STA237 Notes

Contents

1	ntroduction
	.1 Basic Definitions
	.2 Properties of Events
	1.2.1 Axioms
	.3 Tools for Counting Sample Points
2	Conditional Probability
	2.0.1 Multiplication Rule
	.1 Independent Events
	.2 Partitions
3	Exercises
	.1 Probability
	.2 Conditional Probability

1 Introduction

1.1 Basic Definitions

- 1. Scientific Question A question created by an experimenter.
- 2. Experiment A task to collect information in order to answer a scientific question.
- 3. Sample Space (Ω) The set of all possible outcomes or results of an experiment. For example, $\Omega = \{H, T\}$ is the sample space of tossing a coin.
- 4. Subsets of the sample space are called events.

 Events all use typical set operations (complements, union, intersection, etc.).

1.2 Properties of Events

- 1. We call events A, B mutually exclusive if A, B have no outcomes in common. That is, $A \cap B = \emptyset$
- 2. **Demorgan's Law** For any two events A, B, we have $(A \cup B)^c = A^c \cap B^c$, and $(A \cap B)^c = A^c \cup B^c$.
- 3. A **Probability Function** (P) on a finite sample space Ω assigns to each event in A in Ω a number P(A) in [0,1] such that:
 - (a) $P(\Omega) = 1$, and
 - (b) $P(A \cup B) = P(A) + P(B)$, if A, B are disjoint. The number P(A) is the probability for which A occurs.

Suppose we had two events A, B, and $P(A) \cap P(B) \neq \emptyset$. We have:

- (a) Elements of ONLY A: $A \cap B^c$
- (b) Elements of A AND B: $A \cap B$
- (c) Elements of ONLY $B: B \cap A^c$

Then:

- (a) $P(A) = P(A \cap B^c) + P(A \cap B)$
- (b) $P(B) = P(B \cap A^C) + P(A \cap B)$
- (c) $P(A \cup B) = P(A \cap B^c) + P(A \cap B) + P(B \cap A^c)$ Then: $P(A \cup B) = P(A) - P(A \cap B) + P(A \cap B) + P(B) - P(A \cap B)$ $= P(A) + P(B) - P(A \cap B)$

Therefore, we have $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

We know that $P(A) \subseteq P(\Omega)$, and the complement A^c is mutually exclusive. $P(\Omega) = 1$, and thus:

2

$$P(\Omega) = 1 = P(A^c) + P(A)$$

Therefore: $P(A^c) = 1 - P(A)$.

4. A and B are **independent** if $P(A \cap B) = P(A) \cdot P(B)$.

1.2.1 Axioms

Suppose Ω is a sample space associated with an experiment. To every event A in Ω , we assign a number P(A) (called the probability of A), so that the following axioms hold:

1. Axiom 1: $P(A) \ge 0$

2. Axiom 2: P(S) = 1

3. Axiom 3: If $A_1, A_2, ..., A_n$ form a sequence of pairwise mutually exclusive events in Ω (that is, $A_i \cap A_j = \emptyset$ if $i \neq j$), then

$$P(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^{n} P(A_i)$$

1.3 Tools for Counting Sample Points

With m elements $a_1, a_2, ..., a_m$, and $b_1, b_2, ..., b_n$, it is possible to form $mn = m \times n$ pairs containing one element from each group.

An ordered arrangement of r distinct objects is called a **permutation**. The number of ways of ordering n distinct objects taken r at a time will be designated by the symbol P_r^n . That is:

$$P_r^n = n(n-1)(n-2)...(n-(r+1)) = \frac{n!}{(n-r)!}$$

The number of unordered subsets of size r chosen (without replacement from n available objects is:

$$\binom{n}{r} = \frac{P_r^n}{r!} = \frac{n!}{r!(n-r)!}$$

Sometimes it is denoted as C_r^n .

2 Conditional Probability

Conditional probability is the likelihood of an event occurring based on the occurrence of a previous event. That is, for two events R, L, the conditional probability of R given L is P(R|L). It is denoted by:

$$P(A|C) = \frac{P(A \cap C)}{P(C)},$$

provided P(C) > 0.

