

VT300 Weighbridge Indicator

Technical Manual

Table of Contents

TABLI	E OF CONTENTS	.II		
TABLI	TABLE OF FIGURESVII			
LEGA	LEGAL NOTICEVIII			
WARE	WARRANTY IX			
SAFE	TY INSTRUCTIONS	X		
DECL	ARATION OF CONFORMITY	XII		
	T THIS DOCUMENTX			
1	TECHNICAL SPECIFICATIONS			
_				
1.1	GENERAL	15		
1.2	ANALOG INPUT	16		
1.3	ANALOG OUTPUT (OPTIONAL)	16		
1.4	DIGITAL INPUT	17		
1.5	DIGITAL OUTPUTS	17		
2	INSTALLATION	18		
2.1	SITE REQUIREMENTS	18		
2.2	MOUNTING THE INDICATOR	18		
2.2.1	Desktop Model (Aluminum Enclosure)	18		
2.2.2	Wall-Mount Model (Stainless Steel Enclosure)	19		
2.3	CONNECTING LOAD CELLS	20		
2.3.1	Desktop Model (Aluminum Enclosure)	20		
2.3.2	Wall-Mount Model (Stainless Steel)	21		
2.3.3	Load Cell Operating Parameters	21		
2.4	SERIAL CONNECTIONS	22		
2.4.1	Printer and PC Cables	22		
2.4.2	RS485 Cable Connections	22		
2.5	Connecting Power	23		

3	DISPLAY, KEYS AND MENUS	24
3.1	THE DISPLAY	24
3.1.1	Status Annunciators	25
3.1.2	Common Messages Shown on the Display	25
3.2	FRONT PANEL KEYS	26
3.2.1	Using Keys to Perform Operations	26
3.2.2	Using Keys to Enter Information	27
3.3	THE MENU	27
3.3.1	Using the Menu	27
3.3.2	Menu Structure and Options Summary	28
	Main Menu	28
	Main > WEIGH	28
	Main > VFILE	29
	Main > TFILE	29
	Main > MISC	30
	Main > SYSTEM	30
	Main > SYSTEM (cont.)	31
4	CALIBRATION	32
4.1	SELECTING CALIBRATION METHOD	32
4.2	CALIBRATION WITH STANDARD WEIGHTS	33
4.2.1	Zero (Dead-Load) Calibration	33
4.2.2	Span Calibration	33
4.3	ELECTRONIC CALIBRATION (E-CAL)	34
4.3.1	Calculating Calibration Values	34
4.3.2	Setting Zero Calibration (Dead-Load) Value	35
4.3.3	Span (Max. Capacity) Calibration	35
4.4	STORING CALIBRATION DATA	35
4.5		
	LOCKING AND UNLOCKING CALIBRATION	36
4.5.1	LOCKING AND UNLOCKING CALIBRATION	
4.5.1 4.5.2		36
	Sealing Indicator Enclosure with Stickers	36 37

5.1	EDITING PARAMETERS	38		
5.2	SYSTEM > 1/2CAL > PAR MENU	39		
5.2.1	Dual-scale Connecting And Parameter Settings	41		
5.3	SYSTEM > SET > OPER			
6	SERIAL COMMUNICATION	43		
6.1	SERIAL PORTS CONFIGURATION	43		
6.1.1	RS232 Serial Port	43		
6.1.2	RS485 Serial Port	43		
6.2	SETTING PORT OUTPUT	44		
6.2.1	Setting Port 1 Output	44		
6.2.2	Setting Port 2 Output	45		
6.3	OUTPUT FORMATS	46		
6.3.1	Continuous Weight Output	46		
6.3.2	Continuous Weight Output with Dual Scale Operation	47		
6.3.3	Continuous Weight With Tare	47		
6.3.4	Alibi Transmit	49		
6.3.5	Alibi Mode Commands	49		
	Transmit Displayed Weight	49		
	Command "ZERO"	49		
	Character for Print-on-Demand	50		
6.3.6	EDP Protocol Output	50		
6.3.7	Remote Printer Output	51		
6.3.8	Master-Slave Protocol	51		
	Master-Slave Commands	53		
	Gross-Tare-Net Weight Transmission	56		
6.4	DEFAULT TICKET FORMATS	57		
6.5	Custom Ticket Formats	58		
6.5.1	Creating a Custom Ticket Format	58		
6.5.2	Downloading and Uploading Custom Ticket Formats	60		
7	OUTPUTS AND DIGITAL INPUT	62		
7.1	SPECIFICATIONS	62		
7.1.1	Digital Outputs			

7.1.2	Analog Outputs	. 62
7.1.3	Digital Input (Tilt Switch)	62
7.2	CONNECTING DIGITAL OUTPUTS AND TILT SWITCH	63
7.3	SETTING THRESHOLDS FOR DIGITAL SETPOINTS	63
7.3.1	Setpoint Options	. 64
	Setpoint On/Off Combinations	64
7.4	CONFIGURING ANALOG OUTPUT	65
7.4.1	Connecting PCB and Setting Jumper	65
7.4.2	Setting Analog Output Parameters	66
7.4.3	Calibrating D/A Converter	. 67
7.5	USING THE TILT SWITCH	68
7.5.1	Tilt Switch Options	. 68
8	SERVICE OPERATIONS AND TESTING	69
8.1	SERVICE OPERATIONS	69
8.1.1	Setting and Changing System and Operator Password (SYSTEM > PIN)	. 69
8.1.2	Setting Date, Time and Serial Number (SYSTEM > DATE)	. 70
8.1.3	Resetting Parameters (INIT)	. 70
8.1.4	Displaying Remaining Battery Capacity (WEIGH > BATTERY)	. 71
8.1.5	Checking Calibration Seal (MISC > 1/20IML)	. 71
8.1.6	Viewing Load Cell mV (TEST > CVM)	. 71
8.1.7	Viewing A/D Count (TEST > A/D)	. 71
8.1.8	Locking and Unlocking Keys	. 72
8.2	TESTING THE INDICATOR	. 72
8.2.1	Testing ROM/RAM Integrity (TEST > MEM)	. 72
8.2.2	Testing the Keypad and Display (TEST > KBD, LCD)	. 73
8.2.3	Testing Digital Input and Outputs (TEST > I/O)	. 73
8.2.4	Testing Data Received on Both Serial Ports (TEST > PORT)	. 74
9	SPECIAL WEIGHBRIDGE OPERATIONS	75
9.1	CUSTOMIZING WEIGHBRIDGE DESCRIPTIONS	. 75
9.2	Batch Weighing	. 76
10	TROUBLESHOOTING.	78

CONT	ACTING VISHAY TRANSDUCERS	86
APPE	NDIX A: TECHNICAL DRAWINGS	81
10.4	CHECKING DIGITAL OUTPUTS	80
10.3	CHECKING POWER SUPPLY	80
10.2	CHECKING LOAD CELL CONNECTION	80
10.1.4	A Alibi Memory and Accumulated Total Errors	80
10.1.3	3 Weighing and Counting Errors	79
10.1.2	? Printing and EDP Protocol Errors	79
10.1.1	Hardware and General Errors	78
10.1	ERRORS, CAUSES AND REMEDIES	78

Table of Figures

FIGURE 1 – DESKTOP MODEL, FRONT AND REAR VIEW	. 18
FIGURE 2 - WALL-MOUNT MODEL, FRONT AND REAR VIEWS	. 19
FIGURE 3 – LOAD CELL CONNECTION DIAGRAM FOR DESKTOP MODEL	. 20
FIGURE 4 – LOAD CELL CONNECTION DIAGRAM FOR WALL-MOUNT MODEL	. 21
FIGURE 5 – PRINTER AND PC CABLES CONNECTION DIAGRAM	. 22
FIGURE 6 - RS485 CABLE CONNECTION DIAGRAM	. 23
Figure 7 – Power cable connection diagram	. 23
FIGURE 8 – NON-REMOVABLE STICKER	. 36
FIGURE 9 – LEAD WIRE SEAL / HARD PLASTIC STICKER	. 36
FIGURE 10 - WALL MOUNT MODEL, SEALING INSTRUCTIONS	. 37
FIGURE 11 – DIGITAL OUTPUT AND TILT SWITCH CONNECTION DIAGRAM	. 63

Legal Notice

This manual contains information that is proprietary to Vishay Transducers Ltd. ("VT"). No part of this publication may be reproduced in any form whatsoever without prior written approval by VT.

Right, title and interest, all information, copyrights, patents, know-how, trade secrets and other intellectual property or other proprietary rights relating to this manual and to the VT300 ("the Product"), and any software components contained therein, are proprietary products of VT protected under international copyright law and shall be and remain solely with VT.

VT300 is a registered trademark of VT. No right, license, or interest to such trademark is granted hereunder, and you agree that no such right, license, or interest shall be asserted by you with respect to such trademark.

You shall not copy, reverse compile or reverse assemble all or any portion of the Manual or the Product. You are prohibited from, and shall not, directly or indirectly, develop, market, distribute, license, or sell any product that supports substantially similar functionality as the Product, based on or derived in any way from the Product. Your undertaking in this paragraph shall survive the termination of this Agreement.

This Agreement is effective upon your opening of the packaging of the Product, and shall continue until terminated. VT may terminate this Agreement upon the breach by you of any term hereof. Upon such termination by VT, you agree to return to VT the Product and all copies and portions thereof. For further information contact VT at the address below or contact your local distributor.

Warranty

Vishay Transducers warrants all instruments it manufactures to be free from defect in materials and factory workmanship, and agrees to repair or replace any instrument that fails to perform as specified within one year after date of shipment. Coverage of computers, cameras, rechargeable batteries, and similar items, sold in conjunction with equipment manufactured by Vishay Transducers and bearing the identifying name of another company, is limited under this warranty to one year after the date of shipment. The warranty on non-rechargeable batteries and similar consumable items is limited to the delivery of goods free from defects in materials and factory workmanship.

This warranty shall not apply to any instrument that has been repaired, worked on or altered by persons unauthorized by Vishay

Transducers in such a manner as to injure, in our sole judgment, the performance, stability, or reliability of the instrument; subjected to misuse, negligence or accident; or connected, installed, adjusted, or used otherwise than in accordance with the instructions furnished by us.

At no charge, we will repair, at our plant, or at an authorized repair station, or at our option, replace any of our products found to be defective under this Warrantv.

This Warranty is in lieu of any other warranties, expressed or implied, including any implied warranties of merchantability or fitness for a particular purpose. There are no warranties which extend beyond the description on the face hereof, Purchaser acknowledges that no salesman, agent, employee or other person has made any such presentations or warranties or otherwise assumed for Vishay Transducers any liability in connection with the sale of any goods to the purchase. Buyer hereby waives all rights Buyer may have arising out of any breach of contract or breach of warranty on the part of Vishay Transducers, to any incidental or consequential damages, including but not limited to damages to property, damages for injury to the person, damages for loss of use, loss of time, loss of profits or income, or loss resulting from personal injury.

Some states do not allow the exclusion or limitation of incidental or consequential damages for consumer products, so the above limitations or exclusions may not apply to you.

The Purchaser agrees that the Purchaser is responsible for notifying any subsequent Buyer of goods manufactured by Vishay Transducers of the warranty provisions, limitations, exclusions and disclaimers stated herein, prior to the time any such goods are purchased by such Buyer, and the Purchaser hereby agrees to indemnify and hold Vishay Transducers harmless from any claim asserted against or liability imposed on Vishay Transducers occasioned by the failure of the Purchaser to so notify such Buyer. This provision is not intended to afford subsequent Purchasers any warranties or rights not expressly granted to such subsequent Purchasers under the law.

Vishay Transducers reserves the right to make any changes in the design or construction of its instruments at any time, without incurring any obligation to make any change whatever in units previously delivered. Vishay Transducers' sole liabilities, and Buyer's sole remedies, under this agreement shall be limited to the purchase price, or at our sole discretion, to the repair or replacement of any instrument that proves, upon examination, to be defective, when returned to our factory, transportation prepaid by the Buyer, within the applicable period of time from the date of original shipment. Return transportation charges of repaired or replacement instruments under warranty will be prepaid by Vishay Transducers.

Vishay Transducers is solely a manufacturer and assumes no responsibility of any form for the accuracy or adequacy of any test results, data, or conclusions which may result from the use of its equipment.

The manner in which the equipment is employed and the use to which the data and test results may be put are completely in the hands of the Purchaser. Vishay Transducers shall in no way be liable for damages consequential or incidental to defects in any of its products.

This warranty constitutes the full understanding between the manufacturer and buyer, and no terms, conditions, understanding or agreement purporting to modify or vary the terms hereof shall be binding unless hereafter made in writing and signed by an authorized official of Vishay Transducers.

Safety Instructions

The following instructions serve as a general guide for the safe operation and maintenance of the VT300.

Safety Symbols

This symbol indicates potential safety hazards regarding product operation or maintenance to operator or service personnel.

General Safety Practices

Do not touch or tamper with the power supply when the power cord is connected. Line voltages may be present even when the product is powered off or a fuse is blown.

Before working on equipment connected to power lines or to other devices, remove jewelry or any other metallic object that may come into contact with energized parts.

The product is intended to be grounded during normal use. Grounding is provided by connecting the mains plug to a wall socket with a protective earth terminal. The earth lug provided on the product should be connected to the protective earth at all times, by a wire with a diameter of 18AWG or wider.

Always connect the ground first and disconnect it last. Do not connect data cables to ungrounded equipment. Make sure that all other cables are disconnected before disconnecting the ground.

Special Safety Warnings

Welding on or in the vicinity of the equipment is strictly prohibited.

Use reliable lightening conductors to prevent static loads caused by thunderstorms.

Connection of AC Mains

Make sure that the electrical installation complies with local codes. Always connect the AC plug to a wall socket with a protective ground.

The maximum permissible current capability of the branch distribution circuit that supplies power to the product is 16A. The circuit breaker in the building installation should have high breaking capacity and must operate at short-circuit current exceeding 35A.

