

$$N = \frac{u \times v}{|u \times v|}$$

생각형 위의 정점들은Fautbor로 포현

$$b \cdot v = 0$$

$$AB^T = I \rightarrow B^T = A^{-1}$$

$$B = (A^{-1})^T$$

8.3

기고망원 기고 마린 Light vector)

$$-2(n \cdot I)n$$

$$(n \cdot I)n$$

r= I-2(n·I)n → HLSL의 reflect 함수로 구할 수있다.

단위 멋건 상 어내지 (복사구도, irradiance)

 $E_2 = E_1 \cos \theta = E_1(n \cdot L)$

단(日)= Max(cos日 0) (n·L이 용수면 뒷면이으로 빛X)

8.5 보산 국명

ditfuse reflection (난반사, 보산 반사, 확산 반사)은 시물레이션 할때 R.G.B가 인정한 비용로 모든 방향으로 고르게 흘러진다고 가정한다. 그러므로 보산 구명은 카메라의 위치와 독일적이다.

대를들이 역사장이 80% 백색(0.8,0.8,0.8) 이고 필연의 한 점이 R.G. B를 50%, (00%, 15% 변사한다고 하면 CJ = BL® MJ = (0.8,0.8, 0.8) @ (0.5, 1.0, 0.15) = (0.4,0.8, 0.6) 이다.

하지만 임사광을 LCL로 보정해 구어야 하기 때문에 최종식은 $C_d = Max(L\cdot n, 0)$ $B_L \otimes m_d$ Olch.

8.6 주년 조명
이 책의 국명 모형은 간접광은 고려하지 않지만 실생활에서
건하는 빛의 사상 부분은 간성광이다.
그러므로 간건당을 흉내내기 위해 조명공식에 다음과 같은
马坦 改 改是 至过起CV.
$C_a = A_L \otimes m_d$
Ac 은 모든 물궤가 받는 권체 곡병광의 야물 나라낸다.
MJE StOULH LE GU WAZOLL.
결과적으로 구변광은 모든 물체를 일정하게 방게 만든Cr.