Linear Models for Regression

Stylianos Sygletos

Aston Institute of Photonic Technologies - Aston University

June 10, 2021

The regression task

- It is a supervised learning task, with a goal to:
 - to predict the value of one continuous target target variables t
 - given a D-dimensional vector x of input variables.
 - and based on a dataset of known inputs and outputs (training set), i.e. $\{x_n, t_n\}, n = 1, \dots, N$
- From a probabilistic prespective, we aim to model the predictive distribution p(t|x).
 - it expresses our uncertainty about the value of t for each value of $oldsymbol{x}$
 - we can make predictions of t, for any new value of $oldsymbol{x}$
 - we are not trying to model the distribution of $oldsymbol{x}$
- ullet We do not expect the predictor to be a linear function of x.

An Example

Polynomial Curve Fitting with a Scalar

• With a *single* input variable

$$y(x, \mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

where M the polynomial order, x^j the j^{th} order of x, and $\boldsymbol{w} = (w_0, \dots, w_M)^T$

• What is our task?: To learn w from training data $\{(x_i,t_i)\}_{i=1}^N$. We calculate the misfit between predictions $y(x_n,w)$ for each data point x_n and corresponding target values t_n :

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \boldsymbol{w}) - t_n \right\}^2$$

it is zero when $y(x, \boldsymbol{w})$ passes through training data points.

Results with Polynomial Basis

Regression with multiple inputs

Generalization :

- predict value of continuous target variable t given value of D input variables $\boldsymbol{x} = [x_1, ..., x_D]$
- t can also be a set of variables (multiple regression)
- Linear functions of adjustable parameters
 - specifically linear combinations of *nonlinear* functions of input variables
- Polynomial curve fitting is good only for :
 - single input scalar variable x
 - it cannot be easily generalized to several variables

Simplest Linear Model with D inputs

 It involves a linear combination of D-input variables:

$$y(\boldsymbol{x}, \boldsymbol{w}) = w_0 + w_1 x_1 + \dots + w_D x_D$$
 where $\boldsymbol{x} = (x_1, \dots, x_D)^T$

• Known as *linear regression* because it is a linear function of the parameters w_0, \ldots, w_D .

- Being a linear function of input variables imposes severe limitations
- We can extend the class of models by considering fixed nonlinear functions of input variables

Basis Functions

• If the original variables comprise the vector x, then the features can be expressed in terms of basis functions $\phi_i(x)$:

$$y(\boldsymbol{x}, \boldsymbol{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\boldsymbol{x}) = \sum_{j=0}^{M-1} w_j \phi_j(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x})$$

where $\mathbf{w} = (w_0, \dots, w_{M-1})^T$ and $\mathbf{\phi} = (\phi_0, \dots, \phi_{M-1})$ with $\phi_0(\mathbf{x}) = 1$ defining a *dummy basis function* for the bias w_0

• By using nonlinear basis function we allow $y(\boldsymbol{x}, \boldsymbol{w})$ to be a nonlinear function of the input vector \boldsymbol{x}

Choice of Basis Function

- Polynomial
- Gaussian
- Sigmoidal
- Fourier
- Wavelets

Polynomial Basis for one variable

• Linear Basis Function Model:

$$y(x, w) = \sum_{j=0}^{M-1} w_j \phi_j(x) = \sum_{j=0}^{M-1} w_j x^j$$

• Polynomial Basis (for single cariable x) $\phi_i(x) = x^j$

Disadvantages of polynomial basis:

- Global: changes in one region of input space affects others
- \bullet Difficult to formulate : number of polynomials increases exponentialy with M
- Can divide input space into regions :
 - use different polynomial in each region
 - use local basis functions (e.g. spline functions)

Gaussian Radial Basis Functions

• Gaussian:

$$\phi_j(x) = \exp\left[\frac{(x-\mu_j)^2}{2\sigma^2}\right]$$

- does not have probabilistic interpretation
- normalization term not needed

• Choice of parameters :

