Orthogonal Decomposition, **Orthogonal Projections** and the Method of Least Squares

Orthogonal Decomposition (12)

Back to the Theorem (The A^TA Trick): Let W be a subspace of \mathbb{R}^n . Let $v_1, v_2, ..., v_m$ be a

spanning set for
$$W$$
, and let $A = \begin{bmatrix} | & | & | & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & | \end{bmatrix}$. Then for any x in \mathbb{R}^n , the matrix

equation

 $A^{T}Av = A^{T}x$ (the unknown vector is v)

is consistent, and $x_W = Av$ for any solution v.

Proof: Let $x = x_W + x_{W^{\perp}}$ be the orthogonal decomposition with respect to W. By definition x_W lies in $W = \operatorname{Col}(A)$ and so, there is a vector v in \mathbb{R}^n with $Av = x_W$. Choose any such vector v. We know that $x - x_W = x - Av$ lies in W^{\perp} , which is equal to $\operatorname{Nul}(A^T)$. So, we have $0 = A^T(x - Av) = A^Tx - A^TAv$ which implies $A^TAv = A^Tx$. This shows that the equation $A^TAv = A^Tx$ is consistent. Now, let v be any solution. Reversing the above logic, we see that $x_W = Av$.

Homewort #10 is due on Friday 5/L Qui'l #10 will be administered on Friday 5/L Projects are due Friday 5/9

Orthogonal Projections Finel Exem - S/12 4100-5150 - this coom

Orthogonal Projections (13)

Orthogonal projections as transformations

Properties of Orthogonal Projections. Let W be a subspace of \mathbb{R}^n and define $T: \mathbb{R}^n \to \mathbb{R}^n$ by $T(x) = x_W$. Then:

- \succ T is a linear transformation.
- $ightharpoonup T(x) = x ext{ if and only if } x ext{ is in } W.$
- ightharpoonup T(x) = 0 if and only if x is in W^{\perp} .
- $ightharpoonup T \circ T = T$
- \triangleright The range of T is W.

Proof of the fourth statement:

For any x in \mathbb{R}^n the vector T(x) is in W, so $T \circ T(x) = T(\underline{T(x)}) = T(\underline{x})$ by the second statement

Orthogonal Projections (14)

Standard Matrices for Projections

Example 6

Let *L* be the line in \mathbb{R}^2 spanned by the vector $u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x) = x_L$. Compute the standard matrix *B* for *T*.

As before, apply *T* to the standard coordinate vectors to get the columns of *B*.

$$T(e_1) = (e_1)_L = \frac{u \cdot e_1}{u \cdot u} u = \frac{\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}}{\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}} = \frac{1}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$T(e_2) = (e_2)_L = \frac{u \cdot e_2}{u \cdot u} u = \frac{\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{2}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{bmatrix}$$

Orthogonal Projections (15)

Standard Matrices for Projections

Example 7

Let L be the line in \mathbb{R}^3 spanned by the vector $u = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, and define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x) = x_L$.

Compute the standard matrix *B* for *T*.

As before, apply *T* to the standard coordinate vectors to get the columns of *B*.

$$T(e_1) = (e_1)_L = \frac{u \cdot e_1}{u \cdot u} u = \frac{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}}{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}} = \frac{1}{6} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad T(e_3) = (e_3)_L = \frac{u \cdot e_3}{u \cdot u} u = \frac{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$T(e_2) = (e_2)_L = \frac{u \cdot e_2}{u \cdot u} u = \frac{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}}{\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}} = \frac{2}{6} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$B = \frac{1}{6} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Orthogonal Projections (16)

Recall the corollary below which applies to the case where a <u>basis</u> of W is known.

Corollary: Let *A* be an $m \times n$ matrix with <u>linearly independent</u> columns and let W = Col(A). Then the $n \times n$ matrix $A^T A$ is invertible, and for all vectors x in \mathbb{R}^m , we have

$$x_W = A(A^T A)^{-1} A^T x$$

In this case, we can obtain the standard matrix be computing $A(A^TA)^{-1}A^T$

Example 8

Let
$$W = \text{Span}\left\{\begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}\right\}$$
, and define $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x) = x_W$. Compute the standard matrix B for T .
$$A^T A = \begin{bmatrix} 1 & 0 & -1\\1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1\\0 & 1\\-1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1\\1 & 2 \end{bmatrix} \qquad (A^T A)^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1\\-1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1\\0 & 1\\-1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0\\1\\-1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0\\-1\\1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\-1\\1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\-1\\2 \end{bmatrix} \begin{bmatrix} 1 & 0\\1\\1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\1\\2 \end{bmatrix} \begin{bmatrix} 1 & 0\\$$

