

HiPerFRED²

High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number

DPG 60 C 300 HB

$V_{RRM} = 300 V$ $I_{FAV} = 2x 30 A$ $t_{rr} = 35 ns$

Backside: cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package:

- Housing: TO-247
- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

Ratings

Symbol	Definition	Conditions		min.	typ.	max.	Unit
V_{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			300	V
I _R	reverse current	V _R = 300 V	$T_{VJ} = 25^{\circ}C$			1	μΑ
		$V_R = 300 V$	$T_{VJ} = 150$ °C			0.1	mA
V _F	forward voltage	I _F = 30 A	$T_{VJ} = 25^{\circ}C$			1.34	V
		$I_F = 60 A$				1.63	V
		I _F = 30 A	T _{VJ} = 150°C			1.06	V
		$I_F = 60 A$				1.39	V
I _{FAV}	average forward current	rectangular d = 0.5	$T_{\rm C}$ = 135°C			30	Α
V _{F0}	threshold voltage	and a violation and v	T _{vJ} = 175°C			0.70	V
r _F	slope resistance	calculation only				10.5	mΩ
R _{thJC}	thermal resistance junction to case					0.95	K/W
T _{VJ}	virtual junction temperature			-55		175	°C
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			160	W
I _{FSM}	max. forward surge current	t = 10 ms (50 Hz), sine	T _{VJ} = 45°C			360	Α
I _{RM}	max. reverse recovery current		$T_{VJ} = 25^{\circ}C$		3		Α
		$I_F = 30 A; V_R = 200 V$	$T_{VJ} = 125$ °C		7		Α
t _{rr}	reverse recovery time	$-di_F/dt = 200 A/\mu s$	$T_{VJ} = 25^{\circ}C$		35		ns
			$T_{VJ} = 125$ °C		55		ns
C _J	junction capacitance	V _R = 150 V; f = 1 MHz	T _{VJ} = 25°C		50		pF

Ratings

Symbol	Definition	Conditions	min	typ.	max.	Unit
I _{RMS}	RMS current	per pin ¹⁾			50	Α
R _{thCH}	thermal resistance case to heatsink			0.25		K/W
T _{stg}	storage temperature		-5	5	150	°C
Weight				6		g
M _D	mounting torque		0.	3	1.2	Nm
F _c	mounting force with clip		2	ס	120	Ν

¹⁾ I_{RMS} is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip. In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Part number

D = Diode

P = HiPerFRED

G = extreme fast

60 = Current Rating [A]

C = Common Cathode

300 = Reverse Voltage [V] HB = TO-247AD (3)

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Code Key
Standard	DPG 60 C 300 HB	DPG60C300HB	Tube	30	502163

Similar Part	Package	Voltage Class
DPG60C300QB	TO-3P (3)	300
DPG60C300HJ	ISOPLUS247 (3)	300
DPG60C300PC	TO-263AB (D2Pak)	300
DPF60C300HB	TO-247AD (3)	300
DPG80C300HB	TO-247AD (3)	300

Fig. 1 Forward current I_F versus forward voltage V_F

Fig. 2 Typ. reverse recovery charge Q_{rr} versus $-di_F/dt$

Fig. 3 Typ. reverse recovery current I_{RM} versus $-di_{F}/dt$

Fig. 4 Dynamic parameters Q_{rr} , I_{RM} versus T_{VJ}

Fig. 5 Typ. reverse recovery time t_{rr} versus $-di_{F}/dt$

Fig. 6 Typ. forward recovery voltage V_{FR} & forward recovery time t_{fr} vs. di_{F}/dt

Fig. 7 Typ. recovery energy E_{rec} versus $-di_F/dt$

Fig. 8 Transient thermal impedance junction to case