- μ_j govern the locations of the basis functions. Can be an arbitrary set of points within the range of data
- σ governs the spatial scale. Could be chosen from the data set, e.g. average variance

Example with Gaussian Radial Basis Functions

$$\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$$

basis function for s=0.1 with the μ_j on a grid with spacing s

Sigmoidal Basis Functions

Basis function of the form:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(\alpha) = \frac{1}{1 + \exp(-\alpha)}$$

Equivalently we can use tanh:

$$\tanh(\alpha) = 2\sigma(\alpha) - 1$$

Logistic Sigmoid for different μ_i

Other Basis Functions

- Fourier
 - Expansion in sinusoidal functions
 - Infinite spatial extent
- Wavelets
 - Localized functions in space and time
 - They have many applications in signal processing

Relationship between Maximum Likelihood and Least Squares

Goal: To show that minimizing the sum-of-squared error function is equivalent to miximizing the likelihood function under the Gaussian noise model

 Assume scalar target variable t given by:

$$t = y(\boldsymbol{x}, \boldsymbol{w}) + \epsilon$$

- $y({m x},{m w})$ deterministic function
- $-\epsilon$ zero mean Gaussian noise
- Distribution of t is univariate normal:

$$p(t|\boldsymbol{x}, \boldsymbol{w}, \beta) = \mathcal{N}(t|y(\boldsymbol{x}, \boldsymbol{w}), \beta^{-1})$$

Likehood Function

- Dataset:
 - input values $\boldsymbol{X} = \{x_1, \dots, x_N\}$
 - target values $\mathbf{t} = \{t_1, \dots, t_N\}$
- Likelihood:

Likelihood:
$$p(\mathbf{t}|\boldsymbol{X},\boldsymbol{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\boldsymbol{w}^T\boldsymbol{\phi}(\boldsymbol{x}_n),\beta^{-1})$$

It is the probability of observing the target data assuming they are independent

• Log-Likelihood: It is computationally more convenient

$$\ln p(\mathbf{t}|\boldsymbol{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n), \beta^{-1})$$

Likehood Function

For the univariate Gaussian we have:

$$\ln p(\mathbf{t}|\mathbf{w}, \beta) =$$

$$= \sum_{n=1}^{N} \ln \mathcal{N}(t_n | \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$

$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where the sum-of-squares error function is defined by:

$$E_D(\boldsymbol{w}) = \sum_{n=1}^{N} \{t_n - \boldsymbol{w}^T \phi(\boldsymbol{x}_n)\}^2$$

Therefore, maximizing the likelihood is equivalent to minimizing the error function $E_D(\boldsymbol{w})!$

Maximum Likelihood Solution

We take the gradient of the log-likelihood (or of the $E_D(w)$):

$$\nabla \ln p(\mathbf{t}|\boldsymbol{w},\beta) = \nabla E_D(\boldsymbol{w}) = \sum_{n=1}^{N} \{t_n - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n)\} \boldsymbol{\phi}(\boldsymbol{x}_n)^T$$

and set it equal to zero:

$$0 = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(\boldsymbol{x}_n)^T - \boldsymbol{w}^T \left(\sum_{n=1}^{N} \boldsymbol{\phi}(\boldsymbol{x}_n) \boldsymbol{\phi}(\boldsymbol{x}_n)^T \right)$$

and solving for w we obtain:

$$\boldsymbol{w}_{ML} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \mathbf{t}$$

That is, we can get a closed form solution(!), known as the *normal* equations for the least squares problem

The Density Matrix Φ

 \bullet Φ is an $N \times M$ matrix:

$$\mathbf{\Phi} = \underbrace{\begin{bmatrix} \phi_0(\boldsymbol{x}_1) & \phi_1(\boldsymbol{x}_1) & \dots & \phi_{M-1}(\boldsymbol{x}_1) \\ \phi_0(\boldsymbol{x}_2) & \phi_1(\boldsymbol{x}_2) & \dots & \phi_{M-1}(\boldsymbol{x}_2) \\ \vdots & & & & \\ \phi_0(\boldsymbol{x}_N) & \phi_1(\boldsymbol{x}_N) & \dots & \phi_{M-1}(\boldsymbol{x}_N) \end{bmatrix}}_{M\text{-basis functions}}$$

whose elements $\phi_j(x_n)$ are M-basis functions, e.g. j^{th} order polynomial, or Gaussians centered on M-data points

ullet Moore-Penrose pseudo-inverse of matrix Φ

$$\mathbf{\Phi}^{\dagger} \equiv (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T$$

