WHAT IS CLAIMED IS:

	1	A method for suturing a puncture through a vessel wall of a blood
	2	vessel, the puncture disposed within a tissue tract of a patient body, the method
	3	comprising:
	4	attaching a flexible filament to a first fitting;
	5	inserting the first fitting through the tissue tract and positioning the first
	6	fitting adjacent the vessel wall;
	7	forming a needle path by advancing a first needle through the vessel wall
If mad and dad dust	8	outside the puncture;
	9	coupling the needle with the first fitting; and
	10	withdrawing the first needle, the first fitting, and at least a first portion of
	11	the filament through the vessel wall along the needle path.
H A		2 The weather the factories 1 forther appropriate or
=	1	2. The method of claim 1, further comprising:
rate.	2	coupling the flexible filament to a second fitting;
	3	positioning the second fitting adjacent the vessel wall so that the puncture
	4	is disposed between the first positioned fitting and the second positioned fitting;
ing, in	5	advancing a second needle through the vessel wall and into engagement
f	6	with the second fitting.
	1	3. The method of claim 2, further comprising withdrawing the second
	2	needle and the second fitting through the vessel wall, wherein the filament coupling steps
	3	affix a first end of suture to the first fitting and a second end of the suture to the second
	4	fitting so that the withdrawing steps form a suture loop across the puncture.
	1	4. The method of claim 3.1 wherein the withdrawing steps draw the
	2	suture from within the blood vessel out through the vessel wall.
	1	5. The method of claim 2, wherein the first and second positioning
	2	steps comprise introducing the fittings through the puncture, and wherein the first and
	3	second needle advancing steps comprise inserting the needles into the vessel so as to
	4	engage the fittings therein.
		1

1	6. The method of claim 5, wherein the fittings are supported near a
2	distal end of a shaft during the introducing step, and wherein the first and second
3_	positioning steps further comprise displacing the fittings laterally from the shaft.
1	7. The method of claim 6, wherein the displacing step comprises
2	articulating an elongate foot within the vessel so that the foot moves from a low profile
3	configuration aligned along the shaft to a deployed configuration extending laterally from
4	the shaft and along the blood vessel, the fittings being releasably mounted near first and
5	second ends of the foot.
1	8. The method of claim 7, further comprising pulling the deployed
2	foot proximally against an interior surface of the vessel wall after the deploying step.
1	9. The method of claim 8, further comprising verifying that the foot is
2	disposed within the vessel prior to the displacing step by monitoring a sensor adjacent the
3	foot.
1	10. The method of claim 7, wherein the articulating step comprises
2	sliding at least a portion of the foot axially along the shaft.
1	11. The method of claim 7, wherein the articulating step comprises
2	pivoting the foot away from an axial orientation.
1	12. The method of claim 2, wherein the second advancing step passes
2	suture through the vessel wall and couples the suture to the second fitting.
1	13. The method of claim 12, wherein the withdrawing step draws the
2	first fitting, the filament, the second fitting, and a portion of the suture through the vessel
3	wall along a needle path of the first needle.
1	14. The method of claim 13, further comprising forming a loop of the
2	suture, wherein the withdrawing step draws the portion of the suture through the loop to
3	help form a suture knot.
1	15. The method of claim 1, wherein the first fitting defines an opening
1	and a latch, and further comprising attaching the fitting to the needle by latching the
2	$\mathcal{O}(\mathcal{O})$
3	needle into the opening of the fitting.

