

Advanced Topics in Software Verification

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

Gerwin Klein, June Arckonick Miki Tanaka, Johannes Åman Pohjola

https://tutg/2022m

Content

程序代写代做 CS编程辅导

→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🔭 🔭 🔭 (part 1)	$[2,3^a]$
Term rewritile Term rewritil	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
 Datatype industipen primitipe of seursionam Help 	[5,7]
 General recursive functions, termination proofs 	$[7^b]$
 Proof automationilisant(part @)163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutorcs.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Deep Embeddings

程序代写代做 CS编程辅导

We used a **datatype** present the **syntax** of IMP.

→ We then defined when this datatype.

This is called a deep the thing

→ separate representation of language terms and their semantics.

Advantages:

WeChat: cstutorcs

- → Prove general theorems about the language and just of programs.
- → e.g. expressiveness, correct compilation, inference completeness ...
- → usually by structulamailiction were the system type.

Disadvantages: QQ: 749389476

- → Semantically equivalent programs are not obviously equal.
- → e.g. "IF True THEN SKIP ELSE SKIP = SKIP" is not a true theorem.
- → Many concepts already present in the logic must be reinvented.

Shallow Embeddings

程序代写代做 CS编程辅导

Shallow Embedding t only the semantics, directly in the logic.

- → A definition for equality are construct, giving its semantics.
- → Programs are repletions.

Example: program semantics as functions state ⇒ state

 $SKIP \equiv \lambda s. \ s$ IF b THEN c ELSE Assignment Project Fx and Help

- → "IF True THEN SKIP ELSE SKIP = SKIP" is now a true statement.
- → can use the simplifien to 40 389947 tics-preserving program rewriting.

Today: a shallow embedding to (interesting parts of) C semantics

Records in Isabelle

程序代写代做 CS编程辅导

Records are naturales with named components

Example:

- \rightarrow Selectors: a :: $A \Rightarrow \text{char}$: csturores int, a r = Suc 0
- → Constructors: (| a = Suc 0, b = -1 |)
- → Update: r(| a := Assignmento Puppetet (Extranto He)|p

Records are extensional: tutorcs@163.com

$$\begin{array}{c} \text{Qrecord} & 894 \\ \text{c} :: \text{ nat list} \\ \text{https://tutorcs.com} \\ \text{()} & \text{a} = \text{Suc 0}, & \text{b} = -1, & \text{c} = [0,0] \text{ ()} \end{array}$$

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

Nondeterministic State Monad with Failure

程序代写代做 CS编程辅导

Shallow embedding suitable for (a useful fragment of) C.

Can express lots of C

- → Access to volatilities, external APIs: Nondeterminism
- → Undefined behaviour. Failure
- → Early exit (return preak, continue): Exceptional control flow

Relatively straightforward Hoare logic.
Assignment Project Exam Help

Used extensively in the seL4 microkernel verification work.

Email: tutorcs@163.com

AutoCorres: verified translation from deeply embedded C to monadic representation: 749389476

→ Specifically designed for humans to do proofs over.

State Monad: Motivation

程序代写代做 CS编程辅导

Model the **semantics** of a (deterministic) computation as a function

The computation openates of type 's:

→ Includes all global variables, external devices, etc.
Assignment Project Exam Help

The computation also yields a **return value** of type 'a:

→ models e.g. exit status and return values.

return – the computation that leaves the state unchanged and returns its argument: https://tutorcs.com

return
$$x \equiv \lambda s$$
. (x,s)

State Monad: Basic Operations

程序代写代做 CS编程辅导

get – returns the entire state without modifying it:

$$\lambda s. (s,s)$$

put - replaces the state turns the unit value ():

put
$$s \equiv \lambda_{-}$$
. ((),s)
WeChat: cstutorcs

bind – sequences two computations: 2nd takes the first's result:

$$c \gg = d \equiv \lambda s$$
. let $(r,s') = c s$ in $d r s'$

Email: tutorcs@163.com

gets – returns a projection of the state; leaves state unchanged:

gets
$$f = \text{get} \Rightarrow \text{get} \Rightarrow \text{get} s$$
. return $(f s)$

https://tutorcs.com
modify - applies its argument to modify the state; returns ():

modify
$$f \equiv \text{get} \gg = (\lambda s. \text{ put } (f s))$$

Monads. Laws

程序代写代做 CS编程辅导

Formally: a monad Mississe constructor with two operations.

return ::
$$\alpha \Rightarrow \mathbf{M}$$
 :: \mathbf{M} $\alpha \Rightarrow (\alpha \Rightarrow \mathbf{M}$ $\beta) \Rightarrow \mathbf{M}$ β

Infix Notation: a > 1 Infix notation for bind a b

Do-Notation: $a \gg = (\lambda x, b, x)$ is often written as **do** $\{x \leftarrow a; b \in \mathbb{C} \}$ x }

Assignment Project Exam Help Monad Laws:

Email: tutorcs@163.com

return-left: $(\text{return } \times \gg = f)$ OO: 749389476

 $(m \gg = \text{return}) = \frac{\text{https://tutorcs.com}}{\text{total}}$ return-right:

 $((a \gg = b) \gg = c) = (a \gg = (\lambda x. b \times x \gg = c))$ bind-assoc:

State Monad: Example

```
程序代写代做 CS编程辅导
                              <u>:ecord</u> state =
                                       :: int ptr \Rightarrow int
A fragment of C:
                                     It \mathsf{ptr} \Rightarrow (\mathsf{state} \Rightarrow (\mathsf{unit}, \mathsf{state}))"
void f(int *p)
                         p \equiv We that: cstutores
    int x = *p;
    if (x < 10)
                        Assignment Project Exam Help if x < 10 then
        *p = x+1;
                         Email: trotodify (h)p60 potate (\lambdah. (h(p := x + 1))))
                         https://tutorcs.com
```

