Session 70: Generating Functions

- Generating Functions
- Solving recurrence relations with generating functions

Generating Functions

Definition: The **generating function for the infinite sequence** $a_0, a_1, ..., a_k, ...$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + \dots + a_k x^k + \dots = \sum_{k=0}^{\infty} a_k x^k.$$

Examples

The sequence $\{a_k\}$ with $a_k = 3$ has the generating function $\sum_{k=0}^{\infty} 3x^k$.

The sequence $\{a_k\}$ with $a_k = k + 1$ has the generating function has the generating function $\sum_{k=0}^{\infty} (k+1)x^k.$

The sequence $\{a_k\}$ with $a_k = 2^k$ has the generating function has the generating function $\sum_{k=0}^{\infty} 2^k x^k.$

Useful Generating Functions

$$G(x) = (1 + x)^n = \sum_{k=0}^n C(n, k) x^k, a_k = C(n, k)$$

$$G(x) = \frac{1}{1-x} = \sum_{k=0}^{n} x^k, a_k = 1$$

$$G(x) = \frac{1}{(1-x)^n} = \sum_{k=0}^n C(n+k-1,k)x^k, a_k = C(n+k-1,k)$$

Solving Recurrence Relations with Generating Functions

Solve the recurrence relation $a_k = 3a_{k-1}$ with initial condition $a_0 = 2$.

Solving Recurrence Relations with Generating Functions

Solving Hanoi Tower

Transforming Fractions of Polynomials

Assume G(x) is of the form $G(x) = \frac{p(x)}{q(x)}$ where the degree of p(x) is less than the degree of q(x) and q(x) can be factored as $q(x) = (x - r_1)(x - r_2) \dots (x - r_n)$

1. Then G(x) can be rewritten as

$$G(x) = \frac{p(x)}{q(x)} = \frac{c_1}{x - r_1} + \frac{c_2}{x - r_2} + \dots + \frac{c_n}{x - r_n}$$

- 2. The coefficients c_1, c_2, \ldots, c_n can be obtained by equating the coefficient of the powers of p(x)
- 3. As a result we can use the generating functions for $\frac{c}{x-r}$ to obtain the sequence corresponding to the generating function G(x)

Solving Recurrence Relations with Generating Functions

Given some recurrence relation for a sequence a_0 , a_1 ,..., a_k , ...

General Approach to find a closed formula

- Find some closed formula for the generating function G(x)
- Use the recurrence relation to derive an alternative expression for G(x)
 - Frequently G(x) is expressed as fraction of polynomials
- Determine the power expansion of this alternative expression of which the coefficients must be equal to the sequence

Summary

- Generating Functions
- Useful generating functions
- Solving recurrence relations with generating functions