Multilayer Evolving Fuzzy Neural Networks

Supplementary Materials

A. Detailed Derivation of Consequent Parameter Matrix Updating

Given the derivative of the loss with respect to the output of the last layer (the L^{th}) of MEFNN, $\frac{\partial e}{\partial y^L} = y^L - r$ as defined by Eq. (15), the derivative of the loss with respect to the consequent parameters of the n^{th} rule of the L^{th} ENFIS can be formulated as Eq. (S1) $(n = 1, 2, ..., N^L)$:

$$\frac{\partial e_{w}}{\partial a_{n,w,m}^{L}} = \frac{\partial e_{w}}{\partial y_{w}^{L}} \cdot \frac{\partial y_{w}^{L}}{\partial a_{n,w,m}^{L}} = (y_{w}^{L} - r_{w}) \cdot \lambda_{n}^{L} \cdot \frac{\partial \sigma \left((a_{n,w}^{L})^{T} \overline{x}^{L} \right)}{\partial a_{n,w,m}^{L}} \\
= \lambda_{n}^{L} \cdot (y_{w}^{L} - r_{w}) \cdot \sigma' \left(\left(a_{n,w}^{L} \right)^{T} \overline{x}^{L} \right) \cdot \overline{x}_{m}^{L}$$
(S1)

where $w = 1, 2, ..., W^L$; $m = 0, 1, 2, ..., M^L$; \bar{x}_m^L is the m^{th} element of the $(M^L + 1) \times 1$ dimensional input vector, $\bar{x}^L = \begin{bmatrix} 1, x_1^L, x_2^L, ..., x_{M^L}^L \end{bmatrix}^T$; y_w^L is the w^{th} element of the $W^L \times 1$ dimensional output vector, y^L ; r_w is the corresponding element of the reference vector, r; $\sigma'\left(\left(\boldsymbol{a}_{n,w}^L\right)^T\bar{x}^L\right) = \sigma\left(\left(\boldsymbol{a}_{n,w}^L\right)^T\bar{x}^L\right) \cdot \left(1 - \sigma\left(\left(\boldsymbol{a}_{n,w}^L\right)^T\bar{x}^L\right)\right)$, and; $e_w = y_w^L - r_w$.

Eq. (S1) can be rewritten in a more compact form as Eq. (S2) as follows.

$$\frac{\partial e}{\partial A_n^L} = \frac{\partial e}{\partial y^L} \cdot \frac{\partial y^L}{\partial A_n^L} = \lambda_n^L \cdot \left(\mathbf{d}^L \otimes \sigma'(\mathbf{A}_n^L \overline{\mathbf{x}}^L) \right) \cdot (\overline{\mathbf{x}}^L)^T$$
 (S2)

where $d^L = \frac{\partial e}{\partial y^L} = (y^L - r)$.

Next, the derivative of the loss with respect to the inputs of the L^{th} ENFIS can be formulated as Eq. (S3) ($m = 1, 2, ..., M^L$):

$$\frac{\partial e}{\partial x_{m}^{L}} = \sum_{w=1}^{W^{L}} \frac{\partial e_{w}}{\partial y_{w}^{L}} \cdot \frac{\partial y_{w}^{L}}{\partial x_{m}^{L}} = \sum_{w=1}^{W^{L}} \left((y_{w}^{L} - r_{w}) \cdot \sum_{n=1}^{N^{L}} \left(\frac{\partial \lambda_{n}^{L}}{\partial x_{m}^{L}} \cdot y_{n,w}^{L} + \lambda_{n}^{L} \cdot \frac{\partial y_{n,w}^{L}}{\partial x_{m}^{L}} \right) \right)
= \sum_{w=1}^{W^{L}} \left((y_{w}^{L} - r_{w}) \cdot \sum_{n=1}^{N^{L}} \left(\frac{\partial \lambda_{n}^{L}}{\partial x_{m}^{L}} \cdot \sigma \left((\boldsymbol{a}_{n,w}^{L})^{T} \overline{\boldsymbol{x}}^{L} \right) + \lambda_{n}^{L} \cdot \sigma' \left((\boldsymbol{a}_{n,w}^{L})^{T} \overline{\boldsymbol{x}}^{L} \right) \cdot a_{n,w,m}^{L} \right) \right)
= \sum_{n=1}^{N^{L}} \left(\frac{\partial \lambda_{n}^{L}}{\partial x_{m}^{L}} \cdot \sigma^{T} (\boldsymbol{A}_{n}^{L} \overline{\boldsymbol{x}}^{L}) \cdot \boldsymbol{d}^{L} + \lambda_{n}^{L} \cdot \left(\widetilde{\boldsymbol{a}}_{n,m}^{L} \right)^{T} \cdot \left(\boldsymbol{d}^{L} \otimes \sigma' (\boldsymbol{A}_{n}^{L} \overline{\boldsymbol{x}}^{L}) \right) \right)$$
(S3)

where $\widetilde{\boldsymbol{a}}_{n,m}^L = \left[a_{n,1,m}^L, a_{n,2,m}^L, \dots, a_{n,W^L,m}^L\right]^T$ is $W^L \times 1$ dimensional consequent parameter vector; and there is:

$$\frac{\partial \lambda_{n}^{L}}{\partial x_{m}^{L}} = \frac{D_{n}(x^{L})}{\sum_{i=1}^{N^{L}} D_{i}(x^{L})} \cdot \frac{2(p_{n,m}^{L} - x_{m}^{L})}{(\tau_{n}^{L})^{2}} - \frac{D_{n}(x^{L})}{\left(\sum_{i=1}^{N^{L}} D_{i}(x^{L})\right)^{2}} \cdot \sum_{i=1}^{N^{L}} \left(D_{i}(\boldsymbol{x}^{L}) \cdot \frac{2(p_{i,m}^{L} - x_{m}^{L})}{(\tau_{i}^{L})^{2}}\right) \\
= \lambda_{n}^{L} \left(\frac{2(p_{n,m}^{L} - x_{m}^{L})}{(\tau_{n}^{L})^{2}} - \sum_{i=1}^{N^{L}} \left(\lambda_{i}^{L} \cdot \frac{2(p_{i,m}^{L} - x_{m}^{L})}{(\tau_{i}^{L})^{2}}\right)\right) \tag{S4}$$

