 23 \\ 0 & 22 \\ 0 & 000 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 23 \\ 0 & 22 \\ 0 & 000 \end{bmatrix} \rightarrow \begin{bmatrix} 123 \\ 0 & 22 \\ 0 & 000 \end{bmatrix} \rightarrow \begin{bmatrix} 123 \\ 0 & 22 \\ 0 & 000 \end{bmatrix} \rightarrow \begin{bmatrix} 123 \\ 0 & 22 \\ 0 & 000 \end{bmatrix} \rightarrow \begin{bmatrix} 123 \\ 0 & 22 \\ 0 & 000 \end{bmatrix} \rightarrow \begin{bmatrix} 123 \\ 0 & 24 \\ 1 \end{bmatrix}$$

$$Rank r = 2 \quad paint for a gain. If the second of the$$

[1 2 2 2 | b₁] -> [1 2 2 2 b₁ | b₂ 2 3 b₁ | c 2 4 b₂ 2 b₁ | c 3 6 8 10 | b₃] -> [0 0 2 4 b₂ 2 b₁ | c 4 b₃ - 3 b₁] Augmented matrix [Ab] 1 pintcolo 1

$$b = \begin{bmatrix} 1 & 2 & 2 & 2 & b_1 \\ 0 & 0 & 2 & 4 & b_2 - 2b_1 \\ 0 & 0 & 0 & 0 & b_3 - b_2 - b_1 \end{bmatrix}$$

$$0 = b_3 - b_2 - b_1$$

Ax=b is solvable iff b ∈ C(A)

of a combination of the rows of A gives a yere row, then the same combination of the entries of a must give b.

To find the complete solution to Ax=6

(1) $X_{particular}$: Set all free variables to yero. Solve $A_{x=b}$ for pivot variables $X_2=0$, $X_4=0$

$$X_1 + 2x_3 = 1$$

$$2x_3 = 3$$

$$\Rightarrow X_3 = \frac{3}{2} \text{ and } X_1 = -2$$

$$X_p = \begin{bmatrix} -2 \\ 0 \\ 3/2 \\ 0 \end{bmatrix}$$

2 X melapoce (Xn)

3 Complete solution X=Xp+Xn Axp = b Axp = 0 $A(X_{p} + X_n) = b$

 $X = \begin{bmatrix} 0 \\ \frac{3}{2} \\ 0 \end{bmatrix} + C_1 \begin{bmatrix} -\frac{2}{1} \\ 0 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} \frac{2}{0} \\ -\frac{2}{1} \\ 1 \end{bmatrix}$

M by n matrix A of rank r (know r = m, r = n)

Full column rank means $\underline{r=n}$: no free variables $N(A) = \{0\}$, Solution to Ax=b: X=xp renique if it exists

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \\ 5 & 1 \end{bmatrix} \rightarrow R = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 6 & 0 \end{bmatrix} \quad \text{if } b = \begin{bmatrix} 4 \\ 3 \\ 7 \\ 6 \end{bmatrix} \Rightarrow x_p = \begin{bmatrix} 1 \\ 1 \\ 7 \\ 6 \end{bmatrix}$$

Full row rank means r=m: m sivots
Can solve Ax=6 for every b Exists Left with n-r free variables (n-m)

r=m=n (Invertible)

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \quad R = I$$

N(A) = 303

b can be anything

r KM, rkn R = [IF] O or as solutions to Ax=b

Linear independence Spanning a apace Basis and dimension

Lecture 9

Suppose A is m by n with m < n, then there are nongero solutions to AX=0.

Keason: There will be at least one free variable!! (non free variables) Independence Vectors X, Xz, -, Xn are linearly independent if no combination gives the yes vector except for the yest combination (all ci =0) C, X, +C2X2+ ... + CnXn ≠0 for all ci +0

 $2V_1 - V_2 = 0$ $N = V_1$ dependent

 $\begin{bmatrix} 2 & 1 & 2.5 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ dependence (N(A) is more than 203

1) Correct euro in Lecture 9 2) Four fundamental subspaces (for matrix A)

Example Space is R3

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Standard basis

Another basis

$$\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 8 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 2 & 8 \end{bmatrix}$$
 is Not invertible

(two equal rows)

4 Fundamentel Subspaces

Column space C(A) E Rm

A is mxn

Nullspace N(A) ER"

Rawspace = all combinations of rows = all combinations of

$$= C(A^T) \in \mathbb{R}^n$$

Nullspace of AT = N(AT) = left nullspace of A ERM

dim C(AT) = r

nullapace

dim C(A) = rank = r

MIT 18.06 C(A) (C(AT) N(A) Solutions for each free see below pivot colo See below N-r m-r rumber of free variables $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $C(R) \neq C(A)$ different column spaces Basis of now space for A and R is first r rows some now space of R (not of A) N(AT): ATy = 0 =) y EN(AT) $\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right] = \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] = \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] = \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] = \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right]$

$$\frac{N(A')}{\left(\begin{array}{c}A'y=0\\\end{array}\right)} = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left(A^{T}\right)^{2} dA = 0$$

$$\left(\begin{array}{c}A'y=0\\\end{array}\right) = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left(A^{T}\right)^{2} dA = 0$$

$$\left(\begin{array}{c}A'y=0\\\end{array}\right) = \left(\begin{array}{c}A'y=0\\\end{array}\right)$$

rref [Amin Imixm] -> [R Emixm]

MIT 18.06 Lecture 10 In Chapter 2, Rwas I and E was A-1 [1231001] 1231100 0000-101

 $\begin{bmatrix}
-1 & 20 \\
1 & -10
\end{bmatrix}
\begin{bmatrix}
1 & 23 \\
1 & 21
\end{bmatrix} = \begin{bmatrix}
0 & 11 \\
0 & 100
\end{bmatrix}$ Basis for $N(A^{T})$

Men vector space!

M: All 3x3 matrices!! A+B, CA (not AB)

Subspaces of M (all upper triangular

all symmetric matrices

all diagonal matrices D: dim D=3

\[\begin{pmatrix} 100 \\ 000