Maximum Likelihood for precision β

Again, starting from the log-likelihood function:

$$\ln p(\mathbf{t}|\boldsymbol{w},\beta) = \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\boldsymbol{w})$$

and maximizing with respect to the noise precision parameter β we get:

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n - \boldsymbol{w}_{ML}^T \boldsymbol{\phi}(\boldsymbol{x}_n) \right\}^2$$

Thus, the inverse of the noise precision is given by the residual variance of the target values around the regression function.

Difficulty of Direct Solution

Direct solution of the normal equations:

$$\boldsymbol{w}_{ML} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \mathbf{t}$$

- Direct numerical calculation of the closed-form solution is not always feasible
 - when $(\mathbf{\Phi}^T\mathbf{\Phi})^{-1}$ is (close) to singular (i.e. $\det(\mathbf{\Phi}) \leq 0$)
 - when two basis functions are colinear, the resulting parameters values can have large magnitudes
- This is not uncommon with real data sets
- It can be addressed using:
 - Singular Value Decomposition
 - Addition of regularization term can ensure non-singular matrix
 - Applying alternative numerical methods (e.g. gradient-descent)

Method of Gradient Descent

- Criterion f(x) is minimized by moving from current solution in the direction of negative of gradient f'(x)
- Steepest descent proposes a new point

$$x' = x - \eta f'(x)$$

where $\eta > 0$ is the *learning rate*, scalar set to a small constant

Gradient with multiple inputs

Direction in w_0 - w_1 plane producing steepest descent

- For multiple inputs we need partial derivatives.
- $\frac{\partial}{\partial x_i} f(x)$ is how f changes as only x_i increases, gradient of f is a vector of partial derivatives $\nabla_x f(x)$
- Gradient descent proposes a new point:

$$oxed{x' = x - \eta
abla_x f(x)}$$

where $\eta > 0$ is the *learning rate*, scalar set to a small constant

Stochastic Gradient Descent for Regression

• Error function $E_D(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^N \{t_n - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n)\}^2$ sums over data. Denoting $E_D(\boldsymbol{w}) = \sum_n E_n$, we update \boldsymbol{w} using

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta \nabla E_n$$

where τ is the iteration number and η the learning rate parameter item Replacing for the $\nabla E_n = -\{t_n - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n)\} \boldsymbol{\phi}(\boldsymbol{x}_n)^T$ we get:

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta (t_n - \boldsymbol{w}^{(\tau)T} \boldsymbol{\phi}_n) \boldsymbol{\phi}_n^T$$

where

- $m{w}$ is initialized to some starting vector $m{w}^0$
- η chosen with care to ensure convergence
- Known as Least Mean Squares Algorithm

Sequential (on-line) Learning

- ullet Maximum likelihood solution is : $oldsymbol{w}_{ML} = (oldsymbol{\Phi}^Toldsymbol{\Phi}^Toldsymbol{t}$
- It is a batch technique
 - Processing entire training set in one go
 - Computationally expensive for large data sets, due to huge $N \times M$ design matrix Φ
- Solution: use a sequential algorithm where samples are presented one at a time (or a minibatch at a time) – called *stochastic* gradient descent - SGD
- Computational bottleneck: is a recurring problem in ML:
 - large training sets are necessary for good generalization
 - but large training sets are also computationally expensive
- SGD is an extension of gradient descent offering a solution
 - moreover it is a method of generalization beyond the training set