Eq. (S3) can be further converted to the following compact form as:

$$\mathbf{d}^{L-1} = \frac{\partial e}{\partial y^L} \cdot \frac{\partial y^L}{\partial y^{L-1}} = \mathbf{d}^L \cdot \frac{\partial y^L}{\partial x^L}$$

$$= \sum_{n=1}^{N^L} \left(\frac{\partial \lambda_n^L}{\partial x^L} \cdot \sigma^T (\mathbf{A}_n^L \overline{\mathbf{x}}^L) \cdot \mathbf{d}^L + \lambda_n^L \cdot (\widetilde{\mathbf{A}}_n^L)^T \cdot (\mathbf{d}^L \otimes \sigma' (\mathbf{A}_n^L \overline{\mathbf{x}}^L)) \right)$$
(S5)

where
$$\frac{\partial \lambda_n^L}{\partial x^L} = \lambda_n^L \left(\frac{2(\mathbf{p}_n^L - \mathbf{x}^L)}{(\tau_n^L)^2} - \sum_{i=1}^{N^L} \left(\lambda_i^L \cdot \frac{2(\mathbf{p}_i^L - \mathbf{x}^L)}{(\tau_i^L)^2} \right) \right)$$
 (S6)

Similarly, Eqs. (S7) and (S8) can be derived following the chain rule (l = 1, 2, ..., L - 1):

$$d^{l} = \frac{\partial e}{\partial y^{L}} \cdot \frac{\partial y^{L}}{\partial y^{l-1}} \cdot \dots \cdot \frac{\partial y^{l+2}}{\partial y^{l+1}} \cdot \frac{\partial y^{l+1}}{\partial y^{l}} = d^{l+1} \cdot \frac{\partial y^{l+1}}{\partial x^{l+1}}$$

$$= \sum_{n=1}^{N^{l+1}} \left(\frac{\partial \lambda_{n}^{l+1}}{\partial x^{l+1}} \cdot \sigma^{T} (\mathbf{A}_{n}^{l+1} \overline{\mathbf{x}}^{l+1}) \cdot d^{l+1} + \lambda_{n}^{l+1} \cdot (\widetilde{\mathbf{A}}_{n}^{l+1})^{T} \cdot (d^{l+1} \otimes \sigma' (\mathbf{A}_{n}^{l+1} \overline{\mathbf{x}}^{l+1})) \right)$$

$$\frac{\partial e_{k}}{\partial \mathbf{A}_{n}^{l}} = \frac{\partial e}{\partial y^{L}} \cdot \frac{\partial y^{L}}{\partial y^{l-1}} \cdot \dots \cdot \frac{\partial y^{l+1}}{\partial y^{l}} \cdot \frac{\partial y^{l}}{\partial \mathbf{A}_{n}^{l}} = d^{l} \cdot \frac{\partial y^{l}}{\partial \mathbf{A}_{n}^{l}} = \lambda_{n}^{l} \cdot (d^{l} \otimes \sigma' (\mathbf{A}_{n}^{l} \overline{\mathbf{x}}^{l})) \cdot (\overline{\mathbf{x}}^{l})^{T}$$
(S8)

(S8)

B. Pseudo-code of MEFNN System Identification Process

Algorithm S1. MEFNN identification process

```
k \leftarrow 1;
while (x_k is available) do
   x_k^1 \leftarrow x_k;
   if (k = 1) then
                  ###
                                      Stage 0
                                                                 ###
      for l = 1 to L do
          N^l \leftarrow 1:
          initialise \mu^l and X^l by (7);
         initialise \mathbf{R}_{N^l}^l by (8); initialise \mathbf{C}_{N^l}^l by (9);
          produce \mathbf{y}_k^l by (5);
         if (l \neq L) then x_k^{l+1} \leftarrow y_k^l;
         y_k \leftarrow y_k^l; end if
      end for
   else
                                      Stage 1
                                                                 ###
      for l = 1 to L do
          update \mu^l and X^l by (10);
          for n = 1 to N^l do
             calculate D_n(\mathbf{x}_k^l) by (11);
          if (Condition 1 is satisfied) then
             N^l \leftarrow N^l + 1;
            initialise \mathbf{R}_{N^l}^l by (8); initialise \mathbf{C}_{N^l}^l by (9);
            \begin{split} n^* &= \underset{n=1,2,\dots,n^*}{\operatorname{argmax}} \left( D_n \big( \boldsymbol{x}_k^l \big) \right); \\ \text{update } \boldsymbol{\mathcal{C}}_{n^*}^l \text{ by (13)}; \end{split}
          end
          produce \mathbf{y}_k^l by (5);
          if (l \neq L) then \mathbf{x}_k^{l+1} \leftarrow \mathbf{y}_k^l;
             y_k \leftarrow y_k^l;
          end if
       end for
                                      Stage 2
                                                                 ###
      calculate e_k by (14);
      calculate \frac{\partial e_k}{\partial y_k} by (15);
```

```
d_k^L \leftarrow \frac{\partial e_k}{\partial y_k};
\mathbf{for} \ l = L \ \text{to} \ 1 \ \mathbf{do}
\text{calculate} \ \frac{\partial e_k}{\partial A_n^l} \ \text{by} \ (17);
\text{update} \ \mathbf{A}_n^l \ \text{by} \ (19);
\mathbf{if} \ (l \neq 1) \ \mathbf{then}
\text{calculate} \ \mathbf{d}_k^{l-1} \ \text{by} \ (18);
\mathbf{end} \ \mathbf{if}
\mathbf{end} \ \mathbf{for}
\mathbf{end} \ \mathbf{if}
k \leftarrow k + 1;
\mathbf{end} \ \mathbf{while}
```

