## SCALAR PROXY

## VICENTE V. FIGUEIRA

## 1. Cut solutions

Of course in each amplitude we have different cut solutions. Now let us solve them,

## 1.1. all massless. The cut condition is,

$$k_1^2 = k_2^2 = (3 - k_1)^2 = (3 - k_1 - k_2)^2 = (3 + 4 - k_1 - k_2)^2 = 0$$

The first and third condition enforces  $k_1 = -|k_1|\langle 3|$ . But the fourth and fifth conditions enforces  $3 - k_1 - k_2 = n$ , with  $n \cdot 4 = 0$  &  $n^2 = 0$ . Lastly, the second condition imposes  $(3 - k_1 - n)^2 = -23 \cdot n + 2k_1 \cdot n = 0$ , that is,

$$[3n]\langle n3\rangle = [k_1n]\langle n3\rangle$$

which has two solutions,  $|n| = |k_1| - |3| \& |n\rangle = z|4\rangle$  or  $|n\rangle = |3\rangle \& |n| = z|4|$ . When working with scalar particles it's better to choose the first solution, as this avoids singularities in denominators such as  $(k_1 \cdot k_2)^{-1}$ . Hence, the solution we're going to choose is,

$$\begin{cases} k_1 &= -|k_1|\langle 3| \\ k_2 &= -|3|\langle 3| + |k_1|\langle 3| + z(|k_1] - |3|)\langle 4| \end{cases}$$

1.2. massive legs first topology. Our approach to massive legs is to shift the solution with massless, in order to obtain a well behaved solution in the  $m^2 \to 0$  limit. For this topology the cut constrains are,

$$l_1^2 = l_2^2 = (3 - l_1)^2 = -m^2 \& (3 - l_1 - l_2)^2 = (3 + 4 - l_1 - l_2)^2 = 0$$

The ideia here is to define,  $l_i = k_i + \alpha_i q_i$  (no sum), with  $q_i^2 = 0$  and  $\alpha_i = -m^2 (2k_i \cdot q_i)^{-1}$ , then,  $q_i, k_i$  are not allowed to have any dependence on  $m^2$ . The first and second constrains are already satisfied. The third one gives,

$$-23 \cdot l_1 = 0 \rightarrow 3 \cdot (k_1 + \alpha_1 q_1) = 0 \rightarrow 3 \cdot q_1 = 0$$

As  $|q_1\rangle = |3\rangle$  is forbidden,  $|q_1| = |3|$ . The fourth and fifth constrains imposes,

$$\begin{cases} -n \cdot (\alpha_1 q_1 + \alpha_2 q_2) + \alpha_1 \alpha_2 q_1 \cdot q_2 &= 0\\ 4 \cdot (\alpha_1 q_1 + \alpha_2 q_2) &= 0 \end{cases}$$

This imposes actually  $q_1 \cdot q_2 = 0$ , for this to be true we have to options, either  $|q_2| = |3|$ , or  $|q_2\rangle = |q_1\rangle$ . If we choose the first, we can shift  $k_1$  by 3 such to make  $|q_1\rangle = |4\rangle$ , this imposes further  $|q_2\rangle = |4\rangle$ . Hence, a possible solution is,

$$q_1 = q_2 = -|3|\langle 4|$$

1.3. massive legs second topology. The constrains now are slightly different,

$$l_1^2 = (3 - l_1)^2 = 0 \& l_2^2 = (3 - l_1 - l_2)^2 = (3 + 4 - l_1 - l_2)^2 = -m^2$$

Which has as solution  $q_2 = -|4|\langle 3|$ 

1.4. massive legs third topology. Now the constrain is difficult to solve,

$$l_2^2 = 0 \& l_2^1 = (3 - l_1)^2 = (3 - l_1 - l_2)^2 = (3 + 4 - l_1 - l_2)^2 = -m^2$$