Brief Introduction to Recurrent Neural Models

Razvan Pascanu

Recurrent Neural Models

RNN for Language modelling

Dynamical System Perspective

Dynamical System Perspective

Dynamical System Perspective

$$\mathbf{x}_t = \mathbf{W}_{rec}\sigma(\mathbf{x}_{t-1}) + \mathbf{W}_{in}\mathbf{u}_t + \mathbf{b}$$

Geometrical View

The error is $(x(50)-0.7)^2$ for $x(t) = w\sigma(x(t-1)) + b$ with x(0) = 0.5

Norm Clipping

- Originally used by Tomas to get state of the art results in LM
- Modified here to be more theoretically justifiable

$$\hat{\mathbf{g}} \leftarrow \frac{\partial error}{\partial \theta}$$
if $\|\hat{\mathbf{g}}\| \geq threshold$ then
 $\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$
end if

Regularization term

$$\Omega = \sum_{k} \Omega_{k} = \sum_{k} \left(\frac{\left\| \frac{\partial C}{\partial \mathbf{x}_{k+1}} \frac{\partial \mathbf{x}_{k+1}}{\partial \mathbf{x}_{k}} \right\|}{\left\| \frac{\partial C}{\partial \mathbf{x}_{k+1}} \right\|} - 1 \right)^{2}$$

Regularization term

$$\begin{array}{lcl} \frac{\partial^{+}\Omega}{\partial\mathbf{W}_{rec}} & = & \sum_{k} \frac{\partial^{+}\Omega_{k}}{\partial\mathbf{W}_{rec}} \\ & & & \\ & & = & \sum_{k} \frac{\partial^{+}\left(\frac{\left\|\frac{\partial C}{\partial\mathbf{x}_{k+1}}\mathbf{W}_{rec}^{T}diag(\sigma'(\mathbf{x}_{k}))\right\|^{2}}{\left\|\frac{\partial C}{\partial\mathbf{x}_{k+1}}\right\|^{2}} - 1\right)^{2}} \\ & = & \sum_{k} \frac{\partial^{+}\left(\frac{\left\|\frac{\partial C}{\partial\mathbf{x}_{k+1}}\mathbf{W}_{rec}^{T}diag(\sigma'(\mathbf{x}_{k}))\right\|^{2}}{\left\|\frac{\partial C}{\partial\mathbf{x}_{k+1}}\right\|^{2}} - 1\right)^{2}}{\partial\mathbf{W}_{rec}} \end{array}$$

Other approaches

- LSTMs
- ESNs
- L1/L2 norm
- Hessian-Free
- Truncated BPTT

Some results

Data set	Data Fold	MSGD	MSGD+C	MSGD+CR	STATE OF THE ART FOR RNN	STATE OF THE ART
Piano-midi.de	TRAIN	6.87	6.81	7.01	7.04	6.32
(NLL)	TEST	7.56	7.53	7.46	7.57	7.05
Nottingham	TRAIN	3.67	3.21	2.95	3.20	1.81
(NLL)	TEST	3.80	3.48	3.36	3.43	2.31
MuseData	TRAIN	8.25	6.54	6.43	6.47	5.20
(NLL)	TEST	7.11	7.00	6.97	6.99	5.60
Penn Treebank	TRAIN	1.46	1.34	1.36	N/A	N/A
1 step (bits/char)	TEST	1.50	1.42	1.41	1.41	1.37
Penn Treebank	TRAIN	N/A	3.76	3.70	N/A	N/A
5 STEPS (BITS/CHAR)	TEST	N/A	3.89	3.74	N/A	N/A

Temporal order task:

LSTM

Echo State Property

Hessian-Free

Thank you!

Questions ?