C. Key Information of Benchmark Datasets for Experimental Investigation

Table S1. Key information of numerical benchmark problems for classification

T	Dataset	#(Samples)	#(Attributes)	#(Classes)
	CA	2126	21 inputs + 1 label	3
	WF	5456	24 inputs + 1 label	4
	GP	9901	18 inputs + 1 label	5
OR	Training	3823	64 inputs + 1 label	10
	Testing	1797	o i inputs i i iuoci	10
AU		690	14 inputs + 1 label	2
	BA	625	4 inputs + 1 label	3
	LI	345	6 inputs + 1 label	2
MG		19020	10 inputs + 1 label	2
MO		432	6 inputs + 1 label	2
PB		5472	10 inputs + 1 label	5
PI		768	8 inputs + 1 label	2
SE		2584	15 inputs + 1 label	2
SO		208	60 inputs + 1 label	2
	SH	267	44 inputs + 1 label	2
OD	Training	8143	5 inputs + 1 label	2
	Testing	12417		
	MF	2000	649 inputs + 1 label	10
PR	Training	7494	16 inputs + 1 label	10
	Testing	3498		
	AB	4177	8 inputs + 1 label	3
IS	Training	420	19 inputs + 1 label	7
	Testing	2100		
	PW	11055	30 inputs + 1 label	2
	SP	4601	57 inputs + 1 label	2
	MA	11183	6 inputs + 1 label	2
	TE	5500	40 inputs + 1 label	11
	SPF	1941	27 inputs + 1 label	7

Table S2. Key information of benchmark problems for image classification

Dataset	#(Images)	#(Pixels)	#(Classes)
OPT	1860	256×256	31
WHU	950	600×600	19
UCM	2100	256×256	21
RSS	2800	400×400	7

Table S3. Key information of benchmark problems for intrusion detection

Dataset		#(Samples)	#(Attributes)	#(Normal Samples)	#(Anomalies)
NSLKDD	Training	125973	38 numerical inputs + 3	67343	58630
	Testing	22544	categorical inputs + 1 label	9711	12833
UNSWNB15	Training	175341	40 numerical inputs + 3	56000	119341
	Testing	82332	categorical inputs + 1 label	37000	45332

Table S4. Key information of real-world regression problems

Dataset	#(Attributes)	#(Training Samples)	#(Testing Samples)
Autos	15 inputs + 1 output	80	79
Autompg	6 inputs + 1 output	196	196
Delta ailerons	5 inputs + 1 output	3000	4129
California housing	8 inputs + 1 output	10320	10320
Mackey-Glass	3 inputs + 1 output	3000	500
S&P500	5 inputs + 1 output	14893	14893

Details of Mackey-Glass and S&P500 problems are as follows.

Mackey-Glass: the time series are generated from the following differential equation [1]:

$$\frac{dx_k}{dk} = \frac{0.2x_{k-\tau}}{1+x_{k-\tau}^{10}} - 0.1x_k.$$
 (S9)

In this study, $\tau = 17$ and the initial state $x_0 = 1.2$. In the prediction process, the input vector, which consists of three past values and the current value $[x_{k-18}, x_{k-12}, x_{k-6}, x_k]^T$, is used to predict the value x_{k-85} . A total of 3000 training samples are extracted from the time period between k = 201 and k = 3200. 500 testing samples are extracted from the time period between k = 5001 and k = 5500.

S&P500: The daily closing prices of S&P500 are collected from the Yahoo! Finance website ranging from 03/01/1950 to 12/03/2009, 14893 samples in total. Following the common practice, the value range of data has been normalised to [0,1] in advance. This dataset is then expanded with its flipped time series, and thus, a total of 29786 samples after augmentation. The first half of the augmented dataset, namely, the original time series, are used for training and the flipped time series are used for online testing under the prequential test-then-train protocol [2]. The regression model is defined as follows.

$$x_{k+1} = f(x_{k-4}, x_{k-3}, x_{k-2}, x_{k-1}, x_k).$$
(S10)

D. Sensitivity Analysis

In this section, the influences of the three externally controlled parameters, namely, L, W_o and δ_o on the prediction performance of MEFNN is studied using the following four benchmark problems, namely, 1) CA; 2) WF; 3) GP, and; 4) OR. In running the experiments, for CA, WF and GP datasets, 50% of the data samples are randomly selected to build the training sets and the remaining 50% data samples are used for testing. The original training-testing split of OR dataset is kept.

Firstly, the influences of L and W_o on the prediction performance of MEFNN are investigated. In this example, δ_o is fixed as $\delta_o = e^{-3}$, the value of L is varied from 1 to 3 and the value of W_o is varied from W_o , W_o , W_o and W_o . Not that MEFNN is reduced to a single ENFIS model if U_o and the value of W_o has no influence on a single layer MEFNN. The average classification accuracy curves of MEFNN with different settings of U_o and U_o over the four datasets are depicted in Fig. S1. The obtained results after 200 training epochs in terms of classification accuracy and number of rules per layer are tabulated in Table S5.

Table S5. Classification performance of MEFNN with different settings of L and W_o

L	W_o	Meas.	CA	WF	GP	OR
1		Acc	0.8919	0.8450	0.6198	0.9603
		(N^1)	(14.2)	(7.7)	(4.1)	(8.0)
2	W	Acc	0.9015	0.8792	0.6434	0.9613
		(N^1, N^2)	(14.2, 19.0)	(7.7, 21.1)	(4.1, 13.4)	(8.0, 27.6)
	2 <i>W</i>	Acc	0.9058	0.8988	0.6635	0.9651
		(N^1, N^2)	(14.2, 25.0)	(7.7, 23.6)	(4.1, 17.6)	(8.0, 24.0)
	3 <i>W</i>	Acc	0.9046	0.9015	0.6707	0.9672
		(N^1, N^2)	(14.2, 24.1)	(7.7, 26.3)	(4.1, 16.5)	(8.0, 19.0)
	М	Acc	0.9025	0.9001	0.6689	0.9667
		(N^1, N^2)	(14.2, 26.8)	(7.7, 24.5)	(4.1, 20.1)	(8.0, 21.5)
3	W	Acc	0.8988	0.8738	0.6272	0.9459
		(N^1, N^2, N^3)	(14.2, 16.3, 15.8)	(7.7, 17.1, 20.1)	(4.1, 12.1, 24.2)	(8.0, 22.2, 30.1)
	2 <i>W</i>	Acc	0.9041	0.8965	0.6468	0.9553
		(N^1, N^2, N^3)	(14.2, 23.3, 22.0)	(7.7, 22.7, 19.8)	(4.1, 10.9, 28.8)	(8.0, 19.8, 24.4)
	3 <i>W</i>	Acc	0.9045	0.9046	0.6610	0.9526
		(N^1, N^2, N^3)	(14.2, 24.6, 18.7)	(7.7, 25.1, 23.5)	(4.1, 12.2, 26.0)	(8.0, 19.6, 23.3)
	М	Acc	0.9030	0.9046	0.6694	0.9618
		(N^1,N^2,N^3)	(14.2, 30.6, 17.9)	(7.7, 23.1, 20.5)	(4.1, 14.5, 27.7)	(8.0, 19.3, 26.4)

