Contents

1	Inti	roduction	3
2	Lite	erature review	4
	2.1	Wheat Breeding	4
	2.2	Wheat Genetics	4
	2.3	Wheat Genomics	4
	2.4	Sequencing	5
	2.5	Sequence analysis	5
	2.6	Wheat online resources	5
3	Ger	netic map of Yr15 with RNA-Seq	6
	3.1	Mapping population	7
	3.2	Sequencing and mapping	8
	3.3	SNP Calling	9
	3.4	In silico mapping	11
	3.5	Assay selection	11
	3.6	Genetic map	11
	3.7	Conclusions	11
4	Pol	yMarker: A fast polyploid primer design pipeline	12
	4.1	Pipeline	12
	4.2	Applications of PolyMarker	16
		4.2.1 KASP assays for public sets of SNPs	17
		4.2.2 SNPs in a mutant population	17
		4.2.3 Deletions on a mutant population	17
		4.2.4 PolyMarker public web service	18
		4.2.5 Genotyping of <i>Puccinia striiformis</i> f. sp. <i>tritici</i>	
		isolates.	19
	43	Discussion	19

CONTENTS 2

5	Gen	ne expression (expVIP)	20
	5.1	Expression experiments (Introduction)	20
	5.2	Database design	20
	5.3	Analysis pipeline	20
	5.4	Graphical interface	20
	5.5	Conclusions	20
6 A		reclusions and final remarks	21 22
	A.1	Genetic map of $Yr15$ with RNA-Seq supplemental tables.	23
	A.2	PolyMarker supplemental tables	25
В	Qua	ality control	35
	B.1	Sequence read quality	35
	B.2	Sequence GC content	38

Introduction

It defines the objectives and the importance of the research. It focus on the the application of Next Generation Sequencing to molecular biology, wheat genetics and ultimately to breeding programs. It also mentions the current status of the wheat reference genome and other resources (genetic maps, markers) the need of tools to query them effectively.

Literature review

It describes the current status of the wheat genome, genetics and other resources.

2.1 Wheat Breeding

An overview of how breeding is carried on currently, the different sources of genetic diversity and the relevance of fixing agriculturally important traits.

2.2 Wheat Genetics

The section describes alleles an the concept of gene, both as a locus in the genome (Quantitative Trait Locus, QTL) and an specific transcript (central dogma of molecular biology). Finally, it discuses traditional Mendelian inheritance and the effect of polyploidy.

2.3 Wheat Genomics

A description of the current status of the wheat genome (Mayer et al. (2014), Chapman et al. (2015)), the different available assemblies and and approaches to sort the scaffolds (Genome Zipper, the various genetic maps).

2.4 Sequencing

The importance of the selection of the library preparation and the sequencing platforms available. A brief summary of RNA-Seq, Exome capture, Whole Genome Shotgun, etc. and on which cases are more suitable for different experiments. Mention the new technologies developed during the years of the PhD (Ren-Seq, PacBio?)

2.5 Sequence analysis

This section discusses the criteria to decide analysis done after sequencing, when to do re-alignments or *de novo* assemblies, how to do SNP calling in diploid and polyploid organisims and the bulk frequency ratios.

2.6 Wheat online resources

A compilation of the currently available resource for whet genetics and genomics. MAS wheat, CeralsDB, Ensembl, etc.

Genetic map of Yr15 with RNA-Seq

Wheat breeding programs aim to improve the wheat lines available for production. One way to facilitate the selection of elite lines is to find molecular markers that can facilitate the selection of seeds without having to wait until the phenotype is observed. Bulk Segregant Analysis (BSA) consists on pooling the DNA of individuals with contrasting phenotypes (Michelmore et al., 1991) on a segregating population. The bulks show as heterozygous except for the region that is linked to the trait of interest. This approach can be used to identify SNPs using High Throughput Sequencing, such as: exome capture (Hodges et al., 2007), RNA-Seq (Pickrell et al., 2010), whole genome resquencing (Schneeberger et al., 2009), among others.

One of the traits desired in an elite line is the resistance to pathogens, such as *Puccinia striiformis* f. sp. *tritici*, the fungi responsible of yellow rust. A source of resistance genes is are introgressions from other species, such as *Triticum diccocides*. In the University of Sydney a collection of Near Isogenic Lines (NILs) with introgressions to several Yellow Rust resistance genes on a susceptible background were developed (Wellings and McIntosh, 1998). On this chapter the NIL for the *Yr15* locus is used to produce a mapping population to improve diagnostic markers. The population was sequenced using RNA-Seq and a bioinformatic pipeline was developed to score Single Nucleotide Polymorphisms (SNPs) linked to the *Yr15* locus. Finally, the best candidate SNPs where selected to produce a genetic map which lead to a triplet of markers diagnostic to the target locus. The steps described in this chapter were first published

Figure 3.1: Response of (a) Avocet + Yr15 and (b) Avocet when inoculated with *Puccinia striiformis* f. sp. *tritici* at the three leaf stage. (c) The phenotype of the F_2 population was used to produce 6 bulks, 3 resistant and 2 susceptible. The RNA was pooled in bulks accordingly. Adapted from (Ramirez-Gonzalez et al., 2015c)

in Ramirez-Gonzalez et al. (2015b) and the results of this chapter are published in Ramirez-Gonzalez et al. (2015c).

3.1 Mapping population

The population was developed by crossing the resistant line 'Avocet + Yr15' (Yr15) (Wellings and McIntosh, 1998), Figure 3.1a, to the susceptible line Avocet (AVS), Figure 3.1b. F_2 seeds from tree independent F_1 plants where sown and tissue was collected, before the fungal inoculation to avoid the effect of the response on the gene expression. The plants were challenged at the three leaf stage as it is know that Yr15 confers resistance in seedlings (Gerechter-Amitai et al., 1989). The expected segregation on an F_2 population is 3:1 (resistant:susceptible), since Yr15 is a dominant gene. From the 232 plants in the F_2 population that germinated, 187 were resistant and 45 were susceptible, which deviates slightly from the expected ratio ($\chi^2 = 0.049$). Segregation distortion has been shown for the same Yr15 donnor (Randhawa et al., 2009), however the

Library	name	Bar code	Lane	Reads ($\times 10^8$ bp)
LIB1715	Bulk R1	ATCACG	1	0.77
LIB1716	Bulk R2	TAGCTT	1	1.20
LIB1717	Bulk R3	ACTTGA	2	0.96
LIB1718	Bulk S1	GGCTAC	2	1.64
LIB1719	Bulk S2	CGTACG	2	1.49
LIB1720	Bulk S3	GTGGCC	1	1.88
LIB1721	AvocetS	N/A	3	4.13
LIB1722	AvocetS $+ Yr15$	N/A	4	3.99

Table 3.1: Arrangement and number of sequenced base pairs per sample.

decresed number of succeptible plants can be explained by escapes in the virulence essays (i.e. plants scored as resistant without the Yr15 locus). For this study we extracted DNA from individual plants in the F_2 population and we bulked RNA on 6 different bulks: 3 resistant and, 3 succeptible, Figure 3.1c.

3.2 Sequencing and mapping

RNA-Seq was used to avoid sequencing the non-coding regions and reduce the search space. The sequencing of the bulks and the parents were done on a single Illumina Hi-Seq2000 each. The bulks were multiplexed and sequenced on a third of a lane each, as shown on Table 3.1. To ensure that the quality of the sequencencing was good, fastqc-0.10 (Babraham Bioinformatics, 2012) was run with its default parameters in each one of the fastq files. The GC content was around 52% in all the samples (Appendx B.2), which is expected as the sample should be of coding regions, and for wheat the reported GC content in genes is around 55%. The quality of the reads is fairly consistent, in general dropping after the base 80 across the samples (Appendix B.1).

When the analysis was started, the draft genome and the corresponding annotation where not not release yet, hence gene models where used. All the samples where aligned to the Unigenes v60 (56,954 genes) and the gene models from UCW (Krasileva et al., 2013) using BWA 0.5.9 (Li and Durbin, 2009). The alignment provided showed that a few genes were overly expressed, however we still have have 22,107 and 36,808 genes, on the Unigenes and the UCW gene set respectively, with a coverage greater than 20x in the progenitor with Yr15, Supplemental Table A.1.

Both gene sets performed similarly in terms of the percentage of genes with reads and percentage of aligned reads. Since each individual bulk has a lower coverage, the susceptible and resistant reads were merged *in silico* and mapped as the individual bulks.

3.3 SNP Calling

To identify loci linked to the resistance provided by Yr15 in the segregating population the Bulk Frequency Ratios (BFR) described by Trick et al. (2012) on tetraploid wheat. The consensus sequence for each of the progenitors is obtained from the pileups, allowing to call variants with a 20% of bases as alternative alleles. Homoeologous variants, as exemplified by the G>T variant at position 181; K in consensus on Figure 3.2, will produce the same ambiguity code for both parental consensus sequences and can therefore be excluded. Real allelic SNPs between the parental genotypes, exemplified by the G>A variant at position 184; R in consensus, are distinguished by the presence in one, but not the other parental consensus sequence.

These allelic SNPs are then examined further in the alignments of the RNA-Seq reads from the susceptible and resistant bulks. To identify enriched and depleted SNPs we first calculate the SNP Index, which is the proportion of the non-consensus base at the positions previously identified (A at position 184 according to the example in Fig. 2b; Takagi et al., 2013a). Then, we calculate the bulk frequency ratios (BFR), which is the ratio between the SNP Indexes of the resistant and susceptible bulks (Trick et al., 2012). The BFR helps reduce the noise generated by differential expression of homoeologous genes and accounts for the presence of alternative bases at any given position. A closely linked SNP to the R-gene should generate a very high BFR since the resistant bulk will carry exclusively plants with the resistant allele, whereas the susceptible bulk should be devoid of any plants carrying the resistant allele. As one moves further away from the R-gene, recombination events occur between the gene and the candidate SNPs decreasing the BFR.

Figure 3.2: Illustration of a non-informative homoeologous SNP (G181T) present in both parental lines, and an informative allelic SNP (G184A), only present in the resistant progenitor Avocet S + Yr15. The consensus sequences from the parental genotypes include this information in the form of ambiguity codes (K and R, respectively). In the bulks, the individual reads align across the reference sequence, with matches indicated by dots, and polymorphisms at positions 181 and 184 indicated by the corresponding nucleotide variants at those positions. The SNP index is calculated as the frequency of the informative allelic SNP in each bulk. The Bulk Frequency Ratio is the quotient of the resistant and susceptible bulk SNP Indexes. Figure previously published in Ramirez-Gonzalez et al. (2015b).

3.4 *In silico* mapping

Mapping of the gene models to the IWGSC CSS Mayer et al. (2014) reference and the location of the SNPs using the genetic map from Wang et al. (2014).

3.5 Assay selection

. The selection criteria to decide which SNPs where selected to produce the genetic map: BFR>6, in the short arm of chromosome group 1 and from the Yr15 progenitor.

3.6 Genetic map

The three versions of the genetic map: With a subset of the F₂ population

3.7 Conclusions

Remarks on how this techinque can be used to do fine-mapping and that if I were to start the project now I would use exome capture or Ren-Seq.

The references have changed since we started we can use different techniques now (exome capture, ren-seq) The markers are now used by our collaborators.

PolyMarker: A fast polyploid primer design pipeline

One of the main challenges of working with polyploid species is the design of genome specific molecular markers. This is particularly true when targeting conserved homoeologue regions, where a primer could bind to a pair, or triplet, of identical sequences. For that reason, designing primers for polyploids require to include bases that are specific to the target, in addition to the physicochemical properties of the primer. The traditional methodology to find primer candidates include a blast search and a local alignment, select the primer candidates manually, and finally, validate the primers with a tool, like Primer3 (Rozen and Skaletsky, 2000). To reduce the time invested in designed primers I have developed PolyMarker (Ramirez-Gonzalez et al., 2015a), a pipeline to automate the primer design for polyploid organisms.

4.1 Pipeline

PolyMarker is an automated pipeline that takes as input a list of SNPs and a reference file and produces a list of primer triplets for SNP genotyping. The list of SNPs is first converted to a FASTA file with ambiguity codes (Cornish-Bowden, 1985) The template sequences are aligned with exonerate (Slater and Birney, 2005) to find the homoeologous regions to the target sequence. Then, the alignment between homoeologues is refined using MAFFT (Katoh and Standley, 2013). A list of candidate variations is produced and used as input for Primer3 (Rozen and Skaletsky, 2000). Finally, the output of Primer3 is parsed to find the best

Figure 4.1: Steps and tools called by PolyMarker. The colour of the boxes represent: the step is an action inside the script(red); actions of the script(orange); temporary files(yellow); inputs(blue) and; outpus(green)

primer pair that contains a the targeted SNP and a base that is specific to the target genome (Figure 4.1). The pipeline is written as a Ruby script, using parsers and wrappers from BioRuby (Goto et al., 2010) and bio-samtools (Etherington et al., 2015; Ramirez-Gonzalez et al., 2012). The software is open source and released as a biogem (Bonnal et al., 2012), bio-polyploid-tools, the source code is available in github: https://github.com/TGAC/bioruby-polyploid-tools.

