${\rm CS215}$: Home Work Assignment -1

Kona Pavan Sai Subhash Roll No. 24B0955

> Shaik Suraj Roll No. 24B0907

August 18, 2025

Contents

1	Filtering the corrupted sine wave	2			
	1.1 Introduction	2			
	1.2 Running Instructions	2			
	1.3 Plots for 30% filtered sine waves	2			
	1.4 Relative squared errors for all filtered plots	3			
	1.5 Repeat for 60% corruption	3			
2	Updating the Statistical measures	4			
	2.1 Running Instructions	4			
	2.2 Mean				
	2.3 Median	5			
	2.4 Std. deviation(σ)	7			
	2.5 Updating Histogram	7			
3	3 Short Proof				
4 Bayes Theorem					
5	5 Exit Poll Prediction				
	5.1 Probability for event M_A with 100 voters	10			
	5.2 Probability of event M_A with 10,000 voters				
6	The Math of Exit Polls	11			

Filtering the corrupted sine wave

1.1 Introduction

This question introduces the concepts of moving average, median, and quartile filters, which help to remove outliers. A 30% and 60% corrupted sine wave is modified/filtered to get a proper sine wave. The plot 1.2 of all waves is shown in the next section

1.2 Running Instructions

Run the file HW_Q1.m in matlab, you will see the plots in a .png file. You can change the % corrpution by changing the percent variable in the file.

1.3 Plots for 30% filtered sine waves

Figure 1.1: This plot is about filtering of 30% corrupted sine wave

1.4 Relative squared errors for all filtered plots

S.No	Filter type	Squared Error
1.	Mean	60.455
2.	Median	22.273
3.	1st Quartile	0.017

Table 1.1: Relative Squared Errors

The 1st quartile produced a better squared error compared to the other two. This behaviour can be justified by the fact that the outliers have a large value compared to the actual sine values, and the 1st quartile gives out the lower 25% of its neighbourhood. This decreases the error, whereas mean and median are affected by the large outliers (both large valued and large numbered).

1.5 Repeat for 60% corruption

The same process is repeated for 60% corrupted sine wave and the following results are obtained.

S.No	Filter type	SquaredError
1.	Mean	213.880
2.	Median	426.554
3.	1st Quartile	26.158

Table 1.2: Relative Squured Errors

Figure 1.2: This plot is about filtering of 30% corrupted sine wave

Here also we observed the same results as before but may be even less percentile gives better results.

P.S: I tried to find the best percentile, but it fluctuated between 1% and 15%

Updating the Statistical measures

2.1 Running Instructions

Using the functions in the file HW1_Q2.m, give the respective arguments to each function like new data value, old mean etc.

After giving arguments, run the code in matlab to get the updated values of mean, median, standard devation

2.2 Mean

hew mean!
Given old mean = 40, newdata value = 0; std length of old dataset = n.
let new mean be un, the dataset is {x1, x2, xn}
Mo = x1 + x2+x3+ xn - according to definition of mean
Mn = x1+x2+xn+~ -0 as & is added to abso set
21+ 12++ 2n = n 40 from 0
71+12++ 9n +a = (n+) Un from @
n uo + a = (n+1) un, replacing n++n+ n=nuo by 0
=> Un = nhota mas has har alast
So newmoan a nx(old mean) + newdata value
nti

2.3 Median

new median: let old median = m, newdata value = x. and olddatavalues = {x1, x2, --- xn} in ascending order. Case wise analysis: is a ruen: then we mean of (A[N], A[h/+1]) * if a > A [(h/1)+1] & (will fall in this range) (COD ---) EHLAMA (END A --- , COD , EUDA the length of new dotaset is odd, so the middle most element is median April is new median as number of elementer left to it is Me and right to it is M2. --- , A[[M]+1] + ---(Aro, Aro, --,)Arm, Aronto, --, Arm

on values

no values so the middle most element = [median = A[W]] -> or A[(M2)] < x < A[(M2)+1] so the middle most element = median = a)

```
Die nisodd,
                                                 old median m= A[ntill] -D
                                -> if . \a ≥ \b ((\n+3)/2)
          A[1], A[1], --- (A[(mi)]), P[(mi)]), [--- A[m])

(m-1) k values
      median = mean (A[(n+1)/1], A[(n+3)/1])
as now we have even number of elements,
                                              the median = overage of the two middle element
                                              median = m+ A[(n+3)/1] as m= A[(n+1)/1]
                          (W-1) (" Monder ) (M-1) (" Monder ) (" Mon
                    So median = A[mi (mi)] + A[mi)]
median = m+ Alamoni)
   ACIJ ACIJI -- - ACINI) 1 d, ACIONI) (-- - ACIJA)

(C-1)/2 value
      so median = x+ A ((m+1)x) & A

median = x+ A ((m+1)x) & A

median
```