Fig. S1. Average prediction accuracy of MEFNN with different parameter settings over the training process

One can see from Table S5 and Fig. S1 that, in general, the prediction accuracy of MEFNN increases with its ensemble structure going deeper and more base models stacked in layers, namely, a larger L. This is thanks to its stronger multi-level nonlinear distributed representation ability, benefiting from the deeper structure and a larger amount of parameters learned from data. The output size, W_o also influences the prediction accuracy of the

proposed ensemble system to a certain degree. With a greater W_o , more information is allowed to travel between different layers of MEFNN, allowing the ensemble system to learn more descriptive representations from data and achieve better prediction performance. However, as the dimensionality of consequent parameter matrices of the individual base models within the stacking ensemble system becomes higher, the amount of trainable parameters of MEFNN also increases, which may greatly increase the computational complexity for parameter updating and structure evolving.

Next, the influence of δ_o on the performance of the proposed ensemble system is studied. In running the experiments, the value of W_o is fixed as 3W and the value of δ_o is varied from e^{-2} , e^{-3} , e^{-4} , and e^{-5} . The results are reported in Table S6.

One can see from Table S6 that, a greater δ_o enables MEFNN to become more sensitive towards these input samples that are spatially distant from existing prototypes. As these samples are more likely to represent new local data patterns unseen in the historical data, MEFNN will use them to expand its knowledge base and each ensemble component within MEFNN tends to build a larger rule base. In general, having larger rule bases enables MEFNN to approximate the problem more precisely, but also this leads to a greater risk of overfitting. On the other hand, a smaller δ_o forces MEFNN to focus on major data patterns and identify less (but more important) prototypes from data. In such cases, MEFNN will have a more compact knowledge base and its computational efficiency will be improved greatly due to less rules in the rule bases of its base models. However, if the existing prototypes are insufficient to represent the underlying data patterns and fail to preserve the structure of data, the performance of MEFNN will be impacted negatively.

L	δ_o	Meas.	CA	WF	GP	OR
1	e^{-2}	Acc	0.8916	0.8522	0.6284	0.9622
		(N^1)	(31.9)	(38.9)	(6.3)	(37.7)
	e^{-3}	Acc	0.8919	0.8450	0.6198	0.9603
		(N^1)	(14.2)	(7.7)	(4.1)	(8.0)
	e^{-4}	Acc	0.8968	0.8357	0.6140	0.9554
		(N^1)	(6.5)	(4.3)	(3.5)	(3.8)
	e^{-5}	Acc	0.8971	0.8193	0.6120	0.9520
		(N^1)	(4.4)	(2.6)	(3.1)	(2.5)
2	e^{-2}	Acc	0.9018	0.8899	0.6636	0.9622
		(N^1, N^2)	(31.9, 54.9)	(38.9, 75.9)	(6.3, 46.9)	(37.7, 66.6)
	e^{-3}	Acc	0.9046	0.9015	0.6707	0.9672
		(N^1, N^2)	(14.2, 24.1)	(7.7, 26.3)	(4.1, 16.5)	(8.0, 19.0)
	e^{-4}	Acc	0.9014	0.9027	0.6727	0.9656
		(N^1,N^2)	(6.5, 14.4)	(4.3, 12.7)	(3.5, 9.7)	(3.8, 10.8)
	e^{-5}	Acc	0.9044	0.9045	0.6685	0.9615
		(N^1, N^2)	(4.4, 11.6)	(2.6, 9.3)	(3.1, 7.6)	(2.5, 8.0)
3	e^{-2}	Acc	0.9054	0.8998	0.6648	0.9593
		(N^1, N^2, N^3)	(31.9, 54.2, 29.5)	(38.9, 59.9, 53.7)	(6.3, 41.3, 69.9)	(37.7, 46.9, 67.9)
	e^{-3}	Acc	0.9045	0.9046	0.6610	0.9526
		(N^1, N^2, N^3)	(14.2, 24.6, 18.7)	(7.7, 25.1, 23.5)	(4.1, 12.2, 26.0)	(8.0, 19.6, 23.3)
	e^{-4}	Acc	0.9032	0.8932	0.6652	0.9534
		(N^1, N^2, N^3)	(6.5, 17.3, 12.6)	(4.3, 12.1, 11.4)	(3.5, 9.9, 15.8)	(3.8, 11.6, 13.9)
	e^{-5}	Acc	0.9028	0.8943	0.6736	0.9528
		(N^1, N^2, N^3)	(4.4, 10.9, 11.0)	(2.6, 9.5, 9.6)	(3.1, 6.1, 10.3)	(2.5, 9.9, 9.4)

Table S6. Classification performance of MEFNN with different settings of L and δ_0

E. Ablation Analysis

In this section, an ablation analysis is performed to demonstrate the influence of the extra nonlinearity introduced by the sigmoid function to MEFNN on its prediction performance. In this example, an alternative version of MEFNN utilising the classical linear functions in the consequent part of its IF-THEN rules is implemented and named as MEFNN_L to differentiate it from the original MEFNN that uses sigmoid function. In running the experiments, the externally controlled parameters of MEFNN and MEFNN_L are set as L=2; $W_0=3W$, and $\delta_0=1$

 e^{-3} , following the recommended setting. The learning rate of MEFNN_L is set as $\gamma_o = 10^{-3}$ to avoid gradient explosion. The same four benchmark problems used before, namely, 1) CA; 2) WF; 3) GP, and; 4) OR are employed, and the same training-testing splits are adopted. The performance of MEFNN and MEFNN_L are reported in Table S7 after 200 training epochs.