Always connect the power cord first to the equipment and then to the wall socket. If the power cord cannot be readily disconnected in case of emergency, make sure that a readily accessible circuit breaker or emergency switch is installed in the building.

Operating Environment

Ambient Temperature	Storage temperature: -10C to +70C (14F to 158F). Operating temperature: -10C to +40C (14F to 104F).
Humidity	40% to 90% RH (non condensing).
Vibration	Severe vibration can affect the accuracy of weighing and damage components.
Air	The air surrounding the product should be dust-free and should not contain corrosive gasses or other materials that could adversely effect the product.
Electromagnetic Fields	Heavy electrical equipment should not be installed near to the weighing apparatus.
Incoming and Outgoing Signals	Relays and contacts connected to the equipment must have reliable and effective interference suppression. This also applies to other equipment within 3 meters of the equipment.

Declaration of Conformity

Non-Automatic Weighing Instrument (III)

Manufacturer	Vishay Transducers
Type/Model	VT300
EC Type Approval Certificate Number	DK 0199.62

Corresponds to the production model described in the EC Type Approval Certificate and to the requirements of the Council Directive 90/384/EEC as amended and to the requirements of the following EC Directives:

EN 45501:1994, The Metrological Aspects of Non-Automatic Weighing Machines.

EN 55022:1987, Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment.

EN 60950:1992, Safety of Information Technology Equipment.

Date	April 30, 2004
Signature	Benny Shaya, Director R&D/Operations Instruments
	Being the responsible person employed and appointed by Vishay Transducers.

About this Document

This document provides technical information for the VT300 Weighbridge Indicator. It is intended for technical staff, and explains how to install, set up and configure the indicator, as well as troubleshoot and service it.

For information on how to use the product, see the VT300 User's Guide.

Chapters and Their Contents

1	Technical Specifications	General indicator specifications; analog input/output specs; and digital input/output specs.	Pg. 15
2	Installation	Installing and connecting the indicator.	Pg. 18
3	Display, Keys and Menus	Using the VT300 display, keypad and menus; detailed outline of menus, submenus and options.	Pg. 24
4	Calibration	Performing standard weight calibration and electronic calibration.	Pg. 32
5	General System Parameters	General parameters in the SYSTEM > 1/2CAL > PAR, SYSTEM > SET > OPER and SYSTEM > PRP menus.	Pg. 38
6	Serial Communication	Setting up communication with printers, host PCs and other external devices.	Pg. 43
7	Outputs and Digital Input	Connecting and using the digital input (tilt switch), digital outputs (setpoints) and analog output.	Pg. 62
8	Service Operations and Testing	How to set a PIN number, set date and time, view load cell mV, test the keypad and display, and perform other service and testing operations.	Pg. 69
9	Special Weighbridge Operations	Customizing weighbridge descriptions, and performing batch weighings.	Pg. 75
10	Troubleshooting and Service	Errors, causes and suggested corrective actions; maintenance and service instructions.	Pg. 78

Verdana Regular text. Arial Bold Commands, keys and other parts of the user interface. Arial Italics Names of classes, methods, arguments, exceptions, properties, etc. Also used for special terms, the first time they appear. Monospace Text displayed on the LCD or on a computer attached to the product. Notes, which offer an additional explanation or a hint on how to overcome a common problem. Warnings, which indicate potential safety hazards regarding product operation

or maintenance to operator or service personnel.

1 Technical Specifications

1.1 General

СРИ	MCU 89C51RD, 64KB Flash ROM, 1KB RAM, 64KB serial EEPROM, real-time clock.
Communication	 Serial port 1: RS232C Full duplex, 2400 baud, 1 start, 7 data bits/even parity or 8 data bits/no parity.
	• Serial port 2: (optional): RS232 or RS485 half duplex, 2400-57600 baud, no or even parity, 7 or 8 data bits.
Display	16 character LCD display (14.5mm height).
Annunciators	Net, no motion, minus sign, zero, range 1 and 2.
Keyboard	27-key membrane type with tactile feedback.
Approvals	EU type approval, 10,000 divisions, 0199.62.
Accuracy class	III.
Resolution	Selectable up to 990.000dd (in accordance with regulations).
Max tare effect	Full scale (100%).
Auto zero track	Off or 0.5dd, setup-selectable.
Weight digits	4, 5 or 6.
Weight steps	1, 2, 5, 10, 20, 50, 100, 200.
Digital filter	FIR automatically adjusted to conversion speed, plus post filtering (rolling average of 1, 2, 4, 8, 16, 32 samples).
Calibration methods	Dead load, span and scale parameters via keyboard commands. Calibration can be performed either by weighing or by entering load cell mV values.
Self diagnostics	Hardware and software – MCU watchdog. Memory failure and I/O failure – program check.

Analog Input

1.2 Analog Input

A second analog input may be added as an option, if no analog output is needed. The same specifications apply.

Load cell excitation	±5V switched polarity or +5VDC with sense.
Connection	6-wire technique. Max 10 load cells, 3500hm each.
Signal range	-0.25 to 1.75mV (Gain=10), -0.25 to 3.75mV (Gain=20).
Sensitivity	• Approved scales: min 0.4µV / digit (VSI).
	• Non-approved scales: min 0.1µV / digit.
Input amplifier	Input noise 0.3µVp-p, input bias current 10nA typical.
A/D Converter	Sigma delta 550.000 internal counts max. Conversion speed: 3, 7, 14, 28, 57, 70Hz (selectable).
Linearity	Within 0.002% of full scale.
Span temp coefficient	≤ 2ppm/°C.
Zero temp coefficient	≤ 2ppm/°C.
Long-term stability	0.005% of full scale per year.

1.3 Analog Output (Optional)

If no analog output is needed, a second analog input may be added (see 1.2 above). Analog Output is Powered by an external 24VDC (See section 7.1.2 for specification).

Current or voltage	Selected via jumper JP1 on printed circuit board 761 (see section 7.4.1).	
Current output	0-20mA or 4-20mA. Max load resistance 1K Ω (line + termination).	
Voltage output	$0.02\text{-}10\text{V}$. Min load resistance $1\text{K}\Omega$.	
Resolution	Internal: 16 bits.	
	External: 16 bits, or in accordance with regulation.	
Linearity	Better than 0.01% of FSR.	
Thermal stability	50ppm/°C typical.	
Short-circuit protection	25mA indefinite duration.	

1.4 Digital Input

Input voltage	9-24VDC, positive common, optoisolated to 2.5kV.	
Input resistance	3.3ΚΩ.	
On delay	2msec max.	
Off delay	2msec max.	

1.5 Digital Outputs

Output voltage	24VDC ±10% transistor (source) darlington, positive common.	
Max current	100mA, leakage current 100μA.	
Max off-state voltage	30VDC.	
On delay	2msec max.	
Off delay	2msec.	

Site Requirements

2 Installation

2.1 Site Requirements

The mounting location must be a stable surface, free of vibrations, heat or humidity. Avoid direct sunlight on the front of the instrument. The unit should be placed at the correct height to allow easy reading of the display and convenient keyboard operation.

2.2 Mounting the Indicator

2.2.1 Desktop Model (Aluminum Enclosure)

All connections to the instrument are made through the rear panel connectors. Strain-relief clamps should be used. The shield should be connected to the metal frame of the connector. The rear of the VT300 desktop model is shown in Figure 1.

Figure 1 – Desktop model, front and rear view

Mounting the Indicator

2.2.2 Wall-Mount Model (Stainless Steel Enclosure)

Front and rear views of the unit are shown in Figure 2.

Figure 2 - Wall-mount model, front and rear views

→ To connect the indicator to the stainless steel wall-mount:

- 1. Remove the rear panel and lift it carefully.
- 2. Insert the cables via the cable glands. Strip and connect the cables, as detailed in sections 2.3, 2.4 and 2.5.
- 3. Connect the cable shield, either between the plastic and the metal case of the cable glands, or to the screws supporting the PCBs.
- 4. Re-install the rear panel.

Connecting Load Cells

2.3 Connecting Load Cells

2.3.1 Desktop Model (Aluminum Enclosure)

Use $6 \times 0.5 \text{mm}^2$ shielded cable for load cell connections. Connect the load cells according to the diagram below.

Figure 3 – Load cell connection diagram for desktop model

Connecting Load Cells

2.3.2 Wall-Mount Model (Stainless Steel)

Use 6 \times 0.5mm² shielded cable for load cell connections. Connect the load cells according to the diagram below.

Figure 4 – Load cell connection diagram for wall-mount model

2.3.3 Load Cell Operating Parameters

The load cell utilization ranges are listed in the table below.

Excitation	5VDC, fixed or alternating polarity (setup-selectable) for 10 load cells of 350Ω each.
Gain / input ranges	• For load cell output of 10mV, gain permitted is between -0.25 and 1.75mV/V.
	• For load cell output of 20mV, gain permitted is between -0.25 and 3.75mV/V.
	The load cells must be chosen so that the input signal to the controller is at least $0.4\mu V$ per scale increment. For load cell output less than $0.4\mu V$ /digit, the controller will still be stable but the full temperature range accuracy is not guaranteed.

Do not run signal cables together with power cables. Connect the shielding only where indicated in the drawing. Never use a Megger to check wiring. Never use plastic insulating tape on load cell connections.

Serial Connections

2.4 Serial Connections

- For RS232C connection, use 3 x 0.34mm² shielded cable.
- For RS485 connection, use 2 x 0.34mm² shielded twisted pair cable.

2.4.1 Printer and PC Cables

Figure 5 – Printer and PC cables connection diagram

Only the aluminum enclosure has a DB9 connector. The steel enclosure has a screw terminal on the internal card, to which you should attach the individual wires.

2.4.2 RS485 Cable Connections

The terminal block on the RS485 board enables connecting two pairs of wires (A, B):

- One wire pair for connecting the incoming cable.
- A second wire pair for a daisy-chain connection to the next unit on the RS485 bus.

Connecting Power

The RS485 cabling configuration is illustrated in Figure 6 below.

Figure 6 – RS485 cable connection diagram

2.5 Connecting Power

VT300 indicators are powered by 85-265VAC, via an internal power supply board. The mains power cable is supplied with the instrument.

Power should be isolated from other data processing equipment.

Verify that the AC power socket outlet is properly protected. For optimum EMC performance, keep the length of cable shielding inside the enclosure as short as possible.

Figure 7 – Power cable connection diagram

3 Display, Keys and Menus

The VT300 front panel can be divided into four areas:

- A sixteen-character dot matrix display shows weight information, status information, and the names of menus and functions.
- The function keypad, with ten orange keys, allows you to turn the unit on and off and perform the most common operations.
- A navigation area (to the right of the display) allows you to access and navigate the menu, which contains more advanced operations.
- An alphanumeric keypad, with 12 green keys, allows you to enter numbers and letters.

3.1 The Display

The VT300 has an LCD display. There are three status annunciators on the left of the display and two more on the right of the display. Small dots (*status annunciators*) may appear next to one or more of these, to show status information such as whether the scale has been tared or not.

3.1.1 Status Annunciators

There are several icons at the left of the display. A dot shows up next to these to indicate the current status of the scale or indicator. Status annunciators are often important to understand what is being shown on the display.

14	Stable	Active – the scale is stable (necessary for ZERO , T and PRINT). Inactive – the scale is not stable.
-0 -	Center of Zero	Active – the current weight is at center of zero (or at manual zero). Inactive – the scale is above or below center of zero.
NET	Net Weight	Active – the display is showing net weight. Inactive – the display is showing gross weight.
S1	Scale 1	Appears on the right of the display to show that the indicator is set to scale 1.
S 2	Scale 2	Appears on the right of the display to show that the indicator is set to scale 2.
S0	Sum of Scales	Appears on the right of the display to indicate that the display shows the sum of the weight on scales 1 and 2.
W1		The scale is currently in weight range 1.
W2		The scale is currently in weight range 2.

3.1.2 Common Messages Shown on the Display

Message type	Meaning
352.0	Weight of the item on the scale.
24509	Approximate number of units on the scale.
319.0 (NET active)	Net weight, or number of units calculated after subtracting the container's weight.
OVER RANGE	Over range. The item on the scale weighs more than the maximum capacity of the scale, or the load cell signal is too high.
UNDER RANGE	Under range. The item on the scale weighs less than the minimum capacity of the scale, or the load cell signal is too low.
E15: PWRUP ZERO	An error has occurred (see section 10.1.1). In some cases, you can ignore the error and continue working by pressing ESC .
xxxxxx	Software model number, shown during the power-up sequence.
xxxxxx	Software version issue date, shown during the power-up sequence.
ZERO SCALE	Automatic zeroing, performed at the end of the power-up sequence.

Other types of messages may be shown when you perform specific operations, such as editing the tare value or displaying battery status.

25

Front Panel Keys

3.2 Front Panel Keys

The keys on the VT300 front panel can serve two functions:

- Performing common operations and accessing the menu.
- Entering alphanumeric information.

3.2.1 Using Keys to Perform Operations

Key	Description	Related operations	Refer to
ZERO →0←	Press to zero the scale*. Only works within the zero range.	Manual zeroing	User's Guide, section 3.1
TARE → T ←	Press once to tare the scale*. Press again to view gross weight.	Taring using current weight	User's Guide, section 3.2
P.TARE	Press to enter a preset tare. Enter the tare value using the alphanumeric keypad and press ENTER . To cancel and view gross weight, press ESC .	Preset tare	User's Guide, section 3.3
PRINT	When you press this key, the current weight* is printed to the printer, output to an attached computer, and added to the accumulated total.	Printing	Section 6.2.1
PCS	Press to switch between Weighing Mode and Counting Mode.	Counting pieces, weighing	User's Guide, chapters 4, 6
ON/OFF	Press to turn the indicator on, or to switch it off when it is running.	Starting the indicator	-
WEIGHT	Press to perform a first weighing of a vehicle with unknown tare.	Weighing, printing	User's Guide, section 5.1.2
WEIGHT 2	Press to weigh a vehicle with known tare, or to perform a second weighing.	Weighing, printing	User's Guide, chapter 5
SCALE A	Toggles between scale 1, scale 2 and the sum of both scales (if two scales are connected).	Two-scale operation	-
MENU	Enters the menu. The arrows around this button allow menu.	you to navigate the	Section 3.3
ESC	Cancels the current operation, exits a menu or exits a mode.	-	-

 $^{\ ^{*}}$ If the scale is not stable, the current weight cannot be used for this operation.