2.4 Std. deviation(σ)

new standard deviation (=n):
let oblidata set is {x1/x2/xn}
let old Standard deviation be =, old near be M,
new mean be (un), new data value be of anticin
as -2 = \frac{2}{2} (xi-m)^2
<u>h-1</u>
$(\omega_{5})(\nu-1) = \sum_{i} (x_{i} + \mu_{5} - 5x_{i}\pi)$
$(e^{-2})(n-1) = \sum_{i=1}^{n} x_i^2 - 2\mu_i \sum_{i=1}^{n} x_i + n\mu^2 \qquad \text{as } \mu = \sum_{i=1}^{n} x_i^2$
$(c_{5})(N-1) = \frac{1}{8} x y_{5} - 5 \pi (\pi N) + \mu \pi_{5}$
i=1
=) \(\frac{5}{5} \lambda'_5 = \lambda_5 \rangle (\rho_5) (\rho_1) + \rangle \rho_4 \rangle \righta \r
1=1
$\frac{1}{2} = \frac{1}{2} \left(x_i - \mu n \right)^2 + \left(\alpha - \mu n \right)^2$
To lot
$(\omega_{2})N = \frac{1}{2}(x_{12} + W_{2} - 5x_{1}My) + (4 - My)_{2}$
$\frac{(\sigma_1 -)N = \sum_{i>1} (N_i + \lambda N_i - \lambda N_i + \lambda N_i)}{(\sigma_1 - \lambda N_i)}$
1, 2), 22, 21, 24, 5X, +14-1107
(2) N = 13 x1 + N My - 2MN 3 X1 + (x-My)
$(\sigma_n^2)_N = (\sigma_n^2)_{(n-1)} + n\mu_n^2 + n\mu_n^2 - 2\mu_n(n\mu) + (\alpha - \mu_n)^2 + n\mu_n^2$
$(\omega_{J})\nu = (\omega_{J})(\nu-1) + \nu n \nu_{J} + \nu n \nu_{J} - 5 \pi \nu (\nu n) + (\alpha - \pi \nu)_{J} + \nu \omega_{J}$
(=) N = = (N-1) + N (NJ+My-5MN) + (x-Mu)
$\sigma_{n} = \frac{1}{\sigma^{2}(n-1)+n(n-n)^{2}+(n-n)^{2}}$
, ,
So, the new standard deviation = = o2(n-1)+n(u-un)+(v-un)
n -

2.5 Updating Histogram

For updating the histogram, first we will look for the bin into which the new element will fall into. After identifying the bin, increase the count of the bin by 1. In this way, we can update the histogram.

Short Proof

Given:

$$P(A) \ge 1 - q_1$$
 and $P(B) \ge 1 - q_2$

Show that:

$$P(A \cap B) \ge 1 - (q_1 + q_2)$$

We know that

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Substituting the given inequalities:

$$P(A \cup B) = (1 - q_1) + (1 - q_2) - P(A \cap B)$$

$$P(A \cup B) = 2 - (q_1 + q_2) - P(A \cap B)$$

We also know that for any event E:

$$0 \le P(E) \le 1$$

Hence:

$$P(A \cup B) \le 1$$

So:

$$1 \ge 2 - (q_1 + q_2) - P(A \cap B)$$

Rearranging:

$$P(A \cap B) \ge 1 - (q_1 + q_2)$$

Conclusion:

Therefore, we have shown that:

$$P(A \cap B) \ge 1 - (q_1 + q_2)$$

Bayes Theorem

In a town there are 100 buses: 1 red and 99 blue. An eyewitness (XYZ) saw a bus at night and reported it was red. Under test conditions similar to that night, XYZ

$$P(SR \mid OR) = 0.99, \qquad P(SR \mid OB) = 0.02.$$

We have to find $P(OR \mid SR)$

Explanation of parameters.

