Machine Learning Project

Ein Vergleich von ML-Modellen zur Klassifikation von Drogenkonsum

	01	Business Understanding
	02	Data Understanding
Agenda	03	Data Preparation
	04	Modeling
	05	Evaluierung

Business Understanding

Literatur und Zielsetzung

Business Understanding

Mithilfe von Persönlichkeitsdaten und soziodemografischen Informationen können Machine Learning Modelle trainiert werden, um:

- 1. Vorherzusagen, **welche** Personen in Zukunft **bestimmte** Drogen konsumieren
- 2. Zu analysieren, welche Merkmale besonders relevant für den Konsum legaler oder illegaler Substanzen sind

Ergebnisse der Literaturrecherche

- Big Five Personality Traits and Illicit Drug Use: Specificity in Trait-Drug Associations
 - Bestimmte Persönlichkeitsmerkmale hängen mit Drogenkonsum zusammen
 - Niedrige Verträglichkeit/Gewissenhaftigkeit
 -> Hoher Drogenkonsum

- Ursachen für Drogenkonsum
 - Psychische, soziale und biologische Faktoren, Genetische Veranlagung

- Big Five personality traits and alcohol, nicotine, cannabis, and gambling disorder comorbidity
 - Alkoholkonsum assoziiert mit: Neurotizismus
 - Keine Assoziation mit: Extraversion, Offenheit, Verträglichkeit

- Bisherige Predictions
 - F1-Score, Accuracy als Metriken genutzt
 - Log. Regression, Ridge Classifier, Support Vector Machines, Random Forest Classifier als Modelle

SMART Ziele

Spezifisch

Ein Vergleich verschiedener Machine-Learning-Modelle soll durchgeführt werden, um vorherzusagen, welche Art von legalen oder illegalen Drogen Personen zukünftig konsumieren könnten – basierend auf Persönlichkeitsmerkmalen und Umfragedaten.

Messbar

Der Erfolg der Modelle wird anhand konkreter Kennzahlen wie Trainings- und Testfehler, F1-Score und Accuracy gemessen.

Erreichbar

Die Durchführung des Vergleichs ist im Rahmen eines Projektzeitraums mit vorhandenen Daten (aus dem Paper) und gängigen ML-Methoden realistisch durchführbar.

Relevant

Das Ziel knüpft direkt an das zuvor analysierte Paper an und hat einen klaren Bezug zur Studien- und Forschungspraxis, insbesondere zur Anwendung von Data Science im Bereich Verhaltensprognosen.

Zeitgebunden

Der Vergleich soll bis zum Abschluss des 4. Semesters abgeschlossen sein.

Data Understanding

Der Datensatz

- Online Umfrage von Elaine Fehrman zwischen 2011 und 2012.
- 12 Features
- 1885 valide Teilnehmende aus UK, USA, Canada, Neuseeland, Irland und Australien
- Geschlechterverteilung: 943 Männer / 942 Frauen.
- Ordinal/Nominal feature quantification wurde angewendet

Spalte1 ▼	nscore	•	escore	₩	oscore	•	ascore	•	cscore	•	impuslive [•	ss	~
count	18	85	188	85	18	85	18	85	18	85	188	35	188	5
mean	0,0000	47	-0,000	16	-0,000	53	-0,000	25	-0,000	39	0,00721	.6	-0,0032	9
std	0,9981	06	0,9974	48	0,9962	29	0,997	44	0,9975	23	0,95443	35	0,96370	1
min	-3,464	36	-3,273	93	-3,273	93	-3,464	36	-3,464	36	-2,9016	1	-2,0784	8
25%	-0,678	25	-0,6950	09	-0,717	27	-0,606	33	-0,652	53	-0,7112	26	-0,5259	3
50%	0,042	57	0,003	32	-0,019	28	-0,017	29	-0,006	65	-0,2171	.2	0,0798	7
75%	0,629	67	0,637	79	0,72	33	0,760	96	0,584	89	0,5297	' 5	0,765	4
max	3,273	93	3,273	93	2,901	61	3,464	36	3,464	36	2,9016	51	1,9217	3

