

Operação de Sistemas Elétricos de Potência

Renan Silveira Sena

1.1 – Definir a modalidade de operação

• SISTEMA 1 = TLB – Tie Line Bias: O sistema 1 está focando no controle de frequência e intercâmbio, podemos observar quase um equilíbrio entre geração e carga.

 SISTEMA 2 = FF – Flat Frequency: O sistema 2 está focado no controle de frequência, podemos observar uma geração muito maior que a carga.

Graduação em Engenharia Elétrica – Universidade Federal de Juiz de Fora

Caso 1 – Interligar duas áreas, a maior e a média

Dados Fornecidos:

	PGMAX	LOAD_P	D-LOAD	REATÂNCIA	ÂNGULO
SISTEMA 1	259.00	179.4286	43.1016	0.0637	5.8597
SISTEMA 2	943.00	299.0477	-71.8360	0.0404	13.3268
SISTEMA 3	75.00	478.4763	114.9376	0.1215	0

	D(%/Hz)	H(seg)	TW(seg)	TG(seg)	E(%)
SISTEMA 1	3.3154	2.0541	3.4462	0.5878	7.1187
SISTEMA 2	1.8230	2.5969	3.2728	0.4877	3.9683
SISTEMA 3	2.3627	9.4263	3.5204	0.6699	3.9085

Tabela 1 – Dados dos Sistemas

1.2 – Mostrar operação sem controle de intercâmbio

Figura 1 – Diagrama de blocos interligação duas usinas sem controle de intercâmbio

1.2 – Mostrar operação sem controle de intercâmbio

e1	69.9388
E1	3.9085
e2	68.785
E2	5.0128
TG1	0.6419
TG2	0.6002
Kd1	0.0586
Kd2	3.2410
Ki1	0.0092
Ki2	0.0541
Kp1	-0.0242
Kp2	-0.2928
Reg1	1.6417
Reg2	1.3200

Tabela 2 – Dados Otimizados

1.2 - Mostrar operação sem controle de intercâmbio

Figura 2 – Frequências para caso 1.1

1.2 – Mostrar operação sem controle de intercâmbio

Figura 3 – Intercâmbios para caso 1.1

1.3 – Mostrar operação com controle de intercâmbio via ajuste de Bias e Cl

Figura 4 – Diagrama de blocos interligação duas usinas com controle de intercâmbio

1.3 – Mostrar operação com controle de intercâmbio via ajuste de Bias e CI Dados Ajustados/Otimizados:

e1	69.9388
E1	3.9085
e2	68.785
E2	5.0128
TG1	0.6419
TG2	0.6002
Kd1	0.0586
Kd2	3.2410
Ki1	0.0092
Ki2	0.0541
Kp1	-0.0242
Kp2	-0.2928
Reg1	1.6417
Reg2	1.3200
B1, C1	0.5000
B2, C2	0.7000

Tabela 3 – Dados Otimizados

1.3 - Mostrar operação com controle de intercâmbio via ajuste de Bias e CI

Figura 5 – Frequências para caso 1.3

1.3 – Mostrar operação com controle de intercâmbio via ajuste de Bias e CI

Figura 6 – Intercâmbios para caso 1.3

1.4 - Incluir no caso 1.3 com AVR+SAE

Figura 7 – Diagrama de blocos interligação duas usinas com controle de intercâmbio, AVR e SAE

1.4 - Incluir no caso 1.3 com AVR+SAE

Tabela 4 – Dados Otimizados

1.4 - Incluir no caso 1.3 com AVR+SAE

Figura 8 – Frequências para caso 1.4

1.4 - Incluir no caso 1.3 com AVR+SAE

Figura 9 – Intercâmbios para caso 1.4

1.5 - Incluir no caso 1.3 a CSCT + SAE

Figura 10 – Diagrama de blocos interligação duas usinas com controle de intercâmbio, CSCT e SAE

1.5 - Incluir no caso 1.3 a CSCT + SAE

e1	68.9388
E1	3.9085
e2	68.785
E2	5.0128
TG1	0.6419
TG2	0.6002
Kd1	0.0586
Kd2	3.2410
Ki1	0.0092
Ki2	0.0541
Kp1	-0.0242
Kp2	-0.2928
Reg1	1.6417
Reg2	1.3200

Tabela 5 – Dados Otimizados

1.5 - Incluir no caso 1.3 a CSCT + SAE

B1, C1	0.5000
B2, C2	0.7000
Gest	0.0586
Gsae	0.1250
T1	0.1013
T2	0.1238
Та	0.4400
Tb	0.0800
Td	0.0100
test	0.0223
CST1	0.0051
CST2	0.0051

