✓ Congratulations! You passed!

Next Item

Question Responses

- ✓ Question 1
- ✓ Question 2
- ✓ Question 3
- ✓ Question 4
- ✓ Question 5

Review Materials

- Multiple Features
- Normal Equation
- Gradient Descent in Practice I Feature Scaling
- Normal Equation Noninvertibility
- Gradient Descent Intuition

1/1 points

≡ Concepts

- ★ Use mean normalization and scaling for feature scaling
 - Gradient Descent in Practice I Feature Scaling (05:42)

Linear Regression-with Multiple Nariable, and the class had a midterm 5/5 points (100%) Quiz, 5 questions exam and a final exam. You have collected a dataset of their scores on the two exams, which is as follows:

midterm exam	(midterm exam)^2	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{ heta}(x) = heta_0 + heta_1 x_1 + heta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)^2. Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_2^{(4)}$? (Hint: midterm = 69, final = 78 is training example 4.) Please round off your answer to two decimal places and enter in the text box below.

1/1 points

≡ Concepts

★ Explain the different behaviors of gradient descent when the learning rate is too small or too big

• Gradient Descent Intuition (05:31)

2.

You run gradient descent for 15 iterations

with lpha=0.3 and compute J(heta) after each

iteration. You find that the value of $J(\theta)$ **increases** over

time. Based on this, which of the following conclusions seems

most plausible?

Linear Regression with Multiple Variables

Quiz, 5 questions

/

1/1 points

5/5 points (100%)

≡ Concepts

- ★ Define notation for a dataset with multiple features
 - **▶** Multiple Features (00:28)
- ★ Apply the normal equations to fit linear regression on a dataset
 - Normal Equation (03:50)

3.

Suppose you have m=23 training examples with n=5 features (excluding the additional all-ones feature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the given values of m and n, what are the dimensions of θ , X, and y in this equation?

1/1 points

≡ Concepts

- ★ Choose when to use the normal equations or gradient descent
 - Normal Equation (11:28)

4.

Suppose you have a dataset with m=50 examples and n=15 features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?

1/1 points

≡ Concepts

- * Explain why features on a similar scale can help gradient descent converge faster
 - Gradient Descent in Practice I Feature Scaling (00:13)
- ★ Identify that redundant or too many features can lead to non-invertibility when using the normal equations

Linear Reg	© Normal Equation Noninvertibility (02:02) ression with Multiple Variables	/5 points (100%)
	5. Which of the following are reasons for using feature scaling?	
		_