Lecture 27

An Overview of Spatial Interpolation

STAT 8020 Statistical Methods II December 3, 2020

> Whitney Huang Clemson University

Notes

Toy Examples of Spatial Interpolation

Question: What is your best guess of the value of the missing pixel, denoted as $Y(s_0)$, for each case?

Notes

Interpolating Paraná State Precipitation Data

Goal: To interpolate the values in the spatial domain

Notes

The Spatial Interpolation Problem

Given observations of a spatially varying quantity \boldsymbol{Y} at \boldsymbol{n} spatial locations

$$y(s_1), y(s_2), \cdots, y(s_n), \quad s_i \in \mathcal{S}, i = 1, \cdots, n$$

We want to estimate this quantity at any unobserved location

$$Y(s_0), \quad s_0 \in S$$

Applications

- Mining: ore grade
- Climate: temperature, precipitation, · · ·
- Remote Sensing: CO₂ retrievals
- \bullet Environmental Science: air pollution levels, \cdots

Notes

Notes

Some History

- Mining (Krige 1951) Matheron (1960s), Forestry (Matérn 1960)
- More recent work: Cressie (1993) Stein (1999)

Outline

- Gaussian Process Spatial Model

An Overview of Spatial Interpolation
Gaussian Process Spatial Model

Notes			

Linear Interpolation

The best guess (in a statistical sense) should be based on the conditional distribution $[Y\left(s_0\right)|Y=y]$ where

$$\boldsymbol{y} = (y(\boldsymbol{s}_1), \cdots, y(\boldsymbol{s}_n))^{\mathrm{T}}$$

- Calculating this conditional distribution can be difficult
- Instead we use a linear predictor:

$$\hat{Y}(\boldsymbol{s}_0) = \lambda_0 + \sum_{i=1}^n \lambda_i y(\boldsymbol{s}_i)$$

• The best linear predictor is completely determined by the mean and covariance of $\{Y(s),\,s\in\mathcal{S}\}$, and the observations y

Notes

Gaussian Process (GP) Spatial Model

We assume that the observed data $\{y(s_i)\}_{i=1}^n$ is one partial realization of a (continuously indexed) spatial GP $\{Y(s)\}_{s\in\mathcal{S}}$.

Model:

$$Y(s) = m(s) + \epsilon(s), \qquad s \in \mathcal{S} \subset \mathbb{R}^d$$

where

Mean function:

$$m(s) = \mathbb{E}[Y(s)] = \boldsymbol{X}^T(s)\boldsymbol{\beta}$$

Covariance function:

$$\{\epsilon(s)\}_{s\in\mathcal{S}} \sim \operatorname{GP}(0, K(\cdot, \cdot)), \quad K(s_1, s_2) = \operatorname{Cov}(\epsilon(s_1), \epsilon(s_2))$$

Spatial Interpolation

CLEMS STATE OF THE POLICY OF T

27.8

1	Votes					
_						
-						

Assumptions on Covariance Function

In practice, the covariance must be estimated from the data $(y(s_1),\cdots,y(s_n))^{\rm T}.$ We need to impose some structural assumptions

Stationarity:

$$K(s_1, s_2) = \operatorname{Cov}(\epsilon(s_1), \epsilon(s_2)) = C(s_1 - s_2)$$

= $\operatorname{Cov}(\epsilon(s_1 + h), \epsilon(s_2 + h)))$

Isotropy:

$$K(s_1, s_2) = \operatorname{Cov}(\epsilon(s_1), \epsilon(s_2)) = C(||s_1 - s_2||)$$

Overview of Spatial erpolation	Notes			
sian Process al Model				

07.0

A Valid Covariance Function Must Be Positive Definite (p.d.)!

A covariance function is positive if

$$\sum_{i,j=1}^{n} a_i a_j C(\boldsymbol{s}_i - \boldsymbol{s}_j) \ge 0$$

for any finite locations $s_1,\cdots,s_n,$ and for any constants $a_i,\,i=1,\cdots,n$

Question: what is the consequence if a covariance function is NOT p.d.? \Rightarrow weird things can happen

Question: How to guarantee a $C(\cdot)$ is p.d.?

