САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. ПЕТРА ВЕЛИКОГО

Институт прикладной математики и механики Кафедра прикладной математики

ЛАБОРАТОРНАЯ РАБОТА №4 ЭМПИРИЧЕСКИЕ ФУНКЦИИ И ЯДЕРНЫЕ ОЦЕНКИ

Студент группы 3630102/70301

Камянский Д.В.

Преподаватель

Баженов А. Н.

Содержание

1.	Список иллюстраций	3
2.	Список таблиц	3
3.	Постановка задачи	4
4.	Теория	4
5.	Реализация	4
6.	Результаты	5
	6.1. Эмпирические функции распределения	5
	6.2. Ядерные функции	8
7.	Выводы	10
8.	Список литературы	10
9.	Приложения	10

1 Список иллюстраций

1	Ядерная функция плотности для нормального распределения	5
2	Ядерная функция плотности для распределения Лапласа	6
3	Ядерная функция плотности для распределения Коши	6
4	Ядерная функция плотности для распределения Пуассона	7
5	Ядерная функция плотности для равномерного распределения	7
6	Эмпирическая функция для стандартного нормального распределения	8
7	Эмпирическая функция для стандартного распределения Лапласа	8
8	Эмпирическая функция для стандартного распределения Коши	9
9	Эмпирическая функция для распределения Пуассона	Ć
10	Эмпирическая функция для равномерного распределения	10

2 Список таблиц

3 Постановка задачи

Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4,4], для непрерывных распределений и на отрезке [6,14], для распределения Пуассона.

Распределения:

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{1}$$

$$C(x,0,1) = \frac{1}{\pi(1+x^2)} \tag{2}$$

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}\tag{3}$$

$$P(5,k) = \frac{5^k}{k!}e^{-5} \tag{4}$$

$$M(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \le \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (5)

4 Теория

Статистическим рядом называется последовательность различных элементов выборки $z_1, z_2, ..., z_k$, расположенных в возрастающем порядке с указанием частот $n_1, n_2, ..., n_k$, с которыми эти элементы содержатся в выборке.

Эмпирическая функция распределения:

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i \tag{6}$$

Ядерная оценка плотности:

$$f_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right) \tag{7}$$

где K является ядром, а h>0 является сглаживающим параметром, и называется шириной полосы.

В данной работе в качестве ядра была выбрана плотность вероятности стандартного нормального распределения:

$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{8}$$

Параметр сглаживания будем выбирать по правилу Сильвермана

$$h_n = 1.06 * \sigma * n^{-1/5} \tag{9}$$

где σ - выборочное стандартное отклонение.

5 Реализация

Для генерации выборки был использован Python~3.8.2: модуль stats библиотеки scipy для генерации выборок различных распределений и библиотека matplotlib для построения графиков

6 Результаты

6.1 Эмпирические функции распределения

Рис. 1: Ядерная функция плотности для нормального распределения

Рис. 2: Ядерная функция плотности для распределения Лапласа

Рис. 3: Ядерная функция плотности для распределения Коши

Рис. 4: Ядерная функция плотности для распределения Пуассона

Рис. 5: Ядерная функция плотности для равномерного распределения

6.2 Ядерные функции

Рис. 6: Эмпирическая функция для стандартного нормального распределения

Рис. 7: Эмпирическая функция для стандартного распределения Лапласа

Рис. 8: Эмпирическая функция для стандартного распределения Коши

Рис. 9: Эмпирическая функция для распределения Пуассона

Рис. 10: Эмпирическая функция для равномерного распределения

7 Выводы

Эмпирическая функция лучше приближает эталонную функцию с ростом объёма выборки.

Ядерная оценка функции плотности вероятности с выбранным нормальным ядром лучше всего приближает распределения, близкие к нормальному, с ростом размера выборки качество оценки растёт.

8 Список литературы

Модуль scipy.stats

9 Приложения

Код лаборатрной: https://github.com/dkamianskii/MatStatLabs/tree/master/Lab4