From Table S7 one can see that MEFNN outperforms $MEFNN_L$ under the same experimental setting on all four benchmark problems by offering greater prediction accuracy with less IF-THEN rules (in the second layer). This numerical example justifies the use of sigmoid function in MEFNN and demonstrates clearly the performance improvement thanks to the extra nonlinearity brought by the sigmoid function.

Algorithm	Meas.	CA	WF	GP	OR
MEFNN	Acc	0.9046	0.9015	0.6707	0.9672
	(N^1, N^2)	(14.2, 24.1)	(7.7, 26.3)	(4.1, 16.5)	(8.0, 19.0)
MEFNN _L	Acc	0.8978	0.8325	0.5910	0.9418
	(N^1, N^2)	(14.2, 41.5)	(7.7, 78.6)	(4.1, 37.0)	(8.0, 99.3)

Table S7. Classification performance comparison between MEFNN and MEFNN_L

F. Parameter settings for Comparative Approaches

In this study, SVM uses Gaussian kernel. The kernel width is determined through a heuristic procedure automatically and the box constraint is set as 1. k=5 is used for both KNN and SDKNN. SEQ follows the same parameter setting as [3]. The maximum number of neurons of ELM is set as 200. MLP has three hidden layers, each hidden layer has 20 neutrons. LSTM has a single hidden LSTM layer and the number of neurons is set as 100. Both MLP and LSTM are trained for 200 epochs. The standard deviation of PNN is set as $\frac{\delta_x}{\sqrt{2}}$ (δ_x is the standard deviation of the training data). EIG considers the first five eigenvalues for classification. The parameter setting of ESAFIS is as follows: $\gamma=0.999$; $\varepsilon_{min}=0.1$; $\varepsilon_{max}=1.2$; K=1.5; $e_g=0.01$; $e_p=0.01$, and; M=0.01; m=0.01;

For the ensemble models used for performance comparison, the maximum split of DT used by RF, SAMMED and XGBoost, is set as 20 and the number of base classifiers is set as 50. $\eta = 0.3$ is used for XGBoost. In SAMMEK, k = 5 is used for KNN. FWAdaBoost uses self-organising fuzzy inference system (SOFIS) as its base classifier, and the same experimental setting in [8] is followed. eEnsemble is composed of 10 eClass0 classifiers, and other parameters follow the same setting used in [9].

G. Supplementary Numerical Results

MOOSOFIS MEFNN3 **CPBLS** Dataset Measure MEFNN SEFIS **PALM** SAFL SPA CFBL 0.89860.8824 0.8841 0.8714 0.8696 0.88700.8647 ΑU Max 0.7971 0.8857 0.9143 0.8826 Mean 0.8524 0.8380 0.7582 0.8464 0.8466 0.8290 0.7403 0.8580 0.8736 0.8750 0.8337 Std 0.0340 0.0476 0.0382 0.0236 0.0399 0.1160 0.0945 0.0436 0.0027 0.0036 0.0187 1.0000 1.0000 0.9206 0.9048 0.9206 0.8889 0.8689 0.9048 0.9920 0.9119 0.8594 BA Max 0.9583 0.9647 0.9055 0.8704 0.9009 0.7951 0.6473 0.8753 0.9894 0.9066 0.8416 Mean Std 0.0246 0.0262 0.0181 0.0285 0.0159 0.0994 0.1967 0.0201 0.0014 0.0035 0.0155

Table S8. Performance comparison on 10 benchmark classification problems from KEEL

LI	Max	0.8000	0.7714	0.7647	0.7714	0.7941	0.8000	0.6286	0.7353	0.7361	0.7568	0.6935
	Mean	0.6753	0.6637	0.6666	0.5997	0.6956	0.6314	0.5360	0.6610	0.7252	0.7464	0.6563
	Std	0.0752	0.0475	0.0607	0.1031	0.0586	0.0854	0.0432	0.0647	0.0066	0.0062	0.0212
MG	Max	0.8759	0.8754	0.8686	0.8448	0.8654	0.8128	0.7940	0.6768	0.8563	0.8557	0.8241
	Mean	0.8641	0.8664	0.8621	0.8357	0.8583	0.7993	0.7090	0.6657	0.8548	0.8533	0.8160
	Std	0.0074	0.0060	0.0063	0.0096	0.0068	0.0808	0.0895	0.0044	0.0005	0.0016	0.0051
MO	Max	1.0000	1.0000	0.9286	0.9318	1.0000	0.8409	0.7907	0.8864	0.9261	0.9353	0.6599
	Mean	0.9863	0.9977	0.8063	0.8798	0.9354	0.7798	0.6323	0.8220	0.9180	0.9066	0.6494
	Std	0.0245	0.0072	0.0586	0.0350	0.0343	0.0835	0.0983	0.0548	0.0040	0.0149	0.0120
PB	Max	0.9670	0.9651	0.9800	0.9689	0.9652	0.9653	0.9246	0.9156	0.9596	0.9567	0.9137
	Mean	0.9574	0.9600	0.9713	0.9488	0.9572	0.9563	0.8406	0.9065	0.9590	0.9550	0.9067
	Std	0.0072	0.0030	0.0069	0.0110	0.0052	0.1261	0.1725	0.0077	0.0003	0.0011	0.0040
PI	Max	0.8571	0.8026	0.8026	0.8158	0.8052	0.7662	0.7143	0.8312	0.7395	0.7890	0.7424
	Mean	0.7761	0.7526	0.7084	0.7475	0.7539	0.7187	0.6274	0.7553	0.7316	0.7764	0.7182
	Std	0.0413	0.0308	0.0502	0.0379	0.0474	0.1233	0.0695	0.0419	0.0034	0.0038	0.0156
SE	Max	0.9612	0.9612	0.9651	0.9535	0.9574	0.9419	0.9341	0.9612	0.9354	0.9333	0.9168
	Mean	0.9276	0.9253	0.9303	0.9237	0.9276	0.9168	0.8820	0.9330	0.9348	0.9321	0.9023
	Std	0.0176	0.0189	0.0181	0.0189	0.0170	0.1049	0.0505	0.0157	0.0003	0.0009	0.0011
SO	Max	1.0000	0.9524	0.8571	0.9524	0.9524	0.9524	0.6818	0.8571	0.7986	0.8169	0.7280
	Mean	0.8665	0.8561	0.7628	0.8749	0.8568	0.8656	0.6006	0.7689	0.7783	0.7591	0.6585
	Std	0.0909	0.0894	0.1086	0.0695	0.0786	0.1179	0.0474	0.0601	0.0108	0.0162	0.0351
SH	Max	0.8846	0.8889	0.8846	0.8571	0.8846	0.8214	0.8077	0.8462	0.8153	0.8470	0.7875
	Mean	0.8205	0.7718	0.7794	0.7864	0.8093	0.7594	0.7759	0.7983	0.7929	0.8335	0.7520
	Std	0.0404	0.0660	0.0741	0.0398	0.0468	0.0918	0.0417	0.0406	0.0104	0.0055	0.0344