The PolyMarker input consist on SNP list with: unique name for the marker, the target chromosome and the sequence for the marker. The alternative alleles are surrounded by square brackets within the sequence. PolyMarker can take a list of several markers and design them in batch, Figure 4.2a. A FASTA file is produced with all the template sequences, with the alternative alleles substituted by the IUAPC ambiguity codes (Cornish-Bowden, 1985). The flanking sequence surrounding the SNP is limited by default to 100bp to reduce the search time and avoid missing regions that diverge near the SNP, as when the variation is near an intron-exon junction.

The template sequences are aligned to the reference using exonerate (Slater and Birney, 2005), Figure 4.2b. The alignment is refined with the --model est2genome option, to allow the search of sequences coming from transcripts, a common source of SNPs (Allen et al., 2011). The exonerate output is formatted with the --ryo (roll your own format) to get an output easy to parse. All the hits that contain the SNP are extracted from the reference with a flanking sequence that extend out of the hit, by defualt, to 100bp on each side of the SNP, Figure 4.2c. The size of the flanking sequence can be set to different sizes to allow the design of different types of primers. Different homoeologues may contain small indels, Figure 4.2d. To enable a comparasion base-per-base, a local alignment with MAFFT (Katoh and Standley, 2013) is produced, Figure 4.2e.

PolyMarker searches across each base in the local alignment to identify the variations across homoeologues and the target marker. A mask is produced to highlight the bases with a variations, Figure 4.2f, on the following categories:

Specific Homoeologous polymorphism which is only present in the target genome (upper case).

Figure 4.2: Alignments done by PolyMarker.(a) input. The alternative alleles are sorrounded by brackets. (b) Global search of templates in the reference contigs. (c) Selected regions around the SNP on every chromosome. (d) Sequence of found regions around the SNP. (e) Local alignment on regions around the SNP detects indels. (f) Alignment with mask and primer candidates.

Semi-specific Homoeologous polymorphism which is found in 2 of

the 3 genomes, hence it discriminates against one of the off-target genomes or when not all the homoeol-

ogous sequences were found (lower case).

Non-specific No variation is found across homoeologues (-).

Homoeologous The target SNP is present across different chromo-

somes, so candidate SNP markers on this category are not expected to be reliably identify the allele (:).

Non-homoeologous The target SNP is not present across chromosomes,

so it can be used to identify an allele (&).

PolyMarker was designed to produce SNP assays for KASP genotyping (LGC Genomics, 2013), which requires a common primer and two allele-specific primers. The common primer is selected to start on a position from a: Specific; Semi-specific or; Non-specific, on that priority. This means that the common primer will be as specific as possible in the region. For the allele-specific primers, the starting position of the primer is on the base with the SNP. To ensure that the stability of the candidate primers will be met, the putative starting positions are tested with Primer3 (Rozen and Skaletsky, 2000).

PolyMarker was designed and validated with the markers described in section 3.6. For wheat, PolyMarker uses the contigs from Mayer et al. (2014), as deposited in Ensembl. As new releases of the wheat genome are made available, different parsers to assign the chromosome to each sequence can be added with little effort to PolyMarker.

4.2 Applications of PolyMarker

PolyMarker is not restricted to wheat or to KASP assays, the source code is flexible and can be extended for other types of analysis. On each of the following projects, PolyMarker has been adapted to design primers in species where KASP hasn't been used before, the primers are used for regular PCR amplification, or the use of KASP is not the conventional SNP calling.

4.2.1 KASP assays for public sets of SNPs

PolyMarker was used to design KASP assays for the 81,587 markers from (Wang et al., 2014), available on the PolyMarker website and in CeralsDB (Wilkinson et al., 2012). Of those markers, 40,267 where designed using the target chromosome using the genetic map published by the genetic map. Genes without a genetic position were aligned to scaffolds sorted by chromosome from the International Wheat Genome Sequencing Consortium (Mayer et al., 2014) with BLAT (Kent, 2002) and the best hit was selected as putative location. 97.5% of the assays where designed and 76% of them are semi-specific or specific, thereby improving their expected performance with respect to randomly designed primers (Table A.2). A subset of the designed assay was used to genotype a mapping population to find resistance to Fusarium head blight (Burt et al., 2015).

4.2.2 SNPs in a mutant population

PolyMarker was used to design primers to validate SNPs in a Targeted Induced Local Lesions in Genomes (TILLING) population, an approach to identify the function of genes by mutating them. To calibrate the SNP calling, KASP assays were designed to get the mutations from M_2 , M_3 and, M_5 mutants (King et al., 2015). Then primers were designed for the whole mutant population, consisting of 1,200 Cadenza (Hexaploid) and 1,535 Kronos (Tetraploid) wheat lines (Krasileva et al., submitted 2016). Genome-specific primers 172 and 80 SNP assays on 19 and 8 M_4 Cadenza and Kronos lines respectively. Of those, 71(85.5%) Kronos and 147(88.8%) of the Cadenza primers where valid assays (Tables A.5 and A.6).

4.2.3 Deletions on a mutant population

On some of the TILLING mutant lines long deletions were detected (Krasileva et al., submitted 2016). To validate the deletions is possible to use KASP assays to produce primers that amplify homoeologues. PolyMarker was modified to search for variations across homoeologues to select a common primer that will amplify two genomes, Figures 4.3a and 4.3b. On lines without the targeted deletion, the amplification correspond to an homozygous assay, Figure 4.3c. When a deletion is present

Figure 4.3: KASP assays to validate homozygous deletions. (a) Primer positions for wildtype. (b) Primer positions on homozygous deletion on M_4 (c Heterozygous amplification on wildtype, including both homoeologues. (d) Homozygous amplification on deletion line, only the non-deletad homoeologue is amplified.

the results of the assay look like an homozygous sample, with the intensity of the assay towards the the conserved homoeologue, Figure 4.3d. A set of KASP assays for the the deletions and mutations located on the same chromosome where designed to validate 11 homozygous deletions on m_4 plants. In all cases the segregation of the mutiations was as expected, except for a predicted heterozygous mutation that was called as homozygous. Also, all the KASP assays that contained a deletion were called homozygous, as expected. To ensure that the calls didn't come from a single cluster, 4 wildtype plants were genotyped and the markers for deletions where called as heterozygous. An example of a validated deletion, with the calls for each individual is shown on Table A.4.

4.2.4 PolyMarker public web service

To make PolyMarker accessible to the community, a web server that allow the submission of SNPs was developed. The web interface consists on two virtual machines, one with a web facing interface that stores the queries, and a dedicated node to submit jobs to an HPC cluster. The on-line interface further simplifies the design of KASP assays, a process that used to take a couple of weeks now is done in a couple of hours.

Since the release of the public service in July 2014 until August 2016, 1,739 requests to PolyMarker have been done.

4.2.5 Genotyping of $Puccinia\ striiformis\ f.\ sp.\ tritici\ isolates.$

In Hubbard et al. (2015), Puccinia striiformis f. sp. tritici (PST) isolates were sequenced and assigned to clusters, according to their genotype. The clusters are useful to monitor the changes in the pathogen population, which can be used to predict if certain wheat lines will be resistant to the isolates in the field. PolyMarker was used to design primers for PST, using the assembly PST-130 (Cantu et al., 2011). Out of 15 assays 11 can be used to identify to which cluster of isolates a sample is likely to belong, Supplemental Table A.3.

4.3 Discussion

PolyMarker is a tool that was born as part of the validation of the SNPs found in Chapter 3. Originally, the primer design was ought to be done manually, a slow, error-prone and, repetitive process. The steps require the use of several bioinformatics tools, but once I figured out the steps I decided to automate the process. Since designing genome-specific primers is a common task in wheat research and breeding, the community showed interest on the tool and I decided to refine it and make it open source. PolyMarker has been used successfully in several projects and it even allowed the novel use of KASP assays to validate long deletions in polyploids.

The current web interface of PolyMarker is limited to KASP assays, however the command line version is more flexible and has been used to design primers for PCR amplicons, capillary sequencing and on other organisms. The ideas behind PolyMarker had been taken by other projects like the scripts described in Ma et al. (2015) and the corresponding web interface, GSP (Wang et al., 2016). As new references of wheat come available, PolyMarker should be updated to work with pseudomolecules and the web interface updated accordingly.

Gene expression (expVIP)

5.1 Expression experiments (Introduction)

Describe the list of previously published expression experiments and how they can potentially be used as a framework for new experiments.

5.2 Database design

Description of how the database was designed and the flexibility given by having the factors and units as variables

5.3 Analysis pipeline

Implementation of the pipeline, from running kallisto to load the data in the database

5.4 Graphical interface

How the expression can be displayed filtered, and sorted

5.5 Conclusions

The use of previously published studies is a valuable resource. Also, mention that despite the fact that there are several expression/gene browsers, none of them allow comparisons between species and don't consider polyploids.

Conclusions and final remarks

This section wraps up by showing the relationship and importance of a comprehensive approach to data analysis, from the field, genetics, molecular biology and genomics. I will also remark how the technology and the resources have changed in the last 4 years. As at the references used at beginning where superseded during the PhD.

Appendix A Supplemental tables

A.1 Genetic map of *Yr15* with RNA-Seq supplemental tables.

ors	AVS	12,248	45%	25,842	45%	50,760	54%	31,095	25%	080,22	82%	14,596"	78%
Progenit	Yr15 A			-	39%			28,044				43,732 4	
	S1+S2+S3	—	20%		_	—		33,557	_	—		45,392	_
Bulk mixes	$_{\mathrm{R1+R2+R3}}$	40,985	44%	24,598	43%	49,182	52%	29,857	52%	76,715	81%	44,364	78%
Βι	$_{\mathrm{S1+S2}}$	41,019	44%	25,270	44%	49,473	53%	30,579	54%	77,093	82%	44,655	78%
	$_{\mathrm{R1+R2}}$	33,968	36%	20,219	36%	43,266	46%	26,318	46%	74,397	262	43,393	26%
	- S3	34,898	37%	20,567	36%	44,610	47%	26,914	47%	75,201	80%	43,748	77%
	S2	28,669	30%	17,397	31%	38,999	41%	24,130	42%	73,290	78%	43,059	%92
lks	$_{\rm S1}$	32,287	34%	19,549	34%	42,658	45%	26,200	46%	74,694	262	43,625	777%
Bulks	R3	27,223	29%	15,222	27%	37,777	40%	22,130	39%	72,957	77%	42,595	75%
	R2	27,871	30%	16,182	28%	38,282	41%	22,948	40%	72,484	77%	42,489	75%
	R1	16,434	17%	9,643	17%	27,371	29%	16,201	28%	68,302	73%	40,717	71%
	Coverage Reference	UCW		UniGene v60		UCW		UniGene v60		UCW		UniGene v60	
	Coverage	20x				10x				>0×			

Table A.2: Count of KASP assays designed for the 40,267 SNP markers located in the genetic map from Wang et al. (2014). 4,228 assays did not align to the target chromosome. Not designed: Primer3 could not find viable primers flanking the SNP.

	Homoeologous variant	Varietal SNP	Percentage
Non-specific	1,765	5,857	21.15%
Semi-specific	7,942	6,907	41.20%
Specific	6,813	5,957	35.43%
Not designed	242	556	2.21%
Total	16,762	19,277	36,039

A.2 PolyMarker supplemental tables.