3.2.2 Using Keys to Enter Information

Key	Description
0-9	Press a key to enter a digit. When you enter a second digit, the first digit moves to the left and the new digit takes its place. If you make a mistake, press CE to clear the display.
	Press a key twice or more, quickly, to toggle the letters assigned to that key. For example, to enter the letter 'b', press 7 / abc three times quickly (the first time shows the number 7). To enter 'c', press 7 / abc four times.
ENTER	Confirms the current operation or the information entered.
CE	Clears the characters entered.

3.3 The Menu

The menu, accessed by pressing the **MENU** key (), allows you to perform advanced operations like high-resolution weighing, printing and viewing alibi memory.

This subchapter explains how to use the menu and provides a summary of its functions. All operations are explained in more detail further in this document.

3.3.1 Using the Menu

- → To access a function on the menu:
- 1. Press the **MENU** button, located to the right of the display.
- 2. Use the \triangle and ∇ arrows to scroll through the menu options.
- 3. Press **ENTER** to drill down into a submenu. You can then use the ▲ and ▼ arrows to scroll through the menu or submenu options.
- 4. Press **ESC** to return to a higher menu or submenu level.
- 5. When you reach the desired menu option, press **ENTER** to confirm.

The Menu

3.3.2 Menu Structure and Options Summary

Main Menu

Menu option	Description	Refer to
WEIGH	Weighing options.	Section 3.3.2, MAIN > WEIGH
VFILE	V-File and weighbridge options.	Section 3.3.2, MAIN > VFILE
TFILE	Accumulated total options.	Section 3.3.2, MAIN > TFILE
MISC	Viewing calibration lock, viewing battery status, switching weight display to high resolution.	Section 3.3.2, MAIN > MISC
SYSTEM	Editing date, setting PINs, general parameters, calibration, analog output settings, communication settings, ticket customization, weighbridge customization, tilt switch settings, setpoint settings, test operations.	Section 3.3.2, MAIN > SYSTEM

Main > WEIGH

Menu option	Submenu option	Description	Refer to
BATCH WEIGH	-	Prints a series of truck weighings as a unified ticket.	Section 9.2
PCS CNT	-	Switches to Counting Mode.	User's Guide, chapter 6
SETP	-	Shows setpoint values and allows editing.	Section 7.3.1
COPY	-	Copies last weighing ticket.	User's Guide, section 7.1.1
ALIBI	VIEW	Shows or prints specific alibi memory records.	User's Guide, section 8.1
	PRINT	Prints entire alibi memory.	User's Guide, section 8.2
	CSUM	Alibi memory functions.	User's Guide, section 8.3

Main > VFILE

Menu options	Submenu options	Description	Refer to
PRINT	TARE	Prints all truck tare values.	User's Guide, section 9.2.1
	FIRST	Prints all first weighings.	User's Guide, section 9.2.2
	ALL	Prints the entire V-File.	User's Guide, section 9.2.3
	SELECT	Prints a record for a specific truck.	User's Guide, section 9.2.4
EDIT TARE	-	Creates a new vehicle record.	User's Guide, section 9.1
CSUM	•	Checks V-File memory.	User's Guide, section 9.3
DEL	TARE	Deletes all truck tare values.	User's Guide, section 9.4
	FIRST	Deletes all first weighings.	User's Guide, section 9.4
	ALL	Deletes the entire V-File.	User's Guide, section 9.4
	SELECT	Deletes a record for a specific truck.	User's Guide, section 9.4
SIZE		Shows the number of records stored in the V-File, and space available.	User's Guide, section 9.5

Main > TFILE

Menu option	Description	Refer to
STOT	Subtotal of net weights. Press PRINT to print, CE to reset.	User's Guide, section 4.3.2
TOTAL	Accumulated total of net weights. Press PRINT to print, CE to reset.	User's Guide, section 4.3.2

The Menu

Main > MISC

Menu option	Description	Refer to
INFO	Displays the indicator model and serial number.	-
10IML	Displays the audit trail counter for scale 1.	Section 4.5.3
20IML	Displays the audit trail counter for scale 2.	Section 4.5.3
BATTERY	Displays remaining battery capacity as % of max capacity.	Section 8.1.4
HIGH RES	Increases the weight display resolution 10 times.	User Guide, section 4.2

Main > SYSTEM

Menu option	Submenu option	Description	Refer to
SYSTEM	DATE	Allows editing date, time and serial print number (user password protected).	Section 8.1.2
PIN	PIN SYS	Setting and changing system password.	Section 8.1.1
	PIN OPER	Setting and changing operator password.	Section 8.1.1
PRP		Contains one parameter: S.EMPTY .	Chapter 5
display digit	Scale 1 parameters, including number of display digits, position of decimal points, A/D gain, zero range.	Section 5.2	
	ZERO	Dead-load calibration (standard or electronic) for scale 1.	Sections 4.2.1, 4.3.2
	SPAN	Maximum weight calibration (standard or electronic) for scale 1.	Sections 4.2.2, 4.3.3
	INIT	Resets calibration parameters for scale 1.	Section 8.1.3
	WRITE	Stores scale 1 calibration parameters in persistent memory.	Section 4.4
2CAL	PAR	Scale 2 parameters.	Section 5.2
	ZERO	Dead-load calibration for scale 2.	Sections 4.2.1, 4.3.2
	SPAN	Maximum weight calibration for scale 2.	Sections 4.2.2, 4.3.3
	INIT	Resets calibration parameters for scale 2.	Section 8.1.3
	WRITE	Stores scale 2 calibration parameters in persistent memory.	Section 4.4

Main > SYSTEM (cont.)

Menu option	Submenu option	Description	Refer to
D/A CAL	-	Analog output parameters, including current/voltage, net/gross, resolution.	Section 7.4.2
SET	OPER	Operational parameters, including data format, display brightness, custom print formats enable/disable, totalizer enable/disable.	Section 5.3
	1COM	Output format and parameters for communication port 1.	Section 6.2.1
	2COM	Output format and parameters for communication port 2.	Section 6.2.2
	INIT	Resets all parameters in the SET menu.	Section 8.1.3
	FORM (DOWNLOAD, DEFAULT)	Downloads custom ticket formats and resets ticket formats to default.	Section 6.5
	REFR (EDIT)	Allows viewing and editing weighbridge descriptions.	Section 9.1
	TILT	Tilt switch settings.	Section 7.5
	SETP	Allows viewing and editing setpoint values (both setpoints).	Section 7.3.1
	LOCK KEY	Allows locking and unlocking keys on the keypad.	Section 8.1.8
TEST	A/D	Shows A/D converter count.	Section 8.1.7
	CVM	Shows load cell mV output.	Section 8.1.6
	I/O	Tests outputs and digital input.	Section 8.2.3
	KBD	Tests keypad.	Section 8.2.2
	LCD	Tests display.	Section 8.2.2
	MEM	Tests ROM/RAM integrity.	Section 8.2.1
	PORT	Tests communication ports.	Section 8.2.4

Selecting Calibration Method

4 Calibration

Before you can calibrate the scale, you must ensure that jumper JP1 is not in the sealed position (see section 4.5). You must also select a calibration method, using the **CAL MODE** scale parameter (see section 4.1). The following methods are available:

- Standard weights calibration, in which you record the center of zero, and then place a known weight on the scale and enter its weight (see section 4.2).
- Electronic calibration, in which you enter the mV value of the minimum and maximum weight (see section 4.3).

Calibration (either standard or electronic, depending on your **CAL MODE** selection) is performed using the **SYSTEM** > **1CAL** or **SYSTEM** > **2CAL** menu.

If you have two scales connected to the indicator, each scale has its own calibration parameters; all the parameters in the **1CAL** menu relate to scale 1, while all the parameters in the **2CAL** menu relate to scale 2.

After calibrating the scale, you must store calibration data in persistent memory (see section 4.4), and seal the calibration lock (see section 4.5).

4.1 Selecting Calibration Method

Before calibrating the scale, you should select the calibration method – standard or electronic – using the instructions below.

- **→** To select a calibration method:
- 1. Press **MENU** and navigate to the **SYSTEM** > **1CAL** > **PAR** menu. Or, if you want to set the calibration method for scale 2, navigate to **SYSTEM** > **2CAL** > **PAR**.
- 2. Scroll through the parameters until you reach **CAL MODE**. Press **ENTER**.
- Use ▲ and ▼ to select one of the options:
 - WEIGHT standard weight calibration.
 - **ELECTR** electronic calibration.
- 4. Press ENTER to confirm your selection.
 - If you selected **WEIGHT**, proceed to section 4.2 to perform standard calibration.
 - If you selected **ELECTR**, proceed to section 4.3 to perform electronic calibration.

Calibration with Standard Weights

4.2 Calibration with Standard Weights

To perform calibration with standard weights, you must set the **CAL MODE** scale parameter to **WEIGHT** (see section 4.1).

Calibration with standard weights is done in two stages:

- Zero calibration, in which you take a weight measurement when there is nothing on the scale (see section 4.2.1). This is also called dead-load adjustment.
- Span calibration, in which you place a known weight on the scale, and manually enter its correct weight (see section 4.2.2).

You must perform both of the above for the scale to be calibrated properly.

After calibrating the scale, you must save the values in permanent memories by entering the setup menus and selecting the **WRITE** option (see section 4.4). It is also advised to lock calibration (see section 4.5).

4.2.1 Zero (Dead-Load) Calibration

- **→** To perform zero calibration:
- 1. Press **MENU** and navigate to **SYSTEM** > **1CAL** > **ZERO**. Or, if you wish to calibrate scale 2, navigate to **SYSTEM** > **2CAL** > **ZERO**.
- 2. Press **ENTER**. The display shows EMPTY SCALE. Clear the scale, and wait about 10 seconds.
- 3. Press **ENTER** to record the zero position. The display shows WAIT... as 64 measurements are taken and an average calculated. This should take about 10 seconds.
- 4. The display should now show 0. If the zero point is not accurate, press **ESC** and go back to step 1.

4.2.2 Span Calibration

- **→** To perform span calibration:
- 1. Press **MENU** and navigate to **SYSTEM** > **1CAL** > **SPAN**. Or, if you wish to calibrate scale 2, navigate to **SYSTEM** > **2CAL** > **SPAN**.
- 2. Press **ENTER**. The display shows WEIGHT, followed by the maximum capacity of the scale. Enter the correct calibration weight using the numeric keypad.
- 3. Press ENTER to confirm the calibration weight. The display shows LOAD SCALE.
- 4. Place the calibration weight on the scale, and wait about 10 seconds.
- 5. Press **ENTER**. The display shows WAIT... as 64 measurements are taken and the span coefficient calculated. This should take about 10 seconds.
- 6. Span calibration is now complete. If the weight shown is not accurate, press **ESC** and go back to step 1.

Electronic Calibration (E-CAL)

4.3 Electronic Calibration (E-CAL)

To perform electronic calibration, you must set the **CAL MODE** scale parameter to **ELECTR** (see section 4.1).

Electronic calibration involves setting two values, using the indicator keypad:

- The signal level in mV, corresponding to the zero, or dead-load point (see section 4.3.2).
- The signal level in mV, corresponding to the maximum capacity of the scale (see section 4.3.3).

To learn how to calculate these values from the load cell specifications provided by the manufacturer, see section 4.3.1 below. You must perform both of the above for the scale to be calibrated properly.

After calibrating the scale, you must save the values in permanent memories by accessing the calibration menu and selecting **WRITE** (see section 4.4). It is also advised to lock calibration (see section 4.5).

4.3.1 Calculating Calibration Values

Consider the following example. A scale has maximum capacity 30/60kg, e=0.010/0.020kg, with 4 load cells, each with rated capacity 50kg (2mV) and dead load 1.940kg. The load cell data, as noted in the manufacturer data sheet, is shown in the following table.

Load cell	Output at 50kg	Zero balance	
L/C1	1.9793mV	0.0257 mV	
L/C2	1.9392mV	0.0276 mV	
L/C3	1.9577mV	0.0553 mV	
L/C4	1.9640mV	-0.0022 mV	

→ To calculate the dead-load and span calibration values:

- 1. Calculate an average of the load cells' rated output. In the example above, this equals (1.9793+1.9392+1.9577+1.9640)/4=1.9600mV.
- 2. Calculate the combined output of the load cells when the scale is at maximum capacity. In the example above, this equals 1.9600x60/4x50=**0.5880mV**. This is the *span calibration value*.
- 3. Calculate an average of the load cells' zero balance. In the example above, this equals [0.0257+0.0276+0.0553+(-0.0022)]/4=0.0266mV.
- 4. Calculate the scale dead-load. In the example above, this equals $1.9600 \text{mV}^*[1.940 \text{Kg}/(4*50 \text{Kg})] = 0.0190 \text{mV}$.

5. Calculate the overall dead-load by adding together the load cell zero balance and the scale dead-load (calculated in step 4). In the example above, this equals 0.0266+0.0190=**0.0456mV**. This is the *dead-load calibration value*.

4.3.2 Setting Zero Calibration (Dead-Load) Value

- **→** To set the zero calibration value electronically:
- 1. Press **MENU** and navigate to **SYSTEM** > **1CAL** > **ZERO**. Or, if you wish to calibrate scale 2, navigate to **SYSTEM** > **2CAL** > **ZERO**.
- 2. Press ENTER. The display shows DEAD LOAD: 00000.
- 3. Enter the overall mV of the dead-load, using the numeric keypad (see section 4.3.1 to learn how to calculate it).
- 4. Press **ENTER** to record the zero calibration value. The display shows the corresponding weight.