Table S9. Classification accuracy comparison on 10 benchmark classification problems from UCI

Algorithm	OD	MF	PR	AB	IS	PW	SP	MA	TE	SPF
MEFNN	0.9472	0.9715	0.9769	0.5537	0.9082	0.9509	0.9299	0.9834	0.9890	0.7175
MEFNN ₃	0.9171	0.9654	0.9759	0.5536	0.9022	0.9503	0.9265	0.9844	0.9813	0.7039
SVM	0.9167	0.9749	0.9772	0.5381	0.9214	0.9514	0.9098	0.9789	0.9856	0.7205
KNN	0.9280	0.9761	0.9760	0.5259	0.9067	0.9298	0.8844	0.9852	0.9778	0.6832
SEQ	0.5189	0.9760	0.9511	0.4521	0.8824	0.9470	0.8853	0.6259	0.9814	0.6823
SDKNN	0.7351	0.9748	0.9531	0.4506	0.8381	0.9094	0.8865	0.5203	0.9728	0.6890
ELM	0.9899	0.2115	0.9483	0.3903	0.2280	0.9077	0.8758	0.9858	0.9811	0.6521
MLP	0.9102	0.8399	0.9478	0.5512	0.8976	0.9400	0.8238	0.9832	0.9757	0.6845
LSTM	0.9165	0.9825	0.9690	0.5492	0.8646	0.9414	0.9272	0.9837	0.9875	0.7109
PNN	0.8767	0.9478	0.9620	0.5271	0.8033	0.9478	0.8898	0.8598	0.9795	0.6836
EIG	0.9543	0.8935	0.9148	0.5379	0.8629	0.8354	0.8573	0.8952	0.9763	0.6858
SAFL	0.9242	0.9846	0.9648	0.5620	0.9017	0.9343	0.9164	0.9831	0.9946	0.7160
MOOSOFIS	0.9179	0.9727	0.9767	0.5099	0.9030	0.9358	0.8816	0.9830	0.9752	0.6756
SEFIS	0.8656	0.7264	0.7675	0.3983	0.6617	0.8654	0.6210	0.8715	0.5384	0.3956
ESAFIS	0.9597	0.9700	0.9154	0.5505	0.8954	0.9395	0.9128	0.9828	0.9928	0.7092
PALM	0.9824	0.9769	0.7897	0.5419	0.8595	0.9200	0.8888	0.9778	0.9835	0.6592
eClass0	0.7795	0.8940	0.8004	0.5018	0.8094	0.7782	0.7780	0.7287	0.7900	0.4905
eClass1	0.9743	0.9248	0.9151	0.5569	0.8876	0.8161	0.8988	0.9759	0.9744	0.6959
RF	0.9576	0.9767	0.8565	0.5509	0.9541	0.9299	0.9222	0.9851	0.8610	0.6855
FWAdaBoost	0.9335	0.9758	0.9761	0.5263	0.8997	0.9425	0.8729	0.9755	0.9855	0.6952
SAMMED	0.9240	0.9221	0.7773	0.5470	0.8986	0.9284	0.9042	0.9835	0.8425	0.6738
SAMMEK	0.9280	0.9761	0.9760	0.5266	0.8896	0.9298	0.8844	0.9852	0.9778	0.6805
XGBoost	0.9515	0.9734	0.9620	0.5329	0.9385	0.9658	0.9487	0.9862	0.9724	0.7700

Table S10. Balanced classification accuracy comparison on 10 benchmark classification problems from UCI