Table A.3: PolyMarker used to genotype PST

					Cluster I	I isolates	Cluster]	: II isolates	Clus	Muster III isc	I isolates	Cluster I	V isolates
Assay	Contig	Position	×	×	13/26	13/123	CL1	T-13/3	13/09	13/23	13/182	13/36	13/40
1	PST130_14470	268	C	T	X:Y	X:Y	X:X	X:X	X:X	X:X	X:X	X:X	X:X
2	PST130_8160	11876	Ö	Η	Y:Y	Y:Y	X:X	X:Y	X:Y	X:X	X:Y	X:Y	X:X
8	PST130_14628	1712	Ą	Ö	X:X	1	×:×	X:X	X:X	X:X	X:X	X:X	X:X
4	PST130_14898	503	Ü	Ą	X:X	X:X	X:Y	X:Y	X:Y	X:Y	1	X:Y	X:X
ю	PST130_28344	2372	Ą	Ü	Y:Y	Y:Y	X:Y	X:Y	Y:Y	Y:Y	Y:Y	Y:Y	Y:Y
9	PST130_7634	3463	Ą	Ö	Y:Y	Y:Y	X:Y	X:Y	Y:Y	Y:Y	Y:Y	Y:Y	Y:Y
7	PST130_7629	11699	Ü	Ą	Y:Y	Y:Y	X:X	X:Y	Y:Y	Y:Y	Y:Y	Y:Y	Y:Y
œ	PST130_10943	2979	Ö	Η	X:X	X:X	X:X	X:Y	X:X	X:X	X:X	X:Y	X:X
6	PST130_10126	6216	Ü	H	Y:Y	Y:Y	X:X	X:X	X:X	X:X	1	Y:Y	Y:Y
10	PST130_22010	172	Ö	Η	Y:Y	Y:Y	Y:Y	Y:Y	X:X	X:X		X:Y	X:X
11	PST130_16961	1098	Ö	H	X:X	X:X	X:Y	X:Y	Y:Y	Y:Y	Y:Y	X:Y	X:X
12	PST130_6915	2710	Ą	Η	Y:Y	Y:Y	Y:Y	Y:Y	Y:Y	X:X	X:Y	Y:Y	Y:Y
13	PST130_12479	1428	Ö	Η	X:X	X:X	Y:Y	Y:Y	X:X	X:X	X:X	Y:Y	X:X
14	PST130_7634	3883	Ö	U	X:X	X:X	X:Y	X:Y	X:X	X:X	X:Y	X:Y	X:X
15	PST130_14470	456	Η	Ö	۷:۷	\.\ \.\	X:X	X:Y	Y:Y	۲.۲	X:X	λ: Λ	^. ^

Table A.4: Validation of homozygous deletions on line Cadenza0423.

Marker	Deletion	chr	$_{ m cM}$	1	2	3	4	ъ	9	7	∞	6	10	11	12	C	C	C	C	Result
5BS_2297308_Cadenza0423_12664_C12664T	,	5B	4.551	×	×	,	×	×	×	×	×	×	×	,	×	7	¥	7	7	HOM Mutation
5BL_10812849_Cadenza0423_5664_G5664T		$^{2}\mathrm{B}$	38.769	×	×	,	×	×	×	×	×	×	×	,	×	×	×	×	×	HOM Mutation
5BL_10825062_Cadenza0423_7917_G7917A	,	$^{5}\mathrm{B}$	38.769	×	×	,	×	×	×	×	×	×	×	,	×	¥	×	¥	X	HOM Mutation
IWGSC_CSS_5BL_scaff_10847976:27068-27231	+	$^{5}\mathrm{B}$	38.769	×	×	,	×	×	×	×	×	×	×		×	Ή	Ξ	Ή	Ή	Hom Deletion
IWGSC_CSS_5BL_scaff_10847976:28118-28674	+	$^{2}\mathrm{B}$	38.769	×	×	,	×	×	×	×	×	×	×	,	×	Ή	Ξ	Ξ	Ξ	Hom Deletion
IWGSC_CSS_5BL_scaff_10865441:15863-15946	+	$^{5}\mathrm{B}$	38.769	×	×	,	×	×	×	×	×	×	×	,	×	Ή	Η	Η	Η	Hom Deletion
5BL_10837222_Cadenza0423_4616_G4616A	,	^{2}B	39.902	×	×	,	×	×	×	×	×	×	×	,	×	×	×	×	×	HOM Mutation
5BL_10891320_Cadenza0423_18847_C18847T	,	$^{2}\mathrm{B}$	45.594	X	X	1	×	Η	×	×	×	Н	Y	,	Н	Y	×	X	X	HET Mutation

Table A.5: Validation of mutations on M_4 on Cadenza

IWGSC contig	Line	Pos	WT	Mut	Predicted	M_4	Primer 1 (Cadenza)	Primer 2 (mutant)	Common Primer
IWGSC_CSS_3B_scaff_10445294	Cadenza1772	6019	С	Т	het	het	caggatAgtGggactgtcaaaG	caggatAgtGggactgtcaaaA	ggagacGGctGtggacatT
IWGSC_CSS_3DL_scaff_6955403	Cadenza1772	2418	$^{\rm C}$	\mathbf{T}	het*	hom	tcagCggattgtcgggatG	tcagCggattgtcgggatA	tgtcCatgaaTcttgtccacG
IWGSC_CSS_4AL_scaff_7106846	Cadenza1772	11277	G	A	hom	hom	tgggatccatgcctacactG	tgggatccatgcctacactA	gatggtGgatttgccgctA
IWGSC_CSS_4AS_scaff_5991335	Cadenza1772	15710	G	A	hom	hom	ctggccctgcgctgctaC	ctggccctgcgctgctaT	gtggaaGttcagaaggaccaG
IWGSC_CSS_4BS_scaff_4956646	Cadenza1772	252	G	A	het*	hom	gcaggttgacttcccggaG	gcaggttgacttcccggaA	t GaggtacgaGcTaaagAaagC
IWGSC_CSS_4DS_scaff_1715962	Cadenza1772	1225	G	A	hom	hom	cagctgtggTatctcaactgG	cagctgtggTatctcaactgA	CcCtGaaACACcGtttggaT
IWGSC_CSS_5AL_scaff_2763407	Cadenza1772	2119	\mathbf{G}	A	hom	hom	gcgacGaacctcgagatctG	gcgacGaacctcgagatctA	gaTggcaAtcgtCgtgcA
IWGSC_CSS_5AS_scaff_1548786	Cadenza1772	12625	$^{\rm C}$	T	het	het	AtaggcacattgctagactgaG	AtaggcacattgctagactgaA	ggattgggtgttgcacgC
IWGSC_CSS_5BL_scaff_10849226	Cadenza1772	2289	C	\mathbf{T}	het*	hom	cctgacatcattgttcacgatC	cctgacatcattgttcacgatT	cactccgaggtgtccatgaT
IWGSC_CSS_5BS_scaff_2270737	Cadenza1772	2262	G	A	hom	_	attc CTgtgttgtggCaaatgaG	attc CTgtgttgtggCaaatgaA	taaGcacaaAccctccagctgG
IWGSC_CSS_1AL_scaff_3022915	Cadenza1661	891	$^{\rm C}$	T	hom	hom	${\tt ccacagtgagactcctattgaCG}$	${\tt ccacagtgagactcctattgaCA}$	atgtctgattcGtcGtagtcC
IWGSC_CSS_1AS_scaff_3297240	Cadenza1661	1970	$^{\rm C}$	T	het	het	catcccgccGtttcctcC	catcccgccGtttcctcT	gctcgccgatgaagagcT
IWGSC_CSS_1BL_scaff_3828996	Cadenza1661	1340	G	A	hom	hom	agccggatgttagtgttaacC	${\it agccggatgttagtgttaacT}$	agcagcttgTcgcgttaaC
IWGSC_CSS_1DS_scaff_1884529	Cadenza1661	10575	G	A	hom	hom	a Cagataca Attgtcatgcagg C	${\bf aCagatacaAttgtcatgcaggT}$	acctgggTTgtccaatacttC
IWGSC_CSS_2AL_scaff_6318370	Cadenza1661	19142	$^{\rm C}$	T	het	_	cgtggcCgaatCtcGacG	cgtggcCgaatCtcGacA	ttcttgtgggagccgggC
IWGSC_CSS_2AS_scaff_5213460	Cadenza1661	1358	\mathbf{G}	A	hom	hom	gtcacgaaCccgctcagG	gtcacgaaCccgctcagA	aggaaagaggaaaagaGcG
IWGSC_CSS_2BS_scaff_5179331	Cadenza1661	5604	\mathbf{G}	A	het	het	actctcgtcaagaactgatacaG	actctcgtcaagaactgatacaA	gcaGagaatgttcttgcaacT
IWGSC_CSS_2DS_scaff_5341235	Cadenza1661	4673	\mathbf{G}	A	het	het	ggtgaggatctcggagctG	ggtgaggatctcggagctA	gcgcggtcgtacgagttG
IWGSC_CSS_3AL_scaff_4250995	Cadenza1661	7046	\mathbf{G}	A	hom	hom	cCaagaaacgggtggtccaG	cCaagaaacgggtggtccaA	${\it ctgcagctgtcccatcatcgT}$
$IWGSC_CSS_3B_scaff_10404421$	Cadenza1661	4303	\mathbf{G}	A	het	het	ccttcgtcgaCaggacctG	ccttcgtcgaCaggacctA	GCcagtactCacAtgctctC
IWGSC_CSS_5DL_scaff_2390496	Cadenza1538	2125	$^{\rm C}$	T	hom	het	gcagttttatcctcagtagtcttgG	gcagttttatcctcagtagtcttgA	ttctgagaaTgtaatgtgcGatG
IWGSC_CSS_6AL_scaff_5753680	Cadenza1538	3920	$^{\rm C}$	T	hom	hom	tgctccaaatttgagcacaaTaaC	tgctccaaatttgagcacaaTaaT	aaatgcaaggggtaagtttttgT
IWGSC_CSS_6AS_scaff_4425792	Cadenza1538	4307	\mathbf{G}	A	hom	het	agatgcttgtCggGccaG	agatgcttgtCggGccaA	gctgaagcaacgcgatcaaT
IWGSC_CSS_6BS_scaff_3003630	Cadenza1538	6933	C	\mathbf{T}	het	het	ggcagtaatgtggtgctgagC	${\tt ggcagtaatgtggtgctgagT}$	${\it t} {\it Tga} {\it Cttctggtttggtggc} {\it A}$
IWGSC_CSS_6DL_scaff_3246988	Cadenza1538	9186	\mathbf{G}	A	het	het	${\tt gctaaagaagagcttgagagaattC}$	${\tt gctaaagaagagcttgagagaattT}$	a atttct g a a g a g a g g t g t t g t a t G
IWGSC_CSS_7AL_scaff_4480114	Cadenza1538	3446	$^{\rm C}$	T	het	_	gatatctcccacacggcgG	gatatctcccacacggcgA	tgagccactcttgcagtttT
IWGSC_CSS_7AS_scaff_4193541	Cadenza1538	8359	$^{\rm C}$	T	hom	het	${\bf agcaattctttggctatcaattagC}$	${\it agcaattctttggctatcaattag} T$	tcatctGtcttaactctactgctG
IWGSC_CSS_7BL_scaff_6721572	Cadenza1538	9223	C	\mathbf{T}	het	het	gctCagggaggaagacaagaaG	gctCagggaggaagacaagaaA	tgctatgaagaattccgacctC
IWGSC_CSS_7BS_scaff_3152545	Cadenza1538	3960	\mathbf{G}	A	hom	_	t cag caa a at cac ctg c Cg C	t cag caa a a t cac ctg c Cg T	gCtgccccatcatcgtttaT
IWGSC_CSS_7DS_scaff_3963838	Cadenza1538	2913	\mathbf{G}	A	het	het	tCgttgcaagcCttTtgtgC	tCgttgcaagcCttTtgtgT	${\it agaGttaTcaagcTactgtcacA}$
IWGSC_CSS_1AL_scaff_3903380	Cadenza1469	6193	\mathbf{G}	A	hom	$_{ m hom}$	ctcttcAgagatgaacgcgG	ctcttcAgagatgaacgcgA	tcGtGagatgGtggtttGTtA
IWGSC_CSS_1AS_scaff_3287728	Cadenza1469	3817	C	\mathbf{T}	het*	hom	ccgaccaAttcactaaccgG	ccgaccaAttcactaaccgA	accctctttcccAgacatgaT
IWGSC_CSS_1BL_scaff_3815304	Cadenza1469	513	G	A	hom	hom	aacatttgcctTaCcaaaacGC	aacatttgcctTaCcaaaacGT	a cacage a a gtt at a at g CAAgC
IWGSC_CSS_1DL_scaff_2266648	Cadenza1469	5926	$^{\rm C}$	T	het	het	caa cat gagaca caa cac ctt C	caa cat gaga cacaa cacctt T	${\tt gtcaacgcgtgaggattgtC}$
IWGSC_CSS_1DS_scaff_1906671	Cadenza1469	3697	$^{\rm C}$	T	hom	$_{ m hom}$	tggTGtagacacttggcgaG	tggTGtagacacttggcgaA	catggcgaccaccAcctG
IWGSC_CSS_2AL_scaff_6337088	Cadenza1469	7334	G	A	het*	hom	acaatgccAagttgacaggttG	acaatgccAagttgacaggttA	gggagtgttggttCagaacaT

