Cocientes compactos vs marcos arreglados

30 de abril de 2025

Juan Carlos Monter Cortés

Universidad de Guadalajara

Contenido

Cocientes compactos

Marcos arreglados

C. C. vs M. A.

- A
- (A, \leqslant)

- $(A, \leq, \vee, \circ) \circ (A, \leq, \wedge, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, o, 1)$

- A
- (A, \leqslant)

- $(A, \leqslant, \lor, \circ)$ o $(A, \leqslant, \land, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, 0, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

- A
- (A, \leqslant)

- $(A, \leqslant, \lor, \circ)$ o $(A, \leqslant, \land, 1)$
- $(A, \leq, \bigvee, \bigwedge, 0, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

$$(A, \leqslant, \bigvee, \land, o, 1), \quad a \land \bigvee X = \bigvee \{a \land x \mid x \in X\}$$

- A
- (A, \leqslant)

- $(A, \leqslant, \lor, \circ)$ o $(A, \leqslant, \land, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, o, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

$$(A, \leqslant, \bigvee, \land, o, 1), \quad a \land \bigvee X = \bigvee \{a \land x \mid x \in X\}$$

$$\mathbf{Frm} = \begin{cases} A, & \text{marcos} \\ f, & \text{morfismo de marcos} \end{cases}$$

• Estructuras simples.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.
- **Loc** = **Frm**^{op} está en relación con **Top**.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.
- **Loc** = **Frm**^{op} está en relación con **Top**.

Cocientes en Frm

Frm proporciona correspondencias biyectivas interesantes

Cocientes en Frm

Frm proporciona correspondencias biyectivas interesantes

Congruencias ↔ Conjuntos implicativos ↔ Núcleos

Cocientes en Frm

Frm proporciona correspondencias biyectivas interesantes

Congruencias ↔ Conjuntos implicativos ↔ Núcleos

Definición:

Sea $A \in \mathbf{Frm} \ y \ j \colon A \to A$, decimos que j es un *núcleo* si:

- 1. *j* infla.
- 2. *j* es monótona.
- 3. *j* es idempotente.
- 4. *j* respeta ínfimos finitos.

NA = núcleos de A.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f: A \rightarrow B$.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f: A \to B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f: A \to B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

• A_i es un cociente de A.

Un cociente de un marco A es un marco B equipado con un morfismo suprayectivo $f: A \to B$.

Si $A \in \mathbf{Frm} \ y \ j \in NA$, entonces $A_j \in \mathbf{Frm}$.

$$A_j = \{a \in A \mid j(a) = a\}.$$

- A_i es un cociente de A.
- ¿Qué es un cociente compacto?

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leqslant b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Filtros en Frm

Sea $A \in \mathbf{Frm}$. Para $F \subseteq A$, decimos que F es un filtro si:

- 1. $1 \in F$.
- 2. $a \leqslant b$, $a \in F \Rightarrow b \in F$.
- 3. $a, b \in F \Rightarrow a \land b \in F$.

Existen diferentes tipos de filtros:

- Propio
- Primo

- (Scott) abierto
- Admisible ($\nabla(j)$)
- Completamente primo

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

$$v_F = f^{\infty}, f = \bigvee \{v_a \mid a \in F\}, w_F =$$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

$$v_F = f^{\infty}$$
, $f = \bigvee \{v_a \mid a \in F\}$, $w_F =$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

•
$$j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$$
.

$$v_F = f^{\infty}$$
, $f = \bigvee \{v_a \mid a \in F\}$, $w_F =$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.

$$v_F = f^{\infty}$$
, $f = \bigvee \{v_a \mid a \in F\}$, $w_F =$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.

$$v_F = f^{\infty}, f = \bigvee \{v_a \mid a \in F\}, w_F =$$

Sea $j \in NA$. El filtro de admisibilidad de j es el conjunto

$$\nabla(j) = \{ a \in A \mid j(a) = 1 \}.$$

- $j, k \in NA, j \sim k \Leftrightarrow \nabla(j) = \nabla(k)$.
- $j \in NA$ es *ajustado* si es el menor elemento de su bloque.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$ para algún $j \in NA$.
- $F \in A^{\wedge} \Rightarrow [v_F, w_F]$.

$$v_F = f^{\infty}$$
, $f = \bigvee \{v_a \mid a \in F\}$, $w_F =$

Definición:

Sea $A \in$ Frm. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

Definición:

Sea $A \in$ Frm. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si cada cubierta tiene una subcubierta finita.

Definición:

Sea $A \in$ **Frm**. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si cada cubierta tiene una subcubierta finita.

• A_i es un cociente de A.

Definición:

Sea $A \in$ Frm. Una *cubierta* A es un subconjunto $X \subseteq A$ tal que $\bigvee X = 1$. Una *subcubierta* de X es un subconjunto $Y \subseteq X$ tal que $\bigvee Y = 1$

A es compacto si cada cubierta tiene una subcubierta finita.