10

Violinplot 3 -2 --2 -3

- nscore-cscore: weitgehend normalverteilt, symmetrisch
- impulsive: leicht linksschief, Ausreißer nach unten
- ss: symmetrisch, breite Verteilung

Verteilung der Konsumkategorien für Cannabis

Verteilung der Konsumkategorien für Kokain

Verteilung der Konsumkategorien für Nikotin

Data Preparation

Anpassen des Datensatzes

■ Überprüfen auf Duplikate

```
print("Anzahl Duplikate im Datensatz: ", sum(X.duplicated()))

if sum(X.duplicated()) == 0:
    print("Keine Duplikate im Datensatz.")
```

- Keine Duplikate im Datensatz
- Entfernen von unwichtiger Features
 - Gender und Ethnicity wurden entfernt

Modeling

Ablauf während des Modellierens

Optimierung des DT – Kurzer Einblick

```
from sklearn.model selection import GridSearchCV
dt models = {}
y_pred_dt = {}
best_params_dt = {}
for drug in drug_names:
   print(f"Grid Search für {drug} läuft...")
   class weights = compute class weight('balanced', classes=np.unique(y train[drug]), y=y train[drug])
   class_weight_dict = dict(zip(np.unique(y_train[drug]), class_weights))
   param_grid = {
        'criterion': ['gini', 'entropy'],
        'max_depth': [5, 10, 15] if drug in ['coke', 'nicotine'] else [3, 5, 7],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4]
   base model = DecisionTreeClassifier(
       random_state=42,
       class_weight=class_weight_dict
   grid search = GridSearchCV(
       estimator=base model.
       param_grid=param_grid,
       scoring='f1_macro',
       n_jobs=-1
   grid search.fit(X train, y train[drug])
   best_model = grid_search.best_estimator_
   dt models[drug] = best model
   y_pred_dt[drug] = best_model.predict(X_test)
   best_params_dt[drug] = grid_search.best_params_
   print(f"Beste Parameter für {drug}: {grid_search.best_params_}")
```

```
dt_models = {}
y_pred_dt = {}

for drug in drug_names:
    class_weights = compute_class_weight('balanced', classes=np.unique(y_train[drug]), y=y_train[drug])
    class_weight_dict = dict(zip(np.unique(y_train[drug]), class_weights))

dt_model = DecisionTreeClassifier(
    random_state=42,
    class_weight=class_weight_dict,
    criterion='entropy',
    max_depth=10 if drug in ['coke', 'nicotine'] else 5,
    min_samples_leaf=1,
    min_samples_split=2
)

dt_model.fit(X_train, y_train[drug])
dt_models[drug] = dt_model
    y_pred_dt[drug] = dt_model.predict(X_test)
```

Modellbewertung für Nikotin

Class	•	Precision _	•	Recall	•	F1-Score	•	Support	•
CL0		0,3	7	0,	23	0,	,28		91
CL1		0,	,2	0,	47	0	,28		34
CL2		0,2	2	(),2	0,	,21		44
CL3		0,0	7	0,	09	0,	,08		33
CL4		0,0	3	0,	05	0,	,04		19
CL5		0,1	.4	0,	29	0	,19		34
CL6		0,3	6	0,	16	0,	,23	1	.22
accuracy				0,	21			3	77
macro avg		0,	,2	0,	22	0,	,19	3	77
weighted a	vg	0,2	7	0,	21	0	,22	3	77

Decision Tree

Class ▼	Precision 🔻	Recall 🔻	F1-Score ▼	Support 🔻
CL0	0,39	0,26	0,32	91
CL1	0,19	0,44	0,27	34
CL2	0,11	0,09	0,1	44
CL3	0,19	0,36	0,25	33
CL4	0,08	0,26	0,13	19
CL5	0,09	0,09	0,09	34
CL6	0,5	0,19	0,27	122
accuracy		0,23		377
macro avg	0,22	0,24	0,2	377
weighted avg	0,32	0,23	0,24	377