Tabela 6 - Dados Otimizados

1.5 - Incluir no caso 1.3 a CSCT + SAE

Figura 11 – Frequências para caso 1.5

1.5 - Incluir no caso 1.3 a CSCT + SAE

Figura 12 – Intercâmbios para caso 1.4

1.6 - Incluir no caso 1.3 ELO CC + SAE

Figura 13 – Diagrama de blocos interligação duas usinas com controle de intercâmbio, ELO CC e SAE

1.6 - Incluir no caso 1.3 ELO CC + SAE

e1	68.9388
E1	3.9085
e2	68.785
E2	5.0128
TG1	0.6419
TG2	0.6002
Kd1	0.0586
Kd2	3.2410
Ki1	0.0092
Ki2	0.0541
Kp1	-0.0242
Kp2	-0.2928
Reg1	1.6417
Reg2	1.3200

Tabela 5 – Dados Otimizados

1.6 - Incluir no caso 1.3 ELO CC + SAE

B1, C1	0.5000
B2, C2	0.7000
Gest	0.0586
Gsae	0.1250
T1	0.1013
T2	0.1238
Та	0.4400
Tb	0.0800
Td	0.0100
test	0.0223
Cte_cc	0.3613
K_deltaf1	0.8103
K_deltaapc	0.6302

Tabela 6 - Dados Otimizados

1.6 - Incluir no caso 1.3 ELO CC + SAE

Figura 14 – Frequências para caso 1.6

1.6 - Incluir no caso 1.3 ELO CC + SAE

Figura 15 – Intercâmbios para caso 1.6

1.7 - Mostrar caso 1.3 com controle separado de BIAS e CI

Figura 16 – Diagrama de blocos interligação duas usinas com controle separado de BIAS E CI

1.7 - Mostrar caso 1.3 com controle separado de BIAS e CI

e1	68.9388
E1	3.9085
e2	68.785
E2	5.0128
TG1	0.6419
TG2	0.6002
Kd1	0.0586
Kd2	3.2410
Ki1	0.0092
Ki2	0.0541
Kp1	-0.0242
Kp2	-0.2928
Reg1	1.6417
Reg2	1.3200

Tabela 7 – Dados Otimizados

1.7 - Mostrar caso 1.3 com controle separado de BIAS e CI

B1, C1	0.5000
B2, C2	0.7000
Gest	0.0586
Gsae	0.1250
T1	0.1013
T2	0.1238
Та	0.4400
Tb	0.0800
Td	0.0100
test	0.0223
G1	0.0055
G2	0.0055

Tabela 8 – Dados Otimizados

1.7 - Mostrar caso 1.3 com controle separado de BIAS e CI

Figura 17 – Frequências para caso 1.7

1.7 - Mostrar caso 1.3 com controle separado de BIAS e CI

Figura 18 – Intercâmbios para caso 1.7

Caso 2 – Interligar a usina 3

2.1 – Definir a modalidade de operação

• **SISTEMA 3** possui muita carga e pouca geração, não consegue focar no controle nem de frequência, nem de intercâmbio.

2.2 – Interligar considerando o ajuste do melhor caso encontrado no item 1.

O melhor caso foi 1.6 – Incluir no Caso 1.3 o ELO CC + SAE.

Caso 2 – Interligar a usina 3

2.2 – Interligar considerando o ajuste do melhor caso encontrado no item 1.

Figura 19 – Diagrama de blocos interligação três usinas com controle de intercâmbio, ELO CC e SAE

2.2 – Interligar considerando o ajuste do melhor caso encontrado no item 1.

e1	68.9388
E1	3.9085
e2	68.785
E2	5.0128
TG1	0.6419
TG2	0.6002
Kd1	0.0586
Kd2	3.2410
Ki1	0.0092
Ki2	0.0541
Kp1	-0.0242
Kp2	-0.2928
Reg1	1.6417
Reg2	1.3200

Tabela 9 – Dados Otimizados

2.2 – Interligar considerando o ajuste do melhor caso encontrado no item 1.

B1, C1	0.5000
B2, C2	0.7000
Gest	0.0586
Gsae	0.1250
T1	0.1013
T2	0.1238
Та	0.4400
Tb	0.0800
Td	0.0100
test	0.0223
Cte_cc	0.5500
e3	70.0920
E3	4.3172
k_deltaapc	0.5500
K_deltaf1	0.5499
Kd3	1
Ki3	0.0509
Кр3	-0.0800
Reg3	0.1081
TG3	0.4505

Tabela 10 – Dados Otimizados

2.2 - Interligar considerando o ajuste do melhor caso encontrado no item 1.

Figura 20 – Frequências para caso 2.2

2.2 - Interligar considerando o ajuste do melhor caso encontrado no item 1.

Figura 21 – Intercâmbios para caso 2.2

Graduação em Engenharia Elétrica – Universidade Federal de Juiz de Fora

Comparação de Intercâmbios

Bibliografia

OLIVEIRA, Edimar J .Operação de Sistemas Elétricos de Potência. Juiz de Fora: Universidade Federal de Juiz de Fora, 2020.