Signali i sustavi

Drugi međuispit (grupa D) - 15. svibnja 2009.

- 1. Kolika je vrijednost DFT₆ transformacije signala $x(n) = \{\underline{0}, 0, 1, 0, -1, 0\}$ duljine 6 za k = 2?

- a) X(2) = 0 b) $X(2) = \sqrt{3}$ c) $X(2) = -\sqrt{3}$ d) $X(2) = j\sqrt{3}$ e) $X(2) = -j\sqrt{3}$
- **2.** Kolika je vrijednost IDFT₄ transformacije u četiri točke spektra $X(k) = \{\underline{1}, j, -1, -j\}$ za korak n = 3?

- a) x(3) = 0 b) x(3) = 1 c) x(3) = -1 d) x(3) = j e) x(3) = -j
- 3. Kontinuirani signal čiji je spektar $X(j\Omega)$ (CTFT) prikazan slikom otipkan je uz kružnu frekvenciju $\Omega_S=2\Omega_{\rm max}$. Vrijednost amplitudnog spektra $|X(e^{j\omega})|$ (DTFT) otipkanog signala za $\omega = 0$ jest:
 - a) 4

- b) $4\Omega_{\rm max}$ c) $8\Omega_{\rm max}$ d) $\frac{4}{\pi}\Omega_{\rm max}$

- 4. Signal $x(t) = \sin(20\pi t) + \sin(70\pi t) + \sin(150\pi t)$ propušten je kroz idealni AA filtar (eng. anti-aliasing filter) predviđen za filtriranje signala koji će biti uzorkovani frekvencijom 100 Hz. Kontinuirani signal na izlazu iz AA filtra jest:
 - a) $\sin(70\pi t)$
- **b)** $\sin(20\pi t)$
- c) $\sin(150\pi t)$
- **d)** $\sin(20\pi t) + \sin(70\pi t)$
- e) $\sin(20\pi t) + \sin(70\pi t) + \sin(150\pi t)$
- 5. Za neki sustav znamo jedino da na pobudu jednaku nuli uvijek daje odziv različit od nule. Samo jedna od navedenih tvrdnji je točna! Koja?
 - a) Temeljem navedenog svojstva ne možemo ispitati aditivnost!
- b) Sustav je homogen, no nije aditivan!
- c) Temeljem navedenog svojstva ne možemo ispitati homogenost!
- d) Sustav je aditivan, no nije homogen!

- e) Sustav nije homogen!
- **6.** Zadan je sustav $S[x(n)] = \sin(\lambda n)x^2(n)$. Za koji λ je sustav vremenski nepromjenjiv?

 - a) Za sve $\lambda = 2k + 1, k \in \mathbb{Z}!$ b) Za sve $\lambda = (2k + 1)\pi, k \in \mathbb{Z}!$ c) Za sve $\lambda \in \mathbb{R}!$ d) Za sve $\lambda \in \mathbb{Z}!$

- e) Samo za $\lambda = 1$.
- 7. Koji od navedenih sustava je linearan? u(t) je ulaz, a y(t) je izlaz sustava.

- **a)** $y(t) = u(t) + \cos(t)$ **b)** y(t) = tu(t) **c)** $y(t) = \sin(u(t) 1)$ **d)** $y(t) = \sin(u(t))$ **e)** $y(t) = \cos(u(t 1))$
- 8. Zadan je kontinuirani sustav opisan jednadžbom $y(t) = \int_t^{+\infty} u(\tau) d\tau$. Taj sustav je:
 - a) bezmemorijski i vremenski nepromjenjiv d) bezmemorijski i vremenski promjenjiv promjenjiv
 - b) memorijski i vremenski nepromjenjiv
- c) memorijski i vremenski e) linearan i vremenski promjenjiv
- 9. Nađite odziv stanja nepobuđenog diskretnog kauzalnog LTI sustava u koraku n=3 ako je poznato da je matrica sustava $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ te da je početno stanje u koraku nula $\mathbf{x}(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

 - $\mathbf{a)} \ \mathbf{x}(3) = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \qquad \mathbf{b)} \ \mathbf{x}(3) = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \qquad \mathbf{c)} \ \mathbf{x}(3) = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mathbf{d)} \ \mathbf{x}(3) = \begin{bmatrix} -2 \\ -1 \end{bmatrix} \qquad \mathbf{e)} \ \mathbf{x}(3) = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$

- **10.** Zadane su matrice $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 3 & 0 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 2 & 1 \end{bmatrix}$. Sustav ima:
 - a) 2 varijable stanja i 2 izlaza b) 3 varijable stanja i 2 ulaza c) 2 varijable stanja i 3 ulaza
- d) 2 ulaza i 2 izlaza

e) 2 ulaza i 3 izlaza

- 11. Kontinuirani sustav zadan je slikom. Matrice koje opisuju dani sustav u prostoru stanja su:

 - a) $\mathbf{A} = \begin{bmatrix} -4 & 2 \\ 1 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$ b) $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 2 & -4 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$ c) $\mathbf{A} = \begin{bmatrix} 4 & -2 \\ 1 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$ d) $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -4 & 2 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$
- e) $\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 1 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$

- 12. Koliko iznosi konvolucija signala $x(n)=\{\underline{3},1\}$ i $y(n)=\{\underline{2},3,-3,-2\}$? Svi uzorci koji nisu zadani su jedanki nuli, podcrtani uzorak je uzorak za korak n = 0.

