System and Project Requirements Specification (SRS)

Project Name: Aetheris.network

Version: 1.0

Date: October 2024

Prepared by: Abhishek Shirsath

1. Introduction

1.1 Purpose

The purpose of this SRS document is to define the requirements and specifications for the development of **Aetheris**, a centralized, AI-driven data management platform aimed at providing actionable insights for industries such as healthcare and finance. The MVP (Minimum Viable Product) will focus on delivering a robust centralized AI analytics system while maintaining data security and user accessibility.

1.2 Scope

The scope of the Aetheris MVP includes:

- A centralized AI engine that analyzes data and provides industry-specific insights.
- A user-friendly dashboard for clients to upload data, interact with AI analytics, and view performance metrics.
- Secure data handling with encryption and compliance with industry standards.

1.3 Definitions, Acronyms, and Abbreviations

- MVP: Minimum Viable Product
- AI: Artificial Intelligence
- API: Application Programming Interface
- SaaS: Software as a Service
- CI/CD: Continuous Integration/Continuous Deployment
- HIPAA: Health Insurance Portability and Accountability Act
- PCI DSS: Payment Card Industry Data Security Standard

1.4 Overview

This document will outline the functional and non-functional requirements, system architecture, technology stack, and features of Aetheris. It aims to provide a clear understanding of the project to facilitate successful development and implementation.

2. Overall Description

2.1 Product Perspective

Aetheris is envisioned as a standalone platform designed for data management and analytics. It will integrate with various data sources to deliver actionable insights using AI. The platform aims to enhance operational efficiency and decision-making for its users in different industries.

2.2 Product Functions

Key functionalities of the Aetheris MVP include:

- **User Authentication**: Secure login system with OAuth integration.
- Data Upload: Users can upload datasets for analysis.
- Al Analytics: Centralized Al engine that processes uploaded data and provides insights.
- **User Dashboard**: A responsive interface that allows users to visualize analytics and performance metrics.
- Data Security: End-to-end encryption and compliance with industry standards.

2.3 User Classes and Characteristics

- End Users:
 - Healthcare Professionals: Require insights to improve patient outcomes.
 - Financial Analysts: Need data analysis for transaction optimization.
- Administrators: Manage the platform, oversee user accounts, and ensure data security.

2.4 Operating Environment

The Aetheris platform will operate in a cloud-based environment utilizing services such as AWS, Azure, or GCP. It will be accessible via modern web browsers on desktop and mobile devices.

2.5 Design and Implementation Constraints

- Compliance with **HIPAA** and **PCI DSS** for healthcare and financial data handling.
- User data must be encrypted both at rest and in transit.
- Scalability to accommodate increasing user loads and data volume.

3. System Requirements

3.1 Functional Requirements

3.1.1 User Authentication

 The system must provide secure user authentication using OAuth with options for Google and Facebook integration.

3.1.2 Data Upload and Management

- Users must be able to upload datasets in common formats (e.g., CSV, JSON).
- The platform should support batch uploads and provide validation feedback for data integrity.

3.1.3 Al Analytics Engine

- The AI engine must process uploaded data and deliver insights based on predefined algorithms tailored for healthcare and finance.
- Users should be able to request specific analyses (e.g., trend analysis, anomaly detection).

3.1.4 User Dashboard

- A responsive dashboard should display analytics in a user-friendly manner, including graphs, charts, and tables.
- Users should have options to filter and customize their data views.

3.1.5 Data Security and Compliance

- All user data must be encrypted using **AES-256 encryption**.
- The system should comply with relevant industry regulations (HIPAA for healthcare, PCI DSS for finance).

3.2 Non-Functional Requirements

3.2.1 Performance

• The system must support a minimum of **10,000 concurrent users** with a response time of under **200 milliseconds** for analytics queries.

3.2.2 Reliability and Availability

 The platform should ensure 99.9% uptime, with redundancy and failover mechanisms in place.

3.2.3 Scalability

• The architecture must allow for scaling resources based on user demand and data volume, utilizing cloud services for elasticity.

3.2.4 Maintainability

• Code should be modular and adhere to best practices for maintainability, enabling easier updates and feature additions in the future.

3.2.5 Usability

• The user interface must be intuitive, requiring minimal training for end-users to effectively utilize the platform.

4. System Architecture

4.1 High-Level Architecture

The architecture will consist of:

- **Frontend**: Developed using React or Angular, providing a user-friendly interface for interaction.
- **Backend**: Node.js or Python-based services to handle API requests, process data, and interact with the AI engine.
- **Al Engine**: Built with TensorFlow or PyTorch to deliver analytics based on uploaded data.
- **Database**: PostgreSQL or MongoDB for data storage, providing efficient querying and retrieval.

4.2 API Layer

 RESTful API to connect the frontend and backend, allowing seamless data exchange and functionality access.

5. Technology Stack

5.1 Frontend

• Languages: JavaScript, TypeScript

• Frameworks: React, Angular, Mern

• Libraries: MUI for UI components

Purpose: Provide a user interface for clients to interact with their AI nodes and view real-time analytics.

5.2 Backend

• Languages: Node.js, Python

• Frameworks: Express.js, Flask, Django

• Database: PostgreSQL or MongoDB

Purpose: Process AI tasks, manage data flows, and handle the communication between frontend and AI nodes.

5.3 AI & Machine Learning

• Libraries: TensorFlow, PyTorch, Scikit-learn

Purpose: Perform local AI computations at the node level, feeding into the decentralized Aetheris AI network for global insights.

5.4 Cloud Infrastructure

• Services: AWS, Azure, or GCP for cloud hosting and data storage.

Purpose: Ensure secure and scalable storage and computing for AI nodes and backend processing.

6. System Features

6.1 User Authentication

• Secure user authentication methods integrated with OAuth.

6.2 Data Analytics Dashboard

• User-friendly dashboard displaying key insights, analytics, and data visualizations.

6.3 AI Insights Generation

• Centralized AI engine providing actionable insights based on uploaded datasets.

7. Conclusion

The Aetheris MVP aims to deliver a robust, user-friendly platform that leverages AI for industry-specific analytics. By focusing on core functionalities and data security, Aetheris will position itself as a competitive player in the data management and analytics market. This SRS document serves as a foundation for the development team to understand the requirements and objectives for the successful delivery of the MVP.