Algorithm	OD	MF	PR	AB	IS	PW	SP	MA	TE	SPF
MEFNN	0.9343	0.9715	0.9773	0.5510	0.9082	0.9497	0.9257	0.7712	0.9890	0.7083
MEFNN ₃	0.8919	0.9657	0.9760	0.5523	0.9009	0.9522	0.9177	0.7407	0.9862	0.6591
SVM	0.8530	0.9654	0.9763	0.5485	0.9022	0.9491	0.9224	0.7598	0.9813	0.6667
KNN	0.9148	0.9761	0.9762	0.5279	0.9067	0.9286	0.8739	0.7616	0.9778	0.7264
SEQ	0.6164	0.9760	0.9516	0.4551	0.8824	0.9446	0.8868	0.6107	0.9814	0.7280
SDKNN	0.6802	0.9748	0.9538	0.4504	0.8381	0.9083	0.8787	0.6901	0.9728	0.7333
ELM	0.9916	0.2115	0.9480	0.3970	0.2280	0.9023	0.8594	0.7692	0.9811	0.7198
MLP	0.8904	0.8399	0.9487	0.5514	0.8976	0.9383	0.8245	0.7135	0.9757	0.6170
LSTM	0.8999	0.9825	0.9694	0.5464	0.8646	0.9413	0.9204	0.7273	0.9875	0.7194
PNN	0.9177	0.9478	0.9627	0.5411	0.8033	0.9474	0.8822	0.8663	0.9795	0.7683
EIG	0.9447	0.8935	0.9151	0.5404	0.8629	0.8483	0.8247	0.6535	0.9763	0.6902
SAFL	0.9122	0.9846	0.9655	0.5626	0.9017	0.9319	0.9092	0.6830	0.9946	0.7161
MOOSOFIS	0.8977	0.9727	0.9771	0.5127	0.9030	0.9355	0.8728	0.7682	0.9752	0.7108
SEFIS	0.7856	0.7264	0.7685	0.3955	0.6617	0.8647	0.6156	0.5563	0.5384	0.3104
ESAFIS	0.9485	0.9700	0.9172	0.5549	0.8954	0.9375	0.9019	0.6830	0.9928	0.7001
PALM	0.9873	0.9769	0.7907	0.5419	0.8595	0.9172	0.8720	0.5488	0.9835	0.5751
eClass0	0.8362	0.8940	0.8022	0.5108	0.8094	0.7826	0.7772	0.8071	0.7900	0.5945
eClass1	0.9689	0.9248	0.9162	0.5572	0.8876	0.7974	0.8884	0.5106	0.9744	0.6860
RF	0.9360	0.9767	0.8570	0.5497	0.9541	0.9263	0.9102	0.7290	0.8610	0.5988
FWAdaBoost	0.9294	0.9758	0.9765	0.5284	0.8997	0.9410	0.8662	0.5000	0.9855	0.7092
SAMMED	0.8817	0.9221	0.7769	0.5486	0.8986	0.9273	0.8923	0.7448	0.8425	0.6351
SAMMEK	0.9148	0.9761	0.9762	0.5288	0.8896	0.9286	0.8739	0.7616	0.9778	0.7227
XGBoost	0.9223	0.9734	0.9624	0.5351	0.9386	0.9648	0.9451	0.7820	0.9724	0.7771

Table S11. p-values returned from pairwise Wilcoxon rank tests

MEFNN vs	OD	MF	PR	AB	IS	PW	SP	MA	TE	SPF
SVM	0.0000	0.0003	0.1122	0.0000	0.0000	0.0000	0.0000	0.0000	0.4971	0.0000
KNN	0.0000	0.0058	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1203	0.0000
SEQ	0.0000	0.2404	0.0000	0.0418	0.0000	0.0000	0.0000	0.0000	0.0007	0.0000
SDKNN	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ELM	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
MLP	0.0000	0.0046	0.0026	0.0000	0.0070	0.9092	0.0000	0.0000	0.0892	0.0000
LSTM	0.0000	0.1183	0.0000	0.0000	0.1976	0.0000	0.0000	0.0000	0.2030	0.0015
PNN	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4891	0.0000
EIG	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5289	0.0092
SAFL	0.0000	0.1956	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1901	0.0028
MOOSOFIS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
SEFIS	0.0000	0.0000	0.0000	0.0000	0.0028	0.0000	0.0000	0.0000	0.0000	0.0000
ESAFIS	0.0000	0.0001	0.0000	0.0000	0.0000	0.0309	0.0000	0.0000	0.5123	0.1340
PALM	0.0000	0.0001	0.0844	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
eClass0	0.0000	0.1624	0.0000	0.0000	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
eClass1	0.0000	0.0000	0.0000	0.0006	0.0072	0.0000	0.0000	0.0000	0.3178	0.1079
RF	0.0000	0.4766	0.0000	0.0000	0.6824	0.0000	0.0000	0.0000	0.0000	0.0000
FWAdaBoost	0.0000	0.3093	0.0045	0.0000	0.9388	0.0272	0.4560	0.0000	0.0007	0.0000
SAMMED	0.0000	0.9470	0.0000	0.0000	0.0119	0.0000	0.0000	0.0000	0.0000	0.0000
SAMMEK	0.0000	0.0058	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1203	0.0000
XGBoost	0.0000	0.0018	0.0000	0.0000	0.1394	0.0000	0.0737	0.0193	0.0004	0.7060

Table S12. Performance comparison on four real-world regression problems

Dataset	Algorithm	RMSE	#(Rules)
Auto	MEFNN	0.0575	(7.3, 17.0)
11410	PSO-ALMMo	0.0425	8
	SB-ALMMo	0.0457	4
	CEFNS	0.0666	2
	DENFIS	0.4516	8
	eTS	0.0535	3
	ESAFIS	0.0604	3
	SAFIS	0.1184	5
	RMCEFS	0.0409	2
	OS-Fuzzy-ELM	0.0595	2
Automgp	MEFNN	0.0654	(3.5, 11.9)
CI	PSO-ALMMo	0.0694	7
	SB-ALMMo	0.0934	3
	CEFNS	0.0750	2
	DENFIS	0.1458	7
	eTS	0.0864	6
	ESAFIS	0.0731	33
	SAFIS	0.0993	2
	RMCEFS	0.0672	2
	OS-Fuzzy-ELM	0.2037	5
Delta	MEFNN	0.0501	(18.2, 45.8)
ailerons	PSO-ALMMo	0.0497	10
	SB-ALMMo	0.0506	5
	CEFNS	0.0502	3
	DENFIS	0.0497	11
	eTS	0.0513	4
	ESAFIS	0.0506	13
	SAFIS	0.0549	14
	RMCEFS	0.0498	2
	OS-Fuzzy-ELM	0.0506	3
California	MEFNN	0.0656	(11.0, 68.0)
housing	PSO-ALMMo	0.0711	11
	SB-ALMMo	0.0771	5
	CEFNS	0.0878	2
	DENFIS	0.0715	14
	eTS	0.0772	3
	ESAFIS	0.0892	6
		0.0000	12
	SAFIS	0.0988	12