Orthogonal Projections (17)

Properties of Projection Matrices. Let W be a subspace of \mathbb{R}^n and define $T: \mathbb{R}^n \to \mathbb{R}^n$ by $T(x) = x_W$ and let B be the standard matrix for T. Then:

- \triangleright Col(B) = W
- $\triangleright \text{Nul}(B) = W^{\perp}.$
- $> B^2 = B$
- \triangleright If $W \neq \{0\}$, then 1 is an eigenvalue of B and the 1-eigenspace for B is W
- ightharpoonup If $W \neq \mathbb{R}^n$, then 0 is an eigenvalue of B and the 0-eigenspace for B is W^{\perp}
- \triangleright B is similar to the diagonal matrix with m ones and n-m zeros on the diagonal, where $m=\dim(W)$ (Projection motions on Diagonalius)

Example 9

Compute
$$W^{\perp} = \text{Nul} \begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 0 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \end{bmatrix} \xrightarrow{-R_2} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

Orthogonal Projections (17)

Properties of Projection Matrices. Let W be a subspace of \mathbb{R}^n and define $T: \mathbb{R}^n \to \mathbb{R}^n$ by $T(x) = x_W$ and let B be the standard matrix for T. Then:

- \triangleright If $W \neq \{0\}$, then 1 is an eigenvalue of B and the 1-eigenspace for B is W
- \triangleright If $W \neq \mathbb{R}^n$, then 0 is an eigenvalue of B and the 0-eigenspace for B is W^{\perp}
- \triangleright *B* is similar to the diagonal matrix with *m* ones and n-m zeros on the diagonal, where $m=\dim(W)$

Example 9 (continued)

Compute
$$W^{\perp} = \text{Nul} \begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 2 \\ 1 & -1 & 0 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \end{bmatrix} \xrightarrow{-R_2} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

$$\begin{aligned} x_1 &= -2x_3 \\ x_2 &= -2x_3 \\ x_3 &= x_3 \end{aligned} \implies \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix} \implies W^{\perp} = \operatorname{Span} \left\{ \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix} \right\}$$

$$B = \begin{bmatrix} 1 & 1 & -2 \\ 0 & -1 & -2 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & -2 \\ 0 & -1 & -2 \\ 2 & 0 & 1 \end{bmatrix}^{-1}$$

The Method of Least Squares

The Method of Least Squares (1)

Definition: Let A be an $m \times n$ matrix and let b be a vector in \mathbb{R}^m . A least-squares solution of the matrix equation Ax = b is a vector \hat{x} in \mathbb{R}^n such that

$$\operatorname{dist}(b, A\hat{x}) \leq \operatorname{dist}(b, Ax) \qquad \text{for any } x \text{ in } \mathbb{R}^n$$

Recall that dist(b, Ax) = ||b - Ax|| is the square root of the sum of the squares of the entries of the vector b - Ax. A least-squares solution minimizes the sum of the squares of the differences between the entries of Ax and b.

Here, Ax = b is inconsistent, that is, b is not in Col(A). Col(A) is the set of all vectors of the form Ax. So, the closest vector of the form Ax to b is the orthogonal projection of b onto Col(A), denoted by $b_{Col(A)}$

And \hat{x} is the vector such that $A\hat{x} = b_{Col(A)}$.

A least-squares solution of Ax = b is a solution \hat{x} of the consistent equation $Ax = b_{Col(A)}$

The Method of Least Squares (2)

To solve the resulting orthogonal projection problem, we use the following.

Theorem: Let *A* be an $m \times n$ matrix and let *b* be a vector in \mathbb{R}^m . The least-squares solutions of Ax = b are the solutions of the matrix equation

$$A^T A x = A^T b$$

Recipe: Compute a least-squares solution. Let A be an $m \times n$ matrix and let b be a vector in \mathbb{R}^n . Here is a method for computing a least-squares solution of Ax = b:

- 1. Compute the matrix $A^{T}A$ and the vector $A^{T}b$.
- 2. Form the augmented matrix for the matrix equation $A^{T}Ax = A^{T}b$, and row reduce.
- 3. This equation is always consistent, and any solution \hat{x} is a least-squares solution.