- Using a parametric covariance function
- Using Bochner's Theorem to construct a valid covariance function

Some Commonly Used Covariance Functions

Powered exponential:

$$C(h) = \sigma^2 \exp\left(-(\frac{h}{\rho})^{\alpha}\right), \qquad \sigma^2 > 0, \, \rho > 0, \, 0 < \alpha \leq 2$$

Spherical:

$$C(h) = \sigma^2 \left(1 - 1.5 \frac{h}{\rho} + 0.5 \left(\frac{h}{\rho} \right)^3 \right) \mathbbm{1}_{\{h \le \rho\}}, \qquad \sigma^2, \, \rho > 0$$

Note: it is only valid for 1,2, and 3 dimensional spatial domain.

Matérn:

$$C(h) = \sigma^2 \frac{\left(\sqrt{2\nu}h/\rho\right)^{\nu} \mathcal{K}_{\nu}\left(\sqrt{2\nu}h/\rho\right)}{\Gamma(\nu)2^{\nu-1}}, \qquad \sigma^2 > 0, \, \rho > 0, \, \nu > 0$$

"Use the Matérn model" - Stein (1999, pp. 14)

No ___

Gaussian Process Spatial Model

Spatial Interpolation

Notes

Notes

1-D Realizations from Matérn Model with Fixed $\sigma^2,\,\rho$

Figure: courtesy of Rasmussen & Williams 2006

Interpolation
CLEMS SA
Gaussian Process
Spatial Model
Spatial
Interpolation
Parameter
estimation

Notes			

2-D Realizations from Matérn Model with Fixed σ^2

An Overview of Spatial Interpolation

CLEMS

Gaussian Process Spatial Model

Spatial Interpolation

Parameter estimation

Notes

Outline

1 Gaussian Process Spatial Model

2 Spatial Interpolation

Parameter estimation

An Overview of Spatial Interpolation
CLEMS N

Gaussian Process Spatial Model Spatial Interpolation Parameter estimation Notes

-				
_				
-				

Conditional Distribution of Multivariate Normal

lf

$$\begin{pmatrix} \boldsymbol{Y}_1 \\ \boldsymbol{Y}_2 \end{pmatrix} \sim \mathrm{N} \left(\begin{pmatrix} \boldsymbol{\mu_1} \\ \boldsymbol{\mu_2} \end{pmatrix}, \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \right)$$

Then

$$[\boldsymbol{Y}_1|\boldsymbol{Y}_2=\boldsymbol{y}_2]\sim \mathrm{N}\left(\boldsymbol{\mu}_{1|2}, \boldsymbol{\Sigma}_{1|2}\right)$$

where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (y_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

An Overview of
Spatial
Interpolation
CLEMS N

Spatial Model

Spatial Interpolation

Parameter

Notes			

GP-Based Spatial Interpolation: Kriging

If $\{Y(s)\}_{s\in\mathcal{S}}$ follows a GP, then

$$\begin{pmatrix} Y_0 \\ \boldsymbol{Y} \end{pmatrix} \sim \mathrm{N} \left(\begin{pmatrix} m_0 \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & k^\mathrm{T} \\ k & \Sigma \end{pmatrix} \right)$$

We have

$$[Y_0|\mathbf{Y}=\mathbf{y}] \sim \mathrm{N}\left(m_{Y_0|\mathbf{Y}=\mathbf{y}}, \sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2\right)$$

where

$$m_{Y_0|\boldsymbol{Y}=\boldsymbol{y}} = m_0 + k^{\mathrm{T}} \Sigma^{-1} (\boldsymbol{y} - \boldsymbol{\mu})$$

$$\sigma_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Notes

Spatial Prediction of Paraná State Rainfall

Notes

GP-Based Spatial Interpolation: Kriging

If $\{Y(s)\}_{s\in\mathcal{S}}$ follows a GP, then

$$\begin{pmatrix} Y_0 \\ \boldsymbol{Y} \end{pmatrix} \sim \mathrm{N} \left(\begin{pmatrix} m_0 \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & \boldsymbol{k}^\mathrm{T} \\ \boldsymbol{k} & \boldsymbol{\Sigma} \end{pmatrix} \right)$$

We have

$$[Y_0|\mathbf{Y}=\mathbf{y}] \sim \mathrm{N}\left(m_{Y_0|\mathbf{Y}=\mathbf{y}}, \sigma^2_{Y_0|\mathbf{Y}=\mathbf{y}}\right)$$

where

$$\begin{split} m_{Y_0|\boldsymbol{Y}=\boldsymbol{y}} &= m_0 + k^{\mathrm{T}} \Sigma^{-1} \left(\boldsymbol{y} - \boldsymbol{\mu} \right) \\ \sigma_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}^2 &= \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k \end{split}$$

Question: what if we don't know $m_0, \boldsymbol{m}, \sigma_0^2, \Sigma$?