IWGSC contig	Line	Pos	WT	Mut	Predicted	M_4	Primer 1 (Cadenza)	Primer 2 (mutant)	Common Primer
IWGSC_CSS_2BL_scaff_7972799	Cadenza1469	8995	C	\mathbf{T}	het	hom	gTgCtcctcGgcatccttC	gTgCtcctcGgcatccttT	gatccgGgcaaactacgTG
IWGSC_CSS_2DL_scaff_9832343	Cadenza1469	3262	$_{\mathrm{G}}$	A	het	het	TtgtctaAcagcacCGcagG	TtgtctaAcagcacCGcagA	agatctcggtcagcctttcT
IWGSC_CSS_2DS_scaff_5327939	Cadenza1469	3889	G	A	het	het	ttttTgccttatgtgactctagtaC	ttttTgccttatgtgactctagtaT	gaggccatcacagatagcG
IWGSC_CSS_3B_scaff_10395219	Cadenza1469	1292	G	A	hom	_	aggtgcttgtgcttgctgG	aggtgcttgtgcttgctgA	cctcttctgggggctttataC
$IWGSC_CSS_3B_scaff_10592217$	Cadenza0580	2994	C	\mathbf{T}	het	_	acagcagtatcaagcccctC	acagcagtatcaagcccctT	tgatactgttgTggCggagG
IWGSC_CSS_3DS_scaff_2596771	Cadenza0580	1037	$_{\mathrm{G}}$	A	het	het	tggttatgCAcaggataatCagG	tggttatgCAcaggataatCagA	tggcaaatgtgatgtcattaggT
IWGSC_CSS_4AL_scaff_7093953	Cadenza0580	9881	$^{\rm C}$	\mathbf{T}	hom	hom	GacaggaagccggtaacaC	GacaggaagccggtaacaT	ctccAgcaggcatgggaT
IWGSC_CSS_4BL_scaff_7037448	Cadenza0580	1837	C	\mathbf{T}	hom	hom	CgttgaaaaGctgcaagaacttaaC	CgttgaaaaGctgcaagaacttaaT	cagttcttccTtCaGagcagataT
IWGSC_CSS_4BS_scaff_4929479	Cadenza0580	10668	G	A	hom	_	tggattttcccgcactgttC	tggattttcccgcactgttT	gtaaacaaggcatttcaagagtcA
IWGSC_CSS_4DL_scaff_14359838	Cadenza0580	1408	\mathbf{G}	A	hom	_	gCtcAttcagggatTGTcCtaTatG	gCtcAttcagggatTGTcCtaTatA	tgaCagaacagttggtcatacT
IWGSC_CSS_4DS_scaff_2276484	Cadenza0580	8034	\mathbf{G}	A	hom	hom	gccgtggttgatggAgaG	gccgtggttgatggAgaA	cgtccagattactgatacttgcA
IWGSC_CSS_5AL_scaff_2756579	Cadenza0580	5278	$_{\mathrm{G}}$	A	het	het	tgaatggatttttcgtcccgttC	tgaatggatttttcgtcccgttT	${\tt ggAAtCCTATgCAgaAgAaaCTG}$
$IWGSC_CSS_5BL_scaff_10787208$	Cadenza0580	10627	G	A	het	_	gcctctcacatgcggagaC	gcctctcacatgcggagaT	acgatgtcAggtggGcgT
IWGSC_CSS_5BS_scaff_2282179	Cadenza0580	5267	\mathbf{G}	A	het	_	tgatgggctacgacgtgC	tgatgggctacgacgtgT	tcggcgcccttgaaAtcC
IWGSC_CSS_5DL_scaff_4498073	Cadenza0423	4937	$^{\rm C}$	\mathbf{T}	hom	hom	gcaccctctggttggtcatC	gcaccctctggttggtcatT	tgagcagcaAagcagccG
IWGSC_CSS_5DS_scaff_2738970	Cadenza0423	2319	$^{\rm C}$	\mathbf{T}	het	_	cgtgaggtgggtgatttgC	cgtgaggtgggtgatttgT	tggaactagttacactgcagtTC
IWGSC_CSS_6AL_scaff_5757109	Cadenza0423	2788	G	A	hom	hom	caggaGcctggcaaataaaGG	caggaGcctggcaaataaaGA	ctttcGcagtctcttagtttcG
IWGSC_CSS_6AS_scaff_4387871	Cadenza0423	2543	\mathbf{G}	A	hom	hom	gcatgctaacaggcgaaaagG	gcatgctaacaggcgaaaagA	ctcatgctcctgatcttaaggtT
IWGSC_CSS_6BL_scaff_4271391	Cadenza0423	4660	$^{\rm C}$	\mathbf{T}	hom	hom	tacgtgcatgatgtggtagtcgtaC	tacgtgcatgatgtggtagtcgtaT	gtttgaagtgcatcagatgTaccA
IWGSC_CSS_6DS_scaff_1880206	Cadenza0423	9159	G	A	het	het	ctgCgaaggctccacaaG	ctgCgaaggctccacaaA	ggatgagaagtttgcattgctC
IWGSC_CSS_7AS_scaff_4227506	Cadenza0423	952	$_{\mathrm{G}}$	A	het	_	ccatgtgtttccaatgttagagC	ccatgtgtttccaatgttagagT	tgccctagctggtatgcT
$IWGSC_CSS_7BL_scaff_6681782$	Cadenza0423	1486	$^{\rm C}$	\mathbf{T}	hom	hom	agtaagCGtgacagcaatggG	agtaagCGtgacagcaatggA	AtgtctTtgGtggaagtacatcA
IWGSC_CSS_7BS_scaff_3160328	Cadenza0423	7801	$^{\rm C}$	\mathbf{T}	het	het	tgttaaatGatacagCctgcagC	tgttaaatGatacagCctgcagT	tggaatggtgCgttgttttT
IWGSC_CSS_7DS_scaff_407428	Cadenza0423	2051	$_{\mathrm{G}}$	A	het	het	gtcGCgccatcctgacaG	gtcGCgccatcctgacaA	actcatcAggtcagcccaA
IWGSC_CSS_3AL_scaff_442479	Cadenza0364	3198	$^{\rm C}$	\mathbf{T}	het	het	gagtcaTtaagttggtaagattggC	gagtcaTtaagttggtaagattggT	GCaGaTaaCaacaggatcacG
IWGSC_CSS_3AL_scaff_4447942	Cadenza0364	11917	\mathbf{G}	A	het	het	gtcataaagattgctcctgtgaaG	gtcataaagattgctcctgtgaaA	ctcGgatgtgggaggaagA
IWGSC_CSS_3AS_scaff_1557483	Cadenza0364	2547	$^{\rm C}$	\mathbf{T}	het	het	aaagtcacatcatgcttaccataaG	aaagtcacatcatgcttaccataaA	cgaaatccaacgcctcatcA
IWGSC_CSS_3AS_scaff_2648747	Cadenza0364	2688	$_{\mathrm{G}}$	A	het	het	tggAagcAcaaggggccC	tggAagcAcaaggggccT	GccgccgatggagactcG
IWGSC_CSS_3AS_scaff_3304956	Cadenza0364	1017	\mathbf{G}	A	het	het	gtcccttgcacacagctttG	gtcccttgcacacagctttA	cctgctggactacaacttcaaT
IWGSC_CSS_3AS_scaff_3321091	Cadenza0364	4585	$^{\rm C}$	\mathbf{T}	het	het	caagaatgATgctgatgttggaG	caagaatgATgctgatgttggaA	acatgctgaatcgccgaatC
IWGSC_CSS_3AS_scaff_3371333	Cadenza0364	538	\mathbf{G}	A	het	het	gggaaaCgAgAcgagcgG	gggaaaCgAgAcgagcgA	ccgtgccttcctcacccT
IWGSC_CSS_3AS_scaff_3371815	Cadenza0364	1061	$^{\rm C}$	\mathbf{T}	het	het	atccccacggcacagagG	atccccacggcacagagA	aAttggcccttggtgattcC
IWGSC_CSS_3AS_scaff_3440912	Cadenza0364	4498	\mathbf{G}	A	het	het	ccgtaaaactttctgtgcttgC	ccgtaaaactttctgtgcttgT	atActgacaaactacatgatgtgC
IWGSC_CSS_3B_scaff_10343586	Cadenza0364	2242	\mathbf{G}	A	het	_	ggttcTgTcctctcttccactG	ggttcTgTcctctcttccactA	tgtgttgaacccgcaagcA
IWGSC_CSS_3AL_scaff_442479	Cadenza0364	3198	$^{\rm C}$	\mathbf{T}	het	het	gagtcaTtaagttggtaagattggC	gagtcaTtaagttggtaagattggT	GCaGaTaaCaacaggatcacG
IWGSC_CSS_3AL_scaff_4447942	Cadenza0364	11917	\mathbf{G}	A	het	het	gtcataaagattgctcctgtgaaG	gtcataaagattgctcctgtgaaA	ctcGgatgtgggaggaagA
IWGSC_CSS_3AS_scaff_1557483	Cadenza0364	2547	$^{\rm C}$	\mathbf{T}	het	het	aaagtcacatcatgcttaccataaG	aaagtcacatcatgcttaccataaA	cgaaatccaacgcctcatcA
IWGSC_CSS_3AS_scaff_2648747	Cadenza0364	2688	G	A	het	het	tggAagcAcaaggggccC	tggAagcAcaaggggccT	GccgccgatggagactcG
IWGSC_CSS_3AS_scaff_3304956	Cadenza0364	1017	\mathbf{G}	A	het	het	gtcccttgcacacagctttG	gtcccttgcacacagctttA	cctgctggactacaacttcaaT
IWGSC_CSS_3AS_scaff_3321091	Cadenza0364	4585	$^{\rm C}$	\mathbf{T}	het	het	caagaatgATgctgatgttggaG	caagaatgATgctgatgttggaA	acatgctgaatcgccgaatC