4.3.3 Span (Max. Capacity) Calibration

- **→** To set the span calibration value electronically:
- Press MENU and navigate to SYSTEM > 1CAL > SPAN. Or, if you wish to calibrate scale 2, navigate to SYSTEM > 2CAL > SPAN.
- 2. Press ENTER. The display shows L/C OUT: 00000.
- 3. Enter the overall mV of the scale's maximum capacity, using the numeric keypad (see section 4.3.1 to learn how to calculate it).
- 4. Press **ENTER** to confirm the maximum capacity calibration value. The display shows the corresponding weight.

4.4 Storing Calibration Data

After calibrating the scale (using either standard or electronic calibration), calibration data is stored in volatile memory only, and so it is lost when the indicator powers down. To store the calibration data permanently, follow the procedure below.

→ To store calibration data:

- 1. Press **MENU** and navigate to **SYSTEM** > **1CAL** > **WRITE**. Or, if you calibrated scale 2, navigate to **SYSTEM** > **2CAL** > **WRITE**.
- 2. Press ENTER. The display shows O.K.? AE=Y, CE=N.
- 3. Press **ENTER** to confirm. Calibration data is stored in persistent memory, and the indicator restarts.

Locking and Unlocking Calibration

4.5 Locking and Unlocking Calibration

An internal jumper (JP1, located on the main printed circuit board next to the analog circuit) must be removed to allow access to configuration and calibration parameters. One way to seal the indicator is to prevent access to this jumper. This is done by placing a brittle plastic sticker over one of the screws that keeps the cabinet closed.

The indicator also has an *Audit Trail Counter*, which is incremented every time weight parameters or calibration data are changed, regardless of whether the change was saved in EEPROM or not. This counter allows the authorities to check if any calibration attempt has been made since the last inspection.

A label with an inscribed count (all digits are permanently printed and suffixed by a hyphen) is placed on the rear side of the instrument. The label is designated CAL-Nr, and may not be removed without destroying it.

Seals bear the verification mark of a notified body, or an alternative mark of the manufacturer, according to Annex II, section 2.3 of Directive 90/384/EEC.

4.5.1 Sealing Indicator Enclosure with Stickers

After calibration, you can seal the indicator with two stickers:

- A non-removable label, to prevent unauthorized opening of the indicator enclosure (Figure 8)
- A lead wire seal or hard plastic sticker, to prevent unauthorized tampering with the load cell connector (Figure 9)

Figure 8 - Non-removable sticker

Figure 9 – Lead wire seal / hard plastic sticker

Locking and Unlocking Calibration

→ To seal the indicator:

■ For the wall-mount (stainless steel) model, refer to Figure 10 below.

Figure 10 - Wall mount model, sealing instructions

■ For the desktop (aluminum) model, either apply a non-removable sticker to the load cell connector and to the left edge of the front panel; or fix a lead seal to the load cell connector on one end, and to the left edge of the front panel on the other end.

4.5.2 Securing Load Receptor

You can inscribe the serial number of the load receptor as part of the indicator identification label.

The load receptor bears the serial number of the indicator on its data plate.

4.5.3 Checking Seal Status and Audit Trail Counter

In order to check whether the jumper is still in the sealed position, and that the audit trail counter has not changed.

- → To check seal status and audit trail counter:
- 1. Press **MENU** and navigate to **MISC** > **10IML**. Or, if you want to check scale 2, navigate to **MISC** > **20IML**.
- 2. Press **ENTER**. If JP1 is currently in the sealed position, the word SEALED appears on the display briefly. Following this, the audit trail counter is displayed.

Editing Parameters

5 General System Parameters

Several submenus in the **SYSTEM** menu provide access to general system parameters, which affect how the scale operates:

- The SYSTEM > 1/2CAL > PAR menu contains parameters including the number of display digits, the position of the decimal point, the A/D gain and the zero range (see section 5.2).
- The **SYSTEM** > **SET** > **OPER** menu contains parameters that effect user operations. For example, if allows you to enable and disable the totalizer and alibi memory storage; specify LCD brightness; specify auto power-off time delay, etc. (see section 5.3).
- The SYSTEM > PRP menu contains one parameter, S.EMPTY. This parameter defines the maximum weight, in kilograms, that will be considered as "empty" by the indicator.

If you have two scales connected to the indicator, parameters you define in the latter two menus (OPER and PRP) apply to both of them. Parameters you define in SYSTEM > 1CAL > PAR refer to scale 1 only, and parameters defined in SYSTEM > 2CAL > PAR refer to scale 2 only.

Other menus allow you to calibrate the scale (see chapter 4); set communication parameters (see chapter 6); and set input/output parameters (see chapter 7).

5.1 Editing Parameters

- → To edit parameters in one of the menus:
- 1. Press **MENU** and navigate to the menu you need, using ▲ and ▼. To enter the menu press **ENTER**. To return to a higher menu press **ESC**.
- 2. The names of parameters are shown on the display. Use ▲ and ▼ to scroll to the parameter you wish to edit.
- 3. To edit the parameter, do one of the following:
 - If the parameter has two or more preset values, the display will show the current value (e.g. YES). Use ◀ and ▶ to scroll to the value you need, and press ENTER to confirm it.
 - If the parameter is numeric, enter a new value using the numeric keypad. Press **ENTER** to confirm the new value.
- 4. If the parameter is in the 1CAL > PAR or 2CAL > PAR menu, you must perform a WRITE operation to save the new settings to persistent memory (see section 4.4).

5.2 SYSTEM > 1/2CAL > PAR Menu

#	Parameter	Description	Values	
00	2SCL ENABLE (only appears in 1CAL menu)	Scale 2 enable. Activates the second scale input. This option only appears in the 1CAL menu. If set to NO, parameters in the 2CAL menu are ignored.	YES, NO	
01	S1+S2 ENABLE (only appears in 2CAL menu) *	Sum of two scales. YES specifies that the key should toggle between scale 1 weight, scale 2 weight and the sum of both scales. NO specifies that the key should only toggle between scale 1 weight and scale 2 weight.	YES, NO	
02	DISP.DIGITS	Number of display digits.	4, 5, 6	
03	DEC.POINT *	Number of digits after decimal point . Defines the position of the decimal point.	0-5	
04	SCALE DIV. *	Display resolution.	1, 2, 5, 10, 20, 50, 100, 200	
05	WEIG.RANGE	Two most significant digits of full load.	00-99	
06	DIG. FILTER	Digital filter . If x is entered, filter averages 2^x samples. 0 is considered low, 3 is normal and 5 is high.	0-5	
07	CONV. RATE *	Number of conversions per second. If there are two scales connected, the sum of their conversion rates (6P+6P) must be less than 70. Otherwise the unit sets CONV.RATE=14 for each scale.	3, 7, 14, 28, 57, 70	
08	MOTION SAMPLES	No-motion samples. Number of samples for no-motion detection. 1 is considered low; 7 is considered high.	1-7	
09	AUTO Z TRACK	Auto-zero tracking , with a maximum of 0.5 display divisions per second.	YES, NO	
10	INIT ZERO	Auto-zero at power up . If enabled, sets the instrument to zero on power-up. It the starting weight is outside the zero range, E.15 is displayed (see chapter 10).	YES, NO	
11	DUAL FILTER	Dual digital filter (anti-flicker). The digital filter increases automatically when the scale is not in motion.	YES, NO	
12	A/D AUTO CON	Automatic clearing of A/D converter errors. NO specifies that, when the A/D converter is enabled, errors are automatically cleared when the cause is no longer present. YES specifies that A/D converter errors should remain on the display until the operator presses ESC.	YES, NO	
13	BATTERY	Battery conversion. Enables battery conversion, for battery-powered models.	YES, NO	

SYSTEM > 1/2CAL > PAR Menu

#	Parameter	Description	Values
14	LEAD Z BLANK	Leading zero blank . Enables and disables leading zeroes in the display.	YES, NO
15	A/D GAIN	Load cell amplifier gain adjustment (A/D Gain) 2mV/V setting allows maximum utilization of 1.75mV/V. 4mV/V setting allows maximum utilization of 3.75mV/V.	10=2mV/V (1.75mV/V utilization) 20=4mV/V (3.75mV/V utilization)
16	AC EXC.	AC/DC excitation. YES specifies polarity should be switched at a rate determined by the conversion rate. Switching excitation results in a more stable zero. NO sets load cell excitation to DC.	YES=AC NO=DC
17	ZERO RANGE	Zero range . The zero range can be set to 2% or 10% of maximum capacity.	2%, 10%
18	DUAL MODE *	Dual interval or range. INTERV specifies that the lower display division should be selected at the defined internal value. RANGE specifies that the lower display division should be selected at zero weight.	INTERV, RANGE
19	DUAL RANGE	First two digits defining the limit between the two ranges where the lower display division will be selected automatically (Max1).	00 - 99
20	PR. BELOW MIN	Do not print weights below minimum. YES specifies that weights below 20 scale divisions should not be printed. NO specifies that weights below 20 scale divisions should be printed.	YES, NO
21	CAL MODE	Calibration method. Sets calibration to standard weights (WEIGHT) or electronic (ELECTR). This affects the calibration dialogs 1/2CAL > ZERO and 1/2CAL > SPAN.	WEIGHT, ELECTR.
22	UNIT SELECT	Unit selection. Specifies unit used for measurement: kilograms or pounds.	KG, LB

 $[\]boldsymbol{*}$ Refer to Section 5.2.1 for how to set parameters when using two scales.

Values

5.2.1 Dual-scale Connecting And Parameter Settings

- **→** To connect and set up VT300 for dual-scale operations:
- 1. Set parameter **2SCL ENABLE(00)** to YES, **DUAL RANGE(19)** to 00, and **CONV.RATE (07)** to a value less than 70.
- 2. Ascertain that the first scale is calibrated and working properly.
- Connect the second scale to ST5, 7 pins socket in the one side and in the other side using the mounting posts/spacers provided to:
 Stainless Steel Enclosure The main board.
 Aluminum Enclosure To the indicator's rear panel.
- 4. Ascertain that the Scale 2 values for parameters **DEC.POINT (02)** and **SCALE.DIV (03)** are the same as those for Scale 1.
- 5. After checking that the **S2** annunciator is on,(switching with the **SCALE** key) calibrate the second scale.
- 6. The device is now ready to work in dual-scale mode.

December

7. Use the **SCALE** key for switching between Scale1(**S1** on the display), Scale2(**S2** on the display) or sum of Scale1 and Scale2(**S0** on the display).

5.3 SYSTEM > SET > OPER

Parameter	Description	Values
TOTALIZING M	Enable totalizer . YES enables the accumulated total function for users. NO disables it.	YES, NO
WEIGHING MEM	Store first weighing in memory. If set to NO, first weighing information is discarded and cannot be accessed through the FIRST submenu in the VFILE menu.	YES, NO
REFR CODE	Number of descriptions for weighbridge operations. Specifies the number of descriptions (reference codes) the user is prompted for during first and second weighings. By default these are VEHICLE, CLIENT and PRODUCT. If set to 0, weighbridge descriptions are disabled	0-4 0=disable descriptions
	altogether. In any event, only the first two descriptions are stored in memory.	
CODE MEM	Remember last weighbridge description. Specifies whether or not the first and second weighing dialogs should display, for each description such as VEHICLE and CLIENT, the value entered by the user in the previous weighing operation.	YES, NO
	TOTALIZING M WEIGHING MEM REFR CODE	TOTALIZING M Enable totalizer. YES enables the accumulated total function for users. NO disables it. WEIGHING MEM Store first weighing in memory. If set to NO, first weighing information is discarded and cannot be accessed through the FIRST submenu in the VFILE menu. REFR CODE Number of descriptions for weighbridge operations. Specifies the number of descriptions (reference codes) the user is prompted for during first and second weighings. By default these are VEHICLE, CLIENT and PRODUCT. If set to 0, weighbridge descriptions are disabled altogether. In any event, only the first two descriptions are stored in memory. CODE MEM Remember last weighbridge description. Specifies whether or not the first and second weighing dialogs should display, for each description such as VEHICLE and CLIENT, the value entered by the user in the previous

SYSTEM > SET > OPER

#	Parameter	Description	Values
05	WAIT UNLOAD	Wait for weight to unload before printing again.	YES, NO
		YES specifies that after printing, the indicator should not allow the user to print again, until the scale has been unloaded.	
		NO specifies that the user should be able to print again, even if the scale has not been unloaded.	
06	1stW PRINT	Print first weighing ticket automatically.	YES, NO
		YES specifies that the first weighing data should be automatically printed.	
		NO specifies that the user should be prompted to print the first weighing ticket, and will have the option of canceling the printing.	
		Regardless of what is selected here, first weighing data is saved to memory, unless WEIGHING MEM =NO.	
07	USER FORMS	Custom weighbridge descriptions and printing formats.	YES, NO
	YES specifies that service personnel should be able to define custom weighbridge descriptions (reference codes) and custom print formats.		
		NO specifies that only the default weighbridge descriptions and print formats should be available.	
08	KEY IN TIME	Time for character selection entry (in $0.1\ \text{seconds}$).	0-99
		00 disables alpha characters.	
09	BRIGHTNESS	LCD backlight brightness. Low is the least bright, MID1 is brighter, MID2 is brighter still, HIGH is brightest.	LOW, MID1, MID2, HIGH
10	DATE FORMA	Date format. Select either day-month-year (D-M-Y) or month-day-year (M-D-Y). In either case, the numbers in the date will be separated by hyphens ("-").	D-M-Y, M-D-Y
11	AUTO PWR OFF	Power off interval. Specifies the idle time, in minutes,	00-99
		that should pass before the indicator automatically switches itself off.	00=disable power off

42

6 Serial Communication

6.1 Serial Ports Configuration

VT300 has two serial ports, designated port 1 and port 2. Port 1 is an RS232 port. Port 2 is an optional port installed on order, and can be either RS232 or RS485.

6.1.1 RS232 Serial Port

The port is used to connect to serial printers or personal computers.