1	The method of claim 15 wherein the needle has a recess and the
2	fitting comprises a substantially cylindrical cuff having at least one tab extending therein,
3	and wherein the advancing step deflects the at least one tab when the needle is received in
4	the opening, the at least one tab resiliently flexing into the recess to secure the fitting to
5	the needle.
1	17. The method of claim 15, further comprising directing a needle into
2	the opening with a guide surface around the opening, the needle being flexible.
۷	the opening with a guide surface around the opening, the needle being nextone.
1	18. The method of claim 1, wherein the first needle withdraws said at
2	least a portion of the flexible element without threading the flexible element into the
3	needle.
1	19. A method for suturing an opening in a tissue, the method
2	comprising:
3	inserting a distal end of a probe through the opening, the probe defining a
4	probe axis;
5	articulating an elongate foot of the probe so that first and second ends of
6	the foot extend laterally with the opening aligned therebetween;
7	forming a first needle path from the probe through the tissue and to the
8	first end of the foot;
9	forming a second needle path from the prope through the tissue and to the
10	second end of the foot;
l 1	advancing suture along the first and second needle paths to position a
12	suture loop across the opening.
1	20. The method of claim 19, wherein the tissue comprises a blood
2	vessel having an axis, wherein the articulating step is performed so that the articulated
3	foot extends along the vessel axis within the vessel.
1	21. The method of claim 19, wherein the first and second needle path
2	forming steps comprise deflecting first and second flexible needles at an angle relative to
3	the probe axis and advancing the needles in cantilever radially outwardly from first and
4	second fixed needle guides of the probe to the first and second ends of the articulated

5	foot, the first and second ends of the articulated foot being separated laterally relative to
6-	the probe axis by a greater distance than the first and second needle guides.
1	22. The method of claim 19, wherein the articulating step comprises
2	pulling a flexible element proximally so that the flexible element slides the foot
3	proximally along the probe axis and so that the foot pivots laterally within the blood
4	vessel.
•	Vessel.
1	23. The method of claim 19, further comprising inserting the foot
2	through the puncture prior to the articulating step and pulling the shaft proximally after
3	the articulating step so that the first and second ends of the deployed foot firmly engage
4	the tissue beyond the puncture.
1	24. A method for suturing a blood vessel, the vessel having a vessel
2	wall, the method comprising:
3	advancing a shaft toward the vessel wall, the shaft having an axis and a
4	plurality of needle guides;
5	deploying a foot adjacent the vessel wall so that the foot extends laterally
6 7	from the shaft; advancing a plurality of needles from needle guides of the shaft to the foot
8	to form needle paths through the vessel wall, the needle guides deflecting the needles
9	laterally so that a needle path width is greater than a cross-sectional dimension of the
10	shaft; and
11	advancing suture along the needle paths to position at least one suture loop
12	across the puncture.
1	25. The method of claim 24, wherein the needles are flexible and the
2	needle guides are fixed, and further comprising directing the needles laterally into secure
3	engagement with fittings disposed releasably on the foot with a apering needle receptacle
4	surface of the foot.
1	26. A method for suturing a puncture of a blood vessel through a tissue
2	tract of a patient body, the vessel having a vessel wall, the method comprising:
3	inserting a distal end of the probe through the puncture and into the blood
4	vessel.

5	advancing a first end of the suture from the probe within the tissue tract,	
6	through the vessel wall, and into the vessel;	
7_	withdrawing the first end of the suture from the vessel, through the vessel	
8	wall and through a bight of the suture to form-a-loop of suture across the puncture; and	
9	tensioning the first end of the suture and a second end of the suture	
10	adjacent the bight to form a knot affixing the loop of suture across the puncture.	
1	27. The method of claim 26, further comprising releasably attaching	
2	the bight of suture to a probe before the inserting step, wherein the tensioning step	
3	detaches the bight from the probe.	
4	A contain for extension a bland regard the years having a years.	
1	A system for suturing a blood vessel, the vessel having a vessel	
2	wall, the system comprising;	
3	a needle having a proximal end and a distal end suitable for forming a	
4	needle path through the vessel wall, the needle having a recessed engagement surface	
5	adjacent the distal end;	
6	a flexible filament; and	
7	a fitting attached to the filament, the fitting having an opening and at least	
8	one tab extending into the opening, the tab securingly engaging the engagement surface	
9	when the needle advances through the vessel wall and into the opening so that the fitting	
10	and at least a portion of the filament can be withdrawn proximally along the needle path	
11	by the needle.	
1	29. The system of claim 28, wherein the at least one tab resiliently	
2	deflects into an indentation adjacent the engagement surface when the needle advances	
3	into the opening.	
1	30. The system of claim 29, wherein the fitting comprises a tube	
2	having a proximal end and a distal end, the opening extending into the proximal end, the	
3	at least one tab formed of tube material by cutting slots through the tube, wherein the	
4	filament comprises suture extending distally from the distal end of the tube.	
1	31. The system of claim 30, wherein the atting further comprises a	
2	collar disposed about the suture, the collar crimped over an end of the suture.	