Let

 $OR = \{ bus \ is \ originally \ red \}, \quad OB = \{ bus \ is \ originally \ blue \}, \quad SR = \{ witness \ reports \ "red" \}, \quad SB = \{ witness \ "red" \}, \quad SB =$

Given Conditions:

$$P(OR) = \frac{1}{100} = 0.01,$$
 $P(OB) = \frac{99}{100} = 0.99.$ $P(SR \mid OR) = 0.99,$ $P(SR \mid OB) = 0.02.$

Computation (Bayes' Theorem)

$$P(\text{OR} \mid \text{SR}) = \frac{P(\text{SR} \mid \text{OR})P(\text{OR})}{P(\text{SR} \mid \text{OR})P(\text{OR}) + P(\text{SR} \mid \text{OB})P(\text{OB})}.$$

Keeping the values:

$$P(\text{OR} \mid \text{SR}) = \frac{0.99 \cdot 0.01}{0.99 \cdot 0.01 + 0.02 \cdot 0.99} = \frac{0.0099}{0.0099 + 0.0198} = \frac{0.0099}{0.0297} = \frac{1}{3} \approx 0.3333.$$

Conclusion & Lawyer's Argument

Given the report, the probability that the bus was actually red is only

$$P(OR \mid SR) = \frac{1}{3}.$$

Therefore it is still twice as likely the bus was originally blue $(P(OB \mid SR) = \frac{2}{3})$. So we cannot guarentee that the bus was actually red based on the eyewitness report alone.

Exit Poll Prediction

Let event M_A be "declared majority for A".

5.1 Probability for event M_A with 100 voters

Total voters = 100. Supporters: 95 for A and 5 for B. An exit poll samples 3 voters with replacement.

If A should be the majority among the three voters, then there will be two cases possible,

case 1: All the three voters vote for A.

case 2: Two voters vote for A and one voter vote for B.

$$P(M_A) = P(3A) + P(2A,1B) = \left(\frac{95}{100}\right)^3 + \binom{3}{2} \left(\frac{95}{100}\right)^2 \left(\frac{5}{100}\right).$$

Computing each term

$$P(3A) = \left(\frac{95}{100}\right)^3 = \frac{95^3}{100^3} = 0.857375, \qquad P(2A,1B) = \binom{3}{2} \left(\frac{95}{100}\right)^2 \left(\frac{5}{100}\right) = 0.135375.$$

Result:

$$P(M_A) = 0.857375 + 0.135375 = 0.99275 \approx 99.275\%$$

5.2 Probability of event M_A with 10,000 voters

Total eligible voters = 10,000. Fraction favouring A: 95%, favouring B: 5%. An exit poll samples 3 voters with replacement. Let event M_A be "declared majority for A".

If A should be the majority among the three voters, then there are two cases:

case 1: All the three voters vote for A.

case 2: Exactly two voters vote for A and one voter for B.

$$P(M_A) = P(3A) + P(2A,1B) = \left(\frac{95}{100}\right)^3 + \binom{3}{2} \left(\frac{95}{100}\right)^2 \left(\frac{5}{100}\right).$$

Computing each term

$$P(3A) = \left(\frac{95}{100}\right)^3 = \frac{95^3}{100^3} = 0.857375, \qquad P(2A,1B) = \binom{3}{2} \left(\frac{95}{100}\right)^2 \left(\frac{5}{100}\right) = 0.135375.$$

Result:

$$P(M_A) = 0.857375 + 0.135375 = 0.99275 \approx 99.275\%$$

So, with three truthful responses sampled with replacement, the exit poll declares a majority for A with probability about 99.275%.

The Math of Exit Polls

```
6) Given, probability p that votexs posefer A over B is K/m, ie, K people out of
   profesed A over B.
   a(s) = E ni/n where a xi=1 if it voten voted for A egg 0
                                  * I(s) is the index set of each votes in S.
                                   * S is all randomly chosen (with preplacement) subset
                                   containing o votess.
  a) Prove that \sum_{s} \frac{q(s)}{m^2} = p.
            The value of 9150 = \frac{n-1}{n} for i \in [0, n].
            The no of times q(s) appears in the suromation = n_{c_1}(m-K) \cdot K = 0
      Justification of (1),

We have to chose (n-i) votess who posefess A q i votess who posefess B.
              (m-k) ⇒ chosing votes who preferred B
                K => Choosing voters who parefored A.
                nc; > The onder in which has voters are chosen.
       \sum_{s} \frac{q(s)}{m^{n}} = \sum_{i=0}^{n} \left( \frac{n-i}{n} \right) \cdot \frac{n}{n} c_{i} \cdot (n-k)^{i} \cdot k^{n-i} 
    (x+y)^n = \sum_{i=0}^n n_{i} x^n i y^i
      Differentiate on both sides writ x.
                n \cdot (x+y)^{n-1} = \sum_{i=1}^{n} (n-i) \cdot nc_i x^{n-i-1} y^i
```

