Number Theory

Problem 1

How many numbers are there between 100 and 1000 that are

- (a) divisible by 3?
- (b) divisible by 5?
- (c) divisible by 15?

Problem 2

- (a) What is:
 - (i) gcd(420,720)?
 - (ii) lcm(420,720)?
 - (iii) 720 div 42?
 - (iv) $5^{20} \% 7$?
- (b) True or false:
 - (i) 42|7?
 - (ii) 7|42?
 - (iii) 3+5|9+23?
 - (iv) $27 =_{(6)} 33$?
 - (v) $-1 =_{(7)} 22$?

Problem 3^{\dagger} (2020 T2)

Prove, or give a counterexample to disprove:

(a) For all $x \in \mathbb{R}$:

$$|\lfloor x \rfloor| = \lfloor |x| \rfloor$$

(b) For all $x \in \mathbb{Z}$:

$$42|x^7 - x$$

(c) For all $x, y, z \in \mathbb{Z}$, with z > 1 and $z \nmid y$:

$$(x \operatorname{div} y) =_{(z)} ((x \ \% \ z) \operatorname{div} \ (y \ \% \ z))$$

[†] indicates a previous exam question

^{*} indicates a difficult/advanced question.

Problem 4

Prove that for all $m, n, p \in \mathbb{Z}$ with $n \ge 1$:

- (a) $0 \le (m \% n) < n$
- (b) $m =_{(n)} p$ if, and only if (m % n) = (p % n)

Problem 5

Suppose $m =_{(n)} m'$ and $p =_{(n)} p'$. Prove that:

- (a) $m + p =_{(n)} m' + p'$
- (b) $m \cdot p =_{(n)} m' \cdot p'$

Problem 6

- (a) Prove that the 4 digit number n = abcd is:
 - (i) divisible by 5 if and only if the last digit *d* is divisible by 5.
 - (ii) divisible by 9 if and only if the digit sum a + b + c + d is divisible by 9.
 - (iii) divisible by 11 if and only if a b + c d is divisible by 11.
- (b) Find a similar rule to determine if a 4 digit number is divisible by 7.

Problem 7^{\dagger} (2020 T₃)

The following process leads to a rule for determining if a large number n is divisible by 17:

- Remove the last digit, *b*, of *n* leaving a smaller number *a*.
- Let n' = a 5b.
- Repeat with n' in place of n.

So, for example, if n = 12345, then $n' = 1234 - 5 \cdot 5 = 1209$. Repeating would create $120 - 5 \cdot 9 = 75$; $7 - 5 \cdot 5 = -18$; and so on.

Prove that 17|n if and only if 17|n'.

Problem 8^{\dagger} (2021 T₃)

Prove or disprove the following:

(a) For all $x, y, z \in \mathbb{N}$:

$$x + \gcd(y, z) = \gcd(x + y, x + z)$$

(b) For all $x, y, z \in \mathbb{N}$:

$$x \cdot \gcd(y, z) = \gcd(xy, xz)$$

Problem 9*

Prove that for $m, n \in \mathbb{Z}$:

$$gcd(m, n) \cdot lcm(m, n) = |m| \cdot |n|$$

Problem 10*

Prove that for all $n \in \mathbb{Z}$:

$$\gcd(n, n+1) = 1.$$

Problem 11*

Prove that for all $x, y, z \in \mathbb{Z}$:

$$\gcd(\gcd(x,y),z)=\gcd(x,\gcd(y,z)).$$