DATA 442: Neural Networks & Deep Learning

Dan Runfola - danr@wm.edu

icss.wm.edu/data442/

Optimization

Goal: Find the best weights parameters to minimize a loss function.

Approaches we've discussed: Gradient Descent, Stochastic Gradient Descent, Mini-batch SGD.

Optimization

Example (Mini-batch SGD):

- 1. Sample your data (batch size)
- 2. Run a forward propagation through your network.
- 3. Calculate your loss
- 4. Backpropogate to calculate gradients of weights with respect to loss.
- 5. Update weights using the gradient.
- 6. Repeat until some threshold is reached (i.e., number of iterations).

Building and Optimizing a Neural Network

Define Network Architecture (Computational Graph)

Train / Optimize the Network RATIONAL EFFICIENT

Evaluation

Network Architecture: Activation Function

Network Architecture: Activation Function

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Network Architecture: Activation Function

p_1 0.5 Pixel 1 w_1 Value p_2 Pixel 2 \widehat{w}_2 $\sigma(x) = \frac{1}{(1 + e^{-x})}$ Value

Features

- Output of function falls between 0 and 1.
- Roughly approximates how a neuron works - 0 values until some threshold is reached, then 1.

Features

- Output of function falls between 0 and 1.
- Roughly approximates how a neuron works - 0 values until some threshold is reached, then 1.

<u>Challenges</u>

- Gradient Decay & Saturation
 - Not Zero-Centered & Unidirectional Gradient Solutions

$$\sigma(x) = \frac{1}{(1 + e^{-x})}$$

Pixel 1 Value w_1 $f(\sum_i w_i p_i)$ Pixel 2 w_2

Consider if pixel 1 value and pixel 2 value are both 1, and both weights are 10.

What would a change in the weight of -1 do to the sigmoid activation function?

Features

- Output of function falls between 0 and 1.
- Roughly approximates how a neuron works - 0 values until some threshold is reached, then 1.

<u>Challenges</u>

- Gradient Decay & Saturation
- Not Zero-Centered & Unidirectional Gradient Solutions

Value

$$\sigma(x) = \frac{1}{(1 + e^{-x})}$$

Features

- Output of function falls between 0 and 1.
- Roughly approximates how a neuron works - 0 values until some threshold is reached, then 1.

Challenges

- Gradient Decay & Saturation
- Not Zero-Centered & Unidirectional
 Gradient Solutions

 p_1 Pixel 1 Value w_1 p_2 $f(\sum_i w_i p_i)$ Pixel 2 Value w_2

Consider if pixel 1 value and pixel 2 value are both 1, and both weights are 10.

What would a change in the weight of -1 do to the sigmoid activation function?

Nothing (the gradient would be 0)

$$\sigma(x) = \frac{1}{(1 + e^{-x})}$$

 $\begin{array}{c|c} p_1 \\ \hline \\ p_{\text{Ival 1}} \\ \hline \\ p_2 \\ \hline \\ p_{\text{Ival 2}} \\ \hline \\ v_{\text{alue}} \\ \hline \end{array}$

Now consider the directionality of the gradient. If all of your inputs into a given neuron are positive, then gradients will all always be positive or negative - no mixing of positive and negative gradients during back propagation.

Features

- Output of function falls between 0 and 1.
- Roughly approximates how a neuron works - 0 values until some threshold is reached, then 1.

<u>Challenges</u>

- Gradient Decay & Saturation
- Not Zero-Centered & Unidirectional Gradient Solutions

tanh Activation Function

<u>Features</u>

- Output of function falls between -1 and 1.
- Roughly approximates how a neuron works - 0 values until some threshold is reached,
- **Zero Centered**

Challenges

Gradient Decay & Saturation

$$e^x + e^{-x}$$

Rectified Linear Unit (ReLU) Activation Function

<u>Features</u>

- No saturation in positive direction
- Very, very simple (and, thus, computationally efficient)
- Roughly approximates how a neuron works - 0 values until 0 is reached, then x.

Challenges

- Not zero-centered
- Gradient Decay / Saturation if X < 0

$$ReLU(x) = max\{0, X\}$$

 p_2

Pixel 2

Value

 w_2

Leaky ReLU Activation Function

Features

- No saturation (and, thus, no ReLU "death").
- Still very simple (and, thus, computationally efficient)
- Roughly approximates how a neuron works - small values until 0 is reached, then x.

<u>Challenges</u>

Not zero-centered

$$Leaky(x) = max\{0.01X, X\}$$

Parametric ReLU Activation Function

Features

- No saturation (and, thus, no ReLU "death").
- Still very simple (and, thus, computationally efficient)
- Roughly approximates how a neuron works - small values until 0 is reached, then x.
- Parameterized, and can be fit during optimization.

Challenges

Not zero-centered

$$PReLU(x) = max\{\alpha * X, X\}$$

Exponential Linear Units (ELU) Activation Function

p_1 Pixel 1 w_1 Value p_2

Features

- No saturation if x > 0
- Roughly approximates how a neuron works - small values until 0 is reached, then x.
- Parameterized, and can be fit during optimization.
- Close to mean centered.

Challenges

- Potential for saturation if x < 0.
- Not actually zero-centered, though it is much closer.

$$ELU(x) = \begin{cases} x & \text{if } x > 0\\ \alpha(exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

Pixel 2

Value

 \widehat{w}_2

Network Architecture: Data Preprocessing

$$\sigma(x) = \frac{1}{(1 + e^{-x})}$$

 p_1 Pixel 1 Value w_1 p_2 $f(\sum_i w_i p_i)$ Pixel 2 Value w_2

Now consider the directionality of the gradient. If all of your inputs into a given neuron are positive, then gradients will all always be positive or negative - no mixing of positive and negative gradients during back propagation.

Features

- Output of function falls between 0 and 1.
- Roughly approximates how a neuron works - 0 values until some threshold is reached, then 1.

<u>Challenges</u>

- Gradient Decay & Saturation
- Not Zero-Centered & Unidirectional Gradient Solutions

W = np.random.randn(3072, 10) * .0001

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

Idea: Big numbers!

W = np.random.randn(3072, 10) * 10

22-14/15 | Operational Efficiency

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

Idea: ...medium numbers!

(Ok, wait a minute, this is harder than it

seemed).

rement as hamei and gerhibity renter as syrei i enre

Xavier Initialization

Initial weights should be based on model complexity.

Measurement of complexity: How many inputs and outputs your network has.

A DEPARTMENT OF HOMELAND SECURITY CENTER OF EXCELLENCE

Xavier Initialization

Original:

W = np.random.randn(3072, 10) * .0001

Yaviar: A Department of Homeland Security Center of excellence

Xavier:

W = np.random.randn(3072, 10) / np.sqrt(3072)

Xavier Initialization

Original:

W = np.random.randn(3072, 10) * .0001

Xavier:

W = np.random.randn(3072, 10) / np.sqrt(3072)

<u>He:</u>

W = np.random.randn(3072, 10) / np.sqrt(3072 / 2)

Where we are now

- Define network architecture (number of hidden layers, inputs, outputs, batch normalizations, activations, etc).
- 2. Define data preprocessing pipeline (zero-mean standardization).
- 3. Define weight initializations strategy.

