

TRIGONOMETRY Chapter 09

Resolución de triángulos rectángulos

¿ EXISTEN TRIÁNGULOS RECTÁNGULOS EN LA VIDA

¿QUÉ SIGNIFICA RESOLVER UN TRIÁNGULO RECTÁNGULO ?

Significa que si en un triángulo rectángulo nos dan como datos la medida de un ángulo agudo y la longitud de un lado, podemos expresar las longitudes de los otros dos lados en términos de dichos datos.

Es decir: $\frac{\text{longitud desconocida}}{\text{longitud conocida}} = RT (<$

dato)

longitud desconocida = (longitud conocida). RT (≮

CASO I: Conociendo un ángulo agudo y la

$$\frac{y}{m} = sen\alpha \implies y = msen\alpha$$

 $\frac{x}{-} = \cos\alpha \Rightarrow x = m\cos\alpha$

CASO II : Conociendo un ángulo agudo y su cateto

$$\frac{y}{m} = \csc\alpha \implies y = m\csc\alpha$$

$$\frac{x}{m} = \cot \alpha \implies x = m\cot \alpha$$

CASO III : Conociendo un ángulo agudo y su cateto adyacente.

$$\frac{y}{m} = \tan \alpha \Rightarrow y =$$

m.tan α

$$\frac{x}{m} = \sec \alpha \implies x =$$

m.sec α

ÁREA DE UNA REGIÓN TRIANGULAR

$$S = \frac{ab}{2} \operatorname{sen} \alpha$$

S : Área de la región triangular

SOLUCIÓN:

$$\frac{x}{m} = \text{sen}(\alpha)$$

$$x = m.sen(\alpha)$$

RESOLUCIÓN:

$$\frac{2x}{3m} = \sec(\alpha)$$

$$2x = 3m.sec(\alpha)$$

$$x = \frac{3m.sec(\alpha)}{2}$$

 El profesor de trigonometría trazó una diagonal en la pizarra, tal como se muestra en la figura.

¿Cuál es el perímetro del triángulo sombreado?

Recordar:

RT(θ) =
$$\frac{\text{LO QUE QUIERO}}{\text{LO QUE TENGO}}$$
 $\frac{\text{H}}{\text{tan}}$ (θ) =

RESOLUCIÓN:

$$\frac{AB}{2,4} = \sec\beta$$
 \Rightarrow AB = 2,4.sec β

$$\frac{BC}{2.4} = \tan\beta \implies BC = 2.4.\tan\beta$$

PIDEN:

$$2P = AB + BC + AC$$

 $2P = 2,4.Sec\beta + 2,4.Tan\beta + 2,4$

$$2P = 2,4(\sec\beta + \tan\beta + 1)m$$

Recordar:

$$RT(\theta) = \frac{LO \ QUE \ QUIERO}{LO \ QUE \ TENGO}$$

$$sec(\theta) = \frac{H}{CA}$$

RESOLUCIÓN:

$$\frac{BH}{n} = \tan \alpha$$
 \Rightarrow BH = n.tan α

Se observa el ⊿ BHC

$$\frac{x}{BH} = \sec\theta$$
 \Rightarrow $\frac{x}{n.\tan\alpha} = \sec\theta$

$$x = n.tanα.secθ$$

Recordar:

RT(
$$\theta$$
) = $\frac{\text{LO QUE QUIERO}}{\text{LO QUE TENGO}}$ sen(θ) = $\frac{\text{CO}}{\text{H}}$

$$sen(\theta) = \frac{co}{H}$$

RESOLUCIÓN:

❖Se observa el ∠ BCA

$$\frac{BC}{m} = sen\alpha$$
 BC = m.sen α

Luego desarrollaremos el

$$\frac{A \text{BDC}}{BC} = \sin \beta \Rightarrow x = BC.\text{sen}\beta$$

*Reemplazando BC

∴
$$x = m.sen\alpha.sen\beta$$

7. Del gráfico, calcule el área de la región triangular

RESOLUCIÓN:

Utilizando la fórmula del área de la región triangular

$$S = \frac{(5u)(2\sqrt{3}u)}{2}. sen60^{\circ}$$

$$S = \frac{(5u)(2\sqrt{3}u)}{2} \cdot \frac{\sqrt{3}}{2}$$

$$S = \frac{15u^2}{2}$$

8. Calcule $\frac{S_1}{S_2}$, (S_1 ; S_2 son áreas

Recordar:

a
$$\theta$$
 b

 $S = \frac{a.b}{2}$. sen θ

RESOLUCIÓN:

$$S_1 = \frac{10.y}{2}$$
. sen53° $\Rightarrow 5y = 4y$

$$S_2 = \frac{y/8}{2}$$
. sen30° $\Rightarrow 4/y \frac{1}{2} = 2y$

PIDEN:

$$\frac{S_1}{S_2} = \frac{4y}{2y} = 2$$