IWGSC contig	Line	Pos	WT	Mut	Predicted	M_4	Primer 1 (Cadenza)	Primer 2 (mutant)	Common Primer
IWGSC_CSS_3AS_scaff_3371333	Cadenza0364	538	G	A	het	het	gggaaaCgAgAcgagcgG	gggaaaCgAgAcgagcgA	ccgtgccttcctcacccT
IWGSC_CSS_3AS_scaff_3371815	Cadenza0364	1061	$^{\rm C}$	\mathbf{T}	het	het	atccccacggcacagagG	atccccacggcacagagA	aAttggcccttggtgattcC
IWGSC_CSS_3AS_scaff_3440912	Cadenza0364	4498	\mathbf{G}	A	het	het	ccgtaaaactttctgtgcttgC	ccgtaaaactttctgtgcttgT	atActgacaaactacatgatgtgC
IWGSC_CSS_3B_scaff_10343586	Cadenza0364	2242	\mathbf{G}	A	het	_	ggttcTgTcctctcttccactG	ggttcTgTcctctcttccactA	tgtgttgaacccgcaagcA
IWGSC_CSS_5DL_scaff_242342	Cadenza0281	2433	C	\mathbf{T}	hom	$_{ m hom}$	catggCgacggtGtcctG	catggCgacggtGtcctA	aAccctcatTTtggCTACTtCT
IWGSC_CSS_5DL_scaff_4538822	Cadenza0281	1208	\mathbf{G}	A	hom	_	acgtcagaacaaccgtttgaC	acgtcagaacaaccgtttgaT	ttaaattggttggcgccacC
IWGSC_CSS_6AL_scaff_5813297	Cadenza0281	4532	$^{\rm C}$	\mathbf{T}	hom	_	gggagagggacgtctcgG	gggagagggacgtctcgA	ttcttctgccaacgattccG
IWGSC_CSS_6AS_scaff_4378990	Cadenza0281	6748	$^{\rm C}$	\mathbf{T}	hom	hom	cccaggttctgcttcttttcC	cccaggttctgcttcttttcT	caagtatcaagaaaatgaagggTgT
IWGSC_CSS_6BL_scaff_4360781	Cadenza0281	5426	$^{\rm C}$	\mathbf{T}	het	het	aCtactcaaatggcttGgtgtaG	aCtactcaaatggcttGgtgtaA	tcagtccaacatgTcaagagatT
IWGSC_CSS_7AL_scaff_4488310	Cadenza0281	3808	\mathbf{G}	A	hom	hom	gttctcttgtagtagcagccG	gttctcttgtagtagcagccA	ggcgctttcttcggcctA
IWGSC_CSS_7BL_scaff_6696509	Cadenza0281	9232	\mathbf{G}	A	het	het	gctctaggGgtggcaaAagG	gctctaggGgtggcaaAagA	ggcttGaGgtcGcagtgT
IWGSC_CSS_7BS_scaff_3143575	Cadenza0281	1866	$^{\rm C}$	\mathbf{T}	het	het	agatgttgagagggcgcttC	agatgttgagaggggggcttT	gcttggAtggtggcaagtT
IWGSC_CSS_7DL_scaff_3346250	Cadenza0281	1663	\mathbf{G}	A	het	het	acgtgcagcaacatcctaaC	acgtgcagcaacatcctaaT	TttcccaccaggcccaagA
IWGSC_CSS_7DS_scaff_3933917	Cadenza0281	1243	$^{\rm C}$	\mathbf{T}	het	het	tgCtgagcCttTcaccttgC	tgCtgagcCttTcaccttgT	agaggtttggttccatcGG
IWGSC_CSS_3B_scaff_10626860	Cadenza0148	7847	\mathbf{G}	A	het	het	gcagctctgggaaggagG	gcagctctgggaaggagA	gttaatgtacCTcctagcctcG
IWGSC_CSS_3DL_scaff_6915683	Cadenza0148	6904	$^{\rm C}$	\mathbf{T}	het	het	cgtcaaCctgtgggcaattG	cgtcaaCctgtgggcaattA	tcatgctcataatgTcatagggT
IWGSC_CSS_4AS_scaff_5929057	Cadenza0148	4238	G	A	hom	hom	gcgcaacgtagCacctacC	gcgcaacgtagCacctacT	ttatctggtgaagtgacaggttCA
IWGSC_CSS_4AS_scaff_5950625	Cadenza0148	10590	$^{\rm C}$	\mathbf{T}	het	het	agaTattCaaaTcggtggAttggC	agaTattCaaaTcggtggAttggT	cctgCtcccctcacgtcC
IWGSC_CSS_4AS_scaff_5967119	Cadenza0148	11626	C	\mathbf{T}	hom	hom	cgtGgacaccccgagctG	cgtGgacaccccgagctA	gacgacgcactgcacgaC
IWGSC_CSS_4DL_scaff_14455742	Cadenza0148	1946	C	\mathbf{T}	hom	$_{ m hom}$	gCctgagggagatcgcgC	gCctgagggagatcgcgT	aaccgGtAaCTGtGgGcA
IWGSC_CSS_4DS_scaff_2318993	Cadenza0148	4000	$^{\rm C}$	\mathbf{T}	hom	hom	tccagtttgacacagattgaatggG	tccagtttgacacagattgaatggA	tgagaTtctgtttcctttcacAttG
IWGSC_CSS_5AL_scaff_2750707	Cadenza0148	4603	G	A	het	het	ccttggtgctagccatttcaagTaG	ccttggtgctagccatttcaagTaA	ccaggaTgcAgtgcaatatttcaaG
IWGSC_CSS_5BL_scaff_10794137	Cadenza0148	9235	C	\mathbf{T}	hom	$_{ m hom}$	gaagctgcttctgcgttG	gaagctgcttctgcgttA	agtatcccttccatataagcagtG
$IWGSC_CSS_5BS_scaff_1646558$	Cadenza0148	2916	C	\mathbf{T}	het	het	gccGtacactcacctAtcctttG	gccGtacactcacctAtcctttA	gcaaTgtccacttAtcatcccT
IWGSC_CSS_1AL_scaff_3883106	Cadenza0110	27536	C	\mathbf{T}	het	het	accttccatcactggctgG	accttccatcactggctgA	gtgaagaacaacaggttgaagC
IWGSC_CSS_1BL_scaff_3812829	Cadenza0110	10770	G	A	het*	hom	ccccactccattccagG	ccccactccattccagA	gGatgttgttctgtgctggaA
IWGSC_CSS_1DL_scaff_2266648	Cadenza0110	6156	G	A	het	het	actgcgtggttatgggacC	actgcgtggttatgggacT	ccccatcactgaacacaacA
$IWGSC_CSS_1DS_scaff_1889435$	Cadenza0110	8826	$^{\rm C}$	\mathbf{T}	hom	hom	aaccatgaattactcggacagG	aaccatgaattactcggacagA	gccctgaagaattgtatcaaaacaG
IWGSC_CSS_2AS_scaff_5268634	Cadenza0110	4636	G	A	het	het	gatccatgtgattggcatgtttG	gatccatgtgattggcatgtttA	TgctgtTggatatgcagttacT
IWGSC_CSS_2BL_scaff_7965110	Cadenza0110	15801	$^{\rm C}$	\mathbf{T}	hom	hom	cattgaagcAtacacAattgcAtaC	cattgaagcAtacacAattgcAtaT	gccagagtatccagataaggTttA
IWGSC_CSS_2DL_scaff_9852812	Cadenza0110	13788	G	A	hom	hom	atttttgtatggtctcaatcttcgC	atttttgtatggtctcaatcttcgT	gaacgtTcattcttgtacttgcT
IWGSC_CSS_2DS_scaff_5371379	Cadenza0110	2166	$^{\rm C}$	\mathbf{T}	hom	$_{ m hom}$	agacacaaaactagtGatgcgC	agacacaaaactagtGatgcgT	gctgctgagaatgttTtgtatttG
IWGSC_CSS_3AL_scaff_4384278	Cadenza0110	1276	C	\mathbf{T}	het	het	agcTgaactgccccTgtaG	agcTgaactgccccTgtaA	agggacctCgGtggatgaA
IWGSC_CSS_3AS_scaff_3340122	Cadenza0110	1467	$^{\rm C}$	\mathbf{T}	hom	hom	attcctAgtgttgtcggaacatG	attcctAgtgttgtcggaacatA	${\tt gagaagactagaaagttttcAgcaT}$
$IWGSC_CSS_5DL_scaff_4554222$	Cadenza2103	6528	C	\mathbf{T}	het*	hom	gctgccctacaaagaaacaaaattG	gctgccctacaaagaaacaaaattA	${\bf aTcccaactatCGaTtttgtcataC}$
$IWGSC_CSS_6AL_scaff_5833640$	Cadenza2103	7346	C	\mathbf{T}	hom	hom	${\bf aagaaaagccacaatggtttctC}$	aagaaaagccacaatggtttctT	${\bf aCTctgTcagtgtttcccagC}$
IWGSC_CSS_6AS_scaff_4429974	Cadenza2103	3867	G	A	hom	hom	GagatgaAtttattgagcatgtggC	${\bf GagatgaAtttattgagcatgtggT}$	ggttccggctgcataagT
$IWGSC_CSS_6DL_scaff_3307626$	Cadenza2103	4970	C	\mathbf{T}	hom	hom	tgcagatgttgtcctgtgtaG	tgcagatgttgtcctgtgtaA	${\tt ctaggaaggtgattttgtactGtC}$
$IWGSC_CSS_6DS_scaff_2059604$	Cadenza2103	5224	G	A	het	_	gctcaatgcatgcTgagtgG	gctcaatgcatgcTgagtgA	tgtcaagtattattttcctgctctG
$IWGSC_CSS_7AL_scaff_4552322$	Cadenza2103	1412	C	\mathbf{T}	het	het	gcaaaggcTgatactccaacaG	gcaaaggcTgatactccaacaA	${\tt ggcAAGccAgtataaaagtaaGC}$

IWGSC contig	Line	Pos	WT	Mut	Predicted	M_4	Primer 1 (Cadenza)	Primer 2 (mutant)	Common Primer
IWGSC_CSS_7BS_scaff_3147455	Cadenza2103	4607	G	A	het	_	${\tt gcaccttaggatgtgagTtatgC}$	${\tt gcaccttaggatgtgagTtatgT}$	gcatgtagggtttatttgactgttA
$IWGSC_CSS_7DL_scaff_3382467$	Cadenza2103	3473	$^{\rm C}$	\mathbf{T}	hom	_	${\tt GGTtctgCaGTTCATAActcatC}$	${\tt GGTtctgCaGTTCATAActcatT}$	attgaatcaactgatacGaaGactC
IWGSC_CSS_3B_scaff_10457010	Cadenza0277	10599	\mathbf{G}	A	het	het	aaccttggccgcagaacaC	aaccttggccgcagaacaT	actggctgcacgagaggG
$IWGSC_CSS_3B_scaff_10593852$	Cadenza0277	10124	$^{\rm C}$	T	het	het	tgacaggggacgctatacaG	tgacaggggacgctatacaA	${\tt gtctaaCTtACattAcccatcagC}$
$IWGSC_CSS_3DS_scaff_2583390$	Cadenza0277	663	\mathbf{G}	A	hom	hom	actgcactcatacaatActtCtgC	actgcactcatacaatActtCtgT	tcCacctggacagcaagtG
$IWGSC_CSS_4AL_scaff_7093953$	Cadenza0277	10004	C	\mathbf{T}	hom	$_{ m hom}$	${\tt ccttgtattcaatggaTtgTtttgG}$	${\tt ccttgtattcaatggaTtgTtttgA}$	ttccccaaa TaaaaaggaagagC
IWGSC_CSS_4AL_scaff_7176064	Cadenza0277	6220	$^{\rm C}$	\mathbf{T}	het	het	gtgccgtaTtcCgcctgG	gtgccgtaTtcCgcctgA	atgttcgaggggatgggG
$IWGSC_CSS_4DL_scaff_14122349$	Cadenza0277	1010	$^{\rm C}$	\mathbf{T}	hom	hom	gtcgctgctgCttgtgaG	gtcgctgctgCttgtgaA	ggaacaggcccaaggagG
IWGSC_CSS_5AL_scaff_2736916	Cadenza0277	4296	\mathbf{G}	A	het	het	aagaact ATg AaaGtaacacacga C	aagaact ATg AaaGtaacacacgaT	ttcGcTttTaagGcAttCtcG
$IWGSC_CSS_5BL_scaff_10883744$	Cadenza0277	2080	$^{\rm C}$	\mathbf{T}	hom	hom	gcctctttCtgttTagcctcaG	gcctctttCtgttTagcctcaA	cgacaaggttcgtgatTgcA
$IWGSC_CSS_1AL_scaff_3932013$	Cadenza0548	11765	C	\mathbf{T}	hom	$_{ m hom}$	accgccaaCccaagacaG	accgccaaCccaagacaA	cccattaGccgTgcAacG
IWGSC_CSS_1BS_scaff_3417505	Cadenza0548	373	C	\mathbf{T}	het	het	${\tt gtggtgagga} {\tt Ggtg} {\tt Ga} {\tt G}$	${\tt gtggtgagga}{\tt GGgtg}{\tt GaA}$	tggtcgGccagttgttgA
IWGSC_CSS_2AS_scaff_5305619	Cadenza0548	2786	C	\mathbf{T}	hom	hom	atacagatgccctAAgtggTtC	atacagatgccct A Agtgg TtT	ggaagacaAtGctccaggtaC
IWGSC_CSS_2AS_scaff_5306489	Cadenza0548	46953	\mathbf{T}	G	het	wt	${\it aggttccatgtccatagaagGT}$	aggttccatgtccatagaagGG	${\tt aggctaTAgactcctgtACAgT}$
IWGSC_CSS_2BL_scaff_7984123	Cadenza0548	11660	\mathbf{G}	A	het	het	cattgtggcatagtaatcagtacaG	cattgtggcatagtaatcagtacaA	aatacattgaggaatcaaagccC
IWGSC_CSS_2DL_scaff_9907477	Cadenza0548	1363	$^{\rm C}$	\mathbf{T}	hom	hom	tgcctccctttgccagaaC	tgcctccctttgccagaaT	ggcaaacctgatgtggcatC
IWGSC_CSS_2DS_scaff_5330886	Cadenza0548	5449	\mathbf{G}	A	hom	hom	gcatgtccatttatactgaaCgtG	gcatgtccatttatactgaaCgtA	catgctgcttcttctggacC
IWGSC_CSS_3AL_scaff_4449951	Cadenza0548	633	$^{\rm C}$	T	het	het	tccaaacctaacagtctaacactaG	tccaaacctaacagtctaacactaA	gtctgcagTGCaatgtgC
IWGSC_CSS_3B_scaff_10479889	Cadenza0097	3339	C	\mathbf{T}	hom	_	ttgTttctGgagaagatgcCG	ttgTttctGgagaagatgcCA	ggtgctcattcaAcGgcA
IWGSC_CSS_3B_scaff_10562262	Cadenza0097	7819	$^{\rm C}$	\mathbf{T}	het	het	agaggggtgctatccatAttgG	agaggggtgctatccatAttgA	agcgatgccaaggcttcC
IWGSC_CSS_4AL_scaff_7040796	Cadenza0097	10772	\mathbf{G}	A	hom	hom	acacaacattgccaccagaG	acacaacattgccaccagaA	CAatCgattgcttgctTctcC
IWGSC_CSS_4AL_scaff_7063488	Cadenza0097	6360	$^{\rm C}$	\mathbf{T}	het	het	gcctctcacCttAatttgaagctgC	gcctctcacCttAatttgaagctgT	aggcagtggagtatgtgaagttT
IWGSC_CSS_4AL_scaff_7091701	Cadenza0097	5050	\mathbf{G}	A	het	het	catgagcatctgggaggaaaatG	catgagcatctgggaggaaaatA	agcaagggaAtaatgaacggaaA
IWGSC_CSS_4DS_scaff_1845841	Cadenza0097	7110	\mathbf{G}	A	hom	hom	aatgTAgctcccatacCgG	aatgTAgctccccatacCgA	actgaaacTgcaatcgtTtatggA
IWGSC_CSS_5AL_scaff_2767581	Cadenza0097	3737	G	A	het	het	gagaggtcctcactAtcggC	gagaggtcctcactAtcggT	cgTcatcacaaatattgctggG
IWGSC_CSS_5BL_scaff_10784643	Cadenza0097	1568	$^{\rm C}$	T	hom	hom	agaaaTAcatggatggatggaCG	agaaaTAcatggatggatggaCA	catctcCCttccaCgGaaaG
IWGSC_CSS_1AL_scaff_3952258	Cadenza2092	8107	$^{\rm C}$	T	het	_	tgagtagagaaattgacagtgtgG	tgagtagagaaattgacagtgtgA	tgccaccattgacatgagaG
IWGSC_CSS_1BL_scaff_3858008	Cadenza2092	10278	G	A	hom	hom	tttgagcaggcaggatcgC	tttgagcaggcaggatcgT	actcacggcctatatcActattC
IWGSC_CSS_1DL_scaff_2265172	Cadenza2092	9094	$^{\rm C}$	T	hom	hom	tgcaTGTcatttgttcttatcagC	tgcaTGTcatttgttcttatcagT	agtgtccaacttccGttcatC
IWGSC_CSS_2AL_scaff_6435867	Cadenza2092	16201	G	A	hom	hom	tttctgTaccttaacgtcaattgaC	tttctgTaccttaacgtcaattgaT	gtgaggatgatgaggtaagacC
IWGSC_CSS_2AL_scaff_6439430	Cadenza2092	25101	$^{\rm C}$	T	het	_	caagaaagggCagCtCagC	caagaaagggCagCtCagT	tcGttAcTctttcActggtgaA
IWGSC_CSS_2DL_scaff_9760848	Cadenza2092	4733	$^{\rm C}$	\mathbf{T}	het	het	gcaccatgggtctcaggtaC	gcaccatgggtctcaggtaT	tcagtcagtttGCTCtgTCTG
IWGSC_CSS_3AL_scaff_4407012	Cadenza2092	2785	C	\mathbf{T}	hom	hom	acatatAgtgttctcatccaccatC	acatatAgtgttctcatccaccatT	acctctctcatgttaataggtttgT
IWGSC_CSS_3AS_scaff_3441108	Cadenza2092	541	G	A	het	het	GtgatgaccttgagacGgaG	GtgatgaccttgagacGgaA	aggcaTgacaaCgcgcaA
IWGSC_CSS_3B_scaff_10449827	Cadenza1551	4779	G	A	hom	hom	ggcaaggtcaagaaacGgtC	ggcaaggtcaagaaacGgtT	aCagaGtgggttagaggcaG
IWGSC_CSS_3B_scaff_10550638	Cadenza1551	3250	C	\mathbf{T}	het	het	ctccttcacttgttgcggC	ctccttcacttgttgcggT	gcaacAtTttgatactgcaaagG
IWGSC_CSS_3DL_scaff_6945816	Cadenza1551	589	C	\mathbf{T}	hom	hom	agcatctcacctgcaaCaataC	agcatctcacctgcaaCaataT	TgtgcccTctgaAtattttcaTG
IWGSC_CSS_3DL_scaff_6954177	Cadenza1551	3508	C	\mathbf{T}	het	het	tgtagcatcacattaactttcctG	tgtagcatcacattaactttcctA	gcttggtataaaccCttacgacA
IWGSC_CSS_4AS_scaff_5938272	Cadenza1551	19080	G	A	hom	hom	agAcCccgAtcgccatgG	$_{\mathrm{agAcCccgAtcgccatgA}}$	GggAgatAcaggtaaaActcTtcG
IWGSC_CSS_4AS_scaff_5977594	Cadenza1551	11092	C	Т	het	het	gccttgattcggaacaacaaaC	gccttgattcggaacaacaaaT	gcgtctctcagtcctgcA