1	3⁄2. ⊤	The system of claim 28, wherein the fitting is mounted on a foot
2	near a distal end of a pro	obe, the probe having a handle near a proximal end of the probe,
3	actuation of the handle	effecting articulation of the foot so that the fitting moves laterally
4	from an axis of the prob	De.
1	33. T	The system of claim 28, wherein the needles are flexible, and
1		
2	_	leasably supported within a receptacle surface oriented to laterally
3	deflect the advancing no	eedle toward the fitting.
1	34. T	The system of claim 33, wherein the receptacle surface tapers from
2	a small cross-section ad	ljacent the fitting to a large cross-section oriented toward the
3	advancing needle.	
	Э.Б. Т	
1		The system of claim 33, further comprising a slot disposed along
2	•	wherein the filament is releasably disposed in the slot, the slot
3	configured to avoid eng	gagement of the needle with the suture.
1	36. T	The system of claim 35, wherein the slot has a cross-section
2	smaller than the needle.	
1	\	A system for suturing a puncture of a blood vessel within a tissue
2		a vessel wall and defining an axis, the system comprising:
3		aving a proximal handle and a distal end suitable for insertion
4		d into the vessel through the puncture;
5		ounted near the distal end of the shaft, the foot having a plurality
6	•	tendable laterally from the shaft;
7	a flexible	e filament extending between the needle receptacles of the foot;
8	a plurali	ty of needles advanceable distally and laterally from the shaft,
9	through the vessel wall	outside the puncture, and to the needle receptacles of the foot.
1	38. Т	The system of claim 37, further comprising a plurality of fittings
2		eceptacles of the foot, the fittings securingly engaging the needles
3	•	ngs, and at least a portion of the filament can be withdrawn
4		along at least one of the needle paths formed by the needles
5		lament into the needles.

proximally along a first needle path through the vessel wall formed by the first needle to

6 7

form a suture loop across the puncture.

	1	43. The system of claim 42, wherein a loop is releasably supported
	2	about a first needle port, the first needle advancing from the first needle port so that
	3	tensioning the withdrawn-suture secures a knot in the suture loop.
	1	The system of claim 40, further comprising a sensor near the distal
	. 2	end of the shaft to indicate when the shaft extends into the vessel, and wherein the
	3	deployed foot can engage an inner surface of the vessel wall when the shaft is withdrawn
	4	proximally to help axially position the shaft.
	1	A probe for suturing an opening in a tissue, the probe comprising:
Man F	2	a shaft having a proximal end and a distal end and defining an axis
tanil Rash Kash	3	therebetween, the shaft having a size and configuration suitable for insertion through the
- Pun	4	opening in the tissue;
աս	5	an elongate foot movably mounted to the shaft;
and) (8) (10 and	6	an actuator extending along the shaft distally to the foot, movement of the
=	7	actuator sliding the foot axially and pivoting the foot from a low profile configuration
գուր գրոչ	8	aligned along the shaft to a deployed configuration extending laterally from the shaft;
ill.	9	a suture supported by the foot; and
գրուր կուգի	10	a needle advanceable from the shaft through the tissue and to the deployed
Had.	11	foot.
	1	46. The probe of claim 45, wherein the foot has a first end and a
	2	second end, and wherein a plurality of needles are extendable from the shaft to the ends
	3	of the foot.
	1	47. The probe of claim 46, wherein a first length of suture extends
	2	between a first fitting at the first end of the probe to a second fitting at the second end of
	3	the probe, and wherein a second length of suture extends from a third fitting at the first
	4	end of the probe to a forth fitting at the second end of the probe, and wherein each fitting
	5	securingly engages an associated needle to draw ends of the hirst and second length of
	6	suture through the vessel wall and form a plurality of loops across the puncture.