

The \mathcal{E} -closure(q0)={q0}, therefore, we have the following table:

State	1	0
{q0}	{q0, q1}	{q0, q3}
{q0, q1}	{q0, q1}	{q0, q2, q3}
{q0, q3}	{q0, q1, q2}	{q0, q3, q4}
{q0, q2, q3}	{q0, q1,q2}	{q0, q3, q4, q5}
{q0, q1, q2}	{q0, q1}	{q0, q2, q5}
{q0, q3, q4}	{q0, q1, q2, q5}	{q0, q3, q4}
{q0, q3, q4, q5}	{q0, q1, q2, q5}	{q0, q3, q4, q5}
{q0, q2, q5}	{q0, q1, q5}	{q0, q2, q3, q5}
{q0, q1, q2, q5}	{q0, q1, q5}	{q0, q2, q3, q5}
{q0, q2, q3, q5}	{q0, q1, q2, q5}	{q0, q3, q4, q5}
{q0, q1, q5}	{q0, q1, q5}	{q0, q2, q3, q5}

Therefore, the DFA for this RE is:

DFA without description:

Q2:

We prove by contradiction, assume that L' is a regular language, then since RLs are closed under complement, so the complement of L' is also a RL, but the complement of L' is $L=\{0^n1^n \mid n \ge 0\}$, which is known to be a non regular language, this brings a contradiction.

Therefore, L' is not a regular language. Q.E.D.

Q3:

The DFA specifies a regular language defined as follow: a language that has odd number of a and even number of b, or has even number of a and odd number of b.

A simplified version is: a language constructed by $\{a, b\}^*$, of which each string has an odd number of characters.

Therefore, the RE for the language is: (alb)((aalbb)*(ablba)*)*

Q4:

Proof:

because the keene-star of L is defined as: L*={\$\mathcal{E}\$} \cup L \cup L \cup L_2 \cup ..., where L_{i+1}={wv \mid w \in L_i, v \in L}\$ and L_0*={\$\mathcal{E}\$} \cup L_0 \cup L_0 \cup L_0 \cup ..., where L_{0(i+1)}={w'v' \mid w' \in L_0, v' \in L_0}\$

since $L_0\subseteq L$, L contains all strings that are in L_0 , and hence $w'\in L^*$, $v'\in L^*$, and so does w'v' \therefore L* also contains L_0^*

∴ L₀*⊆L* Q.E.D.

Q5:

 $L_{\mbox{\scriptsize P}}{}^{\star}$ is a regular language. Proof:

Claim 1: $L_P^*=\{a^n \mid n=0, 2, 3, 4, ...\}$

proof: if a^n has a length of an even number, then $a^n=(a^2)^i$, where i=0, 1, 2, 3, ... if a^n has a length of an odd number which is greater than 1, then $a^n=(a^3)(a^2)^i$,

where i=0, 1, 2, 3, ...

Therefore: $L_P^* = \{a^n \mid n = 2, 3, 4, ...\}$

Claim 2: LP* can be expressed by a DFA

proof: $L_P^*=\{a^n \mid n=2, 3, 4, ...\}$ can be expressed by a 3-state DFA:

The following DFA accepts $L_P^*=\{a^n \mid n=0, 2, 3, 4, ...\}$

Since a language can be expressed by a DFA is equivalent to the language is regular, then therefore L_P^* is regular. Q.E.D.