Introduction to ARM systems

R. Ferrero

Politecnico di Torino

Dipartimento di Automatica e Informatica (DAUIN)

Torino - Italy

This work is licensed under the Creative Commons (CC BY-SA) License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

ARM: Advanced RISC Machines

- RISC: Reduced Instruction Set Computers
- Advantages with respect to CISC (Complex Instruction Set Computers):
 - instructions execute in a single cycle
 - instructions have same size and fixed format
 - instructions are simple to decode
 - RISC machines are validated more easily
- Disadvantages:
 - more code in the program
 - instructions for accessing data from memory.

History: origin

- 1985: ARM1, first ARM processor
 - designed by Acorn Computers
 - produced by VLSI Technology (now NXP)
- 1987-1989: ARM2 and ARM3
 - used by Acorn in its desktop PCs
 - sold by VLSI as part of processor chip sets
- 1990: Acorn and Apple found ARM Ltd.
 - Business model: instead of selling processors, it sells the rights to manufacture its processors
 - VLSI become first licensee.

History: modern families

- 1991: ARM6
- 1993: ARM7
 - ARM7TDMI: Debug and ICE (In-Circuit Emulation)
 - new compressed instruction set: Thumb
- 1996-2006: new ARM cores (ARM8-ARM11)
- 2004-today: Cortex cores
 - Cortex-A: high-end applications (smartphones)
 - Cortex-R: real-time and safety-critical applications
 - Cortex-M: microcontrollers (Cortex-M3 LPC1768).

ARM families and architectures

ARM today

Partnership

ARM powered products

ARM-based processors

- ARM has seldom delivered stand-alone devices with its own <u>microprocessor</u>.
- ARM mainly sells cores, to be used for integration in <u>microcontrollers</u> or <u>Systems on</u> <u>Chip (SoCs)</u>.
 - Hard cores: ARM provides a physical layout implemented in a given technology.
 - Soft cores: ARM provides a high-level description, which can be then synthesized to any technology by the designer.

 make by synthesis, especially chemical

Microprocessor Vs. microcontroller

System on Chip

 An SoC is an entire system integrated in a single piece of silicon.

Designed by chip

SoC layout example

ARM-based commercial SoCs

- Samsung: http://pdf.datasheetcatalog.com/datasheet2/e/0lrp9fdj0zyd6e2k2e8ej8lkzupy.pdf (page 35)
- NXP: http://www.nxp.com/documents/data_sheet/
 LPC1769 68 67 66 65 64 63.pdf (page 6)
- STMicroelectronics: http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00067905.pdf?s_searchtype=keyword (page 8)
- ...and many others...

Tool chain

Case of study

- Cross compilation + SW debug: KEIL uVision
 - http://www.keil.com/
 - trial version with 32K code limitation
 - latest version 5.28a (June 2019)
- Development board: Landtiger
 - Based on NXP LPC1768 SoC
 - ARM Cortex-M3 core
- Hardware debug: RealView
 - with ULINK2 JTAG-based connection

Suggested books

- W. Hohl and C. Hinds (2016, <u>second edition</u>). ARM Assembly Language: Fundamentals and Techniques. Crc Press.
- J. Yiu (2009). The definitive guide to the ARM Cortex-M3. Newnes.
- M. Mazidi, S. Naimi, S. Naimi, and S. Chen, (2016).
 ARM Assembly Language Programming & Architecture. www.microdigitaled.com
- Smith, Bruce (2013). Raspberry Pi Assembly Language RASPBIAN Beginners: Hands On Guide. www.brucesmith.info