Table S13. Performance comparison on S&P500 problem

Algorithm	NDEI	#(Rules)
MEFNN*	0.0162	(3.3, 9.6)
MEFNN	0.0200	(3.3, 9.6)
SAFL	0.0121	19
PANFIS	0.09	4
GENEFIS	0.07	2
EFS-SLAT	0.0156	23
SEFS	0.0182	2
LEOA	0.1229	52

Fig. S2. Prediction results produced by MEFNN on S&P500 problem following different evaluation protocols

Table S14. IF-THEN rules learned by MEFNN from S&P500 problem

# Layer	# Rule	Detailed Expression	
1	R_1^1	$IF (\mathbf{x}^{1} \sim [0.2910, 0.2905, 0.2888, 0.2883, 0.2887]^{T})$ $THEN \left(\mathbf{y}_{1}^{1} = \sigma \begin{pmatrix} -1.9004, -0.2939, -0.2887, -0.0710, -0.1356, 0.2327 \\ -0.3612, 0.2766, 0.2714, 0.4005, 0.7297, 1.4117 \\ 0.6712, 0.0155, 0.0037, 0.2279, 0.4030, 0.6291 \end{pmatrix} \overline{\mathbf{x}}^{1}\right)$	
	R_2^1	IF $(x^1 \sim [0.0277, 0.0277, 0.0275, 0.0271, 0.0272]^T)$	
		$THEN\left(\boldsymbol{y}_{2}^{1} = \sigma\left(\begin{bmatrix} -1.9004, -0.2939, -0.2887, -0.0710, -0.1356, 0.2327\\ -1.7863, 1.9052, 1.9258, 1.9780, 2.0602, 2.0168\\ -0.5730, 1.5731, 1.4138, 1.4328, 1.4639, 1.5109 \end{bmatrix} \overline{\boldsymbol{x}}^{1}\right)\right)$	
	R ¹ ₃	$IF(x^1 \sim [0.7373, 0.7413, 0.7421, 0.7398, 0.7300]^T)$	
		$THEN\left(\boldsymbol{y}_{3}^{1} = \sigma\left(\begin{bmatrix} 1.1219, -0.5487, -0.4763, -0.4715, -0.1555, 0.6738\\ 1.1955, 0.1949, 0.3170, 0.4520, 0.6752, 1.9385\\ -3.2190, -0.0589, 0.0630, 0.0284, 0.6653, 3.5812 \end{bmatrix} \overline{\boldsymbol{x}}^{1}\right)\right)$	
2	R_1^2	IF $(\mathbf{x}^2 \sim [0.5240, 0.5600, 0.5240]^T)$ THEN $(\mathbf{y}_1^2 = \sigma([-4.6487, -2.2163, -1.4434, -2.0031]\overline{\mathbf{x}}^2))$	
	R_2^2	$IF (\mathbf{x}^2 \sim [0.5023, 0.5057, 0.5023]^T)$ $THEN (\mathbf{y}_2^2 = \sigma([-5.5448, -2.8085, -1.6564, -2.3125]\overline{\mathbf{x}}^2))$	
	R_3^2	$IF (\mathbf{x}^2 \sim [0.5611, 0.6492, 0.5614]^T)$ $THEN (\mathbf{y}_3^2 = \sigma([-3.2960, -1.2372, 3.8157, 0.9415]\overline{\mathbf{x}}^2))$	
	R_4^2	$IF (\mathbf{x}^2 \sim [0.6431, 0.6816, 0.5487]^T)$ $THEN (\mathbf{y}_4^2 = \sigma([-0.4160, 0.7301, 1.1419, 0.7789]\overline{\mathbf{x}}^2))$	
	R_5^2	$IF (\mathbf{x}^2 \sim [0.5795, 0.9306, 0.8066]^T)$ $THEN (\mathbf{y}_5^2 = \sigma([2.5176, 1.6590, 2.3924, 1.7640]\overline{\mathbf{x}}^2))$	
	R ² ₆	IF $(\mathbf{x}^2 \sim [0.8898, 0.8796, 0.7991]^T)$ THEN $(\mathbf{y}_6^2 = \sigma([1.2757, 0.6794, 1.2152, 0.8184]\bar{\mathbf{x}}^2))$	

References

- [1] H. J. Rong, N. Sundararajan, G. Bin Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," *Fuzzy Sets Syst.*, vol. 157, no. 9, pp. 1260–1275, 2006.
- [2] D. Ge and X. J. Zeng, "Learning data streams online an evolving fuzzy system approach with self-

- learning/adaptive thresholds," Inf. Sci. (Ny)., vol. 507, pp. 172–184, 2020.
- [3] R. N. Patro, S. Subudhi, P. K. Biswal, and F. Dell'Acqua, "Dictionary-based classifiers for exploiting feature sequence information and their application to hyperspectral remotely sensed data," *Int. J. Remote Sens.*, vol. 40, no. 13, pp. 4996–5024, 2019.
- [4] D. Li and D. B. Dunson, "Classification via local manifold approximation," *Biometrika*, vol. 107, no. 4, pp. 1013–1020, 2020.
- [5] X. Gu and Q. Shen, "A self-adaptive fuzzy learning system for streaming data prediction," *Inf. Sci. (Ny).*, vol. 579, pp. 623–647, 2021.
- [6] X. Gu *et al.*, "Multi-objective evolutionary optimisation for prototype-based fuzzy classifiers," *IEEE Trans. Fuzzy Syst.*, DOI: 10.1109/TFUZZ.2022.3214241, 2022.
- [7] P. Angelov and X. Zhou, "Evolving fuzzy-rule based classifiers from data streams," *IEEE Trans. Fuzzy Syst.*, vol. 16, no. 6, pp. 1462–1474, 2008.
- [8] X. Gu and P. Angelov, "Multi-class fuzzily weighted adaptive boosting-based self-organising fuzzy inference ensemble systems for classification," *IEEE Trans. Fuzzy Syst.*, vol. 30, no. 9, pp. 3722–3735, 2022.
- [9] J. A. Iglesias, A. Ledezma, and A. Sanchis, "Ensemble method based on individual evolving classifiers," in *IEEE Conference on Evolving and Adaptive Intelligent Systems*, 2013, pp. 56–61.