- A_i es un cociente de A.
- A_i es compacto $\Leftrightarrow \nabla(j) \in A^{\wedge}$.

 $a \in A \in \mathbf{Frm}$ definimos

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \vee x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

• A_{ua} "cociente cerrado".

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

- A_{u_a} "cociente cerrado".
- A_{ν_a} "cociente abierto".

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

- A_{u_a} "cociente cerrado".
- A_{ν_a} "cociente abierto".
- A_{w_a} "cociente regular".

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

- A_{u_a} "cociente cerrado".
- A_{ν_a} "cociente abierto".
- A_{w_a} "cociente regular".

Núcleos ↔ Sublocales ↔ Subespacios

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

- A_{u_a} "cociente cerrado".
- A_{ν_a} "cociente abierto".
- A_{w_a} "cociente regular".

Núcleos ↔ Sublocales ↔ Subespacios

• A_{u_a} sublocal cerrado.

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

- A_{u_a} "cociente cerrado".
- A_{ν_a} "cociente abierto".
- A_{w_a} "cociente regular".

Núcleos ↔ Sublocales ↔ Subespacios

- A_{u_a} sublocal cerrado.
- A_{ν_a} sublocal abierto.

 $a \in A \in \mathbf{Frm}$ definimos

$$u_a(x) = a \lor x$$
, $v_a(x) = a \succ x$, $w_a(x) = ((x \succ a) \succ a)$

- A_{u_a} "cociente cerrado".
- A_{ν_a} "cociente abierto".
- A_{w_a} "cociente regular".

Núcleos ↔ Sublocales ↔ Subespacios

- A_{u_a} sublocal cerrado.
- A_{ν_a} sublocal abierto.

¿Qué son los marcos arreglados?

• Una de las aplicaciones de la teoría de marcos es que, en cierto punto, un marco puede llegar a mimetizar el comportamiento de la topología de un espacio.

¿Qué son los marcos arreglados?

- Una de las aplicaciones de la teoría de marcos es que, en cierto punto, un marco puede llegar a mimetizar el comportamiento de la topología de un espacio.
- En este sentido, los marcos arreglados buscan imitar la propiedad de que un espacio sea empaquetado.

¿Qué son los marcos arreglados?

- Una de las aplicaciones de la teoría de marcos es que, en cierto punto, un marco puede llegar a mimetizar el comportamiento de la topología de un espacio.
- En este sentido, los marcos arreglados buscan imitar la propiedad de que un espacio sea empaquetado.
- Como es habitual, las variantes que proporcionan los marcos son caracterizaciones "libres de puntos".

Marcos arreglados

Sea $A \in \mathbf{Frm} \ y \ \alpha \in \mathbf{Ord}$.

• $F \in A^{\wedge}$ es α -arreglado si

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$
,

donde
$$d = d(\alpha) = f^{\alpha}(0)$$
 y $f = \bigvee \{v_a \mid a \in F\}$

- A es α -arreglado si todo $F \in A^{\wedge}$ es α -arreglado.
- A es arreglado si A es α -arreglado para algún α .

Marcos arreglados

Propiedades:

- Parche trivial ⇔ arreglado
- Arreglado ⇔ empaquetado + apilado
- Un espacio S tiene topología 1-arreglada $\Leftrightarrow S$ es T_2 .
- Arreglado $\Rightarrow T_1$
- Regularidad ⇒ arreglado
- $(\mathbf{fH}) \Rightarrow \text{arreglado}$

Marcos arreglados OOO●

Otra forma de ver arreglado

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

Observaciones:

• A_i es un cociente de A.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

Observaciones:

• A_i es un cociente de A.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

- A_i es un cociente de A.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

- A_i es un cociente de A.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.
- Si $u_d(x) = 1$, entonces $u_d = v_F$

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_j \in \mathbf{Frm}$.

- A_i es un cociente de A.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.
- Si $u_d(x) = 1$, entonces $u_d = v_F$
- $F \in [v_F, w_F]$ produce una familia de cocientes compactos.

Si $A \in \mathbf{Frm} \ y \ j \in NA \Rightarrow A_i \in \mathbf{Frm}$.

- A_i es un cociente de A.
- $F \in A^{\wedge} \Rightarrow F = \nabla(j)$.
- Si $u_d(x) = 1$, entonces $u_d = v_F$
- $F \in [v_F, w_F]$ produce una familia de cocientes compactos.
- $v_F = w_F$ produce un único cociente compacto.

Cocientes compactos vs marcos arreglados

References I

- P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- J. Monter; A. Zaldívar, El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos [tesis de maestría], 2022. Universidad de Guadalajara.
- J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.
- J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.

References II

- Rosemary A Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- Harold Simmons, *The assembly of a frame*, University of Manchester (2006).
- RA Sexton and H. Simmons, *Point-sensitive and point-free* patch constructions, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.
- A. Zaldívar, *Introducción a la teoría de marcos* [notas curso], 2024. Universidad de Guadalajara.