IWGSC contig	Line	Pos	WT	Mut	Predicted	M_4	Primer 1 (Cadenza)	Primer 2 (mutant)	Common Primer
IWGSC_CSS_5AL_scaff_2671035	Cadenza1551	5859	C	T	het	het	${\tt cggtgatattTttagacttcgacgC}$	cggtgatattTttagacttcgacgT	ggcagttcagcGacccatT
IWGSC_CSS_5BL_scaff_10889480	Cadenza1551	2530	G	A	hom	hom	gagcttaactcgcagatggaG	gagcttaactcgcagatggaA	tccatgCAacGccttggT
IWGSC_CSS_3B_scaff_10528396	Cadenza2088	8059	G	A	hom	_	cttttccgtccgtaagcaataG	cttttccgtccgtaagcaataA	gtgcactgttcaggcctgA
IWGSC_CSS_3B_scaff_10637573	Cadenza2088	16815	\mathbf{G}	A	het	het	agcaagcttaccGgtctgC	agcaagcttaccGgtctgT	cgagcAactacgagcagctT
IWGSC_CSS_4AL_scaff_7086469	Cadenza2088	6697	\mathbf{G}	A	het	het	gccgtctacttcaacgcG	gccgtctacttcaacgcA	ccaGaggcttgtTGcattttT
IWGSC_CSS_4AL_scaff_7126302	Cadenza2088	3627	G	A	hom	hom	gttcaaaaacaagtggctAatttgC	gttcaaaaacaagtggctAatttgT	cacaaggatatgaagcTcttctagA
IWGSC_CSS_4BL_scaff_7041808	Cadenza2088	10234	G	A	hom	hom	tcaatggatgagggtgcttC	tcaatggatgagggtgcttT	ccatagcagcatcagccacA
IWGSC_CSS_5AL_scaff_2794167	Cadenza2088	13162	G	A	het	_	${\it agtattcaggacaagcatCttCaG}$	agtattcaggacaagcatCttCaA	caatgaaacctctcgaagaaGaG
$IWGSC_CSS_5BL_scaff_10889232$	Cadenza2088	3885	G	A	het	het	cTcaaccacaatgggcaAatC	cTcaaccacaatgggcaAatT	tccttcatcaatcatcaattgttgG
IWGSC_CSS_5BS_scaff_2267405	Cadenza2088	11113	\mathbf{C}	\mathbf{T}	hom	hom	ctttgatgatcctaggcctctTG	ctttgatgatcctaggcctctTA	tgatttggtCtggttAgagtttGA
IWGSC_CSS_3B_scaff_10475354	Cadenza1409	2203	G	A	hom	hom	agCgaacaagagGtcaaacG	agCgaacaagagGtcaaacA	${\it ctgaaacacaCtagaCAattAccG}$
IWGSC_CSS_3B_scaff_10674115	Cadenza1409	4555	\mathbf{C}	\mathbf{T}	het	het	gcttcagtgcatgccttcaG	gcttcagtgcatgccttcaA	cttcacacccGagataatGtattG
$IWGSC_CSS_4AL_scaff_7153568$	Cadenza1409	13073	C	\mathbf{T}	hom	hom	tccgaccgAtcaaccttgG	tccgaccgAtcaaccttgA	gaccggaactcctcggcC
IWGSC_CSS_4DL_scaff_14314966	Cadenza1409	2010	G	A	het	hom	gtaggtcccctcctCAggG	gtaggtcccctcctCAggA	cggcgTcacaAgttgCcT
$IWGSC_CSS_4DS_scaff_2324074$	Cadenza1409	7606	G	A	het	het	tGcatgaaaatgtgtGcaGaG	tGcatgaaaatgtgtGcaGaA	${\tt gggtaAgttcAaaactGaagtgaaG}$
IWGSC_CSS_5AS_scaff_1517889	Cadenza1409	3561	\mathbf{G}	A	het	het	tctcgacatcttcccgtgtaC	tctcgacatcttcccgtgtaT	gtgcctggaacattgcttatttA
IWGSC_CSS_5AS_scaff_1523866	Cadenza1409	8054	\mathbf{G}	A	hom	_	ggtgatctaccgccaGgaC	ggtgatctaccgccaGgaT	tcctgcagCcTctcctcA
IWGSC_CSS_5BL_scaff_10917655	Cadenza1409	19073	G	A	hom	hom	caa at gac at gcaa aa gaa g t t g C	caa at gac at gcaa aa gaa g t t g T	cgcttcatcactacaAaatatgtcT
IWGSC_CSS_1AL_scaff_3886649	Cadenza1599	5204	\mathbf{C}	\mathbf{T}	het	het	tgatgccaaccacaatGcC	tgatgccaaccacaatGcT	ggactgactgctgaccatatttaG
$IWGSC_CSS_1BL_scaff_3810267$	Cadenza1599	6634	C	\mathbf{T}	hom	hom	ccCaggaaatgagcacctC	ccCaggaaatgagcacctT	cgcaggcgaagatgtgaTtG
IWGSC_CSS_1DL_scaff_2291677	Cadenza1599	12856	$^{\rm C}$	\mathbf{T}	hom	hom	GgtagacaagtcgccgaG	GgtagacaagtcgccgaA	cctcctccttcaacGCcG
IWGSC_CSS_2AL_scaff_6354492	Cadenza1599	7566	G	A	het	het	gGagaatgcaCAgtAacTtctgG	gGagaatgcaCAgtAacTtctgA	ttccgaagaaccacaTccTG
IWGSC_CSS_2AS_scaff_5282937	Cadenza1599	9736	G	A	het	het	gctgtagattttatagctgctatgC	gctgtagattttatagctgctatgT	cacCagaattgttCactgatttTC
$IWGSC_CSS_2BL_scaff_7952427$	Cadenza1599	19249	G	A	hom	hom	cgTccctCcctagcacgaC	cgTccctCcctagcacgaT	aTcactccattagcgcgAG
IWGSC_CSS_2DL_scaff_9897981	Cadenza1599	5627	$^{\rm C}$	\mathbf{T}	het	het	cttggtgctTgattgcttactC	cttggtgctTgattgcttactT	gTttgctCtctctgatctTtgtG
$IWGSC_CSS_3AL_scaff_4446105$	Cadenza1599	1765	G	A	hom	_	aaatgctttcctaCcgctagtG	aaatgctttcctaCcgctagtA	ttctAgaggcaatagctTatatgcT

Table A.6: Validation of mutations on M_4 on Kronos

IWGSC contig	Line	Pos	WT	Mut	Predicted	M_4	Primer 1 (Kronos)	Primer 2 (mutant)	Common Primer
IWGSC_CSS_1AS_scaff_3284790	Kronos3085	7449	$_{\mathrm{G}}$	A	Het	Het	ccacaccttgagcctcgC	ccacaccttgagcctcgT	gtgattttgccaggggagA
IWGSC_CSS_1BL_scaff_3897513	Kronos3085	1515	C	T	Het	Het	gcttccactGggtcctgC	gcttccactGggtcctgT	acAaggactgcttcagaGaC
IWGSC_CSS_2AL_scaff_6434745	Kronos3085	3424	$^{\rm C}$	\mathbf{T}	Het	Het	cctcGgttttgcaaatttctatgC	cctcGgttttgcaaatttctatgT	gGCaaTggcataacaacagatA
IWGSC_CSS_3AS_scaff_3408995	Kronos3085	732	$^{\rm C}$	\mathbf{T}	Het	Het	aggccatttcgaattccgC	aggccatttcgaattccgT	ggTgttaTccagAacctgagTG
IWGSC_CSS_3B_scaff_10708748	Kronos3085	2675	\mathbf{G}	A	Het	Het	gttgcatgcttcacccagG	gttgcatgcttcacccagA	gtaacaatctgagttcgtagcaC
IWGSC_CSS_4AL_scaff_7132733	Kronos3085	1799	$^{\rm C}$	\mathbf{T}	Hom	$_{ m Hom}$	cacccgtgagtgaccctC	cacccgtgagtgaccctT	aCcGcctaGaaagaaagcttC