- a) $x*y = \{\underline{6}, -9, -6, 11, -2\}$ b) $x*y = \{\underline{-2}, -9, -6, 11, 6\}$ c) $x*y = \{\underline{2}, 9, 6, -11, -6\}$ d) $x*y = \{\underline{-6}, -11, 6, 9, 2\}$ e) $x*y = \{\underline{6}, 11, -6, -9, -2\}$
- 13. Impulsni odziv diskretnog LTI sustava je $h(n) = 3^n \mu(n)$. Koliki je odziv na pobudu $u(n) = 4^n \mu(n)$.
 - a) $(4^{n+1} 4 \cdot 3^n) \mu(n)$ b) $(4^n 3^n) \mu(n)$ c) $(4^{n+1} 3^{n+1}) \mu(n)$ d) $4 \mu(n)$ e) $(3^{n+1} 4^{n+1}) \mu(n)$

- 14. Izračunaj konvoluciju x(t) * y(t) dva kontinuirana signala x(t) i y(t) koji su zadani slikom!
- $\begin{array}{lll} \mathbf{a)} & \frac{1}{2}t^2\,\mu(t) + (2-2t)\,\mu(t-1) + (2t-2-\frac{1}{2}t^2)\,\mu(t-2) & \mathbf{b)} & (t-\frac{1}{2}t^2)\,\mu(t) + (\frac{1}{2}t^2-t)\,\mu(t-2) \\ \mathbf{c)} & (t-\frac{1}{2}t^2)\,\mu(t) + (2-3t+t^2)\,\mu(t-1) + (2t-2-\frac{1}{2}t^2)\,\mu(t-2) & \mathbf{d)} & \frac{1}{2}t^2\,\mu(t) + (t-t^2)\,\mu(t-1) + (\frac{1}{2}t^2-t)\,\mu(t-2) \\ \mathbf{e)} & (t+\frac{1}{2}t^2)\,\mu(t) + (2-3t)\,\mu(t-1) + (2t-2-\frac{1}{2}t^2)\,\mu(t-2) & \end{array}$

- **15.** Konvolucija $(2n + 2) * \delta(2n 4)$ je:
 - a) 2n-2 b) 6 c) 2n+2
- **d)** 2n+4 **e)** 2n+6
- 16. Diskretni kauzalni LTI sustav opisan je jednadžbom y(n) 7y(n-1) + 10y(n-2) = u(n). Ako sustav pobudimo signalom $u(n) = (4n+3) \mu(n)$ te ako su početni uvjeti y(-1) = -1 i $y(-2) = \frac{3}{5}$ odredite PRISILNI odziv sustava!
- **a)** $y(n) = (n+4)\mu(n)$ **b)** $y(n) = (n+\frac{3}{4})\mu(n)$ **c)** $y(n) = (-4 \cdot 2^n 10 \cdot 5^n + n + 4)\mu(n)$ **d)** $y(n) = (-4 \cdot 2^n 10 \cdot 5^n + 4n + 3)\mu(n)$ **e)** $y(n) = (4n+3)\mu(n)$

- 17. Diskretni kauzalni LTI sustav opisan je jednadžbom y(n)-7y(n-1)+10y(n-2)=u(n). Ako sustav pobudimo signalom $u(n)=(4n+3)\,\mu(n)$ te ako su početni uvjeti y(-1)=-1 i $y(-2)=\frac{3}{5}$ odredite PRIRODNI odziv sustava!
 - **a)** $y(n) = (-\frac{28}{3}2^n + \frac{25}{3}5^n + n + 4)\mu(n)$ **b)** $y(n) = (-\frac{28}{3}2^n + \frac{25}{3}5^n)\mu(n)$ **c)** $y(n) = (-4 \cdot 2^n 10 \cdot 5^n)\mu(n)$ **d)** $y(n) = (-4 \cdot 2^n 10 \cdot 5^n)\mu(n)$ **e)** $y(n) = (\frac{16}{3}2^n \frac{55}{3}5^n)\mu(n)$

- 18. Diskretni kauzalni LTI sustav opisan je jednadžbom y(n)-7y(n-1)+10y(n-2)=u(n). Ako sustav pobudimo signalom $u(n)=(4n+3)\,\mu(n)$ te ako su početni uvjeti y(-1)=-1 i $y(-2)=\frac{3}{5}$ odredite odziv NEPOBUĐENOG sustava!

 - a) $y(n) = -\frac{28}{3}2^n + \frac{25}{3}5^n$ b) $y(n) = \frac{16}{3}2^n \frac{55}{3}5^n$ c) $y(n) = (-4 \cdot 2^n 10 \cdot 5^n) \mu(n)$ d) $y(n) = (-\frac{28}{3}2^n + \frac{25}{3}5^n + n + 4) \mu(n)$ e) $y(n) = -4 \cdot 2^n 10 \cdot 5^n$
- 19. Nađite impulsni odziv mirnog kauzalnog diskretnog LTI sustava y(n) 5y(n-1) = u(n)!
 - **a)** $h(n) = \frac{1}{5}5^n, \ n \ge 0$ **b)** $h(n) = \frac{5}{4}5^n \frac{1}{4}, \ n \ge 0$ **c)** $h(n) = 5^n, \ n \ge 0$ **d)** $h(n) = (-5)^{n+1}, \ n \ge 0$

- **20.** Diskretni LTI sustav opisan je jednadžbom $y(n) \frac{1}{2}y(n-1) = u(n)$. Vrijednost odziva u koraku n = 2000 za pobudu $u(n) = \mu(n) - \mu(n - 1001)$ uz početni uvjet y(-1) = 6 je:

- a) $2^{-1999} + 2$ b) $3 \cdot 2^{-2000}$ c) $2^{-1999} + 2^{-999}$ d) $2^{-1999} + 2^{-998}$ e) $2^{-3000} + 2^{-2000}$