The Method of Least Squares (3)

To solve the resulting orthogonal projection problem, we use the following.

Theorem: Let *A* be an $m \times n$ matrix and let *b* be a vector in \mathbb{R}^m . The least-squares solutions of Ax = b are the solutions of the matrix equation

$$A^T A x = A^T b$$

Example 1

Find the least-squares solution of Ax = b where $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$. What quantity is

being minimized? And what is its value?

$$A^{T}A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 3 \end{bmatrix} \qquad A^{T}b = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 3 & 0 \\ 3 & 3 & 6 \end{bmatrix} \xrightarrow{\frac{1}{3}R_{2}} \begin{bmatrix} 5 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix} \xrightarrow{R_{1} \leftrightarrow R_{2}} \begin{bmatrix} 1 & 1 & 2 \\ 5 & 3 & 0 \end{bmatrix} \xrightarrow{R_{2} - 5R_{1}} \begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & -10 \end{bmatrix} \xrightarrow{\frac{1}{2}R_{2}} \qquad \hat{x} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 5 \end{bmatrix} \xrightarrow{R_{1} - R_{2}} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 5 \end{bmatrix} \implies \hat{x} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$$

The Method of Least Squares (4) Example 1 (continued)

Find the least-squares solution of Ax = b where $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$. What quantity is

being minimized? And what is its value?

$$\hat{x} = \begin{bmatrix} -3\\5 \end{bmatrix}$$

This solution minimizes the distance from Ax to b. That is, $||b - A\hat{x}||$ is this shortest

distance. Now,
$$A\hat{x} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$$
. So, $\begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} = \sqrt{1+4+1} = \sqrt{6}$

The Method of Least Squares (4)

Theorem: Let *A* be an $m \times n$ matrix and *b* be a vector in \mathbb{R}^m . The following are equivalent:

- \rightarrow Ax = b has a unique least-squares solution
- > The columns of *A* are linearly independent
- \triangleright A^TA is invertible

In this case, the least-squares solution is $\hat{x} = (A^T A)^{-1} A^T b$.

Example 2

Find the least-squares solution of
$$Ax = b$$
 where $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & 2 \end{bmatrix}$ and $b = \begin{bmatrix} 7 \\ 0 \\ -7 \end{bmatrix}$.

$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} A & A \\ A \end{bmatrix}^{-1} = \begin{bmatrix} 4 & 5 \\ -2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} A & A \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ -2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} A & A \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ -2 & 3 \end{bmatrix}$$

The Method of Least Squares (4)

Theorem: Let *A* be an $m \times n$ matrix and *b* be a vector in \mathbb{R}^m . The following are equivalent:

- \rightarrow Ax = b has a unique least-squares solution
- ➤ The columns of *A* are linearly independent
- \triangleright A^TA is invertible

In this case, the least-squares solution is $\hat{x} = (A^T A)^{-1} A^T b$.

Example 2 (continued)

The Method of Least Squares (1) Example 3

Find the least squares straight line fit to the four points (0,1), (2,0), (3,1) and (3,2).

$$y = Mx + B \quad 1 = M(0) + B \\
0 = M(2) + B \\
1 = M(3) + B \\
2 = M(3) + B$$

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 3 & 1 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 0 & 2 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 22 & 8 \\ 8 & 4 \end{bmatrix} \quad (A^{T}A)^{-1} = \frac{1}{24} \begin{bmatrix} 4 & -8 \\ -8 & 22 \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 2 & -4 \\ -4 & 11 \end{bmatrix}$$

$$\hat{x} = \frac{1}{12} \begin{bmatrix} 2 & -4 \\ -4 & 11 \end{bmatrix} \begin{bmatrix} 0 & 2 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix} = \frac{1}{12} \begin{bmatrix} -4 & 0 & 2 & 2 \\ 11 & 3 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 2 \\ 8 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} \\ \frac{2}{3} \end{bmatrix} = B$$

$$y = \frac{1}{6}x + \frac{2}{3}$$

The Method of Least Squares (1) Example 3

Find the least squares straight line fit to the four points (0,1), (2,0), (3,1) and (3,2).

$$y = \frac{1}{6}x + \frac{2}{3}$$

Note that $A\hat{x}$ is the vector whose entries are the *y*-coordinates of the graph of the line at the *x*-values specified by the given data points, and *b* is the vector whose entries are the *y*-coordinates of the given data points. The difference $b - A\hat{x}$ is the vector of vertical distances of the graph from the data points.