IWGSC contig	Line	Pos	WT	Mut	Predicted	M_4	Primer 1 (Kronos)	Primer 2 (mutant)	Common Primer
IWGSC_CSS_5AS_scaff_1534693	Kronos3085	4605	C	\mathbf{T}	Het	Het	cagcttcctggccctcAtC	cagettcctggccctcAtT	${\tt gtaCctcacgAgtcaTgagAG}$
IWGSC_CSS_6AS_scaff_4361911	Kronos3085	8857	G	A	Het	Het	tcacgaaagacgacttcaacctc C	t cac gaa a gac gac tt caac ctc T	catgaggtgctgcatctccatcA
$IWGSC_CSS_6BS_scaff_3008326$	Kronos3085	1528	\mathbf{G}	A	Het	Het	ccatgttgtactggtggtgC	ccatgttgtactggtggtgT	ggaagcatggCaagtgcA
$IWGSC_CSS_7AS_scaff_4214385$	Kronos3085	27835	$^{\rm C}$	\mathbf{T}	Hom	Hom	cgtaccttcgttgggaaagG	cgtaccttcgttgggaaagA	ctcttggtcagctgtataagacT
IWGSC_CSS_1AL_scaff_3929964	Kronos3191	1336	$^{\rm C}$	\mathbf{T}	Het	Het	tttcggccatacctgacatC	tttcggccatacctgacatT	attgcctccagttcttgcaG
$IWGSC_CSS_1BL_scaff_3899789$	Kronos3191	7925	C	\mathbf{T}	Het	Het	actctcacTggcagcagC	actctcacTggcagcagT	caacgtggtgcccatcGtA
$IWGSC_CSS_2AL_scaff_6426728$	Kronos3191	1481	\mathbf{G}	A	Hom	Hom	gaaActgccgcagctCgC	gaaActgccgcagctCgT	ccaGcaGctcgtgagaaA
$IWGSC_CSS_2BL_scaff_7960273$	Kronos3191	690	$^{\rm C}$	\mathbf{T}	Hom	Hom	gccattcatccttaggcgC	gccattcatccttaggcgT	acatgcaattgctgatgactG
IWGSC_CSS_3AS_scaff_3286603	Kronos3191	2975	\mathbf{G}	A	Het*	Hom	ccgtgtggtttgttgtggG	ccgtgtggtttgttgtggA	gaaaggaacgtgTcaTgcaG
IWGSC_CSS_5AL_scaff_2694249	Kronos3191	2399	$^{\rm C}$	\mathbf{T}	Het	Het	gccttccagatagagccGC	gccttccagatagagccGT	cgccacatcgacattcctG
IWGSC_CSS_5BL_scaff_10923577	Kronos3191	3713	$^{\rm C}$	\mathbf{T}	Het	Het	gtggattgcctgagcttgC	gtggattgcctgagcttgT	tggtggccttcttgggaC
$IWGSC_CSS_6AL_scaff_5823017$	Kronos3191	13225	C	\mathbf{T}	Hom	$_{ m Hom}$	ccctttcgagcctctggaG	ccctttcgagcctctggaA	ttcgagaaggcccatcgA
IWGSC_CSS_6BS_scaff_2955394	Kronos3191	1622	C	\mathbf{T}	Het*	$_{ m Hom}$	gtggagatgaaggtctagcaaG	gtggagatgaaggtctagcaaA	gatactcgTgcaatgggtgT
IWGSC_CSS_7BL_scaff_6739382	Kronos3191	12261	\mathbf{G}	A	Hom	$_{\rm Hom}$	gagacaagctttgaattgctcC	gagacaagctttgaattgctcT	CgagtgacctTcatttcccG
IWGSC_CSS_1AS_scaff_3276389	Kronos3288	9720	$^{\rm C}$	\mathbf{T}	Hom	$_{\rm Hom}$	aCcaGcaggaccAatgtctC	aCcaGcaggaccAatgtctT	atgatgcaacctcagccaT
IWGSC_CSS_2AL_scaff_6367515	Kronos3288	6976	\mathbf{G}	A	Het	Het	caggtcgagTgtctccgG	caggtcgagTgtctccgA	ggggtgatCtggaagggC
IWGSC_CSS_2AL_scaff_6422019	Kronos3288	4523	\mathbf{G}	A	Het	Het	cgctaggtccctgcatagG	cgctaggtccctgcatagA	acgcAcgctaagccgtaC
IWGSC_CSS_3AL_scaff_4284850	Kronos3288	7901	$^{\rm C}$	T	Hom	$_{\rm Hom}$	tggctttggacaacatcgG	tggctttggacaacatcgA	tgtcAgcatcgacagccaG
IWGSC_CSS_4AS_scaff_5962359	Kronos3288	13049	\mathbf{G}	A	Het	$_{\rm Hom}$	ccatcaagaagtacgagttcgaC	ccatcaagaagtacgagttcgaT	accatgcccagcttgtcA
IWGSC_CSS_6AL_scaff_5778773	Kronos3288	6853	\mathbf{G}	A	Het	Het	gagtgaccttcccgtctttC	gagtgaccttcccgtctttT	ggagaacagctactcggcT
IWGSC_CSS_6AS_scaff_4392100	Kronos3288	3434	$^{\rm C}$	T	Het	Het	atggaagcacaggtgaccG	atggaagcacaggtgaccA	ggAagcgaaagtgaacaaacA
IWGSC_CSS_7BL_scaff_6744240	Kronos3288	9772	G	A	Het	Het	agctgttcttctcctacttcaaG	agctgttcttctcctacttcaaA	caggtcgttcttgagctcC
IWGSC_CSS_1AL_scaff_3887185	Kronos3413	9708	$^{\rm C}$	\mathbf{T}	Hom	$_{\rm Hom}$	gcacgcctttatcgaggtaaaG	gcacgcctttatcgaggtaaaA	AgaaacagcagagcgcaA
$IWGSC_CSS_2BS_scaff_3381362$	Kronos3413	5160	C	\mathbf{T}	Het*	$_{ m Hom}$	caacttctgggctgtagtgtG	caacttctgggctgtagtgtA	tgAgaattctgacGcaaaagaC
IWGSC_CSS_3AS_scaff_3296605	Kronos3413	6154	\mathbf{G}	A	Het	Het	ctggtcacgggctctagC	ctggtcacgggctctagT	cagcactgagagacatggaC
IWGSC_CSS_3B_scaff_10693516	Kronos3413	12632	$^{\rm C}$	\mathbf{T}	Het	Het	ctaggcttggacaaacaggC	ctaggcttggacaaacaggT	agcttgcatctatgggcatT
IWGSC_CSS_5AS_scaff_1547699	Kronos3413	2686	\mathbf{G}	A	Het	Het	gCtacaaccttcaccaatcgC	gCtacaaccttcaccaatcgT	gacggctttgaagtgtcatC
IWGSC_CSS_5BL_scaff_10856077	Kronos3413	5853	\mathbf{G}	A	Het	Het	agagettcaccccatgetC	agagcttcaccccatgctT	acgCacatttAatagctgaagC
IWGSC_CSS_6AL_scaff_5750718	Kronos3413	11046	\mathbf{G}	A	Hom	$_{\rm Hom}$	cacgcTtcccgacttcttataG	cacgcTtcccgacttcttataA	AgacgatgtgatcaggattcaG
IWGSC_CSS_7AL_scaff_4433177	Kronos3413	3511	$^{\rm C}$	\mathbf{T}	Het	Het	GaTgctccGtcaggctgG	GaTgctccGtcaggctgA	cactactggacaagctcttgG
IWGSC_CSS_7BL_scaff_6742567	Kronos3413	667	$^{\rm C}$	\mathbf{T}	Het	Het	gttgcttgcgtggcagaC	gttgcttgcgtggcagaT	cattttgcaccgtgtgtcTG
IWGSC_CSS_1AL_scaff_3976389	Kronos3935	10941	$^{\rm C}$	\mathbf{T}	Hom	$_{\rm Hom}$	ggtgaggagatcggCgatG	ggtgaggagatcggCgatA	cagtcatctacatgagaggtcaG
IWGSC_CSS_1BL_scaff_3873362	Kronos3935	1392	\mathbf{G}	A	Het	Het	cagatctgaagcctaGcacatG	cagatctgaagcctaGcacatA	actaccagaatcagcacaaaaAC
IWGSC_CSS_2BL_scaff_7882382	Kronos3935	2721	$^{\rm C}$	T	Het	Het	gcaagctaagatgtaccgtagC	gcaagctaagatgtaccgtagT	gccacagtaggagaaagactT
IWGSC_CSS_3AL_scaff_4242376	Kronos3935	2410	$^{\rm C}$	T	Het	Het	agaacccaaaacccgTacttaG	agaacccaaaacccgTacttaA	gtagGgtCcatcCtaaagcttG
$IWGSC_CSS_3B_scaff_10485067$	Kronos3935	3349	$^{\rm C}$	\mathbf{T}	Hom	$_{ m Hom}$	gcttgagcaactactccaactG	gcttgagcaactactccaactA	gcaatttcctttaTccgcagT
IWGSC_CSS_4AS_scaff_5984153	Kronos3935	6006	\mathbf{G}	A	Het	Het	agCaggtctggccaagttG	agCaggtctggccaagttA	cgaatGtatgaGtaggcgcT
IWGSC_CSS_4BL_scaff_7019402	Kronos3935	9081	$^{\rm C}$	T	Het	Het	tgcaatcatgtagtgagctgG	tgcaatcatgtagtgagctgA	agcatgatccctagaaCcataC
IWGSC_CSS_5BL_scaff_10842786	Kronos3935	3304	\mathbf{G}	A	Het	Het	tggttcccGaagcctgaaC	tggttcccGaagcctgaaT	cgcatacttgaaacaTGagcAC
$IWGSC_CSS_6BS_scaff_3045205$	Kronos 3935	2293	\mathbf{G}	A	Het	Het	aaggaccaagcccaaactctcG	aaggaccaagcccaaactctcA	${\it agtgatcaagcccaatgtcgcA}$