⇒ We need to estimate the mean and covariance from the data y.

Spatial Interpolation				
CLEMS N				

Notes

Outline

- **Gaussian Process Spatial Model**
- Spatial Interpolation
- Parameter estimation

An Overview of Spatial Interpolation
Parameter estimation
27.10

Notes

Gaussian Process

We assume that the observed data $\{y(s_i)\}_{i=1}^n$ is one partial realization of a (continuously indexed) spatial stochastic process $\{Y(s)\}_{s\in\mathcal{S}}$.

- Gaussian Processes $\operatorname{GP}\left(m\left(\cdot\right),K\left(\cdot,\cdot\right)\right)$ are widely used in modeling spatial stochastic processes
- Spatial statisticians often focus on the covariance function. e.g. $K(h)=\sigma^2\frac{\left(\sqrt{2\nu}h/\gamma\right)^{\nu}\mathcal{K}_{\nu}\left(\sqrt{2\nu}h/\gamma\right)}{\Gamma(\nu)2^{\nu-1}}$

Notes

Semivariogram $\{\frac{1}{2} \text{Var}\left(Y\left(s_{i}, s_{j}\right)\right)\}_{i, j}$

Source: fields vignette by Wiens and Krock, 2019

Notes			

Variogram, Semivariogram, and Covariance Function

Under the stationary and isotropic assumptions

Variogram:

$$\begin{split} 2\gamma(\boldsymbol{s}_i, \boldsymbol{s}_j) &= \operatorname{Var}\left(Y(\boldsymbol{s}_i) - Y(\boldsymbol{s}_j)\right) \\ &= \operatorname{E}\left\{\left(\left(Y(\boldsymbol{s}_i) - \mu(\boldsymbol{s}_i)\right) - \left(Y(\boldsymbol{s}_j) - \mu(\boldsymbol{s}_j)\right)\right)^2\right\} \\ &= \operatorname{E}\left\{\left(Y(\boldsymbol{s}_i) - Y(\boldsymbol{s}_j)\right)^2\right\} \\ &= 2\gamma(\|\boldsymbol{s}_i - \boldsymbol{s}_j\|) = 2\gamma(h) \end{split}$$

Semivariogram and covariance function:

$$\gamma(h) = C(0) - C(h)$$

Notes

Estimation: Least Squares Method

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{u} \frac{n_{u}}{\gamma(h_{u};\boldsymbol{\theta})^{2}} \left[\hat{\gamma}\left(h_{u}\right) - \gamma\left(h_{u};\boldsymbol{\theta}\right) \right]^{2}$$

Notes

Maximum Likelihood Estimation (MLE)

Log-likelihood:

Given data
$$\boldsymbol{y} = (y(\boldsymbol{s}_1), \cdots, y(\boldsymbol{s}_n))^{\mathrm{T}}$$

 $\ell_n(oldsymbol{eta}, oldsymbol{ heta}; oldsymbol{y}) \propto -rac{1}{2}\log|oldsymbol{\Sigma}_{oldsymbol{ heta}}| - rac{1}{2}(oldsymbol{y} - oldsymbol{X}^{\mathrm{T}}oldsymbol{eta})^{\mathrm{T}} \left[oldsymbol{\Sigma}_{oldsymbol{ heta}}
ight]_{n imes n}^{-1} \left(oldsymbol{y} - oldsymbol{X}^{\mathrm{T}}oldsymbol{eta}
ight)$ where $\Sigma_{\boldsymbol{\theta}}(i,j) = \sigma^2 \rho_{\rho,\nu}(\|\boldsymbol{s}_i - \boldsymbol{s}_j\|) + \tau^2 \mathbb{1}_{\{\boldsymbol{s}_i = \boldsymbol{s}_j\}}, i,j = 1,\cdots,n$

for any fixed $\theta_0 \in \Theta$ the unique value of β that maximizes ℓ_n is given by

 $\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}_0}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}_0} \boldsymbol{y}$

Then we obtain the profile log likelihood

 $\ell_n(\boldsymbol{\theta}; \boldsymbol{y}) \propto -\frac{1}{2} \log |\boldsymbol{\Sigma}_{\boldsymbol{\theta}}| - \frac{1}{2} \boldsymbol{y}^{\mathrm{T}} P(\boldsymbol{\theta}) \boldsymbol{y}$

where

$$P(\boldsymbol{\theta}) = \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} - \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} \boldsymbol{X} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}}$$

Solve the maximization problem above to get the MLE

Notes