<u>Claims</u>

1. Use of a compound of formula (I) as precursor for olfactory compounds compound

wherein the acrylic acid ester double bound is of the E configuration;

n is zero or 1;

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a $C_{1^-}C_{18}$ hydrocarbon residue, and the sum of all carbon atoms ($R^5+R^6+R^7$) is not greater than 18; or

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), and the sum of all carbon atoms (R^5 + R^6 + R^7) is not greater than 18; or

Y is $-CR^8 = CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a $C_{1^-}C_{18}$ hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^8 + R^9 + R^{10}$) is not greater than 18; or

Y is $-CR^8 = CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms $(R^8 + R^9 + R^{10})$ is not greater than 18;

 R^2 and R^3 are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy residue, -NH₂, -NO₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C₁-C₈ alkyl) or -NHC(O)-(C₃-C₈ aryl); or

 R^2 and R^3 are attached at the positions C(6,7), C(7,8), or C(8,9), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^4 in 2- or 3-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or -CN; and

- a) if n is zero, R is a C₁-C₂₄ hydrocarbon residue, or C₁-C₂₄ hydrocarbon residue containing one or more heteroatoms selected from N, O and Si; or
- b) if n is 1, R is a C_{1^-} C_{25} hydrocarbon residue, a C_{1^-} C_{25} hydrocarbon residue containing one or more atoms/groups selected from N, O, Si, and C(O), or C_{1^-} C_{25} hydrocarbon residue substituted by an ionic substituent of the formula $N(R^{20})_3^+$, in which R^{20} is the residue of an alkyl group with 1 to 18 carbon atoms; or R is a monovalent residue of the formula (i)

$$\begin{array}{c|cccc}
vi & & & & & & & & \\
vi & & & & & & & \\
R^{13} & & & & & & & \\
vii & & & & & & \\
vii & & & & & & \\
vii & & & & & & \\
R^{12} & viii & & & & & \\
\end{array}$$
(i)

wherein

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_{1^-} C_{18} hydrocarbon residue, and the sum of all carbon atoms ($R^{14}+R^{15}+R^{16}$) is not greater than 18; or

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a C_{1^-} C_{18} hydrocarbon residue containing one or more atoms/groups selected

from O, N and C(O), and the sum of all carbon atoms ($R^{14}+R^{15}+R^{16}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_{1^-} C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_{17} C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18;

 R^{12} and R^{13} are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy residue, -NO₂, -NH₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C₁-C₈ alkyl) or -NHC(O)-(C₃-C₈ aryl); or

R¹² and R¹³ are attached at the positions C(vi,vii), C(vii,viii), or C(viii,ix), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^{11} in ii- or iii-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or –CN.

- 2. A consumer product comprising a compound of formula (I) as defined by claim 1.
- A process for preparing compositions which provide upon activation an olfactory compound comprising incorporating into the composition a compound of formula (I) as defined by claim 1.
- 4. A process of providing an olfactory compound to a substrate comprising the steps:
 - a) cleaving a compound of formula (I) as defined by claim 1 by hydrolysis resulting in a compound of formula (Ia); followed by
 - cleaving the compound of formula (la) of step a under activating conditions in the presence of light resulting in a coumarin (lla).

5. A compound of formula (I)

wherein the acrylic acid ester double bound is of the E configuration;

n is zero or 1;

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a $C_{1^-}C_{18}$ hydrocarbon residue, and the sum of all carbon atoms ($R^5 + R^6 + R^7$) is not greater than 18 and at least 6; or

Y is $-CR^5R^6R^7$, wherein R^5 , R^6 and R^7 are independently hydrogen or a $C_{1^-}C_{18}$ aliphatic residue containing one or more atoms/groups selected from O, N and C(O), and the sum of all carbon atoms ($R^5+R^6+R^7$) is not greater than 18; or

Y is $-CR^8 = CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a C_{1^-} C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^8 + R^9 + R^{10}$) is not greater than 18; or

Y is $-CR^8=CR^9R^{10}$, wherein R^8 , R^9 and R^{10} are independently hydrogen or a $C_{1^-}C_{18}$ hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms $(R^8 + R^9 + R^{10})$ is not greater than 18;

 R^2 and R^3 are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy residue, -NH₂, -NO₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C₁-C₈ alkyl) or

-NHC(O)-(C3-C8 aryl); or

R² and R³ are attached at the positions C(6,7), C(7,8), or C(8,9), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^4 in 2- or 3-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or –CN; and

- a) if n is zero, R is a C₂-C₂₄ hydrocarbon residue, or C₁-C₂₄ hydrocarbon residue containing one or more heteroatoms selected from N, O and Si; or
- b) if n is 1, R is a C_1 C_{25} hydrocarbon residue, a C_1 C_{25} hydrocarbon residue containing one or more atoms/groups selected from N, O, Si, and C(O), or C_1 C_{25} hydrocarbon residue substituted by an ionic substituent of the formula $N(R^{20})_3^+$, in which R^{20} is the residue of an alkyl group with 1 to 18 carbon atoms; or R is a monovalent residue of the formula (i)

$$V_{i}$$
 V_{i}
 V_{i

wherein

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a $C_{1^-}C_{18}$ hydrocarbon residue, and the sum of all carbon atoms ($R^{14}+R^{15}+R^{16}$) is not greater than 18; or

X is $-CR^{14}R^{15}R^{16}$, wherein R^{14} , R^{15} and R^{16} are independently hydrogen or a $C_{1^-}C_{18}$ hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), and the sum of all carbon atoms ($R^{14}+R^{15}+R^{16}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_1 - C_{18} hydrocarbon residue, the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18; or

X is $-CR^{17}=CR^{18}R^{19}$, wherein R^{17} , R^{18} and R^{19} are independently hydrogen or a C_{1^-} C_{18} hydrocarbon residue containing one or more atoms/groups selected from O, N and C(O), the geometry of the enol double bond is E or Z, and the sum of all carbon atoms ($R^{17} + R^{18} + R^{19}$) is not greater than 18;

 R^{12} and R^{13} are independently hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy residue, -NO₂, -NH₂, -NHCO₂CH₃, -N(C₁-C₆ alkyl)₂, -N(hydroxyalkyl)₂, -NHC(O)-(C₁-C₈ alkyl) or -NHC(O)-(C₃-C₈ aryl); or

R¹² and R¹³ are attached at the positions C(vi,vii), C(vii,viii), or C(viii,ix), and form together with the carbon atoms to which they are attached a dioxolane ring or a dioxane ring;

 R^{11} in ii- or iii-position is hydrogen, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_3 - C_6 cycloalkyl, or -CN.