	WHAT	HOW	WHERE	WHO	WHEN	WHY	
SCOPE CONTEXTS	Inventory Identification	Process Identification	Network Identification	Organization Identification	Timing Identification	Motivation Identification	STRATEGISTS AS THEORISTS
BUSINESS CONCEPTS	Inventory Definition Business Entity Business Relationship	Process Definition Business Transform Business Input	Network Definition Business Location Business Connection	Organization Definition Business Role Business Work	Timing Definition Business Cycle Business Moment	Motivation Definition Business End Business Means	EXECUTIVE LEADERS AS OWNERS
SYSTEM LOGIC	Inventory Representation THE System Entity System Relationship	Process Representation System Transform System Input	Network Representation System Location System Connection	Organization Representation System Role System Work	Timing Representation System Cycle System Moment	Motivation Representation System End System Means	ARCHITECTS AS DESIGNERS
TECHNOLOGY PHYSICS	Inventory Specification	Process Specification Control of the Process Specification Technology Transform Technology Input	Network Specification Technology Location Technology Connection	Organization Specification Technology Role Technology Work	Timing Specification Technology Cycle Technology Moment	Motivation Specification Technology End Technology Means	ENGINEERS AS BUILDERS
COMPONENT ASSEMBLIES	Inventory Configuration Component Entity Component Relationship	Process Configuration Component Fransform Component Input	Network Configuration Component Location Component Connection	Organization Configuration Corponant Role Component Work	Timing Configuration Component Cycle Component Moment	Motivation Configuration Component End Component Means	TECHNICIANS AS IMPLEMENTERS
OPERATIONS CLASSES	Inventory Instantiation Operations Entity Operations Relationship	Process Instantiation Coperations Transform Operations Input	Network Instantiation Operations Location Operations Connection	Organization Instantiation Operations Role Operations Work	Timing Instantiation 12 9 6 Operations Cycle Operations Moment	Motivation Instantiation	WORKERS AS PARTICIPANTS
	INVENTORY SETS	PROCESS TRANSFORMATIONS	NETWORK NODES	ORGANIZATION GROUPS	TIMING PERIODS	MOTIVATION REASONS	

Securing **Enterprise Architecture** with the Zachman Framework

An overview of how the Zachman Framework can be leveraged to enhance security across all layers of enterprise IT architecture

Introduction to the Zachman Framework

Enterprise Architecture Framework

The Zachman Framework is a comprehensive approach to defining and analyzing IT systems from multiple perspectives within an organization.

Structured Approach

The framework organizes enterprise architecture into a matrix-based structure that covers business, operational, and technical aspects of an organization.

Multiple Perspectives

The framework breaks down enterprise architecture into six stakeholder perspectives, ranging from executive-level to end-user level, to provide a holistic view of the IT ecosystem.

Security Integration

The Zachman Framework embeds security considerations from business strategy to IT implementation, ensuring alignment between security and business objectives.

The Zachman Framework is a widely adopted enterprise architecture framework that helps organizations define, analyze, and secure their IT systems in a structured and comprehensive manner.

Key Features of the Zachman Framework

Holistic View of IT Architecture

Breaks down enterprise architecture into multiple perspectives (rows) and focuses (columns) to provide a comprehensive understanding of the IT system.

Security Integration Across Business Layers

Embeds security considerations from business strategy to IT implementation, ensuring alignment between security and business objectives.

Customizable for Various Industries

The framework is widely used in banking, healthcare, telecommunications, and defense sectors for security architecture modeling and governance.

Improves Risk Management & Governance

Helps organizations implement consistent security controls, encryption policies, and access management to mitigate risks and ensure regulatory compliance.

The Zachman Framework Structure

Rows (Stakeholder Perspectives)

The framework consists of six rows, each representing a different level of detail and stakeholder perspective in IT and security architecture. These include the Executive (Contextual View), Business Management (Conceptual View), Architects (Logical View), Engineers (Physical View), Technicians (Component View), and Users (Operational View).

Columns (Focus Areas)

The framework also consists of six columns, each representing a different security focus area that is applied across the organization. These include What (Data Security), How (Process Security), Where (Network Security), Who (Identity & Access Management), When (Security Monitoring & Compliance), and Why (Business & Risk Justification).

Security Applications of the Zachman Framework

Enterprise Risk Management Zero Trust **Implementation** Data Protection & Encryption Policies **Secure Cloud Adoption**

Use Case: Securing Customer Transactions

A global bank applied the Zachman Framework to enhance security for online transactions. By leveraging the Data and Identity Security (Who & What) perspectives, the bank implemented Aldriven fraud detection for real-time transaction monitoring, enforced biometric authentication and multi-factor authentication (MFA) for customer logins, and deployed PCI-DSScompliant encryption for cardholder data. This structured security approach reduced fraud incidents by 40% and improved regulatory compliance.

Comparison: DoDAF vs. Zachman Framework

Comparison of DoDAF and Zachman Framework capabilities on a scale of 0-100 (higher is better)

Conclusion

Structured Methodologies

Both DoDAF and the Zachman Framework provide structured approaches to security architecture, risk management, and compliance.

Security Needs

Organizations must select the framework that best aligns with their unique security requirements and industry-specific compliance mandates.

Customization

The Zachman Framework is more flexible and can be customized for various industries, while DoDAF is specialized for defense and government security.

By choosing the appropriate framework, organizations can establish a resilient and scalable security architecture that integrates with their business objectives and regulatory requirements.