Note that $P(R|L) + P(R^c|L) = 1$:

$$P(R|L) + P(R^c|L) = \frac{P(A \cap C)}{P(C)} + \frac{P(A^c \cap C)}{P(C)}$$

$$= \frac{P(C)}{P(C)}$$
Since $P(A), P(A^c)$ are mutually exclusive, the union of the intersections is $P(A)$

For example, suppose we had the following events:

1. L: Born in a long month (31 days) $L = \{Jan, Mar, May, Jul, Aug, Oct, Dec\};$

2. R: Born in a month with letter r $R = \{Jan, Feb, Mar, Apr, Sep, Oct, Nov, Dec\}$

This means that the conditional probability of R given L is:

$$P(R|L) = \frac{1/3}{7/12}$$
$$= \frac{4}{7}$$

2.0.1 Multiplication Rule

For any events A, C:

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$
$$P(A \cap C) = P(A|C) \cdot P(C)$$

2.1 Independent Events

Events A, C are **independent** if and only if the probability of A is the same when we know that C has occurred. That is:

$$P(A|C) = P(A)$$

Then:

$$\frac{P(A \cap C)}{P(C)} = P(A)$$

$$P(A \cap C) = P(A) \cdot P(C)$$

2.2 Partitions

For some positive integer k, let the sets $B_1, B_2, ..., B_k$ be such that:

- 1. $\Omega = B_1 \cup B_2 \cup \ldots \cup B_k$
- 2. $B_i \cap B_j = \emptyset$, for $1 \neq j$.

Then, the collection of sets $\{B_1, B_2, ..., B_k\}$ is said to be a partition of Ω .

article [utf8]inputenc amsmath amsfonts amsthm amssymb graphicx [margin=1in]geometry float xcolor color hyperref fancyvrb listings

STA237 Exercises

Contents

3 Exercises

3.1 Probability

- 1. Suppose $P(A) = 0.5, P(A \cap B) = 0.2$, and $P(A \cup B) = 0.7$. Find:
 - (a) P(B)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$0.7 = 0.5 + P(B) - 0.2$$
$$0.7 = 0.3 + P(B)$$
$$P(B) = 0.4$$

(b) P(exactly one of two events occurs)

This means the probability of no elements from the intersection. Let this area be P(O).

$$P(A \cup B) = P(O) + P(A \cap B)$$

 $0.7 = P(O) + 0.2$
 $P(O) = 0.5$

(c) P(neither event occurs)

This means the probability of no elements in A, B. Call this probability P(X).

$$P(X) = P(\Omega) - P(A \cup B)$$
$$= 1 - 0.7$$
$$= 0.3$$

2. Suppose we throw a coin two times. The sample space for this experiment is:

$$\Omega = \{H, T\} \times \{H, T\} = \{(H, H), (H, T), (T, H), (T, T)\}$$

If it is a fair coin, then all four outcomes have equal possibilities:

$$P((H,H)) = P((H,T)) = P((T,H)) = P((T,T)) = \frac{1}{4}$$

What is the probability of getting at least one tail?

Looking at the sample space, the probability is $\frac{3}{4}$.

Alternatively, we can solve as follows, where RP represents the required probability:

$$P(\Omega) = RP + P(HH)$$

$$1 = RP + P(HH)$$

$$= RP + P(H)P(H)$$
Since it is independent.
$$= RP + \frac{1}{2} \cdot \frac{1}{2}$$

$$1 = RP + \frac{1}{4}$$

$$RP = \frac{3}{4}$$

Suppose we wanted to throw three coins, what would happen to the sample space?

$$\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$$

Then, there are $2 \cdot 2 \cdot 2 = 2^3$ possibilities (to keep on with this pattern, flipping a coin 6 times would have 2^6 possibilities, and so on).

What is the probability of at least one head appearing in a 3-coin toss?

$$P(X) = 1 - P(TTT)$$

$$= 1 - P(T)P(T)P(T)$$

$$= 1 - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$$

$$= 1 - \frac{1}{8}$$

$$= \frac{7}{8}$$

3. A survey of students in a class was asked about their birth order (1 = oldest/only child), and which college of the university they were enrolled in.

Birth Order	1 or Only	2 or More	Total
Arts	Science	34	23
57		'	
Agriculture	52	41	93
Human Ecology	15	28	43
Other	12	17	30
Total	113	110	223

Suppose we selected a random student from this class.