General	Asynchronous serial ASCII, RS232C standard, full duplex.		
Protocol 2400 baud, 1 start, 7 data/even parity or 8 data/no parity, 1 stop bit.			
	OR transmit only, 9600 baud, 1 start, 7 data/even parity or 8 data/no parity, 1 stop bit.		
Handshake	DTR BUSY per character for fanfold printers or REQUEST PAPER END STATUS for EPSON TM-295 slip printer.		
Connection	Cable gland: stainless steel enclosure or DB9 male on rear panel, aluminum enclosure (J1 or J3). Three-conductor shielded cable, max distance 15m.		
	Tx = Pin 3		
	Rx/DTR = Pin 2		
	GND = Pin 5		

6.1.2 RS485 Serial Port

Used to connect to a host computer, remote printer, remote display, etc.

General	Asynchronous serial ASCII, RS485 half duplex.					
Protocol 2400 to 57600 baud, 1 start, 7 or 8 data, 1 even parity, 1 stop bit.						
Connection	Cable gland: stainless steel enclosure or DB9 female on rear panel, aluminum enclosure (J3). Two-conductor twisted-pair shielded cable, max distance 1000m. A termination resistor 120R may be connected by shorting pins 8 and 9.					
	A = Pin 6					
	B = Pin 7					

Setting Port Output

6.2 Setting Port Output

6.2.1 Setting Port 1 Output

You can use menu path **SYSTEM** > **SET** > **1COM** > **OPERATION** to determine the output for port 1. The following options are available:

■ TICK 3 - Printer mode. The printer driver is selected using menu path SYSTEM > SET > 1COM > PRN TYPE.

To learn more about the standard ticket formats printed in **TICK 3** mode, see section 6.4. To learn how to customize these formats, see section 6.5.

- W.OUT continuous weight output. See section 6.3.1.
- **W2OUT** continuous weight output with dual scale operation. See section 6.3.2.
- **ALIBI** transmit alibi memory. See section 6.3.4.
- **9600T** set baud rate to 9600, transmit only.
- NONE deactivate the port.

The **1COM** menu has additional parameters related to port 1 output, detailed below.

Parameter	Description	Values
PARITY/DATA	Parity bits. Specifies whether there should be even parity with 7 data bits (E7) or no parity (E8).	E7, E8
PRN TYPE	Printer type. Specifies which type of printer is connected to the indicator: Epson FX (EP-FX or other similar serial printer) or TM-295.	EP-FX, TM-295
ERROR CTRL Printer error display.		YES, NO
	YES specifies that printer errors (DTR) should be displayed and acknowledged by the user.	
	NO specifies that errors should be ignored. You must set this parameter to NO for communication with a PC.	
ADDRESS	Port 1 network address. Used in alibi mode. This can be different from the address set in 2COM > M/S .	

Setting Port Output

6.2.2 Setting Port 2 Output

You can use menu path **SYSTEM** > **SET** > **2COM** > **OPERATION** to determine the output for port 2. The following options are available:

- W.OUT continuous weight output. See section 6.3.1.
- **W2OUT** continuous weight output with dual scale operation. See section 6.3.2.
- **A.OUT** continuous weight output with tare. See section 6.3.3.
- NONE Port is disabled.
- **EDP** EDP protocol output. See section 6.3.6.
- **R.PRN** printing data from the local printer on a remote printer. See section 6.3.7.
- M/S A-Y [A=network address] participate in a network of several indicators as slave, with this address. See section 6.3.8.

The **2COM** menu has additional parameters related to port 2 output, detailed below.

Parameter	Description	Values
PARITY/DATA	Parity bits. Specifies whether there should be even parity with 7 data bits (E7), no parity with 7 data bits (N8) or no parity with 8 data bits (E8).	E7, N8, E8
PRN TYPE	Printer type. Specifies which type of printer is connected to the indicator: Epson FX (EP-FX or other similar serial printer) or TM-295.	EP-FX, TM-295
ERROR CTRL	ERROR CTRL Printer error display.	
	YES specifies that printer errors (DTR) should be displayed and acknowledged by the user.	
_	NO specifies that errors should be ignored. You must set this parameter to NO for communication with a PC.	

6.3 Output Formats

6.3.1 Continuous Weight Output

Works With Ports

Ports 1, 2 (RS232 or RS485)

Description

Net weight and status information is transmitted continuously, along with the current tare and gross weight. No handshake is required. Used mainly for remote display or PC. The structure of the transmitted data block is shown below.

Data Block Composition

Byte	Name	Descr	iption	
1	Weight status	Bit0	0=Normal	1=No weight display
		Bit1	0=Gross	1=Net
		Bit2	0=No Auto zero	1=Auto zero
		Bit3	0=Within range	1=Out of range
		Bit4	0=No standstill	1=Standstill
		Bit5	0=Normal	1=Under minimum weighing range
		Bit6	Always 1	
		Bit7	Zero or parity	
2	Polarity	"+" or	"-".	
3-8	Weight	6 digits, including decimal point if any		
9	Sync	Carriage return (0D hex) for end of transmission.		

6.3.2 Continuous Weight Output with Dual Scale Operation

Works With Ports

Ports 1, 2 (RS232 or RS485)

Description

When two scales are connected to the indicator, both their weights are transmitted continuously in the format P+123.45 P+678.90CR. In each pair, the first block transmitted is the weight of the first scale, and the second block transmitted is the weight of the second scale.

For this mode of operation, the parameter settings are SYSTEM > SET > 1COM > W2OUT, and SYSTEM > SET > 2COM > W2OUT.

Data Block Composition (for Each Scale)

Byte	Name	Descr	iption	
1	Weight status	Bit0	0=Normal	1=No weight display
		Bit1	0=Gross	1=Net
		Bit2	0=No Auto zero	1=Auto zero
		Bit3	0=Within range	1=Out of range
		Bit4	0=No standstill	1=Standstill
		Bit5	0=Normal	1=Under minimum weighing range
		Bit6	Always 1	
		Bit7	Zero or parity	
2	Polarity	"+" or	w_w	
3-8	Weight	6 digits, including decimal point if any.		
9	Sync	Carriage return (0D hex) for end of transmission.		

6.3.3 Continuous Weight With Tare

Works With Ports

Ports 2 (RS232 or RS485)

Description

This option can be programmed using setup parameter SYSTEM > SET > 2COM > OPERATION to A.OUT. The weight indication of each scale is transmitted continuously along with its current tare and gross weight. The format is:

P+123.45N010.00(T/P)133.45G

Where the characters indicate:

- N for Net weight.
- G for Gross weight.
- \blacksquare T for the Tare weight when the scale was manually tared, or P for the tare weight when the tare was preset either from the device or from a PC.

Data Block Composition

Byte	Name	Description		
1	Weight status	Bit0	0=Normal	1=No weight display
		Bit1	0=Gross	1=Net
		Bit2	0=No Auto zero	1=Auto zero
		Bit3	0=Within range	1=Out of range
		Bit4	0=No standstill	1=Standstill
		Bit5	0=Normal	1=Under minimum weighing range
		Bit6	Always 1	
		Bit7	Zero or parity	
2	Polarity	"+" or "-".		
3-8	Weight	6 digits, including decimal point if any		
9	"N"	Indicates that the preceding weight is net.		
10-15	Net weight	6 digits, including decimal point if any.		
16	"T" or "P"	"T" spe	ecifies that the prece	ding weight is a manual tare.
		"P" specifies that the preceding weight is a preset tare.		
17-22	Gross weight	6 digits, including decimal point if any.		
23	"G"	Indicates that the preceding weight is gross.		
24	Sync	Carriage return (0D hex) for end of transmission.		

When Display Indication is Not Weight (Port 2 Only)

When the indicator displays something other than weight, the data string to COM2 will be as follows:

|A|XXXX|TARE VALUE|T/P|GROSS VALUE|G|CR

"XXXX" in the format above will either be blank spaces, an error message, or the menu currently accessed by the user.

6.3.4 Alibi Transmit

Works With Ports

Port 1 (RS232).

Description

Alibi mode can be set in **SYSTEM** > **SET** > **1COM** > **OPERATION**: **ALIBI**. When the **PRINT** key is pressed, the record is transmitted in the following format:

1234 _ 012340kg G

6.3.5 Alibi Mode Commands

The following operations can be executed in Alibi mode.

Transmit Displayed Weight

This is executed when the ASCII character "?" (3F hex) is received. The output data block is as shown below:

Byte	Name	Descri	ption	
1	Weight status	Bit 0:	0=Normal	1=No weight display
		Bit 1:	0=Gross	1=Net
		Bit 2:	0=No Auto zero	1=Auto zero
		Bit 3:	0=Within range	1=Out of range
		Bit 4:	0=No standstill	1=Standstill
		Bit 5:	0=Normal	1=Under minimum weighing range
		Bit 6:	Always 1	
		Bit 7:	Zero or parity	
2	Polarity	"+" or	"+" or "-".	
3-8	Weight	6 digits	6 digits, including decimal point if any	
9	Sync	Carriage return (0D hex) for end of transmission.		

Command "ZERO"

Equivalent to pressing the front panel ZERO key. This is executed when ASCII character 0 (30 hex) is received. No data is returned to the host. Execution of the command may be verified by examining the weight (command "?").

Character for Print-on-Demand

When a demand character is received the unit saves the weight in its Alibi flash memory. It then transmits the Alibi number and the weight. For example: 1234 012.340 kg G CR LF. The demand character may be programmed through **SYSTEM** > **SET** > **1COM** > **ADDRESS**: **ALIBI.A** to **ALIBI.Z**, where **A** will generate and transmit the new Alibi number and **a** (61h) will repeat the last Alibi number (in the case where the message was not received properly).

6.3.6 EDP Protocol Output

Works With Ports

Port 2 (RS232 or RS485).

Description

Transmits weight measurements to a host computer, according to the currently-selected print format, with or without an ENQ prompt, and with or without an ACK/NAK handshake (see 'Relevant Setup Parameters' below). The EDP protocol enables communication with two or more indicators connected to the host PC.

Full Protocol Workflow

- 1. Within 5 seconds of initialization, the PC requests data by sending an ENQ (05h) command. If it doesn't send an ENQ, the indicator shows error 30 (host not ready).
- 2. After the **ENTER** button is pressed, the indicator transmits weight information according to the currently-selected print format, using the standard data block composition (shown below).
- 3. Within 5 seconds of transmission, the PC either:
 - Acknowledges receiving the data properly, by sending an ACK (06h) command.
 - Notifies the indicator the data was not properly received, by sending a NAK (15h) command.
 - Does not respond, in which case the indicator shows error 33 (host does not acknowledge).
- 4. If the host responded with a NAK command, steps 2 and 3 are repeated. The number of repeats is unlimited.

Relevant Setup Parameters

- SYSTEM > 2COM > EDP > ERROR CTRL (YES/NO) timeout control. Turning off timeout removes the 5-second constraint in workflow steps 2 and 4. Errors 30 or 33 are never shown.
- SYSTEM > 2COM > EDP > PROTO A/N (YES/NO) handshake. Turning off handshake removes steps 4 and 5 of the protocol workflow the indicator sends data blocks on demand, without waiting for a response.

- SYSTEM > 2COM > EDP > DIS. PROTO (YES/NO) operator disable. If this option is turned on, an operator can interrupt the protocol by pressing any key on this indicator's keypad.
- SYSTEM > 2COM > EDP > HOST ENQ. (YES/NO) host enquiry. Turning off host enquiry specifies that the indicator should send weight information continuously, not on demand.

Data Block Composition

Character/s	Description					
STX (02h)	Start of transmission.					
ASCII (any)	ASCII data is identical to the data printed.					
ETX (03h)	End of transmission.					
ВСС	Block check character (XORSUM of all data characters STX, ETX inclusive).					

6.3.7 Remote Printer Output

Works With Ports

Port 2 (RS485 or RS232)

Description

Used to transmit the data printed on the local printer to a remote printer. No handshake is required.

6.3.8 Master-Slave Protocol

Works With Ports

Port 2 (RS232 or RS485)

Description

The indicator participates in a network of several indicators. In such a network, all slave units have access to weighing data in the master's memory or storage device.

You specify this indicator's network address by setting the port 2 output method (SYSTEM > SET > 2COM > OPERATION) to M/S A, where A is the network address (a unique letter between A [41h] and Y [59h]).

The SYSTEM > SET > 2COM > OPERATION > M/S A submenu has several other options, beside the network address parameter. These are described below.

Parameter	Description	Values
ERROR CTRL	Protocol error display.	YES, NO
	YES specifies that master-slave protocol errors should be displayed and acknowledged by the user.	
	NO specifies that errors should be ignored.	
RETRY	Manual retry on transmission failure.	YES, NO
	YES specifies that if transmission fails, the user should be prompted to retry.	
	NO specifies that if transmission fails, the indicator should automatically retry.	
DIS. PROTO	Manual disable.	YES, NO
	YES specifies that the operator can manually disable further communications, if many errors are encountered.	
	NO specifies that the operator may not manually disable master-slave protocol communications.	
X/MIT RESULT	Transmit individual weighings.	YES, NO
	YES specifies that the indicator should send individual weighings to the host.	
	NO specifies that only the start and stop reports should be sent to the host.	
KBD COM/DS	Accept keyboard commands from host.	YES, NO

Working With Local and Remote Memory

The following table shows how to set the parameters listed above, for an indicator operating as a slave, with local weighing memory, remote weighing memory, or both.

Parameter	Slave w/local memory	Slave w/remote memory	Slave w/local and remote memory
TYPE / ADDRESS	65-89 (A-Y)	65-89 (A-Y)	65-89 (A-Y)
ERROR CTRL	YES/NO	YES/NO	YES/NO
RETRY	YES/NO	YES	YES/NO
DIS. PROTO	YES/NO	YES	YES/NO
X/MIT RESULT	YES/NO	YES/NO	YES/NO

Master-Slave Commands

List of Commands

Command	Hex	Description	Time	Slave response
?	3F	UPLOAD WEIGHT & STATUS	50 ms	STATUS + WEIGHT
@	40	RESET SLAVE	15ms	NONE
K	4B	DOWNLOAD KEY	0.1 ms	NONE

"?" Command: Upload Status

It is the main command used to poll the slave or slaves, which reply with the current weight being measured or with a message if bit0 of status byte is '1'. In the normal state the slave will respond within 3-4 character time.