Log. Regression

Modellbewertung für Cannabis

Class	~	Precision 💌	Recall T	F1-Score ▼	Support 💌
CL0		0,35	0,22	0,27	86
CL1		0,15	0,5	0,23	28
CL2		0,3	0,13	0,18	55
CL3		0,21	0,25	0,22	57
CL4		0,04	0,04	0,04	27
CL5		0,07	0,06	0,07	32
CL6		0,48	0,46	0,47	92
accuracy			0,26		377
macro avg		0,23	0,24	0,21	377
weighted a	vg	0,29	0,26	0,26	377
		De	cision Tree	Э	

Class	Precision <a> T	Recall -	F1-Score	Support 🔻
CLO	0,56	0,45	0,5	86
CL1	0,23	0,57	0,32	28
CL2	0,25	0,25	0,25	55
CL3	0,3	0,18	0,22	57
CL4	0,09	0,11	0,1	27
CL5	0,18	0,28	0,22	32
CL6	0,46	0,3	0,37	92
accuracy		0,32		377
macro avg	0,29	0,31	0,28	377
weighted avg	0,36	0,32	0,32	377

Log. Regression

Modellbewertung für Kokain

Class	Precision	Recall	F1-Score	Support
CL0	0,71	0,44	0,54	224
CL1	0,28	0,43	0,34	30
CL2	0,18	0,25	0,21	44
CL3	0,17	0,21	0,19	43
CL4	0,07	0,12	0,09	25
CL5	0,04	0,12	0,06	8
CL6	0	0	0	3
accuracy		0,36		377
macro avg	0,21	0,23	0,2	377
weighted avg	0,49	0,36	0,4	377

Decision Tree

Class ▼	Precision 🔻	Recall T	F1-Score ▼	Support 🔻
CL0	0,77	0,43	0,55	224
CL1	0,19	0,43	0,26	30
CL2	0,13	0,09	0,11	44
CL3	0,14	0,14	0,14	43
CL4	0,2	0,24	0,22	25
CL5	0,08	0,38	0,13	8
CL6	0,05	0,67	0,09	3
accuracy		0,34		377
macro avg	0,22	0,34	0,21	377
weighted avg	0,52	0,34	0,39	377

Log. Regression

Evaluierung

Wo sind die Schwächen der Modelle?

Schwachstellen unserer Modelle

Am Beispiel Decision Tree - Kokain

- In den Testdaten deutlich mehr CLO als CL6
- Multiklassenklassifikation
- Drogenkonsum ist sehr komplex und schwer vorhersagbar
- Merkmalsgewichtung hat wenig Aussagekraft

Auswahl des Modells

Grundsätzlich: Log. Regression dem Decision Tree vorzuziehen

- Geringerer Testfehler
 - → bessere Generalisierungsleistung
- Stabilere Genauigkeit und F1-Score
 - → robuster bei unausgeglichenen Klassen
- Weniger anfällig für Overfitting
 - → Trainings- und Testfehler sind ähnlich
- Einfacheres Modell
 - → leichter interpretierbar und schneller trainierbar

Jedoch...

Merkmalsgewichtung

Am Beispiel Decision Tree - Kokain

Fazit

Ausblick

Welche Änderungen können vorgenommen werden, um das Ergebnis zu verbessern?

Grundsätzlich

- Multiklassifikation zu einer binären Klassifikation machen
- -> Führte in einem Drittprojekt bereits zu guten Ergebnissen

Sollte man die Multiklassifikation beibehalten wollen

- Resampling des Datensatzes (SMOTE)
- Umfragen ausweiten -> Datenbasis vergrößern
- Angepassten F1-Score nutzen

ACCURACY

Logisitc Regression Accuracy: 100.00% Ridge Classifier Accuracy: 100.00% Support Vector Machines Accuracy: 99.73% Random Forest Classifier Accuracy: 100.00%

F1 SCORES

Logisitc Regression F1-Score: 1.0
Ridge Classifier F1-Score: 1.0
Support Vector Machines F1-Score: 0.99631
Random Forest Classifier F1-Score: 1.0

Fragen?

