NOV 0 6 2003

503021-A-01-US (DENBY) Serial No.: 10/643,275 Ryan, Mason & Lewis, LLP; J. B. Ryan (516) 759-2722

1/9

FIG. 1A

FIG. 1B

3/9

FIG. 3

FIG. 4 P_1 P_1 P_1 P_2 P_3 P_4 P_4 P_4 P_4 P_4 P_4 P_4 P_4 P_5 P_6 P_7

FIG. 5

Γ		L_{1}	L_{2}	$L\mathfrak{z}$	L_4	Γ		L_1	L_2	$L\mathfrak{z}$	L_{4}]
	$\overline{P_1}$	1	1	1	0		$\overline{P_1}$	1	1	1	0	
	P_2	1	0	0	1		P_2	1	0	0	1	
_	·	FLOW MATRIX 1				L	Рз	0	1	1	1 _	
								FLOV	MATR	IX 2		

4/9

EQUATIONS WITH FLOW MATRIX 1

FIG. 6

 $x_1 + x_2 + x_3 = y_1$ $x_1 + x_4 = y_2$

 $x_1 + x_2 + x_3 = y_1$ $x_1 + x_4 = y_2$ $x_2 + x_3 + x_4 = y_3$

EQUATIONS WITH FLOW MATRIX 2

Generate_Pipes(G = (D, L): Network Topology Graph, E: Set of Leaves)

I: Set of pipes in G wrt E

Compute P for G wrt E

Let M be the complete flow matrix for G and P

HGroup links with the same column vector into disjoint sets

Let k be the number of distinct column vectors in M

Form a set $\mathbf{S}=\{S_0,S_1,...,S_k\}$ where: each S_i , $0< i \le k$ contains links in L with the i^{th} distinct column vector in MHEnsure that links in each element of S form a path in G

if links in \mathbb{S}_i are consecutive and form a path

then merge S_i into path $p,I \leftarrow I \cup \{p\}$

Hadd the path formed by the links in S_i as a pipe Hadd each link as a pipe by itself

5/9

FIG. 8

	L_1	L_2	L_3
e1 - e2	1	1	0
e1 - e3	1	1	2
e2-e3	0	0	0

FIG. 9

FIG. 10

FLOW MATRIX 1

FLOW MATRIX 2

$$\left[\begin{array}{cc} 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right]$$

FIG. 12

FIG. 13

ſ		L_1	L_2	$L_{\mathfrak{Z}}$	L_{4}		
	$L_1.\overline{L_4}$	1	0	0	1		
l	$L_4. L_2$	0	1	0	1		$\mid L$
	$L_2.L_3$	0	1	1	0		$\mid L$
	$L_3.L_1$	1	0	1	0		
	$\{L_1,L_4\}$, $L_4.L$	2, L2.	L_3 , L_3	$\{L_1\}$	_	_

	L_1	L_2	$L_{\mathfrak{Z}}$	L_4				
$L_1.\overline{L_2}$	1	1	0	0				
$L_1.L_3$	1	0	1	0				
$L_1.L_4$	1	0	0	1				
$L_2.L_3$	0	1	1	0				
$\{L_1, L_2, L_3, L_4\}$								

FIG. 14

 $\parallel c_i$ is removed from paths in open + B1 Select_Matrix(G' = (D', I):Reduced Network Topology Graph, E: Set of Leaves) Compute $\,S'$ which has the original value of each path in S $R \leftarrow R \cup S'$ update open and W such that $orall p' \in open$ p' does not contain any estimable path in ${\it W}$ if $\exists S \subset open$ such that S makes c_i estimable for each pipe c_i on p = c_1 c_2 ... $c_{length}(p)$ W: Set of worms in G' wrt E, $W \leftarrow \emptyset$ $W \leftarrow W \cup \{c_i\}$ Compute P' for G' wrt E select p from open $oben \leftarrow open \setminus \{b\}$ R: Set of paths, $R \leftarrow \emptyset$ while $open \neq \emptyset$ open $\leftarrow P'$ return W, R

8/9

FIG. 16

 $||c_i|$ is removed from paths in open Compute_EstPaths(G' = (D', I):Reduced Network Topology Graph, E: Set of Leaves, P'_{t_i} : End-to-end paths at time t_i) p^{\prime} does not contain any estimable path in M and update open and M such that $orall p' \in open$ if $\exists \, S \subset open \, \mathrm{such} \, \mathrm{that} \, \, S \, \mathrm{makes} \, c_i \, \mathrm{estimable}$ M: A Minimal set of estimable paths for G' wrt E, $W \leftarrow \emptyset$ for each pipe c_i on p = $c_1 c_2 \cdot ... c_{length}(p)$ $oben \leftarrow open \setminus \{p\}$ select shortest p in openabort processing of pwhile open not converged $M \leftarrow M \cup \{c_i\}$ select p from open $open \leftarrow open \setminus \{p\}$ $\dot{M} \leftarrow M \cup \bar{\{p\}}$ $open \; \leftarrow P'_{t_i}$ while $open \;
eq \emptyset$ ifo*pen ≠0*0