(e.g. with 9600 baud, the character time \approx 1msec, the master should expect reception of STX from the slave within 5msec after the ETX was transmitted from the master).

Master Transmission

STX	ADD	?	0	BCS2	BCS1	ETX
-----	-----	---	---	------	------	-----

Example:

	STX	ADD	?	0	BCS2	BCS1	ETX
Hex	2	41	3F	30	3C	34	3
Ascii	STX	Α	?	0	<	4	ETX

- ADD is one of the address sets in SYSTEM > SET > 2COM > OPERATION: M/S A-Z
- CheckSum is calculated as the XOR sum of all data characters, ETX excluded.

E.g. 02 XOR 41 XOR 3F XOR 30 = 4C (BCS1 = 30+C=3C, BCS2 = 30+4=34)

Slave Response

STX	ADD	?	0	STATUS BYTE	WEIGHT	Х	Υ	Z	BCS2	BCS1	ETX
-----	-----	---	---	-------------	--------	---	---	---	------	------	-----

WEIGHT = 5 digits + decimal point if any.(ASCII,MSD FIRST)

X = Scale number

- 0 = Scale 1 + Scale 2
- 1 = Scale 1
- 2 = Scale 2

Y = Digital input (TILT)

■ 0 = Not Active

■ 1 = Active

Z = Setpoints

0 = Neither is active

■ 1 = Setpoint 1 is active

 \blacksquare 2 = Setpoint 2 is active

■ 3 = Setpoint 1, Setpoint 2 are active

Status Byte

В7	В6	B5	B4	В3	B2	B1	ВО
Zero or	1	Under Min.	No Motion	Out of Range	Autozero	0=Gross	0=Normal
Parity		Weighing Range	0=NO,	0=NO	0=NO	1=Net	Weight
		0=NO, 1=YES	1=YES	1=YES	1=YES		1=No
				1-113	1-163		Weight

The slave response will contain a message in place of the weight if b0 of the status byte is high.

@ Reset Slave

Resets the slave.

Master Transmission

1							
	STX	ADD	@	0	BCS2	BCS1	ETX

Slave Response

None.

Download Key

This is used to download keyboard commands. Use of remote keyboard commands must be enabled: This is done by the setting 2COM > KBDCOMMANDS: YES.

Master Transmission

STX ADD K 0 xx BCS2 BCS1	Е	ETX	
--------------------------	---	-----	--

XX values (2 bytes):

- 0 ZERO
- 19 SCALE
- 1 TARE
- 2 P.TARE
- 5C CE
- 6 PRINT
- 1A PCS
- 17 WEIGH1
- 18 WEIGH2
- 5d ENTER
- 30-39 numeric keypad, 0-9
- 1b MENU
- 0B ▶
- 08 ◀
- 09 ▲
- 05 ▼

Slave Response

None.

Gross-Tare-Net Weight Transmission

The output data format of the master-slave protocol is shown below:

|STX|Addr|=|0|Data Block|BCS2|BCS1|ETX

The output data block is as shown below:

Byte	Name	Descri	ption		
1	Weight status	Bit 0:	0=Normal	1=No weight display	
		Bit 1:	0=Gross	1=Net	
		Bit 2:	0=No Auto zero	1=Auto zero	
		Bit 3:	0=Within range	1=Out of range	
		Bit 4:	0=No standstill	1=Standstill	
		Bit 5:	0=Normal	1=Under minimum weighing range	
		Bit 6:	Always 1		
		Bit 7:	Zero or parity		
2	Polarity	"+" or "-"			
3-8	Net weight	6 digits	s, including decimal point if	any.	
9	"N"	Indicat	es that the preceding weigh	t is net.	
10-15	Net weight	6 digits	s, including decimal point if	any.	
16	"T" or "P"	"T" spe	ecifies that the preceding we	ight is a manual tare.	
		"P" spe	cifies that the preceding we	ight is a preset tare.	
17-22	Gross weight	6 digits	s, including decimal point if	any	
23	"G"	Indicates that the preceding weight is gross.			
24	Scale number	Either 1 or 2.			

6.4 Default Ticket Formats

The VT300 has four print formats, shown in the table below. These print formats are not interchangeable – each one is used for a specific purpose. Each print format is identified by a ticket number.

Each of the print formats below can be customized, provided that **SYSTEM** > **SET** > **OPER** > **USER FORMS** is set to YES. See section 6.5 below to learn how to create and download custom formats.

Ticket #	Ticket Name	Description	Layout
01	First Weighing	In a weighbridge operation (see <i>VT300 User's Guide</i> , chapter 5), this is the format of the ticket printed after the first weighing of a vehicle.	DATE:16-05-03 15:46 N:00125 1st WEIGHT:<15000>kg VEHICLE: AB1234 MF:054 CLIENT: SMITH PRODUCT: SAND BB
02	Second Weighing	In a weighbridge operation (see VT300 User's Guide, chapter 5), this is the format of the ticket printed after the second weighing of a vehicle.	DATE:16-05-03 16:00 N:00126 1st WEIGHT:<15000>kg 16-05-03 15:46 2nd WEIGHT:<32000>kg 16-05-03 NET WEIGHT: 17000 kg VEHICLE : AB1234 MF:054 CLIENT : SMITH PRODUCT : SAND BB
03	Regular Weighing	This is the ticket printed when the user presses PRINT , and the indicator is in weight mode (see <i>VT300 User's Guide</i> , chapter 4).	0100 001.000 kgG
04	Piece Count	This is the ticket printed when the user presses PRINT , and the indicator is in counting mode (see <i>VT300 User's Guide</i> , chapter 6).	WEIGHT : 00.050 kg APW : 0.00001 kg PIECES : 0005000

6.5 Custom Ticket Formats

The four default ticket formats, shown in section 6.4 above, can be replaced by custom ticket formats. If you do this, you can revert to the default formats later.

- → To replace a default ticket format with a custom format:
- 1. Press **MENU** and navigate to **SYSTEM** > **SET** > **OPER** > **USER FORMS**. Set this parameter to YES.
- 2. Create a custom print format on a PC (see section 6.5.1).
- 3. Download the custom format from the PC (see section 6.5.2).
- **→** To revert to the default ticket formats:
- 1. Press MENU and navigate to SYSTEM > SET > FORM > DEFAULT.

The next step erases **all four** ticket formats and replaces them with the default formats. The only way to get the custom formats back is to download them again. If you do not want to do this, press **ESC** and do not proceed to step 2.

2. The display shows O.K. ? AE=Y , CE=N. Press **ENTER** to confirm.

The current print formats for all four tickets are erased, and replaced with the default formats (shown in the table in section 6.4).

6.5.1 Creating a Custom Ticket Format

A custom print format is created on a PC, as an ASCII file that may be no larger than 1023 bytes. The ASCII file can have two types of text:

- Fields text with the format [!xx], where xx is the field code. When a ticket is printed, each field added to the print format is added with data from the current weight measurement. The table below lists all the field codes.
- Fixed text any ASCII characters that do not specify a field. These characters are printed regardless of the data in the current weight measurement.
- Non-printable characters may be inserted in the format [@123], where 123 is the decimal equivalent of the character code. For example, Esc E (1Bh, 45h) is inserted as [@027]E. This may be repeated as many times as required in the string.

When you follow the procedure for downloading a custom print format (see section 6.5.2 below), the indicator uploads the default print format to the PC, as an ASCII file. You can edit this file to create the custom print format.

Field Codes Allowed in Custom Print Formats

- [!001] indicator address (A-Y).
- [!003] scale used for first weighing.
- [!004] scale used for second weighing.
- [!005] date.
- [!011] average piece weight used in counting.
- [!012] number of pieces counted.
- [!013] time with seconds.
- [!014] gross weight.
- [!015] current tare value.
- [!016] serial number.
- [!017] net weight.
- [!021] MF or MT or M@.
- [!022] net weight (1W-2W).
- [!023] serial number of first weighing ticket.
- [!024] date of first weighing.
- [!025] time of first weighing.
- [!026] weight measured in first weighing.
- [!027] serial number of second weighing ticket.
- [!028] date of second weighing.
- [!029] time of second weighing (hours and minutes).
- [!030] time of second weighing (hours, minutes and seconds).
- [!031] weight measured in second weighing.
- [!032] CODE 0 prompt*.
- [!033] CODE 0 data*.
- [!034] CODE 1 prompt*.
- [!035] CODE 1 data*.
- [!036] CODE 2 prompt*.
- [!037] CODE 2 data*.
- [!038] CODE 3 prompt*.
- [!039] CODE 3 data*.
- [!040] CODE 4 prompt*.
- [!041] CODE 4 data*.

- [!042] current accumulated total.
- [!043] subtotal.

Example of Custom Print Format

```
Vishay Transducers
WEIGHT <[!014] kg>
N: [!016]
```

The above code results in the following printed ticket:

Vishay Transducers
WEIGHT <12345 kg>
N: 0001

6.5.2 Downloading and Uploading Custom Ticket Formats

The VT300 has four tickets; their standard formats are shown in the table in section 6.4. You can replace any of these tickets with a custom format, which is downloaded from a PC. The custom ticket format must be an ASCII file 1023 bytes or less in length (see the previous section for more details).

→ To download a custom print format:

- 1. Connect a PC to port 1 on the indicator.
- 2. Use a serial communication program (such as Windows Hyper Terminal or Procomm) to set the serial port, baud rate, data bits, etc. The indicator's ports communicate at 2400 baud unless otherwise specified.
- 3. Press MENU and navigate to SYSTEM > SET > FORM > DOWNLOAD.
- 4. The display shows TICKET Nr : 00. Enter the ticket number: 01 for first weighing ticket, 02 for second weighing ticket, 03 for regular weighing ticket, or 04 for a counting ticket.
- 5. Press **ENTER**. The display shows TRANSMIT... while the indicator uploads the selected ticket format to the PC. The uploaded ticket may be the default format, or a custom format, if you downloaded a custom format previously.
- 6. On the PC, you can open the ASCII file and edit it to create the custom print format. If you have already prepared an ASCII file for the custom print format, discard the uploaded file.
- 7. The display shows READY? AE=Y , CE=N. Press **ENTER**. The indicator enters receive mode, and the display shows RECEIVE...
- 8. Use the serial communication program on the PC to transmit the custom ticket format to the indicator.

^{*} These field codes refer to weighbridge operation descriptions. For more information on these descriptions and how to customize them, see section 9.1.

- 9. When the transmission ends, press **ESC** on the indicator.
- 10. The display shows ${\tt END}$ OF FORM briefly, and the received ASCII block is transmitted to the PC for verification. The received ticket is stored in non-volatile memory.
- 11. On the PC, check the ASCII block sent by the indicator, to ensure communication was successful. If not, go back to step 3.

7 Outputs and Digital Input

The VT300 is able to interface with weighing automation systems, using two optoisolated outputs (digital setpoints) and one digital input. There is also an analog output configuration.

- The digital outputs (setpoints) are triggered when the scale reads an upper weight threshold, defined by the user. There is a separate threshold for each setpoint, which can be set in **SYSTEM** > **SET** > **SETP** (see section 7.3).
- The analog output configuration consists of a galvanically-isolated D/A converter, generating either voltage or current output. Relevant parameters can be modified using the SYSTEM > D/A CAL dialog (see section 7.4.2).
- The digital input is used as a tilt switch. When a signal is received on the input cable, the display locks for a certain period of time. The tilt switch is enabled, and its time delay defined in **SYSTEM** > **SET** > **TILT** (see section 7.5).

7.1 Specifications

7.1.1 Digital Outputs

- Transistor output open collector positive common.
- 24VDC + 10% / 100mA per output.
- Max off: State voltage 30VDC / leakage 100µA.
- Optoisolated to 2.5kV.
- Short-circuit protected.
- 2ms maximum delay for both on and off positions.

7.1.2 Analog Outputs

- Galvanically-isolated D/A converter.
- Circuit may be operated as current output or voltage output.
- Output is capable of driving 20mA into $1K\Omega$ load.
- Current output values: 0-20mA, 4-20mA, 0-24mA.
- Voltage output values: 0-10V.
- Powered by an external 24VDC (stabilised +/- 10%, current 50 mA).

7.1.3 Digital Input (Tilt Switch)

- 9-24 VDC, positive common optoisolated to 2.5KV.
- Input resistance 3.3KΩ.
- 2ms maximum delay for both on and off positions.

Connecting Digital Outputs and Tilt Switch

7.2 Connecting Digital Outputs and Tilt Switch

Figure 11 – Digital output and tilt switch connection diagram

7.3 Setting Thresholds for Digital Setpoints

Each setpoint has an upper weight threshold that triggers it. For example, if you set a threshold of 13kg for setpoint 1, nothing will happen as long as the items on the scale weigh less than 13kg. As soon as an item is placed on the scale that weighs exactly 13kg, or more, the setpoint will be switched to on (if normally off) or to off (if normally on).

Setpoints can be activated either by net weight value or by gross weight, depending on how this was defined in setup.

Setpoints can be either normally open or normally closed, depending on how this was defined in setup.

- → To edit weight thresholds for a setpoint:
- 1. Press **MENU** and navigate to **WEIGH** > **SETP**.
- 2. The display shows **SETP1**. Press **ENTER** to select setpoint 1, or press ▼ and **ENTER** (the display shows **SETP2**) to select setpoint 2.
- 3. The display shows the current threshold for the setpoint you selected.
 - If you do not want to change this threshold, press **ESC**.
 - If you do want to change it, proceed to the next step.
- 4. Enter a new threshold value using the numeric keypad, and press ENTER.