IWGSC contig	Line	Pos	WT	Mut	Predicted	M_4	Primer 1 (Kronos)	Primer 2 (mutant)	Common Primer
IWGSC_CSS_7AL_scaff_4555249	Kronos3935	4487	С	Т	Het	Het	cAgtgctcgagatggcgC	cAgtgctcgagatggcgT	cCttgcaaccctcctgatT
IWGSC_CSS_1BL_scaff_3918498	Kronos4240	6096	\mathbf{G}	A	Het	Het	ttgcatgccccaagaagaG	ttgcatgccccaagaagaA	tgggcgaactggtaatgtgG
IWGSC_CSS_2BS_scaff_5131713	Kronos4240	5900	\mathbf{G}	A	Het	Het	cctttatcgaggaaagagacacC	cctttatcgaggaaagagacacT	caccattgtagggttccttTttC
IWGSC_CSS_5AL_scaff_2769540	Kronos4240	9626	$^{\rm C}$	T	Het	Het	tgCagtgtgggaaacggaG	tgCagtgtgggaaacggaA	catgagtGagatcttcctgcT
IWGSC_CSS_5BL_scaff_10871091	Kronos4240	7062	\mathbf{G}	A	Het	Het	gccaaggAaccataacctgC	gccaaggAaccataacctgT	GgactcttggcAaccggA
IWGSC_CSS_6AL_scaff_5800333	Kronos4240	2360	\mathbf{G}	A	Het	Het	cgacaggattgtgagCgC	cgacaggattgtgagCgT	tcagatgctgcaagattcatc T
IWGSC_CSS_7BL_scaff_6716931	Kronos4240	2613	\mathbf{G}	A	Het	Het	gGtgGgtattTgcttggtgaG	gGtgGgtattTgcttggtgaA	tgGtggactcgacaGtGtA
IWGSC_CSS_2BL_scaff_8029221	Kronos4346	2860	\mathbf{G}	A	Het	Het	tgcttccgctcttgctcC	tgcttccgctcttgctcT	atTtgcatTCgAtcgggcC
IWGSC_CSS_3B_scaff_10460714	Kronos4346	14359	C	\mathbf{T}	Hom	Hom	ctaccttgccatgcgacatG	ctaccttgccatgcgacatA	agcaccccagtctttgacG
IWGSC_CSS_4AS_scaff_5989735	Kronos4346	6404	\mathbf{G}	A	Hom	Hom	acgcatgctaacatcagcC	acgcatgctaacatcagcT	actcaagataccaCcgcacG
IWGSC_CSS_5BL_scaff_7648030	Kronos4346	6893	$^{\rm C}$	T	Het	Het	taccctttcctactggcagG	taccctttcctactggcagA	ttttcagaggaacacaggtatcA
IWGSC_CSS_6AL_scaff_5755840	Kronos4346	778	C	\mathbf{T}	Het	Het	atcgagtaagctgtcacCgC	atcgagtaagctgtcacCgT	acctgcatgtcaCatccaC
IWGSC_CSS_6BS_scaff_2972151	Kronos4346	7876	G	A	Hom	$_{ m Hom}$	gcagcaatgtcActgtttgG	gcagcaatgtcActgtttgA	gcttggactgggcatttatG
IWGSC_CSS_7AL_scaff_4542983	Kronos4346	18700	G	A	Het	Het	gcagggctAccggatacC	gcagggctAccggatacT	catctgccGgttaaacatgC
IWGSC_CSS_7BS_scaff_3098098	Kronos4346	5183	C	\mathbf{T}	Het	Het	gCgatatggtacttgcaatgaG	gCgatatggtacttgcaatgaA	ttacattgcttataGTttgCcgG
IWGSC_CSS_1AS_scaff_3259804	Kronos4485	219	C	\mathbf{T}	Het	Het	gtcggcacaaccccttgC	gtcggcacaaccccttgT	gcttctttaaggagggcgA
IWGSC_CSS_2AL_scaff_6315418	Kronos4485	10490	G	A	Hom	$_{ m Hom}$	gccctctcaaCcttctcagC	gccctctcaaCcttctcagT	ttcagacgctCgaggaatttccC
IWGSC_CSS_2BS_scaff_5181092	Kronos4485	3742	\mathbf{G}	A	Het	Het	TggccagcacacctgcaG	TggccagcacacctgcaA	tggacgatgagTgatggAaaT
$IWGSC_CSS_3B_scaff_10425015$	Kronos4485	2372	C	\mathbf{T}	Het	Het	gctactgaagttggCtcGG	gctactgaagttggCtcGA	cttcacatccttgggggTtC
IWGSC_CSS_3B_scaff_10775915	Kronos4485	4701	C	\mathbf{T}	Het	Het	ccaagggctgcagagagG	ccaagggctgcagagagA	agacctcacgatGtcctcC
IWGSC_CSS_5AL_scaff_2754304	Kronos4485	2301	\mathbf{G}	A	Het	Het	taacccTgccatcgcccG	taacccTgccatcgcccA	cattgGccagccaTgacT
IWGSC_CSS_5BL_scaff_10919959	Kronos4485	1867	C	\mathbf{T}	Hom	Hom	gatgccctttgtggagaagG	gatgccctttgtggagaagA	tcttgttcccgaaacatgtcA
IWGSC_CSS_7AS_scaff_4245431	Kronos4485	3402	G	A	Hom	Hom	aaggcgcctggtgtttcC	aaggcgcctggtgtttcT	${\it agtaagtggaAcagctaagatcaT}$
IWGSC_CSS_7BL_scaff_6667357	Kronos4485	641	C	Т	Het	Het	${\tt gatcAgctgctcattcgagG}$	${\tt gatcAgctgctcattcgagA}$	ttccctgtcaattgatgccC

Appendix B

Quality Control

B.1 Sequence read quality

B.2 Sequence GC content

39

40

Bibliography

- Alexandra M Allen, Gary L a Barker, Simon T Berry, et al. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). *Plant biotechnology journal*, 9(9):1086–99, December 2011. ISSN 1467-7652. doi: 10.1111/j.1467-7652.2011.00628.x.
- Babraham Bioinformatics. FastQC A Quality Control tool for High Throughput Sequence Data, 2012. URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
- Raoul J P Bonnal, Jan Aerts, George Githinji, et al. Biogem: An effective tool-based approach for scaling up open source software development in bioinformatics. *Bioinformatics*, 28(7):1035–1037, April 2012. ISSN 13674803. doi: 10.1093/bioinformatics/bts080.
- C. Burt, A. Steed, N. Gosman, et al. Mapping a type 1 flb resistance on chromosome 4as of triticum macha and deployment in combination with two type 2 resistances. *Theoretical and Applied Genetics*, 128(9): 1725–1738, 2015. ISSN 1432-2242. doi: 10.1007/s00122-015-2542-9.
- Dario Cantu, Manjula Govindarajulu, Alex Kozik, et al. Next generation sequencing provides rapid access to the genome of *Puccinia striiformis* f. sp. *tritici*, the causal agent of wheat stripe rust. *PLoS ONE*, 6(8): 1–8, 08 2011. doi: 10.1371/journal.pone.0024230.
- Jarrod a Chapman, Martin Mascher, Aydn Buluç, et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. *Genome Biology*, 16(1):1–17, 2015. ISSN 1465-6906. doi: 10.1186/s13059-015-0582-8.
- A Cornish-Bowden. Nomenclature for incompletely specified bases in

nucleic acid sequences: recommendations 1984. *Nucleic acids research*, 13(9):3021–30, May 1985. ISSN 0305-1048.

- Graham J Etherington, R. H. Ramirez-Gonzalez, and D. MacLean. biosamtools 2: a package for analysis and visualization of sequence and alignment data with SAMtools in Ruby. *Bioinformatics*, pages 1–2, 2015. ISSN 1367-4803. doi: 10.1093/bioinformatics/btv178.
- Z. K. Gerechter-Amitai, C. H. van Silfhout, Adriana Grama, and Frida Kleitman. Yr15 a new gene for resistance to puccinia striiformis in triticum dicoccoides sel. g-25. *Euphytica*, 43(1):187–190, 1989. ISSN 1573-5060. doi: 10.1007/BF00037912.
- Naohisa Goto, Pjotr Prins, Mitsuteru Nakao, et al. BioRuby: bioinformatics software for the Ruby programming language. *Bioinformatics* (Oxford, England), 26(20):2617–9, October 2010. ISSN 1367-4811. doi: 10.1093/bioinformatics/btq475.
- Emily Hodges, Zhenyu Xuan, Vivekanand Balija, et al. Genome-wide in situ exon capture for selective resequencing. *Nat Genet*, 39(12): 1522–1527, Dec 2007. ISSN 1061-4036. doi: 10.1038/ng.2007.42.
- Amelia Hubbard, Clare M Lewis, Kentaro Yoshida, et al. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. *Genome Biology*, 16(1):1–15, 2015. ISSN 1465-6906. doi: 10.1186/s13059-015-0590-8.
- Kazutaka Katoh and Daron M Standley. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular biology and evolution*, 30(4):772–80, April 2013. ISSN 1537-1719. doi: 10.1093/molbev/mst010.
- W. J. Kent. BLAT—The BLAST-Like Alignment Tool. Genome Research, 12(4):656–664, March 2002. ISSN 1088-9051. doi: 10.1101/gr.229202.
- Robert King, Nicholas Bird, Ricardo Ramirez-Gonzalez, et al. Mutation scanning in wheat by exon capture and next-generation sequencing. *PLoS ONE*, 10(9):1–18, 09 2015. doi: 10.1371/journal.pone.0137549.
- Ksenia Krasileva, Hans Vasquez-Gross, Tyson Howell1, et al. Uncovering hidden variation in young polyploid wheat genomes. submitted 2016.

Ksenia V Krasileva, Vince Buffalo, Paul Bailey, et al. Separating homeologs by phasing in the tetraploid wheat transcriptome. *Genome biology*, 14(6):R66, June 2013. ISSN 1465-6914. doi: 10.1186/gb-2013-14-6-r66.

- LGC Genomics. http://www.lgcgroup.com/services/genotyping/, 2013. URL http://www.lgcgroup.com/services/genotyping/.
- Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics (Oxford, England)*, 25(14):1754–60, July 2009. ISSN 1367-4811. doi: 10.1093/bioinformatics/btp324.
- Jian Ma, Jiri Stiller, Zhi Zheng, et al. A high-throughput pipeline for detecting locus-specific polymorphism in hexaploid wheat (triticum aestivum l.). *Plant Methods*, 11(1), aug 2015. doi: 10.1186/s13007-015-0082-6.
- K. F. X. Mayer, J. Rogers, J. Dole el, et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345(6194):1251788–1251788, July 2014. ISSN 0036-8075. doi: 10.1126/science.1251788.
- R. W. Michelmore, I. Paran, and R. V. Kesseli. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. *Proceedings of the National Academy of Sciences*, 88(21):9828–9832, November 1991. ISSN 0027-8424. doi: 10.1073/pnas.88.21.9828.
- Joseph K. Pickrell, John C. Marioni, Athma A. Pai, et al. Understanding mechanisms underlying human gene expression variation with rna sequencing. *Nature*, 464(7289):768–772, Apr 2010. ISSN 0028-0836. doi: 10.1038/nature08872.
- R. H. Ramirez-Gonzalez, Cristobal Uauy, and Mario Caccamo. Poly-Marker: A fast polyploid primer design pipeline. *Bioinformatics*, pages 2–3, 2015a. ISSN 1367-4803. doi: 10.1093/bioinformatics/btv069.
- Ricardo H Ramirez-Gonzalez, Raoul Bonnal, Mario Caccamo, and Daniel Maclean. Bio-samtools: Ruby bindings for SAMtools, a library for

accessing BAM files containing high-throughput sequence alignments. Source code for biology and medicine, 7(1):6, January 2012. ISSN 1751-0473. doi: 10.1186/1751-0473-7-6.

- Ricardo H. Ramirez-Gonzalez, Vanesa Segovia, Nicholas Bird, Mario Caccamo, and Cristobal Uauy. Next Generation Sequencing Enabled Genetics in Hexaploid Wheat, pages 201–209. Springer Japan, Tokyo, 2015b. ISBN 978-4-431-55675-6. doi: 10.1007/978-4-431-55675-6_22. URL http://dx.doi.org/10.1007/978-4-431-55675-6_22.
- Ricardo H. Ramirez-Gonzalez, Vanesa Segovia, Nicholas Bird, et al. Rna-seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. *Plant Biotechnology Journal*, 13(5):613–624, 2015c. ISSN 1467-7652. doi: 10.1111/pbi.12281.
- Harpinder S Randhawa, Jasdeep S Mutti, Kim Kidwell, et al. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection. *PloS one*, 4(6):e5752, January 2009. ISSN 1932-6203. doi: 10.1371/journal.pone.0005752.
- Steve Rozen and Helen Skaletsky. Primer3 on the WWW for general users and for biologist programmers. *Methods in molecular biology* (Clifton, N.J.), 132:365–86, January 2000. ISSN 1064-3745.
- Korbinian Schneeberger, Stephan Ossowski, Christa Lanz, et al. Shoremap: simultaneous mapping and mutation identification by deep sequencing. *Nat Meth*, 6(8):550–551, Aug 2009. ISSN 1548-7091. doi: 10.1038/nmeth0809-550.
- Guy St C Slater and Ewan Birney. Automated generation of heuristics for biological sequence comparison. *BMC bioinformatics*, 6:31, January 2005. ISSN 1471-2105. doi: 10.1186/1471-2105-6-31.
- Martin Trick, Nikolai Adamski, Sarah G Mugford, et al. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. *BMC plant biology*, 12(1):14, January 2012. ISSN 1471-2229. doi: 10.1186/1471-2229-12-14.

Shichen Wang, Debbie Wong, Kerrie Forrest, et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. *Plant biotechnology journal*, 12(6): 787–796, March 2014. ISSN 1467-7652. doi: 10.1111/pbi.12183.

- Yi Wang, Vijay K. Tiwari, Nidhi Rawat, et al. GSP: a web-based platform for designing genome-specific primers in polyploids. *Bioinformatics*, page btw134, mar 2016. doi: 10.1093/bioinformatics/btw134.
- C.R. Wellings and Robert A. McIntosh. Host-pathogen studies of wheat stripe rust in australia. In A.E Slinkard, editor, *Proceedings 9th International Wheat Genetics Symposium*, pages 336–338. University of Saskatchewan, Saskatoon, SK, Canada, 1998.
- Paul a Wilkinson, Mark O Winfield, Gary L a Barker, et al. CerealsDB 2.0: an integrated resource for plant breeders and scientists. *BMC bioinformatics*, 13(1):219, January 2012. ISSN 1471-2105. doi: 10.1186/1471-2105-13-219.