Regularized Least Squares

- As model complexity increases, e.g. degree of polynomial or number of basis function then we are likely to have overfitting
- We can control overfitting by adding a regularization term to the error function

$$E(\boldsymbol{w}) = E_D(\boldsymbol{w}) + \lambda E_W(\boldsymbol{w})$$

where λ is the *regularization coefficient*

Simplest regularization form (weight-decay)

• The simplest regularization form is the sum-of-squares of the weight vector elements:

$$E_W(\boldsymbol{w}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$$

then, the total error function becomes:

$$rac{1}{2}\sum_{n=1}^{N}\left\{t_{n}-oldsymbol{w}^{T}oldsymbol{\phi}(oldsymbol{x}_{n})
ight\}^{2}+rac{\lambda}{2}oldsymbol{w}^{T}oldsymbol{w}$$

• The error function remains a *quadratic function* of w, so its exact minimizer can be found in analytical form:

$$\boldsymbol{w} = (\lambda \boldsymbol{I} + \boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \mathbf{t}$$

which is a simple extension of the leas squared solution $\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t}$

A more general regularizer

• In a more general form the regularized error becomes:

$$\frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n) \right\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} \left| w_j \right|^q$$

- q=2 corresponds to the *quadratic* equalizer
- q = 1 is known as *Lasso*

Geometric interpretation of regularizer

Unregularized case

We are tying to find w that minimizes:

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}_n)\}^2$$

Regularized case

We choose that value of $oldsymbol{w}$ subject

to the constraint

Sparsity with Lasso constraint

- With q=1 and λ is sufficiently large, some of the coefficients w_j are driven to zero.
- This leads to a sparse model where the corresponding basis functions play no role.

Regularization: Summary

- Regularization allows complex models to be trained on limited size datasets without severe overfitting
- ullet The problem of determining the optimal model complexity is shifted to determining a suitable λ value

Multiple Outputs: $t = (t_1, \ldots, t_K), K > 1$

- ullet It can be treated as multiple independent regression problems, introducing a different set of basis functions for each component of t
- A more common approach is to introduce the same set of basis functions to model the target vector t components:

$$y(x, w) = W^T \phi(x)$$

where \boldsymbol{y} is a K-dimensional column vector; \boldsymbol{W} is an $M \times K$ matrix of parameters; $\boldsymbol{\phi}(\boldsymbol{x})$ is an M-dimensional column vector with elements $\phi_i(\boldsymbol{x})$, and $\phi_0(\boldsymbol{x}) = 1$

Solution for Multiple Outputs

 We assume the target vector t has a conditional distribution of the form:

$$p(t|x, W, \beta) = \mathcal{N}(t|W^T\phi(x), \beta^{-1}I)$$

Log-Likelihood

$$\ln p(\boldsymbol{T}|\boldsymbol{X}, \boldsymbol{X}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\boldsymbol{t}_{n}|\boldsymbol{W}^{T}\boldsymbol{\phi}(\boldsymbol{x}_{n}), \beta^{-1}\boldsymbol{I})$$
$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \|\boldsymbol{t}_{n} - \boldsymbol{W}^{T}\boldsymbol{\phi}(\boldsymbol{x}_{n})\|^{2}$$

where

- T is $N \times K$ matrix combining the t_1, \ldots, t_N observation set
- $oldsymbol{X}$ combines the input vectors $oldsymbol{x}_1,\dots,oldsymbol{x}_N$

Solution for Multiple Outputs

• The solution that maximized the log-likelihood is:

$$\boldsymbol{W}_{ML} = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \boldsymbol{T}$$

• For each target variable t_k , we have:

$$oldsymbol{w}_{ML} = (oldsymbol{\Phi}^Toldsymbol{\Phi})^{-1}oldsymbol{\Phi}^Toldsymbol{\mathsf{t}}_k = oldsymbol{\Phi}^\daggeroldsymbol{\mathsf{t}}_k$$

Conclusion:

The solution decouples between the target variables, thus we need only to compute a single pseudo-inverse matrix Φ^{\dagger} , shared by all of the vectors w_k