Setting Thresholds for Digital Setpoints

7.3.1 Setpoint Options

→ To edit setpoint options:

1. Press **MENU** and navigate to **SETUP** > **SET** > **SETP**.

The following dialog's first four parameters (SETP 1.1, 1.2, 2.3 and 2.4) can be set in several combinations. See 'Setpoint On/Off Combinations' below for the implication of each possible combination.

- 2. The display shows SETP 1.1 ON/OFF. Set this parameter to ON or OFF (refer to the table below).
- 3. The display shows SETP 1.2 ON/OFF. Set this parameter to ON or OFF (refer to the table below).
- 4. The display shows SETP 2.3 ON/OFF. Set this parameter to ON or OFF (refer to the table below).
- 5. The display shows SETP 2.4 ON/OFF. Set this parameter to ON or OFF (refer to the table below).
- 6. The display shows SETUP GROSS=NO/YES. Set this parameter to:
 - NO, to specify that setpoints should be activated by net weight.
 - YES, to specify that setpoints should be activated by gross weight.

Setpoint On/Off Combinations

Parameters	Used for	Combinations	
SETP 1.1, SETP 1.2	Setpoint 1 output.	1.1=0 and 1.2=0: normal	
		1.1=1 and 1.2=0: no motion	
		1.1=0 and 1.2=1: error	
SETP 2.3,	Setpoint 2 output.	2.3=0 and 2.4=0: normal	
SETP 2.4		2.3=1 and 2.4=0: zero	
		2.3=0 and 2.4=1: net	
5.6	Net / gross for both setpoints.	0=net	
		1=gross	
5.7	Normally open / closed for both setpoints.	0=normally open	
		1=normally closed	

7.4 Configuring Analog Output

The analog output channel allows the indicator to communicate with PLC devices, using one of the following two methods:

- Converting load cell input into voltage (0-10V)
- Converting load cell input into current (0-20mA or 4-20mA)

This feature is only active if your indicator is equipped with an optional analog output board. Section 7.4.1 below explains how to connect the analog output board, and set a hardware jumper to define which of the two output methods to use.

After connecting the board and setting the jumper, you can set analog output parameters using the **SYSTEM** > **D/A CAL** menu (see section 7.4.2).

7.4.1 Connecting PCB and Setting Jumper

In order to use analog output, the option PCB (PCB 761) connected it to the VT200 as follows: In the one side to **ST5** socket on the main board and in the other side using the mounting posts/spacers provided to:

Stainless steel enclosure – The main board.

Aluminum enclosure – The Indicator's rear panel (see page 82). Jumper JP1 determines the output mode – current or voltage.

→ Analog output pins connections:

- 1. Connect pins as follows:
 - For current output, connect pin 1 (current output, +) and pin 3 (common).
 - For voltage output, connect pin 2 (voltage output, +) and pin 3 (common).
- 2. Connect an external power supply of 24VDC, using pins 4 and 5:
 - Pin 4 power in (+).
 - Pin 5 power in (-).

Configuring Analog Output

→ To set output mode jumper (JP1):

Set jumper JP1 to the appropriate position, to define voltage output or current voltage, as shown in the image below.

7.4.2 Setting Analog Output Parameters

The output can be set to the standard calibration, where 0 on the weight display is output as 0mA or 4mA, and max on the display is output as 20mA. The output is capable of driving 20mA into 1K Ohm load.

Alternatively, you can edit these zero and span calibration values. This is controlled through the **CALIBRATION** parameter in **SYSTEM** > **D/A CAL**. When you set this parameter to USER, a dialog opens which allows you to enter mA values for zero and span.

There are several other analog output parameters, detailed in the table below.

Parameter	Description	Values
CALIBRATION	Standard / custom zero and span.	STD, USER
	STD specifies that the scale should output 0mA at zero input and 20mA at maximum input (or 0V at zero and 10V at	STD = Standard (20mA max)
	max).	USER = User defined
	USER allows user-defined zero and span values. These can be defined using the parameters ZERO D/A and FULL D/A .	zero and span
SCALE ERROR	Error output level . Specifies whether scale errors should be indicated as a low or high signal.	0mA, 24mA
OUTPUT	Current / voltage . This parameter must correspond to the hardware jumper, which defines whether output should be in current or voltage (see section 7.4.1).	CURR, VOLTAGE
MODE	Net / gross . Specifies whether the indicator should always output gross weight, or output net weight when tare is active.	NET, GROSS

Configuring Analog Output

Parameter	Description	Values
CURRENT	Effective range for current output . Sets the range to 0-20mA or 4-20mA. Relevant only if OUTPUT and the hardware jumper are set to current.	0-20, 4-20
RESOLUT.	Resolution. Specifies whether output should be in high resolution if the display is showing high resolution. DISP specifies that output should match display. INIT specifies that output should be in low resolution even if the display is showing high resolution.	DISP, INIT
OPERATION	Enable analog output. Setting this parameter to NO disables the analog output channel.	YES, NO
ZERO D/A*	D/A output at zero , in voltage or mA.	XX.XXX
FULL D/A*	D/A output at maximum input , in voltage or mA.	XX.XXX

^{*} These parameters only appear if CALIBRATION is set to USER.

7.4.3 Calibrating D/A Converter

- → To calibrate D/A converter (0-10V):
- 1. Place jumper JP1 on PCB (761) for voltage output.
- 2. Power up the unit, press **MENU** and navigate to **SYSTEM** > **D/A CAL**.
- 3. Set parameters as follows: CALIBRATION=USER; SCALE ERROR=0mA; OUTPUT=VOLT; MODE=NET; CURRENT=0-20; RESOLUT.=INT; OPERATION=YES.
- 4. Skip D/A calibration and save the above settings by accessing **SYSTEM** > **1CAL** > **WRITE**.
- 5. Press **MENU** and navigate to **SYSTEM** > **TEST** > **D/A TEST**.
- 6. The display shows 00000. Type 65535. Press **PRINT** to output the value.
- 7. Use a voltmeter to measure the voltage at pins 2 (+) and 3 (-) of the analogue output connector (J4). Record the value (in volts). Calculate a new value, which is: 100/recorded value. E.g. recorded value is 9.94, new value is 100/9.94=10.06. This is the *full scale voltage*.
- 8. Press **MENU** and navigate to **SYSTEM** > **D/A CAL**.
- 9. Set the **CALIBRATION** parameter to YES. The calibration dialog starts.
- 10. When prompted for D/A zero, enter 00.000.
- 11. When prompted for D/A span, enter the full scale voltage you calculated in step 7.
- 12. When you finish stepping through the dialog, exit the menu.
- 13. Access **SYSTEM** > **1CAL** > **WRITE** to save your settings.

Using the Tilt Switch

7.5 Using the Tilt Switch

You can set the time delay for the tilt switch function using the setup parameter ${\tt SYSTEM} > {\tt SET} > {\tt TILT}$. Use this parameter to enter the time delay for display lock, specified in 1/10 of a second. The delay may be between 1 and 90 1/10 seconds (i.e. between 0.1 and 9 seconds).

When the contacts close, the display locks after the time delay elapses. When they open again, the display unlocks after the same time delay elapses.

Set **SYSTEM** > **SET** > **TILT** to 00 to disable the tilt-switch function.

7.5.1 Tilt Switch Options

Parameter **SYSTEM** > **SET** > **TILT**, which controls the tilt switch, allows several special options. To access these options, set the parameter above 90:

- 91 Tare scale on the rising edge of input. Setpoints always enabled.
- 92 Print on the rising edge of the input. Setpoints always enabled.
- 93 Setpoints active when input is high. Setpoints inactive when input is low.
- 94 Scale is tared at the rising edge of input. If taring is successful, setpoints are activated. If input is low, setpoints are inactive.
- 95 When input is low, scale 1 is selected and displayed. When input is high, scale 2 is selected and displayed.
- 96 Scale is reset to 0.

8 Service Operations and Testing

8.1 Service Operations

8.1.1 Setting and Changing System and Operator Password (SYSTEM > PIN)

The VT300 has two Personal Identification Numbers (PINs):

- A "system PIN", which restricts access to the **SYSTEM** menu. This menu contains the calibration menus, so this also functions as the calibration PIN.
- An "operator PIN", which restricts user access to sensitive operations like changing the date and deleting from memory.

By default, both PINs are inactive and set to 000000. You can use one of the procedures below to set a PIN, which should only be given to authorized personnel.

In the future, if you want to deactivate one of the PINs, you can follow the same procedure and set that PIN to 000000.

→ To set or change a PIN number:

- 1. Press **MENU** and navigate to one of the following:
 - SYSTEM > PIN > SYSTEM, to edit the system PIN, which safeguards the SYSTEM menu and calibration parameters.
 - SYSTEM > PIN > OPER, to edit the operator PIN, which safeguards sensitive user operations.

You cannot set an operator PIN unless you have already set a system PIN.

- 2. If a system PIN has already been set, you are prompted for the current PIN. Type it using the numeric keypad, and press **ENTER**.
 - If the PIN you entered is correct, the display shows NEW CODE:
 - If you entered a wrong PIN, the unit resets. Turn it on and go back to step 1.
- 3. The display shows NEW CODE: Type a new PIN, using the numeric keypad, and press **ENTER**.
- 4. The display shows CONFIRM: Type the new PIN again and press ENTER...
 - If both entries were the same, PASS is displayed briefly, and the new PIN is stored in memory.

Service Operations

■ If the two entries are not the same, FAIL is displayed briefly and the new PIN you entered is discarded.

IMPORTANT: Make sure you do not forget the PIN entered. If the PIN is lost, the unit must be returned to the factory to initialize the PIN, and a fee is charged.

8.1.2 Setting Date, Time and Serial Number (SYSTEM > DATE)

- To set date, time and serial number:
- 1. Press **MENU** and navigate to **SYSTEM** > **DATE**.
- 2. The display shows DATE.
 - If the date is incorrect, type the current date using the numeric keypad (in either of the formats DDMMYY or MMDDYY, depending on the parameter SYSTEM > SET > OPER > DATE FORMA), and press ENTER.
 - If the date is correct, press **ENTER** to confirm it.
- 3. The display shows TIME.
 - If the time is incorrect, type the current time in HHMMSS format (hours, minutes, seconds) and press **ENTER**.
 - If the time is correct, press **ENTER** to confirm it.
- 4. The display shows the current alibi memory serial number, used on printed tickets and to retrieve records from memory. Edit this number, if needed, and press **ENTER**.

8.1.3 Resetting Parameters (INIT)

At any time, you can reset a group of scale parameters to their factory defaults, using the **INIT** operation.

IMPORTANT: Be aware that the **INIT** operation has no warning or confirmation. Parameters are reset immediately when you access the **INIT** option and press **ENTER**.

→ To reset parameters to their factory defaults:

Press **MENU** and navigate to one of the following, depending on the group of parameters you wish to reset:

 Access SYSTEM > 1CAL > INIT to reset all calibration parameters, and general parameters in the PAR submenu (see section 5.2), pertaining to scale 1.

- Access SYSTEM > 2CAL > INIT to reset all calibration parameters, and general parameters in the PAR submenu (see section 5.2), pertaining to scale 2.
- Access SYSTEM > SET > INIT to reset all parameters defined in the SYSTEM > SET menu. These are general operational parameters (see section 5.3); communication parameters and custom ticket formats (see chapter 6); custom reference codes (see section 9.1); setpoint parameters (see section 7.3) and tilt switch options (see section 7.5).

8.1.4 Displaying Remaining Battery Capacity (WEIGH > BATTERY)

→ To display remaining battery capacity:

Press **MENU** and navigate to **WEIGH** > **BATTERY**. The current battery charge is displayed as a percentage of total capacity. Press **ESC** to exit.

8.1.5 Checking Calibration Seal (MISC > 1/20IML)

In order to check that calibration has not been tampered with. This can be verified by means of the audit trail counter, which increments each time calibration parameters are changed, and by means of a jumper (for more information, see section 4.5). Use the procedure below to see the current value of the counter and the current position of the jumper.

- **→** To check calibration seal and audit trail counter:
- Press MENU and navigate to MISC > 10IML. Or, if you want to check scale 2, navigate to MISC > 20IML.
- 2. Press **ENTER**. If JP1 is currently in the sealed position, the word SEALED appears on the display briefly. Following this, the audit trail counter is displayed.

8.1.6 Viewing Load Cell mV (TEST > CVM)

→ To view an mV meter:

Press MENU and navigate to **SYSTEM** > **TEST** > **CVM**. The indicator loads calibration data, and displays mV transmitted by the load cell.

8.1.7 Viewing A/D Count (TEST > A/D)

→ To view the A/D count:

Press MENU and navigate to ${\tt SYSTEM} > {\tt TEST} > {\tt A/D}$. The indicator shows the analog-to-digital converter internal count. Press ${\tt ESC}$ to exit.

Testing the Indicator

8.1.8 Locking and Unlocking Keys

- → To lock keys:
- 1. Press MENU and navigate to SYSTEM > SET > LOCK KEY.
- 2. Set one or more of the following parameters to LOCKD:
 - ZERO KEY
 - TARE KEY
 - P.TARE KEY
 - **PIECES KEY**
 - PRINT KEY
 - SCALE KEY
 - WEIGH1 KEY
 - WEIGH2 KEY

Keys you lock will not work (i.e. if a user presses them nothing will happen) until you unlock them.

→ To unlock keys:

- 1. Press MENU and navigate to SYSTEM > SET > LOCK KEY.
- 2. Set the corresponding parameter to UNLOC (see the bulleted list above).

8.2 Testing the Indicator

8.2.1 Testing ROM/RAM Integrity (TEST > MEM)

From time to time, it is advised to check the integrity of the unit's ROM and RAM using the procedure below.

Note that partly-corrupted memory does not necessarily affect indicator's operations, and can be corrected.

→ To test ROM/RAM integrity:

- 1. Press **MENU** and navigate to **SYSTEM** > **TEST** > **MEM**.
- 2. One of the following messages are displayed:
 - Err 01 indicates that ROM data is corrupted.
 - Err 02 indicates that RAM data is corrupted.
 - PASS indicates that both the ROM and RAM memory units are okay.