- (a) What is the probability we select a Human Ecology student? P(Human Ecology) = $\frac{43}{223}$
- (b) What is the probability we select a first-born student? P(First Born) = $\frac{113}{223}$
- (c) What is the probability that the student is a first-born and a Human Ecology student? $P(C) = P(A \cap B) = \frac{15}{223}$
- (d) What is the probability that the student is a first born or a Human Ecology student?

$$P(D) = P(A \cup B)$$

$$= P(A) + P(B) - P(\cap B)$$

$$= \frac{43}{223} + \frac{113}{223} - \frac{15}{223}$$

$$= \frac{141}{223}$$

- 4. A sample space consists of 5 simple events, E_1, E_2, E_3, E_4, E_5 .
 - (a) If $P(E_1) = P(E_2) = 0.15$, $P(E_3) = 0.4$, and $P(E_4) = 2P(E_5)$, find the probabilities of E_4 and E_5 .

$$1 = 0.15 + 0.15 + 0.4 + 2P(E_5) + 2P(E_5)$$
$$0.3 = 3P(E_5)$$
$$P(E_5) = 0.1$$

Then:

$$P(E_4) = 2(0.1)$$

= 0.2

5. If A, B are events, $B \subset A$, P(A) = 0.6 and P(B) = 0.2, then find $P(A \cap B^c)$. To visualize:

$$P(A) = P(A \cap B^c) + P(B)0.6 \qquad \qquad = P(A \cap B^c) + 0.2$$

$$P(AcapB^c) = 0.4$$

6. An experiment involves tossing a pair of dice and observing the numbers on the upper faces. Find the number of sample points in Ω and the sample space for the experiment The sample points are $\Omega_{\{m,n\}} = \{1,2,3,4,5,6\}$.

The sample space is taking the cross product of the sample points (i.e., $\Omega_1 \times \Omega_2$). Then:

$$\Omega\{(1,1),(1,2),...,(6,6)\}$$

There is a $m \cdot n = 6 \cdot 6 = 36$ chance for a single probability.

7. The names of three employees are randomly drawn without replacement from a bowl containing the names of 30 employees of a small company. The person whose names is drawn first receives \$100, and the individuals whose names are drawn second and third receive \$50 and \$25, respectively. How many samples are associated with this experiment? There are 30 employees and 3 people are picked. So, r = 3, n = 30. Hence:

$$\begin{split} \Omega &= P_3^{30} \\ &= \frac{30!}{(30-3)!} \\ &= \frac{30!}{27!} \end{split}$$

8. Find the number of ways of selecting two applicants out of five. Here, n=5, r=2.

$${5 \choose 2} = \frac{5!}{2!(5-2)!}$$

$$= \frac{5!}{2!3!}$$

$$= \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}$$

$$= 10$$

3.2 Conditional Probability

1. Let $N = R^c$ be the event 'born in a month without r', and L is the event 'born in a long month'. What is the conditional probability P(N|L)?

$$P(R^c|L) = \frac{3}{7}$$

Note that $P(R|L) + P(R^c|L) = \frac{4}{7} + \frac{3}{7} = 1$.

2. A survey asked: 'Are you currently in a relationship?', and 'Are you involved in club sports?'. The survey found that 33% were in a relationship, and 25% were involved in sport. 11% said yes to both. Suppose you meet a student who is on a sports team. What is the probability they are also in a relationship?

Let A be students in a relationship, and B be students in a club sport.

$$P(A) = 0.33, P(B) = 0.25, P(A \cap B) = 0.11.$$
 We have:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{0.11}{0.25}$$
$$= 0.44$$

We know that $P(A|B) \neq P(A)$, A and B must be dependent events.

- 3. A bowl contains 6 red and 4 blue balls, A child selects two balls at random. What is the probability at least one of them is red?

 We have:
 - (a) $\{R,R\} = \frac{6}{10}, \frac{5}{9}$
 - (b) $\{R,B\} = \frac{6}{10}, \frac{4}{9}$
 - (c) $\{B,R\} = \frac{4}{10}, \frac{6}{9}$
 - (d) $\{B,B\} = \frac{4}{10}, \frac{3}{9}$

Note that P(at least one red) + P(no red) = 1, so:

$$\begin{split} P(one_R) &= 1 - P(no_R) \\ &= 1 - P(BB) \\ &= 1 - P(B_1 \cap B_2) \\ &= 1 - P(B_2|B_1)P(B_1) \\ &= 1 - \frac{3}{9} \cdot \frac{4}{10} \\ &= 1 - \frac{2}{15} \\ &= \frac{13}{15} \end{split}$$