State Monad with Failure

程序代写代做 CS编程辅导

Computation is
$$s \Rightarrow (('a \times 's) \times \underline{\mathsf{bool}})$$

bind – fails when eit is station fails
bind $a \ b \equiv \mathsf{let} \ ((r,s'), \mathsf{left}) = \mathsf{left} \ ((r'',s''),f') = \mathsf{left} \ r \ s' \ \mathsf{in} \ ((r'',s''),f')$

fail - the computation that was the training the computation of the co

$$\begin{array}{l} \text{fail} \equiv \lambda \text{s. (undefined True)} \\ \text{Assignment Project Exam Help} \end{array}$$

assert – fails when given identition @ F6ß com assert $P \equiv if P$ then return () else fail \overrightarrow{OO} : 749389476

guard – fails when given scottditions applied to the state is False: guard $P \equiv \text{get} \gg = (\lambda s. \text{ assert } (P s))$

Guards

程序代写代做 CS编程辅导

```
e of undefined behaviour in C
                           Used to assert t
  → pointer validity, a 
                                                                                                                                                                   ि के विश्वार and transfer in the state of t
f p \equiv
                                                                                                                                                  WeChat: cstutorcs
                 do {
                                  y \leftarrow guard (\lambda s. yalid s. p);

x \leftarrow gets (\lambda s. hp s. p);
                                   if x < 10 thenEmail: tutorcs@163.com
                                                     modify (hp_update (\lambdah. (h(p := x + 1))))
                                   else
                                                     return ()
                                                                                                                                                  https://tutorcs.com
```

Nondeterministic State Monad with Failure

程序代写代做 CS编程辅导

Computations can be product reministic: $s \Rightarrow ((a \times b) \text{ set } \times \text{ bool})$

Nondeterminism: c ns return a **set** of possible results.

→ Allows undersped 1 1 1 e.g. malloc, external devices, etc.

bind – runs 2nd computation for all results returned by the first:

bind
$$a \ b \equiv \lambda s. (\{(r'',s'') \in \text{Chat:, cstutorcs} \} \in \text{fst } (a \ s). (r'',s'') \in \text{fst } (b \ r' \ s')\},$$

$$snd (ass) \text{ gynthe lat. Project state} \text{ Here } (b \ r' \ s')))$$

All non-failing computations for far an deterministic:

- → e.g. return $x \equiv \lambda$ s. ({(x,s)}, False) → Others are similar. Q: 749389476

https://tutorcs.com select – nondeterministic selection from a set:

select
$$A \equiv \lambda s$$
. $((A \times \{s\}), False)$

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

While Loops

程序代写代做 CS编程辅导

Monadi p, defined inductively.

whileLoop ::
$$('a \Rightarrow ('a \Rightarrow ('a \Rightarrow ('a \Rightarrow ('a \times ('a) ('a \times ('a$$

whileLoop *C B* Assignment Project Exam Help

- → condition C: takes loop parameter and state as arguments, returns bool Email: tutorcs@163.com
- → monadic body *B*: takes loop parameter as argument, return-value is the updated logbarate 9476
- → fails if the loop body ever fails or if the loop never terminates https://tutorcs.com

Example: whileLoop (λp s. hp s p=0) (λ p. return (ptrAdd p 1)) p

Defining While Loops Inductively

程序代写代做 CS编程辅导

Two-part results and termination

Results: while_results
$$\Rightarrow$$
 's \Rightarrow bool) \Rightarrow

| ('s \Rightarrow ('a \times 's) set \times bool)) \Rightarrow
| (('a \times 's) option) \times (('a \times 's) option)) set

| WeChat: cstutorcs
| C r s
| (Some (r,s), Some sign) hen while jees ults a condition of the light set of the light set

(Some (r,s), z) \in while_results CB

Defining While Loops Inductively

```
程序代写代做 CS编程辅导
Termination:
 while_terminates :: 🖳
                                         \Rightarrow bool) \Rightarrow
                                        s \Rightarrow ('a \times 's) \text{ set } \times \text{ bool})) \Rightarrow
                                         ⇒ bool
                   Weckat: Sestutores (terminate) while_terminates C B r s
                           Assignment Project Exam Help
   C r s \quad \forall (r',s') \in \text{fst } (B r s). \text{ while_terminates } C B r' s' \text{ (loop)}
                           QQ: 749389476
whileLoop CB \equiv
 (\lambda r s. (\{(r',s'). (Some (s',s'), tsche (pr. s')) \in while_results CB\}.
```

 \neg while_terminates C B r s))

(Some (r, s), None) \in while_results \vee

Hoare Logic over Nondeterministic State Monads

程序代写代做 CS编程辅导

Partial correctness:

$$\{P\}\ m\ \{Q\} \equiv \forall s.$$
 $\{r,s'\} \in \mathsf{fst}\ (m\ s).\ Q\ r\ s'$

→ Post-condition Q • test test of return-value and result state.

Weakestaprecondition Rules

{\lambda s.
$$P \times s$$
} return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } return \times {\lambda r s. $P \times s$ } put \times put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambda r s. $P \times s$ } put \times {\lambd

 $\{\lambda s. P \longrightarrow Q \ () \ s\}$ assert $P \{Q\}$ $\{\lambda_-. True\}$ fail $\{Q\}$

19 | COMP4161 | G Klein, J Andronick, M Tanaka, J Åman Pohjola CC-BY-4.0 License

More Hoare Logic Rules

程序代写代做 CS编程辅导

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

We have seen today

程序代写代做 CS编程辅导

- → Deep and shallow
- → Isabelle records
- → Nondeterministic in the hard with Failure
- → Monadic Weakest Precondition Rules

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com