Testing the Indicator

8.2.2 Testing the Keypad and Display (TEST > KBD, LCD)

→ To test that the display is working properly:

Press MENU and navigate to SYSTEM > TEST > LCD.

The display shows the entire character set, in sequence.

→ To test that the keypad is working properly:

Press **MENU** and navigate to **SYSTEM** > **TEST** > **KBD**.

The display blanks. When you press a key, the scan code for that key is shown on the display. The scan codes are as follows:

- 0 **ZERO**
- 13 SCALE
- 1 TARE
- 2 **P.TARE**
- 6 **PRINT**
- 22 **ESC**
- 1A PCS
- 11 WEIGH1
- 12 WEIGH2
- 5d ENTER
- 5C **CE**
- 30-39 numeric keypad, **0-9**
- 1b MENU
- 0B ▶
- 08 ◀
- 09 ▲
- **■** 05 **- ▼**

8.2.3 Testing Digital Input and Outputs (TEST > I/O)

- **→** To test digital input and outputs:
- 1. Press **MENU** and navigate to **SYSTEM** > **TEST** > **I/O**.
- 2. The display shows INP:0 OUT:00.
 - The digit next to the word INP shows data received on the digital input.
 - The most significant digit next to the word OUT shows data sent on digital output 1, when you toggle it on (see step 3).

Testing the Indicator

- The least significant digit next to the word OUT shows data sent on digital output 2, when you toggle it on (see step 4).
- 3. Press 1 to toggle output 1 on and off. If the output connects to another device, you can check if the signal was received.
- 4. Press 2 to toggle output 2 on and off. If the output connects to another device, check if the signal was received.
- 5. Connect a device to the digital input, and send a signal. See if the data appears next to INP.

8.2.4 Testing Data Received on Both Serial Ports (TEST > PORT)

- → To test data received on one or both serial ports:
- 1. Press MENU and navigate to SYSTEM > TEST > PORT.
- 2. The display shows Rx1 and Rx2, where:
 - Rx1 is data received on port 1, in ASCII Hex.
 - Rx2 is data received on port 2, in ASCII Hex.
- 3. Connect a PC or another device to one or both of the indicator's ports, and begin transmitting data. Watch the display to see if the data is received properly.

9 Special Weighbridge Operations

9.1 Customizing Weighbridge Descriptions

This section assumes you are familiar with VT300 weighbridge functionality. If not, refer to the VT300 User's Guide, chapter 6.

When users weigh a vehicle using the VT300, they are prompted for information on the vehicle, also known as *weighbridge descriptions*, or *reference codes*.

By default, users are asked to enter three descriptions: VEHICLE (the license plate of the truck), CLIENT (the owner of the truck) and PRODUCT (the produce being weighed). This data entry can be customized, in one of the following ways:

- You can define the number of descriptions that users are prompted for. For example, you can increase the number of descriptions to 4, or reduce it to 1.
- You can define the labels of the data fields, which are shown to the user. For example, you can change the label CLIENT (which by default is used for the second data field) to COMPANY. Changing the label effects what users enter in the data field, and subsequently, the data saved about vehicles that enter the weighbridge.

Before you can customize the weighbridge descriptions, you must set **SYSTEM** > **SET** > **OPER** > **USER FORMS** to YES.

After customizing weighbridge descriptions, you must inform users of the indicator what to enter in each descriptive field.

- **→** To change the number of weighbridge descriptions shown to users:
- 1. Press MENU and navigate to SYSTEM > SET > OPER > REFR CODE.
- 2. Select one of the options:
 - 0 no weighbridge descriptions are shown to users.
 - 1 only weighbridge description 1 is shown to users.
 - 2 only weighbridge descriptions 1 and 2 are shown to users (in this order).
 - 3 only weighbridge descriptions 1, 2 and 3 are shown to users (in this order).
 - 4 all weighbridge descriptions are shown to users (in the order 1, 2, 3, 4).

You can view and customize descriptions 1, 2, 3 and 4 using the procedure below.

3. Press **ENTER** to save the new setting.

Batch Weighing

- → To view or edit weighbridge descriptions:
- 1. Press MENU and navigate to SYSTEM > SET > REFR > EDIT.
- 2. The display shows CODE A:BBB, where A is the number of the description, and BBB is the current description (for example, CODE 1:VEHICLE). Do one of the following:
 - If you want to change the description, type a new one using the alphanumeric keypad. Press **ENTER** to proceed to the next description.
 - If you do not want to change this description, press ENTER to proceed to the next one.

The "code number" of the description denotes its position in the sequence of descriptions. For example, if the code is 3, the description is shown to the user after descriptions 1 and 2.

3. Repeat step 2 until you reach the last description (code 4).

If you set the number of descriptions to less than 4 (using the previous procedure), some descriptions may not be shown. For example, if you set the number of descriptions to 2, descriptions 3 and 4 are never shown to users.

9.2 Batch Weighing

If you need to weigh several trucks for the same customer, you can print a batch weighing ticket, in which each line represents a single weighing, and shows an accumulated total of the batch weighing.

```
CLIENT : ABC
PRODUCT : DEE
07-05-03 15:18:56 N:00084
     WEIGHT TOTAL
0001 00.390kg 000000.390kg
0002 04.330kg 000004.720kg
0003 04.330kg 000009.050kg
0004 04.330kg 000013.380kg
0005 04.330kg 000017.710kg
0006 04.330kg 000022.040kg
0007 04.330kg 000026.370kg
0008 04.330kg 000030.700kg
0009 04.330kg 000035.030kg
0010 04.330kg 000039.360kg
0011 04.330kg 000043.690kg
0012 04.330kg 000048.020kg
0013 04.330kg 000052.350kg
```

Batch Weighing

→ To perform a batch weighing:

For performing Batch Weighing SYSTEM > SET > 1COM > OPERATION > TICK3 must be set.

- 1. Press **MENU** and navigate to **WEIGH** > **BATCH**.
- 2. Enter the required weighbridge descriptions (see section 9.1 above to learn how to customize these).
- 3. Perform a regular weighing.
- 4. Press **PRINT**. A single line is added to the ticket.
- 5. Repeat steps 3 and 4 for each additional weighing.
- 6. When you are done, press ESC.

Errors, Causes and Remedies

10 Troubleshooting

The indicator has no serviceable parts. Authorized technicians may:

- Respond to errors shown on the display (see section 10.1)
- Check load cell connections (see section 10.2)
- Check the power supply (see section 10.3)
- Check the digital outputs (see section 10.4)

10.1 Errors, Causes and Remedies

When an error or an unexpected event occurs, the indicator displays the message $\mathbb{E}.\mathbb{X}$, where X is the error code, followed by a descriptive message. The following table explains all the error codes and suggests what to do when each error message is displayed.

10.1.1 Hardware and General Errors

Error code & desc.	Possible cause	Actions to be taken
E01: ROM	Faulty ROM chip.	Contact Vishay Transducers.
E02: RAM	Faulty flash RAM.	Contact Vishay Transducers.
E04: EEPROM	Faulty EEPROM. EEPROM memory stores calibration data.	Contact Vishay Transducers.
E05: SC-A/D s1	Scale 1 extremely out of range.	Check scale, cable, connectors, LC excitation, A/D converter. Contact service.
E05: SC-A/D s2	Scale 2 extremely out of range.	Check scale, cable, connectors, LC excitation, A/D converter. Contact service.
E06: LOW VOLT.	Low input voltage (insufficient power).	Check power supplied to the instrument.
E15: PWRUP ZERO	System has been initialized due to power failure or soft reset.	Zero the scale.
E16: W DATE TIME	System not initialized properly, or backup battery failure.	Enter a new date and time using SYSTEM > DATE. Replace battery.

10.1.2 Printing and EDP Protocol Errors

Error code & desc.	Possible cause	Actions to be taken
E20 :PRN NOT RDY	The printer is offline, because it is either not connected, out of paper or malfunctioning.	Check printer and cables. Replace printer.
E26:NO PAPER	No paper. This error only applies to the EPSON TM295 printer.	Add paper to printer tray.
E30:HOST NOT RDY	The host PC is not online, either because it is not connected or because the communication link failed.	Check computer and cables. Retry.
E33:HOST NOT ACK	The host does not issue a correct response (acknowledgement) to a request from the indicator.	Check computer and cables. Retry.

10.1.3 Weighing and Counting Errors

Error code & desc.	Possible cause	Actions to be taken
E40:OUT OF MEM. W	Weighing memory is full.	Delete unused records or check errors in vehicle file (see User's Guide, section 9.4).
E41:INVALID I.D.	No data entered during first weighing.	Enter first weighing data.
E42:V/CLE IN W.F.	A first weighing has already been made for this vehicle.	Retry entry; carry out second weighing; or delete the first weighing from memory.
E43:SCALE TARED	First or second weighing cannot be performed because the scale has been tared.	Cancel tare and return to gross mode.
E44:NEG. WEIGHT	Negative weights cannot be printed.	Retry or abort.
E45:SCALE MOT.	Non-stable weight cannot be processed.	Wait until the status annunciator activates, and retry.
E47:OUT OF LIMIT	Weight is out of limits.	Retry.
E50:SAMPLE CNT	The sample used in counting has too few units.	Retry.
E51:SAMPLE WEIGH	The sample used in counting weighs too little.	Retry.

Checking Load Cell Connection

10.1.4 Alibi Memory and Accumulated Total Errors

Error code & desc.	Possible cause	Actions to be taken
E55:ALIBI FULL	Alibi memory is full.	Press ENTER to acknowledge. The unique identification number will reset to 0000.
E56:NO ALIBI	Tare is active, so it is not possible to print.	Printout aborted. Cancel tare by pressing ESC, and retry.
E57:ALIBI CSUM	Alibi memory is corrupted.	No action. The alibi memory cannot be cleared, but the next records will be corrected.
E67:TM CHECKSUM	Corrupted accumulated total.	Clear accumulated total (TFILE menu).
E69:TM OVERFLOW	Accumulated total has overflowed because it has not been cleared for a long time.	Clear accumulated total (TFILE menu).
E77:WM CHECKSUM	Corrupted weighing memory.	Use menu path VFILE > DELETE to clear weighing memory.

10.2 Checking Load Cell Connection

If there appears to be a problem with the load cell connection:

- Check input and output resistance.
- Check resistance between any terminal and shield.
- Check load cell connection and cable.

10.3 Checking Power Supply

If the unit does not turn on:

- Check 9-15VDC power supply.
- Check the resettable fuse F4 on PCB 801.

10.4 Checking Digital Outputs

If the setpoints are not working properly:

- Test the setpoints (see section 8.2.3).
- Check 24VDC power supply.
- Check the resettable fuse F3 on PCB 801.

i. System Block Diagram

Appendix A: Technical Drawings

i. System Block Diagram

ii. Rear Panel Connections (Desktop Model)

ii. Rear Panel Connections (Desktop Model)

iii. Terminal Connections (Wall-Mount Model)

iii. Terminal Connections (Wall-Mount Model)

iv. Cabling Diagram

iv. Cabling Diagram

v. Printed Circuit Boards

v. Printed Circuit Boards

Contacting Vishay Transducers

Americas

Vishay Transducers Americas

677 Arrow Grand Circle, Covina, CA 91722, USA PH: +1-800-722-0820; +1-626-858-8899

FAX: +1-626-332-3418 E-MAIL: vt.us@vishaymq.com

Vishay Transducers Canada

41 Horner Ave, Unit 5, Toronto, Ontario M8Z 4X4, Canada PH: +1-800-567-6098; +1-416-251-2554

FAX: +1-416-251-2690 E-MAIL: vt.can@vishaymq.com

Asia

Vishay Transducers Taiwan (Asia except China)

15 Fl, No. 86, Sec. 1 Shintal 5th Rd. Shijr City, Taipei, Taiwan 221 PH: +886-2-2696-0168 FAX: +886-2-2696-4965 E-MAIL: vt.tw@vishaymg.com

Vishay Tranducers China

No. 5 Binguan Nan Dao Youyi Rd., Hexi District,

Tianjin China, Code 300061

PH: +86-22-2835-3503

FAX: +86-22-2835-7261

E-MAIL: vt.prc@vishaymg.com

Europe

Vishay Transducers Germany

Tatschenweg 1, 74078 Heilbronn, Germany

PH: +49-7131-3901-260 FAX: +49-7131-3901-2666 E-MAIL: vt.de@vishaymg.com

Vishay Tranducers UK

Stroudley Road, Basingstoke, Hampshire

RG24 8FW, United Kingdom
PH: +44-125-646-2131
FAX: +44-125-647-1441
E-MAIL: vt.uk@vishaymg.com

Vishay Transducers France

16 Rue Francis Vovelle, 28000 Chartres, France

PH: +33-2-37-33-31-20 FAX: +33-2-37-33-31-29 E-MAIL: vt.fr@vishaymg.com

Vishay Transducers Iberica

C/Toronga 25, 1∘C, 28043 Madrid, Spain

PH: +34-91-721-8890 FAX: +34-91-721-9056 E-MAIL: vt.es@vishaymg.com

Vishay Transducers Sweden

P.O. Box 423, SE-691 27 Karlskoga, Sweden

PH: +46-586-63000 FAX: +46-586-63099 E-MAIL: vt.se@vishaymg.com

Vishay Transducers Norway

Haarvard Marinsens vei 19, NO-0915 Oslo, Norway

PH: +47-22-21-40-70 FAX: +47-22-21-92-10 E-MAIL: vt.no@vishaymg.com

Vishay Transducers Finland

Jorvas Hitech Center, FI-02420 Jorvas

Finland

PH: +358-(0)9-8194-220 FAX: +358-(0)9-8194-2211 E-MAIL: vt.fi@vishaymg.com

Vishay Transducers Israel

5 Hazoran Street, P.O. Box 8381,

New Industrial Zone, Netanya 42506, Israel

PH: +972-9-863-8888 FAX: +972-9-863-8800 E-MAIL: vt.il@vishaymg.com