Substitute x = K and y = m-K

$$\frac{k \cdot m^n}{m} = \sum_{i=0}^{n} (\frac{n-i}{n}) n_{i} \cdot k^{n-i} (m-k)^i$$

$$\sum_{i=0}^{n} \frac{\left(\frac{n-i}{n}\right) \cdot n_{c_{i}} \cdot k^{n-i} \cdot (m-k)^{i}}{m^{n}} = \sum_{k \in S} \frac{q(s)}{m^{n}} = \frac{K}{m} = P.$$

Using the nesults from a,

$$\rightarrow \sum_{s} \frac{q^{2}(s)}{m^{n}} = \sum_{i=0}^{n} \frac{\left(\frac{n-i}{n}\right)^{2} x^{n} c_{i} x(m-i)^{k} k^{n-i}}{m^{n}}$$

Differentiate w.v.t x

$$n \cdot (x_1 + y_1^{n-1} + n(n-1) \cdot (x_1 + y_1^{n-2}) \cdot x = \sum_{j=0}^{n} (n-j)^{\frac{n}{j}} \cdot nc_j \cdot \xrightarrow{\text{max}} x_1^{n-j-1} y_j^{-j}$$

substitute x=k and y=m-k,

$$k \left[\frac{u \cdot w}{u - 1} + u(u - 1) \cdot K \cdot w - \frac{1}{2} \right] = \sum_{i=0}^{i=0} (u - i)_{x} \cdot u^{i} \cdot k \cdot (w - k)_{x}.$$

$$\sum_{i=0}^{j=0} \frac{u_{i} \cdot u_{i}}{(u_{i} \cdot i)_{j} \cdot u_{i} \cdot (u_{i} + u_{i} \cdot i)_{j} \cdot u_{i}} \cdot \sum_{i=0}^{j=0} \frac{u_{i} \cdot u_{i}}{k \cdot \left[u_{i} \cdot u_{i} + u_{i} \cdot u_{i} \cdot u_{i} \cdot v_{i} \cdot v_{$$

$$= \left(\frac{K}{m}\right) \Big|_{\Omega} + \left(\frac{n-1}{n}\right) \frac{K^2}{m^2}$$

$$= \frac{\rho}{n} + \rho^2 \left(\frac{n-1}{n}\right).$$

) Prove that.
$$\sum_{s} \frac{(q(s)-p)^2}{mn} = \frac{p(q-p)}{n}$$

$$=\frac{p}{n}+p^{2}-\frac{p^{2}}{n}+p^{2}-2p^{2}$$

$$\therefore \sum_{s} \frac{(q(s)-p)^{2}}{m^{n}} = \frac{p(0-p)}{(p-p)^{n}}$$

9) P.T., proposition of n-sized subsets S., for which
$$|q(s)-p|>8$$
 is less than on equal to $\frac{1}{6^2}$. $\frac{P(J-p)}{p}$.

Using Two sided chebyshev's inequality.

If
$$S_k = \begin{cases} X_i : |x_i - y| > K \sigma \end{cases}$$
 then $\frac{S_k}{n} \leq \frac{1}{k^2}$.

Hoxe,

Forom @ . P is the mean of 915) over all subsets.

Variance (02) of 9(5) =
$$\frac{\sum_{s} (q^{2}(s) - p)^{2}}{m^{2} - q}$$

$$\sigma^2 = \frac{P(J-P)}{P(m_D-1)}$$

Replacing S with
$$(\underline{s})$$
 or, $P_s = \{q(s) : |q(s) - P| > (\underline{s}) \}$

From Chebyshev's inequality, many the proofs ()

proportion of S for which 19(5)-Pl7 8 is

$$\leq \frac{1}{k^2} = \frac{n^2}{8^2} = \frac{P(1-P)}{S^{\frac{2}{p}} \cdot (m^2-1)}$$

$$\leq \frac{1}{8^2} \frac{p(1-p)}{p}$$

Significance of this gresult:

9(5) is the probability that voters in a randomly taken subset S (size n) prefers A over B. According to this nesult, | q(s)-p)> & has very less proposition.

So, 2(s) will be close to p in most of the chosen subsets.

.. The exit poll may have a good prediction of the election nesult.